EE-559 - Deep learning

3.4. Multi-Layer Perceptrons

François Fleuret
https://fleuret.org/ee559/
Wed Nov 21 08:27:39 UTC 2018

So far we have seen linear classifiers of the form

$$\mathbb{R}^D \to \mathbb{R}$$
$$x \mapsto \sigma(w \cdot x + b),$$

with $w \in \mathbb{R}^D$, $b \in \mathbb{R}$, and $\sigma : \mathbb{R} \to \mathbb{R}$.

So far we have seen linear classifiers of the form

$$\mathbb{R}^D \to \mathbb{R}$$
$$x \mapsto \sigma(w \cdot x + b),$$

with $w \in \mathbb{R}^D$, $b \in \mathbb{R}$, and $\sigma : \mathbb{R} \to \mathbb{R}$.

This can naturally be extended to a multi-dimension output by applying a similar transformation to every output, which leads to

$$\mathbb{R}^D \to \mathbb{R}^C$$
$$x \mapsto \sigma(wx + b),$$

with $w \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^C$, and σ is applied component-wise.

Even though it has no practical value implementation-wise, we can represent such a model as a combination of units, and extend it.

Even though it has no practical value implementation-wise, we can represent such a model as a combination of units, and extend it.

Even though it has no practical value implementation-wise, we can represent such a model as a combination of units, and extend it.

This latter structure can be formally defined, with $x^{(0)} = x$,

$$\forall l = 1, ..., L, \ x^{(l)} = \sigma \left(w^{(l)} x^{(l-1)} + b^{(l)} \right)$$

and $f(x; w, b) = x^{(L)}$.

This latter structure can be formally defined, with $x^{(0)} = x$,

$$\forall l = 1, ..., L, \ x^{(l)} = \sigma \left(w^{(l)} x^{(l-1)} + b^{(l)} \right)$$

and $f(x; w, b) = x^{(L)}$.

Such a model is a Multi-Layer Perceptron (MLP).

Note that if σ is an affine transformation, the full MLP is a composition of affine mappings, and itself an affine mapping.

Note that if σ is an affine transformation, the full MLP is a composition of affine mappings, and itself an affine mapping.

Consequently:

The activation function σ should be non-linear, or the resulting MLP is an affine mapping with a peculiar parametrization.

The two classical activation functions are the hyperbolic tangent

$$x \mapsto \frac{2}{1 + e^{-2x}} - 1$$

The two classical activation functions are the hyperbolic tangent

$$x\mapsto \frac{2}{1+e^{-2x}}-1$$

and the rectified linear unit (ReLU)

$$x \mapsto \max(0, x)$$

Universal approximation

$$f(x) = \sigma(w_1 x + b_1)$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2)$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3)$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

This is true for other activation functions under mild assumptions.

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

First, we can use the previous result for the sin function

$$\forall A > 0, \epsilon > 0, \exists N, (\alpha_n, a_n) \in \mathbb{R} \times \mathbb{R}, n = 1, \ldots, N,$$

s.t.
$$\max_{x \in [-A,A]} \left| \sin(x) - \sum_{n=1}^{N} \alpha_n \sigma(x - a_n) \right| \le \epsilon.$$

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

First, we can use the previous result for the sin function

$$\begin{split} \forall A>0, \epsilon>0, \ \exists N, \ (\alpha_n,a_n) \in \mathbb{R} \times \mathbb{R}, n=1,\ldots,N, \\ \text{s.t.} \ \max_{x \in [-A,A]} \left| \sin(x) - \sum_{n=1}^N \alpha_n \sigma(x-a_n) \right| \leq \epsilon. \end{split}$$

And the density of Fourier series provides

$$\begin{split} \forall \psi \in \mathscr{C}([0,1]^D,\mathbb{R}), \delta > 0, \exists M, (v_m,\gamma_m,c_m) \in \mathbb{R}^D \times \mathbb{R} \times \mathbb{R}, m = 1,\ldots,M, \\ \text{s.t.} \ \max_{x \in [0,1]^D} \left| \psi(x) - \sum_{m=1}^M \gamma_m \sin(v_m \cdot x + c_m) \right| \leq \delta. \end{split}$$

So, $\forall \xi > 0$, with

$$\delta = \frac{\xi}{2}, A = \max_{1 \leq m \leq M} \max_{x \in [0,1]^D} \left| v_m \cdot x + c_m \right|, \text{ and } \epsilon = \frac{\xi}{2 \sum_m \left| \gamma_m \right|}$$

we get, $\forall x \in [0,1]^D$,

$$\left| \psi(x) - \sum_{m=1}^{M} \gamma_m \left(\sum_{n=1}^{N} \alpha_n \sigma(v_m \cdot x + c_m - a_n) \right) \right|$$

$$\leq \left| \psi(x) - \sum_{m=1}^{M} \gamma_m \sin(v_m \cdot x + c_m) \right|$$

$$\leq \frac{\xi}{2}$$

$$+ \sum_{m=1}^{M} |\gamma_m| \left| \frac{\sin(v_m \cdot x + c_m) - \sum_{n=1}^{N} \alpha_n \sigma(v_m \cdot x + c_m - a_n)}{\sum_{n=1}^{K} \sum_{m=1}^{N} |\gamma_m|} \right|$$

$$\leq \frac{\xi}{2 \sum_{m} |\gamma_m|}$$

$$\leq \frac{\xi}{2 \sum_{m} |\gamma_m|}$$

$$\leq \frac{\xi}{2 \sum_{m} |\gamma_m|}$$

So we can approximate any continuous function

$$\psi: [0,1]^D \to \mathbb{R}$$

with a one hidden layer perceptron

$$x \mapsto \omega \cdot \sigma(wx + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$.

So we can approximate any continuous function

$$\psi: [0,1]^D \to \mathbb{R}$$

with a one hidden layer perceptron

$$x \mapsto \omega \cdot \sigma(w x + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$.

This is the universal approximation theorem.

So we can approximate any continuous function

$$\psi: [0,1]^D o \mathbb{R}$$

with a one hidden layer perceptron

$$x \mapsto \omega \cdot \sigma(wx + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$.

This is the universal approximation theorem.

A better approximation requires a larger hidden layer (larger K), and this theorem says nothing about the relation between the two.

