

Bildgestützte Automatisierung II

Übung 2

12.05.2022 - Übungsablauf

Uhrzeit	Aktivität
14:30 – 15:00 Uhr	Vorbereitungsaufgabe UE 2: Klärung der Fragen UE 2 Durchführung, Aufg. 3 Optimierung und Evaluation: Erläuterung der Funktionen
15:00 – 16:00 Uhr	 Arbeiten in Gruppen in Breakout-Rooms oder selbstständig Mehrere Breakout-Rooms (Konferenzräume) stehen zur Verfügung Freie Auswahl des Raums
16:00 – 16:15 Uhr	Pause
15:15 – 17:45 Uhr	 Arbeiten in Gruppen in Breakout-Rooms oder selbstständig Mehrere Breakout-Rooms (Konferenzräume) stehen zur Verfügung Freie Auswahl des Raums

Vorbereitungsaufgabe (1)

Paper "Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark"

Fragen zum Kapitel III. DATASET

- Wie groß ist die Bilddatenbank? Wie ist die Datenbasis strukturiert?
- Was könnte der Grund für die Unterteilung in Training und Evaluation Set sein?
- Welche Kategorien werden betrachtet?

Vorbereitungsaufgabe (2)

Paper "Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark"

Fragen zum Kapitel IV. EVALUATION PROCEDURE

- Mit welchen Daten wird die Evaluation durchgeführt?
- Was ist ein Precision-Recall-Plot?
- Welcher Score ist ausschlaggebend für das Ranking im Wettbewerb?
- Welcher Score wird genutzt, um die Überlappung von gefundener und tatsächlicher ROI zu ermitteln?

Vorbereitungsaufgabe (1)

Paper "Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark"

Fragen zum Kapitel V. BASELINE ALGORITHMS

- Welche drei Methoden wurden als Baseline vorgestellt?
- Auf welchen Features basieren die Methoden?

Jupyter Notebook: Funktionen aus Aufgabe 3 (Übung 2)

- Funktion zur Berechnung des Jaccard-Ähnlichkeitsmaßes
- Funktion zur Evaluation der Detektionen

Funktion zur Berechnung von Precision und Recall

Jaccard-Ähnlichkeitsmaß

- Output eines typischen Detektionsalgorithmus ist eine Liste mit ROIs
- Für jedes ROI wird Jaccard-Ähnlichkeitsmaß berechnet:

$$J(S,G) = \frac{|S \cap G|}{|S \cup G|} \in [0,1]$$

$$-J_b = 0$$
 if $J < 0.6$ and $J_b = 1$ otherwise

- Bei Überschneidung von mehreren berechneten ROIs mit dem "groundtruth"-ROI G:
 - der ROI mit dem größten Überschneidungsgrad wird verwendet
 - Alle anderen ROIs werden verworfen (weder als "hit" noch als "miss" gezählt)

ROI – Region of Interest

Precision und Recall

$$precision = \frac{true \ positives}{true \ positives + false \ positives} = \frac{1}{true \ positives}$$

$$recall = \frac{true \ positives}{true \ positives + false \ negatives} = \frac{1}{true \ positives + false \ negatives}$$

Quelle: Walber, CC BY-SA 4.0

UE 2 – Modellbasierte Detektionsverfahren

Zwischenergebnisse Formbasierter Ansatz

UE 2 – Erweiterung des formbasierten Ansatzes

Form- und farbbasierter Ansatz

Berücksichtigung der Form und der Farbe der Schilder

UE 2 – Optimierungsvorschläge(1)

Vorverarbeitung:

- Betrachtung der Farbkanäle
- Einsatz der morphologischen Operationen (Errosion, Dilatation <u>Link</u>)
- Rauschenunterdrückung

Hilfreiche OpenCv-Funktionen:

- cv2.cvtColor Konvertieren in einen anderen Farbraum
- cv2.split Kanäle eines Bildes trennen
- cv2.merge einzelne Kanäle zu einem Bild zusammenfügen
- cv2.threshold oder cv2.adaptiveThreshold Umsetzung einer Schwellwertoperation
- cv2.inRange Umsetzung einer Schwellwertoperation mit zwei Schwellwerten
- cv2.bitwise_or, cv2.bitwise_and Logische Operatoren in Zusammenhang mit binären Bildern

UE 2 – Optimierungsvorschläge (2)

- Dynamische Parameteranpassung in HoughCircles-Funktion
- Entfernung kollidierender Kreise mit z.B.: einer Zusatzfunktion
- Einschränkung der Suche nach Kreisen durch folgende Angaben:
 - minimale und maximale Anzahl der Kreise
 - minimale und maximale Größe der Kreise
 - Position der Kreise im Bild
 - Farben der Kreise und des Hintergrunds (z.B.: Bäume)