Modul 3

ML Introduction

Data Science Program

Outline

What is Machine Learning?

ML Application

Why Machine Learning?

ML Type

Data

ML Business Formulation

What is Machine Learning (ML)?

An algorithm that learn from data and then making prediction

Imagine you bring a child to a park and we "teach" them to recognize many things such as chair, table, cat, bike, etc..

What is Machine Learning (ML)?

ML also known as:

- predictive analytics
- statistical learning

Al vs ML

AI: make computer mimic human.

ML: A subset of AI that make computer mimic human without specifically programmed and let it learn from data

Al but not considered as ML

Specifically Programmed Model/Rule

- Dog is usually bigger or taller than cat
- dogs have a longer snout than cats
- the nose is black
- etc

"Dog"

Input either cat images or dog

Al considered as ML

Input an image

Model/Rule

"Cat"

Learning Process

Input many Cat and Dog Images

ML Application Various Industry

Financial Services

Government

Health Care

Retail

Oil and Gas

Transportation

ML Application

How Much ?

Number of Transaction per Month Amount Transaction

ML Application

Movie Recommendation

Image Classification

Why do we need ML?

- Human is really good at detecting pattern. However, we know the concept of exhausting.
- Computer is not born with our privileges. However, they can work endlessly 24/7, 7 days a week, 30 days per month, and 365 days to catch up with us.
- We can leverage this computer advantages to help us solve complex problems, which we might tired or unable to do.
- ML can adapt if exposed to new data. Adaptation is very necessary because data volume is growing and data variety increase.

40 years old woman rent a home 2 dependents

Loan Rejected

Type of ML

- bring the kid to park and also teach them the name (supervised)
- bring the kid but let them observed by themselves (unsupervised)

Supervised Learning

Unsupervised Learning

Classification

Regression

How Much ?

Telco Customer Segmentation

Type of ML

	Supervised	Unsupervised	
Dataset	Labeled Dataset	Unlabeled Dataset	
Task	Predicting or Classifying based on previous labelled data	Find hidden pattern and grouping from unlabelled data	
Method	Classification. Regression	Clustering, Dimensional Reduction, Anomaly Detection	
Algorithm	Linear Regression, Logistic Regression, KNN, Decision Tree, Random Forest, Boosting	K-Means, DBScan, t-SNE, PCA, Factor Analysis, One-class SVM, Isolation Forest	
Use cases	Credit Scoring, Churn Analysis, Propensity Analysis, House Price	Customer segmentation, Market Basket Analysis, Fraud detection	

Another Type of ML

- Semi-supervised Learning
- Reinforcement Learning

Data

You ML model only as good as your data

For example, you want to predict gender and the only feature you have is their last name. No algorithm will be able to predict their gender.

If you have another feature like their first name, it will be much better as it is often possible to tell the gender by a person's first name.

More features, can make you have more confidence.

source: 9gag

Data Illustration: Credit Scoring

Label and Features

Label:

- The label should come after the feature, because it's predictive

Features:

- The features should come before the label, because it's predictive
- The features should be available when prediction needed.
- A feature should be a phenomenon that related with the label

Label and Features

Age	 Duration	Interested (call by phone)
23		Yes
24		No
26		No
27		Yes

For example we want to predict whether a customer will interested to take home loan before we call them.

We use the historical data and when build machine learning model duration included as feature.

Even you got good performance in ML but this makes the ML model useless because duration is not available when we need it

ML Business Formulation

- The Problem
- Data
- Objective
- Action
- Value

Problem

How to predict default risk of the new applicant so we can allocate loan efficiently and increase profit from loan?

Data

• What is being predicted? default risk of the new applicant

• What is needed in prediction? Demographical, Transaction behaviour, income, ect

ML Objective

Maximize (profit - potential revenue lost)

Action

Do not allocate loan to a customer when the risk is too high

Value

Profit Increase

References

Andreas C. Müller & Sarah Guido

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

References

https://www.the-modeling-agency.com/crisp-dm.pdf

https://scikit-learn.org/stable/

