TDT4200 - Problem Set 1

Einar Johan Trøan Sømåen 2013/08/28

1 Part I, Theory

a)

Explain why multi-core processors have become so popular the past few years, despite being harder to program.

We are reaching a limit as to how much faster we can go in terms of pure serial execution speed, additionally we are getting problems with "dark silicon", meaning that we can't really fire up an entire CPU for serial execution, without melting it, to a larger and larger degree, thus we have to reap the benefits that can be found from executing our code in parallel instead, to continue increasing the execution speed of our programs.

b)

Briefly describe the four kinds of parallel systems in Flynn's taxonomy (SISD, SIMD, MISD, MIMD), as well as SPMD.

Acronym	Full Name	Explanation
SISD	Single Instruction Single Data	Classical serial execution system.
SIMD	Single Instruction Multiple Data	Vector-processing, one instruction performed on a set
		of data (i.e. matrix-scalar multiplication can be done
		as a single instruction, where as many multiplications
		as possible of those involved then can happen in par-
		allell) SSE/Altivec are examples of SIMD-additions to
		existing CPU-architectures.
MISD	Multiple Instruction Single Data	Rarely seen, unless you count the pipeline itself, in this
		case various execution units perform different opera-
		tions on the same data.
MIMD	Multiple Instruction Multiple Data	Multiple execution units performing (potentially differ-
		ent) instructions on different parts of the data, the clue
		here is that on an instruction level the various execu-
		tion units can be doing quite different things, to quite
		different sets of data
SPMD	Single Program Multiple Data	Is the application of splitting a problem into subprob-
		lems, and running these subproblems in paralell on var-
		ious execution units, thus the data is split, but still
		controlled by the same program (consider calculating
		some numeric integral, the problem in one domain can
		be handled on some CPU, while some other domain is
		handled by some other CPU)

c)

Briefly describe the main difference between a shared-memory system and a distributed-memory system. A shared memory system is for instance what your household variant computer usually can be viewed as if working with multiple threads today, all the memory is shared among the threads (and indeed also geographically placed in the same machine), a programming model for this type of system is OpenMP.

A distributed memory system on the other hand, has it's memory distributed geographically among the nodes, such that a single node might have some memory, but that is local to that exact node, and thus not shared with the other nodes, to gain access to this memory, you would need to communicate between the nodes (i.e. with MPI).