Visualizing Multilevel Models

Andy Grogan-Kaylor

2023-11-17

Table of contents

1	Introduction	2
2	Organizing Questions	2
3	Setup	3
4	Get Data	3
5	Scatterplots (twoway scatter y x)	3
6	Simple Linear Fit (twoway lfit y x)	4
7	Linear Fit With Confidence Interval (twoway lfitci y x)	4
8	Combine Scatterplot and Linear Fit (twoway (scatter y x) (lfit y x))	5
9	<pre>Spaghetti Plots (spagplot y x, id(group))</pre>	7
10	Small Multiples (twoway y x, by(group))	7
11	Taking A Random Sample	8
12	12.1.1 Estimate The Model	10 11 12 12
	12.2.1 Estimate The Model	13

	12.2.2 Generate Predicted Values At Specified Values With margins	13
	12.2.3 Graph With marginsplot	14
13	Scatterplot With Linear Fit and Marginal Density Plots (twoway)	14
	13.1 Manually Generate The Densities To Plot Them Below (kdensity)	15
	13.2 Rescale The Densities So They Plot Well	15
	13.3 Make The Graph (twoway)	16
	13.4 Spaghetti Plot With Linear Fit and Marginal Density Plots	16
14	Curvilinear and Linear Fits	16
15	Random Effects	16

1 Introduction

An evolving set of notes on visualizing results from multilevel models.

The examples below use the simulated_multilevel_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

2 Organizing Questions

Try to think about some of the advantages and disadvantages of different approaches to visualizing multilevel models. In multilevel models, we don't want to just *control for* variation, but to start to *explore* the variation. Put concretely:

- Some approaches use dots. Some approaches use lines. Some approaches use dots and lines.
- Some approaches use the raw unadjusted data. Other approaches use adjusted or model predicted data.
- Some approaches attempt to show the Level 2 specific regression lines; some approaches only show an average regression line.
- What approaches might work well with *large numbers* of Level 2 units? What approaches might work well with *smaller numbers* of Level 2 units?

What approach(es) do you prefer?

3 Setup

I am not terrifically fond of the default s2color graph scheme in earlier versions of Stata. Here I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/

```
set scheme michigan
```

Stata's s1color scheme would also would be an option as would be Asjad Naqvi's incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack.

Throughout the tutorial, I make frequent use of the mcolor(%30) option to add some visual interest to scatterplots by adding transparency to the markers.

4 Get Data

```
use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-multile
```

5 Scatterplots (twoway scatter y x)

```
twoway scatter outcome warmth, mcolor(%30)
  graph export myscatter.png, width(1500) replace
variable outcome not found
r(111);
end of do-file
r(111);
```


Figure 1: Scatterplot

6 Simple Linear Fit (twoway lfit y x)

```
twoway lfit outcome warmth
  graph export mylinear.png, width(1500) replace
variable outcome not found
r(111);
end of do-file
r(111);
```

7 Linear Fit With Confidence Interval (twoway lfitci y x)

```
twoway lfitci outcome warmth
graph export mylfitci.png, width(1500) replace
```


Figure 2: Linear Fit

```
variable outcome not found
r(111);
end of do-file
r(111);
```

8 Combine Scatterplot and Linear Fit (twoway (scatter y x) (lfit y x))

```
twoway (scatter outcome warmth, mcolor(%30)) (lfit outcome warmth)
graph export myscatterlinear.png, width(1500) replace

variable outcome not found
r(111);
end of do-file
r(111);
```


Figure 3: Linear Fit With Confidence Interval

Figure 4: Scatterplot and Linear Fit

9 Spaghetti Plots (spagplot y x, id(group))

```
spagplot outcome warmth, id(country)
graph export myspaghetti.png, width(1500) replace
no variables defined
r(111);
end of do-file
r(111);
```


Figure 5: Spaghetti Plot

10 Small Multiples (twoway y x, by(group))

Small Multiples, showing a separate graph for each group in the data, are an increasingly popular data visualization technique. Below, I build a small multiples graph using the by option in Stata. I use the aspect option to adjust the aspect ratio of the graph for better visual presentation.

```
twoway (scatter outcome warmth, mcolor(%30)) ///
  (lfit outcome warmth), ///
  by(country) aspect(1)

graph export mysmallmultiples.png, width(1500) replace

no variables defined
r(111);
end of do-file
r(111);
```


Figure 6: Small Multiples

11 Taking A Random Sample

At times, we may have too many Level 2 units to effectively display them on a spaghetti plot, or using small multiples. If this is the case, we may need to randomly sample Level 2 units. This can be difficult to accomplish as our standard sample command operates on each row, or on Level 1 units.

We can accomplish random sampling at Level 2, with a little bit of code.

```
set seed 3846 // random seed for reproducibility
  gen randomid = runiform() // generate a random id variable
  * by country (i.e. by Level 2 unit) replace the randomid
  * with the first randomid for that country (Level 2 unit)
  * so that every person in that country has the same random id
  bysort country: replace randomid = randomid[1]
  summarize randomid // descriptive statistics for random id
  twoway (scatter outcome warmth, mcolor(%30)) /// scatterplot
  (lfit outcome warmth) /// linear fit
  if randomid < .5, /// only use a subset of randomids
  by(country) aspect(1) // by country
  graph export mysmallmultiples2.png, width(1500) replace
variable country not found
r(111);
end of do-file
r(111);
```

12 Multivariate (Predicted) Relationships

A sometimes unacknowledged point is that graphs—unless we take steps to correct this—reflect *unadjusted*, or *bivariate* associations. We may sometimes wish to develop a graphs that reflect the *adjusted* or *predicted* estimates from our models.

In multilevel models, *prediction* is a complex question. Prediction may—or may not—incorporate the information from the random effects. The procedures below outline graphs that incorporate predictions using the random effects, by using the predict ..., fitted syntax.

12.1 Using Predicted Values (predict)

predict generates a predicted value for every observation in the data.

Figure 7: Small Multiples With A Random Sample Of Countries

12.1.1 Estimate The Model

```
mixed outcome warmth physical_punishment i.group || country: // estimate MLM variable outcome not found r(111); end of do-file r(111);
```

12.1.2 Generate Predicted Values

```
predict outcome_hat, fitted // predict yhat (`fitted` uses fixed AND random effects) last estimates not found r(301); end of do-file r(301);
```

12.1.3 Graph With twoway Syntax

```
twoway (scatter outcome_hat warmth, mcolor(%30)) (lfit outcome_hat warmth)
graph export mypredictedvalues.png, width(1500) replace
twoway (lfit outcome_hat warmth)
graph export mypredictedvalues2.png, width(1500) replace

variable outcome_hat not found
r(111);
end of do-file
r(111);
```


Figure 8: Predicted Values From predict

Figure 9: Predicted Values From predict With Only Linear Fit

12.1.4 Spaghetti Plot With Predicted Values

```
spagplot outcome_hat warmth, id(country)
graph export myspaghetti2.png, width(1500) replace
no variables defined
r(111);
end of do-file
r(111);
```

12.2 margins and marginsplot

In contrast to predict, which generates a predicted value for every observation in the data, margins generates predicted values at specific values of certain variables.

Figure 10: Spaghetti Plot With Predicted Values

12.2.1 Estimate The Model

```
mixed outcome warmth physical_punishment i.group || country: // estimate MLM
variable outcome not found
r(111);
end of do-file
r(111);
```

12.2.2 Generate Predicted Values At Specified Values With margins

```
margins group, at(warmth = (1 2 3 4 5 6 7)) // predictive *margins*
last estimates not found
r(301);
end of do-file
r(301);
```

12.2.3 Graph With marginsplot

```
marginsplot // plot of predicted values
graph export mymarginsplot.png, width(1500) replace
previous command was not margins
r(301);
end of do-file
r(301);
```


Figure 11: Predicted Values From margins and marginsplot

13 Scatterplot With Linear Fit and Marginal Density Plots (twoway ...)

As another possibility, we may wish to show more of the variation, by showing the variation in the *independent* variable and the *dependent* variable along with a *scatterplot* and *linear fit*. This is a complex graph and requires a little bit of manual programming in Stata.

You could also investigate the user written program binscatterhist (ssc install binscatterhist) which produces a similar looking graph, and automates much of this work.

13.1 Manually Generate The Densities To Plot Them Below (kdensity ...)

We generate the density for warmth at only a few points (n(8)) since this variable has relatively few categories.

```
kdensity warmth, generate(warmth_x warmth_d) n(8) // manually generate outcome densities
kdensity outcome, generate(outcome_y outcome_d) // manually generate outcome densities

variable warmth not found
r(111);
end of do-file
r(111);
```

13.2 Rescale The Densities So They Plot Well

You may have to experiment with the scaling and moving factors.

```
replace warmth_d = 100 * warmth_d // rescale the density so it plots well
replace outcome_d = 5 * outcome_d - .5 // rescale AND MOVE the density so it plots well
label variable outcome_y "density: beneficial outcome" // relabel y variable
no variables defined
r(111);
end of do-file
r(111);
```

13.3 Make The Graph (twoway ...)

You may have to experiment with whether scatterplots or line plots work best for displaying the x and y densities.

```
twoway (scatter outcome warmth, mcolor(%10)) /// scatterplot w some transparency
  (lfit outcome warmth) /// linear fit
    (line warmth_d warmth_x) /// line plot of x density
    (line outcome_y outcome_d), /// line plot of y density (note flipped order)
    title("Outcome by Warmth") /// title
    ytitle("beneficial outcome") /// manual ytitle
    xtitle("parental warmth") /// manual xtitle
    legend(position(6) rows(2)) /// legend at bottom; 2 rows
    xlabel(0 1 2 3 4 5 6 7) /// manual x labels
    name(mynewscatter, replace)

graph export mynewscatter.png, width(1500) replace

variable outcome not found
r(111);
end of do-file
r(111);
```

13.4 Spaghetti Plot With Linear Fit and Marginal Density Plots

14 Curvilinear and Linear Fits

15 Random Effects

Figure 12: Scatterplot and Linear Fit With Marginal Density Plots