Lineær algebra noter - Basis og koordinatisering

Lukas Peter Jørgensen, 201206057, DA4

14. august 2014

Indhold

1	Dis	position		
2	Noter			
	2.1	Ordnet basis		
	2.2	Theorem 3.4.1		
	2.3	Koordinatvektor		
	2.4	Lemma 3.3.2		

2 Noter

2.1 Ordnet basis

Sættet $\{b_1, b_2, \ldots, b_n\}$ er en basis for V hvis de er lineært uafhængige. Normalt er rækkefølgen i en basis irrelevant, men i visse tilfælde (deriblandt for koordinatisering) er det nødvendigt at have dem ordnet: $[b_1, b_2, \ldots, b_n]$.

2.2 Theorem 3.4.1

Hvis $V = span(v_1, v_2, \dots, v_n)$ så for ethvert sæt af vektorer i V $(u_1, u_2, \dots, u_m), m > n$ så er u_i 'erne indbyrdes lineært afhængige.

Da $V = span(v_1, v_2, \dots, \vDash_n)$ kan u_i 'erne skrives som en linearkombination af v_j 'erne.

$$u_i = \sum_{j=1}^n a_{ij} v_j, \quad a_{ij} \in \mathbb{F}$$

For at finde ud af om u_i 'erne er uafhængige må der ikke være en ikke-triviel løsning til:

$$\sum_{i=1}^{m} c_i u_i = 0$$

Hvis vi erstatter u_i med en linearkombination af v_j 'erne får vi:

$$\sum_{i=1}^{m} c_i \sum_{j=1}^{n} a_{ij} v_j = \sum_{j=1}^{n} \sum_{i=1}^{m} (a_{ij} c_i) v_j$$

Hvis vi nu nøjes med at kigge på produktet af $a_{ij}c_i$ får vi:

$$\sum_{i=1}^{m} a_{ij}c_i = 0, \text{ for } j = 1, \dots, n$$

Her er der flere ubekendte end der er ligninger da m > n, det er desuden et homogent system (b = 0) derfor gælder teorem 1.2.1 der siger at der må være en ikke-triviel løsning.

Vi skal nu vise at løsninger til:

$$\sum_{i=1}^{m} a_{ij}c_i = 0, \text{ for } j = 1, \dots, n$$

også er løsninger til:

$$\hat{c_1}u_1 + \hat{c_2}u_2 + \dots + \hat{c_m}u_m = 0$$

Hvor $\{\hat{c_1}, \dots, \hat{c_m}\}, c_i \neq 0$ for flere c_i 'er.

Hvilket løsningerne er, da vi kan indsætte 0:

$$\sum_{i=1}^{n} \sum_{i=1}^{m} 0v_j = 0$$

2.3 Koordinatvektor

V er et vektorrum og $E = [v_1, v_2, \dots, v_n]$ er en ordnet basis for V. Hvis v er et element af V, så kan v skrives på formen:

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

hvor $c_1, c_2, \ldots c_n$ er skalarer. Vi kan nu associere enhver vektor v med en unik vektor $c = (c_1, c_2, \ldots c_n)^T$ i \mathbb{R}^n . Denne vektor c kaldes koordinatvektoren for v ift. den ordnede basis E og skrives:

$$[v]_E$$

 c_i 'erne kaldes koordinaterne for v relativt til E.

2.4 Lemma 3.3.2

Koordinatisering bevarer lineære strukturer:

1.
$$[v+w]_E = [v]_E + [W]_E$$

2.
$$[rv]_E = r[v]_E$$

1:

Lad $v, w \in V$, v og w kan skrives som:

$$v = c_1 v_1 + \dots + c_n v_n, \ w = d_1 + \dots + d_n v_n$$

Da er $v + w = (c_1 + d_1)v_1 + \cdots + (c_n d_n)v_n$ og så gælder der:

$$[v+w]_E = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [v]_E + [w]_E$$

2

Lad $v \in V$, v kan da skrives som:

$$v = c_1 v_1 + \dots + c_n v_n$$

Da er $rv = rc_1v_1 + \cdots + rc_nv_n$ og

$$[rv]_E = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r[v]_E$$

?? —

Hvis et vektorrum V har dim(n) så kan V koordinatiseres så den "efterligner" \mathbb{R}^n . Vi kan dermed arbejde med koordinatiseringen med samme værktøjer som ved rummet \mathbb{R}^n

--- ??