A BIJECTIVE PROOF FOR RECIPROCITY THEOREM

SHINNYIH HUANG, ALEXANDER POSTNIKOV

ABSTRACT. In this paper, we study the graph polynomial that records spanning rooted forests f_G of a given graph. This polynomial has a remarkable reciprocity property. We give a new bijective proof for this theorem which has Prüfer coding as a special case.

1. Introduction

A spanning tree T in some graph G is a connected acyclic subgraph of G that includes all vertices in V(G). Calculating the number t(G) of spanning trees for some graph G is one of the typical questions we will ask. For example, when G is a complete graph K_n , $t(K_n) = n^{n-2}$. There are several methods to calculate t(G), such as the matrix-tree theorem and Prüfer coding.

In this paper, we study some graph polynomial f_G that records the spanning trees of the extended graph \widetilde{G} of graph G. This polynomial can be used to compute the spanning tree of some complex graphs easily. For example, let $\Gamma = \Gamma(G; G_1, \ldots, G_k)$ be the graph that is obtained by substitution of graphs G_1, \ldots, G_k instead of a vertices of a graph G. Then we can easily obtain f_{Γ} by f_G and f_{G_i} , for $1 \le i \le k$.

In fact, the polynomial f_G possess the remarkable property of reciprocity. A. Renyi [9] gives an inductive proof for this reciprocity theorem. I. Pak and A. Postnikov [1] also give an inductive proof. Throughout this paper, we present a new bijective proof for the reciprocity theorem. One interesting fact is that the map we used in the bijection is Prüfer coding when G is a complete graph.

This paper is organized as follows: In section 2, we define the graph polynomial f_G to enumerate spanning trees in \widetilde{G} . In section 3, we show the reciprocity theorem for f_G and defined some tools for the future bijective proof. In section 4, we define two maps ϕ and ψ to show the bijection between **A** and **B**. Finally, in section 5, we use this bijective coorespondence to prove the reciprocity theorem of f_G .

2. Graph Polynomials for Spanning Trees

Suppose that G = (V, E) is a graph with vertices $1, \ldots, n$, where |V| = n. Let $0 \notin V$ and $\widetilde{V} := V \cup \{0\}$. We say the *extended graph* \widetilde{G} of G is a graph on the set \widetilde{V} obtained by adding edges $\{0, v\}$ to G for all vertices $v \in V$. Clearly, if G is a complete graph K_n with n vertices, then \widetilde{G} is a complete graph K_{n+1} with n+1 vertices. We denote the set of all *spanning trees* in G as T_G , i.e. all acyclic connected subgraphs in G which contain all the vertices of G.

First of all, we assign variables x_i to i, for all $1 \le i \le n$. For any spanning tree T in T_G , define a function m(T) associated to T:

$$m(T) = \prod_{v \in V} x_v^{\rho_T(v) - 1}, \tag{2.1}$$

where $\rho_T(v)$ denotes degree of the vertex v in the tree T, i.e. the number of edges adjacent to the vertex v.

Now, we set the graph polynomial t_G to be,

$$t_G := \sum_{T \in \mathcal{T}(G)} m(T).$$

Let us associate the variable x to vertex 0. Then, the graph polynomial f_G of variables x and x_v , for all $v \in V$ is defined as follows:

$$f_G := t_{\widetilde{G}} = \sum_{T \in \mathcal{T}_{\widetilde{G}}} m(T). \tag{2.2}$$

We denote $V = \{1, ..., n\}$ and $f_G = f_G(x; x_1, ..., x_n)$.

It is easy to see that the spanning trees in $T_{\widetilde{G}}$ correspond to spanning rooted forests in G, i.e. acyclic subgraphs in G containing all vertices in V, with a root chosen in each component. In particular, the two polynomials t_G and f_G possess the following identity:

$$t_G(x_1, \dots, x_n) \cdot (x_1 + \dots + x_n) = f_G(0; x_1, \dots, x_n).$$
 (2.3)

An short proof for Eq.(2.3) is provided in Igor Pak and A. Postnikov [1].

The graph polynomial f_G has two important properties that allow us to compute the number of spanning rooted forests for certain graph. The first property is the composition of graphs. Let G_1 and G_2 be two graphs on disjoint sets of vertices, and $G_1 + G_2$ be the disjoint union of the graphs. We associate variable x to the root 0, variables y_1, \ldots, y_{r_1} to the vertices of G_1 , and variables z_1, \ldots, z_{r_2} to the vertices of G_2 . Then the following formula holds:

$$f_{G_1+G_2}(x; y_1 \dots, y_{r_1}, z_1 \dots, z_{r_2}) = x \cdot f_{G_1}(x; y_1 \dots, y_{r_1}) \cdot f_{G_2}(x; z_1 \dots, z_{r_2}).$$

One can prove the above equation by some simple arguments.

3. Reciprocity Theorem For Polynomials f_G

A graph $\overline{G} = (V, \overline{E})$ is called the *compliment* of some graph G = (V, E) if $\overline{E} = \binom{V}{2} \backslash E$. That is to say, $e \in \overline{E}$ iff $e \notin E$. The graph polynomials f_G possess the following reciprocity property:

$$f_G(x; x_1, \dots, x_n) = (-1)^{n-1} \cdot f_{\overline{G}}(-x - x_1 - \dots - x_n; x_1, \dots, x_n).$$
 (3.1)

The case that $x_1 = \cdots = x_n = 1$ for (3.1) was found by S. D. Bedrosian [2] and A. Kelmans.

Before we give the bijective proof for Eq.(3.1), we first introduce some notation. First of all, let F_G be a spanning tree of some extended graph \widetilde{G} with root 0 and vertices $1, \ldots, n$ so that F_G is a spanning rooted forest of G. It is easy to show that for any vertex u of G, there is a unique path from u to root 0. Therefore, we can assign a direction to every edge in F_G such that each arrow points toward the root 0. This implies that every vertex $u \neq 0$ has outdegree 1. For convention, in this paper, when we say graphs $F_G \in \mathcal{T}_{\widetilde{G}}$ or F_G , we always consider it as a directed graph, and thus for every $u \neq 0$, there is a unique directed edge $(u, v) \in E(F_G)$. In addition, a vertex u is the *child* of vertex u_1 if there is a directed path from u to u_1 in $\mathcal{T}_{\widetilde{G}}$.

Secondly, we say that a valid pair of some tree f_{K_n} is a pair $(u, v) \in F_{K_n}$, and $\mathbf{Z}_{G, f_{K_n}}$ is a subset of valid pairs of f_{K_n} such that

$$\mathbf{Z}_{G,\acute{F}_{K_{n}}} = \{(u,v): (u,v) \notin E(\overline{G}), (u,v) \in E(F_{K_{n}})\}. \tag{3.2}$$

Now, given a subset \mathbf{C} of all valid pairs not in $\mathbf{Z}_{G,\hat{F}_{K_n}}$, we define an *operational set* $\mathcal{O}_{G,\hat{F}_{K_n},\mathbf{C}}$ as follows:

$$\mathcal{O}_{G,\acute{F}_{K_n},C} = \mathbf{C} \cup \mathbf{Z}_{G,\acute{F}_{K_n}}. \tag{3.3}$$

One can see that for a spanning tree F_{K_n} and graph $G \in K_n$, there could be many possible operational sets. An example is in figure 1.

FIGURE 1. For \acute{F}_{K_n} and \overline{G} as above, we have two possible operational sets for \acute{F}_{K_n} . (The green marks are the graph after we apply all the pair in the operation sets to \acute{F}_{K_n} .)

Now, for any $f_{\overline{G}}$, suppose its induced subgraph $F_{\overline{G}}$ in K_n has k connected components. We say a weight sequence $W_{f_{\overline{G}}}$ of $f_{\overline{G}}$ is

$$W_{\underline{F}_{\overline{G}}} = (w_1, \dots, w_{k-1}),$$
 (3.4)

where $w_j \in \{0, 1, ..., n\}$, for $1 \leq j \leq k-1$. By convention, if k = 1, we set $W_{T_{\widetilde{G}}}$ to be empty. Therefore, there are $(n+1)^{k-1}$ possible weight sequences for spanning tree $\hat{F}_{\overline{G}}$ that has k connected components in $F_{\overline{G}}$.

Given a graph $G \in K_n$, let **A** be the set of all possible pairs $\left(\acute{F}_{K_n}, \mathcal{O}_{G, \acute{F}_{K_n}, C}\right)$ and **B** be the set of all possible pairs $\left(\acute{F}_{\overline{G}}, \mathcal{W}_{\acute{F}_{\overline{G}}}\right)$. In the following section, we show a bijection between **A** and **B**.

4. Bijection Between A to B

Suppose that G is a graph with n vertices labeled $1, \ldots, n$ where each vertex i is associated to a variable x_i , for $1 \le i \le n$. For the root in the extended graph, we assign variable x to root 0. We first construct a map ϕ from A to B.

Definition 4.1. Given a pair $(f_{K_n}, \mathcal{O}_{G, f_{K_n}, C}) \in A$, the map ϕ outputs a pair (f, \mathcal{W}) and is defined as follows:

Let S be the set of vertices u in \acute{F}_{K_n} , where the directed edge $(u,v) \in E(\acute{F}_{K_n})$ is a pair in $\mathcal{O}_{G,\acute{F}_{K_n},C}$ or v=0. Construct an empty sequence \mathcal{W} and a graph \acute{F} which is a duplicate of \acute{F}_{K_n} .

WHILE |S| > 1,

- 1: Suppose there is a leaf $u' \neq 0$ in \acute{F}_{K_n} such that the edge $(u',v') \in E(\acute{F}_{K_n})$ is not in S. We remove u' and (u',v') from \acute{F}_{K_n} .
- **2:** Repeat step 1 until every leaf $u \neq 0$ in f_{K_n} is also in S. Let M to be the set of all these vertices.
- **3:** Delete the largest vertex u^* in M and the directed edge (u^*, v^*) in \dot{F}_{K_n} . We set S to be $S \setminus \{u^*\}$, and add v^* to the end of the sequence W.
- **4:** Remove edge (u^*, v^*) and add edge $(u^*, 0)$ to \acute{F} .

RETURN (\acute{F}, \mathcal{W}) .

An example of this algorithm is in figure 2. In the following proposition, we prove that ϕ is well-defined.

FIGURE 2. Input: $T = \acute{F}_{K_n}$ and $\mathcal{O} = \mathcal{O}_{G, \acute{F}_{K_n}, C} = \{(5,7), (2,3)\},$ Output: $T' = \acute{F}_{\overline{G}}$ and $\mathcal{W} = \mathcal{W}_{\acute{F}_{\overline{G}}} = \{7,0,0,3\}$

Proposition 4.2. The map ϕ is a well-defined map from **A** to **B**.

Proof. It is easy to see that all the steps in WHILE loop work. Now, we show that F is a spanning tree of \widetilde{K}_n after each step 4. We proceed this by induction.

Initially, $\acute{F} = \acute{F}_{K_n}$ is a tree. Suppose that at some step 4, we delete edge (u^*, v^*) and add edge $(u^*, 0)$ to the spanning tree $\acute{F} \in \mathcal{T}_{\widetilde{K_n}}$. Furthermore, since for any vertex $u \neq 0$, u and root 0 is connected in graph \acute{F} , it remains connected after we change some edge (u^*, v^*) to edge $(u^*, 0)$. Since $|E(\acute{F})| = n$, \acute{F} is always a spanning tree of $\widetilde{K_n}$ after any step 4.

Now, from (3.3), we know that $\mathbf{Z}_{G,\acute{F}_{K_n}} \in \mathcal{O}_{G,\acute{F}_{K_n},C}$ and all the edges (u,v) in the operational set $\mathcal{O}_{G,\acute{F}_{K_n},C}$ became (u,0) in the output graph \acute{F} . Thus, every edge in E(F) is also in $E(\overline{G})$, and \acute{F} is a spanning tree of $\widetilde{\overline{G}}$.

Finally, we show that W is a weight sequence of \acute{F} . Clearly, S is the set of all roots in the spanning rooted forest F. Since the WHILE loop ends when |S|=1, there are totally |S|-1 elements added to the sequence W. Consequently, W satisfies the length requirement in Eq.(3.4).

The above arguments tell us that $(\hat{F}, \mathcal{W}) \in B$ as desired.

We now give a map ψ from **B** to **A**.

Definition 4.3. Given a pair $\left(\acute{F}_{\overline{G}}, \mathcal{W}_{\acute{F}_{\overline{G}}}\right) \in \mathbf{B}$, the map ψ outputs $\left(\acute{F}^*, \mathcal{O}\right)$ and is defined as follows:

Assume that the forest $F_{\overline{G}}$ has k connected components and the associated weight sequence $\mathcal{W}_{\acute{F}_{\overline{G}}} = (w_1, \dots, w_{k-1})$. Create a tree $\acute{F}^* = \acute{F}_{\overline{G}}$, sequence $\mathcal{W}_{\acute{F}^*} = \mathcal{W}_{\acute{F}_{\overline{G}}}$, and an empty set \mathcal{O} . Let R be the set of roots in $F_{\overline{G}}$.

WHILE the length of $\mathcal{W}_{\acute{F}^*}$ is larger than 0.

- 1: We choose the first element w in the sequence $\mathcal{W}_{\acute{F}^*}$. Let u be the largest vertex in R such that w_i is not u nor a child of u in \acute{F}^* , for any w_i in $\mathcal{W}_{\acute{F}^*}$. Delete the element w from the sequence $\mathcal{W}_{\acute{F}^*}$ and u from the set R.
- **2:** Remove the edge (u,0) and add the edge (u,w) to the graph \hat{F}^* . If $w \neq 0$, we add pair (u,w) to the set \mathcal{O} , i.e. $\mathcal{O} = \mathcal{O} \cup \{(u,w)\}$.

RETURN $(\acute{F}^*, \mathcal{O})$.

An example of this mapping ψ is in figure 3. In the following lemma, we prove that ψ is well-defined.

Proposition 4.4. The map ψ is a well-defined map from **B** to **A**.

Proof. We first show that at any stage, the set R and graph \acute{F}^* satisfy the following properties:

- (1) \acute{F}^* is a spanning tree of \widetilde{K}_n , i.e. F^* is a sapnning rooted forest of K_n .
- (2) R is the sets of roots of forest F^* .

We proceed by induction on the number of loops. Initially, R is the set of all the roots in forest $F_{\overline{G}}$, and \mathcal{W}_{F^*} is a sequence of length k-1=|R|-1. Moreover, at each step 1, we remove an element in \mathcal{W}_{F^*} and an element in R. Thus, the length of sequence \mathcal{W}_{F^*} is always |R|-1.

Now, suppose at some stage, we have that properties (1) and (2) hold and sequence $W_{F^*} = \{w'_1, \dots, w'_{k_1-1}\}$, where $k_1 = |R|$. During step 1, since there are k_1 connected components in F^* , there exists at least one connected component that contains no elements in W_{F^*} . Consider the component with the largest root u

FIGURE 3. Input: $T = \acute{F}_{\overline{G}}$ and $W = \mathcal{W}_{\acute{F}_{\overline{G}}} = \{3,6,5,5\}$, Output: $T' = \acute{F}^*$ and operational set $\sigma = \mathcal{O} = \{(2,3),(1,6),(6,5),(4,5)\}$. (R is the set of current roots.)

that meets this condition. It is not hard to see that for any $1 \le i \le k_1 - 1$, w'_i is not u nor a child of u. Consequently, step 1 works.

For step 2, by the choice of vertex u, we have w_i' and u are not connected in F^* . Suppose F^* becomes cyclic after we delete edge (u,0) and add edge (u,w_1') to this graph. This implies that there is a cycle containing edge (u,w_1') . It is not possible since vertices u and w_1' would be connected in F^* before we add edge (u,w_1') .

The above arguments show that after step 1 and 2, F^* remains acyclic, and is a spanning tree of \widetilde{K}_n . Futhermore, after step 2, since u is no longer a root, R remains as the set of all roots in F^* . As a result, properties (1) and (2) always hold.

Finally, we need to show that $(v, v') \in \mathcal{O}$, for every directed edge $(v, v') \notin E(\overline{G})$ and $(v, v') \in E(F^*)$. Clearly, F^* is obtained from $F_{\overline{G}}$ by a series of removing and adding edges in step 2. If edge $(v, v') \notin E(\overline{G})$, then $(v, v') \notin E(F_{\overline{G}})$. Therefore, edge (v, v') is added to graph F^* in some step 2, and $(v, v') \in \mathcal{O}$. This implies that $(F^*, \mathcal{O}) \in A$ as desired.

Theorem 4.5. The two maps ϕ and ψ define a bijective correspondence between sets A and B.

Proof. We have shown that ϕ and ψ are well-defined. The remaining task is to prove that ϕ is the inverse map of ψ .

Given a pair $(\acute{F}_{K_n}, \mathcal{O}_{G, \acute{F}_{K_n}, C}) \in \mathbf{A}$, we apply the map ϕ and obtain an output $(\acute{F}, \mathcal{W}) \in \mathbf{B}$. Suppose that during the map ϕ , we record the largest vertex u^* in every step 3 into a sequence U in order. It is easy to see that $|U| = |\mathcal{W}| = |S| - 1$, where S is the original set before the WHILE loop in map ϕ . Let |S| = k, and we set $U = \{u_1, \ldots, u_{k-1}\}$ and $\mathcal{W} = \{w_1, \ldots, w_{k-1}\}$. Thus, for any $1 \leq j \leq k-1$, (u_j, w_j) is the directed edge removed from $\acute{F}_{\overline{G}}$ in step 3 in the j-th WHILE loop.

Now, let us apply the map ψ on pair $(\acute{F}, W) \in \mathbf{B}$, and denote the output pair by $(\acute{F}'_{K_n}, \mathcal{O}_{G, \acute{F}'_{K_n}, C_1}) \in \mathbf{A}$. Therefore, initially, R = S is the set of roots of forest F. Our goal is to prove that

$$\acute{F}_{K_n} = \acute{F}'_{K_n} \text{ and } \mathcal{O}_{G, \acute{F}_{K_n}, C_1} = \mathcal{O}_{G, \acute{F}'_{K_n}, C_1}.$$
(4.1)

We record the vertex u we picked in every step 1 in the map ψ and get a sequence $U' = \{u'_1, \ldots, u'_{k-1}\}$ in order. Clearly, if U and U' are the same sequence, Eq.(4.1) holds since every move in step 2 in ψ will be the reverse move in step 4 in ϕ .

Before we show that U = U', we first prove the following property:

(1) In the *i*-th WHILE loop of the map ϕ , where $1 \leq i \leq k-1$, consider the graph F_{K_n} after step 2. Then for any u in that current set S, it is not a leaf in F_{K_n} iff there exists some w_{i_1} , where $i \leq i_1 \leq k-1$, such that w_{i_1} is u or a child of u.

If u is not a leaf in \dot{F}_{K_n} , then there must be a vertex u' in current set S that is child of u. Consider the vertex w' which edge (u', w') is in $E(\dot{F}_{K_n})$. Consequently, $w' \in \{w_i, \ldots, w_{k-1}\}$ is vertex u or child or u. By some easy arguments, one can see that the reverse statement is true, and thus prove property (1).

We now show U = U' by induction on the index i, where $1 \le i \le k-1$. When i = 1, clearly, from (1), we know that u'_1 is a leaf in F_{K_n} . By the choice of u_1 , we have $u'_1 \le u_1$. On the other hand, since u'_1 is the largest element in S that no element in W is u'_1 or child of u'_1 , we have $u_1 \le u'_1$. As a result, $u_1 = u'_1$.

Secondly, suppose for i from 1 to r-1, where $r \leq k-1$, we have $u_i = u_i'$. That is to say, the set S and R in the r-th WHILE loop of map ϕ and ψ are the same. When i = r, from (1) and the choice of u_r' , we have that both $u_r \in S$ and $u_r' \in R = S$ are the largest vertex z such that no element $w \in \{w_r, \ldots, w_{k-1}\}$ is z or child of z. Consequently, $u_r = u_r'$.

By induction, we can prove that U and U' are the same sequence. Therefore, Eq.(4.1) holds and ψ is the inverse map of ϕ . Finally, this shows us that the two maps ϕ and ψ define a coorespondence relation between sets \mathbf{A} and \mathbf{B} .

In particular, consider the case that $G=K_n$. Since \overline{G} is empty, we have that every valid pair (u,v) in F_{K_n} is not in \overline{G} . Therefore, for every spanning tree F_{K_n} in \widetilde{K}_n , there is only one possible operational set $\mathcal{O}_{K_n,\mathring{F}_{K_n},C}=Z_{K_n,\mathring{F}_{K_n}}$. In addition, there is only one spanning tree $F_{\overline{G}}$ which is the graph with every vertex connected to root 0. Consequently, for every pair $(F_{\overline{G}}, \mathcal{W}_{F_{\overline{G}}}) \in B$, we have that $|\mathcal{W}_{F_{\overline{G}}}| = n-1$. That is to say, every element in \mathbf{B} is associated to a sequence of length n-1. One

can easily see that the map ϕ now is a prufer coding for spanning trees in K_{n+1} and therefore, prufer coding is a special case for this bijection.

5. A New Proof of The Reciprocity Theorem

In this section, we show how to use this bijection to prove the reciprocity theorem.

Theorem 5.1. Let G be a graph on the set of vertices $\{1, \ldots, n\}$. Then

$$f_G(x; x_1, \dots, x_n) = (-1)^{n-1} \cdot f_{\overline{G}}(-x - x_1 - \dots - x_n; x_1, \dots, x_n).$$
 (5.1)

Proof. First of all, we show that

$$(-1)^{n-1} \cdot f_G(x; x_1, \dots, x_n) = f_G(-x; -x_1, \dots, -x_n).$$
(5.2)

If we can show that the degree of every monomial in $f_G(x; x_1, \ldots, x_n)$ is n-1, then Eq.(5.2) will be true. Note that each monomial in $f_G(x; x_1, \ldots, x_n)$ corresponds to some spanning tree $f_{\widetilde{K_n}}$ of $\widetilde{K_n}$, and we have

$$\deg\left(m\left(\widetilde{F}_{\widetilde{K_n}}\right)\right) = \sum_{v \in \{0,\dots,n\}} \left(\deg(v) - 1\right) = \sum_{v \in \{0,\dots,n\}} \deg(v) - (n+1)$$
 (5.3)

$$= 2|E| - (n+1) = n - 1.$$
 (5.4)

This implies that Eq.(5.2) is true.

Now, we show that

$$f_G(x; x_1, \dots, x_n) = f_{\overline{G}}(x + x_1 + \dots + x_n; -x_1, \dots, -x_n).$$
 (5.5)

Consider some spanning tree f_{K_n} of $\widetilde{K_n}$ associated to a monomial $x^d x_1^{d_1} \cdots x_n^{d_n}$ in polynomial f_G and an operational set $\mathcal{O}_{G,f_{K_n},C}$ for f_{K_n} . Let us apply the map ϕ on $(f_{K_n}, \mathcal{O}_{G,f_{K_n},C})$. Denote the output pair by $(f_{\overline{G}}, \mathcal{W}_{f_{\overline{G}}}) \in \mathbf{B}$, where sequence $\mathcal{W}_{f_{\overline{G}}} = (w_1, \dots, w_{k-1})$, and k is the number of connected components in $F_{\overline{G}}$. Moreover, the contribution of graph $f_{\overline{G}}$ in the polynomial $f_{\overline{G}}$ is

$$(x + x_1 + \dots + x_n)^{k-1} (-x_1)^{\deg(v_1)-1} \dots (-x_n)^{\deg(v_n)-1},$$
 (5.6)

where $\deg(v_i)$ is the degree of vertex $i \neq 0$ in $\acute{F}_{\overline{G}}$. We associate the pair $\left(\acute{F}_{\overline{G}}, \mathcal{W}_{\acute{F}_{\overline{G}}}\right)$ to the monomial

$$x_{w_1} \cdots x_{w_{k-1}} (-x_1)^{\deg(v_1)-1} \cdots (-x_n)^{\deg(v_n)-1}$$

in (5.6), where $x_0 = x$ and x_{w_j} is the variable corresponding to vertex w_j , for $1 \le j \le k-1$. Clearly, $x_{w_1} \cdots x_{w_{k-1}}$ is a monomial in $(x+x_1+\cdots+x_n)^{k-1}$. By the choice of $\mathcal{W}_{\hat{F}_{\overline{G}}}$ shown in section 3, we have that the set **B** and set of all monomials in $f_{\overline{G}}(x+x_1+\cdots+x_n;-x_1,\ldots,-x_n)$ have a bijective coorespondence.

It is easy to show that the monomial for the pair $\left(\acute{F}_{K_n},\mathcal{O}_{G,\acute{F}_{K_n},C}\right)$ is the monomial associated to the pair $\left(\acute{F}_{\overline{G}},\mathcal{W}_{\acute{F}_{\overline{G}}}\right)$ with several sign changes, where the number

of sign changes is $\sum_{i=1}^{n} (\deg(v_i) - 1)$. That is to say, we have

$$x^{d}x_{1}^{d_{1}}\cdots x_{n}^{d_{n}} = (-1)^{l} \cdot x_{w_{1}}\cdots x_{w_{k-1}} x_{1}^{\deg(v_{1})-1}\cdots x_{n}^{\deg(v_{n})-1},$$
 (5.7)

where
$$l = \sum_{i=1}^{n} (\deg(v_i) - 1) = n - \deg(v_0).$$

Now, suppose that $f_{K_n} \in \mathcal{T}(\widetilde{G})$. Since every valid pair in f_{K_n} is not in graph \overline{G} , the only operational set for f_{K_n} is $\mathbf{Z}_{G,f_{K_n}}$. In addition, the output spanning tree $f_{\overline{G}}$ is the extended graph of empty graph. Therefore, the only pair $(f_{K_n}, \mathbf{Z}_{G,f_{K_n}}) \in \mathbf{A}$ for f_{K_n} is mapped to a monomial in $(x + x_1 + \cdots + x_n)^n$. This implies that the coefficient of the monomial associated to f_{K_n} is 1 in $f_{\overline{G}}(x + x_1 + \cdots + x_n; -x_1, \ldots, -x_n)$.

Secondly, if $\acute{F}_{K_n} \notin \mathcal{T}(\widetilde{G})$, then there is an edge $(u,v) \in E(F_{K_n})$ such that $(u,v) \in E(\overline{G})$. For every operational set $\mathcal{O}_{G,\acute{F}_{K_n},C}$ for \acute{F}_{K_n} , we consider the two operational sets:

$$\mathcal{O}_1 = \mathcal{O}_{G, \acute{F}_{K_-}, C} \cup \{(u, v)\}, \text{ and } \mathcal{O}_2 = \mathcal{O}_1 \setminus \{(u, v)\}$$

$$(5.8)$$

Clearly, \mathcal{O}_1 and \mathcal{O}_2 are both operational sets for \hat{F}_{K_n} . Denote the output pair for $(\hat{F}_{K_n}, \mathcal{O}_1)$ as $(\hat{F}_1, \mathcal{W}_1)$ and the output pair for $(\hat{F}_{K_n}, \mathcal{O}_2)$ as $(\hat{F}_2, \mathcal{W}_2)$ in the map ϕ . From Eq.(5.7), one can see that the monomials associated to the two pairs $(\hat{F}_1, \mathcal{W}_1)$ and $(\hat{F}_2, \mathcal{W}_2)$ are the same. Moreover, the degrees of root 0 in \hat{F}_1 and \hat{F}_2 are differ by 1. Consequently, by (5.7), the summation of the coefficients of the monomial associated to $(\hat{F}_1, \mathcal{W}_1)$ and $(\hat{F}_2, \mathcal{W}_2)$ is 0. Finally, because we can pair up all the operational sets for \hat{F}_{K_n} by (5.8), the contribution of the monomial for \hat{F}_{K_n} in $f_{\overline{G}}(x+x_1+\cdots+x_n;-x_1,\ldots,-x_n)$ is 0.

From the above argument, we conclude that the only monomials left in $f_{\overline{G}}$ after cancellation of coefficients are the monomials in $f_G(x; x_1, \ldots, x_n)$. Moreover, each monomial in f_G has coefficient 1 in $f_{\overline{G}}(x+x_1+\cdots+x_n;-x_1,\ldots,-x_n)$. As a result, we have that $f_G(x;x_1,\ldots,x_n)=f_{\overline{G}}(x+x_1+\cdots+x_n;-x_1,\ldots,-x_n)$, and Eq.(5.1) holds as desired.

References

- [1] IGOR PAK, A. POSTNIKOV: Enumeration of Spanning Trees of Graphs, 1994.
- [2] S. D. Bedrosian: Generating formulas for the number of trees in a graph, J. Franklin Inst. 227 (1964), no. 4, 313-326.
- [3] A. CAYLEY: A theorem on trees, Quart. J. Pure. Appl. Math. 23 (1889), 376-378.
- [4] D. M. CVETKOVIĆ, M. DOOB, H. SACHS: Spectra of Graphs, Academic Press, New York, 1980.
- [5] F. HARARY, E. M. PALMER: Graphical Enumeration, Academic Press, New York, 1973.
- [6] D. E. KNUTH: The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley Publishing Company, 1968.
- [7] J. W. Moon: Counting Labelled Trees, Canadian Math. Monographs, No. 1, 1970.
- [8] H. PRÜFER: Neuer Beweis eines Satzes uber Permutationen, Arch. Math. Phys. 27 (1918) , 742-744.
- [9] A. RÉNYI, J. MAYAR: Tud. Akad. Mat. Fiz. Oszt. Kozl 12 (1966), 77-105.
- [10] A. KELMANS, IGOR PAK, A. POSTNIKOV: Tree and forest volumes of graphs, DIMACS Technical Report 2000-03, January 2000.
- [11] R. STANLEY: Enumerative Combinatorics, vol. 1, Cambridge University Press, New York/Cambridge, 1999.

