Statystyka stosowana 2023/2024

Lista 1

- 1. Rozpatrzymy zmienną losową Y=exp(X), gdzie $X\sim N(\mu,\sigma).$ Zmienna losowa Y ma rozkład log-normalny $Y\sim LN(\mu,\sigma).$
 - a) Wyznacz dystrybu
antę zmiennej losowej Y i wyraź ją w języku dystrybu
naty standardowego rozkładu normalnego (oznaczamy ją
 $\Phi(x)$).
 - b) Wyznacz gęstość zmiennej losowej Y.
 - c) Na podstawie danych ze strony www, które są realizacjami zmiennej losowej $X \sim N(0,1)$, wyznacz realizacje zmiennej losowej Y.
 - \mathbf{d}) Dla danych odpowiadających zmiennej X oraz zmiennej Y narysuj histogramy.
 - e) Dla danych odpowiadających zmiennej X oraz zmiennej Y narysuj unormowane histogramy w taki sposób, aby mogły być one porównane z gęstościami teoretycznymi odpowiednich zmiennych losowych. Na wykresach z unormowanymi histogramami narysuj teoretyczne gęstości zmiennych losowych X oraz Y.
 - f) Zaproponuj metodę do wyznaczania gęstości empirycznej, która jest wygładzoną wersją unormowanego histogramu. Narysuj gęstość empiryczną dla danych odpowiadających zmiennej X oraz Y oraz teoretyczną odpowiadającą danej zmiennej losowej.
- 2. Wykorzystując metodę odwrotnej dystrybuanty wysymuluj próbę o długości 1000 z rozkładu Pareto z parametrami $\alpha>$ i $\lambda>$ 0, w którym dystrybuanta wyraża sie następującym wzorem:

$$F(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}, \quad x > 0.$$
 (1)

Współczynniki α i λ wybierz w ten sposób, aby wariancja rozważanego rozkładu była skończona.

3. Dla danych z rozkładu Pareto zdefinowanego w równaniu (1) wyznacz dystrybuantę empiryczną i porówanaj ją z dystrybunatą teoretyczną rozkładu Pareto z wybranymi parametrami.

- 4. Dla rozkładu Pareto z zadania 3 wyznacz gęstość. Dla wysymulowanych danych porównaj gęstość empiryczną oraz teoretyczną.
- 5. Niech Z będzie zmienną losową z rozkładu Pareto z parametrami α oraz λ . Zmienna losowa z rozkładu Burra z parametrami $\alpha, \lambda, \tau > 0$ zdefiniowana jest jako $W = Z^{1/\tau}$.
 - a) Wyznacz gęstość oraz dystrybuantę zmiennej losowej W.
 - b) Wysymuluj 1000 obserwacji odpowiadających zmiennej losowej W.
 - c) Gęstość empiryczną (wyznaczoną na podstawie wysymulowanej próby) porównaj z gęstoscią teoretyczną zmiennej losowej W.
 - d) Dystrybuantę empiryczną (wyznaczoną na podstawie wysymulowanej próby) porównaj z dystrybuantą teoretyczną zmiennej losowej W.