Université Mohammed V – Rabat - Faculté des Sciences

SMI₃

Année Universitaire 2020/21

Série de TP N° 4

- **1.** Découvrir les différentes connexions des bascules JK et T prédéfinie dans Logisim (**Dossier memory**).
- 2. Simuler le fonctionnement des compteurs synchrone et asynchrone traités dans la série de TD numéro 7. Chercher leurs équivalents qui sont prédéfinis dans Logisim (**Dossier memory**). Ensuite découvrir les différentes connexions d'un compteur.
- **3.** A l'aide d'un compteur prédéfinit dans Logisim, donner le logigramme correspondant à la boucle suivante :

for (unsigned short int
$$i = 0$$
; $i < 65536$; $i++$)

Indiquer le nombre de bits (nombre de bascules JK utilisées), le type de cycle et le modulo de ce compteur. Ajouter un comparateur qui contrôlera l'arrêt du compteur C pour éviter une boucle infinie.

Modifier le logigramme précédent pour simuler la boucle suivante :

for (unsigned short int
$$i = 0$$
; $i < 100$; $i++$)

en faisant fonctionner le compteur à cycle incomplet. Indiquer le modulo de ce compteur.

4. Modifier le logigramme de la question 3 pour simuler la somme, sur 16 bits, de 1 à 99 premiers:

unsigned short int i, S=0;

Utiliser un additionneur et un registre R de stockage de la somme S.

5. La division binaire peut être effectuée par le principe des soustractions successives.

Exemple:
$$A/B = 34/7$$
, Q(uotient) = 0, R(este) = 0

$$A - B = 34 - 7 = 27 \implies Q = 1, \ A - B = 27 - 7 = 20 \implies Q = 2, \ A - B = 20 - 7 = 13 \implies Q = 3,$$

$$A - B = 13 - 7 = 6 \Rightarrow Q = 4$$
: Arrêt $(A = 6 < B = 7) \Rightarrow Q(uotient) = 4$, le dernier résultat est le $R(este) = 6$.

On remarque que A = 34 à la 1^{ère} itération, A = 27 à la 2^{ème} itération, ..., A = 6. Ainsi, pour une nouvelle itération on a A - B = A, donc l'arrêt de l'opération sera effectué quand A < B

En utilisant ce principe, donner le logigramme qui permet de matérialiser la division binaire sur 8 bits:

A / B, A > B et B
$$\neq$$
 0.

Composants à utiliser:

- à t = 0, A est stockée préalablement dans un registre R, ensuite R sera utilisé pour stocker de A B,
- Un additionneur pour effectuer « A B »,
- Un compteur C,
- Un comparateur pour contrôler l'arrêt du compteur C.

A la fin de l'opération le registre R réservé pour A représentera le reste et le compteur C indiquera le quotient. Indiquer le « Data bits » des composants.

<u>Liaisons</u>: une seule horloge CK et un minimum de portes logiques.

N. Zahid, fsr Page 1

Université Mohammed V – Rabat - Faculté des Sciences

SMI₃ Année Universitaire 2020/21

6. La suite de Syracuse d'un nombre entier naturel N > 0 est définie par récurrence de la manière suivante :

$$u_0=N\in\mathbb{N}^* \qquad orall n\in\mathbb{N} \;,\; u_{n+1}=\left\{egin{array}{ll} rac{u_n}{2} & ext{si } u_n ext{ pair} \ 3u_n+1 & ext{si } u_n ext{ impair} \end{array}
ight.$$

Exemple : Suite de Syracuse pour N = 15

u_0	u_1	u_2	и3	u_4	и5	и6	<i>u</i> ₇	и8	и9	<i>u</i> ₁₀	<i>u</i> ₁₁	<i>u</i> ₁₂	u ₁₃	u ₁₄	u ₁₅	<i>u</i> ₁₆	<i>u</i> ₁₇
15	46	23	70	35	106	53	160	80	40	20	10	5	16	8	4	2	1

Traduire sous forme de logigramme l'algorithme de calcul de la suite de Syracuse pour N=15.

Début Entier $i \leftarrow 0$ Entier $N \leftarrow 15$ Tant que $N \neq 1$ faire si N est pair alors $N \leftarrow N/2$ sinon $N \leftarrow 3*N+1$ Fin si $i \leftarrow i+1$

Fin Tant que

Fin

- On supposera que la valeur initiale de la variable N est stockée dans un registre.
- La variable entière i sera représentée par un compteur.
- Une seule horloge CK sera utilisée pour tous les composants séquentiels.
- Indiquer les "data bits" de chaque composant.

N. Zahid, fsr Page 2