Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

1.Import all the required Python Libraries.

Pandas is a popular Python library used for data manipulation and analysis import pandas as pd

NumPy is a fundamental library in Python for numerical computing import numpy as np

2. Creation of Dataset using Microsoft Excel.

pd.read_csv() is a function provided by the pandas library in Python, used to read data from a CSV (Comma-Separated Values) file and crea data=pd.read_csv("/content/sample_data/Academic-Performance-Dataset.csv")

data

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	ΙT	57.0	-20.0	100.0	NaN	
3	4	Atharv	M	IT	60.0	89.0	83.0	70.0	
4	5	Vivaan	M	Comp	85.0	90.0	NaN	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	М	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	М	ENTC	75.0	66.0	51.0	83.0	
8	9	Dhruv	М	ENTC	63.0	NaN	NaN	97.0	
9	10	Siddharth	M	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	M	ENTC	82.0	54.0	70.0	88.0	
11	12	NaN	М	ΙT	75.0	64.0	67.0	71.0	
12	13	Aarush	М	ΙT	67.0	56.0	81.0	NaN	
13	14	Leo	М	IT	98.0	-34.0	70.0	94.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	NaN	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	

Next steps: Generate code with data View recommended plots # In pandas, data.head() is a method used to display the first few rows of a DataFrame or Series
data.head()

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	IT	57.0	-20.0	100.0	NaN	
3	4	Atharv	М	IT	60.0	89.0	83.0	70.0	

Next steps: Generate code with data View recommended plots

data.tail() displays the last few rows.

data.tail()

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_ma
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	NaN	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									-

In pandas, data.info() is a method used to print a concise summary of a DataFrame, including information about the data types, non-null vadata.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 20 entries, 0 to 19 Data columns (total 12 columns): # Column Non-Null Count Dtype 0 Rollno 20 non-null int64 18 non-null 1 Name object 20 non-null 2 Gender object Branch 20 non-null object Attendence 20 non-null float64 5 Phy marks 19 non-null float64 Che_marks 17 non-null float64 6 EM1_marks 18 non-null float64 8 PPS_marks 19 non-null float64 float64 SME marks 20 non-null 10 Total Marks 20 non-null int64 11 Percentage 20 non-null float64 dtypes: float64(7), int64(2), object(3) memory usage: 2.0+ KB

In pandas, data.describe() is a method used to generate descriptive statistics of numerical columns in a DataFrame data.describe()

	Rollno	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_marks	SME_marks	
count	20.00000	20.000000	19.000000	17.000000	18.000000	19.000000	20.000000	21
mean	10.50000	75.100000	63.421053	80.764706	83.444444	60.736842	62.700000	32
std	5.91608	14.660724	34.940133	13.690916	11.078449	43.598983	24.891554	78
min	1.00000	53.000000	-34.000000	51.000000	63.000000	-99.000000	23.000000	19:
25%	5.75000	63.750000	59.000000	70.000000	75.750000	56.000000	42.750000	27!
50%	10.50000	73.000000	67.000000	83.000000	83.000000	66.000000	60.500000	33
75%	15.25000	87.000000	88.000000	93.000000	93.000000	87.500000	80.250000	38
4								•

When you use data.describe(include="all"), it provides descriptive statistics for all columns in the DataFrame, including both numerical adata.describe(include="all")

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_mar
count	20.00000	18	20	20	20.000000	19.000000	17.000000	18.0000
unique	NaN	18	2	3	NaN	NaN	NaN	Ni
top	NaN	Mohammed	М	Comp	NaN	NaN	NaN	Ni
freq	NaN	1	14	7	NaN	NaN	NaN	Ni
mean	10.50000	NaN	NaN	NaN	75.100000	63.421053	80.764706	83.4444
std	5.91608	NaN	NaN	NaN	14.660724	34.940133	13.690916	11.0784
min	1.00000	NaN	NaN	NaN	53.000000	-34.000000	51.000000	63.0000
25%	5.75000	NaN	NaN	NaN	63.750000	59.000000	70.000000	75.7500
50%	10.50000	NaN	NaN	NaN	73.000000	67.000000	83.000000	83.0000
75%	15.25000	NaN	NaN	NaN	87.000000	88.000000	93.000000	93.0000
4								•

data.shape

(20, 12)

data.dtypes is a pandas attribute that returns a Series containing the data types of each column in the DataFrame. data.dtypes

```
Rollno
                 int64
                object
Name
Gender
                object
Branch
                object
Attendence
               float64
Phy_marks
               float64
Che marks
               float64
EM1_marks
               float64
PPS_marks
               float64
SME_marks
               float64
Total Marks
                int64
               float64
Percentage
dtype: object
```

 ${\tt data.columns}$

data[0:4]

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	IT	57.0	-20.0	100.0	NaN	
4									•

data.loc[0:2] is a method used to access rows of a DataFrame by label, particularly when the labels are integers data.loc[0:2]

	Rollno	Name	Gender	Branch	Atterdance	Phy_marks	Che_marks	EM1_marks	PPS_
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
4									•

```
data.loc[0:2,'Attendence']
```

0 72.0 1 58.0 2 57.0

Name: Attendence, dtype: float64

data.iloc[1:3]

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_mar
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	8
4									>

A.Identification and Handling of Null Values

 $\mbox{\tt\#}$ Check for missing values in the data using pandas is null() data.is null()

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_mark
0	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	True	Fals
3	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	True	False	Fals
5	False	False	False	False	False	False	False	False	Fals
6	False	False	False	False	False	False	False	False	Fals
7	False	False	False	False	False	False	False	False	Fals
8	False	False	False	False	False	True	True	False	Fals
9	False	False	False	False	False	False	False	False	Tru
10	False	False	False	False	False	False	False	False	Fals
11	False	True	False	False	False	False	False	False	Fals
12	False	False	False	False	False	False	False	True	Fals
13	False	False	False	False	False	False	False	False	Fals
14	False	False	False	False	False	False	False	False	Fals
15	False	False	False	False	False	False	False	False	Fals
16	False	False	False	False	False	False	True	False	Fals
17	False	False	False	False	False	False	False	False	Fals
18	False	False	False	False	False	False	False	False	Fals
4									•

data.isna()

data

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_mark
0	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	True	Fals
3	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	True	False	Fals
5	False	False	False	False	False	False	False	False	Fals
6	False	False	False	False	False	False	False	False	Fals
7	False	False	False	False	False	False	False	False	Fals
8	False	False	False	False	False	True	True	False	Fals
9	False	False	False	False	False	False	False	False	Tru
10	False	False	False	False	False	False	False	False	Fals
11	False	True	False	False	False	False	False	False	Fals
12	False	False	False	False	False	False	False	True	Fals
13	False	False	False	False	False	False	False	False	Fals
14	False	False	False	False	False	False	False	False	Fals
15	False	False	False	False	False	False	False	False	Fals
16	False	False	False	False	False	False	True	False	Fals
17	False	False	False	False	False	False	False	False	Fals
18	False	False	False	False	False	False	False	False	Fals
→									

```
False
     Rollno
    Name
                    True
    Gender
                   False
    Branch
                   False
    Attendence
                   False
    Phy_marks
                    True
    Che_marks
                    True
    EM1_marks
                    True
    PPS_marks
                    True
    SME_marks
                   False
     Total Marks
                   False
    Percentage
                   False
    dtype: bool
data.isnull().sum()
    Rollno
    Name
    Gender
                   0
    Branch
    Attendence
                   0
                   1
    Phy_marks
    Che_marks
    EM1_marks
                   2
    PPS_marks
                   1
     SME_marks
     Total Marks
                   0
    Percentage
                   0
    dtype: int64
data['Name'].isnull().any()
     True
```

Make a list of column having missing value

```
col_NAN_val=[]
for col in data:
   if data[col].isnull().any():
      col_NAN_val.append(col)
col_NAN_val
      ['Name', 'Phy_marks', 'Che_marks', 'EM1_marks', 'PPS_marks']
```

Filling missing values using dropna(), fillna(), replace():

1. replacing null values with NaN

np.nan: This is a constant from the NumPy library (numpy.nan) representing a missing value (NaN). It's the value that you want to replace data.replace(np.nan,value=0,inplace=True)

```
data['Name'].isnull().any()
    False
```

2. Filling null values with fillna()

data.fillna(1)

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	IT	57.0	-20.0	100.0	0.0	
3	4	Atharv	М	IT	60.0	89.0	83.0	70.0	
4	5	Vivaan	М	Comp	85.0	90.0	0.0	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	М	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	М	ENTC	75.0	66.0	51.0	83.0	
8	9	Dhruv	М	ENTC	63.0	0.0	0.0	97.0	
9	10	Siddharth	М	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	М	ENTC	82.0	54.0	70.0	88.0	
11	12	0	М	IT	75.0	64.0	67.0	71.0	
12	13	Aarush	М	IT	67.0	56.0	81.0	0.0	
13	14	Leo	М	IT	98.0	-34.0	70.0	94.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	0.0	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									•

3. filling missing values using mean, median,max, min and standard deviation of that column

```
data['Phy_marks']=data['Phy_marks'].fillna(data['Phy_marks'].mean())
```

data

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	IT	57.0	-20.0	100.0	0.0	
3	4	Atharv	М	IT	60.0	89.0	83.0	70.0	
4	5	Vivaan	М	Comp	85.0	90.0	0.0	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	М	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	М	ENTC	75.0	66.0	51.0	83.0	
8	9	Dhruv	М	ENTC	63.0	0.0	0.0	97.0	
9	10	Siddharth	М	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	М	ENTC	82.0	54.0	70.0	88.0	
11	12	0	М	IT	75.0	64.0	67.0	71.0	
12	13	Aarush	М	IT	67.0	56.0	81.0	0.0	
13	14	Leo	М	IT	98.0	-34.0	70.0	94.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	0.0	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									•

Next steps: Generate code with data View recommended plots

data.isnull().any()

Rollno False Name False Gender False Branch False Attendence False Phy_marks False Che_marks False EM1_marks False PPS_marks False SME_marks False Total Marks False Percentage False dtype: bool

4.Deleting null values using dropna() method In order to drop null values from a dataframe, dropna() function is used. This function drops Rows/Columns of datasets with Null values in different ways. 1. Dropping rows with at least 1 null value 2. Dropping rows if all values in that row are missing

data.dropna() ##Dropping rows with at least 1 null value

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	ΙT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	ΙT	57.0	-20.0	100.0	0.0	
3	4	Atharv	М	ΙT	60.0	89.0	83.0	70.0	
4	5	Vivaan	М	Comp	85.0	90.0	0.0	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	M	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	M	ENTC	75.0	66.0	51.0	83.0	
8	9	Dhruv	М	ENTC	63.0	0.0	0.0	97.0	
9	10	Siddharth	М	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	M	ENTC	82.0	54.0	70.0	88.0	
11	12	0	М	ΙT	75.0	64.0	67.0	71.0	
12	13	Aarush	М	IT	67.0	56.0	81.0	0.0	
13	14	Leo	M	IT	98.0	-34.0	70.0	94.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	0.0	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									-

data.dropna(how="all") #Dropping rows if all values in that row are missing

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
2	3	Aarav	М	IT	57.0	-20.0	100.0	0.0	
3	4	Atharv	М	ΙT	60.0	89.0	83.0	70.0	
4	5	Vivaan	М	Comp	85.0	90.0	0.0	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	М	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	М	ENTC	75.0	66.0	51.0	83.0	
8	9	Dhruv	М	ENTC	63.0	0.0	0.0	97.0	
9	10	Siddharth	М	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	М	ENTC	82.0	54.0	70.0	88.0	
11	12	0	М	ΙΤ	75.0	64.0	67.0	71.0	
12	13	Aarush	М	IT	67.0	56.0	81.0	0.0	
13	14	Leo	М	IT	98.0	-34.0	70.0	94.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	0.0	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									•

data.dropna(axis=1) #Dropping columns with at least 1 null value.

	Rollno	Name	Gender	Branch	Attendence	Phy_manks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	M	ΙT	58.0	62.0	83.0	83.0	
2	3	Aarav	M	ΙΤ	57.0	-20.0	100.0	0.0	
3	4	Atharv	М	ΙT	60.0	89.0	83.0	70.0	
4	5	Vivaan	М	Comp	85.0	90.0	0.0	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	М	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	M	ENTC	75.0	66.0	51.0	83.0	
8	9	Dhruv	М	ENTC	63.0	0.0	0.0	97.0	
9	10	Siddharth	M	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	М	ENTC	82.0	54.0	70.0	88.0	
11	12	0	М	IT	75.0	64.0	67.0	71.0	
12	13	Aarush	М	IT	67.0	56.0	81.0	0.0	
13	14	Leo	М	IT	98.0	-34.0	70.0	94.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	0.0	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									•

data.dropna(axis=0,how="any",inplace=True) ##Dropping Rows with at least 1 null value in CSV file

B .Identification and Handling of Outliers

#1. Detecting outliers using Boxplot:

import seaborn as sns #Seaborn is a popular Python visualization library built on top of Matplotlib that provides a high-level interface fo

Matplotlib is a powerful Python plotting library that provides a wide range of functionalities for creating static, interactive, and publ # plotting functions more conveniently and concisely in your code. import matplotlib.pyplot as plt

A box plot, also known as a box-and-whisker plot, is a graphical representation of the distribution of a dataset based on five summary stsns.boxplot(data)

data.boxplot()

sns.boxplot(x=data.Attendence)

sns.boxplot(x=data.Phy_marks)

<Axes: xlabel='Phy_marks'>

2 . Detecting outliers using Inter Quantile Range(IQR):

```
Q1=data['Phy_marks'].quantile(0.25)
Q3=data['Phy_marks'].quantile(0.75)
IQR=Q3-Q1

Lower_limit=Q1-1.5*IQR
Upper_limit=Q3+1.5*IQR

print(f'Q1={Q1},Q2={Q3},IQR={IQR},Lower_limit={Lower_limit},Upper_limit={Upper_limit}')
        Q1=55.5,Q2=88.0,IQR=32.5,Lower_limit=6.75,Upper_limit=136.75

# 3 Handling of Outliers

# 1.Removing the outlier:

data[data['Phy_marks'] < Lower_limit].index
        Index([2, 8, 13], dtype='int64')

data[data['Phy_marks'] < Upper_limit].index
        RangeIndex(start=0, stop=20, step=1)

data1=data.drop(data[data['Phy_marks'] < Lower_limit].index)

data1</pre>
```

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS
0	1	Mohammed	М	Comp	72.0	62.0	98.0	63.0	
1	2	Reyansh	М	IT	58.0	62.0	83.0	83.0	
3	4	Atharv	М	IT	60.0	89.0	83.0	70.0	
4	5	Vivaan	М	Comp	85.0	90.0	0.0	78.0	
5	6	Advik	М	ENTC	94.0	99.0	84.0	100.0	
6	7	Ansh	М	ENTC	98.0	88.0	95.0	81.0	
7	8	Ishaan	М	ENTC	75.0	66.0	51.0	83.0	
9	10	Siddharth	М	ENTC	96.0	67.0	78.0	95.0	
10	11	Vihaan	М	ENTC	82.0	54.0	70.0	88.0	
11	12	0	М	IT	75.0	64.0	67.0	71.0	
12	13	Aarush	М	IT	67.0	56.0	81.0	0.0	
14	15	Maryam	F	IT	64.0	87.0	60.0	90.0	
15	16	Saanvi	F	Comp	66.0	90.0	95.0	67.0	
16	17	Zaranew	F	Comp	93.0	54.0	0.0	75.0	
17	18	Inaya	F	Comp	74.0	67.0	93.0	93.0	
18	19	Aarya	F	Comp	72.0	88.0	84.0	81.0	
4									>
xt sten	s: Ger	nerate code wi	th data1		View recomm	nended plots			

data2=data[data['Phy_marks'] < Lower_limit]</pre>

data2

	Rollno	Name	Gender	Branch	Attendence	Phy_marks	Che_marks	EM1_marks	PPS_mark
2	3	Aarav	M	IT	57.0	-20.0	100.0	0.0	56.
8	9	Dhruv	М	ENTC	63.0	0.0	0.0	97.0	56.
4									>

Next steps: Generate code with data2 View recommended plots

he sns.kdeplot() function in Seaborn is used to create a kernel density estimate (KDE) plot, which visualizes the distribution of a univa sns.kdeplot(data.Phy_marks)

<Axes: xlabel='Phy_marks', ylabel='Density'>

sns.kdeplot(data2.Phy_marks)

<Axes: xlabel='Phy_marks', ylabel='Density'>

log_phy_marks=np.log(data1.Phy_marks)

```
log_phy_marks
```

```
4.127134
      4.127134
1
3
      4.488636
4
      4.499810
      4.595120
6
7
      4.477337
      4.189655
      4.204693
10
      3.988984
      4.158883
11
12
      4.025352
14
      4.465908
15
      4.499810
      3.988984
16
17
      4.204693
      4.477337
18
      4.330733
19
Name: Phy_marks, dtype: float64
```

 ${\tt sns.kdeplot(log_phy_marks)}$

<Axes: xlabel='Phy_marks', ylabel='Density'>

