Fouille de Données

Data Mining

Plan du cours

- 1. Régression / Estimation : Définition et principe
- 2. Régression linéaire simple.
- 3. Régression linéaire simple en utilisant le Gradient Descent.
- 4. Régression linéaire multiple
- 5. Régression polynomiale

- La régression est la méthode utilisée pour l'estimation des valeurs continues.
- Son objectif est de trouver le meilleur modèle qui décrit la relation entre une variable continue de sortie et une ou plusieurs variables d'entrée.
- Prédire la valeur continue de la sortie Y selon une entrée X ou plusieurs entrées Xi (attributs). = Expliquer une variable Y à l'aide d'une variable X ou plusieurs variables Xi.
- Ex : prédire le cours de la bourse, le prix d'un appartement, ou bien l'évolution de la température sur Terre.
- Il s'agit donc de trouver une fonction f (=le modèle de régression) qui se rapproche le plus possible d'un scénario donné d'entrées et de sorties.
- Différents types de régression : linéaire, polynomiale, logistique (classification), Lasso, etc.

• Différents types de régression : linéaire, polynomiale.

- Régression linéaire : fonction f (modèle de régression) linéaire.
- Peut être : Simple ou Multiple.
- Linéaire **Simple** : utilisée pour estimer une sortie Y en fonction d'une seule entrée X.
- Linéaire **Multiple** : utilisée pour estimer une sortie Y en fonction de plusieurs entrées Xi.

- Régression **linéaire** : fonction f (modèle) linéaire.
- Peut être : Simple ou Multiple.
- Linéaire **Simple**: **Ex**: prédire le prix de vente d'un appartement (**Y**) en fonction de la surface habitable (**X**).
- Linéaire Multiple : Ex : prédire le prix de vente d'un appartement (Y) en fonction de la surface habitable (X1) et du nombre de pièces (X2).

- Régression polynomiale: fonction f (modèle de régression) non linéaire.
- Peut être : Simple ou Multiple.
- Polynomiale Simple : utilisée pour estimer une sortie Y en fonction d'une seule entrée X.
- Polynomiale Multiple : utilisée pour estimer une sortie Y en fonction de plusieurs entrées Xi.

Régression linéaire simple

- But: Trouver un modèle linéaire f(x)=b1x+b0 où b_1 et b_0 sont les paramètres/coefficients du modèle.
- y = b1x + b0
- Trouver le meilleur modèle (Best fit line) =>
 - => Trouver les **meilleurs** (optimales) valeurs des paramètres **b1** et **b0**.
- => Faire le **minimum** d'erreurs possible sur les prédictions de Y.

<u>Régression linéaire simple – Etapes de base</u>	Hours	Grade
regression infeatre simple Lapes de suse	spent	
	on	
Exemple:	essay	
	6	82
 X = nombre d'heures passées à réviser 	10	88
• $Y = Note \text{ \'etudiant (/100)}$	2	56
2 Trote stadiant (7100)	4	64
	6	77
Objectif:		92
Objectii.	0	23
	1	41
On souhaite savoir si, de façon générale, le nombre d'heur	es 8	80
passées à réviser a une influence sur la note obtenue et so	us 5	59
quelle forme cette influence peut être exprimée.	3	47

Le but est d'expliquer au mieux comment la note d'un étudiant varie en fonction du nombre d'heures de révision et éventuellement de prédire la note à partir d'un nombre d'heures donné.

Régression linéaire simple – Etapes de base

Exemple: X =nombre d'heures de révision ---- Y =Note étudiant

Hours	Grade
spent	
on	
 essay	
6	82
10	88
2	56
4	64
6	77
7	92
0	23
1	41
8	80
5	59
3	47

<u>Régression linéaire simple – Etapes de base</u>

- Trouver la droite : y = b1x + b0
- 1 Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) selon :

$$b_{1} = \frac{\sum (x - \bar{x}) + (y - \bar{y})}{\sum (x - \bar{x})^{2}} = \frac{Covariance(x, y)}{Variance(x)}$$

$$b_{0} = \bar{y} - b_{1}\bar{x}$$

Régression linéaire simple – Etapes de base

- Trouver la droite : y = b1x + b0
- 1 Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

$$b_{1} = \frac{\sum (x - \bar{x}) \star (y - \bar{y})}{\sum (x - \bar{x})^{2}} = \frac{Covariance(x,y)}{Variance(x)} \begin{bmatrix} \frac{spent}{on} \\ 6 & 82 \\ 10 & 88 \\ 2 & 56 \\ 4 & 64 \\ 6 & 77 \\ 7 & 92 \\ 0 & 23 \\ 1 & 41 \\ 8 & 80 \\ 5 & 59 \\ 3 & 47 \end{bmatrix}$$

$$b_{0} = \bar{y} - b_{1}\bar{x}$$

$$Mean 4.72 \quad 64.45$$

Hours Grade

Mean 4.72 64.45

 \bar{x} \bar{y}

1 - Calculer les valeurs de ${f b1}$ (le slope) et ${f b0}$ (l'intercept) :

Hours	Grade	Hours spent – Average Hours Spent	Grade – Average Grade	
spent				
on essay		$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})\times(y-\bar{y})$
6	82	1.27	17.55	22.33
10	88	5.27	23.55	124.15
2	56	-2.73	-8.45	23.06
4	64	-0.73	-0.45	0.33
6	77	1.27	12.55	15.97
7	92	2.27	27.55	62.60
0	23	-4.73	-41.45	195.97
1	41	-3.73	-23.45	87.42
8	80	3.27	15.55	50.88
5	59	0.27	-5.45	-1.49
3	47	-1.73	-17.45	30.15

<u>Régression linéaire simple – Etapes de base</u>

- Trouver la droite : y = b1x + b0
- **1** Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

$$\sum (x-x^{-}) * (y-y^{-}) = 611.36$$

$$b1 = 611.36/94.18$$

$$= 6.49$$

$$\sum (x-x^{-}) ^2 = 94.18$$

$$b0 = 64.45 - (6.49 * 4.72)$$

$$= 33.81$$

$$Mean 4.72 64.45$$

$$= 33.81$$

<u>Régression linéaire simple – Etapes de base</u>

Trouver la droite :

$$y = 6.49 * x + 33.81$$

1 - Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

<u>Régression linéaire simple – Etapes de base</u>

2 – Prédire les nouvelles valeurs Y (la note) selon la fonction trouvée précédemment:

	Grade	Predicted Grade	
on		72.716216	
essay		98.681467	
6	82	46.750965	_
10	88	59.733591	Ex:
2	56		V1 - 6 40 * (6) 1
4	64	72.710210	Y1 = 6.49 * (6) +
6	77	79.207529	33.81 = 72.716216
7	92	33.768340	
0	23	40.259653	
1	41		
8	80	83.098842	
5	59	66.224903	
3	47	53.242278	
	spent on essay 6 10 2 4 6 7 0 1 8 5	on essay 6 82 10 88 2 56 4 64 6 77 7 92 0 23 1 41 8 80 5 59	spent 72.716216 essay 98.681467 6 82 46.750965 10 88 59.733591 2 56 4 64 64 72.716216 6 77 79.207529 7 92 33.768340 0 23 40.259653 1 41 85.698842 8 80 5 59 66.224903

<u>Régression linéaire simple – Etapes de base</u>

2 – Prédire les nouvelles valeurs Y (la note) selon la fonction trouvée précédemment:

$$y = 6.49 * x + 33.81$$

Hours	Grade	Predicted Grade
spent		72.716216
on		98.681467
essay		30.001407
6	82	46.750965
10	88	59.733591
2	56	70.746046
4	64	72.716216
6	77	79.207529
7	92	33.768340
0	23	
1	41	40.259653
8	80	85.698842
5	59	66.224903
3	47	53.242278

En bleu : vraie valeur - y

En rouge : valeur prédite – **y_pred**

Régression linéaire simple – Etapes de base

2 – Prédire les nouvelles valeurs Y (la note) selon la fonction trouvée précédemment:

$$y = 6.49 * x + 33.81$$

Hours	Grade	Predicted Grade
spent		72.716216
on		98.681467
essay		90.001407
6	82	46.750965
10	88	59.733591
2	56	70.746046
4	64	72.716216
6	77	79.207529
7	92	33.768340
0	23	
1	41	40.259653
8	80	85.698842
5	59	66.224903
3	47	
		53.242278

<u>Régression linéaire simple – Etapes de base</u>

2 – Prédire les nouvelles valeurs Y (la note) selon la fonction trouvée précédemment:

$$y = 6.49 * x + 33.81$$

Hours	Grade	Predicted Grade
spent		72.716216
on essay		98.681467
6	82	46.750965
10	88	59.733591
2	56	72.716216
4	64	72.710210
6	77	79.207529
7	92	33.768340
0	23	40.050.550
1	41	40.259653
8	80	85.698842
5	59	66.224903
3	47	53,242278
		33.2.22.3

<u>Régression linéaire simple – Etapes de base</u>

3 – Evaluation du modèle de régression en estimant les **erreurs** sur les prédictions y_pred (i.e. f(x)):

Différentes **fonction de coût** permettant d'estimer l'erreur d'un modèle. Ex: **RMSE** – Root Mean Square Error / sqrt(l'erreur quadratique moyenne)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{pred,i} - y_i)^2}{n}}$$

$$y = b1x + b0 + err$$

Fonction Coût = l'ensemble des erreurs

<u>Régression linéaire simple – Etapes de base</u>

3 – Evaluation du modèle de régression en estimant les **erreurs** sur les prédictions y_pred (i.e. f(x)) :

<u>Régression linéaire simple – Etapes de base</u>

3 – Evaluation du modèle de régression en estimant le total des erreurs sur les prédictions :

Ex: le modèle trouvé a fait une erreur err de +5.698842 sur l'exemple (8, 80) du dataset:

<u>Régression linéaire simple – Etapes de base</u>

3 – Evaluation du modèle de régression en estimant le total des **erreurs** sur les prédictions :

Chaque prédiction (exemple/datapoint) s'accompagne d'une erreur, on a donc *n* erreurs.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{pred,i} - y_i)^2}{n}}$$

$$=>$$
 RMSE $= 8.125$

<u>Régression linéaire simple – Etapes de base</u>

4 – Minimiser l'erreur en minimisant la fonction coût:

$$y = b1x + b0 + err$$
 => Ramener err vers $o => RMSE$ le plus petit possible

Le but est de trouver les meilleures (optimales) estimations des coefficients bo et b1 pour minimiser les erreurs de prédiction de y à partir de x.

<u>Régression linéaire simple – Etapes de base</u>

4 – Minimiser l'**erreur** en minimisant la fonction coût:

y = b1x + b0 + err => Ramener err vers o => RMSE le plus petit possible

Le but est de trouver les meilleures (optimales) estimations des coefficients bo et b1 pour minimiser les erreurs de prédiction de y à partir de x.

Minimiser l'erreur →

Problème d'optimisation →

Itérer les étapes précédentes en utilisant un algorithme d'optimisation cherchant à minimiser la fonction coût.

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Gif: https://miro.medium.com/max/1400/1*CjTBNFUEI_lokEOXJoozKw.gif

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex : Algorithme de Gradient Descent (Descente du Gradient)

<u>Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**</u>

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

- Modèle linéaire avec f(x): y = m * x + c
- Fonction cout : MSE Mean Squared Error $=\frac{1}{n}\sum_{i=0}^n (y_i-\bar{y}_i)^2$
- 1 Initialiser les paramètres m et c à o : m = o et c = o (m est b1 et c est b0)

y_pred

y_vrai

- 2 Choisir et fixer le nombre d'itération (epochs) et learning_rate.
- **3** Calculer les prédictions y_pred pour chaque exemple dans le dataset, selon : $y_pred = m * x + c$
- 4 Calculer le gradient : i.e. les dérivées partielles **Dm** et **Dc**.
- ${f 5}$ Mettre à jour les valeurs de ${m m}$ et de ${m c}$ en fonction du gradient.
- Répéter (3 4 5) epochs fois afin de le minimiser gradient et optimiser m, c

Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

- **4** Calculer le gradient : i.e. les dérivées partielles **Dm** et **Dc** :
- **Dm** : Dérivée partielle de la fonction coût selon le paramètre m
- **Dc** : Dérivée partielle de la fonction coût selon le paramètre c

$$egin{align} D_m &= rac{1}{n} \sum_{i=0}^n 2(y_i - (mx_i + c))(-x_i) \ D_m &= rac{-2}{n} \sum_{i=0}^n x_i (y_i - ar{y}_i) \ \end{pmatrix} \qquad \qquad D_c &= rac{-2}{n} \sum_{i=0}^n (y_i - ar{y}_i) \ \end{pmatrix}$$

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

 $\mathbf{5}$ — Mettre à jour les valeurs de m et de \mathbf{c} en fonction du gradient et du learning rate L, comme suit :

$$m = m - L \times D_m$$

$$c = c - L \times D_c$$

Répétez les étapes (3, 4, et 5) *epochs* fois; jusqu'à ce que la fonction de coût a une très petite valeur ou idéalement = 0 (ce qui signifie 0 erreur ou 100% de précision). Les dernières valeurs de **m** et de **c** trouvées représentent leurs valeurs optimales.

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Exécutions pour l'exemple précédent:

On pose : epochs = 11 et l_rate = 0.01

```
>epoch=0, lrate=0.010, m=7.205455, c=1.289091
>epoch=1, lrate=0.010, m=9.834750, c=1.871157
>epoch=2, lrate=0.010, m=10.783632, c=2.192994
>epoch=3, lrate=0.010, m=11.115504, c=2.418682
>epoch=4, lrate=0.010, m=11.20881, c=2.608478
>epoch=5, lrate=0.010, m=11.243171, c=2.784517
>epoch=6, lrate=0.010, m=11.235038, c=2.954926
>epoch=7, lrate=0.010, m=11.215822, c=3.122697
>epoch=8, lrate=0.010, m=11.192622, c=3.288929
>epoch=9, lrate=0.010, m=11.168048, c=3.454030
>epoch=10, lrate=0.010, m=11.143055, c=3.618152
>epoch=11, lrate=0.010, m=11.117996, c=3.781355
```

La régression linéaire multiple

Régression linéaire multiple:

 La régression linéaire multiple utilisée pour estimer une sortie en fonction de plusieurs entrées n'est qu'une extension de la précédente, on a donc :

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_n X_{ni}$$

- Calcul et optimisation des paramètres du modèle : bo, b1, b2,, bn.
- X dans ce cas n'est plus un tableau mais une matrice de n attributs et m exemples d'entrainement.

La régression polynomiale

Régression polynomiale simple: Modèle non linéaire: Courbe

= Modèle **polynômial** de **degré 2**:
$$f(x) = ax^2 + bx + c$$

A trouver les paramètres optimaux a, b, et c, en utilisant le Gradient Descent comme précédemment.

Ressources

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0

Ressources

https://www.technologynetworks.com/informatics/articles/calculating-a-least-squares-regression-line-equation-example-explanation-310265

https://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning/

https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931

https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/