

Essentiel du cours 5

Définitions et algorithmes

- Dichotomie: On coupe et on garde un demi-intervalle qui contient une racine, et on itère.
- Méthode du point fixe : On itère $x^{(h)} = g(x^{(h-1)})$
- Méthode de Newton
- Extremum d'une fonction (Newton) :

Initialisation : Choisir $x^{(0)}$ et une précision ϵ . Itération h : Calculer

$$x^{(h)} = x^{(h-1)} - \frac{f'(x^{(h-1)})}{f''(x^{(h-1)})}$$

Arrêt : Quand $|x^{(h)} - x^{(h-1)}| < \epsilon$.

Si $f''(x^*) < 0$: maximum. Si $f''(x^*) > 0$: minimum.

■ Méthode de Newton par coordonnée.

Définitions et algorithmes

- La dérivée partielle $\partial_{u_j} f$ de la fonction f de \mathbb{R}^d dans \mathbb{R} au point $\mathbf{u} = (u_1, u_2, \dots u_d)$:
 - \blacksquare on fixe les u_k $(k \neq j)$;
 - lacksquare on dérive par rapport à u_j .
- \blacksquare Le vecteur gradient de f en \mathbf{u} :

$$\nabla f(\mathbf{u}) = [\partial_{u_1} f(\mathbf{u}) \ \partial_{u_2} f(\mathbf{u}) \ \dots \ \partial_{u_2} f(\mathbf{u})]^T$$
.

■ Minimisation par descente de gradient

Initialisation : Choisir un point $\mathbf{u}^{(0)}$, un pas γ et une précision ϵ .

Itération h: Calculer le vecteur gradient au point $\mathbf{u}^{(h-1)}: \nabla f(\mathbf{u}^{(h-1)})$ et itérer

$$\mathbf{u}^{(h)} = \mathbf{u}^{(h-1)} - \gamma \nabla f(\mathbf{u}^{(h-1)})$$

Arrêt : Quand $\|\mathbf{u}^{(h)} - \mathbf{u}^{(h-1)}\| < \epsilon$.

Cours 6 : Variables aléatoires Plan du cours

- 1 Variable aléatoire discrète
 - Loi de probabilité, fonction de répartition
 - Espérance, variance
- 2 Couple de variables aléatoires discrètes
 - Loi marginale
 - Covariance
 - Loi conditionnelle
 - Indépendance
- 3 Triplet de variables aléatoires discrètes
 - Indépendance
 - Indépendance conditionnelle

Cours 6 : Variables aléatoires Plan du cours

- 1 Variable aléatoire discrète
 - Loi de probabilité, fonction de répartition
 - Espérance, variance
- 2 Couple de variables aléatoires discrètes
 - Loi marginale
 - Covariance
 - Loi conditionnelle
 - Indépendance
- 3 Triplet de variables aléatoires discrètes
 - Indépendance
 - Indépendance conditionnelle

Notations

Objectif. Inférence = généralisation à d'autres données que celles qui sont observées **Cadre classique.** Considérer les observations $x_1, x_2, \ldots x_n$ comme des réalisations de variables aléatoires $X_1, X_2, \ldots X_n$.

Notations

- *X* : variable aléatoire (majuscule)
- $\blacksquare x = \text{réalisation de } X \text{ (minuscule)}$
- \blacksquare $\mathcal{X} =$ ensemble des valeurs possibles de X :
- $p = \text{loi de probabilité de } X : p(x) = \mathbb{P}\{X = x\}$

Exemple: pile ou face

$$X=$$
 « pile ou face », $X=$ « pile », $\mathcal{X}=$ {pile, face}, $p(\text{pile})=p(\text{face})=1/2.$

Menu du jour.

- Définition de notions analogue à celles vues dans le cadre descriptif (espérance, variance, covariance, loi jointe, marginale, conditionnelle, . . .)
- Introduction de la notion de dépendance

Loi de probabilité

On se concentre pour l'instant aux variables discrètes, i.e. \mathcal{X} est fini $(\mathcal{X} = \{0, 1\})$ ou dénombrable $(\mathcal{X} = \mathbb{N})$

Définition 1 (Loi de probabilité discrète)

La loi de probabilité d'une variable aléatoire X à valeur dans $\mathcal X$ fini ou dénombrable est définie par la fonction

$$p: \mathcal{X} \mapsto [0,1]$$

$$x \to p(x) = \mathbb{P}\{X = x\}.$$

Par définition, p satisfait l'équation

$$\sum_{x \in \mathcal{X}} p(x) = 1.$$

Loi de Bernoulli

Définition 2 (Loi de Bernoulli)

La loi de Bernoulli (de paramètre π) est la loi de la variable aléatoire X binaire à valeur dans $\mathcal{X}=\{0,1\}$ telle que

$$p(0) = \mathbb{P}\{X = 0\} = 1 - \pi, \qquad p(1) = \mathbb{P}\{X = 1\} = \pi.$$

On note alors

$$X \sim \mathcal{B}(\pi)$$
.

Exemple: pile ou face

Le tirage d'une pièce (non faussée) à pile face suit une loi de Bernoulli

$$\mathcal{B}(1/2)$$
,

en comptant 0 pour pile et 1 pour face.

Loi binomiale

Définition 3 (Loi binomiale)

La loi binomiale (de paramètres n et π) est la loi de la variable aléatoire X à valeur dans $\mathcal{X} = \{0, \dots, n\}$ telle que

$$p(x) = \binom{n}{x} \pi^{x} (1 - \pi)^{n - x}.$$

On note alors

$$X \sim \mathcal{B}(n, \pi)$$
.

Exemple: nombre de « pile »

Le nombre de face obtenu au cours 10 tirages indépendants d'une pièce (non faussée) à pile ou face suit une loi binomiale

$$\mathcal{B}(10, 1/2)$$
.

(définition de l'indépendance à suivre)

Fonction de répartition

Définition 4 (Fonction de répartition)

Si la variable X est à valeurs entières (ou à défaut, si l'ensemble $\mathcal X$ est ordonnée), la fonction de répartition de la variable X est la fonction

$$F: \quad \mathcal{X} \quad \mapsto \quad [0,1]$$
$$\qquad \qquad x \quad \rightarrow \quad F(x) = \mathbb{P}\{X \leqslant x\}.$$

Proposition 1 (Fonction de répartition d'une variable discrète)

La fonction de répartition de répartition de la variable aléatoire X de probabilité p vaut

$$F(x) = \mathbb{P}\{X \le x\} = \sum_{y \le x} p(y).$$

Loi binomiale

Loi binomiale

$$p(x) = \mathbb{P}\{X = x\}$$

$$F(x) = \mathbb{P}\{X \leq x\}$$

$$F(3) \simeq 0.1719$$

 $F(10) \simeq 0.5836$

Espérance

Définition 5 (Espérance)

L'espérance (notée \mathbb{E}) d'une variable X est définie par $\mathbb{E}(X) = \sum_{x \in \mathcal{X}} p(x)x$.

Remarques.

 $lue{1}$ On peut généraliser la notion d'espérance à toute fonction (à valeur réelle) de X:

$$\mathbb{E}(f(X)) = \sum_{x \in \mathcal{X}} p(x)f(x).$$

On a ainsi

$$\mathbb{E}(X^{2}) = \sum_{x \in \mathcal{X}} p(x)x^{2},$$

$$\mathbb{E}(\log(X)) = \sum_{x \in \mathcal{X}} p(x)\log(x) \qquad \text{pour } \mathcal{X} \subset \mathbb{R}^{*+},$$

$$\mathbb{E}(1/X) = \sum_{x \in \mathcal{X}} p(x)/x \qquad \text{pour } \mathcal{X} \subset \mathbb{R}^{*}.$$

Quand \mathcal{X} est infini dénombrable ($\mathcal{X} = \mathbb{N}$), il faut s'assurer que les séries correspondantes sont bien définies (hors programme du cours).

Variance

Définition 6 (Variance)

La variance (notée \mathbb{V}) de X est l'espérance du carré de l'écart à son espérance :

$$\mathbb{V}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \sum_{x \in \mathcal{X}} p(x) \left(x - \mathbb{E}(X)\right)^2.$$

L'écart-type de X est la racine carré de sa variance $\sqrt{\mathbb{V}(X)}$.

Proposition 2 (Formule alternative de la variance)

La variance d'une variable aléatoire X entière vérifie

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Proposition 3 (Variable de Bernoulli)

Si $X \sim \mathcal{B}(\pi)$, alors

$$\mathbb{E}(X) = \pi$$
, $\mathbb{E}(X^2) = \pi$, $\mathbb{V}(X) = \pi(1 - \pi)$.

Variance

Propriétés de l'espérance et de la variance

Proposition 4 (Transformation linéaire)

$$\mathbb{E}(a+bX) = a+b\,\mathbb{E}(X), \qquad \mathbb{V}(a+bX) = b^2\,\mathbb{V}(X).$$

Remarque importante. La propriété précédente ne traite que des transformations *linéaires*. En général :

$$\mathbb{E}\left(\frac{1}{X}\right) \neq \frac{1}{\mathbb{E}(X)}, \qquad \mathbb{E}(X^2) \neq \left[\mathbb{E}(X)\right]^2.$$

Cours 6 : Variables aléatoires Plan du cours

- 1 Variable aléatoire discrète
 - Loi de probabilité, fonction de répartition
 - Espérance, variance
- 2 Couple de variables aléatoires discrètes
 - Loi marginale
 - Covariance
 - Loi conditionnelle
 - Indépendance
- Triplet de variables aléatoires discrètes
 - Indépendance
 - Indépendance conditionnelle

Couple de variables aléatoires discrètes

Objectifs. Etudier deux variables aléatoires X et Y à valeurs dans \mathcal{X} et \mathcal{Y} : (X, Y) prend ses valeurs dans $\mathcal{X} \times \mathcal{Y}$.

Notation. On indice la loi de probabilité p par la variable à laquelle elle se réfère : p_X pour la loi de X, p_Y pour Y, p_{XY} pour (X, Y).

Définition 7 (Loi jointe)

La loi jointe de deux variables aléatoires discrètes X et Y à valeur respectivement dans $\mathcal X$ et $\mathcal Y$ est définie par la fonction

$$p_{XY}: \mathcal{X} \times \mathcal{Y} \mapsto [0,1]$$

 $(x,y) \rightarrow p_{XY}(x,y) = \mathbb{P}\{X = x, Y = y\}.$

Exemple de loi jointe de deux variables discrètes

X à valeur dans $\mathcal{X} = \{0, 1\}$, Y à valeur dans $\mathcal{Y} = \{1, 2, 3\}$.

$$\mathcal{X} \times \mathcal{Y} = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3)\}$$

$$\begin{array}{c|ccccc}
\hline
\rho_{XY}(x, y) & 1 & 2 & 3 \\
\hline
0 & 1/4 & 1/4 & 0 \\
1 & 1/6 & 1/6 & 1/6
\end{array}$$

Loi marginale

Loi marginale de X = loi de probabilité de X, sans tenir compte de la valeur de Y.

Proposition 5 (Loi marginale)

Les lois marginales de X et de Y sont données par

$$p_X(x) = \mathbb{P}\{X = x\} = \sum_{v \in \mathcal{Y}} p_{XY}(x, y)$$

$$p_Y(y) = \mathbb{P}\{Y = y\} = \sum_{x \in \mathcal{X}} p_{XY}(x, y).$$

Loi marginale : démonstration

Loi marginale : exemple

Exemple de loi jointe

Loi jointe :

$p_{XY}(x,y)$	1	2	3	$\sum_{y\in\mathcal{Y}}p_{XY}(x,y)$
0	1/4	1/4	0	1/2
1	1/6	1/6	1/6	1/2
$\sum_{x\in\mathcal{X}}p_{XY}(x,y)$	5/12	5/12	1/6	1

Lois marginales:

Espérances :

$$\mathbb{E}(X) = 1/2, \qquad \mathbb{E}(Y) = 7/4 = 1.75,$$

Espérances des carrés :

$$\mathbb{E}(X^2) = 1/2$$
, $\mathbb{E}(Y^2) = 43/12 \simeq 3.583$,

Variances:

$$\mathbb{V}(X) = 1/4$$
, $\mathbb{V}(Y) = 43/12 - (7/4)^2 = 25/48 \simeq 0.521$,

Covariance

Définition 8 (Covariance)

La covariance entre les variables X et Y est l'espérance du produit des écarts à leurs espérances respectives, soit, en notant $\mu_X = \mathbb{E}(X)$ et $\mu_Y = \mathbb{E}(Y)$:

$$\mathbb{C}ov(X,Y) = \mathbb{E}\left((X - \mu_X)(Y - \mu_Y)\right).$$

Remarque.

$$\mathbb{C}ov(X,X) = \mathbb{V}(X).$$

Proposition 6 (Formule alternative de la covariance)

La covariance des variables X et Y vérifie :

$$\mathbb{C}ov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Corrélation

Définition 9 (Corrélation)

La corrélation entre les variables X et Y est le rapport entre leur covariance et le produit de leur écarts-types :

$$\mathbb{C}\mathrm{or}(X,Y) = \frac{\mathbb{C}\mathrm{ov}(X,Y)}{\sqrt{\mathbb{V}(X)\,\mathbb{V}(Y)}}.$$

Comme pour sa version descriptive cor(x, y), on peut montrer que

$$-1 \leqslant \mathbb{C}\operatorname{or}(X, Y) \leqslant +1.$$

Loi conditionnelle (1/2)

Loi conditionnelle de Y = loi de Y connaissant la valeur de X.

Sachant que X = x, l'ensemble des possibles pour le couple (X, Y) n'est plus $\mathcal{X} \times \mathcal{Y}$, mais seulement $\{x\} \times \mathcal{Y}$.

Définition 10 (Loi conditionnelle)

La loi conditionnelle de Y sachant $\{X = x\}$ est définie par

$$p_{Y|X=x}(y) = \mathbb{P}\{Y = y \mid X = x\} = \frac{p_{XY}(x, y)}{p_X(x)}.$$

Remarques.

1 Cas particulier de probabilité conditionnelle de l'événement A sachant l'événement B

$$\mathbb{P}\{A \mid B\} = \frac{\mathbb{P}\{A \cap B\}}{\mathbb{P}\{B\}}$$

avec
$$A = \{X = x, Y = y\}$$
 et $B = \{X = x\}$.

2 Symétriquement, la loi conditionnelle de X sachant $\{Y = y\}$ vaut

$$p_{X|Y=y}(x) = \mathbb{P}\{X = x \mid Y = y\} = \frac{p_{XY}(x, y)}{p_Y(y)}.$$

Loi conditionnelle (2/2)

Proposition 7 (Probabilité conditionnelle totale)

$$\sum_{y\in\mathcal{Y}}p_{Y|X=x}(y)=1.$$

Exemple de loi jointe

$$\begin{array}{c|cccc} p_{XY}(x,y) & 1 & 2 & 3 \\ \hline 0 & 1/4 & 1/4 & 0 \\ 1 & 1/6 & 1/6 & 1/6 \end{array}$$

Lois marginales:

Loi conditionnelles:

$p_{Y X=x}(y)$	1	2	3	$p_{X Y=y}(x)$	0	1
				y=1	3/5	2/5
x = 0				y = 2		
x = 1	1/3	1/3	1/3			
	'	,	,	y = 3	0	1

Probabilité conditionnelle totale : démonstration

Tirage dans une loi jointe

Proposition 8 (Tirage d'une réalisation de (X, Y))

On peut tirer une réalisation du couple (X, Y) selon la loi p_{XY} en

- 1 tirant une réalisation x de X selon sa loi marginale p_X ,
- 2 puis en tirant ensuite une réalisation y de Y selon sa loi conditionnelle $p_{Y|X=x}$,

Exemple de loi jointe

On tire X selon sa loi marginale :

$$\mathbb{P}{X = 0} = 1/2, \qquad \mathbb{P}{X = 1} = 1/2,$$

puis

 \blacksquare si X=0, on tire Y selon la loi conditionnelle $p_{Y|X=0}$:

$$\mathbb{P}{Y = 1 \mid X = 0} = 1/2, \qquad \mathbb{P}{Y = 2 \mid X = 0} = 1/2;$$

si X = 1, on tire Y selon la loi conditionnelle $p_{Y|X=1}$:

$$\mathbb{P}\{Y=1 \mid X=1\} = 1/3$$
, $\mathbb{P}\{Y=2 \mid X=1\} = 1/3$, $\mathbb{P}\{Y=3 \mid X=1\} = 1/3$.

Tirage d'une réalisation de (X, Y): démonstration

Espérance conditionnelle

La loi conditionnelle est une loi de probabilité, donc on peut définir son espérance.

Définition 11 (Espérance conditionnelle)

L'espérance conditionnelle de Y sachant X = x vaut

$$\mathbb{E}(Y \mid X = x) = \sum_{y \in \mathcal{Y}} p_{Y|X=x}(y)y.$$

Espérance conditionnelle

Exemple de loi jointe

Espérances conditionnelles de Y sachant X = x:

Espérances conditionnelles de X sachant Y = y:

$$\begin{array}{c|ccccc} p_{X|Y=y}(x) & 0 & 1 & \mathbb{E}(Y \mid X=x) \\ \hline y = 1 & 3/5 & 2/5 & 2/5 \\ y = 2 & 3/5 & 2/5 & 2/5 \\ y = 3 & 0 & 1 & 1 \end{array}$$

Espérances marginales :

$$\mathbb{E}(X) = 1/2, \qquad \mathbb{E}(Y) = 7/4 = 1.75.$$

Variance conditionnelle

On peut définir de façon analogue l'espérance conditionnelle de toute fonction g de Y:

$$\mathbb{E}(g(Y) \mid X = x) = \sum_{y \in \mathcal{Y}} p_{Y|X=x}(y)g(y).$$

Définition 12 (Variance conditionnelle)

En notant $\mu_{Y|X=x} = \mathbb{E}(Y \mid X=x)$, la variance conditionnelle de Y sachant X=x vaut :

$$\mathbb{V}(Y \mid X = x) = \mathbb{E}\left((Y - \mu_{Y \mid X = x})^2 \mid X = x\right)$$

$$= \mathbb{E}(Y^2 \mid X = x) - (\mu_{Y|X=x})^2.$$

Indépendance

Sens littéral : les variables X et Y sont indépendantes si la distribution de la valeur de l'une ne dépend pas de la valeur de l'autre.

Définition 13 (Indépendance)

Les variables X et Y sont indépendantes si et seulement si pour tout couple (x, y) dans $\mathcal{X} \times \mathcal{Y}$, on a

$$p_{XY}(x,y) = p_X(x)p_Y(y).$$

loi jointe

loi produit

$$\begin{array}{c|cccc} p_{XY}(x,y) & 1 & 2 & 3 \\ \hline 0 & 1/4 & 1/4 & 0 \\ 1 & 1/6 & 1/6 & 1/6 \end{array}$$

(notamment : $p_{XY}(0,3) = 0$ et $p_X(x)p_Y(y) \neq 0$)

 \Rightarrow X et Y ne sont pas indépendantes.

Propriété des variables indépendantes

Proposition 9 (Propriétés des variables indépendantes)

Si les variables X et Y sont indépendantes, alors elles vérifient :

1 pour tout couple (x, y) dans $\mathcal{X} \times \mathcal{Y}$

$$p_{Y|X=x}(y) = p_Y(y)$$
 et $p_{X|Y=y}(x) = p_X(x)$;

2 l'espérance de leur produit est égale au produit de leurs espérances :

$$\mathbb{E}(XY) = \mathbb{E}(X)\,\mathbb{E}(Y);$$

3 leur covariance est nulle : $\mathbb{C}ov(X, Y) = 0$.

Remarques:

- Intuition: distribution conditionnelle $p_{Y|X=x}$ = distribution marginale p_Y .
- **2** Généralisable à toutes fonctions de X et de Y : $\mathbb{E}(f(X)g(Y)) = \mathbb{E}(f(X))\mathbb{E}(g(Y))$.
- 3 Implication et non équivalence :

Propriété des variables indépendantes : démonstration

Loi binomiale

Proposition 10 (Loi binomiale)

La somme Y du n variables de Bernoulli indépendantes $X_1, X_2, ... X_n$ de même paramètre π suit une loi binomiale de paramètre n et π .

Loi binomiale : démonstration

Étapes de la démonstration.

- 1 Loi de chaque $X_i : p_X(x) = \pi^x (1 \pi)^{1-x}$.
- 2 Loi jointe des $X_1, X_2, \dots X_n$.
- 3 Loi de leur somme.

Cours 6 : Variables aléatoires Plan du cours

- 1 Variable aléatoire discrète
 - Loi de probabilité, fonction de répartition
 - Espérance, variance
- Couple de variables aléatoires discrètes
 - Loi marginale
 - Covariance
 - Loi conditionnelle
 - Indépendance
- 3 Triplet de variables aléatoires discrètes
 - Indépendance
 - Indépendance conditionnelle

Triplet de variables aléatoires discrètes

Objectif. Introduire la notion d'indépendance conditionnelle (hypothèse implcite des classificateurs « bayésiens naïfs »).

Définition 14 (Loi d'un triplet de variables aléatoires)

La loi jointe du triplet de variables aléatoires (X, Y, Z) à valeurs dans \mathcal{X} , \mathcal{Y} et \mathcal{Z} est la fonction

$$p_{XYZ}: \quad \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \quad \mapsto \quad [0,1]$$

$$(x,y,z) \quad \to \quad p_{XYZ}(x,y,z) = \mathbb{P}\{X=x,Y=y,Z=z\}.$$

Exemple à trois variables (X, Y, Z)

On considère X, Y et Z à valeurs dans $\mathcal{X} = \{0, 1\}$, $\mathcal{Y} = \{1, 2, 3\}$ et $\mathcal{Z} = \{1, 2\}$ de loi jointe

z = 1				z = 2				
$p_{XYZ}(x, y, 1)$	y = 1	y = 2	<i>y</i> = 3		$p_{XYZ}(x, y, 2)$	y = 1	y = 2	y = 3
x = 0	1/18	1/9	1/6		x = 0	1/24	1/24	1/24
$ \begin{array}{c} x = 0 \\ x = 1 \end{array} $	1/36	1/18	1/12		x = 1	1/8	1/8	1/8

Triplet de variables : lois marginales

Proposition 11 (Lois marginales)

Les lois marginales de chaque variable sont

$$p_X(x) = \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} p_{XYZ}(x, y, z), \quad p_Y(y) = \sum_{x \in \mathcal{X}} \sum_{z \in \mathcal{Z}} p_{XYZ}(x, y, z), \quad p_Z(z) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XYZ}(x, y, z).$$

Les lois marginales de chaque couple de variables sont

$$p_{XY}(x,y) = \sum_{z \in \mathcal{Z}} p_{XYZ}(x,y,z), \quad p_{XZ}(x,z) = \sum_{y \in \mathcal{Y}} p_{XYZ}(x,y,z), \quad p_{YZ}(y,z) = \sum_{x \in \mathcal{X}} p_{XYZ}(x,y,z).$$

Lois marginales : démonstration

Triplet de variables : exemple

Exemple à trois variables (X, Y, Z)

Lois marginales p_X et p_Y :

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline p_X(x) & 11/24 & 13/24 \end{array}$$

Comparaison entre la loi marginale jointe p_{XY} et loi produit $p_X p_Y$:

 \Rightarrow les variables X et Y ne sont pas indépendantes.

Espérances conditionnelles de Y sachant X = x:

$$p_{XY}(x,y)$$
 | $y = 1$ | $y = 2$ | $y = 3$ | $\mathbb{E}(Y \mid X = x)$ | $x = 0$ | $x = 1$ |

Conclusion: Z étant inconnue, la connaissance de X apporte une information sur Y.

Indépendance

La notion d'indépendance se généralise également à plus de deux variables.

Définition 15 (Indépendance de trois variables discrètes)

Les variables X, Y et Z sont indépendantes si et seulement si, pour tout triplet $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$:

$$p_{XYZ}(x, y, z) = p_X(x)p_Y(y)p_Z(z).$$

De même, on peut définir la loi jointe des variables X et Y sachant Z=z.

Définition 16 (Loi jointe conditionnelle)

La loi jointe des variables X et Y sachant Z = z vaut

$$p_{X,Y|Z=z}(x,y) = \mathbb{P}\{X=x, Y=y \mid Z=z\} = \frac{p_{XYZ}(x,y,z)}{p_{Z}(z)}.$$

Loi jointe conditionnelle : exemple

Exemple à trois variables (X, Y, Z)

Lois conditionnelles de X et Y sachant Z = z:

$$p_{X|Z=z}(x)$$
 | $x = 0$ | $x = 1$ | $z = 1$ | $z = 1$ | $z = 2$ | $z = 1$ | $z = 1$ | $z = 2$ | $z = 1$ | $z = 1$

Lois jointes conditionnelles de (X, Y) sachant Z = z:

Indépendance conditionnelle

On peut appliquer la notion d'indépendance à une loi jointe conditionnelle.

Définition 17 (Indépendance conditionnelle)

Les variables X et Y sont indépendante conditionnellement à Z=z si et seulement si, pour tout couple (x,y) de $\mathcal{X}\times\mathcal{Y}$,

$$p_{X,Y|Z=z}(x,y) = p_{X|Z=z}(x)p_{Y|Z=z}(y).$$

2 Les variables X et Y sont indépendante conditionnellement à Z si et seulement si la propriété ci-dessous est vraie pour tout z de Z:

$$\forall z \in \mathcal{Z}, \qquad p_{X,Y|Z=z}(x,y) = p_{X|Z=z}(x)p_{Y|Z=z}(y).$$

Indépendance conditionnelle : exemple

Exemple à trois variables (X, Y, Z)

Comparaison de la loi jointe conditionnelle avec le produit des loi conditionnelles : On peut vérifier que pour tout $(x, y) \in \mathcal{X} \times \mathcal{Y}$ et pour chaque $z \in \mathcal{Z}$:

$$p_{X,Y|Z=z}(x,y) = p_{X|Z=z}(x) \times p_{Y|Z=z}(y)$$

- \Rightarrow X et Y sont indépendantes conditionnellement à Z = 1 et Z = 2
- \Rightarrow X et Y sont indépendantes conditionnellement à Z

Espérance conditionnelles :

Conclusion : La distribution (et l'espérance) conditionnelle de Y sachant (X = x, Z = z) varient avec z mais pas avec x : si la valeur de Z est connue, la valeur de X n'apporte pas d'information supplémentaire sur Y.

Essentiel du cours 6

Définitions

- Loi de probabilité : $\sum_{x \in \mathcal{X}} p(x) = 1$
- Espérance : $\mathbb{E}(X) = \sum_{x \in \mathcal{X}} p(x)x$
- Variance :

$$\mathbb{V}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \sum_{x \in X} p(x) (x - \mathbb{E}(X))^2$$

- Covariance : $x \in \mathcal{X}$ \mathbb{C} ov $(X, Y) = \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y)))$
- Corrélation : $\mathbb{C}\text{or}(X, Y) = \frac{\mathbb{C}\text{ov}(X, Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$
- Loi conditionnelle :

$$p_{Y|X=x}(y) = \mathbb{P}\{Y = y \mid X = x\} = \frac{p_{XY}(x, y)}{p_X(x)}$$

- Espérance conditionnelle : $\mathbb{E}(Y \mid X = x) = \sum_{y \in \mathcal{Y}} p_{Y|X=x}(y)y$
- Variance conditionnelle : $\mathbb{V}(Y \mid X = x)$ = $\mathbb{E}((Y - \mathbb{E}(Y \mid X = x))^2 \mid X = x)$ = $\mathbb{E}(Y^2 \mid X = x) - (\mathbb{E}(Y \mid X = x))^2$
- X et Y indépendantes si et seulement si : $\forall (x, y), p_{XY}(x, y) = p_X(x)p_Y(y)$

Propositions

- Fonction de répartition : $F(x) = \mathbb{P}\{X \le x\} = \sum_{y \le x} p(y)$
- Formule alternative de la variance : $\mathbb{V}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$
- Transformation linéaire : $\mathbb{E}(a+bX) = a+b\mathbb{E}(X)$ $\mathbb{V}(a+bX) = b^2\mathbb{V}(X)$
- Loi marginale : $p_X(x) = \mathbb{P}\{X = x\} = \sum_{y \in \mathcal{Y}} p_{XY}(x, y)$
- Formule alternative de la covariance : $\mathbb{C}ov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$
- Probabilité conditionnelle totale : $\sum_{y \in Y} p_{Y|X=x}(y) = 1$
- Propriétés des variables X, Y indépendantes : $p_{Y|X=x}(y) = p_Y(y)$ $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ $\mathbb{C}\text{ov}(X,Y) = 0$