Homework 3

Qianlang Chen

Section 3.1 (p193)

1. Exercise 2

Part (a)

 $4,\,8,\,12,\,16,\,20.$

Part (c)

 $4,\,8,\,12,\,16,\,20.$

2. Exercise 16

Part (b)

The Left-hand side: $(A \cup B)'$

The Right-hand side: $A' \cap B'$

Therefore, since the Venn diagrams for both sides are the same, $(A \cup B)' = A' \cap B'$.

Part (d)

The Left-hand side: $A \cap (A \cup B)$

The Right-hand side: A

Therefore, since the Venn diagrams for both sides are the same, $A \cap (A \cup B) = A$.

3. Exercise 17

Part (b)

The Left-hand side: $(B \cup C) - A$

The Right-hand side: $(B-A) \cup (C-A)$

Therefore, since the Venn diagrams for both sides are the same, $(B \cup C) - A = (B - A) \cup (C - A)$.

Part (d)

The Left-hand side: $(A-B) \cup (B-C)$

The Right-hand side: A - C

As seen from the Venn diagrams, there are some areas covered by the left-hand side but not the right-hand side. Specifically, these are the mentioned areas:

Therefore, the left-hand side may not be a subset of the right-hand side. $(A - B) \cup (B - C) \nsubseteq A - C$. As an example, if

$$A = \{1, 2, 3\},\$$

$$B = \{4, 5, 6\},\$$

$$C = \{7, 8, 9\},\$$

then

$$(A-B) \cup (B-C) = \{1, 2, 3, 4, 5, 6\},$$

 $A-C = \{1, 2, 3\};$
 $\{1, 2, 3, 4, 5, 6\} \nsubseteq \{1, 2, 3\}$

4. Exercise 18

Part (b)

$$A - B = \{k : k \in \mathbb{Z}, k \bmod 6 \neq 0\}$$

Part (e)

$$\mathbb{Z} - A = \{2k+1 : k \in \mathbb{Z}\}$$

Section 3.2 (p208)

5. Exercise 1

Part (b)

$$(A \times B) - (A \times A) = \{2, 4\} \times \{1, 2, 8\} - \{2, 4\} \times \{2, 4\}$$

$$= \{(2, 1), (2, 2), (2, 8), (4, 1), (4, 2), (4, 8)\} - \{(2, 2), (2, 4), (4, 2), (4, 4)\}$$

$$= \boxed{\{(2, 1), (2, 8), (4, 1), (4, 8)\}}$$

Part (d)

$$\begin{split} \wp(B \cap C) &= \wp(\{1, 2, 8\} \cap \{1, 2, 5, 6, 10\}) \\ &= \wp(\{1, 2\}) \\ &= \boxed{\{\ \{\}, \{1\}, \{2\}, \{1, 2\}\ \}} \end{split}$$

6. Exercise 9

According to the division theorem, every integer falls into one of the following categories:

- 4q,
- 4q + 1,
- 4q + 2,
- 4q + 3,

where $q \in \mathbb{Z}$. In other words, $\mathbb{Z} = B \cup C \cup S \cup T$, where

- $B = \{4q + 1 : q \in \mathbb{Z}\}$ (given by the problem statement),
- $C = \{4q + 3 : q \in \mathbb{Z}\}$ (given by the problem statement),
- $S = \{4q : q \in \mathbb{Z}\},\$
- $T = \{4q + 2 : q \in \mathbb{Z}\}.$

Also, to show that $A = \{2k : k \in \mathbb{Z}\} = S \cup T$, since every integer is either even or odd,

- when k is even, 2k = 2(2q) = 4q, where q is an integer by definition of even;
- when k is odd, 2k = 2(2q + 1) = 4q + 2, where q is an integer by definition of odd.

Therefore, we showed that $A = S \cup T$. Now, we have $\mathbb{Z} = B \cup C \cup S \cup T = A \cup B \cup C$.

According to the definition of a partition, and

- $A \neq B \neq C \neq \emptyset$,
- $A \cap B = A \cap C = B \cap C = \emptyset$,
- $A \cup B \cup C = \mathbb{Z}$,

 $\{A,B,C\}$ is a partition of $\mathbb{Z}.$

7. Exercise 11

Part (a)

True.

Part (b)

False. One counter-example: if $A = \{1\}$ and $B = \{2\}$,

$$(A \cup B) \times (A - B) = \{1, 2\} \times \{1\}$$

$$= \{(1, 1), (2, 1)\};$$

$$A^2 - B^2 = \{(1, 1)\} - \{(2, 2)\}$$

$$= \{(1, 1)\};$$

$$(A \cup B) \times (A - B) \neq A^2 - B^2$$

Part (c)

False. One counter-example: if $A = \{1\}, B = \{2\}$ and $C = \{3\}$,

$$A \times (B \times C) = \{1\} \times (\{2\} \times \{3\})$$

$$= \{1\} \times \{(2,3)\}$$

$$= \{(1,(2,3))\};$$

$$(A \times B) \times C = (\{1\} \times \{2\}) \times \{3\}$$

$$= \{(1,2)\} \times \{3\}$$

$$= \{(1,2)\} \times \{3\}$$

$$= \{((1,2),3)\};$$

$$A \times (B \times C) \neq (A \times B) \times C$$

8. Exercise 22

According to Theorem 1, $|A \times B| = |A| |B|$. Therefore,

$$|S_{1} \times S_{2} \times \dots \times S_{k-1} \times S_{k}| = |S_{1}| |S_{2}| \dots |S_{k-1}| |S_{k}|$$

$$= (|S_{1}| |S_{2}| \dots |S_{k-1}|) |S_{k}|$$

$$= |S_{1} \times S_{2} \times \dots \times S_{k-1}| |S_{k}|$$

$$= |(S_{1} \times S_{2} \times \dots \times S_{k-1}) \times S_{k}|$$

Section 3.3 (p219)

9. Exercise 2.e

Let an element $x: x \in (\{2n+1: n \in \mathbb{Z}\} \cap \{5m+4: m \in \mathbb{Z}\})$ be given. By definition of set union, we have that $\exists n \in \mathbb{Z}: x = 2n+1$ and that $\exists m \in \mathbb{Z}: x = 5m+4$. Since every integer is either even or odd, one of the following cases about m must be true:

Case I, when m is even: by definition of even, $\exists k \in \mathbb{Z} : 2k = m$. By substitution, $x = 5m + 4 = 5 \cdot (2k) + 4 = 10k + 4 = 2 \cdot (5k + 2) = 2c$ for some c. Since x has to be in the form of 2n + 1, this is not a possibility for x.

Case II, when m is odd: by definition of odd, $\exists k \in \mathbb{Z} : 2k+1=m$. By substitution, $x=5m+4=5\cdot(2k+1)+4=10k+9=2\cdot(5k+4)+1=2c+1$ for some c. By closure under addition, $c\in\mathbb{Z}$. Since this fits the definition of x and x can be written in the form of 10k+9, by definition of a subset, $(\{2n+1:n\in\mathbb{Z}\}\cap\{5m+4:m\in\mathbb{Z}\})\subseteq\{10k+9:k\in\mathbb{Z}\}.$

10. Exercise 3.b

Let an element $x: x \in (\{n^2 - 1: n \in \mathbb{Z}\} \cap \{2k: k \in \mathbb{Z}\})$ be given. By definition of set union, we have that $\exists n \in \mathbb{Z}: x = n^2 - 1$ and that $\exists k \in \mathbb{Z}: k = 2k$. Since every integer is either even or odd, one of the following cases about n must be true:

Case I, when n is even: by definition of even, $\exists m \in \mathbb{Z} : 2m = n$. By substitution, $x = n^2 - 1 = (2m)^2 - 1 = 4m^2 - 1 = 2 \cdot (2m^2 - 1) + 1 = 2c + 1$ for some c. Since x has to be in the form of 2k, this is not a possibility for x.

Case II, when n is odd: by definition of odd, $\exists m \in \mathbb{Z} : 2m+1=n$. By substitution, $x=n^2-1=(2m+1)^2-1=4m^2+4m+1-1=2\cdot(2m^2+2m)=2c$ for some c, and by closure under addition, $c\in\mathbb{Z}$. Also, $4m^2+4m=4(m^2+m)=4d$ for some d, and by closure under addition, $d\in\mathbb{Z}$. Since this fits the definition of x and x can be written in the form of 4m, by definition of a subset, $(\{n^2-1:n\in\mathbb{Z}\}\cap\{2k:k\in\mathbb{Z}\})\subseteq\{4m:m\in\mathbb{Z}\}$.

11. Exercise 11.d

First, we have that $C \subseteq (A \cup C)$ because $C \subseteq C$ already.

Now, let us show that $(A \cup C) \subseteq C$.

Let an element $x: x \in (A \cup C)$ be given. By definition of set union, one of the following cases about x must be true:

Case I, when $x \in A$: since $A \cup B = B$, we have that $x \in B$. Since $B \cup C = C$, we have that $x \in C$.

Case II, when $x \in C$ already.

Therefore, $x \in C$ in every possible case. By definition of a subset, $(A \cup C) \subseteq C$.

Finally, since $C \subseteq (A \cup C)$ and $(A \cup C) \subseteq C$, we have that $(A \cup C) = C$.

12. Exercise 13.c

First, let us show that $(A \cup (B - A)) \subseteq B$. Let an element $x : x \in (A \cup (B - A))$ be given. By definition of set union, one of the following cases about x must be true:

Case I, when $x \in A$: since $A \subseteq B$, $x \in B$.

Case II, when $x \in (B-A)$: by definition of set difference, we have that $x \in B$.

Therefore, $x \in B$ in every possible case. By definition of a subset, $(A \cup (B - A)) \subseteq B$.

Now, to show that $B \subseteq (A \cup (B - A))$, let an element $x : x \in B$ be given. Since $A \subseteq B$, one of the following cases about x must be true:

Case I, when $x \in A$ already, meaning that $x \in (A \cup (B - A))$.

Case II, when $x \in B$ but $x \notin A$: by definition of set difference, $x \in (B - A)$, also meaning that $x \in (A \cup (B - A))$.

Therefore, $x \in (A \cup (B - A))$ in every possible case. By definition of a subset, $B \subseteq (A \cup (B - A))$.

Finally, since $(A \cup (B - A)) \subseteq B$ and $x \in (A \cup (B - A))$, we have that $(A \cup (B - A)) = B$.

13. Exercises 14.e and 15.e

Exercise 14.e

$$(A \cup B) \cap (A' \cap C)' = (A \cup B) \cap (A \cup C')$$
 De Morgan's
= $A \cup (B \cap C')$ Inverse Distributive

Exercise 15.e

$$(A \cap B) \cup (A' \cup C)' = (A \cap (B \cup C'))$$

14. Exercise 19.b

$$A \cup (B \cap A') = (A \cup B) \cap (A \cup A')$$
 Distributive
 $= B \cap (A \cup A')$ Substituting $B = A \cup B$
 $= B \cap U$ Negation
 $= B$ Identity

15. Exercies 22.a

First, let us show that $(A \cup B) \times C \subseteq (A \times C) \cup (B \times C)$.

Let a tuple $(x,c) \in (A \cup B) \times C$ be given. By definition of a Cartisian Product and set union, one of the following cases about x must be true:

Case I, when $x \in A$, meaning that $(x,c) \in (A \times C)$. This also means that $(x,c) \in (A \times C) \cup (B \times C)$.

Case II, when $x \in B$, meaning that $(x,c) \in (B \times C)$. This also means that $(x,c) \in (A \times C) \cup (B \times C)$.

Therefore, $(x,c) \in (A \times C) \cup (B \times C)$ in every possible case. By definition of a subset, $(A \cup B) \times C \subseteq (A \times C) \cup (B \times C)$.

Next, let us show that $(A \times C) \cup (B \times C) \subseteq (A \cup B) \times C$.

Let a tuple $(x,c) \in (A \times C) \cup (B \times C)$ be given. By definition of a Cartisian Produt and set union, one of the following cases about x must be true:

Case I, when $(x,c) \in (A \times C)$, meaning that $x \in A$.

Case II, when $(x,c) \in (B \times C)$, meaning that $x \in B$.

Therefore, $x \in A$ or $x \in B$ in every possible case, and by definition of set union, we have that $x \in (A \cup B)$, meaning that $(x,c) \in (A \cup B) \times C$. Also, by definition of a subset, $(A \times C) \cup (B \times C) \subseteq (A \cup B) \times C$.

Finally, since $(A \cup B) \times C \subseteq (A \times C) \cup (B \times C)$ and $(A \times C) \cup (B \times C) \subseteq (A \cup B) \times C$, we have that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

Section 3.4 (p227)

16. Exercise 1.d

$$(p + p'q)' = p'q'$$

17. Exercise 2.f

$$(ab) \cdot (bc)' = (ab) \cdot c'$$

18. Exercise 6.b

$$a' + b = (ab)' + b$$
 Substituting $ab = a$
 $= (a' + b') + b$ De Morgan's
 $= a' + (b' + b)$ Associative
 $= a' + 1$ Negation
 $= 1$ Universal Bound

19. Exercise 14

$$ab + (a' + b') = (ab + a') + b'$$
 Associative
$$= (a' + ab) + b'$$
 Commutative
$$= (a' + a)(a' + b) + b'$$
 Distributive
$$= (a + a')(a' + b) + b'$$
 Commutative
$$= 1 \cdot (a' + b) + b'$$
 Negation
$$= (a' + b) \cdot 1 + b'$$
 Commutative
$$= (a' + b) \cdot 1 + b'$$
 Identity
$$= a' + (b + b')$$
 Associative
$$= a' + 1$$
 Negation
$$= 1$$
 Universal Bound

$$ab \cdot (a' + b') = (ab) \cdot a' + (ab) \cdot b'$$
 Distributive
 $= a' \cdot (ab) + (ab) \cdot b'$ Commutative
 $= (a'a) \cdot b + (ab) \cdot b'$ Associative
 $= (aa') \cdot b + (ab) \cdot b'$ Commutative
 $= 0 \cdot b + (ab) \cdot b'$ Negation
 $= b \cdot 0 + (ab) \cdot b'$ Commutative
 $= 0 + (ab) \cdot b'$ Universal Bound
 $= 0 + a \cdot (bb')$ Associative
 $= 0 + a \cdot 0$ Negation
 $= 0 + 0$ Universal Bound
 $= 0 + 0$ Universal Bound