Rappel de cours

Definition 1. Bla bla

I.1 Exercice 1

Par la relation de Chasles on a $\overrightarrow{aa} + \overrightarrow{aa} = \overrightarrow{aa}$, donc $\overrightarrow{aa} = \overrightarrow{aa} - \overrightarrow{aa} = 0$. On part de $\overrightarrow{aa} = 0$, donc $\overrightarrow{aa} = \overrightarrow{ab} + \overrightarrow{ba} = 0$ (relation de Chasles), par conséquent $\overrightarrow{ab} = -\overrightarrow{ba}$.

I.1 Exercice 2

I.1 Exercice 3

La relation vectorielle est $\overrightarrow{ac}=\overrightarrow{ab}+\overrightarrow{bc}$ et la relation affine est .

I.3 Preuve 1

Montrons que si le point m est le milieu de 2 points a t b alors $\overrightarrow{am} = \overrightarrow{mb} \implies 2\overrightarrow{am} = \overrightarrow{ab}$.

$$\overrightarrow{am} = \overrightarrow{ab} + \overrightarrow{bm} = \overrightarrow{ab} - \overrightarrow{mb} = \overrightarrow{ab} - \overrightarrow{am}$$

$$2\overrightarrow{am}=\overrightarrow{ab}$$

Dans l'autre sens, montrons que $2\overrightarrow{am}=\overrightarrow{ab}\implies \overrightarrow{am}=\overrightarrow{mb}.$

$$2\overrightarrow{ab} = 2\overrightarrow{am} + 2\overrightarrow{mb}$$
 $2\overrightarrow{ab} = \overrightarrow{ab} + 2\overrightarrow{mb}$
 $\overrightarrow{ab} = 2\overrightarrow{mb}$
 $2\overrightarrow{am} = 2\overrightarrow{mb}$
 $\overrightarrow{am} = \overrightarrow{mb}$

I.3 Preuve 2

Montrons que $\overrightarrow{ab} = \overrightarrow{dc} \implies \overrightarrow{ad} = \overrightarrow{bc}$

$$\overrightarrow{ab} = \overrightarrow{ad} + \overrightarrow{db}$$

$$\overrightarrow{ad} = \overrightarrow{ab} - \overrightarrow{db} = \overrightarrow{ab} - (\overrightarrow{dc} + \overrightarrow{cb})$$

$$\overrightarrow{ad} = \overrightarrow{ab} - \overrightarrow{ab} - \overrightarrow{cb}$$

$$\overrightarrow{ad} = \overrightarrow{bc}$$

Montrons que $\overrightarrow{ad} = \overrightarrow{bc} \implies \overrightarrow{ab} = \overrightarrow{dc}$

$$\overrightarrow{ad} = \overrightarrow{ab} + \overrightarrow{bd}$$

$$\overrightarrow{ab} = \overrightarrow{ad} - \overrightarrow{bd} = \overrightarrow{ad} - (\overrightarrow{bc} + \overrightarrow{cd})$$

$$\overrightarrow{ad} = \overrightarrow{ab} - \overrightarrow{ab} - \overrightarrow{cd}$$

$$\overrightarrow{ad} = \overrightarrow{dc}$$

Montrons que $\overrightarrow{ad} = \overrightarrow{bc} \wedge \overrightarrow{am} = \overrightarrow{mc} \implies \overrightarrow{bm} = \overrightarrow{md}$

$$\overrightarrow{am} = \overrightarrow{ad} + \overrightarrow{dm} \text{ et } \overrightarrow{mc} = \overrightarrow{mb} + \overrightarrow{bc}$$

 $\overrightarrow{am} = \overrightarrow{mc} \text{ donc}$

$$\overrightarrow{ad} + \overrightarrow{dm} = \overrightarrow{mb} + \overrightarrow{bc}$$

 $\overrightarrow{ad} = \overrightarrow{bc} \text{ donc}$

$$\overrightarrow{dm} = \overrightarrow{mb}$$

$$\overrightarrow{md} = \overrightarrow{bm}$$

Montrons que $\overrightarrow{ab} = \overrightarrow{dc} \wedge \overrightarrow{am} = \overrightarrow{mc} \implies \overrightarrow{bm} = \overrightarrow{md}$

$$\overrightarrow{am} = \overrightarrow{ab} + \overrightarrow{bm}$$
 et $\overrightarrow{mc} = \overrightarrow{md} + \overrightarrow{dc}$

Comme $\overrightarrow{am} = \overrightarrow{mc}$ donc

$$\overrightarrow{ab} + \overrightarrow{bm} = \overrightarrow{md} + \overrightarrow{dc}$$

Comme $\overrightarrow{ab} = \overrightarrow{dc}$ donc

$$\overrightarrow{bm} = \overrightarrow{md}$$

Montrons que $\overrightarrow{am} = \overrightarrow{mc} \wedge \overrightarrow{bm} = \overrightarrow{md} \implies \overrightarrow{ab} = \overrightarrow{dc}$

$$\overrightarrow{ab} = \overrightarrow{am} + \overrightarrow{mb} = \overrightarrow{mc} - \overrightarrow{md} = \overrightarrow{mc} + \overrightarrow{dm} = \overrightarrow{dc}$$

Montrons que $\overrightarrow{am} = \overrightarrow{mc} \wedge \overrightarrow{bm} = \overrightarrow{md} \implies \overrightarrow{ad} = \overrightarrow{bc}$

$$\overrightarrow{ad} = \overrightarrow{am} + \overrightarrow{md} = \overrightarrow{mc} + \overrightarrow{bm} = \overrightarrow{bc}$$

I.3 Propriété 3.6

Soit F et G des sous-espaces affines parallèles de direction \overrightarrow{F} . Soit $a \in F$ et $b \in G$, montrons que $F = G \implies \overrightarrow{ab} = \overrightarrow{F}$ On part de a = b. F et G deux sous-espaces affines de direction \overrightarrow{F} , donc $a = u_f + k_a \overrightarrow{F}$ et $b = u_g + k_b \overrightarrow{F}$ et $ab = b - a = u_g + k_b \overrightarrow{F} - u_f + k_a \overrightarrow{F} = u_g - u_f + (k_a - k_b) \overrightarrow{F}$. Comme F = G, on peut exprimer $u_g = u_f + k \overrightarrow{F}$, donc on a $ab = (k_a - k_b + k) \overrightarrow{F}$. ce qui montre que $ab = \overrightarrow{F}$.

Dans l'autre sens, montrons que $\overrightarrow{ab} = \overrightarrow{F} \implies F = G$. $\overrightarrow{ab} = b - a = u_g - u_f + (k_a - k_b)\overrightarrow{F} = \overrightarrow{F}$. donc soit $u_g - u_f = 0$, soit $u_g - u_f \in \overrightarrow{F}$. Cas $u_g = u_f$, F = G car tous points b de G peuvent s'écrire $u_f + k_b\overrightarrow{F}$. Cas $u_g - u_f = k\overrightarrow{F}$, F = G car tous points b de G peuvent s'écrire $u_f + (k + k_b)\overrightarrow{F}$.

I.3 Propriété 3.5

Soit F et G deux sous-espace affines parallèles. On a deux cas $F \cap G = \emptyset$ ou $F \cap G \neq \emptyset$.

Cas 1 $F \cap G = \emptyset$. F et G sont disjoints par définition.

Cas $2 \ F \cap G \neq \emptyset$. Prenons un point a tel que $a \in F \cap G$. Preuve par l'absurde. Admettons qu'il existe un point b tel que $b \in F$ et $b \notin G$. Montrons que $F \neq G$. Comme les points a et b sont dans F, on a par définition $\overrightarrow{ab} = \overrightarrow{F}$, mais comme $a \in G$ et $b \in F$, on a F = G par la propriété précédente. Ce qui contredit l'hypothèse.

Soit F et G deux sous-espace affines faiblement parallèles. On a deux cas $F \cap G = \emptyset$ ou $F \cap G \neq \emptyset$.

Cas 1 $F \cap G = \emptyset$. F et G sont disjoints par définition.

Cas $2 \ F \cap G \neq \emptyset$. Preuve par l'absurde. Admettons qu'il existe un point b tel que $b \in F$ et $b \notin G$. Mais par définition $F \subset G$ (F et G faiblement parallèle). Ce qui contredit l'hypothèse.

II.2 Propriété 3.8

Petite disgression.

Si H est un hyperplan affine d'un espace affine de dimension n, on a $\dim(H)=n-1$. À partir de la formule de Grassmann on a $\dim(H_1+H_2)=\dim(H_1)+\dim(H_2)-\dim(H_1\cap H_2)$. Avec $\dim(H_1)=\dim(H_1)=n-1$ et $\dim(H_1+H_2)\leq n$. Donc $\dim(H_1\cap H_2)\geq 2(n-1)-n=n-2$. On a $H_1\cap H_2$ qui est un sous-espace vectoriel de H_1 (ou H_2), donc $\dim(H_1\cap H_2)\leq n-1$. Ce qui fait $n-2\leq \dim(H_1\cap H_2)\leq n-1$, d'ou $\dim(H_1\cap H_2)=n-1$ ou $\dim(H_1\cap H_2)=n-2$. Si $H_1=H_2$ alors $\dim(H_1\cap H_2)=\dim(H_1)=n-1$, si $H_1\neq H_2$ on a $\dim(H_1\cap H_2)=\dim(H_1)=n-2$.

Maintenant la preuve de la propriété par récurence sur k. Admettons que $H_1 \cap H_2 \cap \ldots \cap H_k \neq \emptyset$ et $\dim(H_1 \cap H_2 \cap \ldots \cap H_k) \geq n - k$, montrons que soit $H_1 \cap H_2 \cap \ldots \cap H_k \cap H_{k+1} = \emptyset$, soit $\dim(H_1 \cap H_2 \cap \ldots \cap H_k \cap H_{k+1}) \geq n - (k+1)$. Posons $H = H_1 \cap H_2 \cap \ldots \cap H_k$.

Cas 1 Si on a H_{k+1} tel que $\forall i \leq k, H_{k+1} \cap H_i = \emptyset$, on a donc $H_1 \cap H_2 \cap \ldots \cap H_k \cap H_{k+1} = \emptyset$ (par définition).

Cas 2 Si on a $H_1 \cap H_2 \cap \ldots \cap H_k \cap H_{k+1} \neq \emptyset$ montrons $\dim(H_1 \cap H_2 \cap \ldots \cap H_k \cap H_{k+1}) \geq n - (k+1)$. À partir de la formule de Grassmann on a $\dim(H + H_{k+1}) = \dim(H) + \dim(H_{k+1}) - \dim(H \cap H_{k+1})$ avec $\dim(H) \geq n - k$ (hypotèse de récurence), $\dim(H_{k+1}) = n - 1$ et $\dim(H \cap H_{k+1}) \leq n$. Donc

$$\dim(H_1 \cap H_2 \cap \ldots \cap H_k \cap H_{k+1}) qeq(n-k) + (n-1) - n = n - (k+1)$$

II.3 Propriété 3.9

Montrons que $\forall i \in \{0; k\}, a_i = a_0 + \overrightarrow{V} \text{ avec } \overrightarrow{V} = Vect\{a_0, a_1, \dots, a_k\}$. On peut écrire $\forall i \in \{0; k\}, a_i = a_0 - a_0 + a_i = a_0 + (-1, 0, \dots, 1, 0, \dots) \overrightarrow{V}$ On sait que $Vect\{a_0, a_1, \dots, a_k\}$ est engendré par k vecteurs $\overrightarrow{a_0a_1}, \overrightarrow{a_0a_2}, \dots, \overrightarrow{a_0a_k}$ donc sa dimension vau au plus k.

III Exercice 6

L'équation paramétrique de la droite est $D = A + \mathbb{R}\overrightarrow{V}$, soit

$$\begin{cases} x = 1 + 3\lambda \\ y = 2 + 4\lambda \end{cases}$$

III Exercice 7

Calcul des vecteurs $\overrightarrow{AB} = (1, 1, 1)$ et $\overrightarrow{AC} = (0, -1, -2)$, les vecteurs ne sont pas linéaires (car leur direction ne sont pas $\overrightarrow{AB} = k\overrightarrow{AB}$) donc les 3 points forment un plan d'équation paramétrique $P = A + (\mathbb{R}\overrightarrow{AB} + \mathbb{R}\overrightarrow{AC})$. soit

$$\begin{cases} x = 1 + \lambda_1 \\ y = 2 + \lambda_1 - \lambda_2 \\ z = 3 + \lambda_1 - 2\lambda_2 \end{cases}$$