QUANTUM STATES FOR SINGLE QUBIT SYSTEMS

Question 1

Recall: A state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ is a quantum state if $|\alpha|^2 + |\beta|^2 = 1$.

Which of the following equations are quantum states?

(a) Example:
$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

Here:
$$\alpha = \frac{1}{\sqrt{2}}$$
 and $\beta = \frac{1}{\sqrt{2}}$.

Therefore
$$\underline{\alpha^2 + \beta^2} = (\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 = \underline{1}$$
.

$$|\psi\rangle=\frac{1}{\sqrt{2}}\,|0\rangle+\frac{1}{\sqrt{2}}\,|1\rangle$$
 is a valid quantum state

(b)
$$|\psi\rangle = |0\rangle + |1\rangle$$

(c)
$$|\psi\rangle = \frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle$$

(d)
$$|\psi\rangle = |1\rangle$$

(e)
$$|\psi\rangle = \frac{\sqrt{3}}{2} |0\rangle + \frac{1}{2} |1\rangle$$