UCS1412:Database Lab Assignment 9A: Database Design using Normal Forms -Srinithyee S K 185001166

Question) Consider the following relation Company with the set of functional dependencies:

COMPANY(empid, name, address, bdate, sex, salary, dno, dname, mgr_id, pno, pname, pdno, hrs)

fd1: empid -> name, address, bdate, sex, salary, dno

fd2: dno -> dname, mgr_id

fd3: pno -> pname, pdno where pdno is the department controlling the project.

fd4: empid, pno -> hrs

Identify the primary key. Given the FD, key attributes now decompose the Company relation into various Normal forms.

To prove that the decomposition is correct: apply the two properties

- a) The lossless-join decomposition.
- b) Preservation of FD.

Answer: -

To find Primary Key:-

Let us use the Closure Property

R={empid,name,address,bdate,sex,salary,dno,dname,mdr_id,pno,pname,pdno,hrs}

a)Removing {empid}

R1⁺={name,address,bdate,sex,salary,dno,dname,mgr id,pno,pname,pdno,hrs}

Since we cannot derive R from R-{empid}, i.e R \neq R1⁺

we cannot remove empid

b)Removing {name}

 $R1=R-\{name\}$

R1⁺=R(from empid -> name fd)

Similarly, we can get R-{ name, address, bdate, sex, salary, dno} since empid determines all theset attributes, using fd1

c)Removing {dname} from R1

R1⁺={ empid,name,address,bdate,sex,salary,dno,pname,pdno,hrs} (from fd1)

R1⁺={ empid,name,address,bdate,sex,salary,dno,dname,mdr_id,pno,pname,pdno,hrs} (from dno ->dname,mgr_id)

Similarly removing dependents of fd2 as well

R1={empid,pno,pdname,pdno,hrs}

d)Removing {pno}

R1⁺={empid,name,address,bdate,sex,salary,dno,dname,mgr_id} (from fd1 and fd2)

 $R \neq R1^+$

we cannot remove pno

e)Keeping pno and remaining other attributes that are dependents of pno, we get

R1={empid,pno,hrs}

from fd4 however,we can remove hrs because empid,pno ->hrs

WE GET THAT THE PRIMARY KEYS ARE {empid,pno}

COMPANY TABLE

NORMALISATION

1)1st NORMAL FORM: THERE ARE NO COMPOSITE OR MULTIVALUED ATTRIBUTES.

COMPANY

2)2nd NORMAL FORM:FD1AND FD3 VIOLATE 2NF CONDITION AS THEY ARE PARTIAL DEPENDENCIES,SO TABLE MUST BE DECOMPOSED

COMPANY1

COMPAY2

COMPANY3

3) 3NF: - FOR 3NF,WE NEED TO REMOVE TRANSITIVE DEPENDENCIES.AS WE CAN SEE, EMPID DETERMINES DNO AND

DNO BY ITSELF CONSTITUES ANOTHER FUNCTIONAL DEPENDENCY, SO IT MUST BE DECOMPOSED.

COMPANY11

COMPANY12

COMPANY13

COMPANY14

a) To prove preservation of functional dependencies: -

Consider the FD set as = $FD = \{FD1, FD2, FD3, FD4\}$

After the normalisation, the functional dependencies in each table are as follows:

COMPANY 11 PRESERVES FD1.

COMPANY 12 PRESERVES FD2.

COMPANY 13 PRESERVES FD3.

COMPANY 14 PRESERVES FD4.

So it can be seen that all FDs from the initial table are still preserved after decomposition.

b) To prove the normalization of the relation with the help of lose-less decomposition: - Let us populate the initial table COMPANY with the following tuples.

COMPANY11(EMP)

MPID	NAME	ADDRESS	BDATE	5	SALARY	DNO
23456789	John Smith	731 Fondren, Houston, TX	09-JAN-65	М	30000	5
33445555	Franklin Wong	638 Voss, Houston, TX	08-DEC-55	М	40000	5
99887777	Alicia Zelaya	3321 Castle, Spring, TX	19-JAN-68	F	25000	4
87654321	Jennifer Wallace	291 Berry, Bellaire, TX	20-JUN-41	F	43000	4
66884444	Ramesh Narayan	975 Fire Oak, Humble, TX	15-SEP-62	М	38000	5
5 3 4 5 3 4 5 3	Joyce English	5631 Rice, Houston, TX	31-JUL-72	F	25000	5
87987987	Ahamed Jabbar	980 Dallas, Houston, TX	29-MAR-69	М	25000	4
88665555	James Borg	450 Stone, Houston, TX	10-NOV-37	М	55000	1

COMPANY12(DEPT)

SQL> select * from DEPT;					
DNO	DNAME	MGR_ID			
	Research	333445555			
	Administration Headquarters	987654321 888665555			

COMPANY13(PROJECT)

```
SQL> select * from PROJ;

PNO PNAME PDNO

1 ProductX 5
2 ProductY 5
3 ProductZ 5
10 Computerization 4
20 Reorganization 1
30 Newbenefits 4
```

COMPANY14(WORKS ON)

SQL> select	from WORKS_	ON;
EMPID	PNO	HRS
123456789 123456789 666884444 453453453 453453453 333445555 333445555 333445555	1 2 3 1 2 2 2 3 10 20 30	33 7.5 40 20 20 10 10 10
999887777 EMPID	10 PNO	10 HRS
987987987 987987987 987654321 987654321 888665555	10 30 30 20 20	35 5 20 15
10 LOW2 2616	LLEU.	

NOW WHEN WE APPLY A NATURAL JOIN TO ALL THESE TABLES WE GET:

MPID	PNO	DNO NAME	ADDRESS	BDATE 5	SALARY	DNAME	MGR_ID	PNAME	PDNO	HRS
5 3 4 5 3 4 5 3	1	5 Joyce English	5631 Rice, Houston, TX	31-JUL-72 F	25000	Research	333445555	ProductX	5	20
23456789	1	5 John Smith	731 Fondren, Houston, TX	09-JAN-65 M	30000	Research	333445555	ProductX		33
33445555		5 Franklin Wong	638 Voss, Houston, TX	08-DEC-55 M	40000	Research	333445555	ProductY		10
53453453		5 Joyce English	5631 Rice, Houston, TX	31-JUL-72 F		Research	333445555			20
23456789		5 John Smith	731 Fondren, Houston, TX	09-JAN-65 M		Research	333445555			7.5
33445555		5 Franklin Wong	638 Voss, Houston, TX	08-DEC-55 M	40000	Research	333445555	ProductZ		10
666884444		5 Ramesh Narayan	975 Fire Oak, Humble, TX	15-SEP-62 M		Research	333445555			40
987987987	10	4 Ahamed Jabbar	980 Dallas, Houston, TX	29-MAR-69 M		Administration		Computerization	4	35
999887777	10	4 Alicia Zelaya	3321 Castle, Spring, TX	19-JAN-68 F	25000	Administration		Computerization	4	10
33445555	10	5 Franklin Wong	638 Voss, Houston, TX	08-DEC-55 M	40000	Research		Computerization	4	10
888665555	20	1 James Borg	450 Stone, Houston, TX	10-NOV-37 M	55000	Headquarters	888665555	Reorganization		
MPID	PNO	DNO NAME	ADDRESS	BDATE 5	SALARY	DNAME.	MGR_ID	PNAME	PDNO	HRS
987654321	20	4 Jennifer Wallace	291 Berry, Bellaire, TX	20-JUN-41 F	43000	Administration	987654321	Reorganization	1	15
33445555	20	5 Franklin Wong	638 Voss, Houston, TX	08-DEC-55 M	40000	Research		Reorganization	1	10
87654321	30	4 Jennifer Wallace		20-JUN-41 F	43000	Administration	987654321	Newbenefits	4	20
87987987	30	4 Ahamed Jabbar	980 Dallas, Houston, TX	29-MAR-69 M	25000	Administration	987654321	Newbenefits	4	
999887777	30	4 Alicia Zelava	3321 Castle, Spring, TX	19-JAN-68 F	25000	Administration	987654321	Newbenefits	4	30

20)

Consider the following set of requirements for a UNIVERSITY database that is used to keep track of students' transcripts.

- (a) The database will keep student data (STUDENT) and stores each student's name (Sname, composed of first name (FName), last name (LName)), student id (Sid, unique for every student), address (Addr), phone (Phone), major code (Major), and date of birth (DoB), sex, degree (Degree) program (B.A., B.S., ..., Ph.D.) and minor (Minor) department (if any). A student is assigned to one primary academic department. It is required to keep track of the student's grades in each section the student has completed.
- (b) Each department (DEPARTMENT) has a unique name (DName), a unique code number (DCode) and phone (Dphone) and college (College)
- (c) A department offers a number of courses (COURSE), each of which has a unique course name (CoName), a unique code number (CCode), a course level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit hours (Credits), and a course description (CDesc).
- (d) Courses are offered as sections (SECTION). Each section is related to a single course and a single instructor and has a unique section identifier (SecId). A section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for multiple sections offered during the same semester/year), semester (Sem), year (Year), classroom (Croom).

Notice that for the SECTION entity type, only SecID showed as an underlined key, but because of the miniworld constraints, other combinations of values have to be unique for each section entity.

For example, consider the following:

(SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This specifies that the section numbers of a particular course must be different during each particular semester and year.

- 1) Draw ER diagram for the above requirements. Mention the constraints in the diagram.
- 2) Convert the ER into the corresponding relations using ER-Relational Mapping.

