

Predicting Las Vegas

Restaurant Inspections

Lorenz Madarang

Supervised Learning Capstone

July 2018

Research Questions

- What restaurant variables help predict that a restaurant will receive a downgrade in grade after an inspection?
 - Past History of Downgrades?
 - Zip Code of Restaurant?
 - Category of Restaurant?

Dataset

- Data retrieved from the Las Vegas Government Open Data website https://opendata.lasvegasnevada.gov/Public-Safety/Restaurant-Inspections/q8ye-5kwk
- 159253 restaurant inspections from 2010 to 2018
- 21297 unique restaurants

Feature Engineering

- Target Value
 - Used RegEx to find 'Downgrade' in 'Inspection Result'
 - Created Boolean 'Downgrade' Column based on RegEx Match method
- Converted 'Inspection Date' and 'Inspection Time' to DateTime Object
- Cumulative Downgrade Count
 - Sorted Data so Oldest Inspection Date was at the top
 - Used lambda function to create cumulative count for each restaurant

Feature Engineering

Inspection Type	Inspection Demerits	Inspection Grade		Inspection Result	Violations	Record Updated	Location 1	Downgrade	Cum_Cou
Routine Inspection	5	А	NaN	Compliant	31,32,35,36,37	02/21/2013 10:26:12 PM	(36.23975, 115.0566759)	0	0.0
Routine Inspection	28	С	NaN	'C' Downgrade	209,211,214,216,217,218,223,225,227,230,232,233	02/21/2013 10:26:12 PM	(36.23975, 115.0566759)	1	1.0
Routine Inspection	0	А	NaN	Compliant	NaN	02/21/2013 10:26:12 PM	(36.23975, 115.0566759)	0	1.0
Routine Inspection	31	С	NaN	'C' Downgrade	208,209,213,214,217,218,220,221,228,230,233	02/21/2013 10:26:12 PM	(36.23975, 115.0566759)	1	2.0
Routine Inspection	0	А	NaN	Compliant	NaN	02/21/2013 10:26:12 PM	(36.23975, 115.0566759)	0	2.0
Routine Inspection	5	Α	NaN	Compliant	202	04/25/2013 03:44:31 PM	(36.23975, 115.0566759)	0	2.0
Routine Inspection	0	А	NaN	Compliant	2928,2930	11/26/2013 09:41:14 AM	(36.23975, 115.0566759)	0	2.0
Routine Inspection	9	А	NaN	Compliant	215,216,2928,2930,2955	06/13/2014 12:41:51 PM	(36.23975, 115.0566759)	0	2.0
Routine Inspection	17	В	NaN	'B' Downgrade	207,215,216,218,2912,2928,2930,2955	04/14/2015 09:32:37 AM	(36.23975, 115.0566759)	1	3.0
Re- inspection	3	Α	NaN	Compliant	2909,2925	04/28/2015 03:26:00 PM	(36.23975, 115.0566759)	0	3.0
Routine Inspection	0	В	NaN	'B' Downgrade	NaN	03/14/2016 03:54:02 PM	(36.23975, 115.0566759)	1	4.0

Exploratory Data Analysis

Percentage of Downgrades

```
In [12]: #Percentage of downgrades
    downgrade_percent = (len(downgrade)/len(restaurant)) * 100
    print("{:.2F}% of the dataset contains downgrades".format(downgrade_percent))

11.12% of the dataset contains downgrades
```

t-test of Restaurant Population and Downgrade Restaurants

```
In [14]: print('The Mean Current Demerit for the Las Vegas Restaurant population is {:.2F}'.format(restaurant['Current Demerits']
    print('The Mean Current Demerit for the Non-downgraded restaurants is {:.2F}'.format(no_downgrade['Current Demerits'].me
    print('The Mean Current Demerit for the Downgraded restaurants is {:.2F}'.format(downgrade['Current Demerits'].mean()))

The Mean Current Demerit for the Las Vegas Restaurant population is 3.92
    The Mean Current Demerit for the Downgraded restaurants is 3.79

The Mean Current Demerit for the Downgraded restaurants is 5.00

In [15]: # t-test between Las Vegas restaurant population and downgraded restaurant sample
    from scipy import stats

t2, p2 = stats.ttest_ind(x,z)
    print("t-value = " + str(t2))
    print("t-value = " + str(t2))
    print("p-value = " + str(2*p2))

t-value = -31.4303057648
    p-value = 6.17985462055e-216
```

EDA - Current Demerits

EDA - Downgrade Cumulative Count

EDA - Count by Category

EDA - Count by Zip Code

EDA - Count by Year and Month

EDA - Count by Hour

Modeling

- Gradient Boosting
 Classifier
- Random Forest Classifier
- Super Vector Machine Classifier

Gradient

Boosting

- Default Settings:
 - Sensitivity: 57.33%
 - Specificity: 89.29%
- Grid Search Optimized Settings:
 - Sensitivity: 60.28%(+/-23)
 - Specificity: 89.03%(+/-0.0)

Random Forest

- Default Settings:
 - Sensitivity: 51.36%
 - Specificity: 89.50%
- Grid Search Optimized Settings:
 - Sensitivity: 65.9%(+/-23)
 - Specificity: 88.9%(+/-0.0)

Support Vector

Machine

Default Settings:

- Sensitivity: 53.60%
- Specificity: 89.17%
- Optimized Setting:
 - Sensitivity: 58.7%(+/-23)
 - Specificity: 88.8%(+/-0.0)

Model Analysis Summary

	Model	Mean_Accuracy_Training	Mean_Accuracy_Test	Mean_Precision_Train	Mean_Precision_Test
1	Random_Forest	0.891	0.889	0.636	0.659
0	Gradient_Boost	0.635	0.603	0.635	0.603
2	Support_Vector	0.891	0.888	0.571	0.587

Conclusion

- * Best Model is Random Forest Classifier
- Important Variables
 - History of Downgrades
 - Current Demerits
 - Category of Restaurant
- Machine-Learning Optimized Restaurant selection can find more downgrades