ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

KHOA KHOA HỌC MÁY TÍNH

PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

Lý thuyết trò chơi

Nhóm 5 thực hiện

Môn học: CS112.P11.KHTN

Sinh viên thực hiện:

Giáo viên hướng dẫn:

Nguyễn Thiên Bảo - 23520127

Nguyễn Thanh Sơn

Trần Lê Minh Nhật - 23521098

ngày 4 tháng 11 năm 2024

Mục lục

1	Bài	toán Đối Kháng	1
	1.1	Ý tưởng giải quyết	1
		1.1.1 Trường hợp $p \leq 10$	1
		1.1.2 Trường hợp $p \leq 10^6$	1
	1.2	Mã giả	1
2	Trò	chơi đồng xu	2
	2.1	Ý tưởng giải quyết	2
		2.1.1 Trường hợp $n \leq 1000$	2
		2.1.2 Trường hợp $n \leq 10^{18}$	2
	2.2	Mã giả	3
		2.2.1 Trường hợp $n \leq 1000$	3
		$2.2.2$ Trường hơn $n < 10^{18}$	3

1 Bài toán Đối Kháng

Cho số nguyên dương p. Hai người chơi A và B thi đấu đối kháng theo luật:

- Nếu p là số lẻ, người chơi có thể chọn p:=p+1 hoặc p:=p-1.
- Nếu p là số chẵn, người chơi buộc thực hiện $p:=\frac{p}{2}.$

Người chơi nào làm cho p=0 đầu tiên là người thắng. A luôn đi trước. Câu hỏi đặt ra: nếu cả hai chơi tối ưu, A có luôn thắng hay không?

1.1 Ý tưởng giải quyết

1.1.1 Trường hợp $p \le 10$

Sử dụng thuật toán quay lui (backtracking):

$$\operatorname{canWin}(p,\operatorname{turn}) = \begin{cases} \operatorname{True} & \text{n\'eu } p = 0 \text{ và turn là B} \\ \operatorname{canWin}(p-1,\operatorname{swap}(\operatorname{turn})) \vee \operatorname{canWin}(p+1,\operatorname{swap}(\operatorname{turn})) & \text{n\'eu } p \text{ l\'e} \\ \operatorname{canWin}(p/2,\operatorname{swap}(\operatorname{turn})) & \text{n\'eu } p \text{ ch\'an} \end{cases}$$

1.1.2 Trường hợp $p \le 10^6$

Dùng lập trình động:

$$dp[i] = \begin{cases} 0 & \text{n\'eu } i = 0 \\ \neg dp[i-1] \lor \neg dp[i+1] & \text{n\'eu } i \text{ l\'e} \\ \neg dp[i/2] & \text{n\'eu } i \text{ ch\'an} \end{cases}$$

1.2 Mã giả

Trường hợp $p \le 10^6$

dp[0] = 0 // Nếu p = 0, người chơi hiện tại thua

```
for i = 1 to p:
    if i % 2 == 1:
        dp[i] = !(dp[i-1]) OR !(dp[i+1])
    else:
        dp[i] = !(dp[i/2])

result = dp[p]
print("YES" if result else "NO")
```

2 Trò chơi đồng xu

Cho số nguyên dương n đồng xu và một giới hạn k. Hai người chơi A và B thi đấu đối kháng theo luật:

- Trong một lượt, người chơi được phép bốc từ 1 đến k đồng xu, với $k \leq n$.
- Người chơi nào không thể bốc thêm đồng xu sẽ thua.

Yêu cầu: Xác định số lượng k sao cho A luôn thắng nếu cả hai chơi tối ưu.

2.1 Ý tưởng giải quyết

2.1.1 Trường hợp $n \le 1000$

Dùng lập trình động để xác định trạng thái thắng/thua:

$$dp[i] = \begin{cases} 1 & \text{nếu tồn tại } x \leq k \text{ và } dp[i-x] = 0 \\ 0 & \text{nếu tất cả } dp[i-x] = 1 \text{ với mọi } x \leq k \end{cases}$$

2.1.2 Trường hợp $n \le 10^{18}$

Sử dụng quy luật toán học: - Trạng thái n là thua nếu $n \mod (k+1) = 0$. - Đếm số lượng k thỏa mãn $n \mod (k+1) \neq 0$.

2.2 Mã giả

2.2.1 Trường hợp $n \le 1000$ function countWinningK(n):

result = countWinningK(n)
print(result)

2.2.2 Trường hợp $n \le 10^{18}$

function countWinningK(n):

count = 0
for k = 1 to n:
 if n % (k + 1) != 0:

count += 1

return count

result = countWinningK(n)

print(result)