Logistic Regression

1. Introduction

- Logistic Regression is a supervised machine learning algorithm used for classification, not regression.
- It predicts the **probability** that a data point belongs to a particular category.
- The output is **discrete** (e.g., 0 or 1, Yes or No).

Examples:

- Email classification → Spam (1) or Not Spam (0)
- Disease prediction → Positive (1) or Negative (0)
- Customer churn → Yes (1) or No (0)

2. Difference Between Linear and Logistic Regression

Feature	Linear Regression	Logistic Regression
Purpose	Regression (predict continuous value)	Classification (predict category)
Output	Continuous (e.g., salary, height)	Probability (0 to 1)
Equation	$y = \beta_0 + \beta_1 x$	$h(x) = 1 / (1 + e^{-(\beta_0 + \beta_1 x)})$
Output Range	(-∞, +∞)	(0, 1)
Cost Function	Mean Squared Error (MSE)	Log Loss / Cross-Entropy
Example	Predicting house prices	Predicting spam vs. non-spam

3. Logistic (Sigmoid) Function

The logistic regression model uses the **sigmoid (logistic)** function to map any real-valued number into a probability between **0** and **1**.

$$h(x)=11+e^{-(\beta 0+\beta 1x)}h(x)=\frac{1}{1}+e^{-(\beta_0 +\beta_1 x)}h(x)=1+e^{-(\beta 0+\beta 1x)}1$$

Where:

- h(x) = Predicted probability
- β_0 = Intercept (bias)
- β_1 = Coefficients (weights)
- **x** = Independent variable

Interpretation:

- If h(x) ≥ 0.5, predict class 1
- If h(x) < 0.5, predict class 0

4. Logit Function (Odds Representation)

Instead of modeling probability directly, logistic regression models the **log-odds** (logit) of the event:

 $logit(p) = log(1-pp) = \beta 0 + \beta 1x$

Where:

- **p** is the probability of the event occurring (e.g., class 1).
- The relationship between log-odds and predictors is **linear**.

5. Cost Function – Log Loss

The model is trained by minimizing the Log Loss (Cross-Entropy Loss):

$$J(\beta) = -n1i = 1\sum_{i=1}^{n} [yilog(y^i) + (1-yi)log(1-y^i)]$$

Explanation of Terms

- $J(\beta)$ The cost function (or loss) for a given set of model parameters β . It represents the average error across all samples.
- **n** The total number of samples in the dataset.
- \sum i=1n A summation that iterates through each sample in the dataset, from the 1st to the n-th sample.
- yi The actual binary label for the i-th sample (it can only be 0 or 1).
- **y^i** The model's predicted probability that the i-th sample belongs to class 1. This value is always between 0 and 1.
- log() The natural logarithm. The cost function heavily penalizes predictions that are confident but wrong.

The goal is to **minimize** this cost function.

6. Optimization - Gradient Descent

- The algorithm adjusts coefficients (β_0 , β_1 , ...) to minimize the cost function.
- Uses **Gradient Descent**, which updates parameters as:

 $\beta_j := \beta_j - \alpha \partial \beta_j \partial J(\beta)$

This update is performed simultaneously for all parameters j=0,1,...,n.

7. Types of Logistic Regression

- 1. **Binary Logistic Regression** Two possible outcomes (e.g., Yes/No).
- 2. **Multinomial Logistic Regression** More than two unordered outcomes (e.g., predicting fruit type).
- 3. **Ordinal Logistic Regression** Ordered categories (e.g., ratings: low, medium, high).

8. Assumptions of Logistic Regression

1. Binary or categorical dependent variable

• The response variable should be binary (0 or 1) or categorical.

2. Linear relationship between independent variables and log-odds

 The independent variables are linearly related to the logit (log of odds), not directly to the probability.

3. Independent observations

• Observations should be independent of each other (no autocorrelation).

4. Low multicollinearity

- o Predictors should not be highly correlated with each other.
- Use VIF (Variance Inflation Factor) to detect multicollinearity.

5. Large sample size

 Logistic regression performs best with sufficient data points to ensure stability of estimates.

6. No extreme outliers

Outliers can distort coefficients and decision boundaries.

7. Predictors need not be normally distributed

 Logistic regression does not assume normality of predictors (unlike Linear Regression).

9. Evaluation Metrics

Metric	Formula / Concept	Purpose
Accuracy	(TP + TN) / (TP + TN + FP + FN)	Overall correctness
Precision	TP / (TP + FP)	Fraction of predicted positives that are true
Recall (Sensitivity)	TP / (TP + FN)	Fraction of actual positives detected

F1-Score 2 × (Precision × Recall) / Balance between precision and recall

(Precision + Recall)

ROC-AUC Area under the ROC curve Measures how well model

distinguishes between classes

10. Advantages

• Easy to implement and interpret.

- Works well for linearly separable classes.
- Provides probabilities (not just labels).
- Can handle large datasets efficiently.
- Supports regularization to avoid overfitting.

11. Limitations

- Assumes linearity in log-odds (not suitable for complex non-linear problems).
- · Sensitive to outliers.
- May perform poorly with high multicollinearity.
- Can't capture non-linear relationships without feature engineering.