1. Билет № 1. Первообразная функции. Теорема о виде первообразной. Теорема о существовании первообразной (без док-ва). Неопределенный интеграл, его свойства.

Определение Первообразная -- функции F(x) называется первообразной, для функции f(x) на интервале (a,b), если её производная совпадает с изначальной функцией.

$$f(x) = 2 * x$$
$$F(x) = x^2$$

1.1. Лемма:

Если производная от функции равна 0 на интервале (a,b), то f(x)=c $x \in (a,b)$, где c-const

1.2. Док-во:

]
$$x_1,x_2\in(a,b)$$
 По теореме Лагранжа $F(x_2)-F(x_1)=F`(c)*(x_2-x_1),\ c\in(x_1,x_2),$ т.к. $F`(c)=0,$ то $F(x_2)-F(x_1)=0 \Rightarrow F(x_2)=F(x_1)=c$

1.3. Теорема о виде первообразной:

Если F(x) - первообразная для f(x), то любая другая первообразная для этой функции будет равна G(x) = F(x) + c

1.4. Док-во:

$$(f(x)-G(x))`=F`(x)-G`(x)=f(x)-g(x)=0 \Rightarrow F(x)-G(x)=c \Rightarrow G(x)=F(x)+c$$

1.5. Теорема о существовании первообразной:

Если f(x) - непрерывная функция на (a,b), то они имеет первообразную F(x) на (a,b) - Это подано **без доказательства**, так что не боимся.

1.6. Неопределённый интеграл:

Неопределённым интегралом от функции f(x) на [a,b] называется множество всех первообразных F(x)

Обозначается: $\int f(x)dx$

 \int - интеграл; dx - дифференциал переменной x; f(x) - подынтегральная функция; x - переменная интегрирования; "f(x)dx" - подынтегральное выражение

1.7. Свойства:

1)
$$(\int f(x)dx)' = f(x)$$
 и $d\int f(x)dx = f(x)dx$

Док-во: $(\int f(x)dx)' = (F(x) + c)' = F'(x) + 0 = f(x);$ $d \int f(x)dx = (\int f(x)dx)' = f(x)dx$

$$2) \int f(x)dx = F(x) + c$$

Док-во: $d \int f(x) = \int f'(x) dx = f(x) + c$

3)
$$\int \lambda f(x) dx = \lambda \int f(x) dx$$

4)
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

Док-во для (3): Продифференцируем правую часть равенства:

$$d(\lambda \int f(x)dx) = \lambda d(\int f(x)dx) = \lambda f(x)dx$$

Таким образом, дифференциал правой части доказываемой формулы равен подынтегральному выражению левой части, а это и означает справедливость формулы (3).

Док-во для (4): Продифференцируем правую часть равенства:

$$d(\int f(x)dx + \int g(x)dx = d\int f(x)dx + d\int g(x)dx = f(x)dx + g(x)dx = (f(x) + g(x))dx$$

Мы получили подынтегральное выражение неопределённого интеграла, стоящего в левой части равенства (4), откуда следует справедливость данного утверждения.

1.8. Замечание:

Большинство непрерывных функций не интегрируются в том смысле, что результат интегрирования нельзя выразить через элементарные функции

(такие интегралы называются "не берущиеся")

$$1) \int e^{-x^2} dx$$

Пример:
1)
$$\int e^{-x^2} dx$$

2) $\int \frac{\sin(x)}{x} dx$