Повна група подій. Формули повної імовірності та Баєса

1 Теоретичні відомості

Нехай (Ω, \mathcal{F}, P) – імовірнісний простір. Нагадаємо, що умовною імовірністю події $A \in \mathcal{F}$ за умови виконання події $B \in \mathcal{F}, P(B) > 0$, є число

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Нехай $\{H_j\}_{j\in I}\subset \mathcal{F}$ — деякий набір подій. Цей набір будемо називати **повною групою подій**, якщо:

- 1. Події попарно несумісні, тобто $H_i \cap H_j = \emptyset$, $i \neq j$,
- 2. $\bigcup_{i \in I} H_i = \Omega$.

Тобто $\{H_j\}_{j\in I}$ по суті задає розбиття простору Ω .

Нехай $C \in \mathcal{F}$. Запишемо формулу повної імовірності:

$$P(C) = \sum_{j \in I} P(C \mid H_j) P(H_j)$$

Тепер наведемо формулу Баєса:

$$P(H_k \mid C) = \frac{P(C \mid H_k)P(H_k)}{\sum_{j \in I} P(C \mid H_j)P(H_j)}$$

Коментар. Чи можна 'узагальнити' формулу Баєса, взявши в знаменнику іншу повну групу подій? Відповідь: можна. Через $\{H_i^*\}_{j\in I^*}$ позначимо іншу повну групу подій. Тоді

$$P(H_k \mid C) = \frac{P(H_k \cap C)}{P(C)} = \frac{P(H_k \cap C)}{\sum_{j \in I^*} P(C \mid H_j^*) P(H_j^*)} = \frac{P(C \mid H_k) P(H_k)}{\sum_{j \in I^*} P(C \mid H_j^*) P(H_j^*)}$$

Іще коментар. Імовірність $P(H_k)$ називають апріорною, а $P(H_k \mid A)$ – апостеріорною. Наявність інформації про апріорний розподіл $\{P(H_k)\}_k$ ситуацій H_k допомагає порахувати безумовні імовірності подій $A \in \mathcal{F}$. Навпаки, знання про подію що відбулася, A, дає змогу обчислити імовірності ситуацій H_k , тобто $P(H_k \mid A)$.

2 Задачі

2.1 Задача 1

Є три зовні однакові урни. В першій урні містяться дві білі та одна чорна кулі, в другій – три білі і одна чорна, а в третій – дві білі і дві чорні кулі. Дехто навмання вибирає одну з урн і виймає з неї кулю. Знайдіть імовірність того, що ця куля біла.

Розв'язання

Розглянемо таку групу подій $\{H_j\}_{j=1}^3$, де

$$H_i \sim$$
 'Обрано ј-ту урну'

Ця група подій є повною.

Введемо випадкову подію $A \sim$ 'Витягнуто білу кулю'. Для знаходження P(A) скористаємося формулою повної імовірності:

$$P(A) = P(A \mid H_1)P(H_1) + P(A \mid H_2)P(H_2) + P(A \mid H_3)P(H_3)$$

Імовірність обрати одну з урн однакова, тобто $P(H_j) = 1/3$ (скільки всього урн та яку саме ми обираємо?). Тепер обчислимо імовірності $P(A \mid H_j)$. Якщо H_j виконується, значить ми обрали j-ту урну. Значить, саме з j-ої кулі ми навмання обираємо кулю. Отже

$$P(A \mid H_j) = rac{ ext{Кількість білих куль в j-ій урні}}{ ext{Кількість куль в j-ій урні}} = egin{cases} rac{2}{3}, & j=1, \\ rac{3}{4}, & j=2, \\ rac{1}{2}, & j=3. \end{cases}$$

Підставимо підрахунки у формулу, щоб отримати відповідь:

$$P(A) = \frac{1}{3} \cdot \left(\frac{2}{3} + \frac{3}{4} + \frac{1}{2}\right) = \frac{23}{36}.$$

2.2 Задача 2

В урні міститься одна кулька, про яку відомо, що вона або білого, або чорного кольору. В цю урну поклали білу кульку та після перемішування навмання вибрали кульку, колір якої виявився білим. Яка ймовірність того, що і колір кульки, що залишилась, теж білий?

Розв'язання

Візуально схема експерименту така:

Рис. 1: Ілюстрація експерименту.

Позначимо через $A \sim$ 'Витягнули білу кульку' та $B \sim$ 'В урні залишилася біла кулька'. В задачі нас цікавить імовірність $P(B \mid A)$. Запишемо за означенням,

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)}.$$

Спочатку обчислимо P(A). В якості повної групи подій візьмемо $\{H_{\mathtt{q}},H_{\mathtt{b}}\}$, де

$$H_w \sim \begin{cases} \text{'Початкова куля в урні – чорна'}, & w = \mathtt{ч}, \\ \text{'Початкова куля в урні – біла'}, & w = \mathtt{б}. \end{cases}$$

Вважаємо, що $P(H_w)=1/2, w\in\{\mathtt{ч},\mathtt{б}\}$. Тепер обчислимо імовірності для A. Якщо $H_\mathtt{ч}$ виконується, значить в урні по одній кулі чорного та білого кольору. Тоді $P(A\mid H_\mathtt{v})=1/2$. Навпаки, якщо $H_\mathtt{b}$ виконується, то в урні всі кулі є білими. Тому $P(A\mid H_\mathtt{b})=1$. В результаті

$$P(A) = \frac{1}{2} \cdot \left(\frac{1}{2} + 1\right) = \frac{3}{4}.$$

Розберемося тепер з імовірністю перетину. Подія $A \cap B$ означає, що 'витягнули білу кулю, залишилася біла'. По суті це H_6 , тому $P(A \cap B) = P(H_6) = 1/2$. Тепер можна обчислити початкову умовну імовірність:

$$P(B \mid A) = \frac{1/2}{3/4} = 2/3.$$

2.3 Задача 3

В першій урні міститься m_1 білих та n_1 чорних куль, а у другій — m_2 білих та n_2 чорних куль. З кожної урни навмання виймається одна куля, а потім з цих двох куль навмання вибирається одна. Яка ймовірність того, що ця куля біла?

Розв'язання

Розглянемо два способи до розв'язання задачі.

1. Спосіб 1. По суті експеримент можна переподати наступним чином: спочатку обирається одна з двох урн, а потім навмання витягується куля з обраної урни. Розглянемо повну групу подій:

$$H_i \sim$$
 'Вибрали j-ту урну', $j = 1, 2$.

Вважаємо, що $P(H_j) = 1/2$. Скористаємося формулою повної імовірності для обчислення події $A \sim$ 'Витягнули білу кулю':

$$P(A) = P(A \mid H_1)P(H_1) + P(A \mid H_2)P(H_2) = \dots$$

У постановці вище, по суті, $A \mid H_j$ – витягнути білу кулю з урни, якщо взято j-ту урну. Отже $P(A \mid H_j) = m_j/(n_j + m_j)$ та

$$\ldots = \frac{1}{2} \left(P(A \mid H_1) + P(A \mid H_2) \right) = \frac{m_1 n_2 + m_1 m_2 + n_1 m_2 + m_1 m_2}{2(n_1 + m_1)(n_2 + m_2)} = \frac{m_1 n_2 + 2m_1 m_2 + n_1 m_2}{2(n_1 + m_1)(n_2 + m_2)}.$$

2. Спосіб 2. Розглянемо таку групу подій $\{A_{ij}\}_{i,j\in\{\mathtt{q},6\}}$, де

$$A_{ij} \sim$$
 'З 1-ої урни витягнули і-у кулю, а з 2-ої взяли ј-у'.

Ця група подій є повною. Крім того, оскільки вибір куль з кожної урони є незалежним, то

$$P(A_{ij}) = P(\text{'3 1-o\"i i-y кулю'})P(\text{'3 2-o\"i j-y кулю'}) = \begin{cases} \frac{n_1}{n_1+m_1} \cdot \frac{n_2}{n_2+m_2}, & i=\mathtt{q}, j=\mathtt{q}, \\ \frac{m_1}{n_1+m_1} \cdot \frac{n_2}{n_2+m_2}, & i=\mathtt{b}, j=\mathtt{q}, \\ \frac{n_1}{n_1+m_1} \cdot \frac{n_2}{n_2+m_2}, & i=\mathtt{q}, j=\mathtt{b}, \\ \frac{m_1}{n_1+m_1} \cdot \frac{m_2}{n_2+m_2}, & i=\mathtt{b}, j=\mathtt{b}. \end{cases}$$

Скористаємося формулою повної імовірності для обчислення події $A \sim {}^{\prime}$ Витягнули білу кулю ${}^{\prime}$:

$$P(A) = P(A \mid A_{\text{qq}})P(A_{\text{qq}}) + P(A \mid A_{\text{6q}})P(A_{\text{6q}}) + P(A \mid A_{\text{q6}})P(A_{\text{q6}}) + P(A \mid A_{\text{66}})P(A_{\text{66}}) = \dots$$

Коли виконується $A_{\text{чч}}$, то серед жодна з двох куль не є білою. Отже, $P(A \mid A_{\text{чч}}) = 0$. Якщо виконується $A_{6\text{ч}}$ або $A_{\text{чб}}$, тоді з двох куль лише одна біла, а тому $P(A \mid A_{6\text{ч}})$ та $P(A \mid A_{\text{чб}})$ дорівнюють 1/2. А якщо виконується A_{66} , тоді обидві кулі є білими, тому $P(A \mid A_{66}) = 1$. Значить

$$\dots = \frac{P(A \mid A_{64}) + P(A \mid A_{46}) + 2P(A \mid A_{66})}{2} = \frac{m_1 n_2 + n_1 m_2 + 2m_1 m_2}{2(n_1 + m_1)(n_2 + m_2)}.$$

4

2.4 Задача 4

Із 18 стрільців п'ятеро влучають у дрон з імовірністю 0.8, семеро – з імовірністю 0.7, четверо – з імовірністю 0.6 і двоє – з імовірністю 0.5. Навмання обраний стрілець вистрілив, але у дрон не влучив. До якої групи він найімовірніше належить?

Розв'язання

$$H_j \sim$$
 'Обрали ј-ту групу стрілків'.

Обчислимо апріорні імовірності $P(H_i)$:

$$P(H_1) = \frac{5}{18}, \ P(H_2) = \frac{7}{18}, \ P(H_3) = \frac{4}{18}, \ P(H_4) = \frac{2}{18}.$$

Нехай обрали j-ту групу стрільців. Тоді імовірність не влучити стрільцем, який виявився з j-ої групи, $P(A \mid H_j)$, дорівнює 0.2, 0.3, 0.4 та 0.5 відповідно для 1, 2, 3, 4 групи.

Для обчислення апостеріорних імовірностей $P(H_k \mid A)$ скористаємося формулою Баєса:

$$P(H_k \mid A) = \frac{P(A \mid H_k)P(H_k)}{\sum_{j=1}^{4} P(A \mid H_j)P(H_j)},$$

звідки вже можна обчислити апостеріорний розподіл груп стрілків та дати відповідь на питання задачі.

2.5 Задача 5

На даху факультету стоїть студент-математик. Горе-студент знаходиться на відстані одного кроку від краю даху (вважаємо, що дах необмежений в іншу сторону). Він робить крок випадковим чином або до краю даху, або від нього. На кожному кроці ймовірність відійти від краю дорівнює 2/3, а крок до краю має ймовірність 1/3: Які шанси студента не впасти?

Рис. 2: Ілюстрація сиутації.

Розв'язання

Позначимо через $A \sim$ 'Студент впаде'. Тоді віповіддю на задачу буде $P(\overline{A}) = 1 - P(A)$. Розглянемо два способи розв'язання задачі.

1. Без використання умовних імовірностей. Введемо випадкові події вигляду

 $A_n \sim$ 'Студент впав на n-му кроці', $n \ge 1$.

Зауважимо, що впасти студент може лише на парному кроці, тому насправді n=2k+1, $k\geq 0$. Отже $P(A_n)=0$ при n=2k.

Обчислимо $P(A_n)$, де n=2k+1. Тобто студент 2k кроків 'гуляв' на даху, а на останньому звалився на курилку. Кроки є незалежними між собою, тому для одного такого маршуруту, що відповідає події A_n , матимемо імовірність p^kq^{k+1} , де p=2/3, q=1/3. А скільки всього таких 'маршрутів' студента може бути?

У кожному такому маршруті зафіксованим буде останній крок — щоб студент точно звалився. Ми маємо певну свободу у переборі кроків у різні сторони на 2k етапах. Тільки варто не забувати, що ми маємо переставляти так, щоб студент не впав раніше бажаного часу (тобто треба відсікати кількість маршрутів, де студент впаде раніше n-го кроку).

Всього маршрутів, навіть враховуючи 'небажані', C_{2k}^k . Кількість маршрутів, коли студент провалюється раніше n-го кроку, становить C_{2k}^{k+1} (переконайтеся).

Отже, загальна кількість маршрутів, що відповідає A_n , становить $C_k = C_{2k}^k - C_{2k}^{k+1} - k$ -те число Каталана. Імовірність, P(A), тепер можемо виразити через $\{A_n\}_{n\geq 1}$, щоб

отримати

$$P(A) = P\left(\bigcup_{n>1} A_n\right) = \sum_{k>0} P(A_{2k+1}) = q \sum_{k>0} C_k(pq)^k = qC(pq),$$

де $C(x) = \sum_{k\geq 0} C_k x^k$ – твірна функція послідовності чисел Каталана. Щоб обчислити C(pq), можна скористатися властивістю (яку можна довести. до речі, вправа)

$$C(x) = 1 + x(C(x))^2,$$

звідки
$$C(x)=(1-\sqrt{1-4x})/(2x)$$
. Тоді $C(pq)=3/2$ і звідси $P(A)=1/3\cdot 3/2=1/2$.

2. З використанням умовних імовірностей. Через p(n) позначимо імовірність впасти з даху, стартуючи з n-ої точки. Тоді імовірність, яка цікавить нас у задачі, власне, є p(1). Позначимо також p=2/3, q=1/3.

Зрозуміло, що коли зроблено з n-ої позиції крок вліво, то після цього по факту на рух починається з n-1-ої точки і, навпаки, якщо зробити з позиції n крок вправо, то старт іде з n+1. За формулою повної імовірності,

$$p(n) = q \cdot p(n-1) + p \cdot p(n+1), \ n \ge 1.$$

Також зауважимо, що p(0)=1 (студент вже впав) та $\lim_{n\to +\infty}p(n)=0$. Виділимо p та q у лівій частині рівності та зробимо групування при заданих 'крокових' імовірностях:

$$q \cdot p(n) + p \cdot p(n) = q \cdot p(n-1) + p \cdot p(n+1) \Leftrightarrow q \cdot (p(n) - p(n-1)) = p \cdot (p(n+1) - p(n))$$
$$\Leftrightarrow (p(n+1) - p(n)) = \frac{q}{p} \cdot (p(n) - p(n-1)).$$

Тепер покроково скористаємося отриманим вище співвідношенням:

$$(p(n+1) - p(n)) = \frac{q}{p} \cdot (p(n) - p(n-1)) = \left(\frac{q}{p}\right)^2 \cdot (p(n-1) - p(n-2)) = \dots =$$

$$= \left(\frac{q}{p}\right)^k \cdot (p(n-k+1) - p(n-k)) = |k = n| = \left(\frac{q}{p}\right)^n \cdot (p(1) - p(0)).$$

Візьмемо $k \ge 1$ та отримаємо вираз для p(n+k) - p(n):

$$(p(n+k) - p(n)) = (p(n+k) - p(n+k-1)) + \dots + (p(n+1) - p(n)) =$$

$$= \left(\frac{q}{p}\right)^n \cdot (p(1) - p(0)) \cdot \sum_{l=0}^k \left(\frac{q}{p}\right)^l$$

Перейдемо в рівності вище до границі при $k \to +\infty$, звідки отримаємо (q < p)

$$-p(n) = \left(\frac{q}{p}\right)^n \cdot (p(1) - p(0)) \cdot \frac{1}{1 - \left(\frac{q}{p}\right)} \Rightarrow p(1) = p(0) - p(n) \cdot \left(1 - \left(\frac{q}{p}\right)\right) \cdot \left(\frac{p}{q}\right)^n$$

Поклавши n=0 в останній рівності, маємо $p(1)=1-(p-q)/p=q/p=1/3\cdot 3/2=1/2.$