Lecture 1

Michael Brodskiy

Professor: M. Onabajo

September 4, 2024

- Broad circuit categories:
 - Information processing \rightarrow cell phone, GPS, cable TV
 - Power delivery \rightarrow AC-to-DC power adapter, power amplifiers, EVs
- Applications
 - Communication systems
 - Medical electronics
 - Computers (digital signal processing)
 - Instrumentation
 - Control systems
 - Power systems
 - Toys
- Electronic circuits that are manufactured as integrated circuits (ICs)
 - "Chips" created with semiconductor device fabrication processes
- Semiconductor Industry
 - -1947
 - * First transistor was invented at Bell Laboratories by William Shockley, John Bardeem, and Walter Brattain
 - * "The basis of modern electronics"
 - -1958 1961
 - * Introduction of the integrated circuit by Jack Kilby (Texas Instruments) and Robert Noyce (Fairchild Semiconductor)
 - * Enabled miniaturization and mass production of chips

- Today
 - * Smallest dimensions of features in the silicon around 5 [nm]
 - * Up to >2.5 billion transistors per chip
 - * > \$300 billion global revenue

• Course Overview

- Amplifier concepts
- Study of electronic devices
 - * Operational amplifiers (Op-Amps)
 - * Diodes
 - * Bipolar junction transistors (BJTs)
 - * Metal-oxide-semiconductor field effect transistors (MOSFETs)
- Design and analysis of electronic circuits
 - * Analog amplifiers, rectifier circuits
 - * Digital logic

• Main Course Goals

- Understand the operation of fundamental electronic devices (op-amps, diodes, BJTs, MOSFETs)
- Analyze and design operational amplifier circuits and rectifier circuits
- Analyze and design amplifiers with BJTs and MOSFETs
- Be able to identify CMOS logic circuits (NOT, NAND, NOR), and analyze voltage transfer curves and propagation delays
- Simulate electronic circuits using PSPICE

• Review — Some Circuit Analysis Highlights

- Element combination rules (parallel, serial)
- Ohm's Law: I = V/R
- KVL for a circuit loop $\rightarrow \sum_{j} v_{j} = 0$
- KCL at a node $\rightarrow \sum_{j} i_{j} = 0$
- Superposition principle
 - * If input A produces response X and input B produces response Y, then input (A+B) produces response (X+Y)
 - * Holds only for linear circuits
 - * Very useful for circuits with multiple voltage and current sources
- Thévenin and Norton form of signal sources

- * Valid only in linear circuits
- Element Combination Rules
 - Resistors in series can be summed $(R_1 + R_2 + \cdots + R_n = R_t)$
 - Resistors in parallel can be summed via conductances $\left(G_x = \frac{1}{R_x}\right)$ can be combined to get $\to G_1 + G_2 + \cdots + G_n = G_t$
 - Voltages in series can be summed $(V_1 + V_2 + \cdots + V_n = V_t)$
 - Voltages in parallel will not occur, as it is illogical to place them in such a manner (and is the same reason current sources in series do not occur)
 - Current sources in parallel may be summed $(i_1 + i_2 + \cdots + i_n = i_t)$
- Analysis of Large Circuits
 - Write all expressions for the circuit
 - * At elements (Ohm's Law)
 - * At nodes (KCL)
 - * For loops (KVL)
 - Eliminate redundant equations (keep only independent equations)
 - Solve the system of equations for the unknown variables
- Thévenin and Norton Equivalent Representations
 - Thévenin to Norton transformation
 - * Set $I_s = V_s/R_s$ (short-circuit current), and $R_P = R_s$
 - Norton to Thévenin transformation
 - * Set $V_s = I_s R_s$ (open-circuit voltage), and $R_s = R_P$
 - In more complex cases, R_s and R_P are the equivalent resistances seen at terminals