RV-VAE: Integrating Random Variable Algebra into Variational Autoencoders

UNIVERSITY OF CRETE

Vassilis C. Nicodemou^{1,2}

lason Oikonomidis²

Antonis Argyros¹, ²

¹Computer Science Department, University of Crete, Heraklion, Greece ²Institute of Computer Science, FORTH, Heraklion, Greece

INSTITUTE OF COMPUTER SCIENC For more information, contact:

{nikodim, oikonom, argyros}@ics.forth.gr

SUMMARY

We incorporate continuous **distributions** into **VAE** architectures. We achieve this by **removing** the **stochastic** procedure of latent sampling (**reparameterization trick**) and adding **new modules** based on **RVs** to treat decoder node **activations as distributions**. This **improves** latent space utilization and therefore enhances:

- reconstruction quality
- generative fidelity
- without hindering convergence rate

MOTIVATION

Alleviate the need for latent-space sampling in VAEs and utilize the whole distribution!

RV MODULES

We propose **new modules** that utilize **RV Algebra** and perform **ANN operations with Random Variables** instead of constant samples.

RV VAEs & EXPERIMENTAL RESULTS

	Reconstruction MSE \$\\$	Generation FID \$\frac{1}{2}\$
SI-VAE	0.0247	2.85
RV SI-VAE	0.0151	2.82

