

RAIL TO RAIL CMOS DUAL OPERATIONAL AMPLIFIER

- RAIL TO RAIL INPUT AND OUTPUT VOLT-AGE RANGES
- SINGLE (OR DUAL) SUPPLY OPERATION FROM **2.7V TO 16V**
- EXTREMELY LOW INPUT BIAS CURRENT :
- LOW INPUT OFFSET VOLTAGE : 2mV max.
- \blacksquare SPECIFIED FOR **600**Ω AND **100**Ω LOADS
- LOW SUPPLY CURRENT: 200µA/Ampli $(V_{CC} = 3V)$
- LATCH-UP IMMUNITY
- ESD TOLERANCE: 3KV
- SPICE MACROMODEL INCLUDED IN THIS-**SPECIFICATION**

DESCRIPTION

The TS912 is a RAIL TO RAIL CMOS dual operational amplifier designed to operate with a single or dual supply voltage.

The input voltage range V_{icm} includes the two supply rails V_{cc}^+ and V_{cc}^- .

At 3V, the output reaches:

only $200\mu A/amp @ V_{CC} = 3V$.

 \Box V_{CC}^-+30 mV V_{CC}^+-40 mV with $R_L = 10$ k Ω \Box $V_{cc}^- +300 \text{mV} V_{cc}^+ -400 \text{mV}$ with $R_L = 600 \Omega$

This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of

Source and sink output current capability is typically 40mA at V_{cc} = 3V, fixed by an internal limitation circuit.

ORDER CODE

Part Number	Temperature Range	Pack	cage
rait Number	remperature Namge	N D	
TS912I/AI/BI	-40, +125°C	•	•

N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

December 2001 1/12

SCHEMATIC DIAGRAM (1/2 TS912)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ¹⁾	18	V
V_{id}	Differential Input Voltage ²⁾	±18	V
V _i	Input Voltage 3)	-0.3 to 18	V
I _{in}	Current on Inputs	±50	mA
I _o	Current on Outputs	±130	mA
T _{oper}	Operating Free Air Temperature Range TS912I/AI/BI	-40 to + 125	°C
T _{stg}	Storate Temperature	-65 to +150	°C

- 1. All voltages values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of input and output voltages must never exceed $\mathrm{V_{CC}}^{+}$ +0.3V.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 16	V
V _{icm}	Common Mode Input Voltage Range	V_{CC}^{-} -0.2 to V_{CC}^{+} +0.2	V

ELECTRICAL CHARACTERISTICS

 $V_{CC}^+ = 3V$, $V_{cc}^- = 0V$, R_L , C_L connected to $V_{CC/2}$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($V_{ic} = V_o = V_{CC/2}$) $T_{min.} \le T_{amb} \le T_{max.}$	TS912 TS912A TS912B TS912 TS912A TS912B			10 5 2 12 7 3	mV
ΔV_{io}	Input Offset Voltage Drift		5		μV/°C	
I _{io}	Input Offset Current ¹⁾ $T_{min.} \le T_{amb} \le T_{max.}$			1	100 200	рА
I _{ib}	Input Bias Current $^{1)}$ $T_{min.} \le T_{amb} \le T_{max.}$			1	150 300	рА
I _{cc}	Supply Current (per amplifier, A_{VCL} = 1, no $T_{min.} \le T_{amb} \le T_{max.}$	o load)		200	300 400	μΑ
CMR	Common Mode Rejection Ratio $V_{ic} = 0$ to 3V, $V_o = 1.5V$			70		dB
SVR	Supply Voltage Rejection Ratio (V _{CC} ⁺ = 2.	.7 to 3.3V, $V_0 = V_{CC/2}$)	50	80		dB
A _{vd}	Large Signal Voltage Gain ($R_L = 10k\Omega$, V_c $T_{min.} \le T_{amb} \le T_{max.}$, = 1.2V to 1.8V)	3 2	10		V/mV
V _{OH}	High Level Output Voltage (V_{id} = 1V) $T_{min.} \le T_{amb} \le T_{max.}$	$R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$ $R_{L} = 100\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$	2.95 2.9 2.3 2.8 2.1	2.96 2.6 2		V
V _{OL}	Low Level Output Voltage (V_{id} = -1V) $T_{min.} \le T_{amb} \le T_{max.}$	$R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$ $R_{L} = 100\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$		30 300 900	50 70 400	mV
I _o	Output Short Circuit Current (V _{id} = ±1V)	Source $(V_o = V_{CC}^-)$ Sink $(V_o = V_{CC}^+)$	20 20	40 40		mA
GBP	Gain Bandwith Product $(A_{VCL} = 100, R_L = 10k\Omega, C_L = 100pF, f = 100kHz)$			0.8		MHz
SR+	Slew Rate (A _{VCL} = 1, R _L = $10k\Omega$, C _L = $100pF$, V _i = $1.3V$ to $1.7V$)			0.4		V/μs
SR ⁻	Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100pF$, $V_i = 1.3V$ to 1.7V)			0.3		V/μs
φm	Phase Margin			30		Degrees
en	Equivalent Input Noise Voltage (R _s = 100s	Ω , f = 1kHz)		30		nV/√Hz

^{1.} Maximum values including unavoidable inaccuracies of the industrial test

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = 5V, V_{cc}^- = 0V, R_L , C_L connected to $V_{CC/2}$, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($V_{ic} = V_o = V_{CC/2}$) $T_{min.} \le T_{amb} \le T_{max.}$	TS912 TS912A TS912B TS912 TS912A TS912B			10 5 2 12 7 3	mV
ΔV_{io}	Input Offset Voltage Drift			5		μV/°C
l _{io}	Input Offset Current $^{1)}$ $T_{min.} \le T_{amb} \le T_{max.}$			1	100 200	рА
l _{ib}	Input Bias Current $^{1)}$ $T_{min.} \le T_{amb} \le T_{max.}$			1	150 300	pА
I _{CC}	Supply Current (per amplifier, A_{VCL} = 1, no $T_{min.} \le T_{amb} \le T_{max.}$	o load)		230	350 450	μА
CMR	Common Mode Rejection Ratio $V_{ic} = 1.5 \text{ to } 3.5\text{V}, V_o = 2.5\text{V}$		60	85		dB
SVR	Supply Voltage Rejection Ratio $(V_{CC}^+ = 3)$	to 5V, $V_o = V_{CC/2}$)	55	80		dB
A _{vd}	Large Signal Voltage Gain ($R_L = 10k\Omega$, V_c $T_{min.} \le T_{amb} \le T_{max.}$	= 1.5V to 3.5V)	10 7	40		V/mV
V_{OH}	High Level Output Voltage (V_{id} = 1V) $T_{min.} \leq T_{amb} \leq T_{max.}$	$R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$ $R_{L} = 100\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$	4.95 4.9 4.25 4.8 4.1	4.95 4.55 3.7		V
V _{OL}	Low Level Output Voltage (V_{id} = -1V) $T_{min.} \leq T_{amb} \leq T_{max.}$	$R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$ $R_{L} = 100\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$		40 350 1400	50 100 500 150 750	mV
I _o	Output Short Circuit Current ($V_{id} = \pm 1V$)	Source $(V_o = V_{CC}^-)$ Sink $(V_o = V_{CC}^+)$	45 45	65 65		mA
GBP	Gain Bandwith Product $(A_{VCL}=100,R_L=10k\Omega,C_L=100pF,f=1)$	00kHz)		1		MHz
SR+	Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100pF$, $V_i = 1V$ to $4V$)			0.8		
SR ⁻	Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100pF$, $V_i = 1V$ to 4V)			0.6		V/μs
en	Equivalent Input Noise Voltage ($R_s = 100\Omega$, $f = 1kHz$)			30		nV/√Hz
V _{O1} /V _{O2}	Channel Separation (f = 1kHz)			120		dB
φm	Phase Margin			30		Degrees

Maximum values including unavoidable inaccuracies of the industrial test

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = 10V, V_{cc}^- = 0V, R_L , C_L connected to $V_{CC/2}$, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit
V_{io}	Input Offset Voltage ($V_{ic} = V_o = V_{CC/2}$) $T_{min.} \le T_{amb} \le T_{max.}$	TS912 TS912A TS912B TS912 TS912A TS912B			10 5 2 12 7 3	mV
ΔV_{io}	Input Offset Voltage Drift			5		μV/°C
l _{io}	Input Offset Current 1) $T_{min.} \leq T_{amb} \leq T_{max.}$			1	100 200	pА
l _{ib}	Input Bias Current $^{1)}$ $T_{min.} \le T_{amb} \le T_{max.}$			1	150 300	pA
I _{CC}	Supply Current (per amplifier, A_{VCL} = 1, no $T_{min.} \le T_{amb} \le T_{max.}$	o load)		400	600 700	μА
CMR	Common Mode Rejection Ratio $V_{ic} = 3$ to 7V, $V_o = 5V$ $V_{ic} = 0$ to 10V, $V_o = 5V$		60 50	90 75		dB
SVR	Supply Voltage Rejection Ratio (V _{CC} ⁺ = 5	to 10V, V _o = V _{CC/2})	60	90		dB
A _{vd}	Large Signal Voltage Gain ($R_L = 10k\Omega$, V_c $T_{min.} \le T_{amb} \le T_{max.}$	= 2.5V to 7.5V)	15 10	50		V/mV
V_{OH}	High Level Output Voltage (V_{id} = 1V) $T_{min.} \leq T_{amb} \leq T_{max.}$	$R_L = 100k\Omega$ $R_L = 10k\Omega$ $R_L = 600\Omega$ $R_L = 100\Omega$ $R_L = 10k\Omega$ $R_L = 600\Omega$	9.95 9.85 9 9.8 8.8	9.95 9.35 7.8		V
V _{OL}	Low Level Output Voltage (V_{id} = -1V) $T_{min.} \le T_{amb} \le T_{max.}$	$R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$ $R_{L} = 100\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 600\Omega$		50 650 2300	50 150 800 150 900	mV
I _o	Output Short Circuit Current (V _{id} = ±1V)	Source $(V_o = V_{CC}^-)$ Sink $(V_o = V_{CC}^+)$	45 50	65 75		mA
GBP	Gain Bandwith Product $(A_{VCL} = 100, R_L = 10k\Omega, C_L = 100pF, f = 1)$	00kHz)		1.4		MHz
SR ⁺	Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100$	$pF, V_i = 2.5V \text{ to } 7.5V)$		1.3		V/μs
SR ⁻	Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100$	$PF, V_i = 2.5V \text{ to } 7.5V)$		0.8		
φm	Phase Margin			40		Degrees
en	Equivalent Input Noise Voltage ($R_s = 100\Omega$, $f = 1kHz$)			30		nV/√Hz
THD	Total Harmonic Distortion $(A_{VCL} = 1, R_L = 10k\Omega, C_L = 100pF, V_o = 4.$	75V to 5.25V, f = 1kHz)		0.02		%
C _{in}	Input Capacitance			1.5		pF

^{1.} Maximum values including unavoidable inaccuracies of the industrial test

TYPICAL CHARACTERISTICS

Figure 1: Supply Current (each amplifier) vs Supply Voltage

Figure 3a: High Level Output Voltage vs High Level Output Current

Figure 4a: Low Level Output Voltage vs Low Level Output Current

Figure 2: Input Bias Current vs Temperature

Figure 3b : High Level Output Voltage vs High Level Output Current

Figure 4b: Low Level Output Voltage vs Low Level Output Current

Figure 5a: Gain and Phase vs Frequency

Figure 6a: Gain Bandwidth Product vs Supply Voltage

Figure 7a: Phase Margin vs Supply Voltage

Figure 5b: Gain and Phase vs Frequency

Figure 6b : Gain Bandwidth Product vs Supply Voltage

Figure 7b: Phase Margin vs Supply Voltage

Figure 8: Input Voltage Noise vs Frequency

MACROMODEL

Applies to : TS912 ($V_{CC} = 3V$)

** Standard Linear Ics Macromodels, 1993.

** CONNECTIONS:

* 1 INVERTING INPUT

* 2 NON-INVERTING INPUT

* 3 OUTPUT

* 4 POSITIVE POWER SUPPLY

* 5 NEGATIVE POWER SUPPLY

.SUBCKT TS912 3 1 3 2 4 5 (analog)

.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F

* INPUT STAGE

CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12

EIP 10 5 2 5 1 EIN 16 5 1 5 1

RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 1.271505E+01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00

VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.125860E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.000000E+00
FCN 5 4 VOFN 5.000000E+00

* AMPLIFYING STAGE

FIP 5 19 VOFP 2.750000E+02 FIN 5 19 VOFN 2.750000E+02

RG1 19 5 1.916825E+05

RG2 19 4 1.916825E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.3E+03 HZTN 5 30 VOFN 1.3E+03 DOPM 19 22 MDTH 400E-12

DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800

VIPM 28 4 150

HONM 21 27 VOUT 3800

VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 75

COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12

VOP 4 25 1.724

HSCP 68 25 VSCP1 0.8E8 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+08 VSCTHP 60 61 0.0875

** VSCTHP = le seuil au dessus de vio * 500

** c.a.d 275U-000U dus a l'offset DSCP1 61 63 MDTH 400E-12

VSCP1 63 64 0

ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8

VSCN1 73 74 0

DSCN1 71 73 MDTH 400E-12

VSCTHN 71 70 -0.55

** VSCTHN = le seuil au dessous de vio * 2000

** c.a.d -375U-000U dus a l'offset

ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000

.ENDS

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = 3V, V_{CC}^- = 0V, R_L , C_L connected to $V_{CC/2}$, T_{amb} = 25°C (unless otherwise specified)

Symbol	Conditions	Value	Unit
V _{io}		0	mV
A _{vd}	$R_L = 10k\Omega$	10	V/mV
I _{CC}	No load, per operator	200	μΑ
V _{icm}		-0.2 to 3.2	V
V _{OH}	$R_L = 10k\Omega$	2.96	V
V _{OL}	$R_L = 10k\Omega$	30	mV
I _{sink}	$V_O = 3V$	40	mA
I _{source}	$V_O = 0V$	40	mA
GBP	$R_L = 10k\Omega, C_L = 100pF$	0.8	MHz
SR	$R_L = 10k\Omega, C_L = 100pF$	0.3	V/μs

MACROMODEL

Applies to : TS912 ($V_{CC} = 5V$)

** Standard Linear Ics Macromodels, 1993.

** CONNECTIONS:

* 1 INVERTING INPUT

* 2 NON-INVERTING INPUT

* 3 OUTPUT

* 4 POSITIVE POWER SUPPLY

* 5 NEGATIVE POWER SUPPLY

* 6 STANDBY

.SUBCKT TS912_5 1 3 2 4 5 (analog)

.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F

* INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12

EIP 10 5 2 5 1 EIN 16 5 1 5 1

RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.322092E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00

VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.498970E-08 DINN 17 13 MDTH 400E-12

VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00

FCP 4 5 VOFP 5.750000E+00 FCN 5 4 VOFN 5.750000E+00

ISTB0 5 4 500N * AMPLIFYING STAGE FIP 5 19 VOFP 4.400000E+02 FIN 5 19 VOFN 4.400000E+02

RG1 19 5 4.904961E+05 RG2 19 4 4.904961E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.8E+03 HZTN 5 30 VOFN 1.8E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12

VIPM 28 4 230

HONM 21 27 VOUT 3800

HOPM 22 28 VOUT 3800

VINM 5 27 230 EOUT 26 23 19 5 1 **VOUT 23 5 0 ROUT 26 3 82**

COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12

VOP 4 25 1.724

HSCP 68 25 VSCP1 0.8E+08 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+08

VSCTHP 60 61 0.0875

** VSCTHP = le seuil au dessus de vio * 500 ** c.a.d 275U-000U dus a l'offset DSCP1 61 63 MDTH 400E-12

VSCP1 63 64 0

ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8

VSCN1 73 74 0

DSCN1 71 73 MDTH 400E-12

VSCTHN 71 70 -0.55

** VSCTHN = le seuil au dessous de vio * 2000

** c.a.d -375U-000U dus a l'offset

ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000

.ENDS

ELECTRICAL CHARACTERISTICS

Vcc+ = 5V, Vcc- = 0V, RL, CL connected to Vcc/2, Tamb = 25°C (unless otherwise specified)

Symbol	Conditions	Value	Unit
V_{io}		0	mV
A _{vd}	$R_L = 10k\Omega$	50	V/mV
I _{CC}	No load, per operator	230	μΑ
V _{icm}		-0.2 to 5.2	V
V _{OH}	$R_L = 10k\Omega$	4.95	V
V _{OL}	$R_L = 10k\Omega$	40	mV
I _{sink}	V _O = 5V	65	mA
I _{source}	$V_O = 0V$	65	mA
GBP	$R_L = 10k\Omega, C_L = 100pF$	1	MHz
SR	$R_L = 10k\Omega, C_L = 100pF$	0.8	V/μs

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.		Millimeters Inches		Inches		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim	Millimeters			Inches			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45°	(typ.)			
D	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S			8° (max.)	•	-	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

© http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.