

Ref: ACR 2403.14 SATU.A.

900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7±1%.		3.6 11 %.	
1500	80.5 +1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %		3.6 ±1.%.	
1800	72.0 ±1 %.	PASS	41.7 +1 %.	PASS	3.5 ±1 %.	PAS
1900	68.0 ±1 %.		39.5 ±1 %.		3.5 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 +1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 =1 %.		30.4±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4+1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s_{r}')	Conductiv	ity (a) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 15 %		0.89±5 %	
835	41.5 15 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 +5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1900	40.0±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in pairs, without the written approval of \$A111A0.

CCIC-SET/T-I (00) Page 82 of 129

Ref. ACR.240.3.14.SATU.A

2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 1.5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 t5 %	1.95 ±5 %	
3000	38.5 15 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' : 41.3 sigma : 1.38		
Distance between dipole center and liquid	10.0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	1800 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		15	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	38.67 (3.87)	20.1	20.30 (2.03
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATEAO.

CCIC-SET/T-I (00) Page 83 of 129

Ref. ACR.240.3.14,SATU.A

2450	52.4	24
2600	55.3	24.6
3000	53.8	25.7
3500	57.1	25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,*)	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %	Ů.	0.92 ±5 %	
450	56.7±5 %		0.94 ±5 %	
750	55.5.45 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0±5 %		1.06 ±5 %	
1450	54.0±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	-
2000	53.3 ±5 %		1.52 ≘5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 -5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 84 of 129

Ref. ACR.240.3.14.SATU.A

5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 53.3 sigma: 1.51		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx-8mm/dy-8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	1800 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W	
	measured	measured	
1800	40.07 (4.01)	21.27 (2.13)	

Page: 10/11

This document shall not be reproduced, except in fidl or in part, without the written approval of \$ATTHE).

CCIC-SET/T-I (00) Page 85 of 129

Ref. ACR.240.3.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer/	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014		
Mu timeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifer	Aethercomm	SN 046	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 86 of 129

SID1900 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.4.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 1900 MHZ SERIAL NO.: SN 09/13 DIP1G900-218

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipute calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 87 of 129

Ref: ACR.240.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	25
Checked by :	Jérôme LUC	Product Manager	8/29/2014	J85
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	diem Frank Medici

	Customer Name
	CCIC SOUTHERN ELECTRONIC
Distribution :	PRODUCT
Destribution .	TESTING
	(SHENZHEN) Co.,
	Ltd

Issue	Date	Modifications	
A	8/29/2014	Initial release	

Page: 2/11

This document thall not be reproduced, except in full or in part, without the written apprival of SATIMO.

CCIC-SET/T-I (00) Page 88 of 129

Ref: ACR,240.4.14.5ATU.A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	fidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the wenter approval of SS 11140, in

Ref: ACR 240.4 14 SATULA

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID1900
Serial Number	SN 09/13 DIP1G900-218
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of \$471149.

CCIC-SET/T-I (00) Page 90 of 129

Ret: ACR, 240,4,14 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CHI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20,3 %
10 g	20.1 %

Page: 5/11

This discussion shall not be reproduced, except in field or to pear without the written approval of SATIMES.

The information communed herein is to be used only for the purpose for which it is indimitted and in one to be reduced in which we pure unless written appeared of SATIMES.

CCIC-SET/T-I (00) Page 91 of 129

 $55.4 \Omega \pm 5.2 j\Omega$

-23.44 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

1900

Frequency MHz	Ln	nm.	h m	m	d r	nm
	required	measured	regulred	measured	required	measured
300	420.0 11 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7±1 %,		6.35 +1.%,	
750	176.0 ±1 %.		100.0±1 %.		6.35 11 %.	
835	161.0 :1 %.		89.8±1 %.		3.5 ±1 %.	

Page: 6/11

This document that not be reproduced viscops in full or in part, without the visitor approval of \$6.00000. The information contained horses is to be used only for the purpose for which it is submitted and is not so be released in whole or part without witten approval of \$47,0000.

CCIC-SET/T-I (00) Page 92 of 129

Ref: ACR, 240.1.14 SATC, A

900	149.3 ±1 %.		83.3 ±1 %.		3.6 ±1.%.	
1450	89.1 ±1 54.		51.7±1%.		3.6±1%.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7±1%		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %		41.7 ±1 %		3.6 ±1 %.	
1900	68.0 =1 %.	FASS	39.5 ±1 %.	PASS	3.5±1 %.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.5 11 %.	
2000	64.5 ±1 %.		37.5 +1 %.		3.6 ±1 %.	
2100	61.0 11 %.		35.7 11 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %,	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 13 %.		29.8 ±1 %.		3.6 ±1 %,	
3000	41.5 ±1 %.		25.0 ±1 %.		36±1%	
3500	37.0±1%.		26.4 ±1 %.		3.6=1%	
3700	34.7±1%		26.4 ±1 %		3.6 ±1 %	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipote meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipote shall be positioned below the bottom of the phantom, with the dipote length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipote at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (c,')	Conductiv	ity (a) S/m
	required	measured	required	measured
300	45.3.15 %		0.87 ±5 %	
450	43.5 15 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 =5 %		1.23 15 %	
1540	40.2 ±5 %		131 ±5 %	
1750	40.1 ±5 %		1.37 15 %	
1900	40.0±5 %		1.40 ±5 %	
1900	40.0 15 %	PASS	1,40 15 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 15 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced accept in fail to 16 part, without the involving operated of \$4.1140. The information contained legisla is to be used only for the purpose for which it is substituted and is not in the retrained in whole or part without written approval of \$4.71585.

CCIC-SET/T-I (00) Page 93 of 129

Ref. ACR.24CA 14 SATULA

2100	39.8 ±5 %	1,49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2500	39.0 15 %	1.96 ±5 %	
300C	38.5 ±5 %	2.40 ±5 %	
3500	37.9 15 %	2.51 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values; eps'; 41.1 sigma; 1.42
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.26	
750	8.49		5.55	
835	9.56		5.27	
900	10.9		5.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.2	
1800	38.4		20.1	
1900	39.7	40.37 (4.04)	20.5	20.62 (2.06)
1950	40.5		20.9	
2000	41.1		25.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

Discipenses shall not be reproduced, accept wifeli or in pair, without the winter approved of SATHAO. The information contained luminous is to be used only the the propose for which it is submitted and is not to be reduced in whole or part unions written approved of SATHAO.

CCIC-SET/T-I (00) Page 94 of 129

Ref ACR.260.4.14 SATU.A.

2450	52.4	24
2500	55.3	24.6
3000	63.8	25.7
3500	67.1	25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (s,')		lty (a) S/m
	required	measured	required	measured
150	51.9 ±5 %		0.80 ±5 %	
300	58.2 +5 %		0.92 ±5 %	
450	56.7 15 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 15 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 15 N	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3±5%		1.52.15 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62±5 %	
2450	52.7±5%		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ± 5 %	
3000	52.0 ±5 %		2.73 = 5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	49.7 ±10%		5.53 ±10 %	

Page, 9/11

This document shall not be reproduced, except in but or on part, without the written appeared of SATIAS?
The information communed homor is to be used only for the purpose for which it is submitted and it not to be released in whole or part without written appeared of ExTEAS.

CCIC-SET/T-I (00) Page 95 of 129

Ref. ACR 260 4.14.8ATU A

5500	48.6 ±10 %	5.65 110 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	5.00 110 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Lienid Values: eps' : 54.2 sigma : 1.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
requency	1900 MHz
pout power	20 dBm
Liquid Temperature	21 °C
Lab Temperaturu	21 °C
Lab Humidity	45 %

Frequency IVHz	1 g SAR (W/kg/W)	10 g 5AR (W/kg/W)
	measured	measured
1900	40.81 (4.08)	21.21 (2.12)

Page: 10/11

This document shall not be reproduced, many in hill or in earl, withink the written approval of SALTAD. The information continued become is to be used only for the purpose for which it is enhanted and to not to be relevand in whole or part in those written approval of \$2.5500.

CCIC-SET/T-I (00) Page 96 of 129

Ref: ACR.240.4.14.8ATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Саттега	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E28A	US37181480	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11 861 9	8/2012	8/2015		

Page: 11/11

Due discusseré doitl aut les reproducesé, succes en fail et en poin, without the worten expressel of \$4.7140. The information continuent herein is to be used only for the purpose for which it is colomitted und to and no be relevated in whole or pairs without written approprial of \$4.7760.

CCIC-SET/T-I (00) Page 97 of 129

SID2450 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.6.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2450 MHZ SERIAL NO.: SN 09/13 DIP2G450-220

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 98 of 129

Ref: ACR 240 6.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	JES
Checked by:	Jérôme LUC	Product Manager	8/29/2014	25
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	Min Inthounte

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications	
A	8/29/2014	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of \$A77560.

CCIC-SET/T-I (00) Page 99 of 129

Ref: ACR.240.6.14.SATU A

TABLE OF CONTENTS

1	Intr	oduction4	
2	De	vice Under Test4	
3		duct Description4	
3	3.1	General Information	4
4	Me	asurement Method5	
6	4.1	Return Loss Requirements	5
	1.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
ì	5.1	Return Loss	5
	5.2	Dimension Measurement	5
3	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results6	
(5.1	Return Loss and Impedance In Head Liquid	6
ť	5.2	Return Loss and Impedance In Body Liquid	6
(5.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7,1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
9	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	t of Equipment 11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the virtuen approval of SATTIMO.

Rdf: ACR,240,6,14 SATU,A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID2450	
Serial Number	SN 09/13 DIP2G450-220	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, indicat the written approval of SATIMO.

CCIC-SET/T-I (00) Page 101 of 129

Ref: ACR,240.6.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements.

Expanded Uncertainty on Length
0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO

CCIC-SET/T-I (00) Page 102 of 129

Ref: ACR 246.6.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h m	ım	d r	nm:
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 11 %.	
450	290.0 ±1 %.		166 7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100 C =1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 11 %		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the virtien approved of SATIMO.

CCIC-SET/T-I (00) Page 103 of 129

Ref. ACR.240.6.14.5ATU.A

900	149.0±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 1.1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 :1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.5 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PAS5	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.G 11 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1%.		26.4 ±1 %.		3.6 11 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s _r ')	Conductiv	ity (a) S/m
	required	measured	required	measured
300	45.3 15 %		0.87 15 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 15 %	
1640	40.2 15 %		1.31 15 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 15 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATMO

CCIC-SET/T-I (00) Page 104 of 129

Ref: ACR 246.6.14.SATU.A

2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 =5 %		1.67±5%	
2450	39.2 -5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1,96 ±5 %	
3000	38-5 =5 %		2.40 ±5 %	
3500	37.9 -5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Prohe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 39.0 sigma : 1.77
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency fvIHz	1 g SAR (W/kg/W)	10 g SAR	(W/kg/W]
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

CCIC-SET/T-I (00) Page 105 of 129

This document shall not be reproduced except in field or in part, without the written approval of SATIMO

Ref. ACR,240.6.14.5ATU.A.

Į.	2450	52.4	53.60 (5.36)	24	23.77 (2.38)
	2600	55.3		24.6	
Γ	3000	53.8		25.7	
	3500	57.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,')	Conductiv	ity (o) S/m
2007	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 15 %		0.92 15 %	
450	56.7 ±5 %		0.94 15 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2.15 %		0.97 15 %	
900	55.0 15 %		1.05 15 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PAS5
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 106 of 129

Ref. ACR.240.6.14.SATU.A

5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantoni	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.0 sigma : 1.93
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8nun
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	52.66 (5.27)	23.73 (2.37)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 107 of 129

Ref: ACR.240.6.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer/ Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E443BC	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the writen approval of SATIMO.

CCIC-SET/T-I (00) Page 108 of 129

Probe Calibration Ceriticate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.155.1.14.SATU.A

SHENZHEN BALUN TECHNOLOGY Co.,Ltd.
BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY
PARK, SHAHE XI ROAD,
NANSHAN DISTRICT, SHENZHEN, GUANGDONG
PROVINCE, P.R. CHINA 518055
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 27/14 EPG210

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

05/16/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 109 of 129

Ref: ACR,155.L14.SATU.A

	Name	Function	Date	Signature
Preparea by :	Jérôme LUC	Product Manager	6/4/2014	JES
Checked by :	Jérôme LUC	Product Manager	6/4/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	6/4/2014	him Authoriti

	Customer Name	
Distribution .	ChangNing (Shenzhen) Electronics Co., Ltd.	

Issue	Date	Modifications
A	6/4/2014	Initial release
	000000000000000000000000000000000000000	THE SPANSON APPONEN

Fage; 2/10

This document shall not be reproduced, except to full or in part, without the written approval of SATIMO. The information contained begin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 110 of 129

Ref. ACR. 155.1.14.SATU.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2		educt Description4	
	2.1	General Information	4
3	Me	easurement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	easurement Uncertainty	
5	Cal	libration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	t of Equipment 10	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information command herein is to be used only for the purpose for which it is inhabited and is not to be released in whole or part without written approval of SATIMO.

Ref: ACR.155.L14.SATU.A

DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	Satimo			
Model	SSE2			
Serial Number	SN 27/14 EPG210			
Product Condition (new / used)	New			
Frequency Range of Probe	0.3 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.197 MΩ			
	Dipole 2: R2=0.220 MΩ			
	Dipole 3: R3=0.241 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg.

Page: 4/10

Has document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 112 of 129

Ref: ACR 155 L14 SATU A

32 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ei	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	J3 ,	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2,309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approved of SATIMO. The Information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approved of SATIMO.

CCIC-SET/T-I (00) Page 113 of 129

Ref: ACR.155.L14.SATU.A

Combined standard uncertainty	5.831%
Expanded uncertainty 95 % confidence level k = 2	12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

5.1 SENSITIVITY IN AIR

	Normy dipole 2 (µV/(V/m) ²)	
0.44	0.54	0.52

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
90	90	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Dipole 1 Dipole 2 Dipole 3

Page: 6/10

This document shall not be reproduced, except to full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and to not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 114 of 129

Ref: ACR.155.L14.SATU.A

5.2 LINEARITY

Linearity:[I+/-1.25% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.02	0.85	30.15
BL450	450	57.52	0.96	31.02
HL750	750	42.10	0.88	22.51
BL750	750	54.79	0.96	23.36
HL850	835	43.03	0.87	23.67
BL850	835	53.35	0.96	24.58
HL900	900	42.29	0.96	23.35
BL900	900	56.82	1.06	24.10
HL1800	1800	40.93	1.36	23.21
BL1800	1800	52.57	1.47	23.69
HL1900	1900	40.92	1.45	26.70
BL1900	1900	53.60	1.52	27.47
HL2000	2000	39.36	1.44	25.28
BL2000	2000	52.17	1.53	26.28
HL2450	2450	39.12	1.78	25.25
BL2450	2450	52.17	1.90	26.09
HL2600	2600	38.46	1.92	25.94
BL2600	2600	51.76	2.19	26.66
HL5200	5200	36.47	4.91	22.36
BL5200	5200	51.18	4.84	22.38
HL5400	5400	36.83	5.02	25.63
BL5400	5400	48.35	5.81	26.47
HL5600	5600	35,39	5.49	24.32
BL5600	5600	49.03	6.17	25.66
HL5800	5800	34.91	5.76	22.60
BL5800	5800	47.18	6.32	23.20

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 115 of 129

Report No. SET2015-08377

CCIC-SET/T-I (00) Page 116 of 129

Ref: ACR.155.1.14.SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy:

0.04 dB

- Hemispherical isotropy:

0.07 dB

HL1800 MHz

- Axial isotropy:

0.04 dB

- Hemispherical isotropy:

0.08 dB

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written expressed of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and it was to be released in whole or part without written expressed in Whole or part without written expressed of SATIMO.

CCIC-SET/T-I (00) Page 117 of 129

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.155.1.14,SATU.A

HL5400 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.10 dB

Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 118 of 129

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.155.1.14.SATU.A.

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom Satimo		SN-20/09-SAM71	THE PERSON NAMED IN CO.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated, No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Reference Probe	Satimo	EP 94 SN 37/08	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Multmeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to Characterized plants. No cal required. No cal required.			
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Valida:ed. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	11-651-9	8/2012	8/2015		

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of SATUAO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATUAO.

CCIC-SET/T-I (00) Page 119 of 129

SID750 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.219.3.13.SATU.A

SHENZHEN BALUN TECHNOLOGY CO., LTD.
BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY
PARK, SHAHE XI ROAD, NANSHAN DISTRICT,
SHENZHEN, GUANGDONG PROVINCE, 518055 P. R. CHINA
SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ SERIAL NO.: SN 25/13 DIP 0G750-253

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

17/08/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 120 of 129

Ref: ACR.219.3.13.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/17/2014	JE5
Checked by :	Jérôme LUC	Product Manager	8/17/2014	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	8/17/2014	Kem Hatthoushi

	Customer Name
Distribution :	Shenzhen Balun Technology Co.,Ltd.

Issue	Date	Modifications
A	8/17/2014	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Ref: ACR.219.3.13.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2		ice Under Test4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	
	7.4	Body Measurement Result	9
8	List	of Equipment	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Ref: ACR.219.3.13.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE		
Manufacturer	Satimo		
Model	SID750		
Serial Number	SN 25/13 DIP 0G750-253		
Product Condition (new / used)	New		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 123 of 129

Ref. ACR 219.3 13 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		
1 g	20.3 %		
10 g	20.1 %		

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 124 of 129

Ref: ACR, 219, 3.13, SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
750	-22.36	-20

6.2 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %,		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %,	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72,0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	4
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	-
2100	51.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %,		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %,		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 125 of 129

Ref: ACR.219.3, 13, SATU, A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 42.4 sigma: 0.88		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	750 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity ($\epsilon_{\rm r}'$)		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0,97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 126 of 129

Ref: ACR, 219.3, 13. SATU, A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4,58		3,06	
750	8,49	8.19 (0.82)	5.55	5.34 (0.53
835	9.56		6.22	
900	10,9		6.99	
1450	29		16	
1500	30,5		16.8	
1640	34,2		18,4	
1750	36,4		19.3	
1800	38.4		20.1	
1900	39,7		20.5	
1950	40,5		20.9	
2000	41.1		21,1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52,4		24	
2600	55,3		24.6	
3000	63.8		25.7	
3500	67,1		25	

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 127 of 129

Ref: ACR, 219, 3, 13, SATU, A

7.4 BODY MEASUREMENT RESULT

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps': 55.7 sigma: 0.96	
Distance between dipole center and liquid	15.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21°C	
Lab Temperature	21 °C	
Lab Humidity	45 %	
The state of the s	Later transfer and the second	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
750	8.21 (0.82)	5.43 (0.54)	

Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 128 of 129

Ref: ACR.219.3.13.SATU, A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2012	12/2015	
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Multimeter -	Keithley 2000	1188656	11/2012	11/2015	
Signal Generator	Agilent E4438C	MY49070581	12/2012	12/2015	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	11/2012	11/2015	
Power Sensor	HP ECP-E26A	US37181460	11/2012	11/2015	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	3/2013	3/2015	

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

——End of the Report—

CCIC-SET/T-I (00) Page 129 of 129