PROBABILITIES AND STATISTICS 1

I. Continuous distributions

Guillaume Euvrard

Exercise 1

In each of the examples below, discuss whether the function f is a density or not, depending on $k \in \mathbb{R}$. If it is: consider a random variable X having a density f.

- Find its cumulative distribution function.
- Find a bilateral prediction interval at the precision 95% that is, find an interval [a, b] such that

$$P(X \in [a, b]) = 0.95,$$
 $P(X < a) = 0.025$ and $P(X > b) = 0.025$

1.
$$f(x) = \begin{cases} \frac{k}{x} & \text{if } x \ge 1\\ 0 & \text{otherwise} \end{cases}$$

2.
$$f(x) = \begin{cases} \frac{k}{x^2} & \text{if } x \geqslant 1\\ 0 & \text{otherwise} \end{cases}$$

3.
$$f(x) = \begin{cases} \frac{k}{x^3} & \text{if } x \geqslant 2\\ 0 & \text{otherwise} \end{cases}$$

4.
$$f(x) = k e^{-2x}$$

5.
$$f(x) = \begin{cases} k e^{-2x} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

6.
$$f(x) = \begin{cases} k & \text{if } A \leq x \leq B \\ 0 & \text{otherwise} \end{cases}$$
 where $[A, B]$ is a given interval of \mathbb{R} .

Exercise 2

Let $(a,b) \in \mathbb{R}^2$ such that a < b and X a random variable admitting as density the function

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

We say that X is uniformly distributed on [a, b], this is denoted by: $X \rightsquigarrow \text{Unif } (a, b)$.

- 1. What is the cumulative distribution function of X?
- 2. Let $Z = \frac{X-a}{b-a}$. Find the cumulative distribution function of Z, then find its density.

PBS 1 S6 2024 Еріта

3. Suppose that, in a programming project, you must randomly pick a variable which is uniformly distributed on [25, 30].

Assume that the language has a function rand() which returns a random number uniformly distributed on [0,1]. How can you use this function?

Exercise 3

A server receives requests from clients. Consider the random variable

T = ``Time delay until the next request"

1. In this question, we suppose that there exists $\lambda > 0$ such that a density of T is:

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } t \geqslant 0 \\ 0 & \text{otherwise} \end{cases}$$

We say that T is exponential-distributed with the parameter λ : $T \rightsquigarrow \text{Exp}(\lambda)$.

- (a) Show that f is a density and find the cumulative distribution function of T.
- (b) Find $a \in \mathbb{R}$ such that $P(X \leq a) = 0.95$.
- (c) Let $t_0 > 0$. For a given $\Delta t \in \mathbb{R}$, compute the conditional probability $P(T > t_0 + \Delta t \mid T > t_0)$. Compare with $P(T > \Delta t)$.

We say that the variable T is «memoryless». Explain this expression.

- 2. (Bonus) Suppose that T is memoryless. Furthermore, suppose that T can only take positive values and that its cumulative distribution function is continuous and differentiable on \mathbb{R}^+ .
 - (a) Let $t \in \mathbb{R}^+$. Express the hypothesis:

$$\forall \Delta t \in \mathbb{R}_+^*, \quad P(T \leqslant t + \Delta t \mid T > t) = P(T \leqslant \Delta t)$$

using the cumulative distribution function F.

- (b) By dividing this relation by Δt and studying the limit as Δt approaches 0, find a differential equation which is satisfied by F.
- (c) Deduce that X is exponential-distributed.

Exercise 4

Let Z be a random variable admitting as density the function $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$.

- 1. Express its cumulative distribution function as an integral. This function is denoted by Φ (don't try to find an explicit formula).
- 2. Explain why, for all $\beta > 0$, $\Phi(-\beta) = 1 \Phi(\beta)$. We accept without proof that, for $\beta = 1.96$, we get $\Phi(-\beta) = 1 - \Phi(\beta) = 0.025$.
- 3. Let $(m, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$ and $X = m + \sigma Z$. Express the cumulative distribution function of X using Φ , then find a density of X.

Provide a 95% prediction interval for X.

We say that X is normal-distributed with the parameters m and $\sigma^2: X \rightsquigarrow \mathcal{N}(m, \sigma^2)$.

★ Exercise 5

Consider a random variable X such that $X \rightsquigarrow \text{Unif}(-1,2)$.

- 1. Find the cumulative distribution function of |X|.
- 2. Deduce a density of |X|.