MACHINE LEARNING IN PHYSICS TUTORIAL 4 / CNN

HARRISON B. PROSPER

PHY6938

A standard CNN comprises three types of processing layers:

1. convolution, 2. pooling, and 3. classification.

1. Convolution

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

1	1 _{×1}	1 _{×0}	0 _{×1}	0
0	1,0	1,	1,0	0
0	0 _{×1}	1,0	1,	1
0	0	1	1	0
0	1	1	0	0

Image

4	3	

Convolved Feature

2. Pooling

MaxPool2d AvgPool2d

Rectified Feature Map

3. Classification

$$p(k|x) = \frac{p(x|k) \pi(k)}{\sum_{j=0}^{K-1} p(x|j) \pi(j)}$$

In our galaxy classification example,

- ightharpoonup K = 7,
- $\triangleright \pi(k) = 1/K$

Since this is a multi-class problem, we'll train a model, $f_k(x)$, with K outputs that satisfy

$$\sum_{k=0}^{K-1} f_k(x) = 1$$

by minimizing the empirical risk

$$R(\omega) = -\frac{1}{N} \sum_{i=1}^{N} \log f_{y_i}(x_i)$$

where y_i is the class label associated with image x_i .

TUTORIAL 4

Tutorial 4

Goal: classify galaxies into 7 morphology classes using a CNN.

https://astronn.readthedocs.io/en/stable/galaxy10.html

CNN Model

Our model comprises 4 layers, each consisting of 3 operations, followed by a linear function and a softmax. ReLU() MaxPool2d(2,2)Conv2d(4,6,3,1,1)

ReLU()

MaxPool2d(2,2)

Conv2d(3,4,3,1,1)

 \mathbf{x}

 $f(x,\omega)$ Softmax Linear(468,7) ReLU() MaxPool2d(2,2)Conv2d(9,13,3,1,1) ReLU() MaxPool2d(2,2)Conv2d(6,9,3,1,1)

CNN Model

CNN Model: Training

Samples

1. Training sample size: 10,000

2. Validation sample size: 1,600

3. Testing sample size: 1,000

Training hyperparameters

1. Number of iterations: 10,000 (200 epochs)

2. Batch size: 200

3. Learning rate: 10⁻³

CNN Model: Results

Accuracy: 71.2%

