5 STATISTIK DESKRIPTIF

Salah satu statistik yang secara sadar maupun tidak, sering digunakan dalam berbagai bidang adalah statistik deskriptif. Pada bagian ini akan dipelajari beberapa contoh kasus dalam penggunaan statistik deskriptif.

Pengertian Statistik Deskriptif

Statistik deskriptif merupakan bidang ilmu statistika yang mempelajari cara-cara pengumpulan, penyusunan, dan penyajian data suatu penelitian. Kegiatan yang termasuk dalam kategori tersebut adalah kegiatan collecting atau pengumpulan data, grouping atau pengelompokan data, penentuan nilai dan fungsi statistik, serta yang terakhir termasuk pembutan grafik dan gambar.

Gambar 5.1. Menu Statistik Deskriptif

Berbagai jenis Statistik Deskriptif pada SPSS 16 dapat dilihat pada menu **Analyze** -> **Descriptive Statistics**. Pemilihan menu tersebut akan memunculkan sub-submenu yang nampak seperti Gambar 5.1 di atas. Sub-submenu tersebut antara lain analisis frekuensi, analisis deskripsi, analisis eksplorasi data, dan analisis crosstabs.

Prosedur Frekuensi

Prosedur **FREQUENCIES** memiliki kegunaan pokok untuk melakukan pengecekan terhadap input data. Apakah data sudah diinputkan dengan benar. Hal ini mengingat bahwa dengan statistik frekuensi kita bisa mengetahui resume data secara umum. Seperti berapa jumlah responden laki-laki, jumlah responden perempuan, dan sebagainya.

Selain itu, prosedur **FREQUENCIES** juga memiliki kegunaan untuk menyediakan informasi deskripsi data yang menggambarkan *demographic characteristics* dari sampel yang diambil. Misalnya berapa persen responden yang setuju terhadap tindakan yang dilakukan, berapa persen responden yang menolak, dan sebagainya.

Berikut akan dibahas contoh kasus melakukan analisa deskriptif dengan SPSS 16. Secara umum, untuk menjalankan suatu prosedur dalam analisa statistik mengikuti langkah seperti berikut.

Gambar 5.2. Prosedur Analisis dalam SPSS

Contoh Kasus

Tabel di bawah ini menunjukkan data yang akan dianalisa dengan statistik deskriptif. Dari tabel di bawah, field yang akan dianalisa antara lain umur, pendidikan, jenis kelamin, dan keterangan.

nama	umur	pendidikan	jeniskelamin	keterangan
Navida Ananda	16.00	3.00	2.00	2.00
Eni Endarti	20.00	3.00	2.00	3.00
Alvin Agusta	32.00	1.00	2.00	3.00
Devano Herma	35.00	2.00	1.00	2.00
Yayan Sugiarto	18.00	3.00	1.00	1.00
Billy Bong	21.00		1.00	2.00
Nina Jatmiko	38.00	3.00	2.00	1.00
Axel Hernandes	40.00	4.00		1.00
Sheila Andreas	34.00	1.00	2.00	3.00

Gambar 5.3. Data yang Akan Diolah

Untuk membuat statistik deskripsi dari tabel di atas, lakukan langkah-langkah dengan program SPSS sebagai berikut:

1. Klik menu **Analyze**, pilih **Descriptive Statistics** dan lanjutkan dengan pilihan **Frequencies**. Tampilan yang muncul sebagai berikut.

Gambar 5.4. Dialog Frequencies

- 2. Masukkan variabel Umur, Word, dan Excel ke dalam kotak **Variables** untuk dianalisa.
- 3. Pilih tombol **Statistics** untuk mengatur item-item yang akan ditampilkan dalam output seperti berikut.

Gambar 5.5. Frequencies Statistics

- 4. Berilah tanda *chek point* untuk memunculkan item-item analisa yang diinginkan. Dari gambar di atas bisa dilihat bahwa terjadi pembagian kelompok Statistik. Pembagian kelompok tersebut adalah:
 - a. Central tendency

Pengukuran tendensi pusat yang meliputi mean, median, mode, dan sum.

- Mean menunjukkan rata-rata dari masing-masing variabel semua responden.
- Median menunjukkan titik tengah data, yaitu jika data diurutkan dan dibagi dua sama besar.
- Mode menunjukkan nilai yang paling sering muncul dalam suatu range statistik.
- Sum, menunjukkan total data.

b. Dispersion

Pengukuran dispersi yang meliputi standard deviation, variance, range, minimum, maximum, dan standard error of the mean.

Standard deviasi menunjukkan despersi rata-rata dari sampel.

Minimum menunjukkan nilai terendah dari suatu deretan data

Maximum menunjukkan nilai tertinggi dari suatu deretan data.

Standard error of mean, diukur sebagai standard deviasi dibagi dengan akar dari jumlah data valid (n).

$$S.E.\ \textit{Mean} = \frac{\textit{SD}}{\sqrt{n}}$$

c. Distribution

Pengukuran distribusi yang meliputi *skewness* and *kurtosis*. Bagian ini digunakan untuk melakukan pengecekan apakah distribusi data adalah distribusi normal.

- Ukuran skewness adalah nilai skewness dibagi dengan standard error skewness.
- Jika rasio skewness berada di antara nilai -2.00 sampai dengan 2.00, maka distribusi data adalah normal sehingga data di atas masih berdistribusi normal.
- Nilai kurtosis adalah nilai kurtosis dibagi dengan standard error-nya.

Bahwa 95% confidence interval (C.I.) di sekitar nilai skewness and 95% confidence interval yang lain di sekitar nilai kurtosis. The 95% confidence intervals atau tingkat kepercayaan didefinisikan sebagai berikut:

- 95% C.I. = skewness statistic ± 1.96 * (standard error of skewness), dan
- 95% C. I. = kurtosis statistic ± 1.96 * (standard error of kurtosis).

Sebagai contoh, jika skewness statistik adalah -.339 dan standard error skewness adalah .388, maka 95% confidence interval ditemukan sebagai 95% C. I. = skewness statistic \pm 1.96 * (standard error of skewness).

```
= -.339 \pm 1.96 * .388
= -.339 \pm 0.761
= (-.339 - 0.761) to (-.339 + 0.761)
= -1.100 to 0.422
```

Representasi grafik dari 95% confidence interval dari nilai skewness ini dapat ditunjukkan seperti gambar berikut.

Gambar 5.6. 95% Confidence Interval for the Skewness Value

Untuk kurtosisnya dapat dihitung sebagai berikut:

Representasi grafik dari 95% confidence interval dari nilai kurtosis ini dapat ditunjukkan seperti gambar di bawah ini.

 $Gambar\ 5.7.\ 95\%\ Confidence\ Interval\ for\ the\ Kurtosis\ Value$

Range dari 95% confidence interval adalah dari -0.783 (through zero) sampai 2.193. Oleh karena 95% confidence interval memiliki nilai nol di dalamnya, maka dapat dikatakan bahwa "the distribution has no kurtosis". Ini dapat diartikan bahwa nilai korelasi memenuhi syarat untuk sebuah normally distributed atau distribusi normal.

d. Percentile values

Percentile values akan menampilkan data-data secara berkelompok menjadi sebuah prosentase. Sebagai contoh, data yang terkelompok sebagai berikut.

- Rata-rata umur 25% di bawah 19 tahun.
- Rata-rata umur 50% di bawah 20 tahun.
- Rata-rata umur 75% di bawah 23 tahun.

Dari opsi-opsi statistik yang telah dibahas di atas, berikan tanda check point untuk item-item analisa yang akan ditampilkan pada output window.

- 5. Setelah dipilih point-point statistik yang diinginkan dan sesuai dengan kebutuhan, klik tombol **Continue**.
- 6. Pilih tombol **Charts** untuk memilih model grafik yang ingin ditampilkan dalam output.

Gambar 5.8. Dialog Charts

Adapun bentuk-bentuk dari sebuah grafik sebenarnya dikelompokkan menjadi beberapa jenis, seperti:

Grafik Batang

Grafik batang menunjukkan variasi nilai dari suatu data yang ditampilkan dalam bentuk batang atau kotak. Grafik model ini paling cocok jika digunakan untuk memvisualisasikan suatu perbandingan serta dapat menunjukkan nilai dengan tepat.

Grafik Garis

Grafik garis akan menunjukkan variasi nilai suatu data dengan tampilan yang berupa garis. Grafik baris mempunyai beberapa kelebihan, seperti dapat menunjukkan hubungan antarnilai dengan baik dan mudah dimengerti. Kelemahannya adalah jika terlalu banyak garis akan terkesan rumit dan tampilan yang terkesan sangat sederhana.

Grafik Pie

Seperti namanya, grafik model pie merupakan bagan yang berbentuk lingkaran yang menyerupai sebuah kue (pie). Tiap-tiap potong dari kue tersebut menunjukkan nilai prosentase dari data.

- 7. Selanjutnya setelah mengatur semua pilihan, klik **Continue** jika ingin dilanjutkan ke langkah berikutnya.
- 8. Klik **OK** dari kotak dialog **Frequencies**.

Membaca Output

Setelah dilakukan pemilihan option-option yang diinginkan dan sesuai kebutuhan, selanjutnya tekan tombol OK pada kotak dialog **Frequencies** untuk melanjutkan perintah. Penekanan tombol OK akan memunculkan output lengkap seperti gambar di bawah ini.

Gambar 5.9. Output Lengkap

Output Tabel Statistik

Tabel statistik ditunjukkan seperti Gambar 5.10 di bawah, terlihat beberapa hal hasil pengolahan yang dapat dijelaskan sebagai berikut.

- N menunjukkan jumlah data yang diproses, yaitu 20 buah data.
- Mean menunjukkan rata-rata dari masing-masing variabel semua responden.
- Median menunjukkan titik tengah data, yaitu jika data diurutkan dan dibagi dua sama besar.
- Mode menunjukkan nilai yang paling sering muncul dalam suatu range statistik.
- Standard deviasi menunjukkan dispersi rata-rata dari sampel.

- Minimum menunjukkan data terkecil dari sekelompok variabel.
- Maximum menunjukkan nilai data yang terbesar, demikian seterusnya.

Statistics

	umur	pendidikan	jeniskelamin	keterangan
N Valid	9	8	8	9
Missing	0	1	1	0
Mean	28.2222	2.5000	1.6250	2.0000
Std. Error of Mean	3.12151	.37796	.18298	.28868
Median	32.0000	3.0000	2.0000	2.0000
Mode	16.00°	3.00	2.00	1.00=
Std. Deviation	9.36453	1.06904	.51755	.86603
Variance	87.694	1.143	.268	.750
Skewness	137	468	644	.000
Std. Error of Skewness	.717	.752	.752	.717
Kurtosis	-2.052	831	-2.240	-1.714
Std. Error of Kurtosis	1.400	1.481	1.481	1.400
Range	24.00	3.00	1.00	2.00
Minimum	16.00	1.00	1.00	1.00
Maximum	40.00	4.00	2.00	3.00
Sum	254.00	20.00	13.00	18.00
Percentiles 25	19.0000	1.2500	1.0000	1.0000
50	32.0000	3.0000	2.0000	2.0000
75	36.5000	3.0000	2.0000	3.0000

a. Multiple modes exist. The smallest value is shown

Gambar 5.10. Tabel Statistik

Output Tabel Frekuensi

Output berikutnya dari hasil pengolahan data di atas yang masih tampil pada lembar analisa ini adalah tabel Frekuensi. Tabel ini menunjukkan frekuensi kemunculan data seperti Gambar 5.11. Pada output tersebut dapat dijelaskan beberapa hal sebagai berikut.

• Frequency, menunjukkan jumlah responden yang memiliki umur tertentu. Seperti responden dengan umur 16 tahun ada 1 orang, responden dengan umur 18 tahun ada 1 orang, demikian seterusnya.

• *Percent*, menunjukkan prosentase dari jumlah data yang memiliki tinggi tertentu.

Frequency umur

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	16	1	11.1	11.1	11.1
	18	1	11.1	11.1	22.2
	20	1	11.1	11.1	33.3
	21	1	11.1	11.1	44.4
	32	1	11.1	11.1	55.6
	34	1	11.1	11.1	66.7
	35	1	11.1	11.1	77.8
	38	1	11.1	11.1	88.9
	40	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

Gambar 5.11. Tabel Frequency Umur

pendidikan

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	2	22.2	25.0	25.0
	2	1	11.1	12.5	37.5
	3	4	44.4	50.0	87.5
	4	1	11.1	12.5	100.0
	Total	8	88.9	100.0	
Missing	System	1	11.1		
Total		9	100.0		

Gambar 5.12. Frekuensi Pendidikan

Dari tabel frekuensi Pendidikan pada Gambar 5.12 bisa dilihat bahwa terdapat 2 reponden yang lulusan SD, 1 reponden yang lulusan SMP, dan 4 responden yang lulusan SMA, serta 1 responden lulusan Perguruan Tinggi.

jeniskelamin

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	3	33.3	37.5	37.5
	2	5	55.6	62.5	100.0
	Total	8	88.9	100.0	
Missing	System	1	11.1		
Total		9	100.0		

Gambar 5.13. Frekuensi Jenis Kelamin

Dari table frekuensi Jenis kelamin bisa dilihat bahwa ada 3 responden yang jenis kelamin laki-laki dan 5 responden yang memiliki jenis kelamin perempuan.

keterangan

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	3	33.3	33.3	33.3
	2	3	33.3	33.3	66.7
	3	3	33.3	33.3	100.0
	Total	9	100.0	100.0	

Gambar 5.14. Frekuensi Keterangan

Sedangkan dari tabel keterangan bisa dilihat bahwa terdapat 3 responden mengatakan setuju, 3 responden mengatakan raguragu, dan 3 responden juga yang menyatakan tidak setuju.

Output Grafik

Output terakhir yang ada dalam lembar data output adalah tampilan grafik *bar chart*. Laporan berbentuk grafik ini akan cukup penting karena mempermudah pemakai untuk memahami secara cepat isi dari sebuah laporan yang disajikan.

Gambar 5.15. Output Grafik

Prosedur Descriptives

Statistik dengan analisis deskriptif, sebenarnya hampir sama dengan statistik frekuensi, yaitu menghasilkan analisa dispersi (standard deviasi, minimum, maksimum), distribusi (kurtosis, skewness) dan *mean*, *sum*, dan lain sebagainya.

Analisis ini juga memiliki kegunaan pokok untuk melakukan pengecekan terhadap input data, mengingat bahwa analisis ini akan menghasilkan resume data secara umum. Seperti berapa jumlah responden laki-laki, berapa jumlah responden perempuan, dan sebagainya. Disamping itu, analisis ini juga memiliki kegunaan untuk menyediakan informasi deskripsi data dan demografi sampel yang diambil.

Sebagian besar analisis statistik memang dikalkulasi menggunakan prosedur frekuensi, tetapi prosedur analisis deskritif memiliki keunggulan, yaitu lebih efisien dalam beberapa hal karena tidak melakukan sorting atau pengurutan data nilai ke tabel frekuensi.

Contoh Kasus

Gambar 5.16 menunjukkan tabel sebagai contoh kasus yang akan dibahas pada analisa menggunakan prosedur descriptives.

	nama	umur	didik	jk	ket	
1	Ani	18.00	3.00	2.00	2.00	Г
2	Emi	42.00	3.00	2.00	3.00	Г
3	Haikal	23.00	1.00	1.00	3.00	Г
4	Joko	25.00	2.00	1.00	1.00	Г
- 5	Joni	45.00		1.00	1.00	Г
6	Navida	30.00	3.00	2.00	2.00	Г
- 7	Parto	41.00	4.00		1.00	Г
8	Rika		1.00	2.00	1.00	Г
9	Romi	22.00	2.00	1.00		Г
10						
4.4	ı					г

Gambar 5.16. Data yang Akan Diolah

Untuk menjalankan prosedur deskriptive, lakukan langkah sebagai berikut.

- 1. Untuk menjalankan prosedur deskriptif ini, kita dapat menggunakan menu pada SPSS, yaitu Analyze -> Descriptive Statistics -> Descriptives.
- 2. Dengan pemilihan menu Descriptives tersebut, akan muncul tampilan kotak dialog sebagai berikut.

Gambar 5.17. Deskriptif Dialog

- 3. Terlihat bahwa meskipun file ini sebenarnya memiliki 5 variabel, tetapi yang terlihat hanya variabel yang bertipe numerik saja. Hal ini berbeda dengan ketika menggunakan analisis frekuensi yang memunculkan semua variabel dan semua tipe data.
- 4. Masukkan variabel yang akan dianalisa dari kolom kiri ke kolom Variabel yang ada di sebelah kanan. Perhatikan tampilannya seperti pada gambar di bawah ini.

Gambar 5.18. Memindahkan Variabel

- 5. Dengan tampilan seperti di atas, berarti bahwa ada empat data yang akan dianalisa, yaitu umur, pendidikan, jeniskelamin, dan juga keterangan.
- 6. Selanjutnya klik tombol **Option** untuk mengatur opsi-opsi analisis dekripsi. Penekanan tombol tersebut akan memunculkan tampilan seperti di bawah ini.
- 7. Tombol **Options** digunakan untuk menampilkan daftar opsiopsi statistik yang akan ditampilkan pada lembar output sesuai dengan kebutuhan analisis. Tekan tombol tersebut untuk mengatur opsi statistik yang diinginkan. Penekanan tombol tersebut akan menampilkan jendela seperti di bawah ini.

Gambar 5.19. Kotak Dialog Options

- 8. Perhatikan bahwa pada kotak Options Dialog, isinya hampir sama dengan statistik frekuensi. Namun, memang lebih simpel dan hanya memuat beberapa item statistik saja.
- 9. Tentukan jenis opsi yang diinginkan dan berikan tanda chek point untuk opsi yang dipilih. Sebagai latihan, pilih opsi-opsi sebagai berikut:
 - Mean, menunjukkan rata-rata dari masing-masing variabel semua responden.
 - Standard Deviasi, menunjukkan dispersi rata-rata dari sampel.
 - Maximum, menunjukkan nilai tertinggi dari suatu deretan data.
 - Minimum, menunjukkan nilai terendah dari suatu deretan data
 - Kurtosis dan Skewness, yang digunakan untuk melakukan pengecekan apakah distribusi data yang diolah masuk dalam kategori distribusi normal.
 - Pilih Order berdasarkan Variable List, untuk menentukan kriteria dalam melakukan pengurutan data.

• Kotak Display Order menunjukkan kriteria pengurutan data. Pengurutan bisa dilakukan berdasarkan variabel, rata-rata nilai, atau alphabetic.

Hasil Analisis

Setelah ditentukan variable yang dipilih, langkah selanjutnya adalah menjalankan prosedur. Tekan tombol OK pada kotak dialog analisis deskriptif sehingga akan muncul window output seperti pada gambar di bawah ini.

Descriptives Descriptive Statistics Ν Minimum Maximum Statistic Statistic Statistic umur 8 22.00 45.00 pendidikan 8 1.00 4.00 jeniskelamin 8 1.00 2.00 keterangan 8 1.00 3.00 Valid N (listwise)

Gambar 5.20. Output Maximum dan Minimum

Gambar 5.20 di atas menunjukkan nilai maksimum dan minimum data. Seperti contoh data umur responden yang tertinggi adalah 45 tahun dan data umur terendah adalah 22 tahun.

Descriptives

Descriptive Statistics

	N	Me	Mean		
	Statistic	Statistic	Std. Error	Statistic	
umur	8	31.2500	3.4834	9.85248	
pendidikan	8	2.3750	.3750	1.06066	
jeniskelamin	8	1.5000	.1890	.53452	
keterangan	8	1.7500	.3134	.88641	
Valid N (listwise)	5				

Gambar 5.21. Output Mean dan STD

Gambar 5.21 menunjukkan nilai rata-rata dan nilai standard deviasi. Rata-rata keterangan adalah 1,75 yang berarti bahwa sebagian besar responden menyatakan setuju dengan kenaikan SPP.

Descriptives

Descriptive Statistics

	N	Skewness		
	Statistic	Statistic	Std. Error	
umur	8	.474	.752	
pendidikan	8	045	.752	
jeniskelamin	8	.000	.752	
keterangan	8	.615	.752	
Valid N (listwise)	5			

Gambar 5.22. Output Skewness

Gambar 5.22 menunjukkan nilai skewness yang menunjukkan distribusi data normal. Diikuti dengan standard error dari nilai skewness tersebut.

Descriptives

Descriptive Statistics

	N	Kurtosis		
	Statistic	Statistic	Std. Error	
umur	8	-2.028	1.481	
pendidikan	8	940	1.481	
jeniskelamin	8	-2.800	1.481	
keterangan	8	-1.481	1.481	
Valid N (listwise)	5			

Gambar 5.23. Output Kurtosis

Gambar 5.23 memperlihatkan nilai kurtosis yang menunjukkan distribusi data normal. Diikuti dengan standard error dari nilai kurtosis tersebut.

Prosedur Explore

Analisis eksplorasi data merupakan teknik analisa yang sekaligus dapat membantu memberi arahan bagi peneliti untuk memilih teknik statistik yang akan diimplementasikan pada data yang akan dikehendaki. Prosedur eksplorasi data memungkinkan untuk mengetahui tampilan data, identifikasi data, deskripsi data, pengujian asumsi, perbedaan karakteristik antara subpopulasi, yaitu group dalam suatu kasus.

Pada hasil eksplorasi data ini, tampilan data mungkin menunjukkan bahwa data yang akan dianalisis memiliki nilai yang tidak biasa. Misalkan dalam suatu data pengamatan ada suatu data yang nilainya jauh dari jangkauan nilai-nilai yang ada, nilai yang ekstrim, jarak antara data atau karakteristik yang lain.

Selanjutnya dengan melakukan eksplorasi data mungkin mengindikasikan kebutuhan transformasi data (akan dibahas lebih rinci pada bab selanjutnya) jika teknik yang akan digunakan mensyaratkan berdistribusi normal atau mungkin membutuhkan suatu analisis statistik non-parametrik.

Contoh Kasus

Pada tabel yang telah dibuat pada latihan sebelumnya, yaitu Tabel 2.1, buatlah eksplorasi data-nya.

nama	umur	nilaiword	nilaiexcel	
Bambang TM	19.00	80.00	60.00	
Winarso	20.00	70.00	60.00	
Widarto	19.00	90.00	80.00	
Petry Anja	17.00	80.00	70.00	
Tony Ardi	23.00	50.00	80.00	
Ineke Sari	22.00	70.00	90.00	
Arya Dwino	25.00	50.00	60.00	

Gambar 5.24. Tabel yang Akan Dianalisa dengan Explore

- 1. Pilih menu **Analyze** pada menubar, kemudian klik **Descriptive Statistics**.
- 2. Pilih bagian **Explore** sehingga akan keluar tampilan seperti gambar di bawah ini, dan pilih variabel yang dikehendaki.

Gambar 5.25. Dialog Explore

- 3. Klik anak panah kanan pada kolom yang sesuai untuk variabel tersebut, misalkan kolom **Dependent List**.
- 4. Pada eksplorasi data dapat digunakan variabel kuantitatif (pengukuran interval atau rasio). Variabel yang terdapat pada **Faktor List** digunakan untuk mem-*break* data dalam suatu group menunjukkan kategori, nilai ini dapat berupa numerik atau string pendek.
- 5. **Label Case** digunakan untuk memberi label pada tampilan luar *Boxplot* yang dapat berupa string atau numerik.
- 6. Pada bagian tombol analisis terdapat tiga pilihan, yaitu:
 - **Statistics**; untuk melakukan perhitungan statistik-statistik dasar.
 - **Plots**; tombol untuk membuat visualisasi grafik dari analisis.
 - **Options**; digunakan untuk mengelola *missing case* atau data yang tidak tercatat.

7. Jika dipilih tombol statistik, akan muncul tampilan berikut.

Gambar 5.26. Dialog Explore Statistik

8. Tekan **Continue** dan selanjutnya pilih tombol **Plots**. Akan muncul dialog sebagai berikut.

Gambar 5.27. Dialog Plot

9. Jika selesai diatur, klik continue dan tekan tombol OK.

Pembahasan Output

Beberapa hasil analisa yang dapat dilihat dari tabel output antara lain adalah tabel descriptives, tabel m-estimator, percentile, outlier, dan tampilan grafik *steam and leaf plots power estimation*. Outputoutput tersebut akan dibahas sebagai berikut.

Tabel Descriptive

Pengukuran ini menunjukkan ukuran terpusat dari data yang diwakili oleh mean (rata-rata) dan dispersi data yang berupa standard deviasi, standard error, varian, nilai minimum, nilai maksimum, range, jangkaun interkuartil, median, dan 5% trimmed mean.

	Descriptives ^a							
	nilaiwo	rd		Statistic	Std. Error			
umur	50	Mean		24.0000	1.00000			
		95% Confidence Interval	Lower Bound	11.2938				
		for Mean	Upper Bound	36.7062				
		5% Trimmed Mean						
		Median		24.0000				
		Variance		2.000				
		Std. Deviation		1.41421				
		Minimum		23.00				
		Maximum		25.00				
		Range		2.00				
		Interquartile Range						
		Skewness						
		Kurtosis						
	70	Mean		21.0000	1.00000			
		95% Confidence Interval	Lower Bound	8.2938				
		for Mean	Upper Bound	33.7062				
		5% Trimmed Mean						
		Median		21.0000				
		Variance		2.000				
		Std. Deviation		1.41421				
		Minimum		20.00				
		Maximum		22.00				
		Range		2.00				
		Interquartile Range						
		Skewness						

Gambar 5.28. Output Descriptives

Kurtosis

Trimmed mean sendiri dihitung dengan cara data diurutkan secara ascending, kemudian setelah urut dihitung 5% dari jumlah data dengan dimutlakkan perhitungannya. Setelah ketemu nilainya, nilai tersebut digunakan untuk mengurangi data sebanyak nilai

yang diperoleh dari urutan terkecil dan juga dari urutan terbesar, kemudian sisa data dicari mean-nya.

Dalam Descriptive dapat ditentukan interval konfidensi rata-rata dengan default 95%, tetapi nilai dapat diubah sesuai dengan kemauan dari penganalisis data.

Tabel M-Estimators

Pengukuran ini berkaitan dalam statistik Robust yang diimplementasikan pada perhitungan rata-rata dan median untuk mengestimasi lokasi data terpusat.

M-Estimators^e

	nilai word	Huber's M- Estimator	Tukey's Biweight	Hampel's M- Estimator	Andrews' Wave ^d
umur	50	24.0000	24.0000	24.0000	24.0000
	70	21.0000	21.0000	21.0000	21.0000
	80	18.0000	18.0000	18.0000	18.0000

- a. The weighting constant is 1.339.
- b. The weighting constant is 4.685.
- c. The weighting constants are 1.700, 3.400, and 8.500
- d. The weighting constant is 1.340*pi.
- e. umur is constant when nilaiword = 90.00. It has been omitted.

Gambar 5.29. Output M-Estimator

Perhitungan yang diperoleh antara lain M-estimator Huber, Estimator Andrew's wave, M-estimator Hampel, dan Estimator Tukey.

Tabel Percentiles

Pengukuran ini digunakan untuk menampilkan nilai persentil seperti yang terlihat pada tampilan seperti gambar di bawah.

Percentiles^a

	nilai			Percentiles					
		word	5	10	25	50	75		
Weighted Average	umur	50	23.0000	23.0000	23.0000	24.0000			
(Definition 1)		70	20.0000	20.0000	20.0000	21.0000			
		80	17.0000	17.0000	17.0000	18.0000			
Tukey's Hinges	umur	50			23.0000	24.0000	25.0000		
		70			20.0000	21.0000	22.0000		
		80			17.0000	18.0000	19.0000		

a. umur is constant when nilaiword = 90.00. It has been omitted

Gambar 5.30. Percentiles

Tabel Outliers

Pengukuran ini digunakan untuk menampilkan nilai data terbesar dan data terkecil beserta dengan labelnya. Dengan adanya tampilan seperti ini, peneliti akan mengetahui range data dengan baik.

Extreme Values a,b

	WORD			Case Number	Value
UMUR	50,00	Highest	1	7	25,00
		Lowest	1	5	23,00
	70,00	Highest	1	6	22,00
		Lowest	1	2	20,00
	80,00	Highest	1	1	19,00
		Lowest	1	4	17,00

The requested number of extreme values exceeds the number of data points. A smaller number of extremes is displayed.

Gambar 5.31. Outliers

Steam and Leaf Plots

Steam and Leaf Plots berkaitan dengan visualisasi grafik dari data yang merupakan alternatif kontrol visualisasi jika dimiliki lebih dari satu variabel dependent.

b. UMUR is constant when WORD = 90,00. It has been omitted.

Gambar 5.32. Stem and Leaf Plots

Factor Level melakukan "generalisasi" sebagian visualisasi untuk setiap variabel dependent, sedangkan **Dependents Together** melakukan "generalisasi" sebagian visualisasi untuk setiap group yang didefinisikan dengan faktor variabel.

Analisa Crosstabs

Analisa crosstabs merupakan analisa yang masuk dalam kategori statistik deskripsi di mana menampilkan tabulasi silang atau tabel kontingensi yang menunjukkan suatu distribusi bersama dan pengujian hubungan antara dua variabel atau lebih. Terdapat banyak kategori statistik yang tersedia di dalam CROSSTABS prosedur.

Beberapa statistik CROSSTABS digunakan untuk data skala nominal, tetapi beberapa di antaranya juga skala interval. Dalam rangka menggunakan hasil dari CROSSTABS, kita harus bisa mengenali seperti apa macam data adalah sesuai dengan statistik masing-masing dan harus pula mengenali tingkatan pengukuran untuk skala yang sedang diteliti.

Set pengorganisasian statistik CROSSTABS beberapa di antaranya sesuai dengan ukuran skala nominal, antara lain:

- Pearson Chi-Square
- Likelihood Ratio

- Phi, Cramer's V
- Contingency Coefficient
- Lambda
- Goodman & Kruskal Tau
- Uncertainty Coefficient
- Kappa

Beberapa pengorganisasian yang lainnya sesuai dengan skala ordinal, seperti:

- Mantel-Haenszel
- Gamma,
- Tau c dan Tau b
- Somers' D
- Spearman Korelasi

Sedangkan beberapa pengorganisasian yang lain sesuai dengan ukuran tingkatan interval, yaitu:

- Pearson's R
- Eta.

Contoh Kasus

Di bawah ini data hasil penelitian 15 orang mengenai jenis kelamin, jumlah jam belajar dalam satu hari, dan rata-rata nilai ujian. Dari data tersebut di atas, lakukan uji statistik untuk mengetahui ada dan tidaknya hubungan antara jenis kelamin dengan rata-rata nilai atau jam belajar dengan rata-rata nilai.

Gambar 5.33. Contoh Data

Untuk membuat statistik deskripsi dengan crosstabs, lakukan langkah-langkah dengan program SPSS sebagai berikut:

- 1. Lakukan analisis **Crosstabs** dengan memilih menu analyze, lalu pilih **Descriptive Statistics** dan klik **Crosstabs**.
- 2. Jika kita akan melihat hubungan jenis kelamin dengan nilai rata-rata, pilih variabelnya seperti berikut.

Gambar 5.34. Dialog Crosstabs

3. Klik bagian Statistics dan perhatikan pilihan yang ada seperti berikut.

Gambar 5.35. Crosstabs Statistics

- 4. Beri tanda di kotak check point Chi Square saja. Untuk jenis analisis yang lain akan kita bahas pada bagian analisa statistik berikutnya dari buku ini.
- 5. Tekan Continue dan pilih tombol OK.

Pembahasan Output

Beberapa tampilan output yang muncul antara lain sebagai berikut.

Tabel Case Processing Summary

Pengukuran ini digunakan untuk mengetahui rangkuman data yang dianalisa. Berapa data yang ada, berapa data yang hilang, baik dalam prosentase maupun dalam nilai angkanya.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
JENISKEL * NILAITES	15	100,0%	0	.0%	15	100,0%

Gambar 5.36. Case Processing Summary

Tabel Crosstabulation

Tabel ini memuat deskripsi jumlah data dan hubungannya. Perhatikan gambar di bawah ini.

JENISKEL * NILAITES Crosstabulation

Count								
			NILAITES					
		5,00	6,00	7,00	8,00	Total		
JENISKEL	L	2	1	1	2	6		
	Р	3	3	1	2	9		
Total		5	4	2	4	15		

Gambar 5.37. Case Processing Summary

Dari tabel di atas terlihat bahwa:

- Terdapat 2 orang laki-laki yang mendapat rata-rata nilai 5.
- Terdapat 3 orang perempuan yang mendapat rata-rata nilai 5.
- Terdapat 1 orang laki-laki yang mendapat rata-rata nilai 6.
- Terdapat 3 orang perempuan yang mendapat rata-rata nilai 6.
- Terdapat 1 orang laki-laki yang mendapat rata-rata nilai 7, dan seterusnya.

Tabel Chi-Square Test

Uji Chi Square ini akan mengamati secara lebih detail tentang ada dan tidaknya hubungan antara variabel jenis kelamin dan nilai test.

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	,625a	3	,891
Likelihood Ratio	,644	3	,886
N of Valid Cases	15		

a. 8 cells (100,0%) have expected count less than 5. The minimum expected count is ,80.

Gambar 5.38. Tabel Chi Square Test

Untuk mengetahui ada dan tidaknya hubungan antara variabel jenis kelamin dan nilai test, perhatikan dasar pengambilan keputusan berdasarkan ilmu statistika sebagai berikut:

- Ho: Tidak ada hubungan antara baris dan kolom.
- H1: Ada hubungan antara baris dan kolom.

Selanjutnya jika probabilitas > 0.05 maka Ho diterima. Dan sebaliknya, jika probabilitas < 0.05 maka Ho ditolak.

Nilai probablilitas pada tabel ini bisa dilihat dari kolom Asymp Sig (2 Sided). Karena Asymp. Sig-nya adalah 0.891 yang berarti lebih besar dari 0.05, maka Ho diterima. Jika Ho diterima, berarti bahwa tidak ada hubungan antara baris dan kolom variabel atau lebih jelasnya "tidak ada hubungan antara jenis kelamin dengan ratarata nilai".

Mencari Hubungan Jam Belajar dengan Rata-Rata Nilai

Dengan cara yang sama, yaitu menggunakan cross tabulation, dapat dicari hubungan antara jam belajar dengan rata-rata nilai. Lakukan langkah-langkah seperti di atas, dan akan muncul hasil analisa sebagai berikut.

Case Processing Summary

Berapa data yang ada, berapa data yang hilang, baik dalam prosentase maupun dalam nilai angkanya bisa dilihat sebagai berikut.

Case Processing Summary

		Cases						
	Valid		Missing		Total			
	z	Percent	Z	Percent	Z	Percent		
JAMBEL * NILAITES	15	100,0%	0	,0%	15	100,0%		

Gambar 5.39. Case Processing Summary

Tabel Crosstabulation

Tabel deskripsi jumlah data dan hubungannya dapat dilihat seperti di bawah ini.

JAMBEL * NILAITES Crosstabulation

Count

			NILAITES					
		5,00	6,00	7,00	8,00	Total		
JAMBEL	1,00	2	1	0	0	3		
	2,00	3	3	0	0	6		
	3,00	0	0	0	1	1		
	4,00	0	0	2	2	4		
	5,00	0	0	0	1	1		
Total		5	4	2	4	15		

Gambar 5.40. Case Processing Summary

Dari tabel di atas terlihat hasil analisa sebagai berikut.

- Terdapat 2 orang yang belajar 1 jam sehari dan mendapat rata-rata nilai 5.
- Terdapat 3 orang yang belajar 2 jam sehari dan mendapat rata-rata nilai 5.
- Terdapat 1 orang yang belajar 1 jam sehari dan mendapat rata-rata nilai 6.
- Terdapat 3 orang yang belajar 2 jam sehari dan mendapat rata-rata nilai 5.
- Terdapat 2 orang yang belajar 4 jam sehari dan mendapat rata-rata nilai 7.
- Dan seterusnya.

Tabel Chi-Square Test

Uji Chi Square ini akan mengamati secara lebih detail tentang ada dan tidaknya hubungan antara variabel jenis rata-rata jam belajar dan nilai test.

Untuk mengetahui ada dan tidaknya hubungan antara variabel jenis rata-rata jam belajar dan nilai test, dapat langsung dilihat probabilitasnya. Dari tabel tersebut terlihat bahwa Asymp Sig-nya adalah 0.086 yang berarti lebih besar dari 0.05, maka Ho diterima. Jika Ho diterima, berarti bahwa tidak ada hubungan antara baris dan kolom variabel. Akan tetapi, setidaknya kita bisa melihat

bahwa ternyata nilai probabilitas mendekati 0.05 yang dapat dikatakan bahwa hampir ada hubungan antara rata-rata jam belajar dengan nilai test.

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	19,125ª	12	,086
Likelihood Ratio	22,512	12	,032
Linear-by-Linear Association	10,038	1	,002
N of Valid Cases	15		

 ²⁰ cells (100,0%) have expected count less than 5. The minimum expected count is ,13.

Gambar 5.41. Tabel Chi Square Test

Terkadang memang sebuah penelitian tidak mendapatkan hasil sesuai dengan keinginan atau teori yang ada. Namun, itulah penelitian. Hasilnya bisa 1001 kemungkinan. Ketidaktepatan hasil penelitian mungkin dapat disebabkan banyak hal, seperti salah metode pengambilan sampel, karena kurangnya data penelitian, dan lain-lain sehingga hasil sebuah penelitian terkadang dipandang rancu dan tidak sesuai harapan atau tidak sesuai dengan teori yang ada.