Somme de variables aléatoires, concentration, loi des grands nombres

Table des matières

1	Son	omme de deux variables aléatoires				
	1.1	Définition	2			
	1.2	Linéarité de l'espérance et additivité de la variance	2			
2	Son	nme de variables identiques et indépendantes	3			
	2.1	Décomposition d'une variable aléatoire suivant une loi binomiale.	3			
	2.2	Échantillon d'une variable aléatoire	3			
3	Con	centration et loi des grands nombres	4			
	3.1	Inégalité de Bienaymé-Tchebychev	4			
	3.2	Application à un intervalle de rayon de k fois l'écart-type	5			
	3.3					
	3.4	Loi des grands nombres	6			

-

1 Somme de deux variables aléatoires

1.1 Définition

Définition 1 : Soit X et Y deux variables aléatoires associées à une même expérience d'univers fini Ω et a un réel.

X + Y et aX sont deux variables aléatoires définies sur Ω qui prennent comme valeur pour un événement donné respectivement : la somme des valeurs de X et Y et le produit de a par X.

Exemple : On lance deux dés, l'un tétraédrique numéroté de 1 à 4 et l'autre cubique numéroté de 1 à 6. On appelle X et Y les variables aléatoires associées respectivement aux résultats du dé tétraédrique et du dé cubique.

- X + Y est la variable aléatoire qui prend les valeurs de 2 à 10.
- 2X est la variable aléatoire qui prend les valeurs 2, 4, 6, 8.

Remarque: On peut généraliser la somme de variable aléatoires à n variables. Par exemple: on lance 3 dés cubiques de couleurs différentes et l'on note X, Y et Z les résultats des dés de chaque couleur. On peut considérer la variable X + Y + Z qui prend les valeurs de 3 à 18.

1.2 Linéarité de l'espérance et additivité de la variance

Théorème 1 : Soit X et Y deux variables aléatoires d'un univers Ω et $a \in \mathbb{R}$:

• Linéarité de l'espérance : E(X + Y) = E(X) + E(Y) et E(aX) = aE(X)

Si les variables *X* et *Y* sont indépendantes :

• Additivité de la variance : V(X+Y) = V(X) + V(Y) et $V(aX) = a^2V(X)$

Remarque: On considéra l'indépendance des variables au sens intuitif du terme c'est à dire que le résultat de X n'influe pas sur le résultat de Y comme dans le lancement de deux dés.

Exemple: De l'exemple précédent, on a :

•
$$E(X) = \frac{1}{4}(1+2+3+4) = 2.5$$
 et $E(Y) = \frac{1}{6}(1+2+3+4+5+6) = 3.5$.

Donc E(X + Y) = 2,5 + 3,5 = 6 et $E(2X) = 2 \times 2,5 = 5$.

La moyenne de la somme des résultats est 6 sur un grand nombre de lancers.

•
$$V(X) = \frac{1}{4}(1+4+9+16) - 2,5^2 = 1,25$$

$$V(Y) = \frac{1}{6}(1+4+9+16+25+36) - 3,5^2 = \frac{35}{12} \approx 2,92$$

Donc
$$V(X + Y) = V(X) + V(Y) \approx 4,17$$
 et $V(2X) = 4 \times 1,25 = 5$

Remarque: On peut généraliser ces résultats à la somme de n variables.

2 Somme de variables identiques et indépendantes

2.1 Décomposition d'une variable aléatoire suivant une loi binomiale

Théorème 2 : Soit n variables aléatoires indépendantes $X_1, X_2, ..., X_n$ suivant la même loi de Bernoulli $\mathcal{B}(p)$.

La variable aléatoire $S_n = X_1 + X_2 + \cdots + X_n$ suit alors la loi binomiale $\mathcal{B}(n, p)$.

Démonstration: Soit les variables X_i suivant une même loi de Bernoulli $\mathcal{B}(p)$ qui prend la valeur 1 pour un succès avec $i \in [1, n]$. Comme les variables X_i sont indépendantes, leur somme $X_1 + X_2 + \cdots + X_n$ prendra comme valeur le nombre de succès pour n expériences de Bernoulli, donc $S_n = X_1 + X_2 + \cdots + X_n$ suit la loi binomiale $\mathcal{B}(n, p)$.

Exemple: Soit X_i suivant une loi de Bernoulli $\mathcal{B}(0,13)$ pour $i \in [1,10]$, alors $S_{10} = X_1 + X_2 + \cdots + X_{10}$ suit la loi binomiale $\mathcal{B}(10;0,13)$.

<u>Théorème</u> **3** : Toute variable aléatoire X suivant la loi binomiale $\mathcal{B}(n,p)$ peut se décomposer en une somme de n variables indépendantes S_n .

 $S_n = X_1 + X_2 + \ldots + X_n$ où X_i avec $i \in [1, n]$ suit une même loi de Bernoulli $\mathcal{B}(p)$.

Remarque: Ce théorème permet de démontrer l'expression de l'espérance et de la variance d'une loi binomiale $\mathcal{B}(n,p)$.

En effet si X suit la loi binomiale $\mathcal{B}(n,p)$, on peut décomposer X en somme de n variables indépendantes suivant la loi de Bernoulli $\mathcal{B}(p)$ d'espérance p et de variance p(1-p).

•
$$E(X) = E(X_1 + X_2 + \dots + X_n) \stackrel{\text{linéarité}}{=} \underbrace{E(X_1) + E(X_2) + \dots + E(X_n)}_{n \text{ variables suivant } \mathscr{B}(p)} = np$$

•
$$V(X) = V(X_1 + X_2 + ... + X_n) \stackrel{\text{additivit\'e}}{=} \underbrace{V(X_1) + V(X_2) + ... + V(X_n)}_{n \text{ variables ind\'ependantes suivant } \mathscr{B}(p)} = np(1-p)$$

Exemple: Soit X suivant la loi binomiale $\mathcal{B}(5;0,3)$ alors, on peut décomposer X en somme de 5 variables suivant la loi de Bernoulli $\mathcal{B}(0,3)$.

2.2 Échantillon d'une variable aléatoire

Définition 2 : Soit une variable X suivant une loi de probabilité.

Une liste de variables indépendantes $(X_1, X_2, ..., X_n)$ suivant cette même loi est appelée échantillon de taille n associé à X.

On pose
$$S_n = X_1 + X_2 + \cdots + X_n$$
 et $M_n = \frac{S_n}{n}$, on a alors :

$$\mathrm{E}(S_n) = n\,\mathrm{E}(X)$$
 , $\mathrm{E}(M_n) = \mathrm{E}(X)$ et $\mathrm{V}(S_n) = n\mathrm{V}(X)$, $\mathrm{V}(M_n) = \frac{\mathrm{V}(X)}{n}$

Remarque: Plus la taille n de l'échantillon est grand plus la variance de M_n est petite donc plus la valeur de M_n se rapproche de l'espérance de X.

Exemple: Soit *X* une variable aléatoire dont la loi de probabilité est donné par le tableau suivant.

On considère un échantillon $(X_1, X_2, ..., X_n)$ de la loi suivie par X et la variable aléatoire moyenne M_n

x_i	-10	5	20
$p(X=x_i)$	$\frac{1}{4}$	$\frac{11}{20}$	$\frac{1}{5}$

Déterminer la taille de l'échantillon n à partir de laquelle la variance de M_n devient inférieure à 0,05.

On calcule l'espérance et la variance de *X* :

•
$$E(X) = \frac{1}{20}(-50 + 55 + 80) = \frac{85}{20} = \frac{17}{4}$$

•
$$V(X) = \frac{1}{20}(500 + 275 + 1600) - \left(\frac{17}{4}\right)^2 = \frac{475}{4} - \frac{289}{16} = \frac{1611}{16} \approx 100,7$$

$$V(M_n) < 0.05 \Leftrightarrow \frac{V(X)}{n} < 0.05 \Leftrightarrow n > \frac{V(X)}{0.05} \approx 2.014$$

À partir d'un échantillon de 2 014 variables, la variance de M_n est inférieur à 0,05.

3 Concentration et loi des grands nombres

3.1 Inégalité de Bienaymé-Tchebychev

Théorème 4 : Soit X une variable aléatoire d'espérance μ et de variance V.

$$\forall \delta \in]0; +\infty[, p(|X-\mu| \geqslant \delta) \leqslant \frac{V}{\delta^2}$$

Remarque: La probabilité que X se trouve en dehors de l'intervalle $[\mu - \delta; \mu + \delta]$ est inférieur à $\frac{V}{\delta^2}$. Cette inégalité conduit à la loi des grands nombres.

Exemple: La taille moyenne d'une femme française est de 1,65 m et la variance est évaluée à 0,002 5. Majorer la proportion des femmes françaises dont la taille est inférieure ou égale à 1,55 ou supérieure ou égale à 1,75.

Soit T_F la variable aléatoire associée à la taille d'une femme française. On a donc :

$$\mu = 1,65 \quad \text{et} \quad V = 0,0025$$

$$|T_F - 1,65| \geqslant 0,1$$

$$\delta = 0,1$$
On a alors: $p(|T_F - 1,65| \geqslant 0,1) \leqslant \frac{0,0025}{0,1^2} \Leftrightarrow p(|T_F - 1,65| \geqslant 0,1) \leqslant 0,25$

Il y a au plus un quart des femmes françaises dont la taille est inférieure ou égale à 1,55 ou supérieure ou égale à 1,75.

3.2 Application à un intervalle de rayon de k fois l'écart-type

Théorème S: Soit X une variable aléatoire d'espérance μ et d'écart-type σ .

$$\forall k \in \mathbb{N}^*, \ p(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Démonstration: On prend, avec $k \in \mathbb{N}^*$, $\delta = k\sigma \Rightarrow \delta^2 = k^2\sigma^2 = k^2V$

De inégalité de Bienaymé-Tchebychev:

$$p\left(|X-\mu| \geqslant \delta\right) \leqslant \frac{\mathsf{V}}{\delta^2} \stackrel{\delta=k\sigma}{\Rightarrow} p\left(|X-\mu| \geqslant k\sigma\right) \leqslant \frac{\mathsf{V}}{k^2\mathsf{V}} \ \Rightarrow \ p\left(|X-\mu| \geqslant k\sigma\right) \leqslant \frac{1}{k^2}$$

Exemple: Sur une roue de loterie il y a 4 secteurs rouges sur 10. On fait tourner 20 fois la roue en notant par X le nombre de fois où la roue tombe sur un secteur rouge.

La variable aléatoire X suit alors la loi binomiale $\mathcal{B}(20~;~0,4)$. Majorer la probabilité que X soit en dehors de l'intervalle centrée en μ et de rayon 2σ .

$$\mu = 20 \times 0, 4 = 8$$
 et $\sigma = \sqrt{20 \times 0, 4 \times 0, 6} \approx 2, 19$
On a alors : $p(|X - \mu| \ge 2\sigma) \le \frac{1}{4}$

 $2\sigma \approx 4,4$, à l'aide de la calculatrice, on trouve :

$$p(|X-8| \ge 4,4) \stackrel{X \in \mathbb{N}}{=} p(|X-8| \ge 4)$$

$$= p(X \le 4) + p(X \ge 12)$$

$$= p(X \le 4) + 1 - p(X \le 11)$$

$$\approx 0,11$$

L'inégalité de Bienaymé-Tchebychev donne une majoration de 0,25 qui est loin d'être optimale comme le calcul sur la calculatrice le montre.

3.3 Inégalité de concentration

<u>Théorème</u> 6 : Soit $(X_1, X_2, ..., X_n)$ un échantillon de variables aléatoires d'espérance μ et de variance V et M_n la variable aléatoire moyenne de cet échantillon.

$$\forall \delta \in]0; +\infty[, p(|M_n - \mu| \geqslant \delta) \leqslant \frac{V}{n\delta^2}$$

Remarque: On rappelle que $M_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$

Démonstration: D'après les relations sur l'espérance et la variance de la variable aléatoire d'un échantillon, on a $E(M_n) = \mu$ et $V(M_n) = \frac{V}{n}$.

D'après l'inégalité de Bienaymé-Tchebychev, on a :

$$p\left(\left|M_{n}-\mu\right|\geqslant\delta\right)\leqslant\frac{\mathrm{V}(M_{n})}{\delta^{2}}\ \stackrel{\mathrm{V}(M_{n})=\frac{\mathrm{V}}{n}}{\Leftrightarrow}\ p\left(\left|M_{n}-\mu\right|\geqslant\delta\right)\leqslant\frac{\mathrm{V}}{n\delta^{2}}$$

PAUL MILAN 5 TERMINALE MATHS SPÉ

Exemple: On prend un dé tétraédrique bien équilibré dont on a déterminé au paragraphe 1.2 l'espérance $\mu=2,5$ et la variance V=1,25.

Combien de lancers du dé tétraédrique doit-on faire pour s'assurer au seuil de 95 % que la moyenne des résultats des lancers est dans l'intervalle [2, 45 ; 2, 55].

Le rayon de l'intervalle [2,45; 2,55] est $\delta = 2,55-2,5=0,05$.

Soit M_n la variable aléatoire moyenne d'un échantillon de n lancers. On a alors :

$$p(|M_n - \mu| \ge \delta) \le \frac{V}{n\delta^2} \iff p(|M_n - 2, 5| \ge 0, 05) \le \frac{1, 25}{0, 05^2 n} \iff p(|M_n - 2, 5| \ge 0, 05) \le \frac{500}{n} \implies \frac{500}{n} \le 0, 05 \iff n \ge \frac{500}{0, 05} = 10\ 000$$

Il faut faire au moins 10 000 lancers pour s'assurer que la moyenne des résultats est à moins de 5 % de l'espérance au seuil de 95 %.

Vérification : fonction simul() en Python 🥏 .

En exécutant 4 fois simul(), on trouve : 2,4978 , 2,5073 , 2,4987 , 2,5149

Remarque: La majoration est loin d'être optimale, comme les valeurs trouvées, à moins de 2 % de l'espérance, le montrent!

```
from random import*
def simul():
    s=0
    for i in range(10000):
        s=s+randint(1,4)
    return s/10000
```

3.4 Loi des grands nombres

Théorème 7 : Soit $(X_1, X_2, ..., X_n)$ un échantillon de variables aléatoires d'espérance μ et M_n la variable aléatoire moyenne de cet échantillon.

$$\forall \delta \in]0; +\infty[, \lim_{n \to +\infty} p(|M_n - \mu| \geqslant \delta) = 0$$

Remarque: Pour un δ donné aussi petit soit-il, la limite de la probabilité que M_n soit en dehors de l'intervalle $[\mu - \delta; \mu + \delta]$ est nul.

Ce théorème montre de façon rigoureuse, que lorsqu'on lance un grand nombre de fois une pièce de monnaie bien équilibrée, on a une chance sur deux en moyenne que la pièce tombe sur « pile » ou sur « face ».

PAUL MILAN 6 TERMINALE MATHS SPÉ