INSTITUTO SUPERIOR TÉCNICO

Search and Planning

2022/2023 Academic Year

1st Period

1st Exam

November 6, 2023

Duration: 2h

- This is a closed book exam.
- To ensure equal conditions for all students, no answers will be given to questions asked during the exam.
- Ensure that your name and number are written on all pages.

EXAM SOLUTION

I. Modeling with CSP ((1.5+0.5)+2 = 4/20)

- 1) Recall a few notes about cryptarithmetic problems:
 - Each letter is assigned a digit, with different letters being assigned different digits.
 - A solution to a problem is constrained by the arithmetic operation.
 - A number cannot start with digit 0.

Now consider the following cryptarithmetic problem instance: GO + TO = OUT.

- a. Formulate it as a constraint network, identifying variables, domains, and constraints.
- b. Infer the assignments to the variables that would be identified by a constraint solver.

- a. Variables: $\{G, O, T, U, C_1, C_2\}$. Domains: $D_{G,O,T,U} = \{0..9\}$ and $D_{C_1,C_2} = \{0,1\}$, Constraints: $G \neq 0, T \neq 0, O \neq 0, O + O = T + 10 \times C_1, G + T + C_1 = U + 10 \times C_2, O = C_2,$ AllDifferent(G, O, T, U).
- b. Since O = 1, then O + O = 1 + 1 = 2. So, T = 2. G + 2 = 10 + U. If G = 9, then U = 1, which is not valid since O = 1. So, G = 8 and U = 0. Hence, O + U + T = 1 + 0 + 2 = 3. Final assignments: O = 1, G = 8, T = 2, U = 0.

- 2) Now consider the problem of binary puzzles. A binary puzzle is represented by an $n \times n$ grid, and we need to fill it with 0s or 1s somehow that three constraints must be satisfied:
 - i. The number of 1s and 0s must be the same in a row or column.
 - ii. All rows must be different from each other. And columns too.
 - iii. There must not be more than two consecutive 1s and 0s in a column or row.

The figure illustrates an example of a binary puzzle, where the initial grid and the solution grid are shown.

Propose a formulation of the problem as a constraint network, identifying variables, domains, and constraints.

Solution:

Variables $X_{i,j}$ with $1 \le i, j \le n$.

Domains $D_X = \{0, 1\}.$

Constraints (i):

$$\forall_{1 \leq i \leq n} \sum_{j=1}^{n} X_{i,j} = n/2$$

$$\forall_{1 \leq j \leq n} \sum_{i=1}^{n} X_{i,j} = n/2$$

Constraints (ii):

$$\forall_{a,b} \ s.t. 1 \le a < b \le n : (X_{a,1},...,X_{a,n}) \ne (X_{b,1},...,X_{b,n})$$

$$\forall_{a,b} \ s.t. 1 \le a < b \le n : (X_{1,n},...,X_{n,a}) \ne (X_{1,b},...,X_{n,b})$$

Constraints (iii):

$$\begin{aligned} &\forall_{1\leq i\leq n}\forall_{1\leq j\leq n-2}\ 1\leq X_{i,j}+X_{i,j+1}+X_{i,j+2}\leq 2\\ &\forall_{1\leq i\leq n-2}\forall_{1\leq j\leq n}\ 1\leq X_{i,j}+X_{i+1,j}+X_{i+2,j}\leq 2 \end{aligned}$$

II. Inference in CSP (2 + 2 = 4/20)

1) Suppose we have the following CSP:

• Variables: R, S, T

• Domains: $D_R = D_S = D_T = \{0, 1, 2\}$

• Constraints: $R \neq S, S < T, R = \lfloor T/2 \rfloor$ (i.e. R = floor(T/2).

Apply AC-3 to the network according to the algorithm that is given below.

AC-3(R)

Input: A network of constraints $\Re = (X, D, C)$.

Output: \mathcal{R}' , which is the largest arc-consistent network equivalent to \mathcal{R} .

1. **for** every pair $\{x_i, x_j\}$ that participates in a constraint $R_{ij} \in \mathcal{R}$

2. $queue \leftarrow queue \cup \{(x_i, x_j), (x_j, x_i)\}$

3. endfor

4. while queue \neq {}

5. select and delete (x_i, x_j) from queue

6. REVISE($(x_i), x_j$)

7. **if** REVISE((x_i) , x_i) causes a change in D_i

8. **then** $queue \leftarrow queue \cup \{(x_k, x_i), k \neq i, k \neq j\}$

9. endif

10. endwhile

Solution:

Initial Queue $Q = \{(R,S),(S,R),(T,S),(S,T),(T,R),(R,T)\}$

Pair	Constraint	Consistent?	Domain update	Additions to Q	
(R,S)	$R \neq S$	yes	_	_	
(S,R)	$R \neq S$	yes	_	_	
(T,S)	T > S	no	$D_T = \{0\}$	$+\{(R,T)\}$ already in Q	
(S,T)	S < T	no	$D_S = \{2\}$	$+\{(R,S)\}$	
(T,R)	$R = \lfloor T/2 \rfloor$	yes		_	
(R,T)	$R = \lfloor T/2 \rfloor$	no	$D_R = \{2\}$	$+\{(S,R)\}$	
(R,S)	$R \neq S$	yes	_	_	
(S,R)	$R \neq S$	yes	_	_	

2) Consider the following network illustrated in the figure.

Variables: x, y, z

Domains: $D_x = [0..4], D_y = [1..5], D_z = [5..10]$ Constraints: Constraints: x < y, y < z, x < z

Show the result of applying path-consistency to the network. For your convenience, the PC-2 algorithm is given below.

PC-2(果)

Input: A network $\Re = (X, D, C)$.

Output: \mathcal{R}' a path-consistent network equivalent to \mathcal{R} .

1.
$$Q \leftarrow \{(i, k, j) \mid 1 \le i < j \le n, 1 \le k \le n, k \ne i, k \ne j\}$$

- 2. while Q is not empty
- 3. select and delete a 3-tuple (i, k, j) from Q
- 4. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \bowtie D_k \bowtie R_{kj}) / * (revise-3((i, j), k))$
- 5. **if** R_{ii} changed then
- 6. $Q \leftarrow Q \cup \{(l, i, j) \ (l, j, i) \mid 1 \le l \le n, l \ne i, l \ne j\}$
- 7. endwhile

Solution:

Step	Triplet	Relation update	Additions to Q
1	(x,y,z) (x,z,y) (y,x,z) (y,z,x)	$R_{xz} \leftarrow R_{xz} \setminus \{(4,5)\}$	(y,x,z),(y,z,x)
2	(x,z,y)	none	
3	(y,x,z)	none	
4	(y,z,x)	none	

Explanation for removing tuple (4,5) from R_{xz} :

 $R_{x,z} = \{(x,z) | x < z, x \in [0..4], y \in [5..10]\}$. But for $4 \in [0..4]$ and $5 \in [5..10]$ there is no $y \in [1..5]$ s.t. 4 < y and y < 5.

III. Search in CSP ((1.5 + 1) + 1.5 = 4/20)

1) Consider the following constraint network.

- a. **Perform** backtracking using the *graph-based backjumping algorithm*. The variables and values must be chosen using ascending alphabetical order. Indicate the induced ancestors where applicable.
- b. **Discuss** the drawback of graph-based backjumping using this constraint network.

Solution:

a.

b. The drawback is the so-called thrashing, i.e. the assignment $v_1 = 0$ has been followed by assigning different combinations of values to v_2, v_3, v_4 to end up concluding that any solution requires $v_1 \neq 0$. Conflict-directed backjumping would have avoided this situation.

R1

2) Consider a simple version of WALKSAT as illustrated in the figure. **Illustrate** the use of WALKSAT until a solution is found, with the occurrence of at least two violated constraints, for the CNF formula $\varphi = \{(P \lor Q \lor \neg R), (\neg P), (\neg Q \lor R)\}.$

procedure WALKSAT

Input: A network $\Re = (X, D, C)$, number of flips MAX_FLIPS, MAX_TRIES, probability p.

Output: "True," and a solution, if the problem is consistent, "false," and an inconsistent best assignment, otherwise.

- 1. for i = 1 to MAX_TRIES do
- 2. **start** with a random initial assignment \bar{a} .
- 3. Compare best assignment with \bar{a} and retain the best.
- 4. for i = 1 to MAX_FLIPS
 - if \bar{a} is a solution, return true and \bar{a} .
 - else,
 - i. pick a violated constraint C, randomly
 - ii. **choose** with probability p a variable-value pair (x,a') for $x \in scope$ (C), or, with probability 1 p, choose a variable-value pair (x,a') that minimizes the number of new constraints that break when the value of x is changed to a' (minus 1 if the current constraint is satisfied).
 - iii. Change x's value to a'.
- 5. endfor
- 6. return false and the best current assignment.

Solution:

Random initial assignment for variables P, Q, $R = \{T,T,F\}$

Pick violated constraint $(\neg P)$ and get assignment $\{F,T,F\}$

Pick violated constraint $(\neg Q \lor R)$ and get solution assignment $\{F,T,T\}$

IV. Plan Space Planning (1 + 3 = 4/20)

1) Consider the following start and goal states for the planning problem illustrated below, as well as two actions.

Define the initial state and the goal state as a set of predicates.

Solution:

Initial state: On(A,Table), On(B,Table), On(C,A), Clear(B), Clear(C)

Goal state: On(A,B), On(B,C)

2) Illustrate the plan resulting from applying Plan-Space Search (PSP) to the planning problem defined before.

V. Temporal Planning ((1 + 1) + 2 = 4/20)

- 1) Consider the timeline $(\{[t_1,t_2]loc(r) = loc1, [t_3,t_4]loc(r1) = l\}, \{t_1 < t_2, t_3 < t_4\}).$
 - a. **Explain** why the timeline is consistent but not secure.

Solution:

The timeline is consistent because there is a ground instance such that (i) it satisfies all the constraints in C and (ii) it does not specify two different values for a state variable at the same time. For example, assume instance r=r2 and $t_1=1,t_2=2,t_3=3,t_4=4$. However, the timeline is not secure because we can find an instance that meets the constraints in C but is not consistent. For example, assume that r=r1, l=loc2 and $t_1=1,t_2=3,t_3=2,t_4=4$. In this case, r1 is at two different locations (loc1 and loc2) between time 2 and 3.

b. Suggest TWO alternative additional constraints that make the timeline secure.

$$r \neq r1$$
 and $t_2 < t_3$

2) Consider the following temporal network.

Run algorithm Path-Consistency (PC) on the network.

$$\mathsf{PC}(\mathcal{V}, \mathcal{E})$$
 for $k = 1, \dots, n$ do for each pair i, j such that $1 \leq i < j \leq n, i \neq k$, and $j \neq k$ do $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \bullet r_{kj}]$ if $r_{ij} = \emptyset$ then return inconsistent

k	i	j	R_{ik}	R_{kj}	$R_{ik} \cdot R_{kj}$	R_{ij}	$R_{ij} \leftarrow R_{ij} \cap (R_{ik} \cdot R_{kj})$
0	1	2	[-20,-10]		$[-\infty, +\infty]$	[30,40]	[30,40]
0	1	3	[-20,-10]	$[-\infty, +\infty]$	$[-\infty, +\infty]$	$[-\infty, +\infty]$	$[-\infty, +\infty]$
0	1	4	[-20,-10]	[30,70]	[30,60]	$[-\infty, +\infty]$	[30,60]
0	2	3	$[-\infty, +\infty]$	$[-\infty, +\infty]$	$[-\infty, +\infty]$	[-20,0]	[-20,0]
0	2	4	$[-\infty, +\infty]$	[50,70]	$[-\infty, +\infty]$	$[-\infty, +\infty]$	$[-\infty, +\infty]$
0	3	4	$[-\infty, +\infty]$	[50,70]	$[-\infty, +\infty]$	[40,50]	[40,50]
1	0	2	[10,20]	[30,40]	[40,60]	$[-\infty, +\infty]$	[40,60]
1	0	3	[10,20]	$[-\infty, +\infty]$	$[-\infty, +\infty]$	$[-\infty, +\infty]$	$[-\infty, +\infty]$
1	0	4	[10,20]	[30,60]	[40,80]	[50,70]	[50,70]
1	2	3	[-40,-30]	$[-\infty, +\infty]$	$[-\infty, +\infty]$	[-20,0]	[-20,0]
1	2	4	[-40,-30]	[30,60]	[-10,30]	$[-\infty, +\infty]$	[-10,30]
1	3	4	$[-\infty, +\infty]$	[30,60]	$[-\infty, +\infty]$	[40,50]	[40,50]
2	0	1	[40,60]	[-40,-30]	[0,30]	[10,20]	[10,20]
2	0	3	[40,60]	[-20,0]	[20,60]	$[-\infty, +\infty]$	[20,60]
2	0	4	[40,60]	[-10,30]	[30,90]	[50,70]	[50,70]
2	1	3	[30,40]	[-20,0]	[10,40]	$[-\infty, +\infty]$	[10,40]
2	1	4	[30,40]	[-10,30]	[20,70]	[30,60]	[30,60]
2	3	4	[0,20]	[-10,30]	[-10,50]	[40,50]	[40,50]
3	0	1	[20,60]	[-40,-10]	[-20,50]	[10,20]	[10,20]
3	0	2	[20,60]	[0,20]	[20,80]	[40,60]	[40,60]
3	0	4	[20,60]	[40,50]	[60,110]	[50,70]	[60,70]
3	1	2	[10,40]	[0,20]	[10,60]	[30,40]	[30,40]
3	1	4	[10,40]	[40,50]	[50,90]	[30,60]	[50,60]
3	2	4	[-20,0]	[40,50]	[20,50]	[-10,30]	[20,30]
4	0	1	[60,70]	[-60,-50]	[0,20]	[10,20]	[10,20]
4	0	2	[60,70]	[-30,-20]	[30,50]	[40,60]	[40,50]
4	0	3	[60,70]	[-30,-40]	[10,30]	[20,60]	[20,30]
4	1	2	[50,60]	[-30,-20]	[20,40]	[30,40]	[30,40]
4	1	3	[50,60]	[-50,-40]	[0,20]	[10,40]	[10,20]
4	2	3	[20,30]	[-50,-40]	[-30,-10]	[-20,0]	[20,-10]