EECS240 - Spring 2010

Lecture 8: Current Sources

Elad Alon Dept. of EECS

Bias Current Sources

- What makes a current source a current source?
 - · High output impedance
- · Other important properties:
 - Voltage range (V_{min})
 - Noise
 - Accuracy
- · Techniques: cascoding, gain boosting

EECS240

Lecture 8

Bias Current Source

• Is this a "good" bias current source?

EECS240

Lecture 8

Current Mirror

· Better approach: current mirror

EECS240

Lecture 8

Noise

$$\begin{split} \overline{i_{om}^2} &= \overline{i_{d1}^2} + M^2 \overline{i_{d2}^2} \\ &= 4k_B T \gamma (g_{m1} + M^2 g_{m2}) \Delta f \\ &= 4k_B T \gamma g_{m1} (1 + M) \Delta f \\ &= 4k_B T \frac{1}{2} \Delta f \end{split}$$

- · M2 adds noise
 - Choose small M (power), or
 Filter at gate of M1
- Current source FOMs
 - Output resistance R_o
 - Noise resistance R_N
 - Active sources boost R_o, not R_N

EECS240

Lecture 8

Noise cont'd

- $I_{_{_{_{}}}}^{2}$ from transistor current source much larger than real R with same output impedance
- · So why do we use transistors as current sources?

EECS240

Lecture 8

V_{min} versus Noise

 Voltage required for large r_o ("saturation"): V_{min} ~ V*

$$V_{\min} = k \times V *$$
typ. $k = 1...2$

- Minimum noise (for given I_D):
- → large R_N → large V* (and, hence, V_{min})

$$R_{\scriptscriptstyle N} = \frac{1}{\gamma g_{\scriptscriptstyle m1}} \frac{1}{1+M}$$

• Eats into signal swing...

$$= \frac{V_{\min}}{2\gamma k I_D} \frac{1}{1+M}$$

EECS240

Lecture 8

Bipolar's, GaAs, ...

$$\overline{i_{on}^2} = \overline{i_{on}^2} \left[\frac{1}{1 + g_m R_E} \right]^2 + \overline{i_{on}^2} \left[\frac{g_m R_E}{1 + g_m R_E} \right]^2 \Delta f \qquad (\overline{i_s} = 0)$$

a)
$$g_m R_E = 0$$
 $\overline{i_{on}^2} = 2k_B T g_m \Delta f$
 $R_D = \frac{2}{3} = \frac{2V_t}{3}$ set by I_D

$$\overline{i_{om}^2} = 2k_B T g_m \Delta f$$

$$R_N = \frac{2}{g_m} = \frac{2V_t}{I_C} \quad \text{set by } I_C$$

- Increasing R_E lowers noise
 - Same in MOS, BJT, etc.
 - V_{min} always trades with noise

· Lowest possible noise: resistor (large V_{min})

EECS240

High-Swing Cascode Biasing

- Need circuit for generating V_{bias2}
- Accuracy important for high V_{ds}/high Ro
 - In practice, not quite as critical (V_{ds} often low)
- · Assume you've seen these before
 - Review G & M if not

EECS240 Lecture 8 12

