CIÊNCIAS AMBIENTAIS / BIOLÓGICAS/ DA NATUREZA

(BIO)ESTATÍSTICA

Prof^a. Letícia Raposo profleticiaraposo@gmail.com

OBJETIVOS DA AULA

- Compreender os conceitos e terminologias relativos à teoria das probabilidades;
- Prever a ocorrência de um ou mais eventos utilizando a teoria das probabilidades;
- Aprender a usar modelos de probabilidade para entender melhor os fenômenos aleatórios.

INTRODUÇÃO

Nas aulas anteriores...

- Entender uma variável estudando o <u>comportamento de um</u> <u>conjunto de observações</u> (amostra).
- Predomínio do <u>raciocínio indutivo</u>: com base na organização e descrição dos dados observados, procuramos fazer conjecturas sobre o universo (população) em estudo.
- Hoje...

 Raciocínio de forma inversa: procuraremos entender como poderão ocorrer os resultados de uma variável, considerendo certas suposições (<u>raciocínio dedutivo</u>).

INTRODUÇÃO

Supondo que 60% dos estudantes da Universidade usam a biblioteca, o que se pode deduzir sobre a porcentagem de alunos que usam a biblioteca em uma amostra simples de 10 alunos?

- A resposta a essa indagação <u>não é um simples número</u>, pois dependendo dos alunos selecionados, teremos resultados diferentes.
- Precisamos apresentar quais são os possíveis resultados e como eles poderão ocorrer → modelos probabilísticos.

MODELOS PROBABILÍSTICOS

DEFINIÇÕES BÁSICAS

Os modelos probabilísticos são construídos a partir de certas hipóteses ou conjecturas sobre o problema em questão e constituem-se de duas partes:

- 1) dos <u>possíveis resultados</u> e
- 2) de uma certa <u>lei que nos diz quão provável é cada resultado</u> (ou grupo de resultados).

Problema em questão

Lançamento de uma moeda

Possíveis resultados

Cara ou coroa

O quanto é provável cada resultado

Probabilidade de ocorrer cara é a mesma de ocorrer coroa

DEFINIÇÕES BÁSICAS

Seja um experimento aleatório (experiência ou situação em que deve ocorrer um, dentre vários resultados possíveis).

Espaço amostral S é o conjunto de TODOS os resultados possíveis do experimento e será denotado por Ω .

ESPACO AMOSTRAL

Exemplos:

 \blacktriangleright Lançar um moeda e observar a face voltada para cima: Ω = {cara, coroa}.

Lançar um dado e observar o número de pontos marcado no lado voltado para cima: $\Omega = \{1,2,3,4,5,6\}$.

Numa certa universidade, indagar a um aluno se ele já usou a biblioteca: $\Omega = \{sim, n\tilde{a}o\}$.

> Numa escola de ensino fundamental, selecionar uma criança e medir a sua altura: $\Omega = \{x, tal \ que \ x \in \Re \ e \ 0 < x < \}$

ESPAÇO AMOSTRAL

Discreto

Continuo

Quando podemos listar os possíveis resultados.

Quando temos um infinidade de resultados possíveis dentro de um intervalo de números reais.

DEFINIÇÕES BÁSICAS

Seja um experimento aleatório (experiência ou situação em que deve ocorrer um, dentre vários resultados possíveis).

Espaço amostral é o conjunto de TODOS os resultados possíveis do experimento e será denotado por Ω .

Evento é um <u>conjunto de resultados</u> de um experimento.

Podemos dizer que A é um evento se e somente se A é um subconjunto do espaço amostral Ω , pois Ω é o conjunto de TODOS os resultados possíveis.

EVENTO

Exemplo:

No lançamento de um dado, podemos ter interesse nos seguintes eventos:

 $A = ocorrer \ um \ número \ par - A = \{2,4,6\};$

 $B = \text{ocorrer um } n^{\circ} \text{ menor que três - } B = \{1,2\};$

 $C = ocorrer o ponto seis - C = \{6\}; e$

D = ocorrer um ponto maior que seis - D = { }.

Evento impossível – representado pelo conjunto vazio.

UNIÕES, INTERSECÇÕES E COMPLEMENTOS

EVENTOS MUTUAMENTE EXCLUSIVOS

Não possuem elementos em comum, de forma que eles não podem ocorrer simultaneamente.

DEFINIÇÕES BÁSICAS

Seja um experimento aleatório (experiência ou situação em que deve ocorrer um, dentre vários resultados possíveis).

Espaço amostral é o conjunto de TODOS os resultados possíveis do experimento e será denotado por Ω .

Evento é um <u>conjunto de resultados</u> de um experimento.

Podemos dizer que A é um evento se e somente se A é um subconjunto do espaço amostral Ω , pois Ω é o conjunto de TODOS os resultados possíveis.

Probabilidade é um <u>valor entre 0 e 1.</u> A <u>soma das probabilidades</u> de todos os resultados possíveis do experimento deve ser <u>igual a 1.</u>

 No <u>lançamento de um moeda</u>, se considerarmos a moeda perfeitamente equilibrada e o lançamento imparcial, os resultados tornam-se equiprováveis. Temos o seguinte modelo probabilístico:

Resultado	Probabilidade
Cara	0,5 (1/2)
Coroa	0,5 (1/2)

No <u>lançamento de um dado</u>, se considerarmos o dado perfeitamente equilibrado e o lançamento imparcial, tem-se o seguinte modelo probabilístico:

Resultado	1	2	3	4	5	6
Probabilidade	1/6	1/6	1/6	1/6	1/6	1/6

 Na seleção de uma bola na urna, sabendo que temos 7 bolas azuis e 3 vermelhas, supondo que a bola seja extraída aleatoriamente, temos o seguinte modelo:

Resultado	Probabilidade
Azul	0,7 (7/10)
Vermelha	0,3 (3/10)

 No problema de usuários da biblioteca, vamos supor que em toda a universidade 60% dos alunos usam e 40% não. Se o aluno for selecionado aleatoriamente, o modelo probabilístico será:

Resultado	Probabilidade
Sim	0,6
Não	0,4

<u>Princípio da equiprobabilidade</u>: quando as características do experimento sugerem N resultados possíveis, todos com igual probabilidade de ocorrência, a probabilidade de um certo evento A, contendo N_A resultados, pode ser definida por:

$$P(A) = \frac{N_A}{N}$$

• A = ocorrer um
$$n^{\circ}$$
 par - $P(A) = \frac{3}{6} = \frac{1}{2} = 0.5$

• B = ocorrer um
$$n^{\circ} < 3 - P(B) = \frac{2}{6} = \frac{1}{3}$$

$$C = ocorrer o ponto 6 - P(C) = \frac{1}{6}$$

D = ocorrer um ponto >
$$6 - P(D) = \frac{0}{6} = 0$$
.

Uma forma mais geral de alocar probabilidades a eventos é somando as probabilidades dos resultados que compõem o evento.

$$P(ocorrer \ n^{o} \ par) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

Ex: seja uma urna com 5 bolas brancas, 3 vermelhas e 2 pretas. Selecionar uma bola ao acaso. Qual a probabilidade da bola selecionada ser branca ou vermelha?

$$P(branca\ ou\ vermelha) = \frac{5}{10} + \frac{3}{10} = \frac{8}{10} = 0.8$$

$$P(branca\ ou\ vermelha) = 1 - P(preta) = 1 - \frac{2}{10} = 0.8$$

OU = SOMA!!!

- Eventos <u>independentes:</u> quando a ocorrência de um deles não altera a probabilidade da ocorrência do outro.
 - Ex: no lançamento imparcial de um dado e uma moeda, os eventos A = nº par no dado e B = cara na moeda podem ser admitidos como independentes, já que a ocorrência de A (ou B) nada tem a ver com a ocorrência de B (ou A).
- Quando a ocorrência de um evento puder ser interpretada como resultante da <u>ocorrência simultânea</u> <u>de dois outros eventos independentes</u>, sua probabilidade pode ser obtida pelo <u>produto das probabilidades</u> individuais desses eventos.

Exemplo: Lançar duas vezes, de forma imparcial e <u>independente</u>, um dado perfeitamente equilibrado. Calcular a probabilidade de <u>ocorrer número par em ambos</u> os lançamentos.

 $P(n^{\underline{o}} \ par \ em \ ambos \ os \ lançamentos) = \\ = P(n^{\underline{o}} \ par \ no \ 1^{\underline{o}} \ lançamento) \times P(n^{\underline{o}} \ par \ no \ 2^{\underline{o}} \ lançamento) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

E = PRODUTO!!!

Um experimento médico mostrou que a <u>probabilidade</u> de um novo medicamento ser efetivo é de 0,75, a <u>probabilidade de um certo efeito colateral é de 0,4</u> e a <u>probabilidade de ambos</u> ocorrerem é de 0,3. Esses eventos são independentes?

Um experimento médico mostrou que a probabilidade de um novo medicamento ser efetivo é de 0,75, a probabilidade de um certo efeito colateral é de 0,4 e a probabilidade de ambos ocorrerem é de 0,3. Esses eventos são independentes?

$$P(A \cap B) = 0.3$$

PARA SEREM EVENTOS
$$\longrightarrow P(A \cap B) = P(A)P(B)$$
INDEPENDENTES $P(A \cap B) = 0.75 \times 0.4 = 0.3$

REGRAS BÁSICAS DA PROBABILIDADE

■ A probabilidade de um evento A ocorrer é um número entre 0 e 1:

$$0 \le P(A) \le 1$$

- O espaço amostral S tem probabilidade igual a 1: P(S) = 1
- A probabilidade de um conjunto vazio (\emptyset) ocorrer é nula: $P(\emptyset) = 0$
- Regra da adição: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Eventos mutuamente excludentes: $P(A \cup B) = P(A) + P(B)$
- Se A^C for o evento complementar de A: $P(A^C) = 1 P(A)$
- Regra da multiplicação para eventos independentes:

$$P(A \cap B) = P(A) \times P(B)$$

Aproximadamente <u>4,25% da população é cega e 50% da população é feminina</u>. Se a <u>probabilidade de ser cego **ou** mulher é 54%, qual é a <u>probabilidade de uma pessoa ser cega **e** mulher</u>?</u>

Aproximadamente 4,25% da população é cega e 50% da população é feminina. Se a probabilidade de ser cego ou mulher é 54%, qual é a probabilidade de uma pessoa ser cega e mulher?

- ✓ C: é cego
- ✓ M: é mulher
- $\checkmark P(C) = 0.0425$
- $\checkmark P(M) = 0.50$
- $\checkmark P(C \cup M) = 0.54$
- $\checkmark P(C \cap M) = ?$

$$P(C \cup M) = P(C) + P(M) - P(C \cap M)$$

0,54 = 0,0425 + 0,50 - P(C \cap M)
$$P(C \cap M) = 0,0025$$

PROBABILIDADE CONDICIONAL

Quando a obtenção das probabilidades <u>depende do que é</u> <u>conhecido e do que foi aprendido ou assumido</u> sobre a situação que estamos trabalhando, utilizamos a probabilidade condicional.

Sejam A e B dois eventos de um espaço amostral S, associado a um experimento, em que P(A) > 0. A probabilidade de B ocorrer condicionada a A ter ocorrido, será representada por P(B|A) e calculada por

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$\frac{N_{AB}}{N_A} = \frac{\frac{N_{AB}}{N}}{\frac{N_A}{N}}$$

PROBABILIDADE CONDICIONAL

Sejam A e B dois eventos de um espaço amostral S, associado a um experimento, em que P(A) > 0. A probabilidade de B ocorrer condicionada a A ter ocorrido, será representada por P(B|A) e calculada por

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$\frac{N_{AB}}{N_A} = \frac{\frac{N_{AB}}{N}}{\frac{N_A}{N}}$$

Note que,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\frac{N_{AB}}{N_B} = \frac{\frac{N_{AB}}{N}}{\frac{N_B}{N}}$$

As probabilidades condicionais não são definidas quando as probabilidades dos denominadores são iguais a zero.

REGRA DA MULTIPLICAÇÃO PARA PROBABILIDADES CONDICIONAIS

Com o conceito de probabilidade condicional, é possível apresentar uma maneira de se calcular a probabilidade da interseção de dois eventos A e B em função destes eventos. Esta expressão é denominada de regra da multiplicação.

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

PROBABILIDADE CONDICIONAL E PARTIÇÕES

- Seja S o espaço amostral de um experimento, e considere k eventos disjuntos $B_1, B_2 \dots, B_k$ em S tais que $\bigcup_{i=1}^k B_i = S$. Dizemos que esses eventos formam uma partição de S.
- (Lei da probabilidade total) Suponha que os eventos $B_1, B_2 ..., B_k$ formam uma partição do espaço S e que $P(B_j) > 0$ para j = 1, ..., k. Então, para qualquer evento A em S,

$$P(A) = \sum_{j=1}^{k} P(B_j) P(A|B_j)$$

O PROBLEMA DE MONTY HALL

O PROBLEMA DE MONTY HALL

Imagem retirada de https://pt.wikipedia.org/wiki/Problema_de_Monty_Hall

TEOREMA DE BAYES

THOMAS BAYES (1701-1761)

PIERRE-SIMON LAPLACE (1749-1827)

- O teorema de Bayes é um método para interpretar evidências no contexto de experiência ou conhecimento anterior.
- Foi descoberto por Thomas Bayes e descoberto independentemente por Pierre-Simon Laplace.
- Aplicações na área da epidemiologia, genética, processamento de imagem, aprendizado de máquina, psicologia, ciência forense...

TEOREMA DE BAYES

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

$$P(B|A) = \frac{P(B)P(A|B)}{P(A)}$$

Este é o teorema de Bayes, o qual permite o cálculo de P(B|A) se conhecermos P(A), P(B) e P(A|B).

TEOREMA DE BAYES

A probabilidade de ocorrência do evento B_i , dado que o evento A ocorreu no experimento:

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{P(A)}$$

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{P(B_i)P(A|B_i)} \text{ Verossimilhança}$$

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_{j=1}^n P(B_j)P(A|B_j)}$$

Você está caminhando na rua e nota que o posto de saúde está fornecendo um teste gratuito para uma certa doença. O teste tem a seguinte confiabilidade:

- Sensibilidade: se uma pessoa tem a doença, o teste tem 90% de probabilidade de dar um resultado positivo.
- Especificidade: se uma pessoa não tem a doença, o teste tem 90% de probabilidade de dar um resultado negativo. (Portanto, só 10% de probabilidade de dar resultado falso positivo).

Dados epidemiológicos indicam que a prevalência da doença é de apenas 1 em 10.000, mas como o teste é gratuito e não invasivo, você decide fazer.

Alguns dias depois você recebe uma carta informando que seu teste deu positivo. Agora, qual é a probabilidade de você ter a doença?

Alguns dias depois você recebe uma carta informando que seu teste deu positivo. Agora, qual é a probabilidade de você ter a doença?

 D_+ : ter a doença

T₊: teste positivo

- $P(D_{+}) = 0.0001 \rightarrow \text{Prevalência (Probabilidade pré-teste)}$
- $P(T_+|D_+) = 0.90$
- $P(T_{-}|D_{-}) = 0.90$
- $P(T_{+}|D_{-}) = 0.10$

$$P(D_{+}|T_{+}) = \frac{P(T_{+}|D_{+})P(D_{+})}{P(T_{+})}$$

Alguns dias depois você recebe uma carta informando que seu teste deu positivo. Agora, qual é a probabilidade de você ter a doença?

D+: ter a doença

 T_+ : teste positivo

-
$$P(D_+) = 0.0001$$

-
$$P(T_+|D_+) = 0.90$$

-
$$P(T_{-}|D_{-}) = 0.90$$

-
$$P(T_{+}|D_{-}) = 0.10$$

$$P(D_{+}|T_{+}) = \frac{P(T_{+}|D_{+})P(D_{+})}{P(T_{+})}$$

$$P(T_{+}) = P(T_{+} \cap D_{+}) + P(T_{+} \cap D_{-})$$

$$P(T_{+}) = P(T_{+}|D_{+})P(D_{+}) + P(T_{+}|D_{-})P(D_{-})$$

$$P(T_{+}) = 0.90 \times 0.0001 + 0.10 \times 0.9999 = 0.10008$$

Agora, qual é a probabilidade de você ter a doença?

D+: ter a doença

 T_+ : teste positivo

- $P(D_+) = 0.0001$

$$P(D_{+}|T_{+}) = \frac{P(T_{+}|D_{+})P(D_{+})}{P(T_{+})}$$

$$P(D_{+}|T_{+}) = \frac{0.90 \times 0.0001}{0.10008} = 0.0009$$

A probabilidade pós-teste aumentou 9x, mas continua baixa, aproximadamente 1 em 1000.

- Doença é relativamente rara (1 em 10.000).

ARTE DO DIA FEITA EM R

https://www.r-graph-gallery.com/144-droid-bb-8-data-art.html

REFERÊNCIAS BIBLIOGRÁFICAS

- BARBETTA, Pedro Alberto. Estatística aplicada às ciências sociais. Ed. UFSC, 2008.
- DANCEY, Christine P.; REIDY, John G.; ROWE,
 Richard. Estatística Sem Matemática para as Ciências da Saúde. Penso Editora, 2017.
- MAGNUSSON, Willian E. Estatística [sem] matemática: a ligação entre as questões e a análise. Planta, 2003.