Práctica 5: Funciones

Comisión: Rodrigo Cossio-Pérez y Leonardo Lattenero

- 1. Indicar cuáles de las siguientes relaciones son funciones y en caso de que si, demostrarlo o justificarlo.
 - (a) $R = \{(x, y) \in \mathbb{R}^2 \mid |x| = |y|\}$
 - (b) $R = \{(x, y) \in \mathbb{R}^2 \mid 2y + 5 = x^2\}$
 - (c) $R = \{(x, y) \in \mathbb{R}^2 \mid y = \sqrt{x}\}$
 - (d) $R = \{(x, y) \in [0, +\infty) \times \mathbb{R} \mid y = \sqrt{x}\}\$
 - (e) $R = \{(x, y) \in \mathbb{R}^2 \mid y = 3x + 1 \lor y = 4x + 1\}$
 - (f) $R = \{(x, y) \in \mathbb{R}^2 \mid (y = 3x + 1 \land x \ge 0) \lor (y = 4x + 1 \land x < 0)\}$
- 2. Para cada una de las siguientes definiciones, indicar si corresponde a una función o no. De las que sí son funciones, indicar dominio y codominio. De las que no son funciones, indicar si lo que no se cumple es unicidad, existencia o ambas, y justificar.
 - (a) Cada estudiante del curso con su altura en centímetros.
 - (b) Cada estudiante del curso con su fecha de nacimiento.
 - (c) Cada estudiante del curso con cada materia que aprobó.
 - (d) Cada estudiante del curso con el barrio en donde vive.
 - (e) Cada auto con cada taller donde se hizo un service.
 - (f) Cada auto con el primer taller en donde se hizo un service.
 - (g) Cada curso con el aula en que se dicta.
 - (h) Cada paloma con la cantidad de plumas que tiene.
 - (i) Cada ciudad de la Argentina con la provincia donde está.
 - (j) Cada ciudad de la Argentina con la provincia de la que es capital.
 - (k) Cada persona con el club del que es socio/a.
- 3. Definir una función que describa la situación, indicar el dominio, codominio e imagen y graficarla.
 - (a) Un mayorista ofrece la siguiente oferta sobre un tipo de galletitas: hasta 5 paquetes se venden a 6 pesos el paquete; pasando los 5 paquetes hasta los 10, 5 pesos por paquete adicional; pasando los 10 paquetes, 3 pesos por paquete adicional. Por ejemplo, si una persona compra 12 paquetes, paga (5.6)+(5.5)+(2.3) = 61 pesos.
 - (b) Otro mayorista ofrece una oferta distinta: hasta 5 paquetes se venden a 6 pesos el paquete; entre 6 y 10 paquetes se vende a 5 pesos el paquete; a partir de 11 paquetes, se vende a 4.5 pesos por paquete. Por ejemplo, si una persona compra 13 paquetes, paga 13 x 4.5 = 58.5 pesos.
 - (c) El mismo mayorista anterior pero redondeando como no tiene monedas inferiores a un peso para dar vuelto se ve obligado a redondear para abajo el valor cobrado

- (d) Otro mayorista vende las galletitas sueltas por peso y no por paquete. Ofrece lo siguiente: hasta 3kg se vende a 30 pesos el kilo; más de 3kg y hasta 6kg se vende a 25 pesos el kilo; más de 6kg se vende a 20 pesos el kilo. Por ejemplo, si una persona compra 7kg y paga 7 x 20 = 140 pesos. Debido a que el proveedor cobra digitalmente, se puede pagar el monto exacto sin redondear.
- 4. Se definen las siguientes relaciones en $A = \{a, b, c, d, e\}$, indicar de estas cuáles son funciones. Para las que sí sean funciones, indicar si son inyectivas y/o suryectivas, y si se puede, definir por extensión la función inversa.
 - (a) $R = \{(a,b), (b,c), (c,d)\}$
 - (b) $R = \{(a, b), (b, c), (c, d), (d, e), (e, a)\}$
 - (c) $R = \{(a,b), (b,c), (b,d), (d,e), (e,a)\}$
 - (d) $R = \{(a, a), (b, a), (c, d), (d, a), (e, a)\}$
 - (e) $R = \{(a, c), (b, e), (c, a), (d, b), (e, d)\}$
- 5. De cada una de estas funciones, indicar si es inyectiva y suryectiva, justificando. Para las que sean biyectivas, decir cuál es la función inversa, indicando dominio y codominio
 - (a) La función que indica la fecha de nacimiento de cada estudiante de la Universidad, donde el codominio son los días desde el 1ro de enero de 1800.
 - (b) La función del número de vagón en el que está cada pasajero de un tren que no tiene vagones vacíos.
 - (c) La función del número de asiento de los pasajeros de un vuelo. Pensar en dos casos: avión lleno, y avión no lleno.
 - (d) La función que indica el número de DNI de los residentes en Argentina, tomando como codominio los naturales.
 - (e) La función que relaciona de las personas que viven en un edificio e indica el departamento en que vive cada una.
 - (f) La función que relaciona los perros que se encuentran en un parque con el dueño de cada perro.
 - (g) La función que va de cada provincia de Argentina a su capital, tomando como codominio el conjunto de las ciudades capitales de provincia.
- 6. Para cada una de las leyes de asignación indicadas, indicar el dominio más amplio para definir una función $f: D_f \to \mathbb{R}$. Luego graficar la función e indicar si es inyectiva y/o suryectiva. Para las funciones que resulten biyectivas, definir la inversa.
 - (a) 3(x |x|)
 - (b) 2x 1
 - (c) 7 3x
 - (d) $x^2 + 4x 3$

(e)
$$\begin{cases} 2x - 1 & si \ x \le 1 \\ x^2 & si \ x > 1 \end{cases}$$

(f)
$$\begin{cases} -x & si \ x \le 0 \\ x & si \ 0 < x \le 3 \\ -x & si \ x > 3 \end{cases}$$

(g)
$$\begin{cases} 3x - 2 & si \ x \le 2 \\ x^2 & si \ 2 < x \le 3 \\ \frac{x+6}{9} & si \ x > 3 \end{cases}$$

(h)
$$\begin{cases} x^2 + 7 & \text{si } x \le 2\\ x + 4 & \text{si } x > 2 \end{cases}$$

- (i) $\sin(2x)$
- (j) $\cos(x) + 3$
- (k) $2\arctan(x)$
- (l) $\frac{1}{2-\sqrt{x}}$
- (m) $\log_2(x^2)$
- $(n) \exp(-x) = e^{-x}$
- (o) 2^x
- 7. Indicar a qué función corresponde este gráfico. Observando el gráfico, indicar si la función es inyectiva, y si es suryectiva.

- 8. En cada caso y de ser posible, calcular las funciones $g\circ f$ y $f\circ g$:
 - (a) $f, g : \mathbb{R} \to \mathbb{R}$ con f(x) = 3x y g(x) = x 1
 - (b) $f,g:\mathbb{R}\to\mathbb{R}$ con $f(x)=\lfloor x\rfloor$ y $g(x)=x^2$
 - (c) $f: \mathbb{R} \to \mathbb{R} \mid f(x) = 2x \text{ y } g: [0, +\infty) \to [0, +\infty) \mid g(x) = \sqrt{x}$
 - (d) $f, g : \mathbb{R} \to \mathbb{R} \text{ con } f(x) = \sin(x) \text{ y } g(x) = 3x + 4$
 - (e) $f, g : \mathbb{R} \to \mathbb{R}$ con f(x) = 3x y $g(x) = \begin{cases} x+3 & si \ x \le 6 \\ x+5 & si \ x > 6 \end{cases}$
 - (f) $f, g : \mathbb{R} \to \mathbb{R}$ con f(x) = |x| y g(x) = x + 4
 - (g) $f:(0,+\infty)\ |\ f(x)=\log(x)\ \ {\rm y}\ \ g:\mathbb{R}\to\mathbb{R}\ |\ g(x)=x^2$
 - (h) $f, g : \mathbb{R} \to \mathbb{R}$ con $f(x) = e^x$ y g(x) = |x|
 - (i) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \mid f(x) = \frac{1}{x} \text{ y } g: \mathbb{R} \to \mathbb{R} \mid g(x) = \cos(x)$
- 9. Dadas $f, g, h : \mathbb{R} \to \mathbb{R}$. Definir $f \circ g \circ h$ y $h \circ g \circ f$.

- (a) $f(x) = x^2 + 2x$, $g(x) = \frac{x}{4}$ y h(x) = x + 12.
- 10. Considerando la función $f(x) = x^2$ y las funciones a continuación, definir las siguientes funciones componiendo f con una o dos de las funciones.
 - $h_1(x) = x + 2$
 - $h_2(x) = -x$
 - $h_3(x) = 2x$
 - $h_4(x) = \frac{x}{2}$
 - $h_5(x) = x 3$
 - $h_6(x) = x 1.$
 - (a) $(x+2)^2$
 - (b) $-x^2$
 - (c) $x^2 + 2$
 - (d) $2x^2$
 - (e) $\left(\frac{x}{2}\right)^2$
 - (f) $\frac{x^2}{2}$
 - (g) $(x-3)^2-1$
 - (h) $(x-1)^2-3$
 - (i) $(x-1)^2-1$
- 11. Considerando la función f(x) = |x| y las funciones a continuación, definir las siguientes funciones componiendo f con una o dos de las funciones.
 - $h_1(x) = x + 2$
 - $h_2(x) = -x$
 - $h_3(x) = 2x$
 - $h_4(x) = \frac{x}{2}$
 - $h_5(x) = x 3$
 - $h_6(x) = x 4$
 - $h_7(x) = x + 1$
 - $h_8(x) = x + 3.$
 - (a) |x| + 2
 - (b) |x+1|+2
 - (c) -|x|-3
 - (d) $-\frac{|x|}{2}$
 - (e) -|x|
 - (f) -|x+1|
 - (g) 2|x|
 - (h) |x| 4
 - (i) |x| 2

- (j) -|x+3|
- (k) -2|x|
- (1) |x+2|+1
- $(m) \left| \frac{x}{2} \right|$
- (n) $\frac{|x|}{2}$
- 12. Resolver las siguientes ecuaciones:
 - (a) $2^x = 10$
 - (b) $2\ln(x) = 4$
 - (c) $e^{x^2+1} = \frac{1}{e^2}$
 - (d) $\ln(x) + \ln(x^2) = -\ln(6)$
- 13. Graficar las siguientes funciones e indicar el dominio e imagen:
 - (a) $2\ln(x)$
 - (b) ln(x) + 1
 - (c) $\ln(x-4)$
 - (d) $-\ln(x)$
 - (e) $-3\ln(x+1) 2$
 - (f) $\ln(-x)$
 - (g) e^{2x}
 - (h) e^{-x}
 - (i) $3e^x$
 - (j) $-e^{4x}$
 - (k) e^{x-2}
 - (1) 2^{x+1}
- 14. Graficar las siguientes funciones e indicar el dominio e imagen:
 - (a) $\sin(2x)$
 - (b) $3\sin(x)$
 - (c) $-2\sin(x)$
 - (d) $\sin(x-\pi)$
 - (e) $\sin(\pi x) + 5$
 - (f) $\sin(-x)$
 - (g) $-2\sin\left(x \frac{\pi}{2}\right) + 4$
 - (h) $2\cos(3x)$
 - (i) $-\cos\left(x-\frac{\pi}{2}\right)$
 - (j) $\cos(2x + 100\pi)$

- 15. Resolver las siguientes ecuaciones hallando todas las soluciones posibles.
 - (a) $2\sin(x) = 1$
 - (b) $3\sin(x) = 0$
 - $(c) 4\sin^2\left(x \frac{\pi}{2}\right) = 0$
 - (d) $\sin(x) \frac{\sqrt{3}}{2} = 0$
 - (e) $2\cos(-x) = \sqrt{2}$
 - (f) $20\cos(x) + 60 = -80$
- 16. Graficar las siguientes funciones.

 - (a) $\frac{2}{x}$ (b) $\frac{x+1}{x+1}$ (c) $\frac{2x+3}{4x-1}$

 - (d) $x^2 4x + 4$
 - (e) $x^2 5$
 - (f) $-x^2 + 1$
 - (g) 3(x+1)(x-1)
 - (h) $(x-1)^2 16$
 - (i) $4(x+1)^2 4$
 - (j) \sqrt{x}
 - (k) $\sqrt{-2x}$
 - (1) $\sqrt{x^2}$
 - (m) $2\sqrt{x+1}$
 - (n) $\sqrt{4x} + 5$
 - (o) $-\sqrt{x} + 3$
- 17. Hallar $f \circ g$ y graficarla.
 - (a) $f(x) = \sin(x)$ y g(x) = 2x
 - (b) $f(x) = \sqrt{x}$ y g(x) = 3x 1
 - (c) $f(x) = \ln(x)$ y g(x) = x 1
 - (d) $f(x) = e^{-x}$ y $g(x) = \ln(x)$
 - (e) $f(x) = \sqrt{x}$ y $g(x) = \ln(x-1)$
 - (f) $f(x) = \ln(x)$ y $g(x) = x^2 + 4$
 - (g) $f(x) = \sin(x)$ y $g(x) = e^{x^2 2x + 1}$
- 18. Hallar la función inversa cuando sea posible, indicando el dominio e imagen.
 - (a) $f(x) = \frac{2x-1}{3}$
 - (b) $g(x) = 2x^2 + x 1$

(c)
$$h(x) = \ln(x^2 - 1) + 5$$

(d)
$$i(t) = 4 + 16e^{-\frac{1}{2}t}$$

Respuestas

1. —

2. —

3. —

4. —

5. —

6. —

7. —

8. —

9. —

10. —

11. —

12. —

13. —

14. —

15. —

16. —

17. —

18. —