INTEGRACION DE SISTEMAS CMOS

ACTIVIDAD 2 -OSCILADOR DE RELAJACIÓN

ING. MARIANO MOREL

- Implementar un oscilador de relajación para obtener f = 4 MHz
- Simular: Vout, Isup, Vct, Vq
- Presentar esquemático a nivel transistor
- Detallar en una tabla W y L de cada MOSFET utilizado
- Considerar generadores ideales: Vmin, Vmax, IrefN, IrefP

Valores utilizados:

IBIAS = 100uA

VPOS = 3.3V

Ct = 100pF

Iref = 880uA

Vmax = 2.2V

Vmin = 1.1V

fosc = 4MHz

	FUNCTION	MULTIPLICITY	WIDTH	LENGTH
MN1	DIODE-CONNECTED	1	3	1
MP10	TG	4	3	1
MP11	TG	4	3	1
MN11	TG	4	3	1
MN12	TG	4	3	1
M6	COMPARATOR (ISS)	2	3	1
M12	COMPARATOR (ISS)	2	3	1
M7	COMPARATOR(DIFF)	1	3	1
M8	COMPARATOR(DIFF)	1	3	1
M11	COMPARATOR(DIFF)	1	3	1
M13	COMPARATOR(DIFF)	1	6	1
M4	COMPARATOR (L.A)	1	6	1
M5	COMPARATOR (L.A)	1	6	1
M9	COMPARATOR (L.A)	1	6	1
M10	COMPARATOR (L.A)	1	6	1
M14	FF RS (SUP)	1	6	1
M15	FF RS (SUP)	1	6	1
M20	FF RS (SUP)	1	6	1
M21	FF RS (SUP)	1	6	1
M16	FF RS (INF)	1	3	1
M17	FF RS (INF)	1	3	1
M18	FF RS (INF)	1	3	1
M19	FF RS (INF)	1	3	1

Observando las medidas temporales, se obtiene un periodo de T = 300.82ns, es decir f = 3.324MHz.

Como conclusión se extrae que el oscilador está funcionando pero no a la frecuencia teórica (4MHz). Esta discrepancia se puede deber principalmente a un mal dimensionamiento de los TG y la forma de generar las corrientes de carga y descarga. Se probó con la siguiente variante circuital la cual no funcionó.

