# Reducibility

#### Textbook: Chapter 5



Recall: A<sub>TM</sub>

- lacksquare  $A_{TM}$  is the set of all TM-input pairs  $\langle M,w \rangle$  such that M lacksquare Accepts w
- ightharpoonup Church and Turing proved  $A_{TM}$  is undecidable by contradiction

It's harder to find contradictions in other undecidable languages:

We need another way!

# Informal definition of reducibility

Some problems can be "reduced" to each other

**Def:** Reducibility. For two problems A and B, if A **reduces** to B, we can use a solution to B to solve A.

Ex: "Getting to Jim's house" reduces to "knowing where Jim lives" because you can use that knowledge to derive directions

**Def:** Reducibility in TMs. If, for languages A and B, a decider for B can be used to decide A, A is said to be **reducible** to B.

**Corollary:** If A is reducible to B (a solution to B will solve A): 1. If B is decidable, so is A 2. If B is undecidable, so is A

## Ex: The halting problem

**Def:** The halting problem. Does a TM halt given its input? Formally:

$$HALT_{TM} = \{\langle M, w \rangle : M \text{ is a TM which halts on input } w\}$$

This is similar to  $A_{TM}$  (the set of all TM-input pairs that accept), but also allows rejecting states.

**Thm.**  $HALT_{TM}$  is undecidable.

## Halting problem undecidability proof

**Pf.** By contradiction. We will assume  $HALT_{TM}$  is decidable and show that its decider can be used to decide  $A_{TM}$  (a known contradiction). This means  $A_{TM}$  is reducible to  $HALT_{TM}$ .

Assume we have a TM R that decides  $HALT_{TM}$ . We construct a new TM S to decide  $A_{TM}$  using the output of R (recall that this is legal for TMs).

S = "On input  $\langle M, w \rangle$  where M is a TM and w is its input:

- 1. Run R on input  $\langle M, w \rangle$
- 2. If *R* rejects, the input never halts. **Reject.**
- 3. Otherwise, simulate M on w until it halts
- 4. If *M* accepted, **accept**. Otherwise, **reject.**"

Thus, the existence of R implies that  $A_{TM}$  can be decided: a contradiction. Thus, R cannot exist. End of proof.

# $E_{TM}$ : The emptiness problem

$$E_{TM} = \{\langle M \rangle : M \text{ is a TM and } \mathcal{L}(M) = \emptyset\}$$

**Thm:**  $E_{TM}$  is undecidable. **Pf:** By reduction. Let R be a TM deciding  $E_{TM}$ .

Let  $M_1$  be a TM operating on x given some w and M (not input) such that:

- 1. If  $x \neq w$ , reject
- 2. If x = w, run M on input w and **accept** if M does

Let S be a TM operating on w such that:

- 1. Use M and w to construct the TM  $M_1$
- 2. Run R on  $\langle M_1 \rangle$ , accepting iff  $M_1$ 's language is empty
- 3. If R accepts ( $M_1$  is nonempty, meaning M rejects w), reject. If R rejects, accept.

Thus,  $A_{TM}$  is reducible to  $E_{TM}$  and thus  $E_{TM}$  is undecidable.

## $REGULAR_{TM}$ : Whether or not a TM has an equivalent NFA

$$REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } \mathcal{L}(M) \text{ is regular}\}$$

S = "On input  $\langle M, w \rangle$  where M is a TM and w is its input:

1. Construct the following TM  $M_1$ .

 $M_1 =$  "On input string x:

- 1.1 If x is of the form  $0^i 1^i$ , accept.
- 1.2 Else, **accept** if *M* accepts *w*."

Note that  $M_1$  recognizes the nonregular language  $0^i 1^i$  if M does not accept w and the regular language  $\Sigma^*$  if M accepts w.

- 2. Run R on input  $\langle M_1 \rangle$
- 3. If R accepts, accept. If R rejects, reject."

## $EQ_{TM}$ : TM equivalence

$$EQ_{TM} = \{\langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs and } \mathcal{L}(M_1) = \mathcal{L}(M_2)\}$$

We show that  $E_{TM}$  (the emptiness problem) reduces to  $EQ_{TM}$  (the equivalence problem) and thus the later is undecidable.

Let R be a TM deciding  $EQ_{TM}$ . We will use it to construct S deciding  $E_{TM}$ .

S = "On input  $\langle M \rangle$ , where M is a TM:

- 1. Let  $M_{\emptyset}$  be the TM rejecting all inputs.
- 2. Run R on  $\langle M, M_{\emptyset} \rangle$ .
- 3. If *R* accepted, **accept.** If *R* rejected, **reject.**"

Since S decides  $E_{TM}$ , R cannot exist.

### Computation histories

- Recall: An automaton has some number of configurations at any given time
  - ▶ A DFA configuration is its state  $q \in Q$
  - ▶ A TM configuration has its state, position, and tape contents, formatted like: *uqv* for string contents *uv*, state *q*, where the R/W head is on the first character of *v*

**Def:** A computation history for some automaton is a series of its configurations.

**Def:** An accepting computation history is a computation history which represents a valid series of state transitions ending in an accept state.

### Reductions via computation histories

- Computation histories encode the entire operation of an automaton
- Assumptions about them generalize to their machines
- Can be used to prove properties
- We will come back to this after talking about LBA in section 3

## Mapping reducibility and computable functions

**Def:** Computable functions. A function  $f: \Sigma^* \to \Sigma^*$  is **computable** if some TM M, for every input w, **halts** with f(w) on its tape.

**Def:** Mapping reducibility. Language A is **mapping reducible** to language B, written  $A \leq_m B$ , if there is a computable function  $f: \Sigma^* \to \Sigma^*$  where, for every w,

$$w \in A \iff f(w) \in B$$

The function f is called the **reduction** of A to B.

This formalizes the intuitive notion of reduction.

#### Rice's theorem

**Thm:** Rice's theorem. Any property P of a TM's language such that the following two conditions hold is **undecidable**.

- 1.  $P \neq \emptyset$  and  $\overline{P} \neq \emptyset$  (P is nontrivial)
- 2.  $\mathcal{L}(M_1) = \mathcal{L}(M_2)$  implies that  $\langle M_1 \rangle \in P$  iff  $\langle M_2 \rangle \in P$  (P is a semantic property).

**Pf:** By reduction. Assume R is a TM deciding some arbitrary nontrivial property P. We will use R to build a decider for  $HALT_{TM}$ .

Let  $M_P$  be some TM such that  $\langle M_P \rangle \in P$  (guaranteed by condition 1). We construct some S using  $M_P$  and R to decide  $HALT_{TM}$ .

## Rice's theorem proof

S = "On input  $\langle M, w \rangle$ , where M is a TM:

- 1. Construct  $M_1$  to be a TM that simulates M on w. As soon as M halts,  $M_1$  simulates  $M_P$ . Therefore,  $M_1$  is  $\in P$  iff M halts on w.
- Run our decider R on M₁. If R accepts, M must halt on w: accept. If not, M₁ must not be ∈ P and therefore M must not halt: reject."

Since R allows us to decide the halting problem, its language must be undecidable. End of proof.

Next time: Post's Correspondence Problem