# 신용카드사용자 연체예측

18기 분석 문다정 18기 분석 이소연 18기 분석 한상범 18기 엔지니어링 김인섭

# INDEX

- 01 프로젝트 소개
- 02 데이터 전처리
- 03 모델링 & 성능평가
- 04 분석 한계

# 프로젝트 소개

- ❶ 주제 소개
- 2 데이터 및 변수.



## 주제 소개



- 프로젝트 주제: 신용카드 사용자 연체 예측
- 목적 : 가장 좋은 분류예측을 하는 모델 파악을 통한 신용카드 사용자 연체 예측
- 사용 데이터: dacon 신용카드 사용자 개인 신상정보
- 사용 방법론: LGBM, CatBoost, XGBoost
- -성능 평가: Log loss함수

### 데이터 및 변수

GENDER, CAR, REALTY, FLAG MOBIL, WORK PHONE, PHONE, **EMAIL** 

OCCUPY TYPE, INCOME TYPE, **EDU** TYPE, FAMILY TYPE, HOUSE TYPE

INCOME TOOTAL, FAMILY SIZE, BEGIN MONTH, DAYS BIRTH, DAYS EMPLOYED, CHILD NUM



## 데이터 및 변수



가장 좋은 등급 신용도

1 2번째로 좋은 등급 신용도

2 3번째로 좋은 등급 신용도

# 데이터전처리





## 데이터 전처리

```
#결촉치 확인
 2 df_Train.isnull().sum()
index
gender
car
reality
child_num
income_total
income_type
edu_type
family_type
house_type
DAYS_BIRTH
DAYS_EMPLOYED
FLAG_MOBIL
work_phone
phone
email
                 8171
occyp_type
family_size
begin_month
```



### 데이터 전처리

# GENDER, CAR, REALTY, FLAG MOBIL, WORK PHONE, PHONE, **EMAIL**

#### **BINARY CATEGORY**

```
1 # <u>本写</u>4 <u>因</u>刻己
2 df_Train = pd.get_dummies(df_Train, columns = ['gender','car','reality'])
```

```
In [17]: 1 | train['FLAG_MOBIL'].value_counts() # 모두 똑같이 다 1개를 갖고있다.
```

Out [17]: 1 26457

Name: FLAG\_MOBIL, dtype: int64

### 데이터 전처리

## OCCUPY TYPE, INCOME TYPE, **EDU** TYPE, FAMILY TYPE, HOUSE **TYPE**

#### **MULTICATEGORY**

## 데이터 전처리

#### **NUMERICAL VALUE**

INCOME TOOTAL, FAMILY SIZE. BEGIN MONTH, DAYS BIRTH, DAYS EMPLOYED, CHILD NUM

```
1 df.at[df.income_total>1200000,'income_total'] = 1200000 #母社소与
2 df.at[df.family_size>8, 'family_size'] = 8 #가족규모
3 df.begin_month = (-1)*df.begin_month #신용카드발급월
4 df.DAYS_BIRTH = (-1)*df.DAYS_BIRTH /365 #耄생일
5 df.at[df.DAYS_EMPLOYED>0,'DAYS_EMPLOYED'] = 0 #업무시작일
6 df.DAYS_EMPLOYED = (-1)*df.DAYS_EMPLOYED/30
7 df.at[df.child_num>=6, 'child_num'] = 6 #가요수
```

# 모델링&성능평가

- ① 성능평가 지표: Log loss
- 2 모델링 결과

# 성능평가지표: Log loss

1. 다음 사진의 동물로 알맞은 것은 무엇인가요?



- ① 고양이
- **2 17**
- ③ 감아지
- ④ 기립
- ⑤ 래서팬더

| 1. 영희        | 2. 철수 |        |      |
|--------------|-------|--------|------|
| ① 고양이        | 0.9   | ① 고양이  | 0.4  |
| <b>② 사</b> は | 0.1   | @ NtZt | 0.15 |
| ③ 강아지        | 0     | ③ 강아지  | 0.15 |
| ④ 기립         | 0     | ④ 기립   | 0.15 |
| ⑤ 래서팬더       | 0     | ⑤ 래서팬더 | 0.15 |
|              |       |        |      |

둘 다 정답이지만, 더 높은 확률로 정답을 예측한 영희에게 더 높은 점수를 주는 것 = Log loss

# 성능평가지표: Log loss



#### 파란색 음의 로그 함수

확률 1 일 때, -log(1.0) = 0

확률 0.8 일 때, -log(0.8) = 0.22314

확률 0.6 일 때, -log(0.6) = 0.51082

# Log loss => 낮을수록 좋은 모델

# 성능평가지표: Log loss

Log loss: 다중 클래스 분류 모델 (target 3개 이상)을 평가하는 방법

### 이진 분류 과제

에서 주로 사용하는 성능 평가지표

Accuracy (정확도), precision (정밀도), recall (재현율), f1 score 등

### 다항 분류 과제 √

성능평가지료 계산을 위해 3\*3 정오행렬이 생성된다.

예측이 틀린 정도에 따라 패널티가 바뀌는 지표를 사용하여 판단하고자 했다.

=> Log Loss를 성능평가지표로 선택

## 모델링 결과



# LightGBM

0.73212

#### (1) Light GBM

[0.02640005, 0.0967554 , 0.87684456],

[0.09001884, 0.18555992, 0.72442124],

[0.07369236, 0.3162416 , 0.61006604]])

submi\_lgbm = pd.DataFrame(result\_lgbm)

### 모델링 결과

#### (2) Cat Boost

300: learn: 0.6770550 total: 22.6s remaining: 1m 43s learn: 0.6494836 total: 29.8s remaining: 1m 34s learn: 0.6267634 total: 36.9s remaining: 1m 26s 1500: learn: 0.6047805 total: 44.2s remaining: 1m 18s total: 52.5s 2100: learn: 0.5867632 remaining: 1m 12s 2400: learn: 0.5700053 total: 60s remaining: 1m 4s total: 1m 7s learn: 0.5545074 remaining: 57.7s learn: 0.5407359 total: 1m 15s remaining: 50s 3300: learn: 0.5272693 total: 1m 22s remaining: 42.3s 3600: learn: 0.5147162 total: 1m 29s remaining: 34.7s 3900: learn: 0.5031963 total: 1m 36s remaining: 27.3s 4200: learn: 0.4914841 total: 1m 43s remaining: 19.8s total: 1m 50s 4500: learn: 0.4807274 remaining: 12.3s remaining: 4.89s 4800: learn: 0.4709178 total: 1m 58s 4999: learn: 0.4646923 total: 2m 2s remaining: Ous



CatBoost

0.73823

```
1 submi_cat = pd.DataFrame(result)
2 submi_cat['index'] = np.arange(26457, 36457)
3 submi_cat = submi_cat[['index',0,1,2]]
4 submi_cat
```

| index | 0                                                                                 | 1                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26457 | 0.017754                                                                          | 0.027215                                                                                                                                                           | 0.955031                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26458 | 0.215099                                                                          | 0.133738                                                                                                                                                           | 0.651162                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26459 | 0.043745                                                                          | 0.132273                                                                                                                                                           | 0.823982                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26460 | 0.076875                                                                          | 0.078490                                                                                                                                                           | 0.844635                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26461 | 0.087195                                                                          | 0.270207                                                                                                                                                           | 0.642598                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36452 | 0.113252                                                                          | 0.186596                                                                                                                                                           | 0.700152                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36453 | 0.203086                                                                          | 0.256848                                                                                                                                                           | 0.540066                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36454 | 0.007769                                                                          | 0.051064                                                                                                                                                           | 0.941167                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36455 | 0.093728                                                                          | 0.303976                                                                                                                                                           | 0.602296                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36456 | 0.032848                                                                          | 0.240059                                                                                                                                                           | 0.727094                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 26457<br>26458<br>26459<br>26460<br>26461<br><br>36452<br>36453<br>36454<br>36455 | 26457 0.017754<br>26458 0.215099<br>26459 0.043745<br>26460 0.076875<br>26461 0.087195<br><br>36452 0.113252<br>36453 0.203086<br>36454 0.007769<br>36455 0.093728 | 26457       0.017754       0.027215         26458       0.215099       0.133738         26459       0.043745       0.132273         26460       0.076875       0.078490         26461       0.087195       0.270207              36452       0.113252       0.186596         36453       0.203086       0.256848         36454       0.007769       0.051064         36455       0.093728       0.303976 |

10000 rows × 4 columns

# 모델링 결과

#### (3) XGBoost

```
from xgboost import XGBClassifier
3 | xgb_model = XGBClassifier(n_estimators=400, objective = 'multi:softprob', learning_rate=0.1, max_dept
4 | np.random.seed(2020)
5 xgb_model.fit(train_x, train_y)
6 result11 = xgb_model.predict_proba(test_x)
                                                                 submi_xgb = pd.DataFrame(result11)
                                                               2 submi_xgb['index'] = np.arange(26457, 36457)
                                                               3 submi_xgb = submi_xgb[['index',0,1,2]]
                                                               4 submi_xgb
                                                                   index
                                                                 0 26457 0.076772 0.200647 0.722580
                                                                 1 26458 0.126175 0.167108 0.706716
                                                                 2 26459 0.108816 0.184138 0.707046
                                                                 3 26460 0.111668 0.146806 0.741525
                                                                   26461 0.084213 0.157079 0.758708
                                                                   36452 0.104150 0.230961 0.664890
                                                                   36453 0.103007 0.247734 0.649259
                                                                   36454 0.034301 0.091433 0.874266
                                                                   36455 0.071080 0.171955 0.756965
                                                              9999 36456 0.102270 0.177523 0.720206
                                                             10000 rows × 4 columns
```



**XGBoost** 

0.78253

# 모델링 결과



### 모델링 결과



LightGBM

0.73212

# Log loss 값이 가장 낮은 LightGBM 최종 선택

# 분석한계

● 분석의 한계 & 개선점

## 분석의 한계 & 개선점



# 감사합니다