Problem 5.16. Let $\Gamma = \{0, 1, \sqcup\}$ be the tape alphabet for all **TM**s in this problem. Define the busy beaver function $BB : N \longrightarrow N$ as follows. For each value of k, consider all k-state **TM**s that halt when started with a blank tape. Let BB(k) be the maximum number of 1s that remain on the tape among all of these machines. Show that BB is not a computable function.

Proof. The proof is by reduction from $HALT_{TM}$. Assume for the sake of contradiction that BB is computable and let R be the TM that computes it. It follow that R must have a procedure to decide if some TMs halts when started with a blank tape. Let T be a TM that implements such procedure. In other words $L(T) = \{\langle M \rangle \mid M \text{ is a } TM \text{ that halts when started with a blank tape}\}$. We construct a TM S that uses T to decide $HALT_{TM}$.

- S = "On input $\langle M, w \rangle$, where M is a **TM** and w is a string:
 - 1. Use M and w to construct the following TM M_w . M_w = "On input x:
 - 1. If x is not empty string, then reject.
 - 2. Run M on w. If M halts, then output result is same as M."
 - 2. Run T on $\langle M_w \rangle$.
 - 3. If T accepts, M halts on input w, so accept. Otherwise, reject."

Thus, if **TM** R exists, then T exists. So we can decide $HALT_{TM}$, but we know that $HALT_{TM}$ is undecidable¹. By virtue of this contradiction, we can conclude that R does not exist. Therefore, BB is uncomputable.

 $^{^{1}}$ Theorem 5.1 $HALTM_{TM}$ is undecidable.