Mean-Shift clustering et segmentations d'images (application des Kd-Trees, voir TD7)

image segmentation

image originale (50700 pixels)

Mean-Shift clustering et segmentations d'images

Clustering: en deux mots

n points (exemple en 2D)

n points 7 clusters

Mean-Shift clustering

- Classification par les bassins d'attraction des maxima de l'estimateur de densité En pratique, on ne connait pas la densite, on l'estime par la methode des noyaux

imaginons qu'on connaisse la fonction densite. Alors,...

- Maxima de l'estimateur = points fixes du mean shift

n points 1 seed

n points 1 seed R rayon de la fenetre

 $x_{i+1} := mean\{neighbors(x_i)\}$

n points 1 seed R rayon de la fenetre

 $x_{i+1} := mean\{neighbors(x_i)\}$

n points 1 seed R rayon de la fenetre

$$x_{i+1} := mean\{neighbors(x_i)\}$$

n points 1 seed R rayon de la fenetre

$$x_{i+1} := mean\{neighbors(x_i)\}$$

cluster detecté on a convergence lorsque $d(x_{i+1}, x_i) \le Rc$

 x_5 point stationnaire du Mean-Shift

 $C_5 = \{x_0\}$

 C_5 cluster associé à x_5

n points 1 seed R rayon de la fenetre $x_{i+1} := mean\{neighbors(x_i)\}$

cluster detecté

on a convergence lorsque $d(x_{i+1}, x_i) \le Rc$

x₅ point stationnaire du Mean-Shift

 R_i rayon d'influence

 C_5 cluster associé à x_5

 $C_5 = \{x_0, p_0\}$

n points 1 seed R rayon de la fenetre $x_{i+1} := mean\{neighbors(x_i)\}$

cluster detecté on a convergence lorsque

 R_i rayon d'influence

 $d(x_{i+1},x_i) \leq Rc$ x_5 point stationnaire du Mean-Shift

 C_5 cluster associé à x_5 $C_5 = \{x_0, p_0, p_1, p_2, p_3\}$

 $\{1, p_2, p_3\}$

R rayon de la fenetre

$$x_{i+1} := mean\{neighbors(x_i)\}$$
 cluster

1 seed

n points

cluster detecté on a convergence lorsque $d(x_{i+1}, x_i) \leq Rc$

 R_i rayon d'influence

 x_5 point stationnaire du Mean-Shift

 C_5 cluster associé à x_5 $C_5 = \{x_0, p_0, p_1, p_2, p_3, p_4, p_5, p_6\}$

R rayon de la fenetre

$$x_{i+1} := mean\{neighbors(x_i)\}$$

1 seed

n points

 R_i rayon d'influence

$$x_5$$
 point stationnaire du Mean-Shift C_5 cluster associé à x_5

 $C_5 = \{x_0, p_0, p_1, p_2, p_3, p_4, p_5, p_6\}$

R rayon de la fenetre R_i rayon d'influence n points 1 seed $x_{i+1} := mean\{neighbors(x_i)\}\$

cluster detecté on a convergence lorsque $d(x_{i+1}, x_i) \leq Rc$

 C_5 cluster associé à x_5 cluster center $C_5 = \{x_0, p_0, p_1, p_2, p_3, p_4, p_5, p_6\}$

R rayon de la fenetre

 $x_{i+1} := mean\{neighbors(x_i)\}$

1 seed

n points

cluster detecté on a convergence lorsque

 R_i rayon d'influence

 $d(x_{i+1}, x_i) \le Rc$

 x_5 point stationnaire du Mean-Shift

 C_5 cluster associé à x_5 cluster center

 $C_5 = \{x_0, p_0, p_1, p_2, p_3, p_4, p_5, p_6\}$

 $C_{10} = \{p_7, p_8, \ldots\}$ $C_{...} = \{\ldots\}$

R rayon de la fenetre n points 1 seed

 R_i rayon d'influence R_m rayon de fusion

fusion de clusters (proches)

$$x_p, x_q$$
 cluster centers $d(x_p, x_q) \le R_m$

 x_p, x_q points stationnaires du Mean-Shift

fusionner C_p et C_q

R rayon de la fenetre n points 1 seed

 R_m rayon de fusion

 R_i rayon d'influence

fusion de clusters (proches)

 x_p, x_q points stationnaires du Mean-Shift

$$x_p, x_q$$
 cluster centers $d(x_p, x_q) \le R_m$

fusionner C_p et C_q