Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

«Процессы дискретизации и квантования изображения»

ОТЧЕТ по лабораторной работе №8 дисциплины «Основы распознавания образов»

Луценко Дмитрий Андреевич 2 курс, группа ПИЖ-6-о-21-1, 09.03.04 «Программная инженерия», направленность (профиль) «Разработка и сопровождение программного обеспечения», очная форма обучения ———————————————————————————————————	рыполнил.
09.03.04 «Программная инженерия», направленность (профиль) «Разработка и сопровождение программного обеспечения», очная форма обучения ———————————————————————————————————	Луценко Дмитрий Андреевич
направленность (профиль) «Разработка и сопровождение программного обеспечения», очная форма обучения ———————————————————————————————————	2 курс, группа ПИЖ-б-о-21-1,
и сопровождение программного обеспечения», очная форма обучения ———————————————————————————————————	09.03.04 «Программная инженерия»,
обеспечения», очная форма обучения ———————————————————————————————————	направленность (профиль) «Разработка
(подпись) Проверил:	и сопровождение программного
Проверил:	обеспечения», очная форма обучения
Проверил:	(полпись)
(подпись)	• ,
	(подпись)
Отчет защищен с оценкой Дата защиты	Дата защиты
Отчет защищен с оценкой	

Процессы дискретизации и квантования изображения

Цель работы: изучение функций, использующихся для моделирования процессов квантования и дискретизации изображения на языке Python.

Ход работы:

Задание 2.1

Задание 2.2

Рисунок 1 – Задания

Задание 2.2

]: -1

Рисунок 2 – Задания

Выделение объекта синего цвета

```
img = cv2.imread ( "bmw.jpg" );
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower_blue = np.array([90, 50, 70])
upper_blue = np.array([130, 255, 255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
res = cv2.bitwise_and(img,img, mask= mask)

plt.subplot(221)
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
plt.axis("off")

plt.subplot(222)
plt.imshow(cv2.cvtColor(mask,cv2.COLOR_BGR2RGB))
plt.axis("off")

plt.subplot(223)
plt.imshow(cv2.cvtColor(res,cv2.COLOR_BGR2RGB))
plt.axis("off")
```

(-0.5, 999.5, 1499.5, -0.5)

Рисунок 3 – Индивидуальное задание

Вывод: изучены функци, использующиеся для моделирования процессов квантования и дискретизации изображения на языке Python.

Ответы на контрольные вопросы:

- **1. Что такое интенсивность изображения?** Интенсивность изображения f(x, y) является функцией двух пространственных переменных x и y на ограниченной прямоугольной области.
- 2. **Что такое квантование изображения?** Процесс разбиения непрерывного динамического диапазона значений яркости на ряд дискретных уровней называется квантованием.
 - 3. Чему равно число уровней квантования?

$$K = [A/\Delta A],$$

- 4. **Как можно изменить размер массива изображения?** Функция reshape().
 - 5. Как можно создать копию изображения? Функция сору().
- 6. **Что такое дискретизация изображений?** Дискретизация это преобразование непрерывного сигнала в последовательность чисел (отсчетов), то есть представление этого сигнала по какому-либо конечномерному базису. Это представление состоит в проектировании сигнала на данный базис.
- 7. **Приведите алгоритм дискретизации.** Алгоритм дискретизации: разбиваем три матрицы цветного изображения на отдельные блоки с шагом дискретизации К. В каждомблоке вычисляем среднее значение по каждому цвету в отдельности и полагаем, что внутри блока интенсивность равна вычисленному среднему значению.
- 8. Как изменить цветовую модель изображения с BGR на RGB? Cv2_COLORBGR2RGB
- 9. **Как проверить: изображение цветное или полутоновое?** Воспользуемся функцией s = img.shape (получим размер изображения и его тональность) Далее проверим len(s) В цветном строка вернёт число 3 (так как у цветного три параметра: длина, ширина и число каналов) А у полутонового вернёт только два: длина и высота

10. Функция квантования. Cv2.kmeans()