CFA 一级知识框架图 Quantitative Analysis

专业来自101%的投入!

网址: WWW.GFEDU.CN

电话:400-700-9596

Framework

Study Session 2
Quantitative Methods(1)

Study Session 3 **Quantitative Methods(2)**

R6 The Time Value of Money

R7 Discounted Cash Flow Applications

R8 Statistical Concepts and Market Returns

R9 Probability Concepts

R10 Common Probability Distributions

R11 Sampling and Estimation

R12 Hypothesis Testing

R13 Technical Analysis

The Time Value of Money

Required Interest Rate on a Security			
概念	Required rate of returnDiscount rate		
	> Opportunity cost		
构成	 Nominal risk-free rate=real risk-free rate + expected inflation rate Required interest rate on a security=nominal risk-free rate + default 		
	risk premium + liquidity risk premium + maturity risk premium		

EAR **		
计算	> $EAR = \left(1 + \frac{r}{m}\right)^m - 1$ > Continuous compounding: $EAR = e^r - 1$	
性质	 The more frequency of compounding, the larger the EAR; The largest EAR exists if it is continuously compounding. 	

Annuity

计算

- Ordinary annuity
- Annuity due
 - 计算器BGN模式
 - 从ordinary annuity推算
- Perpetuity
 - PV = A(PMT)/r

Discounted Cash Flow Applications

NPV&IRR			
	NPV	IRR	
	NPV	NPV	
计算	$= CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \cdots$	$= CF_0 + \frac{CF_1}{(1 + IRR)^1} + \dots + \frac{CF_n}{(1 + IRR)^n}$	
*	$+\frac{CF_n}{(1+r)^n} = \sum_{t=0}^n \frac{CF_t}{(1+r)^t}$	$=\sum_{t=0}^{n} \frac{CF_t}{(1+IRR)^t} = 0$	
	> Assume the project's cash flows	Assume the project's cash flows	
性质	will be reinvested at the cost of	will be reinvested at the IRR	
	capital	Multiple or no solutions	
		problem of the IRR calculation	
	Independent Projects	Mutually Exclusive Projects	
应用	Accept it if NPV>0	Choose the one with higher NPV	
7-2713	Accept it if IRR>r (required rate	Choose the one with higher IRR	
	of return)	➤ NPV和IRR冲突,以NPV为准	

TWRR & MWRR		*
-------------	--	---

	TWRR	MWRR			
概念	Measure the compound rate of growth	The IRR based on the cash flows related to the investment			
计算	Calculate HPRs of each yearCalculate their geometric mean return	Determine the timing of each CFUse financial calculator to compute IRR			
性质	➤ 不会受到现金流流入流出的影响➤ 衡量现金流不可控的基金业绩更准确	会受到现金流影响衡量现金流可控的基金业绩更准确			
	都是年化的收益率				

Convert among HPR, R_{BD}, EAR, R_{MM} and BEY ★

计算

$$ightharpoonup$$
 折扣率 $ightharpoonup r_{BD} = rac{F - P_0}{F} imes rac{360}{t}$

上版本
$$\rightarrow HPY = \frac{P_1 - P_0 + D_1}{P_0}$$

$$EAY = (1 + HPY)^{\frac{365}{t}} - 1 \longrightarrow \left(1 + \frac{BEY}{2}\right)^2 = 1 + EAY$$

54・创新・増值

Statistical Concepts and Market Return

Measurement scales, fundamental concepts of statistics

Types of Measurement Scales *

	Nominal Scales	Ordinal Scales	Interval Scales	Ratio Scales
概念	分类	排序 (>,<)	(>,<,+,-)	(>,<,+,-,*,/)
性质	只能求mode	mode、median	没有绝对零点	Most refined

Parameter & Sample Statistic

	Parameter	Sample Statistic
		A sample statistic is used to
概念	characteristic of a population is	measure a characteristic of a
	referred to as a parameter.	sample.

Measurement scales, fundamental concepts of statistics

	Interval Relative	Absolute Frequency	Relative Frequency	Cumulative Absolute Frequency	Cumulative Relative Frequency
	-105	3	0.97%	3	0.97%
I 6	-5 - 0	35	11.29%	38	12.26%
概念	0 - 5	176	56.77%	214	69.03%
	5 - 10	74	23.87%	288	92.90%
	10 - 15	22	7.10%	310	100%
	Total	310	100%		
图像		7 6 5 4 3 2 1 0 -30%~-20% -20%~-10% -10%~0 0%~10% 10%~20% 20%~30% 30%~40% 40%~50%			Histogram Polygon

Measures of centra	I tendency,	quantiles *
--------------------	-------------	-------------

	Mean	Quantiles
概念	(Weighted) Arithmetic mean/ Geometric mean/ Harmonic mean	Quartile/ Quintile/ Deciles/ Percentile
性质	Harmonic≤ Geometric≤ Arithmetic	e.g. The third quartile> Mean
应用	➤ 预测未来业绩用arithmetic mean➤ 衡量历史业绩 or 关注ending value用geometric mean	各分位数可先转换为percentile后确定 L _y =(n+1)y/100

MAD, variance & standard deviation *

	MAD	Variance & Standard Deviation		
计算	5 22	For population	For sample	
νι π	$MAD = \frac{\sum_{i=1}^{n} X_i - \bar{X} }{n}$	$\sigma^2 = \frac{\sum_{i=1}^N (X_i - \mu)^2}{N}$	$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$	

Chebyshev's inequality, CV & Sharpe ratio *				
	Chebyshev's inequ	ality		
柳木	➤ Regardless of the shape of the distribution			
概念	$P(\mu - k\sigma \le X \le \mu + k\sigma) \ge 1 - k\sigma$	$\frac{1}{k^2}$		
	CV	Sharpe Ratio		
	Standard deviation (risk) per unit	Excess return per unit of risk		
公式	of sample mean $CV = \frac{S_X}{\bar{X}}$	Sharpe ratio = $\frac{R_P - R_f}{\sigma_P}$		
	> Scale-free	▶ 越大越好		
性质	Relative dispersion			

		•
Skewness,	kurto	SIS
	12011 60	

Skewness, kartesis				
	Positive skewed		Negative skewed	
	> Right fat tail		➤ Left fat tail	
Skewness	Mode <medi< p=""></medi<>	an <mean< th=""><th>Mode>median> mean</th></mean<>	Mode>median> mean	
(掌握性质)	> Frequent sm	all losses and a few	Frequent small gains and a few	
**	extreme gains (mean=0时)		extreme losses (mean=0时)	
	prefer positive	ve skewness		
Kurtosis (掌握性质)	Leptokurtic	 Sample kurtosis>3, Excess kurtosis>0 尖峰肥尾: more frequent extremely large deviate from the mean than a normal distribution 假设与normal distribution有相同的离散程度 Investors dislike this distribution 		
*	Platykurtic	Sample kurtosis < 3, Excess kurtosis < 0 Sample kurtosis = 3, Excess kurtosis = 0		
	Normal			

Probability Concepts

	Basic concepts of probability, odds for ★			
概念 Basic Concepts of Probability 性质		the same time.	ts — can not both happen at lude all possible outcomes.	
		> $0 \le P(E) \le 1$ > $P(E_1) + P(E_2) + \dots + P(E_n) = 1$ • $E_1 \dots E_n$: mutually exclusive and exhaustive		
Classification of the Probability	概念	 ➤ Empirical probability: 分析过去,得到未来 ➤ Priori probability: 分析过去,得到过去 ➤ Subjective probability: 主观 		
Odda for	· ↓ ↓ / / / / · · · · · · · · · · · · · · · ·	Odds for an event	Odds against an event	
Odds for	计算	P(E)/(1-P(E))	(1-P(E))/P(E)	

★★ Calculation rules for probabilities		
概念:两个事件 Independent		P(AB)=P(A B)=P(B A)=0
		 P(AB)=P(A) ×P(B) If exclusive , must not independence Independence →ρ=0, 反之不成立
计算:两个法则	Multiplication Rule	$P(AB)=P(A B)\times P(B)=P(B A)\times P(A)$
川昇・例ゴが広则	Addition Rule	P(A or B)=P(A)+P(B)-P(AB)

Covariance & Correlation ★★

	Covariance	Correlation
计算	Cov(X, Y) = E[(X-E(X))(Y-E(Y))]	$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$
性质	 How one random variable moves with another random variable The covariance of X with itself is equal to the variance of X Covariance ranges from negative infinity to positive infinity 	 Correlation measures the linear relationship between two random variables Correlation has no units, ranges from -1 to +1,standardization of covariance If ρ=0,this doesn't indicates independence

Expected Value, Variance and Standard Deviation			
计算	Expected Return	$E(R_D) = \sum_{i=1}^{n} \omega_i E(R_i) \qquad \sum_{i=1}^{n} \omega_i = 1$	
	Variance	两个资产做组合 $\sigma_p^2 = \omega_1^2 \sigma_1^2 + \omega_2^2 \sigma_2^2 + 2\omega_1 \omega_2 \sigma_1 \sigma_2 \rho_{1,2}$	
		两个资产做组合	n个资产做组合
性质	Variance	$\rho = 1, \sigma_p = \omega_1 \sigma_1 + \omega_2 \sigma_2, \sigma_p^2 $ $\sigma_p^2 $ $\rho = -1, \sigma_p = \omega_1 \sigma_1 - \omega_2 \sigma_2 , \sigma_p^2 $ $\sigma_p^2 $ $\rho $ ρ	 σ_p² 的影响因素 n增加, Cov_{i,j} 对σ_p²影响更大

Bayes' Formula (计算,用二叉树图形,不用记公式)

$$P(A|B) = \frac{P(B|A)}{P(B)} \times P(A)$$

图形 — 二叉树

注意:把非条件概率画在第一支

Counting Problems (了解)

计	- 鎖

Factorial	Combi	nation	Po	ermutation
n!	nCr(用	计算器算)	nPr	(用计算器算)
Multiplication F	Rule	Labelin	g (or N	Iultinomial)
$n_1 \times n_2 \times \cdots \times n_n$	7 1-		n!	
101 1102 11	K	$\overline{n_1!}$	$\times n_2! \times$	$\cdots \times n_k!$

54・创新・増值

Common Probability Distributions

Probability Distributions

	Discrete	Continuous
概念	The number of outcomes is counted.	The number of outcomes is infinite.
性质	Measurable and positive	P(x)=0 even though x can occur

注意: Cumulative probability function F(x)=P(X≤x)

Uniform and binominal random variable

	Discrete Uniform	Continuous Uniform
Uniform Random Variables	A discrete uniform random variable is one for which the probabilities for all possible outcomes for a discrete random variable are equal.	It is defined over a range that spans between some lower limit, a, and upper limit, b, which serve as the parameters of the distribution.
	例: X={1, 2, 3, 4}, P(X=1)= P(X=2) = P(X=3)= P(X=4)= 1/4	> $P(X < a \text{ or } X > b) = 0$ > $P(x_1 \le X \le x_2) = (x_2 - x_1)/(b-a)$
	Bernoulli Random Variable	Binomial Random Variable
Binomial	做1次实验,只有两个结果	做n次实验,每次实验只有两个结果
Random	P(X=1)=p, P(X=0)=1-p	$P(x)=P(X=x)={}_{n}C_{x}p^{x}(1-p)^{n-x}$
Variables **	Expectation =pVariance=p(1-p)	Expectation = npVariance = np(1-p)

Normal distribution, the confidence intervals \bigstar

Key Properties of Normal Distribution

- Symmetrical distribution: skewness=0, kurtosis = 3
- > A linear combination of normally distributed random variables is also normally distributed
- ➤ 取值区间: (-∞,+∞)

The Confidence **Intervals**

Normal Distribution

- \triangleright 68% confidence interval: [μ - σ , μ + σ]
- \triangleright 90% confidence interval: [μ -1.65 σ , μ +1.65 σ]
- \triangleright 95% confidence interval: [μ -1.96 σ , μ +1.96 σ]
- \triangleright 99% confidence interval: [μ -2.58 σ , μ +2.58 σ]

Standard Normal Distribution *		
概念	The normal distribution with μ =0 and σ^2 =1, Z~N(0,1)	
性质	> Standardization: If $X \sim N(\mu, \sigma^2)$, then $Z = (X - \mu)/\sigma \sim N(0, 1)$ > $P(Z > z) = 1 - F(z) = F(-z)$	

Roy's Safety-First Criterion ★ 🖈			
概念	 Threshold level return: minimum return required, R_L Shortfall risk: P(R_p<r<sub>L)</r<sub> 		
计算	Safety-first Ratio = SFR= $[E(R_p)-R_L]/\sigma_p$		
性质	Maximize SFR \leftrightarrow Minimize $P(R_p < R_L)$		

7998	OLDEN FOTORE	A A			
	Lognormal Distributions ***				
概念	If lnX is normal, then X is lognormal				
性质	Right skewed;x > 0				
应用	Lognormal → the price of asset; Normal → the return of asset				
N	Monte Carlo Simulation and Historical Simulation (了解)				
	Monte Carlo Simulation Historical Simulation				
概念	Based on its assumed distributions, to produce a distribution of possible security values	Selected historical data to generate a distribution			
性质	 It is fairly complex and will assume a parameter distribution It is not an analytic method but a statistical one 	 The past can't indicate the future It cannot address the sort of "what if" questions that Monte Carlo simulation can 			

Sampling and Estimation

Sampling, Time-Series and Cross-Sectional Data					
	Sampling				
概念 — 抽样方法	 Simple random sampling / Systematic sampling Stratified random sampling: divide the population into smaller groups 				
计算	Sampling error of the mean= sample mean- population mean				
性质	The sample statistic itself is a random variable and has a probability distribution.				
Time-Series and Cross-Sectional Data					
枷伞	Time-Series Data	Cross-Sectional Data			
概念	Data taken over a period of time	Data taken at a single point of time			

Central Limit Theorem				
概念	概念 n≥30且总体均值、方差已知 → Sample mean~ N(μ,σ²/n)			
计算 Standard error = σ/\sqrt{n} or s/\sqrt{n}				

Desirable Properties of an Estimator **				
概念	Unbiased	Expected value of the estimator is equal to the parameter that are trying to estimate		
	Efficient	The unbiased estimator has the smallest variance		
	Consistent	The accuracy increases as sample size increases		

Data-mining bias Sample selection bias Survivorship bias Look-ahead bias Time-period bias

Point Estimate and a Confidence Interval Estimate ➤ Point Estimate (点估计)

概念

- ➤ Confidence interval estimate (区间估计)
 - Level of significance (α)
 - Degree of Confidence $(1-\alpha)$

计算

ightharpoonup 区间估计: $\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ or $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$

Student's t-distribution and Degrees of Freedom

性质

- Degrees of freedom (df): n-1
- Symmetrical: skewness = 0
- Less peaked than a normal distribution ("fatter tails"), kurtosis < 3</p>
- > As the degrees of freedom gets larger, the shape of t-distribution approaches standard normal distribution
- ➤ 相同的significance level下, t分布对应的confidence level更宽

Confidence Interval for a Population Mean				
性质	选择哪一个分布?	方差已知用z, 方差未知用t, 非正态总体小样本不可估计如果n≥30, 都可以用z		
	When campling from a	Test St	atistic	
	When sampling from a	Small Sample (n<30)	Large Sample (n≥30)	
	Normal distribution with known variance	z-statistic	z-statistic	
应用	Normal distribution with unknown variance	t-statistic	t/z-statistic	
	Nonnormal distribution with known variance	not available	z-statistic	
	Nonnormal distribution with unknown variance	not available	t/z-statistic	

Hypothesis Testing

Introduc	Introduction to the Steps of Hypothesis Testing				
Define Hypothesis	Null hypothesis (H ₀) • Two-tailed: H ₀ : $\mu = \mu_0$, H _a : $\mu \neq \mu_0$ • One-tailed: H ₀ : $\mu \leq \mu_0$, H _a : $\mu > \mu_0$ or H ₀ : $\mu \geq \mu_0$, H _a : $\mu < \mu_0$				
Identify Test Statistic	Test Statistic is <u>calculated with the sample date.</u>				
Find Critical Value	 Given one or two tailed assumption, critical value is determined solely by the α. Critical value is found in the table. 				
Formulate a Decision Rule	 Critical value method (Find Reject region) Reject H₀, if test statistic > critical value Fail to reject H₀, if test statistic < critical value 2.5% 95% 95% 1.645 Reject H₀ Fail to Reject H₀ Rej				

Test Population Mean

	Population Distribution	Population Variance	H _o	Test Statistic	Critical Value
Single	Normal or Known		$\mu = \mu_0$	$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)
Mean	Sample size is large	Unknown	$\mu = \mu_0$	$t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$	t(n-1)
Mean	Normal, Independent	Unknown& Assumed equal	$\mu_1 - \mu_2 = 0$	t	t
		Unknown& Not assumed equal	$\mu_1 - \mu_2 = 0$	t	t
Differences	Normal, Dependent (paired comparison test)	Unknown	μ_d =0	$t = \bar{d}/_{S_{\bar{d}}}$	t(n-1)

ち业・创新・増值

Test Population Mean (Unknown Variance)					
Population Distribution n<30 n≥30					
Normal t-test t/z-test					
Non-normal Not available t/z-test					

Test Population Variance				
Population Distribution H ₀ Test Statistic Criti			Critical Value	
Single Variance	Normal	$\sigma^2 = \sigma_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2(n-1)$
Equality of Two Variances	Normal, Independent	$\sigma_1^2 = \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	$F(n_1 - 1, n_2 - 1)$

P-Value			
概念	The p-value is the <u>smallest level of significance</u> at which the <u>null</u> <u>hypothesis can be rejected.</u>		
性质	P-value ↓, easier to reject H ₀		
应用	> P-value < α: reject H_0 > P-value > α: do not reject H_0		

Type I Error and Type II Error					
		H₀ is true	H₀ is false		
概念	Do not reject Ho	Correct decision	Incorrect Decision Type II error		
	Reject Ho	<u>Incorrect decision</u> Significance level= P(Type I error)	Correct decision Power of test=1- P(Type II error)		
性质	 ➤ Type I error ↑ → Type II error ↓, with other conditions unchanged. ➤ Increase the Sample Size → Type I error & Type II error ↓ 				

Parametric and Nonparametric Tests (了解)			
	Parametric tests	Specific to population parameters	
概念	Nonparametric tests	 Nonparametric tests are used: The assumptions that support a parametric test are not met When data are given in ranks (ordinal measurement scale) rather than values The hypothesis does not involve the parameters of the distribution 	

Technical Analysis

Applica	tions of Technical Analysis, Underlying Assumptions (特点)	
原理	 Prices are determined by the interaction of supply and demand; Only participants who actually trade affect prices; Price and volume reflect the collective behavior of buyers and sellers. 	
假设	 Investor behavior is reflected in trends& patterns that tend to repeat; Efficient markets hypothesis does not hold. 	
区别	Fundamentalists: Prices react quickly to changing stock values; Technicians: The reaction is slow.	
优缺点	 Advantages Actual price and volume data are observable; Technical analysis itself is objective, while much of the data used in fundamental analysis is subject to assumptions or restatements; It can be applied to the prices of assets that do not produce future cash flows, such as commodities; It doesn't have the risk of financial statement fraud. Disadvantage Illiquid markets 不能用 Markets that are subject to large outside manipulation 不能用 	

	Types of Charts, Uses of Trend			
		Types of Charts		
概念	 Line charts Bar charts Candlestick charts Point and figure charts 			
Uses of Trend				
		Uptrend	Downtrend	
概念	Trend	Prices are consistently reaching higher highs and retracting to higher lows. (Demand>Supply)	Prices are consistently reaching lower lows and retracting to lower highs. (Demand < Supply)	
	Trend Line	Uptrend Line	Downtrend Line	
		Connect the increasing lows in prices	Connect the decreasing highs in prices	

Common Chart Patterns			
概念	Reversal Patterns	For Uptrend	For Downtrend
		 Head-and-shoulders pattern Double top Triple top 	 Inverse head-and-shoulders pattern Double bottom Triple bottom
×	Continuation Patterns	TrianglesRectanglesFlags and pennants	

	Technical Analysis Indicators			
	Price-based	Momentum Oscillators		
概念	Moving average linesBollinger bands	 Rate of change oscillator Relative strength index (RSI) Moving average convergence/ divergence (MACD) Stochastic oscillator 		
	Sentiment	Flow of Funds		
	 Put/call ratio Volatility index (VIX) Margin debt Short interest ratio 	 Short-term trading index Margin debt Mutual fund cash position New equity issuance 		

	Technical Analysis Theory		
	Cycle Theory	 4-year presidential cycles: related to election years in the USA Decennial patterns: 10-year cycles Kondratieff wave: 18-year cycles, 54-year cycles 	
概念	Elliott wave Theory	 Based on the belief that financial market prices can be described by an interconnected sets of cycles Waves: chart patterns related to Elliott wave theory Fibonacci ratios: the sizes of these waves are thought to correspond with Fibonacci ratios 	
	Intermarket Analysis	 Analysis of the interrelationships among the market values of major asset classes, such as stocks, bonds, commodities and currencies Also useful for comparing the relative performance of equity market sectors or industries and of various international market 	

