Green Pace

Security Policy Presentation Developer: Bobby Rust

Green Pace

OVERVIEW: DEFENSE IN DEPTH

THREATS MATRIX

Likely

STD-002-CPP

Prevents out-of-bounds indexing of arrays which gives unwarranted access to memory.

Priority

STD-004-CPP

Prevents SQL injection by separating SQL commands from data.

Low priority

STD-003-CPP

Mitigate buffer overflow risk by validating the size of strings before writing to their memory.

Unlikely

STD-006-CPP

Assertions should be used only for debugging purposes. See https://cwe.mitre.org/data/definitions/617.html.

10 PRINCIPLES

- 1. Validate input
- 2. Heed compiler warnings
- 3. Architect and design for security policies
- 4. Keep it simple
- 5. Default deny
- 6. Adhere to the principle of least privilege
- 7. Sanitize data sent by other systems
- 8. Practice defense in depth
- 9. Use effective quality assurance techniques
- 10. Adopt a secure coding standard

CODING STANDARDS

- Data value
- String correctness
- SQL injection
- Memory protection
- Cryptographic algorithms
- Environment variables
- Update dependencies
- Exceptions
- Data types
- Assertions

ENCRYPTION POLICIES

- Data at rest
 - Use strong encryption algorithms.
 - Implement access control (role based)
- Data in Transit
 - Use HTTPS
 - VPNs, SSH
- Data in use
 - Secure coding practices

TRIPLE-A POLICIES

- Authentication Policies
 - o Enforce strict password requirements, including length and complexity.
 - o Mandate all organization accounts to use multi-factor authentication.
- Authorization Policies
 - o Implement role-based access controls
 - o Grant the least number of privileges necessary to each role
- Accounting Policies
 - o Utilize logging software to maintain historical data of all network activity.
 - o Realtime alerts for suspicious activity.

Unit Testing

The String Correctness standard is an extremely important standard. If strings are not handled properly, the code is vulnerable

Unsafely setting a string's value

Noncompliant Code

strcpy can write arbitrary values to memory if the source string is too long to fit into the destination string.

```
char dest[10];
strcpy(dest, src);
```

Safely setting a string's value

```
strncpy only writes the first n characters of the source string.
```

```
char dest[10];
strncpy(dest, source, sizeof(dest) -
1);
dest[sizeof(dest) - 1] = '\0';
```

AUTOMATION SUMMARY

TOOLS

- During the planning and design phases

 Automation tools can be used to scan vulnerability databases.
- During the build phase
 - External tools such as CppCheck are used to check code for security vulnerabiltlies.
- Verification and Testing
 - Unit tests
- Production phase
 - Logging
 - Detection
 - Response

RISKS AND BENEFITS

- Problems
 - Phishing, ransomware, data breaches
 - Need to comply with regulations such as HIPAA, GDPR
 - Employee Awareness
 - Lack of incident response policies
- Solutions
 - Following a robust security policy
 - o Provide regular employee training to increase security awareness
- Risks and Benefits
 - Acting now costs money, time, and resources in the short term with the benefit of reduced risk of security breaches, which can be even more costly
 - Waiting increases the risk of an attack in the short term, but gives time to think through a viable solution

RECOMMENDATIONS

- Security gaps and future improvements
 - Lack of standardization of employee training programs
 - No incident response plan
- In 2021, LinkedIn suffered a major data breach
 - 92% of user data became publicly available
 - Email addresses, phone numbers, job titles, geolocation data
 - Could have been prevented with a more secure API

CONCLUSIONS

- Employee training programs
- Incident response plans
- API security standardization, including robust authentication and authorization
- Cloud security standards
- Increase awareness of AI assisted attack vectors, which improve the quality of phishing attacks

REFERENCES

- B. Gibson, S. Townes, D. Lewis and S. Bhunia, "Vulnerability in Massive API Scraping: 2021 LinkedIn Data Breach," 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2021, pp. 777-782, doi: 10.1109/CSCI54926.2021.00191.
- One, A. (1996). Smashing The Stack For Fun And Profit.
 https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

