Final Exam. 2009 December 14th, 14h-18h

Handwritten lecture notes are allowed as well as the course typescript. You may compose in either English or French.

Exercise 1 – [PROTH'S THEOREM]

Let n > 1 be an odd integer. Then n can be written $n = s \cdot 2^r + 1$ with s > 0 odd, and r > 0. Proth's original theorem (1878) is the following one.

Theorem. If $s < 2^r$ and if there exists an $a \in \mathbb{Z}$ such that

$$a^{(n-1)/2} \equiv -1 \bmod n.$$

then n is prime.

We are first going to prove a stronger version of this result, replacing the condition $s < 2^r$ by $s < 2^{r+1} + 3$.

- 1) Suppose that $s < 2^{r+1} + 3$ and that such an a exists. Let p a prime divisor of n. By considering the order of a modulo p, show that $p \equiv 1 \mod 2^r$.
- 2) Show that if n is composite, this implies that we have $s \ge 2^{r+1} + 3$ and conclude.
- 3) Now admit that n is as above and that we know an a such that $\left(\frac{a}{n}\right) = -1$ (Jacobi symbol). Give a deterministic and very simple algorithm which allows to know whether n is prime or composite.
- 4) What is the word complexity of this algorithm?

Exercise 2 – [MULTIPOINT EVALUATION]

Let R a commutative ring and m_0, \ldots, m_{n-1} in R[X], non-constant, where $n = 2^k$. For $0 \le i \le k$, and $0 \le j < 2^{k-i}$, define

$$M_{i,j} = \prod_{0 < l < 2^i} m_{j2^i + l}.$$

- 1) In the special case n = 8, write down a natural tree whose vertices at level i are labelled by the $M_{i,j}$, $j = 0, \ldots, 2^{3-i} 1$.
- 2) Compute all $M_{i,j}$ in $\widetilde{O}(\sum_{i < n} \deg m_i)$ basic operations in R (recall that for $A, B \in R[X]$ we can compute AB in $\widetilde{O}(\deg A + \deg B)$ operations in R).
- 3) When all m_i have degree 1, compare with the naive algorithm which would

only compute $M_{k,0}$ with successive multiplications by a factor of degree 1.

4) Let $T \in R[X]$ of degree $< n = 2^k$ and $u_0, \ldots, u_{n-1} \in R$. Let $m_i = X - u_i$ and assume that all $M_{i,j}$ are precomputed. Show that the following algorithm compute $T(u_0), \ldots, T(u_{n-1})$ in $\widetilde{O}(n)$ operations in R.

Algorithm 1. Multipoint evaluation

- 1: If n = 1 return T.
- 2: Let $r_0 \leftarrow T \operatorname{rem} M_{k-1,0}$. Compute recursively $r_0(u_0), \ldots, r_0(u_{n/2-1})$.
- 3: Let $r_1 \leftarrow T \operatorname{rem} M_{k-1,1}$. Compute recursively $r_1(u_{n/2}), \ldots, r_1(u_{n-1})$.
- 4: Return the concatenation of the outputs.
- **5)** Show that a polynomial of arbitrary degree < n can be evaluated at n points in $\widetilde{O}(n)$ operations in R. Compare with successive applications of Horner's scheme. Compare with the FFT algorithm.

Exercise 3 – [POLLARD'S AND STRASSEN'S METHOD]

We shall study here an algorithm which, thanks to multipoint evaluation (exercice 2) factors an integer N which is neither a prime nor a perfect power in $\widetilde{O}(N^{1/4})$ word operations.

Let N > 1 be a composite integer which is not a perfect power and denote respectively by $S_1(N)$ and $S_2(N)$ the largest prime factor of N and the second largest prime factor of N. We have

$$S_2(N) < S_1(N)$$
 and $S_2(N) < N^{1/2}$.

We denote by $a \longmapsto \overline{a}$ the reduction of integers modulo N. The Pollard's and Strassen's factoring algorithm is the following one.

Algorithm 2. Pollard and Strassen

Require: $N \geq 6$ neither a prime nor a perfect power and $b \in \mathbb{N}$.

Ensure: The smallest prime factor of N if it is less than b, or otherwise failure.

- 1: $c \leftarrow \lceil b^{1/2} \rceil$ and compute the coefficients of $f(X) = \prod_{1 \leq j \leq c} (X + \overline{j}) \in (\mathbb{Z}/N\mathbb{Z})[X]$ thanks to the previous exercise.
- 2: Use the fast multipoint evaluation algorithm to compute $g_i \in \{0, ..., N-1\}$ such that $g_i \mod N = f(\overline{ic})$ for $0 \le i < c$.
- 3: **if** $gcd(g_i, N) = 1$ for $0 \le i < c$ **then**
- 4: Return failure
- 5: else
- 6: $k \leftarrow \min\{0 \le i < c; \gcd(g_i, N) > 1\}$
- 7: Return $\min\{kc+1 \le d \le kc+c; \ d \mid N\}$.

- 1) Prove the correctness of the algorithm.
- 2) Prove that the algorithm works in $O(M(b^{1/2})M(\log N)(\log b + \log \log N))$ word operations where M is the multiplication time. Recall that a gcd computation of integers of length less than n can be done in $O(M(n)\log n)$ word operations and that a division with remainder of such integers can be done in O(M(n)) word operations.
- **3)** Running the algorithm for $b=2^i$ and $i=1,2,\ldots$, show that we can completely factor N in $\widetilde{O}(N^{1/4})$ word operations.

Exercise 4 – [Square roots in \mathbb{F}_p and Cornacchia's algorithm]

Let $p = 2^e q + 1$ be an odd prime (where $e \ge 1$ and q is odd), and let $a \in \mathbb{F}_p^*$ a quadratic residue modulo p. We want to solve $x^2 \equiv a \mod p$.

1) Show that if $p \equiv 3 \mod 4$, $x = a^{(p+1)/4} \mod p$ is a solution. Prove also that if $p \equiv 5 \mod 8$, either $x = a^{(p+3)/8} \mod p$ or $x = 2a \cdot (4a)^{(p-5)/8} \mod p$ is a solution.

Unfortunately, when $p \equiv 1 \mod 8$ the problem is harder. Tonelli's and Shanks' algorithm solves it in all cases.

Algorithm 3. Tonelli and Shanks

- 1: Find an u which is not a quadratic residue modulo p (pick uniformly at random elements in $\{1, \ldots, p-1\}$ until we are satisfied). Then put $z \leftarrow u^q \mod p$.
- 2: Initialization: $k \leftarrow e, x \leftarrow a^{(q+1)/2} \mod p, b \leftarrow a^q \mod p$.
- 3: Determine the smallest m such that $b^{2^m} \equiv 1 \mod p$.
- 4: Put $t \leftarrow z^{2^{k-m-1}}$, $z \leftarrow t^2$, $b \leftarrow bz$ and $x \leftarrow xt$, the four affectations being done modulo p.
- 5: **if** b = 1 **then**
- 6: Return x
- 7: else
- 8: Put $k \leftarrow m$ and go back to 3.
- 2) What is the probability to be successless at step 1 after k successive trials?
- 3) Show that at each of the following steps we have $ab \equiv x^2 \mod p$ and that, if the algorithm terminates, we have a suitable x.
- 4) Show that the algorithm terminates, using at most e loops (have a look at the orders of b and z modulo p).
- 5) Show that the number of modular multiplications done after step 1 is in $O(\log q + e^2)$.

Let now p be a prime number and d an integer such that 0 < d < p. We are

searching for integers x and y such that

$$x^2 + dy^2 = p,$$

if they exist.

6) Show that, if the equation has solutions, then -d is a quadratic residue modulo p.

Cornacchia's algorithm consists in determining an x_0 such that $0 < x_0 < p$ and $x_0^2 \equiv -d \mod p$ (which can be done thanks to Tonelli's and Shanks' algorithm), and then to apply Euclid's algorithm to (p, x_0) until we obtain a remainder $r < \sqrt{p}$. One can then prove that if $c = (p - r^2)/d$ is the square of an integer, say s^2 , then (x, y) = (r, s) is a solution, and that otherwise there is no solution. Many proofs of this result can be found in the literature.

- 7) Use Cornacchia's algorithm to solve $x^2 + 2y^2 = 97$.
- 8) Admit that there is at least one solution. Does Cornacchia's algorithm allow to find all the solutions?
- **9)** Evaluate the algebraic and word complexities of the second part of the algorithm.