

1ère partie: L'atome

- Chap. I: Structure de l'atome

- Chap. II: Les spectres atomiques

Cas de l'atome d'hydrogène et des hydrogénoïdes

- Chap. III : Le modèle quantique de l'atome

Bases de la mécanique quantique

- Chap. IV : Les atomes polyélectroniques

- Chap. V : Tableau périodique - propriétés

88

Chap. V : Le tableau périodique - propriétés

V.1. Le tableau périodique

V.1.a. <u>Historique</u>

Les triades de Döbereiner (1817): Il suggéra l'existence de «triades» d'éléments semblables tels que le chlore, le brome et l'iode.

De Chancourtois (1862) : Mise en évidence d'une certaine répétition dans les propriétés des éléments.

Les octaves de Newlands (1863) : Classement sur un tableau périodique en mettant les éléments d'une même famille dans des colonnes. Tout élément a des propriétés semblables à celui qui se trouve 8 cases plus loin dans un tableau (périodique). Provoque l'hilarité générale car basé sur les octaves...

Mendeleïev (1869): Eléments classés par masse atomique croissante mais avec des inversions, des cases manquantes... (63 éléments connus à cette époque). Il expliquait que les cases manquantes correspondaient à des atomes non encore découverts et il prédisait même les propriétés chimiques et physiques de trois d'entre eux en fonction de leur position dans son fameux tableau.

Rem: Ces éléments furent découverts quelques années après avec les propriétés envisagées par Mendeleïev... ce qui fit taire les critiques!

V.1.b. La classification actuelle

Elle se présente sous la forme d'un tableau périodique comprenant :

- 7 lignes que l'on appelle aussi périodes
- 18 colonnes que l'on appelle aussi groupes ou familles

Les éléments sont classés par numéro atomique Z croissant

Chaque période (sauf la 1ère) commence par un <u>alcalin</u> et se termine par un <u>gaz rare</u>

Chap. V : Le tableau périodique - propriétés

Pour établir ce tableau, les principes suivants ont été retenus :

On place sur une même ligne horizontale et dans l'ordre des numéros atomiques croissants, l'ensemble des éléments dont la couche électronique <u>externe</u> correspond au même nombre quantique principal n

→ Ces éléments constituent une période

Ex: Na, Mg, Al, Si P, S, Cl, Ar : couche électronique externe correspond à n = 3

On place sur une même colonne verticale les éléments dont les atomes possèdent, à l'état fondamental, la même configuration électronique externe

→ Ces éléments forment un groupe ou famille (propriétés analogues)

Ex: Be

Mg

Ca → configuration électronique externe en ns²

Sr

Вα

Ra

Les périodes (période: même n pour la couche externe)

<u>La première période</u>: remplissage progressif de la sous-couche 1s elle ne peut donc comporter que 2 éléments: $_1H:1s^1$ $_2He:1s^2$

<u>La deuxième période</u>: remplissage progressif des sous-couches 2s et 2p, elle ne peut donc comporter que 8 éléments: de Li à Ne

<u>La troisième période</u>: remplissage progressif des **sous-couches 3s et 3p**, elle ne peut donc comporter que **8 éléments**: de Na à Ar

<u>La quatrième période</u>: remplissage progressif des sous-couches 4s, puis 3d (éléments de transition), puis 4p, soit 18 éléments

<u>La cinquième période</u>: remplissage progressif des sous-couches 5s, puis 4d, puis 5p, soit 18 éléments

<u>La sixième période</u>: remplissage progressif des sous-couches 6s, puis 4f (série des lanthanides ou terres rares), puis 5d, puis 6p, soit 32 éléments

<u>La Septième période</u>: remplissage progressif des sous-couches 7s, puis 5f (série des actinides), puis 6d, puis 7p, soit 32 éléments

...

Chap. V : Le tableau périodique - propriétés

Les colonnes

Pour les éléments appartenant à une même colonne, la structure électronique externe est identique

Colonne 1 (IA): groupe des métaux alcalins (sauf H)

ightarrow la structure électronique externe termine en : $\it ns^1$

Colonne 2 (IIA): groupe des métaux alcalino-terreux

→ la structure électronique externe termine en : ns²

Colonne 16 (VIA): groupe des chalcogènes

→ la structure électronique externe termine en : np4

Colonne 17 (VIIA): groupe des halogènes

→ la structure électronique externe termine en : np⁵

Colonne 18 (VIIIA): groupe des gaz rares (ou gaz nobles)

ightarrow la structure électronique externe termine en : $\it np^6$

V.1.c. Détermination de la période et de la colonne

Comment retrouver la place d'un élément dans le tableau périodique ?

Détermination de la période :

La période correspond à la valeur de n la plus élevée dans la configuration électronique

Détermination de la colonne :

Structure terminée par $ns^{\times} \rightarrow Numéro$ de la colonne = xStructure terminée par $ns^{\times} np^{\vee} \rightarrow Numéro$ de la colonne = x + y + 10Structure terminée par $(n - 1)d^{\vee} ns^{\times} \rightarrow Numéro$ de la colonne = x + y

Exceptions:

Structure $1s^2$ (He) \rightarrow Numéro de la colonne = 18

Exemple: $Zr = 40 \rightarrow (Kr)4d^25s^2$

→ Période: 5 car c'est la valeur de n la plus élevée

→ Numéro de la colonne: 2 + 2 = 4

```
Chap. V : Le tableau périodique - propriétés
<u>Détermination du groupe :</u>
 Groupe A:
           → Structure terminée par ns× np<sup>y</sup>
           → Numéro du groupe = x + y
                          Exemple : Carbone
                                                  Z=6 \rightarrow 1s^22s^22p^2
                                    → appartient au groupe A
                                    → Numéro du groupe: 2+2 = 4 → groupe IVA
 Groupe B:
            →Structure terminée par (n - 1)d ns×
           \rightarrow Numéro du groupe = x + y si y < 10
                                     = x si y = 10
                                                    Z= 23 \rightarrow (Ar)3d34s2
                           Exemple: Vanadium

    → appartient au groupe B
    → Numéro du groupe: 3+2 = 5 → groupe VB

 Exceptions:
    → Structure terminée par ns² np6 : Groupe 0

ightarrowStructure terminée par (n-1)d^6 ns^2 (n-1)d^7 ns^2
                                                        Groupe VIIIB
                                    (n-1)d^8 ns^2
```


Chap. V : Le tableau périodique - propriétés Bloc s: éléments en ns^1 , colonne 1 : alcalins (monovalents) éléments en ns^2 , colonne 2 : alcalinoterreux (divalents) Bloc p: éléments des colonnes 13 14 15 18 np⁵ np² ns2 np^3 np⁴ np^1 np⁶ Colonne 13: métaux trivalents Colonne 14 à 16 : métalloïdes* et non métaux divers Colonne 17: halogènes Colonne 18: gaz nobles (couche externe saturée) Bloc d: série des éléments de transition, remplissage des orbitales 3di, 4di, 5 di avec i variant de 1 à 10 Colonnes de 3 à 12 Bloc f: série des lanthanides (ou terres rares), remplissage des orbitales 4f série des actinides, remplissage des orbitales 5f Le bloc f est placé à l'écart par soucis de clarté et aussi parce que les éléments qui le constituent présentent des propriétés chimiques très proches * Métalloïdes : éléments chimiques dont les propriétés sont intermédiaires entre celles des métaux et des non métaux

V.1.d. <u>Les éléments de transition</u>

<u>Un élément de transition</u> est un élément qui possède une sous-couche (n-1)d partiellement remplie à l'état élémentaire ou dans un état d'oxydation stable. Les éléments des colonnes 11 et 12 ne sont donc pas formellement des éléments de transition.

<u>Les éléments de transition internes</u> sont ceux qui possèdent **une** sous-couche (n-2)f partiellement remplie, ils appartiennent à la famille des lanthanides et des actinides.

100

Chap. V : Le tableau périodique - propriétés

V.2. Propriétés physiques : évolution dans le tableau périodique

V.2.a. Rayon atomique et rayon ionique

- Rayon atomique

Au sein d'une même période:

Lorsque $Z \uparrow \rightarrow$ la charge effective du noyau $Z \uparrow \uparrow \rightarrow$ force d'attraction $\uparrow \rightarrow$ contraction des O.A. \Rightarrow dans une même période, $r \searrow$ quand Z augmente

Dans une même famille (colonne):

Quand on change de période $\rightarrow n \uparrow d'$ une unité, le volume effectif de l'atome croît brusquement \Rightarrow dans une même colonne, $r \uparrow q$ quand $n \uparrow q$

- Rayon ionique

<u>Ion</u>: atome ou groupe d'atome dont la charge est devenue positive (ou négative) à la suite de la perte (ou de la capture) d'un ou de plusieurs électrons

<u>Cation</u>: charge positive <u>anion</u>: charge négative

Un cation a toujours un rayon nettement plus petit que l'atome:

→ la perte d'un électron s'accompagne de la diminution de l'effet d'écran et de l'augmentation de l'attraction du noyau pour les autres électrons

$$r_{cation} < r_{atome}$$

Un anion a toujours un rayon nettement plus grand que l'atome pour les raisons inverses

ranion > ratome

Ex: N (Z = 7)
$$r_N = 0.092 \text{ nm}$$
 $r_{N3-} = 0.171 \text{ nm}$

102

Chap. V : Le tableau périodique - propriétés

V.2.b. Energie d'ionisation (E.I.)

Energie de 1ère ionisation : $X_{Gaz} \xrightarrow{--E.I.} X_{Gaz}^+ + e^-$

- \rightarrow Energie qu'il faut fournir à un atome gazeux pour lui arracher un électron (réaction endothermique \rightarrow E.I. > 0)
- → Plus l'électron externe est lié au noyau, plus EI ↑

Au sein d'une même période : E.I. \uparrow quand $Z \uparrow$

(E.I. augmente avec Z car l'attraction électronique croit avec la charge du noyau qui augmente avec Z)

Au sein d'une même colonne : E.I. ≥ quand Z ↑

(E.I. diminue car la distance noyau - e^- de plus haute énergie \uparrow)

 \Rightarrow E.I. varie en raison inverse du rayon atomique


```
Anomalie 1 (ex. entre {}_{4}Be et {}_{5}B)

E_{I} pour arracher un e^{-} ns{}^{2} plus élevée que E_{I} pour arracher un e^{-} np{}^{1}
\rightarrow sous-couche ns{}^{2} pleine plus stable

{}_{4}Be: 1s^{2} 2\underline{s^{2}}
{}_{5}B: 1s^{2} 2\underline{s^{2}} 2\underline{p^{1}}

Anomalie 2 (ex. entre {}_{7}N et {}_{8}O)

E_{I} pour arracher un e^{-} np{}^{3} plus élevée que E_{I} pour arracher un e^{-} np{}^{4}
\rightarrow sous-couche np{}^{3} demi-pleine: gain de stabilité par rapport à np{}^{4}
{}_{7}N: 1s^{2} 2\underline{s^{2}} 2\underline{p^{3}}
{}_{8}O: 1s^{2} 2\underline{s^{2}} 2\underline{p^{4}}

Anomalie 3 (ex. entre {}_{30}Zn et {}_{31}Ga)

E_{I} pour arracher un e^{-} (n-1)d{}^{10} plus élevée que E_{I} pour arracher un e^{-} np{}^{1}, mais aussi que pour arracher un e^{-} ns{}^{2}
\rightarrow sous-couche (n-1)d{}^{10} pleine est stable

{}_{30}Zn: 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{10}
```

31Ga: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1

Energies d'ionisation successives

On pourra bien évidemment arracher plus d'un électron On parlera alors d'énergies de $2^{\grave{e}me}$ ionisation, de $3^{\grave{e}me}$ ionisation, etc

 $1^{\text{\`ere}}$ ionisation : $X_{(g)} \rightarrow X^{+}_{(g)} + e^{-}$

 $2^{\text{ème}}$ ionisation: $X^+_{(g)} \rightarrow X^{2+}_{(g)} + e^-$

 $3^{\text{ème}}$ ionisation: $X^{2+}_{(g)} \rightarrow X^{3+}_{(g)} + e^{-}$

etc.

 $\underline{\text{Ex.}}$ le fer $_{26}\text{Fe}$ avec la formation des cations Fe^{2+} et Fe^{3+}

Les énergies sont beaucoup plus élevées que pour la $1^{\text{ère}}$ ionisation: \rightarrow dans un cation, l'attraction du noyau sur les électrons restants est beaucoup plus forte que dans un atome neutre

V.2.c. Affinité électronique (A.E.)

$$X_{Gaz} + e^{-} \xrightarrow{-A.E.} X_{Gaz}^{-}$$

Energie d'attachement électronique :

- → énergie libérée lorsqu'il y a capture par l'atome gazeux d'un électron
- → peut être > 0 ou < 0

L'affinité électronique A.E. est l'opposée de l'énergie d'attachement électronique

$$\Rightarrow$$
 A.E. > 0 ou < 0

Exemples:

- les halogènes: couche externe en ns²np⁵ \rightarrow captent spontanément un électron pour atteindre la structure stable du gaz noble en ns² np⁶ \rightarrow réaction exothermique (énergie libérée négative) \rightarrow affinité électronique positive

ex:
$$Cl_{(q)} + e^{-} \rightarrow Cl^{-}$$
 AE = +3,61 eV

- un alcalino-terreux en ns² \rightarrow sous couche externe saturée \rightarrow n'a pas tendance à capter un électron \rightarrow réaction non spontanée \rightarrow nécessite de l'énergie \rightarrow réaction endothermique (énergie reçue positive) \rightarrow affinité électronique négative

ex:
$$Mg_{(q)} + e^{-} \rightarrow Mg^{-}$$
 AE = -0,3eV

109

Chap. V : Le tableau périodique - propriétés

Exemples d'AE:

$$CI_{gaz}^{}$$
 + $e^- \rightarrow CI_{gaz}^-$ A.E. = + 3,61 eV
 $O_{gaz}^{}$ + $e^- \rightarrow O_{gaz}^-$ A.E. = + 1,47 eV

 Cl_{aaz} possède la plus forte A.E.

Les éléments de plus forte A.E. se trouvent en haut à droite du tableau,

A.E. a tendance à ${\it \uparrow}$ de gauche à droite (mais on observe de nombreuses irrégularités)

Exemples d'irrégularités :

Les alcalins (ns^1) cherchent à saturer leur sous-couche s pour donner la structure ns^2 (plus stable), bien que situés à gauche dans le tableau périodique, ils ont alors des A.E. > 0

Les éléments de la colonne de l'azote (ns^2np^3) , ils possèdent une certaine stabilité (sous-couche à moitié remplie). L'azote bien que situé à droite dans le tableau, a une A.E. < 0

V.2.d. Electronégativité (x) d'un élément chimique et énergie de liaison E_{A-B}

Les caractéristiques (E.I. et A.E.) d'un élément sont rassemblées dans le concept d'électronégativité

L'électronégativité (x) traduit la capacité d'un élément à attirer les électrons dans un doublet de liaison, c'est-à-dire sa tendance à attirer vers lui les e- d'un autre atome avec lequel il est engagé dans une liaison chimique

Un élément attracteur est dit électronégatif et possède un χ élevé Un élément donneur est dit électropositif et possède un χ faible

> Sur une même ligne : χ ? lorsque Z ? Sur une même colonne : x ↓ lorsque Z ↑

Chap. V : Le tableau périodique - propriétés

Plusieurs méthodes de détermination des électronégativités des éléments Echelle de PAULING (la plus utilisée):

→ construite à partir des énergies de liaison

Energie de liaison $\mathsf{E}_{\mathsf{A-B}}$: l'énergie qu'il faut **fournir** au composé $\mathsf{A-B}_{\mathsf{gaz}}$ pour casser la liaison et obtenir 2 atomes gazeux séparés : $\mathsf{E}_{\mathsf{A-B}}$ > 0

$$A - B_{gaz} \xrightarrow{E_{A-B}} A_{gaz} + B_{gaz}$$

$$\chi_A - \chi_B = 0.102 \sqrt{E_{D(A-B)} - \sqrt{E_{D(A-A)}.E_{D(B-B)}}}$$

- χ_A et χ_B : électronégativités des atomes A et B (en (eV/at)^{1/2}) avec χ_A : χ_B $E_{D(A-B)}$, $E_{D(A-A)}$, $E_{D(B-B)}$: énergies de dissociation A-B, A-A et B-B en kJ.mol⁻¹

Plus la différence d'électronégativité entre 2 atomes est grande, plus le nuage électronique qui relie les 2 atomes est déformé... plus la liaison est dite polarisée

* Elément le plus électronégatif: le fluor ($\chi_F = 3.98$)

* χ_F = 0 pour les gaz rares

V.3. Propriétés chimiques: évolution dans le tableau périodique

Elles sont dues aux électrons de la couche externe

→ électrons de valence

114

Chap. V : Le tableau périodique - propriétés

V.3.a. <u>Degré d'oxydation</u>

Cas des éléments les plus à gauche :

Les ions issus des colonnes 1, 2 et 13:

→ présentent des degrés d'oxydation positifs respectivement +I, +II et +III Ils cherchent à prendre la structure du gaz rare qui les précèdent

Exemples:

 $\begin{array}{llll} \hbox{\it Colonne 1} & \hbox{\it Na :} 1s^22s^23s^1 \to (\hbox{\it Ne})3s^1 & \hbox{\it Na^+ : (Ne)} \\ \hbox{\it Colonne 2} & \hbox{\it Mg :} 1s^22s^23s^2 \to (\hbox{\it Ne})3s^2 & \hbox{\it Mg}^{2+} : (\hbox{\it Ne}) \\ \hbox{\it Colonne 13} & \hbox{\it Al :} 1s^22s^23s^23p^1 \to (\hbox{\it Ne})3s^23p^1 & \hbox{\it Al}^{3+} : (\hbox{\it Ne}) \\ \end{array}$

Cas des éléments les plus à droite :

Les ions issus des colonnes 16 et 17 présentent des degrés d'oxydation négatifs, respectivement -II et -I

Ils cherchent à prendre la structure du gaz rare qui les suivent

Exemples:

Colonne 16 $S: 1s^22s^22p^63s^23p^4 \rightarrow (Ne)3s^23p^4 \quad S^2: (Ne)3s^23p^6 \rightarrow (Ar)$ Colonne 17 $Cl: 1s^22s^22p^63s^23p^5 \rightarrow (Ne)3s^23p^5 \quad Cl: (Ne)3s^23p^6 \rightarrow (Ar)$

Cas des éléments au centre, autres que les éléments de transition : Comportement plus varié avec des degrés d'oxydation variés

Exemple:

L'azote dans la colonne 15 est au degré d'oxydation :

-III dans NH₃, 0 dans N₂, +II dans NO, +IV dans NO₂, +V dans HNO₃

Cas des éléments de transition :

Ils donnent en général des ions positifs avec divers degrés d'oxydation

 $\frac{\text{Exemple}}{\text{Fe}^{2+} : + \text{II}} : \\$

Chap. V : Le tableau périodique - propriétés

V.3.b. Caractère oxydo-réducteur

 $Ox + ne^{-} \rightarrow Réd$

OXYDANT = «gourmand» d'électrons **REDUCTEUR** = donneur d'électrons

Sur une même période, le pouvoir oxydant 1 qd Z 1 Sur une même colonne, le pouvoir oxydant \ qd Z ↑

(même évolution que l'électronégativité (χ): capacité d'un élément à attirer les électrons dans un doublet de liaison)

V.3.c. Caractère acido-basique des oxydes

A gauche avec les métaux très électropositifs, on obtient des oxydes basiques

Exemple : Na₂O est un oxyde fortement ionique et donc très basique car : O^{2-} est une base forte : O^{2-} + $H_2O \rightarrow 2$ OH-

A droite avec les non métaux, on obtient des oxydes acides

Exemple: SO₃

 $50_3 + H_2O \rightarrow H_2SO_4$

Intermédiairement, on obtient des oxydes amphotères (comportement acide ou basique)

Exemple: Al(OH)₃

118

Chap. V : Le tableau périodique - propriétés

V.3.d. Nature des liaisons

Une combinaison stable de plus d'un atome → liaisons entre les atomes

Différents types de liaisons en fonction de la différence d'électronégativité $(\Delta \chi = \chi_{\rm A} - \chi_{\rm B})$

Lorsque χ_A - χ_B est grand (> 1,7) - éléments situés aux 2 extrémités du tableau \Rightarrow liaisons dites ioniques (Ex : NaCl, Na₂O, CaO)

Lorsque χ_A - χ_B est faible ($\leq 1,7$) - éléments proches dans le tableau périodique

- si les éléments sont à droite du tableau, c'est la liaison dite de covalence

(ex: H2, 502)

- si les éléments sont à gauche du tableau c'est la liaison métallique (les e- sont délocalisés dans l'ensemble du métal)

(Ex: alcalins, alcalino-terreux, métaux de transition...)