Course Overview

- Representing Information with numbers
- Number Bases
- Boolean Logic / Boolean Algebra
- Digital Design
 - Combinatorial Circuit Design
 - Sequential Circuit Design
 - Design of Specific Hardware Components
 - Competing System Hardware Organization

Core Concept

All Information can be modelled using Numbers and Some appropriate Conventions.

Which numbers? More accurately which number base?

Base 10

0 1 2 3 4 5 6 7 8 9

Positional Counting System

104	. 103	. 02	}01	Jo°
ر موه و	ء ده دا	2001	los	Murt
	O	O	Ø	0
	•	0	٥	\ Z
	•	:	<u>ა</u>	3
		•	<u> </u>	:
			Ö	9
			1	0
	0	0	l	l Z

The leftmost digit is called the most significant Digit and the rightmost mon-zero, digit is called the least significant Digit.

Buse 10 ls "natural" for humans
But, 15 it natural for a machine?

The EWIAC Computer (1946) Used base 10

Today machines use Base Z: Binary 0,1. bohy?

Digital Computers are Composed of billions of transisters.

A transister is a Switch which can be in one of two states

When a transistor Is in the off state, its output Is Overts and it is 5 volts when it Is on

be associate On (5v) with the binary value 1 and off (0v) 7 " 0

This Is our first level of Abstraction.

This Is Where the Software Comes into existence!