Лабораторная работа №1

Создание "истории о данных" (Data Storytelling)

Коценко А.А. ИУ5-22М

Цель лабораторной работы

Изучение различных методов визуализация данных и создание истории на основе данных.

Задание

- Выбрать набор данных (датасет).
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований.
 - 1. История должна содержать 5 шагов. Каждый шаг содержит график и его текстовую интерпретацию.
 - 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
 - 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
 - 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
 - 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- Сформировать отчет и разместить его в своем репозитории на github.

Выбор датасета

Описание атрибутов

- MedInc Средний доход для домохозяйств в пределах квартала домов
- HouseAge Возраст домов в пределах квартала (меньшее число означает более новое здание)
- AveRooms Среднее количество комнат в пределах квартала.
- AveBedrms Среднее количество спален в пределах квартала.
- Population Общее количество людей, проживающих в пределах квартала.
- AveOccup Среднее количество участников домохозяйства.
- Latitude Показатель того, насколько далеко к северу находится дом (чем выше значение, тем дальше к северу).
- Longitude Показатель того, насколько далеко на запад находится дом (чем более отрицательное значение, тем дальше на запад).
- MedHouseValue Средняя стоимость жилья для домохозяйств в пределах квартала.

```
Ввод [1]: from sklearn.datasets import fetch_california_housing df = fetch_california_housing(as_frame=True).frame df
```

Out[1]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

20640 rows × 9 columns

Ввод [2]: df.info() # Prints the information about the dataframe

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	MedInc	20640 non-null	float64
1	HouseAge	20640 non-null	float64
2	AveRooms	20640 non-null	float64
3	AveBedrms	20640 non-null	float64
4	Population	20640 non-null	float64
5	Ave0ccup	20640 non-null	float64
6	Latitude	20640 non-null	float64
7	Longitude	20640 non-null	float64
8	MedHouseVal	20640 non-null	float64

dtypes: float64(9)
memory usage: 1.4 MB

История о данных

```
Ввод [3]: import numpy as np
import pandas as pd
import seaborn as sns
import geopandas as gpd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from shapely.geometry import Point
%matplotlib inline
```

Первый шаг — Violin plot

```
Ввод [4]: sns.violinplot(x=df['MedHouseVal'])
```

Out[4]: <AxesSubplot:xlabel='MedHouseVal'>

Второй шаг — Boxplot

Ввод [5]: sns.boxplot(x=df['MedHouseVal'])

Out[5]: <AxesSubplot:xlabel='MedHouseVal'>

Третий шаг — Heatmap

- MedInc Средний доход для домохозяйств в пределах квартала домов
- HouseAge Возраст домов в пределах квартала (меньшее число означает более новое здание)
- AveRooms Среднее количество комнат в пределах квартала.
- AveBedrms Среднее количество спален в пределах квартала.
- Population Общее количество людей, проживающих в пределах квартала.
- AveOccup Среднее количество участников домохозяйства.
- Latitude Показатель того, насколько далеко к северу находится дом (чем выше значение, тем дальше к северу).

- Longitude Показатель того, насколько далеко на запад находится дом (чем более отрицательное значение, тем дальше на запад).
- MedHouseValue —Средняя стоимость жилья для домохозяйств в пределах квартала.

BBOД [6]: plt.figure(figsize=(10,7))
sns.heatmap(df.corr(),cmap='RdBu',annot=True,fmt='.3f')

Out[6]: <AxesSubplot:>

Четвертый шаг — Correlogram

Ввод [7]: plt.figure(figsize=(12,12)) sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x22f3fda5760>

<Figure size 864x864 with 0 Axes>

Пятый — Мар

BBOД [8]: # Средняя стоимость жилья для домохозяйств в пределах квартала.
geometry = [Point(xy) for xy in zip(df["Longitude"], df["Latitude"])]
geo_df = gpd.GeoDataFrame(df,geometry = geometry) #california_housing
geo_df.plot(column='MedHouseVal',legend=True, figsize=(18, 12),cmap='RdYlBu_r

Out[8]: <AxesSubplot:>


```
BBOД [9]: plt.figure(figsize=(12,15))
img = mpimg.imread('california.png')
imgplot = plt.imshow(img)
```


Вывод к истории о данных

По Violin plot видно, что основная доля домов находится по стоимости от 0,5 до 2,5. По диаграммам Violin plot и Boxplot заметен выброс в районе 5. Наиболее вероятно примерно столько стоит элитная недвижимость. По тепловой карте понятно, что в основном между параметрами зависимость довольно низкая. Средняя зависимость между MedHouseVal и Medinc, высокая положительная зависимость между AveRooms и AveBedrms, а высокая отрицательная между Longitude и Latitude. В конце была построена карта, на которой видно, что на побережье Калифорнии недвижимость стоит существенно выше, чем в глубине штата.

Дополнительные карты

Ввод [10]: # Средний доход для домохозяйств в пределах квартала домов geo_df.plot(column='MedInc',legend=True, figsize=(18, 12),cmap='RdYlBu_r')

Out[10]: <AxesSubplot:>

Ввод [11]: # Возраст домов в пределах квартала (меньшее число означает более новое здание geo_df.plot(column='HouseAge',legend=True, figsize=(18, 12),cmap='RdYlBu_r')

Out[11]: <AxesSubplot:>

Ввод [12]: # Среднее количество комнат в пределах квартала. geo_df.plot(column='AveRooms',legend=True, figsize=(18, 12),cmap='RdYlBu_r')

Out[12]: <AxesSubplot:>

Ввод [13]: # Среднее количество спален в пределах квартала. geo_df.plot(column='AveBedrms',legend=True, figsize=(18, 12),cmap='RdYlBu_r')

Out[13]: <AxesSubplot:>

Ввод [14]: # Общее количество людей, проживающих в пределах квартала. geo_df.plot(column='Population',legend=True, figsize=(18, 12),cmap='RdYlBu_r'

Out[14]: <AxesSubplot:>

Ввод [15]: # Среднее количество участников домохозяйства. geo_df.plot(column='AveOccup',legend=True, figsize=(18, 12),cmap='RdYlBu_r')

Out[15]: <AxesSubplot:>

