

Karthiheswar

Table of Contents

1 Project Objective	3
2 Time Series Forecasting on Sparkling and Rose Wine Sales	3
3 Appendix A – Source Code	46

1 Project Objective

The objective of the report is to explore the data of different types of wine sales in the 20th century in ABC Estate Wines. The project data sets are analyzed in Python and generate insights and forecast about the data set. This exploration report will consist of the following:

- Importing the dataset in Python
- Understanding the structure of dataset
- Checking null values
- Univariate Analysis
- Decomposition on data sets
- Applying Exponential Smoothing methods and ARIMA/SARIMA models
- Calculating RMSE values on test data
- Forecast the data
- Insights from the dataset

2 Time Series Forecasting on Sparkling and Rose Wine Sales

2.1 Reading the data as an appropriate Time Series data and plotting the data

SPARKLING

Reading the dataset (head)

	Sparkling
YearMonth	
1980-01-31	1686
1980-02-29	1591
1980-03-31	2304
1980-04-30	1712
1980-05-31	1471

Plotting the data

ROSE

Reading the dataset (head)

	Rose
YearMonth	
1980-01-31	112.0
1980-02-29	118.0
1980-03-31	129.0
1980-04-30	99.0
1980-05-31	116.0

Plotting the data

Plotting the data after interpolating the missing values

2.2 Performing appropriate Exploratory Data Analysis to understand the data and also performing decomposition

SPARKLING EDA

Checking the null values

There are no null values present

Checking the Info

```
DatetimeIndex: 187 entries, 1980-01-31 to 1995-07-31
Data columns (total 1 columns):

# Column Non-Null Count Dtype
-------
0 Sparkling 187 non-null int64
dtypes: int64(1)
memory usage: 2.9 KB
```

Checking the Shape

The number of rows: 187
The number of columns: 1

Describing the data

	Sparkling
count	187.000000
mean	2402.417112
std	1295.111540
min	1070.000000
25%	1605.000000
50%	1874.000000
75%	2549.000000
max	7242.000000

Empirical Cumulative Distribution Function

Average Sparkling and its Percent change

Box plot

Histogram

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Yearly box plot

Monthly box plot

Pivot table

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September
YearMonth												
1980	1712.0	2453.0	5179.0	1591.0	1686.0	1966.0	1377.0	2304.0	1471.0	4087.0	2596.0	1984.0
1981	1976.0	2472.0	4551.0	1523.0	1530.0	1781.0	1480.0	1633.0	1170.0	3857.0	2273.0	1981.0
1982	1790.0	1897.0	4524.0	1329.0	1510.0	1954.0	1449.0	1518.0	1537.0	3593.0	2514.0	1706.0
1983	1375.0	2298.0	4923.0	1638.0	1609.0	1600.0	1245.0	2030.0	1320.0	3440.0	2511.0	2191.0
1984	1789.0	3159.0	5274.0	1435.0	1609.0	1597.0	1404.0	2061.0	1567.0	4273.0	2504.0	1759.0
1985	1589.0	2512.0	5434.0	1682.0	1771.0	1645.0	1379.0	1846.0	1896.0	4388.0	3727.0	1771.0
1986	1605.0	3318.0	5891.0	1523.0	1606.0	2584.0	1403.0	1577.0	1765.0	3987.0	2349.0	1562.0
1987	1935.0	1930.0	7242.0	1442.0	1389.0	1847.0	1250.0	1548.0	1518.0	4405.0	3114.0	2638.0
1988	2336.0	1645.0	6757.0	1779.0	1853.0	2230.0	1661.0	2108.0	1728.0	4988.0	3740.0	2421.0
1989	1650.0	1968.0	6694.0	1394.0	1757.0	1971.0	1406.0	1982.0	1654.0	4514.0	3845.0	2608.0
1990	1628.0	1605.0	6047.0	1321.0	1720.0	1899.0	1457.0	1859.0	1615.0	4286.0	3116.0	2424.0
1991	1279.0	1857.0	6153.0	2049.0	1902.0	2214.0	1540.0	1874.0	1432.0	3627.0	3252.0	2408.0
1992	1997.0	1773.0	6119.0	1667.0	1577.0	2076.0	1625.0	1993.0	1783.0	4096.0	3088.0	2377.0
1993	2121.0	2795.0	6410.0	1564.0	1494.0	2048.0	1515.0	1898.0	1831.0	4227.0	3339.0	1749.0
1994	1725.0	1495.0	5999.0	1968.0	1197.0	2031.0	1693.0	1720.0	1674.0	3729.0	3385.0	2968.0
1995	1862.0	NaN	NaN	1402.0	1070.0	2031.0	1688.0	1897.0	1670.0	NaN	NaN	NaN

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Monthly Sparkling across Years

ROSE EDA

Checking the null values

There are 2 null values present, so the null values are imputed with linear interpolation

```
Imputed value
YearMonth
             45.010870
1994-07-01
1994-07-02
            45.021739
1994-07-03
           45.032609
1994-07-04
            45.043478
1994-07-05
            45.054348
Freq: D, Name: Rose, dtype: float64
Imputed value
YearMonth
1994-08-01
            45.347826
1994-08-02
           45.358696
1994-08-03
           45.369565
45.380435
1994-08-04
1994-08-05
             45.391304
Freq: D, Name: Rose, dtype: float64
```

Checking the Info

```
DatetimeIndex: 187 entries, 1980-01-31 to 1995-07-31
Data columns (total 1 columns):

# Column Non-Null Count Dtype
------
0 Rose 187 non-null float64
dtypes: float64(1)
memory usage: 7.9 KB
```

Checking the Shape

The number of rows: 187
The number of columns: 1

Describing the data

	Rose
count	187.000000
mean	89.914497
std	39.238259
min	28.000000
25%	62.500000
50%	85.000000
75%	111.000000
max	267.000000

Empirical Cumulative Distribution Function

Average Sparkling and its Percent change

Box plot

Histogram

Yearly box plot

Monthly box plot

Pivot table

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September
YearMonth												
1980	99.0	129.000000	267.0	118.0	112.0	118.000000	168.0	129.0	116.0	150.0	147.0	205.0
1981	97.0	214.000000	226.0	129.0	126.0	222.000000	127.0	124.0	102.0	154.0	141.0	118.0
1982	97.0	117.000000	169.0	77.0	89.0	117.000000	121.0	82.0	127.0	134.0	112.0	106.0
1983	85.0	124.000000	164.0	108.0	75.0	109.000000	108.0	115.0	101.0	135.0	95.0	105.0
1984	87.0	142.000000	159.0	85.0	88.0	87.000000	87.0	112.0	91.0	139.0	108.0	95.0
1985	93.0	103.000000	129.0	82.0	61.0	87.000000	75.0	124.0	108.0	123.0	108.0	90.0
1986	71.0	118.000000	141.0	65.0	57.0	110.000000	67.0	67.0	76.0	107.0	85.0	99.0
1987	86.0	73.000000	157.0	65.0	58.0	87.000000	74.0	70.0	93.0	96.0	100.0	101.0
1988	66.0	77.000000	135.0	115.0	63.0	79.000000	83.0	70.0	67.0	100.0	116.0	102.0
1989	74.0	74.000000	137.0	60.0	71.0	86.000000	91.0	89.0	73.0	109.0	87.0	87.0
1990	77.0	70.000000	132.0	69.0	43.0	78.000000	76.0	73.0	69.0	110.0	65.0	83.0
1991	65.0	55.000000	106.0	55.0	54.0	96.000000	65.0	66.0	60.0	74.0	63.0	71.0
1992	53.0	52.000000	91.0	47.0	34.0	67.000000	55.0	56.0	53.0	58.0	51.0	46.0
1993	45.0	54.000000	77.0	40.0	33.0	57.000000	55.0	46.0	41.0	48.0	52.0	46.0
1994	48.0	45.673913	84.0	35.0	30.0	45.336957	45.0	42.0	44.0	63.0	51.0	46.0
1995	52.0	NaN	NaN	39.0	30.0	62.000000	40.0	45.0	28.0	NaN	NaN	NaN

Monthly Sparkling across Years

SPARKLING DECOMPOSITION

Additive decomposition

Multiplicative decomposition

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

ROSE DECOMPOSITION

Additive decomposition

Multiplicative decomposition

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

- Since both the data sets seasonality varies with time, both the data sets are considered as multiplicative seasonality
- 2.3 Spliting the data into training and test. The test data starts from 1991

SPARKLING

Shape of train and test set are (132, 1) and (55, 1)

ROSE

Shape of train and test set are (132, 1) and (55, 1)

2.4 Building various models on training data and evaluating model using RMSE on test data

SPARKLING

Simple Exponential Smoothing on auto parameters

	name	param	optimized	
smoothing_level	alpha	0.000000	True	
initial level	1.0	2403 785622	True	

For Alpha =1 Simple Exponential Smoothing Model forecast on Training Data, RMSE is 1298.48 MAPE is 40.36 For Alpha =1 Simple Exponential Smoothing Model forecast on Testing Data, RMSE is 1275.08 MAPE is 38.90

Simple Exponential Smoothing on iteration

	Alpha Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
0	0.1	1333.873836	42.03	1375.393398	49.53
1	0.2	1356.042987	43.79	1595.206839	60.46
2	0.3	1359.511747	43.73	1935.507132	75.66
3	0.4	1352.588879	42.75	2311.919615	91.55
4	0.5	1344.004369	41.16	2666.351413	106.27
5	0.6	1338.805381	39.80	2979.204388	118.77
6	0.7	1338.844308	38.55	3249.944092	129.34
7	0.8	1344.462091	37.60	3483.801006	138.34
8	0.9	1355.723518	36.79	3686.794285	146.08

For Alpha =0.1 Simple Exponential Smoothing Model forecast on Testing Data, RMSE is 1375.39 MAPE is 49.53

Double Exponential Smoothing on auto parameters

	name	param	optimized
smoothing_level	alpha	0.647792	True
smoothing_slope	beta	0.000000	True
initial_level	1.0	1686.083777	True
initial_slope	b.0	27.059653	True

Double Exponential Smoothing on iteration

	Alpha Values	Beta Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
0	0.1	0.1	1382.520870	44.37	1778.564670	67.20
1	0.1	0.2	1413.598835	46.14	2599.439986	95.43
10	0.2	0.1	1418.041591	46.65	3611.763322	135.41
2	0.1	0.3	1445.762015	47.43	4293.084674	155.43
20	0.3	0.1	1431.169601	46.99	5908.185554	223.50

For Alpha=0.1, Beta=0.1 DES Model forecast on Testing Data, RMSE is 1778.56 MAPE is 67.20

Triple Exponential Smoothing on auto parameters

{'smoothing_level': 0.15420626100710186, 'smoothing_slope': 5.31004588730174e-21, 'smoothing_seasonal': 0.3713228125445634,

'damping_slope': nan,

'initial_level': 1639.99933972618, 'initial_slope': 4.847695527861546,

'initial_seasons': array([1.00842978, 0.96899514, 1.24181168, 1.13206716, 0.93979295,

0.93811177, 1.22457951, 1.54428109, 1.27335495, 1.631977 ,

2.48292059, 3.11861503]),

'use_boxcox': False, 'lamda': None,

'remove_bias': False}

For Alpha=0.154,Beta=5.310e-21,Gamma=0.371 TES Model forecast on the Training Data, RMSE is 353.37 MAPE is 10.17

For Alpha=0.154,Beta=5.310e-21,Gamma=0.371 TES Model forecast on the Testing Data, RMSE is 383.15 MAPE is 11.91

Triple Exponential Smoothing on iteration

	Alpha Values	Beta Values	Gamma Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
301	0.4	0.1	0.2	389.772245	11.00	336.715250	10.56
211	0.3	0.2	0.2	395.529174	11.09	350.145204	11.08
110	0.2	0.2	0.1	405.333164	11.47	352.571689	11.28
200	0.3	0.1	0.1	394.630053	11.32	352.607849	11.11
20	0.1	0.3	0.1	414.423963	11.48	354.534561	11.77

For Alpha=0.4, Beta=0.1, Gamma=0.2 TES Model forecast on the Testing Data, RMSE is 336.71 MAPE is 10.56

Linear Regression

For Regression on Time forecast on the Training Data, RMSE is 1279.322 MAPE is 40.05 For Regression on Time forecast on the Test Data, RMSE is 1389.135 MAPE is 50.15

Naive method

For Naive Model forecast on the Training Data, RMSE is 3867.701 MAPE is 153.17 For Naive Model forecast on the Test Data, RMSE is 3864.279 MAPE is 152.87

Simple Average

For Simple Average Model forecast on the Training Data, RMSE is 1298.484 MAPE is 40.36 For Simple Average forecast on the Test Data, RMSE is 1275.082 MAPE is 38.90

Moving Average

For 2 point Moving Average Model forecast on the Test Data, RMSE is 813.401 MAPE is 19.70 For 4 point Moving Average Model forecast on the Test Data, RMSE is 1156.590 MAPE is 35.96 For 6 point Moving Average Model forecast on the Test Data, RMSE is 1283.927 MAPE is 43.86 For 9 point Moving Average Model forecast on the Test Data, RMSE is 1346.278 MAPE is 46.86

Overall plot on all methods:

ROSE

Simple Exponential Smoothing on auto parameters

	name	param	optimized
smoothing_level	alpha	0.098750	True
initial level	1.0	134.386956	True

For Alpha =1 Simple Exponential Smoothing Model forecast on Training Data, RMSE is 31.50 MAPE is 22.73 For Alpha =1 Simple Exponential Smoothing Model forecast on Testing Data, RMSE is 36.79 MAPE is 63.88

Simple Exponential Smoothing on iteration

	Alpha Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
0	0.1	31.815610	22.47	36.827810	63.94
1	0.2	31.979391	22.20	41.361654	72.21
2	0.3	32.470164	22.31	47.504600	83.71
3	0.4	33.035130	22.50	53.767186	95.50
4	0.5	33.682839	22.68	59.641567	106.81
5	0.6	34.441171	22.88	64.971071	117.04
6	0.7	35.323261	23.08	69.697946	126.07
7	0.8	36.334596	23.41	73.773777	133.82
8	0.9	37.482782	23.93	77.139061	140.21

For Alpha = 0.1 Simple Exponential Smoothing Model forecast on Testing Data, RMSE is 36.82 MAPE is 63.94 Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Double Exponential Smoothing on auto parameters

	name	param	optimized
smoothing_level	alpha	0.157895	True
smoothing_slope	beta	0.157895	True
initial_level	1.0	112.000000	True
initial slope	b.0	6.000000	True

Double Exponential Smoothing on iteration

	Alpha Values	Beta Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
0	0.1	0.1	34.439111	24.83	36.923185	63.78
1	0.1	0.2	33.450729	24.45	48.688399	83.09
10	0.2	0.1	33.097427	23.69	65.731452	113.20
2	0.1	0.3	33.145789	24.46	78.156381	131.24
20	0.3	0.1	33.611269	23.80	98.653063	170.12

For Alpha=0.1, Beta=0.1 DES Model forecast on Testing Data, RMSE is 36.92 MAPE is 63.78

Triple Exponential Smoothing on auto parameters

{'smoothing_level': 0.10609628211044227, 'smoothing_slope': 0.04843853483296353,

'smoothing_seasonal': 0.0, 'damping_slope': nan,

'initial_level': 76.65565233828687,

'initial_slope': 0.0,

'initial_seasons': array([1.47550285, 1.65927166, 1.80572675, 1.58888842, 1.77822733,

1.92604398, 2.11649492, 2.25135237, 2.11690636, 2.08112883,

2.40927327, 3.30448211]),

'use_boxcox': False, 'lamda': None,

'remove_bias': False}

For Alpha=0.106,Beta=0.048,Gamma=0.0 TES Model forecast on Training Data, RMSE is 18.57 MAPE is 13.21 For Alpha=0.106,Beta=0.048,Gamma=0.0 TES Model forecast on Testing Data, RMSE is 17.36 MAPE is 28.88

Triple Exponential Smoothing on iteration

	Alpha Values	Beta Values	Gamma Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
10	0.1	0.2	0.2	24.365597	15.36	9.640616	13.96
11	0.1	0.2	0.3	23.969166	15.13	9.935672	14.21
9	0.1	0.2	0.1	25.529854	16.06	9.943512	14.39
119	0.2	0.5	0.3	27.631767	17.87	10.026322	14.34
127	0.2	0.6	0.2	28.289836	18.09	10.031754	13.62

For Alpha=0.1,Beta=0.2,Gamma=0.2 TES Model forecast on the Testing Data, RMSE is 9.64 MAPE is 13.96

Linear Regression

For Regression on Time forecast on the Training Data, RMSE is 30.71 MAPE is 21.22 For Regression on Time forecast on the Test Data, RMSE is 15.26 MAPE is 22.82

Naive method

For Naive Model forecast on the Training Data, RMSE is 45.06 MAPE is 36.38 For Naive Model forecast on the Test Data, RMSE is 79.71 MAPE is 145.10

Simple Average

For Simple Average Model forecast on the Training Data, RMSE is 36.03 MAPE is 25.39 For Simple Average forecast on the Test Data, RMSE is 53.46 MAPE is 94.93

Moving Average

For 2 point Moving Average Model forecast on the Test Data, RMSE is 11.529 MAPE is 13.54 For 4 point Moving Average Model forecast on the Test Data, RMSE is 14.451 MAPE is 19.49 For 6 point Moving Average Model forecast on the Test Data, RMSE is 14.566 MAPE is 20.82 For 9 point Moving Average Model forecast on the Test Data, RMSE is 14.728 MAPE is 21.01

Overall plot on all methods:

2.5 Checking for the stationarity of data

SPARKLING

Performing Dickey-Fuller test

Results of Dickey-Fuller Test:

Test Statistic -1.208926 p-value 0.669744 Lags Used 12.000000

Number of Observations Used 119.000000

Critical Value (1%) -3.486535 Critical Value (5%) -2.886151 Critical Value (10%) -2.579896

The p-value>0.05, so its not stationary and Null hypothesis is accepted. So 1st order difference is done

Results of Dickey-Fuller Test:

Test Statistic -8.005007e+00 p-value 2.280104e-12 Lags Used 1.100000e+01

Number of Observations Used 1.190000e+02

Critical Value (1%) -3.486535e+00 Critical Value (5%) -2.886151e+00 Critical Value (10%) -2.579896e+00

Here the p-value<0.05 so it is stationary and Null hypothesis is rejected

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

ROSE

Performing Dickey-Fuller test

Results of Dickey-Fuller Test:

Test Statistic -2.164250 p-value 0.219476 Lags Used 13.000000

Number of Observations Used 118.000000

Critical Value (1%) -3.487022 Critical Value (5%) -2.886363 Critical Value (10%) -2.580009

The p-value>0.05, so its not stationary and Null hypothesis is accepted. So 1st order difference is done

Results of Dickey-Fuller Test:

Test Statistic -6.592372e+00 p-value 7.061944e-09 Lags Used 1.200000e+01

Number of Observations Used 1.180000e+02

Critical Value (1%) -3.487022e+00 Critical Value (5%) -2.886363e+00 Critical Value (10%) -2.580009e+00

Here the p-value<0.05 so it is stationary and Null hypothesis is rejected

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

2.6 Building an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE

SPARKLING - ARIMA

	param	AIC
8	(2, 1, 2)	2210.621369
7	(2, 1, 1)	2232.360490
2	(0, 1, 2)	2232.783098
5	(1, 1, 2)	2233.597647
4	(1, 1, 1)	2235.013945
6	(2, 1, 0)	2262.035600
1	(0, 1, 1)	2264.906439
3	(1, 1, 0)	2268.528061
0	(0, 1, 0)	2269.582796

Summary of ARIMA on training set of Sparkling:

Dep. Variable:	D.Sp	arkling	No. Observa	tions:	1	31
Model:	ARIMA(2	, 1, 2)	Log Likelih	ood	-1099.3	11
Method:		css-mle	S.D. of inn	ovations	1013.2	83
Date:	Thu, 23 J	ul 2020	AIC		2210.6	21
Time:	2	0:02:20	BIC		2227.8	73
Sample:	02-	29-1980	HQIC		2217.6	31
	- 12-	31-1990				
			z	P> z	[0.025	0.975]
	5.5852			0.000	4.571	6.600
ar.L1.D.Sparkling	1.2699	0.075	17.043	0.000	1.124	1.416
ar.L2.D.Sparkling	-0.5601	0.074	-7.617	0.000	-0.704	-0.416
ma.L1.D.Sparkling	-1.9966	0.042	-47.026	0.000	-2.080	-1.913
ma.L2.D.Sparkling	0.9966	0.043	23.428	0.000	0.913	1.080
59500 L (Charles Difference 5 (1995) (1895) (Root	ts			
R	eal	Imagina	ry	Modulus	Frequenc	= У
AR.1 1.1	335	-0.7074	 4j	1.3361	-0.088	- 8
AR.2 1.1	335	+0.707	4j	1.3361	0.088	8
MA.1 1.0	003	+0.000	ð j	1.0003	0.000	0
MA.2 1.0	030	+0.0000	ð j	1.0030	0.000	0

The RMSE value of ARIMA on training set of Sparkling is 1374.29

SPARKLING - SARIMA

	param	seasonal	AIC
50	(1, 1, 2)	(1, 0, 2, 12)	1555.584247
53	(1, 1, 2)	(2, 0, 2, 12)	1555.934564
26	(0, 1, 2)	(2, 0, 2, 12)	1557.121563
23	(0, 1, 2)	(1, 0, 2, 12)	1557.160507
77	(2, 1, 2)	(1, 0, 2, 12)	1557.340405

Summary of SARIMA on training set of Sparkling:

		SARIMAX	Result	S			
ble: SAR: Type:		Thu, 23 Jul 20:	2020 08:03 0	Log AIC BIC	Likelihood		13 -770.79 1555.58 1574.09 1563.08
coef	std err	Z	P>	z	[0.025	0.975]	
				014	-1.128	-0.128	
-0.7276	0.154	-4.736	0.	000	-1.029	-0.426	
1.0439	0.014	72.838	0.	000	1.016	1.072	
-0.5550	0.098	-5.663	0.	000	-0.747	-0.363	
-0.1354	0.120	-1.133	0.	257	-0.370	0.099	
1.506e+05	2.03e+04	7.401	0.	000	1.11e+05	1.9e+05	
(Q):	=====	23.02	Jarque	-Bera	a (JB):	 11	.72
¥ 2.		0.99	Prob(J	B):	E	e	.00
asticity (H)		1.47	Skew:			e	.36
wo-sided):		0.26	Kurtos	is:		4	.48
	Type: coef -0.6282 -0.1040 -0.7276 1.0439 -0.5550 -0.1354 1.506e+05	Type:	Type: Coef std err z -0.6282 0.255 -2.464 -0.1040 0.225 -0.463 -0.7276 0.154 -4.736 1.0439 0.014 72.838 -0.5550 0.098 -5.663 -0.1354 0.120 -1.133 1.506e+05 2.03e+04 7.401	ble: y SARIMAX(1, 1, 2)x(1, 0, 2, 12) Thu, 23 Jul 2020 20:08:03 0 - 132 Type: opg coef std err z P> -0.6282 0.255 -2.464 00.1040 0.225 -0.463 00.7276 0.154 -4.736 0. 1.0439 0.014 72.838 00.5550 0.098 -5.663 00.1354 0.120 -1.133 0. 1.506e+05 2.03e+04 7.401 0. (Q): 23.02 Jarque (Q): 23.02 Jarque (Q): 23.02 Jarque (A) Prob(2) (A) Skew:	ble: y No. SARIMAX(1, 1, 2)x(1, 0, 2, 12) Log Thu, 23 Jul 2020 AIC 20:08:08 :08 BIC 0 HQIC - 132 Type: opg coef std err z P> z -0.6282 0.255 -2.464 0.014 -0.1040 0.225 -0.463 0.644 -0.7276 0.154 -4.736 0.000 -0.7276 0.154 -4.736 0.000 -0.5550 0.098 -5.663 0.000 -0.1354 0.120 -1.133 0.257 1.506e+05 2.03e+04 7.401 0.000 (Q): 23.02 Jarque-Berg (Q): 23.02 Jarque-Berg (0.99 Prob(JB): asticity (H): 1.47 Skew:	ble: y No. Observations: SARIMAX(1, 1, 2)x(1, 0, 2, 12) Log Likelihood Thu, 23 Jul 2020 AIC 20:08:03 BIC 0 HQIC - 132 Type: opg coef std err z P> z [0.025 -0.6282 0.255 -2.464 0.014 -1.128 -0.1040 0.225 -0.463 0.644 -0.545 -0.7276 0.154 -4.736 0.000 -1.029 1.0439 0.014 72.838 0.000 1.016 -0.5550 0.098 -5.663 0.000 -0.747 -0.1354 0.120 -1.133 0.257 -0.370 1.506e+05 2.03e+04 7.401 0.000 1.11e+05 (Q): 23.02 Jarque-Bera (JB): 0.99 Prob(JB): asticity (H): 1.47 Skew:	SARIMAX(1, 1, 2)x(1, 0, 2, 12) Log Likelihood Thu, 23 Jul 2020 AIC 20:08:03 BIC 0 HQIC - 132 Type: opg coef std err z P> z [0.025 0.975] -0.6282 0.255 -2.464 0.014 -1.128 -0.128 -0.1040 0.225 -0.463 0.644 -0.545 0.337 -0.7276 0.154 -4.736 0.000 -1.029 -0.426 1.0439 0.014 72.838 0.000 1.016 1.072 -0.5550 0.098 -5.663 0.000 0.747 -0.363 -0.1354 0.120 -1.133 0.257 -0.370 0.099 1.506e+05 2.03e+04 7.401 0.000 1.11e+05 1.9e+05

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

The RMSE value of SARIMA on training set of Sparkling is 528.65

ROSE - ARIMA

5	param	AIC
2	(0, 1, 2)	1276.835382
5	(1, 1, 2)	1277.359225
4	(1, 1, 1)	1277,775750
7	(2, 1, 1)	1279.045689
8	(2, 1, 2)	1279.298694
1	(0, 1, 1)	1280.726183
6	(2, 1, 0)	1300.609261
3	(1, 1, 0)	1319.348311
0	(0, 1, 0)	1335.152658

Summary of ARIMA on training set of Rose:

Dep. Variable:	D.Rose		No. Obse	ervations:		131	
Model:	AR	IMA(0, 1, 2)	Log Like	lihood	8	-634.418	
Method:		css-mle	S.D. of	innovations		30.168	
Date:	Thu,	23 Jul 2020	AIC		1	1276.835	
Time:		14:41:22	BIC		3	1288.336 1281.509	
Sample:		02-29-1980	HQIC		3		
		- 12-31-1990					
	coef	std err	z	P> z	[0.025	0.975	
const	-0.4885	0.085	-5.742	0.000	-0.655	-0.32	
ma.L1.D.Rose	-0.7600	0.101	-7.500	0.000	-0.959	-0.56	
ma.L2.D.Rose	-0.2398	0.095	-2.518	0.012	-0.427	-0.05	
		Ro	ots				
	Real	Imagir	nary	Modulus	Fre	equency	
MA.1	1.0001	+0.00)00j	1.0001		0.0000	
MA.2	-4.1694	+0.00	000j	4.1694	0.5000		

The RMSE value of ARIMA on training set of Rose is 15.61

ROSE - SARIMA

	param	seasonal	AIC
26	(0, 1, 2)	(2, 0, 2, 12)	887.937509
53	(1, 1, 2)	(2, 0, 2, 12)	889.871767
80	(2, 1, 2)	(2, 0, 2, 12)	890.668798
69	(2, 1, 1)	(2, 0, 0, 12)	896.518161
78	(2, 1, 2)	(2, 0, 0, 12)	897.346444

Summary of SARIMA on training set of Rose:

Dep. Variab	le:			y No.	. Observations	:	133
Model:	S	ARIMAX(0, 1,	2)x(2, 0, 2		g Likelihood		-436.969
Date:			Thu, 23 Jul	2020 AI	C		887.938
Time:			15:	27:59 BIG	C		906.448
Sample:				0 HQ1	IC		895.437
				- 132			
Covariance	Type:			opg			
	coe	f std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.842	7 190.102	-0.004	0.996	-373.435	371.750	
ma.L2	-0.157	3 29.866	-0.005	0.996	-58.694	58.379	
ar.5.L12	0.346	7 0.079	4.375	0.000	0.191	0.502	
ar.5.L24	0.302	3 0.076	3.996	0.000	0.154	0.451	
ma.S.L12	0.076	7 0.133	0.577	0.564	-0.184	0.337	
ma.S.L24	-0.072	6 0.146	-0.498	0.618	-0.358	0.213	
sigma2	251.313	7 4.78e+04	0.005	0.996	-9.34e+04	9.39e+04	
Ljung-Box (O) ·		24 56	Jarque-Bei	ra (18):		2.33
Prob(Q):	۷,۰			Prob(JB):	(55).		0.31
Heteroskeda	sticity (н).	0.88	200000000000000000000000000000000000000			0.37
Prob(H) (tw		.,.		Kurtosis:			3.03

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

The RMSE value of SARIMA on training set of Rose is 26.92

2.7 Building ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluating this model on the test data using RMSE

SPARKLING - ACF

ACF plot with original data set and differenced data set:

SPARKLING - PACF

PACF plot with original data set and differenced data set:

Summary of ARIMA of ACF/PACF on training set of Sparkling:

D V1-11				N- O-			4.74
Dep. Variable		ALEGO SE SE			ervations:		131
Model:	,	ARIMA(1, 1)					-1113.507
Method:					innovation	IS .	1171.378
Date:	Thu	ı, 23 Jul	2020	AIC			2235.014
Time:		20:0	8:24	BIC			2246.515
Sample:			1	HQIC			2239.687
	coef	std err		z	P> z	[0.025	0.975]
const	6.7489	4.616	1.	462	0.144	-2.299	15.797
ar.L1.D.y	0.4289	0.082	5.	221	0.000	0.268	0.590
ma.L1.D.y	-1.0000	0.019	-51. Root		0.000	-1.038	-0.962
	Real	I	maginar		Modulu	is	Frequency
AR.1	2.3313		+0.0000	 j	2.331	.3	0.0000
MA.1	1.0000		+0.0000	i	1.000	10	0.0000

The RMSE value of ARIMA of ACF/PACF on training set of Sparkling is 1461.66

Summary of SARIMA of ACF/PACF on training set of Sparkling:

				SARIMAX R	esults		
Dep. Varia		120	5.55 12		Sparkling		
Model:	SARI	MAX(1, 1,	1)x(2, 0, [5, 6, 7], 12)		
Date:				Thu	, 23 Jul 2020		709.010
Time:					20:10:55	A 100 TO	730.690
Sample:					01-31-1980	1000 - 1000	717.092
MATERIAL PROPERTY AND					- 12-31-1990)	
Covariance	Type:				opg	3	
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.7670	0.150	-5.130	0.000	-1.060	-0.474	
ma.L1	0.9996	17.586	0.057	0.955	-33.469	35.468	
ar.S.L12	1.4380	0.155	9.304	0.000	1.135	1.741	
ar.S.L24	-0.4954	0.158	-3.135	0.002	-0.805	-0.186	
ma.S.L12	-1.5552	18.536	-0.084	0.933	-37.885	34.775	
ma.S.L24	1.1753	14.323	0.082	0.935	-26.897	29.248	
ma.S.L36	0.0172	3.750	0.005	0.996	-7.333	7.368	
ma.S.L48	-0.1688	6.593	-0.026	0.980	-13.090	12.753	
ma.S.L60	-0.2969	5.010	-0.059	0.953	-10.115	9.522	
ma.S.L72	0.5903	9.357	0.063	0.950	-17.749	18.930	
ma.S.L84	-0.0059	1.419	-0.004	0.997	-2.787	2.775	
sigma2	9.251e+04	0.000	4.49e+08	0.000	9.25e+04	9.25e+04	
Ljung-Box			40.77	Jarque-Bera		16.30	
Prob(Q):	1.57			Prob(JB):		0.00	
	dasticity (H):		0.36	Skew:		1.07	
	two-sided):		0.06	Kurtosis:		5.03	

- Warnings:
 [1] Covariance matrix calculated using the outer product of gradients (complex-step).
 [2] Covariance matrix is singular or near-singular, with condition number 3.25e+26. Standard errors may be unstable.

The RMSE value of SARIMA of ACF/PACF on training set of Sparkling is 455.49

ROSE - ACF

ACF plot with original data set and differenced data set:

ROSE - PACF

PACF plot with original data set and differenced data set:

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Summary of ARIMA of ACF/PACF on training set of Rose:

ARTMA		

Dep. Variable:					D.y	No.	Obse	ervations:		131
Model:		ARI	IMA (1, 1	1, 1)	Log	Like	elihood		-634.888
Method:				CSS	s-mle	S.D.	of	innovations	i i	30.279
Date:	1	Thu,	23	Jul	2020	AIC				1277.776
Time:				15:3	31:57	BIC				1289.277
Sample:					1	HQIC				1282.449
	coef		std					P> z	[0.025	0.975]
const	-0.4871		0.					0.000	-0.656	-0.318
ar.L1.D.y	0.2006		0.	087	2	.293		0.022	0.029	0.372
ma.L1.D.y	-0.9999		0.	035	-28	.646		0.000	-1.068	-0.932
**************************************	procedus person				Roc	ts		11319500	10000 TOO TO	1510/00 2560
	Rea	1]	I <mark>m</mark> agina	ry		Modulus		Frequency
AR.1	4.985	5	10000		+0.000	0j	Ø 7.00	4.9856		0.0000
MA.1	1.000	1			+0.000	0 i		1.0001		0.0000

The RMSE value of ARIMA of ACF/PACF on training set of Rose is 15.73

Summary of SARIMA of ACF/PACF on training set of Rose:

SARTMAX Result	٠,

133	ions:	No. Observat	Rose			le:	Dep. Variab
-387.40	ood	Log Likeliho	1, 2], 12))x(3, 0, [MAX(1, 1,	SARI	Model:
790.81		AIC	3 Jul 2020	Thu, 2	20 day		Date:
811.15		BIC	15:32:27				Time:
799.03		HQIC	01-31-1980				Sample:
			12-31-1990	-			
			opg			Type:	Covariance
	0.975]	[0.025	P> z	Z	std err	coef	
		-0.156					ar.L1
	-0.775	-1.185	0.000	-9.382	0.104	-0.9802	ma.L1
	1.021	0.476	0.000	5.385	0.139	0.7482	ar.S.L12
	0.366	-0.127	0.340	0.953	0.126	0.1199	ar.5.L24
	0.206	-0.114	0.575	0.560	0.082	0.0457	ar.S.L36
	-0.053	-0.913	0.028	-2.201	0.219	-0.4830	ma.S.L12
	0.177	-0.561	0.308	-1.020	0.188	-0.1920	ma.S.L24
	271.552	129.932	0.000	5.556	36.128	200.7421	sigma2
	3.05	(JB):	Jarque-Bera	33.09	========	Q):	Ljung-Box (
	0.22		Prob(JB):	0.77		NEENS	Prob(Q):
	0.43			0.77		sticity (H):	
	3.21		Kurtosis:	0.46		o-sided):	Prob(H) (tw

Warnings:

The RMSE value of SARIMA of ACF/PACF on training set of Rose is 18.95

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

2.8 Building a table (data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data

SPARKLING

	Test RMSE	Test MAPE
Alpha=1,SimpleExponentialSmoothing	1275.081823	38.90
Alpha=0.1, SimpleExponential Smoothing	1375.393398	49.53
Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing	1778.564670	67.20
Alpha=0.154,Beta=5.310e-21,Gamma=0.371,TripleExponentialSmoothing	383.157627	11.91
Alpha=0.4,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing	336.715250	10.56
RegressionOnTime	1389.135175	50.15
NaiveModel	3864.279352	152.87
SimpleAverageModel	1275.081804	38.90
2pointTrailingMovingAverage	813.400684	19.70
4pointTrailingMovingAverage	1156.589694	35.96
6pointTrailingMovingAverage	1283.927428	43.86
9pointTrailingMovingAverage	1346.278315	46.86
ARIMA(2,1,2)	1374.297411	NaN
SARIMA(1, 1, 2)(1, 0, 2, 12)	528.655337	NaN
ARIMA_CF(1, 1, 1)	1461.662603	NaN
SARIMA_CF(1, 1, 1)(2, 0, 7, 12)	455.498645	NaN

ROSE

	Test RMSE	Test MAPE
Alpha=1,SimpleExponentialSmoothing	36.796019	63.88
Alpha=0.1, Simple Exponential Smoothing	36.827810	63.94
Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing	36.923185	63.78
Alpha=0.106,Beta=0.048,Gamma=0.0,TripleExponentialSmoothing	17.369210	28.88
Alpha=0.1,Beta=0.2,Gamma=0.2,TripleExponentialSmoothing	9.640616	13.96
RegressionOnTime	15.268885	22.82
NaiveModel	79.718559	145.10
SimpleAverageModel	53.460350	94.93
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451364	19.49
6pointTrailingMovingAverage	14.566269	20.82
9pointTrailingMovingAverage	14.727594	21.01
ARIMA(2,1,2)	15.619588	NaN
SARIMA(0, 1, 2)(2, 0, 2, 12)	26.928140	NaN
ARIMA_CF(1, 1, 1)	15.733476	NaN
SARIMA_CF(1, 1, 1)(3, 0, 2, 12)	18.959324	NaN

2.9 Based on the model-building exercise, building the most optimum model(s) on the complete data and predicting 12 months into the future with appropriate confidence intervals/bands

SPARKLING

ARIMA forecast on auto parameters

Summary:

	Д	RIMA Mode	l Results			200
Dep. Variable:	D.Sp	arkling	No. Observa	tions:	1	.86
Model:	ARIMA(2, 1, 2)		Log Likelih	ood	-1572.1	.56
Method:			S.D. of inn		1110.6	08
Date:	Thu, 23 J	ul 2020	AIC		3156.3	13
Time:	20:02:22		BIC		3175.6	67
Sample:	02-29-1980		HQIC		3164.1	.56
	- 07-	31-1995				
	coef	std err	z	P> z	[0.025	0.975
const	2.2957	0.694	3.310	0.001	0.936	3.659
ar.L1.D.Sparkling	1.1903	0.068	17.545	0.000	1.057	1.32
ar.L2.D.Sparkling				0.000		
ma.L1.D.Sparkling	-1.8747	nan	nan	nan	nan	nar
ma.L2.D.Sparkling	0.8747	0.015	58.268	0.000	0.845	0.904
		Root	ts			
F	teal	Imagina	 ry	Modulus	Frequenc	:= :y
AR.1 1.2	078	-0.7554	 4i	1.4245	-0.089	10
AR.2 1.2		+0.755		1.4245	0.089	(T)
MA.1 1.6		+0.0000	-	1.0000	0.000	
	432	+0.000	_	1.1432	0.000	

Forecast:

SARIMA forecast on auto parameters

Summary:

Dep. Varia	ble:		Spar	kling No.	Observations:		18
Model:	SAR	IMAX(1, 1,	2)x(1, 0, 2	, 12) Log	Likelihood		-1173.41
Date:		At the second se	Thu, 23 Jul	2020 AIC			2360.82
Time:			20:	08:17 BIC			2382.30
Sample:			01-31 - 07-31	-1980 HQI -1995	С		2369.54
Covariance	Type:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.6610	0.242	-2.733	0.006	-1.135	-0.187	
ma.L1	-0.1801	0.219	-0.822	0.411	-0.609	0.249	
ma.L2	-0.7387	0.192	-3.846	0.000	-1.115	-0.362	
ar.S.L12	1.0157	0.012	84.460	0.000	0.992	1.039	
ma.S.L12	-1.3874	0.338	-4.101	0.000	-2.051	-0.724	
ma.S.L24	-0.1460	0.146	-1.000	0.317	-0.432	0.140	
sigma2	6.532e+04	2.08e+04	3.136	0.002	2.45e+04	1.06e+05	0.2540
Ljung-Box	(Q):		18.00	Jarque-Ber	а (JB):	27.	.47
Prob(Q):	23/9/13		1.00	Prob(JB):	X 351	0.	.00
Heterosked	dasticity (H)	:	1.03	Skew:		ø.	.52
Prob(H) (t	:wo-sided):		0.93	Kurtosis:		4.	76

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step).

ARIMA forecast on ACF/PACF parameters

Summary:

Dan Vaniable.	D C-	(-12	No. Observati		1	186
Dep. Variable: Model:	D.Sparkling ARIMA(1, 1, 1)		Log Likelihoo		-1585.2	
Method:	css-mle		S.D. of innov	ations	1202.5	11
Date:	Thu, 23 J	ul 2020	AIC		3178.5	90
Time:	2	0:08:25	BIC		3191.4	193
Sample:		29-1980 31-1995	HQIC		3183.8	19
	coef	std err	z	P> z	[0.025	0.975]
const	2.0785	2.554	0.814	0.416	-2.928	7.085
ar.L1.D.Sparkling	0.3681	0.069	5.370	0.000	0.234	0.503
ma.L1.D.Sparkling	-1.0000	0.014	-70.574	0.000	-1.028	-0.972

	Real	Imaginary	Modulus	Frequency			
AR.1	2.7163	+0.0000j	2.7163	0.0000			
MA.1	1.0000	+0.0000j	1.0000	0.0000			

Roots

Forecast:

SARIMA forecast on ACF/PACF parameters

Summary:

				SARIMAX N	Results			
Dep. Varia							servations:	187
TOUC T.	SAF	RIMAX(1, 1,	1)x(2, 0, [5, 6, 7], 12		kelihood	-756.831
Date:				The	u, 23 Jul 202			1537.663
Time:					177.500.507.500.50	6 BIC		1568.925
Sample:					01-31-198	0 HQIC		1550.319
					- 07-31-199	5		
Covariance	Type:				ор	g		
	coef	std err	Z	P> Z	[0.025	0.975]		
ar.L1	0.2072	0.172			-0.130	0.545		
ma.L1	-1.2880	0.259		0.000	-1.795			
ar.S.L12	0.9041	0.149				1.196		
ar.S.L24	0.0793	0.149		0.595	-0.213	0.372		
ma.S.L12	-1.0457	0.889	-1.177	0.239	-2.788	0.696		
ma.S.L24	0.5704	0.422	1.352	0.176	-0.257	1.397		
ma.S.L36	-1.5694	1.455	-1.079	0.281	-4.421	1.282		
ma.S.L48	1.4401	0.966	1.490	0.136	-0.454	3.334		
ma.S.L60	-0.1133	0.416	-0.273	0.785	-0.928	0.701		
ma.S.L72	0.7538	0.645	1.169	0.242	-0.510	2.017		
ma.S.L84	-1.2643	0.952	-1.328	0.184	-3.130	0.602		
	3.025e+04	4.33e+04			-5.45e+04	1.15e+05		
Ljung-Box	(0).			Jarque-Beri	. (70)		4.47	
Prob(0):	(Q).			Prob(JB):	(30).		0.11	
	asticity (H)	i i	1.03	Skew:			0.31	
	wo-sided):		0.94	Kurtosis:			3.83	
FIOD(H) (L	wo-staea):		0.94	Kur (0515)			3.03	

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

ROSE

ARIMA forecast on auto parameters

Summary:

Don Vaniable		D. Poco	No Obco	nuntions:		100	
Dep. Variable:		D.Rose No. Observations:				186 -876.961	
Model:	AR			Log Likelihood			
Method:			757733 707	innovations	26.649		
Date:	Thu,	23 Jul 2020	AIC		1761.922		
Time:		14:41:28 BIC			1774.825		
Sample:		02-29-1980	HQIC		1	767.151	
		- 07-31-1995					
	coef	std err	Z	P> Z	[0.025	0.975	
const	-0.5229	0.043	-12.026	0.000	-0.608	-0.43	
ma.L1.D.Rose	-0.7923	0.082	-9.618	0.000	-0.954	-0.63	
ma.L2.D.Rose	-0.2076	0.081	-2.572	0.010	-0.366	-0.04	
		R	oots				
	Real	Imagi	nary	Modulus	Fre	quency	
MA.1	1.0000	+0.0	aaai	1.0000		0.0000	
	-4.8166	+0.0	100000000000000000000000000000000000000	4.8166		0.5000	

SARIMA forecast on auto parameters

Summary:

- 1			1000	20	-	_	-7	
54	4	C II	MΑ	х	Re	SI	11	TS

Ro	se No. Observations: 187
SARIMAX(0, 1, 2)x(2, 0, 2, 1	.2) Log Likelihood -647.342
Thu, 23 Jul 20	20 AIC 1308.684
	44 BIC 1330.166
01-31-19	80 HQIC 1317.408
- 07-31-19	
e: 0	pg
coef std err z	P> z [0.025 0.975]
-0.7659 0.088 -8.744	
-0.1386 0.081 -1.713	0.087 -0.297 0.020
0.3978 0.052 7.622	0.000 0.295 0.500
0.3367 0.049 6.827	0.000 0.240 0.433
0.0126 0.089 0.141	0.888 -0.162 0.187
-0.1469 0.099 -1.482	0.138 -0.341 0.047
99.2096 21.416 9.302	0.000 157.235 241.184
27.28 Ja	rque-Bera (JB): 8.75
27.28 Ja 0.94 Pr	ob(JB): 0.01
city (H): 0.26 Sk	
ided): 0.00 Ku	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

ARIMA forecast on ACF/PACF parameters

Summary:

Dep. Variable:		D. Boco	No. Obse	nuntions:		100	
Model:						186	
	Ar	IMA(1, 1, 1)				-877.543	
Method:	122.95			innovations		26.734	
Date:	Thu,	23 Jul 2020				1763.086	
Time:		15:32:08	BIC			1775.989	
Sample:		02-29-1980	HQIC			1768.315	
		- 07-31-1995					
	coef	std err	Z	P> z	[0.025	0.975	
const	-0.5228	0.043	-12.044	0.000	-0.608	-0.43	
ar.L1.D.Rose	0.1682	0.073	2.313	0.021	0.026	0.31	
ma.L1.D.Rose	-0.9999	0.017	-59.434	0.000	-1.033	-0.967	
		R	oots				
	Real	Imagi	nary	Modulus	F	requency	
AR.1	5.9441	+0.0	000j	5.9441		0.0000	
MA.1	1.0001	+0.0	000i	1.0001		0.0000	

SARIMA forecast on ACF/PACF parameters

Summary:

			SARI	MAX Results			
Dep. Varia	hla:			Rose	No. Observa	tions:	187
Model:		MAY/1 1 1)v(3 0 [1, 2], 12)	Log Likelih		-591.807
Date:	SAMI	rink(1, 1, 1	C	The second secon	AIC	oou	1199.614
Time:			1110, 2	15:32:51	BIC		1223.646
La Contraction of the Contractio				01-31-1980	HOIC		1209.378
Sample:				07-31-1995	HOTC		1209.5/8
Cawani	Tuest		-	1,5203-353			
Covariance	Type:			opg			
	coef	std err	z	P> Z	[0.025	0.9751	
ar.L1	0.0554	0.085	0.654	0.513	-0.111	0.221	
ma.L1	-1.1104	0.060	-18.571	0.000	-1.228	-0.993	
ar.S.L12	0.7913	0.098	8.064	0.000	0.599	0.984	
ar.S.L24	0.1186	0.097	1.224	0.221	-0.071	0.309	
ar.S.L36	0.0205	0.057	0.362	0.718	-0.091	0.132	
ma.S.L12	-0.5665	0.154	-3.668	0.000	-0.869	-0.264	
ma.S.L24	-0.2142	0.125	-1.712	0.087	-0.459	0.031	
sigma2	124.2743	19.240	6.459	0.000	86.565	161.983	
Ljung-Box	(0):		39.63	Jarque-Bera	(1R):	11.47	
Prob(Q):	(4)			Prob(JB):	(30)	0.00	
the state of the s	asticity (H):		0.39	Skew:		0.53	
Prob(H) (t			0.00	Kurtosis:		3.85	

2.10 Commenting on the model thus built and reporting the findings

- Sparkling data set shows clear seasonality and a kind of constant trend following through out the data set.
- 2. Rose data set shows clear decreasing trend and with descent seasonal patterns.
- 3. Sparkling and Rose sells best on December.
- 4. Triple Exponential Smoothing and Moving Average methods performs good on both Sparkling and Rose testing data, as it captures its both trend and seasonality.
- 5. SARIMA model performs good on forecasting the models than ARIMA models on both Sparkling and Rose as it contains seasonality.
- 6. For Sparkling, Triple Exponential Smoothing model on iterated method with Alpha=0.4, Beta=0.1 and Gamma=0.2 has least RMSE value on test data with 336.71 followed by SARIMA model with ACF/PACF of (1,1,1)(2,0,7,12) has 455.49 RMSE value.
- 7. For Rose, Triple Exponential Smoothing model on iterated method with Alpha=0.1, Beta=0.2 and Gamma=0.2 has least RMSE value on test data with 9.64 followed by 2 point Trailing Moving Average with 11.529 RMSE value. SARIMA model with ACF/PACF of (1,1,1)(3,0,2,12) has 18.959 RMSE value.
- 8. Since 2 point Trailing Moving Average is not much reliable for longer forecast, its better to go with Triple Exponential Smoothing model and SARIMA model with ACF/PACF for Sparkling and Rose.
- 9. From the above forecast models, even though the sales will be better in Decembers, the sales of Rose wine will be poor where the sales of Sparkling wine will be constant as before with much more increased sales in December.
- 10. ABC Estate Wines can concentrate more on Sparkling wines than Rose wine for increase in sales.

3 Appendix A – Source Code

Karthiheswar_26Ju I_Sparkling.ipynb

ēķā.

Karthiheswar_26Ju I_Rose.ipynb