H21T2A3

Es sei $D \subseteq \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ Lipschitz-stetig. Für die Differentialgleichung x' = f(x) darf ohne Begründung angenommen werden, dass zu jedem Anfangswert eine eindeutige maximale Lösung existiert. Für $x_0 \in D$ bezeichne $\varphi(\cdot, x_0)$ die maximale Lösung zum Anfangswert $x(0) = x_0$

- a) Sei $0 \in D$ ein Fixpunkt der Differentialgleichung, der attraktiv ist (d.h. es gibt ein $\varepsilon > 0$, so dass für alle $x_0 \in D$ mit $||x_0|| < \varepsilon$ die Aussage $\lim_{t \to \infty} \varphi(t, x_0) = 0$ gilt). Sei $x^* \in D$ mit $\lim_{t \to \infty} \varphi(t, x^*) = 0$. Zeigen Sie: Ist $(x_k)_{k \in \mathbb{N}}$ eine Folge in \mathbb{R}^n mit $\lim_{t \to \infty} x_k = x^*$, so gibt es ein $K \in \mathbb{N}$, so dass $\lim_{t \to \infty} \varphi(t, x_k) = 0$ für alle $k \ge K$.
- b) Zeigen Sie, dass die Behauptung aus (a) falsch wird, wenn man statt der Attraktivität von 0 nur voraussetzt, dass 0 ein Fixpunkt ist. Verwenden Sie hierzu das Beispiel $\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x$.

Zu a)

Sei $\lambda_{\xi}: I \to D$ die maximale Lösung zu $x' = f(x), x(0) = \xi$ mit I offenes Intervall, $0 \in I$. Die Menge $w \coloneqq \{(t, \xi) \in \mathbb{R} \times D : \xi \in D, t \in I\}$ ist offen und der Fluss $\varphi: w \to D$; $(t, \xi) \to \varphi(t, \xi) = \lambda_{\xi}(t)$ ist lokal lipschitz-stetig und erfüllt $\varphi(t + s, \xi) = \varphi(t, \varphi(s, \xi))$.

Nach Voraussetzung ist $0: \mathbb{R} \to D$; $t \to 0$ eine attraktive Ruhelage. Deshalb gibt es r > 0 sodass $I \supseteq [0, \infty[$ und $\lim_{t \to \infty} \varphi(t, \xi) = 0$ für alle $\xi \in D$ $mit \|\xi\| < r$. Da auch $\lim_{t \to \infty} \varphi(t, x^*) = 0$ ist, gibt es ein T > 0 mit $\|\varphi(t, x^*)\| < \frac{r}{2}$ für alle $t \ge T$. Da der Definitionsbereich w des Flusses φ offen und φ stetig ist, gibt es ein $\delta > 0$ sodass aus $\|x - x^*\| < \delta$ dann $x \in D$ und $\|\varphi(T, x) - \varphi(T, x^*)\| < \frac{r}{2}$ folgt. Da $\lim_{t \to \infty} x_k = x^*$, gibt es ein $K \in \mathbb{N}$ mit $\|x_k - x^*\| < \delta$ für alle $k \ge K$.

Zu b)

$$\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x \text{ hat die (nicht attraktive) Ruhelage } 0 \colon \mathbb{R} \to \mathbb{R}^2 \; ; t \to \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{. Für die Lösung } \lambda_{(0,c)} \colon \mathbb{R} \to \mathbb{R}^2 \; ; t \to \begin{pmatrix} 0 \\ ce^{-t} \end{pmatrix} \text{ des AWP } \\ \dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x \; ; x(0) = \begin{pmatrix} 0 \\ c \end{pmatrix} \text{ gilt } \lambda_{(0,c)}(t) \xrightarrow[t \to \infty]{} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ und für die Lösung } \\ \lambda_{(c,0)} \colon \mathbb{R} \to \mathbb{R}^2 \; ; t \to \begin{pmatrix} ce^t \\ 0 \end{pmatrix} \text{ des AWP } \\ \dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x \; ; x(0) = \begin{pmatrix} c \\ 0 \end{pmatrix} \text{ gilt } \|\lambda_{(c,0)}(t)\| \xrightarrow[t \to \infty]{} \infty \text{. Damit ist } \\ \text{durch } x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ und } x_k = \begin{pmatrix} \frac{1}{k} \\ 0 \end{pmatrix} \text{ ein Beispiel mit } \lim_{t \to \infty} x_k = x^*, \text{ aber } \lim_{t \to \infty} \|\lambda_{x_k}(t)\| = \lim_{t \to \infty} \|\lambda_{(c,0)}(t)\| = \infty \text{ und } \lim_{t \to \infty} \|\lambda_{x_k}(t)\| = 0 \text{ gegeben.}$$