

Ablaufsteuerung mit SPS

LA1 - V. Jahrgang

Letzte Überarbeitung: 16. September 2018

AUTOR: DI GERALD SCHNUR

DATEI: ABLAUFSTEUERUNG_2018_SR.DOC

LERNZIELE

Nach dieser Laborübung soll der Teilnehmer

	digitale Größen (kapazitiver Füllstandssensor) von einem Prozeß mit SPS verarbeiten können, analoge Größen (Drucksensor) von einem Prozeß mit SPS verarbeiten können,		
	digitale Vorgänge (Relais Pumpen) in einen Prozeß auslösen können, sämtliche Prozessausgangs- u. Eingangsgrößen mit einer SPS zu einer vorgegebenen		
J	Ablaufsteuerung (zeit- u. ereignisorientiert) verarbeiten können,		
	den gemäß Aufgabenstellung notwendigen Gesamtaufbau (Verbindungen von SPS mit Anlage)		
	herstellen können,		
	gegebenenfalls Fehlersuche systematisch durchführen und mit technischen Handbüchern (SPS		
	Modulbeschreibungen) umgehen können,		
	Ablaufsteuerung erstellen und in Betrieb nehmen können (Technologieschema, Ablaufplan		
_	Zuordnungstabelle, SPS-Programm, Inbetriebnahme)		
1	VERWENDETE GERÄTE		
	Prozessmodell (Ausführliche Dateibeschreibungen befinden sich auf PC im Messlabor) SPS B&R (Powerpanel mit dezentralen IO-Modulen siehe Datei Getting_Started_B&R_SPS_Würfel.pdf)		

2 AUFGABENSTELLUNG

Sie haben die Aufgabe, folgenden Chargenbetrieb einer Ablaufsteuerung umzusetzen:

Phase 1: Beim Start der Anlage durch Betätigung des Tasters T_EIN=1 sowie automatisch nach jeder Charge soll der Prozeß für 5 Sekunden im Grundzustand verharren (d.h.: alle Ausgänge inaktiv). Dabei soll die Betriebslampe H1 io=1 leuchten.

Phase 2: Durch binäres Aktivieren der Pumpe 2 (pu2_io=1) soll dann das Niveau aus Behälter 2 soweit abgesenkt werden, bis der kapazitive Niveausensor lmin_io=0 anspricht. In diesem Zustand ist der momentane Füllstand der Flüssigkeitssäule als Bezugsniveau zu ermitteln. Dieser Füllstand kann durch den Drucksensor (pu2_io) im Behälter 2 ermittelt werden.

Phase 3: Ist Phase 2 abgeschlossen, soll nun die Pumpe 2 deaktiviert werden und durch binäres Aktivieren der Pumpe 1 (pu1_io=1) das Niveau im Behälter 2 um 300mm angehoben werden (Höhendifferenz mittels Drucksensor berechnen).

Phase 4: Nach Erreichen bzw. Überschreiten des obigen Niveaus ist die Pumpe 1 wieder auszuschalten und die Heizung (heiz_io=1) für 10 Sekunden zu aktivieren (dabei soll aber vorerst nicht wirklich der Heizstab das Wasser aufheizen, sondern nur die LED heiz_io=1 aktiviert werden). Danach soll die Steuerung wieder den Grundzustand 1 einnehmen und der Ablauf mit einer neuen Charge beginnen.

Achtung: Die Anlage soll jederzeit bei Betätigung des Tasters T_AUS=1 alle Aktoren deaktivieren und sofort in den Grundzustand gehen (alle Aktoren aus) und erst wieder anfahren können, wenn wieder die Taste T_EIN=1 aktiviert wird.

Technologieschema:

Zuordnungstabelle:

Variable	BMKZ	Logischer Zustand
Pumpe 1:	pu1_io	Ein = 1
Pumpe 2:	pu2_io	Ein = 1
Heizung:	heiz_io	Ein = 1
Niveausensor:	lmin_io	Tiefstand erreicht = 0
Drucksensor:	druck_io	4-20 mA entspricht $0-0.1$ bar
Taster 1:	T_EIN	T_EIN=1 Anlage "EIN"
Taster 2:	T_AUS	T_AUS=1 Anlage "AUS"
Betriebslampe	H1_io	H1_io= 1 Anlage im Chargenbetrieb

3 KONTROLLFRAGEN

- 1. Skizzieren und erklären Sie die Anschlußverdrahtung aller verwendeten Sensoren / Aktoren am Prozesssmodel und an der SPS (Drucksensor, Pumpen, Tasten, LEDs etc.)
- 2. ErstellenSie einen Ablaufplan zur vorgegebenen Aufgabenstellung
- 3. Erklären Sie die den Programmcode ("C") entsprechend obiger Aufgabenstellung.
- 4. Erklären Sie exakt, wie mittels Drucksensor programmintern (in SPS) eine Füllstandshöhe der Berechnung zugänglich gemacht werden kann