1D range queries (interval queries)

- Query: Search the interval $[x_{lo}, x_{hi}]$
- Search space: Points $P = \{p_1, p_2, ..., p_n\}$ on the line
 - a) Binary search in an array
 - Simple, but
 - not generalize to any higher dimensions
 - b) Balanced binary search tree
 - 1D range tree
 - maintains canonical subsets
 - generalize to higher dimensions

1D range tree definition

- Balanced binary search tree (with repeated keys)
 - leaves sorted points
 - inner node label the largest key in its left child

- Each node associate with subset of descendants => O(n) canonical subsets

Felkel: Computational geometry

Canonical subsets and <2,23> search

Canonical subsets for this subtree are $\{ \{1\}, \{3\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., [31], ..., [31$ 16 {1, 3}, {4, 7}, ..., {29, 31} $\{1, 3, 4, 7\}, \{9, 12, 14, 15\}, \dots, \{25, 27, 29, 31\}$ {1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31} 2 {1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31} {9,12,14,15} {17,20}(20 27 {4,7} Felkel: Computational geometry

1D range tree search interval <2,23>

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf u with $key(u) \ge x_{lo} 2 -> 3$
 - Search x_{hi} : Find leftmost leaf v with key(v) $\geq x_{hi}$ 23 -> 24
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v
 - Split node = node, where paths to u and v diverge

1D range tree search

- Reporting the subtrees (below the split node)
 - On the path to u whenever the path goes left, report the canonical subset (CS) associated to right child
 - On the path to v whenever the path goes right, report the canonical subset associated to left child
 - − In the leaf u, if key(u) ∈ [x_{lo} : x_{hi}] then report CS of u
 - In the leaf v, if key(v) ∈ [x_{lo} : x_{hi}] then report CS of v

1D range tree search complexity

- Path lengths O(log n)
 - => O(log n) canonical subsets (subtrees)

Sum the total numbers of leaves stored in maximum subtree roots... O(log n) time

 $root(\mathfrak{T})$

split node

- Range reporting queries
 - Return all k points in given range
 - Traverse the canonical subtrees ... O(log n + k) time
- O(n) storage, $O(n \log n)$ preprocessing (sort P)

Find split node

FindSplitNode(T, [x:x'])

Input: Tree T and Query range [x:x'], $x \le x'$

split node

Output: The node, where the paths to x and x' split

or the leaf, where both paths end

- 1. t = root(T)
- 2. while(t is not a leaf and (x' \leq t.x or t.x < x)) // t out of the range [x:x']

3. if
$$(x' \le t.x) t = t.left$$

4. else t = t.right

5. return t root(\mathfrak{T})

STOP

Felkel: Computational geometry

```
1dRangeQuery( t, [x:x'])
Input:
                1d range tree t and Query range [x:x']
Output:
                All points in t lying in the range
    t_{split} = FindSplitNode( t, x, x') // find interval point t \in [x:x']
                        // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example
    if( t<sub>split</sub> is leaf )
        check if the point in t_{split} must be reported // t_x \in [x:x']
3.
    else // follow the path to x, reporting points in subtrees right of the path
5.
       t = t_{split}.left
       while( t is not a leaf)
          if( x \leq t.x)
              ReportSubtree( t.right ) // any kind of tree traversal
8
9.
              t = t.left
10.
           else t = t.right
       check if the point in leaf t must be reported
11.
       // Symmetrically follow the path to x' reporting points left of the path
12.
         = t<sub>split</sub>.right
```

Multidimensional range searching

- Equal principle find the largest subtrees contained within the range
- Separate one *n*-dimensional search into *n* 1-dimensional searches
- Different tree organization
 - Orthogonal (Multilevel) range search tree
 e.g. nd range tree
 - Kd tree

From 1D to 2D range tree

- Search points from [Q.x_{lo,} Q.x_{hi}] [Q.y_{lo,} Q.y_{hi}]
- 1d range tree: log n canonical subsets based on x
- Construct an y auxiliary tree for each such subset

y-auxiliary tree for each canonical subset

2D range tree

2D range search

```
2dRangeQuery( t, [x:x'] × [y:y'])
Input:
               2d range tree t and Query range
Output:
                All points in t laying in the range
1. t<sub>split</sub> = FindSplitNode( t, x, x')
    if( t<sub>split</sub> is leaf )
3.
       check if the point in t_{split} must be reported ... t.x \in [x:x'], t.y \in [y:y']
    else // follow the path to x, calling 1dRangeQuery on y
5.
       t = t<sub>split</sub>.left // path to the left
       while(t is not a leaf)
6.
          if( x \leq t.x)
             1dRangeQuerry( t<sub>assoc</sub>( t.right ), [y:y'] ) // check associated su
             t = t.left
10.
          else t = t.right
      check if the point in leaf t must be reported ... t.x \le x', t.y \in [y:y]
      Similarly for the path to x' ... // path to the right
```


2D range tree

- Search $O(\log^2 n + k) \dots \log n$ in x, $\log n$ in y
- Space $O(n \log n)$
 - O(n) the tree for x-coords
 - $O(n \log n)$ trees for y-coords
 - Point p is stored in all canonical subsets along the path from root to leaf with p,
 - once for x-tree level (only in one x-range)
 - each canonical subsets is stored in one auxiliary tree
 - $\log n$ levels of x-tree => $O(n \log n)$ space for y-trees
- Construction $O(n \log n)$
 - Sort points (by x and by y). Bottom up construction

Canonical subsets

Canonical subsets for this subtree are # $\{ \{1\}, \{3\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., [31], ..., [31$ 16 {1, 3}, {4, 7}, ..., {29, 31} $\{1, 3, 4, 7\}, \{9, 12, 14, 15\}, \dots, \{25, 27, 29, 31\}$ {1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31} 2 {1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31} {9,12,14,15} {17,20} 27 $\{4,7\}$ Felkel: Computational geometry