

FCC TEST REPORT

FCC 47 CFR Part 15C Industry Canada RSS-247

Digital transmission systems operating within the 2400 - 2483.5 MHz band

Testing Laboratory: Eurofins Product Service GmbH

Address: Storkower Str. 38c

15526 Reichenwalde

Germany

Accreditation:

A2LA Accredited Testing Laboratory, Certificate No.: 1983.01

FCC Filed Test Laboratory, Reg.-No.: 96970 IC OATS Filing assigned code: 3470A

Applicant's name ZIGPOS GmbH

Address: Strehlener Str. 12/14

01069 Dresden GERMANY

Test specification:

Standard...... 47 CFR Part 15C

RSS-247, Issue 1, 2015-05

Test scope.....: complete Radio compliance test

Equipment under test (EUT):

Firmware / Software version

Product description Temperature Humidity Sensor

v1.9

Model No. LTHP_v3

Additional Model(s)

Brand Name(s)

Hardware version

None

v3

FCC-ID: 2AHHJ-LTHPV3 IC: N/A

Test result Passed

Possible test case verdicts:			
- neither assessed nor tested	N/N		
- required by standard but not appl. to t	est object:	N/A	
- required by standard but not tested	:	N/T	
- not required by standard for the test o	bject:	N/R	
- test object does meet the requirement	t:	P (Pass)	
- test object does not meet the requiren	nent:	F (Fail)	
Testing:			
Test Lab Temperature	:	20 – 23 °C	
Test Lab Humidity	:	32 – 38 %	
Date of receipt of test item	:	2016-03-14	
Date (s) of performance of tests	i	2016-03-14 -	2016-03-24
Compiled by:	Christian Webe	er	
Tested by (+ signature): (Responsible for Test)	Christian Webe	er	C. Waser
Approved by (+ signature): (Deputy Head of Lab)	Toralf Jahn		TO
Date of issue:	2017-03-21		

General remarks:

Total number of pages 85

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Additional comments:

Version History

Version	Issue Date	Remarks	Revised by
01	2017-03-21	Initial Release	

REPORT INDEX

1	EQUIPMENT (TEST ITEM) DESCRIPTION	5
1.1	Photos – Equipment External	6
1.2	Photos – Equipment internal	8
1.3	Photos – Test setup	9
1.4	Supporting Equipment Used During Testing	10
1.5	Test Modes	11
1.6	Test Equipment Used During Testing	12
1.7	Sample emission level calculation	13
2	RESULT SUMMARY	14
3	TEST CONDITIONS AND RESULTS	15
3.1	Test Conditions and Results – Occupied Bandwidth	15
3.2	Test Conditions and Results – 6 dB Bandwidth	19
3.3	Test Conditions and Results – Maximum peak conducted power	23
3.4	Test Conditions and Results – Power spectral density	24
3.5	Test Conditions and Results – Band edge compliance	25
3.6	Test Conditions and Results – Conducted spurious emissions	28
3.7	Test Conditions and Results – Transmitter radiated emissions	32
3.8	Test Conditions and Results – Receiver radiated emissions	34
	NEX A Transmitter radiated spurious emissions NEX B Receiver radiated spurious emissions	36 76

1 Equipment (Test item) Description

Description	Temperature Hu	midity Sensor		
Model	LTHP_v3			
Additional Model(s)	None			
Brand Name(s)	None			
Serial number	None			
Hardware version	v3			
Software / Firmware version	v1.9			
FCC-ID	2AHHJ-LTHPV3			
IC	N/A			
Equipment type	End product			
Radio type	Transceiver			
Radio technology	IEEE 802.15.4			
Operating frequency range	2405 - 2480 MHz			
Assigned frequency band	2400 - 2483.5 M	Hz		
	F _{LOW}	2405 MHz		
Main test frequencies	F _{MID}	2440 MHz		
	F _{HIGH} 2480 MHz			
Spreading	DSSS			
Modulations	O-QPSK			
Number of channels	16 (11-26)			
Channel spacing	5MHz			
Number of antennas	1			
	Туре	integrated		
Antenna	Model	Inverted-F		
Antonia	Manufacturer	ТІ		
	Gain	3.3 dBi (manufacturer declaration)		
Manufacturer	ZIGPOS GmbH Strehlener Str. 12/14 01069 Dresden GERMANY			
Power supply	V _{NOM}	3.0 VDC (Lithium Battery)		
	Model	N/A		
AC/DC Adaptor	Vendor	N/A		
AC/DC-Adaptor	Input	N/A		
	Output	N/A		

1.4 Supporting Equipment Used During Testing

Product Type*	Device	Manufacturer	Model No.	Comments		
None						
*Note: Use	*Note: Use the following abbreviations:					
AE:	AE: Auxiliary/Associated Equipment, or					
SIM : Simulator (Not Subjected to Test)						
CABL:	Connecting cables					

1.5 Test Modes

Mode #		Description
	General conditions:	EUT powered by laboratory power supply
IEEE 802.15.4- PS	Radio conditions:	Mode = standalone transmit Spreading = DSSS Modulation = O-QPSK Data rate = 250 kbps Duty cycle = 100 % Power level = Maximum
	General conditions:	EUT powered by fully charged battery
IEEE 802.15.4- BAT	Radio conditions:	Mode = standalone transmit Spreading = DSSS Modulation = O-QPSK Data rate = 250 kbps Duty cycle = 100 % Power level = Maximum
	General conditions:	EUT powered by fully charged battery
Receive	Radio conditions:	Mode = standalone receive Spreading = DSSS

1.6 Test Equipment Used During Testing

Measurement Software						
Description Manufacturer Name Version						
EMC Test Software Dare Instruments Radimation 2015.2.4						

Occupied Bandwidth					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSW43	EF00896	2015-03	2016-03

6dB Bandwidth					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSW43	EF00896	2015-03	2016-03

Maximum peak conducted power					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSW43	EF00896	2015-03	2016-03

Power spectral density					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSW43	EF00896	2015-03	2016-03

Band edge compliance					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSW43	EF00896	2015-03	2016-03

Conducted spurious emissions							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Spectrum Analyzer	R&S	FSW43	EF00896	2015-03	2016-03		

Radiated spurious emissions							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Semi-anechoic chamber	Frankonia	AC 1	EF00062	-	-		
Spectrum Analyzer	R&S	FSIQ26	EF00151	2015-03	2016-03		
Biconical Antenna	R&S	HK 116	EF00012	2013-02	2016-02		
LPD Antenna	R&S	HL 223	EF00187	2014-03	2017-03		
LPD Antenna	R&S	HL 025	EF00327	2015-10	2018-10		

Test Report No.: G0M-1602-5388-TFC247ZB-V01

1.7 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer (dB μ V) + A.F. (dB) = Net field strength (dB μ V/m)

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of $dB\mu V/m$). The FCC limits are given in units of $\mu V/m$. The following formula is used to convert the units of $\mu V/m$ to $dB\mu V/m$:

Limit (dB μ V/m) = 20*log (μ V/m)

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB μ V + 26 dB = 47.5 dB μ V/m : 47.5 dB μ V/m - 57.0 dB μ V/m = -9.5 dB

2 Result Summary

FCC 47 CFR Part 15C, IC RSS-247						
Product Specific Standard Section	Requirement – Test	Reference Method	Result	Remarks		
RSS-Gen 6.6	Occupied Bandwidth	ANSI C63.10	N/R	Informational only		
FCC § 15.247(a)(2) IC RSS-247 § 5.2	6dB Bandwidth	ANSI C63.10	PASS			
FCC § 15.247(b)(3) IC RSS-247 § 5.4	Maximum peak conducted power	ANSI C63.10	PASS			
FCC § 15.247(e) IC RSS-247 § 5.2	Power spectral density	ANSI C63.10	PASS			
47 CFR 15.207 IC RSS-247 § 3.1	AC power line conducted emissions	ANSI C63.4	N/R	EUT exclusively battery powered		
FCC § 15.247(d) IC RSS-247 § 5.5	Band edge compliance	ANSI C63.10	PASS			
FCC § 15.247(d) IC RSS-247 § 5.5	Conducted spurious emissions	ANSI C63.10	PASS			
FCC § 15.247(d) FCC § 15.209 IC RSS-247 § 5.5	Transmitter radiated spurious emissions	ANSI C63.10	PASS			
IC RSS-247 § 3.1	Receiver radiated spurious emissions	ANSI C63.10	PASS			
Remarks:			•			

3 Test Conditions and Results

3.1 Test Conditions and Results - Occupied Bandwidth

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span set to at least twice the emission spectrum
- 3. Resolution bandwidth set to 1 % of span
- 4. Occupied Bandwidth (99 %) measurement with spectrum analyzer built in measurement function

Test results							
Channel	Frequency [MHz]	Mode	Occupied Bandwidth [MHz]				
F _{LOW}	2405	IEEE 802.15.4-PS	2.348				
F _{MID}	2440	IEEE 802.15.4-PS	2.418				
F _{HIGH}	2480	IEEE 802.15.4-PS	2.478				
Comments:							

Occupied Bandwidth - IEEE 802.15.4 FLOW

Occupied Bandwidth

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 6.9.3

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 11, 2405 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24

Occupied Bandwidth [MHz]: 2.348

Date: 24.MAR.2016 11:38:02

Occupied Bandwidth - IEEE 802.15.4 F_{MID}

Occupied Bandwidth

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 6.9.3

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 18, 2440 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24

Occupied Bandwidth [MHz]: 2.418

Date: 24.MAR.2016 11:40:08

Occupied Bandwidth - IEEE 802.15.4 F_{HIGH}

Occupied Bandwidth

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 6.9.3

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 26, 2480 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24

Occupied Bandwidth [MHz]: 2.478

Date: 24.MAR.2016 11:41:14

3.2 Test Conditions and Results - 6 dB Bandwidth

Test procedure

- 1. EUT set to test mode
- 2. Span set to at least twice the emission spectrum
- 3. Detector set to peak and max hold and RBW is set to 100 kHz
- 4. Envelope peak value of emission spectrum is selected
- 5. Marker on envelope of spectrum is set to level of -6 dB to the left of the peak
- 6. Marker on envelope of spectrum is set to level of -6 dB to the right of the peak
- 7. 6 dB Bandwidth is determined by marker frequency separation

	, , , ,							
Test results								
Channel	Frequency [MHz]	Mode	6 dB Bandwidth [kHz]	Limit [kHz]	Result			
F _{LOW}	2405	IEEE 802.15.4-PS	1568	500	PASS			
F _{MID}	2440	IEEE 802.15.4-PS	1608	500	PASS			
F _{HIGH}	2480	IEEE 802.15.4-PS	1648	500	PASS			
Comments:	•							

6 dB Bandwidth - IEEE 802.15.4 F_{LOW}

DTS (6 dB) Bandwidth

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.8.1 Option 1

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 11, 2405 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Lower Frequency [MHz]: 2404.161
Upper Frequency [MHz]: 2405.729
6 dB Bandwidth [kHz]: 1568

Date: 24.MAR.2016 11:48:05

6 dB Bandwidth - IEEE 802.15.4 F_{MID}

DTS (6 dB) Bandwidth

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.8.1 Option 1

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 18, 2440 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Lower Frequency [MHz]: 2439.151
Upper Frequency [MHz]: 2440.759
6 dB Bandwidth [kHz]: 1608

Date: 24.MAR.2016 11:49:05

6 dB Bandwidth - IEEE 802.15.4 F_{HIGH}

DTS (6 dB) Bandwidth

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.8.1 Option 1

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 26, 2480 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Lower Frequency [MHz]: 2479.121
Upper Frequency [MHz]: 2480.769
6 dB Bandwidth [kHz]: 1648

Date: 24.MAR.2016 16:28:02

3.3 Test Conditions and Results – Maximum peak conducted power

Maximum peak conducted power acc. to FCC 15.247 / IC RSS-247 Verdict: PAS				
EUT requirement	Reference			
rule parts and clause	FCC 15.247(b)(3) / IC RSS-247 5.4			
Test according to	Reference Method			
measurement reference	ANSI C63.10			
T	Tested frequencies			
Test frequency range	F _{LOW} / F _{MID} / F _{HIGH}			
Measurement mode	Peak			
Maximum antenna gain	3.3 dBi ⇒ Limit correction = 0 dB			
Limits				
1 W (30 dBm)				

The conducted output power limit specified above is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in the table, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Center frequency set to test channel center frequency
- 3. Span set to twice the 20 dB bandwidth and detector to peak and max hold
- 4. Resolution bandwidth is set to 3 MHz
- 5. Peak conducted power is determined from peak of spectrum envelope

	Test results								
Channel	Frequency [MHz]	Voltage [VDC]	Mode	Peak power [dbm]	Peak power [W]	Limit [dBm]	Margin [dB]		
F _{LOW}	2405	$V_{NOM} = 3.0$	IEEE 802.15.4-PS	4.211	0.003	30	-25.79		
F _{MID}	2440	$V_{NOM} = 3.0$	IEEE 802.15.4-PS	4.097	0.003	30	-25.90		
F _{HIGH}	2480	$V_{NOM} = 3.0$	IEEE 802.15.4-PS	4.100	0.003	30	-25.90		
Comments	:								

Test Report No.: G0M-1602-5388-TFC247ZB-V01

3.4 Test Conditions and Results - Power spectral density

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Center frequency set to test channel center frequency
- 3. Span is set large enough to capture maximum emissions in passband, RBW is set to 3kHz
- 4. Peak power density is determined from peak emission of envelope

Test results								
Channel	Frequency [MHz]	Test mode	Peak frequency [MHz]	Peak power density [dBm]	Limit [dBm/3kHz]	Margin [dB]		
F _{LOW}	2405	IEEE 802.15.4-PS	2405.208	0.767	8.0	-07.23		
F _{MID}	2440	IEEE 802.15.4-PS	2440.204	0.719	8.0	-07.28		
F _{HIGH}	2480	IEEE 802.15.4-PS	2480.204	0.454	8.0	-07.55		
Comments	Comments: RBW=100 kHz							

3.5 Test Conditions and Results - Band edge compliance

Band-edge compliance acc. to FC	/erdict: PASS			
EUT requirement		Reference		
rule parts and clause		FCC 15.247(d) / IC RSS-247 5.5	5	
Test according to		Reference Method		
measurement reference		ANSI C63.10		
T		Tested frequencies		
Test frequency range	F _{LOW} / F _{HIGH}			
Measurement mode		Peak		
	Lin	nits		
Limit		Condition		
≤ -20 dB / 100 kHz		Power measurement detector = Peak		
≤ -30 dB / 100 kHz		Power measurement detector = RMS		
	Test	setup		
	pectrum nalyzer	EUT		

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span set around lower band edge and detector is set to peak and max hold
- 3. Resolution bandwidth is set to 100 kHz
- 4. Markers are set to peak emission levels within frequency band and outside frequency band
- 5. Band edge attenuation is determined from level difference

Test results								
Channel	Frequency [MHz]	Mode	Level [dBc]	Limit [dBc]	Margin [dB]			
F_{LOW}	2405	IEEE 802.15.4-PS	-40.78	-20	-20.78			
F _{HIGH}	2480	IEEE 802.15.4-PS	-35.14	-20	-15.14			
Comments:								

Band-edge compliance - IEEE 802.15.4 FLOW

Band-edge Compliance

Project Number: G0M-1602-5388
Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.11

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 11, 2405 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Band-edge Lower
In-band Frequency [MHz]: 2405.192
Max. in-band Level [dBm/100 kHz]: 1.235
Out-of-band Frequency [MHz]: 2399.983
Max. out-of-band Level [dBm/100 kHz]: -39.55
Attenuation [dB]: -40.78

Band-edge compliance - IEEE 802.15.4 F_{HIGH}

Band-edge Compliance

Project Number: G0M-1602-5388
Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.11

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 26, 2480 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Band-edge Upper
In-band Frequency [MHz]: 2480.192
Max. in-band Level [dBm/100 kHz]: 1.003
Out-of-band Frequency [MHz]: 2483.829
Max. out-of-band Level [dBm/100 kHz]: -34.141
Attenuation [dB]: -35.14

Test Report No.: G0M-1602-5388-TFC247ZB-V01

3.6 Test Conditions and Results - Conducted spurious emissions

Conducted spurious emissions acc. to FCC 15.247 / IC RSS-247 Verdict: PASS						
EUT requirement	Reference					
rule parts and clause	FCC 1	5.247(d) / IC RSS-24	47 5.5			
Test according to		Reference Method				
measurement reference		ANSI C63.10				
Toot fraguency range		Tested frequencies				
Test frequency range	10 MHz – 10 th Harmonic					
Measurement mode		Peak				
	Limits					
Limit		Condition				
≤ -20 dB / 100 kHz	Peak	Peak power measurement detector = Peak				
≤ -30 dB /100 kHz	Peak	Peak power measurement detector = RMS				
	Test setup					
	ectrum alyzer	EUT				
T						

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth is set to 100 kHz and detector to peak and max hold
- 4. Markers are set to peak emission levels within frequency band
- 5. Emission level is determined by second marker on emission peak
- 6. Attenuation is determined from level difference

Test results									
Channel	Frequency [MHz]	Mode	Emission [MHz]	Emission Level [dbm]	Peak power [dBm]	Limit [dBm]	Margin [dB]		
F _{LOW}	2405	IEEE 802.15.4-PS	2399	-43.06	0.8	-19.2	-23.86		
F _{MID}	2440	IEEE 802.15.4-PS	9758	-57.10	0.7	-19.3	-37.80		
F _{HIGH}	2480	IEEE 802.15.4-PS	2485	-39.87	0.4	-19.6	-20.27		
Comments									

Conducted spurious emissions - IEEE 802.15.4 FLOW

Conducted Spurious Emissions

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.11

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 11, 2405 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24

Max. in-band Frequency [MHz]: 2404.7

Max. in-band Level [dBm/100 kHz]: 0.8

Out-of-band Limit [dBm/100 kHz]: -19.2

Conducted spurious emissions - IEEE 802.15.4 F_{MID}

Conducted Spurious Emissions

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.11

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 18, 2440 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Max. in-band Frequency [MHz]: 2439.7
Max. in-band Level [dBm/100 kHz]: 0.7
Out-of-band Limit [dBm/100 kHz]: -19.3

Conducted spurious emissions - IEEE 802.15.4 F_{HIGH}

Conducted Spurious Emissions

Project Number: G0M-1602-5388 Applicant ZIGPOS GmbH

Model Description Temperature Humidity Sensor

Model: LTHP_v3

Test Sample ID: 4

Reference Standards: FCC 15.247, RSS-247

Reference Method: ANSI C63.10:2013, Section 11.11

Operational Mode: IEEE 802.15.4 (DSSS/250 kbps), Channel: 26, 2480 MHz

Operating Conditions: Tnom/Vnom Operator: C. Weber

Test Site: Eurofins Product Service GmbH

Test Date: 2016-03-24
Max. in-band Frequency [MHz]: 2479.7
Max. in-band Level [dBm/100 kHz]: 0.4
Out-of-band Limit [dBm/100 kHz]: -19.6

3.7 Test Conditions and Results - Transmitter radiated emissions

Transmitter radiated emissions acc. to Verdict: PASS FCC 47 CFR 15.247 / IC RSS-247							
Test according refe	Reference Method						
standards		FCC 15.247(d) / IC RSS-247 5.5					
Test according to measurement reference		Reference Method					
		ANSI C63.10					
Test frequency range		Tested frequencies					
		30 MHz – 10 th Harmonic					
Limits							
Frequency range [MHz]	Detector	Limit [µV/m]	Limit [dBµV/m]	Limit Distance [m]			
30 – 88	Quasi-Peak	100	40	3			
88 – 216	Quasi-Peak	150	43.5	3			
216 – 960	Quasi-Peak	200	46	3			
960 – 1000	Quasi-Peak	500	54	3			
> 1000	Average	500	54	3			

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). When average radiated emission measurements are specified, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Test Report No.: G0M-1602-5388-TFC247ZB-V01

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels within restricted bands

Test results									
Channel	Freq. [MHz]	Mode	Emission [MHz]	Level [dbµV/m]	Det.	Pol.	Limit [dbµV/m]	Limit dist. [m]*	Margin [dB]
F_{LOW}	2405	IEEE 802.15.4	4808	47.79	pk	ver	74.00	3	-26.21
F_{LOW}	2405	IEEE 802.15.4	4808	47.47	pk	hor	74.00	3	-26.53
F_{MID}	2440	IEEE 802.15.4	4880	49.29	pk	ver	74.00	3	-24.71
F _{MID}	2440	IEEE 802.15.4	4880	48.94	pk	hor	74.00	3	-25.06
F _{HIGH}	2480	IEEE 802.15.4	2484	59.89	pk	ver	74.00	3	-14.11
F _{HIGH}	2480	IEEE 802.15.4	2484	52.45	RMS	ver	54.00	3	-01.55
F _{HIGH}	2480	IEEE 802.15.4	2484	57.47	pk	hor	74.00	3	-16.53
F _{HIGH}	2480	IEEE 802.15.4	2484	49.83	RMS	hor	54.00	3	-04.17
F _{HIGH}	2480	IEEE 802.15.4	2485	54.63	pk	ver	74.00	3	-19.37
F _{HIGH}	2480	IEEE 802.15.4	2485	47.02	RMS	ver	54.00	3	-06.98
F _{HIGH}	2480	IEEE 802.15.4	4960	48.74	pk	ver	74.00	3	-25.26
F _{HIGH}	2480	IEEE 802.15.4	4960	48.73	pk	hor	74.00	3	-25.27
C t	Comments: * Dhysical distance between FUT and recognized arteria								

Comments: * Physical distance between EUT and measurement antenna.

3.8 Test Conditions and Results - Receiver radiated emissions

Receiver radiated emissions acc. to IC RSS-247 Verdict: PASS									
Test according refere	Reference Method								
standards	IC RSS-247 3.1								
Test according to	0			Referer	nce Method				
measurement refere				ANS	I C63.10				
		Tested frequencies							
Test frequency rar	nge		3	30 MHz –	5 th Harmoni	ic			
EUT test mode				Re	eceive				
Limits									
requency range [MHz]	Detector	L	imit [µV/m]	Limit	[dBµV/m]	Limit Distance [m]			
30 – 88	Quasi-Pea	k	100		40	3			
88 – 216	Quasi-Pea	k	150		43.5	3			
216 – 960	216 – 960 Quasi-Pea		200		46	3			
960 – 1000	960 – 1000 Quasi-Pea		500		54	3			
> 1000 Average			500		54	3			
		Те	st setup						
Semi-anechoic Chamber EUT Turn table Ground Plane									
	plifier		urement ceiver						

Test procedure

- 1. EUT set to receive mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels

Test results										
Channel	Frequency [MHz]	Emission [MHz]	Emission Level [dbµV/m]	Emission Level [µV/m]	Det.	Limit [µV/m]	Margin [µV/m]			
All	Scan		**							

Comments:

^{*} Physical distance between EUT and measurement antenna.

^{**} Emission level corresponds to ambient noise floor

ANNEX A Transmitter radiated spurious emissions

Spurious emissions according to FCC part 15 Subpart C § 15.247, IC RSS-247, I1

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-15
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14

Note: EUT vertical; lower bandedge

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14

Note: EUT vertical; lower bandedge

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-31

Note: EUT vertical; higher bandedge

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-31

Note: EUT vertical; higher bandedge

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 11; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 18; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; Zigbee; CH: 26; OQPSK; Pmax

Test Date: 2016-03-14
Note: EUT vertical

ANNEX B Receiver radiated spurious emissions

Spurious emissions according to IC RSS-247, I1

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-15 Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-14
Note: EUT vertical

Project number: G0M-1602-5388

Applicant: ZIGPOS GmbH EUT Name: Temperatursensor

Model: LTHP v3

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 24°C, Vnom: 3.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: RX; Zigbee; CH: 18; OQPSK; RX-mode

Test Date: 2016-03-14
Note: EUT vertical

