Задание 1. Исследование типовых звеньев. Согласно вашему варианту (см. таблицу 1), рассмотрите два из нижеперечисленных физических объектов. В каждом варианте есть два подварианта для выбора параметров изучаемых объектов из соответствующих таблиц. Опираясь на приведенную информацию, найдите их дифференциальные уравнения, постройте их передаточные функции и установите каким типовым звеном описывается каждый объект. Запишите аналитические выражения для временных (переходной и весовой) и частотных (АЧХ, ФЧХ и ЛАФЧХ) характеристик исследуемых звеньев. Приведите графическое представление всех перечисленных величин.

1. Brushed DC motor.

Даны уравнения двигателя постоянного тока независимого возбуждения:

$$J\dot{\omega} = M, \quad M = k_m I, \quad I = \frac{U + \varepsilon_i}{R}, \quad \varepsilon_i = -k_e \omega.$$

Возьмите из таблицы 2 значения, которые соответствуют вашему подварианту, для следующих величин:

- 1. k_m конструктивная постоянная по моменту;
- 2. k_e конструктивная постоянная по ЭДС;
- 3. J момент инерции ротора;
- 4. R активное сопротивление обмоток ротора. Входом объекта считать U(t), а выходом $\omega(t)$.

2. Brushed DC motor 2.0.

Даны уравнения двигателя постоянного тока независимого возбуждения:

$$J\dot{\omega}=M,\ M=k_mI,\ I=rac{U+arepsilon}{R},\ arepsilon=arepsilon_i+arepsilon_s,\ arepsilon_i=-k_e\omega,\ arepsilon_s=-L\dot{I}.$$

Возьмите из таблицы 2 значения, которые соответствуют вашему подварианту, для следующих величин:

- 1. k_m конструктивная постоянная по моменту;
- 2. k_e конструктивная постоянная по ЭДС;
- 3. J момент инерции ротора;
- 4. R активное сопротивление обмоток ротора;
- 5. L индуктивность обмоток ротора.

Входом объекта считать U(t), а выходом $\omega(t)$.

3. Конденсируй. Интегрируй. Умножай.

Дано уравнение конденсатора:

$$I = C \frac{dU}{dt}$$
.

Возьмите из таблицы 3 значение, которое соответствует вашему подварианту, для следующих величин:

1. C – ёмкость конденсатора.

Входом объекта считать I(t), а выходом U(t).

4. Tachogenerator.

Даны уравнения тахогенератора постоянного тока:

$$I = \frac{\varepsilon - U_{out}}{R}, \ \varepsilon = \varepsilon_i + \varepsilon_s, \ \varepsilon_i = k_e \dot{\theta}, \ \varepsilon_s = -L\dot{I}, \ I = \frac{U_{out}}{R_l}.$$

Возьмите из таблицы 4 значения, которые соответствуют вашему подварианту, для следующих величин:

- 1. R активное сопротивление обмоток ротора;
- 2. R_l омическая нагрузка;
- 3. L индуктивность обмоток ротора;
- 4. k_e конструктивная постоянная по ЭДС.

Входом объекта считать $\omega(t)$, а выходом $U_{out}(t)$.

5. Spring-mass system.

Рис. 1 – Пружинный маятник

Даны уравнения пружинного маятника:

$$F_{\text{ynp}} = -k \cdot x, \quad F = m \cdot a$$

Возьмите из таблицы 5 значения, которые соответствуют вашему подварианту, для следующих величин:

- 1. M масса груза;
- 2. k коэффициент жесткости пружины.

Входом объекта считать $F_{ext}(t)$ (некую внешнюю силу, направленную соосно движению маятника), а выходом x(t). Считать, что маятник движется ортогонально силе тяжести.

Задание 2. (Дополнительное) Исследование остальных типовых звеньев.

Выполните Задание 1 для физических объектов, не охваченных вашим вариантом. Параметры объектов выберите на основании соответствующих таблиц в соответствии с остатком от деления вашего варианта на 20 (№ mod 20).

Задание 3. (Дополнительное+) Что ты такое?

Рис. 2 – Принципиальная схема регулятора на операционном усилителе.

Основываясь на данной схеме, найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 6 значения, которые соответствуют остатку от деления вашего варианта на 20 ($N_{2} \mod 20$), для следующих величин:

- 1. R_1 сопротивление входного резистора;
- $2. \ R_2$ сопротивление резистора отрицательной обратной связи;
- 3. C ёмкость конденсатора отрицательной обратной связи.

Таблица 1: Пары объектов и исходных данных к ним по вариантам.

Вариант	Номера объектов	Подварианты	Вариант	Номера объектов	Подварианты
1	2; 5	1; 1	16	2; 3	7; 7
2	1; 3	1; 1	17	3; 4	8; 6
3	1; 2	2; 2	18	1; 4	7; 7
4	4; 5	1; 2	19	2; 4	8; 8
5	3; 5	2; 3	20	1; 5	8; 8
6	2; 3	3; 3	21	2; 5	9; 9
7	3; 4	4; 2	22	1; 3	9; 9
8	1; 4	3; 3	23	1; 2	10; 10
9	2; 4	4; 4	24	4; 5	9; 10
10	1; 5	4; 4	25	3; 5	10; 11
11	2; 5	5; 5	26	2; 3	11; 11
12	1; 3	5; 5	27	3; 4	12; 10
13	1; 2	6; 6	28	1; 4	11; 11
14	4; 5	5; 6	29	2; 4	12; 12
15	3; 5	6; 7	30	1; 5	12; 12

Таблица 2: Параметры для объектов 1 и 2.

Вариант	$k_m, \mathrm{H} \cdot \mathrm{M} / \mathrm{A}$	k_e , B·c	J , кг·м 2	R, Om	L, Гн
1	0.3678	0.3678	0.0026	4.7509	1.1597
2	0.3239	0.3239	0.0018	4.6916	1.1682
3	0.3637	0.3637	0.0023	4.6050	1.1784
4	0.3800	0.3800	0.0027	4.6140	1.0216
5	0.3872	0.3872	0.0019	4.6554	1.0847
6	0.3612	0.3612	0.0031	4.7237	1.0567
7	0.3348	0.3348	0.0032	4.7391	1.1647
8	0.3509	0.3509	0.0025	4.7320	1.0910
9	0.3574	0.3574	0.0024	4.6377	1.1868
10	0.3249	0.3249	0.0016	4.6808	1.0411
11	0.3435	0.3435	0.0021	4.5920	1.0575
12	0.3658	0.3658	0.0032	4.5963	1.0338
13	0.3222	0.3222	0.0028	4.6013	1.1319
14	0.3555	0.3555	0.0031	4.7097	1.1786
15	0.3423	0.3423	0.0029	4.6730	1.1206
16	0.3378	0.3378	0.0025	4.6119	1.1147
17	0.3074	0.3074	0.0019	4.6730	1.0337
18	0.3718	0.3718	0.0028	4.6035	1.1753
19	0.3713	0.3713	0.0023	4.5850	1.1291
20	0.3361	0.3361	0.0019	4.7441	1.0749

Таблица 3: Параметры для объекта 3.

Вариант	C , мк Φ	Вариант	C , мк Φ	
1	263	11	359	
2	277	12	369	
3	287	13	379	
4	291	14	390	
5	300	15	404	
6	314	16	414	
7	324	17	419	
8	332	18	437	
9	340	19	445	
10	357	20	455	

Таблица 4: Параметры для объекта 4.

Вариант	R, Om	R_l , Om	L, Гн	k_e , B·c
1	7.7563	209	0.4888	0.3785
2	7.4995	219	0.4883	0.3389
3	6.5468	225	0.4531	0.3734
4	5.3716	237	0.5022	0.3454
5	6.1451	249	0.4969	0.3460
6	5.2188	263	0.4577	0.3427
7	4.8581	274	0.4528	0.3246
8	8.0370	283	0.4969	0.3701
9	5.8046	295	0.4714	0.3197
10	5.7844	297	0.4400	0.3914
11	5.9153	313	0.4990	0.3437
12	6.3847	316	0.4312	0.3349
13	7.0187	330	0.4390	0.3166
14	4.8383	336	0.5051	0.3525
15	7.6977	352	0.4783	0.3591
16	6.7066	365	0.4201	0.3845
17	7.7393	375	0.4728	0.3895
18	5.9676	377	0.4698	0.3510
19	6.3111	393	0.4939	0.3931
20	4.9398	402	0.4283	0.3616

Таблица 5: Параметры для объекта 5.

Вариант	M, кг	<i>k</i> , Н/м	Вариант	M, кг	<i>k</i> , Н/м
1	8	102	11	16	105
2	24	112	12	17	229
3	13	322	13	27	140
4	32	253	14	29	90
5	6	191	15	5	113
6	35	324	16	8	319
7	20	81	17	14	71
8	26	274	18	3	122
9	35	271	19	19	66
10	11	219	20	13	182

Таблица 6: Параметры для задания 3.

Вариант	R_1 , OM	R_2 , OM	C , мк Φ	Вариант	R_1 , OM	R_2 , OM	C , мк Φ
1	666	13310	263	11	665	12644	359
2	7083	14165	277	12	2593	12964	369
3	917	14665	287	13	2253	15769	379
4	1108	18841	291	14	5031	20124	390
5	928	16704	300	15	4110	16438	404
6	6427	19282	314	16	952	17142	414
7	2425	21827	324	17	1296	16853	419
8	3440	20639	332	18	999	11990	437
9	1254	21326	340	19	2595	10380	445
10	1709	17094	357	20	390	7021	455