Lecture 4: Visualization

Outline

- Basic plotting commands
- Types of plots
- Customizing plots graphically
- Color
- Figure formats
- Customizing plots programmatically

Why visualization in Matlab?

Matlab is **flexible** enough to let you quickly visualize data, and **powerful** enough to give you complete control over the final product

Why visualization in Matlab?

Poor Graphs

Figure 1 Q-Q plots of Z scores for individual interval-length differences between racial/ethnic groups. a, African Americans versus whites. b, African Americans versus Hispanics. c, African Americans versus Asians. d, Whites versus Hispanics. e, Whites versus Asians. f, Hispanics versus Asians.

Poor Graphs

Distribution of All TFBS Regions

Poor Graphs

Hematocrit Group (%)

Cotter et. al., Journal of Clinical Epidemiology 57 (2004)

Types of Plots

- 2D Visualization
 - plot (line plots)
 - image/imagesc (images)
 - bar (histograms)
 - scatter (scatter plots)
- 3D Visualization
 - surf/mesh (surfaces)
 - plot3 (lines)

plot

- Syntax: plot(x,y) plots points in the vector y against points in the vector x

image/imagesc

- Syntax: image(C) plots the values stored in the matrix C as an image

hist/bar

- Syntax: hist(y) plots a histogram of the values in y, bar(x,y) plots bars at the points given by (x,y)

scatter

- Syntax: scatter(x,y,s,c) lets you specify the size (s) and color (c) of each point given by (x,y)

surf & mesh

- Syntax: surf(x,y,z) and mesh(x,y,z) are used to visualize a surface in three dimensions

plot3

- Syntax: plot3(x,y,z) plot points in 3D

Demo: Plot Types

http://www.mathworks.com/help/matlab/2-and-3d-plots.html

subplots

- the 'subplot' command let's you plot multiple plots on one figure
- syntax: subplot(nRows, nCols, index)

(Figure 1) subplot(1,3,3)subplot(1,3,1) subplot(1,3,2)

subplots

- the 'subplot' command let's you plot multiple plots on one figure
- syntax: subplot(nRows, nCols, index)

Demo: Subplots

Customizing Graphs Graphically

Demo: Customizing Graphically

Color in Matlab

Matlab has 8 built-in colors:

Black (k), Red (r), Blue (b), Green (g),

Cyan (c), Magenta (m), Yellow (y), White (w)

We can specify other colors using RGB (red, green blue) notation:

```
blue = [0 \ 0 \ 1]
green = [0 \ 1 \ 0]
gray = [0.2 \ 0.2 \ 0.2]
```

Colormaps

Colormaps are used to specify how data gets mapped onto different colors.

Matlab has a few built-in colormaps, but you can also specify your own!

Why are colormaps important?

Much better!

Avoid the default colormap (jet)

Demo: Color

Figure formats

Matlab saves figures using it's own .fig format.

If we want to share our figures with others, or put them in a paper, we will export to other formats, including:

JPG, PNG, EPS, PDF, TIFF

Bitmap vs. Vector graphics

Two main classes of image formats: **bitmap** vs. **vector** graphics

Bitmap (jpg, png):

- Fixed image sizes
- Best for actual images (pictures of stuff)

Vector (eps):

- Variable image sizes
- Best for line / bar graphs, scatter plots, etc.

Aliasing

Left: Aliasing occurs due to finite pixel resolution.

Right: We deal with it by using an anti-aliasing filter

Aliasing

Demo: Exporting Figures

Figure handling

Figures in Matlab are referenced using "handles", which are pointers to different parts of the figure.

```
Example:
```

```
myhandle = plot(x,y);
```

Will return a handle to the plot. Then you can run the following:

```
get(myhandle); % to see a list of properties
set(myhandle, 'Name', Value); % to set the value of a property
```

Figure handling

Different parts of the figure are organized hierarchically:

Demoi Customizing Programmaticaly

Demo: Annotating plots

Other Resources

2D and 3D visualization examples:

http://www.mathworks.com/help/matlab/2-and-3d-plots.html

Custom colormaps:

http://colorbrewer.org

Anti-aliasing filter:

http://www.mathworks.com/matlabcentral/fileexchange/20979-myaa-my-anti-alias-for-matlab

Colors in figures (blog post)

http://figuredesign.blogspot.com/2012/04/meeting-recap-colors-

in-figures.html

Other Resources

<- Book by Edward Tufte

Lots of principles / guidelines for making good figures