Przetwarzanie obrazów

Zestaw zadań nr 6

⋆: zadania na ocenę

Obrazy binarne sa progowane tylko do dwóch wartości, zazwyczaj 0 i 1, lub — jak w przypadku ImageJ — 0 i 255, które reprezentują czerń i biel w skali 8-bitowej.

Przyporządkowanie kolorów pierwszego planu i tła obrazu binarnego do wykonania operacji morfologicznych w Image J dokonuje się w $Process \longrightarrow Binary$ $\longrightarrow Options.$

1. Operacje morfologiczne w ImageJ

Element strukturalny w ImageJ ustawiony jest standardowo jako $\begin{bmatrix} 1 & 1 & 1 \\ 1 & \otimes & 1 \\ 1 & 1 & 1 \end{bmatrix}.$ Prosze wykonać w ImageJ operacie

Proszę wykonać w ImageJ operacje

- (a) erozji,
- (b) dylatacji,
- (c) otwarcia,
- (d) domknięcia

na obrazie swieta.png ($Process \longrightarrow Binary$) i wyjaśnić zjawiska na obrazach wyjściowych.

2. **Erozja** \star (0.5 + 0.5)

Dany jest obraz binarny (kolor czarny = 1, kolor biały = 0).

(a) Proszę wykonać operację erozji wskazanym elementem strukturalnym.

(b) Proszę utworzyć obraz z (a), wykonać operację erozji w Image
J $(Process \longrightarrow Binary)$ i wyjaśnić różnicę na obrazach wyjściowych w części

(a) i (b).

3. Operacje morfologiczne - egzamin SL 2024

Dany jest obraz binarny (kolor czarny = 1, kolor biały = 0). Proszę wykonać erozję wskazanym elementem strukturalnym.

4. **Dylatacja** \star (0.5 + 0.5)

Dany jest obraz binarny (kolor czarny = 1, kolor biały = 0).

(a) Proszę wykonać operację dylatacji wskazanym elementem strukturalnym.

(b) Proszę utworzyć obraz z (a), wykonać operację dylatacji w ImageJ ($Process \longrightarrow Binary$) i wyjaśnić różnicę na obrazach wyjściowych w części (a) i (b).

5. Operacje morfologiczne - egzamin SZ 2025 Dany jest obraz binarny (kolor czarny = 1, kolor biały = 0). Proszę wy-

konać dylatację wskazanym elementem strukturalnym.

6. Otwarcie

Dany jest obraz binarny (kolor czarny = 1, kolor biały = 0).

(a) Proszę wykonać operację otwarcia wskazanym elementem strukturalnym.

(b) Proszę utworzyć obraz z (a), wykonać operację otwarcia w ImageJ ($Process \longrightarrow Binary$) i wyjaśnić różnicę na obrazach wyjściowych w części (a) i (b).

7. Domknięcie

Dany jest obraz binarny (kolor czarny = 1, kolor biały = 0).

(a) Proszę wykonać domknięcie wskazanym elementem strukturalnym.

- (b) Proszę utworzyć obraz z (a), wykonać operację domknięcia w ImageJ ($Process \longrightarrow Binary$) i wyjaśnić różnicę na obrazach wyjściowych w części (a) i (b).
- 8. Podstawowe operacje morfologiczne $1 \star (0.5 + 0.5)$ Na grafice poniżej dany jest obraz binarny A (kolor czarny = 0, kolor biały = 1).

- (a) Wynikiem jakiej operacji morfologicznej na obrazie A jest obraz B?
- (b) Jaki element strukturalny z jakim centrum należy zastosować w operacji z (a)?

9. Podstawowe operacje morfologiczne $2 \star (0.5 + 0.5)$

Na grafice poniżej dany jest obraz binarny C (kolor czarny = 0, kolor biały = 1).

- (a) Wynikiem jakiej operacji morfologicznej na obrazie C jest obraz D?
- (b) Jaki element strukturalny z jakim centrum należy zastosować w operacji z (a)?

10. Podstawowe operacje morfologiczne 3

W obrazie binarnym g_b ukośne linie pn.-wsch. długości 3 mają zostać zastąpione poziomymi liniami długości 4 zgodnie z grafiką poniżej.

Jakie operacje morfologiczne z jakimi elementami strukturalnymi i jakimi centrami należy zastosować?

11. Operacje morfologiczne - egzamin SL 2024

W wejściowym obrazie binarnym (kolor czarny = 1, kolor biały = 0) kwadraty o wymiarach 3×3 mają zostać zastąpione kwadratami o wymiarach 2×2 zgodnie z grafiką poniżej. Jakie operacje morfologiczne z jakimi elementen strukturalnym i jakimi centrami należy zastosować?

12. Operacje morfologiczne - egzamin SZ 2025

W wejściowym obrazie binarnym (kolor czarny = 1, kolor biały = 0) litera "A" ma zostać zastąpiona znakiem zapytania "?" zgodnie z grafiką poniżej. Jakie operacje morfologiczne z jakimi elementami strukturalnym i jakimi centrami należy zastosować?

13. Operacje morfologiczne - egzamin SZ 2025

Dany jest zaszumiony obraz binarny (kolor czarny = 1, kolor biały = 0)

oraz elementy strukturalne a, b i c:

Obrazy A,B,CiDsą obrazami wyjściowymi po przeprowadzeniu operacji morfologicznych na obrazie wejściowym:

Proszę uzupełnić poniższą tabelę:

operacja morfologiczna	obraz wyjściowy A, B, C, D	element strukturalny a, b, c
erozja		
dylatacja		
otwarcie		
domknięcie		

14. Algorytm region filling

Dany jest (niepełny) kontur obietku c (kontrur_c.png), obraz p (punkt_p.png) zjednym pikselem = 1 w obrębie obiektu oraz element strukturalny B =

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \otimes & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

- (a) Proszę zaproponować operacje morfologiczne (przetwarzanie wstępne), które umożliwią zastosowanie algorytmu $region\ filling\ do\ wypełnienia\ konturu\ c.$
- (b) Proszę wypełnić obiekt.

15. Morfologia - egzamin SL 2024

Które z następujących twierdzeń jest prawdziwe?

- (a) Otwarcie odpowiada dylatacji, po której następuje erozja.
- (b) Domknięcie zawsze można odwrócić poprzez otwarcie.
- (c) Po otwarciu kolejne otwarcie nie ma żadnego skutku.
- (d) Po otwarciu domknięcie nie ma żadnego efektu.
- (e) Erozja jest równoważna otwarciu, po którym następuje domknięcie.

16. Transformacja Hit-or-Miss

Dany jest obraz binarny g_b :

1	1	1	1	1	1	1
1	0	1	1	1	0	1
1	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	1	1	1	0

Proszę wyznaczyć obrazy, które powstaną przez zastosowanie elementu strukturalnego

(a)
$$B_{HoM} = \begin{bmatrix} 1 & \star & 0 \\ \star & 1 & \star \\ 0 & \star & 1 \end{bmatrix}$$

(b)
$$B_{HoM} = \begin{array}{|c|c|c|c|c|}\hline 1 & \star & 0 \\ \hline 1 & 0 & \star \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

(d)
$$B_{HoM} = \begin{bmatrix} \star & 0 & 0 \\ 1 & 1 & 0 \\ \star & 1 & \star \end{bmatrix}$$

i transformacji Hit-or-Miss na obraz binarny g_b (kontynuacja obrazu poza tym obszarem ma wartość 0).

17. Transformacja Hit-or-Miss \star (0.5)

Proszę podać element strukturalny transformacji Hit-or-Miss, którym moż-

na wyznaczyć lewe górne rogi obiektów zgodnie z grafiką poniżej.

18. Operacje morfologiczne - egzamin SL 2024

Proszę wyznaczyć obraz, który powstanie przez zastosowanie transformacji Hit-or-Miss na poniższym obrazie binarnym (kolor czarny = 0, kolor biały = 1):

19. Operacje morfologiczne - egzamin SZ 2025

Proszę wyznaczyć obraz, który powstanie przez zastosowanie transformacji Hit-or-Miss na poniższym obrazie binarnym (kolor czarny = 0, kolor biały = 1):

element strukturalny

20. Szkieletowanie obiektów $\star (1.5 + 0.5)$

Proszę wykonać szkieletowanie obiektów pierwszego planu na obrazie krolikj. png (kolor czarny = 1, kolor biały = 0) algorytmem "A Fast Parallel Algorithm for Thinning Digital Patterns" (T.Y.Zhang, C.YSuen) z wykorzystaniem elementu strukturalnego:

P_7	P_8	P_9
P_6	P_1	P_2
P_{5}	P_{A}	P_3

nie zmieniając przy tym warunków usunięcia piksela pierwszego planu.

- (a) Proszę wykonać szkieletowanie obiektów.
- (b) Czy wynik szkieletowania jest taki sam, gdy wykonuje się szkieletowanie algorytmem zaiplementowanym w ImageJ? Proszę uzasadnić swoją odpowiedź.
- 21. Operatory morfologiczne przetwarzanie obrazu \star (0.5+1) W zapisie nutowym mają zostać policzone takty.

- (a) Proszę zaproponować metodę wykorzystującą operatory morfologiczne do policzenia taktów w zapisie nutowym na grafice StoLat.png.
- (b) Proszę wykonać kroki proponowanej metody na obrazie StoLat. Do rozwiązania należy załączyć wyniki wszystkich etapów przetwarzania obrazu.
- 22. Operatory morfologiczne przetwarzanie obrazu * (0.5+1) W zaszumionym i obróconym obrazie tekstu (grafika Szukanie Jedynek.png)

należy znaleźć dokładnie wszystkie cyfry 1 (ale nie literę "l") występujące w tekście i zaznaczyć je na czerwono.

- (a) Proszę zaproponować etapy przetwarzania obrazu i ich kolejność, w celu wykonania tego zadania.
- (b) Proszę znaleźć w grafice cyfry 1 i zaznaczyć je na czerwono. Do rozwiązania należy załączyć wyniki wszystkich etapów przetwarzania obrazu.

23. Transformacja Top Hat w ImageJ

- (a) Proszę zastosować transformację Top Hat ($Prozess \longrightarrow Filters \longrightarrow Top \; Hat$) z ustawionymi parametrami radius = 3, LightBackground na obrazie TopHat.png (kolor czarny = 1, kolor biały = 0).
- (b) Proszę wykonać transformację TopHat (white) poprzez działanie

$$T_w(g_b) = g_b - g_b \circ B$$

tz
n. z wykorzystaniem zaimplementowanej w Image J operacji otwarcia.

(c) Proszę wyjaśnić różnicę w wynikach (a) i (b).

 $Wskaz \acute{o}wka$: Wymiary filtrów w Image J można znaleźć w menu Prozess $\longrightarrow Filters \longrightarrow Show \ Circular \ Masks).$

Element strukturalny dla podstawowych operacjach morfologicznych w

ImageJ ustawiony jest standardowo jako
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \otimes & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

24. Transformacja odległościowa w Image
J $\star \, (0.5 + 0.5)$

- (a) Proszę zastosować transformację odległościową ($Prozess \longrightarrow Binary \longrightarrow Distance\ Map$) na obrazie TOdleg.png (kolor czarny = 0, kolor biały = 1).
- (b) Proszę wykonać progowanie obrazu z (a) w taki sposób, by na obrazie wyjściowym pozostały tylko piksele o odległościach 5-10 pikseli od tła. Powstały obraz musi być obrazem binarnym!

25. Transformacja odległościowa - egzamin SL 2024

Proszę wykonać transformację odległościową poniższego obrazu binarnego (kolor czarny =1, kolor biały =0). W tabeli wystarczy wpisać wartości

 $\neq 0$.

Proszę wskazać, w jaki sposób można wykorzystując transformację odległościową znaleźć kontury obiektu na obrazie wejściowym.

26. Operacje na obrazie binarnym - egzamin SZ $20\,25$

Dany jest binarny obraz wejściowy g_B (kolor czarny = 0, kolor biały = 1):

Proszę przyporządkować operacje na obrazie g_B do obrazów wyjściowych

A,B,C i D:

 $A \hspace{1cm} B \hspace{1cm} C \hspace{1cm} D$

- gradient morfologiczny $\operatorname{Grad}(g_b) = (g_b \oplus B) (g_b \ominus B) \longrightarrow \operatorname{obraz} \dots$
- $\bullet\,$ transformacja odległościowa $\longrightarrow\,$ obraz . . .
- $\bullet\,$ transformacja wododziałowa \longrightarrow obraz . . .
- $\bullet\,$ transformacja Voronoja —
o obraz . . .