Vv417 Lecture 11

Jing Liu

UM-SJTU Joint Institute

October 17, 2019

Q: Recall the concept of linear independence, how did we define it?

Defintion

Suppose

$$\mathcal{S} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$$

is a set of two or more vectors in a vector space $\mathcal V$, then $\mathcal S$ is said to be

linearly independent

if no vector in S can be expressed as a linear combination of the others.

Theorem

Let $\mathcal{S} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be a set of two or more vectors in \mathcal{V} . Then \mathcal{S} is linearly independent if and only if the only solution to the following equation

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0}$$

is
$$\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$$
.

Proof

ullet Given the set ${\cal S}$ is linearly independent, and assume $lpha_i$ is non-zero, then

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0}$$

$$\implies \mathbf{v}_i = \left(-\frac{\alpha_1}{\alpha_i}\right) \mathbf{v}_1 + \left(-\frac{\alpha_2}{\alpha_i}\right) \mathbf{v}_2 + \dots + \left(-\frac{\alpha_r}{\alpha_i}\right) \mathbf{v}_r$$

- This contradicts the fact of linear independence, so α_i 's must all be zero.
- Given

$$\alpha_1 = \alpha_2 = \dots = \alpha_r = 0$$

is the only solution, $% \left(\mathcal{S}\right) =\left(\mathcal{S}\right) =\left(\mathcal{S}\right)$ and assume \mathcal{S} is linearly dependent, then

$$\mathbf{v}_i = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_r \mathbf{v}_r$$

• But this contradicts the fact that all α_i 's being zero is the only solution, so $\mathcal S$ must be linearly independent.

Determine whether the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 5 \\ 6 \\ -1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ are linearly independent or linearly dependent in \mathbb{R}^4 .

Solution

• We have to find whether the trivial solution is the only solution to

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0} \iff \begin{bmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \quad \text{where} \quad \mathbf{x} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

• Since $\begin{bmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 0.5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, they are not linearly independent.

Theorem

For a set $\mathcal{S} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ of two or more vectors in a vector space \mathcal{V} , then

- 1. If S has a linearly dependent subset, then S must be linearly dependent.
- 2. If S is linearly independent, then every subset of S is linearly independent
- 3. If S is linearly independent and if $u \in V$, then the extension set

$$\mathcal{S}_{\mathsf{ext}} = \mathcal{S} \cup \{\mathbf{u}\}, \quad \text{ is linearly independent if and only if } \mathbf{u} \notin \mathrm{span}(\mathcal{S}).$$

Proof

- 1. Suppose that \mathcal{S} contains a linearly dependent subset, and let the vectors in \mathcal{S} be listed so that this dependent set is $\mathcal{S}_{dep} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.
- By definition of dependence, there are scalars α_1 , α_2 , ..., α_k not all of which are zero such that $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0}$. This means, we have

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \mathbf{0} \mathbf{v}_{k+1} + \dots + \mathbf{0} \mathbf{v}_n = \mathbf{0}$$

where not all of the scalars are zero, and hence ${\cal S}$ is linearly dependent.

Q: What is a Vandemonde matrix
$$\mathbf{V} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{n-1} \end{bmatrix}$$
?

Q: Why is the Vandemonde matrix V invertible if it is from using n distinct x?

ullet V is invertible if and only if the homogeneous system has only trivial solution

$$Va = 0$$

$$a_0\mathbf{v}_0 + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_{n-1}\mathbf{v}_{n-1} = \mathbf{0}$$
, where \mathbf{v}_i are columns of \mathbf{V} .

• That is, for each $i = 1, 2, \ldots, n$,

$$a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_{n-1} x_i^{n-1} = 0$$

• Since x_i are distinct, the corresponding polynomial has n distinct roots.

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

- But the fundamental theorem of algebra guarantees that if P(x) is not the zero polynomial, then P(x) of degree n-1 can have at most n-1 roots.
- Therefore the only solution to

$$Va = 0$$
 is the trivial solution.

ullet Hence any Vandemonde matrix is invertible for n distinct x, and since

$$Va = a_0v_0 + a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1} = 0,$$

the columns of V forms a linearly independent set.

Using the same argument, we can show that

$$1, \quad x, \quad x^2, \dots, x^n$$

form a linearly independent set in \mathcal{P}_n .

Determine whether the polynomials

$$\mathbf{p}_1 = 1 - x$$
, $\mathbf{p}_2 = 5 + 3x - 2x^2$, $\mathbf{p}_3 = 1 + 3x - x^2$

are linearly dependent or linearly independent in \mathcal{P}_2 .

Solution

• Linearly independent only if $\alpha_1=\alpha_2=\alpha_3=0$ is the only way for all $x\in\mathbb{R}$

$$\mathbf{0} = \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2 + \alpha_3 \mathbf{p}_3$$

$$0 = \underbrace{(\alpha_1 + 5\alpha_2 + \alpha_3)}_{0} + \underbrace{(-\alpha_1 + 3\alpha_2 + 3\alpha_3)}_{0} x + \underbrace{(-2\alpha_2 - \alpha_3)}_{0} x^2$$

 \bullet Only the zero polynomial satisfies it, see whether all $\alpha=0$ is the only way

$$\begin{bmatrix} 1 & 5 & 1 \\ -1 & 3 & 3 \\ 0 & -2 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix} \implies \begin{array}{l} \text{Hence } \alpha_1 = \alpha_2 = \alpha_2 = 0 \text{ is not} \\ \text{the only solution, so } \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \\ \text{are linearly dependent.} \end{array}$$

Determine whether the following vectors

$$\mathbf{f}_1 = \sin^2 x, \quad \mathbf{f}_2 = \cos^2 x, \quad \mathbf{f}_3 = 5$$

are linearly dependent or linearly independent.

Solution

• Using the trigonometric identity

$$\sin^2 x + \cos^2 x = 1$$

We have

$$5\mathbf{f}_1 + 5\mathbf{f}_2 - \mathbf{f}_3 = \mathbf{0}$$

• Therefore they are linearly dependent.

- It is rare that linear independence or dependence of arbitrary functions can be determined by algebraic methods.
- There is a theorem that can be useful when the functions are differentiable. It uses a special function known as the Wronskian.

Definition

Let

$$\mathbf{f}_1 = f_1(x), \quad \mathbf{f}_2 = f_2(x), \quad \cdots, \mathbf{f}_n = f_n(x)$$

be functions that are n-1 times continuously differentiable for $x \in \mathbb{R}$, then

$$W(x) = \det \begin{pmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{pmatrix}$$

is called the Wronskian of f_1 , f_2 , ..., f_n .

- Suppose that $\mathbf{f}_1, \mathbf{f}_2, \cdots \mathbf{f}_n$ are linearly dependent vectors in $\mathcal{C}^{n-1}(-\infty, \infty)$.
- This implies that the vector equation

$$\alpha_1 \mathbf{f}_1 + \alpha_2 \mathbf{f}_2 + \dots + \alpha_n \mathbf{f}_n = \mathbf{0}$$

is satisfied by values of the coefficients α_1 , α_2 , ..., α_n that are not all zero.

ullet This also implies that for these coefficients α_i 's the equation

$$\alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_n f_n(x) = 0$$

is satisfied for all $x \in \mathbb{R}$.

ullet If the functions are n-1 times differentiable, then we have the system

ullet Thus, the linear dependence of ${f f}_1, {f f}_2, \cdots {f f}_n$ implies that the linear system

$$\begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

has a non-trivial solution for every x in the interval $(-\infty, \infty)$.

• This in turn implies that the determinant of the coefficient matrix W(x), the Wronskian, is zero for every such x.

Theorem

If the functions $\mathbf{f}_1, \mathbf{f}_2, \cdots, \mathbf{f}_n$ have n-1 continuous derivatives on $(-\infty, \infty)$, and if the Wronskian of these functions is not identically zero on $(-\infty, \infty)$, then these functions form a linearly independent set of vectors in $\mathcal{C}^{n-1}(-\infty, \infty)$.

Q: Can we conclude anything regarding the set of differentiable functions if

$$W(x) = 0$$
 for all x

Use the Wronskian to show that

1,
$$e^x$$
, and e^{2x}

are linearly independent vectors.

Solution

Compute the Wronskian,

$$W(x) = \det \begin{bmatrix} 1 & e^x & e^{2x} \\ 0 & e^x & 2e^{2x} \\ 0 & e^x & 4e^{2x} \end{bmatrix} = 2e^{3x}$$

• Since exponential function is never zero,

$$1, e^x, e^{2x}$$

are linearly independent.