

ULN2002A, ULN2003A, ULN2003AI ULQ2003A, ULN2004A, ULQ2004A

SLRS027O - DECEMBER 1976-REVISED JANUARY 2016

ULN200x, ULQ200x High-Voltage, High-Current Darlington Transistor Arrays

Features

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs: 50 V
- **Output Clamp Diodes**
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

Applications

- **Relay Drivers**
- Stepper and DC Brushed Motor Drivers
- Lamp Drivers
- Display Drivers (LED and Gas Discharge)
- Line Drivers
- Logic Buffers

3 Description

The ULx200xA devices are high-voltage, high-current Darlington transistor arrays. Each consists of seven NPN Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads.

The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions of the ULx2003A devices, see the SLRS023 data sheet for the SN75468 and SN75469 devices.

The ULN2002A device is designed specifically for use with 14-V to 25-V PMOS devices. Each input of this device has a Zener diode and resistor in series to control the input current to a safe limit. The ULx2003A devices have a 2.7-kΩ series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

The ULx2004A devices have a 10.5-kΩ series base resistor to allow operation directly from CMOS devices that use supply voltages of 6 V to 15 V. The required input current of the ULx2004A device is below that of the ULx2003A devices, and the required voltage is less than that required by the ULN2002A device.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
ULx200xD	SOIC (16)	9.90 mm × 3.91 mm			
ULx200xN	PDIP (16)	19.30 mm × 6.35 mm			
ULN200xNS	SOP (16)	10.30 mm × 5.30 mm			
ULN200xPW	TSSOP (16)	5.00 mm × 4.40 mm			

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Block Diagram

Table of Contents

1	3 Description	10		
2	2 Applications 1	8	Detailed Description	12
3	3 Description 1		8.1 Overview	12
_	•		8.2 Functional Block Diagrams	12
	_		8.4 Device Functional Modes	13
•		9	Application and Implementation	14
	-			
			9.2 Typical Application	14
	·		9.3 System Examples	17
		10	Power Supply Recommendations	18
		11		
	6.7 Electrical Characteristics: ULN2003AI 6			
	6.8 Electrical Characteristics: ULN2003AI6	12		
	6.9 Electrical Characteristics: ULQ2003A and			
	ULQ2004A 7			
	•			
		13		
	6.14 Typical Characteristics		Information	19
		ge numb	ers in the current version.	Page
<u> </u>	Changed Pin Functions table to correct typographical error.			3
Cha	anges from Revision M (February 2013) to Revision N			Page
•	Added Pin Configuration and Functions section, ESD Rating Modes, Application and Implementation section, Power Sup.			
•	and Documentation Support section, and Mechanical, Packet	aging, ar		1
	and Documentation Support section, and Mechanical, Packet		nd Orderable Information section	
•	and Documentation Support section, and Mechanical, Packet Deleted Ordering Information table. No specification change	S	nd Orderable Information section	1
<u>•</u>	and Documentation Support section, and Mechanical, Packet	S	nd Orderable Information section	1
	and Documentation Support section, and Mechanical, Packet Deleted Ordering Information table. No specification change	S	nd Orderable Information section	1
Cha	and Documentation Support section, and Mechanical, Packet Deleted Ordering Information table. No specification change Moved Typical Characteristics into Specifications section	s	nd Orderable Information section	1 8 Page
Cha	and Documentation Support section, and Mechanical, Packet Deleted Ordering Information table. No specification change Moved Typical Characteristics into Specifications section	s	nd Orderable Information section	1 8 Page

5 Pin Configuration and Functions

D, N, NS, and PW Package 16-Pin SOIC, PDIP, SO, and TSSOP Top View

Pin Functions

Р	IN	I/O ⁽¹⁾	DESCRIPTION
NAME	NO.	1/0 ()	DESCRIPTION
1B	1		
2B	2		
3B	3		
4B	4	I	Channel 1 through 7 Darlington base input
5B	5		
6B	6		
7B	7		
1C	16		
2C	15		
3C	14		
4C	13	0	Channel 1 through 7 Darlington collector output
5C	12		
6C	11		
7C	10		
COM	9	_	Common cathode node for flyback diodes (required for inductive loads)
E	8	_	Common emitter shared by all channels (typically tied to ground)

⁽¹⁾ I = Input, O = Output

6 Specifications

6.1 Absolute Maximum Ratings

at 25°C free-air temperature (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Collector-emitter voltage			50	V
	Clamp diode reverse voltage ⁽²⁾			50	V
VI	Input voltage ⁽²⁾			30	V
	Peak collector current, See Figure 4 and Figure 5			500	mA
I _{OK}	Output clamp current			500	mA
	Total emitter-terminal current			-2.5	А
		ULN200xA	-20	70	
_		ULN200xAI	-40	105]
T _A	Operating free-air temperature range	ULQ200xA	-40	85	°C
		ULQ200xAT	-40	105	
T _J	Operating virtual junction temperature			150	°C
	Lead temperature for 1.6 mm (1/16 inch) from case for 10 seconds			260	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/
	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Collector-emitter voltage (non-V devices)	0	50	V
T_{J}	Junction temperature	-40	125	°C

6.4 Thermal Information

			ULx	200x		
THERMAL METRIC ⁽¹⁾			N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	73	67	64	108	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	36	54	n/a	33.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	n/a	n/a	n/a	51.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	n/a	n/a	n/a	2.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	n/a	n/a	n/a	51.4	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

⁽²⁾ All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics: ULN2002A

 $T_A = 25^{\circ}C$

	DADAMETED	TEST FIGURE	TECT	ONDITIONS	UL	.N2002A		LINUT
	PARAMETER	TEST FIGURE	IESIC	ONDITIONS	MIN	TYP	MAX	UNIT
V _{I(on)}	ON-state input voltage	Figure 14	$V_{CE} = 2 V$,	$I_C = 300 \text{ mA}$			13	V
V _{OH}	High-level output voltage after switching	Figure 18	V _S = 50 V, I _O	= 300 mA	V _S - 20			mV
			$I_1 = 250 \mu A$,	I _C = 100 mA		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 12	$I_1 = 350 \mu A$,	I _C = 200 mA		1	1.3	V
	voltago		$I_1 = 500 \mu A$,	I _C = 350 mA		1.2	1.6	
V _F	Clamp forward voltage	Figure 15	I _F = 350 mA			1.7	2	V
		Figure 9	V _{CE} = 50 V,	$I_I = 0$			50	50
I _{CEX}	Collector cutoff current	F: 40	V _{CE} = 50 V,	I _I = 0			100	μΑ
		Figure 10	$T_A = 70^{\circ}C$	V _I = 6 V			500	
I _{I(off)}	OFF-state input current	Figure 10	V _{CE} = 50 V,	I _C = 500 μA	50	65		μΑ
I	Input current	Figure 11	V _I = 17 V			0.82	1.25	mA
	Clares severes suggest	Figure 44	V _R = 50 V	T _A = 70°C			100	
I _R	Clamp reverse current	Figure 14	V _R = 50 V				50	μΑ
C _i	Input capacitance		$V_I = 0$,	f = 1 MHz			25	pF

6.6 Electrical Characteristics: ULN2003A and ULN2004A

 $T_{\lambda} = 25^{\circ}C$

	DADAMETED	TEST	TEST OF	NIDITIONO	ULN	N2003A		ULN	12004A		
,	PARAMETER	FIGURE	IESI CC	ONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				I _C = 125 mA						5	
				I _C = 200 mA			2.4			6	
.,	ON-state input voltage	44	.,	I _C = 250 mA			2.7				
$V_{I(on)}$		Figure 14	$V_{CE} = 2 V$	$I_{\rm C} = 275 {\rm mA}$						7	V
				$I_{\rm C} = 300 {\rm mA}$			3				
				I _C = 350 mA						8	
V _{OH}	High-level output voltage after switching	Figure 18	V _S = 50 V, I _O = 300 mA		V _S - 20			V _S -20			mV
			$I_1 = 250 \mu A$,	I _C = 100 mA		0.9	1.1		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 13	$I_1 = 350 \mu A$,	I _C = 200 mA		1	1.3		1	1.3	V
			$I_{I} = 500 \mu A,$	$I_{\rm C} = 350 \; {\rm mA}$		1.2	1.6		1.2	1.6	
		Figure 9	V _{CE} = 50 V,	$I_1 = 0$			50			50	
I_{CEX}	Collector cutoff	ollector cutoff urrent Figure 10	$V_{CE} = 50 \text{ V},$	$I_1 = 0$			100			100	μA
	Carront		$T_A = 70^{\circ}C$	V _I = 6 V						500	
V _F	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2		1.7	2	V
I _{I(off)}	Off-state input current	Figure 11	V _{CE} = 50 V, T _A = 70°C,	I _C = 500 μA	50	65		50	65		μA
			V _I = 3.85 V			0.93	1.35				
II	Input current	Figure 12	V _I = 5 V						0.35	0.5	mA
			V _I = 12 V						1	1.45	
	Clamp reverse	Fire. 45	V _R = 50 V				50			50	
I _R	current	Figure 15	V _R = 50 V	T _A = 70°C			100			100	μA
C _i	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25		15	25	pF

6.7 Electrical Characteristics: ULN2003AI

 $T_A = 25^{\circ}C$

	DADAMETED	TEST FIGURE	TEST		ULN	12003AI		LINUT
	PARAMETER	TEST FIGURE	CONDITIONS		MIN	TYP	MAX	UNIT
				I _C = 200 mA			2.4	
$V_{I(on)}$	ON-state input voltage	Figure 14	V _{CE} = 2 V	$I_C = 250 \text{ mA}$			2.7	V
				$I_C = 300 \text{ mA}$			3	
V _{OH}	High-level output voltage after switching	Figure 18	V _S = 50 V, I _O =	V _S -50			mV	
			$I_I = 250 \mu A$,	I _C = 100 mA		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 13	$I_I = 350 \ \mu A$,	$I_C = 200 \text{ mA}$		1	1.3	V
			$I_I = 500 \mu A$,	I _C = 350 mA		1.2	1.6	
I _{CEX}	Collector cutoff current	Figure 9	V _{CE} = 50 V,	I ₁ = 0			50	μΑ
V _F	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2	V
I _{I(off)}	OFF-state input current	Figure 11	$V_{CE} = 50 \text{ V},$	$I_C = 500 \mu A$	50	65		μΑ
I	Input current	Figure 12	V _I = 3.85 V			0.93	1.35	mA
I _R	Clamp reverse current	Figure 15	V _R = 50 V				50	μΑ
C _i	Input capacitance		$V_I = 0$,	f = 1 MHz		15	25	pF

6.8 Electrical Characteristics: ULN2003AI

 $T_{\Lambda} = -40^{\circ}\text{C}$ to 105°C

		TEST FIGURE	o	ONDITIONS.	ULN	12003AI		
	PARAMETER	TEST FIGURE	IESI C	ONDITIONS	MIN	TYP	MAX	UNIT
				I _C = 200 mA			2.7	
V _{I(on)}	ON-state input voltage	Figure 14	V _{CE} = 2 V	$I_C = 250 \text{ mA}$			2.9	V
				$I_C = 300 \text{ mA}$			3	
V _{OH}	High-level output voltage after switching	Figure 18	V _S = 50 V, I _O =	V _S - 50			mV	
			$I_1 = 250 \mu A$,	$I_C = 100 \text{ mA}$		0.9	1.2	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 13	$I_1 = 350 \ \mu A$,	$I_C = 200 \text{ mA}$		1	1.4	V
			$I_1 = 500 \ \mu A$	$I_C = 350 \text{ mA}$		1.2	1.7	
I _{CEX}	Collector cutoff current	Figure 9	$V_{CE} = 50 \text{ V},$	$I_1 = 0$			100	μΑ
V_{F}	Clamp forward voltage	Figure 16	$I_F = 350 \text{ mA}$			1.7	2.2	V
I _{I(off)}	OFF-state input current	Figure 11	$V_{CE} = 50 \text{ V},$	$I_C = 500 \mu A$	30	65		μΑ
I _I	Input current	Figure 12	V _I = 3.85 V			0.93	1.35	mA
I_R	Clamp reverse current	Figure 15	V _R = 50 V				100	μΑ
Ci	Input capacitance		$V_I = 0$,	f = 1 MHz		15	25	pF

Submit Documentation Feedback

6.9 Electrical Characteristics: ULQ2003A and ULQ2004A

over recommended operating conditions (unless otherwise noted)

	DADAMETED	TEST	TEST OF	TEST CONDITIONS		2003A		ULQ	UNIT		
	PARAMETER	FIGURE	IESI CO	SNOTHONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
				I _C = 125 mA						5	
				I _C = 200 mA			2.7			6	
	ON-state input voltage	Figure 4.4	.,	I _C = 250 mA			2.9				.,
$V_{I(on)}$		Figure 14	$V_{CE} = 2 V$	I _C = 275 mA						7	V
				I _C = 300 mA			3				
				I _C = 350 mA						8	
V _{OH}	High-level output voltage after switching	Figure 18	V _S = 50 V, I _O	= 300 mA	V _S - 50			V _S -50			mV
	Collector-emitter saturation voltage		$I_1 = 250 \mu A$,	I _C = 100 mA		0.9	1.2		0.9	1.1	
V _{CE(sat)}		Figure 13	$I_1 = 350 \mu A$,	I _C = 200 mA		1	1.4		1	1.3	V
			$I_I = 500 \ \mu A$,	$I_C = 350 \text{ mA}$		1.2	1.7		1.2	1.6	
		Figure 9	$V_{CE} = 50 \text{ V},$	$I_I = 0$			100			50	
I_{CEX}	Collector cutoff current		$V_{CE} = 50 V$,	$I_I = 0$						100	μΑ
	Carron	Figure 10	$T_A = 70^{\circ}C$	V _I = 6 V						500	00
V_{F}	Clamp forward voltage	Figure 16	I _F = 350 mA			1.7	2.3		1.7	2	٧
I _{I(off)}	OFF-state input current	Figure 11	$V_{CE} = 50 \text{ V},$ $T_{A} = 70^{\circ}\text{C},$	I _C = 500 μA		65		50	65		μA
			V _I = 3.85 V			0.93	1.35				
I _I	Input current	Figure 12	V _I = 5 V						0.35	0.5	mA
			V _I = 12 V						1	1.45	1
	Clamp reverse	Figure 45	V _R = 50 V	T _A = 25°C			100			50	
I_R	current	Figure 15	V _R = 50 V				100			100	0 μA
C _i	Input capacitance		$V_I = 0$,	f = 1 MHz		15	25		15	25	pF

6.10 Switching Characteristics: ULN2002A, ULN2003A, ULN2004A

 $T_{\Delta} = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	ULN2002A	N, ULN20 12004A	003A,	UNIT
			MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		0.25	1	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		0.25	1	μs

6.11 Switching Characteristics: ULN2003AI

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	ULN	UNIT		
	FARAIVIETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		0.25	1	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		0.25	1	μs

6.12 Switching Characteristics: ULN2003AI

 $T_A = -40$ °C to 105°C

	PARAMETER	TEST CONDITIONS	ULN	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNII
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		1	10	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		1	10	μs

6.13 Switching Characteristics: ULQ2003A, ULQ2004A

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	ULQ2003/	UNIT		
	FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 17		1	10	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 17		1	10	μs

6.14 Typical Characteristics

Figure 2. Collector-Emitter Saturation Voltage vs Total Collector Current (Two Darlingtons in Parallel)

Typical Characteristics (continued)

Figure 4. D Package Maximum Collector Current vs Duty Cycle

Figure 5. N Package Maximum Collector Current vs Duty Cycle

Figure 6. Maximum and Typical Input Current vs Input Voltage

Figure 7. Maximum and Typical Saturated V_{CE} vs Output Current

Figure 8. Minimum Output Current vs Input Current

7 Parameter Measurement Information

Figure 9. I_{CEX} Test Circuit

Figure 11. I_{I(off)} Test Circuit

 I_{l} is fixed for measuring $V_{\text{CE(sat)}},$ variable for measuring $h_{\text{FE}}.$

Figure 13. h_{FE}, V_{CE(sat)} Test Circuit

Figure 10. I_{CEX} Test Circuit

Figure 12. I_I Test Circuit

Figure 14. V_{I(on)} Test Circuit

Parameter Measurement Information (continued)

Figure 15. I_R Test Circuit

Figure 16. V_F Test Circuit

VOLTAGE WAVEFORMS

Figure 17. Propagation Delay-Time Waveforms

The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_{O} = 50 Ω .

 C_L includes probe and jig capacitance.

For testing the ULN2003A device, ULN2003Al device, and ULQ2003A devices, V_{IH} = 3 V; for the ULN2002A device, V_{IH} = 13 V; for the ULN2004A and the ULQ2004A devices, V_{IH} = 8 V.

Figure 18. Latch-Up Test Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

This standard device has proven ubiquity and versatility across a wide range of applications. This is due to integration of 7 Darlington transistors of the device that are capable of sinking up to 500 mA and wide GPIO range capability.

The ULN2003A device comprises seven high-voltage, high-current NPN Darlington transistor pairs. All units feature a common emitter and open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads. The ULN2003A device has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V or 3.3 V. The ULN2003A device offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

This device can operate over a wide temperature range (–40°C to 105°C).

8.2 Functional Block Diagrams

All resistor values shown are nominal. The collector-emitter diode is a parasitic structure and should not be used to conduct current. If the collectors go below GND, an external Schottky diode should be added to clamp negative undershoots.

Figure 19. ULN2002A Block Diagram

Figure 20. ULN2003A, ULQ2003A and ULN2003AI Block Diagram

Figure 21. ULN2004A and LQ2004A Block Diagram

8.3 Feature Description

Each channel of the ULN2003A device consists of Darlington connected NPN transistors. This connection creates the effect of a single transistor with a very high-current gain (β 2). This can be as high as 10,000 A/A at certain currents. The very high β allows for high-output current drive with a very low input current, essentially equating to operation with low GPIO voltages.

The GPIO voltage is converted to base current through the 2.7-k Ω resistor connected between the input and base of the predriver Darlington NPN. The 7.2-k Ω and 3-k Ω resistors connected between the base and emitter of each respective NPN act as pulldowns and suppress the amount of leakage that may occur from the input.

The diodes connected between the output and COM pin is used to suppress the kick-back voltage from an inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the coils causes a reverse current to flow into the coil supply through the kick-back diode.

In normal operation the diodes on base and collector pins to emitter will be reversed biased. If these diodes are forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device pins.

8.4 Device Functional Modes

8.4.1 Inductive Load Drive

When the COM pin is tied to the coil supply voltage, ULN2003A device is able to drive inductive loads and suppress the kick-back voltage through the internal free-wheeling diodes.

8.4.2 Resistive Load Drive

When driving a resistive load, a pullup resistor is needed in order for ULN2003A device to sink current and for there to be a logic high level. The COM pin can be left floating for these applications.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Typically, the ULN2003A device drives a high-voltage or high-current (or both) peripheral from an MCU or logic device that cannot tolerate these conditions. This design is a common application of ULN2003A device, driving inductive loads. This includes motors, solenoids and relays. Figure 22 shows a model for each load type.

9.2 Typical Application

Figure 22. ULN2003A Device as Inductive Load Driver

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1 as the input parameters.

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
GPIO voltage	3.3 V or 5 V
Coil supply voltage	12 V to 48 V
Number of channels	7
Output current (R _{COIL})	20 mA to 300 mA per channel
Duty cycle	100%

Submit Documentation Feedback

9.2.2 Detailed Design Procedure

When using ULN2003A device in a coil driving application, determine the following:

- Input voltage range
- Temperature range
- · Output and drive current
- · Power dissipation

9.2.2.1 Drive Current

The coil voltage (V_{SUP}), coil resistance (R_{COIL}), and low-level output voltage ($V_{CE(SAT)}$ or V_{OL}) determine the coil current.

$$I_{COIL} = (V_{SUP} - V_{CE(SAT)}) / R_{COIL}$$
(1)

9.2.2.2 Low-Level Output Voltage

The low-level output voltage (V_{OL}) is the same as $V_{CE(SAT)}$ and can be determined by, Figure 1, Figure 2, or Figure 7.

9.2.2.3 Power Dissipation and Temperature

The number of coils driven is dependent on the coil current and on-chip power dissipation. The number of coils driven can be determined by Figure 4 or Figure 5.

For a more accurate determination of number of coils possible, use the below equation to calculate ULN2003A device on-chip power dissipation P_D :

$$P_{D} = \sum_{i=1}^{N} V_{OLi} \times I_{Li}$$

where

- N is the number of channels active together
- V_{OLi} is the OUT_i pin voltage for the load current I_{Li}. This is the same as V_{CE(SAT)}

To ensure reliability of ULN2003A device and the system, the on-chip power dissipation must be lower that or equal to the maximum allowable power dissipation ($PD_{(MAX)}$) dictated by below equation Equation 3.

$$PD_{(MAX)} = \left(T_{J(MAX)} - T_{A}\right)_{\theta_{JA}}$$

where

- T_{J(max)} is the target maximum junction temperature
- T_A is the operating ambient temperature
- R_{B,IA} is the package junction to ambient thermal resistance

 (3)

Limit the die junction temperature of the ULN2003A device to less than 125°C. The IC junction temperature is directly proportional to the on-chip power dissipation.

(2)

9.2.3 Application Curves

The characterization data shown in Figure 23 and Figure 24 were generated using the ULN2003A device driving an OMRON G5NB relay and under the following conditions: V_{IN} = 5 V, V_{SUP} = 12 V, and R_{COIL} = 2.8 k Ω .

Figure 23. Output Response With Activation of Coil (Turnon)

Figure 24. Output Response With De-activation of Coil (Turnoff)

9.3 System Examples

Figure 25. P-MOS to Load

Figure 26. TTL to Load

Figure 27. Buffer for Higher Current Loads

Figure 28. Use of Pullup Resistors to Increase Drive Current

10 Power Supply Recommendations

This device does not need a power supply. However, the COM pin is typically tied to the system power supply. When this is the case, it is very important to ensure that the output voltage does not heavily exceed the COM pin voltage. This discrepancy heavily forward biases the fly-back diodes and causes a large current to flow into COM, potentially damaging the on-chip metal or over-heating the device.

11 Layout

11.1 Layout Guidelines

Thin traces can be used on the input due to the low-current logic that is typically used to drive ULN2003A device. Take care to separate the input channels as much as possible, as to eliminate crosstalk. TI recommends thick traces for the output to drive whatever high currents that may be needed. Wire thickness can be determined by the current density of the trace material and desired drive current.

Because all of the channels currents return to a common emitter, it is best to size that trace width to be very wide. Some applications require up to 2.5 A.

11.2 Layout Example

Figure 29. Package Layout

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following: SN7546x Darlington Transistor Arrays, SLRS023

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
ULN2002A	Click here	Click here	Click here	Click here	Click here
ULN2003A	Click here	Click here	Click here	Click here	Click here
ULN2003AI	Click here	Click here	Click here	Click here	Click here
ULN2004A	Click here	Click here	Click here	Click here	Click here
ULQ2003A	Click here	Click here	Click here	Click here	Click here
ULQ2004A	Click here	Click here	Click here	Click here	Click here

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Copyright © 1976–2016, Texas Instruments Incorporated

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
ULN2002AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2002AN	Samples
ULN2002ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2002AN	Samples
ULN2003AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADRG3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003AID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU CU SN	N / A for Pkg Type	-40 to 105	ULN2003AIN	Samples
ULN2003AINE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 105	ULN2003AIN	Samples

www.ti.com

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ULN2003AINSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Samples
ULN2003AIPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Samples
ULN2003AIPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Samples
ULN2003AIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Samples
ULN2003AIPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	UN2003AI	Samples
ULN2003AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU CU SN	N / A for Pkg Type	-20 to 70	ULN2003AN	Samples
ULN2003ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2003AN	Samples
ULN2003ANSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ANSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003ANSRG4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2003A	Samples
ULN2003APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	UN2003A	Samples
ULN2003APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	UN2003A	Samples
ULN2003APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-20 to 70	UN2003A	Samples
ULN2003APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	UN2003A	Samples
ULN2004AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples

www.ti.com

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ULN2004ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2004AN	Samples
ULN2004ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-20 to 70	ULN2004AN	Samples
ULN2004ANSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULQ2003AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2003A	Samples
ULQ2003ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2003A	Samples
ULQ2003ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2003A	Samples
ULQ2003ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2003A	Samples
ULQ2003AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	ULQ2003A	Samples
ULQ2004AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2004A	Sample
ULQ2004ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2004A	Sample
ULQ2004ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2004A	Sample
ULQ2004ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		ULQ2004A	Sample
ULQ2004AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	ULQ2004AN	Sample

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

15-Apr-2017

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ULQ2003A, ULQ2004A:

Automotive: ULQ2003A-Q1, ULQ2004A-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 2-Sep-2016

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Α0	Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
г	D1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003AIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003AIPWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 2-Sep-2016

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2004ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULQ2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULQ2003ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

*All dimensions are nominal

7 til difficiolorio are fictimal	all differsions are nominal									
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)			
ULN2003ADR	SOIC	D	16	2500	333.2	345.9	28.6			
ULN2003ADR	SOIC	D	16	2500	364.0	364.0	27.0			
ULN2003ADR	SOIC	D	16	2500	367.0	367.0	38.0			
ULN2003ADRG3	SOIC	D	16	2500	364.0	364.0	27.0			
ULN2003ADRG4	SOIC	D	16	2500	333.2	345.9	28.6			
ULN2003AIDR	SOIC	D	16	2500	333.2	345.9	28.6			
ULN2003AIDR	SOIC	D	16	2500	364.0	364.0	27.0			
ULN2003AIDRG4	SOIC	D	16	2500	333.2	345.9	28.6			
ULN2003AIPWR	TSSOP	PW	16	2000	364.0	364.0	27.0			
ULN2003AIPWR	TSSOP	PW	16	2000	367.0	367.0	35.0			
ULN2003AIPWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0			
ULN2003APWR	TSSOP	PW	16	2000	364.0	364.0	27.0			
ULN2003APWR	TSSOP	PW	16	2000	367.0	367.0	35.0			
ULN2003APWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0			

PACKAGE MATERIALS INFORMATION

www.ti.com 2-Sep-2016

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ULN2004ADR	SOIC	D	16	2500	367.0	367.0	38.0
ULN2004ADR	SOIC	D	16	2500	333.2	345.9	28.6
ULN2004ADR	SOIC	D	16	2500	364.0	364.0	27.0
ULN2004ADRG4	SOIC	D	16	2500	367.0	367.0	38.0
ULN2004ADRG4	SOIC	D	16	2500	333.2	345.9	28.6
ULQ2003ADR	SOIC	D	16	2500	333.2	345.9	28.6
ULQ2003ADRG4	SOIC	D	16	2500	367.0	367.0	38.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.