Dual Decomposition

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes

Outline

- Conjugate function
- introduction: dual methods
- gradient and subgradient of conjugate
- 4 dual decomposition
- 5 network utility maximization
- 6 network flow optimization

Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^T x - f(x))$$

 f^* is closed and convex even if f is not

f(x) x $(0, -f^*(y))$

Fenchel's s inequality

$$f(x) + f^*(y) \ge x^T y \quad \forall x, y$$

(extends inequality $x^Tx/2 + y^Ty/2 \ge x^Ty$ to non-quadratic convex f)

The second conjugate

$$f^{**}(x) = \sup_{y \in \text{dom } f^*} (x^T y - f^*(y))$$

- $f^{**}(x)$ is closed and convex
- from Fenchel's inequality $x^Ty f^*(y) \le f(x)$ for all y and x):

$$f^{**} \le f(x) \quad \forall x$$

equivalently, epi $f \subseteq \text{epi } f^{**}$ (for any f)

if f is closed and convex, then

$$f^{**}(x) = f(x) \quad \forall x$$

equivalently, $\operatorname{epi} f = \operatorname{epi} f^{**}$ (if f is closed convex); proof on next page

Conjugates and subgradients

if f is closed and convex, then

proof: if
$$y \in \partial f(x)$$
, then $f^*(y) = \sup_{u} (y^T u - f(u)) = y^T x - f(x)$

 $y \in \partial f(x) \Leftrightarrow x \in \partial f^*(y) \Leftrightarrow x^T y = f(x) + f^*(y)$

$$f^{*}(v) = \sup_{u} (v^{T}u - f(u))$$

$$\geq v^{T}x - f(x)$$

$$= x^{T}(v - y) - f(x) + y^{T}x$$

$$= f^{*}(y) + x^{T}(v - y)$$
(1)

for all v; therefore, x is a subgradient of f^* at y ($x \in \partial f^*(y)$) reverse implication $x \in \partial f^*(y) \Rightarrow y \in \partial f(x)$ follows from $f^{**} = f$

5/34

Moreau decomposition

$$prox_f(x) = \underset{u}{\operatorname{argmin}} \left(f(u) + \frac{1}{2} ||u - x||_2^2 \right)$$
$$x = \operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x) \quad \forall x$$

follows from properties of conjugates and subgradients:

$$u = prox_f(x) \iff x - u \in \partial f(u)$$
$$\iff u \in \partial f^*(x - u)$$
$$\iff x - u = prox_{f^*}(x)$$

generalizes decomposition by orthogonal projection on subspaces:

$$x = P_L(x) + P_{L^{\perp}}(x)$$

if L is a subspace, L^{\perp} its orthogonal complement (this is Moreau decomposition with $f=I_L, f^*=I_{L^{\perp}}$)

Outline

- Conjugate function
- introduction: dual methods
- gradient and subgradient of conjugate
- 4 dual decomposition
- 5 network utility maximization
- 6 network flow optimization

Duality and conjugates

primal problem ($A \in \mathbb{R}^{m \times n}$, f and g convex)

$$\min f(x) + g(Ax)$$

Lagrangian (after introducing new variable y = Ax)

$$f(x) + g(y) + z^{T}(Ax - y)$$

dual function

$$\inf_{x} (f(x) + z^{T}Ax) + \inf_{y} (g(y) - z^{T}y) = -f^{*}(-A^{T}z) - g^{*}(z)$$

dual problem

$$\max -f^*(-A^Tz) - g^*(z)$$

Examples

equality constraints: g is indicator for $\{b\}$

min
$$f(x)$$
 max $-b^T z - f^*(-A^T z)$
s.t. $Ax = b$

linear inequality constraints: g is indicator for $\{y \mid y \leq b\}$

norm regularization: g(y) = ||y - b||

$$\min \ f(x) + ||Ax - b|| \qquad \max \ -b^T z - f^*(-A^T z)$$

s.t. $||z||_* \le 1$

Dual methods

apply first-order method to dual problem

$$\max -f^*(-A^Tz) - g^*(z)$$

reasons why dual problem may be easier for first-order method:

- dual problem is unconstrained or has simple constraints
- dual objective is differentiable or has a simple nondifferentiable term
- decomposition: exploit separable structure

Outline

- Conjugate function
- introduction: dual methods
- gradient and subgradient of conjugate
- 4 dual decomposition
- 5 network utility maximization
- network flow optimization

(Sub-)gradients of conjugate function

assume $f: \mathbb{R}^n \to \mathbb{R}$ is closed and convex with conjugate

$$f^*(y) = \sup_{x} (y^T x - f(x))$$

subgradient

- f^* is subdifferentiable on (at least) **int dom** f^*
- maximizers in the definition of $f^*(y)$ are subgradients at y

$$y \in \partial f(x) \iff y^T x - f(x) = f^*(y) \iff x \in \partial f^*(y)$$

 $\mbox{\it gradient:}$ for strictly $\mbox{\it convex}\, f$, maximizer in definition is unique if it exists

$$\nabla f^*(y) = \underset{x}{\operatorname{argmax}}(y^Tx - f(x))$$
 (if maximum is attained)

Conjugate of strongly convex function

assume f is closed and strongly convex, with parameter $\mu>0$

- f^* is defined for all y (i.e., dom $f^* = \mathbb{R}^n$)
- f^* is differentiable everywhere, with gradient

$$\nabla f^*(y) = \underset{x}{\operatorname{argmax}}(y^T x - f(x))$$

• ∇f^* is Lipschitz continuous with constant $1/\mu$

$$||\nabla f^*(y) - \nabla f^*(y')||_2 \le \frac{1}{\mu}||y - y'||_2 \ \forall y, y'$$

proof: if *f* is strongly convex and closed

- $y^Tx f(x)$ has a unique maximizer x for every y
- x maximizes $y^Tx f(x)$ if and only if $y \in \partial f(x)$;

$$y \in \partial f(x) \Leftrightarrow x \in \partial f^*(y) = \{\nabla f^*(y)\}\$$

hence $\nabla f^*(y) = \operatorname{argmax}_x(y^Tx - f(x))$

• from convexity of $f(x) - (\mu/2)x^Tx$:

$$(y-y')^T(x-x') \ge \mu ||x-x'||_2^2$$
 if $y \in \partial f(x), y' \in \partial f(x')$

• this is co-coercivity of ∇f^* (which implies Lipschitz continuity)

$$(y - y')^T (\nabla f^*(y) - \nabla f^*(y')) \ge \mu ||\nabla f^*(y) - \nabla f^*(y')||_2^2$$

14/34

Outline

- Conjugate function
- introduction: dual methods
- gradient and subgradient of conjugate
- 4 dual decomposition
- 5 network utility maximization
- 6 network flow optimization

Equality constraints

P:
$$\min_{\mathbf{S.t.}} f(x)$$
 D: $\min_{\mathbf{f}^*(-A^Tz) + b^Tz}$

dual gradient ascent (assuming dom $f^* = \mathbb{R}^n$):

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x), \ z^{+} = z + t (A \hat{x} - b)$$

- \hat{x} is a subgradient of f^* at $-A^Tz$ ($i.e., \hat{x} \in \partial f^*(-A^Tz)$)
- $b A\hat{x}$ is a subgradient of $f^*(-A^Tz) + b^Tz$ at z

It is of interest if calculation of \hat{x} is inexpensive (for example, f is separable)

Dual decomposition

convex problem with separable objective

min
$$f_1(x_1) + f_2(x_2)$$

s.t. $A_1x_1 + A_2x_2 \le b$

constraint is complicating or coupling constraint

dual problem

$$\max -f_1^*(-A_1^T z) - f_2^*(-A_2^T z) - b^T z$$

s.t. $z > 0$

can be solved by (sub-)gradient projection if $z \ge 0$ is the only constraint

Dual subgradient projection

subproblems: to calculate $f_j^*(-A_j^Tz)$ and a (sub-) gradient for it,

$$\min_{x_j} \quad f_j(x_j) + z^T A_j x_j$$

optimal value is $f_j^*(-A_j^Tz)$; minimizer \hat{x}_j is in $\partial f_j^*(-A_j^Tz)$ dual subgradient projection method

$$\hat{x}_j = \underset{x_j}{\operatorname{argmin}} (f_j(x_j) + z^T A_j x_j), \ j = 1, 2$$

 $z^+ = (z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - b))_+$

- minimization problems over x_1, x_2 are independent
- z-update is projected subgradient step ($u_+ = \max\{u, 0\}$ elementwise)

Quadratic programming example

min
$$\sum_{j=1}^{r} (x_j^T P_j x_j + q_j^T x_j)$$
s.t.
$$B_j x_j \leq d_j, \quad j = 1, \dots, r$$

$$\sum_{j=1}^{p} A_j x_j \leq b$$

- ullet r=10, variables $x_j\in\mathbb{R}^{100}$, 10 coupling constraints $(A_j\in\mathbb{R}^{10 imes100})$
- $P_j \succ 0$; implies dual function has Lipschitz continuous gradient

subproblems: each iteration requires solving 10 decoupled QPs

$$\min_{x_j} \quad x_j^T P_j x_j + (q_j + A_j^T z)^T x_j$$

s.t.
$$B_j x_j \leq d_j$$

gradient projection and fast gradient projection

- fixed step size (equal in the two methods)
- plot shows dual objective gap

Outline

- Conjugate function
- introduction: dual methods
- gradient and subgradient of conjugate
- 4 dual decomposition
- network utility maximization
- 6 network flow optimization

Network utility maximization

network flows

- n flows, with fixed routes, in a network with m links
- variable $x_j \ge 0$ denotes the rate of flow j
- ullet flow utility is $U_j:\mathbb{R} o \mathbb{R}$, concave, increasing

capacity constraints

- traffic y_i on link i is sum of flows passing through it
- y = Rx, where R is the routing matrix

$$R_{ij} = \left\{ egin{array}{ll} 1 & ext{ flow } j ext{ passes over link } i \ 0 & ext{ otherwise} \end{array}
ight.$$

• link capacity constraint: $y \le c$

Dual network utility maximization problem

$$\max \sum_{j=1}^{n} U_j(x_j)$$
s.t.
$$Rx \le c$$

a convex problem; dual decomposition gives decentralized method

dual problem

$$\begin{aligned} & \min & & c^T z + \sum_{j=1}^n (-U_j)^* (r_j^T z) \\ & \text{s.t.} & & z \geq 0 \end{aligned}$$

- z_i is price (per unit flow) for using link i
- $r_j^T z$ is the sum of prices along route $j(r_j \text{ is } j \text{th column of } R)$

(Sub-)gradients of dual function

dual objective

$$f(x) = c^{T}z + \sum_{j=1}^{n} (-U_{j})^{*}(r_{j}^{T}z)$$
$$= c^{T}z + \sum_{j=1}^{n} \sup_{x_{j}} (U_{j}(x_{j}) - (r_{j}^{T}z)x_{j})$$

subgradient

$$c - R\hat{x} \in \partial f(z)$$
 where $\hat{x}_j = \underset{x_j}{\operatorname{argmax}} (U_j(x_j) - (r_j^T z)x_j)$

- ullet if U_j is strictly concave, this is a gradient
- $r_i^T z$ is the sum of link prices along route j
- $c R\hat{x}$ is vector of link capacity margins for flow \hat{x}

Dual decomposition algorithm

given initial link price vector $z \ge 0$ (e.g., z = 1), repeat:

- 1 sum link prices along each route: calculate $\lambda_j = r_j^T z$ for $j=1,\ldots,n$
- 2 optimize flows (separately) using flow prices

$$\hat{x}_j = \underset{x_j}{\operatorname{argmax}} (U_j(x_j) - \lambda_j x_j), \quad j = 1, \dots, n$$

- 3 calculate link capacity margins $s = c R\hat{x}$
- 4 update link prices using projected (sub-)gradient step with step t

$$z := (z - ts)_+$$

decentralized:

- to find λ_i , \hat{x} source j only needs to know the prices on its route
- to update s_i, z_i , link i only needs to know the flows that pass through it

Outline

- Conjugate function
- introduction: dual methods
- gradient and subgradient of conjugate
- 4 dual decomposition
- 5 network utility maximization
- network flow optimization

Single commodity network flow

network

- connected, directed graph with n links/arcs, m nodes
- node-arc incidence matrix $A \in \mathbb{R}^{m \times n}$ is

$$A_{ij} = \begin{cases} 1 & \text{arc } j \text{ enters node } i \\ -1 & \text{arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

flow vector and external sources

- variable x_j denotes flow (traffic) on arc j
- b_i is external demand (or supply) of flow at node i (satisfies $\mathbf{1}^T b = 0$)
- flow conservation: Ax = b

Network flow optimization problem

min
$$\phi(x) = \sum_{j=1}^{n} \phi_j(x_j)$$

s.t. $Ax = b$

- ullet ϕ is a separable sum of convex functions
- dual decomposition yields decentralized solution method

dual problem (a_j is jth column of A)

$$\max -b^T z - \sum_{j=1}^n \phi_j^* (-a_j^T z)$$

- dual variable z_i can be interpreted as potential at node i
- $y_j = -a_j^T z$ is the potential difference across arc j (potential at start node minus potential at end node)

(Sub-)gradients of dual function

negative dual objective

$$f(z) = b^T z + \sum_{j=1}^n \phi_j^* (-a_j^T z)$$

subgradient

$$b - A\hat{x} \in \partial f(z)$$
 where $\hat{x}_j = \operatorname{argmin}(\phi_j(x_j) + (a_j^T z)x_j)$

- this is a gradient if the functions ϕ_i are strictly convex
- if ϕ_j is differentiable, $\phi_j'(\hat{x}_j) = -a_j^T z$

Dual decomposition network flow algorithm

given initial potential vector z, repeat

1 determine link flows from potential differences $y = -A^T z$

$$\hat{x}_j = \operatorname*{argmin}_{x_j}(\phi_j(x_j) - y_j x_j), j = 1, \dots, n$$

- 2 compute flow residual at each node: $s := b A\hat{x}$
- 3 update node potentials using (sub-)gradient step with step size t

$$z := z - ts$$

decentralized

- flow is calculated from potential difference across arc
- node potential is updated from its own flow surplus

Electrical network interpretation

network flow optimality conditions (with differentiable ϕ_j)

$$Ax = b, y + A^{T}z = 0, y_j = \phi'_j(x_j), j = 1, \dots, n$$

network with node incidence matrix A, nonlinear resistors in branches **Kirchhoff current law (KCL):** Ax = b

 x_j is the current flow in branch j; b_i is external current extracted at node i

Kirchhoff voltage law (KVL): $y + A^T z = 0$

 z_j is node potential; $y_j = -a_i^T z$ is jth branch voltage

current-voltage characterics: $y_j = \phi'_j(x_j)$

for example, $\phi_j(x_j) = R_j x_j^2/2$ for linear resistor R_j current and potentials in circuit are optimal flows and dual variables

4 D > 4 B > 4 B > 4 B > 9 Q (*)

Example: minimum queueing delay

flow cost function and conjugate ($c_j > 0$ are link capacities):

$$\phi_j(x_j) = \frac{x_j}{c_j - x_j}, \ \phi_j^*(y_j) = \begin{cases} (\sqrt{c_j y_j} - 1)^2 & y_j > 1/c_j \\ 0 & y_j \le 1/c_j \end{cases}$$

(with **dom** $\phi_j = [0, c_j)$)

• ϕ_j is differentiable except at $x_j = 0$

$$\partial \phi_j(0) = (-\infty, 0], \quad \phi'_j(x_j) = \frac{c_j}{(c_j - x_j)^2} \ (0 < x_j < c_j)$$

ullet ϕ_i^* is differentiable

$$\phi_j^{*'}(y_j) = \begin{cases} 0 & y_j \le 1/c_j \\ c_j - \sqrt{c_j/y_j} & y_j > 1/c_j \end{cases}$$

32/34

flow cost function and conjugate ($c_j = 1$)

derivatives

33/34

References

- S. Boyd, course notes for EE364b. Lectures and notes on decomposition
- M. Chiang, S.H. Low, A.R. Calderbank, J.C. Doyle, Layering as optimization decomposition: A mathematical theory of network architectures, Proceedings IEEE (2007)
- D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (1989)
- D.P. Bertsekas, Network Optimization. Continuous and Discrete Models (1998)
- L.S. Lasdon, Optimization Theory for Large Systems (1970)