

REKURSIF ALGORITMA DAN PEMROGRAMAN II

Institut Teknologi Sumatera

REKURSIF

- Proses yang memanggil dirinya sendiri.
- Merupakan suatu fungsi atau prosedur
- Terdapat suatu kondisi untuk berhenti.

Definisi menurut Niclaus Wirth:

"An object is said be recursive if it partially consist or is defines in terms of itself"

FAKTORIAL

□Fungsi factorial dari bilangan bulat positif n didefinisikan sebagai berikut:

$$n!= n.(n-1)!$$
, jika $n>1$
 $n!= 1$, jika $n=0$, 1

contoh:

FAKTORIAL

- Konsep Faktorial
 - n! = n(n-1)(n-2)...1
- Dapat diselesaikan dengan
 - ■Cara Biasa
 - Rekursif

FAKTORIAL: CARA BIASA

```
int Faktorial(int n) {
    if (n < 0) {
        return -1;
    } else if (n > 1) {
        S = 1;
        for (i=2; i<=n; i++) {</pre>
             S = S * n;
        return S;
     } else {
        return 1;
```

FAKTORIAL: DENGAN REKURSIF

```
int Faktorial(int n) {
    if (n < 0) {
        return -1
    } else if (n > 1) {
        return (n * Faktorial(n-1));
    } else {
        return 1;
    }
}
```

DERET FIBONACCI

- Diciptakan oleh Leonardo Fibonacci berasal dari Italia 1170-1250
- \square Deret Fibonacci f_1 , f_2 ,... didefinisikan secara rekursif sebagai berikut :

$$f_1 = 1$$
 $f_2 = 2$
 $f_1 = f_1 + f_2 = f_2$
 $f_2 = f_1 + f_2 = f_2$

Deret: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,...

DERET FIBONACCI

```
Function fab(n)
   if n=1 then
      return 1
   else if n=2 then
      return 2
   else
      return (fab(n-1) + fab(n-2))
end
```

CONTOH

Untuk ukuran n = 4, proses perhitungan Fibonacci dapat dilakukan sebagai berikut:

$$f_4 = f_3 + f_2$$
 $f_4 = (f_2 + f_1) + f_2$
 $f_4 = (1+1) + 1$
 $f_4 = 3$

KESIMPULAN

Fungsi rekursif merupakan fungsi yang memanggil dirinya sendiri. Terdapat dua komponen penting dalam fungsi rekursif, yaitu kondisi kapan berhentinya fungsi dan pengurangan atau pembagian data ketika fungsi memanggil dirinya sendiri.

LATIHAN

- 1. Buatlah program menghitung faktorial, input dari user.
- 2. Buat program untuk menghitung deret S = 1+2+3+4+5+...+n menggunakan function rekursi
- 3. Buat program untuk menghitung deret S = 2+4+6+8+10+...+2n menggunakan function rekursi