Machine Learning with Python-From Linear Models to Deep Learning

Discussion Course **Progress Resources** Dates

A Course / Unit 3. Neural net... / Lecture 9. Feedforward Neural Networks, Back

2. Back-propagation Algorithm

 \square Bookmark this page

Exercises due Mar 29, 2023 08:59 -03 Completed

Back-propagation Algorithm

Video

♣ Download video file

Transcripts

▲ Download SubRip (.srt) file

▲ Download Text (.txt) file

Once we set up the architecture of our (feedforward) neural network, our goal will be to that minimize our loss function. We will use the **stochastic gradient descent algorithm**<u>Lecture 4</u> and revisited in <u>lecture 5</u>) to carry out the optimization.

This involves computing the gradient of the loss function with respect to the weight pa

Since the loss function is a long chain of compositions of activation functions with the ventering at different stages, we will break down the computation of the gradient into di chain rule; this way of computing the gradient is called the back-propagation algorithm

In the following problems, we will explore the main step in the stochastic gradient desc training the following simple neural network from the video:

Gradient Descent Update

1/1 point (graded)

Let η be the learning rate for the stochastic gradient descent algorithm.

Recall that our goal is to tune the parameters of the neural network so as to minimize the of the following is the appropriate update rule for the paramter w_1 in the stochastic gra

$$\vee$$
 $w_1 \leftarrow w_1 - \eta \cdot \nabla_{w_1} \mathcal{L}(y, f_L)$

Submit

You have used 1 of 2 attempts

Recursive Expression - Part I

1/1 point (graded)

As above, let $\mathcal{L}(y, f_L)$ denote the loss function as a function of the predictions f_L and the

$$z_1 = xw_1$$

for
$$i = 2...L$$
: $z_i = f_{i-1}w_i$ where $f_{i-1} = f(z_{i-1})$.

Let
$$\delta_i = \frac{\partial \mathcal{L}}{\partial z_i}$$
.

Submit

You have used 2 of 2 attempts

Recursive Expression - Part II

1/1 point (graded)

As above, let $\mathcal{L}(y,f_L)$ denote the loss function as a function of the predictions f_L and the

In this problem, we derive a recurrence relation between δ_i and δ_{i+1}

Assume that *f* is the hyperbolic tangent function:

$$f(x) = \tanh(x)$$

$$f'(x) = (1 - \tanh^2(x)).$$

Which of the following option is the correct expression for δ_1 in terms of δ_2 ?

$$\delta_1 = (1 - f_1^2) \cdot w_2 \cdot \delta_2$$

$$\delta_1 = (1 - f_1^2) \cdot w_1 \cdot \delta_2$$

$$\delta_1 = (1 - f_2^2) \cdot w_2 \cdot \delta_2$$

$$\delta_2 = (1 - f_1^2) \cdot w_2 \cdot \delta_1$$

Submit

You have used 2 of 2 attempts

Final Expression of the Gradient

1/1 point (graded)

$$\frac{\partial \mathcal{L}}{\partial w_1} = x(1 - f_1^2)(1 - f_2^2)\cdots(1 - f_L^2)w_2w_3\cdots w_L(2(f_L - y))$$

Submit

You have used 1 of 2 attempts

Discussion Previous

Next >

Topic: Unit 3. Neural networks (2.5 weeks):Lecture 9. Feedforward Neural Networks, Back Propagation, and Stochastic Gradient Descent (SGD) / 2. Back-propagation Algorithm

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

Do Not Sell My Personal Information

Connect

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>