Discrete mathematics – long question B

Suppose tha	at A is a finite set with a bijection: $A \rightarrow A \times A$. Calculate $ A $.	[2 marks]
Given an example of a countably infinite set B with a bijection: $B \to B \times B$, proving the carefully.		
Let	$M = \{ n \in \mathbb{N} \mid 2 \mid n \}$, the even numbers, $O = \mathbb{N} \setminus M$, the odd numbers, $P = \mathcal{P}(\mathbb{N})$, the set of subsets of \mathbb{N} , $Q = \mathcal{P}(M)$,	
and	$R = \mathcal{P}(O)$.	
Show that P	, Q and R are uncountable, and construct a bijection: $P \rightarrow Q \times R$.	[12 marks]
Hence show	that there is an uncountable set C with a bijection: $C \rightarrow C \times C$.	[2 marks]

Solution

$ A = A ^2$	[1]
which has the solutions $ A = 0$ and 1.	[1]
B = N.	[1]
Map $\frac{1}{2}(m+n-1)(m+n-2) + n \leftrightarrow (m, n)$.	[1]
Show injective and surjective.	[1+1]
Use contradiction. Suppose there is a bijection $f: \mathbb{N} \leftrightarrow \mathcal{P}(\mathbb{N})$. Let $S = \{ n \in \mathbb{N} \mid n \notin f(n) \}$. Let $s = f^1(S)$ so $S = f(s)$. Is $s \in S$?	[1] [1] [1]
Bijection $\mathbb{N} \leftrightarrow \mathbb{M}$ using $n \leftrightarrow 2n$.	[1]
Induce bijection $P \leftrightarrow Q$.	[2]
R similar.	[1]
Given $X \in P$, let $Y = X \cap M$ and $Z = X \cap O$. Map $X \leftrightarrow (Y, Z)$. Bijection.	[2] [2]
Observe bijections $P \leftrightarrow O$ and $P \leftrightarrow R$. Now $C = P$.	[2]