МФТИ

Алгоритмы и структуры данных, осень 2022 Семинар №07. Теория чисел

- **1.** По данным числам a, b найдите целые x, y, такие что ax + by = (a, b). Для каждого c опишите все решения уравнения ax + by = c.
- **2.** За O(n) для каждого $i \in [2, n]$ найдите mind(i) минимальный простой делитель i.
- **3.** Дано простое число p, а также число a, причём (a,p)=1. Как найти $a^{-1} \pmod{p}$?
- **4.** Дано произвольное число m, а также число a, причём (a, m) = 1. Как найти $a^{-1} \pmod{m}$?
- 5. Приведите эффективный алгоритм для вычисления $a^{b^c} \pmod{p}$ для целых положительных a, b, c и простого p.
- **6.** Найдите наибольший общий делитель двух **длинных** чисел a и b за полиномиальное время от их длины.
- 7. Найдите обратные к $1, 2, \ldots, n$ по простому модулю p за O(n).
- 8. Найдите

 - a) $\sum_{k=0}^{n} C_n^k;$ 6) $\sum_{k=0}^{n} k \cdot C_n^k;$
 - $B) \sum_{k=0}^{n} k^2 \cdot C_n^k.$
- **9.** Пусть дано n чисел от 2 до L. Проверьте каждое из них на простоту на общее время $O(\sqrt{L} + n\sqrt{L/\log L}).$
- **10.** Найдите количество пар целых положительных чисел (x,y), таких что $xy \leq n$, за $O(\sqrt{n})$.
- **11.** За $O(\sqrt{n})$ найдите количество целых чисел в отрезке [1, n], свободных от квадратов.
- **12.** Найдите $\Phi(n) = \sum_{k=1}^n \varphi(k)$, где $\varphi(\cdot)$ функция Эйлера. Это число равно количеству пар взаимно простых чисел (a,b) с условиями $1 \le a \le b \le n$. Асимптотика: a) O(n); б) $O(n^{3/4})$.
- **13.** Пусть g первообразный корень по простому модулю p, то есть $\{g^0, g^1, \dots, g^{p-2}\}$ $\{1,2,\ldots,p-1\}\ (\mathrm{mod}\ p)$. Предложите способ решать уравнения вида $g^x=a\ (\mathrm{mod}\ p)$ за $O(\sqrt{p})$ в среднем.