Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №6 Цифровая модуляция

> Работу выполнил:

Городничева Л.В. Группа: 33501/3 **Преподаватель:** Богач Н.В.

Санкт-Петербург 2017

Содержание

1.	Цель работы	2
2.	Постановка задачи	2
3.	Теоретическая информация	2
	3.1. Модуляция	2
	3.2. Типы цифровой модуляции	2
	3.2.1. BPSK, PSK	3
	3.2.2. genQAM, OQPSK	3
	3.2.3. MSK	5
	3.2.4. MFSK	7
4.	Ход работы	7
	4.1. BPSK-модуляция	9
	4.2. PSK-модуляция	10
	4.3. OQPSK-модуляция	11
	4.4. genQAM-модуляция	13
	4.5. MSK-модуляция	14
	4.6. MFSK-модуляция	16
5.	Выволы	17

1. Цель работы

Изучение методов модуляции цировых сигналов.

2. Постановка задачи

- 1. Получить сигналы BPSK, PSK, OQPSK, genQAM, MSK, M-FSK модуляторов.
- 2. Построить их сигнальные созвездия.
- 3. Провести сравнение изученных методов модуляции цифровых сигналов.

3. Теоретическая информация

3.1. Модуляция

Перенос спектра сигналов из низкочастотной области на заданную частоту, т.е. в выделенную для их передачи область высоких частот выполняется операцией модуляции. Обозначим низкочастотный сигнал, подлежащий передаче по какому-либо каналу связи, s(t).

Исходный информационный сигнал s(t) называют модулирующим, результат модуляции – модулированным сигналом. Обратную операцию выделения модулирующего сигнала из модулированного колебания называют демодуляцией или детектированием.

3.2. Типы цифровой модуляции

Цифровая модуляция и демодуляция включают в себя две стадии. При модуляции цифровое сообщение сначала преобразуется в аналоговый модулирующий сигнал с помощью функции modmap, а затем осуществляется аналоговая модуляция. При демодуляции сначала получается аналоговый демодулированный сигнал, а затем он преобразуется в цифровое сообщение с помощью функции demodmap.

Аналоговый несущий сигнал модулируется цифровым битовым потоком. Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:

- 1. ASK Amplitude shift keying (Амплитудная двоичная модуляция).
- 2. FSK Frequency shift keying (Частотая двоичная модуляция).
- 3. PSK Phase shift keying (Фазовая двоичная модуляция).
- 4. ASK/PSK.

Одна из частных реализаций схемы ASK/PSK - QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (KAM). Это метод объединения двух АМ-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода. Частотная модуляция представляет логическую единицу интервалом с большей частотой, чем ноль. Фазовый сдвиг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом. ВРЅК использует единственный сдвиг фазы между «0» и «1» — 180 градусов, половина периода. QРЅК использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10).

3.2.1. BPSK, PSK

BPSK и PSK - модуляция со сдвиглм фазы сигнала без изменения амплитуды. В PSK их может быть множество, в BPSK - один (на π).

Изображения сигнального созвездия и схемы модулятора BPSK приведены ниже на следующих рисунках:

Рис. 3.2.1. Схема устройства модулятора BPSK.

Рис. 3.2.2. Сигнальное созвездие BPSK.

3.2.2. genQAM, OQPSK

При квадратурной амплитудной модуляции (КАМ) изменяется как фаза, так и амплитуда несущего сигнала. Это позволяет увеличить количество кодируемых в единицу времени бит и при этом повысить помехоустойчивость их передачи по каналу связи. В настоящее время число кодируемых информационных бит на одном интервале может

достигать 8-9, а число состояний сигнала в сигнальном пространстве, соответственно – 256...512. Квадратурное представление сигнала заключается в выражении колебания линейной комбинацией двух ортогональных составляющих – квадратурной и синфазной:

$$S(t) = x(t)\sin(\omega t + \varphi)\cos(\omega t + \varphi) \tag{1}$$

где x(t) и y(t) – биполярные дискретные сигналы.

Четырехфазная ФМ со сдвигом (OQPSK – Offset QPSK) позволяет избежать скачков фазы на 180° и, следовательно, глубокой модуляции огибающей. Формирование сигнала в модуляторе OQPSK происходит так же, как и в модуляторе ФМ-4, за исключением того, что манипуляционные элементы информационных последовательностей x(t) и y(t) смещены во времени на длительность одного элемента , рис. 3.2.3 Изменение фазы при таком смещении модулирующих потоков определяется лишь одним элементом последовательности, а не двумя, как при ФМ 4. В результате скачки фазы на 180° отсутствуют, так как каждый элемент последовательности, поступающий на вход модулятора синфазного или квадратурного канала, может вызвать изменение фазы на $0, +90^{\circ}$ или -90° .

Рис. 3.2.3. Формирование манипулирующих сигналов

Преобразованные таким образом сигналы передаются в одном канале. Поскольку один и тот же физический канал используется для передачи двух сигналов, то скорость передачи КАМ-сигнала в отличие от АМ-сигнала в два раза выше. Ниже показана структурная схема модулятора и диаграмма состояний (сигнальное созвездие) системы КАМ-16, в которой x(t) и y(t) принимают значения $\pm 1, \pm 3$ (4-х уровневая КАМ).

Рис. 3.2.4. Модуляция КАМ-16 и ее сигнальное созвездие

3.2.3. MSK

Частотная манипуляция с минимальным сдвигом (англ. Minimal Shift Keying (MSK)) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. МSK характеризуется тем, что значение частот соответствующих логическим «0» и «1» отличаются на величину равную половине скорости передачи данных. Другими словами, индекс модуляции равен 0,5.

Изображения сигнального созвездия и схемы модулятора MSK приведены ниже на риунках:

Рис. 3.2.5. Структурная схема формирования МSK на основе FM модулятора.

Рис. 3.2.6. Полная фазовая диаграмма при MSK для 4-х бит информации.

Рис. 3.2.7. Сигнальное созвездие MSK.

3.2.4. MFSK

Можно построить и модулятор многопозиционной частотной модуляции. В этом случае будет использовано большее количество синусоидальных генераторов, а для управления коммутатором потребуется многоразрядное двоичное число.

Сигналы в многопозиционной частотной модуляции могут быть описаны в соответствии со следующим выражением:

$$s_1(t) = cos(\omega_1 t); s_2(t) = cos(\omega_2 t); ...; s_N(t) = cos(\omega_N t);$$
 (2)

формула сигнала 1 многопозиционной частотной модуляции, формула сигнала 2 многопозиционной частотной модуляции, . . . , формула сигнала N многопозиционной частотной модуляции (3) где s_1 используется для передачи первого состояния символа; s_2 — для передачи второго состояния символа; s_N — для передачи N-го состояния символа.

4. Ход работы

Реализация различных типов модуляций в программе MatLab:

Листинг 1: Код в MatLab

```
1 %BPSK
 2 \mid h = \text{modem.pskmod}('M', 2);
 3 \mid g = \text{modem.pskdemod}('M', 2);
 4| \text{msg} = \text{randint} (10, 1, 2)
 5 \mid \text{modSignal} = \text{modulate}(h, \text{msg});
 6 | \operatorname{errSignal} = (\operatorname{randerr} (1, 10, 3) . / 30)';
   modSignal_=_modSignal_+_errSignal;
   demodSignal_=_demodulate(g, modSignal);
 9 scatterplot (modSignal);
10 figure
11 plot (msg);
12 legend ('The input message');
13 figure
14 plot (modSignal);
15 figure
16 plot (demodSignal);
17 legend ('The demodulated message');
18
19
20 SPSK modulation
21 \mid h_{\downarrow} = \mod \text{em. pskmod} ('M', \downarrow 8);
22 \mid g = \mod \operatorname{modem} \cdot \operatorname{pskdemod} ('M', \S 8);
23 | \text{msg} = \text{randint} (10, 1, 8);
24 modSignal = modulate(h, msg);
25 | \operatorname{errSignal} = (\operatorname{randerr} (1, 10, 3) . / 30);
26 modSignal = modSignal + errSignal;
27 demodSignal = demodulate(g, modSignal);
28 scatterplot (modSignal);
29 figure
30 plot (msg);
31 legend ('The_input_message');
32 figure
33 plot (modSignal);
34 figure
35 plot (demodSignal);
36 legend ('The_demodulated_message');
37
```

```
38 WOQPSK modulation
39 \mid h = \text{modem.ogpskmod};
40 \mid g = \text{modem.oqpskdemod};
41 \mid \text{msg} = \text{randint} (200, 1, 4);
42 \mid modSignal = modulate(h, msg);
43 | \operatorname{errSignal} = (\operatorname{randerr} (1,400, 100) ./ 30)';
44 modSignal = modSignal + errSignal;
45 demodSignal = demodulate (g, modSignal);
46 scatterplot (modSignal);
47 figure
48 plot (msg);
49 legend ('The input message');
50 figure
51 plot (modSignal);
52 figure
53 plot (demodSignal);
54 legend ('The demodulated message');
55
56 genQAM
57|M = 10;
58 \mid h_{\downarrow} = \mod n. genqammod ('Constellation',  \supseteq \exp (j*2*pi*[0:M-1]/M));
59 | g = \mod  genqamdemod ('Constellation', exp(j*2*pi*[0:M-1]/M));
60 \mid \text{msg} = \text{randint} (10, 1, 8);
61 \mod Signal = \mod ulate(h, msg);
62 | \operatorname{err} \operatorname{Signal} = (\operatorname{randerr} (1, 10, 3), ./ 30);
63 modSignal = modSignal + errSignal;
64 demodSignal = demodulate(g, modSignal);
65 scatterplot (modSignal);
66 figure
67 plot (msg);
68 legend ('The_input_message');
69 figure
70 plot (modSignal);
71 figure
72 plot (demodSignal);
73 legend ('The_demodulated_message');
74
75
76 MSK modulation
77 h = modem.mskmod('SamplesPerSymbol', 10);
78 g = modem.mskdemod('SamplesPerSymbol', 10);
79 | \text{msg} = \text{randint} (10, 1, 2);
80 modSignal = modulate(h, msg);
81 | \operatorname{errSignal} = (\operatorname{randerr}(1,100, 3) ./ 30);
82 | modSignal = modSignal + errSignal;
83 | demodSignal = demodulate(g, modSignal);
84 scatterplot (modSignal);
85 figure
86 plot (msg);
87 legend ('The input message');
88 figure
89 plot (modSignal);
90 figure
91 plot (demodSignal);
92 legend ('The demodulated message');
```

Результаты выполнения представлены на рисунках ниже.

4.1. BPSK-модуляция

Код, соответствующий графикам ниже, расположен в строках 1-17 в листинге 1.

Рис. 4.1.1. Входной сигнал BPSK.

Рис. 4.1.2. Сигнальное созвездие BPSK.

Рис. 4.1.3. Демодулированный сигнал BPSK.

4.2. PSK-модуляция

Код, соответствующий графикам ниже, расположен в строках 20-36 в листинге 1.

Рис. 4.2.1. Входной сигнал PSK.

Рис. 4.2.2. Сигнальное созвездие PSK.

Рис. 4.2.3. Демодулированный сигнал PSK.

4.3. ОQPSК-модуляция

Код, соответствующий графикам ниже, расположен в строках 38-54 в листинге 1.

Рис. 4.3.1. Входной сигнал OQPSK.

Рис. 4.3.2. Сигнальное созвездие OQPSK.

Рис. 4.3.3. Демодулированный сигнал OQPSK.

4.4. genQAM-модуляция

Код, соответствующий графикам ниже, расположен в строках 56-73 в листинге 1.

Рис. 4.4.1. Входной сигнал genQAM.

Рис. 4.4.2. Сигнальное созвездие genQAM.

Рис. 4.4.3. Демодулированный сигнал genQAM.

4.5. МЅК-модуляция

Код, соответствующий графикам ниже, расположен в строках 76-92 в листинге 1.

Рис. 4.5.1. Входной сигнал MSK.

Рис. 4.5.2. Сигнальное созвездие MSK.

Рис. 4.5.3. Демодулированный сигнал MSK.

Как можно видеть, при использовании MSK выходной сигнал имеет задержку при демодуляции.

4.6. MFSK-модуляция

В Simulink была построена модель MFSK-модулятора, результаты работы совпали с ожидаемыми, входная последовательность совпала с выходной.

Рис. 4.6.1. Simulink-модель MFSK.

Рис. 4.6.2. Графики входного сигнала, задержанного сигнала, модулированного сигнала, сигнала ошибки с задержанным сигналом, выходного сигнала MFSK (слева направо сверху вниз)

5. Выводы

Квадратурная амплитудная манипуляция (QAM) — манипуляция, при которой изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество информации, передаваемой одним состоянием сигнала.

 Φ азовая манипуляция (PSK) — один из видов фазовой модуляции, при которой фаза несущего колебания меняется скачкообразно в зависимости от информационного сообщения.

При квадратурной фазовой манипуляции (QPSK) используется созвездие из четырёх точек, размещённых на равных расстояниях на окружности. Имеется 4 фазовых смещений, при этом в QPSK на символ приходится два бита.

Частотная манипуляция с минимальным сдвигом (MSK) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. Принцип MSK таков, что значение частот соответствующих логическим *0» и *1» отличаются на величину равную половине скорости передачи данных.

Уровень модуляции определяет количество состояний несущей, используемых для передачи информации. Чем выше этот уровень, тем большими скоростными возможностями и меньшей помехоустойчивостью обладает модуляция. Число бит, передаваемых одним состоянием, определяется как Log(N), где N — уровень модуляции.