

Светодиоди

Светодиод Light-emitting diode - LED

Светодиодите са ПП елементи, които преобразуват електрическата енергия в светлина. Те имат един *PN* преход.

Структура на светодиод

Принцип на действие

Принципът им на действие се основава на процесите на рекомбинация, протичащи в право включен *PN* преход. При право включване започва инжекция на токоносители.

Инжектираните електрони от n-областта рекомбинират с дупките от p-областта. Електроните имат повисоко енергийно ниво и при падането на нивата на дупките губят енергия.

Енергията се излъчва под формата на квантове светлина – фотони.

Явлението се нарича електролуминисценция.

Дължина на вълната

$$hv = \frac{hc}{\lambda} = \Delta W \qquad \lambda = \frac{hc}{\Delta W} = \frac{1200}{\Delta W}$$

 $\lambda = 0.38 - 0.76 \ \mu m$ видима област

 $\Delta W = 1.6 - 3.1 \text{ eV (GaP, SiC, GaAlAs, GaAsP)}$

Колкото по-голяма е широчината на забранената зона, толкова по-голяма е енергията на излъчения фотон и толкова по-висока е честотата на излъчената светлина (респективно по-къса дължината на вълната й).

Violet ~ 3.17eV
Blue ~ 2.73eV
Green ~ 2.52eV
Yellow ~ 2.15eV
Orange ~ 2.08eV
Red ~ 1.62eV

Спектрална характеристика

Спектралната характеристика дава зависимостта на интензитета на излъчване на светодиода от дължината на вълната. Тя се определя от вида на полупроводниковия материал и легиращите примеси в него.

Конструкция на светодиод

Корпуси

DIP – dual in-line package

Surface-Mounted Device (SMD)

Корпуси

Бял светодиод - RGB

Бял светодиод – син LED + "фосфор"

Бял светодиод – LED + "фосфор"

Син LED + жълт фосфор

UV-LED + RGB фосфор

Нобелова награда за физика - 2014

"for the invention of **efficient** blue light-emitting diodes which has enabled bright and energy-saving white light sources"

© Nobel Media AB. Photo: A. Mahmoud Isamu Akasaki

© Nobel Media AB. Photo: A. Mahmoud **Hiroshi Amano**

© Nobel Media AB. Photo: A. Mahmoud Shuji Nakamura

Ефективност на светлинните източници

Качество на бялата светлина

Spectra From Common Sources of Visible Light

color rendering index (CRI)

Light source	CCT (K)	CRI
Low-pressure sodium (LPS/SOX)	1800	-44
High-pressure sodium (HPS/SON)	2100	24
Halophosphate warm-white fluorescent	2940	51
Halophosphate cool-white fluorescent	4230	64
Halophosphate cool-daylight fluorescent	6430	76
Standard LED Lamp	2700-5000	83
High-CRI <u>LED</u> lamp (blue LED)	2700–5000	95
Ceramic discharge metal-halide lamp	5400	96
Ultra-high-CRI <u>LED</u> lamp (violet LED)	2700–5000	99
Incandescent/halogen bulb	3200	100

Цветна температура

Color Temperature Scale

Чувствителност на човешкото око към цвета на светлината

VA характеристика

Поради по-широката забранена зона на материалите, светодиодите имат значително по-голям пад в права посока от Ge и Si изправителни диоди.

VA характеристика на червен и зелен светодиод

Светлинна характеристика

Представлява зависимостта на излъчения светлинен поток Φ от тока I_F , протичащ през диода.

Областта на насищане при големи стойности на тока се дължи на нарастване на относителния дял на безизлъчвателната рекомбинация при загряване на прехода.

Светлинна характеристика

Оразмеряване на схема със светодиод

Задача: Проектирайте схема на захранване на син (бял, червен,...) светодиод. Захранващото напрежение е 12V.

- Намерете каталожни данни и изберете конкретен модел светодиод.
- От каталожните данни изберете **подходящ ток през диода**. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.
- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

Намерете каталожни данни и изберете конкретен модел светодиод.

Google search: blue led datasheet (white led datasheet, ...)

https://cree-led.com/media/documents/C503B-BCS-BCN-GCS-GCN-1094.pdf

https://www.vishay.com/docs/81159/vlhw5100.pdf

От каталожните данни изберете подходящ ток през диода. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.

(3 mm from the base of the epoxy bi

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Items	Symbol	Absolute Maximum Rating	Unit
		Blue/Green	
Forward Current	I _F	30	mA
Peak Forward Current Note1	$I_{\sf FP}$	100	mA
Reverse Voltage	V_R	5	V
Power Dissipation	P_{D}	120	mW
Operation Temperature	T _{opr}	-40 ~ +95	۰С
Storage Temperature	T _{stg}	-40 ~ +100	(DELATIVI
Land Caldaring Tomporature	T	Max. 260°C fo	or 3 sec. max. (RELATIVI

T_{sol}

Note:

1. Pulse width ≤ 0.1 msec, duty $\leq 1/10$.

Lead Soldering Temperature

FIG.2 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Добра идея е да изберете стойността на If за която са дадени типични стойност на Uf.

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

Characteristics		Color	Symbol	Condition	Unit	Minimum	Typical	Maximum
Forward Voltage		Blue/Green	V _F	$I_F = 20 \text{ mA}$	V		3.2	3.6
Reverse Current		Blue/Green	I_R	$V_R = 5 V$	μΑ			100
Dominant Wayalangth		Blue	λ_{D}	$I_F = 20 \text{ mA}$	nm	465	470	480
Dominant Wavelength		Green	$\lambda_{\scriptscriptstyle D}$	$I_F = 20 \text{ mA}$	nm	520	527	535
Luminous Intensity	Blue C503B-BCS/BCN-030		I_{v}	$I_F = 20 \text{ mA}$	mcd	1520	4100	
Luminous Intensity	Green	C503B-GCS/GCN-030	I_{v}	$I_F = 20 \text{ mA}$	mcd	5860	12500	
50% Power Angle	C503	BB-BCS/BCN/GCS/GCN-030	2θ1/2	$I_F = 20 \text{ mA}$	deg	30		

- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

означения

$$I_{D1} => I_{D1}$$

 $U_{D1} => U_{D1}$

$$I = U1 / R1 - \Gamma PE W KA!$$

 $I = U_R1 / R1 - O K!$

$$I_R1 = I_D1 = 20mA$$

$$R1 = 8.8V / 20mA = 0.44 kOhm = 440 Ohm$$

Избор на стандартна стойност на резистора

R1 = 8.8V / 20mA = 0.44 kOhm = 440 Ohm

R=442 Ohm, 2%

E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)								
				(continued)				(continued)											
100	100 100	100	100	220	220	215	215	470	470	464	464								
			102				221				475								
		105	105	105	226	226			487	487									
			107				232												499
	110 1	110 110	110	110	110	110		240	237	237		510	511	511					
			113				243				523								
		115	115		249	249			536	536									
			118				255				549								
120	120	121	121	270	270	261	261	560	60 560	562	562								
			124				267				576								
		127	127			274	274			590	590								
			130				280					604							
	130	133	133		300	287	287		620	619	619								
			137				294				634								
		140	140	140		301	301			649	649								
			143				309				665								
150	150	147	147	330	330	316	316	680	680	681	681								
				150				324				698							
		154	154			332	332			715	715								
			158	340				732											
	160	162	162		360	348	348		750	750	750								
			165				357				768								
		169	169			365	365			787	787								
			174				374				806								
180	180	178	178	390	390	383	383	820	820	825	825								
			182				392				845								
			187 187	402	402			866	866										
			191				412				887								
	200	200 196	196		430	422	422		910	909	909								
			200				432				931								
		205	205			442	442			953	953								
			210						453				976						
								I											

$$P_R = U_R * I_R = 8.8V * 0.02A = 0.176W$$

Избираме 1/4W резистор

Code	e	Lengt	h (l)	Width	(w)	Height (h)		Power	
Imperial	Metric	inch	mm	inch	mm	inch	mm	Watt	
0201	0603	0.024	0.6	0.012	0.3	0.01	0.25	1/20 (0.05)	
0402	1005	0.04	1.0	0.02	0.5	0.014	0.35	1/16 (0.062)	
0603	1608	0.06	1.55	0.03	0.85	0.018	0.45	1/10 (0.10)	
0805	2012	0.08	2.0	0.05	1.2	0.018	0.45	1/8 (0.125)	
1206	3216	0.12	3.2	0.06	1.6	0.022	0.55	1/4 (0.25)	
1210	3225	0.12	3.2	0.10	2.5	0.022	0.55	1/2 (0.50)	
1812	3246	0.12	3.2	0.18	4.6	0.022	0.55	1	
2010	5025	0.20	5.0	0.10	2.5	0.024	0.6	3/4 (0.75)	
2512	6332	0.25	6.3	0.12	3.2	0.024	0.6	1	

Задача: Да се оразмери схемата, така че през диодите да тече ток 20mA.

От графиката: If = 20mA -> Uf = 3.5V

$$U_R1 = U1 - 3 . Uf = 12 - 10.5 = 1.5V$$

R1 = U_R1 / I_R1 = U_R1 / If = 1.5V / 20mA = 0.075 kOhm = 75 Ohm

(a)
$$U_1 = 12V$$
, $R_1 = ?$

(б) Волт-амперна характеристика на светодиод