

Algebra V (2) Factorising Quadratics with double brackets

Do now:

Factorise these completely.

1 $5x^3 + 15x^4$

2 $27a^4 + 9a^2$

3 $3x^3 - 18x^2$

4 $24p^4 - 6p^5$

5 $9x^3y^2 - 12x^2y^4$

6 $8xy^3 - 24x^3y$

Extension

25 $(x - y)^2 - (x - y)^3$

26 $x(x + 1)(x + 3)(x + 5) - x(x + 3)(x + 5)$

Can you spot a pattern.....

$$\begin{aligned} a^2 + 5a + 6 \\ (a + 2)(a + 3) \end{aligned}$$

$$\begin{aligned} t^2 + 7t + 10 \\ (t + 5)(t + 2) \end{aligned}$$

$$\begin{aligned} m^2 - 5m + 6 \\ (m - 2)(m - 3) \end{aligned}$$

$$\begin{aligned} y^2 + 25y + 100 \\ (y + 20)(y + 5) \end{aligned}$$

$$\begin{aligned} x^2 + x - 6 \\ (x - 2)(x + 3) \end{aligned}$$

$$\begin{aligned} x^2 - 4x + 4 \\ (x - 2)^2 \end{aligned}$$

Worked Example

Your Turn

$x^2 - 10x + 21 =$

$x^2 + 10x + 21 =$

$x^2 + 14x + 24 =$

$x^2 - 2x - 24 =$

9 $x^2 + x - 56$

13 $x^2 + 14x + 13$

10 $x^2 + 32x + 60$

14 $x^2 + 12x - 28$

11 $x^2 - 6x - 27$

15 $x^2 + 2x - 80$

12 $x^2 + 16x - 80$

16 $x^2 - 11x + 30$

17 $x^2 + 8x - 48$

21 $x^2 + 11x + 24$

18 $x^2 + 18x + 72$

22 $x^2 - 11x - 42$

19 $x^2 + 17x + 52$

23 $x^2 - 18x + 32$

20 $x^2 - 12x - 28$

24 $x^2 - 7x - 60$

Factorise $6 + x^2 - 5x$

This needs to be rearranged into the familiar form,
i.e. x^2 term first, then the x term and finally the number.

$$\begin{aligned}6 + x^2 - 5x &= x^2 - 5x + 6 \\&= (x - 2)(x - 3)\end{aligned}$$

Possible pairs:
1, 6, sum 7, reject
2, 3, sum 5, correct.

25 $8 + x^2 + 9x$

29 $9 + x^2 + 6x$

26 $9 + x^2 - 6x$

30 $8 + x^2 - 9x$

27 $11x + 28 + x^2$

31 $17x + 30 + x^2$

Factorise $x^2 + 6x + 9$

If you cannot see the numbers required, write down all the pairs whose product is 9.

$$\begin{aligned}x^2 + 6x + 9 &= (x + 3)(x + 3) \\&= (x + 3)^2\end{aligned}$$

3 × 3 or
1 × 9

Factorise

41 $x^2 + 10x + 25$

45 $x^2 + 12x + 36$

42 $x^2 - 10x + 25$

46 $x^2 - 12x + 36$

43 $x^2 + 4x + 4$

47 $x^2 - 4x + 4$

Factorise $6 - 5x - x^2$

When the x^2 term is negative, the terms should be arranged: number term, then the x term and finally the x^2 term. This means that the x term appears at the end of each bracket.

$$6 - 5x - x^2 = (6 + x)(1 - x)$$

2 × 3 or
6 × 1

Factorise

1 $2 - x - x^2$

5 $6 - x - x^2$

2 $6 + x - x^2$

6 $2 + x - x^2$

3 $4 - 3x - x^2$

7 $8 - 2x - x^2$

4 $8 + 2x - x^2$

8 $5 - 4x - x^2$