(19) World Intellectual Property Organization

International Bureau

I TUDIA BINITAN IL DEBNO NENA DONI BONI BENT PI IN DONI LIBAT NICOLO NELL DIN BERDIN NELL DESCRIPTO

(43) International Publication Date 28 October 2004 (28.10.2004)

PCT

(10) International Publication Number **WO 2004/091515 A2**

(51) Internation	al Patent	Classification ⁷ :
------------------	-----------	-------------------------------

A61K

US04/07070 US04/10586 8 March 2004 (08.03.2004)

5 April 2004 (05.04.2004) US

(21) International Application Number:

PCT/US2004/011255

(22) International Filing Date:

9 April 2004 (09.04.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30)	Priority	Data:

)	Priority Data:		
	60/462,097	9 April 2003 (09.04.2003)	US
	60/461,915	10 April 2003 (10.04.2003)	US
	60/462,894	14 April 2003 (14.04.2003)	US
	60/463,772	17 April 2003 (17.04.2003)	US
	60/465,802	25 April 2003 (25.04.2003)	US
	60/465,665	25 April 2003 (25.04.2003)	US
	60/469,612	9 May 2003 (09.05.2003)	US
	60/493,986	8 August 2003 (08.08.2003)	US
	60/494,597	11 August 2003 (11.08.2003)	US
	60/506,341	26 September 2003 (26.09.2003)	US
	60/510,246	9 October 2003 (09.10.2003)	US
	60/510,318	10 October 2003 (10.10.2003)	US
	60/518,453	7 November 2003 (07.11.2003)	US

(71) Applicant (for all designated States except US): AL-NYLAM PHARMACEUTICALS, INC. [US/US]; 790 Memorial Dr., Suite 202, Cambridge, MA 02139 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MANOHARAN, Muthiah [US/US]; 25 Circle Dr., Weston, MA 02493 (US). ELBASHIR, Sayda [DE/US]; 12 Grozier Road, Cambridge, MA 02138 (US). HARBORTH, Jens [DE/US]; 16 Chauncy St., Apt. 35, Cambridge, MA 02138

(74) Agent: MYERS, Louis; Fish & Richardson, P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO. CR. CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

[Continued on next page]

(54) Title: iRNA CONJUGATES

WO 2004/091515 A2

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

25

Attorney's Docket No.: 14174-072W01

iRNA CONJUGATES

RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application No. 60/462,097, filed April 9, 2003; U.S. Provisional Application No. 60/461,915, filed April 10, 2003; U.S. Provisional Application No. 60/463,772, filed April 17, 2003; U.S. 5 Provisional Application No. 60/465,802, filed April 25, 2003; U.S. Provisional Application No. 60/493,986, filed August 8, 2003; U.S. Provisional Application No. 60/494,597, filed August 11, 2003; U.S. Provisional Application No. 60/506,341, filed September 26, 2003; U.S. Provisional Application No. 60/518,453, filed November 7, 2003; U.S. Provisional Application No. 60/469,612, filed May 9, 2003; U.S. Provisional Application No. 60/510,246, filed October 10 9, 2003; U.S. Provisional Application No. 60/510,318, filed October 10, 2003; U.S. Provisional Application No. 60/465,665, filed April 25, 2003; U.S. Provisional Application No. 60/462,894, filed April 14, 2003; International Application No. PCT/US04/07070, filed March 8, 2004; and International Application No. [xxxxxx], filed April 5, 2004. The contents of these applications are hereby incorporated by reference in their entirety. 15

TECHNICAL FIELD

The invention relates to RNAi and related methods, e.g., methods of making and using iRNA agents. It includes methods and compositions for silencing genes expressed in the liver, and methods and compositions for directing iRNA agents to the liver.

BACKGROUND

RNA interference or "RNAi" is a term initially coined by Fire and co-workers to describe the observation that double-stranded RNA (dsRNA) can block gene expression when it is introduced into worms (Fire *et al.*, *Nature* 391:806-811, 1998). Short dsRNA directs genespecific, post-transcriptional silencing in many organisms, including vertebrates, and has provided a new tool for studying gene function. RNAi may involve mRNA degradation.

10

15

20

25

Attorney's Docket No.: 14174-072W01

Work in this field is typified by comparatively cumbersome approaches to delivery of dsRNA to live mammals. *E.g.*, McCaffrey *et al.* (Nature 418:38-39, 2002) demonstrated the use of dsRNA to inhibit the expression of a luciferase reporter gene in mice. The dsRNAs were administered by the method of hydrodynamic tail vein injections (in addition, inhibition appeared to depend on the injection of greater than 2 mg/kg dsRNA). The inventors have discovered, *inter alia*, that the unwieldy methods typical of some reported work are not needed to provide effective amounts of dsRNA to mammals and in particular not needed to provide therapeutic amounts of dsRNA to human subjects. The advantages of the current invention include practical, uncomplicated methods of administration and therapeutic applications, *e.g.*, at dosages of less than 2 mg/kg.

SUMMARY

Aspects of the invention relate to compositions and methods for silencing genes expressed in the liver, e.g., to treat disorders of or related to the liver. An iRNA agent composition of the invention can be one which has been modified to alter distribution in favor of the liver. A composition of the invention includes an iRNA agent, e.g., an iRNA agent or sRNA agent described herein.

In one aspect, the invention features a method for reducing apoB-100 levels in a subject, e.g., a mammal, such as a human. The method includes administering to a subject an iRNA agent which targets apoB-100. The iRNA agent can be one described here, and can be a dsRNA that is substantially identical to a region of the apoB-100 gene. The iRNA can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Tables 9 or 10. In a preferred embodiment it targets both sequences of a palindromic pair provided in Tables 9 or 10. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Tables 9 or 10.

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Tables 9 or 10. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Tables 9 or 10 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Tables 9 or 10 but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence.

The iRNA agent that targets apoB-100 can be administered in an amount sufficient to reduce expression of apoB-100 mRNA. In one embodiment, the iRNA agent is administered in an amount sufficient to reduce expression of apoB-100 protein (e.g., by at least 2%, 4%, 6%, 10%, 15%, 20%). Preferably, the iRNA agent does not reduce expression of apoB-48 mRNA or protein. This can be effected, e.g., by selection of an iRNA agent which specifically targets the nucleotides subject to RNA editing in the apoB-100 transcript.

The iRNA agent that targets apoB-100 can be administered to a subject, wherein the subject is suffering from a disorder characterized by elevated or otherwise unwanted expression of apoB-100, elevated or otherwise unwanted levels of cholesterol, and/or disregulation of lipid metabolism. The iRNA agent can be administered to an individual at risk for the disorder to delay onset of the disorder or a symptom of the disorder. These disorders include HDL/LDL cholesterol imbalance; dyslipidemias, *e.g.*, familial combined hyperlipidemia (FCHL), acquired hyperlipidemia; hypercholestorolemia; statin-resistant hypercholesterolemia; coronary artery disease (CAD) coronary heart disease (CHD) atherosclerosis. In one embodiment, the iRNA that targets apoB-100 is administered to a subject suffering from statin-resistant hypercholesterolemia.

The apoB-100 iRNA agent can be administered in an amount sufficient to reduce levels of serum LDL-C and/or HDL-C and/or total cholesterol in a subject. For example, the iRNA is administered in an amount sufficient to decrease total cholesterol by at least 0.5%, 1%, 2.5%, 5%, 10% in the subject. In one embodiment, the iRNA agent is administered in an amount sufficient to reduce the risk of myocardial infarction the subject.

In a preferred embodiment the iRNA agent is administered repeatedly. Administration of an iRNA agent can be carried out over a range of time periods. It can be administered daily, once every few days, weekly, or monthly. The timing of administration can vary from patient to

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

patient, depending on such factors as the severity of a patient's symptoms. For example, an effective dose of an iRNA agent can be administered to a patient once a month for an indefinite period of time, or until the patient no longer requires therapy. In addition, sustained release compositions containing an iRNA agent can be used to maintain a relatively constant dosage in the patient's blood.

In one embodiment, the iRNA agent can be targeted to the liver, and apoB expression level are decreased in the liver following administration of the apoB iRNA agent. For example, the iRNA agent can be complexed with a moiety that targets the liver, e.g., an antibody or ligand that binds a receptor on the liver.

The iRNA agent, particularly an iRNA agent that targets apoB, beta-catenin or glucose-6-phosphatase RNA, can be targeted to the liver, for example by associating, e.g., conjugating the iRNA agent to a lipophilic moiety, e.g., a lipid, cholesterol, oleyl, retinyl, or cholesteryl residue. Other lipophilic moieties that can be associated, e.g., conjugated with the iRNA agent include cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine. In one embodiment, the iRNA agent can be targeted to the liver by associating, e.g., conjugating, the iRNA agent to a low-density lipoprotein (LDL), e.g., a lactosylated LDL. In another embodiment, the iRNA agent can be targeted to the liver by associating, e.g., conjugating, the iRNA agent to a polymeric carrier complex with sugar residues.

In another embodiment, the iRNA agent can be targeted to the liver by associating, e.g., conjugating, the iRNA agent to a liposome complexed with sugar residues. A targeting agent that incorporates a sugar, e.g., galactose and/or analogues thereof, is particularly useful. These agents target, in particular, the parenchymal cells of the liver (see Table 1). In a preferred embodiment, the targeting moiety includes more than one galactose moiety, preferably two or three. Preferably, the targeting moiety includes 3 galactose moieties, e.g., spaced about 15 angstroms from each other. The targeting moiety can be lactose. A lactose is a glucose coupled to a galactose. Preferably, the targeting moiety includes three lactoses. The targeting moiety can also be N-Acetyl-Galactosamine, N-Ac-Glucosamine. A mannose, or mannose-6-phosphate targeting moiety can be used for macrophage targeting.

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

The targeting agent can be linked directly, e.g., covalently or non covalently, to the iRNA agent, or to another delivery or formulation modality, e.g., a liposome. E.g., the iRNA agents with or without a targeting moiety can be incorporated into a delivery modality, e.g., a liposome, with or without a targeting moiety.

It is particularly preferred to use an iRNA conjugated to a lipophilic molecule to conjugate to an iRNA agent that targets apoB, beta-catenin or glucose-6-phosphatase iRNA targeting agent.

In one embodiment, the iRNA agent has been modified, or is associated with a delivery agent, e.g., a delivery agent described herein, e.g., a liposome, which has been modified to alter distribution in favor of the liver. In one embodiment, the modification mediates association with a serum albumin (SA), e.g., a human serum albumin (HSA), or a fragment thereof.

The iRNA agent, particularly an iRNA agent that targets apoB, beta-catenin or glucose-6-phosphatase RNA, can be targeted to the liver, for example by associating, e.g., conjugating the iRNA agent to an SA molecule, e.g., an HSA molecule, or a fragment thereof. In one embodiment, the iRNA agent or composition thereof has an affinity for an SA, e.g., HSA, which is sufficiently high such that its levels in the liver are at least 10, 20, 30, 50, or 100% greater in the presence of SA, e.g., HSA, or is such that addition of exogenous SA will increase delivery to the liver. These criteria can be measured, e.g., by testing distribution in a mouse in the presence or absence of exogenous mouse or human SA.

The SA, e.g., HSA, targeting agent can be linked directly, e.g., covalently or non-covalently, to the iRNA agent, or to another delivery or formulation modality, e.g., a liposome. E.g., the iRNA agents with or without a targeting moiety can be incorporated into a delivery modality, e.g., a liposome, with or without a targeting moiety.

It is particularly preferred to use an iRNA conjugated to an SA, e.g., an HSA, molecule wherein the iRNA agent is an apoB, beta-catenin or glucose-6-phosphatase iRNA targeting agent.

In another aspect, the invention features, a method for reducing glucose-6-phosphatase levels in a subject, e.g., a mammal, such as a human. The method includes administering to a subject an iRNA agent which targets glucose-6-phosphatase. The iRNA agent can be a dsRNA that has a sequence that is substantially identical to a sequence of the glucose-6-phosphatase gene.

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

In a preferred embodiment, the subject is treated with an iRNA agent that targets one of the sequences listed in Table 11. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 11. The most preferred targets are listed in descending order of preferability, in other words, the more preferred targets are listed earlier in Table 11.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Table 11. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Table 11 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Table 11 but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

Table 11 refers to sequences from human glucose-6-phosphatase. Table 12 refers to sequences from rat glucose-6-phosphatase. The sequences from table 12 can be used, e.g., in experiments with rats or cultured rat cells.

In a preferred embodiment iRNA agent can have any architecture, e.g., architecture described herein. E.g., it can be incorporated into an iRNA agent having an overhang structure, overall length, hairpin vs. two-strand structure, as described herein. In addition, monomers other than naturally occurring ribonucleotides can be used in the selected iRNA agent.

The iRNA that targets glucose-6-phosphatase can be administered in an amount sufficient to reduce expression of glucose-6-phosphatase mRNA.

The iRNA that targets glucose-6-phosphatase can be administered to a subject to inhibit hepatic glucose production, for the treatment of glucose-metabolism-related disorders, such as diabetes, e.g., type-2-diabetes mellitus. The iRNA agent can be administered to an individual at risk for the disorder to delay onset of the disorder or a symptom of the disorder.

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

In other embodiments, iRNA agents having sequence similarity to the following genes can also be used to inhibit hepatic glucose production. These other genes include "forkhead homologue in rhabdomyosarcoma (FKHR); glucagon; glucagon receptor; glycogen phosphorylase; PPAR-Gamma Coactivator (PGC-1); Fructose-1,6-bisphosphatase; glucose-6-phosphate locator; glucokinase inhibitory regulatory protein; and phosphoenolpyruvate carboxykinase (PEPCK).

In one embodiment, the iRNA agent can be targeted to the liver, and RNA expression levels of the targeted genes are decreased in the liver following administration of the iRNA agent.

The iRNA agent can be one described herein, and can be a dsRNA that has a sequence that is substantially identical to a sequence of a target gene. The iRNA can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In another aspect, the invention features a method for reducing beta-catenin levels in a subject, e.g., a mammal, such as a human. The method includes administering to a subject an iRNA agent that targets beta-catenin. The iRNA agent can be one described herein, and can be a dsRNA that has a sequence that is substantially identical to a sequence of the beta-catenin gene. The iRNA can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Table 13. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 13. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Table 13.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Table 13. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Table 13 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Table 13 but will not be perfectly complementary with the target sequence, e.g., it will

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

The iRNA agent that targets beta-catenin can be administered in an amount sufficient to reduce expression of beta-catenin mRNA. In one embodiment, the iRNA agent is administered in an amount sufficient to reduce expression of beta-catenin protein (e.g., by at least 2%, 4%, 6%, 10%, 15%, 20%).

The iRNA agent that targets beta-catenin can be administered to a subject, wherein the subject is suffering from a disorder characterized by unwanted cellular proliferation in the liver or of liver tissue, e.g., metastatic tissue originating from the liver. Examples include, a benign or malignant disorder, e.g., a cancer, e.g., a hepatocellular carcinoma (HCC), hepatic metastasis, or hepatoblastoma.

The iRNA agent can be administered to an individual at risk for the disorder to delay onset of the disorder or a symptom of the disorder

In a preferred embodiment the iRNA agent is administered repeatedly. Administration of an iRNA agent can be carried out over a range of time periods. It can be administered daily, once every few days, weekly, or monthly. The timing of administration can vary from patient to patient, depending on such factors as the severity of a patient's symptoms. For example, an effective dose of an iRNA agent can be administered to a patient once a month for an indefinite period of time, or until the patient no longer requires therapy. In addition, sustained release compositions containing an iRNA agent can be used to maintain a relatively constant dosage in the patient's blood.

In one embodiment, the iRNA agent can be targeted to the liver, and beta-catenin expression level are decreased in the liver following administration of the beta-catenin iRNA agent. For example, the iRNA agent can be complexed with a moiety that targets the liver, e.g., an antibody or ligand that binds a receptor on the liver.

and the state of the

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

In another aspect, the invention provides methods to treat liver disorders, e.g., disorders characterized by unwanted cell proliferation, hematological disorders, disorders characterized by inflammation disorders, and metabolic or viral diseases or disorders of the liver. A proliferation disorder of the liver can be, for example, a benign or malignant disorder, e.g., a cancer, e.g, a hepatocellular carcinoma (HCC), hepatic metastasis, or hepatoblastoma. A hepatic hematology or inflammation disorder can be a disorder involving clotting factors, a complement-mediated inflammation or a fibrosis, for example. Metabolic diseases of the liver can include dyslipidemias, and irregularities in glucose regulation. Viral diseases of the liver can include hepatitis C or hepatitis B. In one embodiment, a liver disorder is treated by administering one or more iRNA agents that have a sequence that is substantially identical to a sequence in a gene involved in the liver disorder.

In one embodiment an iRNA agent to treat a liver disorder has a sequence which is substantially identical to a sequence of the beta-catenin or c-jun gene. In another embodiment, such as for the treatment of hepatitis C or hepatitis B, the iRNA agent can have a sequence that is substantially identical to a sequence of a gene of the hepatitis C virus or the hepatitis B virus, respectively. For example, the iRNA agent can target the 5' core region of HCV. This region lies just downstream of the ribosomal toe-print straddling the initiator methionine.

Alternatively, an iRNA agent of the invention can target any one of the nonstructural proteins of HCV: NS3, 4A, 4B, 5A, or 5B. For the treatment of hepatitis B, an iRNA agent can target the protein X (HBx) gene, for example.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Table 14. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 14. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Table 14.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Table 14. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Table 14 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Table 14, but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

5

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

In another aspect, an iRNA agent can be administered to modulate blood clotting, e.g., to reduce the tendency to form a blood clot. In a preferred embodiment the iRNA agent targets Factor V expression, preferably in the liver. One or more iRNA agents can be used to target a wild type allele, a mutant allele, e.g., the Leiden Factor V allele, or both. Such administration can be used to treat or prevent venous thrombosis, e.g., deep vein thrombosis or pulmonary embolism, or another disorder caused by elevated or otherwise unwanted expression of Factor V, in, e.g., the liver. In one embodiment the iRNA agent can treat a subject, e.g., a human who has Factor V Leiden or other genetic trait associated with an unwanted tendency to form blood clots.

In a preferred embodiment administration of an iRNA agent which targets Factor V is with the administration of a second treatment, e.g, a treatment which reduces the tendency of the blood to clot, e.g., the administration of heparin or of a low molecular weight heparin.

In one embodiment, the iRNA agent that targets Factor V can be used as a prophylaxis in patients, e.g., patients with Factor V Leiden, who are placed at risk for a thrombosis, e.g., those about to undergo surgery, in particular those about to undergo high-risk surgical procedures known to be associated with formation of venous thrombosis, those about to undergo a prolonged period of relative inactivity, e.g., on a motor vehicle, train or airplane flight, e.g., a flight or other trip lasting more than three or five hours. Such a treatment can be an adjunct to the therapeutic use of low molecular weight (LMW) heparin prophylaxis.

In another embodiment, the iRNA agent that targets Factor V can be administered to patients with Factor V Leiden to treat deep vein thrombosis (DVT) or pulmonary embolism (PE). Such a treatment can be an adjunct to (or can replace) therapeutic uses of heparin or coumadin. The treatment can be administered by inhalation or generally by pulmonary routes.

In a preferred embodiment, an iRNA agent administered to treat a liver disorder is targeted to the liver. For example, the iRNA agent can be complexed with a targeting moiety, e.g., an antibody or ligand that recognizes a liver-specific receptor.

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

The invention also includes preparations, including substantially pure or pharmaceutically acceptable preparations of iRNA agents which silence any of the genes discussed herein and in particular for any of apoB-100, glucose-6-phosphatase, beta-catenin, factor V, or any of the HVC genes discussed herein.

The methods and compositions of the invention, e.g., the methods and compositions to treat diseases and disorders of the liver described herein, can be used with any of the iRNA agents described. In addition, the methods and compositions of the invention can be used for the treatment of any disease or disorder described herein, and for the treatment of any subject, e.g., any animal, any mammal, such as any human.

The methods and compositions of the invention, e.g., the methods and iRNA compositions to treat liver-based diseases described herein, can be used with any dosage and/or formulation described herein, as well as with any route of administration described herein.

A "substantially identical" sequence includes a region of sufficient homology to the target gene, and is of sufficient length in terms of nucleotides, that the iRNA agent, or a fragment thereof, can mediate down regulation of the target gene. Thus, the iRNA agent is or includes a region which is at least partially, and in some embodiments fully, complementary to a target RNA transcript. It is not necessary that there be perfect complementarity between the iRNA agent and the target, but the correspondence must be sufficient to enable the iRNA agent, or a cleavage product thereof, to direct sequence specific silencing, e.g., by RNAi cleavage of the target RNA, e.g., mRNA. Complementarity, or degree of homology with the target strand, is most critical in the antisense strand. While perfect complementarity, particularly in the antisense strand, is often desired some embodiments can include, particularly in the antisense strand, one or more but preferably 6, 5, 4, 3, 2, or fewer mismatches (with respect to the target RNA). The mismatches, particularly in the antisense strand, are most tolerated in the terminal regions and if present are preferably in a terminal region or regions, e.g., within 6, 5, 4, or 3 nucleotides of the 5' and/or 3' terminus. The sense strand need only be sufficiently complementary with the antisense strand to maintain the over all double strand character of the molecule.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from this description, and from the claims. This application

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

incorporates all cited references, patents, and patent applications by references in their entirety for all purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a structural representation of base pairing in psuedocomplementary siRNA².

FIG. 2 is a schematic representation of dual targeting siRNAs designed to target the HCV genome.

FIG. 3 is a schematic representation of psuedocomplementary, bifunctional siRNAs designed to target the HCV genome.

FIG. 4 is a general synthetic scheme for incorporation of RRMS monomers into an oligonucleotide.

FIG. 5 is a table of representative RRMS carriers. Panel 1 shows pyrroline-based RRMSs; panel 2 shows 3-hydroxyproline-based RRMSs; panel 3 shows piperidine-based RRMSs; panel 4 shows morpholine and piperazine-based RRMSs; and panel 5 shows decalin-based RRMSs. R1 is succinate or phosphoramidate and R2 is H or a conjugate ligand.

FIG. 6A is a graph depicting blood glucose levels in mice treated with nonspecific Renilla-RNA or not treated with siRNA. Mice treated with nonspecific Renilla RNA were injected on Day 7.

FIG. 6B is a graph depicting blood glucose levels in mice treated with siRNA targeting glucose 6-phosphatase. Mice treated with siRNA targeting glucose 6-phosphatase were injected on Day 7.

FIG. 6C is a graph depicting blood glucose levels in mice that were either not injected with siRNA, or were injected but the injection failed. Mice that were injected, were injected on Day 7.

FIG. 7 is a graph depicting average blood glucose levels in four mice treated with siRNA targeting glucose 6-phosphatase, and in four mice either treated with nonspecific Renilla RNA or not treated with siRNA (triangles). siRNA or Renilla RNA was administered on day 7 by hydrodynamic tail vein injection.

FIG. 8A is a graph depicting levels of luciferase mRNA in livers of CMV-Luc mice (Xanogen) following intervenous injection (iv) of buffer or siRNA into the tail vein. Each bar represents data from one mouse. RNA levels were quantified by QuantiGene Assay

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

(Genospectra, Inc.; Fremont, CA)). The Y axis represents chemiluminescence values in counts per second (CPS).

FIG. 8B is a graph depicting levels of luciferase mRNA in livers of CMV-Luc mice (Xanogen). The values are averaged from the data depicted in FIG. 8A.

FIG. 9 is a graph depicting the pharmacokinetics of cholesterol-conjugated and unconjugated siRNA. The diamonds represent the amount of unconjugated ³³P-labeled siRNA (ALN-3000) in mouse plasma over time; the squares represent the amount of cholesterol-conjugated ³³P-labeled siRNA (ALN-3001) in mouse plasma over time. "L1163" is equivalent to ALN3000; "L1163Chol" is equivalent to ALN-3001.

FIG. 10 is a graph indicating the amount of cholesterol-conjugated (dark bars) and unconjugated siRNA (light bars) detected in mouse whole liver tissue isolated over a period of time following intravenous tail vein injection. The amount of siRNA is represented as a percentage of the total dose or ³³P-labeled siRNA delivered to the mouse. "L1163" is equivalent to ALN3000 (light bars); "L1163Chol" is equivalent to ALN-3001 (dark bars).

FIG. 11 is a graph indicating the amount of cholesterol-conjugated siRNA detected in various tissues of two different CMV-Luc mice ("Mouse 69" (light bars) and "Mouse 63" (dark bars)). Mice were injected with 50 mg/kg AL-3001 siRNA by intravenous tail vein injection, and tissue was harvested 22 hours later. SiRNA was detected by RNAse protection, and phosphorimager scanning was used to quantitate the siRNA. The amount of siRNA is expressed as ug/g liver tissue.

FIG. 12 is a gel of U/U siRNA (see Table 19) detected in the liver of Balbc mice at increasing time points following hydrodynamic (hd) tail vein injection. U/U siRNA was injected at a concentration of 4 mg/kg. siRNA was detected by RNAse protection assay. Lanes labeled "stand." were loaded with clean siRNA to serve as size and quality standards. "non" represents control samples isolated from livers of mice that were not injected with U/U siRNA. The control samples were further used in parallel RNAse protection assays.

FIG. 13 is a gel comparing different siRNA species detected in the livers of Balbc mice at increasing time points following hydrodynamic (hd) or nonhydrodynamic (iv) tail vein injection. U/U siRNA was injected by hd and by iv injection. 3'C/3'C and 3'C/U (see Table 19) were each injected by iv injection. at a concentration of 4 mg/kg. siRNA was detected by RNAse protection assay. Lanes labeled "stand." were loaded with clean siRNA to serve as size and

10

15

20

25

Attorney's Docket No.: 14174-072W01

quality standards. "non" represents control samples isolated from livers of mice that were not injected with siRNA. The control samples were further used in parallel RNAse protection assays.

FIG. 14 is a graph depicting the percentage of luciferase activity in liver extracts of CMV-Luc mice injected with siRNA (ALN-3001). Percentage of luciferase activity was relative to activity in CMV-Luc mice injected with PBS, pH 4.7. "Buffer1 siRNA1," "Buffer2 siRNA2," and "Buffer3 siRNA3" represent the average activity observed in three separate experiments.

DETAILED DESCRIPTION

Double-stranded (dsRNA) directs the sequence-specific silencing of mRNA through a process known as RNA interference (RNAi). The process occurs in a wide variety of organisms, including mammals and other vertebrates.

It has been demonstrated that 21-23 nt fragments of dsRNA are sequence-specific mediators of RNA silencing, e.g., by causing RNA degradation. While not wishing to be bound by theory, it may be that a molecular signal, which may be merely the specific length of the fragments, present in these 21-23 nt fragments recruits cellular factors that mediate RNAi. Described herein are methods for preparing and administering these 21-23 nt fragments, and other iRNAs agents, and their use for specifically inactivating gene function. The use of iRNAs agents (or recombinantly produced or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for silencing in mammalian cells. In addition, longer dsRNA agent fragments can also be used, e.g., as described below.

Although, in mammalian cells, long dsRNAs can induce the interferon response which is frequently deleterious, sRNAs do not trigger the interferon response, at least not to an extent that is deleterious to the cell and host. In particular, the length of the iRNA agent strands in an sRNA agent can be less than 31, 30, 28, 25, or 23 nt, e.g., sufficiently short to avoid inducing a deleterious interferon response. Thus, the administration of a composition of sRNA agent (e.g., formulated as described herein) to a mammalian cell can be used to silence expression of a target gene while circumventing the interferon response. Further, use of a discrete species of iRNA

10

15

20

25

Attorney's Docket No.: 14174-072W01

agent can be used to selectively target one allele of a target gene, e.g., in a subject heterozygous for the allele.

Moreover, in one embodiment, a mammalian cell is treated with an iRNA agent that disrupts a component of the interferon response, e.g., double stranded RNA (dsRNA)-activated protein kinase PKR. Such a cell can be treated with a second iRNA agent that includes a sequence complementary to a target RNA and that has a length that might otherwise trigger the interferon response.

In a typical embodiment, the subject is a mammal such as a cow, horse, mouse, rat, dog, pig, goat, or a primate. The subject can be a dairy mammal (e.g., a cow, or goat) or other farmed animal (e.g., a chicken, turkey, sheep, pig, fish, shrimp). In a much preferred embodiment, the subject is a human, e.g., a normal individual or an individual that has, is diagnosed with, or is predicted to have a disease or disorder.

Further, because iRNA agent mediated silencing persists for several days after administering the iRNA agent composition, in many instances, it is possible to administer the composition with a frequency of less than once per day, or, for some instances, only once for the entire therapeutic regimen. For example, treatment of some cancer cells may be mediated by a single bolus administration, whereas a chronic viral infection may require regular administration, e.g., once per week or once per month.

A number of exemplary routes of delivery are described that can be used to administer an iRNA agent to a subject. In addition, the iRNA agent can be formulated according to an exemplary method described herein.

Liver Diseases

Exemplary diseases and disorders that can be treated by the methods and compositions of the invention are liver-based diseases.

Disorders involving the liver include, but are not limited to, hepatic injury; jaundice and cholestasis, such as bilirubin and bile formation; hepatic failure and cirrhosis, such as cirrhosis, portal hypertension, including ascites, portosystemic shunts, and splenomegaly; infectious disorders, such as viral hepatitis, including hepatitis A-E infection and infection by other

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

hepatitis viruses, clinicopathologic syndromes, such as the carrier state, asymptomatic infection, acute viral hepatitis, chronic viral hepatitis, and fulminant hepatitis; autoimmune hepatitis; drugand toxin-induced liver disease, such as alcoholic liver disease; inborn errors of metabolism and pediatric liver disease, such as hemochromatosis, Wilson disease, a1-antitrypsin deficiency, and neonatal hepatitis; intrahepatic biliary tract disease, such as secondary biliary cirrhosis, primary biliary cirrhosis, primary sclerosing cholangitis, and anomalies of the biliary tree; circulatory disorders, such as impaired blood flow into the liver, including hepatic artery compromise and portal vein obstruction and thrombosis, impaired blood flow through the liver, including passive congestion and centrilobular necrosis and peliosis hepatis, hepatic vein outflow obstruction, including hepatic vein thrombosis (Budd-Chiari syndrome) and veno-occlusive disease; hepatic disease associated with pregnancy, such as preeclampsia and eclampsia, acute fatty liver of pregnancy, and intrehepatic cholestasis of pregnancy; hepatic complications of organ or bone marrow transplantation, such as drug toxicity after bone marrow transplantation, graft-versushost disease and liver rejection, and nonimmunologic damage to liver allografts; tumors and tumorous conditions, such as nodular hyperplasias, adenomas, and malignant tumors, including primary carcinoma of the liver and metastatic tumors.

An iRNA agent can also be administered to inhibit Factor V expression in the liver. Two to five percent of the United States population is heterozygous for an allele of the Factor V gene that encodes a single amino acid change at position 1961. These heterozygous individuals have a 3-8 fold increased risk of venous thrombosis, a risk that is associated with increased factor V activity. The increased activity leads to increased thrombin generation from the prothrombinase complex. An iRNA agent directed against Factor V can treat or prevent venous thrombosis or treat a human who has Factor V Leiden. The iRNA agent that targets Factor V can be also be used as a prophylaxis in patients with Factor V Leiden who undergo high-risk surgical procedures, and this prophylaxis can be an adjunct to the therapeutic use of low molecular weight (LMW) heparin prophylaxis.

An iRNA agent that targets Factor V can also be administered to patients with Factor V Leiden to treat deep vein thrombosis (DVT) or pulmonary embolism (PE), and this treatment can be an adjunct to the apeutic uses of heparin or coumadin. Any other disorder caused by elevated or otherwise unwanted levels of Factor V protein can be treated by administering an iRNA agent against Factor V.

Attorney's Docket No.: 14174-072W01

iRNA agents of the invention can be targeted to any gene whose overexpression is associated with the liver diseases.

Targeting to the Liver

5

10

15

20

25

The iRNA agents of the invention are particularly useful when targeted to the liver. An iRNA agent can be targeted to the liver through a composition that includes the iRNA agent and a liver-targeting agent. For example, a liver-targeting agent can be a lipophilic moiety. Preferred lipophilic moieties include lipid, cholesterols, oleyl, retinyl, or cholesteryl residues (see Table 1). Other lipophilic moieties that can function as liver-targeting agents include cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.

An iRNA agent can also be targeted to the liver by association with a low-density lipoprotein (LDL), such as lactosylated LDL. Polymeric carriers complexed with sugar residues can also function to target iRNA agents to the liver.

A targeting agent that incorporates a sugar, e.g., galactose and/or analogues thereof, is particularly useful. These agents target, in particular, the parenchymal cells of the liver (see Table 1). For example, a targeting moiety can include more than one or preferably two or three galactose moieties, spaced about 15 angstroms from each other. The targeting moiety can alternatively be lactose (e.g., three lactose moieties), which is glucose coupled to a galactose. The targeting moiety can also be N-Acetyl-Galactosamine, N-Ac-Glucosamine. A mannose or mannose-6-phosphate targeting moiety can be used for macrophage targeting.

Conjugation of an iRNA agent with a serum albumin (SA), such as human serum albumin, can also be used to target the iRNA agent to the liver.

An iRNA agent can be targeted to a particular cell type in the liver by using specific targeting agents, which recognize particular receptors in the liver. Exemplary targeting moieties and their associated receptors are presented in Table 1.

Attorney's Docket No.: 14174-072W01

Table 1 Targeting agents (Ligands) and their associated receptors

Liver Cells	Ligand	Receptor
1) Parenchymal Cell (PC)	Galactose	ASGP-R (Asiologlycoprotein receptor)
(Hepatocytes)	Gal NAc	ASPG-R
	(n-acetyl-galactosamine)	Gal NAc Receptor
	Lactose	
4	Asialofetuin	ASPG-r
2) Sinusoidal Endothelial	Hyaluronan	Hyaluronan receptor
Cell (SEC)	Procollagen	Procollagen receptor
	Negatively charged molecules	Scavenger receptors
	Mannose	Mannose receptors
	N-acetyl Glucosamine	Scavenger receptors
	Immunoglobulins	Fc Receptor
	LPS	CD14 Receptor
	Insulin	Receptor mediated transcytosis
	Transferrin	Receptor mediated transcytosis
	Albumins	Non-specific
	Sugar-Albumin conjugates	
	Mannose-6-phosphate	Mannose-6-phosphate receptor
3) Kupffer Cell (KC)	Mannose	Mannose receptors
<i>5)</i> 223	Fucose	Fucose receptors
	Albumins	Non-specific
	Mannose-albumin	
	conjugates	•

5 <u>irna agent structure</u>

10

Described herein are isolated iRNA agents, e.g., RNA molecules, (double-stranded; single-stranded) that mediate RNAi. The iRNA agents preferably mediate RNAi with respect to an endogenous gene of a subject or to a gene of a pathogen.

An "RNA agent" as used herein, is an unmodified RNA, modified RNA, or nucleoside surrogate, all of which are defined herein (see, e.g., the section below entitled RNA Agents). While numerous modified RNAs and nucleoside surrogates are described, preferred examples

10

15

20

25

Attorney's Docket No.: 14174-072W01

include those which have greater resistance to nuclease degradation than do unmodified RNAs. Preferred examples include those which have a 2' sugar modification, a modification in a single strand overhang, preferably a 3' single strand overhang, or, particularly if single stranded, a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group.

An "iRNA agent" as used herein, is an RNA agent which can, or which can be cleaved into an RNA agent which can, down regulate the expression of a target gene, preferably an endogenous or pathogen target RNA. While not wishing to be bound by theory, an iRNA agent may act by one or more of a number of mechanisms, including post-transcriptional cleavage of a target mRNA sometimes referred to in the art as RNAi, or pre-transcriptional or pre-translational mechanisms. An iRNA agent can include a single strand or can include more than one strands, e.g., it can be a double stranded iRNA agent. If the iRNA agent is a single strand it is particularly preferred that it include a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group.

The iRNA agent should include a region of sufficient homology to the target gene, and be of sufficient length in terms of nucleotides, such that the iRNA agent, or a fragment thereof, can mediate down regulation of the target gene. (For ease of exposition the term nucleotide or ribonucleotide is sometimes used herein in reference to one or more monomeric subunits of an RNA agent. It will be understood herein that the usage of the term "ribonucleotide" or "nucleotide", herein can, in the case of a modified RNA or nucleotide surrogate, also refer to a modified nucleotide, or surrogate replacement moiety at one or more positions.) Thus, the iRNA agent is or includes a region which is at least partially, and in some embodiments fully, complementary to the target RNA. It is not necessary that there be perfect complementarity between the iRNA agent and the target, but the correspondence must be sufficient to enable the iRNA agent, or a cleavage product thereof, to direct sequence specific silencing, e.g., by RNAi cleavage of the target RNA, e.g., mRNA.

Complementarity, or degree of homology with the target strand, is most critical in the antisense strand. While perfect complementarity, particularly in the antisense strand, is often desired some embodiments can include, particularly in the antisense strand, one or more but

10

15

20

25

Attorney's Docket No.: 14174-072W01

preferably 6, 5, 4, 3, 2, or fewer mismatches (with respect to the target RNA). The mismatches, particularly in the antisense strand, are most tolerated in the terminal regions and if present are preferably in a terminal region or regions, e.g., within 6, 5, 4, or 3 nucleotides of the 5' and/or 3' terminus. The sense strand need only be sufficiently complementary with the antisense strand to maintain the over all double strand character of the molecule.

As discussed elsewhere herein, an iRNA agent will often be modified or include nucleoside surrogates in addition to the RRMS. Single stranded regions of an iRNA agent will often be modified or include nucleoside surrogates, *e.g.*, the unpaired region or regions of a hairpin structure, *e.g.*, a region which links two complementary regions, can have modifications or nucleoside surrogates. Modification to stabilize one or more 3'- or 5'-terminus of an iRNA agent, *e.g.*, against exonucleases, or to favor the antisense sRNA agent to enter into RISC are also favored. Modifications can include C3 (or C6, C7, C12) amino linkers, thiol linkers, carboxyl linkers, non-nucleotidic spacers (C3, C6, C9, C12, abasic, triethylene glycol, hexaethylene glycol), special biotin or fluorescein reagents that come as phosphoramidites and that have another DMT-protected hydroxyl group, allowing multiple couplings during RNA synthesis.

iRNA agents include: molecules that are long enough to trigger the interferon response (which can be cleaved by Dicer (Bernstein *et al.* 2001. Nature, 409:363-366) and enter a RISC (RNAi-induced silencing complex)); and, molecules which are sufficiently short that they do not trigger the interferon response (which molecules can also be cleaved by Dicer and/or enter a RISC), *e.g.*, molecules which are of a size which allows entry into a RISC, *e.g.*, molecules which resemble Dicer-cleavage products. Molecules that are short enough that they do not trigger an interferon response are termed sRNA agents or shorter iRNA agents herein. "sRNA agent or shorter iRNA agent" as used herein, refers to an iRNA agent, *e.g.*, a double stranded RNA agent or single strand agent, that is sufficiently short that it does not induce a deleterious interferon response in a human cell, *e.g.*, it has a duplexed region of less than 60 but preferably less than 50, 40, or 30 nucleotide pairs. The sRNA agent, or a cleavage product thereof, can down regulate a target gene, *e.g.*, by inducing RNAi with respect to a target RNA, preferably an endogenous or pathogen target RNA.

15

20

25

Attorney's Docket No.: 14174-072W01

Each strand of an sRNA agent can be equal to or less than 30, 25, 24, 23, 22, 21, or 20 nucleotides in length. The strand is preferably at least 19 nucleotides in length. For example, each strand can be between 21 and 25 nucleotides in length. Preferred sRNA agents have a duplex region of 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, and one or more overhangs, preferably one or two 3' overhangs, of 2-3 nucleotides.

In addition to homology to target RNA and the ability to down regulate a target gene, an iRNA agent will preferably have one or more of the following properties:

- (1) it will be of the Formula 1, 2, 3, or 4 set out in the RNA Agent section below;
- (2) if single stranded it will have a 5' modification which includes one or morephosphate groups or one or more analogs of a phosphate group;
 - (3) it will, despite modifications, even to a very large number, or all of the nucleosides, have an antisense strand that can present bases (or modified bases) in the proper three dimensional framework so as to be able to form correct base pairing and form a duplex structure with a homologous target RNA which is sufficient to allow down regulation of the target, e.g., by cleavage of the target RNA;
 - (4) it will, despite modifications, even to a very large number, or all of the nucleosides, still have "RNA-like" properties, *i.e.*, it will possess the overall structural, chemical and physical properties of an RNA molecule, even though not exclusively, or even partly, of ribonucleotide-based content. For example, an iRNA agent can contain, *e.g.*, a sense and/or an antisense strand in which all of the nucleotide sugars contain *e.g.*, 2' fluoro in place of 2' hydroxyl. This deoxyribonucleotide-containing agent can still be expected to exhibit RNA-like properties. While not wishing to be bound by theory, the electronegative fluorine prefers an axial orientation when attached to the C2' position of ribose. This spatial preference of fluorine can, in turn, force the sugars to adopt a C3-endo pucker. This is the same puckering mode as observed in RNA molecules and gives rise to the RNA-characteristic A-family-type helix. Further, since fluorine is a good hydrogen bond acceptor, it can participate in the same hydrogen bonding interactions with water molecules that are known to stabilize RNA structures. (Generally, it is preferred that a modified moiety at the 2' sugar position will be able to enter into

10

15

20

25

Attorney's Docket No.: 14174-072W01

H-bonding which is more characteristic of the OH moiety of a ribonucleotide than the H moiety of a deoxyribonucleotide. A preferred iRNA agent will: exhibit a C_3 -endo pucker in all, or at least 50, 75,80, 85, 90, or 95 % of its sugars; exhibit a C_3 -endo pucker in a sufficient amount of its sugars that it can give rise to a the RNA-characteristic A-family-type helix; will have no more than 20, 10, 5, 4, 3, 2, or 1 sugar which is not a C_3 -endo pucker structure. These limitations are particularly preferably in the antisense strand;

(5) regardless of the nature of the modification, and even though the RNA agent can contain deoxynucleotides or modified deoxynucleotides, particularly in overhang or other single strand regions, it is preferred that DNA molecules, or any molecule in which more than 50, 60, or 70 % of the nucleotides in the molecule, or more than 50, 60, or 70 % of the nucleotides in a duplexed region are deoxyribonucleotides, or modified deoxyribonucleotides which are deoxy at the 2' position, are excluded from the definition of RNA agent.

A "single strand iRNA agent" as used herein, is an iRNA agent which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure. Single strand iRNA agents are preferably antisense with regard to the target molecule. In preferred embodiments single strand iRNA agents are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5'-monophosphate ((HO)2(O)P-O-5'); 5'-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'); 5'-triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxygen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alphathiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'-alkyletherphosphonates

15

20

Attorney's Docket No.: 14174-072W01

(R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-). (These modifications can also be used with the antisense strand of a double stranded iRNA.)

A single strand iRNA agent should be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA. A single strand iRNA agent is at least 14, and more preferably at least 15, 20, 25, 29, 35, 40, or 50nucleotides in length. It is preferably less than 200, 100, or 60 nucleotides in length.

Hairpin iRNA agents will have a duplex region equal to or at least 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs. The duplex region will preferably be equal to or less than 200, 100, or 50, in length. Preferred ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length. The hairpin will preferably have a single strand overhang or terminal unpaired region, preferably the 3', and preferably of the antisense side of the hairpin. Preferred overhangs are 2-3 nucleotides in length.

A "double stranded (ds) iRNA agent" as used herein, is an iRNA agent which includes more than one, and preferably two, strands in which interchain hybridization can form a region of duplex structure.

The antisense strand of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, 19 to 23, and 19 to 21 nucleotides in length.

The sense strand of a double stranded iRNA agent should be equal to or at least 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, 19 to 23, and 19 to 21 nucleotides in length.

The double strand portion of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 40, or 60 nucleotide pairs in length. It should be equal to or less than 200, 100, or 50, nucleotides pairs in length. Preferred ranges are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

In many embodiments, the ds iRNA agent is sufficiently large that it can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller ds iRNA agents, e.g., sRNAs agents

It may be desirable to modify one or both of the antisense and sense strands of a double strand iRNA agent. In some cases they will have the same modification or the same class of modification but in other cases the sense and antisense strand will have different modifications, e.g., in some cases it is desirable to modify only the sense strand. It may be desirable to modify only the sense strand, e.g., to inactivate it, e.g., the sense strand can be modified in order to inactivate the sense strand and prevent formation of an active sRNA/protein or RISC. This can be accomplished by a modification which prevents 5'-phosphorylation of the sense strand, e.g., by modification with a 5'-O-methyl ribonucleotide (see Nykänen et al., (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321.) Other modifications which prevent phosphorylation can also be used, e.g., simply substituting the 5'-OH by H rather than O-Me. Alternatively, a large bulky group may be added to the 5'phosphate turning it into a phosphodiester linkage, though this may be less desirable as phosphodiesterases can cleave such a linkage and release a functional sRNA 5'-end. Antisense strand modifications include 5' phosphorylation as well as any of the other 5' modifications discussed herein, particularly the 5' modifications discussed above in the section on single stranded iRNA molecules.

It is preferred that the sense and antisense strands be chosen such that the ds iRNA agent includes a single strand or unpaired region at one or both ends of the molecule. Thus, a ds iRNA agent contains sense and antisense strands, preferable paired to contain an overhang, e.g., one or two 5' or 3' overhangs but preferably a 3' overhang of 2-3 nucleotides. Most embodiments will have a 3' overhang. Preferred sRNA agents will have single-stranded overhangs, preferably 3' overhangs, of 1 or preferably 2 or 3 nucleotides in length at each end. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. 5' ends are preferably phosphorylated.

Preferred lengths for the duplexed region is between 15 and 30, most preferably 18, 19, 20, 21, 22, and 23 nucleotides in length, e.g., in the sRNA agent range discussed above. sRNA agents can resemble in length and structure the natural Dicer processed products from long

· 自然的 · 等於於 · 是的

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

dsRNAs. Embodiments in which the two strands of the sRNA agent are linked, e.g., covalently linked are also included. Hairpin, or other single strand structures which provide the required double stranded region, and preferably a 3' overhang are also within the invention.

The isolated iRNA agents described herein, including ds iRNA agents and sRNA agents can mediate silencing of a target RNA, e.g., mRNA, e.g., a transcript of a gene that encodes a protein. For convenience, such mRNA is also referred to herein as mRNA to be silenced. Such a gene is also referred to as a target gene. In general, the RNA to be silenced is an endogenous gene or a pathogen gene. In addition, RNAs other than mRNA, e.g., tRNAs, and viral RNAs, can also be targeted.

As used herein, the phrase "mediates RNAi" refers to the ability to silence, in a sequence specific manner, a target RNA. While not wishing to be bound by theory, it is believed that silencing uses the RNAi machinery or process and a guide RNA, e.g., an sRNA agent of 21 to 23 nucleotides.

As used herein, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between a compound of the invention and a target RNA molecule. Specific binding requires a sufficient degree of complementarity to avoid non-specific binding of the oligomeric compound to non-target sequences under conditions in which specific binding is desired, *i.e.*, under physiological conditions in the case of *in vivo* assays or therapeutic treatment, or in the case of *in vitro* assays, under conditions in which the assays are performed. The non-target sequences typically differ by at least 5 nucleotides.

In one embodiment, an iRNA agent is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the iRNA agent silences production of protein encoded by the target mRNA. In another embodiment, the iRNA agent is "exactly complementary" (excluding the RRMS containing subunit(s)) to a target RNA, e.g., the target RNA and the iRNA agent anneal, preferably to form a hybrid made exclusively of Watson-Crick basepairs in the region of exact complementarity. A "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA.

Moreover, in some embodiments, the iRNA agent specifically discriminates a single-nucleotide

10

15

20

25

Attorney's Docket No.: 14174-072W01

difference. In this case, the iRNA agent only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single-nucleotide difference.

As used herein, the term "oligonucleotide" refers to a nucleic acid molecule (RNA or DNA) preferably of length less than 100, 200, 300, or 400 nucleotides.

RNA agents discussed herein include otherwise unmodified RNA as well as RNA which have been modified, e.g., to improve efficacy, and polymers of nucleoside surrogates. Unmodified RNA refers to a molecule in which the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are the same or essentially the same as that which occur in nature, preferably as occur naturally in the human body. The art has referred to rare or unusual, but naturally occurring, RNAs as modified RNAs, see, e.g., Limbach et al., (1994) Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183-2196. Such rare or unusual RNAs, often termed modified RNAs (apparently because the are typically the result of a post transcriptionally modification) are within the term unmodified RNA, as used herein. Modified RNA as used herein refers to a molecule in which one or more of the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are different from that which occur in nature, preferably different from that which occurs in the human body. While they are referred to as modified "RNAs," they will of course, because of the modification, include molecules which are not RNAs. Nucleoside surrogates are molecules in which the ribophosphate backbone is replaced with a non-ribophosphate construct that allows the bases to the presented in the correct spatial relationship such that hybridization is substantially similar to what is seen with a ribophosphate backbone, e.g., non-charged mimics of the ribophosphate backbone. Examples of all of the above are discussed herein.

Much of the discussion below refers to single strand molecules. In many embodiments of the invention a double stranded iRNA agent, e.g., a partially double stranded iRNA agent, is required or preferred. Thus, it is understood that that double stranded structures (e.g. where two separate molecules are contacted to form the double stranded region or where the double stranded region is formed by intramolecular pairing (e.g., a hairpin structure)) made of the single stranded structures described below are within the invention. Preferred lengths are described elsewhere herein.

Attorney's Docket No.: 14174-072W01

5

10

15

20

As nucleic acids are polymers of subunits or monomers, many of the modifications described below occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or the a non-linking O of a phosphate moiety. In some cases the modification will occur at all of the subject positions in the nucleic acid but in many, and infact in most cases it will not. By way of example, a modification may only occur at a 3' or 5' terminal position, may only occur in a terminal regions, e.g. at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal regions, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5' end or ends can be phosphorylated.

In some embodiments it is particularly preferred, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5' or 3' overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3' or 5' overhang will be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2' OH group of the ribose sugar, e.g., the use of deoxyribonucleotides, e.g., deoxythymidine, instead of ribonucleotides, and modifications in the phosphate group, e.g., phosphothioate modifications. Overhangs need not be homologous with the target sequence.

Attorney's Docket No.: 14174-072W01

5

10

Modifications and nucleotide surrogates are discussed below.

The scaffold presented above in Formula 1 represents a portion of a ribonucleic acid. The basic components are the ribose sugar, the base, the terminal phosphates, and phosphate internucleotide linkers. Where the bases are naturally occurring bases, *e.g.*, adenine, uracil, guanine or cytosine, the sugars are the unmodified 2' hydroxyl ribose sugar (as depicted) and W, X, Y, and Z are all O, Formula 1 represents a naturally occurring unmodified oligoribonucleotide.

Unmodified oligoribonucleotides may be less than optimal in some applications, e.g., unmodified oligoribonucleotides can be prone to degradation by e.g., cellular nucleases.

Nucleases can hydrolyze nucleic acid phosphodiester bonds. However, chemical modifications

100 co. 11.4

5

10

15

25

Attorney's Docket No.: 14174-072W01

to one or more of the above RNA components can confer improved properties, and, *e.g.*, can render oligoribonucleotides more stable to nucleases. Umodified oligoribonucleotides may also be less than optimal in terms of offering tethering points for attaching ligands or other moieties to an iRNA agent.

Modified nucleic acids and nucleotide surrogates can include one or more of:

- (i) alteration, e.g., replacement, of one or both of the non-linking (X and Y) phosphate oxygens and/or of one or more of the linking (W and Z) phosphate oxygens (When the phosphate is in the terminal position, one of the positions W or Z will not link the phosphate to an additional element in a naturally occurring ribonucleic acid. However, for simplicity of terminology, except where otherwise noted, the W position at the 5' end of a nucleic acid and the terminal Z position at the 3' end of a nucleic acid, are within the term "linking phosphate oxygens" as used herein.);
- (ii) alteration, e.g., replacement, of a constituent of the ribose sugar, e.g., of the 2' hydroxyl on the ribose sugar, or wholesale replacement of the ribose sugar with a structure other than ribose, e.g., as described herein;
 - (iii) wholesale replacement of the phosphate moiety (bracket I) with "dephospho" linkers;
 - (iv) modification or replacement of a naturally occurring base;
 - (v) replacement or modification of the ribose-phosphate backbone (bracket II);
- (vi) modification of the 3' end or 5' end of the RNA, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety, e.g. a fluorescently labeled moiety, to either the 3' or 5' end of RNA.

The terms replacement, modification, alteration, and the like, as used in this context, do not imply any process limitation, e.g., modification does not mean that one must start with a reference or naturally occurring ribonucleic acid and modify it to produce a modified ribonucleic acid bur rather modified simply indicates a difference from a naturally occurring molecule.

10

15

20

25

Attorney's Docket No.: 14174-072W01

It is understood that the actual electronic structure of some chemical entities cannot be adequately represented by only one canonical form (*i.e.* Lewis structure). While not wishing to be bound by theory, the actual structure can instead be some hybrid or weighted average of two or more canonical forms, known collectively as resonance forms or structures. Resonance structures are not discrete chemical entities and exist only on paper. They differ from one another only in the placement or "localization" of the bonding and nonbonding electrons for a particular chemical entity. It can be possible for one resonance structure to contribute to a greater extent to the hybrid than the others. Thus, the written and graphical descriptions of the embodiments of the present invention are made in terms of what the art recognizes as the predominant resonance form for a particular species. For example, any phosphoroamidate (replacement of a nonlinking oxygen with nitrogen) would be represented by X = O and Y = N in the above figure.

Specific modifications are discussed in more detail below.

The Phosphate Group

The phosphate group is a negatively charged species. The charge is distributed equally over the two non-linking oxygen atoms (i.e., X and Y in Formula 1 above). However, the phosphate group can be modified by replacing one of the oxygens with a different substituent. One result of this modification to RNA phosphate backbones can be increased resistance of the oligoribonucleotide to nucleolytic breakdown. Thus while not wishing to be bound by theory, it can be desirable in some embodiments to introduce alterations which result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.

Examples of modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. Unlike the situation where only one of X or Y is altered, the phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotides diastereomers. Diastereomer formation can result in a preparation in which the individual diastereomers exhibit varying resistance to nucleases. Further, the hybridization affinity of RNA containing chiral phosphate groups can be lower relative to the corresponding

10

15

20

25

Attorney's Docket No.: 14174-072W01

unmodified RNA species. Thus, while not wishing to be bound by theory, modifications to both X and Y which eliminate the chiral center, e.g. phosphorodithioate formation, may be desirable in that they cannot produce diastereomer mixtures. Thus, X can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl). Thus Y can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl). Replacement of X and/or Y with sulfur is preferred.

The phosphate linker can also be modified by replacement of a linking oxygen (*i.e.*, W or Z in Formula 1) with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at a terminal oxygen (position W (3') or position Z (5'). Replacement of W with carbon or Z with nitrogen is preferred.

Candidate agents can be evaluated for suitability as described below.

The Sugar Group

A modified RNA can include modification of all or some of the sugar groups of the ribonucleic acid. *E.g.*, the 2' hydroxyl group (OH) can be modified or replaced with a number of different "oxy" or "deoxy" substituents. While not being bound by theory, enhanced stability is expected since the hydroxyl can no longer be deprotonated to form a 2' alkoxide ion. The 2' alkoxide can catalyze degradation by intramolecular nucleophilic attack on the linker phosphorus atom. Again, while not wishing to be bound by theory, it can be desirable to some embodiments to introduce alterations in which alkoxide formation at the 2' position is not possible.

Examples of "oxy"-2' hydroxyl group modifications include alkoxy or aryloxy (OR, e.g., R = H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar); polyethyleneglycols (PEG), O(CH₂CH₂O)_nCH₂CH₂OR; "locked" nucleic acids (LNA) in which the 2' hydroxyl is connected, e.g., by a methylene bridge, to the 4' carbon of the same ribose sugar; O-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino) and aminoalkoxy, O(CH₂)_nAMINE, (e.g., AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino). It is noteworthy that oligonucleotides containing only the methoxyethyl group (MOE), (OCH₂CH₂OCH₃, a PEG

10

15

20

Attorney's Docket No.: 14174-072W01

derivative), exhibit nuclease stabilities comparable to those modified with the robust phosphorothicate modification.

"Deoxy" modifications include hydrogen (i.e. deoxyribose sugars, which are of particular relevance to the overhang portions of partially ds RNA); halo (e.g., fluoro); amino (e.g. NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); NH(CH₂CH₂NH)_nCH₂CH₂-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino), - NHC(O)R (R = alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), cyano; mercapto; alkyl-thioalkyl; thioalkoxy; and alkyl, cycloalkyl, aryl, alkenyl and alkynyl, which may be optionally substituted with e.g., an amino functionality. Preferred substitutents are 2'-methoxyethyl, 2'-OCH3, 2'-O-allyl, 2'-C- allyl, and 2'-fluoro.

The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified RNA can include nucleotides containing e.g., arabinose, as the sugar.

Modified RNAs can also include "abasic" sugars, which lack a nucleobase at C-1'. These abasic sugars can also be further contain modifications at one or more of the constituent sugar atoms.

To maximize nuclease resistance, the 2' modifications can be used in combination with one or more phosphate linker modifications (e.g., phosphorothioate). The so-called "chimeric" oligonucleotides are those that contain two or more different modifications.

The modification can also entail the wholesale replacement of a ribose structure with another entity at one or more sites in the iRNA agent. These modifications are described in section entitled Ribose Replacements for RRMSs.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

Candidate modifications can be evaluated as described below.

Replacement of the Phosphate Group

The phosphate group can be replaced by non-phosphorus containing connectors (cf. Bracket I in Formula 1 above). While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.

Examples of moieties which can replace the phosphate group include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino. Preferred replacements include the methylenecarbonylamino and methylenemethylimino groups.

Candidate modifications can be evaluated as described below.

Replacement of Ribophosphate Backbone

Oligonucleotide- mimicking scaffolds can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates (see Bracket II of Formula 1 above). While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize polyanions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone.

Examples include the mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates. A preferred surrogate is a PNA surrogate.

Candidate modifications can be evaluated as described below.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

30

Terminal Modifications

The 3' and 5' ends of an oligonucleotide can be modified. Such modifications can be at the 3' end, 5' end or both ends of the molecule. They can include modification or replacement of an entire terminal phosphate or of one or more of the atoms of the phosphate group. E.g., the 3' and 5' ends of an oligonucleotide can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester). The functional molecular entities can be attached to the sugar through a phosphate group and/or a spacer. The terminal atom of the spacer can connect to or replace the linking atom of the phosphate group or the C-3' or C-5' O, N, S or C group of the sugar. Alternatively, the spacer can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs). These spacers or linkers can include e.g., - $(CH_2)_n$ -, $-(CH_2)_n$ N-, $-(CH_2)_n$ O-, $-(CH_2)_n$ S-, $O(CH_2CH_2O)_n$ CH₂CH₂OH (e.g., n = 3 or 6), abasic sugars, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, or biotin and fluorescein reagents. When a spacer/phosphate-functional molecular entity-spacer/phosphate array is interposed between two strands of iRNA agents, this array can substitute for a hairpin RNA loop in a hairpin-type RNA agent. The 3' end can be an -OH group. While not wishing to be bound by theory, it is believed that conjugation of certain moieties can improve transport, hybridization, and specificity properties. Again, while not wishing to be bound by theory, it may be desirable to introduce terminal alterations that improve nuclease resistance. Other examples of terminal modifications include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic carriers (e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole,

5

10

15

20

25

bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles).

Terminal modifications can be added for a number of reasons, including as discussed elsewhere herein to modulate activity or to modulate resistance to degradation. Terminal modifications useful for modulating activity include modification of the 5' end with phosphate or phosphate analogs. E.g., in preferred embodiments iRNA agents, especially antisense strands, are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5'-monophosphate ((HO)2(O)P-O-5'); 5'-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'); 5'-triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P-O-5'), 5'phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gammathiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-).

Terminal modifications can also be useful for monitoring distribution, and in such cases the preferred groups to be added include fluorophores, e.g., fluorscein or an Alexa dye, e.g., Alexa 488. Terminal modifications can also be useful for enhancing uptake, useful modifications for this include cholesterol. Terminal modifications can also be useful for cross-linking an RNA agent to another moiety; modifications useful for this include mitomycin C.

Candidate modifications can be evaluated as described below.

The Bases

5

10

15

20

25

30

Adenine, guanine, cytosine and uracil are the most common bases found in RNA. These bases can be modified or replaced to provide RNA's having improved properties. E.g., nuclease resistant oligoribonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, or tubercidine) and any one of the above modifications. Alternatively, substituted or modified analogs of any of the above bases, e.g., "unusual bases" and "universal bases," can be employed. Examples include without limitation 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine, 7-deazaadenine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3-methyluracil, substituted 1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3methylcytosine, 5-methylcytosine, N⁴-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases. Further purines and pyrimidines include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in the Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, and those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613.

Generally, base changes are less preferred for promoting stability, but they can be useful for other reasons, e.g., some, e.g., 2,6-diaminopurine and 2 amino purine, are fluorescent. Modified bases can reduce target specificity. This should be taken into consideration in the design of iRNA agents.

C.P. Comment

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

Candidate modifications can be evaluated as described below.

Evaluation of Candidate RNA's

One can evaluate a candidate RNA agent, e.g., a modified RNA, for a selected property by exposing the agent or modified molecule and a control molecule to the appropriate conditions and evaluating for the presence of the selected property. For example, resistance to a degradent can be evaluated as follows. A candidate modified RNA (and preferably a control molecule, usually the unmodified form) can be exposed to degradative conditions, e.g., exposed to a milieu, which includes a degradative agent, e.g., a nuclease. E.g., one can use a biological sample, e.g., one that is similar to a milieu, which might be encountered, in therapeutic use, e.g., blood or a cellular fraction, e.g., a cell-free homogenate or disrupted cells. The candidate and control could then be evaluated for resistance to degradation by any of a number of approaches. For example, the candidate and control could be labeled, preferably prior to exposure, with, e.g., a radioactive or enzymatic label, or a fluorescent label, such as Cy3 or Cy5. Control and modified RNA's can be incubated with the degradative agent, and optionally a control, e.g., an inactivated, e.g., heat inactivated, degradative agent. A physical parameter, e.g., size, of the modified and control molecules are then determined. They can be determined by a physical method, e.g., by polyacrylamide gel electrophoresis or a sizing column, to assess whether the molecule has maintained its original length, or assessed functionally. Alternatively, Northern blot analysis can be used to assay the length of an unlabeled modified molecule.

A functional assay can also be used to evaluate the candidate agent. A functional assay can be applied initially or after an earlier non-functional assay, (e.g., assay for resistance to degradation) to determine if the modification alters the ability of the molecule to silence gene expression. For example, a cell, e.g., a mammalian cell, such as a mouse or human cell, can be co-transfected with a plasmid expressing a fluorescent protein, e.g., GFP, and a candidate RNA agent homologous to the transcript encoding the fluorescent protein (see, e.g., WO 00/44914). For example, a modified dsRNA homologous to the GFP mRNA can be assayed for the ability to inhibit GFP expression by monitoring for a decrease in cell fluorescence, as compared to a control cell, in which the transfection did not include the candidate dsRNA, e.g., controls with no agent added and/or controls with a non-modified RNA added. Efficacy of the candidate agent on

gene expression can be assessed by comparing cell fluorescence in the presence of the modified and unmodified dsRNA agents.

In an alternative functional assay, a candidate dsRNA agent homologous to an endogenous mouse gene, preferably a maternally expressed gene, such as *c-mos*, can be injected into an immature mouse oocyte to assess the ability of the agent to inhibit gene expression *in vivo* (see, *e.g.*, WO 01/36646). A phenotype of the oocyte, *e.g.*, the ability to maintain arrest in metaphase II, can be monitored as an indicator that the agent is inhibiting expression. For example, cleavage of *c-mos* mRNA by a dsRNA agent would cause the oocyte to exit metaphase arrest and initiate parthenogenetic development (Colledge *et al.* Nature 370: 65-68, 1994; Hashimoto *et al.* Nature, 370:68-71, 1994). The effect of the modified agent on target RNA levels can be verified by Northern blot to assay for a decrease in the level of target mRNA, or by Western blot to assay for a decrease in the level of target protein, as compared to a negative control. Controls can include cells in which with no agent is added and/or cells in which a non-modified RNA is added.

15 References

10

20

25

General References

The oligoribonucleotides and oligoribonucleosides used in accordance with this invention may be with solid phase synthesis, see for example "Oligonucleotide synthesis, a practical approach", Ed. M. J. Gait, IRL Press, 1984; "Oligonucleotides and Analogues, A Practical Approach", Ed. F. Eckstein, IRL Press, 1991 (especially Chapter 1, Modern machine-aided methods of oligodeoxyribonucleotide synthesis, Chapter 2, Oligoribonucleotide synthesis, Chapter 3, 2'-O--Methyloligoribonucleotide- s: synthesis and applications, Chapter 4, Phosphorothioate oligonucleotides, Chapter 5, Synthesis of oligonucleotide phosphorodithioates, Chapter 6, Synthesis of oligo-2'-deoxyribonucleoside methylphosphonates, and. Chapter 7, Oligodeoxynucleotides containing modified bases. Other particularly useful synthetic procedures, reagents, blocking groups and reaction conditions are described in Martin, P., Helv. Chim. Acta, 1995, 78, 486-504; Beaucage, S. L. and Iyer, R. P., Tetrahedron, 1992, 48, 2223-2311 and Beaucage, S. L. and Iyer, R. P., Tetrahedron, 1993, 49, 6123-6194, or references referred to therein.

10

15

20

25

Attorney's Docket No.: 14174-072W01

Modification described in WO 00/44895, WO01/75164, or WO02/44321 can be used herein.

The disclosure of all publications, patents, and published patent applications listed herein are hereby incorporated by reference.

Phosphate Group References

The preparation of phosphinate oligoribonucleotides is described in U.S. Pat. No. 5,508,270. The preparation of alkyl phosphonate oligoribonucleotides is described in U.S. Pat. No. 4,469,863. The preparation of phosphoramidite oligoribonucleotides is described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. The preparation of phosphotriester oligoribonucleotides is described in U.S. Pat. No. 5,023,243. The preparation of borano phosphate oligoribonucleotide is described in U.S. Pat. Nos. 5,130,302 and 5,177,198. The preparation of 3'-Deoxy-3'-amino phosphoramidate oligoribonucleotides is described in U.S. Pat. No. 5,476,925. 3'-Deoxy-3'-methylenephosphonate oligoribonucleotides is described in An, H, et al. J. Org. Chem. 2001, 66, 2789-2801. Preparation of sulfur bridged nucleotides is described in Sproat et al. Nucleosides Nucleotides 1988, 7,651 and Crosstick et al. Tetrahedron Lett. 1989, 30, 4693.

Sugar Group References

Modifications to the 2' modifications can be found in Verma, S. et al. Annu. Rev. Biochem. 1998, 67, 99-134 and all references therein. Specific modifications to the ribose can be found in the following references: 2'-fluoro (Kawasaki et. al., J. Med. Chem., 1993, 36, 831-841), 2'-MOE (Martin, P. Helv. Chim. Acta 1996, 79, 1930-1938), "LNA" (Wengel, J. Acc. Chem. Res. 1999, 32, 301-310).

Replacement of the Phosphate Group References

Methylenemethylimino linked oligoribonucleosides, also identified herein as MMI linked oligoribonucleosides, methylenedimethylhydrazo linked oligoribonucleosides, also identified herein as MDH linked oligoribonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified herein as amide-3 linked oligoribonucleosides, and

methyleneaminocarbonyl linked oligonucleosides, also identified herein as amide-4 linked oligoribonucleosides as well as mixed backbone compounds having, as for instance, alternating MMI and PO or PS linkages can be prepared as is described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677 and in published PCT applications PCT/US92/04294 and PCT/US92/04305 (published as WO 92/20822 WO and 92/20823, respectively). Formacetal and thioformacetal linked oligoribonucleosides can be prepared as is described in U.S. Pat. Nos. 5,264,562 and 5,264,564. Ethylene oxide linked oligoribonucleosides can be prepared as is described in U.S. Pat. No. 5,223,618. Siloxane replacements are described in Cormier, J.F. et al. Nucleic Acids Res. 1988, 16, 4583. Carbonate replacements are described in Tittensor, J.R. J. Chem. Soc. C 1971, 1933. Carboxymethyl replacements are described in Edge, M.D. et al. J. Chem. Soc. Perkin Trans. 1 1972, 1991. Carbamate replacements are described in Stirchak, E.P. Nucleic Acids Res. 1989, 17, 6129.

Replacement of the Phosphate-Ribose Backbone References

Cyclobutyl sugar surrogate compounds can be prepared as is described in U.S. Pat. No.

5,359,044. Pyrrolidine sugar surrogate can be prepared as is described in U.S. Pat. No.

5,519,134. Morpholino sugar surrogates can be prepared as is described in U.S. Pat. Nos.

5,142,047 and 5,235,033, and other related patent disclosures. Peptide Nucleic Acids (PNAs) are known per se and can be prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic &

Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Pat. No.

5,539,083.

Terminal Modification References

Terminal modifications are described in Manoharan, M. et al. Antisense and Nucleic Acid Drug Development 12, 103-128 (2002) and references therein.

Bases References

25

N-2 substitued purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,459,255. 3-Deaza purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,457,191. 5,6-Substituted pyrimidine nucleoside amidites can be prepared as is described in

U.S. Pat. No. 5,614,617. 5-Propynyl pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,484,908. Additional references can be disclosed in the above section on base modifications.

Preferred iRNA Agents

5

10

Preferred RNA agents have the following structure (see Formula 2 below):

$$R_7$$
 R_7
 R_7

FORMULA 2

Referring to Formula 2 above, R¹, R², and R³ are each, independently, H, (*i.e.* abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-

10

15

20

Attorney's Docket No.: 14174-072W01

trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine, 7-deazaadenine, 7-deazaguanine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3-methyluracil, substituted 1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases.

R⁴, R⁵, and R⁶ are each, independently, OR⁸, O(CH₂CH₂O)_mCH₂CH₂OR⁸; O(CH₂)_nR⁹; O(CH₂)_nOR⁹, H; halo; NH₂; NHR⁸; N(R⁸)₂; NH(CH₂CH₂NH)_mCH₂CH₂NHR⁹; NHC(O)R⁸; ; cyano; mercapto, SR⁸; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, alkanesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, or ureido; or R⁴, R⁵, or R⁶ together combine with R⁷ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

A¹ is:

5

10

15

$$X_{1} = P - Y_{1}$$

$$X_{2} = P - Y_{1}$$

$$X_{3} = P - Y_{1}$$

$$X_{4} = P - Y_{1}$$

$$X_{5} = P - Y_{1}$$

$$X_{7} = P - Y_{1}$$

$$X_{1} = P - Y_{1}$$

$$X_{2} = P - Y_{1}$$

$$X_{3} = P - Y_{1}$$

; H; OH; OCH3; W1; an abasic nucleotide; or absent;

(a preferred A1 , especially with regard to anti-sense strands, is chosen from 5'-monophosphate ((HO)₂(O)P-O-5'), 5'-diphosphate ((HO)₂(O)P-O-P(HO)(O)-O-5'), 5'-triphosphate ((HO)₂(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-monothiophosphate (phosphorothioate; (HO)₂(S)P-O-5'), 5'-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)₂(O)P-S-5'); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)₂(O)P-NH-5', (HO)(NH₂)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)₂(O)P-5'-CH₂-), 5'-

WO 2004/091515

alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH₂-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-)).

A² is:

$$X_2 \xrightarrow{Z_2} P \xrightarrow{Z_2} Y_2$$

A³ is:

; and

A⁴ is:

5

10

; H; Z⁴; an inverted nucleotide; an abasic nucleotide; or absent.

 $W^{1} \text{ is OH, } (CH_{2})_{n}R^{10}, (CH_{2})_{n}NHR^{10}, (CH_{2})_{n} \text{ OR}^{10}, (CH_{2})_{n} \text{ SR}^{10}; O(CH_{2})_{n}R^{10}; \\ O(CH_{2})_{n}OR^{10}, O(CH_{2})_{n}NR^{10}, O(CH_{2})_{n}SR^{10}; O(CH_{2})_{n}SS(CH_{2})_{n}OR^{10}, O(CH_{2})_{n}C(O)OR^{10}, \\ NH(CH_{2})_{n}R^{10}; NH(CH_{2})_{n}NR^{10}; NH(CH_{2})_{n}OR^{10}, NH(CH_{2})_{n}SR^{10}; S(CH_{2})_{n}R^{10}, S(CH_{2})_{n}NR^{10}, \\ S(CH_{2})_{n}OR^{10}, S(CH_{2})_{n}SR^{10} O(CH_{2}CH_{2}O)_{m}CH_{2}CH_{2}OR^{10}; O(CH_{2}CH_{2}O)_{m}CH_{2}CH_{2}NHR^{10}, \\ NH(CH_{2}CH_{2}NH)_{m}CH_{2}CH_{2}NHR^{10}; Q-R^{10}, O-Q-R^{10}, N-Q-R^{10}, S-Q-R^{10}, or -O-. W^{4} \text{ is O, CH}_{2}, \\ NH, \text{ or S.}$

 X^1 , X^2 , X^3 , and X^4 are each, independently, O or S.

Y¹, Y², Y³, and Y⁴ are each, independently, OH, O⁻, OR⁸, S, Se, BH₃⁻, H, NHR⁹, N(R⁹)₂ alkyl, cycloalkyl, aralkyl, aryl, or heteroaryl, each of which may be optionally substituted.

15 Z^1 , Z^2 , and Z^3 are each independently O, CH₂, NH, or S. Z^4 is OH, (CH₂)_nR¹⁰, (CH₂)_nNHR¹⁰, (CH₂)_n OR¹⁰, (CH₂)_n SR¹⁰; O(CH₂)_nR¹⁰; O(CH₂)_nOR¹⁰, O(CH₂)_nNR¹⁰,

10

15

20

25

Attorney's Docket No.: 14174-072W01

$$\begin{split} &O(CH_2)_nSR^{10},\,O(CH_2)_nSS(CH_2)_nOR^{10},\,O(CH_2)_nC(O)OR^{10};\,NH(CH_2)_nR^{10};\,NH(CH_2)_nNR^{10}\\ &;NH(CH_2)_nOR^{10},\,NH(CH_2)_nSR^{10};\,S(CH_2)_nR^{10},\,S(CH_2)_nNR^{10},\,S(CH_2)_nOR^{10},\,S(CH_2)_nSR^{10}\\ &O(CH_2CH_2O)_mCH_2CH_2OR^{10},\,O(CH_2CH_2O)_mCH_2CH_2NHR^{10}\,,\\ &NH(CH_2CH_2NH)_mCH_2CH_2NHR^{10};\,Q-R^{10},\,O-Q-R^{10}\,N-Q-R^{10},\,S-Q-R^{10}. \end{split}$$

x is 5-100, chosen to comply with a length for an RNA agent described herein.

R⁷ is H; or is together combined with R⁴, R⁵, or R⁶ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

R8 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar; R9 is NH₂, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid; and R¹⁰ is H; fluorophore (pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes); sulfur, silicon, boron or ester protecting group; intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4,texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipohilic carriers (cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino; alkyl, cycloalkyl, aryl, aralkyl, heteroaryl; radiolabelled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles); or an RNA agent. m is 0-1,000,000, and n is 0-20. Q is a spacer selected from the group consisting of abasic sugar, amide, carboxy, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, biotin or fluorescein reagents.

10

Attorney's Docket No.: 14174-072W01

Preferred RNA agents in which the entire phosphate group has been replaced have the following structure (see Formula 3 below):

FORMULA 3

Referring to Formula 3, A¹⁰-A⁴⁰ is L-G-L; A¹⁰ and/or A⁴⁰ may be absent, in which L is a linker, wherein one or both L may be present or absent and is selected from the group consisting of CH₂(CH₂)_g; N(CH₂)_g; S(CH₂)_g. G is a functional group selected from the group consisting of siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.

10

15

20

25

Attorney's Docket No.: 14174-072W01

R¹⁰, R²⁰, and R³⁰ are each, independently, H, (i.e. abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7alkylguanine, 5-alkyl cytosine,7-deazaadenine, 7-deazaguanine, N6, N6-dimethyladenine, 2,6diaminopurine, 5-amino-allyl-uracil, N3-methyluracil substituted 1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2-thiouracil, 5methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3-methylcytosine, 5methylcytosine, N⁴-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6-isopentyladenine, 2methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases.

R⁴⁰, R⁵⁰, and R⁶⁰ are each, independently, OR⁸, O(CH₂CH₂O)_mCH₂CH₂OR⁸; O(CH₂)_nR⁹; O(CH₂)_nOR⁹, H; halo; NH₂; NHR⁸; N(R⁸)₂; NH(CH₂CH₂NH)_mCH₂CH₂R⁹; NHC(O)R⁸;; cyano; mercapto, SR⁷; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups; or R⁴⁰, R⁵⁰, or R⁶⁰ together combine with R⁷⁰ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

x is 5-100 or chosen to comply with a length for an RNA agent described herein.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

R⁷⁰ is H; or is together combined with R⁴⁰, R⁵⁰, or R⁶⁰ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

R⁸ is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar; and R⁹ is NH₂, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid. m is 0-1,000,000, n is 0-20, and g is 0-2.

Preferred nucleoside surrogates have the following structure (see Formula 4 below):

SLR¹⁰⁰-(M-SLR²⁰⁰)_x-M-SLR³⁰⁰

FORMULA 4

S is a nucleoside surrogate selected from the group consisting of mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid. L is a linker and is selected from the group consisting of $CH_2(CH_2)_g$; $N(CH_2)_g$; $O(CH_2)_g$

R¹⁰⁰, R²⁰⁰, and R³⁰⁰ are each, independently, H (*i.e.*, abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine, 7-deazaadenine, 7-deazaguanine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3-methyluracil substituted 1, 2, 4,-triazoles, 2-pyridinones, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5-

10

15

20

25

Attorney's Docket No.: 14174-072W01

methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N⁴-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases.

x is 5-100, or chosen to comply with a length for an RNA agent described herein; and g is 0-2.

Nuclease resistant monomers

An RNA, e.g., an iRNA agent, can incorporate a nuclease resistant monomer (NRM), such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/469,612, filed on May 9, 2003, and International Application No. PCT/US04/07070, both of which are hereby incorporated by reference.

In addition, the invention includes iRNA agents having an NRM and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates an NRM.

An iRNA agent can include monomers which have been modified so as to inhibit degradation, e.g., by nucleases, e.g., endonucleases or exonucleases, found in the body of a subject. These monomers are referred to herein as NRMs, or nuclease resistance promoting monomers or modifications. In many cases these modifications will modulate other properties of the iRNA agent as well, e.g., the ability to interact with a protein, e.g., a transport protein, e.g., serum albumin, or a member of the RISC (RNA-induced Silencing Complex), or the ability of the first and second sequences to form a duplex with one another or to form a duplex with another sequence, e.g., a target molecule.

10

15

20

25

Attorney's Docket No.: 14174-072W01

While not wishing to be bound by theory, it is believed that modifications of the sugar, base, and/or phosphate backbone in an iRNA agent can enhance endonuclease and exonuclease resistance, and can enhance interactions with transporter proteins and one or more of the functional components of the RISC complex. Preferred modifications are those that increase exonuclease and endonuclease resistance and thus prolong the half-life of the iRNA agent prior to interaction with the RISC complex, but at the same time do not render the iRNA agent resistant to endonuclease activity in the RISC complex. Again, while not wishing to be bound by any theory, it is believed that placement of the modifications at or near the 3' and/or 5' end of antisense strands can result in iRNA agents that meet the preferred nuclease resistance criteria delineated above. Again, still while not wishing to be bound by any theory, it is believed that placement of the modifications at e.g., the middle of a sense strand can result in iRNA agents that are relatively less likely to undergo off-targeting.

Modifications described herein can be incorporated into any double-stranded RNA and RNA-like molecule described herein, e.g., an iRNA agent. An iRNA agent may include a duplex comprising a hybridized sense and antisense strand, in which the antisense strand and/or the sense strand may include one or more of the modifications described herein. The anti sense strand may include modifications at the 3' end and/or the 5' end and/or at one or more positions that occur 1-6 (e.g., 1-5, 1-4, 1-3, 1-2) nucleotides from either end of the strand. The sense strand may include modifications at the 3' end and/or the 5' end and/or at any one of the intervening positions between the two ends of the strand. The iRNA agent may also include a duplex comprising two hybridized antisense strands. The first and/or the second antisense strand may include one or more of the modifications described herein. Thus, one and/or both antisense strands may include modifications at the 3' end and/or the 5' end and/or at one or more positions that occur 1-6 (e.g., 1-5, 1-4, 1-3, 1-2) nucleotides from either end of the strand. Particular configurations are discussed below.

Modifications that can be useful for producing iRNA agents that meet the preferred nuclease resistance criteria delineated above can include one or more of the following chemical and/or stereochemical modifications of the sugar, base, and/or phosphate backbone:

10

15

20

25

Attorney's Docket No.: 14174-072W01

- (i) chiral (S_P) thioates. Thus, preferred NRMs include nucleotide dimers with an enriched or pure for a particular chiral form of a modified phosphate group containing a heteroatom at the nonbridging position, e.g., Sp or Rp, at the position X, where this is the position normally occupied by the oxygen. The atom at X can also be S, Se, Nr₂, or Br₃. When X is S, enriched or chirally pure Sp linkage is preferred. Enriched means at least 70, 80, 90, 95, or 99% of the preferred form. Such NRMs are discussed in more detail below;
- (ii) attachment of one or more cationic groups to the sugar, base, and/or the phosphorus atom of a phosphate or modified phosphate backbone moiety. Thus, preferred NRMs include monomers at the terminal position derivatized at a cationic group. As the 5' end of an antisense sequence should have a terminal –OH or phosphate group this NRM is preferably not used at the 5' end of an anti-sense sequence. The group should be attached at a position on the base which minimizes interference with H bond formation and hybridization, e.g., away form the face which interacts with the complementary base on the other strand, e.g, at the 5' position of a pyrimidine or a 7-position of a purine. These are discussed in more detail below;
- (iii) nonphosphate linkages at the termini. Thus, preferred NRMs include Non-phosphate linkages, e.g., a linkage of 4 atoms which confers greater resistance to cleavage than does a phosphate bond. Examples include 3' CH2-NCH₃-O-CH2-5' and 3' CH2-NH-(O=)-CH2-5'.;
- (iv) 3'-bridging thiophosphates and 5'-bridging thiophosphates. Thus, preferred NRM's can included these structures;
- (v) L-RNA, 2'-5' linkages, inverted linkages, a-nucleosides. Thus, other preferred NRM's include: L nucleosides and dimeric nucleotides derived from L-nucleosides; 2'-5' phosphate, non-phosphate and modified phosphate linkages (e.g., thiophosphates, phosphoramidates and boronophosphates); dimers having inverted linkages, e.g., 3'-3' or 5'-5' linkages; monomers having an alpha linkage at the 1' site on the sugar, e.g., the structures described herein having an alpha linkage;
 - (vi) conjugate groups. Thus, preferred NRM's can include e.g., a targeting moiety or a conjugated ligand described herein conjugated with the monomer, e.g., through the sugar, base, or backbone;

5

10

15

20

(vi) abasic linkages. Thus, preferred NRM's can include an abasic monomer, e.g., an abasic monomer as described herein (e.g., a nucleobaseless monomer); an aromatic or heterocyclic or polyheterocyclic aromatic monomer as described herein.; and

(vii) 5'-phosphonates and 5'-phosphate prodrugs. Thus, preferred NRM's include monomers, preferably at the terminal position, e.g., the 5' position, in which one or more atoms of the phosphate group is derivatized with a protecting group, which protecting group or groups, are removed as a result of the action of a component in the subject's body, e.g, a carboxyesterase or an enzyme present in the subject's body. E.g., a phosphate prodrug in which a carboxy esterase cleaves the protected molecule resulting in the production of a thioate anion which attacks a carbon adjacent to the O of a phosphate and resulting in the production of an unprotected phosphate.

One or more different NRM modifications can be introduced into an iRNA agent or into a sequence of an iRNA agent. An NRM modification can be used more than once in a sequence or in an iRNA agent. As some NRM's interfere with hybridization the total number incorporated, should be such that acceptable levels of iRNA agent duplex formation are maintained.

In some embodiments NRM modifications are introduced into the terminal the cleavage site or in the cleavage region of a sequence (a sense strand or sequence) which does not target a desired sequence or gene in the subject. This can reduce off-target silencing.

Chiral S_P Thioates

A modification can include the alteration, e.g., replacement, of one or both of the non-linking (X and Y) phosphate oxygens and/or of one or more of the linking (W and Z) phosphate oxygens. Formula X below depicts a phosphate moiety linking two sugar/sugar surrogate-base moieties, SB₁ and SB₂.

PCT/US2004/011255

5

10

15

20

Attorney's Docket No.: 14174-072W01

$$X \longrightarrow P \longrightarrow Y$$
 $Z \longrightarrow SB_2$

FORMULA X

In certain embodiments, one of the non-linking phosphate oxygens in the phosphate backbone moiety (X and Y) can be replaced by any one of the following: S, Se, BR₃ (R is hydrogen, alkyl, aryl, etc.), C (i.e., an alkyl group, an aryl group, etc.), H, NR₂ (R is hydrogen, alkyl, aryl, etc.), or OR (R is alkyl or aryl). The phosphorus atom in an unmodified phosphate group is achiral. However, replacement of one of the non-linking oxygens with one of the above atoms or groups of atoms renders the phosphorus atom chiral; in other words a phosphorus atom in a phosphate group modified in this way is a stereogenic center. The stereogenic phosphorus atom can possess either the "R" configuration (herein R_P) or the "S" configuration (herein S_P). Thus if 60% of a population of stereogenic phosphorus atoms have the R_P configuration, then the remaining 40% of the population of stereogenic phosphorus atoms have the S_P configuration.

In some embodiments, iRNA agents, having phosphate groups in which a phosphate non-linking oxygen has been replaced by another atom or group of atoms, may contain a population of stereogenic phosphorus atoms in which at least about 50% of these atoms (e.g., at least about 60% of these atoms, at least about 70% of these atoms, at least about 80% of these atoms, at least about 90% of these atoms, at least about 95% of these atoms, at least about 98% of these atoms, at least about 99% of these atoms) have the S_P configuration. Alternatively, iRNA agents having phosphate groups in which a phosphate non-linking oxygen has been replaced by another atom or group of atoms may contain a population of stereogenic phosphorus atoms in which at least about 50% of these atoms (e.g., at least about 60% of these atoms, at least about 70% of these

15

20

Attorney's Docket No.: 14174-072W01

atoms, at least about 80% of these atoms, at least about 90% of these atoms, at least about 95% of these atoms, at least about 98% of these atoms, at least about 99% of these atoms) have the R_P configuration. In other embodiments, the population of stereogenic phosphorus atoms may have the S_P configuration and may be substantially free of stereogenic phosphorus atoms having the R_P configuration. In still other embodiments, the population of stereogenic phosphorus atoms may have the R_P configuration and may be substantially free of stereogenic phosphorus atoms having the S_P configuration. As used herein, the phrase "substantially free of stereogenic phosphorus atoms having the R_P configuration" means that moieties containing stereogenic phosphorus atoms having the R_P configuration cannot be detected by conventional methods known in the art (chiral HPLC, ¹H NMR analysis using chiral shift reagents, etc.). As used herein, the phrase "substantially free of stereogenic phosphorus atoms having the S_P configuration" means that moieties containing stereogenic phosphorus atoms having the S_P configuration cannot be detected by conventional methods known in the art (chiral HPLC, ¹H NMR analysis using chiral shift reagents, etc.).

In a preferred embodiment, modified iRNA agents contain a phosphorothioate group, i.e., a phosphate groups in which a phosphate non-linking oxygen has been replaced by a sulfur atom. In an especially preferred embodiment, the population of phosphorothioate stereogenic phosphorus atoms may have the S_P configuration and be substantially free of stereogenic phosphorus atoms having the R_P configuration.

Phosphorothicates may be incorporated into iRNA agents using dimers e.g., formulas X-1 and X-2. The former can be used to introduce phosphorothicate

10

Attorney's Docket No.: 14174-072W01

at the 3' end of a strand, while the latter can be used to introduce this modification at the 5' end or at a position that occurs e.g., 1, 2, 3, 4, 5, or 6 nucleotides from either end of the strand. In the above formulas, Y can be 2-cyanoethoxy, W and Z can be O, R_2 can be, e.g., a substituent that can impart the C-3 endo configuration to the sugar (e.g., OH, F, OCH₃), DMT is dimethoxytrityl, and "BASE" can be a natural, unusual, or a universal base.

X-1 and X-2 can be prepared using chiral reagents or directing groups that can result in phosphorothioate-containing dimers having a population of stereogenic phosphorus atoms having essentially only the R_P configuration (i.e., being substantially free of the S_P configuration) or only the S_P configuration (i.e., being substantially free of the R_P configuration). Alternatively, dimers can be prepared having a population of stereogenic phosphorus atoms in which about

.

Attorney's Docket No.: 14174-072W01

50% of the atoms have the R_P configuration and about 50% of the atoms have the S_P configuration. Dimers having stereogenic phosphorus atoms with the R_P configuration can be identified and separated from dimers having stereogenic phosphorus atoms with the S_P configuration using e.g., enzymatic degradation and/or conventional chromatography techniques.

Cationic Groups

5

10

15

20

25

Modifications can also include attachment of one or more cationic groups to the sugar, base, and/or the phosphorus atom of a phosphate or modified phosphate backbone moiety. A cationic group can be attached to any atom capable of substitution on a natural, unusual or universal base. A preferred position is one that does not interfere with hybridization, i.e., does not interfere with the hydrogen bonding interactions needed for base pairing. A cationic group can be attached e.g., through the C2' position of a sugar or analogous position in a cyclic or acyclic sugar surrogate. Cationic groups can include e.g., protonated amino groups, derived from e.g., O-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); aminoalkoxy, e.g., O(CH₂)_nAMINE, (e.g., AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); amino (e.g. NH₂; alkylamino, dialkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); or NH(CH₂CH₂NH)_nCH₂CH₂-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, diaryl amino, heteroaryl amino, or diheteroaryl amino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, diaryl amino, heter

Nonphosphate Linkages

Modifications can also include the incorporation of nonphosphate linkages at the 5' and/or 3' end of a strand. Examples of nonphosphate linkages which can replace the phosphate group include methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino. Preferred replacements include the methyl phosphonate and hydroxylamino groups.

10

15

20

25

Attorney's Docket No.: 14174-072W01

3'-bridging thiophosphates and 5'-bridging thiophosphates; locked-RNA, 2'-5' likages, inverted linkages, α-nucleosides; conjugate groups; abasic linkages; and 5'-phosphonates and 5'-phosphate prodrugs

Referring to formula X above, modifications can include replacement of one of the bridging or linking phosphate oxygens in the phosphate backbone moiety (W and Z). Unlike the situation where only one of X or Y is altered, the phosphorus center in the phosphorodithioates is achiral which precludes the formation of iRNA agents containing a stereogenic phosphorus atom.

Modifications can also include linking two sugars via a phosphate or modified phosphate group through the 2' position of a first sugar and the 5' position of a second sugar. Also contemplated are inverted linkages in which both a first and second sugar are eached linked through the respective3' positions. Modified RNA's can also include "abasic" sugars, which lack a nucleobase at C-1'. The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified iRNA agent can include nucleotides containing e.g., arabinose, as the sugar. In another subset of this modification, the natural, unusual, or universal base may have the α-configuration. Modifications can also include L-RNA.

Modifications can also include 5'-phosphonates, e.g., $P(O)(O^{\circ})_2$ -X- C° -sugar (X= CH2, CF2, CHF and 5'-phosphate prodrugs, e.g., $P(O)[OCH2CH2SC(O)R]_2CH_2C^{\circ}$ -sugar. In the latter case, the prodrug groups may be decomposed *via* reaction first with carboxy esterases. The remaining ethyl thiolate group via intramolecular S_N2 displacement can depart as episulfide to afford the underivatized phosphate group.

Modification can also include the addition of conjugating groups described elsequere herein, which are prefereably attached to an iRNA agent through any amino group available for conjugation.

Nuclease resistant modifications include some which can be placed only at the terminus and others which can go at any position. Generally the modifications that can inhibit hybridization so it is preferably to use them only in terminal regions, and preferrable to not use

5

10

15

20

25

them at the cleavage site or in the cleavage region of an sequence which targets a subject sequence or gene. The can be used anywhere in a sense sequence, provided that sufficient hybridization between the two sequences of the iRNA agent is maintained. In some embodiments it is desirabable to put the NRM at the cleavage site or in the cleavage region of a sequence which does not target a subject sequence or gene, as it can minimize off-target silencing.

In addition, an iRNA agent described herein can have an overhang which does not form a duplex structure with the other sequence of the iRNA agent—it is an overhang, but it does hybridize, either with itself, or with another nucleic acid, other than the other sequence of the iRNA agent.

In most cases, the nuclease-resistance promoting modifications will be distributed differently depending on whether the sequence will target a sequence in the subject (often referred to as an anti-sense sequence) or will not target a sequence in the subject (often referred to as a sense sequence). If a sequence is to target a sequence in the subject, modifications which interfer with or inhibit endonuclease cleavage should not be inserted in the region which is subject to RISC mediated cleavage, e.g., the cleavage site or the cleavage region (As described in Elbashir *et al.*, 2001, Genes and Dev. 15: 188, hereby incorporated by reference, cleavage of the target occurs about in the middle of a 20 or 21 nt guide RNA, or about 10 or 11 nucleotides upstream of the first nucleotide which is complementary to the guide sequence. As used herein cleavage site refers to the nucleotide on either side of the cleavage site, on the target or on the iRNA agent strand which hybridizes to it. Cleavage region means an nucleotide with 1, 2, or 3 nucletides of the cleave site, in either direction.)

Such modifications can be introduced into the terminal regions, e.g., at the terminal position or with 2, 3, 4, or 5 positions of the terminus, of a sequence which targets or a sequence which does not target a sequence in the subject.

An iRNA agent can have a first and a second strand chosen from the following:

a first strand which does not target a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

15

20

25

Attorney's Docket No.: 14174-072W01

a first strand which does not target a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a first strand which does not target a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a first strand which does not target a sequence and which has an NRM modification at the cleavage site or in the cleavage region;

a first strand which does not target a sequence and which has an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end; and

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end (5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand);

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a second strand which targets a sequence and which preferably does not have an an NRM modification at the cleavage site or in the cleavage region;

a second strand which targets a sequence and which does not have an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions

10

15

20

25

Attorney's Docket No.: 14174-072W01

from both the 3' and the 5' end(5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand).

An iRNA agent can also target two sequences and can have a first and second strand chosen from:

a first strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

a first strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end (5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand);

a first strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a first strand which targets a sequence and which preferably does not have an an NRM modification at the cleavage site or in the cleavage region;

a first strand which targets a sequence and which dose not have an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end(5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand) and

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end (5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand);

10

15

20

25

Attorney's Docket No.: 14174-072W01

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a second strand which targets a sequence and which preferably does not have an an NRM modification at the cleavage site or in the cleavage region;

a second strand which targets a sequence and which dose not have an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end(5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand).

Ribose Mimics

An RNA, e.g., an iRNA agent, can incorporate a ribose mimic, such as those described herein and those described in copending co-owned United States Provisional Application Serial No. 60/454,962, filed on March 13, 2003, and International Application No. PCT/US04/07070, both of which are hereby incorporated by reference.

In addition, the invention includes iRNA agents having a ribose mimic and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a ribose mimic.

Thus, an aspect of the invention features an iRNA agent that includes a secondary hydroxyl group, which can increase efficacy and/or confer nuclease resistance to the agent. Nucleases, e.g., cellular nucleases, can hydrolyze nucleic acid phosphodiester bonds, resulting in partial or complete degradation of the nucleic acid. The secondary hydroxy group confers

PCT/US2004/011255

WO 2004/091515

5

10

15

20

Attorney's Docket No.: 14174-072W01

nuclease resistance to an iRNA agent by rendering the iRNA agent less prone to nuclease degradation relative to an iRNA which lacks the modification. While not wishing to be bound by theory, it is believed that the presence of a secondary hydroxyl group on the iRNA agent can act as a structural mimic of a 3' ribose hydroxyl group, thereby causing it to be less susceptible to degradation.

The secondary hydroxyl group refers to an "OH" radical that is attached to a carbon atom substituted by two other carbons and a hydrogen. The secondary hydroxyl group that confers nuclease resistance as described above can be part of any acyclic carbon-containing group. The hydroxyl may also be part of any cyclic carbon-containing group, and preferably one or more of the following conditions is met (1) there is no ribose moiety between the hydroxyl group and the terminal phosphate group or (2) the hydroxyl group is not on a sugar moiety which is coupled to a base.. The hydroxyl group is located at least two bonds (e.g., at least three bonds away, at least four bonds away, at least five bonds away, at least six bonds away, at least seven bonds away, at least eight bonds away, at least nine bonds away, at least ten bonds away, etc.) from the terminal phosphate group phosphorus of the iRNA agent. In preferred embodiments, there are five intervening bonds between the terminal phosphate group phosphorus and the secondary hydroxyl group.

Preferred iRNA agent delivery modules with five intervening bonds between the terminal phosphate group phosphorus and the secondary hydroxyl group have the following structure (see formula Y below):

A
W
Y
P
X
$$CH_2$$
 R_1
 CH_2
 R_3
 R_4
 R_5
 R_6
 R_6

10

15

20

25

Attorney's Docket No.: 14174-072W01

(Y)

Referring to formula Y, A is an iRNA agent, including any iRNA agent described herein. The iRNA agent may be connected directly or indirectly (e.g., through a spacer or linker) to "W" of the phosphate group. These spacers or linkers can include e.g., $-(CH_2)_n$, $-(CH_2)_n$, amide, carboxy, amine, oxyamine, oxyamine, thioether, disulfide, thiourea, sulfonamide, or morpholino, or biotin and fluorescein reagents.

The iRNA agents can have a terminal phosphate group that is unmodified (e.g., W, X, Y, and Z are O) or modified. In a modified phosphate group, W and Z can be independently NH, O, or S; and X and Y can be independently S, Se, BH₃-, C₁-C₆ alkyl, C₆-C₁₀ aryl, H, O, O⁻, alkoxy or amino (including alkylamino, arylamino, etc.). Preferably, W, X and Z are O and Y is S.

 R_1 and R_3 are each, independently, hydrogen; or C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl.

 R_2 is hydrogen; C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl; or, when n is 1, R_2 may be taken together with with R_4 or R_6 to form a ring of 5-12 atoms.

 R_4 is hydrogen; C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl; or, when n is 1, R_4 may be taken together with with R_2 or R_5 to form a ring of 5-12 atoms.

 R_5 is hydrogen, C_1 - C_{100} alkyl optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl; or, when n is 1, R_5 may be taken together with with R_4 to form a ring of 5-12 atoms.

 R_6 is hydrogen, C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl, or, when n is 1, R_6 may be taken together with with R_2 to form a ring of 6-10 atoms;

 R_7 is hydrogen, C_1 - C_{100} alkyl, or $C(O)(CH_2)_qC(O)NHR_9$; T is hydrogen or a functional group; n and q are each independently 1-100; R_8 is C_1 - C_{10} alkyl or C_6 - C_{10} aryl; and R_9 is hydrogen, C1-C10 alkyl, C6-C10 aryl or a solid support agent.

Preferred embodiments may include one of more of the following subsets of iRNA agent delivery modules.

In one subset of RNAi agent delivery modules, A can be connected directly or indirectly through a terminal 3' or 5' ribose sugar carbon of the RNA agent.

In another subset of RNAi agent delivery modules, X, W, and Z are O and Y is S.

In still yet another subset of RNAi agent delivery modules, n is 1, and R₂ and R₆ are taken together to form a ring containing six atoms and R₄ and R₅ are taken together to form a ring containing six atoms. Preferably, the ring system is a *trans*-decalin. For example, the RNAi agent delivery module of this subset can include a compound of Formula (Y-1):

The functional group can be, for example, a targeting group (e.g., a steroid or a

carbohydrate), a reporter group (e.g., a fluorophore), or a label (an isotopically labelled moiety).

The targeting group can further include protein binding agents, endothelial cell targeting groups
(e.g., RGD peptides and mimetics), cancer cell targeting groups (e.g., folate Vitamin B12,
Biotin), bone cell targeting groups (e.g., bisphosphonates, polyglutamates, polyaspartates),
multivalent mannose (for e.g., macrophage testing), lactose, galactose, N-acetyl-galactosamine,
monoclonal antibodies, glycoproteins, lectins, melanotropin, or thyrotropin.

5

10

15

20

25

As can be appreciated by the skilled artisan, methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization.

Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons

Ribose Replacement Monomer Subunits

(1995), and subsequent editions thereof.

iRNA agents can be modified in a number of ways which can optimize one or more characteristics of the iRNA agent. An RNA agent, e.g., an iRNA agent can include a ribose replacement monomer subunit (RRMS), such as those described herein and those described in one or more of United States Provisional Application Serial No. 60/493,986, filed on August 8, 2003, which is hereby incorporated by reference; United States Provisional Application Serial No. 60/494,597, filed on August 11, 2003, which is hereby incorporated by reference; United States Provisional Application Serial No. 60/506,341, filed on September 26, 2003, which is hereby incorporated by reference; United States Provisional Application Serial No. 60/158,453, filed on November 7, 2003, which is hereby incorporated by reference; and International Application No. PCT/US04/07070, filed March 8, 2004, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents having a RRMS and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an

5

10

15

20

25

architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a RRMS.

The ribose sugar of one or more ribonucleotide subunits of an iRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.

The carriers further include (i) at least two "backbone attachment points" and (ii) at least one "tethering attachment point." A "backbone attachment point" as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A "tethering attachment point" as used herein refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a ligand, e.g., a targeting or delivery moiety, or a moiety which alters a physical property, e.g., lipophilicity, of an iRNA agent. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, it will include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.

Incorporation of one or more RRMSs described herein into an RNA agent, e.g., an iRNA agent, particularly when tethered to an appropriate entity, can confer one or more new properties to the RNA agent and/or alter, enhance or modulate one or more existing properties in the RNA molecule. E.g., it can alter one or more of lipophilicity or nuclease resistance. Incorporation of one or more RRMSs described herein into an iRNA agent can, particularly when the RRMS is

10

15

Attorney's Docket No.: 14174-072W01

tethered to an appropriate entity, modulate, e.g., increase, binding affinity of an iRNA agent to a target mRNA, change the geometry of the duplex form of the iRNA agent, alter distribution or target the iRNA agent to a particular part of the body, or modify the interaction with nucleic acid binding proteins (e.g., during RISC formation and strand separation).

Accordingly, in one aspect, the invention features, an iRNA agent preferably comprising a first strand and a second strand, wherein at least one subunit having a formula (R-1) is incorporated into at least one of said strands.

$$R^2$$
 X
 X
 R^6
 R^5
 R^3
 Z

(R-1)

Referring to formula (R-1), X is $N(CO)R^7$, NR^7 or CH_2 ; Y is NR^8 , O, S, CR^9R^{10} , or absent; and Z is $CR^{11}R^{12}$ or absent.

Each of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is, independently, H, OR^a , OR^b , $(CH_2)_nOR^a$, or $(CH_2)_nOR^b$, provided that at least one of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is OR^a or OR^b and that at least one of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is $(CH_2)_nOR^a$, or $(CH_2)_nOR^b$ (when the RRMS is terminal, one of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} will include R^a and one will include R^b ; when the RRMS is internal, two of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} will each include an R^b); further provided that preferably OR^a may only be present with $(CH_2)_nOR^b$ and $(CH_2)_nOR^a$ may only be present with OR^b .

Each of R⁵, R⁶, R¹¹, and R¹² is, independently, H, C₁-C₆ alkyl optionally substituted with 1-3 R¹³, or C(O)NHR⁷; or R⁵ and R¹¹ together are C₃-C₈ cycloalkyl optionally substituted with R¹⁴.

 R^7 is C_1 - C_{20} alkyl substituted with NR°R^d; R^8 is C_1 - C_6 alkyl; R^{13} is hydroxy, C_1 - C_4 alkoxy, or halo; and R^{14} is NR°R⁷.

5

Ra is:

; and

10

R^b is:

Each of A and C is, independently, O or S.

B is OH, O, or

10

20

Attorney's Docket No.: 14174-072W01

R^c is H or C1-C6 alkyl; R^d is H or a ligand; and n is 1-4.

In a preferred embodiment the ribose is replaced with a pyrroline scaffold, and X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is absent.

In other preferred embodiments the ribose is replaced with a piperidine scaffold, and X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is $CR^{11}R^{12}$.

In other preferred embodiments the ribose is replaced with a piperazine scaffold, and X is $N(CO)R^7$ or NR^7 , Y is NR^8 , and Z is $CR^{11}R^{12}$.

In other preferred embodiments the ribose is replaced with a morpholino scaffold, and X is $N(CO)R^7$ or NR^7 , Y is O, and Z is $CR^{11}R^{12}$.

In other preferred embodiments the ribose is replaced with a decalin scaffold, and X isCH₂; Y is CR⁹R¹⁰; and Z is CR¹¹R¹²; and R⁵ and R¹¹ together are C⁶ cycloalkyl.

In other preferred embodiments the ribose is replaced with a decalin/indane scafold and, and X is CH_2 ; Y is CR^9R^{10} ; and Z is $CR^{11}R^{12}$; and R^5 and R^{11} together are C^5 cycloalkyl.

In other preferred embodiments, the ribose is replaced with a hydroxyproline scaffold.

RRMSs described herein may be incorporated into any double-stranded RNA-like molecule described herein, e.g., an iRNA agent. An iRNA agent may include a duplex comprising a hybridized sense and antisense strand, in which the antisense strand and/or the sense strand may include one or more of the RRMSs described herein. An RRMS can be introduced at one or more points in one or both strands of a double-stranded iRNA agent. An

(1) (1) (1) (1) (1)

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

RRMS can be placed at or near (within 1, 2, or 3 positions) of the 3' or 5' end of the sense strand or at near (within 2 or 3 positions of) the 3' end of the antisense strand. In some embodiments it is preferred to not have an RRMS at or near (within 1, 2, or 3 positions of) the 5' end of the antisense strand. An RRMS can be internal, and will preferably be positioned in regions not critical for antisense binding to the target.

In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand. In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand and at (or within 1, 2, or 3 positions of) the 3' end of the sense strand. In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand and an RRMS at the 5' end of the sense strand, in which both ligands are located at the same end of the iRNA agent.

In certain embodiments, two ligands are tethered, preferably, one on each strand and are hydrophobic moieties. While not wishing to be bound by theory, it is believed that pairing of the hydrophobic ligands can stabilize the iRNA agent *via* intermolecular van der Waals interactions.

In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand and an RRMS at the 5' end of the sense strand, in which both RRMSs may share the same ligand (e.g., cholic acid) via connection of their individual tethers to separate positions on the ligand. A ligand shared between two proximal RRMSs is referred to herein as a "hairpin ligand."

In other embodiments, an iRNA agent may have an RRMS at the 3' end of the sense strand and an RRMS at an internal position of the sense strand. An iRNA agent may have an RRMS at an internal position of the sense strand; or may have an RRMS at an internal position of the antisense strand; or may have an RRMS at an internal position of the sense strand and an RRMS at an internal position of the antisense strand.

In preferred embodiments the iRNA agent includes a first and second sequences, which are preferably two separate molecules as opposed to two sequences located on the same strand, have sufficient complementarity to each other to hybridize (and thereby form a duplex region),

10

15

20

25

Attorney's Docket No.: 14174-072W01

e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme.

It is preferred that the first and second sequences be chosen such that the ds iRNA agent includes a single strand or unpaired region at one or both ends of the molecule. Thus, a ds iRNA agent contains first and second sequences, preferable paired to contain an overhang, e.g., one or two 5' or 3' overhangs but preferably a 3' overhang of 2-3 nucleotides. Most embodiments will have a 3' overhang. Preferred sRNA agents will have single-stranded overhangs, preferably 3' overhangs, of 1 or preferably 2 or 3 nucleotides in length at each end. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. 5' ends are preferably phosphorylated.

An RNA agent, e.g., an iRNA agent, containing a preferred, but nonlimiting RRMS is presented as formula (R-2) in FIG. 4. The carrier includes two "backbone attachment points" (hydroxyl groups), a "tethering attachment point," and a ligand, which is connected indirectly to the carrier via an intervening tether. The RRMS may be the 5' or 3' terminal subunit of the RNA molecule, i.e., one of the two "W" groups may be a hydroxyl group, and the other "W" group may be a chain of two or more unmodified or modified ribonucleotides. Alternatively, the RRMS may occupy an internal position, and both "W" groups may be one or more unmodified or modified ribonucleotides. More than one RRMS may be present in a RNA molecule, e.g., an iRNA agent.

The modified RNA molecule of formula (R-2) can be obtained using oligonucleotide synthetic methods known in the art. In a preferred embodiment, the modified RNA molecule of formula (II) can be prepared by incorporating one or more of the corresponding RRMS monomer compounds (RRMS monomers, see, e.g., A, B, and C in FIG. 4) into a growing sense or antisense strand, utilizing, e.g., phosphoramidite or H-phosphonate coupling strategies.

The RRMS monomers generally include two differently functionalized hydroxyl groups $(OFG^1 \text{ and } OFG^2 \text{ above})$, which are linked to the carrier molecule (see A in FIG. 4), and a tethering attachment point. As used herein, the term "functionalized hydroxyl group" means that the hydroxyl proton has been replaced by another substituent. As shown in representative structures B and C, one hydroxyl group (OFG^1) on the carrier is functionalized with a protecting

5

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

group (PG). The other hydroxyl group (OFG²) can be functionalized with either (1) a liquid or solid phase synthesis support reagent (solid circle) directly or indirectly through a linker, L, as in B, or (2) a phosphorus-containing moiety, e.g., a phosphoramidite as in C. The tethering attachment point may be connected to a hydrogen atom, a tether, or a tethered ligand at the time that the monomer is incorporated into the growing sense or antisense strand (see R in Scheme 1). Thus, the tethered ligand can be, but need not be attached to the monomer at the time that the monomer is incorporated into the growing strand. In certain embodiments, the tether, the ligand or the tethered ligand may be linked to a "precursor" RRMS after a "precursor" RRMS monomer has been incorporated into the strand.

The (OFG¹) protecting group may be selected as desired, e.g., from T.W. Greene and P.G.M. Wuts, *Protective Groups in Organic Synthesis*, 2d. Ed., John Wiley and Sons (1991). The protecting group is preferably stable under amidite synthesis conditions, storage conditions, and oligonucleotide synthesis conditions. Hydroxyl groups, -OH, are nucleophilic groups (i.e., Lewis bases), which react through the oxygen with electrophiles (i.e., Lewis acids). Hydroxyl groups in which the hydrogen has been replaced with a protecting group, e.g., a triarylmethyl group or a trialkylsilyl group, are essentially unreactive as nucleophiles in displacement reactions. Thus, the protected hydroxyl group is useful in preventing e.g., homocoupling of compounds exemplified by structure C during oligonucleotide synthesis. A preferred protecting group is the dimethoxytrityl group.

When the OFG² in **B** includes a linker, e.g., a long organic linker, connected to a soluble or insoluble support reagent, solution or solid phase synthesis techniques can be employed to build up a chain of natural and/or modified ribonucleotides once OFG¹ is deprotected and free to react as a nucleophile with another nucleoside or monomer containing an electrophilic group (e.g., an amidite group). Alternatively, a natural or modified ribonucleotide or oligoribonucleotide chain can be coupled to monomer **C** via an amidite group or H-phosphonate group at OFG². Subsequent to this operation, OFG¹ can be deblocked, and the restored nucleophilic hydroxyl group can react with another nucleoside or monomer containing an electrophilic group (see FIG. 1). R' can be substituted or unsubstituted alkyl or alkenyl. In preferred embodiments, R' is methyl, allyl or 2-cyanoethyl. R'' may a C₁-C₁₀ alkyl group, preferably it is a branched group containing three or more carbons, e.g., isopropyl.

10

15

20

25

Attorney's Docket No.: 14174-072W01

OFG² in B can be hydroxyl functionalized with a linker, which in turn contains a liquid or solid phase synthesis support reagent at the other linker terminus. The support reagent can be any support medium that can support the monomers described herein. The monomer can be attached to an insoluble support via a linker, L, which allows the monomer (and the growing chain) to be solubilized in the solvent in which the support is placed. The solubilized, yet immobilized, monomer can react with reagents in the surrounding solvent; unreacted reagents and soluble by-products can be readily washed away from the solid support to which the monomer or monomer-derived products is attached. Alternatively, the monomer can be attached to a soluble support moiety, e.g., polyethylene glycol (PEG) and liquid phase synthesis techniques can be used to build up the chain. Linker and support medium selection is within skill of the art. Generally the linker may be -C(O)(CH₂)_qC(O)-, or -C(O)(CH₂)_qS-, preferably, it is oxalyl, succinyl or thioglycolyl. Standard control pore glass solid phase synthesis supports can not be used in conjunction with fluoride labile 5' silyl protecting groups because the glass is degraded by fluoride with a significant reduction in the amount of full-length product. Fluoride-stable polystyrene based supports or PEG are preferred.

Preferred carriers have the general formula (R-3) provided below. (In that structure preferred backbone attachment points can be chosen from R¹ or R²; R³ or R⁴; or R⁹ and R¹⁰ if Y is CR⁹R¹⁰ (two positions are chosen to give two backbone attachment points, e.g., R¹ and R⁴, or R⁴ and R⁹. Preferred tethering attachment points include R⁷; R⁵ or R⁶ when X is CH₂. The carriers are described below as an entity, which can be incorporated into a strand. Thus, it is understood that the structures also encompass the situations wherein one (in the case of a terminal position) or two (in the case of an internal position) of the attachment points, e.g., R¹ or R²; R³ or R⁴; or R⁹ or R¹⁰ (when Y is CR⁹R¹⁰), is connected to the phosphate, or modified phosphate, e.g., sulfur containing, backbone. E.g., one of the above-named R groups can be - CH2-, wherein one bond is connected to the carrier and one to a backbone atom, e.g., a linking oxygen or a central phosphorus atom.)

10

15

20

Attorney's Docket No.: 14174-072W01

$$R^{2}$$
 X
 Z
 R^{6}
 R^{5}
 R^{4}

(R-3)

X is N(CO)R⁷, NR⁷ or CH₂; Y is NR⁸, O, S, CR⁹R¹⁰; and Z is CR¹¹R¹² or absent.

Each of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is, independently, H, OR^a , or $(CH_2)_nOR^b$, provided that at least two of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} are OR^a and/or $(CH_2)_nOR^b$.

Each of R^5 , R^6 , R^{11} , and R^{12} is, independently, a ligand, H, C_1 - C_6 alkyl optionally substituted with 1-3 R^{13} , or $C(O)NHR^7$; or R^5 and R^{11} together are C_3 - C_8 cycloalkyl optionally substituted with R^{14} .

 R^7 is H, a ligand, or C_1 - C_{20} alkyl substituted with NR^cR^d ; R^8 is H or C_1 - C_6 alkyl; R^{13} is hydroxy, C_1 - C_4 alkoxy, or halo; R^{14} is NR^cR^7 ; R^{15} is C_1 - C_6 alkyl optionally substituted with cyano, or C_2 - C_6 alkenyl; R^{16} is C_1 - C_{10} alkyl; and R^{17} is a liquid or solid phase support reagent.

 $\label{eq:Lis-CO} L \text{ is -C(O)(CH$_2$_q$C(O)-, or -C(O)(CH$_2$_q$S-; R^a is CAr_3$; R^b is $P(O)(O^*)$H, $P(OR^{15})$N(R^{16})$_2$ or L-R^{17}; R^c is H or C_1-$C6 alkyl; and R^d is H or a ligand.$

Each Ar is, independently, C_6 - C_{10} aryl optionally substituted with C_1 - C_4 alkoxy; n is 1-4; and q is 0-4.

Exemplary carriers include those in which, e.g., X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is absent; or X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is $CR^{11}R^{12}$; or X is $N(CO)R^7$ or NR^7 , Y is NR^8 , and Z is NR^8 , and Z is NR^8 , and Z is NR^8 , and R is NR^8 , and NR^8 , and

10

15

Attorney's Docket No.: 14174-072W01

system, e.g., X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_5 cycloalkyl (H, z = 1).

In certain embodiments, the carrier may be based on the pyrroline ring system or the 3-hydroxyproline ring system, e.g., X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is absent (**D**). OFG¹ is preferably attached to a primary carbon, e.g., an exocyclic alkylene

group, e.g., a methylene group, connected to one of the carbons in the five-membered ring (-CH₂OFG¹ in **D**). OFG² is preferably attached directly to one of the carbons in the five-membered ring (-OFG² in **D**). For the pyrroline-based carriers, -CH₂OFG¹ may be attached to C-2 and OFG² may be attached to C-3; or -CH₂OFG¹ may be attached to C-3 and OFG² may be attached to C-4. In certain embodiments, CH₂OFG¹ and OFG² may be geminally substituted to one of the above-referenced carbons. For the 3-hydroxyproline-based carriers, -CH₂OFG¹ may be attached to C-2 and OFG² may be attached to C-4. The pyrroline- and 3-hydroxyproline-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, CH₂OFG¹ and OFG² may be *cis* or *trans* with respect to one another in any of the pairings delineated above Accordingly, all *cis/trans* isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric

forms of the monomers are expressly included. The tethering attachment point is preferably nitrogen.

In certain embodiments, the carrier may be based on the piperidine ring system (E), e.g., $X ext{ is } N(CO)R^7 ext{ or } NR^7, Y ext{ is } CR^9R^{10}, \text{ and } Z ext{ is } CR^{11}R^{12}. ext{ OFG}^1 ext{ is preferably}$

OFG²

$$C_4$$
 C_3
 C_2
 C_2
 C_2
 C_3
 C_2
 C_3
 C_2
 C_2
 C_3
 C_3
 C_4
 C_5
 C_5

5

10

15

attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group (n=1) or ethylene group (n=2), connected to one of the carbons in the six-membered ring [-(CH₂)_nOFG¹ in E]. OFG² is preferably attached directly to one of the carbons in the six-membered ring (-OFG² in E). -(CH₂)_nOFG¹ and OFG² may be disposed in a geminal manner on the ring, i.e., both groups may be attached to the same carbon, e.g., at C-2, C-3, or C-4. Alternatively, - (CH₂)_nOFG¹ and OFG² may be disposed in a vicinal manner on the ring, i.e., both groups may be attached to adjacent ring carbon atoms, e.g., -(CH₂)_nOFG¹ may be attached to C-2 and OFG² may be attached to C-3; -(CH₂)_nOFG¹ may be attached to C-3 and OFG² may be attached to C-4; or -(CH₂)_nOFG¹ may be attached to C-4 and OFG² may be attached to C-3. The piperidine-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, -(CH₂)_nOFG¹ and OFG² may be *cis* or *trans* with respect to one another in any of the pairings delineated above. Accordingly, all *cis/trans* isomers are expressly included. The monomers may also

10

Attorney's Docket No.: 14174-072W01

contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. The tethering attachment point is preferably nitrogen.

In certain embodiments, the carrier may be based on the piperazine ring system (**F**), e.g., X is $N(CO)R^7$ or NR^7 , Y is NR^8 , and Z is $CR^{11}R^{12}$, or the morpholine ring system (**G**), e.g., X is $N(CO)R^7$ or NR^7 , Y is O, and Z is $CR^{11}R^{12}$. OFG^1 is preferably

attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group, connected to one of the carbons in the six-membered ring (-CH₂OFG¹ in F or G). OFG² is preferably attached directly to one of the carbons in the six-membered rings (-OFG² in F or G). For both F and G, -CH₂OFG¹ may be attached to C-2 and OFG² may be attached to C-3; or *vice versa*. In certain embodiments, CH₂OFG¹ and OFG² may be geminally substituted to one of the above-referenced carbons. The piperazine- and morpholine-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, CH₂OFG¹ and OFG² may be *cis* or *trans* with respect to one another in any of the pairings delineated above. Accordingly, all *cis/trans* isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single

PCT/US2004/011255

5

10

15

20

Attorney's Docket No.: 14174-072W01

enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. R" can be, e.g., C₁-C₆ alkyl, preferably CH₃. The tethering attachment point is preferably nitrogen in both F and G.

In certain embodiments, the carrier may be based on the decalin ring system, e.g., X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_6 cycloalkyl (H, z = 2), or the indane ring system, e.g., X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_5 cycloalkyl (H, z = 1). OFG¹ is preferably attached to a primary carbon,

$$Z = \begin{pmatrix} C_7 & C_6 & C_4 \\ C_1 & C_2 & C_3 \\ C_2 & C_3 \end{pmatrix}$$

$$H$$

e.g., an exocyclic methylene group (n=1) or ethylene group (n=2) connected to one of C-2, C-3, C-4, or C-5 [-(CH₂)_nOFG¹ in H]. OFG² is preferably attached directly to one of C-2, C-3, C-4, or C-5 (-OFG² in H). -(CH₂)_nOFG¹ and OFG² may be disposed in a geminal manner on the ring, i.e., both groups may be attached to the same carbon, e.g., at C-2, C-3, C-4, or C-5.

Alternatively, -(CH₂)_nOFG¹ and OFG² may be disposed in a vicinal manner on the ring, i.e., both groups may be attached to adjacent ring carbon atoms, e.g., -(CH₂)_nOFG¹ may be attached to C-2 and OFG² may be attached to C-3; -(CH₂)_nOFG¹ may be attached to C-3 and OFG² may be attached to C-4; or -(CH₂)_nOFG¹ may be attached to C-4 and OFG² may be attached to C-3; -(CH₂)_nOFG¹ may be attached to C-5 and OFG² may be attached to C-4. The decalin or indane-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, -(CH₂)_nOFG¹ and OFG² may be *cis* or *trans* with respect to one another in any of the pairings delineated above. Accordingly, all *cis/trans* isomers are expressly included. The monomers may also contain one or more

PCT/US2004/011255

WO 2004/091515

Attorney's Docket No.: 14174-072W01

asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. In a preferred embodiment, the substituents at C-1 and C-6 are *trans* with respect to one another. The tethering attachment point is preferably C-6 or C-7.

Other carriers may include those based on 3-hydroxyproline (J). Thus, -(CH₂)_nOFG¹ and OFG² may be *cis* or *trans* with respect to one another. Accordingly, all *cis/trans* isomers are expressly included. The monomers may also contain one or more asymmetric centers

2
GFO(CH $_{2}$) $_{\overline{n}}$ OFG $_{1}$

and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. The tethering attachment point is preferably nitrogen.

Representative carriers are shown in FIG. 5.

10

15

20

In certain embodiments, a moiety, e.g., a ligand may be connected indirectly to the carrier via the intermediacy of an intervening tether. Tethers are connected to the carrier at the tethering attachment point (TAP) and may include any C₁-C₁₀₀ carbon-containing moiety, (e.g. C₁-C₇₅, C₁-C₅₀, C₁-C₂₀, C₁-C₁₀, C₁-C₆), preferably having at least one nitrogen atom. In preferred embodiments, the nitrogen atom forms part of a terminal amino group on the tether, which may serve as a connection point for the ligand. Preferred tethers (underlined) include TAP₋ (CH₂)_nNH₂; TAP-C(O)(CH₂)_nNH₂; or TAP-NR''''(CH₂)_nNH₂, in which n is 1-6 and R'''' is C₁-C₆ alkyl. and R^d is hydrogen or a ligand. In other embodiments, the nitrogen may form part of a terminal oxyamino group, e.g., -ONH₂, or hydrazino group, -NHNH₂. The tether may optionally

81

10

25

Attorney's Docket No.: 14174-072W01

be substituted, e.g., with hydroxy, alkoxy, perhaloalkyl, and/or optionally inserted with one or more additional heteroatoms, e.g., N, O, or S. Preferred tethered ligands may include, e.g., TAP-(CH₂)_nNH(LIGAND),

TAP-C(O)(CH2), NH(LIGAND), or TAP-NR" (CH2), NH(LIGAND);

5 TAP-(CH₂)_nONH(LIGAND), TAP-C(O)(CH₂)_nONH(LIGAND), or

TAP-NR'"(CH2),ONH(LIGAND); TAP-(CH2),NHNH2(LIGAND),

TAP-C(O)(CH₂)_nNHNH₂(LIGAND), or TAP-NR''''(CH₂)_nNHNH₂(LIGAND).

In other embodiments the tether may include an electrophilic moiety, preferably at the terminal position of the tether. Preferred electrophilic moieties include, e.g., an aldehyde, alkyl halide, mesylate, tosylate, nosylate, or brosylate, or an activated carboxylic acid ester, e.g. an NHS ester, or a pentafluorophenyl ester. Preferred tethers (underlined) include TAP(CH₂)_nCHO; TAP-C(O)(CH₂)_nCHO; or TAP-NR'''(CH₂)_nCHO, in which n is 1-6 and R'''' is C₁-C₆ alkyl; or TAP-(CH₂)_nC(O)ONHS; TAP-C(O)(CH₂)_nC(O)ONHS; or

TAP-NR''''(CH₂)_nC(O)ONHS, in which n is 1-6 and R'''' is C_1 - C_6 alkyl;

TAP-(CH₂)_nC(O)OC₆F₅; TAP-C(O)(CH₂)_nC(O) OC₆F₅; or TAP-NR''''(CH₂)_nC(O) OC₆F₅, in which n is 1-6 and R'''' is C₁-C₆ alkyl; or -(CH₂)_nCH₂LG; TAP-C(O)(CH₂)_nCH₂LG; or TAP-NR''''(CH₂)_nCH₂LG, in which n is 1-6 and R'''' is C₁-C₆ alkyl (LG can be a leaving group, e.g., halide, mesylate, tosylate, brosylate). Tethering can be carried out by coupling a nucleophilic group of a ligand, e.g., a thiol or amino group with an electrophilic group on the tether.

Tethered Entities

A wide variety of entities can be tethered to an iRNA agent, e.g., to the carrier of an RRMS. Examples are described below in the context of an RRMS but that is only preferred, entities can be coupled at other points to an iRNA agent. Preferred entities are those which target to the liver.

15

20

25

Attorney's Docket No.: 14174-072W01

Preferred moieties are ligands, which are coupled, preferably covalently, either directly or indirectly via an intervening tether, to the RRMS carrier. In preferred embodiments, the ligand is attached to the carrier *via* an intervening tether. As discussed above, the ligand or tethered ligand may be present on the RRMS monomer when the RRMS monomer is incorporated into the growing strand. In some embodiments, the ligand may be incorporated into a "precursor" RRMS after a "precursor" RRMS monomer has been incorporated into the growing strand. For example, an RRMS monomer having, e.g., an amino-terminated tether (i.e., having no associated ligand), e.g., TAP-(CH₂)_nNH₂ may be incorporated into a growing sense or antisense strand. In a subsequent operation, i.e., after incorporation of the precursor monomer into the strand, a ligand having an electrophilic group, e.g., a pentafluorophenyl ester or aldehyde group, can subsequently be attached to the precursor RRMS by coupling the electrophilic group of the ligand with the terminal nucleophilic group of the precursor RRMS tether.

In preferred embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In preferred embodiments a ligand provides an enhanced affinity for a selected target, e.g, molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Preferred ligands will not take part in duplex pairing in a duplexed nucleic acid.

Preferred ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified oligoribonucleotide, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.

Ligands in general can include therapeutic modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; and nuclease-resistance conferring moieties. General examples include lipids, steroids, vitamins, sugars, proteins, peptides, polyamines, and peptide mimics.

Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may

20

25

Attorney's Docket No.: 14174-072W01

also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.

Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a liver cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetylgalactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic.

Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g. cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]₂, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine,

10

15

20

25

Attorney's Docket No.: 14174-072W01

imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.

Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.

The ligand can be a substance, e.g, a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.

The ligand can increase the uptake of the iRNA agent into the cell by activating an inflammatory response, for example. Exemplary ligands that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, or gamma interferon.

In one aspect, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule preferably binds a serum protein, e.g., human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-liver target tissue of the body. Preferably, the target tissue is the liver, preferably parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.

A lipid based ligand can be used to modulate, e.g., control the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the liver and therefore less likely to be cleared from the body.

10

15

20

Attorney's Docket No.: 14174-072W01

In a preferred embodiment, the lipid based ligand binds HSA. Preferably, it binds HSA with a sufficient affinity such that the conjugate will be preferably distributed to a non-kidney tissue. However, it is preferred that the affinity not be so strong that the HSA-ligand binding cannot be reversed.

In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).

In another aspect, the ligand is a cell-permeation agent, preferably a helical cell-permeation agent. Preferably, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is preferably an alpha-helical agent, which preferably has a lipophilic and a lipophobic phase.

The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, *e.g.*, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long (see Table 2, for example).

<u>Table 2</u>. Exemplary Cell Permeation Peptides

Cell Permeation Peptide	Amino acid Sequence	Reference
Penetratin	RQIKIWFQNRRMKWKK (SEQ ID NO:6700)	Derossi <i>et al.</i> , J. Biol. Chem. 269:10444, 1994
Tat fragment (48-60)	GRKKRRQRRRPPQC (SEQ ID NO:6701)	Vives et al., J. Biol. Chem., 272:16010, 1997
Signal Sequence- based peptide	GALFLGWLGAAGSTMGAWSQPKKKRKV (SEQ ID NO:6702)	Chaloin et al., Biochem. Biophys. Res. Commun., 243:601, 1998
PVEC	LLIILRRRIRKQAHAHSK (SEQ ID NO:6703)	Elmquist <i>et al.</i> , Exp. Cell Res., 269:237, 2001
Transportan	GWTLNSAGYLLKINLKALAALAKKIL (SEQ ID NO:6704)	Pooga et al., FASEB J., 12:67, 1998

Amphiphilic model peptide	KLALKLALKALKAALKLA (SEQ ID NO:6705)	Oehlke et al., Mol. Ther., 2:339, 2000
Arg ₉	RRRRRRRR (SEQ ID NO:6706)	Mitchell <i>et al.</i> , J. Pept. Res., 56:318, 2000
Bacterial cell wall permeating	KFFKFFKFFK (SEQ ID NO:6707)	
LL-37	LLGDFFRKSKEKIGKEFKRIVQRIKDFLRN LVPRTES (SEQ ID NO:6708)	
Cecropin P1	SWLSKTAKKLENSAKKRISEGIAIAIQGGP R (SEQ ID NO:6709)	
α-defensin	ACYCRIPACIAGERRYGTCIYQGRLWAFC C (SEQ ID NO:6710)	
b-defensin	DHYNCVSSGGQCLYSACPIFTKIQGTCYR GKAKCCK (SEQ ID NO:6711)	
Bactenecin	RKCRIVVIRVCR (SEQ ID NO:6712)	
PR-39	RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPP RFPPRFPGKR-NH2 (SEQ ID NO:6713)	
Indolicidin	ILPWKWPWWPWRR-NH2 (SEQ ID NO:6714)	

A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. The peptide moiety can be an L-peptide or D-peptide. In another alternative, the

15

20

25

30

Attorney's Docket No.: 14174-072W01

peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO:6715). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO:6716)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a "delivery" peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO:6717)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO:6718)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Preferably the peptide or peptidomimetic tethered to an iRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.

An RGD peptide moiety can be used to target a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann *et al.*, Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an iRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki *et al.*, Cancer Gene Therapy 8:783-787, 2001). The RGD peptide can be linear or cyclic, and can be modified, *e.g.*, glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing $\alpha_V \beta_3$ (Haubner *et al.*, Jour. Nucl. Med., 42:326-336, 2001).

Peptides that target markers enriched in proliferating cells can be used. *E.g.*, RGD containing peptides and peptidomimetics can target cancer cells, in particular cells that exhibit an $\alpha_{\nu}\beta_{3}$ integrin. Thus, one could use RGD peptides, cyclic peptides containing RGD, RGD peptides that include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the α_{ν} - β_{3} integrin ligand. Generally, such ligands can be used

15

20

25

Attorney's Docket No.: 14174-072W01

to control proliferating cells and angiogeneis. Preferred conjugates of this type include an iRNA agent that targets PECAM-1, VEGF, or other cancer gene, e.g., a cancer gene described herein.

A "cell permeation peptide" is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α -helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α -defensin, β -defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).

In one embodiment, a targeting peptide tethered to an RRMS can be an amphipathic α -helical peptide. Exemplary amphipathic α -helical peptides include, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, *S. clava* peptides, hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H_2A peptides, Xenopus peptides, esculentinis-1, and caerins. A number of factors will preferably be considered to maintain the integrity of helix stability. For example, a maximum number of helix stabilization residues will be utilized (e.g., leu, ala, or lys), and a minimum number helix destabilization residues will be utilized (e.g., proline, or cyclic monomeric units. The capping residue will be considered (for example Gly is an exemplary N-capping residue and/or C-terminal amidation can be used to provide an extra H-bond to stabilize the helix. Formation of salt bridges between residues with opposite charges, separated by $i \pm 3$, or $i \pm 4$ positions can provide stability. For example, cationic residues such as lysine, arginine, homo-arginine, ornithine or histidine can form salt bridges with the anionic residues glutamate or aspartate.

Peptide and petidomimetic ligands include those having naturally occurring or modified peptides, e.g., D or L peptides; α , β , or γ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides.

15

20

25

Attorney's Docket No.: 14174-072W01

Methods for making iRNA agents

iRNA agents can include modified or non-naturally occuring bases, e.g., bases described in copending and coowned United States Provisional Application Serial No. 60/463,772, filed on April 17, 2003, which is hereby incorporated by reference and/or in copending and coowned United States Provisional Application Serial No. 60/465,802, filed on April 25, 2003, which is hereby incorporated by reference. Monomers and iRNA agents which include such bases can be made by the methods found in United States Provisional Application Serial No. 60/463,772, filed on April 17, 2003, and/or in United States Provisional Application Serial No. 60/465,802, filed on April 25, 2003.

In addition, the invention includes iRNA agents having a modified or non-naturally occurring base and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a modified or non-naturally occurring base.

The synthesis and purification of oligonucleotide peptide conjugates can be performed by established methods. See, for example, Trufert *et al.*, Tetrahedron, 52:3005, 1996; and Manoharan, "Oligonucleotide Conjugates in Antisense Technology," in <u>Antisense Drug Technology</u>, ed. S.T. Crooke, Marcel Dekker, Inc., 2001.

In one embodiment of the invention, a peptidomimetic can be modified to create a constrained peptide that adopts a distinct and specific preferred conformation, which can increase the potency and selectivity of the peptide. For example, the constrained peptide can be an azapeptide (Gante, Synthesis, 405-413, 1989). An azapeptide is synthesized by replacing the α-carbon of an amino acid with a nitrogen atom without changing the structure of the amino acid side chain. For example, the azapeptide can be synthesized by using hydrazine in traditional peptide synthesis coupling methods, such as by reacting hydrazine with a "carbonyl donor," e.g., phenylchloroformate.

10

15

20

25

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be an N-methyl peptide. N-methyl peptides are composed of N-methyl amino acids, which provide an additional methyl group in the peptide backbone, thereby potentially providing additional means of resistance to proteolytic cleavage. N-methyl peptides can by synthesized by methods known in the art (see, for example, Lindgren et al., Trends Pharmacol. Sci. 21:99, 2000; Cell Penetrating Peptides: Processes and Applications, Langel, ed., CRC Press, Boca Raton, FL, 2002; Fische et al., Bioconjugate. Chem. 12: 825, 2001; Wander et al., J. Am. Chem. Soc., 124:13382, 2002). For example, an Ant or Tat peptide can be an N-methyl peptide.

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be a β -peptide. β -peptides form stable secondary structures such as helices, pleated sheets, turns and hairpins in solutions. Their cyclic derivatives can fold into nanotubes in the solid state. β -peptides are resistant to degradation by proteolytic enzymes. β -peptides can be synthesized by methods known in the art. For example, an Ant or Tat peptide can be a β -peptide.

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be a oligocarbamate. Oligocarbamate peptides are internalized into a cell by a transport pathway facilitated by carbamate transporters. For example, an Ant or Tat peptide can be an oligocarbamate.

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be an oligourea conjugate (or an oligothiourea conjugate), in which the amide bond of a peptidomimetic is replaced with a urea moiety. Replacement of the amide bond provides increased resistance to degradation by proteolytic enzymes, e.g., proteolytic enzymes in the gastrointestinal tract. In one embodiment, an oligourea conjugate is tethered to an iRNA agent for use in oral delivery. The backbone in each repeating unit of an oligourea peptidomimetic can be extended by one carbon atom in comparison with the natural amino acid. The single carbon atom extension can increase peptide stability and lipophilicity, for example. An oligourea peptide can therefore be advantageous when an iRNA agent must traverse

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

the blood-brain barrier, such as for the treatment of a neurological disorder. In one embodiment, a hydrogen bonding unit is conjugated to the oligourea peptide, such as to create an increased affinity with a receptor. For example, an Ant or Tat peptide can be an oligourea conjugate (or an oligothiourea conjugate).

The siRNA peptide conjugates of the invention can be affiliated with, e.g., tethered to, RRMSs occurring at various positions on an iRNA agent. For example, a peptide can be terminally conjugated, on either the sense or the antisense strand, or a peptide can be bisconjugated (one peptide tethered to each end, one conjugated to the sense strand, and one conjugated to the antisense strand). In another option, the peptide can be internally conjugated, such as in the loop of a short hairpin iRNA agent. In yet another option, the peptide can be affiliated with a complex, such as a peptide-carrier complex.

A peptide-carrier complex consists of at least a carrier molecule, which can encapsulate one or more iRNA agents (such as for delivery to a biological system and/or a cell), and a peptide moiety tethered to the outside of the carrier molecule, such as for targeting the carrier complex to a particular tissue or cell type. A carrier complex can carry additional targeting molecules on the exterior of the complex, or fusogenic agents to aid in cell delivery. The one or more iRNA agents encapsulated within the carrier can be conjugated to lipophilic molecules, which can aid in the delivery of the agents to the interior of the carrier.

A carrier molecule or structure can be, for example, a micelle, a liposome (e.g., a cationic liposome), a nanoparticle, a microsphere, or a biodegradable polymer. A peptide moiety can be tethered to the carrier molecule by a variety of linkages, such as a disulfide linkage, an acid labile linkage, a peptide-based linkage, an oxyamino linkage or a hydrazine linkage. For example, a peptide-based linkage can be a GFLG peptide. Certain linkages will have particular advantages, and the advantages (or disadvantages) can be considered depending on the tissue target or intended use. For example, peptide based linkages are stable in the blood stream but are susceptible to enzymatic cleavage in the lysosomes.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

Targeting

5

10

15

20

25

The iRNA agents of the invention are particularly useful when targeted to the liver. An iRNA agent can be targeted to the liver by incorporation of an RRMS containing a ligand that targets the liver. For example, a liver-targeting agent can be a lipophilic moiety. Preferred lipophilic moieties include lipids, cholesterols, oleyl, retinyl, or cholesteryl residues. Other lipophilic moieties that can function as liver-targeting agents include cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.

An iRNA agent can also be targeted to the liver by association with a low-density lipoprotein (LDL), such as lactosylated LDL. Polymeric carriers complexed with sugar residues can also function to target iRNA agents to the liver.

A targeting agent that incorporates a sugar, e.g., galactose and/or analogues thereof, is particularly useful. These agents target, in particular, the parenchymal cells of the liver. For example, a targeting moiety can include more than one or preferably two or three galactose moieties, spaced about 15 angstroms from each other. The targeting moiety can alternatively be lactose (e.g., three lactose moieties), which is glucose coupled to a galactose. The targeting moiety can also be N-Acetyl-Galactosamine, N-Ac-Glucosamine. A mannose or mannose-6-phosphate targeting moiety can be used for macrophage targeting.

Conjugation of an iRNA agent with a serum albumin (SA), such as human serum albumin, can also be used to target the iRNA agent to a non-kidney tissue, such as the liver.

An iRNA agent targeted to the liver by an RRMS targeting moiety described herein can target a gene expressed in the liver.

An iRNA agent targeted to the liver by an RRMS targeting moiety described herein can target a gene expressed in the liver. For example, the iRNA agent can target p21(WAF1/DIP1), P27(KIP1), the α -fetoprotein gene, beta-catenin, or c-MET, such as for treating a cancer of the liver. In another embodiment, the iRNA agent can target apoB-100, such as for the treatment of

an HDL/LDL cholesterol imbalance; dyslipidemias, e.g., familial combined hyperlipidemia (FCHL), or acquired hyperlipidemia; hypercholesterolemia; statin-resistant hypercholesterolemia; coronary artery disease (CAD); coronary heart disease (CHD); or atherosclerosis. In another embodiment, the iRNA agent can target forkhead homologue in rhabdomyosarcoma (FKHR); glucagon; glucagon receptor; glycogen phosphorylase; PPAR-Gamma Coactivator (PGC-1); fructose-1,6-bisphosphatase; glucose-6-phosphatase; glucose-6-phosphate translocator; glucokinase inhibitory regulatory protein; or phosphoenolpyruvate carboxykinase (PEPCK), such as to inhibit hepatic glucose production in a mammal, such as a human, such as for the treatment of diabetes. In another embodiment, an iRNA agent targeted to the liver can target Factor V, e.g., the Leiden Factor V allele, such as to reduce the tendency to form a blood clot. An iRNA agent targeted to the liver can include a sequence which targets hepatitis virus (e.g., Hepatitis A, B, C, D, E, F, G, or H). For example, an iRNA agent of the invention can target any one of the nonstructural proteins of HCV: NS3, 4A, 4B, 5A, or 5B. For the treatment of hepatitis B, an iRNA agent can target the protein X (HBx) gene, for example.

Preferred ligands on RRMSs include folic acid, glucose, cholesterol, cholic acid, Vitamin E, Vitamin K, or Vitamin A.

Definitions

10

15

20

25

The term "halo" refers to any radical of fluorine, chlorine, bromine or iodine.

The term "alkyl" refers to a hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C₁-C₁₂ alkyl indicates that the group may have from 1 to 12 (inclusive) carbon atoms in it. The term "haloalkyl" refers to an alkyl in which one or more hydrogen atoms are replaced by halo, and includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkyl). Alkyl and haloalkyl groups may be optionally inserted with O, N, or S. The terms "aralkyl" refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group. Examples of "aralkyl" include benzyl, 9-fluorenyl, benzhydryl, and trityl groups.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

The term "alkenyl" refers to a straight or branched hydrocarbon chain containing 2-8 carbon atoms and characterized in having one or more double bonds. Examples of a typical alkenyl include, but not limited to, allyl, propenyl, 2-butenyl, 3-hexenyl and 3-octenyl groups. The term "alkynyl" refers to a straight or branched hydrocarbon chain containing 2-8 carbon atoms and characterized in having one or more triple bonds. Some examples of a typical alkynyl are ethynyl, 2-propynyl, and 3-methylbutynyl, and propargyl. The sp² and sp³ carbons may optionally serve as the point of attachment of the alkenyl and alkynyl groups, respectively.

The term "alkoxy" refers to an -O-alkyl radical. The term "aminoalkyl" refers to an alkyl substituted with an aminoThe term "mercapto" refers to an -SH radical. The term "thioalkoxy" refers to an -S-alkyl radical.

The term "alkylene" refers to a divalent alkyl (*i.e.*, -R-), e.g., -CH₂-, -CH₂CH₂-, and -CH₂CH₂-CH₂-. The term "alkylenedioxo" refers to a divalent species of the structure -O-R-O-, in which R represents an alkylene.

The term "aryl" refers to an aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system, wherein any ring atom capable of substitution can be substituted by a substituent.

Examples of aryl moieties include, but are not limited to, phenyl, naphthyl, and anthracenyl.

The term "cycloalkyl" as employed herein includes saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon groups having 3 to 12 carbons, wherein any ring atom capable of substitution can be substituted by a substituent. The cycloalkyl groups herein described may also contain fused rings. Fused rings are rings that share a common carbon-carbon bond. Examples of cycloalkyl moieties include, but are not limited to, cyclohexyl, adamantyl, and norbornyl.

The term "heterocyclyl" refers to a nonaromatic 3-10 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein any ring atom capable of substitution can be substituted by a substituent. The heterocyclyl groups herein described may also contain fused rings. Fused rings are rings that share a common carbon-carbon bond. Examples of

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

heterocyclyl include, but are not limited to tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholino, pyrrolinyl and pyrrolidinyl.

The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein any ring atom capable of substitution can be substituted by a substituent.

The term "oxo" refers to an oxygen atom, which forms a carbonyl when attached to carbon, an N-oxide when attached to nitrogen, and a sulfoxide or sulfone when attached to sulfur.

The term "acyl" refers to an alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, or heteroarylcarbonyl substituent, any of which may be further substituted by substituents.

The term "substituents" refers to a group "substituted" on an alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group. Suitable substituents include, without limitation, alkyl, alkenyl, alkynyl, alkoxy, halo, hydroxy, cyano, nitro, amino, SO₃H, sulfate, phosphate, perfluoroalkyl, perfluoroalkoxy, methylenedioxy, ethylenedioxy, carboxyl, oxo, thioxo, imino (alkyl, aryl, aralkyl), S(O)_nalkyl (where n is 0-2), S(O)_n aryl (where n is 0-2), S(O)_n heteroaryl (where n is 0-2), S(O)_n heterocyclyl (where n is 0-2), amine (mono-, di-, alkyl, cycloalkyl, aralkyl, heteroaralkyl, and combinations thereof), ester (alkyl, aralkyl, heteroaralkyl), amide (mono-, di-, alkyl, aralkyl, heteroaralkyl, and combinations thereof), sulfonamide (mono-, di-, alkyl, aralkyl, heteroaralkyl, and combinations thereof), unsubstituted aryl, unsubstituted heteroaryl, unsubstituted heterocyclyl, and unsubstituted cycloalkyl. In one aspect, the substituents on a group are independently any one single, or any subset of the aforementioned substituents.

The terms "adeninyl, cytosinyl, guaninyl, thyminyl, and uracilyl" and the like refer to radicals of adenine, cytosine, guanine, thymine, and uracil.

As used herein, an "unusual" nucleobase can include any one of the following:

2-methyladeninyl,

N6-methyladeninyl,

2-methylthio-N6-methyladeninyl,

N6-isopentenyladeninyl,

5 2-methylthio-N6-isopentenyladeninyl,

N6-(cis-hydroxyisopentenyl)adeninyl,

2-methylthio-N6-(cis-hydroxyisopentenyl) adeninyl,

N6-glycinylcarbamoyladeninyl,

N6-threonylcarbamoyladeninyl,

10 2-methylthio-N6-threonyl carbamoyladeninyl,

N6-methyl-N6-threonylcarbamoyladeninyl,

N6-hydroxynorvalylcarbamoyladeninyl,

2-methylthio-N6-hydroxynorvalyl carbamoyladeninyl,

N6,N6-dimethyladeninyl,

15 3-methylcytosinyl,

5-methylcytosinyl,

2-thiocytosinyl,

5-formylcytosinyl,

N4-methylcytosinyl,

5-hydroxymethylcytosinyl,

1-methylguaninyl,

N2-methylguaninyl,

5 7-methylguaninyl,

N2,N2-dimethylguaninyl,

N2,N2,7-trimethylguaninyl,

1-methylguaninyl,

5 7-cyano-7-deazaguaninyl,

7-aminomethyl-7-deazaguaninyl,

pseudouracilyl,

dihydrouracilyl,

5-methyluracilyl,

10 1-methylpseudouracilyl,

2-thiouracilyl,

4-thiouracilyl,

WO 2004/091515

Attorney's Docket No.: 14174-072W01

- 2-thiothyminyl
- 5-methyl-2-thiouracilyl,
- 3-(3-amino-3-carboxypropyl)uracilyl,
- 5-hydroxyuracilyl,
- 5 5-methoxyuracilyl,

uracilyl 5-oxyacetic acid,

uracilyl 5-oxyacetic acid methyl ester,

- 5-(carboxyhydroxymethyl)uracilyl,
- 5-(carboxyhydroxymethyl)uracilyl methyl ester,
- 5-methoxycarbonylmethyluracilyl,
 - 5-methoxycarbonylmethyl-2-thiouracilyl,
 - 5-aminomethyl-2-thiouracilyl,
 - 5-methylaminomethyluracilyl,
 - 5-methylaminomethyl-2-thiouracilyl,
- 5-methylaminomethyl-2-selenouracilyl,
 - 5-carbamoylmethyluracilyl,
 - 5-carboxymethylaminomethyluracilyl,
 - 5-carboxymethylaminomethyl-2-thiouracilyl,
 - 3-methyluracilyl,
- 20 1-methyl-3-(3-amino-3-carboxypropyl) pseudouracilyl,

WO 2004/091515 PCT/US2004/011255

The state of

Attorney's Docket No.: 14174-072W01

5-carboxymethyluracilyl,

5-methyldihydrouracilyl, or

3-methylpseudouracilyl.

Palindromes

5

10

15

20

25

An RNA, e.g., an iRNA agent, can have a palindrome structure as described herein and those described in one or more of United States Provisional Application Serial No. 60/452,682, filed March 7, 2003; United States Provisional Application Serial No. 60/462,894, filed April 14,2003; and International Application No. PCT/US04/07070, filed March 8, 2004, all of which are hereby incorporated by reference. The iRNA agents of the invention can target more than one RNA region. For example, an iRNA agent can include a first and second sequence that are sufficiently complementary to each other to hybridize. The first sequence can be complementary to a first target RNA region and the second sequence can be complementary to a second target RNA region. The first and second sequences of the iRNA agent can be on different RNA strands, and the mismatch between the first and second sequences can be less than 50%, 40%, 30%, 20%, 10%, 5%, or 1%. The first and second sequences of the iRNA agent are on the same RNA strand, and in a related embodiment more than 50%, 60%, 70%, 80%, 90%, 95%, or 1% of the iRNA agent can be in bimolecular form. The first and second sequences of the iRNA agent can be fully complementary to each other.

The first target RNA region can be encoded by a first gene and the second target RNA region can encoded by a second gene, or the first and second target RNA regions can be different regions of an RNA from a single gene. The first and second sequences can differ by at least 1 nucleotide.

The first and second target RNA regions can be on transcripts encoded by first and second sequence variants, e.g., first and second alleles, of a gene. The sequence variants can be mutations, or polymorphisms, for example. The first target RNA region can include a nucleotide substitution, insertion, or deletion relative to the second target RNA region, or the second target RNA region can a mutant or variant of the first target region.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

The first and second target RNA regions can comprise viral or human RNA regions. The first and second target RNA regions can also be on variant transcripts of an oncogene or include different mutations of a tumor suppressor gene transcript. In addition, the first and second target RNA regions can correspond to hot-spots for genetic variation.

The compositions of the invention can include mixtures of iRNA agent molecules. For example, one iRNA agent can contain a first sequence and a second sequence sufficiently complementary to each other to hybridize, and in addition the first sequence is complementary to a first target RNA region and the second sequence is complementary to a second target RNA region. The mixture can also include at least one additional iRNA agent variety that includes a third sequence and a fourth sequence sufficiently complementary to each other to hybridize, and where the third sequence is complementary to a third target RNA region and the fourth sequence is complementary to a fourth target RNA region. In addition, the first or second sequence can be sufficiently complementary to the third or fourth sequence to be capable of hybridizing to each other. The first and second sequences can be on the same or different RNA strands, and the third and fourth sequences can be on the same or different RNA strands.

The target RNA regions can be variant sequences of a viral or human RNA, and in certain embodiments, at least two of the target RNA regions can be on variant transcripts of an oncogene or tumor suppressor gene. The target RNA regions can correspond to genetic hotspots.

Methods of making an iRNA agent composition can include obtaining or providing information about a region of an RNA of a target gene (e.g., a viral or human gene, or an oncogene or tumor suppressor, e.g., p53), where the region has high variability or mutational frequency (e.g., in humans). In addition, information about a plurality of RNA targets within the region can be obtained or provided, where each RNA target corresponds to a different variant or mutant of the gene (e.g., a region including the codon encoding p53 248Q and/or p53 249S). The iRNA agent can be constructed such that a first sequence is complementary to a first of the plurality of variant RNA targets (e.g., encoding 249Q) and a second sequence is complementary to a second of the plurality of variant RNA targets (e.g., encoding 249S), and the first and second sequences can be sufficiently complementary to hybridize.

PCT/US2004/011255

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

Sequence analysis, e.g., to identify common mutants in the target gene, can be used to identify a region of the target gene that has high variability or mutational frequency. A region of the target gene having high variability or mutational frequency can be identified by obtaining or providing genotype information about the target gene from a population.

Expression of a target gene can be modulated, e.g., downregulated or silenced, by providing an iRNA agent that has a first sequence and a second sequence sufficiently complementary to each other to hybridize. In addition, the first sequence can be complementary to a first target RNA region and the second sequence can be complementary to a second target RNA region.

An iRNA agent can include a first sequence complementary to a first variant RNA target region and a second sequence complementary to a second variant RNA target region. The first and second variant RNA target regions can correspond to first and second variants or mutants of a target gene, e.g., viral gene, tumor suppressor or oncogene. The first and second variant target RNA regions can include allelic variants, mutations (e.g., point mutations), or polymorphisms of the target gene. The first and second variant RNA target regions can correspond to genetic hotspots.

A plurality of iRNA agents (e.g., a panel or bank) can be provided.

Other than Canonical Watson-Crick Duplex Structures

An RNA, e.g., an iRNA agent can include monomers which can form other than a canonical Watson-Crick pairing with another monomer, e.g., a monomer on another strand, such as those described herein and those described in United States Provisional Application Serial No. 60/465,665, filed April 25, 2003, and International Application No. PCT/US04/07070, filed March 8, 2004, both of which are hereby incorporated by reference.

The use of "other than canonical Watson-Crick pairing" between monomers of a duplex can be used to control, often to promote, melting of all or part of a duplex. The iRNA agent can include a monomer at a selected or constrained position that results in a first level of stability in the iRNA agent duplex (e.g., between the two separate molecules of a double stranded iRNA agent) and a second level of stability in a duplex between a sequence of an iRNA agent and

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

another sequence molecule, e.g., a target or off-target sequence in a subject. In some cases the second duplex has a relatively greater level of stability, e.g., in a duplex between an anti-sense sequence of an iRNA agent and a target mRNA. In this case one or more of the monomers, the position of the monomers in the iRNA agent, and the target sequence (sometimes referred to herein as the selection or constraint parameters), are selected such that the iRNA agent duplex is has a comparatively lower free energy of association (which while not wishing to be bound by mechanism or theory, is believed to contribute to efficacy by promoting disassociation of the duplex iRNA agent in the context of the RISC) while the duplex formed between an anti-sense targeting sequence and its target sequence, has a relatively higher free energy of association (which while not wishing to be bound by mechanism or theory, is believed to contribute to efficacy by promoting association of the anti-sense sequence and the target RNA).

In other cases the second duplex has a relatively lower level of stability, e.g., in a duplex between a sense sequence of an iRNA agent and an <u>off-target</u> mRNA. In this case one or more of the monomers, the position of the monomers in the iRNA agent, and an off-target sequence, are selected such that the iRNA agent duplex is has a comparatively higher free energy of association while the duplex formed between a sense targeting sequence and its off-target sequence, has a relatively lower free energy of association (which while not wishing to be bound by mechanism or theory, is believed to reduce the level of off-target silencing by contribute to efficacy by promoting disassociation of the duplex formed by the sense strand and the off-target sequence).

Thus, inherent in the structure of the iRNA agent is the property of having a first stability for the intra-iRNA agent duplex and a second stability for a duplex formed between a sequence from the iRNA agent and another RNA, e.g., a target mRNA. As discussed above, this can be accomplished by judicious selection of one or more of the monomers at a selected or constrained position, the selection of the position in the duplex to place the selected or constrained position, and selection of the sequence of a target sequence (e.g., the particular region of a target gene which is to be targeted). The iRNA agent sequences which satisfy these requirements are sometimes referred herein as constrained sequences. Exercise of the constraint or selection parameters can e, e.g., by inspection, or by computer assisted methods. Exercise of the

15

20

25

Attorney's Docket No.: 14174-072W01

parameters can result in selection of a target sequence and of particular monomers to give a desired result in terms of the stability, or relative stability, of a duplex.

Thus, in another aspect, the invention features, an iRNA agent which includes: a first sequence which targets a first target region and a second sequence which targets a second target region. The first and second sequences have sufficient complementarity to each other to hybridize, e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In a duplex region of the iRNA agent, at a selected or constrained position, the first target region has a first monomer, and the second target region has a second monomer. The first and second monomers occupy complementary or corresponding positions. One, and preferably both monomers are selected such that the stability of the pairing of the monomers contribute to a duplex between the first and second sequence will differ form the stability of the pairing between the first or second sequence with a target sequence.

Usually, the monomers will be selected (selection of the target sequence may be required as well) such that they form a pairing in the iRNA agent duplex which has a lower free energy of dissociation, and a lower Tm, than will be possessed by the paring of the monomer with its complementary monomer in a duplex between the iRNA agent sequence and a target RNA duplex.

The constraint placed upon the monomers can be applied at a selected site or at more than one selected site. By way of example, the constraint can be applied at more than 1, but less than 3, 4, 5, 6, or 7 sites in an iRNA agent duplex.

A constrained or selected site can be present at a number of positions in the iRNA agent duplex. E.g., a constrained or selected site can be present within 3, 4, 5, or 6 positions from either end, 3' or 5' of a duplexed sequence. A constrained or selected site can be present in the middle of the duplex region, e.g., it can be more than 3, 4, 5, or 6, positions from the end of a duplexed region.

In some embodiment the duplex region of the iRNA agent will have, mismatches, in addition to the selected or constrained site or sites. Preferably it will have no more than 1, 2, 3,

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

4, or 5 bases, which do not form canonical Watson-Crick pairs or which do not hybridize. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

The monomers can be selected such that: first and second monomers are naturally occurring ribonuceotides, or modified ribonucleotides having naturally occurring bases, and when occupying complemetary sites either do not pair and have no substantial level of H-bonding, or form a non canonical Watson-Crick pairing and form a non-canonical pattern of H bonding, which usually have a lower free energy of dissociation than seen in a canonical Watson-Crick pairing, or otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing. When one (or both) of the iRNA agent sequences duplexes with a target, the first (or second) monomer forms a canonical Watson-Crick pairing with the base in the complemetary position on the target, or forms a non canonical Watson-Crick pairing having a higher free energy of dissociation and a higher Tm than seen in the paring in the iRNA agent. The classical Watson-Crick pairings are as follows: A-T, G-C, and A-U. Non-canonical Watson-Crick pairings are known in the art and can include, U-U, G-G, G-A_{trans}, G-A_{cis}, and GU.

The monomer in one or both of the sequences is selected such that, it does not pair, or forms a pair with its corresponding monomer in the other sequence which minimizes stability (e.g., the H bonding formed between the monomer at the selected site in the one sequence and its monomer at the corresponding site in the other sequence are less stable than the H bonds formed by the monomer one (or both) of the sequences with the respective target sequence. The monomer is one or both strands is also chosen to promote stability in one or both of the duplexes made by a strand and its target sequence. E.g., one or more of the monomers and the target sequences are selected such that at the selected or constrained position, there is are no H bonds formed, or a non canonical pairing is formed in the iRNA agent duplex, or otherwise they otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing, but when one (or both) sequences form a duplex

5

10

15

20

25

with the respective target, the pairing at the selected or constrained site is a canonical Watson-Crick paring.

The inclusion of such a monomers will have one or more of the following effects: it will destabilize the iRNA agent duplex, it will destabilize interactions between the sense sequence and unintended target sequences, sometimes referred to as off-target sequences, and duplex interactions between the a sequence and the intended target will not be destabilized.

By way of example:

The monomer at the selected site in the first sequence includes an A (or a modified base which pairs with T), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., G. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes U (or a modified base which pairs with A), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., U or G. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes a G (or a modified base which pairs with C), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., G, A_{cis} , A_{trans} , or U. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which

5

10

15

20

25

will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes a C (or a modified base which pairs with G), and the monomer in at the selected position in the second sequence is chosen a monomer which will not pair or which will form a non-canonical pairing. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

A non-naturally occurring or modified monomer or monomers can be chosen such that when a non-naturally occurring or modified monomer occupies a positions at the selected or constrained position in an iRNA agent they exhibit a first free energy of dissociation and when one (or both) of them pairs with a naturally occurring monomer, the pair exhibits a second free energy of dissociation, which is usually higher than that of the pairing of the first and second monomers. E.g., when the first and second monomers occupy complementary positions they either do not pair and have no substantial level of H-bonding, or form a weaker bond than one of them would form with a naturally occurring monomer, and reduce the stability of that duplex, but when the duplex dissociates at least one of the strands will form a duplex with a target in which the selected monomer will promote stability, e.g., the monomer will form a more stable pair with a naturally occurring monomer in the target sequence than the pairing it formed in the iRNA agent.

An example of such a pairing is 2-amino A and either of a 2-thio pyrimidine analog of U or T.

When placed in complementary positions of the iRNA agent these monomers will pair very poorly and will minimize stability. However, a duplex is formed between 2 amino A and the U of a naturally occurring target, or a duplex is between 2-thio U and the A of a naturally occurring target or 2-thio T and the A of a naturally occurring target will have a relatively higher free energy of dissociation and be more stable. This is shown in the FIG. 1.

5

15

20

25

The pair shown in FIG. 1 (the 2-amino A and the 2-s U and T) is exemplary. In another embodiment, the monomer at the selected position in the sense strand can be a universal pairing moiety. A universal pairing agent will form some level of H bonding with more than one and preferably all other naturally occurring monomers. An examples of a universal pairing moiety is a monomer which includes 3-nitro pyrrole. (Examples of other candidate universal base analogs can be found in the art, e.g., in Loakes, 2001, NAR 29: 2437-2447, hereby incorporated by reference. Examples can also be found in the section on Universal Bases below.) In these cases the monomer at the corresponding position of the anti-sense strand can be chosen for its ability to form a duplex with the target and can include, e.g., A, U, G, or C.

iRNA agents of the invention can include:

A sense sequence, which preferably does not target a sequence in a subject, and an antisense sequence, which targets a target gene in a subject. The sense and anti-sense sequences have sufficient complementarity to each other to hybridize hybridize, e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In a duplex region of the iRNA agent, at a selected or constrained position, the monomers are selected such that:

The monomer in the sense sequence is selected such that, it does not pair, or forms a pair with its corresponding monomer in the anti-sense strand which minimizes stability (e.g., the H bonding formed between the monomer at the selected site in the sense strand and its monomer at the corresponding site in the anti-sense strand are less stable than the H bonds formed by the monomer of the anti-sense sequence and its canonical Watson-Crick partner or, if the monomer in the anti-sense strand includes a modified base, the natural analog of the modified base and its canonical Watson-Crick partner);

The monomer is in the corresponding position in the anti-sense strand is selected such that it maximizes the stability of a duplex it forms with the target sequence, e.g., it forms a canonical Watson-Crick paring with the monomer in the corresponding position on the target stand;

10

15

20

25

Attorney's Docket No.: 14174-072W01

Optionally, the monomer in the sense sequence is selected such that, it does not pair, or forms a pair with its corresponding monomer in the anti-sense strand which minimizes stability with an off-target sequence.

The inclusion of such a monomers will have one or more of the following effects: it will destabilize the iRNA agent duplex, it will destabilize interactions between the sense sequence and unintended target sequences, sometimes referred to as off-target sequences, and duplex interactions between the anti-sense strand and the intended target will not be destabilized.

The constraint placed upon the monomers can be applied at a selected site or at more than one selected site. By way of example, the constraint can be applied at more than 1, but less than 3, 4, 5, 6, or 7 sites in an iRNA agent duplex.

A constrained or selected site can be present at a number of positions in the iRNA agent duplex. E.g., a constrained or selected site can be present within 3, 4, 5, or 6 positions from either end, 3' or 5' of a duplexed sequence. A constrained or selected site can be present in the middle of the duplex region, e.g., it can be more than 3, 4, 5, or 6, positions from the end of a duplexed region.

In some embodiment the duplex region of the iRNA agent will have, mismatches, in addition to the selected or constrained site or sites. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, which do not form canonical Watson-Crick pairs or which do not hybridize. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

The monomers can be selected such that: first and second monomers are naturally occurring ribonuceotides, or modified ribonucleotides having naturally occurring bases, and when occupying complementary sites either do not pair and have no substantial level of H-bonding, or form a non-canonical Watson-Crick pairing and form a non-canonical pattern of H bonding, which usually have a lower free energy of dissociation than seen in a canonical

5

10

15

20

25

Watson-Crick pairing, or otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing. When one (or both) of the iRNA agent sequences duplexes with a target, the first (or second) monomer forms a canonical Watson-Crick pairing with the base in the complemetary position on the target, or forms a non canonical Watson-Crick pairing having a higher free energy of dissociation and a higher Tm than seen in the paring in the iRNA agent. The classical Watson-Crick parings are as follows: A-T, G-C, and A-U. Non-canonical Watson-Crick pairings are known in the art and can include, U-U, G-G, G-A_{trans}, G-A_{cis}, and GU.

The monomer in one or both of the sequences is selected such that, it does not pair, or forms a pair with its corresponding monomer in the other sequence which minimizes stability (e.g., the H bonding formed between the monomer at the selected site in the one sequence and its monomer at the corresponding site in the other sequence are less stable than the H bonds formed by the monomer one (or both) of the sequences with the respective target sequence. The monomer is one or both strands is also chosen to promote stability in one or both of the duplexes made by a strand and its target sequence. E.g., one or more of the monomers and the target sequences_are selected such that at the selected or constrained position, there is are no H bonds formed, or a non canonical pairing is formed in the iRNA agent duplex, or otherwise they otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing, but when one (or both) sequences form a duplex with the respective target, the pairing at the selected or constrained site is a canonical Watson-Crick paring.

The inclusion of such a monomers will have one or more of the following effects: it will destabilize the iRNA agent duplex, it will destabilize interactions between the sense sequence and unintended target sequences, sometimes referred to as off-target sequences, and duplex interactions between the a sequence and the intended target will not be destabilized.

By way of example:

The monomer at the selected site in the first sequence includes an A (or a modified base which pairs with T), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., G.

5

10

15

20

25

These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes U (or a modified base which pairs with A), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., U or G. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes a G (or a modified base which pairs with C), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., G, A_{cis} , A_{trans} , or U. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes a C (or a modified base which pairs with G), and the monomer in at the selected position in the second sequence is chosen a monomer which will not pair or which will form a non-canonical pairing. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

A non-naturally occurring or modified monomer or monomers can be chosen such that when a non-naturally occurring or modified monomer occupies a positions at the selected or constrained position in an iRNA agent they exhibit a first free energy of dissociation and when

10

15

20

25

Attorney's Docket No.: 14174-072W01

one (or both) of them pairs with a naturally occurring monomer, the pair exhibits a second free energy of dissociation, which is usually higher than that of the pairing of the first and second monomers. E.g., when the first and second monomers occupy complementary positions they either do not pair and have no substantial level of H-bonding, or form a weaker bond than one of them would form with a naturally occurring monomer, and reduce the stability of that duplex, but when the duplex dissociates at least one of the strands will form a duplex with a target in which the selected monomer will promote stability, e.g., the monomer will form a more stable pair with a naturally occurring monomer in the target sequence than the pairing it formed in the iRNA agent.

An example of such a pairing is 2-amino A and either of a 2-thio pyrimidine analog of U or T.

When placed in complementary positions of the iRNA agent these monomers will pair very poorly and will minimize stability. However, a duplex is formed between 2 amino A and the U of a naturally occurring target, or a duplex is between 2-thio U and the A of a naturally occurring target or 2-thio T and the A of a naturally occurring target will have a relatively higher free energy of dissociation and be more stable.

The monomer at the selected position in the sense strand can be a universal pairing moiety. A universal pairing agent will form some level of H bonding with more than one and preferably all other naturally occurring monomers. An examples of a universal pairing moiety is a monomer which includes 3-nitro pyrrole. (Examples of other candidate universal base analogs can be found in the art, e.g., in Loakes, 2001, NAR 29: 2437-2447, hereby incorporated by reference. Examples can also be found in the section on Universal Bases below.) In these cases the monomer at the corresponding position of the anti-sense strand can be chosen for its ability to form a duplex with the target and can include, e.g., A, U, G, or C.

iRNA agents of the invention can include:

A sense sequence, which preferably does not target a sequence in a subject, and an antisense sequence, which targets a target gene in a subject. The sense and anti-sense sequences have sufficient complementarity to each other to hybridize hybridize, e.g., under physiological

15

20

25

Attorney's Docket No.: 14174-072W01

conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In a duplex region of the iRNA agent, at a selected or constrained position, the monomers are selected such that:

The monomer in the sense sequence is selected such that, it does not pair, or forms a pair with its corresponding monomer in the anti-sense strand which minimizes stability (e.g., the H bonding formed between the monomer at the selected site in the sense strand and its monomer at the corresponding site in the anti-sense strand are less stable than the H bonds formed by the monomer of the anti-sense sequence and its canonical Watson-Crick partner or, if the monomer in the anti-sense strand includes a modified base, the natural analog of the modified base and its canonical Watson-Crick partner);

The monomer is in the corresponding position in the anti-sense strand is selected such that it maximizes the stability of a duplex it forms with the target sequence, e.g., it forms a canonical Watson-Crick paring with the monomer in the corresponding position on the target stand;

Optionally, the monomer in the sense sequence is selected such that, it does not pair, or forms a pair with its corresponding monomer in the anti-sense strand which minimizes stability with an off-target sequence.

The inclusion of such a monomers will have one or more of the following effects: it will destabilize the iRNA agent duplex, it will destabilize interactions between the sense sequence and unintended target sequences, sometimes referred to as off-target sequences, and duplex interactions between the anti-sense strand and the intended target will not be destabilized.

The constraint placed upon the monomers can be applied at a selected site or at more than one selected site. By way of example, the constraint can be applied at more than 1, but less than 3, 4, 5, 6, or 7 sites in an iRNA agent duplex.

A constrained or selected site can be present at a number of positions in the iRNA agent duplex. E.g., a constrained or selected site can be present within 3, 4, 5, or 6 positions from either end, 3' or 5' of a duplexed sequence. A constrained or selected site can be present in the

5

10

15

20

25

middle of the duplex region, e.g., it can be more than 3, 4, 5, or 6, positions from the end of a duplexed region.

The iRNA agent can be selected to target a broad spectrum of genes, including any of the genes described herein.

In a preferred embodiment the iRNA agent has an architecture (architecture refers to one or more of overall length, length of a duplex region, the presence, number, location, or length of overhangs, sing strand versus double strand form) described herein.

E.g., the iRNA agent can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length and there is a duplex region of about 19 pairs. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In some embodiment the duplex region of the iRNA agent will have, mismatches, in addition to the selected or constrained site or sites. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, which do not form canonical Watson-Crick pairs or which do not hybridize. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

One or more selection or constraint parameters can be exercised such that: monomers at the selected site in the sense and anti-sense sequences are both naturally occurring ribonucleotides, or modified ribonucleotides having naturally occurring bases, and when occupying complementary sites in the iRNA agent duplex either do not pair and have no substantial level of H-bonding, or form a non-canonical Watson-Crick pairing and thus form a non-canonical pattern of H bonding, which generally have a lower free energy of dissociation than seen in a Watson-Crick pairing, or otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing. When one, usually the anti-sense sequence of the iRNA agent sequences forms a duplex with another

sequence, generally a sequence in the subject, and generally a target sequence, the monomer forms a classic Watson-Crick pairing with the base in the complementary position on the target, or forms a non-canonical Watson-Crick pairing having a higher free energy of dissociation and a higher Tm than seen in the paring in the iRNA agent. Optionally, when the other sequence of the iRNA agent, usually the sense sequences forms a duplex with another sequence, generally a sequence in the subject, and generally an off-target sequence, the monomer fails to forms a canonical Watson-Crick pairing with the base in the complementary position on the off target sequence, e.g., it forms or forms a non-canonical Watson-Crick pairing having a lower free energy of dissociation and a lower Tm.

By way of example:

10

15

20

25

the monomer at the selected site in the anti-sense stand includes an A (or a modified base which pairs with T), the corresponding monomer in the target is a T, and the sense strand is chosen from a base which will not pair or which will form a noncanonical pair, e.g., G;

the monomer at the selected site in the anti-sense stand includes a U (or a modified base which pairs with A), the corresponding monomer in the target is an A, and the sense strand is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., U or G;

the monomer at the selected site in the anti-sense stand includes a C (or a modified base which pairs with G), the corresponding monomer in the target is a G, and the sense strand is chosen a monomer which will not pair or which will form a non-canonical pairing, e.g., G, A_{cis} , A_{trans} , or U; or

the monomer at the selected site in the anti-sense stand includes a G (or a modified base which pairs with C), the corresponding monomer in the target is a C, and the sense strand is chosen from a monomer which will not pair or which will form a non-canonical pairing.

In another embodiment a non-naturally occurring or modified monomer or monomers is chosen such that when it occupies complementary a position in an iRNA agent they exhibit a first free energy of dissociation and when one (or both) of them pairs with a naturally occurring monomer, the pair exhibits a second free energy of dissociation, which is usually higher than that

15

20

25

Attorney's Docket No.: 14174-072W01

of the pairing of the first and second monomers. E.g., when the first and second monomers occupy complementary positions they either do not pair and have no substantial level of H-bonding, or form a weaker bond than one of them would form with a naturally occurring monomer, and reduce the stability of that duplex, but when the duplex dissociates at least one of the strands will form a duplex with a target in which the selected monomer will promote stability, e.g., the monomer will form a more stable pair with a naturally occurring monomer in the target sequence than the pairing it formed in the iRNA agent.

An example of such a pairing is 2-amino A and either of a 2-thio pyrimidine analog of U or T. As is discussed above, when placed in complementary positions of the iRNA agent these monomers will pair very poorly and will minimize stability. However, a duplex is formed between 2 amino A and the U of a naturally occurring target, or a duplex is formed between 2-thio U and the A of a naturally occurring target or 2-thio T and the A of a naturally occurring target will have a relatively higher free energy of dissociation and be more stable.

The monomer at the selected position in the sense strand can be a universal pairing moiety. A universal pairing agent will form some level of H bonding with more than one and preferably all other naturally occurring monomers. An examples of a universal pairing moiety is a monomer which includes 3-nitro pyrrole. Examples of other candidate universal base analogs can be found in the art, e.g., in Loakes, 2001, NAR 29: 2437-2447, hereby incorporated by reference. In these cases the monomer at the corresponding position of the anti-sense strand can be chosen for its ability to form a duplex with the target and can include, e.g., A, U, G, or C.

In another aspect, the invention features, an iRNA agent which includes:

a sense sequence, which preferably does not target a sequence in a subject, and an antisense sequence, which targets a plurality of target sequences in a subject, wherein the targets differ in sequence at only 1 or a small number, e.g., no more than 5, 4, 3 or 2 positions. The sense and anti-sense sequences have sufficient complementarity to each other to hybridize, e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In the sequence of the anti-sense strand of the iRNA agent is selected such that at one, some, or all of the positions which correspond to positions that differe in sequence between the target sequences, the anti-sense strand will include a monomer

5

10

15

20

25

which will form H-bonds with at least two different target sequences. In a preferred example the anti-sense sequence will include a universal or promiscuous monomer, e.g., a monomer which includes 5-nitro pyrrole, 2-amino A, 2-thio U or 2-thio T, or other universal base referred to herein.

In a preferred embodiment the iRNA agent targets repeated sequences (which differ at only one or a small number of positions from each other) in a single gene, a plurality of genes, or a viral genome, e.g., the HCV genome.

An embodiment is illustrated in the FIGs. 2 and 3.

In another aspect, the invention features, determining, e.g., by measurement or calculation, the stability of a pairing between monomers at a selected or constrained position in the iRNA agent duplex, and preferably determining the stability for the corresponding pairing in a duplex between a sequence form the iRNA agent and another RNA, e.g., a taret sequence. The determinations can be compared. An iRNA agent thus analysed can be used in the devolopement of a further modified iRNA agent or can be administered to a subject. This analysis can be performed successively to refine or desing optimized iRNA agents.

In another aspect, the invention features, a kit which includes one or more of the following an iRNA described herein, a sterile container in which the iRNA agent is discolsed, and instructions for use.

In another aspect, the invention features, an iRNA agent containing a constrained sequence made by a method described herein. The iRNA agent can target one or more of the genes referred to herein.

iRNA agents having constrained or selected sites, e.g., as described herein, can be used in any way described herein. Accordingly, they iRNA agents having constrained or selected sites, e.g., as described herein, can be used to silence a target, e.g., in any of the methods described herein and to target any of the genes described herein or to treat any of the disorders described herein. iRNA agents having constrained or selected sites, e.g., as described herein, can be incorporated into any of the formulations or preparations, e.g., pharmaceutical or sterile

5

10

15

20

preparations described herein. iRNA agents having constrained or selected sites, e.g., as described herein, can be administered by any of the routes of administration described herein.

The term "other than canonical Watson-Crick pairing" as used herein, refers to a pairing between a first monomer in a first sequence and a second monomer at the corresponding position in a second sequence of a duplex in which one or more of the following is true: (1) there is essentially no pairing between the two, e.g., there is no significant level of H bonding between the monomers or binding between the monomers does not contribute in any significant way to the stability of the duplex; (2) the monomers are a non-canonical paring of monomers having a naturally occurring bases, i.e., they are other than A-T, A-U, or G-C, and they form monomer-monomer H bonds, although generally the H bonding pattern formed is less strong than the bonds formed by a canonical pairing; or(3) at least one of the monomers includes a non-naturally occurring bases and the H bonds formed between the monomers is, preferably formed is less strong than the bonds formed by a canonical pairing, namely one or more of A-T, A-U, G-C.

The term "off-target" as used herein, refers to as a sequence other than the sequence to be silenced.

Universal Bases: "wild-cards"; shape-based complementarity

Bi-stranded, multisite replication of a base pair between difluorotoluene and adenine: confirmation by 'inverse' sequencing. Liu, D.; Moran, S.; Kool, E. T. Chem. Biol., 1997, 4, 919-926)

(Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I. Morales, J. C.; Kool, E. T. *Biochemistry*, **2000**, *39*, 2626-2632)

(Selective and stable DNA base pairing without hydrogen bonds. Matray, T, J.; Kool, E. T. J. Am. Chem. Soc., 1998, 120, 6191-6192)

(Difluorotoluene, a nonpolar isostere for thymine, codes specifically and efficiently for adenine in DNA replication. Moran, S. Ren, R. X.-F.; Rumney IV, S.; Kool, E. T. J. Am. Chem. Soc., 1997, 119, 2056-2057)

5 (Structure and base pairing properties of a replicable nonpolar isostere for deoxyadenosine. Guckian, K. M.; Morales, J. C.; Kool, E. T. J. Org. Chem., 1998, 63, 9652-9656)

5

(Universal bases for hybridization, replication and chain termination. Berger, M.; Wu. Y.; Ogawa, A. K.; McMinn, D. L.; Schultz, P.G.; Romesberg, F. E. *Nucleic Acids Res.*, **2000**, *28*, 2911-2914)

Efforts toward the expansion of the genetic alphabet: Information storage and replication with unnatural hydrophobic base pairs. Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2000, 122, 3274-3287.
 Rational design of an unnatural base pair with increased kinetic selectivity. Ogawa, A. K.; Wu. Y.; Berger, M.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2000, 122, 8803-8804)

5

(Efforts toward expansion of the genetic alphabet: replication of DNA with three base pairs. Tae, E. L.;

Wu, Y.; Xia, G.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2001, 123, 7439-7440)

15

(1. Efforts toward expansion of the genetic alphabet: Optimization of interbase hydrophobic interactions. Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2000, 122, 7621-7632. 2. Efforts toward expansion of genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. McMinn, D. L.; Ogawa. A. K.; Wu, Y.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 1999, 121, 11585-11586)

(A stable DNA duplex containing a non-hydrogen-bonding and non-shape complementary base couple: Interstrand stacking as the stability determining factor. Brotschi, C.; Haberli, A.; Leumann, C, J. *Angew. Chem. Int. Ed.*, **2001**, *40*, 3012-3014)

(2,2'-Bipyridine Ligandoside: A novel building block for modifying DNA with intra-duplex metal complexes. Weizman, H.; Tor, Y. J. Am. Chem. Soc., 2001, 123, 3375-3376)

(Minor groove hydration is critical to the stability of DNA duplexes. Lan, T.; McLaughlin, L. W. J. Am. Chem. Soc., 2000, 122, 6512-13)

(Effect of the Universal base 3-nitropyrrole on the selectivity of neighboring natural bases. Oliver, J. S.;

Parker, K. A.; Suggs, J. W. Organic Lett., 2001, 3, 1977-1980. 2. Effect of the 1-(2'-deoxy-β-D-ribofuranosyl)-3nitropyrrol residue on the stability of DNA duplexes and triplexes. Amosova, O.; George J.; Fresco, J. R. Nucleic
Acids Res., 1997, 25, 1930-1934. 3. Synthesis, structure and deoxyribonucleic acid sequencing with a universal
nucleosides: 1-(2'-deoxy-β-D-ribofuranosyl)-3-nitropyrrole. Bergstrom, D. E.; Zhang, P.; Toma, P. H.; Andrews, P.
C.; Nichols, R. J. Am. Chem. Soc., 1995, 117, 1201-1209)

10 (

(Model studies directed toward a general triplex DNA recognition scheme: a novel DNA base that binds a CG base-pair in an organic solvent. Zimmerman, S. C.; Schmitt, P. J. Am. Chem. Soc., 1995, 117, 10769-10770)

(A universal, photocleavable DNA base: nitropiperonyl 2'-deoxyriboside. J. Org. Chem., 2001, 66, 2067-2071)

(Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine. Nakatani, K.; Sando, S.; Saito, I. J. Am. Chem. Soc., 2000, 122, 2172-2177. b. Specific binding of 2-amino-1,8-naphthyridine into single guanine bulge as evidenced by photooxidation of GC doublet, Nakatani, K.; Sando, S.; Yoshida, K.; Saito, I. Bioorg. Med. Chem. Lett., 2001, 11, 335-337)

10

5

Other universal bases can have the following formulas:

$$R^{53}$$
 R^{54} R^{54} R^{55} R^{55}

$$R^{61} = R^{62} = R^{62} = R^{63} = R^{63} = R^{64} = R^{67} = R^{67} = R^{67} = R^{67} = R^{67} = R^{68} = R^{69} = R$$

wherein:

Q is N or CR⁴⁴;

Q' is N or CR⁴⁵;

5

Q" is N or CR⁴⁷;

15

20

25

Attorney's Docket No.: 14174-072W01

O" is N or CR49;

Qiv is N or CR50;

R⁴⁴ is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R⁴⁵ forms –OCH₂O-;

 R^{45} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{44} or R^{46} forms –OCH₂O-;

R⁴⁶ is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆

alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R⁴⁵ or R⁴⁷ forms –OCH₂O-;

 R^{47} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{46} or R^{48} forms –OCH2O-;

R⁴⁸ is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R⁴⁷ forms –OCH2O-;

 $R^{49}R^{50}$, R^{51} , R^{52} , R^{53} , R^{54} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , R^{71} , and R^{72} are each independently selected from hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o;

 R^{55} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R^{56} forms a fused aromatic ring which may be optionally substituted;

Attorney's Docket No.: 14174-072W01

 R^{56} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁵ forms a fused aromatic ring which may be optionally substituted;

R¹⁷ is halo, NH₂, NHR^b, or NR^bR^c;

R^b is C₁-C₆ alkyl or a nitrogen protecting group;

Rc is C1-C6 alkyl; and

R° is alkyl optionally substituted with halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R°.

Examples of universal bases include:

$$H_{3}C + F + CH_{3} + NH_{2} + NH_{2} + NH_{2} + O_{2}N + O_{3}N + O_{4}N + O_{4}N$$

5

5

10

15

20

25

Asymmetrical Modifications

An RNA, e.g., an iRNA agent, can be asymmetrically modified as described herein, and as described in International Application Serial No. PCT/US04/07070, filed March 8, 2004, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents having asymmetrical modifications and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates an asymmetrical modification.

An asymmetrically modified iRNA agent is one in which a strand has a modification which is not present on the other strand. An asymmetrical modification is a modification found on one strand but not on the other strand. Any modification, e.g., any modification described herein, can be present as an asymmetrical modification. An asymmetrical modification can confer any of the desired properties associated with a modification, e.g., those properties discussed herein. *E.g.*, an asymmetrical modification can: confer resistance to degradation, an alteration in half life; target the iRNA agent to a particular target, e.g., to a particular tissue; modulate, e.g., increase or decrease, the affinity of a strand for its complement or target sequence; or hinder or promote modification of a terminal moiety, e.g., modification by a kinase or other enzymes involved in the RISC mechanism pathway. The designation of a modification as having one property does not mean that it has no other property, e.g., a modification referred to as one which promotes stabilization might also enhance targeting.

While not wishing to be bound by theory or any particular mechanistic model, it is believed that asymmetrical modification allows an iRNA agent to be optimized in view of the different or "asymmetrical" functions of the sense and antisense strands. For example, both strands can be modified to increase nuclease resistance, however, since some changes can inhibit RISC activity, these changes can be chosen for the sense stand. In addition, since some

10

15

20

25

Attorney's Docket No.: 14174-072W01

modifications, e.g., targeting moieties, can add large bulky groups that, e.g., can interfere with the cleavage activity of the RISC complex, such modifications are preferably placed on the sense strand. Thus, targeting moieties, especially bulky ones (e.g. cholesterol), are preferentially added to the sense strand. In one embodiment, an asymmetrical modification in which a phosphate of the backbone is substituted with S, e.g., a phosphorothioate modification, is present in the antisense strand, and a 2' modification, e.g., 2' OMe is present in the sense strand. A targeting moiety can be present at either (or both) the 5' or 3' end of the sense strand of the iRNA agent. In a preferred example, a P of the backbone is replaced with S in the antisense strand, 2'OMe is present in the sense strand, and a targeting moiety is added to either the 5' or 3' end of the sense strand of the iRNA agent.

In a preferred embodiment an asymmetrically modified iRNA agent has a modification on the sense strand which modification is not found on the antisense strand and the antisense strand has a modification which is not found on the sense strand.

Each strand can include one or more asymmetrical modifications. By way of example: one strand can include a first asymmetrical modification which confers a first property on the iRNA agent and the other strand can have a second asymmetrical modification which confers a second property on the iRNA. E.g., one strand, e.g., the sense strand can have a modification which targets the iRNA agent to a tissue, and the other strand, e.g., the antisense strand, has a modification which promotes hybridization with the target gene sequence.

In some embodiments both strands can be modified to optimize the same property, e.g., to increase resistance to nucleolytic degradation, but different modifications are chosen for the sense and the antisense strands, e.g., because the modifications affect other properties as well. E.g., since some changes can affect RISC activity these modifications are chosen for the sense strand.

In an embodiment one strand has an asymmetrical 2' modification, e.g., a 2' OMe modification, and the other strand has an asymmetrical modification of the phosphate backbone, e.g., a phosphorothioate modification. So, in one embodiment the antisense strand has an asymmetrical 2' OMe modification and the sense strand has an asymmetrical phosphorothioate modification (or vice versa). In a particularly preferred embodiment the RNAi agent will have

15

20

25

30

Attorney's Docket No.: 14174-072W01

asymmetrical 2'-O alkyl, preferably, 2'-OMe modifications on the sense strand and asymmetrical backbone P modification, preferably a phosphothioate modification in the antisense strand. There can be one or multiple 2'-OMe modifications, e.g., at least 2, 3, 4, 5, or 6, of the subunits of the sense strand can be so modified. There can be one or multiple phosphorothioate modifications, e.g., at least 2, 3, 4, 5, or 6, of the subunits of the antisense strand can be so modified. It is preferable to have an iRNA agent wherein there are multiple 2'-OMe modifications on the sense strand and multiple phophorothioate modifications on the antisense strand. All of the subunits on one or both strands can be so modified. A particularly preferred embodiment of multiple asymmetric modification on both strands has a duplex region about 20-21, and preferably 19, subunits in length and one or two 3' overhangs of about 2 subunits in length.

Asymmetrical modifications are useful for promoting resistance to degradation by nucleases, e.g., endonucleases. iRNA agents can include one or more asymmetrical modifications which promote resistance to degradation. In preferred embodiments the modification on the antisense strand is one which will not interfere with silencing of the target, e.g., one which will not interfere with cleavage of the target. Most if not all sites on a strand are vulnerable, to some degree, to degradation by endonucleases. One can determine sites which are relatively vulnerable and insert asymmetrical modifications which inhibit degradation. It is often desirable to provide asymmetrical modification of a UA site in an iRNA agent, and in some cases it is desirable to provide the UA sequence on both strands with asymmetrical modification. Examples of modifications which inhibit endonucleolytic degradation can be found herein. Particularly favored modifications include: 2' modification, e.g., provision of a 2' OMe moiety on the U, especially on a sense strand; modification of the backbone, e.g., with the replacement of an O with an S, in the phosphate backbone, e.g., the provision of a phosphorothioate modification, on the U or the A or both, especially on an antisense strand; replacement of the U with a C5 amino linker; replacement of the A with a G (sequence changes are preferred to be located on the sense strand and not the antisense strand); and modification of the at the 2', 6', 7', or 8' position. Preferred embodiments are those in which one or more of these modifications are present on the sense but not the antisense strand, or embodiments where the antisense strand has fewer of such modifications.

;; };

5

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

Asymmetrical modification can be used to inhibit degradation by exonucleases. Asymmetrical modifications can include those in which only one strand is modified as well as those in which both are modified. In preferred embodiments the modification on the antisense strand is one which will not interfere with silencing of the target, e.g., one which will not interfere with cleavage of the target. Some embodiments will have an asymmetrical modification on the sense strand, e.g., in a 3' overhang, e.g., at the 3' terminus, and on the antisense strand, e.g., in a 3' overhang, e.g., at the 3' terminus. If the modifications introduce moieties of different size it is preferable that the larger be on the sense strand. If the modifications introduce moieties of different charge it is preferable that the one with greater charge be on the sense strand.

Examples of modifications which inhibit exonucleolytic degradation can be found herein. Particularly favored modifications include: 2' modification, e.g., provision of a 2' OMe moiety in a 3' overhang, e.g., at the 3' terminus (3' terminus means at the 3' atom of the molecule or at the most 3' moiety, e.g., the most 3' P or 2' position, as indicated by the context); modification of the backbone, e.g., with the replacement of a P with an S, e.g., the provision of a phosphorothioate modification, or the use of a methylated P in a 3' overhang, e.g., at the 3' terminus; combination of a 2' modification, e.g., provision of a 2' O Me moiety and modification of the backbone, e.g., with the replacement of a P with an S, e.g., the provision of a phosphorothioate modification, or the use of a methylated P, in a 3' overhang, e.g., at the 3' terminus; modification with a 3' alkyl; modification with an abasic pyrolidine in a 3' overhang, e.g., at the 3' terminus; modification with naproxene, ibuprofen, or other moieties which inhibit degradation at the 3' terminus. Preferred embodiments are those in which one or more of these modifications are present on the sense but not the antisense strand, or embodiments where the antisense strand has fewer of such modifications.

Modifications, e.g., those described herein, which affect targeting can be provided as asymmetrical modifications. Targeting modifications which can inhibit silencing, e.g., by inhibiting cleavage of a target, can be provided as asymmetrical modifications of the sense strand. A biodistribution altering moiety, e.g., cholesterol, can be provided in one or more, e.g., two, asymmetrical modifications of the sense strand. Targeting modifications which introduce moieties having a relatively large molecular weight, e.g., a molecular weight of more than 400,

10

15

20

25

500, or 1000 daltons, or which introduce a charged moiety (e.g., having more than one positive charge or one negative charge) can be placed on the sense strand.

Modifications, e.g., those described herein, which modulate, e.g., increase or decrease, the affinity of a strand for its compliment or target, can be provided as asymmetrical modifications. These include: 5 methyl U; 5 methyl C; pseudouridine, Locked nucleic acids ,2 thio U and 2-amino-A. In some embodiments one or more of these is provided on the antisense strand.

iRNA agents have a defined structure, with a sense strand and an antisense strand, and in many cases short single strand overhangs, e.g., of 2 or 3 nucleotides are present at one or both 3' ends. Asymmetrical modification can be used to optimize the activity of such a structure, e.g., by being placed selectively within the iRNA. E.g., the end region of the iRNA agent defined by the 5' end of the sense strand and the 3'end of the antisense strand is important for function. This region can include the terminal 2, 3, or 4 paired nucleotides and any 3' overhang. In preferred embodiments asymmetrical modifications which result in one or more of the following are used: modifications of the 5' end of the sense strand which inhibit kinase activation of the sense strand, including, e.g., attachments of conjugates which target the molecule or the use modifications which protect against 5' exonucleolytic degradation; or modifications of either strand, but preferably the sense strand, which enhance binding between the sense and antisense strand and thereby promote a "tight" structure at this end of the molecule.

The end region of the iRNA agent defined by the 3' end of the sense strand and the 5'end of the antisense strand is also important for function. This region can include the terminal 2, 3, or 4 paired nucleotides and any 3' overhang. Preferred embodiments include asymmetrical modifications of either strand, but preferably the sense strand, which decrease binding between the sense and antisense strand and thereby promote an "open" structure at this end of the molecule. Such modifications include placing conjugates which target the molecule or modifications which promote nuclease resistance on the sense strand in this region. Modification of the antisense strand which inhibit kinase activation are avoided in preferred embodiments.

PCT/US2004/011255

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

Exemplary modifications for asymmetrical placement in the sense strand include the following:

- (a) backbone modifications, e.g., modification of a backbone P, including replacement of P with S, or P substituted with alkyl or allyl, e.g., Me, and dithioates (S-P=S); these modifications can be used to promote nuclease resistance;
 - (b) 2'-O alkyl, e.g., 2'-OMe, 3'-O alkyl, e.g., 3'-OMe (at terminal and/or internal positions); these modifications can be used to promote nuclease resistance or to enhance binding of the sense to the antisense strand, the 3' modifications can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
 - (c) 2'-5' linkages (with 2'-H, 2'-OH and 2'-OMe and with P=O or P=S) these modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (d) L sugars (e.g., L ribose, L-arabinose with 2'-H, 2'-OH and 2'-OMe); these modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (e) modified sugars (e.g., locked nucleic acids (LNA's), hexose nucleic acids (HNA's) and cyclohexene nucleic acids (CeNA's)); these modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (f) nucleobase modifications (e.g., C-5 modified pyrimidines, N-2 modified purines, N-7 modified purines, N-6 modified purines), these modifications can be used to promote nuclease resistance or to enhance binding of the sense to the antisense strand;
- (g) cationic groups and Zwitterionic groups (preferably at a terminus), these modifications can be used to promote nuclease resistance;

15

25

Attorney's Docket No.: 14174-072W01

- (h) conjugate groups (preferably at terminal positions), e,g., naproxen, biotin, cholesterol, ibuprofen, folic acid, peptides, and carbohydrates; these modifications can be used to promote nuclease resistance or to target the molecule, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC.
- Exemplary modifications for asymmetrical placement in the antisense strand include the following:
 - (a) backbone modifications, e.g., modification of a backbone P, including replacement of P with S, or P substituted with alkyl or allyl, e.g., Me, and dithioates (S-P=S);
 - (b) 2'-O alkyl, e.g., 2'-OMe, (at terminal positions);
- 10 (c) 2'-5' linkages (with 2'-H, 2'-OH and 2'-OMe) e.g., terminal at the 3' end); e.g., with P=O or P=S preferably at the 3'-end, these modifications are preferably excluded from the 5' end region as they may interfere with RISC enzyme activity such as kinase activity;
 - (d) L sugars (e.g, L ribose, L-arabinose with 2'-H, 2'-OH and 2'-OMe); e.g., terminal at the 3' end; e.g., with P=O or P=S preferably at the 3'-end, these modifications are preferably excluded from the 5' end region as they may interfere with kinase activity;
 - (e) modified sugars (e.g., LNA's, HNA's and CeNA's); these modifications are preferably excluded from the 5' end region as they may contribute to unwanted enhancements of paring between the sense and antisense strands, it is often preferred to have a "loose" structure in the 5' region, additionally, they may interfere with kinase activity;
- 20 (f) nucleobase modifications (e.g., C-5 modified pyrimidines, N-2 modified purines, N-7 modified purines, N-6 modified purines);
 - (g) cationic groups and Zwitterionic groups (preferably at a terminus);
 - cationic groups and Zwitterionic groups at 2'-position of sugar; 3'-position of the sugar; as nucleobase modifications (e.g., C-5 modified pyrimidines, N-2 modified purines, N-7 modified purines, N-6 modified purines);

5

10

15

20

25

conjugate groups (preferably at terminal positions), e.g., naproxen, biotin, cholesterol, ibuprofen, folic acid, peptides, and carbohydrates, but bulky groups or generally groups which inhibit RISC activity should are less preferred.

The 5'-OH of the antisense strand should be kept free to promote activity. In some preferred embodiments modifications that promote nuclease resistance should be included at the 3' end, particularly in the 3' overhang.

In another aspect, the invention features a method of optimizing, e.g., stabilizing, an iRNA agent. The method includes selecting a sequence having activity, introducing one or more asymmetric modifications into the sequence, wherein the introduction of the asymmetric modification optimizes a property of the iRNA agent but does not result in a decrease in activity.

The decrease in activity can be less than a preselected level of decrease. In preferred embodiments decrease in activity means a decrease of less than 5, 10, 20, 40, or 50 % activity, as compared with an otherwise similar iRNA lacking the introduced modification. Activity can, e.g., be measured in vivo, or in vitro, with a result in either being sufficient to demonstrate the required maintenance of activity.

The optimized property can be any property described herein and in particular the properties discussed in the section on asymmetrical modifications provided herein. The modification can be any asymmetrical modification, e.g., an asymmetric modification described in the section on asymmetrical modifications described herein. Particularly preferred asymmetric modifications are 2'-O alkyl modifications, e.g., 2'-OMe modifications, particularly in the sense sequence, and modifications of a backbone O, particularly phosphorothioate modifications, in the antisense sequence.

In a preferred embodiment a sense sequence is selected and provided with an asymmetrical modification, while in other embodiments an antisense sequence is selected and provided with an asymmetrical modification. In some embodiments both sense and antisense sequences are selected and each provided with one or more asymmetrical modifications.

Multiple asymmetric modifications can be introduced into either or both of the sense and antisense sequence. A sequence can have at least 2, 4, 6, 8, or more modifications and all or substantially all of the monomers of a sequence can be modified.

Table 3 shows examples having strand I with a selected modification and strand II with a selected modification.

Table 3. Exemplary strand I- and strand II-modifications

Strand I	Strand II
Nuclease Resistance (e.g., 2'-OMe)	Biodistribution (e.g., P=S)
Biodistribution conjugate	Protein Binding Functionality
(e.g., Lipophile)	(e.g., Naproxen)
Tissue Distribution Functionality	Cell Targeting Functionality
(e.g., Carbohydrates)	(e.g., Folate for cancer cells)
Tissue Distribution Functionality	Fusogenic Functionality
(e.g., liver Cell Targeting moieties)	(e.g., Polyethylene imines)
Cancer Cell Targeting	Fusogenic Functionality
(e.g., RGD peptides and imines)	(e.g., peptides)
Nuclease Resistance (e.g., 2'-OMe)	Increase in binding Affinity (5-Me-C, 5-Me-U, 2-thio-U, 2-amino-A, G-clamp, LNA)
Tissue Distribution Functionality	RISC activity improving Functionality
Helical conformation changing	Tissue Distribution Functionality

PCT/US2004/011255

WO 2004/091515

10

15 .

20

25

Attorney's Docket No.: 14174-072W01

Functionalities

(P=S; lipophile, carbohydrates)

Z-X-Y Architecture

An RNA, e.g., an iRNA agent, can have a Z-X-Y architecture or structure such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/510,246, filed on October 9, 2003, which is hereby incorporated by reference, copending, co-owned United States Provisional Application Serial No. 60/510,318, filed on October 10, 2003, which is hereby incorporated by reference, and copending, co-owned International Application No. PCT/US04/07070, filed March 8, 2004.

In addition, the invention includes iRNA agents having a Z-X-Y structure and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a Z-X-Y architecture.

Thus, an iRNA agent can have a first segment, the Z region, a second segment, the X region, and optionally a third region, the Y region:

Z-X-Y.

It may be desirable to modify subunits in one or both of Zand/or Y on one hand and X on the other hand. In some cases they will have the same modification or the same class of modification but it will more often be the case that the modifications made in Z and/or Y will differ from those made in X.

The Z region typically includes a terminus of an iRNA agent. The length of the Z region can vary, but will typically be from 2-14, more preferably 2-10, subunits in length. It typically is single stranded, i.e., it will not base pair with bases of another strand, though it may in some embodiments self associate, e.g., to form a loop structure. Such structures can be formed by the

10

15

20

25

Attorney's Docket No.: 14174-072W01

end of a strand looping back and forming an intrastrand duplex. E.g., 2, 3, 4, 5 or more intrastrand bases pairs can form, having a looped out or connecting region, typically of 2 or more subunits which do not pair. This can occur at one or both ends of a strand. A typical embodiment of a Z region is a single strand overhang, e.g., an over hang of the length described elsewhere herein. The Z region can thus be or include a 3' or 5' terminal single strand. It can be sense or antisense strand but if it is antisense it is preferred that it is a 3- overhang. Typical inter-subunit bonds in the Z region include: P=O; P=S; S-P=S; P-NR₂; and P-BR₂. Chiral P=X, where X is S, N, or B) inter-subunit bonds can also be present. (These inter-subunit bonds are discussed in more detail elsewhere herein.) Other preferred Z region subunit modifications (also discussed elsewhere herein) can include: 3'-OR, 3'SR, 2'-OMe, 3'-OMe, and 2'OH modifications and moieties; alpha configuration bases; and 2' arabino modifications.

The X region will in most cases be duplexed, in the case of a single strand iRNA agent, with a corresponding region of the single strand, or in the case of a double stranded iRNA agent, with the corresponding region of the other strand. The length of the X region can vary but will typically be between 10-45 and more preferably between 15 and 35 subunits. Particularly preferred region X's will include 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, though other suitable lengths are described elsewhere herein and can be used. Typical X region subunits include 2'-OH subunits. In typical embodiments phosphate inter-subunit bonds are preferred while phophorothicate or non-phosphate bonds are absent. Other modifications preferred in the X region include: modifications to improve binding, e.g., nucleobase modifications; cationic nucleobase modifications; and C-5 modified pyrimidines, e.g., allylamines. Some embodiments have 4 or more consecutive 2'OH subunits. While the use of phosphorothicate is sometimes non preferred they can be used if they connect less than 4 consecutive 2'OH subunits.

The Y region will generally conform to the parameters set out for the Z regions. However, the X and Z regions need not be the same, different types and numbers of modifications can be present, and infact, one will usually be a 3' overhang and one will usually be a 5' overhang.

In a preferred embodiment the iRNA agent will have a Y and/or Z region each having ribonucleosides in which the 2'-OH is substituted, e.g., with 2'-OMe or other alkyl; and an X

Attorney's Docket No.: 14174-072W01

5

10

15

25

region that includes at least four consecutive ribonucleoside subunits in which the 2'-OH remains unsubstituted.

The subunit linkages (the linkages between subunits) of an iRNA agent can be modified, e.g., to promote resistance to degradation. Numerous examples of such modifications are disclosed herein, one example of which is the phosphorothioate linkage. These modifications can be provided bewteen the subunits of any of the regions, Y, X, and Z. However, it is preferred that their occureceis minimized and in particular it is preferred that consecutive modified linkages be avoided.

In a preferred embodiment the iRNA agent will have a Y and Z region each having ribonucleosides in which the 2'-OH is substituted, e.g., with 2'-OMe; and an X region that includes at least four consecutive subunits, e.g., ribonucleoside subunits in which the 2'-OH remains unsubstituted.

As mentioned above, the subunit linkages of an iRNA agent can be modified, e.g., to promote resistance to degradation. These modifications can be provided between the subunits of any of the regions, Y, X, and Z. However, it is preferred that they are minimized and in particular it is preferred that consecutive modified linkages be avoided.

Thus, in a preferred embodiment, not all of the subunit linkages of the iRNA agent are modified and more preferably the maximum number of consecutive subunits linked by other than a phospodiester bond will be 2, 3, or 4. Particularly preferred iRNA agents will not have four or more consecutive subunits, e.g., 2'-hydroxyl ribonucleoside subunits, in which each subunits is joined by modified linkages – i.e. linkages that have been modified to stabilize them from degradation as compared to the phosphodiester linkages that naturally occur in RNA and DNA.

It is particularly preferred to minimize the occurrence in region X. Thus, in preferred embodiments each of the nucleoside subunit linkages in X will be phosphodiester linkages, or if subunit linkages in region X are modified, such modifications will be minimized. E.g., although the Y and/or Z regions can include inter subunit linkages which have been stabilized against degradation, such modifications will be minimized in the X region, and in particular consecutive modifications will be minimized. Thus, in preferred embodiments the maximum number of

5

10

15

20

25

consecutive subunits linked by other than a phospodiester bond will be 2, 3, or 4. Particulary preferred X regions will not have four or more consecutive subunits, e.g., 2'-hydroxyl ribonucleoside subunits, in which each subunits is joined by modified linkages — i.e. linkages that have been modified to stabilize them from degradation as compared to the phosphodiester linkages that naturally occur in RNA and DNA.

In a preferred embodiment Y and /or Z will be free of phosphorothioate linkages, though either or both may contain other modifications, e.g., other modifications of the subunit linkages.

In a preferred embodiment region X, or in some cases, the entire iRNA agent, has no more than 3 or no more than 4 subunits having identical 2' moieties.

In a preferred embodiment region X, or in some cases, the entire iRNA agent, has no more than 3 or no more than 4 subunits having identical subunit linkages.

In a preferred embodiment one or more phosphorothioate linkages (or other modifications of the subunit linkage) are present in Y and/or Z, but such modified linkages do not connect two adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., a 2'-O-alkyl moiety. E.g., any adjacent 2'-O-alkyl moieties in the Y and/or Z, are connected by a linkage other than a a phosphorothioate linkage.

In a preferred embodiment each of Y and/or Z independently has only one phosphorothioate linkage between adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides. If there is a second set of adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides, in Y and/or Z that second set is connected by a linkage other than a phosphorothioate linkage, e.g., a modified linkage other than a phosphorothioate linkage.

In a prefered embodiment each of Y and/orZ independently has more than one phosphorothioate linkage connecting adjacent pairs of subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides, but at least one pair of adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides, are be connected by a linkage other than a phosphorothioate linkage, e.g., a modified linkage other than a phosphorothioate linkage.

5

10

15

20

25

In a prefered embodiment one of the above recited limitation on adjacent subunits in Y and or Z is combined with a limitation on the subunits in X. E.g., one or more phosphorothicate linkages (or other modifications of the subunit linkage) are present in Y and/or Z, but such modified linkages do not connect two adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., a 2'-O-alkyl moiety. E.g., any adjacent 2'-O-alkyl moieties in the Y and/or Z, are connected by a linkage other than a a phosporothicate linkage. In addition, the X region has no more than 3 or no more than 4 identical subunits, e.g., subunits having identical 2' moieties or the X region has no more than 3 or no more than 4 subunits having identical subunit linkages.

A Y and/or Z region can include at least one, and preferably 2, 3 or 4 of a modification disclosed herein. Such modifications can be chosen, independently, from any modification described herein, e.g., from nuclease resistant subunits, subunits with modified bases, subunits with modified intersubunit linkages, subunits with modified sugars, and subunits linked to another moiety, e.g., a targeting moiety. In a preferred embodiment more than 1 of such subunits can be present but in some emobodiments it is preferred that no more than 1, 2, 3, or 4 of such modifications occur, or occur consecutively. In a preferred embodiment the frequency of the modification will differ between Yand /or Z and X, e.g., the modification will be present one of Y and/or Z or X and absent in the other.

An X region can include at least one, and preferably 2, 3 or 4 of a modification disclosed herein. Such modifications can be chosen, independently, from any modification described herein, e.g., from nuclease resistant subunits, subunits with modified bases, subunits with modified intersubunit linkages, subunits with modified sugars, and subunits linked to another moiety, e.g., a targeting moiety. In a preferred embodiment more than 1 of such subunits can b present but in some emobodiments it is preferred that no more than 1, 2, 3, or 4 of such modifications occur, or occur consecutively.

An RRMS (described elswhere herein) can be introduced at one or more points in one or both strands of a double-stranded iRNA agent. An RRMS can be placed in a Y and/or Z region, at or near (within 1, 2, or 3 positions) of the 3' or 5' end of the sense strand or at near (within 2 or 3 positions of) the 3' end of the antisense strand. In some embodiments it is preferred to not have an RRMS at or near (within 1, 2, or 3 positions of) the 5' end of the antisense strand. An

10

15

20

25

RRMS can be positioned in the X region, and will preferably be positioned in the sense strand or in an area of the antisense strand not critical for antisense binding to the target.

Differential Modification of Terminal Duplex Stability

In one aspect, the invention features an iRNA agent which can have differential modification of terminal duplex stability (DMTDS).

In addition, the invention includes iRNA agents having DMTDS and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates DMTDS.

iRNA agents can be optimized by increasing the propensity of the duplex to disassociate or melt (decreasing the free energy of duplex association), in the region of the 5' end of the antisense strand duplex. This can be accomplished, e.g., by the inclusion of subunits which increase the propensity of the duplex to disassociate or melt in the region of the 5' end of the antisense strand. It can also be accomplished by the attachment of a ligand that increases the propensity of the duplex to disassociate of melt in the region of the 5' end. While not wishing to be bound by theory, the effect may be due to promoting the effect of an enzyme such as helicase, for example, promoting the effect of the enzyme in the proximity of the 5' end of the antisense strand.

The inventors have also discovered that iRNA agents can be optimized by decreasing the propensity of the duplex to disassociate or melt (increasing the free energy of duplex association), in the region of the 3' end of the antisense strand duplex. This can be accomplished, e.g., by the inclusion of subunits which decrease the propensity of the duplex to disassociate or melt in the region of the 3' end of the antisense strand. It can also be

10

15

20

Attorney's Docket No.: 14174-072W01

accomplished by the attachment of ligand that decreases the propensity of the duplex to disassociate of melt in the region of the 5'end.

Modifications which increase the tendency of the 5' end of the duplex to dissociate can be used alone or in combination with other modifications described herein, e.g., with modifications which decrease the tendency of the 3' end of the duplex to dissociate. Likewise, modifications which decrease the tendency of the 3' end of the duplex to dissociate can be used alone or in combination with other modifications described herein, e.g., with modifications which increase the tendency of the 5' end of the duplex to dissociate.

Decreasing the stability of the AS 5' end of the duplex

Subunit pairs can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation:

A:U is preferred over G:C;

G:U is preferred over G:C;

I:C is preferred over G:C (I=inosine);

mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings;

pairings which include a universal base are preferred over canonical pairings.

A typical ds iRNA agent can be diagrammed as follows:

S 5' R₁ N₁ N₂ N₃ N₄ N₅ [N] N₋₅ N₋₄ N₋₃ N₋₂ N₋₁ R₂ 3'

AS 3' $R_3 N_1 N_2 N_3 N_4 N_5$ [N] $N_{-5} N_{-4} N_{-3} N_{-2} N_{-1} R_4 5'$

S:AS P_1 P_2 P_3 P_4 P_5 [N] $P_{-5}P_{-4}P_{-3}P_{-2}P_{-1}$ 5'

S indicates the sense strand; AS indicates antisense strand; R₁ indicates an optional (and nonpreferred) 5' sense strand overhang; R₂ indicates an optional (though preferred) 3' sense overhang; R₃ indicates an optional (though preferred) 3' antisense sense overhang; R₄ indicates an optional (and nonpreferred) 5' antisense overhang; N indicates subunits; [N] indicates that additional subunit pairs may be present; and P_x, indicates a paring of sense N_x and antisense N_x. Overhangs are not shown in the P diagram. In some embodiments a 3' AS overhang corresponds to region Z, the duplex region corresponds to region X, and the 3' S strand overhang corresponds to region Y, as described elsewhere herein. (The diagram is not meant to imply maximum or minimum lengths, on which guidance is provided elsewhere herein.)

It is preferred that pairings which decrease the propensity to form a duplex are used at 1 or more of the positions in the duplex at the 5' end of the AS strand. The terminal pair (the most 5' pair in terms of the AS strand) is designated as P₋₁, and the subsequent pairing positions (going in the 3' direction in terms of the AS strand) in the duplex are designated, P₋₂, P₋₃, P₋₄, P₋₅, and so on. The preferred region in which to modify to modulate duplex formation is at P₋₅ through P₋₁, more preferably P₋₄ through P₋₁, more preferably P₋₃ through P₋₁. Modification at P₋₁, is particularly preferred, alone or with modification(s) other position(s), e.g., any of the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of one of the recited regions be chosen independently from the group of:

A:U

20 G:U

5

10

15

25

I:C

mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base.

In preferred embodiments the change in subunit needed to achieve a pairing which promotes dissociation will be made in the sense strand, though in some embodiments the change will be made in the antisense strand.

5

15

20

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are pairs which promote disociation.

In a preferred embodiment the at least 2, or 3, of the pairs in P-1, through P-4, are A:U.

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are G:U.

In a preferred embodiment the at least 2, or 3, of the pairs in P.1, through P.4, are I:C.

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are mismatched pairs, e.g., non-canonical or other than canonical pairings pairings.

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are pairings which include a universal base.

10 Increasing the stability of the AS 3' end of the duplex

Subunit pairs can be ranked on the basis of their propensity to promote stability and inhibit dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting duplex stability:

G:C is preferred over A:U

Watson-Crick matches (A:T, A:U, G:C) are preferred over non-canonical or other than canonical pairings

analogs that increase stability are preferred over Watson-Crick matches (A:T, A:U, G:C)

2-amino-A:U is preferred over A:U

2-thio U or 5 Me-thio-U:A are preferred over U:A

G-clamp (an analog of C having 4 hydrogen bonds): G is preferred over C:G

おいない はないない はないま

Attorney's Docket No.: 14174-072W01

guanadinium-G-clamp:G is preferred over C:G

psuedo uridine: A is preferred over U: A

sugar modifications, e.g., 2' modifications, e.g., 2'F, ENA, or LNA, which enhance binding are preferred over non-modified moieties and can be present on one or both strands to enhance stability of the duplex. It is preferred that pairings which increase the propensity to form a duplex are used at 1 or more of the positions in the duplex at the 3' end of the AS strand. The terminal pair (the most 3' pair in terms of the AS strand) is designated as P₁, and the subsequent pairing positions (going in the 5' direction in terms of the AS strand) in the duplex are designated, P₂, P₃, P₄, P₅, and so on. The preferred region in which to modify to modulate duplex formation is at P₅ through P₁, more preferably P₄ through P₁, more preferably P₃ through P₁. Modification at P₁, is particularly preferred, alone or with mdification(s) at other position(s), e.g., any of the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of the recited regions be chosen independently from the group of:

G:C

5

.10

15

20

a pair having an analog that increases stability over Watson-Crick matches (A:T, A:U, G:C)

2-amino-A:U

2-thio U or 5 Me-thio-U:A

G-clamp (an analog of C having 4 hydrogen bonds):G

guanadinium-G-clamp:G

psuedo uridine:A

a pair in which one or both subunits has a sugar modification, e.g., a 2' modification, e.g., 2'F, ENA, or LNA, which enhance binding.

20

25

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are pairs which promote duplex stability.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are G:C.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are a pair having an analog that increases stability over Watson-Crick matches.

In a preferred embodiment the at least 2, or 3, of the pairs in P_1 , through P_4 , are 2-amino-A:U.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are 2-thio U or 5 Me-thio-U:A.

In a preferred embodiment the at least 2, or 3, of the pairs in P_1 , through P_4 , are G-clamp:G.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are guanidinium-G-clamp:G.

In a preferred embodiment the at least 2, or 3, of the pairs in P_1 , through P_4 , are psuedo uridine: A.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are a pair in which one or both subunits has a sugar modification, e.g., a 2' modification, e.g., 2'F, ENA, or LNA, which enhances binding.

G-clamps and guanidinium G-clamps are discussed in the following references: Holmes and Gait, "The Synthesis of 2'-O-Methyl G-Clamp Containing Oligonucleotides and Their Inhibition of the HIV-1 Tat-TAR Interaction," Nucleosides, Nucleotides & Nucleic Acids, 22:1259-1262, 2003; Holmes *et al.*, "Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2'-O-methyl G-clamp ribonucleoside analogues," Nucleic Acids Research, 31:2759-2768, 2003; Wilds, *et al.*, "Structural basis for recognition of guanosine by a synthetic tricyclic cytosine analogue: Guanidinium G-clamp," Helvetica Chimica Acta, 86:966-978, 2003; Rajeev, *et al.*, "High-

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

Affinity Peptide Nucleic Acid Oligomers Containing Tricyclic Cytosine Analogues," Organic Letters, 4:4395-4398, 2002; Ausin, et al., "Synthesis of Amino- and Guanidino-G-Clamp PNA Monomers," Organic Letters, 4:4073-4075, 2002; Maier et al., "Nuclease resistance of oligonucleotides containing the tricyclic cytosine analogues phenoxazine and 9-(2-

aminoethoxy)-phenoxazine ("G-clamp") and origins of their nuclease resistance properties," Biochemistry, 41:1323-7, 2002; Flanagan, et al., "A cytosine analog that confers enhanced potency to antisense oligonucleotides," Proceedings Of The National Academy Of Sciences Of The United States Of America, 96:3513-8, 1999.

Simultaneously decreasing the stability of the AS 5'end of the duplex and increasing the stability of the AS 3' end of the duplex

As is discussed above, an iRNA agent can be modified to both decrease the stability of the AS 5'end of the duplex and increase the stability of the AS 3' end of the duplex. This can be effected by combining one or more of the stability decreasing modifications in the AS 5' end of the duplex with one or more of the stability increasing modifications in the AS 3' end of the duplex. Accordingly a preferred embodiment includes modification in P₋₅ through P₋₁, more preferably P₋₄ through P₋₁ and more preferably P₋₃ through P₋₁. Modification at P₋₁, is particularly preferred, alone or with other position, e.g., the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of one of the recited regions of the AS 5' end of the duplex region be chosen independently from the group of:

A:U

10

15

20

G:U

I:C

mismatched pairs, e.g., non-canonical or other than canonical pairings which include a universal base; and

a modification in P_5 through P_1 , more preferably P_4 through P_1 and more preferably P_3 through P_1 . Modification at P_1 , is particularly preferred, alone or with other position, e.g., the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of one of the recited regions of the AS 3' end of the duplex region be chosen independently from the group of:

G:C

a pair having an analog that increases stability over Watson-Crick matches (A:T, A:U, G:C)

25 2-amino-A:U

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

2-thio U or 5 Me-thio-U:A

G-clamp (an analog of C having 4 hydrogen bonds):G

guanadinium-G-clamp:G

psuedo uridine:A

5

10

15

20

a pair in which one or both subunits has a sugar modification, e.g., a 2' modification, e.g., 2'F, ENA, or LNA, which enhance binding.

The invention also includes methods of selecting and making iRNA agents having DMTDS. E.g., when screening a target sequence for candidate sequences for use as iRNA agents one can select sequences having a DMTDS property described herein or one which can be modified, preferably with as few changes as possible, especially to the

AS strand, to provide a desired level of DMTDS.

The invention also includes, providing a candidate iRNA agent sequence, and modifying at least one P in P₋₅ through P₋₁ and/or at least one P in P₅ through P₁ to provide a DMTDS iRNA agent.

DMTDS iRNA agents can be used in any method described herein, e.g., to silence any gene disclosed herein, to treat any disorder described herein, in any formulation described herein, and generally in and/or with the methods and compositions described elsewhere herein. DMTDS iRNA agents can incorporate other modifications described herein, e.g., the attachment of targeting agents or the inclusion of modifications which enhance stability, e.g., the inclusion of nuclease resistant monomers or the inclusion of single strand overhangs (e.g., 3' AS overhangs and/or 3' S strand overhangs) which self associate to form intrastrand duplex structure.

Preferably these iRNA agents will have an architecture described herein.

Other Embodiments

An RNA, e.g., an iRNA agent, can be produced in a cell in vivo, e.g., from exogenous

DNA templates that are delivered into the cell. For example, the DNA templates can be inserted

10

15

20

25

Attorney's Docket No.: 14174-072W01

into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Pat. No. 5,328,470), or by stereotactic injection (see, e.g., Chen et al., Proc. Natl. Acad. Sci. USA 91:3054-3057, 1994). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. The DNA templates, for example, can include two transcription units, one that produces a transcript that includes the top strand of an iRNA agent and one that produces a transcript that includes the bottom strand of an iRNA agent. When the templates are transcribed, the iRNA agent is produced, and processed into sRNA agent fragments that mediate gene silencing.

In vivo Delivery

An iRNA agent can be linked, e.g., noncovalently linked to a polymer for the efficient delivery of the iRNA agent to a subject, e.g., a mammal, such as a human. The iRNA agent can, for example, be complexed with cyclodextrin. Cyclodextrins have been used as delivery vehicles of therapeutic compounds. Cyclodextrins can form inclusion complexes with drugs that are able to fit into the hydrophobic cavity of the cyclodextrin. In other examples, cyclodextrins form non-covalent associations with other biologically active molecules such as oligonucleotides and derivatives thereof. The use of cyclodextrins creates a water-soluble drug delivery complex, that can be modified with targeting or other functional groups. Cyclodextrin cellular delivery system for oligonucleotides described in U.S. Pat. No. 5,691,316, which is hereby incorporated by reference, are suitable for use in methods of the invention. In this system, an oligonucleotide is noncovalently complexed with a cyclodextrin, or the oligonucleotide is covalently bound to adamantine which in turn is non-covalently associated with a cyclodextrin.

The delivery molecule can include a linear cyclodextrin copolymer or a linear oxidized cyclodextrin copolymer having at least one ligand bound to the cyclodextrin copolymer. Delivery systems, as described in U.S. Patent No. 6,509,323, herein incorporated by reference, are suitable for use in methods of the invention. An iRNA agent can be bound to the linear cyclodextrin copolymer and/or a linear oxidized cyclodextrin copolymer. Either or both of the

5

10

15

20

25

cyclodextrin or oxidized cyclodextrin copolymers can be crosslinked to another polymer and/or bound to a ligand.

A composition for iRNA delivery can employ an "inclusion complex," a molecular compound having the characteristic structure of an adduct. In this structure, the "host

molecule" spatially encloses at least part of another compound in the delivery vehicle. The enclosed compound (the "guest molecule") is situated in the cavity of the host molecule without affecting the framework structure of the host. A "host" is preferably cyclodextrin, but can be any of the molecules suggested in U.S. Patent Publ. 2003/0008818, herein incorporated by reference.

Cyclodextrins can interact with a variety of ionic and molecular species, and the resulting inclusion compounds belong to the class of "host-guest" complexes. Within the host-guest relationship, the binding sites of the host and guest molecules should be complementary in the stereoelectronic sense. A composition of the invention can contain at least one polymer and at least one therapeutic agent, generally in the form of a particulate composite of the polymer and therapeutic agent, e.g., the iRNA agent. The iRNA agent can contain one or more complexing agents. At least one polymer of the particulate composite can interact with the complexing agent in a host-guest or a guest-host interaction to form an inclusion complex between the polymer and the complexing agent. The polymer and, more particularly, the complexing agent can be used to introduce functionality into the composition. For example, at least one polymer of the particulate composite has host functionality and forms an inclusion complex with a complexing agent having guest functionality. Alternatively, at least one polymer of the particulate composite has guest functionality and forms an inclusion complex with a complexing agent having host functionality. A polymer of the particulate composite can also contain both host and guest functionalities and form inclusion complexes with guest complexing agents and host complexing agents. A polymer with functionality can, for example, facilitate cell targeting and/or cell contact (e.g., targeting or contact to a liver cell), intercellular trafficking, and/or cell entry and release.

Upon forming the particulate composite, the iRNA agent may or may not retain its biological or therapeutic activity. Upon release from the therapeutic composition, specifically, from the polymer of the particulate composite, the activity of the iRNA agent is restored.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

Accordingly, the particulate composite advantageously affords the iRNA agent protection against loss of activity due to, for example, degradation and offers enhanced bioavailability. Thus, a composition may be used to provide stability, particularly storage or solution stability, to an iRNA agent or any active chemical compound. The iRNA agent may be further modified with a ligand prior to or after particulate composite or therapeutic composition formation. The ligand can provide further functionality. For example, the ligand can be a targeting moiety.

The state of the state of the state of

Physiological Effects

The iRNA agents described herein can be designed such that determining therapeutic toxicity is made easier by the complementarity of the iRNA agent with both a human and a non-human animal sequence. By these methods, an iRNA agent can consist of a sequence that is fully complementary to a nucleic acid sequence from a human and a nucleic acid sequence from at least one non-human animal, e.g., a non-human mammal, such as a rodent, ruminant or primate. For example, the non-human mammal can be a mouse, rat, dog, pig, goat, sheep, cow, monkey, Pan paniscus, Pan troglodytes, Macaca mulatto, or Cynomolgus monkey. The sequence of the iRNA agent could be complementary to sequences within homologous genes, e.g., oncogenes or tumor suppressor genes, of the non-human mammal and the human. By determining the toxicity of the iRNA agent in the non-human mammal, one can extrapolate the toxicity of the iRNA agent in a human. For a more strenuous toxicity test, the iRNA agent can be complementary to a human and more than one, e.g., two or three or more, non-human animals.

The methods described herein can be used to correlate any physiological effect of an iRNA agent on a human, e.g., any unwanted effect, such as a toxic effect, or any positive, or desired effect.

Delivery Module

An RNA, e.g., an iRNA agent described herein, can be used with a drug delivery conjugate or module, such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/454,265, filed on March 12, 2003, and

5

10

15

20

25

International Application Serial No. PCT/US04/07070, filed March 8, 2004, both of which are hereby incorporated by reference.

In addition, the invention includes iRNA agents described herein, e.g., a palindromic iRNA agent, an iRNA agent hving a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having a chemical modification described herein, e.g., a modification which enhances resistance to degradation, an iRNA agent having an architecture or structure described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, combined with, associated with, and delivered by such a drug delivery conjugate or module.

The iRNA agents can be complexed to a delivery agent that features a modular complex. The complex can include a carrier agent linked to one or more of (preferably two or more, more preferably all three of): (a) a condensing agent (e.g., an agent capable of attracting, e.g., binding, a nucleic acid, e.g., through ionic or electrostatic interactions); (b) a fusogenic agent (e.g., an agent capable of fusing and/or being transported through a cell membrane, e.g., an endosome membrane); and (c) a targeting group, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a liver cell.

An iRNA agent, e.g., iRNA agent or sRNA agent described herein, can be linked, e.g., coupled or bound, to the modular complex. The iRNA agent can interact with the condensing agent of the complex, and the complex can be used to deliver an iRNA agent to a cell, e.g., in vitro or in vivo. For example, the complex can be used to deliver an iRNA agent to a subject in need thereof, e.g., to deliver an iRNA agent to a subject having a disorder, e.g., a disorder described herein, such as a disease or disorder of the liver.

The fusogenic agent and the condensing agent can be different agents or the one and the same agent. For example, a polyamino chain, e.g., polyethyleneimine (PEI), can be the fusogenic and/or the condensing agent.

The delivery agent can be a modular complex. For example, the complex can include a carrier agent linked to one or more of (preferably two or more, more preferably all three of):

5

10

15

20

25

(a) a condensing agent (e.g., an agent capable of attracting, e.g., binding, a nucleic acid, e.g., through ionic interaction),

- (b) a fusogenic agent (e.g., an agent capable of fusing and/or being transported through a cell membrane, e.g., an endosome membrane), and
- (c) a targeting group, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a liver cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, Neproxin, or an RGD peptide or RGD peptide mimetic.

Carrier agents

The carrier agent of a modular complex described herein can be a substrate for attachment of one or more of: a condensing agent, a fusogenic agent, and a targeting group. The carrier agent would preferably lack an endogenous enzymatic activity. The agent would preferably be a biological molecule, preferably a macromolecule. Polymeric biological carriers are preferred. It would also be preferred that the carrier molecule be biodegradable..

The carrier agent can be a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or lipid. The carrier molecule can also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Other useful carrier molecules can be identified by routine methods.

A carrier agent can be characterized by one or more of: (a) is at least 1 Da in size; (b) has at least 5 charged groups, preferably between 5 and 5000 charged groups; (c) is present in the complex at a ratio of at least 1:1 carrier agent to fusogenic agent; (d) is present in the complex at a ratio of at least 1:1 carrier agent to condensing agent; (e) is present in the complex at a ratio of at least 1:1 carrier agent to targeting agent.

Fusogenic agents

5

10

15

20

25

A fusogenic agent of a modular complex described herein can be an agent that is responsive to, e.g., changes charge depending on, the pH environment. Upon encountering the pH of an endosome, it can cause a physical change, e.g., a change in osmotic properties which disrupts or increases the permeability of the endosome membrane. Preferably, the fusogenic agent changes charge, e.g., becomes protonated, at pH lower than physiological range. For example, the fusogenic agent can become protonated at pH 4.5-6.5. The fusogenic agent can serve to release the iRNA agent into the cytoplasm of a cell after the complex is taken up, e.g., via endocytosis, by the cell, thereby increasing the cellular concentration of the iRNA agent in the cell.

In one embodiment, the fusogenic agent can have a moiety, e.g., an amino group, which, when exposed to a specified pH range, will undergo a change, e.g., in charge, e.g., protonation. The change in charge of the fusogenic agent can trigger a change, e.g., an osmotic change, in a vesicle, e.g., an endocytic vesicle, e.g., an endosome. For example, the fusogenic agent, upon being exposed to the pH environment of an endosome, will cause a solubility or osmotic change substantial enough to increase the porosity of (preferably, to rupture) the endosomal membrane.

The fusogenic agent can be a polymer, preferably a polyamino chain, e.g., polyethyleneimine (PEI). The PEI can be linear, branched, synthetic or natural. The PEI can be, e.g., alkyl substituted PEI, or lipid substituted PEI.

In other embodiments, the fusogenic agent can be polyhistidine, polyimidazole, polypyridine, polypropyleneimine, mellitin, or a polyacetal substance, e.g., a cationic polyacetal. In some embodiment, the fusogenic agent can have an alpha helical structure. The fusogenic agent can be a membrane disruptive agent, e.g., mellittin.

5

10

15

20

25

A fusogenic agent can have one or more of the following characteristics: (a) is at least 1Da in size; (b) has at least 10 charged groups, preferably between 10 and 5000 charged groups, more preferably between 50 and 1000 charged groups; (c) is present in the complex at a ratio of at least 1:1 fusogenic agent to carrier agent; (d) is present in the complex at a ratio of at least 1:1 fusogenic agent to condensing agent; (e) is present in the complex at a ratio of at least 1:1 fusogenic agent to targeting agent.

Other suitable fusogenic agents can be tested and identified by a skilled artisan. The ability of a compound to respond to, e.g., change charge depending on, the pH environment can be tested by routine methods, e.g., in a cellular assay. For example, a test compound is combined or contacted with a cell, and the cell is allowed to take up the test compound, e.g., by endocytosis. An endosome preparation can then be made from the contacted cells and the endosome preparation compared to an endosome preparation from control cells. A change, e.g., a decrease, in the endosome fraction from the contacted cell vs. the control cell indicates that the test compound can function as a fusogenic agent. Alternatively, the contacted cell and control cell can be evaluated, e.g., by microscopy, e.g., by light or electron microscopy, to determine a difference in endosome population in the cells. The test compound can be labeled. In another type of assay, a modular complex described herein is constructed using one or more test:or putative fusogenic agents. The modular complex can be constructed using a labeled nucleic acid instead of the iRNA. The ability of the fusogenic agent to respond to, e.g., change charge depending on, the pH environment, once the modular complex is taken up by the cell, can be evaluated, e.g., by preparation of an endosome preparation, or by microscopy techniques, as described above. A two-step assay can also be performed, wherein a first assay evaluates the ability of a test compound alone to respond to, e.g., change charge depending on, the pH environment; and a second assay evaluates the ability of a modular complex that includes the test compound to respond to, e.g., change charge depending on, the pH environment.

Condensing agent

The condensing agent of a modular complex described herein can interact with (e.g., attracts, holds, or binds to) an iRNA agent and act to (a) condense, e.g., reduce the size or charge of the iRNA agent and/or (b) protect the iRNA agent, e.g., protect the iRNA agent against

10

15

20

25

Attorney's Docket No.: 14174-072W01

degradation. The condensing agent can include a moiety, e.g., a charged moiety, that can interact with a nucleic acid, e.g., an iRNA agent, e.g., by ionic interactions. The condensing agent would preferably be a charged polymer, e.g., a polycationic chain. The condensing agent can be a polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quarternary salt of a polyamine, or an alpha helical peptide.

A condensing agent can have the following characteristics: (a) at least 1Da in size; (b) has at least 2 charged groups, preferably between 2 and 100 charged groups; (c) is present in the complex at a ratio of at least 1:1 condensing agent to carrier agent; (d) is present in the complex at a ratio of at least 1:1 condensing agent to fusogenic agent; (e) is present in the complex at a ratio of at least 1:1 condensing agent to targeting agent.

Other suitable condensing agents can be tested and identified by a skilled artisan, e.g., by evaluating the ability of a test agent to interact with a nucleic acid, e.g., an iRNA agent. The ability of a test agent to interact with a nucleic acid, e.g., an iRNA agent, e.g., to condense or protect the iRNA agent, can be evaluated by routine techniques. In one assay, a test agent is contacted with a nucleic acid, and the size and/or charge of the contacted nucleic acid is evaluated by a technique suitable to detect changes in molecular mass and/or charge. Such techniques include non-denaturing gel electrophoresis, immunological methods, e.g., immunoprecipitation, gel filtration, ionic interaction chromatography, and the like. A test agent is identified as a condensing agent if it changes the mass and/or charge (preferably both) of the contacted nucleic acid, compared to a control. A two-step assay can also be performed, wherein a first assay evaluates the ability of a test compound alone to interact with, e.g., bind to, e.g., condense the charge and/or mass of, a nucleic cid; and a second assay evaluates the ability of a modular complex that includes the test compound to interact with, e.g., bind to, e.g., condense the charge and/or mass of, a nucleic acid.

Amphipathic Delivery Agents

An RNA, e.g., an iRNA agent, described herein can be used with an amphipathic delivery conjugate or module, such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/455,050, filed on March 13, 2003, and

5

10

15

20

25

International Application Serial No. PCT/US04/07070, filed March 8, 2004, which is hereby incorporated by reference.

In addition, the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a noncanonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having a chemical modification described herein, e.g., a modification which enhances resistance to degradation, an iRNA agent having an architecture or structure described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, combined with, associated with, and delivered by such an amphipathic delivery conjugate.

An amphipathic molecule is a molecule having a hydrophobic and a hydrophilic region. Such molecules can interact with (e.g., penetrate or disrupt) lipids, e.g., a lipid bylayer of a cell. As such, they can serve as delivery agent for an associated (e.g., bound) iRNA (e.g., an iRNA or sRNA described herein). A preferred amphipathic molecule to be used in the compositions described herein (e.g., the amphipathic iRNA constructs described herein) is a polymer. The polymer may have a secondary structure, e.g., a repeating secondary structure.

One example of an amphipathic polymer is an amphipathic polypeptide, e.g., a polypeptide having a secondary structure such that the polypeptide has a hydrophilic and a hybrophobic face. The design of amphipathic peptide structures (e.g., alpha-helical polypeptides) is routine to one of skill in the art. For example, the following references provide guidance: Grell et al. (2001) "Protein design and folding: template trapping of self-assembled helical bundles" J Pept Sci 7(3):146-51; Chen et al. (2002) "Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix" J Pept Res 59(1):18-33; Iwata et al. (1994) "Design and synthesis of amphipathic 3(10)-helical peptides and their interactions with phospholipid bilayers and ion channel formation" J Biol Chem 269(7):4928-33; Cornut et al. (1994) "The amphipathic alpha-helix concept. Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin" FEBS Lett 349(1):29-33; Negrete et al. (1998) "Deciphering the structural code for proteins: helical propensities in domain classes and statistical multiresidue information in alpha-helices," Protein Sci 7(6):1368-79.

. . .

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

Another example of an amphipathic polymer is a polymer made up of two or more amphipathic subunits, e.g., two or more subunits containing cyclic moieties (e.g., a cyclic moiety having one or more hydrophilic groups and one or more hydrophobic groups). For example, the subunit may contain a steroid, e.g., cholic acid; or a aromatic moiety. Such moieties preferably can exhibit atropisomerism, such that they can form opposing hydrophobic and hydrophilic faces when in a polymer structure.

The ability of a putative amphipathic molecule to interact with a lipid membrane, e.g., a cell membrane, can be tested by routine methods, e.g., in a cell free or cellular assay. For example, a test compound is combined or contacted with a synthetic lipid bilayer, a cellular membrane fraction, or a cell, and the test compound is evaluated for its ability to interact with, penetrate or disrupt the lipid bilayer, cell membrane or cell. The test compound can labeled in order to detect the interaction with the lipid bilayer, cell membrane or cell. In another type of assay, the test compound is linked to a reporter molecule or an iRNA agent (e.g., an iRNA or sRNA described herein) and the ability of the reporter molecule or iRNA agent to penetrate the lipid bilayer, cell membrane or cell is evaluated. A two-step assay can also be performed, wherein a first assay evaluates the ability of a test compound alone to interact with a lipid bilayer, cell membrane or cell; and a second assay evaluates the ability of a construct (e.g., a construct described herein) that includes the test compound and a reporter or iRNA agent to interact with a lipid bilayer, cell membrane or cell.

An amphipathic polymer useful in the compositions described herein has at least 2, preferably at least 5, more preferably at least 10, 25, 50, 100, 200, 500, 1000, 2000, 50000 or more subunits (e.g., amino acids or cyclic subunits). A single amphipathic polymer can be linked to one or more, e.g., 2, 3, 5, 10 or more iRNA agents (e.g., iRNA or sRNA agents described herein). In some embodiments, an amphipathic polymer can contain both amino acid and cyclic subunits, e.g., aromatic subunits.

The invention features a composition that includes an iRNA agent (e.g., an iRNA or sRNA described herein) in association with an amphipathic molecule. Such compositions may be referred to herein as "amphipathic iRNA constructs." Such compositions and constructs are useful in the delivery or targeting of iRNA agents, e.g., delivery or targeting of iRNA agents to a

5

10

15

20

25

cell. While not wanting to be bound by theory, such compositions and constructs can increase the porosity of, e.g., can penetrate or disrupt, a lipid (e.g., a lipid bilayer of a cell), e.g., to allow entry of the iRNA agent into a cell.

In one aspect, the invention relates to a composition comprising an iRNA agent (e.g., an iRNA or sRNA agent described herein) linked to an amphipathic molecule. The iRNA agent and the amphipathic molecule may be held in continuous contact with one another by either covalent or noncovalent linkages.

The amphipathic molecule of the composition or construct is preferably other than a phospholipid, e.g., other than a micelle, membrane or membrane fragment.

The amphipathic molecule of the composition or construct is preferably a polymer. The polymer may include two or more amphipathic subunits. One or more hydrophilic groups and one or more hydrophobic groups may be present on the polymer. The polymer may have a repeating secondary structure as well as a first face and a second face. The distribution of the hydrophilic groups and the hydrophobic groups along the repeating secondary structure can be such that one face of the polymer is a hydrophobic face and the other face of the polymer is a hydrophobic face.

The amphipathic molecule can be a polypeptide, e.g., a polypeptide comprising an α -helical conformation as its secondary structure.

In one embodiment, the amphipathic polymer includes one or more subunits containing one or more cyclic moiety (e.g., a cyclic moiety having one or more hydrophilic groups and/or one or more hydrophobic groups). In one embodiment, the polymer is a polymer of cyclic moieties such that the moieties have alternating hydrophobic and hydrophilic groups. For example, the subunit may contain a steroid, e.g., cholic acid. In another example, the subunit may contain an aromatic moiety. The aromatic moiety may be one that can exhibit atropisomerism, e.g., a 2,2'-bis(substituted)-1-1'-binaphthyl or a 2,2'-bis(substituted) biphenyl. A subunit may include an aromatic moiety of Formula (M):

10

Attorney's Docket No.: 14174-072W01

$$R_3$$
 R_4
 R_4
 R_1
 R_3

(M)

The invention features a composition that includes an iRNA agent (e.g., an iRNA or sRNA described herein) in association with an amphipathic molecule. Such compositions may be referred to herein as "amphipathic iRNA constructs." Such compositions and constructs are useful in the delivery or targeting of iRNA agents, e.g., delivery or targeting of iRNA agents to a cell. While not wanting to be bound by theory, such compositions and constructs can increase the porosity of, e.g., can penetrate or disrupt, a lipid (e.g., a lipid bilayer of a cell), e.g., to allow entry of the iRNA agent into a cell.

In one aspect, the invention relates to a composition comprising an iRNA agent (e.g., an iRNA or sRNA agent described herein) linked to an amphipathic molecule. The iRNA agent and the amphipathic molecule may be held in continuous contact with one another by either covalent or noncovalent linkages.

The amphipathic molecule of the composition or construct is preferably other than a phospholipid, e.g., other than a micelle, membrane or membrane fragment.

The amphipathic molecule of the composition or construct is preferably a polymer. The polymer may include two or more amphipathic subunits. One or more hydrophilic groups and

5

10

15

one or more hydrophobic groups may be present on the polymer. The polymer may have a repeating secondary structure as well as a first face and a second face. The distribution of the hydrophilic groups and the hydrophobic groups along the repeating secondary structure can be such that one face of the polymer is a hydrophobic face and the other face of the polymer is a hydrophobic face.

The amphipathic molecule can be a polypeptide, e.g., a polypeptide comprising an α -helical conformation as its secondary structure.

In one embodiment, the amphipathic polymer includes one or more subunits containing one or more cyclic moiety (e.g., a cyclic moiety having one or more hydrophilic groups and/or one or more hydrophobic groups). In one embodiment, the polymer is a polymer of cyclic moieties such that the moieties have alternating hydrophobic and hydrophilic groups. For example, the subunit may contain a steroid, e.g., cholic acid. In another example, the subunit may contain an aromatic moiety. The aromatic moiety may be one that can exhibit atropisomerism, e.g., a 2,2'-bis(substituted)-1-1'-binaphthyl or a 2,2'-bis(substituted) biphenyl.

A subunit may include an aromatic moiety of Formula (M):

$$R_3$$
 R_4
 R_2
 R_4
 R_4
 R_1
 R_3
 (M)

10

15

20

25

Attorney's Docket No.: 14174-072W01

Referring to Formula M, R_1 is C_1 - C_{100} alkyl optionally substituted with aryl, alkenyl, alkynyl, alkoxy or halo and/or optionally inserted with O, S, alkenyl or alkynyl; C_1 - C_{100} perfluoroalkyl; or OR_5 .

R₂ is hydroxy; nitro; sulfate; phosphate; phosphate ester; sulfonic acid; OR₆; or C₁-C₁₀₀ alkyl optionally substituted with hydroxy, halo, nitro, aryl or alkyl sulfinyl, aryl or alkyl sulfonyl, sulfate, sulfonic acid, phosphate, phosphate ester, substituted or unsubstituted aryl, carboxyl, carboxylate, amino carbonyl, or alkoxycarbonyl, and/or optionally inserted with O, NH, S, S(O), SO₂, alkenyl, or alkynyl.

R₃ is hydrogen, or when taken together with R₄ froms a fused phenyl ring.

R₄ is hydrogen, or when taken together with R₃ froms a fused phenyl ring.

R₅ is C₁-C₁₀₀ alkyl optionally substituted with aryl, alkenyl, alkynyl, alkoxy or halo and/or optionally inserted with O, S, alkenyl or alkynyl; or C₁-C₁₀₀ perfluoroalkyl; and R₆ is C₁-C₁₀₀ alkyl optionally substituted with hydroxy, halo, nitro, aryl or alkyl sulfinyl, aryl or alkyl sulfonyl, sulfate, sulfonic acid, phosphate, phosphate ester, substituted or unsubstituted aryl, carboxyl, carboxylate, amino carbonyl, or alkoxycarbonyl, and/or optionally inserted with O, NH, S, S(O), SO₂, alkenyl, or alkynyl.

Increasing cellular uptake of dsRNAs

A method of the invention that can include the administration of an iRNA agent and a drug that affects the uptake of the iRNA agent into the cell. The drug can be administered before, after, or at the same time that the iRNA agent is administered. The drug can be covalently linked to the iRNA agent. The drug can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB. The drug can have a transient effect on the cell.

The drug can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine,

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.

The drug can also increase the uptake of the iRNA agent into the cell by activating an inflammatory response, for example. Exemplary drug's that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, or gamma interferon.

iRNA conjugates

5

10

15

25

An iRNA agent can be coupled, e.g., covalently coupled, to a second agent. For example, an iRNA agent used to treat a particular disorder can be coupled to a second therapeutic agent, e.g., an agent other than the iRNA agent. The second therapeutic agent can be one which is directed to the treatment of the same disorder. For example, in the case of an iRNA used to treat a disorder characterized by unwanted cell proliferation, e.g., cancer, the iRNA agent can be coupled to a second agent which has an anti-cancer effect. For example, it can be coupled to an agent which stimulates the immune system, e.g., a CpG motif, or more generally an agent that activates a toll-like receptor and/or increases the production of gamma interferon.

iRNA Production

An iRNA can be produced, e.g., in bulk, by a variety of methods. Exemplary methods include: organic synthesis and RNA cleavage, e.g., in vitro cleavage.

Organic Synthesis

An iRNA can be made by separately synthesizing each respective strand of a doublestranded RNA molecule. The component strands can then be annealed.

A large bioreactor, e.g., the OligoPilot II from Pharmacia Biotec AB (Uppsala Sweden), can be used to produce a large amount of a particular RNA strand for a given iRNA. The OligoPilotII reactor can efficiently couple a nucleotide using only a 1.5 molar excess of a phosphoramidite nucleotide. To make an RNA strand, ribonucleotides amidites are used. Standard cycles of monomer addition can be used to synthesize the 21 to 23 nucleotide strand for the iRNA. Typically, the two complementary strands are produced separately and then annealed, e.g., after release from the solid support and deprotection.

Organic synthesis can be used to produce a discrete iRNA species. The complementary of the species to a particular target gene can be precisely specified. For example, the species may be complementary to a region that includes a polymorphism, e.g., a single nucleotide polymorphism. Further the location of the polymorphism can be precisely defined. In some embodiments, the polymorphism is located in an internal region, e.g., at least 4, 5, 7, or 9 nucleotides from one or both of the termini.

dsRNA Cleavage

5

10

15

20

25

iRNAs can also be made by cleaving a larger ds iRNA. The cleavage can be mediated in vitro or in vivo. For example, to produce iRNAs by cleavage in vitro, the following method can be used:

In vitro transcription. dsRNA is produced by transcribing a nucleic acid (DNA) segment in both directions. For example, the HiScribeTM RNAi transcription kit (New England Biolabs) provides a vector and a method for producing a dsRNA for a nucleic acid segment that is cloned into the vector at a position flanked on either side by a T7 promoter. Separate templates are generated for T7 transcription of the two complementary strands for the dsRNA. The templates are transcribed in vitro by addition of T7 RNA polymerase and dsRNA is produced. Similar methods using PCR and/or other RNA polymerases (e.g., T3 or SP6 polymerase) can also be used. In one embodiment, RNA generated by this method is carefully purified to remove endotoxins that may contaminate preparations of the recombinant enzymes.

In vitro cleavage. dsRNA is cleaved in vitro into iRNAs, for example, using a Dicer or comparable RNAse III-based activity. For example, the dsRNA can be incubated in an in vitro extract from Drosophila or using purified components, e.g. a purified RNAse or RISC complex (RNA-induced silencing complex). See, e.g., Ketting et al. Genes Dev 2001 Oct 15;15(20):2654-9. and Hammond Science 2001 Aug 10;293(5532):1146-50.

dsRNA cleavage generally produces a plurality of iRNA species, each being a particular 21 to 23 nt fragment of a source dsRNA molecule. For example, iRNAs that include sequences complementary to overlapping regions and adjacent regions of a source dsRNA molecule may be present.

PCT/US2004/011255

Ċ.

Attorney's Docket No.: 14174-072W01

WO 2004/091515

5

10

15

20

25

Regardless of the method of synthesis, the iRNA preparation can be prepared in a solution (e.g., an aqueous and/or organic solution) that is appropriate for formulation. For example, the iRNA preparation can be precipitated and redissolved in pure double-distilled water, and lyophilized. The dried iRNA can then be resuspended in a solution appropriate for the intended formulation process.

Synthesis of modified and nucleotide surrogate iRNA agents is discussed below.

FORMULATION

The iRNA agents described herein can be formulated for administration to a subject

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.

A formulated iRNA composition can assume a variety of states. In some examples, the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (e.g., less than 80, 50, 30, 20, or 10% water). In another example, the iRNA is in an aqueous phase, e.g., in a solution that includes water.

The aqueous phase or the crystalline compositions can, e.g., be incorporated into a delivery vehicle, e.g., a liposome (particularly for the aqueous phase) or a particle (e.g., a microparticle as can be appropriate for a crystalline composition). Generally, the iRNA composition is formulated in a manner that is compatible with the intended method of administration (see, below).

In particular embodiments, the composition is prepared by at least one of the following methods: spray drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques; or sonication with a lipid, freeze-drying, condensation and other self-assembly.

A iRNA preparation can be formulated in combination with another agent, e.g., another therapeutic agent or an agent that stabilizes a iRNA, e.g., a protein that complexes with iRNA to 169

10

15

20

25

Attorney's Docket No.: 14174-072W01

form an iRNP. Still other agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg²⁺), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.

In one embodiment, the iRNA preparation includes another iRNA agent, e.g., a second iRNA that can mediated RNAi with respect to a second gene, or with respect to the same gene. Still other preparation can include at least 3, 5, ten, twenty, fifty, or a hundred or more different iRNA species. Such iRNAs can mediated RNAi with respect to a similar number of different genes.

In one embodiment, the iRNA preparation includes at least a second therapeutic agent (e.g., an agent other than an RNA or a DNA). For example, a iRNA composition for the treatment of a viral disease, e.g. HIV, might include a known antiviral agent (e.g., a protease inhibitor or reverse transcriptase inhibitor). In another example, a iRNA composition for the treatment of a cancer might further comprise a chemotherapeutic agent.

Exemplary formulations are discussed below:

Liposomes

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA s agents, and such practice is within the invention. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term "liposome" refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the iRNA composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the iRNA

10

15

20

25

Attorney's Docket No.: 14174-072W01

composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the iRNA are delivered into the cell where the iRNA can specifically bind to a target RNA and can mediate RNAi. In some cases the liposomes are also specifically targeted, e.g., to direct the iRNA to particular cell types, e.g., to cells of the liver, such as those described herein.

A liposome containing a iRNA can be prepared by a variety of methods.

In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The iRNA preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the iRNA and condense around the iRNA to form a liposome. After condensation, the detergent is removed, *e.g.*, by dialysis, to yield a liposomal preparation of iRNA.

If necessary a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also adjusted to favor condensation.

Further description of methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are described in, e.g., WO 96/37194. Liposome formation can also include one or more aspects of exemplary methods described in Felgner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987; U.S. Pat. No. 4,897,355; U.S. Pat. No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238, 1965; Olson, et al. Biochim. Biophys. Acta 557:9, 1979; Szoka, et al. Proc. Natl. Acad. Sci. 75: 4194, 1978; Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984; Kim, et al. Biochim. Biophys. Acta 728:339, 1983; and Fukunaga, et al. Endocrinol. 115:757, 1984.

11.00

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer, et al. Biochim. Biophys. Acta 858:161, 1986). Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984). These methods are readily adapted to packaging iRNA preparations into liposomes.

Liposomes that are pH-sensitive or negatively-charged, entrap nucleic acid molecules rather than complex with them. Since both the nucleic acid molecules and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid molecules are entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou *et al.*, *Journal of Controlled Release*, 19, (1992) 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Examples of other methods to introduce liposomes into cells *in vitro* and *in vivo* include U.S. Pat. No. 5,283,185; U.S. Pat. No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, *J. Biol. Chem.* 269:2550, 1994; Nabel, *Proc. Natl. Acad. Sci.* 90:11307, 1993; Nabel, *Human Gene Ther.* 3:649, 1992; Gershon, *Biochem.* 32:7143, 1993; and Strauss *EMBO J.* 11:417, 1992.

In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able

10

15

20

25

to fuse as efficiently with the plasma membrane, are taken up by macrophages *in vivo* and can be used to deliver iRNAs to macrophages.

Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated iRNAs in their internal compartments from metabolism and degradation (Rosoff, in "Pharmaceutical Dosage Forms," Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of iRNA (see, *e.g.*, Felgner, P. L. *et al.*, Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987 and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).

A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. LipofectinTM Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane ("DOTAP") (Boehringer Mannheim, Indianapolis, Indiana) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.

Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine

15

20

25

Attorney's Docket No.: 14174-072W01

dioctaoleoylamide ("DOGS") (Transfectam™, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide ("DPPES") (see, e.g., U.S. Pat. No. 5,171,678).

Another cationic lipid conjugate includes derivatization of the lipid with cholesterol ("DC-Chol") which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., Biochim. Biophys. Res. Commun. 179:280, 1991). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., Biochim. Biophys. Acta 1065:8, 1991). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, California) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.

Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer iRNA, into the skin. In some implementations, liposomes are used for delivering iRNA to epidermal cells and also to enhance the penetration of iRNA into dermal tissues, *e.g.*, into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, *e.g.*, Weiner *et al.*, *Journal of Drug Targeting*, 1992, vol. 2,405-410 and du Plessis *et al.*, *Antiviral Research*, 18, 1992, 259-265; Mannino, R. J. and Fould-Fogerite, S., Biotechniques 6:682-690, 1988; Itani, T. *et al.* Gene 56:267-276. 1987; Nicolau, C. *et al.* Meth. Enz. 149:157-176, 1987; Straubinger, R. M. and Papahadjopoulos, D. Meth. Enz. 101:512-527, 1983; Wang, C. Y. and Huang, L., Proc. Natl. Acad. Sci. USA 84:7851-7855, 1987).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl

WO 2004/091515

5

10

15

20

25

dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with iRNA are useful for treating a dermatological disorder.

Liposomes that include iRNA can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of deformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include iRNA can be delivered, for example, subcutaneously by infection in order to deliver iRNA to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading. The iRNA agents can include an RRMS tethered to a moiety which improves association with a liposome.

Surfactants

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes (see above). iRNA (or a precursor, e.g., a larger dsRNA which can be processed into a iRNA, or a DNA which encodes a iRNA or precursor) compositions can include a surfactant. In one embodiment, the iRNA is formulated as an emulsion that includes a surfactant. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).

WO 2004/091515 PCT/US2004/011255

N. 6 . 14 . 1

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant.

Nonionic surfactants find wide application in pharmaceutical products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).

Micelles and other Membranous Formulations

For ease of exposition the micelles and other formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these micelles and other formulations, compositions and methods can

5

10

15

20

25

be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. The iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)) composition can be provided as a micellar formulation. "Micelles" are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.

A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the iRNA composition, an alkali metal C₈ to C₂₂ alkyl sulphate, and a micelle forming compounds. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing is preferred in order to provide smaller size micelles.

In one method a first micellar composition is prepared which contains the iRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the iRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.

Phenol and/or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol and/or m-cresol may be

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.

For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, *i.e.* there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, *e.g.* through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.

The preferred propellants are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is HFA 134a (1,1,1,2 tetrafluoroethane).

The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, *e.g.* at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.

The iRNA agents can include an RRMS tethered to a moiety which improves association with a micelle or other membranous formulation.

Particles |

For ease of exposition the particles, formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these particles, formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. In another embodiment, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparations may be incorporated into a particle, e.g., a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including

5

10

15

20

25

lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques. See below for further description.

Sustained-Release Formulations. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein can be formulated for controlled, e.g., slow release. Controlled release can be achieved by disposing the iRNA within a structure or substance which impedes its release. E.g., iRNA can be disposed within a porous matrix or in an erodable matrix, either of which allow release of the iRNA over a period of time.

Polymeric particles, e.g., polymeric in microparticles can be used as a sustained-release reservoir of iRNA that is taken up by cells only released from the microparticle through biodegradation. The polymeric particles in this embodiment should therefore be large enough to preclude phagocytosis (e.g., larger than 10 μ m and preferably larger than 20 μ m). Such particles can be produced by the same methods to make smaller particles, but with less vigorous mixing of the first and second emulsions. That is to say, a lower homogenization speed, vortex mixing speed, or sonication setting can be used to obtain particles having a diameter around 100 μ m rather than 10 μ m. The time of mixing also can be altered.

Larger microparticles can be formulated as a suspension, a powder, or an implantable solid, to be delivered by intramuscular, subcutaneous, intradermal, intravenous, or intraperitoneal injection; via inhalation (intranasal or intrapulmonary); orally; or by implantation. These particles are useful for delivery of any iRNA when slow release over a relatively long term is desired. The rate of degradation, and consequently of release, varies with the polymeric formulation.

Microparticles preferably include pores, voids, hollows, defects or other interstitial spaces that allow the fluid suspension medium to freely permeate or perfuse the particulate boundary. For example, the perforated microstructures can be used to form hollow, porous spray dried microspheres.

5

10

15

20

25

Polymeric particles containing iRNA (e.g., a sRNA) can be made using a double emulsion technique, for instance. First, the polymer is dissolved in an organic solvent. A preferred polymer is polylactic-co-glycolic acid (PLGA), with a lactic/glycolic acid weight ratio of 65:35, 50:50, or 75:25. Next, a sample of nucleic acid suspended in aqueous solution is added to the polymer solution and the two solutions are mixed to form a first emulsion. The solutions can be mixed by vortexing or shaking, and in a preferred method, the mixture can be sonicated. Most preferable is any method by which the nucleic acid receives the least amount of damage in the form of nicking, shearing, or degradation, while still allowing the formation of an appropriate emulsion. For example, acceptable results can be obtained with a Vibra-cell model VC-250 sonicator with a 1/8" microtip probe, at setting #3.

Spray-Drying. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)) can be prepared by spray drying. Spray dried iRNA can be administered to a subject or be subjected to further formulation. A pharmaceutical composition of iRNA can be prepared by spray drying a homogeneous aqueous mixture that includes a iRNA under conditions sufficient to provide a dispersible powdered composition, e.g., a pharmaceutical composition. The material for spray drying can also include one or more of: a pharmaceutically acceptable excipient, or a dispersibility-enhancing amount of a physiologically acceptable, water-soluble protein. The spray-dried product can be a dispersible powder that includes the iRNA.

Spray drying is a process that converts a liquid or slurry material to a dried particulate form. Spray drying can be used to provide powdered material for various administrative routes including inhalation. See, for example, M. Sacchetti and M. M. Van Oort in: Inhalation Aerosols: Physical and Biological Basis for Therapy, A. J. Hickey, ed. Marcel Dekkar, New York, 1996.

Spray drying can include atomizing a solution, emulsion, or suspension to form a fine mist of droplets and drying the droplets. The mist can be projected into a drying chamber (e.g., a vessel, tank, tubing, or coil) where it contacts a drying gas. The mist can include solid or liquid pore forming agents. The solvent and pore forming agents evaporate from the droplets into the

5

10

15

20

25

drying gas to solidify the droplets, simultaneously forming pores throughout the solid. The solid (typically in a powder, particulate form) then is separated from the drying gas and collected.

Spray drying includes bringing together a highly dispersed liquid, and a sufficient volume of air (e.g., hot air) to produce evaporation and drying of the liquid droplets. The preparation to be spray dried can be any solution, course suspension, slurry, colloidal dispersion, or paste that may be atomized using the selected spray drying apparatus. Typically, the feed is sprayed into a current of warm filtered air that evaporates the solvent and conveys the dried product to a collector. The spent air is then exhausted with the solvent. Several different types of apparatus may be used to provide the desired product. For example, commercial spray dryers manufactured by Buchi Ltd. or Niro Corp. can effectively produce particles of desired size.

Spray-dried powdered particles can be approximately spherical in shape, nearly uniform in size and frequently hollow. There may be some degree of irregularity in shape depending upon the incorporated medicament and the spray drying conditions. In many instances the dispersion stability of spray-dried microspheres appears to be more effective if an inflating agent (or blowing agent) is used in their production. Particularly preferred embodiments may comprise an emulsion with an inflating agent as the disperse or continuous phase (the other phase being aqueous in nature). An inflating agent is preferably dispersed with a surfactant solution, using, for instance, a commercially available microfluidizer at a pressure of about 5000 to 15,000 psi. This process forms an emulsion, preferably stabilized by an incorporated surfactant, typically comprising submicron droplets of water immiscible blowing agent dispersed in an aqueous continuous phase. The formation of such dispersions using this and other techniques are common and well known to those in the art. The blowing agent is preferably a fluorinated compound (e.g. perfluorohexane, perfluorooctyl bromide, perfluorodecalin, perfluorobutyl ethane) which vaporizes during the spray-drying process, leaving behind generally hollow, porous aerodynamically light microspheres. As will be discussed in more detail below, other suitable blowing agents include chloroform, freons, and hydrocarbons. Nitrogen gas and carbon dioxide are also contemplated as a suitable blowing agent.

Although the perforated microstructures are preferably formed using a blowing agent as described above, it will be appreciated that, in some instances, no blowing agent is required and

Contract to

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

an aqueous dispersion of the medicament and surfactant(s) are spray dried directly. In such cases, the formulation may be amenable to process conditions (e.g., elevated temperatures) that generally lead to the formation of hollow, relatively porous microparticles. Moreover, the medicament may possess special physicochemical properties (e.g., high crystallinity, elevated melting temperature, surface activity, etc.) that make it particularly suitable for use in such techniques.

The perforated microstructures may optionally be associated with, or comprise, one or more surfactants. Moreover, miscible surfactants may optionally be combined with the suspension medium liquid phase. It will be appreciated by those skilled in the art that the use of surfactants may further increase dispersion stability, simplify formulation procedures or increase bioavailability upon administration. Of course combinations of surfactants, including the use of one or more in the liquid phase and one or more associated with the perforated microstructures are contemplated as being within the scope of the invention. By "associated with or comprise" it is meant that the structural matrix or perforated microstructure may incorporate, adsorb, absorb, be coated with or be formed by the surfactant.

Surfactants suitable for use include any compound or composition that aids in the formation and maintenance of the stabilized respiratory dispersions by forming a layer at the interface between the structural matrix and the suspension medium. The surfactant may comprise a single compound or any combination of compounds, such as in the case of co-surfactants. Particularly preferred surfactants are substantially insoluble in the propellant, nonfluorinated, and selected from the group consisting of saturated and unsaturated lipids, nonionic detergents, nonionic block copolymers, ionic surfactants, and combinations of such agents. It should be emphasized that, in addition to the aforementioned surfactants, suitable (*i.e.* biocompatible) fluorinated surfactants are compatible with the teachings herein and may be used to provide the desired stabilized preparations.

Lipids, including phospholipids, from both natural and synthetic sources may be used in varying concentrations to form a structural matrix. Generally, compatible lipids comprise those that have a gel to liquid crystal phase transition greater than about 40° C. Preferably, the incorporated lipids are relatively long chain (i.e. C₆-C₂₂) saturated lipids and more preferably

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

comprise phospholipids. Exemplary phospholipids useful in the disclosed stabilized preparations comprise egg phosphatidylcholine, dilauroylphosphatidylcholine, dioleylphosphatidylcholine, dipalmitoylphosphatidyl-choline, disteroylphosphatidylcholine, short-chain phosphatidylcholines, phosphatidylethanolamine, dioleylphosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, glycolipids, ganglioside GM1, sphingomyelin, phosphatidic acid, cardiolipin; lipids bearing polymer chains such as, polyethylene glycol, chitin, hyaluronic acid, or polyvinylpyrrolidone; lipids bearing sulfonated mono-, di-, and polysaccharides; fatty acids such as palmitic acid, stearic acid, and oleic acid; cholesterol, cholesterol esters, and cholesterol hemisuccinate. Due to their excellent biocompatibility characteristics, phospholipids and combinations of phospholipids and poloxamers are particularly suitable for use in the stabilized dispersions disclosed herein.

Compatible nonionic detergents comprise: sorbitan esters including sorbitan trioleate (SpansTM 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters, and sucrose esters. Other suitable nonionic detergents can be easily identified using McCutcheon's Emulsifiers and Detergents (McPublishing Co., Glen Rock, N.J.). Preferred block copolymers include diblock and triblock copolymers of polyoxyethylene and polyoxypropylene, including poloxamer 188 (Pluronic.RTM. F68), poloxamer 407 (Pluronic.RTM. F-127), and poloxamer 338. Ionic surfactants such as sodium sulfosuccinate, and fatty acid soaps may also be utilized. In preferred embodiments, the microstructures may comprise oleic acid or its alkali salt.

In addition to the aforementioned surfactants, cationic surfactants or lipids are preferred especially in the case of delivery of an iRNA agent, *e.g.*, a double-stranded iRNA agent, or sRNA agent, (*e.g.*, a precursor, *e.g.*, a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, *e.g.*, a double-stranded iRNA agent, or sRNA agent, or precursor thereof). Examples of suitable cationic lipids include: DOTMA, N-[-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium-chloride; DOTAP,1,2-dioleyloxy-3- (trimethylammonio)propane; and DOTB, 1,2-dioleyl-3-(4'-trimethylammonio)butanoyl-sn-glycerol. Polycationic amino acids such as polylysine, and polyarginine are also contemplated.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

For the spraying process, such spraying methods as rotary atomization, pressure atomization and two-fluid atomization can be used. Examples of the devices used in these processes include "Parubisu [phonetic rendering] Mini-Spray GA-32" and "Parubisu Spray Drier DL-41", manufactured by Yamato Chemical Co., or "Spray Drier CL-8," "Spray Drier L-8," "Spray Drier FL-12," "Spray Drier FL-16" or "Spray Drier FL-20," manufactured by Okawara Kakoki Co., can be used for the method of spraying using rotary-disk atomizer.

While no particular restrictions are placed on the gas used to dry the sprayed material, it is recommended to use air, nitrogen gas or an inert gas. The temperature of the inlet of the gas used to dry the sprayed materials such that it does not cause heat deactivation of the sprayed material. The range of temperatures may vary between about 50°C to about 200°C, preferably between about 50°C and 100°C. The temperature of the outlet gas used to dry the sprayed material, may vary between about 0°C and about 150°C, preferably between 0°C and 90°C, and even more preferably between 0°C and 60°C.

The spray drying is done under conditions that result in substantially amorphous powder of homogeneous constitution having a particle size that is respirable, a low moisture content and flow characteristics that allow for ready aerosolization. Preferably the particle size of the resulting powder is such that more than about 98% of the mass is in particles having a diameter of about 10 μ m or less with about 90% of the mass being in particles having a diameter less than 5 μ m. Alternatively, about 95% of the mass will have particles with a diameter of less than 10 μ m with about 80% of the mass of the particles having a diameter of less than 5 μ m.

The dispersible pharmaceutical-based dry powders that include the iRNA preparation may optionally be combined with pharmaceutical carriers or excipients which are suitable for respiratory and pulmonary administration. Such carriers may serve simply as bulking agents when it is desired to reduce the iRNA concentration in the powder which is being delivered to a patient, but may also serve to enhance the stability of the iRNA compositions and to improve the dispersibility of the powder within a powder dispersion device in order to provide more efficient and reproducible delivery of the iRNA and to improve handling characteristics of the iRNA such as flowability and consistency to facilitate manufacturing and powder filling.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

Such carrier materials may be combined with the drug prior to spray drying, *i.e.*, by adding the carrier material to the purified bulk solution. In that way, the carrier particles will be formed simultaneously with the drug particles to produce a homogeneous powder. Alternatively, the carriers may be separately prepared in a dry powder form and combined with the dry powder drug by blending. The powder carriers will usually be crystalline (to avoid water absorption), but might in some cases be amorphous or mixtures of crystalline and amorphous. The size of the carrier particles may be selected to improve the flowability of the drug powder, typically being in the range from 25 μ m to 100 μ m. A preferred carrier material is crystalline lactose having a size in the above-stated range.

Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use. For use as pharmaceuticals and other purposes, it will frequently be desirable to disrupt any agglomerates which may have formed by screening or other conventional techniques. For pharmaceutical uses, the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below. Alternatively, the powders may be packaged in multiple-dose containers.

Methods for spray drying hydrophobic and other drugs and components are described in U.S. Pat. Nos. 5,000,888; 5,026,550; 4,670,419, 4,540,602; and 4,486,435. Bloch and Speison (1983) Pharm. Acta Helv 58:14-22 teaches spray drying of hydrochlorothiazide and chlorthalidone (lipophilic drugs) and a hydrophilic adjuvant (pentaerythritol) in azeotropic solvents of dioxane-water and 2-ethoxyethanol-water. A number of Japanese Patent application Abstracts relate to spray drying of hydrophilic-hydrophobic product combinations, including JP 806766; JP 7242568; JP 7101884; JP 7101883; JP 71018982; JP 7101881; and JP 4036233. Other foreign patent publications relevant to spray drying hydrophilic-hydrophobic product combinations include FR 2594693; DE 2209477; and WO 88/07870.

LYOPHILIZATION.

An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)

5

10

15

20

25

preparation can be made by lyophilization. Lyophilization is a freeze-drying process in which water is sublimed from the composition after it is frozen. The particular advantage associated with the lyophilization process is that biologicals and pharmaceuticals that are relatively unstable in an aqueous solution can be dried without elevated temperatures (thereby eliminating the adverse thermal effects), and then stored in a dry state where there are few stability problems. With respect to the instant invention such techniques are particularly compatible with the incorporation of nucleic acids in perforated microstructures without compromising physiological activity. Methods for providing lyophilized particulates are known to those of skill in the art and it would clearly not require undue experimentation to provide dispersion compatible microstructures in accordance with the teachings herein. Accordingly, to the extent that lyophilization processes may be used to provide microstructures having the desired porosity and size, they are conformance with the teachings herein and are expressly contemplated as being within the scope of the instant invention.

Targeting

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNAs. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.

In some embodiments, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is targeted to a particular cell. For example, a liposome or particle or other structure that includes a iRNA can also include a targeting moiety that recognizes a specific molecule on a target cell. The targeting moiety can be a molecule with a specific affinity for a target cell. Targeting moieties can include antibodies directed against a protein found on the surface of a target cell, or the ligand or a receptor-binding portion of a ligand for a molecule found on the surface of a target cell. For example, the targeting moiety can recognize a cancerspecific antigen of the liver or a viral antigen, thus delivering the iRNA to a cancer cell or a virus-infected cell. Exemplary targeting moieties include antibodies (such as IgM, IgG, IgA,

5

10

15

20

25

IgD, and the like, or a functional portions thereof), ligands for cell surface receptors (e.g., ectodomains thereof).

An antigen, such as a-feto protein, can be used to target an iRNA to a liver cell.

In one embodiment, the targeting moiety is attached to a liposome. For example, US Patent 6,245,427 describes a method for targeting a liposome using a protein or peptide. In another example, a cationic lipid component of the liposome is derivatized with a targeting moiety. For example, WO 96/37194 describes converting N-glutaryldioleoylphosphatidyl ethanolamine to a N-hydroxysuccinimide activated ester. The product was then coupled to an RGD peptide.

GENES AND DISEASES

In one aspect, the invention features, a method of treating a subject at risk for or afflicted with unwanted cell proliferation, e.g., malignant or nonmalignant cell proliferation. The method includes:

providing an iRNA agent, e.g., an sRNA or iRNA agent described herein, e.g., an iRNA having a structure described herein, where the iRNA is homologous to and can silence, e.g., by cleavage, a gene which promotes unwanted cell proliferation;

administering an iRNA agent, e.g., an sRNA or iRNA agent described herein to a subject, preferably a human subject,

thereby treating the subject.

In a preferred embodiment the gene is a growth factor or growth factor receptor gene, a kinase, e.g., a protein tyrosine, serine or threonine kinase gene, an adaptor protein gene, a gene encoding a G protein superfamily molecule, or a gene encoding a transcription factor.

In a preferred embodiment the iRNA agent silences the PDGF beta gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PDGF beta expression, *e.g.*, testicular and lung cancers.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

In another preferred embodiment the iRNA agent silences the Erb-B gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Erb-B expression, *e.g.*, breast cancer.

In a preferred embodiment the iRNA agent silences the Src gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Src expression, e.g., colon cancers.

In a preferred embodiment the iRNA agent silences the CRK gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted CRK expression, e.g., colon and lung cancers.

In a preferred embodiment the iRNA agent silences the GRB2 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted GRB2 expression, e.g., squamous cell carcinoma.

In another preferred embodiment the iRNA agent silences the RAS gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted RAS expression, e.g., pancreatic, colon and lung cancers, and chronic leukemia.

In another preferred embodiment the iRNA agent silences the MEKK gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MEKK expression, e.g., squamous cell carcinoma, melanoma or leukemia.

In another preferred embodiment the iRNA agent silences the JNK gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted JNK expression, *e.g.*, pancreatic or breast cancers.

In a preferred embodiment the iRNA agent silences the RAF gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted RAF expression, e.g., lung cancer or leukemia.

In a preferred embodiment the iRNA agent silences the Erk1/2 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Erk1/2 expression, e.g., lung cancer.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

In another preferred embodiment the iRNA agent silences the PCNA(p21) gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PCNA expression, e.g., lung cancer.

In a preferred embodiment the iRNA agent silences the MYB gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MYB expression, e.g., colon cancer or chronic myelogenous leukemia.

In a preferred embodiment the iRNA agent silences the c-MYC gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted c-MYC expression, e.g., Burkitt's lymphoma or neuroblastoma.

In another preferred embodiment the iRNA agent silences the JUN gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted JUN expression, e.g., ovarian, prostate or breast cancers.

In another preferred embodiment the iRNA agent silences the FOS gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted FOS expression, *e.g.*, skin or prostate cancers.

In a preferred embodiment the iRNA agent silences the BCL-2 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted BCL-2 expression, e.g., lung or prostate cancers or Non-Hodgkin lymphoma.

In a preferred embodiment the iRNA agent silences the Cyclin D gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Cyclin D expression, e.g., esophageal and colon cancers.

In a preferred embodiment the iRNA agent silences the VEGF gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted VEGF expression, e.g., esophageal and colon cancers.

In a preferred embodiment the iRNA agent silences the EGFR gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted EGFR expression, e.g., breast cancer.

Attorney's Docket No.: 14174-072W01

5

10

15

25

In another preferred embodiment the iRNA agent silences the Cyclin A gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Cyclin A expression, e.g., lung and cervical cancers.

In another preferred embodiment the iRNA agent silences the Cyclin E gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Cyclin E expression, *e.g.*, lung and breast cancers.

In another preferred embodiment the iRNA agent silences the WNT-1 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted WNT-1 expression, *e.g.*, basal cell carcinoma.

In another preferred embodiment the iRNA agent silences the beta-catenin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted beta-catenin expression, *e.g.*, adenocarcinoma or hepatocellular carcinoma.

In another preferred embodiment the iRNA agent silences the c-MET gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted c-MET expression, *e.g.*, hepatocellular carcinoma.

In another preferred embodiment the iRNA agent silences the PKC gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PKC expression, *e.g.*, breast cancer.

In a preferred embodiment the iRNA agent silences the NFKB gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted NFKB expression, e.g., breast cancer.

In a preferred embodiment the iRNA agent silences the STAT3 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted STAT3 expression, *e.g.*, prostate cancer.

In another preferred embodiment the iRNA agent silences the survivin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted survivin expression, *e.g.*, cervical or pancreatic cancers.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

In another preferred embodiment the iRNA agent silences the Her2/Neu gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Her2/Neu expression, *e.g.*, breast cancer.

In another preferred embodiment the iRNA agent silences the topoisomerase I gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted topoisomerase I expression, e.g., ovarian and colon cancers.

In a preferred embodiment the iRNA agent silences the topoisomerase II alpha gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted topoisomerase II expression, *e.g.*, breast and colon cancers.

In a preferred embodiment the iRNA agent silences mutations in the p73 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p73 expression, *e.g.*, colorectal adenocarcinoma.

In a preferred embodiment the iRNA agent silences mutations in the p21(WAF1/CIP1) gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p21(WAF1/CIP1) expression, e.g., liver cancer.

In a preferred embodiment the iRNA agent silences mutations in the p27(KIP1) gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p27(KIP1) expression, e.g., liver cancer.

In preferred embodiments the iRNA agent silences mutations in tumor suppressor genes, and thus can be used as a method to promote apoptotic activity in combination with chemotherapeutics.

In another aspect, the invention features, a method of treating a subject, e.g., a human, at risk for or afflicted with a disease or disorder that may benefit by angiogenesis inhibition e.g., cancer. The method includes:

providing an iRNA agent, e.g., an iRNA agent having a structure described herein, which iRNA agent is homologous to and can silence, e.g., by cleavage, a gene which mediates angiogenesis;

TO THE RESIDENCE OF THE PARTY O

Attorney's Docket No.: 14174-072W01

5

15

25

administering the iRNA agent to a subject,

thereby treating the subject.

In another aspect, the invention features a method of treating a subject infected with a virus or at risk for or afflicted with a disorder or disease associated with a viral infection. The method includes:

providing an iRNA agent, e.g., and iRNA agent having a structure described herein, which iRNA agent is homologous to and can silence, e.g., by cleavage, a viral gene of a cellular gene which mediates viral function, e.g., entry or growth;

administering the iRNA agent to a subject, preferably a human subject,

thereby treating the subject.

Thus, the invention provides for a method of treating patients infected by the Human Papilloma Virus (HPV) or at risk for or afflicted with a disorder mediated by HPV, e.g, cervical cancer. HPV is linked to 95% of cervical carcinomas and thus an antiviral therapy is an attractive method to treat these cancers and other symptoms of viral infection.

In a preferred embodiment, the expression of a HPV gene is reduced. In another preferred embodiment, the HPV gene is one of the group of E2, E6, or E7.

In a preferred embodiment the expression of a human gene that is required for HPV replication is reduced.

The invention also includes a method of treating patients infected by the Human

Immunodeficiency Virus (HIV) or at risk for or afflicted with a disorder mediated by HIV, e.g.,

Acquired Immune Deficiency Syndrome (AIDS).

In a preferred embodiment, the expression of a HIV gene is reduced. In another preferred embodiment, the HIV gene is CCR5, Gag, or Rev.

In a preferred embodiment the expression of a human gene that is required for HIV replication is reduced. In another preferred embodiment, the gene is CD4 or Tsg101.

5

10

The invention also includes a method for treating patients infected by the Hepatitis B Virus (HBV) or at risk for or afflicted with a disorder mediated by HBV, e.g., cirrhosis and heptocellular carcinoma.

In a preferred embodiment, the expression of a HBV gene is reduced. In another preferred embodiment, the targeted HBV gene encodes one of the group of the tail region of the HBV core protein, the pre-cregious (pre-c) region, or the cregious (c) region. In another preferred embodiment, a targeted HBV-RNA sequence is comprised of the poly(A) tail.

In preferred embodiment the expression of a human gene that is required for HBV replication is reduced.

The invention also provides for a method of treating patients infected by the Hepatitis A Virus (HAV), or at risk for or afflicted with a disorder mediated by HAV.

In a preferred embodiment the expression of a human gene that is required for HAV replication is reduced.

The present invention provides for a method of treating patients infected by the Hepatitis C Virus (HCV), or at risk for or afflicted with a disorder mediated by HCV, e.g., cirrhosis 15

In a preferred embodiment, the expression of a HCV gene is reduced.

In another preferred embodiment the expression of a human gene that is required for HCV replication is reduced.

The present invention also provides for a method of treating patients infected by the any of the group of Hepatitis Viral strains comprising hepatitis D, E, F, G, or H, or patients at risk for 20 or afflicted with a disorder mediated by any of these strains of hepatitis.

In a preferred embodiment, the expression of a Hepatitis, D, E, F, G, or H gene is reduced.

In another preferred embodiment the expression of a human gene that is required for hepatitis D, E, F, G or H replication is reduced. 25

Attorney's Docket No.: 14174-072W01

5

15

20

Methods of the invention also provide for treating patients infected by the Respiratory Syncytial Virus (RSV) or at risk for or afflicted with a disorder mediated by RSV, e.g, lower respiratory tract infection in infants and childhood asthma, pneumonia and other complications, e.g., in the elderly.

In a preferred embodiment, the expression of a RSV gene is reduced. In another preferred embodiment, the targeted HBV gene encodes one of the group of genes N, L, or P.

In a preferred embodiment the expression of a human gene that is required for RSV replication is reduced.

Methods of the invention provide for treating patients infected by the Herpes Simplex Virus (HSV) or at risk for or afflicted with a disorder mediated by HSV, e.g, genital herpes and cold sores as well as life-threatening or sight-impairing disease mainly in immunocompromised patients.

In a preferred embodiment, the expression of a HSV gene is reduced. In another preferred embodiment, the targeted HSV gene encodes DNA polymerase or the helicase-primase.

In a preferred embodiment the expression of a human gene that is required for HSV replication is reduced.

The invention also provides a method for treating patients infected by the herpes Cytomegalovirus (CMV) or at risk for or afflicted with a disorder mediated by CMV, e.g., congenital virus infections and morbidity in immunocompromised patients.

In a preferred embodiment, the expression of a CMV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for CMV replication is reduced.

Methods of the invention also provide for a method of treating patients infected by the
herpes Epstein Barr Virus (EBV) or at risk for or afflicted with a disorder mediated by EBV,
e.g., NK/T-cell lymphoma, non-Hodgkin lymphoma, and Hodgkin disease.

Attorney's Docket No.: 14174-072W01

5

In a preferred embodiment, the expression of a EBV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for EBV replication is reduced.

Methods of the invention also provide for treating patients infected by Kaposi's Sarcoma-associated Herpes Virus (KSHV), also called human herpesvirus 8, or patients at risk for or afflicted with a disorder mediated by KSHV, e.g., Kaposi's sarcoma, multicentric Castleman's disease and AIDS-associated primary effusion lymphoma.

In a preferred embodiment, the expression of a KSHV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for KSHV replication is reduced.

The invention also includes a method for treating patients infected by the JC Virus (JCV) or a disease or disorder associated with this virus, e.g., progressive multifocal leukoencephalopathy (PML).

In a preferred embodiment, the expression of a JCV gene is reduced.

In preferred embodiment the expression of a human gene that is required for JCV replication is reduced.

Methods of the invention also provide for treating patients infected by the myxovirus or at risk for or afflicted with a disorder mediated by myxovirus, e.g., influenza.

In a preferred embodiment, the expression of a myxovirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for myxovirus replication is reduced.

Methods of the invention also provide for treating patients infected by the rhinovirus or at risk for of afflicted with a disorder mediated by rhinovirus, e.g., the common cold.

In a preferred embodiment, the expression of a rhinovirus gene is reduced.

5

10

15

25

In preferred embodiment the expression of a human gene that is required for rhinovirus replication is reduced.

Methods of the invention also provide for treating patients infected by the coronavirus or at risk for of afflicted with a disorder mediated by coronavirus, e.g., the common cold.

In a preferred embodiment, the expression of a coronavirus gene is reduced.

In preferred embodiment the expression of a human gene that is required for coronavirus replication is reduced.

Methods of the invention also provide for treating patients infected by the flavivirus West Nile or at risk for or afflicted with a disorder mediated by West Nile Virus.

In a preferred embodiment, the expression of a West Nile Virus gene is reduced. In another preferred embodiment, the West Nile Virus gene is one of the group comprising E, NS3, or NS5.

In a preferred embodiment the expression of a human gene that is required for West Nile. Virus replication is reduced.

Methods of the invention also provide for treating patients infected by the St. Louis Encephalitis flavivirus, or at risk for or afflicted with a disease or disorder associated with this virus, e.g., viral haemorrhagic fever or neurological disease.

In a preferred embodiment, the expression of a St. Louis Encephalitis gene is reduced.

In a preferred embodiment the expression of a human gene that is required for St. Louis

Encephalitis virus replication is reduced.

Methods of the invention also provide for treating patients infected by the Tick-borne encephalitis flavivirus, or at risk for or afflicted with a disorder mediated by Tick-borne encephalitis virus, e.g., viral haemorrhagic fever and neurological disease.

In a preferred embodiment, the expression of a Tick-borne encephalitis virus gene is reduced.

Attorney's Docket No.: 14174-072W01

5

10

20

In a preferred embodiment the expression of a human gene that is required for Tickborne encephalitis virus replication is reduced.

Methods of the invention also provide for methods of treating patients infected by the Murray Valley encephalitis flavivirus, which commonly results in viral haemorrhagic fever and neurological disease.

In a preferred embodiment, the expression of a Murray Valley encephalitis virus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Murray Valley encephalitis virus replication is reduced.

The invention also includes methods for treating patients infected by the dengue flavivirus, or a disease or disorder associated with this virus, e.g., dengue haemorrhagic fever.

In a preferred embodiment, the expression of a dengue virus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for dengue virus replication is reduced.

Methods of the invention also provide for treating patients infected by the Simian Virus 40 (SV40) or at risk for or afflicted with a disorder mediated by SV40, *e.g.*, tumorigenesis.

In a preferred embodiment, the expression of a SV40 gene is reduced.

In a preferred embodiment the expression of a human gene that is required for SV40 replication is reduced.

The invention also includes methods for treating patients infected by the Human T Cell Lymphotropic Virus (HTLV), or a disease or disorder associated with this virus, *e.g.*, leukemia and myelopathy.

In a preferred embodiment, the expression of a HTLV gene is reduced. In another preferred embodiment the HTLV1 gene is the Tax transcriptional activator.

Attorney's Docket No.: 14174-072W01

5

10

25

In a preferred embodiment the expression of a human gene that is required for HTLV replication is reduced.

Methods of the invention also provide for treating patients infected by the Moloney-Murine Leukemia Virus (Mo-MuLV) or at risk for or afflicted with a disorder mediated by Mo-MuLV, e.g., T-cell leukemia.

In a preferred embodiment, the expression of a Mo-MuLV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mo-MuLV replication is reduced.

Methods of the invention also provide for treating patients infected by the encephalomyocarditis virus (EMCV) or at risk for or afflicted with a disorder mediated by EMCV, e.g. myocarditis. EMCV leads to myocarditis in mice and pigs and is capable of infecting human myocardial cells. This virus is therefore a concern for patients undergoing xenotransplantation.

In a preferred embodiment, the expression of a EMCV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for EMCV replication is reduced.

The invention also includes a method for treating patients infected by the measles virus (MV) or at risk for or afflicted with a disorder mediated by MV, e.g. measles.

In a preferred embodiment, the expression of a MV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for MV replication is reduced.

The invention also includes a method for treating patients infected by the Vericella zoster virus (VZV) or at risk for or afflicted with a disorder mediated by VZV, e.g. chicken pox or shingles (also called zoster).

In a preferred embodiment, the expression of a VZV gene is reduced.

5

10

In a preferred embodiment the expression of a human gene that is required for VZV replication is reduced.

The invention also includes a method for treating patients infected by an adenovirus or at risk for or afflicted with a disorder mediated by an adenovirus, e.g. respiratory tract infection.

In a preferred embodiment, the expression of an adenovirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for adenovirus replication is reduced.

The invention includes a method for treating patients infected by a yellow fever virus (YFV) or at risk for or afflicted with a disorder mediated by a YFV, e.g. respiratory tract infection.

In a preferred embodiment, the expression of a YFV gene is reduced. In another preferred embodiment, the preferred gene is one of a group that includes the E, NS2A, or NS3 genes.

In a preferred embodiment the expression of a human gene that is required for YFV replication is reduced.

Methods of the invention also provide for treating patients infected by the poliovirus or at risk for or afflicted with a disorder mediated by poliovirus, e.g., polio.

In a preferred embodiment, the expression of a poliovirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for poliovirus replication is reduced.

Methods of the invention also provide for treating patients infected by a poxvirus or at risk for or afflicted with a disorder mediated by a poxvirus, e.g., smallpox

In a preferred embodiment, the expression of a poxvirus gene is reduced.

Attorney's Docket No.: 14174-072W01

5

15

20

In a preferred embodiment the expression of a human gene that is required for poxvirus replication is reduced.

In another, aspect the invention features methods of treating a subject infected with a pathogen, e.g., a bacterial, amoebic, parasitic, or fungal pathogen. The method includes:

providing a iRNA agent, e.g., a siRNA having a structure described herein, where siRNA is homologous to and can silence, e.g., by cleavage of a pathogen gene;

administering the iRNA agent to a subject, prefereably a human subject, thereby treating the subject.

The target gene can be one involved in growth, cell wall synthesis, protein synthesis, transcription, energy metabolism, e.g., the Krebs cycle, or toxin production.

Thus, the present invention provides for a method of treating patients infected by a plasmodium that causes malaria.

In a preferred embodiment, the expression of a plasmodium gene is reduced. In another preferred embodiment, the gene is apical membrane antigen 1 (AMA1).

In a preferred embodiment the expression of a human gene that is required for plasmodium replication is reduced.

The invention also includes methods for treating patients infected by the Mycobacterium ulcerans, or a disease or disorder associated with this pathogen, e.g. Buruli ulcers.

In a preferred embodiment, the expression of a Mycobacterium ulcerans gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycobacterium ulcerans replication is reduced.

The invention also includes methods for treating patients infected by the Mycobacterium tuberculosis, or a disease or disorder associated with this pathogen, e.g. tuberculosis.

10

15

20

25

Attorney's Docket No.: 14174-072W01

In a preferred embodiment, the expression of a Mycobacterium tuberculosis gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycobacterium tuberculosis replication is reduced.

The invention also includes methods for treating patients infected by the Mycobacterium leprae, or a disease or disorder associated with this pathogen, e.g. leprosy.

In a preferred embodiment, the expression of a Mycobacterium leprae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycobacterium leprae replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Staphylococcus aureus, or a disease or disorder associated with this pathogen, *e.g.* infections of the skin and muscous membranes.

In a preferred embodiment, the expression of a Staphylococcus aureus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Staphylococcus aureus replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Streptococcus pneumoniae, or a disease or disorder associated with this pathogen, *e.g.* pneumonia or childhood lower respiratory tract infection.

In a preferred embodiment, the expression of a Streptococcus pneumoniae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Streptococcus pneumoniae replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Streptococcus pyogenes, or a disease or disorder associated with this pathogen, e.g. Strep throat or Scarlet fever.

PCT/US2004/011255

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

In a preferred embodiment, the expression of a Streptococcus pyogenes gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Streptococcus pyogenes replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Chlamydia pneumoniae, or a disease or disorder associated with this pathogen, e.g. pneumonia or childhood lower respiratory tract infection

In a preferred embodiment, the expression of a Chlamydia pneumoniae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Chlamydia pneumoniae replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Mycoplasma pneumoniae, or a disease or disorder associated with this pathogen, *e.g.* pneumonia or childhood lower respiratory tract infection

In a preferred embodiment, the expression of a Mycoplasma pneumoniae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycoplasma pneumoniae replication is reduced.

The loss of heterozygosity (LOH) can result in hemizygosity for sequence, e.g., genes, in the area of LOH. This can result in a significant genetic difference between normal and disease-state cells, e.g., cancer cells, and provides a useful difference between normal and disease-state cells, e.g., cancer cells. This difference can arise because a gene or other sequence is heterozygous in euploid cells but is hemizygous in cells having LOH. The regions of LOH will often include a gene, the loss of which promotes unwanted proliferation, e.g., a tumor suppressor gene, and other sequences including, e.g., other genes, in some cases a gene which is essential for normal function, e.g., growth. Methods of the invention rely, in part, on the specific cleavage or silencing of one allele of an essential gene with an iRNA agent of the invention. The iRNA agent is selected such that it targets the single allele of the essential gene found in the cells having LOH but does not silence the other allele, which is present in cells which do not show LOH. In essence, it discriminates between the two alleles, preferentially silencing the selected

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

allele. In essence polymorphisms, e.g., SNPs of essential genes that are affected by LOH, are used as a target for a disorder characterized by cells having LOH, e.g., cancer cells having LOH.

E.g., one of ordinary skill in the art can identify essential genes which are in proximity to tumor suppressor genes, and which are within a LOH region which includes the tumor suppressor gene. The gene encoding the large subunit of human RNA polymerase II, POLR2A, a gene located in close proximity to the tumor suppressor gene p53, is such a gene. It frequently occurs within a region of LOH in cancer cells. Other genes that occur within LOH regions and are lost in many cancer cell types include the group comprising replication protein A 70-kDa subunit, replication protein A 32-kD, ribonucleotide reductase, thymidilate synthase, TATA associated factor 2H, ribosomal protein S14, eukaryotic initiation factor 5A, alanyl tRNA synthetase, cysteinyl tRNA synthetase, NaK ATPase, alpha-1 subunit, and transferrin receptor.

Accordingly, the invention features, a method of treating a disorder characterized by LOH, e.g., cancer. The method includes:

optionally, determining the genotype of the allele of a gene in the region of LOH and preferably determining the genotype of both alleles of the gene in a normal cell;

providing an iRNA agent which preferentially cleaves or silences the allele found in the LOH cells;

administerning the iRNA to the subject,

thereby treating the disorder.

The invention also includes a iRNA agent disclosed herein, e.g, an iRNA agent which can preferentially silence, e.g., cleave, one allele of a polymorphic gene

In another aspect, the invention provides a method of cleaving or silencing more than one gene with an iRNA agent. In these embodiments the iRNA agent is selected so that it has sufficient homology to a sequence found in more than one gene. For example, the sequence AAGCTGGCCCTGGACATGGAGAT (SEQ ID NO:6719) is conserved between mouse lamin B1, lamin B2, keratin complex 2-gene 1 and lamin A/C. Thus an iRNA agent targeted to this sequence would effectively silence the entire collection of genes.

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

The invention also includes an iRNA agent disclosed herein, which can silence more than one gene.

ROUTE OF DELIVERY

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A composition that includes a iRNA can be delivered to a subject by a variety of routes. Exemplary routes include: intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, ocular.

The iRNA molecules of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of iRNA and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.

The route and site of administration may be chosen to enhance targeting. For example, to target muscle cells, intramuscular injection into the muscles of interest would be a logical choice. Lung cells might be targeted by administering the iRNA in aerosol form. The vascular

10

15

20

25

endothelial cells could be targeted by coating a balloon catheter with the iRNA and mechanically introducing the DNA.

Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents can be added.

Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.

Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir. For intravenous use, the total concentration of solutes should be controlled to render the preparation isotonic.

For ocular administration, ointments or droppable liquids may be delivered by ocular delivery systems known to the art such as applicators or eye droppers. Such compositions can include mucomimetics such as hyaluronic acid, chondroitin sulfate, hydroxypropyl methylcellulose or poly(vinyl alcohol), preservatives such as sorbic acid, EDTA or benzylchronium chloride, and the usual quantities of diluents and/or carriers.

Topical Delivery

5

10

15

20

25

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. In a preferred embodiment, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is delivered to a subject via topical administration. "Topical administration" refers to the delivery to a subject by contacting the formulation directly to a surface of the subject. The most common form of topical delivery is to the skin, but a composition disclosed herein can also be directly applied to other surfaces of the body, e.g., to the eye, a mucous membrane, to surfaces of a body cavity or to an internal surface. As mentioned above, the most common topical delivery is to the skin. The term encompasses several routes of administration including, but not limited to, topical and transdermal. These modes of administration typically include penetration of the skin's permeability barrier and efficient delivery to the target tissue or stratum. Topical administration can be used as a means to penetrate the epidermis and dermis and ultimately achieve systemic delivery of the composition. Topical administration can also be used as a means to selectively deliver oligonucleotides to the epidermis or dermis of a subject, or to specific strata thereof, or to an underlying tissue.

The term "skin," as used herein, refers to the epidermis and/or dermis of an animal. Mammalian skin consists of two major, distinct layers. The outer layer of the skin is called the epidermis. The epidermis is comprised of the stratum corneum, the stratum granulosum, the stratum spinosum, and the stratum basale, with the stratum corneum being at the surface of the skin and the stratum basale being the deepest portion of the epidermis. The epidermis is between 50 µm and 0.2 mm thick, depending on its location on the body.

Beneath the epidermis is the dermis, which is significantly thicker than the epidermis.

The dermis is primarily composed of collagen in the form of fibrous bundles. The collagenous

Attorney's Docket No.: 14174-072W01

10

15

20

25

bundles provide support for, inter alia, blood vessels, lymph capillaries, glands, nerve endings and immunologically active cells.

One of the major functions of the skin as an organ is to regulate the entry of substances into the body. The principal permeability barrier of the skin is provided by the stratum corneum, which is formed from many layers of cells in various states of differentiation. The spaces between cells in the stratum corneum is filled with different lipids arranged in lattice-like formations that provide seals to further enhance the skins permeability barrier.

The permeability barrier provided by the skin is such that it is largely impermeable to molecules having molecular weight greater than about 750 Da. For larger molecules to cross the skin's permeability barrier, mechanisms other than normal osmosis must be used.

Several factors determine the permeability of the skin to administered agents. These factors include the characteristics of the treated skin, the characteristics of the delivery agent, interactions between both the drug and delivery agent and the drug and skin, the dosage of the drug applied, the form of treatment, and the post treatment regimen. To selectively target the epidermis and dermis, it is sometimes possible to formulate a composition that comprises one or more penetration enhancers that will enable penetration of the drug to a preselected stratum.

Transdermal delivery is a valuable route for the administration of lipid soluble therapeutics. The dermis is more permeable than the epidermis and therefore absorption is much more rapid through abraded, burned or denuded skin. Inflammation and other physiologic conditions that increase blood flow to the skin also enhance transdermal adsorption. Absorption via this route may be enhanced by the use of an oily vehicle (inunction) or through the use of one or more penetration enhancers. Other effective ways to deliver a composition disclosed herein via the transdermal route include hydration of the skin and the use of controlled release topical patches. The transdermal route provides a potentially effective means to deliver a composition disclosed herein for systemic and/or local therapy.

In addition, iontophoresis (transfer of ionic solutes through biological membranes under the influence of an electric field) (Lee *et al.*, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 163), phonophoresis or sonophoresis (use of ultrasound to enhance the

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

absorption of various therapeutic agents across biological membranes, notably the skin and the cornea) (Lee *et al.*, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 166), and optimization of vehicle characteristics relative to dose position and retention at the site of administration (Lee *et al.*, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 168) may be useful methods for enhancing the transport of topically applied compositions across skin and mucosal sites.

The compositions and methods provided may also be used to examine the function of various proteins and genes *in vitro* in cultured or preserved dermal tissues and in animals. The invention can be thus applied to examine the function of any gene. The methods of the invention can also be used therapeutically or prophylactically. For example, for the treatment of animals that are known or suspected to suffer from diseases such as psoriasis, lichen planus, toxic epidermal necrolysis, ertythema multiforme, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, Kaposi's sarcoma, pulmonary fibrosis, Lyme disease and viral, fungal and bacterial infections of the skin.

Pulmonary Delivery

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can be administered to a subject by pulmonary delivery. Pulmonary delivery compositions can be delivered by inhalation by the patient of a dispersion so that the composition, preferably iRNA, within the dispersion can reach the lung where it can be readily absorbed through the alveolar region directly into blood circulation. Pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs.

Pulmonary delivery can be achieved by different approaches, including the use of nebulized, aerosolized, micellular and dry powder-based formulations. Delivery can be achieved

15

20

25

Attorney's Docket No.: 14174-072W01

with liquid nebulizers, aerosol-based inhalers, and dry powder dispersion devices. Metered-dose devices are preferred. One of the benefits of using an atomizer or inhaler is that the potential for contamination is minimized because the devices are self contained. Dry powder dispersion devices, for example, deliver drugs that may be readily formulated as dry powders. A iRNA composition may be stably stored as lyophilized or spray-dried powders by itself or in combination with suitable powder carriers. The delivery of a composition for inhalation can be mediated by a dosing timing element which can include a timer, a dose counter, time measuring device, or a time indicator which when incorporated into the device enables dose tracking, compliance monitoring, and/or dose triggering to a patient during administration of the aerosol medicament.

The term "powder" means a composition that consists of finely dispersed solid particles that are free flowing and capable of being readily dispersed in an inhalation device and subsequently inhaled by a subject so that the particles reach the lungs to permit penetration into the alveoli. Thus, the powder is said to be "respirable." Preferably the average particle size is less than about 10 μ m in diameter preferably with a relatively uniform spheroidal shape distribution. More preferably the diameter is less than about 7.5 μ m and most preferably less than about 5.0 μ m. Usually the particle size distribution is between about 0.1 μ m and about 5 μ m in diameter, particularly about 0.3 μ m to about 5 μ m.

The term "dry" means that the composition has a moisture content below about 10% by weight (% w) water, usually below about 5% w and preferably less it than about 3% w. A dry composition can be such that the particles are readily dispersible in an inhalation device to form an aerosol.

The term "therapeutically effective amount" is the amount present in the composition that is needed to provide the desired level of drug in the subject to be treated to give the anticipated physiological response.

The term "physiologically effective amount" is that amount delivered to a subject to give the desired palliative or curative effect.

The said of the sa

10

15

20

25

Attorney's Docket No.: 14174-072W01

The term "pharmaceutically acceptable carrier" means that the carrier can be taken into the lungs with no significant adverse toxicological effects on the lungs.

The types of pharmaceutical excipients that are useful as carrier include stabilizers such as human serum albumin (HSA), bulking agents such as carbohydrates, amino acids and polypeptides; pH adjusters or buffers; salts such as sodium chloride; and the like. These carriers may be in a crystalline or amorphous form or may be a mixture of the two.

Bulking agents that are particularly valuable include compatible carbohydrates, polypeptides, amino acids or combinations thereof. Suitable carbohydrates include monosaccharides such as galactose, D-mannose, sorbose, and the like; disaccharides, such as lactose, trehalose, and the like; cyclodextrins, such as 2-hydroxypropyl-.beta.-cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; alditols, such as mannitol, xylitol, and the like. A preferred group of carbohydrates includes lactose, threhalose, raffinose maltodextrins, and mannitol. Suitable polypeptides include aspartame. Amino acids include alanine and glycine, with glycine being preferred.

Additives, which are minor components of the composition of this invention, may be included for conformational stability during spray drying and for improving dispersibility of the powder. These additives include hydrophobic amino acids such as tryptophan, tyrosine, leucine, phenylalanine, and the like.

Suitable pH adjusters or buffers include organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, and the like; sodium citrate is preferred.

Pulmonary administration of a micellar iRNA formulation may be achieved through metered dose spray devices with propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, isobutane, dimethyl ether and other non-CFC and CFC propellants.

Oral or Nasal Delivery

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however,

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. Both the oral and nasal membranes offer advantages over other routes of administration. For example, drugs administered through these membranes have a rapid onset of action, provide therapeutic plasma levels, avoid first pass effect of hepatic metabolism, and avoid exposure of the drug to the hostile gastrointestinal (GI) environment. Additional advantages include easy access to the membrane sites so that the drug can be applied, localized and removed easily.

In oral delivery, compositions can be targeted to a surface of the oral cavity, e.g., to sublingual mucosa which includes the membrane of ventral surface of the tongue and the floor of the mouth or the buccal mucosa which constitutes the lining of the cheek. The sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible.

The ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility and peptide protein ionization. Small molecules, less than 1000 daltons appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.

A pharmaceutical composition of iRNA may also be administered to the buccal cavity of a human being by spraying into the cavity, without inhalation, from a metered dose spray dispenser, a mixed micellar pharmaceutical formulation as described above and a propellant. In one embodiment, the dispenser is first shaken prior to spraying the pharmaceutical formulation and propellant into the buccal cavity.

<u>Devices</u>

For ease of exposition the devices, formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these devices, formulations, compositions and methods can be practiced with other

15

20

25

Attorney's Docket No.: 14174-072W01

iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can be disposed on or in a device, e.g., a device which implanted or otherwise placed in a subject. Exemplary devices include devices which are introduced into the vasculature, e.g., devices inserted into the lumen of a vascular tissue, or which devices themselves form a part of the vasculature, including stents, catheters, heart valves, and other vascular devices. These devices, e.g., catheters or stents, can be placed in the vasculature of the lung, heart, or leg.

Other devices include non-vascular devices, e.g., devices implanted in the peritoneum, or in organ or glandular tissue, e.g., artificial organs. The device can release a therapeutic substance in addition to a iRNA, e.g., a device can release insulin.

Other devices include artificial joints, e.g., hip joints, and other orthopedic implants.

In one embodiment, unit doses or measured doses of a composition that includes iRNA are dispensed by an implanted device. The device can include a sensor that monitors a parameter within a subject. For example, the device can include pump, e.g., and, optionally, associated electronics.

Tissue, e.g., cells or organs, such as the liver, can be treated with an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent; e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) ex vivo and then administered or implanted in a subject.

The tissue can be autologous, allogeneic, or xenogeneic tissue. For example, tissue (e.g., liver) can be treated to reduce graft v. host disease. In other embodiments, the tissue is allogeneic and the tissue is treated to treat a disorder characterized by unwanted gene expression in that tissue, such as in the liver. In another example, tissue containing hematopoietic cells, e.g., bone marrow hematopoietic cells, can be treated to inhibit unwanted cell proliferation.

10

15

20

25

Attorney's Docket No.: 14174-072W01

Introduction of treated tissue, whether autologous or transplant, can be combined with other therapies.

In some implementations, the iRNA treated cells are insulated from other cells, e.g., by a semi-permeable porous barrier that prevents the cells from leaving the implant, but enables molecules from the body to reach the cells and molecules produced by the cells to enter the body. In one embodiment, the porous barrier is formed from alginate.

In one embodiment, a contraceptive device is coated with or contains an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). Exemplary devices include condoms, diaphragms, IUD (implantable uterine devices, sponges, vaginal sheaths, and birth control devices. In one embodiment, the iRNA is chosen to inactive sperm or egg. In another embodiment, the iRNA is chosen to be complementary to a viral or pathogen RNA, e.g., an RNA of an STD. In some instances, the iRNA composition can include a spermicide.

DOSAGE

In one aspect, the invention features a method of administering an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, to a subject (e.g., a human subject). The method includes administering a unit dose of the iRNA agent, e.g., a sRNA agent, e.g., double stranded sRNA agent that (a) the double-stranded part is 19-25 nucleotides (nt) long, preferably 21-23 nt, (b) is complementary to a target RNA (e.g., an endogenous or pathogen target RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nucleotide long. In one embodiment, the unit dose is less than 1.4 mg per kg of bodyweight, or less than 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of bodyweight, and less than 200 nmole of RNA agent (e.g. about 4.4 x 10¹⁶ copies) per kg of bodyweight, or less than 1500, 750, 300, 150, 75, 15, 7.5, 1.5, 0.75, 0.15, 0.075, 0.015, 0.0075, 0.0015, 0.00075, 0.00015 nmole of RNA agent per kg of bodyweight.

The defined amount can be an amount effective to treat or prevent a disease or disorder, e.g., a disease or disorder associated with the target RNA, such as an RNA present in the liver.

10

15

20

25

Attorney's Docket No.: 14174-072W01

The unit dose, for example, can be administered by injection (e.g., intravenous or intramuscular), an inhaled dose, or a topical application. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight.

In a preferred embodiment, the unit dose is administered less frequently than once a day, e.g., less than every 2, 4, 8 or 30 days. In another embodiment, the unit dose is not administered with a frequency (e.g., not a regular frequency). For example, the unit dose may be administered a single time.

In one embodiment, the effective dose is administered with other traditional therapeutic modalities. In one embodiment, the subject has a viral infection and the modality is an antiviral agent other than an iRNA agent, e.g., other than a double-stranded iRNA agent, or sRNA agent,. In another embodiment, the subject has atherosclerosis and the effective dose of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, is administered in combination with, e.g., after surgical intervention, e.g., angioplasty.

In one embodiment, a subject is administered an initial dose and one or more maintenance doses of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). The maintenance dose or doses are generally lower than the initial dose, e.g., one-half less of the initial dose. A maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 µg to 1.4 mg/kg of body weight per day, e.g., 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of bodyweight per day. The maintenance doses are preferably administered no more than once every 5, 10, or 30 days. Further, the treatment regimen may last for a period of time which will vary depending upon the nature of the particular disease, its severity and the overall condition of the patient. In preferred embodiments the dosage may be delivered no more than once per day, e.g., no more than once per 24, 36, 48, or more hours, e.g., no more than once for every 5 or 8 days. Following treatment, the patient can be monitored for changes in his condition and for alleviation of the symptoms of the disease state. The dosage of the compound may either be increased in the event the patient does not respond significantly to current dosage

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

levels, or the dose may be decreased if an alleviation of the symptoms of the disease state is observed, if the disease state has been ablated, or if undesired side-effects are observed.

The effective dose can be administered in a single dose or in two or more doses, as desired or considered appropriate under the specific circumstances. If desired to facilitate repeated or frequent infusions, implantation of a delivery device, e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir may be advisable.

In one embodiment, the iRNA agent pharmaceutical composition includes a plurality of iRNA agent species. In another embodiment, the iRNA agent species has sequences that are non-overlapping and non-adjacent to another species with respect to a naturally occurring target sequence. In another embodiment, the plurality of iRNA agent species is specific for different naturally occurring target genes. In another embodiment, the iRNA agent is allele specific.

In some cases, a patient is treated with a iRNA agent in conjunction with other therapeutic modalities. For example, a patient being treated for a liver disease can be administered an iRNA agent specific for a target gene known to enhance the progression of the disease in conjunction with a drug known to inhibit activity of the target gene product. For example, a patient being treated for a cancer of the liver can be administered an iRNA agent specific for a target essential for tumor cell proliferation in conjunction with a chemotherapy.

Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the compound of the invention is administered in maintenance doses, ranging from 0.01 μ g to 100 g per kg of body weight (see US 6,107,094).

The concentration of the iRNA agent composition is an amount sufficient to be effective in treating or preventing a disorder or to regulate a physiological condition in humans. The concentration or amount of iRNA agent administered will depend on the parameters determined for the agent and the method of administration, e.g. nasal, buccal, pulmonary. For example, nasal formulations tend to require much lower concentrations of some ingredients in order to

10

15

20

25

Attorney's Docket No.: 14174-072W01

avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.

Certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can include a single treatment or, preferably, can include a series of treatments. It will also be appreciated that the effective dosage of a iRNA agent such as a sRNA agent used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein. For example, the subject can be monitored after administering a iRNA agent composition. Based on information from the monitoring, an additional amount of the iRNA agent composition can be administered.

Dosing is dependent on severity and responsiveness of the disease condition to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compounds, and can generally be estimated based on EC50s found to be effective in *in vitro* and *in vivo* animal models. In some embodiments, the animal models include transgenic animals that express a human gene, *e.g.* a gene that produces a target RNA. The transgenic animal can be deficient for the corresponding endogenous RNA. In another embodiment, the composition for testing includes a iRNA agent that is complementary, at least in an internal region, to a sequence that is conserved between the target RNA in the animal model and the target RNA in a human.

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

The inventors have discovered that iRNA agents described herein can be administered to mammals, particularly large mammals such as nonhuman primates or humans in a number of ways.

In one embodiment, the administration of the iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, composition is parenteral, e.g. intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.

The invention provides methods, compositions, and kits, for rectal administration or delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes a an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of a iRNA agent described herein, e.g., a iRNA agent having a double stranded region of less than 40, and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered rectally, e.g., introduced through the rectum into the lower or upper colon. This approach is particularly useful in the treatment of, inflammatory disorders, disorders characterized by unwanted cell proliferation, e.g., polyps, or colon cancer.

The medication can be delivered to a site in the colon by introducing a dispensing device, e.g., a flexible, camera-guided device similar to that used for inspection of the colon or removal of polyps, which includes means for delivery of the medication.

The rectal administration of the iRNA agent is by means of an enema. The iRNA agent of the enema can be dissolved in a saline or buffered solution. The rectal administration can also

Ċ,

Charles Charles Charles

10

15

20

25

Attorney's Docket No.: 14174-072W01

by means of a suppository, which can include other ingredients, e.g., an excipient, e.g., cocoa butter or hydropropylmethylcellulose.

Any of the iRNA agents described herein can be administered orally, e.g., in the form of tablets, capsules, gel capsules, lozenges, troches or liquid syrups. Further, the composition can be applied topically to a surface of the oral cavity.

Any of the iRNA agents described herein can be administered buccally. For example, the medication can be sprayed into the buccal cavity or applied directly, e.g., in a liquid, solid, or gel form to a surface in the buccal cavity. This administration is particularly desirable for the treatment of inflammations of the buccal cavity, e.g., the gums or tongue, e.g., in one embodiment, the buccal administration is by spraying into the cavity, e.g., without inhalation, from a dispenser, e.g., a metered dose spray dispenser that dispenses the pharmaceutical composition and a propellant.

Any of the iRNA agents described herein can be administered to ocular tissue. For example, the medications can be applied to the surface of the eye or nearby tissue, e.g., the inside of the eyelid. They can be applied topically, e.g., by spraying, in drops, as an eyewash, or an ointment. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. The medication can also be administered to the interior of the eye, and can be introduced by a needle or other delivery device which can introduce it to a selected area or structure. Ocular treatment is particularly desirable for treating inflammation of the eye or nearby tissue.

Any of the iRNA agents described herein can be administered directly to the skin. For example, the medication can be applied topically or delivered in a layer of the skin, e.g., by the use of a microneedle or a battery of microneedles which penetrate into the skin, but preferably not into the underlying muscle tissue. Administration of the iRNA agent composition can be topical. Topical applications can, for example, deliver the composition to the dermis or epidermis of a subject. Topical administration can be in the form of transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids or powders. A composition for topical administration can be formulated as a liposome, micelle, emulsion, or other lipophilic

10

15

20

25

Attorney's Docket No.: 14174-072W01

molecular assembly. The transdermal administration can be applied with at least one penetration enhancer, such as iontophoresis, phonophoresis, and sonophoresis.

Any of the iRNA agents described herein can be administered to the pulmonary system. Pulmonary administration can be achieved by inhalation or by the introduction of a delivery device into the pulmonary system, e.g., by introducing a delivery device which can dispense the medication. A preferred method of pulmonary delivery is by inhalation. The medication can be provided in a dispenser which delivers the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.

Pulmonary delivery is effective not only for disorders which directly affect pulmonary tissue, but also for disorders which affect other tissue.

iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or aerosol for pulmonary delivery.

Any of the iRNA agents described herein can be administered nasally. Nasal administration can be achieved by introduction of a delivery device into the nose, e.g., by introducing a delivery device which can dispense the medication. Methods of nasal delivery include spray, aerosol, liquid, e.g., by drops, or by topical administration to a surface of the nasal cavity. The medication can be provided in a dispenser with delivery of the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.

Nasal delivery is effective not only for disorders which directly affect nasal tissue, but also for disorders which affect other tissue

iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or for nasal delivery.

An iRNA agent can be packaged in a viral natural capsid or in a chemically or enzymatically produced artificial capsid or structure derived therefrom.

10

15

20

25

Attorney's Docket No.: 14174-072W01

The dosage of a pharmaceutical composition including a iRNA agent can be administered in order to alleviate the symptoms of a disease state, e.g., cancer or a cardiovascular disease. A subject can be treated with the pharmaceutical composition by any of the methods mentioned above.

Gene expression in a subject can be modulated by administering a pharmaceutical composition including an iRNA agent.

A subject can be treated by administering a defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) composition that is in a powdered form, e.g., a collection of microparticles, such as crystalline particles. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

A subject can be treated by administering a defined amount of an iRNA agent composition that is prepared by a method that includes spray-drying, *i.e.* atomizing a liquid solution, emulsion, or suspension, immediately exposing the droplets to a drying gas, and collecting the resulting porous powder particles. The composition can include a plurality of iRNA agents, *e.g.*, specific for one or more different endogenous target RNAs. The method can include other features described herein.

The iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), can be provided in a powdered, crystallized or other finely divided form, with or without a carrier, e.g., a micro- or nano-particle suitable for inhalation or other pulmonary delivery. This can include providing an aerosol preparation, e.g., an aerosolized spray-dried composition. The aerosol composition can be provided in and/or dispensed by a metered dose delivery device.

The subject can be treated for a condition treatable by inhalation, e.g., by aerosolizing a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes

5

10

15

20

25

Attorney's Docket No.: 14174-072W01

an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition and inhaling the aerosolized composition. The iRNA agent can be an sRNA. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

A subject can be treated by, for example, administering a composition including an effective/defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), wherein the composition is prepared by a method that includes spray-drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques

In another aspect, the invention features a method that includes: evaluating a parameter related to the abundance of a transcript in a cell of a subject; comparing the evaluated parameter to a reference value; and if the evaluated parameter has a preselected relationship to the reference value (e.g., it is greater), administering a iRNA agent (or a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes a iRNA agent or precursor thereof) to the subject. In one embodiment, the iRNA agent includes a sequence that is complementary to the evaluated transcript. For example, the parameter can be a direct measure of transcript levels, a measure of a protein level, a disease or disorder symptom or characterization (e.g., rate of cell proliferation and/or tumor mass, viral load).

In another aspect, the invention features a method that includes: administering a first amount of a composition that comprises an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a subject, wherein the iRNA agent includes a strand substantially complementary to a target nucleic acid; evaluating an activity associated with a protein encoded by the target nucleic acid; wherein the evaluation is used to determine if a second amount should be administered. In a preferred embodiment the method includes administering a second amount

10

15

20

25

Attorney's Docket No.: 14174-072W01

of the composition, wherein the timing of administration or dosage of the second amount is a function of the evaluating. The method can include other features described herein.

In another aspect, the invention features a method of administering a source of a double-stranded iRNA agent (ds iRNA agent) to a subject. The method includes administering or implanting a source of a ds iRNA agent, e.g., a sRNA agent, that (a) includes a double-stranded region that is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to a target RNA (e.g., an endogenous RNA or a pathogen RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the source releases ds iRNA agent over time, e.g. the source is a controlled or a slow release source, e.g., a microparticle that gradually releases the ds iRNA agent. In another embodiment, the source is a pump, e.g., a pump that includes a sensor or a pump that can release one or more unit doses.

In one aspect, the invention features a pharmaceutical composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) including a nucleotide sequence complementary to a target RNA, e.g., substantially and/or exactly complementary. The target RNA can be a transcript of an endogenous human gene. In one embodiment, the iRNA agent (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the pharmaceutical composition can be an emulsion, microemulsion, cream, jelly, or liposome.

In one example the pharmaceutical composition includes an iRNA agent mixed with a topical delivery agent. The topical delivery agent can be a plurality of microscopic vesicles. The microscopic vesicles can be liposomes. In a preferred embodiment the liposomes are cationic liposomes.

In another aspect, the pharmaceutical composition includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) admixed with a topical penetration

10

15

20

25

Attorney's Docket No.: 14174-072W01

enhancer. In one embodiment, the topical penetration enhancer is a fatty acid. The fatty acid can be arachidonic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C₁₋₁₀ alkyl ester, monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.

In another embodiment, the topical penetration enhancer is a bile salt. The bile salt can be cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycholic acid, glycholic acid, glycholic acid, taurocholic acid, taurodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate, polyoxyethylene-9-lauryl ether or a pharmaceutically acceptable salt thereof.

In another embodiment, the penetration enhancer is a chelating agent. The chelating agent can be EDTA, citric acid, a salicyclate, a N-acyl derivative of collagen, laureth-9, an N-amino acyl derivative of a beta-diketone or a mixture thereof.

In another embodiment, the penetration enhancer is a surfactant, e.g., an ionic or nonionic surfactant. The surfactant can be sodium lauryl sulfate, polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether, a perfluorchemical emulsion or mixture thereof.

In another embodiment, the penetration enhancer can be selected from a group consisting of unsaturated cyclic ureas, 1-alkyl-alkones, 1-alkenylazacyclo-alakanones, steroidal anti-inflammatory agents and mixtures thereof. In yet another embodiment the penetration enhancer can be a glycol, a pyrrol, an azone, or a terpenes.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a form suitable for oral delivery. In one embodiment, oral delivery can be used to deliver an iRNA agent composition to a cell or a region of the gastro-intestinal tract, e.g., small intestine, colon (e.g., to treat a colon cancer), and so forth. The oral delivery form can be tablets, capsules or gel capsules. In one embodiment, the iRNA agent of the pharmaceutical composition modulates expression of a

Attorney's Docket No.: 14174-072W01

10

15

20

25

cellular adhesion protein, modulates a rate of cellular proliferation, or has biological activity against eukaryotic pathogens or retroviruses. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methylcellulose phthalate or cellulose acetate phthalate.

In another embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer. The penetration enhancer can be a bile salt or a fatty acid. The bile salt can be ursodeoxycholic acid, chenodeoxycholic acid, and salts thereof. The fatty acid can be capric acid, lauric acid, and salts thereof.

In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.

In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent and a delivery vehicle. In one embodiment, the iRNA agent is (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nucleotides long.

In one embodiment, the delivery vehicle can deliver an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a cell by a topical route of administration. The delivery vehicle can be microscopic vesicles. In one example the microscopic vesicles are liposomes. In a preferred embodiment the liposomes are cationic liposomes. In another example the microscopic vesicles are micelles. In one aspect, the invention features a pharmaceutical

Attorney's Docket No.: 14174-072W01

10

15

20

25

composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in an injectable dosage form. In one embodiment, the injectable dosage form of the pharmaceutical composition includes sterile aqueous solutions or dispersions and sterile powders. In a preferred embodiment the sterile solution can include a diluent such as water; saline solution; fixed oils, polyethylene glycols, glycerin, or propylene glycol.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in oral dosage form. In one embodiment, the oral dosage form is selected from the group consisting of tablets, capsules and gel capsules. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methyl cellulose phthalate or cellulose acetate phthalate. In one embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer, e.g., a penetration enhancer described herein.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a rectal dosage form. In one embodiment, the rectal dosage form is an enema. In another embodiment, the rectal dosage form is a suppository.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a vaginal dosage form.

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

In one embodiment, the vaginal dosage form is a suppository. In another embodiment, the vaginal dosage form is a foam, cream, or gel.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a pulmonary or nasal dosage form. In one embodiment, the iRNA agent is incorporated into a particle, e.g., a macroparticle, e.g., a microsphere. The particle can be produced by spray drying, lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination thereof. The microsphere can be formulated as a suspension, a powder, or an implantable solid.

In one aspect, the invention features a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition suitable for inhalation by a subject, including: (a) a therapeutically effective amount of a iRNA agent suitable for treating a condition in the subject by inhalation; (b) a pharmaceutically acceptable excipient selected from the group consisting of carbohydrates and amino acids; and (c) optionally, a dispersibility-enhancing amount of a physiologically-acceptable, water-soluble polypeptide.

In one embodiment, the excipient is a carbohydrate. The carbohydrate can be selected from the group consisting of monosaccharides, disaccharides, trisaccharides, and polysaccharides. In a preferred embodiment the carbohydrate is a monosaccharide selected from the group consisting of dextrose, galactose, mannitol, D-mannose, sorbitol, and sorbose. In another preferred embodiment the carbohydrate is a disaccharide selected from the group consisting of lactose, maltose, sucrose, and trehalose.

In another embodiment, the excipient is an amino acid. In one embodiment, the amino acid is a hydrophobic amino acid. In a preferred embodiment the hydrophobic amino acid is selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine. In yet another embodiment the amino acid is a polar amino acid. In a preferred embodiment the amino acid is selected from the group consisting of arginine,

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

histidine, lysine, cysteine, glycine, glutamine, serine, threonine, tyrosine, aspartic acid and glutamic acid.

In one embodiment, the dispersibility-enhancing polypeptide is selected from the group consisting of human serum albumin, α -lactalbumin, trypsinogen, and polyalanine.

In one embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter (MMD) of less than 10 microns. In another embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter of less than 5 microns. In yet another embodiment the spray-dried iRNA agent composition includes particles having a mass median aerodynamic diameter (MMAD) of less than 5 microns.

In certain other aspects, the invention provides kits that include a suitable container containing a pharmaceutical formulation of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for an iRNA agent preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.

In another aspect, the invention features a device, e.g., an implantable device, wherein the device can dispense or administer a composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), e.g., a iRNA agent that silences an endogenous transcript. In one embodiment, the device is coated with the composition. In another embodiment the iRNA agent is disposed within the device. In another embodiment, the

WO 2004/091515 PCT/US2004/011255

Attorney's Docket No.: 14174-072W01

5

10

15

20

25

device includes a mechanism to dispense a unit dose of the composition. In other embodiments the device releases the composition continuously, e.g., by diffusion. Exemplary devices include stents, catheters, pumps, artificial organs or organ components (e.g., artificial heart, a heart valve, etc.), and sutures.

As used herein, the term "crystalline" describes a solid having the structure or characteristics of a crystal, *i.e.*, particles of three-dimensional structure in which the plane faces intersect at definite angles and in which there is a regular internal structure. The compositions of the invention may have different crystalline forms. Crystalline forms can be prepared by a variety of methods, including, for example, spray drying.

The invention is further illustrated by the following examples, which should not be construed as further limiting.

EXAMPLES

Example 1: apoB protein as a therapeutic target for lipid-based diseases

Apolipoprotein B (apoB) is a candidate target gene for the development of novel therapies for lipid-based diseases.

Methods described herein can be used to evaluate the efficacy of a particular siRNA as a therapeutic tool for treating lipid metabolism disorders resulting elevated apoB levels. Use of siRNA duplexes to selectively bind and inactivate the target apoB mRNA is an approach totreat these disorders.

Two approaches:

- i) Inhibition of apoB in *ex-vivo* models by transfecting siRNA duplexes homologous to human apoB mRNA in a human hepatoma cell line (Hep G2) and monitor the level of the protein and the RNA using the Western blotting and RT-PCR methods, respectively. siRNA molecules that efficiently inhibit apoB expression will be tested for similar effects *in vivo*.
- ii) In vivo trials using an apoB transgenic mouse model (apoB100 Transgenic Mice, C57BL/6NTac-TgN (APOB100), Order Model #'s:1004-T (hemizygotes), B6 (control)). siRNA duplexes are designed to target apoB-100 or CETP/apoB double transgenic mice which express both cholesteryl ester transfer protein (CETP) and apoB. The effect of the siRNA on gene expression in vivo can be measured by monitoring the HDL/LDL cholesterol level in serum. The

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

results of these experiments would indicate the therapeutic potential of siRNAs to treat lipid-based diseases, including hypercholesterolemia, HDL/LDL cholesterol imbalance, familial combined hyperlipidemia, and acquired hyperlipidemia.

Background Fats, in the form of triglycerides, are ideal for energy storage because they are highly reduced and anhydrous. An adipocyte (or fat cell) consists of a nucleus, a cell membrane, and triglycerides, and its function is to store triglycerides.

The lipid portion of the human diet consists largely of triglycerides and cholesterol (and its esters). These must be emulsified and digested to be absorbed. Specifically, fats (triacylglycerols) are ingested. Bile (bile acids, salts, and cholesterol), which is made in the liver, is secreted by the gall bladder. Pancreatic lipase digests the triglycerides to fatty acids, and also digests di-, and mono-acylglycerols, which are absorbed by intestinal epithelial cells and then are resynthesized into triacylglycerols once inside the cells. These triglycerides and some cholesterols are combined with apolipoproteins to produce chylomicrons. Chylomicrons consist of approximately 95% triglycerides. The chylomicrons transport fatty acids to peripheral tissues. Any excess fat is stored in adipose tissue.

Lipid transport and clearance from the blood into cells, and from the cells into the blood and the liver, is mediated by the lipoprotein transport proteins. This class of approximately 17 proteins can be divided into three groups: Apolipoproteins, lipoprotein processing proteins, and lipoprotein receptors.

Apolipoproteins coat lipoprotein particles, and include the A-I, A-II, A-IV, B, CI, CII, CIII, D, E, Apo(a) proteins. Lipoprotein processing proteins include lipoprotein lipase, hepatic lipase, lecithin cholesterol acyltransferase and cholesterol ester transfer protein. Lipoprotein receptors include the low density lipoprotein (LDL) receptor, chylomicron-remnant receptor (the LDL receptor like protein or LDL receptor related protein - LRP) and the scavenger receptor.

Lipoprotein Metabolism Since the triglycerides, cholesterol esters, and cholesterol absorbed into the small intestine are not soluble in aqueous medium, they must be combined with suitable proteins (apolipoproteins) in order to prevent them from forming large oil droplets. The resulting lipoproteins undergo a type of metabolism as they pass through the bloodstream and certain organs (notably the liver).

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

Also synthesized in the liver is high density lipoprotein (HDL), which contains the apoproteins A-1, A-2, C-1, and D; HDL collects cholesterol from peripheral tissues and blood vessels and returns it to the liver. LDL is taken up by specific cell surface receptors into an endosome, which fuses with a lysosome where cholesterol ester is converted to free cholesterol. The apoproteins (including apo B-100) are digested to amino acids. The receptor protein is recycled to the cell membrane.

The free cholesterol formed by this process has two fates. First, it can move to the endoplasmic reticulum (ER), where it can inhibit HMG-CoA reductase, the synthesis of HMG-CoA reductase, and the synthesis of cell surface receptors for LDL. Also in the ER, cholesterol can speed up the degradation of HMG-CoA reductase. The free cholesterol can also be converted by acyl-CoA and acyl transferase (ACAT) to cholesterol esters, which form oil droplets.

ApoB is the major apolipoprotein of chylomicrons of very low density lipoproteins (VLDL, which carry most of the plasma triglyceride) and low density lipoprotein (LDL, which carry most of the plasma cholesterol). ApoB exists in human plasma in two isoforms, apoB-48 and apoB-100.

ApoB-100 is the major physiological ligand for the LDL receptor. The ApoB precursor has 4563 amino acids, and the mature apoB-100 has 4536 amino acid residues. The LDL-binding domain of ApoB-100 is proposed to be located between residues 3129 and 3532. ApoB-100 is synthesized in the liver and is required for the assembly of very low density lipoproteins VLDL and for the preparation of apoB-100 to transport triglycerides (TG) and cholesterol from the liver to other tissues. ApoB-100 does not interchange between lipoprotein particles, as do the other lipoproteins, and it is found in IDL and LDL particles. After the removal of apolipoproteins A, E and C, apoB is incorporation into VLDL by hepatocytes. ApoB-48 is present in chylomicrons and plays an essential role in the intestinal absorption of dietary fats. ApoB-48 is synthesized in the small intestine. It comprises the N-terminal 48% of apoB-100 and is produced by a posttranscriptional apoB-100 mRNA editing event at codon 2153 (C to U). This editing event is a product of the apoBEC-1b enzyme, which is expressed in the intestine. This editing event creates a stop codon instead of a glutamine codon, and therefore apoB-48, instead of apoB-100 is expressed in the liver).

Attorney's Docket No.: 14174-072W01

There is also strong evidence that plasma apoB levels may be a better index of the risk of coronary artery disease (CAD) than total or LDL cholesterol levels. Clinical studies have demonstrated the value of measuring apoB in hypertriglyceridemic, hypercholesterolemic and normalipidemic subjects.

5

Attorney's Docket No.: 14174-072W01

Table 4. Reference Range Lipid level in the Blood

Lipid	Range (mmols/ L)
Plasma Cholesterol	3.5-6.5
Low density lipoprotein	1.55-4.4
Very low density lipoprotein	0.128-0.645
High density lipoprotein/ triglycerides	0.5-2.1
Total lipid	4.0-10g/L

Molecular genetics of lipid metabolism in both humans and induced mutant mouse models

Elevated plasma levels of LDL and apoB are associated with a higher risk for atherosclerosis and coronary heart disease, a leading cause of mortality. ApoB is the mandatory constituent of LDL particles. In addition to its role in lipoprotein metabolism, apoB has also been implicated as a factor in male infertility and fetal development. Furthermore, two quantitative trait loci regulating plasma apoB levels have been discovered, through the use of transgenic mouse models. Future experiments will facilitate the identification of human orthologous genes encoding regulators of plasma apoB levels. These loci are candidate therapeutic targets for human disorders characterized by altered plasma apoB levels. Such disorders include non-apoB linked hypobetalipoproteinemia and familial combined hyperlipidemia. The identification of these genetic loci would also reveal possible new pathways involved in the regulation of apoB secretion, potentially providing novel sites for pharmacological therapy.

Diseases and Clinical Pharmacology Familial combined hyperlipemia (FCHL) affects an estimated one in 10 Americans. FCHL can cause premature heart disease.

Familial Hypercholesterolemia (high level of apo B) A common genetic disorder of lipid metabolism. Familial hypercholesterolemia is characterized by elevated serum TC in association with xanthelasma, tendon and tuberous xanthomas, accelerated atherosclerosis, and early death from myocardial infarction (MI). It is caused by absent or defective LDL cell receptors, resulting in delayed LDL clearance, an increase in plasma LDL levels, and an accumulation of LDL cholesterol in macrophages over joints and pressure points, and in blood vessels.

20

10

15

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

Atherosclerosis (high level of apo B) Atherosclerosis develops as a deposition of cholesterol and fat in the arterial wall due to disturbances in lipid transport and clearance from the blood into cells and from the cells to blood and the liver.

Clinical studies have demonstrated that elevation of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and apoB-100 promote human atherosclerosis. Similarly, decreased levels of high – density lipoprotein cholesterol (HDL-C) are associated with the development of atherosclerosis.

ApoB may be a factor in the genetic cause of high cholesterol.

The risk of coronary artery disease (CAD) (high level of apo B) Cardiovascular disease, including coronary heart disease and stroke, is a leading cause of death and disability. The major risk factors include age, gender, elevated low-density lipoprotein cholesterol blood levels, decreased high-density lipoprotein cholesterol levels, cigarette smoking, hypertension, and diabetes. Emerging risk factors include elevated lipoprotein (a), remnant lipoproteins, and C reactive protein. Dietary intake, physical activity and genetics also impact cardiovascular risk. Hypertension and age are the major risk factors for stroke.

Abetalipoproteinemia, an inherited human disease characterized by a near-complete absence of apoB-containing lipoproteins in the plasma, is caused by mutations in the gene for microsomal triglyceride transfer protein (MTP).

Model for human atherosclerosis (Lipoprotein A transgenic mouse) Numerous studies have demonstrated that an elevated plasma level of lipoprotein(a) (Lp(a)) is a major independent risk factor for coronary heart disease (CHD). Current therapies, however, have little or no effect on apo(a) levels and the homology between apo(a) and plasminogen presents barriers to drug development. Lp(a) particles consist of apo(a) and apoB-100 proteins, and they are found only in primates and the hedgehog. The development of LPA transgenic mouse requires the creation of animals that express both human apoB and apo(a) transgenes to achieve assembly of LP(a). An atherosclerosis mouse model would facilitate the study of the disease process and factors influencing it, and further would facilitate the development of therapeutic or preventive agents. There are several strategies for gene-oriented therapy. For example, the missing or non-functional gene can be replaced, or unwanted gene activity can be inhibited.

PCT/US2004/011255

WO 2004/091515 PC

Attorney's Docket No.: 14174-072W01

30

Model for lipid Metabolism and Atherosclerosis DNX Transgenic Sciences has demonstrated that both CETP/ApoB and ApoB transgenic mice develop atherosclerotic plaques.

- Model for apoB-100 overexpression The apoB-100 transgenic mice express high levels of human apoB-100. They consequently demonstrate elevated serum levels of LDL cholesterol. After 6 months on a high-fat diet, the mice develop significant foam cell accumulation under the endothelium and within the media, as well as cholesterol crystals and fibrotic lesions.
- Model for Cholesteryl ester transfer protein over expression The apoB-100 transgenic mice express the human enzyme, CETP, and consequently demonstrate a dramatically reduced level of serum HDL cholesterol.
- Model for apoB-100 and CETP overexpression The apoB-100 transgenic mice express both
 CETP and apoB-100, resulting in mice with a human like serum HDL/LDL distribution.
 Following 6 months on a high-fat diet these mice develop significant foam cell accumulation underlying the endothelium and within the media, as well as cholesterol crystals and fibrotic lesions.
- ApoB100 Transgenic Mice (Order Model #'s:1004-T (hemizygotes), B6 (control))

 These mice express high levels of human apoB-100, resulting in mice with elevated serum levels of LDL cholesterol. These mice are useful in identifying and evaluating compounds to reduce elevated levels of LDL cholesterol and the risk of atherosclerosis. When fed a high fat cholesterol diet, these mice develop significant foam cell accumulation underly the endothelium and within the media, and have significantly more complex atherosclerotic lesions than control animals.
 - Double Transgenic Mice, CETP/ApoB100 (Order Model #: 1007-TT) These mice express both CETP and apoB-100, resulting in a human-like serum HDL/LDL distribution. These mice are useful for evaluating compounds to treat hypercholesterolemia or HDL/LDL cholesterol imbalance to reduce the risk of developing atherosclerosis. When fed a high fat high cholesterol

20

25

30

Attorney's Docket No.: 14174-072W01

diet, these mice develop significant foam cell accumulation underlying the endothelium and within the media, and have significantly more complex atherosclerotic lesions than control animals.

ApoE gene knockout mouse Homozygous apoE knockout mice exhibit strong hypercholesterolemia, primarily due to elevated levels of VLDL and IDL caused by a defect in lipoprotein clearance from plasma. These mice develop atherosclerotic lesions which progress with age and resemble human lesions (Zhang et al., Science 258:46-71, 1992; Plump et al., Cell 71:343-353, 1992; Nakashima et al., Arterioscler Thromp. 14:133-140, 1994; Reddick et al.,
 Arterioscler Tromb. 14:141-147, 1994). These mice are a promising model for studying the effect of diet and drugs on atherosclerosis.

Low density lipoprotein receptor (LDLR) mediates lipoprotein clearance from plasma through the recognition of apoB and apoE on the surface of lipoprotein particles. Humans, who lack or have a decreased number of the LDL receptors, have familial hypercholesterolemia and develop CHD at an early age.

ApoE Knockout Mice (Order Model #: APOE-M) The apoE knockout mouse was created by gene targeting in embryonic stem cells to disrupt the apoE gene. ApoE, a glycoprotein, is a structural component of very low density lipoprotein (VLDL) synthesized by the liver and intestinally synthesized chylomicrons. It is also a constituent of a subclass of high density lipoproteins (HDLs) involved in cholesterol transport activity among cells. One of the most important roles of apoE is to mediate high affinity binding of chylomicrons and VLDL particles that contain apoE to the low density lipoprotein (LDL) receptor. This allows for the specific uptake of these particles by the liver which is necessary for transport preventing the accumulation in plasma of cholesterol-rich remnants. The homozygous inactivation of the apoE gene results in animals that are devoid of apoE in their sera. The mice appear to develop normally, but they exhibit five times the normal serum plasma cholesterol and spontaneous atherosclerotic lesions. This is similar to a disease in people who have a variant form of the apoE gene that is defective in binding to the LDL receptor and are at risk for early development of atherosclerosis and increased plasma triglyceride and cholesterol levels. There are indications that apoE is also involved in immune system regulation, nerve regeneration and muscle

10

15

20

25

Attorney's Docket No.: 14174-072W01

differentiation. The apoE knockout mice can be used to study the role of apoE in lipid metabolism, atherogenesis, and nerve injury, and to investigate intervention therapies that modify the atherogenic process.

Apoe4 Targeted Replacement Mouse (Order Model #: 001549-M) ApoE is a plasma protein involved in cholesterol transport, and the three human isoforms (E2, E3, and E4) have been associated with atherosclerosis and Alzheimer's disease. Gene targeting of 129 ES cells was used to replace the coding sequence of mouse apoE with human APOE4 without disturbing the murine regulatory sequences. The E4 isoform occurs in approximately 14% of the human population and is associated with increased plasma cholesterol and a greater risk of coronary artery disease. The Taconic apoE4 Targeted Replacement model has normal plasma cholesterol and triglyceride levels, but altered quantities of different plasma lipoprotein particles. This model also has delayed plasma clearance of cholesterol-rich lipoprotein particles (VLDL), with only half the clearance rate seen in the apoE3 Targeted Replacement model. Like the apoE3 model, the apoE4 mice develop altered plasma lipoprotein values and atherosclerotic plaques on an atherogenic diet. However, the atherosclerosis is more severe in the apoE4 model, with larger plaques and cholesterol apoE and apoB-48 levels twice that seen in the apoE3 model. The Taconic apoE4 Targeted Replacement model, along with the apoE2 and apoE3 Targeted Replacement Mice, provide an excellent tool for *in vivo* study of the human apoE isoforms.

CETP Transgenic Mice (Order Model #: 1003-T) These animals express the human plasma enzyme, CETP, resulting in mice with a dramatic reduction in serum HDL cholesterol. The mice can be useful in identifying and evaluating compounds that increase the levels of HDL cholesterol for reducing the risk of developing atherosclerosis

Transgene/Promoter: human apolipoprotein A-I These mice produce mouse HDL cholesterol particles that contain human apolipoprotein A-I. Transgenic expression is life-long in both sexes (Biochemical Genetics and Metabolism Laboratory, Rockefeller University, NY City).

A Mouse Model for Abetalipoproteinemia Abetalipoproteinemia, an inherited human disease characterized by a near-complete absence of apoB-containing lipoproteins in the plasma, is caused by mutations in the gene for microsomal triglyceride transfer protein (MTP). Gene

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

targeting was used to knock out the mouse MTP gene (Mttp). In heterozygous knockout mice (Mttp^{+/-}), the MTP mRNA, protein, and activity levels were reduced by 50% in both liver and intestine. Recent studies with heterozygous MTP knockout mice have suggested that halfnormal levels of MTP in the liver reduce apoB secretion. They hypothesized that reduced apoB secretion in the setting of half-normal MTP levels might be caused by a reduced MTP:apoB ratio in the endoplasmic reticulum, which would reduce the number of apoB-MTP interactions. If this hypothesis were true, half-normal levels of MTP might have little impact on lipoprotein secretion in the setting of half-normal levels of apoB synthesis (since the ratio of MTP to apoB would not be abnormally low) and might cause an exaggerated reduction in lipoprotein secretion in the setting of apoB overexpression (since the ratio of MTP to apoB would be even lower). To test this hypothesis, they examined the effects of heterozygous MTP deficiency on apoB metabolism in the setting of normal levels of apoB synthesis, half-normal levels of apoB synthesis (heterozygous Apob deficiency), and increased levels of apoB synthesis (transgenic overexpression of human apoB). Contrary to their expectations, half-normal levels of MTP reduced plasma apoB-100 levels to the same extent (~25-35%) at each level of apoB synthesis. In addition, apoB secretion from primary hepatocytes was reduced to a comparable extent at each level of apoB synthesis. Thus, these results indicate that the concentration of MTP within the endoplasmic reticulum, rather than the MTP:apoB ratio, is the critical determinant of lipoprotein secretion. Finally, heterozygosity for an apoB knockout mutation was found to lower plasma apoB-100 levels more than heterozygosity for an MTP knockout allele. Consistent with that result, hepatic triglyceride accumulation was greater in heterozygous apoB knockout mice than in heterozygous MTP knockout mice. Cre/loxP tissue-specific recombination techniques were also used to generate liver-specific Mttp knockout mice. Inactivation of the Mttp gene in the liver caused a striking reduction in very low density lipoprotein (VLDL) triglycerides and large reductions in both VLDL/low density lipoproteins (LDL) and high density lipoprotein cholesterol levels. Histologic studies in liver-specific knockout mice revealed moderate hepatic steatosis. Currently being tested is the hypothesis that accumulation of triglycerides in the liver renders the liver more susceptible to injury by a second insult (e.g., lipopolysaccharide).

Human apo B (apolipoprotein B) Transgene mice show apo B locus may have a causative role male infertility The fertility of apoB (apolipoprotein B) (+/-) mice was recorded during the course of backcrossing (to C57BL/6J mice) and test mating. No apparent fertility problem was 237

10

15 ;

20

25

Attorney's Docket No.: 14174-072W01

observed in female apoB (+/-) and wild-type female mice, as was documented by the presence of vaginal plugs in female mice. Although apoB (+/-) mice mated normally, only 40% of the animals from the second backcross generation produced any offspring within the 4-month test period. Of the animals that produced progeny, litters resulted from < 50% of documented matings. In contrast, all wild-type mice (6/6--i.e., 100%) tested were fertile. These data suggest genetic influence on the infertility phenotype, as a small number of male heterozygotes were not sterile. Fertilization in vivo was dramatically impaired in male apoB (+/-) mice. 74% of eggs examined were fertilized by the sperm from wild-type mice, whereas only 3% of eggs examined were fertilized by the sperm from apoB (+/-) mice. The sperm counts of apoB (+/-) mice were mildly but significantly reduced compared with controls. However, the percentage of motile sperm was markedly reduced in the apoB (+/-) animals compared with that of the wild-type controls. Of the sperm from apoB (+/-) mice, 20% (i.e., 4.9% of the initial 20% motile sperm) remained motile after 6 hr of incubation, whereas 45% (i.e., 33.6% of the initial 69.5%) of the motile sperm retained motility in controls after this time. In vitro fertilization yielded no fertilized eggs in three attempts with apo B (+/-) mice, while wild-type controls showed a fertilization rate of 53%. However, sperm from apoB (+/-) mice fertilized 84% of eggs once the zona pellucida had been removed. Numerous sperm from apoB (+/-) mice were seen binding to zona-intact eggs. However, these sperm lost their motility when observed 4-6 hours after binding, showing that sperm from apoB (+/-) mice were unable to penetrate the zona pellucida but that the interaction between sperm and egg was probably not direct. Sperm binding to zonafree oocytes was abnormal. In the apoB (+/-) mice, sperm binding did not attenuate, even after pronuclei had clearly formed, suggesting that apoB deficiency results in abnormal surface interaction between the sperm and egg.

Knockout of the mouse apoB gene resulted in embryonic lethality in homozygotes, protection against diet-induced hypercholesterolemia in heterozygotes, and developmental abnormalities in mice.

Model of insulin resistance, dyslipidemia & overexpression of human apoB It was shown that the livers of apoB mice assemble and secrete increased numbers of VLDL particles.

: 1,

5

10

15

20

25

30

Attorney's Docket No.: 14174-072W01

Example 2. Treatment of Diabetes Type-2 with iRNA

Introduction The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level. Pathological changes in the glucose production of the liver are a central characteristic in type-2-diabetes. For example, the fasting hyperglycemia observed in patients with type-2-diabetes reflects the lack of inhibition of hepatic gluconeogenesis and glycogenolysis due to the underlying insulin resistance in this disease. Extreme conditions of insulin resistance can be observed for example in mice with a liver-specific insulin receptor knockout ('LIRKO'). These mice have an increased expression of the two rate-limiting gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and the glucose-6-phosphatase catalytic subunit (G6Pase). Insulin is known to repress both PEPCK and G6Pase gene expression at the transcriptional level and the signal transduction involved in the regulation of G6Pase and PEPCK gene expression by insulin is only partly understood. While PEPCK is involved in a very early step of hepatic gluconeogenesis (synthesis of phosphoenolpyruvate from oxaloacetate), G6Pase catalyzes the terminal step of both, gluconeogenesis and glycogenolysis, the cleavage of glucose-6-phosphate into phosphate and free glucose, which is then delivered into the blood stream.

The pharmacological intervention in the regulation of expression of PEPCK and G6Pase can be used for the treatment of the metabolic aberrations associated with diabetes. Hepatic glucose production can be reduced by an iRNA-based reduction of PEPCK and G6Pase enzymatic activity in subjects with type-2-diabetes.

Targets for iRNA

Glucose-6-phosphatase (G6Pase)

G6Pase mRNA is expressed principally in liver and kidney, and in lower amounts in the small intestine. Membrane-bound G6Pase is associated with the endoplasmic reticulum. Low activities have been detected in skeletal muscle and in astrocytes as well.

G6Pase catalyzes the terminal step in gluconeogenesis and glycogenolysis. The activity of the enzyme is several fold higher in diabetic animals and probably in diabetic humans. Starvation and diabetes cause a 2-3-fold increase in G6Pase activity in the liver and a 2-4-fold increase in G6Pase mRNA.

15

20

Attorney's Docket No.: 14174-072W01

Phosphoenolpyruvate carboxykinase (PEPCK)

Overexpression of PEPCK in mice results in symptoms of type-2-diabetes mellitus. PEPCK overexpression results in a metabolic pattern that increases G6Pase mRNA and results in a selective decrease in insulin receptor substrate (IRS)-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression.

Table 5. Other targets to inhibit hepatic glucose production

Target	Comment
FKHR	good evidence for antidiabetic phenotype (Nakae et al., Nat Genetics 32:245(2002)
Glucagon	
Glucagon receptor	
Glycogen phosphorylase	
PGC-1 (PPAR-Gamma Coactivator)	regulates the cAMP response (and probably the PKB/FKHR-regulation) on PEPCK/G6Pase
Fructose-1,6-bisphosphatase	
Glucose-6-phospate translocator	
Glucokinase inhibitory	
regulatory protein	

10 Materials and Methods

Animals: BKS.Cg-m +/+ Lepr db mice, which contain a point mutation in the leptin receptor gene are used to examine the efficacy of iRNA for the targets listed above.

BKS.Cg-m +/+ Lepr db are available from the Jackson Laboratory (Stock Number 000642). These animals are obese at 3-4 weeks after birth, show elevation of plasma insulin at 10 to 14 days, elevation of blood sugar at 4 to 8 weeks, and uncontrolled rise in blood sugar. Exogenous insulin fails to control blood glucose levels and gluconeogenic activity increases.

The following numbers of male animals (age>12 weeks) could be tested with the following iRNAs:

PEPCK, 2 sequences, 5 animals per sequence

G6Pase, 2 sequences, 5 animals per sequence

1 nonspecific sequence, 5 animals

1 control group (only injected, no siRNA), 5 animals

1 control group (not injected, no siRNA), 5 animals

Attorney's Docket No.: 14174-072W01

Reagents: Necessary reagents would ideally include a Glucometer Elite XL (Bayer, Pittsburgh, PA) for glucose quantification, and an Insulin Radioimmunoassay (RIA) kit (Amersham, Piscataway, NJ) for insulin quanitation.

5 Assays:

10

20

30

G6P enzyme assays and PEPCK enzyme assays are used to measure the activity of the enzymes. Northern blotting is used to detect levels of G6Pase and PEPCK mRNA. Antibody-based techniques (e.g., immunoblotting, immunofluorescence) are used to detect levels of G6Pase and PEPCK protein. Glycogen staining is used to detect levels of glycogen in the liver. Histological analysis is performed to analyze tissues.

Gene information:

G6Pase GenBank® No.: NM_008061, Mus musculus glucose-6-phosphatase, catalytic (G6pc), mRNA 1..2259, ORF 83..1156;

GenBank® No: U00445, Mus musculus glucose-6-phosphatase mRNA, complete cds 1..2259, ORF 83..1156

GenBank® No: BC013448

PEPCK

GenBank® No: NM_011044, Mus musculus phosphoenolpyruvate carboxykinase 1, cytosolic (Pck1), mRNA.1..2618, ORF 141..2009

GenBank® No: AF009605.1

Administration of iRNA:

iRNA corresponding to the genes described above could be administered to mice with hydrodynamic injection. One control group of animals would be treated with Metformin as a positive control for reduction in hepatic glucose levels.

Experimental Protocol

Mice could be housed in a facility in which there is light from 7:00 AM to 7:00 PM.

Mice would be fed *ad libidum* from 7:00 PM to 7:00 AM and fast from 7:00 AM to 7:00 PM.

Attorney's Docket No.: 14174-072W01

Day 0: 7:00 PM: Approximately 100 μ l blood would be drawn from the tail. Serum could be isolated to measure glucose, insulin, HbA1c (EDTA-blood), glucagon, FFAs, lactate, corticosterone, serum triglycerides.

Day 1-7: Blood glucose could be measured daily at 8:00 AM and 6:00 PM (approx. 3-5 μ l; measured with a Haemoglucometer)

Day 8: Blood glucose could be measured daily at 8:00 AM and 6:00 PM. iRNA would be injected between 10:00 AM and 2:00 PM

Day 9-20: Blood glucose could be measured daily at 8:00 AM and 6:00 PM.

10

5

Day 21: Mice could be sacrificed after 10 hours of fasting.

Blood would be isolated. Glucose, insulin, HbA1c (EDTA-blood), glucagon, FFAs, lactate, corticosterone, serum triglycerides would be measured. Liver tissue would be isolated for histology, protein assays, RNA assays, glycogen quantitation, and enzyme assays.

15

20

25

Example 3: Inhibition of Glucose-6-Phosphatase iRNA in vivo

iRNA targeted to the Glucose-6-Phosphatase (G6P) gene was used to examine the effects of inhibition of G6P expression on glucose metabolism *in vivo*.

Female mice, 10 weeks of age, strain BKS.Cg-m +/+ Lepr db (The Jackson Laboratory) were used for *in vivo* analysis of enzymes of the hepatic glucose production. Mice were housed under conditions where it was light from 6:30 am to 6:30 pm. Mice were fed (ad libidum) during the night period and fasted during the day period.

On day 1, approximately 100µl of blood was collected from test animals by puncturing the retroorbital plexus. On days 1-7, blood glucose was measured in blood obtained from tail veins (approximately 3-5 µl) using a Glucometer (Elite XL, Bayer). Blood glucose was sampled daily at 8 am and 6 pm.

On day 7 at approximately 2pm, GL3 plasmid (10 µg) and siRNAs (100 µg G6Pase specific, Renilla nonspecific or no siRNA control) were delivered to animals using hydrodynamic coinjection.

10

15

Attorney's Docket No.: 14174-072W01

On day 8, GL3 expression was analyzed by injection of luceferin (3 mg) after anaesthesia with avertin and imaging. This was done to control for successful hydrodynamic delivery.

On days 8-10, blood glucose was measured in blood obtained from tail veins (approximately 3-5 ml) using a Glucometer (Elite XL, Bayer).

On day 10, mice were sacrificed after 10 hours of fasting. Blood and liver were isolated from sacrificed animals.

Table 6 lists blood glucose levels (mg/dl) for mice injected with GL3 plasmid and G6Pase iRNA (G6P4), Renilla nonspecific iRNA (RL), or no iRNA (no). Days on which nucleic acids were injected are shaded.

Table 6. Blood glucose levels in mice

plasmid	GL3								
siRNA	G6P4	G6P4	G6P4	no	G6P4	RL.	RL	no	
	mouse D3	mouse 04	mouse 05	mouse 07	mouse 09	mouse 14	mouse 15	mouse 17	
day	BG	BG	BG	BG '	BG	BG	BG	BG	
1	512	250	537	241	196	275	538	437	
2	555	437	339	556	408	315	524	386	
3	483	446	356	567	283	491	600	459	
4	579	543	552	423	404	457	548	375	
5	600	501	600	277	198	441	533	430	
6	464	600	408	454	461	412	490	301	
7	214 75 6	201	245	309	260	494	600	429	injection
8	600	566	246	521	277	600	576	404	Para Para Para Para Para Para Para Para
9 🔯	350	448	438			536	600	459	injection
10	369	600	446						(industrial
average									
day 1 to 6	532	463	465	420	325	399	539	398	

Table 7 lists average blood glucose levels (mg/dl) on days 1-6 or day 7 for mice injected with GL3 plasmid and G6Pase iRNA (G6P4), Renilla nonspecific iRNA (RL), no iRNA (no), or for mice that were not injected, or for which injection failed.

Table 7. Average blood glucose levels

20		G6P4	RL	no	RL and no (combined)
		mouse 03,04,05,09	mouse 14, 15	mouse 07, 17	mouse 14, 15, 07, 17
	average (d1-6)	446	469	409	439
	stddev (d1-6)	124	96	101	101
	average (d7)	230	547	369	458
	stddev (d7)	27			122

Attorney's Docket No.: 14174-072W01

FIGs. 6A, 6B, and 6C show graphs depicting blood glucose levels of animals injected with control or no siRNA, G6Pase RNA, or non-injected mice (respectively) at days 1-6 and day 7. FIG. 7 contains a graph of average blood glucose levels for mice injected with G6Pase RNA (solid line) and mice injected with, Renilla nonspecific iRNA (RL) or no iRNA (no) (dashed line).

Table 8 lists average blood glucose levels for mice injected with G6Pase iRNA or Renilla nonspecific iRNA (RL) and no iRNA.

10

Table 8. Average blood glucose levels

11	mouse 03,04,05,09		mouse 14, 15, 07, 17	
	average	stddev	average	stddev
day				·
1	374	176	373	139
2	435	90	445	114
3	392	90	529	65
4	520	79	451	73
-5	475	190	420	106
6	483	82	414	82
7	230	27	458	122
8	422	187	525	87
9	412	54	532	71
10	472	118		1

Example 4: Selected Palindromic Sequences

Tables 9-14 below provide selected palindromic sequences from the following genes: human ApoB, human glucose-6-phosphatase, rat glucose-6-phosphatase, β-catenin, and hepatitis C virus (HCV).

WO 2004/091515
Table 9. Selected palindromic sequences from human ApoB

		Lable 9. Selected pali			s from nu	man <i>I</i>	ADOR				_
		Source	Start Index	End Index			Match	Start Index	End Index	-	#E
SEQ ID NO:	1	ggccattccagaagggaag	509	528	SEQ ID NO:	1004	cttccgttctgtaatggcc	5795	5814	7	19
SEQ ID NO:	2	tgccatctcgagagttcca	4099	4118	SEQ ID NO:	1005	tggaactctctccatggca	10876	10895	ŀ	18
SEQ ID NO:	3	catgtcaaacactttgtta	7056	7075	SEQ ID NO:	1006	taacaaattccttgacatg	7358	7377	Ť	18
SEQ ID NO:	4	tttgttataaatcttattg	7068	7087	SEQ ID NO:	1007	caataagatcaatagcaaa	8990	9009	7	18
SEQ ID NO:	5	tctggaaaagggtcatgga	8880	8899-	SEQ ID NO:	1008	tccatgtcccatttacaga	11356	11375	7	18
SEQ ID NO:	6	cagetettgtteaggteea	10900	10919	SEQ ID NO:	1009	tggacctgcaccaaagctg	13952	13971	1	18
SEQ ID NO:	7	ggaggttccccagctctgc	356	375	SEQ ID NO:	1010	gcagccctgggaaaactcc	6447	6466	1	17
SEQ ID NO:	8	ctgttttgaagactctcca	1081	1100	SEQ ID NO:	1011	tggagggtagtcataacag	10327	10346	1	17
SEQ ID NO:	9	agtggctgaaacgtgtgca	1297	1316	SEQ ID NO:	1012	tgcagagctttctgccact	13508	13527	1	17
SEQ ID NO:	10	ccaaaatagaagggaatct	2068	2087	SEQ ID NO:	1013	agattcctttgccttttgg	4000	4019	1	17
SEQ ID NO:	11	tgaagagaagattgaattt	3620	3639	SEQ ID NO:	1014	aaattctcttttcttttca	9212	9231	1	17
SEQ ID NO:	12	agtggtggcaacaccagca	4230	4249	SEQ ID NO:	1015	tgctagtgaggccaacact	10649	10668	1	7
SEQ ID NO:	13	aaggctccacaagtcatca	5950	5969	SEQ ID NO:	1016	tgatgatatctggaacctt	10724	10743	1	7
SEQ ID NO:	14	gtcagccaggtttatagca	7725	7744	SEQ ID NO:	1017	tgctaagaaccttactgac	7781	7800	1	7
SEQ ID NO:	15	tgatatctggaaccttgaa	10727	10746	SEQ ID NO:	1018	ttcactgttcctgaaatca	7863	7882	1	7
SEQ ID NO:	16	gtcaagttgagcaatttct	13423	13442	SEQ ID NO:	1019	agaaaaggcacaccttgac	11072	11091	1	7
SEQ ID NO:	17	atccagatggaaaagggaa	13480	13499	SEQ ID NO:	1020	ttccaatttccctgtggat	3680	3699	7	7
SEQ ID NO:	18	atttgtttgtcaaagaagt	4543	4562	SEQ ID NO:	1021	acttcagagaaatacaaat	11401	11420	4	6
SEQ ID NO:	19	ctggaaaatgtcagcctgg	204		SEQ ID NO:	1022	ccagacttccgtttaccag	8235	8254	2	6
SEQ ID NO:	20	accaggaggttcttcttca	1729	1748	SEQ ID NO:	1023	tgaagtgtagtctcctggt	5089	5108	2	6
SEQ ID NO:	21	aaagaagttctgaaagaat	1956	1975	SEQ ID NO:	1024	attccatcacaaatccttt	9661	9680	2	6
SEQ ID NO:	22	gctacagcttatggctcca	3570	3589	SEQ ID NO:	1025	tggatctaaatgcagtagc	11623	11642	2	6
SEQ ID NO:	23	atcaatattgatcaatttg	6414	6433	SEQ ID NO:	1026	caaagaagtcaagattgat	4553	4572	2	6
SEQ ID NO:	24	gaattatcttttaaaacat	7326	7345	SEQ ID NO:	1027	atgtgttaacaaaatattc	11494	11513	2	6
SEQ ID NO:	25	cgaggcccgcgctgctggc	130	149	SEQ ID NO:	1028	gccagaagtgagatcctcg	3507	3526	1	6
SEQ ID NO:	26	acaactatgaggctgagag	271	290	SEQ ID NO:	1029	ctctgagcaacaaatttgt	10309	10328	1	6

		WO 2004/091515					PC	17US2004	/011255		
SEQ ÎD " NO:	27	gctgagagttccagtggag	282	301	SEQ ID NO:	1030	ctccatggcaaatgtcagc	10885	10904	1	6
SEQ ID NO:	28	tgaagaaaaccaagaactc	448	467	SEQ ID NO:	1031	gagtcattgaggttcttca	4929	4948	1	6
SEQ ID NO:	29	cctacttacatcctgaaca	558	577	SEQ ID NO:	1032	tgttcataagggaggtagg	12766	12785	1	6
SEQ ID NO:	30	ctacttacatcctgaacat	559	578	SEQ ID NO:	1033	atgttcataagggaggtag	12765	12784	1	6
SEQ ID NO:	31	gagacagaagaagccaagc	615	634	SEQ ID NO:	1034	gcttggttttgccagtctc	2459	2478	1	6
SEQ ID NO:	32	cactcactttaccgtcaag	671	690	SEQ ID NO:	1035	cttgaacacaaagtcagtg	6000	6019	1	6
SEQ ID NO:	33	ctgatcagcagcagt	822	841	SEQ ID NO:	1036	actgggaagtgcttatcag	5237	5256	1	6
SEQ ID NO:	34	actggacgctaagaggaag	854	873	SEQ ID NO:	1037	cttccccaaagagaccagt	2890	2909	1	6

PCT/US2004/011255

WO 2004/091515

							•			
SEQ ID NO	:35	agaggaagcatgtggcaga	865	884	SEQ ID NO:	1038	tetggcatttactttctct	5921	5940	1
SEQ ID NO	:36	tgaagactctccaggaact	1087	1106	SEQ ID NO:	1039	agttgaaggagactattca	7216	7235	1
SEQ ID NO	:37	ctctgagcaaaatatccag	1121	1140	SEQ ID NO:	1040	ctggttactgagctgagag	1161	1180	1
SEQ ID NO	:38	atgaagcagtcacatctct	1189	1208	SEQ ID NO:	1041	agagetgecagteetteat	10016	10035	51
SEQ ID NO	:39	ttgccacagctgattgagg	1209	1228	SEQ ID NO:	1042	cctcctacagtggtggcaa	4222	4241	1
SEQ ID NO	:40	agctgattgaggtgtccag	1216	1235	SEQ ID NO:	1043	ctggattccacatgcagct	11847	11866	1
SEQ ID NO	:41	tgctccactcacatcctcc	1278	1297	SEQ ID NO:	1044	ggaggctttaagttcagca	7601	7620	1
SEQ ID NO	:42	tgaaacgtgtgcatgccaa	1303	1322	SEQ ID NO:	1045	ttgggagagacaagtttca	6500	6519	1
SEQ ID NO	:43	gacattgctaattacctga	1503	1522	SEQ ID NO:	1046	tcagaagctaagcaatgtc	7232	7251	1
SEQ ID NO	:44	ttcttcttcagactttcct	1738	1757	SEQ ID NO:	1047	aggagagtccaaattagaa	8498	8517	1
SEQ ID NO	:45	ccaatatcttgaactcaga	1903	1922	SEQ ID NO:	1048	tctgaattcattcaattgg	6485	6504	16
SEQ ID NO	:46	aaagttagtgaaagaagtt	1946	1965	SEQ ID NO:	1049	aactaccctcactgccttt	2132	2151	116
SEQ ID NO	:47	aagttagtgaaagaagttc	1947	1966	SEQ ID NO:	1050	gaacctctggcatttactt	5916	5935	1
SEQ ID NO	:48	aaagaagttctgaaagaat	1956	1975	SEQ ID NO:	1051	attctctggtaactacttt	5482	5501	16
SEQ ID NO	:49	tttggctataccaaagatg	2322	2341	SEQ ID NO:	1052	catettaggcactgacaaa	4997	5016	16
SEQ ID NO	50	tgttgagaagctgattaaa	2381	2400	SEQ ID NO:	1053	tttagccatcggctcaaca	5700	5719:	16
SEQ ID NO	:51	caggaagggctcaaagaat	2561	2580	SEQ ID NO:	1054	attcctttaacaattcctg	9492	9511	16
SEQ ID NO	52	aggaagggctcaaagaatg	2562	2581	SEQ ID NO:	1055	cattcctttaacaattcct	9491	9510	16
SEQ ID NO	53	gaagggctcaaagaatgac	2564	2583	SEQ ID NO:	1056	gtcagtcttcaggctcttc	7914	7933	1 6
SEQ ID NO	54	caaagaatgacttttttct	2572	2591	SEQ ID NO:	1057	agaaggatggcatttttg	14000	14019	16
SEQ ID NO	55	catggagaatgcctttgaa	2603	2622	SEQ ID NO:	1058	ttcagagccaaagtccatg	7119.	7138	16
SEQ ID NO	56	ggagccaaggctggagtaa	2679	2698	SEQ ID NO:	1059	ttactccaacgccagctcc	3050	3069	16
SEQ ID NO	57	tcattccttccccaaagag	2884	2903	SEQ ID NO:	1060	ctctctggggcatctatga	5139	5158	16
SEQ ID NO	58	acctatgagctccagagag	3165	3184	SEQ ID NO:	1061	ctctcaagaccacagaggt	12976	12995	16
SEQ ID NO:	59	gggcaaaacgtcttacaga	3365	3384	SEQ ID NO:	1062	tctgaaagacaacgtgccc	12317	12336	16
SEQ ID NO:	60	accetggacatteagaaca	3387	3406	SEQ ID NO:	1063	tgttgctaaggttcagggt	5675	5694	16
SEQ ID NO:	61	atgggcgacctaagttgtg	3429	3448	SEQ ID NO:	1064	cacaaattagtttcaccat	8941	8960	16
SEQ ID NO:	62	gatgaagagaagattgaat	3618	3637	SEQ ID	1065	attccagcttccccacatc	8330	8349	16

PCT/US2004/011255 WO 2004/091515 NO: 3656 3675 SEQ ID 1066 ttttttggaaatgccattg 8643 8662 16 SEQ ID NO: 63 caatgtagataccaaaaaa NO: 1067 4371 16 SEQ ID NO:164 gtagataccaaaaaaatga 3660 3679 SEQ ID tcatgtgatgggtctctac 4390 NO: SEQ ID NO: 65 4509 4528 SEQ ID 1068 agtcaagaaggacttaagc 5304 5323 116 gcttcagttcatttggact NO: 4544 4563 1069 gacttcagagaaatacaaa |11400|11419|1|6 SEQ ID NO: 66 tttgtttgtcaaagaagtc SEQ ID NO: 1070 4545 4564 SEQ ID 11399 11418 16 SEQ ID NO: 67 tgacttcagagaaatacaa ttgtttgtcaaagaagtca NO: 5846 SEQ ID 8238 16 SEQ ID NO: 68 5865 agcgagaatcaccctgcca 8219 tggcaatgggaaactcgct NO: 10599 10618 16 5917 5936 SEQ ID 1072 SEQ ID NO:169 aaaggagatgtcaagggtt aacctctggcatttacttt NO: 1073 5945 SEQ ID 7026 7045 16 SEQ ID NO:170 catttactttctctcatga 5926 tcatttgaaagaataaatg NO: 1074 7803 6009 6028 SEQ ID 7784 16 SEQ ID NO: 71 aaagtcagtgccctgctta taagaaccttactgacttt NO: 12004|12023|1|6 6322 6341 SEQ ID 1075 SEQ ID NO: 72 tcccattttttgagacctt aaggacttcaggaatggga NO: 6432 1076 6732 6751 16 SEQ ID NO: 73 6413 SEQ ID aaattaaaaagtcttgatg catcaatattgatcaattt NO: 1077 9038 6684 9019 16 SEQ ID NO:174 6665 SEQ ID taaaccaaaacttggttta taaagatagttatgattta NO: 6732 6713 1078 8007 8026 16 SEQ ID NO: 75 SEQ ID ttcaaagacttaaaaaata tattgatgaaatcattgaa NO: SEQ ID 1079 7380 7399 16 SEQ ID NO: 76 atgatctacatttgtttat 6790 6809 ataaagaaattaaagtcat NO: 6938 SEQ ID NO:|77 ISEQ ID 1080 13382|13401|1|6| agagacacatacagaatat 6919 atatattgtcagtgcctct NO: 1081 11327|11346|1|6| SEQ ID NO: 78 6922 6941 SEQ ID tctaaattcagttcttgtc gacacatacagaatataga NO: 7054 7073 SEQ ID 1082 6007 6026 16 SEQ ID NO: 79 agcatgtcaaacactttgt acaaagtcagtgccctgct NO: 7515 7534 SEQ ID 1083 |11230|11249|1|6| SEQ ID NO: 80 cctttgtgtacaccaaaaa tttttagaggaaaccaagg NO: SEQ ID NO:81 7516 7535 SEQ ID 1084 gcctttgtgtacaccaaaa |11229|11248|1|6| ttttagaggaaaccaaggc NO: SEQ ID NO: 82 9307 9326 SEQ ID 1085 ttcagaaatactgttttcc 12824 12843 16 ggaagatagacttcctgaa NO: SEQ ID NO: 83 9334 9353 SEQ ID 1086 12523 12542 16 cactgtttctgagtcccag ctgggacctaccaagagtg NO: SEQ ID NO: 84 9668 9687 SEQ ID 1087 10063|10082|1|6| cacaaatcctttggctgtg cacatttcaaggaattgtg NO: SEQ ID NO: 85 9853 9872 SEQ ID 1088 12569 12588 1 6 ttcctggatacactgttcc ggaactgttgactcaggaa NO: 11044 11063 16 SEQ ID NO: 86 10042 10061 SEQ ID 1089 gaaatctcaagctttctct agagccaggtcgagctttc NO: 10210|10229|SEQ ID 1090 13055|13074|1|6 SEQ ID NO:|87 tttcttcatcttcatctgt acagctgaaagagatgaaa NO: 10521110540|SEQ ID 1091 11761 11780 16 SEQ ID NO:|88 ctgcacgctttgaggtaga tctaccgctaaaggagcag NO: 10522110541|SEQ ID 1092 11760|11779|1|6| SEQ ID NO:89 ctaccgctaaaggagcagt actgcacgctttgaggtag NO: 10831|10850|SEQ ID 1093 10957 10976 16 SEQ ID NO: 90 agggcctctttttcaccaa ttggccaggaagtggccct

u geet	, V	VO 2004/091515	·				PCT/US2004/011255			
					NO:					
SEQ ID NO:	91	ttctccatccctgtaaaag	11265	11284	SEQ ID NO:	1094	ctttttcaccaacggagaa	10838	10857	16
SEQ ID NO:	92	gaaaaacaaagcagattat	11816	11835	SEQ ID NO:	1095	ataaactgcaagatttttc	13600	13619	16
SEQ ID NO:	93	actcactcattgattttct	12682	12701	SEQ ID NO:	1096	agaaaatcaggatctgagt	14027	14046	16
SEQ ID NO:	94	taaactaatagatgtaatc	12890		SEQ ID NO:	1097	gattaccaccagcagttta	13578	13597	16
SEQ ID NO:	95	caaaacgagcttcaggaag	13200		SEQ ID NO:	1098	cttcgtgaagaatattttg	13260	13279	16
SEQ ID NO:	96	tggaataatgctcagtgtt	2366	2385	SEQ ID NO:	1099	aacacttacttgaattcca	10662	10681	35
SEQ ID NO:	97	gatttgaaatccaaagaag	2400	2419	SEQ ID NO:	1100	cttcagagaaatacaaatc	11402	11421	35
SEQ ID NO:	98	atttgaaatccaaagaagt	2401	2420	SEQ ID NO:	1101	acttcagagaaatacaaat	11401	11420	35
SEQ ID NO:	99	atcaacagccgcttctttg	990	1009	SEQ ID NO:	1102	caaagaagtcaagattgat	4553	4572	25
SEQ ID NO	100	tgttttgaagactctccag	1082	1101	SEQ ID NO:	1103	ctggaaagttaaaacaaca	6955	6974	25
SEQ ID NO	101	cccttctgatagatgtggt	1324	1343	SEQ ID NO:	1104	accaaagctggcaccaggg	13961	13980	25
SEQ ID NO	102	tgagcaagtgaagaacttt	1868	1887 ⁻	SEQ ID NO:	1105	aaagccattcagtctctca	12963	12982	25
SEQ ID NO:	103	atttgaaatccaaagaagt	2401	2420	SEQ ID NO:	1106	acttttctaaacttgaaat	9055	9074	25
SEQ ID NO	104	atccaaagaagtcccggaa	2408	2427	SEQ ID NO:	1107	ttccggggaaacctgggat	12721	12740	25
SEQ ID NO	105	agagcctacctccgcatct	2430	2449	SEQ ID NO:	1108	agatggtacgttagcctct	11921	11940	25
SEQ ID NO	106	aatgcctttgaactcccca	2610	2629	SEQ ID NO:	1109	tgggaactacaatttcatt	7012	7031	25
SEQ ID NO	107	gaagtccaaattccggatt	3297	3316	SEQ ID NO:	1110	aatcttcaatttattcttc	13815	13834	25
SEQ ID NO	108	tgcaagcagaagccagaag	3496	3515	SEQ ID NO:	1111	citcaggttccatcgtgca	11376	11395	25
SEQ ID NO	109	gaagagaagattgaatttg	3621		SEQ ID NO:	1112	caaaacctactgtctcttc	10459	10478	25
SEQ ID NO	110	atgctaaaggcacatatgg	4597		SEQ ID NO:	1113	ccatatgaaagtcaagcat	12656	12675	25
SEQ ID NO	111	teceteacetecacetetg	4737	4756	SEQ ID NO:	1114	cagattctcagatgaggga	8912	8931	25
SEQ ID NO	112	atttacagctctgacaagt	5427	5446	SEQ ID NO:	1115	acttttctaaacttgaaat	9055	9074	25
SEQ ID NO	113	aggagcctaccaaaataat	5594	5613	SEQ ID NO:	1116	attatgttgaaacagtcct	11830	11849	25
SEQ ID NO	114	aaagctgaagcacatcaat	6401	6420	SEQ ID NO:	1117	attgttgctcatctccttt	10194	10213	25
SEQ ID NO	:115	ctgctggaaacaacgagaa	9418	9437	SEQ ID NO:	1118	ttctgattaccaccagcag	13574	13593	25
SEQ ID NO	116	ttgaaggaattcttgaaaa	9582	9601	SEQ ID NO:	1119	ttttaaaagaaatcttcaa	13805	13824	25
SEQ ID NO	117	gaagtaaaagaaaattttg	10743	10762	SEQ ID NO:	1120	caaaacctactgtctcttc	10459	10478	25
SEQ ID NO	118	tgaagaagatggcaaattt	11984	12003	SEQ ID	1121	aaatgtcagctcttgttca	10894	10913	25

	y y	VO 2004/091515	nt!!!				PCT/US2004/011255				
					NO:					Ш	
SEQ ID NO	:119	aggatctgagttattttgc	14035	14054	SEQ ID NO:	1122	gcaagtcagccagttcct	10920	10939	2	
SEQ ID NO	120	gtgcccttctcggttgctg	18	37	SEQ ID NO:	1123	cagccattgacatgagcac	5740	5759	1	
SEQ ID NO	121	ggcgctgcctgcgctgctg	146	165	SEQ ID NO:	1124	cagctccacagactccgcc	3062	3081	1	
SEQ ID NO	122	ctgcgctgctgctgctgct	154	173	SEQ ID NO:	1125	agcagaaggtgcgaagcag	3224	3243	1	
SEQ ID NO	123	gctgctggcgggcgccagg	170	189	SEQ ID NO:	1126	cctggattccacatgcagc	11846	11865	1	
SEQ ID NO	:124	aagaggaaatgctggaaaa	193	212	SEQ ID NO:	1127	tttttcttcactacatctt	2584	2603	1	
SEQ ID NO	125	ctggaaaatgtcagcctgg	204	223	SEQ ID NO:	1128	ccagacttccacatcccag	3915	3934	1	
SEQ ID NO	:126	tggagtccctgggactgct	296	315	SEQ ID NO:	1129	agcatgcctagtttctcca	9945	9964	1 !	
SEQ ID NO	127	ggagtccctgggactgctg	297	316	SEQ ID NO:	1130	cagcatgcctagtttctcc	9944	9963	1 !	
SEQ ID NO	128	tgggactgctgattcaaga	305	324	SEQ ID NO:	1131	tcttccatcacttgaccca	2042	2061	1 4	
SEQ ID NO	129	ctgctgattcaagaagtgc	310	329	SEQ ID NO:	1132	gcacaccttgacattgcag	11079	11098	1	
SEQ ID NO	:130	tgccaccaggatcaactgc	326	345	SEQ ID NO:	1133	gcaggctgaactggtggca	2717	2736	1 :	
SEQ ID NO	:131	gccaccaggatcaactgca	327	346	SEQ ID NO:	1134	tgcaggctgaactggtggc	2716	2735	1 5	
SEQ ID NO	:132	tgcaaggttgagctggagg	342	361	SEQ ID NO:	1135	cctccacctctgatctgca	4744	4763·	1 4	
SEQ ID NO	:133	caaggttgagctggaggtt	344	363	SEQ ID NO:	1136	aacccctacatgaagcttg	13755	13774	1 4	
SEQ ID NO	:134	ctctgcagcttcatcctga	369	388	SEQ ID NO:	1137	tcaggaagcttctcaagag	13211	13230	1 !	
SEQ ID NO	:135	cagcttcatcctgaagacc	374	393	SEQ ID NO:	1138	ggtcttgagttaaatgctg	4977	4996	1 5	
SEQ ID NO	:136	gcttcatcctgaagaccag	376	395	SEQ ID NO:	1139	ctggacgctaagaggaagc	855	874	1 5	
SEQ ID NO	:137	tcatcctgaagaccagcca	379	398	SEQ ID NO:	1140	tggcatggcattatgatga	3604	3623	1 8	
SEQ ID NO	:138	gaaaaccaagaactctgag	452	471	SEQ ID NO:	1141	ctcaaccttaatgattttc	8286	8305	1 5	
SEQ ID NO	:139	agaactctgaggagtttgc	460	479	SEQ ID NO:	1142	gcaagctatacagtattct	8377	8396	1 5	
SEQ ID NO	:140	tctgaggagtttgctgcag	465	484	SEQ ID NO:	1143	ctgcaggggatccccaga	2526	2545	1 (
SEQ ID NO	:141	tttgctgcagccatgtcca	474	493	SEQ ID NO:	1144	tggaagtgtcagtggcaaa	10372	10391	1 5	
SEQ ID NO	142	caagaggggcatcatttct	578	597	SEQ ID NO:	1145	agaataaatgacgttcttg	7035	7054	1 5	
SEQ ID NO	143	tcactttaccgtcaagacg	674	693	SEQ ID NO:	1146	cgtctacactatcatgtga	4360	4379	1 5	
SEQ ID NO	:144	tttaccgtcaagacgagga	678	697	SEQ ID NO:	1147	tccttgacatgttgataaa	7366	7385	1 5	
SEQ ID NO	:145	cactggacgctaagaggaa	853	872	SEQ ID NO:	1148	ttccagaaagcagccagtg	12498	12517	1 5	
SEQ ID NO	:146	aggaagcatgtggcagaag	867	886	SEQ ID	1149	cttcatacacattaatcct	9988	10007	15	

At Timb	_,_ W	O 2004/091515	775° 111117°			- 	PCT/US2004	/011255	,	
					NO:					Ц
SEQ ID NO:	147	caaggagcaacacctcttc	893	912	SEQ ID NO:	1150	gaagtagtactgcatcttg	6835	6854	1 5
SEQ ID NO:	148	acagactttgaaacttgaa	959	978	SEQ ID NO:	1151	ttcaattcttcaatgctgt	10500	10519	1 5
SEQ ID NO:	149	tgatgaagcagtcacatct	1187	1206	SEQ ID NO:	1152	agatttgaggattccatca	7976	7995	15
SEQ ID NO:	150	agcagtcacatctctcttg	1193	1212	SEQ ID NO:	1153	caaggagaaactgactgct	6524	6543	1 5
SEQ ID NO:	151	ccagccccatcactttaca	1231	1250	SEQ ID NO:	1154	tgtagtctcctggtgctgg	5094	5113	15
SEQ ID NO:	152	ctccactcacatcctccag	1280	1299	SEQ ID NO:	1155	ctggagcttagtaatggag	8709	8728	1 5
SEQ ID NO:	153	catgccaaccccttctga	1314	1333	SEQ ID NO:	1156	tcagatgagggaacacatg	8919	8938	1 5
SEQ ID NO:	154	gagagatetteaacatgge	1390	1409	SEQ ID NO:	1157	gccaccetggaactetete	10869	10888	15
SEQ ID NO:	155	tcaacatggcgagggatca	1399	1418	SEQ ID NO:	1158	tgatcccacctctcattga	2965	2984	1 5
SEQ ID NO:	156	ccaccttgtatgcgctgag	1429	1448	SEQ ID NO:	1159	ctcagggatctgaaggtgg	8187	8206	15
SEQ ID NO:	157	gtcaacaactatcataaga	1455	1474	SEQ ID NO:	1160	tcttgagttaaatgctgac	4979	4998	1 5
SEQ ID NO:	158	tggacattgctaattacct	1501	1520	SEQ ID NO:	1161	aggtatattcgaaagtcca	12799	12818	1 5
SEQ ID NO:	159	ggacattgctaattacctg	1502	1521	SEQ ID NO:	1162	caggtatattcgaaagtcc	12798	12817	15
SEQ ID NO:	160	ttctgcgggtcattggaaa	1573	1592	SEQ ID NO:	1163	tttcacatgccaaggagaa	6514	6533	1 8
SEQ ID NO:	161	ccagaactcaagtcttcaa	1620	1639	SEQ ID NO:	1164	ttgaagtgtagtctcctgg	5088	5107	15
SEQ ID NO:	162	agtetteaateetgaaatg	1630	1649	SEQ ID NO:	1165	catttctgattggtggact	7757	7776	1 5
SEQ ID NO:	163	tgagcaagtgaagaacttt	1868	1887	SEQ ID NO:	1166	aaagtgccacttttactca	6183	6202	1 5
SEQ ID NO:	164	agcaagtgaagaactttgt	1870	1889	SEQ ID NO:	1167	acaaagtcagtgccctgct	6007	6026	1 5
SEQ ID NO:	165	tctgaaagaatctcaactt	1964	1983	SEQ ID NO:	1168	aagtocataatggttcaga	12811	12830	15
SEQ ID NO:	166	actgtcatggacttcagaa	1986	2005	SEQ ID NO:	1169	ttctgaatatattgtcagt	13376	13395	1 5
SEQ ID NO:	167	acttgacccagcctcagcc	2051	2070	SEQ ID NO:	1170	ggctcaccctgagagaagt	12391	12410	15
SEQ ID NO:	168	tccaaataactaccttcct	2096	2115	SEQ ID NO:	1171	aggaagatatgaagatgga	4712	4731	15
SEQ ID NO:	169	actaccctcactgcctttg	2133	2152	SEQ ID NO:	1172	caaatttgtggagggtagt	10319	10338	15
SEQ ID NO:	170	ttggatttgcttcagctga	2149	2168	SEQ ID NO:	1173	tcagtataagtacaaccaa	9392	9411	1 5
SEQ ID NO:	171	ttggaagetetttttggga	2211	2230	SEQ ID NO:	1174	tcccgattcacgcttccaa	11577	11596	115
SEQ ID NO:	172	ggaagctctttttgggaag	2213	2232	SEQ ID NO:	1175	cttcagaaagctaccttcc	7929	7948	15
SEQ ID NO:	173	tttttcccagacagtgtca	2238	2257	SEQ ID NO:	1176	tgaccttctctaagcaaaa	4876	4895	15
SEQ ID NO:	174	agacagtgtcaacaaagct	2246	2265	SEQ ID	1177	agcttggttttgccagtct	2458	2477	115

66 (131)72	, V	VO 2004/091515	ni. mu.	<u>; </u>			PCT/US2004	/011255		·
					NO:					Ц
SEQ ID NO:	175	ctttggctataccaaagat	2321	2340	SEQ ID NO:	1178	atctcgtgtctaggaaaag	5968	5987	1
SEQ ID NO:	176	caaagatgataaacatgag	2333	2352	SEQ ID NO:	1179	ctcaaggataacgtgtttg	12609	12628	1
SEQ ID NO:	177	gatatggtaaatggaataa	2355	2374	SEQ ID NO:	1180	ttatcttattaattatatc	13079	13098	1
SEQ ID NO:	178	ggaataatgctcagtgttg	2367	2386	SEQ ID NO:	1181	caacacttacttgaattcc	10661	10680	1
SEQ ID NO:	179	tttgaaatccaaagaagtc	2402	2421	SEQ ID NO:	1182	gacttcagagaaatacaaa	11400	11419	1
SEQ ID NO:	180	gatccccagatgattgga	2534	2553	SEQ ID NO:	1183	tccaatttccctgtggatc	3681	3700	1
SEQ ID NO:	181	cagatgattggagaggtca	2541	2560	SEQ ID NO:	1184	tgaccacacaaacagtctg	5363	5382	1
SEQ ID NO:	182	agaatgacttttttcttca	2575	2594	SEQ ID NO:	1185	tgaagtccggattcattct	11015	11034	1
SEQ ID NO:	183	gaactccccactggagctg	2619	2638	SEQ ID NO:	1186	cagctcaaccgtacagttc	11861	11880	1
SEQ ID NO:	184	atatcttcatctggagtca	2652	2671	SEQ ID NO:	1187	tgacttcagtgcagaatat	11966	11985	1
SEQ ID NO:	185	gtcattgctcccggagcca	2667	2686	SEQ ID NO:	1188	tggccccgtttaccatgac	5809	5828	1
SEQ ID NO:	186	gctgaagtttatcattcct	2873	2892	SEQ ID NO:	1189	aggaggctttaagttcagc	7600	7619	1
SEQ ID NO:	187	attccttccccaaagagac	2886	2905	SEQ ID NO:	1190	gtetetteeteeatggaat	10470	10489	1
SEQ ID NO:	188	ctcattgagaacaggcagt	2976	2995	SEQ ID NO:	1191	actgactgcacgctttgag	11756	11775	1
SEQ ID NO:	189	ttgagcagtattctgtcag	3142	3161	SEQ ID NO:	1192	ctgagagaagtgtcttcaa	12399	12418	1
SEQ ID NO:	190	accttgtccagtgaagtcc	3285	3304	SEQ ID NO:	1193	ggacggtactgtcccaggt	12784	12803	1
SEQ ID NO:	191	ccagtgaagtccaaattcc	3292	3311	SEQ ID NO:	1194	ggaaggcagagtttactgg	9148	9167	1
SEQ ID NO:	192	acattcagaacaagaaaat	3394	3413	SEQ ID NO:	1195	atttcctaaagctggatgt	11167	11186	1
SEQ ID NO:	193	gaaaaatcaagggtgttat	3463	3482	SEQ ID NO:	1196	ataaactgcaagatttttc	13600	13619	1
SEQ ID NO:	194	aaatcaagggtgttatttc	3466	3485	SEQ ID NO:	1197	gaaacaatgcattagattt	9745	9764	1
SEQ ID NO:	195	tggcattatgatgaagaga	3609	3628	SEQ ID NO:	1198	tctcccgtgtataatgcca	11781	11800	1
SEQ ID NO:	196	aagagaagattgaatttga	3622	3641	SEQ ID NO:	1199	tcaaaacctactgtctctt	10458	10477	1
SEQ ID NO:	197	aaatgacttccaatttccc	3673	3692	SEQ ID NO:	1200	gggaactacaatttcattt	7013	7032	1
SEQ ID NO:	198	atgacttccaatttccctg	3675	3694	SEQ ID NO:	1201	caggetgattacgagtcat	4917	4936	1
SEQ ID NO:	199	acttccaatttccctgtgg	3678	3697	SEQ ID	1202	ccacgaaaaatatggaagt	10360	10379	1
SEQ ID NO:	200	agttgcaatgagctcatgg	3803	3822	NO: SEQ ID	1203	ccatcagttcagataaact	7989	8008	1
SEQ ID NO:	201	tttgcaagaccacctcaat	3860	3879	NO: SEQ ID	1204	attgacctgtccattcaaa	13671	13690	1
SEQ ID NO:	202	gaaggagttcaacctccag	3884	3903	NO: SEQ ID	1205	ctggaattgtcattccttc	11728	11747	1

4 :000	. <u>.</u> .V	VO 2004/091515		Ţ		,	PCT/US2004/	011255	·····	
				Ĺ	NO:					Ц
SEQ ID NO:	203	acttccacatcccagaaaa	3919	3938	SEQ ID NO:	1206	ttttaacaaaagtggaagt	6821	6840	1 5
SEQ ID NO:	204	ctcttcttaaaaagcgatg	3939	3958	SEQ ID NO:	1207	catcactgccaaaggagag	8486	8505	1 5
SEQ ID NO:	205	aaaagcgatggccgggtca	3948	3967	SEQ ID NO:	1208	tgactcactcattgatttt	12680	12699	15
SEQ ID NO:	206	ttcctttgccttttggtgg	4003	4022	SEQ ID NO:	1209	ccacaaacaatgaagggaa	9256	9275	15
SEQ ID NO:	207	caagtctgtgggattccat	4079	4098	SEQ ID NO:	1210	atgggaaaaaacaggcttg	9566	9585	15
SEQ ID NO:	208	aagtccctacttttaccat	4117	4136	SEQ ID NO:	1211	atgggaagtataagaactt	4834	4853	15
SEQ ID NO:	209	tgcctctcctgggtgttct	4159	4178	SEQ ID NO:	1212	agaaaaacaaacacaggca	9643	9662	15
SEQ ID NO:	210	accagcacagaccattica	4242	4261	SEQ ID NO:	1213	tgaagtgtagtctcctggt	5089	5108	15
SEQ ID NO:	211	ccagcacagaccatttcag	4243	4262	SEQ ID NO:	1214	ctgaaatacaatgctctgg	5511	5530	15
SEQ ID NO:	212	actatcatgtgatgggtct	4367	4386	SEQ ID NO:	1215	agacacctgattttatagt	7948	7967	15
SEQ ID NO:	213	accacagatgtctgcttca	4496	4515	SEQ ID NO:	1216	tgaaggctgactctgtggt	4282	4301	15
SEQ ID NO:	214	ccacagatgtctgcttcag	4497	4516	SEQ ID NO:	1217	ctgagcaacaaatttgtgg	10311	10330	15
SEQ ID NO:	215	tttggactccaaaaagaaa	4520	4539	SEQ ID NO:	1218	tttctctcatgattacaaa	5933	5952	15
SEQ ID NO:	216	tcaaagaagtcaagattga	4552	4571	SEQ ID NO:	1219	tcaaggataacgtgtttga	12610	12629	15
SEQ ID NO:	217	atgagaactacgagctgac	4798	4817	SEQ ID NO:	1220	gtcagatattgttgctcat	10187	10206	15
SEQ ID NO	218	ttaaaatctgacaccaatg	4818	4837	SEQ ID NO:	1221	cattcattgaagatgttaa	7342	7361	15
SEQ ID NO	219	gaagtataagaactttgcc	4838	4857	SEQ ID NO:	1222	ggcaaatttgaaggacttc	11994	12013	1 5
SEQ ID NO:	220	aagtataagaactttgcca	4839	4858	SEQ ID NO:	1223	tggcaaatttgaaggactt	11993	12012	1 5
SEQ ID NO:	221	ttetteageetgetttetg	4941	4960	SEQ ID NO:	1224	cagaatccagatacaagaa	6884	6903	15
SEQ ID NO:	222	ctggatcactaaattccca	4957	4976	SEQ ID NO:	1225	tgggtctttccagagccag	11033	11052	15
SEQ.ID NO:	223	aaattaatagtggtgctca	5014	5033	SEQ ID NO:	1226	tgagaagccccaagaattt	6248	6267	15
SEQ ID NO:	224	agtgcaacgaccaacttga	5073	5092	SEQ ID NO:	1227	tcaaattcctggatacact	9848	9867	15
SEQ ID NO	225	ctgggaagtgcttatcagg	5238	5257	SEQ ID NO:	1228	cctgaccttcacataccag	8310	8329	15
SEQ ID NO	226	gcaaaaacattttcaactt	5278	5297	SEQ ID NO:	1229	aagtaaaagaaaattttgc	10744	10763	15
SEQ ID NO	227	aaaaacattttcaacttca	5280	5299	SEQ ID NO:	1230	tgaagtaaaagaaaatttt	10742	10761	15
SEQ ID NO	228	tcagtcaagaaggacttaa	5302	5321	SEQ ID NO:	1231	ttaaggacttccattctga	13363	13382	15
SEQ ID NO:	229	tcaaatgacatgatgggct	5325	5344	SEQ ID NO:	1232	agcccatcaatatcattga	6205	6224	15
SEQ ID NO	230	cacacaaacagtctgaaca	5367	5386	SEQ ID	1233	tgtttcaactgcctttgtg	11219	11238	15

		VO 2004/091515					101,05200.,013			
					NO:					Ц
SEQ ID NO:	231	tetteaaaaettgacaaca	5409	5428	SEQ ID NO:	1234	tgttttcctatttccaaga	J	12854	Ш
SEQ ID NO:	232	caagttttataagcaaact	5441	5460	SEQ ID NO:	1235	agttattttgctaaacttg		14062	Ш
SEQ ID NO:	233	tggtaactactttaaacag	5488	5507	SEQ ID NO:	1236	ctgtttttagaggaaacca			1 5
SEQ ID NO:	234	aacagtgacctgaaataca	5502	5521	SEQ ID NO:	1237	tgtatagcaaattcctgtt	5890	5909	15
SEQ ID NO:	235	gggaaactacggctagaac	5544	5563	SEQ ID NO:	1238	gtteetteeatgattteee	10933	10952	1 5
SEQ ID NO:	236	aacacatctatgccatctc	5620	5639	SEQ ID NO:	1239	gagacagcatcttcgtgtt	11204	11223	
SEQ ID NO:	237	tcagcaagctataaagcag	5652	5671	SEQ ID NO:	1240	ctgctaagaaccttactga			15
SEQ ID NO:	238	gcagacactgttgctaagg	5667	5686	SEQ ID NO:	1241	cctttcaagcactgactgc	11746	11765	1 5
SEQ ID NO:	239	tctggggagaacatactgg	5866	5885	SEQ ID NO:	1242	ccaggttttccacaccaga			1 5
SEQ ID NO:	240	tteteteatgattacaaag	5934	5953	SEQ ID NO:	1243	ctttttcaccaacggagaa	10838	10857	Ш
SEQ ID NO:	241	ctgagcagacaggcacctg	6034	6053	SEQ ID NO:	1244	caggaggctttaagttcag	7599		1 5
SEQ ID NO:	242	caatttaacaacaatgaat	6066	6085	SEQ ID NO:	1245	atteetteetttacaattg			1 5
SEQ ID NO:	243	tggacgaactctggctgac	6140	6159	SEQ ID NO:	1246	gtcagcccagttccttcca	10924	10943	15
SEQ ID NO:	244	cttttactcagtgagccca	6192	6211	SEQ ID NO:	1247	tgggctaaacgtatgaaag	7827	7846	
SEQ ID NO:	245	tcattgatgctttagagat	6217	6236	SEQ ID NO:	1248	atcttcataagttcaatga	13174	13193	1 5
SEQ ID NO	246	aaaaccaagatgttcactc	6295	6314	SEQ ID NO:	1249	gagtgaaatgctgttttt	8630	<u></u>	1 5
SEQ ID NO	247	aggaatcgacaaaccatta	6357	6376	SEQ ID NO:	1250	taatgatttcaagttcct			1 5
SEQ ID NO	248	tagttgtactggaaaacgt	6376	6395	SEQ ID NO:	1251	acgttagcctctaagacta		11947	
SEQ ID NO	249	ggaaaacgtacagagaaag	6386	6405	SEQ ID NO:	1252	cttttacaattcattttcc		13033	
SEQ ID NO	250	gaaaacgtacagagaaagc	6387	6406	SEQ ID NO:	1253	gctttctcttccacatttc	10052	10071	Ш
SEQ ID NO	251	aaagctgaagcacatcaat	6401	6420	SEQ ID NO:	1254	attgatgttagagtgcttt	6984	7003	1 5
SEQ ID NO	252	aagctgaagcacatcaata	6402	6421	SEQ ID NO:	1255	tattgatgttagagtgctt	6983	7002	1 5
SEQ ID NO	253	tgaagcacatcaatattga	6406	6425	SEQ ID NO:	1256	tcaaccttaatgattttca	8287	8306	1 5
SEQ ID NO	254	atcaatattgatcaatttg	6414	6433	SEQ ID NO:	1257	caaagccatcactgatgat	1660		15
SEQ ID NO	255	taatgattatctgaattca	6476	6495	SEQ ID NO:	1258	tgaaatcattgaaaaatta	6719	6738	15
SEQ ID NO	256	gattatctgaattcattca	6480	6499	SEQ ID NO:	1259	tgaagtagctgagaaaatc	7094	7113	15
SEQ ID NO	257	aattgggagagacaagttt	6498	6517	SEQ ID NO:	1260	aaacattcctttaacaatt	9488	9507	15
SEQ ID NO	258	aaaatagctattgctaata	6693	6712	SEQ ID	1261	tattgaaaatattgatttt	6806	6825	15

WO 2004/091515

	W	O 2004/091515					PCT/US2004	/011255	,	т-т
H dant	u ,- =,	Sale fails			NO:					
SEQ ID NO	259	aaaattaaaaagtcttgat	6731	6750	SEQ ID NO:	1262	atcatatccgtgtaatttt	6757	6776	1 5
SEQ ID NO	260	ttgaaaatattgattttaa	6808	6827	SEQ ID NO:	1263	ttaatcttcataagttcaa	13171	13190	Ц
SEQ ID NO	261	agacatccagcacctagct	6938	6957	SEQ ID NO:	1264	agcttggttttgccagtct	2458	2477	1 8
SEQ ID NO	262	caatttcatttgaaagaat	7021	7040	SEQ ID NO:	1265	attocttcctttacaattg			115
SEQ ID NO	263	aggttttaatggataaatt	7174	7193	SEQ ID NO:	1266	aattgttgaaagaaaacct	13147	13166	15
SEQ ID NO	264	cagaagctaagcaatgtcc	7233	7252	SEQ ID NO:	1267	ggacaaggcccagaatctg		12564	
SEQ ID NO	265	taagataaaagattacttt	7262	7281	SEQ ID NO:	1268	aaagaaaacctatgcctta		13174	1 5
SEQ ID NO	266	aaagattactttgagaaat	7269	7288	SEQ ID NO:	1269	atttcttaaacattccttt	9481	9500	1 5
SEQ ID NO	267	gagaaattagttggattta	7281	7300	SEQ ID NO:	1270	taaagccattcagtctctc	12962	12981	Ш
SEQ ID NO	268	atttattgatgatgctgtc	7295	7314	SEQ ID NO:	1271	gacatgttgataaagaaat	7371	7390	1 5
SEQ ID NO	269	gaattatcttttaaaacat	7326	7345	SEQ ID NO:	1272	atgtatcaaatggacattc		7696	1 5
SEQ ID NO	270	ttaccaccagtttgtagat	7403	7422	SEQ ID NO:	1273	atctggaaccttgaagtaa		10750	15
SEQ ID NO	271	ttgcagtgtatctggaaag	7540	7559	SEQ ID NO:	1274	ctttlcacattagatgcaa		8431	115
SEQ ID NO	272	cattcagcaggaacttcaa	7691	7710	SEQ ID NO:	1275	ttgaaggacttcaggaatg		12020	Ц
SEQ ID NO	:273	acacctgattttatagtcc	7950	7969	SEQ ID NO:	1276	ggactcaaggataacgtgt		12625	
SEQ ID NO	274	ggattccatcagttcagat	7984	8003	SEQ ID NO:	1277	atcttcaatgattatatcc		13135	Ц
SEQ ID NO	:275	ttgtagaaatgaaagtaaa	8104	8123	SEQ ID NO:	1278	tttatgattatgtcaacaa		12371	\coprod
SEQ ID NO	:276	ctgaacagtgagctgcagt	8148	8167	SEQ ID NO:	1279	actggacttctctagtcag		8820	115
SEQ ID NO	:277	aatccaatctcctcttttc	8399	8418	SEQ ID NO:	1280	gaaaaatgaagtccggatt		11028	
SEQ ID NO	:278	attttgattttcaagcaaa	8524	8543	SEQ ID NO:	1281	tttgcaagttaaagaaaat	14015	14034	1 5
SEQ ID NO	279	ttttgattttcaagcaaat	8525	8544	SEQ ID NO:	1282	atttgatttaagtgtaaaa			1 5
SEQ ID NO	:280	tgattttcaagcaaatgca	8528	8547	SEQ ID NO:	1283	tgcaagttaaagaaaatca	14017	14036	1 5
SEQ ID NO	:281	atgctgttttttggaaatg	8637	8656	SEQ ID NO:	1284	cattggtaggagacagcat		11214	Ц
SEQ ID NO	282	tgctgttttttggaaatgc	8638	8657	SEQ ID NO:	1285	gcattggtaggagacagca	11194	11213	115
SEQ ID NO	:283	aaaaaaatacactggagct	8698	8717	SEQ ID NO:	1286	agctagagggcctcttttt	10825	10844	1 5
SEQ ID NO	:284	actggagcttagtaatgga	8708	8727	SEQ ID NO:	1287	tccactcacatcctccagt	1281	1300	1 5
SEQ ID NO	: 285	cttctggaaaagggtcatg	8878	8897	SEQ ID NO:	1288	catgaacccctacatgaag	13751	13770	1 5
SEQ ID NO	:286	ggaaaagggtcatggaaat	8883	8902	SEQ ID	1289	atttgaaagttcgttttcc	9274	9293	15

	<u></u> V	WO 2004/091515		,			PCT/US2004	4/011255		
			<u></u>		NO:					Ш
SEQ ID NO:	287	gggcetgcccagattctc	8902	8921	SEQ ID NO:	1290	gagaacattatggaggccc	9432	9451	1 5
SEQ ID NO:	288	ttctcagatgagggaacac	8916	8935	SEQ ID NO:	1291	gtgtcttcaaagctgagaa	12408	12427	15
SEQ ID NO:	289	gatgagggaacacatgaat	8922	8941	SEQ ID NO:	1292	attccagcttccccacatc	8330	8349	15
SEQ İD NO:	290	ctttggactgtccaataag	8978	8997	SEQ ID NO:	1293	cttatgggatttcctaaag	11159	11178	15
SEQ ID NO:	291	gcatccacaaacaatgaag	9252	9271	SEQ ID NO:	1294	cttcatctgtcattgatgc	10219	10238	15
SEQ ID NO:	292	cacaaacaatgaagggaat	9257	9276	SEQ ID NO:	1295	attccctgaagttgatgtg	11480	11499	15
SEQ ID NO:	293	ccaaaatttctctgctgga	9407	9426	SEQ ID NO:	1296	tccatcacaaatcctttgg	9663	9682	15
SEQ ID NO:	294	caaaatttctctgctggaa	9408	9427	SEQ ID NO:	1297	ttccatcacaaatcctttg	9662	9681	15
SEQ ID NO:	295	tctgctggaaacaacgaga	9417	9436	SEQ ID NO:	1298	tctcaagagttacagcaga	13221	13240	15
SEQ ID NO:	296	ctgctggaaacaacgagaa	9418	9437	SEQ ID NO:	1299	ttctcaagagttacagcag	13220	13239	15
SEQ ID NO:	297	agaacattatggaggccca	9433	9452	SEQ ID NO:	1300	tgggcctgcccagattct	8901	8920	15
SEQ ID NO:	298	agaagcaaatctggatttc	9467	9486	SEQ ID NO:	1301	gaaatcttcaatttattct	13813	13832	15
SEQ ID NO:	299	tttctctctatgggaaaaa	9557	9576	SEQ ID NO:	1302	tttttgcaagttaaagaaa	14013	14032	15
SEQ ID NO:	300	tcagagcatcaaatccttt	9704	9723	SEQ ID NO:	1303	aaagaaaatcaggatctga	14025	14044	15
SEQ ID NO:	301	cagaaacaatgcattagat	9743	9762	SEQ ID NO:	1304	atctatgccatctcttctg	5625	5644	15
SEQ ID NO:	302	tacacattaatcctgccat	9993	10012	SEQ ID NO:	1305	atggagtctttattgtgta	14081	14100	15
SEQ ID NO:	303	agtcagatattgttgctca	10186	10205	SEQ ID NO:	1306	tgagaactacgagctgact	4799	4818	15
SEQ ID NO:	304	ggagggtagtcataacagt	10328	10347	SEQ ID NO:	1307	actggtggcaaaaccctcc	2726	2745	15
SEQ ID NO:	305	caaaagccgaaattccaat	10396	10415	SEQ ID NO:	1308	attgaagtacctacttttg	8358	8377	15
SEQ ID NO:	306	aaaagccgaaattccaatt	10397	10416	SEQ ID NO:	1309	aattgaagtacctactttt	8357	8376	1 5
SEQ ID NO:	307	ttcaagcaagaacttaatg	10428	10447	SEQ ID NO:	1310	cattatggcccttcgtgaa	13250	13269	15
SEQ ID NO:	308	cctcttacttttccattga	10570	10589	SEQ ID NO:	1311	tcaaaagaagcccaagagg	12939	12958	1 5
SEQ ID NO:	309	tgaggccaacacttacttg	10655	10674	SEQ ID NO:	1312	caagcatctgattgactca	12668	12687	15
SEQ ID NO:	310	cacttacttgaattccaag	10664	10683	SEQ ID NO:	1313	cttgaacacaaagtcagtg	6000	6019	15
SEQ ID NO:	311	gaagtaaaagaaaattttg	10743	10762	SEQ ID NO:	1314	caaaaacattttcaacttc	5279	5298	15
SEQ ID NO:	312	cctggaactctctccatgg	10874	10893	SEQ ID NO:	1315	ccatttacagatettcagg	11364	11383	15
SEQ ID NO:	313	agctggatgtaaccaccag	11176	11195	SEQ ID NO:	1316	ctggattccacatgcagct	11847	11866	15
SEQ ID NO:	314	aaaattccctgaagttgat	11477	11496	SEQ ID	1317	atcatatccgtgtaatttt	6757	6776	15

	,W	QO 2004/091515	··				PCT/US2004	/011255	 	
					NO:					
SEQ ID NO:	315	cagatggcattgctgcttt	11605	11624	SEQ ID NO:	1318	aaagctgagaagaaatctg	12416	12435	51
SEQ ID NO:	316	agatggcattgctgctttg	11606	11625	SEQ ID NO:	1319	caaagctgagaagaaatct	12415	12434	11
SEQ ID NO:	317	tgttgaaacagtcctggat	11834	11853	SEQ ID NO:	1320	atccaagatgagatcaaca	13095	13114	1
SEQ ID NO:	318	catattcaaaactgagttg	12221	12240	SEQ ID NO:	1321	caactctctgattactatg	13623	13642	211
SEQ ID NO:	319	aaagatttatcaaaagaag	12930	12949	SEQ ID NO:	1322	cttcaatttattcttcttt	13818	13837	11:
SEQ ID NO:	320	attttccaactaatagaag	13026	13045	SEQ ID NO:	1323	cttcaaagacttaaaaaat	8006	8025	15
SEQ ID NO:	321	aattatatccaagatgaga	13089	13108	SEQ ID NO:	1324	tetettectecatggaatt	10471	10490	118
SEQ ID NO:	322	ttcaggaagcttctcaaga	13210	13229	SEQ ID NO:	1325	tcttcataagttcaatgaa	13175	13194	118
SEQ ID NO:	323	ttgagcaatttctgcacag	13429	13448	SEQ ID NO:	1326	ctgttgaaagatttatcaa	12924	12943	1 1 5
SEQ ID NO:	324	ctgatatacatcacggagt	13704	13723	SEQ ID NO:	1327	actcaatggtgaaattcag	7457	7476	15
SEQ ID NO:	325	acatcacggagttactgaa	13711	13730	SEQ ID NO:	1328	ttcagaagctaagcaatgt	7231	7250	1 5
SEQ ID NO:	326	actgcctatattgataaaa	13874	13893	SEQ ID NO:	1329	ttttggcaagctatacagt	8372	8391	1 5
SEQ ID NO:	327	aggatggcatttttgcaa	14003	14022	SEQ ID NO:	1330	ttgcaagcaagtctttcct	3005	3024	15
SEQ ID NO:	328	ttttttgcaagttaaagaa	14012		SEQ ID NO:	1331	ttctctctatgggaaaaaa	9558	9577	15
SEQ ID NO:	329	tccagaactcaagtcttca	1619	1638	SEQ ID NO:	1332	tgaaatgctgttttttgga	8633	8652	34
SEQ ID NO:	330	agttagtgaaagaagttct	1948	1967	SEQ ID NO:	1333	agaatctgtaccaggaact	12556	12575	34
SEQ ID NO:	331	atttacagctctgacaagt	5427	5446	SEQ ID NO:	1334	acttcagagaaatacaaat	11401	11420	34
SEQ ID NO:	332	gattatctgaattcattca	6480	6499	SEQ ID NO:	1335	tgaaaccaatgacaaaatc	7421 -	7440	34
SEQ ID NO:	333	gtgcccttctcggttgctg	18	37	SEQ ID NO:	1336	cagctgagcagacaggcac	6031	6050	24
SEQ ID NO:	334	attcaagcacctccggaag	245	264	SEQ ID NO:	1337	cttcataagttcaatgaat	13176	13195	24
SEQ ID NO:	335	gactgctgattcaagaagt	308	327	SEQ ID NO:	1338	acttcccaactctcaagtc	13407	13426	24
SEQ ID NO:	336	ttgctgcagccatgtccag	475	494	SEQ ID NO:	1339	ctgggcagctgtatagcaa	5881	5900	24
SEQ ID NO:	337	agaaagatgaacctactta	547		SEQ ID NO:	1340	taagtatgatttcaattct	10490	10509	24
SEQ ID NO:	338	tgaagactctccaggaact	1087	1106	SEQ ID NO:	1341	agttcaatgaatttattca	13183	13202	24
SEQ ID NO:	339	atctctcttgccacagctg	1202	1221	SEQ ID NO:	1342	cagcccagccatttgagat	9229	9248	24
SEQ ID NO:	340	tetetettgecacagetga	1203	1222	SEQ ID NO:	1343	tcagcccagccatttgaga	9228	9247	24
SEQ ID NO:	341	tgaggtgtccagccccatc	1223	1242	SEQ ID NO:	1344	gatgggaaagccgccctca	5208	5227	24
SEQ ID NO:	342	ccagaactcaagtcttcaa	1620		SEQ ID	1345	ttgaaagcagaacctctgg	5907	5926	24

PCT/US2004/011255 WO 2004/091515 NO: 1941 SEQ ID NO: 343 1960 SEQ ID 1346 ctttctcgggaatattcag 10623|10642|2|4 ctgaaaaagttagtgaaag NO: SEQ ID NO: 344 tttttcccagacagtgtca 2238 2257 SEQ ID 1347 tgacaggcattttgaaaaa 9722 9741 24 NO: SEQ ID NO: 345 2239 2258 1348 ttgacaggcattttgaaaa 9740 24 SEQ ID 9721 ttttcccagacagtgtcaa NO: **SEQ ID NO: 346** 3395 3414 SEQ ID 1349 aattccaattttgagaatg 10406 10425 2 4 cattcagaacaagaaaatt NO: 3639 1350 10894 10913 2 4 SEQ ID NO:347 3620 SEQ ID tgaagagaagattgaattt aaatgtcagctcttgttca NO: SEQ ID NO: 348 3636 3655 SEQ ID 1351 11807|11826|2|4 tttgaatggaacacaggca tgccagtttgaaaaacaaa NO: 4418 1352 24 SEQ ID NO: 349 4399 SEQ ID 7369 7388 ttctagattcgaatatcaa ttgacatgttgataaagaa NO: 4423 24 SEQ ID NO: 350 4404 SEQ ID 1353 7154 7173 gattcgaatatcaaattca tgaagtagaccaacaaatc NO: 5075 5094 1354 SEQ ID NO: 351 SEQ ID 11376 11395 2 4 tgcaacgaccaacttgaag cttcaggttccatcgtgca NO: 5317 7374 SEQ ID NO: 352 ttaageteteaaatgaeat 5336 SEQ ID 1355 atgttgataaagaaattaa 7393 24 NO: SEQ ID NO: 353 6066 6085 SEQ.ID 1356 13868|13887|2|4 caatttaacaacaatgaat attcaaactgcctatattg NO: SEQ ID NO: 354 6080 6099 1357 10679 10698 2 4 tgaatacagccaggacttg SEQ ID caagagcacacggtcttca NO: 6432 SEQ ID NO: 355 catcaatattgatcaattt 6413 SEQ ID 1358 11478 11497 2 4 aaattccctgaagttgatg NO: 24 SEQ ID NO: 356 ttgagcatgtcaaacactt 7051 7070 SEQ ID 1359 aagtaagtgctaggttcaa 9373 9392 NO: 1360 SEQ ID NO: 357 tgaaggagactattcagaa 7219 7238 SEQ ID ttctgcacagaaatattca 13438 13457 2 4 NO: SEQ ID NO: 358 7921 7940 SEQ ID 1361 12304 12323 2 4 ttcaggctcttcagaaagc gcttgctaacctctctgaa NO: SEQ ID NO: 359 8798 1362 tccacaaattgaacatccc 8779 SEQ ID 12525 12544 24 gggacctaccaagagtgga NO: 1015910178SEQ ID 1363 SEQ ID NO:|360 agttcaatgaatttattca 13183 13202 2 4 tgaataccaatgctgaact NO: **SEQ ID NO: 361** 12890|12909|SEQ ID 1364 13632 13651 24 taaactaatagatgtaatc gattactatgaaaaattta NO: SEQ ID NO: 362 1367213691 SEQ ID 1365 13805 13824 2 4 ttgacctgtccattcaaaa ttttaaaagaaatcttcaa NO: SEQ ID NO: 363 11 30 SEQ ID 1366 76 14 gggctgagtgcccttctcg 95 cgaggccaggccgcagccc NO: 12 31 SEQ ID 1367 75 14 SEQ ID NO: 364 94 ggctgagtgcccttctcgg ccgaggccaggccgcagcc NO: SEQ ID NO: 365 14 SEQ ID 1368 11549|11568|1|4 ctgagtgcccttctcggtt 33 aaccgtgcctgaatctcag NO: SEQ ID NO:|366 25 44 SEQ ID 1369 2179 2160 tetegattaetaeegetaa tcagctgacctcatcgaga NO: SEQ ID NO: 367 101 SEQ ID 1370 82 gctctgcagcttcatcctg 368 387 caggccgcagcccaggagc NO: 1371 SEQ ID NO: 368 143 162 SEQ ID 4244 4263 14 getagegetgeetgegetg cagcacagaccatttcagc NO: 1372 SEQ ID NO: 369 tgctgctggcgggcgccag 169 188 SEQ ID ctggatgtaaccaccagca 11178 11197 114 NO: SEQ ID NO: 370 238 SEQ ID 1373 14 ctggtctgtccaaaagatg 219 380 399 catcctgaagaccagccag

	V	VO 2004/091515	<u></u>				PCT/US2004/	011255		
					NO:					
SEQ ID NO:	371	ctgagagttccagtggagt	283	302	SEQ ID NO:	1374	actcaccctggacattcag	3383	3402	14
SEQ ID NO:	372	tccagtggagtccctggga	291	310	SEQ ID NO:	1375	tcccggagccaaggctgga	2675	2694	14
SEQ ID NO	373	aggttgagctggaggttcc	346	365	SEQ ID NO:	1376	ggaaccctctccctcacct	4728	4747	14
SEQ ID NO:	374	tgagctggaggttccccag	350	369	SEQ ID NO:	1377	ctgggaggcatgatgctca	9163	9182	14
SEQ ID NO:	375	tctgcagcttcatcctgaa	370	389	SEQ ID NO:	1378	ttcaaatataatcggcaga	3261	3280	14
SEQ ID NO:	376	gccagtgcaccctgaaaga	394	413	SEQ ID NO:	1379	tcttccgttctgtaatggc	5794	5813	14
SEQ ID NO:	377	ctctgaggagtttgctgca	464	483	SEQ ID NO:	1380	tgcaagaatattttgagag	6340	6359	14
SEQ ID NO:	378	aggtatgagctcaagctgg	492	511	SEQ ID NO:	1381	ccagtttccggggaaacct	12716	12735	14
SEQ ID NO:	379	tcctttacccggagaaaga	535	554	SEQ ID NO:	1382	tctttttgggaagcaagga	2219	2238	14
SEQ ID NO:	380	catcaagaggggcatcatt	575	594	SEQ ID NO:	1383	aatggtcaagttcctgatg	2277	2296	14
SEQ ID NO:	381	tcctggttccccagagac	601	620	SEQ ID NO:	1384	gtctctgaactcagaagga	13988	14007	14
SEQ ID NO:	382	aagaagccaagcaagtgtt	622	641	SEQ ID NO:	1385	aacaaataaatggagtctt	14072	14091	14
SEQ ID NO:	383	aagcaagtgttgtttctgg	630	649	SEQ ID NO:	1386	ccagagccaggtcgagctt	11042	11061	14
SEQ ID NO:	384	tctggataccgtgtatgga	644	663	SEQ ID NO:	1387	tccatgtcccatttacaga	11356	11375	14
SEQ ID NO:	385	ccactcactttaccgtcaa	670	689	SEQ ID NO:	1388	ttgattttaacaaaagtgg	6817	6836	14
SEQ ID NO:	386	aggaagggcaatgtggcaa	693	712	SEQ ID NO:	1389	ttgcaagcaagtctttcct	3005	3024	14
SEQ ID NO:	387	gcaatgtggcaacagaaat	700	719	SEQ ID NO:	1390	atttccataccccgtttgc	3480	3499	14
SEQ ID NO:	388	caatgtggcaacagaaata	701	720	SEQ ID NO:	1391	tattettetttteeaattg	13826	13845	14
SEQ ID NO:	389	tggcaacagaaatatccac	706	725	SEQ ID NO:	1392	gtggcttcccatattgcca	1887	1906	14
SEQ ID NO:	390	agagacctgggccagtgtg	729	748	SEQ ID NO:	1393	cacattacatttggtctct	2930	2949	14
SEQ ID NO:	391	tgtgatcgcttcaagccca	744	763	SEQ ID NO:	1394	tgggaaagccgcctcaca	5210	5229	14
SEQ ID NO:	392	gtgatcgcttcaagcccat	745	764	SEQ ID NO:	1395	atgggaaagccgcctcac	5209	5228	14
SEQ ID NO:	393	cageceacttgeteteate	776	795	SEQ ID NO:	1396	gatgctgaacagtgagctg	8144	8163	14
SEQ ID NO:	394	gctctcatcaaaggcatga	786	805	SEQ ID NO:	1397	tcataacagtactgtgagc	10337	10356	14
SEQ ID NO:	395	ccttgtcaactctgatcag	811	830	SEQ ID NO:	1398	ctgagtgggtttatcaagg	12445	12464	14
SEQ ID NO:	396	cttgtcaactctgatcagc	812	831	SEQ ID NO:	1399	gctgagtgggtttatcaag	12444	12463	14
SEQ ID NO:	397	agccatctgcaaggagcaa	884	903	SEQ ID NO:	1400	ttgcaatgagctcatggct	3805	3824	14
SEQ ID NO:	398	gccatctgcaaggagcaac	885	904	SEQ ID	1401	gttgcaatgagctcatggc	3804	3823	14

	V	WO 2004/091515_					PCT/US2004	/011255		
					NO:					
SEQ ID NO	399	cttcctgcctttctcctac	908	927	SEQ ID NO:	1402	gtaggaataaatggagaag	9453	9472	1
SEQ ID NO	400	ctttctcctacaagaataa	916	935	SEQ ID NO:	1403	ttattgctgaatccaaaag	13648	13667	14
SEQ ID NO	401	gatcaacagccgcttcttt	989	1008	SEQ ID NO:	1404	aaagccatcactgatgatc	1661	1680	14
SEQ ID NO	402	atcaacagccgcttctttg	990	1009	SEQ ID NO:	1405	caaagccatcactgatgat	1660	1679	14
SEQ ID NO	403	acagccgcttctttggtga	994	1013	SEQ ID NO:	1406	tcacaaatcctttggctgt	9667	9686	14
SEQ ID NO:	404	aagatgggcctcgcatttg	1023	1042	SEQ ID NO:	1407	caaaatagaagggaatctt	2069	2088	14
SEQ ID NO:	405	tgttttgaagactctccag	1082	1101	SEQ ID NO:	1408	ctggtaactactttaaaca	5487	5506	14
SEQ ID NO:	406	ttgaagactctccaggaac	1086	1105	SEQ ID NO:	1409	gttcaatgaatttattcaa	13184	13203	14
SEQ ID NO:	407	aactgaaaaaactaaccat	1102	1121	SEQ ID NO:	1410	atggcattttttgcaagtt	14006	14025	14
SEQ ID NO:	408	ctgaaaaaactaaccatct	1104	1123	SEQ ID NO:	1411	agattgatgggcagttcag	4564	4583	14
SEQ ID NO:	409	aaaactaaccatctctgag	1109	1128	SEQ ID NO:	1412	ctcaaagaatgactttttt	2570	2589	14
SEQ ID NO:	410	tgagcaaaatatccagaga	1124	1143	SEQ ID NO:	1413	tctccagataaaaaactca	12201	12220	14
SEQ ID NO:	411	caataagctggttactgag	1154	1173	SEQ ID NO:	1414	ctcagatcaaagttaattg	12265	12284	14
SEQ ID NO:	412	tactgagctgagaggcctc	1166	1185	SEQ ID NO:	1415	gagggtagtcataacagta	10329	10348	14
SEQ ID NO:	413	gcctcagtgatgaagcagt	1180	1199	SEQ ID NO:	1416	actgttgactcaggaaggc	12572	12591	14
SEQ ID NO:	414	agtcacatctctcttgcca	1196	1215	SEQ ID NO:	1417	tggccacatagcatggact	8858	8877	14
SEQ ID NO:	415	atctctcttgccacagctg	1202	1221	SEQ ID NO:	1418	cagctgacctcatcgagat	2161	2180	14
SEQ ID NO:	416	tctctcttgccacagctga	1203	1222	SEQ ID NO:	1419	tcagctgacctcatcgaga	2160	2179	14
SEQ ID NO:	417	tgccacagctgattgaggt	1210	1229	SEQ ID NO:	1420	acctgcaccaaagctggca	13955	13974	14
SEQ ID NO:	418	gccacagctgattgaggtg	1211	1230	SEQ ID NO:	1421	caccaaaaaccccaatggc	11240	11259	14
SEQ ID NO:	419	tcactttacaagccttggt	1240	1259	SEQ ID NO:	1422	accagatgctgaacagtga	8140	8159	14
SEQ ID NO:	420	cccttctgatagatgtggt	1324	1343	SEQ ID NO:	1423	accacttacagctagaggg	10816	10835	14
SEQ ID NO:	421	gtcacctacctggtggccc	1341	1360	SEQ ID NO:	1424	gggcgacctaagttgtgac	3431	3450	14
SEQ ID NO:	422	ccttgtatgcgctgagcca	1432	1451	SEQ ID NO:	1425	tggctggtaacctaaaagg	5578	5597	14
SEQ ID NO:	423	gacaaaccctacagggacc	1472	1491	SEQ ID NO:	1426	ggtcctttatgattatgtc	12347	12366	14
SEQ ID NO:	424	tgctaattacctgatggaa	1508	1527	SEQ ID NO:	1427	ttcccaaaagcagtcagca	9930	9949	14
SEQ ID NO:	425	tgactgcactggggatgaa	1538	1557	SEQ ID NO:	1428	ttcaggtccatgcaagtca	10909	10928	14
SEQ ID NO:	426	actgcactggggatgaaga	1540	1559	SEQ ID	1429	tcttgaacacaaagtcagt	5999	6018	14

	<u>.V</u>	VO 2004/091515		···			PCT/US2004	/011255		
					NO:					
SEQ ID NO	427	atgaagattacacctattt	1552	1571	SEQ ID NO:	1430	aaatgaaagtaaagatcat	8110	8129	1/4
SEQ ID NO:	428	accatggagcagttaactc	1602	1621	SEQ ID NO:	1431	gagtaaaccaaaacttggt	9016	9035	1/
SEQ ID NO:	429	gcagttaactccagaactc	1610	1629	SEQ ID NO:	1432	gagttactgaaaaagctgc	13719	13738	11/
SEQ ID NO:	430	cagaactcaagtcttcaat	1621	1640	SEQ ID NO:	1433	attggatatccaagatctg	1925	1944	1 4
SEQ ID NO:	431	caggctctgcggaaaatgg	1695	1714	SEQ ID NO:	1434	ccatgacctccagctcctg	2477	2496	14
SEQ ID NO:	432	ccaggaggttcttcttcag	1730	1749	SEQ ID NO:	1435	ctgaaatacaatgctctgg	5511	5530	14
SEQ ID NO:	433	ggttcttcttcagactttc	1736	1755	SEQ ID NO:	1436	gaaaaacttggaaacaacc	4431	4450	14
SEQ ID NO:	434	tttccttgatgatgcttct	1751	1770	SEQ ID NO:	1437	agaatccagatacaagaaa	6885	6904	14
SEQ ID NO:	435	ggagataagcgactggctg	1773	1792	SEQ ID NO:	1438	cagcatgcctagtttctcc	9944	9963	14
SEQ ID NO:	436	gctgcctatcttatgttga	1788	1807	SEQ ID NO:	1439	tcaatatcaaaagcccagc	12037	12056	14
SEQ ID NO:	437	actttgtggcttcccatat	1882	1901	SEQ ID NO:	1440	atatctggaaccttgaagt	10729	10748	14
SEQ ID NO:	438	gccaatatcttgaactcag	1902	1921	SEQ ID . NO:	1441	ctgaactcagaaggatggc	13992	14011	14
SEQ ID NO:	439	aatatcttgaactcagaag	1905	1924	SEQ ID NO:	1442	cttccattctgaatatatt	13370	13389	14
SEQ ID NO:	440	ctcagaagaattggatatc	1916	1935	SEQ ID NO:	1443	gataaaagattactttgag	7265	7284	14
SEQ ID NO:	441	aagaattggatatccaaga	1921	1940	SEQ ID NO:	1444	tetteaatttattettett	13817	13836	14
SEQ ID NO:	442	agaattggatatccaagat	1922	1941	SEQ ID NO:	1445	atcttcaatttattcttct	13816	13835	14
SEQ ID NO:	443	tggatatccaagatctgaa	1927	1946	SEQ ID NO:	1446	ttcacataccagaattcca	8317	8336	14
SEQ ID NO:	444	atatccaagatctgaaaaa	1930	1949	SEQ ID NO:	1447	tttttaaccagtcagatat	10177	10196	14
SEQ ID NO:	445	tatccaagatctgaaaaag	1931	1950	SEQ ID NO:	1448	ctttttaaccagtcagata	10176	10195	14
SEQ ID NO:	446	caagatctgaaaaagttag	1935	1954	SEQ ID NO:	1449	ctaaattcccatggtcttg	4965	4984	14
SEQ ID NO:	447	aagatctgaaaaagttagt	1936	1955	SEQ ID NO:	1450	actaaattcccatggtctt	4964	4983	14
SEQ ID ŅO:	448	tgaaaaagttagtgaaaga	1942	1961	SEQ ID NO:	1451	tctttctcgggaatattca	10622	10641	14
SEQ ID NO:	449	tccaactgtcatggacttc	1982	2001	SEQ ID NO:	1452	gaagcacatatgaactgga	13937	13956	14
SEQ ID NO:	450	tcagaaaattctctcggaa	1999	2018	SEQ ID NO:	1453	ttcctttaacaattcctga	9493	9512	14
SEQ ID NO:	451	ttccatcacttgacccagc	2044	2063	SEQ ID NO:	1454	gctgacatagggaatggaa	8433	8452	14
SEQ ID NO:	452	cccagcctcagccaaaata	2057	2076	SEQ ID NO:	1455	tattctatccaagattggg	7812	7831	14
SEQ ID NO:	453	agcctcagccaaaatagaa	2060	2079	SEQ ID NO:	1456	ttctatccaagattgggct	7814	7833	14
SEQ ID NO:	454	atcttatatttgatccaaa	2083	2102	SEQ ID	1457	tttgaaaaacaaagcagat	11813	11832	14

	., _{8 no}	WO 2004/091515	ns man				PCT/US2004	/011255		
					NO:					
SEQ ID NO	D: 455	tcttatatttgatccaaat	2084	2103	SEQ ID NO:	1458	attitttgcaagttaaaga	14011	14030	14
SEQ ID NO	D: 456	cttcctaaagaaagcatgc	2109	2128	SEQ ID NO:	1459	gcatggcattatgatgaag	3606	3625	14
SEQ ID NO	D: 457	ctaaagaaagcatgctgaa	2113	2132	SEQ ID NO:	1460	ttcagggtgtggagtttag	5686	5705	14
SEQ ID NO	D: 458	taaagaaagcatgctgaaa	2114	2133	SEQ ID NO:	1461	tttcttaaacattccttta	9482	9501	14
SEQ ID NO	D:459	gagattggcttggaaggaa	2175	2194	SEQ ID NO:	1462	ttccctccattaagttctc	11701	11720	14
SEQ ID NO	D:460	ctttgagccaacattggaa	2198	2217	SEQ ID NO:	1463	ttccaatgaccaagaaaag	11060	11079	14
SEQ ID NO	D: 461	cagacagtgtcaacaaagc	2245	2264	SEQ ID NO:	1464	gcttactggacgaactctg	6134	6153	14
SEQ ID NO	D:462	cagtgtcaacaaagctttg	2249	2268	SEQ ID NO:	1465	caaattcctggatacactg	9849	9868	14
SEQ ID NO	D: 463	agtgtcaacaaagctttgt	2250	2269	SEQ ID NO:	1466	acaagaatacgtctacact	4351	4370	14
SEQ ID NO	D: 464	ctgatggtgtctctaaggt	2290	2309	SEQ ID NO:	1467	acctoggaacaatcctcag	3325	3344	14
SEQ ID NO	D: 465	tgatggtgtctctaaggtc	2291	2310	SEQ ID NO:	1468	gacctgcgcaacgagatca	8823	8842	14
SEQ ID NO	D: 466	aaacatgagcaggatatgg	2343	2362	SEQ ID NO:	1469	ccatgatctacatttgttt	6788	6807	14
SEQ ID NO	D: 467	gaagctgattaaagatttg	2387	2406	SEQ ID NO:	1470	caaaaacattttcaacttc	5279	5298	14
SEQ ID NO	D: 468	aaagatttgaaatccaaag	2397	2416	SEQ ID NO:	1471	ctttaagttcagcatcttt	7606	7625	14
SEQ ID NO	D: 469	gatgggtgcccgcactctg	2510	2529	SEQ ID NO:	1472	cagatttgaggattccatc	7975	7994	14
SEQ ID NO	D: 470	gggatcccccagatgattg	2532	2551	SEQ ID NO:	1473	caatcacaagtcgattccc	9075	9094	14
SEQ ID NO	D: 471	ttttcttcactacatcttc	2585	2604	SEQ ID NO:	1474	gaagtgtcagtggcaaaaa	10374	10393	14
SEQ ID NO	D: 472	tcttcactacatcttcatg	2588	2607	SEQ ID NO:	1475	catggcattatgatgaaga	3607	3626	14
SEQ ID NO	D: 473	tacatcttcatggagaatg	2595	2614	SEQ ID NO:	1476	cattatggaggcccatgta	9437	9456	14
SEQ ID NO	D: 474	ttcatggagaatgcctttg	2601	2620	SEQ ID NO:	1477	caaaatcaactttaatgaa	6599	6618	14
SEQ ID NO	D: 475	tcatggagaatgcctttga	2602	2621	SEQ ID NO:	1478	tcaacacaatcttcaatga	13108	13127	14
SEQ ID NO	D: 476	tttgaactccccactggag	2616	2635	SEQ ID NO:	1479	ctccccaggacctttcaaa	9834	9853	14
SEQ ID NO	D: 477	ttgaactccccactggagc	2617	2636	SEQ ID NO:	1480	getecceaggacettteaa	9833	9852	14
SEQ ID NO	D: 478	tgaactccccactggagct	2618	2637	SEQ ID NO:	1481	ageteccaggacetttea	9832	9851	14
SEQ ID NO	0:479	cactggagctggattacag	2627	2646	SEQ ID NO:	1482	ctgtttctgagtcccagtg	9336	9355	14
SEQ ID NO	D: 480	actggagctggattacagt	2628	2647	SEQ ID NO:	1483	actgtttctgagtcccagt	9335	9354	14
SEQ ID NO	D: 481	agttgcaaatatcttcatc	2644	2663	SEQ ID NO:	1484	gatgatgccaaaatcaact	6591	6610	14
SEQ ID NO):482	gttgcaaatatcttcatct	2645	2664	SEQ ID	1485	agatgatgccaaaatcaac	6590	6609	14

<u> </u>	V	VO 2004/091515 mins mins mins	or sense	-r			PCT/US2004	/011255		
					NO:					Ш
SEQ ID NO	483	aaatatcttcatctggagt	2650	2669	SEQ ID NO:	1486	actcagaaggatggcattt	13996	14015	1
SEQ ID NO	484	taaaactggaagtagccaa	2695	2714	SEQ ID NO:	1487	ttggttacaggaggcttta	7592	7611	114
SEQ ID NO:	485	ggctgaactggtggcaaaa	2720	2739	SEQ ID NO:	1488	ttttctttcagcccagcc	9220	9239	1
SEQ ID NO:	486	tgtggagtttgtgacaaat	2750	2769	SEQ ID NO:	1489	attttcaagcaaatgcaca	8530	8549	1
SEQ ID NO:	487	ttgtgacaaatatgggcat	2758	2777	SEQ ID NO:	1490	atgcgtctaccttacacaa	9513	9532	1/
SEQ ID NO:	488	atgaacaccaacttcttcc	2811	2830	SEQ ID NO:	1491	ggaagctgaagtttatcat	2869	2888	1
SEQ ID NO:	489	cttccacgagtcgggtctg	2825	2844	SEQ ID NO:	1492	cagagetateactgggaag	5227	5246	1 4
SEQ ID NO:	490	gagtcgggtctggaggctc	2832	2851	SEQ ID NO:	1493	gagcttactggacgaactc	6132	6151	14
SEQ ID NO:	491	cctaaaagctgggaagctg	2858	2877	SEQ ID NO:	1494	cagcctccccagccgtagg	12112	12131	1/
SEQ ID NO:	492	agctgggaagctgaagttt	2864	2883	SEQ ID NO:	1495	aaactgttaatttacagct	5455	5474	12
SEQ ID NO:	493	ccagattagagctggaact	3106	3125	SEQ ID NO:	1496	agtttccggggaaacctgg	12718	12737	1 4
SEQ ID NO:	494	ggataccctgaagtttgta	3200	3219	SEQ ID NO:	1497	tacagtattctgaaaatcc	8385	8404	1
SEQ ID NO:	495	ctgaggctaccatgacatt	3244	3263	SEQ ID NO:	1498	aatgagctcatggcttcag	3809	3828	1/
SEQ ID NO:	496	tgtccagtgaagtccaaat	3289	3308	SEQ ID NO:	1499	attttgagaggaatcgaca	6349	6368	14
SEQ ID NO:	497	aattccggattttgatgtt	3305	3324	SEQ ID NO:	1500	aacacatgaatcacaaatt	8930	8949	14
SEQ ID NO:	498	ttccggattttgatgttga	3307	3326	SEQ ID NO:	1501	tcaaaacgagcttcaggaa	13199	13218	14
SEQ ID NO:	499	cggaacaatcctcagagtt	3329	3348	SEQ ID NO:	1502	aacttgtacaactggtccg	4203	4222	14
SEQ ID NO:	500	tcctcagagttaatgatga	3337	3356	SEQ ID NO:	1503	tcatcaattggttacagga	7585	7604	14
SEQ ID NO:	501	ctcaccctggacattcaga	3384	3403	SEQ ID NO:	1504	tctgcagaacaatgctgag	12431	12450	14
SEQ ID NO:	502	cattcagaacaagaaaatt	3395	3414	SEQ ID NO:	1505	aattgactttgtagaaatg	8096	8115	14
SEQ ID NO:	503	actgaggtcgccctcatgg	3414	3433	SEQ ID NO:	1506	ccatgcaagtcagcccagt	10916	10935	14
SEQ ID NO:	504	ttatttccataccccgttt	3478	3497	SEQ ID NO:	1507	aaactgcctatattgataa	13872	13891	14
SEQ ID NO:	505	gtttgcaagcagaagccag	3493	3512	SEQ ID NO:	1508	ctggacttctcttcaaaac	5400	5419	14
SEQ ID NO:	506	tttgcaagcagaagccaga	3494	3513	SEQ ID NO:	1509	tctgggtgtcgacagcaaa	5264	5283	14
SEQ ID NO:	507	ttgcaagcagaagccagaa	3495	3514	SEQ ID NO:	1510	ttctgggtgtcgacagcaa	5263	5282	14
SEQ ID NO:	508	ctgcttctccaaatggact	3546	3565	SEQ ID NO:	1511	agtcaagattgatgggcag	4559	4578	14
SEQ ID NO:	509	tgctacagcttatggctcc	3569	3588	SEQ ID NO:	1512	ggaggctttaagttcagca	7601	7620	14
SEQ ID NO:	510	acagcttatggctccacag	3573	3592	SEQ ID	1513	ctgtatagcaaattcctgt	5889	5908	14

		VO 2004/091313	- 11112				1 C 17 U 3 2 U 47	011200		
					NO:					
SEQ ID NO:	511	tttccaagagggtggcatg	3592	3611	SEQ ID NO:	1514	catggacttcttctggaaa	8869	8888	1/
SEQ ID NO:		ccaagagggtggcatggca	3595	3614	SEQ ID NO:	1515	tgcccagcaagcaagttgg	9353	9372	1/4
SEQ ID NO:		gtggcatggcattatgatg		3622	NO:	1516	catcettaacacettecac	8063	8082	1/2
SEQ ID NO:		tgatgaagagaagattgaa	3617	3636	SEQ ID NO:	1517	ttcactgttcctgaaatca	7863	7882	1 4
SEQ ID NO:	515	gaagagaagattgaatttg	3621	3640	SEQ ID NO:	1518	caaaaacattttcaacttc	5279	5298	14
SEQ ID NO:	516	gagaagattgaatttgaat	3624	3643	SEQ ID NO:	1519	attcataatcccaactctc	8270	8289	1 4
SEQ ID NO:		tttgaatggaacacaggca	3636	3655	SEQ ID NO:	1520	tgcctttgtgtacaccaaa	11228	11247	1 4
SEQ ID NO:	518	aggcaccaatgtagatacc	3650	3669	SEQ ID NO:	1521	ggtaacctaaaaggagcct	5583	5602	1 4
SEQ ID NO:	519	caaaaaaatgacttccaat	3668	3687	SEQ ID NO:	1522	attgaagtacctacttttg	8358	8377	14
SEQ ID NO:	520	aaaaaaatgacttccaatt	3669	3688	SEQ ID NO:	1523	aattgaagtacctactttt	8357	8376	14
SEQ ID NO:	521	aaaaaatgacttccaattt	3670	3689	SEQ ID NO:	1524	aaatccaatctcctctttt	8398	8417	14
SEQ ID NO:	522	cagagtccctcaaacagac	3752	3771	SEQ ID NO:	1525	gtctgtgggattccatctg	4082	4101	14
SEQ ID NO:	523	aaattaatagttgcaatga	3795	3814	SEQ ID NO:	1526	tcataagttcaatgaattt	13178	13197	14
SEQ ID NO:	524	ttcaacctccagaacatgg	3891	3910	SEQ ID NO:	1527	ccattgaccagatgctgaa	8134	8153	14
SEQ ID NO:	525 .	tgggattgccagacttcca	3907	3926	SEQ ID NO:	1528	tggaaatgggcctgcccca	8895	8914	14
SEQ ID NO:	526	cagtttgaaaattgagatt	3986	4005	SEQ ID NO:	1529	aatcacaactcctccactg	9533	9552	14
SEQ ID NO:	527	gaaaattgagattcctttg	3992	4011	SEQ ID NO:	1530	caaaactaccacacatttc	13686	13705	14
SEQ ID NO:	528	tttgccttttggtggcaaa	4007	4026	SEQ ID NO:	1531	tttgagaggaatcgacaaa	6351	6370	14
SEQ ID NO:	529	ctccagagatctaaagatg	4028	4047	SEQ ID NO:	1532	catcaattggttacaggag	7586	7605	14
SEQ ID NO:	530	tctaaagatgttagagact	4037	4056	SEQ'ID NO:	1533	agtccttcatgtccctaga	10025	10044	14
SEQ ID NO:	531	ctgtgggattccatctgcc	4084	4103	SEQ ID NO:	1534	ggcaltttgaaaaaaaacag	9727	9746	14
SEQ ID NO:	532	atctgccatctcgagagtt	4096	4115	SEQ ID NO:	1535	aactctcaaaccctaagat	8548	8567	14
SEQ ID NO:	533	tctcgagagttccaagtcc	4104	4123	SEQ ID NO:	1536	ggacattcctctagcgaga	8207	8226	14
SEQ ID NO:	534	agtccctacttttaccatt	4118	4137	SEQ ID NO:	1537	aatgaatacagccaggact	6078	6097	14
SEQ ID NO:	535	acttttaccattcccaagt	4125	4144	SEQ ID NO:	1538	actttgtagaaatgaaagt	8101	8120	14
SEQ ID NO:	536	cattcccaagttgtatcaa	4133	4152	SEQ ID NO:	1539	ttgaaggacttcaggaatg	12001	12020	14
SEQ ID NO:	537	accacatgaaggctgactc	4276	4295	SEQ ID NO:	1540	gagtaaaccaaaacttggt	9016	9035	14
SEQ ID NO:	538	tttcctacaatgtgcaagg	4309	4328	SEQ ID	1541	cctttaacaattcctgaaa	9495	9514	14

WO 2004/091515

	<u> V</u>	VO 2004/091515		,	т.		PCT/US2004	/011255		_
					NO:					
SEQ ID NO	:539	ctggagaaacaacatatga	4330	4349	SEQ ID NO:	1542	tcattctgggtctttccag	11027	11046	1/
SEQ ID NO	540	atcatgtgatgggtctcta	4370	4389	SEQ ID NO:	1543	tagaattacagaaaatgat	6557	6576	1
SEQ ID NO	:541	catgtgatgggtctctacg	4372	4391	SEQ ID NO:	1544	cgtaggcaccgtgggcatg	12125	12144	1
SEQ ID NO	542	ttctagattcgaatatcaa	4399	4418	SEQ ID NO:	1545	ttgatgatgctgtcaagaa	7300	7319	1/
SEQ ID NO	543	tggggaccacagatgtctg	4491	4510	SEQ ID NO:	1546	cagaattccagcttcccca	8326	8345	1/4
SEQ ID NO	544	ctaacactggccggctcaa	4636	4655	SEQ ID NO:	1547	ttgaggctattgatgttag	6976	6995	1
SEQ ID NO	545	taacactggccggctcaat	4637	4656	SEQ ID NO:	1548	attgaggctattgatgtta	6975	6994	14
SEQ ID NO	546	aacactggccggctcaatg	4638	4657	SEQ ID NO:	1549	cattgaggctattgatgtt	6974	6993	1/4
SEQ ID NO	547	ctggccggctcaatggaga	4642	4661	SEQ ID NO:	1550	tctccatctgcgctaccag	12065	12084	1 4
SEQ ID NO	548	agataacaggaagatatga	4705	4724	SEQ ID NO:	1551	tcatctcctttcttcatct	10202	10221	1/2
SEQ ID NO	549	tccctcacctccacctctg	4737	4756	SEQ ID NO:	1552	cagatatatatctcaggga	8176	8195	1/2
SEQ ID NO	550	agctgactttaaaatctga	4810	4829	SEQ ID NO:	1553	tcaggctcttcagaaagct	7922	7941	1/2
SEQ ID NO	551	ctgactttaaaatctgaca	4812	4831	SEQ ID NO:	1554	tgtcaagataaacaatcag	8732	8751	1/2
SEQ ID NO	552	caagatggatatgaccttc	4865	4884	SEQ ID NO:	1555	gaagtagtactgcatcttg	6835	6854	1/
SEQ ID NO	553	gctgcgttctgaatatcag	4901	4920	SEQ ID NO:	1556	ctgagtcccagtgcccagc	9342	9361	1 4
SEQ ID NO	554	cgttctgaatatcaggctg	4905	4924	SEQ ID NO:	1557	cagcaagtacctgagaacg	8603	8622	14
SEQ ID NO	555	aattcccatggtcttgagt	4968	4987	SEQ ID NO:	1558	actcagatcaaagttaatt	12264	12283	14
SEQ ID NO	556	tggtcttgagttaaatgct	4976	4995	SEQ ID NO:	1559	agcacagtacgaaaaaacca	10801	10820	14
SEQ ID NO	557	cttgagttaaatgctgaca	4980	4999	SEQ ID NO:	1560	tgtccctagaaatctcaag	10034	10053	14
SEQ ID NO	558	ttgagttaaatgctgacat	4981	5000	SEQ ID NO:	1561	atgtccctagaaatctcaa	10033	10052	14
SEQ ID NO	559	tgagttaaatgctgacatc	4982	5001	SEQ ID NO:	1562	gatggaaccctctccctca	4725	4744	14
SEQ ID NO	560	acttgaagtgtagtctcct	5086	5105	SEQ ID NO:	1563	aggaaactcagatcaaagt	12259	12278	14
SEQ ID NO:	561	agtgtagtctcctggtgct	5092	5111	SEQ ID NO:	1564	agcagccagtggcaccact	12506	12525	14
SEQ ID NO	562	gtgctggagaatgagctga	5106	5125	SEQ ID NO:	1565	tcagccaggtttatagcac	7726	7745	14
SEQ ID NO:	563	ctggggcatctatgaaatt	5143	5162	SEQ ID NO:	1566	aatttctgattaccaccag	13571	13590	14
SEQ ID NO:	564	atggccgcttcagggaaca	5170	5189	SEQ ID NO:	1567	tgttttttggaaatgccat	8641	8660	14
SEQ ID NO:	565	ttcagtctggatgggaaag	5199	5218	SEQ ID NO:	1568	ctttgacaggcattttgaa	9719	9738	14
SEQ ID NO:	566	ccatgattctgggtgtcga	5257	5276	SEQ ID	1569	tcgatgcacatacaaatgg	5830	5849	14

U		2004/031313					1 € 17 € 15 200 ₹7 0.			
					NO:					Ш
SEQ ID NO	567	aaaacattttcaacttcaa	5281	5300	SEQ ID NO:	1570	ttgatgttagagtgctttt	6985	<u> </u>	14
SEQ ID NO	568	cttaagctctcaaatgaca	5316	5335	SEQ ID NO:	1571	tgtcctacaacaagttaag	7247		14
SEQ ID NO:	569	ttaagctctcaaatgacat	5317	5336	SEQ ID NO:	1572	atgtcctacaacaagttaa	7246		14
SEQ ID NO:	570	catgatgggctcatatgct	5333	5352	SEQ ID NO:	1573	agcatctttggctcacatg	7616	7635	14
SEQ ID NO:	571	tgggctcatatgctgaaat	5338	5357	SEQ ID NO:	1574	atttatcaaaagaagccca	12934	12953	14
SEQ ID NO:	572	actggacttctcttcaaaa	5399	5418	SEQ ID NO:	1575	ttttggcaagctatacagt	8372		14
SEQ ID NO:	573	acttctcttcaaaacttga	5404	5423	SEQ ID NO:	1576	tcaattgggagagacaagt	6496		14
SEQ ID NO:	574	ctgacaagttttataagca	5437	5456	SEQ ID NO:	1577	tgctttgtgagtttatcag	9685		14
SEQ ID NO:	575	aagttttataagcaaactg	5442	5461	SEQ ID NO:	1578	cagtcatgtagaaaaactt	4421		14
SEQ ID NO:	576	ctgttaatttacagctaca	5458	5477	SEQ ID NO:	1579	tgtactggaaaacgtacag	6380		1 4
SEQ ID NO:	577	ttacagctacagccctatt	5466	5485	SEQ ID NO:	1580	aatattgatcaatttgtaa	·		14
SEQ ID NO:	578	tctggtaactactttaaac	5486	5505	SEQ ID NO:	1581	gtttgaaaaacaaagcaga	11812	11831	14
SEQ ID NO:	579	tttaaacagtgacctgaaa	5498	5517	SEQ ID NO:	1582	tttcatttgaaagaataaa	7024	7043	14
SEQ ID NO:	580	ttaaacagtgacctgaaat ·	5499	5518	SEQ ID NO:	1583	atttcaagcaagaacttaa	10426	10445	14
SEQ ID NO:	581	cagtgacctgaaatacaat	5504	5523	SEQ ID NO:	1584	attggcgtggagcttactg	6123	6142	14
SEQ ID NO:	582	tgtggctggtaacctaaaa	5576	5595	SEQ ID NO:	1585	ttttgctggagaagccaca		10776	
SEQ ID NO:	583	ttatcagcaagctataaag	5649	5668	SEQ ID NO:	1586	ctttgcactatgttcataa		12775	Ш
SEQ ID NO:	584	ggttcagggtgtggagttt	5684	5703	SEQ ID NO:	1587	aaacacctaagagtaaacc	9006		1 4
SEQ ID NO:	585	attcagactcactgcattt	5767	5786	SEQ ID NO:	1588	aaatgctgacatagggaat	8429	8448	14
SEQ ID NO:	586	ttcagactcactgcatttc	5768	5787	SEQ ID NO:	1589	gaaatattatgaacttgaa	13304	13323	14
SEQ ID NO:	587	tacaaatggcaatgggaaa	5840	5859	SEQ ID NO:	1590	tttcctaaagctggatgta	11168	11187	14
SEQ ID NO:	588	gctgtatagcaaattcctg	5888	5907	SEQ ID NO:	1591	caggtccatgcaagtcagc	10911	10930	14
SEQ ID NO:	589	tgagcagacaggcacctgg	6035	6054	SEQ ID NO:	1592	ccagcttccccacatctca	8333	8352	14
SEQ ID NO:	590	ggcacctggaaactcaaga	6045	6064	SEQ ID NO:	1593	tettegtgttteaactgce	11213	11232	14
SEQ ID NO:	591	tgaatacagccaggacttg	6080	6099	SEQ ID NO:	1594	caagtaagtgctaggttca	9372	9391	14
SEQ ID NO:	592	gaatacagccaggacttgg	6081	6100	SEQ ID NO:	1595	ccaacacttacttgaattc	10660	10679	14
SEQ ID NO:	593	ctggacgaactctggctga	6139	6158	SEQ ID NO:	1596	tcagaaagctaccttccag	7931	7950	14
SEQ ID NO:	594	ttttactcagtgagcccat	6193	6212	SEQ ID	1597	atggacttcttctggaaaa	8870	8889	14

WO 2004/091515

It Huste	, , V	VO 2004/091515,					PCT/US2004	1/011255		
				ļ	NO:					Ш
SEQ ID NO	595	gatgagagatgccgttgag	6233	6252	SEQ ID NO:	1598	ctcatctcctttcttcatc	10201	10220	11
SEQ ID NO	596	aattgttgcttttgtaaag	6269	6288	SEQ ID NO:	1599	cttttctaaacttgaaatt	9056	9075	1
SEQ ID NO	597	cttttgtaaagtatgataa	6277	6296	SEQ ID NO:	1600	ttatgaacttgaagaaaag	13310	13329	1
SEQ ID NO	598	tttgtaaagtatgataaaa	6279	6298	SEQ ID NO:	1601	ttttcacattagatgcaaa	8413	8432	1
SEQ ID NO	599	tccattaacctcccatttt	6312	6331	SEQ ID NO:	1602	aaaattgatgatatctgga	10719	10738	1
SEQ ID NO	600	ccattaacctcccattttt	6313	6332	SEQ ID NO:	1603	aaaagggtcatggaaatgg	8885	8904	1
SEQ ID NO	601	cttgcaagaatattttgag	6338	6357	SEQ ID NO:	1604	ctcaattttgattttcaag	8520	8539	1
SEQ ID NO	602	agaatattttgagaggaat	6344	6363	SEQ ID NO:	1605	attccctccattaagttct	11700	11719	1
SEQ ID NO	603	attatagttgtactggaaa	6372	6391	SEQ ID NO:	1606	tttcaagcaagaacttaat	10427	10446	11
SEQ ID NO	604	gaagcacatcaatattgat	6407	6426	SEQ ID NO:	1607	atcagttcagataaacttc	7991	8010	1
SEQ ID NO	605	acatcaatattgatcaatt	6412	6431	SEQ ID NO:	1608	aattccctgaagttgatgt	11479	11498	1
SEQ ID NO	606	gaaaactcccacagcaagc	6457	6476	SEQ ID NO:	1609	gctttctcttccacatttc	10052	10071	1
SEQ ID NO	607	ctgaattcattcaattggg	6486	6505	SEQ ID NO:	1610	cccatttacagatcttcag	11363	11382	1
SEQ ID NO	608	tgaattcattcaattggga	6487	6506	SEQ ID NO:	1611	tcccatttacagatcttca	11362	11381	1
SEQ ID NO	609	aactgactgctctcacaaa	6532	6551	SEQ ID NO:	1612	tttgaggattccatcagtt	7979	7998	1 4
SEQ ID NO:	610.	aaaagtatagaattacaga	6550	6569	SEQ ID NO:	1613	tetggeteceteaactttt	9042	9061	1/4
SEQ ID NO:	611	atcaactttaatgaaaaac	6603	6622	SEQ ID NO:	1614	gtttattgaaaatattgat	6803	6822	1
SEQ ID NO:	612	tgatttgaaaatagctatt	6686	6705	SEQ ID NO:	1615	aatattattgatgaaatca	6708	6727	1
SEQ ID NO	613	atttgaaaatagctattgc	6688	6707	SEQ ID NO:	1616	gcaagaacttaatggaaat	10433	10452	1
SEQ ID NO:	614	attgctaatattattgatg	6702	6721	SEQ ID NO:	1617	catcacactgaataccaat	10151	10170	1
SEQ ID NO:	615	gaaaaattaaaaagtcttg	6729	6748	SEQ ID NO:	1618	caagagcttatgggatttc	11153	11172	1 4
SEQ ID NO:	616	actatcatatccgtgtaat	6754	6773	SEQ ID NO:	1619	attactttgagaaattagt	7273	7292	1 4
SEQ ID NO:	617	tattgattttaacaaaagt	6815	6834	SEQ ID NO:	1620	acttgacttcagagaaata	11396	11415	1 4
SEQ ID NO:	618	ctgcagcagcttaagagac	6906	6925	SEQ ID NO:	1621	gtcttcagtgaagctgcag	10691	10710	1/
SEQ ID NO	619	aaaacaacacattgaggct	6965	6984	SEQ ID NO:	1622	agcctcacctcttactttt	10563	10582	1 4
SEQ ID NO:	620	ttgagcatgtcaaacactt	7051	7070	SEQ ID NO:	1623	aagtagctgagaaaatcaa	7096	7115	1 4
SEQ ID NO:	621	tttgaagtagctgagaaaa	7092	7111	SEQ ID NO:	1624	ttttcacattagatgcaaa	8413	8432	14
SEQ ID NO:	622	ttagtagagttggcccacc	7191	7210	SEQ ID	1625	ggtggactcttgctgctaa	7768	7787	14

1 4no. 1	V	VO 2004/091515					PCT/US2004	011255		
					NO:					
SEQ ID NO:	623	tgaaggagactattcagaa	7219	7238	SEQ ID NO:	1626	ttctcaattttgattttca	8518	8537	14
SEQ ID NO:	624	gagactattcagaagctaa	7224	7243	SEQ ID NO:	1627	ttagccacagctctgtctc	10293	10312	14
SEQ ID NO:	625	aattagttggatttattga	7285	7304	SEQ ID NO:	1628	tcaagaagcttaatgaatt	7312	7331	14
SEQ ID NO:	626	gcttaatgaattatctttt	7319	7338	SEQ ID NO:	1629	aaaacgagcttcaggaagc	13201	13220	14
SEQ ID NO:	627	ttaacaaattccttgacat	7357	7376	SEQ ID NO:	1630	atgtcctacaacaagttaa	7246	7265	14
SEQ ID NO:	628	aaattaaagtcatttgatt	7386	7405	SEQ ID NO:	1631	aatcctttgacaggcattt	9715	9734	14
SEQ ID NO:	629	gactcaatggtgaaattca	7456	7475	SEQ ID NO:	1632	tgaaattcaatcacaagtc	9068	9087	14
SEQ ID NO:	630	gaaattcaggctctggaac	7467	7486	SEQ ID NO:	1633	gttctcaattttgattttc	8517	8536	14
SEQ ID NO:	631	actaccacaaaaagctgaa	7484	7503	SEQ ID NO:	1634	ttcaggaactattgctagt	10637	10656	14
SEQ ID NO:	632	ccaaaataaccttaatcat	7570	7589	SEQ ID NO:	1635	atgatttccctgaccttgg	10942	10961	14
SEQ ID NO:	633	aaataaccttaatcatcaa	7573	7592	SEQ ID NO:	1636	ttgaagtaaaagaaaattt	10741	10760	14
SEQ ID NO:	634	tttaagttcagcatctttg	7607	7626	SEQ ID NO:	1637	caaatctggatttcttaaa	9472	9491	14
SEQ ID NO:	635	caggtttatagcacacttg	7731	7750	SEQ ID NO:	1638	caagggttcactgttcctg	7857	7876	14
SEQ ID NO:	636	gttcactgttcctgaaatc	7862	7881	SEQ ID NO:	1639	gattctcagatgagggaac	8914	8933	14
SEQ ID NO:	637	cactgttcctgaaatcaag	7865	7884	SEQ ID NO:	1640	cttgaacacaaagtcagtg	6000	6019	14
SEQ ID NO:	638	actgttcctgaaatcaaga	7866	7885	SEQ ID NO:	1641	tcttgaacacaaagtcagt	5999	6018	14
SEQ ID NO:	639	gcctgcctttgaagtcagt	7901	7920	SEQ ID NO:	1642	actgttgactcaggaaggc	12572	12591	14
SEQ ID NO:	640	taacagatttgaggattcc	7972	7991	SEQ ID NO:	1643	ggaagcttctcaagagtta	13214	13233	14
SEQ ID NO:	641	gttttccacaccagaattt	8042	8061	SEQ ID NO:	1644	aaattletetgetggaaac	9410	9429	14
SEQ ID NO:	642	tcagaaccattgaccagat	8128	8147	SEQ ID NO:	1645	atctgcagaacaatgctga	12430	12449	14
SEQ ID NO:	643	tagcgagaatcaccctgcc	8218	8237	SEQ ID NO:	1646	ggcagcttctggcttgcta	12293	12312	14
SEQ ID NO:	644	ccttaatgattttcaagtt	8291	8310	SEQ ID NO:	1647	aactgttgactcaggaagg	12571	12590	14
SEQ ID NO:	645	acataccagaattccagct	8320	8339	SEQ ID NO:	1648	agctgccagtccttcatgt	10018	10037	14
SEQ ID NO:	646	aatgctgacatagggaatg	8430	8449	SEQ ID NO:	1649	cattaatcctgccatcatt	9997	10016	14
SEQ ID NO:	647	atgctgacatagggaatgg	8431	8450	SEQ ID NO:	1650	ccatttgagatcacggcat	9237	9256	14
SEQ ID NO:	648	aaccacctcagcaaacgaa	8450	8469	SEQ ID NO:	1651	ttcgttttccattaaggtt	9283	9302	14
SEQ ID NO:	649	agcaggtatcgcagcttcc	8468	8487	SEQ ID NO:	1652	ggaagtggccctgaatgct	10964	10983	14
SEQ ID NO:	650	tgcacaactctcaaaccct	8543	8562	SEQ ID	1653	agggaaagagaagattgca	13493	13512	14

	<u>,</u>	VO 2004/091515			~ _		PCT/US2004	/011255		
				_	NO:					Ш
SEQ ID NO	:651	aggagtcagtgaagttctc	8584	8603	SEQ ID NO:	1654	gagaacttactatcatcct	13780	13799	3 1 4
SEQ ID NO	:652	tttttggaaatgccattga	8644	8663	SEQ ID NO:	1655	tcaatgaatttattcaaaa	13186	1320	51/4
SEQ ID NO	:653	aatggagtgattgtcaaga	8721	8740		1656	tcttttcagcccagccatt	9223	9242	1/2
SEQ ID NO	:654	gtcaagataaacaatcagc	8733	8752		1657	gctgactttaaaatctgac	4811	4830	1/
SEQ ID NO	:655	tccacaaattgaacatccc	8779	8798		1658	gggatttcctaaagctgga	11164	11183	31/2
SEQ ID NO	:656	ttgaacatccccaaactgg	8787	8806	SEQ ID NO:	1659	ccagtttccagggactcaa	12595	12614	J 1 4
SEQ ID NO	:657	acatccccaaactggactt	8791	8810	SEQ ID NO:	1660	aagtcgattcccagcatgt	9082	9101	14
SEQ ID NO	:658	acttetetagteaggetga	8806	8825	SEQ ID NO:	1661	tcagatggaaaaatgaagt	11002	11021	14
SEQ ID NO	:659	tgaatcacaaattagtttc	8936	8955	SEQ ID NO:	1662	gaaagtccataatggttca	12809	12828	14
SEQ ID NO	:660	agaaggacccctcacttcc	8960	8979	SEQ ID NO:	1663	ggaagaagaggcagcttct	12284	12303	114
SEQ ID NO	661	ttggactgtccaataagat	8980	8999	SEQ ID NO:	1664	atctaaatgcagtagccaa	11626	11645	14
SEQ ID NO	662	actgtccaataagatcaat	8984	9003	SEQ ID NO:	1665	attgataaaaccatacagt	13883	13902	14
SEQ ID NO	663	ctgtccaataagatcaata	8985	9004	SEQ ID NO:	1666	tattgataaaaccatacag	13882	13901	14
SEQ ID NO	664	gtttatgaatctggctccc	9033	9052	SEQ ID NO:	1667	gggaatctgatgaggaaac	12247	12266	14
SEQ ID NO	665	atgaatctggctccctcaa	9037	9056	SEQ ID NO:	1668	ttgagttgcccaccatcat	11659	11678	14
SEQ ID NO	666	ctcaacttttctaaacttg	9051	9070	SEQ ID NO:	1669	caagatcgcagactttgag	11645	11664	14
SEQ ID NO	667	ctaaaggcatggcactgtt	9121	9140	SEQ ID NO:	1670	aacagaaacaatgcattag	9741	9760	14
SEQ ID NO:	668	aaggcatggcactgtttgg	9124	9143	SEQ ID NO:	1671	ccaagaaaaggcacacctt	11069	11088	14
SEQ ID NO:	669	atccacaaacaatgaaggg	9254	9273	SEQ ID NO:	1672	ccctaacagatttgaggat	7969	7988	14
SEQ ID NO:	670	ggaatttgaaagttcgttt	9271	9290	SEQ ID NO:	1673	aaacaaacacaggcattcc	9647	9666	14
SEQ ID NO:	671	aataactatgcactgtttc	9324	9343	SEQ ID NO:	1674	gaaatactgttttcctatt	12828	12847	14
SEQ ID NO:	672	gaaacaacgagaacattat	9424	9443	SEQ ID NO:	1675	ataaactgcaagatttttc	13600	13619	14
SEQ ID NO:	673	ttcttgaaaacgacaaagc	9591	9610	SEQ ID NO:	1676	gctttccaatgaccaagaa	11057	11076	14
SEQ ID NO:	674	ataagaaaaacaaacacag	9640	9659	SEQ ID NO:	1677	ctgtgctttgtgagtttat	9682	9701	14
SEQ ID NO:	675	aaaacaaacacaggcattc	9646	9665	SEQ ID NO:	1678	gaatttgaaagttcgtttt	9272	9291	14
SEQ ID NO:	676	gcattccatcacaaatcct	9659		SEQ ID NO:	1679	aggaagtggccctgaatgc	10963	10982	14
SEQ ID NO:	677	tttgaaaaaaacagaaaca	9732	9751	SEQ ID NO:	1680	tgttgaaagatttatcaaa	12925	12944	14
SEQ ID NO:	678	caatgcattagattttgtc	9749		SEQ ID	1681	gacaagaaaaaggggattg	10271	10290	14

	V	VO 2004/091515					PCT/US2004/	011255		
					NO:					
SEQ ID NO	679	caaagctgaaaaatctcag	9809	9828	SEQ ID NO:	1682	ctgagaacttcatcatttg	11430	11449	14
SEQ ID NO:	680	cctggatacactgttccag	9855	9874	SEQ ID NO:	1683	ctggacttctctagtcagg	8802	8821	14
SEQ ID NO:	681	gttgaagtgtctccattca	9882	9901	SEQ ID NO:	1684	tgaatctggctccctcaac	9038	9057	14
SEQ ID NO:	682	tttctccatcctaggttct	9956	9975	SEQ ID NO:	1685	agaatccagatacaagaaa	6885	6904	14
SEQ ID NO:	683	ttetecatectaggttetg	9957	9976	SEQ ID NO:	1686	cagaatccagatacaagaa	6884	6903	14
SEQ ID NO:	684	tcattagagctgccagtcc	10011	10030	SEQ ID NO:	1687	ggacagtgaaatattatga	13297	13316	14
SEQ ID NO:	685	tgctgaactttttaaccag	10169	10188	SEQ ID NO:	1688	ctggatgtaaccaccagca	11178	11197	14
SEQ ID NO:	686	ctcctttcttcatcttcat	10206	10225	SEQ ID NO:	1689	atgaagcttgctccaggag	13764	13783	14
SEQ ID NO:	687	tgtcattgatgcactgcag	10226	10245	SEQ ID NO:	1690	ctgcgctaccagaaagaca	12072	12091	14
SEQ ID NO:	688	tgatgcactgcagtacaaa	10232	10251	SEQ ID NO:	1691	tttgagttgcccaccatca	11658	11677	14
SEQ ID NO:	689	agctctgtctctgagcaac	10301	10320	SEQ ID NO:	1692	gttgaccacaagcttagct	10539	10558	14
SEQ ID NO:	690	agccgaaattccaattttg	10400		SEQ ID NO:	1693	caaagctggcaccagggct	13963	13982	14
SEQ ID NO:	691	ttgagaatgaatttcaagc	10416	10435	SEQ ID NO:	1694	gcttcaggaagcttctcaa	13208	13227	14
SEQ ID NO:	692	aaacctactgtctcttcct	10461	10480	SEQ ID NO:	1695	aggaaggccaagccagttt	12583	12602	14
SEQ ID NO:	693	tactiticcattgagtcat	10575		SEQ ID NO:	1696	atgattatgtcaacaagta	12355	12374	14
SEQ ID NO:	694	tcaggtccatgcaagtcag	10910		SEQ ID NO:	1697	ctgacatcttaggcactga	4993	5012	14
SEQ ID NO:	695	atgcaagtcagcccagttc	10918		SEQ ID NO:	1698	gaactcagaaggatggcat	13994	14013	14
SEQ ID NO:	696	tgaatgctaacactaagaa	10975	10994	SEQ ID NO:	1699	ttctcaattttgattttca	8518	8537	14
SEQ ID NO:	697	agaagatcagatggaaaaa	10996	11015	SEQ ID NO:	1700	ttttctaaatggaacttct	12165	12184	14
SEQ ID NO:	698	ggctattcattctccatcc	11256	11275	SEQ ID NO:	1701	ggatctaaatgcagtagcc	11624	11643	14
SEQ ID NO:	699	aaagttttggctgataaat	11280	11299	SEQ ID NO:	1702	atticttaaacattccttt	9481	9500	14
SEQ ID NO:	700	agttttggctgataaattc	11282		SEQ ID NO:	1703	gaatctggctccctcaact	9039	9058	14
SEQ ID NO:	701	ctgggctgaaactaaatga	11308	11327	SEQ ID NO:	1704	tcattctgggtctttccag	11027	11046	14
SEQ ID NO:	702	cagagaaatacaaatctat	11405	11424	SEQ ID NO:	1705	atagcatggacttcttctg	8865	8884	14
SEQ ID NO:	703	gaggtaaaattccctgaag	11472	11491	SEQ ID NO:	1706	cttctggcttgctaacctc	12298	12317	14
SEQ ID NO:	704	cttttttgagataaccgtg	11537	11556	SEQ ID NO:	1707	cacggagttactgaaaaag	13715	13734	14
SEQ ID NO:	705	gctggaattgtcattcctt	11727	11746	SEQ ID NO:	1708	aaggcatctccacctcagc	12094	12113	14
SEQ ID NO:	706	gtgtataatgccacttgga	11787		SEQ ID	1709	tccaagatgagatcaacac	13096	13115	14

	V	VO 2004/091515					PCT/US2004	1/011255		
					NO:					П
SEQ ID NO	707	attccacatgcagctcaac	11851	11870	SEQ ID NO:	1710	gttgagaagccccaagaat	6246	6265	1
SEQ ID NO	708	tgaagaagatggcaaattt	11984	12003	SEQ ID NO:	1711	aaattctcttttcttttca	9212	9231	1
SEQ ID NO	709	atcaaaagcccagcgttca	12042	12061	SEQ ID NO:	1712	tgaaagtcaagcatctgat	12661	12680	114
SEQ ID NO	710	gtgggcatggatatggatg	12135	12154	SEQ ID NO:	1713	catccttaacaccttccac	8063	8082	1/4
SEQ ID NO	711	aaatggaacttctactaca	12171	12190	SEQ ID NO:	1714	tgtaccataagccatattt	10080	10099	11/
SEQ ID NO	712	aaaaactcaccatattcaa	12211	12230	SEQ ID NO:	1715	ttgatgttagagtgctttt	6985	7004	1
SEQ ID NO:	713	ctgagaagaaatctgcaga	12420	12439	SEQ ID NO:	1716	tetgeacagaaatatteag	13439	13458	1/
SEQ ID NO:	714	acaatgctgagtgggttta	12439	12458	SEQ ID NO:	1717	taaatggagtctttattgt	14078	14097	12
SEQ ID NO:	715	caatgctgagtgggtttat	12440	12459	SEQ ID NO:	1718	ataaatggagtctttattg	14077	14096	1/2
SEQ ID NO:	716	ttaggcaaattgatgatat	12469	12488	SEQ ID NO:	1719	atattgtcagtgcctctaa	13384	13403	14
SEQ ID NO:	717	ataaactaatagatgtaat	12889	12908	SEQ ID NO:	1720	attactatgaaaaatttat	13633	13652	1 4
SEQ IŅ NO:	718	ccaactaatagaagataac			SEQ ID NO:	1721	gttattttgctaaacttgg	14044	14063	14
SEQ ID NO:	719	ttaattatatccaagatga	13087	13106	SEQ ID NO:	1722	tcatcctctaatttttaa	13792	13811	14
SEQ ID NO:	720	tttaaattgttgaaagaaa	13143	13162	SEQ ID NO:	1723	tttcatttgaaagaataaa	7024	7043	14
SEQ ID NO:	721	aagttcaatgaatttattc	13182	13201	SEQ ID NO:	1724	gaataccaatgctgaactt	10160	10179	14
SEQ ID NO:	722	ttgaagaaaagatagtcag	13318	13337	SEQ ID NO:	1725	ctgagagaagtgtcttcaa	12399	12418	14
SEQ ID NO:	723	acttccattctgaatatat	13369	13388	SEQ ID NO:	1726	atatctggaaccttgaagt	10729	10748	14
SEQ ID NO:	724	cacagaaatattcaggaat	13443		SEQ ID NO:	1727	attccctgaagttgatgtg	11480	11499	14
SEQ ID NO:		ccattgcgacgaagaaaat	13552	13571	SEQ ID NO:	1728	atttttattcctgccatgg	10095	10114	14
SEQ ID NO:	726	tataaactgcaagattttt	13599	13618	SEQ ID NO:	1729	aaaattcaaactgcctata	13865	13884	14
SEQ ID NO:	727	tctgattactatgaaaaat	13629		SEQ ID NO:	1730	atttgtaagaaaatacaga	6428	6447	14
SEQ ID NO:	728	ggagttactgaaaaagctg	13718		SEQ ID NO:	1731	cagcatgcctagtttctcc	9944	9963	14
SEQ ID NO:	729	tgaagcttgctccaggaga	13765		SEQ ID NO:	1732	teteetttetteatettea	10205	10224	14
SEQ ID NO:	730	tgaactggacctgcaccaa	13947		SEQ ID NO:	1733	ttggtagagcaagggttca	7848	7867	14
SEQ ID NO:	731	ttgctaaacttgggggagg	14050		SEQ ID NO:	1734	cctcctacagtggtggcaa	4222	4241	14
SEQ ID NO:	732	gattcgaatatcaaattca	4404	4423	SEQ ID NO:	1735	tgaaaacgacaaagcaatc	9595	9614	33
SEQ ID NO:	733	atttgtttgtcaaagaagt	4543	4562	SEQ ID NO:	1736	actitictaaactigaaat	9055	9074	33
SEQ ID NO:	734	tctcggttgctgccgctga	25	44	SEQ ID	1737	tcagcccagccatttgaga	9228	9247	23

		/ U 2004/071313 1444	*****							
					NO:					
SEQ ID NO:		getgaggagecegeceage	39	58	SEQ ID NO:	1738	gctggatgtaaccaccagc		11196	Ш
SEQ ID NO:	736	ctggtctgtccaaaagatg	219	238	SEQ ID NO:	1739	catcagaaccattgaccag	8126	8145	2
SEQ ID NO:		ctgagagttccagtggagt	283	302	SEQ ID NO:	1740	actcaatggtgaaattcag	7457		2
SEQ ID NO:	738	cagtgcaccctgaaagagg	396	415	SEQ ID NO:	1741	cctcacttcctttggactg		8988	
SEQ ID NO:		ctctgaggagtttgctgca	464	483	SEQ ID NO:	1742	tgcaaacttgacttcagag	11391	11410	Ш
SEQ ID NO:		acatcaagaggggcatcat	574	593	SEQ ID NO:	1743	atgacgttcttgagcatgt			23
SEQ ID NO:		ctgatcagcagcagccagt	822	841	SEQ ID NO:	1744	actggacttctctagtcag		8820	Ш
SEQ ID NO:		ggacgctaagaggaagcat	857	876	SEQ ID NO:	1745	atgectaegtteeatgtee		11365	Ц
SEQ ID NO:		agctgttttgaagactctc	1079	1098	SEQ ID NO:	1746	gagaagtgtcttcaaagct		12422	Ш
SEQ ID NO:		tgaaaaaactaaccatctc	<u> </u>	1124	SEQ ID NO:	1747	gagatcaacacaatcttca		13123	Ш
SEQ ID NO:		ctgagctgagaggcctcag			SEQ ID NO:	1748	ctgaattactgcacctcag			23
SEQ ID NO:		tgaaacgtgtgcatgccaa	1303		SEQ ID NO:	1749	ttggtagagcaagggttca	7848		23
SEQ ID NO:	747	ccttgtatgcgctgagcca			SEQ ID NO:	1750	tggcactgtttggagaagg	9130	9149	23
SEQ ID NO:	748	aggagetgetggacattge	1492	1511	SEQ ID NO:	1751	gcaagtcagcccagttcct	10920	10939	
SEQ ID NO:	749	atttgattctgcgggtcat	1567	1586	SEQ ID NO:	1752	atgaaaccaatgacaaaat	7420		2 3
SEQ ID NO:	750	tccagaactcaagtcttca	1619	1638	SEQ ID NO:	1753	tgaaatacaatgctctgga			23
SEQ ID NO:	751	ggttettetteagaettte	1736	1755	SEQ ID NO:	1754	gaaataccaagtcaaaacc	10447	10466	2 3
SEQ ID NO:	752	gttgatgaggagtccttca	1802	1821	SEQ ID NO:	1755	tgaaaaagctgcaatcaac		13745	Ш
SEQ ID NO:	753	tccaagatctgaaaaagtt	1933	1952	SEQ ID NO:	1756	aactgcttctccaaatgga	3544	3563	23
SEQ ID NO:		agttagtgaaagaagttct	1948		SEQ ID NO:	1757	agaattcataatcccaact .		8286	
SEQ ID NO:		gaagggaatcttatatttg	2076		SEQ ID NO:	1758	caaaacctactgtctcttc	10459	10478	23
SEQ ID NO:	756	ggaagctctttttgggaag	2213	2232	SEQ ID NO:	1759	cttcacataccagaattcc	8316		23
SEQ ID NO:	757	tggaataatgctcagtgtt	2366	2385	SEQ ID NO:	1760	aacaaacacaggcattcca	9648	9667	23
SEQ ID NO:	758	gatttgaaatccaaagaag	2400	2419	SEQ ID NO:	1761	cttcatgtccctagaaatc		10048	Ш
SEQ ID NO:		tccaaagaagtcccggaag	2409	ļ	SEQ ID NO:	1762	cttcagcctgctttctgga		4962	Ш
SEQ ID NO:	760	aggaagggctcaaagaatg	2562	2581	SEQ ID NO:	1763	cattagagctgccagtcct	10012	10031	23
SEQ ID NO:	761	agaatgactttttcttca	2575	2594	SEQ ID NO:	1764	tgaagatgacgacttttct	12152	12171	2 3
SEQ ID NO:	762	tttgtgacaaatatgggca	2757	2776	SEQ ID	1765	tgccagtttgaaaaacaaa	11807	11826	23

WO 2004/091515 ,....

	V	VO 2004/091515					PCT/US2004	011255		
					NO:					П
SEQ ID NO:	763	ctgaggctaccatgacatt	3244	3263	SEQ ID NO:	1766	aatgtcagctcttgttcag	10895	10914	23
SEQ ID NO:	764	gtagataccaaaaaaatga	3660	3679	SEQ ID NO:	1767	tcatttgccctcaacctac	11442	11461	23
SEQ ID NO:	765	aaatgacttccaatttccc	3673	3692	SEQ ID NO:	1768	gggaactgttgaaagattt	12919	12938	23
SEQ ID NO:	766	atgacttccaatttccctg	3675	3694	SEQ ID NO:	1769	caggagaacttactatcat	13777	13796	23
SEQ ID NO:	767	atctgccatctcgagagtt	4096	4115	SEQ ID NO:	1770	aactcctccactgaaagat	9539	9558	23
SEQ ID NO:	768	attigttigtcaaagaagt	4543	4562	SEQ ID NO:	1771	acttccgtttaccagaaat	8239	8258	23
SEQ ID NO:	769	gcagagcttggcctctctg	5127	5146	SEQ ID NO:	1772	cagagetttetgecactge	13510	13529	23
SEQ ID NO:	770	atatgctgaaatgaaattt	5345	5364	SEQ ID NO:	1773	aaattcaaactgcctatat	13866	13885	23
SEQ ID NO:	771	tcaaaacttgacaacattt	5412	5431	SEQ ID NO:	1774	aaatacttccacaaattga	8772	8791	23
SEQ ID NO:	772	cagtgacctgaaatacaat	5504	5523	SEQ ID NO:	1775	attgaacatccccaaactg	8786	8805	23
SEQ ID NO:	773	tacaaatggcaatgggaaa	5840	5859	SEQ ID NO:	1776	tttcaactgcctttgtgta	11221	11240	23
SEQ ID NO:	774	cttttgtaaagtatgataa	6277	6296	SEQ ID NO:	1777	ttattgctgaatccaaaag	13648	13667	23
SEQ ID NO:	775	ttgtaaagtatgataaaaa	6280	6299	SEQ ID NO:	1778	ttttcaagcaaatgcacaa	8531	8550	23
SEQ ID NO:	776	tccattaacctcccatttt	6312	6331	SEQ ID NO:	1779	aaaagaaaattttgctgga	10748	10767	23
SEQ ID NO:	777	gattatctgaattcattca	6480	6499	SEQ ID NO:	1780	tgaagtagaccaacaaatc	7154	7173	23
SEQ ID NO:	778	aattgggagagacaagttt	6498	6517	SEQ ID NO:	1781	aaactaaatgatctaaatt	11316	11335	23
SEQ ID NO:	779	atttgaaaatagctattgc	6688	6707	SEQ ID NO:	1782	gcaatttctgcacagaaat	13433	13452	23
SEQ ID NO:	780	tgagcatgtcaaacacttt	7052	7071	SEQ ID NO:	1783	aaagccattcagtctctca	12963	12982	23
SEQ ID NO:	781	ttgaagatgttaacaaatt	7348	7367	SEQ ID NO:	1784	aattccatatgaaagtcaa	12652	12671	23
SEQ ID NO:	782	acttgtcacctacatttct	7745	7764	SEQ ID NO:	1785	agaatattttgatccaagt	13268	13287	23
SEQ ID NO:	783	gttttccacaccagaattt	8042	8061	SEQ ID NO:	1786	aaatctggatttcttaaac	9473	9492	23
SEQ ID NO:	784	ataagtacaaccaaaattt	9397	9416	SEQ ID NO:	1787	aaataaatggagtctttat	14075	14094	23
SEQ ID NO:	785	cgggacctgcggggctgag	0	19	SEQ ID NO:	1788	ctcagttaactgtgtcccg	11563	11582	13
SEQ ID NO:	786	agtgcccttctcggttgct	17	36	SEQ ID NO:	1789	agcatctgattgactcact	12670	12689	13
SEQ ID NO:	787	gctgaggagcccgcccagc	39	58	SEQ ID NO:	1790	gctgattgaggtgtccagc	1217	1236	13
SEQ ID NO:	788	gaggagcccgcccagccag	42	61	SEQ ID NO:	1791	ctggatcacagagtccctc	3744	3763	13
SEQ ID NO:	789	gggccgcgaggccgaggcc	64	83	SEQ ID NO:	1792	ggccctgatccccgagccc	1355	1374	13
SEQ ID NO:	790	ccaggccgcagcccaggag	81	100	SEQ ID	1793	ctcccggagccaaggctgg	2674	2693	13

PCT/US2004/011255 WO 2004/091515_ NO: 115 SEQ ID 1794 gctgttttgaagactctcc 1080 1099 1|3 SEQ ID NO: 791 ggagccgcccaccgcagc 96 NO: SEQ ID NO: 792 |gaagaggaaatgctggaaa |192 211 SEQ ID 1795 tttcaagttcctgaccttc 8301 8320 13 NO: 1796 aatcttattggggattttg 7096 13 **SEQ ID NO: 793** 229 248 SEQ ID 7077 caaaagatgcgacccgatt NO: 1797 SEQ ID NO: 794 245 264 SEQ ID cttccacatttcaaggaat 10059|10078|1|3 attcaagcacctccggaag NO: 1798 8602 SEQ ID 8621 13 SEQ ID NO: 795 gttccagtggagtccctgg 289 308 ccagcaagtacctgagaac NO: 327 SEQ ID 1799 |13316|13335|1|3| SEQ ID NO: 796 gactgctgattcaagaagt 308 acttgaagaaaagatagtc NO: 10696 10715 13 SEQ ID 1800 SEQ ID NO:|797 gtgccaccaggatcaactg 325 344 cagtgaagctgcagggcac NO: 4759 335 SEQ ID 1801 4740 SEQ ID NO: 798 gatcaactgcaaggttgag 354 ctcacctccacctctgatc NO: SEQ ID 1802 1281 1300 SEQ ID NO: 799 actgcaaggttgagctgga 340 359 tccactcacatcctccagt NO: SEQ ID NO: 800 365 384 SEQ ID 1803 1335 1354 ccagctctgcagcttcatc gatgtggtcacctacctgg NO: 1804 5104 5123 13 **SEQ ID NO: 801** 375 394 SEQ ID agetteateetgaagacea tggtgctggagaatgagct NO: 2707 SEQ ID NO: 802 377 396 SEQ ID 1805 2688 cttcatcctgaagaccagc gctggagtaaaactggaag NO: SEQ ID 1806 1531 1550 SEQ ID NO: 803 ccagccagtgcaccctgaa 391 410 ttcaagatgactgcactgg NO: **SEQ ID NO: 804** 396 415 SEQ ID 1807 cctcacagagctatcactg 5222 5241 1|3| cagtgcaccctgaaagagg NO: SEQ ID NO: 805 419 438 SEQ ID 1808 3525 3544 1|3| tggcttcaaccctgagggc gcccactggtcgcctgcca NO: SEQ ID 1809 2199 2218 13 SEQ ID NO: 806 422 441 tttgagccaacattggaag cttcaaccctgagggcaaa NO: 9738 423 442 SEQ ID . 1810 ctttgacaggcattttgaa 9719 **SEQ ID NO: 807** ttcaaccctgagggcaaag NO: 9085 13 443 462 1811 9066 SEQ ID NO:1808 cttgctgaagaaaaccaag SEQ ID cttgaaattcaatcacaag NO: 1812 5639 5658 13 445 464 SEQ ID ttctgctgccttatcagca SEQ ID NO: 809 tgctgaagaaaaccaagaa NO: 1813 3015 13 475 494 SEQ ID 2996 SEQ ID NO: 810 ctggtcagtttgcaagcaa ttgctgcagccatgtccag NO: SEQ ID 1814 cctggtcagtttgcaagca 2995 3014 1 3 SEQ ID NO: 811 476 495 tgctgcagccatgtccagg NO: 1285 1304 1 3 482 501 SEQ ID 1815 SEQ ID NO: 812 agccatgtccaggtatgag ctcacatcctccagtggct NO: SEQ ID 1816 7481 7500 13 SEQ ID NO: 813 499 518 ggaactaccacaaaaagct ageteaagetggeeattee NO: SEQ ID 1817 13813|13832|1|3 537 SEQ ID NO: 814 518 gaaatcttcaatttattct lagaagggaagcaggttttc NO: 7583 520 539 SEQ ID 1818 7564 13 SEQ ID NO: 815 aagggaagcaggttttcct aggacaccaaaataacctt NO: 1819 4844 4863 1|3| SEQ ID NO: 816 agaaagatgaacctactta 547 566 SEQ ID taagaactttgccacttct NO: SEQ ID NO: 817 567 586 SEQ ID 1820 ccctaacagatttgaggat 7969 7988 1|3 atcctgaacatcaagaggg NO: 568 587 SEQ ID 1821 7968 7987 1 3 SEQ ID NO: 818 |tcctgaacatcaagagggg ccctaacagatttgagga

	<u> V</u>	VO 2004/091515	. —				PCT/US2004	/011255	·	_
					NO:					Ц
SEQ ID NO:	819	ctgaacatcaagaggggca	570	589	SEQ ID NO:	1822	tgcctgcctttgaagtcag	7900	7919	1
SEQ ID NO:	820	aacatcaagaggggcatca	573	592	SEQ ID NO:	1823	tgataaaaaccaagatgtt	6290	6309	1
SEQ ID NO:	821	acatcaagaggggcatcat	574	593	SEQ ID NO:	1824	atgataaaaaccaagatgt	6289	6308	1
SEQ ID NO:	822	tcatttctgccctcctggt	589	608	SEQ ID NO:	1825	accaccagtttgtagatga	7405		1
SEQ ID NO:	823	ttccccagagacagaaga	607	626	SEQ ID NO:	1826	tcttccacatttcaaggaa	10058	10077	1
SEQ ID NO:	824	gaagaagccaagcaagtgt	621	640	SEQ ID NO:	1827	acacettecacatteette	8071	8090	1
SEQ ID NO:	825	ttgtttctggataccgtgt	639	658	SEQ ID NO:	1828	acactaaatacttccacaa	8767	8786	1
SEQ ID NO:	826	tgtatggaaactgctccac	655	674	SEQ ID NO:	1829	gtggaggcaacacattaca	2920	2939	1
SEQ ID NO:	827	aaactgctccactcacttt	662	681	SEQ ID NO:	1830	aaagaaacagcatttgttt	4532	4551	1
SEQ ID NO:	828	actcactttaccgtcaaga	672	691	SEQ ID NO:	1831	tcttacttttccattgagt	10572	10591	1
SEQ ID NO	829	ctttaccgtcaagacgagg	677	696	SEQ ID NO:	1832	cctccagctcctgggaaag	2483	2502	1
SEQ ID NO	830	ttaccgtcaagacgaggaa	679	698	SEQ ID NO:	1833	ttcctaaagctggatgtaa	11169	11188	1
SEQ ID NO	831	acgaggaagggcaatgtgg	690	709	SEQ ID NO:	1834	ccacaagtcatcatctcgt	5956	5975	1
SEQ ID NO	832	cgaggaagggcaatgtggc	691	710	SEQ ID NO:	1835	gccagaagtgagatcctcg	3507	3526	1
SEQ ID NO	833	gaggaagggcaatgtggca	692	711	SEQ ID NO:	1836	tgccagtctccatgacctc	2468	2487	1
SEQ ID NO	:834	ggaagggcaatgtggcaac	694	713	SEQ ID NO:	1837	gttgctcttaaggacttcc	13356	13375	1
SEQ ID NO	:835	gaagggcaatgtggcaaca	695	714	SEQ ID NO:	1838	tgttgatgaggagtccttc	1801	1820	1
SEQ ID NO	:836	caggcatcagcccacttgc	769	788	SEQ.ID NO:	1839	gcaagtettteetggeetg	3011	3030	1
SEQ ID NO	:837	aggeateageceaettget	770	789	SEQ ID NO:	1840	agcaagtctttcctggcct	3010	3029	1
SEQ ID NO	:838	tcagcccacttgctctcat	775	794	SEQ ID NO:	1841	atgaaagtcaagcatctga	12660	12679	1
SEQ ID NO	:839	gtcaactctgatcagcagc	815	834	SEQ ID NO:	1842	gctgactttaaaatctgac	4811	4830	1
SEQ ID NO	:840	ggacgctaagaggaagcat	857	876	SEQ ID NO:	1843	atgeactgtttetgagtee	9331	9350	1
SEQ ID NO	:841	aaggagcaacacctcttcc	894	913	SEQ ID NO:	1844	ggaatatcttagcatcctt	13457	13476	1
SEQ ID NO	:842	aggagcaacacctcttcct	895	914	SEQ ID NO:	1845	aggaatatcttagcatcct	13456	13475	1
SEQ ID NO	:843	caacacctcttcctgcctt	900	919	SEQ ID NO:	1846	aaggetgactetgtggttg	4284	4303	1
SEQ ID NO	:844	aacacctcttcctgccttt	901	920	SEQ ID NO:	1847	aaagcaggccgaagctgtt	1067	1086	1
	045	acaanaataantatnnnat	925	944	SEQ ID	1848	atccatgatctacatttgt	6796	6805	11

1848

1849

atccatgatctacatttgt

catcactttacaagccttg

6786 6805

1238 1257

925

926

944

945

SEQ ID

NO: SEQ ID

SEQ ID NO: 845 acaagaataagtatgggat

SEQ ID NO: 846 caagaataagtatgggatg

	W	O 2004/091515					PCT/US2004/	011255		
				<u> </u>	NO:					Ц
SEQ ID NO:	847	tagcacaagtgacacagac	946	965	SEQ ID NO:	1850	gtctcttcgttctatgcta	4584	4603	1
SEQ ID NO:	848	agcacaagtgacacagact	947	966	SEQ ID NO:	1851	agtetettegttetatget	4583	4602	1
SEQ ID NO:	849	gcacaagtgacacagactt	948	967	SEQ ID NO:	1852	aagtgtagtctcctggtgc	5091	5110	1
SEQ ID NO:	850	aacttgaagacacaccaaa	970	989	SEQ ID NO:	1853	tttgaggattccatcagtt	7979	7998	1
SEQ ID NO:	851	gcttctttggtgaaggtac	1000	1019	SEQ ID NO:	1854	gtacctacttttggcaagc	8364	8383	1
SEQ ID NO:	852	ctttggtgaaggtactaag	1004	1023	SEQ ID NO:	1855	cttatgggatttcctaaag	11159	11178	1
SEQ ID NO:	853	tactaagaagatgggcctc	1016	1035	SEQ ID NO:	1856	gagggtagtcataacagta	10329	10348	1
SEQ ID NO:	854	tttgagagcaccaaatcca	1038	1057	SEQ ID NO:	1857	tggaagtgtcagtggcaaa	10372	10391	1
SEQ ID NO:	855	agagcaccaaatccacatc	1042	1061	SEQ ID NO:	1858	gatggatatgaccttctct	4868	4887	1
SEQ ID NO:	856	agetgttttgaagaetete	1079	1098	SEQ ID NO:	1859	gagaacatactgggcagct	5872	5891	1
SEQ ID NO:	857	tgaaaaaactaaccatctc	1105	1124	SEQ ID NO:	1860	gagaaaatcaatgccttca	7104	7123	1
SEQ ID NO:	858	gaaaaaactaaccatctct	1106	1125	SEQ ID NO:	1861	agagecaggtegagettte	11044	11063	1
SEQ ID NO:	859	tctgagcaaaatatccaga	1122	1141	SEQ ID NO:	1862	tctgatgaggaaactcaga	12252	12271	1
SEQ ID NO:	860	tctcttcaataagctggtt	1148	1167	SEQ ID NO:	1863	aacctcccatttttgaga	6318	6337	1
SEQ ID NO:	861	ctgagctgagaggcctcag	1168	1187	SEQ ID NO:	1864	ctgatccccgagccctcag	1359	1378	1
SEQ ID NO:	862	tgaagcagtcacatctctc	1190	1209	SEQ ID NO:	1865	gagaaaatcaatgccttca	7104	7123	1
SEQ ID NO:	863	aagcagtcacatctctctt	1192	1211	SEQ ID NO:	1866	aagaggcagcttctggctt	12289	12308	1
SEQ ID NO:	864	ctctcttgccacagctgat	1204	1223	SEQ ID NO:	1867	atcaaaagaagcccaagag	12938	12957	1
SEQ ID NO:	865	tettgccacagetgattga	1207	1226	SEQ ID NO:	1868	tcaaagttaattgggaaga	12271	12290	1
SEQ ID NO:	866	cttgccacagctgattgag	1208	1227	SEQ ID NO:	1869	ctcaattttgattttcaag	8520	8539	1
SEQ ID NO:	867	tgaggtgtccagccccatc	1223	1242	SEQ ID NO:	1870	gatggaaccctctccctca	4725	4744	1
SEQ ID NO:	868	tcagtgtggacagcctcag	1259	1278	SEQ ID NO:	1871	ctgacatcttaggcactga	4993	5012	1
SEQ ID NO	869	acatectecagtggetgaa	1288	1307	SEQ ID NO:	1872	ttcagaagctaagcaatgt	7231	7250	1
SEQ ID NO	870	gcacagcagctgcgagaga	1377	1396	SEQ ID NO:	1873	tctctgaaagacaacgtgc	12315	12334	1
SEQ ID NO	871	cagcagctgcgagagatct	1380	1399	SEQ ID NO:	1874	agataacattaaacagctg	13043	13062	1
SEQ ID NO	872	gcgagggatcagcgcagcc	1407	1426	SEQ ID NO:	1875	ggctcaacacagacatcgc	5710	5729	1
SEQ ID NO	873	aagacaaaccctacaggga	1470	1489	SEQ ID NO:	1876	tcccagaaaacctcttctt	3928	3947	1
SEQ ID NO	874	caggagctgctggacattg	1491	1510	SEQ ID	1877	caatggagagtccaacctg	4652	4671	1

							PCT/US2004/011255			
					NO:					\perp
SEQ ID NO	:875	aggagctgctggacattgc	1492	1511	SEQ ID NO:	1878	gcaagggttcactgttcct			1 3
SEQ ID NO	:876	ctgctggacattgctaatt	1497	1516	SEQ ID NO:	1879	aattgggaagaagaggcag		12298	Ш
SEQ ID NO	:877	gattacacctatttgattc	1557	1576	SEQ ID NO:	1880	gaatattttgagaggaatc	6345	6364	1 3
SEQ ID NO	:878	atttgattctgcgggtcat	1567	1586	SEQ ID NO:	1881	atgaagtagaccaacaaat	7153	7172	13
SEQ ID NO	:879	tctgcgggtcattggaaat	1574	1593	SEQ ID NO:	1882	atttgtaagaaaatacaga	6428	6447	13
SEQ ID NO	:880	aaccatggagcagttaact	1601	1620	SEQ ID NO:	1883	agtttetecatectaggtt	9954		13
SEQ ID NO	:881	ggagcagttaactccagaa	1607	1626	SEQ ID NO:	1884	ttctgaaaatccaatctcc	8392	8411	1 3
SEQ ID NO	:882	actccagaactcaagtctt	1617	1636	SEQ ID NO:	1885	aagatcgcagactttgagt	11646	11665	Ш
SEQ ID NO	:883	tccagaactcaagtcttca	1619	1638	SEQ ID NO:	1886	tgaactcagaagaattgga	1912	l	1 3
SEQ ID NO	:884	aagtacaaagccatcactg	1655	1674	SEQ ID NO:	1887	cagtcatgtagaaaaactt	4421		1 3
SEQ ID NO	:885	gccatcactgatgatccag	1664	1683	SEQ ID NO:	1888	ctggaactctctccatggc	10875	10894	1 3
SEQ ID NO	:886	ccatcactgatgatccaga	1665	1684	SEQ ID NO:	1889	tctgaactcagaaggatgg	13991	14010	1 3
SEQ ID NO	:887	atccagaaagctgccatcc	1677	1696	SEQ ID NO:	1890	ggatttcctaaagctggat	11165	11184	1 3
SEQ ID NO):888	cagaaagetgccatccagg	1680	1699	SEQ ID NO:	1891	cctgaaatacaatgctctg	5510	5529	113
SEQ ID NO):889	acaaggaccaggaggttct	1723	1742	SEQ ID NO:	1892	agaaacagcatttgtttgt	4534	4553	13
SEQ ID NO):890	aggaccaggaggttcttct	1726	1745	SEQ ID NO:	1893	agaagctaagcaatgtcct	7234	7253	13
SEQ ID NO):891	accaggaggttcttcttca	1729	1748	SEQ ID NO:	1894	tgaaggetgactetgtggt	4282	4301	13
SEQ ID NO):892	tcttcagactttccttgat	1742	1761	SEQ ID NO:	1895	atcaggaagggctcaaaga	2559	2578	13
SEQ ID NO	0:893	ttcagactttccttgatga	1744	1763	SEQ ID NO:	1896	tcattactcctgggctgaa	11299	11318	
SEQ ID NO	2:894	gttgatgaggagtccttca	1802	1821	SEQ ID NO:	1897	tgaatetggeteeeteaae	9038	9057	1 :
SEQ ID NO	0:895	cttcacaggcagatattaa	1816	1835	SEQ ID NO:	1898	ttaatcgagaggtatgaag	7140	7159	1
SEQ ID NO	0:896	ttcacaggcagatattaac	1817	1836	SEQ ID NO:	1899	gttaatcgagaggtatgaa	7139	7158	1
SEQ ID NO	D: 897	ggcagatattaacaaaatt	1823	1842		1900	aattgcattagatgatgcc	6581	6600	1
SEQ ID NO	D: 898	atattaacaaaattgtcca	1828	1847	SEQ ID NO:	1901	tggagtttgtgacaaatat	2752	2771	1
SEQ ID NO	D:899	acaaaattgtccaaattct	1834	1853		1902	agaaacagcatttgtttgt	4534		1
SEQ ID NO	D: 900	gagcaagtgaagaactttg	1869	1888		1903	caaatgacatgatgggctc	5326	5345	1
SEQ ID NO	D:901	gtgaagaactttgtggctt	1875	1894		1904	aagcatctgattgactcac	12669	12688	1
SEQ ID NO	0:902	agaactttgtggcttccca	1879	1898	SEQ ID	1905	tgggcctgcccagattct	8901	8920	1

							PCT/US2004/011255				
					NO:					Ш	
SEQ ID NO:	903	tttgtggcttcccatattg	1884	1903	SEQ ID NO:	1906	caataagatcaatagcaaa	8990	9009	13	
SEQ ID NO:	904	tggcttcccatattgccaa	1888	1907	SEQ ID NO:	1907	ttggctcacatgaaggcca	7623	7642	13	
SEQ ID NO:	905	ttcccatattgccaatatc	1892	1911	SEQ ID NO:	1908	gatatacactagggaggaa	12737	12756	13	
SEQ ID NO:	906	tcccatattgccaatatct	1893	1912	SEQ ID NO:	1909	agatcaaagttaattggga	12268	12287	13	
SEQ ID NO:	907	ttgccaatatcttgaactc	1900	1919	SEQ ID NO:	1910	gagtcccagtgcccagcaa	9344	9363	13	
SEQ ID NO:	908	ttggatatccaagatctga	1926	1945	SEQ ID NO:	1911	tcagtataagtacaaccaa	9392	9411	13	
SEQ ID NO:	909	tccaagatctgaaaaagtt	1933	1952	SEQ ID NO:	1912	aacttccaactgtcatgga	1978	1997	13	
SEQ ID NO:	910	ctgaaaaagttagtgaaag	1941	1960	SEQ ID NO:	1913	ctttgaagtcagtcttcag	7907	7926	13	
SEQ ID NO:	911	agttagtgaaagaagttct	1948	1967	SEQ ID NO:	1914	agaatctcaacttccaact	1970	1989	13	
SEQ ID NO:	912	aatctcaacttccaactgt	1972	1991	SEQ ID NO:	1915	acaggggtcctttatgatt	12342	12361	13	
SEQ ID NO:	913	glcatggacttcagaaaat	1989	2008	SEQ ID NO:	1916	atttgaaagaataaatgac	7028	7047	13	
SEQ ID NO:	914	tcaactctacaaatctgtt	2021	2040	SEQ ID NO:	1917	aacacattgaggctattga	6970	6989	1 3	
SEQ ID NO:	915	aactctacaaatctgtttc	2023	2042	SEQ ID NO:	1918	gaaaaaggggattgaagtt	10276	10295	13	
SEQ ID NO:	916	aaatagaagggaatcttat	2071	2090	SEQ ID NO:	1919	ataagcaaactgttaattt	5449	5468	13	
SEQ ID NO:	917	agaagggaatcttatattt	2075	2094	SEQ ID NO:	1920	aaatgcactgctgcgttct	4892	4911	1 3	
SEQ ID NO:	918	gaagggaatcttatatttg	2076	2095	SEQ ID NO:	1921	caaaaacattttcaacttc	5279	5298	13	
SEQ ID NO:	919	tgatccaaataactacctt	2093	2112	SEQ ID NO:	1922	aaggaagaaagaaaatca	3453	3472	13	
SEQ ID NO:	920	tggatttgcttcagctgac	2150	2169	SEQ ID NO:	1923	gtcagcccagttccttcca	10924	10943	13	
SEQ ID NO:	921	tttgcttcagctgacctca	2154	2173	SEQ ID NO:	1924	tgaggaaactcagatcaaa	12257	12276	13	
SEQ ID NO:	922	cttggaaggaaaaggcttt	2183	2202	SEQ ID NO:	1925	aaagcattggtagagcaag	7842	7861	13	
SEQ ID NO:	923	tggaaggaaaaggctttga	2185	2204	SEQ ID NO:	1926	tcaagtctgtgggattcca	4078	4097	13	
SEQ ID NO:	924	ggctttgagccaacattgg	2196	2215	SEQ ID NO:	1927	ccaagaggtatttaaagcc	12950	12969	13	
SEQ ID NO:	925	tgagccaacattggaagct	2201	2220	SEQ ID NO:	1928	agctttctgccactgctca	13513	13532	13	
SEQ ID NO:	926	gagccaacattggaagctc	2202	2221	SEQ ID NO:	1929	gagetttetgeeaetgete	13512	13531	13	
SEQ ID NO:	927	aacattggaagctcttttt	2207	2226	SEQ ID NO:	1930	aaaagaaacagcatttgtt	4531	4550	13	
SEQ ID NO:	928	tggaagctctttttgggaa	2212	2231	SEQ ID NO:	1931	ttccggcacgtgggttcca	3777	3796	13	
SEQ ID NO:	929	ctctttttgggaagcaagg	2218	2237	SEQ ID NO:	1932	ccttactgactttgcagag	7790	7809	13	
SEQ ID NO:	930	tttttgggaagcaaggatt	2221	2240	SEQ ID	1933	aatcattgaaaaattaaaa	6722	6741	13	

WQ 2004/091515					PCT/US2004/011255					
					NO:					Ц
SEQ ID NO:	931	ttttcccagacagtgtcaa	2239	2258	SEQ ID NO:	1934	ttgatgaaatcattgaaaa	6715	6734	1 3
SEQ ID NO:	932	ttggctataccaaagatga	2323	2342	SEQ ID NO:	1935	tcattgctcccggagccaa	2668	2687	1 3
SEQ ID NO:	933	ataccaaagatgataaaca	2329	2348	SEQ ID NO:	1936	tgttgcttttgtaaagtat	6272	6291	1 3
SEQ ID NO:	934	gagcaggatatggtaaatg	2349	2368	SEQ ID NO:	1937	catttcagccttcgggctc	4254	4273	1 3
SEQ ID NO:	935	atggtaaatggaataatgc	2358	2377	SEQ ID NO:	1938	gcatgcctagtttctccat	9946	9965	1 3
SEQ ID NO:	936	tggtaaatggaataatgct	2359	2378	SEQ ID NO:	1939	agcacagtacgaaaaacca	10801	10820	13
SEQ ID NO:	937	taaatggaataatgctcag	2362	2381	SEQ ID NO:	1940	ctgaaagagatgaaattta	13059	13078	13
SEQ ID NO:	938	tggaataatgctcagtgtt	2366	2385	SEQ ID NO:	1941	aacagatttgaggattcca	7973	7992	1 3
SEQ ID NO:	939	tcagtgttgagaagctgat	2377	2396	SEQ ID NO:	1942	atcacaactcctccactga	9534	9553	1 3
SEQ ID NO:	940	cagtgttgagaagctgatt	2378	2397	SEQ ID NO:	1943	aatcacaactcctccactg	9533	9552	13
SEQ ID NO	941	agtgttgagaagctgatta	2379	2398	SEQ ID NO:	1944	taatcacaactcctccact	9532	9551	13
SEQ ID NO	942	gattaaagatttgaaatcc	2393	2412	SEQ ID NO:	1945	ggatactaagtaccaaatc	6866	6885 _.	13
SEQ ID NO	943	gatttgaaatccaaagaag	2400	2419	SEQ ID NO:	1946	cttccgtttaccagaaatc	8240	8259	13
SEQ ID NO	944	atttgaaatccaaagaagt	2401	2420	SEQ ID NO:	1947	acttccgtttaccagaaat	8239	8258	13
SEQ ID NO	945	atccaaagaagtcccggaa	2408	2427	SEQ ID NO:	1948	ttccaatttccctgtggat	3680	3699	1 3
SEQ ID NO	946	tccaaagaagtcccggaag	2409	2428	SEQ ID NO:	1949	cttccaatttccctgtgga	3679	3698	13
SEQ ID NO	947	agagectaceteegcatet	2430	2449	SEQ ID NO:	1950	agattaatccgctggctct	8563	8582	13
SEQ ID NO	948	gagectacctccgcatctt	2431	2450	SEQ ID NO:	1951	aagattaatccgctggctc	8562	8581	1 3
SEQ ID NO	949	cttgggagaggagcttggt	2447	2466	SEQ ID NO:	1952	accactgggacctaccaag	12519	12538	13
SEQ ID NO	950	ggagcttggttttgccagt	2456	2475	SEQ ID NO:	1953	actggtggcaaaaccctcc	2726	2745	13
SEQ ID NO	951	ttggttttgccagtctcca	2461	2480	SEQ ID NO:	1954	tggagaagccacactccaa	10763	10782	13
SEQ ID NO	952	cagtetecatgacetecag	2471	2490	SEQ ID NO:	1955	ctggtcgcctgccaaactg	3530	3549	13
SEQ ID NO	953	ctccatgacctccagctcc	2475	2494	SEQ ID NO:	1956	ggagtcattgctcccggag	2664	2683	13
SEQ ID NO	954	ctgggaaagctgcttctga	2493	2512	SEQ ID NO:	1957	tcagaaagctaccttccag	7931	7950	13
SEQ ID NO	:955	gaggtcatcaggaagggct	2553	2572	SEQ ID NO:	1958	agccagaagtgagatcctc	3506	3525	13
SEQ ID NO	:956	aagaatgactttttcttc	2574	2593	SEQ ID NO:	1959	gaaggcatctgggagtctt	3827	3846	13
SEQ ID NO	:957	cttttttcttcactacatc	2582	2601	SEQ ID NO:	1960	gatgcttacaacactaaag	6099	6118	13
SEQ ID NO	:958	catcttcatggagaatgcc	2597	2616	SEQ ID	1961	ggcacttccaaaattgatg	10710	10729	113

	V	VO 2004/091515	_				PCT/US2004/	011255		
					NO:					Ц
SEQ ID NO:	959	cttcatggagaatgccttt	2600	2619	SEQ ID NO:	1962	aaagttaattgggaagaag	12273	12292	13
SEQ ID NO:	960	aatgcctttgaactcccca	2610	2629	SEQ ID NO:	1963	tgggctggcttcagccatt	5729	5748	13
SEQ ID NO:	961	gcctttgaactcccactg	2613	2632	SEQ ID NO:	1964	cagtctgaacattgcaggc	5375	5394	13
SEQ ID NO:	962	caaggctggagtaaaactg	2684	2703	SEQ ID NO:	1965	cagtgcaacgaccaacttg	5072	5091	13
SEQ ID NO:	963	tggagtaaaactggaagta	2690	2709	SEQ ID NO:	1966	tactccaacgccagctcca	3051	3070	13
SEQ ID NO:	964	ggaagtagccaacatgcag	2702	2721	SEQ ID NO:	1967	ctgccatctcgagagttcc	4098	4117	13
SEQ ID NO:	965	tttgtgacaaatatgggca	2757	2776	SEQ ID NO:	1968	tgcctttgtgtacaccaaa	11228	11247	13
SEQ ID NO:	966	tgtgacaaatatgggcatc	2759	2778	SEQ ID NO:	1969	gatgggtctctacgccaca	4377	4396	13
SEQ ID NO:	967	ggacttcgctaggagtggg	2786	2805	SEQ ID NO:	1970	cccaaggccacaggggtcc	12333	12352	13
SEQ ID NO:	968	gtggggtccagatgaacac	2800	2819	SEQ ID NO:	1971	gtgttctagacctctccac	4171	4190	13
SEQ ID NO:	969	ttccacgagtcgggtctgg	2826	2845	SEQ ID NO:	1972	ccagaatctgtaccaggaa	12554	12573	13
SEQ ID NO:	970	agtcgggtctggaggctca	2833	2852	SEQ ID NO:	1973	tgagaactacgagctgact	4799	4818	13
SEQ ID NO:	971	tcgggtctggaggctcatg	2835	2854	SEQ ID NO:	1974	catgaaggccaaattccga	7631	7650	13
SEQ ID NO:	972	aaaagctgggaagctgaag	2861	2880	SEQ ID NO:	1975	cttccagacacctgatttt	7943	7962	1 3
SEQ ID NO:	973	aagctgaagtttatcattc	2871	2890	SEQ ID NO:	1976	gaatttacaattgttgctt	6261	6280	13
SEQ ID NO:	974	gagaccagtcaagctgctc	2900	2919	SEQ ID NO:	1977	gagcttcaggaagcttctc	13206	13225	13
SEQ ID NO:	975	gcaacacattacatttggt	2926	2945	SEQ ID NO:	1978	accagtcagatattgttgc	10183	10202	13
SEQ ID NO:	976	acattacatttggtctcta	2931	2950	SEQ ID NO:	1979	tagaatatgaactaaatgt	11881	11900	13
SEQ ID NO:	977	cattacatttggtctctac	2932	2951	SEQ ID NO:	1980	gtagctgagaaaatcaatg	7098	7117	13
SEQ ID NO:	978	aaacggaggtgatcccacc	2956	2975	SEQ ID NO:	1981	ggtggataccctgaagttt	3197	3216	1 3
SEQ ID NO:	979	attgagaacaggcagtcct	2979	2998	SEQ ID NO:	1982	aggaaaagcgcacctcaat	12023	12042	13
SEQ ID NO	980	tgagaacaggcagtcctgg	2981	3000	SEQ ID NO:	1983	ccagcttccccacatctca	8333	8352	13
SEQ ID NO:	981	ctgcacctcaggcgcttac	3035	3054	SEQ ID NO:	1984	gtaagaaaatacagagcag	6432	6451	13
SEQ ID NO	982	tecacagaeteegeeteet	3066	3085	SEQ ID NO:	1985	aggacagagccttggtgga	3184	3203	13
SEQ ID NO:	983	ctgaccggggacaccagat	3093	3112	SEQ ID NO:	1986	atctgatgaggaaactcag	12251	12270	1 3
SEQ ID NO	984	tagagctggaactgaggcc	3112	3131	SEQ ID NO:	1987	ggcctctctggggcatcta	5136	5155	13
SEQ ID NO:	985	ctatgagctccagagagag	3167	3186	SEQ ID NO:	1988	ctctcacaaaaaagtatag	6541	6560	13
SEQ ID NO	986	cttggtggataccctgaag	3194	3213	SEQ ID	1989	cttcaggaagcttctcaag	13209	13228	1 3

No:	v	O 2004/091515					PCT/	US2004/011	255			
NO: NO: Sec ID NO: Sec I	· ·					NO:						П
SEQ ID NO: 988 taactcaagcagaaggtgc 3217 3238 SEQ ID 1991 geacctagctggaaagtta 6947 8968 1	SEQ ID NO:	987	ttgtaactcaagcagaagg	3214	3233	1	1990	ccttacacaataatcaca	a	9522	9541	13
No: SEQ ID NO:	988	taactcaagcagaaggtgc	3217	3236		1991	gcacctagctggaaagt	ta	6947	6966	13	
No: SEQ ID NO:	989	gcagaaggtgcgaagcaga	3225	3244	1	1992	tctgtgggattccatctgc		4083	}	13	
No. No.	SEQ ID NO:	990	cagaaggtgcgaagcagac	3226	3245		1993	gtctgtgggattccatctg		4082	4101	13
No: SEQ ID NO:	991	gtatgaccttgtccagtga	3280	3299		1994	tcaccaacggagaaca	tac	1084	3 10862	13	
No: SEQ ID NO:	992	tatgaccttgtccagtgaa	3281	3300		1995	ttcaccaacggagaaca	nta			Ш	
No: 1998 clystaggacacagcct 4054 4073 1 1998 clystaggacacagcct 4054 4073 1 1998 19	SEQ ID NO:	993	gaagtccaaattccggatt	3297	3316	III)	1996	aatctcaagctttctcttc		<u> </u>		Ш
No: SEQ ID NO:	994	gagggcaaaacgtcttaca	3363	3382		1997	tgtacaactggtccgcct	c 			13	
NO: SEQ ID NO:	995	agggcaaaacgtcttacag	3364	3383			ctgttaggacaccagcc	ct			13	
NO: SEQ ID NO:	996	gactcaccctggacattca	3382	3401		1999	tgaaattcaatcacaagt	С			13	
NO: NO: NO: NO: NO: SEQ ID NO: N	SEQ ID NO:	997	ctggacattcagaacaaga	3390	3409		2000	tcttttcttttcagcccag	<u>. </u>	9218		13
NO: SEQ ID NO:	998	tcatgggcgacctaagttg	3427	3446	NO:	2001	caactgcagacatatato	ja 			13	
NO: NO: 1001 Igacacaaaggaagaaagaa 3446 3465 SEQ ID 2004 tetteatetteatetgtea 10212 10231 10210 10210 10210 10230 10211 10230 10330	SEQ ID NO:	999	tgggcgacctaagttgtga	3430	3449	1	2002	tcactccattaacctccca	3			13
NO: NO: 1002 gacacaaaggaagaagaagaagaagaagaagaagaagaag	SEQ ID NO:	1000	agttgtgacacaaaggaag	3441	3460		2003	cttcttttccaattgaact		1383	0 13849	13
NO: SEQ ID NO:	1001	tgacacaaaggaagaaaga	3446	3465	1	2004	tetteatetteatetgtea		l		Ш	
NO: NO: NO: NO: NO: NO: NO: NO: NO: NO	SEQ ID NO:	1002	gacacaaaggaagaaagaa	3447	3466	1		ttetteatetteatetgte				
SEQ ID NO: 2008 2008 glant			İ	3455		NO:						.
SEQ ID NO: 2008 gtcaaatataccttgaaca 3963 3982 SEQ ID NO: 2314 tgttaacaaattccttgac 7355 7374 1 SEQ ID NO: 2009 tgaacaagaacagtttgaa 3976 3995 SEQ ID NO: 2315 ttcaagttcctgaccttca 8302 8321 1 SEQ ID NO: 2010 agtttgaaaattgagattc 3987 4006 SEQ ID NO: 2316 gaatctggctccctcaact 9039 9058 1 SEQ ID NO: 2011 gtttgaaaattgagattcc 3988 4007 SEQ ID NO: 2317 ggaaataccaagtcaaaac 10446 10465 1 SEQ ID NO: 2012 ttgaaaattgagattcctt 3990 4009 SEQ ID NO: 2318 aaggaaaagcgcacctcaa 12022 12041 1 SEQ ID NO: 2013 ctaaagatgttagagactg 4038 4057 SEQ ID NO: 2319 cagttgaccacaagcttag 10537 10556 1 SEQ ID NO: 2014 atgttagagactgttagga 4044 4063 SEQ ID NO: 2320 tccttaacaccttccacat 8065 8084 1 SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttctctagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 4153 SEQ ID NO: 2325 gagacacctgttga 8835 8854 1 SEQ ID NO: 2020 ggtgttctagacctctcca 4148 4167 SEQ ID NO: 2325 gagacacctcaccacc 8835 8854 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184	SEQ ID NO	2007	aaaaagcgatggccgggtc	3947	3966	SEQ ID NO:	2313 gac	cttgcaagaatatttt	6	335 (6354	13
SEQ ID NO: 2009tgaacaagaacagtttgaa 3976 3995 SEQ ID NO: 2315ttcaagttcctgaccttca 8302 8321 1 SEQ ID NO: 2010 agtttgaaaattgagattc 3987 4006 SEQ ID NO: 2316 gaatctggctccctcaact 9039 9058 1 SEQ ID NO: 2011 gtttgaaaattgagattcc 3988 4007 SEQ ID NO: 2317 ggaaataccaagtcaaaac 10446 10465 1 SEQ ID NO: 2012 ttgaaaattgagattcct 3990 4009 SEQ ID NO: 2318 aaggaaaaggcaccctcaa 12022 12041 1 SEQ ID NO: 2013 ctaaagatgttagagactg 4038 4057 SEQ ID NO: 2319 cagttgaccacaaagcttag 10537 10556 1 SEQ ID NO: 2014 atgttagagactgttagga 4044 4063 SEQ ID NO: 2320 tccttaacaccttcaaat 8065 8084 1 SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttctctagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtc 4067 4086 SEQ ID NO: 2322 agaacatcgttgggctggct 5720 5739 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 413 SEQ ID NO: 2323 ctctcaaatgaactgatgtggg	SEQ ID NO	2008	gtcaaatataccttgaaca								7374	13
SEQ ID NO: 2011 gtttgaaaattgagattcc 3988 4007 SEQ ID NO: 2317 ggaaataccaagtcaaaac 10446 10465 1 SEQ ID NO: 2012 ttgaaaattgagattcctt 3990 4009 SEQ ID NO: 2318 aaggaaaagcgcacctcaa 12022 12041 1 SEQ ID NO: 2013 ctaaagatgttagagactg 4038 4057 SEQ ID NO: 2319 cagttgaccacaagcttag 10537 10556 1 SEQ ID NO: 2014 atgttagagactgttagga 4044 4063 SEQ ID NO: 2320 tccttaacaccttccacat 8065 8084 1 SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttctctagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 tcaactgcaagtgcctctc 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 ggtgtttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctccctcacc 4727 4746 1 SEQ ID NO: 2022 cacgaatgtctacagc 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 ctcacagtggtggcaaca <	SEQ ID NO	2009	tgaacaagaacagtttgaa	3976	3995	SEQ ID NO:	2315ttca	agttcctgaccttca	8	302	8321	13
SEQ ID NO: 2011 gtttgaaaattgagattcc 3988 4007 SEQ ID NO: 2317 ggaaataccaagtcaaaac 10446 10465 1 SEQ ID NO: 2012 ttgaaaattgagattcctt 3990 4009 SEQ ID NO: 2318 aaggaaaagcgacactcaa 12022 12041 1 SEQ ID NO: 2013 ctaaagatgttagagactg 4038 4057 SEQ ID NO: 2319 cagttgaccacaagcttag 10537 10556 1 SEQ ID NO: 2014 atgttagagactgttagga 4044 4063 SEQ ID NO: 2320 fccttaacaccttccacat 8065 8084 1 SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttctctagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 tcaactgcaagtgcctctc 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 ggtgttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctccctcacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184 4203 SEQ ID NO: 2328 gttgcccaccatcatcatcgt 11663 11682 1 SEQ ID NO: 2022 cacgaatgtctacagcaact 4187 4206 SEQ ID NO: 2329 agttgcccaccatcatcatcgt 11662 11681 1 SEQ ID NO: 2024 fcctacagtggtggcaaca <td></td> <td></td> <td></td> <td>3987</td> <td>4006</td> <td>SEQ ID NO:</td> <td>2316 gaa</td> <td>tctggctccctcaact</td> <td>9</td> <td>039</td> <td></td> <td></td>				3987	4006	SEQ ID NO:	2316 gaa	tctggctccctcaact	9	039		
SEQ ID NO: 2012ttgaaaattgagattcett 3990 4009 SEQ ID NO: 2318 aaggaaaagcgcacctcaa 12022 12041 1 SEQ ID NO: 2013 ctaaagatgttagagactg 4038 4057 SEQ ID NO: 2319 cagttgaccacaagcttag 10537 10556 1 SEQ ID NO: 2014 atgttagagactgttagga 4044 4063 SEQ ID NO: 2320 tccttaacaccttccacat 8065 8084 1 SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttctctagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attccaagttgtatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 tcaactgcaagtgcctctc 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 ggtgttctagagactctcca 4184 4203 SEQ ID NO: 2327 gctggtaacctctcccaccatcatcgtg 5580 5599 1 SEQ ID NO: <	SEQ ID NO	2011	gtttgaaaattgagattcc	3988	4007	SEQ ID NO:	2317 gga	aataccaagtcaaaac				13
SEQ ID NO: 2013 ctaaagatgttagagactg 4038 4057 SEQ ID NO: 2319 cagttgaccacaagcttag 10537 10556 1 SEQ ID NO: 2014 atgttagagactgttagga 4044 4063 SEQ ID NO: 2320 tccttaacaccttccacat 8065 8084 1 SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttctctagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 tcaactgcaagtgcctctc 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 ggtgttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctccctcacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1				3990	4009	SEQ ID NO:	2318 aag	gaaaagcgcacctcaa	12	022 12		13
SEQ ID NO: 2014 2014 attempted and state and stat	SEQ ID NO	2013	ctaaagatgttagagactg	4038	4057	SEQ ID NO:	2319 cag	ttgaccacaagcttag	10	537 10		13
SEQ ID NO: 2015 cagccctccacttcaagtc 4066 4085 SEQ ID NO: 2321 gacttcttagtcaggctg 8805 8824 1 SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 tcaactgcaagtgcctctc 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 gtgttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctcccacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2024 tcctacagtggtggcaaca 4188 4207 SEQ ID NO: 2330 tgttagttgcctcaccatcatcgt 13351 13370 1	SEQ ID NO	2014	atgttagagactgttagga	4044	4063	SEQ ID NO:	2320 tcctl	taacaccttccacat	8	065		13
SEQ ID NO: 2016 agccctccacttcaagtct 4067 4086 SEQ ID NO: 2322 agacatcgctgggctggct 5720 5739 1 SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 caactgcaagtgcctct 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 gtgttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctccacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 cctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgcctctaagga 13351 13370 1	SEQ ID NO	2015	cagccctccacttcaagtc	4066	4085	SEQ ID NO:	2321 gac	ttctctagtcaggctg	8	805		13
SEQ ID NO: 2017 ccatctgccatctcgagag 4094 4113 SEQ ID NO: 2323 ctctcaaatgacatgatgg 5322 5341 1 SEQ ID NO: 2018 attcccaagttgtatcaac 4134 4153 SEQ ID NO: 2324 gttgagaagccccaagaat 6246 6265 1 SEQ ID NO: 2019 tcaactgcaagtgcctctc 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 ggtgttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctccacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1	SEQ ID NO	2016	agccctccacttcaagtct		4086	SEQ ID NO:	2322 aga	catcgctgggctggct	5	720	5739	13
SEQ ID NO: 2018 attrace aget get access and sequences of the sequence of the sequences of the	SEQ ID NO	2017	ccatctgccatctcgagag	4094	4113	SEQ ID NO:	2323 ctct	caaatgacatgatgg	5	322		13
SEQ ID NO: 2019 tcaactgcaagtgcctct 4148 4167 SEQ ID NO: 2325 gagatcaagacactgttga 8835 8854 1 SEQ ID NO: 2020 ggtgttctagacctctcca 4170 4189 SEQ ID NO: 2326 tggaaccctctccacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacagc 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1				4134					6	246		13
SEQ ID NO: 2020 ggtgttctagacctctcca 4170 4189 SEQ ID NO: 2326tggaaccctctccctcacc 4727 4746 1 SEQ ID NO: 2021 ctccacgaatgtctacage 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1	SEQ ID NO	2019	tcaactgcaagtgcctctc	4148	4167	SEQ ID NO:	2325 gag	atcaagacactgttga	8	835		13
SEQ ID NO: 2021 ctccacgaatgtctacage 4184 4203 SEQ ID NO: 2327 gctggtaacctaaaaggag 5580 5599 1 SEQ ID NO: 2022 cacgaatgtctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1	SEQ ID NO	2020	ggtgttctagacctctcca		4189	SEQ ID NO:	2326 tgga	acceteteceteace	4	727		13
SEQ ID NO: 2022 cacgaatglctacagcaac 4187 4206 SEQ ID NO: 2328 gttgcccaccatcatcgtg 11663 11682 1 SEQ ID NO: 2023 acgaatglctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1 SEQ ID NO: 2024 cctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1				ļ					5	580	5599	13
SEQ ID NO: 2023 acgaatgtctacagcaact 4188 4207 SEQ ID NO: 2329 agttgcccaccatcatcgt 11662 11681 1: SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1:				-	4206	SEQ ID NO:	2328 gttg	cccaccatcatcgtg	11	663 1		13
SEQ ID NO: 2024 tcctacagtggtggcaaca 4224 4243 SEQ ID NO: 2330 tgttagttgctcttaagga 13351 13370 1									11	662 1	1681	13
									13	3511:		13
									8	603	8622	13

WO 2004/091515			US2004/011255
SEQ ID NO: 2026 gaaggctgactctgtggtt	4283		13161 13180 13 6957 6976 13
SEQ ID NO: 2027 tgtggttgacctgctttcc	4295		
SEQ ID NO: 2028 cctgctttcctacaatgtg	4304	4323 SEQ ID NO: 2334 cacacettgacattgcagg	11080 11099 13
SEQ ID NO: 2029 ctgctttcctacaatgtgc	4305	4324SEQ ID NO: 2335 gcacaccttgacattgcag	11079 11098 13
SEQ ID NO: 2030tcctacaatgtgcaaggat	4311	4330 SEQ ID NO: 2336 atccgctggctctgaagga	8569 8588 13
SEQ ID NO: 2031 tatgaccacaagaatacgt	4344		9976 9995 13
SEQ ID NO: 2032 atgaccacaagaatacgtc	4345		9975 9994 13
SEQ ID NO: 2033 gaatacgtctacactatca	4355	4374SEQ ID NO: 2339 tgattatctgaattcattc	6479 6498 13
SEQ ID NO: 2034 tttctagattcgaatatca	4398	4417 SEQ ID NO: 2340 tgatttacatgatttgaaa	6677 6696 13
SEQ ID NO: 2035 gattcgaatatcaaattca	4404	4423 SEQ ID NO: 2341 tgaagtagctgagaaaatc	7094 7113 13
SEQ ID NO: 2036 gaaacaacccagtctcaaa	4441	4460SEQ ID NO: 2342 tttgaaaaattctcttttc	9206 9225 13
SEQ ID NO: 2037 cccagtctcaaaaggttta	4448		11294 11313 13
SEQ ID NO: 2038 ctcaaaaggtttactaata	4454	4473 SEQ ID NO: 2344 tattcaaaactgagttgag	12223 12242 1 3
SEQ ID NO: 2039tcaaaaggtttactaatat	4455	4474SEQ ID NO:2345 atattcaaaactgagttga	12222 12241 1 3
SEQ ID NO: 2040 aaaaggtttactaatattc	4457	4476 SEQ ID NO: 2346 gaatttgaaagttcgtttt	9272 9291 1 3
SEQ ID NO: 2041 gaaacagcatttgtttgtc	4535	4554 SEQ ID NO: 2347 gacagcatcttcgtgtttc	11206 11225 1 3
SEQ ID NO: 2042 atttgtttgtcaaagaagt	4543	4562 SEQ ID NO: 2348 acttaaaaaatataaaaat	8014 8033 1 3
SEQ ID NO: 2043 tcaagattgatgggcagtt	4561	4580 SEQ ID NO: 2349 aactetcaagtcaagttga	13414 13433 1 3
SEQ ID NO: 2044 ttcagagtctcttcgttct	4578	4597 SEQ ID NO: 2350 agaagatggcaaatttgaa	11987 12006 1 3
SEQ ID NO: 2045 cagagtetettegttetat	4580	4599 SEQ ID NO: 2351 atagcatggacttcttctg	8865 8884 13
SEQ ID NO: 2046 atgctaaaggcacatatgg	4597	4616SEQ ID NO:2352ccatttgagatcacggcat	9237 9256 1 3
SEQ ID NO: 2047 gcacatatggcctgtcttg	4606	4625 SEQ ID NO: 2353 caagttggcaagtaagtgc	9364 9383 1 3
SEQ ID NO: 2048 gagtccaacctgaggttta	4659	4678 SEQ ID NO: 2354 taaagtgccacttttactc	6182 6201 13
SEQ ID NO: 2049 agtccaacctgaggtttaa	4660	4679 SEQ ID NO: 2355 ttaacagggaagatagact	9300 9319 13
SEQ ID NO: 2050 cctacctccaaggcaccaa	4684	4703 SEQ ID NO: 2356 ttggcaagtaagtgctagg	9368 9387 13
SEQ ID NO: 2051 gaagatggaaccctctccc	4722	4741 SEQ ID NO: 2357 gggaagaagaggcagcttc	12283 12302 1 3
SEQ ID NO: 2052 tgatctgcaaagtggcatc	4754	4773 SEQ ID NO: 2358 gatgaggaaactcagatca	12255 12274 1 3
SEQ ID NO: 2053 gatctgcaaagtggcatca	4755	4774 SEQ ID NO: 2359 tgatgaggaaactcagatc	12254 12273 1 3
SEQ ID NO: 2054 gcttccctaaagtatgaga	4785	4804 SEQ ID NO: 2360 tctcgtgtctaggaaaagc	5969 5988 13
SEQ ID NO: 2055 gtatgagaactacgagctg	4796	4815 SEQ ID NO: 2361 cagcttaagagacacatac	6912 6931 13
SEQ ID NO: 2056 tctaacaagatggatatga	4860	4879 SEQ ID NO: 2362 tcattttccaactaataga	13024 13043 13
SEQ ID NO: 2057 ctgctgcgttctgaatatc	4899	4918 SEQ ID NO: 2363 gatacaagaaaaactgcag	6893 6912 13
SEQ ID NO: 2058 tcattgaggttcttcagcc	4932	4951 SEQ ID NO: 2364 ggctcatatgctgaaatga	5340 5359 13
SEQ ID NO: 2059 ttctggatcactaaattcc	4955	4974 SEQ ID NO: 2365 ggaaggacaaggcccagaa	12541 12560 1 3
SEQ ID NO: 2060 ccatggtcttgagttaaat	4973	4992 SEQ ID NO: 2366 attittattcctgccatgg	10095 10114 13
SEQ ID NO: 2061 tcttaggcactgacaaaat		5018 SEQ ID NO: 2367 attttttgcaagttaaaga	14011 14030 1 3
SEQ ID NO: 2062 acaaggcgacactaaggat		5051 SEQ ID NO: 2368 atccatgatctacatttgt	6786 6805 13
SEQ ID NO: 2063 tgcaacgaccaacttgaag		5094 SEQ ID NO: 2369 cttcagggaacacaatgca	5177 5196 13
SEQ ID NO: 2064 caacttgaagtgtagtctc		5103SEQ ID NO: 2370 gagatgagagatgccgttg	6231 6250 13
SEQ ID NO: 2065 gctggagaatgagctgaat		5127 SEQ ID NO:2371 attetettttetttteage	9214 9233 13
SEQ ID NO: 2066 gcagagcttggcctctctg	5127	5146 SEQ ID NO: 2372 cagatacaagaaaaactgc	6891 6910 13
SEQ ID NO: 2067 tctctggggcatctatgaa		5159 SEQ ID NO: 2373 ttcattcaattgggagaga	6491 6510 13
SEQ ID NO: 2068 tctggggcatctatgaaat		5161 SEQ ID NO: 2374 atttgtaagaaaatacaga	6428 6447 13
SEQ ID NO: 2069 aacacaatgcaaaattcag		5204 SEQ ID NO: 2375 ctgaagcattaaaactgtt	7498 7517 13
SEQ ID NO: 2070 ctcacagagctatcactgg	5223	5242 SEQ ID NO: 2376 ccagatgctgaacagtgag	8141 8160 13
SEQ ID NO: 2071 tgggaagtgcttatcaggc		5258 SEQ ID NO: 2377 gcctacgttccatgtccca	11348 11367 13
SEQ ID NO: 2072 ttcaaggtcagtcaagaag	5295		11969 11988 13
SEQ ID NO: 2073 aatgacatgatgggctcat	5328	5347 SEQ ID NO: 2379 atgattatctgaattcatt	6478 6497 13
SEQ ID NO: 2074 gctcatatgctgaaatgaa	5341	5360 SEQ ID NO: 2380 ttcagccattgacatgagc	5738 5757 13
SEQ ID NO: 2075 atatgctgaaatgaaattt	5345	5364 SEQ ID NO: 2381 aaatagctattgctaatat	6694 6713 13
SEQ ID NO: 2076 tctgaacattgcaggctta	5378	5397 SEQ ID NO: 2382 taagaaccagaagatcaga	10988 11007 13
SEQ ID NO: 2077 gaacattgcaggcttatca	5381	5400 SEQ ID NO: 2383 tgatatcgacgtgaggttc	12482 12501 13

WO 2004/091515		PCT/	US2004/011255		
SEQ ID NO: 2078tgcaggcttatcactggac	5387	5406 SEQ ID NO: 2384 gtcctggattccacatgca	11844	11863	13
SEQ ID NO: 2079 tcaaaacttgacaacattt	5412		7362	7381	13
SEQ ID NO: 2080 atttacagctctgacaagt	5427	5446 SEQ ID NO: 2386 acttaaaaaatataaaaat	8014	8033	13
SEQ ID NO: 2081 ctctgacaagttttataag	5435		10666	10685	13
SEQ ID NO: 2082gttaatttacagctacagc	5460		5570	5589	13
SEQ ID NO: 2083 ttctctggtaactacttta	5483		7267	7286	13
SEQ ID NO: 2084cctaaaaggagcctaccaa	5588	5607 SEQ ID NO: 2390 ttggcaagtaagtgctagg	9368	9387	13
SEQ ID NO: 2085aaaaggagcctaccaaaat	5591	5610 SEQ ID NO: 2391 atttacaattgttgctttt	6263	6282	13
SEQ ID NO: 2086aggagcctaccaaaataat	5594	5613 SEQ ID NO: 2392 attacctatgatttctcct	10119		13
SEQ ID NO: 2087ataatgaaataaaacacat	5608	5627 SEQ ID NO: 2393 atgtcaaacactttgttat	7057	7076	1 3
SEQ ID NO: 2087 attactgatatatatatatatatatatatatatatatata	5618	5637 SEQ ID NO:2394 gatgaagatgacgactttt	12150		13
SEQ ID NO: 2089tgctaaggttcagggtgtg	5678		9079	9098	13
SEQ ID NO: 2090 gagtttagccatcggctca	5697	5716 SEQ ID NO:2396 tgaggtgactcagagactc	7442	7461	13
SEQ ID NO: 2090gagittagccatcggctca	5732	5751 SEQ ID NO: 2397 gtcagtgaagttctccagc	8588	8607	13
SEQ ID NO: 2091 gctggcttcagccattgac			8620	8639	13
SEQ ID NO: 2092 atttcagcaatgtcttccg	5782 5783	5801 SEQ ID NO:2398 cggagcatgggagtgaaat	8619	8638	13
SEQ ID NO: 2093 tttcagcaatgtcttccgt		5802 SEQ ID NO: 2399 acggagcatgggagtgaaa	8618	8637	13
SEQ ID NO: 2094ttcagcaatgtcttccgtt	5784 5786		12404		13
SEQ ID NO: 2095 cagcaatgtcttccgttct			6493		13
SEQ ID NO: 2096 tgtcttccgttctgtaatg	5792		12967		13
SEQ ID NO: 2097 gtcttccgttctgtaatgg	5793		12907		13
SEQ ID NO: 2098 atgggaaactcgctctctg	5851	5870 SEQ ID NO: 2404 cagataaaaaactcaccat			13
SEQ ID NO: 2099ggagaacatactgggcagc	5871	5890 SEQ ID NO: 2405 gctgttttgaagactctcc	1080		13
SEQ ID NO: 2100 gttgaaagcagaacctctg	5906		8266	8285	
SEQ ID NO: 2101 gtctaggaaaagcatcagt	5975		13604		13
SEQ ID NO: 2102 agcatcagtgcagctcttg	5985		13343		13
SEQ ID NO: 2103 ttgaacacaaagtcagtgc	6001	6020 SEQ ID NO: 2409 gcacatcaatattgatcaa	6410		13
SEQ ID NO: 2104 gcagacaggcacctggaaa	6038		11602		13
SEQ ID NO: 2105 gaaactcaagacccaattt	6053		8029	8048	13
SEQ ID NO: 2106 acaatgaatacagccagga	6076		9674	9693	13
SEQ ID NO: 2107 cttggatgcttacaacact	6095		8591	8610	13
SEQ ID NO: 2108 ttggcgtggagcttactgg	6124		8265	8284	13
SEQ ID NO: 2109 cacttttactcagtgagcc	6190		6980	6999	13
SEQ ID NO: 2110 tttagagatgagagatgcc	6227	6246 SEQ ID NO: 2416 ggcatgatgctcatttaaa	9169	9188	13
SEQ ID NO: 2111 gagaagccccaagaattta	6249		12962		13
SEQ ID NO: 2112 caattgttgcttttgtaaa	6268	6287 SEQ ID NO: 2418 tttaaccagtcagatattg	10179		13
SEQ ID NO: 2113 ttttgtaaagtatgataaa		6297 SEQ ID NO: 2419 tttattgctgaatccaaaa	13647		13
SEQ ID NO: 2114ttgtaaagtatgataaaaa		6299SEQ ID NO: 2420ttttgagaggaatcgacaa	6350		13
SEQ ID NO: 2115 ttcactccattaacctccc		6326 SEQ ID NO: 2421 gggaaaaaacaggcttgaa	9568		13
SEQ ID NO: 2116 ttttgagaccttgcaagaa		6348 SEQ ID NO: 2422 ttctctctatgggaaaaaa		9577	13
SEQ ID NO: 2117 accttgcaagaatattttg		6355 SEQ ID NO: 2423 caaaagaagcccaagaggt	12940		13
SEQ ID NO: 2118 tcaatattgatcaatttgt		6434 SEQ ID NO: 2424 acaaagcagattatgttga	11821		13
SEQ ID NO: 2119 cagagcagccctgggaaaa		6462 SEQ ID NO: 2425 ttttcagaccaactctctg	13614		13
SEQ ID NO: 2120 cctgggaaaactcccacag	6452	6471 SEQ ID NO: 2426 ctgtctctggtcagccagg		7735	13
SEQ ID NO: 2121 actcccacagcaagctaat		6480 SEQ ID NO: 2427 attacacttcctttcgagt	12861		13
SEQ ID NO: 2122 aattcattcaattgggaga		6508 SEQ ID NO: 2428 tctcttcctccatggaatt	10471		13
SEQ ID NO: 2123ttcaattgggagagacaag		6514 SEQ ID NO: 2429 cttggagtgccagtttgaa	11800		13
SEQ ID NO: 2124 aggagaaactgactgctct		6545 SEQ ID NO: 2430 agagettatgggattteet	11155		13
SEQ ID NO: 2125 actgactgctctcacaaaa		6552 SEQ ID NO: 2431 ttttggcaagctatacagt	8372		13
SEQ ID NO: 2126 gactgctctcacaaaaaag		6555 SEQ ID NO: 2432 ctttgtgagtttatcagtc	9687		1 3
SEQ ID NO: 2127 cagacatatatgatacaat		6652 SEQ ID NO:2433 attggatatccaagatctg		1944	13
SEQ ID NO: 2128 aatttgatcagtatattaa		6668 SEQ ID NO:2434 ttaaaagaaatcttcaatt	13807		13
SEQ ID NO: 2129tatgatttacatgatttga	6675	6694SEQ ID NO:2435tcaatgattatatcccata	13120	13139	13

WO 2004/091515		PCT/I	US2004/011255
SEQ ID NO: 2130 tttgaaaatagctattgct	6689	6708 SEQ ID NO:2436 agcacagaaaaaattcaaa	13856 13875 13
SEQ ID NO: 2131 ttgaaaatagctattgcta	6690		13855 13874 13
SEQ ID NO: 2132 aatagctattgctaatatt	6695	6714 SEQ ID NO: 2438 aataaatggagtctttatt	14076 14095 13
SEQ ID NO: 2133 attattgatgaaatcattg	6711	6730 SEQ ID NO: 2439 caataccagaattcataat	8260 8279 13
SEQ ID NO: 2134aaagtcttgatgagcacta	6739	6758 SEQ ID NO: 2440 tagtgattacacttccttt	12856 12875 1 3
SEQ ID NO: 2135aagtcttgatgagcactat	6740	6759 SEQ ID NO:2441 atagcaacactaaatactt	8761 8780 13
SEQ ID NO: 2136ttgatgagcactatcatat	6745	6764 SEQ ID NO: 2442 atatccaagatgagatcaa	13093 13112 13
SEQ ID NO: 2137taattttagtaaaaacaat	6769	6788 SEQ ID NO: 2443 attgagattccctccatta	11694 11713 13
SEQ ID NO: 2138ttttagtaaaaacaatcca	6772	6791 SEQ ID NO: 2444 tggagtgccagtttgaaaa	11802 11821 13
SEQ ID NO: 2139acatttgtttattgaaaat	6797	6816 SEQ ID NO: 2445 atttcctaaagctggatgt	11167 11186 13
SEQ ID NO: 2140 attgattttaacaaaagtg	6816		9863 9882 13
SEQ ID NO: 2141 attttaacaaaagtggaag	6820		8006 8025 13
SEQ ID NO: 2142 aaatcagaatccagataca	6880	6899 SEQ ID NO:2448 tgtaccataagccatattt	10080 10099 13
SEQ ID NO: 2143 gaatccagatacaagaaaa	6886	6905 SEQ ID NO: 2449 ttttctaaacttgaaattc	9057 9076 13
SEQ ID NO: 2144ttaagagacacatacagaa	6916		9483 9502 13
SEQ ID NO: 2145atccagcacctagctggaa	6942	6961 SEQ ID NO: 2451 ttccaatttccctgtggat	3680 3699 13
SEQ ID NO: 2146 tgagcatgtcaaacacttt	7052	7071 SEQ ID NO: 2452 aaagtgccacttttactca	6183 6202 13
SEQ ID NO: 2147 gagcatgtcaaacactttg	7053		5326 5345 13
SEQ ID NO: 2148 aaacactttgttataaatc	7062		13125 13144 13
SEQ ID NO: 2149 tgagaaaatcaatgccttc	7103		12021 12040 1 3
SEQ ID NO: 2150 tatgaagtagaccaacaaa	7152		10323 10342 1 3
SEQ ID NO: 2151 aagtagaccaacaaatcca	7156	7175 SEQ ID NO: 2457 tggatgaagatgacgactt	12148 12167 13
SEQ ID NO: 2152 aagttgaaggagactattc	7215	7234 SEQ ID NO: 2458 gaataccaatgctgaactt	10160 10179 13
SEQ ID NO: 2153 acaagttaagataaaagat	7256	7275 SEQ ID NO: 2459 atctaaattcagttcttgt	11326 11345 13
SEQ ID NO: 2154 aagataaaagattactttg	7263		2069 2088 13
SEQ ID NO: 2155 gattactttgagaaattag	7272		9061 9080 13
SEQ ID NO: 2156 tgagaaattagttggattt	7280		7435 7454 13 10411 10430 13
SEQ ID NO: 2157 aaattagttggatttattg	7284		
SEQ ID NO: 2158 tggatttattgatgatgct	7292		9945 9964 13 7414 7433 13
SEQ ID NO: 2159 tcattgaagatgttaacaa	7345		7414 7433 13
SEQ ID NO: 2160 cattgaagatgttaacaaa	7346		10487 10506 13
SEQ ID NO: 2161 attgaagatgttaacaaat	7347	7366 SEQ ID NO: 2467 atttaagtatgatttcaat	10486 10505 13
SEQ ID NO: 2162ttgaagatgttaacaaatt	7348		10485 10504 13
SEQ ID NO: 2163 tgaagatgttaacaaattc	7349		11479 11498 13
SEQ ID NO: 2164 acatgttgataaagaaatt	7372		8783 8802 13
SEQ ID NO: 2165 tttgattaccaccagtttg	7398	7417 SEQ ID NO: 2471 caaattgaacatccccaaa	7964 7983 13
SEQ ID NO: 2166 caaaatccgtgaggtgact	7433	7452 SEQ ID NO: 2472 agtcccctaacagatttg	8630 8649 13
SEQ ID NO: 2167 aaaatccgtgaggtgactc	7434	7453 SEQ ID NO: 2473 gagtgaaatgctgttttt	10723 10742 13
SEQ ID NO: 2168 aggtgactcagagactcaa		7463 SEQ ID NO: 2474 ttgatgatatctggaacct 7484 SEQ ID NO: 2475 tccaatctcctcttttcac	8401 8420 13
SEQ ID NO: 2169gtgaaattcaggctctgga			8532 8551 13
SEQ ID NO: 2170gttgcagtgtatctggaaa		7558SEQ ID NO: 2476tttcaagcaaatgcacaac 7627SEQ ID NO: 2477ccaatgctgaactttttaa	10165 10184 13
SEQ ID NO: 2171ttaagttcagcatcttgg	7622	7652 SEQ ID NO:2477 Coaligoryaactittaa 7652 SEQ ID NO:2478 teteetttetteatettea	10205 10224 13
SEQ ID NO: 2172tgaaggccaaattccgaga	7033	7695 SEQ ID NO:2479 aatgaagtccggattcatt	11013 11032 13
SEQ ID NO: 2173 aatgtatcaaatggacatt	7600	7711SEQ ID NO: 2480gttgagaagccccaagaat	6246 6265 13
SEQ ID NO: 2174 attcagcaggaacttcaac		7711SEQ ID NO:2480gitgagaagcccaagaat	9369 9388 13
SEQ ID NO: 2175 acctgtctctggtcagcca		7733SEQ ID NO:2482 ctggacttctctagtcagg	8802 8821 13
SEQ ID NO: 2176 cctgtctctggtcagccag		7734SEQ ID NO:2483gctaaaggagcagttgacc	10527 10546 13
SEQ ID NO: 2177 ggtcagccaggtttatagc			11017 11036 13
SEQ ID NO: 2178 ccaggtttatagcacactt	7730	7743 SEQ ID NO: 2485 tgacctgtccattcaaaac	13673 13692 13
SEQ ID NO: 2179 gtttatagcacacttgtca	77/	7764 SEQ ID NO:2486 agaaaaaggggattgaagt	10275 10294 13
SEQ ID NO: 2180 acttgtcacctacatttct SEQ ID NO: 2181 ctgattggtggactcttgc	7762		14018 14037 13
DEM ID MOJETO Iprigariggiggaciorigo	1 , , 02	- · · · · OL & ID 110 IT · · · · B · · · · · · B · · · · · · ·	

WO 2004/091515		PCT/	US2004/011255
SEQ ID NO: 2182 atgaaagcattggtagagc	7839		, 10200 10219 13
SEQ ID NO: 2183tgaaagcattggtagagca		7859 SEQ ID NO:2489 tgctcatctcctttcttca	10199 10218 13
SEQ ID NO: 2184gggttcactgttcctgaaa	7860	7879 SEQ ID NO: 2490 tttcaccatagaaggaccc	8951 8970 13
SEQ ID NO: 2185 tcaagaccatccttgggac	7879		7965 7984 13
SEQ ID NO: 2186 ccttgggaccatgcctgcc	7889	7908SEQ ID NO:2492ggcaccagggctcggaagg	13970 13989 13
SEQ ID NO: 2187ttcaggctcttcagaaagc	7921	7940 SEQ ID NO: 2493 gcttgaaggaattcttgaa	9580 9599 13
SEQ ID NO: 2188 ttcagataaacttcaaaga	7996	8015 SEQ ID NO: 2494 tcttcataagttcaatgaa	13175 13194 13
SEQ ID NO: 2189 acttcaaagacttaaaaaa	8005	8024 SEQ ID NO:2495 ttttaacaaaagtggaagt	6821 6840 13
SEQ ID NO: 2190 atcccatccaggttttcca	8031	8050 SEQ ID NO: 2496 tggagaagcaaatctggat	9464 9483 13
SEQ ID NO: 2191 gaatttaccatccttaaca	8055	8074 SEQ ID NO:2497 tgttgaagtgtctccattc	9881 9900 13
SEQ ID NO: 2192 cattccttcctttacaatt	8081	8100 SEQ ID NO:2498 aattccaattttgagaatg	10406 10425 13
SEQ ID NO: 2193ttgaccagatgctgaacag	8137	8156 SEQ ID NO:2499 ctgttgaaagatttatcaa	12924 12943 13
SEQ ID NO: 2194 aatcaccetgccagacttc	8225	8244SEQ ID NO:2500gaagttctcaattttgatt	8514 8533 13
SEQ ID NO: 2195 tgaccttcacataccagaa	8312	8331 SEQ ID NO: 2501 ttcttctggaaaagggtca	8876 8895 13
SEQ ID NO: 2196ttccagcttccccacatct	8331	8350 SEQ ID NO:2502 agattctcagatgagggaa	8913 8932 13
SEQ ID NO: 2197aagctatacagtattctga	8379	8398 SEQ ID NO:2503 tcagatggcattgctgctt	11604 11623 13
SEQ ID NO: 2198 attetgaaaatecaatete	8391	8410 SEQ ID NO:2504 gagataaccgtgcctgaat	11544 11563 13
SEQ ID NO: 2199 tttcacattagatgcaaat	8414	8433 SEQ ID NO:2505 attttgaaaaaaaacagaaa	9730 9749 13
SEQ ID NO: 2200 caaatgctgacatagggaa	8428	8447 SEQ ID NO: 2506 ttccatcacaaatcctttg	9662 9681 13
SEQ ID NO: 2201 gagagtccaaattagaagt	8500	8519 SEQ ID NO: 2507 acttracttcccaactctc	13402 13421 13
SEQ ID NO: 2202 agagtccaaattagaagtt	8501	8520 SEQ ID NO:2508 aactttacttcccaactct	13401 13420 13
SEQ ID NO: 2203 tctcaattttgattttcaa	8519	8538 SEQ ID NO: 2509 ttgattcccttttttgaga	11529 11548 13
SEQ ID NO: 2204 caattttgattttcaagca	8522	8541 SEQ ID NO:2510 tgctgaatccaaaagattg	13652 13671 13
SEQ ID NO: 2205 aatgcacaactctcaaacc	8541	8560 SEQ ID NO:2511 ggtttatcaaggggccatt	12452 12471 13
SEQ ID NO: 2206 agttctccagcaagtacct	8596	8615 SEQ ID NO: 2512 aggttccatcgtgcaaact	11380 11399 13
SEQ ID NO: 2207 agtacctgagaacggagca	8608	8627 SEQ ID NO:2513 tgctccaggagaacttact	13772 13791 13
SEQ ID NO: 2208tcaaacacagtggcaagtt	8670	8689 SEQ ID NO:2514 aactctcaagtcaagttga	13414 13433 13
SEQ ID NO: 2209 acaatcagcttaccctgga	8743	8762 SEQ ID NO:2515 tccattctgaatatattgt	13372 13391 13
SEQ ID NO: 2210 ctggatagcaacactaaat	8757	8776 SEQ ID NO: 2516 attttctgaacttccccag	12694 12713 13
SEQ ID NO: 2211 ctgacctgcgcaacgagat	8821	8840 SEQ ID NO:2517 atctgatgaggaaactcag	12251 12270 13
SEQ ID NO: 2212agatgagggaacacatgaa	8921	8940 SEQ ID NO: 2518 ttcatgtccctagaaatct	10030 10049 13
SEQ ID NO: 2213 tcaactttctaaacttga	9052		12610 12629 13
SEQ ID NO: 2214ttctaaacttgaaattcaa	9059		7300 7319 13
SEQ ID NO: 2215 gaaattcaatcacaagtcg	9069		13558 13577 13
SEQ ID NO: 2216 cactgtttggagaagggaa		9152 SEQ ID NO: 2522 ttccagaaagcagccagtg	12498 12517 13
SEQ ID NO: 2217 actgtttggagaagggaag		9153 SEQ ID NO: 2523 cttccccaaagagaccagt	2890 2909 13
SEQ ID NO: 2218 aattetettttetttteag		9232 SEQ ID NO:2524 ctgattactatgaaaaatt	13630 13649 13
SEQ ID NO: 2219 ttcttttcagcccagccat		9241 SEQ ID NO:2525 atggaaaagggaaagagaa	13486 13505 13
SEQ ID NO: 2220 tittgaaagttcgttttcca		9294SEQ ID NO:2526tggaagtgtcagtggcaaa	10372 10391 13
SEQ ID NO: 2221 cagggaagatagacttcct		9323 SEQ ID NO: 2527 aggacctttcaaattcctg	9840 9859 13
SEQ ID NO: 2222 ataagtacaaccaaaattt		9416 SEQ ID NO:2528 aaatcaggatctgagttat	14030 14049 13
SEQ ID NO: 2223 acaacgagaacattatgga		9446 SEQ ID NO: 2529 tccattctgaatatattgt	13372 13391 13
SEQ ID NO: 2224 aggaataaatggagaagca	9455	9474 SEQ ID NO: 2530 tgctggaattgtcattcct	11726 11745 13
SEQ ID NO: 2225 agcaaatctggatttctta	9470	9489 SEQ ID NO:2531 taagttetetgtacetget	11711 11730 13
SEQ ID NO: 2226 tcctttaacaattcctgaa		9513SEQ ID NO:2532ttcaaaacgagcttcagga	13198 13217 13
SEQ ID NO: 2227 titaacaattcctgaaatg		9516SEQ ID NO: 2533 cattgatttaagtgtaaa	9613 9632 13
SEQ ID NO: 2228 acacaataatcacaactcc		9545SEQ ID NO:2534ggagacagcatcttcgtgt	11203 11222 13
SEQ ID NO: 2229aagatttctctctatggga		9572SEQ ID NO: 2535 tcccagaaaacctcttctt	3928 3947 13
SEQ ID NO: 2230gaaaaaacaggcttgaagg		9589SEQ ID NO: 2536 ccttttacaattcattttc	13013 13032 13
SEQ ID NO: 2231 ttgaaggaattcttgaaaa		9601SEQ ID NO: 2537 ttttgagaatgaatttcaa	10414 10433 13
SEQ ID NO: 2232 tgaaggaattettgaaaac		9602SEQ ID NO: 2538gttttggctgataaattca	11283 11302 13
SEQ ID NO: 2233 agetcagtataagaaaaac	9632	·	9797 9816 13
DEW ID NO. ZZSSagoroagraraagaaaaac	L 0002	TOO IOLG ID IVO, Ecoolginguidad guidadagui	3, 3, 30, 30

WO 2004/091515					/US2004/011255	
SEQ ID NO: 2234 caaatcctttgacaggca	9712 973	1SEQ ID NO	2540	tgcctgagcagaccattga	11680 11699	
SEQ ID NO: 2235 atgaaacaaaaattaagtt	9781 980	OSEQ ID NO	2541	aactttgcactatgttcat	12754 12773	13
SEQ ID NO: 2236 aattootggatacactgtt	9851 987	OSEQ ID NO	2542	aacacatgaatcacaaatt	8930 8949	13
SEQ ID NO: 2237ttccagttgtcaatgttga				tcaaaacgagcttcaggaa	13199 13218	13
SEQ ID NO: 2238 aagtgtctccattcaccat				atgggaagtataagaactt	4834 4853	13
SEQ ID NO: 2239 gtcagcatgcctagtttct				agaaaaggcacaccttgac	11072 11091	13
SEQ ID NO: 2240 ctgccatgggcaatattac				gtaagaaaatacagagcag	6432 6451	13
SEQ ID NO: 2241tgaataccaatgctgaact				agttgaaggagactattca	7216 7235	
SEQ ID NO: 2242 tattgttgctcatctcctt				aaggaaacataaactaata	12881 12900	
SEQ ID NO: 2243 tgttgctcatctcctttct				agaagaaatctgcagaaca	12423 12442	
SEQ ID NO: 2244 totgtcattgatgcactgc				gcagtagactataagcaga	13920 13939	
SEQ ID NO. 2244 long candatatatatata				ctcagggatctgaaggtgg	8187 8206	
SEQ ID NO: 2245 ccacagetetgetetgag				atgaagtagaccaacaaat	7153 7172	
SEQ ID NO: 2246 atttgtggagggtagtcat					10770 10789	
SEQ ID NO: 2247 atatggaagtgtcagtggc				gccacactccaacgcatat	13015 13034	
SEQ ID NO: 2248tggaaataccaagtcaaaa				ttttacaattcattttcca	12851 12870	
SEQ ID NO: 2249 aagtcaaaacctactgtct				agacctagtgattacactt		
SEQ ID NO: 2250 actgtetettectecatgg				ccatgcaagtcagcccagt	10916 10935 7140 7159	
SEQ ID NO: 2251 cttcctccatggaatttaa				ttaatcgagaggtatgaag		
SEQ ID NO: 2252 attetteaatgetgtacte				gagttgagggtccgggaat	12234 12253	
SEQ ID NO: 2253 ttgaccacaagcttagctt				aagcgcacctcaatatcaa	12028 12047	
SEQ ID NO: 2254 cctcacctcttacttttcc				ggaactattgctagtgagg	10641 10660	
SEQ ID NO: 2255 agctgcagggcacttccaa				ttgggaagaagaggcagct	12281 12300	L
SEQ ID NO: 2256 ttccaaaattgatgatatc				gatatacactagggaggaa	12737 12756	
SEQ ID NO: 2257 gagaacatacaagcaaagc				gcttggttttgccagtctc	2459 2478	
SEQ ID NO: 2258 atggcaaatgtcagctctt				aagaggtatttaaagccat	12952 12971	
SEQ ID NO: 2259 tggcaaatgtcagctcttg	10890 1090	9SEQ ID NO	2565	caagaggtatttaaagcca	12951 12970	
SEQ ID NO: 2260ttgttcaggtccatgcaag	10906 1092	5SEQ ID NO	2566	cttgggggaggaggaacaa	14058 14077	
SEQ ID NO: 2261 tgttcaggtccatgcaagt	10907 1092	6SEQ ID NO	:2567	acttgggggaggaggaaca	14057 14076	13
SEQ ID NO: 2262 agttccttccatgatttcc	10932 1095	1SEQ ID NO	2568	ggaatctgatgaggaaact	12248 12267	
SEQ ID NO: 2263 tgctaacactaagaaccag				ctggatgtaaccaccagca	11178 11197	13
SEQ ID NO: 2264actaagaaccagaagatca				tgatcaagaacctgttagt	13339 13358	13
SEQ ID NO: 2265 ctaagaaccagaagatcag				ctgatcaagaacctgttag	13338 13357	13
SEQ ID NO: 2266 cagaagatcagatggaaaa				ttttcagaccaactctctg	13614 13633	13
SEQ ID NO: 2267 aaaaatgaagtccggattc				gaatttgaaagttcgtttt	9272 9291	13
SEQ ID NO: 2268 gattcattctgggtctttc				gaaaacctatgccttaatc	13158 13177	13
SEQ ID NO: 2269 aagaaaaggcacaccttga				tcaaaacctactgtctctt	10458 10477	
SEQ ID NO: 2270 aaggacacctaaggttct	111071112	6SEQ ID NO	2576	aggacaccaaaataacctt	7564 7583	
SEQ ID NO: 2271 ccagcattggtaggagaca				tgtcaacaagtaccactgg	12362 12381	
SEQ ID NO: 2277 coageanggragagada				gtttttaaattgttgaaag	13140 13159	
SEQ ID NO: 2273 ccatccctgtaaaagtttt				aaaagggtcatggaaatgg	8885 8904	
SEQ ID NO: 2273 coate congraaa agutti				aagatagtcagtctgatca	13326 13345	
SEQ ID NO: 2274 Igaictaaattcagttett SEQ ID NO: 2275 aagaagctgagaacttcat				atgagatcaacacaatctt	13102 13121	
DEC ID NO 2270 day advisaga actical				ttggtacgagttactcaaa	12633 12652	
SEQ ID NO: 2276tttgccctcaacctaccaa				ctcaattttgattttcaag	8520 8539	
SEQ ID NO: 2277 cttgattcccttttttgag					12685 12704	
SEQ ID NO: 2278ttcacgcttccaaaaagtg				cactcattgattttctgaa	11825 11844	
SEQ ID NO: 2279 tgtttcagatggcattgct				agcagattatgttgaaaca		
SEQ ID NO: 2280 aatgcagtagccaacaaga				tcttttcagcccagccatt	9223 9242	
SEQ ID NO: 2281 ctgagcagaccattgagat				atctgatgaggaaactcag	12251 12270	
SEQ ID NO: 2282 tgagcagaccattgagatt				aatctgatgaggaaactca	12250 12269	
SEQ ID NO: 2283 ttgagattccctccattaa				ttaatcttcataagttcaa	13171 13190	
SEQ ID NO: 2284 acttggagtgccagtttga				tcaattgggagagacaagt	6496 6515	
SEQ ID NO: 2285 caaatttgaaggacttcag	11996 1201	5SEQ ID NO	:2591	ctgagaacttcatcatttg	11430 11449	1 3

WO 2004/091515	PCT	/US2004/011255
SEQ ID NO: 2286 agcccagcgttcaccgatc	12048 12067 SEQ ID NO: 2592 gatccaagtatagttggct	13278 13297 13
SEQ ID NO: 2287 cagcgttcaccgatctcca	12052 12071 SEQ ID NO: 2593 tggacctgcaccaaagctg	13952 13971 13
SEQ ID NO: 2288 ctccatctgcgctaccaga	12066 12085 SEQ ID NO: 2594 tctgatatacatcacggag	13703 13722 13
SEQ ID NO: 2289 atgaggaaactcagatcaa	12256 12275 SEQ ID NO: 2595 ttgagttgcccaccatcat	11659 11678 13
SEQ ID NO: 2290 aggcagcttctggcttgct	12292 12311 SEQ ID NO: 2596 agcaagtctttcctggcct	3010 3029 13
SEQ ID NO: 2291 tgaaagacaacgtgcccaa	12319 12338 SEQ ID NO: 2597 ttgggagagacaagtttca	6500 6519 13
SEQ ID NO: 2292 tatgattatgtcaacaagt	12354 12373 SEQ ID NO: 2598 actttgcactatgttcata	12755 12774 1 3
SEQ ID NO: 2293 cattaggcaaattgatgat	12467 12486 SEQ ID NO: 2599 atcaacacaatcttcaatg	13107 13126 13
SEQ ID NO: 2294ttgactcaggaaggccaag	12576 12595 SEQ ID NO: 2600 cttggtacgagttactcaa	12632 12651 13
SEQ ID NO: 2295 gaaacctgggatatacact	12728 12747 SEQ ID NO: 2601 agtgattacacttcctttc	12857 12876 13
SEQ ID NO: 2296 tcctttcgagttaaggaaa	12869 12888 SEQ ID NO: 2602 tttctgccactgctcagga	13516 13535 1 3
SEQ ID NO: 2297gccattcagtctctcaaga	12966 12985 SEQ ID NO: 2603 tette cettet gta atgge	5794 5813 13
SEQ ID NO: 2298 gtgctacgtaatcttcagg	12993 13012 SEQ ID NO: 2604 cctgcaccaaagctggcac	13956 13975 13
SEQ ID NO: 2299 agctgaaagagatgaaatt	13057 13076 SEQ ID NO: 2605 aatttattcaaaacgagct	13192 13211 13
SEQ ID NO: 2300 aatttacttatcttattaa	13072 13091 SEQ ID NO: 2606 ttaaaagaaatcttcaatt	13807 13826 1 3
SEQ ID NO: 2301 ttttaaattgttgaaagaa	13142 13161 SEQ ID NO: 2607 ttctctctatgggaaaaaa	9558 9577 13
SEQ ID NO: 2302 taatcttcataagttcaat	13172 13191 SEQ ID NO: 2608 attgagattccctccatta	11694 11713 13
SEQ ID NO: 2303 atattttgatccaagtata	13271 13290 SEQ ID NO: 2609 tataagcagaagcacatat	13929 13948 1 3
SEQ ID NO: 2304tgaaatattatgaacttga	13303 13322 SEQ ID NO: 2610 tcaaccttaatgattttca	8287 8306 1 3
SEQ ID NO: 2305 caatttctgcacagaaata	13434 13453 SEQ ID NO: 2611 tattettetttteeaattg	13826 13845 13
SEQ ID NO: 2306 agaagattgcagagctttc	13501 13520 SEQ ID NO: 2612 gaaatetteaatttattet	13813 13832 13
SEQ ID NO: 2307 gaagaaaataatttctgat	13562 13581 SEQ ID NO: 2613 atcagttcagataaacttc	7991 8010 13
SEQ ID NO: 2308ttgacctgtccattcaaaa	13672 13691 SEQ ID NO: 2614 ttttgagaatgaatttcaa	10414 10433 1 3
SEQ ID NO: 2309tcaaaactaccacacattt	13685 13704 SEQ ID NO: 2615 aaatteettgacatgttga	7362 7381 13
SEQ ID NO: 2310 ttttttaaaagaaatcttc	13803 13822 SEQ ID NO: 2616 gaagtgtcagtggcaaaaa	10374 10393 1 3
SEQ ID NO: 2311 aggatctgagttattttgc	14035 14054 SEQ ID NO: 2617 gcaagggttcactgttcct	7856 7875 13
SEQ ID NO: 2312 tttgctaaacttgggggag	14049 14068 SEQ ID NO: 2618 ctccccaggacctttcaaa	9834 9853 13

= Match Number

B = Middle Matching Bases

	<u>1</u>	<u>able 10. Selected pa</u>							 	
		Source	Start Index	End Index			Match	Start Index	End Index#	В
SEQ ID NO:	2619	ggccattccagaagggaag	517	536	SEQ ID NO:	3948	cttccgttctgtaatggcc	5803	58221	
SEQ ID NO:	2620	tgccatctcgagagttcca	4107	4126	SEQ ID NO:	3949	tggaactctctccatggca	10884	109031	
SEQ ID NO:	2621	catgtcaaacactttgtta	7064	7083	SEQ ID NO:	3950	taacaaattccttgacatg	7366	73851	
SEQ ID NO:	2622	tttgttataaatcttattg	7076	7095	SEQ ID NO:	3951	caataagatcaatagcaaa	8998	90171	1
SEQ ID NO:	2623	tctggaaaagggtcatgga	8888	8907	SEQ ID NO:	3952	tccatgtcccatttacaga	11364	113831	8
SEQ ID NO:	2624	cagetettgtteaggteea	10908	10927	SEQ ID NO:	3953	tggacctgcaccaaagctg	13960	139791	8
SEQ ID NO:	2625	ggaggttccccagctctgc	364	383	SEQ ID NO:	3954	gcagccctgggaaaactcc	6455	64741	7
SEQ ID NO:	2626	ctgttttgaagactctcca	1089	1108	SEQ ID NO:	3955	tggagggtagtcataacag	10335	103541	7
SEQ ID NO:	2627	agtggctgaaacgtgtgca	1305				tgcagagctttctgccact	13516	135351	7
		ccaaaatagaagggaatct	2076				agattcctttgccttttgg	4008	4027 1	7
SEQ ID NO:	2629	tgaagagaagattgaattt	3628				aaattctcttttcttttca	9220	92391	7
SEQ ID NO:	2630	agtggtggcaacaccagca	4238				tgctagtgaggccaacact	10657	106761	7
SEQ ID NO:	2631	aaggeteeacaagteatea	5958				tgatgatatctggaacctt	10732	107511	7
SEQ ID NO:	2632	gtcagccaggtttatagca	7733				tgctaagaaccttactgac	7789	78081	7
SEQ ID NO:	2633	tgatatctggaaccttgaa	10735				ttcactgttcctgaaatca	7871	78901	7
SEQ ID NO:	2634	gtcaagttgagcaatttct	13431				agaaaaggcacaccttgac	11080	110991	7
SEQ ID NO:	2635	atccagatggaaaagggaa	13488				ttccaatttccctgtggat	3688	37071	7
SEQ ID NO:	2636	atttgtttgtcaaagaagt	4551				acttcagagaaatacaaat	11409	114284	
SEQ ID NO:	2637	ctggaaaatgtcagcctgg	212				ccagacttccgtttaccag	8243	82622	6
SEQ ID NO:	2638	accaggaggttcttcttca	1737				tgaagtgtagtctcctggt	5097	51162	6
SEQ ID NO:	2639	aaagaagttctgaaagaat	1964				attccatcacaaatccttt	9669	96882	6
SEQ ID NO:	2640	gctacagcttatggctcca	3578				tggatctaaatgcagtagc	11631	116502	6
SEQ ID NO:	2641	atcaatattgatcaatttg	6422			_	caaagaagtcaagattgat	4561	45802	6
SEQ ID NO:	2642	gaattatcttttaaaacat	7334				atgtgttaacaaaatattc	11502	115212	
SEQ ID NO:	2643	cgaggcccgcgctgctggc	138				gccagaagtgagatcctcg	3515	35341	6
SEQ ID NO:	2644	acaactatgaggctgagag	279				ctctgagcaacaaatttgt	10317	103361	
SEQ ID NO:	2645	gctgagagttccagtggag	290			_	ctccatggcaaatgtcagc	10893	109121	
SEQ ID NO:	2646	tgaagaaaaccaagaactc	456				gagtcattgaggttcttca	4937	49561	6
SEQ ID NO:	2647	cctacttacatcctgaaca	566				tgttcataagggaggtagg	12774	127931	6
SEQ ID NO:	2648	ctacttacatcctgaacat	567				atgttcataagggaggtag	12773	127921	6
SEQ ID NO:	2649	gagacagaagaagccaagc	623				gettggttttgccagtete	2467	24861	6
SEQ ID NO:	2650	cactcactttaccgtcaag	679				cttgaacacaaagtcagtg	6008	60271	6
SEQ ID NO:	2651	ctgatcagcagcagccagt	830				actgggaagtgcttatcag	5245	52641	6
SEQ ID NO:	2652	actggacgctaagaggaag	862	881	SEQ ID NO:	3981	cttccccaaagagaccagt	2898	29171	6
SEQ ID NO:	2653	agaggaagcatgtggcaga	873				tetggcatttactttetet	5929	59481	6
SEQ ID NO:	2654	tgaagactctccaggaact	1095				agttgaaggagactattca	7224	72431	6
SEQ ID NO:	2655	ctctgagcaaaatatccag	1129				ctggttactgagctgagag	1169	11881	6
SEQ ID NO:	2656	atgaagcagtcacatctct	1197				agagctgccagtccttcat	10024	100431	
SEQ ID NO:	2657	ttgccacagctgattgagg	1217	1236	SEQ ID NO:	3986	cctcctacagtggtggcaa	4230	42491	6
SEQ ID NO:	2658	agctgattgaggtgtccag	1224				ctggattccacatgcagct	11855	118741	6
SEQ ID NO:	2659	tgetecacteacatectec	1286				ggaggctttaagttcagca	7609	76281	6
SEQ ID NO:	2660	tgaaacgtgtgcatgccaa	1311				ttgggagagacaagtttca	6508	65271	6
SEQ ID NO:	2661	gacattgctaattacctga	1511				tcagaagctaagcaatgtc	7240	72591	6
SEQ ID NO:	2662	ttcttcttcagactttcct	1746				aggagagtccaaattagaa	8506	85251	
SEQ ID NO:	2663	ccaatatcttgaactcaga	1911				tctgaattcattcaattgg	6493	65121	
SEQ ID NO:	2664	aaagttagtgaaagaagtt	1954	1973	SEQ ID NO:	3993	aactaccctcactgccttt	2140	21591	6

less-posttostassassasta	1955	1074	SEQ ID NO: 3994 gaacctctggcatttactt	5924	59431	6
SEQ ID NO: 2665 aagttagtgaaagaagttc	1964		SEQ ID NO: 3995 attetetggtaactacttt	5490	55091	
SEQ ID NO: 2666 aaagaagttctgaaagaat SEQ ID NO: 2667 tttggctataccaaagatg	2330		SEQ ID NO: 3996 catcttaggcactgacaaa	5005	50241	
SEQ ID NO: 2668 tgttgagaagctgattaaa	2389		SEQ ID NO: 3997 tttagccatcggctcaaca	5708	57271	6
SEQ ID NO: 2669 caggaagggctcaaagaat	2569		SEQ ID NO: 3998 attectttaacaattectg	9500	95191	6
	2570		SEQ ID NO: 3999 catteetttaacaatteet	9499	95181	
SEQ ID NO: 2670 aggaagggctcaaagaatg	2572		SEQ ID NO: 4000 gtcagtcttcaggctcttc	7922	79411	6
SEQ ID NO: 2671 gaagggctcaaagaatgac SEQ ID NO: 2672 caaagaatgactttttct	2580		SEQ ID NO: 4001 agaaggatggcatttttg	14008	140271	6
SEQ ID NO: 2673 catggagaatgacttttea	2611		SEQ ID NO: 4002 ttcagagccaaagtccatg	7127	71461	6
SEQ ID NO: 2674ggagccaaggctggagtaa	2687		SEQ ID NO: 4003 ttactccaacgccagctcc	3058	30771	6
SEQ ID NO: 2675 tcattccttccccaaagag	2892		SEQ ID NO: 4004 ctctctggggcatctatga	5147	51661	6
SEQ ID NO: 2676 acctatgagetecagagag	3173		SEQ ID NO: 4005 ctctcaagaccacagaggt	12984	130031	6
SEQ ID NO: 2677 gggcaaaacgtcttacaga	3373		SEQ ID NO: 4006 totgaaagacaacgtgccc	12325	123441	6
SEQ ID NO: 2678 accctggacattcagaaca	3395		SEQ ID NO: 4007 tgttgctaaggttcagggt	5683	57021	6
SEQ ID NO: 2679 atgggcgacctaagttgtg	3437		SEQ ID NO: 4008 cacaaattagtttcaccat	8949	89681	6
SEQ ID NO: 2680 gatgaagagaagattgaat	3626		SEQ ID NO: 4009 attccagcttccccacatc	8338	83571	6
SEQ ID NO: 2681 caatgtagataccaaaaaa	3664		SEQ ID NO:4010ttttttggaaatgccattg	8651	86701	6
SEQ ID NO: 2682 gtagataccaaaaaaatga	3668		SEQ ID NO:4011tcatgtgatgggtctctac	4379	43981	6
SEQ ID NO: 2683 gcttcagttcatttggact	4517		SEQ ID NO:4012 agtcaagaaggacttaagc	5312	53311	6
SEQ ID NO: 2684 tttgtttgtcaaagaagtc	4552		SEQ ID NO:4013 gacttcagagaaatacaaa	11408	114271	6
SEQ ID NO: 2685 ttgtttgtcaaagaagtca	4553		SEQ ID NO:4014tgacttcagagaaatacaa	11407	114261	. 6
SEQ ID NO: 2686 tggcaatgggaaactcgct	5854	5873	SEQ ID NO:4015 agcgagaatcaccctgcca	8227	82461	6
SEQ ID NO: 2687 aacctctggcatttacttt	5925		SEQ ID NO:4016 aaaggagatgtcaagggtt	10607	106261	. 6
SEQ ID NO: 2688 catttactttctctcatga	5934	5953	SEQ ID NO:4017tcatttgaaagaataaatg	7034	70531	6
SEQ ID NO: 2689 aaagtcagtgccctgctta	6017	6036	SEQ ID NO:4018 taagaaccttactgacttt	7792	78111	6
SEQ ID NO: 2690 teccattitttgagacett	6330		SEQ ID NO:4019 aaggacttcaggaatggga	12012	12031	6
SEQ ID NO: 2691 catcaatattgatcaattt	6421	6440	SEQ ID NO:4020 aaattaaaaagtcttgatg	6740	67591	6
SEQ ID NO: 2692 taaagatagttatgattta	6673		SEQ ID NO:4021 taaaccaaaacttggttta	9027	90461	6
SEQ ID NO: 2693 tattgatgaaatcattgaa	6721		SEQ ID NO: 4022 ttcaaagacttaaaaaata	8015	80341	6
SEQ ID NO: 2694 atgatctacatttgtttat	6798		SEQ ID NO: 4023 ataaagaaattaaagtcat	7388	74071	6
SEQ ID NO: 2695 agagacacatacagaatat	6927		SEQ ID NO: 4024 atatattgtcagtgcctct	13390	134091	6
SEQ ID NO: 2696 gacacatacagaatataga	6930		SEQ ID NO: 4025 tctaaattcagttcttgtc	11335	113541	6
SEQ ID NO: 2697 agcatgtcaaacactttgt	7062		SEQ ID NO: 4026 acaaagtcagtgccctgct	6015	60341	6
SEQ ID NO: 2698 tttttagaggaaaccaagg	7523		SEQ ID NO: 4027 cctttgtgtacaccaaaaa	11238	112571	6
SEQ ID NO: 2699 ttttagaggaaaccaaggc	7524		SEQ ID NO: 4028 gcctttgtgtacaccaaaa	11237	112561	6
SEQ ID NO: 2700 ggaagatagacttcctgaa	9315		SEQ ID NO: 4029ttcagaaatactgttttcc	12832	128511	
SEQ ID NO: 2701 cactgtttctgagtcccag	9342		SEQ ID NO: 4030 ctgggacctaccaagagtg	12531	125501	6
SEQ ID NO: 2702 cacaaatcctttggctgtg	9676		SEQ ID NO: 4031 cacatttcaaggaattgtg	10071	100901	6
SEQ ID NO: 2703 ttcctggatacactgttcc	9861		SEQ ID NO: 4032 ggaactgttgactcaggaa	12577	125961	6
SEQ ID NO: 2704 gaaatctcaagctttctct	10050		SEQ ID NO: 4033 agagccaggtcgagctttc	11052	110711 130821	6
SEQ ID NO: 2705 tttcttcatcttcatctgt	10218		SEQ ID NO: 4034 acagctgaaagagatgaaa	13063		6
SEQ ID NO: 2706 totaccgctaaaggagcag	10529		SEQ ID NO: 4035 ctgcacgctttgaggtaga	11769	117881 117871	6
SEQ ID NO: 2707 ctaccgctaaaggagcagt	10530		SEQ ID NO: 4036 actgcacgctttgaggtag	11768 10965	109841	6
SEQ ID NO: 2708 agggcctctttttcaccaa	10839		SEQ ID NO: 4037 ttggccaggaagtggccct	10965	10984	6
SEQ ID NO: 2709 ttctccatccctgtaaaag	11273		SEQ ID NO:4038 ctttttcaccaacggagaa	13608	136271	6
SEQ ID NO: 2710 gaaaaaacaaagcagattat	11824		SEQ ID NO: 4039 ataaactgcaagatttttc			6
SEQ ID NO: 2711 actcactcattgattttct	12690	12/09	SEQ ID NO: 4040 agaaaatcaggatctgagt	14035	140541	О

SEQ ID NO: 2712 taaactaatagatgtaatc	12898	12917	OFO ID NO.	4041 gattaccaccagcagttta	13586	13605	1 6
SEQ ID NO: 2713 caaaacgagcttcaggaag	13208			4042 cttcgtgaagaatattttg	13268	132871	
SEQ ID NO: 2714 tggaataatgctcagtgtt	2374			4043aacacttacttgaattcca	10670	106893	
SEQ ID NO: 2715 gatttgaaatccaaagaag	2408			4044cttcagagaaatacaaatc	11410		<u> </u>
SEQ ID NO: 2716 atttgaaatccaaagaagt	2409			4045acttcagagaaatacaaat	11409	114283	L
SEQ ID NO: 2717 atcaacagccgcttctttg	998		 	4046caaagaagtcaagattgat	4561	45802	
SEQ ID NO: 2718 tgttttgaagactctccag	1090			4047 ctggaaagttaaaacaaca	6963	69822	
SEQ ID NO: 2719 cccttctgatagatgtggt	1332			4048accaaagctggcaccaggg	13969	139882	
SEQ ID NO: 2720 tgagcaagtgaagaacttt	1876			4049aaagccattcagtctctca	12971	129902	
SEQ ID NO: 2721 atttgaaatccaaagaagt	2409			4050acttttctaaacttgaaat	9063	90822	
SEQ ID NO: 2722 atccaaagaagtcccggaa	2416			4051ttccggggaaacctgggat	12729	127482	5
SEQ ID NO: 2723 agagcctacctccgcatct	2438			4052 agatggtacgttagcctct	11929	119482	5
SEQ ID NO: 2724 aatgcetttgaactcccca	2618			4053tgggaactacaatttcatt	7020	70392	5
SEQ ID NO: 2725 gaagtccaaattccggatt	3305			4054 aatcttcaatttattcttc	13823	138422	5
SEQ ID NO: 2726 tgcaagcagaagccagaag	3504	3523	SEQ ID NO:	4055 cttcaggttccatcgtgca	11384	114032	5
SEQ ID NO: 2727gaagagaagattgaatttg	3629			4056 caaaacctactgtctcttc	10467	104862	5
SEQ ID NO: 2728 atgctaaaggcacatatgg	4605	4624	SEQ ID NO:	4057 ccatatgaaagtcaagcat	12664	126832	5
SEQ ID NO: 2729 teceteacetecacetetg	4745	4764	SEQ ID NO:	4058 cagattctcagatgaggga	8920	89392	5
SEQ ID NO: 2730 atttacagctctgacaagt	5435	5454	SEQ ID NO:	4059acttttctaaacttgaaat	9063	90822	5
SEQ ID NO: 2731 aggagcctaccaaaataat	5602	5621	SEQ ID NO:	4060 attatgttgaaacagtcct	11838	118572	5
SEQ ID NO: 2732 aaagctgaagcacatcaat	6409	6428	SEQ ID NO:	4061 attgttgctcatctccttt	10202	102212	5
SEQ ID NO: 2733 ctgctggaaacaacgagaa	9426	9445	SEQ ID NO:	4062 ttctgattaccaccagcag	13582	136012	5
SEQ ID NO: 2734 ttgaaggaattcttgaaaa	9590	9609	SEQ ID NO:	4063 ttttaaaagaaatcttcaa	13813	138322	5
SEQ ID NO: 2735 gaagtaaaagaaaattttg	10751	10770	SEQ ID NO:	4064 caaaacctactgtctcttc	10467	104862	5
SEQ ID NO: 2736 tgaagaagatggcaaattt	11992			4065 aaatgtcagctcttgttca	10902	109212	
SEQ ID NO: 2737 aggatctgagttattttgc	14043			4066 gcaagtcagcccagttcct	10928	109472	5
SEQ ID NO: 2738 gtgcccttctcggttgctg	26			4067 cagccattgacatgagcac	5748	57671	5
SEQ ID NO: 2739 ggcgctgcctgcgctgctg	154			4068 cagetecacagaetecgee	3070	30891	5
SEQ ID NO: 2740 ctgcgctgctgctgctgct	162			4069 agcagaaggtgcgaagcag	3232	32511	5
SEQ ID NO: 2741 gctgctggcgggcgccagg	178			4070 cctggattccacatgcagc	11854	118731	5
SEQ ID NO: 2742 aagaggaaatgctggaaaa	201			4071 tttttcttcactacatctt	2592	26111	5
SEQ ID NO: 2743 ctggaaaatgtcagcctgg	212 304			4072 ccagacttccacatcccag	3923	39421	5
SEQ ID NO: 2744 tggagtccctgggactgct	304			4073 agcatgcctagtttctcca	9953	99721	5
SEQ ID NO: 2745 ggagtccctgggactgctg	313			4074 cagcatgcctagtttctcc	9952	99711	
SEQ ID NO: 2746 tgggactgctgattcaaga SEQ ID NO: 2747 ctgctgattcaagaagtgc	318			4075 tettecateacttgaccea	2050 11087	20691 111061	5
SEQ ID NO: 2748 tgccaccaggatcaactgc	334			4076gcacacettgacattgcag 4077gcaggctgaactggtggca	2725	27441	5 5
SEQ ID NO: 2749 gccaccaggatcaactgca	335			4078tgcaggctgaactggtggc	2725	27431	5
SEQ ID NO: 2749 gocaccaggatcaactgca	350			4079 cetecacetetgatetgea	4752	47711	5
SEQ ID NO: 2751 caaggttgagctggaggtt	352			4080 aacccctacatgaagettg	13763	137821	5
SEQ ID NO: 2751 ctctgcagcttcatcctga	377			1081 tcaggaagettetcaagag	13219	132381	5
SEQ ID NO: 2753 cagcttcatcctgaagacc	382			4082 ggtcttgagttaaatgctg	4985	50041	5
SEQ ID NO: 2754 gcttcatcctgaagaccag	384			1083 ctggacgctaagaggaagc	863	8821	5
SEQ ID NO: 2755 tcatcctgaagaccagcca	387			1084tggcatggcattatgatga	3612	36311	5
SEQ ID NO: 2756 gaaaaccaagaactctgag	460			1085 ctcaaccttaatgattttc	8294	83131	5
SEQ ID NO: 2757 agaactctgaggagtttgc	468			1086gcaagctatacagtattct	8385	84041	5
SEQ ID NO: 2758 tctgaggagtttgctgcag	473			1087ctgcaggggatcccccaga	2534	25531	5
	_ 			,			

lau .	1		
SEQ ID NO: 2759 tttgctgcagccatgtcca	482	501 SEQ ID NO: 4088 tggaagtgtcagtggcaaa 10380 103991	5
SEQ ID NO: 2760 caagaggggcatcatttct	586	605 SEQ ID NO: 4089 agaataaatgacgttcttg 7043 70621	5
SEQ ID NO: 2761 tcactttaccgtcaagacg	682	701 SEQ ID NO: 4090 cgtctacactatcatgtga 4368 43871	5
SEQ ID NO: 2762 tttaccgtcaagacgagga	686	705 SEQ ID NO: 4091 tccttgacatgttgataaa 7374 73931	5
SEQ ID NO: 2763 cactggacgctaagaggaa	861	880 SEQ ID NO: 4092 ttccagaaagcagccagtg 12506 125251	5
SEQ ID NO: 2764 aggaagcatgtggcagaag	875	894 SEQ ID NO: 4093 cttcatacacattaatcct 9996 100151	
SEQ ID NO: 2765 caaggagcaacacctcttc	901	920 SEQ ID NO: 4094 gaagtagtactgcatcttg 6843 68621	
SEQ ID NO: 2766 acagactttgaaacttgaa	967	986 SEQ ID NO: 4095 ttcaattettcaatgetgt 10508 105271	
SEQ ID NO: 2767 tgatgaagcagtcacatct	1195	1214 SEQ ID NO: 4096 agatttgaggattccatca 7984 80031	, ,
SEQ ID NO: 2768 agcagtcacatctctcttg	1201	1220 SEQ ID NO: 4097 caaggagaaactgactgct 6532 65511	
SEQ ID NO: 2769 ccagccccatcactttaca	1239	1258 SEQ ID NO: 4098 tgtagtctcctggtgctgg 5102 51211	
SEQ ID NO: 2770 ctccactcacatcctccag	1288	1307 SEQ ID NO: 4099 ctggagcttagtaatggag 8717 87361	5
SEQ ID NO: 2771 catgccaacccccttctga	1322	1341 SEQ ID NO: 4100 tcagatgagggaacacatg 8927 89461	5
SEQ ID NO: 2772 gagagatcttcaacatggc	1398	1417 SEQ ID NO:4101 gccacctggaactctctc 10877 108961	5
SEQ ID NO: 2773 tcaacatggcgagggatca	1407	1426 SEQ ID NO: 4102 tgatcccacctctcattga 2973 29921	5
SEQ ID NO: 2774 ccaccttgtatgcgctgag	1437	1456 SEQ ID NO: 4103 ctcagggatctgaaggtgg 8195 82141	5
SEQ ID NO: 2775 gtcaacaactatcataaga	1463	1482 SEQ ID NO: 4104 tottgagttaaatgctgac 4987 50061	5
SEQ ID NO: 2776 tggacattgctaattacct	1509	1528 SEQ ID NO: 4105 aggtatattcgaaagtcca 12807 128261	5
SEQ ID NO: 2777 ggacattgctaattacctg	1510	1529 SEQ ID NO: 4106 caggtatattcgaaagtcc 12806 128251	
SEQ ID NO: 2778 ttctgcgggtcattggaaa	1581	4000	5
SEQ ID NO: 2779 ccagaactcaagtcttcaa	1628	4047	5
SEQ ID NO: 2780 agtottcaatcotgaaatg	1638	4057	5
SEQ ID NO: 2781 tgagcaagtgaagaacttt	1876	4005	5
SEQ ID NO: 2782 agcaagtgaagaactttgt	1878	100	5
SEQ ID NO: 2783 tctgaaagaatctcaactt	1972		5
SEQ ID NO: 2784 actgtcatggacttcagaa	1994	1991 SEQ ID NO: 4112 aagtccataatggttcaga 12819 128381	. 5
SEQ ID NO: 2785 acttgacccagcctcagcc	2059	2013 SEQ ID NO: 4113 ttotgaatatattgtcagt 13384 134031	5
SEQ ID NO: 2786 tccaaataactaccttcct	2104	2078 SEQ ID NO: 4114 ggctcaccctgagagaagt 12399 124181	5
SEQ ID NO: 2787 actaccctcactgcctttg	2141	2123 SEQ ID NO: 4115 aggaagatatgaagatgga 4720 4739 1	5
SEQ ID NO: 2788 ttggatttgcttcagctga	2157	2160 SEQ ID NO: 4116 caaatttgtggagggtagt 10327 10346 1	5
SEQ ID NO: 2789 ttggaagctctttttggga	2219	2176 SEQ ID NO: 4117 tcagtataagtacaaccaa 9400 94191	5
	2221	2238 SEQ ID NO: 4118 tcccgattcacgcttccaa 11585 11604 1	5
SEQ ID NO: 2790 ggaagctctttttgggaag		2240 SEQ ID NO: 4119 cttcagaaagctaccttcc 7937 79561	5
SEQ ID NO: 2791 tttttcccagacagtgtca	2246	2265 SEQ ID NO: 4120 tgaccttctctaagcaaaa 4884 4903 1	5
SEQ ID NO: 2792 agacagtgtcaacaaagct	2254	2273 SEQ ID NO: 4121 agcttggttttgccagtct 2466 2485 1	5
SEQ ID NO: 2793 ctttggctataccaaagat	2329	2348 SEQ ID NO: 4122 atctcgtgtctaggaaaag 5976 59951	5
SEQ ID NO: 2794 caaagatgataaacatgag	2341	2360 SEQ ID NO: 4123 ctcaaggataacgtgtttg 12617 126361	5
SEQ ID NO: 2795 gatatggtaaatggaataa	2363	2382 SEQ ID NO: 4124 ttatcttattaattatatc 13087 131061	5
SEQ ID NO: 2796 ggaataatgctcagtgttg	2375	2394 SEQ ID NO: 4125 caacacttacttgaattcc 10669 106881	5
SEQ ID NO: 2797 tttgaaatccaaagaagtc	2410	2429 SEQ ID NO: 4126 gacttcagagaaatacaaa 11408 114271	5
SEQ ID NO: 2798 gatccccagatgattgga	2542	2561 SEQ ID NO: 4127 tccaatttccctgtggatc 3689 37081	5
SEQ ID NO: 2799 cagatgattggagaggtca	2549	2568 SEQ ID NO: 4128 tgaccacacaaacagtctg 5371 53901	5
SEQ ID NO: 2800 agaatgactttttcttca	2583	2602 SEQ ID NO: 4129 tgaagtccggattcattct 11023 110421	5
SEQ ID NO: 2801 gaactccccactggagctg	2627	2646 SEQ ID NO:4130 cagetcaaccgtacagttc 11869 118881	5
SEQ ID NO: 2802 atatcttcatctggagtca	2660	2679 SEQ ID NO:4131 tgacttcagtgcagaatat 11974 119931	5
SEQ ID NO: 2803 gtcattgctcccggagcca	2675	2694 SEQ ID NO: 4132 tggccccgtttaccatgac 5817 58361	5
SEQ ID NO: 2804 gctgaagtttatcattcct	2881	2900 SEQ ID NO: 4133 aggaggetttaagttcagc 7608 76271	5
SEQ ID NO: 2805 attecttecceaaagagae	2894	2913 SEQ ID NO:4134 gtctcttcctccatggaat 10478 104971	5

SEQ ID NO: 2806 ctcattgagaacaggcagt	2984	3003	SEQ ID N	O: 413	5actgactgcacgctttgag	11764	11783	1 5
SEQ ID NO: 2807 ttgagcagtattctgtcag	3150	3169	SEQ ID N	0:413	6ctgagagaagtgtcttcaa	12407	12426	1 5
SEQ ID NO: 2808 accttgtccagtgaagtcc	3293	3312	SEQ ID N	o: <mark>413</mark>	7ggacggtactgtcccaggt	12792	12811	1 5
SEQ ID NO: 2809 ccagtgaagtccaaattcc	3300	3319	SEQ ID N	D: 413	8ggaaggcagagtttactgg	9156	9175	1 5
SEQ ID NO: 2810 acattcagaacaagaaaat	3402	3421	SEQ ID N	J:413	9atttcctaaagctggatgt	11175	11194	1 5
SEQ ID NO: 2811 gaaaaatcaagggtgttat	3471				Dataaactgcaagatttttc	13608	13627	
SEQ ID NO: 2812 aaatcaagggtgttatttc	3474				1 gaaacaatgcattagattt	9753	9772	
SEQ ID NO: 2813 tggcattatgatgaagaga	3617				2tctcccgtgtataatgcca	11789	11808	
SEQ ID NO: 2814 aagagaagattgaatttga	3630				3tcaaaacctactgtctctt	10466	10485	
SEQ ID NO: 2815 aaatgacttccaatttccc	3681				1gggaactacaatttcattt	7021		
SEQ ID NO: 2816 atgacttccaatttccctg	3683				caggctgattacgagtcat	4925		
SEQ ID NO: 2817 acttccaatttccctgtgg	3686				ccacgaaaaatatggaagt	10368		
SEQ ID NO: 2818 agttgcaatgagctcatgg	3811				7ccatcagttcagataaact	7997	8016	
SEQ ID NO: 2819 tttgcaagaccacctcaat	3868				Battgacctgtccattcaaa	13679		
SEQ ID NO: 2820 gaaggagttcaacctccag	3892				ctggaattgtcattccttc	11736		
SEQ ID NO: 2821 acttccacatcccagaaaa	3927				ttttaacaaaagtggaagt	6829	6848	- 1
SEQ ID NO: 2822 ctcttcttaaaaagcgatg	3947				catcactgccaaaggagag	8494	8513	
SEQ ID NO: 2823 aaaagcgatggccgggtca	3956				tgactcactcattgatttt	12688	12707	
SEQ ID NO: 2824 ttcctttgccttttggtgg	4011				ccacaaacaatgaagggaa	9264	9283	
SEQ ID NO: 2825 caagtctgtgggattccat	4087			_	atgggaaaaaacaggcttg	9574	95931	
SEQ ID NO: 2826 aagtccctacttttaccat	4125				atgggaagtataagaactt	4842	48611	
SEQ ID NO: 2827 tgcctctcctgggtgttct	4167				agaaaaacaaacacaggca	9651	96701	
SEQ ID NO: 2828 accagcacagaccatttca	4250				tgaagtgtagtctcctggt	5097	51161	
SEQ ID NO: 2829 ccagcacagaccatttcag	4251				ctgaaatacaatgctctgg	5519	55381	
SEQ ID NO: 2830 actatcatgtgatgggtct	4375				agacacctgattttatagt	7956	79751	
SEQ ID NO: 2831 accacagatgtctgcttca	4504				tgaaggctgactctgtggt	4290	43091	
SEQ ID NO: 2832 ccacagatgtctgcttcag	4505			_	ctgagcaacaaatttgtgg	10319	103381	
SEQ ID NO: 2833 tttggactccaaaaagaaa	4528				tttctctcatgattacaaa	5941	59601	
SEQ ID NO: 2834 tcaaagaagtcaagattga	4560				tcaaggataacgtgtttga	12618	126371	
SEQ ID NO: 2835 atgagaactacgagctgac	4806				gtcagatattgttgctcat	10195	102141	
SEQ ID NO: 2836 ttaaaatctgacaccaatg	4826				cattcattgaagatgttaa	7350	73691	
SEQ ID NO: 2837 gaagtataagaactttgcc	4846				ggcaaatttgaaggacttc	12002	120211	
SEQ ID NO: 2838 aagtataagaactttgcca	4847				tggcaaatttgaaggactt	12001	120201	1
SEQ ID NO: 2839 ttcttcagcctgctttctg	4949				cagaatccagatacaagaa	6892	69111	5
SEQ ID NO: 2840 ctggatcactaaattccca	4965				tgggtctttccagagccag	11041	110601	1
SEQ ID NO: 2841 aaattaatagtggtgctca	5022				tgagaagccccaagaattt	6256	62751	
SEQ ID NO: 2842 agtgcaacgaccaacttga	5081				tcaaattcctggatacact	9856	98751	
SEQ ID NO: 2843 ctgggaagtgcttatcagg	5246				cctgaccttcacataccag	8318	83371	
SEQ ID NO: 2844 gcaaaaacattttcaactt	5286				aagtaaaagaaaattttgc	10752	107711	
SEQ ID NO: 2845 aaaaacattttcaacttca	5288				tgaagtaaaagaaaatttt	10750	107691	
SEQ ID NO: 2846 tcagtcaagaaggacttaa	5310				ttaaggacttccattctga	13371	133901	5
SEQ ID NO: 2847 tcaaatgacatgatgggct	5333				agcccatcaatatcattga	6213	62321	
SEQ ID NO: 2848 cacacaaacagtctgaaca	5375				tgtttcaactgcctttgtg	11227	112461	
SEQ ID NO: 2849 tettcaaaaettgacaaca	5417				tgttttcctatttccaaga	12843	128621	5
SEQ ID NO: 2850 caagttttataagcaaact	5449			-	agttattttgctaaacttg	14051	140701	5
SEQ ID NO: 2851 tggtaactactttaaacag	5496				ctgtttttagaggaaacca	7520	75391	5
SEQ ID NO: 2852 aacagtgacctgaaataca	5510	5529	SEQ ID NO	4181	tgtatagcaaattcctgtt	5898	59171	5

SEQ ID NO: 2853 gggaaactacggctagaac	5552	5571	SEO ID NO	4182gttccttd	catgatttccc	10941	10960	1	5
SEQ ID NO: 2854 acacatctatgccatctc	5628				agcatcttcgtgtt	11212	11231	1	5
SEQ ID NO: 2855 tcagcaagctataaagcag	5660				agaaccttactga	7788	7807	1	5
SEQ ID NO: 2856 gcagacactgttgctaagg	5675				agcactgactgc	11754	11773	1	5
SEQ ID NO: 2857 tctggggagaacatactgg	5874				tttccacaccaga	8046	8065	1	- 5
SEQ ID NO: 2858 ttctctcatgattacaaag	5942				ccaacggagaa	10846	10865	1	5
SEQ ID NO: 2859 ctgagcagacaggcacctg	6042				gctttaagttcag	7607	7626		5
SEQ ID NO: 2860 caatttaacaacaatgaat	6074			4189 attectto		8090	8109		5
SEQ ID NO: 2861 tggacgaactctggctgac	6148				ccagttccttcca	10932	10951		5
SEQ ID NO: 2862 cttttactcagtgagccca	6200				aacgtatgaaag	7835	7854		5
SEQ ID NO: 2863 tcattgatgctttagagat	6225				taagttcaatga	13182	13201	1	5
SEQ ID No: 2864 aaaaccaagatgttcactc	6303			4193 gagtga		8638	8657		5
SEQ ID NO: 2865 aggaatcgacaaaccatta	6365			4194 taatgat		8302	8321		5
SEQ ID NO: 2866 tagttgtactggaaaacgt	6384				gcctctaagacta	11936	11955	1	5
SEQ ID NO: 2867ggaaaacgtacagagaaag	6394			4196 cttttaca		13022	13041	1	5
SEQ ID NO: 2868 gaaaacgtacagagaaagc	6395			4197 gctttctd		10060	10079		5
SEQ ID NO: 2869 aaagctgaagcacatcaat	6409			4198 attgatg		6992	7011		5
SEQ ID NO: 2870 aagctgaagcacatcaata	6410			4199 tattgate		6991	7010		5
SEQ ID NO: 2871 tgaagcacatcaatattga	6414			4200 tcaacc		8295	8314		5
SEQ ID NO: 2872 atcaatattgatcaatttg	6422				catcactgatgat	1668	1687		5
SEQ ID NO: 2873 taatgattatctgaattca	6484				cattgaaaaatta	6727	6746		5
SEQ ID NO: 2874 gattatetgaatteat	6488				agctgagaaaatc	7102	7121		5
SEQ ID NO: 2875 aattgggagagacaagttt	6506				tcctttaacaatt	9496	9515		5
SEQ ID NO: 2876 aaaatagctattgctaata	6701			4205 tattgaa		6814	6833		5
SEQ ID NO: 2876 aaaattaaaaagtcttgat	6739			4206 atcatat		6765	6784		5
SEQ ID NO: 2878 ttgaaaatattgattttaa	6816			4207 ttaatctt		13179	13198		5
SEQ ID NO: 2878 (gaaaatattgatttaa	6946			4208 agcttgg		2466	2485		5
SEQ ID NO: 2879 agadatosagoacotagot SEQ ID NO: 2880 caatttcatttgaaagaat	7029			4209 attectto		8090	8109		5
SEQ ID NO: 2881 aggttttaatggataaatt	7182				gaaagaaaacct	13155	13174		5
SEQ ID NO: 2882 cagaagctaagcaatgtcc	7241				ggcccagaatctg	12553	12572		5
SEQ ID NO: 2883 taagataaaagattacttt	7270				aacctatgcctta	13163	13182		5
SEQ ID NO: 2884 aaagattactttgagaaat	7277			4213 atttetta		9489	9508		5
SEQ ID NO: 2885 gagaaattagttggattta	7289				cattcagtctctc	12970	12989		5
SEQ ID NO: 2886 atttattgatgatgctgtc	7303				ttgataaagaaat	7379	7398		5
SEQ ID NO: 2887 gaattatcttttaaaacat	7334				aaatggacattc	7685	7704		5
SEQ ID NO: 2888 ttaccaccagtttgtagat	7411				accttgaagtaa	10739	10758		5
SEQ ID NO: 2889 ttgcagtgtatctggaaag	7548	7567	SEQ ID NO:	4218 cttttcac	attanatoraa	8420	8439		5
SEQ ID NO: 2890 cattcagcaggaacttcaa	7699	7718	SEQ ID NO:	4210ttttaaa	acttcaggaatg	12009	12028		5
SEQ ID NO: 2891 acacctgattttatagtcc	7958	7077	SEQ ID NO:	4220 ggaage	aaggataacgtgt	12614	12633		5
SEQ ID NO: 2892 ggattccatcagttcagat	7992			4221 atcttca		13124	13143		5
SEQ ID NO: 289299atticcatcagticagat	8112					12360	12379		5
SEQ ID NO: 2893 ttgtagaaatgaaagtaaa	8156			4222 tttatgat	cttctctagtcag	8809	8828		5
SEQ ID NO: 2894 ctgaacagtgagctgcagt	8407					11017			
SEQ ID NO: 2895 aatccaatctcctcttttc					attacage cont		11036		5
SEQ ID NO: 2896 attttgattttcaagcaaa	8532				gttaaagaaaat	14023	14042		5
SEQ ID NO: 2897 ttttgattttcaagcaaat	8533			4226 atttgatt		9622	9641		5
SEQ ID NO: 2898 tgattttcaagcaaatgca	8536				taaagaaaatca	14025	14044		5
SEQ ID NO: 2899 atgctgttttttggaaatg	8645	8664	SEQ ID NO:	4228 caπggt	aggagacagcat	11203	11222	I	5

			,	· · · · · · · · · · · · · · · · · · ·	,		_,
SEQ ID NO: 2900 tgctgttttttggaaatgc	8646			gcattggtaggagacagca	11202		
SEQ ID NO: 2901 aaaaaaatacactggagct	8706			agctagagggcctcttttt	10833		_1
SEQ ID NO: 2902 actggagcttagtaatgga	8716			tccactcacatcctccagt	1289		_
SEQ ID NO: 2903 cttctggaaaagggtcatg	8886			catgaacccctacatgaag	13759		
SEQ ID NO: 2904 ggaaaagggtcatggaaat	8891			atttgaaagttcgttttcc	9282	9301	1 5
SEQ ID NO: 2905 gggcctgccccagattctc	8910	8929	SEQ ID NO:4234	gagaacattatggaggccc	9440	9459	1 5
SEQ ID NO: 2906 ttctcagatgagggaacac	8924	8943	SEQ ID NO:4235	gtgtcttcaaagctgagaa	12416	12435	1 5
SEQ ID NO: 2907 gatgagggaacacatgaat	8930	8949	SEQ ID NO: 4236	attccagcttccccacatc	8338	8357	1 5
SEQ ID NO: 2908 ctttggactgtccaataag	8986	9005	SEQ ID NO:4237	cttatgggatttcctaaag	11167	11186	
SEQ ID NO: 2909 gcatccacaaacaatgaag	9260	9279	SEQ ID NO: 4238	cttcatctgtcattgatgc	10227	10246	1 5
SEQ ID NO: 2910 cacaaacaatgaagggaat	9265	9284	SEQ ID NO: 4239	attccctgaagttgatgtg	11488	11507	1 5
SEQ ID NO: 2911 ccaaaatttctctgctgga	9415	9434	SEQ ID NO: ⁴²⁴⁰	tccatcacaaatcctttgg	9671	9690	1 5
SEQ ID NO: 2912 caaaatttctctgctggaa	9416	9435	SEQ ID NO: 4241	ttccatcacaaatcctttg	9670	9689	1 5
SEQ ID NO: 2913 tctgctggaaacaacgaga	9425	9444	SEQ ID NO: 4242	tctcaagagttacagcaga	13229	13248	1 5
SEQ ID NO: 2914 ctgctggaaacaacgagaa	9426	9445	SEQ ID NO: 4243	ttctcaagagttacagcag	13228	13247	1 5
SEQ ID NO: 2915 agaacattatggaggccca	9441			tgggcctgcccagattct	8909	89281	1 5
SEQ ID NO: 2916 agaagcaaatctggatttc	9475	9494	SEQ ID NO: 4245	gaaatcttcaatttattct	13821	138401	1 5
SEQ ID NO: 2917 tttctctctatgggaaaaa	9565	9584	SEQ ID NO: 4246	tttttgcaagttaaagaaa	14021	140401	1 5
SEQ ID NO: 2918 tcagagcatcaaatccttt	9712	9731	SEQ ID NO: 4247	aaagaaaatcaggatctga	14033	140521	5
SEQ ID NO: 2919 cagaaacaatgcattagat	9751	9770	SEQ ID NO: 4248	atctatgccatctcttctg	5633	56521	5
SEQ ID NO: 2920 tacacattaatcctgccat	10001	10020	SEQ ID NO: 4249	atggagtctttattgtgta	14089	141081	5
SEQ ID NO: 2921 agtcagatattgttgctca	10194			tgagaactacgagctgact	4807	48261	5
SEQ ID NO: 2922ggagggtagtcataacagt	10336			actggtggcaaaaccctcc	2734	27531	
SEQ ID NO: 2923 caaaagccgaaattccaat	10404			attgaagtacctacttttg	8366	83851	
SEQ ID NO: 2924 aaaagccgaaattccaatt	10405			aattgaagtacctactttt	8365	83841	
SEQ ID NO: 2925 ttcaagcaagaacttaatg	10436			cattatggcccttcgtgaa	13258	132771	
SEQ ID NO: 2926 cctcttacttttccattga	10578			tcaaaagaagcccaagagg	12947	129661	
SEQ ID NO: 2927tgaggccaacacttacttg	10663			caagcatctgattgactca	12676	126951	5
SEQ ID NO: 2928 cacttacttgaattccaag	10672			cttgaacacaaagtcagtg	6008	160271	5
SEQ ID NO: 2929 gaagtaaaagaaaattttg	10751			caaaaacattttcaacttc	5287	53061	
SEQ ID NO: 2930 cctggaactctctccatgg	10882			ccatttacagatcttcagg	11372	11,3911	
SEQ ID NO: 2931 agctggatgtaaccaccag	11184			ctggattccacatgcagct	11855	118741	
SEQ ID NO: 2932 aaaattccctgaagttgat	11485			atcatatccgtgtaatttt	6765	67841	
SEQ ID NO: 2933 cagatggcattgctgcttt	11613			aaagctgagaagaaatctg	12424	124431	1
SEQ ID NO: 2934 agatggcattgctgctttg	11614			caaagctgagaagaaatct	12423	124421	
SEQ ID NO: 2935 tgttgaaacagtcctggat	11842			atccaagatgagatcaaca	13103	131221	
SEQ ID NO: 2936 catattcaaaactgagttg	12229			caactctctgattactatg	13631	136501	(1
SEQ ID NO: 2937 aaagatttatcaaaagaag	12938		SEQ ID NO: 4266		13826	138451	
SEQ ID NO: 2938 attttccaactaatagaag	13034			cttcaaagacttaaaaaat	8014	80331	
SEQ ID NO: 2939 aattatatccaagatgaga	13097			ctcttcctccatggaatt	10479	104981	
SEQ ID NO: 2940 ttcaggaagcttctcaaga	13218			cttcataagttcaatgaa	13183	132021	5
SEQ ID NO: 2941 ttgagcaatttctgcacag	13437			etgttgaaagatttatcaa	12932	129511	5
SEQ ID NO: 2942 ctgatatacatcacggagt	13712			actcaatggtgaaattcag	7465	74841	5
SEQ ID NO: 2943 acatcacggagttactgaa	13719			tcagaagctaagcaatgt	7239	72581	5
SEQ ID NO: 2944 actgcctatattgataaaa	13882			tttggcaagctatacagt	8380	83991	5
SEQ ID NO: 2945 aggatggcatttttgcaa	14011			tgcaagcaagtctttcct	3013	30321	5
SEQ ID NO: 2946 ttttttgcaagttaaagaa	14020			tctctctatgggaaaaaa	9566	95851	5
SEQ ID NO: K940godagudaagaa	17020	17000	PER IN MO:4513	ioioioiaiyyyaaaaaa	9000	9505	

								r	
	2947tccagaactcaagtcttca	1627				tgaaatgctgttttttgga	8641		
SEQ ID NO:	2948 agttagtgaaagaagttct	1956				agaatctgtaccaggaact	12564		3 4
SEQ ID NO:	2949 atttacagctctgacaagt	5435		SEQ ID NO	4278	acttcagagaaatacaaat	11409		
SEQ ID NO:	2950 gattatctgaattcattca	6488		SEQ ID NO	4279	tgaaaccaatgacaaaatc	7429	7448	3 4
	2951 gtgcccttctcggttgctg	26	45	SEQ ID NO	4280	cagctgagcagacaggcac	6039	60582	2 4
	2952 attcaagcacctccggaag	253	272	SEQ ID NO	4281	cttcataagttcaatgaat	13184	13203	2 4
	2953 gactgctgattcaagaagt	316	335	SEQ ID NO	4282	acttcccaactctcaagtc	13415	134342	2 4
SEQ ID NO:	2954 ttgctgcagccatgtccag	483	502	SEQ ID NO	4283	ctgggcagctgtatagcaa	5889	59082	2 4
	2955 agaaagatgaacctactta	555	574	SEQ ID NO:	4284	taagtatgatttcaattct	10498	10517	2 4
	2956 tgaagactctccaggaact	1095		SEQ ID NO:	4285	agttcaatgaatttattca	13191	132102	2 4
	2957 atctctcttgccacagctg	1210	1229	SEQ ID NO:	4286	cagcccagccatttgagat	9237	92562	2 4
SEQ ID NO:	2958 tctctcttgccacagctga	1211	1230	SEQ ID NO:	4287	tcagcccagccatttgaga	9236	92552	2 4
	2959 tgaggtgtccagccccatc	1231	1250	SEQ ID NO:	4288	gatgggaaagccgccctca	5216	52352	2 4
	2960 ccagaactcaagtcttcaa	1628	1647	SEQ ID NO:	4289	ttgaaagcagaacctctgg	5915	59342	1 1
SEQ ID NO:	2961 ctgaaaaagttagtgaaag	1949	1968	SEQ ID NO:	4290	ctttctcgggaatattcag	10631	106502	2 4
	2962 tttttcccagacagtgtca	2246	2265	SEQ ID NO:	4291	tgacaggcattttgaaaaa	9730	97492	
	2963 ttttcccagacagtgtcaa	2247	2266	SEQ ID NO:	4292	ttgacaggcattttgaaaa	9729	97482	4
SEQ ID NO:	2964 cattcagaacaagaaaatt	3403	3422	SEQ ID NO:	4293	aattccaattttgagaatg	10414	104332	4
	2965tgaagagaagattgaattt	3628	3647	SEQ ID NO:	4294	aaatgtcagctcttgttca	10902	109212	
SEQ ID NO:	2966tttgaatggaacacaggca	3644	3663	SEQ ID NO:	4295	tgccagtttgaaaaacaaa	11815	118342	4
SEQ ID NO:	2967 ttctagattcgaatatcaa	4407	4426	SEQ ID NO:	4296	ttgacatgttgataaagaa	7377	73962	4
	2968 gattcgaatatcaaattca	4412	4431	SEQ ID NO:	4297	tgaagtagaccaacaaatc	7162	71812	4
	2969 tgcaacgaccaacttgaag	5083	5102	SEQ ID NO:	4298	cttcaggttccatcgtgca	11384	114032	4
SEQ ID NO:	2970 ttaagctctcaaatgacat	5325	5344	SEQ ID NO:	4299	atgttgataaagaaattaa	7382	74012	4
SEQ ID NO:	2971 caatttaacaacaatgaat	6074	6093	SEQ ID NO:	4300	attcaaactgcctatattg	13876	138952	4
SEQ ID NO:	2972 tgaatacagccaggacttg	6088				caagagcacacggtcttca	10687	107062	4
SEQ ID NO:	2973 catcaatattgatcaattt	6421	6440	SEQ ID NO:	4302	aaattccctgaagttgatg	11486	115052	.4
	2974 ttgagcatgtcaaacactt	7059	7078	SEQ ID NO:	4303	aagtaagtgctaggttcaa	9381	94002	4
	2975 tgaaggagactattcagaa	7227	7246	SEQ ID NO:	4304	ttctgcacagaaatattca	13446	134652	4
	2976 ttcaggctcttcagaaagc	7929	7948	SEQ ID NO:	4305	gcttgctaacctctctgaa	12312	123312	4
SEQ ID NO:	2977tccacaaattgaacatccc	8787	8806	SEQ ID NO:	4306	gggacctaccaagagtgga	12533	125522	4
SEQ ID NO:	2978 tgaataccaatgctgaact	10167	10186	SEQ ID NO:	4307	agttcaatgaatttattca	13191	132102	4
SEQ ID NO:	2979 taaactaatagatgtaatc	12898	12917	SEQ ID NO:	4308	gattactatgaaaaattta	13640	136592	
SEQ ID NO:	2980 ttgacctgtccattcaaaa	13680	13699	SEQ ID NO:	4309	ttttaaaagaaatcttcaa	13813	138322	4
SEO ID NO:	2981 gggctgagtgcccttctcg	19	38	SEQ ID NO:	4310	cgaggccaggccgcagccc	84	103	4
SEQ ID NO:	2982 ggctgagtgcccttctcgg	20	39	SEQ ID NO:	4311	ccgaggccaggccgcagcc	83	1021	4
SEQ ID NO:	2983 ctgagtgcccttctcggtt	22	41	SEQ ID NO:	4312	aaccgtgcctgaatctcag	11557	115761	4
SEO ID NO:	2984 tctcggttgctgccgctga	33				tcagctgacctcatcgaga	2168	21871	
SEO ID NO	2985 caggccgcagcccaggagc	90				gctctgcagcttcatcctg	376	3951	
SECTIONO:	2986gctggcgctgcctgcgctg	151				cagcacagaccatttcagc	4252	42711	l
SEC ID NO:	2987 tgctgctggcgggcgccag	177				ctggatgtaaccaccagca	11186	112051	
	2988 ctggtctgtccaaaagatg	227				catcctgaagaccagccag	388	4071	
SEC ID NO:	2989 ctgagagttccagtggagt	291				actcaccctggacattcag	3391	34101	
	2990tccagtggagtccctggga	299				tcccggagccaaggctgga	2683	27021	
SECTIONO:	2991 aggttgagctggaggttcc	354				ggaaccctctccctcacct	4736	47551	
שבע וט אט:	2992tgagctggaggttccccag	358				ctgggaggcatgatgctca	9171	91901	4
PEQ ID NO:	ZaaZharaaraaaaaa	550	577	952 ころろ:	.021	o-1999aggoatgatgotca	3111	9 190 1	

2-21244	2002	tctgcagcttcatcctgaa	378	307	TOTO ID NO	4322ttcaaatataatcggcaga	3269	32881	1 1
		gccagtgcaccctgaaaga	402			4323tcttccgttctgtaatggc	5802	58211	
		ctctgaggagtttgctgca	472			4324tgcaagaatattttgagag	6348	63671	
		aggtatgagctcaagctgg	500			4325ccagtttccggggaaacct	12724	127431	
		tcctttacccggagaaaga	543			4326tctttttgggaagcaagga	2227	22461	
		catcaagaggggcatcatt	583			4327aatggtcaagttcctgatg	2285	23041	
		tcctggttcccccagagac	609			4328gtctctgaactcagaagga	13996	140151	
		aagaagccaagcaagtgtt	630			4329aacaaataaatggagtctt	14080	140991	
		aagcaagtgttgtttctgg	638			4330 ccagagccaggtcgagctt	11050	110691	
		tctggataccgtgtatgga	652			4331tccatgtcccatttacaga	11364	113831	
		ccactcactttaccgtcaa	678			4332ttgattttaacaaaagtgg	6825	68441	
		aggaagggcaatgtggcaa	701			4333ttgcaagcaagtctttcct	3013	30321	
		gcaatgtggcaacagaaat	708		···	4334atttccataccccgtttgc	3488	35071	
		caatgtggcaacagaaata	709		 	4335 tattcttcttttccaattg	13834	138531	I
		tggcaacagaaatatccac	714			4336gtggcttcccatattgcca	1895	19141	L
		agagacctgggccagtgtg	737			4337 cacattacatttggtctct	2938	29571	1
		tgtgatcgcttcaagccca	752			4338tgggaaagccgccctcaca	5218	52371	1
		gtgatcgcttcaagcccat	753			4339atgggaaagccgccctcac	5217	52361	
		cagcccacttgctctcatc	784			4340gatgctgaacagtgagctg	8152	81711	
SEO ID NO	3012	gctctcatcaaaggcatga	794			4341tcataacagtactgtgagc	10345	103641	
SEO ID NO:	3013	ccttgtcaactctgatcag	819			4342ctgagtgggtttatcaagg	12453	124721	
		cttgtcaactctgatcagc	820			4343gctgagtgggtttatcaag	12452	124711	L
		agccatctgcaaggagcaa	892			4344ttgcaatgagctcatggct	3813	38321	4
		gccatctgcaaggagcaac	893			4345gttgcaatgagctcatggc	3812	38311	4
		cttcctgcctttctcctac	916			4346gtaggaataaatggagaag	9461	94801	4
		ctttctcctacaagaataa	924			4347ttattgctgaatccaaaag	13656	136751	4
		gatcaacagccgcttcttt	997			4348aaagccatcactgatgatc	1669	16881	4
		atcaacagccgcttctttg	998			4349 caaagccatcactgatgat	. 1668	16871	4
		acagccgcttctttggtga	1002			4350tcacaaatcctttggctgt	9675	96941	4
		aagatgggcctcgcatttg	1031			4351 caaaatagaagggaatctt	2077	20961	4
SEQ ID NO:	3023	tgttttgaagactctccag	1090			4352 ctggtaactactttaaaca	5495	55141	4
		ttgaagactctccaggaac	1094			4353gttcaatgaatttattcaa	13192	132111	4
		aactgaaaaaactaaccat	1110	1129	SEQ ID NO:	4354 atggcattttttgcaagtt	14014	140331	4
		ctgaaaaaactaaccatct	1112	1131	SEQ ID NO:	4355 agattgatgggcagttcag	4572	45911	4
SEQ ID NO:	3027	aaaactaaccatctctgag	1117	1136	SEQ ID NO:	4356 ctcaaagaatgactttttt	2578	25971	4
SEQ ID NO:	3028	tgagcaaaatatccagaga	1132			4357 tctccagataaaaaactca	12209	122281	4
SEQ ID NO:	3029	caataagctggttactgag	1162			4358 ctcagatcaaagttaattg	12273	122921	4
SEQ ID NO:	3030	tactgagctgagaggcctc	1174	1193	SEQ ID NO:	4359gagggtagtcataacagta	10337	103561	4
SEQ ID NO:	3031	gcctcagtgatgaagcagt	1188	1207	SEQ ID NO:	4360 actgttgactcaggaaggc	12580	125991	4
SEQ ID NO:	3032	agtcacatctctcttgcca	1204	1223	SEQ ID NO:	4361 tggccacatagcatggact	8866	88851	4
SEQ ID NO:	3033	atctctcttgccacagctg	1210	1229	SEQ ID NO:	4362 cagctgacctcatcgagat	2169	21881	4
SEQ ID NO:	3034	tctctcttgccacagctga	1211	1230	SEQ ID NO:	4363 tcagctgacctcatcgaga	2168	21871	4
SEQ ID NO:	3035	tgccacagctgattgaggt	1218	1237	SEQ ID NO:	4364 acctgcaccaaagctggca	13963	139821	4
SEQ ID NO:	3036	gccacagctgattgaggtg	1219			4365 caccaaaaaccccaatggc	11248	112671	4
SEQ ID NO:	3037	tcactttacaagccttggt	1248			4366 accagatgctgaacagtga	8148	81671	4
SEQ ID NO:	3038	cccttctgatagatgtggt	1332			4367accacttacagctagaggg	10824	108431	4
SEQ ID NO:	3039	gtcacctacctggtggccc	1349	1368	SEQ ID NO:	4368gggcgacctaagttgtgac	3439	34581	4

SEQ ID NO: 3040 ccttgtatgcgctgagcca	1440	1459 SEQ ID NO: 4369 tggctggtaacctaaaagg	5586	56051	1 4
SEQ ID NO: 3041 gacaaaccctacagggacc	1480	1499 SEQ ID NO: 4370 ggtcctttatgattatgtc	12355	123741	1 4
SEQ ID NO: 3042 tgctaattacctgatggaa	1516	1535 SEQ ID NO: 4371 ttcccaaaagcagtcagca	9938	99571	1 4
SEQ ID NO: 3043 tgactgcactggggatgaa	1546	1565 SEQ ID NO: 4372 ttcaggtccatgcaagtca	10917	109361	1 4
SEQ ID NO: 3044 actgcactggggatgaaga	1548	1567 SEQ ID NO: 4373 tettgaacacaaagtcagt	6007	60261	1 4
SEQ ID NO: 3045 atgaagattacacctattt	1560	1579 SEQ ID NO: 4374 aaatgaaagtaaagatcat	8118	81371	4
SEQ ID NO: 3046 accatggagcagttaactc	1610	1629 SEQ ID NO: 4375 gagtaaaccaaaacttggt		90431	4
SEQ ID NO: 3047 gcagttaactccagaactc	1618	1637 SEQ ID NO: 4376 gagttactgaaaaagctgc	13727	137461	4
SEQ ID NO: 3048 cagaactcaagtcttcaat	1629	1648 SEQ ID NO: 4377 attggatatccaagatctg	1933	19521	4
SEQ ID NO: 3049 caggetetgeggaaaatgg	1703	1722 SEQ ID NO: 4378 ccatgacctccagctcctg	2485	25041	4
SEQ ID NO: 3050 ccaggaggttettetteag	1738	1757 SEQ ID NO: 4379 ctgaaatacaatgctctgg	5519	55381	4
SEQ ID NO: 3051 ggttcttcttcagactttc	1744	1763 SEQ ID NO: 4380 gaaaaaacttggaaacaac	4439	44581	4
SEQ ID NO: 3052 tttccttgatgatgcttct	1759	1778 SEQ ID NO: 4381 agaatccagatacaagaa		69121	4
SEQ ID NO: 3053 ggagataagcgactggctg	1781	1800 SEQ ID NO: 4382 cagcatgcctagtttctcc	9952	99711	4
SEQ ID NO: 3054 gctgcctatcttatgttga	1796	1815 SEQ ID NO: 4383 tcaatatcaaaagcccagc	12045	120641	4
SEQ ID NO: 3055 actttgtggcttcccatat	1890	1909 SEQ ID NO: 4384 atatctggaaccttgaagt	10737	107561	4
SEQ ID NO: 3056 gccaatatcttgaactcag	1910	1929 SEQ ID NO: 4385 ctgaactcagaaggatggc	14000	140191	4
SEQ ID NO: 3057 aatatcttgaactcagaag	1913	1932 SEQ ID NO: 4386 cttccattctgaatatatt	13378	133971	4
SEQ ID NO: 3058 ctcagaagaattggatatc	1924	1943 SEQ ID NO: 4387 gataaaagattactttgag	7273	72921	4
SEQ ID NO: 3059 aagaattggatatccaaga	1929	1948 SEQ ID NO: 4388 tetteaatttattettett	13825	138441	4
SEQ ID NO: 3060 agaattggatatccaagat	1930	1949 SEQ ID NO: 4389 atcttcaatttattcttct	13824	138431	4
SEQ ID NO: 3061 tggatatccaagatctgaa	1935	1954 SEQ ID NO: 4390 ttcacataccagaattcca	8325	83441	4
SEQ ID NO: 3062 atatccaagatctgaaaaa	1938	1957 SEQ ID NO: 4391 tttttaaccagtcagatat	10185	102041	4
SEQ ID NO: 3063 tatccaagatctgaaaaag	1939	1958 SEQ ID NO: 4392 ctitttaaccagtcagata	10184	102031	4
SEQ ID NO: 3064 caagatctgaaaaagttag	1943	1962 SEQ ID NO: 4393 ctaaattcccatggtcttg	4973	49921	4
SEQ ID NO: 3065 aagatctgaaaaagttagt	1944	1963 SEQ ID NO: 4394 actaaattcccatggtctt	4972	49911	4
SEQ ID NO: 3066 tgaaaaagttagtgaaaga	1950	1969 SEQ ID NO: 4395 tctttctcgggaatattca	10630	106491	4
SEQ ID NO: 3067 tccaactgtcatggacttc	1990	2009 SEQ ID NO: 4396 gaagcacatatgaactgga	13945	139641	4
SEQ ID NO: 3068 tcagaaaattctctcggaa	2007	2026 SEQ ID NO: 4397 ttcctttaacaattcctga	9501	95201	4
SEQ ID NO: 3069 ttccatcacttgacccagc	2052	2071 SEQ ID NO: 4398 gctgacatagggaatggaa	8441	84601	4
SEQ ID NO: 3070 cccagcctcagccaaaata	2065	2084 SEQ ID NO: 4399 tattctatccaagattggg	7820	78391	4
SEQ ID NO: 3071 agcctcagccaaaatagaa	2068	2087 SEQ ID NO: 4400 ttctatccaagattgggct	7822	78411	4
SEQ ID NO: 3072 atcttatatttgatccaaa	2091	2110 SEQ ID NO: 4401 tttgaaaaacaaagcagat	11821	118401	4
SEQ ID NO: 3073 tcttatatttgatccaaat	2092	2111 SEQ ID NO: 4402 attittigcaagttaaaga	14019	140381	4
SEQ ID NO: 3074 cttcctaaagaaagcatgc	2117	2136 SEQ ID NO: 4403 gcatggcattatgatgaag	3614	36331	4
SEQ ID NO: 3075 ctaaagaaagcatgctgaa	2121	2140 SEQ ID NO: 4404ttcagggtgtggagtttag	5694	57131	4
SEQ ID NO: 3076 taaagaaagcatgctgaaa	2122	2141 SEQ ID NO: 4405 tttcttaaacattccttta	9490	95091	4
SEQ ID NO: 3077 gagattggcttggaaggaa	2183	2202 SEQ ID NO: 4406 ttccctccattaagttctc	11709	117281	4
SEQ ID NO: 3078 ctttgagccaacattggaa	2206	2225 SEQ ID NO: 4407 ttccaatgaccaagaaaag	11068	110871	4
SEQ ID NO: 3079 cagacagtgtcaacaaagc	2253	2272 SEQ ID NO: 4408 gettactggacgaactetg	6142	61611	4
SEQ ID NO: 3080 cagtgtcaacaaagctttg	2257	2276 SEQ ID NO: 4409 caaattcctggatacactg	9857	98761	4
SEQ ID NO: 3081 agtgtcaacaaagctttgt	2258	2277 SEQ ID NO: 4410 acaagaatacgtctacact	4359	43781	4
SEQ ID NO: 3082 ctgatggtgtctctaaggt	2298	2317 SEQ ID NO: 4411 acctcggaacaatcctcag	3333	33521	4
SEQ ID NO: 3083 tgatggtgtctctaaggtc	2299	2318 SEQ ID NO: 4412 gacctgcgcaacgagatca	8831	88501	4
SEQ ID NO: 3084 aaacatgagcaggatatgg	2351	2370 SEQ ID NO: 4413 ccatgatctacatttgttt	6796	68151	4
SEQ ID NO: 3085 gaagctgattaaagatttg	2395	2414 SEQ ID NO: 4414 caaaaacattttcaacttc	5287	53061	4
SEQ ID NO: 3086 aaagatttgaaatccaaag	2405	2424 SEQ ID NO: 4415 ctttaagttcagcatcttt	7614	76331	4
· · · · · · · · · · · · · · · · · · ·					

SEQID NO: 3087 gatgggtgcccgcactctg	2518	2537 SEQ ID NO: 4416 cagatttgaggattccatc 7983	80021 4
SEQ ID NO: 3088 gggatcccccagatgattg	2540	2559 SEQ ID NO: 4417 caatcacaagtcgattccc 9083	91021 4
SEQ ID NO: 3089 ttttcttcactacatcttc	2593	2612 SEQ ID NO: 4418 gaagtgtcagtggcaaaaa 10382	104011 4
SEQ ID NO: 3090 tcttcactacatcttcatg	2596	2615 SEQ ID NO: 4419 catggcattatgatgaaga 3615	36341 4
SEQ ID NO: 3091 tacatcttcatggagaatg	2603	2622 SEQ ID NO:4420 cattatggaggcccatgta 9445	94641 4
SEQ ID NO: 3092 ttcatggagaatgcctttg	2609	2628 SEQ ID NO: 4421 caaaatcaactttaatgaa 6607	66261 4
SEQID NO: 3093 tcatggagaatgcctttga	2610		131351 4
SEQ ID NO: 3094 tttgaactccccactggag	2624		
SEQ ID NO: 3095 ttgaactccccactggagc	2625		98611 4
	2626	2644 SEQ ID NO: 4424 gctccccaggacctttcaa 9841	98601 4
SEQ ID NO: 3096 tgaactccccactggagct		2645 SEQ ID NO: 4425 agctccccaggacctttca 9840	98591 4
SEQ ID NO: 3097 cactggagctggattacag	2635	2654 SEQ ID NO: 4426 ctgtttctgagtcccagtg 9344	93631 4
SEQ ID NO: 3098 actggagctggattacagt	2636	2655 SEQ ID NO: 4427 actgtttctgagtcccagt 9343	93621 4
SEQ ID NO: 3099 agttgcaaatatcttcatc	2652	2671 SEQ ID NO: 4428 gatgatgccaaaatcaact 6599	66181 4
SEQ ID NO: 3100 gttgcaaatatcttcatct	2653	2672 SEQ ID NO: 4429 agatgatgccaaaatcaac 6598	66171 4
SEQ ID NO: 3101 aaatatcttcatctggagt	2658	2677 SEQ ID NO: 4430 actcagaaggatggcattt 14004	140231 4
SEQ ID NO: 3102 taaaactggaagtagccaa	2703	2722 SEQ ID NO: 4431 ttggttacaggaggcttta 7600	76191 4
SEQ ID NO: 3103 ggctgaactggtggcaaaa	2728	2747 SEQ ID NO: 4432 ttttcttttcagcccagcc 9228	92471 4
SEQ ID NO: 3104 tgtggagtttgtgacaaat	2758	2777 SEQ ID NO: 4433 attttcaagcaaatgcaca 8538	85571 4
SEQ ID NO: 3105 ttgtgacaaatatgggcat	2766	2785 SEQ ID NO:4434 atgcgtctaccttacacaa 9521	95401 4
SEQ ID NO: 3106 atgaacaccaacttcttcc	2819	2838 SEQ ID NO: 4435 ggaagctgaagtttatcat 2877	28961 4
SEQ ID NO: 3107 cttccacgagtcgggtctg	2833	2852 SEQ ID NO: 4436 cagagetateactgggaag 5235	52541 4
SEQID NO: 3108 gagtcgggtctggaggctc	2840		61591 4
SEQ ID NO: 3109 cctaaaagctgggaagctg	2866		
SEQ ID NO: 3110 agctgggaagctgaagttt	2872		21391 4
SEQ ID NO: 3111 ccagattagagctggaact	3114		54821 4
	3208		27451 4
SEQ ID NO: 3112 ggataccctgaagtttgta			84121 4
SEQ ID NO: 3113 ctgaggctaccatgacatt	3252		38361 4
SEQ ID NO: 3114 tgtccagtgaagtccaaat	3297		63761 4
SEQ ID NO: 3115 aattccggattttgatgtt	3313		89571 4
SEQ ID NO: 3116 ttccggattttgatgttga	3315		32261 4
SEQ ID NO: 3117 cggaacaatcctcagagtt	3337		42301 4
SEQ ID NO: 3118 tcctcagagttaatgatga	3345	3364 SEQ ID NO: 4447 tcatcaattggttacagga 7593	76121 4
SEQ ID NO: 3119 ctcaccctggacattcaga	3392	3411 SEQ ID NO: 4448 tctgcagaacaatgctgag 12439 1	24581 4
SEQ ID NO: 3120 cattcagaacaagaaaatt	3403		81231 4
SEQ ID NO: 3121 actgaggtcgccctcatgg	3422		09431 4
SEQ ID NO: 3122 ttatttccataccccgttt	3486		38991 4
SEQ ID NO: 3123 gtttgcaagcagaagccag	3501		54271 4
SEQ ID NO: 3124 tttgcaagcagaagccaga	3502		52911 4
SEQ ID NO: 3125 ttgcaagcagaagccagaa	3503	······································	52901 4
SEQ ID NO: 3126 ctgcttctccaaatggact	3554		
SEQ ID NO: 3127 tgctacagcttatggctcc	3577		
SEQ ID NO: 3128 acagcttatggctccacag	3581	0000	76281 4
SEQ ID NO: 3129 tttccaagagggtggcatg	3600		59161 4
			88961 4
SEQ ID NO: 3130 ccaagagggtggcatggca	3603	······································	93801 4
SEQ ID NO: 3131 gtggcatggcattatgatg	3611		30901 4
SEQ ID NO: 3132 tgatgaagagaagattgaa	3625		78901 4
SEQ ID NO: 3133 gaagagaagattgaatttg	3629	3648 SEQ ID NO: 4462 caaaaacattttcaacttc 5287	3061 4

SEQ ID NO: 3134 gagaagattgaatttgaat	3632	3651e=0 ID	NO:4463 attcataatcccaactctc	8278	82971	1 4
SEQ ID NO: 3135 tttgaatggaacacaggca	3644		NO: 4464 tgcctttgtgtacaccaaa	11236	112551	
SEQ ID NO: 3136 aggcaccaatgtagatacc	3658		NO: 4465 ggtaacctaaaaggagcct	5591	56101	
SEQ ID NO: 3137 caaaaaaatgacttccaat	3676		NO:4466 attgaagtacctacttttg	8366	83851	4
SEQ ID NO: 3138 aaaaaaatgacttccaatt	3677		NO:4467 aattgaagtacctactttt	8365	83841	4
SEQ ID NO: 3139 aaaaaatgacttccaattt	3678		NO:4468 aaatccaatctcctctttt	8406	84251	4
SEQ ID NO: 3140 cagagtccctcaaacagac	3760		NO:4469 gtctgtgggattccatctg	4090	41091	4
SEQ ID NO: 3141 aaattaatagttgcaatga	3803		NO:4470tcataagttcaatgaattt	13186	132051	4
SEQ ID NO: 3142 ttcaacctccagaacatgg	3899	3918 SEQ ID	NO:4471 ccattgaccagatgctgaa	8142	81611	4
SEQ ID NO: 3143 tgggattgccagacttcca	3915	3934 SEQ ID	NO:4472tggaaatgggcctgccca	8903	89221	4
SEQ ID NO: 3144 cagtttgaaaattgagatt	3994	4013 SEQ ID	NO:4473 aatcacaactcctccactg	9541	95601	4
SEQ ID NO: 3145 gaaaattgagattcctttg	4000	4019 SEQ ID	NO:4474 caaaactaccacacatttc	13694	137131	4
SEQ ID NO: 3146 tttgccttttggtggcaaa	4015	4034 SEQ ID	NO:4475tttgagaggaatcgacaaa	6359	63781	4
SEQ ID NO: 3147 ctccagagatctaaagatg	4036	4055 SEQ ID	NO:4476 catcaattggttacaggag	7594	76131	4
SEQ ID NO: 3148 tctaaagatgttagagact	4045		NO:4477 agtectteatgteectaga	10033	100521	I
SEQ ID NO: 3149 ctgtgggattccatctgcc	4092		NO:4478 ggcattttgaaaaaaacag	9735	97541	1
SEQ ID NO: 3150 atctgccatctcgagagtt	4104	4123 SEQ ID	NO:4479 aactctcaaaccctaagat	8556	85751	4
SEQ ID NO: 3151 tetegagagttecaagtee	4112		NO: 4480 ggacattcctctagcgaga	8215	82341	4
SEQ ID NO: 3152 agtccctacttttaccatt	4126	4145 SEQ ID	NO: 4481 aatgaatacagccaggact	6086	61051	
SEQ ID NO: 3153 acttttaccattcccaagt	4133		NO: 4482 actttgtagaaatgaaagt	8109	81281	4
SEQ ID NO: 3154 cattcccaagttgtatcaa	4141		NO: 4483 ttgaaggacttcaggaatg	12009	12028	
SEQ ID NO: 3155 accacatgaaggctgactc	4284		NO:4484 gagtaaaccaaaacttggt	9024	90431	4
SEQ ID NO: 3156 tttcctacaatgtgcaagg	4317		NO:4485 cctttaacaattectgaaa	9503	95221	4
SEQ ID NO: 3157 ctggagaaacaacatatga	4338		NO:4486tcattctgggtctttccag	11035	11054	4
SEQ ID NO: 3158 atcatgtgatgggtctcta	4378	4397 SEQ ID	NO:4487tagaattacagaaaatgat	6565	65841	
SEQ ID NO: 3159 catgtgatgggtctctacg	4380		NO: 4488 cgtaggcaccgtgggcatg	12133	121521	
SEQ ID NO: 3160 ttctagattcgaatatcaa	4407		NO: 4489 ttgatgatgctgtcaagaa	7308	73271	
SEQ ID NO: 3161 tggggaccacagatgtctg	4499		NO:4490 cagaattccagcttcccca	8334	83531	
SEQ ID NO: 3162 ctaacactggccggctcaa	4644		NO:4491 ttgaggctattgatgttag	6984	70031	
SEQ ID NO: 3163 taacactggccggctcaat	4645		NO:4492attgaggctattgatgtta	6983	70021	
SEQ ID NO: 3164 aacactggccggctcaatg	4646		NO:4493 cattgaggctattgatgtt	6982	70011	
SEQ ID NO: 3165 ctggccggctcaatggaga	4650		NO: 4494 tctccatctgcgctaccag	12073	120921	4
SEQ ID NO: 3166 agataacaggaagatatga	4713		NO:4495 tcatctcctttcttcatct	10210	102291	4
SEQ ID NO: 3167 teceteacetecacetetg	4745		NO: 4496 cagatatatatctcaggga	8184	82031	4
SEQ ID NO: 3168 agctgactttaaaatctga	4818		NO: 4497 tcaggctcttcagaaagct	7930	79491	4
SEQ ID NO: 3169 ctgactttaaaatctgaca	4820		NO: 4498 tgtcaagataaacaatcag	8740	87591	4
SEQ ID NO: 3170 caagatggatatgaccttc	4873		NO:4499 gaagtagtactgcatcttg	6843	68621	4
SEQ ID NO: 3171 gctgcgttctgaatatcag	4909		NO: 4500 ctgagtcccagtgcccagc	9350	93691	4
SEQ ID NO: 3172 cgttctgaatatcaggctg	4913		NO: 4501 cagcaagtacctgagaacg	8611	86301	4
SEQ ID NO: 3173 aattcccatggtcttgagt	4976		NO: 4502 actcagatcaaagttaatt	12272	122911	4
SEQ ID NO: 3174 tggtcttgagttaaatgct	4984		NO: 4503 agcacagtacgaaaaacca		108281	4
SEQ ID NO: 3175 cttgagttaaatgctgaca	4988		NO: 4504 tgtccctagaaatctcaag	10042	100611	4
SEQ ID NO: 3176 ttgagttaaatgctgacat	4989		NO: 4505 atgtccctagaaatctcaa	10041	100601	4
SEQ ID NO: 3177 tgagttaaatgctgacatc	4990		NO: 4506 gatggaaccctctccctca	4733	47521	4
SEQ ID NO: 3178 acttgaagtgtagtctcct	5094		NO: 4507 aggaaactcagatcaaagt	12267	122861	4
SEQ ID NO: 3179 agtgtagtctcctggtgct	5100		NO: 4508 agcagccagtggcaccact	12514	125331	4
SEQ ID NO: 3180 gtgctggagaatgagctga	5114	5133 SEQ ID	NO:4509tcagccaggtttatagcac	7734	77531	4

la collaterare de la collaterare					
SEQ ID NO: 3181 ctggggcatctatgaaatt	5151	5170 SEQ ID NO: 4510 aatttctgattaccaccag	13579	135981	4
SEQ ID NO: 3182 atggccgcttcagggaaca	5178	5197 SEQ ID NO: 4511 tgttttttggaaatgccat	8649	86681	4
SEQ ID NO: 3183 ttcagtctggatgggaaag	5207	5226 SEQ ID NO: 4512 ctttgacaggcattttgaa	9727	97461	4
SEQ ID NO: 3184 ccatgattctgggtgtcga	5265	5284 SEQ ID NO: 4513 tcgatgcacatacaaatgg	5838	58571	4
SEQ ID NO: 3185 aaaacattttcaacttcaa	5289	5308 SEQ ID NO: 4514 ttgatgttagagtgctttt	6993	70121	4
SEQ ID NO: 3186 cttaagctctcaaatgaca	5324	5343 SEQ ID NO: 4515 tgtcctacaacaagttaag	7255	72741	4
SEQ ID NO: 3187 ttaagctctcaaatgacat	5325	5344 SEQ ID NO: 4516 atgtcctacaacaagttaa	7254	72731	4
SEQ ID NO: 3188 catgatgggctcatatgct	5341	5360 SEQ ID NO: 4517 agcatctttggctcacatg	7624	76431	4
SEQ ID NO: 3189 tgggctcatatgctgaaat	5346	5365 SEQ ID NO: 4518 atttatcaaaagaagccca	12942	129611	4
SEQ ID NO: 3190 actggacttctcttcaaaa	5407	5426 SEQ ID NO: 4519 ttttggcaagctatacagt	8380	83991	4
SEQ ID NO: 3191 acttetetteaaaacttga	5412	5431 SEQ ID NO: 4520 tcaattgggagagacaagt	6504	65231	<u> </u>
SEQ ID NO: 3192 ctgacaagttttataagca	5445	5464 SEQ ID NO: 4521 tgctttgtgagtttatcag	9693	97121	<u> </u>
SEQ ID NO: 3193 aagttttataagcaaactg	5450	5469 SEQ ID NO: 4522 cagtcatgtagaaaaactt	4429	44481	4
SEQ ID NO: 3194 ctgttaatttacagctaca	5466	5485 SEQ ID NO: 4523 tgtactggaaaacgtacag	6388	64071	4
SEQ ID NO: 3195 ttacagctacagccctatt	5474	5493 SEQ ID NO: 4524 aatattgatcaatttgtaa	6425	64441	
SEQ ID NO: 3196 tctggtaactactttaaac	5494	5513 SEQ ID NO: 4525 gtttgaaaaacaaagcaga	11820	118391	4
SEQ ID NO: 3197tttaaacagtgacctgaaa	5506	5525 SEQ ID NO: 4526 tttcatttgaaagaataaa	7032	70511	- 4
SEQ ID NO: 3198 ttaaacagtgacctgaaat	5507	5526 SEQ ID NO: 4527 atttcaagcaagaacttaa	10434	104531	-4
SEQ ID NO: 3199 cagtgacctgaaatacaat	5512	5531 SEQ ID NO: 4528 attggcgtggagcttactg	6131	61501	4
SEQ ID NO: 3200 tgtggctggtaacctaaaa	5584	5603 SEQ ID NO: 4529 ttttgctggagaagccaca	10765		4
SEQ ID NO: 3201 tatcagcaagctataaag	5657	5676 SEQ ID NO:4530 ctttgcactatgttcataa		107841	4
SEQ ID NO: 3202 ggttcagggtgtggagttt	5692		12764	127831	4
SEQ ID NO: 3203 atteagacteactgcattt	5775	5711 SEQ ID NO: 4531 aaacacctaagagtaaacc	9014	90331	4
SEQ ID NO: 3204 ttcagactcactgcatttc	5776	5794 SEQ ID NO:4532 aaatgctgacatagggaat	8437	84561	4
SEQ ID NO: 3205 tacaaatggcaatgggaaa	5848	5795 SEQ ID NO:4533 gaaatattatgaacttgaa	13312	133311	4
SEQ ID NO: 3206 gctgtatagcaaattcctg	5896	5867 SEQ ID NO: 4534 tttcctaaagctggatgta	11176	111951	4
	6043	5915 SEQ ID NO: 4535 caggtccatgcaagtcagc	10919	109381	4
SEQ ID NO: 3207 tgagcagacaggcacctgg	6053	6062 SEQ ID NO: 4536 ccagcttccccacatctca	8341	83601	4
		6072 SEQ ID NO: 4537 tettegtgtttcaactgcc	11221	112401	4
SEQ ID NO: 3209 tgaatacagccaggacttg	6088	6107 SEQ ID NO: 4538 caagtaagtgctaggttca	9380	93991	4
SEQ ID NO: 3210 gaatacagccaggacttgg	6089	6108 SEQ ID NO: 4539 ccaacacttacttgaattc	10668	106871	4
SEQ ID NO: 3211 ctggacgaactctggctga	6147	6166 SEQ ID NO: 4540 tcagaaagctaccttccag	7939	79581	4
SEQ ID NO: 3212 ttttactcagtgagcccat	6201	6220 SEQ ID NO: 4541 atggacttcttctggaaaa	8878	88971	4
SEQ ID NO: 3213 gatgagagatgccgttgag	6241	6260 SEQ ID NO: 4542 ctcatctcctttcttcatc	10209	102281	4
SEQ ID NO: 3214 aattgttgcttttgtaaag	6277	6296 SEQ ID NO: 4543 cttttctaaacttgaaatt	9064	90831	4
SEQ ID NO: 3215 cttttgtaaagtatgataa	6285	6304 SEQ ID NO: 4544 ttatgaacttgaagaaaag	13318	133371	4
SEQ ID NO: 3216 tttgtaaagtatgataaaa	6287	6306 SEQ ID NO: 4545 ttttcacattagatgcaaa	8421	84401	4
SEQ ID NO: 3217 tccattaacctcccatttt	6320	6339 SEQ ID NO: 4546 aaaattgatgatatctgga	10727	107461	4
SEQ ID NO: 3218 ccattaacctcccattttt	6321	6340 SEQ ID NO: 4547 aaaagggtcatggaaatgg	8893	89121	4
SEQ ID NO: 3219 cttgcaagaatattttgag	6346	6365 SEQ ID NO: 4548 ctcaattttgattttcaag	8528	85471	4
SEQ ID NO: 3220 agaatattttgagaggaat	6352	6371 SEQ ID NO: 4549 attecetecattaagttet	11708	117271	4
SEQ ID NO: 3221 attatagttgtactggaaa	6380	6399 SEQ ID NO: 4550 tttcaagcaagaacttaat	10435	104541	4
SEQ ID NO: 3222 gaagcacatcaatattgat	6415	6434 SEQ ID NO: 4551 atcagttcagataaacttc	7999	80181	4
SEQ ID NO: 3223 acatcaatattgatcaatt	6420	6439 SEQ ID NO: 4552 aattccctgaagttgatgt	11487	115061	4
SEQ ID NO: 3224 gaaaactcccacagcaagc	6465	6484 SEQ ID NO: 4553 gctttctcttccacatttc	10060	100791	4
SEQ ID NO: 3225 ctgaattcattcaattggg	6494	6513 SEQ ID NO: 4554 cccatttacagatcttcag	11371	113901	4
SEQ ID NO: 3226 tgaattcattcaattggga	6495	6514 SEQ ID NO: 4555 teccatttacagatettea	11370	113891	<u> </u>
SEQ ID NO: 3227 aactgactgctctcacaaa	6540	6559 SEQ ID NO: 4556 tttgaggattccatcagtt	7987	80061	4
				3300	

lana da anastata go etto caga	6558	6577	la —	4557	*totanotonotonottti	9050	nacol	41
SEQ ID NO: 3228 aaaagtatagaattacaga	6611				tetggeteeteaactttt		9069	
SEQ ID NO: 3229 atcaactttaatgaaaaac					gtttattgaaaatattgat	6811	6830	
SEQ ID NO: 3230 tgatttgaaaatagctatt	6694				aatattattgatgaaatca	6716	6735	
SEQ ID NO: 3231 atttgaaaatagctattgc	6696				gcaagaacttaatggaaat	10441	10460	
SEQ ID NO: 3232 attgctaatattattgatg	6710				catcacactgaataccaat	10159	10178	
SEQ ID NO: 3233 gaaaaattaaaaagtcttg	6737				caagagcttatgggatttc	11161	11180	
SEQ ID NO: 3234 actatcatatccgtgtaat	6762				attactttgagaaattagt	7281	7300	
SEQ ID NO: 3235 tattgattttaacaaaagt	6823	6842	SEQ ID NO:	4564	acttgacttcagagaaata	11404	11423	
SEQ ID NO: 3236 ctgcagcagcttaagagac	6914	6933	SEQ ID NO:	4565	gtcttcagtgaagctgcag	10699	10718	1 4
SEQ ID NO: 3237 aaaacaacacattgaggct	6973	6992	SEQ ID NO:	4566	agcctcacctcttactttt	10571	10590	1 4
SEQ ID NO: 3238 ttgagcatgtcaaacactt	7059	7078	SEQ ID NO:	4567	aagtagctgagaaaatcaa	7104	7123	1 4
SEQ ID NO: 3239 tttgaagtagctgagaaaa	7100	7119	SEQ ID NO:	4568	ttttcacattagatgcaaa	8421	8440	1 4
SEQ ID NO: 3240 ttagtagagttggccacc	7199	7218	SEQ ID NO:	4569	ggtggactcttgctgctaa	7776	7795	1 4
SEQ ID NO: 3241 tgaaggagactattcagaa	7227	7246	SEQ ID NO:	4570	ttctcaattttgattttca	8526	8545	1 4
SEQ ID NO: 3242 gagactattcagaagctaa	7232	7251	SEQ ID NO:	4571	ttagccacagctctgtctc	10301	10320	1 4
SEQ ID NO: 3243 aattagttggatttattga	7293	7312	SEQ ID NO:	4572	tcaagaagcttaatgaatt	7320	7339	1 4
SEQ ID NO: 3244 gcttaatgaattatctttt	7327	7346	SEQ ID NO:	4573	aaaacgagcttcaggaagc	13209	13228	1 4
SEQ ID NO: 3245 ttaacaaattccttgacat	7365				atgtcctacaacaagttaa	7254	7273	1 4
SEQ ID NO: 3246 aaattaaagtcatttgatt	7394				aatcctttgacaggcattt	9723	9742	1 4
SEQ ID NO: 3247 gactcaatggtgaaattca	7464				tgaaattcaatcacaagtc	9076	9095	1 4
SEQ ID NO: 3248 gaaattcaggctctggaac	7475				gttctcaattttgattttc	8525	8544	1 4
SEQ ID NO: 3249 actaccacaaaaagctgaa	7492				ttcaggaactattgctagt	10645	10664	<u> </u>
SEQ ID NO: 3250 ccaaaataaccttaatcat	7578				atgatttccctgaccttgg	10950	10969	4
SEQ ID NO: 3251 aaataaccttaatcatcaa	7581				ttgaagtaaaagaaaattt	10749	10768	1 4
SEQ ID NO: 3252 tttaagttcagcatctttg	7615			_	caaatctggatttcttaaa	9480	94991	
SEQ ID NO: 3253 caggfttatagcacacttg	7739				caagggttcactgttcctg	7865	7884	
SEQ ID NO: 3254gttcactgttcctgaaatc	7870				gattctcagatgagggaac	8922	8941	
SEQ ID NO: 3255 cactgttcctgaaatcaag	7873				cttgaacacaaagtcagtg	6008	60271	1
SEQ ID NO: 3256 actgttcctgaaatcaaga	7874				tcttgaacacaaagtcagt	6007	60261	ļ
SEQ ID NO: 3257 gcctgcctttgaagtcagt	7909				actgttgactcaggaaggc	12580	125991	
SEQ ID NO: 3258 taacagatttgaggattcc	7980				ggaagcttctcaagagtta	13222	132411	
SEQ ID NO: 3259 gttttccacaccagaattt	8050				aaatttctctgctggaaac	9418	94371	<u> </u>
SEQ ID NO: 3260 tcagaaccattgaccagat	8136				atctgcagaacaatgctga	12438	124571	
SEQ ID NO: 3261 tagcgagaatcaccctgcc	8226				ggcagcttctggcttgcta	12301	123201	
SEQ ID NO: 3262 ccttaatgattttcaagtt	8299				aactgttgactcaggaagg	12579	125981	
SEQ ID NO: 3263 acataccagaattccagct	8328				agctgccagtccttcatgt	10026	100451	1
SEQ ID NO: 3264 aatgctgacatagggaatg	8438	8457	SECTIONO:	4593	cattaatcctgccatcatt	10025	10043	L
SEQ ID NO: 3265 atgctgacatagggaatgg	8439				ccatttgagatcacggcat	9245	92641	
SEQ ID NO: 3266 aaccacctcagcaaacgaa					ttcgttttccattaaggtt	9245	93101	1
SEQ ID NO: 3266 adoctadotocagotadogad	8476					10972	109911	
SEQ ID NO: 3267 agcaggtatcgcagcttcc	8551				ggaagtggccctgaatgct	13501		
SEQ ID NO: 3268 tgcacaactctcaaaccct	8592				agggaaagagaagattgca		135201	
SEQ ID NO: 3269 aggagtcagtgaagttctc					gagaacttactatcatcct	13788	138071	
SEQ ID NO: 3270 tttttggaaatgccattga	8652				tcaatgaatttattcaaaa	13194	132131	ì
SEQ ID NO: 3271 aatggagtgattgtcaaga	8729				tettttcageccagecatt	9231	92501	
SEQ ID NO: 3272 gtcaagataaacaatcagc	8741				gctgactttaaaatctgac	4819	48381	
SEQ ID NO: 3273 tccacaaattgaacatccc	8787				gggatttcctaaagctgga	11172	111911	
SEQ ID NO: 3274 ttgaacatccccaaactgg	8795	8814	SEQ ID NO:	1603	ccagtttccagggactcaa	12603	126221	4

SEQ ID NO. 3277 pactitizitagitzaggitga 8814 8833 SEQ ID NO. 4605 [cagaligaaaaatgaagt 11010 11025] SEQ ID NO. 3277 [pactitizitagitzaggitga 8814 8833 SEQ ID NO. 4606 [pasagitzataatggitto 12817 12836] SEQ ID NO. 3277 [pasatzacaaattagitto 8944 8868 8867 SEQ ID NO. 4606 [pasagitzataatggitto 12817 12836] SEQ ID NO. 3275 [pasagitzagaataata 8988 8868 8867 SEQ ID NO. 4606 [pasagitzagaaaata 12825] SEQ ID NO. 3280 [pasagitzagaataata 8989 9017] SEQ ID NO. 4606 [pasagitzagaaaaacaatacaagt 11864 11853] SEQ ID NO. 3280 [pasagitzagaataata 8989 9017] SEQ ID NO. 4606 [pasagitzagaaaacaatacaagt 11864 11853] SEQ ID NO. 3280 [pasagitzagaataata 8989 9017] SEQ ID NO. 4606 [pasagitzagaaaacaatacaagt 11864 11853] SEQ ID NO. 3280 [pasagitzagaataata 9893 9012] SEQ ID NO. 4607 [pasagaatcagaagaaaca 12256] 12274] SEQ ID NO. 3280 [pasagitzagaataata 9045 9064] SEQ ID NO. 4607 [pasagaatcagaagaaaca 12256] 12274] SEQ ID NO. 3280 [pasagitzagaagaatgaataata 9059 9078] SEQ ID NO. 4607 [pasagaatcagaagaacaacaata 11867] 11868] SEQ ID NO. 3280 [pasagitzagaagaatgaataataaaacaataaaaaaaaaaaaaaa								0000	04004	
Sect DNC 3277 Sect Sect Sect Sect DNC 4606 Sect DNC 4606 Sect DNC 4277 12836 Sect DNC 3277 Sect Sect DNC 3277 Sect Sect DNC 3278 S	EQ ID NO: 3	3275 acatececaaactggaett	8799					9090	91091	
\$60 D.N. \$278 agaaaggaccctcacttcc 8968 8967 \$50 D.N. \$4607 ggaagaagaggcagcttct 12292 12311 1556 No. \$278 tigaacgtcaataaggat 8988 9007 \$50 D.N. \$4608 ptd. \$1600 \$278 tigaacgtcaataaggat 1898 9007 \$50 D.N. \$4608 ptd. \$1600 \$280 act pl. \$1600 \$280 act pl. \$1600 \$280 act pl. \$280 ac	EQ ID NO: 3	3276 acttctctagtcaggctga								
SEO DN: 3272	EQ ID NO: 3	3277 tgaatcacaaattagtttc								
SEQ ID NO. 3280 autotic casatagatoat 8992 9011 SEQ ID NO. 4609 autoatagatoatacat 13891 13910 1 SEQ ID NO. 2881 digicoatagagatoatat 8993 9012 SEQ ID NO. 4610 fattgatagaaaccatacag 13891 139091 SEQ ID NO. 2882 diffatgaatotgactocto 9041 9060 SEQ ID NO. 4611 gatagatagacatacag 12255 122741 SEQ ID NO. 2882 distagatotgactoctoctocaa 9045 9068 SEQ ID NO. 4613 casagatocagacatacata 11667 116861 SEQ ID NO. 2882 distagagatogacatgit 9059 9078 SEQ ID NO. 4613 casagatocagacacatacata 11667 116861 SEQ ID NO. 2886 disaggocatgocacitytit 9132 9151 SEQ ID NO. 4613 casagatagacacacatact 19749 97881 SEQ ID NO. 2887 placecasacaatgaagg 9262 9281 SEQ ID NO. 4616 casacagattlagggal 7977 79961 SEQ ID NO. 2889 gaattigaaagtgatt 9279 9289 SEQ ID NO. 4616 casacagattlaggat 7977 79961 SEQ ID NO. 2890 gaaaacacagagaatat 9432 9451 SEQ ID NO. 4619 gatacacagacagata 11066 136271 SEQ ID NO. 2990 gaaaacacaacacaggatta 9467	EQ ID NO:	3278 agaaggacccctcacttcc								
SEQ ID NO. 3280 displacatagagicanta 8993 9012 SEQ ID NO. 4610 latigataaaaccatacag 13890 13909 13909 13900	EQ ID NO: 3	3279ttggactgtccaataagat								
Secol DN 3284 cligocoatlaagatcaata 8993 9012 Secol DN 0,4610 fattgataaaaccatacag 13890 13900 13900 13900 13800 13900 13	EQ ID NO: 3	3280 actgtccaataagatcaat	8992							
SEO_ID No. 3282-3	EQ ID NO: 3	3281 ctgtccaataagatcaata	8993							
SEQ DNC 3286 Separation	EQ ID NO: 3	3282 gtttatgaatctggctccc	9041							
SEQ ID NO. 3286 decaedttictaeacity 9056 9076 SEQ ID NO. 4614 acagaaacatgoettag 9740 9768 9768 9768 9768 9740 9	EQ ID NO: 3	3283 atgaatctggctccctcaa	9045							
SEQ ID NO. 3285 total 3285 total 3285	EQ ID NO: 3	3284 ctcaacttttctaaacttg	9059							
SEQ D NO. 3286 Saggocatgocatgotogo 9132 915 SEQ D NO. 4615 Cocaagaaaaggcacacct 11077 11096 1500 1000 327 2000	EQ ID NO: 3	3285 ctaaaggcatggcactgtt	9129	9148	SEQ ID NO:	4614	aacagaaacaatgcattag			
SEQ ID No. 3287 alccaceaacaatgaaggg 9262 9281 IsEQ ID No. 4616 (coctaacaagattgaggt 7977 79961 SEQ ID No. 3288 ggaattgaaagttcgttt 9279 9298 SEQ ID No. 4617 aaacaaacaacaggcattc 9655 9674 I SEQ ID NO. 3289 gaaataactatgcactgtttc 9332 9351 SEQ ID NO. 4619 gaataactgcacaagattttt 13608 13827 I SEQ ID NO. 3292 gaaacaacaacaagacacaagac 9599 9618 SEQ ID NO. 4620 gatttgaagattgacaagac 11064 I 13608 13627 I SEQ ID NO. 3292 gaaacaacaacacagacacaag 9649 9667 SEQ ID NO. 4622 gaattgaagattgatttt 9609 I 9667 SEQ ID NO. 4622 gaattgaagttgatttt 9609 I 9609 I 9600 IN NO. 4622 gaattgaaagttgttt 960 IN NO. 9600 IN NO. 4623 gagaattgaagattgtttt 9600 IN NO. <	EQ ID NO: 3	3286 aaggcatggcactgtttgg	9132							
SEQ D NO:	EQ ID NO: 3	3287 atccacaaacaatgaaggg	9262	9281	SEQ ID NO:	4616	ccctaacagatttgaggat	7977		
SEQ ID NO. 3289aataactatgcactgtttc 9332 9351 SEQ ID NO. 4618 gaaatactgtttcctatt 12836 128551 SEQ ID NO. 3290 gaaacaacaagagaacattat 9432 9451 SEQ ID NO. 4619 ataaactgcaagatttttc 13608 136271 SEQ ID NO. 3291 ticttgaaaacgacaaaca 9599 9618 SEQ ID NO. 4621 ctgtgctttgdagcaaagatt 9600 97091 SEQ ID NO. 3293 taagaaaacaacacaggcattc 9654 9673 SEQ ID NO. 4622 gaattgaaatggccctgaatgc 109901 SEQ ID NO. 3293 ttgaaaaaacaacaagaaaca 9667 9866 SEQ ID NO. 4622 gaattgaaagtggccctgaatgc 10971 109901 SEQ ID NO. 3295 ttgaaaaaaacagaaaca 9740 9759 SEQ ID NO. 4624 lgttgaaagattgaccctgaatgc 10971 109901 SEQ ID NO. 3295 ttgaaacatgattagatttttg 9759 9776 SEQ ID NO. 4625 gaaaaagattacaaa 12933 129521 SEQ ID NO. 3295 caatgcattagattttgt 9759 9776 SEQ ID NO. 4625 gaaaacaaaaaagagtggcctgaattgaaaaaaaaaaaa	EQ ID NO: 3	3288 ggaatttgaaagttcgttt	9279							
SEQ ID NO. 3290 pasacaacgagaacatatat 9432 9451 SEQ ID NO. 4619 tataacatgcaagattitte 13608 136271 SEQ ID NO. 3292 tatagaaaacaacaacag 9599 9518 SEQ ID NO. 4621 cttgtcttttgttgatttagttagattat 9609 97091 SEQ ID NO. 3292 aaaacaacaacaacag goattc 9654 9673 SEQ ID NO. 4622 gaatttgaaatttgttat 9690 97091 SEQ ID NO. 3293 aaaacaacaacaacaca 9674 9666 967 9666 SEQ ID NO. 4622 agaattgaagtttgtttt 9909 1979 109901<	EQ ID NO: 3	3289 aataactatgcactgtttc	9332							
SEQ ID NO. 3294 Ittiftgaaaacgacaaagc 9599 9618 SEQ ID NO.;4620 cttttccaatgaccaagaa 110641 110841 SEQ ID NO. 3292 alaagaaaacacaaagcattc 9664 9673 SEQ ID NO.;4622 cttttttgtagattt 9690 97991 SEQ ID NO. 3293 alaacaacacaaggaattc 9654 9673 SEQ ID NO.;4622 gaatttgaaagttcgtttt 9280 92991 SEQ ID NO. 3294 gleattccatcacaaatcct 9667 9686 SEQ ID NO.;4623 aggaagttgccctgaatgc 10971 109901 SEQ ID NO. 3295 tttgaaaaaaacaagaaaca 9740 9759 SEQ ID NO.;4624 lyttgaaaagatttacaaa 12933 12952 1 SEQ ID NO. 3296 catagcattagatttigtic 9757 9776 SEQ ID NO.;4625 gacaagaaaaaagagggatt 10279 102881 SEQ ID NO. 3297 caaagtgaaaaatccagg 9817 9836 SEQ ID NO.;4627 ctgaacttcatcattagt 111438 114571 SEQ ID NO. 3299 ctgaaactgaaaaatccaggaaa 9880 9898 SEQ ID NO.;4627 ctgaacttcatcatgaagagaa 8810 88291 SEQ ID NO. 3300 lttctccatcctaggttct 9964 9983 SEQ ID NO.;4628 ltgaatctgacaaaagaaa 6893 69121 SEQ ID NO. 3300 lttctccatcctaggttct 9965 </td <td>EQ ID NO: 3</td> <td>3290 gaaacaacgagaacattat</td> <td>9432</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>t.</td> <td></td>	EQ ID NO: 3	3290 gaaacaacgagaacattat	9432						t.	
SEQ ID NO: 3292/ataagaaaaacaaacacag 9648 9667 SEQ ID NO:4621 ctytgotttytagdttat 9690 97091 SEQ ID NO: 3293/aaacaaaacaagcattc 9654 9673 SEQ ID NO:4622 gaatttyaaattyttyt 9289 9191 SEQ ID NO: 3293/aaaaaaacaaacaagaaaca 9740 9759 SEQ ID NO:4622 luttyaaaagatttacaaa 10971 109901 SEQ ID NO: 3295/stttgaaaaaaacagaaaca 9740 9759 SEQ ID NO:4625 luttyaaaagatttacaaa 12933 129521 SEQ ID NO: 3296/caatgcattagattitytc 9757 9776 SEQ ID NO:4625 luttyaaaagatttacaaa 12933 129521 SEQ ID NO: 3296/caatgcattagaattitytc 9817 9836 SEQ ID NO:4626 ctyaaaacttcatcattty 11438 114571 SEQ ID NO: 3299/sttyaaatgtctccattaa 9863 9882 SEQ ID NO:4627 ctygaacttctcatacty 8810 88291 SEQ ID NO: 3300/stttctcatcatagyttct 9864 9833 SEQ ID NO:4628 lyaaatcagatacaagaa 6889 6911 SEQ ID NO: 3300/sttttcatcatcatagyttct 9964 9983 SEQ ID NO:4628 lyaaatcagatacaagaa 6892 6911 SEQ ID NO: 3301/sttttaaacag 10019 10038 SEQ ID NO:4633 lyaaactaaatatat	EQ ID NO: 3	3291 ttcttgaaaacgacaaagc	9599	9618	SEQ ID NO:	4620	gctttccaatgaccaagaa	11065	110841	4
SEQ ID NO. 3292jaaaacaaaacacaggcatte 9654 9673 SEQ ID NO.4622 jaaatttgaaagttcgtttt 9280 92991 SEQ ID NO. 3294jgcattccatcacaaaatcct 9667 9686 SEQ ID NO.4623 aggaagtggccttgaatgc 10971 109901 SEQ ID NO. 3295 stitgaaaaaacagaaaca 9740 9759 SEQ ID NO.4622 agaaagagagggtttatcaaa 12933 129521 SEQ ID NO. 3296 caatgcattagattttgtc 9757 9776 SEQ ID NO.4625 gacaagaaaaaggggattg 10279 102881 SEQ ID NO. 3297 caaagctgaaaaatctcag 9817 9836 SEQ ID NO.4625 gaacattcatcattttg 11438 114571 SEQ ID NO. 3298 cttggatacactgtccag 9863 9882 SEQ ID NO.4627 ctggatctctcatattggg 8810 88291 SEQ ID NO. 3300 dittetcatcctaggttct 9964 9983 SEQ ID NO.4628 gaatccagatcaagaa 6893 6912 1 SEQ ID NO. 3301 littccatcctaggttct 9965 9984 SEQ ID NO.4633 gaacatgaaaaaaaaaaa 6892 69111 SEQ ID NO. 3302 littagaagtgactgccagtc 10019 10038 SEQ ID NO.4633 gaacatgaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	SEQ ID NO: 3	3292 ataagaaaaaacaaacacag	9648	9667	SEQ ID NO:	4621	ctgtgctttgtgagtttat	9690	97091	4
SEQ ID NO: 3294 greattccatecacaactect 9667 9886 SEQ ID NO: 4623 aggaagtggccctgaatgc 10971 109901 SEQ ID NO: 3295 fttgaaaaaatacaaaaaca 9740 9759 SEQ ID NO: 4624 lqttgaaaagattcaaaa 12933 12952 1 SEQ ID NO: 3296 caatgcattagattttgtc 9757 9776 SEQ ID NO: 4625 gacaagaaaaaaggggattg 10279 10298 1 SEQ ID NO: 3297 caaagctgaaaaatccag 9817 9836 SEQ ID NO: 4625 gacaagaaaaaagaggattg 11438 11457 1 SEQ ID NO: 3298 lctggaatcactgtftccag 9863 9882 SEQ ID NO: 4626 tgaatctggctcctcaac 9046 9065 1 SEQ ID NO: 3300 lttctccatcctaggttct 9964 9983 SEQ ID NO: 4629 agaatccagatacaagaaa 6893 6912 1 SEQ ID NO: 3301 ltctccatcctaggttctg 9965 9884 SEQ ID NO: 4630 cagaatccagatacaagaa 6892 6911 1 SEQ ID NO: 3302 ltcattagagctgccagtcc 10019 10038 SEQ ID NO: 4631 lgacagtgtacacagaa 13305 1 1324 1 SEQ ID NO: 3303 ltctcattagatttattacag 10277 10196 SEQ ID NO: 4632 lttgaagttatattattag	SEQ ID NO: 3	3293 aaaacaaacacaggcattc	9654	9673	SEQ ID NO:	4622	gaatttgaaagttcgtttt	9280	92991	4
SEQ ID NO: 3295 tttgaaaaaaacagaaaca 9740 9759 SEQ ID NO: 4624 tgttgaaagattatcaaa 12933 129521 SEQ ID NO: 3296 caatgcattagattttgtc 9757 9776 SEQ ID NO: 4625 gacaagaaaaaggggattg 10279 10298 1 SEQ ID NO: 3297 caaagctgaaaaatctaag 9817 9836 SEQ ID NO: 4626 ctgagaacttcatcatttg 11438 114571 SEQ ID NO: 3299 gttgaaagtgtcccattca 9880 9882 SEQ ID NO: 4627 ctgaacttctctagtcagg 8810 88291 SEQ ID NO: 3299 gttgaagtgtctccattca 9890 9990 SEQ ID NO: 4629 agaatccagatacaagaaa 6893 69121 SEQ ID NO: 3301 ttctccatcctaggttct 9965 9984 SEQ ID NO: 4630 cagaatccagatacaagaa 6892 69111 SEQ ID NO: 3302 tcattagaagctgccagtcc 10019 10038 SEQ ID NO: 4631 gagactgaatatatatga 13305 133241 SEQ ID NO: 3303 tgtgdaacttttaaccag 10177 10196 SEQ ID NO: 4632 tggatgtaacacacagaga 11186 112051 SEQ ID NO: 3305 tgtcatttgattgactgcagag 10234 10253 SEQ ID NO: 4635 tttgagttgccacacaagaga	SEQ ID NO: 3	3294 gcattccatcacaaatcct	9667	9686	SEQ ID NO:	4623	aggaagtggccctgaatgc	10971		
SEQ ID NO: 3296 caatgcattagattttyte 9757 9776 SEQ ID NO: 4625 gacaagaaaaaagaggattg 10279 102981 SEQ ID NO: 3297 caaagctgaaaaatccag 9817 9836 SEQ ID NO: 4626 ctgagaatctactaatttg 11438 114571 SEQ ID NO: 3298 cttggatacactgttccattca 9863 9882 SEQ ID NO: 4627 ctggacttctctagtcagg 8810 88291 SEQ ID NO: 3309 gttgaagtgtctccattca 9890 9909 SEQ ID NO: 4628 gaatctggtccctcaac 9046 90651 SEQ ID NO: 3300 tttctccatctaggttct 9965 9984 SEQ ID NO: 4630 gaatccagatacaagaa 6692 6911 SEQ ID NO: 3303 tctattagagctgccagtc 10019 10038 SEQ ID NO: 4631 ggacagtgaaatattattga 13305 13324 SEQ ID NO: 3303 tgtcattgatgcactgcagt 10177 10196 SEQ ID NO: 4632 ctggatgtaacacacagaa 6892 6911 SEQ ID NO: 3304 ctcttttctacttcat 10214 10233 SEQ ID NO: 4632 ctggatgtaacacacagaa 13772 137911 SEQ ID NO: 3305 tgtcattgatgacacacagaa 10241 10233 SEQ ID NO: 4634 ttgcgccacacacac	EQ ID NO: 3	3295 tttgaaaaaaaacagaaaca	9740	9759	SEQ ID NO:	4624	tgttgaaagatttatcaaa	12933		
SEQ ID NO: 3299 cotggatacactgtocag 9817 9836 SEQ ID NO: 4626 ctggatacactgtocatcattgt 11438 114571	SEQ ID NO: 3	3296 caatgcattagattttgtc	9757	9776	SEQ ID NO:	4625	gacaagaaaaaggggattg			4
SEQ ID NO: 3298 cdggatacactgttccag 9863 9882 SEQ ID NO: 4627 cdgaatcttctctagtcag 8810 88291 SEQ ID NO: 3299 gdttgaagtgtctccattca 9890 9909 SEQ ID NO: 4628 tgaatctggatcagaa 9046 90651 SEQ ID NO: 3300 littetccatctaggttct 9964 983 SEQ ID NO: 4630 cagaatccagatacagaa 6892 69111 SEQ ID NO: 3301 littetccatcatggttctg 9965 9984 SEQ ID NO: 4631 ggacagtgaaatattatag 13305 133241 SEQ ID NO: 3302 littetcaattttaaccag 10177 10196 SEQ ID NO: 4631 ggacagtgaaatattatag 13305 133241 SEQ ID NO: 3304 littetcatcttcaat 10214 10233 SEQ ID NO: 4633 adgaagcttgcacagag 13772 137911 SEQ ID NO: 3305 ligteattgatgcactgcag 10234 10253 SEQ ID NO: 4634 ctgcgctaccagaagaa 12080 120991 SEQ ID NO: 3306 ligatgcactgcagtacaaa 10240 10259 SEQ ID NO: 4635 littgagttgcccactaca 11066 116851 SEQ ID NO: 3307 agctctgtctctctggacaa 10309 10328 SEQ ID NO: 4636 gltgaccatgaagctagct	SEQ ID NO: 3	3297 caaagctgaaaaatctcag	9817					11438	114571	4
SEQ ID NO: 3299 glttgaagtgtctccattca 9890 9909 SEQ ID NO: 4628 tgaatctggctcctcaac 9046 9065 1 SEQ ID NO: 3300 lttctccatcctaggttct 9964 9983 SEQ ID NO: 4629 agaatccagatacaagaa 6893 6912 1 SEQ ID NO: 3301 ltctccatcctaggttctg 9965 9984 SEQ ID NO: 4630 cagaatccagatacaagaa 6892 6911 1 SEQ ID NO: 3302 lcattagagctgccagtcc 10019 10038 SEQ ID NO: 4631 ggacagtgaaattattaga 13305 13324 1 SEQ ID NO: 3303 lgctgaactttttaaccag 10177 10196 SEQ ID NO: 4632 ctggatgtaacacacagca 11186 11205 1 SEQ ID NO: 3304 ctcctttcttcatcttcat 10214 10233 SEQ ID NO: 4633 atgaagcttgctccaggag 13772 13791 1 SEQ ID NO: 3305 ltgcattgatgacatgacatacaa 10240 10259 SEQ ID NO: 4635 lttgagttgcccacacaagaa 12080 12099 1 SEQ ID NO: 3306 ltgatgcactgagtacaaa 10240 10259 SEQ ID NO: 4636 lttgagcacacaagttgccacacaagt 10547 10566 1 SEQ ID NO: 3308 agccgaaattcaatttcaattttg 10408 10424 10443 SEQ ID	SEQ ID NO: 3	3298 cctggatacactgttccag	9863	9882	SEQ ID NO:	4627	ctggacttctctagtcagg	8810	88291	4
SEQ ID NO: 3300 [lttctccatcctaggttct] 9964 9983 [SEQ ID NO: 4629] agaatccagatacaagaaa 6893 69121 SEQ ID NO: 3301 [ltctccatcctaggttct] 9965 9984 [SEQ ID NO: 4630] cagaatccagatacaagaa 6892 69111 SEQ ID NO: 3302 [cattagagctgccagtcc 10019 10038 [SEQ ID NO: 4631] ggacagtgaaatatatatga 13305 133241 SEQ ID NO: 3303 [gctgaactttttaaccag 10177 10196 [SEQ ID NO: 4633] atgaagcttgctccaggaag 11186 112051 SEQ ID NO: 3304 [ctctttcttcatcttcat 10214 10233 [SEQ ID NO: 4633] atgaagcttgccacagaga 13772 137911 SEQ ID NO: 3305 [tgattgatgacactgcag 10234 10253 [SEQ ID NO: 4634] ctgcgctaccagaaagaca 12080 12099 [1 SEQ ID NO: 3306 [tgatgcactgcagtacaaa 10240 10259 [SEQ ID NO: 4636] ttgagttgcccaccatag 11666 11685 [1 SEQ ID NO: 3307 [agctctgtctctgagcaac 10309 10328 [SEQ ID NO: 4636] ttgagcaccacaagcttag 10547 10566 [1 SEQ ID NO: 3308 [agccgaaattccaattttg 10408 10427 [SEQ ID NO: 4637] caaagctggaccacagggct 13371 133990 [1 13295 [1 1326 [1 13	SEQ ID NO: 3	3299 gttgaagtgtctccattca	9890							
SEQ ID NO: 3301 1ttctccatcctaggttctg 9965 9984 SEQ ID NO: 4630 cagaatccagatacaagaa 6892 69111 SEQ ID NO: 3302 tcattagagctgccagtcc 10019 10038 SEQ ID NO: 4631 ggacagtgaaatattatga 13305 133241 SEQ ID NO: 3303 tgctgaacttttaaccag 10177 10196 SEQ ID NO: 4632 ctggatgtaaccaccagca 11186 112051 SEQ ID NO: 3304 ctcctttcatcattcat 10214 10233 SEQ ID NO: 4633 atgaagacttgctccaggag 13772 137911 SEQ ID NO: 3305 tgcattgcactgcag 10234 10253 SEQ ID NO: 4634 ctgcgctaccagaaagaca 12080 120991 SEQ ID NO: 3306 tgatgcactgcagtacaaa 10240 10259 SEQ ID NO: 4635 tttgagttgcccacaagactag 12080 120991 SEQ ID NO: 3307 agcctgatctctgagacac 10309 10328 SEQ ID NO: 4636 gttgaccacaagctagct 10547 105661 SEQ ID NO:	SEQ ID NO:	3300 tttctccatcctaggttct	9964							
SEQ ID NO: 3302 cattagagctgccagtcc 10019 10038 SEQ ID NO: 4631 sgacagtgaaatattatga 13305 13324 seQ ID NO: 3303 sgacagtgaaattttaaccag 10177 10196 SEQ ID NO: 4632 ctggatgtaaccaccagca 11186 11205 seQ ID NO: 3304 ctcctttcatctcat 10214 10233 SEQ ID NO: 4633 atgaagcttgctccaggag 13772 13791 seQ ID NO: 3305 stgatgatgaactgcagga 10234 10253 SEQ ID NO: 4634 ctgcgctaccagaaagaca 12080 12099 seQ ID NO: 3306 stgatgcactgcagtacaaa 10240 10259 SEQ ID NO: 4635 sttgagtgcccaccatca 11666 11685 seQ ID NO: 3307 agctctgtctctgagcaac 10309 10328 seQ ID NO: 4636 stgaccacaagcttagct 10547 10566 seQ ID NO: 3308 sgccgaaattccaattttg 10408 10427 seQ ID NO: 4637 caaagctggcaccagggct 13971 13990 seQ ID NO: 3309 sgcagaatgaattcaagc 10424 10443 seQ ID NO: 4638 sgctcaggaagcttccaa 13216 13235 seQ ID NO: 3310 aaacctactgtcttctct 10469 10488 seQ ID NO: 4639 aggaaggcaagcaagttagca 12363 12382 seQ ID NO: 3311 tactttccattgagtcat 10583 10602 seQ ID NO: 4640 atgattatgtcaacaagta 12363 12382 seQ ID NO: 3311 tactttccattgagtcat 10918 10937 seQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 seQ ID NO: 3314 tactgatgaagctagagaagaa 10948 10945 seQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 seQ ID NO: 3314 tactgatgaagctagaagaaaa 10983 11002 seQ ID NO: 4644 tttcaaattggaacttct 12173 12192 seQ ID NO: 3316 sagagtaggaaaaaa 11004 11023 seQ ID NO: 4646 sttctaaattgaagtagcc 11632 11651 seQ ID NO: 3316 sagatttaggctgataaat 11288 11307 seQ ID NO: 4647 gaactctgggctcccaact 10047 seQ ID NO: 3316 sagttttggctgataaattc 11290 11309 seQ ID NO: 4647 saacttgggctcccaact 10047 seQ ID NO: 3316 s	SEQ ID NO: 3	3301 ttctccatcctaggttctg	9965	9984	SEQ ID NO:	4630	cagaatccagatacaagaa	6892	·····	
SEQ ID NO: 3303 lgctgaactttttaaccag 10177 10196 SEQ ID NO: 4632 ctggatgtaaccaccagca 11186 112051 SEQ ID NO: 3304 ctcctttcttcatcttcat 10214 10233 SEQ ID NO: 4633 atgaagcttgctccaggag 13772 137911 SEQ ID NO: 3305 lgtcattgatgcactgcag 10234 10253 SEQ ID NO: 4634 ctgcgctaccagaaagaca 12080 120991 SEQ ID NO: 3306 lgatgcactgcagtacaaa 10240 10259 SEQ ID NO: 4635 ltttgagttgcccaccatca 11666 116851 SEQ ID NO: 3307 agctctgtctctgagcaac 10309 10328 SEQ ID NO: 4635 ltttgagttgcccaccaagcttagct 10547 105661 SEQ ID NO: 3308 agccgaaattccaattttig 10408 10427 SEQ ID NO: 4637 caaagctggcaccaaggctgcacagggct 13971 139901 SEQ ID NO: 3308 ltgaagaatgaatttcaagc 10424 10443 SEQ ID NO: 4638 gcttcaggaagctcaaggctgcattcaa 13216 132351 SEQ ID NO: 3311 lacttttccattgagtcat 10583 10602 SEQ ID NO: 4640 atgattatgtcaacaagta 12363 123821 SEQ ID NO: 3312 lcaggtccatgcaagtcagccagttc 10918 10937 SEQ ID N	SEQ ID NO:	3302 tcattagagctgccagtcc	10019							
SEQ ID NO: 3304 ctcctttctcatctcat 10214 10233 SEQ ID NO: 4633 atgaagcttgctccaggag 13772 137911 SEQ ID NO: 3305 tgtcattgatgcactgcag 10234 10253 SEQ ID NO: 4634 ctgcgctaccagaaagaca 12080 120991 SEQ ID NO: 3306 tgatgcactgcagtacaaa 10240 10259 SEQ ID NO: 4635 tttgagttgcccaccatca 11666 116851 SEQ ID NO: 3307 agcctctgctcttgagcaac 10309 10328 SEQ ID NO: 4636 gttgaccacaagcttagct 10547 105661 SEQ ID NO: 3308 agccgaaattccaattttg 10408 10427 SEQ ID NO: 4637 caaagctggcaccaaggctagct 13971 139901 SEQ ID NO: 3309 ttgagaatgaatttcaagt 10424 10443 SEQ ID NO: 4638 gcttcaggaagctcaaggcctaggtt 13216 132351 SEQ ID NO: 3310 aaacctactgtctcttcct 10469 10488 SEQ ID NO: 4639 aggaaggccaagccagttt 12591 126101 SEQ ID NO: 3311 tactggtccattgagtcattagagtcagt 10918 10937	SEQ ID NO: 3	3303 tgctgaactttttaaccag	10177	10196	SEQ ID NO:	4632	ctggatgtaaccaccagca	11186		
SEQ ID NO: 3305tgtcattgatgcactgcag 10234 10253SEQ ID NO: 4634ctgcgctaccagaaagaca 12080 120991 SEQ ID NO: 3306tgatgcactgcagtacaaa 10240 10259SEQ ID NO: 4635tttgagttgcccaccatca 11666 116851 SEQ ID NO: 3307agctctgtctctgagcaac 10309 10328SEQ ID NO: 4636gttgaccacaagcttagct 10547 105661 SEQ ID NO: 3308agccgaaattccaattttg 10408 10427SEQ ID NO: 4637caaagctggcaccagggct 13971 139901 SEQ ID NO: 3309ttgagaatgaatttcaagc 10424 10443SEQ ID NO: 4638 gcttcaggaagctctcaa 13216 132351 SEQ ID NO: 3310aaacctactgtctcttcct 10469 10488SEQ ID NO: 4639 aggaaggccaagccagttt 12591 126101 SEQ ID NO: 3311tacttttccattgagtcat 10583 10602SEQ ID NO: 4640 atgattatgtcaacaagta 12363 123821 SEQ ID NO: 3312tcaggtccatgcaagtcagctagag 10918 10937SEQ ID NO: 4641 ctgacatcttaggcactga 5001 50201 SEQ ID NO: 3314tgaatgctaacactaagaa 10926 10945SEQ ID NO: 4642 gaactcagaaggagtggcat	SEQ ID NO: 3	3304 ctcctttcttcatcttcat	10214	10233	SEQ ID NO:	4633	atgaagcttgctccaggag	13772		
SEQ ID No: 3306 tgatgcactgcagtacaaa 10240 10259 SEQ ID NO: 4635 tttgagttgcccaccatca 11666 11685 t SEQ ID No: 3307 agctctgtctctgagcaac 10309 10328 SEQ ID NO: 4636 gttgaccacaagcttagct 10547 10566 t SEQ ID No: 3308 agccgaaattccaattttg 10408 10427 SEQ ID NO: 4637 caaagctggcaccagggct 13971 13990 t SEQ ID NO: 3309 ttgagaatgaatttcaagc 10424 10443 SEQ ID NO: 4638 gcttcaggaagctctcaa 13216 13235 t SEQ ID NO: 3310 aaacctactgtctcttcct 10469 10488 SEQ ID NO: 4639 aggaaggccaagccagttt 12591 12610 t SEQ ID NO: 3311 tacttttccattgagtcat 10583 10602 SEQ ID NO: 4640 atgattatgtcaacaagta 12363 12382 t SEQ ID NO: 3312 tcaggtccatgcaagtcag 10918 10937 SEQ ID NO: 4641 ctgacatcttaggcactga 5001 5020 t SEQ ID NO: 3313 atgcaagtcagccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 t SEQ ID NO: 3316 ggaagatcagatagaaaa 11004 11023 SEQ ID NO: 4644 ttttctaa	SEQ ID NO:	3305 tgtcattgatgcactgcag	10234	10253	SEQ ID NO:	4634	ctgcgctaccagaaagaca			
SEQ ID NO: 3307 agettetytetetgageaac 10309 10328 SEQ ID NO: 4636 gttgaccacaagettaget 10547 105661 SEQ ID NO: 3308 agecgaaattecaattttg 10408 10427 SEQ ID NO: 4637 caaagetggcaccaagget 13971 139901 SEQ ID NO: 3309 ttgagaatgaattecaage 10424 10443 SEQ ID NO: 4638 getteagaagettectaa 13216 132351 SEQ ID NO: 3310 aaacctactgtetetteet 10469 10488 SEQ ID NO: 4639 aggaaggecaagecagttt 12591 126101 SEQ ID NO: 3311 tacttttecattgagteat 10583 10602 SEQ ID NO: 4640 atgattatgteaacaagta 12363 123821 SEQ ID NO: 3312 tcaggtecatgeagteag 10918 10937 SEQ ID NO: 4640 atgattatgteaacaagta 5001 50201 SEQ ID NO: 3313 atgaagateageceagtee 10926 10945 SEQ ID NO: 4642 gaactcagaaggaggaggattee 14002 14021 14021 14021	SEQ ID NO:	3306 tgatgcactgcagtacaaa	10240	10259	SEQ ID NO:	4635	tttgagttgcccaccatca	11666	116851	4
SEQ ID NO: 3308 agccgaaattccaattttg 10408 10427 SEQ ID NO: 4637 caaagctggcaccagggct 13971 139901 SEQ ID NO: 3309 ttgagaatgaatttcaagc 10424 10443 SEQ ID NO: 4638 gcttcaggaagcttctcaa 13216 132351 SEQ ID NO: 3310 aaacctactgtctcttcct 10469 10488 SEQ ID NO: 4639 aggaaggccaagccagttt 12591 126101 SEQ ID NO: 3311 tacttttccattgagtcat 10583 10602 SEQ ID NO: 4640 atgattatgtcaacaagta 12363 123821 SEQ ID NO: 3312 tcaggtccattgcaagtcag 10918 10937 SEQ ID NO: 4640 atgattatgtcaacaagta 5001 50201 SEQ ID NO: 3313 atgcaagtcagcccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggagggaattgaagtgaat 14002 14021 SEQ ID NO: 3314 tgaatgtcaacacaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgatttca 8526 85451 SEQ ID NO:	SEQ ID NO:	3307 agctctgtctctgagcaac	10309	10328	SEQ ID NO:	4636	gttgaccacaagcttagct			
SEQ ID NO: 3309ttgagaatgaatttcaagc 10424 10443 SEQ ID NO: 4638 gcttcaggaagcttctcaa 13216 13235 1 SEQ ID NO: 3310 aaacctactgtctcttcct 10469 10488 SEQ ID NO: 4639 aggaaggccaagccagttt 12591 12610 1 SEQ ID NO: 3311 tacttttccattgagtcat 10583 10602 SEQ ID NO: 4640 atgattatgtcaacaagta 12363 12382 1 SEQ ID NO: 3312 tcaggtccatgcaagtcag 10918 10937 SEQ ID NO: 4641 ctgacatcttaggcactga 5001 5020 1 SEQ ID NO: 3313 atgcaagtcagccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 1 SEQ ID NO: 3314 tgaatgctaacactaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgattttca 8526 8545 1 SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttctaaattggaacttct 12173 12192 1 SEQ ID NO: 3316 ggctattcattctccatcc 11264 11283 SEQ ID NO: 4645 ggatctaaatgcagtagcc 11632 11651 1 SEQ ID NO: 3318 agitttggctgataaatt 11290 11309 SEQ ID NO: 4647 gaactctgggtctccctcaact 9047 90661 SEQ ID NO: 3319 ctgggctgaaactaaatga	SEQ ID NO:	3308 agccgaaattccaattttg	10408							
SEQ ID NO: 3310 aaacctactgtctcttcct 10469 10488 SEQ ID NO: 4639 aggaaggccaagccagttt 12591 126101 SEQ ID NO: 3311 tacttttccattgagtcat 10583 10602 SEQ ID NO: 4640 atgattatgtcaacaagta 12363 123821 SEQ ID NO: 3312 tcaggtccatgcaagtcag 10918 10937 SEQ ID NO: 4641 ctgacatcttaggcactga 5001 50201 SEQ ID NO: 3313 atgcaagtcagccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggagtggcat 14002 14021 SEQ ID NO: 3314 tgaatgctaacactaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgattttca 8526 85451 SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttttaaattgaagaacttct 12173 121921 SEQ ID NO: 3316 ggetattcattctccatcc 11264 11283 SEQ ID NO: 4645 ggatctaaatgcagtagcc 11632 116511 SEQ ID NO: 3317 aaagttttggctgataaat 11288 11307 SEQ ID NO: 4646 atttcttaaacttccttt 9489 95081 SEQ ID NO: </td <td>SEO ID NO: S</td> <td>3309ttgagaatgaatttcaagc</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SEO ID NO: S	3309ttgagaatgaatttcaagc								
SEQ ID NO: 3311 tactttccattgagtcat 10583 10602 SEQ ID NO: 4640 atgattatgtcaacaagta 12363 123821 SEQ ID NO: 3312 tcaggtccatgcaagtcag 10918 10937 SEQ ID NO: 4641 ctgacatcttaggcactga 5001 50201 SEQ ID NO: 3313 atgcaagtcagcccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 SEQ ID NO: 3314 tgaatgctaacactaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgattttca 8526 85451 SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttctaaatggaacttct 12173 121921 SEQ ID NO: 3316 ggctattcattctccatcc 11264 11283 SEQ ID NO: 4645 ggatctaaatgcagtagcc 11632 116511 SEQ ID NO: 3317 aaagttttggctgataaat 11288 11307 SEQ ID NO: 4646 atttcttaaacattccttt 9489 95081 SEQ ID NO: 3318 agttttggctgataaattc 11290 11309 SEQ ID NO: 4647 gaatctggctccctcaact 9047 90661 SEQ ID NO: 3319 ctgggctgaaactaaatga 11316 1135 SEQ ID NO: 4648 tcattctgggtctttccag 11035 110541	SEQ ID NO:	3310 aaacctactgtctcttcct	10469							
SEQ ID NO: 3312 tcaggtccatgcaagtcag 10918 10937 SEQ ID NO: 4641 ctgacatcttaggcactga 5001 50201 SEQ ID NO: 3313 atgcaagtcagcccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 1 SEQ ID NO: 3314 tgaatgctaacactaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgattttca 8526 8545 1 SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttctaaatggaacttct 12173 12192 1 SEQ ID NO: 3316 ggctattcattctccatcc 11264 11283 SEQ ID NO: 4645 ggatctaaatgcagtagcc 11632 11651 1 SEQ ID NO: 3317 aaagttttggctgataaat 11288 11307 SEQ ID NO: 4646 atttcttaaacattccttt 9489 9508 1 SEQ ID NO: 3318 agttttggctgataaattc 11290 11309 SEQ ID NO: 4647 gaatctggctccctcaact 9047 9066 1 SEQ ID NO: 3319 ctgggctgaaactaaatga 11316 11335 SEQ ID NO: 4648 tcattctgggtctttccag 11035 11054 1	SEQ ID NO:	3311 tacttttccattgagtcat								
SEQ ID NO: 3313 atgcaagtcagcccagttc 10926 10945 SEQ ID NO: 4642 gaactcagaaggatggcat 14002 14021 1 SEQ ID NO: 3314 tgaatgctaacactaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgattttca 8526 8545 1 SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttctaaatggaacttct 12173 12192 1 SEQ ID NO: 3316 ggctattcattctccatcc 11264 11283 SEQ ID NO: 4645 ggatctaaatgcagtagcc 11632 11651 1 SEQ ID NO: 3317 aaagttttggctgataaat 11288 11307 SEQ ID NO: 4646 atttcttaaacttccttt 9489 95081 SEQ ID NO: 3318 agttttggctgataaattc 11290 11309 SEQ ID NO: 4647 gaatctggaggagttctccctcaact 9047 90661 SEQ ID NO: 3319 ctgggctgaaactaaatga 11316 11335 SEQ ID NO: 4648 tcattctgggtcttcccag 11035	SEQ ID NO:	3312tcaggtccatgcaagtcag	10918							
SEQ ID NO: 3314 gaatgctaacactaagaa 10983 11002 SEQ ID NO: 4643 ttctcaattttgatttca 8526 8545 1 SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttctaaatggaacttct 12173 12192 1 SEQ ID NO: 3316 ggctattcattctccatcc 11264 11283 SEQ ID NO: 4645 ggatctaaatgcagtagcc 11632 11651 1 SEQ ID NO: 3317 aaagttttggctgataaat 11288 11307 SEQ ID NO: 4646 atttcttaaacattccttt 9489 9508 1 SEQ ID NO: 3318 agttttggctgataaattc 11290 11309 SEQ ID NO: 4647 gaatctggctccctcaact 9047 9066 1 SEQ ID NO: 3319 ctgggctgaaactaaatga 11316 11335 SEQ ID NO: 4648 tcattctgggtctttccag 11035 11054 1	SEQ ID NO:	3313 atgcaagtcagcccagttc	10926							
SEQ ID NO: 3315 agaagatcagatggaaaaa 11004 11023 SEQ ID NO: 4644 ttttttttttttaaatggaacttct 12173 121921 SEQ ID NO: 3316 3316 3316 3316 3316 3317 3317 3317 3317 3317 3318 3317 3318 3318 3318 3318 3318 3318 3318 3318 3318 3319	SEQ ID NO:	3314 tgaatgctaacactaagaa	10983							
SEQ ID NO:33163316331633163317331733173317331833173318	SEQ ID NO:	3315 agaagatcagatggaaaaa	11004							
SEQ ID NO: 3317 aaagttttggctgataaat 11288 11307 SEQ ID NO: 4646 atttcttaaacattccttt 9489 95081 seQ ID NO: 3318 agttttggctgataaattc 11290 11309 SEQ ID NO: 4647 gaatctggctccctcaact 9047 9066 1 seQ ID NO: 3319 ctgggctgaaactaaatga 11316 11335 SEQ ID NO: 4648 tcattctgggtctttccag 11035 11054 1	SEQ ID NO:	3316 ggctattcattctccatcc	11264					11632		L
SEQ ID NO: 3318 agttttggctgataaattc 11290 11309 SEQ ID NO: 4647 gaatctggctccctcaact 9047 90661 seq ID NO: 3319 ctgggctgaaactaaatga 11316 11335 SEQ ID NO: 4648 tcattctgggtctttccag 11035 110541	SEQ ID NO:	3317 aaagttttggctgataaat	11288					9489		
SEQ ID NO: 3319 ctgggctgaaactaaatga 11316 11335 SEQ ID NO: 4648 tcattctgggtctttccag 11035 110541	SEQ ID NO:	3318 agttttggctgataaattc	11290					9047	90661	4
2000/caragagagagagagagagagagagagagagagagagaga	SEQ ID NO:	3319 ctgggctgaaactaaatga	11316					11035		
SECTIONO, DOZUI - 5-5-5	SEQ ID NO:	3320 cagagaaatacaaatctat	11413					8873	88921	
SEQ ID NO: 3321 gaggtaaaattccctgaag 11480 11499 SEQ ID NO: 4650 cttctggcttgctaacctc 12306 123251	SEQ ID NO: (3321 gaggtaaaattccctgaag	11480	11499	SEQ ID NO:	4650	cttctggcttgctaacctc	12306	123251	4

		44545	44504	MODAL	42700	137421	1 4
SEQ ID NO:	3322 cttttttgagataaccgtg	11545		O:4651 cacggagttactgaaaaag	13723		
SEQ ID NO:	3323 gctggaattgtcattcctt	11735		O: 4652 aaggcatctccacctcagc	12102	121211	<u> </u>
SEQ ID NO:	3324gtgtataatgccacttgga	11795		O: 4653 tccaagatgagatcaacac	13104	131231	<u> </u>
SEQ ID NO:	3325 attccacatgcagctcaac	11859		O:4654 gttgagaagccccaagaat	6254	6273 1	
SEQ ID NO:	3326 tgaagaagatggcaaattt	11992		O:4655aaattctcttttcttttca	9220	92391	!
SEQ ID NO:	3327 atcaaaagcccagcgttca	12050		O:4656tgaaagtcaagcatctgat	12669	126881	4
SEQ ID NO:	3328 gtgggcatggatatggatg	12143		O:4657 catccttaacaccttccac	8071	80901	4
SEQ ID NO:	3329 aaatggaacttctactaca	12179	12198 SEQ ID N	O: 4658 tgtaccataagccatattt	10088	101071	4
SEQ ID NO:	3330 aaaaactcaccatattcaa	12219	12238 SEQ ID N	O: 4659 ttgatgttagagtgctttt	6993	70121	4
SEQ ID NO:	3331 ctgagaagaaatctgcaga	12428	12447 SEQ ID N	O: 4660 tctgcacagaaatattcag	13447	134661	4
SEQ ID NO:	3332 acaatgctgagtgggttta	12447	12466 SEQ ID N	O: 4661 taaatggagtctttattgt	14086	141051	4
SEQ ID NO:	3333 caatgctgagtgggtttat	12448	12467 SEQ ID N	O: 4662 ataaatggagtctttattg	14085	141041	4
SEO ID NO:	3334ttaggcaaattgatgatat	12477		O:4663 atattgtcagtgcctctaa	13392	134111	4
SEO ID NO:	3335 ataaactaatagatgtaat	12897		O: 4664 attactatgaaaaatttat	13641	136601	4
SEO ID NO	3336 ccaactaatagaagataac	13039		O:4665gttattttgctaaacttgg	14052	140711	4
SEO ID NO	3337 ttaattatatccaagatga	13095		O:4666tcatcctctaattttttaa	13800	138191	4
SEO ID NO:	3338 tttaaattgttgaaagaaa	13151		O:4667tttcatttgaaagaataaa	7032	70511	4
SECTIONO.	3339 aagttcaatgaatttattc	13190		O:4668gaataccaatgctgaactt	10168	101871	4
SEQ ID NO.	3340ttgaagaaaagatagtcag	13326		O:4669ctgagagaagtgtcttcaa	12407	124261	4
SEC ID NO.	3341 acttccattctgaatatat	13377		O:4670atatctggaaccttgaagt	10737	107561	4
SEQ ID NO:	3342 cacagaaatattcaggaat	13451		O:4671attccctgaagttgatgtg	11488	115071	4
SEQ ID NO:	3343 ccattgcgacgaagaaaat	13560		O:4672 atttttattcctgccatgg	10103	101221	4
SEQ ID NO:	3344 tataaactgcaagattttt	13607		O:4673aaaattcaaactgcctata	13873	138921	4
SEQ ID NO:	3345 tctgattactatgaaaaat	13637		O:4674atttgtaagaaaatacaga	6436	64551	4
SEQ ID NO:	3346 ggagttactgaaaaagctg	13726		O: 4675 cagcatgcctagtttctcc	9952	99711	4
SEQ ID NO:	3347 tgaagcttgctccaggaga	13773		O:4676tctcctttcttcatcttca	10213	102321	4
SEQ ID NO:	3348 tgaactggacctgcaccaa	13955		O: 4677 ttggtagagcaagggttca	7856	78751	4
SEQ ID NO:	3349 ttgctaaacttgggggagg	14058		O:4678 cctcctacagtggtggcaa	4230	42491	4
SEQ ID NO:	3350 gattcgaatatcaaattca	4412		O: 4679 tgaaaacgacaaagcaatc		96223	ļ
SEQ ID NO:	3350 gattogaalateaattoa	4551		O:4680 acttttctaaacttgaaat	9063	90823	
SEQ ID NO:	3351 atttgtttgtcaaagaagt	33		O: 4681 tcagcccagccatttgaga	9236	92552	
SEQ ID NO:	3352 teteggttgetgeegetga	47		O:4682 gctggatgtaaccaccagc	11185	112042	
SEQ ID NO:	3353 gctgaggagcccgcccagc	227		O:4683 catcagaaccattgaccag	8134	81532	1
SEQ ID NO:	3354 ctggtctgtccaaaagatg	291		O:4684actcaatggtgaaattcag	7465	74842	<u> </u>
SEQ ID NO:	3355 ctgagagttccagtggagt	404		O:4685 cctcacttcctttggactg	8977	89962	
SEQ ID NO:	3356 cagtgcaccctgaaagagg	472			11399	114182	i
SEQ ID NO:	3357 ctctgaggagtttgctgca	582	6010EQ ID N	O:4686tgcaaacttgacttcagag	7050	70692	<u>. </u>
SEQ ID NO:	3358 acatcaagaggggcatcat			O:4687 atgacgttcttgagcatgt	8809	88282	
SEQ ID NO:	3359 ctgatcagcagcagcagt	830		O: 4688 actggacttctctagtcag	11354	113732	I
SEQ ID NO:	3360 ggacgctaagaggaagcat	865		O:4689 atgcctacgttccatgtcc	12411	124302	
SEQ ID NO:	3361 agctgttttgaagactctc	1087		O:4690 gagaagtgtcttcaaagct	<u> </u>	131312	1
SEQ ID NO:	3362 tgaaaaaactaaccatctc	1113		O:4691 gagatcaacacaatcttca	13112		
SEQ ID NO:	3363 ctgagctgagaggcctcag	1176		O:4692 ctgaattactgcacctcag	3035	30542	
SEQ ID NO:	3364 tgaaacgtgtgcatgccaa	1311	1330 SEQ ID N	O: 4693 ttggtagagcaagggttca	7856	78752	1
SEQ ID NO:	3365 ccttgtatgcgctgagcca	1440	1459 SEQ ID N	O:4694tggcactgtttggagaagg	9138	91572	L
DEC ID NO	: 3366 aggagctgctggacattgc	1500	1519 SEQ ID N	O:4695gcaagtcagcccagttcct	10928	109472	1
PECID NO:	. 00000 00 0 0 0						
SEQ ID NO:	3367 atttgattctgcgggtcat 3368 tccagaactcaagtcttca	1575 1627	1594 SEQ ID N	O: 4696 atgaaaccaatgacaaaat O: 4697 tgaaatacaatgctctgga	7428 5520	74472 55392	

	4744	4700	Manager et apparator and a	10455	104740 2
SEQ ID NO: 3369 ggttcttcttcagactttc	1744		SEQ ID NO: 4698 gaaataccaagtcaaaacc	13734	104742 3 137532 3
SEQ ID NO: 3370 gttgatgaggagtccttca	1810		SEQ ID NO: 4699 tgaaaaagctgcaatcaac		
SEQ ID NO: 3371 tccaagatctgaaaaagtt	1941		SEQ ID NO: 4700 aactgettetecaaatgga	3552 8275	35712 3 82942 3
SEQ ID NO: 3372 agttagtgaaagaagttct	1956		SEQ ID NO: 4701 agaattcataatcccaact		
SEQ ID NO: 3373 gaagggaatcttatatttg	2084		SEQ ID NO: 4702 caaaacctactgtctcttc	10467	104862 3 83432 3
SEQ ID NO: 3374 ggaagctctttttgggaag	2221		SEQ ID NO: 4703 etteacataccagaattee	8324	
SEQ ID NO: 3375 tggaataatgctcagtgtt	2374		SEQ ID NO: 4704 aacaaacacaggcattcca	9656	
SEQ ID NO: 3376 gatttgaaatccaaagaag	2408		SEQ ID NO: 4705 etteatgteectagaaate	10037	100562 3 49702 3
SEQ ID NO: 3377 tccaaagaagtcccggaag	2417		SEQ ID NO: 4706 etteageetgetttetgga	4951	49702 3 100392 3
SEQ ID NO: 3378 aggaagggctcaaagaatg	2570		SEQ ID NO: 4707 cattagagetgccagtcct	10020	
SEQ ID NO: 3379 agaatgactttttcttca	2583		SEQ ID NO: 4708 tgaagatgacgacttttet	12160	121792 3 118342 3
SEQ ID NO: 3380 tttgtgacaaatatgggca	2765		SEQ ID NO: 4709 tgccagtttgaaaaacaaa	11815	118342 3 109222 3
SEQ ID NO: 3381 ctgaggctaccatgacatt	3252		SEQ ID NO: 4710 aatgtcagctcttgttcag	10903 11450	114692 3
SEQ ID NO: 3382 gtagataccaaaaaaatga	3668		SEQ ID NO: 4711 tcatttgccctcaacctac		
SEQ ID NO: 3383 aaatgacttccaatttccc	3681		SEQ ID NO: 4712 gggaactgttgaaagattt	12927	129462 3 138042 3
SEQ ID NO: 3384 atgacttccaatttccctg	3683		SEQ ID NO:4713 caggagaacttactatcat	13785 9547	138042 3 95662 3
SEQ ID NO: 3385 atctgccatctcgagagtt	4104		SEQ ID NO: 4714 aactcctccactgaaagat		
SEQ ID NO: 3386 atttgtttgtcaaagaagt	4551		SEQ ID NO: 4715 acttccgtttaccagaaat	8247	82662 3 135372 3
SEQ ID NO: 3387 gcagagcttggcctctctg	5135		SEQ ID NO: 4716 cagagetttetgecaetge	13518	138932 3
SEQ ID NO: 3388 atatgctgaaatgaaattt	5353		SEQ ID NO: 4717 aaattcaaactgcctatat	13874	87992 3
SEQ ID NO: 3389 tcaaaacttgacaacattt	5420		SEQ ID NO: 4718 aaatacttccacaaattga	8780	88132 3
SEQ ID NO: 3390 cagtgacctgaaatacaat	5512		SEQ ID NO: 4719 attgaacatccccaaactg	8794 11229	112482 3
SEQ ID NO: 3391 tacaaatggcaatgggaaa	5848		SEQ ID NO: 4720 tttcaactgcctttgtgta		136752 3
SEQ ID NO: 3392 cttttgtaaagtatgataa	6285		SEQ ID NO: 4721 ttattgctgaatccaaaag	13656	
SEQ ID NO: 3393 ttgtaaagtatgataaaaa	6288		SEQ ID NO: 4722ttttcaagcaaatgcacaa	8539 10756	85582 3 107752 3
SEQ ID NO: 3394 tccattaacctcccatttt	6320		SEQ ID NO: 4723 aaaagaaaattttgctgga	7162	71812 3
SEQ ID NO: 3395 gattatctgaattcattca	6488		SEQ ID NO: 4724tgaagtagaccaacaaatc	11324	113432 3
SEQ ID NO: 3396 aattgggagagacaagttt	6506		SEQ ID NO: 4725 aaactaaatgatctaaatt	13441	134602 3
SEQ ID NO: 3397 atttgaaaatagctattgc	6696		SEQ ID NO: 4726 gcaatttctgcacagaaat	12971	129902 3
SEQ ID NO: 3398 tgagcatgtcaaacacttt	7060		SEQ ID NO: 4727 aaagccattcagtctctca	12660	129902 3
SEQ ID NO: 3399 ttgaagatgttaacaaatt	7356 7753		SEQ ID NO: 4728 aattccatatgaaagtcaa	13276	132952 3
SEQ ID NO: 3400 acttgtcacctacatttct	8050		SEQ ID NO: 4729 agaatattttgatccaagt	9481	95002 3
SEQ ID NO: 3401 gttttccacaccagaattt			SEQ ID NO:4730 aaatotggatttettaaac	14083	141022 3
SEQ ID NO: 3402 ataagtacaaccaaaattt	9405		SEQ ID NO:4731 aaataaatggagtctttat SEQ ID NO:4732 ctcagttaactgtgtcccg	11571	115901 3
SEQ ID NO: 3403 cgggacctgcggggctgag	8 25		SEQ ID NO:4733 agcatctgattgactcact	12678	126971 3
SEQ ID NO: 3404 agtgcccttctcggttgct	47		SEQ ID NO: 4734gctgattgaggtgtccagc	12076	12441 3
SEQ ID NO: 3405 gctgaggaggcccgcccagc	50			3752	37711 3
SEQ ID NO: 3406 gaggagcccgcccagccag	72		SEQ ID NO: 4735 ctggatcacagagtccctc	1363	13821 3
SEQ ID NO: 3407 gggccgcgaggccgaggcc	89		SEQ ID NO:4736 ggccctgatccccgagccc	2682	27011 3
SEQ ID NO: 3408 ccaggccgcagcccaggag	104		SEQ ID NO:4738gctgttttgaagactctcc	1088	11071 3
SEQ ID NO: 3409 ggagccgccccaccgcagc	200		SEQ ID NO:4739tttcaagttcctgaccttc	8309	83281 3
SEQ ID NO: 3410 gaagaggaaatgctggaaa	237		SEQ ID NO:4740aatcttattggggattitg	7085	71041 3
SEQ ID NO: 3411 caaaagatgcgacccgatt	253		SEQ ID NO:4740 aactitatiggggattig SEQ ID NO:4741 cttccacatttcaaggaat	10067	100861 3
SEQ ID NO: 3412 attcaagcacctccggaag	297			8610	86291 3
SEQ ID NO: 3413 gttccagtggagtccctgg			SEQ ID NO: 4742 ccagcaagtacctgagaac	13324	133431 3
SEQ ID NO: 3414 gactgctgattcaagaagt	316		SEQ ID NO: 4744 acttgaagaaaagatagtc		107231 3
SEQ ID NO: 3415 gtgccaccaggatcaactg	333	302	SEQ ID NO:4744 cagtgaagetgcagggcac	10704	10/23/1 3

	0.40			4-74-	l-ttootstaato I	4748	47671	2
SEQ ID NO: 3416 gatcaactgcaaggttgag	343				ctcacctccacctctgatc	1289	13081	3
SEQ ID NO: 3417 actgcaaggttgagctgga	348				tccactcacatcctccagt		13621	3
SEQ ID NO: 3418 ccagctctgcagcttcatc	373	392	SEQ ID NO:	4/4/	gatgtggtcacctacctgg	1343		
SEQ ID NO: 3419 agetteatectgaagacea	383	402	SEQ ID NO:	4748	tggtgctggagaatgagct	5112	51311	3
SEQ ID NO: 3420 cttcatcctgaagaccagc	385				gctggagtaaaactggaag	2696	27151	3
SEQ ID NO: 3421 ccagccagtgcaccctgaa	399				ttcaagatgactgcactgg	1539	15581	3
SEQ ID NO: 3422 cagtgcaccctgaaagagg	404				cctcacagagctatcactg	5230	52491	3
SEQ ID NO: 3423 tggcttcaaccctgagggc	427				gcccactggtcgcctgcca	3533	35521	3
SEQ ID NO: 3424 cttcaaccctgagggcaaa	430				tttgagccaacattggaag	2207	22261	3
SEQ ID NO: 3425 ttcaaccetgagggcaaag	431				ctttgacaggcattttgaa	9727	97461	3
SEQ ID NO: 3426 cttgctgaagaaaaccaag	451				cttgaaattcaatcacaag	9074	90931	3
SEQ ID NO: 3427 tgctgaagaaaaccaagaa	453				ttctgctgccttatcagca	5647	56661	3
SEQ ID NO: 3428 ttgctgcagccatgtccag	483	502	SEQ ID NO:	4757	ctggtcagtttgcaagcaa	3004	30231	3
SEQ ID NO: 3429 tgctgcagccatgtccagg	484	503	SEQ ID NO:	4758	cctggtcagtttgcaagca	3003	30221	3
SEQ ID NO: 3430 agccatgtccaggtatgag	490				ctcacatcctccagtggct	1293	13121	3
SEQ ID NO: 3431 agctcaagctggccattcc	507				ggaactaccacaaaaagct	7489	75081	3
SEQ ID NO: 3432 agaagggaagcaggttttc	526				gaaatcttcaatttattct	13821	138401	3
SEQ ID NO: 3433 aagggaagcaggttttcct	528				aggacaccaaaataacctt	7572	75911	3
SEQ ID NO: 3434 agaaagatgaacctactta	555				taagaactttgccacttct	4852	48711	3
SEQ ID NO: 3435 atcctgaacatcaagaggg	575				ccctaacagatttgaggat	7977	79961	3
SEQ ID NO: 3436 tectgaacatcaagagggg	576				ccctaacagatttgagga	7976	79951	3
SEQ ID NO: 3437 ctgaacatcaagaggggca	578				tgcctgcctttgaagtcag	7908	79271	3
SEQ ID NO: 3438 aacatcaagaggggcatca	581				tgataaaaaccaagatgtt	6298	63171	3
SEQ ID NO: 3439 acatcaagaggggcatcat	582				atgataaaaaccaagatgt	6297	63161	3
SEQ ID NO: 3440 tcatttctgccctcctggt	597				accaccagtttgtagatga	7413	74321	3
SEQ ID NO: 3441 ttcccccagagacagaaga	615				tcttccacatttcaaggaa	10066	100851	3
SEQ ID NO: 3442 gaagaagccaagcaagtgt	629				acacettecacatteette	8079	80981	3
SEQ ID NO: 3442 SEQ ID NO: 3443 ttgtttctggataccgtgt	647				acactaaatacttccacaa	8775	87941	3
SEQ'ID NO: 3444 tgtatggaaactgctccac	663				gtggaggcaacacattaca	2928	29471	. 3
SEQ ID NO: 3445 aaactgctccactcacttt	· 670				aaagaaacagcatttgttt	4540	45591	3
SEQ ID NO: 3446 actcactttaccgtcaaga	680				tcttacttttccattgagt	10580	105991	3
SEQ ID NO: 3447 ctttaccgtcaagacgagg	685				cctccagctcctgggaaag	2491	25101	3
SEQ ID NO: 3448 ttaccgtcaagacgaggaa	687				ttcctaaagctggatgtaa	11177	111961	3
SEQ ID NO: 3449 acgaggaagggcaatgtgg	698				Bccacaagtcatcatctcgt	5964	59831	3
SEQ ID NO: 3450 cgaggaagggcaatgtggc	699				gccagaagtgagatcctcg	3515	35341	3
SEQ ID NO: 3451 gaggaagggcaatgtggca	700				tgccagtctccatgacctc	2476	24951	3
SEQ ID NO: 34519aggaagggcaatgtggcaac	702	72	DEG ID NO	478	gttgctcttaaggacttcc	13364	133831	
SEQ ID NO: 345299aagggcaatgtggcaaca	703				tgttgatgaggagtccttc	1809	18281	3
SEQ ID NO: 34539aagggcaatgggcaaca	777	796	SEC ID NO	478	gcaagtctttcctggcctg	3019	30381	3
SEQ ID NO: 3454 caggeateageceacttge	778	701	SEC ID NO	478	agcaagtctttcctggcct	3018	30371	3
SEQ ID NO: 3455 aggicaticagcicacttgct	783	804	DEC ID NO	.478	atgaaagtcaagcatctga	12668	126871	3
SEQ ID NO: 3456 tcagcccacttgctctcat	823	9/1	PER ID NO	478	getgaetttaaaatetgae	4819	48381	3
SEQ ID NO: 3457gtcaactctgatcagcagc	865	042	SEQID NO	479	7atgcactgtttctgagtcc	9339	93581	3
SEQ ID NO: 3458 ggacgctaagaggaagcat	902	004	SEQ ID NO	179	ggaatatettageateett	13465	134841	
SEQ ID NO: 3459 aaggagcaacacctcttcc		92	ISEQ ID NO	170	aggaatatettageateet	13464	134831	
SEQ ID NO: 3460 aggagcaacacctcttcct	903	922	SEQ ID NO	470	Daggartactatatta	4292	43111	
SEQ ID NO: 3461 caacacctcttcctgcctt	908				Daaggetgactetgtggttg	1075	10941	
SEQ ID NO: 3462 aacacctcttcctgccttt	909	928	SEQ ID NO	:4/9	1aaagcaggccgaagctgtt	10/5	10941	

			,	4700	-tt-tatacettet	6704	60404	3
SEQ ID NO: 3463 acaagaataagtatgggat	933				atccatgatctacatttgt	6794	68131	3
SEQ ID NO: 3464 caagaataagtatgggatg	934				catcactttacaagccttg	1246	12651	
SEQ ID NO: 3465 tagcacaagtgacacagac	954				gtctcttcgttctatgcta	4592	46111	3
SEQ ID NO: 3466 agcacaagtgacacagact	955				agtetettegttetatget	4591	46101	3
SEQ ID NO: 3467 gcacaagtgacacagactt	956				aagtgtagtctcctggtgc	5099	51181	3
SEQ ID NO: 3468 aacttgaagacacaccaaa	978				tttgaggattccatcagtt	7987	80061	3
SEQ ID NO: 3469 gcttctttggtgaaggtac	1008				gtacctacttttggcaagc	8372	83911	3
SEQ ID NO: 3470 ctttggtgaaggtactaag	1012				cttatgggatttcctaaag	11167	111861	3
SEQ ID NO: 3471 tactaagaagatgggcctc	1024				gagggtagtcataacagta	10337	103561	3
SEQ ID NO: 3472 tttgagagcaccaaatcca	1046				tggaagtgtcagtggcaaa	10380	103991	3
SEQ ID NO: 3473 agagcaccaaatccacatc	1050	1069	SEQ ID NO:	4802	gatggatatgaccttctct	4876	48951	3
SEQ ID NO: 3474 agctgttttgaagactctc	1087				gagaacatactgggcagct	5880	58991	3
SEQ ID NO: 3475 tgaaaaaactaaccatctc	1113				gagaaaatcaatgccttca	7112	71311	3
SEQ ID NO: 3476 gaaaaaaactaaccatctct	1114				agagccaggtcgagctttc	11052	110711	3
SEQ ID NO: 3477 tctgagcaaaatatccaga	1130				tctgatgaggaaactcaga	12260	122791	3
SEQ ID NO: 3478 tctcttcaataagctggtt	1156				aacctcccatttttgaga	6326	63451	3
SEQ ID NO: 3479 ctgagctgagaggcctcag	1176				ctgatccccgagccctcag	1367	13861	3
SEQ ID NO: 3480 tgaagcagtcacatctctc	1198				gagaaaatcaatgccttca	7112	71311	3
SEQ ID NO: 3481 aagcagtcacatctctctt	1200				aagaggcagcttctggctt	12297	123161	3
SEQ ID NO: 3482 ctctcttgccacagctgat	1212				atcaaaagaagcccaagag	12946	129651	3
SEQ ID NO: 3483 tettgccacagetgattga	1215				tcaaagttaattgggaaga	12279	122981	3
SEQ ID NO: 3484 cttgccacagctgattgag	1216	1235	SEQ ID NO:	4813	ctcaattttgattttcaag	8528	85471	3
SEQ ID NO: 3485 tgaggtgtccagccccatc	1231	1250	SEQ ID NO:	4814	gatggaacceteteeetea	4733	47521	3
SEQ ID NO: 3486 tcagtgtggacagcctcag	1267	1286	SEQ ID NO:	4815	ctgacatcttaggcactga	5001	50201	3
SEQ ID NO: 3487 acatectecagtggetgaa	1296				ttcagaagctaagcaatgt	7239	72581	3
SEQ ID NO: 3488 gcacagcagctgcgagaga	1385	1404	SEQ ID NO:	4817	tctctgaaagacaacgtgc	12323	123421	. 3
SEQ ID NO: 3489 cagcagctgcgagagatct	1388				agataacattaaacagctg	13051	130701	3
SEQ ID NO: 3490 gcgagggatcagcgcagcc	1415				ggctcaacacagacatcgc	5718	57371	3
SEQ ID NO: 3491 aagacaaaccctacaggga	1478	1497	SEQ ID NO:	4820	tcccagaaaacctcttctt	3936	39551	3
SEQ ID NO: 3492 caggagetgetggacattg	1499				caatggagagtccaacctg	4660	46791	3
SEQ ID NO: 3493 aggagetgetggacattgc	1500				gcaagggttcactgttcct	7864	78831	3
SEQ ID NO: 3494 ctgctggacattgctaatt	1505				aattgggaagaagaggcag	12287	123061	3
SEQ ID NO: 3495 gattacacctatttgattc	1565				gaatattttgagaggaatc	6353	63721	
SEQ ID NO: 3496 atttgattctgcgggtcat	1575				atgaagtagaccaacaaat	7161	71801	3
SEQ ID NO: 3497 tctgcgggtcattggaaat	1582				atttgtaagaaaatacaga	6436	64551	3
SEQ ID NO: 3498 aaccatggagcagttaact	1609	1628	SEQ ID NO:	4827	agtttctccatcctaggtt	9962	99811	
SEQ ID NO: 3499 ggagcagttaactccagaa	1615	1634	SEQ ID NO:	4828	ttctgaaaatccaatctcc	8400	84191	
SEQ ID NO: 3500 actccagaactcaagtctt	1625				aagatcgcagactttgagt	11654	116731	
SEQ ID NO: 3501 tccagaactcaagtcttca	1627				tgaactcagaagaattgga	1920	19391	3
SEQ ID NO: 3502 aagtacaaagccatcactg	1663				cagtcatgtagaaaaactt	4429	44481	
SEO ID NO: 3503 gccatcactgatgatccag	1672	1691	SEQ ID NO:	4832	ctggaactctctccatggc	10883	109021	3
SEQ ID NO: 3504 ccatcactgatgatccaga	1673	1692	SEQ ID NO:	4833	tctgaactcagaaggatgg	13999	140181	3
SEQ ID NO: 3505 atccagaaagctgccatcc	1685	1704	SEQ ID NO:	4834	ggatttcctaaagctggat	11173	111921	3
SEQ ID NO: 3506 cagaaagctgccatccagg	1688	1707	SEQ ID NO:	4835	cctgaaatacaatgctctg	5518	55371	
SEQ ID NO: 3507 acaaggaccaggaggttct	1731				agaaacagcatttgtttgt	4542	45611	
SEQ ID NO: 3508 aggaccaggaggttcttct	1734				agaagctaagcaatgtcct	7242	72611	
SEQ ID NO: 3509 accaggaggttettettea	1737	1756	SEQ ID NO:	4838	tgaaggctgactctgtggt	4290	43091	3

	lons of citizana citticotta at	1750	1769	CEO ID NO	4839	atcaggaagggctcaaaga	2567	25861	3
SEQ ID NO:	3510 tetteagaettteettgat	1752				tcattactcctgggctgaa	11307	113261	3
SEQ ID NO:	3511 ttcagactttccttgatga	1810				tgaatctggctccctcaac	9046	90651	
SEQ ID NO:	3512 gitgatgaggagtccttca	1824				ttaatcgagaggtatgaag	7148	71671	3
SEQ ID NO:	3513 cttcacaggcagatattaa	1825					7147	71661	3
SEQ ID NO:	3514 ttcacaggcagatattaac	1831				gttaatcgagaggtatgaa	6589	66081	3
SEQ ID NO:	3515 ggcagatattaacaaaatt					aattgcattagatgatgcc	2760	27791	3
SEQ ID NO:	3516 atattaacaaaattgtcca	1836				tggagtttgtgacaaatat	4542	45611	3
SEQ ID NO:	3517 acaaaattgtccaaattct	1842				agaaacagcatttgtttgt			
SEQ ID NO:	3518 gagcaagtgaagaactttg	1877				caaatgacatgatgggctc	5334	53531	2
SEQ ID NO:	3519gtgaagaactttgtggctt	1883				aagcatctgattgactcac	12677	126961	3
SEQ ID NO:	3520 agaactttgtggcttccca	1887				tgggcctgcccagattct	8909	89281	3
SEQ ID NO:	3521 tttgtggcttcccatattg	1892				caataagatcaatagcaaa	8998	90171	3
SEQ ID NO:	3522 tggcttcccatattgccaa	1896				ttggctcacatgaaggcca	7631	76501	3
SEQ ID NO:	3523 ttcccatattgccaatatc	1900				gatatacactagggaggaa	12745	127641	3
SEQ ID NO:	3524 tcccatattgccaatatct	1901				agatcaaagttaattggga	12276	122951	3
SEQ ID NO:	3525ttgccaatatcttgaactc	1908				gagteccagtgcccagcaa	9352	93711	
SEQ ID NO:	3526 ttggatatccaagatctga	1934				tcagtataagtacaaccaa	9400	94191	3
SEQ ID NO:	3527tccaagatctgaaaaagtt	1941				aacttccaactgtcatgga	1986	20051	3
SEO ID NO:	3528 ctgaaaaagttagtgaaag	1949	1968	SEQ ID NO:	4857	ctttgaagtcagtcttcag	7915	79341	3
SEO ID NO:	3529 agttagtgaaagaagttct	1956	1975	SEQ ID NO:	4858	agaatctcaacttccaact	1978	19971	3
SEO ID NO	3530 aatctcaacttccaactgt	1980				acaggggtcctttatgatt	12350	123691	3
SEO ID NO	3531 gtcatggacttcagaaaat	1997				atttgaaagaataaatgac	7036	70551	3
SEC ID NO:	3532tcaactctacaaatctgtt	2029				aacacattgaggctattga	6978	6997	3
SEQ ID NO.	3533 aactctacaaatctgtttc	2031				gaaaaaggggattgaagtt	10284	103031	3
SEC ID NO	3534aaatagaagggaatcttat	2079				ataagcaaactgttaattt	5457	54761	3
SEC ID NO.	3535 agaagggaatcttatattt	2083				aaatgcactgctgcgttct	4900	49191	3
SEQ ID NO.	3536gaagggaatcttatatttg	2084				caaaaacattttcaacttc	5287	53061	3
SECIDINO.	3537 tgatccaaataactacctt	2101				aaggaagaaagaaaatca	3461	34801	3
SECIDINO:	3538 tggatttgcttcagctgac	2158				gtcagcccagttccttcca	10932	109511	3
SEQ ID NO	3539 tttgcttcagctgacctca	2162				tgaggaaactcagatcaaa	12265	122841	3
SEQ ID NO	3540 cttggaaggaaaaggcttt	2191				aaagcattggtagagcaag	7850	78691	3
SEQID NO:	3541 tggaaggaaaaggctttga	2193				tcaagtctgtgggattcca	4086	41051	3
SEQ ID NO:	3542 ggctttgagccaacattgg	2204				ccaagaggtatttaaagcc	12958	129771	3
SEQID NO:	: 3543 tgagccaacattggaagct	2209				agctttctgccactgctca	13521	135401	
SEQ ID NO	: DO43 gagocadoatiggaagot	2210				gagetttetgecactgete	13520	135391	
SEQ ID NO	3544 gagccaacattggaagctc	2215				aaaagaaacagcatttgtt	4539	45581	
SEQ ID NO	3545 aacattggaagctcttttt	2220	2230	SEC ID NO	487	ttccggcacgtgggttcca	3785	38041	
SEQ ID NO	3546 tggaagctctttttgggaa	2226	22/15	SEC ID NO	4876	ccttactgactttgcagag	7798	78171	
SEQ ID NO	3547 ctctttttgggaagcaagg	2229				aatcattgaaaaattaaaa	6730	67491	
SEQ ID NO	: 3548 tttttgggaagcaaggatt					atcattgaaaattaaaa Itgatgaaatcattgaaaa	6723	67421	
SEQ ID NO	: 3549 ttttcccagacagtgtcaa	2247					2676	26951	
SEQ ID NO	: 3550 ttggctataccaaagatga	2331				tcattgctcccggagccaa	6280	62991	
SEQ ID NO	: 3551 ataccaaagatgataaaca	2337				tgttgcttttgtaaagtat			
SEQ ID NO	: 3552 gagcaggatatggtaaatg	2357				catttcagccttcgggctc	4262	42811	
SEQ ID NO	: 3553 atggtaaatggaataatgc	2366				gcatgcctagtttctccat	9954	99731	
SEQ ID NO	: 3554 tggtaaatggaataatgct	2367				agcacagtacgaaaaacca	10809	108281	1
SEQ ID NO	: 3555 taaatggaataatgctcag	2370				ctgaaagagatgaaattta	13067	130861	
SEO ID NO	: 3556 tggaataatgctcagtgtt	2374	2393	SEQ ID NO	4885	aacagatttgaggattcca	7981	8000	3

	l toontelless sestest	0205	2404	 	14996 atanaga atantaga atan	9542	95611	2
SEQ ID NO:	3557tcagtgttgagaagctgat	2385			4886 atcacaactcctccactga	9542		3
	3558 cagtgttgagaagctgatt	2386			4887 aatcacaactcctccactg		95601	
	3559 agtgttgagaagctgatta	2387			4888 taatcacaactcctccact	9540	95591	3
	3560 gattaaagatttgaaatcc	2401			4889ggatactaagtaccaaatc	6874	68931	3
	3561 gatttgaaatccaaagaag	2408			4890 cttccgtttaccagaaatc	8248	82671	3
	3562 atttgaaatccaaagaagt	2409			4891acttccgtttaccagaaat	8247	82661	3
	3563 atccaaagaagtcccggaa	2416			4892ttccaatttccctgtggat	3688	37071	3
	3564 tccaaagaagtcccggaag	2417			4893 cttccaatttccctgtgga	3687	37061	3
SEQ ID NO:	3565 agagectaceteegeatet	2438	2457	SEQ ID NO:	4894 agattaatccgctggctct	8571	85901	3
SEQ ID NO:	3566 gagcctacctccgcatctt	2439	2458	SEQ ID NO:	4895 aagattaatccgctggctc	8570	85891	3
SEQ ID NO:	3567 cttgggagaggagcttggt	2455	2474	SEQ ID NO:	4896accactgggacctaccaag	12527	125461	3
	3568ggagcttggttttgccagt	2464	2483	SEQ ID NO:	4897 actggtggcaaaaccctcc	2734	27531	3
SEQ ID NO:	3569ttggttttgccagtctcca	2469	2488	SEQ ID NO:	4898tggagaagccacactccaa	10771	107901	3
SEQ ID NO:	3570 cagtctccatgacctccag	2479	2498	SEQ ID NO:	4899 ctggtcgcctgccaaactg	3538	35571	3
	3571 ctccatgacctccagctcc	2483	2502	SEQ ID NO:	4900ggagtcattgctcccggag	2672	26911	3
	3572ctgggaaagctgcttctga	2501			4901tcagaaagctaccttccag	7939	79581	3
	3573 gaggtcatcaggaagggct	2561			4902 agccagaagtgagatcctc	3514	35331	3
SEO ID NO:	3574aagaatgacttttttcttc	2582			4903gaaggcatctgggagtctt	3835	38541	3
SEO ID NO:	3575 cttttttcttcactacatc	2590			4904gatgcttacaacactaaag	6107	61261	3
SEC ID NO:	3576 catcttcatggagaatgcc	2605			4905ggcacttccaaaattgatg	10718	107371	3
SEC ID NO.	3577 cttcatggagaatgccttt	2608			4906aaagttaattgggaagaag	12281	123001	3
BEGID NO.	3578 aatgcctttgaactcccca	2618			4907tgggctggcttcagccatt	5737	57561	3
SEQIDINO:	3579 gcctttgaactccccactg	2621			4908 cagtctgaacattgcaggc	5383	54021	3
SECIDINO:	3580 caaggctggagtaaaactg	2692			4909 cagtgcaacgaccaacttg	5080	50991	3
	3581 tggagtaaaactggaagta	2698			4910tactccaacgccagctcca	3059	30781	3
SEQIDINO:	3582 ggaagtagccaacatgcag	2710			4911 ctgccatctcgagagttcc	4106	41251	3
	3583 tttgtgacaaatatgggca	2765			4912tgcctttgtgtacaccaaa	11236	112551	3
	3584 tgtgacaaatatgggcatc	2767			4913 gatgggtctctacgccaca	4385	44041	3
	3585 ggacttcgctaggagtggg	2794			4914 cccaaggccacaggggtcc	12341	123601	3
	3586 gtggggtccagatgaacac	2808			4915 gtgttctagacctctccac	4179	41981	3
	3587 ttccacgagtcgggtctgg	2834			4916 ccagaatctgtaccaggaa	12562	125811	3
	3588 agtcgggtctggaggctca	2841			4917tgagaactacgagctgact	4807	48261	3
		2843			4918 catgaaggccaaattccga	7639	76581	3
SEQ ID NO:	3589 tcgggtctggaggctcatg	2869			4919 cttccagacacctgatttt	7951	79701	3
SEQ ID NO:	3590 aaaagctgggaagctgaag	2879			4920gaatttacaattgttgctt	6269	62881	3
SEQ ID NO:	3591 aagctgaagtttatcattc	2908			4921gagcttcaggaagcttctc	13214	132331	3
SEQ ID NO:	3592 gagaccagtcaagctgctc	2934			4922accagtcagatattgttgc	10191	102101	
SEQ ID NO:	3593gcaacacattacatttggt	2939			4923tagaatatgaactaaatgt	11889	119081	3
SEQ ID NO:	3594 acattacatttggtctcta	2939			4924gtagctgagaaaatcaatg	7106	71251	3
SEQ ID NO:	3595 cattacatttggtctctac	2940				3205	32241	3
SEQ ID NO:	3596 aaacggaggtgatcccacc				4925 ggtggataccctgaagttt	12031	120501	3
SEQ ID NO:	3597 attgagaacaggcagtcct	2987			4926 aggaaaagcgcacctcaat			
SEQ ID NO:	3598 tgagaacaggcagtcctgg	2989			4927 ccagcttccccacatctca	8341	83601	3
SEQ ID NO:	3599 ctgcacctcaggcgcttac	3043			4928 gtaagaaaatacagagcag	6440	64591	3
SEQ ID NO:	3600 tecacagaeteegeeteet	3074			4929 aggacagagccttggtgga	3192	32111	3
SEQ ID NO:	3601 ctgaccggggacaccagat	3101	3120	SEQ ID NO:	4930 atctgatgaggaaactcag	12259	122781	3
SEQ ID NO:	3602 tagagctggaactgaggcc	3120			4931ggcctctctggggcatcta	5144	51631	3
SEQ ID NO:	3603 ctatgagctccagagagag	3175	3194	SEQ ID NO:	4932 ctctcacaaaaaagtatag	6549	6568 1	3

on settantanatacentana	3202	3221	SEQ ID NO: 4933 cttcaggaagcttctcaag	13217	132361	3
SEQ ID NO: 3604 cttggtggataccctgaag SEQ ID NO: 3605 ttgtaactcaagcagaagg			SEQ ID NO: 4934 ccttacacaataatcacaa	9530	95491	
SEQ ID NO: 3606 taactcaagcagaaggtg			SEQ ID NO: 4935gcacctagctggaaagtta	6955	69741	
SEQ ID NO: 3607 gcagaaggtgcgaagca			SEQ ID NO: 4936 totgtgggattccatctgc	4091	41101	
SEQ ID NO: 3608 cagaaggtgcgaagcag			SEQ ID NO: 4937 gtctgtgggattccatctg	4090	41091	
	3288		SEQ ID NO: 4938 tcaccaacggagaacatac	10851	108701	
SEQ ID NO: 3609 gtatgaccttgtccagtga	3289		SEQ ID NO: 4939 ttcaccaacggagaacata	10850	108691	
SEQ ID NO: 3610 tatgaccttgtccagtgaa	3305		SEQ ID NO: 4940 aatctcaagctttctcttc	10052	100711	
SEQ ID NO: 3611 gaagtccaaattccggatt			SEQ ID NO: 4941 tgtacaactggtccgcctc	4215	42341	
SEQ ID NO: 3612 gagggcaaaacgtcttaca	3372			4062	40811	
SEQ ID NO: 3613 agggcaaaacgtcttacag	3390		SEQ ID NO: 4942 ctgttaggacaccagccct	9076	90951	
SEQ ID NO: 3614 gactcaccctggacattca			SEQ ID NO: 4943 tgaaattcaatcacaagtc	9226	92451	
SEQ ID NO: 3615 ctggacattcagaacaaga	3435		SEQ ID NO: 4944 tottttottttcagcccag	6635	66541	
SEQ ID NO: 3616 tcatgggcgacctaagttg	3438	·	SEQ ID NO:4945 caactgcagacatatatga SEQ ID NO:4946 tcactccattaacctccca	6316	63351	
SEQ ID NO: 3617 tgggcgacctaagttgtga				13838	138571	3
SEQ ID NO: 3618 agttgtgacacaaaggaa			SEQ ID NO: 4947 cttcttttccaattgaact	10220	102391	2
SEQ ID NO: 3619 tgacacaaaggaagaaa		1	SEQ ID NO:4948tcttcatcttcatctgtca SEQ ID NO:4949tcttcatcttcatctgtc	10220	102391	3
SEQ ID NO: 3620 gacacaaaggaagaaag			SEQ ID NO: 4950 cttgtcatgcctacgttcc	11348	113671	- 3
SEQ ID NO: 3621 ggaagaaagaaaaatca	3473			7084	71031	3
SEQ ID NO: 3622 aaaatcaagggtgttattt	3491		SEQ ID NO: 4951 aaatcttattggggatttt SEQ ID NO: 4952 cttggattcaaaatgtgga	6858	68771	3
SEQ ID NO: 3623 tocataccccgtttgcaag			SEQ ID NO: 4953 cttcagggaacacaatgca	5185	52041	3
SEQ ID NO: 3624tgcaagcagaagccagaa			SEQ ID NO: 4954 atctatgccatctcttctg	5633	56521	3
SEQ ID NO: 3625 cagaagccagaagtgag	3523		SEQ ID NO: 4955 ccagcttccccacatctca	8341	83601	3
SEQ ID NO: 3626 tgagatcctcgcccactgg			SEQ ID NO: 4956 agcacatatgaactggacc	13947	139661	3
SEQ ID NO: 3627 ggtcgcctgccaaactgct	3555		SEQ ID NO: 4957 gagtttatcagtcagagca	9701	97201	3
SEQ ID NO: 3628 tgcttctccaaatggactc	3567		SEQ ID NO: 4958 gctgcagtggcccgttcca	8167	81861	3
SEQ ID NO: 3629 tggactcatctgctacagc	3578			8211	82301	3
SEQ ID NO: 3630 getacagettatggetcca	3610		SEQ ID NO:4959 tggaggacattcctctagc SEQ ID NO:4960 atcacaaattagtttcacc	8947	89661	3
SEQ ID NO: 3631 ggtggcatggcattatgat			SEQ ID NO: 4961 ttcaacgatacctgtctct	7713	77321	3
SEQ ID NO: 3632 agagaagattgaatttgaa	3657		SEQ ID NO: 4962 gtatgctaatagactcctg	3736	37551	3
SEQ ID NO: 3633 caggcaccaatgtagatad	3685		SEQ ID NO: 4963 cacaatgcaaaattcagtc	5195	52141	3
SEQ ID NO: 3634 gacttccaatttccctgtg			SEQ ID NO:4964tcataagggaggtagggac	12777	127961	3
SEQ ID NO: 3635 gtccctcaaacagacatga	3770		SEQ ID NO: 4965 ggaactacaatttcatttg	7022	70411	3
SEQ ID NO: 3636 caaacagacatgacttcc	3809		SEQ ID NO: 4966 atgatttgaaaatagctat	6693	67121	3
SEQ ID NO: 3637 atagttgcaatgagctcat SEQ ID NO: 3638 gcttcagaaggcatctggg			SEQ ID NO: 4967 cccaagaggtatttaaagc	12957	129761	3
SEQ ID NO: 3639 ggagttcaacctccagaac	3895		SEQ ID NO: 4968 gttcactccattaacctcc	6314	63331	3
SEQ ID NO: 353999 agriculturasa	3940		SEQ ID NO: 4969 ttttctaaatggaacttct	12173	121921	
SEQ ID NO: 3640 agaaaacctcttcttaaaa SEQ ID NO: 3641 aaaacctcttcttaaaaag	3942		SEQ ID NO: 4970 ctttgaaaaattctctttt	9213	92321	3
SEQ ID NO: 3641 aaaaaccccccccaaaaag			SEQ ID NO: 4971 gaccttgcaagaatatttt	6343	63621	3
SEQ ID NO: 3642 adadagegatggceggg SEQ ID NO: 3643 gtcaaatataccttgaaca	3971		SEQ ID NO: 4972 tgttaacaaattccttgac	7363	73821	3
SEQ ID NO: J56439 todadatatacottydata			SEQ ID NO: 4973 ttcaagttcctgaccttca	8310	83291	3
SEQ ID NO: 3644 tgaacaagaacagtttgaa	3995		SEQ ID NO:14974 gaatetggeteceteaact	9047	90661	3
SEQ ID NO: 3645 agtitigaaaattgagattc	3996		SEQ ID NO: 4975 ggaaataccaagtcaaaac	10454	104731	3
SEQ ID NO: 3646 gtttgaaaattgagattcc	3998		SEQ ID NO:4976aaggaaaagcgcacctcaa	12030	120491	3
SEQ ID NO: 3647 Itgaaaattgagattcctt			SEQ ID NO:4977 cagttgaccacaagcttag	10545	105641	3
SEQ ID NO: 3648 ctaaagatgttagagactg				8073		3
SEQ ID NO: 3649 atgttagagactgttagga	4052		SEQ ID NO: 4978 tccttaacaccttccacat		80921	3
SEQ ID NO: 3650 cagecetecaetteaagte	4074	4093	SEQ ID NO: 4979 gacttctctagtcaggctg	8813	88321	3

						5700		T 0
SEQ ID NO:	3651 agccctccacttcaagtct	4075			4980 agacatcgctgggctggct	5728	5747 1	·
	3652 ccatctgccatctcgagag	4102			4981 ctctcaaatgacatgatgg	5330	53491	
SEQ ID NO:	3653 attcccaagttgtatcaac	4142			4982gttgagaagccccaagaat	6254	62731	
SEQ ID NO:	3654 tcaactgcaagtgcctctc	4156	4175	SEQ ID NO:	4983gagatcaagacactgttga	8843	88621	
SEQ ID NO:	3655 ggtgttctagacctctcca	4178	4197	SEQ ID NO:	4984tggaaccctctccctcacc	4735	4754	
SEQ ID NO:	3656 ctccacgaatgtctacagc	4192	4211	SEQ ID NO:	4985gctggtaacctaaaaggag	5588	56071	
SEQ ID NO:	3657 cacgaatgtctacagcaac	4195	4214	SEQ ID NO:	4986gttgcccaccatcatcgtg	11671	116901	
SEQ ID NO:	3658 acgaatgtctacagcaact	4196	4215	SEQ ID NO:	4987 agttgcccaccatcatcgt	11670	116891	3
SEQ ID NO:	3659 tcctacagtggtggcaaca	4232	4251	SEQ ID NO:	4988tgttagttgctcttaagga	13359	133781	3
SEO ID NO:	3660 cgttaccacatgaaggctg	4280			4989 cagcaagtacctgagaacg	8611	86301	3
SEO ID NO:	3661 gaaggetgactetgtggtt	4291			4990 aacctatgccttaatcttc	13169	131881	3
SEO ID NO.	3662 tgtggttgacctgctttcc	4303			4991ggaaagttaaaacaacaca	6965	69841	3
SEC ID NO.	3663 cctgctttcctacaatgtg	4312			4992 cacaccttgacattgcagg	11088	111071	3
SECTIONO.	3664 ctgctttcctacaatgtgc	4313			4993gcacaccttgacattgcag	11087	111061	3
פבט וף אס:	3665 tcctacaatgtgcaaggat	4319			4994 atccgctggctctgaagga	8577	85961	3
DECLIDING:	3666 tatgaccacaagaatacgt	4352			4995acgtccgtgtgccttcata	9984	100031	
DECLID NO:	3667 atgaccacaagaatacgtc	4353			4996gacgtccgtgtgccttcat	9983	100021	
SEQ ID NO:	3668 gaatacgtctacactatca	4363			4997 tgattatctgaattcattc	6487	65061	
SEQ ID NO:	3669 tttctagattcgaatatca	4406			4998tgatttacatgatttgaaa	6685	67041	
SEQ ID NO:	3670 gattcgaatatcaaattca	4412			4999tgaagtagctgagaaaatc	7102	71211	
SEQ ID NO:	3670 ganogaanatadaana	4449			5000tttgaaaaattctcttttc	9214	92331	
SEQ ID NO:	3671 gaaacaacccagtctcaaa	4456			5001 taaattcattactcctggg	11302	113211	
SEQ ID NO:	3672 cccagtctcaaaaggttta	4462			5002tattcaaaactgagttgag	12231	122501	
SEQ ID NO:	3673 ctcaaaaggtttactaata	4463			5003 atattcaaaactgagttga	12230	122491	
SEQ ID NO:	3674tcaaaaggtttactaatat	4465			5004gaatttgaaagttcgtttt	9280	92991	
SEQ ID NO:	3675 aaaaggtttactaatattc	4543			5005gacagcatcttcgtgtttc	11214	112331	L
SEQ ID NO:	3676 gaaacagcatttgttgtc	4551				8022	80411	
SEQ ID NO:	3677 attigtttgtcaaagaagt	4569			5006 acttaaaaaatataaaaat	13422	134411	
SEQ ID NO:	3678 tcaagattgatgggcagtt				5007 aactctcaagtcaagttga	11995	120141	
SEQ ID NO:	3679ttcagagtctcttcgttct	4586			5008 agaagatggcaaatttgaa	8873	88921	
SEQ ID NO:	3680 cagagtctcttcgttctat	4588			5009 atagcatggacttcttctg	9245	92641	
SEQ ID NO:	3681 atgctaaaggcacatatgg	4605			5010 ccatttgagatcacggcat	9372	93911	
SEQ ID NO:	3682 gcacatatggcctgtcttg	4614			5011 caagttggcaagtaagtgc	6190	62091	1
SEQ ID NO:	3683 gagtccaacctgaggttta	4667			5012taaagtgccacttttactc	9308	93271	
SEQ ID NO:	3684 agtccaacctgaggtttaa	4668			5013ttaacagggaagatagact	9376	93951	
SEQ ID NO:	3685 cctacctccaaggcaccaa	4692			5014ttggcaagtaagtgctagg			
SEQ ID NO:	3686 gaagatggaaccctctccc	4730			5015 gggaagaagaggcagcttc	12291	123101 122821	
SEQ ID NO:	3687 tgatctgcaaagtggcatc	4762	4781	SEQ ID NO:	5016 gatgaggaaactcagatca	12263	,	1
SEQ ID NO:	3688 gatctgcaaagtggcatca	4763			5017 tgatgaggaaactcagatc	12262	122811	1
SEQ ID NO:	3689 gcttccctaaagtatgaga	4793			5018 tctcgtgtctaggaaaagc	5977	59961	
SEQ ID NO:	3690 gtatgagaactacgagctg	4804			5019 cagcttaagagacacatac	6920	69391	1 1
SEQ ID NO:	3691 tctaacaagatggatatga	4868			5020 tcattitccaactaataga	13032	130511	
SEQ ID NO:	3692 ctgctgcgttctgaatatc	4907			5021 gatacaagaaaaactgcag	6901	69201	
SEQ ID NO:	3693 tcattgaggttcttcagcc	4940	4959	SEQ ID NO:	5022ggctcatatgctgaaatga	5348	5367 1	
SEQ ID NO:	3694 ttctggatcactaaattcc	4963			5023ggaaggacaaggcccagaa	12549	125681	
SEQ ID NO:	3695 ccatggtcttgagttaaat	4981	5000	SEQ ID NO:	5024 atttttattcctgccatgg	10103	101221	1
SEQ ID NO:	3696 tcttaggcactgacaaaat	5007			5025 attttttgcaagttaaaga	14019	140381	
SEQ ID NO:	3697 acaaggcgacactaaggat	5040	5059	SEQ ID NO:	5026 atccatgatctacatttgt	6794	68131	3

SEQ ID NO: 3698 tgcaacgaccaacttgaag	5083		ID NO: 5027 cttcagggaacacaatgca	5185	52041	L
SEQ ID NO: 3699 caacttgaagtgtagtctc	5092		ID NO: 5028 gagatgagagatgccgttg	6239	62581	
SEQ ID NO: 3700 gctggagaatgagctgaat	5116	5135 _{SEQ}	ID NO: 5029 attetettttettteage	9222	92411	1
SEQ ID NO: 3701 gcagagcttggcctctctg	5135	5154 SEQ	ID NO: 5030 cagatacaagaaaaactgc	6899	6918	I
SEQ ID NO: 3702 tctctggggcatctatgaa	5148	5167 _{SEQ}	ID NO: 5031 ttcattcaattgggagaga	6499	6518	3
SEQ ID NO: 3703 tctggggcatctatgaaat	5150	5169 _{SEQ}	ID NO: 5032 atttgtaagaaaatacaga	6436	64551	3
SEQ ID NO: 3704 aacacaatgcaaaattcag	5193	5212 _{SEQ}	ID NO:5033 ctgaagcattaaaactgtt	7506	75251	3
SEQ ID NO: 3705 ctcacagagetatcactgg	5231	5250 SEQ	ID NO:5034 ccagatgctgaacagtgag	8149	81681	3
SEQ ID NO: 3706 tgggaagtgcttatcaggc	5247	5266 SEQ	ID NO: 5035 gcctacgttccatgtccca	11356	113751	3
SEQ ID NO: 3707ttcaaggtcagtcaagaag	5303		ID NO:5036 cttcagtgcagaatatgaa	11977	119961	3
SEQ ID NO: 3708 aatgacatgatgggctcat	5336		ID NO:5037 atgattatctgaattcatt	6486	65051	3
SEQ ID NO: 3709 gctcatatgctgaaatgaa	5349		ID NO: 5038 ttcagccattgacatgagc	5746	57651	3
SEQ ID NO: 3710 atatgctgaaatgaaattt	5353		ID NO: 5039 aaatagctattgctaatat	6702	67211	3
SEQ ID NO: 3711 tctgaacattgcaggctta	5386		ID NO: 5040 taagaaccagaagatcaga	10996	110151	3
SEQ ID NO: 3712 gaacattgcaggettatca	5389		ID NO: 5041 tgatatcgacgtgaggttc	12490	125091	3
SEQ ID NO: 3713tgcaggcttatcactggac	5395		ID NO: 5042 gtcctggattccacatgca	11852	118711	
SEQ ID NO: 3714tcaaaacttgacaacattt	5420		ID NO: 5043 aaattccttgacatgttga	7370	73891	3
SEQ ID NO: 3715 atttacagctctgacaagt	5435		ID NO: 5044 acttaaaaaatataaaaat	8022	80411	3
SEQ ID NO: 3716 ctctgacaagttttataag	5443		ID NO: 5045 cttacttgaattccaagag	10674	106931	1
SEQ ID NO: 3717gttaatttacagctacagc	5468		ID NO: 5046 gctgcatgtggctggtaac	5578	55971	3
SEQ ID NO: 3718 ttctctggtaactacttta	5491		ID NO:5047taaaagattactttgagaa	7275	72941	3
SEQ ID NO: 3719 cctaaaaggagcctaccaa	5596		ID NO: 5048 ttggcaagtaagtgctagg	9376	93951	3
SEQ ID NO: 3720 aaaaggagcctaccaaaat	5599		ID NO: 5049 atttacaattgttgctttt	6271	62901	3
SEQ ID NO: 3721 aggagcctaccaaaataat	5602		ID NO: 5050 attacctatgatttctcct	10127	101461	3
SEQ ID NO: 3722 ataatgaaataaaacacat	5616		ID NO:5051 atgtcaaacactttgttat	7065	70841	3
SEQ ID NO: 3723 aaaacacatctatgccatc	5626		ID NO:5052 gatgaagatgacgactttt	12158	121771	3
SEQ ID NO: 3724 tgctaaggttcagggtgtg	5686		ID NO:5053 cacaagtcgattcccagca	9087	91061	3
SEQ ID NO: 3725 gagtttagccatcggctca	5705	5724 SEQ	ID NO: 5054 tgaggtgactcagagactc	7450	74691	3
SEQ ID NO: 3726 gctggcttcagccattgac	5740	5759 _{SEQ}	ID NO:5055 gtcagtgaagttctccagc	8596	86151	
SEQ ID NO: 3727 atttcagcaatgtcttccg	5790	5809 _{SEQ}	ID NO: 5056 cggagcatgggagtgaaat	8628	86471	3
SEQ ID NO: 3728 tttcagcaatgtcttccgt	5791	5810 _{SEQ}	ID NO: 5057 acggagcatgggagtgaaa	8627	86461	3
SEQ ID NO: 3729ttcagcaatgtcttccgtt	5792	5811 _{SEQ}	ID NO: 5058 aacggagcatgggagtgaa	8626	86451	
SEQ ID NO: 3730 cagcaatgtettecgttet	5794	5813 _{SEQ}	ID NO: 5059 agaagtgtcttcaaagctg	12412	124311	
SEQ ID NO: 3731 tgtcttccgttctgtaatg	5800	5819 _{SEQ}	ID NO: 5060 cattcaattgggagagaca	6501	65201	<u> </u>
SEQ ID NO: 3732 gtcttccgttctgtaatgg	5801	5820 SEQ	ID NO: 5061 ccattcagtctctcaagac	12975	129941	1
SEQ ID NO: 3733 atgggaaactcgctctctg	5859	5878 _{SEQ}	ID NO: 5062 cagataaaaaaactcaccat	12213	122321	
SEQ ID NO: 3734ggagaacatactgggcagc	5879	5898 _{SEQ}	ID NO: 5063 gctgttttgaagactctcc	1088	11071	
SEQ ID NO: 3735 gttgaaagcagaacctctg	5914	5933 _{SEQ}	ID NO:5064 cagaattcataatcccaac	8274	82931	
SEQ ID NO: 3736gtctaggaaaagcatcagt	5983		ID NO:5065actgcaagatttttcagac	13612	136311	
SEQ ID NO: 3737 agcatcagtgcagctcttg	5993		ID NO: 5066 caagaacctgttagttgct	13351	133701	
SEQ ID NO: 3738 ttgaacacaaagtcagtgc	6009		ID NO: 5067 gcacatcaatattgatcaa	6418	64371	
SEQ ID NO: 3739 gcagacaggcacctggaaa	6046		ID NO:5068 tttcagatggcattgctgc	11610	116291	
SEQ ID NO: 3740 gaaactcaagacccaattt	6061		ID NO: 5069 aaatcccatccaggttttc	8037	80561	
SEQ ID NO: 3741 acaatgaatacagccagga	6084	6103 _{SEQ}	ID NO: 5070 tcctttggctgtgctttgt	9682	97011	1
SEQ ID NO: 3742 cttggatgcttacaacact	6103	6122 SEQ	ID NO: 5071 agtgaagttctccagcaag	8599	86181	
SEQ ID NO: 3743 ttggcgtggagcttactgg	6132	6151 _{SEQ}	ID NO:5072 ccagaattcataatcccaa	8273	82921	3
SEQ ID NO: 3744 cacttttactcagtgagcc	6198	6217 _{SEQ}	ID NO: 5073 ggctattgatgttagagtg	6988	70071	3
D=2:- 110150: 11						

	1	coort	2054	E074lggootgotgotgotgotttaga	9177	91961	3
SEQ ID NO:	3745 tttagagatgagagatgcc			SEQ ID NO: 5074 ggcatgatgctcatttaaa	12970	129891	
SEQ ID NO:	3746 gagaagccccaagaattta			SEQ ID NO: 5075 taaagccattcagtctctc	10187	102061	3
SEQ ID NO:	3747 caattgttgcttttgtaaa			SEQ ID NO: 5076 tttaaccagtcagatattg	13655	136741	3
SEQ ID NO:	3748 ttttgtaaagtatgataaa			SEQ ID NO: 5077 tttattgctgaatccaaaa	6358	63771	-3
SEQ ID NO:	3749 ttgtaaagtatgataaaaa			SEQ ID NO: 5078 ttttgagaggaatcgacaa	9576	95951	3
SEQ ID NO:	3750 ttcactccattaacctccc			SEQ ID NO: 5079 gggaaaaaacaggcttgaa		95851	3
SEQ ID NO:	3751 ttttgagaccttgcaagaa			SEQ ID NO: 5080 ttctctctatgggaaaaaa	9566	129671	3
SEQ ID NO:	3752 accttgcaagaatattttg			SEQ ID NO: 5081 caaaagaagcccaagaggt	12948 11829	118481	3
SEQ ID NO:	3753 tcaatattgatcaatttgt			SEQ ID NO: 5082 acaaagcagattatgttga		136411	3
SEQ ID NO:	3754 cagagcagccctgggaaaa			SEQ ID NO: 5083 ttttcagaccaactctctg	13622	77431	3
SEQ ID NO:	3755 cctgggaaaactcccacag			SEQ ID NO: 5084 ctgtctctggtcagccagg	7724	128881	
SEQ ID NO:	3756 actoccacagcaagctaat			SEQ ID NO: 5085 attacacttcctttcgagt	12869		<u> </u>
SEQ ID NO:	3757 aattcattcaattgggaga			SEQ ID NO: 5086 tetettectecatggaatt	10479	104981	3
SEQ ID NO:	3758ttcaattgggagagacaag			SEQ ID NO: 5087 cttggagtgccagtttgaa	. 11808	118271	<u> </u>
SEQ ID NO:	3759 aggagaaactgactgctct			SEQ ID NO: 5088 agagettatgggatttect	11163	111821	
SEQ ID NO:	3760 actgactgctctcacaaaa			SEQ ID NO: 5089 ttttggcaagctatacagt	8380	83991	
SEQ ID NO:	3761 gactgctctcacaaaaaag	6544 6	3563	SEQ ID NO: 5090 ctttgtgagtttatcagtc	9695	97141	
SEQ ID NO:	3762 cagacatatatgatacaat			SEQ ID NO: 5091 attggatatccaagatctg	1933	19521	
SEQ ID NO:	3763 aatttgatcagtatattaa			SEQ ID NO: 5092ttaaaagaaatettcaatt	13815	138341	<u> </u>
SEQ ID NO:	3764 tatgatttacatgatttga			SEQ ID NO: 5093 tcaatgattatatcccata	13128	131471	
SEQ ID NO:	3765 tttgaaaatagctattgct			SEQ ID NO: 5094 agcacagaaaaaattcaaa	13864	138831	
SEQ ID NO:	3766 ttgaaaatagctattgcta			SEQ ID NO: 5095 tagcacagaaaaaattcaa	13863	138821	
SEQ ID NO:	3767 aatagctattgctaatatt			SEQ ID NO:5096 aataaatggagtctttatt	14084	141031	
SEQ ID NO:	3768 attattgatgaaatcattg			SEQ ID NO: 5097 caataccagaattcataat	8268	82871	
SEQ ID NO:	3769 aaagtcttgatgagcacta			SEQ ID NO: 5098 tagtgattacacttccttt	12864	128831	
SEQ ID NO:	3770 aagtcttgatgagcactat			SEQ ID NO: 5099 atagcaacactaaatactt	8769	87881	
SEQ ID NO:	3771ttgatgagcactatcatat			SEQ ID NO: 5100 atatccaagatgagatcaa	13101	131201	
SEQ ID NO:	3772 taattttagtaaaaacaat			SEQ ID NO: 5101 attgagattccctccatta	11702	117211	
SEQ ID NO:	3773 ttttagtaaaaacaatcca			SEQ ID NO: 5102 tggagtgccagtttgaaaa	11810	118291	
SEQ ID NO:	3774 acatttgtttattgaaaat			SEQ ID NO: 5103 atttcctaaagctggatgt	11175	111941	
SEQ ID NO:	3775 attgattttaacaaaagtg			SEQ ID NO: 5104 cactgttccagttgtcaat	9871	98901	·
SEQ ID NO:	3776 attttaacaaaagtggaag			SEQ ID NO: 5105 cttcaaagacttaaaaaat	8014	80331	
SEQ ID NO:	3777 aaatcagaatccagataca			SEQ ID NO: 5106 tgtaccataagccatattt	10088	101071	
SEQ ID NO:	3778 gaatccagatacaagaaaa			SEQ ID NO: 5107 ttttctaaacttgaaattc	9065	90841	
SEQ ID NO:	3779 ttaagagacacatacagaa	6924	5943	SEQ ID NO: 5108 ttcttaaacattcctttaa	9491	95101	
SEQ ID NO:	3780 atccagcacctagctggaa	6950	6969	SEQ ID NO: 5109 ttccaatttccctgtggat	3688	37071	
SEQ ID NO:	3781 tgagcatgtcaaacacttt	7060	7079	SEQ ID NO: 5110 aaagtgccacttttactca	6191	62101	
SEQ ID NO:	3782 gagcatgtcaaacactttg			SEQ ID NO: 5111 caaatgacatgatgggctc	5334	53531	
SEQ ID NO:	3783 aaacactttgttataaatc			SEQ ID NO: 5112 gattatatcccatatgttt	13133	131521	
SEQ ID NO:	3784tgagaaaatcaatgccttc			SEQ ID NO: 5113 gaaggaaaagcgcacctca	12029	120481	
SEQ ID NO	. 3785 tatgaagtagaccaacaaa			SEQ ID NO: 5114 tttgtggagggtagtcata	10331	103501	
SEQ ID NO:	3786 aagtagaccaacaaatcca			SEQ ID NO: 5115 tggatgaagatgacgactt	12156	121751	1
SEO ID NO:	. 3787 aagttgaaggagactattc	7223	7242	SEQ ID NO: 5116 gaataccaatgctgaactt	10168	101871	l
SEQ ID NO	3788 acaagttaagataaaagat			SEQ ID NO:5117 atctaaattcagttcttgt	11334	113531	
SEQ ID NO:	3789aagataaaagattactttg	7271	7290	SEQ ID NO: 5118 caaaatagaagggaatctt	2077	20961	
SEQ ID NO	3790 gattactttgagaaattag	7280	7299	SEQ ID NO:5119 ctaaacttgaaattcaatc	9069	90881	
SEQ ID NO	: 3791 tgagaaattagttggattt	7288	7307	SEQ ID NO:5120 aaatccgtgaggtgactca	7443	74621	3

	7202	7244	E42	1 desptttaggggtgggttt	10419	104381	3
SEQ ID NO: 3792 aaattagttggatttattg	7292			1 caattitgagaatgaattt	9953	99721	
SEQ ID NO: 3793 tggatttattgatgatgct	7300			2 agcatgcctagtttctcca	7422	74411	
SEQ ID NO: 3794 tcattgaagatgttaacaa	7353			3ttgtagatgaaaccaatga	7421	74401	
SEQ ID NO: 3795 cattgaagatgttaacaaa	7354			4tttgtagatgaaaccaatg	10495	105141	
SEQ ID NO: 3796 attgaagatgttaacaaat	7355			5atttaagtatgatttcaat	10493	105131	
SEQ ID NO: 3797 ttgaagatgttaacaaatt	7356			6aatttaagtatgatttcaa	10494	105131	
SEQ ID NO: 3798 tgaagatgttaacaaattc	7357			7gaatttaagtatgatttca	11487	115061	
SEQ ID NO: 3799 acatgttgataaagaaatt	7380			8aattccctgaagttgatgt	8791	88101	<u> </u>
SEQ ID NO: 3800 tttgattaccaccagtttg	7406			9 caaattgaacatccccaaa	7972	79911	
SEQ ID NO: 3801 caaaatccgtgaggtgact	7441			0 agtccccctaacagatttg	8638	86571	L
SEQ ID NO: 3802 aaaatccgtgaggtgactc	7442			1 gagtgaaatgctgtttttt	10731	107501	
SEQ ID NO: 3803 aggtgactcagagactcaa	7452			2ttgatgatatctggaacct	8409	84281	
SEQ ID NO: 3804 gtgaaattcaggctctgga	7473			3tccaatctcctcttttcac	8540	85591	
SEQ ID NO: 3805 gttgcagtgtatctggaaa	7547			4tttcaagcaaatgcacaac	10173	101921	<u> </u>
SEQ ID NO: 3806 ttaagttcagcatctttgg	7616			5ccaatgctgaactttttaa	10173	101921	
SEQ ID NO: 3807 tgaaggccaaattccgaga	7641			6 teteettletteatettea	110213	110401	
SEQ ID NO: 3808 aatgtatcaaatggacatt	7684			7aatgaagtccggattcatt	6254	62731	
SEQ ID NO: 3809 attcagcaggaacttcaac	7700			8 gttgagaagccccaagaat	9377	93961	
SEQ ID NO: 3810 acctgtctctggtcagcca	7722			9tggcaagtaagtgctaggt	8810	88291	
SEQ ID NO: 3811 cctgtctctggtcagccag	7723			0 ctggacttctctagtcagg	10535	105541	1
SEQ ID NO: 3812 ggtcagccaggtttatagc	7732			1 gctaaaggagcagttgacc	11025	110441	
SEQ ID NO: 3813 ccaggtttatagcacactt	7738			2 aagtccggattcattctgg			
SEQ ID NO: 3814 gtttatagcacacttgtca	7742			3tgacctgtccattcaaaac	13681 10283	13700 1 10302 1	ļ
SEQ ID NO: 3815 acttgtcacctacatttct	7753			4 agaaaaaaggggattgaagt	14026	140451	
SEQ ID NO: 3816 ctgattggtggactcttgc	7770			5gcaagttaaagaaaatcag		102271	
SEQ ID NO: 3817 atgaaagcattggtagagc	7847			6 geteateteetttetteat	10208	10227	I
SEQ ID NO: 3818 tgaaagcattggtagagca	7848			7tgctcatctcctttcttca	10207	89781	<u> </u>
SEQ ID NO: 3819 gggttcactgttcctgaaa	7868			8tttcaccatagaaggaccc	8959	79921	1
SEQ ID NO: 3820 tcaagaccatccttgggac	7887			9gtcccctaacagatttga	7973 13978	139971	
SEQ ID NO: 3821 cettgggaccatgcctgcc	7897			0ggcaccagggctcggaagg	9588	96071	
SEQ ID NO: 3822 ttcaggctcttcagaaagc	7929			1 gcttgaaggaattcttgaa	13183	132021	
SEQ ID NO: 3823 ttcagataaacttcaaaga	8004			2tcttcataagttcaatgaa	6829	68481	
SEQ ID NO: 3824 acttcaaagacttaaaaaa	8013			3ttttaacaaaagtggaagt	9472	94911	
SEQ ID NO: 3825 atcccatccaggttttcca	8039			4tggagaagcaaatctggat	9889	99081	
SEQ ID NO: 3826 gaatttaccatccttaaca	8063			5 tgttgaagtgtctccattc	10414	104331	
SEQ ID NO: 3827 cattccttcctttacaatt	8089			6 aattccaattttgagaatg	12932	12951	
SEQ ID NO: 3828 ttgaccagatgctgaacag	8145	8164	SEQ ID NO:010	7ctgttgaaagatttatcaa	8522	8541	
SEQ ID NO: 3829 aatcaccctgccagacttc	8233	8252	SEQ ID NO:010	8gaagtteteaattttgatt		89031	
SEQ ID NO: 3830 tgaccttcacataccagaa	8320	8339	SEQ ID NO: 515	9ttcttctggaaaagggtca	8884	8940	1
SEQID NO: 3831 ttccagettccccacatct	8339			0 agattctcagatgagggaa	8921 11612	11631	
SEQID NO: 3832 aagctatacagtattctga	8387	8406	SEQ ID NO: 516	toagatggcattgctgctt		11571	
SEQID NO: 3833 attotgaaaatccaatctc	8399	8418	SEQ ID NO: 516	2 gagataaccgtgcctgaat	11552 9738	9757	
SEQ ID NO: 3834 tttcacattagatgcaaat	8422	8441	SEQ ID NO: 516	3 attttgaaaaaaaacagaaa		. <u> </u>	
SEQ ID NO: 3835 caaatgctgacatagggaa	8436	8455	SEQ ID NO: 516	4ttccatcacaaatcctttg	9670	9689	
SEQ ID NO: 3836 gagagtccaaattagaagt	8508	8527	SEQ ID NO: 516	55 actttacttcccaactctc	13410	13429	
SEQ ID NO: 3837 agagtccaaattagaagtt	8509	8528	SEQ ID NO: 516	66 aactttacttcccaactct	13409	13428	
SEQ ID NO: 3838 tctcaattttgattttcaa	8527	8546	SEQ ID NO: 516	7ttgattcccttttttgaga	11537	11556	3

	1	0500	0 05 (0) 15 (00) 15 (00) 15 (00) 16 (00) 16 (00)	
SEQ ID NO: 3839	caattitgattttcaagca	8530		3
	aatgcacaactctcaaacc	8549	OEG ID NO.	3
	agttctccagcaagtacct	8604	DEGIDINO.	3
	agtacctgagaacggagca	8616	DEGIDIO, 15 55 5	3
SEQ ID NO: 3843	tcaaacacagtggcaagtt	8678	OLG ID NO.	3
SEQ ID NO: 3844	acaatcagcttaccctgga	8751	OEG ID NO.	3
SEQ ID NO: 3845	ctggatagcaacactaaat	8765	DEG IS NO.	3
SEQ ID NO: 3846	ctgacctgcgcaacgagat	8829	OEG ID NO.	3
SEQ ID NO: 3847	agatgagggaacacatgaa	8929	OEG IS NO.	3
SEQ ID NO: 3848	tcaacttttctaaacttga	9060		3
SEQ ID NO: 3849	ttctaaacttgaaattcaa	9067	7 9086 SEQ ID NO: 5178 ttgatgatgctgtcaagaa 7308 7327 1	3
	gaaattcaatcacaagtcg	9077	7 9096 SEQ ID NO: 5179 cgacgaagaaataatttc 13566 13585 1	3
	cactgtttggagaagggaa	9141	9160 SEQ ID NO: 5180 ttccagaaagcagccagtg 12506 125251	3
SEQ ID NO: 3852	actgtttggagaagggaag	9142		3
SEQ ID NO: 3853	aattctcttttcttttcag	9221		3
SEQ ID NO: 3854	ttcttttcagcccagccat	9230		3
SEQ ID NO: 3855	tttgaaagttcgttttcca	9283	9302 SEQ ID NO: 5184 tggaagtgtcagtggcaaa 10380 10399 1	3
SEQ ID NO: 3856	cagggaagatagacttcct	9312	9331 SEQ ID NO: 5185 aggacctttcaaattcctg 9848 9867 1	3
SEQ ID NO: 3857	ataagtacaaccaaaattt	9405	9424 _{SEQ ID NO:} 5186 aaatcaggatctgagttat 14038 14057	3
SEQ ID NO: 3858	acaacgagaacattatgga	9435	9454 _{SEQ ID NO:} 5187tccattctgaatatattgt 13380 133991	3
SEQ ID NO: 3859	aggaataaatggagaagca	9463	B 9482 SEQ ID NO: 5188 tgctggaattgtcattcct 11734 11753 1	3
SEQ ID NO: 3860	agcaaatctggatttctta	9478	B 9497 _{SEQ ID NO:} 5189 taagttctctgtacctgct 11719 11738 1	3
SEQ ID NO: 3861	tcctttaacaattcctgaa	9502	9521 SEQ ID NO: 5190 ttcaaaacgagcttcagga 13206 132251	3
SEQ ID NO: 3862	tttaacaattcctgaaatg	9505	9524 SEQ ID NO: 5191 catttgatttaagtgtaaa 9621 9640 1	3
SEQ ID NO: 3863	acacaataatcacaactcc	9534	9553 _{SEQ ID NO:} 5192 _{ggagacagcatcttcgtgt} 11211 112301	3
SEQ ID NO: 3864	aagatttctctctatggga	9561	9580 SEQ ID NO: 5193 tcccagaaaacctcttctt 3936 39551	3
SEQ ID NO: 3865	gaaaaaacaggcttgaagg	9578	024,270	3
SEQ ID NO: 3866	ttgaaggaattcttgaaaa	9590	9609 _{SEQ ID NO:} 5195 ttttgagaatgaatttcaa 10422 10441	3
SEQ ID NO: 3867	tgaaggaattcttgaaaac	9591	9610 _{SEQ ID NO:} 5196gttttggctgataaattca 11291 113101	3
SEQ ID NO: 3868	agctcagtataagaaaaac	9640	0-4,1-1,0,1	3
SEQ ID NO: 3869	tcaaatcctttgacaggca	9720		3
SEQ ID NO: 3870	atgaaacaaaaattaagtt	9789	02415700	3
SEQ ID NO: 3871	aattcctggatacactgtt	9859	DEG 15 1101	3
SEQ ID NO: 3872	ttccagttgtcaatgttga	9876	0-2010 1101	3
SEQ ID NO: 3873	aagtgtctccattcaccat	9894	CERTIFICATION 1	3
SEQ ID NO: 3874	gtcagcatgcctagtttct	9950		3
SEQ ID NO: 3875	ctgccatgggcaatattac	10113	OEG 15 1101	3
SEQ ID NO: 3876	tgaataccaatgctgaact	10167		3
SEQ ID NO: 3877	tattgttgctcatctcctt	10201	022.12.101	3
SEQ ID NO: 3878	tgttgctcatctcctttct	10204		3
SEQ ID NO: 3879	tctgtcattgatgcactgc	10232	1024 12 1101	3
SEQ ID NO: 3880	ccacagetetgtetetgag	10305	0	3
SEQ ID NO: 3881	atttgtggagggtagtcat	10330		3
SEQ ID NO: 3882	atatggaagtgtcagtggc	10377		3
SEQ ID NO: 3883	tggaaataccaagtcaaaa	10453		3
SEQ ID NO: 3884	aagtcaaaacctactgtct	10463	1024151151	3
SEQ ID NO: 3885	actgtctcttcctccatgg	10475	5 10494 SEQ ID NO: 5214 ccatgcaagtcagcccagt 10924 10943 1	3

SEQ D No. 980e Tuttle-tackgright (1968) SEQ D No. 9216 Segue (1968) Segue (196		10.00	74.0 74.074
SEQ ID NO. 3889 (blaccaccagottagott 1064 10667 SEQ ID NO. 5227 faugogoaccataatatea 12036 12056 sec ID NO. 3889 (clascactatattic 10573 10592 SEQ ID NO. 5218) gearantity classification of the second	SEQ ID NO: 3886 cttcctccatggaatttaa	10482	10501 SEQ ID NO: 5215 ttaatcgagaggtatgaag 7148 71671
SEQ D No. 3899 purposeggocaticas and provided in the control of th	SEQ ID NO: 3887 attetteaatgetgtacte		1990 ISEG ID NO. 92 19505 300
SEQ ID NO. 8890 gruppicagggacaticcaa 10710 10728 SEQ ID NO. 5219 stggaagaagaggaagct 12286 122091 3 SEQ ID NO. 8801 stcaasattigatgatatc 10723 10742 SEQ ID NO. 5220 gatatacactagggaggaa 12745 127641 3 SEQ ID NO. 8802 gagaacatacaagaagaag to 10742 SEQ ID NO. 5225 getatagatticcagattic 12676 127641 3 SEQ ID NO. 8802 gagaacatacaagaagaaga to 10897 10916 SEQ ID NO. 5225 gatatagacatagaggaagaa 12745 127641 3 SEQ ID NO. 8802 gagaacatacaagaagaagaagaagaagaagaagaagaagaagaagaa	SEQ ID NO: 3888 ttgaccacaagcttagctt		I SEC ID NO.
SEQ I No. 3899	SEQ ID NO: 3889 cctcacctcttacttttcc		SEQ ID NO:
10726	SEQ ID NO: 3890 agctgcagggcacttccaa	10710	I I I SEC ID NO. PET 1 935 S S S S S S S S S S S S S S S S S S S
SEG_D No. 3892 agaacatacaagcaaagc 10860 10878 SEG_D No. 5222 agctggtttaaagccat 12960 129781 3862 D No. 3893 atgcaaatgtcagctctt 10897 10916 SEG_D D No. 5222 agaaggtgttataaagcca 12959 129781 3860 D No. 3895 atgcaaatgtcagctctt 10898 10917 SEG_D D No. 5222 agaaggtattaaagcca 12959 129781 3860 D No. 3895 atgcaagtcagcaagt 10914 10933 SEG_D D No. 5222 acaaggggaaggaacca 14066 140884 13860 D No. 3895 atgcatcagcaagt 10915 10934 SEG_D D No. 5222 actgggggagggaacca 14066 140884 13860 D No. 3895 atgcatcatcagaatccag 10987 11008 SEG_D D No. 5222 atgatgaaggaaccag 11166 140884 13860 D No. 3895 atgcatcatcagaaccagaagtcag 10987 11008 SEG_D D No. 5228 atgataagaaccagaagaaccagaagtcag 10987 11008 SEG_D D No. 5228 atgataagaaccatgtagt 13347 13366 13860 D No. 3895 atgataaccagaagatcag 10989 11014 SEG_D D No. 5228 atgataagaaccatgtag 13347 13366 13860 D No. 3900 aaaacaagaagaaccagaagtcag 10985 11014 SEG_D D No. 5228 atgataagaaccatgtag 13347 13366 13860 D No. 3902 aaaaatgaagaaccagtagtag 11008 11025 SEG_D D No. 5228 atgataagaaccatgtag 13347 13366 13860 D No. 3903 aaaaatgaagaaccacatgaa 11003 11025 SEG_D D No. 5228 atgataagaaccatgtag 13622 138411 13860 D No. 3903 aagaacactaagaaccatgtat 11038 11037 SEG_D D No. 5228 aaaactaagaaccatgtag 13622 138411 13860 D No. 3903 aagaacactaagaaccatagaacatagaaccatagaaccatagaacatagaaccatagaacata	SEQ ID NO: 3891 ttccaaaattgatgatatc	10723	TO THE DESCRIPTION OF THE PROPERTY OF THE PROP
SEC D. NO. 3893 atggcaaatgtcagctctt 10887 10816 SEC D. NO. 5222 capagggtatttaaagcca 12969 12976 12965 12976 12976 129776 12976 129776 12976 129776 12976 129776 129776 12976 129776	SEQ ID NO: 3892 gagaacatacaagcaaagc	10860	100.0 SEG ID NO. 522 S 535 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1986 1987 1988 1991 1988 1991 1983 1991 1983 1991 1983 1991 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1983 1984 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985 1984 1985	SEQ ID NO: 3893 atggcaaatgtcagctctt	10897	190 19GEQ ID NO
1991 1993 1994 1993 1994 1993 1994 1993 1994 1993 1994 1993 1994 1995 1994 1995	SEQ ID NO: 3894 tggcaaatgtcagctcttg	10898	
SEG DNC 3896 Gyttoaggiccatgcaagt 10915 10934 SEG DNC 5225 actigggggaggagaaca 14085 14084 14085 14085 15085 SEG DNC 3897 squitcotcatgatttoc 10940 10955 SEG DNC 5225 agaatclagtagggaagaacat 12256 12275 12275	SEO ID NO: 3895 ttgttcaggtccatgcaag	10914	3EG ID NO 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
SEQ ID NO: 3997 aglicottocalgatitic 10940 10959 SEQ ID NO: 5225 Gigaatclogtaggaaact 12256 12275 3560 ID NO: 3998 glicaacactaagaaaccag 10997 11006 SEQ ID NO: 5227 cigagtgacaccagaca 11186 13366 13560 13560 ID NO: 3908 caagaaccagaagatcag 10995 11014 SEQ ID NO: 5225 cigaatagaaccigtagt 13347 13366 13560 ID NO: 3909 caagaaccagaagatcag 10995 11014 SEQ ID NO: 5225 cigataagaaccigtagt 13346 13366 13560 ID NO: 3909 caagaactagatggaaaa 11003 11022 SEQ ID NO: 5225 cigataagaaccigtagt 13346 13366 13560 ID NO: 3909 caagaactagatggaaaa 11003 11027 SEQ ID NO: 5235 cigaattgaaagttcattigt 9280 9299 13560 ID NO: 5235 cigaattgaaagttcattigt 9280 9299 13560 ID NO: 5235 cigaattgaaagttcattigt 13466 13165 13660 ID NO: 5235 cigaattgaaagttcattigt 13466 134	SEO ID NO: 3896 tgttcaggtccatgcaagt	10915	10934 SEQ ID NO: 5225 acttgggggaggaggaaca 14065 14084 1
SEQ ID No. 3896 glctaacactaagaaccag	SEO ID NO: 3897 agtteetteeatgatttee	10940	
SEQ ID No. 3990 claagaaccagaagatca 10994 11013 SEQ ID No. 5228 dgatcaagaacctgttagt 13347 133661 5850 D.N. 3900 claagaagaccagaagatcag 10995 11014 SEQ ID No. 5228 dgatcaagaacctgttag 13346 133661 5850 D.N. 3901 cagaagatcagatgagaaaa 11003 11024 SEQ ID No. 5228 dgatcaagaacctgttag 13462 133661 13550 D.N. 3901 cagaagatcagatgagaaaa 11003 11025 SEQ ID NO. 5230 dgattgaagacctgttagt 13622 136411 3350 D.N. 3902 agaaaatgaagtcagattta 11018 11037 SEQ ID NO. 5230 dgattgaagattgatttt 9280 92991 3550 D.N. 3903 agattgaaggccaccttga 11079 11098 SEQ ID NO. 5232 dgaaaactgatgcttaat 13166 104856	SEO ID NO. 3898 tgctaacactaagaaccag	10987	
SSQ D NO: 3900 cagaagatcagaagatcag 10996	SEO ID NO: 3890 actaagaaccagaagatca	10994	
1950 D. NO. 3901 cagaagatcagatggaaaaa	SEO ID NO: 3900 ctaagaaccagaagatcag	10995	
SEQ D NC 3902 aaaaatgaaqtocggattic 11018 11037 SEQ D NC 5231 gaatttgaaagttcgtttt 9280 9299 5 5 5 5 5 5 5 5 5	SEC ID NO: 3901 cagaagatcagatggaaaa		
SEQ ID NO. 3903 gattcattctgggtcttc	SEQ ID NO. 3002 aaaaatgaagtccggattc	11018	
SEQ ID NO: 5904 aagaaaaggcacaccttga	are in No. 3902 attrattctaggtctttc	11032	
SEQ ID NO: 3905 aggacacctaaggttcot 11115 11134 SEQ ID NO: 5234 aggacaccaaaataacct 7572 75911 5 SEQ ID NO: 3906 cascacttgdfaggagaca 11199 11288 SEQ ID NO: 5235 gitcaacaaglaccactgg 12370 123891 3 SEQ ID NO: 3907 cittigtgtacacaaaaac 11239 11258 SEQ ID NO: 5235 gittttaaatitgtaag 13148 131671 3 SEQ ID NO: 3908 ccatcactgtaaaagtttt 11277 11296 SEQ ID NO: 5237 aaaaagggtcatggaaattgg 8893 89121 3 SEQ ID NO: 3908 gactaaaatcaatcatt 11332 11351 SEQ ID NO: 5239 atgagataagcagtagtacgutgatca 13334 133531 13291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 131291 1310 1311 1311 <td>SEQ ID NO: 39039</td> <td></td> <td></td>	SEQ ID NO: 39039		
SEQ ID NO: 3906 ccagcattggtaggagaca	SEQ ID NO: 3904 auguataggettaggtteet		
SEQ D NO: 3907 Ctttgtgtacaccaaaacc	SEQ ID NO: 3905 ccarcattatagaaca		
SEQ ID NO: 3909 kgatctaaattcagttctt 11277 11296 SEQ ID NO: 5237 aaaagggtcatggaaatgg 8893 8912 1 3850 ID NO: 3909 kgatctaaattcagttctt 11332 11351 SEQ ID NO: 5238 aagatagtcagtctgatca 13334 13353 1 3850 ID NO: 3909 kgatctaaattcagttctt 11432 11451 SEQ ID NO: 5238 aagatagtcaaccaaatctt 13110 13129 1 3850 ID NO: 3909 kgatctaaatcacaa 11453 11472 SEQ ID NO: 5239 atgagatcaaccaaatctt 13110 13129 1 3850 ID NO: 3911 tittgccctcaacctacaa 11453 11472 SEQ ID NO: 5240 kgatcaaccaaatctt 13110 13129 1 3850 ID NO: 3912 cittgattcccttittgag 11536 11555 SEQ ID NO: 5241 kgatcaatttgatttctaag 8528 85477 1 3850 ID NO: 3913 kgatcaacaaagag 11591 11610 SEQ ID NO: 5241 kgatcaatttgatttctgaa 12693 12712 1 3850 ID NO: 3914 kgtttcagatggcattgct 11608 11627 SEQ ID NO: 5243 agcaagattatgttgaaaca 11833 11852 1 3850 ID NO: 3915 aatgcaagtagcaacaagag 11639 11658 SEQ ID NO: 5244 kcttttaagccaagcaatt 11833 11852 1 3850 ID NO: 3915 aatgcaagaccaattgagat 11691 11710 SEQ ID NO: 5244 kcttttaagccaagcaatt 11833 11852 1 3850 ID NO: 3915 aatgcaagaccaattgagat 11691 11710 SEQ ID NO: 5244 kcttttaagccaagcaatt 12259 12278 1 3850 ID NO: 3917 kgagcagaccattgagat 11692 11711 SEQ ID NO: 5246 aatctgatgaggaaactca 12259 12278 1 3850 ID NO: 3918 ktgagaattccccaattaa 11703 11722 SEQ ID NO: 5248 kcaattgagggaaactca 12258 12277 1 3850 ID NO: 3918 ktgagaattcccccaattaa 11703 11722 SEQ ID NO: 5246 kcaattgaggagaacaat 13179 13198 1 3850 ID NO: 3920 caaatttgaaggacttcag 12204 12033 SEQ ID NO: 5249 ktgagaaccaagattgag 11457 13198 1 3850 ID NO: 3922 agccaagttcaccagatc 12066 12075 SEQ ID NO: 5250 kgaaccaagatatagttggct 13286 13305 1 3850 ID NO: 3922 aggcaattcaccagatcaa 12264 12283 SEQ ID NO: 5251 ktgaacctgcaccaaaagctg 13711 13730 1 3850 ID NO: 3925 agagcaactagatcaa 12264 12283 SEQ ID NO: 5252 ktgaacaactactaccaggag 13711 13730 1 3850 ID NO: 3925 agagcaactagatcaaa 12264 12283 SEQ ID NO: 5255 ktgaacaacaactactaccaggag 13711 13730 1 3850 ID NO: 3925 agagcaactagaccaag 12264 12283 SEQ ID NO: 5255 ktgaacaacaactactactactagt 13166 13144 1314 1314 1314 1314 1314 13	SEQ ID NO: 3906 coageat again again		
SEQ ID NO: 3909 tyatchaaattcagttctt	SEQ ID NO: 3907 chagigladdoddaddd		THE SEQUENCE STORY
SEQ ID NO: 3910 agaagacttcat 11432 11451 SEQ ID NO: 5239 atgagatcacacacatott 13110 13129 1	SEQ ID NO: 3908 coatoocigidadagtti		
SEQ ID NO: 3911 titgccctcaacctaccaa	SEQ ID NO: 3909 Igaiciaaaticagticti		: 100 SEQ ID NO. 520 SEGUE IN 100 SEGUE IN 1
SEQ ID NO: 3911 SEQ ID NO: 3912 SEQ ID NO: 3914 SEQ ID NO: 3915 SEQ ID NO: 3915 SEQ ID NO: 3915 SEQ ID NO: 3916 SEQ ID NO: 3917 SEQ ID NO: 3918 SEQ ID NO: 3919 SEQ ID NO:	SEQ ID NO: 3910 aagaagetgagaacttcat		I I I SEQ ID NO.
SEQ ID NO: 3912 tradecognetic caaaaaagtg 11591 11610 SEQ ID NO: 5242 cactcattgatttictgaa 12693 12712 1	SEQ ID NO: 3911 Higgs cited actions and a second se		···-SEQ ID NO
SEQ ID NO: 3914 tyttcagatggcattgct 11608 11627 SEQ ID NO: 5243 agcagattatgttgaaaca 11833 11852 1	SEQ ID NO: 3912 ctigatic ccittingag		SEQ ID NO.
SEQ ID NO: 3915 aatgcagtagccaacaaga 11639 11658 SEQ ID NO: 5244 tottttcagccagcaatt 9231 9250 1 SEQ ID NO: 3916 ctyagcagagcaattgagatt 11691 11710 SEQ ID NO: 5245 atctgatgaggaaactcag 12259 12278 1 SEQ ID NO: 3917 tyagcagagcaattgagatt 11692 11711 SEQ ID NO: 5246 aatctgatgaggaaactca 12258 12277 1 3 3 3 3 3 3 3 3 3	SEQ ID NO: 3913 licaegettecaaaaagtg		THE BLG ID NO.
SEQ ID NO: 3915 adjoint processed in 1000 11000 SEQ ID NO: 5245 atctgatgaggaaaactcag 12259 122781 SEQ ID NO: 3916 ctgagcagaccattgagatt 11691 11710 SEQ ID NO: 5246 atctgatgaggaaaactcag 12259 122771 3 SEQ ID NO: 3917 tgagcagaccattgagatt 11692 11711 SEQ ID NO: 5246 atctgatgaggaaaactca 12258 122771 3 SEQ ID NO: 3918 ttgagattccctccattaa 11703 11722 SEQ ID NO: 5247 ttaatcttcataagttcaa 13179 131981 3 SEQ ID NO: 3919 acttgagatgccagtttga 11807 11826 SEQ ID NO: 5248 tcaattggagaagaacaagt 6504 65231 3 SEQ ID NO: 3920 caaatttgaaggacttcag 12004 12023 SEQ ID NO: 5249 ctgagaacttcatcattttg 11438 114571 3 SEQ ID NO: 3921 agcccagcgttcaccgatc 12056 12075 SEQ ID NO: 5250 gatccaaagtatgtggct 13286 133051 3 SEQ ID NO: 3922 cagcgttcaccgatctcca 12060 12079 SEQ ID NO: 5251 tggacctgcaccaaagctg 13960 139791 3 SEQ ID NO: 3923 ctccatctgcgctaccaga 12074 12093 SEQ ID NO: 5252 tctgatatacatcacgagg 13711 137301 3 SEQ ID NO: 3924 atgaggaacctctggcttgct 12300	SEQ ID NO: 3914 Igitt cagaigg cattget		THE BLG ID NO.
SEQ ID NO: 3917 tgagcagaccattgagatt 11692 11711 SEQ ID NO: 5246 aatctgatgagagaacattgagaactca 12258 122771 3 SEQ ID NO: 3918 ttgagattccctccattaa 11703 11722 SEQ ID NO: 5247 ttaatcttcataagttcaa 13179 131981 3 SEQ ID NO: 3919 acttggagtgccagtttga 11807 11826 SEQ ID NO: 5248 tcaattgggagagacaagt 6504 65231 3 SEQ ID NO: 3920 caaatttgaaggacttcag 12004 12023 SEQ ID NO: 5249 ctgagaacttcatcattttg 11438 114571 3 SEQ ID NO: 3921 agcccagcgttcaccgatc 12056 12075 SEQ ID NO: 5250 gatccaagtatagtitggct 13286 133051 3 SEQ ID NO: 3922 cagcgttcaccgatctcca 12060 12079 SEQ ID NO: 5251 tggacctgcaccaaagctg 13960 139791 3 SEQ ID NO: 3923 ctccatctgcgctaccaga 12074 12093 SEQ ID NO: 5252 tctgatatacatcacggag 13711 137301 3 SEQ ID NO: 3924 atgaggaaactcagatcaa 12264 12283 SEQ ID NO: 5253 ttgagttgcccaccatcat 11667 116861 3 SEQ ID NO: 3925 aggcagcttctggcttgct 12300 12319 SEQ ID NO: 5254 agcaagtctttcctggct 3018 30371 3 SEQ ID NO: 3926 ttgaattatgtcaacaagt </td <td>SEQ ID NO: 3915 aatgcagtagccaacaaga</td> <td></td> <td>Troop SEQ ID NO. 52.1 (State September 1997)</td>	SEQ ID NO: 3915 aatgcagtagccaacaaga		Troop SEQ ID NO. 52.1 (State September 1997)
SEQ ID NO: 3918 ittgagattccctccattaa 11703 11722 SEQ ID NO: 5247 ittaatcttcataagttcaa 13179 13198 ittgagattccctccattaa SEQ ID NO: 3918 ittgagattccctccattaa 11807 11826 SEQ ID NO: 5248 itcaattgggagagacaagt 6504 6523 ittgagagacaagt 6504 6523 ittgagagacacaagt 6504 6523 ittgagagacacaagt 6504 6523 ittgagagacacaagt 12060 12075 SEQ ID NO: 5250 gatccaagtatagttggct 13286 13305 ittgagagacattgggacacaagtgggacacaagtggagacaagtgagagacaagtgagacaagtgagacaagtgagacaagtgagacaagtgagacaagtgagacaagtgagacaagtgagagacaagagagacaagagagacaagagagacaagagagagacaagagagacaagagagagagagagagagagagagagagagagagagaga	SEQ ID NO: 3916 ctgagcagaccattgagat		SEQ ID NO.
SEQ ID NO: 3918 traggatecetecates	SEQ ID NO: 3917 gagcagaccattgagatt		TITL SEQ ID NO. SET SESSEEMEN
SEQ ID NO: 3919 acttggeggected SEQ ID NO: 3920 caaatttgaaggacttcag 12004 12023 SEQ ID NO: 5249 ctgaggaacttcatcatttg 11438 11457 1 3 SEQ ID NO: 3921 agcccagcgttcaccgatc 12056 12075 SEQ ID NO: 5250 gatccaagtatagttggct 13286 13305 1 3 SEQ ID NO: 3922 cagcgttcaccgatctcca 12060 12079 SEQ ID NO: 5251 tggacctgcaccaaagctg 13960 13979 1 3 SEQ ID NO: 3923 ctccatctgcgctaccaga 12074 12093 SEQ ID NO: 5252 tctgatatacatcacggag 13711 13730 1 3 SEQ ID NO: 3924 atgaggaaactcagatcaa 12264 12283 SEQ ID NO: 5253 ttgagttgcccaccatcat 11667 11686 1 3 SEQ ID NO: 3925 aggcagcttctggcttgct 12300 12319 SEQ ID NO: 5254 agcaagtctttctggcct 3018 3037 1 3 SEQ ID NO: 3926 tgaaagacaacgtgcccaa 12327 12346 SEQ ID NO: 5255 ttgggaggagacaagtttcat 6508 6527 1 3 SEQ ID NO: 3927 tatgattatgtcaacaagt 12362 12381 SEQ ID NO: 5255 acttgcactatgtcataa	SEQ ID NO: 3918 ttgagattccctccattaa		OLG ID NO.
SEQ ID NO: 3920 classified agree agreement 12056 12075 SEQ ID NO: 5250 gatccaagtatagttggct 13286 13305 1 3921 agree agreement SEQ ID NO: 3922 cagcgttcaccgatctcca 12060 12079 SEQ ID NO: 5251 tggacctgaccaaagctg 13960 13979 1 3920 cagcgttcaccgatctcca 12074 12093 SEQ ID NO: 5252 tctgatatacatcacggag 13711 13730 1 3920 cagcgttcaccaga 12074 12093 SEQ ID NO: 5252 tctgatatacatcacggag 13711 13730 1 3920 cagcgttcaccaga 12074 12093 SEQ ID NO: 5252 tctgatatacatcacggag 13711 13730 1 3920 cagcgttcaccaga 12074 12283 SEQ ID NO: 5253 ttgaggttgcccaccatcat 11667 11686 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3037 1 3018 3018	SEQ ID NO: 3919 acttggagtgccagtttga		JULY SECTIONS.
SEQ ID NO: 3921 agctcagegttcacegate teca 12060 12079 SEQ ID NO: 5251 tggacetgcaceaaagetg 13960 139791 3920 tecatetgcgctaceaga 12074 12093 SEQ ID NO: 5252 tetgatatacateacegag 13711 137301 3920 tecatetgcgctaceaga 13960 139791 3920 tecatetgcgctaceaga 12074 12093 SEQ ID NO: 5252 tetgatatacateacegagg 13711 137301 3920 tecategaggaggaggaggaggaggaggaggaggaggaggaggag	SEQ ID NO: 3920 caaatttgaaggacttcag		
SEQ ID NO: 3923 ctccatctgcgctaccaga 12074 12093 SEQ ID NO: 5252 tctgatatacatcacgaga 13711 137301 3 SEQ ID NO: 3924 atgaggaaactcagatcaa 12264 12283 SEQ ID NO: 5253 ttgagttgcccaccatcat 11667 116861 3 SEQ ID NO: 3925 aggcagcttctggcttgct 12300 12319 SEQ ID NO: 5254 agcaagtctttcctggcct 3018 30371 3 SEQ ID NO: 3926 tgaaagacaacgtgcccaa 12327 12346 SEQ ID NO: 5255 ttgggagagacaagtttca 6508 65271 3 SEQ ID NO: 3927 tatgattatgtcaacaagt 12362 12381 SEQ ID NO: 5256 actttgcactatgttcata 12763 127821 3 SEQ ID NO: 3928 cattaggcaaattgatgat 12475 12494 SEQ ID NO: 5257 atcaacacaaatcttcaatg 13115 131341 3 SEQ ID NO: 3929 ttgactcaggaaggccaag 12584 12603 SEQ ID NO: 5258 cttggtacgagttactcaa 12640 126591 3 SEQ ID NO: 3930 gaaacctgggatatacact 12736 12755 SEQ ID NO: 5259 agtgattacacttcctttc 12865 12841 SEQ ID NO: <td>SEQ ID NO: 3921 agcccagcgttcaccgatc</td> <td></td> <td>140.40EG ID NO.[5</td>	SEQ ID NO: 3921 agcccagcgttcaccgatc		140.40EG ID NO.[5
SEQ ID NO: 3923 ctccatctgcgctaccaga 12074 12093 SEQ ID NO: 5252 ctcgatatacatcacggag 13711 137301 3924 stgaggaaactcagatcaa 12264 12283 SEQ ID NO: 5253 ttgagttgcccaccatcat 11667 116861 3926 seQ ID NO: 3925 aggccagcttctggcttgct 12300 12319 SEQ ID NO: 5254 agcaagtctttcctggcct 3018 30371	SEQ ID NO: 3922 cagcgttcaccgatctcca		12079 SEQ ID NO: 5251 tggacctgcaccaaagctg 13960 139791
SEQ ID NO: 3924 atgaggaaactcagatcaa 12264 12283 SEQ ID NO: 5253 ttgagttgcccaccatcat 11667 116861 3 SEQ ID NO: 3925 aggcagcttctggcttgct 12300 12319 SEQ ID NO: 5254 agcaagtcttcctggcct 3018 30371 3 SEQ ID NO: 3926 tgaaagacaacgtgcccaa 12327 12346 SEQ ID NO: 5255 ttgggagagacaagtttca 6508 65271 3 SEQ ID NO: 3927 tatgattatgtcaacaagt 12362 12381 SEQ ID NO: 5256 actttgcactatgttcata 12763 127821 3 SEQ ID NO: 3928 cattaggcaaattgatgat 12475 12494 SEQ ID NO: 5257 atcaacacaaatcttcaatg 13115 131341 3 SEQ ID NO: 3929 ttgactcaggaaggccaag 12584 12603 SEQ ID NO: 5258 cttggtacgagttactcaa 12640 12659 I SEQ ID NO: 3930 gaaacctgggatatacact 12736 12755 SEQ ID NO: 5259 agtgattacacttcctttc 12865 128841 SEQ ID NO: 3931 tcctttcgagttaaggaaa 12877 12896 SEQ ID NO: 5260 tttctgccactgctcagga 13524 13543 I	SEQ ID NO: 3923 ctccatctgcgctaccaga		OLG ID NO.
SEQ ID NO: 3925 aggcagettetggettget 12300 12319 SEQ ID NO: 5254 agcaagtetteetggeet 3018 30371	SEQ ID NO: 3924 atgaggaaactcagatcaa		JEG ID NO.
SEQ ID NO: 3926 tgaaagacaacgtgcccaa 12327 12346 SEQ ID NO: 5255 ttgggagagacaagttca 6508 65271 SEQ ID NO: 3927 tatgattatgtcaacaagt 12362 12381 SEQ ID NO: 5256 actttgcactatgttcata 12763 127821 327 tatgattatgtcaacaagt 12475 12494 SEQ ID NO: 5257 atcaacacaatcttcaatg 13115 131341 3329 ttgactcaggaaggccaag 12584 12603 SEQ ID NO: 5258 cttggtacgagttactcaa 12640 126591 3260 ttggtacgagttactcaa 12640 126591 3260 ttggtacgagttaccactcttt 12865 128841 3270 ttggtacgagttaccactctttctt 12865 128841 3280 ttggtacgagttaccactctttcttctttcgagttaaggaaa 12877 12896 SEQ ID NO: 5260 tttctgccactgctcagga 13524 135431 3360 ttctttcgccactgctcagga	SEQ ID NO: 3925 aggcagcttctggcttgct	12300	12 10 10 10 10 10 10 10 10 11 11 11 11 11
SEQ ID NO: 3927 tatgattatgtcaacaagt 12362 12381 SEQ ID NO: 5256 actttgcactatgtcata 12763 127821 327821 </td <td>SEQ ID NO: 3926 tgaaagacaacgtgcccaa</td> <td>12327</td> <td>The Policy ID NO. 1-1-1 305 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td>	SEQ ID NO: 3926 tgaaagacaacgtgcccaa	12327	The Policy ID NO. 1-1-1 305 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SEQ ID NO: 3928 cattaggcaaattgatgat 12475 12494 SEQ ID NO: 5257 atcaacacaatcttcaatg 13115 131341 3 SEQ ID NO: 3929 ttgactcaggaaggccaag 12584 12603 SEQ ID NO: 5258 cttggtacgagttactcaa 12640 12659 I SEQ ID NO: 3930 gaaacctgggatatacact 12736 12755 SEQ ID NO: 5259 agtgattacacttcctttc 12865 12884 I SEQ ID NO: 3931 tcctttcgagttaaggaaa 12877 12896 SEQ ID NO: 5260 tttctgccactgctcagga 13524 13543 I	SEQ ID NO: 3927tatgattatgtcaacaagt	12362	DEG ID NO.
SEQ ID NO: 3929 ttgactcaggaaggccaag 12584 12603 SEQ ID NO: 5258 cttggtacgagttactcaa 12640 126591 3330 gaaacctgggatatacact 12736 12755 SEQ ID NO: 5259 agtgattacacttcctttc 12865 128841 3350 gaaacctgggatatacact 12877 12896 SEQ ID NO: 5260 tttctgccactgctcagga 13524 135431 335	SEO ID NO: 3928 cattaggcaaattgatgat	12475	12494 SEQ ID NO: 5257 atcaacacaatcttcaatg 13115 131341
SEQ ID NO: 3930 gaaacctgggatatacact 12736 12755 SEQ ID NO: 5259 agtgattacacttcctttc 12865 128841 3 SEQ ID NO: 3931 tcctttcgagttaaggaaa 12877 12896 SEQ ID NO: 5260 tttctgccactgctcagga 13524 135431 3	SEO ID NO: 3929ttgactcaggaaggccaag	12584	12603 SEQ ID NO: 5258 cttggtacgagttactcaa 12640 12659 1
SEQ ID NO: 3931 tcctttcgagttaaggaaa 12877 12896 SEQ ID NO: 5260 tttctgccactgctcagga 13524 135431	SEO ID NO: 3930 gaaacctgggatatacact	12736	
	SEO ID NO: 3931tcctttcgagttaaggaaa	L	
	eso in No. 3032 accattcaatctctcaaaa		

SEQ ID NO:	3933	gtgctacgtaatcttcagg	13001	13020	SEQ ID NO:	5262	cctgcaccaaagctggcac	13964	13983	31	3
SEQ ID NO:	3934	agctgaaagagatgaaatt	13065	13084	SEQ ID NO:	5263	aatttattcaaaacgagct	13200	13219	11	3
SEQ ID NO:	3935	aatttacttatcttattaa	13080	13099	SEQ ID NO:	5264	ttaaaagaaatcttcaatt	13815	13834	1	3
SEQ ID NO:	3936	ttttaaattgttgaaagaa	13150	13169	SEQ ID NO:	5265	ttctctctatgggaaaaaa	9566	9585	11	3
SEQ ID NO:	3937	taatcttcataagttcaat	13180	13199	SEQ ID NO:	5266	attgagattccctccatta	11702	11721	1	3
SEQ ID NO:	3938	atattttgatccaagtata	13279	13298	SEQ ID NO:	5267	tataagcagaagcacatat	13937	13956	1	3
SEQ ID NO:	3939	tgaaatattatgaacttga	13311	13330	SEQ ID NO:	5268	tcaaccttaatgattttca	8295	8314	1	3
SEQ ID NO:	3940	caatttctgcacagaaata	13442	13461	SEQ ID NO:	5269	tattcttcttttccaattg	13834	13853	1	3
		agaagattgcagagctttc	13509	13528	SEQ ID NO:	5270	gaaatetteaatttattet	13821	13840	ᅦ	3
		gaagaaaataatttctgat	13570	13589	SEQ ID NO:	5271	atcagttcagataaacttc	7999	8018	1	3
		ttgacctgtccattcaaaa	13680	13699	SEQ ID NO:	5272	ttttgagaatgaatttcaa	10422	10441	1	3
SEQ ID NO:	3944	tcaaaactaccacacattt	13693	13712	SEQ ID NO:	5273	aaattccttgacatgttga	7370	7389	1	3
SEQ ID NO:	3945	tttttaaaagaaatcttc	13811	13830	SEQ ID NO:	5274	gaagtgtcagtggcaaaaa	10382	10401	1	3
		aggatctgagttattttgc	14043	14062	SEQ ID NO:	5275	gcaagggttcactgttcct	7864	7883	1	3
SEQ ID NO:	3947	tttgctaaacttgggggag	14057	14076	SEQ ID NO:	5276	ctcccaggacetttcaaa	9842	9861	1	3

Table 11. Selected palindromic sequences from human glucose-6-phosphatase

Index Index	
SEQ ID NO: 5293 cctctggccatgcgc 417 436 SEQ ID NO: 5371 cccattttgaggcagag 1492 1517 SEQ ID NO: 5294 ctctggccatgccatgggc 418 437 SEQ ID NO: 5372 gcccattttgaggcagag 1491 1510 SEQ ID NO: 5295 ttgaatgtcattttgtggt 521 540 SEQ ID NO: 5373 accatacattatcattcaa 2945 2964 SEQ ID NO: 5296 tcagtaatgggggacagc 1886 1905 SEQ ID NO: 5374 gctggtctcgaactcctga 2731 2750 SEQ ID NO: 5297 ttttactgtgcatacatgt 1956 1975 SEQ ID NO: 5375 accatctttgaaaagaaaaa 2983 3002 SEQ ID NO: 5298 tgaggtgccaaggaaatga 50 69 SEQ ID NO: 5376 lcatgtctcagcctcctca 2620 2633 SEQ ID NO: 5299 gaggtgccaaggaaatga 51 70 SEQ ID NO: 5377 ctcatgtctcagcctcctc 2619 2633 SEQ ID NO: 5300 gggaaagataaagccgacc 487 506 SEQ ID NO: 5379 gacacatcttttgaaaagaaaa 2983 3001 SEQ ID NO: 5300 gggaaagataaagccgacc 487 506 SEQ ID NO: 5379 gacacatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5301 ttttcctcatcaagttgtt 598 617 SEQ ID NO: 5379 gacacatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5303 ttggactctgggagaaagcc 776 795 SEQ ID NO: 5380 ctgtggactctggagaaag 773 792 SEQ ID NO: 5303 tggactctggagaaagcc 776 795 SEQ ID NO: 5381 tgggctgctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5305 ggcctggggctctca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5305 ggcctggggctctca 878 897 SEQ ID NO: 5384 ttccaggtagggccagct 1676 1695 SEQ ID NO: 5305 ggcctaggagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5305 gctaatgaagctattgag 1572 1591 SEQ ID NO: 5386 tctagcctcctcagtagct 2626 2645 SEQ ID NO: 5305 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5388 gaaaaatatatatatgtgcag 2662 2644 SEQ ID NO: 5310 ctgctttttttttttttc 2509 2528 SEQ ID NO: 5389 ccagaatggtccacattg 1987 2006 SEQ ID NO: 5313 gdtccatctcacacacacacgctgg 22 239 SEQ ID NO: 5390 ctggaatagagctattg 1987 2006 SEQ ID NO: 5313 gdtccatctctcaggaacg 22 239 SEQ ID NO: 5391 agctcaccccaccaccaccaccaccaccaccaccaccaccac	
SEQ ID NO: 5294 ctctggccatgccatgggc 418 437 SEQ ID NO: 5372 gcccattttgaggccagag 1491 1510 SEQ ID NO: 5295 ttgaatgcattttgtggt 521 540 SEQ ID NO: 5373 accatacattatcattcaa 2945 2964 SEQ ID NO: 5296 tcagtaatgggggaccagc 1886 1905 SEQ ID NO: 5374 gctggtctcgaactcctga 2731 2750 SEQ ID NO: 5297 ttttactgtgcatacatgt 1956 1975 SEQ ID NO: 5375 acatctttgaaaagaaaaa 2983 3002 SEQ ID NO: 5298 tgaggtgccaaggaaatga 50 69 SEQ ID NO: 5376 tcatgtctcagcctcctc 2620 2638 SEQ ID NO: 5300 gggaaagataaagcgacc 487 506 SEQ ID NO: 5377 ctcatgtctcagcctcctc 2619 2638 SEQ ID NO: 5301 ttttcctcatcaagttgtt 598 617 SEQ ID NO: 5378 ggtcgcctggcttattccc 1295 1314 SEQ ID NO: 5302 ctttcagccaactacacag 651 670 SEQ ID NO: 5379 acatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5303 tggactctggaaaagcc 487 506 SEQ ID NO: 5378 ggtcgcctggaaaagaaa 2982 3001 SEQ ID NO: 5303 tggactctggaaaagacctggaaaagacctggaaaagacctggaaaagaaaaaaaa	316
SEQ ID NO: 5294 ctctggccatgcatgggc 418 437 SEQ ID NO: 5372 geccattttgaggccagag 1491 1510	
SEQ ID NO: 5295ttgaatgtcattttgtggt 521 540 SEQ ID NO: 5373 accatacattatcattcaa 2945 2962 SEQ ID NO: 5374 gctggtctcgaactcctga 2731 2750 SEQ ID NO: 5374 gctggtctcgaactcctga 2731 2750 SEQ ID NO: 5374 gctggtctcgaactcctga 2731 2750 SEQ ID NO: 5375 acatctttgaaaagaaaaaa 2983 3002 SEQ ID NO: 5395 gagtfgccaaggaaatga 50 69 SEQ ID NO: 5376 lcatgtctcagcctcctca 2620 2638 SEQ ID NO: 5376 lcatgtctcagcctcctca 2620 2638 SEQ ID NO: 5376 lcatgtctcagcctcctca 2620 ZeG 2638 SEQ ID NO: 5377 lctcatgtctcagcctcctca 2620 ZeG 2638 SEQ ID NO: 5378 lggtcgcctggcttgdctctacactccc 2619 ZeG 2638 SEQ ID NO: 5378 lggtcgcctggcttattccc 2619 ZeG 2638 SEQ ID NO: 5378 lggtcgcctgggcttgdctcaactccacgctggaaaagaaaa	
SEQ ID NO: 5296 tcagtaatggggaccage 1886 1905 SEQ ID NO: 5374 gctggtctcgaactcctga 2731 2750 SEQ ID NO: 5375 acatctttgaaaagaaaaa 2983 3002 SEQ ID NO: 5375 acatctttgaaaagaaaaa 2983 3002 SEQ ID NO: 5375 acatctttgaaaagaaaaaa 2983 3002 SEQ ID NO: 5376 tcatgtctcagcctcctca 2620 2638 SEQ ID NO: 5376 tcatgtctcagcctcctca 2620 2638 SEQ ID NO: 5376 tcatgtctcagcctcctca 2620 2638 SEQ ID NO: 5377 ctcatgtctcagcctcctca 2619 2638 SEQ ID NO: 5377 ctcatgtctcagcctcctca 2619 2638 SEQ ID NO: 5377 ctcatgtctcagcctcctca 2619 2638 SEQ ID NO: 5378 ggtcgcctggcttattccc 1295 1314 SEQ ID NO: 5378 ggtcgcctggcttattccc 1295 1314 SEQ ID NO: 5379 acatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5379 acatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5380 ctgtggactctggagaaag 773 792 SEQ ID NO: 5380 ctgtggactctgaaaagaaaaa 2982 3001 SEQ ID NO: 5381 ggcctgggctctcaaactcca 884 903 SEQ ID NO: 5381 ggcctgggctctcaaactcca 884 903 SEQ ID NO: 5382 ccagattcttcaactggct 2107 2126 SEQ ID NO: 5305 ggcctggggctggctctca 878 897 SEQ ID NO: 5383 tgagccaccggaccgggcc 2801 SEQ ID NO: 5384 ttcaaggagggcggccaccggagctcactccaatggagggcaagtatggagggcaagtatggagggcaagtatggagggcaagtatggagggcaagtatggagggcaagtatggagggcaagtatggagggcaagtagggcaagtagggcaagtagggcaagtaggggcaagtagggcaagtagggcaagtaggggcaagtagggggggg	1116
SEQ ID NO: 5298 tgaggtgccaaggaaatga 50 69 SEQ ID NO: 5376 tcatgtctcagcctcctca 2620 2638 SEQ ID NO: 5299 gaggtgccaaggaaatgag 51 70 SEQ ID NO: 5377 ctcatgtctcagcctcctc 2619 2638 SEQ ID NO: 5300 gggaaaggataaagccgacc 487 506 SEQ ID NO: 5378 ggtcgcctggcttattccc 1295 1314 SEQ ID NO: 5301 ttttcctcatcaagttgtt 598 617 SEQ ID NO: 5379 acaatctttgaaaagaaaaa 2982 3001 SEQ ID NO: 5302 ctttcagccaatccacag 651 670 SEQ ID NO: 5380 cttgtggactctggagaaagg 773 792 SEQ ID NO: 5303 tggactctggagaaagccc 776 795 SEQ ID NO: 5381 gggctggctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5382 ccagattcttccactggct 2107 2126 SEQ ID NO: 5305 ggcctggggctctca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5306 gagctcactccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5308 gctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2625 2644 SEQ ID NO: 5309 ctaaatgagctttaattata 1854 1873 SEQ ID NO: 5386 tctagcctcctcagtagc 2625 2644 SEQ ID NO: 5310 ctgcttttctttttttc 2509 2528 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggattctgaacctgct 1987 2006 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5316 gctgttacagaactttca 326 345 SEQ ID NO: 5391 agctcactcccaccagggt 782 801 SEQ ID NO: 5316 gctgtttacacagaacctgg 322 411 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaccttca 322 411 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaacctttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	116
SEQ ID NO: 5299 gaggtgccaaggaaatgag 51 70 SEQ ID NO: 5377 ctcatgtctcagcctcctc 2619 2638 SEQ ID NO: 5300 gggaaagataaagccgacc 487 506 SEQ ID NO: 5378 ggtcgcctggcttattccc 1295 1314 SEQ ID NO: 5301 ttttcctcatcaagttgit 598 617 SEQ ID NO: 5379 aacatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5302 ctttcagccacatccacag 651 670 SEQ ID NO: 5380 ctgtggactctggagaaag 773 792 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5381 gggctgctccaactccca 884 903 SEQ ID NO: 5305 ggcctggggctctca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2801 SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtaggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5386 tctaggcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgag 1573 1592 SEQ ID NO: 5386 tctaggcctcctcagtagct 2625 2644 SEQ ID NO: 5310 ctgcttttcttttitttic 2509 2528 SEQ ID NO: 5389 ccagaatgggtccacattg 2625 2644 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO:	21/6
SEQ ID NO: 5300 gggaaagataaagccgacc 487 506 SEQ ID NO: 5378 ggtcgcctggcttattccc 1295 1314 SEQ ID NO: 5301 ltttcctcatcaagttgtt 598 617 SEQ ID NO: 5379 aacatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5302 ctttcagccacatccacag 651 670 SEQ ID NO: 5380 ctgtggactctggagaaag 773 792 SEQ ID NO: 5303 tggactctggagaaagccc 776 795 SEQ ID NO: 5381 tgggctggctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5382 ccagattcttccactggct 2107 2126 SEQ ID NO: 5305 ggcctggggtggctctca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgag 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccaccaccaccaccaccaccaccaccaccaccacc	115
SEQ ID NO: 5300 gggaaagataaagccgacc 487 506 SEQ ID NO: 5378 ggtcgcttggcttattccc 1295 1314 SEQ ID NO: 5301 ttttcctcatcaagttgtt 598 617 SEQ ID NO: 5379 aacatctttgaaaagaaaa 2982 3001 SEQ ID NO: 5302 ctttcagccacatccacag 651 670 SEQ ID NO: 5380 ctgtggactctggagaaagg 773 792 SEQ ID NO: 5303 tggactctggagaaagccc 776 795 SEQ ID NO: 5381 gggctggctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5382 ccagattcttccactggct 2107 2126 SEQ ID NO: 5305 ggcctggggctctca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagacatggaccag 392 411 SEQ ID NO: 5394 tgaatggtcttctgcagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgcagc 1474 1493	315
SEQ ID NO: 5302 ctttcagccacatccacag 651 670 SEQ ID NO: 5380 ctgtggactctggagaaag 773 792 SEQ ID NO: 5303 tggactctggagaaagccc 776 795 SEQ ID NO: 5381 gggctggctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5382 ccagattcttccactggct 2107 2126 SEQ ID NO: 5305 ggcctggggctctcaa 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5389 ccagaatggtccacatttg 812 831 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacatttg 812 831 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaactttca 638 657 SEQ ID NO: 5394 tggatggtcttctgccagc 1474 1493	
SEQ ID NO: 5302 ctttcagccacatccacag 651 670 SEQ ID NO: 5380 ctgtggactctggagaaag 773 792 SEQ ID NO: 5303 tggactctggagaaagccc 776 795 SEQ ID NO: 5381 gggctggctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5382 ccagattcttcaactggct 2107 2126 SEQ ID NO: 5305 ggcctggggctggctctca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5388 gcaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5303 tggactctggagaaagccc 776 795 SEQ ID NO: 5381 tgggctggctctcaactcca 884 903 SEQ ID NO: 5304 agcctcctcaagaacctgg 848 867 SEQ ID NO: 5382 ccagattcttccactggct 2107 2126 SEQ ID NO: 5305 agcctggggctggactca 878 897 SEQ ID NO: 5383 tgagccaccgcaccgggcc 2801 2820 SEQ ID NO: 5306 agctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgag 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagct 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5315 acctgtgagaactggaccag 392 411 SEQ ID NO: 5393 ctggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5305 ggcctggggctggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5306 gagctcactccactggaa 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggagttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5311 caatcaccacacaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tgaatggtctctcgcagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtctctctgccagc 1474 1493	
SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccacacaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	15
SEQ ID NO: 5306 gagctcactcccactggaa 1439 1458 SEQ ID NO: 5384 ttccaggtagggccagctc 1676 1695 SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttctttttttc 2509 2528 SEQ ID NO: 5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5392 cagtcctcccaccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	15
SEQ ID NO: 5307 agctaatgaagctattgag 1572 1591 SEQ ID NO: 5385 ctcagcctcctcagtagct 2626 2645 SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tgaatggtctctcgcagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	15
SEQ ID NO: 5308 gctaatgaagctattgaga 1573 1592 SEQ ID NO: 5386 tctcagcctcctcagtagc 2625 2644 SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	ᅩ
SEQ ID NO: 5309 ctaaatggctttaattata 1854 1873 SEQ ID NO: 5387 tatatttttagaattttag 2683 2702 SEQ ID NO: 5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO: 5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO:5310 ctgcttttcttttttttc 2509 2528 SEQ ID NO:5388 gaaaaatatatatgtgcag 2996 3015 SEQ ID NO:5311 caatcaccaccaagcctgg 0 19 SEQ ID NO:5389 ccagaatgggtccacattg 812 831 SEQ ID NO:5312 agcctggaataactgcaag 12 31 SEQ ID NO:5390 cttggatttctgaatggct 1987 2006 SEQ ID NO:5313 gttccatcttcaggaagct 220 239 SEQ ID NO:5391 agctcactcccactggaac 1440 1459 SEQ ID NO:5314 tggtgggttttggatactg 326 345 SEQ ID NO:5392 cagtcctcccaccctacca 2425 2444 SEQ ID NO:5315 acctgtgagactggaccag 392 411 SEQ ID NO:5393 ctggagaaagcccagaggt 782 801 SEQ ID NO:5316 gctgttacagaaactttca 638 657 SEQ ID NO:5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5311 caatcaccaccaagcctgg 0 19 SEQ ID NO: 5389 ccagaatgggtccacattg 812 831 SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccaccctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5393 ctggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5312 agcctggaataactgcaag 12 31 SEQ ID NO: 5390 cttggatttctgaatggct 1987 2006 SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccacctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5393 ctggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5313 gttccatcttcaggaagct 220 239 SEQ ID NO: 5391 agctcactcccactggaac 1440 1459 SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccaccctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5393 ctggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5314 tggtgggttttggatactg 326 345 SEQ ID NO: 5392 cagtcctcccaccctacca 2425 2444 SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5393 ctggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5315 acctgtgagactggaccag 392 411 SEQ ID NO: 5393 ctggagaaagcccagaggt 782 801 SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5316 gctgttacagaaactttca 638 657 SEQ ID NO: 5394 tgaatggtcttctgccagc 1474 1493	
SEQ ID NO: 5317 acagcatctataatgccag 666 685 SEQ ID NO: 5395 ctgggtgtagacctcctgt 758 777	
SEQ ID NO: 5318 gggtgtagacctcctgtgg 760 779 SEQ ID NO: 5396 ccacattgacaccacaccc 823 842	
SEQ ID NO: 5319 ggtgtagacctcctgtgga 761 780 SEQ ID NO: 5397 tccacattgacaccacacc 822 841	
SEQ ID NO: 5320 gtgtagacctcctgtggac 762 781 SEQ ID NO: 5398 gtccacattgacaccacac 821 840	
SEQ ID NO: 5321 gacctcctgtggactctgg 767 786 SEQ ID NO: 5399 ccagatattgcactaggtc 2014 2033	
SEQ ID NO: 5322 cctgggcacgctctttggc 862 881 SEQ ID NO: 5400 gccagctcacaagcccagg 1687 1706	
SEQ ID NO: 5323 ctgggcacgctctttggcc 863 882 SEQ ID NO: 5401 ggccagctcacaagcccag 1686 1705	ட
SEQ ID NO: 5324 ctggtcttctacgtcttgt 1028 1047 SEQ ID NO: 5402 acaaaagcaagacttccag 1663 1682	
SEQ ID NO: 5325 agagtgcggtagtgcccct 1056 1075 SEQ ID NO: 5403 agggccaggattcctctct 2229 2248	
SEQ ID NO: 5326 tgggcactggtatttggag 1217 1236 SEQ ID NO: 5404 ctcccactggaacagccca 1446 1465	
SEQ ID NO: 5327 gaattaaatcacggatggc 1267 1286 SEQ ID NO: 5405 gccaaccaagagcacattc 2311 2330	
SEQ ID NO: 5328 tgttgctagaagttgggtt 1598 1617 SEQ ID NO: 5406 aaccatcctgctcataaca 2967 2986	
SEQ ID NO: 5329 aggagetetgaatetgata 1764 1783 SEQ ID NO: 5407 tatcacattacatcatcet 2063 2082	
SEQ ID NO: 5330 taaatggctttaattatat 1855 1874 SEQ ID NO: 5408 atatatgtgcagtatttta 3003 30221	
SEQ ID NO: 5331 aaaatgacaaggggagggc 2215 2234 SEQ ID NO: 5409 gccctccttgcctgttttt 2817 28361	
SEQ ID NO: 5332 ttaaaggaaaagtcaacat 2330 2349 SEQ ID NO: 5410 atgtgcagtattttattaa 3007 30261	
SEQ ID NO: 5333 acatettetetettititt 2345 2364 SEQ ID NO: 5411 aaaagaaaaatatatgt 2992 30111	
SEQ ID NO: 5334 ttctacgtcctcttcccca 197 216 SEQ ID NO: 5412 tgggccagccgcacaagaa 1116 11351	

SEQ ID NO: 5335 leggtagetggagetgagetggagetggagetggagetggagetggagetggagetggagetggagetggagetgagetggagetggagetggagetgagetggagetggagetgagetggagetgagetggagetgagetggagetgagetggagetggagetggagetgagetggagetggagetggagetgagetggagetggagetggagetgagetggagetggagetggagetggagetggagetggagetggagetggagetggagetgagetgagetggagetggagetggagetggagetggagetggagetggagetggagetggagetgagetggagetggagetggagetggagetggagetggagetggagetggagetggagetggagetggagetgagagetggagetggagetgagagagetgagagagetgagagaga												
SEQ ID NO: 5336 cstglattggagactgge	SEQ ID NO: 5335 tgggtagctgtgattggag	257	7 276	SEQ	ID	NO	541	3ctcccactggaacagccca	144	3 146	51	13
SEQ ID NO: 5337 cacttcotgtococtgata 358 377 SEQ ID NO: 5415 tatcaccaggctggagtg 2548 2567 13 SEQ ID NO: 5338 cactcatctttccatct 464 483 SEQ ID NO: 5416 agattgggatttcatcatgt 2705 2724 13 SEQ ID NO: 5340 agataaggccgacctacag 492 511 SEQ ID NO: 5416 cgttttcaatctcaccagtag 2847 13 SEQ ID NO: 5340 agataaggcggacctacag 492 511 SEQ ID NO: 5418 cgtttttcaatctcatct 2828 2847 13 SEQ ID NO: 5342 atgtctgtcacgaat 564 563 SEQ ID NO: 5420 attcaggatagctgacat 2038 2057 13 SEQ ID NO: 5342 atgtctgtcacgaat 564 563 SEQ ID NO: 5420 attcaggatagctgacat 2779 2798 13 SEQ ID NO: 5344 atcaagttgttgctgaggt 572 591 SEQ ID NO: 5420 attcaggatagctgacat 2779 2798 13 SEQ ID NO: 5344 atcaagttgttgctgaggt 606 625 SEQ ID NO: 5424 atcaagtgtgtgccacat 2742 2761 13 SEQ ID NO: 5346 actttcagccacat 645 664 SEQ ID NO: 5422 atgttcattagctgagt 2742 2761 13 SEQ ID NO: 5346 actttcagccacatcacaca 650 669 SEQ ID NO: 5424 atgtggctatcatgcaagt 2742 2761 13 SEQ ID NO: 5349 aaaatattttccattacc 669 709 SEQ ID NO: 5426 gtaaatatgcaccttttc 2282 2301 13 SEQ ID NO: 5349 aaaatattttccattacc 6691 701 SEQ ID NO: 5426 gtaaatatgactcctttc 2282 2301 13 SEQ ID NO: 5356 agaaacaccaagaggaga 772 791 SEQ ID NO: 5439 gtaaatatgacccatcacaa 678 697 SEQ ID NO: 5426 gtaaatatgaccctttc 2282 2301 13 SEQ ID NO: 5356 agaaacaccaagaggaga 772 791 SEQ ID NO: 5426 gtaaatatgaccctttc 2282 2301 13 SEQ ID NO: 5356 agaaacacccaagaggaga 772 791 SEQ ID NO: 5439 staacacccaacaagagag 2763 2732 13 SEQ ID NO: 5356 agaacaagaggagagagagagagagagagagagagagag	SEQ ID NO: 5336 gctgtgattggagactggc	263										_
SEQ ID NO. 5338 Backet on No. 5338 Acceptance of the control of the c	SEQ ID NO: 5337 cacttccgtgcccctgata	358										
SEQ ID NO: 5340 agataaagccgacctacag 492 511 SEQ ID NO: 5417 figaatactctacaagtag 282 2847 13 282 2847 2848 2847 2848	SEQ ID NO: 5338 acatetactetttccatet	464										
SEQ ID NO:	SEQ ID NO: 5339 ctactctttccatctttca	468										
SEQ ID NO: 5341 lutgcagctgaatgtctgt 563 572 SEQ ID NO: 5419 acagaaactttcagccaca 644 663 13 SEQ ID NO: 5342 algtctgtctgtcacgaat 564 583 SEQ ID NO: 5420 attraggtatagctgacat 2038 2057 13 SEQ ID NO: 5343 ctgtcacgaatctaccttg 572 591 SEQ ID NO: 5421 caaggtgctaggattacag 2779 2798 13 SEQ ID NO: 5345 cagaaactttcagccacat 645 664 SEQ ID NO: 5422 actcctgactcaatggat 2742 2761 13 SEQ ID NO: 5345 cagaaactttcagccacat 645 669 SEQ ID NO: 5423 atgtttcaattaggctctg 2185 2204 13 SEQ ID NO: 5346 actttcagccacatccaca 650 669 SEQ ID NO: 5425 lattittittactggcat 1950 1969 13 SEQ ID NO: 5348 agaaaatttttccattac 690 709 SEQ ID NO: 5426 gtaaaatagactcctttct 2282 23011 3 SEQ ID NO: 5349 gaaaatattttccattac 691 710 SEQ ID NO: 5426 gtaaaatagactcctttc 2282 23011 3 SEQ ID NO: 5350 guctgctcaaggaactggg 744 763 SEQ ID NO: 5427 ggtaaaataggacctttc 2282 23011 3 SEQ ID NO: 5351 lutgaaccccaatccaagg 772 791 SEQ ID NO: 5439 luttactagtigtggcagg 2713 2732 13 SEQ ID NO: 5352 ggagaaaaccccaaccaaccaaccaaccaaccaaccaac	SEQ ID NO: 5340 agataaagccgacctacag	492									_	
SEQ ID NO: 5343 ctgtcacgaatctaccttg 572 591 SEQ ID NO: 5421 caaggigctaggattacag 2779 2788 13 SEQ ID NO: 5344 atcaagttgttgctggagt 606 625 SEQ ID NO: 5422 actcctgacctcaagtgat 2742 2761 13 SEQ ID NO: 5345 cagaaacttcagccacat 645 664 SEQ ID NO: 5422 atgttcaattaggctctg 2185 2204 13 SEQ ID NO: 5345 cagaaactttcagccacat 665 668 SEQ ID NO: 5424 tgtggcgtatcatgcaagt 1818 1837 13 SEQ ID NO: 5346 actttcagccacatcacaca 669 669 SEQ ID NO: 5425 tattttttttactgtgcat 1950 1969 13 SEQ ID NO: 5348 agaaatattttctcattac 690 709 SEQ ID NO: 5426 gtaaaatatgactcttttc 2283 2302 13 SEQ ID NO: 5349 gaaatatttttcattacc 691 710 SEQ ID NO: 5426 gtaaaatatgactcctttc 2282 2301 13 SEQ ID NO: 5350 tgctgctcaaggagata 772 791 SEQ ID NO: 5428 tccaaggcaaaccaagagca 2306 2325 13 SEQ ID NO: 5351 cctgtggactctggagaaa 772 791 SEQ ID NO: 5429 ttcatcatgttggccagg 2713 2732 13 SEQ ID NO: 5352 gagaaaagcccagaggtgg 784 803 SEQ ID NO: 5430 ccaccgcaccgggcctcc 2805 2824 13 SEQ ID NO: 5353 dtgaaacccccatccaagg 1004 1023 SEQ ID NO: 5431 cttgaattctgggctcaa 2405 2424 13 SEQ ID NO: 5355 gaggctacatcccactgga 1438 1457 SEQ ID NO: 5432 gatatgcagagtatttctg 2847 2866 13 SEQ ID NO: 5355 gaagttgggttgttctgaa 1553 1572 SEQ ID NO: 5433 tctacagccaa 2297 2316 13 SEQ ID NO: 5356 ttgggtaatgttttgaaa 1553 1572 SEQ ID NO: 5436 ccaccgcaccagagctaccagagcagagagctgctaaggagagaga	SEQ ID NO: 5341 tgtgcagctgaatgtctgt	553	572	SEQ	ID	NO:	5419	acagaaactttcagccaca	644			
SEQ ID NO: 5344 atcaagitigttgetggagt 606 625 SEQ ID NO: 5422 actoctgacetcaagitgat 2742 2751 13 SEQ ID NO: 5345 cagaaactttcagecacat 645 664 SEQ ID NO: 5423 atgitteaattaggetetg 2185 2204 13 SEQ ID NO: 5346 actitteagecacatecaca 650 669 SEQ ID NO: 5424 tigggegtateatgeaagit 1818 1837 13 SEQ ID NO: 5347 atgitteaattageaata 678 667 SEQ ID NO: 5424 tigggegtateatgeaagit 1950 1969 13 SEQ ID NO: 5348 agaaatattiteteattacc 690 709 SEQ ID NO: 5426 gtaaaattagacteettite 2282 2301 13 SEQ ID NO: 5348 agaaatattiteteattacc 691 710 SEQ ID NO: 5427 gytaaattagacteettite 2282 2301 13 SEQ ID NO: 5350 deetgeetaaaggaaaaaaaaaaaaaaaaaaaaaaaaaaa		564	583	SEQ	ID	NO:	5420	attcaggtatagctgacat	2038	205	71	3
SEQ ID NO:5344 atcaagttgttgctggagt 606 625 SEQ ID NO:5422 actcctgacctcaagtgat 2742 2761 i 3 SEQ ID NO:5345 cagaaactttcagccacat 645 664 SEQ ID NO:5424 gtggcgtatcatgcaagt 2185 2204 i 3 SEQ ID NO:5346 actttcagccacatccaca 650 669 SEQ ID NO:5424 gtggcgtatcatgcaagt 1818 1837 i 3 SEQ ID NO:5346 actttcagccacatccaca 650 669 SEQ ID NO:5425 tatttttttttatcagcact 1950 1969 i 3 SEQ ID NO:5348 agaaatattttccattac 690 709 SEQ ID NO:5426 tatattatgactcctttct 2283 2302 i 13 SEQ ID NO:5349 gaaatattttccattac 691 710 SEQ ID NO:5426 tatattatgactcctttc 2282 2301 i 13 SEQ ID NO:5350 gctgctcaaggaactggg 744 763 SEQ ID NO:5428 tatatatgactcctttc 2282 2301 i 13 SEQ ID NO:5351 cctgtggactctggagaa 772 791 SEQ ID NO:5428 ttcatcatgtttggccagg 2713 2732 i 13 SEQ ID NO:5352 gagaaaccccaatccaagaggtgg 784 803 SEQ ID NO:5430 ccacccgcaccgggccctcc 2805 2824 i 13 SEQ ID NO:5355 gagactcactcccactcaag 1004 1023 SEQ ID NO:5431 ctatatagactcttttggcctc 2760 2779 i 3 SEQ ID NO:5355 gagact		572	591	SEQ	ID	NO:	5421	caaggtgctaggattacag	2779	2798	31	3
SEQ ID NO: 5346 acttrcagecactecaca 650 669 SEQ ID NO: 5424 (gtggcgtatcatgcaagt) 1818 183713 182 183713 182 ID NO: 5347 atgccagectcaagaaata 678 697 SEQ ID NO: 5425 (attittittactgtgcat) 1818 183713 182 183713 182 ID NO: 5347 atgccagectcaagaaata 678 697 SEQ ID NO: 5425 (attittittactgtgcat) 1950 1969 193 1969 193 182 ID NO: 5348 agaaatattttetcattace 690 709 SEQ ID NO: 5426 (gtaaatatgaactcettte) 2283 2302 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2302 13 2282 2301 13 2282 2301 13 2302 13 2282 2301 13 <		606	625	SEQ	ID	NO:	5422	actcctgacctcaagtgat	2742			
SEQ ID NO: 5347 atgccagcctcaagaaata 678 697 SEQ ID NO: 5425 tatttttttactgtgcat 1950 1969 13 SEQ ID NO: 5348 agaaatattttctcattac 690 709 SEQ ID NO: 5426 gtaaatatgactcctttc 2283 2302 13 SEQ ID NO: 5349 gaaatattttctcattacc 691 710 SEQ ID NO: 5427 ggtaaatatgactcctttc 2282 2301 13 SEQ ID NO: 5350 tgctgctcaagggactggg 744 763 SEQ ID NO: 5428 cccaagccaaccaagagca 2306 2325 13 SEQ ID NO: 5351 cctgtggactctggagaaa 772 791 SEQ ID NO: 5429 tttcatcatgttggccagg 2713 2732 13 SEQ ID NO: 5352 ggagaaagcccagagtgg 784 803 SEQ ID NO: 5430 ccaccgcaccgggccctc 2805 2824 13 SEQ ID NO: 5353 ttgaaacccccatcccaag 1004 1023 SEQ ID NO: 5431 cttgaattcctgggctcaa 2405 2424 13 SEQ ID NO: 5354 cagatggagtgccatatc 1351 1370 SEQ ID NO: 5432 gatatgcagagtatttctg 2847 2866 13 SEQ ID NO: 5355 ggagctcactccccactgga 1438 1457 SEQ ID NO: 5433 tccacctgcttggcctcc 2760 2779 13 SEQ ID NO: 5356 ttgggtaatgtttttggaa 1553 1572 SEQ ID NO: 5436 tccttgccaccactggactaa 2297 2316 13 SEQ ID NO: 5358 aaagaaggctgcctaagga 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttctttt 2503 2522 13 SEQ ID NO: 5358 aaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5436 ccttgcctgcttttcttt 2501 2520 13 SEQ ID NO: 5361 agaagagctgcctaaggag				SEQ	ID	NO:	5423	atgtttcaattaggctctg	2185	2204	11	3
SEQ ID NO: 5348 agaaatattttctcattacc 690 709 SEQ ID NO: 5426 daaatatgactcetttet 2283 230213 SEQ ID NO: 5349 gaaatattttctcattacc 691 710 SEQ ID NO: 5427 ggtaaatatgactcettte 2282 230113 SEQ ID NO: 5350 lgctgctcaagggactggg 744 763 SEQ ID NO: 5428 cccaagccaaccaagagca 2306 232513 SEQ ID NO: 5351 cctgtggactctgggaaaa 772 791 SEQ ID NO: 5429 lttcatcatgttggccagg 2713 273213 SEQ ID NO: 5352 ggagaaagcccaagaggtgg 784 803 SEQ ID NO: 5430 ccaccgcaccgggccctcc 2805 282413 SEQ ID NO: 5353 ltgaaacccccatccaag 1004 1023 SEQ ID NO: 5431 cttgaattctgggctcaa 2405 242413 SEQ ID NO: 5353 ltgaaagaggtggccatatc 1351 1370 SEQ ID NO: 5432 gatatgcaagagttttttg 2847 286613 SEQ ID NO: 5355 lggagctcactcccactgga 1438 1457 SEQ ID NO: 5433 lttcctctacccactgcttgcttcccaaggccaa 2297 231613 SEQ ID NO: 5356 ltgggtaatgtttttgaa 1553 1572 SEQ ID NO: 5434 lttccttaccacctgctgctttttttt									1818	1837	11	3
SEQ ID NO. 5349 gaaatatittectattacc 691 710 SEQ ID NO. 5427 5427 ggtaaatatgactcettte 2282 23011 13 SEQ ID NO. 5350 tgctgctcaagggactggg 744 763 SEQ ID NO. 5428 cccaagccaaccaagagca 2306 23251 3 SEQ ID NO. 5351 cctgtggactctggagaaa 772 791 SEQ ID NO. 5429 tttcatcatgttggccagg 2713 27321 13 SEQ ID NO. 5352 gagaaaagcccagagtgg 784 803 SEQ ID NO. 5430 ccaccgcaccgggccctcc 2805 28241 13 SEQ ID NO. 5353 ttgaaacccccatccaag 1004 1023 SEQ ID NO. 5431 cttgaattcctgggctcaa 2405 24241 3 SEQ ID NO. 5354 cagatggagtgccatatc 1351 1370 SEQ ID NO. 5432 gatatgcagagtatttctg 2847 28661 13 SEQ ID NO. 5355 gagactcactcccactgga 1438 1457 SEQ ID NO. 5432 gatatgcagatatttctg 2760 27791 3 SEQ ID NO. 5356 ttgggtattettggaa 1553 1572 SEQ ID NO. 5435 ttctcatcattgc									1950	1969	1	3
SEQ ID NO: 5350 tgctgctcaagggactggg 744 763 SEQ ID NO: 5428 cccaagccaaccaagagca 2306 23251 13 SEQ ID NO: 5351 cctgtggactctggagaaa 772 791 SEQ ID NO: 5429 tttcatcatgttggccaag 2713 27321 3 SEQ ID NO: 5352 ggagaaagcccagaggtgg 784 803 SEQ ID NO: 5430 ccaccgcaccgggccctcc 2805 28241 3 SEQ ID NO: 5353 ttgaaacccccatcccaag 1004 1023 SEQ ID NO: 5431 cttgaattcctgggctcaa 2405 24241 3 SEQ ID NO: 5354 cagatggaggtgccatatc 1351 1370 SEQ ID NO: 5432 gatatgcaggatatttctg 2847 2866 13 SEQ ID NO: 5355 ggagctcactcccactgga 1438 1457 SEQ ID NO: 5434 tttctatcccaagcaa 2297 2316 13 SEQ ID NO: 5356 ttgggtaatgtttttgaa 1553 1572 SEQ ID NO: 5434 tttcttatcccaagcaa 2297 2316 13 SEQ ID NO: 5359 aaagaaggattgcttaagg 1785 1804 SEQ ID NO: 5436 tcttgctgctttttttt<						_			2283	2302	211	3
SEQ ID NO: 5351 cctgtggactctggagaaa 772 791 SEQ ID NO: 5429 tttcatcatgttggccagg 2713 2732 13 SEQ ID NO: 5352 ggagaaagcccagaggtgg 784 803 SEQ ID NO: 5430 ccaccgcaccgggccctcc 2805 2824 13 SEQ ID NO: 5353 ttgaaacccccatcccaag 1004 1023 SEQ ID NO: 5431 cttgaattcctgggctcaa 2405 2424 13 SEQ ID NO: 5354 cagatggaggtgccatatc 1351 1370 SEQ ID NO: 5432 gatatgcagagtatttctg 2847 2866 13 SEQ ID NO: 5355 ggagctcactcccactgga 1438 1457 SEQ ID NO: 5433 tccacctgcettggcctcc 2760 2779 13 SEQ ID NO: 5356 ttgggtaatgtttttgaaa 1553 1572 SEQ ID NO: 5433 tccacctgcatggcaa 2297 2316 13 SEQ ID NO: 5357 gaagttgggttgttctgga 1606 1625 SEQ ID NO: 5435 tccaccccactggatcttc 2131 2150 13 SEQ ID NO: 5358 aaaagaaggctgcctaagg 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttcttt 2503 2522 13 SEQ ID NO: 5359 aaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5437 tccttgcctgcttttcttt 2502 2521 13 SEQ ID NO: 5360 aagaagagctgcctaaggag 1787 1806 SEQ ID NO: 5438 ctccttgcctgcttttctt 2501 2520 13 SEQ ID NO: 5361 agaaggetgcctaaggag 1788 1807 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataaggccagtct 208 201 SEQ ID NO: 5441 agagcacattcttaaagga 2319 2338 13 SEQ ID NO: 5366 gcca										2301	1	3
SEQ ID NO: 5352 99agaaagcccagagdgg 784 803 SEQ ID NO: 5430 ccaccgcaccgggccctcc 2805 2824 1 3 SEQ ID NO: 5353 Itgaaacccccatcccaag 1004 1023 SEQ ID NO: 5431 cttgaattcctgggctcaa 2405 2424 1 3 SEQ ID NO: 5354 cagatggaggtgccatatc 1351 1370 SEQ ID NO: 5432 gatatgcagagtattcttg 2847 2866 1 3 SEQ ID NO: 5355 ggagctcactccccactgga 1438 1457 SEQ ID NO: 5433 tccacctgccttggcctcc 2760 2779 1 3 SEQ ID NO: 5356 ttgggtaatgttittgaaa 1553 1572 SEQ ID NO: 5434 tttcttatcccaagccaa 2297 2316 1 3 SEQ ID NO: 5357 gaagttgggttgttctgga 1606 1625 SEQ ID NO: 5435 tccaccccactggatcttc 2131 2150 1 3 SEQ ID NO: 5358 aaaagaaggctgcctaagga 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttcttt 2502 2521 1 3 SEQ ID NO: 5360 aaagaaggctgcctaagga 1787 1806 SEQ ID NO: 5437 tccttgcctgcttttctt 2501 2501 2520 1 3 <									2306	2325	11	3
SEQ ID NO: 5353 ttgaaacccccatcccaag 1004 1023 SEQ ID NO: 5431 cttgaattcctgggctcaa 2405 2424 1 3 SEQ ID NO: 5354 cagatggaggtgccatatc 1351 1370 SEQ ID NO: 5432 gatatgcagagtatttctg 2847 2866 1 3 SEQ ID NO: 5355 ggagctcactcccactgga 1438 1457 SEQ ID NO: 5433 tccacctgccttggcctcc 2760 2779 1 3 SEQ ID NO: 5356 ttgggtaatgtttttgaaa 1553 1572 SEQ ID NO: 5434 tttctctatcccaagccaa 2297 2316 1 3 SEQ ID NO: 5357 gaagttgggttgttctgga 1606 1625 SEQ ID NO: 5435 tccaccccactggatcttc 2131 2150 1 3 SEQ ID NO: 5358 aaaagaaggctgcctaagg 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttcttt 2503 2522 1 3 SEQ ID NO: 5360 aagaaggctgcctaaggag 1787 1806 SEQ ID NO: 5437 tccttgcctgcttttctt 2502 2521 1 3 SEQ ID NO: 5361 agaaggctgcctaaggagg 1788 1807 SEQ ID NO: 5439 cctccttgcctgctttctt 2501 2501 2501 2501 2501 3 SEQ ID NO: 5364 ataagcccagctct 2081 2100 SEQ ID NO: 5440 tccaattaggcctgaag 2189 2208 1 3 2208 1 3 2208 1 3 2209 1 2338 1 3 2209 1 2338 1 3 2209 1 2338 1 3 2209 1 232 229 229			791	SEQ	ID I	NO:	5429	tttcatcatgttggccagg	2713	2732	11	3
SEQ ID NO: 5354 cagatggaggtgccatatc 1351 1370 SEQ ID NO: 5432 gatatgcagagtatttctg 2847 2866 13 SEQ ID NO: 5355 ggagctcactcccactgga 1438 1457 SEQ ID NO: 5432 gatatgcagagtatttctg 2770 2779 13 SEQ ID NO: 5356 ttgggtaatgtttttgaaa 1553 1572 SEQ ID NO: 5434 tttcctatcccaagccaa 2297 2316 13 SEQ ID NO: 5357 gaagttgggttgttctgga 1606 1625 SEQ ID NO: 5435 tccaccccactggatcttc 2131 2150 13 SEQ ID NO: 5358 aaaagaaggctgcctaagg 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttcttt 2503 2522 13 SEQ ID NO: 5359 aaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5437 tccttgcctgcttttcttt 2502 2521 13 SEQ ID NO: 5360 aagaaggctgcctaaggag 1787 1806 SEQ ID NO: 5438 ctccttgcctgcttttctt 2501 2520 13 SEQ ID NO: 5361 agaaggctgcctaaggag 1788 1807 SEQ ID NO: 5438 ctccttgcctgcttttctt 2500 2519 13 SEQ ID NO: 5362 atttccttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataagcccagctct 2081 2100 SEQ ID NO: 5441 agagccacattcttaaaggag 2319 2338 13 SEQ ID NO: 5365 ggccaggattcctctctca 2231 2250 SEQ ID NO: 5443 tgagccaccgcactgggcc 2801 2820 13 SEQ ID NO: 5366 gccaactcctccttgcctg 2493 2512 SEQ ID NO: 5445 ctcataacatctttgaaa 2977 2996		784							2805	2824	1	3
SEQ ID NO: 5355 ggagctcactcccactgga 1438 1457 SEQ ID NO: 5433 tccacctgcttggcctcc 2779 13 SEQ ID NO: 5356 ttgggtaatgtttttgaaa 1553 1572 SEQ ID NO: 5434 tttctctacccaagccaa 2297 2316 13 SEQ ID NO: 5357 gaagttgggttgttctgga 1606 1625 SEQ ID NO: 5435 tccaccccactggatcttc 2131 2150 13 SEQ ID NO: 5358 aaaagaaggctgcctaagg 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttctttt 2503 2522 13 SEQ ID NO: 5359 aaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5437 tccttgcctgcttttcttt 2502 2521 13 SEQ ID NO: 5360 aagaaggctgcctaaggag 1787 1806 SEQ ID NO: 5438 ctccttgcctgcttttctt 2501 2520 13 SEQ ID NO: 5361 agaaggctgcctaaggagg 1788 1807 SEQ ID NO: 5439 cctccttgcctgcttttct 2501 2520 13 SEQ ID NO: 5362 atttccttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataaggcccagctct 2081 2100 SEQ ID NO: 5441 agagccacttctttaaaggccattttat 2889 2908 13 SEQ ID NO: 5365 ggccaaggattcctctctca 2231 2250 SEQ ID NO: 5442 aaagctgaagctgaggcgccaccgcaccgggcc 2801 2820 13 SEQ ID NO: 5366 gccaactcctctcttg			1023	SEQ	ID I	VO:	5431	cttgaattcctgggctcaa	2405	2424	1	3
SEQ ID NO: 5356 ttgggtaatgttttgaaa 1553 1572 SEQ ID NO: 5434 tttctctatcccaagccaa 2297 2316 13 SEQ ID NO: 5357 gaagttgggttgttctgga 1606 1625 SEQ ID NO: 5435 tccaccccactggatette 2131 2150 13 SEQ ID NO: 5358 gaaagaaggctgcctaagga 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttcttt 2503 2522 13 SEQ ID NO: 5359 gaaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5437 tccttgcctgcttttcttt 2502 2521 13 SEQ ID NO: 5360 gaagaaggctgcctaaggag 1787 1806 SEQ ID NO: 5438 ctccttgcctgcttttctt 2501 2520 13 SEQ ID NO: 5361 gaagaggctgcctaaggagg 1788 1807 SEQ ID NO: 5439 cctccttgcctgcttttctt 2500 2519 13 SEQ ID NO: 5362 atttccttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataagcccagctct 2081 2100 SEQ ID NO: 5441 agagccacattcttaaagga 2319 2338 13 SEQ ID NO: 5364 ataagcccagctctgcttt 2086 2105 SEQ ID NO: 5442 aaagctgaagcctatttat 2889 2908 13 SEQ ID NO: 5366 gccaactcctctcttca 2231 2250 SEQ ID NO: 5444 caggctggagtggagtggc 2555 2574 13 SEQ ID NO: 5367 ttttttttttttttt		II							2847	2866	1	3
SEQ ID NO: 5357 gaagttgggttgttetgga 1606 1625 SEQ ID NO: 5435 tccacccactggatcttc 2131 2150 13 SEQ ID NO: 5358 aaaagaaggctgcctaagga 1785 1804 SEQ ID NO: 5436 ccttgcctgcttttctttt 2503 2522 13 SEQ ID NO: 5359 aaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5437 tccttgcctgcttttcttt 2502 2521 13 SEQ ID NO: 5360 aagaaggctgcctaaggag 1787 1806 SEQ ID NO: 5438 ctccttgcctgcttttcttt 2501 2520 13 SEQ ID NO: 5361 agaaggctgcctaaggag 1788 1807 SEQ ID NO: 5439 cctccttgcctgcttttctt 2500 2519 13 SEQ ID NO: 5362 atttccttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataagcccagctct 2081 2100 SEQ ID NO: 5441 agagccaattcttaaagga 2319 2338 13 SEQ ID NO: 5364 ataagcccagctctt 2086 2105 SEQ ID NO: 5442 aaagctgaagcctatttat 2889 2908 13 SEQ ID NO: 5366 gccaactcctctctca 2231 2250 SEQ ID NO: 5443 tgagccaccgcaccgggcc 2801 2820 13 SEQ ID NO: 5366 gccaactcctcttgcctg 2493 2512 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 2996 13 SEQ ID NO: 5367 tttttttttttttttttttttttttttttttttttt									2760	2779	11:	3
SEQ ID NO: 5358 aaaagaaggetgectaagga 1785 1804 SEQ ID NO: 5436 cettgectgettttettt 2503 2522 13 SEQ ID NO: 5359 aaagaaggetgectaagga 1786 1805 SEQ ID NO: 5437 teettgeetgettttettt 2502 2521 13 SEQ ID NO: 5360 aagaaggetgeetaaggag 1787 1806 SEQ ID NO: 5438 eteettgeetgettttett 2501 2520 13 SEQ ID NO: 5361 agaaggetgeetaaggagg 1788 1807 SEQ ID NO: 5439 eteettgeetgettttet 2500 2519 13 SEQ ID NO: 5362 attteettggatttetgaa 1982 2001 SEQ ID NO: 5440 tteaattaggetetgaaat 2189 2208 13 SEQ ID NO: 5363 teettataageccagetet 2081 2100 SEQ ID NO: 5441 agaggeacattettaaggag 2319 2338 13 SEQ ID NO: 5364 ataageccagetetgettt 2086 2105 SEQ ID NO: 5442 aaagetgaagetgaattettat 2889 2908 13 SEQ ID NO: 5366 gecaacteeteteteta 2231 2250 SEQ ID NO: 5443 taggec		ļ							2297	2316	1	3
SEQ ID NO: 5359 aaagaaggctgcctaagga 1786 1805 SEQ ID NO: 5437 tccttgcctgcttttcttt 2502 2521 13 SEQ ID NO: 5360 aagaaggctgcctaaggag 1787 1806 SEQ ID NO: 5438 ctccttgcctgcttttctt 2501 2520 13 SEQ ID NO: 5361 agaaggctgcctaaggagg 1788 1807 SEQ ID NO: 5439 cctccttgcctgcttttct 2500 2519 13 SEQ ID NO: 5362 atttccttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataagcccagctct 2081 2100 SEQ ID NO: 5441 agagcacattcttaaagga 2319 2338 13 SEQ ID NO: 5364 ataagcccagctctgcttt 2086 2105 SEQ ID NO: 5442 aaagctgaagcctatttat 2889 2908 13 SEQ ID NO: 5365 gccaagctgctctctcca 2231 2250 SEQ ID NO: 5443 tgagccaccgcaccgggcc 2801 2820 13 SEQ ID NO: 5366 gccaactcctcttgcctg 2493 2512 SEQ ID NO: 5444 caggctggagtggagtggc 2555 2574 13 SEQ ID NO: 5367 ttttttttttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 2996 13									2131	2150	11:	3
SEQ ID NO: 5360 aagaaggetgectaaggag 1787 1806 SEQ ID NO: 5438 etcettgeetgetttett 2501 2520 13 SEQ ID NO: 5361 agaaggetgeetaaggagg 1788 1807 SEQ ID NO: 5439 eetcettgeetgetttett 2500 2519 13 SEQ ID NO: 5362 attreettggatttetgaa 1982 2001 SEQ ID NO: 5440 tteaattaggetetgaaat 2189 2208 13 SEQ ID NO: 5363 teettataaggeecagetet 2081 2100 SEQ ID NO: 5441 agageacattettaaagga 2319 2338 13 SEQ ID NO: 5364 ataageecagetett 2086 2105 SEQ ID NO: 5442 aaagetgaageetatttat 2889 2908 13 SEQ ID NO: 5365 ggeeaggatteeteteta 2231 2250 SEQ ID NO: 5443 tgageeaceggagee 2801 2820 13 SEQ ID NO: 5366 geeaacteeteettgeetg 2493 2512 SEQ ID NO: 5444 caggetggagtggagtgge 2555 2574 13 SEQ ID NO: 5367 tittittettittittgag 2519 2538 SEQ ID NO: 5445 etcataacatetttgaaaa 2977 2996 13									2503	2522	11:	3
SEQ ID NO: 5361 agaaggctgcctaaggagg 1788 1807 SEQ ID NO: 5439 cctccttgcctgcttttct 2500 2519 13 SEQ ID NO: 5362 atttccttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttcaattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataagcccagctct 2081 2100 SEQ ID NO: 5441 agagcacattcttaaagga 2319 2338 13 SEQ ID NO: 5364 ataagcccagctctgcttt 2086 2105 SEQ ID NO: 5442 aaagctgaagcctatttat 2889 2908 13 SEQ ID NO: 5365 ggccaggattcctctctca 2231 2250 SEQ ID NO: 5443 tgagccaccgcaccggacc 2801 2820 13 SEQ ID NO: 5366 gccaactcctccttgcctg 2493 2512 SEQ ID NO: 5444 caggctggagtggagtgggc 2555 2574 13 SEQ ID NO: 5367 tittittlctttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 2996 13									2502	2521	11:	3
SEQ ID NO: 5362 attracttggatttctgaa 1982 2001 SEQ ID NO: 5440 ttraattaggctctgaaat 2189 2208 13 SEQ ID NO: 5363 tccttataagcccagctct 2081 2100 SEQ ID NO: 5441 agagcacattcttaaagga 2319 2338 13 SEQ ID NO: 5364 ataagcccagctcttctcta 2086 2105 SEQ ID NO: 5442 aaagctgaagcctatttat 2889 2908 13 SEQ ID NO: 5365 ggccaggattcctctctca 2231 2250 SEQ ID NO: 5443 tgagccaccgcaccgggcc 2801 2820 13 SEQ ID NO: 5366 gccaactcctccttgcctg 2493 2512 SEQ ID NO: 5444 caggctggagtggagtggc 2555 2574 13 SEQ ID NO: 5367 tttttttctttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 2996 13									2501	2520	13	3
SEQ ID NO: 5363 5363 5363 5363 5364												
SEQ ID NO: 5364 ataagcccagctctgcttt 2086 2105 SEQ ID NO: 5442 aaagctgaagcctatttat 2889 2908 13 SEQ ID NO: 5365 ggccaggattcctctctca 2231 2250 SEQ ID NO: 5443 tgagccaccggaccgggcc 2801 2820 13 SEQ ID NO: 5366 gccaactcctccttgcctg 2493 2512 SEQ ID NO: 5444 caggctggagtggagtggc 2555 2574 13 SEQ ID NO: 5367 tttttttcttttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 2996 13											_	_F
SEQ ID NO: 5365 ggccaggattcctctctca 2231 2250 SEQ ID NO: 5443 tgagccaccgcaccgggcc 2801 2820 1 3 SEQ ID NO: 5366 gccaactcctccttgcctg 2493 2512 SEQ ID NO: 5444 caggctggagtggagtggc 2555 2574 1 3 SEQ ID NO: 5367 tttttttctttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 2996 1 3												
SEQ ID NO: 5366 gccaactcctccttgcctg 2493 2512 SEQ ID NO: 5444 caggctggagtggagtggc 2555 257413 SEQ ID NO: 5367 lttttttctttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 299613												_
SEQ ID NO: 5367 tittitttctttttttgag 2519 2538 SEQ ID NO: 5445 ctcataacatctttgaaaa 2977 299613										\$		1
231 2990 10		2493	2512	SEQ I	DΝ	10:	5444	caggctggagtggagtggc	2555	2574	13	3
BEQ ID NO: 5368 ccggcgcaccaccatgc 2652 2671 SEQ ID NO: 5446 gcatgagccaccgcaccgg 2798 2817 13												
	EEQ ID NO: 5368 ceggegraceaceatge	2652	2671	SEQ I	DΝ	10:5	446	gcatgagccaccgcaccgg	2798	2817	13	

Table 12. Selected palindromic sequences from rat glucose-6-phosphatase

		Source		End			Ì			Start	End	#1
				Index						Index	Index	Щ
SEQ ID NO:	5447	ctgactattacagcaacag	301						ctgtggctgaaactttcag	598	617	16
SEQ ID NO:	5448	ctcttggggttggggctgg	831						ccagcatgtaccgcaagag	859		
SEQ ID NO:	5449	tgcaaaggagaactgcgca	879	898	SEQ I	DN	0:	5473	tgcgaccgtcccctttgca	1019		
SEQ ID NO:	5450	cctcgggccatgccatggg	376				_		cccagtgtggggccagagg	1171		
SEQ ID NO:	5451	ttgagcaaaccatatgcaa	1478						ttgcagagtgtgtcttcaa	2057		+
SEQ ID NO:	5452	cagcttcctgaggtaccaa	2	21	SEQ I	DΝ	0:	5476	ttggtgtctgtgatcgctg	123		
SEQ ID NO:	5453	ggtaccaaggaggaaggat	13	32	SEQ I	DΝ	0:	5477	atccagtcgactcgctacc	66		14
SEQ ID NO:	5454	ctccacgactttgggatcc	51	70	SEQ I	D N	O:	5478	ggatcgggaggaggggag			
SEQ ID NO:	5455	caggactggtttgtcttgg	108	127	SEQ I	DΝ	0:	5479	ccaagcccgactgtgcctg	2018		
		cttctatgtcctctttccc	155						gggacagacacacaagaag		1095	14
		ttctatgtcctctttccca	156	175	SEQ I	DΝ	0:	5481	tgggacagacacacaagaa	1075	1094	14
		tggttccacattcaagaga	177	196	SEQ I	DΝ	0:	5482	tctcaataatgatagacca	1549		_
		tgcctctgataaaacagtt	325	344	SEQ I	DΝ	0:	5483	aactctgagatcttgggca	1868	1887	14
		agcccggctcctgggacag	1064	1083	SEQ I	DΝ	O:	5484	ctgtcctccagcctgggct	2034		
SEQ ID NO:	5461	agtctctgacacaagtcag	1111	1130	SEQ I	DΝ	0:	5485	ctgaatggtaatggtgact	1659		
SEQ ID NO:	5462	aaaaaggtgaatttttaaa	1237	1256	SEQ I	DΝ	O:	5486	tttattaaaacgacatttt	2201		
SEQ ID NO:	5463	acactctcaataatgatag	1545	1564	SEQ I	DΝ	0:	5487	ctatgaatgatgcctgtgt	2121		
		aaagaatgaacgtgctcca	37	56	SEQ I	DN	0:	5488	tggacctcctgtggacttt	724	743	1 3
SEQ ID NO:	5465	ctttgggatccagtcgact	59	78	SEQ I	DΝ	O:	5489	agtcagcggccgtgcaaag	1124		
SEQ ID NO:	5466	gtgatcgctgacctcagga	132						tcctctctccaaaggtcac	1911		
SEQ ID NO:	5467	ggaacgccttctatgtcct	148						aggactcatcactgcttcc	1748		
SEQ ID NO:	5468	gactgtgggcatcaatctc	194	213	SEQ I	DΝ	O:	5492	gagactggaccagggagtc	357	376	
		ggacactgactattacagc	296						gctgaacgtctgtctgtcc	518		
SEQ ID NO:	5470	aagcccccgtcccagattg	966	985	SEQ I	DN	O:	5494	caattgtttgctggtgctt	1833	1852	1 3

WO 2004/091515
Table 13. Selected palindromic sequences from human B-catenin

		e 13. Selected palındı Source		End	l long name		Match	Start	End	#
				Index			mator.	Index	Index	ĮĮ,
SEQ ID NO:	5495	agcagcttcagtccccgcc	70		SEQ ID NO:	5542	ggcgacatatgcagctgct	2152	2171	1
		ccattctggtgccactacc	304				ggtatggaccccatgatgg	2387	2406	1
SEQ ID NO:	5497	tccttctctgagtggtaaa	328	347	SEQ ID NO:	5544	tttattacatcaagaagga	985	1004	1
SEQ ID NO:	5498	tctgagtggtaaaggcaat	334	353	SEQ ID NO:	5545	attgtacgtaccatgcaga	791	810	1
SEQ ID NO:	5499	cagagggtacgagctgcta	473	492	SEQ ID NO:	5546	tagctgcaggggtcctctg	2037	2056	1
SEQ ID NO:	5500	ctaaatgacgaggaccagg	677	696	SEQ ID NO:	5547	cctgtaaatcatcctttag	2539	2558	1
SEQ ID NO:	5501	taaatgacgaggaccaggt	678	697	SEQ ID NO:	5548	acctgtaaatcatccttta	2538		
SEQ ID NO:	5502	gtcctgtatgagtgggaac	383	402	SEQ ID NO:	5549	gttccgaatgtctgaggac	2176		_
SEQ ID NO:	5503	cccagcgccgtacgtccat	1839				atgggctgccagatctggg	2451	2470	_
		tcccctgagggtatttgaa	143				ttcacatcctagctcggga	1929	1948	_
		gggtatttgaagtatacca	151				tggttaagctcttacaccc	1680	1699	_
SEQ ID NO:	5506	gctgttagtcactggcagc	260				gctgcctccaggtgacagc	2494		
		gtcctgtatgagtgggaac	383				gttcgccttcactatggac	1652	1671	_
		tcctgtatgagtgggaaca	384				tgttccgaatgtctgagga	2175		_
		gtatgcaatgactcgagct	454				agctggcctggtttgatac	2517	2536	
		gtccagcgtttggctgaac	563				gttcgccttcactatggac	1652	1671	_
		tatcaagatgatgcagaac	623				gttcgtgcacatcaggata	1820	1839	_
		tatggtccatcagctttct	718				agaaagcaagctcatcata	1126		
SEQ ID NO:	5513	ccctggtgaaaatgcttgg	915	934	SEQ ID NO:	5560	ccaaagagtagctgcaggg	2029	2048	
SEQ ID NO:	5514	agctttaggacttcacctg	1291	1310	SEQ ID NO:	5561	caggtgacagcaatcagct	2502	2521	1
		ggaatctttcagatgctgc	1356	1375	SEQ ID NO:	5562	gcagctgctgttttgttcc	2162	2181	
SEQ ID NO:	5516	tgtccttcgggctggtgac	1549	1568	SEQ ID NO:	5563	gtcatctgaccagccgaca	1605	1624	1
		cacagctcctctgacagag	2107				ctctaggaatgaaggtgtg	2134	2153	11.
		ccagacagaaaagcggctg	245				cagctcgttgtaccgctgg	828	847	2
		cagcagcgttggcccggcc	4				ggccaccaccctggtgctg	2420	2439	祁
		aggtctgaggagcagcttc	60				gaagaggatgtggatacct	359	378	祁
		actgttttgaaaatccagc	174				gctgatattgatggacagt	437	456	1
		ctgatttgatggagttgga	213				tccaggtgacagcaatcag	2500	2519	1
		ccagacagaaaagcggctg	245				cagcaacagtcttacctgg	275	294	朮
		acagctccttctctgagtg	323				cactgagcctgccatctgt	1579	1598	L
		tggatacctcccaagtcct	369				aggactaaataccattcca	1972	1991	
		tcaagaacaagtagctgat	424				atcagctggcctggtttga	2514	2533	
		agctcagagggtacgagct	469				agctggtggaatgcaagct	1276	1295	
		gcatgcagatcccatctac	516				gtagaagctggtggaatgc	1271	1290	
		ccacacgtgcaatccctga	645				tcagatgatataaatgtgg	1430	1449	
		cacacgtgcaatccctgaa	646				ttcagatgatataaatgtg	1429	1448	
		ggaccttgcataacctttc	846				gaaatcttgccctttgtcc	1743	1762	
		ctccacaaccttttattac	974				gtaaatcatcctttaggag	2542	2561	
		cagagtgctgaaggtgcta	1222				tagctgcaggggtcctctg	2037	2056	_
		ggactctcaggaatctttc	1347				gaaatcttgccctttgtcc	1743	1762	
		tgatataaatgtggtcacc	1435				ggtgacagggaagacatca	1562	1581	祁
		cccagcgccgtacgtccat	1839				atggccaggatgccttggg	2370	2389	_!_
		gtccatgggtgggacacag	1852			_	ctgtgaacttgctcaggac	2053	2072	
		ttgtaccggagcccttcac	1915				gtgaacttgctcaggacaa	2055	2074	
		ttgttatcagaggactaaa	1962				tttaggagtaacaatacaa	2553	2572	_
		gaagctattgaagctgagg	2084				cctctgacagagttacttc	2114	2133	_
		tcagaacagagccaatggc	2247				gccaccaccctggtgctga	2421	2440	11.

Table 14. Selected palindromic sequences from human hepatitis C virus (HCV)

	Source	Start	End					Match		End	
		Index								Index	
	9 cagcacctgggtgctggta							taccatcacccagctgctg		6215	
SEQ ID NO: 559	0 aactcgtccggatgcccgg							ccgggcagcgggtcgagtt		8221	
SEQ ID NO: 559	1 cgctgctgggtagcgctca	1049	1068	SEQ I	DΙ	NO:	6137	tgagagcgacgccgcagcg	6151	6170	1 7
	2ctccggatcccacaagccg	1352	1371	SEQ I	DΙ	NO:	6138	cggcatgtgggcccgggag		6072	
	3tgtaacatcgggggggtcg							cgacccctcccacattaca		6890	
	4gtaacatcgggggggtcgg	2049	2068	SEQ I	DΙ	NO:	6140	ccgacccctcccacattac	6870	6889	17
	5 cagccaccaagcaggcgga							tccggctggttcgttgctg	9254	9273	17
	6ctcaccaccagaacaccc	5744	5763	SEQ I	D I	NO:	6142	gggtgtgcacggtgttgag	6291	6310	17
	7 ccagccttaccatcaccca							tgggcgctggtatcgctgg	5832	5851	1 7
	8 ctacgccgtgttccggctc							gagcccgaaccggacgtag	6830	6849	17
	9tacgccgtgttccggctcg							cgagcccgaaccggacgta	6829	6848	17
	00gagttcctggtaaaagcct							aggctatgactaggtactc	8634	8653	17
	11 atggcggggaactgggcta							tagcgcattttcactccat	9019	9038	26
	2aaccaaacgtaacaccaac	370						gttgccgctaccttaggtt	4115	4134	16
	3ggtggtcagatcgttggtg	419						caccagcccgctcaccacc	5734	5753	16
	04ccttggcccctctatggca	584						tgccaacgtgggtacaagg	6374	6393	16
	5taccccggccacgcgtcag	1265						ctgacgactagctgcggta	8465	8484	16
	06gggcacgctgcccgcctca							tgagacgacgaccgtgccc	4759	4778	16
	7ctgcaatgactccctccag							ctggtggccctcaatgcag	2594	2613	16
)8aaccgatcgtctcggcaac							gttgccgctaccttaggtt	4115	4134	16
	99gtgcggggccccccgtgt							acaccacgggcccctgcac	6537	6556	16
	0atgtggggggggtggagca							tgctcaatgtcctacacat	7610	7629	16
	1 ggagagcgttgcaacttgg							ccaagctcaaactcactcc	9207	9226	16
	2cgtccgttgccggagcgca							tgcgagcccgaaccggacg	6827	6846	16
	3gtctggcattattgacctt							aaggtcacctttgacagac	7763	7782	16
	4tctttgatatcaccaaact							agttcgatgaaatggaaga		5473	1_1_
	5 cttctgattgccatactcg							cgagcaattcaagcagaag		5537	
	6gcggcgtgtggggacatca							tgatcacgccatgcgccgc		7660	
	7gggacatcatcctgggcct							aggcggtggattttgtccc	3915	3934	16
SEC ID NO. 56	18gggcgtcttccgggccgct	3874						agcggcacggcgaccgccc	7439	7458	16
SEQ ID NO. 56'	19ggcgtcttccgggccgctg	3875						cagcggcacggcgaccgcc		7457	1 e
SEQ ID NO: 66	20 gcgtcttccgggccgctgt							acaggtgccctgatcacgc		7650	
SEQ ID NO:562	21 gtccccggtcttcacagac							gtcttggaagaacccggac		7271	
	22catcaggactggggtaagg							ccttcctcaagccgtgatg		8174	
	23 ccgacggtggttgctccgg							ccgggggaacggccctcgg		4872	
	24ggggggaaggcacctcatt							aatgttgtgacttggcccc		8353	1_1_
								ttctgattgccatactcgg		3034	-
	25 ccgagcaattcaagcagaa								1	8583	
	26 agatgaaggcaaaggcgtc							gacgaccttgtcgttatct		3693	—
	27 cccctagggggcgctgcca	767						tggccggcgcccccgggg		7538	, ,
	28 ctcccggcctagttggggc	646						gccccccttgagggggag		7942	
	29ttccgctcgtcggcggccc	750	I					gggcaaaggacgtccggaa	t	1	F I
	30 cccctagggggggctgcca	767						tggcgggggcccactgggg		1402	
	31 gccccgccggcatgcgaca	1222						tgtcccaggggggggagggc		9166	
	32 aggacgaccgggtcctttc	178	_					gaaaaaggacggttgtcct		7360	
SEQ ID NO: 56	33 ggacgaccgggtcctttct	179	198	SEQ I	ID I	NO:	6179	agaaaaaggacggttgtcc	/340	7359	1 5

WO 2004	/0915	15							PCT/US2004/0	11255		
SEQ ID NO:	5634	aaaaccaaacgtaacacca	368	387	SEQ	ID	NO:	6180	tggttttttttttttttt		9462	4
		caaccgccgcccacaggac	385	404	SEQ	ID	NO:	6181	gtcctgaacccgtctgttg	4100	4119	15
SEQ ID NO:	5636	cggtggtcagatcgttggt	418	437	SEQ	ID	NO:	6182	accattgagacgacgaccg	4754	4773	
SEQ ID NO:	5637	acctgttgccgcgcagggg	444	463	SEQ	ID	NO:	6183	ccccggccacgcgtcaggt	1267		
SEQ ID NO:	5638	tgccgcgcaggggccccag	450	469	SEQ	ID	NO:	6184	ctgggcgcgctgacgggca		3183	
SEQ ID NO:	5639	gggccccaggttgggtgtg	460	479	SEQ	ID	NO:	6185	cacagcctgtctcgtgccc	1	9315	
SEQ ID NO:	5640	gttggggccccacggaccc	657	676	SEQ	ID	NO:	6186	gggtgggtagccgcccaac		5802	
SEQ ID NO:	5641	ttggggccccacggacccc	658	677	SEQ	ΙD	NO:	6187	ggggtgggtagccgcccaa		5801	_
SEQ ID NO:	5642	tggggccccacggaccccc	659						gggggtgggtagccgccca		5800	
SEQ ID NO:	5643	cctcacatgcggcctcgcc	715	734	SEQ	ID	NO:	6189	ggcggggcgacaatagagg	3774	3793	1 5
SEQ ID NO:	5644	cacatgcggcctcgccgac	718	737	SEQ	ID	NO:	6190	gtcgtcggagtcgtgtgtg	6020	6039	15
SEQ ID NO:	5645	tccgctcgtcggcggcccc	751	770	SEQ	ID	NO:	6191	ggggcaaaggacgtccgga	7922	7941	1 5
		ggcgctgccagggccttgg	776		1				ccaagccacagtgtgcgcc	5110	5129	15
		ccatgtcacgaacgactgc	943	962	SEQ	ID	NO:	6193	gcagcaacacgtggcatgg	6498	6517	1 5
		gtgccctgcgttcgggagg	1019	1038	SEO	חו	NO.	6194	cctcacaacgggggggcac	1495	1514	1 5
		tgccctgcgttcgggaggg				_			ccctcacaacgggggggca	1494	1513	1 5
		gccctgcgttcgggagggt							accctcacaacgggggggc		1512	
		aggaatgctaccatccca							tgggcatcggcacagtcct	L	4342	_
		tccccactacgacaatacg							cgtattcccagatttggga		8111	
		atacgacaccacgtcgatt							aatcaatgctgtagcgtat	1	4595	
		atttgctcgttggggcggc					_		gccgccacttgcggcaaat		9183	
		ccttctcgcccgccggca							tgccaacgtgggtacaagg		6393	
		acccggccacgcgtcagg							cctgccgcggttaccgggt		6359	_
		gccctcgtagtgtcgcagt							actgcgtcggcatgtgggc		6065	_
		gccgtctcagagaatccag							ctggtatcgctggtgcggc	5838	5857	15
		ctgaactgcaatgactccc							gggacagatcggagctcag	2313	2332	15
		agactgggtttcttgccgc							gcggcgagcctacgagtct	8609	8628	1 5
		tcgtccggatgcccggagc							gctccggggggggttacga	4257	4276	1 5
		ccagggatggggtcctatc							gataacttcccctacctgg	5084	5103	15
SEQ ID NO:	5663	gacaaccgatcgtctcggc	1894	1913	SEQ	ID	NO:	6209	gccgcggttaccgggtgtc	6343	6362	15
SEQ ID NO:	5664	caagacgtgcggggccccc	2026	2045	SEQ	ID	NO:	6210	ggggtctcccccctccttg	6919	6938	15
SEQ ID NO:	5665	acgtgcggggccccccgt	2030	2049	SEQ	ID	NO:	6211	acgggcgccccattacgt		4221	
SEQ ID NO:	5666	ccggaagcaccccgaggcc							ggccgctgtatgcacccgg	l	3905	
SEQ ID NO:	5667	aggccacgtactcaaaatg							cattatgtccaaatggcct		3156	
		tgtatgtggggggcgtgga							tccaagtggcccatctaca		4030	
SEQ ID NO:	5669	gagtggcaggttctgccct							agggcaggggtggcgactc		3419	
		tcctttgcaatcaaatggg							cccaccttatgggcaagga		8880	
									ggcgtccacagtcaaggct		7853	
		ggcggcatatgctttctat							atagaagaagcctgccgcc		7884	
		gcggcatatgctttctatg							catagaagaagcctgccgc		7883	_
		cggcatatgctttctatgg							ccatagaagaagcctgccg		7882	
		tgcatgtgtgggttccccc							ggggggacggcatcatgca		6421	
		ccccctcaacgtccgggg							ccccaatcgatgaacgggg		9395	
		gggcaggggtggcgactcc							ggaggccgcaagccagccc	1	8085	- 1
		atgttggactgtctaccat							atggtaccgaccctaacat		4177	
		tgttggactgtctaccatg	3575	3594	SEQ	ID	NO:	6225	catggtaccgaccctaaca	1	4176	_
		cgttccctgacaccatgca							tgcacgatgctcgtgaacg		8562	
		acaccatgcacctgtggca							tgccgcggttaccgggtgt		6361	
		caccatgcacctgtggcag	-						ctgccgcggttaccgggtg		6360	_1_
SEQ ID NO:	5683	ggcatcggcacagtcctgg	4325	4344	SEQ	ID	NO:	6229	ccaggattgcccgtttgcc	4979	4998	1 5

WO 2004/091	515						PCT/US2004/0	11255		
SEQ ID NO:568	4agcggagacggctggagc	4347	4366	SEQ ID	NO	6230	gctcccccagcgctgctt	5804	5823	15
	5ggagcgcggcttgtcgtgc	4361	4380	SEQ ID	NO	6231	gcacggcgaccgcccctcc	7443	7462	15
	6cgaagccatcaagggggga						tcccccagcgctgcttcg	5806	5825	15
	7tggaagtgtctcatacggc						gccggattacaatcctcca	7225	7244	15
	Bgggtgctggtaggcggagt						actogogatocoaccacco	8765	8784	15
	gtgggtaggatcatcttgt						acaacatggtctacgccac	7713	7732	15
	Ocgccgagcaattcaagcag						ctgcacgccttccccggcg	6550	6569	15
	1tggagtccaagtggcgagc						gctcctcatacggattcca	8175	8194	15
	2tggcgagctttggagacct						aggtgccctgatcacgcca	7633	7652	15
	3gcccgctcaccacccagaa	5739	5758	SEQ ID	NO	6239	ttctggcgggctatggggc	5895	5914	1 5
SÉQ ID NO: 569	4tgagtgacttcaagacctg	6306	6325	SEQ ID	NO	6240	caggctataaaatcgctca	8363	8382	15
	5 atgtcaaaaacggttccat						atggtaccgaccctaacat	4158	4177	15
	6ccgaaaacctgcagcaaca						tgttcctccaatgtgtcgg	8708	8727	15
SEQ ID NO: 569	7ggcgccaaactattccaag	65 65	6584	SEQ ID	NO	6243	cttgaaagcctctgccgcc	8500	8519	1 5
	8 gccctccttgagggcgaca	6967	6986	SEQ ID	NO	6244	tgtctcctacttgaagggc		3833	
	9cacccgcgtggagtcggag	7078	7097	SEQ ID	NO	6245	ctccggtggtacacgggtg	7278	7297	1 5
	Oggagggggatgagaatgaa						ttcatgctgtgcctactcc	9326	9345	1 5
	1 gcggcgatacccatatggg	7202	7221	SEQ ID	NO	6247	cccaggggggggagggccgc	9150	9169	1 5
	2ttgccacctgtcaaggccc						gggccgccacttgcggcaa		9181	15
	3ccccccttgaggggagc						gctcccggcctagttgggg	645	664	15
	4ctgctgctcaatgtcctac						gtaggactggcaggggcag	4809	4828	15
	5catggacaggtgccctgat						atcattgaacgactccatg	8996	9015	15
	6 atggacaggtgccctgatc						gatcattgaacgactccat	8995	9014	15
	7ggctatgactaggtactcc					_	ggagcaacttgaaaaagcc	8920	8939	15
	8caccatagatcactcccct	27					agggccttggcacatggtg	785	8042	24
	9agctgttcaccttctcgcc	1206					ggcgtgctgacgactagct	8459	8478	24
	Octgcaatgactccctccag						ctggtgcggctgttggcag	5847	58662	24
SEQ ID NO: 571	1 atgtggggggggtggagca						tgctgcgccatcacaacat	7701	7720	24
SEQ ID NO: 571	2tggggacatcatcctgggc	3322	3341	SEQ ID	NO:	6258	gcccaactcgctccccca	5795	5814	24
SEQ ID NO: 571	3gggacatcatcctgggcct	3324	3343	SEQ ID	NO:	6259	aggcaggagataacttccc	5076	50952	24
SEQ ID NO: 571	4gggagatactcctggggcc	3366	3385	SEQ ID	NO:	6260	ggcccctgcacgccttccc		6564	
SEQ ID NO: 571	5 atgttggactgtctaccat	3574	3593	SEQ ID	NO:	6261	atggtctacgccacgacat		7737	
SEQ ID NO: 571	6ccagccttaccatcaccca	6189	6208	SEQ ID	NO:	6262	tgggtacaagggagtctgg		64012	
SEQ ID NO: 571	7gccctccttgagggcgaca	6967	6986	SEQ ID	NO:	6263	tgtcccagggggggagggc	9147	91662	24
SEQ ID NO: 571	Bccagccccgattgggggc	1	20	SEQ ID	NO:	6264	gcccgagggcagggcctgg	550	569	14
SEQ ID NO: 571	9accatagatcactcccctg	28	47	SEQ ID	NO:	6265	cagggccttggcacatggt	784	803	14
	Datgagtgtcgtgcagcctc	95					gaggccgcgatgccatcat	2946	2965	14
	1gtgcagcctccaggacccc	104				-	gggggacggcatcatgcac		6422	
	2tgcagcctccaggaccccc	105					ggggggacggcatcatgca	6402	6421	14
	3ccaggacccccctcccgg	113					ccggctggttcgttgctgg	9255	9274	14
	4acccccctcccgggagag	118					ctctcatgccaacgtgggt	6368	6387	14
	5cccctcccgggagagcca	121				-	tggcaatgagggcatgggg	598	617	14
	6agactgctagccgagtagt	243				_	actatgcggtccccggtct		3972	
	7agccgagtagtgttgggtc	251					gaccaggatctcgtcggct	3656	3675	14
	8ggtgcttgcgagtgccccg	299					cggggccttggttgacacc	2139	2158	14
	9gcgagtgccccgggaggtc	306					gaccccggcgtaggtcgc		690	
	0accgtgcaccatgagcacg	331					cgtgcaatacctgtacggt		2456	
	1cccgggcggtggtcagatc	412					gatcatgcatactcccggg		1016	
	2gccgcgcaggggccccagg	451					cctgcacgccttccccggc		6568	
	3accccgtggaaggcgacag	511					ctgtatgcacccggggggt	3891	3910	14
	·		• • • • • • • • • • • • • • • • • • • •							

WO 2004	/0915	515							PCT/US2004/0:	11255		
SEQ ID NO:	5734	ccccgtggaaggcgacagc	512	531	SEQ	<u>ID</u>	NO:	6280	gctgtatgcacccgggggg	3890	3909	14
		agcctatccccaaggctcg	528	547	SEQ	ID	NO:	6281	cgagggcagggcctgggct	553	572	14
SEQ ID NO:	5736	ctatccccaaggctcgccg	531	550	SEQ	ID	NO:	6282	cggctgtcgttcccgatag	5418	5437	14
SEQ ID NO:	5737	tatccccaaggctcgccgg	532	551	SEQ	ID	NO:	6283	ccggctgtcgttcccgata	5417	5436	14
SEQ ID NO:	5738	cgggtateettggeeeete	577	596	SEQ	ID	NO:	6284	gaggccgcaagccagcccg	8067	8086	14
		gcatggggtgggcaggatg	609	628	SEQ	ID	NO:	6285	catcgataccctcacatgc	706	725	14
		teetgteaccegeggete	630	649	SEQ	ID	NO:	6286	gagctgcaaagctccagga	8523	8542	14
		gggccccacggacccccgg	661	680	SEQ	ID	NO:	6287	ccggccgcatatgcggccc	4064	4083	14
		ggccccacggacccccggc	662						gccggccgcatatgcggcc	4063	4082	14
		cggcctcgccgacctcatg	724						catgaggatcatcgggccg	6472	6491	14
		ggcctcgccgacctcatgg	725						ccatgaggatcatcgggcc	6471	6490	14
		ggcccctagggggggtgtg	764						cagctccgaattgtcggcc	7414	7433	14
		tggcacatggtgtccgggt	792						acccacgctgcacgggcca		5207	
		cttcctcttggctctgctg	868						cagcataggtcttgggaag	<u> </u>	5882	
		catgtcacgaacgactgct	944						agcagtgctcacttccatg		6866	
		gaggcggcggacttgatca				_			tgatggcattcacagcctc		5731	
		catccccactacgacaata							tattaccggggtcttgatg		4611	
		gctgttcaccttctcgccc						_	gggctgcgtgggaaacagc		8812	
		gcccgccggcatgcgaca	_						tgtctcctacttgaagggc		3833	
		tggcctgggacatgatgat							atcaatttgctccctgcca		6000	
		cacaagccgtcatcgacat							atgtttgggactgggtgtg		6298	
		agccgtcatcgacatggtg							caccaagcaggcggaggct		5579	
											5146	-
		ggtggcggggccactgg							ccagggctcaggccccacc			ш
		gggggcccactggggagtc							gactaggtactccgccccc		8660	ш
		atggcggggaactgggcta				_		_	tagcagtgctcacttccat		6865	
		ttgattgtgatgctacttt							aaagcaagctgcccatcaa	L	7684	ш
		caacgggggggcacgctgc			_				gcagaaggcgctcgggttg		5549	—
		acgctgcccgcctcaccag						_	ctggacccgaggagagcgt		2297	—
		tcagagaatccagcttata							tatatcgggggtcccctga		8412	ш.
		accaatggcagttggcaca							tgtggctcggggccttggt		2151	
		ccaatggcagttggcacat _							atgtggctcggggccttgg		2150	-
		gtcctatcacttatgctga							tcaggactggggtaaggac		4195	ш
		ctgagcctacaaaagaccc							gggtggcttcatgcctcag		9082	
		caggtgtgtggtccagtgt							acactccagttaactcctg		8836	
SEQ ID NO:	5768	tgtggtccagtgtattgct	1850	1869	SEQ	ID	NO:	6314	agcagggccatcaaccaca		7968	
SEQ ID NO:	5769	gcttcaccccaagtcctgt	1866	1885	SEQ	ID	NO:	6315	acagcagaggcggctaagc	6887	6906	1 4
		ctgttgtcgtggggacaac	1881	1900	SEQ	ID	NO:	6316	gttgcaacttggacgacag	2295	2314	14
SEQ ID NO:	5771	gccgccgcaaggcaactgg	1972	1991	SEQ	ID	NO:	6317	ccagttggacttatccggc	9241	9260	14
SEQ ID NO:	5772	ggcaactggttcggctgta	1982	2001	SEQ	ID	NO:	6318	tacacgggtgcccattgcc	7287	7306	14
		gcaactggttcggctgtac							gtacacgggtgcccattgc	7286	7305	14
		cccgtgtaacatcggggg	2043	2062	SEQ	ID	NO:	6320	ccccaatcgatgaacgggg	9376	9395	14
		ggactgcttccggaagcac							gtgctggtaggcggagtcc	5324	5343	14
		gactgcttccggaagcacc							ggtgctggtaggcggagtc	5323	5342	14
		tccggaagcaccccgaggc							gcctacgagtcttcacgga		8635	
		actcaaaatgtggctcggg							cccgggcagcgggtcgagt		8220	
		ggccttggttgacacctag							ctagccggcccaaaaggcc		3630	
		aggagagcgttgcaacttg							caagccgtgatgggctcct		8181	
		ggacagatcggagctcagc							gctgggggtcattatgtcc		3147	
		cagateggageteageceg					_		cgggtggcccactgctctg		3856	-
		ggagctcagcccgctgctg		_					cagctgctgaagaggctcc		6225	
יסרמ ים ואסי	3.00	22-20-0-2009019019			OLG	יוו	. 10.				J220	تت

WO 2004	1/0015	15						PCT/US2004/0	11255	;	
ISÉC ID NO	:5784	15 caccetaceggetetgtee	2383	3 2402	SEQ	ID NO	633	0ggactgggtgtgcacggtg		6 630	5112
		cggctctgtccactggctt						1 aagcaggcggaggctgccg		4 558	
		ccatcagaacatcgtggac						2gtccccgttgagtccatgg		9 394	
		ggtcagcggttgtctcctt						3 aaggatgattctgatgacc		5 8894	_L_L
		gccgccttagagaacctgg					_	4ccagttggacttatccggc		1 9260	
		gccttagagaacctggtgg						5ccaccaagcaggcggagg		9 5578	
		gccggagcgcacggcatcc						6ggattgggcccacgccggc		4 3233	
		gctgcatcgtgcggaggcg						7 cgccacgacatcccgcagc		6 7745	
		attattgaccttgtcgcca						8tggcaacagacgctctaat		7 4666	
		tcgccatattacaaggtgt						9acacaatctttcctggcga		3558	
		cgccatattacaaggtgtt	_					Dacacaatctttcctggcg		3557	
		gtccggggaggccgcgatg						1 catcggcacagtcctggac		4346	
	-	tcacccactgcgggattg						2 caatttaccaatgttgtga		8344	
		ttgggcccacgccggccta						Staggetaggggccgtccaa		5240	
		ctacgggaccttgcggtag						1ctactcctactttctgtag		9357	
	·	cctgtcgtcttctctgaca						tgtcctacacatggacagg		7636	
		ctgtcgtcttctctgacat						atgtcctacacatggacag		7635	
		cctggggggcagacaccgc						gcggggtaggactggcagg		4823	
		gggggcagacaccgcggcg						B cgcccaactcgctccccc		5813	4-1-4
		ggcgtgtgggggacatcatc						gatgttattccggtgcgcc		3774	
		tggggccggccgatagtct						agacgacgaccgtgccca		4780	
		gaaccaggtcgagggggag						ctccacctatggcaagttc	1	4241	
		gagggggaggttcaagtgg						ccacctgtcaaggcccctc		7323	
		aggcccaatcgcccagatg						catcccgcagcgcgggcct		7753	
		ggcccaatcgcccagatgt						acatecegeagegegggee		7752	
	_	caggatetegteggetgge						gccaataggccatttcctg		9429	—
		aggatctcgtcggctggcc						ggccaataggccatttcct		9428	
		gcccccggggcgcgttcc						ggaacctatccagcagggc		7957	
		gcacctgtggcagctcgga						tccggtggtacacgggtgc		7298	
		ctgtggcagctcggacctt						aaggcaaaggcgtccacag		7845	
		gcggggcgacaatagaggg						ccctgcctgggaaccccgc		5701	LL
		gagettgetetececeag						ctggttgggtcacagctcc		6825	
		gagettgetetececcagg						cctggttgggtcacagctc		6824	
		acttgaagggctcttcggg						cccgtggtggagtccaagt		5604	
		gtccccgttgagtccatg	3928	3947	SEO II	ON C	6364	catggtctacgccacgaca		7736	—
		gaaactactatgcggtccc	3947	3966	SEO II	ONO.	6365	gggaaggcacctcattttc		4523	
		naactactatgcggtcccc						ggggggcatatacaggttt		4847	
		tcccactggcagcggcaa						ttgccaggaccatctggag		5012	
		gcgtatatgtctaaagca						tgctcgccaccgctacgcc		4396	_11
		cgtatatgtctaaagcac						gtgctcgccaccgctacgc		4395	
		ggggtaaggaccattacc						ggtaaccatgtctcccca		6138	
								gggcgctggtatcgctggt		5852	
								ttgccccaaccagaatacg	8669		
								tccgtgagccgcatgactg	9560		
								atgageggegaggegeeet	5948		
·								cgcatgactgcagagagtg	9569		
									8682		
									6128		
									5992		
								·	6863	I_	
							<u> </u>	5			لــــــــــــــــــــــــــــــــــــــ

WO 2004/09151	15							PCT/US2004/0	11255	;	
SEQ ID NO: 5834	cgggcatgttcgattcctc	4869	488	8 SEQ	ID	NO:	6380	gaggccgcaagccagccc	806	7 808	614
SEQ ID NO: 5835	tggtacgagctcacccccg	4922	494	1SEQ	ID	NO:	6381	cggggacttgccccaacca	866	2 868	1114
	gggcttacctaaatacacc	4962	498	1SEQ	ID	NO:	6382	ggtggctccatcttagccc	951	8 953	714
SEQ ID NO: 5837	ggcttacctaaatacacca	4963	4982	2SEQ	ID	NO:	6383	tggtggctccatcttagcc	951	7 953	614
SEQ ID NO: 5838	gagataacttcccctacct	5082	510	SEQ	ID	NO:	6384	aggttggccagggggtctc	690	8 692	7114
SEQ ID NO: 5839	ccacctccatcgtgggat	5140	5159	SEQ	ID	NO:	6385	atccaagtttggctatggg	790	6 792	514
SEQ ID NO: 5840	catggcatgcatgtcggcc	5278	5297	SEQ	ID	NO:	6386	ggcctctctgcagatcatg	959	6 961	514
SEQ ID NO: 5841	ggccgacctggaagtcgtc	5293	5312	SEQ	ID	NO:	6387	gacgcccccacattcggcc	788	5 790	4114
SEQ ID NO: 5842	gccgacctggaagtcgtca	5294	5313	SEQ	ID	NO:	6388	tgacgcccccacattcggc	788	4 790	314
	ggaagtcgtcaccagcac	5301	5320	SEQ	ID	NO:	6389	gtgcccatgtcaggttcca	667	6 669	514
	gcacctgggtgctggtagg	5316	5335	SEQ	ID	NO:	6390	cctacacatggacaggtgc	762	763	9114
	gttatcgtgggtaggatc	5383	5402	SEQ	ID	NO:	6391	gatcatcgggccgaaaacc	647	649	714
	ccgatagggaagtcctct	5429	5448	SEQ	ID	NO:	6392	agagcggctttatatcggg	838	3 8402	214
	gaaatggaagaatgcgcc							ggcgcgctcgtggccttca	592	4 5943	314
	caagtggcgagctttgga							tccattgttagagtcttgg	7240	7259	314
	tcatcagcgggatacagt							actgcacgatgctcgtgaa		1 8560	
	agcgggcttatccaccctg							caggggtggctggcgcgct	5913	5932	214
	cagcccgctcaccaccca							tgggcgctggtatcgctgg	5832	2 585	114
	tgggcgctggtatcgctg	5831	5850	SEQ	ID I	NO:	6398	cagcagggccatcaaccac	7948	7967	114
SEQ ID NO: 5853g	gaaggtgctagtggacat	5877	5896	SEQ	ID I	NO:	6399	atgtggtctccacccttcc	8142	8161	114
	gtcatgagcggcgaggcg	5944	5963	SEQ	ID I	NO:	6400	cgccctcctgaccagacc	7453	7472	214
	atgtgggcccgggagagg	6056	6075	SEQ	ID I	NO:	6401	cctccttgagggcgacatg	6969	6988	314
SEQ ID NO: 5856a	tgtgggcccgggagaggg	6057	6076	SEQ	ID I	NO:	6402	ccctccttgagggcgacat	6968	6987	114
	gggccgtgcagtggatga	6074	6093	SEQ	ID I	NO:	6403	tcatgctcctctatgcccc	7505	7524	114
SEQ ID NO: 5858 g	cgttcgcttcgcggggta	6104	6123	SEQ	ID I	NO:	6404	taccaccacgagettacge	2751	2770	114
SEQ ID NO: 5859g	gggtaaccatgtctcccc	6117	6136	SEQ	ID I	VO:	6405	gggggagccgggggacccc	7531	7550	114
SEQ ID NO: 5860 c	atcacccagctgctgaag							cttcgagcggagggggatg		7149	14
SEQ ID NO: 5861 a	ggactgttctacgccgtg							cacggcgaccgccctcct		7463	
SEQ ID NO: 5862tt	caagacctggctccagt							actgcacgatgctcgtgaa	8541	8560	114
SEQ ID NO: 5863 c	tcctgccgcggttaccgg							ccgggacgtgcttaaggag		7823	
SEQ ID NO: 5864 c	accacgggcccctgcacg							cgtggaggtcacgcgggtg		6632	
SEQ ID NO: 5865g	gaggtcacgcgggtgggg							ccctccaataccacctcc		7336	
SEQ ID NO: 5866 g	aggtcacgcgggtggggg							ccctcctgaccagacctc		7474	
SEQ ID NO: 5867 a								aggagatgggcggaaacat	7059	7078	114
SEQ ID NO: 5868 a								gccgtgatgggctcctcat		8184	سب
SEQ ID NO: 5869c	tccattgttagagtcttg	7239	7258	SEQI	DN	10:	3415	caagtggcgagctttggag	5599	5618	14
SEQ ID NO: 5870 to	jcccattgccacctgtca	7295	7314	SEQ I	DN	10:	3416t	gactaattcaaaagggca		8428	
SEQ ID NO: 5871a	ccacctccacggagaaaa	7327	7346	SEQI	D١	10:6	3417t	tttttccctctttatggt		9521	
SEQ ID NO: 5872 co	cacctccacggagaaaaa	7328	7347	SEQ I	D١	10:	3418t	tttccctctttatggtgg	9504	9523	14
SEQ ID NO: 5873 a	cctccacggagaaaaagg	7330	7349	SEQ I	٩d	10:6	3419	ctttgacagactgcaggt		7789	
SEQ ID NO: 5874g								gagctcgctaccaaaacc		7409	
SEQ ID NO:5875co								gtcctacacatggacagg		7636	
SEQ ID NO: 5876 ag								gttgagcaactctttgct		7705	
SEQ ID NO: 5877gg	gatgaccattaccgggac	7792	7811	SEQI	DN	10:6	423	tcccagttggacttatcc		9257	
SEQ ID NO: 5878 tg										8950	
SEQ ID NO: 5879 gg	· · · · · · · · · · · · · · · · · · ·									8949	
										7679	
				~						9110	
										9108	_1 1
SEQ ID NO: 5883 ag										2478	_ 1 1
	33			J L G 1	<u> </u>	<u></u>	.20	aa caa aa	~~00	4110	11"

WO 2004	/0915	15							PCT/US2004/01	11255			
		agccacttgacctacctca	8976	8995	SEQ	ID	NO:	6430	tgagatcaatagggtggct	9052	9071	1	4
		gggtaccgcccttgcgagt							actcgcgatcccaccaccc	8765	8784	1	4
		ctgcaatgactccctccag	1624	1643	SEQ	ID	NO:	6432	ctggcgggctatggggcag	5897	5916	3	3
		ccagcccccgattgggggc	1						gcccactggggagtcctgg	1391	1410	2	3
		aaggcgacagcctatcccc	520						gggggtctcccccctcctt	6918	6937	2	3
		ggccccacggacccccggc	662						gccgcaaagctgtcaggcc	4553	4572	2	3
		gaggcggcggacttgatca	983	1002	SEQ	ID	NO:	6436	tgataacatcatgttcctc	8697	8716	2	3
		ctgcaattgttcgatctac							gtaggcggagtcctcgcag	5330	5349	2	3
		ctccagactgggtttcttg							caagtggcgagctttggag	5599	5618	2	3
		tcgtacctgcgtcgcaggt	1830	1849	SEQ	ID	NO:	6439	acctcagatcattgaacga	8989	9008	2	3
		caagacgtgcggggccccc							gggggagggccgccacttg	9156	9175	2	3
		aatgctgcatgcaactgga	2264	2283	SEQ	ID	NO:	6441	tccaggccaataggccatt	9405	9424	2	3
		caccctaccggctctgtcc							ggactacgtccctccggtg	7267	7286	2	3
		cgccatattacaaggtgtt	2838	2857	SEQ	ID	NO:	6443	aacagccaccaagcaggcg	5554	5573	2	3
		cgaagccatcaagggggga	4489	4508	SEQ	ID.	NO:	6444	tcccagatttgggagttcg	8097	8116	2	3
		ccagcccgctcaccaccca							tgggtacaagggagtctgg	6382	6401	2	3
		ggctatgactaggtactcc							ggagacatatatcacagcc		9303	-	_
		ctccaccatagatcactcc	24	43	SEO	חו	NO:	6447	ggagacatcgggccaggag	9111	9130	1	3
		tccaccatagatcactccc	25						gggagttcgatgaaatgga	5451	5470	17	3
		caccatagatcactcccct	27						aggggcccaggttgggtg	458		1	
		tcactcccctgtgaggaac	36						gttctggaggacggcgtga	809		_	
		cgttagtatgagtgtcgtg	88						cacgctgcacgggccaacg		5210	_	_
		tgtcgtgcagcctccagga	100						tcctgttgtcgtggggaca	1879	1898	1	3
		ccccctcccgggagagc	119						gctcccggcctagttgggg	645		-	-
		ggagagccatagtggtctg	131	150	SEO	חו	NO:	6454	cagatcattgaacgactcc		9012	-	_
		gagccatagtggtctgcgg	134						ccgctgctgggtagcgctc		1067	_	_
		gtggtctgcggaaccggtg	142						cacccatatagatgcccac		5057		_
		agtacaccggaattgccag	161						ctggcgggccttgcctact		1425		_
		ggtcctttcttggatcaac	188	_				$\overline{}$	gttgagtgacttcaagacc		6323	_	_
SEQ ID NO:	5913	ttcttggatcaacccgctc	194						gagcggagggggatgagaa	7134		+	1
		ctcaatgcctggagatttg	210						caaagactccgacgctgag		7505	1	\perp
		tgcctggagatttgggcgt	215						acgcggccgccgcaaggca		1986	-	_
		gcctggagatttgggcgtg	216						cacgcggccgccgcaaggc		1985	ш	_
		gagatttgggcgtgccccc	221						ggggacaaccgatcgtctc		1910	ш	ш
		aaaggccttgtggtactgc	273						gcagaagaaggtcaccttt		7775		
		aaggccttgtggtactgcc	274						ggcagaagaaggtcacctt		7774		
		gtggtactgcctgataggg	282						ccctaccggctctgtccac		2404	-	_
			291						tcgccggcccgagggcagg		563	_	_
		cctgatagggtgcttgcga								ľ	4799	1 1	
		cgagtgccccgggaggtct	307						agacgcagtgtcgcgctcg		4141	-	_
		gccccgggaggtctcgtag	312						ctaccttaggttttggggc		1042	\perp	_
		ttacctgttgccgcgcagg	442						cctgcgttcgggagggtaa		1042	_	_
SEQ ID NO:	5925	tacctgttgccgcgcaggg	443						ccctgcgttcgggagggta	8348		-	_
SEQ ID NO:	0926	cctgttgccgcgcaggggc	445						gcccccgaagccagacagg		ı	1 1	, ,
SEQ ID NO:	5927	ctgttgccgcgcaggggcc	446						ggcccccgaagccagacag		l		
SEQ ID NO:	5928	tccgagcggtcgcaacccc	497	516	SEQ	ID	NO:	6474	ggggcaaaggacgtccgga		!	1 1	
		ggtcgcaaccccgtggaag	504						cttctctgacatggagacc		3287	1	3
		gtcgcaaccccgtggaagg	505						ccttcaccattgagacgac	4749	4768	1	3
		aaggcgacagcctatcccc	520		-				ggggcgctgccagggcctt	774	793	1	3
		cagcctatccccaaggctc	527						gagcacaggcttaatgctg	2252	2271	1	3
			٠									_	

WO 2004/091515		PCT/US2004/01	1255		
SEQ ID NO: 5933 gagggcagggcctgggctc	554			5039	
SEQ ID NO:5934 cagggcetgggctcagccc	559	578 SEQ ID NO: 6480 gggcatcggcacagtcctg	4324	4343	1 3
SEQ ID NO: 5935 gggcctgggctcagcccgg	561	580 SEQ ID NO: 6481 ccggccgcatatgcggccc		4083	
SEQ ID NO:5936 cctgggctcagcccgggta	564	583 SEQ ID NO: 6482 taccgaccctaacatcagg	4162	4181	1 3
SEQ ID NO: 5937 cccctctatggcaatgagg	590	609 SEQ ID NO: 6483 cctcgccgacctcatgggg	727	746	13
SEQ ID NO:5938gagggcatggggtgggcag	605	624 SEQ ID NO:6484 ctgcggatctgttttcctc	1180	1199	13
SEQ ID NO:5939agggcatggggtgggcagg	606	625 SEQ ID NO: 6485 cctgctctttcaccaccct	2370	2389	13
SEQ ID NO: 5940 aggatggctcctgtcaccc	622	641 SEQ ID NO: 6486 gggtcagcggttgtctcct	2459	2478	13
SEQ ID NO: 5941 gatggctcctgtcaccccg	624		4261	4280	13
SEQ ID NO:5942tgtcaccccgcggctcccg	633		3688	3707	13
SEQ ID NO:5943gtcacccegcggctcccgg	634	653 SEQ ID NO:6489 ccggggcgcgttccctgac	3687	3706	13
SEQ ID NO: 5944 gcggctcccggcctagttg	642		2935	2954	13
SEQ ID NO: 5945 ctcccggcctagttggggc	646		4439	4458	13
SEQ ID NO: 5946 ataccetcacatgeggeet	711	730 SEQ ID NO: 6492 aggcaacattatcatgtat		8858	_
SEQ ID NO: 5947ttccgctcgtcggcggccc	750	769SEQ ID NO: 6493 gggcaaagcacatgtggaa	5625	5644	13
SEQ ID NO: 5948 cccctaggggggcgctgcca	767	786 SEQ ID NO: 6494 tggcaatgagggcatgggg	598	617	13
SEQ ID NO: 5949 tgcaacagggaacctgccc	832	851 SEQ ID NO: 6495 gggctcattcgtgcatgca	3092	3111	13
SEQ ID NO:5950 gcgtaacgcgtccggggta	922	941 SEQ ID NO: 6496 taccaccacgagcttacgc		2770	
SEQ ID NO:5951 tcaagcattgtgtttgagg	968			7531	
SEQ ID NO: 5952 cccacgctcgcggccagga		1089 SEQ ID NO: 6498 tcctgtttaacatcttggg	5763	5782	13
SEQ ID NO:5953 cggccaggaatgctaccat		1099SEQ ID NO: 6499 atggcatgcatgtcggccg		5298	_
SEQ ID NO:5954acgacaatacgacaccacg		1125SEQ ID NO: 6500 cgtggggacaaccgatcgt		1907	
SEQ ID NO:5955 gggcggctgctctctgctc		1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc		8940	
SEQ ID NO:5956 cgtgggggacctctgcgga		1187 SEQ ID NO: 6502 tccgttgccggagcgcacg		2634	
SEQ ID NO:5957 agetgtteacettetegec		1225 SEQ ID NO: 6503 ggcgacaatagagggagct		3798	
SEQ ID NO:5958 etgtteacettetegecc		1227 SEQ ID NO: 6504 ggggagacatatatcacag		9301	
SEQ ID NO:5959ctgcaattgttcgatctac		1268 SEQ ID NO: 6505 gtaggactggcaggggcag		4828	
		1273 SEQ ID NO: 6506 ccggcccaaaaggcccaat		3634	
SEQ ID NO: 5960 attgttcgatctaccccgg		1281 SEQ ID NO:6507 acgccatggaccgggagat		2785	
SEQ ID NO: 5961 atctaccccggccacgcgt		1289 SEQ ID NO:6508 gtgatgctactttttgccg		1479	
SEQ ID NO:5962 cggccacgcgtcaggtcac		1307 SEQ ID NO:6509 catggaaactactatgcgg		3962	
SEQ ID NO:5963 ccgcatggcctgggacatg			<u> </u>	8612	-
SEQ ID NO: 5964 cgcagttactccggatccc		1363 SEQ ID NO: 6510 gggaacccaggaggatgcg		5325	
SEQ ID NO: 5965 cccacaagccgtcatcgac		1379 SEQ ID NO: 6511 gtcgtcaccagcacctggg		1714	
SEQ ID NO: 5966 ctggggagtcctggcgggc	1396	1415 SEQ ID NO: 6512 gcccggagcgcatggccag		1	1
SEQ ID NO: 5967 ggcgggccttgcctactat	1408	1427 SEQ ID NO: 6513 atagaagaagcctgccgcc	7865	7884	13
SEQ ID NO: 5968 tttgccggcgttgacgggc	1472	1491 SEQ ID NO: 6514 gcccccacattcggccaaa		7907	_
SEQ ID NO: 5969 caccctcacaacggggggg		1511 SEQ ID NO: 6515 ccccaatatcgaggaggtg		4439	
SEQ ID NO: 5970 ggggggggcacgctgcccgc		1523 SEQ ID NO: 6516 gcggcacggcgaccgcccc		7459	
SEQ ID NO: 5971 ggggcacgctgcccgcctc	1507	1526 SEQ ID NO: 6517 gagggagettgetetecee		3808	
SEQ ID NO: 5972 gcccgcctcaccagcgggt	1517	1536 SEQ ID NO: 6518 acceteacaacgggggggc	1493	1512	1 3
SEQ ID NO: 5973 atccagcttataaacacca		1590 SEQ ID NO: 6519 tggttatcgtgggtaggat	5382	5401	13
SEQ ID NO: 5974 ctccagactgggtttcttg		1656 SEQ ID NO: 6520 caagcggagacggctggag	4346	4365	13
SEQ ID NO:5975cccggagcgcatggccagc		1715 SEQ ID NO: 6521 gctgtgggcgtcttccggg		3888	ᅳ
SEQ ID NO: 5976 ctgccgctccattgacaag		1733 SEQ ID NO: 6522 cttggtacatcaagggcag		2686	
SEQ ID NO:5977 aagttcgaccagggatggg		1749SEQ ID NO:6523cccaaccagaatacgactt		8692	
SEQ ID NO:5978 ggggtcctatcacttatgc		1765SEQ ID NO:6524gcatgtgtgggttccccc		2933	
SEQ ID NO:5979 cagaggccttattgctgg	1786	1805SEQ ID NO:6525ccaggatctcgtcggctgg		3677	-
SEQ ID NO:5980 cccacctcaacaatgtggt	1810	1829 SEQ ID NO: 6526 accaagatcatcacctggg		3303	
	1830	1849SEQ ID NO:6527accttcaccattgagacga		4767	
SEQ ID NO: 5981 tcgtacctgcgtcgcaggt	1837	1856 SEQ ID NO:6528 accatgletececeaegea		6142	
SEQ ID NO: 5982 tgcgtcgcaggtgtgtggt	1001	1000 DEC ID NO. 10020 accardictoccogogoa	0,20	10172	تات

WO 2004/091515		PCT/US2004/01	1255		
SEQ ID NO: 5983 tggggacaaccgatcgtct	1890	1909 SEQ ID NO: 6529 agacgacgaccgtgcccca	4761	4780	13
SEQ ID NO: 5984 cagctggggggagaacgat	1924	1943 SEQ ID NO:6530 atcggagctcagcccgctg 2	2320	2339	113
5985 caccacaaaacaactaatt	1974	1993 SEQ ID NO: 6531 aacccaggaggatgcggcg	8596	8615	13
SEQ ID NO: 5985 cgccgcaaggcaactggtt		SECIDINO!	L	8614	
SEQ ID NO:5986 gccgcaaggcaactggttc	1975	100 0 0 10 110 1		8385	
SEQ ID NO: 5987 ctgtacatggatgaatagc		SEQ ID NO.			ᄔ
SEQ ID NO: 5988 tgtacatggatgaatagca		23.400000		7626	
SEQ ID NO: 5989 gttcaccaagacgtgcggg		TO SEGIDINO:		5759	
SEQ ID NO: 5990 agacgtgcggggccccccc		2011 DEG 12 NO.1 3000-00 0 0 00		3531	
SEQ ID NO: 5991 ccccgtgtaacatcgggg		200 024 15 1101		9395	
SEQ ID NO: 5992 taacaccttgacctgcccc	2071			8580	
SEQ ID NO: 5993 ggctctggcactacccctg		DEGIDIO: 00 00 00 00		8619	
SEQ ID NO: 5994 tgcactgtcaacttctcca		2220 DEG ID NO. 55 15 35 15 55 5 6 5 5		6736	
SEQ ID NO:5995 caggettaatgetgeatge	2257			6430	
SEQ ID NO: 5996 aatgctgcatgcaactgga		DEG 18 1101		9028	
SEQ ID NO: 5997 ctgcatgcaactggacccg	2268	220, 02 Q 10 140,00 10 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0		3255	
SEQ ID NO: 5998 caactggacccgaggagag		2294 SEQ ID NO: 6544 ctcttacgggatgaggttg		6780	
SEQ ID NO: 5999 gacagggacagatcggag		2328 SEQ ID NO: 6545 gctctcccccaggcctgtc		3818	
SEQ ID NO: 6000 gacagatcggagctcagcc		2334 SEQ ID NO: 6546 ggctggagcgcggcttgtc		4376	
SEQ ID NO: 6001 acagatcggagctcagccc		2335 SEQ ID NO: 6547 gggccaacgccctgctgt		5220	, ,
SEQ ID NO:6002 actggcttgatccacctcc	2402	2421 SEQ ID NO: 6548 ggagaggggggccgtgcagt		6087	
SEQ ID NO:6003 ggcttgatccacctccatc	2405	2424 SEQ ID NO: 6549 gatgatgctgctgatagcc	. 1	2570	1 4
SEQ ID NO: 6004 gtcagcggttgtctccttt		2480 SEQ ID NO: 6550 aaaggacggttgtcctgac	7344	7363	11:
SEQ ID NO: 6005 gagtatgtcgtgttgcttt		2511 SEQ ID NO: 6551 aaagaccaagctcaaactc	9202	9221	11:
SEQ ID NO: 6006 tgtggatgatgctgctgat		2566 SEQ ID NO: 6552 atcactgatggcattcaca	5707	5726	11:
SEQ ID NO: 6007 ccgaggccgccttagagaa		2593 SEQ ID NO:6553 ttctgattgccatactcgg	3015	3034	11:
SEQ ID NO: 6008 agaacctggtggccctcaa		2608 SEQ ID NO: 6554 ttgatatcaccaaacttct	3000	3019	17:
SEQ ID NO: 6009tacatcaagggcaggctgg		2691 SEQ ID NO: 6555 ccagatgtacactaatgta	3637	3656	11:
SEQ ID NO: 6010 caagggcaggctggtccct	2677	2696 SEQ ID NO:6556 aggggtaggcatctacttg	9355	9374	11:
SEQ ID NO: 6011 gcatggccgctgctcctgc		2739 SEQ ID NO: 6557 gcagtgctcacttccatgc	6848	6867	刌
SEQ ID NO: 6012 catggccgctgctcctgct		2740 SEQ ID NO: 6558 agcagtgctcacttccatg	6847	6866	11
SEQ ID NO: 6013 gccgctgctcctgctcctc				9179	
SEQ ID NO.0010gccgctgctcctgctcctc		2798 SEQ ID NO: 6560 gcacggcgaccgccctcc	7443	7462	刌
SEQ ID NO: 6014 ggagatggctgcatcgtgc				9423	ш
SEQ ID NO: 6015 atggctgcatcgtgcggag		2820SEQ ID NO:6562gaccattaccacgggcgcc		4211	
SEQ ID NO:6016ggcgcggtttttgtgggtc				3501	
SEQ ID NO: 6017 tettateaccagagetgag	2001			5261	
SEQ ID NO: 6018 gtgtgggttcccccctca	2918	Jan Sed Diver		6280	
SEQ ID NO: 6019 tececeteaacgteegg		2945 SEQ ID NO: 6565 ccggctcgtggctgaggga		8978	
SEQ ID NO: 6020 ctcaacgtccggggaggcc	2933	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8149	
SEQ ID NO: 6021 accaaacttctgattgcca	3008	3027 SEQ ID NO: 6567 tggctctctacgatgtggt		1	
SEQ ID NO: 6022 caaacttctgattgccata	3010	3029 SEQ ID NO: 6568 tatgacacccgctgttttg		8286	1
SEQ ID NO: 6023 ggaccgctcatggtgctcc	3032	3051 SEQ ID NO: 6569 ggagatectgcggaagtec		7190	
SEQ ID NO: 6024 gaccgctcatggtgctcca	3033	3052 SEQ ID NO: 6570 tggaaactactatgcggtc		3964	
SEQ ID NO: 6025 atgcatgttagtgcggaaa	3100	0.000 0.000		9367	
SEQ ID NO: 6026 ttatgtccaaatggccttc		3158 SEQ ID NO: 6572 gaagccagacaggctataa		8373	
SEQ ID NO: 6027 ccaaatggccttcatgaga		3164 SEQ ID NO: 6573 tetcagegaegggtettgg		7571	
SEO ID NO: 6028 ccttcatgagactgggcgc		3172 SEQ ID NO: 6574 gcgctcgtggccttcaagg		5946	
SEQ ID NO: 6029 ccttgcggtagcagtggag	324	3260 SEQ ID NO: 6575 ctccgcccgaaggggaagg		3368	- 1
SEQ ID NO: 6030 tgtcgtcttctctgacatg	326	3281 SEQ ID NO: 6576 catggtctacgccacgaca		7736	
SEQ ID NO: 6031 tggggggcagacaccgcg		3318 SEQ ID NO: 6577 ccgccttatcgtattccca	8083	8102	21
OLG ID 110.000	330	3319 SEQ ID NO: 6578 gccgcccaactcgctcccc		5811	

SEQ D NO 6033/glgggacateatectggg 3321 3340 SEQ D NO 6869 Gocardacacgotecca 4019 4038 5860 D NO 6034 Gocardacacgotecca 4019 4038 6032 5386 D NO 6036 Gocardacacgotecca 4019 4038 6032 5386 D NO 6036 Gocardacacgotecca 4019 4038 6032 5386 D NO 6036 Gocardacacgoteccagg 3777 7789 7777 7789 7789 7777 7789	WQ 2004/091515		. PCT/US2004/01			
SEQ D NO 5034 gaggacatatoc gaggc 3322 3341 SEQ D NO 5684 gaggacatecacae 4019 4038 13 SEQ D NO 5685 gagcaegagggictocacc 4019 4038 13 SEQ D NO 5685 gagcaegagggictocacc 4019 4038 13 SEQ D NO 5685 gagcaegagggictocaccaegaegaegaegaegaegaegaegaegaegaegaegaega		3321	3340 SEQ ID NO: 6579 cccatctacacgctcccac	4020	4039	1 3
SEQ D NO 9035 gaggacatostoctgogc 3322 3322 SEQ D NO 9585 gaccagggggtotcoccoc 8913 6932 13 SEQ D NO 9037 rgictocgocogaagggga 3348 3362 SEQ D NO 9585 coccaggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccacggit 7776 3 3365 SEQ D NO 9585 coccactgacggit 7776 SEQ D NO				4019	4038	13
SEQ ID NO				6913	6932	13
SEQ D NO 6037 gtctccgccggaggggg 346 3365 SEQ D NO 6684 ggccatctacacgatcc 248 4937 3 SEQ D NO 6038 ggagalactctggggc 2389 3485 SEQ D NO 6584 ggccatctacacgatcc 248 4937 3 SEQ D NO 6038 ggagalactctggggc 3438 3458 SEQ D NO 6584 ggccatctacacggtcc 275 7538 13 SEQ D NO 6036 ctoccaccgacacgactatt 3530 3349 SEQ D NO 6585 gctcgcaccctggggg 275 7538 13 SEQ D NO 6040 ccaccgcacacgaccatt 3530 3349 SEQ D NO 6585 gctgggggtccaccagtgga 275 6224 13 SEQ D NO 6044 ccctgacaccattgcaccc 3549 3559 SEQ D NO 6585 gctgggggtgtgtg 2621 6224 13 SEQ D NO 6044 ccctgacaccatgcaccc 3698 377 3690 SEQ D NO 6580 cagtlttgacaccgggg 3440 4859 13 SEQ D NO 6045 cccgtgacgcggggggggggggggggggggggggggggg		3343	3362 SEQ ID NO: 6582 cctttgacagactgcaggt	7770	7789	13
SEQ ID NO; 6038gagagatatelectgggge 3366 3388 SEQ ID NO; 6564gaceatetacaeagetec 4018 4037113 SEQ ID NO; 6040fccacegaacacaatett 3530 3458 SEQ ID NO; 6566 gaceccettagggggag 7519 753913 SEQ ID NO; 6040fccacegaacacaatett 3530 3548 SEQ ID NO; 6568 gacegatetecaceagtgga 6216 623415 SEQ ID NO; 6041 cacatetttectggcgae 3640 3569 SEQ ID NO; 6588 caggittgtgcaacacage 6216 623415 SEQ ID NO; 6042gctgccgggcgcccccc 3640 3569 SEQ ID NO; 6588 caggittgtgcaacacac 6242 556113 SEQ ID NO; 6046ccgggggggggggggggggggggggggggggggggg		3346	3365 SEQ ID NO: 6583 tccccggtcttcacagaca	3962	3981	13
SEQ D NO 6038 ctoccascagaccagagaga 3458 SEQ D NO 6586 sagagagacccoccottgaggagaga 6215 6234 3		3366	3385 SEQ ID NO: 6584 ggcccatctacacgctccc	4018	4037	13
SEQ D NO; 6040 tocaccgeaeacaatelt 3530 3549 SEQ D NO; 6566 agaggctccaccagtgga 6216 6234 13 SEQ D NO; 6040 socceaeagggccccccog 3671 3690 SEQ D NO; 6568 gregtggagtctgtgtgtg 6020 60391 3 SEQ D NO; 6040 coccggggcggtcccccg 3671 3690 SEQ D NO; 6568 coggggtgttgcaacaagcc 542 5561 13 SEQ D NO; 5044 coccggggcggtgtcccccc 3693 3717 SEQ D NO; 6568 cogggtgttgtgcaacaagcc 542 5561 13 SEQ D NO; 5044 coccggggcgcggcggggggggggggggggggggggg				7519	7538	13
SEQ D NO: 6041 accaractificatggggec 3640 3656 SEQ D NO: 6687 stogtoggagtegtigtigt 6020 6039 13 SEQ D NO: 6042 gertigeorgagecectocid 3681 3704 SEQ D NO: 6588 caggiftigtigacaacagcc 5642 5561 13 SEQ D NO: 6043 coccaggiggegegegegegegegegegegegegegegegegeg		3530	3549 SEQ ID NO: 6586 aagaggctccaccagtgga	6215	6234	13
SEQ ID NO: 6042 ggctgecgggcgctecceg 3671 3890 SEQ ID NO: 66886 cgggtttgtaaacacagec 5642 56611 3 SEQ ID NO: 6048 cccggggcggtgtgtacct 3688 3704 SEQ ID NO: 65890 aggttacaccggggg 4840 4859 1 3 SEQ ID NO: 6048 cccgagaccatgcacct 3688 3717 SEQ ID NO: 6590 aggtcaccggggtgggggg 6618 663713 SEQ ID NO: 6046 ccccaggacctgtacc 3688 3717 SEQ ID NO: 6591 acccgttagtcatggaa 3931 3950 1 3 SEQ ID NO: 6046 ccccaggacctgtacc 3802 3821 SEQ ID NO: 6593 cacctgcatggaacccc 5680 66991 3 SEQ ID NO: 6046 ccccaggacctgtacc 3902 3821 SEQ ID NO: 6593 cacctgcatggaacccc 5680 66991 3 SEQ ID NO: 6046 ccccacagacacattcaa 3996 4016 SEQ ID NO: 6595 cggaacattcaggaa 3914 1940 19 SEQ ID NO: 6050 caagtggcccaattacacag 4013 4032 SEQ ID NO: 6595 cggatgatgacaactattg 3848 8959 1 3 SEQ ID NO: 6050 caagtggcccaatgacga 4013 4032 SEQ ID NO: 6595 cgtggatggatactattg 3838 64018 3 SEQ ID NO: 6050 caagtggcccaaagg 4028 4047 SEQ ID NO: 6596 cgtgggtaggatactattg 3838 64018 3 SEQ ID NO: 6050 cagatgaccaaa 4114 4166 SEQ ID NO: 6596 cgtgggtaggatgatcattat 3946 582 ID 3 SEQ ID NO: 6050 cgatatgcggaccaa 4114 4166 SEQ ID NO: 6596 cgtggatggtagtactatac 3946 582 ID 3 SEQ ID NO: 6055 ggaacattaccacag 4028 4047 SEQ ID NO: 6596 cgtgggtggggatgtcatatac 3 SEQ ID NO: 6055 ggaacattaccacaggacaa 4114 4166 SEQ ID NO: 6596 cgtgggaaggtctatacac 3 SEQ ID NO: 6056 ggaacattaccacaggacaa 4141 4166 SEQ ID NO: 6600 aggtggaaggtctatacac 3 SEQ ID NO: 6057 gattcattgcaacgacaa 4236 4256 SEQ ID NO: 6600 agggggaaggaggggggggggggggggggggggg		3540	3559 SEQ ID NO: 6587 gtcgtcggagtcgtgtgtg	6020	6039	13
SEQ ID NO: 6048 ccccgggegogttectg 3685 3704 SEQ ID NO: 6698 caggttgtaactcgggg 4840 4859 13 SEQ ID NO: 6048 ccctggacaccat 3698 3717 SEQ ID NO: 6699 ccccgttgagtccatggaa 3931 3950 13 SEQ ID NO: 6048 ctccctggacaccatcat		3671	3690 SEO ID NO: 6588 cgggttgttgcaaacagcc	5542	5561	13
SEQ D NO: 6044 Excetgacacatgcact 3698 3717 SEQ D NO: 6690 agglcacqoggglggggga 6618 6637 13 SEQ D NO: 6045 totogglgcacgogggggggggggggggggggggggggggggg		3685	3704 SEO ID NO 6589 caggittgtaactccgggg	4840	4859	13
SEQ D NO 6045 tecgglegecggegggg 3762 3781 SEQ D NO 6591 cccgttgagtecatggaa 3931 3950 13 SEQ D NO 6046 teccecaggectgtctc		3698	3717SEO ID NO:6590 agetcacgcgggtggggga	6618	6637	13
SEQ ID NO;			5. 17 0EQ 15 110.1			
SEQ D NO; 6047gggggltgeaaaggcggtg 3904 3923 SEQ D NO; 6595 caccetgctgggaacccc 5680 5699 1 SEQ D NO; 6048 ltgtccccgttgagtcca 3926 3945 SEQ D NO; 6595 caccetgctgggaacccc 5680 5699 1 SEQ D NO; 6049 ltgtagaacttctgggcaaa 5613 5632 1 3 SEQ D NO; 6050 caagtggcccatctacacg 4013 4032 SEQ D NO; 6595 ltgagtgcaaatctacgg 5937 5965 1 3 SEQ D NO; 6050 caagtggcccatctacacgg 4028 4047 SEQ D NO; 6595 ltgagtgaactactttg 5389 5408 1 3 SEQ D NO; 6051 caagtctccaattgcaggacg 4028 4047 SEQ D NO; 6597 cyctycttcaggtttcgtg 5815 5834 1 3 SEQ D NO; 6052 cacatatacacgggccaaa 4144 4159 SEQ D NO; 6598 cttcaaagtgatagaacat 4144 4159 SEQ D NO; 6598 cttcaaagtgatatacaagtgacaa 4144 4150 SEQ D NO; 6599 tgtgaaagtgtctcatacac 5162 5181 1 3 SEQ D NO; 6054 gtatatgtctaaagcacat 4144 4150 SEQ D NO; 6059 tgtgaaagtgtctcatacacacacacacacacacacacac	SEQ ID NO.0045ktcccccaggcgggggg	3802	5. 5. OE& IB 1(5.)			
SEQ ID NO 6048 ttglcccgttgagtcca 3926 3945 SEQ ID NO 6594 gagaacttetgggcaaa 5632 13 380 SEQ ID NO 6050 605	SEQ ID NO: 0040 ciccoccaggoorgicios	0002	SEQIDINO.			
SEQ ID NC 3049 cogtaccgcaacattcca 3996 4015 SEQ ID NC 6595 Siggattgccaaatctacgg 8940 8959 13 SEQ ID NC 3050 caagtggcccatctacacg 4013 4032 SEQ ID NC 6596 Segtgggggatcatctttg 5386 5408 13 SEQ ID NC 3051 cacgctcccactggcagcg 4028 4047 SEQ ID NC 6597 cgctgcttcgggtttcggtggggggggggggggggggg		3904	0 0 0 0 0			
SEQ ID NO: 6050 casgitggeccatetacaeg 4013 4032 SEQ ID NO: 6596 cstgggtaggatcatetty 5386 5408 13 SEQ ID NO: 6051 cacgeteccaetggeageg 4028 4047 SEQ ID NO: 6597 cstgeteteggetteteggt 5815 5834 13 SEQ ID NO: 6053 cstatatgetaaagacaa 410 4159 SEQ ID NO: 6598 csteaaggteatgaegegg 5937 5956 13 SEQ ID NO: 6053 cstatatgetaaagacaa 410 4159 SEQ ID NO: 6599 cstaaaggteatgaegegg 5937 5956 13 SEQ ID NO: 6053 cstatatgetaaagacaa 410 4159 SEQ ID NO: 6600 digggaagtgeteataec 5163 5182 13 13 SEQ ID NO: 6056 gaaccattaccaeggege 4191 4210 SEQ ID NO: 6600 digggaagtgeteataec 5163 5181 13 SEQ ID NO: 6056 sgaaccattaccaeggege 4236 4255 SEQ ID NO: 6602 gaggeceggagaagagagaggg 6059 6078 13 SEQ ID NO: 6057 agitecttgecaeggtgg 4236 4255 SEQ ID NO: 6603 cacaagtacaaggetaataecae 7839 7856 13 SEQ ID NO: 6058 cacaagtacagetaecae 4463 4472 SEQ ID NO: 6604 cacaagtacaaggetaecae 4463 4472 SEQ ID NO: 6605 cacaadtgacaagget 7619 7638 13 SEQ ID NO: 6060 gagagagateccettetae 4453 4472 SEQ ID NO: 6605 gacagtgeteaetteae 4463 4472 SEQ ID NO: 6606 gagaggagecaetaagaec 4477 4496 SEQ ID NO: 6607 gaetggttgetgetget 9257 9276 13 SEQ ID NO: 6063 cacaatggacaagaecaeae 4482 4501 SEQ ID NO: 6607 gaetggttgetgetget 9257 9276 13 SEQ ID NO: 6065 gaetaccaeaegaecaeae 4482 4501 SEQ ID NO: 6607 gaetggttataccaeaeae 4482 4501 SEQ ID NO: 6607 gaetggttataccaeaeae 4612 4631 SEQ ID NO: 6613 acaatcaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeae			00 10 CEG IB 110.	L		
SEQ ID NO: 6052 cogcatatgcggccaagg 4028 4047 SEQ ID NO: 6597 cgctgcttcggctttcgtg 5815 5834 13 SEQ ID NO: 6052 ccgcatatgcggccaagg 4068 4087 SEQ ID NO: 6598 cctcaaaggtcatgagggg 5937 5956 13 SEQ ID NO: 6054 glatatgtctaaagcaca 4140 4159 SEQ ID NO: 6599 tgtggaagtgtctcatacg 5163 5182 13 SEQ ID NO: 6054 glatatgtctaaagcaca 4141 4160 SEQ ID NO: 6600 atgtggaagtgtctcatac 5162 5181 13 SEQ ID NO: 6055 glaccattaccacagggcg 4191 4210 SEQ ID NO: 6600 atgtggaagtgtctcatac 5162 5181 13 SEQ ID NO: 6056 glaccattaccacacaggacg 4236 4255 SEQ ID NO: 6603 cacagtcaaggctaaact 7839 7858 13 SEQ ID NO: 6057 agttccttgccgacggtg 4236 4255 SEQ ID NO: 6605 agaacggctgaagcgcgcgc 4352 4371 SEQ ID NO: 6605 agaacggctgaagcccacacacaggacg 4471 4496 SEQ ID NO: 6605 agaacggtggaaccccataaa 4482 4403 SEQ ID NO: 6605 agaacggtgaaccccataaaggacacacacacacacacac			028.2::0			
SEQ ID NO: 6052 Coccatagogocaaaaaaaaaaaaaaaaaaaaaaaaaaaaa						
SEQ ID NO: 6053 Gytalatytctaaagcaca		4028	10 11 OEQ 15 1101			
SEQ ID NO: 6054 glatatgictaaagcacat 4141 4160 SEQ ID NO: 6600 atgtagaagtgtctatac 5162 5181 1 3 3 3 3 3 3 3 3		4068	02 0 0 0 0			
SEQ ID NO: 6055 graccattaccacgggcgc			000 00 00			
SEQ ID NO. 6056 ccccattacgtactccac 4209 4228 SEQ ID NO. 6602 gtgggccgggagagaggggg 6058 6078 f13 SEQ ID NO. 6057 agttccttgcgacggtgg 4236 4255 SEQ ID NO. 6603 ccacagtcaaggctaaact 7839 7858 f13 SEQ ID NO. 8058 gagacggctggagogggg 4352 4371 SEQ ID NO. 6604 gccgggggaccccgatctc 7537 7556 f13 SEQ ID NO. 8059 caccgctacgcctccagga 4384 4403 SEQ ID NO. 6605 lcctacacatggacaggtg 7619 7638 f13 SEQ ID NO. 8060 tggagagatccccttcac 4453 4472 SEQ ID NO. 6606 ldgagaggtgctcacttcac 8257 927 927 927 927 927 927 927 927 927 92						
SEQ ID NO:	SEQ ID NO: 6055 ggaccattaccacgggcgc	4191				
SEQ ID NO: 6057 agttecttgccgacggtgg 4236 4255 SEQ ID NO: 6603 ccacagtcaaggcaaact 7839 7858 13 SEQ ID NO: 6058 gagacggctgaggcggg 4352 4371 SEQ ID NO: 6604 gccggggaacccgatct 7537 7556 13 SEQ ID NO: 6059 caccgctacgcctccagga 4384 4403 SEQ ID NO: 6605 tcctacacatggacaggtg 7619 7638 13 SEQ ID NO: 6060 tggagagatcccttctac 4453 4472 SEQ ID NO: 6606 gtagcagtgtctacttcca 6845 6864 13 SEQ ID NO: 6061 agccatcccatcgaagcc 4477 4496 SEQ ID NO: 6607 ggctgttrcgttgttgggt 9257 9276 13 SEQ ID NO: 6062 ccccatcgaagccatcaa 4482 4501 SEQ ID NO: 6608 gtagcagtgtctgttgtggg 7527 7546 13 SEQ ID NO: 6063 ccccatcgaagccatcaag 4483 4502 SEQ ID NO: 6610 cagctccgaattgtggcc 77414 7433 13 SEQ ID NO: 6064 ggcctcggaatcaatgctg 4568 4587 SEQ ID NO: 6610 cagctccgaattgtcggcc 77414 7433 13 SEQ ID NO: 6065 gtccgtcataccggacgag 4614 4631 SEQ ID NO: 6611 gctgagggatgtttgggac 6271 6290 13 SEQ ID NO: 6066 gtataccgaccagggag 4616 4635 SEQ ID NO: 6612 ctccattgagccacttgac 8968 8987 13 SEQ ID NO: 6066 gtataccgatcagttggatt 4668 4687 SEQ ID NO: 6614 gtcgattctggattctcggaaagttcccc 7184 7203 13 SEQ ID NO: 6067 ggggctataccgttggg 4724 4743 SEQ ID NO: 6615 gcaatctacggggcctgt 8988 8987 13 SEQ ID NO: 6070 tttggacccacacttacc	SEO ID NO: 6056 ccccattacgtactccac	4209	4228 SEQ ID NO: 6602 gtgggcccgggagaggggg	6059	6078	1 3
SEQ ID NO: 8058 gagacggctggagcgcgc 4352 4371 SEQ ID NO: 6604 gccgggggacccggatct 7537 755613 SEQ ID NO: 6059 caccgctacgcctccagga 4384 4403 SEQ ID NO: 6605 tcctacacatggacaggtg 7619 763813 SEQ ID NO: 6060 tggagagatccccttctac 4453 4472 SEQ ID NO: 6606 gtagcagtgctcacttcca 6845 686413 SEQ ID NO: 6061 agccatcccatcgaagcc 4477 4496 SEQ ID NO: 6607 ggctgttgtgtgtgtg 9257 927613 SEQ ID NO: 6062 tcccatcgaagccatcaa 4483 4502 SEQ ID NO: 6608 ttgaggggggagccgggggg 7527 754613 SEQ ID NO: 6063 cccatcgaagccatcaag 4483 4502 SEQ ID NO: 6609 ettgagggggagccgggggg 7527 754613 SEQ ID NO: 6064 ggcctcggaatcaatgctg 4568 4587 SEQ ID NO: 6610 cagctccgaattgtgggac 7414 743313 SEQ ID NO: 6066 gtcataccgaccagcgagg 4612 4631 SEQ ID NO: 6611 gctgagggattttgggac 6271 629013 SEQ ID NO: 6066 gtcataccgaccagcggag 4614 6435 SEQ ID NO: 6612 ctccattgagccacttgac 8968 898713 SEQ ID NO: 6067 gaggctataccggtgactt 4684 4637 SEQ ID NO: 6614 gtcgagttctggatcaag 8968 898713 SEQ ID NO: 6068 ctttgattcagttggaccaccttcacc 4624 4773 SEQ ID NO: 6614 gtcgagttctggatcaag 8947 896613 SEQ ID NO: 6070 cttggacccaccttcacc 4760 4779 SEQ ID NO: 6616 ggtgttgagtgacttcaag 8947 896613 SEQ ID NO: 6071 gagaggaacggcgtggaggggggg	SEO ID NO:6057 agttccttgccgacggtgg			7839	7858	13
SEQ ID NO: 6059 caccgctacgctccagga 4384 4403 SEQ ID NO: 6605 tcctacacatggacaggtg 7619 7638 13 SEQ ID NO: 6060 figgagagatccccttcac 4453 4472 SEQ ID NO: 6606 gtagacagtccattcca 6845 6864 13 SEQ ID NO: 6061 acccatcgaagccatcaa 4447 4496 SEQ ID NO: 6607 ggctgtgtcgtgtcgtgtcgtgt 7527 7546 13 SEQ ID NO: 6063 fcccatcgaagccatcaa 4482 4501 SEQ ID NO: 6660 gggggggggggggggggggggggggggggggggggg		+		7537	7556	13
SEQ ID NO: 6060 tggagagatcccttctac 4453 4472 SEQ ID NO: 6666 gtagcagtgctcattcca 6845 6864 13 SEQ ID NO: 6061 agccatccccatcgaagcc 4477 4496 SEQ ID NO: 6607 ggctggttcgttgctggct 9257 9276 13 SEQ ID NO: 6062 tccccatcgaagccatcaa 4482 4501 SEQ ID NO: 6608 ttgagggggagccggggg 7527 7546 13 SEQ ID NO: 6063 ccccatcgaagccatcaag 4483 4502 SEQ ID NO: 6609 cttgaggggagccggggg 7526 7545 13 SEQ ID NO: 6064 ggcctcggaatcaatgctg 4568 4587 SEQ ID NO: 6611 gctgaggggatgttgggac 6271 6290 13 SEQ ID NO: 6065 gtccgtcataccgaccagc 4612 4631 SEQ ID NO: 6611 gctgagggatgtttgggac 6271 6290 13 SEQ ID NO: 6066 gtcataccgaccagcgggg 4616 4635 SEQ ID NO: 6611 gctgagggatgtttgggac 6271 6290 13 SEQ ID NO: 6067 cgggctataccggtgact 4684 4687 SEQ ID NO: 6612 ctccattgagcccattgac 8968 8987 13 SEQ ID NO: 6069 acagtcgacttcagcttgg 4724 4743 SEQ ID NO: 6614 gtcgagttcctggtaaaag 8947 8966 13 SEQ ID NO: 6070 cttggacccaccttcacc 4738 4757 SEQ ID NO: 6615 ccaaattcacggggacttt 8947 8966 13 SEQ ID NO: 6071 gaggagaatgacggccgcccctcacc 4760 4779 SEQ ID NO: 6618 gctgtgagtgacttcaag 6301 6320 13 SEQ ID NO: 6072 ggggaatacacaggttgtatacagggg				7619	7638	13
SEQ ID NO: 6061 agccatcccatcgaagcc 4477 4496 SEQ ID NO: 6607 getgtgttgttgttgtgtgt 9257 9276 13 SEQ ID NO: 6062 tccccatcgaagccatcaaa 4482 4501 SEQ ID NO: 6608 ttgagggggagccgggggg 7527 7546 13 SEQ ID NO: 6063 ccccatcgaagccatcaaag 4483 4502 SEQ ID NO: 6609 cttgagggggagccgggggg 7526 7545 13 SEQ ID NO: 6064 ggcctcggaatcaatgctg 4568 4587 SEQ ID NO: 6610 cagctccgaattgttgggcc 7414 7433 13 SEQ ID NO: 6065 gtcgtataccgaccagcagga 4616 4635 SEQ ID NO: 6612 ctcattgagccacttgag 6271 6290 13 SEQ ID NO: 6066 gtcttataccgaccagtggactt 4684 4703 SEQ ID NO: 6612 ctcattgagccacttgac 7184 7203 13 SEQ ID NO: 6069 acagtcgacttcagttggacttgag 4724 4743 SEQ ID NO: 6614 gtcgagttacagagttcagagt				6845	6864	13
SEQ ID NO: 6062 toccategaagccateaa 4482 4501 SEQ ID NO: 6608 ttgaggggagccggggga 7527 7546 13 SEQ ID NO: 6063 coccategaagccateaag 4483 4502 SEQ ID NO: 6609 cttgagggggagccgggggg 7526 7545 13 SEQ ID NO: 6064 ggcctcggaatcaatgctg 4568 4587 SEQ ID NO: 6610 cagctccgaattgtcggcc 7414 7433 13 SEQ ID NO: 6065 gtccgtcataccgaccagc 4612 4631 SEQ ID NO: 6611 gctgagggatgtttgggac 6271 6290 13 SEQ ID NO: 6066 gtcataccgaccagcgggag 4616 4635 SEQ ID NO: 6612 ctccattgagccacttgac 8968 8987 13 SEQ ID NO: 6067 cgggctataccggtgactt 4668 4687 SEQ ID NO: 6613 aagtccaagaagttccccg 7184 7203 13 SEQ ID NO: 6068 ctttgattcagtgaccaccacttcagc 4684 4703 SEQ ID NO: 6614 gtcgagttcctggtaaaag 8213 8232 13 SEQ ID NO: 6069 acagtcgaccttcagcttgg 4724 4743 SEQ ID NO: 6615 ccaaatctacgggggcctgt 8947 8966 13 SEQ ID NO: 6070 cttggaccccaccttcacc 4738 4757 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 6320 13 SEQ ID NO: 6071 gagacgacgacgtgcacggggg 4806 4825 SEQ ID NO: 6617 ggggacacacggacgtgccc 4891 1910 13 SEQ ID NO: 6073 ggggtatacacgggggg 4806 4825 SEQ ID NO: 6618 cccccaggggagttgccc 8657 8676 13 SEQ ID NO: 6074 ggggggaacggcctctaggc 4854 4874 SEQ ID NO: 6620 gccctgcacgcttcccc 6546 6565 13 SEQ ID NO: 6075 tgaccggggctgtgttg				9257	9276	13
SEQ ID NO: 6063 ccccategaagccateaag 4483 4502 SEQ ID NO: 6609 cttgagggggagccggggg 7526 754513 SEQ ID NO: 6064 ggcctcggaatcaatgctg 4568 4587 SEQ ID NO: 6610 cagctccgaattgtcggcc 7414 743313 SEQ ID NO: 6065 gtccgtcataccgaccagc 4612 4631 SEQ ID NO: 6611 gctgagggatgttttgggac 6271 629013 SEQ ID NO: 6066 gtcataccgaccagcggag 4616 4635 SEQ ID NO: 6612 ctccattgagccacttgac 8968 898713 SEQ ID NO: 6067 cgggctataccggtgactt 4668 4687 SEQ ID NO: 6613 aagtccaagaagttcccgg 7184 720313 SEQ ID NO: 6068 ctttgattcagtgatcgac 4684 4703 SEQ ID NO: 6614 gtcgagttcctggtaaaag 8213 823213 SEQ ID NO: 6070 cttggaccccacttcacc 4724 4743 SEQ ID NO: 6615 ccaaatctacggggcctt 8947 896613 SEQ ID NO: 6071 gagggaacgaccgtgcccc 4760 4779 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 632013 SEQ ID NO: 6072 ggggtagactgcagggggggggggggggggggggggggg				7527	7546	13
SEQ ID NO: 6064 6064 4568 4587 SEQ ID NO: 6610 cagetcegaattgteggec 7414 7433 13 SEQ ID NO: 6065 6065 gtccgtcataccgaccagc 4612 4631 SEQ ID NO: 6611 gctgagggatgtttgggac 6271 6290 13 SEQ ID NO: 6066 gtcataccgaccagcgag 4616 4635 SEQ ID NO: 6612 ctccattgagccacttgac 8968 8987 13 SEQ ID NO: 6067 cgggctataccggtgactt 4668 4687 SEQ ID NO: 6613 aagtccaagaagttccccg 7184 7203 13 SEQ ID NO: 6068 6068 4684 4703 SEQ ID NO: 6614 gtcgagttcctggtaaaag 8213 8232 13 SEQ ID NO: 6069 acagtcgacttcagcttgg 4724 4743 SEQ ID NO: 6615 ccaaatctacgggggcttg 8947 8966 13 SEQ ID NO: 6070 tdgagcaccaccttcacc 4738 4757 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 6320 13 SEQ ID NO: 6072 gggggtagactgcaggggggggggggggggggggggggg				7526	7545	13
SEQ ID NO: 6065 gtccgtcataccgaccagc 4612 4631 SEQ ID NO: 66611 gctgagggatgtttgggac 6271 62901 3 SEQ ID NO: 6066 gtcataccgaccagcggag 4616 4635 SEQ ID NO: 6612 ctccattgagccacttgac 8968 8987 1 3 SEQ ID NO: 6067 cgggctataccggtgactt 4668 4687 SEQ ID NO: 6613 aagtccaagaagttccccg 7184 7203 1 3 SEQ ID NO: 6068 cittgattcagtgatcgac 4684 4703 SEQ ID NO: 6614 gtcgagttcttggtaaaag 8213 8232 1 3 SEQ ID NO: 6069 acagtcgacttcagcttgg 4724 4743 SEQ ID NO: 6615 ccaaatctacggggcttgt 8947 8966 1 3 SEQ ID NO: 6070 cttggaccccaccttcacc 4738 4757 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 6320 1 3 SEQ ID NO: 6071 gagacgacgaccgtgcccc 4760 4779 SEQ ID NO: 6617 ggggacaaccgactgtccc 1891 1910 1 3 SEQ ID NO: 6072 ggggtaggactggcaggggg 4806 4825 SEQ ID NO: 6619 tacacatggacaggtgccc 8657 8676 1 3 SEQ ID NO: 6074 gggggaacggccctcgggc 4851 4874 SEQ ID NO: 6620 gcccctgcacgccttcccc 6546 6565 1 3 SEQ ID NO: 6075 tgacgcgggcttgtcttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggcttgtcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtca 8009 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgtggcgcgctgacgaggca 3164 3183 1 3 SEQ ID NO: 6080 gggc		4568	4587 SFO ID NO:6610 cagetecgaattgteggee	7414	7433	13
SEQ ID NO: 6066 gtcataccgaccagcgag 4616 4635 SEQ ID NO: 6612 ctccattgagccacttgac 8968 8987 13 SEQ ID NO: 6067 cgggctataccggtgactt 4668 4687 SEQ ID NO: 6613 aagtccaagaagttcccg 7184 7203 13 SEQ ID NO: 6068 ctttgattcagtgatcgac 4684 4703 SEQ ID NO: 6614 gtcgagttcctggtaaaag 821 8232 13 SEQ ID NO: 6069 acagtcgacttcagcttgg 4724 4743 SEQ ID NO: 6615 ccaaatctacggggcctgt 8947 8966 13 SEQ ID NO: 6070 cttggaccccaccttcacc 4738 4757 SEQ ID NO: 6615 ggtgttgagtgacttcaag 6301 6320 13 SEQ ID NO: 6071 gagacgacgaccgtgccc 4760 4779 SEQ ID NO: 6617 ggggacaaccgatcgtctc 1891 1910 13 SEQ ID NO: 6072 ggggtaggactggcagggg 4806 4825 SEQ ID NO: 6618 cccccggggacttgccc 8657 8676 13 SEQ ID NO: 6073 gggcatataccaggtttgta 4831 4850 SEQ ID NO: 6619 tacacattggacagtgccc 7622 7641 13 SEQ ID NO: 6074 gggggaacggccttgggc 4855 4874 SEQ ID NO: 6620 gcccttgcacgcettccc 6546 6565 13 SEQ ID NO: 6075 tgacgcgggctgtgtcttggt 4906 4925 SEQ ID NO: 6622 accaattgacaccaccgtca 8009 8028 13 SEQ ID NO: 6076 gacgcgggctgtgtcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtca 8008 8027 13 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgtagcggca 5849 5868 13 SEQ ID NO: 6079 ggtggcataccaagccaca				6271	6290	13
SEQ ID NO: 6067 cgggctataccggtgactt 4668 4687 SEQ ID NO: 6613 aagtccaagaagttcccg 7184 72031 3 SEQ ID NO: 6068 ctttgattcagtgactgact 4684 4703 SEQ ID NO: 6614 gtcgagttcctggtaaaag 8213 82321 3 SEQ ID NO: 6069 acagtcgacttcagcttgg 4724 4743 SEQ ID NO: 6615 ccaaatctacggggcctgt 8947 8966 1 3 SEQ ID NO: 6070 cttggaccccaccttcacc 4738 4757 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 6320 1 3 SEQ ID NO: 6071 gagacgacgaccgtgcccc 4760 4779 SEQ ID NO: 6617 gggggacaaccgatgtctc 1891 1910 1 3 SEQ ID NO: 6072 ggggtaggactggcagggg 4806 4825 SEQ ID NO: 6618 cccccggggacttgcccc 8657 8676 1 3 SEQ ID NO: 6073 ggggcatatacaggtttgta 4831 4850 SEQ ID NO: 6619 tacacatggacaggtgccc 7622 7641 1 3 SEQ ID NO: 6074 ggggggaacggccctcgggc 4855 4874 SEQ ID NO: 6620 gcccctgcacgccttcccc 6546 6565 1 3 SEQ ID NO: 6075 tgacgcgggctgtgcttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtc 8008 8027 1 3 SEQ ID NO: 6078 tgcccacttcctgtcccag 5050 5069 SEQ ID NO: 6624 ctgggcgctgagggca 5849 5868 1 3 SEQ ID NO: 6079 ggtggcataccaaggccaca 5101 5120 SEQ ID NO: 6626 ggaggccgcaagccagcca 806 8085 1 3 SEQ ID NO: 6080 gggctcagggcccaccacc				8968	8987	13
SEQ ID NO: 6068 ctttgattcagtgatcgac		4668	1.5550000000000000000000000000000000000			
SEQ ID NO: 6069 acagtcgacttcagcttgg 4724 4743 SEQ ID NO: 6615 ccaaatctacggggcctgt 8947 8966 13 SEQ ID NO: 6070 cttggaccccaccttcacc 4738 4757 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 6320 13 SEQ ID NO: 6071 gagacgacgaccgtgcccc 4760 4779 SEQ ID NO: 6617 ggggacaaccgatcgtccc 1891 1910 13 SEQ ID NO: 6072 ggggtaggactggcagggggggggggggggggggggggg		4684	4703SEO ID NO:6614gtcgagttcctggtaaaag			
SEQ ID NO: 6070 cttggaccccaccttcacc 4738 4757 SEQ ID NO: 6616 ggtgttgagtgacttcaag 6301 6320 13 SEQ ID NO: 6071 gagacgacgaccgtgcccc 4760 4779 SEQ ID NO: 6617 ggggacaaccgatcgtcc 1891 1910 13 SEQ ID NO: 6072 ggggtaggactggcagggg 4806 4825 SEQ ID NO: 6618 ccccccggggacttgcccc 8657 8676 13 SEQ ID NO: 6073 gggcatatacaggtttgta 4831 4850 SEQ ID NO: 6619 tacacatggacaggtcccc 7622 7641 13 SEQ ID NO: 6074 gggggaacggccctcgggc 4855 4874 SEQ ID NO: 6620 gcccctgcacgccttcccc 6546 6565 13 SEQ ID NO: 6075 tgacgcgggctgtgcttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 13 SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtca 8008 8027 13 SEQ ID NO: 6077 tgcttggtacgaggctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttgtggcagca 5849 5868 13 SEQ ID NO: 6079 ggtggcataccaaggccaca 5050 5069 SEQ ID NO: 6624 ctgggcgcgtgtacgggcc 3164 3183 13 SEQ ID NO: 6080 gggctcagggcccacccc 5130 5149 SEQ ID NO: 6626 ggagggccgcaaggccgcaagccagccc 8066 8085 13 SEQ ID NO: 6081 ccatcgtgggatcaactact 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 13		4724				
SEQ ID NO: 6071 gagacgacgacgtgcccc 4760 4779 SEQ ID NO: 6617 gggggacaaccgatcgtctc 1891 1910 1 3 SEQ ID NO: 6072 gggggtaggactggcagggg 4806 4825 SEQ ID NO: 6618 cccccgggggacttgcccc 8657 8676 1 3 SEQ ID NO: 6073 gggcatatacaggtttgta 4831 4850 SEQ ID NO: 6619 tacacatggacaggtgccc 7622 7641 1 3 SEQ ID NO: 6074 gggggaacggccctcgggc 4855 4874 SEQ ID NO: 6620 gcccctgcacgccttcccc 6546 6565 1 3 SEQ ID NO: 6075 tgacgcgggctgtgcttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtc 8008 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO: 6079 tgcttggtacgagcaccacc 5050 5069 SEQ ID NO: 6624 ctgggcgcgctgacgggca 3164 3183 1 3 SEQ ID NO: 6079 ggtggcataccaaggccaca 5101 5120 SEQ ID NO: 6626 ggaggccgcaagccacaccacgcc 8066 8085 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3		4738				
SEQ ID NO: 6072 ggggtaggactggcagggg 4806 4825 SEQ ID NO: 6618 ccccccggggacttgcccc 8657 8676 1 3 SEQ ID NO: 6073 gggcatatacaggtttgta 4831 4850 SEQ ID NO: 6619 tacacatggacaggtgccc 7622 7641 1 3 SEQ ID NO: 6074 gggggaacggccctcgggc 4855 4874 SEQ ID NO: 6620 gcccctgcacgccttcccc 6546 6565 1 3 SEQ ID NO: 6075 tgacgcgggctgtgcttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtca 8008 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO: 6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO: 6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3		4760	1. 5. OL. & ID 110 1- 55-5 6 6 6			
SEQ ID NO: 6073 gggcatatacaggtttgta 4831 4850 SEQ ID NO: 6619 tacacatggacaggtgccc 7622 7641 1 3 SEQ ID NO: 6074 gggggaacggccetcgggc 4855 4874 SEQ ID NO: 6620 gcccctgcacgccttcccc 6546 6565 1 3 SEQ ID NO: 6075 tgacgcgggctgtgttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggctgtgttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtca 8008 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO: 6078 tgcccacttcctgtcccag 5050 5069 SEQ ID NO: 6624 ctgggcgcgctgacgggca 3164 3183 1 3 SEQ ID NO: 6079 ggtggcataccaagcaca 5101 5120 SEQ ID NO: 6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3						
SEQ ID NO: 6074 ggggggaacggcctcgggc 4855 4874 SEQ ID NO: 6620 gccctgcacgccttcccc 6546 6565 1 3 SEQ ID NO: 6075 tgacgcgggctgtgcttgg 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtc 8008 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO: 6078 tgcccacttcctgtcccag 5050 5069 SEQ ID NO: 6624 ctgggcgcgtgtacgggca 3164 3183 1 3 SEQ ID NO: 6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO: 6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaactgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3			0000 0			
SEQ ID NO: 6075 tgacgcgggctgtgcttggt 4906 4925 SEQ ID NO: 6621 ccaattgacaccaccgtca 8009 8028 1 3 SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtc 8008 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO: 6078 tgcccacttcctgtccag 5050 5069 SEQ ID NO: 6624 ctgggcgcgtgacgggca 3164 3183 1 3 SEQ ID NO: 6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO: 6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3						
SEQ ID NO: 6076 gacgcgggctgtgcttggt 4907 4926 SEQ ID NO: 6622 accaattgacaccaccgtc 8008 8027 1 3 SEQ ID NO: 6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO: 6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO: 6078 tgcccacttcctgtccag 5050 5069 SEQ ID NO: 6624 ctgggcgcgtgacgggca 3164 3183 1 3 SEQ ID NO: 6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO: 6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3					l	
SEQ ID NO:6077 tgcttggtacgagctcacc 4918 4937 SEQ ID NO:6623 ggtgcggctgttggcagca 5849 5868 1 3 SEQ ID NO:6078 tgcccacttcctgtccaag 5050 5069 SEQ ID NO:6624 ctgggcgcgtgacgggca 3164 3183 1 3 SEQ ID NO:6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO:6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO:6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO:6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO:6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO:6627 acattctggcgggctatgg 5892 5911 1 3			T			
SEQ ID NO: 6078 tgcccacttcctgtcccag 5050 5069 SEQ ID NO: 6624 ctgggcgcgctgacgggca 3164 3183 1 3 SEQ ID NO: 6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO: 6625 tgtgacaccaattgacacc 8002 8021 1 3 SEQ ID NO: 6080 gggctcaggcccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3						
SEQ ID NO:6079 ggtggcataccaagccaca 5101 5120 SEQ ID NO:6625 tgtgacaccaattgacacc 8002 8021 13 SEQ ID NO:6080 gggctcaggccccacctcc 5130 5149 SEQ ID NO:6626 ggaggccgcaagccagccc 8066 8085 13 SEQ ID NO:6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO:6627 acattctggcgggctatgg 5892 5911 13						
SEQ ID NO: 6080 gggctcaggccccacctcc 5130 5149 SEQ ID NO: 6626 ggaggccgcaagccagccc 8066 8085 1 3 SEQ ID NO: 6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO: 6627 acattctggcgggctatgg 5892 5911 1 3			100000000000000000000000000000000000000			
SEQ ID NO:6081 ccatcgtgggatcaaatgt 5147 5166 SEQ ID NO:6627 acattctggcgggctatgg 5892 5911 13	SEQ ID NO: 6079 ggtggcataccaagccaca					
9EQ ID NO. 900 1 900 1900 1900 1900 1900 1900 190	SEQ ID NO: 6080 gggctcaggccccacctcc		OLG ID NO.			, , ,
SEQ ID NO:6082 treatacggctaaaacccac 5175 5194 SEQ ID NO:6628 gtggccttcaaggtcatga 5933 5952 1 3	SEQ ID NO: 6081 ccatcgtgggatcaaatgt					
	SEQ ID NO: 6082 tcatacggctaaaacccac	5175	5194 SEQ ID NO: 6628 gtggccttcaaggtcatga	5933	5952	1 3

WO 2004/091515		PCT/US2004/011255
SEQ ID NO: 6083 tgctgtataggctaggggc	5214	5233 SEQ ID NO: 6629 gcccgaaccggacgtagca 6832 685113
SEQ ID NO: 6084 ccaaatacatcatggcatg	5268	5287 SEQ ID NO:6630 catgcctcaggaaacttgg 9072 909113
SEQ ID NO: 6085 ggagtcctcgcagctctgg	5336	5355 SEQ ID NO: 6631 ccagctgtctgcgccctcc 6955 697413
SEQ ID NO: 6086 gcctgacaacaggcagtgt	5364	5383 SEQ ID NO:6632 acactccaggccaataggc 9401 9420 1 3
SEQ ID NO: 6087 agccaccaagcaggcggag		5576 SEQ ID NO:6633 ctccagttaactcctggct 8820 883913
SEQ ID NO: 6088 catgtggaatttcatcagc		5654 SEQ ID NO: 6634 gctgcgccatcacaacatg 7702 772113
SEQ ID NO: 6089 ctctatcaccagcccgctc	5728	5747 SEQ ID NO: 6635 gagccgcatgactgcagag 9565 958413
SEQ ID NO: 6090 cccagaacaccctcctgtt		5770 SEQ ID NO:6636 aacatcttgggggggtggg 5771 5790 13
SEQ ID NO: 6091 ctcctgtttaacatcttgg		5781 SEQ ID NO: 6637 ccaatcgatgaacggggag 9378 9397 1 3
SEQ ID NO: 6092ttgggggggtgggtagccg		5796 SEQ ID NO:6638 cggcgccaaactattccaa 6564 658313
SEQ ID NO.0032tragggggggggggggggggggggggggggggggggggg		5837 SEQ ID NO: 6639 gcccgaaccggacgtagca 6832 685113
SEQ ID NO: 6093 tgcttcggctttcgtgggc		5848 SEQ ID NO: 6640 gcgagcggcgtgctgacga 8453 847213
SEQ ID NO: 6094 tegtgggcgctggtatege	5045	1
SEQ ID NO: 6095 cgctggtgcggctgttggc		SEQ ID NO.
SEQ ID NO: 6096 cggctgttggcagcatagg		1001 - OEQ ID ITO 1
SEQ ID NO: 6097 ggggcaggggtggctggcg	5909	
SEQ ID NO: 6098 ctggcgcgctcgtggcctt	5922	5941 SEQ ID NO: 6644 aagggaggccgcaagccag 8063 808213
SEQ ID NO: 6099 tggcgcgctcgtggccttc		5942 SEQ ID NO: 6645 gaagggaggccgcaagcca 8062 8081 13
SEQ ID NO: 6100 gagcggcgaggcgccctct		5969 SEQ ID NO: 6646 agagcgtcgtctgctgctc 7596 7615 1 3
SEQ ID NO: 6101 tgggcccgggagagggggg		6079 SEQ ID NO: 6647 gcccatctacacgctccca 4019 403813
SEQ ID NO: 6102 cggctgatagcgttcgctt		6114 SEQ ID NO: 6648 aagcaggcggaggctgccg 5564 558313
SEQ ID NO: 6103 gtgcctgagagcgacgccg	6146	6165 SEQ ID NO: 6649 cggccgccgacagcggcac 7428 744713
SEQ ID NO: 6104 atgaggactgttctacgcc	6237	6256 SEQ ID NO: 6650 ggcggggggacggcatcat 6399 6418 13
SEQ ID NO: 6105 gtccaagctcctgccgcgg		6350 SEQ ID NO: 6651 ccgctccgtgtgggaggac 7969 7988 13
SEQ ID NO: 6106 acagatcgccggacatgtc		6461 SEQ ID NO: 6652 gacatatatcacagcctgt 9287 930613
SEQ ID NO: 6107 acgtggcatggaacattcc		6525 SEQ ID NO:6653 ggaagaacccggactacgt 7257 7276 1 3
SEQ ID NO: 6108 gggccctgcacgccttcc		6563 SEQ ID NO: 6654 ggaagaaagcaagctgccc 7660 7679 1 3
SEQ ID NO: 6109 agtgcccatgtcaggttcc		6694 SEQ ID NO: 6655 ggaaacagctagacacact 8803 8822 13
SEQ ID NO:6110tgcccatgtcaggtccag	6677	0404040
SEQ ID NO:6111 cageteetgagttttcac	1	3 6712 SEQ ID NO: 6657 gtgagagcgtcgtctgctg 7593 7612 13
SEQ ID NO:6112 tcacggaggtggatggggt		3 6727 SEQ ID NO: 6658 accettcctcaagccgtga 8153 817213
SEQ ID NO:6112 dadggaggtggatggggtg		6728 SEQ ID NO: 6659 caccettecteagecgtg 8152 8171 13
SEQ ID NO: 6114 gacccctcccacattacag	6872	10.000
SEQ ID NO:6115 ttggccagggggtctcccc	1	6930 SEQ ID NO: 6661 ggggtgggtagccgcccaa 5782 5801 13
SEQ ID NO:6116 ccttgagggggacatgcac	6972	6991 SEQ ID NO: 6662 gtgcttaaggagatgaagg 7811 783013
SEQ ID NO: 6117 ggagatgggcggaaacatg		7079 SEQ ID NO: 6663 gatgacccatttcttctcc 8887 890613
SEQ ID NO:6118 gagatgggcggaaacatca		1 7080 SEQ ID NO: 6664 tgatgacccatttcttctc 8886 8905 13
SEQ ID NO:6119 ctagactctttcgagccgc		27131 SEQ ID NO: 6665 gcggcgtgctgacgactag 8457 8476 13
SEQ ID NO:6120 tagactetttegageeget		3 7132 SEQ ID NO: 6666 agcgacgggtcttggtcta 7556 7575 13
SEQ ID NO:6121 agaatgaaatatccattgc		7168SEQ ID NO: 6667 gcaaagaatgaggttttct 8030 804913
SEQ ID NO:6122 ttgcggcggagatcctgcg	7164	4 7183 SEQ ID NO: 6668 cgcacgatgcatctggcaa 8730 8749 13
SEQ ID NO:6123 agcgaggaggctggtgaga		7599SEQ ID NO: 6669tctcgtgcccgacccgct 9305 932413
SEQ ID NO:6124tgagagcgtcgtctgctgc		4 7613 SEQ ID NO; 6670 gcagtaaagaccaagctca 9197 921613
SEQ ID NO. 6125 startage garden start	760	1 7620 SEQ ID NO: 6671 acatggtctacgccacgac 7716 773513
SEQ ID NO: 6125 gtcgtctgctgctcaatgt SEQ ID NO: 6126 tgcgccatcacaacatggt	770	4 7723 SEQ ID NO: 6672 accatgtctcccccacgca 6123 6142 13
	775	77776SEQ ID NO: 6673caaagaatgaggttttctg 8031 8050 13
SEQ ID NO: 6127 cagaagaaggtcacctttg		9 7808SEQ ID NO:6674ccggaacctatccagcagg 7936 795513
SEQ ID NO: 6128 cctggatgaccattaccgg		7 7826 SEQ ID NO: 6675 catcgggccaggagcgtcc 9116 913513
SEQ ID NO: 6129 ggacgtgcttaaggagatg		2 8051 SEQ ID NO:6676 gcagaagaaggtcaccttt
SEQ ID NO: 6130 aaagaatgaggttttctgc		8129SEQ ID NO:6677cttcatgcctcaggaaact 9069 908813
SEQ ID NO: 6131 agttcgtgtatgcgagaag		5 8384 SEQ ID NO:6678 tgtgaaaggtccgtgagcc 9551 9570 13
SEQ ID NO: 6132 ggctataaaatcgctcaca	1000	221

WO 2004/091515	PCT/US2004/011255
SEQ ID NO: 6133 ttctccatccttctagctc	8900 8919 SEQ ID NO: 6679 gagcggagggggatgagaa 7134 7153 1 3
SEQ ID NO: 6134 tgtctcgtgcccgaccccg	9303 9322 SEQ ID NO: 6680 cggggcgcgttccctgaca 3688 3707 1 3

Table 15. Sequences from human hepatitis C virus (HCV) (Direct Match Type)

	Source	Start	End		Match	Start	End	Match
		Index	Index			Index	Index	#
SEQ ID NO: 5285	ttttttttttttttttt	9446	9465	SEQ ID NO:5288	ttittittittittiti	9466	9485	2
SEQ ID NO: 5286	ttttttttttttttttt	9446	9465	SEQ ID NO:5289	tttttttttttttttt	9465	9484	1
SEQ ID NO: 5287	ttttttttttttttttt	9447	9466	SEQ ID NO:5290	tttttttttttttttt	9466	9485	1

Table 16. Sequences of Exemplary Gene Targets

gi|4502152|ref|NM 000384.1| Homo sapiens apolipoprotein B (including Ag(x) antigen) (APOB), mRNA CAGGGCCGCGAGGCCGAGGCCGCAGCCCAGGAGCCGCCCCACCGCAGCTGGCGATGGACCCGCCG AAGAGGAAATGCTGGAAAATGTCAGCCTGGTCTGTCCAAAAGATGCGACCCGATTCAAGCACCTCCGGAA 10 GTACACATACAACTATGAGGCTGAGAGTTCCAGTGGAGTCCCTGGGACTGCTGATTCAAGAAGTGCCACC CCCTGAAGAGGTGTATGGCTTCAACCCTGAGGGCAAAGCCTTGCTGAAGAAAACCAAGAACTCTGAGGA GTTTGCTGCAGCCATGTCCAGGTATGAGCTCAAGCTGGCCATTCCAGAAGGGAAGCAGGTTTTCCTTTAC $\tt CCGGAGAAGATGAACCTACTTACATCCTGAACATCAAGAGGGGCATCATTTCTGCCCTCCTGGTTCCCC$ CGTCAAGACGAGGAAGGCAATGTGGCAACAGAAATATCCACTGAAAGAGACCTGGGGCAGTGTGATCGC TTCAAGCCCATCCGCACAGGCATCAGCCCACTTGCTCTCATCAAAGGCATGACCCGCCCCTTGTCAACTC TGATCAGCAGCAGCCAGTCCTGTCAGTACACACTGGACGCTAAGAGGAAGCATGTGGCAGAAGCCATCTG CAAGGAGCAACACCTCTTCCTGCCTTTCTCCTACAACAATAAGTATGGGATGGTAGCACAAGTGACACAG 20 ACTTTGAAACTTGAAGACACCCAAAGATCAACAGCCGCTTCTTTGGTGAAGGTACTAAGAAGATGGGCC TCGCATTTGAGAGCACCAAATCCACATCACCTCCAAAGCAGCCGAAGCTGTTTTGAAGACTCTCCAGGA ACTGAAAAAACTAACCATCTCTGAGCAAAATATCCAGAGAGCTAATCTCTTCAATAAGCTGGTTACTGAG CTGAGAGGCCTCAGTGATGAAGCAGTCACATCTCTCTTGCCACAGCTGATTGAGGTGTCCAGCCCCATCA $\tt CTTTACAAGCCTTGGTTCAGTGGGACAGCCTCAGTGCTCCACTCACATCCTCCAGTGGCTGAAACGTGT$ GCATGCCAACCCCTTCTGATAGATGTGGTCACCTACCTGGTGGCCCTGATCCCCGAGCCCTCAGCACAG CAGCTGCGAGAGATCTTCAACATGGCGAGGGATCAGCGCAGCCGAGCCACCTTGTATGCGCTGAGCCACG CGGTCAACAACTATCATAAGACAAACCCTACAGGGACCCAGGAGCTGCTGGACATTGCTAATTACCTGAT GGAACAGATTCAAGATGACTGCACTGGGGATGAAGATTACACCTATTTGATTCTGCGGGTCATTGGAAAT ATGGGCCAAACCATGGAGCAGTTAACTCCAGAACTCAAGTCTTCAATCCTCAAATGTGTCCAAAGTACAA 30 AGCCATCACTGATGATCCAGAAAGCTGCCATCCAGGCTCTGCGGAAAATGGAGCCTAAAGACAAGGACCA GGAGGTTCTTCTTCAGACTTTCCTTGATGATGCTTCTCCGGGAGATAAGCGACTGGCTGCCTATCTTATG ${\tt TTGATGAGGAGTCCTTCACAGGCAGATATTAACAAAATTGTCCAAATTCTACCATGGGAACAGAATGAGC}$ AAGTGAAGAACTTTGTGGCTTCCCATATTGCCAATATCTTGAACTCAGAAGAATTGGATATCCAAGATCT GAAAAAGTTAGTGAAAGAAGCTCTGAAAGAATCTCAACTTCCAACTGTCATGGACTTCAGAAAAATTCTCT CGGAACTATCAACTCTACAAATCTGTTTCTCTTCCATCACTTGACCCAGCCTCAGCCAAAATAGAAGGGA 35 TTTGGGAAGCAAGGATTTTTCCCAGACAGTGTCAACAAAGCTTTGTACTGGGTTAATGGTCAAGTTCCTG ATGGTGTCTCTAAGGTCTTAGTGGACCACTTTGGCTATACCAAAGATGATAAACATGAGCAGGATATGGT AAATGGAATAATGCTCAGTGTTGAGAAGCTGATTAAAGATTTGAAATCCAAAGAAGTCCCGGAAGCCAGA GCCTACCTCCGCATCTTGGGAGAGGAGCTTGGTTTTGCCAGTCTCCATGACCTCCAGCTCCTGGGAAAGC TGCTTCTGATGGGTGCCCGCACTCTGCAGGGGATCCCCCAGATGATTGGAGAGGTCATCAGGAAGGGCTC AAAGAATGACTTTTTCTTCACTACATCTTCATGGAGAATGCCTTTGAACTCCCCACTGGAGCTGGATTA CAGTTGCAAATATCTTCATCTGGAGTCATTGCTCCCGGAGCCAAGGCTGGAGTAAAACTGGAAGTAGCCA ACATGCAGGCTGAACTGGTGGCAAAACCCTCCGTGTCTGTGGAGTTTGTGACAAATATGGGCATCATCAT TCCGGACTTCGCTAGGAGTGGGGTCCAGATGAACACCAACTTCTTCCACGAGTCGGGTCTGGAGGCTCAT GAGGCAACACATTACATTTGGTCTCTACCACCAAAACGGAGGTGATCCCACCTCTCATTGAGAACAGGCA

GTCCTGGTCAGTTTGCAAGCAAGTCTTTCCTGGCCTGAATTACTGCACCTCAGGCGCTTACTCCAACGCC AGCTCCACAGACTCCGCCTCCTACTATCCGCTGACCGGGGACACCAGATTAGAGCTGGAACTGAGGCCTA TACCCTGAAGTTTGTAACTCAAGCAGAAGGTGCGAAGCAGACTGAGGCTACCATGACATTCAAATATAAT CGGCAGAGTATGACCTTGTCCAGTGAAGTCCAAATTCCGGATTTTGATGTTGACCTCGGAACAATCCTCA GAGTTAATGATGAATCTACTGAGGGCAAAACGTCTTACAGACTCACCCTGGACATTCAGAACAAGAAAAT ${\tt TCCATACCCCGTTTGCAAGCAGAAGCCAGAAGTGAGATCCTCGCCCACTGGTCGCCTGCCAAACTGCTTC}$ TCCAAATGGACTCATCTGCTACAGCTTATGGCTCCACAGTTTCCAAGAGGGTGGCATGGCATTATGATGA AGAGAAGATTGAATTGAATGGAACACAGGCACCAATGTAGATACCAAAAAAATGACTTCCAATTTCCCT AAACAGACATGACTTTCCGGCACGTGGGTTCCAAATTAATAGTTGCAATGAGCTCATGGCTTCAGAAGGC ATCTGGGAGTCTTCCTTATACCCAGACTTTGCAAGACCACCTCAATAGCCTGAAGGAGTTCAACCTCCAG AACATGGGATTGCCAGACTTCCACATCCCAGAAAACCTCTTCTTAAAAAAGCGATGGCCGGGTCAAATATA 15 ${\tt CCTTGAACAAGAACAGTTTGAAAATTGAGATTCCTTTGCCTTTTGGTGGCAAATCCTCCAGAGATCTAAA}$ GATGTTAGAGACTGTTAGGACACCAGCCCTCCACTTCAAGTCTGTGGGATTCCATCTGCCATCTCGAGAG ${\tt TCTCCACGAATGTCTACAGCAACTTGTACAACTGGTCCGCCTCCTACAGTGGTGGCAACACCAGCACAGA}$ CCATTCAGCCTTCGGGCTCGTTACCACATGAAGGCTGACTCTGTGGTTGACCTGCTTTCCTACAATGTG 20 CAAGGATCTGGAGAAACAACATATGACCACAAGAATACGTTCACACTATCATGTGATGGGTCTCTACGCC ACAAATTTCTAGATTCGAATATCAAATTCAGTCATGTAGAAAAACTTGGAAACACCCAGTCTCAAAAGG AAGAAACAGCATTTGTTTGTCAAAGAAGTCAAGATTGATGGGCAGTTCAGAGTCTCTTCGTTCTATGCTA 25 GTTTAACTCCTCCTACCTCCAAGGCACCAACCAGATAACAGGAAGATATGAAGATGGAACCCTCTCCCTC ACCTCCACCTCTGATCTGCAAAGTGGCATCATTAAAAATACTGCTTCCCTAAAGTATGAGAACTACGAGC $\tt TGACTTTAAAATCTGACACCAATGGGAAGTATAAGAACTTTGCCACTTCTAACAAGATGGATATGACCTT$ $\tt CTCTAAGCAAAATGCACTGCTGCGTTCTGAATATCAGGCTGATTACGAGTCATTGAGGTTCTTCAGCCTG$ $\tt CTTTCTGGATCACTAAATTCCCATGGTCTTGAGTTAAATGCTGACATCTTAGGCACTGACAAAATTAATA$ 30 GTGGTGCTCACAAGGCGACACTAAGGATTGGCCAAGATGGAATATCTACCAGTGCAACGACCAACTTGAA GTGTAGTCTCCTGGTGCTGGAGAATGAGCTGAATGCAGAGCTTGGCCTCTCTGGGGCATCTATGAAATTA ACAACAAATGGCCGCTTCAGGGAACACAATGCAAAATTCAGTCTGGATGGGAAAGCCGCCCTCACAGAGC ${\tt TATCACTGGGAAGTGCTTATCAGGCCATGATTCTGGGTGTCGACAGCAAAAACATTTTCAACTTCAAGGTCAAGGTTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAAGGTTCAA$ CAGTCAAGAAGGACTTAAGCTCTCAAATGACATGATGGGCTCATATGCTGAAATGAAATTTGACCACACA 35 AACAGTCTGAACATTGCAGGCTTATCACTGGACTTCTCTTCAAAACTTGACAACATTTACAGCTCTGACA AGTTTTATAAGCAAACTGTTAATTTACAGCTACAGCCCTATTCTCTGGTAACTACTTTAAACAGTGACCT GAAATACAATGCTCTGGATCTCACCAACAATGGGAAACTACGGCTAGAACCCCTGAAGCTGCATGTGGCT GGTAACCTAAAAGGAGCCTACCAAAATAATGAAATAAAACACATCTATGCCATCTCTTCTGCTGCCTTAT 40 CATCGCTGGGCTGGCTTCAGCCATTGACATGAGCACAAACTATAATTCAGACTCACTGCATTCAGCAAT GTCTTCCGTTCTGTAATGGCCCCGTTTACCATGACCATCGATGCACATACAAATGGCAATGGGAAACTCG $\tt CTCTCTGGGGAGAACATACTGGGCAGCTGTATAGCAAATTCCTGTTGAAAGCAGAACCTCTGGCATTTAC$ TTTCTCTCATGATTACAAAGGCTCCACAAGTCATCATCTCGTGTCTAGGAAAAGCATCAGTGCAGCTCTT GAACACAAAGTCAGTGCCCTGCTTACTCCAGCTGAGCAGACAGGCACCTGGAAACTCAAGACCCAATTTA ACAACAATGAATACAGCCAGGACTTGGATGCTTACAACACTAAAGATAAAATTGGCGTGGAGCTTACTGG ACGAACTCTGGCTGACCTAACTCTACTAGACTCCCCAATTAAAGTGCCACTTTTACTCAGTGAGCCCATC AATATCATTGATGCTTTAGAGATGAGAGATGCCGTTGAGAAGCCCCCAAGAATTTACAATTGTTGCTTTTG TAAAGTATGATAAAAACCAAGATGTTCACTCCATTAACCTCCCATTTTTTGAGACCTTGCAAGAATATTT TGAGAGGAATCGACAAACCATTATAGTTGTAGTGGAAAACGTACAGAGAAACCTGAAGCACATCAATATT 50 GATCAATTTGTAAGAAAATACAGAGCAGCCCTGGGAAAACTCCCACAGCAAGCTAATGATTATCTGAATT TACAGAAAATGATATACAAATTGCATTAGATGATGCCAAAATCAACTTTAATGAAAAACTATCTCAACTG CAGACATATATGATACAATTTGATCAGTATATTAAAGATAGTTATGATTTACATGATTTGAAAATAGCTA TTGCTAATATTATTGATGAAAATCATTGAAAAATTAAAAAGTCTTGATGAGCACTATCATATCCGTGTAAA TTTAGTAAAACAATCCATGATCTACATTTGTTTATTGAAAATATTGATTTTAACAAAAGTGGAAGTAGT 55 ACTGCATCCTGGATTCAAAATGTGGATACTAAGTACCAAATCAGAATCCAGATACAAGAAAAACTGCAGC ${\tt AGCTTAAGAGACACATACAGAATATAGACATCCAGCACCTAGCTGGAAAGTTAAAACAACACATTGAGGC}$ ${\tt TATTGATGTTAGAGTGCTTTTAGATCAATTGGGAACTACAATTTCATTTGAAAGAATAAATGATGTTCTT}$

GAGCATGTCAAACACTTTGTTATAAATCTTATTGGGGGATTTTGAAGTAGCTGAGAAAATCAATGCCTTCA GAGCCAAAGTCCATGAGTTAATCGAGAGGTATGAAGTAGACCAACAAATCCAGGTTTTAATGGATAAATT AGTAGAGTTGACCCACCAATACAAGTTGAAGGAGACTATTCAGAAGCTAAGCAATGTCCTACAACAAGTT AAGATAAAAGATTACTTTGAGAAATTGGTTGGATTTATTGATGATGCTGTGAAGAAGCTTAATGAATTAT $\tt CTTTTAAAACATTCATTGAAGATGTTAACAAATTCCTTGACATGTTGATAAAGAAATTAAAGTCATTTGA$ TTACCACCAGTTTGTAGATGAAACCAATGACAAAATCCGTGAGGTGACTCAGAGACTCAATGGTGAAATT CAGGCTCTGGAACTACCACAAAAAGCTGAAGCATTAAAACTGTTTTTAGAGGAAACCAAGGCCACAGTTG CAGTGTATCTGGAAAGCCTACAGGACACCAAAATAACCTTAATCATCAATTGGTTACAGGAGGCTTTAAG TTCAGCATCTTTGGCTCACATGAAGGCCAAATTCCGAGAGACTCTAGAAGATACACGAGACCGAATGTAT 10 CAAATGGACATTCAGCAGGAACTTCAACGATACCTGTCTCTGGTAGGCCAGGTTTATAGCACACTTGTCA CCTACATTTCTGATTGGTGGACTCTTGCTGCTAAGAACCTTACTGACTTTGCAGAGCAATATTCTATCCA AGATTGGGCTAAACGTATGAAAGCATTGGTAGAGCAAGGGTTCACTGTTCCTGAAATCAAGACCATCCTT GGGACCATGCCTGCCTTTGAAGTCAGTCTTCAGGCTCTTCAGAAAGCTACCTTCCAGACACCTGATTTTA TAGTCCCCCTAACAGATTTGAGGATTCCATCAGTTCAGATAAACTTCAAAGACTTAAAAAATATAAAAAT CCCATCCAGGTTTTCCACACCAGAATTTACCATCCTTAACACCTTCCACATTCCTTTCCATTACAATTGAC TTTGTCGAAATGAAAGTAAAGATCATCAGAACCATTGACCAGATGCAGAACAGTGAGCTGCAGTGGCCCG TTCCAGATATATATCTCAGGGATCTGAAGGTGGAGGACATTCCTCTAGCGAGAATCACCCTGCCAGACTT CCGTTTACCAGAAATCGCAATTCCAGAATTCATAATCCCAACTCTCAACCTTAATGATTTTCAAGTTCCT TATACAGTATTCTGAAAATCCAATCTCCTCTTTTCACATTAGATGCAAATGCTGACATAGGGAATGGAAC CACCTCAGCAAACGAAGCAGGTATCGCAGCTTCCATCACTGCCAAAGGAGAGTCCAAATTAGAAGTTCTC AATTTTGATTTTCAAGCAAATGCACAACTCTCAAACCCTAAGATTAATCCGCTGGCTCTGAAGGAGTCAG TGAAGTTCTCCAGCAAGTACCTGAGAACGGAGCATGGAGTGAAATGCTGTTTTTTGGAAATGCTATTGA GGGAAAATCAAACACAGTGGCAAGTTTACACACAGAAAAAAATACACTGGAGCTTAGTAATGGAGTGATT GTCAAGATAAACAATCAGCTTACCCTGGATAGCAACACTAAATACTTCCACAAATTGAACATCCCCAAAC TGGACTTCTCTAGTCAGGCTGACCTGCGCAACGAGATCAAGACACTGTTGAAAGCTGGCCACATAGCATG GACTTCTTCTGGAAAAGGGTCATGGAAATGGGCCTGCCCCAGATTCTCAGATGAGGGAACACATGAATCA CAAATTAGTTTCACCATAGAAGGACCCCTCACTTCCTTTGGACTGTCCAATAAGATCAATAGCAAACACC TAAGAGTAAACCAAAACTTGGTTTATGAATCTGGCTCCCTCAACTTTTCTAAACTTGAAATTCAATCACA 30 AGTCGATTCCCAGCATGTGGGCCACAGTGTTCTAACTGCTAAAGGCATGGCACTGTTTGGAGAAGGGAAG GCAGAGTTTACTGGGAGGCATGATGCTCATTTAAATGGAAAGGTTATTGGAACTTTGAAAAATTCTCTTT ATTAAGGTTAACAGGGAAGATAGACTTCCTGAATAACTATGCACTGTTTCTGAGTCCCAGTGCCCAGCAA ${\tt GCAAGTTGGCAAGTAAGTGCTAGGTTCAATCAGTATAAGTACAACCAAAATTTCTCTGCTGGAAACAACG}$ AGAACATTATGGAGGCCCATGTAGGAATAAATGGAGAAGCAAATCTGGATTTCTTAAACATTCCTTTAAC 35. AATTCCTGAAATGCGTCTACCTTACACAATAATCACAACTCCTCCACTGAAAGATTTCTCTCTATGGGAA AAAACAGGCTTGAAGGAATTCTTGAAAACGACAAAGCAATCATTTGATTTAAGTGTAAAAGCTCAGTATA CAAATCCTTTGACAGGCATTTTGAAAAAAACAGAAACAGTTAGATTTTGTCACCAAATCCTATAAT GAAACAAAATTAAGTTTGATAAGTACAAAGCTGAAAAATCTCACGACGAGCTCCCCAGGACCTTTCAAA TTCCTGGATACACTGTTCCAGTTGTCAATGTTGAAGTGTCTCCATTCACCATAGAGATGTCGGCATTCGG CTATGTGTTCCCAAAAGCAGTCAGCATGCCTAGTTTCTCCATCCTAGGTTCTGACGTCCGTGTGCCTTCA TACACATTAATCCTGCCATCATTAGAGCTGCCAGTCCTTCATGTCCCTAGAAATCTCAAGCTTTCTCTTC CACATTTCAAGGAATTGTGTACCATAAGCCATATTTTTATTCCTGCCATGGGCAATATTACCTATGATTT 45 ${\tt CTCCTTTAAATCAAGTGTCATCACACTGAATACCAATGCTGAACTTTTTAACCAGTCAGATATTGTTGCT}$ CATCTCCTTTCTTCATCTTCATCTGTCATTGATGCACTGCAGTACAAATTAGAGGGCACCACAAGATTGA CAAGAAAAAGGGGATTGAAGTTAGCCACAGCTCTGTCTCTGAGCAACAAATTTGTGGAGGGTAGTCATAA CAGTACTGTGAGCTTAACCACGAAAAATATGGAAGTGTCAGTGGCAAAAACCACAAAAGCCGAAATTCCA ATTTTGAGAATGAATTTCAAGCAAGAACTTAATGGAAATACCAAGTCAAAACCTACTGTCTCCTCCCA 50 TGGAATTTAAGTATGATTCCAATGCTGTACTCTACCGCTAAAGGAGCAGTTGACCACAAGCT TAGCTTGGAAAGCCTCACCTCTTACTTTTCCATTGAGTCATCTACCAAAGGAGATGTCAAGGGTTCGGTT CTTCAGTGAAGCTGCAGGGCACTTCCAAAATTGATGATATCTGGAACCTTGAAGTAAAAGAAAATTTTGC TGGAGAAGCCACACTCCAACGCATATATTCCCTCTGGGAGCACAGTACGAAAAACCACTTACAGCTAGAG GGCCTCTTTTCACCAACGGAGAACATACAAGCAAAGCCACCCTGGAACTCTCTCCATGGCAAATGTCAG CTCTTGTTCAGGTCCATGCAAGTCAGCCCAGTTCCTTCCATGATTTCCCTGACCTTGGCCAGGAAGTGGC CAGAGCCAGGTCGAGCTTTCCAATGACCAAGAAAAGGCACACCTTGACATTGCAGGATCCTTAGAAGGAC

ACCTAAGGTTCCTCAAAAATATCATCCTACCAGTCTATGACAAGAGCTTATGGGATTTCCTAAAGCTGGA TGTAACCACCAGCATTGGTAGGAGACAGCATCTTCGTGTTTCAACTGCCTTTGTGTACACCAAAAACCCC AATGGCTATTCATTCTCCATCCCTGTAAAAGTTTTGGCTGATAAATTCATTACTCCTGGGCTGAAACTAA ATGATCTAAATTCAGTTCTTGTCATGCCTACGTTCCATGTCCCATTTACAGATCTTCAGGTTCCATCGTG CAAACTTGACTTCAGAGAAATACAAATCTATAAGAAGCTGAGAACTTCATCATTTGCCCTCAACCTACCA ACACTCCCGAGGTAAAATTCCCTGAAGTTGATGTGTTAACAAAATATTCTCAACCAGAAGACTCCTTGA TTCCCTTTTTTGAGATAACCGTGCCTGAATCTCAGTTAACTGTGTCCCAGTTCACGCTTCCAAAAAGTGT TTCAGATGGCATTGCTGCTTTGGATCTAAATGCAGTAGCCAACAAGATCGCAGACTTTGAGTTGCCCACC ATCATCGTGCCTGAGCAGACCATTGAGATTCCCTCCATTAAGTTCTCTGTACCTGCTGGAATTGTCATTC CTTCCTTCAAGCACTGACTGCACGCTTTGAGGTAGACTCTCCCGTGTATAATGCCACTTGGAGTGCCAG TTTGAAAAACAAGCAGATTATGTTGAAACAGTCCTGGATTCCACATGCAGCTCAACCGTACAGTTCCTA GAATATGAACTAAATGTTTTTGGGAACACACAAAATCGAAGATGGTACGTTAGCCTCTAAGACTAAAGGAA .CACTTGCACACCGTGACTTCAGTGCAGAATATGAAGAAGATGGCAAATTTGAAGGACTTCAGGAATGGGA AGGAAAAGCGCACCTCAATATCAAAAGCCCAGCGTTCACCGATCTCCATCTGCGCTACCAGAAAGACAAG AAAGGCATCTCCACCTCAGCAGCCTCCCCAGCCGTAGGCACCGTGGGCATGGATATGGATGAAGATGACG ACTTTTCTAAATGGAACTTCTACTACAGCCCTCAGTCCTCTCCAGATAAAAAACTCACCATATTCAAAAC ${\tt TGAGTTGAGGGTCCGGGAATCTGATGAGGAAACTCAGATCAAAGTTAATTGGGAAGAAGAGGCAGCTTCT}$ $\tt GGCTTGCTAACCTCTCTGAAAGACAACGTGCCCAAGGCCACAGGGGTCCTTTATGATTATGTCAACAAGT$ ACCACTGGGAACACACAGGGCTCACCCTGAGAGAAGTGTCTTCAAAGCTGAGAAGAAATCTGCAGAACAA $\tt TGCTGAGTGGGTTTATCAAGGGGCCATTAGGCAAATTGATGATATCGACGTGAGGTTCCAGAAAGCAGCC$ 20 AGTGGCACCACTGGGACCTACCAAGAGTGGAAGGACAAGGCCCAGAATCTGTACCAGGAACTGTTGACTC ${\tt AGGAAGCCAGCCAGTTTCCAGGGACTCAAGGATAACGTGTTTGATGGCTTGGTACGAGTTACTCAAAA}$ ATTCCATATGAAAGTCAAGCATCTGATTGACTCACTCATTGATTTCTGAACTTCCCCAGATTCCAGTTT ${\tt TGTCCCAGGTATATTCGAAAGTCCATAATGGTTCAGAAATACTGTTTTCCTATTTCCAAGACCTAGTGAT}$ 25 TACACTTCCTTTCGAGTTAAGGAAACATAAACTAATAGATGTAATCTCGATGTATAGGGAACTGTTGAAA ${\tt GATTTATCAAAAGAAGCCCAAGAGGTATTTAAAGCCATTCAGTCTCTCAAGACCACAGAGGTGCTACGTA}$ ATCTTCAGGACCTTTTACAATTCATTTTCCAACTAATAGAAGATAACATTAAACAGCTGAAAGAGATGAA ATTTACTTATCTTATTAATTATATCCAAGATGAGATCAACACAATCTTCAATGATTATATCCCATATGTT TTTAAATTGTTGAAAGAAAACCTATGCCTTAATCTTCATAAGTTCAATGAATTTATTCAAAACGAGCTTC 30 AGGAAGCTTCTCAAGAGTTACAGCAGATCCATCAATACATTATGGCCCTTCGTGAAGAATATTTTGATCC TTAGTTGCTCTTAAGGACTTCCATTCTGAATATATTGTCAGTGCCTCTAACTTTACTTCCCAACTCTCAA GTCAAGTTGAGCAATTTCTGCACAGAAATATTCAGGAATATCTTAGCATCCTTACCGATCCAGATGGAAA 35 AGGGAAGGAGGATTGCAGAGCTTTCTGCCACTGCTCAGGAAATAATTAAAAGCCAGGCCATTGCGACG AAGAAAATAATTTCTGATTACCACCAGCAGTTTAGATATAAACTGCAAGATTTTTCAGACCAACTCTCTG TCTGATATACATCACGGAGTTACTGAAAAAGCTGCAATCAACCACAGTCATGAACCCCTACATGAAGCTT GCTCCAGGAGAACTTACTATCATCCTCTAATTTTTTAAAAGAAATCTTCATTTATTCTTCTTTTCCAATT 40 CAGTAGGCAGTAGACTATAAGCAGAAGCACATATGAACTGGACCTGCACCAAAGCTGGCACCAGGGCTCG ${ t GAAGGTCTCTGAACTCAGAAGGATGGCATTTTTTGCAAGTTAAAGAAAATCAGGATCTGAGTTATTTTGC}$ TAAACTTGGGGGAGGAGCAAAAAAATGGAGTCTTTATTGTGTATCATA (SEQ ID NO:6681)

PCT/US2004/011255

10

15

ACCCTGAAGCTGGTCCTGAAGGGACAGATCTGCAAAGAGATCAACGTCATCTCTAACATCATGGCCGATT TTGTCCAGACAAGGGCTGCCAGCATCCTTTCAGATGGAGACATTGGGGTGGACATTTCCCTGACAGGTGA GACCTCCCCCCCCCCCCCTCTCTCGCCCACACTGCTGGGGGGACTCCCGCATGCTGTACTTCTGGTTCTCTG ${\tt AGCGAGTCTTCCACTCGCTGGCCAAGGTAGCTTTCCAGGATGGCCGCCTCATGCTCAGCCTGATGGGAGA}$ GGCTTCCCCAGCCAGGCCCAAGTCACCGTCCACTGCCTCAAGATGCCCAAGATCTCCTGCCAAAACAAGG GAGTCGTGGTCAATTCTTCAGTGATGGTGAAATTCCTCTTTCCACGCCCAGACCAGCAACATTCTGTAGC GCTTCCTGCAGTCAATGATCACCGCTGTGGGCATCCCTGAGGTCATGTCTCGGCTCGAGGTAGTGTTTAC AGCCCTCATGAACAGCAAAGGCGTGAGCCTCTTCGACATCATCAACCCTGAGATTATCACTCGAGATGGC TTCCTGCTGCTGCAGATGGACTTTGGCTTCCCTGAGCACCTGCTGGTGGATTTCCTCCAGAGCTTGAGCT AGAAGTCTCCAAGGAGGTCGGGATGGGGCTTGTAGCAGAAGGCAAGCACCAGGCTCACAGCTGGAACCCT TATCCTAAAGGCCCACTGGCATTAAAGTGCTGTATCCAAG (SEQ ID NO:6682)

>qi|414668|emb|X75500.1|HSMTP H.sapiens mRNA for microsomal triglyceride 20 transfer protein TGCAGTTGAGGATTGCTGGTCAATATGATTCTTCTTGCTGCTTTTTTCTCTGCTTCATTTCCTCATATT CAGCTTCTGTTAAAGGTCACACAACTGGTCTCTCATTAAATAATGACCGGCTGTACAAGCTCACGTACTC CACTGAAGTTCTTCTTGATCGGGGCAAAGGAAAACTGCAAGACAGCGTGGGCTACCGCATTTCCTCCAAC GTGGATGTGGCCTTACTATGGAGGAATCCTGATGGTGATGATGACCAGTTGATCCAAATAACGATGAAGG ATGTAAATGTTGAAAATGTGAATCAGCAGAGAGGAGGAGAAGAGCATCTTCAAAGGAAAAAGCCCATCTAA 25 AATAATGGGAAAGGAAAACTTGGAAGCTCTGCAAAGACCTACGCTCCTTCATCTAATCCATGGAAAGGTC AAAGAGTTCTACTCATATCAAAATGAGGCAGTGGCCATAGAAAATATCAAGAGAGGTCTGGCTAGCCTAT ${ t TTCAGACAGTTAAGCTCTGGAACCACCAATGAGGTAGATATCTCTGGAAATTGTAAAGTGACCTACCA$ GGCTCATCAAGACAAAGTGATCAAAATTAAGGCCTTGGATTCATGCAAAATAGCGAGGTCTGGATTTACG ACCCCAAATCAGGTCTTGGGTGTCAGTTCAAAAGCTACATCTGTCACCACCTATAAGATAGAAGACAGCT 30 TTGTTATAGCTGTGCTGAAGAAACACACAATTTTGGACTGAATTTCCTACAAACCATTAAGGGGAA AATAGTATCGAAGCAGAAATTAGAGCTGAAGACAACCGAAGCAGCCCAAGATTGATGTCTGGAAAGCAG GCTGCAGCCATAATCAAAGCAGTTGATTCAAAGTACACGGCCATTCCCATTGTGGGGCAGGTCTTCCAGA GCCACTGTAAAGGATGTCCTTCTCTCTGGAGCTCTGGCGGTCCACCAGGAAATACCTGCAGCCTGACAA 35 GAGATCCTTCAAATACTAAAGATGGAAAATAAGGAAGTATTACCTCAGCTGGTGGATGCTGTCACCTCTG $\tt CTCAGACCTCAGACTCATTAGAAGCCATTTTGGACTTTTTGGATTTCAAAAGTGACAGCAGCAGTATCCT$ AGTAAGTTCAAAGGTTCTATTGGTAGCAGTGACATCAGAGAAACTGTTATGATCATCACTGGGACACTTG TCAGAAAGTTGTGTCAGAATGAAGGCTGCAAACTCAAAGCAGTAGTGGAAGCTAAGAAGTTAATCCTGGG 40 AGGACTTGAAAAAGCAGAGAAAAAAGAGGACACCAGGATGTATCTGCTGGCTTTGAAGAATGCCCTGCTT $\tt CCAGAAGGCATCCCAAGTCTTCTGAAGTATGCAGAAGCAGGAGAAGGGGCCCATCAGCCACCTGGCTACCA$ CTGCTCTCCAGAGATATGATCTCCCTTTCATAACTGATGAGGTGAAGAAGACCTTAAACAGAATATACCA $\tt CCAAAACCGTAAAGTTCATGAAAAGACTGTGCGCACTGCTGCAGCTGCTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAAATCAATCCACTATCATTTAAATAACAATCCACTATCATTTAAAATCAATCCACTATCATTTAAATAACAATCCACTATCATTTAAATAACAATCCACTATCATTTAAAATAACAATCCAATCCACTATCATTTAAAATAACAATCCAATCCACTATCATTTAAAATAACAATCCAATCCACTATCATTTAAAATAACAATCCAATCCACTATCATTTAAATAAACAATCCAATCCACTATCATTTAAAATAACAATCCAATCCAATCCACTATCATTATAAATAAACAATCCAATCCAAT$ 45 AATGGTCGCTCACAATTATGACCGTTTCTCCAGGAGTGGATCTTCTTCTGCCTACACTGGCTACATAGAA CGTAGTCCCCGTTCGGCATCTACTTACAGCCTAGACATTCTCTACTCGGGTTCTGGCATTCTAAGGAGAA GTAACCTGAACATCTTTCAGTACATTGGGAAGGCTGGTCTTCACGGTAGCCAGGTGGTTATTGAAGCCCA AGGACTGGAAGCCTTAATCGCAGCCACCCCTGACGAGGGGGAGAACCTTGACTCCTATGCTGGTATG ${\tt TCAGCCATCCTCTTTGATGTTCAGCTCAGACCTGTCACCTTTTTCAACGGATACAGTGATTTGATGTCCA}$ AAATGCTGTCAGCATCTGGCGACCCTATCAGTGTGAAAGGACTTATTCTGCTAATAGATCATTCTCA GGAACTTCAGTTACAATCTGGACTAAAAGCCAATATAGAGGTCCAGGGTGGTCTAGCTATTGATATTTCA 55

10

>gi|1217638|emb|X91148.1|HSMTTP H.sapiens mRNA for microsomal triglyceride transfer protein ${\tt TGCAGTTGAGGATTGCTGGTCAATATGATTCTTCTTGCTGTGCTTTTTCTCTGCTTCATTTTCTCATATT}$ GTGGATGTGGCCTTACTATGGAGGAATCCTGATGGTGATGATGACCAGTTGATCCAAATAACGATGAAGG 20 AATAATGGGAAAGGAAAACTTGGAAGCTCTGCAAAGACCTACGCTCCTTCATCTAATCCATGGAAAGGTCAAAGAGTTCTACTCATATCAAAATGAGGCAGTGGCCATAGAAAATATCAAGAGAGGTCTGGCTAGCCTAT TTCAGACACAGTTAAGCTCTGGAACCACCAATGAGGTAGATATCTCTGGAAATTGTAAAGTGACCTACCA GGCTCATCAAGACAAAGTGATCAAAATTAAGGCCTTGGATTCATGCAAAATAGCGAGGTCTGGATTTACG ACCCCAAATCAGGTCTTGGGTGTCAGTTCAAAAGCTACATCTGTCACCACCTATAAGATAGAAGACAGCT 25 TTGTTATAGCTGTGCTTGCTGAAGAAACACACAATTTTGGACTGAATTTCCTACAAACCATTAAGGGGAA AATAGTATCGAAGCAGAAATTAGAGCTGAAGACAACCGAAGCCGGCCCAAGATTGATGTCTGGAAAGCAG GCTGCAGCCATAATCAAAGCAGTTGATTCAAAGTACACGGCCATTCCCATTGTGGGGCAGGTCTTCCAGA GCCACTGTAAAGGATGTCCTTCTCTCTCGGAGCTCTGGCGGTCCACCAGGAAATACCTGCAGCCTGACAA GAGATCCTTCAAATACTAAAGATGGAAAATAAGGAAGTATTACCTCAGCTGGTGGATGCTGTCACCTCTG $\tt CTCAGACCTCAGACTCATTAGAAGCCATTTTGGACTTTTTGGATTTCAAAAGTGACAGCAGCATTATCCT$ $\tt CCAGGAGAGGTTTCTCTATGCCTGTGGATTTGCTTCTCATCCCAATGAAGAACTCCTGAGAGCCCTCATT$ AGTAAGTTCAAAGGTTCTATTGGTAGCAGTGACATCAGAGAAACTGTTATGATCATCACTGGGACACTTG TCAGAAAGTTGTGTCAGAATGAAGGCTGCAAACTCAAAGCAGTAGTGGAAGCTAAGAAGTTAATCCTGGG AGGACTTGAAAAAGCAGAGAAAAAAAGAGGACACCAGGATGTATCTGCTGGCTTTGAAGAATGCCCTGCTT CCAGAAGGCATCCCAAGTCTTCTGAAGTATGCAGAAGCAGGAGAAGGGCCCATCAGCCACCTGGCTACCA CTGCTCTCCAGAGATATGATGCTCCCTTTCATAACTGATGAGGTGAAGAAGACCTTAAACAGAATATACC ACCAAAACCGTAAAGTTCATGAAAAGACTGTGCGCACTGCTGCAGCTGCTATCATTTTAAATAACAATCC 40 AAATGGTCGCTCACAATTATGACCGTTTCTCCAGGAGTGGATCTTCTTCTGCCTACACTGGCTACATAGA $oldsymbol{ t ACGTAGTCCCCGTTCGGCATCTACTTACAGCCTAGACATTCTCTACTCGGGTTCTGGCATTCTAAGGAGA$ AGTAACCTGAACATCTTTCAGTACATTGGGAAGGCTGGTCTTCACGGTAGCCAGGTGGTTATTGAAGCCC AAGGACTGGAAGCCTTAATCGCAGCCACCCCTGACGAGGGGGAGGAGAACCTTGACTCCTATGCTGGTAT 45 GTCAGCCATCCTCTTGATGTTCAGCTCAGACCTGTCACCTTTTTCAACGGATACAGTGATTTGATGTCC AAAATGCTGTCAGCATCTGGCGACCCTATCAGTGTGGTGAAAGGACTTATTCTGCTAATAGATCATTCTC AGGAACTTCAGTTACAATCTGGACTAAAAGCCAATATAGAGGTCCAGGGTGGTCTAGCTATTGATATTTC AGGTGCAATGGAGTTTAGCTTGTGGTATCGTGAGTCTAAAACCCCGAGTGAAAAATAGGGTGACTGTGGTA ATAACCACTGACATCACAGTGGACTCCTCTTTTGTGAAAGCTGGCCTGGAAACCAGTACAGAAACAGAAG GGATGAAGCTCCATTCAGGCAATTTGAGAAAAAGTACGAAAAGGCTGTCCACAGGCAGAGGTTATGTCTCT CAGAAAAGAAAAGAAAGCGTATTAGCAGGATGTGAATTCCCGCTCCATCAAGAGAACTCAGAGATGTGCA AAGTGGTGTTTGCCCCTCAGCCGGATAGTACTTCCAGCGGATGGTTTTGAAACTGACCTGTGATATTTTA $\tt CTTGAATTTGTCTCCCCGAAAGGGACACAATGTGGCATGACTAAGTACTTGCTCTCTGAGAGCACAGCGT$ TTACATATTTACCTGTATTTAAGATTTTTGTAAAAAGCTACAAAAAACTGCAGTTTGATCAAATTTGGGT ATATGCAGTATGCTACCCACAGCGTCATTTTGAATCATCATGTGACGCTTTCAACAACGTTCTTAGTTTA

15

10

>qi|21361125|ref|NM_001467.2| Homo sapiens glucose-6-phosphatase, transport (glucose-6-phosphate) protein 1 (G6PT1), mRNA GGCACGAGGGGCCACCGAGGCGCTGTCCCTGACCACCAGCACGAGACCCCTTTCTATCGCGCCAGTCCTG TGGTCTCCGCACCTCTCCAGCTCCTGCACCCCCGGCCCCCGTGGTTCCCAGCCGCACAGTAGCGTGTCCT 20 GGGTAGCGTGAGGACCCACGGGGCTGAGCAGGTGCCACGAGCCCGCCGCCTCTTCGCCGCCGCCGCCCTC TCCTCTCTCCCGCCGCCCCCCTGGCCCTCCCCTACCAGGCTGAGCCTCTGGCTGCCAGAAGCGCGGGGC $\tt CTCCGGGAGAATACGTGCGGTCGCCGCTCCGCGTGCGCCTACGCCTTCTGCTCCAGTTGCTTTCCCAAT$ TGAGCGGAAAAGCCGGGGCATGTTGCCGGGGGCCCTGGGCGGGACGGTTGTGCCCTGCAGCCCGAAGCCCG $\tt CCGGGGCACCTTCCCGCCCACGAGCTGCCCAGTCCCTCTGCTTGCGGCCCCTGCCAACGTCCCACAGGAC$ ACTGGGTCCCCTTGGAGCCTCCCCAGGCTTAATGATTGTCCAGAAGGCGGCTATAAAGGGAGCCTGGGAG GCTGGGTGGAGGAGGAGCAGAAAAAACCCAACTCAGCAGATCTGGGAACTGTGAGAGCGGCAAGCAGGA ACTGTGGTCAGAGGCTGTGCGTCTTGGCTGGTAGGGCCTGCTCTTTTCTACCATGGCAGCCCAGGGCTAT GGCTATTATCGCACTGTGATCTTCTCAGCCATGTTTGGGGGCTACAGCCTGTATTACTTCAATCGCAAGA 30 CGCTGGCTCTTCTCTGGGCTGCTCCTGGTTGGCCTGGTCAACATATTCTTTGCCTGGAGCTCCACAG TACCTGTCTTTGCTGCCCTCTGGTTCCTTAATGGCCTGGCCCAGGGGCTGGCCTGGCCCCCATGTGGGAA GGTCCTGCGGAAGTGGTTTGAGCCATCTCAGTTTGGCACTTGGTGGGCCATCCTGTCAACCAGCATGAAC CTGGCTGGAGGGCTGGGCCCTATCCTGGCAACCATCCTTGCCCAGAGCTACAGCTGGCGCAGCACGCTGG $\tt CCCTATCTGGGGCACTGTGTGTGTGTTGTCTCCTTCTTGTCTCCTGTCTCATCCACAATGAACCTGCTGA$ TGTTGGACTCCGCAACCTGGACCCCATGCCCTCTGAGGGCAAGAAGGGCTCCTTGAAGGAGGAGAGCACC $\tt CTGCAGGAGCTGCTGTCCCCTTACCTGTGGGTGCTCTCCACTGGTTACCTTGTGGTGTTTTGGAGTAA$ $\tt CTCCTACATGAGTGCCCTGGAAGTTGGGGGCCTTGTAGGCAGCATCGCAGCTGGCTACCTGTCAGACCGG$ 40 GCCATGGCAAAGGCGGGACTGTCCAACTACGGGAACCCTCGCCATGGCCTGTTGCTGTTCATGATGGCTG $\tt GCATGACAGTGTCCATGTACCTCTTCCGGGTAACAGTGACCAGTGACTCCCCCAAGCTCTGGATCCTGGT$ ATTGGGAGCTGTATTTGGTTTCTCCTCGTATGGCCCCATTGCCCTGTTTGGAGTCATAGCCAACGAGAGT GCCCTCCCAACTTGTGTGGCACCTCCCACGCCATTGTGGGACTCATGGCCAATGTGGGCGGCTTTCTGG $\tt CTGGGCTGCCCTTCAGCACCATTGCCAAGCACTACAGTTGGAGCACAGCCTTCTGGGTGGCTGAAGTGAT$ 45 TTGTGCGGCCAGCACGGCTGCCTTCTTCCTCCTACGAAACATCCGCACCAAGATGGGCCGAGTGTCCAAG GGGAGAAAAGGAGGGGCCTGCCTGGCTAGCCCTGAACCTTTCACTTTCCATTTCTGCGCCTTTTCTGTCA $\tt CCCGGGTGGCGCTGGAAGTTATCAGTGGCTAGTGAGGTCCCAGCTCCCTGATCCTATGCTCTATTTAAAA$ 50 GATAACCTTTGGCCTTAGACTCCGTTAGCTCCTATTTCCTGCCTTCAGACAAACAGGAAACTTCTGCAGT $\tt CAGGAAGGCTCCTGTACCCTTCTTTTCCTAGGCCCTGTCCTGCCCGCATCCTACCCCATCCCCACCT$ GAAGTGAGGCTATCCCTGCAGCTGCAGGGCACTAATGACCCTTGACTTCTGCTGGGTCCTAAGTCCTCTC AGCAGTGGGTGACTGCTGTTGCCAATACCTCAGACTCCAGGGAAAGAGAGGGGGCCATCATTCTCACTGT ACCACTAGGCGCAGTTGGATATAGGTGGGAAGAAAAGGTGACTTGTTATAGAAGATTAAAACTAGATTTG (SEQ ID NO:6685) 55

gi|4503130|ref|NM_001904.1| Homo sapiens catenin (cadherin-associated protein), beta 1, 88kDa (CTNNB1), mRNA

20 ATTTTAGCTTATGGCAACCAAGAAAGCAAGCTCATCATACTGGCTAGTGGACCCCAAGCTTTAGTAA
ATATAATGAGGACCTATACTTACGAAAAACTACTGTGGACCAAGCAGAGGTGCTGAAGGTGCTATCTGT
CTGCTCTAGTAATAAGCCGGCTATTGTAGAAGCTGGTGGAATGCAAGCTTTAGGACTTCACCTGACAGAT
CCAAGTCAACGTCTTGTTCAGAACTGTCTTTGGACTCTCAGGAATCTTTCAGATGCTGCAACTAAACAGG
AAGGGATGGAAGGTCTCCTTGGGACTCTTGTTCAGCTTCTGGGTTCAGATGATATAAATGTGGTCACCTG

25 TGCAGCTGGAATTCTTTCTAACCTCACTTGCAATAATTATAAGAACAAGATGATGGTCTGCCAAGTGGGT
GGTATAGAGGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGAAGACATCACTGAGCCTGCCATCT
GTGCTCTTCGTCATCTGACCAGCCGACACCAAGAAGCAGAGATGGCCCAGAATGCAGTTCGCCTTCACTA
TGGACTACCAGTTGTGGTTAAGCTCTTACACCCACCATCCCACTGGCCTCTGATAAAGGCTACTGTTGGA
TTGATTCGAAATCTTGCCCTTTGTCCCGCAAATCATGCACCTTTGCGTGAGCAGGGTGCCATTCCACGAC

TT (SEQ ID NO:6686)

gi|18104977|ref|NM_002827.2| Homo sapiens protein tyrosine phosphatase, nonreceptor type 1 (PTPN1), mRNA GTGATGCGTAGTTCCGGCTGCCGGTTGACATGAAGAAGCAGCGGCGGCTAGGGCGGCGGTAGCTGCAGGG GTCGGGGATTGCAGCGGGCCTCGGGGCTAAGAGCGCGACGCGGCCTAGAGCGGCAGACGGCGCAGTGGGC $\tt CGAGAAGGAGCGCAGCAGCCGCCCTGGCCCGTCATGGAGAAAAGGAGTTCGAGCAGATCGACAAG$ TCCGGGAGCTGGGCGCCATTTACCAGGATATCCGACATGAAGCCAGTGACTTCCCATGTAGAGTGGCCA AGCTTCCTAAGAACAAAAACCGAAATAGGTACAGAGACGTCAGTCCCTTTGACCATAGTCGGATTAAACT ACATCAAGAAGATAATGACTATATCAACGCTAGTTTGATAAAAATGGAAGAAGCCCAAAGGAGTTACATT CTTACCCAGGGCCCTTTGCCTAACACATGCGGTCACTTTTGGGAGATGGTGTGGGAGCAGAAAAGCAGGG GTGTCGTCATGCTCAACAGAGTGATGGAGAAAGGTTCGTTAAAATGCGCACAATACTGGCCACAAAAAAGA 10 ${f AGAAAAGAGATGATCTTTGAAGACACAAATTTGAAATTAACATTGATCTCTGAAGATATCAAGTCATAT}$ TATACAGTGCGACAGCTAGAATTGGAAAACCTTACAACCCAAGAAACTCGAGAGATCTTACATTTCCACT AGAGTCAGGGTCACTCAGCCCGGAGCACGGGCCCGTTGTGGTGCACTGCAGTGCAGGCATCGGCAGGTCT GGAACCTTCTGTCTGGCTGATACCTGCCTCTTGCTGATGGACAAGAGGAAAGACCCTTCTTCCGTTGATA 15 TCAAGAAAGTGCTGTTAGAAATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGCCGACCAGCTGCGCTT CTCCTACCTGGCTGTGATCGAAGGTGCCAAATTCATCATGGGGGACTCTTCCGTGCAGGATCAGTGGAAG GAGCTTTCCCACGAGGACCTGGAGCCCCCACCCGAGCATATCCCCCCACCTCCCCGGCCACCCAAACGAA GGAGGATAAAGACTGCCCCATCAAGGAAGAAAAAGGAAGCCCCTTAAATGCCGCACCCTACGGCATCGAA 20 AGCATGAGTCAAGACACTGAAGTTAGAAGTCGGGTCGTGGGGGGAAGTCTTCGAGGTGCCCAGGCTGCCT $\tt CCCCAGCCAAAGGGGAGCCGTCACTGCCCGAGAAGGACGAGGACCATGCACTGAGTTACTGGAAGCCCTT$ 25 GTTGGTTCTGCACTAAAACCCATCTTCCCCGGATGTGTGTCTCACCCCTCATCCTTTTACTTTTTGCCCC TTCCACTTTGAGTACCAAATCCACAAGCCATTTTTTGAGGAGAGTGAAAGAGAGTACCATGCTGGCGGCG ATTTTTTCCCCAAAGGCATCCATAGTGCACTAGCATTTTCTTGAACCAATAATGTATTAAAATTTTTTGA 30 TGTCAGCCTTGCATCAAGGGCTTTATCAAAAAGTACAATAATAAATCCTCAGGTAGTACTGGGAATGGAA GGCTTTGCCATGGGCCTGCTCAGACCAGTACTGGGAAGGAGGACGGTTGTAAGCAGTTGTTATTTA GTGATATTGTGGGTAACGTGAGAAGATAGAACAATGCTATAATATATGAACACGTGGGTATTTAATA AGAAACATGATGTGAGATTACTTTGTCCCGCTTATTCTCCTCCCTGTTATCTGCTAGATCTAGTTCTCAA ${\tt TCACTGCTCCCCGTGTGTATTAGAATGCATGTAAGGTCTTCTTGTGTCCTGATGAAAAATATGTGCTTG}$ 35 ${\tt GATCATTACATGGCTGTGGTTCCTAAGCCTGTTGCTGAAGTCATTGTCGCTCAGCAATAGGGTGCAGTTT}$ TCCAGGAATAGGCATTTGCCTAATTCCTGGCATGACACTCTAGTGACTTCCTGGTGAGGCCCAGCCTGTC $\tt CTGGTACAGCAGGGTCTTGCTGTAACTCAGACATTCCAAGGGTATGGGAAGCCATATTCACACCTCACGC$ 40 AGTCAACACTCTTCTTGAGCAGACCGTGATTTGGAAGAGAGGCACCTGCTGGAAACCACACTTCTTGAAA CAGCCTGGGTGACGGTCCTTTAGGCAGCCTGCCGCCGTCTCTGTCCCGGTTCACCTTGCCGAGAGAGGCG ${\tt ACCTCCACATTAAGTGGCTTTTTAACATGAAAAACACGGCAGCTGTAGCTCCCGAGCTACTCTTTGCCA}$ GCATTTTCACATTTTGCCTTTCTCGTGGTAGAAGCCAGTACAGAGAAATTCTGTGGTGGGAACATTCGAG $\tt GTGTCACCCTGCAGAGCTATGGTGAGGTGTGGATAAGGCTTAGGTGCCAGGCTGTAAGCATTCTGAGCTG$ TGGACGTACTGGTTTAACCTCCTATCCTTGGAGAGCAGCTGGCTCTCCACCTTGTTACACATTATGTTAG $A \texttt{GAGGTAGCGAGCTGCTATATGCCTTAAGCCAATATTTACTCATCAGGTCATTATTTTTACAAT$ GGCCATGGAATAAACCATTTTTACAAAA (SEQ ID NO:6687) 50

gi|12831192|gb|AF333324.1| Hepatitis C virus type 1b polyprotein mRNA, complete

 ${\tt TTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCATCATGAGCACA}$ AATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCACAGGACGTTAAGTTCCCGGGCG ${\tt GTGGTCAGATCGTTGGTGGAGTTTACCTGTTGCCGCGCAGGGGCCCCAGGTTGGGTGTGCGCGCGACTAG}$ GAAGACTTCCGAGCGGTCGCAACCTCGTGGAAGGCGACAACCTATCCCCAAGGCTCGCCGGCCCGAGGGT ${\tt AGGACCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGCAACGAGGGTATGGGGTGGGCAGGATGGCCCTCTATGGCAACGAGGGTATGGGGTGGGCAGGATGGCAGATGGCCAGGATGGCCAGGATGGCCAGGATGGCCAGGATGAGATGGCCAGGATGAGATGGCAGATGAGAGATGAGATGAGATGAGAGATGAGAATGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAATGAGAATGAATGAATGAGAATGAATGAGAATGAATGAGAATG$ TCCTGTCACCCCGTGGCTCTCGGCCTAGTTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGTAATTTGGG TAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCATGGGGTACATTCCGCTTGTCGGCGCCCCC CTAGGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAGGACGGCGTGAACTATGCAACAG 10 GGAATCTGCCCGGTTGCTCTTTCTCTATCTTCCTCTTAGCTTTGCTGTCTTGTTTGACCATCCCAGCTTC GTTGCTGGGTAGCGCTCACCCCACGCTCGCGGCCAGGAACAGCAGCATCCCCACCACGACAATACGACG CCACGTCGATTTGCTCGTTGGGGCGGCTGCTCTCTGTTCCGCTATGTACGTTGGGGATCTCTGCGGATCC 15 GTTTTTCTCGTCTCCCAGCTGTTCACCTTCTCACCTCGCCGGTATGAGACGGTACAAGATTGCAATTGCT 20 GTCCTGGCTCTCACAAGGGCCATCTCAGAAAATCCAACTCGTGAACACCAACGGCAGCTGGCACATCAAC AGGACCGCTCTGAATTGCAATGACTCCCTCCAAACTGGGTTCATTGCTGCGCTGTTCTACGCACACAGGT TCAACGCGTCCGGATGTCCAGAGCGCATGGCCAGCTGCCGCCCCATCGACAAGTTCGCTCAGGGGTGGGG TCCCATCACTCACGTTGTGCCTAACATCTCGGACCAGAGGCCTTATTGCTGGCACTATGCACCCCAACCG 25 TGCGGTATTGTACCCGCGTCGCAGGTGTGTGGCCCAGTGTATTGCTTCACCCCGAGTCCTGTTGTGGTGG CAACACGCGGCCGCCAAGGCAACTGGTTCGGCTGTACATGGATGAATAGCACCGGGTTCACCAAGACG TGCGGGGGCCCCCGTGTAACATCGGGGGGGTTGGCAACACACCTTGATTTGCCCCACGGATTGCTTCC 30 ${\tt CTACCCATACAGACTTTGGCACTACCCCTGCACTATCAATTTTACCATCTTCAAGGTCAGGATGTACGTG}$ GGGATAGATCAGAGCTTAGCCCGCTGCTATTGTCTACAACGGAGTGGCAGGTACTGCCCTGTTCCTTTAC CACCCTACCGGCTCTGTCCACTGGATTGATCCACCTCCATCAGAATATCGTGGACGTGCAATACCTGTAC $\tt CGGACGCGCGTCTGTGCCTGTTGTGGATGATGCTGATAGCCCAGGCTGAGGCCACCTTAGAGAA$ $\tt CCTGGTGGTCCTCAATGCGGCGTCTGTGGCCGGAGCGCATGGCCTTCTCTCCTCGTGTTCTTCTGC$ GCCGCCTGGTACATCAAAGGCAGGCTGGTCCCTGGGGCGGCATATGCTCTCTATGGCGTATGGCCGTTGC TCCTGCTCTTGCTGGCTTTACCACCACGAGCTTATGCCATGGACCGAGAGATGGCTGCATCGTGCGGAGG CGCGGTTTTTGTAGGTCTGGTACTCTTGACCTTGTCACCATACTATAAGGTGTTCCTCGCTAGGCTCATA 40 TGGTGGTTACAATATTTTATCACCAGGGCCGAGGCGCACTTGCAAGTGTGGGTCCCCCCTCTTAATGTTC ACTCCTGCTCGCCATACTCGGTCCGCTCATGGTGCTCCAAGCTGGCATAACCAGAGTGCCGTACTTCGTG $\tt CCTTCATGAAGCTGGGCGCTGACAGGCACGTACATTTACAACCATCTTACCCCGCTACGGGATTGGGC$ 45 $\tt CCACGCGGGCCTACGAGACCTTGCGGTGGCAGTGGAGCCCGTCGTCTTCTCCGACATGGAGACCAAGATC$ ATCACCTGGGGAGCAGACACCGCGGCGTGTGGGGACATCATCTTGGGTCTGCCCGTCTCCGCCCGAAGGG GAAAGGAGATACTCCTGGGCCCGGCCGATAGTCTTGAAGGGCGGGGGTGGCGACTCCTCGCGCCCATCAC GGCCTACTCCCAACAGACGCGGGGCCTACTTGGTTGCATCATCACTAGCCTTACAGGCCGGGACAAGAAC TGTGTTGGACCGTTTACCATGGTGCTGGCTCAAAGACCTTAGCCGGCCCAAAGGGGCCAATCACCCAGAT 50 GTACACTAATGTGGACCAGGACCTCGTCGGCTGGCAGGCGCCCCCGGGGCGCGTTCCTTGACACCATGC ACCTGTGGCAGCTCAGACCTTTACTTGGTCACGAGACATGCTGACGTCATTCCGGTGCGCCGGCGGGGCG ACAGTAGGGGGAGCCTGCTCCCCCAGGCCTGTCTCCCTACTTGAAGGGCTCTTCGGGTGGTCCACTGCT CTGCCCTTCGGGGCACGCTGTGGGCATCTTCCGGGCTGCCGTATGCACCCGGGGGGTTGCGAAGGCGGTG 55 GACTTTGTGCCCGTAGAGTCCATGGAAACTACTATGCGGTCTCCCGGTCTTCACGGACAACTCATCCCCCC CGGCCGTACCGCAGTCATTTCAAGTGGCCCACCTACACGCTCCCACTGGCAGCGGCAAGAGTACTAAAGT TTTGGGGCGTATATGTCTAAGGCACACGGTATTGACCCCAACATCAGAACTGGGGTAAGGACCATTACCA

CAGGCGCCCCGTCACATACTCTACCTATGGCAAGTTTCTTGCCGATGGTGGTTGCTCTGGGGGCGCTTA TGACATCATAATATGTGATGAGTGCCATTCAACTGACTCGACTACAATCTTGGGCATCGGCACAGTCCTG GACCAAGCGGAGACGGCTGGAGCGCCTTGTCGTCGCCACCGCTACGCCTCCGGGATCGGTCACCG TGCCACACCCAAACATCGAGGAGGTGGCCCTGTCTAATACTGGAGAGATCCCCTTCTATGGCAAAGCCAT CCCCATTGAAGCCATCAGGGGGGAAGGCATCTCATTTTCTGTCATTCCAAGAAGAAGAGTGCGACGAGCTC GCCGCAAAGCTGTCAGGCCTCGGAATCAACGCTGTGGCGTATTACCGGGGGCTCGATGTCCGTCATAC CAACTATCGGAGACGTCGTTGTCGTGGCAACAGACGCTCTGATGACGGCCTATACGGGCGACTTTGACTC AGTGATCGACTGTAACACATGTGTCACCCAGACAGTCGACTTCAGCTTGGATCCCACCTTCACCATTGAG ACGACGACCGTGCCTCAAGACGCAGTGTCGCGCTCGCAGCGGGGTAGGACTGGCAGGGGTAGGAGAG 10 GCATCTACAGGTTTGTGACTCCGGGAGAACGGCCCTCGGGCATGTTCGATTCCTCGGTCCTGTGTGAGTG CTATGACGCGGGCTGTGCTTGGTACGAGCTCACCCCGCCGAGACCTCGGTTAGGTTGCGGGCCTACCTG AACACACCAGGGTTGCCCGTTTGCCAGGACCACCTGGAGTTCTGGGAGAGTGTCTTCACAGGCCTCACCC ACATAGATGCACACTTCTTGTCCCAGACCAGCAGGCAGGAGACAACTTCCCCTACCTGGTAGCATACCA AGCCACGGTGTGCGCCAGGGCTCAGGCCCCACCTCATCATGGGATCAAATGTGGAAGTGTCTCATACGG 15 $\tt CTGAAACCTACGCTGCACGGGCCAACACCCTTGCTGTACAGGCTGGGAGCCGTCCAAAATGAGGTCACCC$ TCACCCACCCCATAACCAAATACATCATGGCATGCATGTCGGCTGACCTGGAGGTCGTCACTAGCACCTG GGTGCTGGTGGGCGGAGTCCTTGCAGCTCTGGCCGCGTATTGCCTGACAACAGGCAGTGTGGTCATTGTG GGTAGGATTATCTTGTCCGGGAGGCCGCTATTGTTCCCGACAGGGAGCTTCTCTACCAGGAGTTCGATG AAATGGAAGAGTGCGCCACGCACCTCCCTTACATTGAGCAGGGAATGCAGCTCGCCGAGCAGTTCAAGCA 20 GAAAGCGCTCGGGTTACTGCAAACAGCCACCAAACAAGCGGAGGCTGCTGCTCCCGTGGTGGAGTCCAAG TGGCGAGCCCTTGAGACATTCTGGGCGAAGCACATGTGGAATTTCATCAGCGGGATACAGTACTTAGCAG GCTTATCCACTCTGCCTGGGAACCCCGCAATAGCATCATTGATGGCATTCACAGCCTCTATCACCAGCCC AGCGCCGCTTCGGCTTCGTGGGCGCCGGCATCGCCGGTGCGGCTGTTGGCAGCATAGGCCTTTGGGAAGG GTCGGGGTCGTGTGCAGCAATACTGCGTCGGCACGTGGGTCCGGGAGAGGGGGCTGTGCAGTGGATGA CGCAGCGCGTGTTACTCAGATCCTCTCCAGCCTTACCATCACTCAGCTGCTGAAAAGGCTCCACCAGTGG 30 ATTAATGAGGACTGCTCCACACCGTGTTCCGGCTCGTGGCTAAGGGATGTTTGGGACTGGATATGCACGG TGTTGACTGACTTCAAGACCTGGCTCCAGTCCAAGCTCCTGCCGCAGCTACCGGGAGTCCCTTTTTTCTC GTGCCAACGCGGGTACAAGGGAGTCTGGCGGGGAGACGGCATCATGCAAACCACCTGCCCATGTGGAGCA CAGATCACCGGACATGTCAAAAACGGTTCCATGAGGATCGTCGGGCCTAAGACCTGCAGCAACACGTGGC ATGGAACATTCCCCATCAACGCATACACCACGGGCCCCTGCACACCTCTCCAGCGCCCAAACTATTCTAG 35 GGCGCTGTGGCGGTTGGCGCTTGAGGAGTACGTGGAGGTCACGCGGGTGGGGGATTTCCACTACGTGACG GGCATGACCACTGACAACGTAAAGTGCCCATGCCAGGTTCCGGCTCCTGAATTCTTCTCGGAGGTGGACG GAGTGCGGTTGCACAGGTACGCTCCGGCGTGCAGGCCTCTCCTACGGGAGGAGGTTACATTCCAGGTCGG GCTCAACCAATACCTGGTTGGGTCACAGCTACCATGCGAGCCCGAACCGGATGTAGCAGTGCTCACTTCC ATGCTCACCGACCCCTCCCACATCACAGCAGAAACGGCTAAGCGTAGGTTGGCCAGGGGGTCTCCCCCCT 40 CTCTCCGGACGCTGACCTCATCGAGGCCAACCTCCTGTGGCGGCAGGAGATGGGCGGGAACATCACCCGC GTGGAGTCGGAGAACAAGGTGGTAGTCCTGGACTCTTTCGACCCGCTTCGAGCGGAGGAGGATGAGAGGG AAGTATCCGTTCCGGCGGAGATCCTGCGGAAATCCAAGAAGTTCCCCGCAGCGATGCCCATCTGGGCGCG CCCGGATTACAACCCTCCACTGTTAGAGTCCTGGAAGGACCCGGACTACGTCCCTCCGGTGGTGCACGGG 45 TGCCCGTTGCCACCTATCAAGGCCCCTCCAATACCACCTCCACGGAGAAAGAGGACGGTTGTCCTAACAG AGTCCTCCGTGTCTTCTGCCTTAGCGGAGCTCGCTACTAAGACCTTCGGCAGCTCCGAATCATCGGCCGT CGACAGCGGCACCGCCCTTCCTGACCAGGCCTCCGACGACGTGACAAAGGATCCGACGTTGAG TCGTACTCCTCCATGCCCCCCTTGAGGGGGAACCGGGGGACCCCGATCTCAGTGACGGGTCTTGGTCTA ${\tt CCGTGAGCGAGGAAGCTAGTGAGGATGTCGTCTGCTGCTCAATGTCCTACACATGGACAGGCGCCTTGAT}$ 50 CACGCCATGCGCTGCGGAGGAAAGCAAGCTGCCCATCAACGCGTTGAGCAACTCTTTGCTGCGCCACCAT AACATGGTTTATGCCACAACATCTCGCAGCGCAGGCCTGCGGCAGAAGAAGGTCACCTTTGACAGACTGC AAGTCCTGGACGACCACTACCGGGACGTGCTCAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAA ACTCCTATCCGTAGAGGAAGCCTGCAAGCTGACGCCCCCACATTCGGCCAAATCCAAGTTTGGCTATGGG GCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTAACCACATCCACTCCGTGTGGAAGGACTTGCTGG 55 AAGACACTGTGACACCAATTGACACCACCATCATGGCAAAAAAATGAGGTTTTCTGTGTCCAACCAGAGAA AGGAGGCCGTAAGCCAGCCCGCCTTATCGTATTCCCAGATCTGGGAGTCCGTGTATGCGAGAAGATGGCC CTCTATGATGTGTCTCCACCCTTCCTCAGGTCGTGATGGGCTCCTCATACGGATTCCAGTACTCTCCTG GGCAGCGAGTCGAGTTCCTGGTGAATACCTGGAAATCAAAGAAAAACCCCATGGGCTTTTCATATGACAC

PCT/US2004/011255 WO 2004/091515

TCGCTGTTTCGACTCAACGGTCACCGAGAACGACATCCGTGTTGAGGAGTCAATTTACCAATGTTGTGAC TTGGCCCCGAAGCCAGACAGGCCATAAAATCGCTCACAGAGCGGCTTTATATCGGGGGGTCCTCTGACTA ATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGCGCGAGCGGCGTGCTGACGACTAGCTGCGGTAA CACCCTCACATGTTACTTGAAGGCCTCTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGCTC GTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGCGCGGGAACCCAAGAGGACGCGGGGAGCCTACGAG TCTTCACGGAGGCTATGACTAGGTACTCTGCCCCCCCGGGGACCCGCCCCAACCAGAATACGACTTGGA GCTGATAACATCATGTTCCTCCAATGTGTCGGTCGCCCACGATGCATCAGGCAAAAGGGTGTACTACCTC ACCCGTGATCCCACCACCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACACTCCAGTTAACTCCT GGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCCAAGGATGATTCTGATGACTCACTTCTTCTC CATCCTTCTAGCACAGGACCACCTTGAAAAAGCCCTGGACTGCCAGATCTACGGGGCCTGTTACTCCATT GAGCCACTTGACCTACGTCAGATCATTGAACGACTCCATGGCCTTAGCGCATTTTCACTCCATAGTTACT ${\tt CCGGCTGGTTCGTTGCTGGTTACAGCGGGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGCTG}$ GCTGTGAAAGGTCCGTGAGCCGCATGACTGCAGAGAGTGCTGATACTGGCCTCTCTGCAGATCATGT 20 (SEQ ID NO:6688)

15

25

30

35

40

45

50

gi|306286|gb|M96362.1|HPCUNKCDS Hepatitis C virus mRNA, complete cds TGCCAGCCCCGATTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGC ATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCC GCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCGAGACTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGC GAATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCACAGGATATTAAGTTCCCGGGC ${\tt GGTGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCCAGGTTGGGTGTGCGCGCGACTA}$ $\tt CTCCTGTCACCCCGGGCTCCGGCCTAGTTGGGGCCCCACGGACCCCGGCGTAAGTCGCGTAATTTGG$ GTAAGGTCATCGACACCCTCACATGCGGCTTCGCCGACCTCATGGGGTACATTCCGCTCGTCGGCGCCCC CCTAGGGGGCGTTGCCAGGGCCCTGGCACATGGTGTCCGGGTGCTGGAGGACGGCGTGAACTATGCAACA GGGAATCTGCCCGGTTGCTCTTTCTCTATCTTCCTCTTGGCTCTGCTGTCTTGTTTTGACCACCCCAGTTT GCCATGTCGACTTGCTCGTTGGGGTAGCTGCTTTCTGTTCCGCTATGTACGTGGGGGACCTCTGCGGATC TGTTTTCCTTGTTTCCCAGCTGTTCACCTTTTCGCCTCGCCGGCATGAGACGGTACAGGACTGCAACTGC TCAATCTATCCCGGCCGCGTATCAGGTCACCGCATGGCCTGGGATATGATGATGAACTGGTCGCCTACAA CAGCCCTAGTGGTATCGCAGCTACTCCGGATCCCACAAGCTGTCGTGGACATGGTGACAGGGTCCCACTG GGGAATCCTGGCGGGCCTTGCCTACTATTCCATGGTGGGGAACTGGGCTAAGGTCTTAATTGCGATGCTA CAGGACCGCCTGAGCTGCAATGACTCCCTCAACACTGGGTTTGTTGCCGCGCTGTTCTACAAATACAGG TTCAACGCGTCCGGGTGCCCGGAGCGCTTGGCCACGTGCCGCCCCATTGATACATTCGCGCAGGGGTGGG GTCCCATCACTTACACTGAGCCTCATGATTTGGATCAGAGGCCCTATTGCTGGCACTACGCGCCTCAACC GTGTGGTATTGTGCCCACGTTGCAGGTGTGTGGCCCAGTATACTGCTTCACCCCGAGTCCTGTTGCGGTG ACAACGCCGGGCCGCCAAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACTGGGTTCACCAAGAC ATGTGGGGGCCCCCGTGTAACATCGGGGGGGTCGGCAACAATACCTTGACCTGCCCCACGGACTGCTTC ACTACCCGTACAGGCTCTGGCATTACCCCTGCACTGTCAACTTTACCATCTTTAAGGTTAGGATGTACGT GGGGGCGCGGAGCACAGGCTCGACGCCGCATGCAACTGGACTCGGGGAGAGCGTTGTGACCTGGAGGAC AGGGATAGGTCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGAGTGGCAGGTACTGCCCTGTTCCTTCA ${\tt CAACCCTACCGGCTCTGTCCACTGGTTTGATTCATCTCCATCAGAACATCGTGGACATACAATACCTGTACCTGTACCATCAGAACATCGTGGACATACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACCTTGTACAATACAATACCAATACAATACCAATACAATACAATACCAATAC$

GCGGACGCGCGCTCTGCGCTTGCTTGTGGATGATGCTGCTGGTAGCGCAAGCCGAGGCCGCCTTAGAGA ACCTGGTGGTCCTCAATGCAGCGTCCGTGGCCGGAGCGCATGGCATTCTTCTTCATTGTGTTCTTCTG TGCTGCCTGGTACATCAAGGGCAGGCTGGTTCCCGGAGCGGCATACGCCCTCTATGGCCGTATGGCCGCTG CTTCTGCTTCTGCTGCCGTTACCACCACGGGCGTACGCCATGGACCGGGAGATGGCCGCATCGTGCGGAG GCGCGGTTTTTGTAGGTCTGGTACTCTTGACCTTGTCACCACACTATAAAGTGTTCCTTGCCAGGTTCAT ATGGTGGCTACAATATCTCATCACCAGAACCGAAGCGCATCTGCAAGTGTGGGTCCCCCCTCTCAACGTT CGGGGGGGTCGCGATGCCATCATCCTCACATGCGTGGTCCACCCAGAGCTAATCTTTGACATCACAA AATATTTGCTCGCCATATTCGGCCCGCTCATGGTGCTCCAGGCCGGCATAACTAGAGTGCCGTACTTCGT GCGCGCACAAGGGCTCATTCGTGCATGCATGTTGGCGCGGAAAGTCGTGGGGGGTCATTACGTCCAAATG 10 GTCTTCATGAAGCTGGCCGCACTAGCAGGTACGTTCTTATGACCATCTTACTCCACTGCGAGATTGGG $\tt CTCACACGGGCTTACGAGACCTTGCAGTGGCAGTAGAGCCCGTTGTCTTCTCTGACATGGAGACCAAAGT$ 15 ${\tt CCAGGTTGAGGGGGAGGTTCAAGTGGTTTCCACCGCAACACAATCTTTCCTGGCGACCTGCATCAATGGC}$ GTGTGTTGGACTGTCTTCCACGGCGCCGGCTCAAAGACCCTAGCCGGCCCAAAGGGTCCAATCACCCAAA TGTACACCAATGTAGACCAGGACCTTGTTGGCTGGCCGGCACCTCCTGGGGCGCGTTCCCTGACACCATG CACTTGCGGCTCCTCGGACCTTTACCTGGTCACGAGACATGCTGATGTCATTCCGGTGCGCCGGCGGGGGT 20 GACGGTAGGGGGAGCCTACTCCCCCCCAGGCCTGTCTCCTACTTGAAGGGCTCCTCGGGTGGTCCACTGC GGAATTCATACCCGTTGAGTCTATGGAAACTACTATGCGGTCTCCGGTCTTCACGGACAATCCGTCTCCC $\tt CCGGCTGTACCGCAGACATTCCAAGTGGCCCACTTACACGCTCCCACCGGCAGCGCCAAGAGCACTAGGG$ TTTTGGGGCGTATATGTCCAAGGCACATGGTATCGACCCCAACCTTAGAACTGGGGTAAGGACCATCACC 25 ${\tt ATGACATCATAATGTGTGATGAGTGCCACTCAACTGACTCGACTACCATTTATGGCATCGGCACAGTCCT}$ GGACCAAGCGGAGACGGCTGGAGCGCGCTCGTGGTGCTCTCCACCGCTACGCCTCCGGGATCGGTCACC GTGCCACACCTCAATATCGAGGAGGTGGCCCTGTCTAATACTGGAGAGATCCCCTTCTACGGCAAAGCCA TTCCCATCGAGGCTATCAAGGGGGGAAGGCATCTCATTTTCTGCCATTCCAAGAAGAAGTGTGACGAACT 30 CGCCGCAAAGCTGTCAGGCCTCGGACTCAATGCCGTAGCGTATTACCGGGGTCTTGACGTGTCCGTCATA CCGACCAGCGGAGACGTTGTTGTCGTGGCGACGGACGCTCTAATGACGGGCTTTACCGGCGACTTTGACT CAGTGATCGACTGTAATACGTGTGTCACCCAGACAGTCGATTTCAGCTTTGGACCCCACCTTCACCATTGA GACGACGACCGTGCCCCAAGACGCAGTGTCGCGCTCGCAGAGGCGAGGCAGGACTGGTAGGGGCAGGGCT GGCATATACAGGTTTGTGACTCCAGGAGAACGGCCCTCGGGCATGTTCGATTCTTCGGTCCTGTGTGAGT 35 GTTATGACGCGGGTTGTGCGTGGTACGAACTCACGCCCGCTGAGACCTCGGTTAGGTTGCGGGCGTACCT AAACACACCAGGGTTGCCCGTCTGCCAGGACCATCTGGAGTTCTCGGAGGGTGTCTTCACAGGCCTCACC AGGCTACAGTGTGCGCCAGGGCTCAAGCCCCACCTCCATCGTGGGATGAAATGTGGAGGTGTCTCATACG GCTGAAACCTACGCTGCACGGGCCAACACCCCTGCTGTATAGGTTAGGAGCCGTCCAAAATGAGGTCACC 40 GGGTGCTGGTAGGCGGAGTCCTCGCAGCTCTGGCCGCGTACTGCCTGACAACAGGCAGCGTGGTCATTGT GGGCAGGATCATCCTGTCCGGGAAGCCGGCTATCATCCCCGATAGGGAAGTTCTCTACCAGGAGTTCGAC GAGATGGAGGAGTGTGCCTCACACCTCCCTTACTTCGAACAGGGAATGCAGCTCGCCGAGCAATTCAAAC AGAAGGCGCTCGGGTTGCTGCAAACAGCCACCAAGCAGGCGGAGGCTGCTGCTCCCGTGGTGGAGTCCAA GTGGCGAGCCCTTGAGACCTTCTGGGCGAAGCACATGTGGAACTTCATTAGTGGGATACAGTACTTGGCA GGCTTGTCCACTCTGCCTGGGAACCCCGCAATACGATCACCGATGGCATTCACAGCCTCCATCACCAGCC 50 GCGGCGAGATGCCTTCAGCCGAGGACATGGTCAACTTACTCCCTGCCATCCTTTCTCCCGGTGCCCTGGT $\tt CTGCAGCGCGTGTTACCCAGATCCTTTCCAGCCTCACCATCACTCAGCTGTTGAAGAGACTCCACCAGTG$ GATTAATGAGGACTGCTCTACGCCATGCTCCAGCTCGTGGCTAAGGGAGATTTGGGACTGGATCTGCACG 55 GTGTTGACTGACTTCAAGACCTGGCTCCAGTCCAAGCTCCTGCCGCGATTACCGGGAGTCCCTTTTTTCT ACAGATCACCGGACACGTCAAAAACGGTTCCATGAGGATCGTTGGGCCTAAAACCTGCAGCAACACGTGG

TACGGGACATTCCCCATCAACGCGTACACCACGGGCCCCTGCACACCCTCCCCGGCGCCCAAACTATTCCA ${\tt AGGCATTGTGGAGGGTGGCCGCTGAGGAGTACGTGGAGGTCACGCGGGTGGGAGATTTTCACTACGTGAC}$ GGGCATGACCACTGACAACGTGAAGTGTCCATGCCAGGTTCCGGCCCCCGAATTCTTCACGGAGGTGGAT GGAGTGCGGTTGCACAGGTACGCTCCGGCGTGCAGACCTCTCCTACGGGAGGAGGTCGTATTCCAGGTCG GGCTCCACCAGTACCTGGTCGGGTCACAGCTCCCATGCGAGCCCGAACCGGATGTAGCAGTGCTCACTTC ACTCCCCGGACGCTGACCTCATTGAGGCCAACCTCTTGTGGCGGCAAGAGATGGGCGGGAACATCACCCG GAAATATCCGTTCCGGCGGAGATCCTGCGGAAATCCAGGAAATTCCCCCCAGCGCTGCCCATATGGGCGC 10 $\tt CGCCGGATTACAACCCTCCGCTGCTAGAGTCCTGGAAGGACCCGGACTACGTTCCTCCGGTGGTACACGG$ GTGCCGTTGCCGCCCACCAAGGCCCCTCCAATACCACCTCCACGAGGAAGAGACGGTTGTCCTGACA GAATCCACCGTGTCTTCTGCCTTGGCGGAGCTCGCTACTAAGACCTTCGGCAGCTCCGGATCGTCGGCCA TCGACAGCGGTACGGCGACCGCCCCTCCTGACCAAGCCTCCGGTGACGGCGACAGAGAGTCCGACGTTGA GTCGTTCTCCTCCATGCCCCCCTTGAGGGAGAGCCGGGGGACCCCGATCTCAGCGACGGATCTTGGTCC ACCGTGAGCGAGGAGGCTAGTGAGGACGTCGTCTGCTGTTCGATGTCCTACACATGGACAGGCGCCCTGA TCACGCCATGCGCTGCGGAGGAAAGCAAGTTGCCCATCAACCCGTTGAGCAATTCTTTGCTACGTCACCA CAACATGGTCTATGCTACAACATCCCGCAGCGCAGGCCTGCGGCAGAAGAAGGTCACCTTTGACAGACTG CAAGTCCTGGACGACCACTACCGGGACGTGCTTAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTA AACTTCTATCTGTAGAAGAAGCCTGCAAACTGACGCCCCCACATTCGGCCAAATCCAAATTTGGCTACGG 20 GGCGAAGGACGTCCGGAGCCTATCCAGCAGGGCCGTTACCCACATCCGCTCCGTGTGGAAGGACCTGCTG GAAGACACTGAAACACCAATTAGCACTACCATCATGGCAAAAAATGAGGTTTTCTGTGTCCAACCAGAGA AGGGAGCCGCAAGCCAGCTCGCCTTATCGTGTTCCCAGATCTGGGAGTTCGTGTATGCGAGAAGATGGC $\tt CCTTTATGACGTGGTCTCCACCCTTCCTCAGGCCGTGATGGGCTCCTCATACGGATTCCAGTACTCTCCT$ AAGCAGCGGGTCGAGTTCCTGGTGAATACCTGGAAATCAAAGAAATGCCCCATGGGCTTCTCATATGACA 25 CCCGCTGTTTTGACTCAACGGTCACTGAGAATGACATCCGTGTTGAGGAGTCAATTTACCAATGTTGTGA CTTGGCCCCGAAGCCAAACTGGCCATAAAGTCGCTCACAGAGCGGCTCTATATCGGGGGGTCCCCTGACT AATTCAAAAGGGCAGAACTGCGGTTACCGCCGGTGCCGCGCGAGCGGCGTGCTGACGACTAGCTGCGGTA ATACCCTCACATGTTACCTGAAAGCCACTGCGGCCTGTCGAGCTGCGAAGCTCCGGGACTGCACGATGCT CGTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGCGCGGGAACCCAAGAGGATGCGGCGAGCCTACGA 30 GTCTTCACGGAGGCTATGACTAGGTACTCTGCCCCCCTGGGGACCCGCCTCAACCGGAATACGACTTGG ${\tt AGTTGATAACATCATGTTCCTCCAATGTGTCGGTCGCACACGATGCATCTGGTAAAAGGGTGTACTACCT}$ $\tt CACCCGTGACCCTACCACCCCCTTGCACGGGCTGCGTGGGAGACAGCTAGACACACCCCAGTCAACTCAACTCCAGTCAACTCAACTCCAGTCAACTAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACT$ TGGCTAGGCAACATCATGTATGCGCCCACCTTATGGGCAAGGATGATTCTGATGACTCATTTCTTCT $\tt CCATCCTTCTAGCTCAGGAGCAACTTGAAAAAACCCTAGATTGTCAGATCTACGGGGCCTGTTACTCCAT$ 35 TGAACCACTTGATCTACCTCAGATCATTGAGCGACTCCATGGTCTTAGCGCATTTTCACTCCATAGTTAC TCTCCAGGCGAGATCAATAGGGTGGCTTCATGCCTCAGAAAACTTGGGGTACCACCCTTGCGAGCCTGGA GACATCGGGCCAGAAGTGTCCGCGCTAAGCTACTGTCCCAGGGGGGGAGGGCCGCCACTTGTGGCAAGTA TCCGGCTGGTTCGTTGCTGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGCT GGTTCATGTTGTGCCTACTCCTACTTTCCGTGGGGGTAGGCATCTACCTGCTCCCCAACCGATGAATGGG GAGCTAAACACTCCAGGCCAATAGGCCGTTTCTC (SEQ ID NO:6689)

TGCCAGGGCCCTGGCACATGGTGTCCGGGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCC TGCGTAACGTGTCCGGGATATACCATGTCACGAACGACTGCTCCAACTCAAGCATTGTGTATGAGGCAGC GGACCTGATCATGCATACCCCTGGGTGCCTGCCTGCGTTCGGGAAGGCAACTCCTCCCGTTGCTGGGTA GCGCTCACTCCCACGCTCGCGGCCAGGAACGCCACGATCCCCACTGCGACAGTACGACGGCATGTCGATC TGCTCGTTGGGGCGGCTGCTTTCTCTTCCGCCATGTACGTGGGGGATCTCTGCGGATCTGTTTTCCTTGT CTCTCAGCTGTTCACCTTCTCGCCTCGCCGGTATGAGACAATACAGGACTGCAATTGCTCAATCTATCCC GGCCACGTAACAGGTCACCGCATGGCTTGGGATATGATGATGAACTGGTCGCCTACAACAGCTCTAGTGG TGTCGCAGTTACTCCGGATCCCTCAAGCCGTCATGGACATGGTGGTGGGGGCCCACTGGGGAGTCCTGGC $\tt GGGCCTTGCCTACTATGCCATGGTGGGGAATTGGGCTAAGGTTTTGATTGTGATGCTACTCTTCGCCGGC$ GTTGATGGGGATACCTACGCGTCTGGGGGGGCGCAGGCCGCTCCACCCTCGGGTTCACGTCCCTCTTTA CACCTGGGGCCTCTCAGAAGATCCAGCTTATAAATACCAATGGTAGCTGGCATATCAACAGGACTGCCCT $\tt GGATGCGCAGAGCGCATGGCCAGCTGCCGCCCCATTGATACATTCGATCAGGGCTGGGGCCCCATCACTT$ ATACTGAGCCTGATAGCTCGGACCAGAGGCCTTATTGCTGGCACTACGCGCCTCGAAAGTGCGGCATCGT 15 ACCTGCGTCGGAGGTGTGCGGTCCAGTGTATTGTTTCACCCCAAGCCCTGTCGTCGTCGTGGGGACCGAT CGCCGCAAGGCAACTGGTTTGGCTGTACATGGATGAATGGCACTGGGTTCACCAAGACGTGCGGGGGGCC TCCGTGTAACATCGGGGGGGTCGGCAACACACTTTGACTTGCCCCACGGATTGCTTTCGGAAGCACCCC GAGGCTACGTATACAAGGTGTGGTTCGGGGCCTTGGCTGACACCTAGGTGCTTAGTTGACTACCCATACA 20 GCACAGGCTCGATGCTGCATGCAACTGGACTCGAGGAGAGCGCTGTAACTTGGAGGACAGGGATAGATCA GAACTCAGCCCGCTGCTACTGTCTACAACAGAGTGGCAGATACTACCCTGCGCCTTCACCACCCTACCGG $\tt CTCTGTCCACTGGTTTAATCCATCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTATAGGGTC$ AGCGGTTGCCTCCTTTGCAATTAAATGGGAGTATGTCTTGTTGCTTTTCCTTCTACTAGCAGACGCGCGC 25 GTATGTGCCTGCTTGTGGATGATGCTGCTGATAGCCCAGGCCGAGGCCGCCTTAGAGAACCTGGTGGTCC CATTAAGGCCAGGCTGGTCCCCGGGGCAGCATACGCTTTCTACGGCGTGTGGCCGCTGCTCCTGCTCCTG CTGACATTACCACCACGAGCTTACGCCATGGACCGGGAGATGGCTGCATCGTGCGGAGGCGCGGTTTTTG TAGGTCTGGTATTCCTGACTTTGTCACCATACTACAAGGTGTTCCTCGCTAGGCTCATATGGTGGTTGCA 30 ATACTTCCTCACCATAGCCGAGGCGCACCTGCAAGTGTGGATCCCCCCTCTCAACATTCGAGGGGGCCGC GATGCCATCATCCTCCTCACGTGTGCAATCCACCCAGAGTCAATCTTTGACATCACCAAACTCCTGCTCG GCTCATTCGCGCGTGCATGCTATTGCGGAAAGTTGCTGGGGGGTCATTATGTCCAAATGGCCTTCATGAAG $\tt CTGGGCGCACTGACAGGTACGTCTATAACCATCTTACTCCGCTGCAGTATTGGCCACGCGGGGTT$ 35 TACGAGAACTCGCGGTGGCAGTAGAGCCCGTCATCTTCTCTGACATGGAGACCAAGATTATCACCTGGGG GGCAGACACTGCAGCGTGTGGAGACATCATCTTGGGTTTACCCGTCTCCGCCCGAAGGGGAAAGGAGATA AACAGACGCGGGGCTTACTTGGTTGCATCATCACTAGCCTCACAGGCCGAGACAAGAACCAGGTCGAGGG 40 GTCTATCATGGCGCCGGCTCAAAAACCTTAGCCGGCCCAAAGGGCCCAATCACCCAAATGTACACCAATG TAGACCAGGACCTCGTCGGCTGGCACCGGCCCCCGGGGCGCGTTCCCTAACACCATGCACCTGCGGCAG CTCGGACCTTTACTTGGTCACGAGACATGCTGATGTCATTCCGGTGCGCCGTCGAGGCGACAGTAGGGGG AGTTTACTCTCCCCCAGGCCTGTCTCCTACCTGAAGGGCTCGTCGGGGGGCCCACTGCTCTGCCCCTTCG GGCACGTTGCAGGCATCTTCCGGGCTGCTGTGTGCACCCGGGGGGTTGCGAAGGCGGTGGATTTTATACC CGTTGAGACCATGGAAACTACCATGCGGTCCCCGGTCTTCACGGACAACTCATCCCCTCCTGCCGTACCG CAGACATTCCAAGTGGCCCATCTACACGCTCCCACTGGCAGCGGCAAAAGCACCAAGGTGCCGGCTGCAT ${\tt ATGCAGCCCAAGGGTACAAGGTACTTGTCTTGAACCCGTCTGTTGCCGCCACTTTAGGTTTTGGGGCGTA}$ TATGTCTAAGGCACATGGTGTCGACCCCAACATTAGAACCGGGGTAAGGACCATCACCACGGGCGCCCCC ATCACATACTCTACCTATGGCAAGTTCCTTGCTGATGGTGGTTGCTCTGGGGGGTGCCTATGACATTATAA 50 AACATCGAGGAGGTGGCCCTGTCCAATACTGGAGAGATCCCCTTCTATGGTAAAGCCATCCCCATCGAAG ${\tt ATCATCGCTCGGGCTCAACGCTGTGGCGTACTACCGGGGGCTTGATGTCTCCGTCATACCATCTAGCGGA}$ GTAACACATGTGTTACCCAAACAGTCGATTTCAGCTTGGACCCCACCTTCACCATCGAGACAACGACCGT GCCCCAAGACGCGGTGTCGCGCTCGCAGCGGCGAGGTAGGACTGGCAGGGGTAGGGAAGGCATCTACAGG

GCTGTGCTTGGTACGAGCTCACGCCGGCTGAGACCACGGTTAGGTTGCGGGCTTACCTAAATACACCAGG ${\tt GTTGCCCGTCTGCCAGGACCATCTGGAGTTCTGGGAGGGCGTCTTCACAGGTCTCACCCATATAGACGCT}$ ${\tt CACTTTCTGTCCCAGACCAAGCAAGCAGGAGACAACTTCCCCTACCTGGTAGCATACCAAGCTACAGTGT}$ GTGCCAAGGCTCAGGCCCCACCTCCATCGTGGGATCAAATGTGGAAGTGCCTCACACGGCTAAAGCCTAC GCTGCAGGGACCAACACCCCTGCTGTATAGGCTAGGAGCCGTCCAAAATGAGGTCACCCCTCACACACCCC ATAACTAAATACATCATGACATGCATGTCGGCTGACCTGGAGGTCGTCACCAGCACCTGGGTGCTGGTGG GCGGAGTCCTTGCAGCTCTGGCCGCGTATTGCCTGACAACGGGCAGCGTGGTCATTGTGGGTAGGATTGT CTTGTCCGGAAGTCCGGCTATTGTTCCTGACAGGGAAGTTCTTTACCAAGACTTCGACGAGATGGAAGAG TGTGCCTCACACCTCCCTTACATCGAACAGGGAATGCAGCTCGCCGAGCAGTTCAAGCAGAAGGCGCTCG GGTTGCTGCAAACAGCCACCAAGCAAGCGGAGGCTGCTGCTCCCGTGGTGGAGTCCAAGTGGCGAGCCCT CGAGACATTTTGGGAAAACACATGTGGAATTTCATCAGCGGGATACAGTACTTAGCAGGCTTATCCACT CTGCCTGGGAACCCCGCAATGGCATCACTGATGGCATTCACAGCTTCTATCACCAGCCCGCTCACTACCC AACACACCCTCCTGTTTAACATCTTGGGTGGATGGGTGGCTGCCCAACTCGCTCCCCCCAGCGCCGCTTC GGCCTTTGTGGGCGCCGGCATTGCCGGTGCGGCTGTTGGCAGCATAGGCCTTGGGAAGGTGCTTGTGGAC 15 ATCCTGGCGGGTTATGGGGCGGGGTGGCTGGCGCACTCGTGGCCTTTAAGGTCATGAGTGGCGAAATGC GTGCGCAGCAATACTGCGCCGACACGTGGGCCCGGGAGAGGGGGCTGTGCAGTGGATGAACCGGCTGATA GCGTTCGCTTCGCGGGGTAACCATGTCTCCCCCACGCACTATGTGCCTGAAAGTGACGCCGCAGCGCGTG 20 TTACCCAGATCCTCCAGCCTTACCATCACTCAGCTGCTGAAAAGACTTCACCAGTGGATTAATGAGGA CTGTTCCACACCATGCTCCGGCTCGTGGCTAAGGGATGTTTGGGATTGGATATGCACGGTGTTGACCGAT GGTACAAGGGAGTCTGGCGGGGGGACGGTATTATGCAAACCACCTGTCCATGTGGAGCACAGATTACTGG ACATGTCAAAAACGGTTCCATGAGAATCGTTGGGCCTAAGACTTGTAGCAACACGTGGCATGGAACATTC 25 GGGTGGCTCCTGAGGAGTACGTGGAGGTTACGCGGGTGGGGGATTTCCACTACGTGACGGCATGACCAC ${\tt CACAGGTACGCTCCGGCGTGCAAACCTCTCCTACGGGAGGAGGTCGTGTTCCAGGTCGGGCTCAACCAAT}$ ACCTGGTTGGATCACAGCTCCCATGCGAGCCGAGCCGGACGTAACAGTGCTCACTTCCATGCTTACCGA 30 TCTTCAGCTAGCCAATTGTCTGCGCCTTCTTTGAAGGCGACATGTACTACCCATCATGACTCCCGGACG AAATAAGGTAGTGATCCTGGACTCTTTCGACCCGCTTCGGGCGGAGGAGGACGAGGAAGTATCCGTT GCGGCGGAGATCCTGCGGAAATCCAGGAAGTTCCCCTCAGCGCTGCCCATATGGGCACGCCCAGACTACA 35 ACCCTCCACTGCTAGAGTCCTGGAAGGACCCAGATTATGTCCCTCCGGTGGTACACGGGTGCCCGTTGCC GCCTACCACGCCCCTCCAGTACCACCTCCACGGAGAAAAAGGACGGTCGTCCTAACAGAGTCATCCGTG TCTTCTGCCTTGGCGGAGCTCGCTACTAAGACCTTCGGCAGCTCTGAATCGTCGGCCGTCGACAGCGGCA CGGCGACTGCCCCTCTGACGAGGCCTCCGGCGGCGGCGACAAAGGATCCGACGTTGAGTCGTACTCCTC 40 $\tt CTGCGGAGGAGGCAGCTGCCCATCAACCCGCTGAGCAACTCCTTGCTGCGTCACCACAACATGGTCTA$ TGCTACAACATCCCGCAGTGCAAGCCTACGGCAGAAGAAGGTCGCTTTTGACAGAATGCAAGTCCTGGAC GACCACTACCGGGACGTGCTCAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAAACTCCTATCCA TAGAAGAGGCCTGCAAGCTGACGCCCCCACATTCAGCCAAATCCAAATTTGGCTATGGGGCAAAAGACGT 45 ACACCAATCAATACCACCATCATGGCAAAAAATGAGGTTTTCTGCGTCCAACCAGAGAAAAAGGAGGCCGTA AGCCAGCTCGCCTTATCGTATTCCCAGACTTGGGAGTCCGTGTGTGCGAGAAGATGGCCCTTTATGACGT GGTCTCCACCCTTCCTCAGCCCGTGATGGGCTCCTCATACGGATTCCAGTACTCTCCTGGGCAGCGGGTC GAATTCCTGCTAAATGCCTGGAAATCAAAGGAAAACCCTATGGGCTTCTCATATGACACCCGCTGTTTTG GGCCAGACGGGCCATAAAGTCGCTCACAGAGCGGCTCTATATCGGGGGTCCCCTGACTAATTCAAAAGGG CAGAACTGCGGTTATCGCCGGTGCCGCCAAGTGGCGTGCTGACGACCAGCTGCGGTAATACCCTTACAT GTTACTTGAAGGCCTCTGCGGCCTGTCGAGCTGCGAAGCTGCAGGACTGCACGATGCTCGTGAACGGAGA CGACCTTGTCGTTATCTGTGAAAGCGCGGGAACTCAAGAGGATGCGGCGAGCCTACGAGTCTTCACGGAG 55 GCTATGACTAGGTACTCTGCCCCCCCTGGGGACCTGCCCCAACCAGAATACGACTTGGAGCTAATAACAT

CTCAGGAGCAACTTGAGAAAGCCCTGGATTGCCAAATCTACGGGGCCTACTACTCCATTGAGCCACTTGA
CCTACCTCAGATCATTGAACGACTCCATGGCCTTAGCGCATTTTCACTCCATAGTTACTCTCCAGGTGAG
ATCAATAGGGTGGCGTCATGTCTCAGGAAACTTGGGGTACCACCCTTGCGAGTCTGGAGACATCGGGCCA
GAAGCGTCCGCGCTAAGCTACTGTCCCAGGGGGGGGAGGGCCGCCACTTGTGGCAAGTACCTCTTCAACTG
GGCAGTAAAGACCAAGCTTAAACTCACTCCAATCCCGGCTGCGTCCCGGTTGGACTTGTCCGGCTGGTTC
GTTGCTGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCGTTGGTTCATGTTGT
GCCTACTCCTACTTTCTGTAGGGGTAGGCATCTACCTGCTCCCCAACCGATGAACGGGGAGATAAACACT
CCAGGCCAATAGGCCATCCC (SEQ ID NO:6690)

10

gi|15422182|gb|AY051292.1| Hepatitis C virus from India polyprotein mRNA, GCCAGCCCCTGATGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGCA TAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCCG CTCAATGCCTGGAGATTTGGGCGTGCCCCCGCAAGACTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCC TTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCACCATGAGCACG AATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGACGCCCACAGAACGTTAAGTTCCCGGGTG GCGGCCAGATCGTTGGCGGAGTTTGCTTGTTGCCGCGCAGGGGTCCCAGAGTGGGTGTGCGCGCGACGAG GAAGACTTCCGAGCGGTCACAACCTCGCGGAAGGCGTCAGCCTATTCCCAAGGCCCGCCGACCCGAGGGGC 20 TCTTGTCCCCCGGGGCTCCCGGCCTAGTCGGGGCCCCTCTGACCCCCGGGCGCAGGTCACGCAATTTGGG TAAGGTCATCGATACCCTCACGTGTGGCCTTCGCCGACCTCATGGGGTACATCCCGCTCGTCGGTGCTCCT ${\tt CTAGGGGGGCGCTAGGGCTCTGGCACATGGTGTTAGGGTTCTAGAAGACGGCGTAAATTACGCAACAG}$ 25 GGCCGTCGAAGTGCGCAACTCTTCGGGGATCTACCATGTCACCAATGATTGCCCCAATGCGTCTGTTGTG TACGAGACAGATAGCTTGATCATACATCTGCCCGGGTGTGTGCCCTGCGTACGCGAGGGCAACGCTTCGA GGTGCTGGGTCTCCCTTAGTCCTACTGTTGCCGCTAAGGATCCGGGCGTCCCCGTCAACGAGATTCGGCG ATCTTCCTCGTTGGCCAGCTTTTCACCCTCTCCCCTAGGCGCCACTGGACAACACAAGACTGTAATTGCT CCATCTACCCAGGACATGTGACAGGCCATCGAATGGCTTGGGACATGATGATGAATTGGTCACCTACTGG CGCTTTGGTGGTAGCGCAGCTACTCCGGATCCCACAAGCCGTCTTGGATATGATAGCCGGTGCCCACTGG GGTGTCCTAGCGGGCCCGGCATACTACTCCATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGCTACTGC TCTTCGCTGGCGTCGATGCAACCACCCAAGTCACAGGTGGCACCGCGGGCCGTAATGCATATAGATTGGC TAGCCTCTTCTCCACCGGCCCAGCCAAAATATCCAGCTCATAAACTCCAATGGCAGCTGGCACATTAAC AGGACTGCCCTGAATTGCAATGACAGCCTGCACACCGGCTGGGTAGCAGCGCTGTTCTACTCCCACAAGT GCCCATCACTTACGGGGGGAAAGCTAGTAACGACCAGCGGCCGTATTGCTGGCACTATGCCCCACGCCCG $\tt TGCGGTATCGTGCCGGCGAAAGAGGTTTGCGGGCCTGTATACTGTTTCACACCCAGTCCCGTGGTAGTGG$ GGACGACGGCCAAGTACGGCGTTCCTACCTACACATGGGGCGAGAATGAGACGGATGTACTGCTCCTTAA CAACTCTAGGCCGCCAATAGGGAATTGGTTCGGGTGTACGTGGATGAATTCCACTGGTTTCACCAAGACG GCAGACATCCGGACGCAACATACGCTAAGTGCGGCTCTGGCCCTTGGCTTAACCCTCGATGCATGGTGGA $\tt CTACCCTTACAGGCTCTGGCACTATCCCTGCACAGTCAATTACACCATATTCAAGATCAGGATGTTCGTG$ GGCGGGATTGAGCACAGGCTCACCGCCGCGTGCAACTGGACGCGGGGAGAGCGCTGCGACTTGGACGACA GGGATCGTGCCGAGTTGAGCCCGCTGTTGCTGTCCACCACGCAATGGCAGGTCCTCCCCTGCTCATTCAC AACGCTGCCCGCCCTGTCAACTGGCCTAATACATCTCCACCAGAACATCGTGGACGTGCAGTACCTCTAC GGGTTGAGCTCGGTAGTTACATCCTGGGCCATAAGGTGGGAGTATGTCGTGCTCCTTTTCTTGCTGTTAG CAGATGCCCGCATTTGTGCCTGCCTTTGGATGATGCTTCTCATATCCCAGGTAGAGGCGGCGCTGGAGAA ${\tt CCTGATAGTCCTCAACGCTGCTTCCCTGGCTGGGACACACGGCATCGTCCCTTTCTTCATCTTTTTTGT}$ 50 GCAGCCTGGTATCTGAAAGGCAAGTGGGCCCCTGGACTCGTCTACTCCGTCTACGGAATGTGGCCGCTGC CGTGGTCTTCATCAGCCTAGCGGTACTTACCCTGTCGCCGTACTACAAACAGTACATGGCCCGCGGCATC TGGTGGCTGCAGTACATGCTGACCAGAGCGGAGGCGCTCCTGCACGTCTGGGTCCCCTCGCTCAACGCCC GGGGAGGGCGTGATGGTGCCATACTGCTCATGTGTGTGCTCCACCCGCACTTGCTCTTTGACATCACCAA AATCATGCTGGCCATTCTCGGGCCCCTGTGGATCTTGCAGGCCAGTCTGCTCAGGGTGCCGTACTTCGTG

ATCACCTGGGGGGCAGACACCGCGGCCTGTGGAGACATCATCAACGGGCTGCCTGTTTCTGCTCGGAGGG AGCTTACGCCCAACAGACACGAGGTCTCTTGGGCTGTATTGTCACCAGCCTCACCGGTCGGGACAAAAAT CAAGTGGAGGGGAAATCCAGATTGTGTCTACCGCAACCCAGACGTTCTTGGCCACTTGCATCAACGGAG GTACACCAATGTGGACCAGGATTTGGTGGGCTGGCCAGCGCCTCAGGGAGCGCGCTCCCTGACGCCGTGC ACGTGCGGTGCCTCGGATCTGTACTTGGTCACGAGGCACGCGGATGTCATCCCAGTGCGGCGTCGAGGCG ATAACAGGGGAAGCTTGCTTTCTCCCCGGCCCATCTCATACCTAAAAGGATCCTCGGGAGGCCCTCTGCT GACTTTGTGCCCGTTGAGTCCTTAGAGACCACCATGAGGTCCCCAGTGTTTACTGACAATTCCAGCCCTC CAACAGTGCCCCAGAGTTACCAGGTGGCACATCTACATGCACCCACTGGGAGTGGCAAGAGCACGAAGGT 15 ${\tt GCCGGCCGCTTACGCAGCTCAAGGGTACAAGGTACTTGTGCTGAACCCGTCTGTTGCTGCCACCTTAGGG}$ ${\tt TTCGGTGCTTATATGTCAAAGGCCCATGGGATTGACCCAAACGTCAGGACCGGCGTGAGGACCATTACCA}$ CAGGCTCCCCCATCACCTACTCCACCTACGGGAAATTTTTGGCTGATGGCGGATGCCCAGGAGGTGCGTA CGACATCATAATATGTGACGAATGTCACTCAGTGGACGCCACCTCGATTCTGGGCATAGGGACCGTCTTG GACCAAGCGGAGACGGGGGGTTAGGCTCACTGTCCTTGCCACCGCTACACCACCTGGCTTGGTCACCG 20 TGCCACATTCCAACATCGAGGAAGTTGCACTGTCCGCTGACGGGGAGAAACCATTTTATGGTAAGGCCAT $\tt CCCCCTAAACTACATCAAGGGGGGGGGGGCATCTCATTTTCTGTCATTCCAAGAAGAAGTGCGACGAGCTC$ GCTGCAAAGCTGGTCGGGCGTCAACGCGGTGGCCTTTTACCGTGGCCTCGACGTATCTGTCATTC CAACTACAGGAGACGTCGTTGTTGTAGCGACCGACGCCTTGATGACTGGCTTCACCGGCGATTTCGACTC TGTGATAGACTGCAACACCTGTGTCGTCCAGACAGTCGACTTCAGCCTAGACCCTATATTCTCTATTGAG ACTTCCACCGTGCCCCAGGACGCCGTGTCCCGCTCCCAACGGAGGGTAGGACCGGTCGAGGGAAGCATG 25 GTATTTACAGATATGTGTCACCCGGGGAGCGGCCGTCTGGCATGTTCGACTCCGTGGTCCTCTGTGAGTG CTATGACGCGGGTTGTGCTTGGTACGAGCTTACACCCGCCGAGACCACAGTCAGGCTACGGGCATACCTT AACACCCCAGGATTGCCCGTGTGCCAGGACCACTTGGAGTTCTGGGAGAGTGTCTTCACCGGCCTCACCC AGCCACCGTGTGCGCTAGAGCTAGAGCTCCTCCCCCGTCATGGGACCAAATGTGGAAGTGCCTGATACGG 30 $\tt CTCAAGCCCACCCTCACTGGGGCTACCCCATTACTATACAGACTGGGTAGTGTACAGAATGAGATCACCT$ TAACACCCCAATCACCCAATACATCATGGCTTGCATGTCGGCGGACCTGGAGGTCGTCACTAGCACGTG GGTGTTGGTGGGCGCGTCTAGCCGCTTTGGCCGCTTACTGCCTGTCCACAGGCAGCGTGGTCATAGTG GGCAGGATAATCCTAGGTGGGAAGCCGGCAGTCATACCTGACAGGGAGGTTCTCTACCGAGAGTTTGATG 35 AGATGGAGGAGTGCGCCGCCCACGTCCCCTACCTCGAGCAGGGGATGCATTTGGCTGGACAGTTCAAGCA GAAAGCTCTCGGGTTGCTCCAGACAGCATCCAAGCAAGCGAGACGATCACTCCCACTGTCCGCACCAAC TGGCAGAAACTCGAGTCCTTCTGGGCTAAGCACATGTGGAACTTCGTTAGCGGGATACAATACCTGGCGG GCCTGTCAACGCTGCCCGGGAACCCCGCTATAGCGTCGCTGATGTCGTTTACGGCCGCGGTGACGAGTCC ${\tt GCTGCCGCTACTGCTTTTGTCGGTGCTGGTATTACTGGCGCCGTTGTTGGCAGTGTGGGCCTAGGGAAGG}$ 40 GTCGGCGTGGTGTGCGCAGCAATACTACGCCGGCACGTGGGCCCTGGCGAGGGCGCCGTGCAGTGGATGA ACCGGCTGATAGCGTTTGCTTCTCGGGGTAACCACGTCTCCCCTACACACTACGTGCCGGAGAGCGACGC GTCGGCTCGTGTCACAAATTCTCACCAGCCTCACTGTTACTCAGCCTTCTGAAAAGGCTCCACGTGTGG ATAAGCTCGGATTGCATCGCCCCGTGTGCTAGTTCTTGGCTTAAAGATGTCTGGGACTGGATATGCGAGG TGCTGAGCGACTTCAAGAATTGGCTGAAGGCCAAACTTGTACCACAACTGCCCGGGATCCCATTCGTATC CTGCCAACGCGGGTACCGTGGGGTCTGGCGGGGCGAGGGCATCGTGCACACTCGTTGCCCGTGTGGGGCC AATATAACTGGACATGTCAAGAACGGTTCGATGAGAATCGTCGGGCCTAAGACTTGCAGCAACACCTGGC 50 GTGGGTCGTTCCCCATTAACGCTTACACTACAGGCCCGTGCACGCCCTCCCCGGCGCCGAACTATACGTT CGCGCTATGGAGGGTGTCTGCAGAGGAGTATGTGGAGGTAAGGCGGCTGGGGGACTTCCATTACGTCACG GGGGTGACCACTGATAAACTCAAGTGTCCATGCCAGGTCCCCTCACCCGAGTTCTTCACAGAGGTGGACG GGGTGCGCCTGCATAGGTACGCCCCCCCCTGCAAACCCCTGCTGCGAGAAGAGGTGACGTTTAGCATCGG GCTCAATGAATACTTGGTGGGGTCCCAGTTGCCCTGCGAGCCCGAGCCAGACGTAGCTGTACTGACATCA ${\tt ATGCTTACAGACCCCTCCCACATCACTGCAGAGACGGCAGCGCGTAGGCTGAAGCGGGGGTCTCCCCCCT}$ 55 $\tt CTCTCCAGACGCTGACCTCATAGAAGCCAACCTCCTGTGGAGACATGGGGGGGAACATCACTAGG$ GTGGAGTCGGAGAACAAGATTGTCGTTCTGGATTCTTTCGACCCGCTCGTAGCGGAGGAGGATGATCGGG

AGATCTCTATTCCAGCTGAGATTCTGCGGAAGTTCAAGCAGTTTCCTCCCGCTATGCCCATATGGGCACG GCCAGATTATAATCCTCCCCTTGTGGAACCGTGGAAGCGCCCGGACTATGAGCCACCCTTAGTCCACGGG TGCCCCCTACCACCTCCCAAGCCAACTCCGGTGCCGCCACCCCGGAGAAAGAGGACGGTGGTGCTGGACG AGTCTACAGTATCATCTGCTCTGGCTGAGCTTGCCACTAAGACCTTCGGCAGCTCTACAACCTCAGGCGT GACAAGTGGTGAAGCGACTGAATCGTCCCCGGCGCCCTCCTGCGGCGGTGAGCTGGACTCCGAAGCTGAA TCTTACTCCTCCATGCCCCCTCTCGAGGGGGGGGCCGGGGGACCCCGATCTCAGCGACGGGTCTTGGTCTA CCGTGAGCAGTGATGGTGGCACGGAAGACGTTGTGTGCTCGATGTCTTACTCGTGGACGGGCGCTTT AATCACGCCCTGTGCCTCAGAGGAAGCCAAGCTCCCTATCAACGCATTGAGCAACTCGCTGCTGCGCCAC CACAACTTGGTGTATTCCACCACCTCTCGCAGCGCTGGCCAGAGACAGAAAAAGTCACATTTGACAGAG TGCAAGTCCTGGACGACCATTACCGGGACGTGCTCAAGGAGGCTAAGGCCAAGGCATCCACGGTGAAGGC TAGACTGCTATCCGTTGAGGAAGCGTGTAGCCTGACGCCCCACACTCCGCCAGATCAAAATTTGGCTAT GGGGCGAAGGATGTCCGAAGCCATTCCAGTAAGGCTATACGCCACATCAACTCCGTGTGGCAGGACCTTC TGGAGGACAATACAACACCCATAGACACTACCATCATGGCAAAGAATGAGGTCTTCTGTGTGAAGCCCGA AAAGGGGGCCGCAAGCCCGCTCGTCTTATCGTGTACCCCGACCTGGGAGTGCGCGTATGCGAGAAGAGG GCTTTGTATGACGTAGTCAAACAGCTCCCCATTGCCGTGATGGGAGCCTCCTACGGGTTCCAGTACTCAC CACCCGTTGCTTTGACTCAACAGTCACTGAGGCTGATATCCGTACGGAGGAAGACCTCTACCAATCTTGT GACCTGGCCCCTGAGGCTCGCATAGCCATAAGGTCCCTCACAGAGAGGCCTTTACATCGGGGGCCCACTCA CCAATTCTAAGGGACAAAACTGCGGCTATCGGCGATGCCGCGAAGCGGCGTGCTGACCACTAGCTGCGG TAACACCATAACCTGCTTCCTCAAAGCCAGTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACCATG CTCGTGTGCGGCGACCGCCGTCGTCATCTGTGAGAGCGCCGGTGTCCAGGAGGACGCTGCGAGCCTGA GAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCGGGAGACCCGCCTCAACCAGAATACGACTT $\tt CCTGGCTAGGCAACATCATGTTTGCCCCCACTCTGTGGGTACGGATGGTCCTCATGACCCATTTTTT$ $\tt CTCCATACTCATAGCTCAGGAGCACCTTGGAAAGGCTCTAGATTGTGAAATCTATGGAGCCGTACACTCC$ $\tt GTCCAACCGTTGGACTTACCTGAAATCATCCAAAGACTCCACAGCCTCAGCGCGTTTTCGCTCCACAGTT$ ACTCTCCAGGTGAAATCAATAGGGTGGCTGCATGCCTCAGGAAGCTTGGGGTTCCGCCCTTGCGAGCTTG GAGACACCGGGCCCGGAGCGTTCGCGCCACACTCCTATCCCAGGGGGGGAAAGCCGCTATATGCGGTAAG TGTCCAACTGGTTCACGGGCGGTTACAGCGGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCG GNTGGGCAACCACTCCGGGTCTTTAGGCCCCTATTTAAACACTCCAGGCCTTTAGGCCCCGT (SEQ ID NO:6691)

35

40

30

15

20

gi|23510419|ref|NM_000043.3| Homo sapiens tumor necrosis factor receptor superfamily, member 6 (TNFRSF6), transcript variant 1, mRNA TTCCTTCCCATCCTCCTGACCACCGGGGCTTTTCGTGAGCTCGTCTCTGATCTCGCGCAAGAGTGACACA GGTTGGTGGACCCGCTCAGTACGGAGTTGGGGAAGCTCTTTCACTTCGGAGGATTGCTCAACAACCATGC ${\tt TGGGCATCTGGACCCTCCTACCTCTGGTTCTTACGTCTGTTGCTAGATTATCGTCCAAAAGTGTTAATGC}$ ${\tt TTGGAAGGCCTGCATCATGATGGCCAATTCTGCCATAAGCCCTGTCCTCCAGGTGAAAGGAAAGCTAGGG}$ 45 ACTGCACAGTCAATGGGGATGAACCAGACTGCGTGCCCTGCCAAGAAGGGAAGGAGTACACAGACAAAGC TGCACCCGGACCCAGAATACCAAGTGCAGATGTAAACCAAACTTTTTTTGTAACTCTACTGTATGTGAAC ACTGTGACCCTTGCACCAAATGTGAACATGGAATCATCAAGGAATGCACACCCAGCCAACACCAAGTG ${\tt CAAAGAGGAAGGATCCAGATCTAACTTGGGGTGGCTTTGTCTTCTTTTTTGCCAATTCCACTAATTGTT}$ 50 TGGGTGAAGAGAAAGGAAGTACAGAAAACATGCAGAAAGCACAGAAAGGAAAACCAAGGTTCTCATGAAT CTCCAACCTTAAATCCTGAAACAGTGGCAATAAATTTATCTGATGTTGACTTGAGTAAATATATCACCAC TATTGCTGGAGTCATGACACTAAGTCAAGTTAAAGGCTTTGTTCGAAAGAATGGTGTCAATGAAGCCAAA ATAGATGAGATCAAGAATGACAATGTCCAAGACACAGCAGAACAGAAAGTTCAACTGCTTCGTAATTGGC TCTTGCAGAGAAAATTCAGACTATCATCCTCAAGGACATTACTAGTGACTCAGAAAATTCAAACTTCAGA AATGAAATCCAAAGCTTGGTCTAGAGTGAAAAACAACAAATTCAGTTCTGAGTATATGCAATTAGTGTTT

 $\tt CGCTGAAGAGCCAACATATTTGTAGATTTTTAATATCTCATGATTCTGCCTCCAAGGATGTTTAAAATCT$ AGTTGGGAAAACAAACTTCATCAAGAGTAAATGCAGTGGCATGCTAAGTACCCAAATAGGAGTGTATGCA GAGGATGAAAGATTAAGATTATGCTCTGGCATCTAACATATGATTCTGTAGTATGAATGTAATCAGTGTA TGTTAGTACAAATGTCTATCCACAGGCTAACCCCACTCTATGAATCAATAGAAGAAGCTATGACCTTTTG $\tt CTGAAATATCAGTTACTGAACAGGCCAGGCCACTTTGCCTCTAAATTACCTCTGATAATTCTAGAGATTTT$ ACCATATTTCTAAACTTTGTTTATAACTCTGAGAAGATCATATTTATGTAAAGTATATGTATTTGAGTGC AGAATTTAAATAAGGCTCTACCTCAAAGACCTTTGCACAGTTTATTGGTGTCATATTATACAATATTTCA ATTGTGAATTCACATAGAAAACATTAAATTATAATGTTTGACTATTATATATGTGTATGCATTTTACTGG $\tt CTCAAAACTACCTACTTCTTCTCAGGCATCAAAAGCATTTTGAGCAGGAGAGTATTACTAGAGCTTTGC$ 10 CACCTCTCCATTTTTGCCTTGGTGCTCATCTTAATGGCCTAATGCACCCCCAAACATGGAAATATCACCA AAAAATACTTAATAGTCCACCAAAAGGCAAGACTGCCCTTAGAAATTCTAGCCTGGTTTGGAGATACTAA CTGCTCTCAGAGAAAGTAGCTTTGTGACATGTCATGAACCCATGTTTTGCAATCAAAGATGATAAAATAGA TTCTTATTTTCCCCCACCCCGAAAATGTTCAATAATGTCCCATGTAAAACCTGCTACAAATGGCAGCT TATACATAGCAATGGTAAAATCATCATCTGGATTTAGGAATTGCTCTTGTCATACCCCCAAGTTTCTAAG ATTTAAGATTCTCCTTACTACTATCCTACGTTTAAATATCTTTGAAAGTTTGTATTAAATGTGAATTTTA AGAAATAATATTTATATTTCTGTAAATGTAAACTGTGAAGATAGTTATAAACTGAAGCAGATACCTGGAA $\tt CCACCTAAAGAACTTCCATTTATGGAGGATTTTTTTGCCCCTTGTGTTTTGGAATTATAAAATATAGGTAA$ (SEO ID NO:6692) 20 ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

gi|35910|emb|X12387.1|HSRCYP3 Human mRNA for cytochrome P-450 (cyp3 locus) TGGCTCTCATCCCAGACTTGGCCATGGAAACCTGGCTTCTCCTGGCTGTCAGCCTGGTGCTCCTCTATCT 25 ATATGGAACCCATTCACATGGACTTTTAAGAAGCTTGGAATTCCAGGGCCCACACCTCTGCCTTTTTTG GGAAATATTTTGTCCTACCATAAGGGCTTTTGTATGTTTGACATGGAATGTCATAAAAAGTATGGAAAAG TGTGGGGCTTTTATGATGGTCAACAGCCTGTGCTGGCTATCACAGATCCTGACATGATCAAAACAGTGCT AGTGAAAGAATGTTATTCTGTCTTCACAAACCGGAGGCCTTTTGGTCCAGTGGGATTTATGAAAAGTGCC ATCTCTATAGCTGAGGATGAAGAATGGAAGAGTTACGATCATTGCTGTCTCCAACCTTCACCAGTGGAA 30 AACTCAAGGAGATGGTCCCTATCATTGCCCAGTATGGAGATGTGTTGGTGAGAAATCTGAGGCGGGAAGC AGAGACAGGCAAGCCTGTCACCTTGAAAGACGTCTTTGGGGCCCTACAGCATGGATGTGATCACTAGCACA TCATTTGGAGTGAACATCGACTCTCTCAACAATCCACAAGACCCCTTTGTGGAAAACACCAAGAAGCTTT TAAGATTTGATTTTTTGGATCCATTCTTTCTCTCAATAACAGTCTTTCCATTCCTCATCCCAATTCTTGA AGTATTAAATATCTGTGTGTTTCCAAGAGAAGTTACAAATTTTTTAAGAAAATCTGTAAAAAAGGATGAAA GAAAGTCGCCTCGAAGATACACAAAAGCACCGAGTGGATTTCCTTCAGCTGATGATTGACTCTCAGAATT TACAGATGGAGTATCTTGACATGGTGGTGAATGAAACGCTCAGATTATTCCCAATTGCTATGAGACTTGA 40 AGCTATGCTCTCACCGTGACCCAAAGTACTGGACAGAGCCTGAGAAGTTCCTCCCTGAAAAGATTCAGCA AGAAGAACAAGGACAACATAGATCCTTACATATACACACCCTTTGGAAGTGGACCCAGAAACTGCATTGG TGTAAAGAAACACAGATCCCCCTGAAATTAAGCTTAGGAGGACTTCTTCAACCAGAAAAACCCGTTGTTC CAAGAAATCTGTGCCTGAGAACACCAGAGACCTCAAATTACTTTGTGAATAGAACTCTGAAATGAAGATG GGCTTCATCCAATGGACTGCATAAATAACCGGGGGATTCTGTACATGCATTGAGCTCTCTCATTGTCTGTG TAGAGTGTTATACTTGGGAATATAAAGGAGGTGACCAAATCAGTGTGAGGAGGTAGATTTGGCTCCTCTG $\tt CTTCTCACGGGACTATTTCCACCACCCCCAGTTAGCACCATTAACTCCTCCTGAGCTCTGATAAGAGAAT$ GACATTTATATCACATGTTTTCTCTGGAGTATTCTATAGTTTTATGTTAAATCAATAAAGACCACTTTAC AAAAGTATTATCAGATGCTTTCCTGCACATTAAGGAGAATCTATAGAACTGAATGAGAACCAACAAGTAA TTGATCAGGCACATGGCTCACGCCTGTAATCCTAGCAGTTTGGGAGGCTGAGCCGGGTGGATCGCCTGAG

(SEQ ID NO:6694)

qi|339549|qb|M19154.1|HUMTGFB2A Human transforming growth factor-beta-2 mRNA, $\tt CGAGTTCAGATCCGCCACTCCGCACCCGAGACTGACACACTGAACTCCACTTCCTCCTCTTAAATTTATT$ TCTACTTAATAGCCACTCGTCTCTTTTTTCCCCATCTCATTGCTCCAAGAATTTTTTTCTTCTTACTCG $\tt CCAAAGTCAGGGTTCCCTCTGCCCGTCCCGTATTAATATTTCCACTTTTGGAACTACTGGCCTTTTCTTT$ TTAAAGGAATTCAAGCAGGATACGTTTTTCTGTTGGGCATTGACTAGATTGTTTGCAAAAGTTTCGCATC AAAAACAACAACAAAAAAACCAAACAACTCTCCTTGATCTATACTTTGAGAATTGTTGATTTCTTTTT TTTATTCTGACTTTTAAAAACAACTTTTTTTTCCACTTTTTTAAAAAATGCACTACTGTGTGCTGAGCGC TTTTCTGATCCTGCATCTGGTCACGGTCGCGCTCAGCCTGTCTACCTGCAGCACACTCGATATGGACCAG TTCATGCGCAAGAGGATCGAGGCGATCCGCGGGCAGATCCTGAGCAAGCTGAAGCTCACCAGTCCCCCAG AAGACTATCCTGAGCCCGAGGAAGTCCCCCCGGAGGTGATTTCCATCTACAACAGCACCAGGGACTTGCT CCAGGAGAGGCGAGCCGGAGGGCGGCCGCCTGCGAGCGCGAGAGGGGCGACGAAGAGTACTACGCCAAG GAGGTTTACAAAATAGACATGCCGCCCTTCTTCCCCTCCGAAACTGTCTGCCCAGTTGTTACAACACCCT $\tt CTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCCATCCCGCC$ ${\tt CACTTTCTACAGACCCTACTTCAGAATTGTTCGATTTGACGTCTCAGCAATGGAGAAGAATGCTTCCAAT}$ 25 TTGGTGAAAGCAGAGTTCAGAGTCTTTCGTTTGCAGAACCCAAAAGCCAGAGTGCCTGAACAACGGATTG AGCTATATCAGATTCTCAAGTCCAAAGATTTAACATCTCCAACCCAGCGCTACATCGACAGCAAAGTTGT GAAAACAAGAGCAGAAGGCGAATGGCTCTCCTTCGATGTAACTGATGCTGTTCATGAATGGCTTCACCAT AAAGACAGGAACCTGGGATTTAAAATAAGCTTACACTGTCCCTGCTGCACTTTTGTACCATCTAATAATT ${\tt ACATCATCCCAAATAAAAGTGAAGAACTAGAAGCAAGATTTGCAGGTATTGATGGCACCTCCACATATAC}$ 30 ATGTTATTGCCCTCCTACAGACTTGAGTCACAACAGACCAACCGGCGGAAGAAGCGTGCTTTGGATGCGG $\tt CCTATTGCTTTAGAAATGTGCAGGATAATTGCTGCCTACGTCCACTTTACATTGATTTCAAGAGGGGATCT$ AGGGTGGAAATGGATACACGAACCCAAAGGGTACAATGCCAACTTCTGTGCTGGAGCATGCCCGTATTTA $\tt TGGAGTTCAGACACTCAGCAGAGGGTCCTGAGCTTATATAATACCATAAATCCAGAAGCATCTGCTT$ 35 TGAACAGCTTTCTAATATGATTGTAAAGTCTTGCAAATGCAGCTAAAATTCTTGGAAAAGTGGCAAGACC AAAATGACAATGATGATGATGATGATGACGACGACAACGATGATGCTTGTAACAAGAAAACATAAGA GAGCCTTGGTTCATCAGTGTTAAAAAATTTTTGAAAAGGCGGTACTAGTTCAGACACTTTGGAAGTTTGT ${\tt GTTCTGTTTGTTAAAACTGGCATCTGACACAAAAAAAGTTGAAGGCCTTATTCTACATTTCACCTACTTT}$ GTAAGTGAGAGAGAAGAAGCAAATTTTTTTTAAAGAAAAAATAAACACTGGAAGAATTTATTAGTGT ACGTACCGTTCCTATCCCGCGCCTCACTTGATTTTTCTGTATTGCTATGCAATAGGCACCCTTCCCATTC AACTCAAACGAGCCAGAAAAAAAGAGGTCATATTAATGGGATGAAAACCCAAGTGAGTTATTATATGACC ${\tt GAGAAAGTCTGCATTAAGATAAAGACCCTGAAAACACATGTTATGTATCAGCTGCCTAAGGAAGCTTCTT}$

50

 $\tt CCCGACTGTAGGAGGGCAGCGGAGCATTACCTCATCCCGTGAGCCTCCGCGGGCCCAGAGAAGAATCTTC$

55

TAGGGTGGAGTCTCCATGGTGACGGGCGGGCCCCCCCTGAGAGCGACGCGAGCCAATGGGAAGGCCT GGGCTCAGAGTTGCACTGAGTGTGGCTGAAGCAGCGAGGCGGGAGTGGAGGTGCGCGGAGTCAGGCAGAC A GACAGACAGCCAGCCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTCACCTT $\tt CTCTCTAACTGCCCAGAGCTAGCGCCTGTGGCTCCCGGGCTGGTGGTTCGGGAGTGTCCAGAGAGCCTTG$ TCTCCAGCCGGCCCCGGGAGGAGAGCCCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTAC TGTTGAACTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCCCCCTAGCAGCGGAGGAGGGGACA GTGCGTGCGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGGCGCGGGTGTCCCCCGCTTGCCAG 15 ${\tt AGCCCTGTTGCGGCCCGAAACTTGTGCGCGCGCCAAACTAACCTCACGTGAAGTGACGGACTGTTCT}$ ATGACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCG GACCTTATGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGG GAGCCTGAAGCCGCACCTCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAG CTGGCGTCGCCCGAGCTGGAGCGCCTGATAATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCC 20 CCTGGCCGAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCA 25 AGATGCCCGGCGAGACACCGCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAG GAAGCGCATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTG GAGGAAAAAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCTCAGGGAAC AGGTGGCACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCA 30 CAGACTTGAGAACTTGACAAGTTGCGACGGAGAGAAAAAAAGAAGTGTCCGAGAACTAAAGCCAAGGGTAT AACGGAACGTTGGACTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTA TTAAAGGGGGGAGGGGGGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTA 40 TTTTTTATGTTTTGTTTCTGAAAATTCCAGAAAGGATATTTAAGAAAATACAATAAACTATTGGAAAGTA TGCTCGATAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAGACTTAGAA ATAAATGTACCTGATGTACCTGATGCTATGTCAGGCTTCATACTCCACGCTCCCCCAGCGTATCTATATG GAATTGCTTACCAAAGGCTAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGGTTGCAGTGGAGAGGGAC 45 AGCCCACTGAGAAGTCAAACATTTCAAAGTTTGGATTGCATCAAGTGGCATGTGCTGTGACCATTTATAA $\tt CCTTCCAATTTGGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGTCTTATGAATATTTA$ TTTTTTGTTCCCAAGTTATATACTGAAGTTTTTATTTTTAGTTGCTGAGGTT (SEQ ID NO:6695)

gi|179982|gb|M57729.1|HUMCCC5 Human complement component C5 mRNA, complete cds CTACCTCCAACCATGGGCCTTTTGGGAATACTTTGTTTTTTAATCTTCCTGGGGAAAACCTGGGGACAGG AGCAAACATATGTCATTTCAGCACCAAAAATATTCCGTGTTGGAGCATCTGAAAATATTGTGATTCAAGT TTATGGATACACTGAAGCATTTGATGCAACAATCTCTATTAAAAGTTATCCTGATAAAAAATTTAGTTAC

PCT/US2004/011255

TCCTCAGGCCATGTTCATTTATCCTCAGAGAATAAATTCCAAAACTCTGCAATCTTAACAATACAACCAA AACAATTGCCTGGAGGACAAAACCCAGTTTCTTATGTGTATTTGGAAGTTGTATCAAAGCATTTTTCAAA TCTTAACCTTCATAGATCCTGAAGGATCAGAAGTTGACATGGTAGAAGAAATTGATCATATTGGAATTAT ${\tt GAGGACTTTTCAACAACTGGAACCGCATATTTTGAAGTTAAAGAATATGTCTTGCCACATTTTTCTGTCT}$ CAATCGAGCCAGAATATAATTTCATTGGTTACAAGAACTTTAAGAATTTTGAAAATTACTATAAAAGCAAG ATATTTTTATAATAAAGTAGTCACTGAGGCTGACGTTTATATCACATTTGGAATAAGAGAAGACTTAAAA GATGATCAAAAAGAAATGATGCAAACAGCAATGCAAAACACAATGTTGATAAATGGAATTGCTCAAGTCA 10 CATTTGATTCTGAAACAGCAGTCAAAGAACTGTCATACTACAGTTTAGAAGATTTAAACAACAAGTACCT TTATATTGCTGTAACAGTCATAGAGTCTACAGGTGGATTTTCTGAAGAGGCAGAAATACCTGGCATCAAA TATGTCCTCTCCCTACAAACTGAATTTGGTTGCTACTCCTCTTTTCCTGAAGCCTGGGATTCCATATC AACAATTGATGTAAACCAAGAGACATCTGACTTGGATCCAAGCAAAAGTGTAACACGTGTTGATGATGGA 15 GTAGCTTCCTTTGTGCTTAATCTCCCATCTGGAGTGACGGTGCTGGAGTTTAATGTCAAAACTGATGCTC CAGATCTTCCAGAAGAAAATCAGGCCAGGGAAGGTTACCGAGCAATAGCATACTCATCTCTCAGCCAAAG TTACCTTTATATTGATTGGACTGATAACCATAAGGCTTTGCTAGTGGGAGAACATCTGAATATTATTGTT ACCCCCAAAAGCCCATATATTGACAAAATAACTCACTATAATTACTTGATTTTATCCAAGGGCAAAATTA TCCATTTTGGCACGAGGGAGAAATTTTCAGATGCATCTTATCAAAGTATAAACATTCCAGTAACACAGAA 20 GATTCAGTCTGGTTAAATATTGAAGAAAAATGTGGCAACCAGCTCCAGGTTCATCTGTCTCCTGATGCAG ATGCATATTCTCCAGGCCAAACTGTGTCTCTTAATATGGCAACTGGAATGGATTCCTGGGTGGCATTAGC AGCAGTGGACAGTGCTGTGTATGGAGTCCAAAGAGGGGCCCAAAAAGCCCCTTGGAAAGAGTATTTCAATTC TTAGAGAAGAGTGATCTGGGCTGTGGGGCAGGTGGTGGCCTCAACAATGCCAATGTGTTCCACCTAGCTG 25 GACTTACCTTCCTCACTAATGCAAATGCAGATGACTCCCAAGAAAATGATGAACCTTGTAAAGAAATTCT CAGGCCAAGAAGAACGCTGCAAAAGAAGATAGAAGAAATAGCTGCTAAATATAAACATTCAGTAGTGAAG AAATGTTGTTACGATGGAGCCTGCGTTAATAATGATGAAACCTGTGAGCAGCGAGCTGCACGGATTAGTT TAGGGCCAAGATGCATCAAAGCTTTCACTGAATGTTGTGTCGTCGCAAGCCAGCTCCGTGCTAATATCTC 30 AGTTATTTTCCAGAAAGCTGGTTGTGGGAAGTTCATCTTGTTCCCAGAAGAAAACAGTTGCAGTTTGCCC TACCTGATTCTCTAACCACCTGGGAAATTCAAGGCATTGGCATTTCAAACACTGGTATATGTGTTGCTGA TACTGTCAAGGCAAAGGTGTTCAAAGATGTCTTCCTGGAAATGAATATACCATATTCTGTTGTACGAGGA ${\tt GAACAGATCCAATTGAAAGGAACTGTTTACAACTATAGGACTTCTGGGATGCAGTTCTGTGTTAAAATGT}$ 35 TGTGCGCCAGAAAGTAGAGGGCTCCTCCAGTCACTTGGTGACATTCACTGTGCTTCCTCTGGAAATTGGC ${\tt CTTCACAACATCAATTTTTCACTGGAGACTTGGTTTGGAAAAGAAATCTTAGTAAAAACATTACGAGTGG}$ TGCCAGAAGGTGTCAAAAGGGAAAGCTATTCTGGTGTTACTTTGGATCCTAGGGGTATTTATGGTACCAT TAGCAGACGAAAGGAGTTCCCATACAGGATACCCTTAGATTTGGTCCCCAAAACAGAAATCAAAAGGATT TTGAGTGTAAAAGGACTGCTTGTAGGTGAGATCTTGTCTGCAGTTCTAAGTCAGGAAGGCATCAATATCC 40 TAACCCACCTCCCCAAAGGGAGTGCAGAGGCGGAGCTGATGAGCGTTGTCCCAGTATTCTATGTTTTTCA AAAAATTAAAAGAAGGGATGTTGAGCATTATGTCCTACAGAAATGCTGACTACTCTTACAGTGTGTGGA AGAGCAGAACCAAAATTCAATTTGTAATTCTTTATTGTGGCTAGTTGAGAATTATCAATTAGATAATGGA 45 TCTTTCAAGGAAAATTCACAGTATCAACCAATAAAATTACAGGGTACCTTGCCTGTTGAAGCCCGAGAGA AATCGACACGCTCTAATTAAAGCTGACAACTTTCTGCTTGAAAATACACTGCCAGCCCAGAGCACCTTT ACATTGGCCATTTCTGCGTATGCTCTTTCCCTGGGAGATAAAACTCACCCACAGTTTCGTTCAATTGTTT 50 ${\tt GCATAAAGACAGCTCTGTACCTAACACTGGTACGGCACGTATGGTAGAAACAACTGCCTATGCTTTACTC}$ ACCAGTCTGAACTTGAAAGATATAAATTATGTTAACCCAGTCATCAAATGGCTATCAGAAGAGCAGAGGT ${\tt ATGGAGGTGGCTTTTATTCAACCCAGGACACCATCAATGCCATTGAGGGCCTGACGGAATATTCACTCCT}$ ${\tt GGTTAAACAACTCCGCTTGAGTATGGACATCGATGTTTCTTACAAGCATAAAGGTGCCTTACATAATTAT}$ AAAATGACAGACAAGAATTTCCTTGGGAGGCCAGTAGAGGTGCTTCTCAATGATGACCTCATTGTCAGTA 55 CAGGATTTGGCAGTGGCTTGGCTACAGTACATGTAACAACTGTAGTTCACAAAACCAGTACCTCTGAGGA AGTTTGCAGCTTTTATTTGAAAATCGATACTCAGGATATTGAAGCATCCCACTACAGAGGCTACGGAAAC TCTGATTACAAACGCATAGTAGCATGTGCCAGCTACAAGCCCAGCAGGGAAGAATCATCATCTGGATCCT

 $\tt CTCATGCGGTGATGGACATCTCCTTGCCTACTGGAATCAGTGCAAATGAAGAAGACTTAAAAGCCCTTGT$ ${\tt GGAAGGGGTGGATCAACTATTCACTGATTACCAAATCAAAGATGGACATGTTATTCTGCAACTGAATTCTGCAACTTGAATTCAATTCAATTCGAATTCAATTCAATTCGAATTCGAATTCAATTCG$ ATTCCCTCCAGTGATTTCCTTTGTGTACGATTCCGGATATTTGAACTCTTTGAAGTTGGGTTTCTCAGTC TATCAAAATTCAGAAAGTCTGTGAAGGAGCCGCGTGCAAGTGTGTAGAAGCTGATTGTGGGCAAATGCAG TATCTACAAAACTGGGGAAGCTGTTGCTGAGAAAGACTCTGAGATTACCTTCATTAAAAAGGTAACCTGT ACTAACGCTGAGCTGGTAAAAGGAAGACAGTACTTAATTATGGGTAAAGAAGCCCTCCAGATAAAATACA ATTTCAGTTTCAGGTACATCTACCCTTTAGATTCCTTGACCTGGATTGAATACTGGCCTAGAGACACAAC 10 ATGTTCATCGTGTCAAGCATTTTTAGCTAATTTAGATGAATTTGCCGAAGATATCTTTTTAAATGGATGC TTTTCTTCTTTTTTAAACATTCATAGCTGGTCTTATTTGTAAAGCTCACTTTACTTAGAATTAGTGGCA GACAGATACTCCTCCAAGGTTATTGGACACCGGAAACAATAAATTGGAACACCTCCTCAAACCTACCACT $\tt CAGGAATGTTTGCTGGGGCCGAAAGAACAGTCCATTGAAAGGGAGTATTACAAAAACATGGCCTTTGCTT$ GAAAGAAAATACCAAGGAACAGGAAACTGATCATTAAAGCCTGAGTTTGCTTTC (SEQ ID NO:6696)

qi|189944|qb|L05144.1|HUMPHOCAR Homo sapiens (clone lamda-hPEC-3) phosphoenolpyruvate carboxykinase (PCK1) mRNA, complete cds AGAGAAGAAGGTGACCTCACATTCGTGCCCCTTAGCAGCACTCTGCAGAAATGCCTCCTCAGCTGCAAA ACGGCCTGAACCTCTCGGCCAAAGTTGTCCAGGGAAGCCTGGACAGCCTGCCCCAGGCAGTGAGGGAGTT TCTCGAGAATAACGCTGAGCTGTGTCAGCCTGATCACATCCACATCTGTGACGGCTCTGAGGAGGAGAAT 25 GGGCGGCTTCTGGGCCAGATGGAGGAAGAAGGCGCCTCAGGCGGCTGAAGAAGTATGACAACTGCTGGT TGGCTCTCACTGACCCCAGGGATGTGGCCAGGATCGAAAGCAAGACGGTTATCGTCACCCAAGAGCAAAG AGACACAGTGCCCATCCCCAAAACAGGCCTCAGCCAGCTCGGTCGCTGGATGTCAGAGGAGGATTTTGAG AAAGCGTTCAATGCCAGGTTCCCAGGGTGCATGAAAGGTCGCACCATGTACGTCATCCCATTCAGCATGG GGCCGCTGGCTCACCTCTGTCGAAGATCGGCATCGAGCTGACGGATTCGCCCTACGTGGTGGCCAGCAT 30 GCGGATCATGACGCGGATGGGCACGCCCCTCCTGGAAGCACTGGGCGATGGGGAGTTTGTCAAATGCCTC CATTCTGTGGGGTGCCCTCTGCCTTTACAAAAGCCTTTGGTCAACAACTGGCCCTGCAACCCGGAGCTGA CGCTCATCGCCCACCTGCCTGACCGCAGAGAGATCATCTCCTTTGGCAGTGGGTACGGCGGGAACTCGCT GGTGTCGCTCCTGGGACTTCAGTGAAGACCAACCCCAATGCCATCAAGACCATCCAGAAGAACACAATCT 40 $\tt CCATTGAAGGCATTATCTTTGGAGGCCGTAGACCTGCTGGTGTCCCTCTAGTCTATGAAGCTCTCAGCTG$ GCAACATGGAGTCTTTGTGGGGGCGGCCATGAGATCAGAGGCCACAGCGGCTGCAGAACATAAAGGCAAA ATCATCATGCATGACCCCTTTGCCATGCGGCCCTTCTTTGGCTACAACTTCGGCAAATACCTGGCCCACT 45 GGCTTAGCATGGCCCAGCACCCAGCAGCCAAACTGCCCAAGATCTTCCATGTCAACTGGTTCCGGAAGGA CAAGGAAGGCAAATTCCTCTGGCCAGGCTTTGGAGAGAACTCCAGGGTGCTGGAGTGGATGTTCAACCGG ATCGATGGAAAAGCCAGCACCAACGTCACGCCCATAGGCTACATCCCCAAGGAGGATGCCCTGAACCTGA GCCTTGAAGCAAGAATAAGCCAGATGTAATCAGGGCCTGAGAATAAGCCAGATGTAATCAGGGCCTGAG TGCTTTACCTTTAAAATCATTAAAATCCATAAGGTGCAGTAGGAGCAAGAGAGGCCAAGTGTTCC CAAATTGACGCCACCTAATAATCATCACCACACCGGGAGCAGATCTGAAGGCACACTTTGATTTTTTAA 55 $\tt GTGTGTGTGTGTGTGTGTGTGTATGTGTATGTGTATGTGTGTGTGTGTATTTTGGTATGTGTATTTTGT$

ATGTACTGTTATTCAAAATATATTTAATACCTTTGGAAAATCTTGGGCAAGATGACCTACTAGTTTTCCT TGAAAAAAGTTGCTTTGTTATTAATATTGTGCTTAAATTATTTTTATACACCATTGTTCCTTACCTTTA CATAATTGCAATATTTCCCCCTTACTACTTCTTGGAAAAAAATTAGAAAATGAAGTTTATAGAAAAG (SEQ ID NO:6697)

5

gi|6679892|ref|NM_008061.1| Mus musculus glucose-6-phosphatase, catalytic (G6pc). mRNA

AGCAGAGGGATCGGGGCCAACCGGGCTTGGACTCACTGCACGGGCTCTGCTGGCAGCTTCCTGAGGTACC 10 AAGGGAGGAAGGATGAACATTCTCCATGACTTTTGGGATCCAGTCGACTCGCTATCTCC CTATGTCCTCTTTCCCATCTGGTTCCATCTTAAAGAGACTGTGGGCATCAATCTCCTCTGGGTGGCAGTG GTCGGAGACTGGTTCAACCTCGTCTTCAAGTGGATTCTGTTTGGACAACGCCCGTATTGGTGGGTCCTGG ACACCGACTACTACAGCAACAGCTCCGTGCCTATAATAAAGCAGTTCCCTGTCACCTGTGAGACCGGACC AGGAAGTCCCTCTGGCCATGCGCTCGCCACGGCGCAGCAGCTGTATACTATGTTATGGTCACTTCTACTCTTGCT ATCTTTCGAGGAAAGAAAAGCCAACGTATGGATTCCGGTGTTTGAACGTCATCTTGTGGTTGGGATTCT GGGCTGTGCAGCTGAACGTCTGTCCCGGATCTACCTTGCTGCTCACTTTCCCCACCAGGTCGTGGC TGGAGTCTTGTCAGGCATTGCTGTGGCTGAAACTTTCAGCCACATCCGGGGCATCTACAATGCCAGCCTC $\tt CGGAAGTATTGTCTCATCACCATCTTCTTGTTTGGTTTCGCGCTTTGGATTCTACCTGCTACTAAAAGGGC$ 20 TAGGGGTGGACCTCCTGTGGACTTTGGAGAAAGCCAAGAGATGGTGTGAGCGGCCAGAATGGGTCCACCT TGGCTTCCTTGGTCCTCCTGCATCTCTTTGACTCTCTGAAGCCCCCATCCCAGGTTGAGTTGATCTTCTA CATCTTGTCTTTCTGCAAGAGCGCAACAGTTCCCTTTGCATCTGTCAGTCTTATCCCATACTGCCTAGCC CGGATCCTGGGACAGACACACAGAGTCTTTGTAAGGCATGCAGAGTCTTTGGTATTTAAAGTCAACCG CCATGCAAAGGACTAGGAACAACTAAAGCCTCTGAAACCCATTGTGAGGCCAGAGGTGTTGACATCGGCC $\tt CTGGTAGCCCTGTCTTTCTTTGCTATCTTAACCAAAAGGTGAATTTTTACAAAGCTTACAGGGCTGTTTG$ AGGAAAGTGTGAATGCTGGAAACTGAGTCATTCTGGATGGTTCCCTGAAGATTCGCTTACCAGCCTCCTG TCAGATACAGAAGAGCCAAGCCCAGGCTAGAGATCCCAACTGAGAATGCTCTTGCGGTGCAGAATCTTCCG GCTGGGAAAAGGAAAAGAGCACCATGCATTTGCCAGGAAGAAAAGAAGGATCGGGAGGAGGAGAGTGT · ${\tt TTTATGTATCGAGCAAACCAGATGCAATCTATGTCTAACCGGCTTCAGTTGTGTCTGCGTCTTTAGATAC }.$ ${\tt GACACACTCAATAATAATAATAGACCAACTAGTGTAATGAGTAGCCAGTTAAAGGCGATTAATTCTGCTT}$ ${\tt CCAGATAGTCTCCACTGTACATAAAAGTCACACTGTGTGCTTGCATTCCTGTATGGTAGTGGTGACTGTC}$ TCTCACACCACCTTCTCTATCACGTCACAGTTTTCTCCTCCTCAGCCTATGTCTGCATTCCCCAGAATTC TAGGGTTAAGTTAAACTCTGAGATCTTGGGCAAAATGGCAAGGAGACCCAGGATTCTTCTCTCCAAAGGT $\tt CTCTCATTCTTAGAAGAAAAGGCAGCCCTTGGTGCCTGTCCTCCTGCCTCGGCTGATTTGCAGAGTACT$ TCTTCAAAAAGAAAAAATGGTAAAGCTATTTATTAAAAATTCTTTGTTTTTTGCTACAAATGATGCATA TATTTTCACCCACACCAAGCACTTTGTTTCTAATATCTTTGATAAGAAAACTACATGTGCAGTATTTTAT 40 TAAAGCAACATTTTATTTA (SEQ ID NO:6698)

gi|7110682|ref|NM_011044.1| Mus musculus phosphoenolpyruvate carboxykinase 1,

45 cytosolic (Pck1), mRNA

ACAGTTGGCCTTCCCTCTGGGAACACCCTCGGTCAACAGGGGAAATCCGGCAAGGCGCTCAGCGATCT

CTGATCCAGACCTTCCAAAAGGAAGAAAGGTGGCACCAGAGTTCCTGCCTCTCTCCACACCATTGCAATT

ATGCCTCCTCAGCTGCATAACGGTCTGGACTTCTCTCGCCAAGGTTATCCAGGGCAGCCTCGACAGCCTGC

CCCAGGCAGTGAGGAAGTTCGTGGAAGGCAATGCTCAGCTGTGCCAGCCGGAGTATATCCACATCTGCGA

TGGCTCCGAGGAGGAGTACGGGCAGTTGCTGGCCCACATGCAGGAGGAGGGTGTCATCCGCAAGCTGAAG

AAATATGACAACTGTTGGCTGGCTCTCACTGACCCTCGAGATGTGGCCAGGATCGAAAGCAAGACAGTCA

 $\tt CCTATGTGGTGGCCAGCATGCGGATCATGACTCGGATGGGCATATCTGTGCTGGAGGCCCTGGGAGATGG$ GGAGTTCATCAAGTGCCTGCACTCTGTGGGGTGCCCTCTCCCCTTAAAAAAAGCCTTTGGTCAACAACTGG GCCTGCAACCCTGAGCTGACCCTGATCGCCCACCTCCCGGACCGCAGAGAGATCATCTCCTTTGGAAGCG GATATGGTGGGAACTCACTACTCGGGAAGAAATGCTTTGCGTTGCGGATCGCCAGCCGTCTGGCTAAGGA GCCGCAGCCTTCCCTAGTGCCTGTGGGAAGACTAACTTGGCCATGATGAACCCCAGCCTGCCCGGGTGGA AGGTCGAATGTGTGGGCGATGACATTGCCTGGATGAAGTTTGATGCCCAAGGCAACTTAAGGGCTATCAA ATCCAGAAAACACCATCTTCACCAACGTGGCCGAGACTAGCGATGGGGGGTGTTTACTGGGAAGGCATCG ATGAGCCGCTGGCCCCGGGAGTCACCATCACCTCCTGGAAGAACAAGGAGTGGAGACCGCAGGACGCGGA GAATCTCCAGAAGGAGTACCCATTGAGGGTATCATCTTTGGTGGCCGTAGACCTGAAGGTGTCCCCCTTG TCTATGAAGCCCTCAGCTGGCAGCATGGGGTGTTTGTAGGAGCAGCCATGAGATCTGAGGCCACAGCTGC TGCAGAACACAAGGGCAAGATCATCATGCACGACCCCTTTGCCATGCGACCCCTTCTTCGGCTACAACTTC GGCAAATACCTGGCCCACTGGCTGAGCATGGCCCACCGCCCAGCCAAGTTGCCCAAGATCTTCCATG TCAACTGGTTCCGGAAGGACAAAGATGGCAAGTTCCTCTGGCCAGGCTTTGGCGAGAACTCCCGGGTGCT GAAAACGCCTTGAACCTGAAAGGCCTGGGGGGGCGTCAACGTGGAGGAGCTGTTTGGGATCTCTAAGGAGT TCTGGGAGAAGGAGGTGGAGGATCGACAGGTATCTGGAGGACCAGGTCAACACCGACCTCCCTTACGA GCGGCACAATCGTGAGTAGATCAGAAAAGCACCTTTTAATAGTCAGTTGAGTAGCACAGAGAACAGGCTA $\tt GGGGCAAATAAGATTGGGAGGGGAAATCACCGCATAGTCTCTGAAGTTTGCATTTGACACCAATGGGGGT$ TTTGGTTCCACTTCAAGGTCACTCAGGAATCCAGTTCTTCACGTTAGCTGTAGCAGTTAGCTAAAATGCA AACCTTTGGGGAAAAATCTTGGGCAAATTTGTAGCTGTAACTAGAGAGTCATGTTGCTTTGTTGCTAGTA CTTCTTGGGAAAAAAATTACAAAATAAA (SEO ID NO:6699)

10

15

20

Example 5. siRNAs decrease mRNA levels in vivo

Male CMV-Luc mice (8-10 weeks old) from Xenogen (Cranbury, NJ) were administered cholesterol conjugated siRNA (see Table 17).

Table 17. Solutions adminstered to mice

5

10

15

20

25

Group	N	Injection Mix
1	7	Buffer (PBS [pH 7.4])
		Cholesterol conjugated siRNA
2	8	(ALN-3001)

Table 18. Test iRNA agents targeting Luciferase

siRNA	Sequence		
	5'-GAA CUG UGU GUG AGA GGU CCU-3' (SEQ ID NO:5277)		
ALN-1070	3'-CG CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:5278)		
	5'-GAA CUG UGU GUG AGA GGU CCU-GS-3' (SEQ ID NO:5279)		
ALN-1000	3'-CG CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:5280)		
	5'-GAA CUG UGU GUG AGA GGU CCU-3' (SEQ ID NO:5281)		
ALN-3000	3'-Cs1Gs1 CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:5282)		
	5'-GAA CUG UGU GUG AGA GGU CCU-chol.2-3' (SEQ ID NO:5283)		
ALN-3001	3'-Cs ¹ Gs ¹ CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:5284)		

¹2' O-Me group is attached to the nucleotide <u>and</u> the nucleotides have phosphorothioate linkages (indicated by

Animals were injected (tail vein) with a volume of 200-250 μ l test solution containing buffer or an siRNA solution. Group 1 received buffer and group 2 received cholesterol conjugated siRNA (ALN-3001) at a dose of 50 mg/kg body weight. Twenty-two hours after injection, animals were sacrificed and livers collected. Organs were snap frozen on dry ice, then pulverized in a mortar and pestle.

For Luciferase mRNA analysis (by the QuantiGene Assay (Genospectra, Inc.; Fremont, CA)), approximately 10 mg of tissue powder was resuspended in tissue lysis buffer, and processed according to the manufacturer's protocol. Samples of the lysate were hybridized with probes specific for Luciferase or GAPDH (designed using ProbeDesigner software (Genospectra, Inc., Fremont, CA) in triplicate, and processed for luminometric analysis. Values for Luciferase were normalized to GAPDH. Mean values were plotted with error bars corresponding to the standard deviation of the Luciferase measurements.

² cholesterol is conjugated to the antisense strand via the linker: U-pyrroline carrier-C(O)-(CH₂)₅-NHC(O)-cholesterol (via cholesterol C-3 hydroxyl).

WO 2004/091515 PCT/US2004/011255

Results indicated that the level of luciferase RNA in animals injected with cholesterol conjugated siRNA was reduced by about 70% as compared to animals injected with buffer (see FIGs. 8A and 8B).

In Vitro Activity

5

10

15

20

25

30

HeLa cells expressing luciferase were transfected with each of the siRNAs listed in Table 18. ALN-1000 siRNAs were most effective at decreasing luciferase mRNA levels (~0.6 nM siRNA decreased mRNA levels to about ~65% the original expression level, and 1.0 nM siRNA decreased levels to about ~20% the original expression level); ALN-3001 siRNAs were least effective (~0.6 nM siRNA had a negligible effect on mRNA levels, and 1.0 nM siRNA decreased levels to about ~40% the original expression level).

Pharmacokinetics/Biodistribution

Pharmacokinetic analyses were performed in mice and rats. Test siRNA molecules were radioactively labeled with ³³P on the antisense strand by splint ligation. Labeled siRNAs (50mg/kg) were administered by tail vein injection, and plasma levels of siRNA were measured periodically over 24 hrs by scintillation counting. Cholesterol conjugated siRNA (ALN-3001) was discovered to circulate in mouse plasma for a longer period of time than unconjugated siRNA (ALN-3000) (FIG. 9). RNAse protection assays indicated that cholesterol-conjugated siRNA (ALN-3001) was detectable in mouse plasma 12 hours after injection, whereas unconjugated siRNA (ALN-3000) was not detectable in mouse plasma within two hours after injection. Similar results were observed in rats.

Mouse liver was harvested at varying time points (ranging from 0.08-24 hours) following injection with siRNA, and siRNA localized to the liver was quantified. Over the time period tested, the amount of cholesterol-conjugated siRNA (ALN-3001) detected in the liver ranged from 14.3-3.55 percent of the total dose administered to the mouse. The amount of unconjugated siRNA (ALN-3000) detected in the liver was lower, ranging from 3.91–1.75 percent of the total dose administered (FIG. 10).

Detection of siRNA in Different Tissues

Various tissues and organs (fat, heart, kidney, liver, and spleen) were harvested from two CMV-Luc mice 22 hours following injection with 50 mg/kg ALN-3001. The antisense strand of the

siRNA was detected by RNAse protection assay. The liver contained the greatest concentration of siRNA (~8-10 μ g siRNA/g tissue); the spleen, heart and kidney contained lesser amounts of siRNA (~2-7 μ g siRNA/g tissue); and fat tissue contained the least amount of siRNA (<~1 μ g siRNA/g tissue) (FIG. 11).

5

10

Glucose-6-phosphatase siRNA detection by RNAse Protection Assay

Balbc mice were injected with U/U, 3'C/U, or 3' C/3' C siRNA (4 mg/kg) targeting glucose-6-phosphatase (G6Pase) (see Table 19). Administration was by hydrodynamic tail vein injection (hd) or non-hydrodynamic tail vein injection (iv), and siRNA was subsequently detected in the liver by RNAse protection assay.

Table 19. Test iRNA agents targeting glucose-6-phosphatase

siRNA	<u>Description</u>
U/U	No cholesterol; dinucleotide 3' overhangs on sense and antisense strands
3′C/U	dinucleotide 3' overhangs on sense and antisense strands; cholesterol conjugated to 3' end of sense strand (mono-conjugate)
3′C/3′C	dinucleotide 3' overhangs on sense and antisense strands; cholesterol conjugated to 3' end of both sense and antisense strands (bis-conjugate)

15

20

25

Unconjugated siRNA (U/U) delivered by hd was detected by 15 min. post-injection (the earliest determined time-point) and was still detectable in the liver 18 hours post-injection (FIG. 12).

Delivery by normal iv administration resulted in the greatest concentration of 3'C/3'C siRNA (the bis-cholesterol-conjugate) in the liver 1 hour post injection (as compared to the monocholesterol-conjugate 3'C/3'U siRNA). At 18 hours post injection, 3'C/3'C siRNAs and 3'C/U siRNA were still detectable in the liver with the bis-conjugate at higher levels compared to the mono-conjugate (FIG. 13).

Example 6. siRNAs decrease protein activity levels in vivo

Male CMV-Luc mice were bred by Charles River Laboratories, Inc. (Wilmington, MA). Mice (6-7 weeks old) were administered cholesterol conjugated siRNA (see Tables 20-22).

Table 20. Test groups for in vivo siRNA assays-experiment 1

Group	N	Injection Mix
1	10	Buffer (PBS [pH 7.4])
		Cholesterol conjugated siRNA
2	11	(ALN-3001)

Table 21. Test groups for in vivo siRNA assays-experiment 2

Group	N	Injection Mix
1	8	Buffer (PBS [pH 7.4])
		Cholesterol conjugated siRNA
2	8 ·	(ALN-3001)

5

10

15

20

25

Table 22. Test groups for in vivo siRNA assays-experiment 3

Group	N	Injection Mix
1	8	Buffer (PBS [pH 7.4])
		Cholesterol conjugated siRNA
2	8	(ALN-3001)

Animals were injected (tail vein) with a volume of 200-250 μ l test solution containing buffer or an siRNA solution. Group 1 received buffer and group 2 received cholesterol conjugated siRNA (ALN-3001) at a dose of 75 mg/kg body weight. Nineteen to 22 hours after injection, animals were sacrificed and livers collected. Organs were snap frozen on dry ice, then pulverized in a mortar and pestle.

For Luciferase activity analysis, approximately 50 mg of tissue powder was resuspended in 0.5 ml Cell Lysis Buffer (Promega, Inc.). Samples were vortexed vigorously for three minutes, snap frozen in liquid nitrogen, then thawed in a 37 degree water bath. This process was repeated twice more. After the final thaw, samples were vortexed for three minutes. Insoluble material was removed by centrifugation in a microcentrifuge (4 degrees) at full speed for four minutes. Supernatants were collected. Twenty to 25 microliters of each sample were pipetted into assay tubes in triplicate, and allowed to come to room temperature. For activity measurements, a luminometer (Berthold, Inc.) was programmed to deliver 200 microliters of "Bright Glow" assay reagent (Promega, Inc.) to the test sample, and record light emission over a ten second period.

To measure total protein, samples of supernatant were diluted thirty fold, and five microliter samples were measured in triplicate in a Bradford protein microassay (Bio-Rad). Bovine Serum Albumin was used to generate a standard curve.

WO 2004/091515 PCT/US2004/011255

Luciferase activity was determined as the mean of the luminometry reading normalized to mean protein content. Mean normalized values were then calculated for the buffer and siRNA-treated groups in each experiment. For each experiment, the normalized Luc level of the siRNA treated group is expressed as a percentage of the buffer control (which was set to 100%). Error bars indicate standard deviations.

Results indicated that the level of luciferase activity in animals injected with cholesterol conjugated siRNA was reduced by about 55% as compared to animals injected with buffer (see FIG. 14).

5

OTHER EMBODIMENTS

While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

10

20

25

WHAT IS CLAIMED IS:

- 1. A method for reducing apoB-100 levels in a subject comprising administering to a subject an iRNA agent, which targets apoB-100.
- 5 2. The method of claim 1, wherein said iRNA agent targets a sequence identical to any one of SEQ ID NOs listed in Tables 9 and 10.
 - 3. The method of claim 1, wherein said iRNA agent comprises a cholesterol moiety.
 - 4. The method of claim 3, wherein said cholesterol moiety is coupled to a sense strand.
 - 5. The method of claim 3, further comprising a second cholesterol moiety.
- 6. The method of claim 5, wherein said second cholesterol moiety is coupled to a sense strand.
 - 7. The method of claim 1, wherein said iRNA agent is at least 21 nucleotides in length, and the duplex region of the iRNA is about 19 nucleotides in length.
 - 8. The method of claim 1, wherein the subject is suffering from a disorder characterized by elevated or otherwise unwanted expression of apoB-100, elevated or otherwise unwanted levels of cholesterol, and/or disregulation of lipid metabolism.
 - 9. The method of claim 8, wherein said disorder is chosen from the group of HDL/LDL cholesterol imbalance; dyslipidemias, e.g., familial combined hyperlipidemia (FCHL), acquired hyperlipidemia; hypercholesterolemia; statin-resistant hypercholesterolemia; coronary artery disease (CAD) coronary heart disease (CHD) atherosclerosis
- 10. The method of claim 9, wherein said iRNA agent is administered to a subject sufferingfrom statin-resistant hypercholesterolemia.

PCT/US2004/011255

WO 2004/091515

15

20

25

- 11. A method for reducing glucose-6-phosphatase levels in a subject comprising administering to a subject an iRNA agent that targets glucose-6-phosphatase.
- 12. The method of claim 11, wherein said iRNA agent is at least 21 nucleotides in length,
 and the duplex region of the iRNA is about 19 nucleotides in length.
 - 13. The method of claim 12, wherein the iRNA agent is administered to a subject to inhibit hepatic glucose production, or for the treatment of glucose-metabolism-related disorders.
- 10 14. The method of claim 12, wherein said disorder is diabetes.
 - 15. The method of claim 12, wherein said disorder is type-2 diabetes.
 - 16. The method of claim 12, wherein said disorder is glitaxzone-resistant diabetes.

17. An iRNA agent comprising a sense sequence and an antisense sequence, wherein the sense sequence comprises one or more cholesterol moeities, and the antisense sequence targets a human gene sequence.

- 18. The iRNA agent of claim 17, wherein said human gene is an oncogene.
 - 19. The iRNA agent of claim 17, wherein said human gene is apoB 100.
 - 20. The iRNA agent of claim 17, wherein said human gene is glucose-6-phosphatase.
 - 21. The iRNA agent of claim 17, wherein said human gene beta catenin.
 - 22. An iRNA agent, wherein the agent targets apoB 100.
- 30 23. An iRNA agent, wherein the agent targets glucose-6-phosphatase.
 - 24. An iRNA agent, wherein the agent targets beta-catenin.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 5 (Cont'd)

FIG. 5 (Cont'd)

FIG. 5 (Cont'd)

FIG. 6A

FIG. 6C

FIG. 8A

CPS (x10e3)

FIG. 8E

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14