Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

TUTORIAL SESSION 18:

Universal Turing Machine

Concept Building

A Universal Turing Machine (UTM) is a powerful concept in computer science that embodies the idea of a single machine capable of simulating any other Turing machine. This concept is foundational for understanding computation and the limits of what can be computed.

Key Concepts of Universal Turing Machines

- 1. **Definition**: A Universal Turing Machine is a theoretical model that can execute any algorithm that can be described by a Turing machine. It does this by reading the description of another Turing machine from its input tape and simulating its behaviour.
- 2. **Encoding**: The UTM takes two inputs:
 - The description of a Turing machine (M), which includes its states, symbols, and transition functions.
 - o An input string (w) that M will process.

The UTM uses this information to simulate the computation of M on the input w.

- 3. **Significance**: The existence of a UTM demonstrates that a single machine can perform any computation that can be algorithmically defined. This is a cornerstone of the Church-Turing thesis, which posits that any effectively calculable function can be computed by a Turing machine.
- 4. **Implications for Modern Computing**: The UTM concept laid the groundwork for the development of modern computers, which can execute a wide variety of programs. It illustrates the principle of a stored-program computer, where a machine can be reprogrammed to perform different tasks without changing its physical structure.
- 5. **Universality**: The UTM is universal in the sense that it can simulate any other Turing machine, regardless of its complexity. This means that any computation that can be performed by a specific Turing machine can also be performed by the UTM, albeit potentially less efficiently.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		201
Course Code(s)	22CS2002A	Page 201 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Pre-Tutorial (To be completed by student before attending tutorial session)

1. What does it mean for a Turing machine to be universal? How does a UTM differ from a standard Turing machine in terms of its capabilities?

Solution:

- Universal Turing Machine (UTM):
 Simulates any Turing machine (TM) by taking its description as input.
- Capabilities: UTM is general-purpose; standard TM is task-specific.
- Structure: UTM interprets other TMs; standard TM doesn't.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		202
Course Code(s)	22CS2002A	Page 202 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

2. How does a UTM simulate the behavior of other Turing machines? What are the key components needed for this simulation?

Solution:

- Encoding: A UTM encodes the description of another TM (its states, symbols, and rules) along with its input on the tape.
- Components:
 - Description of TM: Encoded states, symbols, and transition rules of the target TM.
 - Input Tape: Holds the input for the target TM.
 - Interpreter: UTM reads the TM description, interprets transition rules, and simulates each step based on them.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		203
Course Code(s)	22CS2002A	Page 203 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

3. What is Turing completeness, and why is it an important concept in computer science? Can you provide examples of Turing complete systems?

Solution:

- Turing Completeness: Ability to perform any computation with time and memory.
- Importance: Shows full computational power.
- Examples: Python, Java, Lambda calculus, Conway's Game of Life.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		204
Course Code(s)	22CS2002A	Page 204 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Consider a Universal Turing Machine that simulates another Turing machine M. If M has a transition defined as follows:

$$\delta(q1, a) = (q2, b, R)$$

What does this transition mean?

Solution:

The transition $\delta(q1,a)=(q2,b,R)$ means:

- Current State: q1
- Current Symbol: a
- Action:
 - Write: b on the tape.
 - Move: Head moves Right (R).
 - **Next State**: Transition to q2.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		205
Course Code(s)	22CS2002A	Page 205 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

2. How does a Universal Turing Machine utilize the description of another Turing machine?

Solution:

A Universal Turing Machine (UTM) uses the description of another Turing machine (TM) as follows:

- Encodes the TM's states, symbols, and transition rules on its tape.
- Interprets these rules to simulate each step of the TM.
- Executes actions (write, move, state change) based on the encoded description, mimicking the TM's behavior.
- 3. If a Universal Turing Machine simulates another Turing machine M, what must be included in the input to the UTM?

 Solution:

The input to a Universal Turing Machine (UTM) must include:

- 1. Description of the Turing machine M:
 - The states, symbols, and transition function of M.
- 2. Input for M:
 - The data or input that M is supposed to process.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		206
Course Code(s)	22CS2002A	Page 206 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Post-Tutorial (To be carried out by student after attending tutorial session)

1. How does the size of the description of a Turing machine M relate to the size of the input string w when simulating M on w using a Universal Turing Machine?

Solution:

The size of the description of Turing machine M is independent of the input string w.

- ullet **Description size**: Includes the number of states, symbols, and transition rules of M.
- Input size: The length of string w that M processes.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		207
Course Code(s)	22CS2002A	Page 207 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

2. When a Universal Turing Machine simulates another Turing machine M, what is the relationship between the time complexity of the UTM and the time complexity of M? Solution:

- UTM's time complexity is proportional to M's.
- If M takes $T_M(n)$, UTM takes $O(T_M(n))$.
- UTM may have extra overhead, but $T_M(n)$ dominates.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		208
Course Code(s)	22CS2002A	Page 208 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Viva - Questions

1. How does a Universal Turing Machine differ from a standard Turing machine?

Solution:

A UTM simulates any Turing machine, while a standard TM performs a specific task.

2. Explain how a Universal Turing Machine can simulate another Turing machine.

Solution:

A UTM encodes a Turing machine's description and input, then simulates its transitions step-by-step.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation	
	Marks Secured: out of <u>50</u>	
Full Name of the Evaluator:		
	Signature of the Evaluator Date of	
	Evaluation:	

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		209
Course Code(s)	22CS2002A	Page 209 of 261