CB N°8 - INTEGRALES A PARAMETRE - SUJET 1

Exercice 1

On considère la fonction $f: x \mapsto \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$

- 1. Montrer que f est définie et continue sur \mathbb{R}^+ .
- **2.** Montrer que f est dérivable sur \mathbb{R}_+^* .
- **3.** Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle : $y y' = \frac{\sqrt{\pi}}{2\sqrt{x}}$.

On donne, pour
$$a > 0$$
:
$$\int_0^{+\infty} e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}}.$$

Exercice 2

Pour
$$n \in \mathbb{N}^*$$
, on considère $F_n : x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(x^2 + t^2)^n}$.

- 1. Montrer que F_n est dérivable sur $]0, +\infty[$, et exprimer sa dérivée à l'aide de F_{n+1} .
- **2.** En déduire la valeur de $\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^3}$.

CB N°8 - INTEGRALES A PARAMETRE - SUJET 2

Exercice 1

On considère la fonction $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{e}^{-xt}}{1+t^2} \mathrm{d}t$.

- 1. Montrer que f est de classe C^2 sur \mathbb{R}_+^* .
- 2. Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle : $y'' + y = \frac{1}{x}$.

Exercice 2

Pour $n \in \mathbb{N}^*$, on considère $F_n : x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(\mathrm{e}^x + t^2)^n}$.

- 1. Montrer que F_n est dérivable sur $[0, +\infty[$, et exprimer sa dérivée à l'aide de F_{n+1} .
- 2. En déduire la valeur de $\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^3}$.

Spé PT B CB8 - 2018-2019