Course: Intelligent Systems

Unit 4: Language Technologies

# Language technologies Part 3

Mariano Rico 2022 Technical University of Madrid



# NLP at a glance

- Session 1 (29<sup>th</sup> Nov)
  - Encodings
  - Corpus
  - Normalization
  - Hands-on 1
- Session 2 (13<sup>th</sup> Dec)
  - Part of Speech
  - Sparse Vector models
  - TF-IDF
  - Sentiment analysis
  - Hands-on 2
- Session 3 (Today 20 Dec)
  - Document classification
  - Information extraction
  - Hands-on 3
- Session 4 (after Xmas, Tue 10 Jan)
  - The neural revolution
  - Language Models 4 NLP tasks
  - Hands-on 4

## **Table of Contents**

- 1. Document classification
- 2. Information extraction
- 3. Hands-on 3

## **DOCUMENT CLASSIFICATION**

## **Dataset**

# Data Frame

Independent variables, features, characteristics...

Dependent variable, class...

 $X(X_1, X_2, X_3...)$ 

Y

|         | X       | Y       |
|---------|---------|---------|
|         | X-train | Y-train |
| Split — | X-test  | Y-test  |
|         |         |         |

|         | $\mathbf{X}$ | Y       |
|---------|--------------|---------|
|         | X-train      | Y-train |
| Split — | X-test       | Y-test  |
|         |              |         |











Classification

# **MODELS: EVALUATION**



### How do we measure if prediction (binary) is good?

|           |     | Y-test |     |
|-----------|-----|--------|-----|
|           |     | pos    | neg |
| Y-predict | pos |        |     |
|           | neg |        |     |

Y-test

compare

Y-predict

# How do we measure if prediction (**binary**) is good? We use the **confusión matrix**

|           |     | Y-test                              |                                     |  |
|-----------|-----|-------------------------------------|-------------------------------------|--|
|           |     | pos                                 | neg                                 |  |
| Y-predict | pos | True<br>positives<br>( <i>TP</i> )  | False<br>positives<br>( <i>FP</i> ) |  |
|           | neg | False<br>negativos<br>( <i>FN</i> ) | True<br>negatives<br>( <i>TN</i> )  |  |

Y-test

compare

Y-predict

### How do we measure if prediction (binary) is good?

# We use the **confusion matrix**, and **calcule** *p* (**precision**) and *r* (*recall*)

|           |     | Y-test                              |                                     |  |
|-----------|-----|-------------------------------------|-------------------------------------|--|
|           |     | pos                                 | neg                                 |  |
| Y-predict | pos | True<br>positives<br>( <i>TP</i> )  | False<br>positives<br>( <i>FP</i> ) |  |
|           | neg | False<br>negatives<br>( <i>FN</i> ) | True<br>negatives<br>( <i>TN</i> )  |  |

$$p = \frac{TP}{TP + FP}$$

$$r = \frac{TP}{TP + FN}$$

### An example with spam detection:

# Each email is classified as **spam** or **normal** The confusion matrix is this:

Total emails: 60+50+30+200 = 340

We know (Y-test) than 60+30=90 are normal

Our predictor (Y-predict) says that 60+50 = 110 are normal

$$30+200 = 230$$
 are spam

|           | parri        |                                          |                                          |                                        |
|-----------|--------------|------------------------------------------|------------------------------------------|----------------------------------------|
|           |              | Y-test                                   |                                          |                                        |
|           |              | pos (normal)                             | neg (spam)                               |                                        |
| Y-predict | pos (normal) | True<br>positives<br>( <i>TP</i> ) = 60  | False<br>positives<br>( <i>FP</i> ) = 50 | $p = \frac{TP}{TP + FP}$               |
|           | neg (spam)   | False<br>negatives<br>( <i>FN</i> ) = 30 | True<br>negatives<br>( <i>VN</i> )=200   | $= \frac{60}{60 + 50}$ $= 0.54 (54\%)$ |
|           | '            | TP                                       | 60                                       | 0.66                                   |

$$r = \frac{TP}{TP + FN} = \frac{60}{60 + 30} = 0.66 = 66\%$$

If we have more than two classes (is not binary):

Example: each email is classified as **spam**, **normal**, or as **urgent**.

|           |        | Y-test |        |      |
|-----------|--------|--------|--------|------|
|           |        | urgent | normal | spam |
|           | urgent | 8      | 10     | 1    |
| Y-predict | normal | 5      | 60     | 50   |
|           | spam   | 3      | 30     | 200  |

$$p_{urgent} = \frac{8}{8+10+1}$$

$$p_{normal} = \frac{60}{5+60+50}$$

$$p_{spam} = \frac{200}{3+30+200}$$

$$r_u = \frac{8}{8+5+3}$$
  $r_n = \frac{60}{10+60+30}$   $r_s = \frac{200}{1+50+200}$ 

## INFORMATION EXTRACTION

# Text classification From R

Dendrograms with hclust()

```
m <- as.matrix(dtm)
distMatrix <- dist(m, method="euclidean")

groups <- hclust(distMatrix, method="ward.D")
plot(groups, cex=0.9, hang=-1)
rect.hclust(groups, k=5)</pre>
```

#### **Cluster Dendrogram**



# Text classification From R

- Package <u>quanteda.textmodels</u> (in <u>CRAN</u>). Has 8 basic models for quanteda corpora
  - The simplest is the Naive Bayes classifier
    - Function textmodel\_nb().With 2 types of distributions:
      - » Multinomial
      - » Bernoulli
  - A more advanced (SVM)
    - Function textmodel\_svm()
- Package <u>quanteda.classifiers</u> (no in CRAN).
   Advanced models for quanteda corpora
  - Two classifiers (using neuronal networks)
    - Multilevel perceptron network
    - Convolutional neural network + LSTM model fitted to word embeddings

# Named entities (NEs)

- The process is *NER = NE Recognition*
- 4 basic types
  - PER (Person). Example: "Madam Curie", "Marie Curie"
  - LOC (Location). Example: "Nueva York", "New York"
  - ORG (Organization). Example: "Universidad de Stanford"
  - GPE (Geo-political entity). Example: "Teruel, España",
     "Comunidad de Madrid"
- Extended types (thangs that, a priori, are not entities)
  - Date
  - Hours
  - Prices

# Named entities (NEs)

An example of NER Annotation

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

There are 13 NEs (5 organizations, 4 locations, 2 dates (TIME), 1 person, and one price (MONEY))

## Named entities

## Tagging formats

- NEs use to be formed by several words (e.g. "Don Quijote de la Mancha")
  - What labels do we add to each of these words?
- There are several formats:
  - BIO labelling
    - B for Begin
    - I for *Inside*
    - O for Outside

|   | Words      | IO Label | BIO Label | BIOES Label |
|---|------------|----------|-----------|-------------|
| - | Jane       | I-PER    | B-PER     | B-PER       |
|   | Villanueva | I-PER    | I-PER     | E-PER       |
|   | of         | 0        | 0         | 0           |
|   | United     | I-ORG    | B-ORG     | B-ORG       |
|   | Airlines   | I-ORG    | I-ORG     | I-ORG       |
|   | Holding    | I-ORG    | I-ORG     | E-ORG       |
|   | discussed  | 0        | 0         | 0           |
|   | the        | 0        | 0         | 0           |
|   | Chicago    | I-LOC    | B-LOC     | S-LOC       |
|   | route      | 0        | 0         | 0           |
|   |            | 0        | 0         | 0           |

| Words      | <b>BIO</b> Label |
|------------|------------------|
| Jane       | B-PER            |
| Villanueva | I-PER            |
| of         | O                |
| United     | B-ORG            |
| Airlines   | I-ORG            |
| Holding    | I-ORG            |
| discussed  | O                |
| the        | O                |
| Chicago    | B-LOC            |
| route      | O                |
| •          | 0                |

## Named Entities

using R

- In the spacyr package there is NER for several languages (Spanish among them)
  - Doesn't follow any of the shown tagging formats ☺
  - But it is quite similar ☺

# Dependencies

- Relations between the elements of a sentence
  - The <u>root</u> is the <u>verb</u> (principal) of the sentence
    - The non principal verbs are the <u>aux</u>
  - The subjet (nsubj, nominal subject)
    - The arrow head is the subject. The tail is the verb



# Dependencies

- The current standard is UD2.0
  - Dependency types

|                     | Nominals                              | Clauses                         | Modifier words                                  | Function Words            |
|---------------------|---------------------------------------|---------------------------------|-------------------------------------------------|---------------------------|
| Core arguments      | nsubj<br>obj.<br>iobj.                | csubj<br>ccomp<br>xcomp         |                                                 |                           |
| Non-core dependents | obl<br>vocative<br>expl<br>dislocated | <u>advcl</u>                    | <u>advmod</u> *<br><u>discourse</u>             | aux<br><u>cop</u><br>mark |
| Nominal dependents  | nmod<br>appos<br>nummod               | <u>acl</u>                      | amod                                            | det<br>clf<br>case        |
| Coordination        | MWE                                   | Loose                           | Special                                         | Other                     |
| conj<br>cc          | fixed<br>flat<br>compound             | <u>list</u><br><u>parataxis</u> | <u>orphan</u><br>g <u>oeswith</u><br>reparandum | punct<br>root<br>dep      |

## Dependencies

using R

- In the spacyr package there is dependency extraction
- Also the udpipes package

## Relation extraction

## lexical patterns

- Hearst patterns (Martha Alice Hearst, 1992)
  - She proposed 5 patterns to identify hyponyms
  - For English
  - Easily extensible to any other language

"Word whose meaning includes that of another". Sparrow is hyponym of bird. "Subclass of", "is-a".

```
NP \{, NP\}* \{,\} (and or) other NP_H temples, treasuries, and other important civic buildings NP_H such as \{NP_H* \{(or | and)\} NP red algae such as Gelidium such NP_H as \{NP_H* \{(or | and)\} NP such authors as Herrick, Goldsmith, and Shakespeare common-law countries, including Canada and England NP_H \{,\} especially \{NP\}* \{(or | and)\} NP European countries, especially France, England, and Spain
```

- NP is Noun Phrase (in Spanish, sintagma nominal)
- NP<sub>H</sub> is the parent (upper class, most generic)
- {A} indicates that A is optional
- {A}\* indicates that can be repeated

Course: Intelligent Systems

Unit 4: Language Technologies

# Language technologies Part 3

Mariano Rico 2022 Technical University of Madrid

