Data 612 - Project 1

Paul Perez

6/9/2020

Contents

The Recommender System	L
Data Ingestion, Selection, Manipulation	L
Split into Training & Test datasets using an $80/20$ Ratio	1
Calculate the Raw Average (Training Set)	5
RMSE for Raw Average	5
User & Item Bias from Training Set	3
Calculate the Raw Average (Test Set)	7
User & Item Bias from Training Set	7
Summary	7

The Recommender System

This system recommends movie's to film enthusiasts using the MovieLens ml-latest-small dataset. This set contains 100,836 ratings which spans 610 users, 9742 movies and 3,683 tag applications. The data is contained within 4 csv files; links.csv, ratings.csv, movies.csv, and tags.csv. To simplify the system in this project, we'll only be joining the ratings.csv and movies.csv on movieId field.

Data Ingestion, Selection, Manipulation

```
movies <- read.csv('https://raw.githubusercontent.com/ChefPaul/data612/master/Project%201/movies.csv')
ratings <- read.csv('https://raw.githubusercontent.com/ChefPaul/data612/master/Project%201/ratings.csv')</pre>
```

Preview of Movies & Ratings datasets

```
## 4
                         Waiting to Exhale (1995)
## 5
            5 Father of the Bride Part II (1995)
## 6
                                        Heat (1995)
##
                                               genres
## 1 Adventure | Animation | Children | Comedy | Fantasy
                        Adventure | Children | Fantasy
## 2
## 3
                                      Comedy | Romance
                               Comedy | Drama | Romance
## 4
## 5
                                               Comedy
## 6
                              Action | Crime | Thriller
```

head(ratings)

```
userId movieId rating timestamp
## 1
          1
                  1
                          4 964982703
## 2
          1
                   3
                          4 964981247
## 3
          1
                  6
                          4 964982224
## 4
          1
                  47
                          5 964983815
                          5 964982931
## 5
          1
                  50
## 6
                          3 964982400
                  70
```

Join Movies & Ratings datasets

```
joined_data <- full_join(ratings, movies, by = 'movieId')
joined_data_preview <- head(joined_data, 10)
joined_data_preview %>% kable(caption = "Joined Data Preview") %>% kable_styling("striped", full_width = "Joined Data Preview")
```

Slice dataset to only contain UserId, Movie Title, and Movie Rating

```
data <- joined_data[,c(1,5,3)]
data_preview <- head(data, 10)
data_preview %>% kable(caption = "Sliced Dataset Preview") %>% kable_styling("striped", full_width = T.
```

Identify Top 5 Most Rated Movies

In order to create a sparse dataset, but still ensure we have a sufficient number of ratings, we'll have to identify the Top 5 movies that were the most frequently rated.

```
# top 5 movies
movie_freq <- table(joined_data$title) %>% as.data.frame() %>% arrange(desc(Freq))
top_5 <- movie_freq[1:5,][1]
top_5 %>% kable(caption = "Top 5 Frequently Rated Movies Preview") %>% kable_styling("striped", full_w
```

Now that we've identified the most frequently rated movies, we can filter the dataset to only contain these movies.

	<u> </u>	Table 1: Joined D	Data Preview		
userId	movieId	rating	timestamp	title	genres
1	1	4	964982703	Toy Story	Adventure Animation Children C
				(1995)	,
1	3	4	964981247	Grumpier Old	Comedy Romance
				Men (1995)	
1	6	4	964982224	Heat (1995)	Action Crime Thriller
1	47	5	964983815	Seven (a.k.a.	Mystery Thriller
				Se7en) (1995)	<u>_</u>
1	50	5	964982931	Usual	$\overline{\text{Crime} \text{Mystery} \text{Thriller}}$
				Suspects, The	!
				(1995)	
1	70	3	964982400	From Dusk	Action Comedy Horror Thriller
				Till Dawn	
				(1996)	<u></u>
1	101	5	964980868	Bottle Rocket	Adventure Comedy Crime Roman
				(1996)	
1	110	4	964982176	Braveheart	$\overline{ m Action} { m Drama} { m War}$
				(1995)	
1	151	5	964984041	Rob Roy	$\overline{\text{Action} \text{Drama} \text{Romance} \text{War}}$
				(1995)	
1	157	5	964984100	Canadian	Comedy War
				Bacon (1995)	

	Table 2: Sliced Dataset Preview	
userId	title	rating
1	Toy Story (1995)	4
1	Grumpier Old Men (1995)	4
1	Heat (1995)	4
1	Seven (a.k.a. Se7en) (1995)	5
1	Usual Suspects, The (1995)	5
1	From Dusk Till Dawn (1996)	3
1	Bottle Rocket (1996)	5
1	Braveheart (1995)	4
1	Rob Roy (1995)	5
1	Canadian Bacon (1995)	5

Table 3: Top 5 Frequently Rated Movies Preview
Var1
Forrest Gump (1994)
Shawshank Redemption, The (1994)
Pulp Fiction (1994)
Silence of the Lambs, The (1991)
Matrix, The (1999)

userId	title	rating
1	Pulp Fiction (1994)	3
1	Forrest Gump (1994)	4
1	Silence of the Lambs, The (1991)	4
1	Matrix, The (1999)	5
2	Shawshank Redemption, The	3
	(1994)	
4	Pulp Fiction (1994)	1
4	Silence of the Lambs, The (1991)	5
4	Matrix, The (1999)	1
5	Pulp Fiction (1994)	5
5	Shawshank Redemption, The	3
	(1994)	

Table 5: User-Item Matrix Preview

userIe	d Forrest Gump	Matrix, The	Pulp Fiction	Shawshank	Silence of the
	(1994)	(1999)	(1994)	Redemption,	Lambs, The
				The (1994)	(1991)
	1	5	3	NA	4
	2 NA	NA NA	NA	3	NA
	4 NA	. 1	1	NA	5
	5 NA	NA NA	5	3	NA
	6 5	NA NA	2	5	4
	7 - 5	NA NA	NA	NA	5

```
sub_data <- data %>% filter(title %in% c("Forrest Gump (1994)", "Shawshank Redemption, The (1994)", "Pu
sub_data_preview <- head(sub_data, 10)
sub_data_preview %>% kable(caption = "Subset of Data Preview") %>% kable_styling("striped", full_width
```

Finally, since we have a subset of the data, we can create a user-item matrix utilizing the **spread()** function from the **tidyr** package.

Split into Training & Test datasets using an 80/20 Ratio

We can utilize the sample() function to split the data into training and test sets.

```
set.seed(123)
train_sample <- sample(x = c(TRUE, FALSE), size = nrow(wide_data), replace = TRUE, prob = c(0.8, 0.2))
train_id <- as.matrix(wide_data[train_sample,])
test_id <- as.matrix(wide_data[!train_sample,])</pre>
```

While splitting, the userId field will remain within the matrix, but we can remove that to further build out the system and run calculations on each matrix.

Table 6: Training User-Item Matrix Preview

	10010 01 110111116 0001 1100111 11011011					
	Forrest Gump	Matrix, The	Pulp Fiction	Shawshank	Silence of the	
	(1994)	(1999)	(1994)	Redemption,	Lambs, The	
				The (1994)	(1991)	
1	4	5	3	NA	4	
2	NA	NA	NA	3	NA	
3	NA	1	1	NA	5	
6	5	NA	NA	NA	5	
7	3	NA	4	5	4	
9	5	NA	NA	4	5	

Table 7: Testing User-Item Matrix Preview

	Table 1. Testing Osci Techi Matrix i Teview					
	Forrest Gump	Matrix, The	Pulp Fiction	Shawshank	Silence of the	
	(1994)	(1999)	(1994)	Redemption,	Lambs, The	
				The (1994)	(1991)	
4	NA	NA	5	3.0	NÁ	
5	5.0	NA	2	5.0	4.0	
8	3.5	0.5	1	NA	NA	
11	4.0	NA	3	3.0	4.0	
16	2.0	4.0	NA	NA	NA	
20	4.5	4.0	4	4.5	4.5	

```
train_preview <- head(train)
train_preview %>% kable(caption = "Training User-Item Matrix Preview") %>% kable_styling("striped", ful

test <- test_id[,2:6]</pre>
```

```
test_review <- head(test)
test_preview %-% kable(caption = "Testing User-Item Matrix Preview") %-% kable_styling("striped", full_</pre>
```

Calculate the Raw Average (Training Set)

We'll need to calculate the raw average (mean) for each user-item combination in the training set.

```
raw_avg <- mean(as.matrix(train), na.rm = TRUE)</pre>
```

RMSE for Raw Average

train <- train_id[,2:6]</pre>

Since we're going to have to calculate the RMSE multiple times, we can create the function below.

```
rmse <- function(m, o){
  sqrt(mean((m - o)^2, na.rm = TRUE))
}</pre>
```

Training Set RMSE

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

Figure 1: RMSE Formula

```
train_rmse <- rmse(raw_avg, train)
train_rmse</pre>
```

[1] 0.848821

Test Set RMSE

```
test_rmse <- rmse(raw_avg, test)
test_rmse</pre>
```

[1] 0.959381

User & Item Bias from Training Set

Now that we have the mean for the training set, we can calculate each user & item bias.

```
user_bias <- rowMeans(train, na.rm = TRUE) - raw_avg
item_bias <- colMeans(train, na.rm = TRUE) - raw_avg</pre>
```

Calculating the Baseline Predictors

```
baseline_predictors <- user_bias + item_bias + raw_avg
```

Since ratings cannot be less than 1 or greater than 5, we can adjust any value that is out of range.

```
baseline_predictors[baseline_predictors < 1] <- 1
baseline_predictors[baseline_predictors > 5] <- 5</pre>
```

Calculating the RMSE for the Basline Predictors of the Training Set

```
train_baseline_rmse <- rmse(raw_avg, baseline_predictors)</pre>
```

Calculate the Raw Average (Test Set)

We'll need to calculate the raw average (mean) for each user-item combination in the test set.

```
test_avg <- mean(as.matrix(test), na.rm = TRUE)</pre>
```

User & Item Bias from Training Set

Now that we have the mean for the test set, we can calculate each user & item bias.

```
test_user_bias <- rowMeans(test, na.rm = TRUE) - test_avg
test_item_bias <- colMeans(test, na.rm = TRUE) - test_avg</pre>
```

Calculating the Baseline Predictors

```
test_baseline_predictors <- test_avg + test_item_bias + test_user_bias
```

Warning in test_avg + test_item_bias + test_user_bias: longer object length is
not a multiple of shorter object length

Since ratings cannot be less than 1 or greater than 5, we can adjust any value that is out of range.

```
test_baseline_predictors[test_baseline_predictors < 1] <- 1
test_baseline_predictors[test_baseline_predictors > 5] <- 5</pre>
```

Calculating the RMSE for the Basline Predictors of the Test Set

```
test_baseline_rmse <- rmse(test_avg, test_baseline_predictors)
```

Summary

```
test_eval <- (1 - (test_baseline_rmse / test_rmse)) * 100
test_eval</pre>
```

[1] 24.96047

```
train_eval <- (1 - (train_baseline_rmse / train_rmse)) * 100
train_eval</pre>
```

```
## [1] 19.83473
```

After creating the recommender system, we can see that the test evaluation show's a 24.96% improvement while the training set's evaluation shows a 19.83% improvement.

References

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1-19:19. https://doi.org/10.1145/2827872

Source Code GitHub Repository