

1. INTRODUÇÃO

Um sistema baseado em microcomputador utiliza os barramentos de endereços, dados e controle para efetuar a comunicação entre o microprocessador e os dispositivos associados.

Figura 1.1 – Diagrama de blocos de um sistema microprocessado

Quando um sistema microprocessado deseja se comunicar com outro sistema microprocessado se faz necessário a existência de um formato padrão para os barramentos.

2. CARACTERÍSTICAS DOS PRINCIPAIS BARRAMENTOS

2.1. ISA (Industry Standard Architecture)

As principais características do barramento ISA são:

- a versão 8 bits veio com o PC original (esta versão também é identificada como barramento XT)
- a versão 16 bits veio em meados dos anos 80 juntamente com o 80.286 (PC/AT) (esta versão também é identificada como barramento AT)
- frequência de operação é 8 MHz
- velocidade máxima de transmissão é 8 M bytes por segundo
- o barramento e o microprocessador são dissociados (cada um pode trabalhar numa frequência, permitindo com isso o microprocessador ter frequências de trabalho muito maiores que o barramento)
- suporta até 8 periféricos
- não foi projetada para ser auto-configurável (não permite Plug and Play)

Figura 2.1 - Barramento ISA

Figura 2.2 - Conector / Placa ISA

8-bit card:

16-bit card:

Figura 2.3 - Características de Conectores / Placas ISA

A1: CHKDSK A2: D7 A3: D6 A4: D5 A5: D4 A6: D3 A7: D2 A8: D1 A9: D0 A10: I/OCHRDY A11: AEN A12: A19 A13: A18 A14: A17 A15: A16 A16: A15 A17: A14 A18: A13 A19: A12 A20: A11 A21: A10 A22: A9 A23: A8 A24: A7 A25: A6 A26: A5 A27: A4 A28: A3	B1: GND B2: RESDRV B3: +5 Vcc B4: IRQ2 B5: -5 Vcc B6: DRQ2 B7: -12 Vcc B8: reservado B9: +12 Vcc B10: GND B11: MEMW B12: MEMR B13: I/OW B14: I/OR B15: DACK3 B16: DRQ3 B17: DACK1 B18: DRQ1 B19: REFRESH B20: CLK B21: IRQ7 B22: IRQ6 B23: IRQ5 B24: IRQ4 B25: IRQ3 B26: DACK2 B27: T/C B28: ALE	C1: SBHE C2: A23 C3: A22 C4: A21 C5: A20 C6: A19 C7: A18 C8: A17 C9: MEMR C10: MEMW C11: D8 C12: D9 C13: D10 C14: D11 C15: D12 C16: D13 C17: D14 C18: D15	D1: MEMCS16 D2: I/OCS16 D3: IRQ10 D4: IRQ11 D5: IRQ12 D6: IRQ15 D7: IRQ14 D8: DACK0 D9: DRQ0 D10: DACK5 D11: DRQ5 D12: DACK6 D13: DRQ6 D14: DACK7 D15: DRQ7 D16: +5 Vcc D17: MASTER D18: GND
A29: A2	B29: +5 Vcc		
A30: A1	B30: OSC		
A31: A0	B31: GND		

Tabela 2.1 – Identificação dos pinos do conector ISA

Figura 2.4 – Conector ISA/EISA Nota: o conector ISA é o da parte superior

2.2 – EISA (Extended Industry Standard Architecture)

As principais características do barramento EISA são:

- é uma evolução do barramento ISA e continua compatível com os antigos de 8 e 16 bits
- é um padrão não-proprietário (é aberto)
- velocidade máxima de transmissão é 30 M bytes por segundo
- foi desenvolvido por 9 fabricantes de computadores liderados pela COMPAQ (as outras 8 são: AST, EPSON, HP, NEC, OLIVETTI, TANDY, WYSE e ZENITH)
- o primeiro microcomputador a utilizar o EISA foi o VECTRA da HP
- transmite dados em 32 bits
- o conector EISA tem duas camadas. A camada superior é exatamente igual ao do ISA (para manter a compatibilidade com o ISA de 8 e 16 bits) e a camada inferior contém a extensão EISA. O conector EISA possui proteção para evitar que uma placa ISA acesse os pinos da camada da extensão EISA.

Nota: o conector EISA está apresentado na figura 2.4.

2.3 – MCA (Micro Channel Architecture)

As principais características do barramento MCA são:

- também chamado de micro canal
- é proprietário e de uso exclusivo da IBM na linha PS
- não é compatível com o ISA/EISA
- velocidade máxima de transmissão é de 30 M bytes por segundo
- transmite dados em 32 bits

Figura 2.5 - Conector MCA

2.4 – VL-Bus (Vesa Local Bus)

As principais características do barramento VL-Bus são:

- é um barramento local
- foi desenvolvido pela VESA (Video Electronics Standards Association), que é um consórcio de mais de 120 empresas
- é uma ampliação do barramento EISA através de um conector extra à frente do existente (acréscimo de 112 pinos)
- basicamente duplica os sinais do 80486
- projetado para o 486 e especificamente para controladores de vídeo, porém funciona bem com IDE e SCSI
- transmite dados em 32/64 bits
- velocidade máxima de transmissão:
 - VL-Bus de 32 bits = 132 M bytes por segundo
 - VL-Bus de 64 bits = 250 M bytes por segundo
- número de periféricos conectáveis ao VL-Bus é muito pequeno (+/- 3)

Figura 2.6 – Barramento VL-Bus

2.5 – PCI (Peripheral Component Interconnect)

As principais características do barramento PCI são:

- é um barramento intermediário que fica entre o barramento local e tradicional
- desenvolvido pela INTEL e lançado em 22/06/92, logo após a VESA ter apresentado o VL-Bus
- pode trabalhar independente do microprocessador
- pode ter seus periféricos autoconfiguráveis (suporte ao padrão Plug and Play)
- no início = 33 MHz, depois 66 MHz (atualmente já tem frequência de até 133 MHz)
- é síncrono
- multiplexa os pinos de endereços e dados
- existe PCI para trabalhar com 5 Vcc e PCI para trabalhar com 3,3 Vcc
- tem conector à parte do barramento normal do microcomputador, que possui
 124 pinos para versão de 32 bits e 178 pinos para versão de 64 bits
- implementado em PCs e também em microcomputadores ALPHA e POWER
 PC
- muito bom para trabalhar com multiprocessamento e multimídia
- velocidade máxima de transmissão
 - PCI de 32 bits = 132 M bytes por segundo, para 33 MHz
 - PCI de 64 bits = 264 M bytes por segundo, para 33 MHz
- permite até 5 periféricos, mas as controladoras PCI e ISA (ou outra) também contam deixando 3 conexões disponíveis.

Figura 2.7 – Barramento PCI

2.6 - QUICKRING

As principais características do barramento QUICKRING são:

- é um barramento local
- desenvolvido pelo APPLE
- velocidade máxima de transmissão é 350 M bytes por segundo

3. GLOSSÁRIO

AUTOCONFIGURAÇÃO

Capacidade de um periférico em estabelecer seus números de interrupção, endereços base e DMA sem intervenção do usuário, no momento da inicialização do microcomputador.

BARRAMENTO LOCAL

É aquele ligado diretamento ao microprocessador, compartilhando seus sinais e funcionando na mesma frequência do mesmo.

É representado fisicamente por um conector especial de expansão na placa principal do microcomputador que permite colocar placas para conexão de vídeo ou disco. Para o vídeo pode-se conectar uma placa aceleradora gráfica e para o disco uma placa controladora de disco IDE (Interface Design Enchancements) ou SCSI (Small Computer System Interface).

DMA

Circuito especializado ou microprocessador dedicado que transfere dados de uma memória para outra memória sem usar a CPU.

IDE

Interface de hardware largamente usada para conectar discos rígidos em PCs.

PLUG AND PLAY

Padrão da Intel para projeto de placas de expansão para PCs em que os parâmetros IRQ (interrupção), DMA e endereços I/O (Input / Output) são configurados automaticamente.

SCSI

Interface de hardware largamente usada que permite que uma placa de expansão em um computador seja conectada a até 16 dispositivos periféricos (disco rígido, CD-ROM, scanner, etc).

SIGLAS

DMA = Direct Memory Access

EISA = Extended Industry Standard Architecture

IDE = Integrated Drive Electronics

ISA = Industry Standard Architecture

SCSI = Small Computer System Interface

VESA = Video Electronics Standards Association

TAXA DE TRANSFERÊNCIA

Velocidade com que os dados podem trafegar no barramento.