COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 06 Exercises

Dr. William M. Farmer McMaster University

Revised: February 7, 2020

Background Definitions

Consider the following definitions:

- 1. $\Sigma_{\text{stack}} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ where:
 - a. $\mathcal{B} = \{\mathsf{Element}, \mathsf{Stack}\}.$
 - b. $C = \{error, bottom\}.$
 - c. $\mathcal{F} = \{\text{push}, \text{pop}, \text{top}\}.$
 - d. $\mathcal{P} = \emptyset$.
 - e. $\tau(error) = Element$.
 - f. $\tau(bottom) = Stack$.
 - g. $\tau(push) = Element \times Stack \rightarrow Stack$.
 - h. $\tau(pop) = Stack \rightarrow Stack$.
 - i. $\tau(\mathsf{top}) = \mathsf{Stack} \to \mathsf{Element}$.
- 2. $\Sigma_{\text{grp}} = (\{G\}, \{e\}, \{*, \mathsf{inv}\}, \emptyset, \tau)$ where $\tau(e) = G, \ \tau(*) = G \times G \to G$, and $\tau(\mathsf{inv}) = G \to G$.
- 3. Let $\Gamma_{\rm grp}$ be the following set of Σ -sentences:

Assoc
$$\forall x, y, z : G . (x * y) * z = x * (y * z).$$

IdLeft $\forall x : G \cdot e * x = x$.

IdRight $\forall x : G \cdot x * e = x$.

InvLeft $\forall x : G . inv(x) * x = e$.

InvRight $\forall x : G \cdot x * \mathsf{inv}(x) = e$.

4. A partition of a set S is a nonempty set U of subsets of S such that, for all $x \in S$, x is a member of exactly one member of U. Hence (1) the members of U are disjoint and (2) their union equals S.

- 5. A *lattice* is a weak partial order (U, \leq) such that each pair of elements of U has both a least upper bound and a greatest lower bound.
- 6. Let $M_1 = (D_1, e_1, *_1)$ and $M_2 = (D_2, e_2, *_2)$ be two monoids. A monoid homomorphism from M_1 to M_2 is a function $h: D_1 \to D_2$ such that:
 - a. $h(x *_1 y) = h(x) *_2 h(y)$ for all $x, y \in D_1$.
 - b. $h(e_1) = e_2$.

Exercises

- 1. Construct in MSFOL a theory $T = (\Sigma_{\text{stack}}, \Gamma_{\text{stack}})$ of stacks. Γ_{stack} should contain axioms that say:
 - a. The top of the bottom stack is the error element.
 - b. Let s be a stack obtained by pushing an element e onto a stack s'. The top of s is e.
 - c. Pop of the bottom stack is the bottom stack.
 - d. Let s be a stack obtained by pushing an element e onto a stack s'. The pop of s is s'.
- 2. A group is a monoid with an inverse operation. $T_{\text{grp}} = (\Sigma_{\text{grp}}, \Gamma_{\text{grp}})$ is a theory of groups. Show that models of T_{grp} can be directly derived from $(\mathbb{Z}, 0, +)$ and $(\mathbb{Q}, 1, *)$ but not from $(\mathbb{N}, 0, +)$ and $(\mathbb{Z}, 1, *)$.
- 3. Let $\Sigma = (\alpha, p : \alpha \to \mathbb{B}, q : \alpha \to \mathbb{B})$ be a signature of MSFOL. What should Γ be so that each model for the theory $T = (\Sigma, \Gamma)$ is a set of values partitioned into two components defined by p and q.
- 4. Let Σ_{pairs} be the signature $(\mathcal{B}, \emptyset, \mathcal{F}, \emptyset, \tau)$ where:
 - a. $\mathcal{B} = \{\alpha, \beta, \gamma\}$.
 - b. $\mathcal{F} = \{\mathsf{mkPair}, \mathsf{left}, \mathsf{right}\}\ \text{where}\ \tau(\mathsf{mkPair}) = \alpha \times \beta \to \gamma,\ \tau(\mathsf{left}) = \gamma \to \alpha,\ \mathrm{and}\ \tau(\mathsf{right}) = \gamma \to \beta.$

What should Γ_{pairs} be so that $T_{\text{pairs}} = (\Sigma_{\text{pairs}}, \Gamma_{\text{pairs}})$ is a theory of mathematical structures that contain (1) sets A, B, and C where C is a set of values that have the same structure as ordered pairs of members of A and B and (2) functions to construct and destruct the pairs in C?

- 5. Let $\Sigma_{\text{lattice}} = (\{U\}, \emptyset, \emptyset, \{\leq\}, \tau)$ where $\tau(\leq) = U \times U \to \mathbb{B}$. Construct in MSFOL a theory $T = (\Sigma_{\text{lattice}}, \Gamma_{\text{lattice}})$ of lattices.
- 6. Explain why it is not possible to construct a theory of well-founded relations in MSFOL.

- 7. Construct in MSFOL a theory of vector spaces.
- 8. Construct in MSFOL a theory T of monoid homomorphisms where each model for T contains a monoid homomorphism.