

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Advanced Propulsion Systems for Low-Cost Access to Space

*Transformational Space Launch and
Operations Technologies Conference*

Dr. Woodrow Whitlow, Jr.

May 26, 2004

Kennedy Space Center

5/20/2004

Outline

- **NASA Access to Space Goals**
- **Rocket-Based Combined Cycle Engines**
- **Turbine-Based Combined Cycle Engines**
- **Pulse Detonation Engines**
- **Conclusions**

Kennedy Space Center

5/20/2004

NASA's Vision

To improve life here,
To extend life to there,
To find life beyond.

NASA's Mission

To understand and protect our home planet
To explore the Universe and search for life
To inspire the next generation of explorers
... as only NASA can.

NASA's Space Access Goal

Ensure the provision of space access and improve it by increasing safety, reliability, and affordability.

- The launch phase continues to be the highest risk period of any space mission.
- Launch costs remain an obstacle to the complete utilization of space for research, exploration, and commercial purposes
- Improving the Nation's access to space through the application of new technology is one of NASA's primary roles.

Kennedy Space Center

5/20/2004

Access to Space Cost Goals

- Reduce Payload Cost from \$10,000 to \$1,000 per pound within 10 years
- Reduce Payload Cost from \$1,000 to \$100's per pound by 2025

Kennedy Space Center

5/20/2004

Why is Space Access So Costly?

- Expendable components
- Expendable vehicles
- Vehicle re-assembly
- Refurbishment
- Supply and demand

A highly-reusable, single-stage-to-orbit (SSTO) launch vehicle would dramatically reduce the cost of space access...

Kennedy Space Center

5/20/2004

The “Rocket Equation” for SSTO

The amount of propellant required to achieve orbit is governed by Newton's second law...

Kennedy Space Center

The Rocket I* “Barrier”

Rockets are limited to I values below 400, leaving only 10-12% of the gross lift-off weight for reusable structure and engines*

- Payload
- Engines
- Structure
- Propellant

Kennedy Space Center

Propulsion System Performance

Kennedy Space Center

5/20/2004

Factors Tending to Mitigate High Air-Breathing Efficiency

Advanced Launch Systems

- A 100-fold improvement in safety achieved using systems capable of \$100's per pound
- Reliability improvements of 10-fold through performance margins that translate to robust design
- Approaches could include combined cycle propulsion

Kennedy Space Center

5/20/2004

Rocket-Based Combined-Cycle Engine

RBCC engines combine the desirable features of the rocket and ramjet cycles in a single, highly-integrated propulsion system

Ramjet

- High efficiency at supersonic speed
- Cannot generate static thrust
- Low thrust-to-weight ratio
- Requires atmospheric oxygen
- Uncertain hypersonic performance

Rocket

- Thrust at any speed
- Light weight
- Low efficiency

Rocket-Based Combined-Cycle
(Escher, Circa 1966)

- High thrust at lift-off
- High overall efficiency
- Operates from lift-off to orbit

Kennedy Space Center

5/20/2004

RBCC Operating Modes

Kennedy Space Center

5/20/2004

Potential for Reusability

RBCC propulsion provides the potential for reusable SSTO by reducing the fraction of propellant required

- Payload
- Engines
- Structure
- Propellant

Kennedy Space Center

5/20/2004

The “GTX” Program

- The “GTX” program was designed to determine if RBCC propulsion can enable reusable SSTO vehicles
- The program was based on maturation of a specific 300 pound payload “reference vehicle”
- Experiments and analyses were conducted to mature the required technologies, and validate component weight and performance estimates

Kennedy Space Center

5/20/2004

GTx Performance Goal

RBCC-Powered SSTO Launch Vehicles can evolve to higher levels of performance after the first successful demonstration

Kennedy Space Center

5/20/2004

GTx Reference Vehicle Description

- Reusable, Single-Stage-to-Orbit
- Vertical Lift-Off/Horizontal Landing
- RBCC Propulsion System Operates in 4 Modes
- 500 sec Minimum I* at Max A/B Mach 11
- 238,000 pound Gross Lift-Off Weight
- LOX/LH₂ Propellants
- 300 pound Payload

Kennedy Space Center

5/20/2004

Cut-Away View of Propulsion System

Kennedy Space Center

5/20/2004

GTx Accomplishments/Key Results

- System approach must be taken due to the highly integrated nature of airbreathing launch vehicles
- Structurally efficient, axisymmetric configuration with limited pre-compression can still achieve an I* greater than 500 seconds
- Limited component performance data was obtained for all 4 propulsion modes in a number of experimental rigs.
- Extensive use of CFD validated and extrapolated experimental results, and guided propulsion system design
- Assuming availability of cooled composite flowpath materials, closure at 690k lbs was shown for the small-payload reference vehicle

Kennedy Space Center

5/20/2004

Turbine-Based Combined Cycle Concept

Kennedy Space Center

5/20/2004

Turbine-Based Combined Cycle

Single-Stage to Orbit

Turbine accelerator integrated with dual-mode scramjet in combined flowpath

Technology Challenges

- Turbine accelerator
- Shared inlet
- Dual fuel (HC and H₂)
- Transition mode
- Shared mixer ejector and nozzle
- Thermal management
- Propulsion/airframe integration

Two-Stage to Orbit

First Stage: Turbine accelerator with afterburner or ramjet

Second Stage: Airbreathing RBCC and/or rockets

Technology Challenges

- Turbine accelerator
- Inlet performance
- Staging separation
- Thermal management
- Propulsion/airframe integration

Kennedy Space Center

Pulse Detonation Engine Wave Cycle

- Potential of high specific impulse from a relatively simple mechanism
 - Attractive for the low speed accelerator in a combined cycle
- NASA has studied the feasibility of using PDEs in hybrid-cycle and combined-cycle launch systems.

Kennedy Space Center

5/20/2004

Conclusions

- **NASA has established very challenging goals for reducing launch costs**
 - Innovative research programs are in place to help reach these goals.
- **Airbreathing concepts offer much promise for lowering launch costs.**
- **Significant progress has been made in theoretical and experimental studies.**

Kennedy Space Center

5/20/2004