Paradigmas de Computação Paralela Relatório de Desenvolvimento

24 de Novembro de 2019

Conteúdo

	0.1	Introdução	2
	0.2	Descrição do Problema	2
		0.2.1 Representação em formato COO	2
		0.2.2 Algoritmo Sequencial	3
	0.3	Implementação do algoritmo paralelo	3
	0.4	Demonstração e Análise de Resultados	4
		0.4.1 Apresentação de Resultados	4
		0.4.2 Análise de Resultados	4
	0.5	Conclusão	5
	0.6	Autores	5
1	Ane	exos	6

0.1 Introdução

Este trabalho, realizado no âmbito da Unidade Curricular de Paradigmas da Computação Paralela, tem como principal objetivo avaliar a aprendizagem do paradigma de programação baseado em memória partilhada (OpenMP).

O algoritmo a ser estudado em concreto é o da multiplicação de matrizes esparsas por vetores, matrizes essas que se diferem das restantes pelo facto de possuírem uma grande quantidade de elementos cujo valor é nulo. Estas matrizes possuem aplicações em várias áreas como a Física (por exemplo, o método das malhas para resolução de circuitos elétricos) e a Engenharia (por exemplo, em Machine Learning).

Nas multiplicações, os valores do vetor são multiplicados por valores da linha da matriz e o resultado da soma dessas multiplicações é colocado numa posição de um vetor resultado. Isto faz com que haja inúmeras repetições do mesmo cálculo, sendo portanto útil a utilização da paralelização.

0.2 Descrição do Problema

0.2.1 Representação em formato COO

O caso de estudo, em particular, tem como base matrizes quadradas $(N \times N)$ e, como referido anteriormente, matrizes esparsas são caracterizadas pela grande quantidade de valores nulos que possuem, tendo surgido várias alternativas para a sua representação, sendo uma delas o Formato COO (Coordinate List Format), a qual será também aqui usada.

Figura 1: Representação em COO de matriz esparsa

Neste tipo de representação são utilizados 3 vetores: val, col e row, em que para cada posição i, o elemento value[i] corresponde ao elemento da posição (row[i], column[i]), sendo descartados os elementos cujo valor é nulo. Ao invés de 3 vetores, o grupo optou pela utilização de uma matriz 3 x tam (sparsa), em que tam representa o número de elementos diferentes de zero na matriz original e 3 porque são três linhas na representação em COO, determinadas pela matriz original: na posição 0 é a linha, na posição 1 a coluna e na posição 2 os valores diferentes de zero dessa linha e coluna.

0.2.2 Algoritmo Sequencial

Assim, após todas as modificações efetuadas o algoritmo para a multiplicação é a seguinte:

```
for (unsigned i = 0; i < t; i++){
    resultado[sparsa[0][i]] += x[sparsa[1][i]] * sparsa[2][i]; //Hotspot
}</pre>
```

Da análise deste algoritmo pode verificar-se que apesar de fazer o que é pretendido, existem certos aspetos que se devem ter em atenção aquando da paralelização do mesmo.

Primeiramente, num ambiente de memória partilhada, caso não haja nenhum tipo de sincronização, como é o caso, várias threads podem tentar aceder, simultanemanete, à mesma posição de memória sendo pelo menos um dos acessos para escrita, fenómeno designado por **Data Race**. Este fenómeno leva a que hajam possíveis erros de computação no resultado final, já que a ordem de acesso à memória é não-determinística, levando a uma degradação da performance.

Para além disso, o processador ao requerer acesso a uma posição de memória irá copiar um bloco inteiro para a cache, com o propósito de tirar partido da localidade espacial nos acessos, reduzindo assim o número de vezes que é necessário ir buscar dados à memória. Em problemas resolvidos com recurso a paralelismo podemos ter duas threads a tentar escrever em valores que se encontram na mesma linha de cache invalidando toda a linha de cache, obrigando uma das threads a pedir novamente os dados à memória, fenómeno que é conhecido como **False Sharing**.

0.3 Implementação do algoritmo paralelo

Após a identificação do **hotspot**, foi feita uma primeira tentativa de paralelização do algoritmo, tendo em conta as adversidades referidas anteriormente. Para isso foi utilizada a diretiva *critical* do OpenMP que atribui um lock específico a cada thread, fazendo com que apenas uma thread efetue o código identificado pelo hotspot. Apesar de resolver os problemas, esta solução leva a uma degradação da performance, no sentido em que se torna ainda mais lento que a versão sequencial, devido à serealização que é feita bem como ao overhead inicial na criação das threads.

Para resolver este problema, criou-se um array auxiliar para armazenar os resultados de cada thread, o que irá possibilitar a escrita sem desordem dos seus cálculos.

Depois de efetuado o trabalho de cada uma, é feita a redução dos vários arrays auxiliares no array resultado final. É usada a diretiva **atomic** para resolver a concorrência entre os acessos pois a mesma permite que apenas uma thread de cada vez adicione os seus resultados dos cálculos no array resultado. A utilização desta, ao invés da **critical** deve-se ao facto da primeira utilizar recursos do hardware para ser mais eficiente.

0.4 Demonstração e Análise de Resultados

Após o desenvolvimento da solução para o problema, foram efetuados vários testes para perceber melhor o comportamento do algoritmo, em termos de melhoria de performance em relação à versão sequencial. Foram efetuados testes em várias máquinas , porém os resultados apresentados são do nodo 662, com 24 cores, 48 com Hyperthreading, devido ao facto de ser o único que apresenta frequência fixa, levando a resultados mais viáveis.

0.4.1 Apresentação de Resultados

Figura 2: Ganho para diferentes tamanhos de matriz

Para a realização dos testes levou-se em consideração alguns aspetos:

- A Cache foi limpa entre cada multiplicação.
- A dispersão da matriz é de aproximadamente 60%
- Para cada tamanho da matriz e cada thread foram realizados 10 testes, sendo o resultado usado a mediana dos mesmos.
- O tempo utilizado foi em mili segundos.

0.4.2 Análise de Resultados

Para começar tem que se ter em conta que existem certos aspetos que dificultam a escalabilidade deste algoritmo, independentemente do tamanho do input. Primeiramente, existe o overhead associado à criação de threads, sendo este mais notável em inputs pequenos. Para além disso, apesar de a diretiva atomic ser mais eficiente que a critical, a serealização continua a existir, o que degrada a performance. Por fim, também a sincronização das threads no final da zona paralela tem o seu impacto na performance do programa.

Matriz com tamanho 512 e 1024

Para os tamanhos 512 e 1024 podemos observar pelo gráfico que não é possível obter um ganho significativo, embora se note uma ligeira melhoria no mesmo de uma matriz com tamanho 512 para 1024. À medida que se aumenta o número de cores existe perda da performance. Isto acontece devido ao overhead que o array auxiliar provoca, assim como a respetiva redução dos vários arrays no array resultado.

Matriz com tamanho 4096

Para tamanho 4096 da matriz verificou-se melhorias nos tempos de execução até aos 20 cores. Apesar do ganho obtido, este não é proporcional ao número de cores o que se traduz na degradação da performance em cache e respetiva redução final no array resultado.

Matriz com tamanho 8192

A matriz de tamanho 8192 apresenta uma curva de ganho semelhante a 4096 em termos de formato na qual até 16 cores existem melhorias nos tempos obtidos. A melhoria em relação a 4096 é mínima e tal deve-se a uma melhor utilização do array auxiliar a cada thread que compensa o overhead que este cria pois possui muitos mais dados para analisar. A partir dos 16 cores, como são precisos grande quantidade dados da memória, observa-se uma perda da performance.

Matriz com tamanho 16384 e 32000

Tanto matrizes de tamanho 16384 como 32000 possuem um comportamento parecido. Observa-se um ganho máximo de 11.1 e 14.9 para 20 cores e 16 cores respetivamente. Verifica-se também que a partir desse número de cores a performance sofre degradação com o aumento dos mesmos. Concluímos que o elevado número de acessos à memória faz com que se atinja o máximo de performance nesses cores. No entanto, especula-se que a partir desse ponto, os cálculos estão dependentes de idas à memória, o que afeta a performance resultante.

0.5 Conclusão

Com a realização deste trabalho aprofundamos os nossos conhecimentos sobre computação paralela em memória partilhada recorrendo à ferramenta *OpenMP*.

O grupo verificou o trabalho implicado na produção de um algoritmo paralelo assim como os fatores a ter em conta para a não escalabilidade do mesmo, como é o caso. Concluimos que apesar de ser possível identificar alguns dos fatores, existem outros de difícil explicação e que podem ser de uma grande variedade de causas. Em suma, ficámos satisfeitos com o conhecimento e experiência adquiridos nesta área, que sem dúvida irão ser úteis em trabalhos futuros.

0.6 Autores

- Adriana Meireles a82582
- Shazhod Yusupov a82617

Capítulo 1

Anexos

N	Medições/NºThreads	Sequential:	2	4	8	16	20	24	48
	1	0,671	0,536	0,39	0,39	0,6	0,691	0.807	45,717
	2	0,666	0,563	0,398	0,407	0,61	0,728	0,821	47,039
	3	0,704	0,528	0,411	0,39	0,608	0,694	0,811	41,723
	4	0,666	0,532	0,398	0,436	0,599	0,7	0,808	49,794
512	5	0,7	0,532	0,41	0,409	1,087	0,7	0,817	46,343
	6	0,672	0,542	0,43	0,446	0,61	0,717	0,816	32,68
	7	0,702	0,539	0,382	0,407	0,598	0,707	0,8	44,858
	8	0,671	0,527	0,394	0,409	0,578	0,731	0,805	44,847
	9	0,67	0,537	0,396	0,406	0,605	0,728	0,8	41,348
	10	0,671	0,548	0,381	0,369	0,593	0,704	0,815	46,78
	Mediana	0,671	0,5365	0,398	0,408	0,6065	0,712	0,811	45,2875
	Ganho	1	1,25	1,69	1,649	1.113	0.951	0.827	0.015

N	Medições/NºThreads	Sequential:	2	4	8	16	20	24	48
	1	2,6513	1,56959	0,968203	0,764472	0,910174	0,996009	1,2261	43,8523
	2	2,8084	1,55636	0,936337	0,721335	0,91461	0,993448	1,10996	44,274
	3	2,6485	1,56449	0,949726	0,702588	0,887808	1,04682	1,15537	45,5682
	4	2,6503	1,56551	0,890147	0,721284	0,882784	0,995638	1,19774	48,2324
1024	5	2,6657	1,5636	0,979527	0,810804	0,892864	1,02206	1,17437	47,0752
	6	2,6573	1,57131	0,938876	0,717587	0,936189	0,964447	1,18139	48,3821
	7	2,807	1,56148	0,918778	0,726393	0,900873	1,00277	1,18715	49,1023
	8	2,6551	1,56802	0,918252	0,751448	0,916981	1,0237	1,20253	43,283
	9	2,7485	1,57066	0,915131	0,70652	0,886177	1,01047	1,20094	42,6103
	10	2,6589	1,54552	0,974035	0,699004	0,917047	0,985109	1,19204	49,4376
	Mediana	2,6573	1,566765	0,9376065	0,723864	0,9055235	1,00662	1,192445	46,3217
	Ganho	1	1,698	2,835	3,685	2,935	2,66	2,234 0).,057

N	Medições/NºThreads	Sequential:	2	4	8	16	20	24	48
	1	42,4606	21,5024	10,9754	5,9989	5,74925	5,48729	7,48019	47,6137
	2	42,4629	21,5709	10,9308	5,86119	5,64862	5,56224	7,31929	43,1847
	3	44,6209	21,4874	11,0116	5,88829	5,83372	5,52449	7,39129	44,1
	4	42,6577	21,4972	10,9757	5,85873	5,73918	5,62179	7,60269	45,7461
4096	5	42,5303	21,6347	10,9995	5,8486	5,99296	5,55034	6,5914	49,8313
	6	44,6849	21,5525	10,9518	5,83868	5,94646	5,55647	7,48248	49,2071
	7	42,5199	21,4182	10,9631	5,81746	5,81253	5,66483	7,31435	41,8855
	8	42,3672	21,6069	11,0511	5,85037	5,72775	5,55492	6,06806	45,4041
	9	42,4251	21,5156	11,0237	5,79345	5,72511	5,54837	7,38582	42,6462
	10	42,566	21,3975	10,9739	5,88026	5,91803	5,48483	7,43573	7,12606
	Mediana	42,5199	21,509	10,97555	5,85455	5,78089	5,555695	7,388555	45,5751
	Ganho	1	1,977	3,875	7,264	7,356	7,659	5,756	0,95

N	Medições/#Threads	Sequencial	2	4	8	16	20	24	48
8192	1	127,90	90,66	46,47	23,74	15,41	15,35	21,67	43,24
	2	130,06	89,33	44,35	27,24	14,45	15,47	20,88	45,19
	3	127,82	85,53	46,02	24,94	14,67	15,81	21,69	51,06
	4	127,82	86,68	48,24	24,92	16,72	16,03	22,16	47,09
	5	127,82	89,47	48,41	23,34	14,89	15,22	21,44	52,67
	6	127,82	85,55	44,24	22,91	14,95	15,22	21,26	45,65
	7	127,82	91,18	44,46	27	15,95	15,22	21,63	43,72
	8	127,82	90,37	43,63	23,74	14,54	15,22	21,5	45,42
	9	127,82	86,77	48,26	23,17	14,71	15,22	21,16	41,57
	10	127,82	90,43				15,22	21,38	47,42
	Mediana	127,82	89,85	45,24	24,33	14,92	15,2218	21,44	45,42
	Ganho		1,43	2,83	5,26	8,57	8,22	5,96	2,76

N	Medições/#Threads	Sequencial	2	4	8	16	20	24	48
16384	1	679,37	345,23	174,1	89,72	49,64	49,67	69,75	108,15
	2	714,6	342,95	174,48	88,24	50,55	48,35	71,2	111,6
	3	680,29	345,6	171,94	87,67	49,58	48,7	73,83	102,92
	4	521,36	343,88	171,91	91,44	50,81	47,79	68,56	108,47
	5	510,14	344,72	173,95	90,88	47,43	48,68	50,52	107,52
	6	536,65	345,05	171,4	89,19	50,1	48,29	67,14	111,29
	7	515,29	343,18	168,84	89,52	49,30	47,9	72,25	108,95
	8	554,34	340,89	174,91	87,13	50,11	48,18	71,46	105,43
	9	521,68	342,97	171,61	86,36	49,88	48,15	71,99	102,59
	10	536,13	344,75	173,12	90,92	47,33	48,70	67,53	111,07
	Mediana	536,39	344,3	172,53	89,355	50,1	48,29	71,2	108,47
	Ganho		1,56	3,09	6	10,78	11,1	7,6	4,95

N	Medições/#T	hreads	Sequencial	2	4	8	16	20	24	48
32000	1		2597,69	1316,43	653,24	328,06	179,8	140,97	185	282,14
	2		2596,2	1290,71	650,49	327,46	175,04	177,83	205,22	302,47
	3		2598,57	1293,16	646,83	327,18	173,84	175,19	187,41	304,36
	4		2593,93	1289,54	654,87	325,27	173,28	190,26	264,19	307,5
	5		2594,1	1291,59	648,28	325,42	172,98	177,07	244,07	292,52
	6		2725,05	1299,46	654,62	329,01	176,06	174,5	254,5	272,29
	7		2724,87	1291,33	645,95	325,15	182,39	176,28	263,58	304,43
	8		2596,16	1289,92	646,88	325,49	172,56	181,58	243,39	305,87
	9		2596,9	1303,75	652,83	325,44	174,62	181,031	260,48	297,15
	10		2594,45	1300,81	651,08	326,51	174,38	182,3	204,28	295,52
	Mediana		2596,18	1291,59	650,49	325,49	174,62	177,45	244,07	302,47
	Ganho			2	3,99	7,97	14,9	14,5	10,65	8,68