

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1166_Nov19

Page 2 of 6

DASY system configuration, as far as not given on page 1.

DASY5	V52.10.3
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2600 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	2.01 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1166_Nov19

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.9 Ω - 7.8 jΩ	
Return Loss	- 21.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.148 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D2600V2-1166_Nov19

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 08.11.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1166

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.7 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.43 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.2%

Maximum value of SAR (measured) = 23.8 W/kg

0 dB = 23.8 W/kg = 13.77 dBW/kg

Certificate No: D2600V2-1166_Nov19

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1166_Nov19

D5GHzV2 Sn:1079 (1/4)

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Red 1588-2013, IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Abergion Rate (SARI) in the Human Head from Wireless
Communications Devices: Mearpine Rate (SARI) in the Human Head from Wireless
Communications Devices: Mearpine Procedure for Interpretation of Specific absorption rate of human
exposure to radio frequency fields from hand-heid and body-mounted wireless
communication devices - Part 1: Device used next to the ear (Frequency range of 30MHz to
6GHz/, July 2016

) IEE 06209-2, "Procedure to measure the Specific Absorption Rate (SARI) For wireless
communication devices used in close proximity to the human body (frequency range of
30MHz to 6GHz/, "March 2016)
d) KDB805664, SAR Measurement Requirements for 100 MHz to 6 GHz.

- Methods Applied and Interpretation of Parameters:

 Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

 Antenna Parameters with 75L: The dipole is mounted with the space of the policies of the policy decorate marking of the flat phentom section, with the arms oriented parallel to the body axis.

 Food Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SAM connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.

 Electrical Celley: One-way delive between the SAM connector and the antenna feed point.

 SAR measured: SAR measured at the stated antenna input power.

 SAR nonamitized. SAR as measured, normalized to an input power of 1 W at the antenna connector.

 SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the

- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor ke2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97133

Page 2 of 16

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

	Temperature	Permittivity.	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 m/so/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.62 mho/m ± 6.9
Head TSL temperature change during test	41.0°C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.77 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	77.6 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.24 mW/g
SAR for naminal Head TSL parameters	normalized to 1W	22.3 mW/g ± 24.2 % (k=2)

Certificate No. Z17-97133 Page 3 of 16

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ±8%	4.67 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	****	_

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	81.3 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ¹ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.32 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.2 mW/g ± 24.2 % (k=2)

Head TSL parameters at 5500 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mholm
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.93 mnoim ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	82.5 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm² (10 gi of Head TSL	Condition	
SAR measured	100 mW input power	2.37 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.8 mW/g ± 24.2 % (k+2)

Certificate No: Z17-97133 Page 4 of 16

D5GHzV2 Sn:1079 (2/4)

Add: No. 51 Kuryuan Road, Haidian District, Bejing, 100191, Chin Tel: 486-10-62304431-2079 Fax: 486-10-62304633-2504 E-mail: artifolologist ran

Head TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.98 mhp/m ± 6.5
Head TSL temperature change during test	<1.0 °C	7944	-

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	81.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.34 mW/g
SAR for nominal Head TSL parameters	normalized to TW	23.4 mW/g ± 24.2 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	5.16 mho/m ± 6.5
Head TSL temperature change during test	<1.0 °C	1964	120

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.85 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	78.7 mW/g ± 24.4 % (k+2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.25 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.6 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 5 of 16

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mhg/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.5 ±6%	5.38 mho/m ± 5 %
Body TSL temperature change during test	<1.0 °C	-	

SAR result with Body TSL at 5200 MHz

Condition	
100 mW input power	7.52 mW / g
normalized to 5W	75.4 mW /g ± 24.4 % (k=2)
Condition	
100 mW input power	2.12 mW/g
normalized to 1W	21.3 mW/g ± 24.2 % (k=2)
	100 mW input power normalized to 1W Condition 100 mW input power

Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mhoim
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.2 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		_

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ⁻¹ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.68 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	76.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.18 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.9 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 6 of 16

Add: No.51 Xueyuan Road, Haidian District, Beijeng, 180191. China Tel: +86-10-62204633-2079 Fax: +86-10-62204633-2504

Body TSL parameters at 5500 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mhalm
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.72 mha/m ± 6 N
Body TSL temperature change during test	<1.0 *0	1994	-

SAR result with Body TSL at 5500 MHz

SAR for nominal Body TSL parameters	normalized to 1W	23.6 mW/g ± 24.2 % (k=2)
SAR measured	100 mW input power	2.35 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR for nominal Body TSL parameters	normalized to TW	82.4 mW/g ± 24.4 % (k=2)
SAR measured	100 mW input power	8 22 mW / g
SAR averaged over 1 cm² (1 g) of Body TSL.	Condition	

Body TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.73 mha/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	100

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	80.7 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ⁻¹ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.30 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	23.0 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 7 of 16

Tel: +86-10-62308633-2079 Fac: +86-10-62308633-2504 E-mail: cttl@chinatti.com http://www.chinatti.cn

Body TSL parameters at 5800 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.94 mhaim ± 6 %
Body TSL temperature change during test	<1.0 °C	Casas C	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.73 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.5 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.17 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 8 of 16

D5GHzV2 Sn:1079 (3/4)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.6Ω - 8.77 ₃ Ω	
Return Loss	- 20.7dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	45.5Ω - 6.82 ₁ Ω
Return Loss	- 21.4dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.70 - 7.14(0
Return Loss	- 23 0dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	95.2D - 4.00jQ
Return Loss	- 24.1dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.2Ω - 8.20jΩ
Return Loss	-21,6dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.8Ω - 10.1 ₃ Ω
Return Loss	- 20.0dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.5Ω - 8.58jΩ	
Return Loss	- 21.1dB	

Certificate No: Z17-97133

Page 9 of 16

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.9Ω - 6.85jΩ	
Return Loss	- 21.9dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.6 Q - 2.28 Q	
Return Loss	- 23.7dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.7 Q - 8.10jQ	
Return Loss	- 20.2d8	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.313 rs

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirgid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circulated for DC-signals, Oct of the dipoles, man lend crops are added to the dipole sims in order to improve matching when loaded according to the position as explained in the "Neasurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is self according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

The Control of the Co	
Manufactured by	SPEAG

| The -96-19-03/461-3-79; | Past -96-10-93/1908-3-708 | Pa

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.81 V/m; Power Drift = .0.01 dB Peak SAR (extrapolated) = 30.8 V/kg SAR(1 g) = 7.27 V/Mg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration IPIn=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1,4mm (8x8x7)Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1,4mm Reference Value = 65.19 Vim; Power Drift = 0.05 dB Peak SAR (oxtrapolated) = 33.7 W/kg Peak SAR (oxtrapolated) = 33.7 W/kg SAR(1 g) = 2.32 W/kg Maximum value of SAR (measured) = 18.3 W/kg

Certificate No: Z17-97133

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz//Zoom Scan, dist=1.4mm (8x8x)/Dcube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.80 V/m, Power Drift = 0.02 dB Peak SAR (extrapolated) = 34.3 WMg SAR(1 g) = 8.24 WMg; SAR(10) = 2.37 WMg Maximum value of SAR (measured) = 19.6 WMg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1,4mm (8x8x)/Gube 0: Measurement grid: dx=4mm, dy=4mm, dz=1,4mm Reference Value = 51.89 V/m. Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.57 W/kg
Peak SAR (extrapolated) = 3.57 W/kg
Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm dist=1.4mm (8x8x7)/Cube 0: Measurement gnd: dx= Reference Value = 53.56 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.0 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: Z17-97133

D5GHzV2 Sn:1079 (4/4) TTI S D e a g TTI S P e a g DASYS Validation Report for Body TSL Test Laboratory. CTTL, Bejing, China DUT. Dipole 50Hz, Type: DSGHzV2; Serial: DSGHzV2 - SN: 1079 Communication System: CW, Frequency. 5200 MHz, Frequency. 5300 MHz, Frequency. 5500 MHz, Frequency. 5500 MHz, Frequency. 5800 MHz, Addium parameters used: 1 = 5200 MHz, σ = 5,82ε mho/m; cr = 49.47; ρ = 1000 kg/m3, Medium parameters used: 1 = 5500 MHz, σ = 5,72ε mho/m; cr = 49.21; ρ = 1000 kg/m3, Medium parameters used: 1 = 5500 MHz, σ = 5,72ε mho/m; cr = 49.21; ρ = 1000 kg/m3, Medium parameters used: 1 = 5500 MHz; σ = 5,732 mho/m; cr = 48.93; ρ = 1000 kg/m3, Medium parameters used: 1 = 5500 MHz; σ = 5,732 mho/m; cr = 48.93; ρ = 1000 kg/m3, Medium parameters used: 1 = 5500 MHz; σ = 5,935 mho/m; cr = 48.93; ρ = 1000 kg/m3, Medium parameters used: 1 = 5800 MHz; σ = 5,935 mho/m; cr = 48.99; ρ = 1000 kg/m3, Medium parameters used: 1 = 5800 MHz; σ = 5,935 mho/m; cr = 48.99; ρ = 1000 kg/m3, Medium parameters used: 1 = 5800 MHz; σ = 5,935 mho/m; cr = 48.99; ρ = 1000 kg/m3, Medium parameters used: 1 = 5800 MHz; σ = 5,935 mho/m; cr = 48.94; β = 100 kg/m3, Parameters used: 1 = 5800 MHz; σ = 5,935 mho/m; cr = 48.94; β = 100 kg/m3, Parameters used: 1 = 5800 MHz; σ = 5,935 mho/m; cr = 48.94; β = 100 kg/m3, Parameters used: 1 = 5800 kg/m3, Parameter Impedance Measurement Plot for Head TSL 1 1.7000000 042 47.797 0 -5.7884 0 1.4604 07 1 1.1000000 044 45.547 0 -5.804 0 4.4003 07 1 1.1000000 045 07.784 0 -7.1336 0 47015 07 4 1.600000 045 15.177 0 47.8376 0 7.1881 0 5 1.800000 045 17.210 0 4.244 0 7.1881 0 Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1,4mm (8x8x7)Cube 0: Measurement grd: dx×4mm, dy=4mm, dz=1.4mm Reference Value = 55.18 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.0 W/kg Pask SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 7.28 W/kg; SAR(1 g) = 2.12 W/kg Maximum value of SAR (measured) = 18.2 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 53.94 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(19) = 7.68 W/kg; SAR(10) g] = 2.18 W/kg Maximum value of SAR (measured) = 18.3 W/kg Certificate No. Z17-97133 Page 13 of 16 TTI S D e a g TTI S p e a g 57 Xuryuan Bond, Haishun Dinerice, Beijing, 100191, China 10-62304633-2079 Fax: +86-10-62304633-2508 1506chinari con htm (horse chinari) co Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.70 V/m, Power Drift = -0.03 dB Impedance Measurement Plot for Body TSL Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.8 W/kg 40.00 1 1.200000 GHz -20.018 GH 40.00 2 3.300000 GHz -11.122 GH 2 5.1000000 GHz -11.111 GH 15.00 3 1.6000000 GHz -10.014 GH 15.00 3 1.6000000 GHz -10.714 GHz Dipole Calibration /Pin+100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x)/Cube 0: Measurement prid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.75 Vm; Power Drift = 0.01 dB Peak SAR (extrapolated) = 34.2 Wk/g SAR(1 g) = 8.0 Wk/g; SAR(10 g) = 2.3 Wk/g Maximum value of SAR (measured) = 19.3 Wk/g Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.20 Vim, Power Drift = 0.05 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(19 = 7.3 W/kg; SAR(19) = 7.3 W/kg -6.53 -13.06 -19.60 -26.13 0 dB = 18.3 W/kg = 12.62 dBW/kg Certificate No: Z17-97133 Certificate No: Z17-97133

-----End of the test report------