Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

14.1.2018

13. Vorlesung

- Orthogonale Vektoren
- Orthogonalraum (Orthogonales Komplement)
- Orthogonalbasis, Orthonormalbasis
- Orthogonale Projektion

		1.84		ges:	Ele	ichnig	eine	r g	erade	n,	die	di	mch	die	2	Punk.	te_	P	ľí=1,.	-,5)	
P,	₹,						-		$\overline{}$	1								P;=	(3:)	Ji)	
	10 2	X-84					= m75	+ n												017	
		4 \	1	-GC	löse	n:															
)ntervelo	Paradina.	Pi	Vektav	en	y =	mx;t	η (i=1.	, \$											
,	T	W.) a	us V		L=V	1				_										
	^ -			_			,	0													
	ges:	best	mig lic	che	Mahe	m f S	.WSv	Ĭ_													
		106	risal		Assu	03.10	41.	1.	2 /	. 60	D	(.		-\							
	luch	658	1000	- la	AYPY	on (ma	Olara)	Over	Tunk		P'i		/	,5)							
0	uwan	ene	- brieve	nove	mit	ver	6 Leian	ing	Ŏ	=m-	かせr	, VA	tidos	ทาลไ	ρ						_
	Absta	ande	miss	iln in	Sgesa	mt K	leinsta	rögli	ih se	in.	4	-	Voiol	c tris	_						
								Ľ				ľ	ીવ								
		1 1																			

Winkelmessung

Sei V ein euklidischer \mathbb{R} -Vektorraum mit dem Skalarprodukt •.

• Seien $u, v \in \{0_V\}$.

Das eindeutig bestimmte $\alpha \in [0, \pi]$ mit

$$\cos(\alpha) = \frac{u \bullet v}{||u|| \cdot ||v||}$$

heißt Winkel zwischen u und v.

• Seien $u, v \in V$.

Die Vektoren u und v heißen zueinander orthogonal, wenn

$$u \bullet v = 0$$
 gilt;

Bezeichnung: $u \perp v$

• Seien $u, v \in V$. Dann gilt:

$$u \perp v \iff ||u + v||^2 = ||u||^2 + ||v||^2$$

Ulrike Baumann

Lineare Algebra

Orthogonalraum (Orthogonales Komplement)

• Sei U ein Untervektorraum des euklidischen \mathbb{R} -Vektorraums V.

Die Menge aller Vektoren aus V, die orthogonal zu jedem Vektor $u \in U$ sind, heißt Orthogonalraum (orthogonales Komplement) U^{\perp} von U in V.

- U^{\perp} ist ein Untervektorraum von V.
- $v \in \text{Span}(\{v_1, \dots, v_k\})^{\perp}$ gilt genau dann, wenn v orthogonal zu v_1, \dots, v_k ist.
- Es sei $A \in \mathbb{R}^{m \times n}$. Dann gilt:

$$Row(A)^{\perp} = Ker(A)$$
 und $Col(A)^{\perp} = Ker(A^{T})$

U N U = { 0, 1, dam, Sei VEUNU => VEUN VEUT > V0V=0 => V=0,, Ben din V = din U + din U ur U= Span (& U., Ur) U'= Span (& U3)) geg durch eine Besis. Berechiung von Ut

Orthogonalbasis

- Ist $\{v_1, \ldots, v_k\}$ eine Menge von k Vektoren aus dem \mathbb{R}^n mit $v_i \bullet v_j = 0$ für alle $i, j \in \{1, \ldots, k\}$ mit $i \neq j$, dann ist $\{v_1, \ldots, v_k\}$ linear unabhängig und somit eine Basis eines Untervektorraums von \mathbb{R}^n .
- Eine Basis (b_1, \ldots, b_k) eines Untervektorraums W von \mathbb{R}^n wird eine Orthogonalbasis von W genannt, wenn

$$b_i \bullet b_j = 0$$

für alle $i, j \in \{1, \dots, k\}$ mit $i \neq j$ gilt.

Orthonormalbasis

Von V

• Eine Orthogonalbasis (b_1, \ldots, b_k) eines Untervektorraums W von \mathbb{R}^n wird eine Orthonormalbasis von W genannt, wenn

$$||b_{i}|| = 1$$

für alle $i \in \{1, \dots, k\}$ gilt.

• Es sei $A \in \mathbb{R}^{m \times n}$.

Die Spaltenvektoren von A bilden eine Orthonormalbasis des Spaltenraums $\operatorname{Col}(A)$ von A genau dann, wenn

$$A^TA = E_n$$

gilt.

Orthogonale Projektion

• Es sei (b_1, \ldots, b_k) eine Orthogonalbasis für einen Untervektorraum W von \mathbb{R}^n und

$$v = r_1b_1 + \cdots + r_kb_k$$

mit $r_1, \ldots, r_k \in \mathbb{R}$. Dann gilt:

$$r_i = \frac{v \bullet b_i}{b_i \bullet b_i} \quad (i = 1, \dots, k)$$

• Es sei $v \in \mathbb{R}^n$. Weiter sei $u \in \mathbb{R}^n$ und

$$v = \hat{v} + w$$

mit $\hat{v} = ru$ für ein $r \in \mathbb{R}$ und $u \bullet w = 0$ und $U := \mathrm{Span}(\{u\})$.

Dann gilt:

$$\hat{v} = \operatorname{proj}_{U} v = \frac{v \bullet u}{u \bullet u} u$$

 \hat{v} wird orthogonale Projektion von v auf U genannt.