ENM 360: Introduction to Data-driven Modeling

Lecture #6: Statistical estimation

Correlation and linear dependence

The multivariate Gaussian

$$p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

Notation	$\mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})$
Parameters	$\mu \in \mathbf{R}^k$ — location
	$\Sigma \in \mathbb{R}^{k \times k}$ — covariance (positive semi-
	definite matrix)
Support	$x \in \mu + \operatorname{span}(\Sigma) \subseteq \mathbf{R}^k$
PDF	$\det(2\pi\mathbf{\Sigma})^{-\frac{1}{2}}e^{-\frac{1}{2}(\mathbf{x}-oldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})},$ exists only when $\mathbf{\Sigma}$ is positive-definite
Mean	μ
Mode	μ
Variance	Σ

Marginals and conditionals of a Gaussian

$$p(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{N}\left(\begin{bmatrix}\boldsymbol{\mu}_{x}\\\boldsymbol{\mu}_{y}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy}\\\boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy}\end{bmatrix}\right) \xrightarrow{7.5}_{5.0}$$

Marginal distribution

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx})$$

Conditional distribution
$$p(x \mid y) = \mathcal{N}(\mu_{x \mid y}, \Sigma_{x \mid y})$$
 $\mu_{x \mid y} = \mu_{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_{y})$ $\Sigma_{x \mid y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$.
$$\sum_{\substack{1.2 \\ 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ -1.5 \ -1.0 \ -0.5 \ 0.0 \ 0.5 \ 1.0 \ 1.5}^{p(\mathsf{x} \mid y = -1)}$$

These are unique properties that make the Gaussian distribution very simple and attractive to compute with! It is essentially our main building block for computing under uncertainty.

Maximum likelihood estimation

$$\theta_{\text{MLE}} = \arg \max_{\theta \in \Theta} p(\mathcal{D}|\theta)$$

Maximum Likelihood Estimation

Bayesian estimation

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

