

Autoencoders

Dr. Mongkol Ekpanyapong

- Auto = self
- Encode = convert into a different form

Autoencoder = a system that teaches itself how to encode information

It is a model that teaches itself how to encode information

Autoencoders

 An unsupervised learning technique that is used as a data representation

 The idea is to use CNN to act as data compression/data encoding by introducing a bottleneck layer

 We must have encoding layers and decoding layers

$$BCE = -\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{c} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$

Or MSE loss

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

CNN Autoencoder

Denoising

Fix Image Inpainting

Information Retrieval

Anomaly Detection

 Introduce a bottleneck layer to compress the data

Terminology

Convolution with stride >= 2 (downsampling)

- Transpose convolution (upsampling)
- Note that convolution and transposed convolution is not inverse operation.
- We use it to create the correct matrix dimension and back propagation to identify the value

Convolution/Transposed Convolution

 Please complete the previous example when the input of the transposed convolution is:

-1

Transpose Convolution Size

$$N_h = s_h (M_h - 1) + k - 2p$$

h is for height

M is input

N is output

k is kernel

$$N_h = s_h (M_h - 1) + k - 2p$$

$$N = 1(3-1) + 3-2 \times 0$$

The number of latent variables

 The number of latent variables (the number of output neurons/dimension) of the last encoder layer/the compressing layer (the dimensionality of the compressed representation)

matters. The more, the better:

Input image	2-D latent space	5-D latent space
721041499 721041499 7040427 70664727 713544 71356 71356 7137 7167 7167 7167	72/04/9989 0690159759 9665907901 3\36727\21 179255\299 6555609/95 7893996930 7027173297 162789736/ 3693\4\969	7210414969 0690159734 9665407401 3134727124 1744351244 635560443 7029173217 1627847361 3693141769

Training an Autoencoder

The label data is the same as training data

The loss function can be binary cross entropy or MSE

Autoencoder are lossy

See Jupiter Notebook

Deep Fake with AutoEncoder®

Donald Trump → Mr. Bean

Home Alone → Home Stallone

Training Phase

The **Decoder A** is only trained with faces of A; the **Decoder B** is only trained with faces of B. However, all latent faces are produced by the **same Encoder**.

Variation AutoEncoder vs. AutoEncoder Encoder

AutoEncoder

reconstructed input

$$loss = \|x - \hat{x}\|_2 = \|x - d_{\phi}(z)\|_2 = \|x - d_{\phi}(e_{ heta}(x))\|_2$$

input

Variational AutoEncoder

input

reconstruction loss
$$= \|x - \hat{x}\|_2 = \|x - d_{\phi}(z)\|_2 = \|x - d_{\phi}(\mu_x + \sigma_x \epsilon)\|_2$$
 input $\mu_x, \sigma_x = e_{\theta}(x), \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $similarity\ loss = KL\ Divergence = D_{KL}(\mathcal{N}(\mu_x, \sigma_x) \parallel \mathcal{N}(\mathbf{0}, \mathbf{I}))$

 $loss = reconstruction\ loss + similarity\ loss$

VAE

https://www.youtube.com/watch?v=sV2FOd GqIX0

Homework

Denoising Occluded Mnist
 Modify noisy data with this occlude function instead

```
import random
def occlude(array):
"""    Adds occlusion. """
    new_array = copy.deepcopy( array )
    print(new_array.shape)
    for k in range( len(new_array)):
        x = random.randint(0,25)
        new_array[k,x:x+2,:] = 1.0
return new_array
```


