Solomon Spires

Professor Clark and Professor Tueben

4/10/2025

**PHYS 265** 

## Lab 3 Report:

# Invariant Mass Analysis of the Z Boson Decay to Leptons

#### Introduction

The Z boson is a fundamental particle predicted by the Standard Model and it is responsible for mediating neutral current interactions in weak nuclear processes. Utilizing precise measurement of its mass and decay width plays a crucial role in testing and justifying the Standard Model. This lab focuses on reconstructing the Z boson invariant mass distribution using simulated leptonic decay events performing a fit using the Breit-Wigner resonance model, and analyzing uncertainty through a parameter scan.

## **The Invariant Mass Distribution & it Fits**

The invariant mass distribution was obtained by reconstructing the four-momentum of each lepton pair from simulated data. Using these momentum components, the invariant mass m of each lepton pair was calculated:

- 
$$m = \sqrt{[(E + E)^2 - |p + p|^2]}$$

A histogram of the invariant mass was plotted and fitted within the mass window of 87–93 GeV with a Breit-Wigner distribution defined as:

-  $D(m; mass , decay width) = [2500/\pi] \times [decay width/2] / [(m - mass)^2 + (decay width/2)^2$ The fitting was performed using weighted least-squares minimization and I yielded these results: Fitted mass of the Z is 91.2 GeV, Fitted uncertainty on the Z mass is 0.1 GeV, Chi-square ( $\chi^2$ ) is 33.2, Degrees of freedom (v) is 30, and the P-value: 0.



## **The 2D Parameter Scan**

To order to understand uncertainties and correlations between mass and width decay, a two-dimensional scan of the  $\Delta \chi^2$  parameter space around the best-fit parameters was conducted. The  $\Delta \chi^2$  is defined as:

-  $\Delta \chi^2(m, \Gamma) = \chi^2(m, \Gamma) - \chi^2$ 

Contours corresponding to  $\Delta \chi^2$  values of 2.30 (1 $\sigma$  confidence level) and 11.83 (3 $\sigma$  confidence level) were plotted. These contours represent the statistical uncertainty and parameter correlation while indicating the range of acceptable parameter values given the data and statistical uncertainties



## **Discussion and Future Work**

### Comparison to Particle Data Group Accepted Values

Our measured mass and width of the Z boson are very close to the accepted Particle Data Group (PDG) values:

- Accepted Particle Data Group Mass: 91.1876 ± 0.0021 GeV 2
- Accepted Particle Data Group Width: 2.4952 ± 0.0023 GeV

#### **Approximations and Limitations**

- Systematic uncertainties (detector calibration, background estimation, luminosity) were not included.
- Detector energy resolution and efficiency (specific to ATLAS detector characteristics) were not considered.
- Background events that might distort the distribution were not modeled

#### Recommendations for Future Work

- Incorporating systematic uncertainties into the fitting procedure.

- Simulating and correcting for detector resolution effects. 3 Including realistic background modeling and subtraction.
- These improvements will significantly enhance the robustness and realism of future analyses, providing more precise measurements consistent with current experimental standards

Sulus