1. Determine la convergencia de la serie $\sum_{k=1}^{+\infty} \frac{k^5 + 3620}{k^8 - 718}$

Solución: "Respuesta al problema"

2. Halle la suma de la serie $\sum_{k=1}^{\infty} \ln \left(1 - \frac{1}{(1+k)^2}\right)^2$

(Sugerencia: desarrolle la suma parcial S_n)

Solución: "Respuesta al problema"

- 3. Dada la serie $\sum_{k=1}^{\infty} \frac{2^{k-1}}{((k+1)!)^2}$
 - a) Demuestre que converge.
 - b) Demuestre que $2^k \le (k+1)!$, para todo k.
 - c) Use la parte (b) y compare con una serie geométrica para probar que si S es la suma de la serie dada, entonces $0 \le S \le \frac{1}{2}$.

Solución:

4. Dé una cota para el error cometido al calcular $\cos 31^0$ por medio del polinomio de Taylor de orden 6 con $a=\frac{\pi}{6}$.

Solución:

- 5. Considere $f(x) = \frac{x^2}{1-x}$
 - a) Halle el desarrollo en serie de MacLaurin de f(x)
 - b) Diga para que valores de x dicho desarrollo coincide con f(x).
 - c) Halle $f^{(175)}(0)$.

Solución:

6. Determine la convergencia de la serie $\sum_{k=1}^{\infty} \frac{k^3 - 2750}{k^7 + 3200}$

Solución:

7. Dé una cota para el error cometido al calcular $\sin 31^0$ por medio del polinomio de Taylor de orden 5 con $a=\frac{\pi}{6}$

Solución:

8.

- a) Pruebe que $k < e^k \forall k \in \mathbb{Z}^+$.
 - b) Pruebe que $\sum_{k=2}^{\infty} \frac{\cos(k\pi)}{2 \ln k}$ es convergente.

c) Use la parte a) para demostrar que la serie de la parte b) no es absolutamente convergente.

Solución:

- 9. Estudie la convergencia de las series
 - a) $\sum_{k=1}^{\infty} \ln\left(1 + \frac{1}{k}\right)^2$

(sugerencia: desarrolle la suma parcial S_n)

b)
$$\sum_{k=1}^{\infty} \left(\sqrt[k]{k-1} \right)^k$$

Solución:

10. Encuentre el conjunto de convergencia de la serie de potencias $\sum_{k=1}^{\infty} \frac{(3x+1)^k}{k2^k}$

Solución:

11. Halle el desarrollo en serie de MacLaurin de $\frac{1}{(1-x)}^2$ para calcular la suma de la serie $\sum_{k=1}^\infty \frac{k}{10^{k-1}}$

Solución: