

Variables aléatoires

Spécialité Maths

Définition

On considère une expérience aléatoire dont l'univers est un ensemble Ω . Une variable aléatoire X (réelle) sur Ω est une fonction de Ω dans \mathbb{R} .

L'ensemble des valeurs prises par X sur Ω se note $X(\Omega)$

Évènements

Soit une variable aléatoire X définie sur Ω et $a \in \mathbb{R}$.

1. l'évènement $\{X = a\}$ est 2. l'évènement $\{X \leq a\}$ est l'ensemble des éléments t l'ensemble des éléments t $\operatorname{de} \Omega \operatorname{tq} X(t) = a$ de Ω tq $X(t) \leqslant a$

On définit ainsi les évènements ... et leurs probabilités : ${X = a}, {X \le a}, {X < a}, {X > a}$ et ${X > a}$ P(X = A), $P(X \le a)$, P(X < a), $P(X \ge a)$ et P(X > a).

Partition de l'univers

Si $X(\Omega) = \{x_1, x_2, ..., x_k\}$ alors les évènements $\{X = x_1\}$, $\{X = x_2\}$, ..., $\{X = x_k\}$ forment une partition de Ω .

On a $P(X = x_1) + P(X = x_2) + ... + P(X = x_k) = 1$

Exemple

Lançons un dé équilibré à 6 faces. Si on a .. on gagne .. :

- 1, 2 ou $3 \Rightarrow -1$
- $5 \Rightarrow 1$

• $4 \Rightarrow 0$

• $6 \Rightarrow 2$

On associe donc un nombre (somme d'argent gagnée / perdue) à chaque évènement élémentaire de l'expérience.

Il y a 2 ensembles à distinguer :

- l'univers de l'expérience aléatoire $\Omega = \{1, 2, 3, 4, 5, 6\}$
- \bullet l'ensemble des gains associées $X(\Omega)=E=\{-1,0,1,2\}$

On définit ainsi une fonction de Ω dans E. À chaque élément de Ω , on associe UN nombre appartenant à E.

$$X(1) = X(2) = X(3) = -1 \ X(4) = 0 \ X(5) = 1 \ X(6) = 2$$

Loi de probabilité

Loi de probabilité de X = donnée des probabilités P(X =a) lorsque a prend toutes les valeurs possibles dans $X(\Omega)$

x_i	x_1	x_2	•••	x_k
$p(X=x_i)$	p_1	p_2		p_k

Espérance

$$E(X) = \sum_{i=1}^{k} P(X = x_i) x_i$$

= $x_1 \times p_1 + x_2 \times p_2 + \dots + x_k \times p_k$

= valeur moyenne de la var. aléatoire Un jeu où X compte le gain est :

- équitable si E(X) = 0
- favorable si E(X) > 0
- défavorable si E(X) < 0

Variance

$$V(X) = E((X - E(X))^{2})$$

= $\sum_{i=1}^{k} P(X = x_{i}) (x_{i} - E(X))^{2}$

moyenne des ² des écarts à la moy. mesure dispersion autour de la moy.

Somme X + Y et Produit $X \times Y$

Soit X; Y déf sur $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$.

On définit les variables aléatoires somme Z et produit P tq $\forall \omega_i \in \Omega$

$$Z(\omega_i) = X(\omega_i) + Y(\omega_i)$$

$$P(\omega_i) = X(\omega_i) \times Y(\omega_i)$$

Écart-type

$$\sigma(X) = \sqrt{V(X)}$$

Loi de probabilité de X + Y

$$P(X + Y = k) = \sum_{i+j=k} P((X = i) \cap (Y = j))$$

Si $\{X = i\}$ et $\{Y = j\}$ sont indépendants :

$$P(X+Y=k) = \sum_{i+j=k} P(X=i) \times (Y=j)$$

Moyenne d'un échantillon

Soit $E_n = (X_1, X_2, ..., X_n)$ un échantillon de taille n de variables aléatoires indépendantes suivant une même loi.

Posons $S_n = X_1 + X_2 + ... + X_n$. Soit M_n la variable aléatoire moyenne de E_n . On a $M_n = \frac{1}{n} \times S_n$

$$E(M_n) = E(X)$$
 $V(M_n) = \frac{1}{n}V(X)$ $\sigma(M_n) = \frac{\sigma(X)}{\sqrt{n}}$
 $E(S_n) = nE(X)$ $V(S_n) = nV(X)$ $\sigma(S_n) = \sqrt{n}\sigma(X)$

Inégalités

de Bienaymé-Tchebychev : $P(|X - E(X)| \ge \delta) \le \frac{V(X)}{\delta^2}$ de Concentration : $P(|M_n - E(X)| \ge \delta) \le \frac{V(X)}{n\delta^2}$

Formule de König-Huygens

On note X^2 la variable définie sur Ω par $X^2(t) = [X(t)]^2$ pour tout $t \in \Omega$. Alors, $V(X) = E(X^2) - E(X)^2$.

Espérance de $X \times Y$

Si X et Y sont independantes :

6.
$$E(X \times Y) = E(X) \times E(Y)$$

Loi des grands nombres

 $\forall \delta \in \mathbb{R}_{+}^{*}$, on a : $\lim_{n \to +\infty} P(|M_n - E(X)| \ge \delta) = 0$

Plus la taille de l'échantillon d'une variable aléatoire X est grande, + l'écart entre la moyenne de cet échantillon et l'espérance de X est faible

Combinaisons linéaires

Soit X définie sur Ω et $(a; b) \in \mathbb{R}$

$$1. E(aX + b) = aE(X) + b$$

2.
$$V(aX + b) = V(aX) = a^2V(X)$$

3.
$$\sigma(aX + b) = |a|\sigma(X)$$

4.
$$E(X + Y) = E(X) + E(Y)$$

5.
$$V(X + Y) = V(X) + V(Y)$$