Complex Analysis

Pranav Konda

February 2, 2021

Contents

1	January 19, 2021 (Tuesday)	2
	1.1 The Set of Complex Numbers	2
	1.2 Motivations: The Fundamental Theorem of Algebra	
	1.3 Complex Plane	
2	January 21, 2021 (Thursday)	3
	2.1 Exponential Form of Complex Numbers	3
	2.2 Roots of Complex Numbers	4
	2.3 Roots of Unity	4
	January 25, 2021 (Tuesday)	4
	3.1 Topology in $\mathbb C$	4
4	January 27, 2021 (Thursday)	5
	4.1 Functions and Mappings	5
	4.2 Multivalued functions	
5	February 2, 2021 (Tuesday)	6

* 1 January 19, 2021 (Tuesday)

* 1.1 The Set of Complex Numbers

We can define \mathbb{C} as follows:

$$\mathbb{C} = \{ z = ix + y | (x, y) \in \mathbb{R}^2 \}.$$

Note that $\mathbb C$ is a commutative field, under standard addition and multiplication. Formally, addition is defined as

Exercise 1.1. Verify that \mathbb{C} satisfies the definition of a commutative field.

* 1.2 Motivations: The Fundamental Theorem of Algebra

Theorem 1.2 (Fundamental Theorem of Algebra)

A polynomial $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, where $a_i \in \mathbb{C}$ for all i and $a_n \neq 0$, is a product of n linear factors; There exist $r_1, r_2, \ldots, r_n \in \mathbb{C}$ such that

$$p(z) = a_n \prod_{k=1}^n z - r_k.$$

This is a fundamental result, and it can finally be proved using complex-analytic techniques.

Corollary

If p(z) has all real coefficients, it factors into a product of linear and irreducible over \mathbb{R} quadratic factors.

As complex roots come in complex pairs, their product $(z \cdot \overline{z})$, we obtain a quadratic factor that is irreducible over \mathbb{R} .

* 1.3 Complex Plane

 \mathbb{C} is *not* an ordered set! For $w, z \in \mathbb{C}$, we cannot write z < w or w < z. Recall that addition in the complex plane follows the **parallelogram law**. This leads to the following:

Proposition 1.3 (Triangle Inequality in Complex Plane)

For any $w, z \in \mathbb{C}$, we have

$$|w+z| \le |w| + |z|.$$

Proof. We can construct a triangle using side lengths equal to the moduli, and the result follows.

Visually, we have the following:

We also have the following corollary:

For a polynomial $p(z) = \sum_{k=0}^{n} a_k z^k$, where $a_i \in \mathbb{C}$ for all i, and $a_n \neq 0$, there exists an $R \in \mathbb{R}$ such that

$$\left|\frac{1}{p(z)}\right| < \frac{2}{|a_n|R^n}$$

for all z, such that |z| > R.

Proof. Let

$$\omega = \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z}.$$

Then $\omega z^n = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} = p(z) - a_n z^n$.

Note that

$$|\omega||z|^n = |\omega z^n| \le |a_0| + |a_1||z| + \dots + |a_{n-1}||z|^{n-1}$$

implies that

$$|\omega| \le \frac{|a_0|}{|z|^n} + \frac{|a_1|}{|z|^{n-1}} + \dots + \frac{|a_{n-1}|}{|z|}.$$

There exists an $R \in \mathbb{R}$ such that

$$\max_{i=0,\dots,n-1} \left\{ \frac{|a_i|}{R^{n-i}} \right\} < \frac{|a_n|}{2n}.$$

This implies that $|\omega| < \frac{|a_n|}{2}$, for all z such that |z| > R. As $p(z) = (a_n + \omega)z^n$ for $z \neq 0$, we have

$$|p(z)| = |a_n + \omega||z|^n \ge ||a_n| - |\omega|||z|^n.$$

Then for all z such that |z| > R,

$$|p(z)| \ge \frac{a_n}{2} R^n,$$

as desired.

* 2 January 21, 2021 (Thursday)

*** 2.1** Exponential Form of Complex Numbers

We define the argument of a complex number z as the set of θ such that

$$\arg z = \{\theta + 2\pi n | n \in \mathbb{Z}\},\$$

where θ is the **principal argument** of z.

Recall the following:

Theorem 2.1 (Euler's Formula)

For any $z = x + iy = r(\cos \theta + i \sin \theta)$, we have $z = re^{i\theta}$ such that

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

Then all laws of exponents apply to operations with complex numbers.

We also have the following corollary:

Corollary

For any $z \in \mathbb{C}$, $\arg zw = \arg z + \arg w$.

It is better to understand this as for $\theta_1 \in \arg z$ and $\theta_2 \in \arg w$, $\theta_1 + \theta_2 \in \arg zw$.

From this it follows that $\arg z^n = n \arg z$ and that $\arg \frac{z}{w} = \arg z - \arg w$.

* 2.2 Roots of Complex Numbers

We gean derive a general form for the nth root of a complex number z:

Proposition 2.2

For all $z \in \mathbb{C}$, we have

$$z^{\frac{1}{n}} = \{c_k = \sqrt[n]{r_0}e^{i\varphi_k}|\varphi_k = \frac{\theta + 2\pi k}{n}, k = 0, \dots, n-1\}$$

If θ is the principal argument of z ($\theta \in (-\pi, \pi]$), then

$$c_0 = \sqrt[n]{r_0} e^{i\frac{\theta}{n}}$$

is called the **principal** nth root of z.

It is obvious that the other roots of z are obtained by rotating the principal root by a factor of $\frac{2\pi}{n}$ degrees (as this is analogous to multiplying the principal root by $e^{i\frac{2\pi}{n}}$ each time).

* 2.3 Roots of Unity

We can apply the above derivation to 1, as it is simply e^{0i} . As $\arg 1 = 2\pi k$ for some $k \in \mathbb{Z}$, the principal argument of 1 is 0. It follows quickly that r = 1. We then have n distinct roots of 1, being

$${c_k = e^{\frac{2\pi k}{n}i} | k = 0, ..., n-1}.$$

The above set $1^{\frac{1}{n}}$ has a group structure of \mathbb{Z}_n with respect to multiplication, as $c_k \cdot c_l = c_m$ for some k and l where $m = k + l \pmod{n}$.

Then the primitive *n*th root $\omega_n = e^{\frac{2\pi}{n}i}$ generates the group of *n*th roots of unity:

$$1^{\frac{1}{n}} = \{\omega_n^k | k = 0, \dots, n-1\}.$$

Geometrically these are important as they generate regular polygons when plotted in the complex plane.

3 January 25, 2021 (Tuesday)

* 3.1 Topology in \mathbb{C}

Analogous to \mathbb{R} , we can define the concept of a neighborhood in \mathbb{C} .

Definition 3.1: An ε -neighborhood $V_{\varepsilon}(z_0) \in \mathbb{C}$ is an open disk such that

$$V_{\varepsilon}(z_0) = \{z : |z - z_0| < \varepsilon\}.$$

The **deleted** ε -neighborhood $V_{\varepsilon}^{\circ}(z_0)$ of z_0 is a punctured disk such that $0 < |z - z_0| < \varepsilon$.

Again analogous to \mathbb{R} , we can define the major types of points and sets in \mathbb{C} . For a set $S \subseteq \mathbb{C}$ we say that

- $z_0 \in \mathbb{C}$ is an interior point of S if there exists an $\varepsilon \geq 0$ such that $V_{\varepsilon}(z_0)$ belongs to S.
- $z_0 \in \mathbb{C}$ is an **exterior point** of S if there exists $\varepsilon > 0$ such that $V_{\varepsilon}(z_0)$ of z_0 does not belong to S. item $z_0 \in \mathbb{C}$ is a **boundary point** of S if for all $\varepsilon > 0$, $V_{\varepsilon}(z_0)$ contains at least one point in S and one point in S^c .
- A set *S* is **closed** if it contains all its boundary points, and is **open** if it does not contain *any* of its boundary points.

- The closure of S is the union of S with the set of its boundary points.
- An open set S is **connected** if for any $w, z \in S$ there exists a **polynomial line** that starts at z and ends at w and belongs to S.
- A non-empty connected open subset of *S* is called a **domain**.
- A union of a domain with a subset of its boundary is called a region.
- A set S is **bounded** if it is contained inside a circle:

$$\exists z_0 \in \mathbb{C}, R \in \mathbb{R}$$
, such that $S \subset \{z : |z - z_0| < R\}$.

• A point $z_0 \in \mathbb{C}$ is called an **accumulation point** of a set S if for all $\varepsilon > 0$ $V_{\varepsilon}^{\circ}(z_0)$ contains at least 1 point of S.

We finish with the following proposition:

Proposition 3.2

A set S is closed if and only if S contains all of its accumulation points.

*** 4** January 27, 2021 (Thursday)

*** 4.1** Functions and Mappings

Definition 4.1: A function $f:S\subset\mathbb{C}\to\mathbb{C}$ is a mapping that assigns for each $z\in S$ a complex number w. We write w=f(z) and call S the domain of f.

Note that the domain of the function f need not be a domain in the sense of the topological definiton, that is it need not be a connected open subset of \mathbb{C} .

A complex function w = f(z) defines two bivariate functions on \mathbb{R} :

$$\Re w = u(x, y), \Im w = v(x, y).$$

The **image** of f is the set

$$\operatorname{Im} f = \{ w \in \mathbb{C} | \exists z \in S, w = f(z) \}.$$

This has many names, such as the **codomain** of f, or the **image** of S.

Definition 4.2: For $w \in \mathbb{C}$, the set

$${z \in S | f(z) = w} = f^{-1}(w)$$

is called the **preimage** of w.

The above is also known as the **inverse image** of w.

Similarly to \mathbb{R} , a function f is injective if $\forall w \in \operatorname{Im} f$, we have that $|\{f^{-1}(w)\}| = 1$.

*** 4.2 Multivalued functions**

Definition 4.3: A multivalued function $f: S \to \mathbb{C}$ is one that maps *more than one* value to a point $z \in S$.

By choose a single value from the set $\{f(z)\}$, we define a single value branch of f.

Example 4.4: Consider $f(z) = z^{\frac{1}{n}}$. This maps n values to each $z \neq 0 \in \mathbb{C}$.

Another function that should be obviously multivalued is the function $f(z)=\sqrt[n]{r}e^{i\pi\theta\over n}$.

Example 4.5: Consider the function $f(z) = z^2$. We may write this as follows: f(z) = w = u + iv, so we have

$$\begin{cases} u(x,y) = x^2 - y^2 \\ v(x,y) = 2xy \end{cases} \mathbb{R}^2 \to \mathbb{R}^2.$$

<++>

★ 5 February 2, 2021 (Tuesday)