

Z8IDA 芯片简介

Adional rechnologies confid

目 录

目 录		2
文档说明		3
权利申明		3
第一部分 系统概述		4
1 概述		4
1.1 系统组件		, 4
1.1.1 CPU 核		4
1.1.3 通信接口		5
2 系统特性		5
2.1 基本特性		5
2.1.1 CPU 特性		5
2.1.2 存储单元		5
2.1.3 GPIO 接口		6
2.1.4 工作模式及功耗		6
2.1.5 工作环境		7
2.2 安全特性		7
2.2.1 随机数发生器	, 0	7
2.2.2 安全检测	0.7	7
2.2.3 安全防护	. 07	8
2.3 芯片应用		8
第二部分 附录		9
附录 A 封装与管脚定义		9
附 X B 典 至 电 始 含		IU
附录 CIO 电气特性		11
4>		
. 0		
X		
Adioni		
/		

文档说明

权利申明

本文内容涉及国民技术股份有限公司商业秘密,未经书面许可,不得以任何形式披

Tation Lechnologies Conflident

第一部分 系统概述

1 概述

Z8IDA 芯片是基于 EEPROM 工艺的安全芯片,它内嵌一个安全 8 位 MCU 核 NZ8051-SC,支持 DES、AES、SHA、ECC、RSA 等国际标准算法,SM2、SM3、SM4 等国密算法,真随机数发生器 RNG,内嵌 32KB EEPROM、96KB ROM 和 8KB SRAM。 支持标准速率 I2C 从接口,实现的功能包括:

- ▶ 数据加解密;
- ▶ 身份验证应用;
- ➤ 密钥协商。

Z8IDA 的基本特性包括:

- ▶ 单周期 NZ8051-sc 核, 完全兼容 51 指令;
- ➤ 工作电压范围 2.7V~5.5V
- ➤ 96KB 程序 ROM, 32KB 程序与数据 EEPROM, 5KB 数据 RAM, 3KB 算 法专用 RAM, 256B IRAM;
- 高低电压检测、高低频率检测、高低温检测,可见光检测;
- 总线加密、存储区访问控制;
- ▶ 支持 I2C 从接口;
- ▶ 片内集成 OTP,每个芯片具备唯一 SN。

1.1 系统组件

1.1.1 CPU 核

Z8IDA 的 CPU 具有高性能、高安全、低功耗等特性,支持低功耗睡眠模式。

1.1.2 存储介质

Z8IDA 具有 SRAM、EEPROM、ROM 三种存储介质。系统支持多种 EEPROM 编 ontidential continues 程模式。

1.1.3 通信接口

Z8IDA I²C 从接口最高速率可达到 150Kbps (Demo 代码可以提供)。

2 系统特性

2.1 基本特性

2.1.1 CPU 特性

▶ 自行设计单周期 8051 核

指令集完全兼容 Intel 8051

每个机器周期1个系统时钟周期(而Intel8051每个机器周期12个系统时钟周期)

中断结构: 具有5个中断源,2个优先级

有位寻址功能

定时器: 2个16位可编程定时器/计数器

带看门狗定时电路

低功耗模式:支持睡眠模式

存储保护单元(MPU)

总线加密加扰

支持存储区安全访问控制

2.1.2 存储单元

ROM

容量 96KB

用于程序、函数库、常量数据的存储

➤ EEPROM

容量 32KB

页面大小 128B

数据保持时间 20年

重复擦写次数 50 万次

Page 擦除时间 1.0ms

Page 编程时间 2.0ms

用于程序、数据的存储

SRAM

总容量 5KB: 算法 SRAM 3KB, 通用 SRAM 5KB 用于程序变量存储

2.1.3 **GPIO**接口

- ▶ I2C 从接口
- ▶ 1 个独立 GPIO

2.1.4 工作模式及功耗

- ➤ 正常工作模式:供电电流 1.5mA
- ▶ 睡眠模式 (PD): 供电电流 50uA

PD 模式触发条件:

- 被动 PD 模式: 开启时钟停检测, 外部时钟低于 30K
- 主动 PD 模式: 设置 PCON = 0x02

PD 模式唤醒条件:

- 被动 PD 唤醒: 开启时钟停检测,外部时钟高于 30K
- 主动 PD 模式: SCD 模式的 startbit 唤醒

国民技术股份有限公司 Nations Technologies Inc.

ontidential

▶ 芯片启动时间(上电到初始化完毕): 7.6ms

2.1.5 工作环境

表 2-1 Z8IDA 工作环境表

符号	描述	最小值	最大值	典型值	条件
VCC	工作电压 (V)	2.7	5.5	3.3	X
Ι	工作电流(mA)	1	1	1.5	
I_{pd}	低功耗电流(uA)	1	1	50	
То	工作温度(℃)	-25	85		
TS	存储温度(℃)	-40	125		
Vesd	静电限值(kV)		±6		VCC、GND、SCL、RST、
(HBM)	III GIVE (RT)		10	. (SDA、GPIO0
Vesd(CDM)	静电限值(V)		±500		所有管脚
Ilu	Latch-up 电流值		±200		Vin>VCC
110	(mA)		±200	5	VIII/VCC

2.2 安全特性

2.2.1 随机数发生器

- ▶ 真随机数发生器
- ▶ 随机性满足经国家密码管理局审批的《随机性检测规范》要求

2.2.2 安全检测

- ▶ 高低电压安全检测
- > 高低频率安全检测
- ▶ 温度异常检测
- ▶ 光检测

2.2.3 安全防护

- ▶ 总线加密
- ▶ 时钟加扰
- ▶ 存储加密
- ▶ 存储区访问控制
- echnologies confidential ▶ 时钟和复位信号脉冲过滤
- ▶ 安全优化布线
- ▶ 每一芯片唯一序列号
- ▶ 内部上电复位
- > 被动防护层
- ▶ 主动防护层
- ▶ 胶粘逻辑
- ▶ 不可逆自毁
- ▶ 测试模式不可逆

2.3 芯片应用

2.3.1 应用领域

- ▶ 加密模块

国民技术股份有限公司 Nations Technologies Inc.

第二部分 附录

附录 A 封装与管脚定义

Z8IDA 芯片的 DFN8 封装尺寸和管脚定义图如下:

图 A-1 DFN8 封装尺寸图

		•		
	~	, "		
A (()'			
2 7	1			
	М	MILLIMETER		
SYMBOL	MIN	NOM	MAX	
100		10.77		
A	0.70	0.75	0.80	
A A1	0.70	0.75	0. 80 0. 05	
	0.70			
A1	-	0.02	0. 05	
A1 b	0.25	0.02	0. 05 0. 35	
A1 b	0. 25 0. 18	0.02 0.30 0.20	0. 05 0. 35 0. 25	
A1 b c D	0. 25 0. 18 2. 90 2. 40	0.02 0.30 0.20 3.00	0. 05 0. 35 0. 25 3. 10 2. 60	
A1 b c D D2	0. 25 0. 18 2. 90 2. 40	0.02 0.30 0.20 3.00 2.50	0. 05 0. 35 0. 25 3. 10 2. 60	
A1 b c D D2	0. 25 0. 18 2. 90 2. 40	0.02 0.30 0.20 3. 00 2. 50 0. 65BSC	0. 05 0. 35 0. 25 3. 10 2. 60	
A1 b c D D2 e Nd	0. 25 0. 18 2. 90 2. 40	0.02 0.30 0.20 3.00 2.50 0.65BSC	0. 05 0. 35 0. 25 3. 10 2. 60	
A1 b c D D2 e Nd	0. 25 0. 18 2. 90 2. 40	0.02 0.30 0.20 3.00 2.50 0.65BSC 1.95BSC 3.00	0. 05 0. 35 0. 25 3. 10 2. 60	

图 A-2 DFN8 管脚定义

airont **GND** C1 **RST C8** NCC2 **C7** SCL **SDA C**3 C6 VCC NC **C4** C5 NC

编号 管脚名 功能描述 管脚类型

C1	GND	电源地	
C2	NC		
C3	SDA	通信数据线	输入/输出
C4	NC	-	-
C5	NC		-
C6	VCC	外接电源	输入
C7	SCL	通信时钟线	输入
C8	RST	复位(低电平有效,正常工作接高)	输入-

附录 B 典型电路图

I²C 接口 SDA、SCL 分别为数据、时钟线, RST 为低电平有效(正常工作需要接高电平)。

图 B-1 典型电路图

注:建议上下电时序如下:

ICLK1

Cell Description

Description	Bi-directional clock signal PAD
Operating Voltage Range	VCC: 1.62V~5.5V, VDD: 1.35V~1.65V
Innut Configuration	Constant pull up (150K ohm)
Input Configuration	Schmitt trigger input
Operating frequency range	1MHz~20MHz(DINP port)
ESD	HBM 4KV

Symbol

Pin Description

Pin	Category	Description	Signal voltage level
SPAD	Inout	Bi-directional Pad	L=0V; H=VCC
OE5V	Input	OE5V output control	L=0V; H=VCC
DOUT	Input	Output signal input	L=0V; H=VDD
ENO	Input	Input/output control	L=0V; H=VDD
DINP	Output	Input buffer output(without LPF)	L=0V; H=VDD

Truth Table

Mode		Pin					
wode	DINP	ENO	DOUT	OE5V	SPAD	Pull Up	
VDD power off	X	X	X	0	Pull Up	150K ohm	
Input	1	0	X	1	1	150K ohm	
input	0	0	X	1	0	150K ohm	
Output	1	1	1	1	1	150K ohm	
Output	0	1	0	1	0	150K ohm	

Note: "1" means logic high; "0" means logic low; "X" means don't care or unknown, it should be either "0" or "1".

Electrical Specification

5V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	Power supply voltage		4.5V	5V	5.5V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
Vt-	Schmitt Trigger going low voltage			1.9V	
Vt+	Schmitt Trigger going high voltage			2.4V	
lin	Input leakage current	Vin=0V or VCC			20uA
Tclkw	Output clock duty cycle	Input mode	40%		60%
lpu	Pull up current (150K ohm)	Vin=0V		33.3uA	50uA

3V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	Power supply voltage		2.7V	3V	3.3V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
Vt-	Schmitt Trigger going low voltage			1.1V	
Vt+	Schmitt Trigger going high voltage			1.5V	
lin	Input leakage current	Vin=0V or VCC			20uA
Tclkw	Output clock duty cycle	Input mode	40%		60%
lpu	Pull up current (150K ohm)	Vin=0V		20uA	30uA

1.8V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	Power supply voltage		1.62V	1.8V	1.98V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
Vt-	Schmitt Trigger going low voltage			0.7V	
Vt+	Schmitt Trigger going high voltage			0.95V	
lin	Input leakage current	Vin=0V or VCC			20uA
Tclkw	Output clock duty cycle	Input mode	40%		60%
lpu	Pull up current (150K ohm)	Vin=0V		12uA	18uA

> RST

IRSTb

Cell Description

Description	Reset signal PAD
Operating Voltage Range	VCC: 1.62V~5.5V, VDD: 1.35V~1.65V
Innut Configuration	Constant pull up (150K ohm)
Input Configuration	Schmitt trigger input
ESD	HBM 4KV

Nia)

Symbol

Pin Description

Pin	Category	Description	Signal voltage level
SPAD	Input	Input Pad	L=0V; H=VCC
DIN	Output	Input buffer output	L=0V; H=VDD

Truth Table

Pi	n	Function
SPAD	DIN	Pull Up
1	1	150K ohm
0	0	150K ohm

Note: "1" means logic high; "0" means logic low.

Electrical Specification

5V electrical specification

Symbol	Parameter	Condition	Min.	Typ.	Max.
VCC	IO power supply voltage		4.5V	5V	5.5V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
Vt-	Schmitt Trigger going low voltage			1.9V	
Vt+	Schmitt Trigger going high voltage			2.4V	
lpu	Pull up current (150K ohm)	Vin=0V		33.3uA	50uA

3V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	IO power supply voltage		2.7V	3V	3.3V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
Vt-	Schmitt Trigger going low voltage			1.1V	
Vt+	Schmitt Trigger going high voltage			1.5V	
lpu	Pull up current (150K ohm)	Vin=0V		20uA	30uA

1.8V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	IO power supply voltage		1.62V	1.8V	1.98V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
Vt-	Schmitt Trigger going low voltage			0.7V	
Vt+	Schmitt Trigger going high voltage			0.95V	
lpu	Pull up current (150K ohm)	Vin=0V		12uA	18uA

AAY

Propagation Delay

Symbol	Parameter	Condition	Min.	Тур.	Max.
tdi_LH	SPAD to DIN delay(Low to High) (*1)	Vspad=0V~VCC, slew rate=1ns; DIN Cload=0.1pF			20ns
tdi_HL	SPAD to DIN delay(High to Low) (*1)	Vspad=VCC~0V, slew rate=1ns; DIN Cload=0.1pF			20ns
tR	DIN rise time (*2)	DIN Cload=0.1pF			1ns
tF	DIN fall time (*2)	DIN Cload=0.1pF	·		1ns

Note:

- Delay time is defined as time interval between the input crossing 50% power level and output crossing 50% power level.
- 2. Rise/Fall time is defined as time interval between 10% power level and 90% power level.

Pin Capacitance

Pin	SPAD	DIN
Capacitance(pF)	0.616	0.112

Note: Pin capacitance value is under typical condition.

> SIO, GPIO

IDIO1

Cell Description

Description	Bi-directional data I/O PAD
Operating Voltage Range	VCC: 1.62V~5.5V, VDD: 1.35V~1.65V
Input Configuration	Pull up controlled by "PU1" pin, "PU2" pin is reserved
input Configuration	Schmitt trigger input
ESD	HBM 4KV

Symbol

Pin Description

Pin	Category	Description	Signal voltage level
SPAD	Inout	Bi-directional Pad	L=0V; H=VCC
OE5V	Input	OE5V output control	L=0V; H=VCC
ENO	Input	Input/output control	L=0V; H=VDD
DIN	Output	Input buffer output	L=0V; H=VDD
DOUT	Input	Output data input	L=0V; H=VDD
PU1	Input	Pull up resistor (50K ohm) enable	L=0V; H=VDD
PU2	Input	Reserved pin	

Truth Table

Mode				Pin			Function
	DIN	DOUT	ENO	PU1	OE5V	SPAD	Pull Up
VDD power off	X	Х	X	X	0	1	50K ohm
	0	X	0	0	1	0	
Innut	1	X	0	0	1	1	
Input	0	X	0	1	1	0	50K ohm
	1	X	0	1	1	1	50K ohm
	0	0	1	0	1	0	
Out-ut	1	1	1	0	1	1	
Output	0	0	1	1	1	0	50K ohm
	1	1	1	1	1	1	50K ohm

Note: "1" means logic high; "0" means logic low; "X" means don't care or unknown, it should be either "0" or "1".

Electrical Specification

5V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	IO power supply voltage		4.5V	5V	5.5V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
VOL	Output low voltage	IOL=1mA			0.3V
VOH	Output high voltage	IOH=20uA	0.7*VCC		
Vt-	Schmitt Trigger going low voltage			1.9V	
Vt+	Schmitt Trigger going high voltage			2.4V	
lin	Input leakage current(pull up disable)	Vin=0V or VCC			5uA
lpu1	Pull up current (50K ohm)	Vin=0V		100uA	150uA
	COMM				
	Pull up current (50K ohm)				

3V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	IO power supply voltage		2.7V	3V	3.3V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
VOL	Output low voltage	IOL=1mA			0.3V
VOH	Output high voltage	IOH=20uA	0.7*VCC		
Vt-	Schmitt Trigger going low voltage			1.1V	
Vt+	Schmitt Trigger going high voltage			1.5V	
lin	Input leakage current(pull up disable)	Vin=0V or VCC			5uA
lpu1	Pull up current (50K ohm)	Vin=0V		60uA	90uA

1.8V electrical specification

Symbol	Parameter	Condition	Min.	Тур.	Max.
VCC	IO power supply voltage		1.62V	1.8V	1.98V
VDD	Core power supply voltage		1.35V	1.5V	1.65V
Tj	Junction temperature		-40C	25C	85C
VIL	Input low voltage				0.25*VCC
VIH	Input high voltage		0.7*VCC		
VOL	Output low voltage	IOL=1mA			0.3V
VOH	Output high voltage	IOH=20uA	0.7*VCC		
Vt-	Schmitt Trigger going low voltage			0.7V	
Vt+	Schmitt Trigger going high voltage			0.95V	
lin	Input leakage current(pull up disable)	Vin=0V or VCC			5uA
lpu1	Pull up current (50K ohm)	Vin=0V		36uA	54uA
	Pull up current (50K ohm)				