SD-TSIA204: Lasso

Ekhine Irurozki Télécom Paris, IP Paris

Reminding the model

$$\mathbf{y} = X\boldsymbol{\theta}^* + \boldsymbol{\varepsilon} \in \mathbb{R}^n$$

$$X = \begin{bmatrix} \mathbf{x}_{1,1} & \dots & x_{1,p} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,p} \end{bmatrix} \in \mathbb{R}^{n \times p}, \boldsymbol{\theta}^* \in \mathbb{R}^p$$

Motivation

In the presence of super-collinearity the OLS estimators can not be given.

Estimators $\hat{\theta}$ with many zero coefficients are useful:

- ▶ for interpretation
- ▶ for computational efficiency if p is huge

Underlying idea: variable selection

Rem: also useful if θ^* has few non-zero coefficients

Variable selection overview

- **Screening**: remove the x_j 's whose correlation with y is weak
 - pros: fast (+++), *i.e.*, one pass over data, intuitive (+++)
 - cons: neglect variables interactions x_i , weak theory (- -)
- Greedy methods aka stagewise / stepwise
 - pros: fast (++), intuitive (++)
 - cons: propagates wrong selection forward; weak theory (-)
- Sparsity enforcing penalized methods (e.g., Lasso)
 - pros: better theory for convex cases (++)
 - cons: can be still slow (-)

The ℓ_0 pseudo-norm

The **support** of $\theta \in \mathbb{R}^p$ is the set of indexes of non-zero coordinates:

$$\operatorname{supp}(\boldsymbol{\theta}) = \{ j \in [1, p], \theta_j \neq 0 \}$$

The ℓ_0 **pseudo-norm** of a $\boldsymbol{\theta} \in \mathbb{R}^p$ is the number of non-zero coordinates:

$$\|\boldsymbol{\theta}\|_0 = \operatorname{card}\{j \in [[1, p]], \theta_j \neq 0\}$$

Rem:
$$\|\cdot\|_0$$
 is not a norm, $\forall t \in \mathbb{R}^*, \|t\boldsymbol{\theta}\|_0 = \|\boldsymbol{\theta}\|_0$

$$\begin{array}{l} \underline{\mathsf{Rem}} \colon \| \cdot \|_0 \text{ it is not even convex, } \boldsymbol{\theta}_1 = (1,0,1,\dots,0) \\ \boldsymbol{\theta}_2 = (0,1,1,\dots,0) \text{ and } 3 = \| \frac{\boldsymbol{\theta}_1 + \boldsymbol{\theta}_2}{2} \|_0 \geqslant \frac{\|\boldsymbol{\theta}_1\|_0 + \|\boldsymbol{\theta}_2\|_0}{2} = 2 \end{array}$$

Regularization with the ℓ_0 penalty

First try to get a sparsity enforcing penalty: use ℓ_0 as a penalty (or regularization)

$$\begin{vmatrix} \hat{\boldsymbol{\theta}}_{\lambda} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\min} & \left(\underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} + \underbrace{\lambda \|\boldsymbol{\theta}\|_0}_{\text{regularization}} \right)$$

Combinatorial problem!!!

Exact solution: require considering all sub-models, *i.e.*,computing OLS for all possible support; meaning one might need 2^p least squares computation!

Example:

 $\overline{p=10}$ possible: $\approx 10^3$ least squares

p=30 impossible: $\approx 10^{10}$ least squares

<u>Rem</u>: problem "NP-hard", can be solved for small problems by mixed integer programming.

Lasso: penalty point of view

Lasso: Least Absolute Shrinkage and Selection Operator Tibshirani (1996)

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\text{min}} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

or
$$\|oldsymbol{ heta}\|_1 = \sum_{j=1}^p | heta_j|$$
 sum of absolute values of the coefficients)

▶ We recover the limiting cases:

$$\lim_{\lambda \to 0} \hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} = \hat{\boldsymbol{\theta}}^{\text{OLS}}$$
$$\lim_{\lambda \to +\infty} \hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} = 0 \in \mathbb{R}^{p}$$

Exercise: the Lasso estimator is not always **unique** for a fixed λ (consider cases with two equals columns in X). However, the prediction is unique. Show these points.

Constraint point of view

The following problem:

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

shares the same solutions as the constrained formulation:

$$\begin{cases} \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \\ \text{s.t. } \|\boldsymbol{\theta}\|_1 \leqslant T \end{cases}$$

for some T > 0.

<u>Rem</u>: unfortunately the link $T \leftrightarrow \lambda$ is not explicit

- If $T \to 0$ one recovers the null vector: $0 \in \mathbb{R}^p$
- ▶ If $T \to \infty$ one recovers $\hat{\pmb{\theta}}^{OLS}$ (unconstrained)

Zeroing coefficients

Zeroing coefficients

Analitical solution

In general, there is no explicit solution

- Quadratic programming with constraints
- Iterative ridge
- Proximal gradient method (SD-TSIA 211)

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

<u>Rem</u>: if the sub-gradient is unique, one recovers the standard gradient

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

 $\underline{Rem}:$ if the sub-gradient is unique, one recovers the standard gradient

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Rem: if the sub-gradient is unique, one recovers the standard gradient

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

<u>Rem</u>: if the sub-gradient is unique, one recovers the standard gradient

Fermat's Rule

Theorem A point x^* is a minimum of a convex function $f: \mathbb{R}^n \to \mathbb{R}$ if and only if $0 \in \partial f(x^*)$ Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle 0, x - x^* \rangle$

Fermat's Rule

Theorem A point x^* is a minimum of a convex function $f: \mathbb{R}^n \to \mathbb{R}$ if and only if $0 \in \partial f(x^*)$

Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle 0, x - x^* \rangle$

Rem: Visually, it corresponds to a horizontal tangent

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1, 1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1, 1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1, 1] & \text{if } x^* = 0 \end{cases}$$

Fermat's rule for the Lasso

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

Necessary and sufficient optimality (Fermat):

$$\forall j \in [p], \ \mathbf{x}_j^\top \left(\frac{y - X \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}}{\lambda} \right) \in \begin{cases} \{ \mathrm{sign}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \} & \text{if} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \neq 0, \\ [-1, 1] & \text{if} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j = 0. \end{cases}$$

$$\underline{\mathsf{Rem}} \colon \mathsf{If} \; \lambda > \lambda_{\max} := \max_{j \in [\![1,p]\!]} |\langle \mathbf{x}_j, \mathbf{y} \rangle| \mathsf{, then} \; \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = 0$$

1D Regularization: Ridge

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \frac{\lambda}{2}x^2$$

$$\eta_{\lambda}(z) = \frac{z}{1+\lambda}$$

 ℓ_2 shrinkage : Ridge

1D Regularization: Lasso

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$$

$$\eta_{\lambda}(z) = \operatorname{sign}(z)(|z| - \lambda)_{+}$$

 ℓ_1 shrinkage: soft thresholding

1D Regularization: ℓ_0

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z-x)^2 + \lambda \mathbb{1}_{x \neq 0}$$

$$\eta_{\lambda}(z) = z \mathbb{1}_{|z| \geqslant \sqrt{2\lambda}}$$

 ℓ_0 shrinkage: hard thresholding

1D Regularization: enet

Solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda(\gamma|x| + (1-\gamma)\frac{x^2}{2})$$

$$\ell_1/\ell_2$$

Numerical example on simulated data

- $\theta^* = (1, 1, 1, 1, 1, 0, \dots, 0) \in \mathbb{R}^p$ (5 non-zero coefficients)
- $X \in \mathbb{R}^{n \times p}$ has columns drawn according to a Gaussian distribution
- $y = X\theta^* + \varepsilon \in \mathbb{R}^n$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$
- We use a grid of $50~\lambda$ values

For this example : $n = 60, p = 40, \sigma = 1$

Lasso properties

- Solutions is not necessarily unique
- The analytic form does not necessarily exist
- Numerical aspect: the Lasso is a convex problem
- ▶ Variable selection / sparse solutions: $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}$ has potentially many zeroed coefficients. The λ parameter controls the sparsity level: if λ is large, solutions are very sparse.

<u>Example</u>: We got 17 non-zero coefficients for LassoCV in the previous simulated example

Rem: RidgeCV has no zero coefficients

Lasso analysis

Theory: more involved for the Lasso than for least squares / Ridge Recent reference: Bühlmann and van de Geer (2011)

<u>In a nutshell</u>: add bias to the standard least squares to perform variance reduction

Elastic-net : ℓ_1/ℓ_2 regularization

The Elastic-Net, introduced by Zou and Hastie (2005) is the (unique) solution of

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_2^2 + \lambda \left(\gamma \| \boldsymbol{\theta} \|_1 + (1 - \gamma) \frac{\| \boldsymbol{\theta} \|_2^2}{2} \right) \right]$$

<u>Motivation</u>: help selecting all relevant but correlated variable (not only one as for the Lasso)

Rem: two parameters needed, one for global regularization, one trading-off Ridge vs. Lasso

Rem: the solution is unique and the size of the Elastic-Net support is smaller than $\min(n,p)$

$$\gamma = 1.00$$

$$\gamma = 0.99$$

$$\gamma = 0.95$$

$$\gamma = 0.90$$

$$\gamma = 0.75$$

$$\gamma = 0.50$$

$$\gamma = 0.25$$

$$\gamma = 0.1$$

$$\gamma = 0.05$$

$$\gamma = 0.01$$

$$\gamma = 0.00$$

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

Illustration over the previous example

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

Illustration over the previous example

The Lasso bias: a simple remedy

How to rescale shrunk coefficients?

LSLasso (Least Square Lasso)

- 1. Lasso : compute $\hat{m{ heta}}_{\lambda}^{\mathrm{Lasso}}$
- 2. Perform least squares over selected variables: $\operatorname{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso}})$

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{LSLasso}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\operatorname{arg \, min}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}$$
$$\underset{\text{supp}(\boldsymbol{\theta}) = \text{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}})}{\operatorname{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}})}$$

Rem: perform CV for the double step procedure; choosing λ by LassoCV and then performing OLS keeps too many variables

Rem: LSLasso is not coded in standard packages

De-biasing

De-biasing

Prediction: Lasso vs. LSLasso

LSLasso evaluation

Pros

- ▶ the "true" large coefficients are less shrunk
- CV recovers less "parasite" variables (improve interpretability)
 e.g.,in the previous example the LSLassoCV recovers exactly
 the 5 "true" non zero variables, up to a single false positive

LSLasso: especially useful for estimation

Cons

- ▶ the difference in term of prediction is not always striking
- requires (slightly) more computation: needs to compute as many OLS as λ 's

References I

P. Bühlmann and S. van de Geer.
 Statistics for high-dimensional data.
 Springer Series in Statistics. Springer, Heidelberg, 2011.
 Methods, theory and applications.

R. Tibshirani.

Regression shrinkage and selection via the lasso.

J. Roy. Statist. Soc. Ser. B, 58(1):267-288, 1996.

▶ H. Zou and T. Hastie.

Regularization and variable selection via the elastic net.

J. Roy. Statist. Soc. Ser. B, 67(2):301-320, 2005.