CV DEEP LEARNING WITH PYTORCH

PART III

CONVOLUTIONAL NEURAL NETWORKS

◆ DNN (MLP) 이미지 인식

◆ 사람/동물 시각 인식

- 동물의 시각피질(Visual Cortex) 구조에서 영감
- 시각 자극이 1차 시각피질을 통해서 처리 → 2차 시각피질 경유 → 3차 시각피질
- 여러 영역 통과하며 모여진 정보를 계층적으로 처리
- 추상적인 특징 추출하여 시각 인식

◆ CNN 합성곱신경망

- DNN의 한 종류로 컴퓨터 비전, 시각적 이미지 인식 주로 사용
- 텍스트 처리 등 여러 다른 분야에도 다양하게 활용
- **LeNet-5은 1998년** Yann LeCun 교수가 발표한 CNN 알고리즘으로 지속적인 연구와 발전 진행, 특히 2010년 초중반에 많은 발전

◆ CNN 합성곱신경망

❖ 입력 데이터의 형상을 유지하며 특징 추출 후 분류

■ **전반부**: 3차원 이미지 입력 받아 특징 추출

• **후반부** : 특징 입력 받아 분류

◆ Convolution Layer 합성곱층

❖ 동작

- 이미지 위를 일정 간격으로 이동하며 특징(정보)를 하나씩 추출
- 위에서 아래로 전체 이동으로 특징(정보)를 모은 특징맵 출력 기능 Layer

◆ Convolution Layer 합성곱층

■ 커널/필터/마스크

- 중치로 구성되며 일반적으로 3x3, 5x5 크기
- 너무 큰 커널은 특징 추출 부족
- 이미지 위를 일정 간격 이동

■ 스트라이드(stride)

- 커널의 이동 방향 및 크기
- 기본 : 왼쪽 -> 오른쪽 1칸, 위 -> 아래 1칸

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

		ı
4		0
		0
		0
		0

1	1,	1,0	0,1	0
0	1,0	1,	1,0	0
0	0,1	1,0	1,	1
0	0	1	1	0
0	1	1	0	0

4	3	

- 스트라이드(stride)
 - 이동 방향 : 왼쪽상단 → 오른쪽하단
 - 기본 : 왼쪽 -> 오른쪽 1칸

1	1	1,	0,0	0,1
0	1	1,0	1,	0,0
0	0	1,	1,0	1,
0	0	1	1	0
0	1	1	0	0

4	3	4

4	3	4	
2			
			5

1	1	1	0	0
0	1,	1,0	1,	0
0	0,0	1,	1,0	1
0	0,1	1,0	1,	0
0	1	1	0	0

4	3	4
2	4	

- 스트라이드(stride)
 - 이동 방향 : 왼쪽상단 → 오른쪽하단
 - 기본 : 왼쪽 -> 오른쪽 1칸

1	1	1	0	0
0	1	1,	1,0	0,1
0	0	1,0	1,	1,0
0	0	1,	1,0	0,1
0	1	1	0	0

4	3	4
2	4	3

1	1	1	0	0
0	1	1	1	0
0,,1	0,0	1,	1	1
0,0	0,1	1,0	1	0
0,1	1,0	1,	0	0

4	3	4
2	4	3
2		

1	1	1	0	0
0	1	1	1	0
0	0,,1	1,0	1,	1
0	0,0	1,	1,0	0
0	1,	1,0	0,1	0

4	3	4
2	4	3
2	3	

- 스트라이드(stride)
 - 이동 방향 : 왼쪽상단 → 오른쪽하단
 - 기본 : 왼쪽 -> 오른쪽 1칸

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,1

4	3	4
2	4	3
2	3	4

◆ Convolution Layer 합성곱층

❖ Feature Map 추출 동작 Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2) w0[:,:,0] w1[:,:,0] 0[:,:,0] 2 3 3 -1 0 1 0 1 -1 0 -1 0 3 7 3 2 0 1 0 0 -1 1 8 10 -3 0 1 0 2 2 0 0 w0[:,:,1] w1[:,:,1] 0[:,:,1] -1 0 0 -8 -8 -3 0 0 2 0 0 1 -1 0 -3 1 0 1 -1 0 -3 -8 -5 w1[:,:,2]-1 1 -1 0 -1 -1 0 -1 0 1 0 0 Bias b9 (1x1x1) Bias b1 (1x1x1) b0(:,:,0] b1[:,:,0] toggle movement

◆ Convolution Layer 합성곱층

■ 1채널 그레이스케일 이미지 $(1\times1) + (0\times0) + (0\times1) + (0\times0) + (1\times1) + (0\times0) + (0\times1) + (0\times0) + (1\times1) = 3$ 입력 필터/커널 가중합

- 패딩(Padding)
 - 커널(필터) 이동 시 좌우상하 모서리 부분 특징 추출 안됨
 - 입력 데이터 사면을 특정값(0)으로 채운 후 합성곱층 진행
 - 종류 : Valid Padding, Same Padding

- 패딩(Padding) Valid
 - 입력과 출력 특징맵 Shape 다름

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,1

4	3	4
2	4	3
2	3	4

- 패딩(Padding) Same
 - 입력과 출력 특징맵 Shape 같음
 - 입력 데이터 사면을 **특정값(0)으로 채운 후 진행**

×1	×0	×1
×O	×1	×0
×1	×0	×1

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	1	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

2	2	3	1	1
1	4	3	4	1
2	2	5	3	3
1	2	3	4	1
1	2	3	1	1

◆ Convolution Layer 합성곱층

Conv1D

- 커널/필터가 **시간을 축으로 좌우로만 이동**할 수 있는 합성곱
- 데이터 ▶ 시계열데이터
- 입 력 ▶ 2D/3D : [batch,] embedding, sequence_length
- 출 력 ▶ 2D/3D : [batch,] embedding, sequence_length
- 사 례 ▶ 문장 분류, 소리, 신호 평활화

◆ Convolution Layer 합성곱층

Conv2D

- 커널/필터가 **시간을 축으로 좌우로만 이동**할 수 있는 합성곱
- 데이터 ▶ 이미지
- 입 력 ▶ 3D/4D : [batch,] in_channels, in_height, in_width,
- 출 력 ▶ 3D/4D : [batch,] out_channels, filter_height, fiter_width
- 사 례 ▶ 객체 인식

◆ Convolution Layer 합성곱층

Conv3D

- 커널/필터가 세 개 방향으로 이동할 수 있는 합성곱
- 데이터 ▶ 3D 이미지(MRI, CT 등등), 비디오
- 입 력 ▶ 4D/5D : [batch,] in_channels, in_depth, in_height, in_width
- 출 력 ▶ 4D/5D : [batch,] out_channels, filter_depth, filter_height, fiter_width
- 사 례 ▶ CCTV 이상행동 감지

◆ Polling Layer 폴링층

- 합성곱 층(합성곱 연산 + 활성화 함수) 다음에 풀링 층 추가
- 특성 맵을 **다운샘플링하여 특성 맵의 크기 줄**이는 풀링 연산 진행
- 합성곱층과 달리 커널이 중첩되지 않음
- 커널 크기 : 2x2, 2의 배수
- 종류 : 최대 풀링(max pooling), 평균 풀링(average pooling)

◆ Polling Layer 폴링층

- 통상적으로 (2,2) 크기 / 스트파이드 역시 (2,2)

◆ Flatten Layer 벡터화층

- 마지막 output layer을 1차원 벡터 데이터 변형하는 층
- 여러 layer 통해 입력 이미지에서 얻어온 특이점 데이터 1차원 데이터로 변형

◆ CNN 합성곱신경망

◆ CNN 합성곱신경망

♦ Torch.nn.Convolution Layers

■ 구현된 Class

nn.Conv1d	Applies a 1D convolution over an input signal composed of several input planes.
nn.Conv2d	Applies a 2D convolution over an input signal composed of several input planes.
nn.Conv3d	Applies a 3D convolution over an input signal composed of several input planes.
nn.ConvTranspose1d	Applies a 1D transposed convolution operator over an input image composed of several input planes.
nn.ConvTranspose2d	Applies a 2D transposed convolution operator over an input image composed of several input planes.
nn.ConvTranspose3d	Applies a 3D transposed convolution operator over an input image composed of several input planes.

◆ Torch.nn.Conv1D

```
nn.Conv1D( in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
               groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
              C: Embedding dimension L: sequence length
N: batch size
 INPUT SHAPE
               ( N, C<sub>in</sub> , L<sub>in</sub> ) 또는 ( C<sub>in</sub> , L<sub>in</sub> )
                                                                           ( N, C<sub>out</sub> , L<sub>out</sub> ) 또는 ( C<sub>out</sub> , L<sub>out</sub> )
                                                          OUTPUT SHAPE
               : 임베딩 차원 수
                                                       out channels : 커널 차원 수
 in channels
 kernel size
               : 커널 사이즈, int 또는 tuple.
                                                       stride : stride 사이즈, 기본값 1, int 또는 tuple.
 padding
                : padding 사이즈, 기본값 0, 'valid', 'same'
                  int 또는 tuple.
 padding_mode : 기본 값 'zeros'
                : 데이터와 커널 사이 간격 사이즈 조절
 dilation
                : 입력 채널과 출력 채널 사이 관계
 groups
                  group=1: 모든 입력은 모든 출력과 convolution 연산 [기본]
                  group=2: 입력을 2 그룹으로 나누어 각각 convolution 연산, 결과 concatenation
                  group=in_channels: 가각의 인풋 채널이 각각 아웃풋 새널 대음
```

♦ Torch.nn.Conv2D

```
nn.Conv2D(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
               groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
N: batch size
               C: image channel
                                  H: height, rows
                                                     W: width, columns
                                                        OUTPUT (N, Cout, Hout, Wout) 또는 (Cout, Hout, Wout)
 INPUT
          (N, C<sub>in</sub>, H<sub>in</sub>, W<sub>in</sub>) 또는 (C<sub>in</sub>, H<sub>in</sub>, W<sub>in</sub>)
 in_channels
                      : 입력 채널 수, 흑백 이미지 1, 컬러 이미지 3
                      : 출력 커널 수
 out channels
 kernel size
                      : 커널 사이즈, int 또는 tuple.
 stride
                      : stride 사이즈, 기본값 1
                      : padding 사이즈, 기본값 0, 'valid', 'same'
 padding
 padding_mode
                      : 기본 값 'zeros'
                      : 커널 사이 간격 사이즈 조절
 dilation
                      : 입력 층의 그룹 수 설정, 입력 채널 수를 그룹 수로 분리, 입출력 그룹 연산
 groups
 bias
                      : bias 값을 설정 할 지, 말지를 결정, 기본 값은 True
```

◆ Torch.nn.Conv3D

```
nn.Conv3D(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
                groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
N: batch size
                C: image channel
                                     D: Depth
                                                     H: height, rows
                                                                       W: width, columns
 INPUT
           ( N, C<sub>in</sub>, D<sub>in</sub>, H<sub>in</sub>, W<sub>in</sub> ) 또는 (C<sub>in</sub>, D<sub>in</sub>, H<sub>in</sub>, W<sub>in</sub> )
                                                           OUTPUT
                                                                     (N, Cout, Dout, Hout, Wout) 또는 (Cout, Dout, Hout, Wout)
 in_channels
                       : 입력 채널 수, 흑백 이미지 1, 컬러 이미지 3
                       : 출력 커널 수
 out channels
 kernel size
                       : 커널 사이즈, int 또는 tuple.
 stride
                       : stride 사이즈, 기본값 1
                        : padding 사이즈, 기본값 0, 'valid', 'same'
 padding
 padding_mode
                       : 기본 값 'zeros'
                       : 커널 사이 간격 사이즈 조절
 dilation
                        : 입력 층의 그룹 수 설정, 입력 채널 수를 그룹 수로 분리, 입출력 그룹 연산
 groups
 bias
                        : bias 값을 설정 할 지, 말지를 결정, 기본 값은 True
```

PART III

TORCHVISION

◆ PyTorch 비젼 라이브러리

- 파이토치에서 제공하는 이미지 데이터셋들이 모여 있는 패키지
- MNIST, ImageNet을 포함한 유명한 데이터셋들을 제공
- 모델 아키텍쳐 및 컴퓨터 비젼 위한 이미지 변환 기능 제공
 - 유명 이미지 데이터셋 로딩 기능 : CIFAR, COCO, MNIST, ImageNet
 - 미리 학습된(pre-trained) 이미지 분류 모델 제공 : VGG, ResNet, Inception
 - 이미지 전처리 기능 제공 : Transfrom 다양한 함수 제공
 - 다양한 유틸 함수 제공 : Utils

◆ 데이터 증강 Data Augmentation

- 데이터에 변형 가하여 데이터 규모 증가 및 변형된 다양한 데이터 케이스 학습 제공
- 효과 : 모델 과적합(overfitting) 방지
 - > Flip (Horizontal, Vertical)
 - > Random Crop
 - > Shear
 - Rotate
 - > Zoom
 - > Blur

♦ IMAGE DATASET

- 컴퓨터 비젼 유명한 데이터셋
- https://pytorch.org/vision/stable/datasets.html

<pre>Caltech101(root[, target_type, transform,])</pre>	Caltech 101 Dataset.
Caltech256(root[,transform,])	Caltech 256 Dataset.
CelebA(root[, split, target_type,])	Large-scale CelebFaces Attributes (CelebA) Dataset Dataset.
CIFAR10(root[, train, transform,])	CIFAR10 Dataset.

♦ IMAGE DATASET

torchvision.datasets.MNIST

```
import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
ds = datasets.MNIST( root="data",
                     train=True,
                      download=True,
                     transform=ToTensor(),
                     target transform=Lambda(lambda y:
                                             torch.zeros(10, dtype=torch.float)
                                              .scatter_(0, torch.tensor(y), value=1))
```

♦ IMAGE DATASET

■ 사용자 정의 데이터셋 관련 모듈

DatasetFolder(root, loader[, extensions, ...])

A generic data loader.

A generic data loader where the images are arranged in this way by default: .

VisionDataset([root, transforms, transform, ...])

Base Class For making datasets which are compatible with torchvision.

♦ IMAGE TRANSFORMS

- 이미지 **데이터의 전처리 및 데이터 증강** 위해 제공하는 모듈
- torchvision.transforms.XXX()함수 기능

Resize	이미지 크기를 조절
RandomResizedCrop	무작위 자르고 크기 조절
RandomHorizontalFlip	무작위 수평으로 뒤집기
RandomVerticalFlip	무작위 수직으로 뒤집기
ToTensor	이미지 텐서로 변환
Normalize	이미지 정규화

RandomRotation	이미지 무작위 회전
RandomCrop	이미지 무작위 자릅
Grayscale	이미지 흑백으로 변환
RandomSizedCrop	이미지 무작위 자르고 크기 조절
ColorJitter	이미지의 색상 무작위 조정

◆ IMAGE TRANSFORMS

■ 이미지 데이터 전처리 기법들 구성 기능 from torchvision import transforms transform = transforms.Compose(원하는 변형 조합 구성 transforms.Resize(size=(512, 512)), transforms.ToTensor()

PART III

TRANSFER LEARNING

TRANSFER LEARNING

◆ 전이 학습

- ❖ 사전 학습 (Pre-Training)
 - 대량의 데이터로 학습이 되어 있는 모델의 가중치를 사용하는 방법
 - 사전 학습 모델 가중치 사용 시 → 학습 작업(task)는 하위 작업(downstream task)이 됨
 - 사전 학습 데이터 셋 ⊃ 나의 학습 데이터 셋
- ❖ 파인 튜닝 (Fine-Tuning)
 - 대량의 데이터로 학습이 되어 있는 모델의 가중치를 사용하는 방법
 - 사전 학습 모델 가중치 사용 시 → 학습 작업(task)는 하위 작업(downstream task)이 됨
 - 사전 학습 데이터 셋 ⊃ 나의 학습 데이터 셋

TRANSFER LEARNING

◆ 전이 학습

❖ 이미지 분류 데이터셋: https://www.image-net.org/challenges/LSVRC/

