

Arduino Intermediário

EEPROM

- Memória não volátil
- Tempo de vida útil reduzido
- Acesso mais lento

Aplicações?

EEPROM

Como utilizar?

```
#include < EEPROM.h>
void setup() {
  Serial.begin(9600);
  int val = 1234;
  int addr = 0 ;
  EEPROM.put(addr, val) ;
  Serial.println("Dados gravados!") ;
void loop() {
```

```
#include < EEPROM.h >
void setup() {
  Serial.begin(9600);
  int val = 0;
  int addr = 0 ;
  EEPROM.get(addr, val) ;
  Serial.println(val);
void loop() {
```

Exercício

- Gravem um inteiro na EEPROM em um endereço qualquer
- Troquem de arduino entre as duplas e passem o endereço que foi gravado
- Façam um programa que leia o endereço e confirme com a dupla da troca se o número era este

- A comunidade do Arduino já criou muitas e muitas bibliotecas
- Instalar uma biblioteca é bem fácil
 - Sketch > Include Library > Manage Libraries para bibliotecas oficiais
 - Basta colocar o .zip da biblioteca na pasta libraries dentro do diretório do Arduino e ir em Sketch > Include library > Add .ZIP library para bibliotecas não oficiais

- Como é muito fácil instalar um biblioteca vamos aprender a fazer a nossa
 - É necessário escrevermos um arquivo .h e um .cpp
 - Também podemos escrever um arquivo chamado keywords.txt que diz para a IDE do arduino quais são as palavras reservadas da nossa biblioteca

Teste.cpp

Teste.h

```
#include "Arduino.h"

class Teste {
    public:
        Teste(int a);
    void hello();

    private:
        int val;
    void secret();
};
```

```
#include "Teste.h"
// include core Wiring API
#include "Arduino.h"
// include description files for othe
#include "HardwareSerial.h"
Teste::Teste(int a) {
   val = a :
   Serial.begin(9600);
void Teste::hello() {
   Serial.print("Hello World ");
   Serial.println(val);
   secret();
void Teste::secret() {
   pinMode(13, OUTPUT);
    digitalWrite(13, HIGH);
```

keywords.txt

```
# Syntax Coloring Map For Test
# Datatypes (KEYWORD1)
Teste
    KFYW0RD1
# Methods and Functions (KEYWORD2)
####################################
hello
    KEYWORD2
###################################
# Instances (KEYWORD2)
####################################
# Constants (LITERAL1)
```


- Crie um .zip com estes três arquivos
- Sketch > Include library > Add .ZIP library
- Selecione o seu .zip
- Sketch > Include library
- Selecione a sua biblioteca da lista

Já pode usar a sua biblioteca!!

```
#include <Teste.h>

Teste t = Teste(5);
void setup() {
   t.hello();
}

void loop() {
}
```


Display de 7segmentos

- Mais uma forma de mostrar informações
- Composto por 7 LEDs

Display de 7segmentos

- O oitavo LED é o ponto
- Liguem o terra no pino do central, tanto em cima, quanto em baixo

Display de 7segmentos

S	egn	nent	s (/=	ON)	Display	Segments (√= ON)							Display
а	þ	С	d	е	f	g		а	b	С	đ	е	f	g	Display
1	1	✓	/	/	\			/	/	/	\	/	>	>	8
	1	\					- 1	1	\	>			/	>	9
/	/		>	>		>	2	/	/	/		/	/	/	R
1	/	>	>			/	3			\	✓	/	/	1	b
	\	>			>	>	4	1			/	/	/		
✓		>	/		\	>	5		/	/	/	/		/	<i>-:</i> '
✓		\	\	\	/	\	5	\			/	\	\	\	E
/	/	/					7	1				/	/	/	F

Exercício 5

- Escrevam no display os número entre 0 e 9
- Mudando o número a cada um segundo

Desafio 5

- Façam uma biblioteca para controlar o display de 7 segmentos
- O construtor da classe deve receber os pinos em que estão conectados os segmentos
- A classe deve ter uma função que dado um número inteiro entre 0 e 9 imprima este número no display

Random

- randomSeed(int)
 - Inicializa o gerador de números pseudo aleatórios
 - Pode-se passar por parâmetro a entrada de uma porta analógica que não está sendo utilizada
- random(max) ou random(min, max)
 - Retorna um número aleatório entre min e max-1
 - Caso não passe min por parâmetro, min = 0

Projeto final

Dado eletrônico

- Ligue o display de 7 segmentos e um botão no Arduino
- Quando o botão for apertado, gere um número aleatório entre 1 e 6
- Apresente o número no display