Financial Engineering Lab (MA374)

Neelabh Tiwari

160123024
Department of Mathematics
IIT Guwahati

Assignment - 3 (24 January 2019)

Question 1

The Option Prices for the data -

$$S(0) = 100$$
; $K = 100$; $T = 1$; $M = 100$; $r = 8\%$; $\sigma = 20\%$

The American Call price is - 12.1230 The American Put price is - 5.2798

Sensitivity Analysis of option price variance with S(0), K, M, r, σ are done by plotting 2-D plots -

Question 2

The payoff of the lookback option is given by

$$V=maxS(i)-S(M), 0 \le i \le M$$

For M = 5, the initial price of Lookback Option = **9.1192989**

For M = 10, the initial price of Lookback Option = 10.080582

For M = 15, the initial price of Lookback Option = 10.519165

For **M** = **25 and M** = **50**, the amount of data required was too large for MATLAB to handle (Space Complexity exceeded). This will be addressed in question 3 using Markov based computationally efficient binomial algorithm.

b) From the graph it is observed that the initial values of Lookback Option tend to converge. Moreover for the initial values of M, *the increasing* pattern of initial option value with M is observed.

Plot Of Initial option price Vs value of M -

c) The values of the options at all intermediate time points for M=5 -

T=0	T=0.2	T=0.4	T=0.6	T=0.8	T=1
9.119299	9.027951	8.548076	7.416771	5.501638	0
	9.504840	9.799119	9.955271	9.5713915	11.181413
		7.147915	6.201916	4.6004796	0
		12.168664	13.712862	15.631851	19.452691
			6.201916	4.6004796	0
			8.324614	8.0036137	9.349916
			7.148418	6.6808429	6.374517
			17.582062	21.188089	25.394563
				4.6004796	0
				8.0036137	9.349916
				3.8469288	0
				13.071381	16.266373
				3.8469288	0
				10.680904	13.578002
				10.680904	13.578002

	25.051229	29.482597
		0
		9.349916
		0
		16.266373
		0
		7.8184160
		5.3303822
		21.234976
		0
		7.8184160
		2.9013505
		18.805945
		2.9013504
		18.805945
		18.805945
		32.105394

Question 3

The algorithm implemented in the second question can handle value of M only upto 15. By implementing the efficient Markov based algorithm presented in Shreve Vol -1, the complexity has been brought down to $O(n^2)$ from $O(2^n)$.

For M = 20, the initial price of Lookback Option = 10.7788 For M = 25, the initial price of Lookback Option = 10.2972 For M = 50, the initial price of Lookback Option = 10.5368

<u>Note</u>: Due to limited profiency in MATLAB, I have implemented the Markov based efficient algorithm in C++11 language as it required usage of maps, vectors and pair data types. If required please run the code using the command - 'g++-std=c++11 l3q3.cpp'.