16. SAS Analysis of Split-Plot Experiments

Field Split-Plot Experiment

Read Data

READ TAB-DELIMITED TEXT FILE INTO SAS DATASET CALLED FIELD.

```
proc import datafile='C:\Data\FieldSplitPlotData.txt'
dbms=TAB replace out=Field;
run;

proc print data=Field (obs=14);  PRINT FIRST 14
run;  Rows of Field
To Ourput
```

Obs	block	geno	fert	у
1	1	1	0	148.7
2	1	1	50	150.4
3	1	1	100	166.7
4	1	1	150	156.5
5	1	2	0	162.5
6	1	2	50	168.6
7	1	2	100	180.2
8	1	2	150	181.1
9	1	3	0	144.5
10	1	3	50	177.3
11	1	3	100	188.1
12	1	3	150	199.1
13	2	1	0	114.2
14	2	1	50	131.5

Fit Linear Mixed-Effects Model SPECIFY XB proc mixed data=Field; class block geno fert; model y=geno fert geno*fert / ddfm=satterthwaite; SET DENOMINATOR random block block * geno; DEGREES OF FREEDOM - Specify Zu METHOD TO SATTERTHWAITE $E(y_{ijk}) = \mu + \chi_i + \beta_j + \gamma_{ij} = \mu_{ij}$ b, b2, b3, b4 ind N(0, 02) Wix WN(0,00)

The Mixed Procedure

WE WILL LEAR
a Dr AA/
ABOUT REML
500N.
20

Class			
Class	Levels	Values	
block	4	1234	
geno	3	1 2 3	
fert	4	0 50 100 150	

$$--1=A$$
, $2=B$, $3=C$

The SAS System	σ_b^2 , σ_w^2 , σ_e^2
The Mixed Procedure	A R R R R X Y Y Y
Dimensions	M, d1, d2, d3, B1, B2, B3, B4, Y11,, Y34
Covariance Parameters	
Columns in X	$b_{1}, b_{2}, b_{3}, b_{4}, w_{11}, \dots, w_{34}$
Columns in Z	16
Subjects	1

Number of Observations		
Number of Observations Read	48	
Number of Observations Used	48	
Number of Observations Not Used	0	

Iteration History					
Iteration	Evaluations	-2 Res Log Like	Criterion		
0	1	314.54790074			
1	1	275.05625945	0.00000000		

Convergence criteria met.

Max Obs per Subject

SAS AUTOMATICALLY
DOES THESE TESTS
CORRECTLY
WHETHER DATA
ARE BALANCED
OR NOT.

Fit Statistics		
-2 Res Log Likelihood	275.1	
AIC (Smaller is Better)	281.1	
AICC (Smaller is Better)	281.8	
BIC (Smaller is Better)	279.2	

				_		
Type 3 Tests of Fixed Effects						
Effect Num Den DF F Value Pr > 1						
geno	2	6	8.48	0.0179		
fert	3	27	73.35	<.0001		
geno*fert	6	27	6.54	0.0002		

Example Estimate Statements

$$(M+\alpha_1+\overline{\beta}.-\overline{\lambda}_1.)-(M+\alpha_2+\overline{\beta}.+\overline{\lambda}_2.)=\alpha_1-\alpha_2+\overline{\lambda}_1.-\overline{\lambda}_2.$$
estimate 'geno 1 - geno 2'

geno 4 -4 0

geno*fert 1 1 1 1 -1 -1 -1 -1 0 0 0 0 / divisor=4 cl;

$$(\mu + \lambda_1 + \beta_1 + \gamma_1) - (\mu + \lambda_2 + \beta_1 + \gamma_{21}) = \lambda_1 - \lambda_2 + \gamma_1 - \gamma_{21}$$

estimate 'geno 1 - geno 2 with no fertilizer' geno 1 -1 0 geno*fert 1 0 0 0 -1 0 0 0 0 0 0 / cl; run;

The Mixed Procedure

Estimates								
Label Estimate Standard Lower Upper							Upper	
geno 1	139.83	7.0725	5.13	19.77	<.0001	0.05	121.78	157.87
geno 1 - geno 2	-24.8812	6.2139	6	-4.00	0.0071	0.05	-40.0861	-9.6764
geno 1 - geno 2 with no fertilizer	-22.5000	7.3145	11.2	-3.08	0.0104	0.05	-38.5725	-6.4275

SATTERTHWAITE METHOD USED WHEN NEEDED

Refit Model with Fixed Block Effects

$$E(\gamma_{ijk}) = M + b_k + d_i + \beta_j + \gamma_{ij} = M_{ijk}$$

proc mixed data=Field;

class block geno fert;

model y=block geno fert geno*fert / ddfm=satterthwaite;

random block*geno;

The Mixed Procedure

Model Information				
Data Set	WORK.FIELDEXP			
Dependent Variable	у			
Covariance Structure	Variance Components			
Estimation Method	REML			
Residual Variance Method	Profile			
Fixed Effects SE Method	Model-Based			
Degrees of Freedom Method	Satterthwaite			

Class Level Information						
Class	Levels Values					
block	4	1 2 3 4				
geno	3	1 2 3				
fert	4	0 50 100 150				

Number of Observations		
Number of Observations Read	48	
Number of Observations Used	48	
Number of Observations Not Used	0	

Iteration History			
Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	264.34894774	
1	1	250.15263205	0.00000000

Convergence criteria met

The Mixed Procedure

Covariance Parameter Estimates		/00
Cov Parm	Estimate	/
block*geno	67.2981	// 8e
Residual	39.7061	<u> </u>

Fit Statistics	
-2 Res Log Likelihood	250.2
AIC (Smaller is Better)	254.2
AICC (Smaller is Better)	254.6
BIC (Smaller is Better)	255.1

Type 3 Tests of Fixed Effects				
Effect	Num DF		F Value	Pr > F
block	3	6	5.77	0.0335
geno	2	6	8.48	0.0179
fert	3	27	73.35	<.0001
geno*fert	6	27	6.54	0.0002

SAME AS WHEN BLOCK EFFECTS WERE RANDOM FOR OUR BALANCED DESIGN

Example Estimate Statements

```
estimate 'geno 1' \mu + \bar{b} \cdot + d_1 + \bar{\beta} \cdot + \bar{\gamma}_1
  intercept 4 block 1 1 1 1 geno 4 0 0 fert 1 1 1 1
  geno*fert 1 1 1 1 0 0 0 0 0 0 0 0 / divisor=4 cl;
estimate 'geno 1 - geno 2' \lambda_1 - \lambda_2 + \overline{Y}_1 - \overline{Y}_2
  geno 4 -4 0
  geno*fert 1 1 1 1 -1 -1 -1 -1 0 0 0 0 / divisor=4 cl;
estimate 'geno 1 - geno 2 with no fertilizer'
  geno 1 -1 0 geno*fert 1 0 0 0 -1 0 0 0 0 0 0 / cl;
                di-d= + 111-121
run;
```

SATTERTHWAITE NO LONGER The SAS System NEEDED HERE The Mixed Procedure

Estimates			s					
Label	Estimate	Standard Error		t Value	Pr > t	Alpha	Lower	Upper
geno 1	139.83	4.3939	6	31.82	<.0001	0.05	129.07	150.58
geno 1 - geno 2	-24.8812	6.2139	6	-4.00	0.0071	0.05	-40.0861	-9.6764
geno 1 - geno 2 with no fertilizer	-22.5000	7.3145	11.2	-3.08	0.0104	0.05	-38.5725	-6.4275

SAME AS WHEN
BLOCK EFFECTS
WERE RANDOM
FOR OUR BALANCED
DESIGN

THIS CONFIDENCE
INTERVAL MUCH
NARROWER NOW THAT
BLOCK EFFECTS
ARE MODELED
AS FIXED.

Diet and Drug Split-Plot Experiment

Read Data

```
proc import datafile='C:\Data\DietDrugSplitPlotData.txt'
  dbms=TAB replace out=DietDrug;
run;
proc print data=DietDrug;
run;
```

Obs	litter	diet	drug	у
1	1	1	2	18.8
2	1	1	1	10.3
3	2	2	2	14.5
4	2	2	1	18.5
5	3	1	1	16.8
6	3	1	2	27.2
7	4	1	1	11.5
8	4	1	2	20.5
9	5	2	1	11.9
10	5	2	2	11.3
11	6	2	2	16.4
12	6	2	1	17.6
13	7	2	2	15.4
14	7	2	1	18
15	8	1	2	26.8
16	8	1	1	15.7

Fit Linear Mixed-Effects Model

```
proc mixed data=DietDrug;
  class litter diet drug;
  model y=diet drug diet*drug / ddfm=satterthwaite;
  random litter(diet);
```

The Mixed Procedure

Model Information		
Data Set	WORK.DIETDRUG	
Dependent Variable	у	
Covariance Structure	Variance Components	
Estimation Method	REML	
Residual Variance Method	Profile	
Fixed Effects SE Method	Model-Based	
Degrees of Freedom Method	Satterthwaite	

Class Level Information			
Class	Levels	Values	
litter	8	12345678	
diet	2	1 2	
drug	2	1 2	

The Mixed Procedure

Dimensions	
Covariance Parameters	2
Columns in X	9
Columns in Z	8
Subjects	1
Max Obs per Subject	16

Number of Observations		
Number of Observations Read	16	
Number of Observations Used	16	
Number of Observations Not Used	0	

Iteration History			
Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	68.07389478	
1	1	57.36070457	0.00000000

Convergence criteria met.

The Mixed Procedure

Covariance Parameter Estimates	
Cov Parm	Estimate
litter(diet)	9.7871
Residual	0.9408

Fit Statistics				
-2 Res Log Likelihood	57.4			
AIC (Smaller is Better)	61.4			
AICC (Smaller is Better)	62.7			
BIC (Smaller is Better)	61.5			

Type 3 Tests of Fixed Effects						
Effect	Num DF		F Value	Pr > F		
diet	1	6	1.75	0.2335		
drug	1	6	62.20	0.0002		
diet*drug	1	6	149.25	<.0001		

Estimating Marginal Means, Means, and Contrasts

```
lsmeans diet drug diet*drug;
```

```
estimate 'diet 1 - diet 2' diet 2 -2
diet*drug 1 1 -1 -1 / divisor=2;
```

```
estimate 'drug 1 - drug 2' drug 2 -2
diet*drug 1 -1 1 -1 / divisor=2;
```

More Estimate Statements

```
estimate 'diet 1 - diet 2 for drug 2' diet 1 -1
                                 diet*drug 0 1 0 -1;
```

```
estimate 'drug 1 - drug 2 for diet 2' drug 1 -1
                                  diet*drug 0 0 1 -1;
run;
```

The Mixed Procedure

Estimates					
Label	Estimate	Standard Error	DF	t Value	Pr > t
diet 1 - diet 2	3.0000	2.2647	6	1.32	0.2335
drug 1 - drug 2	-3.8250	0.4850	6	-7.89	0.0002
diet 1 - diet 2 for drug 2	8.9250	2.3160	6.55	3.85	0.0071
drug 1 - drug 2 for diet 2	2.1000	0.6859	6	3.06	0.0222

Least Squares Means							
Effect	diet	drug	Estimate	Standard Error	DF	t Value	Pr > t
diet	1		18.4500	1.6014	6	11.52	<.0001
diet	2		15.4500	1.6014	6	9.65	<.0001
drug		1	15.0375	1.1580	6.55	12.99	<.0001
drug		2	18.8625	1.1580	6.55	16.29	<.0001
diet*drug	1	1	13.5750	1.6377	6.55	8.29	0.0001
diet*drug	1	2	23.3250	1.6377	6.55	14.24	<.0001
diet*drug	2	1	16.5000	1.6377	6.55	10.08	<.0001
diet*drug	2	2	14.4000	1.6377	6.55	8.79	<.0001