并行计算 Parallel Computing

主讲 孙经纬 2024年 春季学期

概要

- 第二篇 并行算法
 - 第九章 稠密矩阵运算
 - 第十章 线性方程组的求解
 - 第十一章 快速傅里叶变换
 - 第十二章 数值计算的基本支撑技术

第九章稠密矩阵运算

• 9.1 矩阵的划分

- 9.1.1 带状划分
- 9.1.2 棋盘划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

划分方法

■ 带状划分(striped partitioning):

one dimensional, row or column,

block or cyclic

■ 棋盘划分(checkerboard partitioning):

two dimensional, block or cyclic

带状划分

■ 16×16阶矩阵, p=4

 0	
 4	 D
 8	 P_0
 12	
 1	
 5	 D
 9	 P ₁
 13	
 2	
 6	 D
 10	 P_2
 14	
 3	
 7	 D
11	 P_3
15	

列块带状划分

图9.1 行循环带状划分

带状划分

■ 示例: p=3, 27× 27矩阵的3种带状划分

Striped row-major mapping of a 27×27 matrix on p = 3 processors.

棋盘划分

■ 8×8阶矩阵, p=16

(0,0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)	(0, 6)	(0, 7)
	\mathbf{P}_0		P_1		\mathbf{P}_2		P_3
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	(1, 7)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	(2, 7)
	\mathbf{P}_4		P_5		P_6		\mathbf{P}_7
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	(3, 7)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	(4, 7)
	P_8		P_9		P ₁₀		P ₁₁
(5, 0)	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	(5, 7)
(6, 0)	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	(6, 7)
	P_{12}		P_{13}		P ₁₄		P ₁₅
(7,0)	(7, 1)	(7, 2)	(7, 3)	(7, 4)	(7, 5)	(7, 6)	(7, 7)

(0,0)	(0, 4)	(0, 1)	(0, 5)	(0, 2)	(0, 6)	(0, 3)	(0,7)
	\mathbf{P}_0	F	D		\mathbf{P}_2		P_3
(4, 0)	(4, 4)	(4, 1)	(4, 5)	(4, 2)	(4, 6)	(4, 3)	(4,7)
(1,0)	(1, 4)	(1, 1)	(1, 5)	(1, 2)	(1, 6)	(1, 3)	(1, 7)
	P_4	I	O		P_6		\mathbf{P}_7
(5, 0)	(5, 4)	(5, 1)	(5, 5)	(5, 2)	(5, 6)	(5, 3)	(5,7)
(2, 0)	(2, 4)	(2, 1)	(2, 5)	(2, 2)	(2, 6)	(2, 3)	(2, 7)
	P_8	I)		P_{10}		P ₁₁
(6, 0)	(6, 4)	(6, 1)	(6, 5)	(6, 2)	(6, 6)	(6, 3)	(6, 7)
(3, 0)	(3, 4)	(3, 1)	(3, 5)	(3, 2)	(3, 6)	(3, 3)	(3, 7)
	P ₁₂	I	2 13		P_{14}		P ₁₅
1	(7, 4)	1					

块棋盘划分

循环棋盘划分

图9.2

(b)

棋盘划分

■ 示例: p = 4, 16×16矩阵的3种棋盘划分

Checkerboard mapping of a 16×16 matrix on $p = 2 \times 2$ processors.

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2 矩阵转置
 - 9.2.1 棋盘划分的矩阵转置
 - 9.2.2 带状划分的矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

复习——通信时间

启动时间t_s 节点延迟时间t_h 字传输时间t_w 链路数/ 信包大小*m*

基本公式

$$T_{comm}(SF) = t_s + (mt_w + t_h) \cdot l \approx t_s + mt_w \cdot l = O(m \cdot l)$$

$$T_{comm}(CT) = t_s + mt_w + lt_h \approx t_s + mt_w = O(m + l)$$

$$p - 环 \qquad \sqrt{p} \times \sqrt{p} - \mathop{\mathop{Fist M}{}}\nolimits_w = O(m + l)$$

$$T_{one-to-one}(SF) : t_s + mt_w \lfloor p/2 \rfloor \qquad t_s + 2mt_w \lfloor \sqrt{p}/2 \rfloor \qquad t_s + mt_w \log p$$

$$T_{one-to-one}(CT) : \qquad t_s + mt_w \qquad \qquad t_s + mt_w \qquad t_s + mt_w$$

$$T_{one-to-one}(SF) : (t_s + mt_w) \lceil p/2 \rceil \qquad 2(t_s + mt_w) \lceil \sqrt{p}/2 \rceil \qquad (t_s + mt_w) \log p$$

$$T_{one-to-all}(CT) : (t_s + mt_w) \log p \qquad (t_s + mt_w) \log p \qquad (t_s + mt_w) \log p$$

$$T_{all-to-all}(SF) : (t_s + mt_w) (p-1) \qquad 2t_s (\sqrt{p}-1) + mt_w (p-1) \qquad t_s \log p + mt_w (p-1)$$

$$T_{all-to-all}(CT) : \qquad \Box \bot \qquad \Box \bot \qquad \Box \bot$$

• 网孔连接 — 情形1: p=n²

下三角的元素: 先上移至对角线, 再右移至目的地址上三角的元素: 先下移至对角线, 再左移至目的地址

(0, 0)	(1, 0)	(2, 0)	(3, 0)
P_0	P_1	P_2	P_3
(0, 1)	(1, 1)	(2, 1)	(3, 1)
P_4	P_5	P_6	$\begin{array}{ c c } \hline P_7 \end{array}$
(0,2)	(1, 2)	(2,2)	(3,2)
P_8	P_9	P_{10}	P_{11}
(0, 3)	(1, 3)	(2, 3)	(3, 3)
P ₁₂	P_{13}	P_{14}	P ₁₅

(b)

图9.3

• 网孔连接 — 情形2: p<n²

-划分: $A_{n \times n}$ 划分成p个大小为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 子块

-算法: ①将子块视为一个元素转置(不同处理器间)

②进行块内转置(同一处理器内)

(b)

 $//2\sqrt{p}(t_s+t_wn^2/p)$ ···通证 $//\frac{n^2}{2n}$ ·····计算

移动单个

总运行时间:

最长移动

距离

$$T_p = \frac{n^2}{2p} + 2t_s\sqrt{p} + 2t_w n^2/\sqrt{p}$$

12

• 超立方连接

• 划分: $A_{n \times n}$ 划分成p个大小为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 子块

• 算法:
①将 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ 转置为 $\begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}$

- ②对A_{ij}<mark>递归</mark>应用①进行转置,直至分块矩阵的元素处于同一处理器;
- ③进行同一处理器的内部转置。

•运行时间:

$$T_{p} = \frac{n^{2}}{2p} + 2(t_{s} + t_{w} \frac{n^{2}}{p}) \log \sqrt{p} \quad //$$
 内部转置 $\frac{n^{2}}{2p}$, 选路: $2(t_{s} + t_{w} \frac{n^{2}}{p})$, 递归步: $\log \sqrt{p}$

$$= \frac{n^{2}}{2p} + (t_{s} + t_{w} \frac{n^{2}}{p}) \log p$$

超立方示例:

带状划分的矩阵转置

• 划分: A_{n×n}分成p个(n/p)×n大小的带

• 算法:

图9.7

- ① P_i 有p-1个(n/p)×(n/p)大小子块发送到另外p-1个处理器中;
- ②每个处理器本地交换相应的元素;
- ③时间分析?

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2 矩阵转置

• 9.3 矩阵-向量乘法

- 9.3.1 带状划分的矩阵-向量乘法
- 9.3.2 棋盘划分的矩阵-向量乘法
- 9.3.3 矩阵-向量乘法的脉动算法
- 9.4 矩阵乘法

矩阵-向量乘法

• 求Y=AX

$$\begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & & a_{1,n-1} \\ \vdots & \vdots & & \vdots \\ a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

$$y_i = \sum_{j=0}^{n-1} a_{ij} \cdot x_j$$

串行算法计算时间 $t(n)=O(n^2)$

带状划分的矩阵-向量乘法

- 划分(行带状划分): P_i存放x_i和a_{i,0},a_{i,1},···,a_{i,n-1}, 并输出y_i
- 算法: 对p=n情形
 - ①每个Pi向其他处理器播送xi(多到多播送);
 - ②每个Pi做相应计算;
- 注: 对p<n情形,算法中P_i要播送X中相应的n/p个分量 (1)超立方连接的计算时间

(2)网孔连接的计算时间

$$T_p = \frac{n^2}{p} + 2(\sqrt{p} - 1)t_s + \frac{n}{p}t_w(p - 1)$$
 // 前1项是乘法时间,后2项是多到多的播送时间
$$= \frac{n^2}{p} + 2t_s(\sqrt{p} - 1) + nt_w$$
 // p充分大时 18

 $T_{all-to-all}(CT): 2t_s(\sqrt{p}-1) + mt_w(p-1) t_s \log p + mt_w(p-1)$

带状划分的矩阵-向量乘法

矩阵 A 向量 X 处理器

图9.8

棋盘划分的矩阵-向量乘法

- 划分(块棋盘划分): P_{ii}存放a_{i,j}, x_i置入P_{i,i}中
- 算法: 对p=n²情形
- ①每个Pii向Pii播送xi(列方向一到多播送);
- ②按行方向进行乘-加与积累运算,最后一列P_{in-1}收集的结果为y_i;
- 对 $p < n^2$ 情形,p个处理器排成 $\sqrt{p} \times \sqrt{p}$ 的二维网孔,

算法中 $P_{i,i}$ 向 $P_{i,i}$ 播送X中相应的 n/\sqrt{p} 个分量

棋盘划分的矩阵-向量乘法

• 示例

带状与棋盘划分比较

以网孔连接为例

• 网孔上带状划分的运行时间

$$T_p = \frac{n^2}{p} + 2t_s(\sqrt{p} - 1) + nt_w \tag{9.5}$$

• 网孔上棋盘划分的运行时间

$$T_p \approx \frac{n^2}{p} + t_s \log p + \frac{n}{\sqrt{p}} t_w \log p + 3t_h \sqrt{p}$$
 (9.6)

• 棋盘划分要比带状划分快(在超立方上也是)

矩阵-向量乘法的脉动算法

•一维阵列示例

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法

• 9.4 矩阵乘法

- 9.4.1 简单并行分块乘法
- 9.4.2 Cannon乘法
- 9.4.3 Fox乘法
- 9.4.4 Systolic乘法
- 9.4.5 DNS乘法

矩阵乘法符号及定义

设
$$A = (a_{ij})_{n \times n}$$
 $B = (b_{ij})_{n \times n}$ $C = (c_{ij})_{n \times n}$, $C = A \times B$

$$\begin{pmatrix} c_{0,0} & c_{0,1} & \cdots & c_{0,n-1} \\ c_{1,0} & c_{1,1} & & c_{1,n-1} \\ \vdots & \vdots & & \vdots \\ c_{n-1,0} & c_{n-1,1} & \cdots & c_{n-1,n-1} \end{pmatrix} = \begin{pmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & & a_{1,n-1} \\ \vdots & \vdots & & \vdots \\ a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,n-1} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \cdots & b_{0,n-1} \\ b_{1,0} & b_{1,1} & & b_{1,n-1} \\ \vdots & \vdots & & \vdots \\ b_{n-1,0} & b_{n-1,1} & \cdots & b_{n-1,n-1} \end{pmatrix}$$

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$
 A中元素的第2下标与 B中元素的第1下标相一致(对准)

矩阵乘法并行实现方法

•空间对准(元素已加载到阵列中) Cannon's, Fox's, DNS

•时间对准(元素未加载到阵列中)

Systolic

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

简单并行分块乘法

- 分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的方块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$,大小均为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$
- 算法:
 - ①通讯:每行处理器进行A矩阵块的多到多播送(得到 $A_{i,k}$, $k=0\sim\sqrt{p}-1$) 每列处理器进行B矩阵块的多到多播送(得到 $B_{k,i}$, $k=0\sim\sqrt{p}-1$)
 - ②乘-加运算: $P_{i,j}$ 计算 $C_{ij} = \sum_{k=0}^{\sqrt{p-1}} A_{ik} \cdot B_{kj}$
- 运行时间
 - (1)超立方连接:

①的时间
$$t_1 = 2(t_s \log \sqrt{p} + t_w \frac{n^2}{p}(\sqrt{p} - 1))$$
②的时间 $t_2 = \sqrt{p} \times (\frac{n}{\sqrt{p}})^3 = n^3 / p$

$$\therefore T_p = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}$$

简单并行分块乘法

•运行时间

- (1)超立方连接:
- (2)二维环绕网孔连接:

①的时间:
$$t_1 = 2(t_s + \frac{n^2}{p}t_w)(\sqrt{p} - 1) = 2t_s\sqrt{p} + 2t_w\frac{n^2}{\sqrt{p}}$$

②的时间: t₂=n³/p

$$T_p = \frac{n^3}{p} + 2t_s \sqrt{p} + 2t_w \frac{n^2}{\sqrt{p}}$$

• 注

(1)本算法的缺点是对处理器的存储要求过大

每个处理器有 $2\sqrt{p}$ 个块,每块大小为 n^2/p ,

所以需要 $O(n^2/\sqrt{p})$ 空间, p个处理器共需要 $O(n^2\sqrt{p})$,

是串行算法的 \sqrt{p} 倍

 $(2)p=n^2$ 时, t(n)=O(n), $c(n)=O(n^3)$

• 分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的方块阵 $A_{i,i}$ 、 $B_{i,i}$ 和 $C_{i,j}$,大小 均为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$, p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $P_{i,i}$ 存放 $A_{i,i}$ 、 $B_{i,i}$ 和 $C_{i,i}$ (n > > p)

• 设计原则

• 避免多到多播送所有数据

• 通过循环位移,减少存储

					_
$\frac{n}{\sqrt{p}}$	P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	
· 据	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	$\rightarrow n$
储	P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	
	P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	
					<i>,</i>
		$\sqrt{}$	p		29

- 算法步骤 (1969年)
 - ①所有块 $A_{i,j}(0 \le i,j \le \sqrt{p}-1)$ 向左循环移动i步(按行移位); 所有块 $B_{i,j}(0 \le i,j \le \sqrt{p}-1)$ 向上循环移动j步(按列移位);
 - ②所有处理器 $P_{i,j}$ 做执行 $A_{i,j}$ 和 $B_{i,j}$ 的乘-加运算;
 - ③A的每个块向左循环移动一步; B的每个块向上循环移动一步;
 - ④转②执行 \sqrt{p} -1次;

• 示例: A_{4×4}, B_{4×4}, p=16

Initial alignment of A

Initial alignment of B

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

• 示例: A_{4×4}, B_{4×4}, p=16

A and B after initial alignment and shifts after every step

• 示例: A_{4×4}, B_{4×4}, p=16

After first shift

4		4	111111
 A _{0,1} B _{1,0}	A _{0,2} B _{2,1}	A _{0,3} B _{3,2}	A _{0,0} B _{0,3}
 A _{1,2} B _{2,0}	A _{1,3} B _{3,1}	A _{1,0} B _{0,2}	A _{1,1} B _{1,3}
A _{2,3} B _{3,0}	A _{2,0} B _{0,1}	A _{2,1} B _{1,2}	A _{2,2} B _{2,3}
A _{3,0} B _{0,0}	A _{3,1} B _{3,1}	A _{3,2} B _{2,2}	A _{3,3} B _{3,3}

After second shift

After third shift

4.			11111
 A _{0,3} B _{3,0}	A _{0,0} B _{0,1}	A _{0,1} B _{1,2}	A _{0,2} B _{2,3}
A _{1,0} B _{0,0}	A _{1,1} B _{1,1}	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}
A _{2,1} B _{1,0}	A _{2,2} B _{2,1}	A _{2,3} B _{3,2}	A _{2,0} B _{0,3}
A _{3,2} B _{2,0}	A _{3,3} B _{3,1}	A _{3,0} B _{0,2}	A _{3,1} B _{1,3}

• 算法描述

```
//输入: A<sub>n×n</sub>, B<sub>n×n</sub>; 输出: C<sub>n×n</sub>
  Begin
       (1) for k=0 to \sqrt{p-1} do
               for all P<sub>i,i</sub> par-do
                  (i) if i>k then
                         A_{i,i} \leftarrow A_{i,(i+1) \mod \sqrt{p}}
                      endif
                  (ii)if j>k then
                         B_{i,i} \leftarrow B_{(i+1) \mod \sqrt{p}}
                       endif
                endfor
           endfor
       (2) for all P_{i,i} par-do C_{i,i}=0 end for
```

```
(3) for k=0 to \sqrt{p}-1 do for all P_{i,j} par-do (i) C_{i,j}=C_{i,j}+A_{i,j}B_{i,j} (ii) A_{i,j} \leftarrow A_{i,(j+1) \text{mod } \sqrt{p}} (iii) B_{i,j} \leftarrow B_{(i+1) \text{mod } \sqrt{p}, j} endfor endfor
```

粗略的时间分析:

$$T_{p}(n) = T_{1} + T_{2} + T_{3}$$

$$= O(\sqrt{p}) + O(1) + O(\sqrt{p} \cdot (n/\sqrt{p})^{3})$$

$$= O(n^{3}/p)$$

时间分析

• 超立方连接, CT选路模式:

$$t_1 = 2(t_s + t_w \frac{n^2}{p} + t_h \log \sqrt{p}), \quad t_2 = (n/\sqrt{p})^3, \quad t_3 = 2(t_s + t_w \frac{n^2}{p})$$

②和③执行 $\sqrt{p}-1$ 次,所以运行时间为

$$T_p = t_1 + \sqrt{p}(t_2 + t_3) = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}$$

• 二维网孔连接:

$$t_1 = 2(t_s + t_w \frac{n^2}{p}) \sqrt{p}, \quad t_2 = (n/\sqrt{p})^3, \quad t_3 = 2(t_s + t_w \frac{n^2}{p})$$

②和③执行 $\sqrt{p}-1$ 次,所以运行时间为

$$T_p = t_1 + \sqrt{p}(t_2 + t_3) = \frac{n^3}{p} + 4\sqrt{p}t_s + 4t_w \frac{n^2}{\sqrt{p}}$$

Fox乘法

- 算法步骤(1987年)
- ①A_{i,i}向所在行的其他处理器 进行一到多播送;
- ②各处理器将收到的A块与原有的B块进行乘-加运算;
- ③B块向上循环移动一步;

④如果A _{i,j} 是上次第i行播送的块,	本次选择 $A_{i,(j+1) \mod \sqrt{p}}$	向所
在行的其他处理器进行一到多播	<u>送</u> ;	

⑤转②执行 \sqrt{p} –1次;

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

Fox乘法

• 示例: A_{4×4}, B_{4×4}, p=16

第1步

第2步

Fox乘法

• 示例: A_{4×4}, B_{4×4}, p=16

第3步

第4步

Fox乘法

时间分析

• 超立方连接, CT选路模式:

$$t_1 = t_4 = (t_s + t_w \frac{n^2}{p}) \log \sqrt{p}, \quad t_2 = (n/\sqrt{p})^3, \quad t_3 = t_s + t_w \frac{n^2}{p}$$

②、③和4(含①)执行 \sqrt{p} 次,所以运行时间为

$$T_p = \sqrt{p}(t_2 + t_3 + t_4) = \frac{n^3}{p} + \frac{1}{2}(t_s + t_w \frac{n^2}{p})\sqrt{p}\log p$$

当p=n²时, t(n)=O(nlogn)

• 二维网孔连接 (思考?)

```
■ Systolic算法 (H.T. Kung)
//输入: A<sub>m×n</sub>, B<sub>n×k</sub>; 输出: C<sub>m×k</sub>
 Begin
     for i=1 to m par- do
           for j=1 to k par-do
            (i) c_{i,i} = 0
            (ii) while P<sub>i,i</sub> 收到a和b时 do
                   c_{i,i} = c_{i,i} + ab
                   if i < m then 发送b给P<sub>i+1,i</sub> endif //传给右一列
                   if j < k then 发送a给P<sub>i,i+1</sub> endif //传给下一行
                endwhile
            endfor
       endfor
 End
```


Step 6

$$c_{1,1} = a_{1,1} b_{1,1} + a_{1,2} b_{2,1} + a_{1,3} b_{3,1} + a_{1,4} b_{4,1}$$

$$c_{1,2} = a_{1,1} b_{1,2} + a_{1,2} b_{2,2} + a_{1,3} b_{3,2} + a_{1,4} b_{4,2}$$
.....

Over

Motivation: From a good and common idea

Motivation: From a good and common idea

- ■背景: 1981年由Dekel、Nassimi和Sahni提出的SIMD-CC上的矩阵乘法, 处理器数目为n³, 运行时间为O(logn), 是一种速度很快的算法。
- ■基本思想: 通过一到一和一到多的播送办法,使得处理器(k,i,j)拥有a_{i,k}和b_{k,j}, 进行本地相乘,再沿k方向进行单点积累求和,结果存储在处理器(0,i,j)中。

- 处理器编号: 处理器数p=n³= (2q)³=2³q, 处理器P_r位于位置 (k,i,j), 这里r=kn²+in+j, (0≤i, j, k≤n-1)。位于(k,i,j)的处理器P_r 的三个寄存器A_r,B_r,C_r分别表示为A[k,i,j], B[k,i,j]和C[k,i,j], 初始时 均为0。
- ■算法: 初始时a_{i,i}和b_{i,j}存储于寄存器A[0,i,j]和B[0,i,j];
 - ①数据复制:A,B同时在k维复制(一到一播送); A在j维复制(一到多播送); B在i维复制(一到多播送);
 - ②相乘运算:所有处理器的A、B寄存器两两相乘;
 - ③求和运算:沿k方向进行单点积累求和;

■ 示例

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$B = \begin{pmatrix} -5 & -6 \\ 7 & 8 \end{pmatrix}$$

求
$$C = A \times B$$

$$C00=1\times(-5)+2\times7=9$$

 $C01=1\times(-6)+2\times8=10$
 $C10=3\times(-5)+4\times7=13$
 $C11=3\times(-6)+4\times8=14$

(a)初始加载

(d)B沿i维复制

(b)A,B沿k维复制

(e)点积

图9.12

(c)A沿j维复制

(f)沿k维求和

```
//今r<sup>(m)</sup>表示r的第m位取反:
//{p, r<sub>m</sub>=d}表示r(0≤r≤p-1)的集合, 这里r的二
//进制第m位为d:
                                                                       (3)for m=2q-1 to q do //按i维复制B,m=1
//输入: A<sub>n×n</sub>, B<sub>n×n</sub>; 输出: C<sub>n×n</sub>
                                                                                     for all r in \{p, r_m = r_{q+m}\} par-do//r_1 = r_2 的r
  Begin //以n=2, p=8=2<sup>3</sup>举例, q=1, r=(r<sub>2</sub>r<sub>1</sub>r<sub>0</sub>)<sub>2</sub>
                                                                                          B_{r(m)} \leftarrow B_{r} //B(010) \leftarrow B(000), B(100) \leftarrow B(110)
      (1)for m=3q-1 to 2q do //按k维复制A,B, m=2
                                                                                      endfor
                                                                                                         //B(011) \leftarrow B(001), B(101) \leftarrow B(111)
              for all r in \{p, r_m=0\} par-do //r_2=0的r
                                                                                  endfor
                 (1.1) A_{r(m)} \leftarrow A_r //A(100)←A(000)等
                                                                             (4)for r=0 to p-1 par-do //相乘, all P<sub>r</sub>
                 (1.2) B<sub>r(m)</sub> ← B<sub>r</sub> //B(100)←B(000)等
                                                                                     C_r = A_r \times B_r
              endfor
                                                                                 endfor
          endfor
                                                                             (5)for m=2q to 3q-1 do //求和,m=2
       (2)for m=q-1 to 0 do //按i维复制A, m=0
                                                                                     for r=0 to p-1 par-do
              for all r in \{p, r_m = r_{2q+m}\} par-do //r_0 = r_2的r
                                                                                         C_r = C_r + C_{r(m)}
                  \mathsf{A}_\mathsf{r}(\mathsf{m}) \xleftarrow{} \mathsf{A}_\mathsf{r} \  \, /\!/\mathsf{A}(001) \xleftarrow{} \mathsf{A}(000), \mathsf{A}(100) \xleftarrow{} \mathsf{A}(101)
                                                                                      endfor
              endfor
                               //A(011) \leftarrow A(010), A(110) \leftarrow A(111)
                                                                                 endfor
          endfor
                                                                         End
```


