Password Strength Evaluation Report

Cybersecurity Internship Reported by Thumma Kiranmai Date: June 03, 2025

Password admin

• Score: 7% (Very Weak)

Additions:

- Only 5 characters → Minimal bonus for length (+20).
- o Only contains lowercase letters.

Deductions:

- $\circ \quad \text{Letters only} \to \text{-5 points}.$
- Fails most requirement checks (no uppercase, numbers, symbols, etc.).

Conclusion: A very basic and insecure password. Easily guessable and doesn't meet most minimum security criteria.

Password hello123

• Score: 37% (Weak)

• Additions:

- 8 characters long → Moderate bonus (+32).
- o Contains lowercase letters (+6) and numbers (+12).
- o Passes minimum requirements (+4).

Deductions:

 \circ Contains repeated characters and consecutive lowercase letters (e.g., 11, 1o) \rightarrow total of -10 points.

Conclusion: A bit stronger due to the mix of letters and numbers, but still weak. Could be brute-forced or guessed.

Password P@ssw0rd!

• Score: 82% (Very Strong)

• Additions:

- o 9 characters long (+36).
- Mix of uppercase (P), lowercase (sswrd), number (0), and symbols
 (@, !) → Large bonus from complexity.
- Meets all minimum requirements (+10).

• Deductions:

 A minor penalty for a repeated character and consecutive lowercase letters (e.g., ss) → -8 total.

Conclusion: A **very strong password**, thanks to length and complexity. Despite slight repetition, it performs well.

Password Example: h@ckm3n0w!

Score

78% - Strong

A strong password with good complexity and structure.

Additions

9 characters with uppercase, lowercase, numbers, and symbols. Meets all complexity and security criteria.

Deductions

Minor penalty for repeated characters (ss) and consecutive lowercase letters.

Slight deduction due to predictability in structure.

Conclusion

Strong and secure password, suitable for most services. Minor weaknesses, but overall provides solid protection.

Best Practices for Creating Strong Passwords

1. Use at Least 12-16 Characters

- Longer passwords are significantly harder to crack than short ones.
- Each additional character exponentially increases the number of possible combinations.

2. Mix Different Character Types

- Include:
 - Uppercase (A–Z)
 - Lowercase (a–z)
 - Numbers (0–9)
 - Symbols (!@#\$%^&* etc.)
- Example: T1m3T0\$urviv3!

3. Avoid Personal Information

- Do not use names, birthdates, or usernames.
- These are easily guessable and often exposed in data leaks.

4. Avoid Common Passwords

- Never use passwords like 123456, qwerty, password, or admin123.
- These are first tested in dictionary attacks.

5. Do Not Use Repeated or Sequential Characters

- Avoid patterns like aaaa1111 or abcdefg.
- Predictable patterns reduce password strength.

6. Use Passphrases for Better Memorability

- Create a sentence-like password, such as Blue_Tree\$Falls97!
- Easier to remember, but still strong if random and long.

7. Use a Password Manager

- Password managers can:
 - Generate strong, random passwords.
 - Store them securely.
 - o Automatically fill them on websites.

8. Change Passwords After Breaches

- Always update passwords if a service you use is breached.
- Use tools like haveibeenpwned.com to check.

9. Don't Reuse Passwords Across Sites

• If one password gets compromised, it can be used to access your other accounts (credential stuffing attack).

10. Enable Multi-Factor Authentication (MFA)

- Even if your password is leaked, MFA can stop unauthorized access.
- Use authenticator apps (like Google Authenticator) or hardware keys.

Tips for Creating Strong Passwords

1. Use at least 12 characters:

Short passwords are easier to brute-force. A longer password increases the number of combinations, making it harder to crack.

2. Mix uppercase, lowercase, numbers, and symbols:

Using a combination like P@ssW0rd#123! adds complexity and increases entropy (randomness), making it more secure.

3. Avoid dictionary words or personal information:

Passwords like sunshine or John1999 are easily guessed or cracked using dictionary attacks or social engineering.

4. Never reuse passwords across sites:

If one site is breached, attackers can try your password elsewhere (this is known as credential stuffing).

5. Prefer passphrases:

A passphrase like BlueTiger\$Walks92! is easy to remember but difficult to guess. Passphrases can be random but memorable.

6. Use a password manager:

Password managers can generate and store strong, unique passwords for each account securely, so you don't need to remember them all.

7. Change passwords regularly, especially after a breach:

Frequent updates reduce the window of vulnerability if your credentials are compromised.

Common Password Attacks

1. Brute Force Attack:

A computer tries every possible combination of characters. Simple passwords are cracked within seconds this way.

2. Dictionary Attack:

Uses a list of common words and known passwords. If your password is something like hello123, it's likely in the list.

3. Credential Stuffing:

Hackers use leaked username-password pairs from past breaches to try logging in on other sites.

4. Phishing:

Attackers trick users into revealing passwords via fake emails or login pages that look legitimate.

5. Keylogging:

Malware secretly records everything you type, including your passwords, and sends it to the attacker.

How Password Complexity Affects Security (Explained)

• Higher entropy = higher security:

Entropy refers to how unpredictable your password is. More varied characters = harder to guess.

• Character diversity matters:

A password like M@rble2025\$Sky is far stronger than marble2025sky, even if both are the same length.

Avoid common patterns:

Sequences (12345) or repeated characters (aaaa) are predictable and penalized by strength checkers.

• Security tools measure strength:

Password meters deduct points for simplicity, known patterns, and dictionary matches.

Strong passwords resist automated attacks:

Complex, long passwords with no patterns take years (or more) to crack using modern tools.