	MA	E 15	8	Lec.	tur	ع	17				
	MA	No	U,	26	2	0	24				
Announ	lemen.	 : c	No	q	wi	2	th	is	We	ek	
				•							
			No	HL	\mathcal{Y}	\mathcal{H}	nis	U	see k		
					ast	H	W	to	be	DOS-	ted
			No		/	Mon	day	L)ee	k'	10)
	8.										
Todays	0 bjec	rives:	۷	Sta	ibí,	lot	1	(ont)	
						C)				
last	TIM	e:									
										•	
	. 1	. 1	<u></u>	1	(, (1			
Lond	zitud	inal	5	ta	り人	עליג	<i>(</i>	Nh	en		
	J	dCm	_ <	<		O					
		9	C _L -								
		0	1.			N) /	n		
Sol	ve	Loca	tio	M	9	ŕ		, (N		
Th	at	Le ac	کل	40)		rta	bil	H	1	•

Conca = Mag = Conac + Clw:X - Clh Sh.lh. 7+Cm=

TSwC

To horiz. tail

efficiency

wing chord wing (Aerodynamic

MAC, - Not
MAC, - Notexposed MAC)
Refer total drag
Lecture get Stable condition if de 0 limiting condition @ JCM = 0 L> When X positioned I such that
this is true -> neutral stability

· CG forward of this position

> stability · CG aft of this position -> unstable Note we want den total Aircraft CL Not wing Cz! L= Lw+ LH·NH total divide by 9 Sw CL = CLW + MH CLH SW

Start by Solving JCM

Start by Solving JCM

Recall JCMac = 0 CMCG = MCG = CMC + CLWX - CLH[SH:LH]. 1+CMF TSWC = TSWC | SWE] H dCmcg = x - dCin (SHRH) 1 + dCmF dCiw (SwE) 1 + dCiw by definition, demac = 0 because Mac is invariant with C. by definition Lo air foil lecture

What is dCity? Clwing = dCw & CLH = dCLH. XH T JX = from CL Curve horizontal tail in general, dn=d-& Angle of downu downwash
due to wing (induced
drag
Jecture) affack @ tail JCLH = JCLH JXH = JCLH (1- JE) JXH JX JXH JX J CLH / JOH (1- 28) 2 CLH = d CLW/dx plug into ()

= dCm. | + dCiH/dan (- dE) SH MH

d Ciw/da (- da) Sw MH Note lh=lh+x, lh=lh'-x Plug in @, & lH = lH'-X re -write just in terms of x
given dCmc6 = X - [dCLH/dxH(1-dE). SHlH.n. - dCm]
dCL CL C [dCLW/da (dx) Swc H dCLF] 1+ dCuy/dd (1-dE) SH MI dCuy/dd (1-dE) SW MI 1 Lift curves given induced 2129 Lecture daw day day tail

solve for newtral Stability $\frac{\partial C_{ncG}}{\partial c_{L}} = 0 \Rightarrow \frac{x}{z}$ @ this location, we call it the <u>Weutral</u> Point Static Margin Jet AC which wing & horizontal fail geometry is the following

$$= \frac{\times}{C} - \left(\frac{0.0768}{0.0831}(1-0.43) \cdot 0.9 \cdot 559.1(212)}{2927(227)}\right)$$

$$- (-0.616)$$

$$- (-0.43) \cdot \frac{559}{2927}(.9)$$

$$- 0.0831 (1-0.43) \cdot \frac{559}{2927}(.9)$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

$$- 0.10$$

