FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen

Aufgabenblatt 3: Reguläre Ausdrücke und Satz von Kleene

Präsenzaufgabe 3.1: Sei $\Sigma = \{0,1\}$. Konstruieren Sie nach der in der Vorlesung behandelten Konstruktionsvorschrift (i.w. Satz 14.2 und Folie 119) zu dem regulären Ausdruck

$$E = 0(0+1)0^*$$

einen ϵ -FA A, so dass $M_E = L(A)$ gilt.

Präsenzaufgabe 3.2:

1. Berechnen Sie mit Hilfe des Kleene-Verfahrens aus folgendem NFA A einen regulären Ausdruck. Nutzen Sie dabei Vereinfachungen wie $\emptyset \cdot M = \emptyset$, $\emptyset^* = \{\epsilon\}$, $(\{\epsilon\} \cup A)^* = A^*$, $AA^* = A^+$, $A \cup AB^+ = AB^*$ etc.

2. Sei $A \subseteq \Sigma^*$. Beweisen Sie $(\{\epsilon\} \cup A)^* = A^*$.

Übungsaufgabe 3.3: Sei $\Sigma = \{0,1\}$. Konstruieren Sie nach der in der Vorlesung behandelten Konstruktionsvorschrift (i.w. Satz 14.2 und Folie 119) zu folgenden regulären Ausdrücken E jeweils einen ϵ -FA A, so dass $M_E = L(A)$ gilt.

von 4

- 1. E = 010
- 2. $E = 0^*(0+1)^*0$
- 3. E = 0*(1(0+1)*0)*

Übungsaufgabe 3.4: Konstruieren Sie mit Hilfe des Kleene-Verfahrens aus folgendem NFA A einen äquivalenten regulären Ausruck. Nutzen Sie dabei Vereinfachungen wie $\emptyset \cdot M = \emptyset$, $\emptyset^* = \{\epsilon\}$, $AA^* = A^+$, $A \cup AB^+ = AB^*$, $(\{\epsilon\} \cup A)^* = A^*$ etc.

von 4

Übungsaufgabe 3.5: Die Menge der erweiterten regulären Ausdrücke (ERA) über Σ ist folgendermaßen definiert:

von 4

- 1. Die Konstante \emptyset ist ein erweiterter regulärer Ausdruck. Er steht für die Menge $M_{\emptyset} := \emptyset$.
- 2. Für jedes $a \in \Sigma$ ist a ein erweiterter regulärer Ausdruck. Er steht für die Menge $M_a := \{a\}$.
- 3. Wenn E_1 und E_2 erweiterte reguläre Ausdrücke sind, dann auch $(E_1 \cdot E_2)$. Er steht für die Menge $M_{(E_1 \cdot E_2)} := M_{E_1} \cdot M_{E_2}$.
- 4. Wenn E ein erweiterter regulärer Ausdruck ist, dann auch E^* . Er steht für die Menge $M_{E^*} := (M_E)^*$.
- 5. Wenn E ein erweiterter regulärer Ausdruck ist, dann auch (-E). Er steht für die Menge $M_{(-E)}:=\Sigma^*\setminus M_E$.
- 6. Wenn E_1 und E_2 erweiterte reguläre Ausdrücke sind, dann auch $(E_1 \otimes E_2)$ einer. Er beschreibt die Menge $M_{(E_1 \otimes E_2)} := M_{E_1} \cap M_{E_2}$.
- 1. Zeigen Sie: Jeder erweiterte reguläre Ausdruck E beschreibt eine reguläre Menge.
- 2. Zeigen Sie: Zu jedem erweiterten regulären Ausdruck E existiert ein regulärer Ausdruck E', der die gleiche Menge beschreibt.

Version vom 13. April 2012

Bisher erreichbare Punktzahl: