Modes d'opération

Tristan Bertin Jonathan Thieuleux

École Supérieure d'Informatique, Électronique, Automatique

16 novembre 2015

Sommaire

Présentation

Les Modes

ECB

CBC

CTS

XEX

XTS

GCM

OFB

Sommaire

Présentation

Les Modes

Présentation

C'est quoi un mode?

- ► Traiter les blocs chiffrés/clairs
- ▶ Utilise un algorithme de chiffrement par bloc
- ► Indépendant de l'algorithme de chiffrement
- ► En théorie, indépendant de la taille des blocs

Présentation

Ça sert à quoi dans la vie de tous les jours?

- ► Ajoute une sécurité en plus du chiffrement
 - Propagation d'erreurs (pas tous les modes)
 - Sécurité adaptée au média
- Protection de l'intégrité des données
- ▶ Certains modes associent chiffrement et authentification.

Sommaire

Présentation

Les Modes

ECB

CBC

CTS

XEX

_\\\

 XTS

 GCM

OFB

ECB

ECB

- ► Electronic CodeBook
- ► Mode intuitif

ECB

Problèmes

► La Redondance

CBC

CBC

- ► Cipher Block Chaining
- ► Application d'un OU exclusif sur chaque bloc
- ► Vecteur d'initialisation
- ► Utilisé dans les communications

CBC

Chiffrement

Cipher Block Chaining (CBC) mode encryption

Déchiffrement

Cipher Block Chaining (CBC) mode decryption

PCBC: Propagating CBC

Chiffrement:

Propagating Cipher Block Chaining (PCBC) mode encryption

PCBC: Propagating CBC

Déchiffrement :

Propagating Cipher Block Chaining (PCBC) mode decryption

PCBC : Propagating CBC

Conclusion:

- ► Non parallélisation
- ► Propagation d'erreurs
- ► Indépendant de l'algorithme de chiffrement

CTS

CTS

- ► CipherText Stealing
- ► CBC + Stealing
- ▶ Permet de travailler avec un message à taille variable (Message % taille de bloc!= 0)

CTS

CTS

XEX

XEX

- ► Xor-Encrypt-Xor
- Créé par Rogaway
- ▶ Utilise la propriété mathématique $(a \oplus b) \oplus b = a$
- ► XEX est souvent utilisé avec d'autres modes
- ▶ Permet un traitement efficace des blocs
- Créé pour le stockage de données sur un périphérique (USB, Disque dur, etc..)

XEX

Fonctionnement

$$X = Enc(I) \otimes \alpha^{j}$$
$$C = Enc(P \oplus X) \oplus X$$

- ▶ P est le texte clair
- ▶ I est le numéro du secteur (avantage pour le stockage)
- ▶ α est un élément primitif du corps de Galois $GF(2^{128})$ défini par un polynôme (ex : 2)
- ▶ *j* Nombre de blocs par secteur

XTS

XTS

- XEX-based Tweaked-codebook mode with ciphertext Stealing
- ➤ XEX + Stealing
- ► Apparu en 2007
- ► Mise au point par l'IEEE (Std. 1619-2007)
- ▶ Créé pour l'AES¹
- Utilisé pour le stockage de données sur un périphérique.
- Mode le plus présent dans les outils de chiffrement (Truecrypt, zulucrypt, etc)

Multiplication par un élément primitif

$$a_{i+1}[0] \leftarrow (\alpha \cdot (a_i[0] \mod 128)) \oplus (135 \cdot \lfloor \frac{a_i[15]}{128} \rfloor)$$

$$a_{i+1}[k] \leftarrow (\alpha \cdot (a_i[k] \mod 128)) \oplus \cdot \lfloor \frac{a_i[k-1]}{128} \rfloor$$
où $k = \{1, 2, \dots, 15\}, \quad \alpha = 2$

1) XTS-AES-blockEnc $(K, P_1, i, 1)$ M-2) XTS-AES-blockEnc $(K, P_{m-2}, i, m-2)$

Chiffrement d'une unité de données Key_2 AES-enc Key_1 $K=Key_1|Key_2$ Key_1 Key_2 Key_1 Key_1 Key_1 Key_2 Key_1 Key_1 Key_2 Key_1

 C_1

 C_0

 C_{m-2}

Texte Stealing

XTS Déchiffrement

XTS Déchiffrement

XTS

Conclusion:

- ► Parallélisable
- ► Pas de propagation d'erreurs
- ► Indépendant de l'algorithme de chiffrement

GCM

Présentation:

Mode de chiffrement en deux parties :

- ► Counter mode
- ▶ Galois authentication

Pour des blocs de 128 et 64 bits.

Explications:

Compteur initialisé au début, incrémenté à chaque nouveau bloc. Chiffré avec l'algorithme choisi puis xoré avec le bloc de texte

chiffré.

Deux méthodes d'initialisation.

Initial is at ions:

Chiffrement:

Conclusion:

- ▶ Parallélisable
- ► Pas de propagation d'erreurs
- ► Indépendant de l'algorithme de chiffrement

Fonctionnement:

- La longueur des blocs dépend de l'algorithme de chiffrement,
- ► Chiffre un vecteur d'initialisation,
- ► Le résultat est xoré avec le premier bloc de texte clair et donne le chiffré,
- ► Le résultat du chiffrement est utilisé comme bloc d'entrée dans le second cycle.
- ▶ Pas de fonction de déchiffrement

Chiffrement:

Output Feedback (OFB) mode encryption

Déchiffrement :

Output Feedback (OFB) mode decryption

Conclusions:

- ► Non parallélisable
- ► Pas de propagation d'erreurs
- ► Dépendant de l'algorithme de chiffrement

Présentation:

- ► Semblable au OFB
- ► Seul le bloc d'entrée du cycle suivant change. Il s'agit du chiffré du bloc actuel

Chiffrement:

Cipher Feedback (CFB) mode encryption

Déchiffrement :

Cipher Feedback (CFB) mode decryption

Conclusion:

- ► Chiffrement non parallélisable / Déchiffrement oui
- ► Propagation d'erreurs
- ► Dépendant de l'algorithme de chiffrement

Sources

Sources

- ► Wikipedia : Mode d'opération
- ► Evaluation of Some Blockcipher Modes of Operation : NIST

Questions

