

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

# Tablice wielodzielcze Testy niezależności oraz test jednorodności χ²

Statystyka

Dr inż. Janusz Majewski Katedra Informatyki



Przykład: Jako część studiów nad jednostronnością u człowieka badany był związek między prawo- i leworęcznością a dominacją prawo- i lewooczną.

|           |            | Dominacja ręki |             | Dagam |
|-----------|------------|----------------|-------------|-------|
|           |            | Leworęczni     | Praworęczni | Razem |
| Dominacja | Lewooczni  | 27             | 110         | 137   |
| oka       | Prawooczni | 27             | 236         | 263   |
| Razem     |            | 54             | 346         | 400   |



|           |            | Dominacja ręki |             | Dagam |
|-----------|------------|----------------|-------------|-------|
|           |            | Leworęczni     | Praworęczni | Razem |
| Dominacja | Lewooczni  | 27             | 110         | 137   |
| oka       | Prawooczni | 27             | 236         | 263   |
| Razem     |            | 54             | 346         | 400   |

W teście McNemara chodziło o weryfikację hipotezy parametrycznej: czy frakcja leworęcznych jest identyczna jak frakcja lewoocznych? Tutaj chodzi o weryfikację hipotezy nieparametrycznej: czy istnieje związek między leworęcznością a lewoocznością? Hipoteza zerowa, jak zwykle "neutralna", mówi, że związku nie ma, hipoteza alternatywna twierdzi, że związek ten istnieje. Omawiany test nazywamy testem niezależności chi-kwadrat.



|                |           | Dominacja ręki |             | Dagam |
|----------------|-----------|----------------|-------------|-------|
|                |           | Leworęczni     | Praworęczni | Razem |
| Dominacja      | Lewooczni | 27             | 110         | 137   |
| oka Prawooczni |           | 27             | 236         | 263   |
| Razem          |           | 54             | 346         | 400   |

Jeżeli hipoteza zerowa byłaby prawdziwa, to oczekiwane liczebności w polach tabeli powinny spełniać zależność:

$$E = \frac{suma\ wiersza\ \cdot suma\ kolumny}{liczebność\ całkowita}$$

bo...

$$P\begin{pmatrix} lewa \\ reka \end{pmatrix} \wedge \frac{lewe}{oko} = P\begin{pmatrix} lewa \\ reka \end{pmatrix} \cdot P\begin{pmatrix} lewe \\ oko \end{pmatrix} \begin{pmatrix} lewa \\ reka \end{pmatrix} = P\begin{pmatrix} lewa \\ reka \end{pmatrix} \cdot P\begin{pmatrix} lewe \\ oko \end{pmatrix}$$

gdy nie ma związku, to: prawdopodobieństwo warunkowe = = prawdopodobieństwo bezwarunkowe



|            |     | Leworęczni | Praworęczni | Razem |
|------------|-----|------------|-------------|-------|
|            | 0   | 27         | 110         |       |
| Lewooczni  | E   | 18.5       | 118.5       | 137   |
|            | О-Е | 8.5        | -8.5        |       |
|            | 0   | 27         | 236         |       |
| Prawooczni | E   | 35.5       | 227.5       | 263   |
|            | О-Е | -8.5       | 8.5         |       |
| Razem      |     | 54         | 346         | 400   |

Leworęczność "sprzyja" lewooczności: zależność "dodatnia"



|            |     | Leworęczni | Praworęczni | Razem |
|------------|-----|------------|-------------|-------|
|            | 0   | 27         | 110         |       |
| Lewooczni  | E   | 18.5       | 118.5       | 137   |
|            | 0-Е | 8.5        | -8.5        |       |
|            | 0   | 27         | 236         |       |
| Prawooczni | E   | 35.5       | 227.5       | 263   |
|            | О-Е | -8.5       | 8.5         |       |
| Razem      |     | 54         | 346         | 400   |

$$\chi^{2} = \sum_{\substack{\text{po wszystkic } h\\ \text{polac } h \text{ tabeli}}} \frac{(O-E)^{2}}{E}$$

 $H_0$  odrzucamy,  $gdy \chi^2 \ge {}_{\alpha}\chi^2_{(1)}$ 

$$\chi^2 = 6.866$$
,  $_{0.01}\chi^2_{(1)} = 6.63$ ,

 $H_0$  odrzucamy!



Test wolno stosować, gdy wszystkie liczebności oczekiwane są  $\geq 5$  oraz N  $\geq 40$ . Gdy liczebności są w pobliżu dolnej granicy, stosujemy poprawkę na nieciągłość (Yatesa).

$$\chi_c^2 = \sum \frac{\left(|O - E| - \frac{1}{2}\right)^2}{E}$$

Gdy którakolwiek z liczebności oczekiwanych jest mniejsza niż 5 i 20<N<40 lub gdy N<20, możemy zastosować dokładny test Fishera. Nie wolno nam stosować testu  $\chi^2$ .

Nie polecam testu Fishera – bardzo trudno odrzucić hipotezę zerową przy małej liczebności próby.



**Przykład:** Badano, czy obecność koniczyny białej (*Trifolium repens*) na pastwisku jest związana z obecnością odchodów dżdżownic. Zbadano 80 losowo dobranych powierzchni próbnych o polu 1 stopy kwadratowej każda. Uzyskano wyniki:

|           |           | Odchody | Дадом     |       |
|-----------|-----------|---------|-----------|-------|
|           |           | Obecne  | Nieobecne | Razem |
| Koniczyna | Obecna    | 18      | 5         | 23    |
| biała     | Nieobecna | 34      | 23        | 57    |
| Razem     |           | 52      | 28        | 80    |

$$\chi^2 = 2.4952$$

$$_{0.05}\chi_{(1)}^2 = 3.84$$

Nie ma podstaw do odrzucenia hipotezy o braku związku.



Przypuśćmy, że takie samo badanie wykonano dla 800 powierzchni próbnych i otrzymano wszystkie wyniki 10-krotnie większe.

|           |           | Odchody | Дадам     |       |
|-----------|-----------|---------|-----------|-------|
|           |           | Obecne  | Nieobecne | Razem |
| Koniczyna | Obecna    | 180     | 50        | 230   |
| biała     | Nieobecna | 340     | 230       | 570   |
| Razem     |           | 520     | 280       | 800   |

$$\chi^2 = 24.952$$

$$!_{0.01} \chi^2_{(1)} = 6.63$$

Hipotezę o braku związku należy odrzucić!

 $\chi^2$  rośnie proporcjonalnie do N. Naturalnym miernikiem **siły związku** jest

$$\phi^2 = \frac{\chi^2}{N}.$$

Przyjmiemy oznaczenia:

| a                     | b          | $r_1$          |
|-----------------------|------------|----------------|
| С                     | d          | $\mathbf{r}_2$ |
| <b>S</b> <sub>1</sub> | <b>S</b> 2 | N              |

Wtedy:

$$\chi^2 = \frac{(a \cdot d - b \cdot c)^2 \cdot N}{r_1 \cdot r_2 \cdot s_1 \cdot s_2}$$

Mamy podstawową miarę siły związku:

$$\phi = \sqrt{\frac{(a \cdot d - b \cdot c)^2}{r_1 \cdot r_2 \cdot s_1 \cdot s_2}} \qquad \phi \in \langle 0, 1 \rangle$$

#### oraz miarę Pearsona:

$$r_p = \sqrt{\frac{2 \cdot (a \cdot d - b \cdot c)^2}{r_1 \cdot r_2 \cdot s_1 \cdot s_2 + (a \cdot d - b \cdot c)^2}}$$
$$r_p \in \langle 0, 1 \rangle$$

#### i miarę Kendalla:

$$Q = \frac{a \cdot d - b \cdot c}{a \cdot d + b \cdot c}$$
$$Q \in \langle -1, 1 \rangle$$



| Tablio                  | a               | Ф    | Q                                                      | r <sub>p</sub> |
|-------------------------|-----------------|------|--------------------------------------------------------|----------------|
| 50 0<br>0 50<br>50 50   | 50<br>50<br>100 | 1    | 1                                                      | 1              |
| 40 0<br>10 50<br>50 50  | 40<br>60<br>100 | 0.82 | 1<br>wartość = 1, gdy choć<br>jedno zero               | 0.89           |
| 40 10<br>10 40<br>50 50 | 50<br>50<br>100 | 0.60 | 0.88                                                   | 0.73           |
| 20 30<br>30 20<br>50 50 | 50<br>50<br>100 | 0.20 | -0.38 znak ujemny (domina- cja pobocznej prze- kątnej) | 0.28           |
| 25 25<br>25 25<br>50 50 | 50<br>50<br>100 | 0    | 0                                                      | 0              |



### Porównywanie więcej niż dwóch populacji

Dlaczego nie można porównywać parametrów więcej niż dwóch populacji metodą porównywania "każda z każdą"?

Liczba populacji = k

Liczba porównań = 
$$\begin{pmatrix} k \\ 2 \end{pmatrix}$$

Poziom istotności pojedynczego porównania =  $\alpha$ 

Poziom istotności całego badania (przy nieprawdziwym zresztą założeniu o niezależności wzajemnej poszczególnych porównań)

$$\alpha_{\Sigma} = 1 - (1 - \alpha)^{\binom{k}{2}}$$



#### Porównywanie więcej niż dwóch populacji

#### Przykład:

$$k=4$$
  $\alpha=0.05$ 

$$\binom{k}{2} = \binom{4}{2} = \frac{4 \cdot 3}{1 \cdot 2} = 6$$

$$\alpha_{\Sigma} = 1 - (1 - 0.05)^{\binom{4}{2}} = 1 - (0.95)^6 = 0.265$$

Poziom istotności całego badania statystycznego przy porównywaniu kilku populacji metodą "każda z każdą" jest nie do przyjęcia. Dlatego też porównujemy k populacji wykonując jeden "łączny" test z ustalonym poziomem istotności.



# Test jednorodności chi-kwadrat dla porównywania kilku frakcji

Tablice wielodzielcze i statystyka chi-kwadrat stosowane są w jeszcze jednym rodzaju analizy: wówczas, gdy chcemy sprawdzić, czy frakcja jakiejś charakterystycznej cechy jest równa w kilku populacjach. Na przykład szpital dziecięcy chce stwierdzić, czy odsetek dzieci – nosicieli i nienosicieli bakterii Streptococcus pyogenes – jest taki sam w trzech grupach dzieci: z migdałkami niepowiększonymi, z powiększonymi i z bardzo powiększonymi. W pewnym sensie pytanie o równość frakcji jest pytaniem o to, czy te grupy dzieci są jednorodne pod względem odsetka nosicielstwa tej bakterii. Z tego powodu testy równości frakcji w kilku populacjach nazywa się również testami jednorodności.

#### Tablice 2 x k

#### Porównanie kilku frakcji

| Grupa              | 1                       | 2                       |     | i                       |     | k                       |         |
|--------------------|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|---------|
| Sukces             | $r_1$                   | $r_2$                   | ••• | $r_i$                   | ••• | $r_k$                   | } 2 x k |
| Porażka            | $n_1 - r_1$             | $n_2 - r_2$             | ••• | $n_i - r_i$             | ••• | $n_k - r_k$             | }       |
| Ogółem             | $n_1$                   | $n_2$                   |     | $n_i$                   |     | $n_k$                   | -       |
| Frakcja<br>sukcesu | $r_1 - \frac{r_1}{r_1}$ | $r_2 - \frac{r_2}{r_2}$ |     | $n_i - \frac{r_i}{r_i}$ |     | $r_k - \frac{r_k}{r_k}$ |         |
| sukcesu            | $p_1 - \frac{1}{n_1}$   | $p_2 - \frac{1}{n_2}$   | ••• | $p_i - n_i$             | ••• | $p_k - {n_k}$           |         |

 $H_0$ : wszystkie  $\Pi_i$  są równe

 $H_1$ : nieprawdą jest, że wszystkie  $\Pi_i$  są równe

$$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{\sum_{i=1}^{k} \frac{r_{i}^{2}}{n_{i}} - \frac{R^{2}}{N}}{P(1-P)}$$

gdzie 
$$R = \sum_i r_i$$
,  $N = \sum_i n_i$ ,  $P = \frac{R}{N}$ .



#### Tablice 2 x k

| Grupa              | 1                       | 2                       |     | i                     |                               | k                       |   |
|--------------------|-------------------------|-------------------------|-----|-----------------------|-------------------------------|-------------------------|---|
| Sukces             | $r_1$                   | $r_2$                   |     | $r_i$                 | •••                           | $r_k$                   | } |
| Porażka            | $n_1 - r_1$             | $n_2 - r_2$             | ••• | $n_i - r_i$           |                               | $n_k - r_k$             | } |
| Ogółem             | $n_1$                   | $n_2$                   | ••• | $n_i$                 |                               | $n_k$                   | _ |
| Frakcja<br>sukcesu | $p_1 = \frac{r_1}{r_1}$ | $p_2 = \frac{r_2}{r_2}$ |     | $p_i = \frac{r_i}{r}$ |                               | $p_k = \frac{r_k}{r_k}$ |   |
| sukcesu            | $n_1$                   | $n_2$                   |     | $n_i$                 | _                             | $n_k$                   |   |
|                    |                         |                         |     | . v                   | $\mathbf{p}_{\mathbf{D}}^{2}$ |                         |   |

$$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{\sum_{i=1}^{k} \frac{r_{i}^{2}}{n_{i}} - \frac{R^{2}}{N}}{P(1-P)}$$

$$R = \sum_i r_i, \qquad N = \sum_i n_i, \qquad P = \frac{R}{N}.$$

Tak obliczone  $\chi^2$  porównujemy z wartością krytyczną o (k-1) stopniach swobody.  $H_0$  odrzucamy, gdy:

$$\chi^2 \ge \alpha \chi^2_{(k-1)}$$



### Tablice 2 x k

<u>Przykład:</u> Liczba dzieci - nosicieli i nienosicieli bakterii *Streptococcus pyogenes* w zależności od wielkości migdałków.

|                   |                 | Dazom       |                    |        |
|-------------------|-----------------|-------------|--------------------|--------|
|                   | Nie powiększone | Powiększone | Bardzo powiększone | Razem  |
| Nosiciele         | 19              | 29          | 24                 | 72     |
| Nienosiciele      | 497             | 560         | 269                | 1326   |
| Razem             | 516             | 589         | 293                | 1398   |
| Frakcja nosicieli | 0.0368          | 0.0492      | 0.0892             | 0.0515 |

$$\chi^2 = 7.88$$
  $_{0.05}\chi^2_{(2)} = 5.99$   $\chi^2 > \chi^2_{kryt}$ 

Hipotezę zerową o równości frakcji nosicielstwa w każdej z grup związanych z wielkością migdałków należy odrzucić.

Obliczona statystyka  $\chi^2$  charakteryzuje się dwoma stopniami swobody. Dalej omówiony zostanie test trendu częstości będący jednym z możliwych sposobów wyodrębniania składników sumarycznego  $\chi^2$  w celu uzyskania możliwości bardziej precyzyjnego wnioskowania.



<u>Przykład:</u> Badana jest zmienność liczby wystąpień drobnoustrojów na oddziale OIOM w stosunku do liczby wystąpień drobnoustrojów na wszystkich oddziałach zabiegowych pewnego szpitala w latach 1992-95. Zebrane przez pracownię mikrobiologiczną dane przedstawiono w poniższej tabeli.

| Oddział                                      | Rok - x <sub>i</sub> |       |       |       | Dazom                    |  |
|----------------------------------------------|----------------------|-------|-------|-------|--------------------------|--|
| Ouuziai                                      | 1992                 | 1993  | 1994  | 1995  | Razem                    |  |
| OIOM                                         | 1609                 | 1368  | 1421  | 1455  | R                        |  |
| $r_i$                                        | 1009                 | 1300  | 1441  |       | 5853                     |  |
| Inne zabiegowe                               | 999                  | 657   | 624   | 821   | N-R                      |  |
| $n_i - r_i$                                  | 999                  | 057   | 024   |       | 3103                     |  |
| Razem                                        | 2608                 | 2025  | 2045  | 2276  | N                        |  |
| $n_i$                                        | 2000                 | 2023  | 2043  | 2270  | 8954                     |  |
| $p_i = \frac{r_i}{n_i} = \frac{OIOM}{RAZEM}$ | 0.617                | 0.675 | 0.695 | 0.639 | $P = \frac{R}{N} = 8954$ |  |



| Oddział                                      | $Rok - x_i$ |       |       |       | Razem                    |   |
|----------------------------------------------|-------------|-------|-------|-------|--------------------------|---|
| Ouuziai                                      | 1992        | 1993  | 1994  | 1995  | KUZEIII                  |   |
| OIOM                                         | 1609        | 1368  | 1421  | 1455  | 1455                     | R |
| $r_i$                                        | 1009        | 1300  | 1441  |       | 5853                     |   |
| Inne zabiegowe                               | 999         | 657   | 624   | 821   | N-R                      |   |
| $n_i - r_i$                                  | 777         | 037   | 024   | 021   | 3103                     |   |
| Razem                                        | 2608        | 2025  | 2045  | 2276  | N                        |   |
| $n_i$                                        | 2000        | 2023  | 2043  | 2270  | 8954                     |   |
| $p_i = \frac{r_i}{n_i} = \frac{OIOM}{RAZEM}$ | 0.617       | 0.675 | 0.695 | 0.639 | $P = \frac{R}{N} = 8954$ |   |

<u>Hipoteza zerowa:</u> udziały drobnoustrojów izolowanych na oddziale OIOM w kolejnych latach są takie same.

<u>Hipoteza alternatywna</u>: udziały drobnoustrojów izolowanych na oddziale OIOM w kolejnych latach są różne.

Obliczamy 
$$\chi^2 = 12.145$$
,  $0.05\chi^2_{(3)} = 7.815$ 

 $\chi^2 > 0.05 \chi^2_{(3)} =$  hipotezę zerową można odrzucić.



Jeśli kategorie klasyfikacji kolumn dadzą się uporządkować i można im przyporządkować pewne liczby  $x_i$ , wówczas wskazane może być celowe przeprowadzenie testu trendu. Rozbijamy wtedy całkowite  $\chi^2$  na dwa składniki:  $\chi_1^2$  i  $\chi_2^2$ .

$$\chi^2 = \chi_1^2 + \chi_2^2$$

Pierwszy składnik  $\chi_1^2$ , charakteryzujący się jednym stopniem swobody jest odpowiedzialny za liniowy trend frakcji  $p_i$ .

$$\chi_1^2 = \frac{N(N\sum_{i=1}^k r_i x_i - R\sum_{i=1}^k n_i x_i)^2}{R(N-R)\left[N\sum_{i=1}^k n_i x_i^2 - \left(\sum_{i=1}^k n_i x_i\right)^2\right]}$$

Drugi składnik  $\chi_2^2$ , charakteryzujący się k-2 stopniami swobody

$$\chi_2^2 = \chi^2 - \chi_1^2 ,$$

odpowiedzialny jest za odchylenia od liniowego trendu.

Każdy ze składników testujemy osobno, porównując z wartościami krytycznymi odczytanymi z tablic dla odpowiedniej liczby stopni swobody.



| Oddział                                      | Rok - x <sub>i</sub> |       |       |       | Razem                    |  |
|----------------------------------------------|----------------------|-------|-------|-------|--------------------------|--|
| Ouuziai                                      | 1992                 | 1993  | 1994  | 1995  | Kuzeiii                  |  |
| OIOM                                         | 1609                 | 1368  | 1421  | 1455  | <b>R</b> 5853            |  |
| Inne zabiegowe $n_i - r_i$                   | 999                  | 657   | 624   | 821   | <b>N-R</b> 3103          |  |
| Razem<br>n <sub>i</sub>                      | 2608                 | 2025  | 2045  | 2276  | N 8954                   |  |
| $p_i = \frac{r_i}{n_i} = \frac{OIOM}{RAZEM}$ | 0.617                | 0.675 | 0.695 | 0.639 | $P = \frac{R}{N} = 8954$ |  |

<u>Przykład c.d.</u>: Ponieważ klasyfikacja czasowa jest w naturalny sposób uporządkowana, zaś obliczone  $p_i$  wskazują na możliwość istnienia wzrastającego trendu udziałów drobnoustrojów na oddziałe OIOM w stosunku do wszystkich drobnoustrojów wyizolowanych na oddziałach zabiegowych szpitala, przeprowadzamy test trendu, przyjmując np. że  $x_1 = 1$  jest odpowiednikiem roku 1992,  $x_2 = 2$  odpowiada 1993 rokowi, itd.

Obliczamy:

$$\chi_1^2 = 4.830$$

$$_{0.05}\chi^2_{(1)} = 3.841$$

$$\chi_2^2 = 7.463$$

$$_{0.05}\chi_{(2)}^2 = 5.991$$

Mamy:

$$\chi_1^2 > {}_{0.05}\chi_{(1)}^2$$

$$\chi_2^2 > {}_{0.05}\chi_{(2)}^2$$



Obliczamy:

$$\chi_1^2 = 4.830$$
  $_{0.05}\chi_{(1)}^2 = 3.841$ 

$$\chi_2^2 = 7.463$$
  $_{0.05}\chi_{(2)}^2 = 5.991$ 

Mamy:

$$\chi_1^2 > {}_{0.05}\chi_{(1)}^2$$
  $\chi_2^2 > {}_{0.05}\chi_{(2)}^2$ 

Uzyskaliśmy potwierdzenie istotności liniowego trendu udziałów drobnoustrojów wyizolowanych na oddziale OIOM w kolejnych latach, jak i potwierdzenie istotności <u>odchyleń od tego trendu</u>. Tak więc prawdopodobnie trend w rzeczywistości nie ma charakteru zależności liniowej.

<u>Uwaga:</u> Test trendu wolno przeprowadzać dopiero wówczas, gdy zasadniczy test porównywania frakcji da wynik istotny. Jeśli nie możemy odrzucić hipotezy zerowej o równości porównywanych frakcji - nie należy przeprowadzać testu trendu, gdyż jego ewentualny pozytywny (istotny) wynik nie będzie wiarygodny.



r - liczba wierszy tabeli

c - liczba kolumn tabeli

 $H_0$ : brak zależności między klasyfikacją "wierszy" a klasyfikacją "kolumn"

 $H_1$ : zależność istnieje

Obliczamy wartości oczekiwane dla każdego pola tabeli:

$$E = \frac{suma\ wiersza \cdot suma\ kolumny}{całkowita\ liczba\ obserwacji}$$

i statystykę  $\chi^2$ 

$$\chi^2 = \sum_{po\ wszystkic\ h\ polac\ h\ tabeli} \frac{(o-E)^2}{E}$$
 O - liczebności obserwowane

$$\chi^2 = \sum_{po\ wszystkic\ h\ polac\ h\ tabeli} \frac{(o-E)^2}{E}$$
 O - liczebności obserwowane

 $\chi^2$  ma rozkład  $\chi^2$  o  $(r-1)\cdot(c-1)$  stopniach swobody.

 $H_0$  odrzucamy, gdy

$$\chi^2 \ge \alpha \chi^2_{(r-1)\cdot (c-1)}.$$

Z testu można korzystać, gdy tylko nieliczne liczebności oczekiwane są mniejsze niż 5 (jeden wynik na 5 pól tabeli, 2 wyniki na 10 pól, itd.) i w wypadku, gdy żadna z liczebności oczekiwanych nie jest mniejsza od 1! Gdy warunki te nie są spełnione - można zmniejszać wymiarowość agregacji.

#### MIARY SIŁY ZWIĄZKU

miara Czuprowa T

$$T^2 = \frac{\chi^2}{N\sqrt{(r-1)(c-1)}}$$

Miernik ten przyjmuje wartość maksymalną = 1 tylko dla tablic kwadratowych (r = c).

miara Cramera V

$$V^2 = \frac{\chi^2}{N \cdot min(r-1, c-1)}$$

miara Pearsona C

$$C^2 = \frac{\chi^2}{\chi^2 + N}$$

Wartość maksymalna miernika C zależy od wymiarowości tablicy, np. dla tablicy 2 x 2 wynosi  $\sqrt{2}/2$ . Można go standaryzować, znając tę wartość maksymalną.



<u>Przykład:</u> Badano zależność między grupą krwi, a chorobami żołądka. Z badań wyłączono niewielką grupę osób z grupą AB. Uwzględniono raka żołądka i chorobę wrzodową. Do porównań wykorzystano kontrolną grupę ludzi zdrowych.

|       |     | Choroba<br>wrzodowa<br><b>W</b> | Rak żołądka<br><b>R</b> | Grupa kontrolna<br><b>K</b> | Razem |  |
|-------|-----|---------------------------------|-------------------------|-----------------------------|-------|--|
|       | 0   | 983                             | 383                     | 2892                        |       |  |
| 0     | E   | 872.39                          | 428.91                  | 2956.70                     | 4258  |  |
|       | О-Е | 110.61                          | -45.91                  | -64.70                      |       |  |
|       | 0   | 679                             | 416                     | 2625                        |       |  |
| Α     | E   | 762.16                          | 374.72                  | 2583.12                     | 3720  |  |
| A     | О-Е | -83.16                          | 41.28                   | 41.88                       |       |  |
|       | 0   | 134                             | 84                      | 570                         |       |  |
| В     | E   | 161.44                          | 79.38                   | 547.18                      | 788   |  |
|       | О-Е | -27.44                          | 4.62                    | 22.82                       |       |  |
| Razem |     | 1796                            | 883                     | 6087                        | 8766  |  |

$$\chi^2=40.54$$
  $0.001\chi^2_{(4)}=18.47$   $\chi^2>\chi^2_{kryt}=>$  związek między grupą krwi a chorobami żołądka jest wysoce istotny (0.1% błędu)

$$V = T = 0.0481$$
  
 $C = 0.0678$  => związek jest słaby

Na wysoką wartość  $\chi^2$  ma wpływ duża liczebność próby.

Jeżeli w tablicy wielopolowej r x c zaobserwujemy istotną zależność, to można sprawdzić, czy zależność ta utrzymuje się w pewnych fragmentach tablicy i wykryć te "obszary" tablicy, w których zależność ta jest skoncentrowana.

Metodą jest podział tablicy pełnej na kilka tablic "cząstkowych" i obliczenie  $\chi^2$  dla tych tablic cząstkowych. Tak wyznaczone "składniki  $\chi^2$ " powinny po zsumowaniu dać w przybliżeniu wartość "całkowitego  $\chi^2$ ". Dokładność sumowania zależy od sposobu liczenia wartości oczekiwanych.