EPITA/	InfoS1

NOM: Prénom:

Janvier 2018

Groupe:.....

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours : QCM (6 points – pas de point négatif)

Entourez la ou les bonnes réponses.

- 1. Le courant qui sort d'un générateur (de courant ou de tension) est nécessairement plus grand que celui qui y entre.
 - a- VRAI

b- FAUX

2. On considère le schéma suivant (plusieurs réponses) :

- a- Le dipôle est un dipôle récepteur si I_{AB} et U_{AB} sont de signes opposés
- b- Le dipôle est un dipôle générateur si I_{AB} et U_{AB} sont de même signe
- c- Le dipôle est un dipôle récepteur si I_{AB} et U_{AB} sont de même signe
- d- Le fléchage courant/tension correspond à la convention générateur.
- 3. Si on applique la loi d'Ohm avec la résistance en $k\Omega$ et le courant en mA, on obtient directement la tension en :
 - a- A

b- mA

b- V

c- MV

- 4. Quelle est la résistance vue entre A et B?
 - a. 3R
 - b. R
 - c. $\frac{3}{2}R$
 - d. $\frac{2}{3}R$

- 5. Quelle est la résistance vue entre A et B?
 - a. $\frac{15}{23}R$
 - b. $\frac{3}{5}R$
 - c. $\frac{5}{2}R$
 - d. $\frac{5}{3}R$

- 6. Soit le circuit ci-contre. Que vaut U?
 - a- 20 V

c- 4 V

b- −4 V

d- -8 V

7. Quelle est la bonne formule?

a-
$$I_1 = \frac{3}{5}$$
. I

c-
$$I_1 = \frac{3}{4} I$$

b-
$$I_1 = \frac{I}{4}$$

d-
$$I_1 = \frac{3R}{4}I$$

Soit le circuit suivant avec I_0 , E_2 , E_3 , R_1 , R_2 , R_3 , R_4 supposés connus.

- 8. Quelles sont les affirmations fausses ? (2 réponses)
 - a- I_2 ne dépend pas de R_3

c- $U_1 = R_1 \cdot I_0$

b- I_0 dépend de R_1

- d- U_0 ne dépend pas de R_1
- 9. Soit le circuit ci-contre : Quelle est l'expression de U?
 - a- U = R.I

c-U=E+I

b- $U = \frac{E}{2}$

d- $U = \frac{E+RA}{2}$

10. Un générateur de tension E en série avec une résistance R est équivalent à un générateur de courant I en parallèle avec une résistance r si :

a-
$$R.E = \frac{R}{r}I$$
 et $r = R$

b-
$$r = R$$
 et $E = R$. I

a-
$$E = R.I$$
 et $I = \frac{E}{\binom{R+r}{R.r}}$

b-
$$R = r \operatorname{et} E = \frac{I}{R}$$

11. Quelle est la formule fausse ? (E_i et U en Volts, I_i en Ampères, R_i en Ohms)

a.
$$I = \frac{R_1}{R_1 + R_2} I_1$$

b.
$$U = \frac{R_1 \cdot R_2}{R_1 + R_2} \cdot I_1$$

c.
$$U = \frac{R_1.E_1 - R_2.I_2}{R_1.R_2 + R_1.R_3 + R_2.R_3}$$

d.
$$U = \frac{E}{\frac{R_1}{R_2} + \frac{R_3}{R_4} + 1}$$

Exercice 2. Théorème de Thévenin (5 points)

Soit le circuit suivant, dans lequel E, I et R sont connus. Les générateurs sont indépendants.

 Déterminer le générateur de Thévenin vu par R'.

2	Dátarminar alars la tansian H si	D' — P	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
2.	Déterminer alors la tension U_{AM} si	R'=R.	
2.	Déterminer alors la tension U_{AM} si .	R'=R.	
2.	Déterminer alors la tension U_{AM} si	R'=R.	
2.	Déterminer alors la tension U_{AM} si .	R'=R.	
2.	Déterminer alors la tension U_{AM} si .	R'=R.	
2.	Déterminer alors la tension U_{AM} si .	R'=R.	
2.	Déterminer alors la tension U_{AM} si .	R'=R.	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
2.	Déterminer alors la tension U_{AM} si	R' = R.	
		R'=R.	
		R' = R.	
	Déterminer alors la tension U_{AM} si \mathcal{L}_{AM} En déduire la tension \mathcal{L}_{BM} .	R' = R.	
		R' = R.	

Exercice 3. Théorèmes (7 points)

Soit le montage ci-dessous :

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

EPITA / InfoS1 ###################################	Janvier 2018

CPITA/INIOSI	Janvier 2018
Exercice 4. Théorème de Millman (2 points) On considère le circuit ci-contre. Déterminez U en utilisant le théorème de Millman. U E E E E E E E	R_3
B	