

K_6 MINORS IN 6-CONNECTED GRAPHS OF BOUNDED TREE-WIDTH**Ken-ichi Kawarabayashi**

National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Serguei Norine¹

Department of Mathematics

Princeton University

Princeton, NJ 08544, USA

Robin Thomas²

School of Mathematics

Georgia Institute of Technology

Atlanta, Georgia 30332-0160, USA

and

Paul Wollan

Mathematisches Seminar der Universität Hamburg

Bundesstrasse 55

D-20146 Hamburg, Germany

ABSTRACT

We prove that every sufficiently big 6-connected graph of bounded tree-width either has a K_6 minor, or has a vertex whose deletion makes the graph planar. This is a step toward proving that the same conclusion holds for all sufficiently big 6-connected graphs. Jørgensen conjectured that it holds for all 6-connected graphs.

8 April 2005, revised 9 March 2012.

¹Partially supported by NSF under Grants No. DMS-0200595 and DMS-0701033.²Partially supported by NSF under Grants No. DMS-0200595, DMS-0354742, and DMS-0701077.

1 Introduction

Graphs in this paper are allowed to have loops and multiple edges. A graph is a *minor* of another if the first can be obtained from a subgraph of the second by contracting edges. An H *minor* is a minor isomorphic to H . A graph G is *apex* if it has a vertex v such that $G \setminus v$ is planar. (We use \ for deletion.) Jørgensen [9] made the following beautiful conjecture.

Conjecture 1.1 *Every 6-connected graph with no K_6 minor is apex.*

In a companion paper [10] we prove that Conjecture 1.1 holds for all sufficiently big 6-connected graphs. Here we establish the first step toward that goal, the following.

Theorem 1.2 *For every integer $w \geq 1$ there exists an integer N such that every 6-connected graph on at least N vertices and tree-width at most w with no K_6 minor is apex.*

We define tree-width later in this section, but let us discuss Jørgensen's conjecture first. It is related to Hadwiger's conjecture [7], the following.

Conjecture 1.3 *For every integer $t \geq 1$, if a loopless graph has no K_t minor, then it is $(t - 1)$ -colorable.*

Hadwiger's conjecture is known for $t \leq 6$. It is trivial for $t \leq 3$, and is still fairly easy for $t = 4$, as shown by Dirac [6]. However, for $t \geq 5$ Hadwiger's conjecture implies the Four-Color Theorem. Wagner [24] gave a structural characterization of graphs with no K_5 minor, which implies that Hadwiger's conjecture for $t = 5$ is actually equivalent to the Four-Color Theorem. The same conclusion has been obtained for $t = 6$ in [18] by showing that a minimal counterexample to Hadwiger's conjecture for $t = 6$ is apex. The proof uses an earlier result of Mader [11] that every minimal counterexample to Conjecture 1.3 is 6-connected. Thus Conjecture 1.1, if true, would give more structural information. Furthermore, the structure of all graphs with no K_6 minor is not known, and appears complicated and difficult. Thus obtaining a structural characterization of graphs with no K_6 minor, an analogue of Wagner's theorem mentioned above, appears beyond reach at the moment. On the other hand, Conjecture 1.1 provides a nice necessary and sufficient condition for 6-connected graphs. Unfortunately, it, too, appears to be a difficult problem.

Let us turn to tree-width and our proof method. Tree-width of a graph was first defined by Halin [8], and was later rediscovered in [14], and, independently, in [1]. The definition is as follows. A *tree-decomposition* of a graph G is a pair (T, Y) , where T is a tree and Y is a family $\{Y_t \mid t \in V(T)\}$ of vertex sets $Y_t \subseteq V(G)$, such that the following two properties hold:

(W1) $\bigcup_{t \in V(T)} Y_t = V(G)$, and every edge of G has both ends in some Y_t .

(W2) If $t, t', t'' \in V(T)$ and t' lies on the path in T between t and t'' , then $Y_t \cap Y_{t''} \subseteq Y_{t'}$.

The *width* of a tree-decomposition (T, Y) is $\max_{t \in V(T)}(|Y_t| - 1)$, and the *tree-width* of a graph G is the minimum width of a tree-decomposition of G .

Our proof of Theorem 1.2 proceeds as follows. We choose a tree-decomposition (T, W) of G of width w with no “redundancies”. It follows easily that if T has a vertex of large degree, then G has a K_6 minor, and so we may assume that T has a long path. For the rest of the proof we concentrate our effort on this long path. Since other branches of T are inconsequential, we convert (T, W) to a “linear decomposition”, which is really just a tree-decomposition, where the underlying tree is a path, but we find it more convenient to number the sets of vertices W_0, W_1, \dots, W_l , rather than index them by the vertices of a path. At this point we no longer require that the width be bounded; all we need is that the intersections $W_{i-1} \cap W_i$ are bounded and that l is sufficiently large. Thus we may assume (by trimming our linear decomposition) that all the sets $W_{i-1} \cap W_i$ have the same size, say q . Furthermore, it can be arranged (by invoking the result from [22] or by a direct argument) that there exist q disjoint paths P_1, P_2, \dots, P_q from $W_0 \cap W_1$ to $W_{l-1} \cap W_l$. We apply the pigeon hole principle many times, each time trimming the linear decomposition, but still keeping it sufficiently long, to make sure that if the subgraph $G[W_i]$ has some useful property for some $i \in \{1, 2, \dots, l-1\}$, then all the graphs $G[W_i]$ have that property for all $i \in \{1, 2, \dots, l-1\}$.

A prime example of a useful property is the existence of two disjoint paths Q_1, Q_2 in $G[W_i]$, internally disjoint from P_1, P_2, \dots, P_q , with ends u_1, v_1 and u_2, v_2 , respectively, such that $u_1, v_2 \in V(P_1)$, $u_2, v_1 \in V(P_2)$ and they appear on those paths in the order listed as P_1 and P_2 are traversed from $W_0 \cap W_1$ to $W_{l-1} \cap W_l$. In those circumstances we say that P_1 and P_2 *twist* in W_i . Thus, in particular, we can arrange that if two paths P_j and $P_{j'}$ twist in W_i for some $i \in \{1, 2, \dots, l-1\}$, then they twist in W_i for all $i \in \{1, 2, \dots, l-1\}$. On the other hand, if two paths P_j and $P_{j'}$ twist in W_i for all $i \in \{1, 2, \dots, l-1\}$ and l is not too small, then G has a K_6 minor. This is the sort of argument we will be using, but the details are too numerous to be described in their entirety here.

In [10] we use Theorem 1.2 to prove Jørgensen’s conjecture for sufficiently big graphs, formally the following:

Theorem 1.4 *There exists an integer N such that every 6-connected graph on at least N vertices with no K_6 minor is apex.*

How does Theorem 1.2 help in the proof of Theorem 1.4? By the excluded grid theorem of Robertson and Seymour [15] (see also [5, 13, 19]) it suffices to prove Theorem 1.4 for graphs that have a sufficiently large grid minor. We then analyze how the remainder of the graph attaches to the grid. We refer to [10] for details.

The paper is organized as follows. In Section 2 we state a few lemmas, mostly from other papers. In Section 3 we convert a tree-decomposition into a linear decomposition,

as described above, and we prove that the linear decomposition can be chosen with some additional useful properties. In Section 4 we introduce the auxiliary graph—its vertices are the paths P_1, P_2, \dots, P_q , and two of them are adjacent if they are joined by a path avoiding all the other paths P_1, P_2, \dots, P_q . By joined we mean in some or every W_i ; by now the two are equivalent. We use the auxiliary graph to further refine the linear decomposition. A *core* is a component of the subgraph of the auxiliary graph induced by those of the paths P_1, P_2, \dots, P_q that have at least one edge. We show, among other things, that every core is a path or a cycle. In Section 5 we use the theory of “non-planar extensions” of planar graphs from [20] to get under control adjacencies in the auxiliary graph of those paths P_i that are trivial. In Section 6 we further refine our linear decomposition to arrange that the part of G that corresponds to a core can be drawn either in a disk or in a cylinder, depending on whether the core is a path or a cycle. In Section 7 we digress and prove a slight extension of a result of DeVos and Seymour [4]. Finally, in Section 8 we essentially complete the proof of Theorem 1.2 in the case when some core of the auxiliary graph is a cycle, and in Section 9 we do the same when some core is a path.

2 Rerouting and rural societies

Let S be a subgraph of a graph G . An *S -bridge* in G is a connected subgraph B of G such that $E(B) \cap E(S) = \emptyset$ and either $E(B)$ consists of a unique edge with both ends in S , or for some component C of $G \setminus V(S)$ the set $E(B)$ consists of all edges of G with at least one end in $V(C)$. The vertices in $V(B) \cap V(S)$ are called the *attachments* of B . We say that an S -bridge B *attaches to* a subgraph H of S if $V(H) \cap V(B) \neq \emptyset$.

Now let S be such that no block of S is a cycle. By a *segment of S* we mean a maximal subpath P of S such that every internal vertex of P has degree two in S . It follows that the segments of S are uniquely determined. Now if B is an S -bridge of G , then we say that B is *unstable* if some segment of S includes all the attachments of B , and otherwise we say that B is *stable*. Our next lemma says that it is possible to make all bridges stable by making the following “local” changes. Let G and S be as before, let P be a segment of S of length at least two, and let Q be a path in G with ends $x, y \in V(P)$ and otherwise disjoint from S . Let S' be obtained from S by replacing the path xPy (the subpath of P with ends x and y) by Q ; then we say that S' was obtained from S by *rerouting P along Q* , or simply that S' was obtained from S by *rerouting*. Please note that P is required to have length at least two, and hence this relation is not symmetric. We say that the rerouting is *proper* if all the attachments of the S -bridge that contains Q belong to P . The following lemma is essentially due to Tutte.

Lemma 2.1 *Let G be a simple graph, and let S be a subgraph of G such that no block of S is a cycle. Then there exists a subgraph S' of G obtained from S by a sequence of proper*

reroutings such that if an S' -bridge B of G is unstable, say all its attachments belong to a segment P of S' , then there exist vertices $x, y \in V(P)$ such that some component of $G \setminus \{x, y\}$ includes a vertex of B and is disjoint from $S' \setminus V(P)$.

Proof. We may choose a subgraph S' of G obtained from S by a sequence of proper reroutings such that the number of vertices that belong to stable S' -bridges is maximum, and, subject to that, $|V(S')|$ is minimum. We will show that S' is as desired. To that end we may assume that B is an S' -bridge of G with all its attachments in a segment P of S' .

Let v_0, v_1, \dots, v_k be distinct vertices of P , listed in order of occurrence on P such that v_0 and v_k are the ends of P and $\{v_1, \dots, v_{k-1}\}$ is the set of all internal vertices of P that are attachments of a stable S' -bridge. We claim that if u, v are two attachments of B , then no v_i belongs to the interior of uPv . To prove this suppose to the contrary that v_i is an internal vertex of uPv . But then replacing uPv by an induced subpath of B with ends u, v and otherwise disjoint from S' is a proper rerouting that produces a graph S'' with strictly more vertices belonging to stable S'' -bridges, contrary to the choice of S' . This proves our claim that no v_i belongs to the interior of uPv . But then for some $i = 1, 2, \dots, k$ the path $v_{i-1}Pv_i$ includes all attachments of B . Since G has no parallel edges, the same argument (using the minimality of $|V(S')|$) now shows that $V(B) - \{v_{i-1}, v_i\} \neq \emptyset$. Consequently some component J of $G \setminus \{v_{i-1}, v_i\}$ includes a vertex of B . It follows that $B \setminus \{v_{i-1}, v_i\}$ is a subgraph of J . Now B has all its attachments in $v_{i-1}Pv_i$, the interior of $v_{i-1}Pv_i$ includes no attachment of a stable S' -bridge, and (by what we have shown about B) every unstable S' -bridge with an attachment in the interior of $v_{i-1}Pv_i$ has all its attachments in $v_{i-1}Pv_i$. It follows that J is disjoint from $S' \setminus V(P)$, as desired. \square

We deduce the following corollary.

Theorem 2.2 *Let G be a 3-connected graph, and let S be a subgraph of G with at least two segments such that no block of S is a cycle. Then there exists a subgraph S' of G obtained from S by a sequence of proper reroutings such that every S' -bridge is stable.*

We will need the following lemma, a special case of [10, Lemma 3.2]. A *linkage* in a graph is a set \mathcal{P} of disjoint paths. If A, B are sets such that each $P \in \mathcal{P}$ has one end in A and the other in B , then we say that \mathcal{P} is a *linkage from A to B* . The *graph of the linkage \mathcal{P}* is the union of all $P \in \mathcal{P}$. Occasionally we will use \mathcal{P} in reference to the graph of \mathcal{P} ; thus we will use $V(\mathcal{P})$ to denote the vertex-set of the graph of \mathcal{P} and we will also speak of \mathcal{P} -bridges. A path is *trivial* if it has exactly one vertex and *non-trivial* otherwise. By a \mathcal{P} -path we mean a non-trivial path with both ends in $V(\mathcal{P})$ and otherwise disjoint from the graph of \mathcal{P} .

Lemma 2.3 *Let $k \geq 1$ be an integer, let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ be a linkage in a graph G , where P_i has distinct ends u_i and v_i , and let every \mathcal{P} -bridge of G be stable. Assume that G*

cannot be drawn in a disk with $u_1, u_2, \dots, u_k, v_k, v_{k-1}, \dots, v_1$ drawn on the boundary of the disk in order and the paths P_1 and P_k also drawn on the boundary, and assume also that there is no set $X \subseteq V(G)$ of size at most three such that some component of $G \setminus X$ is disjoint from $\{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_k\}$. Then either

- (i) there exist integers $i, j \in \{1, 2, \dots, k\}$ with $|i - j| > 1$ and a \mathcal{P} -path Q in G with one end in $V(P_i)$ and the other end in $V(P_j)$, or
- (ii) there exist an integer $i \in \{1, 2, \dots, k-1\}$ and two disjoint \mathcal{P} -paths Q_1, Q_2 in G such that Q_j has ends x_j, y_j , the vertices u_i, x_1, x_2, v_i occur on P_i in the order listed and $u_{i+1}, y_2, y_1, v_{i+1}$ occur on P_{i+1} in the order listed, or
- (iii) there exist an integer $i \in \{2, 3, \dots, k-1\}$ and three \mathcal{P} -paths Q_0, Q_1, Q_2 such that Q_j has ends x_j and y_j , we have $x_0, y_0 \in V(P_i)$, the vertices x_1, x_2 are internal vertices of $x_0 P_i y_0$, $y_1 \in V(P_{i-1})$, $y_2 \in V(P_{i+1})$, and the paths Q_0, Q_1, Q_2 are pairwise disjoint, except possibly for $x_1 = x_2$.

By a *cylinder* we mean the surface obtained from a sphere by removing the interiors of two disjoint closed disks Δ_1, Δ_2 . By a clockwise ordering of the boundary of Δ_i we mean the cyclic ordering that traverses around Δ_i in clockwise direction. We need a slight variation of the previous lemma. We omit its proof, because it is completely analogous.

Lemma 2.4 *Let $k \geq 3$ be an integer, let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ be a linkage in a graph G , where P_i has distinct ends u_i and v_i , and let every \mathcal{P} -bridge of G be stable. Assume that G cannot be drawn in a cylinder with u_1, u_2, \dots, u_k drawn on one boundary component in the clockwise cyclic order listed and v_k, v_{k-1}, \dots, v_1 drawn on the other boundary component in the clockwise cyclic order listed, assume also that there is no set $X \subseteq V(G)$ of size at most three such that some component of $G \setminus X$ is disjoint from $\{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_k\}$, and finally assume that if $k = 3$, then no \mathcal{P} -bridge has vertices of attachment on all three members of \mathcal{P} . Then either*

- (i) there exist integers $i, j \in \{1, 2, \dots, k\}$ with $|i - j| > 1$ and $\{i, j\} \neq \{1, k\}$ and a \mathcal{P} -path Q in G with one end in $V(P_i)$ and the other end in $V(P_j)$, or
- (ii) there exist an integer $i \in \{1, 2, \dots, k-1\}$ and two disjoint \mathcal{P} -paths Q_1, Q_2 in G such that Q_j has ends $x_j y_j$, the vertices u_i, x_1, x_2, v_i occur on P_i in the order listed and $u_{i+1}, y_2, y_1, v_{i+1}$ occur on P_{i+1} in the order listed, or
- (iii) there exist an integer $i = 1, 2, \dots, k$ and three \mathcal{P} -paths Q_0, Q_1, Q_2 such that Q_j has ends x_j and y_j , we have $x_0, y_0 \in V(P_i)$, the vertices x_1, x_2 are internal vertices of $x_0 P_i y_0$, $y_1 \in V(P_{i-1})$, $y_2 \in V(P_{i+1})$, and the paths Q_0, Q_1, Q_2 are pairwise disjoint, except possibly for $x_1 = x_2$, where P_0 means P_k and P_{k+1} means P_1 .

We finish the section by introducing several notions and a theorem from [16]. We will make use of them in the last two sections. Let Ω be a cyclic permutation of the elements of some set; we denote this set by $V(\Omega)$. A *society* is a pair (G, Ω) , where G is a graph, and Ω

is a cyclic permutation with $V(\Omega) \subseteq V(G)$. A society (G, Ω) is *rural* if G can be drawn in a disk with $V(\Omega)$ drawn on the boundary of the disk in the order given by Ω . A *cross* in (G, Ω) is a pair of disjoint non-trivial paths P_1 and P_2 with ends u_1, v_1 and u_2, v_2 respectively, so that $u_1, u_2, v_1, v_2 \in V(\Omega)$ appear in Ω in this or reverse order, and P_1 and P_2 are otherwise disjoint from $V(\Omega)$.

A *separation* of a graph G is a pair (A, B) such that $A \cup B = V(G)$ and there is no edge with one end in $A - B$ and the other end in $B - A$. The order of (A, B) is $|A \cap B|$. We say that a society (G, Ω) is *4-connected* if there is no separation (A, B) of G of order at most three with $V(\Omega) \subseteq A$ and $B - A \neq \emptyset$.

The next theorem follows from Theorems (2.3) and (2.4) in [16].

Theorem 2.5 *Let (G, Ω) be a 4-connected society with no cross. Then (G, Ω) is rural.*

3 Linear decompositions

In this section we show that it suffices to prove Theorem 1.2 for graphs that have a “linear decomposition” of bounded “adhesion”. Similar techniques have been developed and used in [2, 3, 12]. A linear decomposition is really a tree-decomposition, where the underlying tree is a path, but it is more convenient to number the sets by integers rather than vertices of a path. Thus a linear decomposition of a graph G is a family of sets $\mathcal{W} = (W_0, W_1, \dots, W_l)$ such that

- (L1) $\bigcup_{i=0}^l W_i = V(G)$, and every edge of G has both ends in some W_i , and
- (L2) if $0 \leq i \leq j \leq k \leq l$, then $W_i \cap W_k \subseteq W_j$.

We say that the *length* of \mathcal{W} is l .

In the proof of Theorem 1.2 we will need linear decompositions satisfying the following additional properties:

- (L3) there is an integer q such that $|W_{i-1} \cap W_i| = q$ for all $i = 1, 2, \dots, l$,
- (L4) for every $i = 1, 2, \dots, l$, $W_{i-1} \neq W_{i-1} \cap W_i \neq W_i$,
- (L5) there exists a linkage from $W_0 \cap W_1$ to $W_{l-1} \cap W_l$ of cardinality q .

If a linear decomposition satisfies (L3), then we say that it has *adhesion* q . A linkage as in (L5) will be called a *foundational linkage* and its members will be called *foundational paths*. We will need more properties, but first we show that we can assume that our graph has a linear decomposition satisfying (L1)–(L5). In the proof we will need the following additional properties of tree-decompositions, stated using the same notation as (W1)–(W2):

- (W3) for every two vertices t, t' of T and every positive integer k , either there are k disjoint paths in G between Y_t and $Y_{t'}$, or there is a vertex t'' of T on the path between t and t' such that $|Y_{t''}| < k$,
- (W4) if t, t' are distinct vertices of T , then $Y_t \neq Y_{t'}$, and
- (W5) if $t_0 \in V(T)$ and W is a component of $T - t_0$, then $\bigcup_{t \in V(W)} Y_t \setminus Y_{t_0} \neq \emptyset$.

Lemma 3.1 *For all integers $k, l, p, w \geq 0$ there exists an integer N with the following property. If G is a p -connected graph of tree-width at most w with at least N vertices, then either G has a minor isomorphic to $K_{p,k}$, or G has a linear decomposition of length at least l and adhesion at most w satisfying (L1)–(L5).*

Proof. Let $k, l, w \geq 0$ be given integers. We will use the proof technique of [12, Theorem 3.1] with the constants n_1, n_6, n_7, n_8 and n_9 redefined as follows: Let $n_1 := w$, $n_6 := l$, $n_7 := n_6^{n_1+1}$, $n_8 := \binom{n_1}{p}(k-1)$, and

$$n_9 := 2 + n_8 + n_8(n_8 - 1) + \cdots + n_8(n_8 - 1)^{\lceil n_7/2 \rceil - 2}.$$

We will show that $N := n_1 n_9$ satisfies the lemma.

To this end let G be as stated. The argument in Claims (1)–(4) of [12, Theorem 3.1] shows that G either has a minor isomorphic to $K_{p,k}$, or a tree-decomposition (T, Y) satisfying (W1)–(W5) such that T has a path R that includes distinct vertices r_1, r_2, \dots, r_l , appearing on R in the order listed, such that for some integer q with $p \leq q \leq w$ we have that $|Y_{r_i}| = q$ for all $i = 1, 2, \dots, l$ and $|Y_r| \geq q$ for every $r \in V(R)$ between r_1 and r_l .

It is easy to see that there exist subtrees T_0, T_1, \dots, T_l of T such that

- (i) $T_0 \cup T_1 \cup \cdots \cup T_l = T$,
- (ii) T_i and T_j are disjoint whenever $|i - j| \geq 2$, and
- (iii) $V(T_{i-1}) \cap V(T_i) = \{r_i\}$ for all $i = 1, 2, \dots, l$.

For $i = 0, 1, \dots, l$ let W_i be the union of Y_t over all $t \in V(T_i)$. We claim that (W_0, W_1, \dots, W_l) is a linear decomposition of G satisfying (L1)–(L5).

Property (L1) is satisfied by (W1) and (i). If $0 \leq i < j < k \leq l$, then for every $t \in V(T_i)$ and $t' \in V(T_k)$ the path from t to t' in T contains the path from r_{i+1} to r_k . Therefore, by (W2) and (iii), we have $Y_t \cap Y_{t'} \subseteq Y_{r_j}$ and, consequently, $W_i \cap W_k \subseteq Y_{r_j} \subseteq W_j$. Thus (L2) is satisfied. Similarly, we have $W_{i-1} \cap W_i = Y_{r_i}$, and, therefore, we have $|W_{i-1} \cap W_i| = q$, implying (L3). For $1 < i \leq l$ we have $|Y_{r_{i-1}}| = |Y_{r_i}| = q$, and $Y_{r_i} \neq Y_{r_{i-1}}$ by (W4). Therefore $W_{i-1} - W_i \supseteq Y_{r_{i-1}} - Y_{r_i} \neq \emptyset$. By construction, $T_0 \setminus r_1$ is the union of components of $T \setminus r_1$ disjoint from R . It follows from (W5) that $W_0 - W_1 = W_0 - Y_{r_1} \neq \emptyset$. By symmetry, $W_i - W_{i-1} \neq \emptyset$ for every $1 \leq i \leq l$, and (L4) holds. Finally, by (W3) and the choice of r_1, r_2, \dots, r_l , there exists a linkage from $W_0 \cap W_1 = Y_{r_1}$ to $W_{l-1} \cap W_l = Y_{r_l}$, implying (L5).

□

Let \mathcal{P} be a foundational linkage for a linear decomposition $\mathcal{W} = (W_0, W_1, \dots, W_l)$ of a graph G , and let $i \in \{1, 2, \dots, l-1\}$. We say that distinct foundational paths $P, P' \in \mathcal{P}$ are *bridge adjacent* in W_i if there exists a \mathcal{P} -bridge in $G[W_i]$ with an attachment in both P and P' . Given a fixed integer p we wish to consider the following properties of \mathcal{W} and \mathcal{P} . In our applications we will always have $p = 6$.

- (L6) for all $i \in \{1, 2, \dots, l-1\}$ and all non-trivial paths $P \in \mathcal{P}$, if some \mathcal{P} -bridge of $G[W_i]$ has at least one attachment in P and no attachment in a non-trivial foundational path other than P , then P is bridge adjacent in W_i to at least $p-2$ trivial members of \mathcal{P} ,
- (L7) for every $P \in \mathcal{P}$, if there exists an index $i \in \{1, 2, \dots, l-1\}$ such that $P[W_i]$ is a trivial path, then $P[W_k]$ is a trivial path for all $k = 1, 2, \dots, l-1$,
- (L8) for every two distinct paths $P, P' \in \mathcal{P}$, if there exists an integer $k \in \{1, \dots, l-1\}$ such that P and P' are bridge adjacent in W_k , then they are bridge adjacent in $W_{k'}$ for all $k' \in \{1, \dots, l-1\}$.

With respect to condition (L8) it may be helpful to point out that for all $i = 1, 2, \dots, l$ we have $W_{i-1} \cap W_i \subseteq V(\mathcal{P})$, and hence each \mathcal{P} -bridge H of G satisfies $V(H) \subseteq W_k$ for some $k \in \{0, 1, \dots, l\}$, even though this index k need not be unique.

Lemma 3.2 *Let $p \geq 0$ be an integer, and let \mathcal{W} be a linear decomposition of a p -connected graph satisfying (L1)–(L5). Then \mathcal{W} has a foundational linkage \mathcal{P} satisfying (L6).*

Proof. Let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be as stated. By (L5) there exists a linkage \mathcal{P} from $W_0 \cap W_1$ to $W_{l-1} \cap W_l$ of cardinality q . Let S be the union of all non-trivial paths in \mathcal{P} , and let H be obtained from $G[W_1 \cup W_2 \cup \dots \cup W_{l-1}]$ by deleting all trivial paths in \mathcal{P} . By Lemma 2.1 applied to H and S we may assume (by changing \mathcal{P}) that S satisfies the conclusion of that lemma. We claim that the linkage \mathcal{P} then satisfies (L6). To prove this claim suppose that $i \in \{1, 2, \dots, l-1\}$ and some S -bridge B of $H[W_i]$ has all its attachments in $V(P)$ for some non-trivial $P \in \mathcal{P}$; then there are vertices $x, y \in V(P)$ such that some component J of $H \setminus \{x, y\}$ has at least three vertices, includes a vertex of B and is disjoint from $V(S) - V(P)$. Since G is p -connected the set $V(J)$ has at least $p-2$ neighbors among the trivial paths in \mathcal{P} . Hence P is bridge adjacent in W_i to those trivial paths, as required. This proves that \mathcal{P} satisfies (L6). \square

We will make use of the following easy lemma, whose proof we omit.

Lemma 3.3 *Let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of a graph G of length $l \geq 2$, and let $i \in \{1, 2, \dots, l\}$. Then $\mathcal{W}' := (W_0, W_1, \dots, W_{i-2}, W_{i-1} \cup W_i, W_{i+1}, W_{i+2}, \dots, W_l)$ is also a linear decomposition of G . Furthermore, if \mathcal{W} satisfies any of the properties (L3)–(L8), then so does \mathcal{W}' .*

If \mathcal{W} and \mathcal{W}' are as in Lemma 3.3, then we say that \mathcal{W}' was obtained from \mathcal{W} by an *elementary contraction*. Let \mathcal{P} be a foundational linkage for \mathcal{W} . If $i \notin \{1, l\}$, then let $\mathcal{P}' := \mathcal{P}$. If $i = 1$, then let \mathcal{P}' be the linkage obtained from \mathcal{P} by restricting each $P \in \mathcal{P}$ to $W_2 \cup W_3 \cup \dots \cup W_l$, and if $i = l$, then let \mathcal{P}' be obtained by restricting \mathcal{P} to $W_1 \cup W_2 \cup \dots \cup W_{l-1}$. Then \mathcal{P}' is a foundational linkage for \mathcal{W}' . It will be referred to as the *corresponding restriction* of \mathcal{P} . If a linear decomposition \mathcal{W}'' is obtained from \mathcal{W} by a sequence of elementary contractions, then we say that \mathcal{W}'' is obtained from \mathcal{W} by a *contraction*. We will also need the following lemma about sequences of sets.

Lemma 3.4 *Let $l, n, \lambda \geq 0$ be integers such that $\lambda \geq l^{n+1}n!$. For all sequences $S_1, S_2, \dots, S_\lambda$ of subsets of $\{1, \dots, n\}$ there exist integers $1 \leq i_0 < i_1 < \dots < i_l \leq \lambda + 1$ such that*

$$S_{i_0} \cup S_{i_0+1} \cup \dots \cup S_{i_1-1} = S_{i_1} \cup S_{i_1+1} \cup \dots \cup S_{i_2-1} = \dots = S_{i_{l-1}} \cup \dots \cup S_{i_l-1}.$$

Proof. We proceed by induction on n . The lemma clearly holds when $n = 0$, and so we assume that $n > 0$ and that the lemma holds for all smaller values of n . If l consecutive sets S_i are empty, say $S_i, S_{i+1}, \dots, S_{i+l-1}$, then the lemma holds with $i_j = i + j$ for $j = 0, 1, \dots, l$. Thus we may assume that this is not the case, and hence there is an integer $x \in \{1, 2, \dots, n\}$ such that at least $\lambda' := \lambda/(ln) \geq l^n(n-1)!$ of the sets S_i include the element x . Thus $\{1, \dots, \lambda\}$ can be partitioned into consecutive intervals $I_1, I_2, \dots, I_{\lambda'}$ such that each interval includes an index i with $x \in S_i$. For $i = 1, 2, \dots, \lambda'$ let S'_i be the union of $S_j - \{x\}$ over all $j \in I_i$. By the induction hypothesis applied to the sets S'_i there exist required indices $1 \leq i'_0 < i'_1 < \dots < i'_l \leq \lambda' + 1$ for the sets S'_i . For $j = 0, 1, \dots, l$ let $i_j := \min I_{i'_j}$. It follows from the construction that these indices satisfy the conclusion of the lemma. \square

Lemma 3.5 *For every triple of integers $l, p, q \geq 0$ there exists an integer λ such that the following holds. If a graph G has a linear decomposition \mathcal{W} of length $\lambda + 1$ and adhesion q and a foundational linkage \mathcal{P} satisfying (L1)–(L6), then it has a linear decomposition \mathcal{W}' of length l and adhesion q obtained from \mathcal{W} by a contraction such that \mathcal{W}' and the corresponding restriction of \mathcal{P} satisfy (L1)–(L8).*

Proof. Let $l, q \geq 0$ be given, let $s := \binom{q}{2}$, and let $\mu := l^{s+1}s!$. We will show that $\lambda := \mu^{q+1}q!$ satisfies the conclusion of the lemma.

Let $\mathcal{W} = (W_0, W_1, \dots, W_{\lambda+1})$ be as stated. We wish to apply Lemma 3.4 with q playing the role of n and μ playing the role of l . For $i = 1, 2, \dots, \lambda$ let S_i be the set of all $P \in \mathcal{P}$ such that $P[W_i]$ is a non-trivial path. By Lemma 3.4 there exist indices $1 \leq i_0 < i_1 < \dots < i_\mu \leq \lambda + 1$ as stated in that lemma. Let $i_{-1} := 0$ and $i_{\mu+1} := \lambda + 1$ and for $t = -1, 0, \dots, \mu$ define

$$W'_{t+1} := W_{i_t} \cup W_{i_t+1} \cup \dots \cup W_{i_{t+1}-1}.$$

By Lemma 3.3 $\mathcal{W}' := (W'_0, W'_1, \dots, W'_{\mu+1})$ is a linear decomposition of G satisfying (L1)–(L6). It follows from the construction that it also satisfies (L7).

To construct a linear decomposition satisfying (L1)–(L8) we apply the same argument again, as follows. For a 2-element subset $X \subseteq \mathcal{P}$ let S_X be the set of integers $j \in \{1, 2, \dots, q\}$ such that some \mathcal{P} -bridge H of G has attachments in P for both elements $P \in X$ and satisfies $V(H) \subseteq W_j$. By applying Lemma 3.4 with $n := \binom{q}{2}$ and λ replaced by μ to the linear decomposition \mathcal{W}' and using the same construction we arrive at the desired linear decomposition of G . \square

Let \mathcal{W} be a linear decomposition of a graph G of length $l \geq 2$ with foundational linkage \mathcal{P} satisfying (L1)–(L8). We define the *auxiliary graph* of the pair $(\mathcal{W}, \mathcal{P})$ to be the graph with vertex-set \mathcal{P} in which two paths $P, P' \in \mathcal{P}$ are adjacent if they are bridge adjacent in W_i for some (and hence every) $i \in \{1, 2, \dots, l-1\}$.

We will need one more property of a linear decomposition \mathcal{W} and its foundational linkage \mathcal{P} . The parameter p is the same as in (L6).

(L9) Let $\mathcal{P}_1 \subseteq \mathcal{P}_2 \subseteq \mathcal{P}$ such that $|\mathcal{P}_1| + |\mathcal{P}_2| \leq p$ and each member of \mathcal{P}_1 is non-trivial.

Then there exists a linkage \mathcal{Q} in G of cardinality $|\mathcal{P}_1|$ from $W_0 \cap W_1 \cap V(\mathcal{P}_1)$ to $W_{l-1} \cap W_l \cap V(\mathcal{P}_1)$ such that its graph is a subgraph of $H := G[W_0 \cup W_l] \cup \bigcup_{P \in \mathcal{P} - \mathcal{P}_2} P$.

Our objective is to show that if a graph has a linear decomposition satisfying (L1)–(L8), then it also has one satisfying (L9). For the proof we need a definition and a lemma. Let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of a graph G with foundational linkage \mathcal{P} satisfying (L1)–(L8). We say that a set \mathcal{P}' of components of \mathcal{P} is *well-connected* if for every two paths $P, P' \in \mathcal{P}'$ there exists a path \mathcal{Q} in the auxiliary graph of $(\mathcal{W}, \mathcal{P})$ such that every internal vertex of \mathcal{Q} is a non-trivial foundational path belonging to \mathcal{P}' . The lemma we need is the following.

Lemma 3.6 *Let $l, s, q \geq 0$ be integers, and let G be a graph with a linear decomposition $\mathcal{W} = (W_0, W_1, \dots, W_l)$ of length l , adhesion q and foundational linkage \mathcal{P} satisfying (L1)–(L8). Let \mathcal{Q} be a well-connected set of foundational paths, and let $X_{ij} := (W_{i-1} \cap W_i \cap V(\mathcal{Q})) \cup (W_j \cap W_{j+1} \cap V(\mathcal{Q}))$. Then for every two integers i, j with $1 \leq i \leq i+2q \leq j < l$ and every two sets $A, B \subseteq X_{ij}$ of size s there exist s disjoint paths, each with one end in A , the other end in B and no internal vertex in any W_k for $k \in \{0, 1, \dots, l\} - \{i, i+1, \dots, j\}$.*

Proof. Let H be the subgraph of G obtained by deleting $W_j - A - B$ for all $j \in \{0, 1, \dots, l\} - \{i, i+1, \dots, j\}$. If the paths do not exist, then by Menger's theorem there exists a set $Y \subseteq V(H)$ of size at most $s-1$ such that $H \setminus Y$ has no path from A to B . We may assume that $A \cap B = \emptyset$, for otherwise we may proceed by induction by deleting $A \cap B$. Since $|W_{i-1} \cap W_i| = |W_j \cap W_{j+1}| = q$ we deduce that $s \leq q$. Let Z be the union of the vertex-sets of

the trivial paths in \mathcal{P} . By (L7) and the fact that $W_i \cap W_{i+1} \subseteq V(\mathcal{P})$ for all $i = 1, 2, \dots, l-1$, the sets $W_{i+1} - Z, W_{i+3} - Z, \dots, W_{i+2q-1} - Z$ are pairwise disjoint, and so one of them, say $W_m - Z$, is disjoint from Y . For $x \in X_{ij}$ let P_x be the member of \mathcal{Q} that includes x . If $x \in W_{i-1} \cap W_i$, then let P'_x denote the restriction of P_x to $W_i \cup W_{i+1} \cup \dots \cup W_{m-1}$, and if $x \in W_l \cap W_{l+1}$, then let P'_x denote the restriction of P_x to $W_{m+1} \cup W_{m+2} \cup \dots \cup W_l$. Since the paths P'_x are pairwise vertex-disjoint, there exist $a \in A$ and $b \in B$ such that P'_a and P'_b are disjoint from Y . Since \mathcal{Q} is well-connected it follows that $P'_a \cup G[W_m] \cup P'_b$ includes a path in H from a to b with no internal vertex in Z . That path is disjoint from Y , a contradiction. \square

Lemma 3.7 *Let $p, q \geq 0$ and $l \geq 3$ be integers, and let G be a p -connected graph with a linear decomposition $\mathcal{W} = (W_0, W_1, \dots, W_{l+4q+2})$ of length $l + 4q + 2$, adhesion q and foundational linkage \mathcal{P} satisfying (L1)–(L8). Let $\mathcal{W}' := (W'_0, W'_1, \dots, W'_l)$, where $W'_0 := W_0 \cup W_1 \cup \dots \cup W_{2q+1}$, $W'_i := W_{i+2q+1}$ for $i = 1, 2, \dots, l-1$ and $W'_l := W_{l+2q+1} \cup W_{l+2q+2} \cup \dots \cup W_{l+4q+2}$, and let \mathcal{P}' be the corresponding restriction of \mathcal{P} . Then \mathcal{W}' is a linear decomposition of G of length l and adhesion q , and \mathcal{P}' is a foundational linkage for \mathcal{W}' such that conditions (L1)–(L9) hold.*

Proof. The linear decomposition \mathcal{W}' satisfies (L1)–(L8) by Lemma 3.3, and so it remains to show that it satisfies (L9). Since $l \geq 3$ we may choose an index s with $2q+2 < s < l+2q+1$. Let $\mathcal{P}_1 \subseteq \mathcal{P}_2$ be two sets of foundational paths such that every member of \mathcal{P}_1 is non-trivial and $|\mathcal{P}_1| + |\mathcal{P}_2| \leq p$. Let $H := G[W'_0 \cup W'_l] \cup \bigcup_{P \in \mathcal{P}_1 \cup \mathcal{P}_2} P$. We must show that there exist $|\mathcal{P}_1|$ disjoint paths in H from $X_0 := W'_0 \cap W'_1 \cap V(\mathcal{P}_1)$ to $X_l := W'_{l-1} \cap W'_l \cap V(\mathcal{P}_1)$. Since G is p -connected and $|W_j \cap W_{j+1} \cap V(\mathcal{P}_2)| = |\mathcal{P}_2|$ we deduce that there exists a linkage of size $|\mathcal{P}_1|$ from X_0 to X_l in $G \setminus (W_s \cap W_{s+1} \cap V(\mathcal{P}_2))$. Let us choose such linkage, say \mathcal{Q} , such that it uses the least number of edges not in H . We will prove that \mathcal{Q} is as desired. To do so we may assume for a contradiction that \mathcal{Q} uses an edge $e \in E(G) - E(H)$. By considering the linear decomposition $(W'_l, W'_{l-1}, \dots, W'_0)$ we may assume that e has both ends in W_i for some $i \in \{2q+2, 2q+3, \dots, s\}$.

By an *annex* we mean a maximal well-connected set of foundational paths that includes at least one non-trivial foundational path. Let \mathcal{R} be an annex. We define $H_1(\mathcal{R})$ to be the subgraph of $J := G[W_1 \cup W_2 \cup \dots \cup W_s]$ consisting of the graph of \mathcal{R} restricted to J and all \mathcal{R} -bridges that are the subgraphs of J and have all vertices of attachment in $V(\mathcal{R})$. We define $H_0(\mathcal{R})$ analogously as a subgraph of $G[W_1 \cup W_2 \cup \dots \cup W_{2q+1}]$. It follows that e is an edge of $H_1(\mathcal{R})$ for some maximal well-connected set \mathcal{R} of foundational paths. Let us assume that e belongs to $H_1(\mathcal{R})$ for some annex \mathcal{R} . Thus we fix \mathcal{R} and denote $H_0(\mathcal{R})$ and $H_1(\mathcal{R})$ by H_0 and H_1 , respectively. We will modify the linkage \mathcal{Q} within H_1 , and will obtain a contradiction to its choice that way.

Let \mathcal{Q}' be the subset of \mathcal{Q} consisting of those paths that use at least one vertex of H_1 . For $Q \in \mathcal{Q}'$ let $a(Q)$ be its end in X_0 , let $d(Q)$ be its end in X_l , and let $b(Q)$ and $c(Q)$

be two vertices of $Q \cap H_1$ such that the subpath of Q from $b(Q)$ to $c(Q)$ is maximum and $a(Q), b(Q), c(Q), d(Q)$ occur on Q in the order listed. It follows that $b(Q), c(Q)$ belong to $(W_0 \cap W_1) \cup (W'_0 \cap W'_1) \cup (W_s \cap W_{s+1})$, but if one of them belongs to $W'_0 \cap W'_1$, then it is equal to $a(Q)$.

If $b(Q) \in W_0 \cap W_1$ or $b(Q) \in W'_0 \cap W'_1$ we define $b'(Q) := b(Q)$ and let $B(Q)$ be the null graph; otherwise $b(Q)$ belongs to a foundational path $P \notin \mathcal{P}_2$, and we define $b'(Q)$ to be the unique member of $W_{2q+1} \cap W_{2q+2} \cap V(P)$, and we let $B(Q) := P[W_{2q+2} \cup W_{2q+3} \cup \dots \cup W_s]$. We define $c'(Q)$ and $C(Q)$ analogously. By Lemma 3.6 applied to \mathcal{W} and \mathcal{P} with $i = 0$ and $j = 2q+1$ there exists a linkage \mathcal{S} in H_0 of size $|\mathcal{Q}'|$ from $\{b'(Q) : Q \in \mathcal{Q}'\}$ to $\{c'(Q) : Q \in \mathcal{Q}'\}$. The fact that \mathcal{R} was chosen to be a maximal well-connected set implies that members of this linkage are disjoint from the members of $\mathcal{Q} - \mathcal{Q}'$. For each $Q \in \mathcal{Q}'$ we delete the interior of the subpath of Q between $b(Q)$ and $c(Q)$, and add the linkage \mathcal{S} and the paths $B(Q)$ and $C(Q)$ for all $Q \in \mathcal{Q}'$. Thus we obtain a new linkage with the same properties as \mathcal{Q} , but with fewer edges not in H , contrary to the choice of \mathcal{Q} . This completes the case when e belongs to $H_1(\mathcal{R})$ for some annex \mathcal{R} , and so from now on we may assume the opposite.

Let K denote the union of the trivial paths in \mathcal{P} . Since e belongs to $H_1(\mathcal{R})$ for no annex \mathcal{R} it follows that the K -bridge B of H containing e includes no non-trivial foundational path. Let $Q \in \mathcal{Q}$ be the path containing e , and let $b, c \in V(Q)$ be such that bQc is a maximal subpath of B containing e . Since Q is disjoint from $W_s \cap W_{s+1} \cap V(\mathcal{P}_2)$, and hence from the trivial paths in \mathcal{P}_2 , we deduce that $b, c \notin V(\mathcal{P}_2)$. It follows more generally (from the fact that e belongs to $H_1(\mathcal{R})$ for no annex \mathcal{R}) that every K -bridge B' of H that has b and c as attachments includes no non-trivial foundational path. Consequently, if B' includes a non-trivial subpath of some member of \mathcal{Q} , then this subpath uses two vertices of $V(K)$. On the other hand the foundational paths with vertex-sets $\{b\}$ and $\{c\}$ are adjacent in the auxiliary graph, and hence for each $i = 1, 2, \dots, q$ there exists a K -bridge of $G[W_i]$ whose attachments include b and c . By the conclusion of the sentence before the previous one we deduce that there is $i \in \{1, 2, \dots, q\}$ such that W_i includes no non-trivial subpath of a member of \mathcal{Q} . Thus we can replace bQc by a subpath of W_i , contrary to the choice of \mathcal{Q} . This completes the proof that \mathcal{W}' and \mathcal{P}' satisfy (L9). \square

We are now ready to state the main result of this section.

Theorem 3.8 *For all integers $k, l, p, w \geq 0$ there exists an integer N with the following property. If G is a p -connected graph of tree-width at most w with at least N vertices, then either G has a minor isomorphic to $K_{p,k}$, or G has a linear decomposition of length at least l and adhesion at most w satisfying (L1)–(L9).*

Proof. Let $k, l, p, w \geq 0$ be integers, and let $l_1 := l + 4w + 2$. Let l_2 be the minimum value of λ such that Lemma 3.5 holds for $l = l_1$, p and all $q \leq w$. Finally, let N be such that Lemma 3.1 holds for $l = l_2$, k, p , and w . We claim that N satisfies the theorem. To prove

the claim let G be a p -connected graph of tree-width at most w with at least N vertices. By Lemma 3.1 it has either a minor isomorphic to $K_{p,k}$, or a linear decomposition \mathcal{W}_2 of length at least l_2 and adhesion $q \leq w$ satisfying (L1)–(L5), and so we may assume the latter. By Lemma 3.2 there is a foundational linkage \mathcal{P}_1 satisfying (L6). By Lemma 3.5 the graph G has a linear decomposition \mathcal{W}_1 of length l_1 and adhesion q such that \mathcal{W}_1 and \mathcal{P}_1 satisfy (L1)–(L8). Finally, by Lemma 3.7 there exist a linear decomposition \mathcal{W} of length l and adhesion q and a foundational linkage satisfying (L1)–(L9). \square

We will need the following special case.

Corollary 3.9 *For all integers $l, w \geq 0$ there exists an integer N with the following property. If G is a 6-connected graph of tree-width at most w with at least N vertices, then either G has a minor isomorphic to K_6 , or G has a linear decomposition of length at least l and adhesion at most w satisfying (L1)–(L9) for $p = 6$.*

4 Analyzing the auxiliary graph

Let G be a 6-connected graph with no K_6 minor, and let \mathcal{W} and \mathcal{P} be as before and satisfy (L1)–(L9). In this section we establish several properties of the auxiliary graph of the pair $(\mathcal{W}, \mathcal{P})$. The first main result is Lemma 4.6 stating that if \mathcal{W} is sufficiently long, then every component of the subgraph of the auxiliary graph induced by the non-trivial foundational paths is either a path or a cycle. The second main result of this section, Lemma 4.10, allows us to modify the pair $(\mathcal{W}, \mathcal{P})$ such that in the new pair every non-trivial \mathcal{P} -bridge attaches to exactly two non-trivial foundational paths.

Let $k, l \geq 3$ be integers. For $i \in \{1, 2, \dots, k\}$ let P_i be a path with vertices v_1^i, \dots, v_l^i in order. We define the *linked k -cylinder of length l* to be the graph with vertex-set $\bigcup_{i=1}^k V(P_i)$ and edge-set $\bigcup_{i=1}^k E(P_i) \cup \{v_j^i v_j^{i+1} : 1 \leq i \leq k, 1 \leq j \leq l\} \cup \{q_1, q_2\}$, where the index notation is taken modulo k and the edges q_1 and q_2 have no common end and each have one end in $\{v_1^1, v_1^2, \dots, v_1^k\}$ and the other end in $\{v_l^1, v_l^2, \dots, v_l^k\}$. Figure 1 shows a linked 3-cylinder of length six.

Lemma 4.1 *For all integers $k \geq 3$, a linked k -cylinder of length twelve has a K_6 minor.*

Proof. By finding two suitable paths with vertex-sets in $\{v_j^i : 1 \leq i \leq k, 1 \leq j \leq 3\}$, and two paths with vertex-sets in $\{\{v_j^i : 1 \leq i \leq k, 10 \leq j \leq 12\}\}$, we see that a linked k -cylinder of length twelve has a minor isomorphic to a linked 3-cylinder of length six with the additional property that the ends of the edge q_i are v_1^i and v_6^i for $i = 1, 2$. This graph has a K_6 minor as indicated in Figure 1. \square

Figure 1: Finding a K_6 minor in a linked 3-cylinder of length six.

Lemma 4.2 Let $l \geq 2$ and $q \geq 3$ be integers, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of length l and adhesion q of a graph G , and let \mathcal{P} be a foundational linkage for \mathcal{W} such that (L1)–(L5) and (L9) hold. If for at least $48\binom{q}{3}$ indices $i \in \{1, 2, \dots, l-1\}$ there exists a \mathcal{P} -bridge in $G[W_i]$ with attachments on at least three non-trivial paths in \mathcal{P} , then G has a K_6 minor.

Proof. Let l, q be integers and $\mathcal{W} = (W_0, \dots, W_l)$ and \mathcal{P} be given. If there exist $48\binom{q}{3}$ distinct indices i with $1 \leq i \leq l-1$ such that $G[W_i]$ contains a \mathcal{P} -bridge attaching to at least three non-trivial foundational paths, then there exist 48 distinct indices i and three distinct non-trivial foundational paths $P_1, P_2, P_3 \in \mathcal{P}$ such that $G[W_i]$ contains a \mathcal{P} -bridge attaching to P_j for $j = 1, 2, 3$. Then there exists a subset of indices $I \subseteq \{1, \dots, l-1\}$ with $|I| = 24$ such that $|i-j| > 2$ for all distinct $i, j \in I$, and furthermore, $G[W_i]$ contains a bridge B_i attaching to P_j for all $i \in I$ and $j = 1, 2, 3$. By property (L9), there exist two disjoint paths Q_1 and Q_2 each with one end in $V(P_1 \cup P_2 \cup P_3) \cap W_1 \cap W_2$ and one end in $V(P_1 \cup P_2 \cup P_3) \cap W_{l-1} \cap W_l$. Moreover, the paths Q_1 and Q_2 do not have an internal vertex in either $B_i \setminus V(\mathcal{P})$ or P_j for all $i \in I$ and $1 \leq j \leq 3$. It follows that G has a minor isomorphic to a linked 3-cylinder of length twelve since each pair of successive bridges B_i can be contracted to a single cycle of length three. By Lemma 4.1 the graph G has a K_6 minor, as desired. \square

The following will be a hypothesis common to several forthcoming lemmas. In order to avoid unnecessary repetition we give it a name.

Hypothesis 4.3 Let $p = 6$, $l \geq 2$ and $q \geq 6$ be integers, let G be a 6-connected graph with no K_6 minor, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of G of length l and adhesion q with a foundational linkage \mathcal{P} such that conditions (L1)–(L9) hold.

Lemma 4.4 Assume Hypothesis 4.3. Then there do not exist $6\binom{q}{6}$ distinct indices i with $1 \leq i \leq l-1$ such that $G[W_i]$ contains a non-trivial \mathcal{P} -bridge attaching only to trivial foundational paths.

Proof. Let G , \mathcal{W} , \mathcal{P} , q , and l be as stated. If the conclusion of the lemma does not hold, then there exist six distinct indices i such that $G[W_i]$ contains a non-trivial \mathcal{P} -bridge B_i attaching to the same subset of six trivial foundational paths. By contracting the internal vertices of each B_i to a single vertex, we see G would have a K_6 minor, a contradiction. \square

Lemma 4.5 *Assume Hypothesis 4.3. If $l > 6\binom{q}{6}$, then \mathcal{P} includes at least one non-trivial path.*

Proof. Let G , \mathcal{W} , \mathcal{P} , q , and l be as stated, and suppose for a contradiction that every path in \mathcal{P} is trivial. For every i , $1 \leq i \leq l - 1$, $G[W_i]$ contains a non-trivial bridge B_i , as $W_i \not\subseteq W_{i+1}$, $W_i \not\subseteq W_{i-1}$ by (L4), in contradiction with Lemma 4.4. \square

Let \mathcal{W} be a linear decomposition of a graph G and let \mathcal{P} be a foundational linkage such that \mathcal{W} and \mathcal{P} satisfy (L1)–(L8). By a *core* of the pair $(\mathcal{W}, \mathcal{P})$ we mean a component of the graph obtained from the auxiliary graph of $(\mathcal{W}, \mathcal{P})$ by deleting all trivial foundational paths. The next lemma is the first main result of this section.

Lemma 4.6 *Assume Hypothesis 4.3. If $l \geq 48$, then every core of the pair $(\mathcal{W}, \mathcal{P})$ is a path or a cycle.*

Proof. Let G , \mathcal{W} , \mathcal{P} , q , and l be as stated. Suppose for a contradiction that there exists a non-trivial foundational path $P_1 \in \mathcal{P}$ adjacent in the auxiliary graph to three non-trivial paths $P_2, P_3, P_4 \in \mathcal{P}$. By property (L9), there exist two disjoint paths Q_1 and Q_2 each with one end in $V(P_2 \cup P_3 \cup P_4) \cap W_0 \cap W_1$ and one end in $V(P_2 \cup P_3 \cup P_4) \cap W_{l-1} \cap W_l$. Furthermore, Q_1 and Q_2 avoid any internal vertex of P_i for $1 \leq i \leq 4$ as well as any internal vertex of a \mathcal{P} -bridge in $G[W_j]$ for $1 \leq j \leq l - 1$. For all $i \in \{1, 2, \dots, 24\}$, we contract to a single vertex b_i the set of vertices consisting of $P_1[W_{2i-1}]$ and the internal vertices of every non-trivial bridge attaching to P_1 in $G[W_{2i-1}]$. Note that no vertex of Q_i for $i = 1, 2$ is contained in the contracted set of b_{2j-1} for any $1 \leq j \leq 24$. Each vertex b_i has a neighbor in each of P_2 , P_3 , and P_4 . Also, the neighbors of b_i and b_j are distinct for $i \neq j$. It follows that G has a minor isomorphic to a linked 3-cylinder of length twelve, contrary to Lemma 4.1. \square

Lemma 4.7 *Assume Hypothesis 4.3. If $l \geq 12$, then every non-trivial path in \mathcal{P} is adjacent in the auxiliary graph to at most three trivial paths in \mathcal{P} .*

Proof. Let G , \mathcal{W} , \mathcal{P} , q , and l be as stated. Assume, to reach a contradiction, that $P_1 \in \mathcal{P}$ is a non-trivial path and is adjacent to four trivial foundational paths in the auxiliary graph. Let the vertices comprising the four trivial foundational paths be v_1, v_2, v_3, v_4 . For each $i \in \{1, 2, \dots, 6\}$ we contract to a single vertex b_i the vertex set containing $P_1[W_{2i-1}]$ and the internal vertices of all non-trivial bridges of $G[W_{2i-1}]$ attaching to P_1 . It follows that G has

as a minor isomorphic to the graph with vertex set $\{v_i : 1 \leq i \leq 4\} \cup \{b_i : 1 \leq i \leq 6\}$ and edges $\{v_i b_j : 1 \leq i \leq 4, 1 \leq j \leq 6\} \cup \{b_i b_{i+1} : 1 \leq i \leq 5\}$. This graph has a K_6 minor, and hence so does G , a contradiction. \square

Corollary 4.8 *Assume Hypothesis 4.3. If $l \geq 12$, then every member of \mathcal{P} is an induced path.*

Proof. If some non-trivial $P \in \mathcal{P}$ is not induced, then by (L6) the path P is adjacent to at least 4 trivial foundational paths in the auxilliary graph, contrary to Lemma 4.7. \square

Lemma 4.9 *Assume Hypothesis 4.3. If $l \geq 12$, then no non-trivial foundational path is adjacent in the auxiliary graph to three or more trivial foundational paths.*

Proof. Let G , \mathcal{W} , \mathcal{P} , q , and l be as stated. As above, assume to reach a contradiction, that $P_1 \in \mathcal{P}$ is a non-trivial path and is adjacent to three trivial foundational paths in the auxiliary graph. By the 6-connectivity of G , P_1 must be adjacent to another foundational path in the auxiliary graph. By Lemma 4.7, such a path, call it P_2 , must be non-trivial. For each i , $1 \leq i \leq 6$, we contract to a single vertex the vertex set containing $P_1[W_{2i-1}]$ and the internal vertices of any non-trivial bridge of $G[W_{2i-1}]$ attaching to P_1 . It follows that G has a minor isomorphic to the graph in Figure 2, which has a K_6 minor as indicated in that figure, a contradiction. \square .

Figure 2: Finding a K_6 minor when a non-trivial foundational path is bridge adjacent to three trivial foundational paths.

In the next lemma, the second main result of this section, we show that we can assume that our linear decomposition $\mathcal{W} = (W_0, W_1, \dots, W_l)$ and foundational linkage \mathcal{P} satisfy the following property.

- (L10) For all $i \in \{1, 2, \dots, l-1\}$, every non-trivial \mathcal{P} -bridge of $G[W_i]$ attaches to exactly two non-trivial foundational paths.

Lemma 4.10 *Assume Hypothesis 4.3. If $l \geq (6\binom{q}{6} + 48\binom{q}{3})l'$, then there exist a contraction \mathcal{W}' of \mathcal{W} of length l' and adhesion q and a foundational linkage \mathcal{P}' for \mathcal{W}' satisfying (L1)–(L10).*

Proof. By Lemma 4.4 and Lemma 4.2 and our choice of l , there exists an index α such that for all $i \in \{1, 2, \dots, l' - 1\}$, $G[W_{\alpha+i}]$ contains neither a non-trivial \mathcal{P} -bridge attaching only to trivial foundational paths nor a \mathcal{P} -bridge attaching to three or more non-trivial foundational paths. Moreover, Lemma 4.7 and property (L6) imply that no non-trivial bridge attaches to exactly one non-trivial foundational path. The lemma follows from considering the contraction $\mathcal{W}' = (\bigcup_{i=0}^{\alpha} W_i, W_{\alpha+1}, W_{\alpha+2}, \dots, W_{\alpha+l'-1}, \bigcup_{i=\alpha+l'}^l W_i)$ of \mathcal{W} and the corresponding restriction of \mathcal{P} . \square

5 Finding and eliminating a pinwheel

Let us assume Hypothesis 4.3. In the previous section we have shown that \mathcal{W} and \mathcal{P} can be chosen so that for every $i \in \{1, 2, \dots, l - 1\}$, every non-trivial \mathcal{P} -bridge B of $G[W_i]$ attaches to exactly two non-trivial foundational paths. The main result of this section will be used in Section 6 to show that if G is not an apex graph then \mathcal{W} and \mathcal{P} can be chosen so that every such bridge attaches to no trivial foundational path. The proof technique is different, and relies on a theory of “non-planar extensions” of planar graphs, developed in [20].

A *pinwheel with t vanes* is the graph defined as follows. Let C^1 and C^2 be two disjoint cycles of length $2t$, where the vertices of C^i are $v_1^i, v_2^i, \dots, v_{2t}^i$ in order. Let w_1, w_2, \dots, w_t, x be $t + 1$ distinct vertices. The pinwheel with t vanes has vertex-set $V(C^1) \cup V(C^2) \cup \{w_1, w_2, \dots, w_t, x\}$ and edge-set

$$\begin{aligned} E(C^1) \cup E(C^2) \cup \{v_{2j}^1 v_{2j}^2 : 1 \leq j \leq t\} \\ \cup \{w_j v_{2j-1}^i : 1 \leq j \leq t, i = 1, 2\} \cup \{xw_j : 1 \leq j \leq t\} \end{aligned}$$

The cycles C^1 and C^2 form the *rings* of the pinwheel. A pinwheel with four vanes is pictured in Figure 3. A *Möbius pinwheel with t vanes* is obtained from a pinwheel with t vanes by deleting the edges $v_{2t}^1 v_1^1$ and $v_{2t}^2 v_1^2$ and adding the edges $v_{2t}^1 v_1^2$ and $v_{2t}^2 v_1^1$. The cycle formed by $V(C^1) \cup V(C^2)$ in a Möbius pinwheel is the *ring* of the Möbius pinwheel. A Möbius pinwheel with 4 vanes contains K_6 as a minor as shown on Figure 3.

Lemma 5.1 *Let q , l , and $p = 6$, $t \geq 4$ be positive integers. Let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of a 6-connected graph G of length l and adhesion q with foundational linkage \mathcal{P} satisfying (L1)–(L9). Let $P_1, P_2, P_3, Q \in \mathcal{P}$ be distinct, let Q be trivial, and let P_i be non-trivial for $i = 1, 2, 3$. Furthermore, let P_2 be adjacent to P_1 , P_3 , and Q in the auxiliary graph. If $l \geq 4t + 1$, then G has a subgraph isomorphic to a subdivision of a pinwheel or a Möbius pinwheel with t vanes.*

Figure 3: (a) A pinwheel with four vanes, (b) A Möbius pinwheel with 4 vanes and a K_6 minor in it.

Proof. Let $V(Q) = \{x\}$, let $P_i \cap W_0 \cap W_1 = \{s_i\}$ for $i = 1, 3$, and let $P_i \cap W_{l-1} \cap W_l = \{t_i\}$ for $i = 1, 3$. Let $\bar{\mathcal{P}} = \mathcal{P} - \{P_1, P_2, P_3, Q\}$. By property (L9), there exist two disjoint paths R_1 and R_2 in $G[W_0 \cup W_l] \cup \bigcup_{P \in \bar{\mathcal{P}}} P$ each with one end in $\{s_1, s_3\}$ and one end in $\{t_1, t_3\}$. The rings of our pinwheel will be formed by $R_1 \cup R_2 \cup P_1 \cup P_3$. If the paths R_1 and R_2 cross, i.e. the ends of R_1 are s_1 and t_3 and the ends of R_2 are s_3 and t_1 , we construct a Möbius pinwheel. Otherwise, we simply construct a pinwheel on t vanes.

Note that for every $j = 1, \dots, l-1$ there exists a path S_j with one end in $W_j \cap V(P_1)$ and the other end in $W_j \cap V(P_3)$, such that $V(S_j) \subseteq W_j$, and S_j is internally disjoint from $\bigcup_{P \in \mathcal{P} - P_2} P$. Also, for every $j = 1, \dots, l-1$ there exists a vertex $v_j \in W_j$ and three paths T_j^1, T_j^2 and T_j^3 , internally disjoint from each other and from $\bigcup_{P \in \mathcal{P} - P_2} P$, satisfying the following. Each of T_j^1, T_j^2 and T_j^3 has one end v_j , the second end of T_j^1 is in $V(P_1)$, the second end of T_j^3 is in $V(P_3)$ and the second end of T_j^2 is x . The paths S_j, T_j^1, T_j^2 and T_j^3 are internally disjoint from the rings of our pinwheel by construction, and the paths, corresponding to the sets W_i with non-consecutive indices, are also disjoint. Therefore we can use the paths corresponding to the sets W_i with odd indices to construct a subgraph of G isomorphic to a subdivision of a pinwheel or a Möbius pinwheel, with rings of the pinwheel as prescribed above. \square

As we have seen above a Möbius pinwheel with sufficiently many vanes contains a K_6 minor. A pinwheel is, however, an apex graph. In order to prove that graphs containing a subdivision of a pinwheel with many vanes satisfy Theorem 1.2, we will need the following lemma concerning subdivisions of apex graphs contained in larger non-apex graphs. The lemma is proved in [20].

Lemma 5.2 *Let J be an internally 4-connected triangle-free planar graph not isomorphic to the cube, and let $F \subseteq E(J)$ be a nonempty set of edges such that no two edges of F are incident with the same face of J . Let J' be obtained from J by subdividing each edge in F exactly once, and let H be the graph obtained from J' by adding a new vertex $v \notin V(J')$ and joining it by an edge to all the new vertices of J' . Let a subdivision of H be isomorphic to a subgraph of G , and let $u \in V(G)$ correspond to the vertex v . If $G \setminus u$ is internally 4-connected and non-planar, then there exists an edge $e \in E(H)$ incident with v such that either*

- (i) *there exist vertices $x, y \in V(J')$ not belonging to the same face of J' such that $(H \setminus e) + xy$ is isomorphic to a minor of G , or*
- (ii) *there exist vertices $x_1, x_2, x_3, x_4 \in V(J')$ appearing on some face of J' in order such that $(H \setminus e) + x_1x_3 + x_2x_4$ is isomorphic to a minor of G .*

Lemma 5.3 *If a 5-connected graph G with no K_6 minor contains a subdivision of a pinwheel with 20 vanes as a subgraph, then G is apex.*

Proof. We will show that for every positive integer t every 5-connected non-apex graph G containing a subdivision of a pinwheel with $4t$ vanes contains a Möbius pinwheel with $t - 1$ vanes as a minor. A Möbius pinwheel with 4 vanes contains a K_6 minor, as observed above, and so the lemma will follow.

We apply Lemma 5.2, where the graphs H and J , the vertex $v \in V(H)$ and the set of edges $F \subseteq E(J)$ are defined as follows. Let H be the pinwheel with $4t$ vanes, and let v be the “hub” of the pinwheel (denoted by x in the definition of a pinwheel). Let the graph J consist of two disjoint cycles C^1 and C^2 of length $8t$ with the vertices of $C^i = \{v_j^i : 1 \leq j \leq 8t\}$ for $i = 1, 2$ and v_j^i adjacent to v_{j+1}^i and v_{j-1}^{i+1} for all $1 \leq j \leq 8t$ and $i = 1, 2$ with the subscript addition taken modulo $8t$ and the superscript addition taken modulo 2. Finally, let $F = \{v_{2j-1}^1 v_{2j-1}^2 : 1 \leq j \leq 4t\}$.

Suppose that outcome (ii) of Lemma 5.2 holds (the case when outcome (i) holds is analogous). If the boundary of the face of J containing the vertices x_1, x_2, x_3 and x_4 is not one of the cycles C_1 and C_2 , then without loss of generality we have $x_1 = v_1^1, x_2 = v_1^2, x_3 = v_2^2$ and $x_4 = v_2^1$. Clearly, for every edge $e \in E(H)$ incident to v the graph $(H \setminus e) + x_1x_3 + x_2x_4$ contains a Möbius pinwheel with $4t - 1$ vanes as a subgraph.

Therefore, by symmetry, we assume that the vertices x_1, x_2, x_3 and x_4 are contained in C_1 , i.e. $x_i = v_{k_i}^1$ for $i = 1, 2, 3, 4$, where, without loss of generality, $t \leq k_1, k_2, k_3, k_4 \leq 4t$. Then the subgraph J_0 of $J + x_1x_3 + x_2x_4$ induced on $\{v_i^j : t \leq i \leq 4t, j = 1, 2\}$ contains two disjoint paths, one with ends v_t^1 and v_{4t}^2 , and another with ends v_t^2 and v_{4t}^1 . Now consider the graph $(H \setminus e) + x_1x_3 + x_2x_4$, where $e \in E(H)$ is an edge incident to v , and delete all the edges of subdivision of J_0 from this graph, except for those that belong to the paths constructed

above. It is easy to see that the resulting graph contains a subdivision of a Möbius pinwheel with $t - 1$ vanes, as claimed. \square

The next corollary follows immediately from Lemmas 5.1 and 5.3.

Corollary 5.4 *Assume Hypothesis 4.3. If $l \geq 81$ and some non-trivial foundational path is adjacent in the auxiliary graph to two non-trivial and at least one trivial foundational path, then G is apex.*

6 Taming the bridges

In Lemma 4.10 we have modified \mathcal{W} and \mathcal{P} so that for every $i \in \{1, 2, \dots, l - 1\}$ every non-trivial \mathcal{P} -bridge B of $G[W_i]$ attaches to exactly two non-trivial foundational paths. Let us recall that a core is a component of the subgraph of the auxiliary graph restricted to non-trivial foundational paths. In this section we show that the graph consisting of all paths of a core of $(\mathcal{W}, \mathcal{P})$ and all bridges that attach to two paths of the core can be drawn in either a disk or a cylinder, depending on whether the core is a path or a cycle.

The following lemma follows easily from the definition of properties (L1)–(L5) and (L9). Let us recall that rerouting was defined prior to Lemma 2.1.

Lemma 6.1 *Let $l \geq 2$, $q \geq 0$, and $p \geq 0$ be integers, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of length l and adhesion q of a graph G , and let \mathcal{P} be a foundational linkage for \mathcal{W} such that (L1)–(L5) and (L9) hold. Let i be fixed with $1 \leq i \leq l - 1$ and let Q be a path in $G[W_i]$ with ends x and y such that $x, y \in V(P)$ for some $P \in \mathcal{P}$ and Q is otherwise disjoint from $V(\mathcal{P})$. Let P' be obtained from P by replacing xPy by Q . Then the linkage $\mathcal{P}' = (\mathcal{P} - \{P\}) \cup \{P'\}$ satisfies (L1)–(L5) and (L9).*

Let G be a graph and $\mathcal{W} = (W_0, \dots, W_l)$ be a linear decomposition of length l and adhesion q of G , and let \mathcal{P} be a foundational linkage such that (L1)–(L5) hold. Let $i \in \{1, 2, \dots, l - 1\}$, let $P, P' \in \mathcal{P}$ be two non-trivial foundational paths, let $W_{i-1} \cap W_i \cap V(P) = \{x\}$, $W_{i-1} \cap W_i \cap V(P') = \{x'\}$, $W_i \cap W_{i+1} \cap V(P) = \{y\}$, and $W_i \cap W_{i+1} \cap V(P') = \{y'\}$. Let Q_1, Q_2 be two disjoint paths where Q_i has ends u_i and v_i for $i = 1, 2$. If the paths Q_1 and Q_2 are internally disjoint from $V(\mathcal{P})$, the vertices x, u_1, u_2, y occur on P in that order, and x', v_2, v_1, y' occur on P' in that order, then we say that the foundational paths P and P' *twist*.

Let P_1, P_2 and P_3 be three non-trivial foundational paths and let Q_1, Q_2 , and Q_3 be three internally disjoint paths such that Q_j is also internally disjoint from each member of \mathcal{P} for each $j \in \{1, 2, 3\}$. Let the ends of Q_j be x_j, y_j for $1 \leq j \leq 3$. The paths Q_1, Q_2 , and Q_3 form a P_1 -tunnel if $x_1, y_1 \in V(P_1)$, the vertices $x_2, x_3 \in V(x_1P_1y_1) - \{x_1, y_1\}$ and $y_j \in V(P_j)$ for $j = 2, 3$. The path Q_1 is called the *arch* of the tunnel.

Lemma 6.2 Let $l \geq 2$, $q \geq 3$, and $p = 6$ be integers, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of length l and adhesion q of a graph G , and let \mathcal{P} be a foundational linkage for \mathcal{W} such that (L1)–(L5) and (L9) hold. If there exist $48\binom{q}{3}$ distinct indices $i \in \{1, 2, \dots, l-1\}$ such that $G[W_i]$ contains a P -tunnel for some non-trivial foundational path $P \in \mathcal{P}$, then G has a K_6 minor.

Proof. Let l , q , p , \mathcal{W} and \mathcal{P} be given. Assume, to reach a contradiction, that there exist $48\binom{q}{3}$ indices $i \in \{1, 2, \dots, l-1\}$ such that $G[W_i]$ has a P_i -tunnel for some non-trivial foundational path $P_i \in \mathcal{P}$. Reroute the paths P_i along the arches of the P_i -tunnels to get a linkage \mathcal{P}' . By Lemma 6.1 \mathcal{W} and \mathcal{P}' satisfy (L1)–(L5) and (L9). Moreover, for each of the above $48\binom{q}{3}$ distinct indices i there exists a non-trivial \mathcal{P}' -bridge in $G[W_i]$ that attaches to at least three non-trivial foundational paths. It follows from Lemma 4.2 that G has a K_6 minor, as desired. \square

Lemma 6.3 Let $l \geq 2$, $q \geq 3$, and $p = 6$ be integers, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of length l and adhesion q of a graph G , and let \mathcal{P} be a foundational linkage for \mathcal{W} such that (L1)–(L5) and (L9) hold. If there exist $12\binom{q}{2}$ distinct indices $i \in \{1, 2, \dots, l-1\}$ such that $G[W_i]$ contains a pair of twisting non-trivial foundational paths, then G has a K_6 minor.

Proof. Let l , q , p , \mathcal{W} and \mathcal{P} be given. Assume there exist $12\binom{q}{2}$ distinct indices $i \in \{1, 2, \dots, l-1\}$ such that $G[W_i]$ contains a pair of twisting non-trivial foundational paths. It follows that there exists a subset $\mathcal{I} \subseteq \{1, 2, \dots, l-1\}$ of cardinality 12 and non-trivial paths $P_1, P_2 \in \mathcal{P}$ such that P_1 and P_2 twist in $G[W_i]$ for all $i \in \mathcal{I}$. We use the twisting paths to contract three disjoint K_4 subgraphs onto P_1 and P_2 to find a minor isomorphic to the graph in Figure 4. The edges r_1 and r_2 in the figure exist by applying property (L9) to the ends of P_1 and P_2 . The numbering in Figure 4 shows a K_6 minor, implying that G also has a K_6 minor, as desired. \square

Figure 4: Finding a K_6 minor when there exist a pair of non-trivial foundational paths that twist in twelve distinct W_i . The edges r_1 and r_2 are depicted as not crossing, however, if they cross the graph still contains K_6 as a minor.

Lemma 6.4 *Let G be a 6-connected graph with no K_6 minor. Let $l \geq 2$, $q \geq 3$, and $p = 6$ be integers, let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of length l and adhesion q of G , and let \mathcal{P} be a foundational linkage for \mathcal{W} such that (L1)–(L9) hold. If there exist $40\binom{q}{3}$ distinct indices $i \in \{1, 2, \dots, l - 1\}$ such that $G[W_i]$ contains a non-trivial \mathcal{P} -bridge attaching to a trivial foundational path, then G is apex.*

Proof. Let l , q , p , \mathcal{W} and \mathcal{P} be given. Assume that there exist $40\binom{q}{3}$ distinct indices $i \in \{1, 2, \dots, l - 1\}$ such that $G[W_i]$ contains a non-trivial \mathcal{P} -bridge attaching to a trivial foundational path. By (L10) each such bridge attaches to two non-trivial foundational paths. Therefore, there exist distinct non-trivial paths $P, P' \in \mathcal{P}$ and a trivial path $Q \in \mathcal{P}$ such that $G[W_i]$ contains a \mathcal{P} -bridge attaching to P, P' and Q for at least 40 distinct indices $i \in \{1, 2, \dots, l - 1\}$. The argument used in the proof of Lemma 5.1 implies that G contains a subgraph isomorphic to a subdivision of a pinwheel with 20 vanes or a Möbius pinwheel with 20 vanes. Note that the Möbius pinwheel with 20 vanes contains a K_6 minor, and, thus, G is apex by Lemma 5.3, as desired. \square

Let us assume Hypothesis 4.3, and let \mathcal{C} be a core of $(\mathcal{W}, \mathcal{P})$. We define *the i^{th} section of \mathcal{C}* , denoted by $G(\mathcal{C}, i)$, to be the subgraph of $G[W_i]$, obtained from the union of the paths in \mathcal{C} and all \mathcal{P} -bridges of $G[W_i]$ that attach to a member of \mathcal{C} by deleting the trivial foundational paths. By Lemma 4.6 the graph \mathcal{C} is a path or a cycle. Let P_1, P_2, \dots, P_t be the vertices of \mathcal{C} , listed in order, let $W_{i-1} \cap W_i \cap V(P_j) = \{u_j\}$ and let $W_i \cap W_{i+1} \cap V(P_j) = \{v_j\}$. If \mathcal{C} is a path, then we say that \mathcal{C} is *flat in W_i* if $G(\mathcal{C}, i)$ can be drawn in a disk with the vertices $u_1, u_2, \dots, u_t, v_t, v_{t-1}, \dots, v_1$ drawn on the boundary of the disk in order, and the paths P_1 and P_t also drawn on the boundary of the disk. If \mathcal{C} is a cycle, then we say that \mathcal{C} is *flat in W_i* if $G(\mathcal{C}, i)$ can be drawn in a cylinder with the vertices u_1, u_2, \dots, u_t drawn on one of the boundary components of the cylinder in the clockwise order listed, and v_t, v_{t-1}, \dots, v_1 drawn on the other boundary component in the clockwise order listed. Our next objective is to find a linear decomposition $\mathcal{W} = (W_0, W_1, \dots, W_l)$ and a foundational linkage \mathcal{P} such that

- (L11) Every core of $(\mathcal{W}, \mathcal{P})$ is flat in W_i for every $i \in \{1, 2, \dots, l - 1\}$.
- (L12) For every $i \in \{1, 2, \dots, l - 1\}$, no non-trivial \mathcal{P} -bridge of $G[W_i]$ attaches to a trivial foundational path.

Lemma 6.5 *Let G be a 6-connected non-apex graph not containing K_6 as a minor. Let $p = 6$, $l \geq 2$, $q \geq 6$ be integers, and let $\mathcal{W} = (W_1, W_2, \dots, W_l)$ be a linear decomposition of G of adhesion q and length l satisfying (L1)–(L10). If $l > (88\binom{q}{3} + 12\binom{q}{2})l'$, then there exists a contraction \mathcal{W}' of \mathcal{W} of length l' such that \mathcal{W}' and the corresponding restriction of \mathcal{P} satisfy (L1)–(L12).*

Proof. Let G , p , q , l , \mathcal{W} , and \mathcal{P} be given. By our choice of l and Lemmas 6.3, 6.2 and 6.4, there exists an index α such that for all $i \in \{0, 1, \dots, l'\}$ the graph $G[W_{\alpha+i}]$ does not contain a P -tunnel for any P in \mathcal{P} , nor does it contain a pair of non-trivial twisting foundational paths, nor does it contain a non-trivial bridge attaching to a trivial foundational path. We claim that the contraction $(\bigcup_{i=0}^{\alpha-1} W_i, W_\alpha, W_{\alpha+1}, \dots, W_{\alpha+l'}, \bigcup_{i=\alpha+l'+1}^l W_i)$ of \mathcal{W} is as desired. Condition (L12) follows from the construction, and hence it suffices to prove (L11).

Fix an index $i \in \{0, 1, \dots, l'\}$ and a core \mathcal{C} of the auxiliary graph. We wish to apply Lemma 2.3 or 2.4, depending on whether \mathcal{C} is a path or cycle, to the graph $H := G(\mathcal{C}, \alpha+i)$ and linkage \mathcal{C} . Let P_j, u_j, v_j for $j \in \{1, 2, \dots, t\}$ be as in the definition of flat. By Corollary 4.8 and (L10) every \mathcal{C} -bridge of H is stable, and by (L10) no \mathcal{C} -bridge of H attaches to three or more members of \mathcal{C} . If there exists a set $X \subseteq V(H)$ of size at most three such that some component J of $G \setminus X$ is disjoint from $\{u_1, u_2, \dots, u_t, v_1, v_2, \dots, v_t\}$, then by 6-connectivity of G the vertices of J include a neighbor of at least three distinct trivial paths of \mathcal{P} . We conclude that some member of \mathcal{C} is adjacent in the auxiliary graph to at least three trivial foundational paths, contrary to Lemma 4.9. Thus no such set X exists. Next we show that none of the outcomes (i)–(iii) of Lemmas 2.3 and 2.4 hold. Outcome (i) does not hold by the definition of \mathcal{C} , and outcomes (ii) and (iii) do not hold by the choice of α and i . Thus it follows from Lemma 2.3 if \mathcal{C} is a path or Lemma 2.4 if \mathcal{C} is a cycle that H can be drawn in a disk or a cylinder as described in that lemma, which is precisely the definition of \mathcal{C} being flat in $W_{\alpha+i}$. Thus \mathcal{W}' satisfies (L11) as well. \square

7 Controlling the boundary of a planar graph

Let G be a simple plane graph with the infinite region bounded by a cycle C , and such that the degree of every vertex in $V(G) - V(C)$ is at least six. DeVos and Seymour [4] proved that $|V(G)| \leq |V(C)|^2/12 + O(|V(C)|)$. In this section we digress to prove a similar result under the weaker hypothesis that G has deficiency at most five, where the *deficiency* of a plane graph G with the infinite region bounded by a cycle C is defined as $\sum_{v \in V(G) - V(C)} \max\{6 - \deg(v), 0\}$. We denote the deficiency of G by $\text{def}(G)$. The proof is an adaptation of the argument from [4], but we include it, because the details are different. We begin with a couple of definitions and a lemma.

A *quilt* is a simple plane graph G with the infinite region bounded by a cycle C , such that G has deficiency at most five and every finite region of G is bounded by a triangle. If exactly one vertex of C has degree three, and all other vertices have degree exactly four, then we say that C is a *convenient graph*. Otherwise, a convenient graph is a subpath of C with at least one edge, with both ends of degree exactly three, and all internal vertices of degree exactly four.

Lemma 7.1 *Every quilt with no vertices of degree two has a convenient graph.*

Proof. Let G be a quilt with no vertices of degree two, and let the deficiency of G be d . Consider the planar graph G' obtained by adding a vertex v to G adjacent to every vertex of C . Let $|V(G)| = n$ and $|V(C)| = m$. Then

$$\begin{aligned} 6(n+1) - 12 &= \sum_{v \in V(G')} \deg_{G'}(v) \\ &= \sum_{v \in V(C)} (\deg_G(v) + 1) + m + \sum_{v \in V(G) - V(C)} \deg_G(v) \\ &\geq \sum_{v \in V(C)} \deg_G(v) + 6(n-m) - d + 2m. \end{aligned}$$

It follows that $\sum_{v \in V(C)} \deg_G(v) \leq 4m - 6 + d$. Since $d \leq 5$ we deduce that there are strictly more vertices in C of degree three than of degree at least five. Thus, a convenient graph exists. \square

The main theorem of this section follows easily from the next lemma. If G is a quilt, we define $\mu(G)$ to be 1 if G has a vertex of degree two, and otherwise we define $\mu(G)$ to be the minimum number of edges in a convenient graph. Thus $\mu(G)$ is at least one, and at most the length of the cycle bounding the infinite region of G .

Lemma 7.2 *Let G be a quilt on at least four vertices with the infinite region bounded by a cycle of length k . Then $|V(G)| \leq k^2/2 + k/2 + \mu(G) + \text{def}(G) - 6$.*

Proof. Let G and k be as stated. We proceed by induction on $|V(G)|$. If G has exactly four vertices, then it is isomorphic to K_4 , or K_4 minus an edge. We have $k = 3$, $\mu(G) = 1$, $\text{def}(G) = 3$, or $k = 4$, $\mu(G) = 1$, $\text{def}(G) = 0$, and the lemma holds. Thus we may assume that G has at least five vertices, and that the lemma holds for all quilts on fewer than $|V(G)|$ vertices. Let C be the cycle bounding the infinite region of G . If C has a chord, then the chord divides G into two quilts G_1 and G_2 in the obvious way. Let the infinite region of G_i have length k_i . Assume first that G_2 has exactly three vertices. Then by induction

$$\begin{aligned} |V(G)| &= |V(G_1)| + 1 \leq k_1^2/2 + k_1/2 + \mu(G_1) + \text{def}(G_1) - 6 + 1 \\ &= k^2/2 + k/2 + \mu(G_1) - k + 1 + \text{def}(G_1) - 6 \\ &\leq k^2/2 + k/2 + \mu(G) + \text{def}(G) - 6, \end{aligned}$$

as desired. Thus we may assume that both G_1 and G_2 have at least four vertices. Since

$k_1, k_2 \geq 3$ we have $3(k_1 + k_2) \leq k_1 k_2 + 9$, and hence by induction

$$\begin{aligned} |V(G)| &= |V(G_1)| + |V(G_2)| - 2 \\ &\leq k_1^2/2 + k_1/2 + k_1 + \text{def}(G_1) - 6 + k_2^2/2 + k_2/2 + k_2 + \text{def}(G_2) - 6 - 2 \\ &= (k_1 + k_2 - 2)^2/2 + (k_1 + k_2 - 2)/2 + \text{def}(G_1) + \text{def}(G_2) - k_1 k_2 + 3k_1 + 3k_2 - 15 \\ &\leq k^2 + k/2 + \mu(G) + \text{def}(G) - 6, \end{aligned}$$

as desired. Thus we may assume that C has no chord. In particular, G has no vertex of degree two.

By Lemma 7.1 the quilt G has a convenient graph. Let P be a convenient graph with the smallest number of edges. Let us assume first that P has exactly one edge. Then P is a path with ends u and v , say. Since C does not have any chords and G has at least five vertices, the graph $G' := G \setminus \{u, v\}$ is a quilt. If G' has exactly three vertices, then G is the wheel on five vertices, $k = 4$, $\mu(G) = 1$, $\text{def}(G) = 2$, and the lemma holds. Thus we may assume that G' has at least four vertices, and hence by induction

$$\begin{aligned} |V(G)| &= |V(G')| + 2 \leq (k-1)^2/2 + (k-1)/2 + \mu(G') + \text{def}(G') - 6 + 2 \\ &= k^2/2 + k/2 + \mu(G') - k + 2 + \text{def}(G') - 6 \\ &\leq k^2/2 + k/2 + \mu(G) + \text{def}(G) - 6, \end{aligned}$$

as desired. Thus we may assume that P has at least two edges. If $P = C$, then let u be the unique vertex of C of degree three; otherwise P is a path, and we let u be an end of P . Let u' be the unique neighbor of u that does not belong to C . Then $G' := G \setminus u$ is a quilt on at least four vertices with the infinite region bounded by a cycle C' , where C' has length k . Since C has no chords and G has at least five vertices we deduce that $\deg_{G'}(u') \geq 3$. If equality holds, then u has degree four in G , and hence $\text{def}(G') = \text{def}(G) - 2$. Otherwise $\mu(G') \leq \mu(G) - 1$. In either case we have by induction

$$\begin{aligned} |V(G)| &= |V(G')| + 1 \leq k^2/2 + k/2 + \mu(G') + \text{def}(G') - 6 + 1 \\ &\leq k^2/2 + k/2 + \mu(G) + \text{def}(G) - 6, \end{aligned}$$

as desired. \square

Theorem 7.3 *Let G be a simple graph drawn in a disk, let X be the set of vertices of G drawn on the boundary of the disk, and assume that $\sum_{v \in V(G) - X} \max\{6 - \deg(v), 0\} \leq 5$. If $|X| \geq 3$, then $|V(G)| \leq |X|^2/2 + 3|X|/2 - 1$.*

Proof. Let G and X be as stated. We may assume, by adding edges to G , that G is a quilt with the infinite region bounded by a cycle with vertex set X . By Lemma 7.2 we have $|V(G)| \leq |X|^2/2 + |X|/2 + \mu(G) + \text{def}(G) - 6 \leq |X|^2/2 + 3|X|/2 - 1$, as desired. \square

8 Cylindrical tube

Lemma 4.5 guarantees the existence of a non-empty core in a sufficiently long linear decomposition of any K_6 -minor-free 6-connected graph G of bounded tree-width, assuming that such a decomposition satisfies conditions (L1)–(L9). Lemma 4.6 implies that, under the same conditions, each core is a path or a cycle. In this section we handle the case when some core of a linear decomposition of the graph G is a cycle.

Before introducing the main result of this section, we need to present one more definition and a related lemma. Let k, l be positive integers, $k, l \geq 3$. A *double crossed k -cylinder of length l* is the graph defined as follows. Let P_1, \dots, P_k be k vertex disjoint paths with the vertex set of $P_i = \{v_j^i : 1 \leq j \leq l\}$ for all $1 \leq i \leq k$ with v_j^i adjacent to v_{j+1}^i for all $1 \leq j \leq l-1$. The double crossed k -cylinder of length l has vertex set $\{v_j^i : 1 \leq j \leq l, 1 \leq i \leq k\}$ and edge set

$$\left(\bigcup_{i=1}^k E(P_i) \right) \cup \{v_j^i v_{j+1}^{i+1} : 1 \leq i \leq k, 1 \leq j \leq l\} \cup \{q_1, q_2, r_1, r_2\},$$

where the superscript addition is taken modulo k . Furthermore, the ends of q_i are $u_i, v_i \in \{v_1^j : 1 \leq j \leq k\}$ for $i = 1, 2$ and the vertices u_1, u_2, v_1, v_2 occur in that order in the cyclic order $(v_1^1, v_1^2, \dots, v_k^1)$. Similarly, the edges r_1 and r_2 cross in the cyclic order $(v_l^1, v_l^2, \dots, v_l^k)$. Explicitly, the ends of r_i are $x_i, y_i \in \{v_l^j : 1 \leq j \leq k\}$ for $i = 1, 2$ and occur in the order x_1, x_2, y_1, y_2 in the cyclic order $(v_l^1, v_l^2, \dots, v_l^k)$.

Lemma 8.1 *Let t and l be integers, $t \geq 5$, $l \geq 16$. A double crossed t -cylinder of length l contains K_6 as a minor.*

Proof. Let G be a doubled crossed t -cylinder of length l with vertex set $\{v_j^i : 1 \leq j \leq l, 1 \leq i \leq t\}$. By possibly routing the crossing edges q_1 and q_2 in the first five cycles on vertices $\{v_j^i : 1 \leq j \leq 5, 1 \leq i \leq t\}$ and routing the edges r_1 and r_2 on the final five cycles with vertex set $\{v_j^i : l-5 \leq j \leq l, 1 \leq i \leq t\}$, we see that G contains as a minor a doubled crossed 5-cylinder G' of length 6 and moreover, with the additional property that the ends of q_1 are v_1^1 and v_1^3 and the ends of q_2 are v_1^2 and v_1^4 . Similarly, the edges r_1 and r_2 of G' have ends v_6^1, v_6^3 and v_6^2, v_6^4 , respectively. The graph G then contains K_6 as a minor, as indicated in Figure 5. \square

We now give the main result of this section.

Lemma 8.2 *Let $p = 6$, $l \geq 2$, and $q \geq 6$ be integers. Let G be a 6-connected graph with no K_6 minor, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of G of length l and adhesion q with a foundational linkage \mathcal{P} satisfying (L1)–(L12). Further, assume that some core of $(\mathcal{W}, \mathcal{P})$ is a cycle. If $l \geq 2q + 32$, then G is apex.*

Figure 5: A double crossed 5-cylinder of length 6 contains K_6 as a minor

Proof. Let p, l, q , and \mathcal{W} be given, let \mathcal{C} be a core of $(\mathcal{W}, \mathcal{P})$ that is a cycle, and assume for a contradiction that G is not apex. Let P_1, P_2, \dots, P_t be the vertices of \mathcal{C} listed in order. For $i = 1, 2, \dots, l-1$ let H_i denote the graph $G(\mathcal{C}, i)$, and for $j = 1, 2, \dots, t$ let u_j be the unique element of $V(P_j) \cap W_q \cap W_{q+1}$ and v_j the unique element of $V(P_j) \cap W_{q+32} \cap W_{q+33}$. Let $A = \{u_1, u_2, \dots, u_t\}$, $B = \{v_1, v_2, \dots, v_t\}$, let K denote the graph $H_{q+1} \cup H_{q+2} \cup \dots \cup H_{q+32}$, and let L denote the graph $G \setminus (V(K) - A - B)$. Since G is not apex and \mathcal{C} is a cycle, by Corollary 5.4 the core \mathcal{C} forms a component of the auxiliary graph. Therefore, we have $K \cup L = G$ and $V(K \cap L) = A \cup B$.

We claim that L does not include two disjoint paths from A to B . Indeed, otherwise by contracting $P_i[W_{q+2j}]$ to a single vertex for $1 \leq i \leq t$ and $0 \leq j \leq 11$, we see that G contains a linked t -cylinder of length twelve. Lemma 4.1 then contradicts our choice of G . Thus there exist subgraphs L_1, L_2 of L such that $L_1 \cup L_2 = L$, $A \subseteq V(L_1)$, $B \subseteq V(L_2)$ and $|V(L_1 \cap L_2)| \leq 1$. Now property (L9) applied to \mathcal{C} and a subset of \mathcal{C} of size two implies that $t \geq 5$.

Let Ω_1 be the cyclic permutation (u_1, u_2, \dots, u_t) , and let Ω_2 be the cyclic permutation (v_1, v_2, \dots, v_t) . Thus (L_1, Ω_1) and (L_2, Ω_2) are societies. Let $X = V(L_1 \cap L_2)$. By (L11) the graph K can be drawn in a cylinder with u_1, u_2, \dots, u_t drawn in one boundary component in the clockwise order listed, and v_1, v_2, \dots, v_t drawn in the other boundary component in the clockwise order listed. Thus if both societies $(L_1 \setminus X, \Omega_1 \setminus X)$ and $(L_2 \setminus X, \Omega_2 \setminus X)$ are rural, then G is apex, so we may assume that $(L_1 \setminus X, \Omega_1 \setminus X)$ is not rural and hence by Theorem 2.5 it has a cross. The society (L_2, Ω_2) is not rural by Theorem 7.3, because each vertex of $V(L_2) - B - X$ has degree at least 6 and $|V(L_2)| \geq qt \geq t^2 = |B|^2$, because $V(L_2)$ includes each of the pairwise disjoint sets $W_i \cap W_{i+1} \cap V(\mathcal{C})$ for $i = q+32, q+33, \dots, 2q+31$. Likewise, (L_2, Ω_2) has a cross by Theorem 7.3.

We have shown that there exist four pairwise disjoint paths, two of them forming a cross in (L_1, Ω_1) and two forming a cross in (L_2, Ω_2) . Let $j \in \{0, 1, \dots, 15\}$. By the definition of core the graph $G(\mathcal{C}, q+2j+1)$ has internally disjoint paths Q_1, Q_2, \dots, Q_t such that Q_i has

one end in P_i , the other end in P_{i+1} (where P_{t+1} means P_1), and is otherwise disjoint from \mathcal{C} . Since for $j \neq j'$ the graphs $G(\mathcal{C}, q + 2j + 1)$ and $G(\mathcal{C}, q + 2j' + 1)$ are vertex disjoint, we conclude that G contains as a minor a double crossed t -cylinder of length at least 16. This observation contradicts Lemma 8.1 and completes the proof of the lemma. \square

9 Planar strip

We now examine the case when some core of the auxiliary graph is a path.

Lemma 9.1 *Let $p = 6$, $l \geq 2$ and $q \geq 6$ be integers. Let G be a 6-connected graph with no K_6 minor, and let $\mathcal{W} = (W_0, W_1, \dots, W_l)$ be a linear decomposition of G of length l and adhesion q with a foundational linkage \mathcal{P} satisfying (L1)–(L12). Further, assume that some core of $(\mathcal{W}, \mathcal{P})$ is a path. If $l \geq \max\{4q + 11, 48\}$, then G is an apex graph.*

Proof. Let p , l , q , and \mathcal{W} be given, let \mathcal{C} be a core of $(\mathcal{W}, \mathcal{P})$ that is a path, and assume for a contradiction that G is not apex. Let P_1, P_2, \dots, P_t be the vertices of \mathcal{C} listed in order. As in the proof of Lemma 8.2, for $i = 1, 2, \dots, l - 1$ let H_i denote the graph $G(\mathcal{C}, i)$, and for $j = 1, 2, \dots, t$ let u_j be the unique element of $V(P_j) \cap W_0 \cap W_1$ and v_j the unique element of $V(P_j) \cap W_{l-1} \cap W_l$. Let $A = \{u_1, u_2, \dots, u_t\}$, $B = \{v_1, v_2, \dots, v_t\}$, and let \mathcal{Q} denote the set of trivial foundational paths adjacent in the auxiliary graph to paths in \mathcal{C} . Let K denote the subgraph of G induced on $V(H_1 \cup H_2 \cup \dots \cup H_{l-1}) \cup V(\mathcal{Q})$, and let L denote the graph $G \setminus (V(K) - A - B - V(\mathcal{Q}))$. Note that $K \cup L = G$ and $V(K) \cap V(L) = A \cup B \cup V(\mathcal{Q})$.

We claim that either P_1 or P_t is adjacent in the auxiliary graph to at least two paths in \mathcal{Q} . Suppose for a contradiction that both P_1 and P_t are adjacent to at most one such path. We assume that P_i is adjacent to exactly one trivial foundational path $S_i \in \mathcal{Q}$ for $i = 1, i = t$. The argument is similar in the case when one or both of P_1 and P_t are not adjacent to any paths in \mathcal{Q} . Note that by (L12) and Corollary 5.4 all the neighbors of $V(S_1)$ and $V(S_2)$ lie on $P_1 \cup P_2$. If $S_1 \neq S_t$, we let $\{s_i\} = V(S_i)$ for $i = 1, i = t$ and $K' = K$. If $S_1 = S_t$ with $V(S_1) = V(S_t) = \{s\}$, let K' be obtained from K by deleting s , and adding new vertices s_1 and s_2 , where s_1 is adjacent to every neighbor of s on P_1 , and s_t is adjacent to every neighbor of s on P_t . By property (L11), the graph K' is planar and embeds in a disk with exactly the vertices $\{s_1, s_t\} \cup A \cup B$ on the boundary. Moreover, every vertex not on the boundary of the disk has degree at least six. This is a contradiction to Theorem 7.3, as $|V(K')| \geq lt > (2t + 2)^2$, because $l \geq 4q + 11$.

Using the above claim and Lemma 4.2 we assume without loss of generality that P_1 is adjacent in the auxiliary graph to exactly two paths in \mathcal{Q} , say Q_1 and Q_2 . Let $V(Q_1) = \{q_1\}$ and $V(Q_2) = \{q_2\}$. We claim that the graph $G' = G \setminus \{q_1, q_2\}$ is planar and that P_1 is a subset of a facial boundary of G' . Suppose that P_t is adjacent to at least two paths in $\mathcal{Q} - \{Q_1, Q_2\}$. Then G contains as a minor the graph in Figure 6. The horizontal paths

Figure 6: Finding a K_6 minor when there exist four distinct trivial foundational paths with neighbors in \mathcal{C} .

in the figure correspond to contractions of P_1 and P_t and the vertical edges correspond to paths in H_{2i+1} for $i = 1, 2, \dots, 6$ with ends on P_1 and P_t , which exist by the definition of \mathcal{C} . The graph in Figure 6 contains a K_6 minor, as indicated, a contradiction. Therefore P_t is adjacent to at most one path in $\mathcal{Q} - \{Q_1, Q_2\}$. By (L11), (L12) and Corollary 5.4, the graph K is planar and embeds in the disk with P_1 forming part of its boundary. Let Ω be a cyclic permutation of the set $V(\Omega) = A \cup B \cup (V(\mathcal{Q}) - \{q_1, q_2\})$ ordered $u_t, u_{t-1}, \dots, u_1, v_1, \dots, v_t$ followed by the element of $V(\mathcal{Q}) - \{q_1, q_2\}$ if $V(\mathcal{Q}) - \{q_1, q_2\} \neq \emptyset$. If the society (L, Ω) contains a cross, then G contains as a minor one of the configurations pictured in Figure 7. As each of this configurations contains a K_6 minor as indicated in Figure 7, we conclude by Theorem 2.5 that (L, Ω) is rural. Combined with the planarity of K this implies our claim that G' is planar and P_1 is a subset of a facial boundary.

Let $\mathcal{P}_2 = \{Q_1, Q_2, P_1, P_2\}$. By property (L9), there exist two disjoint paths R_1 and R_2 in $G[W_0 \cup W_l] \cup \bigcup_{P \in \mathcal{P} - \mathcal{P}_2} P$ linking the set $\{u_1, u_2\}$ to the set $\{v_1, v_2\}$. By the claim in the previous paragraph we assume without loss of generality that R_i has ends u_i and v_i for $i = 1, 2$, and that $R_1 \cup P_1$ forms a facial cycle of G' . As G is not apex, both q_1 and q_2 must have some neighbor not contained in $R_1 \cup P_1$. Let q'_i be such a neighbor of q_i for $i = 1, 2$. The cycle $R_1 \cup P_1$ is a facial cycle in the 4-connected planar graph G' , and hence there is a unique $(R_1 \cup P_1)$ -bridge in $G - \{q_1, q_2\}$. It follows that for each q'_i there exists a path from q'_i to $R_2 \cup P_2$ avoiding $R_1 \cup P_1$. Let R'_i for $i = 1, 2$ be such paths from q'_i to $R_2 \cup P_2$. Since $l \geq 48$ there exists an index α such that $W_{\alpha+i}$ is disjoint from R'_1 and R'_2 for $0 \leq i \leq 14$. By considering P_1 and P_2 and the bridges attaching to P_1 and P_2 in $H_\alpha, H_{\alpha+1}, \dots, H_{\alpha+14}$, we see that G contains as a minor the graph in Figure 8, and consequently, a K_6 minor, as indicated in Figure 8. This contradiction completes the proof of the lemma. \square

Lemma 9.1 represents the final step in our analysis of the structure of the auxiliary graph. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let $w \geq 1$ be an integer. Let $l_1 = \max\{4w + 11, 2w + 32, 58\}$, let $l_2 = (88\binom{w}{3} + 12\binom{w}{2})l_1$, and let $l_3 = (6\binom{w}{6} + 48\binom{w}{3})l_2$. By Corollary 3.9 there exists an

Figure 7: Finding K_6 minor when the society (L, Ω) is not rural.

Figure 8: Configurations giving K_6 minors when the trivial foundational paths Q_1 and Q_2 have a neighbor not contained in the boundary of the face defined by $R_1 \cup P_1$

integer N such that every 6-connected graph G of tree-width at most w with no K_6 minor has a linear decomposition of length at least l_3 and adhesion at most w satisfying properties (L1)–(L9) for $p = 6$. We claim that such an integer N satisfies Theorem 1.2.

Let G be a 6-connected graph of tree-width at most w with at least N vertices and no K_6 minor. By Lemma 4.10 the graph G has a linear decomposition of length at least l_2 and adhesion at most w satisfying properties (L1)–(L10), and thus by Lemma 6.5 the graph G has a linear decomposition \mathcal{W} of length at least l_1 and adhesion at most w and a foundational linkage \mathcal{P} satisfying properties (L1)–(L12). By Lemma 4.5 \mathcal{P} includes a non-trivial foundational path. By Lemma 4.9 every non-trivial foundational path of \mathcal{P} attaches to at most 2 trivial foundational paths in the auxiliary graph. Therefore, by the 6-connectivity

of G , every core of $(\mathcal{W}, \mathcal{P})$ has at least two vertices, and by Lemma 4.6 every core is a path or a cycle. If some core of $(\mathcal{W}, \mathcal{P})$ is a cycle, then G is apex by Lemma 8.2. Otherwise, G is apex by Lemma 9.1. \square

Acknowledgment

We would like to acknowledge the contributions of Matthew DeVos and Rajneesh Hegde, who worked with us in March 2005 and contributed to this paper, but did not want to be included as a coauthors.

References

- [1] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems on graphs embedded in k -trees, *Discrete Appl. Math.* **23** (1989), 11–24.
- [2] T. Böhme, J. Maharry and B. Mohar, $K_{a,k}$ -minors in graphs of bounded tree-width, *J. Combin. Theory Ser. B* **86** (2002), 133–147.
- [3] T. Böhme, K. Kawarabayashi, J. Maharry and B. Mohar, Linear connectivity forces large complete bipartite minors, *J. Combin. Theory Ser. B* **99** (2009), 323–346.
- [4] M. DeVos and P. D. Seymour, Extending partial 3-colourings in a planar graph, *J. Combin. Theory Ser. B* **88** (2003), 219–225.
- [5] R. Diestel, K. Yu. Gorbunov, T. R. Jensen, and C. Thomassen, Highly connected sets and the excluded grid theorem, *J. Combin. Theory Ser. B* **75** (1999), 61–73.
- [6] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, *J. London Math. Soc.* **27** (1952), 85–92.
- [7] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, *Vierteljschr. Naturforsch. Gessellsch. Zürich* **88** (1943), 133–142.
- [8] R. Halin, S-functions for graphs, *J. Geometry* **8** (1976), 171–186.
- [9] L. Jorgensen, Contraction to K_8 , *J. Graph Theory* **18** (1994), 431–448.
- [10] K. Kawarabayashi, S. Norine, R. Thomas and P. Wollan, K_6 minors in large 6-connected graphs, manuscript.
- [11] W. Mader, Über trennende Eckenmengen in homomorphiekritische Graphen, *Math. Ann.* **175** (1968), 245–252.

- [12] B. Oporowski, J. Oxley and R. Thomas, Typical subgraphs of 3- and 4-connected graphs, *J. Combin. Theory Ser. B* **57** (1993), 239–257.
- [13] B. A. Reed, Tree width and tangles: a new connectivity measure and some applications, Surveys in Combinatorics, London Mathematical Society Lecture Series 241, R. A. Bailey ed., Cambridge University Press 1997.
- [14] N. Robertson and P. D. Seymour, Graph Minors III. Planar tree-width, *J. Combin. Theory Ser. B* **36** (1984), 49–63.
- [15] N. Robertson and P. D. Seymour, Graph Minors V. Excluding a planar graph, *J. Combin. Theory Ser. B* **41** (1986), 92–114.
- [16] N. Robertson and P. D. Seymour, Graph Minors IX. Disjoint crossed paths, *J. Combin. Theory Ser. B* **49** (1990), 40–77.
- [17] N. Robertson and P. D. Seymour, Graph Minors XIII. The disjoint paths problem, *J. Combin. Theory Ser. B* **63** (1995), 65–110.
- [18] N. Robertson, P. D. Seymour and R. Thomas, Hadwiger’s conjecture for K_6 -free graphs, *Combinatorica* **13** (1993), 279–361.
- [19] N. Robertson, P. D. Seymour and R. Thomas, Quickly excluding a planar graph, *J. Combin. Theory Ser. B* **62** (1994), 323–348.
- [20] N. Robertson, P. D. Seymour and R. Thomas, Non-planar extensions of planar graphs, Available from <http://www.math.gatech.edu/~thomas/PAP/ext.pdf>.
- [21] P. D. Seymour and R. Thomas, Graph searching, and a min-max theorem for tree-width, *J. Combin. Theory Ser. B* **58** (1993), 22–33.
- [22] R. Thomas, A Menger-like property of tree-width. The finite case, *J. Combin. Theory Ser. B* **48** (1990), 67–76.
- [23] W. T. Tutte, Graph Theory, Addison-Wesley, Menlo Park, CA, 1984.
- [24] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, *Math. Ann.* **114** (1937), 570–590.