Non-local form factors in $b \rightarrow s\ell\ell$

Beyond the Flavour Anomalies III – 27/04/2022

Méril Reboud

In collaboration with:

N. Gubernari, D. van Dyk, J. Virto

Technische Universität München

Form-factors in $b \rightarrow s\ell\ell$

$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

Non-local form-factors

$$\mathcal{H}_{\lambda}(q^2) = i\mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T\{\mathcal{J}^{\mu}_{\rm em}(x), \mathcal{C}_i \mathcal{O}_i(0)\} | \bar{B}(q+k) \rangle$$

 \rightarrow Main contributions: O_1^c , O_2^c the so-called "charm-loops"

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- 2. Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables Anomalies are not entirely due to charm-loops!

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables
 Anomalies are not entirely due to charm-loops!
- **3. Agreement** between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!

[Capdevila, Fedele, Neshatpour, Stangl, '21; See Bernat's talk: here]

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- 2. Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables Anomalies are not entirely due to charm-loops!
- 3. Agreement between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
- 4. Naively set theory uncertainty to 0 in H_{λ} :
 - \rightarrow Significance of the C₉ vs. C₁₀ fit rises from ~4 σ to ~8 σ ! This talk is not a waste of time...

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables
 Anomalies are not entirely due to charm-loops!
- 3. Agreement between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
- 4. Naively set theory uncertainty to 0 in H_{λ} :
 - → Significance of the C_9 vs. C_{10} fit rises from ~4 σ to ~8 σ !

 This talk is not a waste of time...
- 5. Theory puzzles in $b \rightarrow s\overline{c}c$ [see e.g. Lyon, Zwicky, 2014] We need to be careful...

- 1. Two types of **OPE** can be used for H_{λ} :
 - Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
 - → We will discuss it later

- 1. Two types of **OPE** can be used for H_{λ} :
 - Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
 - → We will discuss it later
 - Light Cone OPE $q^2 \ll 4m_c^2$ [Khodjamirian, Mannel, Pivovarov, Wang 2010]
 - \rightarrow theory points at q² < 0 [Gubernari, van Dyk, Virto 2020]

- 2. Charmonium resonances [Bobeth, Chrzaszsz, van Dyk, Virto'17]:
 - H_{λ} presents **poles** at $q^2 = m_{J/\psi}^2$ and $m_{\psi(2S)}^2$
 - For this work we only use $\mathbf{B} \to \mathbf{M} \mathbf{J}/\mathbf{\psi}$ data

- 2. Charmonium resonances [Bobeth, Chrzaszsz, van Dyk, Virto'17]:
 - H_{λ} presents **poles** at $q^2 = m_{J/\psi}^2$ and $m_{\psi(2S)}^2$
 - For this work we only use $\mathbf{B} \to \mathbf{M} \mathbf{J}/\mathbf{\psi}$ data
- 3. H_{λ} has a **branch cut** for $q^2 > 4m_D^2$

Parametrization of H_{λ}

• z-mapping

$$z(s) \equiv \frac{\sqrt{s_+ - s} - \sqrt{s_+ - s_0}}{\sqrt{s_+ - s} + \sqrt{s_+ - s_0}}$$

Parametrization of H_{λ}

• z-mapping

$$z(s) \equiv \frac{\sqrt{s_{+} - s} - \sqrt{s_{+} - s_{0}}}{\sqrt{s_{+} - s} + \sqrt{s_{+} - s_{0}}}$$

Analyticity

$$\hat{\mathcal{H}}_{\lambda}^{B \to V}(z) \equiv \phi_{\lambda}^{B \to V}(z) \, \mathcal{P}(z) \, \mathcal{H}_{\lambda}^{B \to V}(z)$$

- $\rightarrow \mathcal{P}(z)$ captures the poles
- $\rightarrow \Phi(z)$ is a useful normalization

Parametrization of H_{λ}

• z-mapping

$$z(s) \equiv \frac{\sqrt{s_{+} - s} - \sqrt{s_{+} - s_{0}}}{\sqrt{s_{+} - s} + \sqrt{s_{+} - s_{0}}}$$

Analyticity

$$\hat{\mathcal{H}}_{\lambda}^{B \to V}(z) \equiv \phi_{\lambda}^{B \to V}(z) \, \mathcal{P}(z) \, \mathcal{H}_{\lambda}^{B \to V}(z)$$

- $\rightarrow \mathcal{P}(z)$ captures the poles
- $\rightarrow \Phi(z)$ is a useful normalization

z-expansion

$$\hat{\mathcal{H}}_{\lambda}^{B\to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B\to M} z^n$$

n=0 [Bobeth, Chrzaszcz, van Dyk, Virto 2017]

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^{n}$$

• In practice, $a_{\lambda,n}=0$ for n>N. What is the truncation error?

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^{n}$$

- In practice, $a_{\lambda,n} = 0$ for n > N. What is the truncation error?
- The z^n convergence is fast $|z_{J/\psi}| \sim |z_{-7}| \sim 0.2$ ($|z_{\psi(2S)}| \sim 0.7$)

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^{n}$$

- In practice, $a_{\lambda,n} = 0$ for n > N. What is the truncation error?
- The z^n convergence is fast $|z_{J/\psi}| \sim |z_{-7}| \sim 0.2$ ($|z_{\psi(2S)}| \sim 0.7$)
- **Dispersive bound** (from the *local OPE*)

$$1 > 2 \int_{-\alpha_{BK}}^{+\alpha_{BK}} d\alpha \left| \hat{\mathcal{H}}_{0}^{B \to K}(e^{i\alpha}) \right|^{2} + \sum_{\lambda} \left[2 \int_{-\alpha_{BK}^{*}}^{+\alpha_{BK}^{*}} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{B \to K^{*}}(e^{i\alpha}) \right|^{2} + \int_{-\alpha_{Bs}\phi}^{+\alpha_{Bs}\phi} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{Bs \to \phi}(e^{i\alpha}) \right|^{2} \right]$$

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} z^{n}$$

- In practice, $a_{\lambda,n}=0$ for n>N. What is the truncation error?
- The z^n convergence is fast $|z_{J/\psi}| \sim |z_{-7}| \sim 0.2$ ($|z_{\psi(2S)}| \sim 0.7$)
- **Dispersive bound** (from the *local OPE*)

$$1 > 2 \int_{-\alpha_{BK}}^{+\alpha_{BK}} d\alpha \left| \hat{\mathcal{H}}_{0}^{B \to K}(e^{i\alpha}) \right|^{2} + \sum_{\lambda} \left[2 \int_{-\alpha_{BK}^{*}}^{+\alpha_{BK}^{*}} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{B \to K^{*}}(e^{i\alpha}) \right|^{2} + \int_{-\alpha_{Bs}\phi}^{+\alpha_{Bs}\phi} d\alpha \left| \hat{\mathcal{H}}_{\lambda}^{Bs \to \phi}(e^{i\alpha}) \right|^{2} \right]$$

ightarrow With orthonormal polynomials: $\hat{\mathcal{H}}_{\lambda}^{B o M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B o M} p_n^{B o M}(z)$

$$\left(\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^2 + \sum_{\lambda = \perp, \parallel, 0} \left[2 \left| a_{\lambda,n}^{B \to K^*} \right|^2 + \left| a_{\lambda,n}^{B_s \to \phi} \right|^2 \right] \right\} < 1$$

Anticipating on the results:

[Gubernari, van Dyk, Virto, 2020]

- [Gubernari, Reboud, van Dyk, Virto, 2022]
- 1) Controlled uncertainty in the physical region
- 2) Adding an order in the expansion doesn't increase this uncertainty!

- The fit is performed in two steps...
 - Preliminary fits:
 - Local form factors:
 - BSZ parametrization (8 + 19 + 19 parameters)
 - LCSR + LQCD, more in the backup
 - Non-local form factors:
 - order 5 GvDV parametrization (12 + 36 + 36 parameters)
 - 4 points at negative q^2 + B → M J/ ψ data
 - → 130 nuisance parameters

- The fit is performed in two steps...
 - Preliminary fits:
 - Local form factors:
 - BSZ parametrization (8 + 19 + 19 parameters)
 - LCSR + LQCD, more in the backup
 - Non-local form factors:
 - order 5 GvDV parametrization (12 + 36 + 36 parameters)
 - 4 points at negative q^2 + B → M J/ ψ data
 - → 130 nuisance parameters
 - 'Proof of concept' fit to the WET's Wilson coefficients

- The fit is performed in two steps...
 - Preliminary fits:
 - Local form factors:
 - BSZ parametrization (8 + 19 + 19 parameters)
 - LCSR + LQCD, more in the backup
 - Non-local form factors:
 - order 5 GvDV parametrization (12 + 36 + 36 parameters)
 - 4 points at negative q^2 + B → M J/ ψ data
 - → 130 nuisance parameters
 - 'Proof of concept' fit to the WET's Wilson coefficients
- ... using **EOS**:

EOS is a software for a variety of applications in flavour physics. It is written in C++, but provides an interface to Python.

https://eos.github.io/

New semi data-driven SM predictions

New semi data-driven SM predictions

Simple NP analysis

Preliminary

- New semi data-driven SM predictions
- Fit **separately** C_9 and C_{10} for the three channels: $B \to K\mu\mu + B_s \to \mu\mu$, $B \to K^*\mu\mu$ and $B_s \to \phi\mu\mu$

Simple NP analysis

Preliminary

- New semi data-driven SM predictions
- Fit separately C_9 and C_{10} for the three channels: $B \to K\mu\mu + B_s \to \mu\mu$, $B \to K^*\mu\mu$ and $B_s \to \phi\mu\mu$

Back-up

Fit to local form factors

Combined fit to LCSR and lattice:

- $B \rightarrow K$:
 - HPQCD'17; FNAL/MILC'17
 - Khodjamiriam and Rusov'17
- $B \rightarrow K^*$:
 - Horgan, Liu, Meinel and Wingate'15
 - Gubernari, Kokulu and van Dyk'18
- $B_s \rightarrow \phi$:
 - Horgan, Liu, Meinel and Wingate'15
 - Bharucha, Straub and Zwicky'15;
 Gubernari, van Dyk and Virto'20

Additional plots

Comparison to [Beneke et al. '01, '04]

