3.1.14.

- (a)(b) Obvious
- (c) For all n, one of the endpoints of an interval remains fixed when we pass to the next; i.e., either $a_n = a_{n-1}$ or $b_n = b_{n-1}$. Hence, we obtain $(a_n a_{n-1})(b_n b_{n-1}) = 0$ or $a_n b_n + a_{n-1} b_{n-1} = a_n b_{n-1} + a_{n-1} b_n$.

3.1.20.

Case 1.
$$c_{n+1} = \frac{a_n + c_n}{2}$$
 then $|c_n - c_{n+1}| = \frac{b_n - a_n}{4} = \frac{b_0 - a_0}{2^{n+2}}$
Case 2. $c_{n+1} = \frac{c_n + b_n}{2}$ then $|c_{n+1} - c_n| = \frac{b_n - a_n}{4} = \frac{b_0 - a_0}{2^{n+2}}$

3.2.4.

$$g(x)=x^4+2x^3-7x^2+3;\ g'(x)=4x^3+6x^2-14x.$$
 Since $g(0)=3,g(1)=-1,$ and $g(2)=7,$ there is a root in the interval $[0,1]$ and in $[1,2].$ For $x_0=1,\ x_1=0.75,\ x_2=0.791,\ x_3=0.791,$ and for $x_0=2,\ x_1=1.75,\ x_2=1.64,\ x_3=1.62,\ x_4=1.62.$ The positive roots are 0.79 and 1.62.

3.2.7.

By the same way as Prob. 1.2.30., we see that $y = \frac{1}{\sqrt{2}}(x - \frac{\pi}{4}) + \frac{1}{\sqrt{2}}$ is the best linear approximation for $f(x) = \sin x$ in the vicinity of $x = \frac{\pi}{4}$. When y = 0, $x = \frac{\pi}{4} - 1$ which is x_1 for Newton's method starting with $x_0 = \frac{\pi}{4}$.