PHY2005 Atomic Physics

Lecturer: Dr. Stuart Sim

Room: 02.019

E-mail: s.sim@qub.ac.uk

(7) Multi-electron atoms: Twoelectron atoms

Learning goals

- 1. To study the two-electron atom as the simplest example of the multi-electron case
- 2. To introduce the Schrödinger equation for a two-electron atom
- 3. To introduce the concept of *orbitals* in multi-electron atoms and how these are described by a *configuration*
- 4. To be able to interpret and use spectroscopic notation to describe electron configurations
- 5. To appreciate that, *L* and *S* have significant effects on the energy levels of multi-electron atoms
- 6. To qualitatively understand how the requirements of particle exchange symmetry give rise to the *exchange force* in helium
- 7. To formalise how the electron-electron interaction in helium can be expressed in terms of the *Coulomb* and *Exchange* integrals

The helium atom

Spectrum of helium:

The helium atom

Helios:

The helium atom

Schematic of helium:

Two electrons and nucleus

The helium atom: Schrödinger Equation

Two electrons:

$$-\frac{\hbar^2}{2m_e}\nabla_1^2\psi_T - \frac{\hbar^2}{2m_e}\nabla_2^2\psi_T + V_T\psi_T = E_T\psi_T$$

Three terms in potential energy:

$$V_T = -\frac{Ze^2}{4\pi\epsilon_0 r_1} - \frac{Ze^2}{4\pi\epsilon_0 r_2} + \frac{e^2}{4\pi\epsilon_0 r_{12}}$$

Last is not separable.

The helium atom: independent electrons

Two electron TISE becomes:

$$\hat{H}_1\psi_T + \hat{H}_2\psi_T = E_T\psi_T$$

Can find solutions:

$$\psi_T = \psi_{\alpha}(\mathbf{r_1})\psi_{\beta}(\mathbf{r_2})$$

Single-particle states ψ_{α} and ψ_{β} known as orbitals.

In this approximation,

$$E_T = E_{\alpha} + E_{\beta}$$

Configurations

Which orbitals are occupied is indicated by configuration.

Use spectroscopic notation to give *nl* for occupied orbitals.

letter	origin
S	sharp
p	principal
d	diffuse
f	fundamental
g	alphabetical
h	
	s p d f

List orbitals next to each other.

E.g. 1s2p means "one electron with n=1, l=0 and one with n=2, l=1" etc.

Configuration and Term

Combination of configuration and term is the usual means to identify states of multi-electron atoms:

E.g. first excited state of helium is indicated by

$$1s2s {}^{3}S_{1}$$

Electron-electron repulsion: effect on energies

The observed energy levels of He differ significantly from independent electron approximation:

- Always less negative
- Different terms have different energies
- L-value has large effect
- S-value also has large effect

Electron-electron repulsion: effect on energies

The observed energy levels of He differ significantly from independent electron approximation:

- Always less negative
- Different terms have different energies
- L-value has large effect
- S-value also has large effect

Qualitative influence of L makes intuitive sense (space distribution of electrons).

But S? Need to investigate...

Orbitals and indistinguishability

The wavefunction

$$\psi_T = \psi_{\alpha}(\mathbf{r_1})\psi_{\beta}(\mathbf{r_2})$$

does not respect the *indistinguishability* of the electrons. As in PHY2001, the (space) wavefunction must have definite symmetry under particle exchange:

Exchange symmetric:

$$\psi_S = \frac{1}{\sqrt{2}} \left(\psi_{\alpha}(\mathbf{r_1}) \psi_{\beta}(\mathbf{r_2}) + \psi_{\alpha}(\mathbf{r_2}) \psi_{\beta}(\mathbf{r_1}) \right)$$

or exchange antisymmetric:

$$\psi_A = \frac{1}{\sqrt{2}} \left(\psi_{\alpha}(\mathbf{r_1}) \psi_{\beta}(\mathbf{r_2}) - \psi_{\alpha}(\mathbf{r_2}) \psi_{\beta}(\mathbf{r_1}) \right)$$

Proximity of electrons

Consider both exchange symmetries if the electron positions are close to each other (i.e. ${\bf r}_2
ightarrow {\bf r}_1$):

$$\psi_A \rightarrow 0 \text{ as } \mathbf{r_2} \rightarrow \mathbf{r_1}$$

while

$$\psi_S \rightarrow \sqrt{2} \psi_{\alpha}(\mathbf{r_1}) \psi_{\beta}(\mathbf{r_1}) \text{ as } \mathbf{r_2} \rightarrow \mathbf{r_1}$$

Proximity of electrons

Consider both exchange symmetries if the electron positions are close to each other (i.e. ${\bf r}_2
ightarrow {\bf r}_1$):

$$\psi_A \rightarrow 0 \text{ as } \mathbf{r_2} \rightarrow \mathbf{r_1}$$

while

$$\psi_S \rightarrow \sqrt{2} \psi_{\alpha}(\mathbf{r_1}) \psi_{\beta}(\mathbf{r_1}) \text{ as } \mathbf{r_2} \rightarrow \mathbf{r_1}$$

thus expect Coulomb repulsion to be larger for symmetric than antisymmetric wavefunction, even through the same orbitals are occupied!

Symmetrised spin wavefunctions

There are four distinct spin states for pair of electrons.

Just like the space wavefunction, the spin wavefunction must have definite symmetry. There are four possibilities:

Triplet of symmetric spin states:

exchange symmetric
$$(+1/2, +1/2)$$

exchange symmetric $\frac{1}{\sqrt{2}}\left[(+1/2, -1/2) + (-1/2, +1/2)\right]$
exchange symmetric $(-1/2, -1/2)$

Singlet with antisymmetric spin:

exchange antisymmetric
$$\frac{1}{\sqrt{2}}[(+1/2, -1/2) - (-1/2, +1/2)]$$

Symmetrised spin wavefunctions

This "triplet" + "singlet" split exactly corresponds to the allowed S quantum numbers:

For S=1, there are three values of M_S (= -1, 0, +1)

- these three are the symmetric triple states

For S=0, there is only one value of M_S (= 0)

- this is the singlet antisymmetric state

Pauli principle

We have met the Pauli principle before. It is often stated in one of two ways:

- No two identical fermions can have the same set of quantum numbers (special form)
- 2. The complete wavefunction for a system of fermions must be antisymmetric under particle exchange (more general form)

Remember:

complete eigenfunction = $\psi \times \sigma$

Pauli principle: the *Exchange Force* for two electrons

For the complete wavefunction to be antisymmetric:

$$S=1$$
 spin states pair with ψ_A spatial wavefunctions

S = 0 spin states pair with ψ_S spatial wavefunctions.

Since we know the symmetric space function allows the electrons to be closer to each other (= more repulsion energy), the S=0 states will have higher energy.

Known as the **Exchange Force**.

Electron repulsion as a "perturbation"

The repulsion can be approximately incorporated as a perturbation (example of 1^{st} order perturbation theory):

This means include it in energy as an extra term (expectation value):

$$E_T = E_{\alpha} + E_{\beta} + < \frac{e^2}{4\pi\epsilon_0 r_{12}} >$$

It can be shown (see more in lecture notes) that

$$<\frac{e^2}{4\pi\epsilon_0 r_{12}}>=J\pm K$$
 J called Coulomb Integral K called Exchange Integral + for S=0 - For S=1

Electron repulsion: Coulomb and Exchange Integrals

He atom: energy level diagram

He atom: ground configuration and the Pauli principle

Why no 1s² ³S₁ state?

Would require S=1 (i.e. symmetric spin state)

- So would have ψ_A (i.e. anti-symmetric space wavefunction)
- But $\psi_A=\frac{1}{\sqrt{2}}\left(\psi_\alpha({\bf r_1})\psi_\beta({\bf r_2})-\psi_\alpha({\bf r_2})\psi_\beta({\bf r_1})\right)$ is zero if both orbitals are the same (i.e. if α = β)
- I.e. there is no anti-symmetric space wavefunction to use!
- So only the S=0 (i.e. anti-symmetric spin state) solution is allowed

Summary/Revision

- For multi-electron atoms, the formulation of the Schrödinger equation is a simple generalisation of what we have seen for single-electron atoms.
- The electron-electron interaction term generally makes analytic solution of the multi-electron Schrödinger equation impossible.
- If the electron-electron interaction is ignored, the wavefunction can be expressed in terms of occupied single-electron *orbitals*.
- For a multi-electron atom, it is usual to indicate which orbitals are occupied by giving the *configuration* in spectroscopic notation.
- The electron-electron interaction has very significant effects on the energy levels of atoms: since this interaction is repulsive, it will raise the total energy compared to a calculation in which it is neglected.

Summary/Revision

- Since the space distribution of the electrons depends on their *l* quantum numbers, the value of *L* affects the strength of the electron-electron repulsion, and therefore the total energy.
- The total wavefunction must be antisymmetric with respect to particle exchange (general expression of the Pauli principle for electrons). This is achieved *either* by having a symmetric space wavefunction and antisymmetric spin wavefunction or *vice versa*.
- For the two-electron atom, if the total spin is S=1 then the spin wavefunction is symmetric under particle exchange. If S=0 the spin wavefunction is antisymmetric.
- Since symmetric space wavefunctions place the electrons closer to each other than antisymmetric wavefunctions, S=1 states have lower energies than S=0 states.
- In the two-electron atom, the electron-electron interaction can be formally expressed in terms of the *Coulomb* and *Exchange* integrals.
- In the two-electron atom, the Pauli principle forbids both electrons occupying the same orbital with an antisymmetric space wavefunction. Thus the ground configuration 1s² has no ³S term.