P3 Procesi izdelave programske opreme

1 Uvod

1.1 Proces izdelave programske opreme

Proces zajema:

- 1. specifikacijo kaj naj sistem počne
- 2. načrt in implementacijo
- 3. vrednotenje preverjanje sistemo, da pogledamo, če je to to, kar stranka želi
- 4. evolucijo predstavlja spreminjanje sistema glede na spreminjajoče zahteve strank

1.2 Opis procesv izdelave programske opreme

Pri opisovanju/razpravljanju o procesih govorimo večinoma o **aktivnosti v teh procesih** in **zaporedju izvajanja** le-teh.

Opišemo lahko tudi z:

- izdelkom
- vlogami
- pogoji in posledicami

1.3 Načrtovalni in agilni procesi

Načrtovalni procesi: vse aktivnosti se načrtujejo vnaprej.

Agilni procesi: načrtvoanje je postopno - lažje spremenimo proces.

2 Procesni modeli izdelave programske opreme

2.1 Slapovni razvoj

Razdeljen v faze:

- 1. opredelitev zahtev
- 2. načrt sistema
- 3. razvoj in testiranje enot
- 4. integracija in testiranje sistema
- 5. delovanje in vzdrževanje sistema

2.1.1 Težave

- težko se prilagodimo spreminjajočim se potrebam strank
- primerno le samo, ko so zahteve res dobro zastavljene in razumljive
- zelo malo sistemov ima tako stabilne zahteve

2.1.2 Uporaba

Ta model razvoja se uporablja samo v korporacijah, kjer več inženirjev dela na istih lokacijah in imajo nek skupen grand plan, ki ga potem lahko še sicirajo na manjše plane itd.

2.2 Inkrementalni razvoj

2.2.1 Prednosti

• stroški prilagajanja spremembam zahtev se zmanjšajo

Slika 6.1: Faze slapovnega razvoja

Figure 1: Faze slapovnega razvoja

Slika 6.2: Faze inkrementalnega razvoja

Figure 2: Faze inkrementalnega razvoja

- lažje pridobivamo povratne informacije strank (stalno vrednotenje)
- · hitrejša dostava, namestitev in uporaba

2.2.2 Slabosti

- postopek razvoja ni pregleden potrebujemo redne sprotne rezultate
- kakovost strukture sistema se z novimi inkrementi zmanjšuje

2.3 Integracija in konfiguracija

Temelji na ponovni uporabi programske opreme.

2.3.1 Vrste programske opreme za večrtano uporabo

- samostojni aplikacijski sistemi (COTS) konfigurirani za rabo v določenem okolju
- množica objektov v obliki paketa knjižnjica
- spletne storitve na voljo preko oddaljenih klicev (RESTApi)

2.3.2 Programsko inženirstvo s ponovno uporabo

Faze:

- 1. specifikacija zahtev
- 2. iskanje in vrednotenje programske opreme
- 3. izboljšanje zahtev
- 4. konfiguracija aplikacijskega sistema
- 5. prilagoditev in integracija komponent

Slika 6.3: Faze programskega inženirstva s ponovno uporabo

Figure 3: Faze programskega inženirstva s ponovno uporabo

2.3.3 Prednosti

- · zmanjšamo stroške tveganj
- · hitrejša namestitev, dostava in urejanje sistema

2.3.4 Slabosti

- · kompromisi pri specifikaciji zahtev neizogibni
- nimamo nadzora nad razvojem ponovno uporabljenih/integriranih elementov sistema

3

3 Procesne aktivnosti

Osnovne procesne aktivnosti so:

- · specifikacija
- načrt in implementacija
- vrednotenje
- evolucija

3.1 Proces zajema zahtev

Slika 6.4: Proces zajema zahtev

Figure 4: Proces zajema zahtev

3.1.1 Specifikacija programske opreme

Specifikacija programske opreme je postopek določanja potrebnih storitev in omejitev delovanja ter izdelave sistema.

Proces zajemanja zahtev predstavlja **pomemben del postopka specifikacije programske opreme**:

- zajem in analiza zahtev kaj stranke pričakujejo od sistema?
- specifikacije zahtev zahteve podrobno opredelimo
- vrednotenje zahtev preverjanje veljavnosti zahtev

Končen produkt je dokument z zahtevami.

3.2 Načrtovanje in implementacija programske opreme

To je postopek pretvorbe sistemske specifikacije v izvršljiv sistem:

- načrtovanje programske opreme: oblikovanje programske strukture, ki bo realizirala specifikacijo
- implementacija: prenos programske strukture v obliko izvršljivega programa

Slika 6.5: Splošni model procesa načrtovanja

Figure 5: Splošni model procesa načrtovanja

3.2.1 Splošni model procesa načrtovanja

3.2.2 Aktivnosti načrtovanja

- načrtovanje arhitekture določimo celotno strukturo sistema, glavne komponente, njihove odvnisnosti, kako so porazdeljeni
- načrtvoanje podatkovne baze določa podatkovne strukture sistema, način predstavitve v podatkovni bazi
- načrtovanje vmesnika določijo se vmesniki med komponentami sistema
- izbira in načrtovanje komponent iščemo komponente, ki jih lahko ponovno uporabimo

3.2.3 Implementaicja sistema

Razvoj programske opreme poteka s **programiranjem** informacijske rešitve ali s **konfiguri-** ranjem obstoječega aplikacijskega sistema.

3.3 Preverjanje in vrednotenje programske opreme

Pokazati želimo, da je sistem skladen s specifikacijami in izpolnjuje zahteve naročnika sistema.

Slika 6.6: Preverjanje vs. vrednotenje

Figure 6: Preverjanje vs. vrednotenje

- preverjanje ali sistem gradimo pravilno?
- vrednotenje ali gradimo pravi sistem?

Najpogosteje uporabljena aktivnost preverjanja in vrednotenja programske opreme je **testi- ranje sistema**.

3.3.1 Stopnje testiranja

Slika 6.8: Stopnje testiranja

Figure 7: Stopnje testiranja

3.3.2 Faze testiranja v načrtno usmerjenem procesu razvoja programske opreme

3.4 Evolucija programske opreme

Programska oprema je sama po sebi prilagodljiva in se lahko spreminja.

4 Oblvadovanje sprememb

Spremembe so neizogibne pri vseh velikih projektih razvoja programske opreme.

4.1 Zmanjševanje stroškov ponovne izdelave

Stroške ponovne izdelave lahko efektivno zmanjšamo z:

- predvidevanjem sprememb razvoj vključuje dejavnosti, ki lahko predvidijo možne spremembe, še preden se zahteva ponovno izdelava
- toleranco do sprememb proces zasnujemo tako, da so spremembe lahko upoštevane s sorazmerno nizkimi stroški

Slika 6.9: Faze testiranja v načrtno usmerjenem procesu razvoja programske opreme (**V-model**)

Figure 8: Faze testiranja v načrtno usmerjenem procesu razvoja programske opreme (V-model)

Slika 6.10: Evolucija programske opreme

Figure 9: Evolucija programske opreme

4.2 Obvladovanje spreminjajočih zahtev

Spreminjajoče zahteve lahko obvladujemo z:

- protoripiranjem sistema različice se razvijajo hitro, z namenom, da se preverijo zahteve stranke.
- postopna dostava posamezni inkrementi sistema se dostavijo stranki za pridobitev komentarjev in eksperimentiranje

4.3 Prototipiranje programske opreme

Prototip je začetna različica sistema, ki se uporablja za predstavitev osnovnih konceptov in preverjanje različnih načrtovalskih možnosti.

Uporaba pri:

- zajemu zahtev
- načrtovanju
- testiranju

4.3.1 Prednosti prototipiranja

- izboljšana uporabnost sistema
- večja usklajenost z dejanskimi potrebami uporabnikov
- izboljšana kakovost načrta
- izboljšana vzdrževalnost
- manjša prizadevanja pri razvoju

4.3.2 Proces razvoja prototipa

Slika 6.11: Proces razvoja prototipa

Figure 10: Proces razvoja prototipa

4.3.3 Razvoj prototipa

Temelji lahko na **opustitvi posameznih funkcionalnosti**:

- osredotočimo se na področja izdelka, ki niso dobro razumeljena
- ni potrebe po preverjanju napak
- fokus na funkcionalnih zahtevah

4.3.4 Prototipe zavržemo

Po razvoju je prototipe potrebno zavreči, saj niso dobra osnova za produkcijski sistem.

4.4 Inkrementalna oz. postopna dostava

- razvoj in dostava se razčlenita v inkremente
- zahteve z višjo prioriteto v začetnih inkrementih
- ob razvoju inkrementa se zahteve ne spreminjajo

4.4.1 Inkrementalni razvoj in dostava

4.4.1.1 Inkrementalni razvoj

Postopno razvijanje sistema in vrednotenje posameznega inkrementa pred nadaljevanjem z razvojem naslednjega inkrementa (vrednotenje opravi uporabnik oz. stranka).

4.1.1.2 Inkrementalna dostava

Dostava samega inkrementa za namen uporabe s strani uporabnikov.

Slika 6.12: Inkrementalna dostava

Figure 11: Inkrementalna dostava

4.1.2 Prednosti

- začetni inkrementi v vlogi **prototipov** pomaqa za kasnejše inkremente
- tveganje za neuspeh celotnega projekta je manjše
- več testiranja za storitve sistema z višjo prioriteto

4.1.3 Slabosti

Če imamo veliko osnovnih lastnosti, ki jih uporabljajo različni deli sistema, potem je težko določiti **skupne lastnosti**, ki bi jih združili v inkremente.

5 Izboljšanje procesa izdelave

Izboljšanje procesa izdelave se uporablja kot način **izboljšanja kakovosti** svoje **programske opreme, zmanjševanje stroškov** ali **pospešitev razvojnih procesov**.

5.1 Pristopi k izboljšanju

• pristop zrelosti procesa - fokus na izboljšanju procesnega in projektnega vodenja ter uvajanju dobrih praks

• agilni pristopi - fokus na iterativnem razvoju in zmanjševanju režijskih stroškov

5.2 Cikel izboljšanja procesa

Slika 6.13: Cikel izboljšanja procesa

Figure 12: Cikel izboljšanja procesa

5.2.1 Aktivnosti izboljšanja procesa

- merjenje procesa merimo enega ali več atributov procesa ali izdelka razvoja programske opreme
- snaliza procesa trenutni proces se ocenjuje, kjer se ugotavjajo pomankljivosti in ozka grla
- dprememba procesa predlagajo se spremembe za ugotovljene pomankljivosti

5.4 Merjenje procesa

- zbrati je potrebno kvantitativne podatke (če je to mogoče)
- gonilo izboljšanja mora izhajati iz organizacijskih ciljev

5.5 Procesne metrike

- čas potreben za zaključek dejavnosti procesa npr. koledarski čas ali napor
- viri, potrebni za izvedbo procesa npr. skupni nabor v človek-dneh
- število pojavitev določenega dogodka npr. število odrkitih napak

5.6 Zmožnostno zrelostne ravni

5.7 Zmožno zrelostni model (CMM)

Opredeljenih je 5 ravni:

- začetna raven gre za nenadzorovan proces
- ponovljiva oz. upravljana raven določeni in uporabljeni postopki za upravljanje izdelkov
- opredeljena raven opredeljeni in uporabljeni postopki upravljanja procesov
- količinsko upravljana raven opredeljene in uporabljene strategije upravljanja kakovosti
- optimizirana raven *opredeljene in uporabljene strategije za izboljšanje procesov

Slika 6.14: Zmožnostno zrelostne ravni (CMM)

Figure 13: Zmožnostno zrelostne ravni (CMM)

6 Zaključne ugotovitve

- Proces izdelave programske opreme predstavljajo aktivnosti, ki so vključene v izdelavo sistema programske opreme. Procesni modeli izdelave programske opreme so abstraktne predstavitve teh procesov.
- Splošni procesni modeli opisujejo organizacijo procesov izdelave programske opreme.
 - Primeri teh splošnih modelov so slapovni razvoj, inkrementalni razvoj in razvoj, usmerjen v ponovno uporabo.
- Proces zajema zahtev se ukvarja s pripravo specifikacije programske opreme.
- Procesa načrtovanja in implementacije se ukvarjata s preoblikovanjem specifikacije zahtev v izvršljiv informacijski sistem.
- **Vrednotenje** programske opreme je postopek preverjanja, ali je sistem skladen s svojimi specifikacijami in izpolnjuje resnične potrebe uporabnikov sistema.
- Evolucija programske opreme poteka ob spremembi obstoječega informacijskega sistema, da bi uvedli nove zahteve. Programska oprema se mora dodatno razviti, da ostane uporabna.
- Proces razvoja programske opreme bi moral vključevati tudi dejavnosti, kot sta **izdelava prototipov** in **postopna dostava**, predvsem z vidika obvladovanja sprememb.
- Procesi razvoja so lahko prilagojeni iterativnemu razvoju in dostavi, kjer lahko uvajamo spremembe, ne da bi negativno vplivali na sistem kot celoto.
- Osrednji pristop k izboljšanju procesov je agilni pristop, ki je usmerjen v zmanjšanje režijskih stroškov, in pristop na podlagi zrelosti, ki temelji na boljšem upravljanju procesov in uporabi dobre prakse izdelave programske opreme.
- Zmožnostni zrelostni model določa stopnje zrelosti, ki v bistvu ustrezajo uporabi dobre prakse izdelave programske opreme.