ABSTRACT

Within a fixing roller (231) are disposed a main heater lamp (234a) for heating a central portion of the fixing roller and a sub-heater lamp (235a) for heating opposite end portions of the fixing roller. MRnh, SRnh and Σ Rnh satisfy the formula (1) or (2):

 $\Sigma Rnh \ge 30.5 \cdot Ln(Ht) + 382 \dots formula (1)$

 $MRnh \leq -21.9 \cdot Ln(Ht) - 198 \dots formula (2),$

where MRnh is a mean value of heat distribution in a no-heat generating section of the main heater lamp; SRnh is a mean value of heat distribution in the a no-heat generating section of the sub-heater lamp; Σ Rnh is the sum total of these mean values; and Ht =

unit length of the heating member $(J/(^{\circ}C \cdot m))$ and λ a heat conductivity of a material forming the heating member $(W/(m \cdot ^{\circ}C))$.

 $vp/(Mh \cdot \lambda)$ where vp is a fixing speed (m/s), Mh a heat capacity per