Algorithm 1 Parallel SMC program execution	
Assume: N observations, L particles	
launch L copies of the program	(parallel)
for $n=1\dots N$ do	
wait until all L reach observe y_n	(barrier)
update unnormalized weights $\tilde{w}_n^{1:L}$	(serial)
if $ESS < au$ then	
sample number of offspring $O_n^{1:L}$	(serial)
set weight $\tilde{w}_n^{1:L} = 1$	(serial)
for $\ell=1\dots L$ do	
fork or exit	(parallel)
end for	
else	
set all number of offspring $O_n^{\ell} = 1$	(serial)
end if	
continue program execution	(parallel)
end for	
wait until L program traces terminate	(barrier)
predict from L samples from $\hat{p}(\mathbf{x}_{1:N}^{1:L} y_{1:N})$	(serial)