Variáveis Aleatórias em Situações Limite

Soma de Variáveis Aleatórias

Desigualdades de Markov e Chebyshev

Lei dos Grandes Números

Teorema do Limite Central

Motivação

- Vimos que E[X] dá informação sobre o valor médio de uma variável aleatória X
 - Muito útil para muitos problemas
- No entanto, em diversas situações interessa-nos saber a probabilidade para valores distantes de E[X]
 - Ou seja, o que acontece na "cauda" (tail) da distribuição

Motivação

- Também nos interessam situações limite
- Por exemplo, saber o que acontece quando n tende para infinito ao valor esperado e variância da Média de n medições
- Outro exemplo, muito importante:
 - Ao fazermos centenas de milhar ou milhões de experiências nas nossas simulações (teoria frequencista) estamos de facto a garantir boas estimativas das probabilidades ?

Soma de variáveis aleatórias

- Vimos anteriormente um exemplo de soma de variáveis de Bernoulli
 - Na apresentação da Distribuição Binomial

 O que acontece se somarmos outros tipos de variáveis?

 Tentar dar resposta a esta questão é o objectivo desta aula

Motivação

- Se somarmos duas variáveis aleatórias X_1 e X_2 quais as características da variável aleatória $S=X_1+X_2$?
 - Em termos de momentos ?
 - Em especial média e variância
 - Em termos de função de distribuição ?
- E no caso geral $S_n = X_1 + X_2 + \cdots + X_n$?

Média da soma de n variáveis

- Sejam X_1, X_2, \dots, X_n , n variáveis aleatórias e $S_n = X_1 + X_2 + \dots + X_n$ a sua soma
- Teorema: A média da soma de n variáveis é igual à soma das médias
- Demonstração

$$E[S_n] = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} (\sum_{j=1}^n x_j) f_{X_1 \dots X_n}(x_1, \dots, x_n) dx_1 \dots dx_n =$$

$$= \sum_{j=1}^n \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} x_j f_{X_1 \dots X_n}(x_1, \dots, x_n) dx_1 \dots dx_n =$$

$$= \sum_{j=1}^n \int_{-\infty}^{+\infty} x_j f_{X_j}(x_j) dx_j = \sum_{j=1}^n E[X_j]$$

Variância da soma de *n* variáveis

- Considerando da mesma forma $S_n = X_1 + X_2 + \cdots + X_n$:
- Teorema: A variância da soma de n variáveis aleatórias é dada pela soma de todas as variâncias e covariâncias

$$Var(S_n) = \sum_{i=1}^{n} Var(X_i) + \sum_{\substack{j=1 \ j \neq k}}^{n} \sum_{k=1}^{n} Cov(X_j, X_k)$$

• Demonstração:

$$Var(S_n) = E\left[\sum_{j=1}^{n} (X_j - E[X_j]) \sum_{k=1}^{n} (X_k - E[X_k])\right] =$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} E[(X_j - E[X_j])] E[(X_k - E[X_k])]$$

Variância da soma de *n* variáveis

- Se as variáveis **são independentes**, $Cov(X_j, X_k) = 0$, para todo o $j \neq k$, pelo que:
- $Var(S_n) = \sum_{i=1}^n Var(X_i)$
 - Variância da soma igual a soma das variâncias
- Se para além de independentes forem identicamente distribuídas (IID)
 - e tivermos $E[X_i] = \mu$ e $Var(X_i) = \sigma^2$, i = 1, 2, ..., n a média e variância da soma são dadas por:
- $E[S_n] = n \mu$ e $Var(S_n) = n \sigma^2$

Função de distribuição da soma de 2 variáveis aleatórias independentes

- Caso discreto (2 v.a. Discretas X e Y)
- Fazendo Z = X + Y

•
$$p_Z(z) = P(X + Y = z)$$

$$=\sum_{\{(x,y)|x+y=z\}} P(X=x,Y=y)$$

$$=\sum_{x}P(X=x,Y=z-x)$$

$$=\sum_{x}p_{X}(x)$$
 $p_{Y}(z-x)$; devido à indep.

$$= p_X(x) * p_Y(z)$$

demoConvolucao.m

• Que é a convolução discreta de p_X e p_Y

Exemplo (em Matlab)

 Usando conv() e a pmf relativa à variável X correspondente ao lançamento de um dado honesto (n=1, 2, ..., 9)

Outro exemplo

- Sendo X relativa ao número de caras num lançamento de moeda não honesta
 - com probabilidade de cara = 0,6

Caso contínuo

- Sendo X e Y independentes e contínuas
- Fazendo novamente Z = X + Y
- Para obter a função densidade prob. de Z , primeiro obtém-se a f. densidade conjunta de X e Z e depois integra-se

$$F_{Z|X}(z \mid x) = \mathbf{P}(Z \le z \mid X = x) = \mathbf{P}(X + Y \le z \mid X = x) = \mathbf{P}(x + Y \le z \mid X = x) = \mathbf{P}(Y \le z - x \mid X = x)$$

$$= \mathbf{P}(Y \le z - x) \qquad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z|x) = \frac{d}{dz}F_{Z|X}(z|x) = \frac{d}{dz}F_{Y}(z-x) = f_{Y}(z-x)$$

$$\begin{split} f_Z(z) &= \int\limits_{-\infty}^{\infty} f_{X,Z}(x,z) dx = \int\limits_{-\infty}^{\infty} f_X(x) f_{Z\mid X}(z\mid x) dx \\ &= \int\limits_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx \equiv f_X * f_Y(z) \end{split}$$

Obtém-se através da convolução, agora contínua

Média e variância da Média

- Se criarmos a v.a. relativa à média de n variáveis IID X_i , $M_n = \frac{S_n}{n}$
- assumindo $E[X_i] = \mu \, e \, Var(X_i) = \sigma^2$, teremos :

$$\mathbf{E}[\mathbf{M}_n] = E\left[\frac{S_n}{n}\right] = \frac{\sum_i E[X_i]}{n} = E[X_i] = \boldsymbol{\mu}$$

- $\operatorname{Var}[M_n] = \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{1}{n^2} \frac{\sum_i \operatorname{Var}[X_i]}{1} = \frac{\operatorname{Var}(X_i)}{n} = \frac{\sigma^2}{n}$
- À medida que se aumenta o número de experiências vai diminuindo a variância da estimativa da média

Questões

- Quão provável é termos um valor superior a um determinado valor?
 - Exemplo: o dobro do valor esperado
- Quão próxima fica a média obtida com as amostras do valor médio ?

 Qual a distribuição da média para valores de n muito grandes ?

Desigualdades de Markov e Chebyshev

- Os dois teoremas que apresentaremos de seguida, sem muita preocupação com demonstrações, permitem estabelecer facilmente majorantes para probabilidades de certas classes de acontecimentos
 - partindo apenas do conhecimento da média e variância de uma variável aleatória
 - Mais informação, por exemplo, na secção 4.6 do livro de F. Vaz e A. Teixeira (Bibliografia)

Questão 1

 Probabilidade de termos valores superiores a um determinado valor?

- Exemplo:
- A média das classificações numa turma é 15,2.
- Será que conseguimos determinar um limite superior para probabilidade de um dos alunos ter nota igual ou superior a 17?

Desigualdade de Markov

- Seja X uma variável aleatória não negativa
- Pela Desigualdade de Markov:

$$P(X \ge a) \le \frac{E[X]}{a}, \ \forall a > 0$$

- Esta desigualdade dá-nos um limite superior para a probabilidade da função X ser maior ou igual a um determinado valor
- Qual o valor de P com a = E[X]?
 - E a < E(X)?
 - E a > E(X)?

Desigualdade de Markov

- Demonstração:
- E[X] = ?
- = $\int_0^a x f_X(x) dx + \int_a^\infty x f_X(x) dx \ge$
- $\geq \int_a^\infty x f_X(x) dx \geq \int_a^\infty \mathbf{a} f_X(x) dx =$
- $\geq a P[X \geq a]$
- Logo: $P[X \ge a] \le \frac{E[X]}{a}$

Exemplo

- A média da altura de uma população é 1,65 m.
- Qual o limite superior de probabilidade de um indivíduo ultrapassar os 2 metros ?

•
$$P(X \ge 2) \le \frac{1,65}{2} = 0,825$$

(Nota: Limite não muito útil ou significativo!)

Exemplo 2

- A média das classificações numa turma é 15,2.
- Qual o limite superior de probabilidade de um dos alunos ter nota igual ou superior a 17 ?

•
$$P(X \ge 17) \le \frac{15,2}{17} = 0.8941$$

• E superior a 19?

•
$$P(X \ge 19) \le \frac{15.2}{19} = 0.8$$

Questão 2

 Quão provável é a diferença entre a variável e o seu valor esperado ser superior/inferior a um determinado valor ?

• Isto é $P(|X - E[X]| \ge a) = ?$

Ou
$$P(|X - E[X]| < a) = ?$$

• Exemplo: Probabilidade de os valores diferirem da média mais que 2 desvios padrão ?

Desigualdade de Chebyshev

Pela Desigualdade de Chebyshev temos:

•
$$P(|X - E[X]| \ge a) \le \frac{Var(X)}{a^2}$$

• Ou, em alternativa:

•
$$P(|X - E[X]| < a) \ge 1 - \frac{Var(X)}{a^2}$$

Desigualdade de Chebyshev

- Demonstração:
- Define-se $D^2 = (X E[X])^2$
- É óbvio que $D^2 \ge 0$ e $D^2 \ge a^2 \iff |D| \ge a$
- Aplicando a Desigualdade de Markov
- $P(|D| \ge a) = P(D^2 \ge a^2)$
- $P(D^2 \ge a^2) \le \frac{E[(X E[X])^2]}{a^2}$
- $P(D^2 \ge a^2) \le \frac{Var(X)}{a^2}$; $P((X E[X])^2 \ge a^2) \le \frac{Var(X)}{a^2}$
- Assume-se E[X] e Var(X) finitos

Desigualdade de Chebyshev

• Se expressarmos a em função do desvio padrão, fazendo $a=h\sigma$, teremos:

•
$$P(|X - E[X]| \ge h\sigma) \le \frac{\sigma^2}{(h\sigma)^2} = \frac{1}{h^2}$$

- Ou seja: a probabilidade de obter um valor que dista da média de h desvios padrão ou mais é menor ou igual a $\frac{1}{h^2}$
 - Exemplos:
 - h=1 => P <= 1
 - h=2 => P <= ¼ Valores com pouco precisão

Questão 3

 Ao fazermos centenas de milhar ou milhões de experiências nas nossas simulações (teoria frequencista) estamos de facto a garantir boas estimativas das probabilidades ?

Voltando à média de *n* variáveis aleatórias ...

 Como vimos, a variância da média das estimativas tende para 0 à medida que n aumenta

 O que se pode interpretar como a probabilidade da média das amostras se aproximar do valor médio ser cada vez maior, aproximando-se de 1

Voltando à média de *n* variáveis aleatórias ...

- Qual a probabilidade da média das amostras se aproximar do valor médio (a menos de ϵ) ?
 - Ou seja: $P(|M_n E[M_n]| < \epsilon)$
- Recorrendo à Desigualdade de Chebyshev temos:

•
$$P(|M_n - E[M_n]| \ge \epsilon) \le \frac{Var(M_n)}{\epsilon^2}$$

•
$$P(|M_n - E[M_n]| \ge \epsilon) \le \frac{\frac{\sigma^2}{n}}{\epsilon^2}$$

•
$$P(|M_n - E[M_n]| < \epsilon) \ge 1 - \frac{\sigma^2}{n \epsilon^2}$$

Lei fraca dos grandes números

 Passando ao limite a última expressão teremos:

$$\lim_{n\to\infty} P(|M_n - E[M_n]| < \epsilon) = 1$$

 Resultado que é conhecido por Lei Fraca dos Grandes Números

Leis dos grandes números (LGN)

 Existe um segundo enunciado (fora dos objectivos de MPEI), a lei forte dos grandes números, que afirma:

$$P(\lim_{n\to\infty}M_n=\mu)=1$$

- A Lei Fraca dos Grandes Números afirma que para um valor de *n* suficientemente elevado a média das amostras estará muito próxima do valor esperado
- Enquanto que a <u>lei forte garante</u> que é certo que o <u>limite para que tende a média</u> (das amostras) <u>é o valor</u> esperado

L. G. N. e definição frequencista

- Consideremos uma sequência de experiências aleatórias independentes e repetidas
- e seja I_j uma variável aleatória indicadora da ocorrência do evento ${\sf A}$ na experiência de ordem j

[1 significa que A ocorreu]

 O número total de ocorrências de A nas n experiências será:

$$N_n = I_1 + I_2 + \dots + I_n$$

L. G. N. e definição frequencista

Como a frequência relativa de A é

$$f_A(n) = \frac{(I_1 + I_2 + \dots + I_n)}{n}$$

- f_A é a média das amostras das variáveis aleatórias I_i
- Então (pelas duas leis dos grandes números):

$$\lim_{n \to \infty} P(|f_A(n) - p(A)| < \epsilon) = 1$$

e

$$P[\lim_{n\to\infty} f_A(n) = p(A)] = 1$$

 Permitindo-nos dizer que a frequência relativa é uma boa estimativa da probabilidade

Um pouco de História (para terminar esta parte)

- 1713: Lei fraca descrita por Jacob Bernoulli
- 1835: Poisson chama-lhe "La Loi des Grands Nombres"
 - Lei dos Grandes Números em Francês
- 1909: Émile Borel desenvolve a Lei forte para variáveis de Bernoulli
- 1928: Andrei Nikolaevich Kolmogorov prova a Lei forte no caso geral

Qual a distribuição de M_n para valores de n muito grandes ?

Questão

 Já vimos o comportamento limite da média de uma sequência de variáveis aleatórias

 Conseguimos avançar mais e dizer alguma coisa quanto à distribuição ?

Comecemos com alguns exemplos ...

Exemplo 1

- Consideremos um jogo em que lançamos uma moeda ao ar e perdemos 1 Euro se sair CARA e ganhamos 2 Euros se sair COROA
- A moeda é honesta e existe independência entre as jogadas

Como se comporta a distribuição com as jogadas?

Continuando o jogo

• Recorrendo a simulação em Matlab...

Outro exemplo

Usando geração de números aleatórios:

 Geradas 10 sequências de números aleatórios com distribuição uniforme no intervalo [0,1]

e somadas ...

Teorema do Limite Central

- Nos exemplos, para valores grandes de n, temos sempre uma distribuição com a forma da Gaussiana
- De facto demonstra-se que a soma de variáveis <u>i.i.d.</u> tende para uma distribuição normal quando o número de variáveis é grande
 - Teorema do Limite Central
- A média é, como já vimos, igual à das variáveis originais

De uma forma mais formal

• Sendo:

- $-X_1, X_2, \dots$ variáveis aleatórias I.I.D.
- $-X_i$ com distribuição F, $E[X_i] = \mu$ e $Var(X_i) = \sigma^2$
 - μ e σ^2 finitos
- $-S_n$ a soma das n primeiras variáveis
- $-Z_n=rac{S_n-n\mu}{\sigma\sqrt{n}}$ v.a. de média nula e variância unitária
- O Teorema do Limite Central afirma:

$$\lim_{n \to \infty} P(Z_n \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} dx$$

• Isto é, a função de distribuição de \mathbf{Z}_n tende para a distribuição de uma variável Normal normalizada $N(\mathbf{0},\mathbf{1})$

Aplicando à média (M_n)

• Fazendo
$$M_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Pelo TLC temos

$$M_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 quando $n \to \infty$

A distribuição da média de n variáveis i.i.d. tende para a distribuição normal com parâmetros μ $e^{\frac{\sigma^2}{n}}$

Teorema do Limite Central

- O Teorema do Limite Central é a razão da importância da distribuição Normal/Gaussiana
 - É um resultado extremamente importante e abre caminho a muitas aplicações
- "Formulação qualitativa":

Coisas que são o resultado da soma de muitos pequenos efeitos tendem a ser Gaussianas

Demos online

Wolfram Demonstrations Project : The Central Limit Theorem

The central limit theorem states that the sampling distribution of the sample mean approaches a normal distribution as the size of the sample grows.

This means that the histogram of the means of many samples should approach a bell-shaped curve.

Each sample consists of 200 pseudorandom numbers between 0 and 100, inclusive.

http://demonstrations.wolfram.com/TheCentralLimitTheorem/

Demos

- Central Limit Theorem Applied to Samples of Different Sizes and Ranges
- http://demonstrations.wolfram.com/CentralLimitTheoremAppliedToSamplesOfDifferentSizesAndRanges/
- This Demonstration shows the applicability of the central limit theorem (CLT) to the means of samples of random integer or real numbers having random ranges.
- It allows the user to generate such datasets and plot the histogram of their means.
- Superimposed on the histogram is the normal (Gaussian) distribution function that gives the theoretical distribution of these sample means.
- Also shown for comparison are the numeric values of the mean and standard deviation, both of the theoretical distribution and of the generated data.

Exemplo de aplicação do TLC

 Suponha que as despesas feitas por cada cliente de um restaurante são variáveis aleatórias I.I.D. com média 6.5 Euros e desvio padrão 2.5 Euros.

 Estime a probabilidade de os primeiros 100 clientes gastarem um total superior a 600 Euros

Resolução

- Consideremos $S_{100} = X_1 + X_2 + \cdots + X_{100}$
- Como $E[S_{100}] = 100\mu = 650$
- $e n\sigma^2 = 625$

- Teremos $Z_{100} = \frac{S_{100} 650}{25}$
- Como pelo TLC Z_{100} segue um lei N(0,1):

•
$$P(S_{100} > 600) = P(Z_{100} > \frac{600 - 650}{25})$$

• =
$$P(Z_{100} > \frac{600-650}{25}) = P(Z_{100} > -2)$$

Calc. probabilidades na N(0,1)

- $P(Z_{100} > -2)$?
- Como se obtém ?
- Existem valores tabelados de

$$P(Z \le z) = \Phi(z)$$

– Exemplo:

• =
$$1 - (1 - \Phi(2)) = \Phi(2) =$$

1,7	0,000-0	0,00001
1,8	0,96407	0,96485
1,9	0,97128	0,97193
2,0	0,97725	0,97778
2,1	0,98214	0,98257
2,2	0,98610	0,98645
0.0	0.00000	0.00056

Em Matlab

• Obter $\Phi(2)$

```
z=2
m=0
sigma=1
p = cdf('Normal',z,m,sigma)
>> 0.9772
OU
p= normcdf(z,m,sigma)
```

Nota: usa Statistics Toolbox

Em Matlab

- Com ferramentas como o Matlab não é necessário efectuar a normalização
- Aplicando directamente a S_{100} :

Exercício - Inquérito futebolístico

- f: fracção da população que gosta de futebol
- Queremos fazer uma sondagem/inquérito a n pessoas
- Quantas pessoas devemos inquirir para ter uma confiança (probabilidade) de 95% de que não cometemos um erro superior a 1 %

• Considere:

Resultado de um inquérito à pessoa i:

$$X_i = \begin{cases} 1, & se \ gosta \\ 0, & se \ n\~ao \ gosta \end{cases}$$

$$-M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 fracção de "gosta" na amostras

Resolução

- Sugestões ?
- Uma das formas (veremos outra) é usando a Desigualdade de Chebyshev ...

O que diz a desigualdade ?

•
$$P(|M_n - E[M_n]| \ge \epsilon) \le \frac{Var(M_n)}{\epsilon^2}$$

O que sabemos ?

- $\epsilon = ?$
- $\epsilon = 0.01$

- $Var(M_n) = ?$
- $Var(M_n) = \frac{Var(X_i)}{n}$

$$Var(X_i) = ?$$

- Todas as X_i são v. a. de Bernoulli
 - Mas não sabemos p (o inquérito é para estimar isso)

• Para o nosso caso é útil o valor máximo de $Var(X_i)$. Qual esse valor ?

•
$$Var(X_i) = p(1-p) \le \frac{1}{4}$$

Voltando à desigualdade

Substituindo temos:

•
$$P(|M_n - E[M_n]| \ge 0.01) \le \frac{\frac{1}{4}}{0.01^2} = \frac{1}{4 n \cdot 10^{-4}}$$

- Como queremos $P() \le 0.05$
- $\frac{1}{4 n \cdot 10^{-4}} \le 0.05$
- n = ?
- $n \ge 50~000$ (valor conservador)

E se $\epsilon = 0.05$?

•
$$P(|M_n - E[M_n]| \ge 0.05) \le \frac{1}{4 n (0.05)^2}$$

• Obtendo-se *n* de:

• n > 2000

Discussão

- Problemas com os valores de *n* que obtivemos:
- 1. São muito grandes
- 2. Baseiam-se numa desigualdade que apenas pode dar um majorante/minorante
 - E não um valor "exacto"
- Veremos de seguida que se pode fazer melhores estimativas de n
 - Mas para isso precisamos saber mais sobre a distribuição de M_n

Resolução usando TLC

- Pretendemos $P(|M_n f| \le 0.05) \ge 0.95$
- O evento que nos interessa calcular a probabilidade é $|M_n f| \le 0.05$
- Pretendemos portanto $P\left(\left|\frac{S_n nf}{n}\right| \le 0.05\right)$
- Como $Z_n=\frac{S_n-n\mu}{\sigma\sqrt{n}}$ manipulamos para obter $\sqrt{n}\sigma$ no denominador, obtendo
- $P\left(\left|\frac{S_n nf}{\sqrt{n}\sigma}\right| \le \frac{0.05\sqrt{n}}{\sigma}\right)$

Resolução usando TLC (cont.)

- Como Z_n tende para N(0,1)
- Teremos:

•
$$P(|M_n - f| \le 0.05) \approx P(|Z| \le 0.05 \frac{\sqrt{n}}{\sigma})$$

E usando majorante para a variância

$$p(1-p) \le 1/4$$
 (=> $\sigma = 1/2$)

• $P(|M_n - f| \le 0.05) \le P(|Z| \le 0.1\sqrt{n})$

$$P(|Z| \leq 0.1\sqrt{n})$$
?

- $P(|Z| \le 0.1\sqrt{n})$
- = $P(-0.1\sqrt{n} \le Z \le 0.1\sqrt{n})$
- = $F_{N(0,1)}(0,1\sqrt{n}) F_{N(0,1)}(-0,1\sqrt{n})$

- Para permitir usar tabelas, coloquemos em função de $Q(z)=1-F_{N(0.1)}(z)$
 - Sabe-se também que $F_{N(0,1)}(-z) = Q(z)$
- = 1 $Q(0,1\sqrt{n}) Q(0,1\sqrt{n})$
- = 1 2 $Q(0,1\sqrt{n})$

Terminando...

• $1 - 2 Q(0,1\sqrt{n})$ terá de ser ≥ 0.95

- $1-2 Q(0,1\sqrt{n}) \ge 0.95$
- $\Rightarrow Q(0,1\sqrt{n}) \geq 0,025$
- $\Rightarrow 0.1\sqrt{n} \ge 1.96$ por consulta a tabela
- Resolvendo em ordem a n temos, finalmente,
- $\sqrt{n} \ge (19,6)^2 \Rightarrow n \ge 384,16$
- n = 385 é o número mínimo que procurávamos

Para mais informação

 Capítulo 7, "Somas de variáveis aleatórias e situações limite", do livro de F. Vaz e A. Teixeira