Formális nyelvek - 5. előadás

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Lineáris grammatikák és reguláris nyelvek

Definíció

Egy G=(N,T,P,S) környezetfüggetlen grammatikát lineárisnak nevezünk, ha minden szabálya vagy

- 1. $A \rightarrow u$, $A \in N$, $u \in T^*$ vagy
- 2. $A \rightarrow u_1 B u_2$ alakú, ahol $A, B \in N$ és $u_1, u_2 \in T^*$.

Továbbá G-t bal-lineárisnak, illetve jobb-lineárisnak mondjuk, ha $u_1=\varepsilon$, illetve $u_2=\varepsilon$ minden 2. alakú szabályra.

Megjegyzés: A jobb-lineáris grammatikák azonosak a reguláris grammatikákkal (3-típusúak).

Lineáris grammatikák és nyelvek

Definíció

Egy L nyelvet lineárisnak, bal-lineárisnak, illetve jobb-lineárisnak mondunk, ha van olyan G lineáris, bal-lineáris, illetve jobb-lineáris grammatika, amelyre L=L(G) teljesül.

Tétel

Minden bal-lineáris grammatika reguláris (3-típusú) nyelvet generál.

Bizonyításvázlat

Legyen G=(N,T,P,S) bal-lineáris grammatika és legyen $N=\{S,A_1,\ldots,A_n\}$. Az általánosság megszorítása nélkül feltehetjük, hogy S nem fordul elő egyetlen szabály jobboldalán sem.

Megkonstruálunk egy G'=(N,T,P',S) jobb-lineáris grammatikát, amelyre L(G)=L(G') teljesül.

Legyen

- 1. $S \to u \in P'$ akkor és csak akkor, ha $S \to u \in P$, $u \in T^*$,
- 2. $S \to uA_k \in P'$ akkor és csak akkor, ha $A_k \to u \in P$, $u \in T^*$,
- 3. $A_j \to uA_k \in P'$ akkor és csak akkor, ha $A_k \to A_j u \in P, \ u \in T^*$,
- 4. $A_j \to u \in P'$ akkor és csak akkor, ha $S \to A_j u \in P, \ u \in T^*$.

Megmutatjuk, hogy L(G) = L(G').

Legyen $w \in L(G)$. Ha $S \to w \in P$, akkor $S \to w \in P'$, így $w \in L(G')$.

Egyébként w-hez van G-ben egy

$$S \Longrightarrow A_{i_1}w_1 \Longrightarrow \ldots \Longrightarrow A_{i_{m-1}}w_{m-1}\ldots w_1 \Longrightarrow w_m\ldots w_1 = w$$

levezetés. Azonban ekkor G'-ben létezik egy

$$S \Longrightarrow w_m A_{i_{m-1}} \Longrightarrow w_m w_{m-1} A_{i_{m-2}} \Longrightarrow \ldots \Longrightarrow w_m \ldots w_2 A_{i_1} \Longrightarrow w_m \ldots w_1 = w$$

levezetés, azaz $w \in L(G')$. Így $L(G) \subseteq L(G')$. A fordított állítás igaz volta a szimmetria következménye.

Következmény

Korollárium

 \mathcal{L}_3 zárt a tükrözés (megfordítás) műveletére nézve és minden reguláris nyelv generálható bal-lineáris grammatikával.

A bizonyítás azonnal adódik. Minden jobb-lineáris G grammatikához meg tudunk konstruálni egy G' bal-lineáris grammatikát, amely L(G) tükörképét generálja. Ha $L \in \mathcal{L}_3$, akkor L^{-1} generálható a bal-lineáris G grammatikával és a megelőző tétel alapján L^{-1} reguláris. Akkor $(L^{-1})^{-1}$ szintén reguláris.

Példa

Legyen $L_1 = \{a^n b^n c^k \mid n \ge 1, k \ge 1\}$ és $L_2 = \{a^k b^n c^n \mid n \ge 1, k \ge 1\}$.

 L_1 és L_2 lineáris nyelvek és

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 1\}$$

környezetfüggő, de nem környezetfüggetlen nyelv.

 L_1 generálható a $G_1=(\{S,A\},\{a,b,c\},P_1,S)$ grammatikával, ahol $P_1=\{S\to Sc,S\to Ac,A\to ab,A\to aAb\}$ és

 L_2 generálható a $G_2 = (\{S, B\}, \{a, b, c\}, P_2, S)$ grammatikával, ahol $P_2 = \{S \to aS, S \to aB, B \to bc, B \to bBc\}.$

3-típusú grammatikák normálformája

Tétel

Minden 3-típusú, azaz reguláris nyelv generálható egy olyan grammatikával, amelynek szabályai vagy

- 1. $X \to aY$, ahol $X, Y \in N$ és $a \in T$ vagy
- 2. $X \to \varepsilon$ alakúak, ahol $X \in N$.

Bizonyításvázlat

Legyen G=(N,T,P,S) 3-típusú grammatika. Ismeretes, hogy G szabályai vagy:

- 1. $A \rightarrow uB$ vagy
- 2. $A \rightarrow u$ alakúak, ahol $A, B \in N$ és $u \in T^*$.

Tegyük fel, hogy |u| > 1.

Legyen $u=a_1\dots a_n,\ n\geq 2$. Helyettesítsünk minden $A\to a_1\dots a_nB$ szabályt az $\{A\to a_1Z_1,Z_1\to a_2Z_2,\dots,Z_{n-1}\to a_nB\}$ szabályhalmazzal, ahol Z_1,\dots,Z_{n-1} új, a szabályhoz bevezetett nemterminálisok.

Hasonlóan, az $A \to a_1 \dots a_m$, $m \ge 1$ alakú szabályokat helyettesítsük a $\{A \to a_1 Y_1, Y_1 \to a_2 Y_2, \dots, Y_{m-1} \to a_m Y_m, Y_m \to \varepsilon\}$ szabályhalmazokkal, ahol Y_1, \dots, Y_m a szabályhoz bevezetett új nemterminálisok.

Az így kapott új P_1 szabályhalmaz elemei $X \to aY$, $X \to Y$, $X \to \varepsilon$ alakúak, ahol $X, Y \in N$ és $a \in T$. Ezután elimináljuk a láncszabályokat.

Legyen N' a P_1 szabályhalmazban előforduló nemterminálisok halmaza (az új nemterminálisokat is beszámítva). Legyen bármely $X \in N'$ nemterminálisra $U(X) = \{Y \mid Y \Longrightarrow^* X\}$.

Definiáljuk P'-t a következőképpen:

- 1. $X \to aY$, akkor és csak akkor, ha létezik olyan $Z \in N'$, amelyre $X \in U(Z)$ és $Z \to aY \in P_1$,
- 2. $X \to \varepsilon$, akkor és csak akkor, ha létezik olyan $Z \in N'$, amelyre $X \in U(Z)$ és $Z \to \varepsilon \in P_1$.

Könnyen látható, hogy L(G) = L(G'), ahol G' = (N', T, P', S).

Korollárium

Minden ε -mentes reguláris (3-típusú) grammatikához konstruálható egy vele ekvivalens reguláris grammatika, amelynek szabályai

- 1. $X \rightarrow aY$ vagy
- 2. $X \rightarrow a$ alakúak, ahol $X, Y \in N$ és $a \in T$.

Környezetfüggetlen nyelvek egy zártsági tulajdonsága

Tétel

A környezetfüggetlen nyelvek osztálya, azaz \mathcal{L}_2 zárt a reguláris (3-típusú) nyelvekkel való metszetre nézve.

Bizonyításvázlat

Legyen L egy tetszőleges környezetfüggetlen nyelv $(L \in \mathcal{L}_2)$ és legyen let L' $(L' \in \mathcal{L}_3)$ reguláris nyelv. Megmutatjuk, hogy $L \cap L'$ környezetfüggetlen.

Először is, tegyük fel, hogy $\varepsilon \notin L$ és az L nyelvet a G = (N,T,P,S) Chomsky-normálformájú grammatika, az L' nyelvet pedig a G' = (N',T',P',S'), a megelőzőekben ismertetett normálformájú grammatika generálja.

Legyen $\{X_1, \ldots, X_k\}$ a G' azon nemterminálisainak halmaza, amelyekre $X_i \to \varepsilon$, $1 \le i \le k$ teljesül.

Definiáljuk a következő grammatikákat:

$$G_i = (N' \times (N \cup T) \times N', T \cup T', P'', [S', S, X_i]),$$

 $i \in \{1, \dots, k\}$ ahol

- 1. $[X,A,Y] \to [X,B,Z][Z,C,Y] \in P''$ minden $X,Y,Z \in N'$ nemterminálisra akkor és csak akkor, ha $A \to BC \in P$,
- 2. $[X,A,Y] \to [X,a,Y] \in P''$ minden $X,Y \in N'$ nemterminálisra, akkor és csak akkor, ha $A \to a \in P$,
- 3. $[X, a, Y] \rightarrow a \in P''$, akkor és csak akkor, ha $X \rightarrow aY \in P'$.

Megmutatjuk, hogy $L \cap L' = \bigcup_{i=1}^k L(G_i)$.

Legyen $w = a_1 \dots a_n, a_i \in T, 1 \le i \le n$.

1. w akkor és csak akkor vezethető le G-ben, ha minden i-re és N'-beli nemterminálisok minden Z_1,\ldots,Z_{n-1} sorozatára létezik

$$[S',S,X_i] \Longrightarrow_{G_i} [S',a_1,Z_1][Z_1,a_2,Z_2]\dots[Z_{n-1},a_n,X_i]$$
 alakú levezetés G_i -ben. Továbbá,

2. w akkor és csak akkor vezethető le G'-ben, ha létezik nemterminálisok Z_1,\ldots,Z_{n-1} sorozata és $X_i\in N'$, ahol $X_i\to \varepsilon\in P'$ úgy, hogy

$$S' \Longrightarrow_{G'} a_1 Z_1 \Longrightarrow_{G'} a_1 a_2 Z_2 \Longrightarrow_{G'} \ldots \Longrightarrow_{G'} a_1 \ldots a_n X_i \Longrightarrow_{G'} a_1 a_2 \ldots a_n.$$

Ez azt jelenti, hogy w akkor és csak akkor vezethető le G'-ben, ha vannak olyan Z_1, \ldots, Z_{n-1} nemterminálisok N'-ben és van olyan levezetés G_i -ben, ahol

$$[S', a_1, Z_1][Z_1, a_2, Z_2] \dots [Z_{n-1}, a_n, X_i] \Longrightarrow_{G_i} a_1 a_2 \dots a_n$$
 fennáll.

Ebből az következik, hogy $w \in L \cap L'$ akkor és csak akkor, ha $w \in L(G_i)$ valamely i-re. Ha $\varepsilon \in L$, akkor megkonstruálunk egy $(L - \{\varepsilon\}) \cap L'$ -t generáló környezetfüggetlen grammatikát és hozzáadjuk az $S_0 \to \varepsilon, S_0 \to S$ szabályokat.

Önbeágyazó környezetfüggetlen grammatika

Definíció

A G=(N,T,P,S) környezetfüggetlen grammatika önbeágyazó, ha van olyan A nemterminálisa, amelyre $A\Longrightarrow_G^* xAy$ teljesül, ahol $x,y\in (N\cup T)^+$.

Tétel

Ha a G környezetfüggetlen grammatika nem önbeágyazó, akkor reguláris.

Bizonyításvázlat

Az általánosság megszorítása nélkül feltehetjük, hogy G=(N,T,P,S) redukált. Két esetet különböztetünk meg.

1. eset

Minden egyes A nemterminálisra létezik $A \Longrightarrow uSz$ alakú levezetés, ahol $u,z \in (N \cup T)^*$.

Minden egyes $A \rightarrow v \in P$ szabály, ahol v-ben legalább egy nemterminális van, vagy

- 1. $A \rightarrow xBy$, vagy
- 2. $A \rightarrow xB$, vagy
- 3. $A \rightarrow By$, vagy
- 4. $A \rightarrow B$ alakú, ahol
- $A, B \in N \text{ és } x, y \in (N \cup T)^+.$

1. eset, 1. alakú szabály

Ha van 1. alakú szabály $(A \to xBy)$ a P szabályhalmazban, akkor van

$$A \Longrightarrow xBy \Longrightarrow^* xuSzy \Longrightarrow^* xuvAqzy$$

alakú levezetés, és ez ellentmond annak, hogy G nem önbeágyazó.

1. eset, 2. és 3. alakú szabályok.

Az $A \to xB$ és $C \to Dy$ alakú szabályokra ismét ellentmondást kapunk, hiszen $A \Longrightarrow xB \Longrightarrow^* xu_1Sz_1 \Longrightarrow^* xu_1v_1Cq_1z_1 \Longrightarrow xu_1v_1Dyq_1z_1 \Longrightarrow^* xu_1v_1u_2Sz_2yq_1z_1 \Longrightarrow^* xu_1v_1u_2v_2Aq_2z_2yq_1z_1$.

A 2. alakú szabályok, ahol $X \in T^*$ vagy a 3. alakú szabályok esetében, ahol $Y \in T^*$, a bizonyítás hasonlóan történik. Ebből az következik, hogy a P szabályhalmazban csak $A \to xB$ és $A \to x$ alakú szabályok lehetnek, ahol A,B nemterminálisok és x terminális szó, vagy $A \to By$ és $A \to y$, ahol A,B nemterminálisok és y terminális szó. Azaz, G reguláris.

2. eset

Van egy olyan A_1 nemterminális, amelyre nem teljesül $A_1 \Longrightarrow^* uSz$ semmilyen $u, z \in (N \cup T)^*$ esetén sem.

Az állítást indukcióval bizonyítjuk. Ha $N=\{S\}$, ez az eset nem állhat fenn, mert $S\Longrightarrow^* S$. Tegyük fel, hogy az állítás teljesül minden, legfeljebb n nemterminálissal rendelkező grammatikára. Megmutatjuk, hogy akkor fenáll minden G grammatikára is, amelynek legfeljebb n+1 nemterminálisa van.

Legyen $G_1=(N-\{S\},T,P_1,A_1)$, ahol P_1 -et a P szabályhalmazból úgy kapjuk meg, hogy minden olyan szabályt törlünk, amely S-et tartalmazza. Hasonlóan, legyen $G_2=(N-\{A_1\},T\cup\{A_1\},P_2,S)$, ahol P_2 -t P-ből az A_1 nemterminálist a baloldalon tartalmazó szabályok törlésével kapjuk meg. Sem G_1 , sem G_2 nem önbeágyazó, mivel $P_1\subseteq P$ és $P_2\subseteq P$. Így $L(G_1)$ és $L(G_2)$ reguláris nyelvek. Látható, hogy az a nyelv, amelyet úgy kapunk, hogy $L(G_1)$ -gyel helyettesítjük A_1 -et $L(G_2)$ -ben, ahol $a\in T$, megegyezik L(G)-vel, mivel \mathcal{L}_3 zárt a helyettesítés műveletére nézve.

Következmények

A reguláris nyelvek osztálya (\mathcal{L}_3) valódi részosztálya a környezetfüggetlen nyelvek osztályának (\mathcal{L}_2 -nek).

A reguláris nyelvek osztálya (\mathcal{L}_3) valódi részosztálya a lineáris nyelvek osztályának.

Reference:

György E. Révész, Introduction to Formal Languages, McGraw-Hill Book Company, 1983, Chapter 3.3