

Workshop 5

COMP20008

Elements of Data Processing Zijie Xu

Agenda

- Regular expressions
- N-grams and similarity

- Regular Expressions (RegEx) enable searching, matching, and manipulation of strings based on specific patterns
 - Python re module <u>API</u> and <u>Tutorial</u>
- Some useful methods
 - re.search(pattern, string)
 - re.findall(pattern, string)
 - re.sub(pattern, replacement, string)
 - re.split(pattern, string)

- Metacharacters .^\$*+?{}[]\|()
 - Wildcard
 - Matches any character
 - Anchor
 - Start of string
 - \$ End of string
 - Repeats
 - **-** ★ ≥0
 - **+** ≥1
 - ? 0 or 1
 - {m,n} m≤# repeat ≤ n

- Metacharacters
 - Character class/set
 - [] matches any character from a class of characters
 - [^] 'A' as first character for complementing class
 - Metacharacters (except \) do not work in classes and will be matched as literals
 - Some predefined classes: \w \W \d \D \s \S

- Alternation
 - split alternative patterns
- Capture groups
 - captures the matched part for later reference

```
In [15]: text = 'To Be Or Not To Be? That is the question.'
In [16]: re.findall(r'(.+) Or Not \1', text)
Out[16]: ['To Be']
```

- Lookahead assertions
 - \times (?=y) matches x only if it is followed by y
 - x (?!y) matches x only if it is not followed by y
 - Not part of the matched

- \
 - Escapes metacharacters

Use raw strings to avoid typing many double backslashes

- Escapes the name of a character class \d \w
- Back-references a sequence captured by a capture groups $1 \ 2$

N-grams and similarity

- N-gram: a sequences of n contiguous items from text
- Letter N-gram: n-gram sequences where items are individual letters
 - '#' stands for padding
 - Bi-grams of 'crat': G₂ (crat) = [#c, cr, ra, at, t#]
- We can use n-gram/letter n-gram to compare how similar two documents/strings are

N-grams and similarity

- There are many metrics for finding the similarity between two strings/documents
 - N-gram: Simple n-gram, Jaccard, Dice
 - Edit distance based: Levenshtein, Hamming
 - Geometric: Cosine
 - Distance based: Manhattan, Euclidean, Minkowski

Thank you

More Resources: Canvas

