РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

▼ ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

Дисциплина: Методы машинного обучения

Студент: Кузнецов Юрий Владимирович

Группа: НФИ 01-20

Москва 2023

Вариант №13

1. Набор данных: diamonds

2. Независимые признаки: carat, table

3. Метка класса: color

4. Параметры глубокой нейронной сети: кол-во скрытых слоев – 3, кол-во нейронов в скрытом слое – 128.

Задание:

В соответствии с индивидуальным заданием, указанным в записной книжке команды, выполните следующие работы:

- 1. Загрузите заданный в индивидуальном задании набор данных из Tensorflow Datasets, включая указанные в задании независимые признаки и метку класса.
- 2. Визуализируйте точки набора данных на плоскости с координатами, соответствующими двум независимым признакам, отображая точки различных

- классов разными цветами. Подпишите оси и рисунок, создайте легенду для классов набора данных.
- 3. Если признак с метками классов содержит более двух классов, то объедините некоторые классы, чтобы получить набор для бинарной классификации. Объединяйте классы таким образом, чтобы положительный и отрицательный классы были сопоставимы по количеству точек.
- 4. Разбейте набор данных из двух признаков и меток класса на обучающую и тестовую выборки. Постройте нейронную сеть с нормализующим слоем и параметрами, указанными в индивидуальном задании, для бинарной классификации и обучите ее на обучающей выборке. Оцените качество бинарной классификации при помощи матрицы ошибок для тестовой выборки.
- 5. Визуализируйте границы принятия решений построенной нейронной сетью на обучающей и тестовой выборках.
- 6. Визуализируйте ROC-кривую для построенного классификатора и вычислите площадь под ROC-кривой методом трапеций или иным методом.
- 7. Обучите на полном наборе данных нейронную сеть с одним слоем и одним выходным нейроном с функцией активации сигмоида и определите дополнительный признак, отличный от указанных в задании двух независимых признаков, принимающий непрерывные значения и являющийся важным по абсолютному значению веса в обученной нейронной сети.
- 8. Визуализируйте точки набора данных в трехмерном пространстве с координатами, соответствующими трем независимым признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду для классов набора данных.
- 9. Разбейте полный набор данных на обучающую и тестовую выборки. Постройте нейронную сеть с нормализующим слоем и параметрами, указанными в индивидуальном задании, для многоклассовой классификации и обучите ее на обучающей выборке.
- 10. Постройте кривые обучения в зависимости от эпохи обучения, подписывая оси и рисунок и создавая легенду.

Решение:

Загрузим заданный в индивидуальном задании набор данных из Tensorflow Datasets, включая указанные в задании независимые признаки и метку класса:

import tensorflow_datasets as tfds
import pandas as pd

ds = tfds.load("diamonds", split='train')
df = tfds.as_dataframe(ds)

Downloading and preparing dataset 2.64 MiB (download: 2.64 MiB, generated: DI Completed...: 100% 1/1 [00:00<00:00, 1.12 url/s]

DI Size...: 2/0 [00:00<00:00, 1.19 MiB/s]

Dataset diamonds downloaded and prepared to /root/tensorflow datasets/diamo

df.rename(columns={name: name.removeprefix('features/') for name in list(df.colu
df.head()

	carat	clarity	color	cut	depth	table	x	Y	z	price
0	1.26	2	4	2	60.599998	60.0	6.97	7.00	4.23	6546.0
1	0.80	3	4	4	62.099998	54.0	5.96	5.99	3.71	3030.0
2	0.56	4	2	4	61.700001	54.0	5.28	5.32	3.27	1915.0
3	1.51	3	6	1	64.000000	58.0	7.24	7.27	4.64	6936.0
4	0.33	6	5	4	62.200001	54.0	4.43	4.45	2.76	646.0

data = df[['carat', 'table', 'color']]
data.head()

	carat	table	color
0	1.26	60.0	4
1	0.80	54.0	4
2	0.56	54.0	2
3	1.51	58.0	6
4	0.33	54.0	5

Визуализируем точки набора данных на плоскости с координатами, соответствующими двум независимым признакам, отображая точки различных классов разными цветами:

```
import matplotlib.pyplot as plt
import numpy as np
import random
```

gen_color = lambda: "#"+''.join([random.choice('0123456789ABCDEF') for j in rang colors = {label: gen_color() for label in np.unique(data.color)}

```
fig, ax = plt.subplots()
for key, group in data.groupby('color'):
    group.plot(ax=ax, kind='scatter', x='carat',
    y='table',
    label=key,
    color=colors[key]
)
plt.legend()
plt.title('Diamond color')
plt.show()
```


Если признак с метками классов содержит более двух классов, то объединим некоторые классы, чтобы получить набор для бинарной классификации. Объединим классы таким образом, чтобы положительный и отрицательный классы были сопоставимы по количеству точек:

```
data = data.sort_values(by='color').reset_index(drop=True)
labels = np.full(data.shape[0], 0)
labels[data.shape[0]//2:] = 1
data.color = labels
data
```

	carat	table	color
0	1.01	59.0	0
1	0.90	58.0	0
2	0.70	55.0	0
3	0.40	59.0	0
4	0.34	58.0	0
53935	1.00	52.0	1
53936	1.26	53.0	1
53937	1.51	58.0	1
53938	0.39	56.0	1
53939	1.31	59.0	1

53940 rows × 3 columns

```
np.unique(data.color, return_counts=True)
          (array([0, 1]), array([26970, 26970]))
```

Разобьём набор данных из двух признаков и меток класса на обучающую и тестовую выборки. Построим нейронную сеть с нормализующим слоем и параметрами, указанными в индивидуальном задании, для бинарной классификации и обучим ее на обучающей выборке. Оценим качество бинарной классификации при помощи матрицы ошибок для тестовой выборки:

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import tensorflow as tf
```

```
X = data.drop(columns=['color'])
v = data.color
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffl
normalizer = tf.keras.layers.Normalization()
normalizer.adapt(X)
model = tf.keras.Sequential([
    normalizer,
    tf.keras.Input(shape=(2,)),
    tf.keras.layers.Dense(units=32, activation='relu'),
    tf.keras.layers.Dense(units=32, activation='relu'),
    tf.keras.layers.Dense(units=32, activation='relu'),
    tf.keras.layers.Dense(units=1, activation='sigmoid')
])
model.compile(
    loss=tf.keras.losses.binary_crossentropy,
    optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
    metrics=['accuracy']
)
history = model.fit(
    X_train,
    y_train,
    epochs=64,
    verbose=0
)
```

```
def confusion_matrix(y_true, y_predict):
  assert len(y_true) == len(y_predict)
  tn = np.sum((y_true == 0) & (y_predict == 0))
  tp = np.sum((y true == 1) & (y predict == 1))
  fn = np.sum((y_true == 1) & (y_predict == 0))
  fp = np.sum((y_true == 0) & (y_predict == 1))
  print('Confusion matrix:')
  print(tp, '\t', fn, sep='')
  print(fp, '\t', tn, sep='')
  return np.array([
    [tp, fn],
    [fp, tn]
  1)
y_pred = model.predict(X_test, verbose=0).round().reshape(-1, )
confusion_matrix(y_test, y_pred)
print('\nReport:')
print(classification_report(y_test, y_pred))
    Confusion matrix:
    2913
            3799
            5330
    1443
    Report:
                                recall f1-score
                   precision
                                                   support
                                  0.79
                        0.58
                                            0.67
                                                      6773
                        0.67
                                  0.43
                                            0.53
                1
                                                       6712
                                            0.61
                                                      13485
        accuracy
                        0.63
                                  0.61
                                            0.60
                                                      13485
       macro avg
    weighted avg
                        0.63
                                  0.61
                                            0.60
                                                      13485
```

Визуализируем границы принятия решений построенной нейронной сетью на обучающей и тестовой выборках:

```
def plot_decision_boundary(model, X, y):
    x_min, x_max = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
    y_min, y_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, X_in = np.c_[xx.ravel(), yy.ravel()]
    y_pred = model.predict(X_in, verbose=0)
    if len(y_pred[1]) > 1:
        y_pred = np.argmax(y_pred, axis=1).reshape(xx.shape)
    else:
        y_pred = np.round(y_pred).reshape(xx.shape)
    plt.contourf(xx, yy, y_pred, cmap=plt.cm.RdYlBu, alpha=0.7)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.RdYlBu)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
```

```
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Обучающая выборка")
plot_decision_boundary(model, X=np.array(X_train), y=np.array(y_train))
plt.subplot(1, 2, 2)
plt.title("Тестовая выборка")
plot_decision_boundary(model, X=np.array(X_test), y=np.array(y_test))
```


Визуализируем ROC-кривую для построенного классификатора и вычислим площадь под ROC-кривой методом трапеций или иным методом:

from sklearn.metrics import roc_curve
from scipy.integrate import simpson

```
y_score = model.predict(X_test, verbose=0).reshape(-1, )
fpr, tpr, thresholds = roc_curve(y_test, y_score)

plt.plot(fpr, tpr)

plt.axis("square")
plt.title('ROC-кривая')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
```


print('Площадь под ROC-кривой: %.4f' % simpson(tpr, fpr))
Площадь под ROC-кривой: 0.6101

Обучим на полном наборе данных нейронную сеть с одним слоем и одним выходным нейроном с функцией активации сигмоида и определим дополнительный признак, отличный от указанных в задании двух независимых признаков, принимающий непрерывные значения и являющийся важным по абсолютному значению веса в обученной нейронной сети:

```
data = df.sort_values(by='color').reset_index(drop=True)
labels = np.full(data.shape[0], 0)
labels[data.shape[0]//2:] = 1
data.color = labels
data
```

	carat	clarity	color	cut	depth	table	x	У	z	price
0	1.01	1	0	2	58.299999	59.0	6.63	6.67	3.88	4588.0
1	0.90	1	0	3	58.700001	58.0	6.30	6.28	3.69	3578.0
2	0.70	2	0	4	62.500000	55.0	5.68	5.72	3.56	2726.0
3	0.40	3	0	3	62.400002	59.0	4.70	4.72	2.94	982.0
4	0.34	2	0	3	62.400002	58.0	4.46	4.42	2.77	803.0
•••										
53935	1.00	2	1	0	64.699997	52.0	6.35	6.30	4.09	3780.0
53936	1.26	1	1	4	62.500000	53.0	6.86	6.90	4.30	4656.0
53937	1.51	4	1	4	61.599998	58.0	7.35	7.43	4.55	8067.0
53938	0.39	3	1	1	63.299999	56.0	4.60	4.63	2.92	581.0
53939	1.31	2	1	3	59.599998	59.0	7.16	7.13	4.26	5876.0

53940 rows × 10 columns

```
X = data.drop(columns=['color'])
```

y = data.color

```
model = tf.keras.Sequential([
    tf.keras.layers.Dense(units=16, activation='relu'),
    tf.keras.layers.Dense(units=1, activation='sigmoid')
1)
model.compile(
    loss=tf.keras.losses.binary_crossentropy,
    optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
    metrics=['accuracy']
)
model.fit(X, y, epochs=32, verbose=0)
    <keras.callbacks.History at 0x7f446dfc92a0>
weights = np.array(model.layers[0].kernel)
weights = np.abs(weights)
weights = weights.sum(axis=1)
X.columns[np.argmax(weights)]
     'carat'
```

Визуализируем точки набора данных в трехмерном пространстве с координатами, соответствующими трем независимым признакам, отображая точки различных классов разными цветами:

```
data = df[['carat', 'table', 'carat', 'color']]
data.head()
```

	carat	table	carat	color
0	1.26	60.0	1.26	4
1	0.80	54.0	0.80	4
2	0.56	54.0	0.56	2
3	1.51	58.0	1.51	6
4	0.33	54.0	0.33	5

```
fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, figsize=(10, 10))
for grp_name, grp_idx in data.groupby('color').groups.items():
    x = data.iloc[grp_idx, 0]
```

```
y = data.iloc[grp_idx, 1]
z = data.iloc[grp_idx, 2]
ax.scatter(x, y, z, label=grp_name, color=colors[grp_name])
ax.legend()
ax.set_xlabel('carat')
ax.set_ylabel('table ')
ax.set_title('diamonds color')
plt.show()
```

diamonds color

)

Разобьём полный набор данных на обучающую и тестовую выборки. Построим нейронную сеть с нормализующим слоем и параметрами, указанными в индивидуальном задании, для многоклассовой классификации и обучим ее на обучающей выборке:

from sklearn.preprocessing import LabelBinarizer X = df.drop(columns=['color']) y = df.color X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.25, shuffle y train label = LabelBinarizer().fit transform(y train) normalizer = tf.keras.layers.Normalization() normalizer.adapt(X) model = tf.keras.Sequential([normalizer, tf.keras.layers.Dense(units=128, activation='relu'), tf.keras.layers.Dense(units=128, activation='relu'), tf.keras.layers.Dense(units=128, activation='relu'), tf.keras.layers.Dense(units=7, activation='softmax')]) model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), metrics=['accuracy']) history = model.fit(X_train, y_train_label, epochs=8, validation_split = 0.3, verbose=0,

y_pred = model.predict(X_test, verbose=0).argmax(axis=1)
print(classification_report(y_test, y_pred, zero_division=0))

	precision	recall	f1-score	support
0	0.47	0.50	0.49	1694
1	0.37	0.43	0.40	2449
2	0.37	0.26	0.30	2385
3	0.48	0.51	0.49	2823
4	0.46	0.40	0.43	2076
5	0.48	0.56	0.52	1356
6	0.57	0.65	0.61	702
accuracy			0.44	13485
macro avg	0.46	0.47	0.46	13485
weighted avg	0.44	0.44	0.44	13485

Построим кривые обучения в зависимости от эпохи обучения: