Основные понятия Text Mining

Курс «Интеллектуальные информационные системы» Кафедра управления и информатики НИУ «МЭИ» Осень 2017 г.

Подходы Text Mining

Лингвистический анализ

Статистический анализ

Системы ЛА обычно состоят из модели предметной области, содержащей основные тематические термины и их взаимосвязи, а также специализированной базы данных (БД) грамматических конструкций и семантических правил, свойственных конкретному языку — онтологий и тезаурусов. При этом модель предметной области обычно используется для проведения морфологического анализа, а специализированная БД — для синтаксического и семантического анализа

Текст — набор ключевых слов. Вес слов зависит от различных факторов, в частности — от частоты встречаемости термина в документе. Предполагается, что появление одних и тех же терминов в различных документах говорит об их подобии

Онтологии и тезаурусы

Пример онтологии

является Сотрудник разработчиком Публикация Программный База является комплекс данных руководителем работает в участвует в взаимодействует с подготовил использует использует Научный Подразделение отчет Исследование описывает включает результаты онтология

Пример тезауруса

Что такое текст?

- Текст конечное множество слов (терминов), объединенных лексическими, грамматическими, смысловыми, частотными отношениями и образующих информативное сообщение.
- Главное в тексте информация, новая для читателя, которая заключена в авторском изложении, и которую мы хотим извлечь.
- Чем больше информации извлечем тем лучше.
- Не всегда большой текст = большому количеству информации

Модели представления текстовых документов

- *Неструктурированная модель* «мешок слов» ("bag of words") каждый термин рассматривается в качестве независимой случайной величины. Не учитываются возможные связи с другими словами в тексте.
- Частично структурированная модель
 - учет дополнительной информации о положении слова в тексте (заголовок, ключевые слова, первый абзац,...),
 - учет оформления слова (*курсив*, **полужирный**, <u>подчеркивание</u>,...),
 - выделение словосочетаний: $w = \frac{w_{kj}}{w_k w_j}$
- Полностью структурированная модель
 - Использование информации из тезаурусов, онтологий, специальных словарей (WordNet)

Как документ представляется в математическом виде?

Векторная модель:

Документ:

$$\vec{X}_{j} = \begin{bmatrix} x_{j}^{(1)} \\ \vdots \\ x_{j}^{(i)} \\ \vdots \\ x_{j}^{(M)} \end{bmatrix}$$

Матрица «Документ-термин»:

$$X = egin{pmatrix} x_1^{(1)} & \dots & x_1^{(M)} \\ \vdots & \ddots & \vdots \\ x_N^{(1)} & \dots & x_N^{(M)} \end{pmatrix}$$
 $x_j^{(i)}$ - Вес *термина* і в документе ј і = 1..М, ј = 1..N

Размерность матрицы крайне высокая, $M o 10^4$ - 10^5

* Вместо термина (или слова) могут использоваться n-граммы последовательность из п элементов:

Триграммы Hello world: Hel, ell, llo, lo, o w, wo, orl, rld.

Выявление информативных признаков

Закон Ципфа: wn = w₁/n

Предварительная обработка документов

Результат проведения стемминга и отсечения стоп-слов

Семантическая интерпретация в системах компьютерного анализа текста

Описывается подход к построению семантического компонента в системах компьютерного анализа текста на естественном языке. Подход основан на применении специальных шаблонов к сети синтактикосемантических отношений между словами текста, которая строится синтаксическим анализатором. Шаблоны определяют способ интерпретации фрагментов сети в заданные фреймы с идентификацией участников ситуаций и их ролей. Ключевые слова: компьютерный анализ текста, семантическая интерпретация, семантическая сеть, синтаксический анализ, фреймы.

Semantic Interpretation in Computer Text Analysis Systems

The article describes an approach to semantic component building in computer text analysis systems for a natural language text. The approach is based on applying special patterns to a net of syntactic and semantic relations between words in a text, which is formed by a syntactic parser. The patterns define the way to interpret parts of the net according to given frames with identification of participants of the situation and their roles.

Keywords: text mining, semantic interpretation, semantic network, syntactic parser, frames.

Определение весов терминов

Название	Формула
Логическое взвешивание	$x_j^{(i)} = \begin{cases} 1, & f_{ij} > 0 \\ 0, & f_{ij} = 0 \end{cases}$
Взвешивание частотой слова (term frequencies, tf)	$x_j^{(i)} = f_{ij}$
tf–idf - взвешивание (term frequencies – inverse document frequencies)	$x_j^{(i)} = f_{ij} \log \left(\frac{N}{N_i}\right)$
tfc - взвешивание	$x_{j}^{(i)} = \frac{f_{ij} \log \left(\frac{N}{N_{i}}\right)}{\sqrt{\sum_{i=1}^{M} \left[f_{ij} \log \left(\frac{N}{N_{i}}\right)\right]^{2}}}$

Определение весов терминов (2)

Название	Формула
Itc — $взвешивание$. Данный подход заключается в использовании логарифма частоты слова вместо f_{ij} . Это позволяет сократить характерный для большинства текстовых документов существенный разброс в частотах различных терминов	$x_{j}^{(i)} = \frac{\log(f_{ij} + 1)\log\left(\frac{N}{N_{i}}\right)}{\sqrt{\sum_{i=1}^{M} \left[\log(f_{ij} + 1)\log\left(\frac{N}{N_{i}}\right)\right]^{2}}}$
atc — взвешивание. При таком взвешивании веса будут изменяться от 0,5 до 1, что в ряде случаев приводит к улучшению качества классификации, позволяя учесть значимые термины, имеющие редкую встречаемость в конкретной выборке	$x_{j}^{(i)} = \frac{(0.5 + 0.5 \frac{f_{ij}}{\max f}) \log\left(\frac{N}{N_{i}}\right)}{\sqrt{\sum_{k=1}^{Mk} \left[(0.5 + 0.5 \frac{f_{ij}}{\max f}) \log\left(\frac{N}{N_{k}}\right)\right]^{2}}}$

Кроме взвешивания применяются и другие методы выявления информативных терминов:

- Факторный и компонентный анализ (переход к новой системе признаков)
- Статистический подход (Хи-квадрат критерий)
- Теоретико-информационный подход

Факторный анализ (ФА) и Метод Главных Компонент (МГК)

- ФА: различные признаки являются одним и тем же явлением., следовательно можно создать новые переменные «факторы», позволяющие «вскрыть» логическую структуру выборки.
- МГК: переход к новым переменным, которые являются линейной комбинацией исходных.

Проведение снижения размерности с помощью ФА и МГК особенно эффективно для отображения объектов в трехмерное пространство и на плоскость.

Статистический подход выявления информативных признаков

X	Q_1	Q_2	 Q_K	$\sum_{k=1}^{K} n_{ik} = n_{i*}$
x ⁽¹⁾	n ₁₁	n ₁₂	 n_{1K}	n _{1*}
x ⁽²⁾	n ₂₁	n ₂₂	 n_{2K}	n _{2*}
x ^(M)	n_{M1}	n_{M2}	 n_{MK}	n_{M^*}
$\sum_{i=1}^{M} n_{ik} = n_{*k}$	n_{*_1}	n _{*2}	 n _{*K}	$n_{**} = N$

 n_{ik} — клеточная частота — число объектов в выборке, обладающих данным сочетанием переменных $\left\{x^{(i)}, Q_k\right\}$

Проверяется гипотеза Ho: n_{ik} $_{-}$ \widehat{n}_{ik} $_{-}$ 0

$$\hat{n}_{ik} = P(x^{(i)}, Q_k) = P(x^{(i)})P(Q_k) = N\frac{n_{i*}}{N} \cdot \frac{n_{*k}}{N} = \frac{n_{i*}n_{*k}}{N}$$

$$\chi^2 = \sum_{i=1}^{M} \sum_{k=1}^{K} \frac{(n_{ik} - \hat{n}_{ik})^2}{\hat{n}_{ik}}$$

Гипотеза о независимости отвергается с уровнем значимости α , если рассчитанная величина χ^2 превышает критическое значение $\chi^2_{\alpha,S}$

Частный случай Хи-квадрат критерия

Q_k	Принадлежность классу Q_k	Непринадлежность классу Q_k	Σ
Наличие признака $\chi^{(i)}$	A	В	A+B
Отсутствие признака $x^{(i)}$	C	D	C+D
Σ	A+C	B+D	N

$$\chi^{2}(x^{(i)}, Q_{k}) = N \frac{(n_{11}n_{22} - n_{12}n_{21})^{2}}{n_{1*}n_{2*}n_{*1}n_{2*}} = N \frac{(AD - CB)^{2}}{(A + B)(C + D)(A + C)(B + D)}$$

$$\chi^2_{cpe \partial H u reve{u}} (x^{(i)}) = \sum_{k=1}^K P(Q_k) \chi^2(x^{(i)}, Q_k)$$
 $\chi^2_{\max 1}(x^{(i)}) = \max_{k=1} P(Q_k) \chi^2(x^{(i)}, Q_k)$
 $\chi^2_{\max 2}(x^{(i)}) = \max_{k=1}^K \chi^2(x^{(i)}, Q_k)$
 $P(Q_k) = \frac{N_k}{N}$

НИУ "МЭИ", Каф. Уи

Недостатки χ^2 - критерия:

- Вычислительная сложность
- Невысокая точность для редких терминов

Критерий взаимной информации (Mutual information)

Взаимная информация, как среднее количество информации, содержащееся в Х относительно Q:

$$I(X,Q) = H(X) - H(X \mid Q)$$
 , где $H(X), H(X \mid Q)$ — соответственно энтропия и условная энтропия.

$$I(X,Q) = -\sum_{i=1}^{M} P(x^{(i)}) \log P(x^{(i)}) + \sum_{i=1}^{M} \sum_{k=1}^{K} P(x^{(i)}, Q_k) \log \frac{P(x^{(i)}, Q_k)}{P(Q_k)}$$

$$P(x_i) = P(Q_1)P(x^{(i)} | Q_1) + P(Q_2)P(x^{(i)} | Q_2) + \dots + P(Q_K)P(x^{(i)} | Q_K) = P(x^{(i)}) = \sum_{k=1}^K P(x^{(i)}, Q_k)$$

Критерий взаимной информации (Mutual information) (2)

$$I(X,Q) = -\sum_{i=1}^{M} P(x^{(i)}) \log P(x^{(i)}) + \sum_{i=1}^{M} \sum_{k=1}^{K} P(x^{(i)}, Q_k) \log \frac{P(x^{(i)}, Q_k)}{P(Q_k)} =$$

$$= \sum_{i=1}^{M} \sum_{k=1}^{K} P(x^{(i)}, Q_k) \log \frac{P(x^{(i)}, Q_k)}{P(Q_k)P(x^{(i)})}.$$

$$P(x^{(i)}) = \frac{A+B}{N}$$

$$P(Q_k) = \frac{A+C}{N}$$

$$P(x^{(i)}, Q_k) = \frac{A}{N}$$

$$I_{cpeo}(X,Q) = \sum_{k=1}^{K} P(Q_k) MI(x^{(i)}, Q_k)$$

$$I_{\max}(X,Q) = \max_{k=1}^{K} \{MI(x^{(i)}, Q_k)\}$$

Меры близости и расстояния

Евклидово расстояние

$$d(\vec{X}_j, \vec{X}_l) = \sqrt{\sum_{i=1}^{M} (x_j^{(i)} - x_l^{(i)})^2}$$

Расстояние городских кварталов

$$d(\vec{X}_j, \vec{X}_l) = \sum_{i=1}^{M} |x_j^{(i)} - x_l^{(i)}|$$

Косинусоидальная мера близости. Показывает косинус угла между векторами.

Стремится к 1, когда документы похожи между собой

$$d(\vec{X}_j, \vec{X}_l) = \cos(\vec{X}_j, \vec{X}_l) = \frac{\sum_{i=1}^{M} x_j^{(i)} x_l^{(i)}}{\sqrt{\sum_{i=1}^{M} (x_j^{(i)})^2 \sum_{i=1}^{M} (x_j^{(i)})^2}}$$

Формирование обучающих выборок

- Эффективность методов Machine Learning сильно зависит от того, как были сформированы обучающие выборки.
- Выборки должны быть:
 - Независимо извлеченными из генеральной совокупности
 - Представительными (репрезентативными)
 - Содержать минимум нетипичных объектов
- Не так важно, как выглядит генеральная совокупность во всем пространстве признаков. Гораздо важнее, как она выглядит в районе границы между двумя классами

Неидеальность разметки документов — разные эксперты могут отнести документ к разным классам. Как поступать?

Как оценить выборку?

Ядерная (центроидная) модель

Модель рассеяния

Модель засорения

Переобученность (Overtraining)

Средняя сумма внутриклассовой дисперсии:

$$Q_1 = \frac{1}{N_k} \sum_{i=1}^{N_k} d^2(\vec{X}_j, \vec{X}_k)$$

$$Q_1 = rac{1}{N_k} \sum_{i=1}^{N_k} d^2(\vec{X}_j, \vec{X}_k)$$
 или $Q_1^* = rac{1}{M} \sum_{k=1}^M rac{1}{N_k} \sum_{j=1}^{N_k} d^2(\vec{X}_j, \vec{\overline{X}}_k),$

$$Q_2 = \frac{1}{N_k} \sum_{l=1}^{N_k} \sum_{i=1}^{N_k} d^2(\vec{X}_l, \vec{X}_j)$$

$$Q_2 = rac{1}{N_k} \sum_{l=1}^{N_k} \sum_{i=1, \, i
eq l}^{N_k} d^2(ec{X}_l, ec{X}_j)$$
 или $Q_2^* = rac{1}{M} \sum_{k=1}^{M} rac{1}{N_k} \sum_{l=1}^{N_k} \sum_{j=1, j
eq l}^{N_k} d^2(ec{X}_l, ec{X}_j)$

Как оценить выборку? (2)

Средняя сумма квадратов межклассовых попарных расстояний

$$Q_3 = \frac{1}{N_k N_s} \sum_{l=1}^{N_k} \sum_{j=1, j \neq l}^{N_s} d^2(\vec{X}_l, \vec{X}_j) \quad \text{или} \quad Q_3 = \frac{1}{M} \sum_{k=1}^{M} \sum_{s=1, s \neq k}^{M} \frac{1}{N_k N_s} \sum_{l=1}^{N_k} \sum_{j=1, j \neq l}^{N_s} d^2(\vec{X}_l, \vec{X}_j)$$

Обобщенный функционал

$$Q_4 = \frac{Q_3}{Q_2}$$

На основе такого анализа исследователь может: 1) объединить несколько близких небольших классов в один; 2) удалить "нехарактерные" шумовые элементы, расположенные вдалеке от центра классов (модель засорения); 3) заново сформировать выборку, увеличив (уменьшив) количество классов или количество элементов.

Свойства сформированных выборок

- любая обучающая выборка конечного размера не является полной, т.е. не содержит необходимого количества элементов для проведения безошибочной классификации;
- элементы обучающей выборки обычно имеют произвольное распределение в пространстве признаков и, как следствие, получаемые решающие правила могут обладать неодинаковой достоверностью в различных областях изменения параметров;
- базы данных текстовых документов, из которых чаще всего составляются обучающие выборки, как правило, содержат шумовые (нерелевантные, не относящиеся к указанным классам) элементы, другую противоречивую или ошибочную информацию, которая так или иначе попадает в обучающую выборку.

Оценка точность классификации в задачах Text Mining

Ошибка классификации – несовпадение метки, назначенной классификатором с меткой, назначенной экспертом (учителем).

Точность (правильность) Accuracy =
$$\frac{P}{N}$$

P- количество документов, по которым классификатор принял правильное решение

Точность
$$Precision = \frac{TP}{TP+FP}$$

Полнота Recall =
$$\frac{TP}{TP+FN}$$

F-measure F—measure =
$$\frac{2(Precision*Recall)}{Precision+Recall}$$

	Оценка эксперта		
Оценка системы	Положительная	Отрицательная	
Положитель ная	TP	FP	
Отрицательн ая	FN	TN	

Оценка точность классификации в задачах Text Mining(2)

• Оценка точности по экзаменационным выборкам

• Оценка точности с помощью скользящего контроля (или «метод складного ножа», «Jackknife») – для небольших выборок

• Оценка точности с помощью v–кратной перекрестной проверки (v–fold cross validation)