VPC Routing Patterns

Centralized VPC Routing

Key Concepts:

- Enables connection of multiple Virtual Private Clouds (VPCs)
- Uses Transit Gateway for network interconnectivity
- Supports full resource sharing across connected environments

Deployment Steps:

1. VPC Attachment

- o Connect Transit Gateway to VPC via elastic network interfaces
- o Ensure network interface in each Availability Zone
- Provides cross-VPC communication

2. Route Table Configuration

- Add routes directing traffic to Transit Gateway
- Use wildcard CIDR blocks (e.g., 10.0.0.0/8)
- o Enables routing across different VPC network ranges

Advanced Routing Techniques:

- Supports routing for hundreds of VPCs
- Allows granular network segmentation
- Provides flexible network design options

Centralized Outbound Routing

Design Principles:

- Dedicated VPC for handling egress internet traffic
- Centralized network security approach
- Cost-efficient NAT gateway management

Implementation Strategy:

- Route internet-bound traffic through specific egress VPC
- Configure route tables to direct traffic to NAT gateway
- Enables comprehensive traffic monitoring and control

VPC Peering

Core Features:

- One-to-one network connection between VPCs
- Enables private IP address communication
- No additional cost for peering connection
- Supports inter-account and inter-region connectivity

Connectivity Limitations:

- Non-Transitive Peering
 - o Direct connections only between explicitly paired VPCs
 - o Prevents unintended network access
 - Enhances network security

Peering Configuration Requirements:

- Non-overlapping CIDR blocks
- Mutual route table configuration
- Potential security group rule updates

Peering Use Cases

Practical Scenarios:

1. Startup Collaboration

- Secure resource sharing
- Private network infrastructure
- o Faster data exchange

2. Specific Resource Access

- Granular routing to specific subnets
- Precise IP-level access control
- o Flexible network segmentation

Network Connectivity Options

Site-to-Site VPN:

Connection Establishment Process:

- 1. Create customer gateway
- 2. Configure virtual private gateway
- 3. Set up routing configurations
- 4. Update security group rules
- 5. Establish VPN connection
- 6. Download configuration file

Routing Approaches:

- Dynamic routing (BGP-supported)
- Static routing for non-BGP devices

Direct Connect

Key Characteristics:

- Dedicated private network connection
- Extends on-premises network to AWS
- Consistent network performance
- Increased bandwidth capabilities

Connectivity Methods:

- Private virtual interface
- Public virtual interface
- Transit virtual interface

AWS PrivateLink

Connectivity Advantages:

- Private application-level connections
- Supports overlapping IP address ranges
- Unidirectional connection initiation
- Secure inter-VPC communication

Advanced Networking Strategies

High Availability Configurations

Recommended Practices:

- Multiple Direct Connect locations
- Redundant hardware deployment
- Active/active connection strategies
- Fault-tolerant network design

Transit Gateway Peering

Cross-Region/Cross-Account Connectivity:

- Enables network traffic between different AWS environments
- Supports inter-region and inter-account communication
- Secure traffic routing without public internet traversal

Recommended Network Design Principles

- 1. Minimize network complexity
- 2. Implement granular access controls
- 3. Design for scalability
- 4. Prioritize security
- 5. Ensure high availability
- 6. Optimize cost-efficiency

Mermaid Diagram: Network Connectivity Flow

Key Takeaways

- Understand diverse AWS networking options
- Implement secure, scalable network architectures
- Leverage Transit Gateway for complex network designs
- Prioritize network segmentation and access control