The model v below depicts a universe of three possible worlds $v = \{w_1, w_2, w_3\}$. The colors of the name letters are indicating the properties of the objects to which they refer, designated R, G, B for red, green, blue. Follow the instructions below.

Notes: 1-4 are valuations of predicates, which will always be a set of objects. The rest are evaluations of propositions, which will always be a truth value.

Evaluate the following:

1. $V(R, w_1) = \{b\}$

2.
$$V(B, w_1) = \{a,b\}$$

3.
$$V(G, w_2) = \{b\}$$

4.
$$v(R, w_2) = \emptyset$$

5.
$$v(∃xBx, w_2) = T$$

6.
$$V(\forall x(Bx\rightarrow x=b), w_2) = F$$

7.
$$V(\forall x(\sim Gx \rightarrow x=b), w_3) = F$$

8.
$$\mathcal{V}(\forall x(Gx \vee Bx), w_2) = T$$

9.
$$V(\sim \exists xGx \rightarrow Bb), w_1) = T$$

10.
$$\mathcal{V}$$
(∃x∀y~(Rx → By), w₃) = F

11.
$$V(\sim Rd, w_2) = no truth value$$

Proof: The valuation rules require that for a formula containing a name a to have a truth value at w, v(a) must be a member of \mathcal{D}_{w} .

Evaluate the following:

1.
$$V(Ba, w_3) = T$$

Proof: $\mathcal{V}(\mathsf{Ba}, \mathsf{w}_3)$ is true iff $\mathcal{V}(\mathsf{a}) \in \mathcal{V}(\mathsf{B}, \mathsf{w}_3)$. In other words the object designated by a is a member of the extension of the predicate B in w_3 . In other words iff Ba is true in w_3 . Ba is true in w_3 .

2.
$$V(\lozenge Ba, w_3) = T$$

Proof: Ba is possible in w3 iff Ba is true some world of the model. Ba is true in every world of the model.

3.
$$V(□Ba, w_3) = T$$

Proof: Ba is necessary in w3 iff Ba is true in every world of the model. Ba is true in every world of the model.

4.
$$\mathcal{V}(\Box \Diamond \mathsf{Gb}, \mathsf{w}_2) = \mathsf{T}$$

Proof: $\Box \Diamond Gb$ is true in w2 iff $\Diamond Gb$ is true in every world. $\Diamond Gb$ is true in every world iff Gb is true in some world. Gb is true in w2.

5.
$$V(\Box Rb \rightarrow Ra, w_1) = T$$

Proof: $\Box Rb \to Ra$ is false in w1 iff $\Box Rb$ is true and Ra is false in w1. If $\Box Rb$ is true in w1, then Rb is true in every world. Rb is not true in every world. Therefore $\Box Rb$ is false in w1 and $(\Box Rb \to Ra)$ is true in w1.

6.
$$V$$
(□Ba \rightarrow \Diamond Gd, w₁) = F

Proof: ($\Box Ba \to \Diamond Gd, w_1$) is false in w1 iff $\Box Ba$ is true and $\Diamond Gd$ is false in w1. Ba is true in every world, so $\Box Ba$ is true in w1. $\Diamond Gd$ is true in w1 iff Gd is true in some world. Gd is false in every world. Therefore, ($\Box Ba \to \Diamond Gd$) is false in w1.

Philosophy 160 Evaluating modal logic formulas

7. $\mathcal{V}(\Box(\Diamond Ra \rightarrow \Diamond Ga), w_2) = T$

Proof: $\square(\lozenge Ra \to \lozenge Ga)$ is true in w2 iff $\lozenge Ra \to \lozenge Ga$ is true in every world. $\lozenge Ra \to \lozenge Ga$ is true in a world unless there exists a world in which $\lozenge Ra \to \lozenge Ga$ is false. $\lozenge Ra \to \lozenge Ga$ is false in a world iff $\lozenge Ra$ is true and $\lozenge Ga$ is false. $\lozenge Ra$ is true in a world iff Ra is true in some world. Ra is not true in any world. Therefore $\lozenge Ra$ is false in every world. Therefore, $(\lozenge Ra \to \lozenge Ga)$ is true in every world.

8. $V(\Diamond \Box Gc, w_3) = F$

Proof: ♦□Gc is true in w3 iff □Gc is true in some world. □Gc is true in some world iff Gc is true in every world. Gc is not true in w3 since c does not exist in w3. (Note: Gc is not false in w3 for the same reason. Gc has no truth value in w3 at all. So, because Gc is neither true nor false in w3 both, □Gc and □~Gc are false in w3, or any other world for that matter.)

9. For any world w in w_v , $v(\lozenge Bb, w) = T$

Proof: This is true iff \Diamond Bb is true in every world. \Diamond Bb is true in every world iff Bd is true in some world. Bb is true in w3.

10. For any world w in w_v , $v(\sim \exists xGx, w) = F$

Proof: □∃xGx is true iff ∃xGx is true in every world. ∃xGx is true in a world iff for some *a*, Ga in that world. This is the case in every world, since Gc in w1, Gb in w2 and Gc in w3. Therefore □∃xGx is true in every world. Therefore ~□∃xGx is false.

11. $V(\Box Gc, w_2) = \text{no truth value}$

Proof: According to the valuation rules of Leibnizian modal logic, for □Gc to be true or false at w2, c must exist at w2. c does not exist at w2, so this formula has no truth value at w2.

12. $V(\Box(Gc \rightarrow Ba), w_3) = F$

Proof: According to the valuation rules of Leibnizian modal logic, for $\Box(Gc \to Ba)$ to be true at w3, (Gc \to Ba) must be true in every world. Gc has no truth value at w2, hence (Gc \to Ba) is is not true at w2. Hence $\Box(Gc \to Ba)$ is false at w3.