5-1. 直径 10cm, 全長 1km の円管内を毎秒 20l の水が流れるときの摩擦損失水頭を求めよ. ただし管摩擦係数は 0.03 とする.

(解)

$$d = 10cm, \quad l = 1,000m, \quad Q = 20 \times 10^{-3}/s, \quad \lambda = 0.03$$

 $v = \frac{20 \times 10^{-3}}{\pi 0.1^2/4} = 2.55, \quad h_l = 0.03 \frac{1,000}{0.1} \frac{2.55^2}{2q} = 99.5m$

5-2. 内径 50mm の滑かな円管内を動粘性係数 $10^{-5}m^2/s$ の油が毎分 30l 送られているとき、管長 20m における摩擦損失水頭を求めよ.

(解)

$$d = 0.05m, \nu = 10^{-5}m^2/s, \quad Q = \frac{30 \times 10^{-3}}{60}m^3/s, \quad l = 20m$$

$$v = \frac{30 \times 10^{-3}/60}{\pi 0.05^2/4} = 0.25m/s, \quad R_e = \frac{0.05 \times 0.25}{10^{-5}} = 1,250, \quad \lambda = 0.053$$

$$h_l = 0.053 \frac{20}{0.05} \frac{0.25^2}{2q} = 6.76cm$$

5.4. 長方形断面の管内を油が毎分 $(7.5cm \times 3cm)$ 流れている。管長あたりの損失水頭を求めよ。

(解)

$$a = 7.5cm, \quad b = 3cm, \quad \nu = 2 \times 10^{-5} m^2/s, \quad l = 1m$$

$$Q = \frac{50 \times 10^{-3}}{60} m^3/s, \quad v = \frac{50 \times 10^{-3}}{0.075 \times 0.03 \times 60} = 0.37m/s$$

$$m = \frac{0.075 \times 0.03}{2(0.075 + 0.03)} = 0.0107, \quad 4m = 0.0429$$

$$R_e = \frac{0.0429 \times 0.37}{2 \times 10^{-5}} = 793.65, \quad \lambda = \frac{64}{R_e} = 0.0806$$

$$h_l = 0.0806(\frac{1}{0.0428}) \frac{0.37^2}{2q} = 0.013m$$

5-6. 摩擦損失のある円管内の流れにおいて、流量は管内径 5/2 乗に比例することを示せ、 (解)

$$h_l = \lambda \frac{l}{d} (\frac{Q}{\pi d^2/4})^2 = C \frac{Q^2}{d^5}, \quad Q \propto d^{5/2}$$

5-7. 滑らかな壁面をもつ円管と正方形断面の管が同一の管断面積,圧力勾配であるとき,流量を求めよ.

$$\begin{split} &\frac{h}{l} = \lambda_1 \frac{1}{d} \frac{1}{2g} (\frac{Q_1}{A})^2, \quad \frac{h}{l} = \lambda_2 \frac{1}{4m} \frac{1}{2g} (\frac{Q_2}{A})^2 \\ &m = \frac{a^2}{4a}^{\frac{a}{4}}, \quad \frac{\pi d^2}{4} = a^2, \quad \frac{d}{a} = \frac{2}{\sqrt{\pi}} \\ &\frac{Q_1}{Q_2} = (\frac{\lambda_2}{\lambda_1} \frac{2}{\sqrt{\pi}})^{1/2} \end{split}$$

5-7-2. 同じ断面積,同じ長さを持つ円管 $a \times 2a$ とよりなる長方形断面の管を流れる乱流において,管摩擦損失水頭が等しければ流量比は幾らにらるか.だだし,両管の管摩擦係数は等しいものとする.

(解)

$$h_1 = \lambda \frac{l}{d} \frac{v_1^2}{2g}, \quad h_2 = \lambda \frac{l}{4m} \frac{v_2^2}{2g}$$

$$m = \frac{1}{3}a, \quad 4m = \frac{4}{3}a, \quad \frac{\pi d^2}{4} = 2a^2$$

$$\frac{a}{d} = \sqrt{\frac{\pi}{8}}$$

$$\frac{Q_2}{Q_1} = \frac{Av_2}{Av_1} = (\frac{4m}{d})^{1/2} = (\frac{4a}{3d})^{1/2} = [\frac{4}{3}(\frac{\pi}{8})^{1/2}]^{1/2} = 0.914$$

5-7-3. 同じ断面積,同じ長さを持つ円管と正三角形断面の管を流れる乱流において,管摩擦損失水頭が等しければ流量比は幾らにらるか. だだし,両管の管摩擦係数は等しいものとする.

(解)

$$h_1 = \lambda \frac{l}{d} \frac{v_1^2}{2g}, \quad h_2 = \lambda \frac{l}{4m} \frac{v_2^2}{2g}$$

$$m = \frac{\sqrt{3}}{12} a, \quad 4m = \frac{\sqrt{3}}{3} a, \quad \frac{\pi d^2}{4} = \frac{\sqrt{3}}{4} a^2$$

$$\frac{a}{d} = (\frac{\pi}{\sqrt{3}})^{1/2}$$

$$\frac{Q_2}{Q_1} = \frac{Av_2}{Av_1} = (\frac{4m}{d})^{1/2} = (\frac{a}{\sqrt{3}d})^{1/2} = [\frac{1}{\sqrt{3}d} (\frac{\pi}{\sqrt{3}})^{1/2}]^{1/2} = 0.882$$

5-8. 直径 30mm の円管が直径 60mm の円管に直結して急な広がり流れを生じている. 流量 Q=50l/min のとき急拡大損失ヘッドを求めよ.

(解)

$$v_1 = \frac{50 \times 10^{-3}}{60 \times \pi (0.03)^2 / 4} = 1.18m/s, \quad v_2 = \frac{50 \times 10^{-3}}{60 \times \pi (0.06)^2 / 4} = 0.29m/s$$
$$h_l = \frac{(v_1 - v_2)^2}{2g} = \frac{(1.117 - 0.2947)^2)}{2g} = 0.04m$$

5-9. 図 5-4 の水平におかれた急拡大管内の水流において断面 (1) の圧力が 98kPa, 速度が 5m/s, 断面積が $0.16m^2$, 断面 (2) の断面積が $0.48m^2$ なるとき断面 (2) の圧力を求めよ. ただし管摩擦損失は無視する.

$$v_1 = 5m/s, \quad v_2 = \frac{A_1}{A_2}v_1 = 1.67m/s$$

$$h_l = \frac{p_1 - p_2}{\rho g} + \frac{v_1^2 - v_2^2}{2g}, \quad h_l = (\frac{v_1 - v_2}{2g})^2$$

$$p_1 - p_2 = \rho v_2(v_2 - v_1) = 10^3 \times 1.67(1.67 - 5) = -5.56 \times 10^3$$

$$p_2 = (98 + 5.56) \times 10^3 = 103.56kPa$$

5-10. 直径 50mm の円管を広がり角度 10° にて直径 100mm の円管に接続する. 流量が 200l/min のとき広がり損失ヘッドおよび圧力回復率を求めよ.

(解)

$$Q = \frac{0.2}{60} = 0.0033m^3/s, \quad \frac{A_2}{A_1} = (\frac{100}{50})^2, \quad \zeta = 0.18 \ (Fig. 5.9)$$

$$\eta = 1 - 0.18(1 - (\frac{1}{4} + \frac{1}{4}) = 1 - 0.18(\frac{3}{5}) = 0.89$$

$$v_1 = (\frac{0.0033}{\pi 0.05^2/4}) = 1.69m/s, \quad v_2 = \frac{1}{4}v_1 = 0.42m/s$$

$$h = 0.18 \times \frac{(1.69 - 0.42)^2}{2g} = 0.018m$$

5-13. 2 個の水槽間に内径 d, 管長 l, 管摩擦係数 λ の円管を並列に連結させて送水している。 各管の流量は等しく Q_1 4 本の管の総流量は $4Q_1$ である。もし λ が同一で管長 l はかえず 1 本の管を使用して同一流量 $4Q_1$ を送るには,管径をいくらにしたらよいか.

(解)

$$\begin{split} H &= \frac{v_1^2}{2g} (1 + \frac{\lambda l}{d}) = \frac{1}{2g} (\frac{Q_1}{\pi d^2/4})^2 (1 + \frac{\lambda l}{d}) \\ &= \frac{1}{2g} (\frac{4Q_1}{\pi D^2/4})^2 (1 + \frac{\lambda l}{D}) \\ D &= 1.74 (\frac{D + \lambda l}{d + \lambda l})^{1/5} d \\ \text{If no outlet losses, } D &= 1.74d \end{split}$$

5-14. 断面積がそれぞれ A_1 お よび A_2 である 2 個の水槽が,図のように水平な円管で接続している.円管の直径 d,管長 l,管摩擦係数 λ , 入口損失係数 ζ とするとき,水槽の水面が H_1 から H_2 になるまでの所要時間を求めよ.

$$\begin{split} H &= \frac{v^2}{2g}(1+\zeta+\lambda l/d), \quad v = \sqrt{\frac{2gH}{1+\zeta+\lambda l/d}} \\ Qdt &= -A_1 dy_1 = A_2 dy_2 \\ H &= y_1 - y_2, \quad dH = dy_1 - dy_2 \\ dH &= dy_1(1+\frac{A_1}{A_2}) = dy_1(\frac{A_1+A_2}{A_2}), \quad -A_1 dy_1 = \frac{1}{4}\pi d^2 v dt \\ dt &= -\frac{4A_1A_2}{\pi d^2(A_1+A_2)} \sqrt{\frac{1+\zeta+\lambda l/d}{2g}} H^{-1/2} dH \\ T &= -\frac{4A_1A_2}{\pi d^2(A_1+A_2)} \sqrt{\frac{1+\zeta+\lambda l/d}{2g}} \int_{H_1}^{H_2} H^{-1/2} dH \\ T &= \frac{8A_1A_2}{\pi d^2(A_1+A_2)} \sqrt{\frac{1+\zeta+\lambda l/d}{2g}} (H_1^{1/2}-H_2^{1/2}) \end{split}$$

For frictional losses only,

$$T = \frac{8A_1A_2}{\pi d^2(A_1 + A_2)} \sqrt{\frac{\lambda l/d}{2g}} (H_1^{1/2} - H_2^{1/2})$$

5-14-2. いま, $H_1=1.8m$, $A_1=8.4m^2$, $A_2=4.6m^2$ なる 2 水槽間を直径 25mm,長さ 150m を通して流量 $2.8m^3$ の送水をするための時間を求めよ.ただし管路内の損失は摩擦損失のみとしその係数は 0.04 とする.(JF Douglas, p232)

(解)

$$\begin{split} H_1 &= 1.8m, \quad H_2 = H_1 - \frac{2.8}{8.4} - \frac{2.8}{4.6} = 0.857m \\ H &= \frac{v^2}{2g} (\lambda l/d), \quad v = \sqrt{\frac{2gH}{\lambda l/d}} \\ Qdt &= -A_1 dy_1 = A_2 dy_2 \\ H &= y_1 - y_2, \quad dH = dy_1 - dy_2 \\ dH &= dy_1 (1 + \frac{A_1}{A_2}) = dy_1 (\frac{A_1 + A_2}{A_2}), \quad -A_1 dy_1 = \frac{1}{4} \pi d^2 v dt \\ dt &= -\frac{4A_1 A_2}{\pi d^2 (A_1 + A_2)} \sqrt{\frac{\lambda l/d}{2g}} H^{-1/2} dH \\ T &= -\frac{4A_1 A_2}{\pi d^2 (A_1 + A_2)} \sqrt{\frac{\lambda l/d}{2g}} \int_{H_1}^{H_2} H^{-1/2} dH \\ T &= \frac{8A_1 A_2}{\pi d^2 (A_1 + A_2)} \sqrt{\frac{\lambda l/d}{2g}} (H_1^{1/2} - H_2^{1/2}) \\ T &= \frac{8 \times 8.4 \times 4.6}{\pi 0.025^2 (8.4 + 9.6)} \sqrt{\frac{0.04 \times 150}{2g \times 0.025}} (1.8^{1/2} - 0.875^{1/2}) \\ &= 12150 \times \sqrt{12.25} \times (1.344 - 0.925) = 17750s = 4h55min50s \end{split}$$

5-14-3. 図のような 2 つの水槽がある. A の水を面積 $100cm^2$ の孔 C を通して B へ流入させる. 初め $H_1=5m,\,H_2=2m$ とすれば水面の高さが同じになるのは何秒か. $A,\,B$ の断面積はともに $5m^2$ とする. (豊倉, 流体力学, p75)

$$\begin{split} \frac{p_a}{\rho g} + H_1 &= \frac{v_c}{2g} + z_1 + \frac{p_c}{\rho g} \\ \frac{p_c}{\rho g} &= \frac{p_a}{\rho g} + H_2 - z_1 \\ v_c &= \sqrt{2gh}, \quad h = H_1 - H_2 \\ -dH_1 A &= v_c a d t = \sqrt{2gh} a d t \\ -\frac{dH_1}{dt} &= \frac{2a}{A} \sqrt{2gh}, \quad \frac{dH_2}{dt} = \frac{a}{A} \sqrt{2gh}, \quad A = B \\ -\frac{dh}{dt} &= \frac{a}{A} \sqrt{2gh}, \quad T &= \int dt = -\frac{A}{2a\sqrt{2g}} \int_{h_0}^0 \frac{dh}{\sqrt{h}} \\ T &= \frac{A}{2a\sqrt{2g}} 2h_0^{1/2} = \frac{5 \times 2 \times 3^{1/2}}{2 \times 0.01\sqrt{2g}} = 195.6s \end{split}$$

5-15. 図に示す管路を流れる動粘性係数 10^{-5} の液体の流量を求めよ. ただし管路 (1) の長さ 300mm, 直径 600mm, 管路の粗さ 1.5mm, 入口損失係数 0.5, 管路 (2) の長さ 240mm, 直径 900mm, 粗さ 0.3mm とする.

(解)

Assume:
$$\lambda_1 = 0.025$$
, $\lambda_2 = 0.015$
 $h_l = \lambda \frac{l}{d} \frac{v_1^2}{2g} + \zeta \frac{v_1^2}{2g} + (1 - \frac{A_1}{A_2})^2 \frac{v_1^2}{2g} + (\frac{d_1}{d_2})^2 \frac{v_1^2}{2g}$
 $v_1 d_1^2 = v_2 d_2^2$
 $6 = \{0.025(\frac{300}{0.6}) + 0.5 + (1 - (\frac{0.6}{0.9})^2)^2 + 0.015(\frac{240}{0.9})^2 + (\frac{0.6}{0.9})^2\} \frac{v_1^2}{2g}$
 $= (12.5 + 0.5 * 0.31 + 1.78 + 0.44) \frac{v_1^2}{2g}$
 $v_1 = \sqrt{\frac{2g \times 6}{15.54}} = 2.75m/s$, $v_2 = 1.22m/s$
 $R_{e1} = \frac{2.75 \times 0.6}{10^{-5}} = 1.65 \times 10^5$, $\frac{k}{d_1} = 0.0025$, $\lambda_1' = 0.025$
 $R_{e2} = \frac{1.22 \times 0.91}{10^{-5}} = 1.098 \times 10^5$, $\frac{k}{d_2} = 0.019$, $\lambda_1' = 0.019$
 $6 = 16.0(\frac{v_1^2}{2g})$, $v_1 = 2.71m/s$, $v_2 = 1.22m/s$
 $\lambda_1 = 0.025$, $\lambda_2 = 0.019$
 $Q = A_1v_1 = \frac{\pi 0.6^2}{4} \times 2.57 = 0.78m^3/s$

5-17. 図に示すようなポンプを含む管路がある. ポンプの吸い込み側タンクは密閉され圧力 35kPa の圧力が水面に作用しており、その水面はポンプ軸心より 4.5m 下に位置している. ポンプの水に与える動力が 1.5kw であるとき、流量およびポンプの吸い込み側の圧力を求めよ. ただし摩擦損失以外の損失は無視する.

$$\begin{split} &\frac{p_{1g}}{\rho g} + z_1 + H_p - h_l = z_2 + \frac{p_a}{\rho g} \\ &H_2 = z_1 - z_2, \quad p_1 = p_{1g} - p_a \\ &\frac{p_1}{\rho g} + H_2 + \frac{L}{\rho g Q} = h_l, \quad h_l = \Sigma \lambda \frac{l}{d} \frac{v^2}{2g} \\ &\frac{35 \times 10^3}{10^3 g} + 3 + \frac{1.5 \times 10^3}{10^3 g Q} = 5.35 \frac{v_1^2}{2g}, \quad Q = \frac{\pi d_1^2}{4} v_1 \\ &0.27 v_1^3 - 6.57 v_1 - 8.66 = 0, \quad v_1 = 5.49 m/s \\ &Q = \frac{\pi 0.15^2}{4} \times 5.49 = 0.097 m^3/s \\ &\frac{p_1}{\rho g} = \frac{p_s}{\rho g} + H_1 + \lambda_1 \frac{l_1}{d_1} \frac{v_1^2}{2g} \\ &p_s = 35 \times 10^3 - 4.5 \times 10^3 - 0.025 (\frac{15}{0.15}) \frac{10^3 \times 5.49^2}{2} = -46.8 kPa \end{split}$$