



Course Progress Dates Discussion Instructor Details

☆ Course / Assessments / Quiz 2

< Previous 
Next >

## Quiz 2

 $\hfill\square$  Bookmark this page

## Read the instructions carefully.

- All questions are compulsory.
- This is a closed book quiz; do not use or look at the lecture slides while answering.
- After you select the answer, click on **Submit** within each question to save your answer, this will popup "answer submitted".
- Donot Click on, the "**Previous/Next**" page at the end of the page. All questions will be displayed on a single page.
- Ensure your camera [loin Virtual Classroom] while attempting the quiz: failure to comply will result in a deduction of

| marks.                                                                                          |
|-------------------------------------------------------------------------------------------------|
| 1                                                                                               |
| 1.0/1.0 point (graded) Logistic regression can be used in which of the following applications   |
| ○ Stock price forecasting                                                                       |
| Predicting the price of a home                                                                  |
| Prediction of the occurrence of diabetes                                                        |
| Clustering of users based on shopping information                                               |
| Submit                                                                                          |
| 2 0.0/1.0 point (graded) As $z \to 0$ , the logistic function approaches the limit $\bigcirc$ 0 |
| ∞                                                                                               |
| 1                                                                                               |
| 0.5                                                                                             |
| ×                                                                                               |
| Submit                                                                                          |
| 3                                                                                               |
| 1.0/1.0 point (graded)  Consider the logistic function $f(z)$ . Its derivative is given as      |
|                                                                                                 |
| $\bigcirc f^2(z)$                                                                               |
| $\bigcirc (1-f(z))^2$                                                                           |

| $\bigcap f(z)^2 (1-f(z))^2$                                                                                            |                                                 |                            |                               |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|-------------------------------|
| <b>~</b>                                                                                                               |                                                 |                            |                               |
| Submit                                                                                                                 |                                                 |                            |                               |
| 4                                                                                                                      |                                                 |                            |                               |
| 1.0/1.0 point (graded)<br>In logistic regression, t                                                                    | the quantity $P(y = 0   \vec{x})$ is modeled as |                            |                               |
| $\bigcirc \frac{1}{1+e^{-\bar{\mathbf{x}}^T\bar{\mathbf{h}}}}$                                                         |                                                 |                            |                               |
| $ \underbrace{\frac{e^{-\bar{\mathbf{x}}^T\bar{\mathbf{h}}}}{1+e^{-\bar{\mathbf{x}}^T\bar{\mathbf{h}}}}}_{\mathbf{h} $ |                                                 |                            |                               |
| $e^{-(\bar{\mathbf{x}}^T\bar{\mathbf{h}})^2}$                                                                          |                                                 |                            |                               |
| $e^{-\bar{\mathbf{x}}^T\bar{\mathbf{h}}}$                                                                              |                                                 |                            |                               |
| Submit                                                                                                                 |                                                 |                            |                               |
| 5                                                                                                                      |                                                 |                            |                               |
| .0/1.0 point (graded)  Consider the dat standard scaled (                                                              | ta $x_i$ to be distributed as a G               | nussian with mean $\mu$ ar | and variance $\sigma^2$ . The |
| $\circ$ $x_i$                                                                                                          |                                                 |                            |                               |
| $x_i - \mu$                                                                                                            |                                                 |                            |                               |
|                                                                                                                        |                                                 |                            |                               |
| $\bigcirc \frac{x_i - \mu}{\sigma^2}$                                                                                  |                                                 |                            |                               |
| Submit                                                                                                                 |                                                 |                            |                               |
| 6                                                                                                                      |                                                 |                            |                               |
| 1.0/1.0 point (graded)<br>General structure of a                                                                       | hyperplane is                                   |                            |                               |
| $\mathbf{\bar{a}}^T\mathbf{\bar{x}}=\mathbf{b}$                                                                        |                                                 |                            |                               |

| $\bigcirc \ \bar{\mathbf{x}}^T \bar{\mathbf{x}} = b$                             |
|----------------------------------------------------------------------------------|
| $\bigcirc \ \bar{\mathbf{x}}^T \bar{\mathbf{x}} \leq b$                          |
| $\bigcirc \ \bar{\mathbf{a}}^T \bar{\mathbf{x}} \geq b$                          |
| ✓                                                                                |
| Submit                                                                           |
| 7                                                                                |
| 1.0/1.0 point (graded)                                                           |
| What is the distance between the two hyperplanes given below                     |
| $x_1 + 2x_2 + 3x_3 + \dots + Nx_N = 1$                                           |
| $x_1 + 2x_2 + 3x_3 + \dots + Nx_N = -1$                                          |
| $\frac{2}{\sqrt{N(N+1)}}$                                                        |
| $\bigcirc \frac{2\sqrt{2}}{\sqrt{N(N+1)}}$                                       |
| $ \frac{2}{\sqrt{\frac{N(N+1)(2N+1)}{6}}} $                                      |
| $\frac{1}{2\sqrt{\frac{N(N+1)(2N+1)}{6}}}$                                       |
| Submit                                                                           |
| 8                                                                                |
| 1.0/1.0 point (graded) Kernel SVM with sigmoid kernel can be loaded in PYTHON as |
| ksvmc = SVM(kernel = 'sigmoid', random_state = 0)                                |
| ksvmc = support_vector_machine(sigmoid, random_state = 0)                        |
| ksvmc = support_vector_classifier(sigmoid, random_state = 0)                     |
| ksvmc = SVC(kernel = 'sigmoid', random_state = 0)                                |
| <b>✓</b> Submit                                                                  |

9

1.0/1.0 point (graded)

The dual problem to determine the support vector classifier is

 $\bigcirc$  min $\|\bar{\mathbf{a}}\|_2$ 

 $C_0: \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1, \ 1 \le i \le M$ 

 $C_1: \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \leq -1, M+1 \leq i \leq 2M$ 

$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y(i) y(j) \bar{\mathbf{x}}^T(i) \bar{\mathbf{x}}(j)$$
subject to  $\lambda_i \geq 0$ 

$$\sum_{i=1}^{2M} \lambda_i y(i) = 0$$

 $\bigcirc \min \|\bar{\mathbf{a}}\|_2$ 

 $C_0: \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le 1, \ 1 \le i \le M$ 

 $C_1: \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge -1, M+1 \le i \le 2M$ 

$$\bigcirc \max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y(i) y(j) \overline{\mathbf{x}}^T(i) \overline{\mathbf{x}}(j)$$

subject to  $\lambda_i = 0$ 

$$\sum_{i=1}^{2M} \lambda_i y(i) \ge 0$$

~

Submit

10

1.0/1.0 point (graded)

Which for the following shows image segmentation





















© All Rights Reserved

