Exercise Set 3

Adrian Langseth

September 2019

1 The aim of this exercise is to show you the fundamental fact behind the real Fourier series: $(1, cosnx, sinnx)_{n\geq 1}$ is an orthogonal system with respect to the inner product.

1.1 Show that:

$$(1,\sin(nx)) = 0$$

$$(1, \sin(nx)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 * \sin(nx) dx$$

$$= \frac{1}{2\pi} \left[\frac{-1}{n} \cos(nx) \right]_{-\pi}^{\pi}$$

$$= \frac{-1}{2n\pi} [\cos(\pi n) - \cos(-\pi n)]$$

$$= \frac{-1}{2n\pi} [(-1)^n - (-1)^n]$$

$$= \frac{-1}{2n\pi} [0]$$

$$(1, \sin(nx)) = \underline{0}$$

Proving they are orthogonal.

$$(\sin(nx),\cos(mx)) = 0$$

We will use the following trigonometric identity:

$$\sin(A)\cos(B) = \frac{1}{2}(\sin(A-B) + \sin(A+B))$$

$$(\sin(nx), \cos(mx)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(nx) \cos(mx) dx$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \sin((n-m)x) + \sin((n+m)x) dx$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \sin((n-m)x) dx + \int_{-\pi}^{\pi} \sin((n+m)x) dx$$

$$= \frac{-1}{4\pi} \left\{ \left[\frac{1}{n-m} \cos((n-m)x) \right]_{-\pi}^{\pi} + \left[\frac{1}{n+m} \cos((n+m)x) \right]_{-\pi}^{\pi} \right\}$$

$$= \frac{-1}{4\pi} \left\{ \frac{1}{n-m} [(-1)^{n-m} - (-1)^{n-m}] + \frac{1}{n+m} [(-1)^{n+m} - (-1)^{n+m}] \right\}$$

$$= \frac{-1}{4\pi} \{0+0\}$$

$$= \underline{0}$$

Proving they are orthogonal.

1.2 Show that:

$$(\sin(mx), \sin(nx)) = (\cos(nx), \cos(mx)) =$$

$$\begin{cases} 0 & n \neq m = 0, 1, 2, 3... \\ \frac{1}{2} & n = m = 1, 2, 3... \end{cases}$$

We use the trigonometric identities:

$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \tag{1}$$

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] \tag{2}$$

$$\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)] \tag{3}$$

$$(\sin(mx), \sin(nx)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \cos(mx - nx) - \cos(mx + nx) dx$$

$$= \frac{1}{4\pi} \left\{ \frac{1}{m-n} \sin(mx - nx) \Big|_{-\pi}^{\pi} - \frac{1}{m+n} \sin(mx + nx) \Big|_{-\pi}^{\pi} \right\}$$

First we deal with if $m \neq n$ for 0,1,2,3...:

$$(\sin(mx), \sin(nx)) = \frac{1}{4\pi} \left\{ \frac{1}{m-n} \sin(mx - nx) \Big|_{-\pi}^{\pi} - \frac{1}{m+n} \sin(mx + nx) \Big|_{-\pi}^{\pi} \right\}$$
$$= \frac{1}{4\pi} \left\{ \frac{1}{m-n} (0-0) - \frac{1}{m+n} (0-0) \right\}$$
$$= 0$$

Now we deal with if m = n for 1,2,3...:

$$(\sin(mx), \sin(nx)) = \frac{1}{4\pi} \left\{ \frac{1}{m-n} \sin(mx - nx) \Big|_{-\pi}^{\pi} - \frac{1}{m+n} \sin(mx + nx) \Big|_{-\pi}^{\pi} \right\}$$

$$= \frac{1}{4\pi} \left\{ \frac{1}{m-n} (\sin((m-n)x) \Big|_{-\pi}^{\pi} - 0 \right\}$$

$$= \frac{1}{4\pi} \left\{ \frac{1}{m-n} (\sin((m-n)\pi) - \frac{1}{m-n} (\sin((m-n)(-\pi))) \right\}$$

$$= \frac{1}{4\pi} \left\{ \frac{1}{m-n} (\sin((m-n)\pi) + \frac{1}{m-n} (\sin((m-n)(\pi))) \right\}$$

$$= \frac{1}{2\pi} \left\{ \frac{1}{m-n} (\sin((m-n)\pi)) \right\}$$

We set z = m - n:

$$(\sin(mx), \sin(nx)) = \frac{1}{2\pi} \left\{ \frac{\sin(z\pi)}{z} \right\}$$

Since we have m=n, we have m-n=0. We observe our equation when we use $\lim_{z\to 0} f(z)$

$$(\sin(mx), \sin(nx)) = \frac{1}{2\pi} \left\{ \frac{\sin(z\pi)}{z} \right\}$$
$$= \lim_{z \to 0} \frac{1}{2\pi} \left\{ \frac{\sin(z\pi)}{z} \right\}$$
$$= \frac{1}{2\pi} * \pi$$
$$= \frac{1}{2}$$

Now we prove $(\sin(mx), \sin(nx)) = (\cos(nx), \cos(mx))$

$$(\sin(mx), \sin(nx)) = (\cos(nx), \cos(mx))$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(mx) \sin(nx)) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(nx) \cos(mx)) dx$$

$$\int_{-\pi}^{\pi} \sin(nx) \sin(mx)) dx = \int_{-\pi}^{\pi} \cos(nx) \cos(mx)) dx$$

$$\int_{-\pi}^{\pi} \frac{1}{2} \left[\cos((n-m)x) - \cos((n+m)x) \right] dx = \int_{-\pi}^{\pi} \frac{1}{2} \left[\cos((n-m)x) - \cos((n+m)x) \right] dx$$

$$\int_{-\pi}^{\pi} \cos((n-m)x) dx - \int_{-\pi}^{\pi} \cos((n+m)x) dx = \int_{-\pi}^{\pi} \cos((n-m)x) dx + \int_{-\pi}^{\pi} \cos((n+m)x) dx$$

$$- \int_{-\pi}^{\pi} \cos((n+m)x) dx = \int_{-\pi}^{\pi} \cos((n+m)x) dx$$

The integral of $\cos((n+m)x)$ from $-\pi$ to π is 0, and (-0)=0. Therefore we know

$$(\sin(mx), \sin(nx)) = (\cos(nx), \cos(mx))$$

1.3 Prove the following:

$$a_0 = (f, 1)$$

$$a_0 = c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f * e^{-i*0*x} dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f * 1 dx$$
$$= (f, 1)$$

$$a_n = (f, 2 * \cos(nx))$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f * \cos(nx) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f * 2\cos(nx) dx$$
$$= (f, 2\cos(nx))$$

$$b_n = (f, 2 * \sin(nx))$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f * \sin(nx) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f * 2\sin(nx) dx$$
$$= (f, 2\sin(nx))$$

Prove the identity

$$\begin{split} (f,f) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)f(x) \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} (\sum_{n} a_{n} \cos(nx) + b_{n} \sin(nx)) (\sum_{m} a_{m} \cos(mx) + b_{m} \sin(mx)) dx \\ &= \frac{1}{2\pi} \sum_{n=0} \sum_{m=0} \int_{-\pi}^{\pi} (a_{n} \cos(nx) + b_{n} \sin(nx)) (a_{m} \cos(mx) + b_{m} \sin(mx)) dx \\ &= \frac{1}{2\pi} \sum_{n=0} \sum_{m=0} \int_{-\pi}^{\pi} (a_{n} a_{m} \cos(nx) \cos(mx) + b_{n} a_{m} \sin(nx) \cos(mx) \\ &+ a_{n} b_{m} \cos(nx) \sin(mx) + b_{n} b_{m} \sin(nx) \sin(mx)) dx \end{split}$$

If we look at the n = 0 we have:

$$\begin{split} &\frac{1}{2\pi} \sum_{m=0}^{\pi} \int_{-\pi}^{\pi} (a_0 a_m \cos(nx) \cos(mx) + b_0 a_m \sin(nx) \cos(mx) + a_0 b_m \cos(nx) \sin(mx) + b_0 b_m \sin(nx) \sin(mx)) dx \\ &= \frac{1}{2\pi} \sum_{m=0}^{\pi} \int_{-\pi}^{\pi} (a_0 a_m \cos(0) \cos(mx) + 0 * a_m \sin(0) \cos(mx) + a_0 b_m \cos(0) \sin(mx) + 0 * b_m \sin(0) \sin(mx)) dx \\ &= \frac{1}{2\pi} \sum_{m=0}^{\pi} \int_{-\pi}^{\pi} (a_0 a_m \cos(0) \cos(mx) + a_0 b_m \cos(0) \sin(mx)) dx \\ &= \frac{1}{2\pi} \sum_{m=1}^{\pi} \int_{-\pi}^{\pi} (a_0 a_m \cos(0) \cos(mx) + a_0 b_m \cos(0) \sin(mx)) dx + \int_{-\pi}^{\pi} (a_0 a_0 \cos(0) \cos(0) + a_0 b_0 \cos(0) \sin(0)) dx \\ &= \frac{1}{2\pi} \sum_{m=1}^{\pi} \int_{-\pi}^{\pi} (a_0 a_m \cos(0) \cos(mx) + a_0 b_m \cos(0) \sin(mx)) dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} a_0 a_0 \cos(0) \cos(0) dx \end{split}$$

Since we know $(\cos(nx), \cos(mx)) = 0$ when $n \neq m$, we find:

$$= \frac{1}{2\pi} \sum_{m=1}^{\infty} 0 + \frac{1}{2\pi} \int_{-\pi}^{\pi} (a_0 a_0 \cos(0) \cos(0) dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} a_0 a_0 dx$$

$$= |a_0|^2$$

We plot this back into our formulae for (f, f)

$$(f,f) = |a_0|^2 + \frac{1}{2\pi} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{-\pi}^{\pi} (a_n a_m \cos(nx) \cos(mx) + b_n a_m \sin(nx) \cos(mx) + a_n b_m \cos(nx) \sin(mx) + b_n b_m \sin(nx) \sin(mx)) dx$$

We now use what we found in 1.1:

$$(f,f) = |a_0|^2 + \frac{1}{2\pi} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{-\pi}^{\pi} (a_n a_m \cos(nx) \cos(mx) + 0 + 0 + b_n b_m \sin(nx) \sin(mx)) dx$$
$$= |a_0|^2 + \frac{1}{2\pi} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{-\pi}^{\pi} (a_n a_m \cos(nx) \cos(mx) + b_n b_m \sin(nx) \sin(mx)) dx$$

From what we proved in 1.2, we know that if $m \neq n$, $a_n a_m \cos(nx) \cos(mx) = 0$, $b_n b_m \sin(nx) \sin(mx) = 0$. Therefore we can reduce accordingly:

$$(f,f) = |a_0|^2 + \frac{1}{2\pi} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{-\pi}^{\pi} (a_n a_m \cos(nx) \cos(mx) + b_n b_m \sin(nx) \sin(mx)) dx$$
$$= |a_0|^2 + \frac{1}{2\pi} \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} (a_n a_n \cos(nx) \cos(nx) + b_n b_n \sin(nx) \sin(nx)) dx$$

We also know from 1.2 that $\sin(nx)\sin(nx) = \frac{1}{2}, \cos(nx)\cos(nx) = \frac{1}{2}$

$$(f,f) = |a_0|^2 + \frac{1}{2\pi} \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} (\frac{1}{2} a_n a_n + \frac{1}{2} b_n b_n) dx$$
$$= |a_0|^2 + \sum_{n=1}^{\infty} \frac{1}{2} |a_n|^2 + \frac{1}{2} |a_n|^2$$

2 Draw the graph of the odd extension and the even extension.

In red, the even extension, in blue, the odd extension.

2.1 The function of the even expansion is given by:

$$f(x) =$$

$$\begin{cases} \frac{\pi}{2} & x \ge \frac{\pi}{2} \\ x & 0 < x < \frac{\pi}{2} \\ -x & \frac{-\pi}{2} < x < 0 \\ \frac{\pi}{2} & x \le \frac{\pi}{2} \end{cases}$$

$$a_{0} = \frac{1}{2\pi} \left\{ \int_{\pi/2}^{\pi} \frac{\pi}{2} + \int_{0}^{\pi/2} x + \int_{-\pi/2}^{0} -x + \int_{-\pi}^{-\pi/2} \frac{\pi}{2} \right\}$$

$$= \frac{1}{2\pi} \left\{ \frac{\pi^{2}}{2} - \frac{\pi^{2}}{4} + \frac{\pi^{2}}{8} - 0 + 0 + \frac{\pi^{2}}{8} - \frac{\pi^{2}}{4} + \frac{\pi^{2}}{2} \right\}$$

$$= \frac{3\pi}{8}$$
(6)

$$\begin{split} a_n &= \frac{2}{\pi} \bigg\{ \int_0^\pi f(x) * \cos(\frac{n\pi x}{\pi}) \bigg\} \\ &= \frac{2}{\pi} \bigg\{ \int_{\pi/2}^\pi \frac{\pi}{2} * \cos(nx) + \int_{\pi/2}^\pi x * \cos(nx) \bigg\} \\ &= \int_{\pi/2}^\pi \cos(nx) + \frac{2}{\pi} \int_{\pi/2}^\pi x * \cos(nx) \\ &= \frac{\sin(nx)}{n} \bigg|_{\pi/2}^\pi + \frac{2x \sin(nx)}{n\pi} \bigg|_0^{\pi/2} + \frac{2\cos(nx)}{n^2\pi} \bigg|_0^{\pi/2} \\ &= \bigg[\frac{\sin(n*\pi)}{n} - \frac{\sin(n\pi/2)}{n} \bigg] + \bigg[\frac{2\pi \sin(n\pi/2)}{2n\pi} - 0 \bigg] + \bigg[\frac{2\cos(n\pi/2)}{n^2\pi} - \frac{2\cos(0)}{n^2\pi} \bigg] \\ &= -\frac{\sin(n\pi/2)}{n} + \frac{\sin(n\pi/2)}{n} + \frac{2}{n^2\pi} (\cos(n\pi/2) - 1) \end{split}$$

$$a_n &= \frac{2}{n^2\pi} (\cos(n\pi/2) - 1)$$

This gives us the two cases of odd and even numbers for n: When n is odd:

$$a_n = \frac{2}{n^2 \pi} (\cos(n\pi/2) - 1)$$
$$= \frac{2}{n^2 \pi} (0 - 1)$$
$$= -\frac{2}{n^2 \pi}$$

when n is even:

$$a_n = \frac{2}{n^2 \pi} (\cos(n\pi/2) - 1)$$
$$= \frac{2}{n^2 \pi} ((-1)^{\frac{n}{2}} - 1)$$

This means when n%4=0, $a_n=0$, and when n%4=2, $a_n=-\frac{4}{n^2\pi}$ Hence we have:

$$a_1 = -\frac{2}{1^2 \pi} \tag{7}$$

$$a_2 = -\frac{4}{2^2 \pi} \tag{8}$$

$$a_3 = -\frac{2}{3^2 \pi} \tag{9}$$

$$a_4 = 0 (10)$$

$$a_5 = -\frac{2}{5^2 \pi} \tag{11}$$

This gives us:

$$f_e(x) = a_0 + a_1 * \cos(x) + a_2 * \cos(2x) + a_3 * \cos(3x) + a_4 * \cos(4x) + a_5 * \cos(5x) + \dots$$

$$= \frac{3\pi}{8} - \frac{2}{\pi} * \cos(x) - \frac{4}{2^2\pi} * \cos(2x) - \frac{2}{3^2\pi} * \cos(3x) - 0 * \cos(4x) - \frac{2}{5^2\pi} * \cos(5x) - \dots$$

$$= \frac{3\pi}{8} + \frac{2}{\pi} \left(-\cos(x) - \frac{2\cos(2x)}{2^2} - \frac{\cos(3x)}{3^2} - \frac{\cos(5x)}{5^2} - \dots \right)$$

2.2 The function of the even expansion is given by:

$$f(x) =$$

$$\begin{cases} \frac{\pi}{2} & x \ge \frac{\pi}{2} \\ x & \frac{-\pi}{2} < x < \frac{\pi}{2} \\ -\frac{\pi}{2} & x \le \frac{\pi}{2} \end{cases}$$

First we find b_n by using the coefficient equation:

$$b_{n} = \frac{2}{\pi} \left\{ \int_{0}^{\pi} f(x) * \sin(\frac{n\pi x}{\pi}) \right\}$$

$$= \frac{2}{\pi} \left\{ \int_{0}^{\pi/2} x \sin(nx) + \int_{\pi/2}^{\pi} \frac{\pi}{2} \sin(nx) \right\}$$

$$= \frac{2}{\pi} \left\{ \frac{\sin(nx)}{n^{2}} \Big|_{0}^{\pi/2} - \frac{x \cos(nx)}{n} \Big|_{0}^{\pi/2} - \frac{\pi}{2n} \cos(nx) \Big|_{\pi/2}^{\pi} \right\}$$

$$= \frac{2}{\pi} \left\{ \frac{\sin(\frac{n\pi}{2})}{n^{2}} - \frac{\pi \cos(\frac{n\pi}{2})}{2n} + \frac{\pi}{2n} \cos(\frac{n\pi}{2}) - \frac{\pi}{2n} \cos(n\pi) \right\}$$

$$= \frac{2}{\pi} \frac{\sin(\frac{n\pi}{2})}{n^{2}} - \frac{(-1)^{n}}{n}$$

Hence we have:

$$b_1 = \frac{2}{\pi} + 1$$

$$b_2 = \frac{2*0}{\pi*4} - \frac{1}{2} = -\frac{1}{2}$$

$$b_3 = -\frac{2}{3^2\pi} + \frac{1}{3}$$

$$b_4 = \frac{2*0}{\pi*16} - \frac{1}{4} = -\frac{1}{4}$$

$$b_5 = \frac{2}{5^2\pi} - \frac{-1}{5} = \frac{2}{5^2\pi} + \frac{1}{5}$$

$$f_o(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{L})$$

$$= \sum_{n=1}^{\infty} b_n \sin(nx)$$

$$= (\frac{2}{\pi} + 1)\sin(x) - \frac{1}{2}\sin(2x) + (-\frac{2}{3^2\pi} + \frac{1}{3})\sin(3x) - \frac{1}{4}\sin(4x) + (\frac{2}{5^2\pi} + \frac{1}{5})\sin(5x) + \dots$$