

TECHNICAL UNIVERSITY MUNICH

Master Thesis

On Parametrized Semitotal Dominating Set

Lukas Retschmeier

TECHNICAL UNIVERSITY MUNICH

Master Thesis

On Parametrized Semitotal Dominating Set

A Survey and a Linear Kernel For Planar Graphs

Author: Lukas Retschmeier

Supervisor: Prof. Dr. Debarghya Ghoshdastidar (TUM)

Advisor: Prof. Dr. Paloma T. Lima (ITU)

Submission Date: August 17, 2022

I confirm that this master the and material used.	sis is my own work an	nd I have documented all source	es
København, August 17, 2022		Lukas Retschmeier	

CONTENTS

A	cknov	vledgm	ients	iii
Αl	ostrac	:t		vii
I.	Th	eory		1
1.	Intr	oductio	on.	2
2.	Prel	iminari	ies	3
	2.1.	Graph	Theory	3
	2.2.	_	netrized Complexity	4
			Fixed Parameter Tractability	4
			Fixed Parameter Intractability: The W Hierarchy	4
		2.2.3.	Kernelization	4
3.	On 1	Parame	trized Dominating Set	5
	3.1.	Semito	otal Domination	5
	3.2.	w[i]-In	ntractibility	5
			Warm-Up: W[2]-hard on General Graphs	5
		3.2.2.	W[2]-hard on Bipartite Graphs	5
			W[2]-hard on Chordal Graphs	5
			W[2]-hard on Split Graphs	5
4.	A Li	near K	ernel for Planar Semitotal Domination	6
	4.1.	The M	Iain Idea and The Big Picture	6
	4.2.		sary Definitions	6
	4.3.		ring Reduction Rules	6
			Reduction Rule I (R1): Getting Rid of unneccessary $N_3(v)$ vertices	6

Contents

		4.3.2. Reduction Rule II (R2): Shrinking the Size of a Region	6
		4.3.3. Reduction Rule III (R3): Shrinking the Size of Simple Regions	6
	4.4.	Bounding the Size of the Kernel	7
5.	5. Open Questions and Further Research		
Li	st of	Figures	9
Li	st of	Tables	10
Bi	bliog	raphy	11

ABSTRACT

Abstract all the way

Part I.

Theory

INTRODUCTION

Our contributions

PRELIMINARIES

We start by recapping some basic notation in Graph Theory and Parametrized Complexity.

Continuing an intensive study of parametrized complexity of that problem.

2.1. Graph Theory

We quickly state the following definitions given by [Die10, p. xxx].

Definition 1 (Graph). A graph is a pair G = (V, E) of two sets where V denotes the vertices and $E \subseteq V \times C$ the edges of the graph. A vertex $v \in V$ is incident with an edge $e \in E$ if $v \in e$. Two vertices x, y are adjacent, or neighbours, if $\{x, y\} \in E$.

Definition 2 (Special Graph Notations [Die10, p. 27]). A simple Graph

A directed Graph is a graph

A Multi Graph

A Planar Graph

Definition 3 (Adjacent Vertices).

Definition 4 (Closed and Open Neighborhoods of Vertices). + Sets

Definition 5 (Induced Subgraph). asd

Special Graph Classes

We call the class of graphs without any special restrictions "General Graphs".

Definition 6 (r-partite Graphs). Let $r \ge 2$ be an integer. A Graph G = (V, E) is called "r-partite" if V admits a parititon into r classes such that every edge has its ends in different classes: Vertices in the same partition class must not be adjacent.

For the case r = 2 we say that the G is "bipartite"

2. Preliminaries

Definition 7 (Chordal Graphs).

Definition 8 (Split Graphs).

2.2. Parametrized Complexity

- 2.2.1. Fixed Parameter Tractability
- 2.2.2. Fixed Parameter Intractability: The W Hierarchy
- 2.2.3. Kernelization

ON PARAMETRIZED DOMINATING SET

3.1. Semitotal Domination

Definition, dominating number

A Survey

3.2. w[i]-Intractibility

Now some w[i] hard classes.

- 3.2.1. Warm-Up: W[2]-hard on General Graphs
- 3.2.2. W[2]-hard on Bipartite Graphs
- 3.2.3. W[2]-hard on Chordal Graphs
- 3.2.4. W[2]-hard on Split Graphs

A LINEAR KERNEL FOR PLANAR SEMITOTAL DOMINATION

TODO Alber et. al, Total Domination.

4.1. The Main Idea and The Big Picture

4.2. Necessary Definitions

4.3. Deducing Reduction Rules

4.3.1. Reduction Rule I (R1): Getting Rid of unneccessary $N_3(v)$ vertices

Lemma 1 (Correctness of the Reduction).

4.3.2. Reduction Rule II (R2): Shrinking the Size of a Region

Lemma 2 (Correctness of the Reduction).

4.3.3. Reduction Rule III (R3): Shrinking the Size of Simple Regions

Lemma 3 (Correctness of the Reduction).

Lemma 4 (Reduced Plane Graph under R2).

Lemma 5 (Given size of N1 and N2 regions).

4.4. Bounding the Size of the Kernel

Lemma 6. Given a plane Graph G = (V, E) reduced under R2 and a region R(v, w), if $\mathcal{D}_v \neq (resp. \ \mathcal{D}_w \neq \emptyset)$, $N_3(v, w) \cap V(R)$ can be covered by:

• 11 simple regions if $\mathcal{D}_w \neq$,	
• 14 simple regions if $N_{2,3}(v) \cap N_3(v,w) =$	
Proof.	
Lemma 7 (Number of Vertices inside a Region).	
Proof.	
Lemma 8 (Number of Vertices outside a Region).	
Proof.	
Lemma 9 (Number of Regions in a Maximum Region Decomposition).	
Proof.	
We now have all the tools ready to proof the central theorem of this section:	
Lemma 10 (Running Time of Reduction Procedure).	
Proof.	
Theorem 11. Semitotal Dominating Set has a linear kernel of size XXX on planar graphs.	
Proof.	

NP Hardness on General Graphs

OPEN QUESTIONS AND FURTHER RESEARCH

Chordal Bipartite Graphs a very interesting case.

LIST OF FIGURES

LIST OF TABLES

BIBLIOGRAPHY

[Die10] R. Diestel. *Graph Theory*. Fourth. Vol. 173. Graduate Texts in Mathematics. Heidelberg; New York: Springer, 2010. ISBN: 9783642142789 3642142788 9783642142796 3642142796.