Testklausur Funktionentheorie

Februar 2018, Vorlesung: Prof. W. Sickel

- Alle angegebenen Lösungswege müssen durchschaubar sein, fehlende Begründungen mindern die Bewertung.
- Es sind keine Taschenrechner oder Laptops erlaubt.

	Aufgaben	Punkte
1	Skizzieren Sie die folgende Menge	
	$M := \left\{ z \in \mathbb{C} : \Re e\left(\frac{z}{z+3}\right) > 2 \right\}.$	4
2	Bestimmen Sie den Konvergenzradius der folgenden Potenzreihe: $\sum_{n=1}^{\infty} \frac{3^{\sin n}}{4^{2n}} z^n \qquad .$	3
3	Für welche z ist die Funktion $f(z):=f(x+iy)=(x+y)^2-5i(x-y)$ differenzierbar ? Wo ist f holomorph ?	7

4 Man berechne das Kurvenintegral $\int_{\Gamma} \sin z \cos z dz,$ wo Γ der obere Halbkreis ist mit Zentrum in $z_0 = 0$ und Radius π , mathematisch positiv orientiert. 5 Man berechne das Kurvenintegral $\oint_{ z-i =1} \frac{\sin z}{z^2 - z + 1} dz$ mittels der Integralformel von Cauchy. 6 Man berechne das Kurvenintegral $\int_{\Gamma} \Re ez + \Im mz dz$ wobei Γ die Verbindungsstrecke der Punkte $z_0 = -2 + 2i$ und $z_1 = 1 + 4i$ ist. 7 Man bestimme das Maximum und das Minimum der Funktion $ f $, wo $f(z) := \frac{z}{z^2 + 8},$ im Viertelkreis $\{z \in \mathbb{C} : z \le 1, \arg z \in [0, \pi/2]\}.$ 9 Man bestimme das Konvergenzgebiet der Laurentreihe $\sum_{n \in \mathbb{Z}, n \ne 0} (1 + 1/n)^{n^2} 2^{ n } z^n.$ 7 9 Man bestimme den Typ aller Singularitäten der folgenden Funktionen: $f(z) := \frac{z}{(z^4 - 81)^3}, \qquad g(z) := \frac{1}{\sin z}.$		Aufgaben	Punkte
$\oint_{ z-i =1} \frac{\sin z}{z^2-z+1} dz$ mittels der Integralformel von Cauchy. $6 \text{Man berechne das Kurvenintegral} \\ \int_{\Gamma} \Re ez + \Im mz dz$ wobei Γ die Verbindungsstrecke der Punkte $z_0 = -2 + 2i$ und $z_1 = 1 + 4i$ ist. $7 \text{Man bestimme das Maximum und das Minimum der Funktion } f , \text{ wo} \\ f(z) := \frac{z}{z^2+8}, \\ \text{im Viertelkreis } \{z \in \mathbb{C} : z \le 1, \arg z \in [0, \pi/2]\}. $ 9 $8 \text{Man bestimme das Konvergenzgebiet der Laurentreihe} \\ \sum_{n \in \mathbb{Z}, n \ne 0} \left(1 + 1/n\right)^{n^2} 2^{ n } z^n. $ 7	4	$\int_{\Gamma} \sin z \cos z dz ,$ wo Γ der obere Halbkreis ist mit Zentrum in $z_0=0$ und Radius π ,	4
$\int_{\Gamma} \Re ez + \Im mz dz$ wobei Γ die Verbindungsstrecke der Punkte $z_0 = -2 + 2i$ und $z_1 = 1 + 4i$ ist. 7 Man bestimme das Maximum und das Minimum der Funktion $ f $, wo $f(z) := \frac{z}{z^2 + 8},$ im Viertelkreis $\{z \in \mathbb{C} : z \le 1, \text{ arg } z \in [0, \pi/2]\}.$ 8 Man bestimme das Konvergenzgebiet der Laurentreihe $\sum_{n \in \mathbb{Z}, n \ne 0} \left(1 + 1/n\right)^{n^2} 2^{ n } z^n.$ 9 Man bestimme den Typ aller Singularitäten der folgenden Funktionen:	5	$\oint_{ z-i =1} \frac{\sin z}{z^2 - z + 1} dz$	6
$f(z):=\frac{z}{z^2+8},$ im Viertelkreis $\{z\in\mathbb{C}:\ z \leq 1,\ \arg z\in[0,\pi/2]\}.$ 9 8 Man bestimme das Konvergenzgebiet der Laurentreihe $\sum_{n\in\mathbb{Z},n\neq 0}\left(1+1/n\right)^{n^2}2^{ n }z^n.$ 7 9 Man bestimme den Typ aller Singularitäten der folgenden Funktionen:	6	$\int_{\Gamma} \Re ez + \Im mz dz$	5
$\sum_{n\in\mathbb{Z},n\neq0}\left(1+1/n\right)^{n^2}2^{ n }z^n.$ 9 Man bestimme den Typ aller Singularitäten der folgenden Funktionen:	7	$f(z) := \frac{z}{z^2 + 8},$	9
The substitution of the su	8	$\sum \left(1+1/n\right)^{n^2} 2^{ n } z^n.$	7
	9		14