DMMR Tutorial sheet 6

Complexity, Binomial Coefficient

October 28, 2015

Some of the exercises for this tutorial are taken the book: Kenneth Rosen, Discrete Mathematics and its Applications, 7th Edition, McGraw-Hill, 2012.

1. Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

(a)
$$f(x) = 2x^3 + x^2 \log x$$

(b)
$$f(x) = 3x^3 + (\log x)^4$$

(c)
$$f(x) = (x^4 + x^2 + 1)/(x^3 + 1)$$

Solution:

(a) It is clear that n is at least 3. Moreover, 2 is O(1) and $\log x$ is O(x). Thus, the multiplications $2x^3$ and $x^2 \log x$ are $O(1 \cdot x^3) = O(x^2 \cdot x) = O(x^3)$. Then, the sum $2x^3 + x^2 \log x$ is also $O(x^3)$. Therefore, n = 3.

(b) It is clear that n is at least 3 and $3x^3$ is $O(x^3)$. Moreover, $(\log x)^4$ is O(x). Thus, the sum $3x^3 + (\log x)^4$ is $O(x^3)$. Therefore, n = 3.

(c) We rewrite the expression as $x^4/(x^3+1)+(x^2+1)/(x^3+1)$. It is clear that $(x^2+1)/(x^3+1)$ is O(1). Moreover, for x>0 we have that $x^4/(x^3+1)< x$ and thus $x^4/(x^3+1)$ is O(x). Thus, $x^4/(x^3+1)+(x^2+1)/(x^3+1)$ is O(x). To prove that it is not O(1), we show that for any positive constant c, if x>c+1 then $x^4/(x^3+1)>c$. This is true because for any c positive $(c+1)^4=c(c+1)^3+(c+1)>c(c+1)^3+c=c((c+1)^3+1)$. Thus, $(c+1)^4/((c+1)^3+1)>c$. Thus, we have shown that $x^4/(x^3+1)$ exceeds any constant at some point and thus $x^4/(x^3+1)$ is not O(1). From this we can conclude that n=1.

2. Let $f_1(x)$ and $f_2(x)$ be functions from the set of real numbers to the set of positive real numbers. Show that if $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$, where g(x) is a function from the set of real numbers to the set of positive real numbers, then $f_1(x) + f_2(x)$ is $\Theta(g(x))$. Is this still true if $f_1(x)$ and $f_2(x)$ can take negative values?

Solution:

Let l_1, u_1, k_1 and l_2, u_2, k_2 be witnesses that $f_1(x)$ and $f_2(x)$ are $\Theta(g(x))$, respectively. Let $l=l_1+l_2, u=u_1+u_2$ and $k=\max(k_1,k_2)$. Then, for x>k we have that $l_1|g(x)|<|f_1(x)|< u_1|g(x)|$ and $l_2|g(x)|<|f_2(x)|< u_2|g(x)|$. If we sum both inequalities we get that for all x>k we have that $l|g(x)|=(l_1+l_2)|g(x)|=l_1|g(x)|+l_2|g(x)|<|f_1(x)|+|f_2(x)|<|u_1|g(x)|+u_2|g(x)|=(u_1+u_2)|g(x)|=u|g(x)|$. Using the fact that $f_1(x)$ and $f_2(x)$ only take positive values we can see that $|f_1(x)|+|f_2(x)|=|f_1(x)+f_2(x)|$. Thus l,u and k are witnesses that $f_1(x)+f_2(x)$ is $\Theta(g(x))$.

Take $g(x) = f_1(x) = x$ and $f_2(x) = -x$ to show that if the functions can take negative values then the result is not true. It is trivial to check that $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$. However, $f_1(x) + f_2(x) = 0$, which is not $\Theta(g(x))$ because for any l, l|g(x)| exceeds 0 for every $x \neq 0$. \square

- 3. Seven women and nine men are on the faculty in the mathematics department at a school.
 - (a) How many ways are there to select a committee of five members of the department if at least one woman must be on the committee?
 - (b) How many ways are there to select a committee of five members of the department if at least one woman and at least one man must be on the committee?

Solution:

(a) The total number of ways to select a committee with 5 members of the department is $\binom{16}{5}$. Of those, $\binom{9}{5}$ have no women in it. Thus, those with at least one woman are $\binom{16}{5} - \binom{9}{5}$. Alternatively, we can divide in four cases and count separately the choices with one woman $\binom{7}{1}\binom{9}{4}$, with two women $\binom{7}{2}\binom{9}{3}$, with three $\binom{7}{3}\binom{9}{2}$, with four $\binom{7}{4}\binom{9}{1}$ and with five $\binom{7}{5}$. Thus, the answer is

$$\binom{7}{1}\binom{9}{4} + \binom{7}{2}\binom{9}{3} + \binom{7}{3}\binom{9}{2} + \binom{7}{4}\binom{9}{1} + \binom{7}{5}.$$

(b) Applying a similar reasoning the answer is $\binom{16}{5} - \binom{9}{5} - \binom{7}{5}$, or

$$\binom{7}{1}\binom{9}{4} + \binom{7}{2}\binom{9}{3} + \binom{7}{3}\binom{9}{2} + \binom{7}{4}\binom{9}{1}.$$

4. What is the coefficient C_8 of x^8y^9 in the expansion of $(3x + 2y)^{17}$ when it is rewritten as a polynomial of the form:

$$\sum_{i=0}^{17} C_i x^i y^{17-i}$$

Solution:

The binomial theorem tells us that the expansion of $(3x + 2y)^{17}$ is

$$\sum_{i=0}^{17} \binom{17}{i} (3x)^i (2y)^{17-i} = \sum_{i=0}^{17} \binom{17}{i} 3^i x^i 2^{17-i} y^{17-i}.$$

Thus,
$$C_8 = \binom{17}{8} 3^8 2^9$$
.

5. Prove the following identity holds for all non-negative integers n,r and k, such that $r \leq n$, and $k \leq r$:

$$\binom{n}{r} \cdot \binom{r}{k} = \binom{n}{k} \cdot \binom{n-k}{r-k}$$

Solution:

We show two different proofs:

• Combinatorial: $\binom{n}{r}$ is the number of possibilities to choose r elements from a set of n elements.

Now consider a set S of n elements. We split S into three disjoint subsets:

- S_1 contains k elements
- S_2 contains r-k elements
- S_3 contains n-r elements

In total all elements are distributed into one of the sets since (n-r) + (r-k) + k = n.

Now the possibilities to choose S_1, S_2 and S_3 can be calculated in two different ways: We could split S into S_3 and $S_1 \cup S_2$ first. For this we need to choose the r elements for $S_1 \cup S_2$ from S which calculates to $\binom{n}{r}$. Then we split $S_1 \cup S_2$ into S_1 and S_2 . This calculates to $\binom{r}{k}$. In total we get $\binom{n}{r} \cdot \binom{r}{k}$ possibilities to choose S_1, S_2, S_3 .

On the other hand we can split S into S_1 and $S_2 \cup S_3$ first. There are $\binom{n}{k}$ possibilities. Then splitting $S_2 \cup S_3$ into S_2 and S_3 is possible in $\binom{n-k}{r-k}$, since $S_2 \cup S_3$ has n-r+r-k=n-k elements and r-k are chosen for S_2 . So in total there are $\binom{n}{k} \cdot \binom{n-k}{r-k}$ possibilities to split S in this way.

Since the two procedures produce the same partitions, the number of possible outcomes have to be equal and we get $\binom{n}{r} \cdot \binom{r}{k} = \binom{n}{k} \cdot \binom{n-k}{r-k}$

• By the formula:

$$\begin{split} \binom{n}{r} \cdot \binom{r}{k} &= \frac{n!}{r! \cdot (n-r)!} \cdot \frac{r!}{k!(r-k)!} \\ &= \frac{n!}{(n-r)! \cdot k! \cdot (r-k)!} \cdot \frac{r!}{r!} \\ &= \frac{n!}{(n-r)! \cdot k! \cdot (r-k)!} \cdot \frac{(n-k)!}{(n-k)!} \\ &= \frac{n!}{k! \cdot (n-k)!} \cdot \frac{(n-k)!}{(r-k)! \cdot (n-r)!} \\ &= \frac{n!}{k! \cdot (n-k)!} \cdot \frac{(n-k)!}{(r-k)! \cdot (n-k)!} \\ &= \frac{n!}{k! \cdot (n-k)!} \cdot \frac{(n-k)!}{(r-k)! \cdot (n-k-(r-k))!} \\ &= \binom{n}{k} \cdot \binom{n-k}{r-k} \end{split}$$

Solutions (to the last question on the sheet) must be handed in on paper at the ITO by Wednesday, 4 November, 4:00pm.