COM201: System Analysis and Design

Lecture 5: Designing the Solution

Dr. Fayza A. Nada

- 1. Title
- 2. Overview
- 3. System Development
 - Purpose: Highlight which part of the course model this theme relates to

Notes:

- There are many lectures and tutorials in our course corresponding to design phase.
- Today is an overview of design with some work on functional design (that design that supports that actual functions or processing the system will do)

4. Recall Simple Information System

Purpose: Review basic information system model

Notes:

- This diagram provides further context (I P O)
- User interface: that part of the system that users see
- Processing: sometimes called business logic, what the system actually does, the mechanics of it
 if you like
- Data: where the data resides for use by the processing component (captured, stored, modified, distributed)

5.

Purpose: An example of a building - Guggenheim Museum in Manhattan, New York

Notes:

- Buildings are not simply built, they are designed first.
- So what tools can be used?

6.

Purpose: An example, a sketch of the building

Notes:

- Could be an artist's rendition of the building to show clients early to give a <u>rough idea</u>.
- This could have resulted from a brainstorming or initial planning session.
- Could use it to seek feedback from the client (person paying for the project).

7.

Purpose: An elevation drawing of the same building.

Notes:

- This is elevation plan of the ground floor.
- It also shows the main gallery.
- This would be one diagram in a set of blueprints or plans that the constructors of the building would work from
- This also forms part of the documentation for the project.
- We do the exact same thing when we build systems which we will look at in coming weeks.

8.

Purpose: Photograph shows Stakeholders, architect and 3D real-world model (from 1945)

Notes:

- Producing a model like this lets the client get a feel for how the building will look and is able to provide feedback before a stone has been laid.
- We produce something called a prototype that serves the same purpose
- What we have seen a different ways to view the project from a design perspective
- That is, we are working out how to implement the solution from the information gathered in the analysis phase

9. SDLC Review: Design

Purpose: Review analysis slide from lecture 2 (original content sourced from Satzinger et al.)

Notes:

Discuss idea of problem domain. i.e, business area that requires computerized solution

Introduction:

- Shifting from analysis phase
- Taking the good work done there to a more complete, more refined representation which can be used
- A set of designs comprise the major output of this phase.
- We are taking the requirements from the analysis phase (could be models, text, etc.) and taking these forward to a single solution (i.e., implement requirements)
- We now care about technology, in particular what form the final solution will take (platform, development tools, networking, ...)
- Prepare the detailed design needs for a new system or make modifications to an existing one.
- How the system is going to do it (support business activities, implement requirements).
- Effectively the blueprints that coders (programmers) will work from of the new system or modifications of existing one (recall architecture analogy)
- Represented as models, specifications and so on.
- Once these are correct and signed off, the construction can proceed.
- We are primarily interested in SW related activities focused around data, process, and user interface.

Activities:

- Design and integrate the network
- Design the application architecture
- Design the user interface(s)
- Design the system interface(s) work with other systems
- Design and integrate the database
- Prototype for design (both analysis and design)

10.

Purpose: Eemphasise the point of the design phase using this statement.

Notes:

• Discuss idea of <u>problem domain</u>. i.e, <u>business area that requires computerized solution</u>

11. Key Design Activities

Purpose: Discuss different areas or activities requiring design.

Notes:

i. Network: Connecting system components and people with information

Typically performed by a specialist such as a network engineer or systems engineer

- ii. Architecture: describes how work will actually be carried out by people and computers
- iii. **User interfaces**: Designed for optimal interactions with system

Recent roles such as usability specialists and human factor engineers used for this purpose

iv. System interfaces: Define how system components and system can communicate with other parts of the system or other systems

Specify how system will exchange information between different services

- v. Database: The underlying schema purposely designed for this system
- vi. Prototype: Confirm design choices and elicit feedback

Evolutionary vs. revolutionary

vii. System controls: Protect data and ensure system works as it should

Authentication, authorised access and other protection measures

Design disaster recovery procedures and technology selection

12. Levels of Information Design

Purpose: Discuss how information is represented at different levels of detail (high = human viewpoint and low = computer representation)

Notes:

- Levels of abstraction
- Taking essential characteristics of the real-world and incorporating them in a some kind of graphical representation of them
- Abstracting real world phenomenon (we looked at last week with one technique ERDs)
- High → closer to real world
- Low

 closer to computer representation (binary)

- The design abstraction layers can become more intuitive when we replace the existing terms with business, system model, and technology models
- On right-hand side are design artefacts or representations for data (or database) related designs

1- Conceptual design:

- Abstract key characteristics of the thing in question but only those relevant to the domain
- As close to the real world as possible \rightarrow documenting the real world (ERDS, class diagrams etc.)
- Attempts to abstract or represent real-world information and relationships from domain
- Output here is typically referred to as domain models
- Entirely independent of implementation concerns (i.e., No concern for the type of database to store resulting data)

2 - Logical design:

- More closely associated with documenting the real world in terms of corresponding, typically relational database structures (more specific).
- Preparing database schema
- Specification:
- Applied to generic database solution
- Data model but not technology dependent (typically relational model → coming up)
- Implementation:
- Technology chosen and database schema transformed to meet requirements of technology

3 - Physical design:

- Physical storage within the database
- Records, pointers, tracks, sectors, etc.
- As we will see handled by the DBMS and invisible to users.
- Performance, response time, indexes, tuning, etc.

13. Why use Models for Design?

Purpose: Discuss the value of using modelling techniques in design

Notes:

One key reason is that systems are complex and diagrams help simply the different aspects
of them

- Aid communication as people can understand models, diagrams
- Attempt to represent complex phenomena through abstracting key characteristics (e.g., people)
- Attempt to understand relationships between objects.
- Identify possible problems
- Clear up misunderstandings
- Serve different perspectives (aspects of system, roles stakeholders play)

Approaches:

- Miniature replicas
- Virtual 3D models (paper, wood, clay, wax, ...)
- Blueprints
- Diagrams on paper
- Electronic designs

14. Modeling

Purpose: Show examples of different models

Notes:

- Examples of diagramming techniques from the <u>UML (Unified Modeling Language) collection</u>. (E.g. starUML- www.staruml.com = Free ware)
- Attempts to represent and document different aspects of the proposed solution.
- Captured in these diagrams are activities, interactions, transactions, events, things, roles, components, relationships, ...
- Models shown: Use case diagram, state diagram, sequence diagram, class diagram, and package diagram

15. Recall Source Documents

Purpose: Relook at order form information and how this can be broken up into entities

Notes:

- Illustrate the kind of information we can obtain and how we can use this information:
- Identify things of interest which eventually form aspects of the database.

• We can take this <u>analysis and construct a model</u> that represents this information and associated relationships

16. Resulting Conceptual Design

Purpose: This an ERD that can be drawn from the order form on the previous slide

Notes:

- In this case a database design model called an ERD
- This conceptual level model will be the focus of next lecture.
- Show how entities and relationships map to form.
- Rich source of information

17. What Does Unified Mean?

Purpose: Explains the term 'unified' in the context of the UML.

Notes:

- Tied in with goals of the development of the UML
- The UML can represent most existing models as well as or better than original.
- The UML is seamless from requirements to deployment (same notations and concepts used in different stages)
- The UML is intended to be <u>as good or better than any general purpose modelling language</u>
 for most application areas (model most application domains)
- The UML is intended to be usable for systems implemented in various implementation languages (programming), platforms, databases, 4GLs, firmware, etc.
- The UML is intended to be used as the underlying modelling language in any development process

18. Example UML Diagrams

Purpose: Show notations of various UML diagrams

Notes:

Class

- Structure of system.
- Model concepts in application domain and things invented to implement an application (e.g. user interface)

Collaboration:

Highlights how different parts of the system interact

State machine:

- Represents potential life histories of an object of a class. (lifetime)
- An event occurs, which triggers a transition which changes the state of some piece of information in the system

Use Case:

- Models the functionality of the proposed system as perceived by people or things that interact with the system
- A use case itself is effectively a unit of functionality.
- Really crucial diagram that can be employed at the beginning of a project.

19. Example UML Diagrams (cont')

Purpose: Show notations of various UML diagrams

Notes:

Activity:

- Represents the flow of control for performing some task or computation
- Can model program logic or the workflow associated with an activity that the system will need to support.
- Could tie to a Use Case diagram

Sequence:

- Shows a set of message calls between objects over a time period
- Implicitly shows specific order of messages over a time period
- Also shows the roles that the classes play to support some activity

Package:

- A way to organise models by grouping in some way.
- For example, these are analysis models, these are design models (sketch vs. blueprint)
- Or, different subsystems (HR, Accounting, Logistics, etc.)