А.Н.Огурцов

ФИЗИКА ДЛЯ СТУДЕНТОВ

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

ЛЕКЦИИ ПО ФИЗИКЕ

2

«Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза (можете называть её не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе, как вы увидите, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».

Ричард Фейнман

http://sites.google.com/site/anogurtsov/lectures/phys/ http://www.ilt.kharkov.ua/bvi/ogurtsov/ln.htm

Молекулярно-кинетическая теория идеальных газов

1. Статистический и термодинамический методы исследования.

Молекулярная физика и термодинамика – разделы физики, в которых изучаются зависимости свойств тел от их строения, взаимодействия между частицами, из которых состоят тела, и характера движения частиц.

Для исследования физических свойств макроскопических систем, связанных с <u>огромным числом</u> содержащихся в них <u>атомов и молекул,</u> применяют <u>два</u> качественно *различных* и *взаимно дополняющих* друг друга <u>метода</u>: *статистический* (или *молекулярно-кинетический*) и *термодинамический*.

<u>Статистический метод</u> — это метод исследования систем из большого числа частиц, оперирующий *статистическими* закономерностями и *средними* (усредненными) значениями физических величин, характеризующих всю систему.

Этот метод лежит в основе молекулярной физики – раздела физики, изучающего строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из атомов, молекул или ионов находящихся в непрерывном хаотическом движении.

В дальнейшем мы будем использовать термин <u>"молекула"</u> имея ввиду мельчайшую структурную единицу (элемент) данного вещества.

Термодинамический метод — это метод исследования систем из большого числа частиц, оперирующий величинами, характеризующими систему в целом (например, давление, объем, температура) при различных превращениях энергии, происходящих в системе, не учитывая при этом внутреннего строения изучаемых тел и характера движения отдельных частиц.

Этот метод лежит в основе *термодинамики* – раздела физики, изучающего общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

2. Термодинамическая система.

Термодинамика имеет дело с *термодинамической системой* — совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой).

Термодинамические системы, не обменивающиеся с внешней средой ни энергией, ни веществом, называются **замкнутыми**.

Основа термодинамического метода – определение **состояния** термодинамической системы.

Состояние системы задается *термодинамическими параметрами* (параметрами состояния) — совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и объем.

Параметры состояния системы могут <u>изменяться</u>. Любое *изменение* в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров, называется **термодинамическим** процессом. Если для данной системы внешние условия не изменяются и

состояние системы с течением времени не меняется, то эта система находится в **термодинамическом равновесии**.

3. Температура.

Температура – одно из основных понятий, играющих важнейшую роль в физике в целом.

Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы и определяющая направление теплообмена между телами.

В настоящее время используют две температурные шкалы.

Международная практическая шкала (шкала Цельсия) градуированная в градусах Цельсия (°С) по двум **реперным точкам** – температурам замерзания и кипения воды при давлении 1,013⋅10⁵ Па, которые принимаются соответственно 0°С и 100°С.

Термодинамическая температурная шкала (шкала Кельвина), градуированная в градусах Кельвина (К) определяется по одной реперной точке — *температуре*, при которой лед, вода и насыщенный пар при давлении 609 Па находятся в термодинамическом равновесии. Температура этой точки по данной шкале равна 273,16 К. Температура T=0 K называется *нулём Кельвина*.

Термодинамическая температура (T) и температура (t) по Международной практической шкале связаны соотношением

$$T = 273,15 + t$$
.

Нормальные условия: $T_0 = 273,15 \text{ K} = 0^{\circ} \text{ C}$, $p_0 = 101325 \text{ \Pia}$.

4. Идеальный газ.

Физическая модель, согласно которой:

- собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;
- 2) между молекулами газа отсутствуют силы взаимодействия;
- 3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Исходя из этого идеальный газ можно рассматривать как совокупность беспорядочно движущихся молекул-шариков, имеющих пренебрежимо малый собственный объем и не взаимодействующих друг с другом на расстоянии.

Законы, описывающие поведение идеальных газов – законы Бойля-Мариотта, Авогадро, Дальтона, Гей-Люссака.

5. Закон Бойля-Мариотта.

Для данной массы газа m при постоянной температуре T произведение давления p на объем V есть величина постоянная

$$pV = const$$
 при $T = const$ и $m = const$.

Кривая, изображающая зависимость между p и V, характеризующая свойства вещества при постоянной температуре, называется <u>изотермой</u>. Изотермы – гиперболы, расположенные на графике тем выше, чем выше температура происходящего процесса.

6. Закон Авогадро.

Количество вещества v – физическая величина, определяемая числом специфических структурных элементов - молекул, атомов или ионов, из которых состоит вещество.

Единица количества вещества – моль – количество вещества системы, содержащей столько же структурных элементов, сколько содержится в 0,012 кг изотопа углерода ¹²C.

В одном моле различных веществ содержится одно и то же число молекул N_A , называемое числом $N_A = 6,022 \cdot 10^{23} \frac{1}{\text{моль}}$ Авогадро

Закон Авогадро: моли любых газов при одинаковой температуре и давлении занимают одинаковые объемы.

При нормальных условиях $(T=T_0,\,p=p_0)$ этот объем V_{μ} (молярный объем) равен V_{μ} (молярный объем)

Молярная масса $\mu = \frac{m}{\nu}$ – это масса одного моля вещества. Отсюда: $\nu = \frac{m}{\nu}$

Единица молярной массы – килограмм на моль (кг/моль).

7. Закон Дальтона.

Парциальное давление - давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений $p_1, p_2, ..., p_n$ входящих в нее газов:

$$p = p_1 + p_2 + \ldots + p_n \qquad \text{или} \qquad p = \sum_n p_n$$

8. Закон Гей-Люссака.

- 1) Давление p данной массы m газа при постоянном объеме изменяется линейно с температурой t $p = p_0(1 + \alpha t)$, при V = const, m = const.
- 2) Объем V данной массы m газа при постоянном давлении изменяется линейно с температурой t

$$V = V_0(1 + \alpha t)$$
, при $p = const$; $m = const$.

где $\alpha = \frac{1}{273} \, \mathrm{K}^{-1}$, V_0 и p_0 – объем и давление при $t = 0^{\circ} C$.

Процесс, протекающий при постоянном давлении, называется изобарным. На диаграмме в координатах (V,t) этот процесс изображается прямой, называемой изобарой.

Процесс, протекающий при постоянном объеме, называется <u>изохорным</u>. На диаграмме в координатах (p,t) он изображается прямой, называемой **изохорой**.

Изобары и изохоры пересекают ось температуры в

точке $t = -\frac{1}{\alpha} = -273^{\circ}\,\mathrm{C}$. Если начало отсчета сместить в эту точку, то получим шкалу Кельвина (термодинамическую температуру)

В термодинамической шкале температур:

$$V = V_0(1 + \alpha t) = V_0 \alpha T$$
, $p = p_0(1 + \alpha t) = p_0 \alpha T$

Откуда следует

$$rac{V_1}{V_2} = rac{T_1}{T_2}$$
 или $rac{V}{T} = const$ при $p = const$; $m = const$, p_1 p_2 p_3 p_4 p_4 p_5 p_7 p_8 p_8 p_8 p_9 p_9

$$rac{p_1}{p_2} = rac{T_1}{T_2}$$
 или $rac{P}{T} = const$ при $V = const$; $m = const$ (закон Шарля),

где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.

9. Уравнение состояния идеального газа.

Уравнением состояния термодинамической системы называется уравнение, которое связывает давление p, объем V и температуру Tтермодинамической системы, находящейся в состоянии термодинамического равновесия:

$$f(p,V,T)=0$$

где каждая из переменных является функцией двух других.

Пусть некоторая масса газа занимает объем V_1 , имеет давление p_1 и находится при температуре T_1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами p_2, V_2, T_2 . Переход из состояния 1 в состояние 2 осуществляется P_1', V_2, T_1 последовательно <u>изотермическим</u> (1-1') и <u>изохорным</u> p_2, V_2, T_2 (1'-2) процессами. По законам Бойля-Мариотта и Гей-Люссака

$$p_1V_1 = p_1'V_2, \qquad \frac{p_1'}{p_2} = \frac{T_1}{T_2}.$$

Исключая p_1' , получим уравнение состояния идеального газа

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \qquad \qquad \text{или} \qquad \frac{pV}{T} = const \ .$$

По закону Авогадро, при одинаковых p и T моли всех газов занимают одинаковый молярный объем $V_{\rm u}$. *Уравнение состояния* для *моля* идеального газа: $pV_{_{\Pi}}=RT$, где константа $R=8,31~\mathrm{Дж/(моль \cdot K)}$ – называется универсальной газовой постоянной.

Объем газа массы
$$m:V=\nu V_{\mu}=\frac{m}{\mu}V_{\mu}$$
. Отсюда $pV=\frac{m}{\mu}pV_{\mu}=\frac{m}{\mu}RT=\nu RT$.

Уравнение Менделеева-Клапейрона – уравнение состояния для массы m идеального газа

$$pV = \frac{m}{\mu}RT$$

Если использовать *постоянную Больцмана* $k = \frac{R}{N_A} = 1{,}38 \cdot 10^{-23} \; \frac{\mbox{Дж}}{\mbox{K}},$

то уравнение состояния примет вид

$$p = \frac{RT}{V_{u}} = \frac{kN_{A}T}{V_{u}} = nkT.$$

где $n=\frac{N}{V}=\frac{N_A}{V_\mu}$ — **концентрация молекул** — число молекул в единице объема.

Таким образом:

- давление идеального газа при данной температуре прямо пропорционально концентрации его молекул,
- при одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул.

Число молекул, содержащихся <u>в 1м³ газа</u> <u>при нормальных условиях,</u> называется **числом Лошмидта**

$$N_L = \frac{p_0}{kT_0} = 2,68 \cdot 10^{25} \, \frac{1}{\text{m}^3}$$
.

10. Основное уравнение молекулярно-кинетической теории идеальных газов.

Пусть в сосуде объемом V находится идеальный газ массой m, состоящий из N молекул массой m_0 , движущихся с одинаковыми скоростями υ . Концентрация молекул в газе по определению n=N/V.

Если при соударениях со стенками за время Δt элементарной площадке ΔS стенки сосуда передается импульс ΔP , то **давление** газа, оказываемое им на стенку сосуда $p=\frac{\Delta P}{\Delta t \Delta S}$.

При каждом соударении молекула, движущаяся перпендикулярно стенке, передает ей **импульс** $2m_0$ υ . В среднем по направлению к стенке движется $\frac{1}{6}$ часть всех молекул. (Если рассмотреть три взаимно перпендикулярные оси, то в среднем только $\frac{1}{3}$ молекул движется вдоль одной из осей и только половина из них $\frac{1}{2}(\frac{1}{3})$ вдоль данного направления.) Поэтому, за время Δt площадки ΔS достигнут $\frac{1}{6}n\Delta S\upsilon\Delta t$ молекул и передадут ей импульс $\Delta P=\frac{1}{3}nm_0\upsilon^2\Delta S\Delta t$.

Давление, оказываемое газом на стенку сосуда $p=rac{1}{3}nm_0 \upsilon^2$.

Если газ в объеме V содержит N молекул, движущихся со скоростями $\upsilon_1, \upsilon_2, ..., \upsilon_N$, то целесообразно рассматривать **среднюю квадратичную скорость**, которая определяется как

$$\left\langle \mathbf{v}_{\kappa \mathbf{s}} \right\rangle^2 = \frac{1}{N} \sum_{i=1}^N \mathbf{v}_i^2 = \frac{1}{N} \int_0^{\mathbf{v}_{\text{max}}} \mathbf{v}^2 \, \mathrm{d} \, N_{\mathbf{v}} \,.$$

и характеризует всю совокупность молекул газа

Основное уравнение молекулярно-кинетической теории идеальных газов

$$p = \frac{1}{3} n m_0 \left\langle v_{\kappa e} \right\rangle^2.$$

<u>Другие варианты</u> записи этого уравнения с учетом соотношений n=N/V и $m=Nm_0$ \Longrightarrow $pV=\frac{1}{3}N2\frac{m_0\left\langle \upsilon_{\kappa s}\right\rangle^2}{2}=\frac{2}{3}E$

Здесь E — суммарная кинетическая энергия поступательного движения всех молекул газа, V_{μ} — $pV=\frac{1}{3}m\langle\upsilon_{_{KG}}\rangle^2$ молярный объем, μ — молярная масса.

Используя уравнение Клапейрона-Менде- $pV_{\mu} = \frac{1}{3}\mu \big<\upsilon_{\kappa s}\big>^2 , \text{ откуда }$ леева, получим $RT = \frac{1}{3}\mu \big<\upsilon_{\kappa s}\big>^2 .$

$$pV = \frac{1}{3}Nm_0 \langle \upsilon_{\kappa \epsilon} \rangle^2$$

$$pV = \frac{1}{3}N2\frac{m_0 \langle \upsilon_{\kappa \epsilon} \rangle^2}{2} = \frac{2}{3}E$$

$$pV = \frac{1}{3}m \langle \upsilon_{\kappa \epsilon} \rangle^2$$

$$pV_{\mu} = \frac{1}{3}\mu \langle \upsilon_{\kappa \epsilon} \rangle^2$$

11. Средняя квадратичная скорость молекул идеального газа:

$$\langle v_{\kappa \varepsilon} \rangle = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3kT}{m_0}},$$

где использовано $\mu = m_0 N_A$ и $k = R/N_A$.

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа

$$\langle \varepsilon_0 \rangle = \frac{E}{N} = \frac{m_0 \langle \upsilon_{\kappa \theta} \rangle^2}{2} = \frac{3}{2} kT.$$

Отсюда следует, что $\left< \varepsilon_0 \right> = 0$ при T = 0~K – прекращается движение молекул газа.

Молекулярно-кинетическое толкование температуры: термодинамическая температура — есть мера средней кинетической энергии поступательного движения молекул газа.

12. Закон Максвелла о распределении молекул идеального газа по скоростям.

В газе, находящемся в состоянии равновесия при данной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Это распределение описывается функцией $f(\upsilon)$, называемой функцией распределения молекул по скоростям, которая определяет относительное число молекул, скорости которых лежат в интервале от υ до $\upsilon+d\upsilon$, т.е.

$$\frac{dN(v)}{N} = f(v)dv.$$

Закон Максвелла

$$f(\upsilon) = 4\pi \left(\frac{m_0}{2\pi kT}\right)^{3/2} \upsilon^2 \exp\left(-\frac{m_0 \upsilon^2}{2kT}\right).$$

Эта функция удовлетворяет условию нормировки

$$\int_{0}^{\infty} f(v)dv = 1.$$

13. Наиболее вероятная скорость молекул идеального газа.

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется **наиболее вероятной скоростью** $\upsilon_{\text{в}}$.

Приравняв
$$\frac{\mathrm{d}\,f(\upsilon)}{\mathrm{d}\,\upsilon}$$
 нулю, получаем: $\upsilon_{_{\mathrm{B}}} = \sqrt{\frac{2kT}{m_0}} = \sqrt{\frac{2RT}{\mu}}$.

С повышением температуры $\upsilon_{\scriptscriptstyle R}$ *растет*.

14. Средняя скорость молекулы газа (средняя арифметическая скорость).

$$\langle \upsilon \rangle = \frac{1}{N} \int_{0}^{\infty} \upsilon \, dN(\upsilon) = \int_{0}^{\infty} \upsilon f(\upsilon) \, d\upsilon = \sqrt{\frac{8kT}{\pi m_0}} = \sqrt{\frac{8RT}{\pi \mu}}.$$

15. Скорости, характеризующие состояние газа.

Наиболее вероятная скорость $\upsilon_{\scriptscriptstyle \rm B}$	Средняя скорость $\langle \upsilon angle$	Средняя квадратичная скорость $\left\langle \upsilon_{\kappa e} \right\rangle$	
$v_{\rm B} = \sqrt{\frac{2RT}{\mu}}$	$\langle \upsilon \rangle = \sqrt{\frac{8RT}{\pi \mu}} = 1.13\upsilon_{\rm B}$	$\langle v_{\kappa g} \rangle = \sqrt{\frac{3RT}{\mu}} = 1,22v_{\rm B}$	

16. Барометрическая формула.

В однородном поле тяготения Земли тепловое движение молекул приводит к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает. Давление на высоте h газа с молярной массой μ относительно уровня моря, где давление p_0 считается нормальным, равно

$$p = p_0 \exp\left(-\frac{\mu g h}{RT}\right).$$

17. Распределение Больцмана.

Используя соотношения p=nkT , $\mu=m_0N_A$, $n=n_0\exp\left(-\frac{m_0gh}{kT}\right)$

 $R = k N_{\scriptscriptstyle A}$, получаем выражение

Так как $m_0 gh = W$ — потенциальная энергия $n = n_0 \exp \left(-\frac{W}{kT}\right)$ екулы в поле тяготения, следовательно молекулы в поле тяготения, следовательно

Такое распределение называют распределением **Больцмана** (распределение частиц по значениям потенциальной энергии) для внешнего **потенциаль** $\left| \frac{n_1}{n_2} \right| = \exp \left(-\frac{W_1 - W_2}{kT} \right)$ ятоп **озон**.

$$\frac{n_1}{n_2} = \exp\left(-\frac{W_1 - W_2}{kT}\right)$$

Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул. Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

18. Средняя длина свободного пробега молекул.

Путь, который в среднем проходят молекулы между двумя последовательными столкновениями называется средней длиной свободного пробега молекул.

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется **эффективным диаметром молекулы** d.

Так как за 1с молекула проходит путь, равный средней арифметической скорости $\langle \upsilon \rangle$, и если $\langle z \rangle$ – *среднее число столкновений*, испытываемых одной молекулой газа за 1с, то средняя длина свободного пробега

$$\langle l \rangle = \frac{\langle v \rangle}{\langle z \rangle}$$

Можно показать, что $\langle z \rangle = \sqrt{2}\pi d^2 n \langle v \rangle$, откуда: $\langle l \rangle = \frac{1}{\sqrt{2}\pi d^2 n}$.

19. Эксперименты, подтверждающие молекулярно-кинетическую теорию.

1. <u>Броуновское движение</u>. Любые частицы малых размеров, взвешенные в газе или жидкости, совершают сложное зигзагообразное движение. Броуновское движение взвешенных частиц вызывается ударами молекул среды, в которой частицы взвешены. Подтверждение гипотезы о

хаотическом тепловом движении молекул.

2. Опыт Штерна. Два коаксиальных цилиндра синхронно вращаются в вакууме. Атомы серебра, испарясь с проволоки, расположенной вдоль оси внутреннего цилиндра, вылетают через щель и оседают на внутренней стенке наружного цилиндра. Исследуя толщину осажденного слоя, можно оценить *распределение* молекул по скоростям, которое соответствует максвелловскому распределению.

синхронно вращаются два диска с радиальными щелями. Из числа молекул, пролетевших через первую щель, пролетят через второй диск только те, которые подлетят к нему в тот момент, когда на пути пучка встанет прорезь во втором диске. Изменяя

угловую скорость вращения, можно исследовать распределение молекул по скоростям.

20. Явления переноса.

Явлениями переноса называются <u>необратимые</u> процессы *термодинамически неравновесных системах*, в которых происходит пространственный перенос энергии (теплопроводность), массы (диффузия), **импульса** (внутреннее трение).

Для простоты ограничимся одномерными случаями, выбрав ось x так, чтобы она была направлена в направлении переноса. Будем рассматривать потоки энергии, вещества и импульса упорядоченного движения частиц через единичную площадку (S = 1), перпендикулярную оси x, для идеального газа плотностью р, у которого

- $\langle \upsilon
 angle$ средняя скорость теплового движения молекул,
- $\langle l
 angle$ средняя длина свободного пробега.

21. Теплопроводность.

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул – выравнивание температур.

Перенос энергии (в форме теплоты) описывается законом Фурье.

3десь $j_{\it E}$ – плотность теплового потока – тепловая энергия, переносимая в единицу времени через единичную площадку, перпендикулярную оси x,

$$\lambda$$
 – коэффициент теплопроводности,

 $\frac{dT}{dx}$ – градиент температуры – скорость изменения

температуры на единицу длины x в направлении нормали к этой площадке,

 $c_{\scriptscriptstyle V}$ – удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1кг газа на 1К).

 $\lambda = \frac{1}{3} c_V \rho \langle \upsilon \rangle \langle l \rangle$

 $D = \frac{1}{3} \langle \upsilon \rangle \langle l \rangle$

 $\eta = \frac{1}{3} \rho \langle \upsilon \rangle \langle l \rangle$

22. Диффузия.

Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену частицами (перенос масс) между этими телами, возникает и продолжается, пока существует градиент плотности.

эствует градиент плотиности. **Перенос массы** (диффузия) для химически однородатаза подчиняется <u>закону Фика</u>. $j_m = -D\frac{\mathrm{d}\,\rho}{\mathrm{d}\,x}$ ного газа подчиняется закону Фика.

Здесь $j_{\it m}$ – плотность потока массы – масса вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси x,

D – коэффициент диффузии,

 $\frac{\mathrm{d}\rho}{\mathrm{d}x}$ – градиент плотности, равный скорости изменения плотности на единицу длины x в направлении нормали к этой площадке.

23. Внутреннее трение (вязкость).

Вследствие хаотического теплового движения молекул происходит обмен молекулами между слоями газа движущимися с различными скоростями, в результате чего импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается (происходит *перенос импульса* от одного слоя к другому). Это приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Внутреннее трение описывается законом **Ньютона**.

Здесь $j_{\scriptscriptstyle D}$ – **плотность потока импульса** – полный импульс, переносимый в единицу времени в положительном направлении оси x через единичную площадку, перпендикулярную оси x,

 $\frac{\mathrm{d} v}{\mathrm{d} x}$ – градиент скорости, показывающий быстроту изменения скорости в направлении x, перпендикулярном направлению движения слоев газа.

Внешнее сходство математических выражений, описывающих явления переноса, **обусловлено общностью** лежащего в основе явлений теплопроводности, диффузии и внутреннего трения **молекулярного механизма** перемешивания молекул в процессе их хаотического движения.

Формулы для коэффициентов λ , D и η связывают коэффициенты переноса и характеристики теплового движения молекул.

Соотношения между λ , D и η :

Основы термодинамики.

24. Внутренняя энергия термодинамической системы.

Внутренняя энергия U – это энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц.

К внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Внутренняя энергия – однозначная функция термодинамического состояния системы – в каждом состоянии система обладает вполне определенной внутренней энергией.

Поэтому, внутренняя энергия не зависит от того, каким образом система пришла в данное состояние.

При переходе системы из одного состояния в другое изменение внутренней энергии определяется только разностью значений внутренней энергии этих состояний и не зависит от пути перехода.

25. Число степеней свободы.

Число степеней свободы — это число независимых переменных, полностью определяющих положение системы в пространстве.

Число степеней свободы для идеального газа жестких молекул.

indication of the control of the con			
Число степеней свободы	Одноатомный газ	Двухатомный газ	Многоатомный газ
	↓		
Поступательных	3	3	3
Вращательных	_	2	3
Всего	3	5	6

В реальных молекулах нет жесткой связи между атомами в молекуле, поэтому необходимо учитывать также степени свободы колебательного движения атомов внутри молекулы.

Независимо от общего числа степеней свободы молекулы, *три степени* свободы всегда поступательные. На каждую из них приходится треть кинетической энергии поступательного движения молекулы $\langle \epsilon_0 \rangle$

$$\langle \varepsilon_1 \rangle = \frac{\langle \varepsilon_0 \rangle}{3} = \frac{\frac{3}{2}kT}{3} = \frac{1}{2}kT.$$

26. <u>Закон Больцмана о равномерном распределении энергии по степеням</u> свободы (закон равнораспределения).

Для системы, находящейся в состоянии термодинамического равновесия <u>на каждую поступательную и вращательную</u> степень свободы приходится в среднем кинетическая энергия, равная ${}^{kT}\!\!/_2$, а <u>на каждую колебательную степень свободы</u> – в среднем энергия, равная kT.

Энергия колебательных степеней свободы вдвое больше, поскольку колебательная система обладает равными по величине средними значениями как кинетической, так и потенциальной энергии.

Таким образом, *средняя энергия молекулы* $\langle \epsilon \rangle = \frac{i}{2}kT$, где $i-\underline{\text{сумма}}$ числа поступательных, числа вращательных и удвоенного числа колебательных <u>степеней свободы</u> молекулы: $i=i_{\text{пост}}+i_{\text{враш}}+2\cdot i_{\text{колеб}}$.

В классической теории рассматривают молекулы с $\pmb{жесткой}$ связью между атомами; для них i совпадает с числом степеней свободы молекулы.

В идеальном газе молекулы между собой не взаимодействуют и их потенциальная энергия равна нулю. Поэтому внутренняя энергия одного моля идеального газа U_{\shortparallel} и произвольной массы m газа U будут соответственно

$$U_{\mu} = \left\langle \epsilon \right\rangle N_A = \frac{i}{2} kT N_A = \frac{i}{2} RT \qquad \text{ w} \qquad U = \frac{m}{\mu} \frac{i}{2} RT = \nu \frac{i}{2} RT \; .$$

27. Первое начало термодинамики.

Первое начало термодинамики – это закон сохранения и превращения энергии в термодинамических процессах.

Изменить внутреннюю энергию системы можно <u>двумя</u> способами: совершая над системой работу (например, сжимая газ в цилиндре с помощью поршня) или сообщая системе теплоту (например, нагревая газ в герметичном сосуде).

Рассмотрим замкнутую, макроскопически неподвижную систему, не находящуюся во внешних силовых полях и проанализируем с энергетической точки зрения равновесный процесс перехода системы из какого-либо начального состояния 1 в другое состояние 2.

Изменение внутренней энергии системы $\Delta U = U_2 - U_1$ в таком процессе равно <u>разности</u> между *количеством теплоты* Q, полученным системой, *и работой* A, совершенной системой против внешних сил

$$\Delta U = Q - A$$
 или $Q = \Delta U + A$.

<u>Первое начало термодинамики</u>: теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.

В дифференциальной форме $\delta Q = \mathrm{d} U + \delta A$,

где $\mathrm{d}U$ (полный дифференциал) – бесконечно малое изменение внутренней энергии системы, δA – элементарная работа, δQ – бесконечно малое количество теплоты. δA и δQ не являются полными дифференциалами.

Дело в том, что внутренняя энергия системы <u>является</u> однозначной функцией состояния системы. Отсюда следует, что при совершении системой произвольного процесса, в результате которого она вновь возвращается в исходное состояние, полное изменение внутренней энергии

системы равно нулю $\Big(\oint \mathrm{d} U = 0 \Big)$. Ни работа, ни теплота не являются функциями состояния системы.

Все величины входящие в первое начало термодинамики могут быть как **положительными**, так и **отрицательными**.

Если к системе **подводится теплота**, то $\delta Q > 0$; если от системы **отводится теплота**, то $\delta Q < 0$.

Если *система* совершает работу над *внешними телами*, то $\delta A>0$, если же *над системой* внешние силы совершают работу, то $\delta A<0$.

<u>Другая формулировка первого начала термодинамики</u> связана с тем, что если система периодически возвращается в первоначальное состояние, и следовательно $\Delta U=0$, <u>то</u> A=Q, т. е. **вечный двигатель первого рода** — периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, — **невозможен**.

28. Работа газа при его расширении.

Если находящийся под поршнем в цилиндрическом сосуде, газ, расширяясь, передвигает поршень на расстояние $\mathrm{d} l$, то производит над ним **работу** $\delta A = F \, \mathrm{d} l = p \, \mathrm{d} U = p \, \mathrm{d} V$, где S – площадь поршня.

Полная работа A , совершаемая газом при изменении его объема от V_1 до V_2 : $A = \int\limits_{V_1}^{V_2} p \, \mathrm{d}V$

<u>Равновесные процессы</u> – это процессы, состоящие из ¹ последовательности равновесных состояний. Они протекают так, что

изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны, но в ряде случаев (достаточно медленные процессы) неравновесностью реальных процессов можно пренебречь.

Равновесные процессы можно изображать **графически** в координатах (p,V). Так работа $\delta A = p\,\mathrm{d}\,V$ определяется площадью заштрихованной полоски, а полная работа – площадью под кривой между V_1 и V_2 .

<u>При неравновесных процессах</u> значения параметров в разных частях системы различны и не существует (p,V)-точек, характеризующих состояние всей системы. Поэтому графическое изображение неравновесного процесса невозможно.

29. Теплоемкость.

Удельная теплоемкость вещества c — величина, равная количеству теплоты, необходимому для нагревания 1кг вещества на 1К. *Единица удельной теплоемкости* — Дж/(кг K)

Молярная теплоемкость C_{μ} – величина, равная количеству теплоты, необходимому для нагревания 1моль вещества на 1К. Единица молярной теплоемкости – Дж/(моль K).

Связь между
$$C_{\mathfrak{u}}$$
 и c :

$$c = \frac{\delta Q}{m \, dT}$$

$$C_{\mu} = \frac{\delta Q}{v \, dT}$$

$$C_{\mu} = c\mu$$

2-15

Различают **теплоемкости** (удельную и молярную) **при постоянном объеме** (c_V и C_V) и **при постоянном давлении** (c_p и C_P), если в процессе нагревания вещества его объем или давление поддерживаются постоянными.

30. Молярная теплоемкость при постоянном объеме.

Из первого начала термодинамики $\delta Q = \mathrm{d} U + \delta A$, с учетом $\delta A = p \, \mathrm{d} V$ и

$$C_{\mu} = \frac{\delta Q}{\operatorname{vd} T}$$
, для 1моль газа получим $C_{\mu} \operatorname{d} T = \operatorname{d} U_{\mu} + p \operatorname{d} V_{\mu}$.

При V=const работа внешних сил δA равна нулю и сообщаемая газу извне теплота идет только на увеличение его внутренней энергии

$$C_V = \frac{\mathrm{d}U_{\mu}}{\mathrm{d}T}.$$

 C_V равна изменению внутренней энергии 1моль газа при повышении его температуры на 1К.

Поскольку
$$\mathrm{d}U_{\mu}=rac{i}{2}R\,\mathrm{d}T$$
 , то

$$C_V = \frac{i}{2}R$$
.

31. Молярная теплоемкость при постоянном давлении. Уравнение Майера.

Если газ нагревается при p = const, то

$$C_p = \frac{\delta Q}{v \, dT} = \frac{dU + p \, dV}{v \, dT} = \frac{dU_{\mu}}{dT} + \frac{p \, dV_{\mu}}{dT}.$$

 $\frac{\mathrm{d}U_{\mathrm{\mu}}}{\mathrm{d}T}$ не зависит от вида процесса (внутренняя энергия идеального газа не

зависит ни от p , ни от V , а определяется только T) и всегда равна C_V . Дифференцируя уравнение Клапейрона-Менделеева $pV_\mu=RT$ по T при p=const , получим

$$C_p = C_V + R -$$
уравнение Майера.

 C_p всегда больше C_V на величину универсальной газовой постоянной.

Это объясняется тем, что при нагревании газа **при постоянном давлении** требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа

$$C_p = \frac{i}{2}R + R = \frac{i+2}{2}R$$
.

При рассмотрении термодинамических процессов важную роль играет величина

$$\gamma = \frac{C_p}{C_V} = \frac{i+2}{i},$$

которая называется коэффициентом Пуассона.

<u>ИЗОПРОЦЕССЫ</u>. Рассмотрим равновесные процессы, происходящие с термодинамическими системами, при которых <u>один из основных</u> параметров состояния сохраняется постоянным.

32. Изохорный процесс (V = const).

Диаграмма этого процесса — <u>изохора</u> — в координатах (p,V) изображается прямой, параллельной оси ординат (ось p). Процесс 2–1 — <u>изохорный нагрев,</u> процесс 2–3 — <u>изохорное охлаждение.</u>

При изохорном процессе газ не совершает работу над внешними телами $(\delta A = p\,\mathrm{d}\,V = 0)$ и вся теплота, сообщаемая газу, идет на увеличение его внутренней

энергии $(\delta Q=\mathrm{d}\, U)$. Поскольку $\mathrm{d}\, U_{\mathrm{u}}=C_V\,\mathrm{d}\, T$, то для произвольной массы газа

$$\delta Q = \frac{m}{\mu} C_V \, \mathrm{d} T.$$

33. <u>Изобарный процесс</u> (p = const).

Диаграмма этого процесса – <u>изобара</u> – в координатах (p,V) изображается прямой параллельной оси абсцисс (ось V). При изобарном процессе работа газа при увеличении объема от V_1 до V_2 равна

$$A = \int_{V_1}^{V_2} p \, dV = p(V_2 - V_1),$$

и определяется площадью заштрихованного прямоугольника. Используя уравнение Клапейрона $pV=\sqrt[m]{\mu}RT$, получаем $V_2-V_1=\sqrt[m]{\mu}(T_2-T_1)$, отсюда

$$A = \frac{m}{11}R(T_2 - T_1).$$

Физический смысл универсальной газовой постоянной: R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.

34. Изотермический процесс (T = const).

Диаграмма этого процесса — <u>изотерма</u> — в координатах (p,V) представляет собой гиперболу. Изотермический процесс описывается законом Бойля-Мариотта (pV=const).

Работа изотермического расширения газа

$$A = \int_{V_1}^{V_2} p \, dV = \int_{V_1}^{V_2} \frac{m}{\mu} RT \frac{dV}{V} = \frac{m}{\mu} RT \ln \frac{V_2}{V_1} = \frac{m}{\mu} RT \ln \frac{p_1}{p_2}.$$

Так как при T=const внутренняя энергия идеального газа не изменяется, то из первого начала термодинамики следует, что $\delta Q=\delta A$, то есть все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил.

Поэтому, для того, чтобы при расширении газа *температура не понижалась*, к газу в течение изотермического процесса *необходимо подводить количество теплоты*, эквивалентное внешней работе расширения.

35. <u>Адиабатический процесс</u> $(\delta Q = 0)$.

Адиабатическим называется процесс, при котором *отсутствует теплообмен* между системой и окружающей средой ($\delta Q = 0$).

К адиабатическим процессам можно отнести все быстропротекающие процессы (теплообмен не успевает совершиться), например, распространение звука в среде, циклы расширения и сжатия в двигателях внутреннего сгорания, в холодильных установках и т. д.

$$rac{p\,\mathrm{d}V+V\,\mathrm{d}\,p}{p\,\mathrm{d}V}=-rac{R}{C_V}=-rac{C_p-C_V}{C_V}$$
 или $rac{\mathrm{d}\,p}{p}=-\gammarac{\mathrm{d}V}{V},$ где $\gamma=rac{C_p}{C_V}$ —

коэффициент Пуассона. Интегрирование этого уравнения дает $\ln V^\gamma + \ln p = \ln const$, откуда следует уравнение Пуассона – уравнение адиабатического процесса:

 $\delta Q=0$ Используя уравнение Менделеева- $TV^{\gamma-1}=const$ Клапейрона $pV=rac{m}{\mu}RT$, получаем: $T^{\gamma}p^{1-\gamma}=const$ Диаграмма алмаба-

Диаграмма адиабатического процесса — адиабата — в координатах (p,V) изображается гиперболой. Адиабата $(pV^{\gamma}=const)$ более крута, чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 1–3 увеличение давления газа

обусловлено не только уменьшением его объема, но и повышением температуры.

36. Работа газа в адиабатическом процессе.

В адиабатическом процессе $\delta A = -\mathrm{d} U$, поэтому $\delta A = -\frac{m}{\mu} C_V \, \mathrm{d} T$. Если газ адиабатически расширяется от объема V_1 до V_2 , то его температура уменьшается от T_1 до T_2 и работа расширения идеального газа

$$A = -\frac{m}{\mu} C_V \int\limits_{T_1}^{T_2} \mathrm{d}T = \frac{m}{\mu} C_V (T_1 - T_2) \; .$$
 Откуда получаем
$$A = \frac{p_1 V_1}{\gamma - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right] = \frac{R T_1}{\gamma - 1} \frac{m}{\mu} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right], \quad \text{используя}$$

уравнение Менделеева-Клапейрона $pV = \frac{m}{\mu}RT$.

Работа адиабатического расширения 1–2 (заштрихованная площадь) меньше, чем при изотермическом процессе. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом расширении температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

37. Политропические процессы (C = const).

Процесс, в котором теплоемкость остается постоянной (C=const) называется **политропическим**.

Рассмотренные выше изохорный, изотермический, изобарный и адиабатический процессы – это частные случаи политропного процесса.

Уравнение политропы

$$pV^n = cons$$

где коэффициент $n=rac{C-C_p}{C-C_V}$ называется **показателем политропы**.

Значения теплоемкости и показателя политропы для разных процессов приведены в таблице.

Процесс	C	n
Адиабатический	C = 0	$n = \gamma$
Изотермический	$C = \infty$	n = 1
Изобарический	$C = C_p$	n = 0
Изохорный	$C = C_V$	$n = \pm \infty$

Теплоемкость при изотермическом процессе бесконечно велика, поскольку ${
m d}\,T=0\,,$ в то время как $\delta Q \neq 0\,.$

Теплоемкость при адиабатическом процессе равна нулю, поскольку $\delta Q=0$, в то время как $\mathrm{d}\,T\neq0$

38. Круговой процесс (цикл).

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное состояние. На (p,V)-диаграмме цикл изображается замкнутой кривой, где участок 1–2 соответствует расширению, а 2–1 — сжатию газа.

Работа расширения A_1 (площадь фигуры $1a2V_2V_11$) <u>положительна</u>: $A_1>0$.

Работа сжатия A_2 (площадь фигуры $2b1V_1V_22$) <u>отрицательна</u>: $A_2 < 0$.

Работа за цикл A определяется площадью, охватываемой замкнутой кривой:

$$A = A_1 + A_2$$

Таким образом, **работа** — это функция не только состояния термодинамической системы, **но и** вида процесса, который происходит. Поэтому **работа не является однозначной функцией состояния** (такой, как внутренняя энергия). Из первого начала термодинамики следует, что **теплота** Q, так же как и работа A, **является функцией процесса**, который происходит с системой.

Цикл называется прямым, если за цикл совершается положительная работа $A = \bigoplus p \, \mathrm{d} \, V > 0$ (цикл протекает <u>по часовой стрелке</u> – рисунок (**A**)).

Цикл называется *обратным*, если за цикл совершается отрицательная работа $A = \oint p \, dV < 0$ (цикл протекает <u>против часовой стрелки</u> – рисунок (**Б**)).

Прямой цикл используется в тепловых двигателях (совершают работу за счет полученной извне теплоты). Обратный цикл используется в холодильных машинах (за счет работы внешних сил теплота переносится к телу с более высокой температурой).

39. КПД кругового процесса.

В результате кругового процесса система возвращается в исходное состояние. следовательно, полное изменение внутренней энергии равно нулю. Поэтому $O = \Delta U + A = A$, т.е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Если в ходе кругового процесса система не только получает количество теплоты O_1 , но и теряет (отдает) количество теплоты O_2 , TO $Q = Q_1 - Q_2$.

Термический коэффициент полезного действия для кругового **процесса** – это величина, равная отношению работы, совершенной системой, к количеству теплоты, полученному в этом цикле системой:

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

40. Обратимый и необратимый процессы.

Термодинамический процесс называется *обратимым*, если он может происходить как в прямом, так и в обратном направлении. Причем, если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является *необратимым*.

Реальные процессы необратимы, в них всегда происходит диссипация (потеря) энергии (из-за трения, теплопроводности и т.д.). Обратимые процессы – это физическая модель – это идеализация реальных процессов.

41. Энтропия.

Количество тепла δO , которое должно быть доставлено системе или отнято у неё при переходе от одного состояния в другое, не определяется однозначно начальным и конечным состояниями, но существенно зависит от способа осуществления этого перехода (δO не является функцией состояния системы).

Однако. приведенное количество теплоты – отношение теплоты δO к температуре T системы при бесконечно малых изменениях состояния системы – есть функция состояния системы. В любом обратимом круговом процессе

$$\oint \frac{\delta Q}{T} = 0$$

Следовательно, подынтегральное выражение есть полный дифференциал некоторой функции, которая определяется только начальным и конечным состояниями системы и не зависит от пути, каким система пришла в это состояние.

Энтропией S называется функция состояния системы, дифференциалом которой является $\delta O/T$:

$$dS = \frac{\delta Q}{T}$$

 $\mathrm{d}\,S = \frac{\delta Q}{T}$ Т.о. первое начало термодинамики $\delta Q = \mathrm{d}U + \delta A$ можно записать в виде $T dS = dU + \delta A$.

откуда
$$\delta A = T dS - dU = d(TS) - S dT - dU = -d(U - TS) - S dT = -dF - S dT$$

Функция F = U - TS является функцией состояния системы и называется энергией Гельмгольца или свободной энергией.

42. Изменение энтропии.

В замкнутой системе для обратимых процессов $\Delta S = 0$; для необратимых циклов $\Delta S > 0$.

Неравенство Клаузиуса: энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо $\Delta S \geq 0$ оставаться постоянной (в случае обратимых процессов).

Поскольку dS и δO имеют один и тот же знак, то по характеру изменения энтропии можно судить о направлении процесса теплообмена. При нагревании тела $\delta O > 0$ и его энтропия возрастает dS > 0, при охлаждении $\delta O < 0$ и энтропия тела убывает dS < 0.

Изоэнтропийным называется процесс, протекающий при постоянной энтропии (S = const).

В обратимом адиабатическом процессе $\delta Q = T \, \mathrm{d} S = 0$, так что $\mathrm{d} S = 0$ и S = const, поэтому адиабатический процесс является изоэнтропийным.

Рассмотрим для примера идеальный газ, который совершает равновесный переход из состояния 1 в состояние 2. Изменение его энтропии

$$\Delta S_{1\to 2} = S_2 - S_1 = \int_{1}^{2} \frac{\delta Q}{T} = \int_{1}^{2} \frac{dU + \delta A}{T}$$

Используя $dU = \frac{m}{u} C_V dT$; $\delta A = p dV = \frac{m}{u} RT \frac{dV}{V}$; $R = C_p - C_V$ и $\frac{T_2 V_1}{T_1 V_2} = \frac{p_2}{p_1}$,

$$\Delta S_{1\to 2} = \frac{m}{\mu} C_V \int_{T_1}^{T_2} \frac{dT}{T} + \frac{m}{\mu} R \int_{V_1}^{V_2} \frac{dV}{V} = \frac{m}{\mu} \left(C_V \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1} \right) = \frac{m}{\mu} \left(C_V \ln \frac{p_2}{p_1} + C_p \ln \frac{V_2}{V_1} \right)$$

Изменение энтропии в процессах идеального заза

Tiomorian orimporial o ripogodoux dodasibriodo dada			,
Изохорный	Изобарический	Изотермический	Адиабатический
(V = const)	(p = const)	(T = const)	(S = const)
$\Delta S = \frac{m}{\mu} C_V \ln \frac{T_2}{T_1}$	$\Delta S = \frac{m}{\mu} C_p \ln \frac{V_2}{V_1}$	$\Delta S = \frac{m}{\mu} R \ln \frac{V_2}{V_1}$	$\Delta S = 0$

43. Статистическое толкование энтропии.

Термодинамическая вероятность W состояния тела или системы – это <u>число способов</u>, которыми может быть реализовано данное конкретное термодинамическое состояние (макросостояние). Иначе говоря, это число всевозможных микрораспределений частиц по координатам и скоростям (микросостояний), которыми может быть осуществлено данное макросостояние.

Формула Больцмана

 $S = k \ln W$,

где k – постоянная Больцмана.

Энтропия системы определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние.

Энтропия является мерой неупорядоченности системы, — чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия.

44. Принцип возрастания энтропии.

Все процессы в замкнутой системе ведут к увеличению её энтропии. В замкнутой системе идут в направлении от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной. В состоянии равновесия — наиболее вероятного состояния системы — число микросостояний максимально, при этом максимальна и энтропия.

45. Второе начало термодинамики.

Любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает (закон возрастания энтропии).

Первое начало термодинамики выражает закон сохранения и превращения энергии применительно к термодинамическим процессам.

Второе начало термодинамики определяет направление протекания термодинамических процессов, указывая, какие процессы в природе возможны, а какие – нет.

Существуют <u>ещё две формулировки</u> второго начала термодинамики, эквивалентных закону возрастания энтропии:

- 1) **по Кельвину:** невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;
- 2) **по Клаузиусу:** <u>невозможен</u> круговой процесс, *единственным результатом* которого является передача теплоты от менее нагретого тела к телу более нагретому.

46. <u>Третье начало термодинамики.</u>

Третье начало термодинамики — теорема Нернста—Планка — постулирует поведение термодинамических систем при нуле Кельвина (абсолютном нуле): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина.

$$\lim_{T\to 0} S = 0$$

Теплоемкости $C_{\scriptscriptstyle V}$ и $C_{\scriptscriptstyle D}$ при ${\it T}=0~{\it K}$ равны нулю, поскольку

$$dS = \frac{\delta Q}{T}, C = \frac{dQ}{dT}, S(p = const, T) = \int_{0}^{T} \frac{C_p(T)dT}{T}, S(V = const, T) = \int_{0}^{T} \frac{C_V(T)dT}{T}$$

47. Тепловые двигатели и холодильные машины.

Тепловой двигатель — это периодически действующий двигатель, совершающий работу за счет полученной извне теплоты.

<u>Термостатом</u> называется термодинамическая система, которая может обмениваться теплотой с телами практически без изменения собственной температуры.

<u>Рабочее тело</u> – это тело, совершающее круговой процесс и обменивающееся энергией с другими телами.

<u>Принцип работы теплового двигателя:</u> от термостата с более высокой температурой T_1 , называемого **нагревателем**, за цикл *отнимается* количе-

ство теплоты Q_1 , а термостату с более низкой температурой T_2 , называемому **холодильником**, за цикл передается количество теплоты Q_2 , при этом совершается работа $A=Q_1-Q_2$.

<u>Термический КПД дви</u>гателя

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}.$$

Чтобы КПД был равен 1, необходимо, чтобы $Q_2=0\,,$ а это запрещено вторым началом термодинамики.

<u>Процесс, обратный происходящему в тепловом двигателе,</u> **используется в холодильной машине:** от термостата с более низкой температурой T_2 за цикл отнимается количество теплоты Q_2 и отдается термостату с более высокой температурой $T_1 > T_1$. При этом $Q = Q_1 - Q_2 = A$ или $Q_1 = Q_2 + A$.

Количество теплоты Q_1 , отданное системой термостату T_1 , больше количества теплоты Q_2 , полученного от термостата T_2 на величину работы, совершенной над системой.

<u>Эффективность</u> холодильной машины характеризует **холодильный коэффициент** η' — отношение отнятой от термостата с более низкой температурой количества теплоты Q_2 к работе A, которая затрачивается на приведение холодильной машины в действие

$$\eta' = \frac{Q_2}{A} = \frac{Q_2}{Q_1 - Q_2}$$
.

48. Теорема Карно

Из всех периодически действующих **тепловых машин**, имеющих **одинаковые** температуры нагревателей T_1 и холодильников T_2 , **наибольшим КПД** обладают обратимые машины. При этом КПД обратимых машин, работающих при одинаковых температурах нагревателей и холодильников, равны друг другу и **не зависят от природы рабочего тела**, а определяются только температурами нагревателя и холодильника.

49. Цикл Карно.

Наиболее экономичный обратимый круговой процесс, состоящий из двух изотерм и двух адиабат.

Рассмотрим *прямой цикл Карно*, в котором в качестве рабочего тела используется идеальный газ, заключенный в сосуд с подвижным поршнем.

Последовательные термодинамические процессы в цикле Карно

1-изотерма-2-адиабата-3-изотерма-4-адиабата-1:

Изотермическое расширение 1—2 $T = const; V_2 > V_1$	$A_{12} = \frac{m}{\mu} R T_1 \ln \frac{V_2}{V_1} = Q_1$	
Адиабатическое расширение 2—3 $\delta Q = 0; T_2 < T_1$	$A_{23} = -\frac{m}{\mu} C_V (T_2 - T_1)$	
Изотермическое сжатие 3—4 $T = const; V_4 < V_3$	$A_{34} = \frac{m}{\mu} R T_2 \ln \frac{V_4}{V_3} = -Q_2$	
Адиабатическое сжатие $\delta Q=0; T_1>T_2$	$A_{41} = -\frac{m}{\mu} C_V (T_1 - T_2) = -A_{23}$	

Работа, совершаемая в результате кругового процесса

$$A = A_{12} + A_{23} + A_{34} + A_{41} = Q_1 + A_{23} - Q_2 + A_{23} = Q_1 - Q_2.$$

Для адиабат 2–3 и 4–1 уравнения Пуассона $T_1V_2^{\gamma-1}=T_2V_3^{\gamma-1}$, $T_1V_1^{\gamma-1}=T_2V_4^{\gamma-1}$, откуда $V_1/V_2=V_3/V_4$.

Используя это, термический КПД цикла Карно

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{\frac{m}{\mu} R T_1 \ln \frac{V_2}{V_1} - \frac{m}{\mu} R T_2 \ln \frac{V_3}{V_4}}{\frac{m}{\mu} R T_1 \ln \frac{V_2}{V_1}} = \frac{T_1 - T_2}{T_1},$$

действительно определяется только температурами нагревателя и холодильника.

Реальные газы, жидкости и твердые тела.

При рассмотрении **реальных** газов <u>необходимо учитывать</u> собственный объем молекул и силы межмолекулярного взаимодействия.

Силы межмолекулярного взаимодействия — короткодействующие — они проявляются на расстояниях менее 10^{-9} м. Сила взаимодействия молекул — это равнодействующая сил притяжения F_Π (они преобладают на больших расстояниях) и сил отталкивания $F_{\rm O}$ (они доминируют на малых расстояниях). На расстоянии $r=r_0$ эти силы уравновешивают друг друга и F=0. Таким образом, расстояние r_0 — это равновесное расстояние между молекулами, на котором бы они находились в отсутствие теплового движения.

Потенциальная энергия взаимодействия молекул U **минимальна** в состоянии устойчивого равновесия при $r=r_0$.

<u>Соотношение</u> между U_{\min} и kT является <u>критерием</u> <u>различных агрегатных состояний</u>. U_{\min} определяет работу, которую нужно совершить против сил притяжения, чтобы разъединить молекулы, находящиеся в равновесии $(r=r_0)$. kT определяет удвоенную среднюю энергию, приходящуюся на одну степень свободы теплового движения молекул.

<u>При</u> $U_{\min} \ll kT$ вещество находится в газообразном состоянии, т.к. тепловое движение молекул препятствует соединению (конденсации) молекул.

<u>При</u> $U_{\min}\gg kT$ вещество находится в твердом состоянии, т.к. тепловой энергии недостаточно, чтобы "оторвать" молекулы друг от друга.

состоянии, т.к. в результате теплового движения молекулы перемещаются в пространстве, обмениваясь местами, но не расходясь на расстояния, превышающие $r_{\rm 0}$.

50. Уравнение Ван-дер-Ваальса.

Внесем в уравнение состояния идеального газа $pV_{\mu}=RT$ поправки, учитывающие собственный объем молекул и силы межмолекулярного взаимодействия.

Фактический объем реального газа будет $V_{\mu}-b$, где b – объем, занимаемый самими молекулами. Две молекулы радиуса r не могут сблизиться на расстояние меньше 2r, следовательно, для центров двух молекул недоступен сферический объем радиуса 2r. Этот объем b в восемь раз больше объема одной молекулы и в расчете на одну

молекулу равен учетверенному объему молекулы.

Учет сил межмолекулярного притяжения осуществляется введением дополнительного давления p' на газ, называемого **внутренним давлением**,

$$p' = \frac{a}{V_{\text{II}}^2}$$
, где $a - \underline{\text{постоянная Ван-дер-Ваальса}}$.

<u>Уравнение Ван-дер-Ваальса</u> для моля газа — *уравнение состояния реальных газов:* $\left(p+a/V_{\mu}^{2}\right)\!\left(V_{\mu}-b\right)\!=\!RT$. Для произвольной массы газа

$$\left(p + \frac{v^2 a}{V^2}\right) \cdot \left(V - vb\right) = vRT$$
, где $v = \frac{m}{\mu}$, $V = vV_{\mu}$.

51. Изотермы реальных газов.

Изотерма реального газа представляет собой зависимость молярного объема газа от давления при постоянной температуре.

При высоких температурах $(T>T_k)$ изотерма реального газа отличается от изотермы идеального газа только некоторым искажением формы.

При некоторой температуре T_k – критической температуре — на изотерме появляется точка перегиба K – критическая точка. Соответствующие этой точке объем V_k и давление p_k называются критическими. Изотерма при T_k называется критической изотермой.

При $T < T_k$ уравнению Ван-дер-Ваальса соответствует кривая 1-2-3-4-5-6-7. Однако, на участке 5—3 сжатие вещества сопровождается уменьшением давления, следовательно в этой области вещество распадается на две фазы —

жидкость и пар.

Фаза — это совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом термодинамическом состоянии

Истинные докритические изотермы реального газа имеют вид 1–2–6–7 и являются кривыми непрерывного перехода вещества из газообразного состояния (Γ) (участок 6–7) в жидкое (\mathcal{K}) (участок 2–1). Участок 6–2 соответствует равновесному сосуществованию жидкости и газа.

Вещество в газообразном состоянии при температуре ниже критической называется **паром** (Π), а пар, находящийся в равновесии со своей жидкостью, называется **насыщенным** ($\mathcal{K}+\Pi$). Пар при изотермическом сжатии претерпевает процесс сжижения. Газ при температурах $T>T_k$ не может быть превращен в жидкость ни при каком давлении (Γ).

При некоторых условиях могут быть реализованы **метастабильные** состояния 5–6 и 2–3. Участок 2–3 изображает **перегретую жидкость**, 5–6 – **пересыщенный пар**.

52. Внутренняя энергия реального газа.

Внутренняя энергия реального газа складывается из кинетической энергии теплового движения молекул (C_VT) и потенциальной энергии

межмолекулярного взаимодействия
$$\left(-rac{a}{V_{\mu}}
ight)$$
: $U_{\mu}=C_{V}T-rac{a}{V_{\mu}}$.

Если газ расширяется без теплообмена с окружающей средой (адиабатически, т. е. $\delta Q=0$) и не совершает работы (так называемое расширение газа в вакуум, т. е. $\delta A=0$), из первого начала термодинамики ($\delta Q=(U_2-U_1)+\delta A$) следует, что $U_1=U_2$.

При адиабатическом расширении без совершения внешней работы внутренняя энергия газа не меняется.

Для *идеального* газа это означает $T_1 = T_2$ (температура не изменяется).

Для **реального** газа
$$U = C_V T - a/V$$
 , поэтому $T_1 - T_2 = \frac{a}{C_V} \bigg(\frac{1}{V_1} - \frac{1}{V_2} \bigg)$.

Реальный газ при *адиабатическом* расширении в вакуум *охлаждается*.

53. Жидкости и их описание.

<u>Жидкость</u> является агрегатным состоянием вещества, *промежутпочным* между газообразным и твердым. <u>В газах</u> нет закономерности во взаимном расположении молекул (хаотическое расположение). <u>В твердых телах</u> наблюдается <u>дальний порядок</u> — молекулы образуют кристаллическую решетку. <u>В жидкостях</u> дальний порядок отсутствует, а имеет место <u>ближний порядок</u> в расположении *молекул* — их упорядоченное расположение повторяется на расстояниях, сравнимых с межатомными. Тепловое движение молекулы в жидкости это ее колебание около определенного положения равновесия в течение некоторого времени, после чего молекула скачком переходит в новое положение, отстоящее от исходного на расстояние порядка межатомного.

Радиус *г* **молекулярного действия** – расстояние (порядка 10⁻⁹ м), при котором можно пренебречь силами притяжения между молекулами жидкости.

Сфера радиусом r называется **сферой** молекулярного действия.

Силы, действующие на молекулу A внутри объема жидкости со стороны окружающих молекул, в среднем скомпенсированы. Для молекулы B, расположенной на поверхности, равнодействующая сил \vec{R} направлена внутрь жидкости. Результирующие силы всех молекул поверхностного слоя оказывают на жидкость молекулярное (внутреннее) давление.

54. Поверхностное натяжение.

Молекулы поверхностного слоя жидкости обладают бо́льшей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, называемая **поверхностной энергией**, пропорциональна площади поверхности $\Delta E = \sigma \Delta S$, где σ – **поверхностное натижение**.

Так как равновесное состояние характеризуется минимумом потенциальной энергии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т.е. форму шара.

Поверхностный слой жидкости аналогичен растянутой упругой пленке, в которой действуют силы натяжения.

Пусть под действием сил поверхностного натяжения поверхность жидкости стянулась (см. рисунок), при этом силы, действующие на элемент Δl контура, совершают работу $\Delta A = f \Delta l \Delta x$, где f — сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости. Поскольку эта работа совершается за счет уменьшения поверхностной

энергии $\Delta A = \Delta E$, то $\sigma = f$, т.е. **поверхностное натяжение** σ равно силе поверхностного натяжения приходящейся на единицу длины контура, ограничивающего поверхность.

Единица поверхностного натижения — ньютон на метр (H/м) или джоуль на квадратный метр (Дж/м 2).

2-27

55. Смачивание.

Смачиванием называется явление <u>искривления</u> свободной поверхности жидкости при соприкосновении жидкости с поверхностью твердого тела.

Поверхность жидкости, искривленная на границе с твердым телом, называется мениском.

Линия, по которой мениск пересекается с твердым телом, называется периметром смачивания.

Явление смачивания характеризуется *краевым углом* ϑ между поверхностью твердого тела и мениском в точках их пересечения (в точках

смачивания). Жидкость периметра называется **смачивающей** твердое тело, если краевой угол острый:

$$0 \le 9 < \frac{\pi}{2}$$
 (рис.а) и **несмачивающей**,

если
$$\frac{\pi}{2} < \vartheta < \pi$$
 (рис.б).

Если $\theta = 0$, смачивание считается **идеальным** (**полным**). Случай $\vartheta = \pi$ –

это **идеальное** (полное) **несмачивание**.

Если силы притяжения между молекулами твердого тела и жидкости больше, чем силы притяжения молекул жидкости друг к другу, то жидкость будет смачивающей. Если молекулярное притяжение в жидкости превышает силы притяжения молекул жидкости к молекулам твердого тела, то жидкость не смачивает твердое тело.

56. Давление под искривленной поверхностью жидкости.

Сферическая **выпуклая** поверхность производит на жидкость дополнительное давление, вызванное силами внутреннего натяжения, направленными внутрь жидкости, $\Delta p = 2\frac{\sigma}{R}$, где R – радиус сферы. Если поверхность жидкости вогнутая, то результирующая сила поверхностного натяжения направлена из жидкости и давление внутри жидкости $\Delta p = -2\frac{\sigma}{p}$.

Избыточное давление внутри мыльного пузыря радиуса Rвызывается действием обоих поверхностных слоев тонкой сферической мыльной пленки $\Delta p = 4\sigma/R$.

В общем случае избыточное давление для произвольной поверхности жидкости описывается формулой Лапласа

$$\Delta p = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right),$$

где R_1 и R_2 – радиусы кривизны двух любых взаимно перпендикулярных сечений поверхности жидкости в данной точке.

Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

57. Капиллярные явления.

Капиллярами называются узкие цилиндрические трубки с диаметром менее миллиметра.

Капиллярностью называется явление изменения уровня жидкости в капиллярах.

Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) ρgh

уравновешивается избыточным давлением Δp

Высота поднятия (глубина опускания) жидкости в капилляре:

$$h = \frac{2\sigma}{\rho gR} = \frac{2\sigma}{\rho gr} \cos \theta,$$

где ρ – плотность жидкости, r – радиус

капилляра, R – радиус кривизны мениска, g – ускорение свободного падения.

Высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу.

58. Кристаллические и аморфные твердые тела.

Твердым телом называется агрегатное состояние вещества, характеризующееся постоянством формы и объема, причем тепловые движения частиц в них представляют собой хаотические колебания частиц относительно положений равновесия.

Твердые тела подразделяются на кристаллические и аморфные.

Кристаллические тела – это твердые тела, имеющие упорядоченное, периодически повторяющееся расположение частиц.

Структура, для которой характерно регулярное расположение частиц с периодической повторяемостью в трех измерениях, называется

о • о • о • о кристаллической решеткой.

Точки, в которых расположены частицы, а точнее – средние равновесные положения, около которых частицы совершают колебания, называются узлами кристаллической решетки.

> Характерной особенностью кристаллов является их **анизотропность** – зависимость физических свойств (упругих, механических, тепловых, электрических, магнитных, оптических) от направления. Анизотропия

кристаллов объясняется тем, что плотность расположения частиц по разным направлениям не одинакова.

Если кристаллическое тело состоит из единственного кристалла, оно называется монокристаллом. Если твердое тело состоит из множества беспорядочно ориентированных кристаллических зерен, оно называется поликристаллом. В поликристаллах анизотропия наблюдается только для отдельных мелких кристалликов.

Твердые тела, физические свойства которых одинаковы по всем направлениям (изотропны), называются аморфными. Для аморфных тел, как и для жидкостей, характерен ближний порядок в расположении частиц, но, в отличие от жидкостей, подвижность частиц в них довольно мала.

Органические аморфные тела, молекулы которых состоят из большого числа одинаковых длинных молекулярных цепочек, соединенных химическими связями, называются **полимерами** (например, каучук, полиэтилен, резина).

59. Типы кристаллов.

В зависимости от рода частиц, расположенных в узлах кристаллической решетки, и характера сил взаимодействия между ними кристаллы подразделяются на <u>четыре типа</u>: ионные, атомные, металлические, молекулярные.

<u>Ионные кристаллы</u>. В узлах кристаллической решетки располагаются

поочередно ионы противоположного знака. Структуры решеток двух наиболее характерных ионных кристаллов — NaCl (решетка представляет собой две одинаковые гранецентрированные кубические решетки, вложенные друг в друга; в узлах одной из этих решеток находятся ионы Na^+ , в узлах другой — ионы Cl^-) и CsCl (кубическая объемно-

центрированая решетка – в центре каждой элементарной ячейки находится ион) – показаны на рисунке. Связь, обусловленная кулоновскими силами притяжения между разноименно заряженными ионами, называется *ионной*.

<u>Атомные кристаллы</u>. В узлах кристаллической решетки располагаются

нейтральные атомы, удерживающиеся в узлах решетки ковалентными связями квантово-механического происхождения (у соседних атомов обобществляются валентные электроны, наименее связанные с атомом).

Пример атомных кристаллов – алмаз и графит.

располагаются на одинаковых расстояниях от него в вершинах тетраэдра. В графите атомы углерода упакованы в плоские слои, связанные между собой слабыми ван-дер-ваальсовыми силами.

Металлические кристаллы. В узлах кристаллической решетки располагаются положительные ионы металла. При образовании кристаллической решетки валентные электроны, слабо связанные с атомами, отделяются от атомов и коллективизируются: они уже принадлежат не одному атому, как в случае ионной связи, и не паре соседних атомов, как в случае ковалентной связи, а всему кристаллу в целом.

Молекулярные кристаллы. В узлах кристаллической решетки располагаются нейтральные молекулы вещества, силы взаимодействия между которыми обусловлены незначительным взаимным смещением электронов в электронных оболочках атомов. Эти силы называются $\emph{eah-dep-eaanьcoeыmu}$, тат как они имеют ту же природу, что и силы притяжения между молекулами, приводящими к отклонению газов от идеальности. Примеры молекулярных кристаллов — органические соединения (например, парафин), инертные газы (Ne, Ar, Kr, Xe) и атмосферные газы CO_2 , O_2 , O_2 , O_3 в твердом состоянии, лед, и т.д.

60. Дефекты в кристаллах.

Дефектами кристаллической решетки называются <u>отклонения</u> от упорядоченного расположения частиц в узлах решетки. Дефекты делятся на *макроскопические*, возникающие в процессе образования и роста кристаллов (например, трещины, поры, инородные макроскопические включения), и *микроскопические*, обусловленные микроскопическими отклонениями от периодичности.

Микродефекты делятся на *точечные* и *пинейные*. Точечные дефекты бывают трех типов: (1) <u>вакансия</u> – отсутствие атома в узле кристаллической

решетки (а); (2) междоузельный атом – атом, внедрившийся в междоузельное пространство (b); (3) примесный атом — атом примеси, либо замещающий атом основного вещества в кристаллической решетке (примесь замещения (с)), либо внедрившийся в

междоузельное пространство (*примесь внедрения*). <u>Точечные дефекты нарушают только ближний порядок в кристаллах.</u>

<u>Линейные дефекты</u> нарушают дальний порядок. Особое место среди линейных дефектов занимают дислокации — линейные дефекты, нарушающие

правильное чередование атомных плоскостей. Различают краевые (край атомной плоскости, обрывающейся в кристалле (рис.а) и винтовые (атомные плоскости образуют винтовую поверхность (рис.б) дислокации.

61. Теплоемкость твердых тел.

Рассмотрим идеальную кристаллическую решетку, в узлах которой частицы, принимаемые за материальные точки, колеблются вблизи положений равновесия в трех взаимно перпендикулярных направлениях (три колебательные степени свободы, каждая из которых обладает энергией kT).

Внутренняя энергия моля твердого тела $U_{\mu} = 3N_AkT = 3RT$

где $N_{\scriptscriptstyle A}$ – число Авогадро, R – молярная газовая постоянная.

Молярная теплоемкость твердого тела:

$$C_V = rac{\mathrm{d}\,U_\mu}{\mathrm{d}\,T} = 3R = 25\,rac{\mathcal{J}_{\mathrm{W}}}{\mathrm{моль}\cdot\mathrm{K}} - \mathbf{\underline{3}}$$
акон Дюлонга и Пти –

молярная теплоемкость химически простых тел в кристаллическом состоянии одинакова (равна 3R) и не зависит от температуры.

Если твердое тело является химическим соединением (например NaCl), то число частиц в моле равно nN_A , где n — число атомов в молекуле (для NaCl число частиц в моле равно $2N_A$, поскольку в одном моле NaCl содержится N_A атомов Na и N_A атомов Cl).

Молярная теплоемкость твердых химических соединений

$$C_V = 3nR = 25 \cdot n \frac{\text{Дж}}{\text{моль} \cdot \text{K}}$$

т.е. равна сумме атомных теплоемкостей элементов, составляющих это соединения.

Отклонения от закона Дюлонга и Пти (особенно при низких температурах) объясняются исходя из квантовых представлений.

62. Изменение агрегатного состояния.

И в жидкостях и в твердых телах всегда есть некоторое число молекул, энергия которых достаточна для преодоления притяжения к другим молекулам, и которые способны покинуть поверхность жидкости или твердого тела. Такой процесс для жидкости называется испарением (или парообразованием), для твердых тел – сублимацией (или возгонкой).

Конденсацией называется переход вещества вследствие его охлаждения или сжатия из газообразного состояния в жидкое.

Если число молекул, покидающих жидкость за единицу времени через единичную поверхность, равно числу молекул, переходящих из пара в жидкость, то наступает *динамическое равновесие* между процессами испарения и конденсации. *Пар*, находящийся

в равновесии со своей жидкостью, называется насыщенным.

Плавлением называется переход вещества из кристаллического (твердого) состояния в жидкое. Плавление происходит при определенной,

возрастающей с увеличением внешнего давления, *температуре плавления* $T_{\rm nn}$.

В процессе плавления теплота Q, сообщаемая веществу, идет на совершение *работы по разрушению кристаллической решетки*, и поэтому $T_{\rm пл}=const$ (рис.(a)) до расплавления всего кристалла.

Количество теплоты L, необходимое для расплавления 1кг вещества, называется **удельной теплотой плавления.**

Если жидкость охлаждать, то процесс пойдет в обратном направлении (рис.(б)), Q' – количество теплоты, отдаваемое телом при кристаллизации): сначала температура жидкости понижается, затем при постоянной температуре, равной $T_{\rm nn}$, начинается **кристаллизация**.

Для кристаллизации вещества необходимо наличие **центров кристаллизации** – кристаллических зародышей, которыми могут быть как кристаллики образующегося вещества, так и любые инородные включения. Если в чистой жидкости нет центров кристаллизации, то она может быть охлаждена до температуры, меньшей температуры кристаллизации, образуя при этом **переохлажденную** жидкость (рис.(б) – пунктир).

Аморфные тела являются переохлажденными жидкостями.

63. Фазовые переходы.

Фазой называется термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества.

Переход вещества из одной фазы в другую – **фазовый переход** – всегда связан с качественными изменениями свойств веществ.

<u>Фазовый переход первого рода</u> – это переход, сопровождающийся поглощением или выделением теплоты (например, плавление, кристаллизация). Он характеризуется постоянством температуры, изменениями энтропии и объема.

<u>Фазовый переход второго рода</u> – переход не связанный с поглощением или выделением теплоты и изменением объема. Он характеризуется постоянством объема и энтропии, но скачкообразным изменением теплоемкости.

Фазовые переходы второго рода связаны с изменением симметрии: выше точки перехода система обладает более высокой симметрией, чем ниже точки перехода.

<u>Примеры фазовых переходов второго рода</u>: переход ферромагнитных веществ при определенных давлениях и температуре в парамагнитное состояние; переход металлов и сплавов при низких температурах в сверхпроводящее состояние; превращение обыкновенного жидкого гелия в сверхтекучий.

64. Диаграмма состояния.

Если система является **однокомпонентной**, т.е. состоящей из химически однородного вещества или его соединения, то *понятие фазы совпадает с понятием агрегатного состояния*.

Для наглядного изображения фазовых превращений используется

диаграмма состояния, на которой в координатах (p,T) задается зависимость между температурой фазового перехода и давлением в виде *кривых испарения* (KII), плавления (KII) и сублимации (KC), разделяющих поле диаграммы на три области, соответствующие условиям существования твердой (TI), жидкой (XI) и газообразной (II) фаз.

Кривые на диаграмме называются кривыми <u>фазового равновесия</u>, каждая точка на них Т соответствует условиям равновесия двух сосуществующих фаз.

<u>Тройной точкой</u> называется точка, в которой пересекаются кривые фазового равновесия и которая, следовательно, определяет условия (температуру $T_{\rm rp}$ и давление $p_{\rm rp}$) одновременного равновесного сосуществования трех фаз вещества.

Тройная точка воды соответствует температуре 273,16 К (или 0,01°С по шкале Цельсия) и является **основной реперной точкой** для построения термодинамической температурной шкалы.

65. Уравнение Клапейрона-Клаузиуса

Уравнение Клапейрона-Клаузиуса:

$$\frac{\mathrm{d}\,p}{\mathrm{d}\,T} = \frac{L}{T(V_2 - V_1)}$$
 позволяет

определить наклоны кривых равновесия.

Здесь L – теплота фазового перехода (например, в случае плавления – удельная теплота плавления), (V_2-V_1) – изменение объема вещества при переходе его из первой фазы во вторую, T – температура перехода (например, в случае плавления – температура плавления $T_{\rm пл}$).

Поскольку L и T всегда положительны, то **наклон** кривой равновесия определяется знаком (V_2-V_1) . Так при испарении и сублимации объем всегда возрастает, поэтому d $p/\mathrm{d}\,T>0$.

При плавлении у большинства веществ объем возрастает, следовательно $\mathrm{d}\, p/\mathrm{d}\, T>0$, т.е. увеличение давления приводит к повышению температуры плавления (сплошная КП на рисунке).

Для некоторых веществ (вода, Ge, чугун) объем жидкой фазы меньше объема твердой фазы, т.е. $\mathrm{d}\,p/\mathrm{d}\,T < 0$; следовательно, увеличение давления сопровождается понижением температуры плавления (штриховая линия на рисунке).

66. Анализ диаграммы состояния.

Диаграмма состояния, позволяет судить, в каком состоянии находится данное вещество при определенных p и T, а также какие фазовые переходы будут происходить в том или ином процессе.

Например, при условиях, обозначенных: точкой 1 вещество – в твердом состоянии (TT), 2- в газообразном (Γ) , 3- одновременно в жидком (\mathcal{K}) и газообразном.

При изобарном нагреве 4–5–6 в точке 5 начинается плавление, 6 – кипение.

При изобарном нагреве 7–8 твердое тело превращается в газ, минуя жидкую фазу.

При изотермическом сжатии 9–10 вещество пройдет три состояния: газ-жидкость-кристалл.

Кривая испарения заканчивается крити-

ческой точкой (K). Поэтому возможен <u>непрерывный</u> переход вещества из жидкого состояния в газообразное и обратно в обход критической точки, без пересечения кривой испарения (переход 11–12), т.е. такой переход, который не сопровождается фазовыми превращениями.

Это возможно потому, что различие между газом и жидкостью является чисто количественным (оба эти состояния, например, являются изотропными).

Переход же кристаллического состояния в жидкое или газообразное может быть только скачкообразным (в результате фазового перехода), поэтому кривые плавления и сублимации не могут обрываться, как это имеет место для кривой испарения в критической точке.

Кривая плавления уходит в бесконечность, а кривая сублимации идет в точку, где $\,p=0\,$ и $\,T=0\,$.