MATRICES In Geometry

G. V. V. Sharma

ABOUT THIS BOOK

This book introduces matrices through high school coordinate geometry. This approach makes it easier for beginners to learn Python for scientific computing. All problems in the book are from NCERT mathematics textbooks from Class 9-12. The content is sufficient for industry jobs and covers nearly all matrix prerequisites for machine learning. There is no copyright, so readers are free to print and share.

August 17, 2024

Github: https://github.com/gadepall/matgeo

License: https://creativecommons.org/licenses/by-sa/3.0/

and

https://www.gnu.org/licenses/fdl-1.3.en.html First manual appeared in January 2018 First edition published on July 10, 2024

In this edition, some incorrect solutions were removed. Many figures redrawn. More

problems added.

Contents

1	vector	Arithmetic
	1.1	Formulae
	1.2	Point Vectors
	1.3	CBSE
	1.4	Section Formula
	1.5	CBSE
	1.6	Rank
	1.7	CBSE
	1.8	Length
	1.9	CBSE
	1.10	Unit Vector
	1.11	CBSE
2	Vector	Multiplication 33
_	2.1	Formulae
	2.2	Scalar Product
	2.3	CBSE
	2.4	Orthogonality
	2.5	CBSE
	2.6	Vector Product
	2.7	CBSE
	2.8	Miscellaneous
	2.9	CBSE
	2.9	
3	Constru	uctions 73
	3.1	Formulae
	3.2	Triangle
	3.3	CBSE
	3.4	Quadrilateral
4	Linear	Forms 79
	4.1	Formulae
	4.2	Parameters
	4.3	Equation
	4.4	CBSE
	4.5	Parallel
	4.6	CBSE
	4.7	Perpendicular
	4.8	CBSE
	4.9	Angle
	4.10	Intersection
	4.11	CBSE
	4.12	Miscellaneous
	···-	

		4
5	Matrice	es 135
	5.1	Formulae
	5.2	Equation
	5.3	CBSE
	5.4	Inverse
	5.5	CBSE
	5.6	Cayley-Hamilton Theoerm
	5.7	CBSE
	5.8	Application
	5.9	CBSE
	5.10	Chemistry
	5.11	Physics
	5.12	CBSE
4	Cleary I	inos 162
6	Skew L 6.1	
	6.2	
	6.3	1
	6.4	Singular Value Decomposition
	0.4	CDSE
7	Circle	176
	7.1	Formulae
	7.2	Equation
	7.3	Miscellaneous
0	a .	100
8	Conics	186
	8.1	Formulae
	8.2	Equation
	8.3	Miscellaneous
	8.4	Quadratic Equations
9	Intersec	ction of Conics 209
	9.1	Formulae
	9.2	Chords
	9.3	CBSE
	9.4	Curves
	9.5	CBSE
10	_	t And Normal 229
	10.1	Formulae
	10.2	Circle
	10.3	Conic
	10.4	CBSE
	10.5	Construction
	10.6	CBSE 248

		5
Appendix A:		248
A.1	Sides	248
A.2	Formulae	253
A.3	Median	255
A.4	Altitude	259
A.5	Perpendicular Bisector	262
A.6	Angle Bisector	265
A.7	Eigenvalues and Eigenvectors	267
A.8	Formulae	268
A.9	Matrices	269
Appendix B:	Conic Section	271
B.1	Equation	271
B.2	Standard Conic	275
B.3	Conic Lines	277

B.4

1.1 Formulae

1.1.1. The direction vector of AB is defined as

$$\mathbf{m} = \mathbf{B} - \mathbf{A} = \kappa \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.1.1.1}$$

where m is the slope of AB. We also say that

$$\mathbf{m} \equiv \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.1.1.2}$$

1.1.2. The lines with direction vectors \mathbf{m}_1 and \mathbf{m}_2 respectively, are parallel if

$$\mathbf{m}_1 \equiv \mathbf{m}_2 \tag{1.1.2.1}$$

1.1.3. If ABCD be a parallelogram with $AB \parallel CD$,

$$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D} \tag{1.1.3.1}$$

1.1.4. If **D** divides BC in the ratio k:1,

$$\mathbf{D} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} \tag{1.1.4.1}$$

1.1.5. If *PQRS* is formed by joining the mid points of *ABCD*,

$$\mathbf{P} = \frac{1}{2} (\mathbf{A} + \mathbf{B}), \ \mathbf{Q} = \frac{1}{2} (\mathbf{B} + \mathbf{C})$$
 (1.1.5.1)

$$\mathbf{R} = \frac{1}{2} (\mathbf{C} + \mathbf{D}), \mathbf{S} = \frac{1}{2} (\mathbf{D} + \mathbf{A})$$
 (1.1.5.2)

$$\implies \mathbf{P} - \mathbf{Q} = \mathbf{S} - \mathbf{R}.\tag{1.1.5.3}$$

Hence, *PQRS* is a parallelogram from (1.1.3.1).

1.1.6. In 2D space, the basis vectors are defined as

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{1.1.6.1}$$

1.1.7. The length of a vector is defined as

$$\|\mathbf{x}\| \triangleq \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} \tag{1.1.7.1}$$

For example, if

$$\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix},\tag{1.1.7.2}$$

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} = \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \tag{1.1.7.3}$$

$$= 3 \times 3 + 4 \times 4 = 25 \tag{1.1.7.4}$$

yielding

$$||\mathbf{x}|| = 5. \tag{1.1.7.5}$$

(1.1.7.3) is known as the scalar product.

1.1.8. The unit vector in the direction of \mathbf{x} is

$$\frac{\mathbf{x}}{\|\mathbf{x}\|}\tag{1.1.8.1}$$

1.1.9. Points A, B, C are defined to be collinear if

$$rank(\mathbf{B} - \mathbf{A} \quad \mathbf{C} - \mathbf{A}) = 1 \tag{1.1.9.1}$$

1.1.10.

$$rank\mathbf{A} = rank\mathbf{A}^{\top} \tag{1.1.10.1}$$

1.1.11. In the 2D space, the unit direction vector is defined as

$$\mathbf{m} = \begin{pmatrix} \cos \alpha \\ \cos \beta \end{pmatrix} \tag{1.1.11.1}$$

where α, β are the angles made by the vector with the axes.

1.1.12. Code for plotting points and vector arithmetic

codes/book/points.py

1.1.13. Code for section formula

codes/book/section.py

1.1.14. Code for matrix rank

codes/book/rank.py

1.1.15. Code for vector length

codes/book/dist.py

1.2 Point Vectors

1.2.1 Find the values of x and y so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal. **Solution:** From the given informatin,

$$\implies x = 2, y = 3 \tag{1.2.1.2}$$

- 1.2.2 Find the values of x, y, z so that the vectors $x\hat{i} + 2\hat{j} + z\hat{k}$ and $2\hat{i} + y\hat{j} + \hat{k}$ are equal. 1.2.3 Find the sum of the vectors $\mathbf{a} = \hat{i} 2\hat{j} + \hat{k}$, $\mathbf{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\mathbf{c} = \hat{i} 6\hat{j} 7\hat{k}$.

1.2.4 Find the slope of a line, which passes through the origin and the mid point of the line segment joining the points P(0, -4) and B(8, 0).

Solution: The mid point of *PB* is

$$\mathbf{M} = \frac{1}{2}(\mathbf{P} + \mathbf{B}) = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \tag{1.2.4.1}$$

which, from (1.1.1.1), is equal to the direction vector of OM, where \mathbf{O} is the origin.

$$\therefore \mathbf{M} \equiv \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}, m = -\frac{1}{2} \tag{1.2.4.2}$$

which, from (1.1.1.1), is the desired slope. See Fig. 1.2.4.1.

Fig. 1.2.4.1

1.2.5 Find the angle between x-axis and the line joining points (3, -1) and (4, -2). **Solution:** The direction vector of the given line is

$$\begin{pmatrix} 4 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \implies m = -1 \tag{1.2.5.1}$$

Hence, the desired angle is 135°.

1.2.6 A line passes through $\mathbf{A}(x_1, y_1)$ and $\mathbf{B}(h, k)$. If slope of the line is m, show that $(k - y_1) = m(h - x_1)$.

Solution: The direction vector

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} h - x_1 \\ k - y_1 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ \frac{k - y_1}{h - x_1} \end{pmatrix} \tag{1.2.6.1}$$

$$\implies m = \frac{k - y_1}{h - x_1},\tag{1.2.6.2}$$

yielding the desired result.

1.2.7 Show that the line through the points (4,7,8), (2,3,4) is parallel to the line through the points (-1,-2,1), (1,2,5).

Solution:

which means that the given lines have the same direction vector and are hence parallel.

1.2.8 The vector having intial and terminal points as (-2, 5, 0) and (3, 7, 4), respectively is **Solution:** The desired vector is

$$\begin{pmatrix} 3 \\ 7 \\ 4 \end{pmatrix} - \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix}$$
 (1.2.8.1)

- 1.2.9 Find the vector joining the points P(2,3,0) and Q(-1,-2,-4) directed from P to Q.
- 1.2.10 Without using distance formula, show that points A(-2,-1), B(4,0), C(3,3) and D(-3,2) are the vertices of a parallelogram.

Solution: From (1.1.3.1),

$$\mathbf{A} - \mathbf{B} = \mathbf{D} - \mathbf{C} = \begin{pmatrix} -6 \\ -1 \end{pmatrix} \tag{1.2.10.1}$$

Hence, ABCD is a parallelogram. See Fig. 1.2.10.1.

Fig. 1.2.10.1

- 1.2.11 If the points A(6, 1), B(8, 2), C(9, 4) and D(p, 3) are the vertices of a parallelogram, taken in order, find the value of p.
- 1.2.12 If (1,2), (4,y), (x,6) and (3,5) are the vertices of a parallelogram taken in order, find x and y.
- 1.2.13 The fourth vertex **D** of a parallelogram ABCD whose three vertices are A(-2,3), B(6,7) and C(8,3) is
- 1.2.14 Verify if the points $\mathbf{A}(4,3)$, $\mathbf{B}(6,4)$, $\mathbf{C}(5,-6)$ and $\mathbf{D}(-3,5)$ are the vertices of a parallelogram.
- 1.2.15 A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

Solution: See Fig. 1.2.15.1. Let the initial position be

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.2.15.1}$$

After going west, the position becomes

$$\mathbf{B} = \begin{pmatrix} -4\\0 \end{pmatrix} \tag{1.2.15.2}$$

If the final position be C, from the given information,

$$\mathbf{C} - \mathbf{B} = 3 \begin{pmatrix} \cos 60^{\circ} \\ \sin 60^{\circ} \end{pmatrix} \implies \mathbf{C} = \begin{pmatrix} -\frac{5}{2} \\ \frac{3\sqrt{3}}{2} \end{pmatrix}$$
 (1.2.15.3)

which is the desired displacement.

Fig. 1.2.15.1

- 1.2.16 (-1,2,1), (1,-2,5), (4,-7,8) and (2,-3,4) are the vertices of a parallelogram.
- 1.2.17 Three vertices of a parallelogram ABCD are A(3,-1,2), B(1,-2,4) and C(-1,1,2). Find the coordinates of the fourth vertex.
- 1.2.18 If the origin is the centroid of the triangle PQR with vertices $\mathbf{P}(2a, 2, 6), \mathbf{Q}(-4, 3b, -10)$ and R(8, 14, 2c), then find the values of a, b and c.
- 1.2.19 Find the slope of lines
 - a) Passing through the points (3, -2) and (-1, 4)
 - b) Passing through the points (3, -2) and (7, -2)
 - c) passing through the points (3,-2) and (3,4)
 - d) Making inclination of 60° with the positive direction of x-axis.
- 1.2.20 The centroid of a triangle ABC is at the point (1,1,1). If the coordinates of **A** and **B** are (3,-5,7) and (-1,7,-6), respectively find the coordinates of the point **C**.
- $1.2.21\,$ Represent graphically a displacement of 40 km, 30° west of south.
- 1.2.22 Rain is falling vertically with a speed of 35 ms^{-1} . Winds starts blowing after sometime with a speed of 12 ms^{-1} in east to west direction. In which direction should a boy waiting at a bus stop hold his umbrella?
- 1.2.23 A motorboat is racing towards north at 25 km/h and the water current in that region is 10 km/h in the direction of 60° east of south. Find the resultant velocity of the boat.
- 1.2.24 Rain is falling vertically with a speed of 35 ms^{-1} . A woman rides a bicycle with a speed of 12 ms^{-1} in east to west direction. What is the direction in which she should hold her umbrella?
- 1.2.25 Rain is falling vertically with a speed of 30 ms^{-1} . A woman rides a bicycle with a

- speed of $10 ms^{-1}$ in the north to south direction. What is the direction in which she should hold her umbrella?
- 1.2.26 A man can swim with a speed of 4.0 km/h in still water. How long does he take to cross a river 1.0 km wide if the river flows steadily at 3.0 km/h and he makes his strokes normal to the river current? How far down the river does he go when he reaches the other bank?
- 1.2.27 In a harbour, wind is blowing at the speed of 72 km/h and the flag on the mast of a boat anchored in the harbour flutters along the N-E direction. If the boat starts moving at a speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat ?
- 1.2.28 In which quadrant or on which axis do each of the points (-2, 4), (3, -1), (-1, 0), (1, 2) and (-3, -5) lie? Verify your answer by locating them on the Cartesian plane.
- 1.2.29 Plot the points (x, y) given in Table 1.2.29.

X	-2	-1	0	1	3
У	8	7	-1.25	3	-1

TABLE 1.2.29

1.3 CBSE

- 1.3.1 If in $\triangle ABC$, $\overrightarrow{BA} = 2\mathbf{a}$ and $\overrightarrow{BC} = 3\mathbf{b}$, then \overrightarrow{AC} is _____. (12, 2023)
- 1.3.2 The coordinates of the three consecutive vertices of a parallelogram ABCD are A(1,3), B(-1,2), and C(2,5). Find the coordinates of the fourth vertex D.

(10, 2021)

- 1.3.3 Points A(3, 1), B(5, 1), C(a, b), and D(4, 3) are vertices of a parallelogram *ABCD*. Find the values of a and b. (10, 2019)
- 1.3.4 If $\mathbf{A}(1,3)$, $\mathbf{B}(-1,2)$, $\mathbf{C}(2,5)$ and $\mathbf{D}(x,4)$ are the vertices of a parallelogram ABCD, then the value of x is _____. (10, 2012)
- 1.3.5 If (3,3), (6,y), (x,7) and (5,6) are the vertices of a parallelogram taken in order, find the values of x and y. (10, 2011)

1.4 Section Formula

1.4.1 Find the coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio 2:3.

Solution: Using section formula (1.1.4.1), the desired point is

$$\frac{1}{1+\frac{3}{2}} \left(\binom{4}{-3} + \frac{3}{2} \binom{-1}{7} \right) = \binom{1}{3} \tag{1.4.1.1}$$

See Fig. 1.4.1.1

Fig. 1.4.1.1

- 1.4.2 Find the coordinates of the point **R** on the line segment joining the points P(-1,3) and Q(2,5) such that $PR = \frac{3}{5}PQ$.
- 1.4.3 Find the ratio in which the point $P(\frac{3}{4}, \frac{5}{12})$ divides the line segment joining the points $A(\frac{1}{2}, \frac{3}{2})$ and B(2, -5).
- 1.4.4 Find the coordinates of the point which divides the line segment joining the points (4, -3) and (8, 5) in the ratio 3:1 internally.
- 1.4.5 Find the coordinates of the point **P** on AD such that AP : PD = 2 : 1.
- 1.4.6 If the point P(2,1) lies on the line segment joining points A(4,2) and B(8,4), then
 - a) $AP = \frac{1}{3}AB$
 - b) AP = PE
 - c) $PB = \frac{1}{3}AB$
 - d) $AP = \frac{1}{2}AB$
- 1.4.7 Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6).

Solution: Using section formula,

$$\binom{-1}{6} = \frac{\binom{-3}{10} + k \binom{6}{-8}}{1+k}$$
 (1.4.7.1)

$$\implies 7k \begin{pmatrix} 1 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{1.4.7.2}$$

or,
$$k = \frac{2}{7}$$
. (1.4.7.3)

1.4.8 Find the position vector of the mid point of the vector joining the points P(2, 3, 4)

and $\mathbf{Q}(4, 1, -2)$.

Solution: The desired vector is

$$\frac{1}{2} \begin{pmatrix} 2\\3\\4 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 4\\1\\-2 \end{pmatrix} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} \tag{1.4.8.1}$$

1.4.9 Let A(4,2), B(6,5) and C(1,4) be the vertices of $\triangle ABC$.

a) If **A** and **B** are (-2, -2) and (2, -4), respectively, find the coordinates of **P** such that $AP = \frac{3}{7}AB$ and **P** lies on the line segment AB.

Solution: Using section formula,

$$\mathbf{P} = \frac{1}{1 + \frac{3}{4}} \left(\begin{pmatrix} -2 \\ -2 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 2 \\ -4 \end{pmatrix} \right) = \begin{pmatrix} \frac{-2}{7} \\ \frac{-20}{7} \end{pmatrix}$$
(1.4.9.1)

b) Find the coordinates of the points which divide the line segment joining A(-2,2) and B(2,8) into four equal parts.

Solution: Using section formula.

$$\mathbf{R}_k = \frac{\mathbf{B} + k\mathbf{A}}{1+k}, k = \frac{i}{n-i}, 0 < i < n$$
 (1.4.9.2)

for n = 4. See Fig. 1.4.9.1.

Fig. 1.4.9.1

- c) In what ratio does the point (-4,6) divide the line segment joining the points A(-6,0) and B(3,-8)?
- d) Given that P(3,2,-4), Q(5,4,-6) and R(9,8,-10) are collinear. Find the ratio in which Q divides PR.

- e) Points A(-6, 10), B(-4, 6) and C(3, -8) are collinear such that $AB = \frac{2}{9}AC$.
- f) The point which divides the line segment joining the points P(7,-6) and Q(3,4) in the ratio 1:2 internally lies in which quadrant?
- g) Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, 3).

Solution: Using section formula,

$$\mathbf{R} = \frac{1}{1 + \frac{1}{2}} \left(\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right) = \begin{pmatrix} 2 \\ \frac{-5}{3} \end{pmatrix}$$
 (1.4.9.3)

$$\mathbf{S} = \frac{1}{1 + \frac{2}{1}} \left(\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \frac{2}{1} \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right) = \begin{pmatrix} 0 \\ \frac{-7}{3} \end{pmatrix}$$
 (1.4.9.4)

which are the desired points of trisection.

- h) Find the coordinates of the points which trisect the line segment joining the points P(4, 2, -6) and Q(10, -16, 6).
- i) Find the coordinates of the points of trisection (i.e. points dividing to three equal parts) of the line segment joining the points A(2, -2) and B(-7, 4).
- j) Point P(5, -3) is one of the two points of trisection of line segment joining the points A(7, -2) and B(1, -5)
- k) Find the position vector of a point **R** which divides the line joining two points **P** and **Q** whose position vectors are $\hat{i} + 2\hat{j} \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2:1
 - i) internally
 - ii) externally
- l) Find the coordinates of the point which divides the line segment joining the points which divides the line segment joining the points (-2,3,5) and (1,-4,6) in the ratio
 - i) 2:3 internally,
 - ii) 2:3 externally
- m) Find the coordinates of the point which divides the line segment joining the points (1, -2, 3) and (3, 4, -5) in the ratio 2:3
 - i) internally, and
 - ii) externally
- n) Consider two points **P** and **Q** with position vectors $\overrightarrow{OP} = 3\overrightarrow{a} 2\overrightarrow{b}$ and $\overrightarrow{OQ} = \overrightarrow{a} + \overrightarrow{b}$. Find the position vector of a point **R** which divides the line joining **P** and **Q** in the ratio 2:1,
 - i) internally, and
 - ii) externally.
- o) The median from A meets BC at D. Find the coordinates of the point D.
- p) Find the coordinates of points **Q** and **R** on medians BE and CF respectively such that BQ: QE = 2:1 and CR: RF = 2:1.
- q) What do you observe?
- r) If A, B and C are the vertices of $\triangle ABC$, find the coordinates of the centroid of the triangle.

Solution:

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} = \begin{pmatrix} \frac{7}{2} \\ \frac{9}{2} \end{pmatrix}, \ \mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \begin{pmatrix} \frac{5}{2} \\ \frac{2}{3} \end{pmatrix}$$
 (1.4.9.5)

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \begin{pmatrix} 5 \\ \frac{7}{2} \end{pmatrix}, \ \mathbf{G} = \mathbf{Q} = \mathbf{R} = \frac{1}{3} \begin{pmatrix} 11 \\ 11 \end{pmatrix}$$
 (1.4.9.6)

is the centroid. See Fig. 1.4.9.2.

Fig. 1.4.9.2

- 1.4.10 If P(9a-2,-b) divides line segment joining A(3a+1,-3) and B(8a,5) in the ratio 3:1, find the values of a and b.
- 1.4.11 Find the position vector of a point **R** which divides the line joining two points **P** and **Q** whose position vectors are $2\mathbf{a} + \mathbf{b}$ and $\mathbf{a} 3\mathbf{b}$ externally in the ratio 1:2.
- 1.4.12 The position vector of the point which divides the join of points $2\mathbf{a}$ - $3\mathbf{b}$ and $\mathbf{a} + \mathbf{b}$ in the ratio 3:1 is
- 1.4.13 If **a** and **b** are the postion vectors of **A** and **B**, respectively, find the position vector of a point **C** in BA produced such that BC = 1.5BA.
- 1.4.14 Find the position vector of a point **R** which divides the line joining two points **P** and **Q** whose position vectors are $(2\mathbf{a} + \mathbf{b})$ and $(\mathbf{a} 3\mathbf{b})$ externally in the ratio 1 : 2. Also, show that **P** is the mid point of the line segment RQ.

1.5 CBSE

- 1.5.1 The centre of a circle whose end points of a diameter are (-6,3) and (6,4) is _____. (10, 2020)
- 1.5.2 Find the ratio in which the Y axis divides the line segment joining the points (6, -4) and (-2, -7). Also find the point of intersection. (10, 2020)

- 1.5.3 In what ratio does the *X* axis divide the line segment joining the points A(3,6) and B(-12,-3)? (10, 2023)
- 1.5.4 A circle has its center at (4,4). If one end of a diameter is (4,0), then find the coordinates of the other end. (10, 2022)
- 1.5.5 Find the coordinates of the point which divides the line segment joining the points A(7,-1) and B(-3,-4) in the ratio 2:3. (10, 2021)
- 1.5.6 The point which divides the line segment joining the points (7, -6) and (3, 4) in the ratio 1:2 is ______. (10, 2021)
- 1.5.7 If $\left(\frac{a}{3},4\right)$ is the midpoint of the line segment joining the points (-6,5) and (-2,3), then the value of a is (10, 2021)
- 1.5.8 Find the ratio in which P(4,5) divides the line segment joining A(2,3) and B(7,8). (10, 2021)
- 1.5.9 Find the ratio in which the Y axis divides the line segment joining the points A(5, -6) and B(-1, -4). Also, find the coordinates of the point of intersection. (10, 2021)
- 1.5.10 Find the ratio in which the line segment joining the points A(1, -5) and B(-4, 5) is divided by the X axis. Also, find the coordinates of the point of division. (10, 2021)
- 1.5.11 The point **R** divides the line segment AB, where **A**(-4,0) and **B**(0,6) such that $AR = \frac{3}{4}AB$. Find the coordinates of **R**. (10, 2019)
- 1.5.12 In what ratio does the point P(-4, y) divide the line segment joining the points A(-6, 10) and B(3, -8)? Hence, find the value of y. (10, 2019)
- 1.5.13 Find the ratio in which the Y axis divides the line segment joining the points (-1, -4) and (5, -6). Also find the coordinates of the point of intersection. (10, 2019)
- 1.5.14 Points **P** and **Q** trisect the line segment joining the points A(-2,0) and B(0,8) such that **P** is nearer to **A**. Find the coordinates of points **P** and **Q**. (10, 2019)
- 1.5.15 The midpoint of the line segment joining $\mathbf{A}(2a,4)$ and $\mathbf{B}(-2,3b)$ is (1,2a+1). Find the values of a and b. (10, 2019)
- 1.5.16 Find the coordinates of a point **A** where AB is a diameter of the circle with center (3, -1) and the point **B** is (2, 6). (10, 2019)
- 1.5.17 The midpoint of the line segment joining $\mathbf{A}(2a,4)$ and $\mathbf{B}(-2,3b)$ is (1,2a+1). Find the values of a and b. (10, 2019)
- 1.5.18 Find the coordinates of a point $\bf A$ where AB is the diameter of a circle whose center is (2, -3) and $\bf B$ is the point (1, 4). (10, 2019)
- 1.5.19 Find the ratio in which the segment joining the points (1,3) and (4,5) is divided by the X axis. Also find the coordinates of this point on the X axis. (10, 2019)
- 1.5.20 Find the coordinates of a point $\bf A$ where AB is a diameter of the circle with center (-2,2) and $\bf B$ is the point (3,4).
- 1.5.21 Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence, find m. (10, 2018)
- 1.5.22 **X** and **Y** are two points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a} 3\vec{b}$ respectively. Write the position vector of a point **V** which divides the line segment XY in the ratio 2:1 externally. (12, 2018)
- 1.5.23 Show that the points $\mathbf{A}\left(-2\hat{i}+3\hat{j}+5\hat{k}\right)$, $\mathbf{B}\left(\hat{i}+2\hat{j}+3\hat{k}\right)$ and $\mathbf{C}\left(7\hat{i}-\hat{k}\right)$ are collinear. (12, 2018)
- 1.5.24 A line intersects the Y axis and X axis at the points $\mathbf{P} = (0, b)$ and $\mathbf{Q} = (c, 0)$

- respectively. If (2, -5) is the midpoint of PQ, then find the coordinates of **P** and **Q**.
- 1.5.25 In what ratio does the point $(\frac{24}{11}, y)$ divide the line segment joining the points **P** = (2,-2) and $\mathbf{Q} = (3,7)$? Also find the value of y. (10, 2017)
- 1.5.26 Let **P** and **Q** be the points of trisection of the line segment joining the points A(2, -2)and $\mathbf{B}(-7,4)$ such that \mathbf{P} is nearer to \mathbf{A} . Find the coordinates of \mathbf{P} and \mathbf{Q} . (10, 2016)
- 1.5.27 If the coordinates of points **A** and **B** are (-2, -2) and (2, -4) respectively, find the coordinates of **P** such that $AP = \frac{3}{7}AB$, and **P** lies on the line segment AB.

(10, 2015)

- 1.5.28 P(5, -3) and Q(3, y) are the points of trisection of the line segment joining A(7, -2)and $\mathbf{B}(1,-5)$. Then y equals (10, 2012)
- 1.5.29 The coordinates of the point **P** dividing the line segment joining the points A(1,3)and $\mathbf{B}(4,6)$, in the ratio 2:1 are (10, 2012)
- 1.5.30 If the coordinates of one end of a diameter of a circle are (2, 3) and the coordinates of its centre are (-2,5), then the coordinates of the other end of the diameter are

(10, 2012)

- 1.5.31 Find the coordinates of a point **P**, which lies on the line segment joining the points $\mathbf{A}(-2,2)$ and $\mathbf{B}(2,-4)$ such that $AP = \frac{3}{7}AB$. (10, 2012) 1.5.32 Find the ratio in which the line segment joining the points (1,-3) and (4,5) is divided
- by X axis. (10, 2012)
- 1.5.33 Find the ratio in which the Y axis divides the line segment joining the points (5, -6)and (-1, -4). Also find the coordinates of the point of intersection. (10, 2012)
- 1.5.34 The point **P** which divides the line segment joining the points A(2, -5) and B(5, 2)in the ratio 2:3 lies in which quadrant? (10, 2011)
- 1.5.35 The mid-point of segment AB is the point P(0,4). If the coordinates of **B** are (-2, 3) then the coordinates of **A** are (10, 2011)
- 1.5.36 Point P(x, 4) lies on the line segment joining the points A(-5, 8) and B(4, -10). Find the ratio in which point **P** divides the line segment AB. Also, find the value of x.

(10, 2011)

- 1.5.37 The centre of a circle whose end points of a diameter are (-6,3) and (6,4) is _____.
- 1.5.38 Find the ratio in which the Y axis divides the line segment joining the points (6, -4)and (-2, -7). Also find the point of intersection. (10, 2020)

1.6 Rank

1.6.1 Prove that the three points (3, 0), (-2, -2) and (8, 2) are collinear. Solution: From (1.1.9.1), the collinearity matrix can be expressed as

$$\begin{pmatrix} -5 & -2 \\ 5 & 2 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_1 + R_2} \begin{pmatrix} -5 & -2 \\ 0 & 0 \end{pmatrix} \tag{1.6.1.1}$$

which is a rank 1 matrix. The above process is known as row reduction, where we try to obtain zero rows in the matrix using arithmetic operations. The number of nonzero rows in the row reduced matrix (also known as *echelon form*) is defined as the rank. Fig. 1.6.1.1.

Fig. 1.6.1.1

1.6.2 Show that the points A(1,2,7), B(2,6,3) and C(3,10,-1) are collinear.

Solution: The matrix

$$\begin{pmatrix} \mathbf{B} - \mathbf{A} & \mathbf{C} - \mathbf{A} \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 1 & 4 & -4 \\ 2 & 8 & -8 \end{pmatrix}$$
 (1.6.2.1)

$$\stackrel{R_2=R_2-2R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 4 & -4 \\ 0 & 0 & 0 \end{pmatrix}$$
(1.6.2.2)

which has rank 1. Using (1.1.10.1), we conclude that the given points are collinear.

- 1.6.3 Determine if the points (1,5), (2,3) and (-2,-11) are collinear.
- 1.6.4 Show that the vectors $2\hat{i} 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} 8\hat{k}$ are collinear.
- 1.6.5 Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear.
- 1.6.6 In each of the following, find the value of k, for which the points are collinear.
 - a) (7,-2), (5,1), (3,k)
 - b) (8,1), (k,-4), (2,-5)
- 1.6.7 Find a relation between x and y if the points (x, y), (1, 2) and (7, 0) are collinear.
- 1.6.8 If three points (x, -1), (2, 1) and (4, 5) are collinear, find the value of x.
- 1.6.9 If three points (h,0), (a,b) and (0,k) lie on a line, show that

$$\frac{a}{h} + \frac{b}{k} = 1 \tag{1.6.9.1}$$

1.6.10 Show that the points A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7) are collinear, and find

- the ratio in which $\bf B$ divides AC.
- 1.6.11 If the points A(1,2), $\mathbf{0}(0,0)$ and $\mathbf{C}(a,b)$ are collinear, then find the relation between a and b.
- 1.6.12 Point (-4, 2) lies on the line segment joining the points A(-4, 6) and B(-4, -6).
- 1.6.13 The points (0, 5), (0, -9) and (3, 6) are collinear.
- 1.6.14 Points A(3, 1), B(12, -2) and C(0, 2) cannot be the vertices of a triangle.
- 1.6.15 Find the value of m if the points (5, 1), (-2, -3) and (8, 2m) are collinear.
- 1.6.16 Find the values of k if the points $\mathbf{A}(k+1,2k)$, $\mathbf{B}(3k,2k+3)$ and $\mathbf{C}(5k-1,5k)$ are collinear.
- 1.6.17 Using vectors, find the value of k such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
- 1.6.18 The points A(2, 1), B(0, 5), C(-1, 2) are collinear.
- 1.6.19 The vectors $\lambda \hat{i} + \lambda \hat{j} + 2\hat{k}$, $\hat{i} + \lambda \hat{j} \hat{k}$ and $2\hat{i} \hat{j} + \lambda \hat{k}$ are coplanar if $\lambda = 1$
- 1.6.20 Show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, -1) are collinear.
- 1.6.21 Show that points $\mathbf{A}(a, b + c)$, $\mathbf{B}(b, c + a)$, $\mathbf{C}(c, a + b)$ are collinear.
- 1.6.22 Show that the points A(2, -3, 4), B(-1, 2, 1) and $C(0, \frac{1}{3}, 2)$ are collinear.
- 1.6.23 Are A(3, 1), B(6, 4) and C(8, 6) collinear?
- 1.6.24 Find the values of k if the points A(2,3), B(4,k) and C(6,-3) are collinear.
- 1.6.25 Three points P(h, k), $Q(x_1, y_1)$ and $R(x_2, y_2)$ lie on a line. Show that $(h-x_1)(y_2-y_1) = (k-y_1)(x_2-x_1)$.
- 1.6.26 Show that the points P(-2,3,5), Q(1,2,3) and R(7,0,-1) are collinear.
- 1.6.27 Prove that the three points (-4, 6, 10), (2, 4, 6) and (14, 0, -2) are collinear.
- 1.6.28 Show that the points $\mathbf{A}(-2\hat{i}+3\hat{j}+5\hat{k})$, $\mathbf{B}(\hat{i}+2\hat{j}+3\hat{k})$ and $\mathbf{C}(7\hat{i}-\hat{k})$ are collinear.
- 1.6.29 Show that the points A(2, 3, -4), B(1, -2, 3) and C(3, 8, -11) are collinear.

1.7 CBSE

- 1.7.1 The value of m which makes the points (0,0), (2m,-4), and (3,6) collinear, is _____. (10, 2022)
- 1.7.2 If A(1,2), O(0,0), and C(a,6) are collinear, then the value of a is _____. (10, 2021)
- 1.7.3 Show that the points $\mathbf{A}(-2\hat{i}+3\hat{j}+5\hat{k})$, $\mathbf{B}(\hat{i}+2\hat{j}+3\hat{k})$, and $\mathbf{C}(7\hat{i}-\hat{k})$ are collinear. (12, 2019)
- 1.7.4 Using vectors, prove that the points (2, -1, 3), (3, -5, 1), and (-1, 11, 9) are collinear. (12, 2019)
- 1.7.5 Find the value of p for which the points (-5,1), (1,p), and (4,-2) are collinear. (10, 2019)
- 1.7.6 Find a relation between x and y if the points $\mathbf{A}(x,y)$, $\mathbf{B}(-4,6)$, and $\mathbf{C}(-2,3)$ are collinear. (10, 2019)
- 1.7.7 For what value of p are the points (2,1), (p,-1), and (-1,3) collinear? (10, 2019)
- 1.7.8 Using vectors, prove that the points (2, -1, 3), (3, -5, 1) and (-1, 11, 9) are collinear. (12, 2018)
- 1.7.9 If the points $\mathbf{A} = (k+1, 2k)$, $\mathbf{B} = (3k, 2k+3)$, and $\mathbf{C} = (5k-1, 5k)$ are collinear, then find the value of k. (10, 2017)
- 1.7.10 Find the relation between x and y if the points $\mathbf{A}(x, y)$, $\mathbf{B}(-5, 7)$ and $\mathbf{C}(-4, 5)$ are collinear. (10, 2015)

- 1.7.11 If the pair of equations 3x y + 8 = 0 and 6x ry + 16 = 0 represent coincident lines, then the value of r is ______. (10, 2023)
- 1.7.12 Find the value of k, if the points $\mathbf{P}(5,4)$, $\mathbf{Q}(7,k)$ and $\mathbf{R}(9,-2)$ are collinear. (10, 2011)

1.8 Length

1.8.1 Compute the magnitude of the following vectors:

$$\mathbf{a} = \hat{i} + \hat{j} + \hat{k} \tag{1.8.1.1}$$

$$\mathbf{b} = 2\hat{i} - 7\hat{j} - 3\hat{k} \tag{1.8.1.2}$$

$$\mathbf{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{3}\hat{k}$$
 (1.8.1.3)

Solution: Let

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{pmatrix}$$
 (1.8.1.4)

Then

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \tag{1.8.1.5}$$

$$\implies \|\mathbf{a}\| = \sqrt{3},\tag{1.8.1.6}$$

from (1.1.7.1). Similarly,

$$\|\mathbf{b}\| = \sqrt{\mathbf{b}^{\mathsf{T}}\mathbf{b}} = \sqrt{62},\tag{1.8.1.7}$$

$$\|\mathbf{c}\| = \sqrt{\mathbf{c}^{\mathsf{T}}\mathbf{c}} = 1 \tag{1.8.1.8}$$

- 1.8.2 Find the distance between the following pairs of points
 - (i) (2,3,5) and (4,3,1)
 - (ii) (-3,7,2) and (2,4,-1)
 - (iii) (-1, 3, -4) and (1, -3, 4)
 - (iv) (2,-1,3) and (-2,1,3)
- 1.8.3 Find the lengths of the medians of the triangle with vertices $\mathbf{A}(0,0,6)$, $\mathbf{B}(0,4,0)$ and $\mathbf{C}(6,0,0)$.
- 1.8.4 Find the coordinates of a point on Y axis which is at a distance of $5\sqrt{2}$ from the point P(3, -2, 5).
- 1.8.5 If **A** and **B** be the points (3,4,5) and (-1,3,-7) respectively, find the equation of the set of the points **P** such that $PA^2 + PB^2 = K^2$ where K is a constant.
- 1.8.6 Find the distances between the following pairs of points
 - a) (2,3),(4,1)

b) (-5,7),(-1,3)

c) (a,b), (-a,-b)

Solution:

a)

$$\therefore \mathbf{A} - \mathbf{B} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}, \tag{1.8.6.1}$$

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} - \mathbf{B}) = 8 \tag{1.8.6.2}$$

Thus, the desired distance is

$$d = \|\mathbf{A} - \mathbf{B}\| = \sqrt{8} \tag{1.8.6.3}$$

b)

$$\mathbf{C} - \mathbf{D} = \begin{pmatrix} -5\\7 \end{pmatrix} - \begin{pmatrix} -1\\3 \end{pmatrix} = \begin{pmatrix} -4\\4 \end{pmatrix} \tag{1.8.6.4}$$

$$\implies (\mathbf{C} - \mathbf{D})^{\mathsf{T}} (\mathbf{C} - \mathbf{D}) = 32 \tag{1.8.6.5}$$

Thus,

$$d = \|\mathbf{C} - \mathbf{D}\| = 4\sqrt{2} \tag{1.8.6.6}$$

c)

$$\mathbf{E} - \mathbf{F} = \begin{pmatrix} a \\ b \end{pmatrix} - \begin{pmatrix} -a \\ -b \end{pmatrix} = \begin{pmatrix} 2a \\ 2b \end{pmatrix}$$
 (1.8.6.7)

$$\implies (\mathbf{E} - \mathbf{F})^{\mathsf{T}} (\mathbf{E} - \mathbf{F}) = 4a^2 + 4b^2 \tag{1.8.6.8}$$

Thus,

$$d = ||\mathbf{E} - \mathbf{F}|| = 2\sqrt{a^2 + b^2}$$
 (1.8.6.9)

1.8.7 Find the distance between the points (0,0) and (36,15).

Solution:

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 36 \\ 15 \end{pmatrix} \tag{1.8.7.1}$$

$$\implies \mathbf{d} = \|\mathbf{A} - \mathbf{B}\| = 39 \tag{1.8.7.2}$$

1.8.8 Find the point on the X axis which is equidistant from (2, -5) and (-2, 9). **Solution:** The input parameters for this problem are available in Table 1.8.8

Symbol	Value	Description
A	$\begin{pmatrix} 2 \\ -5 \end{pmatrix}$	First point
В	$\begin{pmatrix} -2\\ 9 \end{pmatrix}$	Second point
О	?	Desired point

TABLE 1.8.8

If O lies on the x-axis and is equidistant from the points A and B,

$$\|\mathbf{O} - \mathbf{A}\| = \|\mathbf{A} - \mathbf{B}\|$$
 (1.8.8.1)

$$\implies \|\mathbf{O} - \mathbf{A}\|^2 = \|\mathbf{O} - \mathbf{B}\|^2 \tag{1.8.8.2}$$

$$\implies \|\mathbf{O}\|^2 - 2\mathbf{O}^{\mathsf{T}}\mathbf{A} + \|\mathbf{A}\|^2 = \|\mathbf{O}\|^2 - 2\mathbf{O}^{\mathsf{T}}\mathbf{B} + \|\mathbf{B}\|^2, \tag{1.8.8.3}$$

which can be simplified to obtain

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \mathbf{O} = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2}.$$
 (1.8.8.4)

$$\mathbf{O} = x\mathbf{e}_1, \tag{1.8.8.5}$$

$$x = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2(\mathbf{A} - \mathbf{B})^{\top} \mathbf{e}_1}.$$
 (1.8.8.6)

Substituting from Table 1.8.8 in (1.8.8.6), x = -7. Thus,

$$\mathbf{O} = \begin{pmatrix} -7\\0 \end{pmatrix}. \tag{1.8.8.7}$$

See Fig. 1.8.8.1.

Fig. 1.8.8.1

- 1.8.9 Find the values of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units.
- 1.8.10 If $\mathbf{Q}(0,1)$ is equidistant from $\mathbf{P}(5,-3)$ and $\mathbf{R}(x,6)$, find the values of x. Also find the distances QR and PR.
- 1.8.11 Find a relation between x and y such that the point (x, y) is equidistant from the point (3, 6) and (-3, 4).
- 1.8.12 Find a point on the X axis, which is equidistant from the points $\begin{pmatrix} 7 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
- 1.8.13 The distance between the points A(0,6) and B(0,-2) is
- 1.8.14 The distance of the point P(-6, 8) from the origin is
- 1.8.15 The distance between the points (0,5) and (-5,0) is
- 1.8.16 *AOBC* is a rectangle whose three vertices are vertices A(0,3), O(0,0) and B(5,0). The length of its diagonal is
- 1.8.17 The perimeter of a triangle with vertices (0,4), (0,0) and (3,0) is
- 1.8.18 If the distance between the points (4, P) and (1, 0) is 5, then the value of P is
- 1.8.19 Find the points on the *X* axis which are at a distance on $2\sqrt{5}$ from the point (7, -4). How many such points are there?
- 1.8.20 Find the value of a, if the if the distance between the points A(-3, -14) and B(a, -5) is 9 units.
- 1.8.21 Find a point which is equidistant from the points A(-5,4) and (-1,6). How many such points are there ?
- 1.8.22 If the point A(2, -4) is equidistant from P(3, 8) and Q(-10, y), find the values of y. Also find distance PQ.
- 1.8.23 If (a, b) is the mid-point of the line segment joining the point A(10, -6) and B(k, 4) and a 2b = 18, find the value of a, b and the distance AB.

- 1.8.24 Find a relation between x and y such that the point (x, y) is equidistant from the points (7, 1) and (3, 5).
- 1.8.25 Find a point on the Y axis which is equidistant from the points A(6,5) and B(-4,3).
- 1.8.26 Find the equation of set of points **P** such that $PA^2 + PB^2 = 2k^2$, where **A** and **B** are the points (3,4,5) and (-1,3,-7), respectively.
- 1.8.27 Find the equation of the set of the points **P** such that its distances from the points A(3,4,-5) and B(-2,1,4) are equal.
- 1.8.28 Find a vector in the direction of vector $\vec{a} = \hat{i} 2\hat{j}$ that has magnitude 7 units.

1.9 CBSE

- 1.9.1 The distance between the points (m, -n) and (-m, n) is _____. (10, 2020)
- 1.9.2 The point on the X axis which is equidistant from (-4,0) and (10,0) is _____. (10, 2020)
- 1.9.3 *AOBC* is a rectangle whose three vertices are (0, -3), (0, 0) and (4, 0). The length of its diagonal is _____. (10, 2020)
- 1.9.4 If $|\overrightarrow{a}| = 4$ and $-3 \le \lambda \le 2$, then $|\lambda \overrightarrow{a}|$ lies in
 - a) [0, 12]
 - b) [2, 3]
 - c) [8, 12]
 - d) [-12, 8]

- (12, 2020)
- 1.9.5 The distance between the point $(0, 2\sqrt{5})$ and $(-2\sqrt{5}, 0)$ is _____. (10, 2023)
- 1.9.6 If $\mathbf{Q} = (0, 1)$ is equidistant from $\mathbf{P} = (5, -3)$ and $\mathbf{R} = (x, 6)$, find the value of x. (10, 2023)
- 1.9.7 The distance of the point (-6, 8) from the origin is _____. (10, 2023)
- 1.9.8 The distance between the points (0,0) and (a-b,a+b) is _____. (10, 2022)
- 1.9.9 Find the distance between the points $\mathbf{A}\left(-\frac{7}{3},5\right)$ and $\mathbf{B}\left(\frac{2}{3},5\right)$. (10, 2021)
- 1.9.10 The distance between the points $\mathbf{A}(0,6)$ and $\mathbf{B}(0,-2)$ is _____. (10, 2021)
- 1.9.11 If the distance between the points (k, -2) and (3, -6) is 10 units, find the positive value of k. (10, 2021)
- 1.9.12 Find the length of the segment joining $\mathbf{A}(-6,7)$ and $\mathbf{B}(-1,-5)$. Also, find the midpoint of AB. (10, 2021)
- 1.9.13 A man goes 5 meters due west and then 12 meters due north. How far is he from the starting point? (10, 2021)
- 1.9.14 If P(2, 2), Q(-4, -4), and R(5, -8) are the vertices of a triangle $\triangle PQR$, then find the length of the median through R. (10, 2021)
- 1.9.15 If \mathbf{a} , \mathbf{b} , \mathbf{c} are position vectors of the points $\mathbf{A}(2,3,-4)$, $\mathbf{B}(3,-4,-5)$, and $\mathbf{C}(3,2,-3)$ respectively, then $|\mathbf{a}+\mathbf{b}+\mathbf{c}|$ is equal to _____. (12, 2021)
- 1.9.16 Find the distance between the points (a, b) and (-a, -b). (10, 2019)
- 1.9.17 Write the coordinates of a point **P** on the *x*-axis which is equidistant from the points $\mathbf{A}(-2,0)$ and $\mathbf{B}(6,0)$. (10, 2019)
- 1.9.18 Find the value of x if the distance between the points $\mathbf{A}(0,0)$ and $\mathbf{B}(x,-4)$ is 5 units. (10, 2019)

- 1.9.19 Find the values of x for which the distance between the points $\mathbf{A}(x,2)$ and $\mathbf{B}(9,8)$ is 10 units. (10, 2019)
- 1.9.20 Find the point on the Y axis which is equidistant from the points (5, -2) and (-3, 2). (10, 2019)
- 1.9.21 Given vertices of a parallelogram A(-2,1), B(a,0), C(4,b), and D(1,2). Find the values of a and b. Hence, find the lengths of its sides. (10, 2018)
- 1.9.22 Find the value of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units. (10, 2018)
- 1.9.23 If the point P(0,2) is equidistant from the points Q(3,k) and R(k,5), find the value of k. (10, 2018)
- 1.9.24 The x-coordinate of a point **P** is twice its y-coordinate. If **P** is equidistant from the points $\mathbf{Q}(2, -5)$ and $\mathbf{R}(-3, 6)$, find the coordinates of **P**. (10, 2018)
- 1.9.25 If the point $\mathbf{P}(x, y)$ is equidistant from the points $\mathbf{A}(a+b, b-a)$ and $\mathbf{B}(a-b, a+b)$, prove that bx = ay.
- 1.9.26 Find the value of k, if the point P(2,4) is equidistant from the points A(5,k) and B(k,7). (10, 2012)
- 1.9.27 If a point $\mathbf{A}(0,2)$ is equidistant from the points $\mathbf{B}(3,p)$ and $\mathbf{C}(p,5)$, then find the value of p. (10, 2012)
- 1.9.28 If **A** and **B** are the points (-6,7) and (-1,-5) respectively, then the distance 2AB is equal to _____. (10, 2011)
- 1.9.29 Find the value of y for which the distance between the points $\mathbf{A}(3, -1)$ and $\mathbf{B}(11, y)$ is 10 units. (10, 2011)
- 1.9.30 If the distances of $\mathbf{P} = (x, y)$ from $\mathbf{A} = (5, 1)$ and $\mathbf{B} = (-1, 5)$ are equal, then prove that 3x = 2y. (10, 2017)

1.10 Unit Vector

1.10.1 Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector.

Solution:

$$\therefore \mathbf{x} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, ||\mathbf{x}|| = 1 \implies x\sqrt{3} = 1 \tag{1.10.1.1}$$

or,
$$x = \frac{1}{\sqrt{3}}$$
 (1.10.1.2)

1.10.2 For given vectors, $\mathbf{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\mathbf{b} = -\hat{i} + \hat{j} - \hat{k}$, find the unit vector in the direction of the vector $\mathbf{a} + \mathbf{b}$.

Solution:

$$\therefore \mathbf{a} + \mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \tag{1.10.2.1}$$

$$\|\mathbf{a} + \mathbf{b}\| = \sqrt{2} \tag{1.10.2.2}$$

$$\implies \frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
 (1.10.2.3)

which, from (1.1.8.1) is the desired the unit vector.

1.10.3 Find a vector in the direction of vector $5\hat{i} - \hat{j} + 2\hat{k}$ which has magnitude 8 units. Solution: Let the required vector be

$$c \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}. \tag{1.10.3.1}$$

From the given information,

$$\left\| c \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} \right\| = 8$$
 (1.10.3.2)

$$\implies |c| = \frac{4\sqrt{30}}{15} \tag{1.10.3.3}$$

- 1.10.4 Find the unit vector in the direction of sum of vectors $\mathbf{a} = 2\hat{i} \hat{j} + \hat{k}$ and $\mathbf{b} = 2\hat{j} + \hat{k}$.
- 1.10.5 If $\mathbf{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = 2\hat{i} + \hat{j} 2\hat{k}$, find the unit vector in the direction of
 - a) 6a
 - b) 2a-b
- 1.10.6 Find a unit vector in the direction of \overline{PQ} , where **P** and **Q** have co-ordinates (5, 0, 8) and (3, 3, 2), respectively.
- 1.10.7 The vector in the direction of the vector $\hat{i} 2\hat{j} + 2\hat{k}$ that has magnitude 9 is
 - a) $\hat{i} 2\hat{j} + 2\hat{k}$ b) $\hat{i} 2\hat{j}$

 - c) $3(\hat{i} 2\hat{j} + 2\hat{k})$ d) $9(\hat{i} 2\hat{j} + 2\hat{k})$
- 1.10.8 Find the unit vector in the direction of the vector $\mathbf{a} = \hat{i} + \hat{j} + 2\hat{k}$.
- 1.10.9 Find the unit vector in the direction of vector \overrightarrow{PQ} , where **P** and **Q** are the points (1, 2, 3) and (4, 5, 6), respectively.
- 1.10.10 Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\mathbf{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\mathbf{b} = \hat{i} - 2\hat{j} + \hat{k}$.
- 1.10.11 If $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} \hat{j} + 3\hat{k}$ and $\mathbf{c} = \hat{i} 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\mathbf{a} - \mathbf{b} + 3\mathbf{c}$.

Solution:

$$2\mathbf{a} - \mathbf{b} + 3\mathbf{c} = \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix} \implies \frac{2\mathbf{a} - \mathbf{b} + 3\mathbf{c}}{\|2\mathbf{a} - \mathbf{b} + 3\mathbf{c}\|} = \frac{1}{\sqrt{22}} \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$$
(1.10.11.1)

1.10.12 Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\mathbf{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\mathbf{b} = \hat{i} - 2\hat{j} + \hat{k}$.

Solution:

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 (1.10.12.1)

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \implies \|\mathbf{a} + \mathbf{b}\| = \sqrt{10}$$
 (1.10.12.2)

From problem 1.10.2, the unit vector in the direction of $\mathbf{a} + \mathbf{b}$ is

$$\frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} = \frac{1}{\sqrt{10}} \begin{pmatrix} 3\\1\\0 \end{pmatrix}$$
 (1.10.12.3)

The desired vector can then be expressed as

$$\pm \frac{5}{\sqrt{10}} \begin{pmatrix} 3\\1\\0 \end{pmatrix} \tag{1.10.12.4}$$

1.10.13 If a line makes angles 90°, 135°, 45° with X, Y and Z axis respectivly. Find its direction cosines.

Solution: From (1.1.11.1), the direction vector is

$$\mathbf{A} = \begin{pmatrix} \cos 90^{\circ} \\ \cos 135^{\circ} \\ \cos 45^{\circ} \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
 (1.10.13.1)

1.10.14 Find the direction cosines of the vector joining the points **A** (1, 2, -3) and **B**(-1, -2, 1), directed from **A** to **B**.

Solution: The unit vector in the direction of AB is

$$\frac{\mathbf{B} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\|} = \frac{1}{3} \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$$
 (1.10.14.1)

and the direction cosines are the elements of the above vector.

1.10.15 Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX, OY and OZ.

Solution: Since all entries of the given vector

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \tag{1.10.15.1}$$

are equal, it is equally inclined to the axes.

1.10.16 If a line has the direction ratios –18, 12, –4, then what are its direction cosines? **Solution:** Let

$$\mathbf{A} = \begin{pmatrix} -18 \\ 12 \\ -4 \end{pmatrix} \tag{1.10.16.1}$$

Then the unit direction vector of the line is

$$\frac{\mathbf{A}}{\|\mathbf{A}\|} = \begin{pmatrix} \frac{-9}{11} \\ \frac{6}{11} \\ \frac{-2}{11} \end{pmatrix} \tag{1.10.16.2}$$

1.10.17 Find the direction cosines of the sides of a triangle whose vertices are $\begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$

and
$$\begin{pmatrix} -5 \\ -5 \\ -2 \end{pmatrix}$$
.

Solution: Let the vertices be

$$\mathbf{A} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -5 \\ -5 \\ -2 \end{pmatrix}$$
 (1.10.17.1)

The direction vectors of the sides are,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 4 \\ 4 \\ -6 \end{pmatrix} = \mathbf{m_1}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} 4 \\ 6 \\ 4 \end{pmatrix} = \mathbf{m_2},$$
 (1.10.17.2)

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -8 \\ -10 \\ 2 \end{pmatrix} = \mathbf{m}_3, \tag{1.10.17.3}$$

The corresponding unit vectors are then obtained as

$$\begin{pmatrix} \frac{2}{\sqrt{17}} \\ \frac{2}{\sqrt{17}} \\ \frac{-3}{\sqrt{17}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{17}} \\ \frac{3}{\sqrt{17}} \\ \frac{2}{\sqrt{17}} \end{pmatrix}, \begin{pmatrix} \frac{-4}{\sqrt{42}} \\ \frac{-5}{\sqrt{42}} \\ \frac{1}{\sqrt{42}} \end{pmatrix}$$
(1.10.17.4)

1.10.18 Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.

Solution: The unit vector in the direction of the given vector is

$$\mathbf{A} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} \tag{1.10.18.1}$$

1.10.19 Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution: Let α be the angle made by the line with the axes. The unit direction vector can be expressed as

$$\mathbf{x} = \begin{pmatrix} \cos \alpha \\ \cos \alpha \\ \cos \alpha \end{pmatrix} \implies ||\mathbf{x}|| = 1 \tag{1.10.19.1}$$

or,
$$\cos \alpha = \frac{1}{\sqrt{3}}$$
 (1.10.19.2)

Thus the unit direction vector of the given line is

$$\mathbf{x} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 (1.10.19.3)

1.10.20 If a unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \overrightarrow{a} .

Solution: From the given information,

$$\mathbf{a} = \begin{pmatrix} \cos\frac{\pi}{3} \\ \cos\frac{\pi}{4} \\ \cos\theta \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \cos\theta \end{pmatrix}$$
 (1.10.20.1)

$$\therefore \|\mathbf{a}\| = 1, \tag{1.10.20.2}$$

$$\frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1 \tag{1.10.20.3}$$

$$\implies \cos \theta = \frac{1}{2} \tag{1.10.20.4}$$

 $\because \theta$ is an acute angle. Hence

$$\mathbf{a} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \end{pmatrix} \tag{1.10.20.5}$$

- 1.10.21 Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of X axis.
- 1.10.22 A vector \mathbf{r} is inclined at equal angles to the three axis. If the magnitude of \mathbf{r} is $2\sqrt{3}$ units, find \mathbf{r} .

- 1.10.23 The direction cosines of the vector $(2\hat{i} + 2\hat{j} \hat{k})$ are ______.
- 1.10.24 A vector **r** has a magnitude 14 and direction ratios 2, 3, -6. Find the direction cosines and components of **r**, given that **r** makes an acute angle with X axis.
- 1.10.25 Find the unit vector in the direction of vector $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$.
- 1.10.26 Find the unit vector in the direction of the sum of the vectors, $\vec{a} = 2\hat{i} + 2\hat{j} 5\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} + 3\hat{k}$.
- 1.10.27 Write the direction ratios of the vector $\vec{a} = \hat{i} + \hat{j} \hat{k}$ and hence calculate its direction cosines.
- 1.10.28 Find the direction cosines of the unit vector perpendicular to the plane $\vec{r} \cdot (6\hat{i} 3\hat{j} (2\hat{k}) + 1 = 0$ passing through the origin.
- 1.10.29 If a line makes angle 90°, 60° and 30° with the positive direction of X, Y and Z axes respectively, find its direction cosines.
- 1.10.30 If a line has direction ratios 2, -1, -2, determine its direction cosines.
- 1.10.31 Find the direction cosines of the line passing through the two points (-2, 4, -5) and (1, 2, 3).

1.11 CBSE

- 1.11.1 Find a vector \overrightarrow{r} equally inclined to the three axes and whose magnitude is $3\sqrt{3}$ (12, 2020)
- 1.11.2 Unit vector along PQ, where coordinates of **P** and **Q** respectively are (2, 1, -1) and (4, 4, -7), is (12, 2023)
- 1.11.3 If a line makes 60° and 45° angles with the positive directions of the X axis and Z axis respectively, then find the angle that it makes with the positive direction of the Y-axis. Hence, write the direction cosines of the line. (12, 2023)
- 1.11.4 A vector of magnitude 9 units in the direction of the vector $-2\hat{i} \hat{j} + 2\hat{k}$ is _____.

 1.11.5 The scalar product of the vector $\vec{d} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $\overrightarrow{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\overrightarrow{c} = \hat{\lambda} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ and hence find the unit vector along $\overrightarrow{b} + \overrightarrow{c}$.
- 1.11.6 Find the direction cosines of a line which makes equal angles with the coordinate (12, 2019)axes.
- 1.11.7 If a line has the direction ratios -18, 12, -4, then what are its direction cosines?
- 1.11.8 Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8).
- 1.11.9 Find a unit vector perpendicular to both the vectors $\vec{a} = \hat{i} 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} 2\hat{j} + 2\hat{k}$.
- 1.11.10 Find the direction cosines of the line joining points P(4,3,-5) and Q(-2,1,8). (12, 2018)
- 1.11.11 The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vector $\overrightarrow{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ and hence find the unit vector along $\overrightarrow{b} + \overrightarrow{c}$.
- 1.11.12 If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$. (12, 2018)

- 1.11.13 If a line makes angles 90° , 135° , 45° with the x,y and z axes respectively, find its direction cosines. (12, 2018)
- 1.11.14 If $\overrightarrow{a} = 4\hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{i} 2\hat{j} + \hat{k}$, then find a unit vector parallel to the vector $\overrightarrow{a} + \overrightarrow{b}$. (12, 2016)
- 1.11.15 Write the direction ratios of the vector $3\mathbf{a} + 2\mathbf{b}$ where $\mathbf{a} = \overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$ and $\mathbf{b} = 2\overrightarrow{i} 4\overrightarrow{j} + 5\overrightarrow{k}$. (12, 2015)
- 1.11.16 The Cartesian equation of a line AB is $\frac{2x-1}{12} = \frac{y+2}{2} = \frac{z-3}{3}$. Find the direction cosines of a line parallel to line AB. (12, 2023)
- 1.11.17 Find the direction cosines of a line whose Cartesian equation is given as 3x + 1 = 6y 2 = 1 z. (12, 2022)

2.1 Formulae

2.1.1. The angle θ between **a**, **b**, is given by

$$\cos \theta = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \tag{2.1.1.1}$$

2.1.2. The equation of a line is given by

$$\mathbf{x} = \mathbf{h} + \kappa \mathbf{m} \tag{2.1.2.1}$$

2.1.3. For

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0,\tag{2.1.3.1}$$

which means that $\mathbf{m} \perp \mathbf{n}$, (2.1.2.1) can be expressed as

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = \mathbf{n}^{\mathsf{T}}\mathbf{h} + \kappa \mathbf{n}^{\mathsf{T}}\mathbf{m} \tag{2.1.3.2}$$

$$\implies \mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{2.1.3.3}$$

for

$$c = \mathbf{n}^{\mathsf{T}} \mathbf{h}.\tag{2.1.3.4}$$

n is defined to be the *normal vector* of the line. In 3D, (2.1.3.3) represents a plane. 2.1.4. Mathematically, the projection of **A** on **B** is defined as

$$\mathbf{C} = k\mathbf{B}$$
, such that $(\mathbf{A} - \mathbf{C})^{\mathsf{T}} \mathbf{C} = 0$ (2.1.4.1)

yielding

$$(\mathbf{A} - k\mathbf{B})^{\mathsf{T}} \mathbf{B} = 0 \tag{2.1.4.2}$$

or,
$$k = \frac{\mathbf{A}^{\mathsf{T}} \mathbf{B}}{\|\mathbf{B}\|^2} \implies \mathbf{C} = \frac{\mathbf{A}^{\mathsf{T}} \mathbf{B}}{\|\mathbf{B}\|^2} \mathbf{B}$$
 (2.1.4.3)

2.1.5. If **A**, **B** are unit vectors,

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} + \mathbf{B}) = ||\mathbf{A}||^2 - ||\mathbf{B}||^2 = 0$$
 (2.1.5.1)

2.1.6. If

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I},\tag{2.1.6.1}$$

then **A** is an *orthogonal* matrix. This also means that its rows and columns are unit vectors and mutually perpendicular.

2.1.7. The determinant

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1. \tag{2.1.7.1}$$

2.1.8. Let

$$\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \equiv a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{j}, \qquad (2.1.8.1)$$

$$\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \tag{2.1.8.2}$$

and

$$\mathbf{A}_{ij} = \begin{pmatrix} a_i \\ a_j \end{pmatrix},$$

$$\mathbf{B}_{ij} = \begin{pmatrix} b_i \\ b_j \end{pmatrix}.$$
(2.1.8.3)

2.1.9. The cross product or vector product of **A**, **B** is defined as

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} |\mathbf{A}_{23} & \mathbf{B}_{23}| \\ |\mathbf{A}_{31} & \mathbf{B}_{31}| \\ |\mathbf{A}_{12} & \mathbf{B}_{12}| \end{pmatrix}$$
(2.1.9.1)

2.1.10. Verify that

$$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A} \tag{2.1.10.1}$$

$$\mathbf{A} \times \mathbf{A} = \mathbf{0} \tag{2.1.10.2}$$

2.1.11. If

$$\mathbf{A} \times \mathbf{B} = \mathbf{0},\tag{2.1.11.1}$$

 ${\bf A}$ and ${\bf B}$ are linearly independent, i.e., they are points on the same line.

2.1.12.

$$\|\mathbf{A} \times \mathbf{B}\| = \|\mathbf{A}\| \times \|\mathbf{B}\| \sin \theta \qquad (2.1.12.1)$$

where θ is the angle between the vectors.

2.1.13.

$$ar(ABCD) = \frac{1}{2} ((\mathbf{C} - \mathbf{A}) \times (\mathbf{D} - \mathbf{B}))$$
 (2.1.13.1)

(2.1.13.2)

2.1.14. The area of $\triangle ABC$ is

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \|$$
 (2.1.14.1)

2.1.15. The affine transformation is given by

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{2.1.15.1}$$

where \mathbf{c} is the translation vector.

2.1.16. The matrix

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{2.1.16.1}$$

is defined to be the rotation matrix.

2.1.17.

$$\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{I} \tag{2.1.17.1}$$

P is known as as orthogonal matrix.

2.1.18. Given vertices A, C of a square, the other two vertices are given by

$$\mathbf{B} = \|\mathbf{C} - \mathbf{A}\| \cos \frac{\pi}{4} \mathbf{P} \mathbf{e}_1 + \mathbf{A}$$

$$\mathbf{D} = \|\mathbf{C} - \mathbf{A}\| \cos \frac{\pi}{4} \mathbf{P} \mathbf{e}_2 + \mathbf{A}$$
(2.1.18.1)

2.1.19. Code for orthogonality

codes/book/orth.py

2.1.20. Code for cross product

codes/book/cross.py

- 2.2 Scalar Product
- 2.2.1 Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{6}$.

Solution: From the given information,

$$\|\mathbf{a}\| = \sqrt{3}, \|\mathbf{b}\| = 2, \mathbf{a}^{\mathsf{T}}\mathbf{b} = \sqrt{6}$$
 (2.2.1.1)

Substituting in (2.1.1.1),

$$\cos \theta = \frac{1}{\sqrt{2}} \tag{2.2.1.2}$$

or,
$$\theta = 45^{\circ}$$
 (2.2.1.3)

2.2.2 Find the angle between the the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$.

Solution: Let

$$\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \tag{2.2.2.1}$$

From problem 2.2.1,

$$\cos \theta = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{10}{\sqrt{14} \times \sqrt{14}} = \frac{5}{7}$$
 (2.2.2.2)

2.2.3 Evaluate the product $(3\overrightarrow{a} - 5\overrightarrow{b}) \cdot (2\overrightarrow{a} + 7\overrightarrow{b})$.

Solution:

$$(3\mathbf{a} - 5\mathbf{b})^{\mathsf{T}} (2\mathbf{a} + 7\mathbf{b}) = 3\mathbf{a}^{\mathsf{T}} (2\mathbf{a} + 7\mathbf{b}) - 5\mathbf{b}^{\mathsf{T}} (2\mathbf{a} + 7\mathbf{b})$$

= $6 \|\mathbf{a}\|^2 - 35 \|\mathbf{b}\|^2 + 11\mathbf{a}^{\mathsf{T}}\mathbf{b}$ (2.2.3.1)

2.2.4 If the vertices \mathbf{A} , \mathbf{B} , \mathbf{C} of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2), respectively, then find $\angle ABC$.

Solution: From the given information,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, \mathbf{C} - \mathbf{B} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 (2.2.4.1)

$$\implies \angle ABC = \cos^{-1} \frac{(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{C} - \mathbf{B})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{C} - \mathbf{B}\|}$$
(2.2.4.2)

$$= \cos^{-1} \frac{10}{\sqrt{102}} \tag{2.2.4.3}$$

(2.2.4.4)

2.2.5 The slope of a line is double of the slope of another line. If tangent of the angle between them is 1/3, find the slopes of the lines.

Solution: The direction vectors of the lines can be expressed as

$$\mathbf{m}_1 = \begin{pmatrix} 1 \\ m \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 1 \\ 2m \end{pmatrix} \tag{2.2.5.1}$$

If the angle between the lines be θ ,

$$\tan \theta = \frac{1}{3} \implies \cos \theta = \frac{3}{\sqrt{10}} \tag{2.2.5.2}$$

Thus,

$$\frac{3}{\sqrt{10}} = \frac{\mathbf{m}_1^{\mathsf{T}} \mathbf{m}_2}{\|\mathbf{m}_1\| \|\mathbf{m}_2\|}$$
 (2.2.5.3)

$$= \frac{2m^2 + 1}{\sqrt{m^2 + 1}\sqrt{4m^2 + 1}}$$
 (2.2.5.4)

$$\implies \frac{9}{10} = \frac{4m^4 + 4m^2 + 1}{4m^4 + 5m^2 + 1} \tag{2.2.5.5}$$

or,
$$4m^4 - 5m^2 + 1 = 0$$
 (2.2.5.6)

yielding

$$m = \pm \frac{1}{2}, \pm 1 \tag{2.2.5.7}$$

2.2.6 Find angle between the lines, $\sqrt{3}x + y = 1$ and $x + \sqrt{3}y = 1$.

Solution: From (2.1.3.3), the normal vectors of the given lines can be expressed as

$$\mathbf{n}_1 = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}, \ \mathbf{n}_2 = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} \tag{2.2.6.1}$$

The angle between the lines can then be obtained as

$$\cos \theta = \frac{\mathbf{n}_1^{\mathsf{T}} \mathbf{n}_2}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|} = \frac{\sqrt{3}}{2}$$
 (2.2.6.2)

or,
$$\theta = 30^{\circ}$$
 (2.2.6.3)

- 2.2.7 Find the angle between the vectors $2\hat{i} \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$.
- 2.2.8 The angles between two vectors \mathbf{a} , \mathbf{b} with magnitude $\sqrt{3}$, 4 respectively, and $\mathbf{a} \cdot \mathbf{b} = 2\sqrt{3}$ is
- 2.2.9 Find the angle between the lines

$$\vec{r} = 3\hat{i} - 2\hat{j} + 6\hat{k} + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$$
 and (2.2.9.1)

$$\vec{r} = (2\hat{j} - 5\hat{k}) + \mu(6\hat{i} + 3\hat{j} + 2\hat{k}) \tag{2.2.9.2}$$

Solution: The given lines can be expressed in the form of (2.1.2.1) as

$$\mathbf{x} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} + \kappa_1 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \tag{2.2.9.3}$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 2 \\ -5 \end{pmatrix} + \kappa_2 \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix} \tag{2.2.9.4}$$

From the above, it is obvious that the direction vectors of the two lines are

$$\mathbf{m}_{1} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \ \mathbf{m}_{2} = \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix} \tag{2.2.9.5}$$

From (2.1.1.1), the angle between the two lines is obtained as

$$\cos \theta = \frac{19}{21} \tag{2.2.9.6}$$

- 2.2.10 The vectors $\mathbf{a} = 3\hat{i} 2\hat{j} + 2\hat{k}$ and $\mathbf{b} = \hat{i} 2\hat{k}$ are the adjancent sides of a parallelogram. The acute angle between its diagonals is _____.
- 2.2.11 The sine of the angle between the straight line

$$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5} \tag{2.2.11.1}$$

and the plane

$$2x - 2y + z = 5 (2.2.11.2)$$

is **Solution:** The given line can be expressed in the form (2.1.2.1) as

$$\mathbf{x} = \begin{pmatrix} 2\\3\\4 \end{pmatrix} + \kappa_1 \begin{pmatrix} 3\\4\\5 \end{pmatrix} \tag{2.2.11.3}$$

Hence the direction vector of this line is

$$\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \tag{2.2.11.4}$$

From (2.1.3.3), the normal vector of the given plane is

$$\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \tag{2.2.11.5}$$

Thus, the cosine of the angle between the two is obtained from (2.1.1.1) as

$$\frac{\sqrt{2}}{10}$$
, (2.2.11.6)

which is sine of the angle between the plane and the line.

- 2.2.12 The plane 2x 3y + 6z 11 = 0 makes an angle $\sin^{-1}(\alpha)$ with x-axis. The value of α is equal to
- 2.2.13 Find the angle between the vectors $2\hat{i} \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$.
- 2.2.14 The angles between two vectors **a** and **b** with magnitude $\sqrt{3}$ and 4, respectively, and **a**, **b**= $2\sqrt{3}$ is
- 2.2.15 The angle between the line

$$\vec{r} = (5\hat{i} - \hat{j} - 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$$
 (2.2.15.1)

and the plane

$$\vec{r} \cdot (3\hat{i} - 4\hat{j} - \hat{k}) + 5 = 0 \tag{2.2.15.2}$$

is $\sin^{-1}\left(\frac{5}{2\sqrt{91}}\right)$.

2.2.16 The angle between the planes

$$\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) = 1$$
 and (2.2.16.1)

$$\overrightarrow{r} \cdot (\hat{i} - \hat{j}) = 4 \tag{2.2.16.2}$$

is $\cos^{-1}\left(\frac{-5}{\sqrt{58}}\right)$.

2.2.17 Find the angle between the lines

$$y = (2 - \sqrt{3})(x + 5)$$
 and (2.2.17.1)

$$y = (2 + \sqrt{3})(x - 7).$$
 (2.2.17.2)

- 2.2.18 The unit vector normal to the plane x + 2y + 3z 6 = 0 is $\frac{1}{\sqrt{14}}\hat{i} + \frac{2}{\sqrt{14}}\hat{j} + \frac{3}{\sqrt{14}}\hat{k}$.
- 2.2.19 The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors

 $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

2.2.20 Find the angle between the following pairs of lines.

a)

$$\vec{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k})$$
 and (2.2.20.1)

$$\vec{r} = 7\hat{i} - 6\hat{k} + \mu(\hat{i} + 2\hat{j} + 2\hat{k}) \tag{2.2.20.2}$$

b)

$$\vec{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda(\hat{i} - \hat{j} - 2\hat{k})$$
 and (2.2.20.3)

$$\overrightarrow{r} = 2\hat{i} - \hat{j} - 56\hat{k} + \mu(3\hat{i} - 5\hat{j} - 4\hat{k})$$
 (2.2.20.4)

c)

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$. (2.2.20.5)

d)

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$. (2.2.20.6)

- 2.2.21 If the co-ordinates of the points \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
- 2.2.22 If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.
- 2.2.23 Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 2 respectively and when $\overrightarrow{a} \cdot \overrightarrow{b} = 1$.
- 2.2.24 Find angle θ between the vectors $\vec{d} = \hat{i} + \hat{j} \hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$.
- 2.2.25 If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} 3\hat{k}$ and $\hat{i} 6\hat{j} \hat{k}$ are the position vectors of points \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} respectively, then find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.
- 2.2.26 Find the angle between the pair of lines given by

$$\vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$$
 (2.2.26.1)

and
$$\vec{r} = 5\hat{i} + 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$$
 (2.2.26.2)

2.2.27 Find the angle between the pair of lines:

$$\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4} \tag{2.2.27.1}$$

and
$$\frac{x+1}{1} = \frac{y-4}{1} = \frac{z+5}{2}$$
 (2.2.27.2)

- 2.2.28 Find the angle between the two planes 2x + y 2z = 5 and 3x 6y 2z = 7 using vector method.
- 2.2.29 Find the angle between the two planes 3x 6y + 2z = 7 and 2x + 2y 2z = 5.
- 2.2.30 Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10x + 2y 11z = 3.

- 2.3.1 The angle between the vectors $\hat{i} \hat{j}$ and $\hat{j} \hat{k}$ is _____. (12, 2020)
- 2.3.2 Find the angle between unit vectors \overrightarrow{a} and \overrightarrow{b} so that $\sqrt{3}\overrightarrow{a}$ \overrightarrow{b} is also a unit vector. (12, 2020)
- 2.3.3 If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero unequal vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$, then find the angle between \overrightarrow{a} and $\overrightarrow{b} \overrightarrow{c}$. (12, 2023)
- 2.3.4 \overrightarrow{a} and \overrightarrow{b} are two unit vectors such that

$$\left| 2\overrightarrow{a} + 3\overrightarrow{b} \right| = \left| 3\overrightarrow{a} - 2\overrightarrow{b} \right|. \tag{2.3.4.1}$$

Find the angle between \overrightarrow{a} and \overrightarrow{b} . (12, 2023)

- 2.3.5 Find the angle between the line $\vec{r} = \hat{i} \hat{j} + \hat{k} + \lambda(3\hat{i} \hat{j} + 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 3$. (12, 2019)
- 2.3.6 Find the magnitude of each of the vectors \vec{a} and \vec{b} , having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$. (12, 2018)
- 2.3.7 Find the acute angle between the planes $\mathbf{r} \cdot (\hat{i} 2\hat{j} 2\hat{k}) = 1$ and $\mathbf{r} \cdot (3\hat{i} 6\hat{j} + 2\hat{k}) = 0$ (12, 2018)
- 2.3.8 If $\hat{i} + \hat{j} + k$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} 3k$, $\hat{i} 6\hat{j} k$ respectively are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether \overrightarrow{AB} and \overrightarrow{CD} are collinear or not. (12, 2018)
- Find whether \overrightarrow{AB} and \overrightarrow{CD} are collinear or not. (12, 2018) 2.3.9 If vectors \overrightarrow{a} and \overrightarrow{b} are such that $|\overrightarrow{a}| = \frac{1}{2}$, $|\overrightarrow{b}| = \frac{4}{\sqrt{3}}$ and $|\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{\sqrt{3}}$, then find $|\overrightarrow{a} \cdot \overrightarrow{b}|$. (12, 2016)
- 2.3.10 If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then what is the angle between \overrightarrow{a} and \overrightarrow{b} for $\overrightarrow{a} \sqrt{2}\overrightarrow{b}$ to be a unit vector? (12, 2016)
- 2.3.11 Find the acute angle between the planes $\vec{r} \cdot (\hat{i} 2\hat{j} 2\hat{k}) = 1$ and $\vec{r} \cdot (3\hat{i} 6\hat{j} + 2\hat{k}) = 0$. (12, 2019)

2.4 Orthogonality

- 2.4.1 Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer
 - a) $\mathbf{A}(-1, -2), \mathbf{B}(1, 0), \mathbf{C}(-1, 2), \mathbf{D}(-3, 0)$
 - b) $\mathbf{A}(-3,5), \mathbf{B}(3,1), \mathbf{C}(0,3), \mathbf{D}(-1,-4)$
 - c) A(4,5), B(7,6), C(4,3), D(1,2)

Solution: See Table 2.4.1, Fig. 2.4.1.1, Fig. 2.4.1.2. and Fig. 2.4.1.3. In b), forming the collinearity matrix

$$\begin{pmatrix} \mathbf{B} - \mathbf{A} & \mathbf{C} - \mathbf{B} \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ -4 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 + \frac{2}{3}R_1} = \begin{pmatrix} 6 & -3 \\ 0 & 0 \end{pmatrix}$$
 (2.4.1.1)

which is a rank 1 matrix. Hence, A, B, C are collinear.

Fig. 2.4.1.1

Fig. 2.4.1.2

Fig. 2.4.1.3

	$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D}?$	$(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{B}) = 0?$	$(\mathbf{C} - \mathbf{A})^{\top} (\mathbf{D} - \mathbf{B}) = 0$	Geometry
a)	Yes	Yes	Yes	Square
b)	No	-	-	Triangle
c)	Yes	No	No	Parallelogram

TABLE 2.4.1

2.4.2 Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$. **Solution:** Let

$$\mathbf{A} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix} \tag{2.4.2.1}$$

The projection of $\bf A$ on $\bf B$ is defined as the foot of the perpendicular from $\bf A$ to $\bf B$ and obtained in (2.1.4.3). Substituting numerical values,

$$\mathbf{C} = \frac{10}{19} \begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix} \tag{2.4.2.2}$$

2.4.3 Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

Solution: The given points are

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2.4.3.1}$$

Since

$$\mathbf{A}^{\mathsf{T}}\mathbf{B} = 0, \tag{2.4.3.2}$$

from (2.1.4.3), the projection vector is the origin. See Fig. 2.4.3.1.

Fig. 2.4.3.1

2.4.4 Show that each of the given three vectors is a unit vector: $\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k})$, $\frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k})$, $\frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$. Also, show that they are mutually perpendicular to each other. **Solution:**

$$\mathbf{A} = \begin{pmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \end{pmatrix}$$
 (2.4.4.1)

is an orthogonal matrix satisfying (2.1.6.1), which verifies the given conditions.

2.4.5 Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ from the vertices of a right angled triangle.

Solution:

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix}, \tag{2.4.5.1}$$

$$\implies \mathbf{B} - \mathbf{C} = \begin{pmatrix} -2\\1\\-1 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} 1\\-3\\-5 \end{pmatrix}, \tag{2.4.5.2}$$

or,
$$(\mathbf{B} - \mathbf{C})^{\mathsf{T}} (\mathbf{C} - \mathbf{A}) = 0$$
 (2.4.5.3)

2.4.6 Show that the points **A**, **B** and **C** with position vectors, $3\hat{i} - 4\hat{j} - 4\hat{k}$, $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} - 3\hat{j} - 5\hat{k}$, respectively, form the vertices of a right angled triangle.

Solution:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -1\\3\\5 \end{pmatrix}, \ \mathbf{C} - \mathbf{B} = \begin{pmatrix} -1\\-2\\-6 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -2\\1\\-1 \end{pmatrix}, \tag{2.4.6.1}$$

$$\implies (\mathbf{B} - \mathbf{A})^{\mathsf{T}} (\mathbf{C} - \mathbf{A}) = 0 \tag{2.4.6.2}$$

Hence, $\triangle ABC$ is right angled at **A**.

2.4.7 Let $\mathbf{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\mathbf{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\mathbf{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector **d** which is perpendicular to both **a** and **b**, and $\mathbf{c} \cdot \mathbf{d} = 15$.

Solution: From the given information,

$$\mathbf{a}^{\mathsf{T}}\mathbf{d} = 0 \tag{2.4.7.1}$$

$$\mathbf{b}^{\mathsf{T}}\mathbf{d} = 0 \tag{2.4.7.2}$$

$$\mathbf{c}^{\mathsf{T}}\mathbf{d} = 15\tag{2.4.7.3}$$

yielding

$$\begin{pmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{b}^{\mathsf{T}} \\ \mathbf{c}^{\mathsf{T}} \end{pmatrix} \mathbf{d} = \begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix}$$
 (2.4.7.4)

$$\Longrightarrow \begin{pmatrix} 1 & 4 & 2 \\ 3 & -2 & 7 \\ 2 & -1 & 4 \end{pmatrix} \mathbf{d} = \begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix} \tag{2.4.7.5}$$

Forming the augmented matrix,

$$\begin{pmatrix}
1 & 4 & 2 & | & 0 \\
3 & -2 & 7 & | & 0 \\
2 & -1 & 4 & | & 15
\end{pmatrix}
\xrightarrow{R_{2} \leftarrow R_{2} - 3R_{1}}
\xrightarrow{R_{3} \leftarrow R_{3} - 2R_{1}}
\begin{pmatrix}
1 & 4 & 2 & | & 0 \\
0 & -14 & 1 & | & 0 \\
0 & -9 & 0 & | & 15
\end{pmatrix}$$

$$\xrightarrow{R_{3} \leftarrow R_{3} - \frac{9}{14}R_{2}}
\xrightarrow{R_{2} \leftarrow R_{3} - \frac{9}{14}R_{2}}
\begin{pmatrix}
1 & 4 & 2 & | & 0 \\
0 & -14 & 1 & | & 0 \\
0 & 0 & -\frac{9}{14} & | & 15
\end{pmatrix} (2.4.7.6)$$

yielding

$$\mathbf{d} = \begin{pmatrix} \frac{160}{3} \\ -\frac{5}{3} \\ -\frac{70}{2} \end{pmatrix} \tag{2.4.7.7}$$

upon back substitution.

2.4.8 *ABCD* is a rectangle formed by the points A(-1,-1), B(-1,4), C(5,4) and D(5,-1). **P**, **Q**, **R** and **S** are the mid-points of *AB*, *BC*, *CD* and *DA* respectively. Is the quadrilateral *PQRS* a square? a rectangle? or a rhombus? Justify your answer.

Solution: See Fig. 2.4.8.1. From (1.1.5.3), *PQRS* is a parallelogram.

$$\mathbf{P} = \frac{3}{2}, \ \mathbf{Q} = \begin{pmatrix} 2\\4 \end{pmatrix}, \ \mathbf{R} = \begin{pmatrix} 5\\\frac{3}{2} \end{pmatrix}, \ \mathbf{S} = \begin{pmatrix} 2\\-1 \end{pmatrix}$$
 (2.4.8.1)

$$\implies (\mathbf{Q} - \mathbf{P})^{\mathsf{T}} (\mathbf{R} - \mathbf{Q}) \neq 0 \tag{2.4.8.2}$$

$$(\mathbf{R} - \mathbf{P})^{\mathsf{T}} (\mathbf{S} - \mathbf{Q}) = 0 \tag{2.4.8.3}$$

Therefore *PQRS* is a rhombus.

Fig. 2.4.8.1

2.4.9 Without using the Baudhayana theorem, show that the points A(4,4), B(3,5) and C(-1,-1) are the vertices of a right angled triangle.

Solution: See Fig. 2.4.9.1.

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -5 \\ -5 \end{pmatrix}, \ \mathbf{A} - \mathbf{B} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 (2.4.9.1)

$$\implies (\mathbf{C} - \mathbf{A})^{\mathsf{T}} (\mathbf{A} - \mathbf{B}) = 0 \tag{2.4.9.2}$$

Thus, $AB \perp AC$.

Fig. 2.4.9.1

- 2.4.10 In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
 - a) 7x + 5y + 6z + 30 = 0 and 3x-y-10z + 4 = 0
 - b) 2x + y + 3z 2 = 0 and x 2y + 5 = 0
 - c) 2x-2y+4z+5=0 and 3x-3y+6z-1=0
 - d) 2x-y+3z-1=0 and 2x-y+3z+3=0
 - e) 4x + 8y + z 8 = 0 and y + z 4 = 0

Solution: See Table 2.4.10.

TABLE 2.4.10

\mathbf{n}_1	\mathbf{n}_1	$\mathbf{n}_1^{T}\mathbf{n}_2$	$ {\bf n}_1 $	$ {\bf n}_2 $	Angle
$\begin{pmatrix} 7 \\ 5 \\ 6 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -1 \\ -10 \end{pmatrix}$	-44	√110	√110	$\cos^{-1} - \frac{2}{5}$
$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$	0			perpendicular
$\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$	36	$\sqrt{24}$	$\sqrt{54}$	parallel
$ \begin{array}{ c c } \hline \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \end{array} $	$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$	14	$\sqrt{14}$	$\sqrt{14}$	parallel
$\begin{pmatrix} 4 \\ 8 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	9	9	$\sqrt{2}$	45°

2.4.11 Show that the line joining the origin to the point P(2, 1, 1) is perpendicular to the line determined by the points A(3, 5, -1), B(4, 3, -1).

Solution:

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \mathbf{P} = \begin{pmatrix} -1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \Box$$
 (2.4.11.1)

2.4.12 Find a unit vector perpendicular to each of the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$, where $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Solution: Let the desired vector be **x**. Then,

$$(\mathbf{a} + \mathbf{b} \quad \mathbf{a} - \mathbf{b})^{\mathsf{T}} \mathbf{x} = 0$$
 (2.4.12.1)

(2.4.12.2)

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2.4.12.3)

$$\mathbf{a} - \mathbf{b} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \tag{2.4.12.4}$$

(2.4.12.2) can be expressed as

$$\left\{ \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right\}^{\mathsf{T}} \mathbf{x} = 0 \tag{2.4.12.5}$$

$$\Longrightarrow \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 0 \tag{2.4.12.6}$$

$$\implies \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 0 \tag{2.4.12.7}$$

or,
$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 0$$
 (2.4.12.8)

which can be expressed as

$$\begin{pmatrix} 3 & 2 & 2 \\ 1 & 2 & -2 \end{pmatrix} \xrightarrow{R_2 = 3R_2 - R_1} \begin{pmatrix} 3 & 2 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$
 (2.4.12.9)

$$\stackrel{R_1 = R_1 - 2R_2}{\underset{R_1 = \frac{R_1}{2}}{\longleftrightarrow}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$
(2.4.12.10)

yielding

Thus, the desired unit vector is

$$\mathbf{x} = \frac{1}{3} \begin{pmatrix} -2\\2\\1 \end{pmatrix} \tag{2.4.12.12}$$

2.4.13 If $\overrightarrow{a} = 2\hat{i} + 2\hat{j}3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ .

Solution:

$$(\mathbf{a} + \lambda \mathbf{b})^{\mathsf{T}} \mathbf{c} = 0,$$
 (2.4.13.1)

$$\lambda = -\frac{\mathbf{a}^{\mathsf{T}}\mathbf{c}}{\mathbf{b}^{\mathsf{T}}\mathbf{c}} = 8,\tag{2.4.13.2}$$

upon substituting numerical values.

- 2.4.14 Check whether (5, -2), (6, 4) and (7, -2) are the vertices of an isosceles triangle.
- 2.4.15 The perpendicular bisector of the line segment joining the points A(1,5) and B(4,6) cuts the y-axis at
- 2.4.16 The point which lies on the perpendicular bisector of the line segment joining the points A(-2, -5) and B(2, 5) is
 - a) (0,0)
 - b) (0, 2)
 - c) (2,0)
 - d) (-2,0)

- 2.4.17 The points (-4,0), (4,0), (0,3) are the vertices of
 - a) right triangle
 - b) isosceles triangle
 - c) equilateral triangle
 - d) scalene triangle
- 2.4.18 The point A(2,7) lies on the perpendicular bisector of line segment joining the points P(6,5) and O(0,-4).
- 2.4.19 The points A(-1, -2), B(4, 3), C(2, 5) and D(-3, 0) in that order form a rectangle.
- 2.4.20 Name the type of triangle formed by the points A(-5,6), B(-4,-2), and C(7,5).
- 2.4.21 What type of a quadrilateral do the points A(2, -2), B(7, 3), C(11, -1), and D(6, -6) taken in that order, form?
- 2.4.22 Find the coordinates of the point **Q** on the x-axis which lies on the perpendicular bisector of the line segment joining the points A(-5, -2) and B(4, -2). Name the type of triangle formed by points **Q**, **A** and **B**.
- 2.4.23 The points A(2,9), B(a,5) and C(5,5) are the vertices of a triangle **ABC** right angled at **B**. Find the values of a and hence the area of $\triangle ABC$.
- 2.4.24 Find a vector of magnitude 6, which is perpendicular to both the vectors $2\hat{i} \hat{j} + 2\hat{k}$ and $4\hat{i} \hat{j} + 3\hat{k}$.
- 2.4.25 If **A**, **B**, $\vec{\mathbf{C}}$, **D** are the points with position vectors $\hat{i} + \hat{j} \hat{k}$, $2\hat{i} \hat{j} + 3\hat{k}$, $2\hat{i} 3\hat{k}$, $3\hat{i} 2\hat{j} + \hat{k}$, respectively, find the projection of \overline{AB} along \overline{CD} .
- 2.4.26 Find the value of λ such that the vectors $\mathbf{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.
- 2.4.27 The number of vectors of unit length perpendicular to the vectors $\mathbf{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = \hat{j} + \hat{k}$ is
- 2.4.28 Find the equation of a plane which bisects perpendicularly the line joining the points A(2,3,4) and B(4,5,8) at right angles.
- 2.4.29 $\overrightarrow{AB} = 3\hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{CD} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ are two vectors. The position vectors of the points **A** and **C** are $6\hat{i} + 7\hat{j} + 4\hat{k}$ and $-9\hat{j} + 2\hat{k}$, respectively. Find the position vector of a point **P** on the line AB and a point **Q** on the line CD such that \overrightarrow{PQ} is perpendicular to \overrightarrow{AB} and \overrightarrow{CD} both.
- 2.4.30 Line joining the points (3, -4) and (-2, 6) is perpendicular to the line joining the points (-3, 6) and (9, -18).
- 2.4.31 Verify the following:
 - a) (0,7,-10),(1,6,-6) and (4,9,-6) are the vertices of an isoceles triangle.
 - b) (0,7,10),(-1,6,6) and (-4,9,6) are the vertices of a right angled triangle.
- 2.4.32 Show that the line through the points (1, -1, 2), (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
- 2.4.33 Find the values of p so that the lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.
- 2.4.34 Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other. 2.4.35 Do the points (3,2),(-2,-3) and (2,3) form a triangle? If so, name the type of
- 2.4.35 Do the points (3,2),(-2,-3) and (2,3) form a triangle? If so, name the type of triangle formed.
- 2.4.36 Show that the points (1,7), (4,2), (-1,-1) and (-4,4) are the vertices of a square.
- 2.4.37 Line through the points (-2,6) and (4,8) is perpendicular to the line through the

- points (8, 12) and (x, 24). Find the value of x.
- 2.4.38 Find the angle between the lines $y \sqrt{3}x 5 = 0$ and $\sqrt{3}y x + 6 = 0$.
- 2.4.39 Are the points A(3,6,9), B(10,20,30) and C(24,-41,5) the vertices of a right angled triangle?
- 2.4.40 Show that the points A(1,2,3), B(-1,-2,-1), C(2,3,2) and D(4,7,6) are the vertices of a parallelogram ABCD, but it is not a rectangle.
- 2.4.41 Show that the points $\mathbf{A}(2\hat{i}-\hat{j}+\hat{k})$, $\mathbf{B}(\hat{i}-3\hat{j}-5\hat{k})$, $\mathbf{C}(3\hat{i}-4\hat{j}-4\hat{k})$ are the vertices of a right angled triangle.
- 2.4.42 If $\overrightarrow{a} = 5\hat{i} \hat{j} 3k$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$ are perpendicular.
- 2.4.43 Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.
- 2.4.44 Find a unit vector perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

2.5 CBSE

- 2.5.1 Show that the points (7, 10), (-2, 5) and (3, 4) are vertices of an isosceles right triangle. (10, 2020)
- 2.5.2 The points (-4,0), (4,0), and (0,3) are the vertices of a:
 - a) right triangle
 - b) isosceles triangle
 - c) equilateral triangle
 - d) scalene triangle

(10, 2023)

- 2.5.3 Show that the points (-2,3), (8,3), and (6,7) are the vertices of a right-angled triangle. (10, 2023)
- 2.5.4 If $\overrightarrow{a} = 2\hat{i} + y\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are two vectors for which the vector $(\overrightarrow{a} + \overrightarrow{b})$ is perpendicular to the vector $(\overrightarrow{a} \overrightarrow{b})$, then find all the possible values of y.

(12, 2023)

- 2.5.5 Write the projection of the vector $(\overrightarrow{b} + \overrightarrow{c})$ on the vector \overrightarrow{a} , where $\overrightarrow{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} 2\hat{k}$, and $\overrightarrow{c} = 2\hat{i} \hat{j} + 4\hat{k}$. (12, 2023)
- 2.5.6 If $\overrightarrow{a} = 2\hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j} 2\hat{k}$, and $\overrightarrow{c} = \hat{i} + 3\hat{j} \hat{k}$, and the projection of vector $\overrightarrow{c} + \lambda \overrightarrow{b}$ on vector \overrightarrow{a} is $2\sqrt{6}$, find the value of λ . (12, 2023)
- 2.5.7 If $\overrightarrow{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio of the projection of vector \overrightarrow{a} on vector \overrightarrow{b} to the projection of vector \overrightarrow{b} on vector \overrightarrow{a} . (12, 2023)
- 2.5.8 Show that the three vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$, and $3\hat{i} 4\hat{j} 4\hat{k}$ form the vertices of a right-angled triangle. (12, 2023)
- 2.5.9 If $\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$, are such that the vector $(\overrightarrow{a} + \lambda \overrightarrow{b})$ is perpendicular to vector \overrightarrow{c} , then find the value of λ . (12, 2023)
- 2.5.10 What kind of triangle is formed with vertices A(0,2), B(-3,0), and C(3,0)?
 - a) A right triangle
 - b) An equilateral triangle
 - c) An isosceles triangle

d) A scalene triangle

- (10, 2021)
- 2.5.11 Check whether the points P(5,-2), Q(6,4), and R(7,-2) are the vertices of an isosceles triangle $\triangle PQR$. (10, 2021)
- 2.5.12 The points A(0,3), B(-2,a), and C(-1,4) are the vertices of a right triangle, rightangled at **A**. Find the value of a.
- 2.5.13 If $\mathbf{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\mathbf{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio $\frac{\text{projection of vector } \mathbf{a} \text{ on } \mathbf{b}}{\text{projection of vector } \mathbf{b} \text{ on vector } \mathbf{a}}$
- 2.5.14 Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\mathbf{c} = \hat{a} + 2\hat{b}$ and $\mathbf{d} = 5\hat{a} 4\hat{b}$ are perpendicular to each other, then find the angle between the vectors \hat{a} and \hat{b} .
 - (12, 2021)
- 2.5.15 Show that $|\mathbf{a}| \mathbf{b} + |\mathbf{b}| \mathbf{a}$ is perpendicular to $|\mathbf{a}| \mathbf{b} |\mathbf{b}| \mathbf{a}$, for any two non-zero vectors \mathbf{a}
- 2.5.16 Find the value of p for which the lines $\frac{1-x}{3} = \frac{2y-14}{2p} = \frac{z-3}{2}$ and $\frac{1-x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular.
- 2.5.17 Find a unit vector perpendicular to both the vectors \vec{d} and \vec{b} , where $\vec{d} = \hat{i} 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$.
- and b = 3i 2j + 2k. (12, 2019) 2.5.18 Let $\overrightarrow{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} \hat{j} + 2\hat{k}$. Show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$
- are perpendicular to each other. (12, 2019) 2.5.19 Find the value of *P* for which the lines $\frac{1-x}{3} = \frac{2y-14}{2P} = \frac{z-3}{2}$ and $\frac{1-x}{3P} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular
- 2.5.20 Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{c}| = 3$. If the projection of \overrightarrow{b} along \overrightarrow{d} is equal to the projection of \overrightarrow{c} along \overrightarrow{d} ; and \overrightarrow{b} , \overrightarrow{c} are perpendicular to each other, then find $|3\vec{a} - 2\vec{b} + 2\vec{c}|$.
- 2.5.21 Find the value of P for which the lines $\frac{1-x}{3} = \frac{2y-14}{2p} = \frac{1}{2}$ and $\frac{1-x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular.
- 2.5.22 Let $\mathbf{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\mathbf{b} = 3\hat{i} \hat{j} + 2\hat{k}$ be two vectors. Show that the vectors $(\mathbf{a} + \mathbf{b})$ and $(\mathbf{a} - \mathbf{b})$ are perpendicular to each other. (12, 2018)
- 2.5.23 Find the angle between the line $\vec{r} = (2\hat{i} \hat{j} + 3\hat{k}) + \lambda(3\hat{i} \hat{j} + 2\hat{k})$ and the plane $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 3.$ (12, 2018)
- 2.5.24 If $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $|\vec{a}| \times |\vec{b}| = 3i + 2j + 6k$, find the angle between $|\vec{a}|$ and $|\vec{b}| \times |\vec{b}| = 3i + 2j + 6k$, find the angle between $|\vec{a}| \times |\vec{b}| = 3i + 2j + 6k$. (12, 2018)
- 2.5.25 If $\mathbf{a} = 2\hat{i} \hat{j} 2\hat{k}$ and $\mathbf{b} = 7\hat{i} + 2\hat{j} 3\hat{k}$, then express \mathbf{b} in the form $\mathbf{b} = \mathbf{b_1} + \mathbf{b_2}$, where $\mathbf{b_1}$ is parallel to \mathbf{a} and $\mathbf{b_2}$ is perpendicular to \mathbf{a} . (12, 2017)
- 2.5.26 Prove that the points (3,0), (6,4), and (-1,3) are the vertices of a right-angled isosceles triangle. (10, 2016)
- 2.5.27 Write the number of vectors of unit length perpendicular to both the vectors \mathbf{a} = $2\hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = \hat{j} + \hat{k}$. (12, 2016)
- 2.5.28 Find the projection of the vector $\mathbf{a} = 2\vec{i} + 3\vec{j} + 2\vec{k}$ on the vector $\mathbf{b} = 2\vec{i} + 2\vec{j} + \vec{k}$. (12, 2015)
- 2.5.29 The points A(4,7), B(p,3) and C(7,3) are the vertices of a right triangle, right-

angled at **B**. Find the value of p.

(10, 2015)

- 2.5.30 If the two lines $L_1: x=5$, $\frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_2: x=2$, $\frac{y}{-1}=\frac{z}{z-\alpha}$ are perpendicular, then the value of α is ______. (12, 2021)
- 2.5.31 If two vertices of an equilateral triangle are (3,0) and (6,0), find the third vertex. (10, 2011)
- 2.5.32 Show that the points (7, 10), (-2, 5) and (3, 4) are vertices of an isosceles right triangle. (10, 2020)
 - 2.6 Vector Product
- 2.6.1 Find $|\overrightarrow{a} \times \overrightarrow{b}|$, if $\overrightarrow{a} = \hat{i} 7\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 3\hat{i} 2\hat{j} + 2\hat{k}$. **Solution:** From (2.1.8.3),

$$\begin{vmatrix} \mathbf{A}_{23} & \mathbf{B}_{23} \end{vmatrix} = \begin{vmatrix} -7 & -2 \\ 7 & 2 \end{vmatrix} = 0$$
 (2.6.1.1)

$$\begin{vmatrix} \mathbf{A}_{31} & \mathbf{B}_{31} \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 7 & 2 \end{vmatrix} = -19$$
 (2.6.1.2)

$$\begin{vmatrix} \mathbf{A}_{12} & \mathbf{B}_{12} \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ -7 & -2 \end{vmatrix} = 19,$$
 (2.6.1.3)

$$\|\mathbf{a} \times \mathbf{b}\| = \begin{pmatrix} |\mathbf{A}_{23} & \mathbf{B}_{23}| \\ |\mathbf{A}_{31} & \mathbf{B}_{31}| \\ |\mathbf{A}_{12} & \mathbf{B}_{12}| \end{pmatrix} = 19\sqrt{2}$$
 (2.6.1.4)

from (2.1.9.1).

2.6.2 Find λ and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \overrightarrow{0}$.

Solution: From Formula 2.1.11, performing row reduction,

$$\begin{pmatrix} 2 & 6 & 27 \\ 1 & \lambda & \mu \end{pmatrix} \xrightarrow{R_2 \leftarrow 2R_2 - R_1} \begin{pmatrix} 2 & 6 & 27 \\ 0 & 2\lambda - 6 & 2\mu - 27 \end{pmatrix}$$
 (2.6.2.1)

For the above matrix to have rank 1,

$$\mu = \frac{27}{2}, \lambda = 3. \tag{2.6.2.2}$$

2.6.3 Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5). Solution:

$$\therefore \mathbf{B} - \mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{C} - \mathbf{A} = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}, \tag{2.6.3.1}$$

$$\frac{1}{2} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -6 \\ 3 \\ 4 \end{pmatrix} = \frac{\sqrt{61}}{2}$$
 (2.6.3.2)

using (2.1.13.2), which is the desired area.

2.6.4 Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{d} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

Solution: From (2.1.14.1), the desired area is obtained as

2.6.5 Find the area of a rhombus if its vertices are A(3,0), B(4,5), C(-1,4) and D(-2,-1) taken in order.

Solution: The area of the rhombus is

$$\left\| \left(\mathbf{A} - \mathbf{D} \right) \times \left(\mathbf{B} - \mathbf{A} \right) \right\| = \begin{vmatrix} 5 & 1 \\ 1 & 5 \end{vmatrix} = 24 \tag{2.6.5.1}$$

2.6.6 Let the vectors \overrightarrow{a} and \overrightarrow{b} be such that $|\overrightarrow{a}| = 3$ and $|\overrightarrow{b}| = \frac{\sqrt{2}}{3}$, then $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, if the angle between \overrightarrow{a} and \overrightarrow{b} is

a) $\frac{\pi}{6}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$

Solution: From the given information and (2.1.12.1)

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta = 1$$
 (2.6.6.1)

$$\implies \sin \theta = \frac{1}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{1}{\sqrt{2}} \tag{2.6.6.2}$$

$$\implies \theta = \frac{\pi}{4} \tag{2.6.6.3}$$

2.6.7 Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is

Solution: Since

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -2\\0\\0 \end{pmatrix} \tag{2.6.7.1}$$

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \tag{2.6.7.2}$$

area of the rectangle is

$$\|(\mathbf{A} - \mathbf{B}) \times (\mathbf{C} - \mathbf{D})\| = 2 \tag{2.6.7.3}$$

- 2.6.8 Find the area of the triangle whose vertices are
 - a) (2,3), (-1,0), (2,-4)
 - b) (-5,-1),(3,-5),(5,2)

Solution: See Table 2.6.8.

TABLE 2.6.8

	A – B	A – C	$\frac{1}{2} \ (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \ $
a)	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 7 \end{pmatrix}$	$\frac{21}{2}$
b)	$\begin{pmatrix} -8\\4 \end{pmatrix}$	$\begin{pmatrix} -10 \\ -3 \end{pmatrix}$	32

2.6.9 Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are A(0,-1), B(2,1) and C(0,3). Find the ratio of this area to the area of the given triangle.

Solution: Using (1.1.4.1), the mid point coordinates are given by

$$\mathbf{P} = \frac{1}{2}(\mathbf{A} + \mathbf{B}) = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{2.6.9.1}$$

$$\mathbf{Q} = \frac{1}{2}(\mathbf{B} + \mathbf{C}) = \begin{pmatrix} 1\\2 \end{pmatrix} \tag{2.6.9.2}$$

$$\mathbf{R} = \frac{1}{2}(\mathbf{A} + \mathbf{C}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{2.6.9.3}$$

$$\therefore \mathbf{P} - \mathbf{Q} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \ \mathbf{Q} - \mathbf{R} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2.6.9.4)

$$ar(PQR) = \frac{1}{2} ||(\mathbf{P} - \mathbf{Q}) \times (\mathbf{Q} - \mathbf{R})|| = 1$$
 (2.6.9.5)

Similarly,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}, \ \mathbf{A} - \mathbf{C} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \tag{2.6.9.6}$$

$$\implies ar(ABC) = \frac{1}{2} ||(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C})|| = 4$$
 (2.6.9.7)

$$\implies \frac{ar(PQR)}{ar(ABC)} = \frac{1}{4}$$
 (2.6.9.8)

See Fig. 2.6.9.1

Fig. 2.6.9.1

2.6.10 Find the area of the quadrilateral whose vertices, taken in order, are A(-4,-2), B(-3,-5), C(3,-2) and D(2,3).

Solution: See Fig. 2.6.10.1

Fig. 2.6.10.1

$$\therefore \mathbf{A} - \mathbf{B} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \mathbf{A} - \mathbf{D} = \begin{pmatrix} -6 \\ -5 \end{pmatrix}, \tag{2.6.10.1}$$

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} -6 \\ -5 \end{pmatrix}, \ \mathbf{B} - \mathbf{D} = \begin{pmatrix} -3 \\ -8 \end{pmatrix}, \tag{2.6.10.2}$$

$$ar(ABD) = \frac{1}{2} ||(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{D})|| = \frac{23}{2}$$
 (2.6.10.3)

$$ar(BCD) = \frac{1}{2} ||(\mathbf{B} - \mathbf{C}) \times (\mathbf{B} - \mathbf{D})|| = \frac{33}{2}$$
 (2.6.10.4)

$$\implies ar(ABCD) = ar(ABD) + ar(BCD) = 28$$
 (2.6.10.5)

2.6.11 Verify that a median of a triangle divides it into two triangles of equal areas for $\triangle ABC$ whose vertices are A(4, -6), B(3, 2), and C(5, 2).

Solution:

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \tag{2.6.11.1}$$

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}, \ \mathbf{A} - \mathbf{D} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} \tag{2.6.11.2}$$

$$\implies ar(ABD) = \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{D})\| = 3$$
 (2.6.11.3)

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} -1 \\ -8 \end{pmatrix}, \ \mathbf{A} - \mathbf{D} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} \tag{2.6.11.4}$$

$$\implies ar(ACD) = \frac{1}{2} \|(\mathbf{A} - \mathbf{C}) \times (\mathbf{A} - \mathbf{D})\|$$
 (2.6.11.5)

$$= 3 = ar(ABD)$$
 (2.6.11.6)

See Fig. 2.6.11.1.

Fig. 2.6.11.1

2.6.12 The two adjacent sides of a parallelogram are $\mathbf{a} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\mathbf{b} = \hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.

Solution: The diagonals of the parallelogram are given by

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}, \ \mathbf{a} - \mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix}$$
 (2.6.12.1)

and the corresponding unit vectors are

$$\frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} = \begin{pmatrix} \frac{3}{\sqrt{45}} \\ -\frac{6}{\sqrt{45}} \\ \frac{2}{\sqrt{45}} \end{pmatrix}, \frac{\mathbf{a} - \mathbf{b}}{\|\mathbf{a} - \mathbf{b}\|} = \begin{pmatrix} \frac{1}{\sqrt{69}} \\ -\frac{2}{\sqrt{69}} \\ \frac{8}{\sqrt{69}} \end{pmatrix}$$
 (2.6.12.2)

The area of the parallelogram is given by

$$\|\mathbf{a} \times \mathbf{b}\| = \left\| \begin{pmatrix} 22\\-11\\0 \end{pmatrix} \right\| = \sqrt{605}$$
 (2.6.12.3)

2.6.13 The vertices of a $\triangle ABC$ are $\mathbf{A}(4,6)$, $\mathbf{B}(1,5)$ and $\mathbf{C}(7,2)$. A line is drawn to intersect sides AB and AC at \mathbf{D} and \mathbf{E} respectively, such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4}$. Calculate the area of $\triangle ADE$ and compare it with the area of the $\triangle ABC$.

Solution: See Fig. 2.6.13.1.

Fig. 2.6.13.1

Using section formula (1.1.4.1),

$$\mathbf{D} = \frac{3\mathbf{A} + \mathbf{B}}{4} = \frac{1}{4} \begin{pmatrix} 13\\23 \end{pmatrix} \tag{2.6.13.1}$$

$$\mathbf{E} = \frac{3\mathbf{A} + \mathbf{C}}{4} = \frac{1}{4} \begin{pmatrix} 19\\20 \end{pmatrix} \tag{2.6.13.2}$$

$$\mathbf{A} - \mathbf{D} = \frac{1}{4} \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \ \mathbf{A} - \mathbf{E} = \frac{1}{4} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
 (2.6.13.3)

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$$
 (2.6.13.4)

yielding

$$ar(ABD) = \frac{1}{2} ||(\mathbf{A} - \mathbf{D}) \times (\mathbf{A} - \mathbf{E})|| = \frac{15}{32}$$
 (2.6.13.5)

$$ar(ABC) = \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{B} - \mathbf{C})\| = \frac{15}{2}$$
 (2.6.13.6)

$$\implies \frac{ar(ADE)}{ar(ABC)} = \frac{1}{16}$$
 (2.6.13.7)

2.6.14 Draw a quadrilateral in the Cartesian plane, whose vertices are

$$\mathbf{A} = \begin{pmatrix} -4\\5 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0\\7 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 5\\-5 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} -4\\-2 \end{pmatrix}. \tag{2.6.14.1}$$

Also, find its area.

Solution: See Fig. 2.6.14.1. From (2.1.13.2),

$$ar(ABCD) = \frac{121}{2} \tag{2.6.14.2}$$

Fig. 2.6.14.1: Plot of quadrilateral ABCD

- 2.6.15 Find the area of region bounded by the triangle whose vertices are (1,0), (2,2) and (3,1).
- 2.6.16 Find the area of region bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2).
- 2.6.17 Find the area of the $\triangle ABC$, coordinates of whose vertices are A(2,0), B(4,5) and C(6,3).
- 2.6.18 The area of a triangle with vertices A(3,0), B(7,0) and C(8,4) is
 - a) 14
 - b) 28
 - c) 8
 - d) 6
- 2.6.19 Find the area of the triangle whose vertices are (-8,4), (-6,6) and (-3,9).
- 2.6.20 If $\mathbf{D}\left(\frac{-1}{2}, \frac{5}{2}\right)$, $\mathbf{E}(7,3)$ and $\mathbf{F}\left(\frac{7}{2}, \frac{7}{2}\right)$ are the midpoints of sides of $\triangle ABC$, find the area of the $\triangle ABC$.
- 2.6.21 Find the sine of the angle between the vectors $\mathbf{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = 2\hat{i} 2\hat{j} + 4\hat{k}$.
- 2.6.22 Using vectors, find the area of $\triangle ABC$ with vertices A(1,2,3), B(2,-1,4) and C(4,5,-1).
- 2.6.23 Find the area of the parallelogram whose diagonals are $2\hat{i} \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} \hat{k}$.
- 2.6.24 The vector from origin to the points A and B are $\mathbf{a} = 2\hat{i} 3\hat{j} + 2\hat{k}$ and $\mathbf{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of $\triangle OAB$ is
 - a) 340

- b) $\sqrt{25}$
- c) $\sqrt{229}$
- d) $\frac{1}{2}\sqrt{229}$
- 2.6.25 If $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$ and $\mathbf{b} = \hat{j} \hat{k}$, find a vector \mathbf{c} such that $\mathbf{a} \times \mathbf{c} = \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{c} = 3$.
- 2.6.26 The area of the quadrilateral ABCD, where $A(0,4,1),\ B(2,3,-1),\ C(4,5,0)$ and D(2,6,2), is equal to
 - a) 9 sq. units
 - b) 18 sq. units
 - c) 27 sq. units
 - d) 81 sq. units
- 2.6.27 Find the area of region bounded by the triangle whose vertices are (-1, 1), (0, 5) and (3, 2).
- 2.6.28 The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is
 - a) 0
 - b) -1
 - c) 1
 - d) 3
- 2.6.29 The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is
 - a) 0
 - b) -1
 - c) 1
 - d) 3
- 2.6.30 Find area of the triangle with vertices at the point given in each of the following:
 - a) (1,0), (6,0), (4,3)
 - b) (2.7), (1, 1), (10, 8)
 - c) (-2, -3), (3, 2), (-1, 8)
- 2.6.31 If area of triangle is 35 square units with vertices (2,6), (5,-4) and (k,4). Then k is:
 - a) 12
 - b) -2
 - c) -12, -2
 - d) 12, -2
- 2.6.32 Find values of k if area of triangle is 4 square units and vertices are
 - a) (k, 0), (4, 0), (0, 2)
 - b) (-2,0),(0,4),(0,k)
- 2.6.33 Find the area of the triangle whose vertices are (1,-1), (-4,6) and (-3,5).
- 2.6.34 Find the area of a triangle formed by the points A(5,2), B(4,7) and (7,-4).
- 2.6.35 Find the area of the triangle formed by the points P(-1.5,3), Q(6,-2) and R(-3,4).
- 2.6.36 If A(-5,7), B(-4,-5), C(-1,-6) and D(4,5) are the vertices of a quadrilateral, find the area of quadrilateral ABCD.
- 2.6.37 Find the area of the triangle whose vertices are (3,8), (-4,2) and (5,1).
- 2.6.38 Find $|\overrightarrow{a} \times \overrightarrow{b}|$, if $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, and $\overrightarrow{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$.
- 2.6.39 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its

vertices.

2.6.40 Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.

2.7 CBSE

- 2.7.1 The area of a triangle formed by vertices **O**, **A** and **B**, where $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{OB} = -3\hat{i} 2\hat{j} + \hat{k}$ is (12, 2020)
- 2.7.2 Find the area of the triangle whose vertices are (-1, 1), (0, 5), and (3, 2). (12, 2023)
- 2.7.3 If \overrightarrow{a} and \overrightarrow{b} are two vectors such that

$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k} \tag{2.7.3.1}$$

and

$$\overrightarrow{b} = 2\hat{i} - \hat{j} - 3\hat{k},\tag{2.7.3.2}$$

then find the vector \overrightarrow{c} , given that

$$\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \tag{2.7.3.3}$$

and

$$\overrightarrow{a} \cdot \overrightarrow{c} = 4. \tag{2.7.3.4}$$

(12, 2023)

2.7.4 If

$$\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k},\tag{2.7.4.1}$$

$$\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}, \qquad (2.7.4.2)$$

and

$$\overrightarrow{c} = 3\hat{i} + \hat{j} + 2\hat{k}, \tag{2.7.4.3}$$

then find $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$. (12, 2023)

- 2.7.5 Find the area of the triangle with vertices A(-1, 0, -2), B(0, 2, 1), and C(-1, 4, 1). (12, 2023)
- 2.7.6 Find the area of the triangle with vertices (2,0), (4,5), and (1,4). (12, 2023)
- 2.7.7 Find the area of the quadrilateral *ABCD* whose vertices are A(-4, -3), B(3, -1), C(0, 5), and D(-4, 2).
- 2.7.8 Find $|\overrightarrow{a} \times \overrightarrow{b}|$, if $|\overrightarrow{a}| = 2\hat{i} + \hat{j} + 3\hat{k}|$ and $|\overrightarrow{b}| = 3\hat{i} + 5\hat{j} 2\hat{k}$. (12, 2019)
- 2.7.9 Find the area of the triangle whose vertices are (1,0), (2,2), and (3,1). (12,2019)
- 2.7.10 Find the area of the triangle whose vertices are (-1, 1), (0, 5), and (3, 2). (12, 2019)
- 2.7.11 Find the area of a triangle whose vertices are (1,-1), (-4,6), and (-3,-5).

(10, 2019)

2.7.12 Find the area of the triangle formed by joining the midpoints of the sides of the triangle ABC, whose vertices are A(0,-1), B(2,1), and C(0,3). (10, 2019)

- 2.7.13 Given vertices A(-5,7), B(-4,-5), C(-1,-6), and D(4,5) of a quadrilateral. Find the area of quadrilateral *ABCD*. (10, 2018)
- 2.7.14 If θ is the angle between the two vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$, find $\sin \theta$. (12, 2018)
- 2.7.15 Find the volume of a cuboid whose edges are given by $-3\hat{i} + 7\hat{j} + 5\hat{k}$, $-5\hat{i} + 7\hat{j} 3\hat{k}$ and $7\hat{i} 5\hat{j} 3\hat{k}$.

(12, 2018)

- 2.7.16 Find $|\overrightarrow{a} \times \overrightarrow{b}|$, if $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$. (12, 2018)
- 2.7.17 Show that the points $\mathbf{A} = 2\hat{i} \hat{j} + \hat{k}$, $\mathbf{B} = \hat{i} 3\hat{j} 5\hat{k}$, and $\mathbf{C} = 3\hat{i} 4\hat{j} 4\hat{k}$ respectively, are the vertices of a right-angled triangle. Hence, find the area of the triangle.

(12, 2017)

- 2.7.18 The vertices of $\triangle ABC$ are $\mathbf{A}(4,6)$, $\mathbf{B}(1,5)$, and $\mathbf{C}(7,2)$. A line-segment DE is drawn to intersect the sides AB and AC at \mathbf{D} and \mathbf{E} respectively such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{3}$. Calculate the area of $\triangle ADE$ and compare it with the area of $\triangle ABC$. (10, 2016)
- 2.7.19 Find λ and μ if

$$(\hat{i} + 3\hat{j} + 9\hat{k}) \times (3\hat{i} - \lambda\hat{j} + \mu\hat{k}) = \overrightarrow{0}.$$

(12, 2016)

- 2.7.20 The two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} 5\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors Find the area of the parallelogram. (12, 2016)
- 2.7.21 Find the values of k so that the area of the triangle with vertices (1,-1), (-4,2k), and (-k,-5) is 24 sq. units. (10, 2015)
- 2.7.22 The area of a triangle whose vertices are (5,0), (8,0) and (8,4) (in sq. units) is (10, 2012)
- 2.7.23 For what value of k, (k > 0), is the area of the triangle with vertices (-2, 5), (k, -4), and (2k + 1, 10) equal to 52 sq. units? (10, 2012)
- 2.7.24 If the vertices of a triangle are (1, -3), (4, p) and (-9, 7) and its area is 15 sq. units. Find the value(s) of p. (10, 2012)
- 2.7.25 Find the area of quadrilateral *ABCD* whose vertices are $\mathbf{A}(-3, -1)$, $\mathbf{B}(-2, -4)$, $\mathbf{C}(4, -1)$ and $\mathbf{D}(3, 4)$.
- 2.7.26 Find the area of the quadrilateral *ABCD*, whose vertices are A(-3,-1), B(-2,-4), C(4,-1), and D(3,4).
- 2.7.27 Find the area of triangle ABC, whose vertices are A(2,5), B(4,7) and C(6,2). (12, 2018)
- 2.7.28 Find the area of the triangle whose vertices are (2,3), (3,5) and (4,4) (12, 2018)
- 2.7.29 The area of a triangle formed by vertices **O**, **A** and **B**, where $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{OB} = -3\hat{i} 2\hat{j} + \hat{k}$ is (12, 2020)
- 2.7.30 Find the value of k so that the area of triangle ABC with $\mathbf{A}(k+1,1)$, $\mathbf{B}(4,-3)$ and $\mathbf{C}(7,-k)$ is 6 square units. (10, 2019)
- 2.7.31 Find the area of triangle ABC, whose vertices are A(2,5), B(4,7) and C(6,2). (12, 2018)
- 2.7.32 Find the area of the triangle whose vertices are (2,3), (3,5) and (4,4) (12, 2018)

2.8.1 The two opposite vertices of a square are A(-1,2) and C(3,2). Find the coordinates of the other two vertices.

Solution:

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \implies \phi = 0^{\circ}$$
 (2.8.1.1)

where ϕ is the angle made by AC with the x-axis. Also, the diagonal

$$d = \|\mathbf{C} - \mathbf{A}\| = 4 \tag{2.8.1.2}$$

a) We start with the square in Fig. 2.8.1.1, with vertices as columns of the matrix

$$\mathbf{y} = \frac{d}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \tag{2.8.1.3}$$

in (2.1.15.1).

b) The next square, obtained as

$$Py$$
, (2.8.1.4)

which is a rotated version of Fig. 2.8.1.1, is available in Fig. 2.8.1.2. The angle of rotation

$$\theta = \phi - \frac{\pi}{4} \tag{2.8.1.5}$$

c) The desired square is obtained using (2.1.15.1) as

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \begin{pmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{pmatrix} = \begin{pmatrix} -1 & 1 & 3 & 1 \\ 2 & 0 & 2 & 4 \end{pmatrix}$$
 (2.8.1.6)

and available in Fig. 2.8.1.3. The 2nd and 4th columns in the above matrix are **B** and **C** respectively.

Fig. 2.8.1.1

Fig. 2.8.1.2

Fig. 2.8.1.3

2.8.2 The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find the vertices of the triangle. **Solution:**

Fig. 2.8.2.1: a = 2.

See Fig. 2.8.2.1. Let the base be BC. From the given information,

$$\mathbf{B} = a\mathbf{e}_2, \mathbf{C} = -a\mathbf{e}_2 \tag{2.8.2.1}$$

Since A lies on the x-axis,

$$\mathbf{A} = k\mathbf{e}_1 \tag{2.8.2.2}$$

and

$$\|\mathbf{A} - \mathbf{C}\|^2 = (2a)^2 \tag{2.8.2.3}$$

$$\implies ||\mathbf{A}||^2 + ||\mathbf{C}||^2 - 2\mathbf{A}^{\mathsf{T}}\mathbf{C} = 4a^2 \tag{2.8.2.4}$$

$$\implies k^2 + a^2 = 4a^2 \tag{2.8.2.5}$$

yielding

$$k = \pm a\sqrt{3} (2.8.2.6)$$

Thus,

$$\mathbf{A} = \pm \sqrt{3}a\mathbf{e}_1 \tag{2.8.2.7}$$

- 2.8.3 Let **a** and **b** be two unit vectors and θ the angle between them. Then **a** + **b** is a unit vector if
 - a) $\theta = \frac{\pi}{4}$
 - b) $\theta = \frac{\pi}{3}$
 - c) $\theta = \frac{\pi}{2}$
 - d) $\theta = \frac{2\pi}{3}$

Solution:

$$\|\mathbf{a} + \mathbf{b}\|^2 = 1^2$$
 (2.8.3.2)

$$\implies \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + 2\mathbf{a}^{\mathsf{T}}\mathbf{b} = 1 \tag{2.8.3.3}$$

$$\implies (\|\mathbf{a}\| \|\mathbf{b}\| \cos \theta) = \frac{-1}{2} \tag{2.8.3.4}$$

$$\implies$$
 cos $\theta = \frac{-1}{2}$, or, $\theta = \frac{2\pi}{3}$ (2.8.3.5)

2.8.4 Show that the tangent of an angle between the lines

$$\frac{x}{a} + \frac{y}{b} = 1$$
 and (2.8.4.1)

$$\frac{a}{x} - \frac{y}{b} = 1 \tag{2.8.4.2}$$

is $\frac{2ab}{a^2-b^2}$. 2.8.5 Find $|\overrightarrow{x}|$, if for a unit vector \overrightarrow{a} , $(\overrightarrow{x}-\overrightarrow{a})\cdot(\overrightarrow{x}+\overrightarrow{a})=12$.

Solution: From the given information,

$$(\mathbf{x} - \mathbf{a})^{\mathsf{T}} (\mathbf{x} + \mathbf{a}) = 12 \tag{2.8.5.1}$$

$$\implies \|\mathbf{x}\|^2 - \|\mathbf{a}\|^2 = 12 \tag{2.8.5.2}$$

$$\implies \|\mathbf{x}\| = \sqrt{13} \tag{2.8.5.3}$$

2.8.6 Find $|\overrightarrow{a}|$ and $|\overrightarrow{b}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 8$ and $|\overrightarrow{a}| = 8 |\overrightarrow{b}|$.

$$(\mathbf{a} + \mathbf{b})^{\mathsf{T}} (\mathbf{a} - \mathbf{b}) = 8, ||\mathbf{a}|| = 8 ||\mathbf{b}||,$$
 (2.8.6.1)

$$\|\mathbf{a}\|^2 - \|\mathbf{b}\|^2 = 8$$
 (2.8.6.2)

$$\implies ||8\mathbf{b}||^2 - ||\mathbf{b}||^2 = 8 \tag{2.8.6.3}$$

$$\implies \|\mathbf{b}\| = \frac{2\sqrt{2}}{3\sqrt{7}} \tag{2.8.6.4}$$

Thus,

$$\|\mathbf{a}\| = 8 \|\mathbf{b}\| = \frac{16\sqrt{2}}{3\sqrt{7}}$$
 (2.8.6.5)

2.8.7 Find the magnitude of two vectors \overrightarrow{d} and \overrightarrow{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

Solution: Given

$$\|\mathbf{a}\| = \|\mathbf{b}\|, \cos \theta = \frac{1}{2}, \mathbf{a}^{\mathsf{T}} \mathbf{b} = \frac{1}{2},$$
 (2.8.7.1)

$$\implies \frac{1}{2} = \frac{\frac{1}{2}}{\|\mathbf{a}\|^2} \implies \|\mathbf{a}\| = \|\mathbf{b}\| = 1 \tag{2.8.7.2}$$

by using the definition of the scalar product in (2.1.1.1).

2.8.8 Show that $|\vec{a}| \vec{b} + |\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b} - |\vec{b}| \vec{a}$, for any two nonzero vectors \vec{a} and \vec{b} .

Solution:

$$\|\mathbf{a}\| \, \mathbf{b} + \|\mathbf{b}\| \, \mathbf{a} = \|\mathbf{a}\| \, \|\mathbf{b}\| \left(\frac{\mathbf{b}}{\|\mathbf{b}\|} + \frac{\mathbf{a}}{\|\mathbf{a}\|} \right)$$
 (2.8.8.1)

$$\|\mathbf{a}\| \mathbf{b} - \|\mathbf{b}\| \mathbf{a} = \|\mathbf{a}\| \|\mathbf{b}\| \left(\frac{\mathbf{b}}{\|\mathbf{b}\|} - \frac{\mathbf{a}}{\|\mathbf{a}\|} \right)$$
 (2.8.8.2)

$$\implies (\|\mathbf{a}\| \,\mathbf{b} + \|\mathbf{b}\| \,\mathbf{a})^{\mathsf{T}} (\|\mathbf{a}\| \,\mathbf{b} - \|\mathbf{b}\| \,\mathbf{a}) = 0 \tag{2.8.8.3}$$

from (2.1.5.1).

- 2.8.9 If \mathbf{a} , \mathbf{b} , \mathbf{c} are unit vectors such that $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, then the value of $\mathbf{a}\cdot\mathbf{b}+\mathbf{b}\cdot\mathbf{c}+\mathbf{c}\cdot\mathbf{a}$ is
 - a) 1
 - b) 3
 - c) $\frac{-3}{2}$
 - d) None of these

Solution:

$$\|\mathbf{a} + \mathbf{b} + \mathbf{c}\|^{2} = 0$$

$$\implies \|\mathbf{a}\|^{2} + \|\mathbf{b}\|^{2} + \|\mathbf{c}\|^{2} + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0$$

$$\implies 3 + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0$$

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a} = -\frac{3}{2}$$
(2.8.9.1)

2.8.10 If either vector $\overrightarrow{a} = 0$ or $\overrightarrow{b} = 0$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$. But the converse need not be true. Justify your answer with an example.

Solution:

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{2.8.10.1}$$

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{b} = 0 \tag{2.8.10.2}$$

2.8.11 Prove that $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2$, if and only if \mathbf{a}, \mathbf{b} are perpendicular, given $\mathbf{a} \neq \mathbf{0}, \mathbf{b} \neq \mathbf{0}$.

Solution:

$$(2.8.11.1)$$

$$\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + 2\mathbf{a}^{\mathsf{T}}\mathbf{b} = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2$$
 (2.8.11.2)

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{b} = 0 \tag{2.8.11.3}$$

2.8.12 If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both these are $m_1n_2 - m_2n_1, n_1l_2 - n_2l_1, l_1m_2 - l_2m_1$.

Solution:

$$\mathbf{P} = \begin{pmatrix} l_1 & l_2 & m_1 n_2 - m_2 n_1 \\ m_1 & m_2 & n_1 l_2 - n_2 l_1 \\ n_1 & n_2 & l_1 m_2 - l_2 m_1 \end{pmatrix}$$
(2.8.12.1)

satisfies (2.1.6.1). Hence, the three vectors are mutually perpendicular.

2.8.13 Find the angle between the lines whose direction ratios are a, b, c and b-c, c-a, a-b. Solution:

$$\therefore \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} b - c \\ c - a \\ a - b \end{pmatrix} = 0, \theta = \frac{\pi}{2}$$
 (2.8.13.1)

- 2.8.14 The value of the expression $|\mathbf{a} \times \mathbf{b}| + (\mathbf{a} \cdot \mathbf{b})$ is _____
- 2.8.15 If $|\mathbf{a} \times \mathbf{b}|^2 + |\mathbf{a} \cdot \mathbf{b}|^2 = 144$ and $|\mathbf{a}| = 4$, then $|\mathbf{b}|$ is equal to _____.
- 2.8.16 If the directions cosines of a line are (k, k, k) then
 - a) k > 0
 - b) 0 < k < 1
 - c) k = 1

d)
$$k = \frac{1}{\sqrt{3}}$$
 or $-\frac{1}{\sqrt{3}}$

- 2.8.17 Find the position vector of a point A in space such that \overrightarrow{OA} is inclined at 60° to OX and at 45° to OY and $|\overrightarrow{OA}| = 10$ units.
- 2.8.18 If (-4,3) and (4,3) are two vertices of an equilateral triangle. Find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.
- 2.8.19 A(6,1), B(8,2) and C(9,4) are three vertices of a parallelogram ABCD. If C is the midpoint of DC find the area of $\triangle ADE$.
- 2.8.20 If the points A(1,-2), B(2,3), C(a,2) and D(-4-3) form parallelogram, find the value of a and height of the parallelogram taking AB as base.
- 2.8.21 Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter school and then reaches the office what is the extra distance travelled by Ayush in reaching his office? If the house is situated at (2, 4), bank at (5, 8), school at (13, 14) and office at (13, 26) and coordinates are in km.
- 2.8.22 Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, $l^2 + m^2 n^2 = 0$.
- 2.8.23 If a variable line in two adjacent positions has directions cosines l, m, n and $l + \delta l, m + \delta m, n + \delta n$, show that the small angle $\delta \theta$ between the two positions is given by

$$\delta\theta^2 = \delta l^2 + \delta m^2 + \delta n^2 \tag{2.8.23.1}$$

- 2.8.24 The vector $\mathbf{a} + \mathbf{b}$ bisects the angle between the non-collinear vectors \mathbf{a} and \mathbf{b} if
- 2.8.25 If **a** and **b** are adjacent sides of a rhombus, then $\mathbf{a} \cdot \mathbf{b} = 0$.
- 2.8.26 If A, B, C are mutually perpendicular vectors of equal magnitudes, show that the A + B + C is equally inclined to A, B and C.
- 2.8.27 Projection vector of **a** on **b** is
 - a) $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right)$
 - b) $\frac{\dot{\mathbf{a}}}{\mathbf{B}}$
 - c) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
 - d) $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)$
- 2.8.28 If **a** is any non-zero vector, then $(\mathbf{a} \cdot \hat{\imath})\hat{i} + (\mathbf{a} \cdot \hat{\jmath})\hat{j} + (\mathbf{a} \cdot \hat{k})\hat{k}$ equals _____.
- 2.8.29 If \mathbf{a} , \mathbf{b} , \mathbf{c} are the three vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ and $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$, $|\mathbf{c}| = 5$, the value of $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$ is
 - a) 0
 - b) 1
 - c) -19
 - d) 38
- 2.8.30 If $\mathbf{r} \cdot \mathbf{a} = 0$, $\mathbf{r} \cdot \mathbf{b} = 0$ and $\mathbf{r} \cdot \mathbf{c} = 0$ for some non-zero vector \mathbf{r} , then the value of $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is _____.
- 2.8.31 If $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} \mathbf{b}|$, then the vectors \mathbf{a} and \mathbf{b} are orthogonal.
- 2.8.32 Prove that the lines x = py+q, z = ry+s and x = p'y+q', z = r'y+s' are perpendicular if pp' + rr' + 1 = 0.
- 2.8.33 Show that the straight lines whose direction cosines are given by 2l + 2m n = 0

and mn + nl + lm = 0 are at right angles.

- 2.8.34 If $l_1, m_1, n_1; l_2, m_2, n_2; l_3, m_3, n_3$ are the direction cosines of the three mutually perpendicular lines, prove that the line whose direction cosines are proportional to $l_1 + l_2 + l_3, m_1 + m_2, m_3, n_1 + n_2 + n_3$ make angles with them.
- 2.8.35 Assuming that straight lines work as the plane mirror for a point, find the image of the point (1, 2) in the line x 3y + 4 = 0.
- 2.8.36 Find $|\vec{a} \vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $|\vec{a}| = 4$.
- 2.8.37 If \overrightarrow{a} is a unit vector and $(\overrightarrow{x} \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 8$, then find $|\overrightarrow{x}|$
- 2.8.38 Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are three vectors such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$ $|\overrightarrow{c}| = 5$ and each one of them being perpendicular to the sum of the other to, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$.
- 2.8.39 If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and $\hat{k}, \vec{\alpha} = 3\hat{i} \hat{j}, \vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}$ where $\vec{\beta_1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta_2}$ is perpendicular to $\vec{\alpha}$.
- 2.8.40 Three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. Evaluate the quantity $\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$, if $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 2$.
- 2.8.41 A line makes angles α, β, γ and δ with the diagonals of a cube, prove that

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma + \cos^{2} \delta = \frac{4}{3}.$$
 (2.8.41.1)

2.9 CBSE

- 2.9.1 Jagdish has a field which is in the shape of a right-angled triangle AQC. He wants to leave a space in the form of a square PQRS inside the field for growing wheat and the remaining space for growing vegetables. In the field, there is a pole marked as \mathbf{O} . Based on the above information, answer the following equations
 - a) Taking **O** as the origin, P = (-200, 0) and Q = (200, 0). PQRS being a square, what are the coordinates of **R** and **S**?
 - b) i) What is the area of square PQRS?
 - ii) What is the length of diagonal PR in PQRS?
 - c) If **S** divides CA in the ratio K: 1, what is the value of K, where $\mathbf{A} = (200, 800)$? (10, 2023)
- 2.9.2 If (-5,3) and (5,3) are two vertices of an equilateral triangle, then the coordinates of the third vertex, given that the origin lies inside the triangle (take $\sqrt{3} = 1.7$), are (10, 2023)
- 2.9.3 If

$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 400 \text{ and } \left| \overrightarrow{b} \right| = 5,$$

find the value of $|\vec{a}|$. (12, 2022)

2.9.4 If

$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k} \overrightarrow{a} \cdot \overrightarrow{b} = 1$$
, and $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} - \hat{k}$,

then find $|\overrightarrow{b}|$. (12, 2022)

2.9.5 If

$$|\overrightarrow{a}| = 3$$
, $|\overrightarrow{b}| = 2\sqrt{3}$ and $|\overrightarrow{a}| \cdot |\overrightarrow{b}| = 6$,

then find the value of $|\vec{a} \times \vec{b}|$. (12, 2022)

2.9.6 $|\vec{a}| = 8$, $|\vec{b}| = 3$, and $|\vec{a}| \cdot |\vec{b}| = 12\sqrt{3}$, then the value of $|\vec{a}| \times |\vec{b}|$ is (12, 2022)

$$\overrightarrow{d} = 2\hat{i} + \hat{j} + 3\hat{k}, \ \overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}, \text{ and } \overrightarrow{c} = 3\hat{i} + \hat{j} + 2\hat{k},$$

then find $\overrightarrow{d} \cdot (\overrightarrow{b} \times \overrightarrow{c})$. 2.9.8 \overrightarrow{d} , \overrightarrow{b} , \overrightarrow{c} , and \overrightarrow{d} are four non-zero vectors such that (12, 2022)

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$

and

$$\overrightarrow{a} \times \overrightarrow{c} = 4\overrightarrow{b} \times \overrightarrow{d}$$

then show that $(\overrightarrow{d} - 2\overrightarrow{d})$ is parallel to $(2\overrightarrow{b} - \overrightarrow{c})$ where

$$\overrightarrow{d} \neq 2\overrightarrow{d}$$
, $\overrightarrow{c} \neq 2\overrightarrow{b}$.

(12, 2022)

2.9.9 If

$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k},$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = 1$$
,

and

$$\overrightarrow{a} \times \overrightarrow{b} = \hat{i} - \hat{k}$$
.

then find $|\overrightarrow{b}|$. (12, 2022)

2.9.10 If \overrightarrow{a} and \overrightarrow{b} are two vectors such that

$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{b} \right|,$$

then prove that $(\overrightarrow{a} + 2\overrightarrow{b})$ is perpendicular to \overrightarrow{a} . (12, 2.9.11 If \overrightarrow{a} and \overrightarrow{b} are unit vectors and θ is the angle between them, then prove that (12, 2022)

$$\sin\frac{\theta}{2} = \frac{1}{2}\left|\overrightarrow{a} - \overrightarrow{b}\right|.$$

(12, 2022)

2.9.12 If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then prove that

$$\sin\frac{\theta}{2} = \frac{1}{2}\left|\overrightarrow{a} - \overrightarrow{b}\right|.$$

(12, 2022)

- 2.9.13 If \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are the position vectors of the points $\mathbf{A}(2,3,-4)$, $\mathbf{B}(3,-4,-5)$, and $\mathbb{C}(3,2,-3)$ respectively, then $|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|$ is equal to:
- 2.9.14 The two adjacent sides of a parallelogram are represented by $2\hat{i}+4\hat{j}-5\hat{k}$ and $\hat{i}+2\hat{j}+3\hat{k}$. Find the unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram also. (12, 2022)
- 2.9.15 If the points A(2,0), B(6,1), and C(p,q) form a triangle of area 12 square units (positive only) and

$$2p + q = 10,$$

then find the values of p and q.

(10, 2022)

- 2.9.16 Prove that three points A, B, and C with position vectors a, b, and c respectively are collinear if and only if $(\mathbf{b} \times \mathbf{c}) + (\mathbf{c} \times \mathbf{a}) + (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$.
- 2.9.17 If $|\vec{a}| = 2$, $|\vec{b}| = 7$, and $|\vec{a}| \times |\vec{b}| = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between $|\vec{a}|$ and $|\vec{b}|$.
- 2.9.18 Find the volume of a cuboid whose edges are given by $-3\hat{i} + 7\hat{j} + 5\hat{k}$, $-5\hat{i} + 7\hat{j} 3\hat{k}$, and $7\hat{i} - 5\hat{j} - 3\hat{k}$.
- 2.9.19 Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, and $|\overrightarrow{c}| = 3$. If the projection of \overrightarrow{b} along \overrightarrow{a} is equal to the projection of \overrightarrow{c} along \overrightarrow{a} , and \overrightarrow{b} and \overrightarrow{c} are perpendicular to each other, then find $|3\overrightarrow{a} - 2\overrightarrow{b} + 2\overrightarrow{c}|$. (12, 2019)
- 2.9.20 X and Y are two points with position vectors $3\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} 3\overrightarrow{b}$, respectively. Write the position vector of a point Z which divides the line segment XY in the ratio 2:1externally.
- 2.9.21 Let $\overrightarrow{\mathbf{a}} = 4\hat{i} + 5\hat{j} \hat{k}$, $\overrightarrow{\mathbf{b}} = \hat{i} 4\hat{j} + 5\hat{k}$, and $\overrightarrow{\mathbf{c}} = 3\hat{i} + \hat{j} \hat{k}$. Find a vector $\overrightarrow{\mathbf{d}}$ which is perpendicular to both $\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{b}}$ and satisfies $\overrightarrow{\mathbf{d}} \cdot \overrightarrow{\mathbf{a}} = 21$.
- 2.9.22 Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, and $|\overrightarrow{c}| = 3$. If the projection of $|\overrightarrow{b}|$ along $|\overrightarrow{a}|$ is equal to the projection of $|\overrightarrow{c}|$ along $|\overrightarrow{a}|$, and $|\overrightarrow{b}|$ and $|\overrightarrow{c}|$ are perpendicular to each other, then find $|3\overrightarrow{a} - 2\overrightarrow{b} + 2\overrightarrow{c}|$.
- 2.9.23 Given that vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form a triangle such that $\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$. Find p, q, r, ssuch that area of triangle is $5\sqrt{6}$ where $\vec{a} = p\hat{i} + q\hat{j} + r\hat{k}$, $\vec{b} = s\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$. (12, 2016)
- 2.9.24 Find the co-ordinates of the point where the line $\vec{r} = (-\hat{i} 2\hat{j} 3\hat{k}) + \lambda(3\hat{i} + 4\hat{j} + 3\hat{k})$ meets the plane which is perpendicular to the vector $\vec{n} = \hat{i} + \hat{j} + 3\hat{k}$ and at a distance of $\frac{4}{\sqrt{11}}$ from origin. (12, 2016) 2.9.25 Find a unit vector perpendicular to each of the vectors $(\mathbf{a} + \mathbf{b})$ and $(\mathbf{a} - \mathbf{b})$ where
- $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \ \mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k}.$ (12, 2022)
- 2.9.26 If $f(\alpha) = \begin{bmatrix} \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then prove that

$$f(\alpha) f(-\beta) = f(\alpha - \beta)$$
.

(12, 2023)

3.1 Formulae

3.1.1. Construct a $\triangle ABC$ given $a, \angle B$ and K = b + c.

Solution: Using the cosine formula in $\triangle ABC$,

$$b^2 = a^2 + c^2 - 2ac\cos B \tag{3.1.1.1}$$

$$\implies (K - c)^2 = a^2 + c^2 - 2ac \cos B \tag{3.1.1.2}$$

$$\implies c = \frac{K^2 - a^2}{2(K - a\cos B)}$$
 (3.1.1.3)

The coordinates of $\triangle ABC$ can then be expressed as

$$\mathbf{A} = c \begin{pmatrix} \cos B \\ \sin B \end{pmatrix}, \mathbf{B} = \mathbf{0}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}. \tag{3.1.1.4}$$

3.1.2. Construct a $\triangle ABC$ given $\angle B$, $\angle C$ and K = a + b + c.

Solution:

$$a + b + c = K (3.1.2.1)$$

$$b\cos C + c\cos B - a = 0 \tag{3.1.2.2}$$

$$b\sin C - c\sin B = 0 \tag{3.1.2.3}$$

resulting in the matrix equation

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & \cos C & \cos B \\ 0 & \sin C & -\sin B \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = K \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
(3.1.2.4)

which can be solved to obtain all the sides. $\triangle ABC$ can then be plotted using

$$\mathbf{A} = \begin{pmatrix} a \\ b \end{pmatrix}, \ \mathbf{B} = \mathbf{0}, \ \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$
 (3.1.2.5)

3.2 Triangle

3.2.1 Construct a triangle ABC in which BC = 7cm, $\angle B = 75^{\circ}$ and AB + AC = 13cm. **Solution:** From (3.1.1.3) and (3.1.1.4), we obtain Fig. 3.2.1.1.

Fig. 3.2.1.1

3.2.2 Construct a triangle ABC in which BC = 8cm, $\angle B = 45^{\circ}$ and AB - AC = 3.5cm. **Solution:** See Fig. 3.2.2.1.

Fig. 3.2.2.1

3.2.3 Construct a triangle *ABC* in which BC = 6cm, $\angle B = 60^{\circ}$ and AC - AB = 2cm. **Solution:** See Fig. 3.2.3.1 obtained by substituting K = -2.

Fig. 3.2.3.1

3.2.4 Construct a right triangle whose base is 12cm and sum of its hypotenuse and other side is 18cm.

Solution: For a = 12, $\angle B = 90^{\circ}$, b + c = 18, we obtain Fig. 3.2.4.1.

Fig. 3.2.4.1

3.2.5 Construct a triangle ABC in which $\angle B = 30^{\circ}$, $\angle C = 90^{\circ}$ and AB + BC + CA = 11cm.

Solution: From (3.1.2.4) and (3.1.2.5), Fig. 3.2.5.1 is generated.

Fig. 3.2.5.1

- 3.2.6 Draw a right triangle ABC in which BC = 12cm, AB = 5cm and $\angle B = 90^{\circ}$.
- 3.2.7 Draw an isosceles triangle ABC in which AB = AC = 6cm and BC = 6cm.
- 3.2.8 Draw a triangle ABC in which AB = 5cm, BC = 6cm and $\angle ABC = 60^{\circ}$.
- 3.2.9 Draw a triangle ABC in which AB = 4cm, BC = 6cm and AC = 9cm.
- 3.2.10 Draw a triangle ABC in which BC = 6cm, CA = 5cm and AB = 4cm.
- 3.2.11 Is it possible to construct a triangle with lengths of its sides as 4*cm*, 3*cm* and 7*cm*? Give reason for your answer.
- 3.2.12 Is it possible to construct a triangle with lengths of its sides as 9cm, 7cm and 17cm? Give reason for your answer.
- 3.2.13 Is it possible to construct a triangle with lengths of its sides as 8cm, 7cm and 4cm? Give reason for your answer.
- 3.2.14 Two sides of a triangle are of lengths 5cm and 1.5cm. The length of the third side of the triangle cannot be
 - a) 3.6cm
 - b) 4.1*cm*
 - c) 3.8cm
 - d) 3.4cm
- 3.2.15 The construction of a triangle ABC, given that BC = 6cm, $\angle B = 45^{\circ}$ is not possible when difference of AB and AC is equal to
 - a) 6.9*cm*
 - b) 5.2*cm*
 - c) 5.0cm

- d) 4.0cm
- 3.2.16 The construction of a triangle ABC, given that BC = 6cm, $\angle C = 60^{\circ}$ is possible when difference of AB and AC is equal to
 - a) 3.2*cm*
 - b) 3.1*cm*
 - c) 3*cm*
 - d) 2.8cm
- 3.2.17 Construct a triangle whose sides are 3.6cm, 3.0cm and 4.8cm. Bisect the smallest angle and measure each part.
- 3.2.18 Construct a triangle ABC in which BC = 5cm, $\angle B = 60^{\circ}$ and AC + AB = 7.5cm.

Construct each of the following and give justification:

- 3.2.19 A triangle if its perimeter is 10.4cm and two angles are 45° and 120°.
- 3.2.20 A triangle PQR given that QR = 3cm, $\angle PQR = 45^{\circ}$ and QP PR = 2cm.
- 3.2.21 A right triangle when one side is 3.5cm and sum of other sides and the hypotenuse is 5.5cm.
- 3.2.22 An equilateral triangle if its altitude is 3.2cm.

Write true or false in each of the following. Give reasons for your answer:

- 3.2.23 A triangle ABC can be constructed in which AB = 5cm, $\angle A = 45^{\circ}$ and BC + AC = 5cm.
- 3.2.24 A triangle ABC can be constructed in which BC = 6cm, $\angle B = 30^{\circ}$ and AC AB = 4cm.
- 3.2.25 A triangle ABC can be constructed in which $\angle B = 105^{\circ}$, $\angle C = 90^{\circ}$ and AB + BC + AC = 10cm.
- 3.2.26 A triangle ABC can be constructed in which $\angle B = 60^{\circ}$, $\angle C = 45^{\circ}$ and AB + BC + AC = 12cm.
- 3.2.27 Draw a right triangle ABC in which BC = 12 cm, AB = 5 cm and $\angle B = 90^{\circ}$.
- 3.2.28 Draw a triangle ABC in which AB=4 cm, BC=6cm and AC=9.
- 3.2.29 Draw a triangle ABC in which AB=5 cm. BC = 6cm and $\angle ABC = 60^{\circ}$.
- 3.2.30 Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm and $\angle ABC = 60^{\circ}$, divide it into triangles ACB and ABD by the diagonal BD. Construct the triangle BD'C' similar to $\triangle BDC$ with scale factor $\frac{4}{3}$. Draw the line segment D'A' parallel to DA where **A**' lies on extended side BA. Is A'BC'D' a parallelogram?
- 3.2.31 Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm.

3.3 CBSE

- 3.3.1 Draw a triangle $\triangle ABC$ with BC = 6 cm, AB = 5 cm, and $\angle ABC = 60^{\circ}$. (10, 2018)
- 3.3.2 Construct a triangle with sides 5cm, 6cm and 7cm. (10, 2019)
- 3.3.3 Construct an equilateral $\triangle ABC$ with each side 5cm. (10, 2019)
- 3.3.4 Construct a right triangle in which sides (other than the hypotenuse) are 8*cm* and 6*cm*. (10, 2019)
- 3.3.5 Construct a $\triangle ABC$ in which CA = 6cm, AB = 5cm and $BAC = 45^{\circ}$. (10, 2019)
- 3.3.6 Construct a triangle ABC with side BC = 6cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$. (10, 2019)
- 3.3.7 Write the steps of construction for drawing a $\triangle ABC$ in which BC = 8cm, $\angle B = 45^{\circ}$ and $\angle C = 30^{\circ}$. (10, 2018)
- 3.3.8 Construct a triangle ABC with side BC = 7 cm, $\angle B=45^{\circ}$, $\angle A=105^{\circ}$. (10, 2017)

- 3.3.9 Draw an isosceles $\triangle ABC$ in which BC = 5.5cm and altitude AL = 5.3cm. (10, 2016)
- 3.3.10 Construct a right triangle ABC with AB = 6 cm, BC = 8 cm and $\angle B = 90^{\circ}$. Draw BD, the perpendicular from **B** on AC. Draw the circle through **B**, **C** and **D** and construct the tangents from **A** to this circle (10, 2015)
- 3.3.11 Construct a \triangle ABC in which AB = 6 cm, \angle A = 30° and \angle B = 60°. (10, 2015)
- 3.3.12 Construct a triangle ABC in which AB = 5 cm, BC = 6 cm and $\angle ABC = 60^{\circ}$. (10, 2015)
- 3.3.13 Draw a triangle ABC with BC = 7 cm, $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$. (10, 2012)
- 3.3.14 Construct a right triangle in which the sides, (other than the hypotenuse) are of length 6 cm and 8 cm. (10, 2012)

3.4 Quadrilateral

- 3.4.1 Draw a quadrilateral in the Cartesian plane, whose vertices are (-4, 5), (0, 7), (5, -5) and (-4, -2).
- 3.4.2 Draw a parallelogram ABCD in which BC = 5cm, AB = 3cm and $\angle ABC = 60^{\circ}$, divide it into triangles ACB and ABD by the diagonal BD.
- 3.4.3 Construct a square of side 3cm.
- 3.4.4 Construct a rectangle whose adjacent sides are of lengths 5cm and 3.5cm.
- 3.4.5 Construct a rhombus whose side is of length 3.4cm and one of its angles is 45°.
- 3.4.6 Construct a rhombus whose diagonals are 4 cm and 6 cm in lengths.

4.1 Formulae

4.1.1. The equation of a line is given by

$$y = mx + c (4.1.1.1)$$

$$\implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ mx + c \end{pmatrix} = \begin{pmatrix} 0 \\ c \end{pmatrix} + x \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{4.1.1.2}$$

yielding

$$\mathbf{x} = \mathbf{h} + \kappa \mathbf{m}.\tag{4.1.1.3}$$

where h is any point on the line and

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{4.1.1.4}$$

is the direction vector.

4.1.2. For

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0,\tag{4.1.2.1}$$

(4.1.1.3) can be expressed as

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = \mathbf{n}^{\mathsf{T}}\mathbf{h} + \kappa \mathbf{n}^{\mathsf{T}}\mathbf{m} \tag{4.1.2.2}$$

$$\implies \mathbf{n}^{\mathsf{T}} (\mathbf{x} - \mathbf{h}) = 0$$
or, $\mathbf{n}^{\mathsf{T}} \mathbf{x} = c$

$$(4.1.2.3)$$

for

$$c = \mathbf{n}^{\mathsf{T}} \mathbf{h}.\tag{4.1.2.4}$$

where

$$\mathbf{n} = \begin{pmatrix} -m \\ 1 \end{pmatrix} \tag{4.1.2.5}$$

is defined to be the *normal vector* of the line. In 3D, (4.1.2.3) represents a plane.

4.1.3. If **A**, **B**, **C** are collinear, from (4.1.2.3),

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = c \tag{4.1.3.1}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{B} = c \tag{4.1.3.2}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{C} = c \tag{4.1.3.3}$$

which can be expressed as

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \mathbf{n} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{4.1.3.4}$$

$$\equiv \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \tag{4.1.3.5}$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{n} \\ -1 \end{pmatrix} = \mathbf{0} \tag{4.1.3.6}$$

4.1.4. The equation of a line that does not pass through the origin can be expressed as

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = 1 \tag{4.1.4.1}$$

4.1.5. Let the perpendicular distance from the origin to a line be p and the angle made by the perpendicular with the positive x-axis be θ . Then

$$p\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \tag{4.1.5.1}$$

is a point on the line as well as the normal vector. Hence, the equation of the line is

$$p\left(\cos\theta - \sin\theta\right) \left\{ \mathbf{x} - p \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix} \right\} = 0 \tag{4.1.5.2}$$

$$\implies (\cos \theta \quad \sin \theta) \mathbf{x} = p \tag{4.1.5.3}$$

4.1.6. Let **Q** be the foot of the perpendicular from **P** to the line

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{4.1.6.1}$$

From (4.1.1.3)

$$\mathbf{Q} = \mathbf{P} + k\mathbf{n} \tag{4.1.6.2}$$

$$\implies PQ = \|\mathbf{Q} - \mathbf{P}\| = |k| \|\mathbf{n}\| \tag{4.1.6.3}$$

is the distance from \mathbf{Q} to the line in (4.1.6.1). From (4.1.6.2),

$$\mathbf{n}^{\mathsf{T}}\mathbf{Q} = \mathbf{n}^{\mathsf{T}}\mathbf{P} + k \|\mathbf{n}\|^{2} \tag{4.1.6.4}$$

$$\implies |k| = \frac{\left|\mathbf{n}^{\top} \left(\mathbf{Q} - \mathbf{P}\right)\right|}{\left\|\mathbf{n}\right\|^{2}} \tag{4.1.6.5}$$

$$\implies PQ = |k| ||\mathbf{n}|| = \frac{\left|\mathbf{n}^{\mathsf{T}} \mathbf{P} - c\right|}{||\mathbf{n}||} \tag{4.1.6.6}$$

upon substituting from (4.1.6.3).

4.1.7. The foot of the perpendicular is given by

$$\begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix}^{\mathsf{T}} \mathbf{Q} = \begin{pmatrix} \mathbf{m}^{\mathsf{T}} \mathbf{P} \\ c \end{pmatrix} \tag{4.1.7.1}$$

4.1.8. The distance between the parallel lines

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c_1 \mathbf{n}^{\mathsf{T}}\mathbf{x} = c_2$$
 (4.1.8.1)

is given by

$$d = \frac{|c_1 - c_2|}{\|\mathbf{n}\|} \tag{4.1.8.2}$$

4.1.9. The reflection of point **Q** w.r.t a line is given by

$$\mathbf{R} = \mathbf{Q} - \frac{2(\mathbf{n}^{\mathsf{T}}\mathbf{Q} - c)}{\|\mathbf{n}\|}\mathbf{n}$$
(4.1.9.1)

4.1.10. Code for line in 2D using direction vector

codes/book/linear.py

4.1.11. Code for line in 2D using normal vector

codes/book/linorm.py

4.1.12. Code for line in 3D

codes/book/points3d.py

4.1.13. Code for plane

codes/book/plane.py

4.1.14. Code for foot of the perpendicular

codes/book/perp.py

4.1.15. Code for intersection of lines

codes/book/linsect.py

4.2 Parameters

Find the direction and normal vectors of each of the following lines

$$4.2.1 \ 2x + 3y = 9$$

$$4.2.2 \quad x - \frac{y}{5} - 10 = 10$$

$$4.2.3 -2x + 3y = 6$$

$$4.2.4 x = 3y$$

$$4.2.5 \ 2x = -5v$$

$$4.2.6 \ 3x + 2 = 0$$

$$4.2.7 y - 2 = 0$$

$$4.2.8 \ 5 = 2x$$

$$4.2.9 x + y = 4$$

$$4.2.10 x - y = 2$$

$$4.2.11 y = 3x$$

$$4.2.12 \ 3 = 2x + y$$

$$4.2.13 \ y = x$$

$$4.2.14 \ x + y = 0$$

$$4.2.15 \ y = 2x$$

$$4.2.16 \ 2 + 3y = 7x$$

$$4.2.17 \ y = x + 2$$

$$4.2.18 \ y = x - 2$$

$$4.2.19 \ y = -x + 2$$

$$4.2.20 x + 2y = 6$$

$$4.2.21 F = \frac{9}{5}C + 32$$

Show that two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ where $b_1b - 2 \neq 0$ are

- 4.2.22 parallel if $\frac{a_1}{b_1} = \frac{a_2}{b_2}$ and 4.2.23 Perpendicular if $a_1a_2 b_1b_2 = 0$.

4.3 Equation

Find the equation of line

4.3.1 passing through the point P = (-4, 3) with slope $\frac{1}{2}$. **Solution:** From (4.1.2.5),

$$\mathbf{n} \equiv \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} \implies \begin{pmatrix} \frac{1}{2} & -1 \end{pmatrix} \mathbf{x} = -5 \tag{4.3.1.1}$$

using (4.1.2.3). See Fig. 4.3.1.1.

Fig. 4.3.1.1

4.3.2 passing through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ with slope m.

Solution:

$$\therefore \mathbf{n} = \begin{pmatrix} m \\ -1 \end{pmatrix}, \tag{4.3.2.1}$$

the desired equation is

$$\begin{pmatrix} m & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} = 0$$
(4.3.2.2)

$$\implies (m - 1)\mathbf{x} = 0 \tag{4.3.2.3}$$

4.3.3 passing through $\mathbf{A} = \begin{pmatrix} 2 \\ 2\sqrt{3} \end{pmatrix}$ and inclined with the x-axis at an angle of 75°. **Solution:**

$$\mathbf{m} = \begin{pmatrix} 1 \\ \tan 75^{\circ} \end{pmatrix} \implies \mathbf{n} = \begin{pmatrix} 2 + \sqrt{3} \\ -1 \end{pmatrix} \tag{4.3.3.1}$$

$$\implies (2 + \sqrt{3} - 1)\mathbf{x} = (2 + \sqrt{3} - 1)\begin{pmatrix} 2\\ 2\sqrt{3} \end{pmatrix} \tag{4.3.3.2}$$

$$=4$$
 (4.3.3.3)

is the desired equation.

4.3.4 intersecting the x-axis at a distance of 3 units to the left of origin with slope of -2. **Solution:** From the given information,

$$\mathbf{A} = \begin{pmatrix} -3\\0 \end{pmatrix}, \ \mathbf{n} = \begin{pmatrix} 2\\1 \end{pmatrix}. \tag{4.3.4.1}$$

The desired equation of the line is

$$\implies \left(2 \quad 1\right) \left(\mathbf{x} - \begin{pmatrix} -3\\0 \end{pmatrix}\right) = 0 \tag{4.3.4.2}$$

or,
$$(2 1)\mathbf{x} = -6$$
 (4.3.4.3)

See Fig. 4.3.4.1.

Fig. 4.3.4.1

4.3.5 intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

Solution:

$$\mathbf{n} = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ 1 \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}. \tag{4.3.5.1}$$

Hence, the equation of the line is given by

$$\left(-\frac{1}{\sqrt{3}} \quad 1\right) \left(\mathbf{x} - \begin{pmatrix} 0\\2 \end{pmatrix}\right) = 0 \tag{4.3.5.2}$$

or,
$$\left(-\frac{1}{\sqrt{3}} \quad 1\right)\mathbf{x} = 2$$
 (4.3.5.3)

4.3.6 passing through (1, 2) and making angle 30° with y-axis.

4.3.7 passing through the points $\mathbf{A} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\mathbf{B} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$.

Solution: From (4.1.3.5),

$$\begin{pmatrix} -1 & 1 \\ 2 & -4 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{4.3.7.1}$$

$$\implies \begin{pmatrix} -1 & 1 & 1 \\ 2 & -4 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + 2R_1} \begin{pmatrix} -1 & 1 & 1 \\ 0 & -2 & 3 \end{pmatrix} \tag{4.3.7.2}$$

$$\stackrel{R_1 \leftarrow 2R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} -2 & 0 & 5 \\ 0 & -2 & 3 \end{pmatrix} \implies \mathbf{n} = -\frac{1}{2} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \tag{4.3.7.3}$$

Thus, from (4.1.4.1), the equation of the line is

$$(5 3) \mathbf{x} = -2 (4.3.7.4)$$

See Fig. 4.3.7.1.

Fig. 4.3.7.1

- 4.3.8 passing through the points (3,4,-7) and (1,-1,6).
- 4.3.9 The vector equation of the line

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$

is _____.

4.3.10 The vector equation of the line

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$

is _____.

4.3.11 The vertices of triangle PQR are P(2, 1), Q(-2, 3), R(4, 5). Find the equation of the median through \mathbf{R} .

Solution: Using section formula, the mid point of PQ is

$$\mathbf{A} = \frac{\mathbf{P} + \mathbf{Q}}{2} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \tag{4.3.11.1}$$

Following the approach in Problem 4.3.7,

$$\begin{pmatrix} 4 & 5 & 1 \\ 0 & 2 & 1 \end{pmatrix} \stackrel{R_1 \leftarrow 2R_1 - 5R_2}{\longleftarrow} \begin{pmatrix} 8 & 0 & -3 \\ 0 & 8 & 4 \end{pmatrix} \implies \mathbf{n} = \frac{1}{8} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

Thus, the equation of the line is

$$(-3 \quad 4)\mathbf{x} = 8 \tag{4.3.11.2}$$

4.3.12 Find the equations of the planes that pass through the points

a)
$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 6 \\ 4 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -4 \\ -2 \\ 3 \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$

Solution:

a) From (4.1.3.5),

$$\begin{pmatrix} 1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 6 & 4 & -5 & 1 \\ -4 & -2 & 3 & 1 \end{pmatrix}$$

$$\xrightarrow{\substack{R_2 \leftarrow R_2 - 6R_1 \\ R_3 \leftarrow R_3 + 4R_1}} \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -2 & 1 & -5 \\ 0 & 2 & -1 & 5 \end{pmatrix} \xrightarrow{\substack{R_3 \leftarrow R_3 + R_2 \\ R_1 \leftarrow 2R_1 + R_2}} \begin{pmatrix} 2 & 0 & -1 & -3 \\ 0 & 2 & -1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Since we obtain a 0 row, the given points are collinear. The direction vector of the line is

$$\mathbf{m} = \mathbf{B} - \mathbf{C} \equiv \begin{pmatrix} 5\\3\\-4 \end{pmatrix} \tag{4.3.12.1}$$

and the equation of a line is given by,

$$\mathbf{x} = \mathbf{A} + \kappa \mathbf{m} \tag{4.3.12.2}$$

$$= \begin{pmatrix} 1\\1\\-1 \end{pmatrix} + \kappa \begin{pmatrix} 5\\3\\-4 \end{pmatrix} \tag{4.3.12.3}$$

See Fig. 4.3.12.1.

b) In this case,

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1 \end{pmatrix} \mathbf{n} = \mathbf{1}$$
 (4.3.12.4)

$$\Rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 1 \\ 1 & 2 & 1 & | & 1 \\ -2 & 2 & -1 & | & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 4 & -1 & | & 3 \end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow R_1 - R_2} \begin{pmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & -5 & | & 3 \end{pmatrix} \xrightarrow{R_1 \leftarrow 5R_1 - R_3} \begin{pmatrix} 5 & 0 & 0 & | & 2 \\ 0 & 5 & 0 & | & 3 \\ 0 & 0 & 5 & | & -3 \end{pmatrix}$$

Hence, the equation of the plane is

$$(2 \quad 3 \quad -3) \mathbf{x} = 5$$
 (4.3.12.5)

See Fig. 4.3.12.2.

Fig. 4.3.12.1

Fig. 4.3.12.2

- 4.3.13 Find the equation of the plane through the points (2, 1, 0), (3, -2, -2) and (3, 1, 7).
- 4.3.14 A plane passes through the points (2,0,0), (0,3,0) and (0,0,4). The equation of the plane is ______.
- 4.3.15 If the intercept of a line between the coordinate axes is divided by the point (-5, 4) in the ratio 1:2 then find the equation of the line.
- 4.3.16 Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point (2, 3).

Solution: Let (a, 0) and (0, a) be the intercept points.

$$\mathbf{m} = \begin{pmatrix} a \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ a \end{pmatrix} \equiv \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{4.3.16.1}$$

$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{4.3.16.2}$$

and the equation of the line is

$$(1 \quad 1) \left(\mathbf{x} - {2 \choose 3} \right) = 0$$
 (4.3.16.3)

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 5 \tag{4.3.16.4}$$

See Fig. 4.3.16.1.

Fig. 4.3.16.1

4.3.17 Find the equation of a line passing through a point (2, 2) and cutting off intercepts on the axes whose sum is 9.

Solution: Let the intercept points be

$$\mathbf{P} = \begin{pmatrix} a \\ 0 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 0 \\ b \end{pmatrix} \text{ and } \mathbf{R} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 (4.3.17.1)

be the given point. Forming the collinearity matrix from (4.1.3.6),

$$\begin{pmatrix} \mathbf{P} - \mathbf{Q} & \mathbf{P} - \mathbf{R} \end{pmatrix} = \begin{pmatrix} a & a - 2 \\ -b & -2 \end{pmatrix} \tag{4.3.17.2}$$

which is singular if

$$ab - 2(a + b) = 0 \implies ab = 18$$
 (4.3.17.3)

$$a + b = 9.$$
 (4.3.17.4)

 $\therefore a, b$ are the roots of

$$x^2 - 9x + 18 = 0. (4.3.17.5)$$

yielding

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$
 (4.3.17.6)

Since

$$\mathbf{m} = \begin{pmatrix} a \\ -b \end{pmatrix}, \mathbf{n} = \begin{pmatrix} b \\ a \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
(4.3.17.7)

Thus, the possible equations of the line are

$$(1 2)\mathbf{x} = 6$$
 (4.3.17.8)
 $(2 1)\mathbf{x} = 6$ (4.3.17.9)

$$(2 1) \mathbf{x} = 6 (4.3.17.9)$$

See Fig. 4.3.17.1.

Fig. 4.3.17.1

- 4.3.18 Find the equation of the lines which passes the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
- 4.3.19 Find the equation of the straight line which passes through the point (1, -2) and cuts off equal intercepts from axes.
- 4.3.20 Find the equation of the line which passes through the point (-4, 3) and the portion of the line intercepted between the axes is divided internally in ratio 5:3 by this point.
- 4.3.21 Consider the following population and year graph in Fig. 4.3.21.1. Find the slope of the line AB and using it, find what will be the population in the year 2010.

Fig. 4.3.21.1

Solution: The direction vector of the line in Fig. 4.3.21.1 is

$$\mathbf{m} = \mathbf{B} - \mathbf{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{4.3.21.1}$$

$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{4.3.21.2}$$

The equation of the line is then given by

$$\mathbf{n}^{\mathsf{T}}(\mathbf{x} - \mathbf{A}) = 0 \tag{4.3.21.3}$$

$$\implies \begin{pmatrix} 1 & -2 \end{pmatrix} \mathbf{x} = 1801 \tag{4.3.21.4}$$

$$\implies (1 -2) \binom{2010}{y} = 1801 \tag{4.3.21.5}$$

$$\implies y = \frac{209}{2} \tag{4.3.21.6}$$

- 4.3.22 Slope of a line which cuts off intercepts of equal length on the axes is
 - a) -1
 - b) -0
 - c) 2
 - d) $\sqrt{3}$
- 4.3.23 If the coordinates of middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be
 - a) 2x + 3y = 12
 - b) 3x + 2y = 12
 - c) 4x 3y = 6

- d) 5x 2y = 10
- 4.3.24 If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes the points (2, -3) and (4, -5), then (a, b) is
 - a) (1, 1)
 - b) (-1, 1)
 - c) (1, -1)
 - d) (-1, -1)
- 4.3.25 The intercepts made by the plane 2x 3y + 5z + 4 = 0 on the co-ordinate axis are $\left(-2, \frac{4}{3}, -\frac{4}{5}\right)$.
- 4.3.26 The line $\vec{r} = 2\hat{i} 3\hat{j} \hat{k} + \lambda(\hat{i} \hat{j} + 2\hat{k})$ lies in the plane $\vec{r} \cdot (3\hat{i} + \hat{j} \hat{k}) + 2 = 0$.
- 4.3.27 Find the equation of the line joining (1,2) and (3,6).
- 4.3.28 Find the equation of the line joining (3, 1) and (9, 3).
- 4.3.29 If the point (3, 4) lies on the line 3y = ax + 7, find the value of a.
- 4.3.30 Find the equation of the line that passes through the point with position vector $2\hat{i} \hat{j} + 4\hat{k}$ and is in direction $\hat{i} + 2\hat{j} \hat{k}$.
- 4.3.31 The cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$. Write its vector form.
- 4.3.32 Find the equation of the line that passes through the origin and (5, -2, 3).
- 4.3.33 Find the equation of the line that passes through the points (3, -2, -5), (3, -2, 6).
- 4.3.34 Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane.
- 4.3.35 Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX-plane.
- 4.3.36 Find the coordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane 2x + y + x = 7.
- 4.3.37 Find the equation of the line through (-2,3) with slope -4
- 4.3.38 Write the equation of the line through the points (1, -1) and (3, 5).
- 4.3.39 Write the equation of the lines for which $\tan \theta = \frac{1}{2}$, where θ is the inclination of the line and
 - a) y-intercept is $\frac{-3}{2}$
 - b) x-intercept is 4.
- 4.3.40 Find the equation of the lines which makes intercepts -3 and 2 on the x- and y-axes respectively.
- 4.3.41 Equation of a line is 3x 4y + 10 = 0, Find its
 - a) Slope
 - b) x and y-intercepts.
- 4.3.42 The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that K = 273 when F = 32 and that K = 373 when F = 212. Express K in terms of F and find the value of F, when K = 0.
- 4.3.43 A line is such that its segment between the lines 5x y + 4 = 0 and 3x + 4y 4 = 0 is bisected at the point (1, 5). Obtain its equation.
- 4.3.44 Find the vector equations of the plane passing through the points R(2,5,-3), S(-2,-3,5) and T(5,3,-3).
- 4.3.45 Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively.

4.3.46 Show that the lines

$$\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}$$
 (4.3.46.1)

and (4.3.46.2)

$$\frac{x-a+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$$
 (4.3.46.3)

are coplanar.

4.3.47 Show that the lines

$$\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$$
 and (4.3.47.1)

$$\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}. (4.3.47.2)$$

are coplanar.

4.3.48 Find the equation for the line passing through the points (-1,0,2) and (3,4,6).

4.3.49 The Cartesian equation of a line is

$$\frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2} \tag{4.3.49.1}$$

Find the vector equation for the line.

4.3.50 Determine the ratio in which the line 2x + y - 4 = 0 divides the line segment joining the points A(2, -2) and B(3, 7).

Solution: The given equation can be expressed as

$$(2 1) \mathbf{x} = 4 (4.3.50.1)$$

Using section formula in (4.3.50.1),

$$\mathbf{n}^{\mathsf{T}} \left(\frac{k\mathbf{B} + \mathbf{A}}{k+1} \right) = c \tag{4.3.50.2}$$

$$\implies k = \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{A}}{\mathbf{n}^{\mathsf{T}} \mathbf{B} - c} \tag{4.3.50.3}$$

upon simplification. Substituting numerical values,

$$k = \frac{2}{9} \tag{4.3.50.4}$$

See Fig. 4.3.50.1.

Fig. 4.3.50.1

- 4.3.51 The line segment joining the points A(3,2) and B(5,1) is divided at the point **P** in the ratio 1:2 which lies on 3x 18y + k = 0. Find the value of k.
- 4.3.52 Find the ratio in which the line 2x + 3y 5 = 0 divides the line segment joining the points (8, -9) and (2, 1). Also find the coordinates of the point of division.
- 4.3.53 Find the ratio in which the YZ plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8).
- 4.3.54 Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, -8) is divided by the YZ plane.
- 4.3.55 Find the ratio in which the Y axis divides the line segment joining the points (5, -6) and (-1, -4). Also find the point of intersection.
- 4.3.56 In what ratio does the X axis divide the line segment joining the points (-4, -6) and (-1, 7)? Find the coordinates of the point of division.
- 4.3.57 Find the ratio in which the line segment joining A(1, -5) and B(-4, 5) is divided by the X axis. Also find the coordinates of the point of division.
- 4.3.58 A line intersects the Y axis and X axis at the points \mathbf{P} and \mathbf{Q} , respectively. If (2,5) is the mid-point of PQ, then the coordinates of \mathbf{P} and \mathbf{Q} are, respectively
 - a) (0, -5) and (2, 0)
 - b) (0, -10) and (-4, 0)
 - c) (0,4) and (-10,0)
 - d) (0, -10) and (4, 0)
- 4.3.59 Check which of the following are solutions of the equation x 2y = 4 and which are not
 - a) (0,2)
 - b) (2,0)

- (4,0)
- d) $(\sqrt{2}, 4\sqrt{2})$
- e) (1, 1)
- 4.3.60 Equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are

4.4 CBSE

- 4.4.1 Show that the plane x 5y 2z = 1 contains the line $\frac{x-5}{3} = y = 2 z$. (12, 2020)
- 4.4.2 If the equation of a line is

$$x = ay + b,$$

$$z = cy + d,$$

then find its parametric form.

(12, 2023)

- 4.4.3 Equation of the line passing through the origin and making 30° , 60° , and 90° with the X, Y, Z axes respectively is (12, 2023)
- 4.4.4 A line passes through the point with position vector $2\hat{i} \hat{j} + 4\hat{k}$ and is in the direction of the vector $\hat{i} + \hat{j} 2\hat{k}$. Find the equation of the line. (12, 2019)
- 4.4.5 Find the equation of the plane passing through the points having position vectors $\hat{i} + \hat{j} 2\hat{k}$, $2\hat{i} \hat{j} + \hat{k}$, and $\hat{i} + 2\hat{j} + \hat{k}$. (12, 2019)
- 4.4.6 Find the equation of the plane passing through the points A(2,5,-3), B(-2,-3,5) and C(5,3,-3). (12, 2019)
- 4.4.7 Find the value of x such that the four points with position vectors $\mathbf{A}(3\hat{i} + 2\hat{j} + \hat{k})$, $\mathbf{B}(4\hat{i} + x\hat{j} + 5\hat{k})$, $\mathbf{C}(4\hat{i} + 2\hat{j} 2\hat{k})$, and $\mathbf{D}(6\hat{i} + 5\hat{j} \hat{k})$ are coplanar. (12, 2019)
- 4.4.8 Find the value of x such that the four points A(x, 5, -1), B(3, 2, 1), C(4, 5, 5), and D(4, 2, -2) are coplanar. (12, 2019)
- 4.4.9 Find the value of a so that the point (3, a) lies on the line represented by 2x 3y = 5. (10, 2019)
- 4.4.10 Point **P** divides the line segment joining the points $\mathbf{A}(2,1)$ and $\mathbf{B}(5,-8)$ such that $\frac{AP}{AB} = \frac{1}{3}$. If **P** lies on the line 2x y + k = 0, find the value of k. (10, 2019)
- 4.4.11 The line segment joining the points $\mathbf{A}(2,1)$ and $\mathbf{B}(5,-8)$ is trisected at the points \mathbf{P} and \mathbf{Q} , where \mathbf{P} is nearer to \mathbf{A} . If \mathbf{P} lies on the line 2x y + k = 0, find the value of k. (10, 2018)
- 4.4.12 Find the equation of the plane passing through the points (2,5,-3), (-2,-3,5) and (5,3,-3). Also find the point of intersection of this plane with the line passing through points (3,1,5) and (-1,-3,-1). (12, 2018)
- 4.4.13 A line passes through the point with position vector $2\hat{i} \hat{j} + 4\hat{k}$ and is in the direction of the vector $\hat{i} + \hat{j} 2\hat{k}$. Find the equation of the line. (12, 2018)
- 4.4.14 Find the value of λ , if four points with position vectors $\mathbf{P}_1 = 3\hat{i} + 6\hat{j} + 9\hat{k}$, $\mathbf{P}_2 = \hat{i} + 2\hat{j} + 3\hat{k}$, $\mathbf{P}_3 = 2\hat{i} + 3\hat{j} + \hat{k}$, and $\mathbf{P}_4 = 4\hat{i} + 6\hat{j} + \lambda\hat{k}$ are coplanar. (12, 2017)
- 4.4.15 Write the sum of intercepts cut off by the plane $\vec{r} \cdot (2\hat{i} + \hat{j} \hat{k}) 5 = 0$ on the three axes.

(12, 2016)

4.4.16 Find the equation of the plane with intercepts 3, -4 and 2 on the three axes.

(12, 2016)

- 4.4.17 A point **P** divides the line segment joining the points $\mathbf{A}(3, -5)$ and $\mathbf{B}(-4, 8)$ such that $\frac{AP}{PR} = \frac{K}{1}$. If **P** lies on the line x + y = 0, then find the value of K. (10, 2012)
- 4.4.18 If the point $\mathbf{A}(x,y)$, $\mathbf{B}(3,6)$ and $\mathbf{C}(-3,4)$ are collinear, show that x 3y + 15 = 0. (10, 2012)
- 4.4.19 **Assertion** (A): Point **P**(0,2) is the point of intersection of Y axis with the line 3x + 2y = 4.

Reason (R): The distance of point P(0,2) from X axis is 2 units. (10, 2023)

- 4.4.20 The pair of linear equations 2x = 5y + 6 and 15y = 6x 18 represents two lines which are:
 - a) intersecting
 - b) parallel
 - c) coincident
 - d) either intersecting or parallel

(10, 2023)

- 4.4.21 Write the equation of the line PQ passing through points P(2, 2, 1) and Q(5, 1, -2). Hence, find the y-coordinate of the point on the line PQ whose z-coordinate is -2. (12, 2022)
- 4.4.22 Find the equation of a plane which passes through the point (3,2,0) and contains the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$. (12, 2022)
- 4.4.23 If the graph of a pair of lines x 2y + 3 = 0 and 2x 4y = 5 be drawn, that what type of lines are drawn? (10, 2021)
- 4.4.24 If segment of the line intercepted between the co-ordinate-axes is bisected at the point M(2,3), then the equation of this line is (12, 2021)
- 4.4.25 The equation of a line through (2, -4) and parallel to X axis is ______.
- 4.4.26 Find the equation of the median through vertex **A** of the triangle ABC, having vertices **A** (2,5), **B** (-4,9) and **C** (-2,-1). (12, 2021)
- 4.4.27 Find the value of x such that the points $\mathbf{A}(3,2,1)$, $\mathbf{B}(4,x,5)$, $\mathbf{C}(4,2,-2)$ and $\mathbf{D}(6,5,-1)$ are coplanar. (12, 2017)
- 4.4.28 The x-coordinate of a point on the line joining the points P(2, 2, 1) and Q(5, 1, -2) is 4. Find its z-coordinate. (12, 2017)
- 4.4.29 Find the equation of plane passing through the points $\mathbf{A}(3,2,1)$, $\mathbf{B}(4,2,-2)$ and $\mathbf{C}(6,5,-1)$ and hence find the value of λ for which $\mathbf{A}(3,2,1)$, $\mathbf{B}(4,2,-2)$, $\mathbf{C}(6,5,-1)$ and $\mathbf{D}(\lambda,5,5)$ are coplanar. (12, 2016)
- 4.4.30 Show that the four points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4) are coplanar. (12, 2016)
- 4.4.31 Find the equation of the line joining $\mathbf{A}(1,3)$ and $\mathbf{B}(0,0)$. Also, find k if $\mathbf{D}(k,0)$ is a point such that the area of $\triangle ABD$ is 3 square units. (12, 2021)
- 4.4.32 If

$$\begin{pmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 11 & 24 \end{pmatrix},$$

then the value of a+b-c+2d is (12, 2021)

4.4.33 Show that the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$, and $\hat{i} - 3\hat{j} + 5\hat{k}$ are coplanar.

(12, 2018)

- 4.4.34 Find the value of x such that the four points with position vectors $\mathbf{A}(3\hat{i}+2\hat{j}+\hat{k})$, $\mathbf{B}(4\hat{i} + x\hat{j} + 5\hat{k})$, $\mathbf{C}(4\hat{i} + 2\hat{j} - 2\hat{k})$, and $\mathbf{D}(6\hat{i} + 5\hat{j} - \hat{k})$ are coplanar. (12, 2018)
- 4.4.35 Find the value of x, for which the four points $\mathbf{A}(x, 1, -1)$, $\mathbf{B}(4, 5, 1)$, $\mathbf{C}(3, 9, 4)$ and $\mathbf{D}(-4,4,4)$ are coplanar. (12, 2018)
- 4.4.36 Find the value of x such that the four points $\mathbf{A}(x,5,-1)$, $\mathbf{B}(3,2,1)$, $\mathbf{C}(4,5,5)$ and \mathbf{D} (4,2,-2) are coplanar.

(12, 2018)

4.4.37 The area of the triangle formed by the line $\frac{x}{a} + \frac{y}{b} = 1$ with the coordinate axes is (10, 2023)

4.5 Parallel

4.5.1 Find the vector equation of the line passing through $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$ and parallel to the planes $\begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \mathbf{x} = 5$ and $\begin{pmatrix} 3 & 1 & 1 \end{pmatrix} \mathbf{x} = 6$. **Solution:** The direction vector of the line is given by

$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 1 \end{pmatrix} \mathbf{m} = 0 \xrightarrow{R_2 \to -\frac{3}{4}R_1 + \frac{1}{4}R_2} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -\frac{5}{4} \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -\frac{5}{4} \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} 1 & 0 & \frac{3}{4} \\ 0 & 1 & -\frac{5}{4} \end{pmatrix}$$

$$\implies \mathbf{m} = \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix}$$

: the equation of the line is

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda \begin{pmatrix} -3\\5\\4 \end{pmatrix} \tag{4.5.1.1}$$

4.5.2 Find the equation of the plane with an intercept 3 on the Y-axis and parallel to ZOX-Plane.

Solution: The normal vector to the ZOX plane is

$$\mathbf{n} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}. \tag{4.5.2.1}$$

Since, Y-axis has the intercept 3, the desired plane passes through the point

$$\mathbf{P} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}. \tag{4.5.2.2}$$

Thus, the equation of the plane is given by,

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{4.5.2.3}$$

$$\implies \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \mathbf{x} = 3 \tag{4.5.2.4}$$

See Fig. 4.5.2.1.

Fig. 4.5.2.1

4.5.3 Find the equation of the line parallel to the line 3x - 4y + 2 = 0 and passing through the point (-2, 3).

Solution:

$$(3 -4)\mathbf{x} = (3 -4)\begin{pmatrix} -2\\3 \end{pmatrix} = -18$$
 (4.5.3.1)

is the required equation of the line.

4.5.4 Find the equation of the line through the point (0, 2) making an angle $\frac{2\pi}{3}$ with the positive X-axis. Also find the equation of the line parallel to it and crossing the Y-axis at a distance of 2 units below the origin.

Solution: The equation of the first line is

$$\left(\sqrt{3} \quad 1\right)\left(\mathbf{x} - \begin{pmatrix} 0\\2 \end{pmatrix}\right) = 0 \tag{4.5.4.1}$$

$$\implies (\sqrt{3} \quad 1)\mathbf{x} = 2 \tag{4.5.4.2}$$

The equation of the second line is

$$\left(\sqrt{3} \quad 1\right)\left(\mathbf{x} - \begin{pmatrix} 0 \\ -2 \end{pmatrix}\right) = 0 \tag{4.5.4.3}$$

$$\implies (\sqrt{3} \quad 1)\mathbf{x} = -2 \tag{4.5.4.4}$$

See Fig. 4.5.4.1.

Fig. 4.5.4.1

- 4.5.5 Find the vector equation of the line which is parallel to the vector $3\hat{i} 2\hat{j} + 6\hat{k}$ and passes through the point (1, -2, 3).
- 4.5.6 Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y z = 0.
- 4.5.7 The equation of a line, which is parallel to $2\hat{i} + \hat{j} + 3\hat{k}$ and passes through the point (5, -2, 4) is $\frac{x-5}{2} = \frac{y+2}{-1} = \frac{z-4}{3}$.
- 4.5.8 The value of λ^2 for which the vectors $3\hat{i} 6\hat{j} + \hat{k}$ and, $2\hat{i} 4\hat{j} + \lambda\hat{k}$ are parallel is
 - a) $\frac{2}{3}$
 - b) $\frac{3}{2}$
 - c) $\frac{5}{2}$
 - d) $\frac{2}{5}$
- 4.5.9 Equation of the line passing through (1, 2) and parallel to the line y = 3x 1 is
 - a) y + 2 = x + 1
 - b) y + 2 = 3(x + 1)
 - c) y 2 = 3(x 1)
 - d) y 2 = x 1
- 4.5.10 Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{i} 2\hat{k}$
- 4.5.11 Find the cartesian equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$.
- 4.5.12 Find the equation of the plane passing through (a,b,c) and parallel to the plane $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$.

- 4.5.13 Find the equations of the lines parallel to axes and passing through (2, 3).
- 4.5.14 Find the equation of the line through the point (5, 2, -4) and which is parallel to the vector $3\hat{i} + 2\hat{j} 8\hat{k}$.

4.6 CBSE

- 4.6.1 The distance between parallel planes 2x + y 2z 6 = 0 and 4x + 2y 4z = 0 is _____ units. (12, 2020)
- 4.6.2 Find the equation of the line passing through (2, 1, -1) and parallel to the line $\vec{r} = (\hat{i} + \hat{j}) + \lambda(2\hat{i} \hat{j} + \hat{k})$. Also, find the distance between these two lines. (12, 2019)
- 4.6.3 Find the equation of the line which passes through the point (-2, 4, -5) and is parallel to the line $\frac{x+3}{3} = \frac{4-y}{5} = \frac{z+8}{6}$. (12, 2018)
- 4.6.4 Find the equation of a line passing through the point (2,3,2) and parallel to the line $\vec{r} = (-2\hat{i} + 3\hat{j}) + \lambda (2\hat{i} 3\hat{j} + 6\hat{k})$. Also, find the distance between these two lines. (12, 2018)
- 4.6.5 Find the equation of the line passing through (2, 1, -1) and parallel to the line $\vec{r} = (\hat{i} + \hat{j}) + \lambda (2\hat{i} \hat{j} + \hat{k})$. Also, find the distance between these two lines.

(12, 2018)

- 4.6.6 Find the equation of the plane passing through the points having position vectors $\hat{i} + \hat{j} 2\hat{k}$, $2\hat{i} \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$. Write the equation of the plane passing through a point (2, 3, 7) and parallel to the plane obtained above. Hence, find the distance between the two parallel planes. (12, 2018)
- 4.6.7 Find the equation of the line which passes through the point (3, 4, 5) and is parallel to the vector $2\hat{i} + 2\hat{j} 3\hat{k}$. (12, 2018)
- 4.6.8 Find the equation of the plane passing through the points (2, 2, -1), (3, 4, 2) and (7, 0, 6). Also find the equation of the plane passing through (4, 3, 1) and parallel to the plane obtained above. (12, 2018)
- the plane obtained above. (12, 2018) 4.6.9 Find the equation of the plane containing two parallel lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$. Also, find if the plane thus obtained contains the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ or not. (12, 2016)

4.7 Perpendicular

4.7.1 Find the values of θ and p, if the equation $x \cos \theta + y \sin \theta = p$ is the normal form of the line $\sqrt{3}x + y + 2 = 0$.

Solution:

$$\mathbf{n} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}, c = -2 \tag{4.7.1.1}$$

$$\implies \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}, p = \frac{|c|}{\|\mathbf{n}\|} = 1 \tag{4.7.1.2}$$

- 4.7.2 Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive *x*-axis.
 - a) $x \sqrt{3}y + 8 = 0$
 - b) y 2 = 0

c)
$$x - y = 4$$

Solution: See Table 4.7.2. (4.1.6.6) was used for computing the distance from the origin.

	n	Angle	С	Distance
a)	$\begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix}$	$\tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3}$	-8	4
b)	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\tan^{-1} \infty = \frac{\pi}{2}$	2	2
c)	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\tan^{-1}(-1) = \frac{3\pi}{4}$	4	$2\sqrt{2}$

TABLE 4.7.2

- 4.7.3 In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
 - a) z = 2
 - b) x + y + z = 1
 - c) 2x + 3y z = 5
 - d) 5y + 8 = 0

Solution: See Table 4.7.3. (4.1.6.6) was used for computing the distance from the origin.

	n	С	Distance
a)	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	2	2
b)	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	1	$\frac{1}{\sqrt{3}}$
c)	$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$	5	$\frac{5}{\sqrt{14}}$
d)	$\begin{pmatrix} 0 \\ -5 \\ 0 \end{pmatrix}$	8	<u>8</u> 5

TABLE 4.7.3

4.7.4 Find the distance of the point (-1, 1) from the line 12(x + 6) = 5(y - 2).

Solution:

$$\mathbf{n} = \begin{pmatrix} 12 \\ -5 \end{pmatrix}, c = -82 \tag{4.7.4.1}$$

$$\implies d = \frac{\left| (12 - 5) \binom{-1}{1} - (-82) \right|}{\sqrt{12^2 + (-5)^2}} = 5 \tag{4.7.4.2}$$

4.7.5 Find the coordinates of the foot of the perpendicular from (-1,3) to the line 3x -4y - 16 = 0.

Solution: Substituting

$$\mathbf{P} = \begin{pmatrix} -1\\3 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 3\\-4 \end{pmatrix}, c = 16 \tag{4.7.5.1}$$

in (4.1.7.1), the desired foot of the perpendicular is then given by

$$\begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \mathbf{Q} = \begin{pmatrix} 4 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 16 \end{pmatrix} \tag{4.7.5.2}$$

$$\implies \begin{pmatrix} 4 & 3 & 5 \\ 3 & -4 & 16 \end{pmatrix} \xrightarrow{R_2 = R_2 - \frac{3}{4}R_1} \begin{pmatrix} 4 & 3 & 5 \\ 0 & \frac{-25}{4} & \frac{49}{4} \end{pmatrix} \tag{4.7.5.3}$$

$$\implies \begin{pmatrix} 4 & 3 & 5 \\ 3 & -4 & 16 \end{pmatrix} \xrightarrow{R_2 = R_2 - \frac{3}{4}R_1} \begin{pmatrix} 4 & 3 & 5 \\ 0 & \frac{-25}{4} & \frac{49}{4} \end{pmatrix}$$

$$\stackrel{R_2 = \frac{-4}{25}}{\longleftrightarrow} \begin{pmatrix} 4 & 3 & 5 \\ 0 & 1 & \frac{-49}{25} \end{pmatrix} \xrightarrow{R_1 = \frac{1}{4}R_1} \begin{pmatrix} 1 & \frac{3}{4} & \frac{5}{4} \\ 0 & 1 & \frac{-49}{25} \end{pmatrix}$$

$$(4.7.5.4)$$

$$\stackrel{R_1 = R_1 - \frac{3}{4}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{68}{25} \\ 0 & 1 & \frac{-49}{25} \end{pmatrix} \implies \mathbf{Q} = \begin{pmatrix} \frac{68}{25} \\ \frac{-49}{25} \end{pmatrix} \tag{4.7.5.5}$$

See Fig. 4.7.5.1.

Fig. 4.7.5.1

4.7.6 In the triangle ABC with vertices $\mathbf{A}(2,3)$, $\mathbf{B}(4,-1)$ and $\mathbf{C}(1,2)$, find the equation and length of altitude from the vertex \mathbf{A} .

Solution:

a) The normal vector of the altitude from A is,

$$\mathbf{m}_{BC} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \because \mathbf{n}_{BC} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \tag{4.7.6.1}$$

The equation of the desired altitude is given by

$$\mathbf{m}_{BC}^{\mathsf{T}}\mathbf{x} = \mathbf{m}_{BC}^{\mathsf{T}}\mathbf{A} \tag{4.7.6.2}$$

$$\implies \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = -1 \tag{4.7.6.3}$$

b) The equation of line BC is given by,

$$\mathbf{n}_{BC}^{\mathsf{T}}\mathbf{x} = \mathbf{n}_{BC}^{\mathsf{T}}\mathbf{B} \tag{4.7.6.4}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 3 \tag{4.7.6.5}$$

From (4.1.6.6), the length of the desired altitude is

$$d = \sqrt{2} \tag{4.7.6.6}$$

4.7.7 Find the points on the x-axis, whose distances from the line $\frac{x}{3} + \frac{y}{4} = 1$ are 4 units. **Solution:** Let the desired point be

$$\mathbf{P} = x\mathbf{e}_1 = \begin{pmatrix} x \\ 0 \end{pmatrix} \tag{4.7.7.1}$$

From the distance formula,

$$d = \frac{\left|\mathbf{n}^{\mathsf{T}}\mathbf{P} - c\right|}{\|\mathbf{n}\|} = \frac{\left|x\mathbf{n}^{\mathsf{T}}\mathbf{e}_{1} - c\right|}{\|\mathbf{n}\|}$$
(4.7.7.2)

$$\implies x = \frac{\pm d \|\mathbf{n}\| + c}{\mathbf{n}^{\mathsf{T}} \mathbf{e}_{1}} \tag{4.7.7.3}$$

Substituting

$$\mathbf{n} = {4 \choose 3}, c = 12, d = 4, \tag{4.7.7.4}$$
$$x = 8, -2 \tag{4.7.7.5}$$

$$x = 8, -2 \tag{4.7.7.5}$$

See Fig. 4.7.7.1.

Fig. 4.7.7.1

4.7.8 What are the points on the y-axis whose distance from the line $\frac{x}{3} + \frac{y}{4} = 1$ is 4 units. **Solution:** Following the approach in Problem 4.7.7,

$$y = \frac{\pm d \|\mathbf{n}\| + c}{\mathbf{n}^{\mathsf{T}} \mathbf{e}_{2}} = \frac{32}{3}, \frac{-8}{3}.$$
 (4.7.8.1)

4.7.9 Find the distance between parallel lines

a)
$$15x + 8y - 34 = 0$$
 and $15x + 8y + 31 = 0$

b)
$$l(x + y) + p = 0$$
 and $l(x + y) - r = 0$

Solution: From (4.1.8.1), the desired values are available in Table 4.7.9.

	n	c_1	c_2	d
a)	$\binom{15}{8}$	34	-31	65 17
b)	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\frac{-p}{l}$	$\frac{r}{l}$	$\frac{ p-r }{l\sqrt{2}}$

TABLE 4.7.9

4.7.10 Find the equation of a line which is equidistant from parallel lines 9x + 6y - 7 = 0 and 3x + 2y + 6 = 0.

Solution: Given

$$c_1 = \frac{7}{3}, c_2 = -6.$$
 (4.7.10.1)

From (4.1.8.1), we need to find c such that,

$$|c - c_1| = |c - c_2| \implies c = \frac{c_1 + c_2}{2} = -\frac{11}{6}.$$
 (4.7.10.2)

Hence, the desired equation is

$$(3 2)\mathbf{x} = -\frac{11}{6} (4.7.10.3)$$

See Fig. 4.7.10.1.

Fig. 4.7.10.1

4.7.11 Find the equation of a line drawn perpendicular to the line $\frac{x}{4} + \frac{y}{6} = 1$ through the point where it meets the y-axis

Solution: The given line parameters are

$$\mathbf{n} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, c = 12, \mathbf{m} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}.$$
 (4.7.11.1)

and the point on the y-axis is

$$\mathbf{A} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}. \tag{4.7.11.2}$$

Thus, the equation of the desired line is

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{4.7.11.3}$$

$$\implies \begin{pmatrix} -2 & 3 \end{pmatrix} \mathbf{x} = -18 \tag{4.7.11.4}$$

4.7.12 Find the equation of a line whose perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive x-axis is 30° .

Solution: From (4.1.5.3), Thus, the equation of lines are

$$\left(\frac{\sqrt{3}}{2} \quad \frac{1}{2}\right)\mathbf{x} = \pm 5 \tag{4.7.12.1}$$

4.7.13 Find the equation of the line passing through (-3, 5) and perpendicular to the line through the points (2, 5) and (-3, 6).

Solution: See Fig. 4.7.13.1.

Fig. 4.7.13.1

The normal vector is

$$\mathbf{n} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} - \begin{pmatrix} -3 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{4.7.13.1}$$

Thus, the equation of the line is

$$(5 -1)\left(\mathbf{x} - \begin{pmatrix} -3\\5 \end{pmatrix}\right) = 0$$
 (4.7.13.2)

$$\implies (5 \quad -1)\mathbf{x} = -20 \tag{4.7.13.3}$$

4.7.14 The perpendicular from the origin to a line meets it at the point (-2,9). Find the equation of the line.

Solution: It is obvious that the normal vector to the line is

$$\mathbf{n} = \begin{pmatrix} 2 \\ -9 \end{pmatrix} - \mathbf{0} = \begin{pmatrix} 2 \\ -9 \end{pmatrix} \tag{4.7.14.1}$$

Hence, the equation of the line is

$$\begin{pmatrix} 2 & -9 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 2 \\ -9 \end{pmatrix} \end{pmatrix} = 0$$
(4.7.14.2)

$$\implies (2 -9)\mathbf{x} = 85 \tag{4.7.14.3}$$

See Fig. 4.7.14.1.

Fig. 4.7.14.1

4.7.15 Find the equation of line perpendicular to the line x - 7y + 5 = 0 and having x intercept 3

Solution: The desired equation is

$$\begin{pmatrix} 7 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 3 \\ 0 \end{pmatrix} \end{pmatrix} = 0 \tag{4.7.15.1}$$

$$\implies \begin{pmatrix} 7 & 1 \end{pmatrix} \mathbf{x} = 21 \tag{4.7.15.2}$$

4.7.16 Find the equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$$
 and (4.7.16.1)

$$\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5} \tag{4.7.16.2}$$

Solution: The direction vector of the desired line is given by

$$\begin{pmatrix} 3 & -16 & 7 \\ 3 & 8 & -5 \end{pmatrix} \mathbf{m} = 0 \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 3 & -16 & 7 \\ 0 & 24 & -12 \end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow R_1 + \frac{2}{3}R_2} \begin{pmatrix} 3 & 0 & -1 \\ 0 & 24 & -12 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2/12} \begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & -1 \end{pmatrix}$$

yielding

$$\mathbf{m} = \begin{pmatrix} 2\\3\\6 \end{pmatrix} \tag{4.7.16.3}$$

Hence the vector equation of the line passing through (1, 2, -4) is,

$$\mathbf{x} = \begin{pmatrix} 1\\2\\-4 \end{pmatrix} + \kappa \begin{pmatrix} 2\\3\\6 \end{pmatrix} \tag{4.7.16.4}$$

4.7.17 The perpendicular from the origin to the line y = mx + c meets it at the point (-1, 2). Find the values of m and c.

Solution: From Problem 4.7.14,

$$\mathbf{n} = \begin{pmatrix} -1\\2 \end{pmatrix} \implies m = \frac{1}{2} \tag{4.7.17.1}$$

Also, from the given equation of the line and the given point,

$$c = (-m \quad 1) {\binom{-1}{2}} = \frac{5}{2} \tag{4.7.17.2}$$

4.7.18 A line perpendicular to the line segment joining the points P(1,0) and Q(2,3) divides it in the ratio 1:n. Find the equation of the line.

Solution: The direction vector of PQ is

$$\mathbf{Q} - \mathbf{P} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{4.7.18.1}$$

Using section formula,

$$\mathbf{R} = \frac{\mathbf{Q} + n\mathbf{P}}{1+n} \tag{4.7.18.2}$$

is the point of intersection. The equation of the desired line is

$$\mathbf{m}^{\mathsf{T}}(\mathbf{x} - \mathbf{R}) = 0 \tag{4.7.18.3}$$

$$\implies \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} \frac{2+n}{1+n} \\ \frac{3}{1+n} \end{pmatrix} \tag{4.7.18.4}$$

$$=\frac{11+n}{1+n}\tag{4.7.18.5}$$

4.7.19 Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3\hat{i} + 5\hat{j} - 6\hat{k}$.

Solution: From the given information,

$$\mathbf{n} = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}, d = \frac{|c|}{\|\mathbf{n}\|} = 7 \tag{4.7.19.1}$$

$$\implies c = \pm 7\sqrt{70} \tag{4.7.19.2}$$

- 4.7.20 Find the equation of a plane which is at a distance $3\sqrt{3}$ units from origin and the normal to which is equally inclined to the coordinate axis.
- 4.7.21 If the line drawn from the point (-2, -1, -3) meets a plane at right angle at the point (1, -3, 3), find the equation of the plane.
- 4.7.22 Find the equation of the plane through the points (2, 1, -1) and (-1, 3, 4), and perpendicular to the plane x 2y + 4z = 10.
- 4.7.23 If the foot of perpendicular drawn from the origin to a plane is (5, -3, -2), then the equation of the plane is $\vec{r} \cdot (5\hat{i} 3\hat{j} 2\hat{k}) = 38$.
- 4.7.24 P(0,2) is the point of intersection of y-axis and perpendicular bisector of line segment joining the points A(-1,1) and B(3,3).
- 4.7.25 The distance of the point P(2,3) from the x-axis is
 - a) 2
 - b) 3
 - c) 1
 - d) 5
- 4.7.26 Find the foot of perpendicular from the point (2, 3, -8) to the line

$$\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}.$$

Also, find the perpendicular distance from the given point to the line.

4.7.27 Find the distance of a point (2, 4, -1) from the line

$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$$

.

- 4.7.28 Find the length and the foot of perpendicular from the point $\left(1, \frac{3}{2}, 2\right)$ to the plane 2x 2y + 4z + 5 = 0.
- 4.7.29 Show that the points $(\hat{i} \hat{j} + 3\hat{k})$ and $3(\hat{i} + \hat{j} + \hat{k})$ are equidistant from the plane $\overrightarrow{r} \cdot (5\hat{i} + 2\hat{j} 7\hat{k}) + 9 = 0$ and lie on opposite side of it.
- 4.7.30 The distance of the plane $\vec{r} \cdot \left(\frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} \frac{6}{7}\hat{k}\right) = 1$ from the origin is
 - a) 1
 - b) 7
 - c) $\frac{1}{7}$
 - d) None of these
- 4.7.31 Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, -1).
- 4.7.32 Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
- 4.7.33 Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes on angle of 120° with the positive direction of x-axis.
- 4.7.34 Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
- 4.7.35 In what direction should a line be drawn through the point (1, 2) so that its point of intersection with line x + y = 4 is at a distance $\sqrt{63}$.
- 4.7.36 The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is
 - a) x y = 5
 - b) x + y = 5
 - c) x + y = 1
 - d) x y = 1
- 4.7.37 The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is
 - a) y x + 1 = 0
 - b) y x 1 = 0
 - c) y x + 2 = 0
 - d) y x 1 = 0
- 4.7.38 The distance of the point of intersection of the lines 2x 3y + 5 = 0 and 3x + 4y = 0 from the line 5x 2y = 0 is
 - a) $\frac{130}{17\sqrt{20}}$
 - b) $\frac{17\sqrt{29}}{7\sqrt{20}}$
 - c) $\frac{130}{7}$
 - d) none of these
- 4.7.39 The equations of the lines passing through the point (1, 0) and at a distance $\frac{\sqrt{3}}{2}$ from the origin, are
 - a) $\sqrt{3}x + y \sqrt{3} = 0$, $\sqrt{3}x y \sqrt{3} = 0$

- b) $\sqrt{3}x + y + \sqrt{3} = 0$, $\sqrt{3}x y + \sqrt{3} = 0$
- c) $x + \sqrt{3}y \sqrt{3} = 0$, $\sqrt{3}y \sqrt{3} = 0$
- d) None of these.
- 4.7.40 The coordinates of the foot of perpendiculars from the point (2, 3) on the line y =3x + 4 is given by
 - a) $\frac{37}{10}$, $\frac{-1}{10}$ b) $\frac{-1}{10}$, $\frac{37}{10}$ c) $\frac{10}{37}$, -10 d) $\frac{2}{3}$, $\frac{-1}{3}$
- 4.7.41 A point equidistant from the lines 4x+3y+10 = 0, 5x-12y+26 = 0 and 7x+24y-50 = 0
 - 0 is
 - a) (1, -1)
 - b) (1, 1)
 - (0, 0)
 - d) (0, 1)
- 4.7.42 A line passes through (2, 2) and is perpendicular to the line 3x+y=3. Its y-intercept

 - a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) 1

 - d) $\frac{4}{3}$
- 4.7.43 The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y - 5 = 0 is
 - a) 1:2
 - b) 3:7
 - c) 2:3
 - d) 2:5
- 4.7.44 Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\overrightarrow{r} \cdot (\hat{i} + 2\hat{j} - 5\hat{k}) + 9 = 0$.
- 4.7.45 Find the equation of the plane passing through the point (-1,3,2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
- 4.7.46 If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane $\overrightarrow{r} \cdot (3\hat{i} + 4\hat{j} 12\hat{k}) + 13 =$ 0, then find the value of p.
- 4.7.47 If O be the origin and the coordinates of P be (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP.
- 4.7.48 Find the vector equations of the line passing through the point (1, 2, -4) and perpendicular to the two lines:

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. (4.7.48.1)

- 4.7.49 Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is
 - a) 2 units
 - b) 4 units

- c) 8 units
- d) $\frac{2}{\sqrt{29}}$ units
- 4.7.50 Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with positive direction of x-axis is 15°.
- 4.7.51 Find the distance of the point (3, -5) from the line 3x 4y 26 = 0.
- 4.7.52 Find the distance between the parallel lines 3x 4y + 7 = 0 and 3x 4y + 5 = 0.
- 4.7.53 Find the equation of a line perpendicular to the line x + 2y + 3 = 0 and passing through the point (1, -2).
- 4.7.54 Reduce the equation $\sqrt{3}x + y 8 = 0$ into normal form. Find the values of p and ω .
- 4.7.55 Show that the path of a moving point such that its distances from two lines 3x-2y=5 and 3x+2y=5 are equal is a straight line.
- 4.7.56 Find the distance of the line 4x y 0 from the point p(4, 1) measured along the line making an angle of 135° with the positive x-axis.
- 4.7.57 Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x 3y + 4z 6 = 0.
- 4.7.58 Find the equation of the plane which passes through the point (5, 2, -4) and perpendicular to the line with direction ratios 2, 3, -1.
- 4.7.59 Find the equation of the plane that contains the point (1, -1, 2) and is perpendicular to each of the planes 2x + 3y 2z = 5 and x + 2y 3z = 8.
- 4.7.60 Find the distance between the point P(6,5,9) and the plane determined by the points A(3,-12), B(5,2,4) and C(-1,-1,6)
- 4.7.61 Find the distance of a point (2,5,-3) from the plane $\vec{r} \cdot (6\hat{i} 3\hat{j} + 2\hat{k}) = 4$.
- 4.7.62 Find the distance of the plane 2x 3y + 4z 6 = 0 from the origin.
- 4.7.63 Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2\hat{i} 3\hat{j} + 4\hat{k}$.
- 4.7.64 Find the distance between the lines l_1 and l_2 given by

$$\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \tag{4.7.64.1}$$

and
$$\vec{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k})$$
 (4.7.64.2)

4.7.65 Find the shortest distance between the lines l_1 and l_2 whose vector equations are

$$\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})$$
 (4.7.65.1)

and
$$\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$$
 (4.7.65.2)

4.7.66 The line through the points (h, 3) and (4, 1) intersects the line 7x - 9y - 19 = 0 at a right angle. Find the value of h.

Solution: The direction vectors of the given lines are

$$\begin{pmatrix} 4-h \\ -2 \end{pmatrix}, \begin{pmatrix} 9 \\ 7 \end{pmatrix} \tag{4.7.66.1}$$

$$\implies \left(9 \quad 7\right) \begin{pmatrix} 4 - h \\ -2 \end{pmatrix} = 0 \tag{4.7.66.2}$$

$$\implies h = \frac{22}{9} \tag{4.7.66.3}$$

See Fig. 4.7.66.1.

Fig. 4.7.66.1

4.7.67 If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular, find the value of k.

Solution: From the given information,

$$\mathbf{m}_1 = \begin{pmatrix} -3\\2k\\2 \end{pmatrix}, \ \mathbf{m}_2 = \begin{pmatrix} 3k\\1\\-5 \end{pmatrix} \tag{4.7.67.1}$$

$$\implies \begin{pmatrix} -3 & 2k & 2 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 3k \\ 1 \\ -5 \end{pmatrix} = 0 \tag{4.7.67.2}$$

$$\implies k = -\frac{10}{7} \tag{4.7.67.3}$$

4.8 *CBSE*

- 4.8.1 Find the equation of the plane passing through the points (1,0,-2), (3,-1,0) and perpendicular to the plane 2x y + z = 8. Also find the distance of the plane thus obtained from the origin. (12, 2020)
- 4.8.2 Find the values of λ for which the distance of the point $(2, 1, \lambda)$ from the plane 3x + 5y + 4z = 11 is $2\sqrt{2}$ units. (12, 2023)
- 4.8.3 Find the distance of the point (a, b, c) from the X axis. (12, 2021)
- 4.8.4 If the lines $\frac{x-1}{-3} = \frac{y-2}{2\lambda} = \frac{z-3}{2}$ and $\frac{x-1}{3\lambda} = \frac{y-1}{2} = \frac{z-6}{-5}$ are perpendicular, find the value of λ . Hence, determine whether the lines intersect or not.

(12, 2019)

- 4.8.5 Find the vector equation of the plane determined by the points A(3, -1, 2), B(5, 2, 4), and C(-1, -1, 6). Hence, find the distance of the plane, thus obtained, from the origin. (12, 2019)
- 4.8.6 Find the coordinates of the foot of the perpendicular \bf{Q} drawn from $\bf{P}(3,2,1)$ to the plane 2x - y + z + 1 = 0. Also, find the distance PQ and the image of the point **P** treating this plane as a mirror.
- 4.8.7 Find the value of λ for which the lines $\frac{x-5}{5(\lambda+2)} = \frac{2-y}{5} = \frac{1-z}{-1}; \frac{x}{1} = \frac{y+\frac{1}{2}}{2\lambda} = \frac{z-1}{3}$. are perpendicular to each other. Hence, find whether the lines intersect or not.
 - (12, 2019)
- 4.8.8 Find the equation of the plane passing through the point (-1,3,2) and perpendicular to the planes x + 2y + 3z = 5 and 3x + 3y + z = 0. (12, 2019)
- 4.8.9 Find the coordinates of the foot \mathbf{Q} of the perpendicular drawn from the point $\mathbf{P}(1,3,4)$ to the plane 2x - y + z + 3 = 0. Find the distance PO and the image of **P** treating the plane as a mirror. (12, 2019)
- 4.8.10 Find the coordinates of the foot of the perpendicular \mathbf{Q} drawn from $\mathbf{P}(3,2,1)$ to the plane 2x - y + z + 1 = 0. Also, find distance PQ and the image of the point **P** treating this plane as a mirror. (12, 2018)
- 4.8.11 Find the vector equation of the plane determined by the points A(3, -1, 2), B(5, 2, 4), $\mathbb{C}(-1, -1, 6)$. Hence, find the distance of the plane, thus obtained, from the origin. (12, 2018)
- 4.8.12 Find the vector equation of the plane that contains the line $\mathbf{r} = (\hat{i} + \hat{j}) + \lambda (\hat{i} + 2\hat{j} \hat{j})$ and the point (-1, 3, -4). Also, find the length of the perpendicular drawn from the point (2, 1, 4) to the plane, thus obtained.
- 4.8.13 Find the distance between the planes \vec{r} . $(2\hat{i} 3\hat{j} + 6\hat{k}) 4 = 0$ and \vec{r} . $(6\hat{i} 9\hat{j} + 18\hat{k}) +$ 30 = 0
- 4.8.14 Find the position vector of the foot of perpendicular and the perpendicular distance from the point **P** with position vector $2\hat{i} + 3\hat{j} + \hat{k}$ to the plane $\mathbf{r} \cdot (2\hat{i} + \hat{j} + 3\hat{k}) - 26 = 0$. Also find image of P in the plane.
- 4.8.15 A line *l* passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line *l*. Hence, obtain its distance from origin. (12, 2023)
- 4.8.16 Find the equation of the plane passing through the points (2, 1, 0), (3, -2, -2) and (12, 2022)(1, 1, 7). Also, obtain its distance from the origin.
- 4.8.17 The foot of a perpendicular drawn from the point (-2, -1, -3) on a plane is (1, -3, 3). Find the equation of the plane. (12, 2022)
- 4.8.18 The distance between the planes 4x 4y + 2z + 5 = 0 and 2x 2y + z + 6 = 0 is (12, 2022)
- 4.8.19 If the distance of the point (1, 1, 1) from the plane $x y + z + \lambda = 0$ is $\frac{5}{\sqrt{3}}$, find the
- 4.8.20 Find the distance of the point (2, 3, 4) measured along the line $\frac{x-4}{3} = \frac{y+5}{6} = \frac{z+1}{2}$ from the plane 3x + 2y + 2z + 5 = 0.
- 4.8.21 Find the distance of the point P(4,3,2) from the plane determined by the points A(-1, 6, -5), B(-5, -2, 3) and C(2, 4, -5).
- A(-1, 6, -5), B(-5, -2, 3) and C(2, 4, -5). (12, 2022) 4.8.22 The distance of the line $\mathbf{r} = (\hat{i} \hat{j}) + \lambda(\hat{i} + 5\hat{j} + \hat{k})$ from the plane $\mathbf{r} \cdot (\hat{i} \hat{j} + 4\hat{k}) = 5$

is (12, 2022)

4.8.23 Find the values of λ , for which the distance of point $(2, 1, \lambda)$ from plane 3x + 5y + 4z = 11 is $2\sqrt{2}$ units. (12, 2022)

- 4.8.24 If the distance of the point (1,1,1) from the plane $x-y+z+\lambda=0$ is $\frac{5}{\sqrt{3}}$, find the value(s) of λ .
- 4.8.25 If the lines $\frac{x-1}{-3} = \frac{y-2}{2\lambda} = \frac{z-3}{2}$ and $\frac{x-1}{3\lambda} = \frac{y-1}{2} = \frac{z-6}{-5}$ are perpendicular, find the value of λ . Hence find whether the lines are intersecting or not. (12, 2018)
- 4.8.26 Find the coordinates of the foot of perpendicular drawn from the point A(-1,8,4) to the line joining the points B(0,-1,3) and C(2,-3,-1). Hence find the image of the point A in the line BC. (12, 2016)
- 4.8.27 The coordinates of the foot of the perpendicular drawn from the point (2, -3, 4) on the *Y* axis is (12, 2020)
- 4.8.28 Find the equation of the plane passing through (-1,3,2) and perpendicular to the planes x + 2y + 3z = 5 and 3x + 3y + z = 0. (12, 2018)
- 4.8.29 Find the equation of the plane passing through the intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\overrightarrow{r} \cdot (2\hat{i} + 3\hat{j} \hat{k}) + 4 = 0$ and parallel to the *X* axis. Hence, find the distance of the plane from the *X* axis. (12, 2018)
- 4.8.30 Find the value of λ for which the lines $\frac{x-5}{5\lambda+2} = \frac{2-y}{5} = \frac{1-z}{-1}$; $\frac{x}{1} = \frac{y+\frac{1}{2}}{2\lambda} = \frac{z-1}{3}$ are perpendicular to each other. Hence, find whether the lines intersect or not.

(12, 2018)

- 4.8.31 Write the equation of the line passing through (1, 2, 3) and perpendicular to the plane $\mathbf{r} \cdot (i + 2j 5k) + 9 = 0$. (12, 2015)
- 4.8.32 Write the equation of a plane passing through the point (2, 3, 7) and parallel to the plane obtained above. Hence, find the distance between the two parallel planes.

(12, 2019)

4.8.33 Find the equation of a line passing through the point (2,3,2) and parallel to the line $\vec{r} = (-2\hat{i} + 3\hat{j}) + \lambda(2\hat{i} - 3\hat{j} + 6\hat{k})$. Also, find the distance between these two lines.

(12, 2019)

4.9 Angle

4.9.1 Two lines passing through the point (2, 3) intersect each other at an angle of 60°. If the slope of one line is 2, find the equation of the other line.

Solution: Using the scalar product

$$\cos 60^{\circ} = \frac{1}{2} = \frac{\left(1 - 2\right) \left(\frac{1}{m}\right)}{\sqrt{5}\sqrt{m^2 + 1}}$$
(4.9.1.1)

$$\implies 11m^2 + 16m - 1 = 0 \tag{4.9.1.2}$$

$$or, m = \frac{-8 \pm 5\sqrt{3}}{11} \tag{4.9.1.3}$$

So, the desired equation of the line is

$$\left(\frac{-8 \pm 5\sqrt{3}}{11} - 1 \right) \mathbf{x} = \left(\frac{-8 \pm 5\sqrt{3}}{11} - 1 \right) \begin{pmatrix} 2\\3 \end{pmatrix}$$
 (4.9.1.4)

$$=\frac{-49\pm16\sqrt{3}}{11}\tag{4.9.1.5}$$

4.9.2 Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x-2y=3.

Solution: Following the approach in Problem 4.9.1,

$$\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\left(2 \quad 1\right) \begin{pmatrix} 1\\ m \end{pmatrix}}{\left\| \begin{pmatrix} 2\\ 1 \end{pmatrix} \right\| \left\| \begin{pmatrix} 1\\ m \end{pmatrix} \right\|} \tag{4.9.2.1}$$

$$\implies 3m^2 - 8m - 3 = 0 \tag{4.9.2.2}$$

or,
$$m = -\frac{1}{3}$$
, 3 (4.9.2.3)

Thus, the desired equations are

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \left\{ \mathbf{x} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} = 0 \tag{4.9.2.4}$$

$$\implies \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = 9 \tag{4.9.2.5}$$

and

$$\begin{pmatrix} 3 & -1 \end{pmatrix} \left\{ \mathbf{x} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} = 0 \tag{4.9.2.6}$$

$$\implies (3 -1)\mathbf{x} = 7 \tag{4.9.2.7}$$

See Fig. 4.9.2.1.

Fig. 4.9.2.1

- 4.9.3 Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2} = \frac{y-3}{1} = \frac{z}{1}$ at angles of $\frac{\pi}{3}$ each.
- 4.9.4 The equations of the lines which pass through the point (3, -2) and are inclined at 60° to the line $\sqrt{3}x + y = 1$ is
 - a) y + 2 = 0, $\sqrt{3}x y 2 3\sqrt{3} = 0$
 - b) x 2 = 0, $\sqrt{3}x y + 2 + 3\sqrt{3} = 0$
 - c) $\sqrt{3}x y 2 3\sqrt{3} = 0$
 - d) None of these
- 4.9.5 Equations of the lines through the point (3,2) and making an angle of 40° with the line x 2y = 3 are _____.

4.10 Intersection

4.10.1 Find the equation of the plane through the intersection of the planes 3x-y+2z-4=0 and x+y+z-2=0 and the point $\begin{pmatrix} 2\\2\\1 \end{pmatrix}$.

Solution: The parameters of the given planes are

$$\mathbf{n}_1 = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \ \mathbf{n}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ c_1 = 4, c_2 = 2. \tag{4.10.1.1}$$

The intersection of the planes is given as

$$\mathbf{n}_1^{\mathsf{T}} \mathbf{x} - c_1 + \lambda \left(\mathbf{n}_2^{\mathsf{T}} \mathbf{x} - c_2 \right) = 0 \tag{4.10.1.2}$$

where

$$\lambda = \frac{c_1 - \mathbf{n}_1^{\mathsf{T}} \mathbf{P}}{\mathbf{n}_2^{\mathsf{T}} \mathbf{P} - c_2} = -\frac{2}{3}$$
 (4.10.1.3)

upon substituting

$$\mathbf{P} = \begin{pmatrix} 2\\2\\1 \end{pmatrix}. \tag{4.10.1.4}$$

in (4.10.1.3) along with the numerical values in (4.10.1.1). Now, substituting (4.10.1.3) in (4.10.1.2), the equation of plane is

4.10.2 Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x - 7y + 5 = 0 and 3x + y = 0.

Solution: Following the approach in Problem 4.10.1, the desired equation is

$$(1 -7)\mathbf{x} - 5 + k(3 \ 1)\mathbf{x} = 0 \tag{4.10.2.1}$$

$$\implies (1+3k -7+k)\mathbf{x} = 5$$
 (4.10.2.2)

$$\implies \begin{pmatrix} 1+3k \\ -7+k \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ or, } k = 7, \alpha = 22. \tag{4.10.2.3}$$

The desired equation is then given by

$$(1 \quad 0) \mathbf{x} = \frac{5}{22}$$
 (4.10.2.4)

The intersection of the lines is obtained using the augemented matrix as

$$\begin{pmatrix} 1 & -7 & | & -5 \\ 3 & 1 & | & 0 \end{pmatrix} \xrightarrow[R_1 = 22R_1 + 7R_2]{} \begin{pmatrix} 22 & 0 & | & -5 \\ 0 & 22 & | & 15 \end{pmatrix}$$
(4.10.2.5)

$$\implies \mathbf{x} = \frac{5}{22} \begin{pmatrix} -1\\3 \end{pmatrix} \tag{4.10.2.6}$$

See Fig. 4.10.2.1.

Fig. 4.10.2.1

4.10.3 A person standing at the junction (crossing) of two straight paths represented by the equations

$$(2 -3)\mathbf{x} = -4 \tag{4.10.3.1}$$

and

$$(3 4) \mathbf{x} = 5 (4.10.3.2)$$

wants to reach the path whose equation is

$$(6 -7)\mathbf{x} = -8 \tag{4.10.3.3}$$

Find equation of the path that he should follow.

Solution: The junction of (4.10.3.1) and (4.10.3.2) is obtained as

$$\begin{pmatrix} 2 & -3 & | & -4 \\ 3 & 4 & | & 5 \end{pmatrix} \xrightarrow{R_2 \to 2R_2 - 3R_1} \begin{pmatrix} 2 & -3 & | & -4 \\ 0 & 17 & | & 22 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 17R_1 + 3R_2} \begin{pmatrix} 17 & 0 & | & -1 \\ 0 & 17 & | & 22 \end{pmatrix} \implies \mathbf{A} = \frac{1}{17} \begin{pmatrix} -1 \\ 22 \end{pmatrix}$$

Clearly, the man should follow the path perpendicular to (4.10.3.3) from **A** to reach it in the shortest time. The normal vector of (4.10.3.3) is

$$\begin{pmatrix} 6 \\ -7 \end{pmatrix} \implies \mathbf{n} = \begin{pmatrix} 7 \\ 6 \end{pmatrix} \tag{4.10.3.4}$$

and the equation of the desired line is

$$(7 6) \mathbf{x} = \frac{1}{17} (7 6) {\begin{pmatrix} -1\\22 \end{pmatrix}} = \frac{125}{17}$$
 (4.10.3.5)

See Fig. 4.10.3.1.

Fig. 4.10.3.1

4.10.4 Find the equation of the line passing through the point of intersection of the lines 4x + 7y - 3 = 0 and 2x - 3y + 1 = 0 that has equal intercepts on the axes.

Solution: From Problem 4.10.1, the intersection of the lines is given by

$$(4+2k \quad 7-3k)\mathbf{x} = 3-k \tag{4.10.4.1}$$

$$\implies \begin{pmatrix} 4+2k \\ 7-3k \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{4.10.4.2}$$

from Problem 4.3.16, yielding,

$$\begin{pmatrix} 1 & -2 & | & 4 \\ 1 & 3 & | & 7 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & -2 & | & 4 \\ 0 & 5 & | & 3 \end{pmatrix}$$
(4.10.4.3)

or,
$$k = \frac{3}{5}$$
 (4.10.4.4)

Substituting the above in (4.10.4.1), the desired equation is

$$(1 \quad 1)\mathbf{x} = \frac{6}{13}$$
 (4.10.4.5)

See Fig. 4.10.4.1.

Fig. 4.10.4.1

4.10.5 Find the value of p so that the three lines 3x + y - 2 = 0, px + 2y - 3 = 0 and 2x - y - 3 = 0 may intersect at one point.

Solution: Performing row operations on the matrix

$$\begin{pmatrix} 3 & 1 & -2 \\ p & 2 & -3 \\ 2 & -1 & -3 \end{pmatrix} \xrightarrow{R_2 = 3R_2 - pR_1} \begin{pmatrix} 3 & 1 & -2 \\ 0 & 6 - p & -9 + 2p \\ 0 & -5 & -5 \end{pmatrix}$$
$$\xrightarrow{R_3 = R_3(6-p) + 5R_2} \begin{pmatrix} 3 & 1 & -2 \\ 0 & 6 - p & -9 + 2p \\ 0 & 0 & -75 + 15p \end{pmatrix}$$
$$\implies p = 5$$

Substituting this value in the above, we obtain

$$\begin{pmatrix}
3 & 1 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$$
(4.10.5.1)

yielding

$$\mathbf{x} = \begin{pmatrix} -1\\1 \end{pmatrix} \tag{4.10.5.2}$$

as the point of intersection. See Fig. 4.10.5.1.

Fig. 4.10.5.1

4.10.6 Show that the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

and

$$\frac{x-4}{5} = \frac{y-1}{2} = z$$

intersect. Also, find their point of intersection.

- 4.10.7 The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is
 - a) $\frac{7}{2}$ sq units
 - b) $\frac{9}{2}$ sq units
 - c) $\frac{11}{2}$ sq units
 - d) $\frac{13}{2}$ sq units
- 4.10.8 Compute the area bounded by the line x + 2y = 2, y x = 1 and 2x + y = 7.
- 4.10.9 Find the area bounded by the lines y = 4x + 5, y = 5 x and 4y = x + 5.
- 4.10.10 Find the equation of the plane which is perpendicular to the plane 5x+3y+6z+8=0 and which contains the line of intersection of the planes x+2y+3z-4=0 and 2x+y-z+5=0.
- 4.10.11 Point P(0,2) is the point of intersection of the y-axis and the perpendicular bisector of line segment joining the points A(-1,1) and B(3,3).
- 4.10.12 Prove that the line through A(0,-1,-1) and B(4,5,1) intersects the line through C(3,9,4) and D(-4,4,4).
- 4.10.13 Find the equation of the plane through the intersection of the planes $\vec{r} \cdot (\hat{i} + 3\hat{j}) 6 = 0$ and $\vec{r} \cdot (3\hat{i} \hat{j} 4\hat{k}) = 0$, whose perpendicular distance from origin is unity.

- 4.10.14 Find the equation of the line passing through the point of intersection of 2x + y = 5and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
- 4.10.15 Find the equations of the lines through the point of intersection of the line x-y+1=0and 2x - 3y + 5 = 0 and whose distance from the point (3, 2) is $\frac{7}{5}$.
- 4.10.16 The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y - 10 = 0 and 2x + y + 5 = 0.
- 4.10.17 Find the equation of the plane passing through the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\overrightarrow{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to the X axis.
- 4.10.18 Find the equation of the plane which contains the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0, \overrightarrow{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$ and which is perpendicular to the plane $\overrightarrow{r} \cdot (5\hat{i} + 3\hat{j} - 6\hat{k}) + 8 = 0$
- 4.10.19 Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\overrightarrow{r} = 2\hat{i} - \hat{j} - 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\overrightarrow{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5$.
- 4.10.20 Show that the area of the triangle formed by the lines $y = m_1x + c_1$, $y = m_2x + c_2$ and x = 0 is $\frac{(c_1 - c_2)^2}{2|m_1 - m_2|}$ 4.10.21 If the lines 2x + y - 3 = 0, 5x + ky - 3 = 0 and 3x - y - 2 = 0 are concurrent, find the
- value of k.
- 4.10.22 Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5$, and the point (1, 1, 1).
- 4.10.23 Find the coordinates of the point where the line through the points A(3,4,1) and $\mathbf{B}(5, 1, 6)$ crosses the XY plane.

4.11 CBSE

- 4.11.1 Find the coordinates of the point where the line $\frac{x-1}{3} = \frac{y+4}{7} = \frac{z+4}{2}$ cuts the XY plane. (12, 2020)
- 4.11.2 Find the coordinates of the point where the line through (3,4,1) crosses the ZX plane. (12, 2023)
- 4.11.3 Find the equation of the line passing through (2, -1, 2) and (5, 3, 4) and the equation of the plane passing through (2,0,3), (1,1,5), and (3,2,4). Also, find their point of intersection.
- 4.11.4 Find the equation of the plane which contains the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0$ and $\overrightarrow{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$, and which is perpendicular to the plane $\overrightarrow{r} \cdot (5\hat{i} + 3\hat{j} - 6\hat{k}) + 8 = 0$. (12, 2019)
- 4.11.5 Find the equation of the plane passing through the points (2, 5, -3), (-2, -3, 5), and (5,3,-3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1). (12, 2019)
- 4.11.6 Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j})$ $(\hat{i} + \hat{k}) = 1$ and $\overrightarrow{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to the X axis. Hence, find the distance of the plane from the X axis. (12, 2019)
- 4.11.7 Find the equation of the planes passing through the intersection of the planes \overrightarrow{r} . $(3\hat{i}+6\hat{j})+12=0$ and $\vec{r}\cdot(3\hat{i}-\hat{j}+4\hat{k})=0$ and are at a unit distance from the origin.
- 4.11.8 Find the coordinates of the point where the line $\frac{x+2}{1} = \frac{y-5}{3} = \frac{z+1}{5}$ cuts the YZ plane. (12, 2019)

- 4.11.9 Find the area of the triangle $\triangle ABC$ bounded by the lines 4x y + 5 = 0, x + y 5 = 0 and x 4y + 5 = 0. (12, 2019)
- 4.11.10 Point **A** lies on the line segment XY joining $\mathbf{X}(6,-6)$ and $\mathbf{Y}(-4,-1)$ in such a way that $\frac{XA}{XY} = \frac{2}{5}$. If point **A** also lies on the line 3x + k(y+1) = 0, find the value of k. (10, 2019)
- 4.11.11 Find the ratio in which the line x 3y = 0 divides the line segment joining the points (-2, -5) and (6, 3). Find the coordinates of the point of intersection. (10, 2019)
- 4.11.12 Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\overrightarrow{r} = 2\hat{i} \hat{j} + 2\hat{k} + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right)$ and the plane $\overrightarrow{r} \cdot \left(\hat{i} \hat{j} + \hat{k}\right) = 5$. (12, 2018)
- 4.11.13 Find the equation of the plane passing through the points (2, 5, -3), (-2, -3, 5), and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).
- 4.11.14 Find the value of λ for which the lines $\frac{x-5}{5\lambda+2} = \frac{2-y}{5} = \frac{1-z}{-1}$ and $\frac{x}{1} = \frac{y+\frac{1}{2}}{2\lambda} = \frac{z-1}{3}$ are perpendicular to each other. Hence, find whether the lines intersect or not.

(12, 2018)

- 4.11.15 Find the equation of the plane which contains the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) 4 = 0$, $\overrightarrow{r} \cdot (2\hat{i} + \hat{j} \hat{k}) + 5 = 0$ and which is perpendicular to the plane $\overrightarrow{r} \cdot (5\hat{i} + 3\hat{j} 6\hat{k}) + 8 = 0$. (12, 2018)
- 4.11.16 Find the equation of planes passing through the intersection of the planes $\vec{r} \cdot (2\hat{i} + 6\hat{j}) + 12 = 0$ and $\vec{r} \cdot (3\hat{i} \hat{j} + 4\hat{k}) = 0$ and are at a unit distance from origin.
- 4.11.17 Find the value of λ , so that the lines $\frac{1-x}{3} = \frac{7y-14}{\lambda} = \frac{z-3}{2}$ and $\frac{7-7x}{3\lambda} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles. Also, find whether the lines are intersecting or not. (12, 2018)
- 4.11.18 Find the equation of the plane which contains the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} 2\hat{j} + 3\hat{k}) 4 = 0$ and $\overrightarrow{r} \cdot (-2\hat{i} + \hat{j} + \hat{k}) + 5 = 0$ and whose intercept on *X* axis is equal to that of on *Y* axis. (12, 2016)
- 4.11.19 Find the coordinates of the point where the line through the points $\mathbf{P}(4,3,2)$ and $\mathbf{Q}(5,1,6)$ crosses the XZ plane. Also find the angle which this line makes with the XZ plane. (12, 2016)
- 4.11.20 Find the coordinates of the point where the line through the points $\mathbf{A}(3,4,1)$ and $\mathbf{B}(5,1,6)$ crosses the XZ plane. Also find the angle which this line makes with the XZ plane. (12, 2016)
- 4.11.21 Find the equation of the plane passing through the line of intersection of planes $\mathbf{r} \cdot \left(2\vec{i} + 2\vec{j} 3\vec{k}\right) = 7$, $\mathbf{r} \cdot \left(2\vec{i} + 5\vec{j} + 3\vec{k}\right) = 9$ such that the intercepts made by the plane on X axis and Z axis are equal. (12, 2015)
- 4.11.22 Find the equations of the diagonals of the parallelogram PQRS whose vertices are $\mathbf{P}(4,2,-6)$, $\mathbf{Q}(5,-3,1)$, $\mathbf{R}(12,4,5)$ and $\mathbf{S}(11,9,-2)$. Use these equations to find the point of intersection of diagonals. (12, 2023)
- 4.11.23 Find the co-ordinates of the point where the line $\frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6}$ crosses the plane passing through the points $\left(\frac{7}{2}, 0, 0\right), (0, 7, 0), (0, 0, 7)$. (12, 2022)
- 4.11.24 Find the equation of the plane through the line of intersection of the planes $\mathbf{r} \cdot (\hat{i} + 3\hat{j}) + 6 = 0$, $\mathbf{r} \cdot (3\hat{i} \hat{j} 4\hat{k}) = 0$ which is at a unit distance from the origin.

(12, 2022)

- 4.11.25 Find the distance of the point (1, -2, 9) from the point of intersection of the line $\mathbf{r} = 4\hat{i} + 2\hat{j} + 7\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\mathbf{r} \cdot (\hat{i} \hat{j} + \hat{k}) = 10$. (12, 2022)
- 4.11.26 Find the area bounded by the curves y = |x 1| and y = 1. (12, 2022)
- 4.11.27 Find the coordinates of the point where the line through (4, -3, -4) and (3, -2, 2) crosses the plane 2x + y + z = 6. (12, 2022)
- 4.11.28 Find the equation of the plane through the line of intersection of the planes $\mathbf{r} \cdot (i+3j)+6=0$ and $\mathbf{r} \cdot (3i-j-4k)=0$, which is at a unit distance from the origin. (12, 2021)
- 4.11.29 Find the area of the region bounded by the lines 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0. (12, 2019)
- 4.11.30 Draw the graph of the equations x-y+1=0 and 3x+2y-12=0. Using this graph, find the values of x and y which satisfy both the equations. (10, 2021)
- 4.11.31 Find the area of the region bounded by the line y = 3x + 2, the X axis and the ordinates x = -2 and x = 1. (12, 2019)
- 4.11.32 Find the equation of the line passing through (2, -1, 2) and (5, 3, 4) and of the plane passing through (2, 0, 3), (1, 1, 5) and (3, 2, 4). Also, find their point of intersection. (12, 2018)
- 4.11.33 Find the length of the intercept, cut off by the plane 2x + y z = 5 on the X axis. (12, 2018)
- 4.11.34 Find the area of the region bounded by the lines 3x 2y + 1 = 0, 2x + 3y 21 = 0, and x 5y + 9 = 0. (12, 2018)
- 4.11.35 Find the area of the region bounded by the line y = 3x + 2, the X axis and the ordinates and the ordinates x = -2 and x = 1. (12, 2018)
- 4.11.36 Find the coordinates of the point where the line through the points (3, -4, -5) and (2, -3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2, -3) and (0, 4, 3). (12, 2017)
- 4.11.37 Show that the lines $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect. Find their point of intersection. (12, 2016)
- 4.11.38 Find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1, and x = 4. (12, 2019)
- 4.11.39 Find the area of the region bounded by the lines 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0. (12, 2019)
- 4.11.40 Find the area of the region bounded by the line y = 3x + 2, the X axis and the ordinates x = -2 and x = 1. (12, 2019)

4.12 Miscellaneous

4.12.1 For which values of *a* and *b* does the following pair of linear equations have an infinite number of solutions?

$$2x + 3y = 7 \tag{4.12.1.1}$$

$$(a-b)x + (a-b)y = 3a + b - 2 (4.12.1.2)$$

4.12.2 For which value of k will the following pair of linear equations have no solution?

$$3x + y = 1 \tag{4.12.2.1}$$

$$(2k-1)x + (k-1)y = 2k+1 (4.12.2.2)$$

4.12.3 Find the values of k for which the line

$$(k-3)x - (4-k^2)y + k^2 - 7k + 6 = 0 (4.12.3.1)$$

is

- a) Parallel to the x-axis
- b) Parallel to the Y axis
- c) Passing through the origin

Solution:

$$\mathbf{n} = \begin{pmatrix} k - 3 \\ -4 + k^2 \end{pmatrix}, c = -k^2 + 7k - 6$$
 (4.12.3.2)

a)

$$\binom{k-3}{-4+k^2} = \alpha \binom{0}{1} \implies k = 3,$$
 (4.12.3.3)

$$\implies (0 \quad 5)\mathbf{x} = 6 \tag{4.12.3.4}$$

upon substituting from (4.12.3.2).

b) In this case,

$$\binom{k-3}{-4+k^2} = \beta \binom{1}{0} \implies k = \pm 2$$
 (4.12.3.5)

$$\implies (-1 \quad 0) \mathbf{x} = 4, \quad k = 2$$
 (4.12.3.6)

$$(-5 0)\mathbf{x} = -24, k = -2 (4.12.3.7)$$

c) In this case,

$$-k^2 + 7k - 6 = 0 \implies k = 1, k = 6$$
 (4.12.3.8)

$$\implies (-2 \quad -3)\mathbf{x} = 0, \quad k = 1$$
 (4.12.3.9)

$$(3 32)\mathbf{x} = 0, k = 6 (4.12.3.10)$$

4.12.4 Find the equations of the lines, which cutoff intercepts on the axes whose sum and product are 1 and -6 respectively.

Solution: Let the intercepts be a and b. Then

$$a + b = 1, ab = -6$$
 (4.12.4.1)

$$\implies a = 3, b = -2 \tag{4.12.4.2}$$

Thus, the possible intercepts are

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix} \tag{4.12.4.3}$$

From (4.1.3.5),

$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{4.12.4.4}$$

$$\implies \mathbf{n} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{pmatrix} \tag{4.12.4.5}$$

or,
$$(2 -3)\mathbf{x} = 6$$
 (4.12.4.6)

using (4.1.4.1). Similarly, the other line can be obtained as

$$(3 -2)\mathbf{x} = -6$$
 (4.12.4.7)

4.12.5 A ray of light passing through the point P = (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point Q = (5, 3). Find the coordinates of A. **Solution:** From (4.1.9.1), the reflection of Q is

$$\mathbf{R} = \begin{pmatrix} 5 \\ -3 \end{pmatrix} \tag{4.12.5.1}$$

Letting

$$\mathbf{A} = \begin{pmatrix} x \\ 0 \end{pmatrix}, \tag{4.12.5.2}$$

since $\mathbf{P}, \mathbf{A}, \mathbf{R}$ are collinear, from (4.1.3.6),

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 5 & -3 \\ 1 & x & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 4 & -5 \\ 0 & x - 1 & -2 \end{pmatrix}$$
(4.12.5.3)

$$\stackrel{R_3=4R_3-(x-1)R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 4 & -5 \\ 0 & 0 & 5x-13 \end{pmatrix} \implies x = \frac{13}{5}$$
(4.12.5.4)

See Fig. 4.12.5.1.

Fig. 4.12.5.1

- 4.12.6 The owner of a milk store finds that he can sell 980 litres of milk each week at ₹ 14/litre and 1220 litres of milk each week at ₹ 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at ₹ 17/ litre?
- 4.12.7 Prove that in any $\triangle ABC$, $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C respectively.
- 4.12.8 Distance of the point (α, β, γ) from y-axis is
 - a) β
 - b) |β|

 - c) $|\beta + \gamma|$ d) $\sqrt{\alpha^2 + \gamma^2}$
- 4.12.9 The reflection of the point (α, β, γ) in the XY plane is
 - a) $\alpha, \beta, 0$
 - b) $(0, 0, \gamma)$
 - c) $(-\alpha, -\beta, \gamma)$
 - d) $(\alpha, \beta, -\gamma)$
- 4.12.10 The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0through an angle α . Prove that the equation of the plane in its new position is

$$ax + by \pm (\sqrt{a^2 + b^2} \tan \alpha)z = 0.$$

- 4.12.11 The locus represented by xy + yz = 0 is
 - a) A pair of perpendicular lines
 - b) A pair of parallel lines
 - c) A pair of parallel planes

- d) A pair of perpendicular planes
- 4.12.12 For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x 3y = 0 on the axes.
- 4.12.13 If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, -1), then find the length of the side of the triangle.
- 4.12.14 A variable line passes through a fixed point **P**. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point **P**.
- 4.12.15 A straight line moves so that the sum of the reciprocals of its intercepts made on the axes is constant. Show that the line passes through a fixed point.
- 4.12.16 If the sum of the distances of a moving point in a plane from the axes is l, then finds the locus of the point.
- 4.12.17 \mathbf{P}_1 , \mathbf{P}_2 are points on either of the two lines $y \sqrt{3}|x| = 2$ at a distance of 5 units from their point of intersection. Find the coordinates of the foot of the perpendiculars drawn from \mathbf{P}_1 , \mathbf{P}_2 on the bisector of the angle between the given lines.
- 4.12.18 If p is the length of perpendicular from the origin on the line $\frac{x}{a} + \frac{y}{b} = 1$ and a^2 , p^2 , b^2 are in A.P, then show that $a^4 + b^4 = 0$.
- 4.12.19 The point (4, 1) undergoes the following two successive transformations :
 - a) Reflection about the line y = x
 - b) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are
 - a) (4, 3)
 - b) (3, 4)
 - c) (1, 4)
 - d) $\frac{7}{2}$, $\frac{7}{2}$
- 4.12.20 One vertex of the equilateral with centroid at the origin and one side as x+y-2=0 is
 - a) (-1, -1)
 - b) (2, 2)
 - c) (-2, -2)
 - d) (2, -2)
- 4.12.21 If a, b, c are is A.P., then the straight lines ax + by + c = 0 will always pass through
- 4.12.22 The points (3, 4) and (2, -6) are situated on the _____ of the line 3x 4y 8 = 0.
- 4.12.23 A point moves so that square of its distance from the point (3, -2) is numerically equal to its distance from the line 5x 12y = 3. The equation of its locus is
- 4.12.24 Locus of the mid-points of the portion of the line $x \sin \theta + y \cos \theta = p$ intercepted between the axes is _____.
 - State whether the following statements are true or false. Justify.
- 4.12.25 If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.
- 4.12.26 The line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$, where c is a constant. The

locus of the foot of the perpendicular from the origin on the given line is $x^2 + y^2 = c^2$. 4.12.27 Match the following

1. The coordinates of the points P and **Q** on the line x + 5y = 13 which are at a

distance of 2 units from the line 12x-5y+

26 = 0 are

- 2. The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y - 10 = 0 are
- b) $-\frac{1}{11}, \frac{11}{3}, \frac{4}{3}, \frac{7}{3}$

a) (3, 1), (-7, 11)

- 3. The coordinates of the point on the line joining A(-2,5) and B(3,1) such that AP = PQ = QB are
- c) $1, \frac{12}{5}, -3, \frac{16}{5}$

TABLE 4.12.27

4.12.28 The value of the λ , if the lines

$$(2x + 3y + 4) + \lambda(6x - y + 12) = 0$$
 are

1. parallel to Y axis is

- 2. perpendicular to 7x + y 4 = 0 is

3. passes through (1, 2) is

4. parallel to X axis is

TABLE 4.12.28

- 4.12.29 The equation of the line through the intersection of the lines 2x 3y = 0 and 4x - 5y = 2 and
 - 1. through the point (2, 1) is
- a) 2x y = 4
- 2. perpendicular to the line
- b) x + y 5 = 0
- 3. parallel to the line 3x 4y + 5 = 0 is c) x y 1 = 0
- 4. equally inclined to the axes is
- d) 3x 4y 1 = 0

TABLE 4.12.29

4.12.30 Point $\mathbf{R}(h,k)$ divides a line segment between the axes in the ratio 1: 2. Find the equation of the line.

Solution: Choosing the intercept points in Problem 4.3.17,

$$\mathbf{R} = \frac{2\mathbf{A} + \mathbf{B}}{3} \implies \begin{pmatrix} h \\ k \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2a \\ b \end{pmatrix} \tag{4.12.30.1}$$

or,
$$\binom{b}{a} = \mathbf{n} \equiv \binom{2k}{h}$$
 (4.12.30.2)

Thus, the equation of the line is given by,

$$(2k \quad h)\mathbf{x} = (2k \quad h)\binom{h}{k} = 3hk$$
 (4.12.30.3)

- 4.12.31 The tangent of the angle between the lines whose intercepts on the axes are a, -b and b, -a, respectively, is
 - a) $\frac{a^2-b^2}{ab}$
 - b) $\frac{b^2-a^2}{2}$
 - c) $\frac{b^2 a^2}{2ab}$
 - d) none of these
- 4.12.32 Prove that the line through the point (x_1, y_1) and parallel to the line Ax + By + C = 0 is $A(x x_1) + B(y y_1) = 0$.

Solution: The equation of the desired line is

$$\begin{pmatrix} A & B \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \end{pmatrix} = 0$$
(4.12.32.1)

$$\implies (A \quad B)\mathbf{x} = Ax_1 + By_1 \tag{4.12.32.2}$$

4.12.33 If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta - y \sin \theta = k \cos 2\theta$ and $x \sec \theta + y \csc \theta = k$, respectively, prove that $p^2 + 4q^2 = k^2$

Solution: The line parameters are

$$\mathbf{n}_1 = \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix}, c_1 = k \cos 2\theta \tag{4.12.33.1}$$

$$\mathbf{n}_2 = \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix}, c_2 = \frac{1}{2}k\sin 2\theta \tag{4.12.33.2}$$

From (4.1.6.6),

$$p = \frac{\left|\mathbf{n}_{1}^{\mathsf{T}}\mathbf{x} - c_{1}\right|}{\|\mathbf{n}_{1}\|} = |k\cos 2\theta| \tag{4.12.33.3}$$

$$q = \frac{\left|\mathbf{n}_{2}^{\mathsf{T}}\mathbf{x} - c_{2}\right|}{\|\mathbf{n}_{2}\|} = \left|\frac{1}{2}k\sin 2\theta\right|$$
(4.12.33.4)

$$\implies p^2 + 4q^2 = k^2 \tag{4.12.33.5}$$

4.12.34 If p is the length of perpendicular from origin to the line whose intercepts on the axes are a and b, then show that

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} \tag{4.12.34.1}$$

Solution: Let the intercept points be

$$\begin{pmatrix} a \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ b \end{pmatrix}, \because \mathbf{n} = \begin{pmatrix} b \\ a \end{pmatrix}, \tag{4.12.34.2}$$

The line equation is,

$$(b \quad a) \left(\mathbf{x} - \begin{pmatrix} a \\ 0 \end{pmatrix} \right) = 0$$
 (4.12.34.3)

$$\implies (b \quad a)\mathbf{x} = ab \tag{4.12.34.4}$$

From (4.1.6.6), the perpendicular distance from the origin to the line is

$$p = \frac{ab}{\sqrt{a^2 + b^2}} \implies (4.12.34.1) \tag{4.12.34.5}$$

4.12.35 Find perpendicular distance from the origin to the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.

Solution: The equation of the line is

$$(\sin \phi - \sin \theta \quad \cos \theta - \cos \phi) \mathbf{x} = \sin (\phi - \theta) \tag{4.12.35.1}$$

and from (4.1.6.6), the distance is

$$d = \frac{\sin(\phi - \theta)}{2\sin(\frac{\phi - \theta}{2})} = \cos(\frac{\phi - \theta}{2})$$
 (4.12.35.2)

4.12.36 Prove that the products of the lengths of the perpendiculars drawn from the points $\begin{pmatrix} \sqrt{a^2-b^2} & 0 \end{pmatrix}^{\mathsf{T}}$ and $\begin{pmatrix} -\sqrt{a^2-b^2} & 0 \end{pmatrix}^{\mathsf{T}}$ to the line $\frac{x}{a}\cos\theta+\frac{y}{b}\sin\theta=1$ is b^2 . **Solution:** The input parameters for (4.1.6.6) are

$$\mathbf{n} = \begin{pmatrix} \frac{\cos \theta}{a} \\ \frac{\sin \theta}{c} \end{pmatrix}, c = 1, \mathbf{P} = \pm \begin{pmatrix} \sqrt{a^2 - b^2} \\ 0 \end{pmatrix}$$
(4.12.36.1)

The product of the distances is

$$d_1 d_2 = \frac{\left| (\mathbf{n}^{\mathsf{T}} \mathbf{P})^2 - c^2 \right|}{\|\mathbf{n}\|} = \frac{\left| \frac{\cos^2 \theta (a^2 - b^2)}{a^2} - 1 \right|}{\frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}}$$
(4.12.36.2)

$$= \frac{\left(b^2 \cos^2 \theta + a^2 \sin^2 \theta\right) a^2 b^2}{\left(b^2 \cos^2 \theta + a^2 \sin^2 \theta\right) a^2} = b^2$$
 (4.12.36.3)

- 4.12.37 **O** is the origin and **A** is (a, b, c). Find the direction cosines of the line OA and the equation of the plane through **A** at right angle at OA.
- 4.12.38 Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a', b', c', respectively, from the origin, prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2}$$

- 4.12.39 Equation of the line passing through the point $(a\cos^3\theta, a\sin^3\theta)$ and perpendicular to the line $x \sec \theta + y \csc \theta = a$ is $x \cos \theta y \sin \theta = \alpha \sin 2\theta$.
- 4.12.40 The distance between the lines y = mx + c, and $y = mx + c^2$ is
- 4.12.41 Find the area of the triangle formed by the lines y x = 0, x + y = 0, and x k = 0.

Solution: The vertices of the triangle can be expressed using the equations

$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \mathbf{A} = \mathbf{0} \tag{4.12.41.1}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 0 \\ k \end{pmatrix} \tag{4.12.41.2}$$

$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \mathbf{C} = \begin{pmatrix} k \\ 0 \end{pmatrix} \tag{4.12.41.3}$$

from which

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} k \\ -k \end{pmatrix}, \mathbf{C} = \begin{pmatrix} k \\ k \end{pmatrix}$$
 (4.12.41.4)

are trivially obtained. Thus,

$$ar(ABC) = \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C})\|$$
 (4.12.41.5)

$$= \frac{1}{2} \left\| \begin{pmatrix} -k \\ k \end{pmatrix} \times \begin{pmatrix} -k \\ -k \end{pmatrix} \right\| = k^2 \tag{4.12.41.6}$$

- 4.12.42 The lines ax + 2y + 1 = 0, bx = 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.
- 4.12.43 P(a, b) is the mid-point of the line segment between axes. Show that the equation of the line is $\frac{x}{a} + \frac{y}{b} = 2$

Solution: From Problem 4.3.17,

$$\mathbf{n} = \begin{pmatrix} b \\ a \end{pmatrix} \tag{4.12.43.1}$$

$$\implies (b \quad a) \left(\mathbf{x} - \begin{pmatrix} a \\ b \end{pmatrix} \right) = 0 \tag{4.12.43.2}$$

or,
$$(b \ a)\mathbf{x} = 2ab$$
. (4.12.43.3)

is the desired line equation.

- 4.12.44 Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1).
- 4.12.45 Find the equation of the set of points **P**, the sum of whose distances from $\mathbf{A}(4,0,0)$ and $\mathbf{B}(-4,0,0)$ is equal to 10.
- 4.12.46 If $\mathbf{A} = \begin{pmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{pmatrix}$ and \mathbf{I} is the identity matrix of order 2, show that $\mathbf{I} + \mathbf{A} = (\mathbf{I} \mathbf{A}) \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix}$.
- 4.12.47 Find the values of θ and p, if the equation $x \cos \theta + y \sin \theta = p$ is the normal form of the line $\sqrt{3}x + y + 2 = 0$.
- 4.12.48 Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
- 4.12.49 Prove that if a plane has the intercept a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{p^2}$.

4.12.50 The planes 2x - y + 4z = 5 and 5x - 2.5y + 10z = 6 are

- a) Perpendicular
- b) Parallel
- c) Intersect y axis d) Pass through $(0, 0, \frac{5}{4})$

5 Matrices

5.1 Formulae

5.1.1. The characteristic equation for a matrix A is

$$f(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{5.1.1.1}$$

5.1.2. Cayley-Hamilton theorem

$$f(\lambda) = f(\mathbf{A}) = 0 \tag{5.1.2.1}$$

5.1.3. Code for Cayley-Hamilton Theorem

codes/book/cayley.py

5.1.4. Code for balancing chemical equations

codes/book/chembal.py

5.2 Equation

Solve the following system of linear equations.

$$2x + 5y = 1$$

$$2x + 5y = 1$$
 $2x - 3y = 8$ $3x + 2y = 7$ $4x - 6y = 9$

$$5x - 4y + 8 = 0$$

$$7x + 6y - 9 = 0$$

$$\frac{3}{2}x + \frac{5}{3}y = 7$$

$$9x - 10y = 14$$

$$9x + 3y + 12 = 0$$

 $18x + 6y + 24 = 0$
 $5x - 3y = 11$
 $-10x + 6y = -22$

$$6x - 3y + 10 = 0$$

$$2x - y + 9 = 0$$

$$4x + 2y = 8$$

$$3x + 2y = 8$$

$$5.2.5$$

$$3x + 2y = 5$$

 $2x - 3y = 7$
 $x + y = 5$
 $2x + y = 10$

5.2.10

5.2.11		5.2.21	1.
	x - y = 8		02x + 03y = 13
	3x - 3y = 16		04x + 05y = 23
5.2.12	·	5.2.22	•
3.2.12	2	3.2.22	$\sqrt{2x} + \sqrt{3y} = 0$
	2x + y - 6 = 0 $4x - 2y + 4 = 0$		$\sqrt{2x} + \sqrt{3y} = 0$ $\sqrt{3x} - \sqrt{8y} = 0$
	4x - 2y + 4 = 0		$\sqrt{3}x - \sqrt{8}y = 0$
5.2.13		5.2.23	2
	2x - 2y - 2 = 0		$\frac{3x}{2} - \frac{5y}{2} = -2$
	4x - 4y - 5 = 0		$\frac{x}{3} + \frac{y}{2} = \frac{13}{6}$
5.2.14			$\frac{1}{3} + \frac{1}{2} - \frac{1}{6}$
	x - 3y - 3 = 0	5.2.24	
	3x - 9y - 2 = 0		px + qy = p - q
5.2.15			qx - py = p + q
	2x + y = 5	5.2.25	
	3x + 2y = 8		ax + by = c
5.2.16			bx + ay = 1 + c
3.2.10	2 5 20	5.2.26	
	3x - 5y = 20		$\frac{x}{a} - \frac{y}{b} = 0$
	6x - 10y = 40		u = v
5.2.17			$ax + by = a^2 + b^2$
	x - 3y - 7 = 0	5.2.27	
	3x - 3y - 15 = 0		$(a-b)x + (a+b)y = a^2 - 2ab - b^2$
5.2.18			$(a+b)(x+y) = a^2 + b^2$
	8x + 5y = 9	5.2.28	
	3x + 2y = 4		152x - 378y = -74
5.2.19			-378x + 152y = -604
	x + y = 14	5.2.29	
	x + y = 1 $x - y = 4$		5x - 8y + 1 = 0
5.2.20	·· • • •		·
J.4.4U	2 2		$3x - \frac{24}{5}y + \frac{3}{5} = 0$
	3x - y = 3		
	9x - 3y = 9		

5.2.30
$$x + 3y = 6$$

$$2x - 3y = 12$$
5.2.31
$$x + 3y = 6$$

$$2x - 3y = 12$$
5.2.32
$$x + 2y = 3$$
5.2.40
$$x + 2y = 3$$
5.2.33
$$x + 2y - 4 = 0$$

$$2x + 4y - 12 = 0$$
5.2.34
$$x + y = 5$$

$$2x - 3y = 4$$
5.2.35
$$x + y = 5$$

$$2x - 3y = 4$$
5.2.36
$$x + y = 5$$

$$2x - 3y = 4$$
5.2.37
$$x + y = 5$$

$$2x - 3y = 4$$
5.2.38
$$x + y = 5$$

$$2x - 3y = 4$$
5.2.39
$$x + y = 5$$

$$2x - 3y = 4$$
5.2.40
$$x + 2y - 4 = 0$$

$$2x + 4y - 12 = 0$$
5.2.42
$$\frac{5}{x - 1} + \frac{1}{y - 2} = 2$$

$$\frac{6}{x - 1} - \frac{3}{y - 2} = 1$$
5.2.35
$$\frac{7x - 2y}{xy} = 5$$

$$\frac{8x + 7y}{xy} = 15$$
5.2.37
$$3x - 5y - 4 = 0$$

$$9x = 2y + 7$$
5.2.38
$$\frac{x}{2} + \frac{2y}{3} = -1$$

$$x - \frac{y}{3} = 0$$
5.2.46
$$\frac{1}{3x + y} + \frac{1}{3x - y} = \frac{3}{4}$$

$$\frac{1}{2(3x + y)} - \frac{1}{2(3x - y)} = \frac{-1}{8}$$

5.2.47		5.2.56	
	x + 2y = 2		5x + 2y = 3
	2x + 3y = 3		3x + 2y = 5
5.2.48	·	5.2.57	·
3.2.40		3.2.37	2 3
	2x - y = 5		$\frac{2}{x} + \frac{3}{y} = 13$
	x + y = 4		$\frac{5}{x} + \frac{4}{y} = -2$
5.2.49			x y $ z$
	x + 3y = 5	5.2.58	
	2x + 6y = 8		$\frac{5}{x-1} + \frac{1}{y-2} = 2$
5.2.50			A 1 y 2
	x + y + z = 1		$\frac{6}{x-1} - \frac{3}{y-2} = 1$
	x + y + z = 1 $2x + 3y + 2z = 2$	5.2.59	<i>n</i> 1 <i>y</i> 2
	ax + ay + 2az = 4	3.2.3	2 1
	ax + ay + 2az = 4		2x + y + z = 1
5.2.51			$x - 2y - z = \frac{3}{2}$
	3x - y - 2z = 2		3y - 5z = 9
	2y - z = -1	5.2.60	
	3x - 5y = 3		x - y + z = 4
5.2.52			2x + y - 3z = 0
	5x - y + 4z = 5		x + y + z = 2
	2x + 3y + 5z = 2	5.0.61	x + y + z = z
	5x - 2y + 6z = -1	5.2.61	
5.2.53			2x + 3y + 3z = 5
0.2.00	5 . 2 . 4		x - 2y + z = -4
	5x + 2y = 4		3x - y - 2z = 3
	7x + 3y = 5	5.2.62	
5.2.54			x - y + 2z = 7
	2x - y = -2		3x + 4y - 5z = -5
	3x + 4y = 3		2x - y + 3z = 12
5.2.55		5.2.63	
	4x - 3y = 3	200	n + 2 = 1
	3x - 5y = 7		x - y + 2z = 1 $2z - 3z = 1$
			2z - 3z = 1 $3x - 2y + 4z = 2$
			2x + 4z = 2

$$3x - 2y + 3z = 8$$

$$2x + y - z = 1$$

$$4x - 3y + 2z = 4$$

$$\mathbf{X} + \mathbf{Y} = \begin{pmatrix} 5 & 2 \\ 0 & 9 \end{pmatrix}$$

$$\mathbf{X} - \mathbf{Y} = \begin{pmatrix} 3 & 6 \\ 0 & -1 \end{pmatrix}$$

5.2.65 Solve

$$\begin{pmatrix}
x+y+z \\
x+z \\
y+z
\end{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ 7 \end{pmatrix}$$

$$3X + 2Y = \begin{pmatrix} 2 & 3 \\ 4 & 0 \end{pmatrix}$$

$$3X + 2Y = \begin{pmatrix} 2 & -2 \\ -1 & 5 \end{pmatrix}$$

$$X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$

5.2.5 If

5.2.66

$$x \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 5 \end{pmatrix} \tag{5.2.5.1}$$

find the values of x and y.

- 5.2.6 Solve 2x + 3y = 11 and 2x + 4y = -24 and hence find the value of m for which y = mx + 3.
- 5.2.7 For which values of p does the pair of equations given below have a unique solution.

$$4x + py + 8 = 0 (5.2.7.1)$$

$$2x + 2y + 2 = 0 (5.2.7.2)$$

5.2.8 For what values of *k* will the following pair of linear equations have infinitely many solutions.

$$kx + 3y - (k - 3) = 0$$
 (5.2.8.1)

$$12x + ky - k = 0 (5.2.8.2)$$

5.2.9 Find the values of a, b, c and d from the following equation

- 5.3 CBSE
- 5.3.1 For what value of k, the system of linear equations

$$x + y + z = 2$$
$$2x + y - z = 3$$
$$3x + 2y + kz = 4$$

has a unique solution?

- (12, 2016)
- 5.3.2 The pair of linear equations $\frac{3x}{2} + \frac{5y}{3} = 7$ and 9x + 10y = 14 is
 - (a) consistent
 - (b) inconsistent
 - (c) consistent with one solution
 - (d) consistent with many solutions

(12, 2020)(10, 2022)

- 5.3.3 Solve the equation x + 2y = 6 and 2x 5y = 12 graphically.
- 5.3.4 Solve the following equations for x and y using cross-multiplication method

$$(ax - by) + (a + 4b) = 0$$

 $(bx + ay) + (b - 4a) = 0$

(10, 2022)

- 5.3.5 The pair of linear equations 2x = 5y + 6 and 15y = 6x 18 represents two lines which are
 - a) intersecting
 - b) parallel
 - c) coincident
 - d) either intersecting or parallel

(10, 2023)

- 5.3.6 If the pair of equations 3x y + 8 = 0 and 6x ry + 16 = 0 represents coincident lines, then the value of r is _____
- 5.3.7 If the system of linear equations 2x + 3y = 7 and 2ax + (a + b)y = 28 have infinite number of solutions, then find the values of a and b. (10, 2023)
- 5.3.8 If 217x + 131y = 913 and 131x + 217y = 827, then solve the equations for the values (10, 2023)
- 5.3.9 If $\begin{pmatrix} 2 & 0 \\ 5 & 4 \end{pmatrix} = \mathbf{P} + \mathbf{Q}$ is a symmetric and \mathbf{Q} is a skew symmetric matrix, then \mathbf{Q} is equal to $\frac{\mathbf{Q}}{\mathbf{Q}} = \mathbf{Q} = \mathbf{Q}$ 5.3.10 If $\mathbf{A} = \begin{pmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{pmatrix}$, then find AB and use it to solve the

$$x - 2y = 3$$
$$2x - y - z = 2$$
$$-2y + z = 3$$

(12, 2023)

5.3.11 Find whether the following pair of linear equations are consistent or inconsistent

$$5x - 3y = 11, -10x + 6y = 22.$$

(10, 2021)

5.3.12 Solve for x and y

$$x + y = 6, 2x - 3y = 4.$$

(10, 2021)

- 5.3.13 Find out whether the pair of equations 2x + 3y = 0 and 2x 3y = 26 is consistent or inconsistent. (10, 2021)
- 5.3.14 For what values of k, does the pair of linear equations kx 2y = 3 and 3x + y = 5 have a unique solution? (10, 2021)
- 5.3.15 What type of lines will you get by drawing the graph of the pair of equations x 2y + 3 = 0 and 2x 4y = 5? (10, 2021)
- 5.3.16 Find the value of k for which the system of equations x + 2y = 5 and 3x + ky + 15 = 0 has no solution. (10, 2021)
- 5.3.17 Solve the system of linear equations using the matrix method

$$7x + 2y = 11$$
$$4x - 7y = 2$$

(12, 2021)

5.3.18 Using matrix method, solve the following system of equations

$$2x - 3y + 5z = 13$$
$$3x + 2y - 4z = -2$$
$$x + y - 2z = -2.$$

(12, 2019)

5.3.19 Using matrices solve the following system of linear equations

$$2x + 3y + 10z = 4$$
$$4x + 6y + 5z = 1$$
$$6x + 9y - 20z = 2$$

(12, 2019)

5.3.20 Find the solution of the pair of equations

$$\frac{3}{x} + \frac{8}{y} = -1; \frac{1}{x} - \frac{2}{y} = 2, x, y \neq 0$$

(10, 2019)

5.3.21 Find the value(s) of k for which the pair of equations

$$kx + 2y = 3$$
$$3x + 6y = 10$$

has a unique solution. (10, 2019)

5.3.22 Find the value(s) of k so that the pair of equations x + 2y = 5 and 3x + ky + 15 = 0 has a unique solution. (10, 2019)

5.3.23 For what value of k, will the following pair of equations have infinitely many solutions

$$2x + 3y = 7$$
 and $(k + 2)x - 3(1 - k)y = 5k + 1$

(10, 2019)

5.3.24 Solve the following pair of linear equations

$$3x - 5y = 4$$
$$2y + 7 = 9x$$

(10, 2019)

5.3.25 Solve the following pair of linear equations

$$3x + 4y = 10$$
$$2x - 2y = 2$$

(10, 2019)

5.3.26 For what value of k, does the system of linear equations

$$2x + 3y = 7$$

$$(k-1)x + (k+2)y = 3k$$

have an infinite number of solutions?

(10, 2019)

5.3.27 Using matrices, solve the following system of linear equations

$$x + 2y - 3z = -4$$
$$2x + 3y + 2z = 2$$
$$3x - 3y - 4z = 11.$$

(12, 2018)

5.3.28 Determine the product $\begin{pmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{pmatrix}$ and use it to solve the system of equations

$$x-y+z=4$$

$$x-2y-2z=9$$

$$2x+y+3z=1.$$

(12, 2017)

5.3.29 Solve the equations x + 2y = 6 and 2x - 5y = 12 graphically. (12, 2022)

5.3.30 Solve the system of linear equations, using matrix method

$$7x + 2y = 11$$
$$4x - y = 2$$

(12, 2021)

5.3.31 Find the value of k for which the following pair of linear equations have infinitely

many solutions.

$$2x + 3y = 7$$
$$(k+1)x + (2k-1)y = 4k + 1$$

(10, 2019)

5.4 Inverse

Using elementary transformations, find the inverse of each of the following matrices

$$5.4.1 \begin{pmatrix} 2 & 3 \\ -4 & -6 \end{pmatrix}$$

$$5.4.2 \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$$

$$5.4.3 \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

$$5.4.4 \begin{pmatrix} 2 & 4 \\ -1 & 2 \end{pmatrix}$$

$$5.4.5 \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$5.4.6 \begin{pmatrix} 10 & -2 \\ -5 & 1 \end{pmatrix}$$

$$5.4.7 \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix}$$

$$5.4.8 \begin{pmatrix} -1 & 5 \\ -3 & 2 \end{pmatrix}$$

$$5.4.9 \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$5.4.10 \begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{pmatrix}$$

$$5.4.11 \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$

$$5.4.12 \begin{pmatrix} 1 \\ 1 & 1 \end{pmatrix}$$

$$5.4.13 \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$$

$$5.4.14 \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$$

$$5.4.15 \begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix}$$

$$5.4.16 \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$

$$5.4.17 \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$$

$$5.4.18 \begin{pmatrix} 4 & 5 \ 3 & 4 \end{pmatrix}$$

$$5.4.19 \begin{pmatrix} 3 & 10 \ 2 & 7 \end{pmatrix}$$

$$5.4.20 \begin{pmatrix} 3 & -1 \ -4 & 2 \end{pmatrix}$$

$$5.4.21 \begin{pmatrix} 2 & -6 \ 1 & -2 \end{pmatrix}$$

$$5.4.22 \begin{pmatrix} 6 & -3 \ -2 & 1 \end{pmatrix}$$

$$5.4.23 \begin{pmatrix} 2 & 1 \ 4 & 2 \end{pmatrix}$$

$$5.4.24 \begin{pmatrix} 2 & 1 \ 4 & 2 \end{pmatrix}$$

$$5.4.25 \begin{pmatrix} 2 & -3 & 3 \ 2 & 2 & 3 \ 3 & -2 & 2 \end{pmatrix}$$

$$5.4.26 \begin{pmatrix} 1 & 3 & -2 \ -3 & 0 & -5 \ 2 & 5 & 0 \end{pmatrix}$$

$$5.4.27 \begin{pmatrix} 2 & 0 & -1 \ 5 & 1 & 0 \ 0 & 1 & 3 \end{pmatrix}$$

$$5.4.28 \begin{pmatrix} 2 & 4 \ -5 & -1 \end{pmatrix}$$

$$5.4.29 \begin{pmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{pmatrix}$$

$$5.4.30 \begin{pmatrix} x^2 - x + 1 & x - 1 \ x + 1 & x + 1 \end{pmatrix}$$

$$5.4.31 \begin{pmatrix} 1 & 2 \ 4 & 2 \end{pmatrix}$$

$$5.4.32 \begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 4 \end{pmatrix}$$

$$5.4.33 \begin{pmatrix} 3 & -1 & -2 \\ 0 & 0 & 1 \\ 3 & -5 & 0 \end{pmatrix}$$

$$5.4.34 \begin{pmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{pmatrix}$$

$$5.4.35 \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix}$$

$$5.4.36 \begin{pmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{pmatrix}$$

$$5.4.37 \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{pmatrix}$$

$$5.4.38 \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$$

$$5.4.39 \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{pmatrix}$$

$$5.4.40 \begin{pmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & 1 \end{pmatrix}$$

$$5.4.41 \begin{pmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{pmatrix}$$

$$5.4.42 \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{pmatrix}$$

$$5.4.43 \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{pmatrix}$$

$$5.4.44 \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$

$$5.4.45 \begin{pmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{pmatrix}$$

$$5.4.46 \begin{pmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{pmatrix}$$

$$5.4.47 \begin{pmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{pmatrix}$$

$$5.4.48 \begin{pmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{pmatrix}$$

$$5.4.49 \begin{pmatrix} 3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}$$

$$5.4.50 \begin{pmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{pmatrix}$$

$$5.4.51 \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$5.4.52 \begin{pmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{pmatrix}$$

$$5.4.53 \begin{pmatrix} 1 & 3 & 3 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$

5.4.32 Verify that
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
 for a) $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$.
b) $\mathbf{A} = \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 6 & 8 \\ 7 & 9 \end{pmatrix}$.

5.4.33 If $\mathbf{A} = \begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}$, find \mathbf{A}^{-1} . Using \mathbf{A}^{-1} , solve the system of equations

$$2x - 3y + 5z = 11 \tag{5.4.33.1}$$

$$3x + 2y - 4z = -5 \tag{5.4.33.2}$$

$$x + y - 2z = -3 \tag{5.4.33.3}$$

5.4.34 Let
$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$. Find a matrix \mathbf{D} such that $\mathbf{C}\mathbf{D} - \mathbf{A}\mathbf{B} = 0$.

5.5 CBSE

5.5.1 If $\mathbf{A} = \begin{pmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{pmatrix}$, find \mathbf{A}^{-1} and use it to solve the following system of equation

$$5x - y + 4z = 5$$
$$2x + 3y + 5z = 2$$
$$5x - 2y + 6z = -1$$

(12, 2020)

5.5.2 If
$$\mathbf{A} = \begin{pmatrix} 4x & 0 \\ 2x & 2x \end{pmatrix}$$
 and $\mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$, then $x = \underline{\qquad}$ (12, 2022)

5.5.4 Value of
$$k$$
, for which $\mathbf{A} = \begin{pmatrix} k & 8 \\ 1 & 2k \end{pmatrix}$ is a singular matrix is _____. (12, 2021)

5.5.5 If
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix}$, then

- a) $A^{-1} = B$
- $\mathbf{b)} \ \mathbf{A}^{-1} = 6\mathbf{B}$
- c) $\mathbf{B}^{-1} = \mathbf{B}$
- d) $\mathbf{B}^{-1} = \frac{1}{6}\mathbf{A}$

(12, 2021)

5.5.6 For
$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
, then $14\mathbf{A}^{-1}$ is given by (12, 2021)

5.5.7 Find the inverse of the following matrix, using elementary transformations

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2 \end{pmatrix}.$$

(12, 2019)

5.5.8 If $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{pmatrix}$, find \mathbf{A}^{-1} . Hence, solve the system of equations

$$x + y + z = 6,$$

$$y + 3z = 11,$$

and
$$x - 2y + z = 0$$

(12, 2019)

5.5.9 Using elementary row transformations find the inverse of the matrix

$$\begin{pmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{pmatrix}$$

(12, 2019)

5.5.10 If $\mathbf{A} = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1 \end{pmatrix}$, find \mathbf{A}^{-1} . Hence solve the system of equations

$$x + 3y + 4z = 8$$
$$2x + y + 2z = 5$$
$$5x + y + z = 7$$

(12, 2018)

5.5.11 Find the inverse of the following matrix, using elementary transformations

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

(12, 2018)

5.5.12 If $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 3 & 1 & 1 \end{pmatrix}$, find \mathbf{A}^{-1} . Hence solve the following system of equations

$$x + y + z = 6$$
$$x + 2z = 7$$
$$3x + y + z = 12.$$

(12, 2018)

5.5.13 If $\mathbf{A} = \begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}$, Find the \mathbf{A}^{-1} . Use it to solve the system of equations

$$2x - 3y + 5z = 11$$
$$3x - 2y - 4z = -5$$
$$x + y - 2z = -3$$

(12, 2018)

5.5.14 Using elementary row transformations, find the inverse of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{pmatrix}.$$

(12, 2018)

5.5.15 If $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{pmatrix}$, find \mathbf{A}^{-1} . Hence, solve the system of equations

$$x + y + z = 6,$$

$$y + 3z = 11$$

$$x - 2y + z = 0.$$

5.5.16 Find the inverse of the following matrix, using elementary transformations

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2 \end{pmatrix}$$

(12, 2018)

5.5.17 Using elementary row transformations, find the inverse of the matrix

$$\begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}$$

(12, 2018)

5.5.18 Using elementary row transformations, find the inverse of the matrix

$$\begin{pmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{pmatrix}.$$

(12, 2018)

5.5.19 Find matrix A such that

$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} \mathbf{A} = \begin{pmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{pmatrix}$$

(12, 2017)

5.5.20 If $\mathbf{A} = \begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & 2 \end{pmatrix}$, find \mathbf{A}^{-1} . Hence using \mathbf{A}^{-1} solve the system of equations

$$2x - 3y + 5z = 11$$
$$3x + 2y - 4z = -5$$
$$x + y - 2z = -3$$

(12, 2017)

5.5.21 Using elementary row operations, find the inverse of the following matrix

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{pmatrix}$$

(12, 2016)

5.5.22 Using elementary row operations find the inverse of matrix

$$\mathbf{A} = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$$

and hence solve the following system of equations

$$3x - 3y + 4z = 21$$
$$2x - 3y + 4z = 20$$
$$-y + z = 5.$$

(12, 2016)

5.5.23 In the interval $\pi/2 < x < \pi$, find the value of x for which the matrix

$$\begin{pmatrix} 2\sin x & 3 \\ 1 & 2\sin x \end{pmatrix}$$

is singular. (12, 2015)

5.5.24 If
$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$, verify that $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$. (12, 2015)

5.6 Cayley-Hamilton Theoerm

5.6.1 Let
$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
, show that

$$\mathbf{A}^2 - 5\mathbf{A} + 7\mathbf{I} = \mathbf{0}. (5.6.1.1)$$

Hence find A^{-1} .

Solution: From (5.1.1.1),

$$\begin{vmatrix} 3 - \lambda & 1 \\ -1 & 2 - \lambda \end{vmatrix} = 0 \tag{5.6.1.2}$$

$$\implies (3 - \lambda)(2 - \lambda) + 1 = 0 \tag{5.6.1.3}$$

or,
$$\lambda^2 - 5\lambda + 7 = 0$$
 (5.6.1.4)

Using (5.1.2.1) in the above, (5.6.1.1) is obtained. Multiplying both sides of (5.6.1.1) by \mathbf{A}^{-1} ,

$$\mathbf{A} - 5\mathbf{I} + 7\mathbf{A}^{-1} = \mathbf{0} \tag{5.6.1.5}$$

$$\implies \mathbf{A}^{-1} = \frac{1}{7} (5\mathbf{I} - \mathbf{A}) = \frac{1}{7} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
 (5.6.1.6)

5.6.2 Find
$$\mathbf{A}^2 - 5\mathbf{A} + 6\mathbf{I}$$
, if $\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix}$.

5.6.3 If
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
, prove that

$$\mathbf{A}^3 - 6\mathbf{A}^2 + 7\mathbf{A} + 2\mathbf{I} = \mathbf{0}. (5.6.3.1)$$

Solution: From (5.1.1.1), the characteristic equation is

$$\begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 1 \\ 2 & 0 & 3 - \lambda \end{vmatrix} = 0$$
 (5.6.3.2)

which can be expanded to obtain

$$\lambda^3 - 6\lambda^2 + 7\lambda + 2 = 0 \tag{5.6.3.3}$$

upon simplification. Using the Cayley-Hamilton theorem in (5.1.2.1), (5.6.3.1) is obtained.

5.6.4 If $\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}$ and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find k so that $\mathbf{A}^2 = k\mathbf{A} - 2\mathbf{I}$.

5.6.5 For the matrix $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$, find the numbers a and b such that $\mathbf{A}^2 + a\mathbf{A} + b\mathbf{I} = \mathbf{0}$. 5.6.6 For the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 3 \end{pmatrix}$. Show that $\mathbf{A}^3 - 6\mathbf{A}^2 + 5\mathbf{A} + 11\mathbf{I} = \mathbf{0}$. Hence, find

$$\mathbf{A}^{-1}.$$
5.6.7 If $\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Verify that $\mathbf{A}^3 - 6\mathbf{A}^2 + 9\mathbf{A} - 4\mathbf{I} = \mathbf{0}$ and hence find \mathbf{A}^{-1} .

5.6.8 If
$$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$$
 is such that $\mathbf{A}^2 = \mathbf{I}$, then

a)
$$1 + \alpha^2 + \beta \gamma = 0$$

b)
$$1 - \alpha^2 + \beta \gamma = 0$$

c)
$$1 - \alpha^2 - \beta \gamma = 0$$

d)
$$1 + \alpha^2 - \beta \gamma = 0$$

5.6.9 Let
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, show that $(a\mathbf{I} + b\mathbf{A})^n = a^n\mathbf{I} + na^{n-1}b\mathbf{A}$.
5.6.10 If $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$, show that $\mathbf{A}^2 - 5\mathbf{A} + 7\mathbf{I} = \mathbf{0}$.

5.6.10 If
$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
, show that $\mathbf{A}^2 - 5\mathbf{A} + 7\mathbf{I} = \mathbf{0}$

- 5.6.11 If **A** is square matrix such that $\mathbf{A}^2 = \mathbf{A}$, then $(\mathbf{I} + \mathbf{A})^3 7\mathbf{A}$ is equal to
 - a) **A**
 - b) I A
 - c) I
 - d) 3A

5.6.12 If
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
, then show that $\mathbf{A}^3 - 23\mathbf{A} - 40\mathbf{I} = \mathbf{0}$.

5.6.13 Show that the matrix $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ satisfies the equation $\mathbf{A}^2 - 4\mathbf{A} + \mathbf{I} = \mathbf{0}$. Using this equation, find A^{-1} .

5.7 *CBSE*

5.7.1 If A is an non-singular square matrix of order 3 such that $A^2 = 3A$, then value of (12, 2020)

5.7.2 If
$$\mathbf{A} = \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix}$$
 and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find scalar k so that $\mathbf{A}^2 + \mathbf{I} = k\mathbf{A}$. (12, 2020)

5.7.3 For the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -2 \\ 2 & -1 & 3 \end{pmatrix}$, show that $\mathbf{A}^3 - 6\mathbf{A}^2 + 5\mathbf{A} + 11\mathbf{I} = 0$. Hence, find

$$\mathbf{A}^{-1}$$
. (12, 2022)

5.7.4 If **A** is a square matrix such that
$$A^2 = A$$
, then find $(2 + A)^3 - 19A$. (12, 2022)

5.7.5 If
$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, then \mathbf{A}^2 equals (12, 2021)

5.7.6 If
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, then $\mathbf{A}^4 = \underline{\qquad}$ (12, 2021)

5.7.7 If **A** is square matrix such that $A^2 = A$, then $(I + A)^3 - 7A$ is equal to (12, 2021)

5.7.8 Given that
$$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$$
 and $\mathbf{A}^2 = 3\mathbf{I}$, then

a)
$$1 + \alpha^2 + \beta \gamma = 0$$

b)
$$1 - \alpha^2 - \beta \gamma = 0$$

c)
$$3 - \alpha^2 - \beta \gamma = 0$$

d)
$$3 + \alpha^2 + \beta \gamma = 0$$

(12, 2021)

5.7.9 If
$$\mathbf{A} = \begin{pmatrix} -3 & 6 \\ -2 & 4 \end{pmatrix}$$
, then show that $\mathbf{A}^3 = \mathbf{A}$. (12, 2019)

5.7.10 If
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
, find \mathbf{A}^2 and show that $\mathbf{A}^2 = \mathbf{A}^{-1}$. (12, 2019)

5.7.11 Show that for the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$
, $\mathbf{A}^3 - 6\mathbf{A}^2 + 5\mathbf{A} + 11\mathbf{I} = 0$.

Hence, find
$$\mathbf{A}^{-1}$$
. (12, 2018)

5.7.12 If
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$$
, show that $(\mathbf{A} - 2\mathbf{I})(\mathbf{A} - 3\mathbf{I}) = 0$. (12, 2018)

5.7.13 Given
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ -4 & 7 \end{pmatrix}$$
, compute \mathbf{A}^{-1} and show that $2\mathbf{A}^{-1} = 9\mathbf{I} - \mathbf{A}$. (12, 2018)

5.7.14 If
$$\mathbf{A} = \begin{pmatrix} -3 & 6 \\ -2 & 4 \end{pmatrix}$$
, then show that $\mathbf{A}^3 = \mathbf{A}$. (12, 2018)

5.7.15 If

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$

and
$$\mathbf{A}^3 - 6\mathbf{A}^2 + 7\mathbf{A} + k\mathbf{I} = 0$$
 find k . (12, 2016)

5.8 Application

Form the pair of linear equations in the following problems and find their solutions graphically

- 5.8.1 A trust fund has ₹30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Determine how to divide ₹30000 among the 2 types of bonds. If the trust fund must obtain an annual total interest of
 - a) ₹1800
 - b) ₹2000

Solution: Let the desired division for both cases be

$$y_1 + y_2 = 30000 \\ 0.05y_1 + 0.07y_2 = 2000 \implies \begin{pmatrix} 1 & 1 \\ 0.05 & 0.07 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 30000 \\ 2000 \end{pmatrix}$$
 (5.8.1.2)

yielding

$$\begin{pmatrix} 1 & 1 \\ 0.05 & 0.07 \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = \begin{pmatrix} 30000 & 30000 \\ 1800 & 2000 \end{pmatrix}$$
 (5.8.1.3)

with the augmented matrix followed by row reduction

$$\xrightarrow{R_2 = R_2 - 0.05R_1} \begin{pmatrix} 1 & 1 & 30000 & 30000 \\ 0 & 0.02 & 300 & 500 \end{pmatrix} \xrightarrow{R_2 = 50R_2} \begin{pmatrix} 1 & 1 & 30000 & 30000 \\ 0 & 1 & 15000 & 25000 \end{pmatrix} \\
\xrightarrow{R_1 = R_1 - R_2} \begin{pmatrix} 1 & 0 & 115000 & 5000 \\ 0 & 1 & 15000 & 25000 \end{pmatrix}$$

Thus,

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 15000 \\ 15000 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 5000 \\ 25000 \end{pmatrix}$$
 (5.8.1.4)

- 5.8.2 10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.
- 5.8.3 5 pencils and 7 pens together cost ₹50 whereas 7 pencils and 5 pens together cost ₹46. Find the cost of one pencil and that of one pen.
- 5.8.4 Half the perimeter of a rectangular garden, whose length is 4m, more than its width, is 36m. Find the dimensions of the garden.
- 5.8.5 A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student *A* takes food for 20 days she has to pay ₹1000 as hostel charges whereas a student *B* who takes food for 26 days, pays ₹1180 as hostel charges. Find the fixed charges and the cost of food per day.
- 5.8.6 A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to the denominator. Find the fraction.
- 5.8.7 Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each incorrect answer, then Yash would have scored 50 marks. How many questions were there in the test?
- 5.8.8 Places A and B are 100km apart on a highway. One car starts from A and another from B at the same time. If the car travel in the same direction at different speeds, they meet in 5hrs. If they travel towards each other, they meet in 1hr. What are the speeds of the two cars?
- 5.8.9 The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.
- 5.8.10 Narayan tells his daughter, 'Seven years ago, I was seven times as old as you were then. Also, 3 years from now, I shall be 3 times as old as you will be.' Find their ages.
- 5.8.11 The coach of a cricket team buys 3 bats and 6 balls for ₹3900. Later, she buys another bat and 3 more balls of the same kind for ₹3300. Find the cost of a bat and ball.
- 5.8.12 The cost of 2kg of apples and 1kg of grapes on a day was found to be ₹160. After a month, the cost of 4kg of apples and 2kg of grapes is ₹300. Assuming that the costs remain unchanged, find the cost of a kg of apples and grapes.

- 5.8.13 The difference between two numbers is 26 and one number is three times the other.
- 5.8.14 The larger of two supplementary angles exceeds the smaller by 18 degrees. Find them.
- 5.8.15 The coach of a cricket team buys 7 balls and 6 balls for ₹3800. Later, she buys 3 bats and 5 balls for ₹1750. Find the cost of each bat and each ball.
- 5.8.16 The taxi charges in a city consist of a fixed charge together with the charges for the distance covered. For a distance of 10 km, the charge paid is ₹105 and for a distance of 15 km, the charge paid is ₹155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km?
- 5.8.17 A fraction becomes $\frac{9}{11}$ if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator, it becomes $\frac{5}{6}$. Find the fraction.
- 5.8.18 Five years hence, the age of Rahul will be three times that of his son. Five years ago, Rahul's age was seven times that of his son. What are their present ages?
- 5.8.19 If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes $\frac{1}{2}$ if we only add 1 to the denominator. What is the fraction?
- 5.8.20 Five years ago, Minu was thrice as old as Sonu. Ten years later, Minu will be twice as old as Sonu. How old are Minu and Sonu?
- 5.8.21 The Sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
- 5.8.22 Meena went to a bank to withdraw ₹2000. She asked the cashier to give her ₹50 and ₹100 notes only. Meena got 25 notes in all. Find how many notes of ₹50 and ₹100 she received.
- 5.8.23 A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Sarita paid ₹27 for seven days, while Susheela paid ₹21 for five days. Find the fixed charge and the charge for each extra day.
- 5.8.24 The ages of two friends Ani and Bijoya differ by 3 years. Ani's father Dharam is twice as old as Ani and Bijoya is twice as old as sister Kanta. The ages of Kanta and Dharam differ by 30 years. Find the ages of Ani and Bijoya.
- 5.8.25 One says, "Give me a hundred, Friend! I shall then become twice as rich as you". The other "if you give me ten, i shall be six times as rich as you". Tell me What is the amount of their (respective) capital? [From the bijaganita of Bhaskara II].
- 5.8.26 A train covered a certain distance at a uniform speed. If the train would have been 10 km/h faster, it would have taken 2 hours less than the scheduled time. And, if the train were slower by 10 km/h; it would have taken 3 hours more than the scheduled time. Find the distance covered by the train.
- 5.8.27 The students of a class are made to stand in rows. If 3 students are extra in a row, there would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the number of students in the class.
- 5.8.28 Ritu can row downstream 20km in 2 hours, and upstream 4km in 2 hours. Find her speed of rowing in still water and the speed of the current.
- 5.8.29 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 women alone to finish the work, and also that taken by 1 man alone.
- 5.8.30 Rambha travels 300km to her home partly by train and partly by bus. She takes 4

hours if she travels 60km by train and the remaining by bus. If she travels 100km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately

- 5.8.31 In a $\triangle ABC$, $\angle C = 3\angle B = 2(\angle A + \angle B)$. Find the three angles.
- 5.8.32 ABCD is a cyclic quadrilateral with angles

$$A = 4y + 20, B = -7x + 5, C = -4x, D = 3y - 5.$$
 (5.8.32.1)

Find them.

- 5.8.33 Draw the graphs of the equations 5x y = 5 and 3x y = 3. Determine the Coordinates of the vertices of the triangle formed by these lines and the y axis.
- 5.8.34 Draw the graphs of the equations x y + 1 = 0 and 3x + 2y 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the axis and shade the triangular region.
- 5.8.35 The cost of 4kg onion, 3kg wheat and 2kg rice is ₹60. The cost of 2kg onion, 4kg wheat and 6kg rice is ₹90. The cost of 6kg onion, 2kg wheat and 3kg rice is ₹70. Find cost of each item per kg.
- 5.8.36 Romila went to a stationary shop and purchased 2 pencils and 3 erasers for ₹9. Her friend Sonali saw the new variety of pencils and erasers with Romila, and she also bought 4 pencils and 6 erasers of the same kind for ₹18. Represent this situation algebraically and graphically.
- 5.8.37 Champa went to a "Sale" to purchase some pants and skirts. When her friends asked her how many of each she had boughte she answered, "The number of skirts is two less than twice the number of pants purchased. Also, the number of skirts is four less than four times the number of pants purchased". Help her friends to find how many pants and skirts Champa bought.
- 5.8.38 Alwar tells his daughter, "Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be." Represent this situation algebraically and graphically.
- 5.8.39 The cost of 2 pencils and 3 erasers is ₹9 and the cost of 4 pencils and 6 erasers is ₹18. Find the cost of each pencil and each eraser.
- 5.8.40 The ratio of incomes of two persons is 9:7 and the ratio of their expenditures is 4 : 3. If each of them manages to save ₹2000 per month, find their monthly incomes.
- 5.8.41 The sum of a two digit number and the number obtained by reversing the digits is 66. If the digits of the number differ by 2, find the number. How many such numbers are there?
- 5.8.42 A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of the boat in still water.
- 5.8.43 The sum of three numbers is 6. If we multiply the third number by 3 and add the second number to it, we get 11. By adding the first and third numbers, we get double of the second number. Find the numbers.

- 5.9.1 A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction. (10, 2020)
- 5.9.2 The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages. (10, 2020)
- 5.9.3 Two schools P and Q decided to award prizes to their students for two games of Hockey \mathcal{T}_x per students and cricket \mathcal{T}_y per student. School P decided to award a total of \mathcal{T}_y , 500 for the two games to 5 and 4 students respectively; while school Q decided to award \mathcal{T}_y , 370 for the two games to 4 and 3 students respectively. Based on the given information, answer the following questions:
 - a) Represent the following information algebraically (in terms of x and y).
 - b) i) What is the prize amount for hockey?
 - ii) Prize amount on which game is more and by how much?
 - c) What will be the total prize amount if there are 2 students each from two games ?

(10, 2020)

- 5.9.4 Half of the difference between two numbers is 2. The sum of the greater number and twice the smaller number is 3. Find the numbers. (10, 2023)
- 5.9.5 The sum of the numerator and the denominator of a fraction is 18. If the denominator is increased by 2, the fraction reduces to $\frac{1}{3}$. Find the fraction. (10, 2021)
- 5.9.6 If 2 tables and 2 chairs cost ₹700 and 4 tables and 3 chairs cost ₹1,250, then find the cost of one table. (10, 2021)
- 5.9.7 A part of monthly hostel charges in a college hostel are fixed and the remaining depends on the number of days one has taken food in the mess. When a student *A* takes food for 25 days, he has to pay ₹4,500, whereas a student *B* who takes food for 30 days, has to pay ₹5,200. Find the fixed charges per month and the cost of food per day. (10, 2019)
- 5.9.8 A father's age is three times the sum of the ages of his two children. After 5 years his age will be two times the sum of their ages. Find the present age of the father.
- 5.9.9 A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water. (10, 2019)
- 5.9.10 A fraction becomes $\frac{1}{3}$ when 2 is subtracted from the numerator and it becomes $\frac{1}{2}$ when 1 is subtracted from the denominator. Find the fraction. (10, 2019)
- 5.9.11 Sumit is 3 times as old as his son. Five years later, he shall be two and a half times as old as his son. How old is Sumit at present? (10, 2019)
- 5.9.12 Ishan wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that if its length is decreased by 50m and breadth is increased by 50m, then its area will remain same, but if length is decreased by 10m and breadth is decreased by 20m, then its area will decrease by 5300m². Using matrices, find the dimensions of the plot. Also give reason why he wants to donate the plot for a school. (10, 2016)
- 5.9.13 A shopkeeper has 3 varieties of pens A, B and C. Meenu purchased 1 pen of each

- 5.9.14 On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, every one would have got ₹10 more. However, if there were 16 children more, every one would have got ₹10 less. Using matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema's decision? (10, 2016)
- 5.9.15 A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹2,800 as interest. However, if trust had interchanged money in bonds, they would have got ₹100 less as interest. Using matrix method, find the amount invested by the trust. Interest received on this amount will be given to an *ashram* as donation. Which value is reflected in this question? (10, 2016)
- 5.9.16 A trust fund has ₹35,000 is to be invested in two different types of bonds. The first bond pays 8% interest per annum which will be given to a *matha* and second bond pays 10% interest per annum which will be given to a temple. Using matrix multiplication, determine how to divide ₹35,000 among two types of bonds if the trust fund obtains an annual total interest of ₹3,200. What are the values reflected in this question? (10, 2016)

5.10 Chemistry

5.10.1. Balance the following chemical equation.

$$HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + H_2O$$
 (5.10.1.1)

Solution: Let the balanced version of (5.10.1.1) be

$$x_1HNO_3 + x_2Ca(OH)_2 \rightarrow x_3Ca(NO_3)_2 + x_4H_2O$$
 (5.10.1.2)

which results in the following equations:

$$(x_1 + 2x_2 - 2x_4)H = 0 (5.10.1.3)$$

$$(x_1 - 2x_3)N = 0 (5.10.1.4)$$

$$(3x_1 + 2x_2 - 6x_3 - x_4)O = 0 (5.10.1.5)$$

$$(x_2 - x_3)Ca = 0 (5.10.1.6)$$

which can be expressed as

$$x_1 + 2x_2 + 0x_3 - 2x_4 = 0 (5.10.1.7)$$

$$x_1 + 0x_2 - 2x_3 + 0.x_4 = 0 (5.10.1.8)$$

$$3x_1 + 2x_2 - 6x_3 - x_4 = 0 (5.10.1.9)$$

$$0x_1 + x_2 - x_3 + 0.x_4 = 0 (5.10.1.10)$$

resulting in the matrix equation

$$\begin{pmatrix} 1 & 2 & 0 & -2 \\ 1 & 0 & -2 & 0 \\ 3 & 2 & -6 & -1 \\ 0 & 1 & -1 & 0 \end{pmatrix} \mathbf{x} = \mathbf{0}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
 (5.10.1.11)

(5.10.1.11) can be reduced as follows

$$\begin{pmatrix}
1 & 2 & 0 & -2 \\
1 & 0 & -2 & 0 \\
3 & 2 & -6 & -1 \\
0 & 1 & -1 & 0
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 - R_1}
\begin{pmatrix}
1 & 2 & 0 & -2 \\
0 & -2 & -2 & 2 \\
0 & -\frac{4}{3} & -2 & \frac{5}{3} \\
0 & 1 & -1 & 0
\end{pmatrix}$$
(5.10.1.12)

$$\stackrel{R_2 \leftarrow -\frac{R_2}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 0 & -2 \\ 0 & 1 & 1 & -1 \\ 0 & -\frac{4}{3} & -2 & \frac{5}{3} \\ 0 & 1 & -1 & 0 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 + \frac{4}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 0 & -2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & -2 & 1 \end{pmatrix}$$
(5.10.1.13)

$$\underbrace{\stackrel{R_1 \leftarrow R_1 - 2R_2}{R_3 \leftarrow -\frac{3}{2}R_3}}_{R_3 \leftarrow -\frac{3}{2}R_3} \xrightarrow{\begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -\frac{1}{2} \\ 0 & 0 & -2 & 1 \end{pmatrix}}_{R_4 \leftarrow R_4 + 2R_3} \xrightarrow{R_4 \leftarrow R_4 + 2R_3} \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{5.10.1.14}$$

$$\stackrel{R_1 \leftarrow R_1 + 2R_3}{\stackrel{\longleftarrow}{R_2 \leftarrow R_2 - R_3}} \begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(5.10.1.15)

Thus,

$$x_1 = x_4, x_2 = \frac{1}{2}x_4, x_3 = \frac{1}{2}x_4$$
 (5.10.1.16)

$$\implies \mathbf{x} = x_4 \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$
 (5.10.1.17)

by substituting $x_4 = 2$. Hence, (5.10.1.2) finally becomes

$$2HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$$
 (5.10.1.18)

5.10.2. Balance the following chemical equation.

$$Zinc + Silver nitrate \rightarrow Zinc nitrate + Silver$$
 (5.10.2.1)

Solution: (5.10.2.1) can be written as

$$Zn + AgNO_3 \to Ag + Zn(NO_3)_2$$
 (5.10.2.2)

Suppose the balanced form of the equation is

$$x_1Zn + x_2AgNO_3 \rightarrow x_3Ag + x_4Zn(NO_3)_2,$$
 (5.10.2.3)

which results in the following equations:

$$(x_1 - 2x_4)Zn = 0 (5.10.2.4)$$

$$(x_2 - x_3)Ag = 0 (5.10.2.5)$$

$$(x_3 - 2x_4)N = 0 (5.10.2.6)$$

$$(3x_3 - 6x_4)O = 0 (5.10.2.7)$$

which can be expressed as

$$x_1 + 0x_2 + 0x_3 - x_4 = 0 (5.10.2.8)$$

$$0x_1 + x_2 - x_3 + 0x_4 = 0 (5.10.2.9)$$

$$0x_1 + 0x_2 + x_3 - 2x_4 = 0 (5.10.2.10)$$

$$0x_1 + 0x_2 + 3x_3 - 6x_4 = 0 (5.10.2.11)$$

resulting in the matrix equation

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 3 & -6 \end{pmatrix} \mathbf{x} = \mathbf{0}, \ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
 (5.10.2.12)

(5.10.2.12) can be reduced as

$$\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 3 & -6
\end{pmatrix}
\xrightarrow{R_4 \leftarrow R_4 - 3R_3}
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(5.10.2.13)

Thus,

$$\mathbf{x}_1 = x_4, x_2 = 2x_4, x_3 = 2x_4 \implies \mathbf{x} = \begin{pmatrix} x_4 \\ 2x_4 \\ 2x_4 \\ x_4 \end{pmatrix} = x_4 \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}, x_4 = 1 \quad (5.10.2.14)$$

Hence, (5.10.2.3) finally becomes

$$Zn + 2AgNO_3 \rightarrow 2Ag + Zn(NO_3)_2$$
 (5.10.2.15)

5.10.3. Write the balanced chemical equations for the following reaction.

$$BaCl_2 + K_2SO_4 \to BaSO_4 + KCl$$
 (5.10.3.1)

5.10.4. Balance the following chemical equation.

$$Fe + H_2O \rightarrow Fe_3O_4 + H_2$$
 (5.10.4.1)

5.10.5. Balance the following chemical equation.

$$NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$$
 (5.10.5.1)

5.11 Physics

5.11.1. Determine the loop currents in Fig. 5.11.1.1.

Fig. 5.11.1.1

5.11.2. Determine the current in each branch of the network shown in Fig. 5.11.2.1.

Fig. 5.11.2.1

5.11.3. In Fig. 5.11.3.1, a galvanometer of 15Ω resistance is connected across BD. Calculate

the current through the galvanometer when a potential difference of 10V is maintained across AC.

Fig. 5.11.3.1

5.11.4. Determine the current in each branch of the network shown in Fig. 5.11.4.1.

Fig. 5.11.4.1

5.12 CBSE

5.12.1 If
$$\mathbf{A} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
, find α satisfying $0 < \alpha < \frac{1}{2}$ when $\mathbf{A} + \mathbf{A}^{\mathrm{T}} = \sqrt{2}\mathbf{I}$.
5.12.2 Use elementary column operation $C_2 \to C_2 + 2C_1$ in the following matrix equation

$$\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

- 5.12.3 Write the number of all possible matrices of order 2×2 with each entry 1, 2 or 3.
- 5.12.4 Solve for x

$$\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0$$

5.12.5 If $x \in N$ and

$$\begin{vmatrix} x+3 & -2 \\ -3x & 2x \end{vmatrix} = 8$$

then find the value of x.

5.12.6 Show that $\triangle ABC$ is isosceles if

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 + \cos A & 1 + \cos B & 1 + \cos C \\ \cos^2 A + \cos A & \cos^2 B + \cos B & \cos^2 C + \cos C \end{vmatrix} = 0$$

5.12.7 Solve the following equations for x and y

$$(ax - by) + (a + 4b) = 0$$

 $(bx + ay) + (b - 4a) = 0$

(12, 2022)

6.1 Formulae

6.1.1. The lines

$$L_1: \mathbf{x} = \mathbf{A} + \kappa_1 \mathbf{m}_1$$

$$L_2: \mathbf{x} = \mathbf{B} + \kappa_2 \mathbf{m}_2$$
(6.1.1.1)

will intersect if

$$\mathbf{A} + \kappa_1 \mathbf{m_1} = \mathbf{B} + \kappa_2 \mathbf{m_2} \tag{6.1.1.2}$$

$$\implies (\mathbf{m_1} \quad \mathbf{m_2}) \begin{pmatrix} \kappa_1 \\ -\kappa_2 \end{pmatrix} = \mathbf{B} - \mathbf{A} \tag{6.1.1.3}$$

$$\implies$$
 rank $(\mathbf{M} \quad \mathbf{B} - \mathbf{A}) = 2$ (6.1.1.4)

where

$$\mathbf{M} = \begin{pmatrix} \mathbf{m_1} & \mathbf{m_2} \end{pmatrix} \tag{6.1.1.5}$$

6.1.2. If L_1, L_2 , do not intersect, let

$$\mathbf{x}_1 = \mathbf{A} + \kappa_1 \mathbf{m}_1$$

$$\mathbf{x}_2 = \mathbf{B} + \kappa_2 \mathbf{m}_2$$
(6.1.2.1)

be points on L_1, L_2 respectively, that are closest to each other. Then, from (6.1.2.1)

$$\mathbf{x_1} - \mathbf{x_2} = \mathbf{A} - \mathbf{B} + \begin{pmatrix} \mathbf{m_1} & \mathbf{m_2} \end{pmatrix} \begin{pmatrix} \kappa_1 \\ -\kappa_2 \end{pmatrix}$$
 (6.1.2.2)

Also,

$$(\mathbf{x}_1 - \mathbf{x}_2)^{\mathsf{T}} \mathbf{m}_1 = (\mathbf{x}_1 - \mathbf{x}_2)^{\mathsf{T}} \mathbf{m}_2 = 0$$
 (6.1.2.3)

$$\implies (\mathbf{x}_1 - \mathbf{x}_2)^{\top} \begin{pmatrix} \mathbf{m}_1 & \mathbf{m}_2 \end{pmatrix} = \mathbf{0}$$
 (6.1.2.4)

or,
$$\mathbf{M}^{\mathsf{T}}(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}$$
 (6.1.2.5)

$$\implies \mathbf{M}^{\top} (\mathbf{A} - \mathbf{B}) + \mathbf{M}^{\top} \mathbf{M} \begin{pmatrix} \kappa_1 \\ -\kappa_2 \end{pmatrix} = \mathbf{0}$$
 (6.1.2.6)

from (6.1.2.2), yielding

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} \begin{pmatrix} \kappa_1 \\ -\kappa_2 \end{pmatrix} = \mathbf{M}^{\mathsf{T}} (\mathbf{B} - \mathbf{A}) \tag{6.1.2.7}$$

This is known as the least squares solution.

6.1.3. Perform the eigendecompositions

$$\mathbf{M}\mathbf{M}^{\mathsf{T}} = \mathbf{U}\mathbf{D}_{1}\mathbf{U}^{\mathsf{T}} \tag{6.1.3.1}$$

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{V}\mathbf{D}_{2}\mathbf{V}^{\mathsf{T}} \tag{6.1.3.2}$$

6.1.4. The following expression is known as singular value decomposition

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \tag{6.1.4.1}$$

where Σ is diagonal with entries obtained as in (6.3.1.21). Substituting in (6.1.2.7),

$$\mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \kappa = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} (\mathbf{B} - \mathbf{A})$$
 (6.1.4.2)

$$\implies \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^{\mathsf{T}}\boldsymbol{\kappa} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}(\mathbf{B} - \mathbf{A}) \tag{6.1.4.3}$$

$$\implies \kappa = \left(\mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^{\top}\right)^{-1}\mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\top}\left(\mathbf{B} - \mathbf{A}\right) \tag{6.1.4.4}$$

$$\implies \kappa = \mathbf{V} \mathbf{\Sigma}^{-2} \mathbf{V}^{\top} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\top} (\mathbf{B} - \mathbf{A}) \tag{6.1.4.5}$$

$$\implies \kappa = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} (\mathbf{B} - \mathbf{A}) \tag{6.1.4.6}$$

where Σ^{-1} is obtained by inverting the nonzero elements of Σ .

6.1.5. From (6.1.2.1),

$$\mathbf{x}_1 - \mathbf{x}_2 = \mathbf{A} + \kappa_1 \mathbf{m}_1 - \mathbf{B} - \kappa_2 \mathbf{m}_2 \tag{6.1.5.1}$$

$$= \mathbf{A} - \mathbf{B} + \mathbf{M}\kappa \tag{6.1.5.2}$$

which, upon substitution from (6.1.4.1) yields

$$\mathbf{x}_1 - \mathbf{x}_2 = \mathbf{A} - \mathbf{B} + \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} (\mathbf{B} - \mathbf{A})$$
 (6.1.5.3)

$$= (\mathbf{A} - \mathbf{B}) \left(\mathbf{I} - \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \right)$$
 (6.1.5.4)

Thus,

$$\|\mathbf{x}_1 - \mathbf{x}_2\| = \left\| (\mathbf{A} - \mathbf{B}) \left(\mathbf{I} - \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \right) \right\|$$
 (6.1.5.5)

6.1.6. Least squares solution

codes/book/skew_least.py

6.1.7. Least squares using builtin SVD

codes/book/skew_builtin.py

6.1.8. Code linking eigenvalues and singular values

codes/book/skew_svd.py

6.2 Least Squares

6.2.1 Find the shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and (6.2.1.1)

$$\frac{z-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \tag{6.2.1.2}$$

Solution: The given lines can be written as

$$\mathbf{x} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + \kappa_1 \begin{pmatrix} 7 \\ -6 \\ 1 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} + \kappa_2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
(6.2.1.3)

with

$$\mathbf{A} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}, \ \mathbf{M} = \begin{pmatrix} 7 & 1 \\ -6 & -2 \\ 1 & 1 \end{pmatrix}$$
 (6.2.1.4)

Substituting the above in (6.1.1.4),

$$\begin{pmatrix} 7 & 1 & | & 4 \\ -6 & -2 & | & 6 \\ 1 & 1 & | & 8 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{6}{7}R_1} \xrightarrow{R_3 \leftarrow R_3 - \frac{1}{7}R_1}$$
(6.2.1.5)

$$\begin{pmatrix}
7 & 1 & | & 4 \\
0 & -\frac{8}{7} & | & \frac{66}{7} \\
0 & \frac{6}{7} & | & -\frac{52}{7}
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 + \frac{3}{4}R_2}$$
(6.2.1.6)

$$\begin{pmatrix}
2 & 3 & 1 \\
0 & -\frac{7}{2} & \frac{1}{2} \\
0 & 0 & -\frac{5}{14}
\end{pmatrix}$$
(6.2.1.7)

The rank of the matrix is 3. So the given lines are skew. From (6.1.2.7)

$$\begin{pmatrix} 7 & -6 & 1 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 7 & 1 \\ -6 & -2 \\ 1 & 1 \end{pmatrix} \kappa = \begin{pmatrix} 7 & -6 & 1 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}$$
 (6.2.1.8)

$$\Longrightarrow \begin{pmatrix} 86 & 20 \\ 20 & 6 \end{pmatrix} \kappa = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{6.2.1.9}$$

$$\implies \begin{pmatrix} \kappa_1 \\ -\kappa_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{6.2.1.10}$$

From (6.2.1.3), the closest points are **A** and **B** and the minimum distance between the lines is given by

$$\|\mathbf{B} - \mathbf{A}\| = \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} = 2\sqrt{29} \tag{6.2.1.11}$$

See Fig. 6.2.1.1.

Fig. 6.2.1.1

6.2.2 Find the shortest distance between the lines whose vector equations are

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \kappa_1 \begin{pmatrix} 1\\-3\\2 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} 4\\5\\6 \end{pmatrix} + \kappa_2 \begin{pmatrix} 2\\3\\1 \end{pmatrix}$$
(6.2.2.1)

Solution: In this case,

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \tag{6.2.2.2}$$

$$\mathbf{M} = \begin{pmatrix} 1 & 2 \\ -3 & 3 \\ 2 & 1 \end{pmatrix}. \tag{6.2.2.3}$$

forming the matrix in (6.1.1.4),

$$\begin{pmatrix} 1 & 2 & 3 \\ -3 & 3 & 3 \\ 2 & 1 & 3 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + 3R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 9 & 12 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - 2R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 9 & 12 \\ 0 & -3 & -3 \end{pmatrix} \xrightarrow{R_3 \leftarrow 3R_3 + R_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 9 & 12 \\ 0 & 0 & 3 \end{pmatrix}$$

Clearly, the rank of this matrix is 3, and therefore, the lines are skew. From (6.1.2.7),

$$\begin{pmatrix}
14 & -5 & | & 0 \\
-5 & 14 & | & 18
\end{pmatrix}
\xrightarrow{R_1 \leftarrow R_1 + R_2}
\begin{pmatrix}
9 & 9 & | & 18 \\
-5 & 14 & | & 18
\end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow \frac{R_1}{9}}
\begin{pmatrix}
1 & 1 & | & 2 \\
-5 & 14 & | & 18
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 + 5R_1}
\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 19 & | & 28
\end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow \frac{R_1}{19}}
\begin{pmatrix}
19 & 0 & | & 10 \\
0 & 19 & | & 28
\end{pmatrix}
\xrightarrow{R_2 \leftarrow \frac{R_2}{9}}
\begin{pmatrix}
1 & 0 & | & \frac{10}{19} \\
0 & 1 & | & \frac{28}{19}
\end{pmatrix}$$

yielding

$$\kappa = \frac{1}{19} \binom{10}{28} \tag{6.2.2.4}$$

Substituting the above in (6.2.2.1),

$$\mathbf{x}_1 = \frac{1}{19} \begin{pmatrix} 29\\8\\77 \end{pmatrix}, \ \mathbf{x}_2 = \frac{1}{19} \begin{pmatrix} 20\\11\\86 \end{pmatrix}.$$
 (6.2.2.5)

Thus, the required distance is

$$\|\mathbf{x}_2 - \mathbf{x}_1\| = \frac{3}{\sqrt{19}} \tag{6.2.2.6}$$

See Fig. 6.2.2.1.

Fig. 6.2.2.1

6.2.3 Find the shortest distance between the lines l_1 and l_2 whose vector equations are

$$\overrightarrow{r} = \hat{i} + \hat{j} + \kappa(2\hat{i} - \hat{j} + \hat{k}) \text{ and}$$
 (6.2.3.1)

$$\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k}). \tag{6.2.3.2}$$

Solution: The given lines can be written in vector form as

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \kappa_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix},$$

$$\mathbf{x} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \kappa_2 \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$$
(6.2.3.3)

$$\mathbf{M} = \begin{pmatrix} 2 & 3 \\ -1 & -5 \\ 1 & 2 \end{pmatrix}, \mathbf{B} - \mathbf{A} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 (6.2.3.4)

Substituting the above in (6.1.1.4),

$$\begin{pmatrix} 2 & 3 & 1 \\ -1 & -5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{1}{2}R_1} \begin{pmatrix} 2 & 3 & 1 \\ 0 & -\frac{7}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{3}{2} \end{pmatrix}$$
(6.2.3.5)

$$\xrightarrow{R_3 \leftarrow R_3 + 7R_2} \begin{pmatrix} 2 & 3 & 1 \\ 0 & -\frac{7}{2} & \frac{1}{2} \\ 0 & 0 & -10 \end{pmatrix}$$
 (6.2.3.6)

The rank of the matrix is 3. So the given lines are skew. From (6.1.2.7),

$$\begin{pmatrix} 2 & -1 & 1 \\ 3 & -5 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -5 \\ 1 & 2 \end{pmatrix} \kappa = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -5 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 (6.2.3.7)

$$\implies \begin{pmatrix} 6 & 13 \\ 13 & 38 \end{pmatrix} \kappa = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{6.2.3.8}$$

The augmented matrix of the above equation (6.2.3.8) is given by,

$$\begin{pmatrix} 6 & 13 & | & 1 \\ 13 & 38 & | & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - \frac{13}{6}R_1} \begin{pmatrix} 6 & 13 & | & 1 \\ 0 & \frac{59}{6} & | & -\frac{7}{6} \end{pmatrix}$$
 (6.2.3.9)

$$\xrightarrow{R_1 \leftarrow R_1 - \frac{78}{59} R_2} \begin{pmatrix} 6 & 0 \\ 0 & \frac{59}{6} \end{pmatrix} \begin{pmatrix} \frac{150}{59} \\ -\frac{7}{6} \end{pmatrix}$$
 (6.2.3.10)

yielding

$$\begin{pmatrix} \kappa_1 \\ -\kappa_2 \end{pmatrix} = \begin{pmatrix} \frac{25}{59} \\ -\frac{7}{59} \end{pmatrix} \tag{6.2.3.11}$$

Substituting in (6.2.3.3),

$$\mathbf{x}_1 = \frac{1}{59} \begin{pmatrix} 109\\34\\25 \end{pmatrix}, \ \mathbf{x}_2 = \frac{1}{59} \begin{pmatrix} 139\\24\\-45 \end{pmatrix}.$$
 (6.2.3.12)

The minimum distance between the lines is given by,

$$\|\mathbf{x}_2 - \mathbf{x}_1\| = \left\| \frac{1}{59} \begin{pmatrix} 30 \\ -10 \\ -70 \end{pmatrix} \right\| = \frac{10}{\sqrt{59}}$$
 (6.2.3.13)

See Fig. 6.2.3.1.

Fig. 6.2.3.1

6.2.4 Find the shortest distance between the lines given by

$$\vec{r} = (8 + 3\kappa \hat{i} - (9 + 16\kappa)\hat{j} + (10 + 7\kappa)\hat{k}$$
 and (6.2.4.1)

$$\overrightarrow{r} = 15\hat{i} + 29\hat{j} + 5\hat{k} + \mu(3\hat{i} + 8\hat{j} - 5\hat{k}). \tag{6.2.4.2}$$

6.2.5 Find the shortest distance between the lines

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \kappa(\hat{i} - \hat{j} + \hat{k})$$
 and (6.2.5.1)

$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k}) \tag{6.2.5.2}$$

6.2.6 Find the matrix **X** so that
$$\mathbf{X} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{pmatrix}$$
.

6.2.7 Find the shortest distance between the lines whose vector equations are

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$
 and (6.2.7.1)

$$\overrightarrow{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$$
 (6.2.7.2)

6.2.8 Find the shortest distance between the lines $\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 2\hat{k})$ and $\vec{r} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k})$.

- 6.3 Singular Value Decomposition
- 6.3.1 Find the shortest distance between the lines whose vector equations are

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\-3\\2 \end{pmatrix} \tag{6.3.1.1}$$

and

$$\mathbf{x} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \tag{6.3.1.2}$$

Solution: From (6.2.2.3),

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} = \begin{pmatrix} 1 & -3 & 2 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -3 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 14 & -5 \\ -5 & 14 \end{pmatrix}$$
 (6.3.1.3)

$$\mathbf{M}\mathbf{M}^{\mathsf{T}} = \begin{pmatrix} 1 & 2 \\ -3 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 2 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 & 4 \\ 3 & 18 & -3 \\ 4 & -3 & 5 \end{pmatrix} \tag{6.3.1.4}$$

a) For $\mathbf{M}\mathbf{M}^{\mathsf{T}}$, the characteristic polynomial is

$$char \mathbf{M} \mathbf{M}^{\mathsf{T}} = \begin{vmatrix} \lambda - 5 & -3 & -4 \\ -3 & \lambda - 18 & 3 \\ -4 & 3 & \lambda - 5 \end{vmatrix}$$
 (6.3.1.5)

$$= \lambda (\lambda - 9)(\lambda - 19) \tag{6.3.1.6}$$

Thus, the eigenvalues are given by

$$\lambda_1 = 19, \ \lambda_2 = 9, \ \lambda_3 = 0$$
 (6.3.1.7)

For λ_1 , the augmented matrix formed from the eigenvalue-eigenvector equation is

$$\begin{pmatrix} -14 & 3 & 4 \\ 3 & -1 & -3 \\ 4 & -3 & -14 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1 + R_3}{-10}} \begin{pmatrix} 1 & 0 & 1 \\ 3 & -1 & -3 \\ 4 & -3 & -14 \end{pmatrix}$$

$$\xleftarrow{R_3 \leftarrow R_3 - 4R_1}_{R_2 \leftarrow -R_2 + 3R_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -6 \\ 0 & -3 & -18 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 3R_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence, the normalized eigenvector is

$$\mathbf{u}_1 = \frac{1}{\sqrt{38}} \begin{pmatrix} -1\\ -6\\ 1 \end{pmatrix} \tag{6.3.1.8}$$

For λ_2 , the augmented matrix formed from the eigenvalue-eigenvector equation is

$$\begin{pmatrix}
-4 & 3 & 4 \\
3 & 9 & -3 \\
4 & 3 & -4
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_1 + R_3}
\begin{pmatrix}
-4 & 3 & 4 \\
3 & 9 & -3 \\
0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow \frac{R_1 - 3R_2}{-4}}
R_2 \leftarrow \frac{4R_2 + 3R_1}{45}
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Hence, the normalized eigenvector is

$$\mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix} \tag{6.3.1.9}$$

For λ_3 , the augmented matrix formed from the eigenvalue-eigenvector equation is

$$\begin{pmatrix} 5 & 3 & 4 \\ 3 & 18 & -3 \\ 4 & -3 & 5 \end{pmatrix} \longleftrightarrow \xrightarrow{R_1 \leftarrow \frac{R_1 + R_3}{9}} \begin{pmatrix} 1 & 0 & 1 \\ 3 & 18 & -3 \\ 4 & -3 & 5 \end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - 4R_1} \longleftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 18 & -6 \\ 0 & -3 & 1 \end{pmatrix} \longleftrightarrow \xrightarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

yielding

$$\mathbf{u}_3 = \frac{1}{\sqrt{19}} \begin{pmatrix} -3\\1\\3 \end{pmatrix} \tag{6.3.1.10}$$

Using (6.1.3.1), we see that

$$\mathbf{U} = \begin{pmatrix} -\frac{1}{\sqrt{38}} & \frac{1}{\sqrt{2}} & -\frac{3}{\sqrt{19}} \\ -\frac{6}{\sqrt{38}} & 0 & \frac{1}{\sqrt{19}} \\ \frac{1}{\sqrt{38}} & -\frac{1}{\sqrt{2}} & \frac{3}{\sqrt{19}} \end{pmatrix}$$
(6.3.1.11)

$$\mathbf{D_1} = \begin{pmatrix} 19 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{6.3.1.12}$$

b) For $\mathbf{M}^{\mathsf{T}}\mathbf{M}$, the characteristic polynomial is

$$\operatorname{char} \mathbf{M}^{\mathsf{T}} \mathbf{M} = \begin{vmatrix} \lambda - 14 & 5 \\ 5 & \lambda - 14 \end{vmatrix}$$
 (6.3.1.13)

$$= (\lambda - 9)(\lambda - 19) \tag{6.3.1.14}$$

Thus, the eigenvalues are given by

$$\lambda_1 = 19, \ \lambda_2 = 9$$
 (6.3.1.15)

For λ_1 , the augmented matrix formed from the eigenvalue-eigenvector equation is

$$\begin{pmatrix} -5 & -5 \\ -5 & -5 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - R_2} \begin{pmatrix} 0 & 0 \\ -5 & -5 \end{pmatrix} \tag{6.3.1.16}$$

Hence, the normalized eigenvector is

$$\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{6.3.1.17}$$

For λ_2 , the augmented matrix formed from the eigenvalue-eigenvector equation is

$$\begin{pmatrix} 5 & -5 \\ -5 & 5 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 0 & 0 \\ 5 & -5 \end{pmatrix} \tag{6.3.1.18}$$

Hence, the normalized eigenvector is

$$\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \tag{6.3.1.19}$$

Thus, from (6.1.3.2),

$$\mathbf{V} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \ \mathbf{D_2} = \begin{pmatrix} 9 & 0 \\ 0 & 19 \end{pmatrix}$$
 (6.3.1.20)

Using (6.3.1.15),

$$\Sigma \triangleq \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{19} & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix}$$
 (6.3.1.21)

and substituting into (6.1.4.6),

$$\kappa = \frac{1}{19} \binom{10}{28} \tag{6.3.1.22}$$

which agrees with (6.2.2.4).

6.3.2 Find the shortest distance between the lines l_1 and l_2 whose vector equations are

$$\overrightarrow{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k}) \text{ and}$$
 (6.3.2.1)

$$\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k}). \tag{6.3.2.2}$$

Solution:

a) To check whether the given lines are skew, from (6.2.3.4) and (6.1.1.4),

$$\begin{pmatrix} 2 & 3 & 1 \\ -1 & -5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{1}{2}R_1} \begin{pmatrix} 2 & 3 & 1 \\ 0 & -\frac{7}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{3}{2} \end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 + 7R_2} \begin{pmatrix} 2 & 3 & 1 \\ 0 & -\frac{7}{2} & \frac{1}{2} \\ 0 & 0 & -10 \end{pmatrix}$$

The rank of the matrix is 3. So the given lines are skew. b)

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -5 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -5 \\ 1 & 2 \end{pmatrix}$$
 (6.3.2.3)

$$= \begin{pmatrix} 6 & 13 \\ 13 & 38 \end{pmatrix} \tag{6.3.2.4}$$

$$\mathbf{M}\mathbf{M}^{\top} = \begin{pmatrix} 2 & 3 \\ -1 & -5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ 3 & -5 & 2 \end{pmatrix}$$
 (6.3.2.5)

$$= \begin{pmatrix} 13 & -17 & 8 \\ -17 & 26 & -11 \\ 8 & -11 & 5 \end{pmatrix}$$
 (6.3.2.6)

The characteristic polynomial of the matrix $\mathbf{M}\mathbf{M}^{\mathsf{T}}$ is given by,

$$\operatorname{char}(\mathbf{M}\mathbf{M}^{\mathsf{T}}) = \begin{vmatrix} 13 - \lambda & -17 & 8 \\ -17 & 26 - \lambda & -11 \\ 8 & -11 & 5 - \lambda \end{vmatrix}$$
 (6.3.2.7)

$$= -\lambda^3 + 44\lambda^2 - 59\lambda \tag{6.3.2.8}$$

resulting in

$$\mathbf{U} = \begin{pmatrix} \frac{12 - \sqrt{17}}{\sqrt{5}\sqrt{68 - 6\sqrt{17}}} & \frac{12 + \sqrt{17}}{\sqrt{5}\sqrt{68 + 6\sqrt{17}}} & -\frac{3}{\sqrt{59}} \\ \frac{1 - 3\sqrt{17}}{\sqrt{5}\sqrt{68 - 6\sqrt{17}}} & \frac{1 + 3\sqrt{17}}{\sqrt{5}\sqrt{68 + 6\sqrt{17}}} & \frac{1}{\sqrt{59}} \\ \frac{\sqrt{5}}{\sqrt{68 - 6\sqrt{17}}} & \frac{\sqrt{5}}{\sqrt{68 + 6\sqrt{17}}} & \frac{7}{\sqrt{59}} \end{pmatrix}$$
(6.3.2.9)

and

$$\mathbf{D}_{1} = \begin{pmatrix} 22 + 5\sqrt{17} & 0 & 0\\ 0 & 22 - 5\sqrt{17} & 0\\ 0 & 0 & 0 \end{pmatrix} \tag{6.3.2.10}$$

For $\mathbf{M}^{\mathsf{T}}\mathbf{M}$, the characteristic polynomial is

$$\operatorname{char}\left(\mathbf{M}^{\mathsf{T}}\mathbf{M}\right) = \begin{vmatrix} 6 - \lambda & 13 \\ 13 & 38 - \lambda \end{vmatrix} \tag{6.3.2.11}$$

$$= \lambda^2 - 44\lambda + 59 \tag{6.3.2.12}$$

Thus, the eigenvalues are given by

$$\lambda_1 = 22 + 5\sqrt{17}, \ \lambda_2 = 22 - 5\sqrt{17}$$
 (6.3.2.13)

resulting in

$$\mathbf{V} = \begin{pmatrix} \frac{-16-5\sqrt{17}}{\sqrt{850+160\sqrt{17}}} & \frac{13}{\sqrt{850-160\sqrt{17}}} \\ \frac{13}{\sqrt{850+160\sqrt{17}}} & \frac{-16+5\sqrt{17}}{\sqrt{850-160\sqrt{17}}} \end{pmatrix}$$
(6.3.2.14)

$$\mathbf{D}_2 = \begin{pmatrix} 22 - 5\sqrt{17} & 0\\ 0 & 22 + 5\sqrt{17} \end{pmatrix}$$
 (6.3.2.15)

Therefore,

$$\Sigma = \begin{pmatrix} \sqrt{22 + 5\sqrt{17}} & 0\\ 0 & \sqrt{22 - 5\sqrt{17}}\\ 0 & 0 \end{pmatrix}$$
 (6.3.2.16)

and substituting into (6.1.5.5),

$$\lambda = \begin{pmatrix} \frac{25}{59} \\ -\frac{7}{50} \end{pmatrix} \tag{6.3.2.17}$$

which agrees with (6.2.3.11).

6.3.3 Find the shortest distance between the lines given by

$$\vec{r} = (8 + 3\lambda\hat{i} - (9 + 16\lambda)\hat{j} + (10 + 7\lambda)\hat{k}$$
 and (6.3.3.1)

$$\overrightarrow{r} = 15\hat{i} + 29\hat{j} + 5\hat{k} + \mu(3\hat{i} + 8\hat{j} - 5\hat{k}). \tag{6.3.3.2}$$

6.3.4 Find the shortest distance between the lines

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$
 and (6.3.4.1)

$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k}) \tag{6.3.4.2}$$

6.3.5 Find the shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and (6.3.5.1)

$$\frac{z-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \tag{6.3.5.2}$$

- 6.4.1 Find the shortest distance between the lines $\vec{r} = 4\hat{i} \hat{j} + \lambda (\hat{i} + 2\hat{j} 3\hat{k})$ and $\vec{r} =$ $\hat{i}-\hat{j}+2\hat{k}+\mu\left(2\hat{i}+4\hat{j}-5\hat{k}\right).$
- 6.4.2 Find the shortest distance between the lines $\mathbf{r} = 2\vec{i} 5\vec{j} + \vec{k} + \lambda \left(3\vec{i} + 2\vec{j} + 6\vec{k}\right)$ and $\mathbf{r} = 7\overrightarrow{i} - 6\overrightarrow{k} + \mu(\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}).$
- 6.4.3 Electrical transmission wires which are laid down in winters are stretched tightly to accommodate expansion in summers. Two such wires lie along the following lines

$$l_1: \frac{x+1}{3} = \frac{y-3}{-2} = \frac{z+2}{-1}$$
$$l_2: \frac{x}{-1} = \frac{y-7}{3} = \frac{z+7}{-2}$$

Based on the given information, answer the following questions

- a) Are the l_1 and l_2 coplanar? Justify your answer.
- b) Find the point of intersection of lines l_1 and l_2 .

- 6.4.4 Find the distance between the lines $x = \frac{y-1}{2} = \frac{z-2}{3}$ and $x + 1 = \frac{y+2}{2} = \frac{z-1}{3}$. (12, 2022) 6.4.5 Find the shortest distance between the lines $\mathbf{r} = 3\hat{i} + 5\hat{j} + 7\hat{k} + \lambda(\hat{i} 2\hat{j} + \hat{k}), \mathbf{r} = 0$
- $(-\hat{i} \hat{j} \hat{k}) + \mu(7\hat{i} 6\hat{j} + \hat{k}).$ (12, 2022)
- 6.4.6 Two motorcycles A and B are running at a speed more than the allowed speed on the road represented by the following lines

$$\mathbf{r} = \lambda(\hat{i} + 2\hat{j} - \hat{k})$$

$$\mathbf{r} = (3\hat{i} + 3\hat{j}) + \mu(2\hat{i} + \hat{j} + \hat{k})$$

Based on the following information, answer the following questions

- a) Find the shortest distance between the given lines.
- b) Find a point at which the motorcycles may collide.

- 6.4.7 Find the shortest distance between the lines $\mathbf{r} = (\lambda + 1)\hat{i} + (\lambda + 4)\hat{j} (\lambda 3)\hat{k}$, $\mathbf{r} = (\lambda + 1)\hat{i} + (\lambda + 4)\hat{j} (\lambda 3)\hat{k}$ $(3-\mu)\hat{i} + (2\mu+2)\hat{j} + (\mu+6)\hat{k}$.
- 6.4.8 Find the shortest distance between the lines $\frac{x-1}{2} = \frac{y+1}{3} = z$, $\frac{x+1}{5} = \frac{y-2}{1}$, z = 2 and hence which as the lines $\frac{x-1}{2} = \frac{y+1}{3} = z$, $\frac{x+1}{5} = \frac{y-2}{1}$, z = 2 and hence write whether the lines are intersecting or not.
- 6.4.9 Fit a straight line trend by the method of least squares and find the trend value for the year 2008 using the data from Table 6.4.9

TABLE 6.4.9: Table showing yearly trend of production of goods in lakh tonnes

Year	Production (in lakh tonnes)
2001	30
2002	35
2003	36
2004	32
2005	37
2006	40

- 6.4.10 Find the shortest distance between the lines $\frac{x-1}{2} = \frac{y+1}{3} = z$, $\frac{x+1}{5} = \frac{y-2}{1}$, z = 2 and hence write whether the lines are intersecting or not. (12, 2021)
- 6.4.11 Find matrix A such that

$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} \mathbf{A} = \begin{pmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{pmatrix}$$

(12, 2017)

- 7.1 Formulae
- 7.1.1. For a circle with centre \mathbf{c} and radius \mathbf{r} ,

$$\mathbf{u} = -\mathbf{c}, f = \|\mathbf{u}\|^2 - r^2 \tag{7.1.1.1}$$

7.1.2. Given points, \mathbf{x}_1 , \mathbf{x}_2 on the circle and the diameter

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c,\tag{7.1.2.1}$$

the centre is given by

$$\begin{pmatrix} 2\mathbf{x}_1 & 2\mathbf{x}_2 & \mathbf{n} \\ 1 & 1 & 0 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = - \begin{pmatrix} ||\mathbf{x}_1||^2 \\ ||\mathbf{x}_2||^2 \\ c \end{pmatrix}$$
(7.1.2.2)

Solution: From (A.7.1.1),

$$\|\mathbf{x}_1\|^2 + 2\mathbf{u}^{\mathsf{T}}\mathbf{x}_1 + f = 0$$

$$\|\mathbf{x}_2\|^2 + 2\mathbf{u}^{\mathsf{T}}\mathbf{x}_2 + f = 0$$
 (7.1.2.3)

and (7.1.2.1) can be expressed as

$$\mathbf{u}^{\mathsf{T}}\mathbf{n} = -c \tag{7.1.2.4}$$

Clubbing (7.1.2.3) and (7.1.2.4), we obtain (7.1.2.2).

7.1.3. Given points \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 on the circle, the parameters are given by

$$\begin{pmatrix} 2\mathbf{x}_1 & 2\mathbf{x}_2 & 2\mathbf{x}_3 \\ 1 & 1 & 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = - \begin{pmatrix} ||\mathbf{x}_1||^2 \\ ||\mathbf{x}_2||^2 \\ ||\mathbf{x}_3||^2 \end{pmatrix}$$
(7.1.3.1)

7.1.4. Code for circle

codes/book/circ.py

- 7.2 Equation
- 7.2.1 Find the coordinates of a point **A**, where AB is the diameter of a circle whose centre is C(2, -3) and **B** is (1, 4).

Solution:

$$\mathbf{C} = \frac{\mathbf{A} + \mathbf{B}}{2} \implies \mathbf{A} = 2\mathbf{C} - \mathbf{B} = \begin{pmatrix} 3 \\ -10 \end{pmatrix}$$
 (7.2.1.1)

The radius is then obtained as

$$\|\mathbf{B} - \mathbf{C}\| = 5\sqrt{2} \tag{7.2.1.2}$$

See Fig. 7.2.1.1.

Fig. 7.2.1.1

7.2.2 Find the equation of the circle passing through the points (4, 1) and (6, 5) and whose centre is on the line 4x + y = 16.

Solution: Following Appendix 7.1.2,

$$\mathbf{x}_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} 6 \\ 5 \end{pmatrix}, \ \mathbf{n} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \ c = -16.$$
 (7.2.2.1)

Substituting in (7.1.2.2),

$$\begin{pmatrix} 8 & 2 & 1 \\ 12 & 10 & 1 \\ -4 & -1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = \begin{pmatrix} 16 \\ -61 \\ -17 \end{pmatrix}$$
 (7.2.2.2)

The augmented matrix is expressed as

$$\begin{pmatrix}
8 & 2 & 1 & | & -17 \\
12 & 10 & 1 & | & -61 \\
-4 & -1 & 0 & | & 16
\end{pmatrix}$$
(7.2.2.3)

Performing a sequence of row operations to transform into an Echelon form

$$\xrightarrow{R_3 \to R_3 + 2R_1} \begin{pmatrix} -4 & -1 & 0 & 16 \\ 0 & 7 & 1 & -13 \\ 0 & 0 & 1 & 15 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_3} \begin{pmatrix} -4 & -1 & 0 & 16 \\ 0 & 7 & 0 & -28 \\ 0 & 0 & 1 & 15 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{R_2}{7}, R_1 \to \frac{-R_1}{4}} \begin{pmatrix} 1 & \frac{1}{4} & 0 & -4 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 15 \end{pmatrix} \xrightarrow{R_1 \to R_1 - \frac{1}{4}R_2} \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 15 \end{pmatrix}$$

So, from (7.2.2.4)

$$\mathbf{u} = -\binom{3}{4}, \ f = 15. \tag{7.2.2.4}$$

See Fig. 7.2.2.1.

Fig. 7.2.2.1

7.2.3 Find the equation of the circle passing through the points $\mathbf{x}_1(2,3)$ and $\mathbf{x}_2(-1,1)$ and whose centre is on the line x - 3y - 11 = 0.

Solution: Substituting numerical values in (7.1.2.2),

$$\begin{pmatrix} 4 & 6 & 1 \\ -2 & 2 & 1 \\ -1 & 3 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = \begin{pmatrix} -13 \\ -2 \\ 11 \end{pmatrix}$$
 (7.2.3.1)

yielding

$$\mathbf{u} = \frac{1}{2} \begin{pmatrix} -7\\5 \end{pmatrix}, \ f = -14. \tag{7.2.3.2}$$

7.2.4 Find the equation of the circle with radius 5 whose centre lies on the X axis and passes through the point (2,3).

Solution: See Fig. 7.2.4.1.

Fig. 7.2.4.1

From the given information, the following equations can be formulated using (A.7.1.1).

$$\|\mathbf{P}\|^2 + 2\mathbf{u}^{\mathsf{T}}\mathbf{P} + f = 0 \tag{7.2.4.1}$$

$$\mathbf{u} = k\mathbf{e}_1 \tag{7.2.4.2}$$

$$\|\mathbf{u}\|^2 - f = r^2 \tag{7.2.4.3}$$

where

$$\mathbf{P} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \text{ and } r = 5$$
 (7.2.4.4)

From (7.2.4.1) and (7.2.4.3),

$$\|\mathbf{P}\|^2 + 2\mathbf{u}^{\mathsf{T}}\mathbf{P} + \|\mathbf{u}\|^2 = r^2$$
 (7.2.4.5)

Substituting from (7.2.4.2) in the above,

$$k^{2} + 2k\mathbf{e}_{1}^{\mathsf{T}}\mathbf{P} + ||\mathbf{P}||^{2} - r^{2} = 0$$
 (7.2.4.6)

resulting in

$$k = -\mathbf{e}_1^{\mathsf{T}} \mathbf{P} \pm \sqrt{\left(\mathbf{e}_1^{\mathsf{T}} \mathbf{P}\right)^2 + r^2 - ||\mathbf{P}||^2}$$
 (7.2.4.7)

Substituting numerical values,

$$k = 2, -6 \tag{7.2.4.8}$$

resulting in circles with centre

$$-\mathbf{u} = \begin{pmatrix} -2\\0 \end{pmatrix} \text{ or } \begin{pmatrix} 6\\0 \end{pmatrix}. \tag{7.2.4.9}$$

This is verified in Fig. (7.2.4.1).

7.2.5 Find the equation of a circle with centre (2, 2) and passing through the point (4, 5). **Solution:** From the given information

$$\mathbf{u} = -\begin{pmatrix} 2\\2 \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} 4\\5 \end{pmatrix} \tag{7.2.5.1}$$

$$\Rightarrow \|\mathbf{A}\|^2 + 2\mathbf{u}^{\mathsf{T}}\mathbf{A} + f = 0 \tag{7.2.5.2}$$

$$\implies f = -\|\mathbf{A}\|^2 - 2\mathbf{u}^{\mathsf{T}}\mathbf{A} = -5 \tag{7.2.5.3}$$

Hence the equation of circle is

$$\|\mathbf{x}\|^2 + 2(-2 - 2)\mathbf{x} - 5 = 0$$
 (7.2.5.4)

7.2.6 Does the point (-2.5, 3.5) lie inside, outside or on the circle $x^2 + y^2 = 25$? **Solution:** See Table 7.2.6.

Condition	Inference
$ \mathbf{x} - \mathbf{O} ^2 < r^2$	point lies inside the circle
$ \mathbf{x} - \mathbf{O} ^2 > r^2$	point lies outside the circle
$ \mathbf{x} - \mathbf{O} ^2 = r^2$	point lies on the circle

TABLE 7.2.6

The given circle equation can be expressed as

$$\|\mathbf{x}\|^2 = 25\tag{7.2.6.1}$$

Let,

$$\mathbf{P} = \begin{pmatrix} -2.5 \\ 3.5 \end{pmatrix} \tag{7.2.6.2}$$

Since

$$\|\mathbf{P} - \mathbf{O}\|^2 = 18.5 < 25,$$
 (7.2.6.3)

the point lies inside the given circle. See Fig. 7.2.6.1.

Fig. 7.2.6.1

7.2.7 Find the centre of a circle passing though the points (6, -6), (3, -7) and (3, 3). **Solution:** Substituting numerical values in (7.1.3.1),

$$\begin{pmatrix} 6 & -14 & 1 \\ 12 & -12 & 1 \\ 6 & 6 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = \begin{pmatrix} -58 \\ -72 \\ -18 \end{pmatrix}$$
 (7.2.7.1)

yielding

$$\mathbf{u} = \begin{pmatrix} -3\\2 \end{pmatrix} \tag{7.2.7.2}$$

$$f = -12 \tag{7.2.7.3}$$

See Fig. 7.2.7.1.

Fig. 7.2.7.1

7.2.8 Find the equation of the circle passing through (0,0) and making intercepts a and b on the coordinate axes.

In each of the following exercises, find the equation of the circle with the following parameters

7.2.9 centre (0,2) and radius 2

Solution: Substituting numerical values in (7.1.1.1),

$$\mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0 \tag{7.2.9.1}$$

Thus, the equation of circle is obtained as

$$\|\mathbf{x}\|^2 - 2(0 \quad 2)\mathbf{x} = 0 \tag{7.2.9.2}$$

7.2.10 centre (-2,3) and radius 4

Solution: Given

$$\mathbf{u} = -\binom{-2}{3}, r = 4. \tag{7.2.10.1}$$

Substituting in (7.1.1.1),

$$f = -3 (7.2.10.2)$$

The equation of the circle is then obtained as

$$\|\mathbf{x}\|^2 + 2(2 - 3)\mathbf{x} - 3 = 0$$
 (7.2.10.3)

7.2.11 centre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$

Solution: Substituting numerical values in (7.1.1.1),

$$f = \frac{11}{36} \tag{7.2.11.1}$$

Thus, the equation of the circle is

$$\|\mathbf{x}\|^2 + (-1 - \frac{1}{2})\mathbf{x} + \frac{11}{36} = 0$$
 (7.2.11.2)

7.2.12 centre (1,1) and radius $\sqrt{2}$

Solution: Substituting

$$r = \sqrt{2}, \ \mathbf{u} = \begin{pmatrix} -1\\ -1 \end{pmatrix} \tag{7.2.12.1}$$

in (7.1.1.1),

$$f = 0 (7.2.12.2)$$

Thus, the equation of the circle is

$$\|\mathbf{x}\|^2 - 2(1 \quad 1)\mathbf{x} = 0 \tag{7.2.12.3}$$

In each of the following exercises, find the centre and radius of the circles.

7.2.13 $x^2 + y^2 + 10x - 6y - 2 = 0$.

Solution: The circle parameters are

$$\mathbf{u} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}, f = -2 \tag{7.2.13.1}$$

$$\implies \mathbf{c} = \begin{pmatrix} -5\\3 \end{pmatrix}, \ r = \sqrt{\|\mathbf{u}\|^2 - f} = 6 \tag{7.2.13.2}$$

 $7.2.14 \ x^2 + y^2 - 4x - 8y - 45 = 0$

Solution: The given circle can be expressed as

$$\|\mathbf{x}\|^2 + 2(-2 -4)\mathbf{x} - 45 = 0$$
 (7.2.14.1)

where

$$\mathbf{u} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \ f = -45 \tag{7.2.14.2}$$

$$\implies \mathbf{c} = \begin{pmatrix} 2\\4 \end{pmatrix}, \ r = \sqrt{65}. \tag{7.2.14.3}$$

$$7.2.15 \ x^2 + y^2 - 8x + 10y - 12 = 0$$

Solution: From the given informtion,

$$\mathbf{u} = \begin{pmatrix} -4\\5 \end{pmatrix}, f = -12 \tag{7.2.15.1}$$

$$\implies \mathbf{c} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}, \tag{7.2.15.2}$$

$$r = \sqrt{\|\mathbf{u}\|^2 - f} = \sqrt{53} \tag{7.2.15.3}$$

 $7.2.16 \ 2x^2 + 2y^2 - x = 0$

Solution: The given equation can be expressed as

$$\|\mathbf{x}\|^2 + 2\left(\frac{-1}{4} \quad 0\right)\mathbf{x} = 0$$
 (7.2.16.1)

The centre of circle is then given by

$$\mathbf{u} = -\mathbf{c} = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix} \tag{7.2.16.2}$$

and the radius of circle is obtained as

$$r = \sqrt{\|\mathbf{u}\|^2 - f} = \frac{1}{4} \tag{7.2.16.3}$$

- 7.2.17 The area of the circle centred at (1, 2) and passing through (4, 6) is
 - a) 5π
 - b) 10π
 - c) 25π
 - d) none of these
- 7.2.18 Equation of the circle with centre on the Y axis and passing through the origin and the point (2, 3) is
 - a) $x^2 + y^2 + 6x + 6y + 3 = 0$
 - b) $x^2 + y^2 6x 6y 9 = 0$
 - c) $x^2 + y^2 6x 6y + 9 = 0$
 - d) none of these
- 7.2.19 Equation of the circle with centre on the Y axis and passing through the origin and the point (2, 3) is
 - a) $x^2 + y^2 + 13y = 0$
 - b) $3x^2 + 3y^2 + 13x + 3 = 0$
 - c) $6x^2 + 6y^2 13x = 0$
 - d) $x^2 + y^2 + 13x + 3 = 0$
- 7.2.20 Find the equation of a circle concentric with the circle $x^2 + y^2 6x + 12y + 15 = 0$ and has double of its area.
- 7.2.21 If one end of a diameter of the circle $x^2 + y^2 4x 6y + 11 = 0$ is (3, 4), then find the coordinate of the other end of the diameter.
- 7.2.22 Find the equation of the circle having (1, -2) as its centre and passing through the intersection of 3x + y = 14, 2x + 5y = 18.
- 7.2.23 If the lines 2x 3y = 5 and 3x 4y = 7 are the diameters of a circle of area 154

- square units, then obtain the equation of the circle.
- 7.2.24 Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y - 4x + 3 = 0.
- 7.2.25 Find the equation of a circle passing through the point (7, 3) having radius 3 units and whose centre lies on the line y = x - 1.
- 7.2.26 The centre of a circle is (2a, a-7). Find the values of a if the circle passes through the point (11, -9) and has diameter $10\sqrt{2}$ units.
- 7.2.27 A circle has its centre at the origin and a point P(5,0) lies on it. The point Q(6,8)lies outside the circle.
- 7.2.28 The point P(-2,4) lies on circle of radius 6 and center C(3,5).
- 7.2.29 A circle drawn with origin as the centre passes through $(\frac{13}{2}, 0)$. The point which does not lie in the interior of the circle is
 - a) $(\frac{-3}{4}, 1)$

 - b) $(2, \frac{7}{3})$ c) $(5, \frac{-1}{2})$
 - d) $(-6, \frac{-5}{2})$

State whether the statements are True or False

- 7.2.30 The line x + 3y = 0 is a diameter of the circle $x^2 + y^2 + 6x + 2y = 0$.
- 7.2.31 The point (1, 2) lies inside the circle $x^2 + y^2 2x + 6y + 1 = 0$.
 - 7.3 Miscellaneous
 - 7.3.1 Find the equation of the circle passing through (0,0) and making intercepts a and b on the coordinate axes.
- 7.3.2 Find the equation of a circle with centre (-a, -b) and radius $\sqrt{a^2 b^2}$. **Solution:** From (7.1.1.1),

$$\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix}, f = 2b^2 \tag{7.3.2.1}$$

Thus, the equation of circle is

$$\|\mathbf{x}\|^2 + 2(a \quad b)\mathbf{x} + 2b^2 = 0$$
 (7.3.2.2)

- 7.3.3 The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is
 - a) $x^2 + y^2 = 9a^2$
 - b) $x^2 + y^2 = 16a^2$
 - c) $x^2 + y^2 = 4a^2$
 - d) $x^2 + y^2 = a^2$
- 7.3.4 Show that the point (x, y) given by $x = \frac{2at}{1+t^2}$ and $y = \frac{a(1-t^2)}{1+t^2}$ lies on a circle for all real values of t such that $-1 \le t \le 1$ where a is any given real number.
- 7.3.5 If a circle passes through the point (0,0), (a,0) and (0,b) then find the coordinates of its centre.
- 7.3.6 The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is

8.1 Formulae

8.1.1. The equation of a conic with directrix $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$, eccentricity e and focus \mathbf{F} is given by

$$g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0$$
 (8.1.1.1)

where

$$\mathbf{V} = \|\mathbf{n}\|^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}}, \tag{8.1.1.2}$$

$$\mathbf{u} = ce^2 \mathbf{n} - ||\mathbf{n}||^2 \mathbf{F},\tag{8.1.1.3}$$

$$f = ||\mathbf{n}||^2 ||\mathbf{F}||^2 - c^2 e^2$$
 (8.1.1.4)

8.1.2. The eccentricity, directrices and foci of (8.1.1.1) are given by

$$e = \sqrt{1 - \frac{\lambda_1}{\lambda_2}} \tag{8.1.2.1}$$

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p}_1$$

$$c = \begin{cases} \frac{e\mathbf{u}^{\mathsf{T}}\mathbf{n} \pm \sqrt{e^{2}(\mathbf{u}^{\mathsf{T}}\mathbf{n})^{2} - \lambda_{2}(e^{2} - 1)(\|\mathbf{u}\|^{2} - \lambda_{2}f)}}{\lambda_{2}e(e^{2} - 1)} & e \neq 1\\ \frac{\|\mathbf{u}\|^{2} - \lambda_{2}f}{2\mathbf{u}^{\mathsf{T}}\mathbf{n}} & e = 1 \end{cases}$$
(8.1.2.2)

$$\mathbf{F} = \frac{ce^2\mathbf{n} - \mathbf{u}}{\lambda_2} \tag{8.1.2.3}$$

8.1.3. For a symmetric matrix, from (A.7.7.1), we have the eigendecomposition

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{\mathsf{T}} \tag{8.1.3.1}$$

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \quad \mathbf{P}^{\mathsf{T}} \mathbf{P} = \mathbf{I}$$
 (8.1.3.2)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{8.1.3.3}$$

8.1.4. Using the affine transformation in (2.1.15.1), the conic in (8.1.1.1) can be expressed in standard form as

$$\mathbf{y}^{\mathsf{T}} \left(\frac{\mathbf{D}}{f_0} \right) \mathbf{y} = 1 \qquad |\mathbf{V}| \neq 0 \qquad (8.1.4.1)$$

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = -\eta \mathbf{e}_{1}^{\mathsf{T}}\mathbf{y} \qquad |\mathbf{V}| = 0 \qquad (8.1.4.2)$$

where

$$f_0 = \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f \neq 0 \tag{8.1.4.3}$$

$$\eta = 2\mathbf{u}^{\mathsf{T}}\mathbf{p}_{1} \tag{8.1.4.4}$$

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{8.1.4.5}$$

Solution: See Appendix B.1.5.

8.1.5.

a) The directrices for the standard conic are given by

$$\mathbf{e}_{1}^{\mathsf{T}}\mathbf{y} = \pm \sqrt{\left| \frac{f_{0}\lambda_{2}}{\lambda_{1}(\lambda_{2} - \lambda_{1})} \right|} \qquad e \neq 1$$
 (8.1.5.1)

$$\mathbf{e}_{1}^{\mathsf{T}}\mathbf{y} = \frac{\eta}{2\lambda_{2}} \qquad \qquad e = 1 \tag{8.1.5.2}$$

b) The foci of the standard conic are given by

$$\mathbf{F} = \begin{cases} \pm \sqrt{\left| f_0 \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right) \right|} \mathbf{e}_1 & e \neq 1 \\ -\frac{\eta}{4\lambda_1} \mathbf{e}_1 & e = 1 \end{cases}$$
 (8.1.5.3)

8.1.6. The equation of the minor and major axes for the ellipse/hyperbola are respectively given by

$$\mathbf{p}_{i}^{\mathsf{T}}(\mathbf{x} - \mathbf{c}) = 0, i = 1, 2$$
 (8.1.6.1)

The axis of symmetry for the parabola is also given by (8.1.6.1).

- 8.1.7. The center of the standard ellipse/hyperbola, defined to be the mid point of the line joining the foci, is the origin.
- 8.1.8. The principal (major) axis of the standard ellipse/hyperbola, defined to be the line joining the two foci is the *x*-axis.
- 8.1.9. The minor axis of the standard ellipse/hyperbola, defined to be the line orthogonal to the *x*-axis is the *y*-axis.
- 8.1.10. The axis of symmetry of the standard parabola, defined to be the line perpendicular to the directrix and passing through the focus, is the *x* axis.
- 8.1.11. The point where the parabola intersects its axis of symmetry is called the vertex. For the standard parabola, the vertex is the origin.
- 8.1.12. The *focal length* of the standard parabola, , defined to be the distance between the vertex and the focus, measured along the axis of symmetry, is $\left|\frac{\eta}{4\lambda_2}\right|$
- 8.1.13. For the standard hyperbola/ellipse, the length of the major axis is

$$2\sqrt{\left|\frac{f_0}{d_1}\right|} \tag{8.1.13.1}$$

and the minor axis is

$$2\sqrt{\frac{f_0}{\lambda_2}}\tag{8.1.13.2}$$

Solution: See Appendix B.3.4.

8.1.14. The latus rectum of a conic section is the chord that passes through the focus and is perpendicular to the major axis. The length of the latus rectum for a conic is given

by

$$l = \begin{cases} 2\frac{\sqrt{|f_0\lambda_1|}}{\lambda_2} & e \neq 1\\ \frac{\eta}{\lambda_2} & e = 1 \end{cases}$$
 (8.1.14.1)

Solution: See Appendix B.3.6.

8.1.15. Code for parabola

codes/book/parab.py

8.2 Equation

In the each of the following exercises, find the coordinates of the focus, vertex, eccentricity, axis of the conic section, the equation of the directrix and the length of the latus rectum.

$$8.2.1 y^2 = 12x$$

Solution: See Table 8.2.5 and Fig. 8.2.1.1. Problem 8.1.2 was used to obtain the conic and directrix parameters. The latus rectum is obtained using (8.1.14.1)

Fig. 8.2.1.1

$$8.2.2 \quad v^2 = -8x$$

$$8.2.3 \quad \frac{x^2}{36} + \frac{y^2}{16} = 1$$

8.2.2 $y^2 = -8x$ 8.2.3 $\frac{x^2}{36} + \frac{y^2}{16} = 1$ **Solution:** See Table 8.2.5 and Fig. 8.2.3.1.

Fig. 8.2.3.1

$$8.2.4 \quad \frac{x^2}{16} + \frac{y^2}{9} = 1$$

$$8.2.5 \quad \frac{x^2}{16} - \frac{y^2}{9} = 1.$$

8.2.4 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 8.2.5 $\frac{x^2}{16} - \frac{y^2}{9} = 1$. **Solution:** See Table 8.2.5 and Fig. 8.2.5.1.

Fig. 8.2.5.1

TABLE 8.2.5

Input				Output		
Conic	V	u	f	F	Directrix	Latus Rectum
$y^2 = 12x$	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	-6 e ₁	0	$3\mathbf{e}_1$	$\mathbf{e}_1^{T}\mathbf{x} = -3$	12
$y^2 = -8x$	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	4 e ₁	0	2 e ₁	$\mathbf{e}_1^{T}\mathbf{x} = 2$	8
$\frac{x^2}{36} + \frac{y^2}{16} = 1$	$\begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$	0	-144	$2\sqrt{5}\mathbf{e}_1$	$\mathbf{e}_1^{T}\mathbf{x} = \frac{18}{\sqrt{5}}$	$\frac{16}{3}$
$\frac{x^2}{16} + \frac{y^2}{9} = 1$	$\begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix}$	0	-144	$\pm \sqrt{7}\mathbf{e}_1$	$\mathbf{e}_1^{T}\mathbf{x} = \frac{16}{\sqrt{7}}$	9/2
$\frac{x^2}{16} - \frac{y^2}{9} = 1$	$\begin{pmatrix} 9 & 0 \\ 0 & -16 \end{pmatrix}$	0	-144	±5 e ₁	$\mathbf{e}_1^{T}\mathbf{x} = \frac{16}{5}$	9/2

$$8.2.6 \quad \frac{x^2}{4} + \frac{y^2}{25} = 1$$

8.2.6 $\frac{x^2}{4} + \frac{y^2}{25} = 1$ **Solution:** From Table 8.2.10, it can be seen that this is not a standard ellipse, since $\lambda_1 > \lambda_2$. Hence **P** plays a role and we need to use the affine transformation

$$\mathbf{x} = \mathbf{P}\mathbf{y} \tag{8.2.6.1}$$

So the value of λ_1 and λ_2 need to be interchanged for all calculations and in (8.1.5.1), \mathbf{e}_2 becomes the normal vector. See Fig. 8.2.6.1.

Fig. 8.2.6.1

$$8.2.7 \ 5y^2 - 9x^2 = 36.$$

Solution:

See Table 8.2.10 and Fig. 8.2.7.1. In Table 8.2.10, ${\bf P}$ shifts the negative eigenvalue to get the hyperbola in standard form.

Fig. 8.2.7.1

$$8.2.8 \frac{y^2}{9} - \frac{x^2}{27} = 1.$$

$$8.2.9 x^2 = -16y$$

Solution: See Table 8.2.10 and Fig. 8.2.9.1.

Fig. 8.2.9.1

$$8.2.10 \ x^2 = 6y$$

TABLE 8.2.10

Input			Intermediate	Output			
Conic	V	u	f	P	F	Directrix	Latus Rectum
$\frac{x^2}{4} + \frac{y^2}{25} = 1$	$\begin{pmatrix} 25 & 0 \\ 0 & 4 \end{pmatrix}$	0	-100	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\pm \sqrt{21}\mathbf{e}_2$	$\mathbf{e}_2^{T}\mathbf{x} = \pm \frac{25}{\sqrt{21}}$	<u>8</u> <u>5</u>
$5y^2 - 9x^2 = 36$	$\begin{pmatrix} -9 & 0 \\ 0 & 5 \end{pmatrix}$	0	-36	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\pm 3\sqrt{\frac{5}{14}}\mathbf{e}_2$	$\mathbf{e}_2^{T}\mathbf{x} = \pm \frac{18}{\sqrt{70}}$	$4\frac{\sqrt{5}}{3}$
$\frac{y^2}{9} - \frac{x^2}{27} = 1$	$\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$	0	-27	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	±6 e ₂	$\mathbf{e}_2^{T}\mathbf{x} = \pm \frac{3}{2}$	18
$x^2 = -16y$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 8 \end{pmatrix}$	0	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$-4e_2$	$\mathbf{e}_2^{T}\mathbf{x} = 4$	16
$x^2 = 6y$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$-\begin{pmatrix} 0 \\ 3 \end{pmatrix}$	0	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\frac{3}{2}$ e ₂	$\mathbf{e}_2^{T}\mathbf{x} = -\frac{3}{2}$	6

8.2.11
$$x^2 = -9y$$

8.2.12 $\frac{x^2}{25} + \frac{y^2}{100} = 1$
8.2.13 $\frac{x^2}{49} + \frac{y^2}{36} = 1$
8.2.14 $\frac{x^2}{100} + \frac{y}{400} = 1$
8.2.15 $36x^2 + 4y^2 = 144$
8.2.16 $16x^2 + y^2 = 16$
8.2.17 $4x^2 + 9y^2 = 36$

$$8.2.16 \ 16x^2 + y^2 = 16$$

$$8.2.17 \ 4x^2 + 9y^2 = 36$$

$$8.2.18 \ y^2 = 10x$$

In each of the following exercises, find the equation of the conic, that satisfies the given conditions.

8.2.19 foci (± 4 , 0), latus rectum of length 12.

Solution: The given information is available in Table 8.2.19. Since two foci are given, the conic cannot be a parabola.

a) The direction vector of F_1F_2 is the normal vector of the directrix. Hence,

$$\mathbf{n} = \mathbf{F_1} - \mathbf{F_2} \equiv \mathbf{e}_1 \tag{8.2.19.1}$$

Substituting in (8.1.1.2), (8.1.1.3) and (8.1.1.4),

$$\mathbf{V} = \begin{pmatrix} 1 - e^2 & 0 \\ 0 & 1 \end{pmatrix} \tag{8.2.19.2}$$

$$\mathbf{u} = ce^2 \mathbf{e}_1 - \mathbf{F} \tag{8.2.19.3}$$

$$f = 16 - c^2 e^2 (8.2.19.4)$$

b) From (8.2.19.2),

$$\lambda_1 = 1 - e^2, \ \lambda_2 = 1$$
 (8.2.19.5)

which upon substituting in (8.1.14.1), along with the value of the latus rectum from Table 8.2.19

$$6(1 - e^2) = \sqrt{|f|} \tag{8.2.19.6}$$

c) The centre of the conic is given by

$$\mathbf{c} = \frac{\mathbf{F_1} + \mathbf{F_2}}{2} = \mathbf{0} \tag{8.2.19.7}$$

From (8.2.19.2), it is obvious that **V** is invertible. Hence, from (8.2.19.7) and (B.1.5.9),

$$\mathbf{u} = \mathbf{0} \tag{8.2.19.8}$$

Substituting the above in (8.2.19.3),

$$\mathbf{F} = ce^2 \mathbf{e}_1 \implies ||\mathbf{F}|| = 4 = ce^2$$
 (8.2.19.9)

d) From (8.1.4.3), (8.2.19.8) and (8.2.19.4),

$$36\left(1 - e^2\right)^2 = 16 - c^2 e^2 \tag{8.2.19.10}$$

From (8.2.19.9) and (8.2.19.10)

$$\frac{4}{e\sqrt{e^2 - 1}} = 6\tag{8.2.19.11}$$

$$\implies 9e^2(e^2 - 1) = 4$$
 (8.2.19.12)

$$\implies 9e^4 - 9e^2 - 4 = 0 \tag{8.2.19.13}$$

or,
$$(3e^2 - 4)(12e^2 + 1) = 0$$
 (8.2.19.14)

yielding

$$e = \frac{2}{\sqrt{3}} \tag{8.2.19.15}$$

as the only viable solution.

The equation of the conic is then obtained as

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} -\frac{1}{3} & 0\\ 0 & 1 \end{pmatrix} \mathbf{x} + 4 = 0 \tag{8.2.19.16}$$

See Fig. 8.2.19.1.

Fig. 8.2.19.1

Parameter	Description	Value
$\mathbf{F_1}$	Focus 1 of hyperbola	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$
$\mathbf{F_2}$	Focus 2 of hyperbola	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$
l	Length of latus rectum	12

TABLE 8.2.19

8.2.20 eccentricity $e = \frac{4}{3}$, vertices

$$\mathbf{P_1} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}, \ \mathbf{P_2} = \begin{pmatrix} -7 \\ 0 \end{pmatrix} \tag{8.2.20.1}$$

Solution: The major axis of a conic is the chord which passes through the vertices of the conic. The direction vector of the major axis in this case is

$$\mathbf{P}_2 - \mathbf{P}_1 \equiv \mathbf{e}_1 = \mathbf{n} \tag{8.2.20.2}$$

which is the normal vector for the directrix. Since e > 1, the conic is a hyperbola. Substituting (8.2.20.2) in (8.1.1.2), (8.1.1.3) and (8.1.1.4),

$$\mathbf{V} = \begin{pmatrix} 1 - e^2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{7}{9} & 0 \\ 0 & 1 \end{pmatrix} \tag{8.2.20.3}$$

The centre of the hyperbola is

$$\mathbf{c} = \frac{\mathbf{P}_1 + \mathbf{P}_2}{2} = \mathbf{0} = \mathbf{u} \tag{8.2.20.4}$$

from (B.1.5.9). Substituting \mathbf{P}_1 and \mathbf{P}_2 in (8.1.1.1),

$$\mathbf{P}_{1}^{\mathsf{T}}\mathbf{V}\mathbf{P}_{1} + 2\mathbf{u}^{\mathsf{T}}\mathbf{P}_{1} + f = 0 \tag{8.2.20.5}$$

$$\mathbf{P}_2^{\mathsf{T}} \mathbf{V} \mathbf{P}_2 + 2 \mathbf{u}^{\mathsf{T}} \mathbf{P}_2 + f = 0 \tag{8.2.20.6}$$

$$\implies f = \mathbf{P}_1^{\mathsf{T}} \mathbf{V} \mathbf{P}_1 = 49 \left(e^2 - 1 \right) = \frac{343}{9}$$
 (8.2.20.7)

upon adding (8.2.20.6) and (8.2.20.5) and simplifying. Therefore, the equation of the conic is

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} -\frac{7}{9} & 0\\ 0 & 1 \end{pmatrix} \mathbf{x} + \frac{343}{9} = 0 \tag{8.2.20.8}$$

See Fig. 8.2.20.1.

Fig. 8.2.20.1

8.2.21 centre at $\mathbf{c}(0,0)$, major axis on the y-axis and passes through the points $\mathbf{P}(3,2)$ and $\mathbf{Q}(1,6)$.

Solution: Since the major axis is along the y-axis,

$$\mathbf{n} = \mathbf{e}_2 \tag{8.2.21.1}$$

Thus,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 - e^2 \end{pmatrix} \tag{8.2.21.2}$$

Since

$$c = 0, u = 0.$$
 (8.2.21.3)

From (8.1.1.1),

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}\mathbf{P} + 2\mathbf{u}^{\mathsf{T}}\mathbf{P} + f = 0 \tag{8.2.21.4}$$

$$\mathbf{Q}^{\mathsf{T}}\mathbf{V}\mathbf{Q} + 2\mathbf{u}^{\mathsf{T}}\mathbf{Q} + f = 0 \tag{8.2.21.5}$$

yielding

$$4e^2 - f = 13 (8.2.21.6)$$

$$36e^2 - f = 37 \tag{8.2.21.7}$$

which can be formulated as the matrix equation

$$\begin{pmatrix} 4 & -1 \\ 36 & -1 \end{pmatrix} \begin{pmatrix} e^2 \\ f \end{pmatrix} = \begin{pmatrix} 13 \\ 37 \end{pmatrix} \tag{8.2.21.8}$$

The augmented matrix is given by,

$$\begin{pmatrix} 4 & -1 & 13 \\ 36 & -1 & 37 \end{pmatrix} \xrightarrow{R_1 \leftarrow -\frac{R_1}{8}} \begin{pmatrix} 4 & 0 & 3 \\ 36 & -1 & 37 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2 - 9R_1} \begin{pmatrix} 4 & 0 & 3 \\ 0 & -1 & 10 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{4}} \begin{pmatrix} 1 & 0 & \frac{3}{4} \\ 0 & 1 & -10 \end{pmatrix}$$

Thus,

$$e^2 = \frac{3}{4}, \ f = -10$$
 (8.2.21.9)

and the equation of the conic is given by

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \mathbf{x} - 10 = 0 \tag{8.2.21.10}$$

See Fig. 8.2.21.1.

Fig. 8.2.21.1: Graph

8.2.22 major axis on the x-axis and passes through the points (4,3) and (6,2). **Solution:** In this case,

$$\mathbf{n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{8.2.22.1}$$

Thus,

$$\mathbf{V} = \begin{pmatrix} 1 - e^2 & 0 \\ 0 & 1 \end{pmatrix} \tag{8.2.22.2}$$

(8.2.22.3)

Since

$$c = 0, u = 0.$$
 (8.2.22.4)

From (8.1.1.1),

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}\mathbf{P} + 2\mathbf{u}^{\mathsf{T}}\mathbf{P} + f = 0 \tag{8.2.22.5}$$

$$\mathbf{Q}^{\mathsf{T}}\mathbf{V}\mathbf{Q} + 2\mathbf{u}^{\mathsf{T}}\mathbf{Q} + f = 0 \tag{8.2.22.6}$$

yielding

$$16e^2 - f = 25 (8.2.22.7)$$

$$36e^2 - f = 40 (8.2.22.8)$$

which can be formulated as the matrix equation

$$\begin{pmatrix} 16 & -1 \\ 36 & -1 \end{pmatrix} \begin{pmatrix} e^2 \\ f \end{pmatrix} = \begin{pmatrix} 25 \\ 40 \end{pmatrix}$$
 (8.2.22.9)

and can be solved using the augmented matrix.

$$\begin{pmatrix} 16 & -1 & 25 \\ 36 & -1 & 40 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - R_2} \begin{pmatrix} -20 & 0 & -15 \\ 36 & -1 & 40 \end{pmatrix}$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{-5}}{\longleftrightarrow} \begin{pmatrix} 4 & 0 & 3 \\ -36 & 1 & -40 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 + 9R_1}{\longleftrightarrow} \begin{pmatrix} 4 & 0 & 3 \\ 0 & 1 & -13 \end{pmatrix}$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{4}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{3}{4} \\ 0 & 1 & -13 \end{pmatrix}$$

Thus,

$$e^2 = \frac{3}{4}, \ f = -13$$
 (8.2.22.10)

and the equation of the conic is given by

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} - 13 = 0 \tag{8.2.22.11}$$

See Fig. 8.2.22.1.

Fig. 8.2.22.1: Locus of the required ellipse.

8.2.23 vertices
$$\begin{pmatrix} 0 \\ \pm 3 \end{pmatrix}$$
 and foci $\begin{pmatrix} 0 \\ \pm 5 \end{pmatrix}$.

Solution: Following the approach in the earlier problems, it is obvious that

$$\mathbf{n} = \mathbf{e}_2, \mathbf{c} = \mathbf{u} = \mathbf{0}.$$
 (8.2.23.1)

Consequently,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 - e^2 \end{pmatrix} \tag{8.2.23.2}$$

$$\mathbf{F} = ce^2 \mathbf{e}_2 \implies \|\mathbf{F}\| = ce^2 = 5 \tag{8.2.23.3}$$

$$f = 25 - c^2 e^2 (8.2.23.4)$$

Since the vertices are on the conic,

$$\mathbf{v_1}^{\mathsf{T}} \mathbf{V} \mathbf{v_1} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{v_1} + f = 0$$
 (8.2.23.5)

$$\implies 9(1 - e^2) + f = 0$$
 (8.2.23.6)

(8.2.23.7)

Solving (8.2.23.7), (8.2.23.3) and (8.2.23.4),

$$c = \frac{9}{5}, \ e = \frac{5}{3},$$
 (8.2.23.8)

yielding

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{16}{9} \end{pmatrix}, \ \mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ f = 16.$$
 (8.2.23.9)

Thus, the desired equation of the hyperbola is

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & -\frac{16}{9} \end{pmatrix} \mathbf{x} + 16 = 0 \tag{8.2.23.10}$$

See Fig. 8.2.23.1.

Fig. 8.2.23.1: Figure 1

- 8.2.24 vertices $(0, \pm 5)$, foci $(0, \pm 8)$.
- 8.2.25 focus (6,0); directrix x=-6
- 8.2.26 focus (0,-3); directrix y=3
- 8.2.27 vertex (0,0); focus (3,0)
- 8.2.28 vertex (0,0); focus (-2,0)
- 8.2.29 vertex (0,0) passing through (2,3) and axis is along x-axis
- 8.2.30 vertex (0,0) passing through (5,2) symmetric with respect to y-axis
- 8.2.31 vertices $(\pm 5, 0)$, foci $(\pm 4, 0)$.
- 8.2.32 vertices $(\pm 0, 13)$, foci $(0, \pm 5)$.
- 8.2.33 vertices $(\pm 6, 0)$, foci $(\pm 4, 0)$.
- 8.2.34 ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$.
- 8.2.35 ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1, 0)$.
- 8.2.36 length of major axis 26, foci $(\pm 5, 0)$.
- 8.2.37 length of minor axis 16, foci $(0, \pm 6)$.
- 8.2.38 foci ($\pm 3, 0$), a = 4.
- 8.2.39 vertex (0,4), focus (0,2).
- 8.2.40 vertex (-3,0), directrix x + 5 = 0.
- 8.2.41 focus (0,-3) and directrix y = 3.
- 8.2.42 directrix x=0, focus at (6,0).

- 8.2.43 vertex at (0.4), focus at (0.2).
- 8.2.44 focus at (-1,2), directrix x 2y + 3 = 0.
- 8.2.45 vertices $(\pm 5, 0)$, foci $(\pm 7, 0)$.
- 8.2.46 vertices (0 ± 7) , $e = \frac{4}{3}$.
- 8.2.47 foci $(0,\pm\sqrt{10})$, passing through (2,3).
- 8.2.48 vertices at $(0, \pm 6)$, eccentricity $\frac{5}{3}$.
- 8.2.49 focus (-1,-2), directrix x 2y + 3 = 0.
- 8.2.50 eccentricity $\frac{3}{2}$, foci (±2,0).
- 8.2.51 eccentricity $\frac{2}{3}$, latus rectum 5, centre (0,0).
- 8.2.52 If the parabola $y^2 = 4ax$ passes through the point (3,2), then the length of its latus rectum is
- 8.2.53 Find the eccentricity of the hyperbola $9y^2 4x^2 = 36$.
- 8.2.54 Equation of the hyperbola with eccentricty $\frac{3}{2}$ and foci at $(\pm 2,0)$ is
 - a) $\frac{x^2}{4} \frac{y^2}{5} = \frac{4}{9}$ b) $\frac{x^2}{9} \frac{y^2}{9} = \frac{4}{9}$ c) $\frac{x^2}{4} \frac{y^2}{9} = 1$
- 8.2.55 Given the ellipse with equation $9x^2 + 25y^2 = 225$, find the eccentricity and foci.
- 8.2.56 Find the equation of the set of all points whose distance from (0,4) is $\frac{2}{3}$ of their distance from the line y = 9.
- 8.2.57 The equation of the ellipse whose focus is (1,-1), directrix x-y-3=0 and eccentricity
 - a) $7x^2 + 2xy + 7y^2 10x + 10y + 7 = 0$
 - b) $7x^2 + 2xy + 7y^2 + 7 = 0$
 - c) $7x^2 + 2xy + 7y^2 + 10x 10y 7 = 0$
- 8.2.58 The length of the latus rectum of the ellipse $3x^2 + y^2 = 12$ is
 - a) 4
 - b) 3
 - c) 8
 - d) $4\sqrt{3}$

8.3 Miscellaneous

8.3.1 The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. **Solution:** The parameters are then listed in Table 8.3.1.

O	Lowest point of cable	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
d	Length of the cable	100 m
d_1	Length of longest wire	30 m
d_2	Length of shortest wire	6 m
A	End point of cable	$\begin{pmatrix} \frac{d}{2} \\ d_1 - d_2 \end{pmatrix}$
В	End point of cable	$\begin{pmatrix} -\frac{d}{2} \\ d_1 - d_2 \end{pmatrix}$

TABLE 8.3.1: points

For the conic,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{8.3.1.1}$$

Points **O**, **A**, and **B** are on conic, so we have

$$\mathbf{O}^{\mathsf{T}}\mathbf{V}\mathbf{O} + 2\mathbf{u}^{\mathsf{T}}\mathbf{O} + f = 0 \tag{8.3.1.2}$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{V}\mathbf{A} + 2\mathbf{u}^{\mathsf{T}}\mathbf{A} + f = 0 \tag{8.3.1.3}$$

$$\mathbf{B}^{\mathsf{T}}\mathbf{V}\mathbf{B} + 2\mathbf{u}^{\mathsf{T}}\mathbf{B} + f = 0 \tag{8.3.1.4}$$

which can be expressed as

$$2\mathbf{O}^{\mathsf{T}}\mathbf{u} + f = -\mathbf{O}^{\mathsf{T}}\mathbf{VO} \tag{8.3.1.5}$$

$$2\mathbf{A}^{\mathsf{T}}\mathbf{u} + f = -\mathbf{A}^{\mathsf{T}}\mathbf{V}\mathbf{A} \tag{8.3.1.6}$$

$$2\mathbf{B}^{\mathsf{T}}\mathbf{u} + f = -\mathbf{B}^{\mathsf{T}}\mathbf{V}\mathbf{B} \tag{8.3.1.7}$$

leading to the matrix equation

$$\begin{pmatrix} 2\mathbf{O}^{\top} & 1\\ 2\mathbf{A}^{\top} & 1\\ 2\mathbf{B}^{\top} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{u}\\ f \end{pmatrix} = -\begin{pmatrix} \mathbf{O}^{\top}\mathbf{V}\mathbf{O}\\ \mathbf{A}^{\top}\mathbf{V}\mathbf{A}\\ \mathbf{B}^{\top}\mathbf{V}\mathbf{B} \end{pmatrix}$$
(8.3.1.8)

Substituting numerical values in the above equation,

$$\begin{pmatrix} 0 & 0 & 1 \\ 100 & 48 & 1 \\ -100 & 48 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = -\begin{pmatrix} 0 \\ -2500 \\ -2500 \end{pmatrix}$$
(8.3.1.9)

$$\implies f = 0 \text{ and } \mathbf{u} = \begin{pmatrix} 0 \\ -\frac{625}{12} \end{pmatrix} \tag{8.3.1.10}$$

So, the equation of the parabola is

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 & -\frac{625}{12} \end{pmatrix} \mathbf{x} = 0 \tag{8.3.1.11}$$

The desired point can be expressed as

$$\mathbf{D} = \begin{pmatrix} 18 \\ x_2 \end{pmatrix} \tag{8.3.1.12}$$

Substituting this in the parabola equation,

$$18^2 - \frac{6}{625}\lambda_2 = 0 (8.3.1.13)$$

$$\implies \lambda_2 = \frac{1944}{625} \tag{8.3.1.14}$$

Thus, the length of a supporting wire attached to the roadway 18m from the middle is

$$\lambda_2 + d_2 = \frac{5694}{625}m\tag{8.3.1.15}$$

See Fig. 8.3.1.1.

Fig. 8.3.1.1

8.3.2 Find the area of the triangle formed by the lines joining the vertex of the parabola

$$x^2 = 12y (8.3.2.1)$$

to the ends of its latus rectum.

Solution: Rewriting (8.3.2.1) in matrix form,

$$\mathbf{x}^{\top} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 & -6 \end{pmatrix} \mathbf{x} = 0 \tag{8.3.2.2}$$

The above parabola can be expressed in standard form using

$$\mathbf{x} = \mathbf{P}\mathbf{y} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y} \tag{8.3.2.3}$$

yielding

$$\mathbf{y}^{\mathsf{T}} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -6 & 0 \end{pmatrix} \mathbf{x} = 0 \tag{8.3.2.4}$$

Hence, from (8.1.2.2),

$$\mathbf{n} = \mathbf{e}_1 \tag{8.3.2.5}$$

$$c = -\frac{36}{2 \times 6} = -3 \tag{8.3.2.6}$$

Substituting in (8.1.2.3) yields

$$\mathbf{F} = 3\mathbf{e}_1 \tag{8.3.2.7}$$

Thus, the equation of the latus rectum is

$$\mathbf{x} = \mathbf{F} + \kappa \mathbf{e}_2 \tag{8.3.2.8}$$

Substituting in (8.3.2.4) and simplifying,

$$\kappa = \pm 6 \tag{8.3.2.9}$$

Thus, the ends of the latus rectum are

$$\mathbf{y} = \begin{pmatrix} 3\\ \pm 6 \end{pmatrix} \tag{8.3.2.10}$$

The relevant parameters with respect to (8.3.2.2) can now be obtained using (8.3.2.3). See Fig. 8.3.2.1. The area of the required triangle is

$$\operatorname{ar}(\triangle OAB) = \frac{1}{2} \begin{vmatrix} 6 & 3 \\ -6 & 3 \end{vmatrix} = 18$$
 (8.3.2.11)

Fig. 8.3.2.1

- 8.3.3 A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. Find the equation of the posts traced by the man.
- 8.3.4 Find the coordinates of a point on the parabola $y^2 = 8x$ whose focal distance is 4.
- 8.3.5 Show that the set of all points such that the difference of their distances from (4,0) and (-4,0) is always equal to 2 represent a hyperbola.
- 8.3.6 If the distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$, then obtain the equation of the hyperbola.
- 8.3.7 The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is

 - d) none of these
- 8.3.8 The distance between the foci of a hyperbola is 16 and its eccentricity is ≤ 2 . Its equation is

 - a) $x^2 y^2 = 3^2$ b) $\frac{x^2}{4 9} = 1$ c) $2x 3y^2 = 7$
 - d) none of these
- 8.3.9 If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.
- 8.3.10 If the eccentricity of an ellipse is $\frac{5}{8}$ and the distance between its foci is 10 then find latus rectum of the ellipse.
- 8.3.11 Find the distance between the directrices of the ellipse $\frac{x^2}{36} + \frac{y^2}{20}$

- 8.3.12 Find the equation of the set of all points the sum of whose distances from the points (3,0) and (9,0) is 12.
- 8.3.13 If P is a point on the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ whose foci are s and s' then Ps + Ps' = 8.
- 8.3.14 An arch is in the form of a parabola with its axis vertical. The arch is 10m high and 5m wide at the base. How wide is it 2m from the vertex of the parabola?
- 8.3.15 An equilateral triangle is inscribed in the parabola $y^2 = 4ax$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
- 8.3.16 An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.
- 8.3.17 A rod of length 12cm moves with its ends always touching the coordinate axes. Determine the equation of locus of a point P on the rod, which is 3cm from the end in contact with x axis.

8.4 Quadratic Equations

Find the roots of the following quadratic equations grapically.

8.4.1
$$(x-2)^2 + 1 = 2x - 3$$

8.4.2 $x(2x+3) = x^2 + 1$
8.4.3 $(x+2)^3 = x^3 - 4$
8.4.4 $x^2 - 3x - 10 = 0$
8.4.5 $2x^2 + x - 6 = 0$
8.4.6 $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$
8.4.7 $2x^2 - x + \frac{1}{8} = 0$
8.4.8 $100x^2 - 20x + 1 = 0$
8.4.9 $2x^2 - 3x + 5 = 0$
8.4.10 $3x^2 - 4\sqrt{3}x + 4 = 0$
8.4.11 $2x^2 - 6x + 3 = 0$
8.4.12 $(x+1)^2 = 2(x-3)$
8.4.13 $4x^2 + 4\sqrt{3}x + 3 = 0$
8.4.14 $(x-3)(2x-1) = x(x+5)$
8.4.15 $4x^2 + 4\sqrt{3}x + 3 = 0$
8.4.16 $2x^2 - 7x + 3 = 0$
8.4.17 $2x^2 + x - 4 = 0$
8.4.18 $4x^2 + 4\sqrt{3}x + 3 = 0$
8.4.20 $x - \frac{1}{x} = 3, x \neq 0$
8.4.21 $\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}, x \neq -4, 7$
8.4.22 $2x^2 - 5x + 3 = 0$
8.4.23 $6x^2 - x - 2 = 0$
8.4.24 $3x^2 - 2\sqrt{6}x + 2 = 0$
8.4.25 $5x^2 - 6x - 2 = 0$
8.4.26 $4x^2 + 3x + 5 = 0$
8.4.27 $3x^2 - 5x + 2 = 0$
8.4.28 $x^2 + 4x + 5 = 0$
8.4.30 $x + \frac{1}{x} = 3, x \neq 0$
8.4.31 $\frac{1}{x} - \frac{1}{x-2} = 3, x \neq 0, 2$
8.4.31 $\frac{1}{x} - \frac{1}{x-2} = 3, x \neq 0, 2$
8.4.32 $3x^2 - 2x + \frac{1}{3} = 0$
8.4.33 $x^2 - 4x + 3 = 0$
8.4.34 $2x^2 - 4x + 3 = 0$

Find the values of k for each of the following quadratic equations, so that they have equal roots. Verify your solution graphically.

$$8.4.18 \ 2x^2 = kx - 3 = 0.$$

$$8.4.19 \ kx(x-2) + 6 = 0.$$

- Represent the following situations graphically.
- 8.4.20 Janaki and Jivanti together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they have is 124. We would like to find out how many marbles they had to start with.
- 8.4.21 A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of toys produced in a day. On a particular day, the total cost of production was ₹750. We would like to find out the number of toys produced on that day.
- 8.4.22 Find two numbers whose sum is 27 and product is 182.
- 8.4.23 Find two consecutive positive integers, sum of whose squares is 365.
- 8.4.24 The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
- 8.4.25 A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was ₹90, find the number of articles produced and the cost of each article.
- 8.4.26 Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is $800m^2$? If so, find its length and breadth.
- 8.4.27 Is the following situation possible? If so, determine their present ages.

 The sum of the ages of the two friends is 20 years. Four years ago, the product of their ages in years was 48.
- 8.4.28 Is it possible to design a rectangular park of perimeter 80m and area of $400m^2$. If so, find its length and breadth.
- 8.4.29 The area of rectangular plot is $528m^2$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- 8.4.30 The product of two consecutive positive integers is 306. We need to find the integers.
- 8.4.31 Rohan's mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan's present age.
- 8.4.32 A train travels a distance of 480km at a unifom speed. If the speed had been 8km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.
- 8.4.33 The sum of the reciprocals of Ram's ages, (in years) 3 years ago and 5 years from now is $\frac{1}{3}$. Find his present age.
- 8.4.34 In a class test, the sum of Shefali's marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
- 8.4.35 The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
- 8.4.36 The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
- 8.4.37 A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Find the speed of the train.
- 8.4.38 Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours. The tap of larger diameter takes 10 hours less than the smaller one to fill

- the tank seperately. Find the time in which each tap can seperately fill the tank.
- 8.4.39 An express train takes 1 hour less than a passenger train to travel 132 km between Mysuru and Bengaluru (without taking into consideration the time they stop at intermediate statioons). If the average speed of the express train is 11 km/h more than that of the passenger train, find the average speed of the two trains.
- 8.4.40 Sum of the areas of two squares is $468m^2$. If the difference of their perimeter is 24m, find the sides of the two squares.
- 8.4.41 A charity trust decides to build a prayer hall having a carpet area of 300 square metres with its length one metre more than twice its breath. What should be the length and breadth of the hall?
- 8.4.42 A motor boat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
- 8.4.43 A pole has to be erected at a point on the boundary of a circular park of diameter 1.3 metres in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gatees should the pole be erected?
- 8.4.44 The area of a rectangle plot is $528m^2$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- 8.4.45 Find two consecutive odd positive integers, sum of whose squares is 290.
- 8.4.46 A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres than the area of a park that has already been made in the shape of a isoceles triangle with its base as the breadth of the rectangular park and of altitude 12 m. Find its length and breadth.

9.1 Formulae

9.1.1 The points of intersection of the line

$$L: \quad \mathbf{x} = \mathbf{h} + \kappa \mathbf{m} \quad \kappa \in \mathbb{R} \tag{9.1.1.1}$$

with the conic section in (8.1.1.1) are given by

$$\mathbf{x}_i = \mathbf{h} + \kappa_i \mathbf{m} \tag{9.1.1.2}$$

where

$$\kappa_i = \frac{1}{\mathbf{m}^{\top} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \pm \sqrt{\left[\mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \right]^2 - g\left(\mathbf{h} \right) \left(\mathbf{m}^{\top} \mathbf{V} \mathbf{m} \right)} \right)$$
(9.1.1.3)

See B.3.1 for proof.

9.1.2 (8.1.1.1) represents a pair of straight lines if the matrix

$$\begin{pmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\mathsf{T}} & f \end{pmatrix} \tag{9.1.2.1}$$

is singular.

9.1.3 The intersection of two conics with parameters V_i , \mathbf{u}_i , f_i , i = 1, 2 is defined as

$$\mathbf{x}^{\mathsf{T}} (\mathbf{V}_1 + \mu \mathbf{V}_2) \mathbf{x} + 2 (\mathbf{u}_1 + \mu \mathbf{u}_2)^{\mathsf{T}} \mathbf{x} + (f_1 + \mu f_2) = 0$$
 (9.1.3.1)

9.1.4 From (9.1.2.1), (9.1.3.1) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V}_1 + \mu \mathbf{V}_2 & \mathbf{u}_1 + \mu \mathbf{u}_2 \\ (\mathbf{u}_1 + \mu \mathbf{u}_2)^{\mathsf{T}} & f_1 + \mu f_2 \end{vmatrix} = 0$$
 (9.1.4.1)

- 9.2 Chords
- 9.2.1 Find the area between the curves y = x and $y = x^2$. Solution:

Fig. 9.2.1.1

The given curve can be expressed as a conic with parameters

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}, f = 0 \tag{9.2.1.1}$$

The given line parameters are

$$\mathbf{h} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{9.2.1.2}$$

Substituting the given parameters in (9.1.1.3),

$$\mathbf{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \tag{9.2.1.3}$$

From Fig. 9.2.1.1, the area bounded by the curve $y = x^2$ and line y = x is given by

$$\int_0^1 \left(x - \frac{x^2}{2} \right) dx = \frac{1}{6} \tag{9.2.1.4}$$

9.2.2 Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1 and x = 4 and the axis in the first quadrant.

Solution:

Fig. 9.2.2.1

The parameters of the conic are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = -\frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f = 0 \tag{9.2.2.1}$$

For the line x - 1 = 0, the parameters are

$$\mathbf{q}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9.2.2.2}$$

Substituting from the above in (9.1.1.3),

$$\kappa_i = 1, -1 \tag{9.2.2.3}$$

yilelding the points of intersection

$$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{9.2.2.4}$$

Similarly, for the line x - 4 = 0

$$\mathbf{q_1} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{m_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9.2.2.5}$$

yielding

$$\kappa_i = 2, -2$$
(9.2.2.6)

from which, the points of intersection are

$$\mathbf{a_3} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \mathbf{a_2} = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \tag{9.2.2.7}$$

See Fig. 9.2.2.1. Thus, the area of the parabola in between the lines x = 1 and x = 4 is given by

$$\int_0^4 \sqrt{x} \, dx - \int_0^1 \sqrt{x} \, dx = 14/3 \tag{9.2.2.8}$$

9.2.3 Find the area of the region bounded by the curve $y^2 = 9x$ and the lines x = 2 and x = 4 and the axis in the first quadrant.

Solution:

Fig. 9.2.3.1

The parameters of the conic are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = \frac{9}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f = 0. \tag{9.2.3.1}$$

The parameters of the line x - 2 = 0 are

$$\mathbf{q_2} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{m_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9.2.3.2}$$

Substituting in (9.1.1.3),

$$\kappa_i = \pm 3\sqrt{2} \tag{9.2.3.3}$$

yielding

$$\mathbf{a_0} = \begin{pmatrix} 2 \\ 3\sqrt{2} \end{pmatrix}, \mathbf{a_1} = \begin{pmatrix} 2 \\ -3\sqrt{2} \end{pmatrix}. \tag{9.2.3.4}$$

Similarly, for the line x - 4 = 0,

$$\mathbf{q_1} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{m_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9.2.3.5}$$

yielding

$$\kappa_i = \pm 6. \tag{9.2.3.6}$$

Thus,

$$\mathbf{a}_3 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} 4 \\ -6 \end{pmatrix} \tag{9.2.3.7}$$

and from Fig. 9.2.3.1, the desired area of the parabola is

$$\int_0^4 3\sqrt{x} \, dx - \int_0^2 3\sqrt{x} \, dx = 16 - 4\sqrt{2} \tag{9.2.3.8}$$

- 9.2.4 Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.
- 9.2.5 Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 9.2.6 Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$
- 9.2.7 Find the area of the region in the first quadrant enclosed by the x-axis, line $x = \sqrt{3}y$ and circle $x^2 + y^2 = 4$.

Solution:

Fig. 9.2.7.1

From the given information, the parameters of the circle and line are

$$f = -4, \mathbf{u} = \mathbf{0}, \mathbf{V} = \mathbf{I}, \mathbf{m} = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}, \mathbf{h} = \mathbf{0}$$
 (9.2.7.1)

Substituting the above parameters in (9.1.1.3),

$$\mu = \sqrt{3} \tag{9.2.7.2}$$

yielding the desired point of intersection as

$$\mathbf{x} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \tag{9.2.7.3}$$

Note that we have chosen only the point of intersection in the first quadrant as shown in Fig. 9.2.7.1. From (9.2.7.1), the angle between the given line and the x axis is

$$\theta = 30^{\circ} \tag{9.2.7.4}$$

and the area of the sector is

$$\frac{\theta}{360}\pi r^2 = \frac{\pi}{3} \tag{9.2.7.5}$$

9.2.8 Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$. Solution:

Fig. 9.2.8.1

The given circle can be expressed as a conic with parameters

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = 0, f = -a^2 \tag{9.2.8.1}$$

The given line parameters are

$$\mathbf{h} = \begin{pmatrix} \frac{a}{\sqrt{2}} \\ 0 \end{pmatrix}, \mathbf{m} = \mathbf{e}_2. \tag{9.2.8.2}$$

Substituting the above in (9.1.1.3),

$$\kappa = \pm \frac{a}{\sqrt{2}} \tag{9.2.8.3}$$

yielding the points of intersection of the line with circle as

$$\mathbf{A} = \begin{pmatrix} \frac{a}{\sqrt{2}} \\ -\frac{a}{\sqrt{2}} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} \frac{a}{\sqrt{2}} \\ \frac{a}{\sqrt{2}} \end{pmatrix}$$
(9.2.8.4)

From Fig. 9.2.8.1, the total area of the portion is given by

$$ar(APQ) = 2ar(APR) (9.2.8.5)$$

$$=2\int_{0}^{\frac{a}{\sqrt{2}}}\sqrt{a^{2}-x^{2}}\,dx\tag{9.2.8.6}$$

$$=\frac{a^2}{2}\left(1+\frac{\pi}{2}\right) \tag{9.2.8.7}$$

9.2.9 The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Solution:

Fig. 9.2.9.1

The given conic parameters are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = -\frac{1}{2}\mathbf{e}_1 f = 0 \tag{9.2.9.1}$$

The parameters of the lines are

$$\mathbf{q}_2 = \begin{pmatrix} a \\ 0 \end{pmatrix}, \mathbf{m}_2 = \mathbf{e}_2 \tag{9.2.9.2}$$

Substituting the above values in (9.1.1.3),

$$\mu_i = a, -a \tag{9.2.9.3}$$

yielding the points of intersection as

$$\mathbf{a_0} = \begin{pmatrix} a \\ a \end{pmatrix}, \mathbf{a_1} = \begin{pmatrix} a \\ -a \end{pmatrix} \tag{9.2.9.4}$$

Similarly, for the line x - 4 = 0,

$$\mathbf{q_1} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{m_1} = \mathbf{e}_2 \tag{9.2.9.5}$$

yielding

$$\mu_i = 2, -2 \tag{9.2.9.6}$$

and

$$\mathbf{a}_3 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}. \tag{9.2.9.7}$$

Area between parabola and the line x = 4 is divided equally by the line x = a. Thus, from Fig. 9.2.9.1,

$$A_1 = \int_0^a \sqrt{x} \, dx \tag{9.2.9.8}$$

$$A_2 = \int_{a}^{4} \sqrt{x} \, dx \tag{9.2.9.9}$$

and
$$A_1 = A_2$$
 (9.2.9.10)

$$\implies a = 4^{\frac{2}{3}} \tag{9.2.9.11}$$

- 9.2.10 Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.
- 9.2.11 Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2.

Solution:

Fig. 9.2.11.1

The given curve can be expressed as a conic with parameters

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0 \tag{9.2.11.1}$$

The parameters of the given line are

$$\mathbf{q} = \begin{pmatrix} -2\\0 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 4\\1 \end{pmatrix} \tag{9.2.11.2}$$

The points of intersection can then be obtained from (9.1.1.3)

$$\therefore \mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} -1 \\ \frac{1}{4} \end{pmatrix} \tag{9.2.11.3}$$

The desired area is then obtained from Fig. 9.2.11.1 as

$$A = \int_{x_2}^{x_1} [f(x) - g(x)] dx$$
 (9.2.11.4)

$$= \int_{-1}^{2} \left(\frac{x+2}{4} - \frac{x^2}{4} \right) dx \tag{9.2.11.5}$$

$$=\frac{9}{8} \tag{9.2.11.6}$$

- 9.2.12 Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.
- 9.2.13 Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is
 - a) π
 - b) $\frac{\pi}{2}$
 - c) $\frac{\pi}{3}$
 - d) $\frac{\pi}{4}$
- 9.2.14 Find the area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3. **Solution:** In this case,

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{9.2.14.1}$$

$$\mathbf{u} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{9.2.14.2}$$

$$f = 0 (9.2.14.3)$$

For the given line y = 3, the parameters are

$$\mathbf{h} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{9.2.14.4}$$

The intersection of the line with the conic is obtained from (9.1.1.3) as

$$\kappa = \frac{9}{4} \tag{9.2.14.5}$$

The point of contact is given as

$$\mathbf{a}_0 = \begin{pmatrix} \frac{9}{4} \\ 3 \end{pmatrix} \tag{9.2.14.6}$$

From Fig. 9.2.14.1, the desired area of the region is obtained as

$$\int_0^3 \frac{y^2}{4} \, dy = \frac{1}{12} \left[y^3 \right]_0^3 \tag{9.2.14.7}$$

$$= \frac{1}{12} (27 - 0)$$
 (9.2.14.8)
= $\frac{9}{4}$ sq.units (9.2.14.9)

$$=\frac{9}{4}$$
 sq.units (9.2.14.9)

Fig. 9.2.14.1

9.2.15 Find the area of the region bounded by the curve $x^2 = 4y$ and the lines y = 2 and y = 4 and the y-axis in the first quadrant.

Solution:

Fig. 9.2.15.1

The conic parameters are

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0 \tag{9.2.15.1}$$

The vector parameters of y - 4 = 0 are

$$\mathbf{h}_1 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \mathbf{m}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{9.2.15.2}$$

Substituting the above in (9.1.1.3),

$$\kappa_i = 4, -4 \tag{9.2.15.3}$$

yielding the points of intersection with the parabola as

$$\mathbf{a}_0 = \begin{pmatrix} 4\\4 \end{pmatrix}, \mathbf{a}_1 = \begin{pmatrix} -4\\4 \end{pmatrix} \tag{9.2.15.4}$$

Similarly, for the line y - 2 = 0, the vector parameters are

$$\mathbf{h}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{9.2.15.5}$$

yielding

$$\kappa_i = 2.8, -2.8$$
(9.2.15.6)

and the points of intersection

$$\mathbf{a}_2 = \begin{pmatrix} 2.8 \\ 2 \end{pmatrix}, \mathbf{a}_3 = \begin{pmatrix} -2.8 \\ 2 \end{pmatrix}$$
 (9.2.15.7)

From Fig. 9.2.15.1, the area of the parabola between the lines y = 2 and y = 4 is given by

$$\int_{0}^{4} 2\sqrt{y} \, dy - \int_{0}^{2} 2\sqrt{y} \, dy = 6.895 \tag{9.2.15.8}$$

9.2.16 Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12. **Solution:**

Fig. 9.2.16.1

The parameters of the given conic are

$$\mathbf{V} = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0. \tag{9.2.16.1}$$

For the line, the parameters are

$$\mathbf{h} = \begin{pmatrix} -2\\3 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{9.2.16.2}$$

yielding

$$\kappa = -2.5, 2.7 \tag{9.2.16.3}$$

upon substitution in (9.1.1.3) resulting in the points of intersection

$$\mathbf{A} = \begin{pmatrix} -2\\3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 4\\12 \end{pmatrix}. \tag{9.2.16.4}$$

From Fig. 9.2.16.1, the desired area is

$$\int_{-2}^{4} \frac{3x+12}{2} dx - \int_{-2}^{4} \frac{3x^2}{4} dx = 27$$
 (9.2.16.5)

9.2.17 Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.

Fig. 9.2.17.1

The given ellipse can be expressed as conics with parameters

$$\mathbf{V} = \begin{pmatrix} b^2 & 0 \\ 0 & a^2 \end{pmatrix}, \mathbf{u} = 0, f = -(a^2 b^2). \tag{9.2.17.1}$$

The line parameters are

$$\mathbf{h} = \begin{pmatrix} a \\ 0 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} \frac{1}{b} \\ -\frac{1}{a} \end{pmatrix}. \tag{9.2.17.2}$$

Substituting the given parameters in (9.1.1.3),

$$\mu = 0, -6 \tag{9.2.17.3}$$

yielding the points of intersection

$$\mathbf{A} = \begin{pmatrix} a \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ b \end{pmatrix}. \tag{9.2.17.4}$$

From Fig. 9.2.17.1, the desired area is

$$\int_0^a \frac{b}{a} \sqrt{a^2 - x^2} \, dx - \int_0^a \frac{b}{a} (a - x) \, dx$$

$$= \frac{ab}{2} \left(\frac{\pi}{2} - 1 \right) = 3 \left(\frac{\pi}{2} - 1 \right) \quad (9.2.17.5)$$

upon substituting a = 3, b = 2.

- 9.2.18 Find the area of the region bounded by the curve $x^2 = y$ and the lines y = x + 2 and the x axis.
- 9.2.19 Find the area bounded by the curve y = x|x|, x-axis and the ordinates x=-1 and x=1.
- 9.2.20 Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.
- 9.2.21 Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2. Solution:

Fig. 9.2.21.1

The given circle can be expressed as conics with parameters,

$$\mathbf{V} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \mathbf{u} = 0, f = -16 \tag{9.2.21.1}$$

The line parameters are

$$\mathbf{h} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \tag{9.2.21.2}$$

Substituting the parameters in (9.1.1.3),

$$\kappa = 0, -4 \tag{9.2.21.3}$$

yielding the points of intersection as

$$\mathbf{A} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{9.2.21.4}$$

From Fig. 9.2.21.1, the desired area is

$$\int_0^2 \sqrt{4 - x^2} \, dx - \int_0^2 (2 - x) \, dx = \pi - 2 \tag{9.2.21.5}$$

- 9.2.22 Find the area of the region bounded by the curves $y^2 = 9x$, y = 3x.
- 9.2.23 Find the area of the region bounded by the parabola $y^2 = 2px$, $x^2 = 2py$.
- 9.2.24 Find the area of the region bounded by the curve $y = x^2$ and y = x + 6 and x = 0.
- 9.2.25 Find the area of the region bounded by the curve $y^2 = 4x$, $x^2 = 4y$.
- 9.2.26 Find the area of the region included between $y^2 = 9x$ and y = x
- 9.2.27 Find the area of the region enclosed by the parabola $x^2 = y$ and the line y = x + 2
- 9.2.28 Find the area of region bounded by the line x = 2 and the parabola $y^2 = 8x$
- 9.2.29 Sketch the region (x, 0): $y = \sqrt{4 x^2}$ and x-axis. Find the area of the region using integration.
- 9.2.30 Calculate the area under the curve $y = 2\sqrt{x}$ included between the lines x = 0 and x = 0
- 9.2.31 Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
- 9.2.32 Draw a rough sketch of the curve $y = \sqrt{x-1}$ in the interval [1,5]. Find the area under the curve and between the lines x = 1 and x = 5.
- 9.2.33 Determine the area under the curve $y = \sqrt{a^2 x^2}$ included between the lines $x = \sqrt{a^2 x^2}$ 0 and x = a
- 9.2.34 Find the area of the region bounded by $y = \sqrt{x}$ and y = x.
- 9.2.35 Find the area enclosed by the curve $y = -x^2$ and the straight line x + y + 2 = 0.
- 9.2.36 Find the area bounded by the curve $y = \sqrt{x}$, x = 2y + 3 in the first quadrant and x-axis.
- 9.2.37 Draw a rough sketch of the region (x, y): $y^2 \le 6ax$ and $x^2 + y^2 \le 16a^2$.
- 9.2.38 Draw a rough sketch of the given curve y = 1 + |x + 1|, x = -3, x = 3, y = 0, and find the area of the region bounded by them, using integration.
- 9.2.39 The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y 2

 - a) $\frac{3}{8}$ sq units b) $\frac{5}{8}$ sq units c) $\frac{7}{8}$ sq units

- d) $\frac{9}{8}$ sq units
- 9.2.40 The area of the region bounded by the curve $y = \sqrt{16 x^2}$ and x-axis is
 - a) 8 sq units
 - b) 20π sq units
 - c) 16π sq units
 - d) 256π sq units
- 9.2.41 Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$ is
 - a) 16π sq units
 - b) 4π sq units
 - c) 32π sq units
 - d) 24π sq units
- 9.2.42 The area of the region bounded by parabola $y^2 = x$ and the straight line 2y = x is
 - a) $\frac{4}{3}$ sq units
 - b) 1 sq units
 - c) $\frac{2}{3}$ sq units
 - d) $\frac{1}{3}$ sq units
- 9.2.43 Find the equation of a circle whose centre is (3,1) and which cuts off a chord of length 6 units on the line 2x 5y + 18 = 0.

9.3 CBSE

- 9.3.1 Find the area of the region in the first quadrant enclosed by the X axis, the line y = x and the circle $x^2 + y^2 = 32$. (12, 2018)
- 9.3.2 Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$. (12, 2018)
- 9.3.3 Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.

(12, 2015)

- 9.3.4 Find the area of the region enclosed by the curve $y = x^2$, the X axis and the ordinates x = -2 and x = 1. (10, 2022)
- 9.3.5 Find the area of the region enclosed by line $y = \sqrt{3}x$, semi-circle $y = \sqrt{4 x^2}$ and X axis in first quadrant. (10, 2022)
- 9.3.6 Find the area of the smaller region enclosed by the curve $4x^2 + 4y^2 = 9$ and the line 2x + 2y = 3. (12, 2022)
- 9.3.7 Find the area of the region enclosed by the curves $y^2 = x$, $x = \frac{1}{4}$, y = 0 and x = 1. (12, 2022)
- 9.3.8 Find the area of the region $\{(x, y) : x^2 \le y \le x\}$. (12, 2021)
- 9.3.9 Find the area of the region

$$\left\{ (x,y) : 0 \le y \le x^2, 0 \le y \le x+2, -1 \le x \le 3 \right\}.$$

(12, 2019)

9.3.10 If the area of the region bounded by the curve $y^2 = 4ax$ and the line x = 4a is $\frac{256}{3}$ sq. units, then find the value of a, where a > 0. (12, 2022)

- 9.3.11 If the area of the region bounded by the line y = mx and the curve $x^2 = y$ is $\frac{32}{3}$ sq. units, then find the positive value of m. (12, 2022)
- 9.3.12 If the area between the curves $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, then find the value of a. (12, 2022)
- 9.3.13 Find the area bounded by the ellipse $x^2 + 4y^2 = 16$ and the ordinates x = 0 and x = 2. (12, 2022)
- 9.3.14 Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$. (12, 2019)
- 9.3.15 Find the equation of tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line 4x-2y+5=0. Also write the equation of the normal to the curve at the point of contact. (12, 2018)

9.4 Curves

9.4.1 Find the area bounded by the curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$. **Solution:** The conic parameters for the two circles can be expressed as

$$\mathbf{V}_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{u}_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ f_{1} = 0,$$

$$\mathbf{V}_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{u}_{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ f_{2} = -1.$$

$$(9.4.1.1)$$

On substituting from (9.4.1.1) in (9.1.4.1), we obtain

$$\begin{vmatrix} 1+\mu & 0 & -1 \\ 0 & 1+\mu & 0 \\ -1 & 0 & -\mu \end{vmatrix} = 0 \tag{9.4.1.2}$$

yileding

$$\implies \mu = -1. \tag{9.4.1.3}$$

Substituting (9.4.1.1) in (9.1.3.1), we obtain

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -1 & 0 \end{pmatrix} \mathbf{x} + 1 = 0 \tag{9.4.1.4}$$

$$\implies \begin{pmatrix} -2 & 0 \end{pmatrix} \mathbf{x} = -1 \tag{9.4.1.5}$$

Therefore the intersection of the two circles is a line with parameters

$$\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \mathbf{h} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}. \tag{9.4.1.6}$$

The intersection parameters of the chord in (9.4.1.5) with the first circle in (9.4.1.1) is obtained from (9.1.1.3) as

$$\kappa_i = \pm \frac{\sqrt{3}}{2} \tag{9.4.1.7}$$

Hence the point of intersection are obtained from (9.1.1.2) as

$$\mathbf{a}_0 = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}. \tag{9.4.1.8}$$

The desired area of region is given as

$$2\left(\int_{0}^{\frac{1}{2}} \sqrt{1 - (x - 1)^{2}} dx + \int_{\frac{1}{2}}^{1} \sqrt{1 - x^{2}} dx\right)$$

$$= 2\left[\frac{1}{2}(x - 1)\sqrt{1 - (x - 1)^{2}} + \frac{1}{2}\sin^{-1}(x - 1)\right]_{0}^{\frac{1}{2}}$$

$$+ 2\left[\frac{x}{2}\sqrt{1 - x^{2}} + \frac{1}{2}\sin^{-1}x\right]_{\frac{1}{2}}^{1}$$

$$= \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \quad (9.4.1.9)$$

See Fig. 9.4.1.1.

Fig. 9.4.1.1

- 9.4.2 Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.
- 9.4.3 Find the area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$. 9.4.4 Find the area of the region bounded by the curve $y^2 = 2x$ and $x^2 + y^2 = 4x$.

9.5 *CBSE*

9.5.1 Find the area of the region

$$\{(x,y): x^2 + y^2 \le 16a^2 \text{ and } y^2 \le 6ax\}$$

(12, 2018)

- 9.5.2 Find the area of the region $\{(x, y) : y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$. (12, 2015) 9.5.3 Find the area of the region bounded by the curves $(x 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$.
- (12, 2019)
- 9.5.4 Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by sides x = 0, x = 4, y = 4, and y = 0 into three equal parts. (12, 2018)
- 9.5.5 Using integration, find the area of the region bounded by the parabola $y^2 = 4x$ and the circle $4x^2 + 4y^2 = 9$. (12, 2018)
- 9.5.6 Find the area of the region lying above X axis and included between the circle $x^2 + y^2 = 8x$ and inside of the parabola $y^2 = 4x$. (12, 2018)
- 9.5.7 Find the solution of the pair of equations

$$\frac{3}{x} + \frac{8}{y} = -1; \frac{1}{x} - \frac{2}{y} = 2, x, y \neq 0$$

(10, 2019)

10.1 Formulae

10.1.1 If L in (9.1.1.1) touches (8.1.1.1) at exactly one point \mathbf{q} ,

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) = 0 \tag{10.1.1.1}$$

10.1.2 Given the point of contact \mathbf{q} , the equation of a tangent to (8.1.1.1) is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}} \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{q} + f = 0 \tag{10.1.2.1}$$

10.1.3 Given the point of contact \mathbf{q} , the equation of the normal to (8.1.1.1) is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}} \mathbf{R} (\mathbf{x} - \mathbf{q}) = 0 \tag{10.1.3.1}$$

10.1.4 If V^{-1} exists, given the normal vector \mathbf{n} , the tangent points of contact to (8.1.1.1) are given by

$$\mathbf{q}_{i} = \mathbf{V}^{-1} \left(\kappa_{i} \mathbf{n} - \mathbf{u} \right), i = 1, 2$$
where $\kappa_{i} = \pm \sqrt{\frac{f_{0}}{\mathbf{n}^{\top} \mathbf{V}^{-1} \mathbf{n}}}$
(10.1.4.1)

10.1.5 If V is not invertible, given the normal vector \mathbf{n} , the point of contact to (8.1.1.1) is given by the matrix equation

$$\begin{pmatrix} (\mathbf{u} + \kappa \mathbf{n})^{\mathsf{T}} \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
 (10.1.5.1)

where
$$\kappa = \frac{\mathbf{p}_1^{\mathsf{T}} \mathbf{u}}{\mathbf{p}_1^{\mathsf{T}} \mathbf{n}}, \quad \mathbf{V} \mathbf{p}_1 = 0$$
 (10.1.5.2)

10.1.6 For a conic/hyperbola, a line with normal vector \mathbf{n} cannot be a tangent if

$$\frac{\mathbf{u}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{u} - f}{\mathbf{n}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{n}} < 0 \tag{10.1.6.1}$$

10.1.7 For a circle, the points of contact are

$$\mathbf{q}_{ij} = \left(\pm r \frac{\mathbf{n}_j}{\|\mathbf{n}_j\|} - \mathbf{u}\right), \quad i, j = 1, 2$$
 (10.1.7.1)

10.1.8 A point **h** lies on a normal to the conic in (8.1.1.1) if

$$(\mathbf{m}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u}))^{2} (\mathbf{n}^{\top}\mathbf{V}\mathbf{n})$$

$$- 2 (\mathbf{m}^{\top}\mathbf{V}\mathbf{n}) (\mathbf{m}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u})\mathbf{n}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u}))$$

$$+ g (\mathbf{h}) (\mathbf{m}^{\top}\mathbf{V}\mathbf{n})^{2} = 0 \quad (10.1.8.1)$$

10.1.9 A point **h** lies on a tangent to the conic in (8.1.1.1) if

$$\mathbf{m}^{\mathsf{T}} \left[(\mathbf{V}\mathbf{h} + \mathbf{u}) (\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} - \mathbf{V}\mathbf{g} (\mathbf{h}) \right] \mathbf{m} = 0$$
 (10.1.9.1)

10.1 Find the points on the curve $x^2 + y^2 - 2x - 3 = 0$ at which the tangents are parallel to the x-axis.

Solution: Given that

$$\mathbf{u} = \begin{pmatrix} -1\\0 \end{pmatrix}, f = -3 \tag{10.1.1}$$

Hence, the centre and radius are given as

$$\mathbf{c} = -\mathbf{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ r = \sqrt{\|\mathbf{u}\|^2 - f} = 2$$
 (10.1.2)

From (10.1.7.1), the points of contact for the tangent are given by

$$\mathbf{q}_{ij} = \left(\pm r \frac{\mathbf{n}_j}{\|\mathbf{n}_j\|} - \mathbf{u}\right) \ i,j = 1,2 \tag{10.1.3}$$

Since, tangents are parallel to the x-axis, the normal is given as

$$\mathbf{n} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{10.1.4}$$

Substituting in (10.1.3) we get

$$\mathbf{q}_{11} = \left(\pm 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \end{pmatrix}\right) \tag{10.1.5}$$

$$= \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{10.1.6}$$

Hence, the two points of contact are

$$\begin{pmatrix} 1\\2 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\-2 \end{pmatrix}$ (10.1.7)

See Fig. 10.1.1.

Fig. 10.1.1

- 10.2 Find the equation of a circle of redius 5 which is touching another circle $x^2 + y^2 2x 4y 20 = 0$ at (5,5).
- 10.3 The equation of the circle having centre at (3,-4) and touching the line 5x+12y-12 = 0 is _____
- 10.4 Find the equation of the circle which touches both the axes in first quadrant and whose radius is *a*.
- 10.5 Find the equation of the circle which touches x-axis and whose centre is (1,2)
- 10.6 If the lines 3x 4y + 4 = 0 and 6x 8y 7 = 0 are tangents to a circle, then find the radius of the circle.
- 10.7 Find the equation of a circle which touches both the axes and the line 3x-4y+8=0 and lies in the third quadrant.
- 10.8 At what points on the curve $x^2 + y^2 2x 4y + 1 = 0$, the tangents are parallel to the y-axis?
- 10.9 The shortest distance from the point (2,7) to the circle $x^2 + y^2 14x 10y 151 = 0$ is equal to 5.
- 10.10 If the line lx + my = 1 is a tangent to the circle $x^2 + y^2 = a^2$, then the point (1, m) lies an a circle.
 - 10.3 Conic
- 10.3.1 Find the slope of the tangent to the curve $y = \frac{x-1}{x-2}$, $x \ne 2$ at x = 10. **Solution:** The given equation of the curve can be rearranged as

$$xy - x - 2y + 1 = 0 (10.3.1.1)$$

$$\implies \mathbf{x}^{\mathsf{T}} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -1 & -2 \end{pmatrix} \mathbf{x} + 1 = 0 \tag{10.3.1.2}$$

Thus,

$$\mathbf{V} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \tag{10.3.1.3}$$

$$\mathbf{u} = -\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} \tag{10.3.1.4}$$

$$f = 1 (10.3.1.5)$$

 $\therefore q_1 = 10$, the point of contact can be obtained as

$$\mathbf{q} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 10 \\ \frac{9}{8} \end{pmatrix} \tag{10.3.1.6}$$

From (10.1.1.1), the normal vector of the tangent to (10.3.1.2) is

$$\mathbf{n} = \begin{pmatrix} 1 \\ 64 \end{pmatrix} \implies \mathbf{m} = \begin{pmatrix} 1 \\ \frac{-1}{64} \end{pmatrix} \tag{10.3.1.7}$$

The eigenvector matrix

$$(\mathbf{p}_1 \quad \mathbf{p}_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
 (10.3.1.8)

which implies that the conic is a 45° rotated hyperbola. See Fig. 10.3.1.1.

Fig. 10.3.1.1

10.3.2 Find a point on the curve

$$y = (x - 2)^2 (10.3.2.1)$$

at which a tangent is parallel to the chord joining the points (2,0) and (4,4). **Solution:**

Fig. 10.3.2.1

The equation of the conic can be represented as

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \left(-2 \quad \frac{-1}{2} \right) \mathbf{x} + 4 = 0 \tag{10.3.2.2}$$

So,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u}^{\mathsf{T}} = \begin{pmatrix} -2 & \frac{-1}{2} \end{pmatrix}, f = 4 \tag{10.3.2.3}$$

The direction vector of the line passing through (2,0) and (4,4) is

$$\mathbf{m} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \implies \mathbf{n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}. \tag{10.3.2.4}$$

The eigenvector corresponding to the zero eigenvalue is

$$\mathbf{p}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \tag{10.3.2.5}$$

In (10.1.5.1),

$$\kappa = \frac{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ \frac{-1}{2} \end{pmatrix}}{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}} = \frac{1}{2}$$
 (10.3.2.6)

Substituting κ , from (10.1.5.1),

$$\begin{pmatrix}
\begin{bmatrix}
-2 \\ -\frac{1}{2}
\end{bmatrix} + \frac{1}{2} \begin{pmatrix} 2 \\ -1 \end{pmatrix}
\end{bmatrix}^{\mathsf{T}} \mathbf{q} = \begin{pmatrix} -4 \\ \frac{1}{2} \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \begin{pmatrix} -2 \\ \frac{-1}{2} \end{pmatrix}
\end{pmatrix}$$
(10.3.2.7)

$$\Longrightarrow \begin{pmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4 \\ 3 \\ 0 \end{pmatrix} \tag{10.3.2.8}$$

yielding

$$\begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$
 (10.3.2.9)

The augmented matrix is

$$\begin{pmatrix} -1 & -1 & | & -4 \\ 1 & 0 & | & 3 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + 2R_2} \begin{pmatrix} 1 & -1 & | & 2 \\ 1 & 0 & | & 3 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & -1 & | & 2 \\ 0 & 1 & | & 1 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 1 \end{pmatrix}$$

$$\implies \mathbf{q} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

which is the desired point of contact. See Fig. 10.3.2.1.

10.3.3 Find the equation of all lines having slope -1 that are tangents to the curve

$$y = \frac{1}{x - 1}, x \neq 1 \tag{10.3.3.1}$$

Solution:

Fig. 10.3.3.1

From the given information,

$$\mathbf{V} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}, f = -1, m = -1$$
 (10.3.3.2)

From the above, the normal vector is

$$\mathbf{n} = \begin{pmatrix} -m \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{10.3.3.3}$$

From (10.1.4.1), the point(s) of contact are given by

$$\mathbf{q} = \mathbf{V}^{-1}(k_i \mathbf{n} - \mathbf{u}) \text{ where,}$$
 (10.3.3.4)

$$k_i = \pm \sqrt{\frac{f_0}{\mathbf{n}^\top \mathbf{V}^{-1} \mathbf{n}}} \tag{10.3.3.5}$$

$$f_0 = f + \mathbf{u}^\top \mathbf{V}^{-1} \mathbf{u} \tag{10.3.3.6}$$

Substituting from (10.3.3.3) and (10.3.3.2) in the above,

$$\mathbf{q} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}. \tag{10.3.3.7}$$

From (10.1.2.1), the equations of tangents are given by

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}}\mathbf{x} + \mathbf{u}^{\mathsf{T}}\mathbf{q} + f = 0 \tag{10.3.3.8}$$

yielding

$$(1 1)\mathbf{x} + 1 = 0 (10.3.3.9)$$

$$(1 1)\mathbf{x} - 3 = 0 (10.3.3.10)$$

$$(1 \quad 1)\mathbf{x} - 3 = 0 \tag{10.3.3.10}$$

(10.3.3.11)

See Fig. 10.3.3.1.

10.3.4 Find the equation of all lines having slope 2 which are tangents to the curve

$$y = \frac{1}{x - 3}, x \neq 3 \tag{10.3.4.1}$$

Solution:

Fig. 10.3.4.1

From the given information

$$\mathbf{V} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -\frac{3}{2} \end{pmatrix}, f = -1, m = 2$$
 (10.3.4.2)

$$\implies \mathbf{n} = \begin{pmatrix} -m \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \tag{10.3.4.3}$$

(10.3.4.4)

Hence, the given curve is a hyperbola. Substituting numerical values, we obtain the condition in (10.1.6), which implies that the line with slope 2 is not a tangent. This can be verified from Fig. 10.3.4.1.

- 10.3.5 Find points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are
 - a) parallel to x-axis

b) parallel to y-axis

Solution:

Fig. 10.3.5.1

The parameters of the given conic are

$$\lambda_1 = 16, \lambda_2 = 9 \tag{10.3.5.1}$$

$$\mathbf{V} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, f = -144 \tag{10.3.5.2}$$

a) The normal vector in this case is

$$\mathbf{n_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{10.3.5.3}$$

which can be used along with the parameters in (10.3.5.2) to obtain

$$\mathbf{q_1} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \mathbf{q_2} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \tag{10.3.5.4}$$

using (10.1.4.1).

b) Simlarly, choosing

$$\mathbf{n_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{10.3.5.5}$$

$$\mathbf{q_3} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \mathbf{q_4} = \begin{pmatrix} -3 \\ 0 \end{pmatrix} \tag{10.3.5.6}$$

See Fig. 10.3.5.1.

10.3.6 Find the equation of the tangent line to the curve

$$y = x^2 - 2x + 7 \tag{10.3.6.1}$$

- a) parallel to the line 2x y + 9 = 0.
- b) perpendicular to the line 5y 15x = 13.

Solution:

Fig. 10.3.6.1

The parameters of the given conic are

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = -\begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}, f = 7$$
 (10.3.6.2)

a) In this case, the normal vector

$$\mathbf{n}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \tag{10.3.6.3}$$

Since V is not invertible, the point of contact is given by (10.1.5.1) resulting in

$$\begin{pmatrix}
\begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 2 \\ -1 \end{pmatrix}^{\mathsf{T}} \\
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{q}_{1} = \begin{pmatrix} -7 \\ \frac{1}{2} \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} \end{pmatrix}$$
(10.3.6.4)

By solving the above equation, we can get the point of contact as

$$\mathbf{q}_1 = \begin{pmatrix} 2 \\ 7 \end{pmatrix} \tag{10.3.6.5}$$

The tangent equation is then obtained as

$$\mathbf{n}_1^{\mathsf{T}}(\mathbf{x} - \mathbf{q}_1) = 0 \tag{10.3.6.6}$$

$$\implies \begin{pmatrix} 2 & -1 \end{pmatrix} \mathbf{x} + 3 = 0 \tag{10.3.6.7}$$

b) In this case,

$$\mathbf{n}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{10.3.6.8}$$

resulting in

$$\begin{pmatrix}
\begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} + -\frac{1}{6} \begin{pmatrix} 1 \\ 3 \end{pmatrix}^{\top} \\
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{q}_{2} = \begin{pmatrix} -7 \\ -\frac{1}{6} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} \end{pmatrix} \tag{10.3.6.9}$$

or,
$$\mathbf{q}_2 = \begin{pmatrix} \frac{5}{6} \\ \frac{217}{36} \end{pmatrix}$$
 (10.3.6.10)

The tangent equation is

$$\mathbf{n}_{2}^{\mathsf{T}}(\mathbf{x} - \mathbf{q}_{2}) = 0 \tag{10.3.6.11}$$

or,
$$(1 \ 3)\mathbf{x} = \frac{227}{12}$$
 (10.3.6.12)

See Fig. 10.3.6.1.

10.3.7 Find the equation of the tangent to the curve

$$y = \sqrt{3x - 2} \tag{10.3.7.1}$$

which is parallel to the line

$$4x - 2y + 5 = 0 (10.3.7.2)$$

Solution: The parameters for the given conic are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},\tag{10.3.7.3}$$

$$\mathbf{u} = \begin{pmatrix} -3/2 \\ 0 \end{pmatrix},\tag{10.3.7.4}$$

$$f = 2 \tag{10.3.7.5}$$

which represent a parabola. Following the approach in Problem 10.3.6,

$$\mathbf{p_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{n} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \tag{10.3.7.6}$$

yielding the matrix equation

$$\begin{pmatrix} -3 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -41/16 \\ 0 \\ 3/4 \end{pmatrix}$$
 (10.3.7.7)

(10.3.7.8)

The augmented matrix for (10.3.7.7) can be expressed as

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} -3 & 0 & | & -41/16 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 3/4 \end{pmatrix} \xleftarrow{-\frac{R_1}{-3} \leftarrow R_2} \begin{pmatrix} 1 & 0 & | & 41/48 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 3/4 \end{pmatrix}$$
$$\implies \mathbf{q} = \begin{pmatrix} \frac{41}{48} \\ \frac{3}{4} \end{pmatrix}$$

The equation of tangent is then obtained as

$$\left(-2 \quad 1\right)\mathbf{x} + \frac{23}{24} = 0 \tag{10.3.7.9}$$

See Fig. 10.3.7.1.

Fig. 10.3.7.1

10.3.8 Find the point at which the line y = x + 1 is a tangent to the curve $y^2 = 4x$. Solution:

Fig. 10.3.8.1

The parameters of the conic are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -2 & 0 \end{pmatrix}, f = 0 \tag{10.3.8.1}$$

Following the approach in Problem 10.3.6, since

$$\mathbf{n} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{10.3.8.2}$$

we obtain

$$\mathbf{q} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{10.3.8.3}$$

See Fig. 10.3.8.1.

10.3.9 The point on the curve

$$x^2 = 2y (10.3.9.1)$$

which is nearest to the point $\mathbf{P} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ is

a)
$$\begin{pmatrix} 2\sqrt{2} \\ 4 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2\sqrt{2} \\ 0 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

d)
$$\binom{2}{2}$$

Solution: We rewrite the conic (10.3.9.1) in matrix form.

$$\mathbf{x}^{\top} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 & -1 \end{pmatrix} \mathbf{x} = 0 \tag{10.3.9.2}$$

Comparing with the general equation of the conic,

$$\mathbf{V}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{u}_0 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ f_0 = 0 \tag{10.3.9.3}$$

Therefore, the equation of the normal where \mathbf{q} is the point of contact and

$$\mathbf{R} \triangleq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tag{10.3.9.4}$$

is

$$(\mathbf{V}_0 \mathbf{q} + \mathbf{u}_0)^{\mathsf{T}} \mathbf{R} \begin{pmatrix} 0 \\ 5 \end{pmatrix} - \mathbf{q} = 0$$
 (10.3.9.5)

Substituting appropriate values and simplifying, we get

$$\mathbf{q}^{\top} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{q} + 2 \begin{pmatrix} -2 & 0 \end{pmatrix} \mathbf{q} = 0$$
 (10.3.9.6)

which can be expressed as

$$\frac{1}{2} \left\{ \mathbf{q}^{\mathsf{T}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{q} + 2 \begin{pmatrix} -2 & 0 \end{pmatrix} \mathbf{q} + \mathbf{q}^{\mathsf{T}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^{\mathsf{T}} \mathbf{q} + 2 \begin{pmatrix} -2 & 0 \end{pmatrix} \mathbf{q} \right\} = 0 \quad (1)$$

yielding

$$\mathbf{q}^{\mathsf{T}} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \mathbf{q} + 2 \begin{pmatrix} -2 & 0 \end{pmatrix} \mathbf{q} = 0 \tag{10.3.9.8}$$

(10.3.9.8) also looks like a conic with parameters

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{u} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ f = 0 \tag{10.3.9.9}$$

The eigenparameters of V are

$$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{10.3.9.10}$$

Applying the affine transformation

$$\mathbf{q} = \mathbf{P}\mathbf{y} + \mathbf{c}$$
 (10.3.9.11)

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \tag{10.3.9.12}$$

$$f_0 = \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f = 0 \tag{10.3.9.13}$$

: det $V = -\frac{1}{4} \neq 0$, using (B.4.9.1), (10.3.9.8) represents a pair of straight lines. From (B.4.8.2), (10.3.9.10), (A.8.3.4) and (A.8.3.7),

$$\mathbf{y} = \kappa \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}. \tag{10.3.9.14}$$

Hence, using (10.3.9.11),

$$\mathbf{q} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} + \kappa \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix},\tag{10.3.9.15}$$

which, upon substituting in (10.3.9.2) and solving for κ yields

$$\kappa = \pm \sqrt{2}, -2. \tag{10.3.9.16}$$

Thus, the points of contact are

$$\mathbf{q} = \left\{ \begin{pmatrix} \pm 2\sqrt{2} \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \tag{10.3.9.17}$$

The nearest point out of these three candidates for \mathbf{q} is $\begin{pmatrix} \pm 2\sqrt{2} \\ 4 \end{pmatrix}$. See Fig. 10.3.9.1.

Fig. 10.3.9.1

10.3.10 Find the equation of the normal to curve $x^2 = 4y$ which passes through the point (1, 2).

Solution:

Fig. 10.3.10.1

The conic parameters are

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0 \tag{10.3.10.1}$$

Choosing the direction and normal vectors as

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix}, \ \mathbf{n} = \begin{pmatrix} -m \\ 1 \end{pmatrix}, \tag{10.3.10.2}$$

and substituting these values in (10.1.8.1), we obtain

$$m = 1 \tag{10.3.10.3}$$

as the only real solution. Thus,

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \tag{10.3.10.4}$$

and the equation of the normal is then obtained as

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{h} \right) = 0 \tag{10.3.10.5}$$

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{10.3.10.6}$$

$$= 3$$
 (10.3.10.7)

See Fig. 10.3.10.1.

10.3.11 The line y = mx + 1 is a tangent to the curve $y^2 = 4x$, find the value of m.

Solution:

Fig. 10.3.11.1

The parameters for the given conic are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}, f = 0 \tag{10.3.11.1}$$

The given tangent can be expressed in parametric form as

$$\mathbf{x} = \mathbf{e}_2 + \mu \mathbf{m} \tag{10.3.11.2}$$

Substituting from (10.3.11.2) and (10.3.11.1) in (10.1.9.1) and solving, we obtain

$$m = 1. (10.3.11.3)$$

See Fig. 10.3.11.1.

10.3.12 Find the normal at the point (1,1) on the curve

$$2y + x^2 = 3 (10.3.12.1)$$

Solution: Use (10.1.1.1) with

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{10.3.12.2}$$

10.3.13 If the line $y = \sqrt{3}x + K$ touches the parabola $x^2 = 16y$, then find the value of K.

10.3.14 If the line y = mx + 1 is tangent to the parabola $y^2 = 4x$ then find the value of m.

10.3.15 Find the condition that the curves $2x = y^2$ and 2xy = k intersect orthogonally.

- 10.3.16 Prove that the curves xy = 4 and $x^2 + y^2 = 8$ touch each other.
- 10.3.17 Find the angle of intersection of the curves $y = 4 x^2$ and $y = x^2$.
- 10.3.18 Prove that the curves $y^2 = 4x$ and $x^2 + y^2 6x + 1 = 0$ touch each each other at the point (1,2).
- 10.3.19 Find the equation of the normal lines to the curve $3x^2 y^2 = 8$ which are parallel to the line x + 3y = 4.
- 10.3.20 The equation of the normal to the curve $3x^2 y^2 = 8$ which is parallel to the line x + 3y = 8 is
 - a) 3x y = 8
 - b) 3x + y + 8 = 0
 - c) x + 3y + 8 = 0
 - d) x + 3y = 0
- 10.3.21 The equation of the tangent to the curve $(1+y^2) = 2 x$, where it crosses the x-axis is
 - a) x + 5y = 2
 - b) x 5y = 2
 - c) 5x y = 2
 - d) 5x + y = 2

State whether the statements are True or False

- 10.22 The line lx + my + n = 0 will touch the parabola $y^2 = 4ax$ if $ln = am^2$, 10.23 The line 2x + 3y = 12 touches the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 2$ at the point (3,2).

10.4 CBSE

- 10.4.1 Find the equations of the tangent and the normal, to the curve $16x^2 + 9y^2 = 145$ at the point (x_1, y_1) , where $x_1 = 2$ and $y_1 > 0$.
- 10.4.2 Find the equations of the tangent and normal to the curve $y = \frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the X axis.
- 10.4.3 The point at which the normal to the curve

$$y = x + \frac{1}{x}, x > 0$$

is perpendicular to the line

$$3x - 4y - 7 = 0$$

(12, 2021)

10.4.4 The points on the curve

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

at which the tangents are parallel to Y axis are (12, 2021)

- 10.4.5 Find the point on the curve $y^2=4x$, which is nearest to the point (2, -8). (12, 2018)
- 10.4.6 Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point (12, 2018)(-1,4).

- 10.4.7 Find the equation of tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line 4x-2y+5=0 and Also write the equation of the normal to the curve at the contact. (12, 2018)
- 10.4.8 For which value of m is the line

$$y = mx + 1$$

a tangent to the curve

$$y^2 = 4x$$

(12, 2022)

10.5 Construction

- 10.5.1 Let ABC be a right triangle in which AB = 6cm, BC = 8cm and $\angle B = 90^{\circ}$. BD is the perpendicular from **B** on AC. The circle through **B**, **C**, **D** is drawn. Construct the tangents from **A** to this circle.
- 10.5.2 Draw a line segment AB of length 8cm. Taking **A** as centre, draw a circle of radius 4cm and taking **B** as centre, draw another circle of radius 3cm. Construct tangents to each circle from the centre of the circle.
- 10.5.3 Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60° .
- 10.5.4 Draw a circle of radius 3 cm. Take two points $\bf P$ and $\bf Q$ on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points $\bf P$ and $\bf Q$.
- 10.5.5 Construct a tangent to a circle of radius 4cm from a point on the concentric circle of radius 6cm and measure its length. Also verify the measurement by actual calculation.
- 10.5.6 From a point \mathbf{Q} , the length of the tangent to a circle is 24cm and the distance of \mathbf{Q} from the centre is 25cm. Find the radius of the circle. Draw the circle and the tangents.
- 10.5.7 To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be
 - a) 135°
 - b) 90°
 - c) 60°
 - d) 120°
- 10.5.8 Draw two concentric circles of radii 3 cm and 5 cm. Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.
- 10.5.9 Draw a circle of radius 4 cm .Construct a pair of tangents to it, the angle detween which is 60° . Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.
- 10.5.10 Construct a tangent to a circle of radius 4 cm from a point which is at a distance of 6 cm from its centre.

Write True or False and give reasons for your answer in each of the following

- 10.5.11 A pair of tangents can be constructed from a point **h** to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.
- 10.5.12 A pair of tangents can be constructed to a circle inclined at an angle of 170°.

10.6 CBSE

- 10.6.1 Draw a circle of radius 2.5 cm. Take a point **P** outside the circle at a distance of 7 cm from the center. Then construct a pair of tangents to the circle from point **P**. (10, 2022)
- 10.6.2 Write the steps of construction for constructing a pair of tangents to a circle of radius 4 cm from a point **P**, at a distance of 7 cm from its center **O**. (10, 2022)
- 10.6.3 Draw a pair of tangents to a circle of radius 4cm which are inclined to each other at an angle of 45° . (10, 2021)
- 10.6.4 Draw a circle of radius 5cm. From a point 8cm away from its centre, construct a pair of tangents to the circle. (10, 2021)
- 10.6.5 Write the steps of construction of a circle of diameter 6cm and drawing of a pair of tangents to the circle from a point 5cm away from the centre. (10, 2021)
- 10.6.6 Draw two concentric circles of radii 2cm and 5cm. Take a point **P** on the outer circle and construct a pair of tangents PA and PB to the smaller circle. Measure PA.

(10, 2019)

- 10.6.7 Draw a pair of tangents to a circle of radius 3 cm, which are inclined to each other at an angle of 60° . (10, 2011)
- 10.6.8 Construct a pair of tangents to a circle of radius 4cm from a point **P** lying outside the circle at a distance of 6cm from the centre. (10, 2023)
- 10.6.9 Draw a circle of radius 3cm. From a point **P** lying outside the circle at a distance of 6cm from its centre, construct two tangents PA and PB to the circle. (10, 2023)
- 10.6.10 Draw a circle of radius 3.5cm. Take a point **P** outside the circle at a distance of 7cm from the centre of the circle and construct a pair of tangents to the circle from that point. (10, 2020)
- 10.6.11 Draw a circle of radius 4 cm. Draw two tangents to the circle inclined at an angle of 60° to each other.

(10, 2016)

APPENDIX A TRIANGLE

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$$
 (11.1)

A.1 Sides

A.1.1. The direction vector of AB is defined as

$$\mathbf{B} - \mathbf{A} \tag{A.1.1.1}$$

Find the direction vectors of AB, BC and CA.

Solution:

a) The Direction vector of AB is

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 - 1 \\ 6 - (-1) \end{pmatrix} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}$$
 (A.1.1.2)

b) The Direction vector of BC is

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 - (-4) \\ -5 - 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -11 \end{pmatrix}$$
 (A.1.1.3)

c) The Direction vector of CA is

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 - (-3) \\ -1 - (-5) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (A.1.1.4)

A.1.2. The length of side *BC* is

$$c = \|\mathbf{B} - \mathbf{A}\| \triangleq \sqrt{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{B} - \mathbf{A})}$$
 (A.1.2.1)

where

$$\mathbf{A}^{\top} \triangleq \begin{pmatrix} 1 & -1 \end{pmatrix} \tag{A.1.2.2}$$

Similarly,

$$b = \|\mathbf{C} - \mathbf{B}\|, \ a = \|\mathbf{A} - \mathbf{C}\|$$
 (A.1.2.3)

Find a, b, c.

a) From (A.1.1.2),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix},\tag{A.1.2.4}$$

$$\implies c = \|\mathbf{B} - \mathbf{A}\| = \|\mathbf{A} - \mathbf{B}\| \tag{A.1.2.5}$$

$$= \sqrt{(5 - 7)\binom{5}{-7}} = \sqrt{(5)^2 + (7)^2}$$
 (A.1.2.6)

$$=\sqrt{74}$$
 (A.1.2.7)

b) Similarly, from (A.1.1.3),

$$a = ||\mathbf{B} - \mathbf{C}|| = \sqrt{(-1 \quad 11) \begin{pmatrix} -1 \\ 11 \end{pmatrix}}$$
 (A.1.2.8)

$$= \sqrt{(1)^2 + (11)^2} = \sqrt{122}$$
 (A.1.2.9)

and from (A.1.1.4),

$$b = ||\mathbf{A} - \mathbf{C}|| = \sqrt{4 + 4 \cdot 4 \cdot 4}$$
 (A.1.2.10)

$$=\sqrt{(4)^2+(4)^2}=\sqrt{32}$$
 (A.1.2.11)

A.1.3. Points A, B, C are defined to be collinear if

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 2 \tag{A.1.3.1}$$

Are the given points in (11.1) collinear?

Solution: From (11.1),

$$\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ -1 & 6 & -5 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ 0 & 2 & -8 \end{pmatrix}$$
(A.1.3.2)

$$\stackrel{R_2 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 2 & -8 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - \frac{2}{5}R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 0 & \frac{-48}{5} \end{pmatrix}$$
(A.1.3.3)

There are no zero rows. So,

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 3 \tag{A.1.3.4}$$

Hence, the points A, B, C are not collinear. This is visible in Fig. A.1.3.1.

Fig. A.1.3.1: △*ABC*

A.1.4. The parameteric form of the equation of AB is

$$\mathbf{x} = \mathbf{A} + k\mathbf{m} \quad k \neq 0, \tag{A.1.4.1}$$

where

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{A.1.4.2}$$

is the direction vector of AB. Find the parameteric equations of AB, BC and CA. **Solution:** From (A.1.4.1) and (A.1.1.2), the parametric equation for AB is given by

$$AB: \mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k \begin{pmatrix} -5 \\ 7 \end{pmatrix} \tag{A.1.4.3}$$

Similarly, from (A.1.1.3) and (A.1.1.4),

$$BC: \mathbf{x} = \begin{pmatrix} -4\\6 \end{pmatrix} + k \begin{pmatrix} 1\\-11 \end{pmatrix} \tag{A.1.4.4}$$

$$CA: \mathbf{x} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} + k \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{A.1.4.5}$$

A.1.5. The normal form of the equation of AB is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{A.1.5.1}$$

where

$$\mathbf{n}^{\mathsf{T}}\mathbf{m} = \mathbf{n}^{\mathsf{T}} (\mathbf{B} - \mathbf{A}) = 0 \tag{A.1.5.2}$$

or,
$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m}$$
 (A.1.5.3)

Find the normal form of the equations of AB, BC and CA.

Solution:

a) From (A.1.1.3), the direction vector of side **BC** is

$$\mathbf{m} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{A.1.5.4}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -11 \end{pmatrix} = \begin{pmatrix} -11 \\ -1 \end{pmatrix} \tag{A.1.5.5}$$

from (A.1.5.3). Hence, from (A.1.5.1), the normal equation of side BC is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{A.1.5.6}$$

$$\implies \begin{pmatrix} -11 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -11 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} \tag{A.1.5.7}$$

$$\implies BC: (11 \ 1)\mathbf{x} = -38$$
 (A.1.5.8)

b) Similarly, for AB, from (A.1.1.2),

$$\mathbf{m} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{A.1.5.9}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 7 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \tag{A.1.5.10}$$

and

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{A.1.5.11}$$

$$\implies AB: \quad \mathbf{n}^{\mathsf{T}}\mathbf{x} = \begin{pmatrix} 7 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{A.1.5.12}$$

$$\implies (7 \quad 5)\mathbf{x} = 2 \tag{A.1.5.13}$$

c) For *CA*, from (A.1.1.4),

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{A.1.5.14}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{A.1.5.15}$$

$$\implies \mathbf{n}^{\mathsf{T}} (\mathbf{x} - \mathbf{C}) = 0 \tag{A.1.5.17}$$

$$\implies \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix} = 2 \tag{A.1.5.18}$$

A.1.6. The area of $\triangle ABC$ is defined as

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| \tag{A.1.6.1}$$

where

$$\mathbf{A} \times \mathbf{B} \triangleq \begin{vmatrix} 1 & -4 \\ -1 & 6 \end{vmatrix} \tag{A.1.6.2}$$

Find the area of $\triangle ABC$.

Solution: From (A.1.1.2) and (A.1.1.4),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}, \mathbf{A} - \mathbf{C} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{A.1.6.3}$$

$$\implies (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) = \begin{vmatrix} 5 & 4 \\ -7 & 4 \end{vmatrix} \tag{A.1.6.4}$$

$$= 5 \times 4 - 4 \times (-7) \tag{A.1.6.5}$$

$$=48$$
 (A.1.6.6)

$$\implies \frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| = \frac{48}{2} = 24 \tag{A.1.6.7}$$

which is the desired area.

A.1.7. Find the angles A, B, C if

$$\cos A \triangleq \frac{(\mathbf{B} - \mathbf{A})^{\top} \mathbf{C} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|}$$
(A.1.7.1)

Solution:

a) From (A.1.1.2), (A.1.1.4), (A.1.2.7) and (A.1.2.11)

$$(\mathbf{B} - \mathbf{A})^{\mathsf{T}} (\mathbf{C} - \mathbf{A}) = \begin{pmatrix} -5 & 7 \end{pmatrix} \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (A.1.7.2)

$$= -8$$
 (A.1.7.3)

$$\implies \cos A = \frac{-8}{\sqrt{74}\sqrt{32}} = \frac{-1}{\sqrt{37}} \tag{A.1.7.4}$$

$$\implies A = \cos^{-1} \frac{-1}{\sqrt{37}} \tag{A.1.7.5}$$

b) From (A.1.1.2), (A.1.1.3), (A.1.2.7) and (A.1.2.9)

$$(\mathbf{C} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} - \mathbf{B}) = \begin{pmatrix} 1 & -11 \end{pmatrix} \begin{pmatrix} 5 \\ -7 \end{pmatrix}$$
 (A.1.7.6)

$$= 82$$
 (A.1.7.7)

$$\implies \cos B = \frac{82}{\sqrt{74}\sqrt{122}} = \frac{41}{\sqrt{2257}} \tag{A.1.7.8}$$

$$\implies B = \cos^{-1} \frac{41}{\sqrt{2257}} \tag{A.1.7.9}$$

c) From (A.1.1.3), (A.1.1.4), (A.1.2.9) and (A.1.2.11)

$$(\mathbf{A} - \mathbf{C})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} 4 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$
 (A.1.7.10)

$$=40$$
 (A.1.7.11)

$$\implies \cos C = \frac{40}{\sqrt{32}\sqrt{122}} = \frac{5}{\sqrt{61}}$$
 (A.1.7.12)

$$\implies C = \cos^{-1} \frac{5}{\sqrt{61}}$$
 (A.1.7.13)

All codes for this section are available at

codes/triangle/sides.py

A.2 Formulae

A.1. The equation of a line is given by

$$y = mx + c \tag{A.1.1}$$

$$\implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ mx + c \end{pmatrix} = \begin{pmatrix} 0 \\ c \end{pmatrix} + x \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{A.1.2}$$

yielding (4.1.1.3).

A.2. (A.1.1) can also be expressed as

$$y - mx = c \tag{A.2.1}$$

$$\implies \left(-m \quad 1\right) \begin{pmatrix} x \\ y \end{pmatrix} = c \tag{A.2.2}$$

yielding (4.1.2.3).

A.3. The direction vector is

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{A.3.1}$$

and the normal vector is

$$\mathbf{n} = \begin{pmatrix} -m \\ 1 \end{pmatrix} \tag{A.3.2}$$

A.4. From (4.1.1.3), if **A**, **D** and **C** are on the same line,

$$\mathbf{D} = \mathbf{A} + q\mathbf{m} \tag{A.4.1}$$

$$\mathbf{C} = \mathbf{D} + p\mathbf{m} \tag{A.4.2}$$

$$\implies p(\mathbf{D} - \mathbf{A}) + q(\mathbf{D} - \mathbf{C}) = 0, \quad p, q \neq 0$$
 (A.4.3)

$$\implies \mathbf{D} = \frac{p\mathbf{A} + q\mathbf{C}}{p+q} \tag{A.4.4}$$

yielding (1.1.4.1) upon substituting

$$k = \frac{p}{q}. (A.4.5)$$

 $(\mathbf{D} - \mathbf{A}), (\mathbf{D} - \mathbf{C})$ are then said to be *linearly dependent*.

A.5. If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are collinear, from (4.1.2.3),

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = c \tag{A.5.1}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{B} = c \tag{A.5.2}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{C} = c \tag{A.5.3}$$

which can be expressed as

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \mathbf{n} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{A.5.4}$$

$$\equiv \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \tag{A.5.5}$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{n} \\ -1 \end{pmatrix} = \mathbf{0} \tag{A.5.6}$$

yielding

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 2 \tag{A.5.7}$$

Rank is defined to be the number of linearly indpendent rows or columns of a matrix. A.6. The equation of a line can also be expressed as

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = 1 \tag{A.6.1}$$

A.3 Median

A.3.1. If **D** divides BC in the ratio k:1,

$$\mathbf{D} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} \tag{A.3.1.1}$$

Find the mid points \mathbf{D} , \mathbf{E} , \mathbf{F} of the sides BC, CA and AB respectively. **Solution:** Since \mathbf{D} is the midpoint of BC,

$$k = 1,$$
 (A.3.1.2)

$$\implies \mathbf{D} = \frac{\mathbf{C} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix} \tag{A.3.1.3}$$

Similarly,

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \tag{A.3.1.4}$$

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3\\ 5 \end{pmatrix} \tag{A.3.1.5}$$

A.3.2. Find the equations of AD, BE and CF.

Solution: :

a) The direction vector of AD is

$$\mathbf{m} = \mathbf{D} - \mathbf{A} = \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -9 \\ 3 \end{pmatrix} \equiv \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
 (A.3.2.1)

$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{A.3.2.2}$$

Hence the normal equation of median AD is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{A.3.2.3}$$

$$\implies \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -2 \tag{A.3.2.4}$$

b) For BE,

$$\mathbf{m} = \mathbf{E} - \mathbf{B} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
 (A.3.2.5)

$$\implies \mathbf{n} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{A.3.2.6}$$

Hence the normal equation of median BE is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{A.3.2.7}$$

$$\implies \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} = -6 \tag{A.3.2.8}$$

c) For median CF,

$$\mathbf{m} = \mathbf{F} - \mathbf{C} = \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{15}{2} \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (A.3.2.9)

$$\implies \mathbf{n} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{A.3.2.10}$$

Hence the normal equation of median CF is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{A.3.2.11}$$

$$\implies (5 -1)\mathbf{x} = (5 -1)\begin{pmatrix} -3 \\ -5 \end{pmatrix} = -10 \tag{A.3.2.12}$$

A.3.3. Find the intersection G of BE and CF.

Solution: From (A.3.2.8) and (A.3.2.12), the equations of BE and CF are, respectively,

$$\begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -6 \end{pmatrix} \tag{A.3.3.1}$$

$$\begin{pmatrix} 5 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -10 \end{pmatrix} \tag{A.3.3.2}$$

From (A.3.3.1) and (A.3.3.2) the augmented matrix is

$$\begin{pmatrix} 3 & 1 & -6 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 8 & 0 & -16 \\ 5 & -1 & -10 \end{pmatrix} \tag{A.3.3.3}$$

$$\stackrel{R_1 \leftarrow R_1/8}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 5 & -1 & -10 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 - 5R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$$
(A.3.3.4)

$$\stackrel{R_2 \leftarrow -R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \tag{A.3.3.5}$$

using Gauss elimination. Therefore,

$$\mathbf{G} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{A.3.3.6}$$

A.3.4. Verify that

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{A.3.4.1}$$

Solution:

a) From (A.3.1.4) and (A.3.3.6),

$$\mathbf{G} - \mathbf{B} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}, \ \mathbf{E} - \mathbf{G} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \tag{A.3.4.2}$$

$$\implies \mathbf{G} - \mathbf{B} = 2(\mathbf{E} - \mathbf{G}) \tag{A.3.4.3}$$

$$\implies \|\mathbf{G} - \mathbf{B}\| = 2\|\mathbf{E} - \mathbf{G}\| \tag{A.3.4.4}$$

or,
$$\frac{BG}{GE} = 2$$
 (A.3.4.5)

b) From (A.3.1.5) and (A.3.3.6),

$$\mathbf{F} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \ \mathbf{G} - \mathbf{C} \qquad = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \tag{A.3.4.6}$$

$$\implies \mathbf{G} - \mathbf{C} = 2(\mathbf{F} - \mathbf{G}) \tag{A.3.4.7}$$

$$\implies ||\mathbf{G} - \mathbf{C}|| = 2 ||\mathbf{F} - \mathbf{G}|| \tag{A.3.4.8}$$

or,
$$\frac{CG}{GF} = 2$$
 (A.3.4.9)

c) From (A.3.1.3) and (A.3.3.6),

$$\mathbf{G} - \mathbf{A} = \begin{pmatrix} -3\\1 \end{pmatrix}, \mathbf{D} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} -3\\1 \end{pmatrix}$$
 (A.3.4.10)

$$\mathbf{G} - \mathbf{A} = 2\left(\mathbf{D} - \mathbf{G}\right) \tag{A.3.4.11}$$

$$\implies \|\mathbf{G} - \mathbf{A}\| = 2\|\mathbf{D} - \mathbf{G}\| \tag{A.3.4.12}$$

or,
$$\frac{AG}{GD} = 2$$
 (A.3.4.13)

From (A.3.4.5), (A.3.4.9), (A.3.4.13)

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{A.3.4.14}$$

A.3.5. Show that **A**, **G** and **D** are collinear.

Fig. A.3.5.1: Medians of $\triangle ABC$ meet at **G**.

Solution: Points A, D, G are defined to be collinear if

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix} = 2 \tag{A.3.5.1}$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ -1 & \frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ 0 & -3 & -2 \end{pmatrix}$$
 (A.3.5.2)

$$\xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & -3 & -2 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - \frac{2}{3}R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix}$$
 (A.3.5.3)

Thus, the matrix (A.3.5.1) has rank 2 and the points are collinear. Thus, the medians of a triangle meet at the point **G**. See Fig. A.3.5.1.

A.3.6. Verify that

$$\mathbf{G} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{A.3.6.1}$$

G is known as the *centroid* of $\triangle ABC$.

Solution:

$$\mathbf{G} = \frac{\begin{pmatrix} 1\\-1 \end{pmatrix} + \begin{pmatrix} -4\\6 \end{pmatrix} + \begin{pmatrix} -3\\-5 \end{pmatrix}}{3}$$

$$= \begin{pmatrix} -2\\0 \end{pmatrix}$$
(A.3.6.2)

Fig. A.3.7.1: AFDE forms a parallelogram in triangle ABC

A.3.7. Verify that

$$\mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{A.3.7.1}$$

The quadrilateral AFDE is defined to be a parallelogram.

Solution:

$$\mathbf{A} - \mathbf{F} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (A.3.7.2)

$$\mathbf{E} - \mathbf{D} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (A.3.7.3)

$$\implies \mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{A.3.7.4}$$

See Fig. A.3.7.1,

All codes for this section are available in

codes/triangle/medians.py codes/triangle/pgm.py

A.4 Altitude

A.4.1. \mathbf{D}_1 is a point on BC such that

$$AD_1 \perp BC \tag{A.4.1.1}$$

and AD_1 is defined to be the altitude. Find the normal vector of AD_1 .

Solution: The normal vector of AD_1 is the direction vector BC and is obtained from (A.1.1.3) as

$$\mathbf{n} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{A.4.1.2}$$

A.4.2. Find the equation of AD_1 .

Solution: The equation of AD_1 is

$$\mathbf{n}^{\mathsf{T}}(\mathbf{x} - \mathbf{A}) = 0 \tag{A.4.2.1}$$

$$\implies \begin{pmatrix} -1 & 11 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -12 \tag{A.4.2.2}$$

A.4.3. Find the equations of the altitudes BE_1 and CF_1 to the sides AC and AB respectively.

Solution:

a) From (A.1.1.4), the normal vector of CF_1 is

$$\mathbf{n} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{A.4.3.1}$$

and the equation of CF_1 is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{A.4.3.2}$$

$$\implies \left(-5 \quad 7\right) \left(\mathbf{x} - \begin{pmatrix} -3\\ -5 \end{pmatrix}\right) = 0 \tag{A.4.3.3}$$

$$\implies (5 \quad -7)\mathbf{x} = 20, \tag{A.4.3.4}$$

b) Similarly, from (A.1.1.2), the normal vector of BE_1 is

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{A.4.3.5}$$

and the equation of BE_1 is

$$\mathbf{n}^{\mathsf{T}} (\mathbf{x} - \mathbf{B}) = 0 \tag{A.4.3.6}$$

$$\implies (1 \quad 1)\left(\mathbf{x} - \begin{pmatrix} -4\\6 \end{pmatrix}\right) = 0 \tag{A.4.3.7}$$

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2, \tag{A.4.3.8}$$

A.4.4. Find the intersection **H** of BE_1 and CF_1 .

Solution: The intersection of (A.4.3.8) and (A.4.3.4), is obtained from the matrix equation

$$\begin{pmatrix} 1 & 1 \\ 5 & -7 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ 20 \end{pmatrix} \tag{A.4.4.1}$$

which can be solved as

$$\begin{pmatrix} 1 & 1 & 2 \\ 5 & -7 & 20 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 5R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -12 & 10 \end{pmatrix} \tag{A.4.4.2}$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{-12}}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{17}{6} \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \tag{A.4.4.3}$$

yielding

$$\mathbf{H} = \frac{1}{6} \begin{pmatrix} 17 \\ -5 \end{pmatrix},\tag{A.4.4.4}$$

See Fig. A.4.4.1

Fig. A.4.4.1: Altitudes BE_1 and CF_1 intersect at \mathbf{H}

A.4.5. Verify that

$$(\mathbf{A} - \mathbf{H})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = 0 \tag{A.4.5.1}$$

Solution: From (A.4.4.4),

$$\mathbf{A} - \mathbf{H} = -\frac{1}{6} \begin{pmatrix} 11\\1 \end{pmatrix}, \ \mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix} \tag{A.4.5.2}$$

$$\implies (\mathbf{A} - \mathbf{H})^{\top} (\mathbf{B} - \mathbf{C}) = \frac{1}{6} \begin{pmatrix} 11 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \tag{A.4.5.3}$$

All codes for this section are available at

codes/triangle/altitude.py

A.5.1. The equation of the perpendicular bisector of BC is

$$\left(\mathbf{x} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)(\mathbf{B} - \mathbf{C}) = 0 \tag{A.5.1.1}$$

Substitute numerical values and find the equations of the perpendicular bisectors of *AB*, *BC* and *CA*.

Solution: From (A.1.1.2), (A.1.1.3), (A.1.1.4), (A.3.1.3), (A.3.1.4) and (A.3.1.5),

$$\frac{\mathbf{B} + \mathbf{C}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix}$$
 (A.5.1.2)

$$\frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3\\ 5 \end{pmatrix}, \mathbf{A} - \mathbf{B} = \begin{pmatrix} 5\\ -7 \end{pmatrix} \tag{A.5.1.3}$$

$$\frac{\mathbf{C} + \mathbf{A}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix} \tag{A.5.1.4}$$

yielding

$$(\mathbf{B} - \mathbf{C})^{\mathsf{T}} \left(\frac{\mathbf{B} + \mathbf{C}}{2} \right) = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} -\frac{7}{2} \\ \frac{1}{2} \end{pmatrix} = 9 \tag{A.5.1.5}$$

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \left(\frac{\mathbf{A} + \mathbf{B}}{2} \right) = \begin{pmatrix} 5 & -7 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{5}{2} \end{pmatrix} = -25 \tag{A.5.1.6}$$

$$(\mathbf{C} - \mathbf{A})^{\mathsf{T}} \left(\frac{\mathbf{C} + \mathbf{A}}{2} \right) = \begin{pmatrix} -4 & -4 \end{pmatrix} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = 16 \tag{A.5.1.7}$$

Thus, the perpendicular bisectors are obtained from (A.5.1.1) as

$$BC: (-1 \ 11)\mathbf{x} = 9$$
 (A.5.1.8)

$$CA: (5 -7)\mathbf{x} = -25$$
 (A.5.1.9)

$$AB: (1 1)\mathbf{x} = -4 (A.5.1.10)$$

A.5.2. Find the intersection \mathbf{O} of the perpendicular bisectors of AB and AC.

Solution:

The intersection of (A.5.1.9) and (A.5.1.10), can be obtained as

$$\begin{pmatrix} 5 & -7 & -25 \\ 1 & 1 & -4 \end{pmatrix} \xrightarrow{R_2 \leftarrow 5R_2 - R_1} \begin{pmatrix} 5 & -7 & -25 \\ 0 & 12 & 5 \end{pmatrix} \tag{A.5.2.1}$$

$$\stackrel{R_1 \leftarrow \frac{12}{7}R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} \frac{60}{7} & 0 & \frac{-265}{7} \\ 0 & 12 & 5 \end{pmatrix} \stackrel{R_2 \leftarrow \frac{1}{12}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{-53}{12} \\ 0 & 1 & \frac{5}{12} \end{pmatrix}$$
(A.5.2.2)

$$\implies \mathbf{O} = \begin{pmatrix} \frac{-3.5}{12} \\ \frac{5}{12} \end{pmatrix} \tag{A.5.2.3}$$

A.5.3. Verify that **O** satisfies (A.5.1.1). **O** is known as the circumcentre.

Fig. A.5.5.1: Circumcircle of $\triangle ABC$ with centre **O**.

Solution: Substituing from (A.5.2.3) in (A.5.1.1),

$$\left(\mathbf{O} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)^{\mathsf{T}} (\mathbf{B} - \mathbf{C})$$

$$= \left(\frac{1}{12} \begin{pmatrix} -53 \\ 5 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -7 \\ 1 \end{pmatrix}\right)^{\mathsf{T}} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$

$$= \frac{1}{12} \begin{pmatrix} -11 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \quad (A.5.3.1)$$

A.5.4. Verify that

$$OA = OB = OC (A.5.4.1)$$

A.5.5. Draw the circle with centre at **O** and radius

$$R = OA \tag{A.5.5.1}$$

This is known as the circumradius.

Solution: See Fig. A.5.5.1.

A.5.6. Verify that

$$\angle BOC = 2\angle BAC. \tag{A.5.6.1}$$

Solution:

a) To find the value of $\angle BOC$:

$$\mathbf{B} - \mathbf{O} = \begin{pmatrix} \frac{5}{12} \\ \frac{67}{12} \end{pmatrix}, \ \mathbf{C} - \mathbf{O} = \begin{pmatrix} \frac{17}{12} \\ \frac{-65}{12} \end{pmatrix}$$
 (A.5.6.2)

$$\Rightarrow (\mathbf{B} - \mathbf{O})^{\mathsf{T}} (\mathbf{C} - \mathbf{O}) = \frac{-4270}{144}$$
 (A.5.6.3)

$$\implies \|\mathbf{B} - \mathbf{O}\| = \frac{\sqrt{4514}}{12}, \|\mathbf{C} - \mathbf{O}\| = \frac{\sqrt{4514}}{12}$$
 (A.5.6.4)

Thus,

$$\cos BOC = \frac{(\mathbf{B} - \mathbf{O})^{\mathsf{T}} (\mathbf{C} - \mathbf{O})}{\|\mathbf{B} - \mathbf{O}\| \|\mathbf{C} - \mathbf{O}\|} = \frac{-4270}{4514}$$
(A.5.6.5)

$$\implies \angle BOC = \cos^{-1}\left(\frac{-4270}{4514}\right) \tag{A.5.6.6}$$

$$= 161.07536^{\circ} \text{ or } 198.92464^{\circ}$$
 (A.5.6.7)

b) To find the value of $\angle BAC$:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix} \tag{A.5.6.8}$$

$$\implies (\mathbf{B} - \mathbf{A})^{\mathsf{T}} (\mathbf{C} - \mathbf{A}) = -8 \tag{A.5.6.9}$$

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{74} \|\mathbf{C} - \mathbf{A}\| = 4\sqrt{2}$$
 (A.5.6.10)

Thus,

$$\cos BAC = \frac{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A})}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|} = \frac{-8}{4\sqrt{148}}$$
(A.5.6.11)

$$\implies \angle BAC = \cos^{-1}\left(\frac{-8}{4\sqrt{148}}\right) \tag{A.5.6.12}$$

$$= 99.46232^{\circ} \tag{A.5.6.13}$$

From (A.5.6.13) and (A.5.6.7),

$$2 \times \angle BAC = \angle BOC \tag{A.5.6.14}$$

A.5.7. Let

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{A.5.7.1}$$

where

$$\theta = \angle BOC \tag{A.5.7.2}$$

Verify that

$$\mathbf{B} - \mathbf{O} = \mathbf{P}(\mathbf{C} - \mathbf{O}) \tag{A.5.7.3}$$

All codes for this section are available at

codes/triangle/perp-bisect.pv

A.6 Angle Bisector

A.6.1. Let \mathbf{D}_3 , \mathbf{E}_3 , \mathbf{F}_3 , be points on AB, BC and CA respectively such that

$$BD_3 = BF_3 = m, CD_3 = CE_3 = n, AE_3 = AF_3 = p.$$
 (A.6.1.1)

Obtain m, n, p in terms of a, b, c obtained in Problem A.1.2.

Solution: From the given information,

$$a = m + n,$$
 (A.6.1.2)

$$b = n + p,$$
 (A.6.1.3)

$$c = m + p \tag{A.6.1.4}$$

which can be expressed as

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \\ p \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (A.6.1.5)

$$\implies \begin{pmatrix} m \\ n \\ p \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (A.6.1.6)

Using row reduction,

$$\begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}$$
(A.6.1.7)

$$\stackrel{R_3 \leftarrow R_3 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \end{pmatrix}$$
 (A.6.1.8)

$$\stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \stackrel{1}{\underset{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow}} \begin{pmatrix} 1 & 0 & -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{pmatrix}$$
(A.6.1.9)

$$\stackrel{R_2 \leftarrow 2R_2 - R_3}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 0 & 1 & -1 & 1 \\ 0 & 2 & 0 & 1 & 1 & -1 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{pmatrix}$$
(A.6.1.10)

yielding

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
 (A.6.1.11)

Therefore,

$$p = \frac{c+b-a}{2} = \frac{\sqrt{74} + \sqrt{32} - \sqrt{122}}{2}$$

$$m = \frac{a+c-b}{2} = \frac{\sqrt{74} + \sqrt{122} - \sqrt{32}}{2}$$

$$n = \frac{a+b-c}{2} = \frac{\sqrt{122} + \sqrt{32} - \sqrt{74}}{2}$$
(A.6.1.12)

upon substituting from (A.1.2.7), (A.1.2.9) and (A.1.2.11).

A.6.2. Using section formula, find

$$\mathbf{D}_3 = \frac{m\mathbf{C} + n\mathbf{B}}{m+n}, \ \mathbf{E}_3 = \frac{n\mathbf{A} + p\mathbf{C}}{n+p}, \ \mathbf{F}_3 = \frac{p\mathbf{B} + m\mathbf{A}}{p+m}$$
 (A.6.2.1)

- A.6.3. Find the circumcentre and circumradius of $\triangle D_3 E_3 F_3$. These are the *incentre* and *inradius* of $\triangle ABC$.
- A.6.4. Draw the circumcircle of $\triangle D_3 E_3 F_3$. This is known as the *incircle* of $\triangle ABC$. **Solution:** See Fig. A.6.4.1

Fig. A.6.4.1: Incircle of $\triangle ABC$

A.6.5. Using (A.1.7.1) verify that

$$\angle BAI = \angle CAI. \tag{A.6.5.1}$$

AI is the bisector of $\angle A$.

A.6.6. Verify that BI, CI are also the angle bisectors of $\triangle ABC$. All codes for this section are available at

codes/triangle/ang-bisect.py

A.7 Eigenvalues and Eigenvectors

A.7.1. The equation of a circle is given by

$$\|\mathbf{x}\|^2 + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0$$
 (A.7.1.1)

for

$$\mathbf{u} = -\mathbf{O}, f = ||\mathbf{O}|| - r^2,$$
 (A.7.1.2)

 \mathbf{O} being the incentre and r the inradius.

A.7.2. Compute

$$\Sigma = (\mathbf{V}\mathbf{h} + \mathbf{u})(\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} - g(\mathbf{h})\mathbf{V}$$
 (A.7.2.1)

for $\mathbf{h} = \mathbf{A}$.

A.7.3. Find the roots of the equation

$$|\lambda \mathbf{I} - \mathbf{\Sigma}| = 0 \tag{A.7.3.1}$$

These are known as the eigenvalues of Σ .

A.7.4. Find **p** such that

$$\mathbf{\Sigma}\mathbf{p} = \lambda\mathbf{p} \tag{A.7.4.1}$$

using row reduction. These are known as the eigenvectors of Σ .

A.7.5. Define

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \tag{A.7.5.1}$$

$$\mathbf{P} = \begin{pmatrix} \frac{\mathbf{p}_1}{\|\mathbf{p}_1\|} & \frac{\mathbf{p}_2}{\|\mathbf{p}_2\|} \end{pmatrix} \tag{A.7.5.2}$$

A.7.6. Verify that

$$\mathbf{P}^{\mathsf{T}} = \mathbf{P}^{-1}.\tag{A.7.6.1}$$

P is defined to be an orthogonal matrix.

A.7.7. Verify that

$$\mathbf{P}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{P} = \mathbf{D},\tag{A.7.7.1}$$

This is known as the spectral (eigenvalue) decomposition of a symmetric matrix

A.7.8. The direction vectors of the tangents from a point \mathbf{h} to the circle in (8.1.1.1) are given by

$$\mathbf{m} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_2|} \\ \pm \sqrt{|\lambda_1|} \end{pmatrix} \tag{A.7.8.1}$$

A.7.9. The points of contact of the pair of tangents to the circle in (8.1.1.1) from a point **h** are given by

$$\mathbf{x} = \mathbf{h} + \mu \mathbf{m} \tag{A.7.9.1}$$

where

$$\mu = -\frac{\mathbf{m}^{\top} (\mathbf{V} \mathbf{h} + \mathbf{u})}{\mathbf{m}^{\top} \mathbf{V} \mathbf{m}}$$
(A.7.9.2)

for \mathbf{m} in (A.7.8.1). Compute the points of contact. You should get the same points that you obtained in the previous section.

All codes for this section are available at

codes/triangle/tangpair.py

A.8 Formulae

A.8.1 The equation of the *incircle* is given by

$$\|\mathbf{x} - \mathbf{O}\|^2 = r^2 \tag{A.8.1.1}$$

which can be expressed as (8.1.1.1) using (A.7.1.2).

A.8.2 In Fig. A.6.4.1, let (A.7.9.1) be the equation of AB. Then, the intersection of (A.7.9.1) and (8.1.1.1) can be expressed as

$$(\mathbf{h} + \mu \mathbf{m})^{\mathsf{T}} \mathbf{V} (\mathbf{h} + \mu \mathbf{m}) + 2\mathbf{u}^{\mathsf{T}} (\mathbf{h} + \mu \mathbf{m}) + f = 0$$
 (A.8.2.1)

$$\implies \mu^2 \mathbf{m}^\top \mathbf{V} \mathbf{m} + 2\mu \mathbf{m}^\top (\mathbf{V} \mathbf{h} + \mathbf{u}) + g(\mathbf{h}) = 0$$
 (A.8.2.2)

For (A.8.2.2) to have exactly one root, the discriminant

$$\left\{\mathbf{m}^{\mathsf{T}}\left(\mathbf{V}\mathbf{h} + \mathbf{u}\right)\right\}^{2} - g\left(\mathbf{h}\right)\mathbf{m}^{\mathsf{T}}\mathbf{V}\mathbf{m} = 0 \tag{A.8.2.3}$$

and (A.7.9.2) is obtained.

A.8.3 (A.8.2.3) can be expressed as

$$\mathbf{m}^{\mathsf{T}} (\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} (\mathbf{V}\mathbf{h} + \mathbf{u}) \mathbf{m} - g(\mathbf{h}) \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{m} = 0$$
 (A.8.3.1)

$$\implies \mathbf{m}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{m} = 0 \tag{A.8.3.2}$$

for Σ defined in (A.8.3.2). Substituting (A.7.7.1) in (A.8.3.2),

$$\mathbf{m}^{\mathsf{T}} \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}} \mathbf{m} = 0 \tag{A.8.3.3}$$

$$\implies \mathbf{v}^{\mathsf{T}}\mathbf{D}\mathbf{v} = 0 \tag{A.8.3.4}$$

where

$$\mathbf{v} = \mathbf{P}^{\mathsf{T}}\mathbf{m} \tag{A.8.3.5}$$

(A.8.3.4) can be expressed as

$$\lambda_1 v_1^2 + \lambda_2 v_2^2 = 0 \tag{A.8.3.6}$$

$$\implies \mathbf{v} = \begin{pmatrix} \sqrt{|\lambda_2|} \\ \pm \sqrt{|\lambda_1|} \end{pmatrix} \tag{A.8.3.7}$$

after some algebra. From (A.8.3.7) and (A.8.3.5) we obtain (A.7.8.1).

A.9 Matrices

A.9.1. The matrix of the vertices of the triangle is defined as

$$\mathbf{P} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \tag{A.9.1.1}$$

A.9.2. Obtain the direction matrix of the sides of $\triangle ABC$ defined as

$$\mathbf{M} = (\mathbf{A} - \mathbf{B} \quad \mathbf{B} - \mathbf{C} \quad \mathbf{C} - \mathbf{A}) \tag{A.9.2.1}$$

Solution:

$$\mathbf{M} = (\mathbf{A} - \mathbf{B} \quad \mathbf{B} - \mathbf{C} \quad \mathbf{C} - \mathbf{A}) \tag{A.9.2.2}$$

$$= (\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}) \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
 (A.9.2.3)

where the second matrix above is known as a *circulant* matrix. Note that the 2nd and 3rd row of the above matrix are circular shifts of the 1st row.

A.9.3. Obtain the normal matrix of the sides of $\triangle ABC$

Solution: Considering the roation matrix

$$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},\tag{A.9.3.1}$$

the normal matrix is obtained as

$$\mathbf{N} = \mathbf{RM} \tag{A.9.3.2}$$

A.9.4. Obtain a, b, c.

Solution: The sides vector is obtained as

$$\mathbf{d} = \sqrt{\operatorname{diag}(\mathbf{M}^{\mathsf{T}}\mathbf{M})} \tag{A.9.4.1}$$

A.9.5. Obtain the constant terms in the equations of the sides of the triangle. **Solution:** The constants for the lines can be expressed in vector form as

$$\mathbf{c} = \operatorname{diag}\left\{ \left(\mathbf{N}^{\mathsf{T}} \mathbf{P} \right) \right\} \tag{A.9.5.1}$$

A.9.6. Obtain the mid point matrix for the sides of the triangle

Solution:

$$\begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
(A.9.6.1)

A.9.7. Obtain the median direction matrix.

Solution: The median direction matrix is given by

$$\mathbf{M}_1 = \begin{pmatrix} \mathbf{A} - \mathbf{D} & \mathbf{B} - \mathbf{E} & \mathbf{C} - \mathbf{F} \end{pmatrix} \tag{A.9.7.1}$$

$$= \left(\mathbf{A} - \frac{\mathbf{B} + \mathbf{C}}{2} \quad \mathbf{B} - \frac{\mathbf{C} + \mathbf{A}}{2} \quad \mathbf{C} - \frac{\mathbf{A} + \mathbf{B}}{2}\right) \tag{A.9.7.2}$$

$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}$$
(A.9.7.3)

- A.9.8. Obtain the median normal matrix.
- A.9.9. Obtian the median equation constants.
- A.9.10. Obtain the centroid by finding the intersection of the medians.
- A.9.11. Find the normal matrix for the altitudes

Solution: The desired matrix is

$$\mathbf{M}_2 = \begin{pmatrix} \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} & \mathbf{A} - \mathbf{B} \end{pmatrix} \tag{A.9.11.1}$$

$$= (\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}) \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
 (A.9.11.2)

A.9.12. Find the constants vector for the altitudes.

Solution: The desired vector is

$$\mathbf{c}_2 = \operatorname{diag}\left\{ \left(\mathbf{M}^{\mathsf{T}} \mathbf{P} \right) \right\} \tag{A.9.12.1}$$

A.9.13. Find the normal matrix for the perpendicular bisectors

Solution: The normal matrix is M_2

A.9.14. Find the constants vector for the perpendicular bisectors.

Solution: The desired vector is

$$\mathbf{c}_3 = \operatorname{diag} \left\{ \mathbf{M}_2^{\mathsf{T}} \begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} \right\} \tag{A.9.14.1}$$

A.9.15. Find the points of contact.

Solution: The points of contact are given by

$$\left(\frac{m\mathbf{C}+n\mathbf{B}}{m+n} \quad \frac{n\mathbf{A}+p\mathbf{C}}{n+p} \quad \frac{p\mathbf{B}+m\mathbf{A}}{p+m}\right) = \left(\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}\right) \begin{pmatrix} 0 & \frac{n}{b} & \frac{m}{c} \\ \frac{n}{a} & 0 & \frac{p}{c} \\ \frac{m}{a} & \frac{p}{b} & 0 \end{pmatrix} \tag{A.9.15.1}$$

All codes for this section are available at

codes/triangle/mat-alg.py

APPENDIX B CONIC SECTION

B.1 Equation

B.1.1. Let \mathbf{q} be a point such that the ratio of its distance from a fixed point \mathbf{F} and the distance (d) from a fixed line

$$L: \mathbf{n}^{\mathsf{T}} \mathbf{x} = c \tag{B.1.1.1}$$

is constant, given by

$$\frac{\|\mathbf{q} - \mathbf{F}\|}{d} = e \tag{B.1.1.2}$$

The locus of \mathbf{q} is known as a conic section. The line L is known as the directrix and the point \mathbf{F} is the focus. e is defined to be the eccentricity of the conic.

- a) For e = 1, the conic is a parabola
- b) For e < 1, the conic is an ellipse
- c) For e > 1, the conic is a hyperbola
- B.1.2. The equation of a conic with directrix $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$, eccentricity e and focus \mathbf{F} is given by

$$g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0$$
 (B.1.2.1)

where

$$\mathbf{V} = \|\mathbf{n}\|^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}}, \tag{B.1.2.2}$$

$$\mathbf{u} = ce^2 \mathbf{n} - ||\mathbf{n}||^2 \mathbf{F}, \tag{B.1.2.3}$$

$$f = ||\mathbf{n}||^2 ||\mathbf{F}||^2 - c^2 e^2$$
 (B.1.2.4)

Solution: Using Definition B.1.1 and (4.1.6.6), for any point \mathbf{x} on the conic,

$$\|\mathbf{x} - \mathbf{F}\|^2 = e^2 \frac{(\mathbf{n}^\top \mathbf{x} - c)^2}{\|\mathbf{n}\|^2}$$
 (B.1.2.5)

$$\implies \|\mathbf{n}\|^2 (\mathbf{x} - \mathbf{F})^\top (\mathbf{x} - \mathbf{F}) = e^2 (\mathbf{n}^\top \mathbf{x} - c)^2$$
(B.1.2.6)

$$\implies \|\mathbf{n}\|^2 \left(\mathbf{x}^\top \mathbf{x} - 2\mathbf{F}^\top \mathbf{x} + \|\mathbf{F}\|^2\right) = e^2 \left(c^2 + \left(\mathbf{n}^\top \mathbf{x}\right)^2 - 2c\mathbf{n}^\top \mathbf{x}\right)$$
(B.1.2.7)

$$= e^{2} \left(c^{2} + \left(\mathbf{x}^{\mathsf{T}} \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{x} \right) - 2c \mathbf{n}^{\mathsf{T}} \mathbf{x} \right)$$
 (B.1.2.8)

which can be expressed as (B.1.2.1) after simplification.

B.1.3. The eccentricity, directrices and foci of (B.1.2.1) are given by

$$e = \sqrt{1 - \frac{\lambda_1}{\lambda_2}} \tag{B.1.3.1}$$

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p}_1,$$

$$c = \begin{cases} \frac{e\mathbf{u}^{\mathsf{T}}\mathbf{n} \pm \sqrt{e^{2}(\mathbf{u}^{\mathsf{T}}\mathbf{n})^{2} - \lambda_{2}(e^{2} - 1)(\|\mathbf{u}\|^{2} - \lambda_{2}f)}}{\lambda_{2}e(e^{2} - 1)} & e \neq 1\\ \frac{\|\mathbf{u}\|^{2} - \lambda_{2}f}{2\mathbf{u}^{\mathsf{T}}\mathbf{n}} & e = 1 \end{cases}$$
(B.1.3.2)

$$\mathbf{F} = \frac{ce^2\mathbf{n} - \mathbf{u}}{\lambda_2} \tag{B.1.3.3}$$

Solution: From (B.1.2.2), using the fact that **V** is symmetric with $\mathbf{V} = \mathbf{V}^{\mathsf{T}}$,

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \left(\|\mathbf{n}\|^{2} \mathbf{I} - e^{2}\mathbf{n}\mathbf{n}^{\mathsf{T}}\right)^{\mathsf{T}} \left(\|\mathbf{n}\|^{2} \mathbf{I} - e^{2}\mathbf{n}\mathbf{n}^{\mathsf{T}}\right)$$
(B.1.3.4)

$$\implies \mathbf{V}^2 = \|\mathbf{n}\|^4 \mathbf{I} + e^4 \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{n} \mathbf{n}^{\mathsf{T}} - 2e^2 \|\mathbf{n}\|^2 \mathbf{n} \mathbf{n}^{\mathsf{T}}$$
(B.1.3.5)

=
$$\|\mathbf{n}\|^4 \mathbf{I} + e^4 \|\mathbf{n}\|^2 \mathbf{n} \mathbf{n}^\top - 2e^2 \|\mathbf{n}\|^2 \mathbf{n} \mathbf{n}^\top$$
 (B.1.3.6)

=
$$\|\mathbf{n}\|^4 \mathbf{I} + e^2 (e^2 - 2) \|\mathbf{n}\|^2 \mathbf{n} \mathbf{n}^{\mathsf{T}}$$
 (B.1.3.7)

=
$$\|\mathbf{n}\|^4 \mathbf{I} + (e^2 - 2) \|\mathbf{n}\|^2 (\|\mathbf{n}\|^2 \mathbf{I} - \mathbf{V})$$
 (B.1.3.8)

which can be expressed as

$$\mathbf{V}^{2} + (e^{2} - 2) \|\mathbf{n}\|^{2} \mathbf{V} - (e^{2} - 1) \|\mathbf{n}\|^{4} \mathbf{I} = 0$$
 (B.1.3.9)

Using the Cayley-Hamilton theorem, (B.1.3.9) results in the characteristic equation,

$$\lambda^{2} - (2 - e^{2}) \|\mathbf{n}\|^{2} \lambda + (1 - e^{2}) \|\mathbf{n}\|^{4} = 0$$
 (B.1.3.10)

which can be expressed as

$$\left(\frac{\lambda}{\|\mathbf{n}\|^2}\right)^2 - \left(2 - e^2\right)\left(\frac{\lambda}{\|\mathbf{n}\|^2}\right) + \left(1 - e^2\right) = 0$$
 (B.1.3.11)

$$\Rightarrow \frac{\lambda}{\|\mathbf{n}\|^2} = 1 - e^2, 1$$
 (B.1.3.12)

or,
$$\lambda_2 = ||\mathbf{n}||^2$$
, $\lambda_1 = (1 - e^2)\lambda_2$ (B.1.3.13)

From (B.1.3.13), the eccentricity of (B.1.2.1) is given by (B.1.3.1). Multiplying both sides of (B.1.2.2) by \mathbf{n} ,

$$\mathbf{V}\mathbf{n} = \|\mathbf{n}\|^2 \,\mathbf{n} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{n} \tag{B.1.3.14}$$

$$= ||\mathbf{n}||^2 (1 - e^2) \mathbf{n}$$
 (B.1.3.15)

$$= \lambda_1 \mathbf{n} \tag{B.1.3.16}$$

(B.1.3.17)

from (B.1.3.13). Thus, λ_1 is the corresponding eigenvalue for **n**. From (A.7.5.2) and

(B.1.3.17), this implies that

$$\mathbf{p}_1 = \frac{\mathbf{n}}{\|\mathbf{n}\|} \tag{B.1.3.18}$$

or,
$$\mathbf{n} = ||\mathbf{n}|| \, \mathbf{p}_1 = \sqrt{\lambda_2} \mathbf{p}_1$$
 (B.1.3.19)

from (B.1.3.13). From (B.1.2.3) and (B.1.3.13),

$$\mathbf{F} = \frac{ce^2\mathbf{n} - \mathbf{u}}{\lambda_2} \tag{B.1.3.20}$$

$$\implies \|\mathbf{F}\|^2 = \frac{\left(ce^2\mathbf{n} - \mathbf{u}\right)^{\mathsf{T}} \left(ce^2\mathbf{n} - \mathbf{u}\right)}{\lambda_2^2} \tag{B.1.3.21}$$

$$\implies \lambda_2^2 \|\mathbf{F}\|^2 = c^2 e^4 \lambda_2 - 2c e^2 \mathbf{u}^\top \mathbf{n} + \|\mathbf{u}\|^2$$
 (B.1.3.22)

Also, (B.1.2.4) can be expressed as

$$\lambda_2 \|\mathbf{F}\|^2 = f + c^2 e^2$$
 (B.1.3.23)

From (B.1.3.22) and (B.1.3.23),

$$c^{2}e^{4}\lambda_{2} - 2ce^{2}\mathbf{u}^{\mathsf{T}}\mathbf{n} + ||\mathbf{u}||^{2} = \lambda_{2}(f + c^{2}e^{2})$$
(B.1.3.24)

$$\implies \lambda_2 e^2 (e^2 - 1) c^2 - 2c e^2 \mathbf{u}^{\mathsf{T}} \mathbf{n} + ||\mathbf{u}||^2 - \lambda_2 f = 0$$
 (B.1.3.25)

yielding (B.1.3.3).

B.1.4. (B.1.2.1) represents

- a) a parabola for $|\mathbf{V}| = 0$,
- b) ellipse for $|\mathbf{V}| > 0$ and
- c) hyperbola for $|\mathbf{V}| < 0$.

Solution: From (B.1.3.1),

$$\frac{\lambda_1}{\lambda_2} = 1 - e^2 \tag{B.1.4.1}$$

Also,

$$|\mathbf{V}| = \lambda_1 \lambda_2 \tag{B.1.4.2}$$

yielding Table B.1.4.

Eccentricity	Conic	Eigenvalue	Determinant
e = 1	Parabola	$\lambda_1 = 0$	$ \mathbf{V} = 0$
e < 1	Ellipse	$\lambda_1 > 0, \lambda_2 > 0$	$ \mathbf{V} > 0$
e > 1	Hyperbola	$\lambda_1 < 0, \lambda_2 > 0$	$ \mathbf{V} < 0$

TABLE B.1.4

B.1.5. Using the affine transformation in (2.1.15.1), the conic in (B.1.2.1) can be expressed

in standard form as

$$\mathbf{y}^{\mathsf{T}} \left(\frac{\mathbf{D}}{f_0} \right) \mathbf{y} = 1 \qquad |\mathbf{V}| \neq 0 \qquad (B.1.5.1)$$

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = -\eta \mathbf{e}_{1}^{\mathsf{T}}\mathbf{y} \qquad |\mathbf{V}| = 0 \tag{B.1.5.2}$$

where

$$f_0 = \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f \neq 0 \tag{B.1.5.3}$$

$$\eta = 2\mathbf{u}^{\mathsf{T}}\mathbf{p}_{1} \tag{B.1.5.4}$$

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{B.1.5.5}$$

Solution: Using (2.1.15.1), (B.1.2.1) can be expressed as

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^{\mathsf{T}} \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^{\mathsf{T}} (\mathbf{P}\mathbf{y} + \mathbf{c}) + f = 0,$$
(B.1.5.6)

yielding

$$\mathbf{y}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \mathbf{V} \mathbf{P} \mathbf{y} + 2 (\mathbf{V} \mathbf{c} + \mathbf{u})^{\mathsf{T}} \mathbf{P} \mathbf{y} + \mathbf{c}^{\mathsf{T}} \mathbf{V} \mathbf{c} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{c} + f = 0$$
 (B.1.5.7)

From (B.1.5.7) and (A.7.7.1),

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} + 2(\mathbf{V}\mathbf{c} + \mathbf{u})^{\mathsf{T}}\mathbf{P}\mathbf{y} + \mathbf{c}^{\mathsf{T}}(\mathbf{V}\mathbf{c} + \mathbf{u}) + \mathbf{u}^{\mathsf{T}}\mathbf{c} + f = 0$$
(B.1.5.8)

When V^{-1} exists, choosing

$$Vc + u = 0$$
, or, $c = -V^{-1}u$, (B.1.5.9)

and substituting (B.1.5.9) in (B.1.5.8) yields (B.1.5.1). When |V| = 0, $\lambda_1 = 0$ and

$$\mathbf{V}\mathbf{p}_1 = 0, \mathbf{V}\mathbf{p}_2 = \lambda_2\mathbf{p}_2.$$
 (B.1.5.10)

Substituting (8.1.3.2) in (B.1.5.8),

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} + 2\left(\mathbf{c}^{\mathsf{T}}\mathbf{V} + \mathbf{u}^{\mathsf{T}}\right)\left(\mathbf{p}_{1} \quad \mathbf{p}_{2}\right)\mathbf{y} + \mathbf{c}^{\mathsf{T}}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{\mathsf{T}}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} + 2\left(\left(\mathbf{c}^{\mathsf{T}}\mathbf{V} + \mathbf{u}^{\mathsf{T}}\right)\mathbf{p}_{1}\left(\mathbf{c}^{\mathsf{T}}\mathbf{V} + \mathbf{u}^{\mathsf{T}}\right)\mathbf{p}_{2}\right)\mathbf{y} + \mathbf{c}^{\mathsf{T}}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{\mathsf{T}}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} + 2\left(\mathbf{u}^{\mathsf{T}}\mathbf{p}_{1} \quad (\lambda_{2}\mathbf{c}^{\mathsf{T}} + \mathbf{u}^{\mathsf{T}})\mathbf{p}_{2}\right)\mathbf{y} + \mathbf{c}^{\mathsf{T}}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{\mathsf{T}}\mathbf{c} + f = 0$$

upon substituting from (B.1.5.10), yielding

$$\lambda_2 y_2^2 + 2(\mathbf{u}^{\mathsf{T}} \mathbf{p}_1) y_1 + 2y_2 (\lambda_2 \mathbf{c} + \mathbf{u})^{\mathsf{T}} \mathbf{p}_2 + \mathbf{c}^{\mathsf{T}} (\mathbf{V} \mathbf{c} + \mathbf{u}) + \mathbf{u}^{\mathsf{T}} \mathbf{c} + f = 0$$
 (B.1.5.11)

Thus, (B.1.5.11) can be expressed as (B.1.5.2) by choosing

$$\eta = 2\mathbf{u}^{\mathsf{T}}\mathbf{p}_{1} \tag{B.1.5.12}$$

and c in (B.1.5.8) such that

$$2\mathbf{P}^{\top}(\mathbf{V}\mathbf{c} + \mathbf{u}) = \eta \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (B.1.5.13)

$$\mathbf{c}^{\mathsf{T}} \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^{\mathsf{T}} \mathbf{c} + f = 0 \tag{B.1.5.14}$$

B.1.6. The center/vertex of a conic section are given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad \qquad |\mathbf{V}| \neq 0 \tag{B.1.6.1}$$

$$\begin{pmatrix} \mathbf{u}^{\mathsf{T}} + \frac{\eta}{2} \mathbf{p}_{1}^{\mathsf{T}} \\ \mathbf{v} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \frac{\eta}{2} \mathbf{p}_{1} - \mathbf{u} \end{pmatrix}$$
 $|\mathbf{V}| = 0$ (B.1.6.2)

Solution: $P^TP = I$, multiplying (B.1.5.13) by **P** yields

$$(\mathbf{V}\mathbf{c} + \mathbf{u}) = \frac{\eta}{2}\mathbf{p}_1,\tag{B.1.6.3}$$

which, upon substituting in (B.1.5.14) results in

$$\frac{\eta}{2}\mathbf{c}^{\mathsf{T}}\mathbf{p}_{1} + \mathbf{u}^{\mathsf{T}}\mathbf{c} + f = 0 \tag{B.1.6.4}$$

(B.1.6.3) and (B.1.6.4) can be clubbed together to obtain (B.1.6.2).

B.1.7. In (2.1.15.1), substituting y = 0, the center/vertex for the quadratic form is obtained as

$$\mathbf{x} = \mathbf{c},\tag{B.1.7.1}$$

where \mathbf{c} is derived as (B.1.6.1) and (B.1.6.2) in Appendix B.1.5.

B.2 Standard Conic

B.2.1. For the standard conic,

$$\mathbf{P} = \mathbf{I} \tag{B.2.1.1}$$

$$\mathbf{u} = \begin{cases} 0 & e \neq 1 \\ \frac{\eta}{2} \mathbf{e}_1 & e = 1 \end{cases}$$
 (B.2.1.2)

$$\lambda_1 \begin{cases} = 0 & e = 1 \\ \neq 0 & e \neq 1 \end{cases}$$
 (B.2.1.3)

where

$$\mathbf{I} = \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{pmatrix} \tag{B.2.1.4}$$

is the identity matrix.

- B.2.2. The center of the standard ellipse/hyperbola, defined to be the mid point of the line joining the foci, is the origin.
- B.2.3. The principal (major) axis of the standard ellipse/hyperbola, defined to be the line joining the two foci is the *x*-axis.

Proof. From (B.2.7.3), it is obvious that the line joining the foci passes through the origin. Also, the direction vector of this line is \mathbf{e}_1 . Thus, the principal axis is the x-axis.

- B.2.4. The minor axis of the standard ellipse/hyperbola, defined to be the line orthogonal to the x-axis is the y-axis.
- B.2.5. The axis of symmetry of the standard parabola, defined to be the line perpendicular to the directrix and passing through the focus, is the x- axis.

Proof. From (B.2.7.7) and (B.2.7.3), the axis of the parabola can be expressed as

$$\mathbf{e}_2^{\mathsf{T}} \left(\mathbf{y} + \frac{\eta}{4\lambda_2} \mathbf{e}_1 \right) = 0 \tag{B.2.5.1}$$

$$\implies \mathbf{e}_2^{\mathsf{T}} \mathbf{y} = 0, \tag{B.2.5.2}$$

which is the equation of the x-axis.

B.2.6. The point where the parabola intersects its axis of symmetry is called the vertex. For the standard parabola, the vertex is the origin.

Proof. (B.2.5.2) can be expressed as

$$\mathbf{y} = \alpha \mathbf{e}_1. \tag{B.2.6.1}$$

Substituting (B.2.6.1) in (B.1.5.2),

$$\alpha^2 \mathbf{e}_1^{\mathsf{T}} \mathbf{D} \mathbf{e}_1 = -\eta \alpha \mathbf{e}_1^{\mathsf{T}} \mathbf{e}_1 \tag{B.2.6.2}$$

$$\Rightarrow \alpha = 0$$
, or, $\mathbf{y} = \mathbf{0}$. (B.2.6.3)

B.2.7.

a) The directrices for the standard conic are given by

$$\mathbf{e}_{1}^{\mathsf{T}}\mathbf{y} = \pm \frac{1}{e} \sqrt{\frac{|f_{0}|}{\lambda_{2} (1 - e^{2})}}$$
 $e \neq 1$ (B.2.7.1)

$$\mathbf{e}_{1}^{\mathsf{T}}\mathbf{y} = \frac{\eta}{2\lambda_{2}} \qquad \qquad e = 1 \tag{B.2.7.2}$$

b) The foci of the standard ellipse and hyperbola are given by

$$\mathbf{F} = \begin{cases} \pm e \sqrt{\frac{|f_0|}{\lambda_2 (1 - e^2)}} \mathbf{e}_1 & e \neq 1 \\ -\frac{\eta}{4\lambda_2} \mathbf{e}_1 & e = 1 \end{cases}$$
 (B.2.7.3)

Proof. a) For the standard hyperbola/ellipse in (B.1.5.1), from (B.2.1.1), (B.1.3.2) and (B.2.1.2),

$$\mathbf{n} = \sqrt{\frac{\lambda_2}{f_0}} \mathbf{e}_1 \tag{B.2.7.4}$$

$$c = \pm \frac{\sqrt{-\frac{\lambda_2}{f_0} (e^2 - 1) \left(\frac{\lambda_2}{f_0}\right)}}{\frac{\lambda_2}{f_0} e (e^2 - 1)}$$

$$= \pm \frac{1}{e \sqrt{1 - e^2}}$$
(B.2.7.6)

$$= \pm \frac{1}{e\sqrt{1 - e^2}}$$
 (B.2.7.6)

yielding (B.2.7.1) upon substituting from (B.1.3.1) and simplifying. For the standard parabola in (B.1.5.2), from (B.2.1.1), (B.1.3.2) and (B.2.1.2), noting that f=0,

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{e}_1 \tag{B.2.7.7}$$

$$c = \frac{\left\|\frac{\eta}{2}\mathbf{e}_1\right\|^2}{2\left(\frac{\eta}{2}\right)(\mathbf{e}_1)^\top \mathbf{n}}$$
 (B.2.7.8)

(B.2.7.9)

$$=\frac{\eta}{4\sqrt{\lambda_2}}\tag{B.2.7.10}$$

yielding (B.2.7.2).

b) For the standard ellipse/hyperbola, substituting from (B.2.7.6), (B.2.7.4), (B.2.1.2) and (B.1.3.1) in (B.1.3.3),

$$\mathbf{F} = \pm \frac{\left(\frac{1}{e\sqrt{1-e^2}}\right)\left(e^2\right)\sqrt{\frac{\lambda_2}{f_0}}\mathbf{e}_1}{\frac{\lambda_2}{f_0}}$$
(B.2.7.11)

yielding (B.2.7.3) after simplification. For the standard parabola, substituting from (B.2.7.10), (B.2.7.7), (B.2.1.2) and (B.1.3.1) in (B.1.3.3),

$$\mathbf{F} = \frac{\left(\frac{\eta}{4\sqrt{\lambda_2}}\right)\sqrt{\lambda_2}\mathbf{e}_1 - \frac{\eta}{2}\mathbf{e}_1}{\lambda_2}$$
 (B.2.7.12)

(B.2.7.13)

yielding (B.2.7.3) after simplification.

B.2.8. The *focal length* of the standard parabola, , defined to be the distance between the vertex and the focus, measured along the axis of symmetry, is $\left|\frac{\eta}{4\lambda_2}\right|$

B.3 Conic Lines

B.3.1. The points of intersection of the line

$$L: \quad \mathbf{x} = \mathbf{h} + \kappa \mathbf{m} \quad \kappa \in \mathbb{R} \tag{B.3.1.1}$$

with the conic section in (B.1.2.1) are given by

$$\mathbf{x}_i = \mathbf{h} + \kappa_i \mathbf{m} \tag{B.3.1.2}$$

where

$$\kappa_i = \frac{1}{\mathbf{m}^{\top} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \pm \sqrt{\left[\mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \right]^2 - g\left(\mathbf{h} \right) \left(\mathbf{m}^{\top} \mathbf{V} \mathbf{m} \right)} \right) (B.3.1.3)$$

Solution: Substituting (B.3.1.1) in (B.1.2.1),

$$(\mathbf{h} + \kappa \mathbf{m})^{\mathsf{T}} \mathbf{V} (\mathbf{h} + \kappa \mathbf{m}) + 2\mathbf{u}^{\mathsf{T}} (\mathbf{h} + \kappa \mathbf{m}) + f = 0$$
 (B.3.1.4)

$$\implies \kappa^2 \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{m} + 2\kappa \mathbf{m}^{\mathsf{T}} (\mathbf{V} \mathbf{h} + \mathbf{u}) + \mathbf{h}^{\mathsf{T}} \mathbf{V} \mathbf{h} + 2\mathbf{u}^{\mathsf{T}} \mathbf{h} + f = 0$$
 (B.3.1.5)

or,
$$\kappa^2 \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{m} + 2\kappa \mathbf{m}^{\mathsf{T}} (\mathbf{V} \mathbf{h} + \mathbf{u}) + g(\mathbf{h}) = 0$$
 (B.3.1.6)

for g defined in (B.1.2.1). Solving the above quadratic in (B.3.1.6) yields (B.3.1.3).

B.3.2. The length of the chord in (B.3.1.1) is given by

$$\frac{2\sqrt{\left[\mathbf{m}^{\top}\left(\mathbf{V}\mathbf{h}+\mathbf{u}\right)\right]^{2}-\left(\mathbf{h}^{\top}\mathbf{V}\mathbf{h}+2\mathbf{u}^{\top}\mathbf{h}+f\right)\left(\mathbf{m}^{\top}\mathbf{V}\mathbf{m}\right)}}{\mathbf{m}^{\top}\mathbf{V}\mathbf{m}}\left\|\mathbf{m}\right\|$$
(B.3.2.1)

Proof. The distance between the points in (B.3.1.2) is given by

$$\|\mathbf{x}_1 - \mathbf{x}_2\| = |\kappa_1 - \kappa_2| \|\mathbf{m}\|$$
 (B.3.2.2)

Substituing κ_i from (B.3.1.3) in (B.3.2.2) yields (B.3.2.1).

B.3.3. The affine transform for the conic section, preserves the norm. This implies that the length of any chord of a conic is invariant to translation and/or rotation.

Proof. Let

$$\mathbf{x}_i = \mathbf{P}\mathbf{y}_i + \mathbf{c} \tag{B.3.3.1}$$

be any two points on the conic. Then the distance between the points is given by

$$\|\mathbf{x}_1 - \mathbf{x}_2\| = \|\mathbf{P}(\mathbf{y}_1 - \mathbf{y}_2)\|$$
 (B.3.3.2)

which can be expressed as

$$\|\mathbf{x}_1 - \mathbf{x}_2\|^2 = (\mathbf{y}_1 - \mathbf{y}_2)^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \mathbf{P} (\mathbf{y}_1 - \mathbf{y}_2)$$
 (B.3.3.3)

$$= \|\mathbf{y}_1 - \mathbf{y}_2\|^2 \tag{B.3.3.4}$$

since

$$\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{I} \tag{B.3.3.5}$$

B.3.4. For the standard hyperbola/ellipse, the length of the major axis is

$$2\sqrt{\left|\frac{f_0}{J_1}\right|} \tag{B.3.4.1}$$

and the minor axis is

$$2\sqrt{\left|\frac{f_0}{\lambda_2}\right|} \tag{B.3.4.2}$$

Solution: Since the major axis passes through the origin,

$$\mathbf{q} = \mathbf{0} \tag{B.3.4.3}$$

Further, from Corollary (B.2.3),

$$\mathbf{m} = \mathbf{e}_2, \tag{B.3.4.4}$$

and from (B.1.5.1),

$$\mathbf{V} = \frac{\mathbf{D}}{f_0}, \mathbf{u} = 0, f = -1$$
 (B.3.4.5)

Substituting the above in (B.3.2.1),

$$\frac{2\sqrt{\mathbf{e}_{1}^{\mathsf{T}}\frac{\mathbf{D}}{f_{0}}\mathbf{e}_{1}}}{\mathbf{e}_{1}^{\mathsf{T}}\frac{\mathbf{D}}{f_{0}}\mathbf{e}_{1}}\|\mathbf{e}_{1}\| \tag{B.3.4.6}$$

yielding (B.3.4.1). Similarly, for the minor axis, the only different parameter is

$$\mathbf{m} = \mathbf{e}_2, \tag{B.3.4.7}$$

Substituting the above in (B.3.2.1),

$$\frac{2\sqrt{\mathbf{e}_{2}^{\top}\frac{\mathbf{D}}{f_{0}}\mathbf{e}_{2}}}{\mathbf{e}_{2}^{\top}\frac{\mathbf{D}}{f_{0}}\mathbf{e}_{2}}\|\mathbf{e}_{2}\| \tag{B.3.4.8}$$

yielding (B.3.4.2).

B.3.5. The equation of the minor and major axes for the ellipse/hyperbola are respectively given by

$$\mathbf{p}_i^{\mathsf{T}} \left(\mathbf{x} - \mathbf{c} \right) = 0, i = 1, 2 \tag{B.3.5.1}$$

The axis of symmetry for the parabola is also given by (B.3.5.1).

Proof. From (B.2.3), the major/symmetry axis for the hyperbola/ellipse/parabola can be expressed using (2.1.15.1) as

$$\mathbf{e}_2^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{c} \right) = 0 \tag{B.3.5.2}$$

$$\implies (\mathbf{Pe}_2)^{\mathsf{T}} (\mathbf{x} - \mathbf{c}) = 0 \tag{B.3.5.3}$$

yielding (B.3.5.1), and the proof for the minor axis is similar.

B.3.6. The latus rectum of a conic section is the chord that passes through the focus and is perpendicular to the major axis. The length of the latus rectum for a conic is given by

$$l = \begin{cases} 2\frac{\sqrt{|f_0\lambda_1|}}{\lambda_2} & e \neq 1\\ \frac{\eta}{\lambda_2} & e = 1 \end{cases}$$
 (B.3.6.1)

Solution: The latus rectum is perpendicular to the major axis for the standard conic. Hence, from Corollary (B.2.3),

$$\mathbf{m} = \mathbf{e}_2, \tag{B.3.6.2}$$

Since it passes through the focus, from (B.2.7.3)

$$\mathbf{q} = \mathbf{F} = \pm e \sqrt{\frac{f_0}{\lambda_2 (1 - e^2)}} \mathbf{e}_1$$
 (B.3.6.3)

for the standard hyperbola/ellipse. Also, from (B.1.5.1),

$$\mathbf{V} = \frac{\mathbf{D}}{f_0}, \mathbf{u} = 0, f = -1$$
 (B.3.6.4)

Substituting the above in (B.3.2.1), we obtain

$$\frac{2\sqrt{\left[\mathbf{e}_{2}^{\mathsf{T}}\left(\frac{\mathbf{p}}{f_{0}}e\sqrt{\frac{f_{0}}{\lambda_{2}(1-e^{2})}}\mathbf{e}_{1}\right)\right]^{2}-\left(e\sqrt{\frac{f_{0}}{\lambda_{2}(1-e^{2})}}\mathbf{e}_{1}^{\mathsf{T}}\frac{\mathbf{p}}{f_{0}}e\sqrt{\frac{f_{0}}{\lambda_{2}(1-e^{2})}}\mathbf{e}_{1}-1\right)\left(\mathbf{e}_{2}^{\mathsf{T}}\frac{\mathbf{p}}{f_{0}}\mathbf{e}_{2}\right)}{\mathbf{e}_{2}^{\mathsf{T}}\frac{\mathbf{p}}{f_{0}}\mathbf{e}_{2}}\|\mathbf{e}_{1}\|$$
(B.3.6.5)

Since

$$\mathbf{e}_{2}^{\mathsf{T}}\mathbf{D}\mathbf{e}_{1} = 0, \mathbf{e}_{1}^{\mathsf{T}}\mathbf{D}\mathbf{e}_{1} = \lambda_{1}, \mathbf{e}_{1}^{\mathsf{T}}\mathbf{e}_{1} = 1, \|\mathbf{e}_{2}\| = 1, \mathbf{e}_{2}^{\mathsf{T}}\mathbf{D}\mathbf{e}_{2} = \lambda_{2},$$
 (B.3.6.6)

(B.3.6.5) can be expressed as

$$\frac{2\sqrt{\left(1-\frac{\lambda_1e^2}{\lambda_2(1-e^2)}\right)\left(\frac{\lambda_2}{f_0}\right)}}{\frac{\lambda_2}{f_0}}$$

$$=2\frac{\sqrt{f_0\lambda_1}}{\lambda_2} \qquad \left(\because e^2=1-\frac{\lambda_1}{\lambda_2}\right) \qquad (B.3.6.8)$$

$$= 2\frac{\sqrt{f_0\lambda_1}}{\lambda_2} \qquad \left(\because e^2 = 1 - \frac{\lambda_1}{\lambda_2}\right) \tag{B.3.6.8}$$

For the standard parabola, the parameters in (B.3.2.1) are

$$\mathbf{q} = \mathbf{F} = -\frac{\eta}{4\lambda_2} \mathbf{e}_1, \mathbf{m} = \mathbf{e}_1, \mathbf{V} = \mathbf{D}, \mathbf{u} = \frac{\eta}{2} \mathbf{e}_1^{\mathsf{T}}, f = 0$$
 (B.3.6.9)

Substituting the above in (B.3.2.1), the length of the latus rectum can be expressed as

$$\frac{2\sqrt{\left[\mathbf{e}_{2}^{\top}\left(\mathbf{D}\left(-\frac{\eta}{4\lambda_{2}}\mathbf{e}_{1}\right)+\frac{\eta}{2}\mathbf{e}_{1}\right)\right]^{2}-\left(\left(-\frac{\eta}{4\lambda_{2}}\mathbf{e}_{1}\right)^{\top}\mathbf{D}\left(-\frac{\eta}{4\lambda_{2}}\mathbf{e}_{1}\right)+2\frac{\eta}{2}\mathbf{e}_{1}^{\top}\left(-\frac{\eta}{4\lambda_{2}}\mathbf{e}_{1}\right)\right)\left(\mathbf{e}_{2}^{\top}\mathbf{D}\mathbf{e}_{2}\right)}{\mathbf{e}_{2}^{\top}\mathbf{D}\mathbf{e}_{2}}\|\mathbf{e}_{2}\|$$
(B.3.6.10)

Since

$$\mathbf{e}_{2}^{\mathsf{T}}\mathbf{D}\mathbf{e}_{1} = 0, \mathbf{e}_{2}^{\mathsf{T}}\mathbf{e}_{2} = 0, \mathbf{e}_{1}^{\mathsf{T}}\mathbf{D}\mathbf{e}_{1} = 0, \tag{B.3.6.11}$$

$$\mathbf{e}_{1}^{\mathsf{T}}\mathbf{e}_{1} = 1, \|\mathbf{e}_{1}\| = 1, \mathbf{e}_{2}^{\mathsf{T}}\mathbf{D}\mathbf{e}_{2} = \lambda_{2},$$
 (B.3.6.12)

(B.3.6.10) can be expressed as

$$2\frac{\sqrt{\frac{\eta^2}{4\lambda_2}\lambda_2}}{\lambda_2} = \frac{\eta}{\lambda_2} \tag{B.3.6.13}$$

B.4 Tangent and Normal

B.4.1. If L in (B.3.1.1) touches (B.1.2.1) at exactly one point \mathbf{q} ,

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) = 0 \tag{B.4.1.1}$$

Proof. In this case, (B.3.1.6) has exactly one root. Hence, in (B.3.1.3)

$$\left[\mathbf{m}^{\mathsf{T}}\left(\mathbf{V}\mathbf{q}+\mathbf{u}\right)\right]^{2}-\left(\mathbf{m}^{\mathsf{T}}\mathbf{V}\mathbf{m}\right)\mathbf{g}\left(\mathbf{q}\right)=0\tag{B.4.1.2}$$

: q is the point of contact,

$$g(\mathbf{q}) = 0 \tag{B.4.1.3}$$

Substituting (B.4.1.3) in (B.4.1.2) and simplifying, we obtain (B.4.1.1).

B.4.2. Given the point of contact \mathbf{q} , the equation of a tangent to (B.1.2.1) is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}} \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{q} + f = 0 \tag{B.4.2.1}$$

Proof. The normal vector is obtained from (B.4.1.1) as

$$\kappa \mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u}, \kappa \in \mathbb{R}$$
 (B.4.2.2)

From (B.4.2.2), the equation of the tangent is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}} (\mathbf{x} - \mathbf{q}) = 0 \tag{B.4.2.3}$$

$$\implies (\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}} \mathbf{x} - \mathbf{q}^{\mathsf{T}} \mathbf{V}\mathbf{q} - \mathbf{u}^{\mathsf{T}} \mathbf{q} = 0$$
 (B.4.2.4)

which, upon substituting from (B.4.1.3) and simplifying yields (B.4.2.1)

B.4.3. Given the point of contact \mathbf{q} , the equation of the normal to (B.1.2.1) is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\mathsf{T}} \mathbf{R} (\mathbf{x} - \mathbf{q}) = 0$$
 (B.4.3.1)

Proof. The direction vector of the tangent is obtained from (B.4.2.2) as as

$$\mathbf{m} = \mathbf{R} (\mathbf{V} \mathbf{q} + \mathbf{u}), \tag{B.4.3.2}$$

where \mathbf{R} is the rotation matrix. From (B.4.3.2), the equation of the normal is given by (10.1.3.1)

B.4.4. Given the tangent

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c,\tag{B.4.4.1}$$

the point of contact to the conic in (B.1.2.1) is given by

$$\begin{pmatrix} \mathbf{n}^{\mathsf{T}} \\ \mathbf{m}^{\mathsf{T}} \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} c \\ -\mathbf{m}^{\mathsf{T}} \mathbf{u} \end{pmatrix}$$
 (B.4.4.2)

Proof. From (B.4.1.1),

$$\mathbf{m}^{\mathsf{T}}(\mathbf{V}\mathbf{q} + \mathbf{u}) = 0 \tag{B.4.4.3}$$

$$\implies \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{q} = -\mathbf{m}^{\mathsf{T}} \mathbf{u} \tag{B.4.4.4}$$

Combining (B.4.4.1) and (B.4.4.4), (B.4.4.2) is obtained.

B.4.5. If V^{-1} exists, given the normal vector \mathbf{n} , the tangent points of contact to (B.1.2.1) are given by

$$\mathbf{q}_{i} = \mathbf{V}^{-1} \left(\kappa_{i} \mathbf{n} - \mathbf{u} \right), i = 1, 2$$
where $\kappa_{i} = \pm \sqrt{\frac{f_{0}}{\mathbf{n}^{\top} \mathbf{V}^{-1} \mathbf{n}}}$
(B.4.5.1)

Proof. From (B.4.2.2),

$$\mathbf{q} = \mathbf{V}^{-1} \left(\kappa \mathbf{n} - \mathbf{u} \right), \quad \kappa \in \mathbb{R}$$
 (B.4.5.2)

Substituting (B.4.5.2) in (B.4.1.3),

$$(\kappa \mathbf{n} - \mathbf{u})^{\mathsf{T}} \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}) + 2\mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}) + f = 0$$
 (B.4.5.3)

$$\implies \kappa^2 \mathbf{n}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{n} - \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} + f = 0$$
 (B.4.5.4)

or,
$$\kappa = \pm \sqrt{\frac{f_0}{\mathbf{n}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{n}}}$$
 (B.4.5.5)

Substituting (B.4.5.5) in (B.4.5.2) yields (B.4.5.1).

B.4.6. For a conic/hyperbola, a line with normal vector **n** cannot be a tangent if

$$\frac{\mathbf{u}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{u} - f}{\mathbf{n}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{n}} < 0 \tag{B.4.6.1}$$

B.4.7. If V is not invertible, given the normal vector \mathbf{n} , the point of contact to (B.1.2.1) is given by the matrix equation

$$\begin{pmatrix} (\mathbf{u} + \kappa \mathbf{n})^{\mathsf{T}} \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
 (B.4.7.1)

where
$$\kappa = \frac{\mathbf{p}_1^{\mathsf{T}} \mathbf{u}}{\mathbf{p}_1^{\mathsf{T}} \mathbf{n}}, \quad \mathbf{V} \mathbf{p}_1 = 0$$
 (B.4.7.2)

Proof. If **V** is non-invertible, it has a zero eigenvalue. If the corresponding eigenvector is \mathbf{p}_1 , then,

$$\mathbf{V}\mathbf{p}_1 = 0 \tag{B.4.7.3}$$

From (B.4.2.2),

$$\kappa \mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u}, \quad \kappa \in \mathbb{R}$$
 (B.4.7.4)

$$\implies \kappa \mathbf{p}_{1}^{\mathsf{T}} \mathbf{n} = \mathbf{p}_{1}^{\mathsf{T}} \mathbf{V} \mathbf{q} + \mathbf{p}_{1}^{\mathsf{T}} \mathbf{u} \tag{B.4.7.5}$$

or,
$$\kappa \mathbf{p}_1^{\mathsf{T}} \mathbf{n} = \mathbf{p}_1^{\mathsf{T}} \mathbf{u}, \quad : \mathbf{p}_1^{\mathsf{T}} \mathbf{V} = 0, \quad (\text{ from (B.4.7.3)})$$
 (B.4.7.6)

yielding κ in (B.4.7.2). From (B.4.7.4),

$$\kappa \mathbf{q}^{\mathsf{T}} \mathbf{n} = \mathbf{q}^{\mathsf{T}} \mathbf{V} \mathbf{q} + \mathbf{q}^{\mathsf{T}} \mathbf{u} \tag{B.4.7.7}$$

$$\implies \kappa \mathbf{q}^{\mathsf{T}} \mathbf{n} = -f - \mathbf{q}^{\mathsf{T}} \mathbf{u} \quad \text{from (B.4.1.3)},$$
 (B.4.7.8)

or,
$$(\kappa \mathbf{n} + \mathbf{u})^{\mathsf{T}} \mathbf{q} = -f$$
 (B.4.7.9)

(B.4.7.4) can be expressed as

$$\mathbf{V}\mathbf{q} = \kappa \mathbf{n} - \mathbf{u}.\tag{B.4.7.10}$$

$$(B.4.7.9)$$
 and $(B.4.7.10)$ clubbed together result in $(B.4.7.1)$.

B.4.8. The asymptotes of the hyperbola in (B.1.5.1), defined to be the lines that do not

intersect the hyperbola, are given by

$$(\sqrt{|\lambda_1|} \pm \sqrt{|\lambda_2|}) \mathbf{y} = 0$$
 (B.4.8.1)

Proof. From (B.1.5.1), it is obvious that the pair of lines represented by

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = 0 \tag{B.4.8.2}$$

do not intersect the conic

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = f_0 \tag{B.4.8.3}$$

Thus, (B.4.8.2) represents the asysmptotes of the hyperbola in (B.1.5.1) and can be expressed as

$$\lambda_1 y_1^2 + \lambda_2 y_1^2 = 0, (B.4.8.4)$$

which can then be simplified using the steps in (A.8.3.4)- (A.8.3.7) to obtain (B.4.8.1).

B.4.9. (B.1.2.1) represents a pair of straight lines if

$$\mathbf{u}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{u} - f = 0 \tag{B.4.9.1}$$

B.4.10. (B.1.2.1) represents a pair of straight lines if the matrix

$$\begin{pmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\mathsf{T}} & f \end{pmatrix} \tag{B.4.10.1}$$

is singular.

Proof. Let

$$\begin{pmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\mathsf{T}} & f \end{pmatrix} \mathbf{x} = \mathbf{0} \tag{B.4.10.2}$$

Expressing

$$\mathbf{x} = \begin{pmatrix} \mathbf{y} \\ y_3 \end{pmatrix}, \tag{B.4.10.3}$$

$$\begin{pmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\mathsf{T}} & f \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ y_3 \end{pmatrix} = \mathbf{0} \tag{B.4.10.4}$$

$$\implies$$
 Vy + y_3 **u** = **0** and (B.4.10.5)

$$\mathbf{u}^{\mathsf{T}}\mathbf{y} + fy_3 = 0 \tag{B.4.10.6}$$

From (B.4.10.5) we obtain,

$$\mathbf{y}^{\mathsf{T}}\mathbf{V}\mathbf{y} + y_3\mathbf{y}^{\mathsf{T}}\mathbf{u} = \mathbf{0} \tag{B.4.10.7}$$

$$\implies \mathbf{y}^{\mathsf{T}} \mathbf{V} \mathbf{y} + y_3 \mathbf{u}^{\mathsf{T}} \mathbf{y} = \mathbf{0}$$
 (B.4.10.8)

yielding (B.4.9.1) upon substituting from (B.4.10.6).

B.4.11. Using the affine transformation, (B.4.8.1) can be expressed as the lines

$$(\sqrt{|\lambda_1|} \pm \sqrt{|\lambda_2|}) \mathbf{P}^{\mathsf{T}} (\mathbf{x} - \mathbf{c}) = 0$$
 (B.4.11.1)

B.4.12. The angle between the asymptotes can be expressed as

$$\cos \theta = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1| + |\lambda_2|} \tag{B.4.12.1}$$

Proof. The normal vectors of the lines in (B.4.11.1) are

$$\mathbf{n}_{1} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ \sqrt{|\lambda_{2}|} \end{pmatrix}$$

$$\mathbf{n}_{2} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ -\sqrt{|\lambda_{2}|} \end{pmatrix}$$
(B.4.12.2)

The angle between the asymptotes is given by

$$\cos \theta = \frac{\mathbf{n_1}^\top \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|}$$
 (B.4.12.3)

The orthogonal matrix **P** preserves the norm, i.e.

$$\|\mathbf{n}_1\| = \left\| \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_1|} \\ \sqrt{|\lambda_2|} \end{pmatrix} \right\| = \left\| \begin{pmatrix} \sqrt{|\lambda_1|} \\ \sqrt{|\lambda_2|} \end{pmatrix} \right\|$$
(B.4.12.4)

$$= \sqrt{|\lambda_1| + |\lambda_2|} = ||\mathbf{n}_2|| \tag{B.4.12.5}$$

It is easy to verify that

$$\mathbf{n_1}^{\mathsf{T}} \mathbf{n_2} = |\lambda_1| - |\lambda_2| \tag{B.4.12.6}$$

Thus, the angle between the asymptotes is obtained from (B.4.12.3) as (B.4.12.1).

B.4.13. For a circle, the points of contact are

$$\mathbf{q}_{ij} = \left(\pm r \frac{\mathbf{n}_j}{\|\mathbf{n}_i\|} - \mathbf{u}\right), \quad i, j = 1, 2$$
(B.4.13.1)

Proof. From (B.4.5.1), and (7.1.1.1),

$$\kappa_{ij} = \pm \frac{r}{\left\| \mathbf{n}_{j} \right\|} \tag{B.4.13.2}$$

B.4.14. A point **h** lies on a normal to the conic in (B.1.2.1) if

$$\left(\mathbf{m}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u})\right)^{2} \left(\mathbf{n}^{\top}\mathbf{V}\mathbf{n}\right) - 2\left(\mathbf{m}^{\top}\mathbf{V}\mathbf{n}\right) \left(\mathbf{m}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u})\mathbf{n}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u})\right) + g\left(\mathbf{h}\right) \left(\mathbf{m}^{\top}\mathbf{V}\mathbf{n}\right)^{2} = 0$$
(B.4.14.1)

Proof. The point of contact for the normal passing through a point **h** is given by

$$\mathbf{q} = \mathbf{h} + \mu \mathbf{n} \tag{B.4.14.2}$$

From (B.4.1.1), the tangent at \mathbf{q} satisfies

$$\mathbf{m}^{\mathsf{T}}(\mathbf{V}\mathbf{q} + \mathbf{u}) = 0 \tag{B.4.14.3}$$

Substituting (B.4.14.2) in (B.4.14.3),

$$\mathbf{m}^{\mathsf{T}}(\mathbf{V}(\mathbf{h} + \mu \mathbf{n}) + \mathbf{u}) = 0 \tag{B.4.14.4}$$

$$\implies \mu \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{n} = -\mathbf{m}^{\mathsf{T}} (\mathbf{V} \mathbf{h} + \mathbf{u}) \tag{B.4.14.5}$$

yielding

$$\mu = -\frac{\mathbf{m}^{\mathsf{T}}(\mathbf{V}\mathbf{h} + \mathbf{u})}{\mathbf{m}^{\mathsf{T}}\mathbf{V}\mathbf{n}},\tag{B.4.14.6}$$

From (B.3.1.6),

$$\mu^{2}\mathbf{n}^{\mathsf{T}}\mathbf{V}\mathbf{n} + 2\mu\mathbf{n}^{\mathsf{T}}(\mathbf{V}\mathbf{h} + \mathbf{u}) + g(\mathbf{h}) = 0$$
 (B.4.14.7)

From (B.4.14.6), (B.4.14.7) can be expressed as

$$\left(-\frac{\mathbf{m}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u})}{\mathbf{m}^{\top}\mathbf{V}\mathbf{n}}\right)^{2}\mathbf{n}^{\top}\mathbf{V}\mathbf{n} + 2\left(-\frac{\mathbf{m}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u})}{\mathbf{m}^{\top}\mathbf{V}\mathbf{n}}\right)\mathbf{n}^{\top}(\mathbf{V}\mathbf{h} + \mathbf{u}) + g(\mathbf{h}) = 0 \quad (B.4.14.8)$$

yielding (B.4.14.1).

B.4.15. A point **h** lies on a tangent to the conic in (B.1.2.1) if

$$\mathbf{m}^{\mathsf{T}} \left[(\mathbf{V}\mathbf{h} + \mathbf{u}) (\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} - \mathbf{V}\mathbf{g} (\mathbf{h}) \right] \mathbf{m} = 0$$
 (B.4.15.1)

Proof. From (B.3.1.3) and (B.4.1.2)

$$\left[\mathbf{m}^{\mathsf{T}}\left(\mathbf{V}\mathbf{h} + \mathbf{u}\right)\right]^{2} - \left(\mathbf{m}^{\mathsf{T}}\mathbf{V}\mathbf{m}\right)\mathbf{g}\left(\mathbf{h}\right) = 0 \tag{B.4.15.2}$$

yielding (B.4.15.1).

B.4.16. The normal vectors of the tangents to the conic in (B.1.2.1) from a point **h** are given by

$$\mathbf{n}_{1} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ \sqrt{|\lambda_{2}|} \end{pmatrix}$$

$$\mathbf{n}_{2} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ -\sqrt{|\lambda_{2}|} \end{pmatrix}$$
(B.4.16.1)

where λ_i , **P** are the eigenparameters of

$$\Sigma = (\mathbf{V}\mathbf{h} + \mathbf{u})(\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} - (\mathbf{g}(\mathbf{h}))\mathbf{V}. \tag{B.4.16.2}$$

Proof. From (B.4.15.1) we obtain (B.4.16.2). Consequently, from (B.4.12.2), (B.4.16.1) can be obtained.

B.4.17. (B.1.2.1) represents a pair of straight lines if the matrix

$$\begin{pmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\mathsf{T}} & f \end{pmatrix} \tag{B.4.17.1}$$

is singular.

B.4.18. The intersection of two conics with parameters V_i , u_i , f_i , i = 1, 2 is defined as

$$\mathbf{x}^{\mathsf{T}} (\mathbf{V}_1 + \mu \mathbf{V}_2) \mathbf{x} + 2 (\mathbf{u}_1 + \mu \mathbf{u}_2)^{\mathsf{T}} \mathbf{x} + (f_1 + \mu f_2) = 0$$
 (B.4.18.1)

B.4.19. From (B.4.17.1), (B.4.18.1) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V}_1 + \mu \mathbf{V}_2 & \mathbf{u}_1 + \mu \mathbf{u}_2 \\ (\mathbf{u}_1 + \mu \mathbf{u}_2)^\top & f_1 + \mu f_2 \end{vmatrix} = 0$$
 (B.4.19.1)