Shielding Induced Safe Reinforcement Learning For Drone Navigation

Daniel Bramblett, Vivek Sahukar

Group #1

CSE 598: Al Safety and Assessment

Introduction

- Autonomous drones increasingly used in farms, surveillance, etc.
- Safety concerns training drones to navigate real world environments.
- RL requires performing unsafe behavior to learn it is unsafe.
- Unsafe behavior puts both the drone and all users/agents at risk.
- Not possible to hardcode policies to handle all real world situations.

Objective of this project:

Apply shielding to allow for safer and faster reinforcement learning training for drone navigation while avoiding obstacles.

Approach

Evaluate different types of shields for safer and faster training of drones in a risk-prone environment:

- 1. Find an existing drone simulator.
- 2. Modify the environment by adding an obstacle that needs to be avoided.
- 3. Implement different approaches for shielding.
- Train a reinforcement learning agent with and without a shield.
- 5. Evaluate the learning behavior and convergence speed while training.

Isaac Gym

- End-to-end parallel training on GPU (faster training and rendering)
- Ingenuity Domain Task: reach the random target location as quick as possible.
 - The problem is fully observable.
 - The agents has a dense reward function that rewards it for:
 - Distance to the target.
 - How upright the drone is.
 - Not spinning.

Methodology - Shielding

Shielding: evaluates the agent's action before passing it to the environment.

- If an action does not satisfy the shield the shield can replace the action and/or give feedback to the agent.
- Unique challenge of the Ingenuity environment: continuous action space
 - Ingenuity Helicopter has 6 degrees of freedom.

Methodology - Adding Risk Into Ingenuity

We added in an obstacle into the Ingenuity environment.

- If the agent crashed into the object, they take a -10,000 reward and the environment resets.
 - Any crashes will result in a negative expected value signifying unsafe behavior.
- The agent receives an observation of its relative location from the obstacle.

Updated Task: Reach the target location while safely circumnavigating the obstacle.

Methodology - 3 Shielding Variations

Actions fail the shield if the agent is within a certain distance of the obstacle.

Safe Action: Move the agent out of the shield as fast as possible

Feedback: Take away the positive reward

Results

Experiment (Shield)	Reward at last step	Learning	Stability
0-No	-6567	No	No
1-Hard	7283	Yes	Yes
2-Soft	6581	Yes	No
3-Hybrid	6897	Yes	Yes

Shield \rightarrow faster learning & convergence \rightarrow safe behavior

Conclusion & Future work

Possible next project steps:

- Create more dynamic environments:
 - Different and moving types of obstacles and targets.
 - Environmental effects (eg. wind)
- Partial observability:
 - Without knowing the ground state, how can the shield be used to prevent unsafe behavior?
- Creating shields for multiple sources of risk.
 - How do you find actions that satisfy all safety requirements in a continuous action space.

Contributions

Daniel Bramblett

- Explored and tested other repositories: OpenAl Gym, gym-pybullet-drones
- Constructed the algorithm for redirecting the agent.

Vivek Sahukar

- Set up and modified Isaac Gym.
- Ran the experiments.
- Researched existing work on Safe AI with regards to drones.

Pair programming was used for coding the shielding experiments.

Thank you

Questions?

