

Produção mais Limpa (P+L) Parte 2

Engenharia e Meio Ambiente TER-00108 Escola de Engenharia-UFF

Seleção do foco de avaliação e priorização das ações

Com base na análise anterior e na disponibilidade de recursos financeiros da Empresa, você e sua equipe definirão as etapas, processos, produtos e/ou equipamentos que serão priorizados para as efetivas medições e realização dos balanços de massa e/ou energia.

Balanços de massa e/ou energia

Planejamento das medições

Definidos os pontos críticos das medições, planeje a realização do balanço de massa e/ou de energia. Você deverá construir um Fluxograma Específico para a realização desse balanço. Você já sabe:

- Balanço Global: Entradas e Saídas de toda a Empresa;
- Balanços Intermediários: Entradas e Saídas em setores da Empresa (corte, forjaria, usinagem, tratamento térmico, acabamento, montagem, expedição, manutenção, ETE...);
- Balanço Específico: identificando-se a ESTAMPARIA como um setor a ser estudado, o balanço específico deverá ser realizado no setor como um todo e detalhadamente em cada máquina e/ou operação identificada como importante.

Defina:

- Setor, equipamento ou processo que será analisado;
- ❖ Período representativo para a realização do balanço: quando começa e quando termina (uma semana, duas semanas, um mês ou mais). Não esqueça, a Empresa precisa estar funcionando para que o balanço de massa e/ou de energia possa ser realizado e seja representativo (uma empresa parada não expressa a realidade!);
- ❖ Após realizadas as medições, transformar os valores para o período de 1 (um) ano;
- Equipamentos necessários para medição: poderão ser utilizados os mesmos procedimentos e equipamentos que você adotou para a realização do balanço global;
- ❖ Para o preenchimento dos dados quantitativos medidos nesta etapa você deverá utilizar tabelas iguais às utilizadas na Tarefa 07.

BALANÇO DE MASSA DO SETOR DE ESTAMPARIA - ETAPA 1:

Estamparia-etapa 1 Saídas **Entradas** Retalho de aço Chapas de Aço 2000x1000x1,2mm Luvas de malha com óleo Óleo 1.1 Serragem Óleo usado Guilhotina

Engenharia e Meio Ambiente P+I.

Estamparia-etapa 1

Saídas

1.3 Prensa (periférica)

Rebarba de aço Óleo usado Serragem com óleo

Óleo Serragem Energia elétrica

1.4 Prensa (chassi)

Rebarba de aço Óleo usado Serragem com óleo

Óleo Serragem Energia elétrica

1.5 Prensa (slot)

Rebarba de aço Óleo usado Serragem com óleo

Engenharia e Meio Ambiente P+L

Estamparia-etapa 1

Saídas

1.6 Prensa (guia)

Rebarba de aço Óleo usado Serragem com óleo

Óleo Serragem Energia elétrica

1.7 Prensa (painel cego)

Rebarba de aço Óleo usado Serragem com óleo

Óleo Serragem Energia elétrica

1.8 Prensa (conector)

Rebarba de aço Óleo usado Serragem com óleo

Engenharia e Meio Ambiente P+L

Entradas Estamparia-etapa 1

Óleo Serragem Energia elétrica

1.6 Prensa (winchester)

Rebarba de aço Óleo usado Serragem com óleo

Saídas

Chapa cortada e prensada para o setor de usinagem

TABELAS DE DADOS DA AVALIAÇÃO ESPECÍFICA

Departamento de Engenharia Agrícola e do Meio Ambiente

Intermediária: Principais produtos

Nº etapa	Produto/serviço	Quantidade por ano	Unidade
1.1	Chapa cortada guilhotina- G 1.1	207.812,00	kg
1.2	Chapa cortada guilhotina- G 1.2	168.327,72	kg
1.3	Chapa prensada prensa- P 1.3	167.486,08	Kg
1.4	Chapa prensada prensa- P 1.4	166.481,16	Kg
1.5	Chapa prensada prensa- P 1.5	166.148,20	Kg
1.6	Chapa prensada prensa- P 1.6	164.985,17	Kg
1.7	Chapa prensada prensa – P 1.7	163.335,31	Kg
1.8	Chapa prensada prensa- P 1.8	161.538,63	Kg
1.9	Chapa prensada prensa- P 1.9	160.246,32	kg

Intermediária: Resíduos/Emissões (sólidos, líquidos e atmosféricos)

Nº etapa	Resíduos/Emissões	Quantidade por ano	Unidade	Custo de compra* (R\$)	Custo da disposição**	Custo dos Resíduos / emissões	Custo total (R\$)
1.1	Rebarba de aço G 1.1	81.108,00	kg	1,10	10.544,04	89.218,81	79.485,814
1.2	Rebarba de aço G 1.2	39.484,28	Kg	1,10	5.132,96	43.432,71	38.694,59
1.3	Rebarba de aço P 1.3	841,64	Kg	1,10	109,41	925,80	824,81
1.4	Rebarba de aço P 1.4	1.004,92	Kg	1,10	130,64	1.105.41	984,82
1.5	Rebarba de aço P 1.5	332,96	Kg	1,10	43,29	366,26	326,30
1.6	Rebarba de aço P 1.6	1.163,04	Kg	1,10	151,19	1.273,34	1.139,78
1.7	Rebarba de aço P 1.7	1.649,85	Kg	1,10	214,48	1.814,83	1.616,85
1.8	Rebarba de aço P 1.8	1.796,69	Kg	1,10	233,57	1.946,66	1.760,75
1.9	Rebarba de aço P 1.9	1.292,39	kg	1,10	168,00	1.421,63	1.266,46

^{*} Nesta coluna você deverá colocar o valor da compra da matéria-prima que deu origem ao resíduo.

^{**} Neste caso o custo de disposição é relativo somente ao custo de transporte

Avaliação específica

Nº etapa	de MP	custo tota de MP R\$	Custo de Compra MP	Quantidade de resíduos Kg/ano	Custo de Transporte R\$ 0,13/kg	venda R\$ 0,25/kg	Ganho com venda de res. R\$	Relacionado Com MP R\$ 1,10/kg	custo total do resíduo R\$	produto Em	ficiência prego MP % /100
	Α	В	A*B = C	D	D*0,13= E	D*0,25=F	F – E=G	B*D=H	[E+H]-F=I	J = A - D	K
1.1	288.921,00	1,10	317.813,10	81.108,00	10.544,04	20.277,00	9.732,96	89.218,80	79.485,84	207.813,00	0,719
1.2	207.812,00	1,10	228.593,20	39.484,26	5.132,96	9.871,07	4.738,11	43.432,71	38.694,59	168.327,72	0,810
1.3	168.327,72	1,10	185.160,49	841,64	109,41	210,41	101,00	925,80	824,81	166.481,16	0,995
1.4	167.486,08	1.10	184.234,69	1.004,92	130,64	251,23	120,59	1.105,41	984,82	166.148,20	0.994
1.5	166.481,16	1,10	183,129,28	332,96	43,29	83,24	39,96	366,26	326,30	164,985,17	0,998
1.6	166.148,20	1,10	182.763,02	1.163,04	151,19	290,76	139,56	1.279,34	1.139,78	163.335,31	0,993
1.7	164.985,17	1,10	181483,68	1.649,85	214,48	412,46	197,98	1.814,84	1.616,85	161.538,63	0,990
1.8	163.335,61	1,10	179.669,17	1.796,69	233,57	449,17	215,60	1.976,36	1.760,75	161.538,63	0,989
1.9	161.538,63	1,10	177.692,49	1.292,21	168,00	323,08	155,08	1.421,54	1.266,46	160.246,32	0,992
Total				128.673,68	16.673,68	32.168,42	15.440,84				

Preco da

Custo res.

❖ Observa-se na tabela Avaliação Específica que a menor eficiência ocorre na Guilhotina 1.1. Apresenta maiores custos de matéria-prima e maior geração de resíduos, sendo, portanto, forte candidata a ser estudada detalhadamente.

Intermediária: matérias-primas e auxiliares

Nº etapa	Material	Quantidade por ano	Unidade	Custo Unitário de Compra (R\$)	Custo total (R\$)	Participação no total do Produto %
1.1	Chapas de aço 2000x1000x1,2mm	288.921,00	kg	1,10	317.813,10	100

• BALANÇO DE MASSA ESPECÍFICO PARA A GUILHOTINA 1.1:

❖ TABELAS DE DADOS DA AVALIAÇÃO ESPECÍFICA – ESTUDO DE CASO 1 ANTES DA PMAISL

Entradas			Processo produtivo		Saídas		
Matérias primas	Água	Energia	Etapas	Efluentes Líquidos	Resíduos Sólidos	Emissões atmosféricas	
Chapas de aço 2000x1000x 1.2mm 288,921 kg	Não quantificado	Não quantificado	1.1 Guilhotina	Não quantificado	Retalho de aço 81.108 kg	Não quantificado	

Específica: principais produtos

Nº etapa	Produto/serviço	Quantidade por ano	Unidade
1.1	Chapa cortada	207.813	kg

Específica: resíduos/emissões (sólidos, líquidos e atmosféricos)

		7	(1000)	/		/	
Nº etapa	Resíduos/emissões	Quantidade por ano	Unidade	Custo de compra* (R\$)	Custo de disposição** R\$ 0,13/kg	Local de Disposição do resíduo	Custo total (R\$)
1.1	Retalho de aço	81.800,00	kg	1,10	10.544,04		79.485,84

IMPORTANTE:

- * Nesta coluna você deverá colocar o valor de compra da matéria-prima que deu origem ao resíduo.
- ** Neste caso o custo de disposição é relativo somente ao custo de transporte e no custo total considera-se o ganho com a venda dos resíduos.

Nº etapa	Material	Quantidade por ano	Unidade	Custo unitário de Compra (R\$)	Custo total (R\$)	Participação no total do produto (%)
1.1	Chapa de aço 2000x1000x1,2mm	288.921,00	Kg	1,10	317.813,00	100

❖ IMPORTANTÍSSIMO: A realização dos balanços de massa e/ou energia vai exigir um apoio extra da direção da Empresa. No período de tempo determinado para a realização do balanço, a Empresa deverá continuar produzindo normalmente e fazer o trabalho de medições com a máxima precisão. Só assim os resultados serão confiáveis.

- ❖ Feito o balanço de massa nas etapas e/ou setores priorizados, o ECOTIME deverá avaliar as causas da geração de CADA resíduo identificado.
- ❖ Perguntem-se: POR QUE? COMO? QUANDO? ONDE? os resíduos são/foram gerados!
- Quando a PmaisL fizer parte da sua vida e do seu dia-a-dia, você fará essas perguntas diariamente, a todo momento!!!!
- Peça que o ECOTIME reflita sobre a origem dos resíduos, considerando como possíveis causas de geração:

Tabela

Causas da geração de resíduos	Retalho de Aço	Demais	Demais
Matéria prima (MP) não empregada	*		
Impurezas na MP			
Materiais auxiliares utilizados			
Resíduos de manutenção			
Materiais de partida e desligamento			
Materiais de manuseio			
Estocagem	×		
Materiais de amostragem			
Materiais de análise			
Transporte	*		
Perdas devidas à evaporação			
Materiais de agnação e vazamentos			
Material de embalagem			
Outras que você identificar			

- ❖ Depois de realizadas todas as medições e de ter discutido com o ECOTIME as causas de geração dos resíduos (no exemplo que estamos estudando, as causas da geração de retalhos de aço), vocês deverão identificar oportunidades de mudar essa situação, ou seja, opções de produção mais limpa para deixar de gerar o resíduo.
 - ❖ A participação do ECOTIME é fundamental nesse momento, pois são seus integrantes que podem sugerir melhorias.
 - Em ordem de prioridade para a busca de soluções, façam as seguintes perguntas:
 - 1. Como deixar de gerar o resíduo?
 - 2. Como reduzir sua geração?
 - 3. Como reciclar internamente?
 - 4. Como reciclar externamente?

❖ O fluxograma do próximo slide poderá ser utilizado como referência para análise das oportunidades identificadas para cada causa de geração de resíduo. Inicie a análise utilizando o enfoque do Nível 1. Se não ficar demonstrada sua viabilidade, passe para o Nível 2. Se a solução também não for viável, examine o Nível 3.

- ❖ Além desses, outros pontos devem ser avaliados para identificar oportunidades. Pode- se, por exemplo, observar o fluxo dos resíduos e produtos semiacabados do processo descrito no layout da Empresa Exemplo.
- Considere também oportunidades no que diz respeito a retrabalho de produtos, qualidade, saúde, segurança, tempos de produção, procedimentos organizacionais e muitos outros.

❖ Veja como você pode modificar o nível da abordagem de PmaisL em que você se encontra:

Nível 3 (Reciclagem externa)

- Suponha que você utiliza barras de aço em sua Empresa, gerando como resíduo pontas de barras (sucata metálica), que são, em sua totalidade, encaminhadas para a reciclagem externa (sucateiros). Suponha também que você compra 100kg de barras de aço por R\$ 1,10/kg e vende 30kg de pontas de barra por R\$0,25/kg, ganhando com essa venda R\$3,60. E com a venda total dos produtos, ganha R\$ 700,00.
- Como se vê na tabela dos próximos slides, parece um bom negócio, não é?
- Mas continue acompanhando…

* Nível 2 (Reciclagem interna)

TER
Departamento de
Engenharia Agrícola
e do Meio Ambiente

- Imagine agora que você poderia utilizar internamente parte do material que era vendido (as pontas de barras) para fazer outras peças.
- Assim, parte do resíduo passa a ser matéria-prima, transformada em outro produto resultante da reciclagem interna das pontas de barras.
- Quanto você ganha dessa forma? De 30kg de resíduos, você agora gera 15kg de peças que são vendidas como produto resultante da reciclagem interna, e vende os restantes 15 kg de resíduos aos sucateiros.
- Portanto, com a venda de resíduos você agora só ganha R\$1,80. Em compensação, com a venda de produtos obtidos com a reciclagem interna das pontas de barra você ganha R\$ 45,00.
- No total, então, você ganha R\$ 745,00 vendendo produtos.
- Confira na tabela. É um ótimo negócio!
- Mas ainda não acabou...

* Nível 1 (Redução na fonte)

Considere agora a possibilidade de conversar com o fornecedor para que ele lhe entregue a matéria-prima sem as indesejáveis pontas de barra. Dessa forma você estará transformando toda a barra comprada (100 kg a R\$ 1,10/kg) no seu produto principal, de maior valor. É um excelente negócio!!!!!

Avaliação Específica

	Quantidade de MP kg/ano	Custo de MP R\$/kg	Custo total de MP (R\$)	Quant. de resíduos Kg/ano	Qnt. de res. reciclagem externa	Qnt. de res reciclagem interna	Custo de transporte R\$0,13/kg	Preço de venda do res. R\$ 0,25/kg	Custo de disp. R\$	Ganho p/ venda de res.
	Α	В	A*B = C	D	E	F	E*0,13 =G	D*0,25 = H	I	H – G = J
Nível 3 Bom negócio	100,00	1,10	110,00	30,00	30,00		3,90	7,50	3,90	3,60
Nível 2 Ótimo negócio	100,00	1,10	110,00	30,00	15,00	15,00	1,95	3,75	1,95	1,80
Nível 1 Excelente negócio	100,00	1,10	110,00							

Avaliação Específica

	Custo resíduo relacionado c/M² R\$ 1,10/kg	Custo total do resíduo R\$	Qnt. de produto principal Kg/ano	Qnt. de produto reciclagem interna Kg/ano	Preço de venda do produto R\$/kg	Preço da venda de produto reciclagem interna R\$3,00/kg	Ganho com venda de produto R\$	Total de venda R\$	Eficiência no emprego de MP %
	B*E = K	[G+K]-H=L	A-D = M	N-E	0	N*3 = P	M*O = Q	P+Q = R	(M/A)*100
Nível 3 Bom negócio	33,00	29,40	70		10,00		700,00	700,00	70
Nível 2	16,50	14,70	70	15	10,00	45,00	700,00	745,00	([M+N]/A)*100
Ótimo negócio									85
Nível 1			100		10,00		1.000,00	1.000,00	(M/A)*100
Excelente negócio									100

Resumindo

Você imaginava que era um bom negócio (Nível 3) vender resíduos para reciclagem externa. Com isso você ganhava R\$ 3,60 com a venda do resíduo, mas tinha uma perda econômica em relação ao custo de MP de R\$ 33,00. Observe o nível 1 e as vantagens de trabalhar cada vez mais no enfoque do Nível 1. Pensando dessa forma você começa a aplicar os conceitos da PmaisL.

Continuando

Depois de ter discutido DIVERSAS oportunidades de melhoria com o ECOTIME, vocês concluíram que talvez fosse possível reduzir o tamanho da chapa de aço de 2000x1000x1,2mm para 1850x10000x1,2mm, a fim de otimizar o emprego da matéria-prima (redução na fonte). Você deverá então fazer o cálculo para verificar a redução de geração de resíduo que poderá obter com a redução de 150mm no comprimento da chapa. Seu objetivo é fabricar o mesmo número de peças usando uma quantidade menor de matéria-prima e gerando uma quantidade menor de resíduos. Em seguida, você deverá consultar o fornecedor da chapa para avaliar a viabilidade técnica e econômica dessa opção. Ela só será viável se você conseguir que ele aceite lhe fornecer a chapa com as dimensões adequadas para a sua necessidade.

❖ Então, depois de aplicada a oportunidade de PmaisL, você teria: DEPOIS DA PMAISL

Entradas			Processo produtivo		Saídas		
Matérias primas	Água	Energia	Etapas	Efluentes Líquidos	Resíduos Sólidos	Emissões atmosféricas	
Chapas de aço 2000x1000x 1.2mm 216.163 kg	Não quantificado	Não quantificado	1.1 Guilhotina	Não quantificado	Retalho de aço 42.382 kg	Não quantificado	

Específica: principais produtos

Nº etapa	Produto/serviço	Quantidade por ano	Unidade
1.1	Chapa cortada	173.781	kg

Específica: resíduos/emissões (sólidos, líquidos e atmosféricos)

Nº etapa	Resíduos/emissões	Quantidade por ano	Unidade	Custo de compra* (R\$)	Custo de disposição** R\$ 0,13/kg	Local de Disposição do resíduo	Custo total (R\$)		
1.1	Retalho de aço	42.382,00	kg	1,10	5.085,84		46.620,20		

IMPORTANTE:

- * Nesta coluna você deverá colocar o valor de compra da matéria-prima que deu origem ao resíduo.
- ** Neste caso o custo de disposição é relativo somente ao custo de transporte e no custo total considera-se o ganho com a venda dos resíduos.

Específica: matérias primas e auxiliares

Nº etapa	Material	Quantidade por ano	Unidade	Custo unitário de Compra (R\$)	Custo total (R\$)	Participação no total do produto (%)
1.1	Chapa de aço 2000x1000x1,2mm	216.163,00	Kg	1,10	237.779,30	100

Depois da PmaisL

Etapa 1	Qntidade de MP Kg/ano	Custo de MP R\$	Custo total de MP R\$	Qnt. de resíduos Kg/ano	Custo de transporte R\$ 0,13/kg	Preço de venda R\$ 0,25/kg	Ganho com venda de res. R\$	Custo de res. c/ MP R\$ 1,10/kg	Custo total do resíduo R\$	Quant. de produto fabricado kg
	A	В	A*B-C	D	D*0,13-E	D*0,25-F	F-E-G	B*D-H	(E+H)-F-I	J
1.1 Guilhotina	216.163,00	1,10	237.779,30	42.382,00	5.509,66	10.595,50	5.085,84	46.620,20	41.534,36	173.781,00

❖ Observe que, apesar de o custo de compra da matéria-prima ter permanecido igual, o custo dos resíduos relacionados à MP caiu em, aproximadamente, 50%.

Avaliação técnica, ambiental e econômica

 Vocês identificaram diversas oportunidades de Produção mais Limpa. Agora deverão proceder à avaliação técnica, econômica e ambiental de cada opção identificada.

Avaliação técnica

 Nessa avaliação são consideradas as propriedades e requisitos que as matérias-primas e outros materiais devem apresentar para o produto que se deseja fabricar, de maneira que se possam sugerir modificações. Sendo possível tecnicamente implementar-se a opção, procede-se à avaliação ambiental

Avaliação ambiental

- Nesta avaliação deverão ser observados os benefícios ambientais que poderão ser obtidos pela empresa. Dentre eles, podemos citar: redução do consumo de MP (kg de MP/ano); redução de carga orgânica (mg de DBO/I), inorgânica e metais tóxicos (mg de metal/I) no efluente final; e modificação da classificação dos resíduos sólidos (da Classe I, para II ou III).
- Esses resultados são medidos e comprovados por meio da realização de análises laboratoriais. Para isso, você deverá buscar o auxílio de um laboratório que realize análises laboratoriais ambientais.

Avaliação econômica

❖ Por fim, será realizada a avaliação econômica, através de um estudo de viabilidade econômica. Deverá ser considerado o período de retorno do investimento, a taxa interna de retorno e o valor presente líquido.

Você acha isso difícil?

Pense então da seguinte maneira:

- quanto custa a opção da maneira como está sendo feita hoje =
 QUAL O CUSTO DAS OPERAÇÕES ATUAIS? = SITUAÇÃO ATUAL
- quanto custa manter a modificação da opção = quanto custarão as operações futuras? = SITUAÇÃO ESPERADA.
- Em seguida, considere os investimentos em equipamentos, obras civis, materiais envolvidos, treinamento.

Para saber em quanto tempo o investimento se pagará (em número de meses), faça o seguinte cálculo simples:

- Após decorrido o número de meses encontrado no cálculo acima, os valores obtidos serão ganhos permanentes da empresa.
- Benefício econômico (R\$) é o ganho líquido que uma empresa obtém em um determinado projeto. No caso de opções de Produção mais Limpa, é a diferença positiva entre o custo da Situação Atual menos o custo da Situação Esperada.

Resumindo:

Opção 1

Avaliação técnica, Ambiental e econômica

Opção 2

Retalho de aço

Opção 3

❖ Seleção da opção

Feita a avaliação das diversas opções identificadas para a redução do resíduo, escolhe-se aquela que apresente a melhor condição técnica, com os maiores benefícios ambientais e econômicos.

Opção 1

Redução do comprimento da chapa

Retalho de aço

- ❖ Esse mesmo procedimento deverá ser seguido para cada resíduo que foi priorizado e para o qual foram realizadas medições por meio dos balanços de massa e energia.
- ❖ Portanto:

Benefícios Econômicos

Indicadores	Índice antes da PmaisL	Índice após a PmaisL	Redução	Unidade	Redução %
Redução custo resíduo associado a MP aço	89.218,80	46.620,20	42.598,60	R\$	47,7
Redução compra de MP aço	317.813,10	237.779,30	80.000,00	R\$	25

Benefícios ambientais

Indicadores	Índices antes da PmaisL	Índices após a PmaisL	Redução	Unidade	Redução %
Consumo total de MP aço	288.921	216.163	72.758	kg	25
Quantidade de resíduo gerado	81.108,00	43.352,00	38.726,00	kg	47,7
Quantidade de resíduo gerado/MP consumido (81.108/288.92)	0,28	0,19			
Quantidade de resíduo gerado/produto fabricado (81.108/207.812)	0,39	0,24			

- * Implementação
- Chegou um momento de extrema importância para você e seus funcionários.
- ❖ Vocês se empenharam, trabalharam pesado e seria muito bom se todas as oportunidades identificadas pudessem ser implementadas, pois seria a concretização de todo o trabalho desenvolvido.
- Você, como responsável pela Empresa e conhecedor da disponibilidade financeira, vai definir o momento da implementação das opções. Mas não deixe que todo o trabalho realizado caia em descrédito. Tente implementar as opções mais simples e de menor custo!
- Com certeza elas são a maioria em sua Empresa!
- ❖ Os funcionários vão sentir-se gratificados e reconhecidos pelo esforço.

❖ Plano de Monitoramento e Continuidade

- ❖ Implementadas as opções, você deverá estabelecer um Plano de Monitoramento para a avaliação do seu desempenho ambiental. Esse Plano consta de análises laboratoriais de metais e de carga orgânica, medições e documentação para acompanhamento do Programa. Destina-se a manter, acompanhar e dar continuidade ao Programa.
- Os indicadores estabelecidos no início do trabalho e medidos na realização dos balanços serão as ferramentas para o acompanhamento que, com certeza, você deseja manter em sua Empresa.

O Plano deverá constar de:

Parâmetro	Frequência	Período
Responsável		

❖ Nesta tabela deverão ser colocados todos os Estudos de Casos realizados com os benefícios econômicos e ambientais descritos.

Tabela totalizadora: benefícios econômicos

Oportunidade Identificada	Benefício Econômico (R\$)	Investimento	Tempo de retorno
Otimização no emprego da matéria prima	80.033,80		Imediato
Custo associado ao resíduo de aço	42.598,60		
••••			
Total			

❖ Nesta tabela deverão ser colocados todos os Estudos de Casos realizados com os benefícios econômicos e ambientais descritos.

Tabela totalizadora: benefícios ambientais

Oportunidade identificada	Benefício ambiental (kg)	%
Redução de resíduo gerado	38.726	47,7
Redução consumo total de MP aço	72.758	25
Total		

Primeira etapa?

- É! Você e seus funcionários apostaram neste trabalho. Empenharam-se ao máximo!
- Mediram tudo! Avaliaram! Discutiram! Analisaram! Implementaram!
- Vocês estão de parabéns!
- Descobriram como a Produção mais Limpa pode ser uma excelente ferramenta e como pode ajudar no monitoramento do seu processo produtivo.
- ❖ Agora você vai parar por aqui? De jeito nenhum! MELHORIA CONTÍNUA deve ser o seu objetivo!
- Trace novas metas, novos desafios. Acompanhe os indicadores estabelecidos.
- Faça a Empresa melhorar sempre mais seu desempenho ambiental e tornar-se cada vez mais competitiva.
- ❖ É o "ganha-ganha": ganha a empresa, o meio ambiente e a sociedade!
- ❖ Torne sua empresa ECOEFICIENTE!

Dicas legais!

TER Departamento de Engenharia Agrícola e do Meio Ambiente

Um adendo sobre o licenciamento ambiental

❖ O que é licenciamento ambiental?

É um procedimento administrativo pelo qual o órgão ambiental competente licencia a localização, instalação, ampliação e operação de empreendimentos e atividades utilizadores de recursos naturais, consideradas efetiva ou potencialmente poluidoras, ou daqueles que, sob qualquer forma, possam causar degradação ambiental (Resolução 237/97 do Conselho Nacional de Meio Ambiente – CONAMA)

❖ Todas as empresas devem possuir licença ambiental para funcionar? Nem todas. Só aquelas que forem consideradas efetiva ou potencialmente Poluidoras (Constituição Federal, art.170, parágrafo único e Lei Federal 6938/81, art.10). Para saber quem se enquadra, é necessário consultar a Resolução CONAMA 237/97, Anexo 1 − Atividades ou empreendimentos sujeitos ao Licenciamento Ambiental.

Dicas legais!

Como a empresa pode regularizar sua situação ambiental?

A empresa deve dirigir-se ao órgão ambiental, integrante do Sistema Nacional de Meio Ambiente (SISNAMA), responsável pelo licenciamento ambiental.

Como saber qual o órgão adequado?

O IBAMA, órgãos seccionais (estaduais) e órgãos locais (municipais) são os integrantes do SISNAMA com competência para emitir a licença ambiental. Aconselha-se também a buscar informações junto ao assessoramento jurídico do sindicato da categoria.

Quais licenças minha empresa deve possuir?

Basicamente três: Licença Prévia, Licença de Instalação e Licença de Operação (Resolução CONAMA 237/97).

Produção mais Limpa 😇

(P + L) Parte 2 Dúvidas Considerações finais

Engenharia e Meio Ambiente TER-00108 Escola de Engenharia-UFF

