

1 Leerdoelen

- x,y coördinaten om kunnen zetten in de PVector objecten.
- Gebruik kunnen maken van de volgende PVector methods: add(PVector p), sub(PVector p), mult(float amount), rotate(float angle)

2 Uitleg

- Nature Of Code Chapter 1 https://natureofcode.com/book/chapter-1-vectors/ Alleen 1.1, 1.2, 1.3, 1.4, 1.5
- Vectors The Nature of Code https://www.youtube.com/watch?v=mWJkvxQXIa8\&list=PLRqwX-V7Uu6ZwSmt E13iJBcoI-r4y7iEc Alleen 1.1, 1.2, 1.3, 1.4

3 Voorbeelden

- 1. star
- 2. square
- 3. forest
- 4. flower

4 Opdrachten

Omdat het onhandig is om telkens twee argumenten mee te moeten geven voor een positie op het scherm int x, int y en we een betere manier nodig hebben om met coördinaten om te gaan bestaat er in Processing de PVector class.

4.1 [optioneel] Vectoren in de wiskunde

Een vector is een verzameling van meerdere variabelen. Wij zullen ons alleen maar bezig houden met 2 dimensionale vectoren van \mathbf{x} , \mathbf{y} coördinaten. Een vector wordt als volgt genoteerd:

$$\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Er zijn een paar rekenregels, die erg voor de hand liggen als je bedenkt dat een vector gewoon een verzameling van twee coördinaten is:

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \end{pmatrix}$$

$$a * \begin{pmatrix} b \\ c \end{pmatrix} = \begin{pmatrix} a * b \\ a * c \end{pmatrix}$$

De tweede rekenregel heet scalaire vermenigvuldiging. Dit geeft het uitrekken of inkrimpen van een vector weer. Dit is makkelijker te zien als we de vectoren als pijltjes (of natuurkundige krachten) tekenen:

4.1.1 Opdrachten

- 1. Teken de optelling van $\binom{2}{1} + \binom{-1}{3}$
- 2. Bereken $2*((3*\vec{a})+\vec{b})$ met $\vec{a}=\begin{pmatrix}1\\2\end{pmatrix}$ en $\vec{b}=\begin{pmatrix}-1\\2\end{pmatrix}$
- 3. Bepaal het midden tussen \vec{a} en \vec{b} . (We zoeken dus een algemene formule voor het midden tussen twee vectoren).
- 4. Bereken de vector op $\frac{2}{3}$ afstand tussen \vec{a} en \vec{b} (Wederom zoeken we dus een algemene formule).

4.2 [Optioneel] PVector

Processing heeft de class PVector, met daarin een heleboel handige methods, zie https://processing.org/reference/PVector.html

```
void setup() {
    PVector v1 = new PVector(3,2);
    PVector v2 = v1.copy();
    v1.add(v2);
    v2.sub(new PVector(1,1));
    v1.mult(3);
    drawDot(v1);
    drawDot(v2);
}

void drawDot(PVector v) {
    circle(v.x,v.y,5);
}
```

Opmerking

De oorsprong (0,0) zit bij computers links boven, en niet links onder zoals bij de meeste wiskundige grafieken! De y-as is als het ware gespiegeld!

Op welke coördinaten tekent dit stukje code een stip? Schrijf je antwoord in een comment van je sketch:

4.3 [Optioneel] Vectoren gebruiken

Nu je hebt geleerd wat een vector is wil je natuurlijk deze coole vectoren voor alles gebruiken! Helaas accepteren de Processing functies geen vectoren, alleen x, y coördinaten. Maak de volgende 3 functies af, de functie myLine is al gegeven.

```
void myLine(PVector v1, PVector v2) {
    line(v1.x,v1.y,v2.x,v2.y);
}
void myCircle(PVector v1, int r) {
    // TODO
}
void myTriangle(PVector v1, PVector v2, PVector v3) {
    // TODO
}
```

4.4 Een driehoek

Maak de functie

```
void betterTriangle(PVector p1, PVector side) {
    // TODO
}
```

Hierbij is p1 één van de hoekpunten en side één van de zijden.

```
Tip

Kijk naar voorbeeld square
```


/4/4

Figure 1: Een triangle met de vector side rood gekleurd

4.5 Polygoon

Een gelijkzijdige polygoon of veelhoek is een figuur met n
 hoeken en lijnstukken van gelijke lengte. Voor $\mathtt{n}=3$ is dit een
 driehoek, voor $\mathtt{n}=4$ is dit een
 vierkant, voor $\mathtt{n}=5$ is dit een
 pentagon en voor $\mathtt{n}=17$ is dit een
 heptadecagoon. Maak de volgende functie:

```
void polygon(PVector center, int radius, int n) {
}
```

Deze functie moet een polygoon van int n hoeken tekenen met een straal van int radius. Maak gebruik van vectoren en gebruik de rotate(float angle) method.

Opmerking

Een hoek wordt niet in graden uitgedrukt maar in radialen, dit betekent dat één cirkel (dus 360 graden) gelijk is aan $2*\pi$, ofwel: 2* PI.

4.6 Middelloodlijn

Maak de volgende functie aan:

```
void bisector(PVector p1, PVector p2) {
}
```


Figure 2: Polygonen met n = 3, 4, 5 en 17

Deze functie moet de middelloodlijn tekenen van de twee functies met de lengte gelijk aan de afstand tussen de twee functies (zie figuur ??).

Tip

Probeer eerst op papier een aantal middelloodlijnen te tekenen en probeer vervolgens om de twee punten waartussen de lijn getrokken moet worden te vinden.

Figure 3: Middelloodlijn, de twee stippen geven p1 en p2 aan