ZADANIA z MICROMASTER 440

1. 315_2DP_MM4_Danfoss

LAD/STL/FBD - [OB1 -- 315-M_MM_Danfoss_solwlod\SIMATIC 315 Master\CPU 315-2 DP] File Edit Insert PLC Debug View Options Window Help OB1 : "Main Program Sweep (Cycle)" Comment: Network 1: Title: Realizacja bitu "start/stop z jednego niestabilnego przycisku" (M20.0) M20.0 M50.0 I12.0 M10.0 —(s)— $\dashv \vdash \!\!\!\!-$ —(p)— $-\!\!\!\!//\!\!\!\!-\!\!\!\!\!-$ M20.0 M50.0 —(R)— Network 2: Title: Realizacja bitu "start/stop z jednego przycisku" c.d. M50.0 M20.0 -()--Network 3: Title: Przesylanie slowa sterujacego (PZD1/STW1) do MICROMASTERA w celu jego zatrzymania (z ustawieniem "gotowosci") M20.0 MOVE EN ENO W#16#47E-IN OUT-PQW256 Network 4: Title: Comment: M20.0 MOVE EN ENO W#16#47F | IN OUT | PQW256

Network 5: Title:


```
MOVE
EN ENO
PIW272 IN OUT PQW258
```

Network 6: Title:

Przesylanie slowa sterujacego (PZD1/STW1) do Danfossa w celu jego zatrzymania (z ustawieniem "gotowosci")

```
I8.1 MOVE
EN ENO
W#16#47E IN OUT PQW260
```

Network 7: Title:

```
Comment:
```

```
I8.1 MOVE
EN ENO
W#16#47F-IN OUT-PQW260
```

Network 8: Title:

```
Comment:
```

```
W#16#2000 — IN OUT — PQW262
```

2. <u>315_2DP_MM440_2ZDR</u>

Dwa zestawy danych rozkazowych (wybór – ustawienie P810): P700[0] = 6, P1000[0] = 6 oraz P700[1] = 1, P1000[1] = 1 Ustawienie bitu w P810 (r2090.F) poprzez wejście I0.1 mastera

OB1 : "Wymiana danych w obszarze PZD "

Realizacja wymiany informacji w sieci Profibus DP: CPU 315-2DP (Master), przeksztatnik czestotliwosci MICROMASTER 440 , kaseta I/O VIPA 200

Network 1: Title:

Przesylanie wartosci zadanej czestotliwosci przeksztaltnika z zadajnika pradowego na wejsciu analogowym mastera do drugiego slowa PZD telegramu (PZD2/HSW)

Network 2: Title:

Realizacja bitu "Zal/Wyl_1" z jednego niestabilnego przycisku (M20.0)lub czujnika na wejściu VIPA 200

Network 3: Title:

Realizacja bitu "Zal/Wyl_1" z jednego niestabilnego przycisku c.d.

Network 4: Title:

Przesylanie slowa sterujacego do pierwszego slowa PZD telegramu (PZD1/STW1) w celu uruchomienia MICROMASTERA. IO.1 - wybiera zestaw danych rozkazowych przez ustawianie P810

```
M20.0 I0.1 MOVE
EN ENO

W#16#47F—IN OUT—PQW268

I0.1 MOVE
EN ENO

W#16#847F—IN OUT—PQW268
```

Network 5: Title:

Przesylanie slowa sterujacego do pierwszego slowa PZD telegramu (PZD1/STW1) w celu zatrzymania MICROMASTERA. IO.1 - wybiera zestaw danych rozkazowych przez ustawianie P810

```
M20.0 I0.1 MOVE
EN ENO

W#16#47E IN OUT PQW268

I0.1 MOVE
EN ENO

W#16#847E IN OUT PQW268
```

Network 6: Title:

Przepisanie slowa statusowego (PZD1/ZSW) MICROMASTERA do pamieci stacji master

```
MOVE
EN ENO
PIW276-IN OUT-MW100
```

Network 7: Title:

Przepisanie aktualnej wartosci zadanej czestotliwosci (PZD2/HIW) MICROMASTERA do pamieci stacji master

```
MOVE
EN ENO
PIW278 — IN OUT — MW102
```

3. 315_2DP_MM440_3ZDR

Trzy zestawy danych rozkazowych:

- a) P700[0] = 6, P1000[0] = 6
- b) P700[1] = 6, P1000[1] = 1

Jeżeli P719[0] = 0, wybór – ustawienie P810

Ustawienie bitu w P810 (r2090.F) poprzez wejście I0.5 mastera

oraz

c) P719[0] = 11 (pierwsza 1 – rozkazy z BOP, druga 1 – wartość zadana z MOP) Po wpisaniu do P719 (obszar PKW) odpowiedniej wartości

K LAD/STL/FBD - [OB1 -- MM4_P719_MW_solwlod\SIMATIC 300_MASTER\CPU 315-2 DP] File Edit Insert PLC Debug View Options Window Help Contents Of: 'Environment' OB1 : "Wymiana danych w obszarze PZD i PKW" Realizacja wymiany informacji w sieci Profibus DP: CPU315-2DP(Master), przeksztatnik czstotliwosci Micromaster 440 Network 1: Title: Przesylanie slowa sterujacego (47E hex) do pierwszego slowa PZD telegramu (PZD1/STW1) w celu zatrzymania MICROMASTERA z ustawieniem sygnalu "Zwolnienie impulsow" (Q1.3 = 1 - czwarty bit slowa sterujacego) I0.0 MOVE EN ENO W#16#47E-IN OUT - QWO Network 2: Title: Zal/Wyl_1 (stop z rampa)- ustawianie najmniej znaczacego bitu slowa sterujacego STW1 (47E <--> 47F). I0.0 Q1.0 -()- Network 3: Title: Zwiekszanie czestotliwosci - zrodlo MOP I0.1 Q0.5 ()Network 4: Title: Zmniejszanie czestosliwosci - zrodlo MOP 10.2 Q0.6 +

```
Network 5: Title:
```

```
Stop2 z wybiegiem warunek ---- 1
```

```
10.3 Q1.1 ()
```

Network 6: Title:

```
Stop2 z hamowaniem warunek ---- 1
```

```
10.4 Q1.2 ()
```

Network 7: Title:

przełącznik sterowania zdalne/miejscowe (wybór zestawu danych rozkazowych) bit ".15" słowa QWO źródłem dla P810) 0 - Profibus, 1 - MOP

```
10.5 Q0.7
```

Network 8: Title:

Jogging zgodnie z ustawionym kierunkiem obrotów

```
10.6 Q0.0
```

Network 9: Title:

Sterowanie z mastera (PLC) warunek ---- 1

```
10.7 Q0.2 ()
```

Network 10: Title:

Ustawienie wartoci zadanej czestotliwosci = 25 Hz (czternasty bit w slowie QW2 (HSW) - czestotliwosc zadana)

```
11.5 Q2.5
```

Network 11: Title:

Ustawienie wartoci zadanej czestotliwosci = 50 Hz (pietnasty bit w słowie QW2 (HSW) - czestotliwosc zadana)

```
11.6 Q2.6
```

Network 12: Title:

Odbior slowa statusowego ZSW1

```
IW3 — IN OUT — MW100
```

Network 13: Title:

Odbior rzeczywistej wartosci czestotliwosci wyjsciowej przeksztaltnika (HIW)

Network 14: Title:

Przygotowanie telegramu ustawiajacego wartosci parametru P719 (719 = 2CF hex) = 11 (B hex) w indeksie [0], 1-BOP i 1-MOP.

MW50 - PKE, MW52 - IND, MW54 - PWE1, MW56 - PWE2

Network 15: Title:

Przygotowanie telegramu ustawiajacego wartosci parametru P719 (719 = 2CF hex) = 0 w indeksie [0] . Wtedy aktywne ustawienia P700[0] i P1000[0]

SFC 14 i SFC 15

Network 16: Title:

Przeslanie przygotowanego telegramu do slow obszaru PKW przekazywanych do przeksztaltnika

```
#11.0 "DPWR_DAT" ENO

W#16#7 - LADDR RET_VAL -MW104

P#M 50.0 W ORD 4 - RECORD
```

Symbol information:

SFC15 DPWR_DAT Write Consistent Data to a Standard DP Slave

Network 17: Title:

Odbior slow obszaru PKW telegramu z przeksztaltnika

```
I1.0 "DPRD_DAT" ENO

W#16#E - LADDR RET_VAL -MW106

P#M 200.0

RECORD -WORD 4
```

Symbol information:

SFC14 DPRD_DAT Read Consistent Data of a Standard DP Slave

Poniżej pokazano wynik monitorowania komunikacji w stacji master.

@VAT1 Micromaster1\SIMATIC 300(1)\CPU315-2 DP\ ONLINE											
Address		Symbol	Monitor	Format	Monitor Valu		Modify	Value			
MW	50	"PKE"	HEX		W#16#22	CF			_		
MW	52	"IND"	HEX		W#16#000	00					
MW	54	"PWE1"	HEX		W#16#000	00					
MW	56	"PWE2"	HEX		W#16#000)B					
⊢											
MW	200		HEX		W#16#120	CF					
MW	202		HEX		W#16#000	00					
MW	204		HEX		W#16#000	00					
MW	206		HEX		W#16#000)B					
									<u> </u>		

Tab. 4.2. Struktura słowa sterującego STW1 (PZD1) z przykładowymi wartościami

OW 0																
QB 0								QB 1								
Q0.7	Q0.6	Q0.5	Q0.4	Q0.3	Q0.2	Q0.1	Q0.0	Q1.7	Q1.6	Q1.5	Q1.4	Q1.3	Q1.2	Q1.1	Q1.0	
0	0	0	0	0	1	0	0	0	1	1	1	1	1	1	X	
0				4				7				E lub F				

W niektórych przykładach źródłem wartości zadanej częstotliwości przekształtnika był zadajnik prądowy na wejściach modułów analogowych stacji master lub oddalonej kasety I/O (slave VIPA 300). Można też zadawać wartość częstotliwości skokowo z modułu symulatora wejść binarnych (gniazdo 4 w kasecie stacji master) ustawiając w programie bity słowa QW 2 (HSW1). W programie zmiana wartości dokonywana jest przez ustawienie dwóch wybranych bitów QW2.5 i QW2.6, których stany określane są stanami wejść I1.6 i I1.7(tab.4.3)

Tab. 4.3. Struktura słowa "częstotliwość zadana" HSW1 (PZD2) z wagami bitów

	QW 2															
QB 2								QB 3								
Q2.7	Q2.6	Q2.5	Q2.4	Q2.3	Q2.2	Q2.1	Q2.0	Q3.7	Q3.6	Q3.5	Q3.4	Q3.3	Q3.2	Q3.1	Q3.0	
dec	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	
hex	4000	2000	1000	800	400	200	100	80	40	20	10	8	4	2	1	
Hz	50	25	12,5	6,25	3.125	1,56	0,78	0,39	0,19	0,09	0,05					