(12) INTERNATIONAL APPLICATION PUB: ISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 September 2002 (19.09.2002)

PCT

(10) International Publication Number WO 02/072757 A2

(51) International Pate	nt Classification":	C12	N	60/288.528		US
					60/291,190	•	US
(21) International App	lication Number: PCT	/US02/069	08	60/291,099	•	US
					60/291,240		US
(21) International Filic	ng Date: 8 March 2002	(08/03/200	(د(60/294.485	•	US
(., • • • • • • • • • • • • • • • • • • •	ig Diffe.			60/294,889		US
			11		60/294.899		US
(25) Filing Language:		lingli	ISII	60/299.027		US
					60/299.310		US
(26) Publication Langu 	iage:	Engl	ish	60/299.303		US
					60/304.354	10 July 2001 (10.07.2001)	US
(30)) Priority Data:				60/309,198	31 July 2001 (31.07.2001)	US
,	60/274.322	8 March 2001 (08.03	i.2001) - 1	. S	60/312.903	16 August 2001 (16.08.2001)	US
	60/274,281	8 March 2001 (08.03	i.2001) 1	S	60/318.462	10 September 2001 (10:09:2001)	US
	60/274,101	8 March 2001 (08.03		CS .	60/318.770	12 September 2001 (12:09:2001)	US
	60/274,194	8 March 2001 (08.03	3.2001) U	ĽS	60/325,430	27 September 2001 (27:09:2001)	US
	60/274.849	9 March 2001 (09.03	3.2001) U	ĽS	60/325,681	27 September 2001 (27:09:2001)	US
	60/275,235	12 March 2001 (12.03	3.2001) H	ĽS	60/330,380	18 October 2001 (18.10.2001)	US
	60/275.601	13 March 2001 (13.03	3.2001) 1	ĽS	60/335.301	31 October 2001 (31.10.2001)	US
	60/275.578	13 March 2001 (13.03		ĽS	60/332,172	14 November 2001 (14.11.2001)	US
	60/275.579	13 March 2001 (13.03		US	60/333,272	14 November 2001 (14.11.2001)	US
	60/276,000	14 March 2001 (14.03	8.2001)	ĽS	60/332,271	14 November 2001 (14.11.2001)	US
	60/276,776	16 March 2001 (16.03		US	60/333,184	14 November 2001 (14.11.2001)	US
	60/276,994	19 March 2001 (19.03		ĽS	60/332,272	14 November 2001 (14.11.2001)	US
	60/277.327	20 March 2001 (20.03	8.2001)	US	60/332.094	21 November 2001 (21.11.2001)	US
	60/277,321	20 March 2001 (20.03		US	60/338,092	3 December 2001 (03.12.2001)	US
	60/277.239	20 March 2001 (20.03	8.2001)	US	60/337,426	3 December 2001 (03.12.2001)	US
	60/277,791	21 March 2001 (21.03	8.2001)	US	60/337.185	4 December 2001 (04.12.2001)	US
	60/277,833	22 March 2001 (22.03		US	60/345,705		US
	60/278,152	23 March 2001 (23.03		US	10/092,900	7 March 2002 (07.03.2002)	US
	60/278.894	26 March 2001 (26.03	8.2001)	US			
	60/279.036	27 March 2001 (27.0.)	8.2001)	US -	(63) Related by con-	tinuation (CON) or continuation-in-p	part
	60/278,999	27 March 2001 (27.03	3.2001)	US	(CIP) to earlier	applications:	
=	60/279,344	28 March 2001 (28.0.)	8.2001)	ĽS	US	60/274,322 (C	(HP)
	60/279,995	30 March 2001 (30.0)		US	Filed on	8 March 2001 (08.03.20	(1OC
	60/277,338	30 March 2001 (30.0)	3.2001)	US	US	60/283,675 (C	.TP)
	60/280,233	30 March 2001 (30.0.)		US	Filed on	13 April 2001 (13.04.20	(10)
	60/280,900	2 April 2001 (02.0-		US	US	60/338,092 (C	(P)
	60/280,822	2 April 2001 (02.0-	1.2001)	US	Filed on	3 December 2001 (03.12.20	XO [-)
	60/280,802	2 April 2001 (02.0-		US	US	60/274,281 (C	TP_{1}
	60/281,194	4 April 2001 (04.0-		US	Liled on	8 March 2001 (08:03:20	(H)
=	60/283,675	13 April 2001 (13.0)		US	US	60/274.101 (0	\mathbf{TP}_{2}
	60/287,424	30 April 2001 (30.0)		US	Lifed on	8 March 2001 (08:03:20	(1 O)
	60/288,066	2 May 2001 (02.0)		US	US	60/325,681 (0	.TP)
7	60/288,342	3 May 2001 (03.0)		US	Filed on	27 September 2001 (27:09:20	(†O C,
\triangleleft						[Continued on next po	ige]

(54) Title: NOVEL PROTEINS AND NUCLEIC ACIDS ENCODING SAME

(57) Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by

US	60/304,354 (CIP)
Filed on	10 July 2001 (10.07.2001)
US	60/279,995 (CIP)
Filed on	30 March 2001 (30:03:2001)
US	60/294,899 (CIP)
Inled on	31 May 2001 (31.05.2001)
US	60/287,424 (CIP)
Liled on	30 April 2001 (30,04,2001)
US	60/299,027 (CIP)
Filed on	18 June 2001 (18.06.2001)
US	60/309,198 (CIP)
Filed on	31 July 2001 (31.07.2001)
US	60/281.194 (CIP)
Filed on	4 April 2001 (04.04.2001)
US	
Taled on	60/274,194 (CIP)
US	8 March 2001 (08.03.2001)
	60/274.849 (CIP)
Filed on	9 March 2001 (09.03.2001)
US	60/330,380 (CIP)
Filed on	18 October 2001 (18.10.2001)
US	60/275,235 (CIP)
Filed on	12 March 2001 (12.03.2001)
US	60/288,342 (CIP)
Filed on	3 May 2001 (03.05.2001)
US	60/275,578 (CIP)
Filed on	13 March 2001 (13.03.2001)
US	60/291,240 (CIP)
Filed on	16 May 2001 (16.05,2001)
US	60/294,485 (CIP)
Filed on	30 May 2001 (30.05.2001)
US	60/299,310 (CIP)
Filed on	19 June 2001 (19.06,2001)
US	60/275,579 (CIP)
Filed on	13 March 2001 (13.03.2001)
US	60/275,601 (CIP)
Filed on	13 March 2001 (13.03.2001)
US	60/276.000 (CIP)
Filed on	14 March 2001 (14.03.2001)
US	60/280,900 (CIP)
Filed on	2 April 2001 (02.04.2001)
US	60/276,776 (CIP)
Filed on	16 March 2001 (16.03,2001)
US	(60/294,889 (CIP)
Filed on	31 May 2001 (31.05.2001)
US	60/318,770 (CIP)
Filed on	12 September 2001 (12.09,2001)
US	60/276.994 (CTP)
Filed on	19 March 2001 (19,03,2001)
US	60/277,338 (CIP)
I led on	20 March 2001 (20.03.2001)
US	60/325,430 (CTP)
Tiled on	27 September 2001 (27 09 2001)
US	60/322,094 (CIP)
Filed on	21 November 2001 (21.11.2001)
US	60/299,303 (CIP)
Filed on	19 June 2001 (19.06,2001)
US	60/288,066 (CTP)
Filed on	2 May 2001 (02.05.2001)
US	60/277,321 (CIP)

US	60/277,239 (CIP)
Filed on	20 March 2001 (20.03,2001)
US	60/277,327 (CIP)
Liled on	20 March 2001 (20.03 2001)
US	60/277.791 (CIP)
Fried on	21 March 2001 (21.03.2001)
US	60/333,184 (CIP)
Filed on	14 November 2001 (14.11.2001)
US	60/277,833 (CIP)
I iled on	22 March 2001 (22.03.2001)
US	60/318,462 (CIP)
Liled on	10 September 2001 (10,09,2001)
US	60/288,528 (CIP)
Filed on	3 May 2001 (03.05.2001)

- (71) Applicant (for all designated States except USr: CURA-GEN CORPORATION [US/US], 555 Long Wharf Drive, 11th Floor, New Haven, CT 06511 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): PADIGARU, Muralidhara [IN/US], 71 Hampton Park, Branford, CT 06405 (US). SPYTEK, Kimberly, A. [US/US]; 28 Court St. #1, New Haven, CT 06511 (US). SHENOY, Suresh, G. [IN/US]: 15 Millwood Drive, Branford, CT 06405 (US). TAUPIER, Raymond, J. [US/US]; 34 Pardee Place Extension, East Haven, CT 06512 (US), PENA, Carol, E., A. [US/US]: 604 Orange Street, #2, New Haven, CT 06511 (US). LI, Li [CN/US]; 56 Jerimoth Drive, Branford. CT 06405 (US). ZERHUSEN, Brvan, D. [US/US]: 337 Monticello Drive, Branford, CT 06405 (US), GUSEV, Vladimir [UA/US]: 1209 Durham Road, Madison, CT 06443 (US). JI, Weizhen [CN/US]; 3 Business Park Drive, Room 101, Branford, CT 06405 (US), GORMAN, Linda [US/US]: 329 Monticello Drive, Branford, CT 06405 (US). MILLER, Charles, E. [US/US]: 98 Saddle Hill Drive, Guilford, CT 06437 (US). KEKUDA, Ramesh [IN/US], 168 Lockwood Avenue, Stamford, CT 06902 (US). PATTURAJAN, Meera [US/US]: 45 Harrison Avenue, Apt. 1C. Branford, CT 06405 (US). GANGOLLI, Esha [IN/US]; 31 Strawberry Hill Road. Madison, CT 06443 (US), VERNET, Corine, A., M. [FR/US]: 1739 Foxon Road, Apt L6, North Branford, CT 06471 (US). GUO, Xiaojia [CN/US]: 713 Robert Frost Drive, Branford, CT 06405 (US). TCHERNEY, Velizar [BG/US], 45 Jefferson Road #3-12, Branford, CT-06405 (US). FERNANDES, Elma, R. [IN/US]. 77 Florence Road #2B. Branford, CT 06473 (US). CASMAN, Stacie. J. [US/US], 17 Peck Street, North Haven, C1 06473 (US) MALYANKAR, Uriel, M. [US/US], 229 Branford Road. # 330, Branford, CI 06405 (US), GERLACH, Valerie [US/US], 18 Rock Pasture Road, Branford, CT 06405 (US). LIU, Yi [CN/US]: 470 Prospect Street, #53, New Haven, CI 06511 (US) ANDERSON, David [US/US]. 555 Long Wharf Drive, 11th Floor, New Haven, CT 06511 (US) SPADERNA, Steven, K. (US/US). 261 Deerfield Drive, Berlin, CT 06037 (US), CATTERTON, Elina the second control of the second control of

THONG Honong

60/278,152	23 March 2001 (23.03.01)	US
60/332,272	14 November 2001 (14.11.01)	US
60/278,894	26 March 2001 (26.03.01)	US
60/312,903	16 August 2001 (16.08.01)	US
60/333.272	14 November 2001 (14.11.01)	US
60/279,036	27 March 2001 (26.03.01)	US
60/332,172	14 November 2001 (14.11.01)	US
60/337,426	03 December 2001 (03.12.01)	US
60/278,999	27 March 2001 (27.03.01)	US
60/279,344	28 March 2001 (28.03.01)	US
60/332,271	14 November 2001 (14.11.01)	US
60/291,099	16 May 2001 (16.05.01)	US
60/291,190	15 May 2001 (15.05.01)	US
60/280,233	30 March 2001 (30.03.01)	US
60/280,802	02 April2001 (02.04.01)	US
60/335,301	31 October 2001 (31.10.01)	US
60/337,185	04 December 2001 (04.12.01)	US
60/345,705	03 January 2001 (03.01.01)	US
Not furnished	07 March 2001 (07 03 01)	US

Guilford, CT 06437 (US). ALSOBROOK, John, P., II [US/US], 60 Lake Drive, Madison, CT 06443 (US). LEP-LEY, Denise, M. [US/US], 51 Church Street, Brantord, CT 06405 (US). RIEGER, Daniel, K. [DE/US], 10A McKinnel Court, Branford, CT 06405 (US).

- (74) Agent: ELRIFI, Ivor, R., Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P., C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States inationalist AF, AG, AF, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DF, DK, DM, DZ, FC, EE, ES, FL, GB, GD, GF, GH, GM, HR, HU, ID, IL, IN, IS, JP, KF, KG, KP, KR, KZ, LC, LK, LR, LS, LL, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PF, RO, RU, SD, SE, SG.

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW

(84) Designated States treg.onalr: ARIPO patent (GH, GM, KF, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AL, BF, CH, CY, DE, DK, ES, TL, FR, GB, GR, IE, TL, LU, MC, NL, PL, SF, TR), OAPI patent (BE, BJ, CE, CG, CT, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Novel Proteins and Nucleic Acids Encoding Same

Field of the Invention

The present invention relates to novel polypeptides that are targets of small molecule drugs and that have properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions. The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by Curagen Corporation in certain cases. The XYZase-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.

Background

Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways are constituted of extracellular signaling proteins, cellular receptors that bind the signaling proteins and signal transducing components located within the cells.

Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.

Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.

Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by diminished or suppressed levels of a protein effector of interest. Therefore there is a need to be able to assay

need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition, or the protein effector deficiency or suppression may be favorably acted upon by the administration of another small molecule drug product. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest.

Small molecule targets have been implicated in various disease states or pathologies. These targets may be proteins, and particularly enzymatic proteins, which are acted upon by small molecule drugs for the purpose of altering target function and achieving a desired result. Cellular, animal and clinical studies can be performed to elucidate the genetic contribution to the etiology and pathogenesis of conditions in which small molecule targets are implicated in a variety of physiologic, pharmacologic or native states. These studies utilize the core technologies at CuraGen Corporation to look at differential gene expression, protein-protein interactions, large-scale sequencing of expressed genes and the association of genetic variations such as, but not limited to, single nucleotide polymorphisms (SNPs) or splice variants in and between biological samples from experimental and control groups. The goal of such studies is to identify potential avenues for therapeutic intervention in order to prevent, treat the consequences or cure the conditions.

In order to treat diseases, pathologies and other abnormal states or conditions in which a mammalian organism has been diagnosed as being, or as being at risk for becoming, other than in a normal state or condition, it is important to identify new therapeutic agents. Such a procedure includes at least the steps of identifying a target component within an affected tissue or organ, and identifying a candidate therapeutic agent that modulates the functional attributes of the target. The target component may be any biological macromolecule implicated in the disease or pathology. Commonly the target is a polypeptide or protein with specific functional attributes. Other classes of macromolecule may be a nucleic acid, a polysaccharide, a lipid such as a complex lipid or a glycolipid; in addition a target may be a sub-cellular structure or extra-cellular structure that is comprised of more than one of these classes of macromolecule. Once such a target has been identified, it may be employed in a screening assay in order to identify favorable candidate therapeutic agents from among a large population of substances or compounds.

In many cases the objective of such screening assays is to identify small molecule

screening methodologies is advantageous when working with large, combinatorial libraries of compounds.

It is an objective of this invention to provide at least one target biopolymer that is intended to serve as the macromolecular component in a screening assay for identifying candidate pharmaceutical agents.

It is another objective of the present invention to provide screening assays that positively identify candidate pharmaceutical agents from among a combinatorial library of low molecular weight substances or compounds.

It is still a further objective of this invention to employ the candidate pharmaceutical agents in any of a variety of in vitro, ex vivo and in vivo assays in order to identify pharmaceutical agents with advantageous therapeutic applications in the treatment of a disease, pathology, or abnormal state or condition in a mammal.

Summary Of The Invention

The invention is based in part upon the discovery of nucleic acid sequences encoding novel polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as "NOVX" nucleic acid, which represents the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or polypeptide sequences, which represents the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178.

In one aspect, the invention provides an isolated polypeptide comprising a mature form of a NOVX amino acid. One example is a variant of a mature form of a NOVX amino acid sequence, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. The amino acid can be, for example, a NOVX amino acid sequence or a variant of a NOVX amino acid sequence, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also includes fragments of any of these. In another aspect, the invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof.

Also included in the invention is a NOVX polypeptide that is a naturally occurring

from a NOVX nucleic acid sequence. In another embodiment, the NOVX polypeptide is a variant polypeptide described therein, wherein any amino acid specified in the chosen sequence is changed to provide a conservative substitution. In one embodiment, the invention discloses a method for determining the presence or amount of the NOVX polypeptide in a sample. The method involves the steps of: providing a sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the NOVX polypeptide, thereby determining the presence or amount of the NOVX polypeptide in the sample. In another embodiment, the invention provides a method for determining the presence of or predisposition to a disease associated with altered levels of a NOVX polypeptide in a mammalian subject. This method involves the steps of: measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in the sample of the first step to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

In a further embodiment, the invention includes a method of identifying an agent that binds to a NOVX polypeptide. This method involves the steps of: introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. In various embodiments, the agent is a cellular receptor or a downstream effector.

In another aspect, the invention provides a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a NOVX polypeptide. The method involves the steps of: providing a cell expressing the NOVX polypeptide and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent. In another aspect, the invention describes a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with the NOVX polypeptide. This method involves the following steps: administering a test compound to a test animal at increased risk for a

the NOVX polypeptide in the test animal after administering the compound of step; and comparing the activity of the protein in the test animal with the activity of the NOVX polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the NOVX polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the NOVX polypeptide. In one embodiment, the test animal is a recombinant test animal that expresses a test protein transgene or expresses the transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein the promoter is not the native gene promoter of the transgene. In another aspect, the invention includes a method for modulating the activity of the NOVX polypeptide, the method comprising introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.

The invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof. In a preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant. In another embodiment, the nucleic acid encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence. In one embodiment, the NOVX nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or a complement of the nucleotide sequence. In another aspect, the invention provides a vector or a cell expressing a NOVX nucleotide sequence.

In one embodiment, the invention discloses a method for modulating the activity of a NOVX polypeptide. The method includes the steps of: introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide. In another embodiment, the invention includes an isolated NOVX nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising a NOVX amino acid sequence or a variant of a mature form of the NOVX amino acid sequence, wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the

The secretary of the second second

and the commence of the second of the

amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed.

In one embodiment, the invention discloses a NOVX nucleic acid fragment encoding at least a portion of a NOVX polypeptide or any variant of the polypeptide, wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed. In another embodiment, the invention includes the complement of any of the NOVX nucleic acid molecules or a naturally occurring allelic nucleic acid variant. In another embodiment, the invention discloses a NOVX nucleic acid molecule that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the invention discloses a NOVX nucleic acid, wherein the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence.

In another aspect, the invention includes a NOVX nucleic acid, wherein one or more nucleotides in the NOVX nucleotide sequence is changed to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In one embodiment, the invention discloses a nucleic acid fragment of the NOVX nucleotide sequence and a nucleic acid fragment wherein one or more nucleotides in the NOVX nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In another embodiment, the invention includes a nucleic acid molecule wherein the nucleic acid molecule hybridizes under stringent conditions to a NOVX nucleotide sequence or a complement of the NOVX nucleotide sequence. In one embodiment, the invention includes a nucleic acid molecule, wherein the sequence is changed such that no more than 15% of the nucleotides in the coding sequence differ from the NOVX nucleotide sequence or a fragment thereof.

In a further aspect, the invention includes a method for determining the presence or amount of the NOVX nucleic acid in a sample. The method involves the steps of: providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the NOVX nucleic acid molecule, thereby determining the presence or amount of the NOVX nucleic acid molecule in the sample. In one embodiment, the presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.

In another aspect, the invention discloses a method for determining the presence of or

NOVX nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of NOVX nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

Detailed Description Of The Invention

The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as "NOVX nucleic acids" or "NOVX polynucleotides" and the corresponding encoded polypeptides are referred to as "NOVX polypeptides" or "NOVX proteins." Unless indicated otherwise, "NOVX" is meant to refer to any of the novel sequences disclosed herein. Table 1 provides a summary of the NOVX nucleic acids and their encoded polypeptides.

TABLE 1. Sequences and Corresponding SEQ 1D Numbers

NOVX No.	Internal Acc. No.	Nucleic Acid SEQ ID NO.	Amino Acid SEQ ID NO.	Homology
la	CG58522-01	1	2	human platelet activating factor

- (158520=0)

(ABA)(A) receptor

٦	CC50510 01	9	10	CAPA(A) recenter
3a	CG58518-01 CG58516-01	11	10	GABA(A) receptor Beta transducin
4a				
5a	CG58473-01	13	14	Protein kinase UDP-N-
6a	CG58470-01	15	16	
				acetylhexosamine
	000000000000000000000000000000000000000		10	pyrophosphorylase
7a	CG58593-01	17	18	ubiquitin 52 like
8a	CG57871-01	19	20	tousled like kinase like
9a	CG58590-01	21	22	guanylate kinase like
9b	CG58590-02	23	24	guanylate kinase like
10a	CG58572-01	25	26	glucosamine phosphate
				N acetyltransferase like
10b	CG58572-02	27	28	glucosamine phosphate
				N acetyltransferase like
11a	CG58564-01	29	30	Protein tyrosine
				phosphatase like
11b	CG58564-02	31	32	Protein tyrosine
				phosphatase like
11c	CG58564-03	33	34	Dual-Specificity
				phosphatase like
11d	CG58564-04	35	36	Dual-Specificity
				phosphatase like
12a	CG57819-01	37	38	RPGR interacting
				protein 1 like
13a	CG57789-01	39	40	RAS like protein
				RRP22 like
13b	CG57789-02	41	42	RAS like protein
				RRP22 like
14a	CG57758-01	43	44	sodium/lithium
				dependent
				dicarboxylate
				transporter like
14b	CG57758-02	45	46	sodium/lithium
				dependent
				dicarboxylate
				transporter like
14c	CG57758-03	47	48	sodium/lithium
				dependent
				dicarboxylate
				transporter like
14d	CG57758-04	49	50	sodium/lithium
				dependent
				dicarboxylate
				transporter like
14e	CG57758-05	51	52	sodium/lithium
				dependent
				dicarboxylate
				transporter like
15a	CG57732-01	53	54	Ca 2+ calmodulin
				dependent protein
				kinase IV kinase like

and the state of

15c	CG57732-03	57	58	Ca 2+ calmodulin
				dependent protein
				kinase IV kinase like
16a	CG57709-01	59	60	TCE2 like
17a	CG57700-01	61	62	hydoxyacylglutathione
				hydrolase like
17b	CG57700-02	63	64	hydoxyacylglutathione
				hydrolase like
17c	CG57700-03	65	66	hydoxyacylglutathione
. , •				hydrolase like
17d	CG57700-04	67	68	hydoxyacylglutathione
				hydrolase like
18a	CG58553-01	69	70	vasopressin receptor
104				like
19a	CG58626-01	71	72	phosphatidic acid
.,,	6 03 00 20 0 .	, ,	, -	preferring
				phospholipase A1 like
20a	CG57597-01	73	74	hypothetical protein
204	(337377-01	, ,	/ -	like
21a	CG57804-01	75	76	Talin like
22a	CG57551-01	77	78	NAC-1 like
23a	CG57411-01	79	80	Kelch like
24a	CG57399-01	81	82	phospholipase
_4a	CG37373-01	01	02	ADRAB-B precursor
				like
24b	CG57399-02	83	84	phospholipase
240	CO37393-02	65	04	ADRAB-B precursor
				like
24c	CG57399-03	85	86	phospholipase
240	CG37377-03		00	ADRAB-B precursor
				like
25a	CG59311-01	87	88	acyl-coenzyme A
- 54	(03)311 01	1 07	00	thioester hydrolase
25b	CG59311-02	89	90	peroxisomal acyl-
230	CG37311-02	107		coenzyme A thioeseter
				hydrolase like
25c	CG59311-03	91	92	peroxisomal acyl-
250	CG57511 05	' '	/2	coenzyme A thioeseter
				hydrolase like
26a	CG59309-01	93	94	acyl-coenzyme A
204	C G 5 / 5 0 / 0 /		' '	thioester hydrolase
27a	CG57364-01	95	96	CG6896
28a	CG59348-01	97	98	cytoplasmic protein
20a	(037.546-01	''	76	(patent calls this Cyclin
				L-like)
29a	CG59245-01	99	100	glucose 6-phosphatase
29b	CG59245-02	101	102	glucose 6-phosphatase
30a	CG59243-02 CG59241-01	103	102	Amiloride-sensitive
Jua	CO35241-01	103	104	sodium channel
31a	CG58602-01	105	106	FAD binding domain
JIa	CG36002-01	103	100	containing protein
	•	1	!	contaming protein
				2 464
				1

				
34a	CG59315-01	111	112	Connexin
35a	CG59203-01	113	114	lysozyme C
35b	CG59203-02	115	116	lysozyme C
36a	CG58662-01	117	118	cytoplasmic protein
36b	CG58662-02	119	120	cytoplasmic protein
37a	CG58584-01	121	122	40S ribosomal protein S29 like
38a	CG58538-01	123	124	Histone deacetylase complex protein 66 like
39a	CG59371-01	125	126	expressed cytoplasmic protein like
40a	CG59346-01	127	128	cortactin binding protein 1 like
41a	CG57814-01	129	130	Basic I 19 like homo sapiens
41b	CG57814-02	131	132	Basic I 19 like homo sapiens
42a	CG59327-01	133	134	Monocarboxylate transporter 1 like
43a	CG59494-01	135	136	myelin P2 like
44a	CG59432-01	137	138	chloride channel like
4 4b	CG59432-02	139	140	chloride channel like
45a	CG59394-01	141	142	GPCR like
46a	CG59383-01	143	144	D6MM5E PROTEIN like
46b	CG59383-02	145	146	D6MM5E PROTEIN like
47a	CG58526-01	147	148	scramblase like
48a	CG57851-01	149	150	sulfotransferase like
49a	CG59377-01	151	152	epsin like
50a	CG59258-01	153	154	transcriptional activator
51a	CG59492-01	155	156	Myosin Head (Motor Domain) like
52a	CG59564-01	157	158	Sorting nexin 6 like
53a	CG59553-01	159	160	Secretory protein SEC8
54a	CG59545-01	161	162	Placental protein 13 like
55a	CG59435-01	163	164	Nedd-1 like
55b	CG59435-02	165	166	Nedd-1 like
56a	CG59439-01	167	168	Xenobiotic/medium- chain fatty acid:CoA ligase form XL-III like
56b	CG59439-02	169	170	Xenobiotic/medium- chain fatty acid:CoA ligase form XL-III like
57a	CG59354-01	171	172	phosducin like
57b	CG59354-02	173	174	phosducin like
57c	CG59354-03	175	176	phosducin like
580	CG59319-01		170	phosducin like

61a	CG59555-01	185	186	GPCR like
62a	CG59551-01	187	188	GPCR like
63a	CG59540-01	189	190	GPCR like
64a	CG59280-01	191	192	GPCR like
64b	CG59280-02	193	194	GPCR like
65a	CG59568-01	195	196	GPCR like
66a	CG59224-01	197	198	GPCR like
67a	CG59222-01	199	200	GPCR like
68a	CG59220-01	201	202	GPCR like
69a	CG59218-01	203	204	GPCR like
70 a	CG59216-01	205	206	GPCR like
71a	CG59214-01	207	208	GPCR like
72a	CG59211-01	209	210	GPCR like
73a	CG59276-01	211	212	Dihydroorotate
				dehydrogenase like
74a	CG59268-01	213	214	monooxygenase like
75a	CG59549-01	215	216	H326 like (cytoplasmic
				protein with WD repeat
				domain)
76a	CG59641-01	217	218	Acetyl-CoA
				Carboxylase 2 like
77a	CG59630-01	219	220	Midnolin like
78a	CG59561-01	221	222	ACYL COENZYME A
				THIOESTER
				HYDROLASE like
79a	CG59452-01	223	224	CELL
•				PROLIFERATION
				RELATED PROTEIN
	0050572 01	225	22.6	CAP like
80a	CG59572-01	225	226	Pseudouridine Synthase
0.01	0050572.02	227	220	3 like
80Ь	CG59572-02	227	228	Pseudouridine Synthase 3 like
91.	CC50522.01	229	230	
81a	CG59522-01 CG59520-01	229	232	Myosin like Farnesyl-
82a	CG39320-01	231	232	pyrophosphate
			Ì	synthetase like
83a	CG59758-01	233	234	UBIQUITIN like
83b	CG59758-02	235	236	UBIQUITIN like
84a	CG59586-01	237	238	glucokinase like
85a	CG59704-01	239	240	serine/threonine kinase
100	CO37/194-01	1239	270	like
86a	CG59628-01	241	242	Short-chain
004	0000000	- ' '		dehydrogenase like
87a	CG59516-01	243	244	Calponin like
87b	CG59516-02	245	246	Calponin like
88a	CG59671-02	247	248	acyl-coenzyme A
		- / ·		thioester hydrolase
89a	CG56870-01	249	250	NDRG3 like
89b	CG56870-02	251	252	NDRG3 like
89c	CG56870 03	253	254	NDRG3 like

CG59710-01	261	262	P14 like
CG59754-02	263	264	Downs syndrome cell
			adhesion molecule like
CG59754-01	265	266	Downs syndrome cell
			adhesion molecule like
CG59800-01	267	268	HEPARAN SULFATE
	İ		D-GLUCOSAMINYL
			3-O-
			SULFOTRANSFERAS
			E-3B like
CG59761-01	269	270	AXIN 1 (AXIS
			INHIBITION
	·		PROTEIN 1) (HAXIN)
			like
CG59756-01	271	272	JUNCTOPHILIN
			TYPE 2 like
CG59708-01	273	274	Ubiquitin carboxyl-
			terminal hydrolase 21
			like
CG59708-02	275	276	Ubiquitin carboxyl-
			terminal hydrolase 21
			like
CG59708-03	277	278	Ubiquitin carboxyl-
			terminal hydrolase 21
			like
CG59559-01	279	280	BA12M19.1.3 like
CG59669-01	281	282	carbonyl reductase
			(called NADPH-
			dependent carbonyl
			reductase-like in
			patent)
CG58624-01		284	metal transporter
CG59679-01	285	286	carbonyl reductase
CG59644-01	287	288	CG12091 (putative
			protein phosphatase)
CG59662-01	289	290	Cyclophilin
CG59773-01	291	292	Myomegalin
CG59773-02	293	294	Myomegalin
CG59773-03	295	296	Myomegalin
CG57460-01	297	298	PEPTIDYL-PROLYL
			CIS-TRANS
		<u> </u>	ISOMERASE like
CG57464-01	299	300	N-
			ACETYLTRANSFER
			ASE like
CG57466-01	301	302	Acetylglucosaminyltra
			nsferase like
CG57468-01	303	304	ABC transporter like
1			homo sapiens
	I		nomo sapiens
CG59609-01	305	306	PEPTIDYL-PROLYL
	CG59754-02 CG59754-01 CG59800-01 CG59761-01 CG59708-01 CG59708-02 CG59708-03 CG59708-01 CG59669-01 CG59669-01 CG59662-01 CG59679-01 CG59773-01 CG59773-02 CG59773-03 CG57460-01 CG57466-01	CG59754-02 263 CG59754-01 265 CG59800-01 267 CG59761-01 269 CG59708-01 271 CG59708-02 275 CG59708-03 277 CG59669-01 281 CG59669-01 283 CG59669-01 285 CG59662-01 289 CG59773-02 293 CG597460-01 297 CG57464-01 297 CG57466-01 301	CG59754-02 263 264 CG59754-01 265 266 CG59800-01 267 268 CG59761-01 269 270 CG59756-01 271 272 CG59708-01 273 274 CG59708-02 275 276 CG59708-03 277 278 CG595559-01 279 280 CG59669-01 281 282 CG59669-01 285 286 CG59662-01 289 290 CG59773-01 291 292 CG59773-03 295 296 CG57460-01 299 300 CG57466-01 299 300

+ + }

				CALLERON A CALLO
110a	CG59619-01	309	310	CYTOPLASMIC
			- 	ACTIN 2 like
111a	CG59621-01	311	312	SELENOPHOSPHAT
				E SYNTHETASE like
112a	CG59625-01	313	314	glucose transporter like
113a	CG59887-01	315	316	Amino Acid/Metabolite
				Permease like
113b	CG59887-02	317	318	Amino Acid/Metabolite
				Permease like
114a	CG59861-01	319	320	RIBULOSE-5-
				PHOSPHATE-
				EPIMERASE like
114b	CG59861-02	321	322	RIBULOSE-5-
				PHOSPHATE-
				EPIMERASE like
115a	CG59857-01	323	324	Rhotekin like homo
				sapiens
116a	CG59855-01	325	326	ATP SYNTHASE
				SUBUNIT C lik
116b	CG59855-02	327	328	ATP SYNTHASE
	0 307300 02			SUBUNIT C like
117a	CG59807-01	329	330	Zinc finger like
118a	CG59805-01	331	332	Zinc finger like
119a	CG59928-01	333	334	Universal Stress (USP)
1174	C.G57720-01			Domain Containing
				Protein like
120a	CG59947-01	335	336	VOLTAGE-GATED
1200	(.03))47-01		330	POTASSIUM
				CHANNEL PROTEIN
				KV3.3 (KSHIID) like
121a	CG59938-01	337	338	arylsulfatase like homo
1214	CG39936-01	357	330	sapiens
122a	CG59746-01	339	340	ubiquitin-specific
1224	CG39740-01	337	340	processing protease
				like homo sapiens
123a	CG88613-01	341	342	INOSITOL 1,4,5-
1238	CG00013-01	341	342	TRISPHOSPHATE 3-
				KINASE
				ISOENZYME like
121-	CC50002.01	343	344	synaptotagmin II like
124a	CG59993-01	345	344	synaptotagmin II like
124b	CG59993-02	345	348	ooplasm specific
125a	CG59991-01	347	345	protein like
127	CC:50067.01	340	350	GTP-RHO binding
126a	CG59987-01	349	330	
				protein 1 (rhophilin)
	0050007.00	135.	1262	like CTP PHO hinding
126b	CG59987-02	351	352	GTP-RHO binding
				protein 1 (rhophilin)
·				like
127a	CG59971-01	353	354	Leucine rich repeat
l	į	١	I	(LRR) like

Table 1 indicates homology of NOVX nucleic acids to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table 1 will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table 1.

NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.

Consistent with other known members of the family of proteins, identified in column 5 of Table 1, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.

The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table 1.

The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g.a variety of cancers.

Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.

The present invention is based on the identification of biological macromolecules differentially modulated in a pathologic state, disease, or an abnormal condition or state.

Among the pathologies or diseases of present interest include metabolic diseases including

states. In very significant embodiments of the present invention, the biological macromolecules implicated in the pathologies and conditions are proteins and polypeptides, and in such cases the present invention is related as well to the nucleic acids that encode them. Methods that may be employed to identify relevant biological macromolecules include any procedures that detect differential expression of nucleic acids encoding proteins and polypeptides associated with the disorder, as well as procedures that detect the respective proteins and polypeptides themselves. Significant methods that have been employed by the present inventors, include GeneCalling ® technology and SeqCalling TM technology, disclosed respectively, in U. S. Patent No. 5,871,697, and in U. S. Ser. No. 09/417,386, filed Oct. 13, 1999, each of which is incorporated herein by reference in its entirety. GeneCalling ® is also described in Shimkets, et al., "Gene expression analysis by transcript profiling coupled to a gene database query" Nature Biotechnology 17:198-803 (1999).

The invention provides polypeptides and nucleotides encoded thereby that have been identified as having novel associations with a disease or pathology, or an abnormal state or condition, in a mammal. The present invention further identifies a set of proteins and polypeptides, including naturally occurring polypeptides, precursor forms or proproteins, or mature forms of the polypeptides or proteins, which are implicated as targets for therapeutic agents in the treatment of various diseases, pathologies, abnormal states and conditions. A target may be employed in any of a variety of screening methodologies in order to identify candidate therapeutic agents which interact with the target and in so doing exert a desired or favorable effect. The candidate therapcutic agent is identified by screening a large collection of substances or compounds in an important embodiment of the invention. Such a collection may comprise a combinatorial library of substances or compounds in which, in at least one subset of substances or compounds, the individual members are related to each other by simple structural variations based on a particular canonical or basic chemical structure. The variations may include, by way of nonlimiting example, changes in length or identity of a basic framework of bonded atoms; changes in number, composition and disposition of ringed structures, bridge structures, alicyclic rings, and aromatic rings; and changes in pendent or substituents atoms or groups that are bonded at particular positions to the basic framework of bonded atoms or to the ringed structures, the bridge structures, the alicyclic structures, or the aromatic structures.

A polypeptide or protein described herein, and that serves as a target in the screening

full-length gene product, encoded by the corresponding gene. The naturally occurring polypeptide also includes the polypeptide, precursor or proprotein encoded by an open reading frame described herein. A "mature" form of a polypeptide or protein arises as a result of one or more naturally occurring processing steps as they may occur within the cell, including a host cell. The processing steps occur as the gene product arises, e.g., via cleavage of the amino-terminal methionine residue encoded by the initiation codon of an open reading frame, or the proteolytic cleavage of a signal peptide or leader sequence. Thus, a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the Nterminal methionine, would have residues 2 through N remaining. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an amino-terminal signal sequence from residue 1 to residue M is cleaved, includes the residues from residue M+1 to residue N remaining. A "mature" form of a polypeptide or protein may also arise from non-proteolytic post-translational modification. Such non-proteolytic processes include, e.g., glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or the combination of any of them.

As used herein, "identical" residues correspond to those residues in a comparison between two sequences where the equivalent nucleotide base or amino acid residue in an alignment of two sequences is the same residue. Residues are alternatively described as "similar" or "positive" when the comparisons between two sequences in an alignment show that residues in an equivalent position in a comparison are either the same amino acid or a conserved amino acid as defined below.

As used herein, a "chemical composition" relates to a composition including at least one compound that is either synthesized or extracted from a natural source. A chemical compound may be the product of a defined synthetic procedure. Such a synthesized compound is understood herein to have defined properties in terms of molecular formula, molecular structure relating the association of bonded atoms to each other, physical properties such as chromatographic or spectroscopic characterizations, and the like. A compound extracted from a natural source is advantageously analyzed by chemical and physical methods in order to provide a representation of its defined properties, including its molecular formula, molecular structure relating the association of bonded atoms to each other, physical properties such as chromatographic or spectroscopic characterizations, and the like.

invention, the target biopolymer is a protein or polypeptide, a nucleic acid, a polysaccharide or proteoglycan, or a lipid such as a complex lipid. The method of identifying compounds that bind to the target effectively eliminates compounds with little or no binding affinity, thereby increasing the potential that the identified chemical compound may have beneficial therapeutic applications. In cases where the "candidate therapeutic agent" is a mixture of more than one chemical compound, subsequent screening procedures may be carried out to identify the particular substance in the mixture that is the binding compound, and that is to be identified as a candidate therapeutic agent.

As used herein, a "pharmaceutical agent" is provided by screening a candidate therapeutic agent using models for a disease state or pathology in order to identify a candidate exerting a desired or beneficial therapeutic effect with relation to the disease or pathology. Such a candidate that successfully provides such an effect is termed a pharmaceutical agent herein. Nonlimiting examples of model systems that may be used in such screens include particular cell lines, cultured cells, tissue preparations, whole tissues, organ preparations, intact organs, and nonhuman mammals. Screens employing at least one system, and preferably more than one system, may be employed in order to identify a pharmaceutical agent. Any pharmaceutical agent so identified may be pursued in further investigation using human subjects.

NOVX Nucleic Acids and Polypeptides

NOVX clones

NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.

The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each

The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration *in vitro* and *in vivo* (vi) biological defense weapon.

In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 178 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).

In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 178; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178, in which any amino

man active man in a selection of the contraction of

fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 178 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.

In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.

One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.

An NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a "mature" form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring

polypeptide, precursor or proprotein encoded by an ORF described herein. The product "mature" form arises, again by way of nonlimiting example, as a result of one or more naturally occurring processing steps as they may take place within the cell, or host cell, in which the gene product arises. Examples of such processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a "mature" form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristoylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.

The term "probes", as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.

The term "isolated" nucleic acid molecule, as utilized herein, is one, which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5'- and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (*e.g.* brain, heart liver.

recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the invention, *e.g.*, a nucleic acid molecule having the nucleotide sequence SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or a complement of this aforementioned nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (*e.g.*, as described in Sambrook, *et al.*, (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, *et al.*, (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)

A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.

Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.

In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or a portion of this nucleotide

complementary to the nucleotide sequence from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 is one that is sufficiently complementary to the nucleotide sequence from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 that it can hydrogen bond with little or no mismatches to the nucleotide sequence from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, thereby forming a stable duplex.

As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term "binding" means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.

Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, respectively, and are at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice. Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution. Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. Homologs are nucleic acid sequences or amino acid sequences of a particular gene that are derived from different species.

A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5' direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame

polypeptide, and requires that the corresponding full-length cDNA extend in the 3' direction of the disclosed sequence.

Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993, and below.

A "homologous nucleic acid sequence" or "homologous amino acid sequence," or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences encode those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for an NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.

An NOVX polypeptide is encoded by the open reading frame ("ORF") of an NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop

and the second of the second

TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a *bona fide* cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.

The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, *e.g.* from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178; or an anti-sense strand nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178.

Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which misexpress an NOVX protein, such as by measuring a level of an NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.

"A polypeptide having a biologically-active portion of an NOVX polypeptide" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologically-active portion of NOVX" can be prepared by isolating a portion SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, that encodes a polypeptide having an NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of NOVX.

NOVX Nucleic Acid and Polypeptide Variants

due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences shown in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO: 2n, wherein n is an integer between 1 and 178.

In addition to the human NOVX nucleotide sequences shown in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame (ORF) encoding an NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.

Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from the human SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least

Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.

As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 °C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at

pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60°C for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.

Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65°C, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50°C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequences SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in

In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55°C, followed by one or more washes in 1X SSC, 0.1% SDS at 37°C. Other conditions of moderate stringency that may be used are well-known within the art. *See*, *e.g.*, Ausubel, et *al.* (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.

In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g.. Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.

Conservative Mutations

In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, thereby leading to changes in the amino acid sequences of the encoded NOVX proteins, without altering the functional ability of said NOVX proteins. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence SEQ ID NO: 2n, wherein n is an integer between 1 and

"essential" amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.

Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 45% homologous to the amino acid sequences SEQ ID NO: 2n, wherein n is an integer between 1 and 178. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 178; more preferably at least about 70% homologous SEQ ID NO: 2n, wherein n is an integer between 1 and 178; still more preferably at least about 80% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 178; even more preferably at least about 90% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 178; and most preferably at least about 95% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 178.

An isolated nucleic acid molecule encoding an NOVX protein homologous to the protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 178 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.

Mutations can be introduced into SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side

[&]quot;Appropriated, Octa-Orangined state states of the feedbalk of indicense to a control along all Dilattic on-

chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.

The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved "strong" residues or fully conserved "weak" residues. The "strong" group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the "weak" group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.

In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and an NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).

In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).

Antisense Nucleic Acids

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary

CONTRACTOR OF THE CONTRACTOR O

encoding fragments, homologs, derivatives and analogs of an NOVX protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 178, or antisense nucleic acids complementary to an NOVX nucleic acid sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an NOVX protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the NOVX protein. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, N6-adenine.

2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.

Ribozymes and PNA Moieties

Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.

In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (*e.g.*, hammerhead ribozymes as described in Haselhoff and Gerlach 1988. *Nature* 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for an NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of an NOVX cDNA disclosed herein (*i.e.*, SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an NOVX-encoding mRNA. *See*, *e.g.*, U.S. Patent 4,987,071 to Cech, *et al.* and U.S. Patent 5,116,742 to Cech, *et al.* NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. *See*, *e.g.*, Bartel *et al.*, (1993) *Science* 261:1411-1418.

Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.

In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral

standard solid phase peptide synthesis protocols as described in Hyrup, *et al.*, 1996. *supra*; Perry-O'Keefe, *et al.*, 1996. *Proc. Natl. Acad. Sci. USA* 93: 14670-14675.

PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S₁ nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).

In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., I etsinger, et al., 1989, Proc. Natl. Acad. Sci. U.S. 4, 86:

addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.

NOVX Polypeptides

A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in SEQ ID NO: 2n, wherein n is an integer between 1 and 178. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in SEQ ID NO: 2n, wherein n is an integer between 1 and 178 while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.

In general, an NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.

One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, an NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical

Form contract components of the constrong which is as isolated or recombinantly-produced of

one embodiment, the language "substantially free of cellular material" includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.

Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence shown in SEQ ID NO: 2n, wherein n is an integer between 1 and 178) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of an NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of an NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.

Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.

In an embodiment, the NOVX protein has an amino acid sequence shown SEQ ID NO: 2n, wherein n is an integer between 1 and 178. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 178, and

mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence SEQ ID NO: 2n, wherein n is an integer between 1 and 178, and retains the functional activity of the NOVX proteins of SEQ ID NO: 2n, wherein n is an integer between 1 and 178.

Determining Homology Between Two or More Sequences

To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").

The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. *See*, Needleman and Wunsch, 1970. *J Mol Biol* 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178.

The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the

dentity of internal substantial identity, a lased herein denotes a characteristic of a

polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.

Chimeric and Fusion Proteins

The invention also provides NOVX chimeric or fusion proteins. As used herein, an NOVX "chimeric protein" or "fusion protein" comprises an NOVX polypeptide operativelylinked to a non-NOVX polypeptide. An "NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an NOVX protein SEQ ID NO: 2n, wherein n is an integer between 1 and 178, whereas a "non-NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within an NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of an NOVX protein. In one embodiment, an NOVX fusion protein comprises at least one biologically-active portion of an NOVX protein. In another embodiment, an NOVX fusion protein comprises at least two biologically-active portions of an NOVX protein. In yet another embodiment, an NOVX fusion protein comprises at least three biologically-active portions of an NOVX protein. Within the fusion protein, the term "operatively-linked" is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.

In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.

In another embodiment, the fusion protein is an NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.

In yet another embodiment, the fusion protein is an NOVX-immunoglobulin fusion

an besit corporated into pharmacentical compositions and administered to a subject to immin-

an interaction between an NOVX ligand and an NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction *in vivo*. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of an NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (*e.g.* promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with an NOVX ligand.

An NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) Current Protocols in Molecular Biology, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.

NOVX Agonists and Antagonists

The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of

biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.

Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.

Polypeptide Libraries

In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of an NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single

be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.

Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.

NOVX Antibodies

The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , and $F_{(ab')2}$ fragments, and an F_{ab} expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention

against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, *e.g.*, a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, *e.g.*, Hopp and Woods, 1981, *Proc. Nat. Acad. Sci. USA* 78: 3824-3828; Kyte and Doolittle 1982, *J. Mol. Biol.* 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

Polyclonal Antibodies

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate

recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

Monoclonal Antibodies

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those

elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard. Anal. Biochem. 107:220 (1980). It is an

identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding,1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

Humanized Antibodies

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the

binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Ricchmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

Human Antibodies

Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, <u>J. Mol. Biol.</u>, <u>227</u>:381 (1991);

endogenous immunogionicati genes have been partially or completely mactivated. If poli-

challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al, (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodics such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit. Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoslobulin

immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. $F(ab')_2$ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate $F(ab')_2$ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB

antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_I) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).

Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific

agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., <u>J. Exp Med.</u>, <u>176</u>: 1191-1195 (1992) and Shopes, <u>J. Immunol.</u>, <u>148</u>: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. <u>Cancer Research</u>, <u>53</u>: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., <u>Anti-Cancer Drug Design</u>, <u>3</u>: 219-230 (1989).

Immunoconjugates

WO 02/072757 PCT/L 802/06908

toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (11), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

Immunoliposomes

The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc.

Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., <u>J. Biol. Chem.</u>, <u>257</u>: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., <u>J. National Cancer Inst.</u>, <u>81</u>(19): 1484 (1989).

Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention

Antibodies directed against a protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of the protein (e.g., for use in measuring levels of the protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies against the proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antigen binding domain, are utilized as pharmacologically-active compounds (see below).

An antibody specific for a protein of the invention can be used to isolate the protein by standard techniques, such as immunoaffinity chromatography or immunoprecipitation. Such an antibody can facilitate the purification of the natural protein antigen from cells and of recombinantly produced antigen expressed in host cells. Moreover, such an antibody can be used to detect the antigenic protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic protein. Antibodies directed against the protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycocrythring an example of a

luciferase, luciferin, and acquorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Antibody Therapeutics

Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.

Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.

A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week

Pharmaceutical Compositions of Antibodies

Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.

If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations can be prepared. Suitable examples of sustained-release

Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.

ELISA Assay

An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., F_{ab} or $F_{(ab)2}$) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term "biological sample", therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. *In vitro* techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in "ELISA: Theory and Practice: Methods in Molecular Biology", Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, NJ, 1995; "Immunoassav", E. Diamandis and T. Christopoulus.

vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

NOVX Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in

The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel. GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase. Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amrann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. *See, e.g.,* Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli* (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast *Saccharomyces cerivisae* include pYepSec1 (Baldari, *et al.*, 1987. *EMBO J.* 6. 229-234), pMFa (Kurjan and Herskowitz, 1982. *Cell* 30: 933-943), pJRY88 (Schultz *et al.*, 1987. *Gene* 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp. San Diego, Calif.). Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (*e.g.*, SF9)

Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. *Nature* 329: 840) and pMT2PC (Kaufman, *et al.*, 1987. *EMBO J.* 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, *e.g.*, Chapters 16 and 17 of Sambrook, *et al.*, MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific

Control of the Contro

268-277), lymphoid-specific promoters (Calame and Eaton, 1988. *Adv. Immunol.* 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. *EMBO J.* 8: 729-733) and immunoglobulins (Banerji, *et al.*, 1983. *Cell* 33: 729-740; Queen and Baltimore, 1983. *Cell* 33: 741-748), neuron-specific promoters (*e.g.*, the neurofilament promoter; Byrne and Ruddle, 1989. *Proc. Natl. Acad. Sci. USA* 86: 5473-5477), pancreas-specific promoters (Edlund, *et al.*, 1985. *Science* 230: 912-916), and mammary gland-specific promoters (*e.g.*, milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, *e.g.*, the murine hox promoters (Kessel and Gruss, 1990. *Science* 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. *Genes Dev.* 3: 537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes *see*, *e.g.*, Weintraub, *et al.*, "Antisense RNA as a molecular tool for genetic analysis," *Reviews-Trends in Genetics*, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can

Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.

Transgenic NOVX Animals

The host cells of the invention can also be used to produce non-human transgenic

NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA

encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.

To create a homologous recombinant animal, a vector is prepared which contains at least a portion of an NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).

Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5'- and 3'-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5'- and 3'-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.

The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in

constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. *Curr. Opin. Biotechnol.* 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.

In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, *See, e.g.*, Lakso, *et al.*, 1992. *Proc. Natl. Acad. Sci. USA* 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of *Saccharomyces cerevisiae. See*, O'Gorman, *et al.*, 1991. *Science* 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, *e.g.*, by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G_0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.

Pharmaceutical Compositions

The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and act for release to the control of the cost
which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human scrum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL^{IM} (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of

acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., an NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be

derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Patent No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery

intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Screening and Detection Methods

The isolated nucleic acid molecules of the invention can be used to express NOVX protein (*e.g.*, via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (*e.g.*, in a biological sample) or a genetic lesion in an NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (*e.g.*; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.

The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, *supra*.

Screening Assays

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, *i.e.*, candidate or test compounds or agents (*e.g.*, peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, *e.g.*, NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein. In one embodiment, the invention provides assays for screening candidate or test compounds

Stieptick of Medogwans access bottlets fricted. The post compounds of the discribing all managements.

obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. *See, e.g.,* Lam, 1997. *Anticancer Drug Design* 12: 145.

A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.

Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No. 5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Patent No. 5,233,409.).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to an NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic

example, test compounds can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an NOVX protein, wherein determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with an NOVX target molecule. As used herein, a "target molecule" is a molecule with which an NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses an NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. An NOVX target molecule can be a non-NOVX molecule or an NOVX protein or polypeptide of the invention. In one embodiment, an NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.

Determining the ability of the NOVX protein to bind to or interact with an NOVX target molecule can be accomplished by one of the methods described above for determining

target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (*i.e.* intracellular Ca²⁺, diacylglycerol, IP₃, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising an NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, *e.g.*, luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.

In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting an NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an NOVX protein, wherein determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.

In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to an NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate an NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.

In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining

ability of the NOVX protein to preferentially bind to or modulate the activity of an NOVX target molecule.

The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylglucoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton[®] X-100, Triton[®] X-114, Thesit[®], Isotridecypoly(ethylene glycol ether)_n, N-dodecyl--N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).

In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target

or is a protection and get monecute countries repaired that, and prove

(N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.

In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.

In yet another aspect of the invention, the NOVX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (*see, e.g.*, U.S. Patent No. 5,283,317; Zervos, *et al.*, 1993. *Cell* 72: 223-232; Madura, *et al.*, 1993. *J. Biol. Chem.* 268: 12046-12054; Bartel, *et al.*, 1993. *Biotechniques* 14: 920-924; Iwabuchi, *et al.*, 1993. *Oncogene* 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX ("NOVX-binding proteins" or "NOVX-bp") and modulate NOVX activity. Such NOVX-binding proteins are also likely to be involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.

two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming an NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.

The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.

Detection Assays

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.

Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences, SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Reporter NOVN range our harm march to the me I make his recognition PCD with me

genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.

Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988)

come soft core a subdicts for obtilinal chlothosomy of paths so the agents can be assented

WO 02/072757

marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

Tissue Typing

The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP ("restriction fragment length polymorphisms," described in U.S. Patent No. 5,272,057). Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5'- and 3'-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).

Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

Predictive Medicine

The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders. Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders. and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid

prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.

Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics"). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.

These and other agents are described in further detail in the following sections.

Diagnostic Assays

An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 178, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.

An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')₂) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable

actection of a primary antibody using a transference rapered see, notary untibody at

end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample *in vitro* as well as *in vivo*. For example, *in vitro* techniques for detection of NOVX mRNA include Northern hybridizations and *in situ* hybridizations. *In vitro* techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. *In vitro* techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, *in vivo* techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.

The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.

Prognostic Assays

The call of the control of the call of the

diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).

The methods of the invention can also be used to detect genetic lesions in an NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding an NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from an NOVX gene; (ii) an addition of one or more nucleotides to an NOVX gene; (iii) a substitution of one or more nucleotides of an NOVX gene, (iv) a chromosomal rearrangement of an NOVX gene; (v) an alteration in the level of a messenger

of a messenger RNA transcript of an NOVX gene, (viii) a non-wild-type level of an NOVX protein, (ix) allelic loss of an NOVX gene, and (x) inappropriate post-translational modification of an NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in an NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (*see, e.g.*, U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (*see, e.g.*, Landegran, *et al.*, 1988. *Science* 241: 1077-1080; and Nakazawa, *et al.*, 1994. *Proc. Natl. Acad. Sci. USA* 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (*see, Abravaya, et al.*, 1995. *Nucl. Acids Res.* 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (*e.g.*, genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to an NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in an NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared

No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence.

Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. *Proc. Natl. Acad. Sci. USA* 74: 560 or Sanger, 1977. *Proc. Natl. Acad. Sci. USA* 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (*see, e.g.,* Naeve, *et al.,* 1995. *Biotechniques* 19: 448), including sequencing by mass spectrometry (see, *e.g.,* PCT International Publication No. WO 94/16101; Cohen, *et al.,* 1996. *Adv. Chromatography* 36: 127-162; and Griffin, *et al.,* 1993. *Appl. Biochem. Biotechnol.* 38: 147-159).

Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. *See, e.g.,* Myers, *et al.,* 1985. *Science* 230: 1242. In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will

in the contract of the contrac

nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba. et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of *E. coli* cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. *See, e.g.,* Hsu, *et al.,* 1994. *Carcinogenesis* 15: 1657-1662. According to an exemplary embodiment, a probe based on an NOVX sequence, *e.g.,* a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. *See, e.g.,* U.S. Patent No. 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. *See, e.g.,* Orita, *et al.*, 1989. *Proc. Natl. Acad. Sci. USA*: 86: 2766; Cotton, 1993. *Mutat. Res.* 285: 125-144; Hayashi, 1992. *Genet. Anal. Tech. Appl.* 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. *See, e.g.,* Keen, *et al.*, 1991. *Trends Genet.* 7: 5.

In vet another embodiment, the movement of mutant or wild-type fragments in

used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. *See, e.g.,* Saiki, *et al.,* 1986. *Nature* 324: 163; Saiki, *et al.,* 1989. *Proc. Natl. Acad. Sci. USA* 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; *see*, *e.g.*, Gibbs, *et al.*, 1989. *Nucl. Acids Res.* 17: 2437-2448) or at the extreme 3'-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (*see*, *e.g.*, Prossner, 1993. *Tibtech.* 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. *See*, *e.g.*, Gasparini, *et al.*, 1992. *Mol. Cell Probes* 6: 1. It is anticipated that in certain embodiments amplification may also be performed using *Taq* ligase for amplification. *See*, *e.g.*, Barany, 1991. *Proc. Natl. Acad. Sci. USA* 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving an NOVX gene.

biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

Pharmacogenomics

Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancerassociated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.) In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate

sadobamides, analgesies, infroturans) and estisamptions in tay a beam

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome PREGNANCY ZONE PROTEIN PRECURSOR enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with an NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.

Monitoring of Effects During Clinical Trials

Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to

levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.

By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.

In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of an NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels

administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, *i.e.*, to decrease the effectiveness of the agent.

Methods of Treatment

The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, and other diseases, disorders and conditions of the like.

These methods of treatment will be discussed more fully, below.

Disease and Disorders

Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (*i.e.*, reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (*i*) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (*ii*) antibodies to an aforementioned peptide; (*iii*) nucleic acids encoding an aforementioned peptide; (*iv*) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" (*i.e.*, due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to "knockout" endogenous function of an aforementioned peptide by homologous recombination (*see*, *e.g.*, Capecchi, 1989. *Science* 244: 1288-1292); or (*v*) modulators (*i.e.*, inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned

Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (*i.e.*, are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.

Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it *in vitro* for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, *in situ* hybridization, and the like).

Prophylactic Methods

In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, an NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.

Therapeutic Methods

Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein

ligand of an NOVX protein, a peptide, an NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of an NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering an NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.

Stimulation of NOVX activity is desirable *in situ*ations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (*e.g.*, cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (*e.g.*, preclampsia).

Determination of the Biological Effect of the Therapeutic

In various embodiments of the invention, suitable *in vitro* or *in vivo* assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.

In various specific embodiments, *in vitro* assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for *in vivo* testing, any of the animal model system known in the art may be used prior to administration to human

Prophylactic and Therapeutic Uses of the Compositions of the Invention

The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders including, but not limited to: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancerassociated cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.

As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias.

Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (*i.e.*, some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.

Sequence Analyses

The sequence of NOVX was derived by laboratory cloning of cDNA fragments, by *in silico* prediction of the sequence. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, were cloned. *In silico* prediction was based on sequences available in CuraGen's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.

The laboratory cloning was performed using one or more of the methods summarized below:

SeqCallingTMTechnology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen Corporation's SeqCalling technology which is disclosed in full in U. S. Ser. Nos. 09/417,386 filed Oct. 13, 1999, and 09/614,505 filed July 11, 2000. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatics programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.

Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a "cSNP" to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type

Presented information includes that associated with genomic clones, public genes and ESTs sharing sequence identity with the disclosed sequence and CuraGen Corporation's Electronic Northern bioinformatic tool.

Examples

Example A: Sequence related information

The NOV1 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 1A.

Table 1A. NOV1 Sequence Analysis					
	SEQ ID NO: 1	711 bp			
NOV1a, CG58522-01 DNA Sequence	TGCAGANTGAACCAAGGAGACTCAAACCCAGCAGCTACTCCGCATGCGGCAGAAGACA TTCAAGGAGATGACAGATGGATGTGTCAGCACAACAGATTTGTTTTGGACTGTAAAGA CAAACAGCCTGATGTACCATTTGCGGGAGGCTCCGTGGTGCAGTTACTGCAGCCATAT GAGATATGGCGAGAGCTTTTTTCCCCACTTCATGCACTGAATTTTGGACTGGGGGAG ATACAACAAGACATGTTTTTCTCGACACTAAAGACCCATGAAATTTGCAGCAGAAGAGCATTTTTCGCTAGGAAGAACAACCATGAAAATATGGCAGAAAGAGGTA GCAGGTGGTATGGCTGCTACAACATTATCAACACAAGGCAGCCACAGGCCAAAA TCATTGTATTTGATCTGTTACCTCAAGGTGAGAAACCCACAGCCTTTGAGGCAAAAACACCACGTGCAGCCCACAGCCCTGGAAACTTACCAACGTGAAACTTACCAACGTGCAGCCC CTGGATACTGACCCACTCGTCAAGATTTCGCTGCTGAAACTTACCAACGTGCAGCCT TTGATTTTTCGCATTTGACAGGAGGTGGCTACTCCAAAGGTCTCCTGCCACGACATGT TTGATTTTTCTGCATTTGACAGGAGGTGGCTACTCCAAAGGTCTGCAAACCCTTGAATGA ACTGATCATGCAGTTTCGTGGAGGAAACACCCTCAGAGAAACCACCATTGCCTGA CTGGCTCCCATGAGTT				
	ORF Start: ATG at 7	ORF Stop	o: TGA at 694		
	SEQ ID NO: 2	229 aa	MW at 25656.2kD		
NOV1a, CG58522-01 Protein Sequence	MNQGDSNPAATPHAAEDIQGDDRWMCQHNRFVLDCKDKQPDVPFAGGSVVQLLQPYE WRELFSPLHALNFGTGGDTTRHVLWRLKSGELGNTKPKVIVFWLGRNNHENMAEEVA CC GMAAIVQLINTRQPQAKIIVFDLLPQGEKPNPLRQKNAKVNPLVKISLLKLTNVQLL TDRGFVHSDRAISCHDMFDFLHLTGGGYSKVCKPLNELIMQLLEETPEEKQTTIA				

Further analysis of the NOV1a protein yielded the following properties shown in Table 1B.

	Table 1B. Protein Sequence Properties NOV1a				
Psort analysis:	0.6500 probability located in cytoplasm; 0.2340 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space; 0.0000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	No Known Signal Sequence Predicted				

 $oldsymbol{t}$, $oldsymbol{b}$. With an extring a rich of the Company of Lie day $oldsymbol{t}$, an emphasized detailed on

to mologous proteirs snown in Aubic to

	Table 1C. Geneseq Results for NOV1a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB49433	Human beta platelet activating factor acetylhydrolase - Homo sapiens, 229 aa. [US6146868-A, 14-NOV-2000]	1229 1229	196/229 (85%) 209/229 (90%)	e-114	
AAB49432	Rat beta platelet activating factor acetylhydrolase - Rattus norvegicus, 229 aa. [US6146868-A, 14-NOV-2000]	1229 1229	195/229 (85%) 208/229 (90%)	e-114	
AAB49434	Murine beta platelet activating factor acetylhydrolase - Mus musculus, 229 aa. [US6146868-A, 14-NOV-2000]	1229 1229	192/229 (83%) 205/229 (88%)	e-111	
AAB49436	Bovine gamma platelet activating factor acetylhydrolase - Bos taurus, 232 aa. [US6146868-A, 14-NOV-2000]	4219 3218	124/216 (57%) 165/216 (75%)	5e-74	
AAB49435	Human gamma platelet activating factor acetylhydrolase - Homo sapiens, 231 aa. [US6146868-A, 14-NOV-2000]	4219 3218	124/216 (57%) 164/216 (75%)	2e-73	

In a BLAST search of public sequence databases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1D.

	Table 1D. Public BLASTP Results for NOV1a				
Protein Accession Number	Protein/Organism/Length	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q29459	Platelet-activating factor acetylhydrolase IB beta subunit (EC 3.1.1.47) (PAF acetylhydrolase 30 kDa subunit) (PAF-AH 30 kDa subunit) (PAF-AH beta subunit) (PAFAH beta subunit) (PAFAH beta subunit) - Homo sapiens (Human), and, 229 aa.	1229 1229	196/229 (85%) 209/229 (90%)	e-114	
O35264	Platelet-activating factor acetylhydrolase IB beta subunit (EC 3.1.1.47) (PAF acetylhydrolase 30 kDa subunit) (PAF-AH 30 kDa subunit) (PAF-AH beta subunit) (PAFAH beta subunit) (PAFAH beta subunit) (PAFAH alpha 2) - Rattus norvegicus (Rat), 229 aa.	1229 1229	195/229 (85%) 208/229 (90%)	e-113	
Q61206	Platelet-activating factor acetylhydrolase IB beta subunit (EC 3.1.1.47) (PAF acetylhydrolase 30 kDa subunit) (PAF-AH 30 kDa subunit) (PAF-AH beta subunit) (PAFAH beta subunit) - Mus musculus (Mouse), 229 aa.	1229 1229	192/229 (83%) 205/229 (88%)	e-111	
Q29460	Platelet-activating factor acetylhydrolase IB gamma subunit (EC 3.1.1.47) (PAF acetylhydrolase 29 kDa subunit) (PAF-AH 29 kDa subunit) (PAF-AH gamma subunit) (PAFAH gamma subunit) - Bos taurus (Bovine), 232 aa.	4219 3218	125/216 (57%) 165/216 (75%)	8e-74	
Q15102	Platelet-activating factor acetylhydrolase IB gamma subunit (EC 3.1.1.47) (PAF acetylhydrolase 29 kDa subunit) (PAF-AH 29 kDa subunit) (PAF-AH gamma subunit) (PAFAH gamma subunit) (PAFAH gamma subunit) - Homo sapiens (Human), 231 aa.	4219 3218	124/216 (57%) 164/216 (75%)	7e-73	

PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1E.

Pfam Domain	NOV1a Match Region	Identities/ Similarities for the Matched Region	Expect Value
PAF-AH: domain 1 of 1	7221	150/215 (70%) 186/215 (87%)	6e-147

Example 2.

The NOV2 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 2A.

Table 2A. NOV2 Sequence Analysis				
	SEQ ID NO: 3	1457 bp		
NOV2a, CG58520-01 DNA Sequence	CGATTCCGATGGGTCCTTTGANAGCTTTTCTTCTCCCCTTTTCTTCTGCGGAG AAGTAGAGGGGTGAGGTTGGTCTTCTTGTTACTGACCCTGCATTTGGGAAACGTT AAGGCAGATGATGAAGATGATGAGGATTTAACGGTGAACAAAACCTGGGTCTTGG CAAAAATTCATGAAGGAGATATCACACAAATTCTGAATTCATTGCTTCAAGGCTA CAATAAACTTCGTCCAGATATAGGAGTCAACACACATTTGAATTCATTGAACTGATGTT GTAAACAGCATTTGGACCAGTTTAAAATTCAATAGAACTTGAATTAAAA TTGCCCAAACCTGGTTTGACCAGTTAAAATTCAATAGTACCATGAATATAA ATGCCCAAACCTGGTTTGACAGTGTTTAAAATTCAATAGTACCATGAAATTGGATTTCTTCAGAACC GCTTAACAGTAATATGGTTGGAAAAATTTGGATTCCTGACACTTTCTTCAGAAAC AGAAAATCTGATGCTCACTGGATAACAACTCCTAATCGTCTGCTTCGAATTTTGA ATGGACGAGTTCTGTATACTCTAAGGAGGATTGACAATTAATAGCAGAATTTTCAAGCTTC GCTTCATAACTTTCCCATGGATGAACATTCCTGTCCACTGGATTTTCTAAGGTTC GTGGGCGACACAAGATCCGGAGATTATATCAGTTTGCATTTGTATGGTTTCTTTC			
	ORF Start: ATG at 9	ORF Stop: TAA at 1425		
NOV2a, CG58520-01 Protein Sequence	SEQ ID NO: 4 472 aa MW at 54100.9kD MGPLKAFLFSPFLLRSQSRGVRLVFLLLTLHLGNVDKADDEDDEDLTVNKTWVLAPKI HEGDITQILNSLLQGYDNKLRPDIGVRPTVIETDVYVNSIGPVDPINMEYTIDIIFAC TWFDSRLKENSTMKVLMLNSNMVGKIWIPDTFFRNSRKSDAHWITTENRLLRIWNDGF VLYTLRRLTINAECYLQLHNFPMDEHSCPLEFSSFSIDGYPKNEIELSMEAKFCGSGF HKIRRLYQFAFVGLRNSTEITHTISGDYVIMTIFFDLSRRMGYFTIQTYIPCILTVVI SWVSFWINKDAVPARTSLGMTSIGITTVLIMTTLSTIARKSLPKVSYVTAMDLFVSVC FIFVFAALMEYGTLHYFTSNQKGKTATKDRKLKNKASTPGLHPGSTLIPMNNISVPQE DDYGYQCLEGKDCASFFCCFEDCRTGSWREGRIHIRIAKIDSYSRIFFPTAFALFNLV YWVGYLYL			
	SEQ ID NO: 5	1521 bp		
NOV2b, CG58520-02 DNA Sequence	CAACCAAGAGGCAAGAGGCGAGAAGGAAAAAAAAAAAGCGATGAGTTCGCCAAAT ATATGGAGCACAGGAGCTCAGTCTACTCGACTCCTGTATTTCACAGAAAATGACGG TGTGGATTCTGCTCCTGCTGTCGCTCTACCCTGGCTTCACTAGCCAGAAATCTGATGA TGACTATGAAGATTATGCTTCTAACAAAACATGGGTCTTGACTCCAAAAGTTCCTGAG GGTGATGTCACTGTCATCTTAAACAACCTGCTGGAAGGATATGACAATAAACTTCGGC CTGATATAGGAGTGAAGCCAACGTTAATTCACACAGACATGTATGT			

	CATCCAGACCTATATCCCCTGCACACTCATTGTCGTCCTATCCTGGGTGTCTTT ATCAATAAGGATGCTGTTCCAGCCAGAACATCTTTAGGTATCACCACTGTCCTG TGACCACCCTCAGCACCATTGCCCGGAAATCGCTCCCCAAGGTCTCCTATGTCA GATGGATCTCTTTGTATCTGTTTTTTCATCTTTGTCTTCTCTGCTTGGTGGA GGCACCTTGCATTATTTTGTCAGCAACCGGAAACCAAGCAAG			
NOV2b, CG58520-02 Protein Sequence	MSSPNIWSTGSSVYSTPVFSQKMTVWILLLLSLYPGFTSQKSDDDYEDYASNKTWVLT PKVPEGDVTVILNNLLEGYDNKLRPDIGVKPTLIHTDMYVNSIGPVNAINMEYTIDIF FAQTWYDRRLKFNSTIKVLRLNSNMVGKIWIPDTFFRNSKKADAHWITTPNRMLRIWN DGRVLYTLRLTIDAECQLQLHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVEVGDT RSWRLYQFSFVGLRNTTEVVKTTSGDYVVMSVYFDLSRRMGYFTIQTYIPCTLIVVLS WVSFWINKDAVPARTSLGITTVLTMTTLSTIARKSLPKVSYVTAMDLFVSVCFIFVFS ALVEYGTLHYFVSNKKPSKDKDKKKKNPLLRMFSFKAPTIDIRPRSATIQMNNATHLQ ERDEEYGYECLDGKDCASFFCCFEDCRTGAWRHGRIHIRIAKMDSYARIFFPTAFCLF			
	SEQ ID NO: 7	1455 bp		
NOV2c, CG58520-03 DNA Sequence	TAGTGCAGCACGTAAAAAAGCGATTCCCATGGGTCCTTTGAAAGCTTTCTCTCTC			
	ORF Start: ATG at 31			
NOV2c, CG58520-03 Protein Sequence	SEQ ID NO: 8 465 aa MW at 53597.3kD MGPLKAFLFSPFLLRSQSRGVRLVFLLLTLHLGNWVDKADDEDDEDLTVNKTWVLAP IHEGDITQILNSLLQGYDNKLRPDIGVRPTVIETDVYVNSIGPVDPINMEYTIDIIF C QTWFDSRLKFNSTMKVLMLNSNMVGKLWIPDTFFRNSRKSDAHWITTPNRLLRIWND RVLYTLRLTINAECYLQLHNFPMDEHSCPLEFSSDGYPKNEIEYKWKKPSVEVADPK WRLYQFAFVGLRNSTEITHTISGDYVIMTIFFDLSRRMGYFTIQTYIPCILTVVLSW SFWINKDAVPARTSLGITTVLTMTTLSTIARKSLPKVSYVTAMDLFVSVCFIFVFAA MEYGTLHYFTSNQKGKTATKDRKLKNKASVTPGLHPGSTLIPMNNISVPQEDDYGYQ LEGKDCASFFCCFEDCRTGSWREGRIHIRIAKIDSYSRIFFPTAFALFNLVYWVGYL			

Control Miles

Table 2B. Comparison of NOV2a against NOV2b through NOV2c.				
Protein Sequence	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV2b	24472 27475	311/458 (67%) 352/458 (75%)		
NOV2c	1472 1465	414/474 (87%) 415/474 (87%)		

Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.

	Table 2C. Protein Sequence Properties NOV2a				
	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	Likely cleavage site between residues 38 and 39				

A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2D.

Table 2D. Geneseq Results for NOV2a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM41007	Human polypeptide SEQ ID NO 5938 - Homo sapiens, 489 aa. [WO200153312-A1, 26-JUL-2001]	24472 49489	334/451 (74%) 379/451 (83%)	0.0
AAM39221	Human polypeptide SEQ ID NO 2366 - Homo sapiens, 467 aa. [WO200153312-A1, 26-JUL-2001]	24472 27467	334/451 (74%) 379/451 (83%)	0.0
AAR83968	GABA-A receptor gamma-3	24472	300/472	e-169

AAW59048	GABA-A receptor epsilon sub- unit related protein - Mammalia, 506 aa. [DE19644501-A1, 30- APR-1998]	62472 70506	193/448 (43%) 274/448 (61%)	e-102
AAW61045	Human GABA receptor epsilon subunit - Homo sapiens, 506 aa. [WO9823742-A1, 04-JUN-1998]	62472 70506	193/448 (43%) 274/448 (61%)	e-102

In a BLAST search of public sequence databases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.

	Table 2E. Public BLASTP Results for NOV2a				
Protein Accession Number	Protein/Organism/Length	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P23574	Gamma-aminobutyric-acid receptor gamma-1 subunit precursor (GABA(A) receptor) - Rattus norvegicus (Rat), 465 aa.	1472 1465	426/475 (89%) 440/475 (91%)	0.0	
Q9R0Y8	Gamma-aminobutyric-acid receptor gamma-1 subunit precursor (GABA(A) receptor) - Mus musculus (Mouse), 465 aa.	1472 1465	420/477 (88%) 434/477 (90%)	0.0	
ЈН0824	gamma-aminobutyric acid A receptor gamma 1 chain precursor - chicken, 464 aa.	16472 12464	390/463 (84%) 416/463 (89%)	0.0	
ЈН0316	gamma-aminobutyric acid A receptor gamma 2 chain alternatively spliced precursor - mouse, 466 aa.	24472 26466	336/451 (74° o) 380/451 (83° o)	0.0	
P18508	Gamma-aminobutyric-acid receptor gamma-2 subunit precursor (GABA(A) receptor) - Rattus norvegicus (Rat), 466 aa.	24472 26466	335/451 (74%) 379/451 (83%)	0.0	

PFam analysis predicts that the NOV2a protein contains the domains shown in the

Table 2F. Domain Analysis of NOV2a				
Pfam Domain	NOV2a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Neur_chan_LBD: domain 1 of 1	63273	66/271 (24%) 162/271 (60%)	2.7e-56	
Cys-protease-3C: domain 1 of 1	363369	4/7 (57%) 6/7 (86%)	5.2	
Neur_chan_memb: domain 1 of 1	280466	44/297 (15%) 164/297 (55%)	1.2e-60	

Example 3.

The NOV3 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 3A.

Table 3A. NOV3 Sequence Analysis				
	SEQ ID NO: 9	1440 bp		
NOV3a, CG58518-01 DNA Sequence	AACCAAATGTTTGTGCTGCTTC AATGAAACAAACCTGGAAACAC CGGCCTCAGAAATATTGAGCAAC CTGGATTTGGAGGTGAGTATTAC AGATGTCCATGTTTACAATGT TCTCCTTTCCTAGCACAGCAAC GATCTGGGTGCCTGATATCTT ACTATGGAGAATATCATCGTGG GGAGGATAACGGTTTCGGCCAC TCAAAATTGTTCTCTTGAACTC TGGAAACACGGAACAGCAATCCTCAATGAGCTTCAGTGCATTCAACTTCAACATTCAACTTCACTGCAACACTCCAATAGGCTTTCATCCAACTTCACCTATTCAACTTCACCTTTCAACTTCACCTTCATCA	TOTAL CARREST TO THE ACCOUNT OF THE		
	ORF Start: ATG at 7	ORF Stop. TAA at 1435		
	SEQ ID NO: 10	476 aa MW at 55285.2kD		
NOV3a, CG58518-01 Protein Sequence	QKYEQLLHIEDNDFAMRPGFGG YDFTMTFYLRHYWKDERLSFPS ENIMLRVHPDGNVLLSLRRITV HGNKSLNTEEHMSLSQFFIEDI FPAILMVMLSWVSFWIDRRAVI YLWVSSLFVFLSVIEYAAVNYI	CAASNIKMTHQRCSSSMKQTWKQETRMKKDDSTKARP GEYYPLKIGSPVPVGIDVHVESIDSISETMMVSFFMG STANKSMTFDHRLTRKIWVPDIFFVHSKRSFIHDTTM VSAMCFMDFSRFPLDTQNCSLELESAYNEDDLMLYWK FSASSGLAFYSSTGWYNRLFINFVLRRHVFFFVLQTY PARVSLGGITTVLTMSTIITAVSASMPQVSYLKAVDV LTTVEERKQFKKTGKVQISRMYNIDAVQAMAFDGCYH KSICSFSTDSSFIKERKSLGGHVGFIILENNHVIDTY		

Further analysis of the NOV3a protein yielded the following properties shown in Table 3B.

Table 3B. Protein Sequence Properties NOV3a			
PSort analysis:	0.6850 probability located in endoplasmic reticulum (membrane); 0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.2400 probability located in nucleus		
SignalP analysis:	Likely cleavage site between residues 25 and 26		

A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3C.

Table 3C. Geneseq Results for NOV3a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV3a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU04467	Human gamma-amino butyric acid (GABA) receptor protein #1 - Homo sapiens, 467 aa. [WO200153489-A1, 26-JUL- 2001]	1474 1456	454/475 (95%) 454/475 (95%)	0.0
AAU04470	Human gamma-amino butyric acid (GABA) receptor protein #4 - Homo sapiens, 420 aa. [WO200153489-A1, 26-JUL- 2001]	48474 1409	408/428 (95%) 408/428 (95%)	0.0
AAU04468	Human gamma-amino butyric acid (GABA) receptor protein #2 - Homo sapiens, 392 aa. [WO200153489-A1, 26-JUL- 2001]	1393 1377	370/394 (93%) 370/394 (93%)	0.0
AAU04471	Human gamma-amino butyric acid (GABA) receptor protein #5 - Homo sapiens, 345 aa. [WO200153489-A1, 26-JUL-	48393 1330	324/347 (93%) 324/347 (93%)	c-180

Homo sapiens, 180 aa.	176/192
[WO200153489-A1, 26-JUL-	(91%)
[2001]	

In a BLAST search of public sequence databases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3D.

Table 3D. Public BLASTP Results for NOV3a				
Protein Accession Number	Protein/Organism/Length	NOV3a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P50573	Gamma-aminobutyric-acid receptor rho-3 subunit precursor (GABA(A) receptor) - Rattus norvegicus (Rat), 464 aa.	1474 1453	383/476 (80%) 407/476 (85%)	0.0
Q9YGQ2	GAMMA-AMINOBUTYRIC- ACID RECEPTOR RHO-3 SUBUNIT - Morone americana (White perch), 470 aa.	1474 4459	293/485 (60%) 363/485 (74%)	e-153
P50572	Gamma-aminobutyric-acid receptor rho-1 subunit precursor (GABA(A) receptor) - Rattus norvegicus (Rat), 474 aa.	49474 58463	270/427 (63%) 317/427 (74%)	e-144
P56475	Gamma-aminobutyric-acid receptor rho-1 subunit precursor (GABA(A) receptor) - Mus musculus (Mouse), 474 aa.	49474 58463	270/427 (63%) 317/427 (74%)	e-143
P24046	Gamma-aminobutyric-acid receptor rho-1 subunit precursor (GABA(A) receptor) - Homo sapiens (Human), 473 aa.	49474 57462	268/427 (62%) 317/427 (73°o)	e-143

PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3E.

111111

Pfam Domain	NOV3a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Neur_chan_LBD: domain 1 of 1	88282	70/250 (28%) 165/250 (66%)	1.2e- 54
Neur_chan_memb: domain 1 of 1	289475	44/292 (15%) 141/292 (48%)	7.6e- 28

Example 4.

The NOV4 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 4A.

Tabl	e 4A. NOV4 Sequence	e Analysis	3	
	SEQ ID NO: 11	1587 bp		
NOV4a, CG58516-01 DNA Sequence	GAACAGAAATGAATAAAAGTCGCTGGCAGAGTAGAAGACGACATGGGAGAAGAGCCA CCAGCAGAACCCTTGGTTCAGACTCCGGTGATTCTGAAGACAGGTCTGACTCCGGGCA GCACAGCCCGCTCACGATTCCGGCCACGGTGATGACGAGTCTCCGTCTG GCACAGCCGGCTCACGATTCCGGCCACGGTGATGACGAGTCTCCGTCACCCTCTG GCACAGCTGGGACCTCCTCTGTGCCAGAGCTACCTGGGTTTTACT1TGACCCTGAAAA GAAACGCTACTTCCGGTTGCTCCCTGGACATAACAACTCCAACCCCCTGACGAAAGAG AGCATCCGGCAGAAGGAGTTGGAGAGCATAACAACTCCAACCCCCTGACGAAAGAG AGCATCCGGCAGAAGGAGTTGGAGATTAATGCATCTCCATGCTACGAAAAAGCCA GCTGGGTTTTCTCAACGTCACCAAATTACTGCATTTAGCCACGAGCTGCTCTCAGC TGCATGGAGAAAAAGGTCCAGATTCGCAATTAAGCCACCAGACTGCGTCTCAGC TGCATGGAGAAAAAGGTCCAGATTCCAAGCATGCATCCCCCCTTGGCCAAGCG ACCGATTTAACCTCATACTGGCAGATACCAACAGTGACCGGCTCTTCACAGTGAAGA TGTTACAGTTGGAGGCTCCAAGATACCAACAGTGACCGGCTCTTCACAGTGAAGA CCTCCGGTGTGCTGGAGCCTCCAGATACCACCGGATCCTGCAAGAGCCCC ACGCTCAAGGTGTTCATGCCACGAAAACCTCCGATTCTCACAACCGGAAGGTGAACA CTTCGGTGTGCTGGGCCTCGCTGAATCACTTGGATTCCCAACTGTACCTACA AGTCCCCACCCAGGAATAGACCGGCTTGCCCTCCCAGCATCACTGTTCCTCAAG GGGCCTGGCCCAGGAATAGACCGGCTTGCCCTCCAGCATCACTGTTCCTCAGG GTGCCTGGTCCTTGGCCTGGTTCCCTGGATTCCCAGATCACTTTCGGATCCCTTGGG CTTGTCTCGGCGGGTCCTTTGACCAACGTGGTGCCTCCAGGAAATAACTGCTTCAGTACAGG ACCAACAGTGATGTCTTGGCCCAGCAGTTTTCCTCATGGCTCCTTTTGGG ACCAACAGTGATGTCTTGGCCCAGCAGTTTCCTCATGGTTCTCAGGAACCCTGCCTCCCAGCAACCCTGCCTCCCAGCAACCCTGCCTCCCAGCAACCCTGCCTCCCAGCAACCCTGCCTCCCAGCAACCCTCCCCCCCC			
	ORF Start: ATG at 9 ORF Stop: TAA at 1563			
	SEQ ID NO: 12	518 aa	MW at 57769.3kD	
NOV4a, CG58516-01 Protein Sequence	MNKSRWQSRRRHGRRSHQNPWFRLRDSEDRSDSRAAQPAHDSGHGDDESPSTSSGT. GTSSVPELPGFYFDPEKKRYFRLLPGHNNCNPLTKESIRQKEMESKRLRLLQEEDRR C KIARMGFNASSMLRKSQLGFLNVTNYCHLAHELRLSCMERKKVQIFSMDPSALASDR NLILADTNSDRLFTVNDVTVGGSKYGIINLQSLKTPTLKVFMPRKPPILTNRKVNTS' CWASLNHLDSHILLCLMGLAETPGCATLLPASLFVNSPHPGIDRPGMLCSFRIPGGA' SCAWSLNIQANNCFSTGLSRRVLLTNVVTGHRQSFGTNSDVLAQQFALMAPLLFNGC' SGEIFAIDLRCGNQGKGWKATRLFHDSAVTSVRILQDEQYLMASDMAGKIKLWDLRT' KCVRQYEGHVNEYAYLPLHVHEEEGILVAVGQDCYTRIWSLHDARLLRTIPSPYPAS' ADIPSVAFSSRLGGSRGRAGAAHGCRAGPLLLLLQLILQGTAQSHVDLTYGSKA			

Further analysis of the NOV4a protein yielded the following properties shown in Table

	Table 4B. Protein Sequence Properties NOV4a		
	0.9600 probability located in nucleus; 0.4776 probability located in mitochondrial matrix space; 0.3000 probability located in microbody (peroxisome); 0.1837 probability located in mitochondrial inner membrane		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4C.

Table 4C. Genescq Results for NOV4a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB11794	Human secreted protein homologue, SEQ ID NO:2164 - Homo sapiens, 500 aa. [WO200157188-A2, 09- AUG-2001]	1484 5485	470/484 (97%) 471/484 (97%)	0.0
AAM79804	Human protein SEQ ID NO 3450 - Homo sapiens, 500 aa. [WO200157190-A2, 09-AUG- 2001]	1484 5485	470/484 (97%) 471/484 (97%)	0.0
AAM41122	Human polypeptide SEQ ID NO 6053 - Homo sapiens, 500 aa. [WO200153312-A1, 26-JUL-2001]	1484 5485	470/484 (97%) 471/484 (97%)	0.0
AAG67256	Amino acid sequence of a human liver-associated gene - Homo sapiens, 489 aa. [WO200109318-A1, 08-FEB-2001]	1484 1474	459/484 (94%) 462/484 (94%)	0.0
AAB94587	Human protein sequence SEQ ID NO:15389 - Homo sapiens, 489 aa. [EP1074617-A2, 07-FEB-2001]	1484 1474	459/484 (94%) 462/484 (94%)	0.0

In a BLAST search of public sequence databases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4D.

Protein Accession Number	Protein/Organism/Length	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAH18979	HYPOTHETICAL 55.7 KDA PROTEIN - Homo sapiens (Human), 495 aa.	1484 1480	470/484 (97%) 471/484 (97%)	0.0
Q96K22	CDNA FLJ14839 FIS, CLONE OVARC1001791 - Homo sapiens (Human), 489 aa.	1484 1474	459/484 (94%) 462/484 (94%)	0.0
Q9Y4P5	HYPOTHETICAL 48.5 KDA PROTEIN - Homo sapiens (Human), 430 aa (fragment).	5435 2428	420/431 (97%) 421/431 (97%)	0.0
Q99LF7	HYPOTHETICAL 58.1 KDA PROTEIN - Mus musculus (Mouse), 519 aa.	1484 1481	378/485 (77%) 423/485 (86%)	0.0
Q9UFI0	HYPOTHETICAL 26.0 KDA PROTEIN - Homo sapiens (Human), 234 aa (fragment).	269483 4217	175/215 (81%) 193/215 (89%)	4e-99

PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4E.

Table 4E. Domain Analysis of NOV4a				
Pfam Domain	NOV4a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
WD40: domain 1 of 3	281316	2/37 (5%) 26/37 (70%)	5.8e+02	
WD40: domain 2 of 3	367402	10/37 (27%) 27/37 (73%)	6.1	
WD40: domain 3 of 3	408446	10/39 (26%) 23/39 (59%)	13	

Example 5.

The NOV5 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 5A.

	SEQ ID NO: 13	1081 bp	
NOV5a, CG58473-01 DNA Sequence	CCGGCCTGAGTACCCTGCTCCC TGAGCTCCCGAGCTGCGCAGAG GAGAACAGTTGTGGGAAGCGCA AGACTGGGCGTCCCCTGGGCAA GACAAGCCATTTCATCGTGGCC GAGCACCAGATTCATCATCGTGGCC TGAGCACCAGATCGCCCCGAG GACAAGACACCCCTACCCCCGAG GACAAGAAGCCAACAGCCACCA ACGGGAAGAAGGTGACTCCCAC GGGCGAGCTGAAAGTTGCCGAC AAGACAAGAC	GCGAGTCCTC CCACAGCCCC GCATCTTAAC AGACAAGTCT CCTCAAGGCCT TGGAAATCCA TGACCTGAGA AGACATGAAC TCACGGGGGA AGACATGAAC TTCGGCTGCC CCCTGGACTA TTTTTGTGTAC AGCCCAGGA GGCCCAGGA TCTGCCCAGGA TCTGCCCAGGA TCTGCCCATC	GCCCTATGGCAGCAGCGCTCCAG CCGAGGATCCCCACCGAAGCTGCGCG GCAGCGGCCCTTGCCACCGAAGCTGCGCG GCAGCGGCCCTTGCTGTCGACGACCTTG GGTACATGTGTACTTGGCTCGAAAGAA TCAAGTCTCAGATAGAGGAGGCGTG AAAAATCTACTGGATCTAGAGTACGC CAGGAGCTGCGAAAGAAGACCCCTTT AGCTGCACGACTATATCTAGAGTACGC CCCAGATAATCTACTCTCAGGCTTGA CCTGTGCACGCCCCTCACTGAGGAGG ACCTGTCCCCAGAGACAATATCTCCCAGGCTTGA CCTGTGCACGCCCCTCACTGAGGAGG CATCGGAGCACTCGGCTAAAA ACCTCATCTCCAAGCTGCTTAGGCCCT ACCTGTCCCCAGAGCTGCCCCTAAAA ACCTCATCTCCAAGCTGCTTAGGCATA CCAGCCACCCTGGGATCCTGGCCCA CAGTCTGTCCCCTGGGATCCTGGCCCA CAGTCTGTCCCCTGGGATCCTGGCCCA CAGTCTGTCCCCTGGGTGCCCCTGACA CCATTCTCCCCTGGGTGCCCCTGACA CCATTCTCCCCTGGGTGCCCCTGACA CCATTCTCCCCTGGTGGTCCCTGACA CCATTCTCCCCTGGTGGTCCCTGACA
	ORF Start: ATG at 4	ORF Stop	o: TAA at 1069
	SEQ ID NO: 14	355 aa	MW at 40012.7kD
NOV5a, CG58473-01 Protein Sequence	NSCGKRSILTRPFLVDDLETGR HOMRROMEIQAPFOHPNILSLY KKPTATITGEVADALMYCHGKK TROMCGTLDYLSPETIEGRAHT	PLGKDKFVHV NYFYDLRKIY VTPRDMKPDN EKVDLWYIGA	PTEAARELPSCADPQPAAAPGHEVVE YYLARKKTSHFIVALKAFKSQIEEGVE WILEYAPATPTPEELYQELRKSRTFD DLSGLEGELKVADFGCPVHAPSLRRK ALGYEPLVGNFTHNEAYGRIVKVALKF IPGILAHSRRVLPPSAHQSVPWWSLTF

Further analysis of the NOV5a protein yielded the following properties shown in Table 5B.

	Table 5B. Protein Sequence Properties NOV5a				
Psort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1897 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5C.

	Table 5C. Geneseq Results for NOV5a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV5a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	

AAG67436	Amino acid sequence of a human polypeptide - Homo sapiens, 344 aa. [WO200109345-A1, 08-FEB-2001]	1341 1343	247/349 (70%) 274/349 (77%)	e-129
AAY22475	Human AUR1 protein sequence - Homo sapiens, 344 aa. [WO9937788-A2, 29-JUL-1999]	1341 1343	247/349 (70%) 274/349 (77%)	e-129
AAW18083	Human Aurora-1 - Homo sapiens, 344 aa. [WO9722702-A1, 26-JUN- 1997]	1341 1343	247/349 (70%) 274/349 (77%)	e-129
AAY27052	Human protein kinase (HPKM)-1 (clone ID 2940) - Homo sapiens, 347 aa. [WO9938981-A2, 05-AUG- 1999]	1341 1346	246/352 (69%) 274/352 (76%)	e-127

In a BLAST search of public sequence databases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5D.

	Table 5D. Public BLASTP Results for NOV5a					
Protein Accession Number	Protein/Organism/Length	NOV5a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
O60446	AURORA-RELATED KINASE 2 (SERINE/THREONINE KINASE 12) - Homo sapiens (Human), 344 aa.	1341 1343	247/349 (70%) 274/349 (77%)	e-128		
Q96GD4	UNKNOWN (PROTEIN FOR MGC:11031) - Homo sapiens (Human), 344 aa.	1341 1343	247/349 (70%) 274/349 (77%)	e-128		
Q96DV5	UNKNOWN (PROTEIN FOR MGC:4243) - Homo sapiens (Human), 345 aa.	1341 1344	247/350 (70%) 274/350 (77%)	e-126		
Q9UQ46	AIK2 – Homo sapiens (Human), 343 aa.	1341 1342	245/348 (70° o) 272/348 (77° o)	e-126		
O14630	PROTEIN KINASE - Homo sapiens (Human), 347 aa.	1341 1346	245/352 (69%) 272/352 (76%)	e-125		

PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5E.

Pfam Domain	NOV5a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Pkinase: domain 1 of 1	76325	81/293 (28%) 184/293 (63%)	6.5e-36

Example 6.

The NOV6 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 6A.

Table 6A. NOV6 Sequence Analysis			
	SEQ ID NO: 15	1524 bp	
NOV6a, CG58470-01 DNA Sequence	CACTACGTTTCTGGAATGAGCT CCACGCCATCGACTTCCAGGAA AACCAGTCCTCTCATCAAGAAA TACTGGGCAGTGCTGCAGGGAA CCAGATTTCTGAGAACAAAGTC GTTGCATATCCAAAGGGGATGT AGATTCAAGCAGAGCATATCCT CAAATGCATTATTCCATATTAC GAGTTCTTCAGGAGACAACAT AGAGCGCTGCTGCTGCTGCTGCTAGACAAGATCCTGGAGGACATGCAGACTCCAGACTCAAGATCCTGGAGGACATGGAGCCCAAGATGCACACTGCTGCTGCTGCTGCTGCAGACTGCAGACTGGAGCACACTGGAGCACACTGGAGCTGCCCCACACACTGGAGCCTGCACACTTCCCAAGCTGCACACCACACCACACCTGCACACCACACCACACCACACCACACCACACCACACCACAC	TGAAGAAGC CTGAACTTC' AGGTGGATG GCTAGATCAC ACAGTTGTTC ATGATGTTCAC GTCATGACC GCCACCTCAC GCCAGCAC GCCAGCAC CCCCCAAATC GAAGCCCC CCCCCAAATC GAAGCCCC CCCCCAAATC GAAGCCCC CCCCCAAATC GAAGCCCC CCCCCAAATC GAAGCCCC CCCCCAAATC GAAGAGCCC CCCCCAAATC GAAGAGGCCC CCCCCAAATC GAAGAGGCCC CCCCCAAATC GAAGAGGCCC CCCCCCAAATC GAAGAGGGCT CCCCCCAAATC GAAGAGGGCT CCCCCCAAATC GAAGAGGGTT CCCCCCAAATC GAGAGGGGTT CCCCCCAAATC CCCCCCAAATC GAGAGGGGTT CCCCCCAAATC CCCCCCAAATC CGCCCCCAAATC CGCCCCAAATC CGCCCCCAAATC CGCCCCCCAAATC CGCCCCCAAATC CGCCCCCAAATC CGCCCCCAAATC CGCCCCCAACC CCCCCCAAATC CGCCCCCAACC CCCCCCAACC CCCCCCAACC CCCCCC	GGTTGTCCAAAGCTGAGCAAGAACACC CCGACAGGTAGAACTTTATGCAGAGCT ITTTTCCAAAAGGCCATTGAAGGATTT CCGGAATGGAACCTGTCCCTCGAGAAG GCTCCAGGCCTGGGAAAGCAAGTTT CTAGCTGGTGGGCAGGGACTAGACTC GTTTGCCATCCCATAAGACACTTTTC ACAGTTAGCTGAAAAATATTATGGCAA AGCGAGTTCACTCTGGGGCCCACGGCC IGGACCCCCCCAACGTGGTCATGTTTG GCAAGGTTACCTGGAGCGAAAGA GGCTCTACTGCGCGTGAGACAC ITCATCGGCTTCTGTGTGTGTGG CTTCATCGGCTTCTGTGTGTTGCAGG CTTCATCGGCGAGACACC CGGAGTTCACTCTGAGAGCCCTGAAG GCCTTACTGCAGGAGTCACTCCAGA GCATACCCCGAGGAGCCCGTGGGCGTG ITCATCGGCTTCTTGTGTTTGCAGA GTGAGTTAGATGAGGCACACTTCCAA GTGAGTTGTGTTGAGGCAATCTGCAA GTGAGTTGTTTTTTGTGTGTTTCCTGAA GTGAGTTGTTTTTTTTTT
	ORF Start: ATG at 7	ORF Stop	o: TGA at 1510
	SEQ ID NO: 16	501 aa	MW at 56461.0kD
NOV6a, CG58470-01 Protein Sequence	MNTNDLKLRLSKAEQEHPLRFWNELEEARQVELYAELQAIDFQELNFFFQKAIEG SSHQEKVDAGMEPVPREVLGSAAGKLDQLQAWESKVFQISENKVTVVLAGGQGTR YPKGMYDVGLPSHKTLFQIQAEHILKLQQLAEKYYGNKCIIPYYVMTSEFTLGPT FREHNFFHLDPANVVMFEQRLLPAVTFDGKVILERKDKVAMAPDGNGGLYCALED LEDMERRGVEFVHYYCVDNILVRLADPVFIGFCVLQGADCGAKVVEKAYPEEPVG QVDGVPQVVEYSEISPETAQLRVSDGSLLYNAGNICNHFFTRGFLKAVTREFEPL HVAVKKVPYVDEEGNLVKPLKPNGIKMEKFVFDVFRFAKNFAALEVLREEEFSPL EPADRDSPRTARQALLTQHYRWALRAGARFLDAHGARLPELPSLPPNGDPPAICE LVSYSGEGLEVYLQGREFQSPLILDEDQARELVKNGI		

Further analysis of the NOV6a protein yielded the following properties shown in Table 6B.

,	$\tau_{-1}(t,t) \in \mathcal{E}(B \cap D) \cap \mathcal{E}$	in Company	Day of A	NOVE	
CIMIVS, S					
		108			

	matrix space; 0.1000 probability located in lysosome (lumen)	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.

	Table 6C. Geneseq Results for NOV6a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV6a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB56960	Human prostate cancer antigen protein sequence SEQ ID NO:1538 - Homo sapiens, 524 aa. [WO200055174-A1, 21-SEP-2000]	1501 3524	353/522 (67%) 413/522 (78%)	0.0	
AAG32392	Arabidopsis thaliana protein fragment SEQ ID NO: 39067 - Arabidopsis thaliana, 502 aa. [EP1033405-A2, 06- SEP-2000]	9485 36497	194/489 (39%) 275/489 (55%)	3e-84	
AAG40236	Arabidopsis thaliana protein fragment SEQ ID NO: 49896 - Arabidopsis thaliana, 477 aa. [EP1033405-A2, 06- SEP-2000]	9485 12472	193/488 (39%) 272/488 (55%)	3e-82	
AAG40235	Arabidopsis thaliana protein fragment SEQ ID NO: 49895 - Arabidopsis thaliana, 500 aa. [EP1033405-A2, 06- SEP-2000]	9485 35495	193/488 (39%) 272/488 (55%)	3e-82	
AAG40234	Arabidopsis thaliana protein fragment SEQ ID NO: 49894 - Arabidopsis thaliana, 505 aa. [EP1033405-A2, 06- SEP-2000]	9 485 40500	193/488 (39%) 272/488 (55%)	3e-82	

In a BLAST search of public sequence databases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.

Protein Accession Number	Protein/Organism/Length	NOV6a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96GM2	UDP-N-ACTEYLGLUCOSAMINE PYROPHOSPHORYLASE 1 - Homo sapiens (Human), 505 aa.	1501 1505	351/505 (69%) 412/505 (81%)	0.0
Q16222	UDP-N-acetylhexosamine pyrophosphorylase (Antigen X) (AGX) (Sperm- associated antigen 2) [Includes: UDP-N-acetylgalactosamine pyrophosphorylase (EC 2.7.7) (AGX- 1); UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) (AGX- 2)] - Homo sapiens (Human), 522 aa.	1501 1522	352/522 (67%) 412/522 (78%)	0.0
Q91YN5	HYPOTHETICAL 58.6 KDA PROTEIN - Mus musculus (Mouse), 522 aa.	1501 1522	342/522 (65%) 407/522 (77%)	0.0
AAH17547	HYPOTHETICAL 58.5 KDA PROTEIN - Mus musculus (Mouse), 521 aa.	1501 1521	341/521 (65%) 407/521 (77%)	0.0
Q9Y0Z0	BCDNA:LD24639 PROTEIN - Drosophila melanogaster (Fruit fly), 520 aa.	6492 44513	236/491 (48%) 330/491 (67%)	e-124

PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6E.

Table 6E. Domain Analysis of NOV6a			
Pfam Domain	NOV6a Match Region	Identities/ Similarities for the Matched Region	Expect Value
UDPGP: domain 1 of 1	40434	108/428 (25%) 324/428 (76%)	8.4e-111

Example 7.

The NOV7 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 7A.

	Table 7A. NOV7 Seque	nce Analysis
	SEQ ID NO: 17	461 bp
Sign. 7	ACCCAGAGATGCAGATCTT	TOTOLOGOTOLOGOGOLLAGIOCITOLOGOTOLOGOT

	AATGCGGCCACCAACAACCTGTACCCCAGGAAGAAGGTCAAATAAGGCTCTTCCTT		
	ORF Start: ATG at 9 ORF Stop: TAA at 393		pp: TAA at 393
	SEQ ID NO: 18	128 aa	MW at 14540.9kD
NOV7a, MQIFVKTLTGKTITLEVKPTDTIENVKTKIQDKEGIPP YNIQKESTLNLVLRLRGGITEPSLRQLVQKYNCDEMIC HTNNLYPRKKVK			

Further analysis of the NOV7a protein yielded the following properties shown in Table 7B.

	Table 7B. Protein Sequence Properties NOV7a		
PSort analysis:	0.9800 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7C.

	Table 7C. Geneseq Results for NOV7a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV7a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB52080	Gene 16 human secreted protein homologous amino acid sequence #129 - Sus scrofa, 128 aa. [WO200061596-A1, 19-OCT-2000]	1128 1128	111/128 (86%) 118/128 (91%)	7e-61	
AAG43861	Arabidopsis thaliana protein fragment SEQ ID NO: 54871 - Arabidopsis thaliana, 128 aa. [EP1033405-A2, 06-SEP-2000]	1128 1128	101/128 (78%) 113/128 (87%)	9e-55	
AAG36188	Arabidopsis thaliana protein fragment SEQ ID NO: 44314 - Arabidopsis thaliana, 249 aa. [EP1033405-A2, 06-SEP-2000]	1128 122249	101/128 (78%) 113/128 (87%)	9e-55	

	thaliana, 264 aa. [EP1033405-A2, 06-SEP-2000]			
AAG36186	Arabidopsis thaliana protein fragment SEQ ID NO: 44312 - Arabidopsis thaliana, 322 aa. [EP1033405-A2, 06-SEP-2000]	195322	101/128 (78%) 113/128 (87%)	9e-55

In a BLAST search of public sequence databases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7D.

	Table 7D. Public BLASTP Results for NOV7a				
Protein Accession Number	Protein/Organism/Length	NOV7a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9BX98	UBIQUITIN A-52 RESIDUE RIBOSOMAL PROTEIN FUSION PRODUCT 1 - Homo sapiens (Human), 141 aa (fragment).	1128 14141	111/128 (86%) 118/128 (91%)	3e-60	
Q9UPK7	UBIQUITIN-52 AMINO ACID FUSION PROTEIN - Homo sapiens (Human), 128 aa.	1128 1128	111/128 (86%) 118/128 (91%)	3e-60	
Q9PT09	UBIQUITIN - Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri), 128 aa.	1128 1128	110/128 (85%) 118/128 (91%)	6e-60	
O42388	UBIQUITIN-RIBOSOMAL PROTEIN FUSION PROTEIN - Gallus gallus (Chicken), 128 aa.	1128 1128	110/128 (85%) 117/128 (90%)	7e-60	
Q9XSV1	UBIQUITIN-RIBOSOMAL PROTEIN L40 FUSION PROTEIN - Canis familiaris (Dog), 128 aa.	1128 1128	110/128 (85%) 117/128 (90%)	1e-59	

PFam analysis predicts that the NOV7a protein contains the domains shown in the Table 7E.

Table 7E. Domain Analysis of NOV7a			
Pfam Domain	NOV7a Match Region	Identities/ Similarities for the Matched Region	Expect Value

Ribosomal_L40e:	77128	30/52 (58%)	7.3e-20
domain 1 of 1		42/52 (81%)	

Example 8.

The NOV8 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 8A.

Tab	le 8A. NOV8 Sequence	Analysis
	SEQ ID NO: 19	2296 bp
NOV8a, CG57871-01 DNA Sequence	CGGCGGCGGCGCAGTAGAAATGATGGAGGAATTGCATAGCCTGGACCACGACGG GAATTTATTGGAGCCAGGTTTACTGGAGTAGTAGCTTGATAAGGACCACTTAATA GAGTCTTCCAACCAGGACTTGTGCAGCGTCGGATCCTTGAGTAATAAGAAGAAAAGCAGAAAGCACACTAATA AAGTAGCCAAGGGAAAGCAACCAGCGAAATCGGAAAAGAAAAGCTGAACCATAT AAGTAGCCAAGGGAAAGCAACCAGCCAGACATTCAACACCAGGAAAGGAAAGCAAAAGCAGAACCACCTTGCACC CCTCACTGCAACATTCTTTATCCAATCCCTTACCGCGACAGATATCACACACTTGCACC CCTCACTGCAACATTCTTTATCCAATCCCTTACCGCGACGGATAGAACAGCCCCTC CCTCACTGCAACATTCTTATCCAATCCCTTACCGCGACGGATAGAACAGCCCCTC CCTCACTGCAACATTCCTTTACTCAATCCCTTACCGCGACGGAGCAGCTCTGCTCTGCCCAA CTCATGTCAGTGATGCTAGCAAAACCTCGGCTTGACACAGAGCAGCTGCCCCAACAGGAGCAGCTGCCCCAACAGGAGCAGCTGCCCCCAACAGGACACCCCTCCACATGCAAAACCAGACCACGACCCCTCCACAATAGAAAACAAAC	
	ACGAGTAGCCCTGCTGGAGCTGC CTTCTAATTGAGACTGACTCCAA	TATTGCATCAACCTCTGGGGCGTCCAATAACAGTT GGCCACAAACT
	ORF Start: ATG at 24	ORF Stop: TGA at 2271
	SEQ ID NO: 20	749 aa MW at 85415.8kD
NOV8a, CG57871-01 Protein Sequence	MEELHSLDPRRQKLLEARFTGVGVSKGPLNSESSNQSLCSVGSLSDKEVETPKKKQ QRNRKRKAEPYESSQGKGTPRGHKISDYFEFAGGSGPGTSPGRSVPPVARSSLQHS NPLPRRVEQPLYGLDGSAAKEATEEQSALPTLMSVMLAKPRLDTEQLAQRGAGLCF VSAQQNSPSSTGSGNTEHSCSSQKQISIQHRQTQSDLTIEKISALENSKNSDLEKK RIDDLLRAICDLRRQIDEQQKMLEKYKERLNRCVTMSKKLLIEKSKQEKMACRDKS DRLRLGHPTTSDHGAKFTEQWTDGYAFQNLIKQQERINSQREEIERQRKMLAKRKP MGQAPPATNEQKQWKSKINGAENETLTLKEYHEQEEIFKLRLGHLKKEEAEIQAEL LERVRKLHIREVKRIHNEDNSGFKYHPTLNDRYLLLHLLGRGGFSEVYKAFDLTEQ VAVKIHQLNKNWPDEKKENYHKHACREYRIHKELDHPRIVKLYDYFSLDTDSFCTV YCEGNDLDFYLKCHKLMSEKEARSIIMQIVNALKYLNEIKPPIIHYDLKPGNILLE	

Further analysis of the NOV8a protein yielded the following properties shown in Table 8B.

	Table 8B. Protein Sequence Properties NOV8a
PSort analysis:	0.9600 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.

	Table 8C. Geneseq Results for NOV8a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV8a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM39278	Human polypeptide SEQ ID NO 2423 - Homo sapiens, 718 aa. [WO200153312-A1, 26-JUL-2001]	1749 2718	703/749 (93%) 707/749 (93%)	0.0	
AAM41064	Human polypeptide SEQ ID NO 5995 - Homo sapiens, 809 aa. [WO200153312-A1, 26-JUL-2001]	1749 92809	695/750 (92%) 701/750 (92%)	0.0	
AAR76062	Protein kinase PKU beta - Homo sapiens, 540 aa. [JP07132093-A, 23-MAY-1995]	210749 1540	525/540 (97%) 527/540 (97%)	0.0	
AAR76061	Protein kinase PKU alpha - Homo sapiens, 787 aa. [JP07132093-A, 23-MAY-1995]	1744 49783	537/794 (67%) 592/794 (73%)	0.0	
ABB20910	Protein #2909 encoded by probe for measuring heart cell gene expression - Homo sapiens, 404 aa. [WO200157274-A2, 09-AUG-2001]	346749 1404	404/404 (100%) 404/404 (100%)	0.0	

In a BLAST search of public sequence databases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8D.

	Table 8D. Public BLASTP Results for NOV8a				
Protein Accession Number	Protein/Organism/Length	NOV8a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9UKI7	TOUSLED-LIKE KINASE 2 - Homo sapiens (Human), 749 aa.	1749 1749	731/749 (97° _o) 736/749 (97° _o)	0.0	
O55047	TOUSLED-LIKE KINASE - Mus musculus (Mouse), 717 aa.	1749 1717	699/749 (93°· _v) 705/749 (93° _v)	0.0	
Q9Y4F7	PKU-ALPHA - Homo sapiens (Human), 719 aa (fragment).	1749 3719	700/749 (93%) 705/749 (93%)	0.0	
Q9D5Y5	TOUSLED-LIKE KINASE 2 (ARABIDOPSIS) - Mus musculus (Mouse), 696 aa.	1656 1656	629/656 (95%) 640/656 (96%)	0.0	
Q90ZY7	PKU-ALPHA PROTEIN KINASE - Brachydanio rerio (Zebrafish) (Zebra danio), 697 aa.	1749 2697	580/753 (77%) 626/753 (83%)	0.0	

PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8E.

Table 8E. Domain Analysis of NOV8a					
Pfam Domain	Expect Value				
A2M: domain 1 of 1	501523	10/23 (43%) 20/23 (87%)	4.6		
Pkinase: domain 1 of 1	439718	96/316 (30%) 213/316 (67%)	5.4e-70		

Example 9.

The NOV9 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 9A.

Table 9A. NOV9 Sequence Analysis					
SEQ ID NO: 21 2060 bp					
NOV9a, CG58590-01 DNA Sequence	GAICAGCGAAGTAAAAAATGT AGATGGCTGTTGACTGCCCC	ACAACATCCCATATGAATGGGCATGTTACAGAGGAATCA TTGATCTTGCATCACCAGAGGAACATCAGAAGCACCGAG TGGAGATTTGGCCACCAGGATGATGCCAATACGTCGAAG			

	CACAGTACACATGAACAAGGCCAGTCCTCCATTTCCTCTTATCTCCAACGCACAAGAT CTTGCTCAAGAGGTACAAACTGTTTTGAAGCCAGTTCATCATAAGGAAGG			
	ORF Start: ATG at 17	ORF Sto	p: TGA at 2042	
	SEQ ID NO. 22	675 aa	MW at 77311.8kD	
NOV9a, CG58590-01 Protein Sequence	MTTSHMNGHVTEESDSEVKNVDLASPEEHQKHREMAVDCPGDLGTRMMPIRRSAQLER IRQQQEDMRRRREEEGKKQELDLNSSMRLKKLAQIPPKTGIDNPMFDTEEGIVLESPH YAVKILEIEDLFSSLKHIQHTLVDSQSQEDISLLLQLVQNKDFQNAFKIHNAITVHMN KASPPFPLISNAQDLAQEVQTVLKPVHHKEGQELTALLNTPHIQALLLAHDKVAEQEM QLEPITDERVYESIGQYGGETVKIVRIEKARDIPLGATVRNEMDSVIISRIVKGGAAE KSGLLHEGDEVLEINGIEIRGKDVNEVFDLLSDMHGTLTFVLIPSQQIKPPPAKETVI HVKAHFDYDPSDDPYVPCRELGLSFQKGDILHVISQEDPNWWQAYREGDEDNQPLAGL VPGKSFQQQREAMKQTIEEDKEPEKSGKLWCAKKNKKKRKVLYNANKNDDYDNEEIL TYEEMSLYHQPANRKRPIILIGPQNCGQNELRQRLMNKEKDRFASAVPRTTRSRRDQE VAGRDYHFVSRQAFEADIAAGKPIEHGEFEKNLYGTSIDSVRQVINSGKICLLSLRTQ SLKTLRNSDLKPYIIFIAPPSQERLRALLAKEGKNPKPEELREIIEKTREMEQNNGHY FDTAIVNSDLDKAYQELLRLINKLDTEPQWVPSTWLR			
	SEQ ID NO: 23	2030 bp		
	CCATGACAACATCCCATATGAAT AAATGTTGATCTTGCATCACCAG TGCCCTGGAGATTTGGGCACCAG GTATTCGGCAACAACAGGAGGAC AGAACTTGACCTTAATTCTTCCA ACCGGAATAGATAACCCTATGTT ATTATGCTGTGAAAATATTATGAA ACATACTTTGGTAGAATTCCAGA CCAAACTGTTTTGTAGACTTCCAGAATGC ACAAACTGTTTTGAAGCCAGTTC ACAAACTGTTTTGAAGCCAGTT CAAAACTGTAGAAATATTCCGGACT TGCAGCTAGAGCCCATTACAGAT AGAAACTGTAAAAATAGTTCGTA ATTCCTAATGAAATGGACTCTGT AGAAACTGTTACAGATTCCAGGACT TGCAGGGGAAAAGTGTCAATGAGA TCGGGGGAAAAGTTCCATTTCAAA CCAAACTGTTCTGTCTTTTCAAA CCAAACTGGTGGCAGGCCTACAG TTGTTCCAGGGGAAAAGCTTTCAGA AGAAAAGGTCTGTTTTCAAA CCAAACTGGTGGCAGGCCTACAG TTGTTCCAGGGAAAAAGCTTTCAG AGATAAGGAGCCAGAAAATCAG AGAAAAAGGTTTTATATAGC TAACCTATGAGGAAAAATCAC TAACCTATGAGGAAAATTCACTT	AGGAACATC: GATGATGCC: ATGAGGCGT: TGAGAGCTTA: TGATACAGA: ATTAAGAT: CTTATCTCC: ATCATAAGG: TTACTGC: ATCATAAGG: CATCATAAGG: CATCATAAGG: CATCATAGC: CATCATAGC: CATCATAGC: CAGGAGATCAC: CAGGAGATCACC: CAGGAGACTGTC CAATAAAAATCATCAGGGGAAAACTGTC CAATAAAAATCATCAGGGGCAATAAAAATGCCCAATAAAAATGCCCAATCAGGGGCAAAAGGCCAATCAGGGGAAAACTGTC CAATAAAAATGCCCAATAAAAATGCCCAATAAAAATGCCCAATCAGGCCCAATGAGGGGAATGGCCAGAATGAGGGCCAGAATGGAGCCAGAATGAGGCCAGAATGAAAATGCCCCAATAAAAATGCCCCAATAAAAATGCCCCAATAAAAATGCCCCAATAAAAATGCCCCAATAAAAATGCCCCAATAAAAATGCCCAATAAAAATGCCCAATAAAAATGCCCAATAAAAATGCCCAATAAAATGCCCAATAAAATGCCCAATAAAATGCCCAATAAAAATGCCAATAAAAATGCCAATAAAAATGCCAATAAAAATGCCAATAAAAATGCCAATAAAAATGCCAATAAAATGCCAATAAAAATGCAATAAAAATGCCAATAAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAATGCAATAAAAAATGCAATAAAATGCAATAAAAATGCAATAAAAATAATAAAAAATAATAAAAATAAAAATAATAA	ACAGAAGAATCAGACAGCGAAGTAAA AGAAGCACCGAGAGATGCACTTGAGC AGAAGCACCGAGAGATGCACATTGGAGC AGGAGAGAGGAGAG	

	CCCTTCACAAGAAAGACTTCGGGCATTATTGGCCAAAGAAGCAAGAATCCAAAGCCT GAAGAGTTGAGAGAATCATTGAGAAGACAAGAGAGAGAGA			
	ORF Start: ATG at 3 ORF Stop: TGA at 2028			
	SEQ ID NO: 24	675 aa	MW at 77292.8kD	
NOV9b, CG58590-02 Protein Sequence	MTTSHMNGHVTEESDSEVKNVDLASPEEHQKHREMAVDCPGDLGTRMMPIRRSAQLE			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 9B.

Table 9B. Comparison of NOV9a against NOV9b.				
Protein NOV9a Residues/ Identities/ Sequence Match Residues Similarities for the Matched R				
NOV9b	1675 1675	636/675 (94%) 636/675 (94%)		

Further analysis of the NOV9a protein yielded the following properties shown in Table 9C.

	Table 9C. Protein Sequence Properties NOV9a				
	0.7000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9D.

Table 9D. Geneseq Results for NOV9a				
Ī		NOV9a	Identities/	
(custo		13101	Statene	
		Residues	Region	

AAB94180	Human protein sequence SEQ ID NO:14494 - Homo sapiens, 503 aa. [EP1074617-A2, 07-FEB-2001]	173675 1503	501/503 (99%) 501/503 (99%)	0.0
AAB41921	Human ORFX ORF1685 polypeptide sequence SEQ ID NO:3370 - Homo sapiens, 269 aa. [WO200058473-A2, 05-OCT-2000]	406675 1269	261/270 (96° o) 264/270 (97° o)	e-147
AAU07123	Human novel human protein, NHP #23 - Homo sapiens, 576 aa. [WO200161016-A2, 23-AUG-2001]	143674 31574	224/564 (39%) 339/564 (59%)	e-109
AAU07119	Human novel human protein, NHP #19 - Homo sapiens, 560 aa. [WO200161016-A2, 23-AUG-2001]	143654 31554	213/544 (39%) 327/544 (59%)	e-102
AAU07115	Human novel human protein, NHP #15 - Homo sapiens, 520 aa. [WO200161016-A2, 23-AUG-2001]	143606 31495	196/481 (40%) 300/481 (61%)	5e-97

In a BLAST search of public sequence databases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9E.

Table 9E. Public BLASTP Results for NOV9a				
Protein Accession Number	Protein/Organism/Length	NOV9a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9JLB2	PALS1 - Mus musculus (Mouse), 675 aa.	1675 1675	652/675 (96%) 665/675 (97%)	0.0
Q9Н9Q0	CDNA FLJ12615 FIS, CLONE NT2RM4001629, WEAKLY SIMILAR TO MAGUK P55 SUBFAMILY MEMBER 3 - Homo sapiens (Human), 503 aa.	173675 1503	501/503 (99%) 501/503 (99%)	0.0
AAL40935	STARDUST PROTEIN MAGUK1 ISOFORM - Drosophila melanogaster (Fruit fly), 1289 aa.	252674 8291282	252/460 (54%) 327/460 (70%)	e-140
Q9W3H6	CG1617 PROTEIN - Drosophila melanogaster (Fruit fly), 794 aa.	252674 294787	252/500 (50%) 327/500 (65%)	e-132
Q9W7F1	P55-RELATED MAGUK	142673	209/556 (37%)	e-105

PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9F.

Table 9F. Domain Analysis of NOV9a				
Pfam Domain	NOV9a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
L27: domain 1 of 1	186238	19/56 (34°°°) 39/56 (70°°°)	0.049	
PDZ: domain 1 of 1	256335	21/83 (25%) 58/83 (70%)	9.7e-12	
SH3: domain 1 of 1	348415	19/68 (28%) 46/68 (68%)	0.026	
Guanylate_kin: domain 1 of 1	515624	54/113 (48%) 87/113 (77%)	6 2e-38	
Peptidase_S15: domain 1 of 1	642658	6/17 (35%) 13/17 (76%)	8.2	
Caulimo_mov: domain 1 of 1	420673	59/335 (18%) 156/335 (47%)	6.1	

Example 10.

The NOV10 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 10A.

Table 10A. NOV10 Sequence Analysis			
	SEQ ID NO: 25	576 bp	
NOV10a, CG58572-01 DNA Sequence	ACCTTACTAGAAAATGAAACCTGATGAAACTCCTATGTTTGACCCAAGTC		TTTCTCCAGCCATTTCCCUAACACAT STACTGCT SACTTAAATAGAGGTTTTT AGTTGTCASCCCTGAACAATTTATGGA FATTATGTTACAGTTGTAGAAGATGT IGATTATAGAACATAAATTCATCCATT IGTTGTTAGTGATGAATGCAGAGGAAA ACTTTGCTAAGCAAGAAACTGAACTGT ATGTTGGTTCTATAAAAAGTTTGGAT
	ORF Start: ATG at 15	ORF Sto	pp: TAA at 567
	SEQ ID NO: 26	184 aa	MW at 20749.9kD

	SEQ ID NO: 27	560 bp	
NOV10b, CG58572-02 DNA Sequence	ATGAACCTGATGAACCTCTATGTTTGACCCAAGTCTACTCAAGAAGTGGACTGGAGAACCTGATGAACCTGATGAACCTGATTTTCTCCAGCCATTTCCCCAACCACTCTTGGAGAAGGCTTGGTCAGAATACAGCTACATTTTCTCCAGCCATTTCCCCAACCACTCTGGAGAAGGCTTGGTTTTTTGAGACTTTTTTTT		
	ORF Start: ATG at 1	ORF Sto	p: TAA at 553
	SEQ ID NO: 28	184 aa	MW at 20649.8kD
NOV10b, CG58572-02 Protein Sequence	MKPDETPMFDPSLLKEVDWSQNTATFSPAISPTHPGEGLVLGPLCTADLNRGFFK DLTETGVVSPEQFMKSFEHMKKSGDYYVTVVEDVTLGQIVATATLIIEHKFIHSC GRVEDVVVSDECRGKQLGKLLLSTLTLLSKKLNCYKITLECLPQNVGFYKKFGYT ENYMCRRFLK		DVTLGQIVATATLIIEHKFIHSCAKR

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 10B.

Table 10B. Comparison of NOV10a against NOV10b.		
Protein Sequence	NOV10a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV10b	1184 1184	163/184 (88%) 164/184 (88%)

Further analysis of the NOV10a protein yielded the following properties shown in Table 10C.

	Table 10C. Protein Sequence Properties NOV10a
PSort analysis:	0.4500 probability located in cytoplasm; 0.1206 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10D.

	Table 10D. Genese	q Results	s for NOV10	a	
	Professional EDISTER CONTRACTOR	1.1		Stekkaki -tr	
adentifier	$\partial \mathbf{ate}_i$			1111111111111	\sim atu c

		Residues	Region	
AAG67123	Amino acid sequence of human 50287 transferase - Homo sapiens, 184 aa. [WO200164904-A2, 07-SEP-2001]	1184 1184	183/184 (99%) 184/184 (99%)	e-105
AAB73505	Human transferase HTFS-12, SEQ ID NO:12 - Homo sapiens, 184 aa. [WO200132888-A2, 10-MAY-2001]	1184 1184	183/184 (99%) 184/184 (99%)	e-105
AAB63700	Human gastric cancer associated antigen protein sequence SEQ ID NO:1062 - Homo sapiens, 200 aa. [WO200073801-A2, 07-DEC-2000]	1184 17200	183/184 (99%) 184/184 (99%)	e-105
AAU07779	Human novel transferase protein, NHP #22 - Homo sapiens, 184 aa. [WO200164903-A2, 07-SEP-2001]	1184 1184	182/184 (98%) 183/184 (98%)	e-104
AAM79992	Human protein SEQ ID NO 3638 - Homo sapiens, 206 aa. [WO200157190-A2, 09-AUG-2001]	1184 23206	181/184 (98%) 183/184 (99%)	e-104

In a BLAST search of public sequence databases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10E.

	Table 10E. Public BLASTP R	esults for N	OV10a	
Protein Accession Number	Protein/Organism/Length	NOV10a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96EK6	SIMILAR TO GLUCOSAMINE- PHOSPHATE N- ACETYLTRANSFERASE - Homo sapiens (Human), 184 aa.	1184 1184	183/184 (99%) 184/184 (99%)	e-104
Q9JK38	EMEG32 PROTEIN (GLUCOSAMINE-PHOSPHATE N-ACETYLTRANSFERASE) - Mus musculus (Mouse), 184 aa.	1184 1184	180/184 (97%) 182/184 (98%)	e-102
Q9VAI0	Probable glucosamine-phosphate N-acetyltransferase (EC 2.3.1.4) (Phosphoglucosamine transacetylase) (Phosphoglucosamine acetylase) - Drosophila melanogaster (Fruit fly), 219 aa.	4176 6179	84/174 (48%) 123/174 (70%)	2e-43
Q17427	Probable glucosamine-phosphate N-acetyltransferase (EC 2.3.1.4) (Phosphoglucosamine transacetylase) (Phosphoglucosamine acetylase) - Caenorhabditis elegans, 165 aa.	32182 15165	65/152 (42%) 98/152 (63%)	1e-28
O45811	T23G11.2 PROTEIN - Caenorhabditis elegans, 347 aa.	42184 201340	63/143 (44%) 88/143 (61%)	3e-26

PFam analysis predicts that the NOV10a protein contains the domains shown in the Table 10F.

	Table 10F. Domain Analy	vsis of NOV10a	
Pfam Domain	NOV10a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Acetyltransf: domain 1 of 1	89171	22/87 (25%) 62/87 (71%)	6.5e-13

Example 11.

The NOV11 clone was analyzed, and the nucleotide and predicted polypeptide.

Table 11A. NOV11 Sequence Analysis			
	SEQ ID NO: 29	709 bp	
NOV11a, CG58564-01 DNA Sequence	CCCGCGGGCCAGCACCATGGAGGACGTGAAGCTGGAGTTCCCTTCCCTTCCCAAGGAGAGCCCGGGGACGCACCATGGAGAGCTGAGCTGAGACGAGAGAGCAGCAGAGCAGCACACCTATGAGACGAGAAGCAAGC		GAGACGAGAGATGCAGGAAATTTTAC ATGAAAAGCAAGCTACCTGTACTACA GACAAAATATTGAAGCAAACTTTATT AGTCCTGGATATTGCAGATAATCCAG AAGGAATTTATTGATGGAGCTTACA CAGGGATCTCCAGAAGTGCAGCCTTT GAAGTACAGGGATGCTTTGCTT
	ORF Start: ATG at 17	ORF Sto	p: TGA at 686
	SEQ ID NO: 30	223 aa	MW at 25492.2kD
NOV11a, CG58564-01 Protein Sequence	HITCIRONIFANEIKPNEOOLEI	RYLVLDIADN FGMKYRDAFA	LPGLFLGPYSSAMKSKLPVLQKHGIT PVENIIRFFPMTKEFIDGSLQMGGKV YVQERRFCINPNAGFVHQLQEYEAIY EEEDDFGTMQVATAQNG
	SEQ ID NO: 31	724 bp	
NOV11b, CG58564-02 DNA Sequence	ACTOTCCCACCCACCCACCAGAATGGCGGGCCAGCACCATGGAGGACGTGAAGCTGGAGTTCCCTTCCCTCCACAGTGCAAGGAAGACGCCGAGGAGTGGACCTACCCTATGAGAGTTCCCTTCCCTCCACAGTGCAAGGAAGACGCCGAGGAGTGGACCTACCCTATGAGACAGAGAGATGCAGGAATTTTATTTA		
	ORF Start: ATG at 40	ORF Sto	p: TGA at 709
	SEQ ID NO: 32	223 aa	MW at 25482.1kD
NOV11b, CG58564-02 Protein Sequence	MEDVKLEFPSLPQCKEDAEEWTYPMRREMQEILSGLFLGPYSSAMKSKLPVLQXHGI' HIICIRQNIEANFIKPNFQQLFRYLVLDIADNPVENIIRFFPMTKEFIDGSLQMGGK' C LVHGNAGISRSAAFVIAYIMETFGMKYRDAFAYVQERRFCINPNAGFVHQLQEYEAI' LAKLTIQMMSPLQIERSLSVHSGTTGSLKRTHEEEDDFGTMQVATAQNG		PVENIIRFFPMTKEFIDGSLQMGGKV YVQERRFCINPNAGFVHQLQEYEAIY
	SEQ ID NO: 33	545 bp	
NOV11c, CG58564-03 DNA Sequence	ACTCTCCCACCCACCCACCACCAGCCCGGGCCAGCACCATGGAGGACGTG		CCGAGGAGTGGACCTACCCTATGAGA CTTAGGCCCATATTCATCTGCTATGA GAATGAAGTACAGAGATGCTTTTGCT TAATGCTGGATTTGTCCATCAACTTC ACAATACAGATGATTCACCACTCCA CCACAGGCAGTTTGAAGAGAACACAT GGCGACTGCACAGAATGGCTGACTTG
	ORF Start: ATG at 39	}	p: TGA at 210
	SEQ ID NO: 34	57 aa	MW at 6695.7kD
NOV11c, CG58564-03 Protein Sequence	MEDVKLEFPSLPQCKEDAEEWTY	<u> </u>	LPGLFLGPYSSAMKSKLPVLQKHLE
	SEQ ID NO: 35	663 bp	

	CTCCAGAAGTGCAGCCTTTGTTA AGAGATGCTTTTGCTTATGTTCA TTGTCCATCAACTTCAGGAATAT GATGTCACCACTCCAGATAGAAA TTGAAGAGAACACATGAAGAAGA	ATTGCATACA AAGAAAGAAGA TGAAGCCATC AGGICATTATO AGGATGATTT	GTTCTTGTGCATGGAAATGCAGGGAT TTATGGAAACATTTGGAATGAAGTAC ATTTTGTATTAATCCTAATGCTGGAT FACCTAGCAAAATTAACAATACAGAT CTGTTCATTCTGGTACCACAGGCAGT FGGAACCATGCAAGTGGCGACTGCAC
	ORF Start: ATG at 39	T T	o: TGA at 399
NOV11d, CG58564-04 Protein Sequence	HIICIRONIEANFIKPNEOOLFE	I (PMRREMQEII	MW at 14245.6kD LEGLFLGPYSSAMKSKLPVLQKHGIT KWEEKFLCMEMQGSPEVQPLLLHTLW

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 11B.

Table 11B. Comparison of NOV11a against NOV11b through NOV11d.				
Protein Sequence	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV11b	1223 1223	222/223 (99%) 222/223 (99%)		
NOV11c	155 155	55/55 (100%) 55/55 (100%)		
NOVIId	181 181	81/81 (100%) 81/81 (100%)		

Further analysis of the NOV11a protein yielded the following properties shown in Table 11C.

	Table 11C. Protein Sequence Properties NOV11a
PSort analysis:	0.4698 probability located in microbody (peroxisome); 0.4500 probability located in cytoplasm; 0.1958 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11D.

	Table 11D. Geneseq Results for NOV11a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU09017	Human dual specificity phosphatase 38692 - Homo sapiens, 223 aa. [WO200173059-A2, 04-OCT-2001]	1223 1223	223/223 (100%) 223/223 (100%)	e-128	
AAE08552	Human phosphatase protein - Homo sapiens, 223 aa. [WO200160992-A2, 23-AUG-2001]	1223 1223	223/223 (100%) 223/223 (100%)	e-128	
AAM41520	Human polypeptide SEQ ID NO 6451 - Homo sapiens, 236 aa. [WO200153312-A1, 26-JUL-2001]	1223 14236	223/223 (100%) 223/223 (100%)	e-128	
AAM39734	Human polypeptide SEQ ID NO 2879 - Homo sapiens, 223 aa. [WO200153312-A1, 26-JUL-2001]	1223 1223	223/223 (100%) 223/223 (100%)	e-128	
AAU23521	Novel human enzyme polypeptide #607 - Homo sapiens, 190 aa. [WO200155301-A2, 02-AUG-2001]	25171 7145	55/147 (37%) 80/147 (54%)	1e-18	

In a BLAST search of public sequence databases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11E.

	Table 11E. Public BLASTP Results for NOV11a				
Protein Accession Number	Protein/Organism/Length	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
CAD10219	SEQUENCE 4 FROM PATENT WO0173059 - Homo sapiens (Human), 223 aa.	1223 1223	223/223 (100%) 223/223 (100%)	e-127	
Q9DCF8	0610039A20RIK PROTEIN - Mus musculus (Mouse), 223 aa.	1223 1223	215/223 (96° a) 221/223 (98° b)	e-124	
Q60970	PROTEIN TYROSINE PHOSPHATASE-LIKE - Mus musculus (Mouse), 223 aa.	1223 1223	214/223 (95° o) 221/223 (98° o)	e-124	
Q60969	PROTEIN TYROSINE PHOSPHATASE-LIKE - Mus musculus (Mouse), 205 aa	1168 1168	163/168 (97%) 167/168 (99%)	2e-93	

Office Control

		Y	
Homo sapiens (Human), 66 aa			
(fragment).			

PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11F.

T	Table 11F. Domain Analysis of NOV11a					
Pfam Domain	NOV11a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
DSPc: domain 1 of 1	28173	64/172 (37%) 127/172 (74%)	2.2e-63			
Y_phosphatase: domain 1 of 1	35179	35/279 (13%) 93/279 (33%)	1.7			

Example 12.

The NOV12 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 12A.

Table 12A. NOV12 Sequence Analysis			
	SEQ ID NO: 37 3696 bp		
NOV12a,	GTGTAAAAATACTGTCCATTTAATGTTTTCTGGGACTTTAGGTAAGAATATGAAAACT		
*	CAACCACCCTTGAGCAGGATGAACCGGGAGGAATTGGAGGACAGTTTCTTTC		
CG57819-01 DNA Sequence	GCGAAGATCACATGTTGGTGAAGGAGCTTTCTTGGAAGCAACAGGATGAGATCAAAAG		
	GCTGAGGACCACCTTGCTGCGGTTGACCGCTGCTGGCCGGGACCTGCGGGTCGCGGAG		
	GAGGCGGCGCCCCTCTCGGAGACCGCAAGGCGCGGGCAGAAGGCGGGATGGCGGCAGC		
	GCCTCTCCATGCACCAGCGCCCCCAGATGCACCGACTGCAAGGGCATTTCCACTGCGT		
	CGGCCCTGCCAGCCCCGCCGCCCCAGCCTCGCGTCCAAGTGGGACACAGACAG		
	CACACAGCCGGTGCCCGGAGAAACCCAAGAGGGGTAGGGACAGGCTGAGCT		
	ACACAGCCCCTCCATCGTTTAAGGAGCATGCGACAAATGAAAACAGAGGTGAAGTAGC		
	CAGTAAACCCAGTGAACTGGCCCACATCATGGCCAGCAATACCATGCAAGTGGAAGAG		
	CCACCCAAGTCTCCTGAGAAAATGTGGCCTAAAGATGAAAATTTTGAACAGAGAAGCT		
	CATTGGAGTGTGCTCAGAAGGCTGCAGAGCTTCGGGCTTCCATTAAAGAGAAGGTAGA		
	GCTGATTCGACTTAAGAAGCTCTTACATGAAAGAAATGCTTCATTGGTTATGACAAAA		
	GCACAATTAACAGAAGTTCAAGAGGTGAGTTGCCATCTTTTGACCCAGAATCAGGGAA		
	TCCTGAGTGCAGCCCATGAGGCCCTCCTCAAGCAAGTGAATGAGCTCAGGGCAGAGCT		
	GAAGGAAGAAGCAAGAAGGCTGTGAGCTTGAAGAGCCAACTGGAAGATGTGTCTATC		
	TTGCAGATGACTCTGAAGGAGTTTCAGGAGAGGTTGAAGATTTGGAAAAAGAACGAA		
	AATTGCTGAATGACAATTATGACAAACTCTTAGAAAGCAGTGACAGCTCCAGTCAGCC		
	CCACTGGAGCAACGAGCTCATAGCGGAACAGCTACAGCAGCAAGTCTCTCAGCTGCAG		
	GATCAGCTGGATGCTGAGCTGGAGGACAAGAGAAAAGTTTTACTTGAGCTGTCCAGGG		
	AGAAAGCCCAAAATGAGGATCTGAAGCTTGAAGTCACCAACATACTTCAGAAGCATAA		
	ACAGGAAGTAGAGCTCCTCCAAAATGCAGCCACAATTTCCCAACCTCCTGACAGGCAA		
	TCTGAACCAGCCACTCACCCAGCTGTATTGCAAGAGAACACTCAGATCCAGCCAAGTG		
	AACCCAAAAACCAAGAAGAAAAGAAACTGTCCCAGGTGCTAAATGAGTTGCAAGTATC		
	ACACGCAGAGACCACATTGGAACTAGAAAAGACCAGGGACATGCTTATTCTGCAGCGC		
	AAAATCAACGTGTGTTATCAGGAGGAACTGGAGGCAATGATGACAAAAGCTGACAATG		
	ATAATAGAGATCACAAAGAAAAGCTGGAGAGGTTGACTCGACTACTAGACCTCAAGAA		
	TAACCGTATCAAGCAGCTGGAAGAACAGCTCAAAGATGTTGCTTATGGCACCCGACCG		
	TTGTCGTTATGTTTGGAAACACTGCCAGCCCATGGAGATGAGGATAAAGTGGATATTT		
	CTCTGCTGCATCAGGGTGAGAATCTTTTTGAACTGCACATCCACCAGGCCTTCCTGAC		
	ATCTGCCGCCCTAGCTCAGGCTGGAGATACCCAACCTACCACTTTCTGCACCTATTCC		
	- Гетитет да пот е до до пое се ременене жани и и и и и де по до постори и да постори и и и и и и и и и и и и и		

			
	1		ATAAACGAAAGAAAGCCCAGGTC
	·		CCAGGAAGAGGAGGTGAGATCGG
	AGTCTTGGGAACCTCAGAACGAC	CTGTGGATTGAA	ATCACCAAGTGCTGTGGCCTCCG
!	1		CTGTGTACCGCTTCTTCACCTTT
İ	TCTGACCATGACACTGCCATCAT	TCCAGCCAGTAA	CAACCCCTACTTTAGAGACCAGG
	CTCGATTCCCAGTGCTTGTGACC	TCTGACCTGGAC	CATTATCTGAGACGGGAGGCCTT
i	GTCTATACATGTTTTTGATGATC	AAGACTTAGAGC	CTGGCTCGTATCTTGGCCGAGCC
!	CGAGTGCCTTTACTGCCTCTTGC	:AAAAAATGAATC	TATCAAAGGTGATTTTAACCTCA
	CTGACCCTGCAGAGAAACCCAAC	GGATCTATTCAA	GTGCAACTGGATTGGAAGTTTCC
	CTACATACCCCCTGAGAGCTTCC	TGAAACCAGAAG	CTCAGACTAAGGGGAAGGATACC
	AAGGACAGTTCAAAGATCTCATC	TGAAGAGGAAAA	GGCTTCATTTCCTTCCCAGGATC
1	AGATGGCATCTCCTGAGGTTCCC	ATTGAAGCTGGC	CAGTATCGATCTAAGAGAAAACC
	TCCTCATGGGGGAGAAAGAAAGC	AGAAGGAGCACC	AGGTTGTGAGCTACTCAAGAAGA
i	AAACATGGCAAAAGAATAGGTGT	TCAAGGAAAGAA	TAGAATGGAGTATCTTAGCCTTA
}	ACATCTTAAATGGAAATACACTG	AAGCAGGTGAAT	TACACTGAGTGGAAGTTCTCAGA
	GACTAACAGCTTCATAGGTGATC	GCTTTAAAAATC	AGCACGAGGAAGAGGAAATGACA
	TTATCCCATTCAGCACTGAAACA	GAAGGAACCTCT	ACATCCTGTAAATGACAAAGAAT
•	CCTCTGAACAAGGTTCTGAAGTC	'AGTGAAGCACAA	ACTACCGACAGTGATGATGTCAT
			SATTCAGAGAAGATGTGCATTGAA
1	•		GATGTCTGATGAGAACATAAAAC
į ·	•		TTGTCGGAGACAGAGACTCCAGT
			ACTTTCACTTTAGCAAGGTAATA
			GTTTCTGTTCGACATGCTGAATG
!			GTGGTAAGTGATCCTCTGGATGA
1	ļ ⁻		ATCTTCAACTGTGGCAGATCCTG
	1		CGTTGTTAGCCCTGAAGATCTGG
	ķ		GCAGCTGCTGTCCTCCATGCTAT
	TTACAAGGAGATGACTGAAGATT		
	ODE CALL ATC -4 22	ODE 64	TCA -4 2696
	ORF Start: ATG at 23	<u>-</u>	
	SEQ ID NO: 38	1221 aa 1	MW at 139825.2kD
NOV12a,	MFSGTLGKNMKTQPPLSRMNREE	LEDSFFRLREDH	MLVKELSWKQQDEIKRLRTTLLR
1 '	LTAAGRDLRVAEEAAPLSETARR	GQKAGWRQRLSM	HQRPQMHRLQGHFHCVGPASPRR
CG57819-01 Protein Sequence	AQPRVQVGHRQLHTAGAPVPEKP	KRGRDRLSYTAP	PSFKEHATNENRGEVASKPSELA
<u> </u>	HIMASNTMQVEEPPKSPEKMWPK	DENFEQRSSLEC.	'AQKAAELRASIKEKVELIRLKKL
	LHERNASLVMTKAQLTEVQEVSC	HLLTQNQGILSA	AHEALLKQVNELRAELKEESKKA
!	VSLKSQLEDVSILQMTLKEFQER	VEDLEKERKLLN	DNYDKLLESSDSSSQPHWSNELI
	AEQLQQQVSQLQDQLDAELEDKR	KVLLELSREKAQ!	NEDLKLEVTNI LQKHKQEVELLQ
]	NAATISQPPDRQSEPATHPAVLÇ	ENTQIQPSEPKN	QEEKKLSQVLNELQVSHAETTLE
i i	LEKTRDMLILQRKINVCYQEELF	AMMTKADNDNRD	HKEKLERLTRLLDLKNNRIKQLE
<u> </u>	EQLKDVAYGTRPLSLCLETLPAH	GDEDKVDISLLH	QGENLFELHIHQAFLTSAALAQA
	GDTQPTTFCTYSFYDFETHCTPL	SVGPQPLYDFTS	QYVMETDSLFLHYLQEASARLDI
	HQAMASEHSTLAAGWICFDRVLE	TVEKVHGLATLI	GAGGEEFGVLEYWMRLRFPIKPS
	LQACNKRKKAQVYLSTDVLGGRK	AQEEEVRSESWE	PQNELWIEITKCCGLRSRWLGTQ
	PSPYAVYRFFTFSDHDTAIIPAS	NNPYFRDQARFP	VLVTSDLDHYLRREALSIHVFDD
	EDLEPGSYLGRARVPLLPLAKNE	SIKGDFNLTDPA	EKPNGSIQVQLDWKFPYIPPESF
			PEVPIEAGQYRSKRKPPHGGERK
	· -		GNTLKQVNYTEWKFSETNSFIGD
			GSEVSEAQTTDSDDVIVPPMSQK
			EYKFYDLPLSETETPVSLRKPRA
	l .	_	DOGOLKFTVVSDPLDEEKKECEE
	1	-	GRLKVSLQAAAVLHAIYKEMTED
	LFS		
	1 		

Further analysis of the NOV12a protein yielded the following properties shown in Table 12B.

	Table 12B. Protein Sequence Properties NOV12a				
	0.9600 probability located in nucleus; 0.3000 probability located in				
lanalysis:	microbody (peroxisome): 0.1000 probability located in mitochondrial matrix				

analysis:

A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12C.

	Table 12C. Geneseq Results for NOV12a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV12a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM78558	Human protein SEQ ID NO 1220 - Homo sapiens, 1179 aa. [WO200157190-A2, 09-AUG-2001]	631219 471177	400/1193 (33%) 640/1193 (53%)	e-172	
AAM79542	Human protein SFQ ID NO 3188 - Homo sapiens, 1160 aa. [WO200157190-A2, 09-AUG-2001]	63 1219 281158	400/1193 (33%) 640/1193 (53%)	e-172	
AAM41414	Human polypeptide SEQ ID NO 6345 - Homo sapiens, 1160 aa. [WO200153312-A1, 26-JUL-2001]	631219 281158	400/1193 (33%) 640/1193 (53%)	e-172	
AAM39628	Human polypeptide SEQ ID NO 2773 - Homo sapiens, 1128 aa. [WO200153312-A1, 26-JUL-2001]	1181219 471126	390/1138 (34%) 623/1138 (54%)	e-171	
AAG75661	Human colon cancer antigen protein SEQ ID NO:6425 - Homo sapiens, 118 aa. [WO200122920-A2, 05- APR-2001]	445523 33111	40/79 (50%) 56/79 (70%)	1e-13	

In a BLAST search of public sequence databases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12D.

	Table 12D. Public BLASTP Results for NOV12a				
Protein Accession Number	Protein/Organism/Length	NOV12a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96KN7	RPGR-INTERACTING PROTEIN 1 - Homo sapiens (Human), 1286 aa.	71221 291286	1203/1258 (95%) 1207/1258 (95%)	0.0	
Q96QA8	RPGR-INTERACTING PROTEIN 1 - Homo sapiens (Human), 1286 aa.	71221 291286	1203/1258 (95%) 1207/1258 (95%)	0.0	
Q9GLM3	RPGR-INTERACTING PROTEIN-1 - Bos taurus (Bovine), 1221 aa.	11221 11221	922/1234 (74%) 1031/1234 (82%)	0.0	
Q9NR40	RPGR-INTERACTING PROTEIN - Homo sapiens (Human), 902 aa.	3311221 1902	883/902 (97%) 888/902 (97%)	0.0	
Q9НВК6	RPGR-INTERACTING PROTEIN-1 - Homo sapiens (Human), 762 aa.	4711221 1762	742/763 (97%) 746/763 (97%)	0.0	

PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12E.

Table 12E. Domain Analysis of NOV12a				
Pfam Domain NOV12a Match Region for th		Identities/ Similarities for the Matched Region	Expect Value	
PFEMP: domain 1 of 1	293413	23/176 (13%) 82/176 (47%)	7.9	
C2: domain 1 of 1	736825	14/101 (14%) 54/101 (53%)	1.4	

Example 13.

The NOV13 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 13A.

Table	13A. NOV13 Sequence	e Analysi	S	
	SEQ ID NO: 39	678 bp		
NOV13a, CG57789-01 DNA Sequence	TGGGGGGAGGCATGGTCTCCACCTACCGGGTGGCCGTGCTGGGGGGCGCAGGTGTGGGGAGAGATCTCACCACCTACCGGGTGGCCGTGCTGGGGGCGCAGGTTCTGGACCACCACCACCACCACCACCACCACCACCACCACCAC			
	ORF Start: ATG at 14	ORF Stop	o: TGA at 623	
	SEQ ID NO: 40	203 aa	MW at 23229.0kD	
NOV13a, CG57789-01 Protein Sequence	MVSTYRVAVLGARGVGKSAIVRQFLYNEFSEVCVPTTARRLYLPAVV. DFPPISAFPVNTLQEWADTCCRGLRSVHAYILVYDICCFDSFEYVKT UENCE GTSETPIIIVGNKRDLQRGRVIPRWNVSHLVRKTWKCGYVECSAKYN KSVGCARCKHVHAALRFQGALRRNRCAIM			
	SEQ ID NO: 41	682 bp		
NOV13b, CG57789-02 DNA Sequence	TGGGAGCATGGTCTCCACCTACCGGGTGCCGTGCTGGGGGCGCGAGGTGT GAGTGCCATCGTGCCCACTTCTTGTACAACGAGTTCAGCCAGGTCTGCGTC ACCCCCGCCGCCCCTTTACCTGCCTGCTGTCATGAACGACCCACCTGCCACCACACCACCACCACCACCACCACCACCACCACCAC		AGTTCAGCGAGGTCTGCGTCCCACC CATGAACGCCACCTGCACGACGTCCAGGACTCC CCTGTCAATACGCTCCAGGAGTGGGC ACGCCTACATCCTGGTCTACGACATC CATCCGCCAGCAGATCCTGGAGACGA ACCGTGGGCAACAAGACGTGCAC CCGACCTGGTACGCAAGACCTGGAAG CTGGCACATCCTGCTGCTCTCTAGCAC AGCACGTGCACGCTGCCCTTCAGCG AGCACGTGCACGCTGCCCTTGCCTT	
	ORF Start: ATG at 9	ORF Stop	o: TGA at 618	
	SEQ ID NO: 42	203 aa	MW at 23229.0kD	
NOV13b, CG57789-02 Protein Sequence	MVSTYRVAVLGARGVGKSAIVRQFLYNEFSEVCVPTTARRLYLPAVVMNGHVHDLQIL DFPPISAFPVNTLQEWADTCCRGLRSVHAYILVYDICCFDSFEYVKTIRQQILETRVI C GTSETPIIIVGNKRDLQRGRVIPRWNVSHLVRKTWKCGYVECSAKYNWHILLLFSELL KSVGCARCKHVHAALRFQGALRRNRCAIM			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 13B.

Table	Table 13B. Comparison of NOV13a against NOV13b.				
Protein NOV13a Residues/ Identities/ Sequence Match Residues Similarities for the Matched		Identities/ Similarities for the Matched Region			
NOV13b	1203 1203	203/203 (100%) 203/203 (100%)			

Further analysis of the NOV13a protein yielded the following properties shown in Table 13C.

Table 13C. Protein Sequence Properties NOV13a				
PSort analysis:	0.6500 probability located in plasma membrane; 0.5064 probability located in mitochondrial matrix space; 0.3844 probability located in microbody (peroxisome); 0.2556 probability located in lysosome (lumen)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13D.

Table 13D. Geneseq Results for NOV13a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV13a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB42840	Human ORFX ORF2604 polypeptide sequence SEQ ID NO:5208 - Homo sapiens, 136 aa. [WO200058473-A2, 05-OCT-2000]	1136 1136	136/136 (100%) 136/136 (100%)	2e-75	
AAM41682	Human polypeptide SEQ ID NO 6613 - Homo sapiens, 206 aa. [WO200153312-A1, 26-JUL-2001]	5174 15173	66/171 (38%) 89/171 (51%)	4e-18	
AAM39896	Human polypeptide SEQ ID NO 3041 - Homo sapiens, 199 aa. [WO200153312-A1, 26-JUL-2001]	5174 8166	66/171 (38%) 89/171 (51%)	4e-18	
AAY99656	Human GTPase associated protein-7 - Homo sapiens, 281 aa. [WO200031263-A2, 02-JUN-2000]	5173 25191	59/179 (32%) 87/179 (47%)	3e-14	
AAR05075	RAP1A Gene product incorporating at least one peptide associated with ras oncogene - Synthetic, 184 aa. [WO9000179-A, 11-JAN-1990]	5177 4165	57/175 (32%) 90/175 (50%)	5e-14	

In a BLAST search of public sequence databases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13E.

	Table 13E. Public BLASTP Results for NOV13a					
Protein Accession Number	Protein/Organism/Length	NOV13a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q96 S 79	RAS-LIKE PROTEIN/VTS58635 - Homo sapiens (Human), 203 aa.	1203 1203	203/203 (100%) 203/203 (100%)	e-118		
Q92737	Ras-like protein RRP22 (RAS-related protein on chromosome 22) - Homo sapiens (Human), 203 aa.	1203 1203	105/204 (51%) 134/204 (65%)	3e-50		
Q95KD9	HYPOTHETICAL 22.5 KDA PROTEIN - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 199 aa.	5174 8166	66/171 (38%) 89/171 (51%)	1e-17		
Q96HU8	SIMILAR TO CG8500 GENE PRODUCT - Homo sapiens (Human), 199 aa.	5174 8.166	66/171 (38%) 89/171 (51%)	1e-17		
Q9NF75	EG:BACR37P7.8 PROTEIN - Drosophila melanogaster (Fruit fly), 306 aa.	5174 48210	61/174 (35%) 88/174 (50%)	4e-16		

PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13F.

Table 13F. Domain Analysis of NOV13a					
Pfam Domain	NOV13a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
Semialdhyde_dh: domain 1 of 1	414	4/11 (36%) 11/11 (100%)	0.75		
ras: domain 1 of 1	6203	56/224 (25%) 125/224 (56%)	1.2c-12		

Example 14.

The NOV14 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 14A.

Table 14A. NOV14 Sequence Analysis				
	SEQ ID NO: 43	1790 bp		
NOV14a, CG57758-01 DNA Sequence	SEQ ID NO: 43 1790 bp TCTCCCTCCGGGGGGATGGCCTGGGGGTGAGCTATGTCTCCAAGTTCAAGTCCTTTGATCTTCGTTACCCCGGCGGGTCCTGTGCTGCCACTCGTCATTCTGATGCCCGCCGGGTCAGTTTTCTGATGCCCGCCC			
	ORF Start: ATG at 16	ORF Stop: TAG at 1720		
	SEQ ID NO: 44	568 aa MW at 62592.9kD		
NOV14a, CG57758-01 Protein Sequence	SLMPVLLFPLFQILDSRQVCVQX GAKPARLMLGFMGVTALLSMWIS GKAKELPGSQVIFEGPTLGQQEE LGQMNELFPDSKDLVNFASWFAF KKNEKAALKVLQEEYRKLGPLSF ETKYVSDATVAIFVATLLFIVPS PWGIVLLLGGGFALAKGSEASGI NVATTTLFLPIFASMSRSIGLNF	LLPLVILMPAKVSCAYVIILMAIYWCTEVIPLAVT MKDTNMLFLGGLIVAVAVERWNLHKRIALRTLLWV INTATTAMMVPIVEAILQQMEATSAATEAGLELVDK IQERKRLCKAMTLCICYAASIGGTATLTGTGPNVVL IAFPNMLVMLLFAWLWLQFVYMFSSFKKSWGCGLES TAEINVLICFFLLVILWFSRDPGFMPGWLTVAWVEG IGKPKFNFRSQTEEGKSPVLIAPPPLLDWKVTQEKV ISVWMGKQMEPLHAVPPAAITLILSLLVAVFTECTS PLYIMLPCTLSASFAFMLPVATPPNAIVFTYGHLKV ITWGRAIFDLDHFPDWANVTHIET		
	SEQ ID NO: 45	1899 bp		
NOV14b, CG57758-02 DNA Sequence	AGTTCAAGTCCTTCGTGATCTTC TCTGATGCCCGCCAAGGTCAGTT TGGTGCACAGAAGTCATCCCTCT CACTCTTCCAGATTCTGGACTCC CATGCTGTTCCTGGGCGGCCTCCA AAGAGGATCGCCCTGGGCCACCCC GGCCATGATGGGCCGCCTCACAGCC GGCCATGATGGTGCCCATCGTGG GCCACCGAGGCCGGCCTGGAGGC AGGATGATACAGTGAAAGCAGTC GCCAGCAAGAAGCAAAACCTTC GAAAAGCAAGAGCAACC GCCGGCCAGCATCGGGGCCCCCCCGCGGCCAGATGACCAACCCCAGCTTGTTGCCTTTCCCAACCCCAGTTTTTCCCAACCCCAGTTTTTTTT	CCGCGCGATGGCCTCGGCGCTGAGCTATGTCTCCA TTCGTCACCCCGCTCCTGCTGCTGCACTCGTCAT GCTGTGCCTACGTCATTCATCCTCATGGCCATTTAC GGCTGTCACCTCCTCATGCCTGTCTTTTCCTGCTCTTTCC AGGCAGGTGTGTGCCAGTGCATGAAGCACCAA TCGTGGCCGTGGCTGTGAGCCTGCACCAC CCTCTGGGTGGGGCCAAGCCTGCACGCTGATGC CCTCTGCATGTGGATCAGTAACACGGCAACCAC AGGCCATATTGCAGCAGATGGAAGCCACACAGCACACACA		

	CCTCGGGGCTGTCCGTGTGGATGGGGAAGCAGATGGAGCCCTTGCACGAGTGCCCCCGGCAGCCATCACCTTGATCTTGTCCTTGCTCGTTGCCCTGTTCACTGAGTGCACAAGCAACGCACCACCACCTTGTTCCTGCCATCTTTGCCTCCATGTTCCTCGCTCCATCGGCCACCTCAATCCCTTGACCTTGACTCCTTTGCCTTCATCCTTCACCTTCACCTCAAGGTTGCTGCCTGACACCCCTCAAAGCATGCCATCACCTAATGCCATAATGCACTTTGACTTCACCTCAAGGTTTCACCTAAAAACAGGAGTCATAATGAACATAATTGGAGTCTTCTGTGTTTTTTGGCTGTCACACCCTGGGGACGGGCCATAATTGACTTGGATCATTTCCCTGACTGGGCACTGGACAGACCACACACA			
	ORF Start: ATG at 31	ORF Stop: TAG at 1879		
i	SEQ ID NO: 46	616 aa MW at 67816.9kD		
NOV14b, CG57758-02 Protein Sequence	MASALSYVSKFKSFVILFVTPLLLLPLVILMPAKVSCCAYVIILMAIYWCTEVIPL TSLMPVLLFPLFQILDSRQVCVQYMKDTNMLFLGGLIVAVAVERWNLHKFIALRTL: C VGAKPARLMLGFMGVTALLSMWISNTATTAMMVPIVEAILQQMEATSAATEAGLEGG TTINNLNALEDDTVKAVLGGKCVAIISTYVKKVEKLQINNLMTPLKKLEKQEQQDLG GIRPQDSAQCQEDQERKRLCKAMTLCICYAASIGGTATLTGTGPNVVLLGQMNELF; SKDLVNFASWFAFAFPNMLVMLLFAWLWLQFVYMFSSFKKSWGCGLESKKNEKAALL LQEEYRKLGPLSFAEINVLICFFLLVILWFSRDPGFMPGWLTVAWVEGETKSVSDAG AIFVATLLFIVPSQKKFKNFRSQTEEGKSPVLIAPPPLLDWKVTQEKVPWGIVLLLG GFALAKGSEASGLSVWMGKQMEPLHAVPPAAITLLLSLLVAVFTECTSNVATTTLF; IFASMSRSIGLNPLYIMLPCTLSASFAFMLPVATPPNAIVFTYGHLKVADMVKTGV; NIIGVFCVFLAVNTWGRAIFDLDHFPDWANVTHIET			
	SEQ ID NO: 47	1899 bp		
NOV14c, CG57758-03 DNA Sequence	AGTTCAAGTCCTTCGTGATCTTC TCTGATGCCCGCCAAGGTCAGTT TCGTGTCACAGATTCTGGACTCC CATCTTCCAGATTCTGGACTCC CATGCTGTTCCTGGGCGCCCCAGGCTCTCTCTCGGGCTCCAGGCTCAGGCCTCCAGGCCTCAGGCCCCCCCC			
		ORF Stop: TAG at 1879		
NOV14c, CG57758-03 Protein Sequence	TSLMPVLLFPLFQILDSRQVCVC VGAKPARLMLGFMGVTALLSMWI TTINNLMALEDDTVKAVLGGKCV GIRPQDSAQCOEDQERKRLCKAM SKDLVNFASWFAFAFPNMLVMLI LQEEYRKLGPLSFAEINVLICFF AIFVATLLFIVPSQKPKFNFRSQ	616 aa MW at 67816.9kD LLPLVILMPAKVSCCAYVIILMAIYWCTEVIPLAV ZYMKDTNMLFLGGLIVAVAVERWNLHKRIALRTLLW SNTATTAMMVPIVEAILQQMEATSAATEAGLEGQG VAIISTYVKKVEKLQINNLMTPLKKLEKQEQQDLGP HTLCICYAASIGGTATLTGTGPNVVLLGQMNELFPD JFAWLWLQFVYMFSSFKKSWGCGLESKKNEKAALKV LLVILWFSRDPGFMPGWLTVAWVEGETKSVSDATV TEEGKSPVLIAPPPLLDWKVTQEKVPWGIVLLLGG		

GATGGCCTCGGCGCTGAGCTATGTCTCCAAGTTCAAGTCCTTCGTGATCTTGTTCGTC NOV14d. ACCCCGCTCCTGCTGCCACTCGTCATTCTGATGCCCGCCAAGTTTGTCAGGTGTG CG57758-04 DNA Sequence CCTACGTCATCATCCTCATGGCCATTTACTGGTGCACAGAAGTCATCCCTCTGGCTGT CACCTCTCTCATGCCTGTCTTGCTTTTCCCACTCTTCCAGATTCTGGACTCCAGGCAG GTGTGTCCAGTACATGAAGGACACCAACATGCTGTTCCTGGGCGGCCTCATCGTGG CCGTGGCTGTGGAGCGCTGGAACCTGCACAAGAGGATCGCCCTGCGCACGCTCCTCTG GGTGGGGGCCAAGCCTGCACGGCTGATGCTGGGCTTCATGGGCGTCACAGCCCTCCTG TCCATGTGGATCAGTAACACGGCAACCACGGCCATGATGGTGCCCATCGTGGAGGCCA CAAGGGCAAGGCCAAGGAGCTGCCAGGGAGTCAAGTGATTTTTGAAGGCCCCACTCTG GGGCAGCAGGAAGACCAAGAGCGGAAGAGGTTGTGTAAGGCCATGACCCTGTGCATST GCTACGCGGCCAGCATCGGGGGCACCGCCACCCTGACCGGGACGGGACCCAACGTG3T TCCTGGTTTGCATTTGCCTTTCCCAACATGCTGGTGATGCTGCTGTTCGCCTGGCTGT GGCTCCAGTTTGTTTACATGAGATTCAATTTTAAAAAGTCCTGGGGCTGCGGGCTAGA GAGCAAGAAAACGAGAAGGCTGCCCTCAAGGTGCTGCAGGAGGAGTACCGGAAGTTG GGGCCCTTGTCCTTCGCGGAGATCAACGTGCTGATCTGCTTCTTCCTGCTGGTCATCC GGGTGAGACAAAGTATGTCTCCGATGCCACTGTGGCCATCTTTGTGGCCACCCTGCTA TTCATTGTGCCTTCACAGAAGCCCAAGTTTAACTTCCGCAGCCAGACTGAGGAAGAAA GGAAAACTCCATTTTATCCCCCTCCCCTGCTGGATTGGAAGGTAACCCAGGAGAAAGT GCCCTGGGGCATCGTGCTGCTACTAGGGGGCGGATTTGCTCTGGCTAAAGGATCCGAG GCCTCGGGGCTGTCCGTGTGGATGGGGAAGCAGATGGAGCCCTTGCACGCAGTGCCCC CGGCAGCCATCACCTTGATCTTGTCCTTGCTCGTTGCCGTGTTCACTGAGTGCACAAG CAACGTGGCCACCACCTTGTTCCTGCCCATCTTTGCCTCCATGGTGAAAACAGGA GTCATAATGAACATAATTGGAGTCTTCTGTGTGTTTTTTGGCTGTCAACACCTGGGGAC GGGCCATATTTGACTTGGATCATTTCCCTGACTGGGCTAATGTGACACATATTGAGAC TTAGGAAGAGCCACAAGACCACACATAGCCCTTACCCT ORF Start: ATG at 2 ORF Stop: TAG at 1568 522 aa MW at 58109.6kD SEQ ID NO: 50 MASALSYVSKFKSFVILFVTPLLLLPLVILMPAKFVRCAYVIILMAIYWCTEVIPLAV NOV14d, TSLMPVLLFPLFQILDSRQVCVQYMKDTNMLFLGGLIVAVAVERWNLHKRIALRTLLW CG57758-04 Protein Sequence VGAKPARLMLGFMGVTALLSMWISNTATTAMMVPIVEAILQQMEATSAATEAGLELVD KGKAKELPGSQVIFEGPTLGQQEDQERKRLCKAMTLCICYAASIGGTATLTGTGPN/V LLGQMNELFPDSKDLVNFASWFAFAFPNMLVMLLFAWLWLQFVYMRFNFKKSWGCGLE SKKNEKAALKVLQEEYRKLGPLSFAEINVLICFFLLVILWFSRDPGFMPGWLTVAWVE GETKYVSDATVAIFVATLLFIVPSQKPKFNFRSQTEEERKTPFYPPPLLDWKVTQEKV PWGIVLLLGGGFALAKGSEASGLSVWMGKOMEPLHAVPPAAITLILSLLVAVFTECTS NVATTTLFLPIFASMVKTGVIMNIIGVFCVFLAVNTWGRAIFDLDHFPDWANVTHIET SEQ ID NO: 51 1781 bp GATGCCTCGGCGCTGAGCTATGTCTCCAAGTTCAAGTCCTTCGTGATCTTGTTCGTC NOV14e. ACCCCGCTCTGCTGCCACTCGTCATTCTGATGCCCGCCAAGTTTGTCAGGTGTG CG57758-05 DNA Sequence ${\tt CCTACGTCATCCTCATGGCCATTTACTGGTGCACAGAAGTCATCCCTCTGGCTGT}$ CACCTCTCTCATGCCTGTCTTGCTTTTCCCACTCTTCCAGATTCTGGACTCCAGGCAG GTGTGTGTCCAGTACATGAAGGACACCAACATGCTGTTCCTGGGCGGCCTCATCGTGG CCGTGGCTGTGGAGCGCTGGAACCTGCACAAGAGGATCGCCCTGCGCACGCTCCTCTG GGTGGGGGCCAAGCCTGCACGGCTGATGCTGGGCTTCATGGGCGTCACAGCCCTCCTG TCCATGTGGATCAGTAACACGGCAACCACGGCCATGATGGTGCCCATCGTGGAGGCCA CAAGGGCAAGGCCAAGGAGCTGCCAGGGAGTCAAGTGATTTTTGAAGGCCCCACTCTG GGGCAGCAGGAAGACCAAGAGCGGAAGAGGTTGTGTAAGGCCATGACCCTGTGCATCT GCTACGCGGCCAGCATCGGGGGCACCGCCACCCTGACCGGGACGGGACCCAACGTGGT GCTCCTGGGCCAGATGAACGAGTTGTTTCCTGACAGCAAGGACCTCGTGAACTTTGCT TCCTGGTTTGCATTTGCCTTTCCCAACATGCTGGTGATGCTGCTGTTCGCCTGGCTGT GGCTCCAGTTTGTTTACATGAGATTCAATTTTAAAAAGTCCTGGGGCTGCGGGCTAGA GAGCAAGAAAAACGAGAAGGCTGCCCTCAAGGTGCTGCAGGAGGAGTACCGGAAGTTG GGGCCCTTGTCCTTCGCGGAGATCAACGTGCTGATCTGCTTCTTCCTGCTGGTCATCC GGGTGAGACAAAGTATGTCTCCGATGCCACTGTGGCCATCTTTGTGGCCACCCTGCTA TTCATTGTGCCTTCACAGAAGCCCAAGTTTAACTTCCGCAGCCAGACTGAGGAAGAAA GGAAAACTCCATTTTATCCCCCTCCCCTGCTGGATTGGAAGGTAACCCAGGAGAAAGT GCCCTGGGGCATCGTGCTGCTACTAGGGGGGGGGATTTGCTCTGGCTAAAGGATCCGAG GCCTCGGGGCTGTCCGTGTGGATGGGGAAGCAGATGGAGCCCTTGCACGCAGTGCCCC CGGCAGCCATCACCTTGATCTTGTCCTTGCTCGTTGCCGTGTTCACTGAGTGCACAAG CAACGTGGCCACCACCTTGTTCCTGCCCATCTTTGCCTCCATGAATCACGTCCCC AAGAGCTTCTGTGTTCTGTACGGTGATGTTGCAGTGCTGTCTTTCCGCAGTCTCGCTC CATCGGCCTCAATCCGCTGTACATCATGCTGCCCTGTACCCTGAGTGCCTCCTTTGCC TTCATGTTGCCTGTGGCCACCCCTCCAAATGCCATCGTGTTCACCTATGGGCACCTCA i er eggina eg esta

ووالهمس والمتعادات والانتجاب

	SEQ ID NO: 52	516 aa	MW at 57173.5kD
NOV14e, CG57758-05 Protein Sequence	TSLMPVLLFPLFQILDSRQVCVQ VGAKPARLMLGFMGVTALLSMWI KGKAKELPGSQVIFEGPTLGQQE LLGQMNELFPDSKDLVNFASWFA SKKNEKAALKVLQEEYRKLGPLS GETKYVSDATVAIFVATLLFIVF	YMKDTNMLFI SNTATTAMMV DQERKRLCKA FAFPNMLVML FAEINVLICF SQKPKFNFRS SVWMGKQMEF	MTLCICYAASIGGTATLTGTGPNVV LLFAWLWLQFVYMRFNFKKSWGCGLE FFLLVILWFSRDPGFMPGWLTVAWVE QTEEERKTPFYPPPLLDWKVTQEKV DLHAVPPAAITLILSLLVAVFTECTS

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 14B.

Table 14B. Comparison of NOV14a against NOV14b through NOV14e.			
Protein Sequence	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV14b	1568 1616	519/616 (84%) 524/616 (84%)	
NOV14c	1568 1616	519/616 (84%) 524/616 (84%)	
NOV14d	1568 1522	483/570 (84%) 485/570 (84%)	
NOV14e	1480 1480	440/482 (91%) 443/482 (91%)	

Further analysis of the NOV14a protein yielded the following properties shown in Table 14C.

Table 14C. Protein Sequence Properties NOV14a				
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 38 and 39			

A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several

	Table 14D. Geneseq Results for NOV14a					
Geneseq Identifier	Protein/Organism/Length Patent #, Date]	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAB23625	Human secreted protein SEQ ID NO: 50 - Homo sapiens, 627 aa. [WO200049134-A1, 24-AUG-2000]	10566 9623	256/623 (41%) 386/623 (61%)	e-137		
AAB36158	Novel human transporter protein SEQ ID NO: 2 - Homo sapiens, 627 aa. [WO200065055-A2, 02-NOV-2000]	10566 9623	256/623 (41%) 386/623 (61%)	e-137		
AAB42213	Human ORFX ORF1977 polypeptide sequence SEQ ID NO:3954 - Homo sapiens, 627 aa. [WO200058473-A2, 05-OCT-2000]	10566 9623	256/623 (41%) 386/623 (61%)	e-136		
AAB36164	Novel human transporter protein SEQ ID NO: 14 - Homo sapiens, 626 aa. [WO200065055-A2, 02-NOV-2000]	10566 9622	252/623 (40%) 382/623 (60%)	e-136		
AAB36159	Novel human transporter protein SEQ ID NO: 4 - Homo sapiens, 627 aa. [WO200065055-A2, 02-NOV-2000]	10566 9623	256/623 (41%) 385/623 (61%)	e-136		

In a BLAST search of public sequence databases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14E.

Table 14E. Public BLASTP Results for NOV14a					
Protein Accession Number	Protein/Organism/Length	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O57661	INTESTINAL SODIUM/LITHIUM-DEPENDENT DICARBOXYLATE TRANSPORTER (NA(+)/DICARBOXYLATE COTRANSPORTER) - Xenopus laevis (African clawed frog), 622 aa.	1564 1619	336/619 (54%) 444/619 (71" ₀)	0.0	
Q9ES88	NA/DICARBOXYLATE COTRANSPORTER (SOLUTE CARRIER FAMILY 13 (SODIUM- DEPENDENT DICARBOXYLATE TRANSPORTER) MEMBER 2) Mus	1561 1567	311/572 (54%) 421/572 (73%)	e-179	

	COTRANSPORTER 1 (NA(+)/DICARBOXYLATE COTRANSPORTER 1) (KIDNEY DICARBOXYLATE TRANSPORTER) (SDCT1) (ORGANIC ANION TRANSPORTER 1) (OAT1) - Rattus norvegicus (Rat), 587 aa.	1568	419/572 (72° 5)	
Q13183	Renal sodium/dicarboxylate cotransporter (Na(+)/dicarboxylate cotransporter) - Homo sapiens (Human), 592 aa.	1561 1572	318/581 (54%) 428/581 (72%)	e-179
Q28615	Renal sodium/dicarboxylate cotransporter (Na(+)/dicarboxylate cotransporter) - Oryctolagus cuniculus (Rabbit), 593 aa.	1562 1576	300/586 (51%) 418/586 (71%)	e-172

PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14F.

Table 14F. Domain Analysis of NOV14a			
Pfam Domain	NOV14a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Na_sulph_symp: domain 1 of 1	6554	163/604 (27%) 424/604 (70%)	8.3e-140

Example 15.

The NOV15 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 15A.

Table 15A. NOV15 Sequence Analysis			
	SEQ ID NO: 53	1547 bp	
NOV15a, CG57732-01 DNA Sequence	GCAGAGCTGGTAGAACGGGT3GC GTGGCCCAGAGCCTACTAGAAAC TGTGATCCCTGCAGTACTTCAA AAGCTTTCCCTACAGGAGCGGCCA ATGCCACGGGGCCTGCCAGCCAC GTCCCACCACGTGCCATCCAGGGGCGTCCAGCCAC CTGCAGAGTAGAGACACTATGCAATC TGGCTTTCCAGGCCCTCCCCCAAGCAGCCTGCCCTGC	SAGGGGGTCCAGCTGTCTGCTGCCAGGATCCTCGG CAGCCATCGATGTGACTCACTTGGAGGAGGCAGATG CGGTGTGGACCCCCACCACGGGCCAGAGCTGCCTC AGACTGCTCCCAGCCCACCAGGGCCAGAGCTGCCTC AGACTGCTCCCAGCCCGGGCCTAGCCTTCAGCCAGG CAGCAGGAAGCTATCTGGAGGCGGAGCCCACCATCGA SATGCCAGAGGACTGCGTGCAGCTGACCAGTACAAG CAGAGAGCTCCTCCAAAAAGAAGTTACTGAAGCAGTA CAGAGAGGGTCCAAGAGAAGTTACTGAAGAAGAAGTTACCTGAAGAGATCAGAGAAA CAGAGAGGGTCCCAGGGTGCCCAGGGAGGACCAGCC CGGTGTACCAGCTGAACAAGAAGTTACTGAAGAAACTTG CACAGAGGAGTACTGAACCAGCTGAGAAACCTG CATAGCCCGTCATGAAAGAGTGCCCTGTGACAAGCCC	

	AAGATCAAGAATGAGCCCGTGGTGTTTCCTGAGGAGCCAGAAATCAGCGAGGAGCTCAAGACCAGAATCAGCCAGAGATCTCAAGACCTGATCATGAGATGTTAGACAAGAATCCCGAGACGAGAATTGGGGTGCCAGACATCAAGTTGCACCCTTGGGTGACCAAGAACGGGGAGGAGCCCCTTCCTT	
	ORF Start: ATG at 20	ORF Stop: TGA at 1529
	SEQ ID NO: 54	503 aa MW at 55606.7kD
NOV15a, CG57732-01 Protein Sequence	MEGGPAVCCQDPRAELVERVAAIDVTHLEEADGGPEPTRNGVDPPPRARAAS SRLLPARPSLSARKLSLQERPAGSYLEAQAGPYATGPASHISPRAWRRPTIE SDAEDCVQLNQYKLQSEIGKGAYGVVRLAYNESEDRHYAMKVLSKKKLLKQY PPRGSQAAQGGPAKQLLPLERVYQEIAILKKLDHVNVVKLIEVLDDPAEDNL LHRPVMEVPCDKPFSEEQARLYLRDVILGLEVVHCQKIVHRDIKPSNLLLGD ADFGVSNOFEGNDAQLSSTAGTPAFMAPEAISDSGQSFSGKLDVWATGVTLY CPFIDDFILALHRKKNEPVVFPEEPEISEELKDLILKMLDKNPETRIGVPD VTKNGEEPLPSEEEHCSVVEVTEEEVKNSVRLIPSWTTVILVKSMLRKRSFG ARREERSMSAPGNLLVKEGFGEGGKSPELPGVQEDEAAS	
	SEQ ID NO: 55	1611 bp
NOV15b, CG57732-02 DNA Sequence	GCGCCCAGGTTCCCAACAAGGCTACGCAGAAGACCCCCTTGACTGAAGCAATGGAGG GGGGTCCAGCTGTTCTGCTGCCAGGATCCTGGGGCAGAGCTGGTAGAACGGTTGCTAGCACAGGATCCTGGGGCAGAGCTGGTAGAACGGT CATCGATGTGACTCACTTGGAGGAGCCAACGATGGTGCCAGAGCCTACTAGAAACGGT GTGGACCCCCCACCACGGGCCAGAGCTGCTCTGTGATCCCTGGCAGACCTACTAGAAACGGT TGCTCCCAGCCCGGCCTAGCCTTCTAGCCCAGGAAGCTTTCCCTACAGAGCGCCAGC AGGAAGCTATCTGAAGCACAGCCTTCTAGCCCACGGGGCCTGCCAGCCA	
	ORF Start: ATG at 52	ORF Stop: TGA at 1567
	SEQ ID NO: 56	505 aa MW at 55652.7kD
NOV15b, CG57732-02 Protein Sequence	SELLPARPSLSARKLSLQERPAG SDAEDCVQLNQYKLQSEIGKGAY PPRGSQAAQGGPAKQLLPLERVY LEKGPVMEVPCDKSFSEEQARLY IADFGVSNQFEGNDAQLSSTAGT GKCPFIDDFILALHRKIKNEPVV	DVTHLEEADGGPEPTRNGVDPPRARAASVIPGST SYLEAQAGPYATGPASHISPRAWRRPTIESHHVAI GVVRLAYNESEDRHYAMKVLSKKKLLKQYGFPRRP QEIAILKKLDHVNVVKLIEVLDDPAEDNLYLVFDL LRDVILGLEYLHCQKIVHRDIKPSNLLLGDDGHVK PAFMAPEAISDSGQSFSGKALDVWATGVTLYCFVY FPEGPEISEELKDLILKMLDKNPETRIGVPDIKLH TEEEVKNSVRLIPSWTTVILVKSMLRKRSFGNPFE EGGKSPELPGVQEDEAAS
A4 71 de 1	SEQ ID NO: 57	1725 bp
NOV15c, CG57732-03 DNA Sequence	GGGGTCCAGCTGTCTGCTGCCAGCATCGATGTGACTCACTTGGAGG	ACGCAGAAGAACCCCCTTGACTGAAGTAATGGAGG GATCCTCGGGCAGAGCTGGTAGAACGGGTGGCAGC AGGCAGATGGTGGCCCAGAGCCTACTAGAAACGGT AGCCTGCCTCTGTGATCCCTGGCAGTACTTCAAGAC

NOV15c, CG57732-03 Protein Sequence	SRLLPARPSLSARKLSLQEPPAC SDAEDCVQLNQYKLQSEIGKGAY PPRGSQAAQGGPAKQLLPLERVY QAQNIQLDSTNIAKSHSLLFSEQ RLYLRDVILGLEYLHCQKIVHRL AGTPAFMAPEAISDSGQSFSGKA PVVFPEGPEISEELKDLILKMLE	SYLEAQAGP YGVVRLAYNES YQEIAILKKLI YQUSĞSTWAAA DIKPSNLLLGI ALDVWATGVTI OKNPETRIGVI	YATGPASHISPRAWRRPTIESHHVAI SEDRHYAMKVLSKKKLLKQYGFPRRP DHVNVVKLIEVLDDPAEDNLYLALQN KSYFULLRKGPVMEVPCUKPFSEEQA DDGHVKIADFGVSNQFEGNDAQLSST LYCFVYGKCPFIDDFILALHRKTKNE PDIKLHPWVTKNGEEPLPSEEEHCSV FGNPFEPQARREERSMSAPGNLLVKE
NOV15a	SEQ ID NO: 58	543 aa	MW at 59729.0kD
	ORF Start: ATG at 52	ORF Stop	p: TGA at 1681
	GAGGGTCCCAGGCTGCCCAGGGAGTACCAGGAGAGATTGCCATCCTGAGGGTCCTGGATGACCCGGCTGAGAACAACAGCATCCATGAGCCAGCGCAACACAGCAGAGAACAACAACAGCAGAGAACAGATTCAACAGCAGCAGAGAACAGATTCAACAGCAGCAGAGAACAGATTCATCCCCAGCATTCAACAGAGAGAG	AGGACCAGCC AAGAAGCTGG AGGACAACCTC AAATATCGCC CTGACAAGCCC CTCGAGTACC CTCTGGGGG AGGGGAACGA AGGGCATTCCTC AGCCATTCCTAC AGCCATTCCTAC AGCCAGTCACGT CTCCTCGAGGC ATTCGGAGGC ATTCGGAGGC ATTCGGAGGC ATTCGGAGGC ATTCGGAGGCCTCCAGCCAGCCAGCCAGCCAGCCAGCCAG	TGGCTTTCCACGTCGCCCTCCCCGA AAGCAGCTGCTGCCCTTGGAGCGGGT ACCACGTGAATGTGGTCAAACTGATC CTATTTGGCCTGCAGAACAGGCCC AAGTCCCACTCCTGCTTCCCTCTGA GCTCAGTGTTTGACCTCCTGAGAAAG CTTCTCGGAGGAGCAAGATCGCCCTC TTGCACTGCCAGAAGATCGCCGAC AGGATGCCAGAGATCACCCGAC CGCTCAGCTGTCCAGAGATCCCGAC CGCTCAGCTGTCCAGAGATCCCCGAC CAGCACGAGAGATCCTCAGTGGAA GATTCCGGCCAGAGCTTCAGTGGAA TGTACTGCTTTGTCTATGGGAAGTGC CAGGAAGACCAAGAATGAGCCCGTGG CTCAAGGACCTGATCCTGAAGATGT CAGACATCAAGTTGCACCCTTGGGTG CTCAAGGACCTGAGCTGGACCCTTGGGTG CTCATCACCAGCTGGACCACGTGAT TTGGGAACCCTTGAGCCCCAAGCA AAACCTACTGGTGAAAGAAGGGTTTG CTCCAGGAAGACCAGGTGATCTCGAGCAACAAAACCTACTGGTGAAAGAGGGTTCTG CTCCAGGAAGACCAGGGTGATCTCGAGCAACAAAACCTACTGGTGAAAGAAGGGTTTG CTCCAGGAAGAGAGAGGCTGCATCCTG

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 15B.

Table 15B. Comparison of NOV15a against NOV15b through NOV15c.		
Protein Sequence	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV15b	1503 1505	495/505 (98%) 497/505 (98%)
NOV15c	1503 1543	492/543 (90%) 495/543 (90%)

Further analysis of the NOV15a protein yielded the following properties shown in Table 15C.

Table 15C. Protein Sequence Properties NOV15a		
PSort	0.7600 probability located in nucleus; 0.3000 probability located in	
analysis:	microbody (peroxisome); 0.1000 probability located in mitochondrial	
i	matrix space 0.1000 probability located in because (lumin)	

... 4.3818

A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15D.

	Table 15D. Geneseq Results for NOV15a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU03510	Human protein kinase #10 - Homo sapiens, 513 aa. [WO200138503-A2, 31-MAY-2001]	1503 1513	496/513 (96%) 498/513 (96%)	0.0	
AAE04361	Human kinase (PKIN)-2 - Homo sapiens, 513 aa. [WO200146397-A2, 28-JUN-2001]	1503 1513	496/513 (96%) 498/513 (96%)	0.0	
AAY44239	Human cell signalling protein-2 - Homo sapiens, 540 aa. [WO9958558-A2, 18-NOV-1999]	64500 90538	289/450 (64%) 367/450 (81%)	e-165	
AAM40450	Human polypeptide SEQ ID NO 5381 - Homo sapiens, 680 aa. [WO200153312-A1, 26-JUL-2001]	64482 128558	283/432 (65%) 356/432 (81%)	e-162	
AAM40449	Human polypeptide SEQ ID NO 5380 - Homo sapiens, 680 aa. [WO200153312-A1, 26-JUL-2001]	64482 128558	283/432 (65%) 356/432 (81%)	e-162	

In a BLAST search of public sequence databases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15E.

Table 15E. Public BLASTP Results for NOV15a					
Protein Accession Number	Protein/Organism/Length	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9BQH3	HYPOTHETICAL 55.7 KDA PROTEIN Homos cinions (Human)	1503	497/505 (98%)	0.0	

	PROTEIN KINASE IV KINASE ISOFORM - Rattus norvegicus (Rat), 505 aa.	1505	478/505 (94%)	
AAH17529	SIMILAR TO CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE KINASE 1, ALPHA - Mus musculus (Mouse), 505 aa.	1503 1505	464/505 (91%) 478/505 (93%)	0.0
Q64572	CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE KINASE (EC 2.7.1.37) - Rattus norvegicus (Rat), 505 aa.	1503 1505	463/505 (91%) 476/505 (93%)	0.0
Q9R054	CALCIUM/CALMODULIN DEPENDENT PROTEIN KINASE KINASE ALPHA - Mus musculus (Mouse), 505 aa.	1503 1505	454/505 (89%) 471/505 (92%)	0.0

PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15F.

Table 15F. Domain Analysis of NOV15a					
Pfam Domain NOV15a Match Region Similarities Expe					
Pkinase: domain 1 of 2	128228	28/101 (28%) 81/101 (80%)	8.4e-16		
Pkinase: domain 2 of 2	245407	70/201 (35%) 129/201 (64%)	1.7e-52		

Example 16.

The NOV16 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 16A.

Table 16A. NOV16 Sequence Analysis					
	SEQ ID NO: 59	688 bp			
NOV16a, CG57709-01 DNA Sequence	CCGCCGCGTGCGCGCCCTG GCGGTGGACTACGAGACCT CCTGGGCCGACGTGCGCCG CTTCGGCCTGGGCCGCCTGC TGCTACTGGCGCCTCACGCC GGAAGGCCTGGGGCATCCTC	GCGGAAGAAGTGCGTCCGCGGCTGATCGCGAGCTGGC CGGGAGCAACTGAACAGGCCGCGCGACTCCCAGCTCTAC TGACGCGGCCGTTCTCTGGACGCCGGCTGCCGGTCCGGG CGAGAGCCGCCTCTTGCAGCTGCTCGGCCGCCTCCCGCT GTCACGCGCAAGTCCTGGCTGTGGCAGCACGACGAGCACGACCACG GACCTTCAAAGGTAACACGCGCGAGAACTTGGACCACG GACCTTCAAAGGTAAGGCTCGGGAGAGCGCGCGGGAGAT			

WO 02/072757 PCT/L 802/06908

ORF Start: ATG at 15	ORF Stop: TAG at 669	
SEQ ID NO: 60	218 aa	MW at 25647.2kD
RRESRIJOLIGRIPI.EGLGPI.VT	RKSWLWQHD RLVPKHEEE	LYAVDYETLTRPFSGRRLPVRAWADV EPCYWRLTRVRPDYTAQNLDHGKAWG AFTAFTPAPEDSLASVPYPPLLRAMI QEDKGRAKGTPV

Further analysis of the NOV16a protein yielded the following properties shown in Table 16B.

	Table 16B. Protein Sequence Properties NOV16a				
	0.9081 probability located in mitochondrial matrix space; 0.6000 probability located in mitochondrial inner membrane; 0.6000 probability located in mitochondrial intermembrane space; 0.6000 probability located in mitochondrial outer membrane				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16C.

	Table 16C. Geneseq Results for NOV16a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV16a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAG81356	Human AFP protein sequence SEQ ID NO:230 - Homo sapiens, 218 aa. [WO200129221-A2, 26-APR-2001]	1218 1218	212/218 (97%) 212/218 (97%)	e-125		
AAU30525	Novel human secreted protein #1016 - Homo sapiens, 85 aa. [WO200179449-A2, 25-OCT-2001]	135218 184	84/84 (100%) 84/84 (100%)	3e-45		
AAU30526	Novel human secreted protein #1017 - Homo sapiens, 62 aa. [WO200179449-A2, 25-OCT-2001]	187217 1242	31/31 (100%) 31/31 (100%)	4e-12		

In a BLAST search of public sequence databases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16D.

attice of all the bearing the winner of the con-

Protein Accession Number	Protein/Organism/Length	NOV16a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BVI7	HYPOTHETICAL 25.7 KDA PROTEIN - Homo sapiens (Human), 218 aa.	1218 1218	214/218 (98%) 214/218 (98%)	e-125
P82930	MITOCHONDRIAL 28S RIBOSOMAL PROTEIN S34 (MRP-S34) – Homo sapiens (Human), 218 aa.	1218 1218	213/218 (97%) 213/218 (97%)	e-124
CAC38606	SEQUENCE 229 FROM PATENT WO0129221 - Homo sapiens (Human), 218 aa.	1218 1218	212/218 (97%) 212/218 (97%)	e-124
Q9ЛК9	TCE2 (0610007F04RIK PROTEIN) - Mus musculus (Mouse), 218 aa.	1218 1218	194/218 (88%) 205/218 (93%)	e-114
Q9D957	0610007F04RIK PROTEIN - Mus musculus (Mouse), 218 aa.	1218 1218	193/218 (88%) 205/218 (93%)	e-114

PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16E.

	Table 16E. Domain	Analysis of NOV16a	
Pfam Domain	NOV16a Match Region	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	

Example 17.

The NOV17 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 17A.

Table 17A. NOV17 Sequence Analysis					
	SEQ ID NO: 61	894 bp			
NOV17a, CG57700-01 DNA Sequence	GTCATCGAGGAGCTCACGCC TGCTGGAGATCGTGGGCCGG TCACTGGGACCACGCGGGGGTGCTGGGCGGGGGACGACGACGACGCCATCCCACATGAGCTACCTTCCTG	AAGGTCATCCCCGTGCTCGAGGACAACTACATGTACCTG GCGAGGCGGTGGCCGTGGACGGCTGTGCCCAAGAGGC GGAGGGGGTGTCTCTGACCGCTGTGCTGACCACCACCA GGAAACCCGGAGCTGGCGGGCTTCGTCCCGGGCTGGCG GCATCTTCTCGCTGACGCCGCGGCTGACGCCGGCGGGCGG			

TALL PROTESTANCE A SECRETARIO DE LE SERVICIO DE LA CONTRACTORIO DE LA

	TGCAAGGAGCGGGCGCCTTCGAACAGGCGGGGAGCCGCGGCAGCCACAGGCGCGGG CCCTCCTTGCGCTGCAGTGGGGGCTCCTGAGTGCAGCCCCACACGACTGAGCCACCC GACCCTCACAGGGCTGGGGCCTGC		
	ORF Start: ATG at 11	ORF Sto	p: TGA at 860
	SEQ ID NO: 62	283 aa	MW at 31262.3kD
NOV17a, CG57700-01 Protein Sequence	MKVKVIPVLEDNYMYLVIEELTREAVAVDVAVPKRLLEIVGREGVSLTAVL HARGNPELARLRPGLAVLGADERIFSLTRRLAHGEELQFGAIHVRCLLTPG YFLWEDDCPDPPALFSGGDALSVAGCGSCLEGSAQQMYQSLAELGTLPPET HTLSNLEFAQKVEPCNDHYRAKLSWAQKRDEDDVPTVPSTLGEERLYNPFL RKFTGKAVPADVLEALCKERARFEQAGEPRQPQARALLALQWGLLSAAPHD		
	SEQ ID NO: 63	888 bp	
NOV17b, CG57700-02 DNA Sequence	CTCCGTGACCATGAAGGTCAAGGTCATCCCCGTGCTCGAGGACAACTACATGTACCT GTCATCGAGGAGCTCACGCGCGAGGCGGTGGCCGTGGACGACGACGAGGG TGCTGGAGATCGTGGCCGGGGGGGGGG		
	ORF Start: ATG at 11	ORF Stop	p: TGA at 857
	SEQ ID NO: 64	282 aa	MW at 31205.3kD
NOV17b, CG57700-02 Protein Sequence	MKVKVIPVLEDNYMYLVIEELTREAVAVDVAVPKRLLEIVGREGVSLTAVLTTHHHW HARGNPELARLRPGLAVLGADERIFSLTRRLAHGEELQFGAIHVRCLLTPGHTAGHM YFLWEDDCPDPPALFSGDALSVAGCGSCLEGSAQQMYQSLAELGTLPPETKVFCGHE TLSNLEFAQKVEPCNDHVRAKLSWAKKRDEDDVPTVPSTLGEERLYNPFLRVAEEPV KFTGKAVPADVLEALCKERARFEQAGEPRQPQARALLALQWGLLSAAPHD		
	SEQ ID NO: 65	882 bp	
NOV17c, CG57700-03 DNA Sequence	ACCATGAAGGTCAAGGTCATCCCCGTGCTCGAGGACAACTACATGTACCTGGTCATCG AGGAGCTCACGCGCGAGGCGGTGGCCGTGGACGTGGCTGACCCAAGAGGCTGCTGGA GATCGTGGGCCGGAGGCGGTGCCTCTGACCGCTTGACCACCACCACCATCACTGG GACCACGCGCGGGGAAACCCGGAGCTGGCGGCGCTCGCGCGCG		
	ORF Start: ATG at 4	ORF Stop	o: TGA at 850
	SEQ ID NO: 66	282 aa	MW at 31173.2kD
NOV17c, CG57700-03 Protein Sequence	MKVKVIPVLEDNYMYLVIEELTREAVAVDVAVPKRLLEIVGREGVSLTAVLTTHHHWD HARGNPELARLRPGLAVLGADERIFSLTRRLAHGEELRFGAIHVRCLLTPGHTAGHMS 2 YFLWEDDCPDPPALFSGDALSVAGCGSCLEGSAQQMYQSLAELGTLPPETKVFCGHEH TLSNLEFAQKVEPCNDHVRAKLSWAKKRDEDDVPTVPSTLGEERLYNPFLRVAEEPVR KFTGKAVPADVLEALCKERARSEQAGEPRQPQARALLALQWGLLSAAPHD		
	SEQ ID NO: 67	855 bp	
X:U7:12:1	ACCATGAAGGTCAAGGTCATCCC	CCTGCTCGAG	GACAACTACATGTACCTGGTCATCG

	CGCTGTCGGTGGCCGGCTGCGGCGAGCCTGGCCGAGCTGGGTACCCCACACGCTTAGCAACCTGGAGTGGGATGAGGATGACGTGCCACCCCCTTCCTGCGGGTGGCAGAGGCCCACCGACGACGCCGACGCGAGGCGCTATCC	TTCGTGCTGCTGCTGCTGCCCCGAAAAAAAAAAAAAAAA	CCCACCGCCCTGTTCTCGGGCGACG BAGGGCAGCGCCCCAGCAGATGTACCA AGACGAAGGTGTTCTGCGGCCACGAG AGTGGAGCCCTGCAACGACCACAAGA ACTCTGGGCGAGGAGGACGCCACAAGA BCAAGTTCACGGGCAAGGAGCGCTCCACA BCCACGCTTCGAACAGGCGGCGAGC CTGCAGTGGGGGCTCCTGAACAGGCGGCGACC CTGCAGTGGGGGCCT
	ORF Start: ATG at 4	ORF Stop	o: TGA at 823
	SEQ ID NO: 68	273 aa	MW at 30219.1kD
NOV17d, CG57700-04 Protein Sequence	MKVKVIPVLEDNYMYLVIEELTREAVAVDVAVPKRLLEIVGREGVSLTAVLTTHY HARONPELARLRPGLAVLGADERIFSLTRRLAHGEELRFGAIHVRCLLTPGHTAG C YFLWEDDCPDPPALFSGDALSVAGCGSCLEGSAQQMYQSLAELGTLPPETKVFCG TLSNLEFAQKVEPCNDHKRDEDDVPTVPSTLGEERLYNPFLRVAEEPVRKFTGKA DVLEALCKERARFEQAGEPRQPQARALLALQWGLLSAAPHD		IGEELRFGAIHVRCLLTPGHTAGHMS LQQMYQSLAELGTLPPETKVFCGHEH DERLYNPFLRVAEEPVRKFTGKAVPA

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 17B.

Table 17B. Comparison of NOV17a against NOV17b through NOV17d.			
Protein Sequence	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV17b	1283 1282	281/283 (99%) 282/283 (99%)	
NOV17c	1283 1282	279/283 (98%) 281/283 (98%)	
NOV17d	1283 1273	271/283 (95%) 273/283 (95%)	

Further analysis of the NOV17a protein yielded the following properties shown in Table 17C.

	Table 17C. Protein Sequence Properties NOV17a			
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1682 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17D.

	Table 17D. Geneseq Resul	ts for NOV1	7a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAW80783	Human bisphosphonate binding protein, DP1 (hDP1) - Homo sapiens, 260 aa. [WO9836064-A1, 20-AUG-1998]	1256 1256	128/257 (49%) 184/257 (70%)	6e-72
AAG10987	Arabidopsis thaliana protein fragment SEQ ID NO: 9531 - Arabidopsis thaliana, 258 aa. [EP1033405-A2, 06- SEP-2000]	1245 1246	107/248 (43%) 160/248 (64%)	5e-53
AAG10986	Arabidopsis thaliana protein fragment SEQ ID NO: 9530 - Arabidopsis thaliana, 268 aa. [EP1033405-A2, 06-SEP-2000]	1245 11256	107/248 (43%) 160/248 (64%)	5e-53
AAM78721	Human protein SEQ ID NO 1383 - Homo sapiens, 385 aa. [WO200157190-A2, 09-AUG-2001]	1226 119344	100/227 (44%) 135/227 (59%)	6e-45
AAY71110	Human Hydrolase protein-8 (HYDRL-8) - Homo sapiens, 361 aa. [WO200028045-A2, 18-MAY-2000]	1226 95320	100/227 (44%) 135/227 (59%)	6e-45

In a BLAST search of public sequence databases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17E.

	Table 17E. Public BLASTP Results for NOV17a			
Protein Accession Number	Protein/Organism/Length	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BT45	SIMILAR TO RIKEN CDNA 1500017E18 GENE - Homo sapiens (Human), 282 aa.	1283 1282	280/283 (98%) 282/283 (98%)	e-163
Q9DB32	1500017E18RIK PROTEIN - Mus musculus (Mouse), 283 aa.	1278 1278	231/279 (82° o) 251/279 (89%)	e-133
Q96S11	SIMILAR TO HAGH - Homo sapiens (Human), 218 aa.	1228 1218	217/228 (95%) 218/228 (95%)	e-123
Q96NR5	CDNA FLJ30279 FIS, CLONE BRACE2002772, MODERATELY SIMILAR TO HYDROXYACYLGLUTATHIONE HYDROLASE (EC 3.1.2.6) - Homo sapiens (Human), 202 aa.	1133 1133	132/133 (99%) 133/133 (99%)	3e-73
O35952	Hydroxyacylglutathione hydrolase (EC 3.1.2.6) (Glyoxalase II) (Glx II) (Round spermatid protein RSP29) - Rattus norvegicus (Rat), 260 aa.	1256 1256	128/257 (49%) 184/257 (70%)	le-71

PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17F.

Ta	ble 17F. Domain Analy	sis of NOV17a	
Pfam Domain	NOV17a Match Region	Identities/ Similarities for the Matched Region	Expect Value
lactamase_B: domain 1 of 1	7173	55/221 (25%) 129/221 (58%)	5.8e-32

Example 18.

The NOV18 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 18A.

	SEQ ID NO: 69	2109 bp
NOV18a, CG58553-01 DNA Sequence	GGGCGGGGGCATCGGCAAGACCATGGCGGCCAAAAATTCCTGTACGACTGG GCGGGCAAGCTGTACCAGGGCCAGGTGGACTTCCCCTTCTTCATGCCCTTGCGGCGC TGCTGGAGAGGCCGGGCACGCGCAGCCTGGCTGACCTGATCCTGGACCAGTGCCC CCGCGGCGCGCCCGGTGCCGCAGATTCTTGGCCCTGGCCGC GCGCGGCGCCCCGGTGCCGCAGATTCTTGGCCCAGCGCAGCGCGCCCTGCACAG CCTTCGAGGCGCAGAGTTGCCGGCGCGCGCCCCGGGAGGCCCCTGCACAG CCTTCGAGGCGCGCAGAGTGCCGCCCCGGGAGGCCCCTGCACAG CCTTCGAGGCCCTCTGTGTGTACCACGCGCGCCCCCGGGAGGCTGCACAG CCCCACGGCCCTCCTGCTGGTGACCACGCGCGCCCCCGGGAGGCTGCACAG CCCCACGGCCCTCCTGCTGGTGACCACGCGCGCCCCCCGGGAGGCTGCACAG CCCCACGGCCCTCCTGCTGGTGACCACGCGCGCCCCCCGGGAGGCTGCACAG CCCCTGCTTCCCCGCAGTGCCCCAGGGTGCGCCCCCCGGGAGGCTGCACA AGTATTTCTACAAGTTCTTCCGGGATGAGAGGACGAGCCCCCCCGGAGGCCCCCCCGGAGGCCCCCC	
	ORF Start: ATG at 26	ORF Stop: TGA at 2054
	SEQ ID NO: 70	676 aa MW at 74650.3kD
NOV18a, CG58553-01 Protein Sequence	LAQPQRLLFILDGADELPALGGF TRAAAPGRLQGRLCSPQCAEVRG LCFVPFVCWIVCTVLRQQLELGR LRNLCRLAREGVLGRRAQFAEKE QSFQESFAALSYLLEDGGVPRTA DIERHFGCMVSERVKQEALRWVQ NYPLELLYCLYETQEDAFVRQAL LISCRLVAAQEKKKKSLGKRLQA KLPDAVCRDLSEALRAAPALTEL	FFMPCGELLERPGTRSLADLILDQCPDRGAPVPQM EAAPCTDPFEAASGARVLGGLLSKALLPTALLLVT FSDKDKKKYFYKFFRDERRAERAYRFVKENETLFA DLSRTSKTTTSVYLLFITSVLSSAPVADGPRLQGD LEQLELRGSKVQTLFLSKKELPGVLETEVTYQFID AGGVGTLLRGDAQPHSHLVLTTRFLFGLLSAERMR GQGQGCPGVAPEVTEGAKGLEDTEEPEEEEEGEEP GRFPELALQRVRFCRMDVAVLSYCVRCCPAAQALR SLGTTKQLPASLLHPLFQAMTDPLCHLSSLTLSHC GLLHNRLSEAGLRMLSEGLAWPQCRVQTVRVQLPD SGCQLPAPMVTYLCAVLQHQGCGLQTLSLASVELS LDGHPQPPKELISTF

Further analysis of the NOV18a protein yielded the following properties shown in Table 18B.

	Table 18B. Protein Sequence Properties NOV18a		
Psort analysis:	0.7400 probability located in nucleus; 0.6000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial inner membrane		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18C.

	Table 18C. Geneseq Results for NOV18a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE04546	Human G-protein coupled receptor-2 (GCREC-2) protein - Homo sapiens, 891 aa. [WO200142288-A2, 14-JUN-2001]	1676 210891	671/682 (98%) 671/682 (98%)	0.0
AAU00023	Human activated T-lymphocyte associated sequence 2, ATLAS-2 - Homo sapiens, 1851 aa. [WO200114564-A2, 01-MAR-2001]	1633 210904	605/695 (87%) 610/695 (87%)	0.0
ABB11735	Human vasopressin receptor homologue, SEQ ID NO:2105 - Homo sapiens, 597 aa. [WO200157188-A2, 09-AUG-2001]	1490 106595	485/490 (98%) 485/490 (98%)	0.0
AAR33389	AII/AVPv2 receptor - Synthetic, 481 aa. [WO9305073-A, 18-MAR-1993]	193670 1480	322/481 (66%) 371/481 (76%)	e-174
AAM89960	Human immune/haematopoietic antigen SEQ ID NO:17553 - Homo sapiens, 329 aa. [WO200157182-A2, 09-AUG-2001]	1274 9282	265/274 (96%) 266/274 (96%)	e-151

In a BLAST search of public sequence databases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18D.

	Table 18D. Public BLASTP Results for NOV18a			
Protein Accession Number	Protein/Organism/Length	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
CAC34689	SEQUENCE 3 FROM PATENT WO0114564 - Homo sapiens (Human), 1851 aa.	1633 210904	605/695 (87%) 610/695 (87%)	0.0
Q91WS2	HYPOTHETICAL 62.5 KDA PROTEIN - Mus musculus (Mouse), 556 aa (fragment).	107659 1554	390/557 (70° o) 450/557 (80° o)	0.0
Q63035	VASOPRESSIN RECEPTOR - Rattus norvegicus (Rat), 483 aa.	193670 1482	324/483 (67%) 372/483 (76%)	e-173
AAL12498	CRYOPYRIN - Homo sapiens (Human), 920 aa.	3657 234914	232/709 (32%) 355/709 (49%)	5e-94
AAL12497	CRYOPYRIN - Homo sapiens (Human), 1034 aa.	3648 234848	223/658 (33%) 344/658 (51%)	6e-93

PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18E.

	Table 18E. Domain	Analysis of NOV18a		
Pfam Domain NOV18a Match Region Similarities for the Matched Region Expect Value				
No Significant Matches Found				

Example 19.

The NOV19 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 19A.

Table 19A. NOV19 Sequence Analysis			
	SEQ ID NO: 71	2686 bp	
NOV19a, CG58626-01 DNA Sequence	CATAACGGCCGAGGCGGCGCGCGTTCGGCGGCGCGCGAGTCCCCTGGCCCTGGCCTTCAGCCCTGGCCCTGGCCCTCAGCCCCCCTCAGCCCCCCCC	ATGAATTACCCGGGCCGCGGGTCCCCACGGAGCCCCGAGGCGCGAGGCGCGGGGCCCGAGGGGCCCGAGGGGGG	

			···
	ACCAGTAATGCGTGGACAGTGGT GAAAGTTATTTAATTGAGCAAGA AAAATTTCGATATTGAAGTGTCG GATGCAACAACATCTAAAATTGC CATCAACTAGTGGTACCAGACTT CAAGCCATCACAGACTACCCATA GACCAAGGAGAAGAATTTCCAACCATA GACCAAGGAAGAATTTCCAACCATA GTCAAAACTACTCTTGATGAG GTTTAATAGGATATGCTGAACAC TTTATAGAGATGAACACAC TTTATAGAGATGATCAGACT CATTCCTTGGGATTGCTAAAATTTC TGATGAACACTTCTTTGATGAT TGAAGAACGCTTCTCTGATGAAC GAAGAACGCTTCACAGACT TAAGGATGATCTTCTTGATGAAC TAAGAACAGTTCTTCTGATGAAC GAAGAACGGCTTCACAGGAATACTC AACCCGTTACTAAAATATTTTTCA TAATACTGAAACACTACAACAAC AAATCCTTTACCTTATGAACATA ACCTCAGTTCCAGGAAATGAAGG TTTTGTCCCGCCGACACTATGGA AGGTGCTCACCTTCTGCTAC CAGTTCCCAGTTCCAGAACG TCATCTACAACACTTCTGAACG GGCTTCCTCGATTCTGCTAGC GGCTTCCTCGATTCTGCAGTG GGCCTTCTTGGAAGCCCCTTTTCT CCTTGGATGTTCCAGTAGGA GGCCTTCTTGGAAGCCCCTTTTTCTT CCTTTGGATGTTCCACTGCAGGG GGCCTTCTTGGAGAGCCCCTTTTTCTT CCTTTGGATGTTCCCCCCTTTTTCTT CCTTTGGATGTTCCCCCTTTTTCTT CCTTTGGATGTTCCCCCTTTTTCTT CCTTTGGATGTTCCCCCTTTTTCTT CCTTTTTTTCTTTTTTTTT CCTTTTTT	TTTATTGACGIAACATCTCAAAAAACATCTTGAACAACATTTGAAGAAAAAATCTTAAGAGTTTGAAGAAAAATCTTATGGAATCATTCACGAAGATCAAGAGAGAG	GTGTACTGGAACCGTGCTGATAAAAT GCACTTGGCAGCCTCTAGAAGAGAGAA TTGTTTTAGGGGCCAGCAGATGCAGG GATGGAAAAAGTGCTGTTCATAGTTT GTGTGGATGAAGAGTGCAGT TACCCAAAAACTGGGATTTCCTAAAG TATGTAGAAGAAGCCACATTAGAAGA TTGTTCAGCAGAGAAAATAG GATGAGAGAAGCCACATTAGAAGA TTGTCCATGGCATGCAGAAAAATAG GATGAGAGAAGCCTGCAAAAGTACGA GATCCATTACTCCTGACAAAGTACGA CAAGAGCTGAATCGATTGTCCCT AAGGGGTAAAGTATTATAACTAGTCCCC CAAGAGCTGAATCGATTGTATTCCCT AAGGGGTAAAGTACCAC TAGCCTGATGAACGATGGCTA AATGACTGAACGACGATTGGCTAAAAT CCATTAGCAGTTTTTTTTTGCCTAGAGGAGAATTTTT TCCAGTGGCTTAAAAT CCATTAGCAGTTTTTTTTTT
	ORF Start: ATG at 20	ORF Stop	p: TGA at 2636
	SEQ ID NO: 72	872 aa	MW at 97063.4kD
NOV19a, CG58626-01 Protein Sequence	LRGEPGLHLAPGTDDHNHHLALD LHPPQQPPLVPTNSGGGGATGGS DKKTWKPFIGYDSLRIELAFRTL RACGFCQSTTGHEPEMVELVNIE WFIDGTWQPLEEEESNLIEQEHL VDWHSVDEVYLYSDATTSKIART HIVFVVHGIGQKMDQGRIIKNTA GDTVDSITPDKVRGLRDMLNSSA DFEEKGGKVSIVSHSLGCVITYD DELYITKRRLKEIEERLHGLKAS TGSQDHILPREICNRLLNIFHPT HMKPSFLNPAKEPTSVSENEGIS KGLGGMLFSRFGRSSTTQSSETS	PCLSDENYDI PGERKRTRLK LQTTGARPQ PVCVRGGLYI NCFRGQMQI VTQKLGFSKI MMREAARKIE MDIMYYTSPI IMTGWNPVRI SMTQTPALKE DPVAYRLEPI TIPSPVTSPV KDSMEDEKKI	AFGGGVCCFEHLPGGDPDDGDVPLAL FSSAESGSSLRYYSEGESGGGSSLS GGPAARHRYEVVTELGPEEVRWFYKE GGDRDGDHVCSFTGPASSSGEDDDED EVDVTQGECYPVYWNRADKIPVMRQ ENFDIEVSKSIDGKDAVHSFKLSRNH ASSSGTRLHRGYVEEATLEDKPSQTT EERHFSNHATHVEFLPVEWRSKLTLD LYRDELVKGLQQELNRLYSLFCSRNP LYEQLLQKEEELPDERWMSYEERHLL FKVENFFCMGSPLAVFLALRGIRPGN LILKHYSNISPVQIHWYNTSNPLPYE JUSRRHYGESITNIGKASILGAASIG EVASPSATTVGTQTLPHSSSGFLDSA SLDVALFLLTFMYKHEHDDDAKPNLD

Further analysis of the NOV19a protein yielded the following properties shown in Table 19B.

	Table 19B. Protein Sequence Properties NOV19a		
PSort analysis:	0.4555 probability located in microbody (peroxisome); 0.4500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.

Table 19C. Geneseq Results for NOV19a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV19a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG64151	Arabidopsis thaliana gravitropism protein - Arabidopsis thaliana, 933 aa. [JP2001120279-A, 08-MAY- 2001]	257547 156454	104/316 (32%) 156/316 (48%)	1e-38
AAM41595	Human polypeptide SEQ ID NO 6526 - Homo sapiens, 677 aa. [WO200153312-A1, 26-JUL-2001]	261548 52328	94/301 (31%) 138/301 (45%)	6e-25
AAB92643	Human protein sequence SEQ ID NO:10972 - Homo sapiens, 1000 aa. [EP1074617-A2, 07-FEB-2001]	119608 226664	132/524 (25%) 204/524 (38%)	2e-24
AAM39809	Human polypeptide SEQ ID NO 2954 - Homo sapiens, 615 aa. [WO200153312-A1, 26-JUL-2001]	274548 3266	90/288 (31%) 131/288 (45%)	4e-23
AAB93825	Human protein sequence SEQ ID NO:13636 - Homo sapiens, 694 aa. [EP1074617-A2, 07-FEB-2001]	404608 227449	76/229 (33%) 113/229 (49%)	6e-23

In a BLAST search of public sequence databases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.

	Table 19D. Public BLASTP Results for NOV19a			
Protein Accession Number	Protein/Organism/Length	NOV19a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O46606	PHOSPHATIDIC ACID- PREFERRING PHOSPHOLIPASE A1 - Bos taurus (Bovine), 875 aa.	1872 1875	802/876 (91%) 829/876 (94%)	0.0
Q9C0F8	KIAA1705 PROTEIN - Homo sapiens (Human), 498 aa (fragment).	378872 4498	493/495 (99%) 494/495 (99%)	0.0
Q96LL2	CDNA FLJ25408 FIS, CLONE TST02965, HIGHLY SIMILAR TO BOS TAURUS PHOSPHATIDIC ACID-PREFERRING PHOSPHOLIPASE A1 MRNA - Homo sapiens (Human), 454 aa.	419872 1454	453/454 (99%) 454/454 (99%)	0.0
AAH18552	HYPOTHETICAL 27 3 KDA PROTEIN - Mus musculus (Mouse), 249 aa (fragment).	624869 1246	224/246 (91%) 236/246 (95%)	e-130
AAL32232	HYPOTHETICAL 85.1 KDA PROTEIN - Caenorhabditis elegans, 753 aa.	122867 11750	255/794 (32%) 374/794 (46%)	6e-91

PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.

Table 19E. Domain Analysis of NOV19a				
Pfam Domain	NOV19a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
DUF203: domain 1 of 1	252458	42/219 (19%) 105/219 (48%)	7.5	
DDHD: domain 1 of 1	611858	96/266 (36%) 236/266 (89%)	3.3e-116	

Example 20.

The NOV20 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 20A.

	SEQ ID NO: 73	773 bp	
NOV20a, CG57597-01 DNA Sequence	CATTGCAGGCATGCACCACCACT TCCGGCTCAAACCTTTTATTTCT ACAGTTATCCCTGGCAGTGCCGC CTTGCAGATCGCTGTGGAGAATC TCGCTGGGGGGTGCAGTGCA	CCTGGCTAA CCTTATGTAAA GGGTGGGGTCT GGCTTCGGGG ATTACTTCATC ACTGCAACTGCA CAGCAACTGCA GGTGGCCTCC GGCTAGAGAGA ACCTACGAA ACCTACGAA	AATGGTCCAGAAACCTGTGAACTCTG ITTTTTGTATTTTTAGTGCCATCGAA AAGCTGTGTACTTCAGAAAAACATGT IGGGGGCCCTGGAGGCCTGGCCGGC GCGCAATGCTGACATGAAGCAAGC AACGAGTTTGATACAGTTGTGGAAGA AGACCATGTTCCACAGTTCCAGAGG CTGCATCACTCCAGAGAAATGCAAGG ACTGATGAGATGA
	ORF Start: ATG at 15	ORF Stop	o: TGA at 732
	SEQ ID NO: 74	239 aa	MW at 26579.5kD
NOV20a, CG57597-01 Protein Sequence	MPNRVRNGPETCELCIAGMHHHSWLIFCIFSAIESGSNLLFLLCKSCVLQKNMYSYPW QCRGGVCAALEAWPALQIAVENGFGGVHSQEKAKWLGGAVEDYFMRNADLELDEVEDF C LGELLTNEFDTVVEDGSLPQVSQQLQTMFHHFQRGDGAALREMASCITQRKCKVTATA LKTARETDEDEDDVDSVEEMEVTATNDGAATDGVCPQPEPSDPDAQTIKEEDIVEDGW TIVRRKK		

Further analysis of the NOV20a protein yielded the following properties shown in Table 20B.

	Table 20B. Protein Sequence Properties NOV20a		
PSort analysis:	0.3000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20C.

Table 20C. Geneseq Results for NOV20a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV20a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG81374	Human AFP protein sequence SEQ ID NO:266 - Homo sapiens, 191 aa. [WO200129221-A2, 26-APR-2001]	61239 13191	178/179 (99%) 178/179 (99%)	e-101

WO 02/072757 PCT/I 802/06908

	SEP-2000]			
AAG57771	Arabidopsis thaliana protein fragment SEQ ID NO: 74487 - Arabidopsis thaliana, 156 aa. [EP1033405-A2, 06-SEP-2000]	74239 1150	52/171 (30%) 89/171 (51%)	2e-11

In a BLAST search of public sequence databases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.

	Table 20D. Public BLASTP Results for NOV20a			
Protein Accession Number	Protein/Organism/Length	NOV20a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q969E8	UNKNOWN (PROTEIN FOR MGC:20451) (PROTEIN FOR IMAGE:3953868) - Homo sapiens (Human), 191 aa.	61239 13191	178/179 (99%) 178/179 (99%)	e-101
Q9NAD8	Y51H4A.15 PROTEIN - Caenorhabditis elegans, 225 aa.	1239 1225	66/239 (27%) 122/239 (50%)	5e-23
Q06672	HIGHLY ACIDIC C-TERMINUS - Saccharomyces cerevisiae (Baker's yeast), 249 aa.	63238 79244	46/177 (25%) 82/177 (45%)	5e-11
Q9VBI0	CG14543 PROTEIN - Drosophila melanogaster (Fruit fly), 195 aa.	71238 24195	49/174 (28%) 81/174 (46%)	2e-10
Q9UUA9	HYPOTHETICAL HIGHLY ACIDIC C-TERMINUS PROTEIN - Schizosaccharomyces pombe (Fission yeast), 179 aa.	70239 22178	42/172 (24%) 83/172 (47%)	2e-06

PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20E.

	Table 20E. Domain Analysis of NOV20a		
Pfam Domain	NOV20a Match Region	Identities/ Similarities for the Matched Region	Expect Value
No Significant Matches Found			

Example 21.

The NOV21 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 21A.

Table 21A. NOV21 Sequence Analysis			
	SEQ ID NO: 75 7741 bp		
NOV21a, CG57804-01 DNA Sequence	TTGTCTCTTTGIGTTTTCCAGACATTCTAAGTGAGACTGTCCACATCATCTAGGAAAA TGGTGGCCCTGTCCTTAAAGATTTGTGTGCGCCACTGCAACGTGGTGAAGACCATGCA GTTTGAACCATCTACAGCTGTGTACGATGCGTGCGAGTCATTCGGGAACGGGTGCCT GAGGCACAAACTGGCCAAGCTTCTGACTATGGACTCTTTCTT		
	GGAAAGGGATTTGGCTGGAAGCGGGCAGAACACTGGATTACTACATGTTGCGGAATGG GGATATTTTGGAATATAAAAAGAAACAGAGACCTCAGAAAATCCGGATGCTGGATGGA		
	TGAAGAAAAGAAGGAAGGAACGGGCACACTCAAAAAAGACAGGACACTGTTACGA GATGACAGGAAAATGGAGAAGTTGAAGGCCAAGCTGCACACAGATGATGACCTAAATT GGCTGGATCACACGCCGAACATTCAGAGAACAAGGAGTAGATGAAAACGAAACGTTGCT GCTTAGACGGAAGTTCTTTTACTCTGATCAGAATGTAGATTCGAGAGACCCCGTGCAG		
	CTGAACTTGCTTTATGTTCAGGCACGGGATGACATCCTGAATGGCTCTCACCCTGTCT CCTTCGAGAAAGCTTGTGAGTTTGGTGGATTTCAAGCCCAGATACAATTTGGACCTCA TGTGGAACATAAACACAAACCTGGATTTTTAGATCTGAAGGAATTCCTGCCCAAAGAA TATATCAAGCAGAGAGAGGAGCTGAAAAGAGGATCTTTCAGGAGCATAAGAACTGCGGAG		
	ACATGAGTGAGATAGAAGCCAAGGTCAAGTACGTCAAACTCGCACCGCACCACTATATGGCGTGACGTCCCTCCGCACCACGAGAGAAGAAGAAGAAGAAGAAGAAGAAGAA		
	CTTCACACTGGATTTTGGGGAGTATCAGGAAAGCTACTATTCAGTACAAACCACCGAG GGAGAGCAGATATCCCAGCTGATTGCAGGCTACATTGACATCATCCTGAAAAAAGGGAA CATACGTGACATCTGTGGGGTCTCCTCATTGCACTCCACATGGCTGGTGTTCTCTCAG TGACCAAACCACTTTTCCCGGCAGGTCCACCATCTTGCAGCAGCAGTTCAACCGGACC		
	GGGAAGGCAGAGCACGGCTCAGTGGCGCTGCCGGCCGTGATGCGCTCCGGGCTCCAGCG GGCCTGAGACCTTCAACGTTGGCAGCATGCCCTCGCCACAGCAGGACACGTCATGGTTGG GCAGATGCACCGAGGCCACATGCCGCCACTGACCTCAGCCCAGCAGGCCCTGATGGGG ACCATCAACACAAGCATGCACGCCGTCCAGCAGGCCCAGGATGATCTCAGTGAGCTCG		
	ACTCGCTGCCACCTCTCGGCCAGGATATGGCATCTAGGGTATGGGTTCAGAACAAAGT CGACGAATCCAAACACGAAATCCATTCTCAAGTTGATGCTATCACGGCCGGAACGGCT TCAGTTGTTAACCTCACAGCTGGTGACCCTGCAGACACTGACTACACAGCTGTGGGAT GTGCGATCACCACTATTTCTTCCAACCTGACGGAGATGTCCAAGGGTGTGAAGCTATT		
	GGCCGCCTCATGGATGATGAGGTGGGCAGCGGGGAGGACTTGCTCAGAGCTGCCAGG ACCCTCGCTGGGGCGGTGTCAGACTTGCTGAAAGCTGTGCAGCCTACTTCTGGAGAGC CTCGACAGACAGTTTTGACTGCTGCTGGCAGCATCGGACAAGCCAGTGGGGATCTTCT GAGACAGATTGGAGAGAATGAGACTGATGAGCGATTCCAGGATGTTTTAATGAGTTTG		
	GCCAAAGCTGTTGCCAATGCAGCTGCCATGTTGGTACTAAAGGCAAAGAATGTTGCCC AAGTGGCCGAAGAACACTGTCCTACAGAACAGGGTAATTGCTGCTGCCACCCAGTGTGC CCTCTCCACCTCCCAGCTTGTGGCATGTGCCAAGGTTGTGAGCCCCACTATTAGCTCC CCTGTGTGCCAGGAGCAGCTGATTGAAGCAGGGAAGCTGGTGGACCGCTCGGTGGAGA		
	ACTGTGCCGAGAGCAGCTGATTGAAGCAGGGAGCTGGTGAGCCGTCGGAGCAGGTCAG ACTGTGTCCGTGCCTGCCAGGCGCCACTACCGATAGTGAGCTCCTGAAGCAGGTCAG CGCAGCGGCCAGCGTGGTCAGCCAGGCCCTCCATGATCTCCTTGCAGCAGTGTGCGGCAG TTTGCCAGCCGAGGCGAGCCCATCGGCCGCTACGACCAGGCTACTGACACCATCATGT GTGTCACCGAGAGCATCTTCAGCTCCATGGGTGACGCTGGTGAAATGGTGCGCCAGGC		
	GCGGGTTCTGGCCCAAGCCACATCAGACCTCGTCAATGCCATGAGGTCAGATGCAGAA GCCGAAATCGACATGGAGAATTCAAAGAAGCTCCTGGCAGCAGCAAAACTCTTAGCTG ACTCCACTGCTCGCATGGTGGAAGCTGCAAAGGGGGCTGCAGCCAACCCAGAGAATGA		
	GGACCAGCAGCAAAGGCTGAGAGAAGCTGCAGAAGGCCTCCGGGTAGCAACCAAC		
	ATCCCTCAGCTGGTCCAGGGAGTGAGGGGGGAGCCAAGCTCAAGCTGAAGACCTGAGTG CCCAGCTGGCTCTCATCATCTCCAGCCAGAACTTCCTCCAGCCTGGAAGCAAGATGGT GTCCTCTGCCAAAGCCGCAGTGCCCACCGTGAGTGACCAGGCCGCAGCCATGCAGCTG		
	AGCCAGTGTGCCAAGAACCTGGCCACCAGCTTGGCGGAGCTGCGTACCGCCTCGCAGA AGGCCCATGAAGCTTGTGGTCCGATGGAAATCGATTCAGCTCTGAATACGGTGCAGAC GCTTAAGAATGAACTGCAGGATGCCAAGATGGCAGCCGTGGAGAGCCAGCTGAAGCCA CTTCCAGGGGAAACGCTGGAAAAATGTGCTCAGGACCTGGGAAGCACATCCAAGGCGG		
	TOGGOTOCTOCATGGCACAGCTGCTGACCTGTTCTGCTCAAGGCAACGAACACTACAC		

AGAGCATCGGGGAGTCCAGCAAGAAGCTGCTTGTGGATTCGCTACCTCCAAGCACGAA GCCTTTCCAGGAAGCCCAGAGTGAACTGAACCAGGCAGCAGCTGATCTGAACCAGTCT GCTGGGGAAGTGGTCCATGCCACCGGGGCCAGAGTGGAGAGTTGGCTGCAGCCTCTG AGCTCAGACAAAAGAAGACCAGATCCAAGTGATAGGGAACCTCAAGAATATCTCGATG GCATCCAGCAAGCTGCTGTTAGCTGCCAAGTCTCTCTCTGTAGATCCAGGAGCTCCCA CATCACTCTGTGTACCCAACAAGCTCCGGGCCAGAAAGAGTGCGATAATGCCCTGCGG GAGCTCGAGACTGTGAAGGGGATGTTGGACAATCCTAATGAACCTGTTAGTGACCTCT CTTACTTTGACTGCATTGAGAGTGTGATGGAAAACTCCAAGGTTCTGGGTGAATCGAT GGCAGGGATTTCACAGAATGCCAAGACCGGAGACCTCCCTGCCTTTGGGGAATGTGTG GGGATTGCATCCAAGGCTCTCTGTGGGCTGACAGAGGCTGCAGCCCAGGCTGCATACT TGGTTGGCATCTCTGATCCAAACAGCCAGGCCAGGCCCACCAGGGCCTGGTGGACCCCAT CCAGTTTGCCAGGGCTAACCAGGCCATCCAGATGGCATGCCAGAACTTGGTGGACCCT GGCAGCAGCCCATCACAGGTCCTGTCAGCCGCCACAATTGTTGCCAAGCACACGTCAG CCTTGTGCAATGCCTGCCGCATCGCCTCATCCAAGACGGCCAACCCAGTAGCCAAGAG GCACTTCGTCCAGTCAGCCAAGGAAGTCGCCAACAGCACTGCCAACCTGGTGAAGACC ATCAAGGCCCTGGATGGGGATTTCTCTGAAGACAACCGCAATAAGTGTCGCATCGCCA CCGCACCCTTGATTGAAGCTGTGGAGAACCTGACAGCGTTCGCCTCAAACCCTGAGTT TGTCAGCATTCCTGCCCAGATCAGCTCCGAGGGTTCCCAGGCACAGGAACCAATCCTG GTCTCAGCCAAGACCATGCTGGAGAGTTCATCGTACCTCATTCGCACTGCACGCTCTC AGTGTCCGACTCCATCAAGAGTCTCATCACTTCTATCAGGGACAAGGCCCCTGGACAG AGGGAGTGTGATTACTCCATCGATGGCATCAACCGGTGCATCCGGGACATCGAGCAGG CCTCGCTGGCCGCCGTCAGCCAGAGCCTGGCCACGAGGGACGACATCTCTGTGGAGGC CCTGCAGGAGCAGCTGACTTCGGTGGTCCAGGAAATCGGACACCTTATCGATCCCATC GCCACAGCGGCTCGGGGAGAAGCAGCTCAGCTGGGACATAAGGTGACACAACTGGCAA GCTATTTTGAGCCCTTGATCTTAGCCGCAGTTGGTGTGGCCTCCAAGATTCTTGATCA TCAGCAGCAGATGACGGTGCTGGACCAGACCAAGACTCTCGCAGAGTCTGCCTTGCAG ATGTTGTATGCAGCCAAAGAAGGTGGCGGAAACCCCCAAGGCACAACACCCCATGACG CCATCACAGAGGCCGCCCAGTTGATGAAGGAAGCCGTGGATGACATCATGGTGACGCT GAACGAAGCTGCCAGTGAAGTGGGGGCTGGTTGGGGGCCATGGTGGACGCCATTGCAGAA GCCATGAGCAAGCTGGATGAAGGCACTCCTCCAGAACCAAAGGGAACATTTGTCGACT ATCAGACGACTGTGGTTAAATACTCCAAAGCCATTGCGGTGACAGCTCAGGAAATGAT GACTAAGTCGGTTACTAACCCGGAGGAGTTGGGAGGACTGGCTTCACAAATGACCAGT GACTATGGGCACCTGGCTTTCCAGGGCCAGATGGCAGCCACGGCGGAACCAGAGG AGATCGGATTCCAGATTCGCACTCGTGTGCAGGACCTGGGCCACGGCTGTATCTTCCT CTGATCGAATGCGCCCGTGCCGTCACGGAAAAGGTCTCCTTGGTGCTCTCGGCTCTCC AGGCCGGGAACAAGGAACCCAGGCATGCATTACAGCCGCCACCGCTGTGTCTGGGAT CATTGCCGACCTGGACACCACCATTATGTTTGCAACAGCGGGGACGCTGAATGCAGAG AACAGTGAGACCTTCGCAGACCACAGGGGAGAACATTCTCAAGACGGCCAAGGCCTTGG TAGAAGACACGAAACTACTTGTGTCAGGAGCTGCGTCCACTCCTGACAAGCTGGCCCA GGCGGCCCAGTCCTCAGCAGCCACCATCACCCAGCTCGCAGAAGTGGTCAAGCTGGGG GCAGCCAGCCTGGGCTCCGACGACCCCGAGACCCAGGTGGATTTGATCAATGCCATCA AAGATGTGGCCAAGGCCCTTTCTGATCTCATCAGTGCTACCAAGGGAGCTGCCAGCAA GCCAGTGGACGACCCTTCCATGTACCAGCTCAAGGGGGGCTGCCAAGGTGATGGTGACC AATGTCACCTCGCTCCTCAAGACTGTAAAGGCAGTGGAGGATGAGGCCACCCGGGGCA CCAGGGCGCTTGAGGCCACAATTGAATGCATAAAGCAGGAGCTTACGGTGTTCCAGTC AAAAGACGTACCTGAAAAGACATCATCACCTGAAGAATCCATAAGGATGACGAAAGGC ATCACCATGGCAACAGCCAAAGCCGTGGCAGCTGGGAACTCATGTAGACAGGAGGACG TGATTGCTACTGCCAACCTGAGCCGGAAAGCCGTGTCAGATATGTTGACGGCTTGCAA GCAAGCATCCTTCCACCCCGATGTCAGTGACGAGGTGAGAACCAGAGCCTTGCGTTTC GGGACGGAGTGCACCCTTGGCTACTTGGACCTCCTGGAGCACGTCTTGGTGATTCTTC AGAAACCAACCCAGAATTCAAGCAGCAGCTGGCCGCTTTCTCCAAGCGAGTCGCCGG AAGCTGCTGCTAAGAAGTTAGAGCAACTGAAGCCAAGAGCAAAACCAAAACAAGCGGA TGAGACCCTGGACTTTGAGGAACAGATCTTGGAAGCTGCTAAATCCATTGCTGCTGCC ACAAGCGCCCTGGTCAAATCGGCCTCAGCAGCCCAGAGGGAGCTGGTGGCCCAAGGAA AGGTGGGCTCCATCCCTGCCAATGCTGCAGACGACGGACAGTGGTCACAGGGGCTGAT TTCTGCTGCCCGGATGGTGGCGGCTGCGACCAGCAGTCTCTGTGAGGCGGCCAATGCC TCCGTTCAGGGACACGCCAGCGAGGAGAAGCTCATCTCATCTGCCAAGCAGGTCGCCG CATGAGGCGGCTACAGGCGGCAGGAAATGCTGTGAAAAGAGCCTCAGACAATCTTGTC CGTGCAGCCCAGAAGGCAGCTTTTGGCAAAGCTGATGACGACGATGTTGTAGTGGAAA CCAAGTTTGTGGGGGGCATTGCTCAGATCATCGCCGCCCAGGAAGAAATGCTAAAGAA AGAGCGAGAACTGGAAGAAGCAAGGAAAAAACTGGCCCAAATCCGCCAGCAGCAGTAT AAGTTTTTACCCACCGAGCTGAGGGGAAGATGAGGGCTAAAGGTGCGAGCCCAGATGGC GAGCCCCAGGGGATGGCCCTGGCTGAA

ORF Start: ATG at 58 ORF Stop: TAA at 7693

IGS7804-01 Protein Sequence IGS7804-01 Protein Sequence IGS7804-01 Protein Sequence IGS7804-01 Protein Sequence IGS7804-01 Protein Sequence IGS7804-01 Protein Sequence IGS87804-01 Protein Sequence IGS87804-01 Protein Sequence EMSELEARVEYVELARSLERTYGVSYFLUKEKMIGNELVERLIGHTKDSVMRVDERTK EVLOEWELTVERMASSESSTLDRSCYBSYSYSVOTERD (19 GLAGY) TILLIKG TYVTSVGS PHCTPHORCS LSDQTTFFGRS TILLQQOFNETGKABHGSVAL PANNESGS GPETPINVSSMSPBOQUVWQQMRGHBGHBP DITSQQQALITIKSMIAVQAQDDLSEL DSLPPLQQDMASRVWVQNKVDESKHEIHSQVDAITAGTASVVNLTAGDPADTDYTAVG CAITTISSNILTERSGVKLLAALMDDEVGSGEDLLRAARTLAGASDLLKAVQFTSGE PRQTVLTAAGSTGAASGCLLRGI GENETDERFQDVLMBLAKAVANAAAMLVLKRKNVA QVAEDTVLQNRVLAAATQCALSTSQLWCAKVVSPTTSSPVCQCQL BEGKLVDRSSVE NCVRACQAAATTGSTELKGVSAAASVVSQALHDLLQHVVRGPASRGEFIGRYDQATDTIM CVTESIFSSMGDAGEMVRQARVLAQATSDLVNAMSDAEAEIDMENSKKLLAAAKLLA DSTARMVEAAKGAANPENEDQQORLREAAEGLRVATNAAQNAIKKKVIWRLEVAAK QAAAATQTTAASQRAAVSNKSPAAQQQLVQSCKAVADHIPQLVVGVRGQAQAGEDLS AQLALI ISSQNFLQGSKMVSSAKAVVFTVSDQAAAMQLSQCKAVIDATSLAELERTASQ KAHEACGMBEIDSALTVYGLKNELQDAWAAVASGLYBEGTLEKCKQDLGSTSKA VSSSMAQLLTCAAQONEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHANLDSA ROVMEGSAMLIQBAQALIAPADBERGQAGTKEDQIDARGNLAVKAVSSLULAKSLVDGAD ROVMEGSAMLIGBAQALIAPADBERGQAGTKEDQIDARGNLAVKAVSLULAKSLVDPGAP NAKULLAAAARAVTESI INQLITICTQQAPGQKECDNAIRERETVKGMLDNSNEPVSDL SYFDCI ESVMENSKVLGESNAGI SQNAKTGDLDARGECVTIAKBLCGLTEAAAQAAY LUGISDPNSQACHQALUDPT GPARANQAIQMACOLUNGAKTELETVKGMLDNSNEPVSDL SYFDCI ESVMENSKVLGESNAGI SQNAKTGDLDARGECVSIASKALLCALKSLSVDPGAP NAKULLAAAARAVTESI INQLITICTQQAPGQKECDNAIRERETVKGMLDNSNEPVSDL SYFDCI ESVMENSKVLGESNAGI SQNAKTGDLDARGECCYSIASKALCGLTEAAAQAAY LUGISDPNSQACHQALUDPT GPARANQAIGMACQNALVASKTILAAKSLSVDPGAP NAKULLAAAARAVTESI LAAAVASKILADQAAGAAGAAY LUGISDPNSQACHQALUDPT GPARANQAIGMACQNALVASKTILAALBGEGGAAGGHKVTQLA SYFBCI LAAAVASSALTARDIVAKRIFYOSAKEVANSTANLVKTIKALDGGFEDNRINCKILA TAPLIEAVERLITAPASNEPSVSI PAGISGAQGGEPLISAKALGGLTEAAAAGAAY LUGISDPNSVLAGHTUNDERGERGESSAGI SGNAKTGDLDARGERGAAGGHKVTQLA SYFBCI LAAAVASGALTARGASSAFPUDDSWYRGAGAARVTMSTDJLARAEGGGDPETQUD		
SPERACEPGGGQAQ TO FILLELRKEFFYSDQN DSKDPVQLINLTVQARDDI LRGSHPV SPERACEPGGGQAQ TO FOPWERKIKHPGFLOLKEF ILPKEY INQRGAERT I FQEHKNCG EMSEI EAKVEYVKLARSLETTGGSFFLVEERMKCKNKLUPELLGITKDSVMRVDEKTK EVLQBWELTTVKRWASPKSFTLDFGEVGESYYSVOTTEGEO ISQLI LGYIDTI LKKG TYVTSVGSPHCTPHGKCSLSDQTTFPGRSTI LQQQFNFTGKAEHGSVALPAVMRSGSS GPETFNYGSNPSPGQCYVYGOMKRGMFPLITSAQQALMGTI INTSMHAVQQAQDDLSEL DSLPPLGQDMASRVWYQNKVDESKHE HISQVDALTHAGTAGTAGVVNLTAGDPADTDYTAVG CAITTISSNLTEMSKOVKLLAALMDDEVCSGEDLLRAARTLAGAVSDLLKAVQPTSGE PROTVLTAAGSIQASGCLLRQ I GSBETDTERFQDVLMSLAKAVANAAMJULKAKNVA QVAEDTVLONRVIAAATQCALSTSQLVACAKVVSPTISSPVCQEQLI EAGKLVDRSVE NCVRACQAATTDSELLKQVSAAASVVSQALHDLLQHVRGPASRGEPIGNYDQATDTIM CVTRSISSSMGDAGEMVQARVLAQATSDLVNAMRSDERBEID MENSKKLLAAAKLLA DSTARMVEAAKGAANPENEDQQRLREAABGLRVATNAAQQNAIKKK IVNRLEVAAK QAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQCVRGSQAQAEDLS AQLALI ISSGNFLQFGSKMYSSAKAAVPTVSDQAAAMQLSQCANALATSLAELRTASQ KAHBACGPMEIDSALNTVQTLKNELQDAKMAAVESQLK PLDGETLEKCAQDLGSTSKA VGSSMAQLUTCAAQGNENYTGVAARSTAQALKTLAQARGVAASTTDPAAHAMLDSA BDVMEGSAMLIOBAKQALIAPGDAERQGRLAQVAFAVSHSLANCVACLPGQKDVDVAL KSIGESKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAS GKFSDDPGFFLDAGI EMAGQAQTKEQQIQ LQVIGHLKINI SNASSKLLLAAKSLSVDPGAP NAKNLLAAARAVTESINQLITLCTQQAPGGKECDNALERLETVKGMLDNPNEPVSDL SYFDCIE SIVMENSKVLGESNAGI SONAKTGDLPAFGECVGIASKALGCLTEAAAQAAY LVGI SDPNSQAGHQGLVDPTOFARANQAIQTAGACONLVDPGSSPSQVLSAATIVAHTS ALGI SDPNSQAGHQGLVDPTOFARANQAIQTAGACONLVDPGSSPSQVLSAATIVAHTS ALGI SDPNSQAGHQGLVDPTOFARANQAIQTAGACONLVDPGSSPSQVLSAATIVAHTS ALGI SAPKDPPTWSVLAGHSHTVSDSI KSLITSI RIKARPGGGGCOTIASKALGCITEAAAQAAY LVGI SDPNSQAGHQGLVDPTOFARANQAIQTAGACONLVDPGSSPSQVLSAATIVAHTS ALGI SAPKORPTWAYASSI SHALTISI ROKAPGGGGCOTIASKALGCITEAAAQAAY LVGI SDPNSQAGHQGINDPTOFARANQAIQTACONLVDPGSSPSQVLSAATIVAHTHS ALGI SARVASSGALTRODI SVEALGEQUITSVVQFIGHLIAFGGCQMAAATAPPE EIGFQI HTRVOOLGGGI FLUXGKGAGAVWATNITI KALDGDFSEDNINKCRI A TAPLI EAVENLTAFASNPEFVSI PAQI SSEGSQAQEPILVSAKTMLESSSYLI RTARS LAINPKDPPTWSVLAGHSHTVSDSI KSLITSI RIKARPGGGGCOTINERET LLIGAAASI QAGNGTGGAGCAGATATARASTAVAASTSSULGAARSKALDEG	CG57804-01 Protein Sequence	1
EMSEIBAKUKYÜKLÄRSLRTYGUSPFLUKEKMKGKNKLUPRLÜGITKDSUMRÜDEKTK EVLQEWPLTTVKRHAASPKSFTLDFGEYQESYYSVOTTEGEQISQLIAGYIDIILKG TYYTSVGSPHCTPHGKCSLSDOTTFPGRSTILQQQFMRTGKAEHGSVALPAVMRSGSS GPETFNYGSMPSPQQQVKVOGNMERGHMPPLTSAQQALMGTINTSMHAVQQAQODLSEL DSLPPLGQOMASRVVQNKVDESFHEIHSQVALTGATGASVVNLITAGDPADTDYTAVG CAITTISSNLTEMSKOVKLLAALMDDEVGSGEDLLRAARTLAGAVSDLLKAVQPTSGE PRQTVLTAAGSIGQASGCLLRQIGENETDERFQDVLMSLAKAVANAAAMLVLKAKNVA QVAEDTVLQNRVIAAATCALSTSQLVACAKVYSFTISSPVCQEQLIBAGKLVDRSVE NCVRACQAATTDSELLKGVSAAASVVSQALHOLLQHVQFASRGEPIGRYDQATDTIM CYTESIFSSMGDAGRWAQARVLAQATSDLVVAMPSAGEPIGRYDQATDTIM CYTESIFSSMGDAGRWAQARVLAQATSDLVVAMPSAGEPIGRYDQATDTIM CYTESIFSSMGDAGRWAQARVLAQATSDLVVAMPSAGEPIGRYQQAVLAALLA DSTARMVEAKGAANPENEDQQQLVREBAAEGLRVATMAAQNAIKKKIVNRLEVAAK QAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNFLQFGSKMVSAKAAVPTVSDQAAAMDLSQCAKNLATSLAERTTASQ KAHEACGPMEIDSALNTVQTILKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLICAAQOACNHYTOVAARETAQALKTQAARGVAASTTDPAAAIKMLDSA RDVMEGSAMLIQEAXQALIAPGDAERQQRLAQVAFAVSHSLINCVNCLPGQKDVDVAL KSIGESSKKLLUDSLPPSTKPPQEAQSELNQAAADLNQSAGEVVHATRQGSGELAAAS GKFSDDFGEFLDAGIENAGQQTKEDQIQVICHNISMASSKLLLAAKSLSVDPGAP NAKNLLAAARAVTESINQLITLCTQQAPGQKECNDALRELETVKGMLDNPEPYSDL SYPGCIESVMENSKVLGESMAGISQNAKTGOLPAFGGCEDVAIGNAKCGLIPAFGECVIASKALGGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIGFARANQAIQMACQNLVDFGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVYKTIALDGDFSEDNNKCRIA TAPLIEAVENLTIFAFSNEEFVSIFAGISSESGAQAEPILUSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKPGQRECDYSIDGINRCTRIA SYFEPLILAAVGVASKILDHQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMYTLNEAASEVCDLUGMVDAIARASKLDBGTPPBEKGTFVD YQTTVVKYSKAIAVTAQEMHTKSVTTPEELGGLASQAYTSYGLLAHARNKLDBGTPPBEKGTFVD YQTTVVKYSKAIAVTAQEMTKSVTTPEELGGLAGAGATYTKKVSLULSAL QANKACTAQETLATAVGGIADDTTMFATAGIARDSGTFADRRENILKTKAKL VEDTKLLVSGAASTPDKLAQAQSSAATITQLAEVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMYTNYTSLLKTVKSVSLULDAL QCNKGTOTACHTATAVSGIIADLDTTMFATAGIARDSGTFADHRENILKTKAKL VEDTKLLVSGAASTPDKLAQAGSSAATITQLAEVKLGAASLGSDDPETQVDLINAI CONTRACTORYTE	e da rour of from sequence	
EVLQEMPLITVKRWAASPKSFTLDFGEYQGSYYSVQTTGEGD ISQLIAGYIDIILKKG TYYTSVGSPHCTPHGKCSLSDQTTFPGRSTILQQQFNRTGKAEHGSVALPAVMRSGSS GPETFRVSSMPSPQQVWVQQMKRGMMPPLTSAQQALMGTINTSMHAVQQAQDDLSEL DSLPPLQQDMASRVWQNKVDESKHEIHSQVDAITAGTBAZVVNLTAGDPADTDYTAVG CAITTISSNLTEMSKOVKLLAALMDDEVGSGEDLEKAARTLAGAVSDLLKAVQPTSGE PRQTVLTAAGSIGQASGCLLRQIGENETDERFQDVLMSLAKAVANAAMLVLKAKNVA QVAEDTVLQNRVIAAATQCALSTSQLVACAKVVSPTISSPYCQEQLIEAGKLVDRSVE NCVRACQAATTDSELLKQVSAAASVVSQALHDLQHVRQFASRGEPIGRYQDATDTIM CVTESIFSSMGDAGEMVRQARVLAQATSDLVVAMMSDAEAEIDMENSKKLLAAAKLLA DSTARMVEAAKGAANPENEDQQQRLREAAEGLRVATNAAAQNAIKKKIVNRLEVAAK QAAAAATQTIAASQMAAVSNKNRPAQQQLVOSCKAVADHIPQLVQCVRGSQAQAEDLS AQLALIISSSNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEAGGPMEIDSALTNVOTLKMELQDAWMAAVELKPLDFDGETEKCAQDLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQORLAQVAFAVSHSLNCVUCLPGQKDVDVAL KSIGESSKKLLUDSLEPSTKFFQGAGSELNQAAADLNOSAGEVVHATROQSCELAAAS GKFSDDFGGFLDAGIFMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLON PEPVSDL SYFDCIESWMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAQAAY LVGISDPNSQAGHQGLVDPIGFARANQAIQMACONLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTAMPVAKRIFTQYSAKEVANSTANLVKTIKALDGDFSEDNNIKKGIA TAPLIEAVENLTAFASNPEFVSIPAGISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIGTINRCIRDIQ ASLAAVSQSLATRDDISVEALGEQLISVVQEIGHLIDPIATAARGEAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDDTKTLAESALQMIYAAKEGGGNPRQOHTHD AITEAAQLMKEAVDDIMVTLNEASSEVGLUGGMVDAIAEMSSETPEPKFFTVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGGALQVCPTDSYTKRELICCARAVTEKVSLVLSAL QACNKCTQACITATATAVSGIIADLDTTINFATAGILHAENSETFADHRENILKTKKAL VEDTKLLVSGAASTPDLKQAAGSKAPDDVSGEVGRAGAKWVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMKGGITMATAKAVAAGNSCRQED VIATAALSRKAVSDMLTACRQASFAPDSDEVTRALBFGTCTLGYLDLLEHVLVIL QKFPEFFKQQLAAFSKRVAGAVTELLQAAANGAVGVAPOTATSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESICHADARSVQCHASEEKLISSAKQVA ASTAQLLLVACKVKADQDSEAMRLDAAAGNAVKAAFSCDLLVRAAGKAAFKA		SFEKACEFGGFQAQIQFGPHVEHKHKPGFLDLKEFLPKEYIKQRGAEKRIFQEHKNCG
TYYTSVGSPKCTCHGKCSLSQTTFPGRSTILQQOFNETGKAEHGSVALPALMRSGSS GPETRYVSMSPSPGQQYWVQQMHRGMRPHPLTSAQQALMGTINTSMAVQQAQDDLSEL DSLPPLGQDMASRVWQNKVDESKEHIBQVDAITAGTASCVWNLTAGDPADTDYTAVG CAITTISSNLTEMSKGVKLLAALMDDEVGSGEDLLRAARTLAGAVSDLLKAVQPTSGE PRQTVLTAAGSIGQASGDLRQIGENETDERFQDVLMSLAKAVANAAAMLVLKAKNVA QVAEDTVLQNRVIAAATCALSTSQLVACAKVYSFITSSPVCQEQLIEAGKLVDRSVE NCVRACQAATTDSELLKQVSAAASVYSQALHOLLQHVQPGASRGEPIGRYDQATDTIM CYTESIFSSMGDAGEMVQARVLAQATSDLVWAMSDAEAEIDMENSKKLLAAARALLA DSTARMVEAAKGAAANPENEDQQQRLREAAEGLRVATNAAAQNAIKKKIVNRLEVAAK QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQCVRGSQAQAEDLS AQLALIISSQNFLQFSGKMVSGARVAAAVPTVSDQAAAMQLSQCAKNLATSLALERTTAQ KAHEACGPMEIDSALNTVQTILKNELQDAKMAAVESQLKPLPGFETLEKCAQDLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARRETQALKTLAQAARGVAASTIDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQORLAQVAFAVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAGSELNQAAADLNGSAGEVVHATRGGSGELAAAS GKPSDDFGGFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQABGGKECONALRELETVKGMLDN PREPVSDL SYPDCIESVMENSKVLGESWAG ISQNAKTGDLPARGSCEVJAKATUKAHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIBAVENLTAFASNBEFVSIPAQISEGSQAQEDILDSAKTMLESSSYLJRTTARS LAINFKDPTWSULAGHSHTVSDSISKISLTISTIRDKPGQRECDYSIDGINNCKRIA TAPLIBAVENLTAFASNBEFVSIPAQISEGSGAQQEPILDSAKTMLESSSYLJRTTARS LAINFDPTWSULAGHSHTVSDSISKISLTISTIRDKPGQRECDYSIDGINGRIFDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASSVCLVGGMYSDYGHLAPGGGMAATAEPE EIGFQIRTRVQDLGHGCIFLVQKGAALQVCPTDSYTKRELIECARAVTEKVSLVLSAL VEDTKLLVSGAASTPDKLQQAGSSAATITQLAEVKKLABASLGSDPETQVDLINAI KDVAKSALAVSGIAATDDISVEALQREQTSVDPETGYVDLINAI KDVAKSALAVSGIAATDDISVEALQREQTSVDPETGYTLTETELLECARAVTEKVSLVLSAL QAGNKCTQACITAATAVSGIIADLDTTIMFATAGCIHASSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLQAQAGSSAATITQLAEVKKLABALSGSDPETGVDLINAI KDVAKSALALSDLISATKAAASKYDDDEWTRALBFGTECTLGYLDLLEHVUVIL QKFTEFFFKQQLAAFSKRYAGAVTELLQAAEAKGAVWTNYTSLLKTVVASVEBEATGG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCCQED VIATAALBRKAN		EMSEIEAKVKYVKLARSLRTYGVSFFLVKEKMKGKNKLVPRLLGITKDSVMRVDEKTK
GETTRVGSMPSPQQQWVGQMHRGHMPDLTSAQOALMGTINTSMHAVQQAQDDLSEL DSLPPLGQDMASRVWQNKVDESKHEIHSQVDAITAGTASVNLTAGDPADTDYTAVG CAITTISSNLTBMSKQVKLLAALMDDEVGSGEDLLBAARTLAGAVSDLLKAVQPTSGE PRQTVLTAAGSIGQASGCLLRQIGSNETDERFQDVLMSLAKAVANAAMLVLKAKNVA QWAEDTVLQNRVILAAATQCALSTSQLWCAKVVSPTISSBVCQCQLIEBAKUDRSVE NCVRACQAATTDSELLKQVSAAASVVSQALHDLLQHVRQFASRGEPIGRYDQATDTIM CVTESIFSSMGDAGEMVRQARVLAQATSDLVNAMRSDABAEIDMENSKKLLAAAKLLA BSTARMVEAAKGAANPENEDQOQRLBEAAEGLRVATNAAQQMAIKKKI VANLEVAAK QAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQQVRGSQAQAEDLS AQLALIISSQNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEAGGMEIDSALNTVQTLKNELQDAKMAAVESQLKEPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQONEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQORLAQWAAVSHSLNCVVACLPGGXDVDVAL KSIGESKKLLVDSLPPSTKPFQEAQSELNQAAADLNGSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIENAGQAQTKEDQIQVIGNLKNISHASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPQGKECDMALEELETVKGMLDN NEPVSDL SYPDCIESWMENSKVLGESMAGISQNAKTGDLPAFGCCVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHGGUNDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAGISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINFKDPFTWSVLAGHSHTVSDISKSLITSIBDKAPQGRECDYSIDGINGCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDIIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKLLDHQQMTTLAGSALQMIYAAKBEGGNPKAQHTHD AITEAAQLMKEAVDDIMYTLINEAASEVGLUGGWVDAIABAMSKLDGGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTXVQDLHGGIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLUSAL QAGNKGTQACITAATAVGGIIADLDTTIMFATIAGENSDYGHLAFQGQMAAATAEPE EIGFGIRTXGDIAMTLAGAASSKADTITQLAEVKLGAASLGSDDPETQUDLINAI KDVAKALSDLISATKGGASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVAVVEDEATRG TRALEATIECIKQELTVPQKSKDVPEKTSSPESIRMTKGITMATAKAVAAGNSCCQED VIATANLSRKAVSOMLTACKQASSPPDVSDEVERTRALRGTECTLGYLDLLEHULVIL QPFTPEFKQQLAAFSKRVAGASSPADDSSEVERTRALRGTECTLGYLDLLEHULVIL QPFTPEFFKQDLAFSKRVAGASKPVDPSSPEVERTRALRGTECTLGYLDLLEHULVIL QPFTPEFFKQOLAFSKRVAGASKSVDDPSMYQLKGAAKMTVTNVTSLLKTVKAVEDEATRG TAALEATIECIKQELTVPGSKDVPEKTSSPESIRMTKGITMATAKAVAAGNSCCPGD V		EVLQEWPLTTVKRWAASPKSFTLDFGEYQESYYSVQTTEGEQISQLIAGYIDIILKKG
DSLPPLGQDMASRVĀVQNKVĪDESKHEIHSQVDAĪTAGTASVVNLTAGDPĀDTDYTAVC CAITTISSNLTEMSKQVKLLAALMDDEVOSGEDLIRAGVANTAGAMUVLKAKNVA QVAEDTVLQNRVIAAATQCALSTSQLVACAKVVSPTISSPVCQEQLIEAGKLVDRSVE NCVRACQAATTDSELKÇVSAAASVVSQALHDLLQHVRQFASRGPIGRYDQATDTIM CVTESIFSSMGDAGMWRQRAVLAQATSDLVNAMRSDABAEIDMENSKKLLAAAKLLA DSTARNVEAAKGAANPENEDQQQRLERAAEGURVATNAAAQNAIKKKIVNRLEVAAK QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNPLQPGSKMVSAKAAVPTVSQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VSSSMAQLUTCAAQONEHYTIOVARETQAQALIAQAARGVASTTDPAAAHMALDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAYAVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLUDSLPPSTKFFQEAQSELNQAAPALNGSAGEVVHATRGQSGELAAAS GKPSDDFGGFLDAGIFMAGQAOTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDVALRELETVKGMLDNPNEPVSDL SYFDCTESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALLCALGLEAAAQAAY LVGISDPNSQAGHQCALDPIPGARANQAIQMACQNLVDPGSSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDVINSCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTLLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGGRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVQCEPILLVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGGRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVQCEIGHLIDPIATAARGBAQLGHKVTOLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMYTLNEAASEVGLVGGGVDDAIAEAMSKLDEGFPPPBKGTFVD YQTTVVKYSKATAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQQMAAATAEPPE EIGFQITRIVQDLGHGIFILVQKAGAGLVQVPTDSYTKRELIECRARVTEKVSULLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVYKLQAASLASGDDDPTQVDLINAI KDVAKKALSDLISATKGAASKPVDDPSMYQKKGAAKVMVTNVTSLLKLVKAVEDEBATGG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VITATANLSRKAVSMLTACKQASFHPDVSDEVKTRALREFGTECTLGYLLLLEHVUVIL QPFTPEFKQQLAAFSKRVAGADSTLDFEEGILEAAKSIAAATSALVKSASAAGRELVAQG KVGSIPANAADDGQWSQGLISAARMSLQAAGASSAAATSALVKSASAAGRELVAQG KVGSIPANAADDGGWSGGLISAARMSLAAASSLLCAAAASAAGASEKLISSAKQVA		TYVTSVGSPHCTPHGWCSLSDQTTFPGRSTILQQQFNRTGKAEHGSVALPAVMRSGSS
CAITTIS®NLTEMSKGVKLLAALMDDEVGSGEDLLRAARTLAGAVSDLLKAVQPTSGE PROTVLTAAGSIGQASGCLIRQIGNETDERFQDVLMSLAKAVANAAMLVLKAKNVA QVAEDTVLQNRVIAAATCCALSTSQLVACAKVVSPITSSPVCQEQLIEAGKLVDRSVE NCVRACQAATTDSELLKQVSAAASVVSQALHDLLQHVRQFASRGEPIGRYDQATDTIM CVTESIFSSMGDAGEMRQARVLAQATSDLVNAWRSDAEAEIDMENSKKLLAAAKLLA BSTARMVEAAKGAANPENEDQORLEEAABERRVATNAAAQNAIKKKI VNRLEVAAK QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNFLQPGSKMVSSAKAAVFTVSDQAAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKKCAQDLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAFAVSHSLNNCVNCLPGGKDVDVAL KSIGESSKKLUDVSLPPSTKPFQEAQSELNQAAAPAVSHSLNNCVNCLPGGKDVDVAL KSIGESSKKLUDVSLPPSTKPFQEAQSELNQAAADLNQSAGGVVHATRGQSGELAAAS GKFSDFGEFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGGKECTDAALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LUGISDPNSQACHQGLUDPIQFARANQAIQMACONLUDPGSSPSQULSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNEEFVSIPAQISSEGSQAQGEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRKAPGQRECDVSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGKVTQLA SYFEPLILAAVCVASKILDHQQMTVLDQTKTLLEESALQMLYAAKEGGGNFKAQHTHD AITEAAQMKEAVDDIMVTLMEAASEVGLVGGMVDAIAEMSKLDEGTPPPERGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLMAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKFVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVPQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCQDED VIATANLSRKAVSDMLTACKQASPFPDVSDEVTRTRALFFGTECTLGYLDLLEHVUVIL QKPTPEFRQQLAAFSKRVAGAVTELIQAAEAMKCTEWVDPEDPTVIAETELLEGAAASI EAAAKLEGLKPRAFKRQADETLDFEGILEAAKSIAAATSALVKSASAAQREELVAQG KVGSIPANAADDGGVSGGLISAARMAAATSSLLVKASSAAQREELVAQG KVGSIPANAADDGGVSGGLISAARMAAAAASNALVRAASASAALGKADDDDVVVE		GPETFNVGSMPSPQQQVMVGQMHRGHMPPLTSAQQALMGTINTSMHAVQQAQDDLSEL
PRQTVLTAAGSIGQASGLLRQIGENETDERFQDVLMSLAKAVANAAAMLVLÄKKNVA QVAEDTVLQNRVIAAATQCALSTSQLVACAKVYSFITSBYQCGEQLIEAGKLUVRSVE NCVRACQAATTSELLKQVSAAASVVSQALHOLLQHVRQFASRGEFIGRYDQATDTIM CVTESIFSSMGDAGEMVRQARVLAQATSDLVNAMRSDAEAEIDMENSKKLLAAAKLLA BSTARMVEAAKGAANPENEDQQORLREAABSLERVATNAAAQNAIKKKIVNRLEVAAK QAAAAATQTIAAAQNAAVSMINPAAQQQLVSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQOLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAFAVSHSLNNCVNCLPGGKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNGSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLFNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLTLCTQQAPGGKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNEFFYSIPAQISSEGSQAQEPILVSAKTMLESSSYLIKTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIGGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQCMKEAVDIMVTLNEAASEVGLVGGMVDAI LAEMMSKLDEETPPEDKETFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFGGQMAAATAEPP EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTITMFATAGTLAMENSETFADHRENILKTAKAL VEDTTALLVSGASTPDKLAQAAQSSAATITQLAEVVKLGASALGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVRQSKOVPEKTSPEESITMKGTTMATAKAVAAGNSCRQED VIATALSKKAVSMILTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFRQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPDDTVIAETELLGAAASI EAAAKLEQLKPRARPRQADETDDFEEDILEAAKSIAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMAAAASSQCHABSEKLISSAKQVA ASTAQLLVACKVADQDSEAMRRLQAAGNAVKRASDNLVKRASDALASADDEDDDVVVE		DSLPPLGQDMASRVWVQNKVDESKHEIHSQVDAITAGTASVVNLTAGDPADTDYTAVG
QVAEDTVLQNRVIAAATQCALSTSQLVACAKVVSPTISSPVCQEQLIEAGKLVDRSVE NCVRACQAATTDSELLKCVSAAASVVSQALHOLLQHVRQFASGEPIGRVDQATDTIM CVTESIFSSMGBAGEMVRQARVLAQATSDLVNAMRSDAEAEIDMENSKKLLAAAKLLA DSTARMVEAAKGAAANPENEDQQQRLREAAEGLRVATNAAQNAIKKKIVNRLEVAAK QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNFLQPGSKWVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELBTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQQNEHYTGVAAAETAQALKTLAQAARGVAASTTDPAAAHANLDSA RDVMEGSAMLIQEAKQALIAPGDAERQORLAQVAFAVSHSLNNCVNCLPGGKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEQQTLQTUNLNISMASSKLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLTILCTQQAPQKECDNALRELETVKGMLDMPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTAMPVAKRIFVQSAKEWATSHALVKTIKALDGDFSEDNINKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPTWSVLAGHSHTVSDSIKSLITSITGAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLAATRDDISVEAULQEQLISVVQEIGHLIDPITATAARGEAQLGHKVYDLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAQLMKEAVDDIMVTLNEAASEVGLVGGMVDDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLUXAGAGLOVCPTDSVTKRELIECARAVTEKVSJVLSAL QAGNKGTQACTTAATAVSGITALDTTIMFATAGTINAENSETFADHRENILKTXKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDPENYQLKGAARVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELUTVPGSKDVPFKTSSPEESIRTKGITMATAKAVAAAGNSCRQED VIATANLSRKAVSDMLTACKQASPHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAKKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKRRAKPRQADETLDFEQILEAANASTAALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRQAAGNAVKRASSDNLVRAAQKAADGSCALDDVVVE		CAITTISSNLTEMSKGVKLLAALMDDEVGSGEDLLRAARTLAGAVSDLLKAVQPTSGE
NCVRACQAATTDSELLKQVSAAASVVSQALHDLLQHVRQFASRGEPIGRYDQATDTIM CVTESIFSSMGBAGEMVRQARVLAQATSDLVNAMMRSDAEAEIDMENSKKLLAAAKLLA DSTARMVEAAKGAAANPENEDQQQRLVEREAEGLRVATNAAQNAIKKKIVNRLEVAAK QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQCNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHANLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVARAVSHSLANCVNCLPGGKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAARAVASSTTDPAAAHANLDSA GKFSDDFGEFLDAGIEMAGQAQTKEEQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRKKGRIA TAPLIEAVENLTAFASNEEFYSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGGCECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQETGHLIDPIATAARGEAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQMTVLDDTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVTSDYHLARGGGGMAAATABEE EIGFOIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTINAENSETFADHRENILKTAKAL VEDTKLLVSGAASTDKLLAQAAQSSAATTITQLAEVVKLGAASLGSDDPETQVDLINNI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVPQSKDVDFEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSKRANSOMLTACKQASFHDVDSDEVWTRALREFGTECTLGYLDLLEHVUVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEQILEAAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSGGLISAARMVAAATSSLCEAAANSQGCHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRQAACANAVKRASDNLVRAAQKAAFGKADDDDVVE		PRQTVLTAAGSIGQASGDLLRQIGENETDERFQDVLMSLAKAVANAAAMLVLKAKNVA
CVTESI PSSMGDAGEMVRQARVLAQATSDLVNAMRSDAEAEIDMENSKKLLÄAAKLLA DSTARMVEAAKGAAANPENEDQQQRLREAAEGIRVATNAAAQNAIKKK IVNRLEVAAK QAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALI ISSQMFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHANLDSA RDVMEGSAMLIQEAKQALIAPGDABERQQRLAQVAFAVSHSLNNCVNCLPGQKDDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAADLNQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYPPOLISSVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHEVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENUTAFASNPEFVSIPAGISSGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGWVDAITAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLANAENSETFADHRNILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKFVDD PSMYQLKGAAKVMYTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDV PEKTSSPESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHEDVSDEVETRALRFGTECTLGYUDLLEHVLVI'L QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPED PTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETADFEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPAANADDGQWSQGLISAARMVAAAATSSLCEAANASVQCHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRTLQAAGNAVKRASDNLVRAASKAQKAAFGKADDDDVVVA		QVAEDTVLQNRVIAAATQCALSTSQLVACAKVVSPTISSPVCQEQLIEAGKLVDRSVE
DSTARMVEAAKGAAAN PENEDQQQULREAAEGLRVATNAAAQNA IKKKI VNRLEVAAK QAAAAATQTIAASQNAAVSNKNPAAQQQUUQSCKAVADHIPQLVQQVRGSQAQAEDLS AQLALIISSQNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQONEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAKAVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLLVDSLPPSTKPPQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYPPOCIBSVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALGGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRTA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCCRID IEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAQLGHKVTQLA SYPEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASSVGLVGGMVDAITAEMSKLDBGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTINAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKFVDDPSMYQLKGAAKVMYTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHFBUSDEVETRALRFGTECTLGYUDLLEHVUVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQCHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAAGNASKAVCHAASSDNLVRAASQKAAFGKADDDDVVVA		NCVRACQAATTDSELLKQVSAAASVVSQALHDLLQHVRQFASRGEPIGRYDQATDTIM
QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS AQLALIISSQNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAFAVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLFNISMASSKULLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECNNALRELETTVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIGFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTAMPVAKHFYQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKCTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATAALLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEQILEAAKSIAAATSALVKSSAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMAATSSLCEAANASVQGHASEEKLISSAKQVA ASTQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		CVTESIFSSMGDAGEMVRQARVLAQATSDLVNAMRSDAEAEIDMENSKKLLAAAKLLA
AQLALI ISSQNFLOPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALTAPGDAERQQRLAQVAFAVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS CKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGHLDNNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSI PAQISSEGSQAQEFILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQETGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVCLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQQMAAATAEPE EIGFQIRTRVQDLGHGGIFLVQKAGALQVCPTDSYTKRELIECARAVTEKYSLVSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKFVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALFFGTECTLGYLDLLEHUVUIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEDILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSGGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDESEAMRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		DSTARMVEAAKGAAANPENEDQQQRLREAAEGLRVATNAAAQNAIKKKIVNRLEVAAK
KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLDGETLEKCAQDLGSTSKA VGSSMAQLLTCAAQQCNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAKAVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLYNISMASSKLLLAAKSLSVDPGAP NAKNLLAAARAAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQITSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQMAAATAEPE EIGFQIRTRVQDLCHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAQSSATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHUVUL QKPTEPFKQQLAFSKRVAGAVTELIQAAEAKKGTENVDPEDPTUTAETELLGAAASI EAAAKKLEQLKPRAKRYQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVRASDNUVRAAQKAAFGKADDDDVVVE		QAAAAATQTIAASQNAAVSNKNPAAQQQLVQSCKAVADHIPQLVQGVRGSQAQAEDLS
VGSSMAQLLTCAAQGNEHTTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAFAVSHSLINICVINCLPGGKDVDVAL KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLFNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVPQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGIISAAAMNVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		AQLALIISSQNFLQPGSKMVSSAKAAVPTVSDQAAAMQLSQCAKNLATSLAELRTASQ
RDVMEGSAMLIQEÄKQALIAPGDAERQQRLAQVAKÄVSHSLNNCVNCLPGQKDVDVAL KSIGESSKKLLVDSLPPSTRPFQEAQSELNQAAADLINQSAGEVVHATRGQSGELAAAS GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP NAKNLLAAARRAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDINVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQQGMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEQILEAAKSIAAATSALVKSSAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		KAHEACGPMEIDSALNTVQTLKNELQDAKMAAVESQLKPLPGETLEKCAQDLGSTSKA
KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS CKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLYNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGGRECDYSIDGINRCTRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		VGSSMAQLLTCAAQGNEHYTGVAARETAQALKTLAQAARGVAASTTDPAAAHAMLDSA
GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLYNISMASSKLLLAAKSLSVDPGAP NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNUVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATAALLSRKAVSDMLTACKQASFHPDVSDEVRTRALFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQCHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		RDVMEGSAMLIQEAKQALIAPGDAERQQRLAQVAKAVSHSLNNCVNCLPGQKDVDVAL
NAKNLLAAARAVTESINQLITLCTQAPGQKECDNALRELETVKGMLDNPNEPVSDL SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKRTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		KSIGESSKKLLVDSLPPSTKPFQEAQSELNQAAADLNQSAGEVVHATRGQSGELAAAS
SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLUSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		GKFSDDFGEFLDAGIEMAGQAQTKEDQIQVIGNLKNISMASSKLLLAAKSLSVDPGAP
LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE	i	NAKNLLAAAARAVTESINQLITLCTQQAPGQKECDNALRELETVKGMLDNPNEPVSDL
ALCNACRIASSKTANPVAKRIFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA		SYFDCIESVMENSKVLGESMAGISQNAKTGDLPAFGECVGIASKALCGLTEAAAQAAY
TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQMTVLDQTKTLAESALQMLYAAKEGGGN PKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		LVGISDPNSQAGHQGLVDPIQFARANQAIQMACQNLVDPGSSPSQVLSAATIVAKHTS
LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDRAPGQRECDYSIDGINRCIRDIEQ ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKCTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRAFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDTVIAETELLGAAASI EAAAKKLEQLKPRARPKQADETLDFEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQCHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		ALCNACRIASSKTANPVAKRHFVQSAKEVANSTANLVKTIKALDGDFSEDNRNKCRIA
ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLMEBASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		TAPLIEAVENLTAFASNPEFVSIPAQISSEGSQAQEPILVSAKTMLESSSYLIRTARS
SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGNPKAQHTHD AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		LAINPKDPPTWSVLAGHSHTVSDSIKSLITSIRDKAPGQRECDYSIDGINRCIRDIEQ
AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDFETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		ASLAAVSQSLATRDDISVEALQEQLTSVVQEIGHLIDPIATAARGEAAQLGHKVTQLA
YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		SYFEPLILAAVGVASKILDHQQQMTVLDQTKTLAESALQMLYAAKEGGGNPKAQHTHD
EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRARVRQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		AITEAAQLMKEAVDDIMVTLNEAASEVGLVGGMVDAIAEAMSKLDEGTPPEPKGTFVD
QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRARVRKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		YQTTVVKYSKAIAVTAQEMMTKSVTNPEELGGLASQMTSDYGHLAFQGQMAAATAEPE
VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDFETQVDLINAI KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		EIGFQIRTRVQDLGHGCIFLVQKAGALQVCPTDSYTKRELIECARAVTEKVSLVLSAL
KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGGWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		QAGNKGTQACITAATAVSGIIADLDTTIMFATAGTLNAENSETFADHRENILKTAKAL
TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		VEDTKLLVSGAASTPDKLAQAAQSSAATITQLAEVVKLGAASLGSDDPETQVDLINAI
VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		KDVAKALSDLISATKGAASKPVDDPSMYQLKGAAKVMVTNVTSLLKTVKAVEDEATRG
QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		TRALEATIECIKQELTVFQSKDVPEKTSSPEESIRMTKGITMATAKAVAAGNSCRQED
EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		VIATANLSRKAVSDMLTACKQASFHPDVSDEVRTRALRFGTECTLGYLDLLEHVLVIL
KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		QKPTPEFKQQLAAFSKRVAGAVTELIQAAEAMKGTEWVDPEDPTVIAETELLGAAASI
ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE		EAAAKKLEQLKPRAKPKQADETLDFEEQILEAAKSIAAATSALVKSASAAQRELVAQG
		KVGSIPANAADDGQWSQGLISAARMVAAATSSLCEAANASVQGHASEEKLISSAKQVA
TKFVGGIAQIIAAQEEMLKKERELEEARKKLAQIRQQQYKFLPTELREDEG		ASTAQLLVACKVKADQDSEAMRRLQAAGNAVKRASDNLVRAAQKAAFGKADDDDVVVE
		TKFVGGIAQIIAAQEEMLKKERELEEARKKLAQIRQQQYKFLPTELREDEG

Further analysis of the NOV21a protein yielded the following properties shown in Table 21B.

	Table 21B. Protein Sequence Properties NOV21a				
PSort analysis:	0.5964 probability located in mitochondrial matrix space; 0.3037 probability located in mitochondrial inner membrane; 0.3037 probability located in mitochondrial intermembrane space; 0.3037 probability located in mitochondrial outer membrane				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21C.

	Table 21C. Geneseq Results for NOV21a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB41087	Human ORFX ORF851 polypeptide sequence SEQ ID NO:1702 - Homo sapiens, 2541 aa. [WO200058473- A2, 05-OCT-2000]	12543 12540	1913/2546 (75%) 2231/2546 (87%)	0.0	
AAM39312	Human polypeptide SEQ ID NO 2457 - Homo sapiens, 1165 aa. [WO200153312-A1, 26-JUL-2001]	13812545 11165	1161/1165 (99%) 1163/1165 (99%)	0.0	
AAM79794	Human protein SEQ ID NO 3440 - Homo sapiens, 1177 aa. [WO200157190-A2, 09-AUG- 2001]	13782545 101177	1156/1168 (98%) 1160/1168 (98%)	0.0	
AAM41098	Human polypeptide SEQ ID NO 6029 - Homo sapiens, 1177 aa. [WO200153312-A1, 26-JUL-2001]	13782545 101177	1156/1168 (98%) 1160/1168 (98%)	0.0	
AAM41079	Human polypeptide SEQ ID NO 6010 - Homo sapiens, 1177 aa. [WO200153312-A1, 26-JUL-2001]	13782545 101177	1156/1168 (98%) 1160/1168 (98%)	0.0	

In a BLAST search of public sequence databases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21D.

Table 21D. Public BLASTP Results for NOV21a					
Protein Accession Number	Protein/Organism/Length	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9Y490	Talin - Homo sapiens (Human), 2541 aa.	12543 12540	1910/2546 (75° o) 2230/2546 (87° o)	0.0	
P26039	Talin – Mus musculus (Mouse), 2541 aa.	12543 12540	1907/2546 (74° o) 2230/2546 (86° o)	0.0	
Q9UPX3	KIAA1027 PROTEIN - Homo sapiens (Human), 1695 aa (fragment).	8532543 11694	1262/1694 (74° o) 1483/1694 (87° o)	0.0	

	fly), 2836 aa.			
Q9Y4G6	KIAA0320 PROTEIN - Homo sapiens (Human), 949 aa (fragment).	15972545 1949	947/949 (99%) 948/949 (99%)	0.0

PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21E.

Table 21E. Domain Analysis of NOV21a					
Pfam Domain	NOV21a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
ubiquitin: domain 1 of 1	6488	8/27 (30%) 20/27 (74%)	4.3		
Band_41: domain 1 of 1	123316	67/211 (32%) 172/211 (82%)	1.3e-92		
IRS: domain 1 of 1	312404	19/109 (17%) 46/109 (42%)	1.2		
I_LWEQ: domain 1 of 5	674768	31/98 (32%) 59/98 (60%)	11		
transport_prot: domain 1 of 1	667814	24/182 (13%) 88/182 (48%)	10		
I_LWEQ: domain 2 of 5	852894	18/47 (38%) 31/47 (66%)	2.4e+02		
Vinculin: domain 1 of 1	860903	12/48 (25%) 30/48 (62%)	1.3		
I_LWEQ: domain 3 of 5	925984	21/62 (34%) 37/62 (60%)	5.9e+04		
TP_methylase: domain 1 of 1	8611036	26/226 (12°°) 105/226 (46°°)	8		
Apolipoprotein: domain 1 of 1	9811229	48/288 (17%) 141/288 (49%)	3.5		
CAP: domain 1 of 1	9171354	94/557 (17° u) 209/557 (38° o)	4.4		
I_LWEQ: domain 4 of 5	15291545	10/17 (59%)	56		

LEA: domain 1 of 1	17681834	15/76 (20%) 42/76 (55%)	7
Histone_HNS: domain 1 of 1	22322356	29/143 (20%) 63/143 (44%)	3.7
I_LWEQ: domain 5 of 5	23452536	100/202 (50%) 183/202 (91%)	2e-101

Example 22.

The NOV22 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 22A.

	SEQ ID NO: 77	2214 bp	
NOV22a, CG57551-01 DNA Sequence	ATTCCTCCCTGCCCTCGTGCA CCGAACTTCGGCAACAGCATCC ACTGTGACGTGCAGCACAGCA	GCCGCTGCC TGGAGGGCAC TGGAGGCAC TGGAGGGGCAC TGGAGGCAC TGGAGGAGCCAG TGGAGGAGCCAG TGGAGGAGCCAG TGGAGGAGCCAG TGGAGGAGCCAG TGGAGAGAC TACCAAC TACCAAC TACCAAC TACCAAC TTACCAAC TTACC	ATGGCCAGACACTGCAGATGGAGAT TCAATGAACAGCGGGCTGCAGGGCCTG TCCATGAACACAGCCGCCGCGCCG
	CCAGGGGTTCTCAGGACCCCTCC CCTTCCTGTCACCCTCGTCTATC GGACTACCCATTTTATAGCTGGC GGTGGCCGGC	CACCACCTO CCTGCGCCT GGAAACAGG	SCAGCCCCTTGGGACTTGAGGGGGGCCCCCCAGAAAGCCCCCAGAAAGCCCCGGGGCTGGGGTAGGCGAGGCCGTGCCTCAAAATTGCACAACCGACCTCA
	ORF Start: ATG at 32	 	.,
	SEQ ID NO: 78	527 aa	MW at 57283.8kD
NOV22a, CG57551-01 Protein Sequence	FNNSRSAVVELPAAVQPQSFQQI TEFFLKVSSPSCDSQGLHAEEAI	LSFCYTGRL PSSEPQSPVA	/SVVVKGHAFKAHRAVLAASSSYFRDI JSMNVGDQFLLMYTAGFLQIQEIMEKC JOTSGWPACSTPLPLVSRVKTEQQESI

TNARRVVRKSWMPKVKVLKAEDDAYTTFISETGKIEPDMMGVEHGFETASHEGEAGPI	l
AEALQ	ı

Further analysis of the NOV22a protein yielded the following properties shown in Table 22B.

Table 22B. Protein Sequence Properties NOV22a				
PSort analysis:	0.6000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22C.

	Table 22C. Geneseq Resu	lts for NOV	22a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV22a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB41621	Human ORFX ORF1385 polypeptide sequence SEQ ID NO:2770 - Homo sapiens, 228 aa. [WO200058473-A2, 05-OCT-2000]	300527 1228	228/228 (100%) 228/228 (100%)	e-131
ABB17117	Human nervous system related polypeptide SEQ ID NO 5774 - Homo sapiens, 190 aa. [WO200159063-A2, 16-AUG-2001]	409501 193	64/94 (68%) 73/94 (77%)	7e-29
AAG78615	Human zinc finger transcription factor BioZFTF45 - Homo sapiens, 413 aa. [CN1299825-A, 20-JUN- 2001]	5159 7170	62/164 (37%) 92/164 (55%)	2e-25
AAY73351	HTRM clone 1484257 protein sequence - Homo sapiens, 810 aa. [WO9957144-A2, 11-NOV-1999]	7291 1277	83/291 (28%) 124/291 (42%)	8e-18
AAM41058	Human polypeptide SEQ ID NO 5989 - Homo sapiens, 804 aa. [WO200153312-A1, 26-JUI -2001]	7291 2271	84/295 (28%) 123/295 (41%)	2e-17

In a BLAST search of public sequence databases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.

	Table 22D. Public BLASTP Results for NOV22a				
Protein Accession Number	Protein/Organism/Length	NOV22a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96RE7	NAC1 PROTEIN - Homo sapiens (Human), 527 aa.	1527 1527	526/527 (99%) 526/527 (99%)	0.0	
O35260	NAC-1 PROTEIN - Rattus norvegicus (Rat), 514 aa.	1527 1514	462/530 (87%) 475/530 (89%)	0.0	
Q9CZ72	4930511N13RIK PROTEIN - Mus musculus (Mouse), 514 aa.	1527 1514	462/530 (87%) 476/530 (89%)	0.0	
Q96BF6	SIMILAR TO RIKEN CDNA 0610020I02 GENE - Homo sapiens (Human), 587 aa.	1501 1478	289/522 (55%) 335/522 (63%)	e-140	
AAH22103	RIKEN CDNA 0610020102 GENE - Mus musculus (Mouse), 586 aa.	1485 1459	281/502 (55%) 327/502 (64%)	e-139	

PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22E.

Table 22E. Domain Analysis of NOV22a			
Pfam Domain NOV22a Match Region Similarities for the Matched Region Expect		Expect Value	
BTB: domain 1 of 1	14124	40/143 (28%) 88/143 (62%)	6.2e-23

Example 23.

The NOV23 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 23A.

Table 23A. NOV23 Sequence Analysis		
	SEQ ID NO: 79	1497 bp
NOV23a, CG57411-01 DNA Sequence	AGCTGGAGCTCGTCCTGTC	AACTGGTGCAGGGTG-3TCCCCGGGCTCCAGTAGGGGAGA GAACCTGCAGGCAGACGTCCTGGAGTTGCTGCTGGAGTT GTCATCGACTCGGCCAACGCCAAGACACTGCTGGAGGCG

Further analysis of the NOV23a protein yielded the following properties shown in Table 23B.

	Table 23B. Protein Sequence Properties NOV23a
PSort analysis:	0.6500 probability located in cytoplasm; 0.2271 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space; 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23C.

	Table 23C. Geneseq Results for NOV23a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV23a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB40940	Human ORFX ORF704 polypeptide sequence SEQ ID NO:1408 - Homo sapiens, 335 aa. [WO200058473-A2, 05-OCT-2000]	19351 4334	317/333 (95%) 320/333 (95%)	e-180
AAM38711	Human polypeptide SEQ ID NO 1856 - Homo sapiens, 574 aa. [WO200153312-A1, 26-JUL-2001]	22472 78559	151/488 (30%) 222/488 (44%)	2e-61
AAB43090	Human ORFX ORF2854 polypeptide sequence SEQ ID NO:5708 - Homo sapiens, 506 aa. [WO200058473-A2, 05-OCT-2000]	22468 9487	150/491 (30° o) 241/491 (48° o)	3e-59
AAM38956	Human polypeptide SEQ ID NO 2101 - Homo sapiens, 587 aa. [WO200153312-A1, 26-JUL-2001]	22468 90568	149/491 (30%) 240/491 (48%)	1e-58
AAM94018	Human stomach cancer expressed polypeptide SEQ ID NO 106 - Homo sapiens, 568 aa. [WO200109317-A1, 08-FEB-2001]	25470 76553	148/490 (30%) 231/490 (46%)	3e-56

In a BLAST search of public sequence databases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23D.

Table 23D. Public BLASTP Results for NOV23a				
Protein Accession Number	Protein/Organism/Length	NOV23a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96CT2	HYPOTHETICAL 76.8 KDA PROTEIN - Homo sapiens (Human), 707 aa (fragment).	19489 203707	390/507 (76%) 406/507 (79%)	0.0
Q96PW7	KIAA1921 PROTEIN - Homo sapiens (Human), 545 aa (fragment).	19489 41545	390/507 (76%) 406/507 (79%)	0.0
Q96BF0	SIMILAR TO HYPOTHETICAL	19351	329/333 (98%)	0.0

Q9I	D5K3	4930429H24RIK PROTEIN - Mus musculus (Mouse), 484 aa.	33485 1477	165/492 (33%) 248/492 (49%)	2e-66
Q91	J H7 7	Kelch-like protein 3 - Homo sapiens (Human), 587 aa.	22468 90568	150/491 (30%) 241/491 (48%)	1e-58

PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23E.

Table 23E. Domain Analysis of NOV23a			
Pfam Domain	NOV23a Match Region	Identities/ Similarities for the Matched Region	Expect Value
BTB: domain 1 of 1	479	24/143 (17%) 53/143 (37%)	3.7
Kelch: domain 1 of 4	223272	9/50 (18%) 28/50 (56%)	0.94
Kelch: domain 2 of 4	275320	11/47 (23%) 27/47 (57%)	0.016
Kelch: domain 3 of 4	322396	14/75 (19%) 44/75 (59%)	3.3e-05
Kelch: domain 4 of 4	426471	19/47 (40%) 35/47 (74%)	7.2e-10

Example 24.

The NOV24 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 24A.

Table 24A. NOV24 Sequence Analysis		
	SEQ ID NO: 81	4268 bp
NOV24a, CG57399-01 DNA Sequence	TTGGTTTCGCTAATTGCATCC ATACCCCCAGCCCCCCCCCC	TIGGACCTCAGTTTTTCTGATTGGGCTCCTTCCTACCC TCCAGACTTCTGGTAAAATGTGTACTTTAAGAGGTAG CACCTCTCTGCTTGTCTCCCCTAGTCCACCAGCTCCGA CCCCCCTGGTAATGATGAAACCTTCCAGGAAAGTG CCCCCCCGGGTAATGATGAAACCTTCCAGGAAAGTG CCCCAAGATGTGTAGGTAGGTAGAAACCCTGAGCCCTCCC ACTGGAAGATGTCCCCTCCAACCTGGGAAGGTCACCCCCTCAACTGGAAGCTCGTCCCTCCACCAGCAGCTCCCTCC

CTGGCAGACATCCTCCGGGAATTCAACCCTTCCCTGAAGGGCTTCTCTGTTGGCACTG GGAAAGAACCAGTCCTAATGCCTTCTTAAACCAGGCTGTGGCAGGAGGCCGAGCTGA GCAGGCCAGGAGGCTGGTGGACCTGATGAAGAATGACACGAGGATACACTTTCAGGAA GACTGGAAGATAATAACCCTGTTTATAGGCGGCAATGACCTCTGTGATTTCTGCAATG ATCTGGTACACTATTCTCCCCAGAACTTCACAGACAACATTGGAAAGGCCCTGGACAT CCTCCATGCTGAGTCTCAGGTTCCTCGGGCATTTGTGAACCTGGTGACGGTGCTTGAG ATCGTCAACCTGAGGGAGCTGTACCAGGAGAAAAAAGTCTACTGCCCAAGGATGATCC TCAGGTCACTGTGTCCCTGTGTCCTGAAGTTTGATGATAACTCAACAGAACTTGCTAC CCTCATCGAATTCAACAAGAAGTTTCAGGAGAAGACCCACCAACTGATTGAGAGTGGG CGATATGACACAAGGGAAGATTTTACTGTGGTTGTGCAGCCGTTCTTTGAAAACGTGG CCACTTCAGCAGCAAGTCTCACTCCCGAGCAGCCAGTGCTCTCTGGAACAATATGCTG GAGCCTGTTGGCCAGAAGACGACTCGTCATAAGTTTGAAAACAAGATCAATATCACAT GTCCGTCACAGGTCCAGCCGTTTCTGAGGACCTACAAGAACAGCATGCAGGGTCATGG GACCTGGCTGCCATGCAGGGACAGAGCCCCTTCTGCCTTGCACCCTACCTCAGTGCAT GCCCTGAGACCTGCAGACATCCAAGTTGTGGCTGCTCTGGGGGGATTCTCTGACCGCTG GCAATGGAATTGGCTCCAAACCAGACGACCTCCCCGATGTCACCACACAGTATCGGGG ACTGTCATACAGTGCAGGAGGGGACGGCTCCCTGGAGAATGTGACCACCTTACCTAGT TETATCCTTCGGGAGTTTAACAGAAACCTCACAGGCTACGCCGTGGGCACGGGTGATG CCAATGACACGAATGCATTCCTCAATCAAGCTGTTCCCGGAGCAAAGGCTAGGGATCT TATGAGCCAAGTCCAAACTCTGATGCAGAAGATGAAAGATGATCATAGAGTAAATTTC CATGAAGACTGGAAGGTCATCACAGTGCTGATCGGAGGCAGCGATTTATGTGACTACT GCACAGATTCGAATCTGTATTCTGCAGCCAACTTTGTTCACCATCTCCGCAATGCCTT GGACGTCCTGCATAGAGAGGTGCCCAGAGTCCTGGTCAACCTCGTGGACTTCCTGAAC CCCACTATCATGCGGCAGGTGTTCCTGGGAAACCCAGACAAGTGCCCAGTGCAGCAGG CCAGCGTTTTGTGTAACTGCGTTCTGACCCTGCGGGAGAACTCCCAAGAGCTAGCCAG GCTGGAGGCCTTCAGCCGAGCCTACCAGAGCAGCATGCGCGAGCTGGTGGGGTCAGGC $\tt CGCTATGACACGCAGGAGGACTTCTCTGTGGTGCTGCAGCCCTTCTTCCAGAACATCC$ AGCTCCTGTCCTGCAGGATGGGCTCCCAGATACGTCCTTCTTTGCCCCAGACTGCAT CCACCCAAATCAGAAATTCCACTCCCAGCTGGCCAGAGCCCTTTGGACCAATATGCTT GAACCACTTGGAAGCAAAACAGAGACCCTGGACCTGAGAGCAGAGATGCCCATCACCT GTCCCACTCAGAATGAGCCCTTCCTGAGAACCCCTCGGAATAGTAACTACACGTACCC CATCAAGCCAGCCATTGAGAACTGGGGCAGTGACTTCCTGTGTACAGAGTGGAAGGCT TCCAATAGTGTTCCAACCTCTGTCCACCAGCTCCGACCAGCAGACATCAAAGTGGTGG CCGCCTGGGTGACTCTCTGACTACAGCAGTGGGAGCTCGACCAAACAACTCCAGTGA CCTACCCACATCTTGGAGGGGACTCTCTTGGAGCATTGGAGGGGATGGGAACTTGGAG ACTCACACCACACTGCCCAGTATTCTGAAGAAGTTCAACCCTTACCTCCTTGGCTTCT CTACCAGCACCTGGGAGGGGACAGCAGGACTAAATGTGGCAGCGGAAGGGGCCAGAGC TAGGAGGGACATGCCAGCCCAGGCCTGGGACCTGGTAGAGCGAATGAAAAACAGCCCC ATACACTTTCAGGAAGACTGGAAGATAATAACCCTGTTTATAGGCGGCAATGACCTCT GTGATTTCTGCAATGATCTGGTAGGTGAATATGTTCAGCACATCCAACAGGCCCTGGA CATCCTCTGAGGAGCTCCCAAGGGCTTTCGTCAACGTGGTGGAGGTCATGGAGCTG GCTAGCCTGTACCAGGGCCAAGGCGGGAAATGTGCCATGCTGGCAGCTCAGAACAACT GCACTTGCCTCAGACACTCGCAAAGCTCCCTGGAGAAGCAAGAACTGAAGAAAGTGAA CTGGAACCTCCAGCATGGCATCTCCAGTTTCTCCTACTGGCACCAATACACACAGCGT GAGGACTTTGCGGTTGTGGTGCAGCCTTTCTTCCAAAACACACTCACCCCACTGAACA GAGGGGACACTGACCTCACCTTCTTCTCCGAGGACTGTTTTCACTTCTCAGACCGCGG GCATGCCGAGATGGCCATCGCACTCTGGAACAACATGCTGGAACCAGTGGGCCGCAAG ACTACCTCCAACAACTTCACCCACAGCCGAGCCAAACTCAAGTGCCCCTCTCCTGTGA GTCCTTACCTCTACACCCTGCGGAACAGCCGATTGCTCCCAGACCAGGCTGAAGAAGC $\verb|CCCCGAGGTGCTCTACTGGGCTGTCCCAGTGGCAGCGGGAGTCGGCCTTGTGGTGGGC|\\$ TGAGCCTGCGCACTGTGGCCCTCTAGGCCCGGGG

 ORF Start: ATG at 1
 ORF Stop: TAG at 4258

 SEQ ID NO: 82
 1419 aa
 MW at 158435.1kD

NOV24a, CG57399-01 Protein Sequence

MTWDTALWTSVFLIGLLPTLGFANCILQTSGKMCTLRGRYPQPPQPPLCLSPLVHQLR
PADIKVVAALGNDETFOESGAGQLSEPDPRQWSWPQACLPGVKKEMQDVVGERTPSRR
RSLRRFEALVPAAGKESLCRQDIFISLLEIIKHFPPSPQDINLEKDWKLVTLFIGVND
LCHYCPLVOGPVIDLGGMDTLHSLQLPRAFVNVVEVMELASLYQGGGSKCAMLAAÇEA
WNSLLASSRYSEQESFTVVFQPFFYETTPSDPRLQDSTTLAWHLWNRMMEPAGEKDEP
LSVKHGRPMKCPSQESPYLFSYRNSNYLTRLQKPQDKLVREGAEIRCPDKDPSDTVPT
SVHRLKPADINVIGALGDSLTAGNGAGSTPGNVLDVLTQYRGLSWSVGGDENIGTVTT
LADILREFNPSLKGFSVGTGKETSPNAFLNQAVAGGRAEQARRLVDLMKNDTRIHFQE
DWKIITLFIGGNDLCDFCNDLVHYSPQNFTDNIGKALDILHAESQVPRAFVNLVTVLE
IVNLRELYQEKKVYCPRMILRSLCPCVLKFDDNSTELATLIEFNKKFQEKTHQLIESG
RYDTREDFTVVVQPFFENVDMPKTQEGLPDNSFFAPDCFHFSSKSHSRAASALWNNML
EPVGQKTTHKFENKINITCPSQVQPFLRTYKNSMQGHGTWLPCRDRAPSALHPTSVH
ALRPADIQVVAALGDSLTAGNGIGSKPDDLPDVTTQYRGLSYSAGGDGSLENVTTLPS
SILREFNRNLTGYAVGTGDANDTNAFLNQAVPGAKARDLMSQVQTLMQKMKDDHRVNF

	THTTLPSILKKFNPYLLGFSTSTWEGTAGLNVAAEGARARRDMPAQAWDLVERMKNSP IHFQEDWKIITLFIGGNDLCDFCNDLVGEYVQHIQQALDILSEELPRAFVNVVEVMEL ASLYQGQGGKCAMLAAQNNCTCLRHSQSSLEKQELKKVNWNLQHGISSFSYWHQYTQR EDFAVVVQPFFQNTLTPLNRGDTDLTFFSEDCFHFSDRGHAEMAIALWNNMLEPVGRK TTSNNFTHSRAKLKCPSPVSPYLYTLRNSRLLPDQAEEAPEVLYWAVPVAAGVGLVVG IIGTVVWRCRRGGRREDPPMSLRTVAL		
	SEQ ID NO: 83	1624 bp	
NOV24b, CG57399-02 DNA Sequence	GCCGGCTGACATCAATGTAATTGGAGCCCTGGGTGACTCTCTCACGGCAGGCA		
	ORF Start: ATG at 311	ORF Stop:	TGA at 1241
	SEQ ID NO: 84	310 aa	MW at 35240.6kD
NOV24b, CG57399-02 Protein Sequence	MKNDTRIHFQEDWKIITLFIGGND FVNLVTVLEIVNLRELYQEKKVYC KTHQLIESGRYDTREDFTVVVQPF ASALWNNMLEPVGQKTTRHKFENK SALHPTSVHALRPADIQVVAALGD LSDSWVSKSNRKCTRKAPNP	PRMILRSLCPC FENVDMPKTSE INITCPNQVQP	VLKFDDNSTELATLIEFNKKFQE GLPDNSFFAPDCFHFSSKSHSRA FLRTYKNSMQGHGTWLPCRDRAP
	SEQ ID NO: 85	4425 bp	
NOV24c, CG57399-03 DNA Sequence	CTGGAGCATTCTGGCATGGGGCTGCGGCCAGGCATTTTCCTCCTGGAGCTGCTGCTG		CCTAGAAAGAGTACATTGGAAGG CTTCTGATATTAAATTTGTGGCA GACGGCGATCTGGAGAAGCAAG ACAGTCCTTTCAGACATCATCAG ACACTGGAAAGAGAGTCATACAC AGACTGGTGGAAAACATGAAAG ATCAATGGTTCTTCAGTAATGC ATGGGCTTGCGGCGGGGGGGGTG GGAGGTGCCCAGAGCATTTGTAA CGTCAGTATACACGCAACTTGGCT AGACCACCGGCTGGCAAGGTACA TTCTTCTATGAGACCACCCCATC GGCATCCTGGAATAGGATGAAG AAACACGGGAGGCCAATGAAGT AGAAACACGGGAGCCAATGAAGT AGAAACACGGAAGCCAATGAAGT AGAAACACGGAAGCCAACTCAG AAAGACAGCAACTACCTGACCAG AAGGACGGAAATCAGATGACA GCAGGCAATGGAGCCGCTGACA GCAGCCTGCCGGGCCTGACCA GAGGCCTGCCGGGCCGCCCAC GAGGCCTGTCCTGGACCGGCTCCAC GAGGCCTGTCCCGGGACATCAACC

GTGAACCTGGTGACGGTGCTTGAGATCGTCAACCTGAGGGAGCTGTACCAGGAGAAAA AAGTCTACTGCCCAAGGATGATCCTCAGGTCACTGTGTCCCTGTGTCCTGAAGTTTGA TGATAACTCAACAGAACTTGCTACCCTCATCGAATTCAACAAGAAGTTTCAGGAGAAG ACCCACCAACTGATTGAGAGTGGGCGATATGACACAAGGGAAGATTTTACTGTGGTTG CTCTTTCTTCGCTCCTGACTGTTTCCACTTCAGCAGCAAGTCTCACTCCCGAGCAGCC AGTGCTCTCTGGAACAATATGCTGGAGCCTGTTGGCCAGAAGACGACTCGTCATAAGT TTGAAAACAAGATCAATATCACATGTCCGAACCAGGTAGAGTGGCCGTTTCTGAGGAC CTACAAGAACAGCATGCAGGGTCATGGGACCTGGCTGCCATGCAGGGACAGAGCCCCT TCTGCCTTGCACCCTACCTCAGTGCATGCCCTGAGACCTGCAGACATCCAAGTTGTGG CTGCTCTGGGGGATTCTCTGACCGCTGGCAATGGAATTGGCTCCAAACCAGACGACCT CCCCGATGTCACCACACAGTATCGGGGACTGTCATACAGTGCAGGAGGGGACGGCTCC CTGGAGAATGTGACCACCTTACCTGATATCCTTCGGGAGTTTAACAGAAACCTCACAG TCCCGGAGCAAAGGCTAGGGATCTTATGAGCCAAGTCCAAACTCTGATGCAGAAGATG AAAGATGATCATAGAGTAAATTTCCATGAAGACTGGAAGGTCATCACAGTGCTGATCG GAGGCAGCGATTTATGTGACTACTGCACAGATTCGAATCTGTATTCTGCAGCCAACTT TGTTCACCATCTCCGCAATGCCTTGGACGTCCTGCATAGAGAGGTGCCCAGAGTCCTG GTCAACCTCGTGGACTTCCTGAACCCCACTATCATGCGGCAGGTGTTCCTGGGAAACC CAGACAAGTGCCCAGTGCAGCAGCCCAGCGTTTTGTGTAACTGCGTTCTGACCCTGCG GGAGAACTCCCAAGAGCTAGCCAGGCTGGAGGCCTTCAGCCGAGCCTACCAGAGCAGC ATGCGCGAGCTGGTGGGGTCAGGCCGCTATGACACGCAGGAGGACTTCTCTGTGGTGC TGCAGCCCTTCTTCCAGAACATCCAGCTCCCTGTCCTGCAGGATGGGCTCCCAGATAC GTCCTTCTTTGCCCCAGACTGCATCCACCCAAATCAGAAATTCCACTCCCAGCTGGCC AGAGCCCTTTGGACCAATATGCTTGAACCACTTGGAAGCAAAACAGAGACCCTGGACC TGAGAGCAGAGATGCCCATCACCTGTCCCACTCAGAATGAGCCCTTCCTGAGAACCCC TCGGAATAGTAACTACACGTACCCCATCAAGCCAGCCATTGAGAACTGGGGCAGTGAC TTCCTGTGTACAGAGTGGAAGGCTTCCAATAGTGTTCCAACCTCTGTCCACCAGCTCC GACCAGCAGACATCAAAGTGGTGGCCGCCCTGGGTGACTCTCTGACTGTGGCAGTGGG AGCTCGACCAAACAACTCCAGTGACCTACCCACATCTTGGAGGGGACTCTCTTGGAGC ATTGGAGGGGATGGGAACTTGGAGACTCACACCACACTGCCCGACATTCTGAAGAAGT TCAACCCTTACCTCCTTGGCTTCTCTACCAGCACCTGGGAGGGGACAGCAGGACTAAA TGTGGCAGCGGAAGGGGCCAGAGCTAGGGACATGCCAGCCCAGGCCTGGGACCTGGTA GAGCGAATGAAAAACAGCCCCCAGGACATCAACCTGGAGAAAGACTGGAAGCTGGTCA CACTCTTCATTGGGGTCAACGACTTGTGTCATTACTGTGAGAATCCGGTAGGCGAATA TGTTCAGCACATCCAACAGGCCCTGGACATCCTCTCTGAGGAGCTCCCAAGGGCTTTC GTCAACGTGGTGGAGGTCATGGAGCTGGCTAGCCTGTACCAGGGCCAAGGCGGGAAAT GTGCCATGCTGGCAGCTCAGAACAACTGCACTTGCCTCAGACACTCGCAAAGCTCCCT GGAGAAGCAAGAACTGAAGAAAGTGAACTGGAACCTCCAGCATGGCATCTCCAGTTTC TCCTACTGGCACCAATACACACGCGTGAGGACTTTGCGGTTGTGGTGCAGCCTTTCT TCCAAAACACTCACCCCACTGAACAGAGGGGACACTGACCTCACCTTCTTCTCCGA GGACTGTTTTCACTTCTCAGACCGCGGGCATGCCGAGATGGCCATCGCACTCTGGAAC AACATGCTGGAACCAGTGGGCCGCAAGACTACCTCCAACAACTTCACCCACAGCCGAG CCAAACTCAAGTGCCCCTCTCCTGAGAGCCCTTACCTCTACACCCTGCGGAACAGCCG ATTGCTCCCAGACCAGGCTGAAGAAGCCCCCGAGGTGCTCTACTGGGCTGTCCCAGTG GCAGCGGGAGTCGGCCTTGTGGTGGGCATCATCGGGACAGTGGTCTGGAGGTGCAGGA GAGGTGGCCGGAGGGAAGATCCTCCAATGAGCCTGCGCACTGTGGCCCTCTAGGCCCG GGGGTGGGTCCTCACCCTAAACTCCCTATAGCCACTCTCTTCACCGCCCTCTGCCCCA GCCACTCCCGGCCACCAGGACATGCTTCAATGCCTGGTGCCATAGGAAGCCCAGGGGA CAGTCACAACTTCTTGG

ORF Start: ATG at 16 ORF Stop: TAG at 4285

SEQ ID NO: 86

1423 aa MW at 159352.7kD

NOV24c,

CG57399-03 Protein Sequence

MGLRPGIFLLELLLLLGQGTPQIHTSPRKSTLEGQLWPETVHSLKPSDIKFVAAIGNL EIVPDPGTGDLEKQDERPQQVCMGVMTVLSDIIFYFSPSVPMPVCHTGKRVIPHDGAE DLWIQAQELVRNMKENQLDFQFDWKLINVFFSNASQCYLCPSAQQNGLAAGGVDELMG VLDYLQQEVPRAFVNLVDLSEVAEVSRQYHGTWLSPAPEPCNCSEETTRLAKVVMQWS YOFAWNSLLASSRYSEOESFTVVFQPFFYETTPSDPRLQDSTTLAWHLWNRMMEPAGE KDEPLSVKHGRPMKCPSQESPYLFSYRNSNYLTFLQKPQDKLEVREGAEIRCPDKDPS DTVPTSVHRLKPAE INVIGALGDSLTAGNGAGSTPGNVLDVLTQYRGLSWSVGGDENI GTVTTLADILREFNPSLKGFSVGTGKETSPNAFLNQAVAGGRAEQARRLVDLMKNDTR IHFQEDWKIITLFIGGNDLCDFCNDLVHYSPQNFTDNIGKALDILHAEVPRAFVNLVT VLEIVNLRELYQEKKVYCPRMILRSLCPCVLKFDDNSTELATLIEFNKKFQEKTHQLI ESGRYDTREDFTVVVQPFFENVDMPKTQEGLPDNSFFAPDCFHFSSKSHSRAASALWN NMLEPVGQKTTRHEFENKINITCPNQVEWPFLRTYKNSMQGHGTWLPCRDRAPSALHP TSVHALRPADIQVVAALGDSLTAGNGIGSKPDDLPDVTTQYRGLSYSAGGDGSLENVT TLPDILREFNRNLTGYAVGTGDANDTNAFLNQAVPGAKARDLMSQVQTLMQKMKDDHR VNFHEDWKVITVLIGGSDLCDYCTDSNLYSAANFVHHLRNALDVLHREVPRVLVNLVD FLNPTIMRQVFLGNPDKCPVQQASVLCNCVLTLFENSQELARLEAFSRAYQSSMRELV GSGRYDTQEDFSVVLQPFFQNIQLPVLQDGLPDTSFFAPDCIHPNQKFHSQLARALWT

YTQREDFAVVVQPFFQNTLTPLNRGDTDLTFFSEDCFHFSDRGHAEMAIALWNNMLEP VGRKTTSNNFTHSRAKLKCPSPESPYLYTLRNSRLLPDQAEEAPEVLYWAVPVAAGVG LVVGIIGTVVWRCRRGGRREDPPMSLRTVAL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 24B.

Table 24B. Com	Table 24B. Comparison of NOV24a against NOV24b through NOV24c.		
Protein Sequence	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV24b	454748 1293	283/295 (95%) 285/295 (95%)	
NOV24c	271419 231423	1211/1426 (84%) 1261/1426 (87%)	

Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.

	Table 24C. Protein Sequence Properties NOV24a
PSort analysis:	0.6850 probability located in endoplasmic reticulum (membrane); 0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.1080 probability located in nucleus
SignalP analysis:	Likely cleavage site between residues 24 and 25

A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.

Table 24D. Geneseq Results for NOV24a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW30751	Rat phospholipase-B/lipase - Rattus rattus, 1450 aa. [JP09248190-A, 22-SEP-1997]	501403 601447	911/1404 (64%) 1077/1404 (75%)	0.0	

WO 02/072757 PCT/L 802/06908

	267 aa. [WO200157188-A2, 09-AUG-2001]			
AAM25824	Human protein sequence SEQ ID NO:1339 - Homo sapiens, 267 aa. [WO200153455-A2, 26-JUL-2001]	9851203 45267	205/224 (91° _o) 213/224 (94° _o)	e-117
AAM95420	Human reproductive system related antigen SEQ ID NO: 4078 - Homo sapiens, 148 aa. [WO200155320- A2, 02-AUG-2001]	9791106 4133	110/130 (84%) 117/130 (89%)	3e-56
ABB11237	Human phospholipase homologue, SEQ ID NO:1607 - Homo sapiens, 132 aa. [WO200157188-A2, 09- AUG-2001]	393478 43132	84/90 (93%) 86/90 (95%)	3e-40

In a BLAST search of public sequence databases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.

Table 24E. Public BLASTP Results for NOV24a					
Protein Accession Number	Protein/Organism/Length	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q05017	Phospholipase ADRAB-B precursor (EC 3.1) - Oryctolagus cuniculus (Rabbit), 1458 aa.	61416 21456	1042/1466 (71%) 1179/1466 (80%)	0.0	
O70320	PHOSPHOLIPASE B - Cavia porcellus (Guinea pig), 1463 aa.	71414 31458	965/1474 (65%) 1135/1474 (76%)	0.0	
O54728	PHOSPHOLIPASE B - Rattus norvegicus (Rat), 1450 aa.	501403 601447	911/1404 (64%) 1077/1404 (75°6)	0.0	
Q96DP9	CDNA FLJ30866 FIS, CLONE FEBRA2004110, HIGHLY SIMILAR TO PHOSPHOLIPASE ADRAB-B PRECURSOR (EC 3.1) - Homo sapiens (Human), 270 aa.	454714 1259	257/261 (98%) 258/261 (98%)	c-151	
Q9N2Z4	HYPOTHETICAL 41.4 KDA PROTEIN - Caenorhabditis elegans, 377 aa.	343673 37369	130/343 (37%) 202/343 (57%)	1c-59	

PFam analysis predicts that the NOV24a protein contains the domains shown in the

Table 24F. Domain Analysis of NOV24a					
Pfam Domain	NOV24a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
Lipase_GDSL: domain 1 of 3	360484	54/147 (37%) 116/147 (79%)	4.8e-42		
Lipase_GDSL: domain 2 of 3	705834	57/147 (39%) 116/147 (79%)	4.5e-44		
SecA_protein: domain 1 of 1	834851	10/20 (50%) 17/20 (85%)	4.9		
Vitellogenin_N: domain 1 of 1	11071124	8/18 (44%) 17/18 (94%)	3.8		
Lipase_GDSL: domain 3 of 3	10621185	48/147 (33%) 114/147 (78%)	6.3e-37		

Example 25.

The NOV25 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 25A.

Table 25A. NOV25 Sequence Analysis				
	SEQ ID NO: 87	1348 bp		
NOV25a, CG59311-01 DNA Sequence	CGGGCCGCTGCTGCTGGGACGACGCGCGCGCGCTACCGTGCGGACGCGCGCG	GCCGCTGCGC. ICCCTGCGCG. ICCCGCGACGA. ICCGCGCGACGA. AAGCGGCGCGGGGGGGGGGGGGGGGGG	GGCAGCGACGCTGATTCTGGAGCCCG ATCGCAGTGCGCGGCTGGCCCGGA ACGAAGAGGGGCGCGCTTTCCGGGCC GCTGGACCTGGAGCGCGCGCGCCGCGC	
	ORF Start: ATG at 31	ORF Sto	p: TAA at 1294	
	SEQ ID NO: 88	421 aa	MW at 46815.4kD	
NOV25a,			TLRTSLRDEEGALFRAHARYRADARD	

	RPQIICYPETGHCIDPPYFPPSRASVHAVLGEAIFYGGEPKAHSKAQVDAWQQIQTI HKHLNGKKSVKHSKI		
	SEQ ID NO: 89	1021 bp	
NOV25b, CG59311-02 DNA Sequence	AGATTGGGATGCCAGCAGCCTGATCCTGGAGCCCGCGGGCCGTTGCTGCTGGGACG GCCGCTGCGCATCGCAGTGCGCGGGCCTGCTGCTGCGCAC TCCCTGCGCAACGAGAGAGGGCCGCTCTTCCGGGCCCACCCCCCACCCGCACCCCTCTAATCCCGGCACCTTTGGGGGCCCAAGGCAGCCACCCCTCCTGGCACCCCTCTAATCCCGGCACCTTTGGGGGGCCAAGGCAGGGGCCCTTTCCTGGGATCATTG TCTGTTTGGGACCAGCAGGGGCCTTTTCTGAATACAGGCCAGCCTCCTGGCCGGACA GGTTTTGCTGTGCCTGGCTTATTTCAAGTTTTGAAGACCTCCCCGAACATCTG ATGATGTACATCTGGAGTACTTTGAAGAAGCCGTGGACTTTATGCTGCAGCATCCAA GGTGAAAGGTCCTAGTATTTGAGAAAGCCGTGGACTTTATCAATGCCTGTGTCT TCAATGGCTTCTTTCTTGAAGGGCATCACAGCCACTGTACTTATCAATGCCTGTGTAC CCAACACAGTAGCTCCTCTACATTACAAGGATTTCCACTTTTATGGACACTTGGAG AATCCACTGGAGAAACAAACACCAAAGTCTTGTTCATTGGAAAAGGCCAGGTG CCTTCTTGTTTATTGTTGGCATGGATGATCAAAGCTGGAAGAGTGAATTCTATGCTC GATAGCCTCTGAAAGGCTACAAGCTCAAAGCTGGAAGAGTGAATATCTGTTAT CCAGAAACTGGTCACTGTATTGACCCACCTTTTTTCCTCCTTCTAGAGCTTCTGTTA CCAGAACTGGTCACTGTATTGACCCACCTTTTTTTCCTCCTTCTAGAGCTTCTGTGAACCCCAGATAATCTTGTTAT CCAGAAACTGGTCACTGTATTGACCCACCTTTTTTTCCTCCTTCTAGAGCTTCAAAGGAACCCCAGATAATCTGTTATCCACCTTTTTTGGTGAGCACAAAGACTCTCAAAGGCTAAAACCTCCAAAGGCTCACTCA		
	ORF Start: ATG at 9	ORF Stop: TAA at 1011	
	SEQ ID NO: 90	334 aa MW at 36926.0kD	
NOV25b, CG59311-02 Protein Sequence	MAATLILEPAGRCCWDEPLRIAVRGLAPEQPVTLRTSLRDEEGALFRAHARYRADASN PGTLGGQGRGPFPGIIDLFGSSRGLCEYRASLLAGHGFAVLALAYFRFEDLPEDLNDV PLEYFEEAVDFMLQHPKVKGPSIALLGFSKGGDLCLSMASFLKGITATVLINACVANT VAPLHYKDMIIPKLVDDLGKVKITKSGFLTFMDTWSNPLEEHNHQSLVPLEKAQVPFL FIVGMDDQSWKSEFYAQIASERLQAHGKERPQIICYPETGHCIDPPYFPPSRASVHAV LGEAIFYGGEPKAHSKAQVDAWQQIQTFFHKHLNGKKSVKHSKI		
	SEQ ID NO: 91	1021 bp	
NOV25c, CG59311-03 DNA Sequence	AGATTGGCATGGCAGCGACGCTGATCCTGGAGCCCGCGGGCCGCTGCTGCTGGGACGA GCCGCTGCGCATCGCAGTGCGCGGGCCTGCCCCGGAGCAGCCAGC		
	ORF Start: ATG at 9	ORF Stop: TAA at 1011	
	SEQ ID NO: 92	334 aa MW at 36926.0kD	
NOV25c, CG59311-03 Protein Sequence	PGTLGGQGRGPFPGIIDLFGSSR HLEYFEEAVDFMLQHPKVKGPSI VAPLHYKDMIIPKLVDDLGKVKI	RGLAPEQPVTLRTSLRDEEGALFRAHARYRADASN GLCEYRASLLACHGFAVLALAYFRFEDLPEDLMDV ALLGFSKGGDLCLSMASFLKGITATVLINACVANT IKSGFLTFMDTWSNPLEEHNHQSLVPLEKAQVPFL QAHGKERPQIICYPETGHCIDPPYFPSRASVHAV QIQTFFHKHLNGKKSVKHSKI	

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 25B.

	Match Residues	Similarities for the Matched Region
NOV25b	154421 67334	268/268 (100°%) 268/268 (100°%)
NOV25c	154421 67334	268/268 (100%) 268/268 (100%)

Further analysis of the NOV25a protein yielded the following properties shown in Table 25C.

	Table 25C. Protein Sequence Properties NOV25a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.3630 probability located in microbody (peroxisome); 0.1958 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25D.

Table 25D. Geneseq Results for NOV25a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV25a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM41490	Human polypeptide SEQ ID NO 6421 - Homo sapiens, 494 aa. [WO200153312-A1, 26-JUL-2001]	1421 74494	288/421 (68%) 347/421 (82%)	e-175	
AAM39704	Human polypeptide SEQ ID NO 2849 - Homo sapiens, 483 aa. [WO200153312-A1, 26-JUL-2001]	1421 63483	288/421 (68° o) 346/421 (81° o)	e-175	
AAY71112	Human Hydrolase protein-10 (HYDRL-10) - Homo sapiens, 483 aa. [WO200028045-A2, 18-MAY-2000]	1421 63483	288/421 (68%) 346/421 (81%)	e-175	
AAB93479	Human protein sequence SEQ ID	1421	287/421 (68%)	e-175	

5.53 942

encoded from gene 81 - Homo	1181	181/181 (100%)	
sapiens, 182 aa. [WO9918208-A1,			
15-APR-1999]			

In a BLAST search of public sequence databases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25E.

	Table 25E. Public BLASTP Results for NOV25a					
Protein Accession Number	Protein/Organism/Length	NOV25a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
P49753	Peroxisomal acyl-coenzyme A thioester hydrolase 2 (EC 3.1.2.2) (Peroxisomal long-chain acyl-coA thioesterase 2) (ZAP128) - Homo sapiens (Human), 421 aa.	1421 1421	288/421 (68%) 347/421 (82%)	e-175		
Q9QYR7	Peroxisomal acyl-coenzyme A thioester hydrolase 2 (EC 3.1.2.2) (Peroxisomal long-chain acyl-coA thioesterase 2) (PTE-Ia) - Mus musculus (Mouse), 432 aa.	1421 12432	264/421 (62%) 331/421 (77%)	e-157		
O88267	Cytosolic acyl coenzyme A thioester hydrolase, inducible (EC 3.1.2.2) (Long chain acyl-CoA thioester hydrolase) (Long chain acyl-CoA hydrolase) (CTE-I) (LACH2) (ACH2) - Rattus norvegicus (Rat), 419 aa.	1421 1419	268/421 (63%) 318/421 (74%)	e-153		
Q9QYR9	Acyl coenzyme A thioester hydrolase, mitochondrial precursor (EC 3.1.2.2) (Very-long-chain acyl-CoA thioesterase) (MTE-I) - Mus musculus (Mouse), 453 aa.	3413 44452	264/411 (64%) 321/411 (77%)	e-153		
O55137	Cytosolic acyl coenzyme A thioester hydrolase, inducible (EC 3.1.2.2) (Long chain acyl-CoA thioester hydrolase) (Long chain acyl-CoA hydrolase) (CTE-I) - Mus musculus (Mouse), 419 aa.	1413 1411	262/413 (63° o) 319/413 (76° o)	e-153		

PFam analysis predicts that the NOV25a protein contains the domains shown in the

T 1.1 751

Table 25F. Domain Analysis of NOV25a					
Pfam Domain	NOV25a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
No Significant Matches Found					

Example 26.

The NOV26 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 26A.

Table 26A. NOV26 Sequence Analysis				
	SEQ ID NO: 93	1375 bp		
NOV26a, CG59309-01 DNA Sequence	GGGACGCGGACGCCGTCCGGACATTCGGCGCGCTTGCCACGATCTTGGACGGGTCTC GGGCCTCGACCTTTGAATTCCCCGCTCCGGCTCCAAGATGTCAGCAACGCTGATCCTG GAGCCCCCAGGCCGCTGCTGCTGGAACGACGCTGGCGCATTGCCGTGCGCGGCCTCG CCCGGAGCAGCGGGTTACGCTGCGCGCGCTCCTGCGCGAGCAGAAGGGCGCCCTT CCGGGCCCACGCGGCTACTGCGCCGACGCCCAGGCGCAGGAAAGGGCGCGCCTT CCGGGCCCACGCGCGCTACTGCGCCGACGCCCATGGGCCTGGAGCCCAG CCCGCGCTGGGCGGCTTCCTGCGCGGACCCCAGGCCCATGGGCCTCTTGGCCCTAG GAGTTGGAGGTGCTGGACGCCCTGAAGCCCATGGGCCTCTTGGCCCTGG GAGTTGGAGGTGCTGGACGCCCCGAGCCCTGGACGCTCCTTGGCCCAGGC CAGCACGAGCGCACTTCCTCCCGCCAGGGGTGCTGAACCCTTCCCAGGGATCAT TGACATCTTTGGTATTGGAGGGGGCCCCTTTGAAGCCAGCC			
	ORF Start: ATG at 96	ORF Stop	o: TAA at 1362	
	SEQ ID NO: 94	422 aa	MW at 46455.1kD	
NOV26a, CG59309-01 Protein Sequence	MSATLILEPPGRCCWNEPVRIAVRGLAPEQRVTLRASLRDEKGALFRAHARYCADAR ELDLERAPALGGSFAGLEPMGLLWALEPEKPFWRFLKRDVQIPFVVELEVLDGHDPE CC GRLLCQAQHERHFLPPGVRRQSVRAGRVRATLFLPPGEPGPFPGIIDIFGIGGGLLE RASLLAGHGFATLALAYYNFEDLPNNMDNISLEYFEEAVCYMLQHPQVKGPGIGLLG SLGADICLSMASFLKNVSATVSINGSGISGNTAINYKHSSIPPLGYDLRRIKVAFSG VDIVDIRNALVGGYKNPSMIPIEKAQGPILLIVGQDDHNWRSELYAQTVSERLQAHG EKPQIICYPGTGHYIEPPYFPLCPASLHRLLNKHVIWGGEPRAHSKAQEDAWKQILA FCKHLGGTQKTAVPKL			

Further analysis of the NOV26a protein yielded the following properties shown in Table 26B.

	Table 26B. Protein Sequence Properties NOV26a
PSOT	0.4500 probability located in cytoplasm: 0.2585 probability located in lysosome

SignalP	No Known Signal Sequence Predicted
analysis:	

A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26C.

	Table 26C. Geneseq Results for NOV26a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV26a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM41490	Human polypeptide SEQ ID NO 6421 - Homo sapiens, 494 aa. [WO200153312-A1, 26-JUL-2001]	1422 74494	296/422 (70%) 341/422 (80%)	e-179	
AAM39704	Human polypeptide SEQ ID NO 2849 - Homo sapiens, 483 aa. [WO200153312-A1, 26-JUL-2001]	1422 63483	296/422 (70%) 341/422 (80%)	e-179	
AAY71112	Human Hydrolase protein-10 (HYDRL-10) - Homo sapiens, 483 aa. [WO200028045-A2, 18-MAY-2000]	1422 63483	296/422 (70%) 341/422 (80%)	e-179	
AAB93479	Human protein sequence SEQ ID NO:12766 - Homo sapiens, 483 aa. [EP1074617-A2, 07-FEB-2001]	1422 63483	295/422 (69%) 340/422 (79%)	e-178	
AAY07932	Human secreted protein fragment encoded from gene 81 - Homo sapiens, 182 aa. [WO9918208-A1, 15-APR-1999]	242422 1181	93/181 (51%) 123/181 (67%)	2e-48	

In a BLAST search of public sequence databases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26D.

	Table 26D. Public BLASTP Results for NOV26a					
Protein Accession Number	Protein/Organism/Length	NOV26a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q9QYR8	PEROXISOMAL LONG CHAIN ACYL-COA THIOESTERASE IB - Mus musculus (Mouse), 421 aa.	1422 1421	312/422 (73%) 362/422 (84%)	0.0		
P49753	Peroxisomal acyl-coenzyme A thioester hydrolase 2 (EC 3.1.2.2) (Peroxisomal long-chain acyl-coA thioesterase 2) (ZAP128) - Homo sapiens (Human), 421 aa.	1422 1421	296/422 (70%) 341/422 (80%)	e-178		
Q9QYR7	Peroxisomal acyl-coenzyme A thioester hydrolase 2 (EC 3.1.2.2) (Peroxisomal long-chain acyl-coA thioesterase 2) (PTE-Ia) - Mus musculus (Mouse), 432 aa.	1422 12432	281/424 (66%) 333/424 (78%)	e-163		
O55137	Cytosolic acyl coenzyme A thioester hydrolase, inducible (EC 3.1.2.2) (Long chain acyl-CoA thioester hydrolase) (Long chain acyl-CoA hydrolase) (CTE-I) - Mus musculus (Mouse), 419 aa.	1422 1419	275/423 (65%) 330/423 (78%)	e-162		
O88267	Cytosolic acyl coenzyme A thioester hydrolase, inducible (EC 3.1.2.2) (Long chain acyl-CoA thioester hydrolase) (Long chain acyl-CoA hydrolase) (CTE-I) (LACH2) (ACH2) - Rattus norvegicus (Rat), 419 aa.	1422 1419	276/423 (65%) 329/423 (77%)	e-162		

PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26E.

Table 26E. Domain Analysis of NOV26a					
Pfam Domain	NOV26a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
DLH: domain 1 of 2	144188	17/52 (33%) 32/52 (62%)	63		

Example 27.

The NOV27 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 27A.

Table 27A. NOV27 Sequence Analysis				
	SEQ ID NO: 95	1333 bp		
NOV27a, CG57364-01 DNA Sequence	CGCCATGGCCGAGCACCTGGAGC ACACAGGAGCGGCTGAAGCATGC CCCAGGCTGAGAAGGATCCAC GGCAGCCAGCCAAGGGCTCCTCG GAGGCCGCCTGCCCAAGGGCTCCTGC AGCTGACTTGGCCAACGAGGAC AGTGAGTGCTGACCCAGCCACCACCACCACCACCACCACCACCACCACCA	TG TGCAGA CCAGAAGAGG GG ZAAGAAGA AG ZAGAAGAAGA CGG ZTGACGG CTC TGGAGG CTC TGGAGG CTC TGGAGG CAGACGCTGA CGAGCCGCCAA CGAGCCGCCAA CGAGCCGCCAA CGAGCCGCCAA CGAGCCCCAG CGAGCCCCAGA CGCGCCCAGA CGCGCCCAGACACACAC	GAGCASCCTGTGGGCAAGCAGCCGC AGATGCCCATGGTGGCAGGATGAGC GCGCGCCCAGCAGGTGAAGATGTGGG GGGCGCCCAGCAGGTGAAGATGTGGG GGGCCTCCCAGGTGTTGTCCTTCTG CCGCCAGTTCCTTGGAGTGGGTCA GCCCTGCACCAGTGTTGCATTGATGA CTGGGGCCACCTGCACCTGGTGG GCGGTCAACACCACGGGGAACATGC ACTGCGGGCACCTGCACCTGGTGG GCGGTCAACACCAGACGGGAACATGC ACCTGCGGGCCACCTGCACCTGGACCA ACGGGTCAACACCGAGGGAACATGC GCAGACCTCCATGCCCCCTGGACCA ACGGGTTCAGCGAGACGGGCCCTGC GGACCAAGACGGCTGCCCTG GGACCAAGACGGCTGCCCTG GGACCAAGACGCCTCCTGGGCCAC CCCCCTTCATCTCTCCGGGACCAC CCAGCCCTTCATCTCCCGGAACAC CCAGCCTGCAGCCCCCCCAGAACACAC CTGAGAAGGGCCCCCCCAGGGCAACACAC CTGAGAAGAGGCCCCCCGGGAAACAC CTGAGAAGGGCCCCTCTGCGCGCCCC CCCCTTCATCCCGGAAGAAG CTGAGAAGGACGCCCTCCTGGACCAC CCTGCCCGAAATGACCTGGAAGAAG CTGAGAAGGGCCCCTGAAGCAGGTCC GCTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGACAAGACGCCTCCTGAAGCAGGTCC GCTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGCCCGAAATGACCTGGAAGAAG CTGACAAGACCTCCTGAAGCAGGTCC CTGCCCGAAATGACCTGGAAGAAG CTGCCCCGAAATGACCTGGAAGAAG CTGCCCCGAATGACCTGCAAGAAG CTGCCCCCTGCACCCCCCCTGAACCACCTGCACACCTGCACACCTCCCCCACCCCCCCC	
NOV27a, CG57364-01 Protein Sequence	MAEHLELLAEMPMVGRMSTQERLKHAQKRRAQQVKMWAQAEKEAQGKKGPGERPRKEA ASGLLKOVLEPPSVVLLEAAARNDLEEVROFLGSGVSPDLANEDGLTALHOCCIDDE			

Further analysis of the NOV27a protein yielded the following properties shown in Table 27B.

	Table 27B. Protein Sequence Properties NOV27a			
PSort analysis:	0.3000 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.1547 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV27a protein against the Geneseq database, a proprietary database

	Table 27C. Geneseq Results for NOV27a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV27a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAM40636	Human polypeptide SEQ ID NO 5567 - Homo sapiens, 440 aa. [WO200153312-A1, 26-JUL-2001]	89351 1263	262/263 (99%) 263/263 (99%)	e-151		
AAM38850	Human polypeptide SEQ ID NO 1995 - Homo sapiens, 410 aa. [WO200153312-A1, 26-JUL-2001]	119351 1233	233/233 (100%) 233/233 (100%)	e-132		
AAM78864	Human protein SEQ ID NO 1526 - Homo sapiens, 567 aa. [WO200157190-A2, 09-AUG-2001]	1351 1348	209/351 (59%) 265/351 (74%)	e-118		
ABB11817	Human KIAA0823 protein homologue, SEQ ID NO:2187 - Homo sapiens, 536 aa. [WO200157188-A2, 09-AUG-2001]	45354 3318	173/316 (54%) 226/316 (70%)	3e-94		
AAM79848	Human protein SEQ ID NO 3494 - Homo sapiens, 536 aa. [WO200157190-A2, 09-AUG-2001]	45354 3318	173/316 (54%) 226/316 (70%)	3e-94		

In a BLAST search of public sequence databases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27D.

Table 27D. Public BLASTP Results for NOV27a					
Protein Accession Number	Protein/Organism/Length	NOV27a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96I34	UNKNOWN (PROTEIN FOR MGC:14333) - Homo sapiens (Human), 528 aa.	1351 1351	351/351 (100° 6) 351/351 (100° 6)	0.0	
Q923M0	MYOSIN PHOSPHATASE TARGETING SUBUNIT 3 MYPT3 - Mus musculus (Mouse), 524 aa (fragment).	1351 1351	301/351 (85%) 320/351 (90%)	e-171	
AAL62093	PROTEIN PHOSPHATASE 1 REGULATORY SUBUNIT 16B -	1351 1348	210/351 (59%) 266/351 (74%)	e-118	

	Bos taurus (Bovine), 568 aa.	1348	266/351 (74%)	
Q96T49	CAAX BOX PROTEIN TIMAP -	1351	209/351 (59%)	e-117
-	Homo sapiens (Human), 567 aa.	1348	265/351 (74%)	

PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27E.

	Table 27E. Domain Analysis of NOV27a				
Pfam Domain	NOV27a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
ank: domain 1 of 5	70102	8/33 (24%) 20/33 (61%)	99		
ank: domain 2 of 5	103135	16/33 (48%) 26/33 (79%)	7.1e-08		
ank: domain 3 of 5	136168	15/33 (45%) 26/33 (79%)	2.9e-07		
ank: domain 4 of 5	231263	16/33 (48%) 24/33 (73%)	2e-06		
ank: domain 5 of 5	264296	16/33 (48%) 27/33 (82%)	2.7c-08		

Example 28.

The NOV28 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 28A.

Table 28A. NOV28 Sequence Analysis				
	SEQ ID NO: 97	1719 bp		
NOV28a, CG59348-01 DNA Sequence	GCTGGTGCTGCAGGGTCGGCAGGGCGCACCCTCAGGGTCGCAGGGCACCGCAGGGTCGCAGGGCCTCGACACCAC	TGGCACAGGAATCCCAGGTAGATGACGGCGGCGCGCGCGC		

	CCCGCAGCGCTCCCTACAAAGGC CAAGTACCCCCAGAAGCCACACA AGGTCACGGGAGCGGGCGGATAA GAGATCAGCGACGAGAGCGCTCG GGACCACCCTGGGCACAGCAGCAGG	TTCTGAGATTC AAGTCTCGGAGAAA ATCCGGGAAAA BAGGTCGTATC CATCGGAGGTC GCAGGGCTCAC	GAGTGACTCCCCACCGAGACAGGCCC GGGGCTCCCGGAAGTCCAAGGACTG GCCGGAGTTCTTCCCGTTCTCGAAGC ATACAAGAAGAAAAAGTCATTACTACA GAACGCACAGGCCGTCGCTATGAGCG GACACGTGCTTCAGACCGGTCTGGGG GCTCGGCAGCAGCACTCTGAGGGCAGCT
	ORF Start: ATG at 44	ORF Stop	o: TGA at 1598
	SEQ ID NO: 98	518 aa	MW at 58034.5kD
NOV28a, CG59348-01 Protein Sequence	FTPSMSSGLDTDTETDLRVVGCE SMEHVSMACVHLASKIEEAPRFI IKAERRVLKELGFCVHVKHPHKI FQPESIACACIYLAARTLEIPLP HLEGEVEKRKHAIEEAKAQARGL SVKNTKRRLEGAKKAKADSPVNG	LIQAAGILLR RDVINVFHRL IVMYLQVLEC NRPHWFLLFG LPGGTQVLDG LPKGRESRSR APRSAPYKGS	LIGDRLYSGVLITLENCLLPDDKLR LPQVAMATGQVLFQRFFYTKSFVKH RQLRDKKKPVPLLLDQDYVNLKNQI ERNQHLVQTSWNYMNDSLRTDVFVR ATEEEIQEICLKILQLYARKKVDLT ITSGFSPAPKLVESPKEGKGSKPSPL SRSREQSYSRSPSRSASPKRFKSDS EIRGSRKSKDCKYPQKPHKSFSRSS SYERTGRRYERDHPGHSRHRF

Further analysis of the NOV28a protein yielded the following properties shown in Table 28B.

Table 28B. Protein Sequence Properties NOV28a				
Psort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.2400 probability located in nucleus; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28C.

Table 28C. Geneseq Results for NOV28a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM94028	Human stomach cancer expressed polypeptide SEQ ID NO 126 - Homo sapiens, 298 aa. [WO200109317-A1, 08-FEB-2001]	221518 1298	298/298 (100%) 298/298 (100%)	e-172
AAG64403	Human paneth cell enhanced	221518	298/298 (100%)	e-172

AAB94641	Human protein sequence SEQ ID NO:15526 - Homo sapiens, 298 aa. [EP1074617-A2, 07-FEB-2001]	221518 1298	298/298 (100%) 298/298 (100%)	e-172
AAM78533	Human protein SEQ ID NO 1195 - Homo sapiens, 526 aa. [WO200157190-A2, 09-AUG-2001]	2518 8526	316/526 (60%) 390/526 (74%)	e-168
AAB94371	Human protein sequence SEQ ID NO:14909 - Homo sapiens, 526 aa. [EP1074617-A2, 07-FEB-2001]	2518 8526	316/526 (60° °) 390/526 (74° °)	e-168

In a BLAST search of public sequence databases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28D.

Table 28D. Public BLASTP Results for NOV28a				
Protein Accession Number	Protein/Organism/Length	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96S94	HYPOTHETICAL 58.1 KDA PROTEIN - Homo sapiens (Human), 520 aa.	3518 5520	516/516 (100%) 516/516 (100%)	0.0
Q9ЈЈА7	BRAIN CDNA, CLONE MNCB-5160, SIMILAR TO MUS MUSCULUS PANETH CELL ENHANCED EXPRESSION PCEE MRNA - Mus musculus (Mouse), 518 aa.	1518 1518	466/519 (89%) 482/519 (92%)	0.0
Q9UK58	CYCLIN L ANIA-6A - Homo sapiens (Human), 526 aa.	2518 8526	316/526 (60%) 390/526 (74%)	e-167
Q9R1Q2	CYCLIN ANIA-6A - Rattus norvegicus (Rat), 527 aa.	2518 9527	312/526 (59%) 391/526 (74%)	e-165
Q9WV44	CYCLIN ANIA-6A - Mus musculus (Mouse), 531 aa.	3518 15531	314/526 (59%) 385/526 (72%)	e-162

PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28E.

Table 28E. Domain Analysis of NOV28a				
Pfun D. m.d.	NOV28a Match	Identities/ Similarities	Expect	

29104

cyclin: domain 1 of 1	46190	28/163 (17%) 86/163 (53%)	0.0022
Srg: domain 1 of 1	221230	4/10 (40%) 10/10 (100%)	6.7
transcript_fac2: domain 1 of 1	235253	12/19 (63%) 15/19 (79%)	0.86
cyclin_C: domain 1 of 1	196311	22/139 (16%) 65/139 (47%)	2.6

Example 29.

The NOV29 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 29A.

Table 29A. NOV29 Sequence Analysis			
	SEQ ID NO: 99	1069 bp	
NOV29a, CG59245-01 DNA Sequence	CGGGGCCTGGTCGGCACCTGGCCCATGGACTCCACGCTGGCCGCGGCAT		
	ORF Start: ATG at 28 ORF Stop: TGA at 1039		
	SEQ ID NO: 100	337 aa	MW at 37808.0kD
NOV29a, CG59245-01 Protein Sequence	WISLITEWLNLIFKWFLFGDRPF MITGAALWPIMTALSSQVRWVRV WLMTPRVPMERELSFYGLTALAL	WWVHESGYYS MPSLAYCTFI MLGTSLIYW LHSPCYAQVF	GDPKILFLFYFPAAYYASRRVGIAVL SQAPAQVHQFPSSCETGPGGSPSGHC LLAVGLSRIFILAHFPHQVLAGLITG FLFTLGLDLSWSISLAFKWCERPEWI RRAQLGNGQKIACLVLAMGLLGPLDW JHMFSAQEAPPIHSS
	SEQ ID NO: 101	1386 bp	
NOV29b, CG59245-02 DNA Sequence	TGGAGTCCACGCTGGGCGCATCGTGATAGCCGAGGCGCTACAGAACC		CCGAGGCGCTACAGAACCAGCTAGC TCTGGGCGATCCCAAGATCCTCTT CCGCCGTGTGGGCATCCCGGTGCTCT ATCTTCAAGTGGTTTCTTTTTGGAGA ACTACAGCCAGGCTCCAGCCCAGTT AGGCAGCCCTTCTGGACACTGCATGA AGCCTGTCTTCGCAGTGGCCACTGG CCCTGCTTATTGCACCTTCCTTTTG

	CATTTT CAATTTCCTCAAGTACA TGGGCAGTGCACATGTTCAGTGC TTGTGTGCCTCCCTTTCCTTT	ACCCTCTGGCC CCCAGGAAGCA CCTCCCACAAA CCAGCCCCTA GCCCCAAAGAT CCAAGCCCCCA	CACCCCCTCAGATCAGCCTCTTCTA CATGCCCAGTCCTGGCCCTCGTGCCC ACCGCCATCCACTCTTCCTGACTTC AGCCAACACTCTGTGACCACCACACT AAGTAGGCCCTCCCTCAAATCT CGGCCTTCTCTCTCCCAGATAAGTT AAAGAGCAAAGGCAACACCA CAGCGGAAAAGGCAACACCA CGGCGGAAAAGGCAACACCA CGGCGGAAAAGTACAGACCCA
	ORF Start: ATG at 58	ORF Stop	o: TGA at 1096
	SEQ ID NO: 102	346 aa	MW at 38718.0kD
NOV29b, CG59245-02 Protein Sequence	WISLITEWLNLIFKWFLFGDRPF ITGAALWPIMTALSSQVATRARS GLITGAVLGWLMTFRVPMERELS KWCERPEWIHVDSRPFASLSRDS	WWVHESGYYS RWVRVMPSLA FYGLTALALM GAALGLGIAI	EDPKILFLFYFPAAYYASRRVGIAVL SQAPAQVHQFPSSCETGPGSPSGHCM YYCTFLLAVGLSRIFILAHFPHQVLA HLGTSLIYWTLFTLGLDLSWSISLAF HSPCYAQVRRAQLGNGQKIACLVLA DVLALVPWAVHMFSAQEAPPIHSS

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 29B.

Table 29B. Comparison of NOV29a against NOV29b.				
Protein Sequence	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV29b	1337 1346	335/347 (96%) 335/347 (96%)		

Further analysis of the NOV29a protein yielded the following properties shown in Table 29C.

Table 29C. Protein Sequence Properties NOV29a			
PSort analysis:	0.6850 probability located in endoplasmic reticulum (membrane); 0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 41 and 42		

A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.

	Table 29D. Geneseq Results for NOV29a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79500	Human protein SEQ ID NO 3146 - Homo sapiens, 382 aa. [WO200157190-A2, 09-AUG-2001]	1337 37382	336/347 (96%) 336/347 (96%)	0.0	
AAB42637	Human ORFX ORF2401 polypeptide sequence SEQ ID NO:4802 - Homo sapiens, 377 aa. [WO200058473-A2, 05-OCT-2000]	1337 31377	328/348 (94° o) 328/348 (94° o)	0.0	
AAB85355	Human phosphatase (PP) (clone ID 1269556CD1) - Homo sapiens, 385 aa. [WO200153469-A2, 26-JUL-2001]	1305 1314	297/315 (94%) 298/315 (94%)	e-174	
AAM78516	Human protein SEQ ID NO 1178 - Homo sapiens, 404 aa. [WO200157190-A2, 09-AUG-2001]	1337 125404	266/341 (78%) 272/341 (79%)	e-146	
AAB25679	Human secreted protein sequence encoded by gene 15 SEQ ID NO:68 - Homo sapiens, 141 aa. [WO200043495-A2, 27-JUL-2000]	198337 1140	140/140 (100%) 140/140 (100%)	6e-81	

In a BLAST search of public sequence databases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.

Table 29E. Public BLASTP Results for NOV29a				
Protein Accession Number	Protein/Organism/Length	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAH21574	HYPOTHETICAL 38.7 KDA PROTEIN - Homo sapiens (Human), 346 aa.	1337 1346	336/347 (96° u) 336/347 (96° o)	0.0
Q9BUM1	HYPOTHETICAL 40.1 KDA PROTEIN - Homo sapiens (Human), 360 aa (fragment).	1337 15360	336/347 (96%) 336/347 (96%)	0.0

Q98UF8	GLUCOSE-6-PHOSPHATASE - Sparus aurata (Gilthead sea bream), 350 aa.	8323 8337	123/333 (36%) 185/333 (54%)	2e-57
Q9Z186	GLUCOSE-6-PHOSPHATASE - Mus musculus (Mouse), 355 aa.	7325 7345	128/343 (37%) 188/343 (54%)	5e-56

PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29F.

Table 29F. Domain Analysis of NOV29a			
Pfam Domain	NOV29a Match Region	Identities/ Similarities for the Matched Region	Expect Value
PAP2: domain 1 of 1	51190	38/175 (22%) 95/175 (54%)	0.00037

Example 30.

The NOV30 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 30A.

Table 30A. NOV30 Sequence Analysis			
	SEQ ID NO: 103	1624 bp	
NOV30a,	ATGGAACTGAAGGCCGAGGAGG	SAGGAGGTGGGTGGCGTCCAGCCGGTGGACTTGGTGG	
CG59241-01 DNA Sequence	AGGGCCAAGGCAGGTGCTGTGC	CCATGGCACCAACCACATTTTTGTGGAGGGGGGTCC GGCGGTGGCCTTTGTCCTGGCACTGGGTGCCTTCCTG	
	ACGAAGTGGCCACCACGGAGCT	SCTTATTACCTCAGCTACCCACACGTGACCCTTCTAA IGGCCTTCCCGGCAGTCACCCTCTGCAACACTAATGC CTACCCTGACTTGCTTTATTTGGCCCCCATGCTGGGA	
	CTGGATGAAAGTGATGACCCCC	GGGTGCCCTCGCTCCACCGGGCCCTGAGGCCTTCT	
		CCAAGGGGGACCCTGCGGCCCTCACAACTTCTCAGTG	
	1	GGACGGGCAATGGGCTGGAAATCATGCTGGACATCCA GTGGGGGGAGACTGACGAGAGCGCCTTCGAAGCAGGC	
	GCGTGGCCCCAGGCTTCCAGAG	CAGGATGAACCTCCTTTCATCGACCAGCTGGGCTTTG CCTTTGTGGCCTGCCAGGAGCAGCGGATCTACCTGCC	
	AGCATCACTGCCTGCCGCATC	AGCTGTTACCATGGACTCGGATTTCTTCGACTCCTAC BACTGTGAGACGCGCTACCTGGTGGAGAACTGCAACT BTGATGCCCCATACTGTACTCCAGAGCAGTACAAGGA	
	GTGTGCAGATCCTGCTCTGGAG	TICATGCCCCATACTGTACTCCAGAGTACTACAAGAA CTTCCTGGTGGAGAAAGAGCCAGGAGTACTGCGTGTGT CGCTATGGCAAAGAGCTGTCCATGGTCAAGATCCCCA	
	GCAAAGCCTCAGCCAAGTACCT	IGGCCAAGAATTCAACAAATCTGAGCAATACATAGG	
	3	GCAGGGCTCCTGGGTGACATCGGGGGCCAGATGGGGC	
	1	CGACGAGGAAAATGCCAGAAGGAGGCCAAAAGGAGC TCAGCCTGGACGACGTCAAAAGACACAACCCGTGCG	
		CCGGGATGACATACGCTGCCAACATCCTACCTCACCA GGACTTTACCTGCTGAGCCCCGCAGGCCGCTGAACCA	
		ORF Stop: TGA at 1543	

CG59241-01 Protein Sequence	LDESDDPGVPLAPPGPEAFSGEPFNLHRFYNRSCHRLEDMLLYCSYQGGPCGPHNFSV
CG37241-01 Trotem Sequence	VFTRYGKCYTFNSGRDGRPRLKTMKGGTGNGLEIMLDIQQDEYLPVWGETDETSFEAG
	IKVQIHSQDEPPFIDQLGFGVAPGFQTFVACQEQRIYLPPPWGTCKAVTMDSDFFDSY
	SITACRIDCETRYLVENCNCRMVHMPGDAPYCTPEQYKECADPALDFLVEKDQEYCVC
	EMPCNLTRYGKELSMVKIPSKASAKYLAKKFNKSEQYIGENILVLDIFFEVLNYETIE
	QKKAYEIAGLLGDIGGQMGLFIGASILTVLELFDYAYEVVIKHKLCRRGKCQKEAKRS
	SADKGVALSLDDVKRHNPCESLRGHPAGMTYAANILPHHPARGTFEDFTC

Further analysis of the NOV30a protein yielded the following properties shown in Table 30B.

Table 30B. Protein Sequence Properties NOV30a		
PSort analysis:	0.7900 probability located in plasma membrane; 0.3000 probability located in Golgi body; 0.2000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in mitochondrial inner membrane	
SignalP analysis:	Likely cleavage site between residues 60 and 61	

A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30C.

	Table 30C. Geneseq Results for NOV30a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV30a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY69178	A rat acid-sensitive cationic channel 1B (rASIC1B) - Rattus sp, 559 aa. [WO200008149-A2, 17-FEB-2000]	1514 47559	488/515 (94%) 497/515 (95%)	0.0	
AAY03186	Rat Acid sensitive ion channel protein sequence - Rattus sp, 513 aa. [WO9911784-A1, 11-MAR-1999]	1514 1513	488/515 (94%) 498/515 (95%)	0.0	
AAW'68507	Rat acid sensing ionic channel 1B - Rattus sp, 559 aa. [WO9835034-A1, 13-AUG-1998]	1514 47559	488/515 (94%) 497/515 (95%)	0.0	
AAY69175	A rat acid-sensitive cationic channel 1A (rASIC1A) - Rattus sp, 526 aa. [WO200008149-A2, 17-FEB-2000]	1514 1526	416/527 (78%) 445/527 (83%)	0.0	
AAY03188	Rat Acid sensitive ion channel alpha protein sequence. Rattus sp. 526 m.	1514	416/527 (78%)	0.0	

In a BLAST search of public sequence databases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30D.

	Table 30D. Public BLASTP Results for NOV30a				
Protein Accession Number	Protein/Organism/Length	NOV30a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q91YB8	ION CHANNEL - Rattus norvegicus (Rat), 559 aa.	1514 47559	489/515 (94%) 498/515 (95%)	0.0	
O88762	ASIC-BETA - Rattus norvegicus (Rat), 513 aa.	1514 1513	488/515 (94%) 498/515 (95%)	0.0	
P55926	Amiloride-sensitive brain sodium channel BNaC2 (Amiloride-sensitive cation channel neuronal 2) (Proton gated cation channel ASIC1) - Rattus norvegicus (Rat), 526 aa.	1514 1526	416/527 (78%) 445/527 (83%)	0.0	
P78348	Amiloride-sensitive brain sodium channel BNaC2 (Amiloride-sensitive cation channel neuronal 2) - Homo sapiens (Human), 574 aa.	1514 1574	421/575 (73%) 447/575 (77%)	0.0	
Q99NA1	PROTON-GATED CATION CHANNEL SUBUNIT ASIC-BETA2 - Rattus norvegicus (Rat), 425 aa.	175514 86425	334/341 (97%) 337/341 (97%)	0.0	

PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30E.

Table 30E. Domain Analysis of NOV30a				
Pfam Domain	NOV30a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
ASC: domain 1 of 2	21118	34/106 (32%) 79/106 (75%)	1.6e-29	
ASC: domain 2 of 2	145442	133/351 (38%) 281/351 (80%)	2.1e-139	

Example 31.

The NOV31 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 31A.

Table 31A. NOV31 Sequence Analysis			
	SEQ ID NO: 105	1949 bp	
NOV31a, CG58602-01 DNA Sequence	GCTACTGCTCCCAGTCCCTGCAC GGCCGTGGTGGCGGGCGCTCCCACC GGCGATGAGTCAGGTC GGCGATGAGTCAGCTC GGGAGCAGGTCAGCGCTGGCACAGGTC GTTAACCTGACGACAGGTC GTTAACCTGACGACACAGGTC TGGTGGAGCACAGGTCCCCAGGCCCAGGCCCCAGGAGCCCACAGGCCCCACACACACCCCCC	CCCCCAGG CCCCAGG CCCCCAGG CCCCCCAGG CCCCCCAGG CCCCCCCC	CAACCTGGGAGCTGTTCCCCTGGAGGG CTGCAGGGACTTGTAGAGCCTCTGAA CCGCGGTGGTCCGAGAGCAGCACGGG CTGATGCTGTGGTGTGG
	SEQ ID NO: 106	480 aa	MW at 51629.1kD

AALATRPGCKGYSTDVCVPISRLPEIVVQTKEDLNASGLTGSIVGHVGDGNFHCILLV NPDDAEELGRVKAFAEQLGRRALALHGTCTGEHGIGMGKRQLLQEEVGAVGVETMRQL KAVLDPQGLMNPGKVL

Further analysis of the NOV31a protein yielded the following properties shown in Table 31B.

	Table 31B. Protein Sequence Properties NOV31a			
PSort analysis:	0.6574 probability located in mitochondrial matrix space; 0.3502 probability located in mitochondrial inner membrane; 0.3502 probability located in mitochondrial intermembrane space; 0.3502 probability located in mitochondrial outer membrane			
SignalP analysis:	Likely cleavage site between residues 20 and 21			

A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31C.

Table 31C. Geneseq Results for NOV31a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV31a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB10446	Human cDNA SEQ ID NO: 754 - Homo sapiens, 115 aa. [WO200154474-A2, 02-AUG-2001]	196 15110	91/96 (94%) 92/96 (95%)	8e-49
AAE09597	Human gene 5 encoded novel protein HDPMT22, SEQ ID NO:33 - Homo sapiens, 115 aa. [WO200155311-A2, 02-AUG-2001]	196 15110	91/96 (94%) 92/96 (95%)	8e-49
AAM52368	GIP12-C4 protein - Arabidopsis thaliana, 159 aa. [FR2806095-A1, 14- SEP-2001]	66203 3140	69/138 (50° o) 98/138 (71° o)	9e-34
AAG92286	C glutamicum protein fragment SEQ ID NO: 6040 - Corynebacterium glutamicum, 948 aa. [EP1108790-A2, 20-JUN-2001]	46477 25502	108/486 (22%) 186/486 (38%)	2e-22
AAB79309	Corynebacterium glutamicum SMP protein sequence SEQ ID NO:134 -	46477 22499	108/486 (22° o) 186/486 (38° o)	2e-22

In a BLAST search of public sequence databases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.

	Table 31D. Public BLASTP Results for NOV31a				
Protein Accession Number	Protein/Organism/Length	NOV31a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9D635	4733401P21RIK PROTEIN - Mus musculus (Mouse), 481 aa.	1480 1481	394/483 (81%) 423/483 (87%)	0.0	
Q19965	F32D8.4 PROTEIN - Caenorhabditis elegans, 912 aa.	20480 445909	221/466 (47%) 307/466 (65%)	e-121	
CAD16371	PUTATIVE D-LACTATE DEHYDROGENASE (CYTOCHROME) OXIDOREDUCTASE PROTEIN (EC 1.1.2.4) - Ralstonia solanacearum (Pseudomonas solanacearum), 472 aa.	32479 20469	226/454 (49%) 300/454 (65%)	e-119	
A89201	protein F32D8.4 [imported] - Caenorhabditis elegans, 870 aa.	30480 399867	214/469 (45%) 296/469 (62%)	e-115	
AAL51780	D-LACTATE DEHYDROGENASE (CYTOCHROME) (EC 1.1.2.4) - Brucella melitensis, 468 aa.	41480 28467	209/444 (47%) 286/444 (64%)	e-114	

PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.

Table 31E. Domain Analysis of NOV31a				
Pfam Domain	NOV31a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
FAD_binding_4: domain 1 of 1	33214	70/208 (34%) 154/208 (74%)	3.7e-56	
FAD-oxidase_C: domain 1 of 1	206479	91/307 (30%) 210/307 (68%)	1.3e-58	

Example 32.

Table 32A. NOV32 Sequence Analysis			
	SEQ ID NO: 107	698 bp	
NOV32a, CG58468-01 DNA Sequence	AATATCAATTTTTTCACATTATC TTCCCTCAAGAATCAGCTACAG TGAAGAACTTCAAGCTTTGCCTC CTTCTACAGCACTCGGTCCCAGC ATGTATCTGCTGCACATTGGACC TGCTACACTCTTATGCTTCGACC TGCTACACTCTGGGCAAATGGG TCTGTGGGAGAAGAGGGCTAAGAC ATTTTGATGAAAATCAATCCTTT TGTGCTCCCTCCAAAGGAGATGT	CTTTTCTCAA CCTATGTGTCC GAAAA CCTTC GACAATGAGC' ATGCTGCGAT CCATGTGATG AAGCTGGGG CCATGTGGGG CCATGGGGGTGATCGTGGGGTGATCGTGGGGGTGATCGTGGGGGTGATCGTGGGGTGACTGGGGTGACTCCTCGGGTGACTGGGGTGACTCCTCGATCCTCGACTGGACTCCTCGACTGGGGTGA	CTTCTCGTCCTTGGGGTCTCTGCA CAGACATGAGAGGGAAGGCATTTATT CCTGATCCCCAAGGTGAAGAAGCCCC ACAGACTTCACCTGCCCTTATAGCCT GCCTTCTCCTTGTCAACAAAATGGA CACTTCAATGGCCCCACCCCCTGCC GTGAGCTTG SAGTCTGCCTCTGGAAT GGAGAGGAGGGTAC ACAAGAGCAGGATTCCTTTGGGGGAC ATATGGGATGTTTTTTTTGGGGATCA CTTACAGCGGCAGCCCCCTGATCGG
	ORF Start: ATG at 21	ORF Stop	o: TAA at 696
	SEQ ID NO: 108	225 aa	MW at 25265.8kD
NOV32a, CG58468-01 Protein Sequence	LKTFTDFTCPYSLFYSTRSQDNE THVNVSWESASGIATLWANGKLV	STDMRGKAFIFPQESATVYVSLIPKVKKPLKNFKLC ELLLLVNKMGMYLLHIGNAAVTFNGPTPCPRSPYAS VGRKGVWKGYSVGEEAKIILGQEQDSFGGHFDENQS SSCYSGSLLNRHTLTYEDNGYVVTKPKVWA	

Further analysis of the NOV32a protein yielded the following properties shown in Table 32B.

Table 32B. Protein Sequence Properties NOV32a			
PSort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.3200 probability located in microbody (peroxisome); 0.2368 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32C.

Table 32C. Geneseq Results for NOV32a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAR74763	Sermun amyloid P component, promoter sapm - Homo sapiens, 204 aa. [WO9505394-A, 23-FEB-1995]	24224 2203	98/207 (47%) 136/207 (65%)	4e-48

AAR29922	CRP - Homo sapiens, 225 aa. [WO9221364-A, 10-DEC-1992]	14224 11224	100/218 (45%) 132/218 (59%)	2e-43
AAR74769	Female hamster protein, 1fhp - Cricetus cricetus, 210 aa. [WO9505394-A, 23-FEB-1995]	24222	95/206 (46%) 132/206 (63%)	6e-43
AAY76844	Human C reactive protein (CRP) sequence - Homo sapiens, 206 aa. [JP2000014388-A, 18-JAN-2000]	24224 2205	98/208 (47%) 128/208 (61%)	1e-42

In a BLAST search of public sequence databases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32D.

Table 32D. Public BLASTP Results for NOV32a				
Protein Accession Number	Protein/Organism/Length	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9D8J8	1810030J14RIK PROTEIN - Mus musculus (Mouse), 219 aa.	6224 4218	130/220 (59%) 166/220 (75%)	5e-72
Q9D8V2	1810030J14RIK PROTEIN - Mus musculus (Mouse), 200 aa.	6190 20200	110/186 (59%) 139/186 (74%)	2e-58
Q63913	SERUM AMYLOID P - Cricetulus migratorius (Armenian hamster), 223 aa.	1224 1222	109/231 (47%) 152/231 (65%)	4e-51
P23680	Serum amyloid P-component precursor (SAP) - Rattus norvegicus (Rat), 228 aa.	6224 4223	105/224 (46%) 145/224 (63%)	7e-50
P15697	Female protein precursor (FP) (Serum amyloid P-component) - Cricetulus migratorius (Armenian hamster), 231 aa.	1222 1220	108/229 (47%) 151/229 (65%)	7e-50

PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32E.

Table 32E. Domain Analysis of NOV32a			
Pfam Domain	NOV32a Match Region	Identities/ Similarities for the Matched Region	Expect Value
pentaxin: domain 1 of 1	29221	103/214 (48%) 156/214 (73%)	8e-76

Example 33.

The NOV33 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 33A.

Tabl	e 33A. NOV33 Sequence Analysis
	SEQ ID NO: 109 3350 bp
NOV33a,	TAATGAGGAGACTGAGTTTGTGGTGGCTGCTGAGCAGGGTCTGTCT
NOV33a, CG58183-01 DNA Sequence	GCCCTGCCACTGGTGCTGGCCGGGGTGCCCAGCTCCTCCTCGCACCCGCAGCCCTGC CAGATCCTCAAGCGCATCGGCCGGGGTGAGGTGGGTGGGCGGGTGCACTTGCAGCCCT GGACCACCGCCCCCCGGGGCCAGCCGGTGAGGGTGGGCGCGGGCCCCCGGGGCAGCCCCC GAGGGATGAGCCGGAGCAGGGACTAGGCGGTCCCCGGGCGCCCCTCGCCGGGGGAGC TGGTTGGGGAGCCACTGGCCGGGGGCCCCCTCGTAGGCCGGGGAGC GCGCCAGGGCGGAGGCCCTGGTGGCCACGGGACGCCCTCTATTTGCCGTGGACAACCC GAACCGCCTGGAAGGGCTCCTACCCTAC
	CTTCCTACAGATCCAGCTTGAGAGTATTAAGAACAGCACCCACAGTGGTGATGTTT GGCTGCGACATGGAAAGTATCCGGCGGATTTTCGAAAATACAACCCAGTTTGGGGTCA TGCCCCCTGAACTTGCTTGGGTGCTGGGAGATTCCCAGAATTGTGGAGGAACTGAGGACTCATTGCCCATTAGGGCTCATTGAGAACAACACACAGTCTGTCT
	TCCAACCAGAACTTGCTCTCATTCCCAGCACGATGAACTGCATGGAGGTGGAAACTAC AAATCTCACTTCAGGACAATATTTATCAAGGTTTCTAGCCAATACCACTTTCAGAGGC CTCAGTGGTTCCATCAGAGTAAAAGGTTCCACCATCGTCAGCTCAGAAAACAACTTTT TCATCTGGAATCTTCAACATGACCCCATGGGAAAGCCAATGTGGACCCGCTTGGGCAC CTGGCAGGGGGGAAAGATTGTCATGGACTATGGAATATTGCCCAGAGCAGGCCCAGAGA
	CACAAAACCCACTTCCAACATCCAAGTAAGCTACACTTGAGAGGTTACCCTGATTC AGCATCCTTTTGTCTTCACAAGGAGGATGATGATGAAGGCTTGTGCCCTGCTGGCCA ACTCTGTCTAGACCCCATGACTAATGACTCTTCCACATTGGACAGCCTTTTTAGCAGC CTCCATAGCAGTAATGATACAGTGCCCATTAAATTCAAGAAGTGCTG
	TGTAGGGGATGGAAAGTATGGAGCATGGAAAAATGGGCACTGGACTGGGCTAGTGGGT GATCTCCTGAGAGGGACTGCCCACATGGCAGTCACTTCCTTTAGCATCAATACTGCAC GGAGCCAGGTGATAGATTTCACCAGCCCTTTCTTCTCCACCAGCTTGGGCATCTTAGT GAGGACCCGAGATACAGCAGCTCCCATTGGAGCCTTCATGTGGCCACTCCACTGGACA
	ATGTGGCTGGGGATTTTTGTGGCTCTGCACATCACTGCGTCTTCCTCACTCTGTATC AATGGAAGAGTCCATTTGGTTTGACTTCCAAGGGGGGAAATAGAAGTAAAGTCTTCTC CTTTTCTTCAGCCTTGAACATCTGTTATGCCCTCTTGTTTGGCAGAACAGTGGCCATC AAACCTCCAAAATGTTGGACTGGAA3GTTTCTAATGAACCTTTGGGCCATTTTCTGTA TGTTTTGCCTTTCCACATACACGGCAAACTTGGCTGCTATGTATG
	CTATGAAGAGCTTTCTGGAATACATGACCCCAAGTTACATCATCCTTCCCAAGGATTC CGCTTTGGAACTGTCCGAGAAAGCAGTGCTGAAGATATGTGAGACAAAGTTTCCCAC AGATGCATGAATATATGAGAAGGTACAATGTTCCAGCCACCCCTGATGGAGTGGAGTA

	TCAAACACTTCTCTGGGCTCTTTGTGCTGCTGTGCATTGGATTTGGTCTGTCCATTTT GACCACCATTGGTGAGCACATAGTATACAGGCTGCTGCTACCACGAATCAAAAACAAA TCCAAGCTGCAATACTGGCTCCACCACCAGCCAGAGATTACACGAGCAATAAATA		
	ORF Start: ATG at 3	ORF Stop:	TAG at 3348
	SEQ ID NO: 110	1115 aa	MW at 125453.7kD
NOV33a, CG58183-01 Protein Sequence	TTAPRAASRAPDDSRAGAQRDE ARAEALWPRDALLFAVDNLNRY SDPFSFLQSVCHTVVVQGVSAI QNPLHLQLSLENSLSSDADVTY LGSIINITANLPSTQDLLSFLQ PPELRWVLGDSQNVEELRTEGI QPELALIPSTMNCMEVETTNLTI IWNLQHDPMGKPMWTRLGSWQC HPFVFTREVDDEGLCPAGQLCI IDLLEKIAEDMNFDFDLYIVGI SQVIDFTSPFFSTSLGILVRTE WKSPFGLTSKGRNRSKVFSFSS FCLSTYTANLAAVMVGEKIYEE HMEYMRRYNVPATPDGVEYLKN EGYGIGLPPNSPLTANISELIS KHFSGLFVLLCIGFGLSILTTI FIEEKQQHFKTKRVEKRSNVGF	EPEPGTRRSPAE VEGLLPYNLSLE LLAFPQSQGEMM VSILTMNNWYNF PLOLESIKNSTT SGQYLSRFLAN SGKIVMDYGIWP LDPMTNDSSTLD DGKYGAWKNGHW RDTAAPIGAFMW RDTAAPIGAFMW RLSGIHDPKLHA LUSGIHDPKLHA LUSGIHDRKHA LUSGIHOVRLLLP RQLTVWNTSNL	HPQPCQILKRIGHAVRVGAVHLQPW SPGARWLGSTLHGRGPPGSRKPGEG EVMAIEAGLGDLPLLPFSSPSSPWS HELDLVSLVLHIPVISIVRHEFPRES SLLLCQEDWNITDFLLLTQNNSKFH TVVWFGCDMESIRRIFEITTQFGVM EQSVFEHYVQDAMELVARAVATATMI TTFRGLSGSIRVKGSTIVSSENNFF EQAQRHKTHFQHPSKLHLRVVTLIE SLFSSLHSSNDTVPIKFKKCCYGYC TGLVGDLLRGTAHMAVTSFSINTAR PLHWTMWLGIFVALHITAVFLTLYE RTVAIKPPKCWTGRFLMNLWAIFCM PSQGFRFGTVRESSAEDYVRQSFPE KALLDYEVSIDADCKLLTVGKPFAI HDKWYRVYPCGKRSFAVTETLQMGI RIKNKSKLQYWLHTSQRLHRAINTS SHDNRRKYIFSDEEGQNQLGIRIHQ ELSELEKQIQVIRQELQLAVSRKTE

Further analysis of the NOV33a protein yielded the following properties shown in Table 33B.

Table 33B. Protein Sequence Properties NOV33a			
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 34 and 35		

A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33C.

	Table 33C. Geneseq Results for NOV33a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV33a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU02199	Human glutamate receptor-like protein, MEM4 - Homo sapiens, 1043 aa. [WO200144473-A2, 21-JUN- 2001]	951103 61007	508/1047 (48%) 680/1047 (64%)	0.0	
AAB42494	Human ORFX ORF2258 polypeptide sequence SEQ ID NO:4516 - Homo sapiens, 901 aa. [WO200058473-A2, 05-OCT-2000]	95985 6885	484/912 (53%) 635/912 (69%)	0.0	
AAU02198	Human glutamate receptor-like protein, MEM3 - Homo sapiens, 971 aa. [WO200144473-A2, 21-JUN- 2001]	5321103 362935	361/579 (62%) 448/579 (77%)	0.0	
AAU02197	Human glutamate receptor-like protein, MEM2 - Homo sapiens, 965 aa. [WO200144473-A2, 21-JUN- 2001]	5321103 362929	352/579 (60%) 437/579 (74%)	0.0	
AAR44192	Rat NMDA receptor subunit, NR2A - Rattus rattus, 1464 aa. [DE4216321-A, 18-NOV-1993]	1751023 77911	245/873 (28%) 425/873 (48%)	2e-83	

In a BLAST search of public sequence databases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33D.

Table 33D. Public BLASTP Results for NOV33a				
Protein Accession Number	Protein/Organism/Length	NOV33a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAL40734	N-METHYL-D-ASPARTATE RECEPTOR 3A - Homo sapiens (Human), 1115 aa.	11115 11115	1110/1115 (99° o) 1112/1115 (99° o)	0.0
Q62800	IONOTROPIC GLUTAMATE RECEPTOR - Rattus norvegicus	11115 11115	1032/1115 (92%) 1083/1115 (96%)	0.0

	RECEPTOR SPLICE VARIANT NR3A-2 - Rattus norvegicus (Rat), 1135 aa.	11135	1083/1135 (94%)	
CAC69380	SEQUENCE 7 FROM PATENT WO0144473 - Homo sapiens (Human), 1043 aa.	951103 61007	508/1047 (48%) 680/1047 (64%)	0.0
Q91ZU9	NMDA-TYPE GLUTAMATE RECEPTOR SUBUNIT NR3B PRECURSOR - Mus musculus (Mouse), 1003 aa.	1121103 34980	510/1001 (50%) 669/1001 (65%)	0.0

PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33E.

Table 33E. Domain Analysis of NOV33a				
Pfam Domain	NOV33a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
lig_chan: domain 1 of 1	674952	81/323 (25%) 232/323 (72%)	4e-95	

Example 34.

The NOV34 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 34A.

Table 34A. NOV34 Sequence Analysis			
	SEQ ID NO: 111	1253 bp	
NOV34a, CG59315-01 DNA Sequence	AGTCGCCGCTCGTGGGCCGCGCTGGCCACGGCTGGCCACGGCTGTTCCACGGCCACGGCACGGCACGCCGCCACGCCCACGCCCCCC	GGGGTTCCTGGGCTGGTGGACGCCGTGCAGCTGC CTCTGGCTGGTGGTCATGCTGATCTTCCGCATCCTGGT CCGTGTTCGAGGACGAGAGAGAGAGTTCGTGTGCAAC CCAGACCTGCTACGACCACCGGCCTTCCCGGTCTCCCACT ATCCTGCTGCTCTCGGGCGCCCCCGGTGCTTCGTCGT GCAAGGAGCGGCGGGGCGTAGGGCGGCGCGGC	

NOV34a, CG59315-01 Protein Sequence	MGEWAFLGSLLDAVÇLQSPLVGRLWLVVMLIFRILVLATVGGAVFEDEQEEFVCNTLQ PGCRQTCYDRAFPVSHYRFWLFHILLLSAPPVLFVVYSMHRAGKEAGGAEAAAQCAPG LPEAQCAPCALRARRARRCYLLSVALRLLAELTFLGGQALLYGFRVAPHFACAGPPCP
	HTVDCFVSRPTEKTVFVLFYFAVGLLSALLSVAELGHLLWKGRPRAGERDNRCNRAHE EAQKLLPPPPPPPPPPPALPSRRPGPEPCAPPAYAHPAPASLRECGSGRGNAPMAPRC GRHRLTPYPPAALPQGPSSLSPANSRELCPGENQPRTGVSASPPLVPTCTSQPRSYLS SFLEAGGEGSWTQECKHACTQLHCLPSPPADAARVPLPRSPSWQGGRRRALHSGFPTP PSRSQART

Further analysis of the NOV34a protein yielded the following properties shown in Table 34B.

Table 34B. Protein Sequence Properties NOV34a			
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.0300 probability located in mitochondrial inner membrane		
SignalP analysis:	Likely cleavage site between residues 39 and 40		

A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34C.

Table 34C. Geneseq Results for NOV34a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV34a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW49009	Mouse alpha 3 connexin protein - Mus sp, 417 aa. [WO9830677-A1, 16-JUL-1998]	1296 1327	121/334 (36%) 169/334 (50%)	5e-52	
AAW23968	Connexin protein Cx40 - Homo sapiens, 358 aa. [WO9802150-A1, 22-JAN-1998]	1215	93/233 (39%) 133/233 (56%)	9e-46	
AAW23970	Connexin protein Cx45 - Homo sapicns, 396 aa. [WO9802150-A1, 22-JAN-1998]	4212 3253	93/252 (36%) 137/252 (53%)	3e-43	
AAW23969	Connexin protein Cx43 - Homo sapiens, 382 aa. [WO9802150-A1, 22-JAN-1998]	1216 1235	86/235 (36%) 130/235 (54%)	1e-42	
AAM93194	Human polypeptide, SEQ ID NO: 2573 - Homo sapiens, 370 aa	7384 7.360	129/409 (31%) 169/409 (40%)	8e-38	

In a BLAST search of public sequence databases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34D.

	Table 34D. Public BLASTP Results for NOV34a					
Protein Accession Number	Protein/Organism/Length	NOV34a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q91YD1	CONNEXIN30.2 - Mus musculus (Mouse), 278 aa.	1283 1265	228/283 (80%) 240/283 (84%)	e-129		
I46053	connexin44 - bovine, 402 aa.	1397 1396	151/418 (36%) 207/418 (49%)	le-62		
P41987	Gap junction alpha-3 protein (Connexin 44) (Cx44) - Bos taurus (Bovine), 401 aa.	2397 1395	150/417 (35%) 206/417 (48%)	4e-62		
AAA50954	CONNEXIN44 - Bos taurus (Bovine), 407 aa.	1398 1402	154/429 (35%) 214/429 (48%)	1e-60		
Q9TU17	GAP JUNCTION PROTEIN (CONNEXIN) - Ovis aries (Sheep), 413 aa.	1398 1408	147/415 (35%) 204/415 (48%)	1e-60		

PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34E.

Table 34E. Domain Analysis of NOV34a				
Pfam Domain	NOV34a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
DUF26: domain 1 of 1	107152	12/56 (21%) 27/56 (48%)	1.4	
connexin: domain 1 of 1	1212	101/247 (41%) 150/247 (61%)	6.5e-75	

Example 35.

The NOV35 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 35A.

NOV35a, CG59203-01 DNA Sequence	TAAATTCGCGGCCGGTCGACCTTCCGCAGACTCAACTGAGAAGTCAGCCTCTGCGGC AGGCACCAGGAATCTGCCTTTTCAGTTCTGCTCCGGCAGGCTTTGAGGATGAAGGCT GCGGCATTCTGACCCTCATTGGCTGCTCCTGGTCCAGGCCCGAGTCCAAAATCTACA CTCGTTGCAAACTGGCAAAAATATTCTCGAGGGCTGGCCTGGCACAATTACTGGGGCT CAGCCTTGGAAACTGGATCTGCATGGCGTATTATGAGAGCGGCTTACAACACCACAGCC CAGACGGTCCTGGATGACGGCAGCATCGACTACGGCATCTCCAGATCAACACCACAGCC CTTGGTCACTGATGACCTCACAGATGGATTATCTGTGCCAAGAAAATTGTTAAAGAG ACCACAGGAATGAACTATTGGCAAGGCTGGAAGAAACACTGTGAGGGGAAGGACCTGT CCGACTGGAAAAAACACTGTGAGAACAACTGTGAAGGAACACCTTTTG CAGCAACGCCCTAGGGTTTGCAGTGAATGCCTAAACTGGAACTGTCCCGTT TCCTCCCAATATTCCTTCTCAAACTTGGAGGGGAAAAATTAACTTTTAAGAA AATAAATATTTCCATTTAAATGTCAAAA		
	ORF Start: ATG at 108	ORF Stop	o: TAA at 552
	SEQ ID NO: 114	148 aa	MW at 16655.9kD
NOV35a, CG59203-01 Protein Sequence	MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYN TTAQTVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALVTDDLTDAIICAKKI C VKETQGMNYWQGWKKHCEGRDLSDWKKDCEVS		
	SEQ ID NO: 115	453 bp	
NOV35b, CG59203-02 DNA Sequence	CATTCTGACCCTCATTGGCTGCCTGGTCACAGGCGCCGAGTCCAAAATCTACACTCGT TGCAAACTGGCAAAAATATTCTCGAGGGCTGGCCTGGACAATTACTGGGGCTTCAGCC TTGGAAACTGGATCTGCATGGCGTATTATGAGAGCGGCTACAACACCACAGCCCAGAC GGTCCTGGATGACGGCATCGACTACGGCATCTTCCAGATCAACAGCTTCGCGTGG TGCACGACGCGGAAAGCTGAAGGAGAAACACCACTGCCACGTCGCCTCAGCCTTGG TCACTGATGACCTACACGATGCAATTATCTGTGCCAGGAAAAATTGTTAAAGAGACACA AGGAATGAATTATTGGCAAGGCTGGAAGAAAACATTGTGAGCGCAGGACCTGTCCGAC TGGAAAAAAAGGCTGTGAGGTTTCCTAAACTGGACCCAGGAT		
	ORF Start: ATG at 134	ORF Stop	o: TAA at 431
	SEQ ID NO: 116	99 aa	MW at 11288.6kD
NOV35b, CG59203-02 Protein Sequence	MAYYESGYNTTAQTVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALVTDDLT DAIICARKIVKETQGMNYWQGWKKHCEGRDLSDWKKGCEVS		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 35B.

Table 35B. Comparison of NOV35a against NOV35b.			
Protein Sequence NOV35a Residues/ Identities/ Similarities for the Matched Re			
NOV35b	50148 199	97/99 (97%) 98/99 (98%)	

Further analysis of the NOV35a protein yielded the following properties shown in Table 35C.

Table 35C. Protein Sequence Properties NOV35a			
Psort analysis:	0.3700 probability located in outside; 0.1697 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 20 and 21		

A search of the NOV35a protein against the Genescq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35D.

Table 35D. Geneseq Results for NOV35a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV35a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY57399	Human lysoenzyme LYC2 polypeptide - Homo sapiens, 148 aa. [WO200012722-A1, 09-MAR-2000]	1148 1148	143/148 (96%) 147/148 (98%)	3e-86
AAU29169	Human PRO polypeptide sequence #146 - Homo sapiens, 148 aa. [WO200168848-A2, 20-SEP-2001]	1148 1148	143/148 (96%) 146/148 (98%)	6e-86
AAB66145	Protein of the invention #57 - Unidentified, 148 aa. [WO200078961- A1, 28-DEC-2000]	1148 1148	143/148 (96%) 146/148 (98%)	6e-86
AAY99396	Human PRO1278 (UNQ648) amino acid sequence SEQ ID NO:203 - Homo sapiens, 148 aa. [WO200012708-A2, 09-MAR-2000]	1148 1148	143/148 (96%) 146/148 (98%)	6e-86
AAY71109	Human Hydrolase protein-7 (HYDRL-7) - Homo sapiens, 194 aa. [WO200028045-A2, 18-MAY-2000]	1148 47194	142/148 (95%) 146/148 (97%)	1e-85

In a BLAST search of public sequence databases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35E.

Table 35E. Public BLASTP Results for NOV35a				
Protein Accession Number	Protein/Organism/Length	NOV35a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96LF2	BA14C22.1 (NOVEL PROTEIN SIMILAR TO LYSOZYME) - Homo sapiens (Human), 148 aa.	1148 1148	148/148 (100%) 148/148 (100%)	7e-88
Q9H1R9	BA534G20.1.1 (NOVEL PROTEIN SIMILAR TO LYSOZYME C-1 (1,4-BETA-N-ACYLMURAMIDASE C, EC 3.2.1.17) (ISOFORM 1)) - Homo sapiens (Human), 148 aa.	1148 1148	144/148 (97%) 147/148 (99%)	4e-86
AAH21730	HYPOTHETICAL 21.6 KDA PROTEIN - Homo sapiens (Human), 194 aa.	1148 47194	143/148 (96° o) 146/148 (98%)	2e-85
Q9CPX3	1700038F02RIK PROTEIN - Mus musculus (Mouse), 148 aa.	1148 1148	110/148 (74%) 127/148 (85%)	3e-66
Q9H1R8	BA534G20.1.2 (NOVEL PROTEIN SIMILAR TO LYSOZYME C-1 (1,4-BETA-N-ACYLMURAMIDASE C, EC 3.2.1.17) (ISOFORM 2)) - Homo sapiens (Human), 106 aa (fragment).	20125 1106	104/106 (98%) 106/106 (99%)	1e-59

PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35F.

Table 35F. Domain Analysis of NOV35a			
Pfam Domain	NOV35a Match Region	Identities/ Similarities for the Matched Region	Expect Value
lys: domain 1 of 1	20145	68/129 (53%) 107/129 (83%)	8e-58

Example 36.

The NOV36 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 36A.

	SEQ ID NO: 117	712 bp	
NOV36a, CG58662-01 DNA Sequence	GCAGCTATTGCACTTAATCGCGGCTGCTAGCACCATGTCCCGCGTTTTGGTGCCTTGC CATGTGAAAGGCACCGTAGCCCTGCAGGTGGGGGACGTATGGACCTCCCAAGGCCGGC CTAGTGTGATGTCACCTTCACCTTCCCCTGTGTCACTCCCTAGGGGGACTACC ATTTAAGAATTATTACACAGCGTTTTTTGAGCATCCTGTCTGT		
	ORF Start: ATG at 35	ORF Stop	p: TGA at 668
	SEQ ID NO: 118	211 aa	MW at 23932.3kD
NOV36a, CG58662-01 Protein Sequence	MSRVLVPCHVKGTVALQVGDVWTSQGRPSVLVIDVTFPCVTPFEGITFKNYYTAFF PVCQHTSAHTPAKWVTCLWDYCLMPDPHSEEGAQEYVSLFKQQILCDMARISELHL QQPSPLWLSFTVEELQIYQQGPKSPSMIFPKWLSHPVPCEQPALLHEGLPDPSRVS. VQQMWALTEMIRASHTSARIGHFDVDGCYDLNLLSYT		
	SEQ ID NO: 119	843 bp	
NOV36b, CG58662-02 DNA Sequence	CTGGCCTGAAGCCATGTCCCGCGTTTTAGCACCATGTCCCGCGTCTAGCACCATGTCCGCGTCTAGCACCATGTCCCGCGTTTAGCACCATGTCCCGCGTTTTAGCACCATGTCCGCGTTTTAGCACCATGTCCGCGTTTTAGCACCATGTCCCGCGTTCTAGCACCATGTCCCGCGTTCTAGCACCATGTCCCGCGTTCTAGCACCATGTCCCGCGTTCTAGCACCATGTCCCCAAGGCCGGCC		ATGTCCCGCGTTCTAGCACCATGTC CTTGCCATGTGAAAGGCTCCGTAG CCGGCCTGGCGTGCTGTCATCGA CCAGGAAATCACGTTTAAGAATTAC CACACCTCAGCACACACACCTGCCA CCCTGACCCACACACTGAAGAGGG CATGCTATGTGACATGACTAGAATA CCACTGGCTGTCTTTTCACAGTGG CCCCTCCGTGAGGGTTTCCCAAGTG CCCCTCCGTGAGGGTTTCCCAGAC CGGGCACTGACAGAGATGATCCGGG CTGTGGATGGCTGTTATGACCTGAC
	ORF Start: ATG at 132	ORF Stop	o: TGA at 771
	SEQ ID NO: 120	213 aa	MW at 24222.6kD
NOV36b, CG58662-02 Protein Sequence	MSRVLVPCHVKGSVALQVGDVRTSQGRPGVLVIDVTFPSVAPFELQEITFKNYYTAFL SIRVRQYTSAHTPAKWVTCLRDYCLMPDPHSEEGAQEYVSLFKHQMLCDMARISELRL LIRQPSPLWLSFTVEELQIYQQGPKSPSVTFPKWLSHPVPCEQPALLREGFPDPSRVS SEVQQMWALTEMIRASHTSARIGRFDVDGCYDLTLLSYT		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 36B.

Table 36B. Comparison of NOV36a against NOV36b.			
Protein Sequence NOV36a Residues/ Identities/ Similarities for the Matched			
NOV36b	1211 1213	188/213 (88%) 193/213 (90%)	

Further analysis of the NOV36a protein yielded the following properties shown in

Table 36C. Protein Sequence Properties NOV36a			
PSort analysis:	0.5666 probability located in microbody (peroxisome); 0.4500 probability located in cytoplasm; 0.1562 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36D.

Table 36D. Geneseq Results for NOV36a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV36a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG04038	Human secreted protein, SEQ ID NO: 8119 - Homo sapiens, 115 aa. [EP1033401-A2, 06-SEP-2000]	1103 1105	82/105 (78%) 85/105 (80%)	1e-39

In a BLAST search of public sequence databases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36E.

Table 36E. Public BLASTP Results for NOV36a					
Protein Accession Number	Protein/Organism/Length	NOV36a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9BSH3	SIMILAR TO RIKEN CDNA 1500032A17 GENE - Homo sapiens (Human), 213 aa.	1211 1213	190/213 (89%) 195/213 (91%)	e-107	
Q9CQM0	1500032A17RIK PROTEIN - Mus musculus (Mouse), 213 aa.	1211 1213	174/213 (81%) 183/213 (85%)	4e-97	

PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36F.

Table 36F. Domain Analysis of NOV36a				
Pfam Domain	NOV36a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
No Significant Matches Found				

Example 37.

The NOV37 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 37A.

Table 37A. NOV37 Sequence Analysis					
	SEQ ID NO: 121	520 bp			
NOV37a, CG58584-01 DNA Sequence	CATTTGCTGTCTCTCTGCTCACCAGCAGCTGTACTGGAGCCACCGCGAAAATTCGC CCAGGGTTCTCGCTCTTGTCGTGTCTGTTCAAACCGGCACGGTCTGATCCGGAAAATTCGC CCAGGGTTCTCGCTCTTGTCGTGTCTGTTCAAACCGGCACGGTCTGATCCGGAAATATCGC GGCCTCAATATGTGCCGCCAGTGTTTCCTTGGCACTGCCTATGGAGGTGACACCCATCTCCTCC ATCATGGCATCCTGAGACCGCTCGCGAAGCCCAAGATCATCAAAAAGAGCACCAACT TCACTGGGAACCAGTCAGACTGATATGTCAAAATTAAGGGTAACTGGTGAAAACAAAC				
	ORF Start: TTT at 3	ORF St	op: TGA at 216		
	SEQ ID NO: 122 71 aa MW at 8461.8kD				
NOV37a, CG58584-01 Protein Sequence	FAVSSAHQQLYWSHPRKFGQGSRSCRVCSNRHGLIRKYGLNMCRQ:FRQYAKDIGFIKKDLSCLPWHCLWR				

Further analysis of the NOV37a protein yielded the following properties shown in Table 37B.

	Table 37B. Protein Sequence Properties NOV37a		
PSort analysis:	0.6400 probability located in microbody (peroxisome); 0.4500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 37C.

	Table 37C. Geneseq Results for NOV37a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV37a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG76128	Human colon cancer antigen protein SEQ ID NO:6892 - Homo sapiens, 80 aa. [WO200122920-A2, 05-APR-2001]	760 255	46/54 (85%) 48/54 (88%)	4e-24
AAM79084	Human protein SEQ ID NO 1746 - Homo sapiens, 56 aa. [WO200157190- A2, 09-AUG-2001]	760 356	39/54 (72%) 43/54 (79%)	2e-18
AAG39921	Arabidopsis thaliana protein fragment SEQ ID NO: 49464 - Arabidopsis thaliana, 637 aa. [EP1033405-A2, 06- SEP-2000]	763 358	40/57 (70%) 45/57 (78%)	2e-18
AAM80068	Human protein SEQ ID NO 3714 - Homo sapiens, 74 aa. [WO200157190- A2, 09-AUG-2001]	758 2273	38/52 (73%) 42/52 (80%)	5e-18
AAG34802	Arabidopsis thaliana protein fragment SEQ ID NO: 42406 - Arabidopsis thaliana, 56 aa. [EP1033405-A2, 06-SEP-2000]	758 354	37/52 (71%) 42/52 (80%)	1e-17

In a BLAST search of public sequence databases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37D.

	Table 37D. Public BLASTP Results for NOV37a			
Protein Accession Number	Protein/Organism/Length	NOV37a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
BAB79485	RIBOSOMAL PROTEIN S29 - Homo sapiens (Human), 56 aa.	760 356	53/54 (98%) 53/54 (98%)	1e-27
P30054	40S ribosomal protein S29 - Homo sapiens (Human),, 55 aa.	760 255	53/54 (98%) 53/54 (98%)	1e-27
Q90YP2	40S RIBOSOMAL PROTEIN S29 - Ictalurus punctatus (Channel catfish), 56 aa.	760 356	52/54 (96%) 53/54 (97%)	2e-27
AAL62474	RIBOSOMAL PROTEIN S29 - Spodoptera frugiperda (Fall armyworm), 56 aa.	760 356	41/54 (75%) 48/54 (87%)	6e-21
Q9VH69	CG8495 PROTEIN - Drosophila melanogaster (Fruit fly), 56 aa.	1060 656	41/51 (80%) 46/51 (89%)	3e-20

PFam analysis predicts that the NOV37a protein contains the domains shown in the Table 37E.

Table 37E. Domain Analysis of NOV37a				
Pfam Domain	NOV37a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Ribosomal_S14: domain 1 of 1	761	17/60 (28%) 51/60 (85%)	7.5e-20	

Example 38.

The NOV38 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 38A.

Table 38A. NOV38 Sequence Analysis			
SEQ ID NO: 123 2039 bp			
NOV38a, CG58538-01 DNA Sequence	GGACAAGGTGTTGTACCTGCT AGCATGCCGAACACGGAGTCA	TGACACTCTTGCAGAAGTGGGGCCACTTCAGGGACAT GTCACAGAGCCTGTTATCTGTTCAGAATGACCGAAGA GAAACGAGCGCTTGAACGGGACCCAACAGAGGACGAT ATGGAGAGAGGATTGTTGGCTTCAGATTTAAACACTG	

Further analysis of the NOV38a protein yielded the following properties shown in Table 38B.

Table 38B. Protein Sequence Properties NOV38a		
PSort analysis:	0.4404 probability located in mitochondrial matrix space; 0.3000 probability located in microbody (peroxisome); 0.1257 probability located in mitochondrial inner membrane; 0.1257 probability located in mitochondrial intermembrane space	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 38C.

	Table 38C. Geneseq Results for NOV38a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV38a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM00991	Human bone marrow protein, SEQ ID NO: 492 - Homo sapiens, 502 aa. [WO200153453-A2, 26-JUL-2001]	1471 4473	217/504 (43%) 290/504 (57%)	2e-87
AAM00944	Human bone marrow protein, SEQ ID NO: 420 - Homo sapiens, 546 aa. [WO200153453-A2, 26-JUL-2001]	1471 48517	217/504 (43%) 290/504 (57%)	2e-87
AAM00831	Human bone marrow protein, SEQ ID NO: 194 - Homo sapiens, 266 aa. [WO200153453-A2, 26-JUL-2001]	1197 47262	84/217 (38%) 110/217 (49%)	1e-23
AAM85818	Human immune/haematopoietic antigen SEQ ID NO:13411 - Homo sapiens, 84 aa. [WO200157182-A2, 09-AUG-2001]	417471 155	41/55 (74%) 49/55 (88%)	7e-19

In a BLAST search of public sequence databases, the NOV38a protein was found to have homology to the proteins shown in the BLASTP data in Table 38D.

	Table 38D. Public BLA	STP Results f	or NOV38a	
Protein Accession Number	Protein/Organism/Length	NOV38a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
	No Significant	Matches Four	nd	

PFam analysis predicts that the NOV38a protein contains the domains shown in the Table 38E.

Table 38E. Domain Analysis of NOV38a			
Pfam Domain	NOV38a Match Region	Identities/ Similarities for the Matched Region	Expect Value
GATA: domain 1 of 1	414453	12/43 (28%) 17/43 (40%)	1.1

Example 39.

The NOV39 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 39A.

Table 39A. NOV39 Sequence Analysis			
	SEQ ID NO: 125	1421 bp	
NOV39a, CG59371-01 DNA Sequence	OV39a, ACCATTCAGAGATGTCTTCCAGAAGTACAAAGATTAATTA		
	ORF Start: ATG at 13	ORF Stop	p: TAG at 1405
	SEQ ID NO: 126	464 aa	MW at 54045.6kD
NOV39a, CG59371-01 Protein Sequence	LLEKIRVLEAEKEKNAYQLTEKI VLKALSEEKDVLKQQLSAATSRI KDALEKNQQWLVYDQQREVYVKO KQKCYNDLLASAKKDLEVERQTI VQHLEDDRHKTEKIQKLREENDI VALLEQQMQACTLDFENEKLDRO	DKEI QRLRDQI I AELESKTNTI GLLAKI FELEH I TQLSFELSEH I ARGKLEEEKH QHVQHQLHVII	EIAHLKTSVDEITSGKGKLTDKERHR LKARYSTTTLLEQLEETTREGERREQ LRLSQTVAPNCFNSSINNIHEMEIQL KKTETAAHSLPQQTKKPESEGYLQEE FRRKYEETQKEVHNLNQLLYSQRAD KRSEELLSQVQSLYTSLLKQQEEQTR LKELRKARKNITQLESLKQLHEFAIT ECPKCNIQYPATEHRDLLVHVEYCSK

Further analysis of the NOV39a protein yielded the following properties shown in Table 39B.

	Table 39B. Protein Sequence Properties NOV39a		
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 39C.

	Table 39C. Geneseq Results for NOV39a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB92925	Human protein sequence SEQ ID NO:11576 - Homo sapiens, 231 aa. [EP1074617-A2, 07-FEB-2001]	170392 1223	222/223 (99%) 222/223 (99%)	e-122	
AAG75490	Human colon cancer antigen protein SEQ ID NO:6254 - Homo sapiens, 165 aa. [WO200122920-A2, 05-APR- 2001]	167 99165	64/67 (95%) 64/67 (95%)	1e-28	
AAM78520	Human protein SEQ ID NO 1182 - Homo sapiens, 990 aa. [WO200157190-A2, 09-AUG-2001]	6394 515929	96/421 (22%) 182/421 (42%)	3e-12	
AAM41000	Human polypeptide SEQ ID NO 5931 - Homo sapiens, 1988 aa. [WO200153312-A1, 26-JUL-2001]	70420 8521203	90/384 (23%) 161/384 (41%)	3e-12	
AAM40999	Human polypeptide SEQ ID NO 5930 - Homo sapiens, 1988 aa. [WO200153312-A1, 26-JUL-2001]	70420 8521203	90/384 (23%) 161/384 (41°6)	3e-12	

In a BLAST search of public sequence databases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39D.

Table 39D. Public BLASTP Results for NOV39a					
Protein Accession Number	Protein/Organism/Length	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96H32	SIMILAR TO RIKEN CDNA 1200008O12 GENE - Homo sapiens (Human), 464 aa.	1464 1464	458/464 (98%) 458/464 (98%)	0.0	
Q9DBZ8	1200008O12RIK PROTEIN - Mus	1464	348/464 (75%)	0.0	

	NT2RP2001245 - Homo sapiens (Human), 231 aa.	1223	222/223 (99%)	
Q9CZP8	2700032M20RIK PROTEIN - Mus musculus (Mouse), 189 aa.	1176 1176	121/176 (68%) 150/176 (84%)	3e-63
Q9VJE5	CLIP-190 PROTEIN - Drosophila melanogaster (Fruit fly), 1690 aa.	4439 6751118	108/461 (23%) 203/461 (43%)	2e-16

PFam analysis predicts that the NOV39a protein contains the domains shown in the Table 39E.

Table 39E. Domain Analysis of NOV39a						
Pfam Domain	Pfam Domain NOV39a Match Region Identities/ Similarities Expect Value					
No Significant Matches Found						

Example 40.

The NOV40 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 40A.

Table 40A. NOV40 Sequence Analysis				
	SEQ ID NO: 127	3955 bp		
NOV40a, CG59346-01 DNA Sequence	SEQ ID NO: 127 TGCACCCTCGCTGCCTCCTTTC AATTGGCTATGATGATGACGT CTACAATAATGGTCGCTGCTGCCC AAGCCGGTGGCTGCCCC AAGCCGGTGGCCACACCCATTGA GCACCTTGATTGAGGTTAACA TGAACATGATCCGGCAGGAGAC CCGACCACAGCCCTCACCCTGC ATAAACCCGAGGAGACACC CGGCCCACAGGCCTCACCCTGC ATAAACCAGAGGAGAATGTCCC GGCTCAGACATGAACATGAACATGACACACACACACACAC	3955 bp CCTCCATGCTGCCTGGATCTGGCGAGCTGGGTGATT CCCCGGCGGAGGAGGGGGGGGGG		
	TACAGTCGGAATGCCGGCCCGC AAAACCCATACTCAGAGGTGGG GCCCGCCAGGCGGAAGGGGATG	AAGCCAACTTCCGCAACAAGAGAGGCCAGATGCCAG GAAGATCGCCAGCAAAGCCGTCTACGTCCCCGCCAA CTGGTGAAGCAGTCCAACGTGGAGGACAGCCCCGAG CGACCATCATCGTGAAGGAGCCGTCCACCAGCAGCA		
	GCGGCAAGAGCAGCCAGGGCAG GAGCCAGCTGCGGCCTGACGAA GCCGGAGCCGTCCGCGACCGTG	CAGCATGGAGATCGACCCCCAGGCCCCGJAGCCACC AGCCTGACCGTCAGCAGCCCCTTTGCCGCCCACACCACCACCACCACCACCACCACCACCACCA		

TGGCACTCTCCGCAAGGGACCGAGCCATGAAGGAGTCTCAACAGGGACCCAAAGGGGA GGCCCCCAAGGCCGACCTCAACAACCTCTTTACATTGATACCAAAATGCGGCCCAGC CTGGATGCCGGCTTCCCTACGGTCACCAGGCAGAACACCCCGGGGACCCCTGAGGCGGC AGGAGACGGAGACAAGTACGAGACCGACCTGGGCCGAGACCGGAAAGGCGATGACAA GAAGAACATGCTGATCGACATCATGGACACGTCCCAGCAGAAGTCGGTTGGCCTGCTG ATGGTGCACACCGTGGACGCCACTAAGCTGGACAACGCCCTGCAGGAAGAGGACGAGA $\tt AGGCAGAGGTGGAGATGAAGCCAGACAGCTCGCCGTCCGAGGTGCCAGAAGGTGTTTC$ CGAAACCGAAGGTGCTTTACAGATCTCCGCTGCCCCGAGCCCACCACCGTGCCCGGC AGAACCATCGTCGCGGTGGGCTCCATGGAAGAGGCGGTGATTTTGCCATTCCGCATCC CTCCTCCCCTCTGGCATCCGTGGACTTGGATGAGGATTTTATTTTTACAGAGCCATT $\verb|GCCTCCCCTGGAATTTGCAAATAGTTTTGATATCCCCGATGACCGGGCAGCTTCT|\\$ GTCCCGGCTCTCTCAGACTTAGTGAAGCAGAAGAAAAGCGACACCCCTCAGTCCCCTT AAACTGTCTGCCTGCCTCATTCCTGCCACCCCCTGAAAGCTTTGACGCCGTCGCCGAC TCTGGGATCGAGGGGGGACAGCCGGAGTAGCAGCGACCACCTCGAGACGACCA GCACTATCTCCACCGTGTCTAGCATCTCCACCCTGTCTTCCGAAGGTGGAGAGAATGT GGACACCTGCACAGTCTATGCAGATGGGCAAGCATTTATGGTTGACAAACCCCCAGTA CCTCCTAAGCCAAAAATGAAGCCCATCATTCACAAAAGCAATGCACTTTATCAAGACG GCCGGCCAGTGCCCAGCTTGGGATGGCCAAGGTTCTCCAGCCAAGGACCTCCAAGTTG TGGGGCGACGTCACAGAGATCAAAAGCCCGATTCTCTCAGGCCCAAAGGCAAACGTTA TTAGTGAATTGAACTCTATCCTACAGCAAATGAACCGAGAGAAATTGGCAAAGCCGGG GGAAGGACTGGATTCACCAATGGGAGCCAAGTCCGCCAGCCTCGCTCCAAGAAGCCCG GAGATCATGAGCACCATCTCAGGTACACGGAGCACGACGGTCACCTTCACTGTTCGCC CCGGCACCTCCCAGCCCATCACCCTGCAGAGCCGGCCCCCCGACTATGAAAGCAGGAC CTCAGGAACAAGACGTGCCCCAAGCCCTGTGGTCTCGCCAACAGAGATGAACAAAGAG ACCCTGCCCGCCCCCTGTCTGCCACCGCCTCTCCTTCTCCCGCTCTCTCAGATG TCTTTAGCCTTCCAAGCCAGCCCCCTTCTGGGGATCTATTTGGCTTGAACCCAGCGGG ACGCAGTAGGTCGCCATCCCCCTCGATACTGCAACAGCCAATCTCAAATAAGCCTTTT ACAACTAAACCTGTCCACCTGTGGACTAAACCAGATGTGGCCGATTGGCTGGAAAGTC TAAACTTGGGTGAACATAAAGAGGCCTTCATGGACAATGAGATCGATGGCAGTCACTT ACCAAACCTGCAGAAGGAGGACCTCATCGATCTTGGGGTAACTCGAGTCGGGCACAGA ATGAACATAGAAAGGGCTTTGAAACAGCTGCTGGACAGATAAGGACGGCTGCTCTCCA CCTCGCAGACTGCTCTTGTTATAAGTAGAGATGGGCTCGTGCTGAAACATCTGAATGC CAAGCGAAGTC ORF Start: ATG at 67 ORF Stop: TAA at 3868 **SEQ ID NO: 128** 1267 aa MW at 136108.7kD MMMNVPGGGAAAVMMTGYNNGRCPRNSLYSDCIIEEKTVVLQKKDNEGFGFVLRGAKA NOV40a, DTP1EEFTPTPAFPALOYLESVDEGGVAWOAGLRTGDFL1EVNNENVVKVGHROVVNM CG59346-01 Protein Sequence IRQGGNHLVLKVVTVTRNLDPDDTARKKAPPPPKRAPTTALTLRSKSMTSELEELDKP EEIVPASKPSRAAENMAVEPRVATIKQRPSSRCFPAGSDMNVSGRTLGPRGRGPTVPP RLSGLOSVYEROGIAVMTPTVPGSPKAPFLGIPRGTMRROKSIGITEEEROFLAPPML KFTRSLSMPDTSEDIPPPPQSVPPSPPPPSPTTYNCPKSPTPRVYGTIKPAFNQNSAA KVSPATRSDTVATMMREKGMYFRRELDRYSLDSEDLYSRNAGPQANFRNKRGQMPENP YSEVGKIASKAVYVPAKPARRKGMLVKQSNVEDSPEKTCSIPIPTIIVKEPSTSSSGK SSOGSSMEIDPOAPEPPSOLRPDESLTVSSPFAAAIAGAVRDREKRLEARRNSPAFLS TDLGDEDVGLGPPAPRTRPSMFPEEGDFADEDSAEQLSSPMPSATPREPENHFVGGAE ASAPGEAGRPLNSTSKAQGPESSPAVPSASSGTAGPGNYVHPLTGRLLDPSSPLALAL SARDRAMKESQOGPKGEAPKADLNKPLYIDTKMRPSLDAGFPTVTRQNTRGPLRRQET ENKYETDLGRDRKGDDKKNMLIDIMDTSQQKSAGLLMVHTVDATKLDNALQEEDEKAE VEMKPDSSPSEVPEGVSETEGALQISAAPEPTTVPGRTIVAVGSMEEAVILPFRIPPP PLASVDLDEDFIFTEPLPPPLEFANSFDIPDDRAASVPALSDLVKQKKSDTPQSPSLN SSQPTNSADSKKPASLSNCLPASFLPPPESFDAVADSGIEEVDSRSSSDHHLETTSTI ${\tt STVSSISTLSSEGGENVDTCTVYADGQAFMVDKPPVPPKPKMKPIIHKSNALYQDALV}$ EEDVDSFVIPPPAPFPPPGSAQPGMAKVLQPRTSKLWGDVTEIKSPILSGPKANVISE LNSILQQMNREKLAKPGEGLDSPMGAKSASLAPRSPEIMSTISGTRSTTVTFTVRPGT

Further analysis of the NOV40a protein yielded the following properties shown in Table 40B.

1 . . .

 ${\tt SQPITLQSRPPDYESRTSGTRRAPSPVVSPTEMNKETLPAPLSAATASPSPALSDVFS} \\ {\tt LPSQPPSGDLFGLNPAGRSRSPSPSILQQPISNKPFTTKPVHLWTKPDVADWLESLNL} \\$

GEHKEAFMDNEIDGSHLPNLQKEDLIDLGVTRVGHRMNIERALKQLLDR

PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 40C.

	Table 40C. Geneseq Results for NOV40a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV40a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79240	Human protein SEQ ID NO 1902 - Homo sapiens, 1248 aa. [WO200157190-A2, 09-AUG- 2001]	141267 11248	1231/1271 (96%) 1231/1271 (96%)	0.0	
AAB31518	Amino acid sequence of the rat Shank2 polypeptide - Rattus sp, 1470 aa. [WO200078921-A2, 28- DEC-2000]	301267 2401470	1078/1255 (85%) 1132/1255 (89%)	0.0	
AAM80224	Human protein SEQ ID NO 3870 - Homo sapiens, 1161 aa. [WO200157190-A2, 09-AUG- 2001]	1721267 821161	1071/1103 (97%) 1071/1103 (97%)	0.0	
AAB31517	Amino acid sequence of the rat Shank3a polypeptide - Rattus sp, 1740 aa. [WO200078921-A2, 28- DEC-2000]	181264 5501737	496/1349 (36%) 673/1349 (49%)	0.0	
AAY83017	Rat shank 3a - Rattus rattus, 1740 aa. [WO200011204-A2, 02-MAR- 2000]	181264 5501737	496/1349 (36%) 673/1349 (49%)	0.0	

In a BLAST search of public sequence databases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40D.

	Table 40D. Public BLASTP Results for NOV40a				
Protein Accession Number	Protein/Organism/Length	NOV40a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9UPX8	KIAA1022 PROTEIN - Homo sapiens (Human), 1131 aa (fragment).	1241267 11131	1121/1154 (97%) 1121/1154 (97%)	0.0	
Q9QX93	PROLINE RICH SYNAPSE ASSOCIATED PROTEIN 1 - Rattus norvegicus (Rat), 1252 aa.	21267 11252	1103/1276 (86%) 1158/1276 (90%)	0.0	
O70470	CORTACTIN-BINDING PROTEIN 1 - Rattus norvegicus (Rat), 1252 aa.	21267 11252	1102/1276 (86%) 1158/1276 (90%)	0.0	
Q9WUV9	PROLINE RICH SYNAPSE ASSOCIATED PROTEIN 1 - Rattus norvegicus (Rat), 1259 aa.	21267 1. 1259	1103/1283 (85%) 1158/1283 (89%)	0.0	
Q9WUW0	PROLINE RICH SYNAPSE ASSOCIATED PROTEIN 1 - Rattus norvegicus (Rat), 1250 aa.	21267 11250	1095/1276 (85%) 1151/1276 (89%)	0.0	

PFam analysis predicts that the NOV40a protein contains the domains shown in the Table 40E.

Table 40E. Domain Analysis of NOV40a					
Pfam Domain	NOV40a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
PDZ: domain 1 of 1	38131	23/97 (24%) 70/97 (72%)	1e-07		
SAM: domain 1 of 1	12021265	27/68 (40%) 53/68 (78%)	9.8e-22		

Example 41.

The NOV41 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 41A.

Table	e 41A. NOV41 Sequence	Analysis	S
	SEQ ID NO: 129	2069 bp	
NOV41a, CG57814-01 DNA Sequence	GGACACTGACATGGACTGAAGGAGTAGAAAGCACTATAAATGTCTTTCCTTATCTC TGTACTCTTATCTCACTGTTCTATTTTTTCTCCTCATTTATATTAACTCTTTTCTT.		
	ORF Start: ATG at 413	ļ	<u></u>
	SEQ ID NO: 130	519 aa	MW at 57552.4kD
NOV41a, CG57814-01 Protein Sequence	MTCPDKPGQLINWFICSLCVPRVRKLWSSRRPRTRRNLLLGTACAIYLGFLVSQVG SLOHGOAAEKGPHRSRDTAEPSFPEIPLDGTLAPPESOGNGSTLOPNVVYITLRSE		
	SEQ ID NO: 131	1740 bp	
NOV41b, CG57814-02 DNA Sequence	GGCAGCTGAAGTCAGGAAACCATGCATCAGCAGGAGCCAACTGCAGGACTTTAAAACTGCTCCAACAGGAGCCAACTGCAGAACTTTAAAACTGCTCCAACAGGAGCCAACTGCAGAACTTTAAAACTGGTCAACATGGATGCAGCAAACTGCTCCAGGAGCAAACCTCCTGTCCAAGACAAGCCGGGGGCACGCCGGGGTCCAAGAACCTCTGCTGCTGCTCCCTGTGCGTCCCGGGGTCCAAGACCATCTACCTTGGGCACCAACCA		

	GTAATGACACCCATTCTTCTGTTA ACAGAAATGCTGGCAGAATGGCCG CATCATCATGAGTGGTCCAAGATG GCTTAGATACAAAATTGCTGTGGAT TGGATTGAGGCCAAAAATGGTGTGAA CGAAAGCATGACCCCAAGGCATTTG GTGAAGATAACCTTCAAAT AGTTTCTGTTTTGAAGAGCCAGCA GATAAAGTGTATTGGGAAAGTCAA TAATAGAACACAGAGCCAAAATTC ATTACCTATGAATGAATGACAAAA CATTTTTGGTTTTGTTTT	AGCTCACCTO AGTACCCAAG GCACTCTTG TCAGACCTCG CCAAGGTTCT GTTTTATAG TGTTAGAAG CTTACGGCAG GGAGGTAGAC TTATCACCTA GAATCTTCTG AAGCACATCA	GGGATGCATCTTTATCTTCAGCAA GGGAACTTATCAGCAGTTGCTGAA GCCTGAATCAGGTTGTACTGAAATA GATTTTTTGTTACAGATTTATAATC GCAGGGCTCTAGCACACATTATCAG GCAGCACAACAAGAACTTCTTGACAGA GCATCAAAGAAGTTTCTTTGACAGGA GCATCAAAGAGTTTCCTGTTCTCT CAAGGAATTGAAAAGCTTATCCAT GCAGGAATTGAAAAGCTTATCGATG GTATCAATGAAAAGCTTATCGATG GTATCAATGAAAAGCTTATCAATG GCATCAAGGGTTTAGCAAGT GCATCAAGCTTTAGCAAGT GCATCAAGCCCGTTTAGCAATGAG
	ORF Start: ATG at 90	ORF Stop	p. TGA at 1641
	SEQ ID NO: 132	517 aa	MW at 57179.9kD
NOV41b, CG57814-02 Protein Sequence	ESDPEGGAGSGVRAGGPDFLQPSS LRPVSSRSGARLLVLEGGAPGAVL PSVSRKAEFIQDGRPCPIILWDAS	EIPLDGTLAF GQEALVGPSL RESNIRIYSE RCGPSPCGLL LSSASNDTHS QIYNRLDTNC FFDRSEDNLN	PESQGNGSTLQPNVVYITLRSKRS QPQEAAREADAVALGTLRSKLVKM CSAPSWLSKDDIRRMRLLADSAVAG LKQPLDMSEVFAFHLDRILGLNRTI, CSVKLTWGTYQQLLKQKCWQNGRVP CCGFRPRKEDACVQNGLRPKCDDQG IFKLLEGIKEFPASAVSVLKSQHLR

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 41B.

Table 41B. Comparison of NOV41a against NOV41b.				
Protein Sequence NOV41a Residues/ Similarities for the Matched		Identities/ Similarities for the Matched Region		
NOV41b	1519 1517	493/519 (94%) 497/519 (94%)		

Further analysis of the NOV41a protein yielded the following properties shown in Table 41C.

	Table 41C. Protein Sequence Properties NOV41a
PSort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.2404 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside
SignalP analysis:	Likely cleavage site between residues 59 and 60

A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 41D.

	Table 41D. Geneseq Resu	lts for NOV	lla	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV41a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU12276	Human PRO6001 polypeptide sequence - Homo sapiens, 519 aa. [WO200140466-A2, 07-JUN-2001]	1519 1519	518/519 (99%) 519/519 (99%)	0.0
AAM39125	Human polypeptide SEQ ID NO 2270 - Homo sapiens, 519 aa. [WO200153312-A1, 26-JUL-2001]	1519 1519	518/519 (99%) 519/519 (99%)	0.0
AAM40911	Human polypeptide SEQ ID NO 5842 - Homo sapiens, 537 aa. [WO200153312-A1, 26-JUL-2001]	1519 19537	491/527 (93%) 495/527 (93%)	0.0
AAM41373	Human polypeptide SEQ ID NO 6304 - Homo sapiens, 479 aa. [WO200153312-A1, 26-JUL-2001]	212512 161471	130/316 (41%) 180/316 (56%)	1e-64
AAM39587	Human polypeptide SEQ ID NO 2732 - Homo sapiens, 397 aa. [WO200153312-A1, 26-JUL-2001]	212512 79389	130/316 (41%) 180/316 (56%)	1e-64

In a BLAST search of public sequence databases, the NOV41a protein was found to have homology to the proteins shown in the BLASTP data in Table 41E.

	Table 41E. Public BLASTP Results for NOV41a			
Protein Accession Number	Protein/Organism/Length	NOV41a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9ET25	HYPOTHETICAL BASIC PROTEIN I-19 - Mus musculus (Mouse), 517 aa.	1519 1517	431/519 (83%) 462/519 (88%)	0.0
Q9NYZ0	AD021 PROTEIN - Homo sapiens (Human), 246 aa.	274519 1246	246/246 (100° o) 246/246 (100° o)	e-145
Q9UFP1	HYPOTHETICAL 49.5 KDA PROTEIN - Homo sapiens (Human), 448 aa (fragment).	212512 130440	129/316 (40%) 179/316 (55%)	2e-63

PFam analysis predicts that the NOV41a protein contains the domains shown in the

Table 41F. Domain Analysis of NOV41a			
Pfam Domain	NOV41a Match Region	Identities/ Similarities for the Matched Region	Expect Value
SQS_PSY: domain 1 of 1	109145	8/37 (22%) 29/37 (78%)	9.9

Example 42.

The NOV42 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 42A.

Table	Table 42A. NOV42 Sequence Analysis			
	SEQ ID NO: 133	1294 bp		
NOV42a, CG59327-01 DNA Sequence	TGTTTTATAACTGTGCTACTG/ TGTTGATCCAAGGCGCCGTTTC CCTCCCTCCTGGGAAAAACCC/ GCGCACTCCACAGGTCAGGAG ATGCGGGTCTGGGAACGAGGA CAGGAGTCCCCGATCAGGC/ TGGCTCATTATGAGAGTCAAGA CAGCCAGCCTATTTACAAATCC ATACAGCAGCTTTTTACAAATCC ATACAGCAGCTTTTTCATCTCC TTATTGGAAAAGGAAACGAAGGTTT TTGGAAAAGGAAACGATCGGCG CTCCCTTATGCCATGTGCC TCTCCCTAATGCCATAGTGAC CTACGGCATCATCTTGTGTC GGTAAACTGTCTCAGGTTTTAA TGCGAGGAGACGGATCCAGGGCT TTTCTAAAGTTAGATCACTGGC TCCTTTAGAAAACAATCACCGC CAACTTGCTTACTTATGTGACA	AGTACTTGTG CTTAAACCTG AATGACCTCAG ATGTCAAATGG AGACCCTCTGA AGAGCTTTGAA CTTTATTCATC CTCCTCTGAC CCTTGTCCTCA CTTGACTCCTCAC CTGAAGACTTCAC CTGAAGACTTG AATGGCATCT CAGAGTTCATAC CCAGAGTTTTT CCAGAGTTTTT CCAGAGTTTTT CCAGAGTTTTT CCAGAGTTTTT CCAGAGTTTTT CCAGAGTTCAACCT	TIGCCCCTTGCCCAGTACATTTTCAT TIGCAGAGTATTGGCTGAGGAATGCCA TTTGTTTTTGGGACCCTCATGAGGCC TAGAGAAAGATCTGCGCTCCTGCCC TAGAGAAAGATCTGCGCTCCTGCCC TAGACAAGCCCAGGAGTGCAAGC TGCCTTTCCGGTTCTGAAGACGGTCAGC TGCCTTTGTTTTCTGGGCTTCATTTGCA TCCCAGAAATCGTCAATTTGTATAAC TTCAATTATAGCAATAGTTCACATTG TTACCTTGCATCAGTTTTTGGAATGT TACTTTGTTTTTCCAGCGTTTTTGATG TACTTTTTTTTTT	
	ORF Start: ATG at 2	ORF Stop	o: TAA at 1049	
	SEQ ID NO: 134	349 aa	MW at 38694.2kD	
NOV42a, CG59327-01 Protein Sequence	MATLNVVLMLMPLAQYIFHCFITVLLKYLCAEYGWRNAMLIQGAVSLNLFVFGTLMRP LPPGKNPNDPEEKDLRVLPAHSTESVMSNGQQGRIEEKDGGSGNEETLCDLQAQECKP RSAPIRPDHVRFPVLKTVSWLIMRVKKGFEDWYSGYFGTASLFTNRMFVAFVFWASFA YSSFVISFIHLPEIVNLYNLLEQTKVFPLTSIIAIVHIVGKVILGVIADLPCISVWNV FLLASFVLVLSIFVLLPLMHMYAGLVVICTLTGFSSGYFSLMPIVTEDLVGIEHLANA YGIIICANGISALLGPPFAGKLSEVLRVHSAYRYGVLALRGDGCRALTSSLIHRSEMA F			

Further analysis of the NOV42a protein yielded the following properties shown in Table 42B.

analysis:	probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Likely cleavage site between residues 32 and 33

A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 42C.

	Table 42C. Geneseq Results for NOV42a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAO07132	Human polypeptide SEQ ID NO 21024 - Homo sapiens, 107 aa. [WO200164835-A2, 07-SEP-2001]	257331 5 81	49/77 (63%) 58/77 (74%)	6e-20
AAY31642	Human transport-associated protein-4 (TRANP-4) - Homo sapiens, 465 aa. [WO9941373-A2, 19-AUG-1999]	157342 221401	54/197 (27%) 86/197 (43%)	1e-07
AAY02737	Human secreted protein encoded by gene 88 clone HKAFB88 - Homo sapiens, 229 aa. [WO9902546-A1, 21-JAN-1999]	198342 24164	41/147 (27%) 65/147 (43%)	9e-06

In a BLAST search of public sequence databases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table 42D.

Table 42D. Public BLASTP Results for NOV42a				
Protein Accession Number	Protein/Organism/Length	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96N17	CDNA FLJ30794 FIS, CLONE FEBRA2001093, WEAKLY SIMILAR TO MONOCARBOXYLATE TRANSPORTER 4 - Homo sapiens	22331	250/312 (80%) 266/312 (85%)	e-138

museums (Motises, aa

AAL39716	LD30953P - Drosophila melanogaster (Fruit fly), 894 aa.	142314 665843	50/180 (27%) 89/180 (48%)	2e-15
Q9V9B3	CG3409 PROTEIN - Drosophila melanogaster (Fruit fly), 800 aa.	142314 571749	50/180 (27%) 89/180 (48%)	2e-15
Q9W0L6	CG13907 PROTEIN - Drosophila melanogaster (Fruit fly), 816 aa.	157331 565738	55/178 (30%) 91/178 (50%)	1e-14

PFam analysis predicts that the NOV42a protein contains the domains shown in the Table 42E.

Ta	ble 42E. Domain Analy	sis of NOV42a	
Pfam Domain	NOV42a Match Region	Identities/ Similarities for the Matched Region	Expect Value
oxidored_q3: domain 1 of 1	197314	25/177 (14%) 73/177 (41%)	9.1

Example 43.

The NOV43 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 43A.

Table 43A. NOV43 Sequence Analysis			
	SEQ ID NO: 135	455 bp	
NOV43a, CG59494-01 DNA Sequence	TAGAACTGTGTTGAGCTCTCACCCATCACGATGAGCAACAAATTCTTGGGAACCTGGA AGCTGGTCTCCAGTGAAAACTTCAGGATTACATGAAAGAACTGGGAGTGAATTTCGC AGCCCGGAACATGGCAGGGTTAGTGAAACCGACAGTAACTATTAGTGTTGATGGGAAA ATGATGACCATAAGAACAGAAAGTTCTTTCCAGGACAACTAAAGATCTCCTTCAAGCTGG GGGAAGAATTTGATGAAAACTACAGCAGACAACCGGAAAAGTAAAGAGCACCATAACATT AGAGAATGGCTCAATGATTCACGTCCAAAAATTGGCTTGGCAAAGAGAACAACAATCAAA AGAAAAATTGTGGATGAAAAAATGGTAGTGGAATGTAAAATGAATAAT		
	ORF Start: ATG at 31	ORF Sto	p: TGA at 427
	SEQ ID NO: 136	132 aa	MW at 15096.4kD
NOV43a, CG59494-01 Protein Sequence	MSNKFLGTWKLVSSENFEDYMKELGVNFAARNMAGLVKPTVTISVDGKMMTIRTESSF QDTKISFKLGEEFDETTADNRKVKSTITLENGSMIHVQKWLGKETTIKRKIVDEKMVV ECKMNNIVSTRIYEKV		

Further analysis of the NOV43a protein yielded the following properties shown in Table 43B.

Table 43B. Protein Sequence Properties NOV43a

SignalP	No Known Signal Sequence Predicted
analysis:	

A search of the NOV43a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 43C.

	Table 43C. Geneseq Results for NOV43a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW40227	Human myelin P2 protein - Homo sapiens, 136 aa. [WO9803647-A2, 29-JAN-1998]	1130 1130	89/130 (68%) 107/130 (81%)	2e-47	
AAW40228	Bovine myelin P2 protein - Bos taurus, 136 aa. [WO9803647-A2, 29-JAN-1998]	1130 1130	89/130 (68%) 106/130 (81%)	9e-47	
AAY90320	Human AFABP protein sequence - Homo sapiens, 132 aa. [WO200047734-A1, 17-AUG-2000]	1131 1131	84/131 (64%) 110/131 (83%)	3e-46	
AAY90319	Mouse AFABP protein sequence - Mus sp, 132 aa. [WO200047734-A1, 17-AUG-2000]	1131 1131	83/131 (63%) 108/131 (82%)	7e-45	
AAG66576	Mouse MDGI polypeptide - Mus sp, 133 aa. [US6232291-B1, 15-MAY-2001]	1131 1131	73/131 (55%) 103/131 (77%)	6e-40	

In a BLAST search of public sequence databases, the NOV43a protein was found to have homology to the proteins shown in the BLASTP data in Table 43D.

	Table 43D. Public BLASTP Results for NOV43a			
Protein Accession Number	Protein/Organism/Length	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
MPRB2	myelin P2 protein - rabbit, 132 aa.	1132 1132	95/132 (71%) 109/132 (81%)	3e-49
P02691	Myelin P2 protein - Oryctolagus cuniculus (Rabbit), 131 aa.	2132 1131	94/131 (71%) 108/131 (81%)	1e-48
MPHU2	myelin P2 protein [validated] - human, 132 aa.	1132 1132	92/132 (69%) 109/132 (81%)	3e-48
Q90X56	ADIPOCYTE FATTY ACID BINDING PROTEIN - Gallus gallus (Chicken), 132 aa.	1131	86/131 (65%) 113/131 (85%)	le-47
P02689	Myelin P2 protein - Homo sapiens (Human), 131 aa.	2132 1131	91/131 (69%) 108/131 (81%)	le-47

PFam analysis predicts that the NOV43a protein contains the domains shown in the Table 43E.

Table 43E. Domain Analysis of NOV43a				
Pfam Domain	NOV43a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
lipocalin: domain 1 of 1	4132	45/157 (29%) 113/157 (72%)	3.2e-36	

Example 44.

The NOV44 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 44A.

Table 44A. NOV44 Sequence Analysis					
SEQ ID NO: 137 1561 bp					
NOV44a, CG59432-01 DNA Sequence	GCAGTTGGAGGAGGGAGCTCT TATACCAGGAAGATAATTCAA TGCCAATGAGGAAATCCCCAC CTGAGTGTGTTAAGCTTTATCT CCAGTAAATAATTGTTAGAGA AGAGCTCGTTGATTCCTCTGC	SAATTGCAGGGGTTCTTGAATGTTGTCAACATTTGGAG CATTGATGAAAAATGGCTACATATTCAAAATTTCAGTG ATTCATCTCTGGCTTACCCAAAGAATCTTGGAGTTAC GGGTCTAATAAAAATATCTTTAGGAGTGAAGGAGTTAA CTCTGTCCAATGGACTTGTGGTTGCTTATAAAACTCT ACCTGTCATTGATAGCAGTTGCTAGTTGCTGCTTTTA CCAAGGTGGTGGAGCATCCTCTGTCCTCTCATTCATTTC			

	CTCCTGCTGATGAGATATACTCTGAACTCCAGGAGGCTCATCCAGGTGAGCCA AGGACAGGGGCATCTCAATGGAAGGGTTATATTCATCAACCCAGGACCAGCAA CGCAGCAGAACTCCAGGAGAATGGGAGGTTGATGAAGGAAG		
	ORF Start: ATG at 454 SEQ ID NO: 138	ORF Stop: TAA at 1132 226 aa MW at 26132.2kD	
NOV44a, CG59432-01 Protein Sequence	MNDEDYSTIYDTIQNERTYEVPDQPEENESPHYDDVHEYLRPENDLYATQLNTH:		
	SEQ ID NO: 139	809 bp	
NOV44b, CG59432-02 DNA Sequence	ATCCTCTGTCCCTTCATTCATTTCAGATCTACTCAGGTCTCCCTGTAAACAC CGGATCAATAAGCATGAATGACGAAGACAACCACCACTTTATGACACAATC GAGAGGACGTATGAGGTCCAGAACAAGAAAAATGAAAATCAAGACCACTCATGACCAGCAGAAGAAAATGAAAGTCCCCATT ATGTCCATGAGTACTTAAGGCCAGAAAAATGATTTATATGCCACTCAGCTGAA TGAGTATGATTTTGTGTCAGTCTATACCATTAAGGGTGAAGAGACCAGCTTC GTCCAGTCAGAAGACAGAGGCCCAGGAGGACAGGGGGATCTCAATGGAAGGGTTA AGGCTCATCCAGGTGAGCCCCAGGAGGACAGCTCCAGGAGAATGGAAGGGTT ATCAACCCAGGACCAGCAACTCTGCGCAGCAGAACTCCAGGAGAATGGGAGT AAGGAAGATCTGCCTTCTCTTCAAGCTTCACCATTCAGCACAGTAAGGCCT CCACCAAGTATTCCTGCTATTCTGATGCTGAAGGTCTGGAAGAACAGCCTGACAGC CTGTTCATGAGAATATTATGCTTGTTTTTTTTTT		
	ORF Start: ATG at 72	ORF Stop: TAA at 750	
	SEQ ID NO: 140	226 aa MW at 26102.2kD	
NOV44b, CG59432-02 Protein Sequence	MNDEDYGTIYDTIQNERTYEVPDQPEENESPHYDDVHEYLRPENDLYATQLNTHEYDF VSVYTIKGEETSLASVQSEDRGYLLPDEIYSELQEAHPGEPQEDRGISMEGLYSSTQD QQLCAAELQENGSVMKEDLPSPSSFTIQHSKAFSTTKYSCYSDAEGLEEKEGAHMNPE IYLFVKVRSASDRHTLFMQILWLVFYFALNDQGKIHNAMVLGSQYIFRSRRD		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 44B.

Table 44B. Comparison of NOV44a against NOV44b.				
Protein Sequence	NOV44a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV44b	1226 1226	225/226 (99%) 225/226 (99%)		

Further analysis of the NOV44a protein yielded the following properties shown in Table 44C

PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV44a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 44D.

	Table 44D. Geneseq	Results for N	OV44a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV44a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	1	

In a BLAST search of public sequence databases, the NOV44a protein was found to have homology to the proteins shown in the BLASTP data in Table 44E.

	Table 44E. Public BLASTP Results for NOV44a			
Protein Accession Number	Protein/Organism/Length	NOV44a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96JT5	CLIC5B - Homo sapiens (Human), 410 aa.	1200 1202	185/202 (91%) 191/202 (93%)	e-104
Q9NPY9	DJ447E21.4 (SIMILAR TO BOVINE CHLORIDE CHANNEL PROTEIN (P64)) - Homo sapiens (Human), 180 aa (fragment).	1180 1180	180/180 (100%) 180/180 (100%)	e-103
A47104	chloride channel 64K chain - bovine, 437 aa.	1197 1229	104/231 (45%) 133/231 (57%)	1e-39
P35526	Chlorine channel protein p64 - Bos taurus (Bovine), 437 aa.	1197 1229	103/231 (44%) 131/231 (56%)	1e-38

PFam analysis predicts that the NOV44a protein contains the domains shown in the

	Table 44F. Domain	Analysis of NOV44a	
Pfam Domain	NOV44a Match Region	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	

Example 45.

The NOV45 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 45A.

Table	45A. N	OV45	Sequen	ce Analys	is
	SEQ I	D NO:	141	877 bp	
NOV45a, CG59394-01 DNA Sequence	GTTCTTC ACTGTC/ TAGATAT GAATAAT GGTGGGT GTAAGCC AGTGTCC TTCAAACT ACTGGCT TCTTTAA	GCTCTTC AGTGAGA ICATTTA ITCCATA ICAGAGG CCTTGCA CTGGGTT ITCTGTG ITGCACT AAGAACC CTGTGGT CTTGCACT CTTGCGT CTTGCACT CTTGCACT CTTGCACT CTTCCCC	TACATTTTC CCCTGGGCT TCCTTCCAT TCCTTCCAC TTATTTGCG GGAGGATTT GCCCCAATC CACTGACAC ATTGGTTT TTAGTCAG TTTTGTCAGAC ATTGTCAGACAC ATTGTCAGACAC ATTGTCAGACAC ATTGTCAGACAC ATTGACACAC ATTGACACAC	GACCATGGTGC ICACCAATGTA ICACTTGCACG CTGTTGGTGAT ITATCATGACACTCAC GTCATTGATCACCATGATCACCATGTTTATCACCATGTTTATCACCATGTTTATCACAAAAGGGGGGGCATCTTTGTTCCTACCACTGTTTGTT	AAAGGAGCAGAAAGTACTTTTTGTTAT GCAACCTGCTCATTGTAGTGACCGTA ACTTCTTTCTTGCTGGCTTATCATTTA CAGATTGATTTCAGGCTTATCATTTA CAGATTGATTTCAGGCTTGTTCTTTGG GCCCAGCTCTTTATCGAGCACATTTTC ACAATGGGTGTGTGTTGTGCTGCTGGT ACAATGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG
	ORF S	Start: T	TT at 3	ORF Stop	o: TAG at 873
	SEQ I	D NO:	142	290 aa	MW at 32485.7kD
NOV45a, CG59394-01 Protein Sequence	DIIYSSS KPLHYLV KLVCTDI	SISPRLI VIMRQWV CHAIGLL	SGLFFGNNS CVVLLVVSV VVANGGLAC	SISFQSCMAQI VVGGFLHSVFQ CTIVFLLLLIS	LIVVTVTVSETLGSPMYFFLAGLSFI FIEHIFGGSEVFLLLVMAYDCYVAIC RSIIYGLPFCGPNVIDHFFCDMYPLL YGVILHSLKNLSQKGRQKALSTCSSH TVITPMLNPLIYTLRNSEMTSAMKKL

Further analysis of the NOV45a protein yielded the following properties shown in Table 45B.

	Table 45B. Protein Sequence Properties NOV45a
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Likely cleavage site between residues 42 and 43

A search of the NOV45a protein against the Geneseq database, a proprietary database

	Table 45C. Geneseq Results for NOV45a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV45a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU24536	Human olfactory receptor AOLFR21 - Homo sapiens, 299 aa. [WO200168805-A2, 20-SEP-2001]	1290 10299	273/290 (94%) 278/290 (95%)	e-155	
AAG71950	Human olfactory receptor polypeptide, SEQ ID NO: 1631 - Homo sapiens, 299 aa. [WO200127158-A2, 19-APR- 2001]	1290 10299	273/290 (94%) 278/290 (95%)	e-155	
AAG72258	Human olfactory receptor polypeptide, SEQ ID NO: 1939 - Homo sapiens, 262 aa. [WO200127158-A2, 19-APR- 2001]	33290 1250	234/258 (90%) 240/258 (92%)	e-131	
AAG72553	Human OR-like polypeptide query sequence, SEQ ID NO: 2234 - Homo sapiens, 327 aa. [WO200127158-A2, 19-APR-2001]	1290 10299	198/290 (68%) 242/290 (83%)	e-121	
AAG71909	Human olfactory receptor polypeptide, SEQ ID NO: 1590 - Homo sapiens, 327 aa. [WO200127158-A2, 19-APR- 2001]	1290 10299	198/290 (68%) 242/290 (83%)	e-121	

In a BLAST search of public sequence databases, the NOV45a protein was found to have homology to the proteins shown in the BLASTP data in Table 45D.

Table 45D. Public BLASTP Results for NOV45a				
Protein Accession Number	Protein/Organism/Length	NOV45a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9QW37	OR18=ODORANT RECEPTOR - Rattus sp, 307 aa.	1290 10299	192/290 (66%) 237/290 (81%)	e-115
Q96R66	OLFACTORY RECEPTOR - Homo sapiens (Human), 213 aa (fragment).	57269 1213	198/213 (92%) 202/213 (93%)	e-111

Q9R0K1	ODORANT RECEPTOR A16 - Mus musculus (Mouse), 302 aa.	1290 10299	171/290 (58%) 226/290 (76%)	e-102
CAC88333	SEQUENCE 34 FROM PATENT WO0164879 - Homo sapiens (Human), 309 aa.	1290 10299	167/290 (57%) 221/290 (75%)	5e-99

PFam analysis predicts that the NOV45a protein contains the domains shown in the Table 45E.

Table 45E. Domain Analysis of NOV45a				
Pfam Domain	NOV45a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
7tm_1: domain 1 of 1	30276	50/268 (19%) 174/268 (65%)	4.4e-23	

Example 46.

The NOV46 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 46A.

Table 46A. NOV46 Sequence Analysis				
	SEQ ID NO: 143	1746 bp		
NOV46a, CG59383-01 DNA Sequence	ATAATTCAGTTTGAAAACCA CCAGCTGGTGGTGCTACAGTTC CTGGTAAAGGGCCCCTCTACT TGTGCACATTGCTCTCTCTCACGT CAGAACTTCTTCTCTCTAGC GTTTATACATGCTACAGAGAT GAACTTTGCTAGAGACTTCTCAGAGACTTCTCAGATCACAGAGACTTCTTCAGATCTCTTGAAACATACAGACCTAGC GAATCCTAGAGACCTAGC GAATCCTAGAGCAGACCTAGC GAATCCTAGAGCAGACCTAGC GAATCTTCTCTAAAGCCTGACTTCTCTTCT	STEGETTCTTTCCTTCCCTATAGGTGTAAAGAATAT CCCCTCTGGTTTTGCTGCCATGCATCCTGGGGAACTA CACACTCAGATTGACCAGCAACCTCCACGGCTTCTCAT CCCTGGGCTGACATTGCACCAACCTCTGTGAGGCTCTG CTGGGCTGACATCGCCCAACCTCTGTGAGGCTCTG CTGCAGCTTGATGGGCCCCAGCGCATGTCCCTGTTCA CAGCATGAGTGCATCCTCCTTTTTGTGCAAGTGAAAGG CCTGCATCTCAGAACTCCGCATGTTACAGAGAAGAGG TTCTCTGCGGCTGGCAGTAGAGGATGGGCTCCAGCAAT GTGACCACAAGGGCAGCTCTGACCTATACCTCCCTGGA AGCCTGGAAAAGAGGTGCTCAACCATTAACCTCCCTGGA CAGAGTCAGAAAGAGGTGTCAAACAGTTGAGGAAAAGG CAGAGTCAGAAAGAGGTTCAAGCAAGAAATACCACCAAAGG GCTACATAACACTTCAGAACAACAATACCACCACAAGA GCCTGCAACATTCCAGAACAACAATACCACCACACACACA		

NOV46a,			SWADICTNLCEALQNFFSLACSLMGP TCISELRMLQREGCFRSQGASLRLAV	
CG59383-01 Protein Sequence	EDGLQQFKQYSRHVTTRAALTYTSLEITILTSQPGKEVVKQLEEGLKDTDLARVRFFQ VVEVTKGILEHVDSASPVEDTSNDESSILGTDIDLQTIDNDIVSMEIFFKAWLHNSGT DQEQIHLLLSSQCFSNISRPRDNPMCLKCDLQERLLCPSLLAGTADGSLRMDDPKGDF ITLYQMASQSSASHYKLQVIKALKSSGLCESLTYGLPFILRPTSCWQLDWDELTNQQ HFHALCHSLLKREWLLLAKGEPPGPGHSQRIPASTFYVIMPSHSLTLLVKAVAIRELM LPSTFPLLPEDPHDDSLKNSMLDSLELEPTYNPLHVQSHLYSHLSSIVAKPQGRLHPH WESRAPRKTGQLQTNRARATVAPLPMTPVPGRASKMPAASKSSSDAFFLPSEWEKDPS RP			
	SEQ ID NO: 145	1647 bp		
NOV46b, CG59383-02 DNA Sequence	AAAGAATATCCAGCTGGTGGCTACAGTTCCCCCTCTGGTTTTGCTGCCATGCATCCTG GGCGAACTACTGGTAAAGGGCCCTCTACTACACTCAGATTGACCAGCAACCTCCACG GCTTCTCATTGTGCACATTGCTCTACCGTCCTGGGCTGACATCTGCACCAACCTCGTG GAGGCTCTGCAGAACTTCTTCTCTCTAGCCTGCAGCTTGATGGGCCCCAGCCGCATGT CCCTGTTCAGTTTATACATGGTTACAAGATCAGCATGAGTGCATCCTCCCTTTTGTGCA AGTGAAAGGGAACTTTGCTAGGTTGCAGCCTGCAGCTTGATGGACCCCCATGTTACAG AGGAAAGGGAACTTTGCTAGGTTGCAAGCCTGCATCTCAGAACTCCCCTTTTGTGCA AGGAAAGGGAACTTTGCTAGATCACAAGGTCCTCCTTCTCTGCGGCTGGCAGTATACAG AGGAAAGGGAATTCAAACAATACAACAGAACATTGACCACAAGGCAGCTCTGACCTTATAC CTCCCTGGAGATTCAAACAATACAACAGAACATTCTCCAGCCTGGAAAAAGAGCTCGACCTTATAC CTCCCTGGAGATTACAATCACACAGACCTAGCCAGAATCAGCAGCATTTCAGACCTTCAGGCTTCTAGACTTTCAGGCTTCAGACTTTAGACATACAACAGTTG GAGGAAGGGTTGAAAGAACAATCAGACCTAGCCAGAGTCACCTTCAGGATTCAGACTATAACAAATACAACTGAAATGATATC GTCAGCATGGAGATTTTCTTCTACAAGCCTGGCTTCCTTC		ACTCAGATTGACCAGCAACCTCCACG GGGCTGACATCTCTCACCAGCGGCCCAACCTCTGT CAGCTTGATGGGCCCCAGCCGCATCT CATGAGTGCATCCTCCCTTTTGTGCA GCATCAGAACCTCCGCATGTTACAG TCTGCGGCTGGCAGTTGACCTAGACCTTGACCTATAC CTGCAAAAGAGGTGGTCAAACAGTTG AGTCAGGAGGTTTCAGGTCGTTGAGG GCGTCTCTTTGAGGATACCAGCAA ACCTTCAGACTTTGAGGATACCAGCAA ACCTTCAGACTATACACAATGATATAC CACAAAGGGGAACAGCAAGAACAGTCAGCAACACTCCAGACCTTCAGACCTACCCGT CCCTAAAGGAGACTATCACACTCC TACAAGCTCCAAGGACTATCACCACTCC TACAAGCTCCAAGTGATCAAGCCTTC GGAGACAATCAGCACTCC TACAGCTCCAGGGAACATTCCATGC CTGCTGTTAGCCAAGGGGGAACCACCC GCACCTTCTATGGACCTACCCCACCCC	
	ORF Start: ATG at 49	ORF Stop	p: TAA at 1639	
	SEQ ID NO: 146	530 aa	MW at 59359.1kD	
NOV46b, CG59383-02 Protein Scquence	MHPGRTTGKGPSTHTQIDQQPPRLLIVHIALPSWADICTNLCEALQNFFSLACSLMGP SRMSLFSLYMVQDQHECILPFVQVKGNFARLQTCISELRMLQREGCFRSQGASLRLAV EDGLQQFKQYSRHVTTRAALTYTSLEITILTSQPGKEVVKQLEEGLKDTDLARVRRFQ VVEVTKGILEHVDSASPVEDTSNDESSILGTDIDLQTIDNDIVSMEIFFKANLHNSGT DQEQIHLLLSSQCFSNISRPRDNPMCLKCDLQERLLCPSLLAGTADGSLRMDDPKGDF ITLHQMASQSSASHYKLQVIKALKSSGLCESLTYGLPFILRPTSCWQLDWDELETNQQ HFHALCHSLLKREWLLLAKGEPPGPGHSQRIPASTFYVIMPSHSLTLLVKAVATRELM LPSTFPLLPEDPHDDSLKNVESMLDSLELEPTYNPLHVQSHLYSHLSSIYAKPQGRLH PHWESRAPRKHPCKTGQLQTNRARATVAPLPMTPVPGRASKMPAASKSSSDAFFLPSE WEKDPSRP			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 46B.

Table 46B. Comparison of NOV46a against NOV46b.			
Protein Sequence NOV46a Residues/ Identities/ Match Residues Similarities for the Matched Region			
NOV46b	1 524	509/530 (96%)	

Further analysis of the NOV46a protein yielded the following properties shown in Table 46C.

	Table 46C. Protein Sequence Properties NOV46a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV46a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 46D.

Table 46D. Geneseq Results for NOV46a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV46a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM34317	Peptide #8354 encoded by probe for measuring placental gene expression - Homo sapiens, 52 aa. [WO200157272-A2, 09-AUG-2001]	259310 152	52/52 (100%) 52/52 (100%)	7e-23
ABB18624	Protein #623 encoded by probe for measuring heart cell gene expression - Homo sapiens, 42 aa. [WO200157274-A2, 09-AUG-2001]	101142 142	42/42 (100%) 42/42 (100%)	2e-16
AAM66343	Human bone marrow expressed probe encoded protein SEQ ID NO: 26649 - Homo sapiens, 42 aa. [WO200157276-A2, 09-AUG-2001]	101142 142	42/42 (100%) 42/42 (100%)	2e-16
AAM53955	Human brain expressed single exon probe encoded protein SEQ ID NO: 26060 - Homo sapiens, 42 aa. [WO200157275-A2, 09-AUG-2001]	101142 142	42/42 (100° o) 42/42 (100° o)	2e-16
AAM26622	Peptide #659 encoded by probe for measuring placental gene expression - Homo sapiens, 42 aa. [WO200157272-	101142 142	42/42 (100%) 42/42 (100%)	2e-16

In a BLAST search of public sequence databases, the NOV46a protein was found to have homology to the proteins shown in the BLASTP data in Table 46E.

	Table 46E. Public BLASTP Results for NOV46a				
Protein Accession Number	Protein/Organism/Length	NOV46a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9Z0E1	D6MM5E PROTEIN - Mus musculus (Mouse), 529 aa.	1524 1526	380/526 (72%) 423/526 (80%)	0.0	
Q96L07	SIMILAR TO DNA SEGMENT, CHR 6, MIRIAM MEISLER 5, EXPRESSED - Homo sapiens (Human), 365 aa.	1358 1358	358/358 (100%) 358/358 (100%)	0.0	

PFam analysis predicts that the NOV46a protein contains the domains shown in the Table 46F.

Table 46F. Domain Analysis of NOV46a				
Pfam Domain	NOV46a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
RA: domain 1 of 1	124214	18/115 (16%) 65/115 (57%)	8.4	

Example 47.

The NOV47 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 47A.

Table 47A. NOV47 Sequence Analysis				
	SEQ ID NO: 147	960 bp		
NOV47a, CG58526-01 DNA Sequence	ATGCCCAGAACCAAAGAAGA CCAAAGCCTTCCTGCCTCTT CTGCCAAGCAGCTTTCCTGCC AGTTAGACCTCAACAAATATAATA GACCTCCAACAAATATGAGA GAGGAAAGCATCTGCTTCAA GGATCACAGATAACTCAGGT CAGCTGCTGGTGCCCTTGCT ATAGTTGGTTACGCA ATGCAAACAAAGAAGAAGATT	AAATTTAAATATGGATTGGGATTTCCATTCTCTTGCAG GGTCTGCCTGGTTTTCTTCCTGGAGCTCAGACCCAGA CCCAATCCAGGGAACCAGACCAG		

	CCAGCGATGGTTCTTAGCCAGACTGAAATGAC			
	ORF Start: ATG at 31	ORF Stop: TAG at 943		
	SEQ ID NO: 148	304 aa	MW at 33794.2kD	
CG58526-01 Protein Sequence	LPPGLEYLSQLDLIIIHQQVELI CSTLRSCTLRITDNSGREVITVI PFLPKFTIQNANKEDILKIVGPO	.VILGTETSN IRPLRCNSCW CVTCGCFGDV	.PASSNPGNQAWQLSLPLPSSFLPTVS KYEIKNSLGQRIYFAVEESICFNRTF CPCYLQELEIQAPPGTIVGYVTQKWD DFEKVKTINEKLTIGKISKYWSGFVN VSMGFESPALQDEKESVWQFKKSECP	

Further analysis of the NOV47a protein yielded the following properties shown in Table 47B.

	Table 47B. Protein Sequence Properties NOV47a				
PSort analysis:	0.8500 probability located in endoplasmic reticulum (membrane); 0.4400 probability located in plasma membrane; 0.4244 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial inner membrane				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV47a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 47C.

	Table 47C. Geneseq Results for NOV47a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV47a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG78341	Human Mm-1 cell line derived transplantability-associated gene 1b - Homo sapiens, 318 aa. [WO200164894-A2, 07-SEP-2001]	24282 60318	152/263 (57%) 187/263 (70%)	5e-84	
AAB24113	Human phospholipid scramblase HPLS protein sequence - Homo sapiens, 318 aa. [CN1259574-A, 12- JUL-2000]	24282 60318	152/263 (57%) 187/263 (70%)	5e-84	
AAB24112	Mouse phospholipid scramblase MPLS protein sequence - Mus sp, 318 aa. [CN1259574-A, 12-JUL-2000]	24282 60318	152/263 (57%) 187/263 (70%)	5e-84	

	A2, 22-APR-1999]			
AAY29323	Human PL scramblase - Homo sapiens, 318 aa. [WO9936536-A2, 22- JUL-1999]	24282 60318	152/263 (57%) 187/263 (70%)	5e-84

In a BLAST search of public sequence databases, the NOV47a protein was found to have homology to the proteins shown in the BLASTP data in Table 47D.

	Table 47D. Public BLASTP Results for NOV47a				
Protein Accession Number	Protein/Organism/Length	NOV47a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Ø31100	Phospholipid scramblase 1 (PL scramblase 1) (Transplantability associated protein 1) (TRA1) (NOR1) - Mus musculus (Mouse), 328 aa.	20283 66328	150/267 (56%) 191/267 (71%)	4e-84	
Q99M50	PHOSPHOLIPID SCRAMBLASE 1 - Mus musculus (Mouse), 327 aa.	20282 66327	150/266 (56%) 191/266 (71%)	6e-84	
O15162	Phospholipid scramblase 1 (PL scramblase 1) (Erythrocyte phospholipid scramblase) (Ca2+ dependent phospholipid scramblase 1) (MmTRA1b) - Homo sapiens (Human), 318 aa.	24282 60318	152/263 (57%) 187/263 (70%)	2e-83	
P58195	Phospholipid scramblase 1 (PL scramblase 1) (Ca2+ dependent phospholipid scramblase 1) - Rattus norvegicus (Rat), 335 aa.	28282 84335	145/256 (56%) 183/256 (70%)	3e-81	
Q9NRY7	Phospholipid scramblase 2 (PL scramblase 2) (Ca2+ dependent phospholipid scramblase 2) - Homo sapiens (Human), 224 aa.	55270 6221	135/217 (62%) 164/217 (75%)	1e-75	

PFam analysis predicts that the NOV47a protein contains the domains shown in the Table 47E.

	Table 47E. Domain	Analysis of NOV47a	
Pfam Domain	NOV47a Match Region	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	

Example 48.

The NOV48 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 48A.

Table	Table 48A. NOV48 Sequence Analysis				
	SEQ ID NO: 149	957 bp			
NOV48a, CG57851-01 DNA Sequence	CCCCTGCTGGTGCCCAAGACCACCGTGGAAGAATGGCTAAAGAGAGACAAGTGAGT TAGAATGGGGCTTGTTACCCCCAGAAGAATTTTCCCAAGTGAATGGAATCATTCTTCA AAAGAAATGTGCGATTTCTGGGATAAGATCTGGAACTTCCAAGCCAAGCCTGATGAC CTGCTCATTGCTTCTTACCCCCAAAGCAGGTACCACTTGGACACAGGAAATTGTAGATC TGATACAAAATGATGGCGATATTGAGAAAACCAGGCGCGCTTTCCATTCAACTACACCCCTTTCCTGGAGTGAAAACTCATCTTCCTGGAATTGACAACCACCCCTTTCCTGGAAAACTCATCTTCCTGGAACACTACCACTTTCAACAACTACTTCCTGTAACAACTACTTCCTGTAACAACTACTTCTTCTGGAAAACTTCATCTTCTGTGAACAACTACTTTTCAAAGATAACTTATGTGGCAAGAAATTCCTGAACTTCTTTTGACAGTGGAAAACTCCTTGACAATTCTTCTGAACATTCTTCTGACGTTTTTGACAGTGGGAAAAATTTTTCAGAAAAACTCCTTGACAATTCTTCTGAAAAACTCATTTTCAAAGGATATTTTGATCATGCTTCTGAAAATTCTTCTGAGAATTCTTCTGAGAATTCTTCTGAGAATTCCTTCTGAGAATTCCTAGAAAACTAAAAAAACTAGATAAATGAATTATTTTTTTT				
	ORF Start: ATG at 34	ORF Stop	o: TAA at 919		
	SEQ ID NO: 150	295 aa	MW at 34853.7kD		
NOV48a, CG57851-01 Protein Sequence	TWTQEIVDLIQNDGDIEKSRRAS KTHLPVQLLPPSFWEENCKIIYV VLWGIWEEIRTWQLHRLFCWFFL	IQLQHPFLEW ARNAKDNLVS HASENPRKFK	DFWDKIWNFQAKPDDLLIASYPKAGT VIRMTHARKIFAGIDQANTMPSPRTL SYYHFQRMSKALPDVLTVGEYIMCGE KRIMEFMGNKLDEDPVKRIVQHTSFE WKDYFSAAQNKRFDEDRKMADSSLT		

Further analysis of the NOV48a protein yielded the following properties shown in Table 48B.

	Table 48B. Protein Sequence Properties NOV48a				
PSort analysis:	0.6400 probability located in microbody (peroxisome); 0.4500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV48a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 48C.

	Table 48C. Geneseq Results for NOV48a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV48a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE12209	Human ST drug-metabolising protein 2 encoded by DNA transcript 2 - Homo sapiens, 304 aa. [WO200172977-A2, 04-OCT-2001]	16295 15304	137/293 (46%) 200/293 (67%)	9e-74	
AAE12210	Human ST drug-metabolising protein 3 encoded by cDNA - Homo sapiens, 304 aa. [WO200172977-A2, 04-OCT- 2001]	16295 15304	129/293 (44%) 190/293 (64%)	1e-67	
AAE12208	Human ST drug-metabolising protein 1 encoded by DNA transcript 1 - Homo sapiens, 304 aa. [WO200172977-A2, 04-OCT-2001]	16295 15304	128/293 (43%) 190/293 (64%)	6e-67	
AAE05178	Human drug metabolising enzyme (DME-9) protein - Homo sapiens, 304 aa. [WO200151638-A2, 19-JUL-2001]	16295 15304	128/293 (43%) 189/293 (63%)	1e-66	
AAY67294	Human STP2 (phenol sulphotransferase 2) amino acid sequence - Homo sapiens, 295 aa. [WO9964630-A1, 16-DEC-1999]	15295 10295	133/292 (45%) 186/292 (63%)	5e-66	

In a BLAST search of public sequence databases, the NOV48a protein was found to have homology to the proteins shown in the BLASTP data in Table 48D.

Table 48D. Public BLASTP Results for NOV48a					
Protein Accession Number	Protein/Organism/Length	NOV48a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O90WR6	SUI FOTRANSFERASE 10 Galling	2 295	170/304 (559/)	3 0.1	

	(EC 2.8.2) (HAST-I) - Rattus norvegicus (Rat), 304 aa.	1304	222/308 (71%)	
O70262	PHENOL SULFOTRANSFERASE - Mus musculus (Mouse), 304 aa.	18295 19304	164/289 (56%) 215/289 (73%)	1e-91
O75897	Sulfotransferase 1C2 (EC 2.8.2) (SULT1C) (SULT1C#2) - Homo sapiens (Human), 302 aa.	22292 22299	160/282 (56%) 203/282 (71%)	1e-87
O00338	Sulfotransferase 1C1 (EC 2.8.2) (SULT1C#1) (ST1C2) (humSULTC2) - Homo sapiens (Human), 296 aa.	18295 12296	149/289 (51%) 201/289 (68%)	1e-80

PFam analysis predicts that the NOV48a protein contains the domains shown in the Table 48E.

Table 48E. Domain Analysis of NOV48a						
Pfam Domain	NOV48a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
Sulfotransfer: domain 1 of 1	23285	116/298 (39%) 207/298 (69%)	6.2e-82			

Example 49.

The NOV49 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 49A.

Table 49A. NOV49 Sequence Analysis					
	SEQ ID NO: 151	1934 bp			
NOV49a, CG59377-01 DNA Sequence	CTCTGTTTGAAGGCTTTAAACT TCAGACGGCAGATGAAAAAACACT GGAAGCCACCTCCAATGACCCCT GACCTGACCT	CATAGGGTGCGCACTTACCAAGGACAGGAAGGTTT TATAACAAAGAAAATAAAAT			

	GATGACTTTTCTGAATTTGACAACCTTCGGACTTCAAAAAAAA			
	ORF Start: ATG at 101	ORF Stop	o: TAG at 1835	
	SEQ ID NO: 152	578 aa	MW at 61651.2kD	
NOV49a, CG59377-01 Protein Sequence	MVWKRLNDHGKNWRHVYKALTLLD KDQGINVREKSKQLVALLKDEERL PNLSTSHSEQEYGKAGGSPASYHG VAEQEERLRRGDDLRLQMALEESR WGPSASTNQTNPWGGPAAPASTSD AASQQPASSAGKRASDAWGAVSTT TAESVTSLPSQNNGTTSPDPFESQ	YLIKTGSERV KAERAQALKT STSPRVSSEL RDTVKIPKKK PWPSFGTKPA KPVSVSGSFE PLTVASSKPS NPFQVNQPQP	PSSSLMTEIADLTYNVVAFSEIMS AQQCRENIFAIQTLKDFQYIDRDG KERMAQVATGMGSNQITFGRGSSQ LEQARPQTSGEEELQLQLALAMSRE LEQTTLLDLMDALPSSGPAAQKAEP LASIDPWGVPTGATAQSVPKNSDPW LIFSNLNGTIKDDFSEFDNLRTSKK LSARKTPESFLGPNAALVNLDSLVT LTLNQLRGSPVLGTSTSFGPGPGV LVGSVGIPPSAAQATGTTNPFLL	

Further analysis of the NOV49a protein yielded the following properties shown in Table 49B.

	Table 49B. Protein Sequence Properties NOV49a			
PSort analysis:	0.4936 probability located in mitochondrial matrix space; 0.3000 probability located in nucleus; 0.2087 probability located in mitochondrial inner membrane; 0.2087 probability located in mitochondrial intermembrane space			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV49a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 49C.

Table 49C. Geneseq Results for NOV49a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV49a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB93525	Human protein sequence SEQ ID NO:12872 - Homo sapiens, 584 aa. [EP1074617-A2, 07-FEB-2001]	1578 1584	578/584 (98%) 578/584 (98%)	0.0

	[EP1074617-A2, 07-FEB-2001]			
AAB93011	Human protein sequence SEQ ID NO:11762 - Homo sapiens, 484 aa. [EP1074617-A2, 07-FEB-2001]	1407 1470	385/470 (81%) 390/470 (82%)	0.0
AAB42049	Human ORFX ORF1813 polypeptide sequence SEQ ID NO:3626 - Homo sapiens, 551 aa. [WO200058473-A2, 05-OCT-2000]	1578 1551	306/636 (48%) 370/636 (58%)	e-141
AAB95100	Human protein sequence SEQ ID NO:17064 - Homo sapiens, 576 aa. [EP1074617-A2, 07-FEB-2001]	1578 1576	298/636 (46%) 371/636 (57%)	e-137

In a BLAST search of public sequence databases, the NOV49a protein was found to have homology to the proteins shown in the BLASTP data in Table 49D.

	Table 49D. Public BLASTP Results for NOV49a				
Protein Accession Number	Protein/Organism/Length	NOV49a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O95207	EPSIN 2A - Homo sapiens (Human), 584 aa.	1578 1584	576/584 (98%) 576/584 (98%)	0.0	
Q9UPT7	KIAA1065 PROTEIN - Homo sapiens (Human), 641 aa.	1578 1641	557/641 (86%) 562/641 (86%)	0.0	
O95208	EPSIN 2B - Homo sapiens (Human), 642 aa.	1578 1642	556/642 (86%) 560/642 (86%)	0.0	
Q9Z1Z3	EH DOMAIN BINDING PROTEIN EPSIN 2 - Rattus norvegicus (Rat), 583 aa.	1578 1583	512/590 (86%) 526/590 (88%)	0.0	
O70447	INTERSECTIN-EH BINDING PROTEIN IBP2 - Mus musculus (Mouse), 509 aa (fragment).	76578 2509	438/515 (85%) 459/515 (89%)	0.0	

PFam analysis predicts that the NOV49a protein contains the domains shown in the Table 49E.

11111

		Similarities for the Matched Region	
ENTH: domain 1 of 1	17140	70/131 (53%) 117/131 (89%)	7.9e-68
VHS: domain 1 of 1	14158	33/160 (21%) 90/160 (56%)	3.3
UIM: domain 1 of 2	217234	11/18 (61%) 16/18 (89%)	0.043
UIM: domain 2 of 2	242259	5/18 (28%) 12/18 (67%)	80

Example 50.

The NOV50 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 50A.

Table 50A. NOV50 Sequence Analysis					
SEQ ID NO: 153	2580 bp				
TOTOTOTO CONTROLL CON	GCTGGGTGTGTGCCCATGCTGGCCCCCTTTTAT CCATCAGTGGCTCTCCACTGTCCGGAAAGGAAGTG ACCAAAGCAAATCCGGCCATGAAGCACTGTCACAAG GCGCCCCACCCCA				
	TEQ ID NO: 153 TGCTGCTGGCCCCTTTTATT GCTGGCAGTGACAAACTGTA GCAATTCTGAATACTGTAAAG TCGACATTGCCGAGAATGCT ACCGTCCCCACTGGTGGAGGC GCAAAGAGGAGGCGCAACCTGGCCCTTCCG GCAACCTGGGCAGGCCTTCTCG GCAACCTGGCCGAAGCCTTGCCCCTGCACGGCCCTTGCACAGGCCTTCACGCCTTGCCCACGGCCTTCCCACGGCCTTGCCACAGTCCCTAGCCTTGCCCACAGTCCTCAGGCCTTGCCCACAGTTCCCACAGTTCCCACAGTTCCCACAGTTCCCACAGTTCCCACAGTTCCTCAGCCTTGCCCCTGACCCCTGACCCCTGACCCCTGACCCCCTGACCCCCTGACCCCCCTGACCCCCTGACCCCCCTGACCCCCCTGACCCCCCTGACCCCCCCTGACCCCCCCC				

	CAGGAAGCAGTGGGAGACCTTCGAG TGA			
	ORF Start: ATG at 1	rt: ATG at 1 ORF Stop: TGA at 2578		
	SEQ ID NO: 154	859 aa	MW at 91746.7kD	
NOV50a, CG59258-01 Protein Sequence	FDIAENGCAPTPEEQLPKTAPS GKESARTQPERVVDRTGEPLNP SLQRSLALLGTPQLIWETATTM SRALVTGLTDEDTEAQGSHLLA QSRMCIRAARSHSHYFLAPTTA SSDDECQREEGPSSGFTESFFF PVPAPPDRAASIDLLEDVFSNL DLGGSERSRGVTVALKLTHPYN RPQNRDSILNPSDKEEVPTPTL LGDVSERLQTDRDRRAALSPGL LSTAWSGSTLPSRPATPNVATP LVSTPAGPFGAPPASLGPAFAS	PLVEAKDPKL ERALSGDHLW ADGPTTPCLG KVTQQTMSVW PTVFRTQSPD SAPFEWPQPY DMEAALQPLG KLWSLGQDDM GSITIPRPQG LPGVVPQGPT FTPQFSFPPA GLLLSSAGFC ARSSARAAET	TVRKGSGAILNTVKTKANPAMKTVYK REDRRPITVHFGQDQSEMSFSSALTH PVTHLLWATLGKSLLALICEMGSSPR SRGLPSSVSTVPLALREVPSDAPHPC LSENGKEAWAFSHEGATAVASGMTYP LGSRMQRLSSGLVKPLRHYAVFLSED RTLRESDSAEGDEAESPEQQVRKSTG QAKSLEDLRAPKDLREQPGTFDYQRL AIPSKPPAASPEKPSALLGNSLALPR RKTPELGIVPPPPIPRPAKLQAAGAA ELLQPLSPGPGAAGTSSDALLALLDP GTPTPFPQPPLNPFVPSMPAAPPTLP APHRSQPNLSALSMPNLFGQMPMGTH KQGLALRPGDPPLLPPRPPQGLEPTL PDSVEQLRKQWETFE	

Further analysis of the NOV50a protein yielded the following properties shown in Table 50B.

	Table 50B. Protein Sequence Properties NOV50a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1940 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space				
SignalP analysis:	Likely cleavage site between residues 15 and 16				

A search of the NOV50a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 50C.

Table 50C. Geneseq Results for NOV50a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV50a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM41501	Human polypeptide SEQ ID NO 6432 - Homo sapiens, 545 aa. [WO200153312-A1, 26-JUL-2001]	22103 401482	82/82 (100%) 82/82 (100%)	2e-42
AAM39715	Human polypeptide SEQ ID NO 2860 - Homo sapiens, 559 aa. [WO200153312-A1, 26-JUL-2001]	22103 396496	82/101 (81%) 82/101 (81%)	6e-39
44W31855	Mycobacterium tuberculosis 55 kDa	498 845	96/358 (26%)	Re-12

AAW31852	Mycobacterium tuberculosis 74 kDa protein - Mycobacterium tuberculosis, 763 aa. [WO9741252- A2, 06-NOV-1997]	498845 262580	96/358 (26° _o) 125/358 (34%)	8e-12
AAB50363	Human SRCAP - Homo sapiens, 2972 aa. [WO200073467-A1, 07- DEC-2000]	501845 12351575	112/369 (30%) 141/369 (37%)	1e-11

In a BLAST search of public sequence databases, the NOV50a protein was found to have homology to the proteins shown in the BLASTP data in Table 50D.

	Table 50D. Public BLASTP Results for NOV50a				
Protein Accession Number	Protein/Organism/Length	NOV50a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9HCG4	KIAA1608 PROTEIN - Homo sapiens (Human), 603 aa (fragment).	309859 62603	501/555 (90%) 510/555 (91%)	0.0	
Q9Н796	CDNA: FLJ21129 FIS, CLONE CAS06266 - Homo sapiens (Human), 559 aa.	22103 396496	81/101 (80%) 81/101 (80%)	2e-37	
AAK44515	HYPOTHETICAL 58.5 KDA PROTEIN - Mycobacterium tuberculosis CDC1551, 598 aa.	499845 299562	104/354 (29%) 121/354 (33%)	8e-14	
Q9SN46	EXTENSIN-LIKE PROTEIN - Arabidopsis thaliana (Mouse-car cress), 839 aa.	604848 407626	73/249 (29%) 100/249 (39%)	3e-12	
Q41805	EXTENSIN-LIKE PROTEIN PRECURSOR - Zea mays (Maize), 1188 aa.	492848 415749	88/361 (24%) 124/361 (33%)	5e-12	

PFam analysis predicts that the NOV50a protein contains the domains shown in the Table 50E.

das sanan (1886). Mahele segira. Specian

	Similarities for the Matched Region	
No Significant	Matches Found	

Example 51.

The NOV51 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 51A.

Table 51A. NOV51 Sequence Analysis			
	SEQ ID NO: 155	1394 bp	
NOV51a, CG59492-01 DNA Sequence	GTGGCCTGCTCCTGCAGCAATCC CCCCAAAGAGAAGACCCAGGAGG GTGGTGTCCAAGTTCAAGGCCTC CGCCCCATACATTCGCTGCATC CCCAAGAGGAGGTCCTGAGCCAGC AGTGCTGCTGGCTTCCCCATCCC TACTAAGAAGGCTTCATCCTGCCGGT CTGAGGCCATCCCAACCCCTTCCCCATCCCCTTCCCACCCCTTCCCCGCTCCCTTCCCACCCCTTCCCCGCTCCTTCCCACCCTTCCCCGCTCCTCCCCACCCTTCCCCGCTCCCACCCCTTCCCCCTTCCCCGCTCCCCACCCCTTCCCCCTCCCCCTCCCCCTCCCCTCCCCCTCCCCC	AACCCCTGGCCAGAGACTGGGCCAGAGACTGGAGGCCTGTGGCCTGGCCAACAGCCAGGCTGTGCCCAACAGCAGCAGCAGCACACACA	CAGGGCCCCTGTGTTGACC CAGGTCCTACACAGCACCA GCCAGGCGCAGACCTTTCT CGTGGGAGACCATCCATATC TTTGTAGAACGATACAAGT ACAGCCCATATCCTGCCAA GCTTGAACCTCTCATCCAG GCCATAACTGGTGACTCG GAGCAGTGTGCCGGTGCCGAGCAGCAGCACACCCCTCAGCCCC CACTTCTCTCAGAGCTCCCT AGGCAGTATCAGACTCCCT AGGCAGTATCCGGAGCACTCCCT AGGCAGTATCAGACTCCCT AGGCAGTATCAGAGCTCCCT CACTTCTCCAGAGGAAA CCCAGTAGCTTCAGAGGAAA CCCAGTAGCTTCAGAGCACCCCCCCCCC
	ORF Start: ATG at 39	ORF Stop: TGA	at 1248
	SEQ ID NO: 156	403 aa MW a	it 45142.8kD
NOV51a, CG59492-01 Protein Sequence	MGLFPTNPKEKTQEEPPGQSRAP GQAQTFLQEEVLSQLEACGLVET DSPYPAKGLPEWCPHSEEATLEP KVFMTDSMLELLECGRARVLEQ RKHIQRLHAAATVIKRAWQKWRI EAIIRFWPLGLVLANTAMCVGSF ALPQGSIKFHCRKSPLRYADICP	IHISAAGFPIRVSHRNI LIQDILHTLPVLTQAAA ARCIQGGWRRHRHREQI RMACLAAKELDGVEEKK QRKLVVWACLQLPRGSI	FVERYKLLRRLHPCTSSGP AITGDSAEAMPAPMHCGRT ERQWRAVMLIQAAIRSWLT HFSQAPCSLSTSPLQTRLL PSSYTVQTAQDQAGVTSIR

Further analysis of the NOV51a protein yielded the following properties shown in Table 51B.

	Table 51B. Protein Sequence Properties NOV51a
PSort analysis:	0.3000 probability located in nucleus; 0.2029 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space; 0.0320 probability located in microbody (peroxisome)

A search of the NOV51a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 51C.

	Table 51C. Geneseq Results for NOV51a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV51a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY94290	Human myosin heavy chain homologue - Homo sapiens, 612 aa. [WO200026372-A1, 11-MAY-2000]	1403 210612	401/403 (99%) 401/403 (99%)	0.0	
AAU23676	Novel human enzyme polypeptide #762 - Homo sapiens, 387 aa. [WO200155301-A2, 02-AUG-2001]	17403 1387	384/387 (99%) 384/387 (99%)	0.0	
ABB10243	Human cDNA SEQ ID NO: 551 - Homo sapiens, 570 aa. [WO200154474-A2, 02-AUG-2001]	1365 206570	365/365 (100%) 365/365 (100%)	0.0	
AAU23123	Novel human enzyme polypeptide #209 - Homo sapiens, 567 aa. [WO200155301-A2, 02-AUG-2001]	1365 203567	364/365 (99%) 364/365 (99%)	0.0	
AAM23563	Human EST encoded protein SEQ ID NO: 1088 - Homo sapiens, 477 aa. [WO200154477-A2, 02-AUG-2001]	1189 288476	188/189 (99%) 188/189 (99%)	e-108	

In a BLAST search of public sequence databases, the NOV51a protein was found to have homology to the proteins shown in the BLASTP data in Table 51D.

	Table 51D. Public BLASTP Results for NOV51a					
Protein Accession Number	Protein/Organism/Length	NOV51a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q96H55	HYPOTHETICAL 86.7 KDA PROTEIN - Homo sapiens (Human), 770 aa.	72403 439770	330/332 (99%) 330/332 (99%)	0.0		
Q9D2Z3	1110055A02RIK PROTEIN (RIKEN CDNA 1110055A02 GENE) - Mus musculus (Mouse), 395 aa.	3394 2395	288/394 (73%) 320/394 (81%)	e-162		
Q948A2	PUTATIVE MYOSIN HEAVY CHAIN - Oryza sativa (Rice), 1601 aa.	2255 663876	84/258 (32%) 125/258 (47%)	1e-23		
O74805	HYPOTHETICAL MYOSIN-LIKE PROTEIN C2D10.14C IN CHROMOSOME II - Schizosaccharomyces pombe (Fission yeast), 1471 aa.	20347 615903	96/340 (28%) 152/340 (44%)	1e-21		
T30148	hypothetical protein E02C12.1 - Caenorhabditis elegans, 1019 aa.	5249 619830	74/248 (29%) 119/248 (47%)	6e-21		

PFam analysis predicts that the NOV51a protein contains the domains shown in the Table 51E.

Table 51E. Domain Analysis of NOV51a					
Pfam Domain	NOV51a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
myosin_head: domain 1 of 1	26105	37/81 (46%) 60/81 (74%)	5.1e-25		

Example 52.

The NOV52 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 52A.

	SEQ ID NO: 157	1380 bp	
NOV52a, CG59564-01 DNA Sequence	GACCACCTGCGGGGCACCCGGGCAGACACCTGCGGGGAGACACCTCCTACAGGGAGACACCTCTACAGGGAGACACCACAGAGACACACAGACACACAC	AGTGGCGG. AGGGCAAGC GATTTCTGA TGCCTCCCT TCTGGCTGC GGGGACAGC AGTACCTGG GGCGCCCA GGATTGCCA ATATTGTGA GGATGCCTGC GATGCCTGC GATGCCTCC CACAGGCTCC CACAGGCTCC CACAGGCACAC AGCCACAG AGCTCACAG AGCTCACAG AGCTCACAG AGCTCACAG	GTCAGTTCCTCGGGCGAGTTACGGG ACGCTGAAGCCCAGGAGAGCGATGG CTTCCTGTGCATCGGTGGATCTGCA CGCAGTGAGTGAGCGATGGATCTCCA CGCAGTGAGTGAGCGAGCGAGAGGTG CACTTCGCCCAGACCGAGTTCTCAG ATGATGCCTACGTGGAGAATGAGGA GAGGCCAGACTTTGAGGATTCTCAGG ICTGTCACTCGGGAAGAGTTTGCCA CCATCTTTAAGAAGACAGTTGCGAT CCCCACCCTGCGTCGAGACCACAAC AGTGTCCGGGGGAAGAACAGGAAGG AGTCCGCGGATGAAGCCTCATCAC CTTTGAGCATGAGAGACCTTCTTG CCTCCAGCTGCAGACCAGTCTGGG ICTCAGCTGCGCTGAGCAGTCTGGG CCTCAGGTGCGAACCTCTTGAC GATGAGGACCTGAAGCTTCTTGAC GATGAGGACCTGAAGCTGTCAGACA CCAAGGACCTGCTGAAGCTGTCAGACA CCAAGGACCTGCTGAACCTTTCAGC GATGAGGACCTGCAAGCCAAGC
	ORF Start: ATG at 113	ORF Sto	p: TAG at 1322
	SEQ ID NO: 158	403 aa	MW at 46384.2kD
NOV52a, CG59564-01 Protein Sequence	METYAEVGKEGKPSCASVDLQGDSSLQVEISDAVSERDKVKFTVQTKSCLPHFAQTEF SVVRQHEEFIWLHDAYVENEEYAGLIIPPAPPRPDFEASREKLQKLGEGDSSVTREEF AKMKQELEAEYLAIFKKTVAMHEVFLQRLAAHPTLRRDHNFFVFLEYGQDLSVRGKNR KELLGGFLRNIVKSADEALITGMSGLKEVDDFFEHERTFLLEYHTRIRDACLRADRVM RAHKCLADDYIPISAALSSLGTQEVNQLRTSFLKLAELFDRLRKLEGRVASDEDLKLS DMLRYYMRDSQAAKDLLYRRLRALADYENANKALDKARTRNREVRPAESHQQLCCQRF ERLSDSAKQELMDFKSRRVSSFRKNLIELAELELKHAKASTLILRNTLVALKGEP		

Further analysis of the NOV52a protein yielded the following properties shown in Table 52B.

Table 52B. Protein Sequence Properties NOV52a		
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV52a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 52C.

	Table 52C. Geneseq Results for NOV52a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV52a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY94209	Human TRAF four associated factor TFAF2 - Homo sapiens, 406 aa. [CA2245340-A1, 19-FEB-2000]	17402 23405	273/386 (70%) 333/386 (85%)	e-160	
AAB07856	Amino acid sequence of Smad1 interactor protein clone S1+12-2 - Homo sapiens, 414 aa. [WO200047102-A2, 17-AUG-2000]	17402 31413	273/386 (70%) 333/386 (85%)	e-160	
AAB43157	Human ORFX ORF2921 polypeptide sequence SEQ ID NO:5842 - Homo sapiens, 460 aa. [WO200058473-A2, 05-OCT-2000]	17402 77459	273/386 (70%) 333/386 (85%)	e-160	
AAB58368	Lung cancer associated polypeptide sequence SEQ ID 706 - Homo sapiens, 414 aa. [WO200055180-A2, 21-SEP-2000]	17402 31413	273/386 (70%) 333/386 (85%)	e-160	
AAO13507	Human polypeptide SEQ ID NO 27399 - Homo sapiens, 443 aa. [WO200164835-A2, 07-SEP-2001]	17400 61441	242/384 (63%) 317/384 (82%)	e-144	

In a BLAST search of public sequence databases, the NOV52a protein was found to have homology to the proteins shown in the BLASTP data in Table 52D.

Table 52D. Public BLASTP Results for NOV52a					
Protein Accession Number	Protein/Organism/Length	NOV52a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9UNH7	Sorting nexin 6 (TRAF4-associated factor 2) - Homo sapiens (Human), 406 aa.	17402 23405	273/386 (70%) 333/386 (85%)	e-159	
Q9CZ03	2810425K19RIK PROTEIN - Mus musculus (Mouse), 406 aa.	17402 23405	271/386 (70%) 333/386 (86%)	e-159	
Q9Y5X3	Sorting nexin 5 - Homo sapiens	17400	242/384 (63%)	e-143	

Q9D8U8	Sorting nexin 5 - Mus musculus (Mouse), 404 aa.	17400 22402	241/384 (62%) 314/384 (81%)	e-142
Q96NG4	CDNA FLJ30934 FIS, CLONE FEBRA2007017, MODERATELY SIMILAR TO HOMO SAPIENS TRAF4-ASSOCIATED FACTOR 2 MRNA - Homo sapiens (Human), 277 aa.	1237 1237	236/237 (99%) 236/237 (99%)	e-134

PFam analysis predicts that the NOV52a protein contains the domains shown in the Table 52E.

Table 52E. Domain Analysis of NOV52a					
Pfam Domain NOV52a Match Region		Identities/ Similarities for the Matched Region	Expect Value		
PX: domain 1 of 1	23,.164	39/160 (24%) 103/160 (64%)	1.6e-15		

Example 53.

The NOV53 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 53A.

Table 53A. NOV53 Sequence Analysis					
	SEQ ID NO: 159	3056 bp			
NOV53a, CG59553-01 DNA Sequence	CTCCTGCGGGGTCAAATACA TCTCCCCGCGTCCAAGATGG AGCAAAAGCACCCTC GTGACGATGTCGAAGACAGG ATGTGACCGTGACCTGGATGACATGCACATACCAGAGCAT TCGGCACATACCAGAGCAT TCGGAAACTGCTGTT TCGGAAACTGTGGATGAAGACAGGAATTCAGTGCACATGCACTGACTG	GAATTTACGCACCCTTGGCTTCCTTGGAGCCTAGCGGC CGGCAGAGCAGCTGGTGGGAAATACAGAAGCACAGTC GGGGGTGCTCATCTGTGTGTGGAGACTCTGTCTACTA GAAAATGAAAAGGGTCGCCTTGAAGAAGCCTACGAGAA AATTGATTGTACAGCACTACACAGAATTGACGACAGCC CACAGAGCGCATCACACAGAATTGACGACAGCC TCATGCAAGATGCTGCTGCACTGCA			

	ACCCTTTGAAGATTCTGGCCAACGCAG TCTCCTACAGAGCACAATCATTGTGGAC CATGACTTGAGTGCATATTCAGATCAAT AGTACAAGGACACCTGCACTGCA	AGAAGAC ATTOCTO ACAGGG ATATA ATTOCTO ACAGGGG ATATA ATTOCTO ATTOCT	CAGTICAAGACCTCCTGAACCTGATG CAACATGGTGTGCGTGAACCTGATG CAACATGGTGTGCGTGAAGCTCCAGG GGTATTGTCCAGTCAGAAGAAAACT ATATCAGCAGACTCTTGAAATCTCTA CTGAAGTCATTATTGGGAACCTTGA CTGAAGTCATTATTGGGAACCTTG AAGCCGAACAAGCCTTG AAGACAACAAGCCTTCCAC CAGGAGTAACTCACAAAGCCTTC CAGTGAACTAGCCAAAAGCCTTC CCAGTGAACTAGCAAAAGCCTTCCAG CCTGGAAGTGAGGTTCACTGTTTCC CAGGAGTAATTGGCCAATTGAAAG CCAGATATATCTTCGAAGGCCTTGGAAG CCAGAACATCTCAGGCCATTGAAGAC CAGTATATCTTCGAAGGCCTGGGCC CAGTACTTCAGGCGCATTGAACACCACCTC CAGGCAGTACTACAGAATCTTACA CACAGGGTGTGAAGTACAACATC CAGCCAGACTACGGGGTACCACCTC CCAGCCAGACTACAGGGCTGGGCC CAGCCAGACTACACCAGGGCTGCC CAAGAGATCCTTCAGGGGGGAACTG CAACAAGATTATCTTCCAAGAGCAGGCTGC CAGCCAGACTGGGGTGGGG
	ORF Start: ATG at 75 ORF		· · · · · · · · · · · · · · · · · · ·
	SEQ ID NO: 160 971	aa	MW at 109984.9kD
NOV53a, CG59553-01 Protein Sequence	MAAEAAGGKYRSTVSKSKDPSGLLISVI DELIVQHYTELTTAIRTYQSITERITNS EGIEHKHVLNLLDEIENIKQVPQKLEQC SDLRLELHSKKMNLHLVLIDELHRHLYI TNLPTPRKFLDTSHYSTAGSSSVREINI KIPETVKAIIERLEQELKQIVKRSTTQV FNAVAAAHSVVLGYLQDTVVTPLTQQEL RTASEPSAQLSYASTGREFAAFFAKKKF YSRSGELQGGPDDNLIEGGGTKFVCKPC PLREFLTVYIKNIFLNQVLAEINKEIEG IIVEKTVQDLLNLMHDLSAYSDQFLMMV WAKDDDISRLKSLPNMNMNAQPKQLRF PQDILRDVSDLKALANMHESLEWLASRT QIMQTLSELAKSFQDMADRCLLVLHLEV LVVKLNKDISAIEEAMSASLQQHKFQYI CRNIFVLQQNLTNITMSREADLDFARQY LTLLHRSQTGVGELTTQNTSCRGGSKRS	SRNKIK CMASKH IKSTSR LQDIKE VADSGY DIKLYD PQRPKN GARNIT GVTKTS VCVKLQ PKREEE TKSAFS VRVHCF IFEGLG YYEMLY	QVKENLLSCKMLLHCKRDELRKLWI IYLSATDMLVSAVESLEGPLLQVEGL IVVQRNKEKGKISSLVKDASVPLIDV IDLELDPEENSTLFMGILIKGLAKLK IQRGENVTVENQPRLLLELLELLFDK MADVWWKIQDVLQMLLTEYLDMKNT ISLFKFESSHAISMSAYLREQRREL IVIFHPLLRFIQEIEHALGLGPAKQC IDPLKILANADTMKVLGVQRPLLQST IEYKDTCTAAYRGIVQSEEKLVISAS IEDFIRAAFGKESEVLIGNLGDKLIP INLSTSQMLSPAQDSHTNTDLPPVSE IHYLIPLAKEGNYAIVANVESMDYDP IHLISCILINGAQYFRRISESGIKKM INTADELLNLVVDQGVKYTELEYIHA

Further analysis of the NOV53a protein yielded the following properties shown in Table 53B.

	Table 53B. Protein Sequence Properties NOV53a				
PSort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV53a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 53C

	Table 53C. Geneseq Results for NOV53a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV53a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB93175	Human protein sequence SEQ ID NO:12114 - Homo sapiens, 974 aa. [EP1074617-A2, 07-FEB-2001]	1947 1947	947/947 (100%) 947/947 (100%)	0.0	
AAW69801	Amino acid sequence of rsec8, a protein present in SA-17S complex - Rattus sp, 975 aa. [WO9828419-A2, 02-JUL-1998]	1947 1948	902/948 (95%) 925/948 (97%)	0.0	
AAB95143	Human protein sequence SEQ ID NO:17163 - Homo sapiens, 572 aa. [EP1074617-A2, 07-FEB-2001]	403947 1545	545/545 (100%) 545/545 (100%)	0.0	
AAB58175	Lung cancer associated polypeptide sequence SEQ ID 513 - Homo sapiens, 418 aa. [WO200055180-A2, 21-SEP-2000]	571947 15391	369/377 (97%) 369/377 (97%)	0.0	
AAG00950	Human secreted protein, SEQ ID NO: 5031 - Homo sapiens, 100 aa. [EP1033401-A2, 06-SEP-2000]	451544 7100	76/94 (80%) 79/94 (83%)	3e-36	

In a BLAST search of public sequence databases, the NOV53a protein was found to have homology to the proteins shown in the BLASTP data in Table 53D.

Table 53D. Public BLASTP Results for NOV53a				
Protein Accession Number	Protein/Organism/Length	NOV53a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96A65	CDNA FLJ14782 FIS, CLONE NT2RP4000524, HIGHLY SIMILAR TO MUS MUSCULUS SEC8 MRNA (SECRETORY PROTEIN SEC8) - Homo sapiens (Human), 974 aa.	1947 1947	947/947 (100%) 947/947 (100%)	0.0
Q9C0G4	KIAA1699 PROTEIN - Homo sapiens (Human), 966 aa (fragment).	9947 1939	939/939 (100%) 939/939 (100%)	0.0
O35382	SEC8 - Mus musculus (Mouse), 971 aa.	1971 1971	923/972 (94%) 946/972 (96%)	0.0

Q9P102	REC8 - Homo sapiens (Human), 637 aa	339947	609/609 (100%)	0.0
	(fragment).	2610	609/609 (100%)	

PFam analysis predicts that the NOV53a protein contains the domains shown in the Table 53E.

Table 53E. Domain Analysis of NOV53a						
Pfam Domain	NOV53a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
No Significant Matches Found						

Example 54.

The NOV54 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 54A.

Table 54A. NOV54 Sequence Analysis				
	SEQ ID NO: 161	501 bp		
NOV54a, CG59545-01 DNA Sequence	CARCACGAGGAACAATGTCTTCTTTACCCGTGCCATACAAACTGCCTGTGTCTTTGTC TGTTGGTTCCTGCGTGATAATCAAAGGGACACTGATCGACTCTTCTATCAACGAACCA CAGCTGCAGGTGGATTTCTACACTGAGATGAATGAGGACTCAGAAAATTGCCTTCCATT TGCGAGTGCACTTAGGCCGTCGTGTGTCATGAACAGTCGTGAGTTTGGGATATGGAT GTTGGAGGAGAAATTTACACTATGTGCCCTTTGAGGATGGCAAACCATTTGACTTGCGC ATCTACGTGTGTCTCAATCAGTATGAGGTAAAGGTAAATGGTGAATACATTTATGCCT TTGTCCATCGAATCCCGCCATCATATGTGAGAATGTTCAAGTGTGAGAGATGTCTC CCTGGACTCAGTGCTTGTCAACAATGGACGGGGATGATCACACTCCTCATTGTTGAGG AAACCCTCTTTCTACCTGACCATGGGATTCCTAGAGG			
	ORF Start: ATG at 15	ORF Stop	o: TGA at 441	
	SEQ ID NO: 162	142 aa	MW at 16511.9kD	
NOV54a, CG59545-01 Protein Sequence	MSSLPVPYKLPVSLSVGSCVIIKGTLIDSSINEPQLQVDFYTEMNEDSEIAFHLRVHL GRRVVMNSREFGIWMLEENLHYVPFEDGKPFDLRIYVCLNEYEVKVNGEYIYAFVHRI PPSYVKMIQVWRDVSLDSVLVNNGRR			

Further analysis of the NOV54a protein yielded the following properties shown in Table 54B.

	Table 54B. Protein Sequence Properties NOV54a				
PSort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV54a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 54C.

	Table 54C. Geneseq Results for NOV54a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV54a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG66741	Human Charcot-Leyden crystal protein 5A (CLC5A) - Homo sapiens, 142 aa. [CN1302875-A, 11-JUL- 2001]	1142 1142	139/142 (97%) 139/142 (97%)	2e-77	
AAG66742	Human Charcot-Leyden crystal protein 5B (CLC5B) - Homo sapiens, 170 aa. [CN1302875-A, 11-JUL-2001]	6142 34170	136/137 (99%) 136/137 (99%)	3e-76	
AAM79041	Human protein SEQ ID NO 1703 - Homo sapiens, 139 aa. [WO200157190-A2, 09-AUG-2001]	1139 1139	107/139 (76%) 116/139 (82%)	2e-56	
AAY28350	Full Placental Protein 13 amino acid sequence - Homo sapiens, 139 aa. [WO9938970-A1, 05-AUG-1999]	1139 1139	107/139 (76%) 116/139 (82%)	2e-56	
AAG78627	Human Charcot-Leyden crystal 4 CLC4 protein #2 - Homo sapiens, 167 aa. [CN1302876-A, 11-JUL- 2001]	6139 34167	102/134 (76%) 111/134 (82%)	2e-53	

In a BLAST search of public sequence databases, the NOV54a protein was found to have homology to the proteins shown in the BLASTP data in Table 54D.

Table 54D. Public BLASTP Results for NOV54a				
Protein Accession Number	Protein/Organism/Length	NOV54a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9UHV8	PLACENTAL PROTEIN 13	1139	107/139 (76%)	9e-56

	PROTEIN - Homo sapiens (Human), 139 aa.	1139	107/139 (76%)	
A46523	Charcot-Leyden crystal protein - human, 142 aa.	1142 1142	76/142 (53%) 96/142 (67%)	7e-36
Q05315	Eosinophil lysophospholipase (EC 3.1.1.5) (Charcot-Leyden crystal protein) (Lysolecithin acylhydrolase) (CLC) (Galactin-10) - Homo sapiens (Human), 141 aa.	2142 1141	75/141 (53%) 95/141 (67%)	3e-35
Q96KD6	PLACENTAL PROTEIN 13-LIKE - Homo sapiens (Human), 104 aa (fragment).	1104 1104	66/104 (63%) 79/104 (75%)	1e-31

PFam analysis predicts that the NOV54a protein contains the domains shown in the Table 54E.

Table 54E. Domain Analysis of NOV54a				
Pfam Domain	NOV54a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Gal-bind_lectin: domain 1 of 1	5137	37/142 (26%) 106/142 (75%)	3.1e-28	

Example 55.

The NOV55 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 55A.

Table 55A. NOV55 Sequence Analysis			
	SEQ ID NO: 163	2071 bp	
NOV55a, CG59435-01 DNA Sequence	ATATTAAATATGGGATGCTTC. ATCACCACATGGAATCAGCTCA. SCATCTTCCAGTGGGGACAAAA' TTTTAGAGCTTGCTGAAGGGCA. AGAGTTCATCGATCGTTCAAGGGCA. AGAGTTCATCGATCTCTTAAGG GGAATGATTGCTACATTGCTTC. AACCACTAATTTATCTAGTACT. AAGTACTCCTTGTTTTAAGAAAT. CTCTCTGGGATGTAAATAGTCA. TCCAGCGTCAGGCATATCTTTTTTTGGATAAAAGAATCCTCTTTTTTTGGATAAAAGAATCCTCTCTTAACTGCTCTTGCTGACTGCTCTCTAACTGCTGTGATCTCCTCTTAACTGCTGGATCTCCCTCTAACTGCTGGATCTTCCCCGGGGGAAAATAA	TGCAGGAAAACCTCAGATTTGCTTCATCAGGAGATG ATCTATGACATTGGTGGATAAATTCAACCCACACACACAC	

	TCTAGTCCTCTTAATGTTTTTAT ATCTAACAGCTGAGTCTAAGAAA CAAACAGTTAGCAAAGATTGGTCA CCATCATCTAACCAAACAAGAAA AAGCCCAGTTGATATGTGAACCA ATTGGAAATAACCGGCAAAATGC ACATGATACAGGAAACGTTGGAT TTTGCAAGTGGAGATGATTAAAC CTGGAAAGATACTCAGTGAATGA AAACAAAAGATTCTGGGACCCAC ATTTGGGAAGTTCTGGCAACAC	AGGGATCTCC ATATATATG ACATCTGGTG ACTCTGAGAA BTTGCCAGTT ACCATTGAC AGGTTTAGA AGGTTTCATA AGGTTTAGAAT AGGACTACA AGGACTACA	
	ORF Start: ATG at 22		·
	SEQ ID NO: 164	659 aa	MW at 71851.2kD
NOV55a, CG59435-01 Protein Sequence	MQENLRFASSGDDIKIWDASSMTLVDKFNPHTSPHGISSICWSSNSNFLVTASSSGDK IVVSSCKCKPVPLLELÆEGQKGTCVNLNSTSMYLVSGGLNNTVNIWDLKSKRVHRSLK CDHKDQVTCVTYNMNDCYIASGSLSGEIILHSVTTNLSSTPFGHGSNQVRHLKYSLFKK SLLGSVSDNGIVTLWDVNSQSPYHNFDSVHKAPASGICFSPVNELLFVTIGLDKRIIL YDTSSKKLVKTLVADTPLTAVDFMPDGATLAIGSSRGKIVQYDLRMLKSPVKTISAHK TSVQCIAFQYSTVLTKSSLNKGCSNKPTTVNKRSVNVNAASGGVQNSGIVREAPATSI ATVLPQPMTSAMGKGTVAVQEKAGLPRSINTDTLSKETDSGKNQDFSSFDDTGKSSLG DMFSPIRDDAVVNKGSDESIGKGDGFDFLPQLNSVFPPRKNPVTSSTSVLHSSPLNVF MGSPGKEENENRDLTAESKKIYMGKQESKDSFKQLAKLVTSGAESGNLNTSPSSNQTR NSEKFEKPENEIEAQLICEPPINGSSTPNPKIASSVTAGVASSLSEKIADSIGNNRQN APLTSIQIRFIQNMIQETLDDFREACHRDIVNLQVEMIKQFHMQLNEMHSLLERYSVN EGLVAEIERLREENKRLRAHF		
	SEQ ID NO: 165	2009 bp	
NOV55b, CG59435-02 DNA Sequence	SEQ ID NO: 165 2009 bp		TTGGTGGATAAATTCAACCCACACAC GCAGCAATAATAACTTTTTAGTAACA AAGTTGCAAATGTAAACTGTTCCAC TGTGTCAATTTAAATTCTACATCAC TGTGTCAATTTAAATTCTACATCAAT TCAAGTAACTTGTGTAACATACAATT AGTGGTGAAATTATTTTACACAGTGT ATGGTAGTAACCAGTCTGTTCGGCAC GGGCAGTGTTTCGGATAATGGAATAG TCAATGAATTGACCAGTACCATA TCAATGAATTGACCAGTGTAACCATA TCAATGAATTGACTCTTTGTAACCATA TTCAAGTAAGAAGCTAGTGAAAACTT TTCATGCCTGATGGAGCCACTTTGGC ATGATTTAAGAATGTTCAGTACTCCA TGGTTCAAATAGACTTTGACACACAGTGAA GCAGGTGTATAGCATCACCACAGTGAA GAGGAGTTCAGAATTCCGGAATTGTC TCTACCACAACCTATGACATCACCTA GCAGGTTTGCCTCGAAGCATAAACAC

2.3744 - 1.3 E. Motetti Sequence (HELINT NU NAMI) LIA (E. L. ELLIE STITME) TEE HELIE, MELLE LIS

	KSLLGSVSDNGIVTLWDVNSQSPYHNFDSVHKAPASGICFSPVNELLFVTIGLDKRII
	LYDTSSKKLVKTLVADTPLTAVDFMPDGATLAIGSSRGKIYQYDLRMLKSPVKTISAH
	KTSVQCIAFQYSTVLTKSSLNKGCSNKPTTVNKRSVNVNAASGGVQNSGIVREAPATS
	IATVLPQPMTSAMGKGTVAVQEKAGLPRSINTDTLSKETDSGKNQDFSSFDDTGKSSL
	GDMFSPIRDDAVVNKGSDESIGKGDGFDFLPQLNSVFPPRKNPVTSSTSVLHSSPLNV
	FMGSPGKEENENRDLTAESKKIYMGKQESKDSFKQLAKLVTSGAESGNLNTSPSSNQT
	RNSEKFEKPENEIEAQLICEPPINGSSTPNPKIASSVTAGVASSLSEKIADSIGNNRQ
	NAPLTSIQIRFIQNMIQETLDDFREACHRDIVNLQVEMIKQFHMQLNEMHSLLERYSV
	NEGLVAEIERLREENKRLRAHF
II	1

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 55B.

Table 55B. Comparison of NOV55a against NOV55b.				
Protein Sequence NOV55a Residues/ Identities/ Similarities for the Matched Re				
NOV55b	1659 1660	658/660 (99%) 659/660 (99%)		

Further analysis of the NOV55a protein yielded the following properties shown in Table 55C.

Table 55C. Protein Sequence Properties NOV55a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV55a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 55D.

Table 55D. Genescq Results for NOV55a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV55a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG74568	Human colon cancer antigen protein SEQ ID NO:5332 - Homo sapiens,	256659 1404	399/404 (98%) 399/404 (98%)	0.0

v 11 17 z

	Homo sapiens, 208 aa. [WO200172955-A2, 04-OCT-2001]	2159	149/159 (93° o)	
AAM70774	Human bone marrow expressed probe encoded protein SEQ ID NO: 31080 - Homo sapiens, 67 aa. [WO200157276-A2, 09-AUG-2001]	240306 167	67/67 (100%) 67/67 (100%)	9e-31
AAM06190	Peptide #4872 encoded by probe for measuring breast gene expression - Homo sapiens, 67 aa. [WO200157270-A2, 09-AUG-2001]	240306 167	67/67 (100%) 67/67 (100%)	9e-31
ABB23122	Protein #5121 encoded by probe for measuring heart cell gene expression - Homo sapiens, 65 aa. [WO200157274-A2, 09-AUG-2001]	307371 165	65/65 (100%) 65/65 (100%)	3e-29

In a BLAST search of public sequence databases, the NOV55a protein was found to have homology to the proteins shown in the BLASTP data in Table 55E.

	Table 55E. Public BLASTP Results for NOV55a				
Protein Accession Number	Protein/Organism/Length	NOV55a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
I60167	regulatory protein Nedd1 - mouse, 660 aa.	1659 1660	564/660 (85%) 607/660 (91%)	0.0	
P33215	NEDD1 protein - Mus musculus (Mouse), 675 aa (fragment).	1659 16675	564/660 (85%) 607/660 (91%)	0.0	
Q9CWK2	NEURAL PRECURSOR CELL EXPRESSED, DEVELOPMENTALLY DOWN- REGULATED GENE 1 - Mus musculus (Mouse), 660 aa.	1659 1660	563/660 (85%) 606/660 (91%)	0.0	
Q9F189	SIMILARITY TO REGULATORY PROTEIN NEDD1 - Arabidopsis thaliana (Mouse-ear cress), 787 aa.	8533 15532	145/550 (26° o) 246/550 (44° o)	4e-40	
BAB75165	WD-40 REPEAT PROTEIN - Anabaena sp. (strain PCC 7120), 1526 aa.	2298 9161208	92/307 (29%) 147/307 (46%)	2e-18	

PFam analysis predicts that the NOV55a protein contains the domains shown in the

Table 55F. Domain Analysis of NOV55a				
Pfam Domain	NOV55a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
WD40: domain 1 of 7	2861	6/37 (16%) 27/37 (73%)	57	
WD40: domain 2 of 7	70105	10/37 (27° o) 27/37 (73° o)	0.062	
WD40: domain 3 of 7	111147	9/37 (24%) 28/37 (76%)	20	
WD40: domain 4 of 7	153190	10/38 (26%) 29/38 (76%)	3.4	
WD40: domain 5 of 7	197234	7/38 (18%) 25/38 (66%)	19	
WD40: domain 6 of 7	240275	14/37 (38%) 28/37 (76%)	3.1	
WD40: domain 7 of 7	282316	8/37 (22%) 26/37 (70%)	1.3e+03	

Example 56.

The NOV56 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 56A.

Table 56A. NOV56 Sequence Analysis			
	SEQ ID NO: 167	1771 bp	
NOV56a, CG59439-01 DNA Sequence	CCTTCCACAACATCCACCCT TGGAGCCCCAAGATGGAATG GTACTGGACTACTGGGCTCA TTTGGTGGGTGAATGGCCAA CCTAACCGCCGTGTGATGCCAA CCTACCGCCGTGTATGCTGCC TGCGAACAGGGATCATCTTC CTATCGACTACAGTTGTCTA GAGGTGGACTCCATAGCTTC AT LACAGCCGTGAAGGGTGG ACACACTTGTTTAAGTCAA ACCACAGGCTTCCCCAAGAT TCCCAGGAAGTAGGAATTAGCACAGGTTGTGGAATTAGCACAGGATGGAT	GCTAATGAGGTTCC SGACCTCTGGGGCATCCACAAAT GCCCCTTCACAGCTGCGCTGC	

	CCACAGTTCCTGTCCCATGACAAGGATCAGCTGACCAAGGAACTGCAGCAGCATGTCA AGTCAGTGACAGCCCCATACAAGTACCCAAGGAAGGTGGAGTTTGTCTCAGAGCTGCC AAAAACCATCACTGGCAAGATTGAACGGAAGGAACTTCGGAAAAAGGAGACTGGTCAG ATGTAATCGGCAGTGAACTCAGAACGCACTG		
	ORF Start: ATG at 13	ORF Stop	o: TAA at 1744
	SEQ ID NO: 168	577 aa	MW at 65272.6kD
NOV56a, CG59439-01 Protein Sequence	MQWLMRFRTLWGIHKSFHNIHPAPSQLRCRSLSEFGAPRWNDYEVPEEFNFASYVLDY WAQKEKEGIRGPNPAFWWVNGQGDEVKWSFREMGDLTRRVANVFTQTCGLQQGDHLAL MLPRVPEWWLVAVGCMRTGIIFIPATILLKAKDILYRLQLSFAKGIVTIDALASEVDS IASQCPSLKTKLLVSDHSREGWLDFRSLVKSASPEHTCVKSKTLDPMVIFFTSGTTGF PKMAKHSHGLALQPSFPGSRKLRSLKTSDVSWCLSDSGWIVATIWTLVEPWTAGCTVF IHHLPQFDTKVIIQTLLKYPINHFWGVSSIYRMILQQDFTSIRFPALEHCYTGGEVVL PKDQEEWKRRTGLLLYENYGQSETGLICATYWGMKIKPGFMGKATPPYDVQVIDDKGS LLPPNTEGNIGIRIKPVRPVSLFMCYEGDPEKTAKVECGDFYNTGDRGKMDEEGYICF LGRSDDIINASGYRIGPAEVESALVEHPAVAESAVVGSPDPIRGEVVKAFIVLTPQFL SHDKDQLTKELQQHVKSVTAPYKYPPKVEFVSELPKTITGKIERKELRKKETGQM		
	SEQ ID NO: 169	1659 bp	
NOV56b, CG59439-02 DNA Sequence	GTTTCACCATGCAGTGGCTAATGAGGTTCCGGACCCTCTGGGGCATCCACAAATCCT CCACAACATCCACCCTGGCCCTTCACAGCTGCGGTGCGG		
	ORF Start: ATG at 9	ORF Stop	o: TAA at 1638
	SEQ ID NO: 170	543 aa	MW at 61518.2kD
NOV56b, CG59439-02 Protein Sequence	MQWLMRFRTLWGIHKSFHNIHPAPSQLRCRSLSEFGAPRWNDYEVPEEFNFASYVLDY WAQKEKEGKRGPNPAFWWVNGQGDEVKWSFREMGDLTRRVANVFTQTCGLQQGDHLAL MDPRVPEWWLVAVGCMRTGIIFIPATILLKAKDILYRLQLSKAKGIVTIDALASEVDS IASQCPSLYTKLLVSDHSREGWLDFFSLVKSASPEHTCVKSKTLDPMVIFFTSGTTGF PKMAKHSHGLALQPSFPGSRKLRSLKTSDVSWCLSDSGWIVATIWTLVEFWTAGCTVF IHHLPQFDTKVIIQTLLKYPINHFWGVSSIYRMILQQDFTSIFPALEHCYTGGEVVL PKDQEEWKPRTGLLLYENYGQSETGLICATYWGMKIKPGFMGKATPPYDVQGDPEKTA KVECGDFYNTGDRGKMDEEGYICFLGRSDDIINASGYRIGPAEVESALVEHPAVAESA VVGSPDPIRGEVVKAFIVLTPQFLSHDKDQLTKELQQHVKSVTAPYKYPRKVEFVSEL PKTITGKIERKELRKKETGQM		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 56B.

Table 56B. Comparison of NOV56a against NOV56b.			
Protein Sequence	NOV56a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV56b	1577 1543	543/577 (94%) 543/577 (94%)	

Further analysis of the NOV56a protein yielded the following properties shown in Table 56C.

	Table 56C. Protein Sequence Properties NOV56a			
PSort analysis:	0.6400 probability located in microbody (peroxisome); 0.4712 probability located in mitochondrial matrix space; 0.1737 probability located in mitochondrial inner membrane; 0.1737 probability located in mitochondrial intermembrane space			
SignalP analysis:	Likely cleavage site between residues 23 and 24			

A search of the NOV56a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 56D.

	Table 56D. Geneseq Resu	lts for NOV	56a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV56a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB43245	Human ORFX ORF3009 polypeptide sequence SEQ ID NO:6018 - Homo sapiens, 537 aa. [WO200058473-A2, 05-OCT-2000]	46573 1527	309/529 (58%) 402/529 (75%)	0.0
AAM80008	Human protein SEQ ID NO 3654 - Homo sapiens, 302 aa. [WO200157190-A2, 09-AUG-2001]	331577 24302	247/279 (88%) 247/279 (88%)	e-14()
AAM80007	Human protein SEQ ID NO 3653 - Homo sapiens, 302 aa. [WO200157190-A2, 09-AUG-2001]	331577 24302	247/279 (88%) 247/279 (88%)	e-140
AAM41894	Human polypeptide SEQ ID NO	257573	193/317 (60%)	e-116

- √√4 - O(1,1.1)

Homo sapiens, 196 aa.	1196	196/196 (100%)	
[WO200157190-A2, 09-AUG-2001]			

In a BLAST search of public sequence databases, the NOV56a protein was found to have homology to the proteins shown in the BLASTP data in Table 56E.

	Table 56E. Public BLASTP Re	esults for NC)V56a	
Protein Accession Number	Protein/Organism/Length	NOV56a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96A20	MIDDLE-CHAIN ACYL-COA SYNTHETASE1 (MEDIUM-CHAIN ACYL-COA SYNTHETASE) - Homo sapiens (Human), 577 aa.	1577 1577	576/577 (99%) 576/577 (99%)	0.0
Q9TVB5	XENOBIOTIC/MEDIUM-CHAIN FATTY ACID:COA LIGASE FORM XL-III PRECURSOR - Bos taurus (Bovine), 577 aa.	1576 1576	439/576 (76%) 486/576 (84%)	0.0
Q9BEA2	LIPOATE-ACTIVATING ENZYME PRECURSOR - Bos taurus (Bovine), 577 aa.	1576 1576	438/576 (76%) 485/576 (84%)	0.0
Q91VA0	MEDIUM-CHAIN ACYL-COA SYNTHETASE (EC 6.2.1.2) (HYPOTHETICAL 64.8 KDA PROTEIN) - Mus musculus (Mouse), 573 aa.	1577 1573	406/577 (70%) 472/577 (81%)	0.0
O70490	KIDNEY-SPECIFIC PROTEIN - Rattus norvegicus (Rat), 572 aa.	1573 1567	315/580 (54%) 417/580 (71%)	0.0

PFam analysis predicts that the NOV56a protein contains the domains shown in the Table 56F.

Table 56F. Domain Analysis of NOV56a				
, .,		-	-	

cc210a

milarite

		Region	
AMP-binding: domain 1 of 1	87499	106/425 (25%) 299/425 (70%)	2.5e-96

Example 57.

The NOV57 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 57A.

Table	57A. NOV57 Sequen	T
	SEQ ID NO: 171	2501 bp
NOV57a,	ACACCATGACCACCCTTGATGA	TAAGTTGCTGGGGGAGAAACTGCAGTACTACTATAC
	CAGCAGTGAGGATGAGGACAGT	GACCACGAGGACAAGGACCGAGGCAGATGTGCCCCA
CG59354-01 DNA Sequence	GCCAGCAGTTCTGTGCCTGCAG	AGGCTGAGCTGGCAGGCGAAGGCATCTCAGTTAAC
•	CAATGACTCTGAAGGAGTTTGC	CATAATGAATGAGGACCAAGATGATGAAGAGTTTC
		ATGGAAGAGATGCGGCAGCAGCTTCACAAGGGGCC
		TCTCCAGTGGAGAAGGGTTTTTAGACATGATTGAT
	1	CATGGTTCATATTTATGAGGATGGCATTCCAGGGA
		ATCTGCCTTGCCGCAGAGTACCCAGCTGTCAAGTT
		TTGGCGCCAGCAGTCAGTTCACCAGGAATGCCCTT
		GGGTGAATTGATCGCCAATTTTGTTCGTGTTACTG
	:	
	*	GCTGTGGACCTTGAAGCTTTTCTCCAGGAATTTGG
	1	TGGTGCTGACATCTGTGCGTAACTCTGCCACGTGT
	1	AATAGAT TGAA CTGATAGTCTAGTTGCATAGATTTC
		CGTCATTGTTTATTTTTGTTCCTTTGTCTTCTGGC
		CTTTTATTATGCATAAAATAAAGAAATTCTTAGAT
	AAATCAGAATGCTGAATAACCT	TGTAGCTAGCAATAAGGTGACTTACAATTGTATAAA
	CAGGAAGCCAGGCTTTTGAACT	GTTTACTTAAGATTCTGTGGTGTGACATCTCTGTT
	TTGTTTCCAGTCAATATTTACA	AAGCATCCTAAAGACAGGGTCTTGGAAATTGTCTT
	AGATGATCTTAGAGGTCTCTGC	CAAGTCTGAGAGTATAATTCTGTAGGTATTGTGTT
	TTTGCAACGTAAATAGTGCATT	TTCTTAATCAAATGATTGTAAATTATATTTACTTG
	AATCAGTTCCATAGCTTTAGAC	GGTGGTTAGATTTTTTTTTTCCCCACCAGGGTCTT
		CCCAGTCCTGAGGGGTGGCCTCTGCTGCTGGATTT
		AGTCTGGAACAGCAGGAAGGGTTGATGCTTACTGA
		AGTTTATGGATTTAAACATTAGAGCTGGAGTGGGG
		TCTTTCAGTAAGATGCCCCTGCTTGTCTTTGTCTC
		TTTGTTTAACAAGGTAACTTTTTGTTTAACCTAGA
		TTTCATATTGGAAAAGTAATTCATATTCAGTAGAG
		AAAATAAGAAAATAAATAATCTCTAATCCTACT
		ATTTTGGTCTGTTTCCTGCCAAGGTGTTTTCTGTG
		TTTAAACAAAACGATGGGATCATTCTGAACATACT
		"AATATATCAGACCTTTTTTTTTATATTTAAATAT
		ATTAATATTCCATCGTATAGATGTGATATAATTTG
		AAAGATAGCAAATACTTTTTTTAAATTACAAAAGT
		GTAATAAACACTGTTAAGACTTAAAAGCCATATAA
		TTTTGTCATATTTCTAGTCATTTTTATAGCCTTTT
		'ATCATTTGCGTTTTTTTCCTTTTTTTAACTTTAAA
		AAATGTAATCTGGAATTAAATATTAGCCTTAAAAT
	CACAATTTTGATTTTCCTGGCT	TTTCAGGAATTGACTAACTGTAAAAGAGTCTTGAA
	GTATTTAGTCAACAAACAGAGT	GCATTTTTTTTTTTTGACTAAGAAAGCTCGTTGT.
	GTAGAAAGGGTGGAATGTATTC	AAAATTATTAGAAGCAGGGAAGTATTGTTAGTCTA
	CTTATTTCCTTTCAGTCTTTTT	TCAATATTTTTATAAACATTGAGTACTTACTGAAT
	TAGTTCTGTGCTCTTCCTTATT	TAGTGTTGTATCATAAATACTTTGATGTTTCAAAC
	TTCTAAATAAATAATTTTCAGT	GGCTTCATAATAAAAAAAAAAAAAAAAAAAAAAAA
	AAAAAA	
		ORF Stop: TGA at 726
	· · · · · · · · · · · · · · · · · · ·	
	SEQ ID NO: 172	240 aa MW at 26866.9kD
NOV57a,	_	EDSDHEDKDRGRCAPASSSVPAEAELAGEGISVNTN
CG59354-01 Protein Sequence	I PVELY LUMBOL DO LE POOL DO LE POOL DE LE P	KORMEEMROOLHKGPOFKOVFEISSGEGFLDMIDKI
CO37334-01 Protein Sequence		IGCMICLAAEYPAVKFCKVKSSVIGASSQFTRNALPA In newtitot na ni nengritit nengritit jorinyaanau

CG59354-02 DNA Sequence	AGCAGTGAAGATGAGGACAGTGACCACGAGGACAAGGACCGAGGCATCTCAGTTAACA CAGGCCCAAAAGGTGATCAATGACTGGCGCCGCTTCAAGCAGTTGAGACAGAGCA GAGGAGGAGCAGTGCCGGGAGATGGAAAGGCTGATCAAGCAGTTGC AGGTCCCATCTGGATGAAAGAGGAGAGAACAGAAACAGAAAGACCTCCAGGAGAAAG TCAGTGGGAAGATGAACAGGAGTTTTGCCATAAATGAATG		
	ORF Start: ATG at 5	ORF Stop	o: TGA at 749
	SEQ ID NO: 174	248 aa	MW at 29227.4kD
NOV57b, CG59354-02 Protein Sequence	MTTLYDKLLGEKLQYYYSSSEDEDSDHEDKDRGISVNTGPKGVINDWRRFKQLETEQR EEQCREMERLIKKLSMTCRSHLDEEEEQQKQKDLQEKISGKMTLKEFAIMNEDQDDEE FLQQYRKQRMEEMRQQLHKGPQFKQVFEISSGEGFLDMIDKEQKSIVIMVHIYEDGIR DRSHEWLHDPPCKGGELIGNFVRVTDQLGDDFFAVDLEAFLQEFGLLPEKEVLVLTSV RNSATCHSEDSDLEID		
	SEQ ID NO: 175	891 bp	
NOV57c, CG59354-03 DNA Sequence	CACCATGACCACCTGTATGATAAGTTGCTGGGGGAGAAACTGCAGTACTACTATAGC AGCAGTGAAGATGAGGACAGTGACCACGAGGACAAGGACCGAGGATCTCAGTTAACA CAGGCCCAAAAGGTGTGATCAATGACTGGCGCGCTTCAAGCAGTTGAGAACAGAGCA GAGGAGGAGCAGTGCCGGGGATGAAAAGGCTGTCAATGACTTGC AGGTCCCATCTGGATGAAGAGGAGAGAAAAGGCTGTCAATGACTTGC AGGTCCCATCTGGATGAAGAGGAGAGACAACAGAAACAGAAAAGACCTCCAGGAGAAGA TCAGTGGGAAGATGACCGGAAGGAGTTTTGCCATAATGAATG		
	ORF Start: ATG at 5		Y
	SEQ ID NO: 176	282 aa	MW at 32598.5kD
NOV57c, CG59354-03 Protein Sequence	MTTLVDKLLGEKLQYYYSSSEDEDSDHEDKDRGISVNTGPKGVINDWRRFKQLETEQR EEQCREMERLIKKLSMTCRSHLDEEEEQQKQKDLQEKISGKMTLKEFAIMNEDQDDEE C FLQQYRKQRMEEMRQQLHKGPQFKQVFEISSGEGFLDMIDKEQKSIVIMVHIYEDGIP GTEAMNGCMIRLAAEYPAVKFCKVKSSVIGASSQFTRNALPALLIYKGGELIGNFVRV TDQLGDDFFAVDLEAFLQEFGLLPEKEVLVLTSVRNSATCHSEDSDLEID		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 57B.

Table 57B. Comparison of NOV57a against NOV57b through NOV57c.			
Protein Sequence	NOV57a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV57b	58240 100248	138/183 (75%) 140/183 (76%)	
NOV57c	58240 100282	182/183 (99%) 182/183 (99%)	

Further analysis of the NOV57a protein yielded the following properties shown in Table 57C.

	Table 57C. Protein Sequence Properties NOV57a
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV57a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 57D.

	Table 57D. Geneseq Results for NOV57a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV57a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE03537	Human secreted protein variant, SEQ ID NO: 228 - Homo sapiens, 301 aa. [WO200132675-A1, 10-MAY-2001]	1240 1301	226/301 (75%) 230/301 (76%)	e-117	
AAY99657	Human GTPase associated protein-8 - Homo sapiens, 301 aa. [WO200031263-A2, 02-JUN-2000]	1240 1301	226/301 (75%) 230/301 (76%)	e-117	
AAE02004	Fruitfly viral IAP-associated factor (VIAF) - Drosophila melanogaster, 240 aa [WO200134798-A1 17	55214 59213	52/161 (32%) 86/161 (53%)	3e-14	

	(VIAF) - Brachydanio rerio, 239 aa. [WO200134798-A1, 17-MAY-2001]	2237	117/241 (47%)	
AAE02002	Mouse viral IAP-associated factor (VIAF) - Mus musculus, 240 aa. [WO200134798-A1, 17-MAY-2001]	58240 52240	59/195 (30%) 99/195 (50%)	4e-12

In a BLAST search of public sequence databases, the NOV57a protein was found to have homology to the proteins shown in the BLASTP data in Table 57E.

	Table 57E. Public BLASTP Results for NOV57a				
Protein Accession Number	Protein/Organism/Length	NOV57a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96AF1	HYPOTHETICAL 34.3 KDA PROTEIN - Homo sapiens (Human), 301 aa.	1240 1301	226/301 (75%) 230/301 (76%)	e-117	
Q13371	Phosducin-like protein (PHLP) - Homo sapiens (Human), 301 aa.	1240 1301	225/301 (74%) 230/301 (75%)	e-116	
T17321	hypothetical protein DKFZp564M1863.1 - human, 301 aa.	1240 1301	225/301 (74%) 230/301 (75%)	e-116	
Q923E8	RIKEN CDNA 1200011E13 GENE - Mus musculus (Mouse), 301 aa.	1240 1301	210/301 (69%) 223/301 (73%)	e-109	
Q63737	Phosducin-like protein (PHLP) - Rattus norvegicus (Rat), 301 aa.	1240 1301	210/301 (69%) 223/301 (73%)	e-108	

PFam analysis predicts that the NOV57a protein contains the domains shown in the Table 57F.

Table 57F. Domain Analysis of NOV57a					
Pfam Domain	Expect Value				
Phosducin: domain 1 of 2	3557	14/23 (61%) 21/23 (91%)	8.7e-08		
Phosducin: domain 2 of 2	58240	133/183 (73%) 174/183 (95%)	9.7e-148		

Example 58.

The NOV58 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 58A.

Table	58A. NOV58 Sequenc	e Analysis		
	SEQ ID NO: 177	756 bp		
NOV58a, CG59319-01 DNA Sequence	ATTCGATGAAGAAGATATGCAGGCTGTTGAAACATATAGAAAGAA			
	ORF Start: GAT at 2	ORF Stop: TAG at 719		
	SEQ ID NO: 178	239 aa MW at 27811.3kD		
NOV58a, CG59319-01 Protein Sequence	FDEEDMQAVETYRKKRLQEWKAL RSSIPMCLLVNQHLSLLARKFPE	SKDEIEEMVLRLQKEAMVKPFEKMTLAQLKEAEDE KKKQKFGELREISGNQYVNEVTNAEEDVWVIIHLY TKFVKAIVNSCIQHYHDNCLPTIFVYKNGQIEAKF GAIQTDLEENPRKDMVDMMVSSIRNTSIHDDSDSS		
	SEQ ID NO: 179	745 bp		
NOV58b, CG59319-02 DNA Sequence	TAAGAGATTTCGGCATTCTTCCT GGTTTTACGTTTACAGAAAGAAC CAGCTAAAGGAAGCTGAAGATGA ATAGAAAGAAACTTCTGGAAATCA GTGTGGGTTATAATTCATCTATA AGCATCTTAGTCTTCTAGCAAGA GAATAGCTGTATTCAACACTACC AATGGTCAGAAATTAACACTACCAAATTAACACTACCAAATTAACACTACCAAATTAACACTAACACTAACACTAACACTAACACAAATTAACTCGAAAAAAAA	TGGATCCCAATGAAGATACAGAATGGAATGACATTT TCCTAAAGAAGAGTCAAAAGATGAAATTGAAGAAT TCCTAAAGAAGAGTCAAAAGATGAAATTGAAGAAT TCCTAAAGAAGAGCATTTGAAAAGATGACTCTTGCA LATTTGATGAAGAAGATATGCAGGCTGTTGAAACAT LTGGAAAGCTCTTAAGAAAAAAACAAAAATTTGGAGA TAGATCAAGCATCACCAATGTGTTTGTTGGTTAACC LAAGTTCCAGAAACATTTTGTTAAGCCATCGT TATGACAATTTTTTCGTATAAA TCATTGGAATTATAGAAATTTGTGAAAATCCCA TCATTGGAATTATAGAATTTGGAGGATAAATCCCA TCAGCAGAAGTTGGAGCAATACAGCTGATTTGGA TCATTGGAATTATAGAATTCCAACAGCTGATTTGGA TCAACAGTGATTGGAGCAATACAGACTGATTTGGA TCAACAGTGATACATTCTCAATTAGAAACACTTCT TCAACAGTGATAATGATACCAAATAGA		

CG59319-02 Protein Sequence	MDPNEDTEWNDILRDFGILPPKEESKDEIEEMVLRLQKEAMVKPFEKMTLAQLKEAED EFDEEDMQAVETYRKKRLQEWKALKKKQKFGELREISGNQYVNEVTNAEEDVWVIIHL YRSSIPMCLLVNQHLSLLARKFPETKFVKAIVNSCIQHYHDNCLPTIFVYKNGQIEAK FIGIIECGGINLKLEELEWKLAEVGAIQTDLEENPRKDMVDMMVSSIRNTSIHDDSDS SNSDNDTK
-----------------------------	--

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 58B.

Table 58B. Comparison of NOV58a against NOV58b.				
Protein Sequence	NOV58a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV58b	1239 2240	216/239 (90%) 216/239 (90%)		

Further analysis of the NOV58a protein yielded the following properties shown in Table 58C.

	Table 58C. Protein Sequence Properties NOV58a
PSort analysis:	0.8800 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV58a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 58D.

Table 58D. Geneseq Results for NOV58a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV58a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE02003	Zebrafish viral IAP-associated factor (VIAF) - Brachydanio rerio, 239 aa. [WO200134798-A1, 17-MAY-2001]	1237 3239	133/238 (55%) 181/238 (75%)	3e-75
AAU27979	Mouse contig polypeptide sequence	1231	137/234 (58%)	2e-74

AAU27807	Human full-length polypeptide sequence #132 - Mus musculus, 239 aa. [WO200164834-A2, 07- SEP-2001]	1231 3236	137/234 (58° o) 176/234 (74%)	2e-74
AAE02001	Human viral IAP-associated factor (VIAF) - Homo sapiens, 239 aa. [WO200134798-A1, 17-MAY-2001]	1231 3236	137/234 (58° o) 176/234 (74° o)	2e-7 4
AAB68507	Human GTP-binding associated protein #7 - Homo sapiens, 239 aa. [WO200105970-A2, 25-JAN-2001]	1231 3236	137/234 (58%) 176/234 (74%)	2e-74

In a BLAST search of public sequence databases, the NOV58a protein was found to have homology to the proteins shown in the BLASTP data in Table 58E.

Table 58E. Public BLASTP Results for NOV58a				
Protein Accession Number	Protein/Organism/Length	NOV58a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9CQU4	1700010B22RIK PROTEIN - Mus musculus (Mouse), 240 aa.	1239 3240	208/239 (87%) 229/239 (95%)	e-121
Q9WUP3	PDCL2 - Mus musculus (Mousc), 238 aa (fragment).	1239 1238	207/239 (86%) 228/239 (94%)	e-121
Q9DA99	1700016K07RIK PROTEIN - Mus musculus (Mouse), 192 aa.	47239 1192	165/193 (85%) 183/193 (94%)	3e-94
CAC40345	SEQUENCE 5 FROM PATENT WO0134798 - Brachydanio rerio (Zebrafish) (Zebra danio), 239 aa.	1237 3239	133/238 (55%) 181/238 (75%)	1e-74
Q9H2J4	HTPHLP (UNKNOWN) (PROTEIN FOR MGC:3062) - Homo sapiens (Human), 239 aa.	1231 3236	137/234 (58%) 176/234 (74%)	8e-74

PFam analysis predicts that the NOV58a protein contains the domains shown in the Table 58F.

Table 58F. Domain Analysis of NOV58a					
Pfam Domain	NOV58a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
Phosducin: domain 1 of 1	60175	32/120 (27%) 55/120 (46%)	5.8		

Example 59.

The NOV59 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 59A.

Table 59A. NOV59 Sequence Analysis				
	SEQ ID NO:	181	981 bp	
NOV59a, CG59576-01 DNA Sequence	ACCATCCCAAGATGTTCTTCAACCTAGCCAGTGAGCAGAAGACCACCTCCCTGG GTTGCCTATTGCAGATGTATTTCTTTTACTCCCTCGGCATCACTGAGGTTTGCTT CACCACCAGGGCTATGGACAGATACCTGGCCATCTGTAATCACCTTTGCTACCC. GTCACGACACCTCAGCTCTACACTCAGGTGATTCTAGGTTGTTGCATCTTGTGGTT TCACGCTGCTCCCTGAGATTGCTTGGATATCCACACTGCCATTTTTGTGGTCCAAA AATCCACAACATTTTCTGTGACCTTGATCCTATCCT			CATCAAACTGGATTTCTGCCTGCACAG CTCCTAGAGATCTGGTATACCACCATC ETGAGCAGAAGACCACCTCCCTGGATG CCTCGGCATCACTGAGGTTTGCTTGCT TCTGTAATCACCTTTGCTACCCACA CTCTAGGTTGTTGCATCTTGGCTTCCAAATCA CTCTGCATTTTGTGATCAAATCA CTCTGAATCTAGCATGTGTAGACACT TTGTACATGCTGTGGAGATCATCACAG CACTATCTGCAGTGTCTAAGAAACTG CCTATGCTTTCCACCTTACTATTTC CCTGCTCTTCTCTGCCAAGTACTCCT TGCAGTGCTTCTCCACCAACAATCAT CCTGCTCTTCTCTCCCAACAACAATCAT CCAATAAAAAAAGCACATGTGCCAATCA
	ORF Start: G	CC at 1	ORF Stop	o: TAA at 895
	SEQ ID NO:	182	298 aa	MW at 33780.0kD
NOV59a, CG59576-01 Protein Sequence	ATAPSWLLFFILLLLIYLFTIIGSLMVFFAIKLDFCLHSSFYFFISVLSFLEIWYTT TIPKMFFNLASEQKTTSLDGCLLQMYFFYSLGITEVCLLTTRAMDRYLAICNHLCYP VTTPQLYTQVILGCCICGFFTLLPEIAWISTLPFCGPNQIHNIFCDLDPILNLACVD GPVVLIKVVDIVHAVEIITAIMLVTLAYVQIIAVILRNCSADGCQKAFSTYAFHLAI LIFFGSVALMYLLFSAKYSFFWDTTISLMFAVLSPTTIICSLRNKEIKEAIKKHMCQ MICTHHVK			

Further analysis of the NOV59a protein yielded the following properties shown in Table 59B.

Table 59B. Protein Sequence Properties NOV59a			
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		

A search of the NOV59a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 59C.

	Table 59C. Geneseq Results for NOV59a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV59a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG72586	Human OR-like polypeptide query sequence, SEQ ID NO: 2267 - Homo sapiens, 289 aa. [WO200127158-A2, 19-APR-2001]	7295 1289	286/289 (98%) 286/289 (98%)	e-167	
AAG71784	Human olfactory receptor polypeptide, SEQ ID NO: 1465 - Homo sapiens, 289 aa. [WO200127158-A2, 19-APR- 2001]	7295 1289	286/289 (98%) 286/289 (98%)	e-167	
AAG71785	Human olfactory receptor polypeptide, SEQ ID NO: 1466 - Homo sapiens, 318 aa. [WO200127158-A2, 19-APR- 2001]	5292 20311	175/293 (59%) 217/293 (73%)	6e-95	
AAU24721	Human olfactory receptor AOLFR220 - Homo sapiens, 343 aa. [WO200168805-A2, 20-SEP-2001]	7283 53328	170/279 (60%) 212/279 (75%)	4e-94	
AAG71808	Human olfactory receptor polypeptide, SEQ ID NO: 1489 - Homo sapiens, 317 aa. [WO200127158-A2, 19-APR- 2001]	7283 29304	170/279 (60%) 212/279 (75%)	4e-94	

In a BLAST search of public sequence databases, the NOV59a protein was found to have homology to the proteins shown in the BLASTP data in Table 59D.

Table 59D. Public BLASTP Results for NOV59a					
Protein Accession Number	Protein/Organism/Length	NOV59a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
006.D35	OLEACTORY RECEPTOR II	50 267	107 218 (109)	7.55	

3 (f. 2003)

	Mus musculus (Mouse), 314 aa.	19303	172/289 (58%)	
O95007	Olfactory receptor 6B1 (Olfactory receptor 7-3) (OR7-3) - Homo sapiens (Human), 311 aa.	10285 28301	109/279 (39%) 170/279 (60%)	1e-51
Q9QWU6	OLFACTORY RECEPTOR 17 - Mus musculus (Mouse), 327 aa.	1289 20314	111/298 (37%) 171/298 (57%)	2e-50
P23270	Olfactory receptor-like protein 17 - Rattus norvegicus (Rat), 327 aa.	1289 20314	111/298 (37%) 171/298 (57%)	2e-50

PFam analysis predicts that the NOV59a protein contains the domains shown in the Table 59E.

Table 59E. Domain Analysis of NOV59a					
Pfam Domain NOV59a Match Reg		Identities/ Similarities for the Matched Region	Expect Value		
7tm_1: domain 1 of 1	37164	30/134 (22%) 90/134 (67%)	5.4e-13		

Example 60.

The NOV60 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 60A.

Table 60A. NOV60 Sequence Analysis				
SEQ ID NO: 183	1201 bp			
ATTICAAGCTGTTTAGTTGC TAGAATGCTGACTGTGTTTTA GAGAATCAGACAATGGTGACT GCAGCCTCTTATTCTTCATTC GTTTCATGATTTTCTTTGCTGT TTTATCAGTGTCTTCTCTCTCT TGCTCTCCAACCTTCTCAGTG GATGTACTTCTCTCACTCACT ATTGACAGGTGTGTAGCCATC GACTGTGCATCCAGCTCCCA AGAGATTGTGTGCATTCCAC TTTTGTGACTTTGAACCTGTG TTGAAGATGTGATCCGTGCTA CTATTTAAGAATCATCAGGT GCTTTCTTCACATGTGCAGCC CACCATGTTGTTACTGCCTTCC ACTGATGTTTGCTGCCTCCC CACGAGCTAATGGCGCCCCCCGGGAGCTAATGGAGTTCACCCCCCCC	AAATCACTCACATAGTATATTTTATTTAACCAGCCTA TTGAAAAGAAGGTTTTTATTTTTTTTTT			
	SEQ ID NO: 183 AGGATAACTTTATATGTIGCA ATTTCAAGGCTGTTTAGTTGC TAGAATGCTGACTGTGTTTTA GAGAATCAGACAATGGTGACTT GCAGCCTCTTATTCTTCATTC TTTCATGATTTCTTCATTC TTTATCAGTGTCTTCTCCTTC TGCTCTCCAACCTTCTCAGTG GATGTACTTCTCCACT ATTGACAGGTGTGTAGCCATC GACTGTGCATCCAGCTTCCA TTTGTGACTTTGAACCTGTC TTGAAGATGTGTGTGAACCTGTC TTGAAGATGTGTATCCAC CTATTTACAGTTGTAACCTGTC ACTATTTACAATTGAACCTGTC ACTATTTACAATTGACCTCC ACTGATGTTTTCCTCTTCCACTACTTCACTTC			

MFAVLALLFNPVIYSLRNKDMKNATKKILCSOKMFNASGS
LRIITVILRIPSGESROKAFFTCAAHIAIFLLFFGSVSLMYLRFSVTFPPLLDKAIAL
IVCISTLPFCGANGIHQLFCDFEPVLQLACTDTYIILVEDVIRAISILTSVSVITLFY

Further analysis of the NOV60a protein yielded the following properties shown in Table 60B.

	Table 60B. Protein Sequence Properties NOV60a				
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.0300 probability located in mitochondrial inner membrane				
SignalP analysis:	Likely cleavage site between residues 67 and 68				

A search of the NOV60a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 60C.

	Table 60C. Geneseq Results for NOV60a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV60a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG71807	Human olfactory receptor polypeptide, SEQ ID NO: 1488 - Homo sapiens, 319 aa. [WO200127158-A2, 19-APR-2001]	16330 1315	313/315 (99%) 314/315 (99%)	e-180	
AAG71803	Human olfactory receptor polypeptide, SEQ ID NO: 1484 - Homo sapiens, 315 aa. [WO200127158-A2, 19-APR-2001]	16329 1314	219/314 (69%) 259/314 (81%)	e-129	
AAU24658	Human olfactory receptor AOLFR156 - Homo sapiens, 331 aa. [WO200168805-A2, 20-SEP-2001]	9329 10330	218/321 (67%) 259/321 (79%)	e-128	
AAU24721	Human olfactory receptor AOLFR220 - Homo sapiens, 343 aa. [WO200168805-A2, 20-SEP-2001]	20329 33342	196/310 (63%) 234/310 (75%)	e-111	
AAG71808	Human olfactory receptor polypeptide, SEQ ID NO: 1489 -	20323 9312	195/304 (64%) 232/304 (76%)	e-111	

In a BLAST search of public sequence databases, the NOV60a protein was found to have homology to the proteins shown in the BLASTP data in Table 60D.

	Table 60D. Public BLASTP Results for NOV60a					
Protein Accession Number	Protein/Organism/Length	NOV60a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q9WU86	ODORANT RECEPTOR S1 - Mus musculus (Mouse), 324 aa.	15324 8320	135/315 (42° 6) 188/315 (58° 6)	4e-67		
Q9EPG2	M51 OLFACTORY RECEPTOR - Mus musculus (Mouse), 314 aa.	20325 5311	129/307 (42%) 189/307 (61%)	4e-65		
P23270	Olfactory receptor-like protein I7 - Rattus norvegicus (Rat), 327 aa.	24319 10310	126/301 (41%) 182/301 (59%)	8e-65		
Q9QWU6	OLFACTORY RECEPTOR I7 Mus musculus (Mouse), 327 aa.	16319 1310	128/310 (41%) 184/310 (59%)	9e-64		
O13036	CHICK OLFACTORY RECEPTOR 7 - Gallus gallus (Chicken), 323 aa.	16319 1305	122/305 (40%) 187/305 (61%)	1e-63		

PFam analysis predicts that the NOV60a protein contains the domains shown in the Table 60E.

Table 60E. Domain Analysis of NOV60a				
Pfam Domain NOV60a Match Region Similarities Expect Value for the Matched Region				
7tm_1: domain 1 of 1	56304	45/270 (17%) 172/270 (64%)	2.4e-21	

Example 61.

The NOV61 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 61A.

	SEQ ID NO: 185	1061 bp	
NOV61a, CG59555-01 DNA Sequence	ATGGTCACAGAGTTCCTCCTACT TCTTTGGGCTCTTCTCCCTGCTTC GGGGCTCATCTCACTGGACTCCA CTGGCTGTCGTCGACATCGCCTA TCCTGCATCCAGCCAAGCCCAT TCTTGAGTTTTGACACCAGCCAAT GTGGCCATCTGCACCCTCTCCG CCCTGGCCGTCACTTCCTGGACG CATCCTAAGACTGCCTTCTCTG CAGCCTGCTGCTCTCTCTGCTGCTGCTGCTGCTGCTGCTCTCTGTGCTGC	TTCTTTTCACAGGGAAATGGGGAAAATCAGACA GGGATTTCTCTGGGCCCAAGGATTCAGATGCTCC TATATCTTCACCCTGGTGGGGAACGGGGCCATCCT GGACTCCACACCCCCATGTACTTCTTCCTCTCACAC CACCCGCAACACGGTGCCCCCAGTTCTTCTTCTG GTCTCCTTTGCTGGCTGCATGACGCAGACCTTTCCTG GATACTCCGTCATCATCACCTGGAGAGTCTGCATCA GTGGCTCCTCCTGGCTCATGACCAGTGTGTTCT GGGCCCCATGAAATCAACCACTTCTTCTGTGAAATC GTGGGCACCCAGCTGGTCTTTCTCTGTGAAATC GTGGGCACCCAGCTGGTCTTTCTCTCTCCCA GTGGGACTCTTCTTTTTTCTACTTTC CCTGAGGAGCAGCAAAAAGGTCTTTTTTTA LACCCCTGATTTACAGCTGAGGAACGGAGAGGTC GGGCAAGGAAAGTCATTCCTAACTGGTGTGACATT CCTGAGGAACACTTCTTTAACTGGTGACACTT CCTGAGAAAAGTCATTCCTAACTGGTGTACATT CCTGGAACACTTGGTACCAAATACCACTTAACTTCACTTCACTTCACTTCACTTCACTTCACACTCACACTCACACTCACACTCACACTCACACTCACACTCACACTCACACTCACACTCA	
	ORF Start: ATG at 41	ORF Stop: TAA at 971	
	SEQ ID NO: 186	310 aa MW at 34713.8kD	
NOV61a, CG59555-01 Protein Sequence	MGENQTMVTEFLLLGFLLGPRIQMLLFGLFSLFYIFTLLGNGAILGLISLDSRLHTPM YFFLSHLAVVDIAYTRNTVPQMLANLLHPAKPISFAGCMTQTFLCLSFGHSECLLLVL MSYDRYVAICHPLRYSVIMTWRVCITLAVTSWTCGSLLALAHVVLILRLPFSGPHEIN HFFCEILSVLRLACADTWLNQVVIFAACVFFLVGPPSLVLVSYSHILAAILRIQSGEG RRKAFSTCSSHLCVVGLFFGSAIIMYMAPKSRHPEEQQKVFFLFYSFFNPTLNPLIYS LRNGEVKGALRRALGKESHS		

Further analysis of the NOV61a protein yielded the following properties shown in Table 61B.

	Table 61B. Protein Sequence Properties NOV61a				
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	Likely cleavage site between residues 43 and 44				

A search of the NOV61a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 61C.

	Table 61C. Geneseq Results for NOV61a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV61a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM29935	Peptide #3972 encoded by probe for measuring placental gene expression - Homo sapiens, 311 aa. [WO200157272-A2, 09-AUG-2001]	1310 2311	310/310 (100%) 310/310 (100%)	0.0	
AAM17409	Peptide #3843 encoded by probe for measuring cervical gene expression - Homo sapiens, 311 aa. [WO200157278-A2, 09-AUG-2001]	1310 2311	310/310 (100%) 310/310 (100%)	0.0	
AAG72949	Human olfactory receptor data exploratorium sequence, SEQ ID NO: 2631 - Homo sapiens, 314 aa. [WO200127158-A2, 19-APR-2001]	1310 2311	310/310 (100%) 310/310 (100%)	0.0	
AAG72187	Human olfactory receptor polypeptide, SEQ ID NO: 1868 - Homo sapiens, 310 aa. [WO200127158-A2, 19-APR-2001]	1310 1310	310/310 (100%) 310/310 (100%)	0.0	
AAU04577	Human G-protein coupled receptor like protein, GPCR #11 - Homo sapiens, 308 aa. [WO200153454-A2, 26-JUL-2001]	1310 1308	288/310 (92%) 294/310 (93%)	e-165	

In a BLAST search of public sequence databases, the NOV61a protein was found to have homology to the proteins shown in the BLASTP data in Table 61D.

Table 61D. Public BLASTP Results for NOV61a				
Protein Accession Number	Protein/Organism/Length	NOV61a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96R46	OLFACTORY RECEPTOR - Homo sapiens (Human), 217 aa (fragment).	67283 1217	217/217 (100%) 217/217 (100%)	e-125
O95047	Olfactory receptor 2A4 - Homo sapiens (Human), 310 aa.	1307 1307	217/307 (70%) 250/307 (80%)	e-122

	(OLFACTORY RECEPTOR LIKE) PROTEIN)) - Homo sapiens (Human). 272 aa (fragment).			
Q9Z1V2	OLFACTORY RECEPTOR B12 - Mus musculus (Mouse), 223 aa (fragment).	63285 1223	172/223 (77%) 190/223 (85%)	9e-98
O43888	OLFACTORY RECEPTOR - Homo sapiens (Human), 217 aa (fragment).	67282 1217	173/217 (79%) 188/217 (85%)	1e-97

PFam analysis predicts that the NOV61a protein contains the domains shown in the Table 61E.

Table 61E. Domain Analysis of NOV61a				
Pfam Domain	NOV61a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
7tm_1: domain 1 of 1	40289	65/269 (24%) 188/269 (70%)	1.1c-45	

Example 62.

The NOV62 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 62A.

Table 62A. NOV62 Sequence Analysis			
	SEQ ID NO: 187	1201 bp	
NOV62a, CG59551-01 DNA Sequence	ACTCCAGAATCCTTTGTTTCTATG CTGCCCATCTCTGAGAAATCCAGC ATCAGTGGATGGCTCACCCGTCTT TTCTTCCTCCCCTGTGTTTTTTATT ATGCCTGATCATCTCCACCTT ATGCTGTCCTTATTCTCCACCTT ATGCTGTCCTTATTCTTGCTTGGG AGATGTACCTCTTCCAAAGTTTTA CTATGACCGCTATGTGGCTATCTG CAGACCAATGCTACCTTGGCAGCC CAGCAGTAGTAAGGACCTCCCAGA CTTCTGTGATCATCTGGCTGGT CTCATGGGCTTCTGCATCCCATG TCTCCTATGTCTCCACATCCCATG AAAAGCCTTCTCCACCTGCACTC ATTGCCATAGCCTACGCCTAC GCAATGTGGTATATGCCATTCCA	GTTTCCAGAT TGTGTCTCAC CTATCTATTG TTCCTCCTCT TGGCAGAGCC GGACATCCTC CATGTTCAGA CCACCCACTC AGTGCCTGC GTGGCATATAA CCAGGCTCC GTGGTGTCCT CAGTGCTTCC CAGTGCTTCC CACTTCTC AGGGCTCC CACCAAAATC CACCAAAATC GCTAACTCC	ACAGAGTAAACATTATAGCATTATC IGTTTCCAATGTCTAGATGTTCCAG CAATGGATGCCACAGCCTGTAATGA GGCATCCCCTCCTCCCCAGAGCC TCTACCTTCTCACTCATCGTGATGGTA CCAGCCTCCACAAGCCCATGTACTT CTTCACCACAAACCCACTGTCCCCAAG CTCAGCTTTTCTTCCTGCTTACTGC AAGCCTTCATCCTGGTGATCATGC CACACTACCCTGTCCTCATGACCCA CTAACTGCCCTCCTCCTGCCCATCC ACAGCATTGCCTACATCACCACTG CTCCTCGTGCCATCC CCACAGCATCCCTCCTGGTGCTTC CCACAGCATTCCCTACATCACCACTG CTCCTCGGGGACCCCCAGACCC CTCCTCGTGGCAATCACCACTG CTCCTCGGGGCACCTACTACTACTCTC CTCCCCCTTGACACCACCCCCAGACCC CTCCTCGCGGGCACCTCTCCTGTGCCATCC CTCCCCCTTGACTTCCATATCATCG CTCCCCCTTGACTTCCATATCATCG CTCCCCCTTGACTTCCATATCATCG CTCACCCCCTCATTTACACGCTGAG CATGCTCCAAGACCCAGGCTGTGAC CCTTCCAGGACCCCCAAATAACAGTG CGAAATAA
	ORF Start: ATG at 152	ORF Stop	p: TGA at 1112
	SEQ ID NO: 188	320 aa	MW at 35502.6kD
			

NPLIYTLRNRDVKAAITKIMSQDPGCDRSI

Further analysis of the NOV62a protein yielded the following properties shown in Table 62B.

	Table 62B. Protein Sequence Properties NOV62a				
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome)				
SignalP analysis:	Likely cleavage site between residues 57 and 58				

A search of the NOV62a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 62C.

Table 62C. Geneseq Results for NOV62a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV62a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG72119	Human olfactory receptor polypeptide, SEQ ID NO: 1800 - Homo sapiens, 295 aa. [WO200127158-A2, 19-APR- 2001]	35290 2257	213/256 (83%) 228/256 (88%)	e-119
AAU24639	Human olfactory receptor AOLFR134 - Homo sapiens, 325 aa. [WO200168805-A2, 20-SEP-2001]	16308 17308	129/293 (44%) 186/293 (63%)	6e-67
AAG72479	Human OR-like polypeptide query sequence, SEQ ID NO: 2160 - Homo sapiens, 324 aa. [WO200127158-A2, 19-APR-2001]	16308 17308	129/293 (44%) 186/293 (63%)	6e-67
AAG71590	Human olfactory receptor polypeptide, SEQ ID NO: 1271 - Homo sapiens, 324 aa. [WO200127158-A2, 19-APR- 2001]	16308 17308	129/293 (44° n) 186/293 (63° o)	6e-67
AAG71632	Human olfactory receptor polypeptide, SEQ ID NO: 1313 - Homo sapiens,	16315 13312	126/300 (42%) 179/300 (59%)	3e-64

In a BLAST search of public sequence databases, the NOV62a protein was found to have homology to the proteins shown in the BLASTP data in Table 62D.

	Table 62D. Public BLASTP Results for NOV62a				
Protein Accession Number	Protein/Organism/Length	NOV62a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9Z236	OLFACTORY RECEPTOR - Rattus norvegicus (Rat), 221 aa (fragment).	70289 2221	187/220 (85%) 202/220 (91%)	e-104	
CAB43131	OLFACTORY RECEPTOR - Stenella coeruleoalba (Striped dolphin), 172 aa (fragment).	69240 1172	136/172 (79%) 148/172 (85%)	1e-73	
Q9EPG2	M51 OLFACTORY RECEPTOR - Mus musculus (Mouse), 314 aa.	16310 12305	131/295 (44%) 191/295 (64%)	2e-67	
Q9H208	HP4 OLFACTORY RECEPTOR - Homo sapiens (Human), 317 aa (fragment).	16312 12308	127/297 (42%) 180/297 (59%)	3e-65	
Q920G5	OLFACTORY RECEPTOR P3 - Mus musculus (Mouse), 324 aa.	16308 19311	126/295 (42%) 180/295 (60%)	1e-62	

PFam analysis predicts that the NOV62a protein contains the domains shown in the Table 62E.

Table 62E. Domain Analysis of NOV62a				
Pfam Domain	NOV62a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
7tm_1: domain 1 of 1	46295	58/268 (22%) 179/268 (67%)	4 6e-38	

Example 63.

The NOV63 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 63A.

NOV63a, CG59540-01 DNA Sequence	GCCTGGGTCACAGAATTCATCCT TTTCTCTCTTGCATCTTCTCCCTG ACATGGGACTCATCTGTCTGGATC ACACTTGGCGTCATTGACATATA AACCTAGTGAAACACAAAAAACT TGTATTTGACTTTTGCTGCAGG ATTTGTGGGGATCTGCCATCCCCTG ACAGTACTGGCTATTACTTCCTGGG TTCTCCTTCTAAGGCTGCCCTTCTCAATCTGGCGTTTTGTTGTTGTTGTTTTTTTT		TETTATTAAGGAATGGGGACAAGCA TCCAGCTCAGTTGCAGAGATGGAGATC CTTCAGTCTACTGCAGAATGCATGA CACACCCCCATATACTTCTTCCTGTC CCAACAATTTGCTCAACATGCTGGAA CATCTCTTGCATTATGCAGATGGCT ATTTTGGTGGTCATGACAG CTGTCATCATGACATGCTGAAATCTAA CAGGAGGTGAACCACTTCTTCGGTGA ACACCTGGATTAATGAAATCTAA CAGGAGGTGAACCACTTCTTCGGTGA ACACCTGGATTAATGAAATTTTTGC CCTTTCCTTGATGATGAAATTTTTGC CCTTTCCTTGATGACAGCCATTGC CAGGCAGAGGCCACAGAAAGGACTT CGGGCAGGGCCACAGAAAGGACTT CGGAGCAGCAGAAAGGCCTTTCCCTGT CCTTCTGATCACACTTTCAGAGAATGC CAAAAGGAGCAGAAAGGCCTTTTC CAAAAAAGGAGAGAGCTGATGTACAAT CAAAAAGGAGAGAGAGCTGATGTACAAT CAAAAAAGGAGAGAGGCTGATGTACAAT CAAAAAAGGAGAGGCTGATGTACAAT	
	ORF Start: ATG at 45	ORF Stop	o: TGA at 960	
	SEQ ID NO: 190	305 aa	MW at 34554.8kD	
NOV63a, CG59540-01 Protein Sequence	MGDKQPWVTEFILVGFQLSAEMEIFLSCIFSLLYLFSLLRNGMNMGLICLDPRLHT YFFLSHLAVIDIYYASNNLLNMLENLVKHKKTISFISCIMQMALYLTFAAAVCMIL MSYDRFVAICHPLHYTVIMNWRVCTVLAITSWACGFSLALINLILLLRLPFCGPQE HFFGEILSVLKLACADTWINEIFVFAGGVFVLVGPLSLMLISYMRILLAILKIQSG HRKDFSTCSSHLCVVGFFFANAIVMYMAPKSRHPEEQQKVLSLFCSLWNQVLNPPL SLRNAEVKSAPQEGH			

Further analysis of the NOV63a protein yielded the following properties shown in Table 63B.

	Table 63B. Protein Sequence Properties NOV63a		
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome)		
SignalP analysis:	Likely cleavage site between residues 43 and 44		

A search of the NOV63a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 63C.

	Table 63C. Geneseq Results for NOV63a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV63a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU24758	Human olfactory receptor AOLFR259	1300	258/300 (86%)	e-146	

	exploratorium sequence, SEQ ID NO: 2634 - Homo sapiens, 310 aa. [WO200127158-A2, 19-APR-2001]	1299	272/300 (90%)	
AAG72377	Human OR-like polypeptide query sequence, SEQ ID NO: 2058 - Homo sapiens, 312 aa. [WO200127158-A2, 19-APR-2001]	1300 1299	255/300 (85%) 272/300 (90%)	e-144
AAG72169	Human olfactory receptor polypeptide, SEQ ID NO: 1850 - Homo sapiens, 312 aa. [WO200127158-A2, 19-APR- 2001]	1300 1299	255/300 (85%) 272/300 (90%)	e-144
AAG71994	Human olfactory receptor polypeptide, SEQ ID NO: 1675 - Homo sapiens, 314 aa. [WO200127158-A2, 19-APR- 2001]	1300 1 2 99	225/300 (75%) 256/300 (85%)	e-129

In a BLAST search of public sequence databases, the NOV63a protein was found to have homology to the proteins shown in the BLASTP data in Table 63D.

	Table 63D. Public BLASTP Results for NOV63a				
Protein Accession Number	Protein/Organism/Length	NOV63a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O95047	Olfactory receptor 2A4 - Homo sapiens (Human), 310 aa.	1299 1298	173/299 (57%) 217/299 (71%)	2e-92	
O43885	OLFACTORY RECEPTOR - Homo sapiens (Human), 217 aa (fragment).	67281 1216	154/216 (71%) 182/216 (83%)	5e-88	
O43888	OLFACTORY RECEPTOR - Homo sapiens (Human), 217 aa (fragment).	67281 1216	153/216 (70%) 182/216 (83%)	8e-88	
Q96R48	OLFACTORY RECEPTOR - Homo sapiens (Human), 217 aa (fragment).	67281 1216	153/216 (70%) 181/216 (82%)	2e-87	
Q96R47	OLFACTORY RECEPTOR - Homo sapiens (Human), 215 aa (fragment).	67281 1214	149/215 (69%) 175/215 (81%)	3e-84	

Table 63E. Domain Analysis of NOV63a				
Pfam Domain	NOV63a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
7tm_1: domain 1 of 1	47290	55/270 (20%) 174/270 (64%)	9.7e-25	

Example 64.

The NOV64 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 64A.

Table 64A. NOV64 Sequence Analysis					
	SEQ ID NO: 191	973 bp			
NOV64a, CG59280-01 DNA Sequence	AGGACTAAATGAATATCTGTTTAATTCATAAAGTAACAGAGTTTCTCTTCTGGAT TCCCACAGTTTGAAGATAGCTCCTCTTCTTCATTCCATTGTTTGT				
		ORF Stop: TAA at 955			
	SEQ ID NO: 192	315 aa MW at 35741.4kD			
NOV64a, CG59280-01 Protein Sequence	MNICLIHKVTEFLFSGFPQFEDGSLLFFIPLFVIYIFIVIGNLIVFFAVRVDTRLHNP MYNFISIFSFLEIWYTTATIPKMLSILISRQRTISMVGCLLQMYFFHSLGNSEGILLT CONTROL TMAIDRYVAICNPLRYPTIMTPGLCVQLSVGSCIFGFLVLLPEIAWISTLPFCGFNQI HQIFCDFEPVLRLACTDTSMILIEDVIHAVAIVFSVLIIAFSYIRIITVILRIPSVEG RQKAFSTCAAHLSVFLMFYGSVSLMYLRFSATFPPILDTAVALMFAVLAPFFNPIIYS FRNKDMKIAIKKLFCPQKMVNLSVD				
	SEQ ID NO: 193	929 bp			
NOV64b, CG59280-02 DNA Sequence	ATTTTTTGCAGTCAGGGTGGATA ATTTTTTTGCAGTCAGGGTGGATA ATTTTCTCATTTCTGGAGATCTC TCCTCATCAGCAGGCAGAGGACC CTTCCATTCACTGGGAAATTCAC TACGTTGCCATCTGTAACCCTCT TTCAGCTCTCTGTGGGGTCCTGC ATGGATTTCCACACTGCCCTTCT TTTGAACCTGTGCTGCGCCTTGGC TGATCCATGCTGTGGCCATTGTA ACCTGTGCCGCCCATCTTAGGGA ACCTGTGCCGCCCATCTTAGGGACCCTTTCTGCAGTTTTCTTGCAGTTTTCTTGCCACTTTTCTGCAGTTTTTCTTGCAGTTTTTTTT	CACCGCTCTCAGAACCCCATGTATACTTTTTTTCAGCCGTCTCCACAACCCCATGTATAATTTTATCAGCGTACACAACCCCATGTATAATTTTATCAGCGTACACACCACACTCCCAAGATGCCCCCCACACCACTGCCACACACCACTGCCCCCCAGAGATTGCCCAGACCATCATGACCCCCAGAGATTGCCCACACCACCACCACCACCACCACCACCACCACCACCA			

CG59280-02 Protein Sequence	FFIPLFVIYIFIVIGNLIVFFAVRVDTRLHNPMYNFISIFSFLEIWYTTATIPKMLSI LISRQRTISMVGCLLQMYFFHSLGNSEGILLTTMAIDRYVAICNPLRYPTIMTPGLCV QLSVGSCIFGFLVLLPEIAWISTLPFCGPNQIHQIFCDFEPVLRLACTDTSMILIEDV IHAVAIVFSVLIIAFSYIRIITVILRIPSVEGRQKAFSTCAAHLSVFLMFYGSVSLMY LRFSATFPPILDTAVALMFAVLAPFFNPIIYSFRNKDMKIAIKKLFCPQKMVNLSVD
-----------------------------	---

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 64B.

Table 64B. Comparison of NOV64a against NOV64b.			
Protein Sequence NOV64a Residues/ Similarities for the Matched			
NOV64b	27315 1289	289/289 (100%) 289/289 (100%)	

Further analysis of the NOV64a protein yielded the following properties shown in Table 64C.

Table 64C. Protein Sequence Properties NOV64a		
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome)	
SignalP analysis:	Likely cleavage site between residues 54 and 55	

A search of the NOV64a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 64D.

Table 64D. Geneseq Results for NOV64a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV64a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG71805	Human olfactory receptor polypeptide, SEQ ID NO: 1486 - Homo sapiens, 256 aa. [WO200127158-A2, 19-APR-2001]	59314 1256	255/256 (99%) 255/256 (99%)	e-145
1 1/17/2/13	Harry Menter worth	() 311	243 303 (50) 1	1 12

AAU24658	Human olfactory receptor AOLFR156 - Homo sapiens, 331 aa. [WO200168805-A2, 20-SEP-2001]	9311 25327	240/303 (79%) 264/303 (86%)	e-140
AAG71807	Human olfactory receptor polypeptide, SEQ ID NO: 1488 - Homo sapiens, 319 aa. [WO200127158-A2, 19-APR-2001]	9313 9313	222/305 (72%) 259/305 (84%)	e-131
AAU24721	Human olfactory receptor AOLFR220 - Homo sapiens, 343 aa. [WO200168805-A2, 20-SEP-2001]	9308 37336	209/300 (69%) 242/300 (80%)	e-119

In a BLAST search of public sequence databases, the NOV64a protein was found to have homology to the proteins shown in the BLASTP data in Table 64E.

Table 64E. Public BLASTP Results for NOV64a				
Protein Accession Number	Protein/Organism/Length	NOV64a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9EPG2	M51 OLFACTORY RECEPTOR - Mus musculus (Mouse), 314 aa.	1302 4303	137/303 (45%) 194/303 (63%)	2e-71
Q9EPV0	M50 OLFACTORY RECEPTOR (OLFACTORY RECEPTOR M50) - Mus musculus (Mouse), 316 aa.	6302 4301	132/298 (44%) 191/298 (63%)	3e-71
Q9EPG1	M50 OLFACTORY RECEPTOR - Mus musculus (Mouse), 316 aa.	6302 4301	130/298 (43%) 190/298 (63%)	2e-70
Q9WU86	ODORANT RECEPTOR S1 - Mus musculus (Mouse), 324 aa.	1310 12321	133/313 (42%) 190/313 (60%)	4e-69
Q96KK4	DJ994E9.5 (OLFACTORY RECEPTOR, FAMILY 10, SUBFAMILY C, MEMBER 1 (HS6M1-17)) - Homo sapiens (Human), 306 aa.	9314 2306	137/307 (44%) 189/307 (60%)	9e-68

PFam analysis predicts that the NOV64a protein contains the domains shown in the Table 64F.

Table 64F. Domain	Analysis (of NOV64a	
	*	1.127	

оппатич

for the Matched Region

7tm_1: domain 1 of 1 41	51/269 (19%) 179/269 (67%)	2.2e-33
-------------------------	-------------------------------	---------

Example 65.

The NOV65 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 65A.

Table	65A. NOV65 Sequen	ce Analysi	is
	SEQ ID NO: 195	972 bp	
NOV65a, CG59568-01 DNA Sequence	TATTCTCTTCCATCAGACAGTTAAATATTTTCCTCTTTATGATAATTTTAG		
	ORF Start: ATG at 3	ORF Stop	o: TAA at 954
	SEQ ID NO: 196	317 aa	MW at 35713.4kD
NOV65a, CG59568-01 Protein Sequence	MVILSWENOTMRVEFVLQGFSSIRQLNIFLFMIILVFYILTVSGNILIVLLVLVRHHL HTPMYFLLVNLSCLEIWYTSNIIPKMLLIIIAEEKTISVAGWLAQFYFFGSLAATECL CLTVMSYDRYLAICQPLCYRVLMTGPLCIRLAAGSWFCCFLLTAITMVLLCRLTFCGP YETDHFFCDFTPLVHLSCMDTSVTETIAFATSSAVTLIPFLLIVASYSCVLSAILRIP SCTGQKKAFSTCSSHLTVVIVFYGTLIATYLVPSANSSQLLCKGSSLLYIILTPMFNP IIYSLRNRDIHEALKKCLRKKSGVCLR		

Further analysis of the NOV65a protein yielded the following properties shown in Table 65B.

	Table 65B. Protein Sequence Properties NOV65a
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3888 probability located in mitochondrial inner membrane; 0.3030 probability located in mitochondrial intermembrane space
SignalP analysis:	Likely cleavage site between residues 45 and 46

A search of the NOV65a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several barrelesses shown in Table 65C.

	Table 65C. Geneseq Resul	ts for NOV6	5a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV65a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG72527	Human OR-like polypeptide query sequence, SEQ ID NO: 2208 - Homo sapiens, 316 aa. [WO200127158-A2, 19-APR-2001]	1316 1316	315/316 (99%) 315/316 (99%)	0.0
AAG72231	Human olfactory receptor polypeptide, SEQ ID NO: 1912 - Homo sapiens, 316 aa. [WO200127158-A2, 19-APR- 2001]	1316 1316	315/316 (99%) 315/316 (99%)	0.0
AAG72084	Human olfactory receptor polypeptide, SEQ ID NO: 1765 - Homo sapiens, 316 aa. [WO200127158-A2, 19-APR- 2001]	1316 1316	315/316 (99° o) 315/316 (99" o)	0.0
AAG72700	Murine OR-like polypeptide query sequence, SEQ ID NO: 2382 - Mus musculus, 314 aa. [WO200127158- A2, 19-APR-2001]	1308 3308	154/308 (50%) 208/308 (67%)	2e-83
AAG71814	Human olfactory receptor polypeptide, SEQ ID NO: 1495 - Homo sapiens, 317 aa. [WO200127158-A2, 19-APR- 2001]	8311 5308	142/304 (46%) 208/304 (67%)	7e-79

In a BLAST search of public sequence databases, the NOV65a protein was found to have homology to the proteins shown in the BLASTP data in Table 65D.

Table 65D. Public BLASTP Results for NOV65a				
Protein Accession Number	Protein/Organism/Length	NOV65a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9GZK7	Olfactory receptor 11A1 (Hs6M1-18) - Homo sapiens (Human), 315 aa.	1308 1306	147/308 (47%) 202/308 (64%)	4e-77
O13036	CHICK OLFACTORY RECEPTOR 7 - Gallus gallus	7311 4308	139/305 (45%) 198/305 (64%)	1e-76

vius muscumis evionse (1919) ac-

Q9WU86	ODORANT RECEPTOR S1 - Mus musculus (Mouse), 324 aa.	14308 21315	144/295 (48%) 189/295 (63%)	2e-75
Q9UGF6	Olfactory receptor 5V1 (Hs6M1-21) - Homo sapiens (Human), 321 aa.	7305 4302	138/299 (46%) 199/299 (66%)	5e-75

PFam analysis predicts that the NOV65a protein contains the domains shown in the Table 65E.

Tabl	Table 65E. Domain Analysis of NOV65a			
Pfam Domain	NOV65a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
granulin: domain 1 of 1	144155	7/13 (54%) 11/13 (85%)	1.7	
Trypan_glycop: domain 1 of 1	218241	6/24 (25%) 21/24 (88%)	7.9	
7tm_1: domain 1 of 1	44293	53/268 (20%) 172/268 (64%)	1.5e-31	

Example 66.

The NOV66 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 66A.

Table 66A. NOV66 Sequence Analysis		
SEQ ID NO: 197	987 bp	
CTCCTTATCGGGATCACTGGA TATCTGTGTACCTTCTTTTT AGAGCAAAGCCTCCATGAACC CTAGGGGTGTCTCTGTCTCC ATGAAATTCATGCAGCAGCTCATGTCC CCTTTGAGATTCATGCAGCACTTGTACTGTC CCTTTTGAGATACAGCACTATC TGACTTCCAAGAATGTTCTTT ATATTGTCATCAAAAACCTGCT CTGATGTGTTCTGACAACAACA CTATGCTGGACTTGGTGTTTA AATTGCTACCCCAGACAGCA GCTGTGTGTTTCTATATGTG GGGATGTGTCTCCTATGATCC CCTGTTGAAATCCCATCGTGTA	CTCCTCTTAATGACACAAAATGGAAGTCCTTAGATTC CTGGAGAAAAGTCGCACCTGGATATCCATTCCTTCT CGGATGGTAATTTTACCGTCCTCTTTTTTATCAAGAC CTATGGATTATTTTGCTTTCCATGCTCTCCATCTCTGAC CTACCCATCACTTTGGCACTATTCCTATTTGATGTCC CTGTATGCCAGGAATTTTTATCCATCTGTTTACAGT CTGAATGGCATTTGACTGGTATGTGGCAATCCACAGT CTTAACTAGTCCCAGAGCCATCAAAACAGGGGTTCTTC CTGATCCTTCCACTGCCTTTCTCTTGCAAAGGCTGAG CCCCCCCTCTATTGCTCCACCAGGATGTCATGAAG GGTCAATGTTCTACGGACTCTGTGCAAGACTTTCTA ACTACCTTCCCTATTATGATTTTAAGGGCTGTACTGGA GGTCAAGGCCCTCAACACGTGCATCTCTCACATCTGT CCCCACCTCAGATGCCACCAGGTTTCTCGCA CCCTGTGAGGCCTCACACACTGCACCACAGTTTGCCA CCCCCTGAGTGCTCCACCAGGTTGCCAC CCCTGTGTGAAGACCCACCAAATCCGAGAAAAGGTTGTG LAGTTCAAAGGCCACCCAAATCCGAGAAAAAGGTTGTG LAGTTGAAAGACCCACCAAATCCGAGAAAAAGGTTGTG LAGTTGATCAAAGGAATGAAAAGGGAATGAATGTATA	
	SEQ ID NO: 197 CATCTTCCTATGTGTCATGTC CTCCTTATCGGGATCACTGGA TATCTGTGTACCTTCTTTCTT AGACCAAAGCCTCCATGAACC ATGAAATTCATGCAGCTCCATTCATCTTCTTTCATCAGAATTCATGCAGCTCTTTCTT	

LLSHSYCLHQDVMKLMCSDNTVNVVYGLCAGLSTMLDLVFITFSYMILRAVLGIATPR	ı
QQFKALNTCISHICAVLIFYVPTLSAAMLHQFARDVSPMIHVLMADIFLLVPPLLNPI	ĺ
VYCVKTHQIREKVVGKLCPKVS	ı

Further analysis of the NOV66a protein yielded the following properties shown in Table 66B.

	Table 66B. Protein Sequence Properties NOV66a		
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.2007 probability located in mitochondrial inner membrane		
SignalP analysis:	Likely cleavage site between residues 50 and 51		

A search of the NOV66a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 66C.

	Table 66C. Geneseq Resul	ts for NOV6	ба	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV66a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG72488	Human OR-like polypeptide query sequence, SEQ ID NO: 2169 - Homo sapiens, 319 aa. [WO200127158-A2, 19-APR-2001]	1312 1313	309/313 (98%) 309/313 (98%)	e-176
AAG71557	Human olfactory receptor polypeptide, SEQ ID NO: 1238 - Homo sapiens, 319 aa. [WO200127158-A2, 19-APR- 2001]	1312 1313	309/313 (98%) 309/313 (98%)	e-176
AAU24573	Human olfactory receptor AOLFR63 - Homo sapiens, 313 aa. [WO200168805-A2, 20-SEP-2001]	1310	186/311 (59%) 246/311 (78%)	e-109
AAG71558	Human olfactory receptor polypeptide, SEQ ID NO: 1239 - Homo sapiens, 313 aa. [WO200127158-A2, 19-APR- 2001]	1310 1311	185/311 (59%) 245/311 (78%)	e-108
AAU24682	Human olfactory receptor AOLFR181	1307	188/308 (61%)	e-106

In a BLAST search of public sequence databases, the NOV66a protein was found to have homology to the proteins shown in the BLASTP data in Table 66D.

	Table 66D. Public BLASTP Results for NOV66a			
Protein Accession Number	Protein/Organism/Length	NOV66a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAL35109	PROSTATE-SPECIFIC G PROTEIN-COUPLED RECEPTOR RA1C - Mus musculus (Mouse), 320 aa.	14304 11303	141/293 (48%) 199/293 (67%)	2e-77
O88628	Olfactory receptor 51E2 (G-protein coupled receptor RA1c) - Rattus norvegicus (Rat), 320 aa.	14304 11303	141/293 (48%) 200/293 (68%)	2e-77
CAC38935	SEQUENCE 9 FROM PATENT WO0131014 - Homo sapiens (Human), 318 aa.	5304 6306	145/302 (48%) 206/302 (68%)	2e-77
CAC37756	SEQUENCE 1 FROM PATENT WO0125434 - Homo sapiens (Human), 317 aa.	5304 5305	145/302 (48%) 206/302 (68%)	3e-77
Q9H255	Olfactory receptor 51E2 (Prostate specific G-protein coupled receptor) (HPRAJ) - Homo sapiens (Human), 320 aa.	14304 11303	139/293 (47%) 198/293 (67%)	2e-76

PFam analysis predicts that the NOV66a protein contains the domains shown in the Table 66E.

Table 66E. Domain Analysis of NOV66a			
Pfam Domain	NOV66a Match Region	tch Region Identities/ Similarities Expect Va	
7tm_1: domain 1 of 2	43151	30/111 (27%) 73/111 (66%)	6.3e-14
7tm_1: domain 2 of 2	212292	16/92 (17%) 52/92 (57%)	0.052

Example 67.

Table	Table 67A. NOV67 Sequence Analysis			
	SEQ ID NO: 199	994 bp		
NOV67a, CG59222-01 DNA Sequence CCCCAATGCCTGAAAGCAGATAGCTTCACTTCATTACCCTCGCTTCAATGCCTGCATCCCCAACCGATGTTCACCTGCCATCCCCAACCGATGTTCACTGCCAACCGATGTTCACTGCCAACCGATGTTCACTGCCAACCGATGTTCACTGCCAACCGATGTTCACTGCTACCTAC		CCTGCCCATCTTCTTGGTTTATGCA CATTATCAGAACTGAGTCTTCCCTCA CATTATCAGACCTGGGCCTATCTAAC GGTTCCATGCCCGGGGAGTCTCCTTCA CGTTTCTCGATTATTGAGTCAGCTGT GCAATCTGTGAACCCTTGCGCTATGCA CTGGGTTGGCAATTGCTGGAAGGGCCT CAAGAGGCTTCAATATCATGATGTCAAC CACCTCATAAAGACGACTGTATCCAAC CGGTCATCTTCCATGGACTTGATT CCTGGGCACAGTGTTGAGTATAGCCTC CGCATCCCACATCTGTGCTGTACTC CGCATCCCACATCTGTGCTGTACTC CTGATCCATCGCTATGGACAGAATGCTT CTGCTGCTGCTATGGACAGAATGCTT CTACTTGCTGGTTCCACCCTCTCATGAA		
	ORF Start: ATG at 5	ORF Stop	o: TAG at 944	
	SEQ ID NO: 200	313 aa	MW at 35044.2kD	
NOV67a, CG59222-01 Protein Sequence	MSVFNSSALYPRFLLTGLSGLESRYDLISLPIFLVYATSIAGNISILFIIRTESSLI PMYYFLSMLAFTDLGLSNTTLPTMFSVFWFHAREISFNACLVQMYFIHVFSIIESA NCC LAMAFDCFIAICEPLRYAAILTNDVIIGIGLAIAGRALALVFPASFLLKRLQYHDVI LSYLFCLHQDLIKTTVSNCRVSSIYGLMVVICSMGLDSVLLLLSYVLILGTVLSIA: AERVRALNTCISHICAVLTFYTPMIGLSMIHRYGQNASSIVHVLMANVYLLVPPLMI VVYSVKTKQIRDRIFNKFKKHEV		REISFNACLVQMYFIHVFSIIESAVL NAGRALALVFPASFLLKRLQYHDVNI SMGLDSVLLLLSYVLILGTVLSIASK	

Further analysis of the NOV67a protein yielded the following properties shown in Table 67B.

	Table 67B. Protein Sequence Properties NOV67a
PSort analysis:	0.6000 probability located in plasma membrane; 0.4047 probability located in mitochondrial inner membrane; 0.4000 probability located in Golgi body; 0.3480 probability located in mitochondrial intermembrane space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV67a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 67C.

	Table 67C. Geneseq Results for NOV67a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV67a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG72605	Human OR-like polypeptide query sequence, SEQ ID NO: 2286 - Homo sapiens, 318 aa. [WO200127158-A2, 19-APR-2001]	1309 4313	295/310 (95%) 298/310 (95%)	e-163
AAG71519	Human olfactory receptor polypeptide, SEQ ID NO: 1200 - Homo sapiens, 318 aa. [WO200127158-A2, 19-APR- 2001]	1309 4313	295/310 (95%) 298/310 (95%)	e-163
AAU24683	Human olfactory receptor AOLFR182 - Homo sapiens, 314 aa. [WO200168805-A2, 20-SEP-2001]	5308 9312	178/304 (58%) 235/304 (76%)	e-102
AAG71715	Human olfactory receptor polypeptide, SEQ ID NO: 1396 - Homo sapiens, 314 aa. [WO200127158-A2, 19-APR- 2001]	5308 9312	178/304 (58%) 235/304 (76%)	e-102
ABB44526	Human GPCR4a polypeptide SEQ ID NO 11 - Homo sapiens, 315 aa. [WO200174904-A2, 11-OCT-2001]	5308 6309	169/304 (55%) 227/304 (74%)	2e-96

In a BLAST search of public sequence databases, the NOV67a protein was found to have homology to the proteins shown in the BLASTP data in Table 67D.

	Table 67D. Public BLASTP Results for NOV67a				
Protein Accession Number	Protein/Organism/Length	NOV67a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9H344	Olfactory receptor 5112 (HOR5'beta12) - Homo sapiens (Human), 312 aa.	13308 12307	154/296 (52%) 221/296 (74%)	2e-91	
Q9H2C8	ODORANT RECEPTOR HOR3'BETA1 - Homo sapiens (Human), 321 aa.	2308 10316	160/307 (52%) 216/307 (70%)	5e-89	

AAL35109	PROSTATE-SPECIFIC G PROTEIN-COUPLED RECEPTOR RA1C - Mus musculus (Mouse), 320 aa.	13309 11307	148/297 (49%) 207/297 (68%)	2e-86
Q924X8	OLFACTORY RECEPTOR S85 - Mus musculus (Mouse), 314 aa.	2304 3305	150/303 (49%) 221/303 (72%)	1e-85

PFam analysis predicts that the NOV67a protein contains the domains shown in the Table 67E.

Table 67E. Domain Analysis of NOV67a			
Pfam Domain	NOV67a Match Region	Identities/ Similarities for the Matched Region	Expect Value
7tm_1: domain 1 of 1	42138	24/99 (24%) 67/99 (68%)	7.8e-14

Example 68.

The NOV68 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 68A.

Table	68A. NOV68 Sequenc	ce Analysi	is
	SEQ ID NO: 201	981 bp	
NOV68a, CG59220-01 DNA Sequence	GCANTGAGANACCGCAGTGTTGTCCCTGAGTTTGTCCTCTCGGGCTGTCAGCTGGCCCCAGACCCAGACCCAGACCGCTGTTTTTGTCTTTTTGTTTG		
	ORF Start: ATG at 4	ORF Stop	o: TAG at 919
	SEQ ID NO: 202	305 aa	MW at 33732.3kD
NOV68a, CG59220-01 Protein Sequence	FFLGQLSFLDLCHSSVTAPKLL AYDRYVAISSPLLYGQVMNRQL FSCELPSLYPLSCSDVSASFTT	JENLLSEKKTI JCSGLVGGSWG TLLCSSFLHFF	CLLTVMGNLLLLVVINADSCLHTPMY SVEGCMAQVFFVFATGGTESSLLAVM SLAFLDALINILVALNLDFCEAQNIHH GNFLMIFLSYICILSTILRISSTTGR SIQELIFSLQYSVITPMLNLLIYSLKN

	Table 68B. Protein Sequence Properties NOV68a
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Likely cleavage site between residues 50 and 51

A search of the NOV68a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 68C.

	Table 68C. Geneseq Resul	ts for NOV6	8a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV68a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU24771	Human olfactory receptor AOLFR328 - Homo sapiens, 312 aa. [WO200168805-A2, 20-SEP-2001]	3304 5306	212/302 (70%) 251/302 (82%)	e-120
AAG98585	Mouse olfactory receptor 7 - Mus musculus domesticus, 214 aa. [WO200146262-A2, 28-JUN-2001]	66279 1214	144/214 (67%) 169/214 (78%)	1e-78
AAG72680	Murine OR-like polypeptide query sequence, SEQ ID NO: 2362 - Mus musculus, 337 aa. [WO200127158-A2, 19-APR-2001]	3305 20324	148/305 (48%) 201/305 (65%)	3e-74
AAG71546	Human olfactory receptor polypeptide, SEQ ID NO: 1227 - Homo sapiens, 315 aa. [WO200127158-A2, 19-APR- 2001]	3301 5306	143/302 (47%) 201/302 (66%)	2e-73
AAG66701	Human GPCR1 polypeptide - Homo sapiens, 311 aa. [WO200160865-A2, 23-AUG-2001]	3301 5306	143/302 (47%) 201/302 (66%)	2e-73

In a BLAST search of public sequence databases, the NOV68a protein was found to have homology to the proteins shown in the BLASTP data in Table 68D.

Table 68D. Public BLASTP Results for NOV68a				
Protein Accession Number	Protein/Organism/Length	NOV68a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9JM36	OLFACTORY RECEPTOR - Mus musculus domesticus (western European house mouse), 214 aa (fragment).	66279 1214	144/214 (67%) 169/214 (78%)	5e-78
Q9QZ18	OLFACTORY RECEPTOR - Mus musculus (Mouse), 312 aa.	3299 5303	142/299 (47%) 193/299 (64%)	2e-72
Q9EPG6	B1 OLFACTORY RECEPTOR - Mus musculus (Mouse), 314 aa.	3299 5303	140/299 (46%) 196/299 (64%)	2e-72
P23266	Olfactory receptor-like protein F5 - Rattus norvegicus (Rat), 313 aa.	3305 5309	142/305 (46%) 196/305 (63%)	9e-72
Q9EQA3	ODORANT RECEPTOR K30 - Mus musculus (Mouse), 311 aa.	3305 5310	143/306 (46%) 202/306 (65%)	2e-71

PFam analysis predicts that the NOV68a protein contains the domains shown in the Table 68E.

Table 68E. Domain Analysis of NOV68a			
Pfam Domain	NOV68a Match Region	Identities/ Similarities for the Matched Region	Expect Value
7tm_1: domain 1 of 1	39286	54/268 (20%) 169/268 (63%)	1.7e-29

Example 69.

The NOV69 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 69A.

Table 69A. NOV69 Sequence Analysis			
SEQ ID NO: 203 957 bp			
NOV69a, CG59218-01 DNA Sequence	ACCAAAGAGCTTCAGGTGGC TCTCTGGGAACCTGATCATC TATGTACTTATTTCTCCAGA GTGCCCAAGATGCTGCTCAA	CTGTGGTGACTGAGTTCTTCCTCCAAGGCCTGACGGAT TGTTTTTCTGCTCCTGCTGCTTGCCTACCTTGTGACTG ATCAGCCTGACCTTGCTGGACACCCGCCTGCAGACATC ATCTGCCTGCTTAGAAATTTTGGTTCCAGACAGTCATC CATTGCCATGGGGACCAAGACCGTTAGCTTTGCTGGGT TTTCCACATCTTCTGGGGGCCCACAGAGTTCTTCTCCT	

	TCATCACCCTGTCCTATGTCCAGATCATCCAGACAATTGTCAGAATCCCCGCTGTCCAGAGAGGAAGAAAAAAGCCTTCTCTACCTGTTCCTCATGTCATTATGTTATGTTACCATGTGT TATGACAGCTGCTTCTTTATGTATGTCAAGCCCTCTCCAGGAAAGTGGGTTGATGTCAACAAGGGAGTGTCTCAATCAA		
	ORF Start: ATG at 8	ORF Stop	o: TAA at 944
	SEQ ID NO: 204	312 aa	MW at 35358.1kD
NOV69a, CG59218-01 Protein Sequence	MANCTVVTEFFLOGLTDTKELQVAVFLLLLLAYLVTVSGNLIIISLTLLDTRLQTSMY LFLQNLSCLEIWFQTVIVPKMLLNIAMGTKTVSFAGCITQDFFFPHLLGATEFFLLTA MAYDQYIAICKPLHYPMLISSRVCTQLILTCWLLGFSFIIMPVILTSQLPFCDTHIKH FFCDYTPLMEVVCSGPKVLEMVDFTLALVALFGTLVLITLSYVQIIQTIVPIPAVQER KKAFSICSSHVIMVTMCYDSCFFMYVKPSPGKWVDVNKGVSLINTIIAPLLNPFICTL RNQQVKQVMKDLVRKMTLFQNK		

Further analysis of the NOV69a protein yielded the following properties shown in Table 69B.

	Table 69B. Protein Sequence Properties NOV69a
PSort analysis.	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body, 0.3000 probability located in endoplasmic reticulum (membrane); 0.0300 probability located in mitochondrial inner membrane
SignalP analysis:	Likely cleavage site between residues 40 and 41

A search of the NOV69a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 69C.

Table 69C. Geneseq Results for NOV69a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV69a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG72538	Human OR-like polypeptide query sequence, SEQ ID NO: 2219 - Homo sapiens, 313 aa. [WO200127158-A2, 19-APR-2001]	1312 1313	284/317 (89%) 293/317 (91%)	e-157	
AAG72229	Human olfactory receptor polypeptide, SEQ ID NO: 1910 - Homo sapiens, 313 aa. [WO200127158-A2, 19-APR- 2001]	1312 1313	284/317 (89%) 293/317 (91%)	e-157	
	1			7	

AAU24765	Human olfactory receptor AOLFR225B - Homo sapiens, 309 aa. [WO200168805-A2, 20-SEP-2001]	1306 1306	166/307 (54%) 227/307 (73%)	2e-94
AAG66353	GPCR partial protein sequence - Unidentified, 313 aa. [WO200155179- A2, 02-AUG-2001]	1309 1310	160/311 (51%) 209/311 (66%)	4e-87

In a BLAST search of public sequence databases, the NOV69a protein was found to have homology to the proteins shown in the BLASTP data in Table 69D.

	Table 69D. Public BLASTP Results for NOV69a					
Protein Accession Number	Protein/Organism/Length	NOV69a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q9Z1V0	OLFACTORY RECEPTOR C6 - Mus musculus (Mouse), 313 aa.	1309 1310	160/311 (51%) 209/311 (66%)	2e-86		
CAC88326	SEQUENCE 18 FROM PATENT WO0164879 - Homo sapiens (Human), 331 aa.	8306 12311	142/301 (47%) 200/301 (66%)	4e-78		
CAC88328	SEQUENCE 22 FROM PATENT WO0164879 - Homo sapiens (Human), 331 aa.	8306 12311	142/301 (47%) 198/301 (65%)	2e-77		
CAC88327	SEQUENCE 20 FROM PATENT WO0164879 - Homo sapiens (Human), 331 aa.	8306 12311	141/301 (46%) 198/301 (64%)	8e-77		
O70270	OLFACTORY RECEPTOR-LIKE PROTEIN - Rattus norvegicus (Rat), 327 aa.	3308 11316	136/307 (44%) 208/307 (67%)	4e-76		

PFam analysis predicts that the NOV69a protein contains the domains shown in the Table 69E.

Table 69E. Domain Analysis of NOV69a					
Pfam Domain	NOV69a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
7tm_1: domain 1 of 1	39244	47/214 (22%) 147/214 (69%)	1.9e-25		

Example 70.

The NOV70 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 70A.

Table 70A. NOV70 Sequence Analysis				
	SEQ ID NO: 205	962 bp		
NOV70a, CG59216-01 DNA Sequence	NOV70å, CATCTTCCTATGTGTCATGTCTCTTTAATGACACAAAAATGGAAGTCCTT			
	ORF Start: ATG at 17	ORF Stop	o: TGA at 956	
	SEQ ID NO: 206	313 aa	MW at 35363.9kD	
NOV70a, CG59216-01 Protein Sequence	EPMYYLLSMLSISDLGLSLSSLI LSVMAFDWYVAIHSPLRYSTILT LLSHSYCLHQDVMKLMCSDNTVN	PITLGLFLFDV SPRAIKTGVI IVVYGLCAGLS PTLSAAMLHQE	FLSVYLLSWMGNFTVLFFIKTEQSLH /HEIHAAPCFAQEFFIHLFTVSEASV /LTSKNVLLILPLPFLLQRLRYCHQN STMLDLVFITFSYIMILRAVLGIATP FARDVSPMIHVLMADIFLLVPPLLNP	

Further analysis of the NOV70a protein yielded the following properties shown in Table 70B.

	Table 70B. Protein Sequence Properties NOV70a				
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane);				
	0.2007 probability located in mitochondrial inner membrane				

A search of the NOV70a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 70C.

Table 70C. Geneseq Results for NOV70a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV70a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG72488	Human OR-like polypeptide query sequence, SEQ ID NO: 2169 - Homo sapiens, 319 aa. [WO200127158-A2, 19-APR-2001]	1313 1313	310/313 (99%) 310/313 (99%)	e-178
AAG71557	Human olfactory receptor polypeptide, SEQ ID NO: 1238 - Homo sapiens, 319 aa. [WO200127158-A2, 19-APR- 2001]	1313 1313	310/313 (99%) 310/313 (99%)	e-178
AAU24573	Human olfactory receptor AOLFR63 - Homo sapiens, 313 aa. [WO200168805-A2, 20-SEP-2001]	1311 1311	186/311 (59%) 246/311 (78%)	e-110
AAG71558	Human olfactory receptor polypeptide, SEQ ID NO: 1239 - Homo sapiens, 313 aa. [WO200127158-A2, 19-APR- 2001]	1311 1311	185/311 (59%) 245/311 (78%)	e-109
AAU24682	Human olfactory receptor AOLFR181 - Homo sapiens, 312 aa. [WO200168805-A2, 20-SEP-2001]	1308 1306	188/308 (61%) 238/308 (77%)	e-107

In a BLAST search of public sequence databases, the NOV70a protein was found to have homology to the proteins shown in the BLASTP data in Table 70D.

Table 70D. Public BLASTP Results for NOV70a					
Protein Accession Number	Protein/Organism/Length	NOV70a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
CAC38935	SEQUENCE 9 FROM PATENT WO0131014 - Home seniors	5305	145/302 (48%) 207/302 (68%)	5e-79	

AAL35109	PROSTATE-SPECIFIC G PROTEIN-COUPLED RECEPTOR RA1C - Mus musculus (Mouse), 320 aa.	14305 11303	141/293 (48%) 199/293 (67%)	7e-79
CAC37756	SEQUENCE 1 FROM PATENT WO0125434 - Homo sapiens (Human), 317 aa.	5305 5305	145/302 (48%) 207/302 (68%)	7e-79
O88628	Olfactory receptor 51E2 (G-protein coupled receptor RA1c) - Rattus norvegicus (Rat), 320 aa.	14305 11303	141/293 (48%) 200/293 (68%)	7e-79
Q9H255	Olfactory receptor 51E2 (Prostate specific G-protein coupled receptor) (HPRAJ) - Homo sapiens (Human), 320 aa.	14305 11303	139/293 (47%) 198/293 (67%)	7e-78

PFam analysis predicts that the NOV70a protein contains the domains shown in the Table 70E.

Table 70E. Domain Analysis of NOV70a				
Pfam Domain	NOV70a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
7tm_1: domain 1 of 2	43151	30/111 (27%) 73/111 (66%)	6.3e-14	
YCF9: domain 1 of 1	208262	10/59 (17%) 31/59 (53%)	7.5	
7tm_1: domain 2 of 2	212293	18/93 (19%) 55/93 (59%)	0.00034	

Example 71.

The NOV71 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 71A.

Table 71A. NOV71 Sequence Analysis				
	SEQ ID NO: 207	995 bp		
NOV71a, CG59214-01 DNA Sequence	CTCAGGCCTTGAAAGCAGAT ACCTCAATTGCCGGGAACAT ACCAACCGATGTATTACTTT CACTACCTTACCT	AGTTCTGCCTTATACCCTCGCTTCCTCCTAACGGGCCT ATGACTTGATTTCCCTGCCCATCTTCTTGGTTTATGCC TAGCATCCTCTTCATTATCAGAACTGAGTCTTCCCTCC CTGTCAATGCTGGCATTCACTGACCTGGGCCTATCTAA TCAGTGTCTTCTGGTTCCATGCCGGGAGATCTCCTTC GTACTTCATTCATGTTTTCTCGATTATTGAGTCAGCTG		

	CCAAGGCAGAGAGAGAGAGCCCTCAATACTTGCATCTCCCACATCTGTGCTGACT CACCTTCTATACACCAATGATTGGGCTATCTATGATCCATCGCTATGGACAGAATGCT TCCTCAATTGTCCATGTGCTGATGGCCAATGTCTACTTGCTGGTTCCACCTCTCATGA ACCCCGTTGTCTACAGTGTTAAGACCAAGCAGATTCGTGACAGAATCTTCAATAAATT CAAGAAACATGAAGTGTAGATGACAGAGATTCTGAAACATTACCTTCCCTCCATTCCC CATATATTT			
	ORF Start: ATG at 6 ORF Stop: TAG at 945			
	SEQ ID NO: 208	313 aa	MW at 35044.2kD	
NOV71a, CG59214-01 Protein Sequence	MSVFNSSALYPRFLLTGLSGLESRYDLISLPIFLVYATSIAGNISILFIIRTESSLHQ PMYYFLSMLAFTDLGLSNTTLPTMFSVFWFHAREISFNACLVOMYFIHVFSIIESAVL			

Further analysis of the NOV71a protein yielded the following properties shown in Table 71B.

	Table 71B. Protein Sequence Properties NOV71a			
PSort analysis:	0.6000 probability located in plasma membrane; 0.4047 probability located in mitochondrial inner membrane; 0.4000 probability located in Golgi body; 0.3480 probability located in mitochondrial intermembrane space			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV71a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 71C.

	Table 71C. Geneseq Results for NOV71a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV71a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG72605	Human OR-like polypeptide query sequence, SEQ ID NO: 2286 - Homo sapiens, 318 aa. [WO200127158-A2, 19-APR- 2001]	1309 4313	295/310 (95%) 298/310 (95%)	e-163	
AAG71519	Human olfactory receptor polypeptide, SEQ ID NO: 1200 - Homo sapiens, 318 aa. [WO200127158-A2, 19-APR- 2001]	1309 4313	295/310 (95%) 298/310 (95%)	e-163	

	aa. [WO200168805-A2, 20-SEP-2001]			
AAG71715	Human olfactory receptor polypeptide, SEQ ID NO: 1396 - Homo sapiens, 314 aa. [WO200127158-A2, 19-APR- 2001]	5308 9312	178/304 (58%) 235/304 (76%)	e-102
ABB44526	Human GPCR4a polypeptide SEQ ID NO 11 - Homo sapiens, 315 aa. [WO200174904-A2, 11- OCT-2001]	5308 6309	169/304 (55%) 227/304 (74%)	2e-96

In a BLAST search of public sequence databases, the NOV71a protein was found to have homology to the proteins shown in the BLASTP data in Table 71D.

	Table 71D. Public BLASTP Results for NOV71a				
Protein Accession Number	Protein/Organism/Length	NOV71a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9H344	Olfactory receptor 5112 (HOR5'beta12) - Homo sapiens (Human), 312 aa.	13308 12307	154/296 (52%) 221/296 (74%)	2e-91	
Q9H2C8	ODORANT RECEPTOR HOR3'BETA1 - Homo sapiens (Human), 321 aa.	2308 10316	160/307 (52°.°°) 216/307 (70°°°)	5e-89	
Q9H343	Olfactory receptor 5111 (HOR5'beta11) - Homo sapiens (Human), 314 aa.	5312 5313	156/309 (50%) 223/309 (71%)	9e-89	
AAL35109	PROSTATE-SPECIFIC G PROTEIN-COUPLED RECEPTOR RA1C - Mus musculus (Mouse), 320 aa.	13309 11307	148/297 (49%) 207/297 (68%)	2e-86	
Q924X8	OLFACTORY RECEPTOR S85 - Mus musculus (Mouse), 314 aa.	2304 3305	150/303 (49%) 221/303 (72%)	1e-85	

PFam analysis predicts that the NOV71a protein contains the domains shown in the Table 71E.

Table 71E. Domain Analysis of NOV71a				
Pfam Domain	NOV71a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
7tm_1: domain 1 of 1	42138	24/99 (24%) 67/99 (68%)	7.8e-14	

Example 72.

The NOV72 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 72A.

Table	Table 72A. NOV72 Sequence Analysis			
	SEQ ID NO: 209	1004 bp		
NOV72a, CG59211-01 DNA Sequence	CTTCTCATCTTTTCCCTCAAATACTGGGATGTCCATTCTCAATACCTCTGAAATGGAAATGGAAATCTCTATTTTCTACTTGTTTGGGATCCCAGGTTTGGAGCATGCCAATATTTTGGATCTCTATCCCCAATATTTCATTAAAAAACAGGACCTTCTTTTGCATGGCCCATGTTGCTATCCTAGGGAATTTTCCCTTGTTTTTCATAAAAAACAGGACCTTCTTTTGCATGAGCCCATGTATCTTTTCCATGAAAACAGGACCTTCTTTTGCATGAGCCCATGCTCACACGTTTTTCCATCAAGAGTTTTTCCCATGATTCCCAGGAATTTCCCCTGATGCCTGATTGCTCAAGAGTTTTTCATCCATGGATTCCAGGATTCCCCTGAACCCCCTGAGATACACTTCCATCCA			
	ORF Start: ATG at 29	ORF Stop	: TGA at 968	
	SEQ ID NO: 210	313 aa	MW at 35313.1kD	
NOV72a, CG59211-01 Protein Sequence	MSILNTSEMEISIFYLVGIPGLEHANIWISIPICLMYTVAILGNCTILFFIKTEPSLH EPMYYFLSMLALSDLGLSLSSLPTMLRIFLENAPGISPDACIAOEFFIHGESAMESSV			

Further analysis of the NOV72a protein yielded the following properties shown in Table 72B.

Table 72B. Protein Sequence Properties NOV72a			
0.6000 probability located in plasma membrane; 0.4000 probability located in			
Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane);			

(Ballys, s

A search of the NOV72a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 72C.

	Table 72C. Geneseq Results for NOV72a				
Geneseq Identifier	Protein/Organism/Length Patent #, Date]	NOV72a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG71564	Human olfactory receptor polypeptide, SEQ ID NO: 1245 - Homo sapiens, 322 aa. [WO200127158-A2, 19-APR-2001]	1313 5317	312/313 (99%) 312/313 (99%)	e-177	
AAU24573	Human olfactory receptor AOLFR63 - Homo sapiens, 313 aa. [WO200168805-A2, 20-SEP-2001]	1312 1312	225/312 (72%) 272/312 (87%)	e-131	
AAG71721	Human olfactory receptor polypeptide, SEQ ID NO: 1402 - Homo sapiens, 316 aa. [WO200127158-A2, 19-APR-2001]	1311 1311	236/312 (75%) 267/312 (84%)	e-131	
AAU24682	Human olfactory receptor AOLFR181 - Homo sapiens, 312 aa. [WO200168805-A2, 20-SEP-2001]	1308 1306	224/308 (72%) 265/308 (85%)	e-131	
AAG71701	Human olfactory receptor polypeptide, SEQ ID NO: 1382 - Homo sapiens, 312 aa. [WO200127158-A2, 19-APR-2001]	1308 1306	224/308 (72%) 265/308 (85%)	e-131	

In a BLAST search of public sequence databases, the NOV72a protein was found to have homology to the proteins shown in the BLASTP data in Table 72D.

	Table 72D. Public BLASTI	Results for N	OV72a	
Protein Accession Number	Protein/Organism/Length	NOV72a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9H344	Olfactory receptor 5112	12304	152/294 (51%)	6e-90

or the Cally

WO 02/072757

	(Mouse), 319 aa.	1310	219/310 (70%)	
Q9H343	Olfactory receptor 5111 (HOR5'betal1) - Homo sapiens (Human), 314 aa.	4313 4314	154/311 (49%) 226/311 (72%)	9e-89
CAC38935	SEQUENCE 9 FROM PATENT WO0131014 - Homo sapiens (Human), 318 aa.	5305 6306	153/302 (50%) 217/302 (71%)	2e-87
CAC37756	SEQUENCE 1 FROM PATENT WO0125434 - Homo sapiens (Human), 317 aa.	5305 5305	153/302 (50%) 217/302 (71%)	3e-87

PFam analysis predicts that the NOV72a protein contains the domains shown in the Table 72E.

Table 72E. Domain Analysis of NOV72a				
Pfam Domain	NOV72a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
DUF40: domain 1 of 1	109134	10/26 (38%) 20/26 (77%)	0.38	
7tm_1: domain 1 of 2	43144	27/107 (25%) 71/107 (66%)	1.6e-15	
7tm_1: domain 2 of 2	212293	16/93 (17%) 56/93 (60%)	4.7	
Sina: domain 1 of 1	300311	7/12 (58%) 10/12 (83%)	1	

Example 73.

The NOV73 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 73A.

Table 73A. NOV73 Sequence Analysis				
	SEQ ID NO: 211	1581 bp		
NOV73a, CG59276-01 DNA Sequence	GGAAGGGAGACAGGGGCGGG AAAGCGGGCCCAGGATGCTG TACCTGATGGCCACGGAGA AGGGCTGCTGGACCCGGAG GCTCCTTCCACGGGCCAGAT CATAAATTCCGAAATCCAGT TGGACGGACTTTATAAGATG	GGGCGGAGACAAGAGGGGCCGCCACCATCTCCTCCAAT CTTAATGACGGAAGGAGCATGGCGTGGAGACACCTGAA TGATCATCCTGGGGGGAGGAGCACTCTCTCTCGCCTCC TGAGCGTTTCTATGCTGAACACCTGATGCCGACTCTGC TCAGCCCACAGACTGGCTGTTCGCTTCACCTCCCTGGG TCAGACTCTGACATGCTGGAAGTGAGAGTTCTGGGC AGGAATTGCTGCAGGATTTGACAAGCATGGGGAAGCCG GGCTTTGGTTTTGTTGAGATAGGAAGTGTGACTCCAAA GACCCAGAGTCTTCCGCCTCCTTGAGGACCAAGCTGT		

		-	CAGTCCTGGTGAAGATCGCTCCTGAC		
			rGTGGTCAAAGAGTTGGGCATCGATG		
			CCTGCGGGCCTCCAGGGTGCCCTGCG		
	CTCTGAAACAGGAGGGCTGAGTG	GGAAGCCCC	CCGGGATTTATCAACTCAAACCATT		
	CGGGAGATGTATGCACTCACCCA	AGGCAAGGTT	PTCCCGTCGAGTTCCCATAATTGGGG		
	TTGGTGGTGTGAGCAGCGGGCAG	GACGCGCTGC	BAGAAGATCCGGGCAGGGGCCTCCCT		
	GGTGCAGCTGTACACGGCCCTCACCTTCTGGGGGCCACCCGTTGTGGGCAAAGTCA				
	CGGGAACTGGAGGCCCTTCTGAAGGAGCAGGGCTTTGGCGGAGTCACAGATGCCAT				
	GAGCAGATCATCGGAGGATGAGGAAACGGGCAGAGAGAGCGGCTGATTGTCCAGTCCC				
	CTGCGTGGAGGCTGCTTGGCTGG	GCTCGAGCCC	CAGCGGTGGTGGGTCAGTTGGGACCT		
:	GGTGGTCTGCTGGTGGTCAGTTT	GGGAATTTC	CAGGTACGATTGTTTTCAGGCACTGT		
	TCTTTGACTTGGTTGCAGAAAAA	CAGATTITGO	CAACACTTTCCAAGGACACAGTGTTA		
	CCACTCCCTCACCCTGCCATGGC	CTCTTGGTTC	TGCTTTTAACTTCTGAGCCTCAGGG		
	AGTCCATCTTGTCTG				
	ORF Start: ATG at 97	ORF Stor	o: TGA at 1555		
	Gra Start III G at 37	ora ora			
	SEQ ID NO: 212	486 aa	MW at 52982.6kD		
NOU72-	MAWRHLKKRAODAVIILGGGGLL	FASYLMATGE	DERFYAEHLMPTLQGLLDPESAHRLA		
NOV73a,	1		GIAAGFDKHGEAVDGLYKMGFGFVE		
CG59276-01 Protein Sequence	•		SHGLSVVEHRLRARQQKQAKLTEDG		
Coss 2 10 of Francisco	-	_	CLVVNVSSPNTAGLRSLOGKAELRRL		
			EDIASVVKELGIDGLIVTNTTVSRPA		
			TOGKVSRRVPIIGVGGVSSGQDALEK		
	· -		KEOGFGGVTDAIGADHRRMRKRAEK		
	_		SLGISRYDCFOALFFDLVAEKQILQH		
1	LYDT A SOY CARUMUNG SOLUM A GA	ingr gotth a ar	MOTOR TOCK KINDS LDDAUDING LDGIL		
	FPRTOCYHSLTLPWPLGSAFNF				

Further analysis of the NOV73a protein yielded the following properties shown in Table 73B.

	Table 73B. Protein Sequence Properties NOV73a
Psort analysis:	0.8110 probability located in plasma membrane; 0.6400 probability located in endoplasmic reticulum (membrane); 0.3700 probability located in Golgi body; 0.1839 probability located in microbody (peroxisome)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV73a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 73C.

	Table 73C. Geneseq Result	s for NOV7.	3a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV73a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB70780	Tobacco dihydro-orotase protein - Nicotiana tabacum, 458 aa.	36398 81458	199/383 (51%) 257/383 (66%)	e-101

	[EP1033401-A2, 06-SEP-2000]			
AAG91420	C glutamicum protein fragment SEQ ID NO: 5174 - Corynebacterium glutamicum, 371 aa. [EP1108790-A2, 20-JUN-2001]	76396 60366	131/328 (39%) 190/328 (56%)	6e-60
AAB46597	C. glutamicum dihydroorotate dehydrogenase protein - Corynebacterium glutamicum, 321 aa. [DE19929364-A1, 28-DEC-2000]	76396 10316	131/328 (39° o) 190/328 (56° o)	6e-60
AAB80123	Corynebacterium glutamicum MP protein sequence SEQ ID NO:980 - Corynebacterium glutamicum, 334 aa. [WO200100843-A2, 04-JAN-2001]	76396 23329	131/328 (39%) 190/328 (56%)	1e-59

In a BLAST search of public sequence databases, the NOV73a protein was found to have homology to the proteins shown in the BLASTP data in Table 73D.

Table 73D. Public BLASTP Results for NOV73a					
Protein Accession Number	Protein/Organism/Length	NOV73a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q02127	Dihydroorotate dehydrogenase, mitochondrial precursor (EC 1.3.3.1) (Dihydroorotate oxidase) (DHOdehase) - Homo sapiens (Human), 396 aa (fragment).	1399 2396	392/399 (98%) 394/399 (98%)	0.0	
PC1219	dihydroorotate oxidase (EC 1.3.3.1) precursor - human, 397 aa.	1399 3397	388/399 (97%) 393/399 (98%)	0.0	
Q63707	Dihydroorotate dehydrogenase, mitochondrial precursor (EC 1.3.3.1) (Dihydroorotate oxidase) (DHOdehase) - Rattus norvegicus (Rat), 395 aa.	1399 1395	350/399 (87%) 369/399 (91%)	0.0	
O35435	Dihydroorotate dehydrogenase, mitochondrial precursor (EC 1.3.3.1) (Dihydroorotate oxidase) (DHOdehase) - Mus musculus (Mouse), 395 aa.	1399 1395	346/399 (86%) 366/399 (91%)	0.0	
Q9FZM9	DIHYDROOROTATE DEHYDROGENASE - Oryza sativa	29398 79468	206/394 (52%) 261/394 (65%)	e-101	

PFam analysis predicts that the NOV73a protein contains the domains shown in the Table 73E.

Table 73E. Domain Analysis of NOV73a					
Pfam Domain	NOV73a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
DHOdehase: domain 1 of 1	77381	183/331 (55%) 282/331 (85%)	1.9e-169		

Example 74.

The NOV74 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 74A.

Table 74A. NOV74 Sequence Analysis				
	SEQ ID NO: 213	1875 bp		
NOV74a, CG59268-01 DNA Sequence	TCTCCACCACAAGCAACGAAGCAAAATGAACCACACCAC	CGCGACTGCCAGGCCTGGAAGGATGCGAGGCTCCCCTGCAAGCTGTCGATGCCAGCTGACCAGTAT TCTCGGTGGCATCGATGCCACGCTGACCCAGTAT TCTCGGTGGCATCGATGCCACGCTGACCCAGTAT TCTCGGTGGCATCGATGGCTTGCTGAAGCCTCA ATGGGCCACGCCATGGCTACTGGCCTTGTGAAGACAATG GCTGACAAGCCGGGAGCCTGCACGTGTCAAAGCTGAT TTTCCGAAAGCTGGACACTTGTGAAGACAATCT TTGCCCTGAAATTTTCCCATGATGCTTATTTTTAC AGATTCTGTTGCTCGAATTTACCCCTTCTGGACAA ACTCGCCAAAGAGCACCCACCTCTTTTGGCTGAAAAC CTGGGCAGAAAAGCAGGCTGTGATGGGGCCAGA AACTCGCCAAAGAGGACACCATCTTTGTCTTCAA CTGGGCAGAAAAGCAGGCTTGAATGGAGCCAGA ACTCGCCAAAGAGACACCATCTTTTGTCTTCAA CTGGGCAGGACTAAAGCAGGCTTGGAATTCATGCAG CTCTGATATGTTGGCTTGTCATAACTATTGGCACT GGTTTAATAAGGAGAACTTTATTCTTCCAGGGCGAA CCAGTACCCACATCCTTCCCAGCCTGCAGGTCAAC CAGCTGCTCCATGCTTTACCCGCCTGCAGATGGAAG CCAGACACTCCTTCCCAGCCTGCAGATGCACAC GCTGACCACCCTGCGGGAAGCCCAGCCC		
	ORF Start: ATG at 1	ORF Stop: TGA at 1873		
	SEQ ID NO: 214	624 aa MW at 69393.3kD		

ALYLIEKGLIRRTLFFQGEYEAALTIYDTHILPSLQANDAMLDVVDSCSMLYRLQMEG
VSVGQRWQDVLPVARKHSRDHILLFNDAHFLMASLGAHDPQTTQELLTTLRDASEYAE
GPSRGGGPHPAERCQAFACIISNPDGSVRLALLCLLTDEQTEAGRSPGENCQHLLARD
VGLPLCQALVEAEDGNPDRVLELLLPIRYRIVQLGGSNAQRDVFNQLLIHAALNCTSS
VHKNVARSLLMERDALKPNSPLTERLIRKAATVHLMQKPSTRQPPLQAALSMEGGGGR
DEPSACRAGDVNMDDPKKEGKSLLLRRCCCSGCSVEMEGDLMFP

Further analysis of the NOV74a protein yielded the following properties shown in Table 74B.

	Table 74B. Protein Sequence Properties NOV74a				
PSort analysis:	0.4328 probability located in mitochondrial matrix space; 0.3000 probability located in microbody (peroxisome); 0.1137 probability located in mitochondrial inner membrane; 0.1137 probability located in mitochondrial intermembrane space				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV74a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 74C.

	Table 74C. Geneseq Results for NOV74a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV74a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAM41338	Human polypeptide SEQ ID NO 6269 - Homo sapiens, 478 aa. [WO200153312-A1, 26-JUL-2001]	1559 10478	463/559 (82%) 466/559 (82%)	0.0		
AAM39552	Human polypeptide SEQ ID NO 2697 - Homo sapiens, 453 aa. [WO200153312-A1, 26-JUL-2001]	1529 1439	434/529 (82%) 437/529 (82%)	0.0		
AAG02871	Human secreted protein, SEQ ID NO: 6952 - Homo sapiens, 104 aa. [EP1033401-A2, 06-SEP-2000]	1102 1102	102/102 (100%) 102/102 (100%)	1e-52		
AAM40893	Human polypeptide SEQ ID NO 5824 - Homo sapiens, 746 aa. [WO200153312-A1, 26-JUL-2001]	568604 137	32/37 (86%) 32/37 (86%)	2e-10		

In a BLAST search of public sequence databases, the NOV74a protein was found to have homology to the proteins shown in the BLASTP data in Table 74D.

	Table 74D. Public BLASTP Results for NOV74a					
Protein Accession Number	Protein/Organism/Length	NOV74a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
AAH18918	HYPOTHETICAL 45.7 KDA PROTEIN - Homo sapiens (Human), 404 aa.	66559 1404	399/494 (80%) 402/494 (80%)	0.0		
Q9NWP8	KAIA2372 PROTEIN - Homo sapiens (Human), 336 aa.	1352 1310	305/352 (86%) 308/352 (86%)	e-172		
Q9XW02	Y54G11A.4 PROTEIN - Caenorhabditis elegans, 497 aa.	4556 6458	165/557 (29%) 256/557 (45%)	3e-61		
Q9XW01	Y54G11A.7 PROTEIN - Caenorhabditis elegans, 407 aa.	4347 6305	122/347 (35%) 177/347 (50%)	7e-53		
Q98CS1	MLR5032 PROTEIN - Rhizobium loti (Mesorhizobium loti), 440 aa.	60553 46435	145/496 (29%) 215/496 (43%)	1e-43		

PFam analysis predicts that the NOV74a protein contains the domains shown in the Table 74E.

Table 74E. Domain Analysis of NOV74a				
Pfam Domain	NOV74a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Monooxygenase: domain 1 of	225410	28/238 (12%) 121/238 (51%)	6.4	

Example 75.

The NOV75 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 75A.

Table 75A. NOV75 Sequence Analysis				
	SEQ ID NO: 215	1851 bp		

THE CONTRACT OF THE PARTY OF THE ARCONDACTOR AND THE PARTY OF THE PART

	TGGTTACCCGTTAGTGGGAGAGAGAGAAAAGGAGGAGGAGAAGAAGAAG		
	GATGAAGAAGAGTTGGATGAGTC AAGATCGAGTGCAGTGC		TCAGATACATCCGAGGAGGAGGGCC CTCATATCCAGTCCAG
	ORF Start: ATG at 25	ORF Stop	o: TGA at 1825
	SEQ ID NO: 216	600 aa	MW at 67372.4kD
NOV75a, CG59549-01 Protein Sequence	FLNDASTENONTDSESSSEDVEL PRMCPRCGGTNHDQCLLDEDQAL EACGARTFVQRFRLQYLLGSHAG NFESGHDINVIQAKFFNCGDST ELALEPDSPYKFLTSGEDAVVF QFAVGGHDQFVRIYDQRRIDKKE ASYNDEDIYLFNSSLSDGAQYVK WEKSSSQIIQFMEGDRGDIVNCL	ESMGEGLFGY EEWISSETSA SVSTIHFNQF LAMCGHDGQV IDLRQDRPAS NNGVLKKFTF RYKGHRNNDT EPHPYLPVLA	TAASSDIEMAATEPSTGDGGDTRDGG PLVGEETEREEEEEEMEEEGEEEC ALPRSRWQVLTALRQRQLGSSARFVY GTRLASSGDDLRVIVWDWVRQKPVL RVAELINASYCENTKRVAKHRGPAH SKVVVTRENDKKVGLYTISMNPANIY PHHLVYCDFPTNITCVVYSHDGTELL TIKCVNFYGPRSEFVVSGSDCGHVFF ALGCAHQPGWRDHGAEFPDEEELDES ALQRAHQPGWRDHGAEFPDEEELDES

Further analysis of the NOV75a protein yielded the following properties shown in Table 75B.

	Table 75B. Protein Sequence Properties NOV75a		
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0442 probability located in microbody (peroxisome)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV75a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 75C.

Identifier	#, Date]	Residues/ Match Residues	Similarities for the Matched Region	Value
AAR85870	WD-40 domain-contg. Mus musculus protein - Mus musculus, 816 aa. [WO9521252-A2, 10-AUG-1995]	95589 333815	295/495 (59%) 372/495 (74%)	e-179
AAM73935	Human bone marrow expressed probe encoded protein SEQ ID NO: 34241 - Homo sapiens, 164 aa. [WO200157276-A2, 09-AUG-2001]	1157 8164	157/157 (100%) 157/157 (100%)	2e-87
AAM61216	Human brain expressed single exon probe encoded protein SEQ ID NO: 33321 - Homo sapiens, 164 aa. [WO200157275-A2, 09-AUG-2001]	1157 8164	157/157 (100° o) 157/157 (100% o)	2e-87
AAM34114	Peptide #8151 encoded by probe for measuring placental gene expression - Homo sapiens, 164 aa. [WO200157272-A2, 09-AUG-2001]	1157 8164	157/157 (100%) 157/157 (100%)	2e-87
AAB57007	Human prostate cancer antigen protein sequence SEQ ID NO:1585 - Homo sapiens, 214 aa. [WO200055174-A1, 21-SEP-2000]	408600 22214	144/194 (74%) 162/194 (83%)	2e-80

In a BLAST search of public sequence databases, the NOV75a protein was found to have homology to the proteins shown in the BLASTP data in Table 75D.

WO 02/072757 PCT/L 802/06908

	Table 75D. Public BLASTP Results for NOV75a				
Protein Accession Number	Protein/Organism/Length	NOV75a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q12839	H326 PROTEIN - Homo sapiens (Human), 597 aa.	1600 1597	408/604 (67%) 471/604 (77%)	0.0	
Q01078	PROTEIN PC326 - Mus musculus (Mouse), 747 aa.	95589 264746	295/495 (59%) 372/495 (74%)	e-178	
Q9W091	CG8001 PROTEIN - Drosophila melanogaster (Fruit fly), 748 aa.	68587 209711	178/533 (33%) 280/533 (52%)	1e-77	
Q96E00	UNKNOWN (PROTEIN FOR MGC:9478) - Homo sapiens (Human), 273 aa.	1246	141/249 (56%) 173/249 (68%)	8e-66	
Q9M1E5	HYPOTHETICAL 54.0 KDA PROTEIN - Arabidopsis thaliana (Mouse-ear cress), 481 aa.	183536 42419	136/382 (35%) 209/382 (54%)	2e-62	

PFam analysis predicts that the NOV75a protein contains the domains shown in the Table 75E.

Table 75E. Domain Analysis of NOV75a				
Pfam Domain	NOV75a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
WD40: domain 1 of 7	188224	13/37 (35%) 29/37 (78%)	0.0016	
WD40: domain 2 of 7	231269	12/39 (31%) 26/39 (67%)	11	
WD40: domain 3 of 7	278315	9/38 (24%) 24/38 (63%)	2.2e+02	
WD40: domain 4 of 7	326363	8/38 (21%) 27/38 (71%)	8.8	
WD40: domain 5 of 7	382418	5/37 (14%) 27/37 (73%)	12	
WD40: domain 6 of 7	429466	6/38 (16%)	18	

Example 76.

The NOV76 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 76A.

Table 76A. NOV76 Sequence Analysis			
	SEQ ID NO: 217	7497 bp	
NOV76a, CG59641-01 DNA Sequence	TAAAAATCTGGGGGAAAATGA AAACCTCATCCCGAGCCAGGA	. TCTTGTCTGATTTTCTCCTGTCTGACCTTTTCCTGGT CGGACTCCAAGCCGATCACCAAGAGTAAATCAGAAGC GCCCTTTCCAGCCTCTGATAACTCAGGGGAGACACCG	
	CCCACAAAGGCCCCAAAGATG GAAGCCCCCAAGAAACCCCCT	ACTCTGCCCAAGACACCCAGCCAGGCCGAGCCAGCCT CCGGTCGGCGGAGAAACTCCCTACCACCCTCCCACCA TTCTTCCAGTGACGCAGCACCCTCCCCAGAGCTTCAA GGTCTGGAGGCCACAGATACCAATGGCCTGTCCTCCT	
	AAACATCAAGAGGCAGCTGAT TCCGACGAGGACTCTGTTGCT	AAGCTGGCTCCCCTCCAAAGAAGACAAGAAGCAGGC GACCAACTTCATCCTGGGCTCTTTTGATGACTACTCC GGCTCATCTCGTGAGTCTACCCGGAAGGGCAGCCGGG TGGAGGCTTATCTGACCACAAGGCCGAGCATGTCGGG	
	ACTCCACCTGGTGAAGAGGGG ACCGTGGCTTCTCCCGCTGAG AGGTGCTTATTGCCAACAACG	ACGGGAACACAAGAAGCTGGACCTGCACAGAGACTTT TTTGTCACACGCTTTGGGGGGGGATCGGGTCATCGAGA GGATTGCCGCCGTGAAGTGCATGCGCTCCATCCGCAG	
	CCCGAGGACCTTAAGGCCAAC TCCCAGGAGGGCCCAATAACA	CAACGAGCGGGCCATCCGGTTTGTTGTGATGGTGACC GCAGAGTACATCAAGATGGCGGATCATTACGTCCCCG ACAACTATGCCAACGTGGAGCTGATTGTCACATTGC GGTGTGGGCTGGCTGGGGCCATGCTTCAGAAAACCCT	
	AAACTTCCGGAGCTGCTGTGC CCATGTGGGCCTTAGGAGATA CCCAACCCTGCCCTG	AAGAATGGAGTTGCTTTCTTAGGCCCTCCCAGTGAGG AGATCGCCTCCACCGTTGTCGCCCAGACGCTACAGGT AAGCGGCCTGACAGTGGAGTGG	
	ACGTAGATGAGGGCTTGGAGG TTCTGAAGGTGGCGGAGGGAA	GTCCCAGAAGATGTTTATGACAAGGGTTGCGTGAAAG CAGCAGAAAGAATTGGTTTTCCATTGATGATCAAAGC GGGAATCCGGAAGGCTGAGAGTGCGGAGGACTTCCCG AGTGAGATCCCAGGCTCGCCCATCTTTCTCATGAAGC	
	TGGCCCAGCACGCCCGTCACC TGTGTCTCTGTTTGGTCGCGA	AGIGAGATECEAGGETEGECCATETTTETEATGAAGC TGGAAGTTCAGATCCTCGCTGACCAGTATGGGAATGC CTGCTCCATCCAGCGGCGCATCAGAAGATGGTTGAG CCGCTGGCCATATTCGAGTTCATGGAGCAGTGTGCCA	
	TCCGCCTGGCCAAGACCGTGG TCAGGATGGCAGCTTCCACTT	GCTATGTGAGTGCAGGGACAGTGGAATACCTCTATAG CTTGGAGCTGAATCCTCGCTTGCAGGTGGAACATCCC GTTAATCTGCCGGCCGCCCAGCTACAGATCGCCATGG	
	AGTGACTCCCATTTCTTTTGA ATTGCCGCCAGAATCACCAGC	AGGATATCCGGCTTCTGTATGGAGAGTCACCATGGGG AACCCCCCAAACCCTCCCCTC	
	CGCTACTGGAGGCCTGCACGA GGAGAGAACCGGGAAGAGGCC	GGAGCAGCAAGAACGTGTGGGGTTACTTCAGCGTGGC GTTTGCGGATTCCCAATTTGGGCACTGCTTCTCCTGG ATTTCGAACATGGTGGTGGTTTGAAGGAACTGTCCA	
	CTTCCAGAACAACGACATCGA CAGGCGGAGAAACCGGATATC	CCGTGGAATACCTCATTAACCTCCTGGAGACCGAGAG CACCGGGTGGTTGGACTACCTCATTGCTGAGAAAGTG ATGCTTGGGGTGGTATGCGGGGGCCTTGAACGTGGCCG TGACAGATTTCTTACACTCCCTGGAAAGGGGCCAGGT	
	CCTCCCAGCGGATTCACTACT AAGTACATTCTCAAGGTGGCC	GAACCTCGTAGATGTGGAATTAATTTACGGAGGTGTT CGGCAGTCTCTGACCATGTTCGTTCTCATCATGAATG CCCACCGGCTGAATGATGGGGGGGCTCCTGCTCCTA	
	ATCGGCAATAAGACGTGTGTG	CTACATGAAGGAAGAGGTTGACAGTTACCGAATTACC TTTGAGAAGGAGAACGATCCTACAGTCCTGAGATCCC AGTACACAGTGGAGGATGGGGGCCACGTTGAGGCTGG	
	AGAGGCCGGGTGAAGTACATC TGGCCAGGCTGGAGCTCGATG	GGTGATGAAGATGATCATGACCCTGAACGTTCAGGAA AAGCGTCCAGGTGCCGTGGTGGAAGCAGGCTGCGTGG ACCCTTCTAAAGTCCACCCGGCTGAACCGTTCACAGG	
	CACAGCGTCCTGGAAAACCTC TTTTTAGCATAAAGCTGAAGG	ACTGCCCATCCTCGGAGAGAAACTGCACCAGGTCTTC ACCAACGTCATGAGTGGCTTTTGTCTGCCAGAGCCCG AGTGGGTGCAGAAGCTCATGATGACCCTCCGGCACCC	
	GCCCCTGTGGAGAAGTCTGTC CGGTGCTGTGCCAGTTCCCCA	GCAGGAGATCATGACCAGCGTGGCAGGCCGCATCCCC CGCAGGGTGATGGCCCAGTATGCCAGCAACATCACCT GCCAGCAGATAGCCACCATCCTGGACTGCCATGCAGC	
	CAGTTGGTCCAGAGATACCGC	TCGAGAGGTCTTCTTCATCAACACCCAGAGCATCGTG AGCGGGATCCGCGGCTATATGAAAACAGTGGTGTTGG CTCTTCACAGCAACACAGATGCTGATGCTAACAC	

issasan an inan ansa olimpidas asa olimpidas asa nanci, ang laadang mangang masawaas mba a islaaads

TAACCAGGTGGAGTCCATTTTCCTGTCTGCCATTJACATGTACGGCCACCAGTTCTGC CCCGAGAACCTCAAGAAATTAATACTTTCGGAAACAACCATCTTCGACGTCCTGCCTA CTTTCTTCTATCACGCAAACAAAGTCGTGTGCATGGCGTCCTTGGAGGTTTACGTGCG GAGGGGCTACATCGCCTATGAGTTAAACAGCCTGCAGCACCGGCAGCTCCCGGACGGC TGCCCATCAGCATCACCAACCCTGACCTGCTGAGGCACAGCACAGAGCTCTTCATGGA CAGCGGCTTCTCCCCACTGTGCCAGCGCATGGGAGCCATGGTAGCCTTCAGGAGATTC GAGGACTTCACCAGAAATTTTGATGAAGTCATCTCTTGCTTCGCCAACGTGCCCAAAG ACACCCCCTCTTCAGCGAGGCCCGCACCTCCCTATACTCCGAGGATGACTGCAAGAG GAGGATGAGGCACTGGTGCCGATTTTACGGACATTCGTACAGTCCAAGAAAAATATCC TTGTGGATTATGGACTCCGACGAATCACATTCTTGATTGCCCAAGAGTTTGCAGAAGA TCGCATTTACCGTCACTTGGAACCTGCCCTGGCCTTCCAGCTGGAACTTAACCGGATG CGTAACTTCGATCTGACCGCCGTGCCCTGTGCCAACCACAAGATGCACCTTTACCTGG GTGCTGCCAAGGTGAAGGAAGGTGTGGAAGTGACGGACCATAGGTTCTTCATCCGCGC CATCATCAGGCACTCTGACCTGATCACAAAGGAAGCCTCCTTCGAATACCTGCAGAAC GAGGGTGAGCGGCTGCTCCTGGAGGCCATGGACGAGCTGGAGGTGGCGTTCAATAACA CCAGCGTGCGCACCGACTGCAACCACATCTTCCTCAACTTCGTGCCCACTGTCATCAT GGACCCCTTCAAGATCGAGGAGTCCGTGCGCTACATGGTTATGCGCTACGGCAGCCGG CTGTGGAAACTCCGTGTGCTACAGGCTGAGGTCAAGATCAACATCCGCCAGACCACCA CCGGCAGTGCCGTTCCCATCCGCCTGTTCATCACCAATGAGTCGGGCTACTACCTGGA CATCAGCCTCTACAAAGAAGTGACTGACTCCAGATCTGGAAATATCATGTTTCACTCC TTCGGCAACAAGCAAGGGCCCCAGCACGGGATGCTGATCAATACTCCCTACGTCACCA AGGATCTGCTCCAGGCCAAGCGATTCCAGGCCCAGACCCTGGGAACCACCTACATCTA TGACTTCCCGGAAATGTTCAGGCAGGCAAGTCCGGCGGCTCAGACGCGGGTACATGTG CACAATGTGCAGGCTCTCTTTAAACTGTGGGGCTCCCCAGACAAGTATCCCAAAGACA TCCTGACATACACTGAATTAGTGTTGGACTCTCAGGGCCAGCTGGTGGAGATGAACCG ACTTCCTGGTGGAAATGAGGTGGGCATGGTGGCCTTCAAAATGAGGTTTAAGACCCAG GAGTACCCGGAAGGACGGGATGTGATCGTCATCGGCAATGACATCACCTTTCGCATTG GATCCTTTGGCCCTGGAGAGGACCTTCTGTACCTGCGGGCATCCGAGATGGCCCGGGC AGAGGGCATTCCCAAAATTTACGTGGCAGCCAACAGTGGCGCCCGTATTGGCATGGCA GAGGAGATCAAACACATGTTCCACGTGGCTTGGGTGGACCCAGAAGACCCCCACAAAA AAAAAAAACAGTGGCTTTCAGTGCAGGGAACTGGATTCGTAGCCTCACTAAAGTATT TTTTAAGGGATTTAAATACCTGTACCTGACTCCCCAAGACTACACCAGAATCAGCTCC CGGATATCATCGGGAAGGATGATGGCTTGGGCGTGGAGAATCTGAGGGGCTCAGGCAT GATTGCTGGGGAGTCCTCTCTGGCTTACGAAGAGATCGTCACCATTAGCTTGGTGACC TGCCGAGCCATTGGGATTGGGGCCTACTTGGTGAGGCTGGGCCAGCGAGTGATCCAGG TGGAGAATTCCCACATCATCCTCACAGGAGCAAGTGCTCTCAACAAGGTCCTGGGAAG AGAGGTCTACACATCCAACAACCAGCTGGGTGGCGTTCAGATCATGCATTACAATGGT GTCTCCCACATCACCGTGCCAGATGACTTTGAGGGGGGTTTATACCATCCTGGAGTGGC TGTCCTATATGCCAAAGGATAATCACAGCCCTGTCCCTATCATCACACCCACTGACCC CATTGACAGAGAAATTGAATTCCTCCCATCCAGAGCTCCCTACGACCCCCGGTGGATG CTTGCAGGAAGGCCTCACCCAACTCTGAAGGGAACGTGGCAGAGCGGATTCTTTGACC ACGGCAGTTTCAAGGAAATCATGGCACCCTGGGCGCAGACCGTGGTGACAGGACGAGC AAGGCTTGGGGGGATTCCCGTGGGAGTGATTGCTGTGGAGACACGGACTGTGGAGGTG GACAGGTGTGGTTCCCAGACTCAGCCTACAAAACCGCCCAGGCCGTCAAGGACTTCAA CCGGGAGAAGTTGCCCCTGATGATCTTTGCCAACTGGAGGGGGTTCTCCGGTGGCATG AAAGACATGTATGACCAGGTGCTGAAGTTTGGAGCCTACATCGTGGACGGCCTTAGAC AATACAAACAGCCCATCCTGATCTATATCCCGCCCTATGCGGAGCTCCGGGGAGGCTC CTGGGTGGTCATAGATGCCACCATCAACCCGCTGTGCATAGAAATGTATGCAGACAAA GAGAGCAGGGGTGGTGTTCTGGAACCAGAGGGGACAGTGGAGATTAAGTTCCGAAAGA AAGATCTGATAAAGTCCATGAGAAGGATCGATCCAGCTTACAAGAAGCTCATGGAACA GCTAGGGGAACCTGATCTCTCCGACAAGGACCGAAAGGACCTGGAGGGCCGGCTAAAG GCTCGCGAGGACCTGCTGCTCCCCATCTACCACCAGGTGGCGGTGCAGTTCGCCGACT TCCATGACACCCGGCCGGATGCTGGAGAAGGGCGTCATATCTGACATCCTGGAGTG GAAGACCGCACGCACCTTCCTGTATTGGCGTCTGCGCCGCCTCCTCCTGGAGGACCA3 GTCAAGCAGGAGATCCTGCAGGCCAGCGGGGAGCTGAGTCACGTGCATATCCAGTCCA TGCTGCGTCGCTGGTTCGTGGAGACGGAGGGGGCTGTCAAGGCCTACTTGTGGGACAA TCCACCATCCGTGAGAACATCACGTACCTGAAGCACGACTCTGTCCTCAAGACCATCC GAGGCCTGGTTGAAGAAAACCCCGAGGTGGCCGTGGACTGTGTGATATACCTGAGCCA GCACATCAGCCCAGCTGAGCGGGCGCAGGTCGTTCACCTGCTGTCTACCATGGACAGC CCGGCCTCCACCTGA

ORF Start: ATG at 1 ORF Stop: TGA at 7495

SEQ ID NO: 218 2498 aa MW at 280484.4kD

MVLLLCLSCLIFSCLTFSWLKIWGKMTDSKPITKSKSEANLIPSQEPFPASDNSGETF

NOV76a.

KLPELLCKNGVAFLGPPSEAMWALGDKIASTVVAOTLOVPTLPWSGSGLTVEWTEDDL QQGKRISVPEDVYDKGCVKDVDEGLEAAERIGFPLMIKASEGGGGKGIRKAESAEDFP ILFRQVQSEIPGSPIFLMKLAQHARHLEVQILADQYGNAVSLFGRDCSIQRRHQKIVE EAPATIAFLAIFEFMEQCAIRLAKTVGYVSAGTVEYLYSQDGSFHFLELNPRLQVEHP CTEMIADVNLPAAQLQIAMGVPLHRLKDIRLLYGESPWGVTPISFETPSNPPLARGHV IAARITSENPDEGFKPSSGTVQELNFRSSKNVWGYFSVAATGGLHEFADSQFGHCFSW GENREEAISNMVVALKELSIRGDFRTTVEYLINLLETESFQNNDIDTGWLDYLIAEKV OAEKPDIMLGVVCGALNVADAMFRTCMTDFLHSLERGQVLPADSLLNLVDVELIYGGV KYILKVARQSLTMFVLIMNGCHIEIDAHRLNDGGLLLSYNGNSYTTYMKEEVDSYRIT IGNKTCVFEKENDPTVLRSPSAGKLTQYTVEDGGHVEAGSSYAEMEVMKMIMTLNVQE RGRVKYIKRPGAVLEAGCVVARLELDDPSKVHPAEPFTGELPAQQTLPILGEKLHQVF HSVLENLTNVMSGFCLPEPVFSIKLKEWVQKLMMTLRHPSLPLLELQEIMTSVAGRIP APVEKSVPRVMAQYASNITSVLCQFPSQQIATILDCHAATLQRKADREVFFINTQSIV QLVQRYRSGIRGYMKTVVLDLLRRYLRVESKARDADANTSGMVGGVRSLSFTSVWCFV SPESHYDKCVINLREOFKPDMSQVLDCIFSHAQVAKKNQLVIMLIDELCGPDPSLSDE LISILNELTQLSKSEHCKVALRARQILIASHLPSYELRHNQVESIFLSAIDMYGHQFC PENLKKLILSETTIFDVLPTFFYHANKVVCMASLEVYVRRGYIAYELNSLQHRQLPDG TCVVEFQFMLPSSHPNRMTVPISITNPDLLRHSTELFMDSGFSPLCQRMGAMVAFRRF EDFTRNFCEVISCFANVPKDTPLFSEARTSLYSEDDCKSLREEPIHILNVSIQCADHL EDEALVPILRTFVQSKKNILVDYGLRRITFLIAQEFAEDRIYRHLEPALAFQLELNRM RNFDLTAVPCANHKMHLYLGAAKVKEGVEVTDHRFFIRAIIRHSDLITKEASFEYLQN EGERLLLEAMDELEVAFNNTSVRTDCNHIFLNFVPTVIMDPFKIEESVRYMVMRYGSR LWKLRVLQAEVKINIRQTTTGSAVPIRLFITNESGYYLDISLYKEVTDSRSGNIMFHS ${\tt FGNKQGPQHGMLINTPYVTKDLLQAKRFQAQTLGTTYIYDFPEMFRQASPAAQTRVHV}$ HNVQALFKLWGSPDKYPKDILTYTELVLDSQGQLVEMNRLPGGNEVGMVAFKMRFKTQ EYPEGRDVIVIGNDITFRIGSFGPGEDLLYLRASEMARAEGIPKIYVAANSGARIGMA EEIKHMFHVAWVDPEDPHKKKKTVAFSAGNWIRSLTKVFFKGFKYLYLTPQDYTRISS LNSVHCKHIEEGGESRYMITDIIGKDDGLGVENLRGSGMIAGESSLAYEEIVTISLVT CRAIGIGAYLVRLGQRVIQVENSHIILTGASALNKVLGREVYTSNNQLGGVQIMHYNG VSHITVPDDFEGVYTILEWLSYMPKDNHSPVPIITPTDPIDREIEFLPSRAPYDPRWM LAGRPHPTLKGTWQSGFFDHGSFKEIMAPWAQTVVTGRARLGGIPVGVIAVETRTVEV AVPADPANLDSEAKIIQQAGQVWFPDSAYKTAQAVKDFNREKLPLMIFANWRGFSGGM KDMYDQVLKFGAYIVDGLRQYKQPILIYIPPYAELRGGSWVVIDATINPLCIEMYADK ESRGGVLEPEGTVEIKFRKKDLIKSMRRIDPAYKKLMEOLGEPDLSDKDRKDLEGRLK AREDLLLPIYHQVAVQFADFHDTPGRMLEKGVISDILEWKTARTFLYWRLRRLLLEDQ VKQEILQASGELSHVHIQSMLRRWFVETEGAVKAYLWDNNQVVVQWLEQHWQAGDGPR STIRENITYLKHDSVLKTIRGLVEENPEVAVDCVIYLSQHISPAERAQVVHLLSTMDS PAST

Further analysis of the NOV76a protein yielded the following properties shown in Table 76B.

	Table 76B. Protein Sequence Properties NOV76a		
PSort analysis:	0.6850 probability located in endoplasmic reticulum (membrane); 0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 25 and 26		

A search of the NOV76a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 76C.

	Table 76C. Geneseq Results for NOV76a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV76a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU32848	Novel human secreted protein #3339 - Homo sapiens, 2486 aa. [WO200179449-A2, 25-OCT-2001]	262498 12486	2316/2555 (90%) 2339/2555 (90%)	0.0	
AAR05707	Acetyl-CoA-carboxylase - Gallus sp, 2324 aa. [JP02057179-A, 26-FEB-1990]	1632498 172324	1728/2375 (72%) 2003/2375 (83%)	0.0	
AAB86033	Bovine acetyl-coenzyme A carboxylase-alpha protein fragment - Bos taurus, 2288 aa. [DE19946173-A1, 05-APR-2001]	2042497 142288	1719/2342 (73%) 1969/2342 (83%)	0.0	
AAR98811	Erysiphe graminis acetyl coenzyme A carboxylase - Erysiphe graminis f.sp.hordei, 2273 aa. [FR2727129- A1, 24-MAY-1996]	2352490 422271	1045/2326 (44%) 1432/2326 (60%)	0.0	
AAY24150	Candida albicans acetyl CoA carboxylase - Candida albicans, 2270 aa. [WO9932635-A1, 01-JUL-1999]	2392489 882269	1015/2300 (44%) 1396/2300 (60%)	0.0	

In a BLAST search of public sequence databases, the NOV76a protein was found to have homology to the proteins shown in the BLASTP data in Table 76D.

Table 76D. Public BLASTP Results for NOV76a				
Protein Accession Number	Protein/Organism/Length	NOV76a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O00763	Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) [Includes: Biotin carboxylase (EC 6.3.4.14)] - Homo sapiens (Human), 2483 aa.	12498 12483	2349/2528 (92° o) 2384/2528 (93° o)	0.0
O70151	ACETYL-COA CARBOXYLASE - Rattus norvegicus (Rat), 2456 aa.	12497 12455	2068/2524 (81%) 2224/2524 (87%)	0.0

P11029	Acetyl-CoA carboxylase (EC 6.4.1.2) (ACC) [Includes: Biotin carboxylase (EC 6.3.4.14)] - Gallus gallus (Chicken), 2324 aa.	1632498 172324	1732/2375 (72%) 2004/2375 (83%)	0.0
P11497	Acetyl-CoA carboxylase 1 (EC 6.4.1.2) (ACC-alpha) [Includes: Biotin carboxylase (EC 6.3.4.14)] - Rattus norvegicus (Rat), 2345 aa.	1632497 172345	1736/2396 (72%) 1993/2396 (82%)	0.0

PFam analysis predicts that the NOV76a protein contains the domains shown in the Table 76E.

Table 76E. Domain Analysis of NOV76a				
Pfam Domain	NOV76a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
CPSase_L_chain: domain 1 of 1	249372	49/132 (37%) 117/132 (89%)	2.2e-57	
CPSase_L_D2: domain 1 of 1	374619	102/253 (40%) 218/253 (86%)	6.6e-118	
Biotin_carb_C: domain 1 of 1	640747	40/118 (34%) 100/118 (85%)	1.9e-53	
biotin_lipoyl: domain 1 of 1	885951	22/75 (29%) 56/75 (75%)	6.5e-17	
Carboxyl_trans: domain 1 of 2	17831878	31/100 (31%) 88/100 (88%)	7.4e-34	
GTP_cyclohydrol: domain 1 of 1	22872304	6/18 (33%) 13/18 (72%)	6.6	
Carboxyl_trans: domain 2 of 2	18972374	191/504 (38%) 447/504 (89%)	4.1e-258	

Example 77.

The NOV77 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 77A.

NOV77a, CG59630-01 DNA Sequence	CCACCCCGTGCCCGCACCTCCCCCCCGCCGCTCCCCCCGGGGCCCCGGGCCCCGGGCCCCGGGCCCCCGGCGC		
	ORF Start: ATG at 13		
	<u> </u>	511 aa	MW at 53949.3kD
NOV77a, CG59630-01 Protein Sequence	RLSQRLKVPKERLALLHKDTRLS VMQALESLTETQPPAAPGPGRAG FLSGRSPLTLALRVGDHMMFVQL SPCRPVSSAARVPPVPTSPSPAS ASTTSTPGASPAPRSRKPGAVIE ILQILNDLLSATRHYQGMPPSLA	SGKLQEFGVO GGGFRKYRFI QLAAQHAPLQ PSPITAGSFF SFVNHAPGVF QLRCHAQCSF ATRCKVERLQ	LAIHSTTGTRYDLAVPPDETVEGLRK GDGSKLTLVPTVEAGLMSQASRPEQS ILFKRPWHRQGPQSPERGGERPQVSD DHRHVLAAAAAAAAAARGDPSIASPVS RSHAASTTCPEQMDCSPTASSSASPG FSGTFSGTLHPNCQDSSGRPRRDIGT PASPAPDLAPRTTSCEKLTAAPSASL QLLLQQKRLRRKARRDARGPYHWSPS

Further analysis of the NOV77a protein yielded the following properties shown in Table 77B.

Table 77B. Protein Sequence Properties NOV77a			
PSort analysis:	0.3000 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.1526 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV77a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 77C.

Table 77C. Geneseq Results for NOV77a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV77a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB56832	Human prostate cancer antigen protein sequence SEQ ID NO:1410 - Homo sapiens, 236 aa. [WO200055174-A1, 21-SEP-2000]	267493 1227	189/227 (83%) 195/227 (85%)	c-104

In a BLAST search of public sequence databases, the NOV77a protein was found to have homology to the proteins shown in the BLASTP data in Table 77D.

Table 77D. Public BLASTP Results for NOV77a					
Protein Accession Number	Protein/Organism/Length	NOV77a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9JJJ6	MIDNOLIN - Mus musculus (Mouse), 508 aa.	1511 1508	475/514 (92%) 486/514 (94%)	0.0	
Q96BW8	SIMILAR TO MIDNOLIN - Homo sapiens (Human), 177 aa (fragment).	338511 4177	174/174 (100%) 174/174 (100%)	2e-97	
Q9W2S4	CG9732 PROTEIN - Drosophila melanogaster (Fruit fly), 989 aa.	213363 524677	58/155 (37%) 80/155 (51%)	6e-18	
AAL40834	BPLF1 - Human herpesvirus 4 (Epstein-Barr virus), 3179 aa.	200406 320530	64/223 (28%) 95/223 (41%)	2e-07	
Q9BKV7	PPG3 - Leishmania major, 1325 aa.	213328 9841104	37/121 (30%) 66/121 (53%)	2e-06	

PFam analysis predicts that the NOV77a protein contains the domains shown in the Table 77E.

Table 77E. Domain Analysis of NOV77a					
Pfam Domain	NOV77a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
ubiquitin: domain 1 of 1	3199	19/79 (24%) 46/79 (58%)	0.00033		
PI3_PI4_kinase: domain 1 of 1	411427	7/18 (39%) 14/18 (78%)	1.5		

Example 78.

The NOV78 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 78A.

Table 78A. NOV78 Sequence Analysis				
	SEQ ID NO: 221	1034 bp		
NOV78a, CG59561-01 DNA Sequence	CCACCGCCACAGCTGCAGCATGTCTGGCCCAGACATCAAGACGCCGACCGCCATCCA GATCTGCCGGATTATGCGGGACATGTCTGGCCCAGCAATGTCTACGGCGGAATGTCTACGGCGGAATGTCTACGGCGGAATGTCTACGGCGGAATCCCATC CTGAAGATGATCAAAGAGCGGGGCCCATCATCAGCACCCGCCATTGCAATCCCCAGA ACGGGGATCGCTGGTGGCCGCTCTGGCTCGGGTCGAGTGCACCCACTTCCTGTGGC CATGTGCATCGGTGAGGTGGCCCACCTCAGCGCGGACATCACCTACACCTCCAAGCAC TCTGTGGAGGTCAACATGATGTCCGAAAACATCCTCACAGGTGCCAAAAAGC TGACCAATAAGGCCACCCTCTGGTATGCGCCCCTGTCGCTGACGAACGTGGACAAAGC CCTCGAAGACCCTCTTGTGTATTTCCGGCAGGAGCAGAGGAGAGGGCCAGAAG CCGTACAAAACCCAGAAGCTGGAGCCCATGCAGACCAACTGGAGGAACACGAGAGCCAGCTTGAT CCACCTGGTGGGGCCTTCAGACCGAACACTGTCAGCTACAGCCAGTCCAGCTTGAT CCACCTGGTGGGGCCTTCAGACCGGGAACACTGCAGCCACTTCGTGCATGAAGGGGTGACC ATGAAGGTCATGGAGCCATTAATTTTGACAACAAGATCAGAAAAGCCAACC TCGTCACAGCCTCCATGGAGCCCATTAATTTTGACAACAAGATCAGAAAAGGCTGCAT CAAGACCATCCCGGACCACTTGGACCTTCACAGCAACAGCTCCAGCTCGTTCAT TCGTGGATGCCGACTTGTTGTGGACAGCTCCAGAACGCCACTTCAGAGCCCAGTT TTGTTGGTGGATGCCGACCTTGGACCAGGAAGCCATCAGGGCCCCACTG TCTTCACCTATGTGCCGAGCCAGGACCCAGGAAGGCCAGTCCCCAGCCCACTGCT GCCGGAGACCCCAGGAAGACCATGAAGGCATGCCCAGCCCACTGCT GCCGGAGACCCCAGGAAGAGCCTTTGAGGCCTCGCCCATCCCCCAGCTCGT GCCGGAGACCCCAGGAAGAGGCCTTTGAGGCCTCGCCCATCCCCCAGCCCATTAA			
	ORF Start: ATG at 21	Start: ATG at 21 ORF Stop: TAA at 984		
	SEQ ID NO: 222	321 aa	MW at 35738.7kD	
NOV78a, CG59561-01 Protein Sequence	MSGPDIKTPTAIQICRIMRDANVARNVYGGTILKMIKEAGAIISTRHCNPQNGDRCVA ALARVECTHFLWPMCIGEVAHVSAEITYTSKHSVEVQVNMMSENILTGAKKLTNKATL C WYAPLSLTNVDKVLEEPPVVYFRQEQEEEGQKRYKTQKLERMETNWRNGDIVQPVLNP EPNTVSYSQSSLIHLVGPSDCTLHSFVHEGVTMKVMDEVAGILAARHCKTNLVTASME AINFDNKIRKGCIKTISGRMTFTSNKSVEIEVLVDADCVVDSSQKRYRAASVFTYVSL SQEGRSLPMPQLVPETQDEKGFEAWLGGSRL			

Further analysis of the NOV78a protein yielded the following properties shown in Table 78B.

Table 78B. Protein Sequence Properties NOV78a				
PSort analysis:	0.8000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV78a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 78C.

Table 78C. Geneseq Results for NOV78a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV78a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW74896	Human secreted protein encoded by gene 169 clone HPTTU11 - Homo sapiens, 339 aa. [WO9839448-A2, 11-SEP-1998]	1310 1313	273/313 (87%) 292/313 (93%)	e-154	
AAY71115	Human Hydrolase protein-13 (HYDRL-13) - Homo sapiens, 375 aa. [WO200028045-A2, 18-MAY-2000]	1310 33316	247/313 (78%) 266/313 (84%)	e-133	
AAY35275	Chlamydia pneumoniae transmembrane protein sequence - Chlamydia pneumoniae, 155 aa. [WO9927105-A2, 03-JUN-1999]	187310 16138	35/124 (28%) 72/124 (57%)	1e-09	
AAG92590	C glutamicum protein fragment SEQ ID NO: 6344 - Corynebacterium glutamicum, 339 aa. [EP1108790-A2, 20-JUN-2001]	24309 35307	69/296 (23%) 112/296 (37%)	7e-08	
AAB76624	Corynebacterium glutamicum MCT protein SEQ ID NO:230 - Corynebacterium glutamicum, 339 aa. [WO200100805-A2, 04-JAN-2001]	24309 35307	69/296 (23%) 112/296 (37%)	7e-08	

In a BLAST search of public sequence databases, the NOV78a protein was found to have homology to the proteins shown in the BLASTP data in Table 78D.

for some start that the sound of the sound o

Protein Accession Number	Protein/Organism/Length	NOV78a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O00154	Cytosolic acyl coenzyme A thioester hydrolase (EC 3.1.2.2) (Long chain acyl-CoA thioester hydrolase) (CTE-II) (Brain acyl-CoA hydrolase) (BACH) - Homo sapiens (Human), 338 aa.	1310	274/313 (87%) 293/313 (93%)	e-154
Q91V12	ACYL-COA HYDROLASE (HYPOTHETICAL 37.6 KDA PROTEIN) - Mus musculus (Mouse), 338 aa.	1310 1313	265/313 (84%) 287/313 (91%)	e-150
Q64559	Cytosolic acyl coenzyme A thioester hydrolase (EC 3.1.2.2) (Long chain acyl-CoA thioester hydrolase) (CTE-II) (Brain acyl-CoA hydrolase) (BACH) (ACT) (LACH1) (ACH1) - Rattus norvegicus (Rat), 338 aa.	1310 1313	263/313 (84%) 286/313 (91%)	e-149
JC5416	palmitoyl-CoA hydrolase (EC 3.1.2.2), hepatic - rat, 343 aa.	12310 17318	251/302 (83%) 276/302 (91%)	e-142
Q9Y541	DJ20208.3.1 (HBACH (BRAIN ACYL-COA HYDROLASE (ACYL COENZYME A THIOESTER HYDROLASE, EC 3.1.2.2)) (ISOFORM 1)) - Homo sapiens (Human), 237 aa (fragment).	1202 33236	181/204 (88%) 190/204 (92%)	e-100

PFam analysis predicts that the NOV78a protein contains the domains shown in the Table 78E.

Tabl	e 78E. Domain Analysi	is of NOV78a	
Pfam Domain	NOV78a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Acyl-CoA_hydro: domain 1 of 1	165305	46/147 (31%) 131/147 (89%)	1.1e-47

Example 79.

The NOV79 clone was analyzed, and the nucleotide and predicted polypeptide

Table 79A. NOV79 Sequence Analysis

SEQ ID NO: 223

4203 bp

NOV79a, CG59452-01 DNA Sequence

AATGTGATGGGATCACTAGCATGTCTGCGGAGAGCGGCCCTGGGACGAGATTGAGAAA TCTGCCAGTAATGGGGGATGGACTAGAAACTTCCCAAATGTCTACAACACAGGCCCAG GCCCAACCCCAGCCAGCCAACGCAGCCAGCACCCACGCCCCCAGAGACCTCCA ACCCTAACAAGCCCAAGAGGCAGACCAACCAACTGCAATACCTGCTCAGAGTGGTGCT CAAGACACTATGGAAACACCAGTTTGCATGGCCTTTCCAGCAGCCTGTGGATGCCGTC AAGCTGAACCTCCCT3ATTACTATAAGATCATTAAAACGCCTATGGATATGGGAACAA TAAAGAAGCGCTTGGAAAACAACTATTACTGGAATGCTCAGGAATGTATCCAGGACTT CAACACTATGTTTACAAATTGTTACATCTACAACAAGCCTGGAGATGACATAGTCTTA ATGGCAGAAGCTCTGGGAAAAAATAAATGAGCTACCCACAGAAG TACAGCAAAACCTGGCGTTTCCACGGTACCAAACACAACTCAAGCATCGACTCCTCCG CAGACCCAGACCCCTCAGCCGAATCCTCCTCCTGTGCAGGCCACGCCTCACCCCTTCC CTGCCGTCACCCCGGACCTCATCGTCCAGACCCCTGTCATGACAGTGGTGCCTCCCCA GCCACTGEAGACGCCCCCCCCAGTGCCCCCCCCAGCCACACCCCCACCCGCTCCAGCT CCCCAGCCCGTACAGAGCCACCCACCCATCATCGCGGCCACCCCACAGCCTGTGAAGA CAAAGAAGGGAGTGAAGAGGAAAGCAGACCACCACCCCCACCACCATTGACCCCAT TCACGAGCCACCCTCGCTGCCCCCGGAGCCCAAGACCACCAAGCTGGGCCAGCGGCGG GAGAGCAGCCGGCCTGTGAAACCTCCAAAGAAGGACGTGCCCGACTCTCAGCAGCACC CAGCACCAGAGAAGAGCAGCAAGGTCTCGGAGCAGCTCAAGTGCTGCAGCGGCATCCT CAAGGAGATGTTTGCCAAGAAGCACGCCGCCTACGCCTGGCCCTTCTACAAGCCTGTG GACGTGGAGGCACTGGGCCTACACGACTACTGTGACATCATCAAGCACCCCATGGACA TGAGCACAATCAAGTCTAAACTGGAGGCCCGTGAGTACCGTGATGCTCAGGAGTTTGG TGCTGACGTCCGATTGATGTTCTCCAACTGCTATAAGTACAACCCTCCTGACCATGAG $\tt GTGGTGGCCATGGCCCGCAAGCTCCAGGATGTGTTCGAAATGCGCTTTGCCAAGATGC$ CGGACGAGCCTGAGGAGCCAGTGGTGGCCGTGTCCTCCCGGCAGTGCCCCCTCCCAC ÇAAGGTTGTGGCCCCCCCCCCCATCCAGCGACAGCAGCAGCGATAGCTCCTCGGACAGT AGCAGCTCAAAGCCGTGCACGAGCAGCTTGCAGCCCTCTCTCAGCCCCAGCAGAACAA GAGGAAGTGGAAGAATAAAAAAAGCAAAGCCAAGGAACCTCCTCCTAAAAAAGACGA AGAAAATAATAGCAGCAACAGCAATGTGAGCAAGAAGGAGCCAGCGCCCATGAAGAG CAAGCCCCCCCCCCCCGTATGAGTCGGAGGAAGAGGACAAGTGCAAGCCTATGTCCTAT GAGGAGAAGCGGCAGCTCAGCTTGGACATCAACAAGCTCCCCGGCGAGAAGCTGGGCC GCGTGGTGCACATCATCCAGTCACGGGAGCCCTCCCTGAAGAATTCCAACCCCGACGA GATTGAAATCGACTTTGAGACCCTGAAGCCGTCCACACTGCGTGAGCTGGAGCGCTAT GTCACCTCCTGTTTGCGGAAGAAAGGAAACCTCAAGCTGAGAAAGTTGATGTGATTG CCGGCTCCTCCAAGATGAAGGGCTTCTCGTCCTCAGAGTCGGAGAGCTCCAGTGAGTC CAGCTCCTCTGACAGCGAAGACTCCGAAACAGAGATGGCTCCGAAGTCAAAAAAGAAG GGGCACCCGGGAGGGAGCAGAAGCAGCACCATCATCACCACCATCAGCAGATGCAGC AGGCCCGGCTCCTGTGCCCCAGCAGCCGCCCCCGCCTCCCCAGCAGCCCCCACCGCC CAGCAGGCAGCCCGGCGATGAAGTCCTCGCCCCCACCCTTCATTGCCACCCAGGTGC CCGTCCTGGAGCCCCAGCTCCCAGGCAGCGTCTTTGACCCCATCGGCCACTTCACCCA GCCCATCCTGCACCTGCCGCAGCCTGAGCTGCCCCCTCACCTGCCCCAGCCGCCTGAG ACGCACTACCCCAGCAGCCATCACGGCCCAGCAACCGAGCCGCTGCCCTGCCTCCCAA GCCCGCCCGGCCCCAGCCGTGTCACCAGCCTTGACCCAAACACCCCTGCTCCCACAG CCCCCATGGCCCAACCCCCCAAGTGCTGCTGGAGGATGAAGAGCCACCTGCCCCAC CCCTCACCTCCATGCAGATGCAGCTGTACCTGCAGCAGCTGCAGAAGGTGCAGCCCCC TACGCCGCTACTCCCTTCCGTGAAGGTGCAGTCCCAGCCCCCACCCCCCTGCCGCCC CCCAGCCCAGCCTCCACCCCAGCAGCAGCATCAGCCCCCTCCACGGCCCGTGCACTT GCAGCCCATGCAGTTTTCCACCCACATCCAACAGCCCCCGCCACCCCAGGGCCAGCAG CCCCCCATCCGCCCCAGGCCAGCAGCCACCCCGCCGCAGCCTGCCAAGCCTCAGC AAGTCATECAGCACCACCATTCACCCCGGCACCACAAGTEGGACCCCTACTCAAECGG TCACCTCCGCGAAGCCCCCTCCCCGCTTATGATACATTCCCCCCAGATGTCACAGTTC CAGAGCCTGACCCACCAGCTCTCCACCCCAGCAAAACGTCCAGCCTAAGAAACAGGTAA GGCCGCTGTGCCTGTGCCATCCCAGGAGCTGCGTGCTGC TTCCGTGGTCCAGCC TCAG CCCCTCGTGGTGTGAAGGAGGAGAAGATCCACTCACCCATCATCCGCAGCGAGCCCT TCAGCCCCTCGCTGCGGCCGGAGCCCCCCAAGCACCCGGAGAGCATCAAGGCCCCCGT TTATGTTCCAGGGCCGGAAATGAAGCCTGTGGATGTCGGGAGGCCTGTGATCCGGCCC CCAGAGCAGAACGCACCGCCACCAGGGGCCCCTGACAAGGACAAACAGAAACAGGAGC CGAAGACTCCAGTTGCGCCCAAAAAGGACCTGAAAATCAAGAACATGGGCTCCTGGGC CAGCCTAGTGCAGAAGCATCCGACCACCCCCTCCTCCACAGCCAAGTCATCCAG3GAC AGCTTCGAGCAGTTCCGCCGCGCCGCCGCGGGAGAAAGAGGAGGCGTGAGAAGGCCCTGA AGGCTCAGGCCGAGCACGCTGAGAAGGAGGAGCGGCTGCGGCAGGAGCGCATGAG GABECGAPAGGACGAGGATGCGCTGGAGCAGGCCGGCGGGCCCATGAGGAGGCACGT

	ORF Start: ATG at 21	ORF Stop:	TGA at 4191
	SEQ ID NO: 224	1390 aa	MW at 154728.4kD
NOV79a, CG59452-01 Protein Sequence	QTNQLQYLLRVVLKTLWYHQFAW NYYWNAQECIQDFNTMFTNCYIY QAKGRGRGRKETGTAKPGVSTVF IVQTPVMTVVPPQPLQTPPPPPP KADTTTPTTIDPIHEPPSLPPEF KVSEQLKCCSGILKEMFAKHAA LEAREYRDAQEFGADVRLMFSNC VVAVSSPAVPPPTKVVAPPSSSD EQLAALSQPQQNKPKKKEKDKKE SNVSKKEPAPMKSKPPTYESEE SREPSLKNSNPDEIEIDFETLKP GFSSSESESSSESSSDEDSET QQPPPPPQQPPPPPPQQQQPP PGSVFDPIGHFTQPILHLPQVEL SRPSNRAAALPPKFARPPAVSPA QLYLQQLQKVQPPTPLLPSVKVQ QQOHQPPRPVHLQPMQFSTHIQ SPRHHKSDPYSTGHLREAPSPLM PVGQGRGCLPTSPAAVPVPSQEL EPPKHPESIKAPVYVPGPEMKPV	PFQQPVDAVKL NKPGDDIVLMA NTTQASTPPQT OPQPPPAPAPQ KTTKLGQRRES LYKYNPPDHEVV. SSSDSSSDSDS KKKEKHKREE EDKCKPMSYEE EDKCKPMSYEE LTQTPLLPQPPIS SQPPPPLPPPPIS QPPPPQQQPPILIHSPOMSQFQS. RAASVVQPQPL SSTAKSSSDSF DARRAHEEARRR	PQPANAASTNPPPPETSNPNKPKR NLPDYYKIIKTPMDMGTIKKRLEN EALEKLFLQKINELPTEETEIMIV QTPQPNPPPVQATPHPFPAVTPDL PVQSHPPIIAATPQPVKTKKGVKR SRPVKPPKKDVPDSQQHPAPEKSS EALGLHDYCDIIKHPMDMSTIKSK AMARKLQDVFEMRFALMPDEPEEP STDDSEEERAQRLAELQEQLKAVH VEENKKSKAKEPPPKKTKKNNSSN KRQLSLDINKLPGEKLGRVVHIIQ SCLRKKRKPQAEKVDVIAGSSKMK PGREQKQHHHHHHQQMQQAPAPVP AAPAMKSSPPPFIATQVPVLEPQL TPPHLNQHAVVSPPALHNALPQQP MAOPPQVLLEDEEPPAPPLTSMQM HPSVQQQLQQQPPPPPPPPQPQPPP HPPPGQQPPPPPPPPPQPQPPP HPPPGQQPPPPPPPPPQPQPPP LTHQSPPQQNVQPKKQVTGRAGPS VVVKEEKIHSPIIRSEPFSPSLRP QNAPPGAPDKDKQKQKQEPKTPVAP EQFRRAAREKEEPEKALKAQAEHA QEQQQQQQQQQQQQAAAVAA MAATIDNNFOSDLLSIFEENLF

Further analysis of the NOV79a protein yielded the following properties shown in Table 79B.

	Table 79B. Protein Sequence Properties NOV79a		
PSort analysis:	0.9800 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV79a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 79C.

	Table 79C. Geneseq Results for NOV79a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV79a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY57898	Human transmembrane protein HTMPN-22 - Homo sapiens, 688 aa. [WO9961471-A2. 02-DEC-1999]	1667 1667	667/667 (100%) 667/667 (100%)	0.0	

	754 aa. [WO9904265-A2, 28-JAN- 1999]			
AAY07114	WO9904265 Seq ID No: 685 - Homo sapiens, 947 aa. [WO9904265-A2, 28-JAN-1999]	35738 4686	357/761 (46%) 444/761 (57%)	e-170
AAW81168	Transcriptional regulatory factor RING3 - Homo sapiens, 947 aa. [WO9848015-A1, 29-OCT-1998]	35738 4686	357/761 (46%) 444/761 (57%)	c-170
AAU16206	Human novel secreted protein, Seq ID 1159 - Homo sapiens, 235 aa. [WO200155322-A2, 02-AUG-2001]	51255 1203	118/206 (57%) 137/206 (66%)	2e-59

In a BLAST search of public sequence databases, the NOV79a protein was found to have homology to the proteins shown in the BLASTP data in Table 79D.

	Table 79D. Public BLASTP Results for NOV79a				
Protein Accession Number	Protein/Organism/Length	NOV79a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O60885	Bromodomain-containing protein 4 (HUNK1 protein) - Homo sapiens (Human), 1362 aa.	11390 11362	1357/1391 (97%) 1360/1391 (97%)	0.0	
Q9ESU6	CELL PROLIFERATION RELATED PROTEIN CAP - Mus musculus (Mouse), 1400 aa.	11390 11400	1318/1400 (94%) 1338/1400 (95%)	0.0	
AAL67833	BROMODOMAIN-CONTAINING PROTEIN BRD4 LONG VARIANT - Mus musculus (Mouse), 1400 aa.	11390 11400	1318/1400 (94%) 1338/1400 (95%)	0.0	
O60433	R31546_1 - Homo sapiens (Human), 731 aa (fragment).	1719 12730	719/719 (100° o) 719/719 (100° o)	0.0	
AAL67834	BROMODOMAIN-CONTAINING PROTEIN BRD4 SHORT VARIANT - Mus musculus (Mouse), 723 aa.	1719 1720	694/720 (96%) 700/720 (96%)	0.0	

PFam analysis predicts that the NOV79a protein contains the domains shown in the Table 70F

rable 79F. Domain Analysis of NOV 79a

Pfam Domain	NOV79a Match Region	Identities/ Similarities for the Matched Region	Expect Value
bromodomain: domain 1 of 2	63152	42/92 (46%) 82/92 (89%)	8.6e-45
bromodomain: domain 2 of 2	356445	40/92 (43%) 81/92 (88%)	3e-40

Example 80.

The NOV80 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 80A.

Table	80A. NOV80 Sequenc	e Analysi	S
	SEQ ID NO: 225	1776 bp	
NOV80a, CG59572-01 DNA Sequence	AGACTGAGAAGCTCCTAAAAAG AAAGGAACAGGCCAAAAATAAGG GAAAAACTAAGCGTGCATTTGG GAATAGCCTATATGGGCTGGGGT TACCATTGAAGAAACTGTTTC CAGACATCCAACTATACAGCGTGATCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTTCAGCTCTCAGACATTCAGACTTGAAAATGGATGTTCCAGTTATATGACCTTCTCAGCTTCTAGAGCTAGTTCAGCTTCAGCTTCTAGAGCTAGTTTCCAGTTAGAACTTCAGCTTAGAACTTCACACACA	ACTACCACAAA ATTTCAGGC BAGGACTCAAA ATTTCAGGC BAGCTCTAAC BTGGGAGAACA CTCTCAGTTTC GCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
	SEQ ID NO: 226	 	MW at 55646.8kD
NOV80a, CG59572-01 Protein Sequence	MAYNDTDRNQTEKLLKRVRELEQEVQRLKKEQAKNKEDSNIRENSAGAGKTKRAFDF: AHGRRHVALRIAYMGWGYOGFASOENTNNTIEEKLFEALTKTRLVESROTSNYHRCGI		

A COMPANIA NA CARANTA
CG59572-02 DNA Sequence	1		AAAACTAAGCGTGCATTTGATTTCAG FAGCCTATATGGGCTGGGGATACCAG
	GGCTTTGCTAGTCAGGAAAACAC	CAAATAATAC	CATTGAAGAGAAACTGTTTGAAGCTC
	TAACCAAGACTCGACTAGTAGA	AGCAGACAG	ACATCCAACTATCACCGATGTGGGAG
	AACAGATAAAGGAGTTAGTGCC	TTGGACAGG:	rgatctcacttgaccttcgctctcag
	TTTCCAAGGGCAGGGATTCCGA	AGGACTTTAA	TGTAAAAGAGGAGGCTAATGCTGCTG
	CTGAAGAGATCCGTTATACCCA	CATTCTCAAT	CGGGTACTCCCTCCAGACATCCGTAT
	ATTGGCCTGGGCCCCTGTAGAAG	CCAAGCTTCAG	STGCTAGGTTCAGCTGCCTTGAGCGG
	ACTTACCGCTATTTTTTCCCTC	GTGCTGATTT	AGATATTGTAACCATGGATTATGCAG
	CTCAGAAGTATGTTGGCACCCAT	rgatttcagg/	AACTTGTGTAAAATGGATGTAGCCAA
	CGGTGTGATTAATTTTCAGAGGA	ACTATTCTATO	CTGCTCAAGTACAGCTAGTGGGCCAG
	AGCCCAGGTGAGGGGAGATGGCA	AAGAACCTTT	CCAGTTATGTCAGTTTGAAGTGACTG
	1		ATGATGGCTATCCTCTTTCTGATTGG
	CCAAGGAATGGAGAAGCCAGAGA	ATTATTGATG	AGCTGCTGAATATAGAGAAAAATCCC
	CAAAAGCCTCAATATAGTATGG	CTGTAGAATT	FCCTCTAGTCTTATATGACTGTAAGT
	TTGAAAATGTCAAGTGGATCTAT	rgaccaggag(CTCAGGAGTTCAATATTACCCACCT
	ACAACAACTGTGGGCTAATCATG	GCTGTCAAAA	CTCACATGTTGTATAGTATGCTACAA
	GGACTGGACACTGTTCCAGTACC	CTGTGGAATA	AGGACCAAAGATGGATGGAATGACAG
			CAGACCAGTGCCTTTGTAGAAGGAGT
			STCCTAAATGCCAAGGACTGGAATCC
			GAGCACCCACATTTATTCCATGAGG
			ACACTAGAGGAAGAGAATACTAATTT
	1		AGAAATTAAAAGTATCATT TAA CCA
<u> </u>	TAGACAATTTGCCAGGATCTAGC	GAACCACCTA	ATGGTAGGTGGACAGAAAAGGAAAAA
	ORF Start: ATG at 2	ORF Stop	o: TAA at 1445
	SEQ ID NO: 228	481 aa	MW at 55646.8kD
NOV80b,	MAYNDTDRNQTEKLLKRVRELEC	EVQRLKKEQA	KNKEDSNIRENSAGAGKTKRAFDFS
1	AHGRRHVALRIAYMGWGYQGFAS	GOENTNNTIE	EKLFEALTKTRLVESRQTSNYHRCGR
CG59572-02 Protein Sequence	TDKGVSAFGQVISLDLRSQFPRO	RDSEDFNVKE	EEANAAAEEIRYTHILNRVLPPDIRI
	LAWAPVEPSFSARFSCLERTYRY	FFPRADLDIV	TMDYAAQKYVGTHDFRNLCKMDVAN
			CQFEVTGQAFLYHQVRCMMAILFLIG
			/LYDCKFENVKWIYDQEAQEFNITHL
	-		MDGMTEWGNVKPSVIKQTSAFVEGV
	KMRTYKPLMDRPKCQGLESRIQF ETPTKRVCVDTEIKSII	IFVRRGR I EH F	PHLFHEEETKAKRDCNDTLEEENTNL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 80B.

Table 80B. Comparison of NOV80a against NOV80b.				
Protein Sequence NOV80a Residues/ Similarities for the Matched Residues		Identities/ Similarities for the Matched Region		
NOV80b	1481 1481	459/481 (95%) 459/481 (95%)		

Further analysis of the NOV80a protein yielded the following properties shown in Table 80C.

	Table 80C. Protein Sequence Properties NOV80a
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0142 probability located in microbody (peroxisome)

A search of the NOV80a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 80D.

	Table 80D. Geneseq Results for NOV80a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV80a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79457	Human protein SEQ ID NO 3103 - Homo sapiens, 490 aa. [WO200157190-A2, 09-AUG-2001]	1481 10490	478/481 (99%) 480/481 (99%)	0.0	
AAM78473	Human protein SEQ ID NO 1135 - Homo sapiens, 481 aa. [WO200157190-A2, 09-AUG-2001]	1481 1481	478/481 (99%) 480/481 (99%)	0.0	
AAG64907	Human depressed growth rate protein DEG1 - Homo sapiens, 248 aa. [CN1296014-A, 23-MAY-2001]	209431 1223	223/223 (100%) 223/223 (100%)	e-132	
AAG02637	Human secreted protein, SEQ ID NO: 6718 - Homo sapiens, 96 aa. [EP1033401-A2, 06-SEP-2000]	361456 196	96/96 (100%) 96/96 (100%)	5e-53	
AAB96592	Putative P. abyssi pseudourydilate synthase I - Pyrococcus abyssi, 263 aa. [FR2792651-A1, 27-OCT-2000]	65367 3261	79/305 (25%) 140/305 (45%)	4e-16	

In a BLAST search of public sequence databases, the NOV80a protein was found to have homology to the proteins shown in the BLASTP data in Table 80E.

	Table 80E. Public BLASTP Results for NOV80a				
Protein Accession Number	Protein/Organism/Length	NOV80a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9BZE2	FKSG32 - Homo sapiens (Human), 481 aa.	1481 1481	481/481 (100%) 481/481 (100%)	0.0	
Q96J23	HYPOTHETICAL 55.6 KDA PROTEIN - Homo sapiens (Human), 481 aa.	1481 1481	478/481 (99%) 480/481 (99%)	0.0	
Q96NB4	CDNA FLJ31140 FIS, CLONE IMR322001218, HIGHLY SIMILAR TO MUS MUSCULUS PSEUDOURIDINE SYNTHASE 3 (PUS3) MRNA - Homo sapiens (Human), 481 aa.	1481 1481	478/481 (99%) 479/481 (99%)	0.0	
Q9JI38	PSEUDOURIDINE SYNTHASE 3 - Mus musculus (Mouse), 481 aa.	5480 4480	407/479 (84%) 434/479 (89%)	0.0	
Q9D0F7	2610020J05RIK PROTEIN - Mus musculus (Mouse), 316 aa.	5314 4315	276/312 (88%) 291/312 (92%)	e-158	

PFam analysis predicts that the NOV80a protein contains the domains shown in the Table 80F.

Table	80F. Domain Analysis	s of NOV80a	
Pfam Domain	NOV80a Match Region	Identities/ Similarities for the Matched Region	Expect Value
PseudoU_synth_1: domain 1 of 1	88307	70/249 (28%) 176/249 (71%)	4.7e-57

Example 81.

The NOV81 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 81A.

Table 81A. NOV81 Sequence Analysis				
5	SEQ ID NO: 229	3080 bp		

and and the control of the control o

GTAAGCACATCATGCAGTACATCGCTGCTGTCACCAATCCAAGCCAGAGGGGCTGAGGT GGAGAGGGTCAAGGACGTGCTGCTCAAGTCCACCTGTGTGCTGGAGGCCTTTGGCAAT GCCGCACCAACCGCAATCACAACTCCAGCCGCTTTGGCAAGTACATGGACATCAACT TCGGGTCCTCAAGCACCACGTGGGTGAAAGAAACTTCCACGCCTTCTACCAATTGCTG AGAGGCAGTGAGGACAAGCAGCTGCATGAACTGCACTTGGAGAGAAACCCTGCTGTAT CCAGGCAGTGACCGAGGCCATGAGGGTCATCGGCTTCAGTCCTGAAGAGGTGGAGTCT GTGCATCGCATCCTGGCTGCCATATTGCACCTGGGAAACATCGAGTTTGTGGAGACGG AGGAGGGTGGGCTGCAGAAGGAGGGCCTGGCAGTGGCCGAGGAGGCACTGGTGGACCA TGTGGCTGAGCTGACGGCCACACCCCGGGACCTCGTGCTCCGCTCCCTGCTGGCTCGC ACAGTTGCCTCGGGAGGCAGGGAACTCATAGAGAAGGGCCACACTGCAGCTGAGGCCA GAACAGGATCAACAGTGTCATGGAACCCCGGGGCCGGGATCCTCGGCGTGATGGCAAG GACACAGTCATTGGCGTGCTGGACATCTATGGCTTCGAGGTGTTTCCCGTCAACAGTT TCGAGCAGTTCTGCATCAACTACTGCAACGAGAAGCTGCAGCAGCTATTCATCCAGCT CATCCTGAAGCAGGAACAGGAAGAGTACGAGCGCGAGGGCATCACCTGGCAGAGCGTT GAGTATTTCAACAACGCCACCATTGTGGATCTGGTGGAGCGGCCCCACCGTGGCATCC TGGCCGTGCTGGACGAGGCCTGCAGCTCTGCTGGCACCATCACTGACCGAATCTTCCT GCAGACCCTGGACATGCACCACCGCCATCACCTACACTACACCAGCCGCCAGCTCTGC CCCACAGACAAGACCATGGAGTTTGGCCGAGACTTCCGGATCAAGCACTATGCAGGGG ACGTCACGTACTCCGTGGAAGGCTTCATCGACAAGAACAGAGATTTCCTCTTCCAGGA CTTCAAGCGGCTGCTGTACAACAGCACGGACCCCACTCTACGGGCCATGTGGCCGGAC GGGCAGCAGGACATCACAGAGGTGACCAAGCGCCCCCTGACGGCTGGCACACTCTTCA AGAACTCCATGGTGGCCCTGGTGGAGAACCTTGCCTCCAAGGAGCCCTTCTACGTCCG CTGCATCAAGCCCAATGAGGACAAGGTAGCTGGGAAGCTGGATGAGAACCACTGTCGC CTTCCCGCCAGCCCTACTCTCGATTCCTGCTCAGGTACAAGATGACCTGTGAATACAC NTGCCCCAACCACCTGCTGGGCTCCGACAAGGCAGCCGTGAGCGCTCTCCTGGAGCAG CACGGGCTGCAGGGGGACGTGGCCTTTGGCCACAGCAAGCTGTTCATCCGCTCACCCC GGACACTGGTCACACTGGAGCAGAGCCGAGCCCGCCTCATCCCCATCATTGTGCTGCT ATTGCAGAAGGCATGGCGGGGCACCTTGGCGAGGTGGCGCTGCCGGAGGCTGAGGGCT ${\tt ATCTACACCATCATGCGCTGGTTCCGGAGACACAAGGTGCGGGCTCACCTGGCTGAGC}$ TGCAGCGGCGATTCCAGGCTGCAAGGCAGCCGCCACTCTACGGGCGTGACCTTGTGTG GCCGCTGCCCCTGCTGTGCTGCAGCCCTTCCAGGACACCTGCCACGCACTCTTCTGC AGGTGGCGGGCCCGGCAGCTGGTGAAGAACATCCCCCCTTCAGACATGCCCCAGATCA AGGCCAAGGTGGCCGCCATGGGGGCCCTGCAAGGGCTTCGTCAGGACTGGGGCTGCCG ACGGGCCTGGGCCCGAGACTACCTGTCCTCTGCCACTGACAATCCCACAGCATCAAGC CTGTTTGCTCAGCGACTAAAGACACTTCAGGACAAAGATGGCTTCGGGGCTGTGCTCT TTTCAAGCCATGTCCGCAAGGTGAACCGCTTCCACAAGATCCGGAACCGGGCCCTCCT GCTCACAGACCAGCACCTCTACAAGCTGGACCCTGACCGGCAGTACCGGGTGATGCGG GCCGTGCCCCTTGAGGCGGTGACGGGGGCTGACCAGCGGAGGAGACCAGCTGG TGGTGCTGCACGCCCGCGGCCAGGACGACCTCGTGGTGTGCCTGCACCGCTCCCGGCC GCCATTGGACAACCGCGTTGGGGAGCTGGTGGGCGTGCTGGCCGCACACTGCCGCAGG GAGGGCCGCACCCTGGAGGTTCGCGTCTCCGACTGCATCCCACTAAGCCATCGCGGGG TCCGGCGCCTCATCTCCGTGGAGCCCAGGCCGGAGCAGCCAGAGCCCGATTTCCGCTG CGCTCGCGGCTCCTTCACCCTGCTCTGGCCCAGCCGCTGAGCGCCCGCACCCGCCGCA CCCCGA

ORF Start: ATG at 15 ORF Stop: TGA at 3054

SEQ ID NO: 230

1013 aa

MW at 116044.5kD

NOV81a, CG59522-01 Protein Sequence

MEDEEGPEYGKPDFVLLDQVTMEDFMRNLQLRFEKGRIYTYIGEVLVSVNPYQELPLY GPEAIARYQGRELYERPPHLYAVANAAYKAMKHRSRDTCIVISGESGAGKTEASKHIM QYIAAVTNPSQRAEVERVKDVLLKSTCVLEAFGNARTNRNHNSSRFGKYMDINFDFKG DPIGGHIHSYLLEKSRVLKOHVGERNFHAFYOLLRGSEDKOLHELHLERNPAVYNFTH QGAGLNMTVSDEQSHQAVTEAMPVIGFSPEEVESVHRILAAILHLGNIEFVETEEGGL OKEGLAVAEEALVDHVAELTATPRDLVLRSLLARTVASGGRELTEKGHTAAEASYARD ACAKAVYQRLFEWVVNRINSVMEPRGRDPRRDGKDTVIGVLDIYGFEVFPVNSFEQFC INYCNEKLQQLFIQLILKQEQEEYEREGITWQSVEYFNNATIVDLVERPHRGILAVLD EACSSAGTITDRIFLQTLDMHHFHHLHYTSRQLCPTDKTMEFGRDFRIKHYAGDVTYS VEGFIDKNRDFLFQDFKRLLYNSTDPTLRAMWPDGQQDITEVTKRPLTAGTLFKNSMV ALVENLASKEPFYVRCIKPNEDKVAGKLDENHCRHQVAYLGLLENVRVRRAGFASRQP YSRFLLRYKMTCEYTWPNHLLGSDKAAVSALLEQHGLQGDVAFGHSKLFIRSPRTLVT LEQSRARLIPIIVLLLQKAWRGTLARWRCRRLRAIYTIMRWFRRHKVRAHLAELQRRF QAARQPPLYGRDLVWPLPPAVLQPFQDTCHALFCRWRARQLVKNIPPSDMPQIKAKVA AMGALOGLRODWGCRRAWARDYLSSATDNPTASSLFAQRLKTLQDKDGFGAVLFSSHV RKVNRFHKIRNRALLLTDQHLYKLDPDRQYRVMRAVPLEAVTGLSVTSGGDQLVVLHA RGQDDLVVCLHRSRPPLDNRVGELVGVLAAHCRREGRTLEVRVSDCIPLSHRGVRRLI SVEPRPEQPEPDFRCARGSFTLLWPSR

	Table 81B. Protein Sequence Properties NOV81a			
PSort analysis:	0.8800 probability located in nucleus; 0.3902 probability located in microbody (peroxisome); 0.2210 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV81a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 81C.

	Table 81 C. Geneseq Res	ults for NOV	/81a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV81a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU23125	Novel human enzyme polypeptide #211 - Homo sapiens, 1026 aa. [WO200155301-A2, 02-AUG- 2001]	11013 91026	1009/1018 (99%) 1011/1018 (99%)	0.0
AAU23128	Novel human enzyme polypeptide #214 - Homo sapiens, 909 aa. [WO200155301-A2, 02-AUG- 2001]	1853 9866	851/858 (99%) 851/858 (99%)	0.0
AAM80123	Human protein SEQ ID NO 3769 - Homo sapiens, 764 aa. [WO200157190-A2, 09-AUG- 2001]	2431011 1762	438/769 (56%) 570/769 (73%)	0.0
AAM79139	Human protein SEQ ID NO 1801 - Homo sapiens, 753 aa. [WO200157190-A2, 09-AUG- 2001]	2541011 1751	434/758 (57%) 564/758 (74%)	0.0
AAM39991	Human polypeptide SEQ ID NO 3136 - Homo sapiens, 1063 aa. [WO200153312-A1, 26-JUL-2001]	10933 47986	410/966 (42%) 556/966 (57%)	0.0

In a BLAST search of public sequence databases, the NOV81a protein was found to have homology to the proteins shown in the BLASTP data in Table 81D.

Accession Number		Residues/ Match Residues	Similarities for the Matched Portion	Value
Q63357	MYOSIN I - Rattus norvegicus (Rat), 1006 aa.	11011 11004	606/1011 (59%) 780/1011 (76%)	0.0
A53933	myosin I myr 4 - rat, 1006 aa.	11011 11004	604/1011 (59° v) 778/1011 (76° o)	0.0
Q96RI6	UNCONVENTIONAL MYOSIN 1G VALINE FORM - Homo sapiens (Human), 633 aa (fragment).	33646 1619	612/619 (98%) 612/619 (98%)	0.0
Q96RI5	UNCONVENTIONAL MYOSIN 1G METHONINE FORM - Homo sapiens (Human), 633 aa (fragment).	33646 1619	611/619 (98%) 612/619 (98%)	0.0
Q23978	Myosin IA (MIA) (Brush border myosin IA) (BBMIA) - Drosophila melanogaster (Fruit fly), 1011 aa.	81012 61007	503/1017 (49° o) 686/1017 (66° o)	0.0

PFam analysis predicts that the NOV81a protein contains the domains shown in the Table 81E.

Table 81E. Domain Analysis of NOV81a				
Pfam Domain	NOV81a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
PRK: domain 1 of 1	97109	8/13 (62%) 10/13 (77%)	3.7	
Vir_DNA_binding: domain 1 of 1	575592	5/18 (28%) 14/18 (78%)	8.2	
myosin_head: domain 1 of 1	11689	305/747 (41%) 531/747 (71%)	8.1e-288	

Example 82.

The NOV82 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 82A.

Table 82A. NOV82 Sequence Analysis				
	SEQ ID NO: 231	1066 bp		
1 (17.5)	GAACGAATGGGAAACCACA	AAT JACATATTIATOO TOAA TOAAA TOAJOTATTIOTTO		

	ATCTCCTGGTATCAGAAGCTGG TGGAAGCATGATGAGCCTCATGAGCCTCAGGACCTCATCACAACCCCCCAGGACAAATCTGTTGTCAAGAATGCAGTGTACAAGAATGCTGCTGGAGATTCAAGAGTTCTACGGAGAGTTCTACCCCAGTGTACAAGAGTTCTACCCCAGTGTACATGTCAAGAGTTCTACCCCAGTGTGACTGCTACAGGGTTCAAGAGTTCTACCCCAGTGTGACTGCTACAG	GCATGGGTTT GCTGAAGCTG CAGAATTCTT GCAATGTGA GACAGCTTTC GGTGACAAGA TTCAGATTCA TGGCAATGAC	ATTCATCCCTTACCTGCCAGGGACAG GGATGCCATCAATGATGCTATCCTTC TATTGCCGGGAGCAGCCCTATTACCT ATCAGACTGAGATTGGCCAGACCCTC TCTTCGCAGATGCACCCTGTAGCTGC AGGAGCACACCAGTGCCAAGAAGATC GGATGATTACCTTGCTGCTGCTGCTGCTGCTGATGATTACCTTGCTTCTGGGG TTCCAGGACACACAAAATGCAGCTGGCT AACAGTACCAGATCCTGAAGAAAAATGCAGCTACCAGAAAGAA
			GACAGTTACAGCCACGTTATGGGTCT
		CTGCCCCCAG	CCATCTTTCTGGGGCTTGTGCACAAA
	ORF Start: ATG at 7	ORF Stop	: TGA at 1063
	SEQ ID NO: 232	352 aa	MW at 40740.3kD
NOV82a, CG59520-01 Protein Sequence	RGLMVLVAFRELVEPRKLDADS WYQKLGMGLDAINDAILLEACI ITTPQGNVDLRRCTEKRHKSVV EIQEFFQIQDDYLDFSGDPSVT	LQWAPTVGWY YCLLKLYCRE KYKTAFYSFY GRVGNDFQDN	GHPETGDATARLKEVLEYNAIGGKYH AQLLQAFFLVADDIMDSSLTCQGQIS QPYYLNLMELFQQNSYQTEIGQTLDL LPVAAAMYMSRMDDKKEHTSAKKILL KCSWLVVQCLLQATPEQYQILKENYR HVMGLIEQYAEPLPPAIFLGLVHKIY

Further analysis of the NOV82a protein yielded the following properties shown in Table 82B.

	Table 82B. Protein Sequence Properties NOV82a		
PSort analysis:	0.4066 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV82a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 82C.

Table 82C. Geneseq Results for NOV82a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV82a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG29733	Arabidopsis thaliana protein fragment SEQ ID NO: 35427 - Arabidopsis	10352 2342	147/343 (42%) 219/343 (62%)	7e-75

AAG29732	Arabidopsis thaliana protein fragment SEQ ID NO: 35426 - Arabidopsis thaliana, 349 aa. [EP1033405-A2, 06-SEP-2000]	10352 9349	147/343 (42%) 219/343 (62%)	7e-75
AAG29734	Arabidopsis thaliana protein fragment SEQ ID NO: 35428 - Arabidopsis thaliana, 305 aa. [EP1033405-A2, 06-SEP-2000]	47352 1305	138/306 (45%) 204/306 (66%)	4e-73
AAY43635	Amino acid sequence of the farnesyl pyrophosphate synthase enzyme - Phaffia rhodozyma, 355 aa. [EP955363-A2, 10-NOV-1999]	12352 11355	145/346 (41%) 208/346 (59%)	4e-69
AAB48971	Sunflower seedling famesyl pyrophosphate synthase (FPS) - Helianthus annuus, 341 aa. [EP1063297-A1, 27-DEC-2000]	13352 6341	138/343 (40%) 204/343 (59%)	3e-64

In a BLAST search of public sequence databases, the NOV82a protein was found to have homology to the proteins shown in the BLASTP data in Table 82D.

Table 82D. Public BLASTP Results for NOV82a					
Protein Accession Number	Protein/Organism/Length	NOV82a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96G29	FARNESYL DIPHOSPHATE SYNTHASE (FARNESYL PYROPHOSPHATE SYNTHETASE, DIMETHYLALLYLTRANSTRA NSFERASE, GERANYLTRANSTRANSFERA SE) - Homo sapiens (Human), 419 aa.	2352 69419	291/351 (82%) 317/351 (89%)	e-168	
P14324	Farnesyl pyrophosphate synthetase (FPP synthetase) (FPS) (Farnesyl diphosphate synthetase) [Includes: Dimethylallyltransferase (EC 2.5.1.1); Geranyltranstransferase (EC 2.5.1.10)] - Homo sapiens (Human), 353 aa.	2352 3353	291/351 (82%) 317/351 (89%)	e-168	
A35726	farnesyl-pyrophosphate synthetase - human, 353 aa.	2352 3353	290/351 (82%) 316/351 (89%)	e-168	
4AL58886	FARNESYL DIPHOSPHATE SYNTHASE - Bos taurus (Bovine), 353 aa.	2352 3353	270/351 (76%) 308/351 (86%)	e-157	
Q14329	FARNESYL PYROPHOSPHATE SYNTHETASE LIKE-4 PROTEIN - Homo sapiens (Human), 348 aa.	6352 2348	268/347 (77%) 295/347 (84%)	e-150	

PFam analysis predicts that the NOV82a protein contains the domains shown in the Table 82E.

Table 82E. Domain Analysis of NOV82a					
Pfam Domain	NOV82a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
polyprenyl_synt: domain 1 of 1	43315	82/285 (29%) 237/285 (83%)	6.3e-91		

Example 83.

The NOV83 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 83A.

Table	83A. NOV83 Sequenc	e Analysi	is	
	SEQ ID NO: 233	411 bp		
NOV83a, CG59758-01 DNA Sequence	TGCCTACCCCGAGACTGCTGCTGTTCGGAGACCTGCAGGTGAATGCCCCATCACC TCTGACCTGGAGGCAAAACCTTCAACTGAGCATTTGGGGGATAAGATAAAAGATG ATATTAAACTCAGGGTTATTGGACAGGATAGCAGTGAGATTCATTTCAAAGTGAA GACAACACCTCTCAAGAAACTCAAGAAATCGTACTGTCAGAGACAGGGCGTTCCAG AATTCCCTCAGGTTTCTCTTTGAAGGTCAGAGAATTGCTGATAATCATACTCCAG AACTGGGAATGGAGGAAGAAGATGTGATTATCAGGAACAAATCGGAGG TTCAACAGTTTAGACATTCTTTTTTTTTT			
	ORF Start: ATG at 56	ORF Sto	p: TAG at 359	
	SEQ ID NO: 234	101 aa	MW at 11526.0kD	
NOV83a, CG59758-01 Protein Sequence	MSDLEAKPSTEHLGDKIKDEDIKLRVIGQDSSEIHFKVKMTTPLKKLKKSYCQRQGVI VNSLRFLFEGQRIADNHTPEELGMEEEDVIEVYQEQIGGHSTV			
	SEQ ID NO: 235	658 bp		
NOV83b, CG59758-02 DNA Sequence	CTACCCCGAGACTGCTGCTGCTGGAGACCTGCAGGTGAATGCCCCATCACCATGTC GACCTGGAGCAAAACCTTCAACTGAGCATTTGGGGGATAAGATAAAAGATGAAGAT TTAAACTCAGGGTTATTGGACAGGATAGCAGTGTCAGTGAGAAAATGAAAACCTCCAAGGATACCAGGAGAAATCGTACTGTCAGAGACAGGGCGTTCCAGTGAAA ACACCTCTCAAGAAACTCAAGAAATCGTACTGTCAGAGACAGGGCGTTCCAGTGAA TCCCTCAGGTTTCTCTTTGAAGGTCAGAGAATTGCTGATAATCATACTCCAGAAGAAA TGGGAATGGAGGAAGAAGATGTGATTGAGGTTTATCAGGAACAAATCGGAGGTCATTCAACAGTTTAGACAATCGGAGTCATTCAACAGTTTAGACAATCGGAGGTCATTCAACAGTTTAGACAATCGGAGTCATTCAACAGTTTAGACAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATTCAACAGTTTAGACAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATCGAATTCAACAGTTTAGACAATC			
	ORF Start: ATG at 53	ORF Stop	p: TAG at 356	
	SEQ ID NO: 236	101 aa	MW at 11526.0kD	
NOV83b, CG59758-02 Protein Sequence	MSDLEAKPSTEHLGDKIKDEDIKLRVIGQDSSEIHFKVKMTTPLKKLKKSYCQRQGVP VNSLRFLFEGQRIADNHTPEELGMEEEDVIEVYQEQIGGHSTV			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 83B.

Table 83B. Comparison of NOV83a against NOV83b.				
Protein Sequence NOV83a Residues/ Identities/ Similarities for the Matched Re				
NOV83b	1101 1101	101/101 (100%) 101/101 (100%)		

Further analysis of the NOV83a protein yielded the following properties shown in

	Table 83C. Protein Sequence Properties NOV83a				
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV83a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 83D.

	Table 83D. Geneseq Results for NOV83a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV83a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79976	Human protein SEQ ID NO 3622 - Homo sapiens, 125 aa. [WO200157190-A2, 09-AUG-2001]	1101 25125	100/101 (99%) 100/101 (99%)	1e-52	
AAM78992	Human protein SEQ ID NO 1654 - Homo sapiens, 101 aa. [WO200157190-A2, 09-AUG-2001]	1101 1101	100/101 (99%) 100/101 (99%)	1c-52	
AAY49967	Human sentrin protein sequence - Homo sapiens, 101 aa. [US5985664- A, 16-NOV-1999]	1101 1101	89/101 (88%) 94/101 (92%)	2e-45	
AAW87984	Ubiquitin-like domain of the protein SUMO1 - Mammalia, 101 aa. [WO9857978-A1, 23-DEC-1998]	1101 1101	89/101 (88%) 94/101 (92%)	2e-45	
AAW60079	Homo sapiens sentrin-1 polypeptide - Homo sapiens, 101 aa. [WO9820038-A1, 14-MAY-1998]	1101 1101	89/101 (88%) 94/101 (92%)	2e-45	

In a BLAST search of public sequence databases, the NOV83a protein was found to have homology to the proteins shown in the BLASTP data in Table 83E.

	Table 83E. Public BLASTP Results for NOV83a				
Protein Accession Number	Protein/Organism/Length	NOV83a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q93068	Ubiquitin-like protein SMT3C precursor (Ubiquitin-homology domain protein PIC1) (Ubiquitin-like protein UBL1) (Ubiquitin-related protein SUMO-1) (GAP modifying protein 1) (GMP1) (Sentrin) - Homo sapiens (Human), and, 101 aa.	1101	89/101 (88%) 94/101 (92%)	6e-45	
Q9MZD5	SENTRIN - Cervus nippon (Sika deer), 101 aa.	1101 1101	88/101 (87%) 93/101 (91%)	2e-44	
O57686	SUMO-1 PROTEIN - Xenopus laevis (African clawed frog), 102 aa.	1100 1101	83/101 (82%) 90/101 (88%)	2e-39	
Q9PT08	SMALL UBIQUITIN-RELATED PROTEIN 1 - Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri), 101 aa.	197 197	72/97 (74%) 84/97 (86%)	9e-35	
Q9D466	4933411G06RIK PROTEIN - Mus musculus (Mouse), 117 aa.	197 196	68/97 (70%) 80/97 (82%)	8e-30	

PFam analysis predicts that the NOV83a protein contains the domains shown in the Table 83F.

Table 83F. Domain Analysis of NOV83a					
Pfam Domain	NOV83a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
ubiquitin: domain 1 of 1	2095	14/83 (17%) 66/83 (80%)	4.7e-18		

Example 84.

The NOV84 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 84A.

	SEQ ID NO: 237	912 bp	
NOV84a, CG59586-01 DNA Sequence	GGGCGCCTGCTGGCATCTGAG CCGGAGGAAAATCGAAGGAAGA TTCCATGGTTCTGCATGTTAACTTGCA TGTGGTTCTAGCCTGTTCAGCC AAAGATGGTGTAGCTCTGAGT TGCAGCTCCTGGTGGTCCATCT CAAAAGAGAGGGACATTTTATG GAGCCCCCAGCAGCTCCAGAAA ASATAATTGCTACAATTATGGA TGGTCCAAACAGAACTAAGCAT CTTGCCCATACTAGATTCTAAA CTTGTTTAGGTGTAATTTTAGG TTAAAAGTCAAGCTTAAATTGA	CTGGGATGGA TGGGAAAAGG TGACATTTA CTGAAGAAAA GTGAGGGTCG CCCCCTGAAT ACTTTATCCA AACCCTAAAA AAATCATTGT TGTTTCTAAA AAATTATCTG AGTTAAATTGTT	TTCAGCGGCTCGGGGAAATCCACCGT LAATTCTATGATGCTGATGATTATCAC CCATACCGCTCAATGACCAGGACCGGA LCTAAGAGATGTAGCCTCGGGACAGCG LCGTACAGAGCACATATTAACACAAGGA LCGGAAAGGAACCATATTAACACAAGGA LCGGAAAGGAACCACAGCCTACT LTATTGCAGTCCCAGTTTCAGACCTCG LAATAAGTGTGGACAAAAATGTTTCAG LATAAGTGTGGACAAAAATGTTTCAG LCCATCCCAAACCTCGTTCCAGCCGC LCGCAAACCCCAATGTTCAAGACAGA LCTCATCAGGAAGCAGAGGGGGGGGTT LCATCATCAGGAAGCAGAAAATGATCAAGAAAAAAAAAAA
	ORF Start: ATG at 9	ORF Stop	o: TGA at 561
	SEQ ID NO: 238	184 aa	MW at 20352.2kD
NOV84a, CG59586-01 Protein Sequence	MGSSGCLCFSGSGKSTVGALLASELGWKFYDADDYHPEENRRKMGKGIPLNDQDRIPW LCNLHDILLRDVASGQRVVLACSALKKTYRDILTQGKDGVALKCEESGKEAKQAEMQL CC LVVHLSGSFEVISGRLLKREGHFMPPELLQSQFETLEPPAAPENFIQISVDKNVSEII ATIMETLKMK		

Further analysis of the NOV84a protein yielded the following properties shown in Table 84B.

	Table 84B. Protein Sequence Properties NOV84a				
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.1000 probability located in plasma membrane				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV84a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 84C.

Table 84C. Geneseq Results for NOV84a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV84a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG73989	Human colon cancer antigen protein SEQ ID NO:4753 - Homo sapiens, 193 aa [WO200122920-A2, 05-APR-	10184 19193	175/175 (100%) 175/175 (100%)	1e-97	

	antigen protein sequence SEQ ID 706 - Homo sapiens, 193 aa. [WO200055173-A1, 21-SEP-2000]	19193	175/175 (100%)	
AAM89100	Human immune/haematopoietic antigen SEQ ID NO:16693 - Homo sapiens, 133 aa. [WO200157182-A2, 09-AUG-2001]	24126 22124	70/103 (67%) 77/103 (73%)	1e-34
AAG50675	Arabidopsis thaliana protein fragment SEQ ID NO: 64243 - Arabidopsis thaliana, 175 aa. [EP1033405-A2, 06-SEP-2000]	10179 4167	75/173 (43%) 102/173 (58%)	4e-28
AAG50674	Arabidopsis thaliana protein fragment SEQ ID NO: 64242 - Arabidopsis thaliana, 187 aa. [EP1033405-A2, 06-SEP-2000]	10179 16179	75/173 (43%) 102/173 (58%)	4e-28

In a BLAST search of public sequence databases, the NOV84a protein was found to have homology to the proteins shown in the BLASTP data in Table 84D.

	Table 84D. Public BLASTP Results for NOV84a				
Protein Accession Number	Protein/Organism/Length	NOV84a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
BAB74785	GLUCONOKINASE - Anabaena sp. (strain PCC 7120), 160 aa.	10183 9160	72/174 (41%) 101/174 (57%)	1e-30	
Q9RT56	THERMORESISTANT GLUCONOKINASE - Deinococcus radiodurans, 172 aa.	10183 4159	66/174 (37%) 101/174 (57%)	1e-29	
CAC93415	PUTATIVE GLUCONOKINASE (EC 2.7.1.12) - Yersinia pestis, 167 aa.	10174 12159	68/166 (40%) 95/166 (56%)	2e-29	
Q9CMM6	GLK - Pasteurella multocida, 172 aa.	10 .182 15 .169	68/174 (39%) 99/174 (56%)	2e-29	
AAK86014	AGR_C_329P - Agrobacterium tumefaciens str. C58 (Cereon), 163 aa.	10182 5159	74/173 (42%) 98/173 (55%)	6e-29	

PFam analysis predicts that the NOV84a protein contains the domains shown in the

Table 84E. Domain Analysis of NOV84a					
Pfam Domain	NOV84a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
SKI: domain 1 of 1	9182	37/206 (18%) 114/206 (55%)	1.1		

Example 85.

The NOV85 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 85A.

Table 85A. NOV85 Sequence Analysis				
	SEQ ID NO: 239	4332 bp		
NOV85a.	GGCGTATTAACGCGCGGGTG	CACACCCCCACGGGCGCGCAATGAACAACTATGTGCTT		
	AATGACGAGATCGGCCAGGG	TGCCTTCAGCACTATTTACAAGGGCCGCTATCGCACCA		
CG59704-01 DNA Sequence	CCACCGAGTTCTACGCGATT	GCTTCCATCGACAAGAAGCGACGGGAGCGCGTCGTGAA		
•	CTGCGTTCAGCTGTTACGCT	CCATGCACCACTCAAACGTCATAGAGTTCCACAACTGG		
	TATGAGACCAACAATCACTI	GTGGATCATTACGGAGTACTGCACCGGCGGAGACATGA		
	GCACGATCCTCCGCTCGAAC	ATTAATCTCACCACTCAGGCGGTCCAGGCGTTCGGCCG		
	TGATGTGGCGATGGGCCTCA	TGTACATCCACAGTAAGGGTGTCGTGTATAACGACTTG		
	CAGACTCGCAATCTGCTGAT	GGACTCCGCAGCAATGCTGCGCTTCCACGACTTTAGCT		
	TGGCCTGTCTCTTCCAAGAC	GCGGCGACGCGCCACTGGTGGGGACGCCACTGTACAT		
	GGCCCCGAGTTGTTCATGG	CGGATCGCCCGCTGTACTCGATGGCATCAGACCTGTGG		
	TCCTTCGGTTGTGTGCTGCA	CGAGCTGGCGACAGGCAAGCCGCCCTTTGCCGCATCCG		
	ACCTCGAGACGCTGCTGGGC	GACATACTGACGAGTCCGACGCCAGCGGTGCCTGGTGC		
	GCCGGAGTCCTTTCAAACGC	TCCTGTGCGGCCTGCTGGAAAAGGACCCGTTGAAGCGC		
	TACGCGTGGGTCGATGTTGT	CCGCAGCGAGTTCTGGGGATGAGCCCTTGCCGCTGCCGA		
	GCAACGCTTTCCATCTCAG	GTGGCGTGGGAGGACTACAAGCGTTCGCGTTCTGGACG		
	CGGTGCGAGTCAGTATAATT	GGACGGACTCCGATGTGCGTGTGGCAGTGGCTCACGCC		
	GTGGGGGCAGCGAAATCAAA	CGCTTCTACGCACAACGTGGAGGAGGAGGGAGCGAGCGG		
	CTGCGACGTTGAACGTCGCG	AAGGAGCTGGACTTCACTGCAAGCGCGGCGATGTTGCT		
	GGAACGGTTACCGGAGCGGA	CACAGGAGCGTGCTGCGCACGCAACAGGCCATGTCGCG		
	ACCGCGCACGGCAGCCTGGT	GCACGGCTGCCCATCCACGGCCTCAGCGGCGACCTCGC		
	CAAGACGTTCAAGGACAAGG	CGGCGCTGCTCAAGATTGTGGAAGAGGTCAAAACCGCT		
	GTCGAGGGCTTCAAGCCGTG	GGTGTCCTTCCACGTCGCTGCGCCACCCGGGCATGAGG		
	GAGCGCCACTGGACCGGCTT	GTCTCAGAAGCTCGGGATGAAGCTGGTGCCTGGCGACA		
	CACTGATGCTTCTGGAGGAC	TGCGAACCGCTGCTAGCGCACCGCGACACCATTATCAG		
	4	AGGAGTCGCAGATCGAGATGACGCTCAAGGACATGCGT		
	1	CTTCATCATCGAGGCATACAAGGAGACAGGCACGTACA		
		GTGGTGGAGCTCCTCGACGAGCACCTCAACGTCGTCCA		
	!	TCAAGGGCTACTTCGAGGAGTCCATCACGGACTGGGAG		
	I	CGACATACTCGAACAATGGCTGGAGTGCCAGCGAGCGT		
		CTCAACTCGGAGGACATCGCCATGCAGCTACCGCGACT		
		TGGACCGCACATGGAGACGTGTCATGGGCAACGCGCAC		
	1	GTACTGCATTGGCACAAACAAGCTCTTGGACCACCTGC		
		GAAGTGCTGCAGCACTTGATGGCGCAGAAGGTCAACGT		
		GCACCGGCAAGTCCATCTCACTCGCGCGTCTCGTGCTT		
	•	CTTTCTTGGCCTCAACTTCACCTTCTCGGCGCAGACAA		
	!	TCACTGATGGCCAAGTTCGATAAGCGGCGCTCGCACGT		
	1 .	AGCACTTTCTCATCTTCATTGACGACGCGAACCTGCCG		
		GCAGCCCCGGTGGAGCTTCTGCGGCAGATGCTCGCCC		
	i e	ACAGGTGGCATCAAGTGGTCCTCCATCATCGACTGCTC		
	1	CGCCTGGCGGGGCCGCAGCCGGGTTTCGAACCGCTTT		
	 	TGCCTTCCCCGAGATGTCGGACATGTCGAAGCGAACGA		
	I .	GGCGGCCTCGCGAGATGTCGGACATGTCGAAGCGAACGA		
	1	TCGATAGCACGTTGCGGGTGTTTCGCAAGTGCACCCAG		
		GCACGTGCACTACTCCTTCAACATGCGGGATGTGATGC		
	1			
	I	ACAGCAGACAAGTCGGTGCTGCAGTCGGAGGAATCCAT AGATGCAGCGCGTCTTCTACGATCGCCTCGTCGACGCG		
		ALLA LEGE ALGE GEORGIE DE LE L'ACTUACION DE L'ACTUA		

	AGGAATGCACGAGAGCCTCGCC GCGGACGTTTCTCTTCGCCGACA GCGGGCCTGCTCACATCGGGTGA TCATCAACGACAACTTTCGCCG GTCGGTGTACGCGCCTTTTTGG TTCTCTCCCATCGGAGAGGCGTT CGCAGTGCAGAATCGACTGCCGGCCGGCTCCAACTTCAAGGCTGATCAGGCCGGCC	SAAGTTOCTGCT ACCCAGCTGGCG ATGTGCCGAACC CGTCTGCCTAAG AGGAGGCGCGC CGCTGAGTGGCC SACGTTACTGAC CAGTGCACCGCG CTCGTAGCACCGCG CTCGCGCAAAACGC CCGCAAAACGC CCGCCAAAACGC CCGCCAAAACGC CCGCCAAAACGC CCGCCAAAACGC CCGCTCCTGGT	AGCTGTCGAAGAACTTCGGTGTCA CGAGTGTGGCAAGAACTTCGGTGTGGAGAGTGTGGCAAGGACCAAGATTTCGAGC CGAGAACCTGCCAACGATTTCGAGC CGAGAACCTGCCAACGATGCTCGCC TGCGTATGTTCCCATCGCTCATTG ATCCGAGGCGCTACTGTCGGTAGC GTCATGGGGGGGGAAGCCATGCC CGGCGCGGAGGTGACGAGCGCT CGCTTCGTTCGCTATTCGCTCCT CCGCTTCGTTCGCAAGCCATGCC CCGACGTCCTATCTGCTCCT CCGCAGGTCCAAGCAGAGCAG
	AGGACCTCGAGCAGGAGGAGAAAGATGCCTGGTCCCATACCCGAGCATGCTCCCCACTCCTCCCTC	CCCGCCGAGTT ACTGAAGAGCAG CACTGTGGGAAG CAAACCTGCTTC ACTGCATGCCAC CACCAGAAAGTG	TGA at 3944
	SEQ ID NO: 240	1301 aa	MW at 146115.7kD
NOV85a, CG59704-01 Protein Sequence	MNNYVLNDEIGQGAFSTIYKGRY IEFHNWYETNNHLWIITEYCTGG VVYNDLQTRNLLMDSAAMLKFHL MASDLWSFGCVLHELATGKPPFA KDPLKRYAWVDVVRSEFWDEPLF VAVAHAVGAAKSNASTHNVEER ATGHVATAHGSLVHGCPSTASAA RHFGMRERHWTGLSQKLGMKLVF TLKDMRAKWETKCFIIEAYKETG SITDWERSLNLISDILEQWLECQ VMGNAHAQPNALEYCIGTNKLLD LARLVLGGGMPANFLGLNFTFSA RODANLPQPEKYGAQPPVELLRQM RVSNRFMRYFNYLAFPEMSDMSK FRKCTQVFLPTPAHVHYSFNMRD DRLVDATDKGLFIEYLNAELPSM LTTRMNELLEAYNDENEVKMNLV LTRLACSLIAEMEVFTIELSKNF TFLEDVAGLLTSGDVPNLFEDQD LHLVLAFSPIGEAFRSRLFMFPS GAASHADLPGCFQAVHRAAAEVT	RTTTEFYAIAS SDMSTILRSNIN FSLACLFQDAA ASDLETLLGDI PLPSNGFPSQVA CRAAATLNVAKE GTSPRRSRTRRR GGTLMLLEDCE TYILKDTSEVV PRAWRYLEPILN HILREANRLLEV QTKCTVLQNSL MAQGGFYNFT MGVDKSYNEVVK LFLDAIEHVCR GVKEWHESLAK DIELINDKFRGV SILIACCTIDWFA ERFFTETRRS ELEAQLKAQQP	IDKKRRERVVNCVQLLRSMHHSNV LTTQAVQAFGRDVAMGLMYIHSKG TRPLVGTPLYMAPELFMADRPLYS LTSPTPAVPGAPESFQTLLCGLLE WEDYKRSRSGRGASQYNWTDSDVR LDFTASAAMLLERLPERTQERAAH CSRLWKRSKPLSRASSGCPSTSL PLLAHRDTIISYCEVAAKESQIEM ELLDEHLNVVQQLQFSPFKGYFEE SEDIAMQLPRLSTLFEKVDRTWRR LQHLMAQKVNVAAVGPTGTGKSIS MAKFDKRRSHVYGAPAGKHFLIFI GIKWSSIIDCSLALAMGPPGGRS LAQSGLADRLANVASAVVDSTLRV DKSVLQSEESIVRLWMHEMQRVFY ADRLIFADVLSDKGVYEQITDMNA ISRVLRLPNGHCLLLGVGGSGRKS LLLEGGKDEKKRTFLFADTQLAHP CLSENLPTTKVSVYARFVKEARAN EWPSEALLSVAAVQLNAGDVTDVM YVTPTSYLSLLSNFKVMAAAKRFF VLVQKKAEIQSMMERLTVDRKEAA

Further analysis of the NOV85a protein yielded the following properties shown in Table 85B.

	Table 85B. Protein Sequence Properties NOV85a				
PSort analysis:	0.8800 probability located in nucleus; 0.3562 probability located in microbody (peroxisome); 0.1671 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV85a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 85C.

	Table 85C. Geneseq Results for NOV85a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV85a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79863	Human protein SEQ ID NO 3509 - Homo sapiens, 2127 aa. [WO200157190-A2, 09-AUG-2001]	6021287 168847	218/692 (31%) 347/692 (49%)	1e-89	
AAM79862	Human protein SEQ ID NO 3508 - Homo sapiens, 2127 aa. [WO200157190-A2, 09-AUG-2001]	6021287 168847	218/692 (31%) 347/692 (49%)	1e-89	
AAM78879	Human protein SEQ ID NO 1541 - Homo sapiens, 2143 aa. [WO200157190-A2, 09-AUG-2001]	6021287 108787	218/692 (31%) 347/692 (49%)	1e-89	
AAM78878	Human protein SEQ ID NO 1540 - Homo sapiens, 2067 aa. [WO200157190-A2, 09-AUG-2001]	6021287 108787	218/692 (31%) 347/692 (49%)	1e-89	
AAM80293	Human protein SEQ ID NO 3945 - Homo sapiens, 1774 aa. [WO200157190-A2, 09-AUG-2001]	9101293 33405	153/393 (38%) 227/393 (56%)	5e-70	

In a BLAST search of public sequence databases, the NOV85a protein was found to have homology to the proteins shown in the BLASTP data in Table 85D.

	Table 85D. Public BLASTP Results for NOV85a				
Protein Accession Number	Protein/Organism/Length	NOV85a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
AAL37427	CILIARY DYNEIN HEAVY CHAIN 7 - Homo sapiens (Human), 4024 aa.	6281293 19752655	271/692 (39%) 395/692 (56%)	e-132	
Q27812	DYNEIN HEAVY CHAIN ISOTYPE 7B (EC 3.6.1.3) - Tripneustes gratilla (Hawaian sea urchin), 1314 aa (fragment).	6011247 6541310	264/667 (39° o) 389/667 (57° o)	e-127	
Q9MBF8	1 BETA DYNEIN HEAVY CHAIN - Chlamydomonas reinhardtii, 4513 aa.	6111293 24863159	257/693 (37%) 377/693 (54%)	e-117	
Q9VJC6	DHC36C PROTEIN - Drosophila melanogaster (Fruit fly), 4010 aa.	596 1275 19132604	249/699 (35%) 383/699 (54%)	e-116	
Q9VWZ3	DHC16F PROTEIN - Drosophila melanogaster (Fruit fly), 4081 aa.	6181301 20222709	248/704 (35%) 380/704 (53%)	e-108	

PFam analysis predicts that the NOV85a protein contains the domains shown in the Table 85E.

Table 85E. Domain Analysis of NOV85a					
. Pfam Domain	NOV85a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
pkinase: domain 1 of 1	4250	80/286 (28%) 190/286 (66%)	6.8e-62		
DEAD: domain 1 of 1	613637	7/25 (28%) 22/25 (88%)	0.83		
dNK: domain 1 of 1	8651020	32/179 (18%) 101/179 (56%)	6.8		

Example 86.

The NOV86 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 86A.

Table 86A. NOV86 Sequence Analysis				
	SEQ ID NO: 241	1420 bp		
NOV86a, CG59628-01 DNA Sequence	CGAAAGTCATGTTACCCAACACC TGCAAGCCGTGCATTGCAACACC TGCAAGCCGTGCATTGCAACACC ATTGTTATTGCTGCAAAGACCGC CTGCTGCTGCAAGAAATCAACCA GAGAGATGAACACCAACAACACCA CTACCAACACAACA	EGGAGGCTGC SCTATTGCATT CCAGCCACAT AGTTGGAGGAA AGTGCATTGCAT	CIGTCGCCGCCACCTCCTCTGATCTA CCAGGATGTACAGGTTTTTATCACAGG CCAAAACTGTACAGGTCCCAAATCTCCCAAAACCTTCTAGGCACAATCTTATA AAGGCCTTGCCATGATATTTGTTGATGT ACAAAACCTTCAGGACAATCTTGATGT ACACCAGAGGCACAATCTTGATGACACC AACCCAGAGGCACCTACCTTGCATC AAGTTGCCATTATCCCCAATATCAGT ACAGCACTGTGTTATACCATTGCTA ACAGCACTGTGTTATACCATTGCTA ACAGCACTGTGTTATACAGTAGCACACCTTCCATC ACAGCACTGTCTTATACCATTGCTA ACACTGCTGCTATGATATCCTT ACTTTGCATTAGATATCCTTGATCAATATCCTT ACTTTGCATTGCA	
	ORF Start: ATG at 67	ORF Stor	o: TGA at 1321	
	SEQ ID NO: 242	418 aa	MW at 45394.2kD	
NOV86a, CG59628-01 Protein Sequence	MLPNTGRLAGCTVFITGASRGIGKAIALKAAKDGANIVIAAKTAQPHPKLLGTIYTAA EEIEAVGGKALPCIVDVRDEQQISAAVEKAIKKFGGIDILVNNASAISLTNTLDTPTK C RLDLMMNVNTRGTYLASKACIPYLKKSKVAHILNISPPLNLNPVWFKQHCAYTIAKYG MSMYVLGMAEEFKGEIAVNALWPKTAIHTAAMDMLGGPGIESQCRKVDIIADAAYSIF QKPKSFTGNFVIDENILKEEGIENFDVYAIKPGHPLQPDFFLDEYPEAVSKKVESTGA VPEFKEEKLQLQPKPRSGAVEETFRIVKDSLSDDVVKATQAIYLFELSGEDGGTWFLD LKSKGGNVGYGEPSDQADVVMSMTTDDFVKMFSGKLKPTMAFMSGKLKIKGNMALAIK LEKLMNQMNARL			

Further analysis of the NOV86a protein yielded the following properties shown in Table 86B.

	Table 86B. Protein Sequence Properties NOV86a				
PSort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.5000 probability located in microbody (peroxisome); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV86a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 86C.

	Table 86C. Geneseq Results for NOV86a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV86a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG81260	Human AFP protein sequence SEQ ID NO:38 - Homo sapiens, 418 aa. [WO200129221-A2, 26-APR-2001]	1418 1418	418/418 (100%) 418/418 (100%)	0.0	
AAB84367	Amino acid sequence of human alcohol dehydrogenase 21612 - Homo sapiens, 418 aa. [WO200144446-A2, 21-JUN-2001]	1418 1418	418/418 (100° o) 418/418 (100° o)	0.0	
AAG81258	Human AFP protein sequence SEQ ID NO:34 - Homo sapiens, 383 aa. [WO200129221-A2, 26-APR-2001]	1382 1382	382/382 (100° v) 382/382 (100° 6)	0.0	
ABB10251	Human cDNA SEQ ID NO: 559 - Homo sapiens, 278 aa. [WO200154474-A2, 02-AUG-2001]	141418 1278	271/278 (97%) 274/278 (98%)	e-156	
AAU23020	Novel human enzyme polypeptide #106 - Homo sapiens, 278 aa. [WO200155301-A2, 02-AUG-2001]	141418 1278	271/278 (97%) 274/278 (98%)	e-156	

In a BLAST search of public sequence databases, the NOV86a protein was found to have homology to the proteins shown in the BLASTP data in Table 86D.

Table 86D. Public BLASTP Results for NOV86a				
Protein Accession Number	Protein/Organism/Length	NOV86a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
CAC38510	SEQUENCE 37 FROM PATENT WO0129221 - Homo sapiens (Human), 418 aa.	1418 1418	418/418 (100° a) 418/418 (100° a)	0.0
CAC38508 SEQUENCE 33 FROM PATENT WO0129221 - Homo sapiens (Human), 383 aa.		1382 1382	382/382 (100%) 382/382 (100%)	0.0
Q99LV2	HYPOTHETICAL 54.9 KDA	1418	355/496 (71%)	0.0

Q9BT58	SIMILAR TO RIKEN CDNA 2610207116 GENE - Homo sapiens (Human), 345 aa.	163418 90345	253/256 (98%) 254/256 (98%)	e-143
Q9VB10	CG5590 PROTEIN (GH01709P) - Drosophila melanogaster (Fruit fly), 412 aa.	4418 3412	238/422 (56%) 300/422 (70%)	e-128

PFam analysis predicts that the NOV86a protein contains the domains shown in the Table 86E.

Table 86E. Domain Analysis of NOV86a				
Pfam Domain	NOV86a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
beta-lactamase: domain 1 of	222236	4/15 (27%) 14/15 (93%)	6.5	
adh_short: domain 1 of 1	9321	74/339 (22%) 211/339 (62%)	2.4e-29	
SCP2: domain 1 of 1	306415	41/114 (36%) 87/114 (76%)	1.5e-25	

Example 87.

The NOV87 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 87A.

Table 87A. NOV87 Sequence Analysis			
	SEQ ID NO: 243	888 bp	
NOV87a, CG59516-01 DNA Sequence	AATATGACTCCCAGAAGGAGG CTCCATCCGCCCCGACTTCCA GTGAACAAACTGCAGCCGGC CACCAGCTAGAAAACCTCTCC CGTGGACCTATTTGAGGCCAA GTGTCTCTTCTCGCCTGGCA ACATCCGTGACAAGTACTCAC GCTGTGCGTCATCCGGCTGCA GCATACGTCACGAGGAGGCAT ACAACTCGACCATCAGCTCC GACGGCTCCCGGGAACCAGTC GAGAACTCCTCCATGTCCCTC AGGTCTTTGGCCTAGGCCGCC	CAGGCTCTTGGCGGACGTCCAGAACAGGCTTCTGTTCA CAGAGGCTCCGCAGCTGGATCAAGGGATTCACTGGCCT AGAAGGGCCTGAAGGACGGGATTATTTTATGCACACTC CTCAGTCCCCAAGATCAACGGCTTCCGTGTAGAACTGG CAACATCCTCAAGGCAATGGTCAGCTACGGCATGATCC ACGACCTGTTTAGAGGTAGGGAACAATATGCAGGTGCGG AGGAAGGCCAAGACTACAAGACCACCACCATGAAGGCCAG AGATTACCAACAAATGTGCCAGCCAGTCAGGCATGACC ACTCTTACGACCCAAGAACCGCCAGTCAGGCATGACC ACGATGGTTACAACAAATTGGCCAGCCAGTCAGGCATGACC ACGATGGTTACAACAAATTGGCCAGCCAGCCAGTGGGCAT AGGATGGGTACAAACAAGTGGCCAGCCAGCCAGTGGCAT AGACATCTATGACACCAAGTTGGCAATCACAGCAGAC CAAATATATCAACCCAAGTTACCAGCCGGTTGGCCCAGT CCGGCAACTGCCCCAGGGCCAGGCGAGCCAGT	
	ORF Start: TTC at 1	ORF Stop: TAG at 865	
,	There is the sign of the	1000 1111 . 21021 211	

CSSS (6-) Protein Sequencema Lacada as ta digital in the selestiment (984.) I sugarise de com-

	AYVTRRHLYDPKNRILPPMDNSTISLRMGTNKCASQVGMTAPGNQWHIYDTKLGIDKC ENSSMSLKMGYTQVANHSRQVFGLGRQIYEPKYQPGGPVAHGAPSAGNCPGPGEAP		
	SEQ ID NO: 245	888 bp	
NOV87b, CG59516-02 DNA Sequence	TTCAACAAGGGCCCCTCCTACAGGCTCTTGGCGGACGTCCAGAACAGGCTTCTGTT AATATGACTCCCAGAAGGAGGCAGAGCTCCGCAGCTGGATCAAGGGATTCACTGGC		CAGCTGGATCAAGGGATTCACTGGCCT AAGGACGGGATTATTTTATGCACACTC AGATCAACGGCTTCCGTGTAGAACTG AGGCAATGGTCAGCTACGGCATGATCC BAGAGTGGGAACAATATGCAGGTGCGG AGACTAAGGGCCTGCAGAGGCCAG CTTCAACGACACCACCATGAAGGCCAG AAATGTGCCAGCCAGTCAGGCATGACC ACAAGAACCGCATCCCCCCCATGG AAACAAGTGCGCCAGCCAGGTGGGCAT BACACCAAGTTGGGAATCCACAAGAGAC ACCCAAGTTGGGAATCACACAGCAGC ACCCAAGTACCAGCCAGT
	ORF Start: TTC at 1	ORF Stop	o: TAG at 865
	SEQ ID NO: 246	288 aa	MW at 31831.2kD
NOV87b, CG59516-02 Protein Sequence	FNKGPSYRLLADVQNRLLFKYDSQKEAELRSWIKGFTGLSIRPDFQKGLKDGIILCTL VNKLQPGSVPKINGFRVELAPARKPLQHPQGNGQLRHDPVDLFEANDLFESGNNMQVR VSLLALAGKAKTKGLQSGVDIRDKYSEKQNFNDTTMKARLCVIRLQIINKCASQSGMT AYVTRRHLYDPKNRILPPMDNSTISLRMGTNKCASQVGMTAPGNQWHIYDTKLGIDKC ENSSMSLKMGYTQVANHSRQVFGLGRQIYEPKYQPGGPVAHGAPSAGNCPGPGGAP		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 87B.

Table 87B. Comparison of NOV87a against NOV87b.			
Protein Sequence	NOV87a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV87b	1288 1288	288/288 (100%) 288/288 (100%)	

Further analysis of the NOV87a protein yielded the following properties shown in Table 87C.

Table 87C. Protein Sequence Properties NOV87a			
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.2110 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV87a protein against the Geneseq database, a proprietary database

	Table 87D. Geneseq Results for NOV87a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV87a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAR94888	Carponin - Homo sapiens, 297 aa. [JP08073380-A, 19-MAR-1996]	1265 6272	136/269 (50%) 176/269 (64%)	7e-63	
AAR72588	Carponin protein - Homo sapiens, 297 aa. [WO9509010-A, 06-APR-1995]	1265 6272	136/269 (50%) 176/269 (64%)	7e-63	
AAB43807	Human cancer associated protein sequence SEQ ID NO:1252 - Homo sapiens, 163 aa. [WO200055350-A1, 21-SEP-2000]	164273 4116	67/113 (59%) 82/113 (72%)	6e-30	
AAM73074	Human bone marrow expressed probe encoded protein SEQ ID NO: 33380 - Homo sapiens, 71 aa. [WO200157276-A2, 09-AUG-2001]	157225 271	49/70 (70%) 55/70 (78%)	4e-21	
AAM60434	Human brain expressed single exon probe encoded protein SEQ ID NO: 32539 - Homo sapiens, 71 aa. [WO200157275-A2, 09-AUG-2001]	157225 271	49/70 (70%) 55/70 (78%)	4e-21	

In a BLAST search of public sequence databases, the NOV87a protein was found to have homology to the proteins shown in the BLASTP data in Table 87E.

Table 87E. Public BLASTP Results for NOV87a				
Protein Accession Number	Protein/Organism/Length	NOV87a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q08094	Calponin H2, smooth muscle - Sus scrofa (Pig), 296 aa (fragment).	1287 6296	219/291 (75%) 237/291 (81%)	e-116
Q99439	Calponin H2, smooth muscle (Neutral calponin) - Homo sapiens (Human), 309 aa.	1288 6297	218/292 (74° o) 235/292 (79° o)	e-115
Q08093	Calponin H2, smooth muscle - Mus musculus (Mouse), 305 aa.	1288 6293	214/291 (73%) 231/291 (78%)	e-112
50 C C C C C C C C C C C C C C C C C C C	CALPONIN HE Now the Cont.	1 7/.0	170 773 (650)	(O)

MGC:8135) - Mus musculus	1230	179/233 (76%)	
(Mouse), 242 aa.			

PFam analysis predicts that the NOV87a protein contains the domains shown in the Table 87F.

	Table 87F. Domain Analysis of NOV87a				
Pfam Domain	NOV87a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
CH: domain 1 of 1	23123	27/124 (22%) 65/124 (52%)	0.068		
calponin: domain 1 of 2	159183	17/26 (65%) 21/26 (81%)	3.8e-07		
calponin: domain 2 of 2	198223	15/26 (58%) 19/26 (73%)	3e-08		

Example 88.

The NOV88 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 88A.

Table 88A. NOV88 Sequence Analysis			
	SEQ ID NO: 247	2213 bp	
NOV88a, CG59671-02 DNA Sequence	CGTGAGGCACCCACTTGGGA CGCACCCTGGGCCGCGCGTGCG AGCCCGCGCGCGCGCGTGCG GGGCAGCGCCCCTACC AGTGCACAGGCAGCCCCTACC CGGCTGGTTCCTGGGAGCCCCTACC CGGCTGGTTCCTGGGAGGCCT TGAGGATCACCTACACGGAGTCCCCGAGATCCCCGAGAGCTT TGAGGATCACCTACACGGAG GCTGTGCAGAGACTCCTTACACCAAGACT TATCACCTTCAACCAAGACT GATGAGGCTGTGAAGACACTGC ACACAAAGGCTCCACATGGGG GGACCCTGTTTGCGCCCCAGA ACCTCAGGGAGCACTCACAC CTGTGTGCCGCCTGACTCACA CTGTGTGCGCCCAGAATCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGC	2213 bp GCACAGAGAGCTCAGGTAGCCTGCCTAGATGGCGGCG GGGAGGCTGCTGGGGCAGCCTGCGAGGCTCTCGGGGC GGGTGAGCGTCGCGCAGGCCTCCGAGGCCTCCGGGCACCCTC AGCAGCAGCACCACAGCCAGGCCTCGGGACCCTC ACACCGTCTGGGACCTCCACACCCAGGCCTCGCACACCCTCCACACCCGCTGGACCTCCACACCGCTCTGGACCACCTCCACACCGCTTCTGGACCAGCATGTT GCTTAAATGTCTCTGTCAACTGCTTGGACCAGCATGTT GCTTTGATCTGGGACGCGAACCGCAACACGCTGAA GGACCACTGTGCCATCACACCGCTGAACGCAACACGCTGAA GGACCACTGTGCCATCACATGCCCATCTTG TGGCTGGAGATCAGCACTGCAACACGCTGAA CCCACCGTGTGCACACAGTCACCACACAGTCATTG TCCCGAGGATCAGCATCTCCTGTTGGACCACACAGCACAGACAG	
	ATGGCGATGAGGCCCTTCTTT TCGTGGAGGGCAGCAACGTCT	ACGGCCCTC3GAAGAAGGGGCGGAAATCCTCCCTGCC GGCATCGTCCCCGTCCTCATGGATGAGAAGGGCAGCG CCGGGGCCCTGTGCATCTCCCAGGCCTGCCGGGCAT	

	GTGACTCAGATGTGGTGGTGCAGGAGCTCAAGTCCATGGTGGCCACCAAGATCGCCAA ATATGCTGTGCCTGATGAGATCCTGGTGGTGAAACGTCTTCCAAAAACCAGGTCTGGG AAGGTCATGCGGCGGCTCCTCAGGAAGATCATCACTAGTGAGGCCCAGGACCTGGGAG ACACTACCACCTTGGAGGACCCCAGCATCACCAGAGATCCTGAGTGTAACCAGAA GTGCAAGGACAAGCAGCCTGCTTAAGTGAGCTGCACCTTGTGGGGTTCTTGGGAT GGGCGGGCACCCAAGCCCTGGCTTGTCCTTCCCAGAAGGTACCCCTGAGGTTGGCGTC TTCCTACGT		
	ORF Start: ATG at 50	ORF Stop	p: TGA at 2117
	SEQ ID NO: 248	689 aa	MW at 74855.9kD
NOV88a, CG59671-02 Protein Sequence	PALSAQAAREPAAFWGPLARDTI QHVRKSPESVALIWERDEPGTEV SPLAVAAMLACARIGAVHTVIFA KIVDEAVKHCPTVQHVLVAHRTL MLYTSGSTGMPKGIVHTQAGYL GPLCNGATSVLFESTPVYPNAGE RSSLRTLGSVGEPINCEAWEWLH LPAMAMRPFFGIVPVLMDEKGSV KAYPGYYFTGDGAYRTEGGYYQI	.VWDTPYHTVW VRITYRELLE? GGFSAESLAGF IN KVHMGDLDV .YAALTHKLV! RRVVGDSRCTI IVVEGSNVSGAI .TGRMDDVINI GDSDVVVQELE	APRRAASGPSGSAPAVAAAAQFGSY WDCDFSTGKIGWFLGGQLNVSVNCLD TTCRLANTLKRHGVHRGDRVAIYMPV RINDAKCKVVITFNQGLRGGRVVELK VPLEQEMAKEDPVCAPESMGSEDMLF FDHQPGDIFGCVADIGWITGHSYVY LNQFYGAPTAVRLLLKYGDAWVKKYD LVDTWWQTETGGICIAPRPSEEGAEI LCISQAWPGMARTIYGDHQRFVDAYF LSGHRLGTAEIEDAIADHPAVPESAV KSMVATKIAKYAVPDEILVVKRLPKT LAEILSVYQKCKDKQAAAK

Further analysis of the NOV88a protein yielded the following properties shown in Table 88B.

	Table 88B. Protein Sequence Properties NOV88a
PSort analysis:	0.6500 probability located in plasma membrane; 0.6000 probability located in nucleus; 0.4340 probability located in mitochondrial inner membrane; 0.3000 probability located in Golgi body
SignalP analysis:	Likely cleavage site between residues 23 and 24

A search of the NOV88a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 88C.

Table 88C. Geneseq Results for NOV88a				
Geneseq	Protein/Organism/I ength [Patent	NOV88a Residues/		Expect

~101H

~910

AAU23058	Novel human enzyme polypeptide #144 - Homo sapiens, 664 aa. [WO200155301-A2, 02-AUG-2001]	26689 1664	663/664 (99%) 663/664 (99%)	0.0
AAB34712	Human secreted protein encoded by DNA clone vo9 1 - Homo sapiens, 518 aa. [WO200055375-A1, 21-SEP-2000]	172689 1518	518/518 (100%) 518/518 (100%)	0.0
AAU23050	Novel human enzyme polypeptide #136 - Homo sapiens, 479 aa. [WO200155301-A2, 02-AUG-2001]	224689 18479	459/466 (98%) 461/466 (98%)	0.0
ABB12253	Human acetate-coA ligase homologue, SEQ ID NO:2623 - Homo sapiens, 446 aa. [WO200157188-A2, 09-AUG-2001]	1446 1446	446/446 (100° σ) 446/446 (100° σ)	0.0
AAR23968	facA gene product - Penicillium chrysogenum, 669 aa. [WO9207079-A, 30-APR-1992]	58684 45669	305/629 (48%) 407/629 (64%)	e-175

In a BLAST search of public sequence databases, the NOV88a protein was found to have homology to the proteins shown in the BLASTP data in Table 88D.

	Table 88D. Public BLASTP Results for NOV88a				
Protein Accession Number	Protein/Organism/Length	NOV88a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q99NB1	ACETYL-COA SYNTHETASE 2 - Mus musculus (Mouse), 682 aa.	1687 1680	599/687 (87%) 638/687 (92%)	0.0	
Q9BEA3	ACETYL-COA SYNTHETASE 2 - Bos taurus (Bovine), 675 aa.	1689 1675	575/689 (83%) 625/689 (90%)	0.0	
Q9NUB1	DJ568C11.3 (NOVEL AMP-BINDING ENZYME SIMILAR TO ACETYL-COENZYME A SYNTHETHASE (ACETATE-COA LIGASE)) - Homo sapiens (Human), 478 aa (fragment).	212689 1478	478/478 (100%) 478/478 (100%)	0.0	
Q96J11	KIAA1846 PROTEIN - Homo sapiens (Human), 354 aa (fragment).	336689 1354	354/354 (100° o) 354/354 (100° o)	0.0	
Q9HV66	ACETYL-COENZYME A SYNTHETASE - Pseudomonas	58675 24639	326/619 (52° o) 433/619 (69° o)	0.0	

PFam analysis predicts that the NOV88a protein contains the domains shown in the Table 88E.

Tat	ole 88E. Domain Analy	sis of NOV88a	
Pfam Domain	NOV88a Match Region	Identities/ Similarities for the Matched Region	Expect Value
AMP-binding: domain 1 of 1	142580	121/441 (27%) 341/441 (77%)	7.1e-117

Example 89.

The NOV89 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 89A.

Table 89A. NOV89 Sequence Analysis			
	SEQ ID NO: 249	1268 bp	
NOV89a, CG56870-01 DNA Sequence	TTATCTGACCTCATGGATGAACT TAAATGATAAGAATGGTACAAGA AGAAACAACTCATGGTACGAGA AGAACAACTCATGGTTGGTCGCCCCAGTTATACTAACATATCATGA TCTTTAACTTTGAGGATATCCATGA TGCCCCAGGCCAGCAGGAAGGTC ATGGATGAGCTTGTGGAGTTGCAAACT TCATTGGATTGG	GTTACTGATTTATTCTTGAGATTCCTCTACTCTCG TCAGGATGTTCAGCTCACAGAGATCAAAACCACTTC LAACTTCCAGGACTTTGACTGTCAGGAACATGATAT CACGTCACTATAAGAGGCTTACCCAAAGGAAACAGA LCATTGGCCTCAACCGTAAATCCTGTTTCAATGCAT GAGATCACCCAGCACTTACTCTGTCTCATGTGGA CCCTCCTTTTCCCAACAGGTATCAGTACCCCACA CCCTCCTGTTCTTACCCACCTAAGCCTGAAAAGCA CGCTCCTGTTCTTACCCACCTAAGCCTGAAAAGCA CCCTCCTGTCCTTACCCACCTAAGCCTGAAAAGCA CCTCGTGTACATCCTCAGCAGATTTGCACTCAACCA CCTCTGGCCTGACAACCAATGTTGGGACTTATTT CCAACCAAGACAACCTGCAGCTCTTCTTGAATTCC LGATTACAGGCCAACCTGCAGCTCTTCTTGAATTCC CCAGGAAAGACCATACTGGGCCAAAATGATAACA CCCTTTCTGCTGGTAGGGGGACAATTCGCCTGCAGT CCCCGCCTGAACCCTATAAATACAACTTTGCTAAAC CCCAGGTAGTTCAGCCTGGGAAAATCCACCAGGCCT CCCAGGTAGCCCTGTCCCAGCATGACTCCCCAGGCCT CCGAGTAGCCCTGCTGCCAGCATGACTCCCCTGAG CCAGGTAGCCCTCGCTCTGCAGAAAGTCCCCTTCAGC CCAGGTAGCCCTCGCTCTGCAGCATGACTCCCCTGAG CCAGGTAGCCCTCAGAAATCCATCCCCTGAG CCAGGTAGCCCTCAGAAATCCATCCCCTGAG CCAGGTAGCCCTCAAAATCCAACCCTTCAGC CCAGGTAGCCCTCACAGAATCCCCTTCAGC CCAGGTAGCCCTCAGAAATCCACTTCCCCTGAG CCAGGTAGCCCTCAAAATCCAATCC	
	ORF Start: ATG at 71	ORF Stop: TAA at 1196	
1	SEQ ID NO: 250	375 aa MW at 41413.3kD	
NOV89a, CG56870-01 Protein Sequence	MDELQDVQLTEIKPLLNDKNGTRNFQDFDCQEHDIETTHGVVHVTIRGLPKGN TYHDIGLNRKSCFNAFFNFEDMQEITQHFAVCHVDAPGQQEGAPSFPTGYQYF NCC AEMLPPVLTHLSLKSIIGIGVGAGAYILSRFALNHPELVEGLVLINVDPCAKG ASKLSGLTTNVVDIILAHHFGQEELQANLDLIQTYRMHIAQDINQDNLQLFLN RDLEIERPILGQNDNKSKTLKCSTLLVVGDNSPAVEAVVECNSRLNPINTTLL GGLPQVVQPGKLTEAFKYFLQGMGYVPSASMTRLARSRTHSTSSSLGSGESPF SNQSDGTQESCESPDVLDRHQTMEVSC		
	SEQ ID NO: 251	1175 bp	
NOV89b, CG56870-02 DNA Sequence	TTCTAAATGATAAGAATGGTACA	LACTTCAGGATGTTCAGCTCACAGAGATCAAACCAC LAGAAACTTCCAGGACTTTGACTGTCAGGAACATGA LTCCACGTCACTATAAGAGGCTTACCCAAAGGAAAC	

	TGGATTGACTGGGCAGCTTCCA. TTTTGGCTCATCACTTTGGCCAC CTACAGAATGCATATTGCCCAAC TCCTACAATGGACGCAGAGACCCACAAATCAAAAAAAACATTAAAGTG AGTTGAGGCTGTGGTCGAATGCAAGTGCGGACTGTGGGGGACCCCTTCAAGTACTTTTTGCAGGGCCGCCCGATCACGAACCCACTCAAGCCCGCTCACCACCACCCAC	AACTCTCTGG GGAAGAGTTA GACATCAACC IGGAGATCGA ITCTACTTTA AATTCCCGCC IGCCCCAGGT AATGGGCTAC ACCTCGAGTA ACTCGAGTA	TTAATGTTGACCCTTGCGCTAAAGGC CCTGACAACCAATGTTGTGGACATTA CAGGCCAACCTGACCTG
	ORF Start: ATG at 16	ORF Sto	p: TAA at 1141
	SEQ ID NO: 252	375 aa	MW at 41376.2kD
NOV89b, CG56870-02 Protein Sequence	MDELQDVQLTEIKPLLNDKNGTRNFQDFDCQEHDIETTHGVVHVTIRGLPKGNRPV		
	SEQ ID NO: 253	1232 bp	
NOV89c, CG56870-03 DNA Sequence	ACTTCTTTCTTTTCTGTTTCAGAGTTACTGATTTATTCTTGAGATTCCTCTCTCT		TCAGCTCACAGAGATCAAACCACTTC CATGGTGTGGTCCACGTCACTATAAG IAACATATCATGACATTGGCCTCAAC IGAGGATATGCACAACACCACCCACCCAGC CAGCAGGAAGGTGCACCCCTCTTTCCC IGGCTGAAATGCTGCCTCCTTCTT IGGAGTTGGAGCTGGAGCTTACATCC GTGGAGGCCTTGTGCTCATTAATGT CAGCTTCCAAACTCTCTGGCCTGACA ATTGGCCAGGAGAGATTACAGCCA ATTAAAGTGTTCTACTTTACTGTGG GTGAATGCAATCCCCCCTGAACCC ATTAAAGTGTTCTACTTTACTGTGG GTGGAATGCAATCCCGCTGAACCC ATTAAAGTGTCCCCCCGCTGAACCC ATTGAGGGAATGCCCAGTACTCAG CCCACTCAACCCAGGTAGTCCAG CCCACTCAACCTCGAGTAGCCTCGT CCCACCTCAACCTCGAGTAGCCTCGT CCCACCTCAACTCGAGTAGCCTCGT CCCACCTCAACTCGAGTAGCCTCAA
	ORF Start: ATG at 71	:	
	SEQ ID NO: 254	363 aa	MW at 39967.8kD
NOV89c, CG56870-03 Protein Sequence	MDELQDVQLTEIKPLLNDKEHDIETTHGVVHVTIRGLPKGNRPVILTYHDIGLNHK: FNAFFNFEDMQEITQHFAVCHVDAPGQQEGAPSFPTGYQYPTMDELAEMLPPVLTHI LKSIIGIGGAGAYILSRFALNHPELVEGLVLINVDPCAKGWIDWAASKLSGLTTNI DIILAHHFGQEELQANLDLIQTYRMHIAQDINQDNLQLFLNSYNGRRDLEIERPIL NDNKSKTLKCSTLLVVGDNSPAVEAVVECNSRLNPINTTLLKMADCGGLPQVVQPGI TEAFKYFLQGMGYVPSASMTRLARSRTHSTSSSLGSGESPFSRSVTSNQSDGTQESG SPDVLDRHOTMEVSC		SFPTGYQYPTMDELAEMLPPVLTHLS (NVDPCAKGWIDWAASKLSGLTTNVV QDNLQLFLNSYNGRRDLEIERPILGQ LNPINTTLLKMADCGGLPQVVQPGKL
	SEQ ID NO: 255	1220 bp	
NOV89d, CG56870-04 DNA Sequence	ACTCTTTCTTTTCTGTTTCAGAGTTACTGATTTATTCTTGAGATTCCTCTACTCTCG TTATCTGACCTCATGGATGAACTTCAGGATGTTCAGCTCACAGGAGATCAAACCACTTC TAAATGATAAGAATGGTACAAGAAACTTCCAGGACTTTGACTGCAGGAACAGTATA AGAACCAACTCCATGGTGGTCCACGTCACTATAAGAGGCTTACCCAAAGGAAACAGA CCAGTTATACTAACATATCATGACATTGGCCTCAACCGTAAATCCTGTTTCAATGCAT TCTTTAACTTTGAGGATATGCAAGAGATCACCCAGCACTTTGCTGTCTGT		

	TGAGGCTGTGATGGCGGACTGTGACCGAGGCCTTCAAGTACTTTTCCTCGGCTCGCCCGATCACGAACCTCCCTTCAGCCGGTCTGTCACCATCCCCTGATGACAGACA	EGGGGACTGC rGCAGGGAAT CCACTCAACC AGCAATCAGT ACCAGACCAT	GTGGTAGGGGACAATTCGCCTGCAGT CCCAGGTAGTTCAGCCTGGGAAGTTC GGGCTACACACCATCTGCCAGCATGA TCGAGTAGCCTCGGCTCTGGAGAAAG CAGATGGAACTCAAGAATCCTGTGAG GGAGGTGTCCTGCTAAGCAGATGCTC ATGACCACTCCATAATAAACATTTC
	ORF Start: ATG at 71	ORF Stop	p: TAA at 1148
	SEQ ID NO: 256	359 aa	MW at 39652.2kD
NOV89d, CG56870-04 Protein Sequence	MDELQDVQLTEIKPLLNDKNGTRNFQDFDCQEHDIETTHGVVHVTIRGLPKGNRPVIL TYHDIGLNRKSCFNAFFNFEDMQEITQHFAVCHVDAPGQQEGAPSFPTGYQYPTMDEL AEMLPPVLTHLSLKSIIGIGVGAGAYILSRFALNHPELVEGLVLINVDPCAKGWIDWA ASKLSGLTTNVVDIILAHHFGQEELQANLDLIQTYRMHIAQDINQDNLQLFLNSYNGR RDLEIERPILGQNDNKSKTLKCSTLLVVGDNSPAVEAVMADCGGLPQVVQPGKFTEAF KYFLQGMGYTPSASMTRLARSRTHSTSSSLGSGESPFSRSVTSNQSDGTQESCESPDV LDRHQTMEVSC		
	SEQ ID NO: 257	970 bp	
NOV89c, CG56870-05 DNA Sequence	ATGGATGAACTTCAGGATGTTCAGCTCACAGAGATCAAACCACTTCTAAATGATAAGA ATGGTACAAGAAACTTCCAGGACTTTGACTGTCAGTATCAGTACCCCACAATGATAGA GCTGGCTGAAATGCTGCCTCCTGTTCTTACCCACCTAAGCCTGAAAAGCATCATTGGA ATTGGAGTTGGAGCTGGAGCTTACATCCTCAGCAGATTTGCACTCAAACCATCCAGAGC TTGTGGAAGGCCTTGTGCTCATTAATGTTGACCCTTGCGCTAAAGGCTGGATTGACTG GCCAGCTTCCAAACCTCTCTGGCCTGACCAAACCAA		
	ORF Start: ATG at 1	ORF Stop	p: TAA at 898
	SEQ ID NO: 258	299 aa	MW at 32956.9kD
NOV89e, CG56870-05 Protein Sequence	MDELQDVQLTEIKPLLNDKNGTRNFQDFDCQYQYPTMDELAEMLPPVLTHLSLKSIIG IGVGAGAYILSRFALNHPELVEGLVLINVDPCAKGWIDWAASKLSGLTTNVVDIILAH CHGQEELQANLDLIQTYRMHTAQDINQDNLQLFLNSYNGRRDLEIERPILGQNDNKSK TLKCSTLLVVGDNSPAVEAVVECNSRLNPINTTLLKMADCGGLPQVVQPGKLTEAFKY FLQGMGYVPSASMTRLARSRTHSTSSSLGSGESPFSRSVTSNQSDGTQESCESPDVLD RHQTMEVSC		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 89B.

Table 89B. Comparison of NOV89a against NOV89b through NOV89e.		
Protein Sequence	NOV89a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV89b	1375 1375	336/375 (89%) 338/375 (89%)

NOV89d	1375 1359	321/375 (85%) 321/375 (85%)
NOV89e	104375 28299	233/272 (85%) 233/272 (85%)

Further analysis of the NOV89a protein yielded the following properties shown in Table 89C.

	Table 89C. Protein Sequence Properties NOV89a
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1685 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV89a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 89D.

Table 89D. Geneseq Results for NOV89a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV89a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM94019	Human stomach cancer expressed polypeptide SEQ ID NO 108 - Homo sapiens, 363 aa. [WO200109317-A1, 08-FEB-2001]	1375 1363	360/375 (96%) 361/375 (96%)	0.0
AAG64392	Human reducing agent and tunicamycin-responsive protein 40 - Homo sapiens, 363 aa. [WO200155375-A1, 02-AUG-2001]	1375 1363	360/375 (96° o) 361/375 (96° o)	0.0
AAB94494	Human protein sequence SEQ ID NO:15186 - Homo sapiens, 363 aa. [EP1074617-A2, 07-FEB-2001]	1375 1363	360/375 (96%) 361/375 (96%)	0.0
AAU31598	Novel human secreted protein #2089 - Homo sapiens, 395 aa. [WO200179449-A2, 25-OCT-2001]	68374 1307	282/323 (87%) 286/323 (88%)	e-154

	T			
[EP1074617-A2, 07-FEB-2001]			1	i
1	Į.	F	1	

In a BLAST search of public sequence databases, the NOV89a protein was found to have homology to the proteins shown in the BLASTP data in Table 89E.

Table 89E. Public BLASTP Results for NOV89a				
Protein Accession Number	Protein/Organism/Length	NOV89a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9UGV2	NDRG3 protein - Homo sapiens (Human), 375 aa.	1375 1375	373/375 (99%) 374/375 (99%)	0.0
Q96PL8	NDR1-RELATED DEVELOPMENT PROTEIN NDR3 - Homo sapiens (Human), 375 aa.	1375 1375	372/375 (99%) 373/375 (99%)	0.0
Q9QYF9	NDRG3 protein (Ndr3 protein) - Mus musculus (Mouse), 375 aa.	1375 1375	358/375 (95%) 368/375 (97%)	0.0
AAH18504	SIMILAR TO N-MYC DOWNSTREAM REGULATED 3 - Mus musculus (Mouse), 388 aa.	1375 1388	359/388 (92%) 368/388 (94%)	0.0
Q96SM2	CDNA FLJ14759 FIS, CLONE NT2RP3003290, MODERATELY SIMILAR TO MUS MUSCULUS NDR1 RELATED PROTEIN NDR3 - Homo sapiens (Human), 363 aa.	1375 1363	360/375 (96%) 361/375 (96%)	0.0

PFam analysis predicts that the NOV89a protein contains the domains shown in the Table 89F.

Ta	ble 89F. Domain Analysi	s of NOV89a	
Pfam Domain	NOV89a Match Region	Identities/ Similarities for the Matched Region	Expect Value
		7.22.210	

ibhydrotasc domaiii . «

		142/239 (59%)	
Ndr: domain 1 of 1	22346	210/340 (62%) 311/340 (91%)	3.7e-211

Example 90.

The NOV90 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 90A.

Table 90A. NOV90 Sequence Analysis				
	SEQ ID NO: 259	632 bp		
NOV90a, CG59764-01 DNA Sequence	GAAACTATAAAGGGTCCGAACCCTCTTTTAAAGGATCCCAATGCATTCTTTGATCCC TCGCCGGTGCGACGGTACCACCATCCCAGCTGTGAGGCTGCCATCAACACCCACATCA GCCTGGAGCTCCACGCATCCTATGTTCACCTGTCCATGGCCTTCTACTTCGACCAGGA CGACGCGGCCCTGGAGCACTTTGACCGCTACTTCCTGCGCCAGTCGCAGGAGAAAAAGG GAGCACGCCCAGGAGCTGATGAGCCTGCAGAACCTGCGCGGTGGCCGATCTGCCTTC ATGACATCAGGAAGCCAGAGGCCAAGGCTGGGAGAGCGGCTCAACGCATGGAGTG CACCTTCCACCTGGAGAAGAACATCAACCAGAGCCTCCTGGAGCTGCACCAGCTGGCC AGGAGAACACCACCAGCTCTGCGACTTCCTGAGAACCAGC AGGCCAAGACCATCAAAGAGCTGGTGCCTACCTGAGCACCTTCCTGAACCAGC CCCGGAAGCCATCAAAGAGCTGCTACCTGAGCAACCTTCCTGAGAGCACCTCCCGGAAGCCCTCCTGAGCAGCTGCCCAAGACCAGC CCCGGAAGCCAGCCTGGCAGAGTACCTCTTTAACAAGCTCACCCTGGGCCGCAGCGAA CCACTTCCTTGAACCAGCCCAAGACCATCAAAGAGATTGGTGGCTACCT			
	ORF Start: ATG at 41	ORF Stop	o: TGA at 590	
	SEQ ID NO: 260	183 aa	MW at 21159.6kD	
NOV90a, CG59764-01 Protein Sequence	QSQEKREHAQELMSLQNLRGGR1	CLHDIRKPEC	VYYLSMAFYFDQDDAALEHFDRYFLR SQGWESGLKAMECTFHLEKNINQSLL LGGYLSNLHKMGAPEAGLAEYLFNKL	

Further analysis of the NOV90a protein yielded the following properties shown in Table 90B.

	Table 90B. Protein Sequence Properties NOV90a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.1400 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV90a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 90C.

Table 90C Geneseg Results for NOV90a					
*! t'> t'!	отени с возніми с прис татер	· wee	19 5 5 5 1	111	
tdentifier	Date			$+$ aru ϵ	
	and the second s				

		Match Residues	the Matched Region	
AAU07889	Polypeptide sequence for human hspG34a - Homo sapiens, 221 aa. [WO200166752-A2, 13-SEP-2001]	7180 45218	159/174 (91%) 164/174 (93%)	4e-91
AAU07890	Polypeptide sequence for human hspG34b - Homo sapiens, 183 aa. [WO200166752-A2, 13-SEP-2001]	6177 6177	125/172 (72%) 149/172 (85%)	6e-70
AAB90804	Human shear stress-response protein SEQ ID NO: 108 - Homo sapiens, 183 aa. [WO200125427-A1, 12-APR- 2001]	7180 7180	114/174 (65" ₀) 141/174 (80% ₀)	6e-64
AAR71567	Human monocyte growth factor - Homo sapiens, 183 aa. [JP07031482- A, 03-FEB-1995]	7180 7180	114/174 (65%) 141/174 (80%)	6e-64
AAU27741	Mouse full-length polypeptide sequence #66 - Mus musculus, 182 aa. [WO200164834-A2, 07-SEP-2001]	6180 6180	112/175 (64%) 141/175 (80%)	5e-63

In a BLAST search of public sequence databases, the NOV90a protein was found to have homology to the proteins shown in the BLASTP data in Table 90D.

Table 90D. Public BLASTP Results for NOV90a				
Protein Accession Number	Protein/Organism/Length	NOV90a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BXU8	Ferritin heavy polypeptide-like 17 - Homo sapiens (Human), 183 aa.	6177 6177	125/172 (72%) 149/172 (85%)	2e-69
P29389	Ferritin heavy chain (Ferritin H subunit) - Cricetulus griseus (Chinese hamster), 185 aa.	6180 10184	115/175 (65%) 142/175 (80%)	6e-64
A26886	ferritin heavy chain - chicken, 180 aa.	6180 5179	112/175 (64%) 142/175 (81%)	1e-63
P08267	Ferritin heavy chain (Ferritin H subunit) - Gallus gallus (Chicken), 179 aa.	6180 4178	112/175 (64%) 142/175 (81%)	1e-63
Q95MP7	FERRITIN - Canis familiaris (Dog),	6180	112/175 (64%)	2e-63

PFam analysis predicts that the NOV90a protein contains the domains shown in the Table 90E.

Table 90E. Domain Analysis of NOV90a				
Pfam Domain	NOV90a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Bacteriofer: domain 1 of 1	14159	35/172 (20%) 76/172 (44%)	6.7	
ferritin: domain 1 of 1	17173	92/161 (57%) 138/161 (86%)	4.7e-87	

Example 91.

The NOV91 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 91A.

Table 91A. NOV91 Sequence Analysis					
	SEQ ID NO: 261	487 bp			
NOV91a, CG59710-01 DNA Sequence	TGCTGTGCGTTGTCTTTCCTTCTCACTCAAGCCTGTGAAATCTCTCTTTCAGGTTGAAACCTGTGCATTGTTGTTCAGGTTGAAATCTTCTTTTCAGGTTGAAACACACAC				
	ORF Start: ATG at 65	ORF Sto	p: TAG at 431		
	SEQ ID NO: 262	122 aa	MW at 14385.4kD		
NOV91a, CG59710-01 Protein Sequence	MELHFKYLGAMQVADKKIEGEKHDMVRRGEIIDNDTEEEFYLRRLDAGLFVLQHICYI MAEICNANVPQIRQRVHQILNMRGSSIKIVRHIIKEYAENIGDGRSPEFRENEQKRIL GLLENF				

Further analysis of the NOV91a protein yielded the following properties shown in Table 91B.

Table 91B. Protein Sequence Properties NOV91a			
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)		
SignalP	No Known Signal Sequence Predicted		

A search of the NOV91a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 91C.

	Table 91C. Geneseq Results for NOV91a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV91a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU28058	Novel human secretory protein, Seq ID No 227 - Homo sapiens, 518 aa. [WO200166689-A2, 13-SEP-2001]	1122 397518	122/122 (100%) 122/122 (100%)	1e-66	
AAM93729	Human polypeptide, SEQ ID NO: 3689 - Homo sapiens, 563 aa. [EP1130094-A2, 05-SEP-2001]	1122 442563	122/122 (100%) 122/122 (100%)	1e-66	
AAB63116	Human secreted protein sequence encoded by gene 39 SEQ ID NO:126 - Homo sapiens, 401 aa. [WO200061748-A1, 19-OCT-2000]	1119 283401	119/119 (100%) 119/119 (100%)	le-64	
AAU28246	Novel human secretory protein, Seq ID No 603 - Homo sapiens, 360 aa. [WO200166689-A2, 13-SEP-2001]	1118 197316	104/120 (86%) 106/120 (87%)	2e-51	
ABB21673	Protein #3672 encoded by probe for measuring heart cell gene expression - Homo sapiens, 32 aa. [WO200157274-A2, 09-AUG-2001]	2455 132	32/32 (100%) 32/32 (100%)	1e-11	

In a BLAST search of public sequence databases, the NOV91a protein was found to have homology to the proteins shown in the BLASTP data in Table 91D.

	Table 91D. Public BLASTP Results for NOV91a					
Protein Accession Number	Protein/Organism/Length	NOV91a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q96KD2	TESTES DEVELOPMENT- RELATED NYD-SP19 - Homo sapiens (Human), 376 aa.	1122 255376	122/122 (100%) 122/122 (100%)	5e-66		
Q9H7A5	CDNA: FLJ21108 FIS, CLONE CAS05257 - Homo sapiens (Human), 225 aa.	1122 104225	121/122 (99%) 121/122 (99%)	5e-65		
O62703	P14 - Bos taurus (Bovine), 122 aa.	1122 1122	116/122 (95%) 119/122 (97%)	2e-62		
Q9CWL8	5730471K09RIK PROTEIN - Mus musculus (Mouse), 563 aa.	1122 442563	115/122 (94%) 118/122 (96%)	3e-62		
Q9Y3M7	DJ633O20.1 (P14L, SIMILAR TO BOS TAURUS P14) - Homo sapiens (Human), 284 aa (fragment).	193 192284	93/93 (100%) 93/93 (100%)	3e-48		

PFam analysis predicts that the NOV91a protein contains the domains shown in the Table 91E.

Table 91E. Domain Analysis of NOV91a					
Pfam Domain	NOV91a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
	No Significant	Matches Found			

Example 92.

The NOV92 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 92A.

Tab	le 92A. NOV92 Sequ	ence Analysis
	SEQ ID NO: 263	6527 bp
NOV92a, CG59754-02 DNA Sequence	GCCCTTCGAATTCCCACCCGC TCCTCGGGGGACATGCCCATC CAGGCTCGGGCGTGACCATCC	TTCCCTCTCCCTGGGGCTCCGTGCCCCTCTGATCCA CCTCCATCGGCCAGCTGCTCTACATTCCCTGTGTGGTG CGTATCATCTGGAGGAAGGACGGACAGGTGATCATCT BAGAGCAAGGAATTCATGAGCTCCCTGCAGATCTCTAG BCAACTATACATGCATCGCCAGCAACGCAGCCGCCACC

ATCAGCGACTTGCGGACCGAGGACAGCGGCACCTACATTTGTGAGGTCACCAACACCT TCGGTTCGGCAGAGGCCACAGGCATCCTCATGGTCATTGATCCCCTTCATGTGACCC GACACCAAAGAAGCTGAAGACCGGCATTGGCAGCACGGTCATCCTCTCCTGTGCCCTG ACGGGCTCCCCAGAGTTCACCATCCGCTGGTATCGCAACACGGAGCTGGTGCTGCCTG ACGAGGCCATCTCCATCCGCGGGCTCAGCAACGAGACGCTGCTCATCACCTCGGCCCA GAAGAGCCATTCCGGGGCCTACCAGTGCTTCGCTACCCGCAAGGCCCCAGACCGCCCAG GACTTTGCCATCATTGCACTTGAGGATGGCACGCCCCGCATCGTCTCGTCCTTCAGCG AGAAGGTGGTCAACCCCGGGGAGCAGTTCTCACTGATGTGTGCGGCCAAGGGCGCCCC GCCCCCACGGTCACCTGGGCCCTCGACGATGAGCCCATCGTGCGGGATGGCAGCCAC CGCACCAACCAGTACACCATGTCGGACGCCACCACCATCAGCCACATGAACGTCACAG GCCCCAGATCCGCGACGGGGGCGTGTACCGGTGCACAGCGCGGAACTTGGTGGGCAG AACATCACAGCAGTCGCCGGGCGGGACACCCTTATCAACTGCAGGGTCATCGGCTATC CCTACTACTCCATCAAGTGGTACAAGGATGCCTTGCTGCTGCCAGACAACCACCGCCA GGTGGTGTTTGAGAATGGGACCCTCAAGCTGACTGACGTGCAGAAGGGCATGGATGAG GGGGAGTACCTGTGCAGTGTCCTCATCCAGCCCCAGCTCTCCATCAGCCAGAGCGTTC ACGTAGCCGTCAAAGTGCCCCCTCTGATCCAGCCCTTCGAATTCCCACCCGCCTCCAT CGGCCAGCTGCTCTACATTCCCTGTGTGTGTCCTCGGGGGACATGCCCATCCGTATC ACCTGGAGGAAGGACGGACAGGTGATCATCTCAGGCTCGGGCGTGACCATCGAGAGCA AGGAATTCATGAGCTCCCTGCAGATCTCTAGCGTCTCCCTCAAGCACAACGGCAACTA TACATGCATCGCCAGCAACGCAGCCGCCACCGTGAGCCGGGAGCGTCAGCTCATCGTG CGTGTGCCCCCTCGATTTGTGGTGCAACCCAACAACCAGGATGGCATCTACGGCAAAG TGCCAAGGGGAGCGGAACCCCCAGCAGTACCACCCTGTGCCCCTCACTGGCCGCATC CAGATCCTGCCCAACAGCTCGCTGCTGATCCGCCACGTCCTAGAAGAGGACATCGGCT ACTACCTCTGCCAGGCCAGCAACGGCGTAGGCACCGACATCAGCAAGTCCATGTTCCT CACAGTCAAGATCCCGGCCATGATCACTTCCCACCCCAACACCACCATCGCCATCAAG GGCCATGCGAAGGAGCTAAACTGCACGGCACGGGGTGAGCGGCCCATCATCATCCGCT GGGAGAAGGGGGACACAGTCATCGACCCTGACCGCGTCATGCGGTATGCCATCGCCAC CAAGGACAACGGCGACGAGGTCGTCTCCACACTGAAGCTCAAGCCCGCTGACCGTGGG GACTCTGTGTTCTTCAGCTGCCATGCCATCAACTCGTATGGGGAGGACCGGGGCTTGA TCCAACTCACTGTGCAAGAGCCCCCCGACCCCCAGAGCTGGAGATCCGGGAGGTGAA GGCCCGGAGCATGAACCTGCGCTGGACCCAGCGATTCGACGGGAACAGCATCATCACG GGCTTCGACATTGAATACAAGAACAAATCAGATTCCTGGGACTTCAAGCAGTCCACAC GCAACATCTCCCCCACCATCAACCAGGCCAACATTGTGGACTTGCACCCGGCATCTGT ${\tt CTCACCATCAGCACTGAGGAGGCCGCTCCCGATGGGCCCCCCATGGATGTTACCTTGC}$ AGCCAGTGACCTCACAGAGCATCCAGGTGACCTGGAAGGCACCCAAGAAGGAGCTGCA GAACGTGTCATCCGGGGCTACCAGATTGGCTACAGAGAGAACAGCCCCGGCAGCAAC GGGCAGTACAGCATCGTGGAGATGAAGGCCACGGGGGACAGCGAGGTCTACACCCTGG ACAACCTCAAGAAGTTCGCCCAGTATGGGGTGGTGGTCCAAGCCTTCAATCGGGCTGG CCCCTGAGAACGTCCGGGCCCTGTCCATCACTTCTGACGTGGCCGTCATCTCCTGGT CAGAGCCCCCGCGCAGCACCCTCAATGGCGTCCTCAAAGGCTATCGGGTCATCTTCTG GTCCCTCTATGTTGATGGGGAGTGGGGCGAGATGCAGAACATCACCACCACGCGGGAG $\tt CGGGTGGAGCTGCGGGGCATGGAGAAGTTCACCAACTACAGCGTCCAGGTGCTGGCCT$ ACACCCAGGCTGGGGACGGCGTACGCAGCAGTGTGCTCTACATCCAGACCAAGGAGGA CGTTCCAGGTCCCCTGCTGGCATCAAAGCTGTCCCTTCATCAGCTAGCAGTGTGGTT GTGTCTTGGCTCCCCCTACCAAGCCCAACGGGGTGATCCGCAAGTACACCATCTTCT GTTCCAGCCCGGGTCTGGCCAGCCGCTCCCAGCGAGTACGAGACGAGTCCAGAGCA GCCGTCACCTCTGCCGGCCGGGCAACAGCAGCGAGAAGGTGACCATCGAGCCTGCTG GCAAGGCCCCAGCAAAGATCATCTCCTTTGGGGGCACCGTGACAACACCTTGGATGAA ${\tt AGATGTTCGGCTGCCATTCAGTGGGAGATCCAGCCCCTGCTGTGAAGTGGACC}$ CCAATGGCACACTGCTGCTGCGTGCAGTGAAGGCTGAGGACTCTGGCTACTACACGTG CACGGCCACCAACACTGGTGGCTTTGACACCATCATCGTCAACCTTCTGGTGCAAGTT CCCCGGACCAGCCCGCCTCACTGTCTCCAAAACCTCAGCTTCGTCCATCACCCTGA CCTGGATTCCAGGTGACAATGGGGGCAGCTCCATCCGAGGCTTCGTGCTACAGTACTC AAGCTGGACAGCCTCAAGTGTGGCACGTGGTACAAGGTGAAGCTGGCAGCCAAGAACA GCGTGGGCTCTGGGCGCATCAGCGAGATCATCGAGGCCAAGACCCACGGGCGGAGGCC CTCCTTCAGCAAAGACCAACACCTCTTCACCCACATCAACTCCACGCATGCTCGGCTT AACCTGCAGGGCTGGAACAATGGGGGCTGCCCTATCACAGCCATCGTTCTGGAGTACC GGCCCAAGGGGACCTGGGCCTGGCAGGGCCTCCGGGCCAACAGCTCCGGGGAGGTGTT TCTGACGGAACTGCGAGGGCCACGTGGTACGAGCTGCGCATGAGGGCTTGCAACAGT GCGGGCTGCGGCAATGAAACAGCCCAGTTCGCCACCCTGGACTACGATGGCAGCACCA TTCCACCCATCAAGTCTGCTCAAGGTGAAGGGGGATGATGTGAAGAAGCTGTTCACCAT CGGCTGCCCTGTCATCCTGGCCACACTGGGGGTGGCACTGCTCTTCATCGTACGCAAG AAGAGGAAGGAGAAACGGCTGAAGCGACTCCGAGATGCAAAGAGTTTGGCAGAAATGT TGATAAGCAAGAACAATAGAAGCTTTGACACCCCTGTGAAAGGGCCACCCCAGGGCCC A CAGCTACA CATTA CATOCOCOAGGATOCAGOTOCTOATOGA GGA CAMAGAA GGCAT

GGGCTCCCAGCATGGTGTCACGGTCACTGAGAGTGACAGCTACAGTGCCAGCCTGTCC CAGGACACAGACAAAGGAAGGAACAGCATGGTGTCCACTGAGAGTGCCTCTTCCACCT ACGAGGAGCTGGCCCGGGCCTATGAGCATGCCAAGCTGGAGGAGCAGCTGCAGCACGC CAAGTTTGAGATCACCGAGTGCTTCATCTCTGACAGTTCCTCTGACCAGATGACCACA GGCACCAACGAGAACGCCGACAGCATGACATCCATGAGCACACCCTCAGAGCCTGGCA TCTGCCGCTTTACCGCCTCACCACCCAAGCCCCAGGATGCGGACCGGGGCAAAAACGT GGCTGTGCCCATCCCTCACCGGGCCAACAAGAGTGACTACTGCAACCTGCCCCTGTAT GCCAAGTCAGAGGCCTTCTTTCGAAAGGCAGATGGACGTGAGCCCTGCCCCGTGGTCC CACCCCGTGAGGCCTCCATCCGGAACCTGGCTCGAACCTACCACACCCAGGCTCGCCA GCCGCCTCCACAGCCACCTTACCTCAGAGGACTCTGGCCATGCCAGCCCCCCCAGCCG TGCCCCTCCGGCCCCCAGCACCGAGCCTCCACGAGCCGGGGGCCCACACACCCAAAATG GGGGGCTCCAGGGACTCGCTTCTCGAGATGAGCACATCGGGGGGTAGGGAGGTCTCAGA AGCAGGGGGCCGGGGCCTACTCCAAATCCTACACCCTGGTGTAGGGCCGGCAGGAAGA GCAGCCACGCCTGGGCCGCGCCGCGCCGCAGCCCCACACGCCAGCTCGGCTGTTTTTC CAATCATGAACGCCTGTACATAGAACTCTTTTGTACAAATGAAACTATTTTCTTCTTC TCCATGAAGCCAGGGCACAAAGAATTTGACAGTACAAGTCAAATCCCCCACCCCACAA AATATGTGTGGAGATATATACATATATAGACAGACAGGAACGCCTCCACGAGCTAT ATATCTATATATTCTCTCACCCTATTTTGAGACAGAGGCACAAAGACTCAGCAATTT TTTTCCCTCCTCACCTTCCCCCCAGTCTAGGTGGTTTTGACAAAGACCAAAATCC CAACTCAGAGACACTGCATGCGATTTTACTGTTCCAAGAAAACCAGGAGTTGCTTCAA TTTGCAGATGCTTATGTGTTAATACCTTTTTCTATGAAAAAAGACCCAGCGCCGTGTG CAATAAAGGTTATGTTTCCAAAAAAAAGCTT

ORF Start: ATG at 129 ORF Stop: TAG at 5958

SEQ ID NO: 264

1943 aa

MW at 211904.3kD

NOV92a, CG59754-02 Protein Sequence

MPIRITWRKDGQVIISGSGVTIESKEFMSSLQISSVSLKHNGNYTCIASNAAATVSIV SPEHRFFITYHGGLYISDVQKEDALSTYRCITKHKYSGETRQSNGARLSVTDPAESIP TILDGFHSQEVWAGHTVELPCTASGYPIPAIRWLKDGRPLPADSRWTKRITGLTISDL RTEDSGTYICEVTNTFGSAEATGILMVIDPLHVTLTPKKLKTGIGSTVILSCALTGSP EFTIRWYRNTELVLPDEAISIRGLSNETLLITSAQKSHSGAYQCFATRKAQTAQDFAI ${\tt IALEDGTPRIVSSFSEKVVNPGEQFSLMCAAKGAPPPTVTWALDDEPIVRDGSHRTNQ}$ YTMSDGTTISHMNVTGPQIRDGGVYRCTARNLVGSAEYQARINVRGPPSIRAMRNITA VAGRDTLINCRVIGYPYYSIKWYKDALLLPDNHRQVVFENGTLKLTDVQKGMDEGEYL CSVLIQPQLSISQSVHVAVKVPPLIQPFEFPPASIGQLLYIPCVVSSGDMPIRITWRK DGQVIISGSGVTIESKEFMSSLQISSVSLKHNGNYTCIASNAAATVSRERQLIVRVPP RFVVQPNNQDGIYGKAGVLNCSVDGYPPPKVMWKHAKGSGNPQQYHPVPLTGRIQILP NSSLLIRHVLEEDIGYYLCOASNGVGTDISKSMFLTVKIPAMITSHPNTTIAIKGHAK ELNCTARGERPIIIRWEKGDTVIDPDRVMRYAIATKDNGDEVVSTLKLKPADRGDSVF FSCHAINSYGEDRGLIQLTVQEPPDPPELEIREVKARSMNLRWTQRFDGNSIITGFDI EYKNKSDSWDFKQSTRNISPTINQANIVDLHPASVYSIRMYSFNKIGRSEPSKELTIS TEEAAPDGPPMDVTLQPVTSQSIQVTWKAPKKELQNGVIRGYQIGYRENSPGSNGQYS IVEMKATGDSEVYTLDNLKKFAQYGVVVQAFNRAGTGPSSSEINATTLEDVPSQPPEN VRALSITSDVAVISWSEPPRSTLNGVLKGYRVIFWSLYVDGEWGEMQNITTTRERVEL ${\tt RGMEKFTNYSVQVLAYTQAGDGVRSSVLYIQTKEDVPGPPAGIKAVPSSASSVVVSWL}$ PPTKPNGVIRKYTIFCSSPGSGQPAPSEYETSPEQLFYRIAHLNRGQQYLLWVAAVTS AGRGNSSEKVT1EPAGKAPAKIISFGGTVTTPWMKDVRLPCNSVGDPAPAVKWTKDSE DSAIPVSMDGHRLIHTNGTLLLRAVKAEDSGYYTCTATNTGGFDTIIVNLLVQVPPDQ PRLTVSKTSASSITLTWIPGDNGGSSIRGFVLQYSVDNSEEWKDVFISSSERSFKLDS LKCGTWYKVKLAAKNSVGSGRISEIIEAKTHGREPSFSKDQHLFTHINSTHARLNLQG WNNGGCPITAIVLEYRPKGTWAWQGLRANSSGEVFLTELREATWYELRMRACNSAGCG NETAQFATLDYDGSTIPPIKSAQGEGDDVKKLFTIGCPVILATLGVALLFIVRKKRKE KRLKRLRDAKSLAEMLISKNNRSFDTPVKGPPQGPRLHIDIPRVQLLIEDKEGIKQLG DDKATIPVTDAEFSQAVNPQSFCTGVSLHHPTLIQSTGPLIDMSDIRPGTNPVSRKNV KSAHSTRNRYSSQWTLTKCQASTPARTLTSDWRTVGSQHGVTVTESDSYSASLSQDTD KGRNSMVSTESASSTYEELARAYEHAKLEEQLQHAKFEITECFISDSSSDQMTTGTNE NADSMTSMSTPSEPGICRFTASPPKPQDADRGKNVAVPIPHRANKSDYCNLPLYAKSE AFFRKADGREPCPVVPPREASIRNLARTYHTQARHLTLDPASKSLGLPHPGAPAAAST ATLPQRTLAMPAPPAGTAPPAPGPTPAEPPTAPSAAPPAPSTEPPRAGGPHTKMGGSR DSLLEMSTSGVGRSQKQGAGAYSKSYTLV

SEO ID NO: 265

6049 bp

NOV92b, CG59754-01 DNA Sequence ATCAGCGACTTGCGGACCGAGGACAGCGGCACCTACATTTGTGAGGTCACCAACACCT TCGGTTCGGCAGAGGCCACAGGCATCCTCATGGTCATTGATCCCCTTCATGTGACCCT GACACCAAAGAAGCTGAAGACCGGCATTGGCAGCACGGTCATCCTCTCCTGTGCCCTG ACGGGCTCCCCAGAGTTCACCATCCGCTGGTATCGCAACACGGAGCTGGTGCTGCCTG ACGAGGCCATCTCCATCCGCGGGCTCAGCAACGAGACGCTGCTCATCACCTCGGCCCA GAAGAGCCATTCCGGGGCCTACCAGTGCTTCGCTACCCGCAAGGCCCAGACCGCCCAG GACTTTGCCATCATTGCACTTGAGGATGGCACGCCCCGCATCGTCTCCTCCTTCAGCG AGAAGGTGGTCAACCCCGGGGAGCAGTTCTCACTGATGTGTGCGGCCAAGGGCGCCCC GCCCCCACAGTCACCTGGGCCCTCGACGATGAGCCCATCGTGCGGGATGGCAGCCAC CGCACCAACCAGTACACCATGTCGGACGGCACCACCATCAGCCACATGAACGTCACAG GCCCCAGATCCGCGACGGGGGCGTGTACCGGTGCACAGCGCGGAACTTGGTGGGCAG AACATCACAGCAGTCGCCGGGGGGGACACCCTTATCAACTGCAGGGTCATCGGCTATC CCTACTACTCCATCAAGTGGTACAAGGATGCCTTGCTGCTGCCAGACAACCACCGCCA GGGGAGTACCTGTGCAGTGTCCTCATCCAGCCCCAGCTCTCCATCAGCCAGAGCGTTC ACGTAGCCGTCAAAGTGCCCCCTCTGATCCAGCCCTTCGAATTCCCACCCGCCTCCAT CGGCCAGCTGCTCTACATTCCCTGTGTGTGTCCTCGGGGGACATGCCCATCCGTATC ACCTGGAGGAAGGACGGACAGGTGATCATCTCAGGCTCGGGCGTGACCATCGAGAGCA AGGAATTCATGAGCTCCCTGCAGATCTCTAGCGTCTCCCTCAAGCACAACGGCAACTA TACATGCATCGCCAGCAACGCAGCCGCCACCGTGAGCCGGGAGCGTCAGCTCATCGTG CGTGTGCCCCCTCGATTTGTGGTGCAACCCAACAACCAGGATGGCATCTACGGCAAAG TGCCAAGGGTAGCGGGAACCCCCAGCAGTACCACCCTGTGCCCCTCACTGGCCGCATC CAGATCCTGCCCAACAGCTCGCTGCTGATCCGCCACGTCCTAGAAGAGGACATCGGCT ACTACCTCTGCCAGGCCAGCAACGGCGTAGGCACCGACATCAGCAAGTCCATGTTCCT ${\tt CACAGTCAAGATCCCCACCATCCTGGATGGCTTCCACTCCCAGGAAGTGTGGGCCGGC}$ CACACCGTGGAGCTGCCCTGCACCGCCTCGGGCTACCCTATCCCCGCCATCCGCTGGC TCAAGGATGGCCGGCCCCTCCCGGCTGACAGCCGCTGGACCAAGCGCATCACAGGGCT <u>CACCATCAGCGACTTGCGGAGCAGGACAGCGGCACCTACATTTGTGAGGTCACCAAC</u> ACCTTCGGTGAGGCCACAGGCATCCTCATGGTCATTGGTGAGGAGCCCCCCGACCCCC CAGAGCTGGAGATCCGGGAGGTGAAGGCCCGGAGCATGAACCTGCGCTGGACCCAGCG ATTCGACGGGAACAGCATCATCACGGGCTTCGACATTGAATACAAGAACAAATCAGAT TCCTGGGACTTCAAGCAGTCCACACGCAACATCTCCCCCACCATCAACCAGGCCAACA TTGTGGACTTGCACCCGGCATCTGTGTACAGCATCCGCATGTACTCTTTCAACAAGAT TGGCCGCAGTGAACCAAGCAAGGAGCTCACCATCAGCACTGAGGAGGCCTCAGCTCCC GATGGGCCCCCCATGGATGTTACCTTGCAGCCAGTGACCTCACAGAGCATCCAGGTGA CCTGGAAGCAGCACCCAAGAAGGAGCTGCAGAACGGTGTCATCCGGGGCTACCAGAT TGGCTACAGAGAGAACAGCCCCGGCAGCAACGGGCAGTACAGCATCGTGGAGATGAAG GCCACGGGGGACAGCGAGGTCTACACCCTGGACAACCTCAAGAAGTTCGCCCAGTATG GGGTGGTGGTCCAGGCCTTCAATCGGGCTGGCACGGGGCCCTCTTCCAGCGAGATCAA TGCCACCACTCTGGAGGATGTGCCCAGCCAGCCCCTGAGAACGTCCGGGCCCTGTCC ATCACTTCTGACGTGGCCGTCATCTCCTGGTCAGAGCCCCCGCGCAGCACCCTCAATG GCGTCCTCAAAGGCTATCGGGTCATCTTCTGGTCCCTCTATGTTGATGGGGAGTGGGG CGAGATGCAGAACATCACCACCACGCGGGAGCGGGTGGAGCTGCGGGGCATGGAGAAG TTCACCAACTACAGCGTCCAGGTGCTGGCCTACACCCAGGCTGGGGACGGCGTACGCA GCAGTGTGCTCTACATCCAGACCAAGGAGGACGTTCCAGGTCCCCCTGCTGGCATCAA AGCTGTCCCTTCATCAGCTAGCAGTGTGGTTGTGTCTTGGCTCCCCCCTACCAAGCCC AACGGGGTGATCCGCAAGTACACCATCTTCTGTTCCAGCCCCGCCCCCCAGGCTCCCA GCGAGTACGAGACGAGTCCAGAGCAGCTCTTCTACCGGATCGCCCACCTAAACCGCGG GAGAAGGTGACCATCGAGCCTGCTGGCAAGGCCCCAGCAAAGATCATCTCCTTTGGGG GCACCGTGACAACACCTTGGATGAAAGATGTTCGGCTGCCTTGCAATTCAGTGGGAGA TCCAGCCCCTGCTGTGAAGTGGACCAAGGACAGTGAAGACTCGGCCATTCCAGTGTCC ATGGATGGGCACCGGCTCATCCACACCAATGGCACACTGCTGCTGCGTGCAGTGAAGG CTGAGGACTCTGGCTACTACACGTGCACGGCCACCAACACTGGTGGCTTTGACACCAT CATCGTCAACCTTCTGGTGCAAGTTCCCCCGGACCAGCCCCGCCTCACTGTCTCCAAA ACCTCAGCTTCGTCCATCACCCTGACCTGGATTCCAGGTGACAATGGGGGCAGCTCCA TCCGAGGTTTTGTGCTACAGTACTCGGTGGACAACAGCGAGGAGTGGAAGGATGTGTT CATCAGCTCCAGCGAGCGCTCCTTCAAGCTGGACAGCCTCAAGTGTGGCACGTGGTAC AAGGTGAAGCTGGCAGCCAAGAACAGCGTGGGCTCTGGGCGCATCAGCGAGATCATCG AGGCCAAGACCCACGGGGGGGGGGCCCTCCTTCAGCAAAGACCAACACCTCTTCAGCCA CATCAACTCCACGCATGCTCGGCTTAACCTGCAGGGCTGGAACAATGGGGGCTGCCCT ATCACAGCCATCGTTCTGGAGTACCGGCCCAAGGGGACCTGGGCCTGGCAGGGCCTCC GGGCCAACAGCTCCGGGGAGGTGTTTCTGACGGAACTGCGAGAGGCCACGTGGTACGA GCTGCGCATGAGGGCTTGCAACAGTGCGGGCTGCGGCAATGAAACAGCCCAGTTCGCC ACCCTGGACTACGATGGCAGTACCATTCCACCCATCAAGTCTGCTCAAGGTGAAGGGG ATGATGTGAAGAAGCTGTTCACCATCGGCTGCCCTGTCATCCTGGCCACACTGGGGGT GGCACTGCTCTTCATCGTACGCAAGAAGAGGAAGGAGAAACGGCTGAAGCGACTCCGA GATGCAAAGAGTTTGGCAGAAATGTTGATAAGCAAGAACAATAGAAGCTTTGACACCC CTGTGAAAGGGCCACCCCAGGGCCCACGGCTACACATTGACATCCCCAGGGTCCAGCT TOATEGAGGACAAAGAAGGCATEAAGEAACTOGGTGAGGACAAGGCCACCATO

	TGACAGCTACAGTGCCAGCCTGTC TCCACTGAGAGTGCCTCTTCCACC AGCTGGAGGAGCAGCTGCAGCACG CAGTTCCTCTGACCAGATGACCAC ATGAGCACACCCTCAGAGCCTGCC AGGATGCGGACCGGCTGCTGATGC CCATGTTGTAGCATATGTCAGAAT GCTTCTGATCTTAGCTCCGGCAGA CACCAACACTGGTGGCTTTGACAC GTGGGGACAGGATGAGAAAGGG GAAGAAGCCAAACCAAGGGACAGA CCCGTCCACGGGGGACTCCCA TTCCCGTCACGGGGGACTCCCCACGTGGCTTTCCCCTCACAGTTC CTCAGCTTCGTCCATCACCCTGAC CGAGGTGAGGGAGGGGCTCCA	TACGAGGAGCT CCAAGTTTGAG AGCACCAACG ATCTGCCAGGT TTGCTTCTTAC GCTTGCAGTGA CATCATCGTCA CAGCATCGAGGATTCCA GGAGTGGAGT	GGCCCGGGCCTATGAGCATGCCA ATCACCGAGTGCTTCATCTCTGA AGAACGCCGACACACCCC GCCCACCTCCCCCAAGCCCC GCCCACCTCCCCCAGCCCC GCCGAGATCACCCC GCCGAGATCACCCCGGC ACCTGTGAGCAGCCC ACCTGTGAGCAGCCCAG TCATGCCAGAGCGCACCCAG TCATGCCAGAGGTCATCGAATG AGAAACAGAGGTCATCGAATG AGAGTGTGGGAGAGGCCACCCACC AGGGTCCGCCCTTGTCCTAAGGG CCCCGCCTCACTGTCCCAAAAC
	ORF Start: ATG at 129		
	SEQ ID NO: 266	1908 aa	MW at 208575.3kD
NOV92b, CG59754-01 Protein Sequence	MPIRITWRKDGQVIISGSGVTIES SPEHRFFITYHGGLYISDVQKEDA TILDGFHSQEVWAGHTVELPCTAS RTEDSGTYICEVTNTFGSAEATGI EFTIRWYRNTELVLPDEAISIRGI EFTIRWYRNTELVLPDEAISIRGI IALEDGTPRIVSSFSEKVVNPGEQ YTMSDGTTISHMNVTGPQIRDGGV VAGRDTLINCRVIGYPYYSIKWYK CSVLIQPQLSISQSVHVAVKVPPL DGQVIISGSGVTIESKEFMSSLQI RFVVQPNNQDGIYGKAGVLNCSVD NSSLLIRHVLEEDIGYYLCQASNG LPCTASGYPIPAIRWLKDGRPLPA ATGILMVIGEEPPDPPELEIREVK KQSTRNISPTINQANIVDLHPASV MDVTLQPVTSQSIQVTWKQAPKKE SEVYTLDNLKKFAQYGVVVQAFNR VAVISWSEPPRSTLNGVLKGYRVI SVQVLAYTQAGDGVRSSVLYIQTK RKYTIFCSSPAPQAPSEYETSPEQ IEPAGKAPAKIISFGGTVTTPWMK RLIHTNGTLLLRAVKAEDSGYYTC SITLTWIPGDNGGSSIRGFVLQYS SAKNSVGSGRISEIIEAKTHGREP VLEYRPKGTWAWQGLRANSSGEVF ULEYRPKGTWAWQGLRANSSGEVF DGSTIPPIKSAQGEGDDVKKLFTI LAEMLISKNNRSFDTPVKGPPQGP EFSQAVNPQSFCTGVSLHHPTLIQ SQWTLTKCQASTPARTLTSDWRTV ASSTYEELARAYEHAKLEEQLQHA SEPGICRFTASPPKPQDADRLLML SGGRACSEPRSRGTRPPTLVALTP PRERQTSGETEVHMEGEAGELGSG	LSTYRCITKHK GYPIPAIRWLK GYPIPAIRWLK LMVIDPLHYTL SNETLLITSAQ FSLMCAAKGAP YRCTARNLVGS DALLLPDNHRQ IQPFEFPPASI SSVSLKHNGNY GYPPKYMWK UGTDISKSMFL DSRWYKRITGL ARSMNLRWTQR YSIRMYSFNKI LQNGVIRGYQI ARGUYRGYQI AGGPSSSEIN FWSLYVDGEWG EDVPGPPAGIK LFYRIAHLNRG DVRLPCNSVGD TATNTGGFDTI UDNSEEWKDVF SFSKDQHLFTH LTELREATWYE GCPVILATLGV RLHIDIPRVQL STGPLIDMSDI GSQHGVTVTES KFEITECFISD VPGAHLPPQSI SSSTCEAGDPR	YSGETRQSNGARLSVTDPAESIP DGRPLPADSRWTKRITGLTISDL TPKKLXTGIGSTVILSCALTGSP KSHSGAYQCFATRKAQTAQDFAI PPTVTWALDDEPIVRDGSHRTNQ AEYQARINVRGPPSIRAMRNITA VVFENGTLKLTDVQKGMDEGEYL GQLLYIPCVVSSGDMPIRITWRK TCIASNAAATVSRERQLIVRVPP AKGSGNPQQYHPVPLTGRIQILP TVKIPTILDGFHSQEVWAGHTVE TISDLRTEDSGTYICEVTNTFGE FDGNSIITGFDIEYKNKSDSWDF GRSEPSKELTISTEEASAPDGPP GYRENSPGSNGQYSIVEMKATGD ATTLEDVPSQPPENVRALSITSD EMQNITTTRERVELRGMEKFTNY AVPSSASSVVVSWLPPTKPNGVI QQYLLWVAAVTSAGRGNSSEKVT PAPAVKWTKDSEDSAIPVSMTGH IVNLLVQVPPDQPRLTVSKTSAS ISSSERSFKLDSLKCGTWYKVKL INSTHARLNLQGWNNGGCPITAI LRMRACNSAGCGNETAQFATLDY ALLFIVRKKRKEKRLKRLRDAKS LIEDKEGIKQLGEDKATIPVTDA RPGTDPVSRKNVKSAHSTRNRYS DSYSASLSQDTDKGRNSMVSTES SSSDQMTTGTNENADSMTSMSTP HVVAYVRISFLLNKGGGDLASDL WGQGWRKGRDSIMREGHRMEEAK

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 92B.

Table 9	2B. Comparison of	NOV92a agains	st NOV92b.
	xcSiduc		. ir.iit
* \$ 1 \$ 1 * *	rateir residue	dilli. His	he Materies wego.

NOV92b	11771	1663/1773 (93%)
	11760	1681/1773 (94%)

Further analysis of the NOV92a protein yielded the following properties shown in Table 92C.

	Table 92C. Protein Sequence Properties NOV92a
PSort analysis:	0.7000 probability located in plasma membrane; 0.3000 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.2000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV92a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 92D.

	Table 92D. Geneseq Results for NOV92a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV92a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU28091	Novel human secretory protein, Seq ID No 260 - Homo sapiens, 1744 aa. [WO200166689-A2, 13-SEP-2001]	2001943 11744	1744/1744 (100%) 1744/1744 (100%)	0.0
AAM78713	Human protein SEQ ID NO 1375 - Homo sapiens, 1744 aa. [WO200157190-A2, 09-AUG- 2001]	2001943 11744	1744/1744 (100%) 1744/1744 (100%)	0.0
AAM39040	Human polypeptide SEQ ID NO 2185 - Homo sapiens, 1744 aa. [WO200153312-A1, 26-JUL-2001]	2001943 11744	1744/1744 (100%) 1744/1744 (100%)	0.0
AAW42086	Human Down syndrome-cell adhesion molecule DS-CAM1 - Homo sapiens, 1910 aa. [WO9817795-A1, 30-APR-1998]	441778 1541890	1085/1745 (62%) 1357/1745 (77%)	0.0
AAW42087	Human Down syndrome-cell	441457	890/1416 (62%)	0.0

In a BLAST search of public sequence databases, the NOV92a protein was found to have homology to the proteins shown in the BLASTP data in Table 92E.

	Table 92E. Public BLASTP Results for NOV92a				
Protein Accession Number	Protein/Organism/Length	NOV92a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
AAL57166	DOWN SYNDROME CELL ADHESION MOLECULE DSCAML1 - Homo sapiens (Human), 2053 aa.	441943 1552053	1889/1900 (99%) 1892/1900 (99%)	0.0	
Q9ULT7	KIAA1132 PROTEIN - Homo sapiens (Human), 1822 aa (fragment).	1221943 11822	1822/1822 (100%) 1822/1822 (100%)	0.0	
O60469	Down syndrome cell adhesion molecule precursor (CHD2) - Homo sapiens (Human), 2012 aa.	441943 1542012	1123/1920 (58%) 1410/1920 (72%)	0.0	
Q9ERC8	DOWN SYNDROME CELL ADHESION MOLECULE - Mus musculus (Mouse), 2013 aa.	441943 1542013	1119/1921 (58%) 1405/1921 (72%)	0.0	
AAL57167	DOWN SYNDROME CELL ADHESION MOLECULE DSCAM - Rattus norvegicus (Rat), 2013 aa.	441943 1542013	1119/1921 (58%) 1405/1921 (72%)	0.0	

PFam analysis predicts that the NOV92a protein contains the domains shown in the Table 92F.

	Table 92F. Domain An	alysis of NOV92a	
Pfam Domain	NOV92a Match Region	Identities/ Similarities for the Matched Region	Expect Value

WO 02/072757

ig: domain 2 of 10	7290	8/19 (42%) 14/19 (74%)	85
ig: domain 3 of 10	130186	22/60 (37° o) 46/60 (77° o)	2.1e-14
ig: domain 4 of 10	219278	16/63 (25°°) 44/63 (70°°)	4.9e-09
ig: domain 5 of 10	312377	14/69 (20° o) 50/69 (72° o)	1.5e-07
ig: domain 6 of 10	409467	12/61 (20° a) 41/61 (67° a)	4.8e-05
ig: domain 7 of 10	500561	17/64 (27%) 49/64 (77%)	3.2e-11
ig: domain 8 of 10	594659	19/69 (28%) 47/69 (68%)	9.4e-07
ig: domain 9 of 10	693759	9/70 (13%) 47/70 (67%)	7.9e-06
fn3: domain 1 of 6	777864	22/89 (25%) 65/89 (73%)	3e-16
fn3: domain 2 of 6	876968	33/93 (35%) 68/93 (73%)	3.1e-16
fn3: domain 3 of 6	9801069	26/93 (28%) 69/93 (74%)	2.9e-16
fn3: domain 4 of 6	10811167	24/88 (27%) 64/88 (73%)	3.7e-17
ig: domain 10 of 10	11941255	17/65 (26%) 46/65 (71%)	4.3e-09
fn3: domain 5 of 6	12741357	30/86 (35%) 67/86 (78%)	1.2e-18
fn3: domain 6 of 6	13711453	27/86 (31%) 53/86 (62%)	0.045

Example 93.

The NOV93 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 93A.

	Table 93A. NOV93 Seque	ence Analysis
	SEQ ID NO: 267	1272 bp
×1615 12	AGASOOTTOTATOCAONAS	and the contract of the contra

A A CONTRACTOR OF THE WAY TO SEE THE SECOND

NOV93a, CG59800-01 Protein Sequence	LLCLYLWLGLWPCFLAAQSLPP AARAPAPAPAPSEPSSSVHRPG LHPDXRALGSEXHFFDRCXXXG MSPDTKLIVVVRNPVTRAISDX YAQHLDHWLRYFPLSHFLFVSG	PLQSGGGSRA APGLPLASGP LXWXRSLMPR XQTLSKTPGL ERLVSDPAGE	YLPPTYLPRPYLPPTYLPRPYLPPTY SRAPMLUVALVLGAYCLCALPGRCPP GRRRFPQALIVGVKKGGTRALLEFLR TLDGQITMEXTPXYFVTREAPRRIHA PSFRALAFRHGLGPVDTAWSAVRIGL VGRVQDFLGLKRVVTDKHFYFNATKG RRLOEFYRPFNRRFYOMTGODFGKG
	SEQ ID NO: 268		MW at 43994.8kD
	ORF Start: GAG at 2	ORF Stop	o: GGC at 1217
	CTGCCGCCGGCCGCCCGCGCCCTCCGTCCACCGCCGCCGCGGAGCACGCCTCCACGCACG	CCC3CGCCGG CCGGCCTGCC TGGCGTGAAG CTC1GCGCGC CCC3GGCTAC ACGAAGCTGA AGACGCTCTC CCTGGGCCCC CTGGACCACT GTCTGGTCAG ACGGATCGTCAACAGCTCTC ACGAAGGTCCTCAACAGCCTCCTCCCCCTCCCCCCCCCC	TACTGCTCTGCGCCCTCCCGGCGCGCGCCCCCCCCGGCGCCCCCC

Further analysis of the NOV93a protein yielded the following properties shown in Table 93B.

	Table 93B. Protein Sequence Properties NOV93a
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in mitochondrial inner membrane
SignalP analysis:	Likely cleavage site between residues 7 and 8

A search of the NOV93a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 93C.

		Table 93C. Geneseq Resi	ults for NOV9	3a	
nese: (dentifie)	1:10	threshold that the ϵ	- ((1))	1111,111,111	artis.

		Residues	Region	
AAB95507	Human protein sequence SEQ ID NO:18067 - Homo sapiens, 390 aa. [EP1074617-A2, 07-FEB-2001]	31253 11237	121/229 (52%) 146/229 (62%)	4e-55
AAY17066	Human 3-OST-3B protein - Homo sapiens, 390 aa. [WO9922005-A2, 06-MAY-1999]	31253 11237	121/229 (52%) 146/229 (62%)	4e-55
AAB70115	Human 3-OST-3B - Homo sapiens, 391 aa. [WO200113910-A2, 01- MAR-2001]	31253 11238	121/230 (52%) 146/230 (62%)	9e-54
AAB70114	Murine 3-OST-3B - Mus sp, 391 aa. [WO200113910-A2, 01-MAR-2001]	31253 11238	119/231 (51%) 147/231 (63%)	2e-51
AAU12275	Human PRO5004 polypeptide sequence - Homo sapiens, 367 aa. [WO200140466-A2, 07-JUN-2001]	86253 45214	102/170 (60%) 117/170 (68%)	9e-48

In a BLAST search of public sequence databases, the NOV93a protein was found to have homology to the proteins shown in the BLASTP data in Table 93D.

	Table 93D. Public BLASTP Re	sults for NC	V93a	
Protein Accession Number	Protein/Organism/Length	NOV93a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96Q15	C439A6.1 (NOVEL PROTEIN SIMILAR TO HEPARAN SULFATE (GLUCOSAMINE) 3-O- SULFOTRANSFERASES) - Homo sapiens (Human), 381 aa (fragment).	85253 61229	160/169 (94%) 162/169 (95%)	2e-89
Q96RX7	HEPARAN SULPHATE D- GLUCOSAMINYL 3-O- SULFOTRANSFERASE-3B LIKE - Homo sapiens (Human), 311 aa.	95253 1159	153/159 (96%) 155/159 (97%)	1e-85
Q9Y662	HEPARAN SULFATE D- GLUCOSAMINYL 3-O- SULFOTRANSFERASE-3B (EC 2.8.2.23) - Homo sapiens (Human), 390 aa.	31253 11237	121/229 (52" _o) 146/229 (62° _o)	1e-54
Q9QZS6	D-GLYCOSAMINYL 3-O-	31253	119/230 (51%)	3e-52

•	HEPARAN SULFATE D- GLUCOSAMINYL 3-O- SULFOTRANSFERASE-2 (EC 2.8.2.23) - Homo sapiens (Human), 367	86253 45214	102/170 (60%) 117/1 70 (68%)	3e-47
-	aa.			

PFam analysis predicts that the NOV93a protein contains the domains shown in the Table 93E.

	Table 93E. Domain	Analysis of NOV93a	
Pfam Domain	NOV93a Match Region	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	

Example 94.

The NOV94 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 94A.

Tabl	e 94A. NOV94 Seque	ence Analysis
	SEQ ID NO: 269	2949 bp
NOV94a,	GTCCGCCTCCGGGCCGCCGA	GCCGCAGCCGCCGAGATGGGGGCCGCCCCGGGCCGC
	CCCCGCCGGGTCCCGCCCGC	CGCGCTGCCGCTGAGCGCATGGGCCCGGACCGCGCCG
CG59761-01 DNA Sequence	GCCGCTCCGGGAGCCGGCC	CGGGGTCCCGCCACCACCGCGCGCGGGACAGATTGAT
	CACTTTGGAGCTGTAAGTAC	TGATGTATTAGGGTGCAGCGCTCATTGTTCATTGACG(
	AGAGTCCCAAAATGAATATC	CAAGAGCAGGGTTTCCCCTTGGACCTCGGAGCAAGTT
	CACCGAAGATGCTCCCCGAC	CCCCAGTGCCTGGTGAGGAGGGAGAACTGGTGTCCAC
	GACCCGAGGCCGCCAGCTA	CAGTTTCTGCTCCGGGAAAGGTGTTGGCATTAAAGGT(
	AGACTTCGACGGCCACTCCG.	AGGCGCTCGGATCTGGACCTGGGGTATGAGCCTGAGG
	CAGTGCCTCCCCCACCCCAC	CATACTTGAAGTGGGCTGAGTCACTGCATTCCCTGCT
	GATGACCAAGATGGGATAAG	CCTGTTCAGGACTTTCCTGAAGCAGGAGGGCTGTGCC
		GCCTGCACTGGCTTCAGGAAGCTGGAGCCCTGTGACT
		AGCTGGCGAGAGCCATCTACCGAAAGTACATTCTTGA
	1	GCAGACCAAGCCAGCCACCAAGAGCTTCATAAAGGGC
	GCATCATGAAGCAGCTGATC	GATCCTGCCATGTTTGACCAGGCCCAGACCGAAATCC.
	GGCCACTATGGAGGAAAACA	CCTATCCCTCCTTCCTTAAGTCTGATATTTATTTGGA.
	TATACGAGGACAGGCTCGGA	GAGCCCCAAAGTCTGTAGTGACCAGAGCTCTGGGTCA
	1	GGATACCTGCCGACCTTAAATGAAGATGAGGAATGGA.
	1	AGGACGATGGCAGAGACGCTGCTCCCCCGGGAAGACT
		GACAGCTGCCCGAGGGTCTCCTCCAGTAGACGGTAC
		TATGGATCCTGGCGGGAGCCAGTCAACCCCTATTATG
	CAATGCCGGCTATGCCCTGG	CCCCAGCCACCAGTGCCAACGACAGCGAGCAGCAGAG
	CTGTCCAGCGATGCAGACAC	CCTGTCCCTCACGGACAGCAGOGTGGATGGGATCCCC
		CACCGCAGGGAGATGCAGGAGAGCGTGCAGGTCAA'FG
	GCGGGTGCCCCTACCTCACA	TTCCCCGCACGTACCBGGTGCCGAAGGAGGTCCGCGT
	GAGCCTCAGAAGTTCGCGGA	GGAGCTCATCCACCGCCTGGAGGCTGTGCAGCGCACG
	GGGAGGCCGAGGAGAAGCTG	GAGGAGCGGCTGAAGCGCGTGCGCATGGAGGAGGAAG
	TGAGGACGGCGATCCATCAT	CAGGGCCCCCAGGGCCGTGTCACAAGCTGCCTCCCGC
	1	GCCCGCCTGTGTTGGACATGGGCTTGTGCCGGGCTC
		CCTGAGAGCATCCTGGACGAGCACGTACAGCGTGTGC
		CGCCTGGGCCTGGCCATCGCTCCCCGGACAGTGGGCA
		ACTGGGGGTGCCGCCTCGGGGCACGGGAAGCACGTA
	CCAAGTCAGGGGGGAAGCTG	GACGCGGCCGGCCTGCACCACCACCGACACGTCCACC

NOV94a, CG59761-01 Protein Sequence	GCCAGTTCAAGGAGCTGCTGACCGAGCGACGAGCGACTTTGACTGTGGGGCTGCCAGGAGAGATGACTCTGTACTCAGGAGCCAGATGACCTCGTACTCAGGAGCCAGATGACCTCGTACTCAGGAGCCAGATGACCTCGTACTCAGGAGCCAGATGACCTCGTACTCAGGAGCCAGATGACCTCGTACTCAGGAGCCAGATGACCTCGTACTCAGGAGCCAGAGATGACCTCGTACTCAGGAGCCAGAGATGACTCGTACTCAGGAGCCAGAGAGAG	CAAAAAGGGCAAACGAGGCCCTTCCGATGGGAAACGCCCTTCCCGATGGGAAACGCCCTTCCCGATGGGGAAACGCCCTACGATGGGAAACGCCCCGATGGGGAAACGCCCGATGGGGAAACGCCCCGATGGGGAAACGCCCCGATGGGGAAACGCCCCGATGGGGAAACGCCCCGATGGGGAAACGCCCGATGGAACGCCCGATGGAACGCCAAACGCCCGATGGAACGCCAAAACGCCCCAAAACGCCCCAAAAACGGGCAAACGCCAAAAAA		T C C C C C C C C C C C C C C C C C C C
	KLEPCDSNEEKRLKLARAIYRKY		QIMININDI INGCIINQDIDIII	-

Further analysis of the NOV94a protein yielded the following properties shown in Table 94B.

	Table 94B. Protein Sequence Properties NOV94a				
PSort analysis:	0.6000 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV94a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 94C.

Table 94C. Geneseq Results for NOV94a				
		NOV94a	Identities!	
		ti		
P1 f 1 1 1	*	2 41 C. j.	o March	
		Residues	Region	

AAG68175	Wnt signaling protein SEQ ID NO:91 - Homo sapiens, 900 aa. [WO200177327-A1, 18-OCT-2001]	13912 1900	898/900 (99%) 898/900 (99%)	0.0
AAW96264	Human axin - Homo sapiens, 900 aa. [WO9902179-A1, 21-JAN-1999]	13912 1900	898/900 (99%) 898/900 (99%)	0.0
AAW96265	Murine axin - Mus musculus, 992 aa. [WO9902179-A1, 21-JAN-1999]	6912 84992	781/914 (85%) 820/914 (89%)	0.0
AAW93569	Human conductin protein - Homo sapiens, 840 aa. [WO9911780-A2, 11-MAR-1999]	60912 12840	378/892 (42%) 506/892 (56%)	e-171
AAW93570	Human conductin protein - Homo sapiens, 840 aa. [WO9911780-A2, 11-MAR-1999]	60912 12840	378/892 (42%) 506/892 (56%)	e-171

In a BLAST search of public sequence databases, the NOV94a protein was found to have homology to the proteins shown in the BLASTP data in Table 94D.

	Table 94D. Public BLASTP F	Results for N	OV94a	
Protein Accession Number	Protein/Organism/Length	NOV94a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O15169	Axin 1 (Axis inhibition protein 1) (hAxin) - Homo sapiens (Human), 900 aa (fragment).	13912 1900	898/900 (99%) 898/900 (99%)	0.0
Q96S28	AXIN - Homo sapiens (Human), 862 aa.	50912 1862	858/863 (99%) 858/863 (99%)	0.0
O35625	Axin 1 (Axis inhibition protein 1) (Fused protein) - Mus musculus (Mouse), 992 aa (fragment).	6912 84992	781/914 (85%) 820/914 (89%)	0.0
O70239	Axin 1 protein (Axis inhibition protein 1) (rAxin) - Rattus norvegicus (Rat), 893 aa (fragment).	6912 21893	756/914 (82° o) 793/914 (86° o)	0.0
T08422	negative regualtor axin [imported] - rat, 832 aa.	46912 2832	726/872 (83%) 760/872 (86%)	0.0

PFam analysis predicts that the NOV94a protein contains the domains shown in the Table 94E.

pro e allan comme

Plam Domain NOV 94a Match Region

f xpect Value

		Similarities for the Matched Region	
RGS: domain 1 of 2	137198	23/75 (31%) 44/75 (59%)	5.6e-06
RGS: domain 2 of 2	231260	13/30 (43%) 21/30 (70%)	0.12
TP2: domain 1 of 1	585709	33/147 (22%) 52/147 (35%)	9.6
DIX: domain 1 of 1	830912	40/86 (47%) 83/86 (97%)	5.6e-44

Example 95.

The NOV95 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 95A.

Table	95A. NOV95 Seque	ence Analysis
	SEQ ID NO: 271	2223 bp
NOV95a.		CTCTGCACCCACGCTGGAGGACGGGGAGGTTGTCAGGG
	GCTATGATGAGATGAGTGGG	GGCCGCTTCGACTTTGATGATGGAGGGGCGTACTGCGG
CG59756-01 DNA Sequence	1	CCCATGGGCATGGACTGTGCACAGGCCCCAAGGGCCAG
	1	GAACTTTGGCTTTGAGGTGGCAGGTGTCTACACCTGGC
	1	GGATACTGGAGCCAGGGCAAACGGCATGGGCTGGGCAT
	AGAGACCAAGGGGCGCTGGC	TCTACAAGGGCGAGTGGACACATGGCTTCAAGGGACGC
	TACGGAATCCGGCAGAGCTC	AAGCAGCGGTGCCAAGTATGAGGGCACCTGGAACAATG
	GCCTGCAAGACGGCTATGGC	ACCGAGACCTATGCTGATGGAGGGACGTACCAAGGCCA
	GTTCACCAACGGCATGCGCC	ATGGCTACGGAGTACGCCAGAGCGTGCCCTACGGGATG
	GCCGTGGTGCTGCCC	GCTGCGCACGTCGCTGTCGTCCCTGCGCAGCGAGCACA
	GCAACGGCACGGTGGCCCCG	GACTCTCCCGCCTCGCCGGCCTCCGACGGCCCCGCGCT
	GCCCTCGCCCGCCATCCCGC	GTGGCGGCTTCGCGCTCAGCCTCCTGGCCAATGCCGAC
	GCGGCCGCGCGCGCCCAA	GGGCGGCGGCTCTTCCAGCGGGGCGCGCTGCTGGGC
	AGCTGCGGCGCGCAGAGTCG	CGCACGTCCGTGGGTAGCCAGCGCAGCCGTGTCAGCTT
	CCTTAAGAGCGACCTCAGCT	CGGGCGCCAGCGACGCCGCGTCCACCGCCAGCCTGGGA
	GAGGCCGCCGAGGCGCCGA	CGAGGCCGCACCCTTCGAGGCCGATATCGACGCCACCA
	CCACCGAGACCTACATGGGC	GAGTGGAAGAACGACAAACGCTCGGGCTTCGGCGTGAG
	CGAACGCTCCAGTGGCCTCC	GCTACGAGGGCGAGTGGCTGGACAACCTGCGCCACGG
	TATGGCTGCACCACGCTGCC	CGACGGCCACCGCGAGGAGGGCAAGTACCGCCACAACG
	TGCTGGTCAAGGACACCAAG	CGCCGCATGCTGCAGCTCAAGAGCAACAAGGTCCGCCA
	GAAAGTGGAGCACAGTGTGG	AGGGTGCCCAGCGCGCCGCTGCTATCGCGCGCCAGAA
	GCCGAGATTGCCGCCTCCAG	GACAAGCCACGCCAAGGCCAAAGCTGAGGCAGCGGAAG
	AGGCCGCCCTGGCTGCCAAC	CAGGAGTCCAACATTGCTCGCACTTTGGCCAGGGAGCT
	GGCTCCGGACTTCTACCAGC	CAGGTCCGGAATATCAGAAGCGCCGGCTGCTGCAGGAG
	ATCCTGGAGAACTCGGAGAG	CCTGCTGGAGCCCCCGACCGGGGGCGCGCGCAGCG
	GCCTCCCACAGCCGCCCCGC	GAGAGCCCGCAGCTGCACGAGCGTGAGACCCCTCGGCC
	CGAGGGTGGCTCCCCGTCAC	CGGCCGGGACGCCCCCGCAGCCCAAGCGGCCCAGGCC
	GGGGTGTCCAAGGACGGCCT	GCTGAGCCCAGGCGCCTGGAACGGCGAGCCCAGCGGTG
	AGGGCAGCCGGTCAGTCACT	CCGTCCGAGGGCGCGGGGCCGCGCGCGCGT D
		TCGAGGCTCTGCAGGCACCGCCTGCGCCGTCGCGGGAC
		GGGCTACCACAGCTATGCTGTGCGCACCACGCCGCCCC
	The state of the s	CAGCCCGAGCCCGAGGTCTCCGGGTCCGAGTCCGCGCC
		CGCTGCAGGCCCCACGCTCCGAGGCCCCGAGCCTGCA
		GGAGCCCAAGCCCATCATCCCCAAAGCCGAGCCCAGGG
		GCTCGAGGGCTGACCAAGGCGGGGGCCAAGAAGAAGA
		CGGCAGAGGCGGAGGTGGAAGAGGTCCCCAAC
		GATCCTGCTGAACATCGGCCTGGCCATCCTCTTTGTTG
		CTTACCAGGTGCAGCCAGCTGGCTGGAGGAGGGGTTGG
	GGGCAGGAGCCCCTGGGG	21.1.10.1.10.1.100.

NOV95a,	MSGGRFDFDDG3AYCGGWEGGKAHGHGLCTGPKGQGEYS3SWNFGFEVA3VYTWPSGN TFEGYWSQGKRHGLGIETKGRWLYKGEWTHGFKGRYGIRQSSSSGAKYEGTWNNGLQD
CG59756-01 Protein Sequence	GYGTETYADGGTYQGQFTNGMRHGYGVRQSVPYGMAVVVRSPLRTSLSSLRSEHSNGT
	VAPDSPASPASDGPALPSPAIPRGGFALSLLANAEAAARAPKGGGLFQRGALLGKLRR AESRTSVGSORSRVSFLKSDLSSGASDAASTASLGEAAEGADEAAPFEADIDATTTET
	YMGEWKNDKRSGFGVSERSSGLRYEGEWLDNLRHGYGCTTLPDGHREEGFYRHNVLVK
	DTKRRMLQLKSNKVRQKVEHSVEGAQRAAAIARQKAEIAASRTSHAKAKAEAAEQAAL AANQESNIARTLARELAPDFYQPGPEYQKRRLLQEILENSESLLEPPDRGAGAAGLPQ
	PPRESPOLHERETPRPEGGSPSPAGTPPQPKRPRPGVSKDGLLSPGAWNGEPSGEGSR
	SVTPSEGAGRRSPARPATERMAIEALQAPPAPSREPEVALYQGYHSYAVPTTPPEPPP FEDQPEPEVSGSESAFSSPATAPLQAPTLRGPEPARETPAKLEPKPIIPKAEPRAKAR
	KTEARGLTKAGAKKKARKEAALAAEAEVEVEEVPNTILICMVILLNIGLAILFVHLLT

Further analysis of the NOV95a protein yielded the following properties shown in Table 95B.

	Table 95B. Protein Sequence Properties NOV95a
PSort analysis:	0.8000 probability located in nucleus; 0.7000 probability located in plasma membrane; 0.3133 probability located in microbody (peroxisome); 0.2000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV95a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 95C.

	Table 95C. Geneseq Results for NOV95a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV95a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79123	Human protein SEQ ID NO 1785 - Homo sapiens, 628 aa. [WO200157190-A2, 09-AUG-2001]	3696 4628	293/704 (41%) 377/704 (52%)	e-127	
AAM80107	Human protein SEQ ID NO 3753 - Homo sapiens, 378 aa. [WO200157190-A2, 09-AUG-2001]	283696 24378	146/421 (34° ₀) 194/421 (45° ₀)	2e-43	
ABB21683	Protein #3682 encoded by probe for measuring heart cell gene expression - Homo sapiens, 135 aa. [WO200157274-A2, 09-AUG-2001]	257389 6135	78/133 (58%) 104/133 (77%)	7e-42	
AAM57089	Human brain expressed single exon probe encoded protein SEQ ID NO	257389 6 135	78/133 (58%) 104/133 (77%)	7e-42	

AAM17323	Peptide #3757 encoded by probe for	257389	78/133 (58%)	7e-42
	measuring cervical gene expression -	6135	104/133 (77%)	
	Homo sapiens, 135 aa.			
	[WO200157278-A2, 09-AUG-2001]			

In a BLAST search of public sequence databases, the NOV95a protein was found to have homology to the proteins shown in the BLASTP data in Table 95D.

	Table 95D. Public BLASTP Results for NOV95a					
Protein Accession Number	Protein/Organism/Length	NOV95a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q9GKY7	JUNCTOPHILIN TYPE 2 - Oryctolagus cuniculus (Rabbit), 694 aa.	1696 1694	644/701 (91%) 662/701 (93%)	0.0		
Q9ET79	JUNCTOPHILIN TYPE 2 - Mus musculus (Mouse), 696 aa.	1696 1696	608/706 (86%) 644/706 (91%)	0.0		
Q9BR39	DJ1108D11.1 (NOVEL PROTEIN SIMILAR TO C. ELEGANS T22C1.7) - Homo sapiens (Human), 552 aa (fragment).	128672 1545	544/545 (99%) 544/545 (99%)	0.0		
Q9GKY8	MITSUGUMIN72/JUNCTOPHILIN TYPE1 - Oryctolagus cuniculus (Rabbit), 662 aa.	1696 1662	364/704 (51%) 468/704 (65%)	0.0		
Q9ET80	JUNCTOPHILIN TYPE 1 - Mus musculus (Mouse), 660 aa.	1696 1660	371/707 (52%) 469/707 (65%)	0.0		

PFam analysis predicts that the NOV95a protein contains the domains shown in the Table 95E.

Table 95E. Domain Analysis of NOV95a				
Pfam Domain	NOV95a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
MORN: domain 1 of 7	1436	10/23 (43%) 13/23 (57%)	1.1	
MORN: domain 2 of 7	3859	9/23 (39%) 15/23 (65%)	0.31	
MORN: domain 3 of 7	6077	8/23 (35%) 15/23 (65%)	3	
MORN: domain 4 of 7	106128	11/23 (48%) 20/23 (87%)	3.7e-06	
MORN: domain 5 of 7	129151	8/23 (35%) 15/23 (65%)	0.027	
MORN: domain 6 of 7	291313	12/23 (52° 5) 19/23 (83%)	0.00056	
MORN: domain 7 of 7	314336	11/23 (48%) 19/23 (83%)	0.00022	

Example 96.

The NOV96 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 96A.

Table 96A. NOV96 Sequence Analysis			
	SEQ ID NO: 273	3257 bp	
NOV96a, CG59708-01 DNA Sequence	GACGGCCACGGCTCGAGCTGC TTCAGGACCTTCCTTGTCC GGCAGTCAGCCTTCCTTACTGA ACAGAACCATCTGAAGTAGAC TAGACCTTACTCACTGA GGAGTCTCCCAAAATTCAAGG TCTGCAGAAACTAAACGCTCA ATCCCAATGACTGAGGAGAGAC TACATGTTGGTTTAGTGTC CTTGTTCTCAGTTATAGTCTC AAAAGAGAAATATCATGTTTA ATCAAATAGAAAAATTTCTAGAGCAC GGCTAGAGGAGAACTTCAGC AAATCCAATTGTGAGCACTGTT AAACCCTTTTTTTAACAATTAGCCC CCCCGATCACTGGAGAACTTCAGC CAACTTAGACGAGTGTTTAACAATGAC CCCCCGATCACTCGGTGAAGTTTTTTAACAATGAC CCTCCGATCACTCGGTGAAGTTTTTTTAACAATGAC TTGACCTTTTGAACTTCTCAAGA	TIGCGGAGCTGCAGCAGGACGACGGCCGGCGCGCGCAAATGCTGTTAAATCAACTGAGAGAAATCACAGCAATGAAGAGATTACTCAACTGAAGAGAATTCACTGAAGAGAGTTACTCAATGAGAGAGTTAAGCAAAAGCCCAGTCAAGACACTGTTGCTGAGAGAGTTATAGCAAAAAGCTACTCACTGAGAGAGTTATAGCAAAAAGCTACTACTCTGAGTGCACACAAGGAAGTTATTAGCAAAAACCCCAAAGAAAAACCCCAAAGAAAAAACCCCAAAGAAAAACCCCAAAGAAAAACCCCAAAGAAAAATGTTGGCAACTTGAGTTGACTTCAATTCAATTCAGAGAAAAATGTTAGCAAACCAAAAAATGTTAGCAAATCCAAAAAATTCCGAAGACCAAAAAATTCAATAATGACGAACCCAAAAAATTCAGAAAAATTTTTTTT	

TTCTCGGTCTTCCATGGAAATGCCTTCACAGCCAGCTCCACGAACAGTCACAGATGAG GAGATAAATTTTGTTAAGACCTGTCTTCAGAGATGGAGGAGTGAGATTGAACAAGATA TACAAGATTTAAAGACTTGTATTGCAAGTACTACTCAGACTATTGAACAGATGTACTG CGATCCTCTCCTCGTCAGGTGCCTTATCGCTTGCATGCAGTTCTTGTTCATGAAGGA CAAGCAAATGCTGGACACTATTGGGCCTATATCTATAATCAACCCCGACAGAGCTGGC TCAAGTACAATGACATCTCTGTTACTGAATCTTCCTGGGAAGAAGTTGAAAGAGATTC CTATGGAGGCCTGAGAAATGTTAGTGCTTACTGTCTGATGTACATTAATGCCAAACTA CCCTACTTCAATGCAGAGGCAGCCCCAACTGAATCAGATCAGAATGTCAGAAGTGGAAG CCCTATCTGTGGAACTCAAGCATTACATTCAGGAGGATAACTGGCGGTTTGAGCAGGA AGTAGAGGAGTGGGAAGAAGAGCAGTCTTGCAAAATCCCTCAAATGGAGTCCTCCCCC AACTCCTCATCACAGGGCTACTCTACATCACAAGAGCCTTCAGTAGCCTCTTCTCATG GGGTTCGCTGCTTGTCATCTGAGCATGCTGTGATTGTAAAGGAGCAAACTGCCCAGGC GCATTCCATGAAGAATACTCCAGGCTCTATCAGCTTGCCAAAGAGACCCCCACCTCTC ACAGTGATCCTCGACTTCAGCATGTCCTTGTCTACTTTTTCCAAAATGAAGCACCCAA AAGGGTAGTAGAACGAACCCTTCTGGAACAGTTTGCAGATAAAAATCTTAGCTATGAT GAAAGATCAATCAGCATTATGAAGGTGGCTCAAGCGAAACTGAAGGAAATTGGTCCAG ATGACATGAATATGGAAGAGTACAAGAGGTGGCATGAAGATTATAGTTTGTTCCGAAA AGTGTCTGTGTATCTCCTAACAGGCCTAGAACTCTATCAAAAAGGAAAGTACCAAGAG GCACTTTCCTACCTGGTATATGCCTACCAGAGCAATGCTGCCCTGCTGATGAAGGGGC CCCGCCGGGGGGTCAAAGAATCCGTGATTGCTTTATACCGAAGAAAATGCCTTCTGGA GCTGAATGCCAAAGCAGCTTCTCTTTTTGAAACAAATGATGATCACTCCGTAACTGAG GGCATTAATGTGATGAATGAACTGATCATCCCCTGCATTCACCTTATCATTAATAATG ACATTTCCAAGGATGATCTGGATGCCATTGAGGTCATGAGAAACCATTGGTGCTCTTA CCTTGGGCAAGATATTGCAGAAAATCTGCAGCTGTGCCTAGGGGAGTTTCTACCCAGA CTTCTAGATCCTTCTGCAGAAATCATCGTCTTGAAAGAGCCTCCAACTATTCGACCCA ATTCTCCCTATGACCTATGTAGCCGATTTGCAGCTGTCATGGAGTCAATTCAGGGAGT $\verb|TTCAACTGTGACAGTGAAATAAGCTCCCACATGTTCAAGGCCCATTCTGGTTCCTGGC|$ TGCCTGCCTCTTGCACAGAAGTTCGTTGTCATAGTGCTCACCTTGGGAAAAGGATTAG

ORF Start: ATG at 17 ORF Stop: TAA at 3152

SEQ ID NO: 274

1045 aa

MW at 119041.7kD

NOV96a, CG59708-01 Protein Sequence

MTAELQQDDAAGAADGHGSSCQMLLNQLREITGIQDPSFLHEALKASNGDITQAVSLL TDERVKEPSQDTVATEPSEVEGSAANKEVLAKVIDLTHDNKDDLQAAIALSLLESPKI QADGRDLNRMHEATSAETKRSKRKRCEVWGENPNPNDWRRVDGWPVGLKNVGNTCWFS AVIQSLFQLPEFRRLVLSYSLPQNVLENCRSHTEKRNIMFMQELQYLFALMMGSNRKF VDPSAALDLLKGAFRSSEEQQQDVSEFTHKLLDWLEDAFQLAVNVNSPRNKSENPMVQ LFYGTFLTEGVREGKPFCNNETFGQYPLQVNGYRNLDECLEGAMVEGDVELLPSDHSV KYGQERWFTKLPPVLTFELSRFEFNQSLGQPEKIHNKLEFPQIIYMDRYMYRSKELIR NKRECIRKLKEEIKILQQKLERYVKYGSGPARFPLPDMLKYVIEFASTKPASESCPPE SDTHMTLPLSSVHCSVSDOTSKESTSTESSSODVESTFSSPEDSLPKSKPLTSSRSSM EMPSQPAPRTVTDEEINFVKTCLQRWRSEIEQDIQDLKTCIASTTQTIEQMYCDPLLR QVPYRLHAVLVHEGQANAGHYWAYIYNQPRQSWLKYNDISVTESSWEEVERDSYGGLR NVSAYCLMYINAKLPYFNAEAAPTESDQMSEVEALSVELKHYIQEDNWRFEQEVEEWE EEQSCKIPQMESSPNSSSQGYSTSQEPSVASSHGVRCLSSEHAVIVKEQTAQAIANTA RAYEKSGVEAALSEAFHEEYSRLYQLAKETPTSHSDPRLQHVLVYFFQNEAPKRVVER TLLEQFADKNLSYDERSISIMKVAQAKLKEIGPDDMNMEEYKRWHEDYSLFRKVSVYL LTGLELYQKGKYQEALSYLVYAYQSNAALLMKGPRRGVKESVIALYRRKCLLELNAKA ASLFETNDDHSVTEGINVMNELIIPCIHLIINNDISKDDLDAIEVMRNHWCSYLGQDI AENLQLCLGEFLPRLLDPSAEIIVLKEPPTIRPNSPYDLCSRFAAVMESIQGVSTVTV

SEQ ID NO: 275

3044 bp

NOV96b, CG59708-02 DNA Sequence

GACGGCCACGGCTCGAGCTGCCAAATGCTGTTAAATCAACTGAGAGAAATCACAGGCA TTCAGGACCCTTCCTTTCTCCATGAAGCTCTGAAGGCCAGTAATGGTGACATTACTCA GGCAGTCAGCCTTCTCACTGATGAGAGAGTTAAGGAGCCCAGTCAAGACACTGTTGCT ACAGAACCATCTGAAGTAGAGGGGGGGTGCTGCCAACAAGGAAGTATTAGCAAAAGTTA TAGACCTTACTCATGATAACAAAGATGATCTTCAGGCTGCCATTGCTTTGAGTCTACT GGAGTCTCCCAAAATTCAAGCTGATGGAAGAGATCTTAACAGGATGCATGAAGCAACC TCTGCAGAAACTAAACGCTCAAAGAGAAATATCATGTTTATGCAAGAGCTTCAGTATT TGTTTGCTCTAATGATGGGATCAAATAGAAAATTTGTAGACCCGTCTGCAGCCCTGGA GTCCCAGGAACAAATCTGAAAATCCAATGGTGCAGCTGTTCTATGGTACTTTCCTGAC TGAAGGGGTTCGTGAAGGAAAACCCTTTTGTAACAATGAGACCTTCGGCCAGTATCCT CTTCAGGTAAACGGTTATCGCAACTTAGACGAGTGTTTGGAAGGGGCCATGGTGGAGG GTGATGTTGAGCTTCTTCCCTCCGATCACTCGGTGAAGTATGGACAAGAGCGTTGGTT TACAAAGCTACCTCCAGTGTTGACCTTTGAACTCTCAAGATTTGAGTTTAATCAGTCC

ACTTTCTTCAGTGCACTGCTC3GTTTCTGACCAGACATCCAAGGAAAGTACAAGTACA GAAAGCTCTTCTCAGGATGTT3AAAGTACCTTTTCTTCTCCTGAAGATTCTTTACCCA ACGAACAGTCACAGATGAGGAJATAAATTTTGTTAAGACCTGTCTTCAGAGATGGAGG AGTGAGATTGAACAAGATATA CAAGATTTAAAGACTTGTATTGCAAGTACTACTCAGA CTATTGAACAGATGTACTGCGATCCTCTCCTTCGTCAGGTGCCTTATCGCTTGCATGC AGTTCTTGTTCATGAAGGACAAGCAAATGCTGGACACTATTGGGCCTATATCTATAAT CAACCCCGACAGAGCTGGCTCAAGTACAATGACATCTCTGTTACTGAATCTTCCTGGG AAGAAGTTGAAAGAGTTCCTATGGAGGCCTGAGAAATGTTAGTGCTTACTGTCTGAT GTACATTAATGCCAAACTACCCTACTTCAATGCAGAGGCAGCCCCAACTGAATCAGAT CAAATGTCAGAAGTGGAAGCCTTATCTGTGGAACTCAAGCATTACATTCAGGAGGATA ACTGGCGGTTTGAGCAGGAAGTAGAGGAGTGGGAAGAAGAGCAGTCTTGCAAAATCCC TCAAATGGAGTCCTCCCCAACTCCTCATCACAGGGCTACTCTACATCACAAGAGCCT TCAGTAGCCTCTTCTCATGGGGTTCGCTGCTTGTCATCTGAGCATGCTGTGATTGTAA AGGAGCAAACTGCCCAGGCTATTGCAAACACAGCCCGTGCCTATGAGAAGAGCGGTGT AGAAGCGGCACTGAGTGAGGCATTCCATGAAGAATACTCCAGGCTCTATCAGCTTGCC AAAGAGACCCCCACCTCTCACAGTGATCCTCGACTTCAGCATGTCCTTGTCTACTTTT TCCAAAATGAAGCACCCAAAAGGGTAGTAGAACGAACCCTTCTGGAACAGTTTGCAGA TAAAAATCTTAGCTATGATGAAAGATCAATCAGCATTATGAAGGTGGCTCAAGCGAAA CTGAAGGAAATTGGTCCAGATGACATGAATATGGAAGAGTACAAGAGGTGGCATGAAG ATTATAGTTTGTTCCGAAAAGTGTCTGTGTATCTCCTAACAGGCCTAGAACTCTATCA AAAAGGAAAGTACCAAGAGGCACTTTCCTACCTGGTATATGCCTACCAGAGCAATGCT GCCCTGCTGATGAAGGGGCCCCGCCGGGGGGGTCAAAGAATCCGTGATTGCTTTATACC GAAGAAATGCCTTCTGGAGCTGAATGCCAAAGCAGCTTCTCTTTTTGAAACAAATGA CACCTTATCATTAATAATGACATTTCCAAGGATGATCTGGATGCCATTGAGGTCATGA GAAACCATTGGTGCTCTTACCTTGGGCAAGATATTGCAGAAAATCTGCAGCTGTGCCT AGGGGAGTTTCTACCCAGACTTCTAGATCCTTCTGCAGAAATCATCGTCTTGAAAGAG CCTCCAACTATTCGACCCAATTCTCCCTATGACCTATGTAGCCGATTTGCAGCTGTCA TGGAGTCAATTCAGGGAGTTTCAACTGTGACAGTGAAATAAGCTCCCACATGTTCAAG GCCCATTCTGGTTCCTGGCTGCCTGCCTCTTGCACAGAAGTTCGTTGTCATAGTGCTC ACCTTGGGAAAAGGATTAGGTGGGCACA

ORF Start: ATG at 17 ORF Stop: TAA at 2939

SEO ID NO: 276

974 aa

MW at 110687.3kD

NOV96b, CG59708-02 Protein Sequence

MTAELQQDDAAGAADGHGSSCQMLLNQLREITGIQDPSFLHEALKASNGDITQAVSLL TDERVKEPSQDTVATEPSEVEGSAANKEVLAKVIDLTHDNKDDLQAAIALSLLESPKI QADGRDLNRMHEATSAETKRSKRNIMFMQELQYLFALMMGSNRKFVDPSAALDLLKGA ${\tt FRSSEEQQQDVSEFTHKLLDWLEDAFQLAVNVNSPRNKSENPMVQLFYGTFLTEGVRE}$ GKPFCNNETFGQYPLQVNGYRNLDECLEGAMVEGDVELLPSDHSVKYGQERWFTKLPP VLTFELSRFEFNQSLGQPEKIHNKLEFPQIIYMDRYMYRSKELIRNKRECIRKLKEEI KILOOKLERYVKYGSGPARFPLPDMLKYVIEFASTKPASESCPPESDTHMTLPLSSVH CSVSDQTSKESTSTESSSQDVESTFSSPEDSLPKSKPLTSSRSSMEMPSQPAPRTVTD EEINFVKTCLQRWRSEIEQDIQDLKTCIASTTQTIEQMYCDPLLRQVPYRLHAVLVHE GQANAGHYWAYIYNQPRQSWLKYNDISVTESSWEEVERDSYGGLRNVSAYCLMYINAK LPYFNAEAAPTESDQMSEVEALSVELKHYIQEDNWRFEQEVEEWEEEQSCKIPQMESS PNSSSQGYSTSQEPSVASSHGVRCLSSEHAVIVKEQTAQAIANTARAYEKSGVEAALS EAFHEEYSRLYQLAKETPTSHSDPRLQHVLVYFFQNEAPKRVVERTLLEQFADKNLSY DERSISIMKVAQAKLKEIGPDDMNMEEYKRWHEDYSLFRKVSVYLLTGLELYQKGKYQ EALSYLVYAYQSNAALLMKGPRRGVKESVIALYRRKCLLELNAKAASLFETNDDHSVT EGINVMNELIIPCIHLIINNDISKDDLDAIEVMRNHWCSYLGQDIAENLQLCLGEFLP RLLDPSAEIIVLKEPPTIRPNSPYDLCSRFAAVMESIQGVSTVTVK

SEQ ID NO: 277

3231 bp

NOV96c, CG59708-03 DNA Sequence CCACGGCTCGAGCTGCCAAATGCTGTTAAATCAACTGAGAGAAATCACAGGCATTCAG GACCCTTCCTTCTCCATGAAGCTCTGAGGGCCAGTAATGGTGACATTACTCAGGCAG TCAGCCTTCTCACTGATGAGAGAGTTAAGGAGCCCAGTCAAGACACTGTTGCTACAGA ACCATCTGAAGTAGAGGGGAGTGCTGCCAACAAGGAAGTATTAGCAAAAGTTATAGAC CTTACTCATGATAACAAAGATGATCTTCAGGCTGCCATTGCTTTGAGTCTACTGGAGT CTCCCAAAATTCAAGCTGATGGAAGAGATCTTAACAGGATGCATGAAGCAACCTCTGC AGAAACTAAACGCTCAAAGAGAAAACGCTGTGAAGTCTGGGGAGAAAACCCCAATCCC AATGACTGGAGGAGAGTTGATGGTTGGCCAGTTGGGCTGAAAAATGTTGGCAATACAT GTTGGTTTAGTGCTGTTATTCAGTCTCTCTTTCAATTGCCTGAATTTCGAAGACTTGT TCTCAGTTATAGTCTGCCACAAAATGTACTTGAAAATTGTCGAAGTCATACAGAAAAG ATAGAAAATTTGTAGACCCGTCTGCAGCCCTGGATCTATTAAAGGGA3CATTCCGATC GAGGACGCATTCCAGCTAGCTGTTAATGTTAACAGTCCCAGGAACAATTTGAAAATC CAATGGTGCAGCTGTTCTATGGTACTTTCCTGACTGAAGGGGTTCGTGAAGGAAAAC

	AGCTTATTCGAAATAAGAGAGAGGGCAGCAAAAATTGGAAGGGTATGCCGGACATGCTGAAATTATGTTATGTCACCACCTGAAGACACACATTCTCACCAGAAAATTCTTCTCCTGAAGAAAATTTTGTTAAGACCTGCTCAAAATTTTGTTAAGACCTGTCAAGAATTTAAAAGACTTGTACAAGCCCTTCCTCAAGACACACAC	TGAAATATGGC TGAATTTGCTA ATGACATTACCA ATGACAGTACA ACAGCCAGCTCC AGAGATGGAGG TACTACTCAGA CGCTTGCATGC ATATTCTTAACA ATCTTCTGGG TACTGCTGATC ATCTTCTGGAT ACTTCTTGAT ACTTCTTGAT CTGAATCAGAT	TCAGGCCCAGCTCGC GTACAAAACCTGCCT ACTTTCTTCAGTGCA GAAAGCTCTCTCAC AGTCTAAACCACTGA AGTGAGATTGAACAA CTATTGAACAGATGTAACAAA CTATTGAACAGATGTAACAAA AGTCCTTGTTCATGA AGTTCTTGTTCATGA AGTACCCCGACAGAGG AAGAAGTTGAAAGAC GTACATTAACGACAA	TTTCCCGCTC CAGAAAGCT ACTGCTCGGT ACTGCTCTC ATGAGAGAT ACATCTTCTC ATGAGAGAT ACTGCGATC ACTGCGATC ACTGCCTAAG BATTCCTATG ACTACCCTA GAAAGCCCTA AGGAAGCCCTA
	TCTGTGGAACTCAAGCATTACAT A3GAGTGGAAGAAGAGAGCAGTCT CTCATCACAGGACTACTTCACAT C3CTGCTTGTCATCTGAGCATGC CAAACACAGCCCGTGCCTATGAG CCATGAGAGAATACTCCAGGCTCT GATCCTCGACTTCAGCATGTCCT TAGTAGAACGAACCCTTCTGGAA ATCAATCAGCATTATGAAGGTGG ATGAATATGGAAGATACAAGAA CTGTGTATCTCCTAACAGGCCTA ATCCTACCTGGTATATGCCTACC CGGGGGGTCAAAGAATCCGTGAT ATGCCAAAGCAGCTTCTTTT TAATGTGATGAATGACTGATCA TCCAAGGATTCTTGGATGCCAT GGCAAGATATTCCAGAAATCATCA GCCATGTTCTTCTGCAGAAATCATCG CCCTTTCTGCAGAAATCATCG CCCTTTGCACAGAATTAAGCTCCC GCCTCTTGCACAGAATTAAGCTCCC GCCTCTTGCACAGAATTCGTTG	TGCAAAATCCC CACAAGAGCCT TGTGATTGTAA AAGAGCGGTGT ATCAGCTTGCCA TGTCTACTTTT CAGTTTGCAGA CTCAAGCGAAA GTGGCATGAAC GAACTCTATCA TGCTTTATACC GAAACAAATGA TCCCCTGCATT TGAGGTCATGA CAGCTTGTAAAGAG TCTTAAAGAG TCTTAAAGAG TCCCTGCATT TGAAAGAGAG TCCACGCTGCATA	TCAAATGGAGTCCTC TCAGTAGCCTCTTCT AGGAGCAAACTGCCC AAAAGGAGCCCCACC TCCAAAATGAAGCAC TAAAAATCATGCTA CTGAAGGAAATTGTTCC AAAAGGAAAGTACTTCCAAAAGGAAAGCACTCCGTTATAACTTTGTTCC TGATCACTTCCTAACCTCCTAACCTCCTAACCTTCCTTATTA	CACCAACTC CATGGGGTT CATGGGCATT CTCTCACAGT CCCAAAAGGG CCGAAAAGTG CCAGATGAC CGAAAAGTGT CAGAGCACT CAGAGCACT CAGAGCACT CAGAGCACT CTGAGCCCCCC CTGGAGCACT CAATGACATT CCTTACCTTG CCCAATTCT CCCCAATTCAA
	ORF Start: ATG at 12	ORF Stop:	TAA at 3147	
	SEQ ID NO: 278	1045 aa	MW at 11910	7.7kD
OV96c, G59708-03 Protein Sequence	MTAELQQDDAAGAADGHGSSCQM TDERVKEPSQDTVATEPSEVEGS QADGRDLNRMHEATSAETKRSKR AVIQSLFQLPEFRRLVLSYSLPQ VDPSAALDLLKGAFRSSEEQQDD LFYGTFLTEGVREGKPFCNNETF KYGQERWFTKLPPVLTFELSRFE NKRECIRKLKEEIKILQQKLEGY SDTHMTLPLSSVHCSVSNQTSKE EMPSQPAPRTVTDEEINFVKTCL QVPYRLHAVLVHEGQANAGHYWA NVSAYCLMYINDKLPYFNAEAAP PEQSCKIPQMESSTNSSSQDYST RAYEKSGVEAALSEAFHEEYSRL TLLEQFADKNLSYDERSISIMKV LTGLELYQKGKYQEALSYLVYAY ASLFETNDDHSVTEGINVMNELI ENLQLCLGEFLPRLLDPSAEII	AANKEVLAKVII KRCEVWGENPNI NVLENCRSHTEI VSEFTHKLLDWI GQYPLQVNGYNI FNQSLGQPEKII VKYGSGPARFPI STSTESSSQDVI QRWRSEIEQDIO YIYNQPRQSWLI TESDQMSEVEAI SQEPSVASSHSI YQLAKETPTSHI AQAKLKEIGPDI QSNAALLMKGPI IPCIHLIINND	DLTHDNKDDLQAAIA PNDWRRVDGWPVGLK KRNIMFMQELQYLFA LEDAFQLAVNVNSPR NLDECLEGAMVEGDV HNKLEFPQIIYMDRY LPDMLKYVIEFASTK ESTFSSPEDSLPKSK QDLKTCIASTTQTIE KYNDISVTESSWEEV LSVELKHYIQEDNWR VRCLSSEHAVIVKEQ EDPRLQHVLVYFFQN DMMMEEYKKWHEDYS RRGVKESVIALYRRK ISKDDLDAIEVMRNH	LSLLESPKI NVGNTCWFS LMMGSNRKF NKFENPMVQ ELLPSDHSV MYRSKELIR PASESCPPE PLTSSRSSM QMYCDPLLR ERDSYGGLR FEQEVEEWE TAQAIANTA LFRKVSVYL CLLELNAKA WCSYLGQDI

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 96B.

Table 96B. Comparison of NOV96a against NOV96b through NOV96c.

CONTRACTOR

SHITTES

staten Residues - similarnies for the Matched Region

NOV96b	2091045 138974	805/837 (96%) 805/837 (96%)
NOV96c	11045 11045	979/1045 (93%) 981/1045 (93%)

Further analysis of the NOV96a protein yielded the following properties shown in Table 96C.

	Table 96C. Protein Sequence Properties NOV96a			
PSort analysis:	0.8800 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV96a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 96D.

Table 96D. Geneseq Results for NOV96a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV96a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE04874	Human protease protein-1 (PRTS-1) - Homo sapiens, 1055 aa. [WO200146443-A2, 28-JUN-2001]	221036 181047	524/1035 (50%) 713/1035 (68%)	0.0
AAB31552	A human ubiquitin specific protease 25 (USP25) - Homo sapiens, 1055 aa. [WO200079267-A2, 28-DEC-2000]	221036 181047	524/1035 (50%) 713/1035 (68%)	0.0
AAB31546	A human ubiquitin specific protease 25 (USP25) - Homo sapiens, 1055 aa. [WO200078934-A2, 28-DEC-2000]	221036 181047	524/1035 (50%) 713/1035 (68%)	0.0
AAB74491	Human SYK kinase binding protein SYK-UBP isoform 1 - Homo sapiens, 1055 aa. [WO200121654-A2, 29- MAR-2001]	221036 181047	522/1035 (50%) 710/1035 (68%)	0.0
	All many largety and the many and	77 1/17	575 1/H 7 / 100 1	

In a BLAST search of public sequence databases, the NOV96a protein was found to have homology to the proteins shown in the BLASTP data in Table 96E.

	Table 96E. Public BLASTP Results for NOV96a				
Protein Accession Number	Protein/Organism/Length	NOV96a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96RU2	UBIQUITIN SPECIFIC PROTEASE - Homo sapiens (Human), 1077 aa.	11045 11077	1041/1077 (96%) 1042/1077 (96%)	0.0	
Q9P213	KIAA1515 PROTEIN - Homo sapiens (Human), 757 aa (fragment).	3041045 16757	738/742 (99%) 739/742 (99%)	0.0	
P57080	Ubiquitin carboxyl-terminal hydrolase 25 (EC 3.1.2.15) (Ubiquitin thiolesterase 25) (Ubiquitin-specific processing protease 25) (Deubiquitinating enzyme 25) (mUSP25) - Mus musculus (Mouse), 1055 aa.	221036 181047	527/1033 (51%) 710/1033 (68%)	0.0	
Q9UHP3	Ubiquitin carboxyl-terminal hydrolase 25 (EC 3.1.2.15) (Ubiquitin thiolesterase 25) (Ubiquitin-specific processing protease 25) (Deubiquitinating enzyme 25) (USP on chromosome 21) - Homo sapiens (Human), 1087 aa.	221036 181079	525/1067 (49%) 717/1067 (66%)	0.0	
Q9H9W1	CDNA FLJ12512 FIS, CLONE NT2RM2001730, WEAKLY SIMILAR TO PROBABLE UBIQUITIN CARBOXYL- TERMINAL HYDROLASE K02C4.3 (EC 3.1.2.15) - Homo sapiens (Human), 737 aa.	3131036 2729	363/733 (49%) 510/733 (69%)	0.0	

PFam analysis predicts that the NOV96a protein contains the domains shown in the Table 96F.

Table 96F.	Table 96F. Domain Analysis of NOV96a		
	Identities'		
	et example.		
	state tree receive		

UIM: domain 1 of 1	96113	9/18 (50%) 14/18 (78%)	8.4
UCH-1: domain 1 of 1	162193	14/32 (44%) 28/32 (88%)	2.6e-11
UCH-2: domain 1 of 1	580649	26/72 (36%) 56/72 (78%)	1.5e-19

Example 97.

The NOV97 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 97A.

Table 97A. NOV97 Sequence Analysis				
	SEQ ID NO: 279	1601 bp		
NOV97a, CG59559-01 DNA Sequence	AGGCAGAGGCCACAGGCCATCCCCTTCCCCATGCTCTCCCCAACCTGCAC TGGGCGCTCCGCCCAGAGGTCAGCCCTTCCCCATGCTCCCCAACCTGCAC TCCGCAGAGCCATCCTGTGCAAAGGAAGCAGCTTCTCCCTTCTGTCCTAGCCA TCCGCAGAGCCATCCTGTGCAAAGGAAGCAGCTTCTCTCTTCTTCTTGTCCTAGCCA TCCGCAGAGCCATCCTGTGCAAAGGAAGCAGCTAGCTTGCCCCTTGGCGTCATGA TCCTTCTGCGGGCCTCCGAAGTGCGCAGCTGCTTCACAATAAGTTCGTGGTCATCCT GGGGGACTTCTGCATAGGGCAGTTACAAGGACCTGGTGCTTCTGCTGCAGAAGAGC CGCTGCTCACTCCCGGGCAGCTTAGAGCAAAGGGGCAACTTCGAACAAGATG AGCTGGTGGACCACCATCTGGTACGTTTTTACTTCCTCACCCGCGTGTAC TCCGATTACCTCCAGACCACCATCTGGTACGTTTTTACTTCCTCACCCGCGTGTAC TCCGATTACCTCCAGACCACCATCTGGAACACGGCCTTAACTACCGTGAGG AAGCTACCTGGAGAACCTGTTGAAAGAGCTGCAGAGCGCCCCCGACC TGGTCATCATGAATTCCTGCCTCTGGGACATCTCCAGGTATGGTCCGAGGTCTCCCGAG ACGCTACTCGGGTGTGGAACACGGCCATGCCTTGCTGGGCCAAGGTGCTCCCGAG TCTTGCCTCCTGGTGGAACACGGCCATGCCTTGCTGGGCCAAGGTACCCGGGGTT TCTTTCCCCCCACAGCCCCCGGGGCAGAAGGCCACCTTCCTGAAAAACGAAGTGGTCAA AGCCAACTTCCACAGCGCCACCGGGGCAGAACGCACTTCCTGGAAAAACGAAGTGGTCAA AGCCAACTTCCACCAGCGCCACCGCGGGGAGAACCTGCCCTGGGACGAGGGTCACCGGGGGTT TCTTTCCACTCCCCCACGCCCCCCGGGGGAGAACCTGCACTGGGACGGGGTGCACTGGAATG GACGTGTGCACCCTGCCTCTCCCAGCTGTGCTGCCCCCAGGCCCTTGGCCAACGGCCTTGGCC CACCCTTACCTTCCCCCACATACCGCCCCTGGTGGGCGAGGGTGCACTGGCCACCCCTGGCC CCACCCTTACCTTCCCCCACATACCGCCCCTGCTTTCCTCCAACACCCTGCCCCCCCGGTGCCCCCAGGGCCCCCAGGCCCCCAGGCCCCTGCTTTTTTCCTCCAACCCCAGGGCTTCCC CACCCTTACCTTCCCCCACATACCGCCCCTGCTTTCCTCCAACACCCAGCCCTTTCCCCCACACCCCGT TCCGGCTCCCCCCACATACCGCCCCCTGCTTTCCTCCAACACCCAGCCCTTTCCCCCACACCCCGT TACAGCCCTGCTCCCCCACATCCCTCCTCCTCCCATTCCCCAACCCCGT TACAGCCCTGGGGCACAGGGGCCCCCAGGGCTTTTTTCCTCCAACCCAGCCATTCCTTCC			
	ORF Start: ATG at 171	ORF Stop: TAG at 1467		
	SEQ ID NO: 280	432 aa MW at 49726.6kD		
NOV97a, CG59559-01 Protein Sequence	DELVDGGQRGHMHNGLNYREVREF DLVIMNSCLWDISRYGPNSWRSYL GFLPPKLRRQKATFLKNEVVKANF NGRVHRCLSQLLLAHVADAWGVEL SPPLPSPTYRPLLGFPPQRLPLLP	VHRAVYKDLVLLLQKDRLLTPGQLRARGELNFEQ RSDHHLVRFYFI TRVYSDYLQTILKELQSGEHAP ENLENLFQCLGQVLPESCLLVWNTAMPVGEEVTG HSATEARKHNFTVLDLHFHFRHARENLHWDGVHW PHRHPVGEWIKFKKPGPRVEGPPQANRNHPALPL LLSPQPPPPILHHQGMPRFPQGPPDACFSSDHTF FMVGPQLPMPFFPTPRYQRPAPVVHRGFGRYRPR PQ		

Further analysis of the NOV97a protein yielded the following properties shown in Table 97B.

PSort analysis:	0.5937 probability located in mitochondrial matrix space; 0.5103 probability located in microbody (peroxisome); 0.4900 probability located in nucleus; 0.3252 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV97a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 97C.

	Table 97C. Geneseq Results for NOV97a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV97a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG74241	Human colon cancer antigen protein SEQ ID NO:5005 - Homo sapiens, 281 aa. [WO200122920-A2, 05-APR- 2001]	34294 1266	162/268 (60%) 191/268 (70%)	1e-82	
AAE03639	Human extracellular matrix and cell adhesion molecule-3 (XMAD-3) - Homo sapiens, 386 aa. [WO200142285-A2, 14-JUN-2001]	1421 1366	197/435 (45%) 231/435 (52%)	2e-82	

In a BLAST search of public sequence databases, the NOV97a protein was found to have homology to the proteins shown in the BLASTP data in Table 97D.

Table 97D. Public BLASTP Results for NOV97a				
Protein Accession Number	Protein/Organism/Length	NOV97a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96HM7	SIMILAR TO HYPOTHETICAL PROTEIN FLJ22376 - Homo sapiens (Human), 432 aa.	1432 1432	432/432 (100° o) 432/432 (100° o)	0.0
Q96B20	HYPOTHETICAL 31.4 KDA PROTEIN - Homo sapiens (Human), 279 aa.	121310 1190	190/190 (100%) 190/190 (100%)	e-116
Q9H1Q7	BA12M19.1.3 (NOVEL PROTEIN) (CDNA FLJ31791 FIS, CLONE NT2RI2008749, WEAKLY SIMILAR TO SPLICEOSOME ASSOCIATED PROTEIN 49) - Homo sapiens (Human), 454 aa.	1421 18434	234/437 (53%) 273/437 (61%)	e-111
Q9H1Q6	BA12M19.1.1 (NOVEL PROTEIN) - Homo sapiens (Human), 403 aa.	1421 18383	197/435 (45%) 231/435 (52%)	7e-82
Q9H6D1	CDNA: FLJ22376 FIS, CLONE HRC07327 - Homo sapiens (Human), 403 aa.	1421 18383	196/435 (45%) 231/435 (53%)	1e-81

PFam analysis predicts that the NOV97a protein contains the domains shown in the Table 97E.

Table 97E. Domain Analysis of NOV97a						
Pfam Domain	NOV97a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
No Significant Matches Found						

Example 98.

The NOV98 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 98A.

Table 98A. NOV98 Sequence Analysis				
	SEQ ID NO: 281	981 bp		
NOV98a, CG59669-01 DNA Sequence	GCCCGGGTCCCAGAATCTAGTCCTACGCCACGGTTTTGACCACGCGTGACCCGCTGC CCAGCCGGCCCGCCATCAGTGGTCCTTGTCCCTCTGACATGTCCTCTGCAGCC GCCTGGCCCGGCCATCAGGTGGTCCGTGTGTCCCTCTGACATGTCCTCTGCAGCC GCCTGGCCCTGGTAACTGGGGCTAACAAAGGCATCGGCTTTTGCGATCACGCGTGACCT GTGTCGGAAATTCTCCGGGGACGTGGTGGTCTCACGGGGGACGAGGCGCGGGGCCGC GCGGCGGTGCAGCAGCTGCAGGCGGAGGGCCTAGCCCTTCCACCAGCTGGACA TCGACGACCCGCAGAGCATCCGGTGCGCTGACCTTTACAAGTACTGATCTCACCCAC TTTCACGTTCTAAGAGAAGCTGCAATGAAAACTAACTTTTTTGGTACCCAGCCGCTCT GCACAGAGCTACTCCCTCTAATAAAACCCAAGGTAGAGTGTGGAATATATCAAGCCT AATAAGTCTAGAGGCCCTGAAAAACTGCAGCCTGGAGCTACAGCAGAAGTTTCGAAGT GAGACCATCACAGAGGAGGAGCTGGTGGGGCTCATGAACAAGTTTGTGGAGGATACAA AGAAAGGAGTCCATGCAAAAACTGCAGCCTAATAGTGCATACGGGGTTCTAAGAT TGGAGTGACACTCCTGTCCAGAATCCTTGCCAGGAAACTCAATGAGAAAGGAGAGGG GACAAGATCCTTCTGAATGCCTGCCCTGGCTGGGCTG			
	ORF Start: ATG at 101	ORF Sto	p: TGA at 932	
	SEQ ID NO: 282	277 aa	MW at 30547.7kD	
NOV98a, CG59669-01 Protein Sequence	MSSCSRVALYTGANKGIGFAITRDLCRKFSGDVVLTARDEARGRAAVQQLQAEGLSPR FHQLDIDDPQSIRALRDFLRKEYGGLNVLVNNAGIAFRSTDLTHFHILREAAMKTNFF GTQAVCTELLPLIKTQGRVVNISSLISLEALKNCSLELQQKFRSETITEEELVGLMNK FVEDTKKGVHAKEGWPNSAYGVSKIGVTVLSRILARKLNEQRRGDKILLNACCPGWVR TDMAGPQATKSPEEGAETPVYLALLPPDAEGPHGQFVQDKKVEQW			

Further analysis of the NOV98a protein yielded the following properties shown in Table 98B.

Table 98B. Protein Sequence Properties NOV98a			
PSort analysis:	0.4766 probability located in mitochondrial matrix space; 0.4500 probability located in cytoplasm; 0.1822 probability located in mitochondrial inner membrane; 0.1822 probability located in mitochondrial intermembrane space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV98a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 98C.

Table 98C. Geneseq Results for NOV98a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV98a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
				1

AAU33100	Novel human secreted protein #3591 - Homo sapiens, 175 aa. [WO200179449-A2, 25-OCT-2001]	142277 391 74	119/136 (87%) 128/136 (93%)	2e-66
AAM73641	Human bone marrow expressed probe encoded protein SEQ ID NO: 33947 - Homo sapiens, 123 aa. [WO200157276-A2, 09-AUG-2001]	197 197	86/97 (88° a) 92/97 (94° a)	7e-43
AAM60948	Human brain expressed single exon probe encoded protein SEQ ID NO: 33053 - Homo sapiens, 123 aa. [WO200157275-A2, 09-AUG-2001]	197 197	86/97 (88° o) 92/97 (94° o)	7e-43
AAM33832	Peptide #7869 encoded by probe for measuring placental gene expression - Homo sapiens, 123 aa. [WO200157272-A2, 09-AUG-2001]	197 197	86/97 (88%) 92/97 (94%)	7e-43

In a BLAST search of public sequence databases, the NOV98a protein was found to have homology to the proteins shown in the BLASTP data in Table 98D.

31	Table 98D. Public BLASTP Results for NOV98a				
Protein Accession Number	Protein/Organism/Length	NOV98a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q924V2	CARBONYL REDUCTASE 2 - Cricetulus griseus (Chinese hamster), 277 aa.	1277 1277	243/277 (87%) 260/277 (93%)	e-139	
Q91X28	SIMILAR TO CARBONYL REDUCTASE 1 - Mus musculus (Mouse), 277 aa.	1277 1277	244/277 (88%) 256/277 (92%)	e-139	
Q924V3	CARBONYL REDUCTASE 1 - Cricetulus griseus (Chinese hamster), 277 aa.	1277 1277	241/277 (87° o) 256/277 (92° o)	e-137	
P48758	Carbonyl reductase [NADPH] 1 (EC 1.1.1.184) (NADPH-dependent carbonyl reductase 1) - Mus musculus (Mouse), 276 aa.	2277 1276	240/276 (86%) 253/276 (90%)	e-136	
JC5284	carbonyl reductase (NADPH) (EC 1.1.1.184), inducible - rat, 277 aa.	1277 1277	236/277 (85%) 249/277 (89%)	e-134	

Table 98E. Domain Analysis of NOV98a					
Pfam Domain	NOV98a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
adh_short: domain 1 of 1	4274	67/286 (23%) 185/286 (65%)	1.6e-38		

Example 99.

The NOV99 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 99A.

Table	Table 99A. NOV99 Sequence Analysis				
	SEQ ID NO: 283	1001 bp			
NOV99a, CG58624-01 DNA Sequence	CTTGGTATAAGTAAGTGCTCGTCAATGTTGGCTACTCTCAATGTCAGAGCCGCAGCCG CGGGGCGCAGAGCGCGATCTCTACCGGGACACGTGGGTGCGATACCTGGGCTATGCCA ATGAGGTGGCGAGGCTTTCCGCTCTCTTGTGCCAGCGGCGGTGGTGTGGCTAAGCTA TGGCGTGGCCAGCTCCTACGTGCTGGCGGATGCCATTGACAAAGGCAAGAAGGCTGGA CAGGTGCCCAGCCCTGAAGCAGCTCAGCGTGACCATCAGCACACACA				
	ORF Start: ATG at 41	ORF Stop	o: TAG at 992		
	SEQ ID NO: 284	317 aa	MW at 33737.8kD		
NOV99a, CG58624-01 Protein Sequence	MSEPQPRGAERDLYRDTWVRYLGYANEVGEAFRSLVPAAVVWLSYGVASSYVLADAID KGKKAGEVPSPEAGRSARVTVAVVDTFVWQALASVAIPGFTINRVCAASLYVLGTATR CC WPLAVRKWTTTALGLLTIPIIIHPIDRDHPLSSDESGSSSLQHEGPGVPQVSGAPAAP SALRAHVLVFSLALYSVFKGLDGAWAAELRLALLLHKGTVAVSLSLQLLQSHVGLQVV AGCGIHFLCMTLLGIRLGAALAQSAGPLHQLAQSVLEGMVAGTFLYTTFLEIFPQELA TSEQRILKVILLLEGCALLTGLLFIHI				

Further analysis of the NOV99a protein yielded the following properties shown in Table 99B.

	Table 99B. Protein Sequence Properties NOV99a				
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in mitochondrial inner membrane				
SignalP	Likely cleavage site between residues 55 and 56				

A search of the NOV99a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 99C.

	Table 99C. Geneseq Results for NOV99a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV99a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM93835	Human polypeptide, SEQ ID NO: 3905 - Homo sapiens, 324 aa. [EP1130094-A2, 05-SEP-2001]	140317 141324	134/184 (72%) 145/184 (77%)	3e-63	
AAY52394	Human transmembrane protein HP10528 - Homo sapiens, 324 aa. [WO9955862-A2, 04-NOV-1999]	140317 141324	134/184 (72%) 145/184 (77%)	3e-63	
AAY84895	A human proliferation and apoptosis related protein - Homo sapiens, 324 aa. [WO200023589-A2, 27-APR-2000]	140317 141324	134/184 (72%) 145/184 (77%)	3e-63	
AAB43291	Human ORFX ORF3055 polypeptide sequence SEQ ID NO:6110 - Homo sapiens, 323 aa. [WO200058473-A2, 05-OCT-2000]	140317 140323	134/184 (72%) 145/184 (77%)	3e-63	
AAM93650	Human polypeptide, SEQ ID NO: 3514 - Homo sapiens, 324 aa. [EP1130094-A2, 05-SEP-2001]	140317 141324	133/184 (72%) 144/184 (77%)	2e-62	

In a BLAST search of public sequence databases, the NOV99a protein was found to have homology to the proteins shown in the BLASTP data in Table 99D.

Table 99D. Public BLASTP Results for NOV99a					
Protein Accession Number	Protein/Organism/Length	NOV99a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9UDX5	WUGSC:H_DJ0539M06.2 PROTEIN - Homo sapiens (Human), 166 aa.	1152 1152	145/152 (95%) 145/152 (95%)	6e-78	

Causemas (viouse). OG da

Q9CZX4	2610507A21RIK PROTEIN - Mus musculus (Mouse), 166 aa.	1143 1143	125/143 (87%) 133/143 (92%)	2e-68
Q9NY26	IRT1 PROTEIN (SIMILAR TO ZINC/IRON REGULATED TRANSPORTER-LIKE) (HYPOTHETICAL 34.2 KDA PROTEIN) (UNKNOWN) (PROTEIN FOR MGC:14180) - Homo sapiens (Human), 324 aa.	140317 141324	134/184 (72%) 145/184 (77%)	1e-62
Q9Y380	CGI-71 PROTEIN - Homo sapiens (Human), 324 aa.	140317 141324	134/184 (72%) 145/184 (77%)	1e-62

PFam analysis predicts that the NOV99a protein contains the domains shown in the Table 99E.

Table 99E. Domain Analysis of NOV99a					
Pfam Domain	NOV99a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
Syndecan: domain 1 of 1	235255	9/21 (43%) 16/21 (76%)	6.9		
Zip: domain 1 of 1	174313	52/178 (29%) 108/178 (61%)	2.3e-15		

Example 100.

The NOV100 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 100A.

Table 100A. NOV100 Sequence Analysis				
	SEQ ID NO: 285	987 bp		
NOV100a, CG59679-01 DNA Sequence	CTTTAGTTCTTCTGGTGGTGCCCCGCATTGCACTGCTGACTGGTGACTGGTGACTGGTGACTGGTGACTGAGGTTGCAGGACTGAGGTTCAAGGTGAGCTCCAGGTGACTGCAGGTCCAGACACCCTCGACATCAACACCGACCCTCGACATCAAGGTGACACACCCTCGACATACAAGGTAAAAAAAA	AGTCCAGCAACATCTTAGTAGCCCAAAATCGACTG TCTCACTGTCCACTCGGCTTTGCGATCCTGCAGTC AATAAGGGCATTGGCTTTGCGATCACTGCACTC TGGTGCTCACTGCACTCGCGTCCACCACGCGCACTCGCACCTCGCACCACCACCACCACCACCACCACCACCACCACCACCA		

	SEQ ID NO: 286	279 aa	MW at 31007.2kD
NOV100a, CG59679-01 Protein Sequence	FHQLDINDPQSIHALRNFLLKEYG FFATRNVCTELLPIMKPHGRVVNI	GLDVLVNNAG SSLQGLKALE SKLGVTVLTR	ILARQLDEKRKADRILLNACCPGW

Further analysis of the NOV100a protein yielded the following properties shown in Table 100B.

	Table 100B. Protein Sequence Properties NOV100a				
PSort analysis:	0.3600 probability located in mitochondrial matrix space; 0.3000 probability located in microbody (peroxisome); 0.1808 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV100a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 100C.

	Table 100C. Geneseq Results for NOV100a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV100a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW51011	Human liver carbonyl reductase - Homo sapiens, 277 aa. [US5756299- A, 26-MAY-1998]	1279 1277	198/279 (70%) 233/279 (82%)	e-112	
AAU33100	Novel human secreted protein #3591 - Homo sapiens, 175 aa. [WO200179449-A2, 25-OCT-2001]	145279 40174	88/135 (65%) 110/135 (81%)	2e-48	
AAG46601	Arabidopsis thaliana protein fragment SEQ ID NO: 58644 - Arabidopsis thaliana, 302 aa. [EP1033405-A2, 06-SEP-2000]	3259 20283	106/268 (39%) 157/268 (58%)	6e-43	
AAG46600	Arabidopsis thaliana protein fragment SEQ ID NO: 58643 - Arabidopsis thaliana, 316 aa. [EP1033405-A2, 06-SEP-2000]	3259 34297	106/268 (39%) 157/268 (58%)	6e-43	

 · · · · · · · · · · · · · · · · · · ·		
[SEP-2000]		

In a BLAST search of public sequence databases, the NOV100a protein was found to have homology to the proteins shown in the BLASTP data in Table 100D.

	Table 100D. Public BLASTP R	esults for NC	OV100a	
Protein Accession Number	Protein/Organism/Length	NOV100a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9JJN7	CARBONYL REDUCTASE (EC 1.1.1.184) (CARBONYL REDUCTASE 3) - Cricetulus griseus (Chinese hamster), 277 aa.	1279 1277	246/279 (88%) 262/279 (93%)	e-140
AAH02812	CARBONYL REDUCTASE 3 - Homo sapiens (Human), 277 aa.	12 7 9 12 7 7	227/279 (81%) 246/279 (87%)	e-126
O75828	Carbonyl reductase [NADPH] 3 (EC 1.1.1.184) (NADPH-dependent carbonyl reductase 3) - Homo sapiens (Human), 276 aa.	3 2 79 2 2 76	226/277 (81%) 245/277 (87°°)	e-126
Q924V2	CARBONYL REDUCTASE 2 - Cricetulus griseus (Chinese hamster), 277 aa.	1279 1277	206/279 (73%) 244/279 (86%)	e-119
Q91X28	SIMILAR TO CARBONYL REDUCTASE 1 - Mus musculus (Mouse), 277 aa.	1279 1277	204/279 (73%) 240/279 (85%)	e-116

PFam analysis predicts that the NOV100a protein contains the domains shown in the Table 100E.

Table 100E. Domain Analysis of NOV100a					
Pfam Domain	NOV100a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
adh_short: domain 1 of 1	4277	77/316 (24%) 186/316 (59%)	5.2e-31		

Example 101.

Table 101A. NOV101 Sequence Analysis				
	SEQ ID NO: 287	1011 bp		
NOV101a, CG59644-01 DNA Sequence	CTCCTCGGGGGGCGGCGGCGATGTTCTCGGTCCTCTCGTACGGCGGCTGGTCCCCCGCGCCGTGCTCGGGGGCGGCTGGTCCCCCGGGCCGGCGG			
	ORF Start: ATG at 25	ORF Stop	o: TAG at 997	
	SEQ ID NO: 288	324 aa	MW at 34311.1kD	
NOV101a, CG59644-01 Protein Sequence	GCGFGKDFRKGLLKKGACYGDDA MRTCERLVKEGRFVPSNPIGILT LGDSGFLVVRGGEVVHRSDEQQH	ACFVARHRSAL PTSYCELLQNI AYFNTPFQLSI QELKKLKNSNY	AVLGGLSQTDPRAGGGGGDYGLVTA DVLGVADGVGGWRDYGVDPSQFSGTL KVPLLGSSTACIVVLDRTSHRLHTAN IAPPEAEGVVLSDSPDAADSTSFDVQ YESIQQTARSIAEQAHELAYDPNYMS	

Further analysis of the NOV101a protein yielded the following properties shown in Table 101B.

	Table 101B. Protein Sequence Properties NOV101a					
PSort analysis:	0.5708 probability located in mitochondrial matrix space; 0.4996 probability located in mitochondrial intermembrane space; 0.2852 probability located in mitochondrial inner membrane; 0.2852 probability located in mitochondrial outer membrane					
SignalP analysis:	Likely cleavage site between residues 23 and 24					

A search of the NOV101a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 101C.

	Table 101C. Geneseq Resul	ts for NOV1	01a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV101a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB85357	Human phosphatase (PP) (clone ID 3402521CD1) - Homo sapiens, 304 aa. [WO200153469-A2, 26-JUL-2001]	1324 1304	304/324 (93%) 304/324 (93%)	e-173
AAU32112	Novel human secreted protein #2603 - Homo sapiens, 304 aa. [WO200179449-A2, 25-OCT-2001]	25324 6304	272/300 (90%) 274/300 (90%)	e-156
AAG52267	Arabidopsis thaliana protein fragment SEQ ID NO: 66421 - Arabidopsis thaliana, 348 aa. [EP1033405-A2, 06-SEP-2000]	71320 99340	101/261 (38%) 133/261 (50%)	4e-33
AAG52266	Arabidopsis thaliana protein fragment SEQ ID NO: 66420 - Arabidopsis thaliana, 374 aa. [EP1033405-A2, 06-SEP-2000]	71320 125366	101/261 (38%) 133/261 (50%)	4e-33
AAG52265	Arabidopsis thaliana protein fragment SEQ ID NO: 66419 - Arabidopsis thaliana, 467 aa. [EP1033405-A2, 06-SEP-2000]	71320 218459	101/261 (38%) 133/261 (50%)	4e-33

In a BLAST search of public sequence databases, the NOV101a protein was found to have homology to the proteins shown in the BLASTP data in Table 101D.

Table 101D. Public BLASTP Results for NOV101a					
Protein Accession Number	Protein/Organism/Length	NOV101a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9W0E2	CG12091 PROTEIN - Drosophila melanogaster (Fruit fly), 321 aa	1320 1320	163/322 (50° o) 218/322 (67° o)	1e-83	
Q9W3R1	CG15035 PROTEIN - Drosophila melanogaster (Fruit fly), 374 aa.	55319 109373	127/266 (47%) 178/266 (66%)	1e-64	
O18183	W09D10.4 PROTEIN -	4320	136/331 (41%)	2e-60	

	melanogaster (Fruit fly), 314 aa.	26309	168/285 (58%)	
Q9SUK9	HYPOTHETICAL 36.2 KDA PROTEIN - Arabidopsis thaliana (Mouse-ear cress), 335 aa.	71320 86327	101/261 (38%) 133/261 (50%)	1e-32

PFam analysis predicts that the NOV101a protein contains the domains shown in the Table 101E.

Table 101E. Domain Analysis of NOV101a					
Pfam Domain	NOV101a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
PP2C: domain 1 of 1	147191	13/48 (27%) 36/48 (75%)	0.26		

Example 102.

The NOV102 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 102A.

Table 102A. NOV102 Sequence Analysis					
	SEQ ID NO: 289	523 bp			
NOV102a, CG59662-01 DNA Sequence	AGTCCCAGTACTATCAGCCATGGTCAACCACACCATGTTCTTCGACGTTGCTG AGTGAGCCCTTGGACCACGTCTCCTTTGAGCTGTTTGCAGAAAAGTTTCCAAA				
	ORF Start: ATG at 20	ORF Sto	p: TAA at 515		
SEQ ID NO: 290 165 aa MW at 18237.7kD					
NOV102a, CG59662-01 Protein Sequence	MVNHTMFFDVAVDSEPLDHVSFELFAEKFPKTAENVRALSTEEKGFGYKGPCFHRIIP AFMCQGGDFTHHNGTGGKSIYGEKFEDEKFILKRTGPGILSMANSGPNTNCSVFFICT C AKTGWLDGKHVVFGKVKEGMNILEAIEQFGSRNGKTSKKTTIADCGQLW				

Further analysis of the NOV102a protein yielded the following properties shown in Table 102B.

	Table 102B. Protein Sequence Properties NOV102a			
PSort	0.6400 probability located in microbody (peroxisome); 0.4500 probability			
analysis	located in cytoplasm; 0.1000 probability located in mitochondrial matrix space:			

analysis:

A search of the NOV102a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 102C.

	Table 102C. Geneseq Results for NOV102a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV102a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU01195	Human cyclophilin A protein - Homo sapiens, 165 aa. [WO200132876-A2, 10-MAY-2001]	1164 1164	141/164 (85%) 148/164 (89%)	1e-80	
AAW56028	Calcineurin protein Mammalia, 165 aa. [WO9808956-A2, 05-MAR-1998]	1164 1164	141/164 (85%) 148/164 (89%)	1e-80	
AAG65275	Haematopoietic stem cell proliferation agent related human protein #2 - Homo sapiens, 164 aa. [JP2001163798-A, 19-JUN-2001]	2164 1163	140/163 (85%) 147/163 (89%)	5e-80	
AAP90431	Cyclophilin - Homo sapiens (human), 164 aa. [EP326067-A, 02-AUG-1989]	2164 1163	140/163 (85%) 147/163 (89%)	5e-80	
AAG03831	Human secreted protein, SEQ ID NO: 7912 - Homo sapiens, 165 aa. [EP1033401-A2, 06-SEP-2000]	1164 1164	140/164 (85%) 147/164 (89%)	8e-80	

In a BLAST search of public sequence databases, the NOV102a protein was found to have homology to the proteins shown in the BLASTP data in Table 102D.

	Table 102D. Public BLASTP Results for NOV102a					
Protein Accession Number	Protein/Organism/Length	NOV102a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
CAC39529	SEQUENCE 26 FROM PATENT WO0132876 - Homo sapiens (Human), 165 aa.	1164 1164	141/164 (85%) 148/164 (89%)	4e-80		

WO 02/072757 PCT/L 802/06908

	(Human), 165 aa.			
P05092	Peptidyl-prolyl cis-trans isomerase A (EC 5.2.1.8) (PPlase) (Rotamase) (Cyclophilin A) (Cyclosporin Abinding protein) - Homo sapiens (Human),, 164 aa.	2164 1163	140/163 (85%) 147/163 (89%)	2e-79
Q96IX3	PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A) - Homo sapiens (Human), 165 aa.	1164 1164	140/164 (85%) 147/164 (89%)	5e-79
P04374	Peptidyl-prolyl cis-trans isomerase A (EC 5.2.1.8) (PPlase) (Rotamase) (Cyclophilin A) (Cyclosporin Abinding protein) - Bos taurus (Bovine), and, 163 aa.	2164 1163	138/163 (84%) 147/163 (89%)	7e-79

PFam analysis predicts that the NOV102a protein contains the domains shown in the Table 102E.

Table 102E. Domain Analysis of NOV102a					
Pfam Domain	NOV102a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
pro_isomerase: domain 1 of 1	5165	105/180 (58%) 141/180 (78%)	4.2e-91		

Example 103.

The NOV103 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 103A.

Table 103A. NOV103 Sequence Analysis				
	8860 bp			
NOV103a, CG59773-01 DNA Sequence	GGCTGTGGCCGCGCCAGTAC AACCGGATTTGGGGCGAGGGT GCTGACCGGACTACAGCTCCC GGCGCCATCTTGAAATCTGAA GCTGCTGCTCCGGGAGCCCAC GGCGGGAGAGACAGCTGGGA TCACTCAGCATCCTCTTAGGC ACGGCTCTGGTACCCGGAGTC ACCCCACTGGGCTGTGCCATC CGAAGAGCCATTGAGTGAACACCCACCCCCTAGGAGGAAGAACACACCCACTAGGAGAGAACACACCCACC	GCACTTTCAGGTGAGGTCTTAGCAGATGAAAGCGGCT GTGCTTTCTGCTCCGCACTCGCCGTGAGCCAGGTGTGC GCGCGTGGCTACCTCGCATGCGCAGAGCCGGAAGCCG GAGAAGAGCCTTGTGAGGCCGCAGAGCCGCAGCCGC CCCCCTCCATCCCGAGGCTTTGCGTGAGGACGCGGC GCGCGCAGAGCCTTGCGCGAGGGCGCTCTG GCGCACAGAGCCCCCCTGCCCAGAGGGGGGGGCT GCGCGCGGGGGAGAGCCCCCTGCCGAGAGTGGGG GCTGACCGAGAGCCACCGAGGCGGAACCTTG GCAGCCGCGCCCCCCCCCC		

CAGGAGGACTTCGCCTATTCAGGGTTTGAGTGCTGGGTGGAGAATGAGGATCAGATCC AGGAGCCACACAGCTGCCATGGTTCAGAAGGCCCTGGAAACCGACCCAGGAGATGCCG TGGTTGTGCCGCTTTGCGGGTTGCTGATTCTGACTATGAAGCCATTTGTAAGGTACCT CGAAAGGTGGCCAGAAGTATCTCCTGCGGCCCTTCTAGCAGGTGGTCGACCAGCATTT ACCCCAGATGGAGAAAGCATGGAGGAAGAGACGCCTGGTTCCTCTGTGGAATCTTTG GATGCAAGCGTCCAGGCTAGCCCTCCACAACAGAAAGATGAGGAGACTGAGAGAAGTG CAAAGGAACTTGGAAAGTGTGACTGTTGTTCAGATGATCAGGCTCCGCAGCATGGGTG TAATCACAAGCTGGAATTAGCTCTTAGCATGATTAAAGGTCTTGATTATAAGCCCATC CAGAGCCCCCGAGGGAGCAGGCTTCCGATTCCAGTGAAATCCAGCCTACCTGGAGCCA AGCCTGGCCCTAGCATGACAGATGGAGTTAGTTCCGGTTTCCTTAACAGGTCTTTGAA ACCCCTTTACAAGACACCTGTGAGTTATCCCTTGGAGCTTCAGACCTGCAGGAGCTG TGGGATGATCTCTGTGAAGATTATTTGCCGCTCCGGGTCCAGCCCATGACTGAAGAGT TGCTGAAACAACAAAAGCTGAATTCACATGAGACCACTATAACTCAGCAGTCTGTATC TGATTCCCACTTGGCAGAACTCCAGGAAAAAATCCAGCAAACAGAGGCCACCAACAAG ATTCTTCAAGAGAAACTTAATGAAATGAGCTATGAACTAAAGTGTGCTCAGGAGTCGT CTCAAAAGCAAGATGGTACAATTCAGAACCTCAAGGAAACTCTGAAAAGCAGGGAACG TGAGACTGAGGAGTTGTACCAGGTAATTGAAGGTCAAAATGACACAATGGCAAAGCTT CGAGAAATGCTGCACCAAAGCCAGCTTGGACAACTTCACAGCTCAGAGGGTACTTCTC CAGCTCAGCAACAGGTAGCTCTGCTTGATCTTCAGAGTGCTTTATTCTGCAGCCAACT TGAAATACAGAAGCTCCAGAGGGTGGTACGACAGAAAGAGCGCCAACTGGCTGATGCC AAACAATGTGTGCAATTTGTAGAGGCTGCAGCACACGAGAGTGAACAGCAGAAAGAGG CTTCTTGGAAACATAACCAGGAATTGCGAAAAGCCTTGCAGCAGCTACAAGAAGAATT GCAGAATAAGAGCCAACAGCTTCGTGCCTGGGAGGCTGAAAAATACAATGAGATTCGA ACCCAGGAACAAACATCCAGCACCTAAACCATAGTCTGAGTCACAAGGAGCAGTTGC TTCAGGAATTTCGGGAGCTCCTACAGTATCGAGATAACTCAGACAAAACCCTTGAAGC AAATGAAATGTTGCTTGAGAAACTTCGCCAGCGAATACATGATAAAGCTGTTGCTCTG GAGCGGCTATAGATGAAAAATTCTCTGCTCTAGAAGAAAAGAAAAAGAACTGCGCC AGCTTCGTCTTGCTGTGAGAGAGCGAGATCATGACTTAGAGAGACTGCGCGATGTCCT CTCCTCCAATGAAGCTACTATGCAAAGTATGGAGAGTCTCCTGAGGGCCAAAGGCCTG GAAGTGGAACAGTTATCTACTACCTGTCAAAACCTCCAGTGGCTGAAAGAAGAAATGG AAACCAAATTTAGCCGTTGGCAGAAGGAACAAGAGAGTATCATTCAGCAGTTACAGAC GTCTCTTCATGATAGGAACAAAGAAGTGGAGGATCTTAGTGCAACACTGCTCTGCAAA CTTGGACCAGGGCAGAGTGAGATAGCAGAGGAGCTGTGCCAGCGTCTACAGCGAAAGG AAAGGATGCTGCAGGACCTTCTAAGTGATCGAAATAAACAAGTGCTGGAACATGAAAT GGAGATTCAAGGCCTGCTTCAGTCTGTGAGCACCAGGGAGCCAGGAAAGCCAAGCTGCT GCAGAGAAGTTGGTGCAAGCCTTAATGGAAAGAAATTCAGAATTACAGGCCCTGCGCC AATATTTAGGAGGGAGAGACTCCCTGATGTCCCAAGCACCCATCTCTAACCAACAAGC TGAAGTTACCCCCACTGGCCGTCTTGGAAAACAGACTGATCAAGGTTCAATGCAGATA CCTTCCAGAGATGATAGCACTTCATTGACTGCCAAAGAGGATGTCAGCATACCCAGAT CCACATTAGGAGACTTGGACACAGTTGCAGGGCTGGAAAAAGAACTGAGTAATGCCAA AGAGGAACTTGAACTCATGGCTAAAAAAGAAAGAGAAAGTCAGATGGAACTTTCTGCT CTACAGTCCATGATGCCTGTGCAGGAAGAAGAGCTGCAGGTGCAGGCTGCTGATATGG AGTCTCTGACCAGGAACATACAGATTAAAGAAGATCTCATAAAGGACCTGCAAATGCA ACTGGTTGATCCTGAAGACATACCAGCTATGGAACGCCTGACCCAGGAAGTCTTACTT CTTCGGGAAAAGTTGCTTCAGTAGAATCCCAGGGTCAAGAAATTTCAGGAAACCGAA GACAACAGTTGCTGCTGATGCTAGAAGGACTAGTAGATGAACGGAGTCGCCTCAATGA GGCCTTACAAGCAGAGACAGCTCTATAGCAGTCTGGTGAAGTTCCATGCCCATCCA GAGAGCTCTGAGAGAGCCGAACTCTGCAGGTGGAACTGGAAGGGGCTCAGGTGTTAC GCAGTCGCTAGAAGAAGTTCTTGGAAGAAGCTTGGAGCGCTTAAACAGGCTGGAGAC CCTGGCCGCCATTGGAGGTGCAGCTGCAGGGGATGACACCGAAGATACAAGCACTGAG TTCACTGACAGTATTGAGGAGGAGGCTGCACACCATAGTCACCAGCAACTTGTCAAGG TGGCTTTGGAGAAAGTCTGGCAACTGTGGAGACCCAGAACCCATCTTTTTCCCCTCC TTCTCCGATGGGAGGGGACAGTAACAGGTGTCTTCAGGAAGAAATGCTCCACCTGAGG GCTGAGTTCCACCAGCACTTAGAAGAGAAGAGGAAAGCTGAGGAGGAACTGAAGGAGC TAAAGGCTCAAATTGAGGAAGCAGGATTCTCCTCAGTGTCCCACATCAGGAACACCAT GCTGAGCCTTTGCCTTGAGAATGCGGAGCTGAAAGAGCAGATGGGAGAAGCAATGTCT GATGGATGGGAGATCGAGGAAGACAAGGAGAAGGGCGAGGTGATGGTTGAGACTGTGG TAACCAAAGAGGGTCTGAGTGAGAGTAGCCTTCAGGCTGAGTTCAGAAAGCTCCAGGG AAAACTGAAGAATGCCCACAATATCATCAACCTCCTCAAAGAACAACTTGTGCTGAGT AGCAAGGAAGGGAATAGTAAACTTACTCCAGAGCTCCTTGTGCATCTGACCAGCACCA TTGAAAGAATAAACACAGAACTGGTTGGTTCCCCTGGGAAGCACCAACACCAAGAGGA GGGGAATGTGACTGTGAGGCCTTTCCCCAGACCCCAGAGCCTTGACCTTGGGGCTACC TTCACAGTGGATGCCCACCAATTGGATAACCAGTCCCAGCCTCGTGACCCTGGGCCTC AGTCAGCGTTTAGCCTACCAGGGTCCACCCAGCACCTGCGCTCCCAGCTGTCACAATG CAAACAACGCTATCAAGATCTCCAGGAGAAGCTGCTGCTATCAGAAGCCACTGTCTTT GCTCAGGCTAACGAGCTGGAGAAATACAGAGTTATGCTTACAGGTGAATCCTTGGTGA AGCAGGACAGCAAGCAGATCCAGGTGGACCTCCAGGACCTGGGCTATGAGACTTGTGG CCGAAGCGAGAATGAGGCTGAACGGGAGGAAACCACCAGTCCTGAGTGTGAGGAGCAC AACAGCCTCAAGGAAATGGTCCTGATGGAGGGGCTGTGCTCTGAGCAGGGACGCCGGG GCTCAACACTGGCTAGTTCCTCTGAGAGGAAGCCCTTGGAGAACCAGCTAGGGAAGCA GGAAGAGTTCCGGGTATATGGAAAGTCAGAAAACATCTTGGTCCTACGAAAGGACATC

TGGACTAGAAGAGAAGCTGGCTGAGGAGCTGAGATCAGCCTCGTGGCCTGGGAAATAT GATTCCCTGATTCAGGATCAGGCCCGGGAACTGTCTTACCTACGGCAAAAAATACGAG AAGGGAGAGGTATTTGTTATCTTATCACCCGGCATGCAAAAGATACAGTAAAATCTTT TGAGGATCTCCTAAGGAGCAATGACATTGACTACTACCTGGGACAGAGCTTCCGGGAG CAACTCGCCCAGGGAAGCCAGCTGACAGAGAGGGCTCACCAGCAAACTCAGCACCAAGG ATCATAAAAGTGAGAAAGATCAAGCTGGACTTGAGCCACTGGCCCTCAGGCTCAGCAG GGAGCTGCAGGAGAAGGAGAAAGTGATTGAAGTCCTGCAGGCCAAGCTGGATGCTCGG TCCCTCACACCCTCCAGCAGCCATGCCTTGTCTGACTCCCACCGCTCTCCCAGCAGCA CCTCTTTCCTGTCTGATGAACTGGAAGCCTGCTCTGACATGGACATAGTCAGCGAGTA AGTCATTCTGCTGTGTTGTCTTCTAAACCATCATCAACCAGTGCATCTCAGGGGGCCTA AGGCCGAATCCAACAGCAACCCCATCAGCTTGCCAACTCCCCAGAATACCCCCAAGGA GGCCAACCAGGCCCATTCAGGCTTTCATTTTCACTCCATACCCAAGCTGGCTAGCCTT CCTCAGGCACCATTGCCCTCAGCTCCATCCAGCTTCCTGCCTTTCAGCCCCACTGGCC CTCTCCTCCTTGGCTGCTGTGAGACACCAGTGGTCTCCTTGGCTGAGGCTCAGCAGGA ${\tt GCTACAGATGCTGCAGAAGCAGTTGGGAGAAAGTGCCAGCACTGTTCCTCCTGCTTCCT}$ ACAGCTACATTGCTGAGCAACGACTTGGAAGCCGACTCTTCCTACTACCTCAACTCTG CCCAGCCTCACTCTCCCAAGGGGCACCATAGAACTGGGAAGAATCCTAGAGCCTGG GTACCTGGGCAGCAGTGGCAAGTGGGATGTGATGAGGCCTCAGAAAGGGAGTGTATCT GGGGACCTATCCTCAGGCTCCTCTGTGTACCAGCTTAACTCCAAACCCACAGGGGCTG ACCTGCTGGAAGAGCATCTTGGTGAAATCCGGAACCTGCGCCAGCGCCTGGAGGAGTC CATCTGCATCAATGACCGCCTACGGGAGCAACTGGAACACCGGCTGACCTCTACTGCT CGTGGAAGGGGATCCACTTCTAACTTCTACAGTCAGGGCCTGGAGTCCATACCTCAGC TCTGCAATGAGAACAGAGTCCTCAGGGAAGACAATCGAAGACTTCAGGCTCAACTGAG TCTCGATCCCACCTTCAAGAGCTGGAAAAGGAGCTGGAGCACCAGAAGGTGGAAAGGC AGCAGCTTTTGGAAGACTTGAGGGAGAAGCAGCAAGAGGTCTTGCATTTCAGGGAGGA ACGTCTTTCCCTCCAGGAAAACGACTCCAGACTGCAGCACAAGCTGGTTCTCCTGCAG CAACAGTGTGAAGAGAAACAGCAGCTCTTTGAGTCCCTCCAGTCAGAGCTACAAATCT ACGAGGCACTTTATGGCAATTCCAAGAAGGGGCTGAAAGGCTTGGGTTTGGATACTTC TCCAGTAATGAAGACCCCTCCCAAGCTAGAGGGTGATGCTACTGATGGCTCCTTTGCC AATAAGCATGGCCGCCATGTCATTGGCCACATTGATGACTACAGTGCCCTAAGACAGC AGATTGCGGAGGGCAAGCTGCTGGTCAAAAAGATAGTGTCTCTTGTGAGATCAGCGTG CAGCTTCCCTGGCCTTGAAGCCCAAGGCACAGAGGTGCTAGGCAGCAAAGGTATTCAT GAGCTTCGGAGCAGCACCAGTGCCCTGCACCATGCCCTAGAGGAGTCGGCTTCCCTCC TCACCATGTTCTGGAGAGCAGCCCTGCCAAGCACCCACATCCCTGTGCTGCCTGGCAA AGTGGGAGAATCAACAGAAAGGGAACTTCTGGAACTGAGAACCAAAGTATCCAAACAG GAGCGGCTCCTTCAGAGCACAACTGAGCATCTGAAGAACGCCAACCAGCAGAAGGAGA GCATGGAGCAGTTCATCGTCAGCCAGCTAACCAGAACACATGATGTTTTAAAGAAGGC AAGGACTAACTTAGAGGTGAAATCCCTAAGGGCTCTGCCATGTACTCCAGCCTTG**TGA** CCCTTGCCTTCCAGGAACCATGCAAGAAGCGCAGCCACCAGAAGTCCTTAAAACAGCA GGAAAGGTGGGCCTGTCCCCCTTTTGTGCAGCTACCTATCTGCTGAGGAGCATCTGGG CCTCATTCCTCCAAGTCCACGGGAGGGTCCAGAAGAGGGAGTCAGAGATGTATCCTGG TGGAGCTGGGAGAAAGGCAGAAAGCCTTTCTGACAGCTATGGAATACGATTAGCCAAG GTCCACTTGGCCCAGCACTAAGAAAAAGATGCGTAGTTTGCACAGAAGGTTTTGTGAT CCTGCCTCTCAACAGCCCCAGCAGCTTGGGAACTAGCAAGAGCACATTTCTTGCCTCA TCAGCTGTCCTGAGATGGAAAACTCAGTGGATATAGGACCCTGATTCCGATGAAAGGG GCACGTGGTCCCAATGCTGGAGCTCCTCTGGCAGGTTCTAAAAGCACACTACTGAGCA GCGGTGCCCTGCCGGACACTGCTGGCGGGGGCTCAGTGAGCACTACTCACAGATCCAC <u>ACCTGACCCTGTTGGGTCGAGTCAGGCTGGGCCTTGGTCTGCACTGTAGCACCTGTGT</u> TCTTTGAGTTCACATCATGAATGTGGTGACTTCCCAGATACCATCTCAGGCTTAACCT AGCACATCCTATTTCTTTCTTCTATGATATCCAAATTGGACTGACCTCACTTCAAAG TTGCTGTCCCATTTTGTCACCCTATCTTATCTCGGGGAAATTGCAGACTGATGGCCAG ACCAACTCTGTTGAAATTCTTGCATAGAGCAAACCTGTGCTCATTTTTAAGTGGCATG GGAGAGGCCCCCAGCCTAGTAAAGCCTAGTCTGTGTCTTCACAGTGCTGGTAGAATGT GTTTGTGTGTATAAATATATGATATAGATTTATATATGTTGCTAACGCCATATATTGA AGGCCAACATAACTGGTGGACAGGGTGGGTGACAGAAAATGAAAGCCTTTTTGGTGAT

ORF Start: ATG at 658 ORF Stop: TGA at 7828

SEQ ID NO: 292 2390 aa MW at 268843.7kD

NOV103a, CG59773-01 Protein Sequence

MKEICRICARELCGNQRRWIFHTASKLNLQVLLSHVLGKDVPRDGKAEFACSKCAFML DRIYRFDTVIARIEALSIERLQKLLLEKDRLKFCIASMYRKNNDDSGAEIKAGNGTVD MSVLPDARYSALLQEDFAYSGFECWVENEDQIQEPHSCHGSEGPGNRPRRCRGCAALR VADSDYEAICKVPRKVARSISCGPSSRWSTSICTEEPALSEVGPPDLASTKVPPDGES MEEETPGSSVESLDASVQASPPQQKDEETERSAKELGKCDCCSDDQAPQHGCNHKLEL ALSMIKGLDYKPIQSPRGSRLPIPVKSSLPGAKPGPSMTDGVSSGFLNRSLKPLYKTP VSYPLELSDLQELWDDLCEDYLPLRVQPMTEELLKQQKLNSHETTITQQSVSDSHLAE LQEKIQQTEATNKILQEKLNEMSYELKCAQESSQKQDGTIQNLKETLKSRERETEELY QVIEGQNDTMAKLREMLHQSQLGQLHSSEGTSPAQQQVALLDLQSALFCSQLEIQKLQ

QSVSTREOESQAAAEKLVQALMERNSELQALRQYLGGRDSLMSQAPISNQQAEVTPTG RLGKQTDQGSMQIPSRDDSTSLTAKEDVSIPRSTLGDLDTVAGLEKELSNAKEELELM AKKERESQMELSALQSMMAVQEEELQVQAADMESLTRNIQIKEDLIKDLQMQLVDPED I PAMERLTOEVLLLREKVASVESQGOEISGNRRQQLLLMLEGLVDERSRLNEALQAER QLYSSLVKFHAHPESSERDRTLQVELEGAQVLRSRLEEVLGRSLERLNRLETLAAIGG AAAGDDTEDTSTEFTDSIEEEAAHHSHQQLVKVALEKSLATVETQNPSFSPPSPMGGD SNRCLQEEMLHLRAEFHQHLEEKRKAEEELKELKAQIEEAGFSSVSHIRNTMLSLCLE NAELKEOMGEAMSDGWEIEEDKEKGEVMVETVVTKEGLSESSLQAEFRKLQGKLKNAH NIINLLKEQLVLSSKEGNSKLTPELLVHLTSTIERINTELVGSPGKHQHQEEGNVTVR PFPRPQSLDLGATFTVDAHQLDNQSQPRDPGPQSAFSLPGSTQHLRSQLSQCKQRYQD LOEKLLLSEATVFAOANELEKYRVMLTGESLVKQDSKQIQVDLQDLGYETCGRSENEA EREETTSPECEEHNSLKEMVLMEGLCSEQGRRGSTLASSSERKPLENQLGKQEEFRVY GKSENILVLRKDIKDLKAQLQNANKVIQNLKSRVRSLSVTSDYSSSLERPRKLRAVGT LEGSSPHSVPDEDEGWLSDGTGAFYSPGLQAKKDLESLIQRVSQLEAQLPKNGLEEKL AEELRSASWPGKYDSLIQDQARELSYLRQKIREGRGICYLITRHAKDTVKSFEDLLRS NDIDYYLGQSFREQLAQGSQLTERLTSKLSTKDHKSEKDQAGLEPLALRLSRELQEKE KVIEVLQAKLDARSLTPSSSHALSDSHRSPSSTSFLSDELEACSDMDIVSEYTHYEEK KASPSHSDSIHHSSHSAVLSSKPSSTSASQGAKAESNSNPISLPTPQNTPKEANQAHS GFHFHSIPKLASLPQAPLPSAPSSFLPFSPTGPLLLGCCETPVVSLAEAQQELQMLQK QLGESASTVPPASTATLLSNDLEADSSYYLNSAQPHSPPRGTIELGRILEPGYLGSSG KWDVMRPQKGSVSGDLSSGSSVYQLNSKPTGADLLEEHLGEIRNLRQRLEESICINDR LREQLEHRLTSTARGRGSTSNFYSQGLESIPQLCNENRVLREDNRRLQAQLSHVSREH SOETESLREALLSSRSHLOELEKELEHOKVEROOLLEDLREKOOEVLHFREERLSLOE NDSRLQHKLVLLQQQCEEKQQLFESLQSELQIYEALYGNSKKGLKGLGLDTSPVMKTP PKLEGDATDGSFANKHGRHVIGHIDDYSALRQQIAEGKLLVKKIVSLVRSACSFPGLE AQGTEVLGSKGIHELRSSTSALHHALEESASLLTMFWRAALPSTHIPVLPGKVGESTE ${\tt RELLELRTKVSKQERLLQSTTEHLKNANQQKESMEQFIVSQLTRTHDVLKKARTNLEV}$ KSLRALPCTPAL

SEO ID NO: 293

7161 bp

NOV103b, CG59773-02 DNA Sequence GTTGAGGGGGCAATCGGGCACGCTCCTCCCCATGGGTTGCCCATCATGTCTAATGGAT ATCGCACTCTGTCCCAGCACCTCAATGACCTGAAGAAGGAGAACTTCAGCCTCAAGCT GCGCATCTACTTCCTGGAGGAGCGCATGCAACAGAAGTATGAGGCCAGCCGGGAGGAC ATCTACAAGCGGAACATTGAGCTGAAGGTTGAAGTGGAGAGCTTGAAACGAGAACTCC AGGACAAGAAACAGCATCTGGATAAAACATGGGCTGATGTGGAGAATCTCAACAGTCA GAATGAAGCTGAGCTCCGACGCCAGTTTGAGGAGCGACAGCAGGAGACGGAGCATGTT TATGAGCTCTTGGAGAATAAGATCCAGCTTCTGCAGGAGGAATCCAGGCTAGCAAAGA ATGAAGCTGCGCGGATGGCAGCTCTGGTGGAAGCAGAGAAGGAGTGTAACCTGGAGCT CTCAGAGAAACTGAAGGGAGTCACCAAAAACTGGGAAGATGTACCAGGAGACCAGGTC AAGCCCGACCAATACACTGAGGCCCTGGCCCAGAGGGACAGGAGAATTGAAGAACTGA ATCAGAGCCTGGCTGCCCAGGAGAGGCTTGTAGAACAGCTATCTCGGGAGAAACAACA ACTGCTACATCTGTTGGAGGAGCCAACTAGCATGGAAGTGCAGCCCATGACTGAAGAG TTGCTGAAACAAAAAGCTGAATTCACATGAGACCACTATAACTCAGCAGTCTGTAT CTGATTCCCACTTGGCAGAACTCCAGGAAAAAATCCAGCAAACAGAGGCCACCAACAA GATTCTTCAAGAGAAACTTAATGAAATGAGCTATGAACTAAAGTGTGCTCAGGAGTCG TCTCAAAAGCAAGATGGTACAATTCAGAACCTCAAGGAAACTCTGAAAAGCAGGGAAC GTGAGACTGAGGAGTTGTACCAGGTAATTGAAGGTCAAAATGACACAATGGCAAAGCT TCGAGAAATGCTGCACCAAAGCCAGCTTGGACAACTTCAGAGCTCAGAGGGTACTTCT CCAGCTCAGCAACAGGTAGCTCTGCTTGATCTTCAGAGTGCTTTATTCTGCAGCCAAC TTGAAATACAGAAGCTCCAGAGGGTGGTACGACAGAAAGAGCGCCAACTGGCTGATGC CAAACAATGTGTGCAATTTGTAGAGGCTGCAGCACACGAGAGTGAACAGCAGAAAGAG GCTTCTTGGAAACATAACCAGGAATTGCGAAAAGCCTTGCAGCAGCTACAAGAAGAAT TGCAGAATAAGAGCCAACAGCTTCGTGCCTGGGAGGCTGAAAAATACAATGAGATTCG AACCCAGGAACAAACATCCAGCACCTAAACCATAGTCTGAGTCACAAGGAGCAGTTG CTTCAGGAATTTCGGGAGCTCCTACAGTATCGAGATAACTCAGACAAAACCCTTGAAG CAAATGAAATGTTGCTTGAGAAACTTCGCCAGCGAATACATGATAAAGCTGTTGCTCT CAGCTTCGTCTTGCTGTGAGAGAGCGAGATCATGACTTA/GAGAGACTGCGCGATGTCC TETCCTCCAATGAAGCTACTATGCAAAGTATGGAGAGTCTCCTGAGGGCCAAAGGCCT GGAAGTGGAACAGTTATCTACTACCTGTCAAAACCTCCAGTGGCTGAAAGAAGAAATG GAAACCAAATTTAGCCGTTGGCAGAAGGAACAAGAGAGTATCATTCAGCAGTTACAGA CGTCTCTTCATGATAGGAACAAAGAAGTGGAGGATCTTAGTGCAACACTGCTCTGCAA A TTTGGACCAGGGCAGAGTGAGATAGCAGAGGAGCTGTGCCAGCGTCTACAGCGAAAG GAAAGGATGCTGCAGGACCTTCTAAGTGATCGAAATAAACAAGTGCTGGAACATGAAA TGGAGATTCAAGGCCTGCTTCAGTCTGTGAGCACCAGGGAGCAGGAAAGCCAAGCTGC TGCAGAGAAGTTGGTGCAAGCCTTAATGGAAAGAAATTCAGAATTACAGGCCCTGCGC CAATATTTAGGAGGGAGACTCCCTGATGTCCCAAGCACCCATCTCTAACCAACAAG CTGAAGTTACCCCCACTGGCCGTCTTGGAAAACAGACTGATCAAGGTTCAATGCAGAT ACCTTCCAGAGATGATAGCACTTCATTGACTGCCAAAGAGGGATGTCAGCATACCCAGA TCCACATTAGGAGATTTGGACACAGTTGCAGGGCTGGAAAAAGAACTGAGTAATGCCA AAGAGGAACTTGAACTCATGGCTAAAAAAGAAAGGAAATCACAGATGGAACTTTCTGC PARTOCATORTOROAGOAAGAAGAAGAACTOROTOROAGOTGCA

The state of the same of the s

ATGAGGCCTTACAAGCAGAGAGAGACAGCTCTATAGCAGTCTGGTGAAGTTCCATGCCCA TCCAGAGAGCTCTGAGAGAGCCGAACTCTGCAGGTGGAACTGGAAGGGGCTCAGGTG TTACGCAGTCGGCTAGAAGAAGTTCTTGGAAGAAGCTTGGAGCGCTTAAACAGGCTGG AGACCCTGGCCGCCATTGGAGGTGCAGCTGCAGGGGATGACACCGAAGATACAAGCAC TGAGTTCACTGACAGTATTGAGGAGGAGGCTGCACACCATAGTCACCAGCAACTTGTC AAGGTGGCTTTGGAGAAAGTCTGGCAACTGTGGAGACCCAGAACCCATCTTTTTCCC CTCCTTCTCCGATGGGAGGGGACAGTAACAGGTGTCTTCAGGAAGAAATGCTCCACCT GAGGGCTGAGATCCACCAGCACTTAGAAGAGAAGAGGAAAGCTGAGGAGGAACTGAAG GAGCTAAAGGCTCAAATTGAGGAAGCAGGATTCTCCTCAGTGTCCCACATCAGGAACA CCATGCTGAGCCTTTGCCTTGAGAATGCGGAGCTGAAAGAGCAGATGGGAGAAACAAT GTCTGATGGATGGGAGATCGAGGAAGACAAGGAGAAGGGCGAGGTGATGGTTGAGACT GTGGTAACCAAAGAGGGTCTGAGTGAGAGTAGCCTTCAGGCTGAGTTCAGAAAGCTCC AGGGAAAACTGAAGAATGCCCACAATATCATCAACCTCCTCAAAGAACAACTTGTGCT GAGTAGCAAGGAAGGGAATAGTAAACTTACTCCAGAGCTCCTTGTGCATCTGACCAGC ACCATCGAAAGAATAAACACAGAACTGGTTGGTTCCCCTGGGAAGCACCAACACCAAG AGGAGGGGAATGTGACTGTGAGGCCTTTCCCCAGACCCCAGAGCCTTGACCTTGGGGC TACCTTCACAGTGGATGCCCACCAACAGTTGGATAACCAGTCCCAGCCTCGTGACCCT GGGCCTCAGCCAGCGTTTAGCCTACCAGGGTCCACCCAGCACCTGCGCTCCCAGCTGT CACAATGCAAACAACGCTATCAAGATCTCCAGGAGAAGCTGCTGCTATCAGAAGCCAC TGTCTTTGCTCAGGCTAACGAGCTGGAGAAATACAGAGTTATGCTTAGTGAATCCTTG GTGAAGCAGGACAGCAAGCAGATCCAGGTGGACTTCCAGGACCTGGGCTATGAGACTT GTGGCCGAAGCGAGAATGAGGCTGAACGGGAGGAAACCACCAGTCCTGAGTGTGAGGA GCACAACAGCCTCAAGGAAATGGTCCTGATGGAGGGGCTGTGCTCTGAGCAGGGACGC CGGGGCTCAACACTGGCTAGTTCCTCTGAGAGGAAGCCCTTGGAGAACCAGCTAGGGA AGCAGGAAGAGTTCCGGGTATATGGAAAGTCAGAAAACATCTTGGTCCTACGAAAGGA CATCGAAGATCTGAAGGCCCAGCTGCAGAATGCCAACAAGGTCATTCAAAACCTCAAG AGCCGGGTCCGGTCCCTCTCAGTTACAAGTGATTATTCGTCTAGTCTGGAAAGACCCC GGAAGCTGAGAGCTGTTGGCACCTTGGAGGGGTCTTCACCTCATAGTGTCCCTGATGA GGATGAGGGGTGGCTGTCTGATGGCACTGGGGCTTTCTACTCTCCAGGGCTTCAGGCC AAAAAGGACCTGGAGAGTCTCATCCAGAGAGTATCCCAGCTGGAGGCCCAGCTCCCAG A A A TGG A CTAG A GAG A GAG CTGG CTGG GG GG CTG A GAT CAG C CTCGTGG C CTGG G A A ATATGATTCCCTGATTCAGGATCAGGCCCGGGAACTGTCTTACCTACGGCAAAAAATA CGAGAAGGGAGAGGTATTTGTTATCTTATCACCCAGCATGCAAAAGATACAGTAAAAT CTTTTGAGGATCTCCTAAGGAGCAATGACATTGACTACCTGGGACAGAGCTTCCG GGAGCAACTCGCCCAGGGAAGCCAGCTGACAGAGAGGCTCACCAGCAAACTCAGCACA GAGGATCATAAAAGTGAGAAAGATCAAGCTGGACTTGAGCCACTGGCCCTCAGGCTCA GCAGGGAGCTGCAGGAGAAGGAGAAAGTGATTGAAGTCCTGCAGGCCAAGCTGGATGC TCGGTCCCTCACACCCTCCAGCAGCCGTGCCTTGTCTGACTCCCACCGCTCTCCCAGC AGCACCTCTTTCCTGTCTGATGAGCTGGAAGCCTGCTCTGACATGGACATAGTCAGCG AGTACACACTATGAAGAGAAGAAGCTTCTCCCAGTCACTCAGGTAGCAGTGCATC TCAGGGGGCTAAGGCCGAATCCAACAGCAACCCCATCAGCTTGCCAACTCCCCAGAAT ACCCCCAAGGAGGCCAACCAAGCCCATTCAGGCTTTCATTTTCACTCCATACCCAAGC CCCCACTGGCCCTCCCTCGCTGCTGTGAGACACCAGAGGTCTCCTTGGCTGAG TCTCAGCAGGAGCTACAGATGCTGCAGAAGCAGTTGGGAGAAAGTAGCACTGTTCCTC CTGCTTCCACAGCTACATTGCTGAGCAACGACTTGGAAGCCGACTCTTCCTACTACCT CAACTCTGCCCAGCCTCACTCTCCCAAGGGGCACCATAGAACTGGGAAGAATCCTA GAGCCTGGGTACCTGGGCAGCAGTGGCAAGTGGGATGTGATGAGGCCTCAGAAAGGGA GTGTATCTGGGGACCTATCCTCAGGCTCCTCTGTGTACCAGCTTAACTCCAAACCCAC AGGGGCTGACCTGCTGGAAGAGCATCTTGGTGAAATCTGGAACCTGCGCCAGCGCCTG GAGGAGTCCATCTGCATCAATGACTGCCTACGGGAGCAACTGGAACACCGGCTGACCT CTACTGCTCGTGGAAGGGGATCCACTTCTAACTTCTACAGTCAGGGCCTGGAGTCCAT ACCTCAGCTCTGCAATGAGAACAGAGTCCTCAGGGAAGAAATCGAAGACTTCAGGCT TGCTGTCCTCTCGATCCCACCTTCAAGAGCTGGAAAAGGAGCTGGAGCACCAGAAGGT GGAAAGGCAGCAGCTTTTGGAAGACTTGAGGGAGAAGCAGCAAGAGGTCTTGCATTTC AGGGAGGAACGTCTTTCCCTCCAGGAAAACGACTCCAGACTGCAGCACAAGCTGGTTC TCCTGCAGCAACAGTGTGAAGAGAAACAGCAGCTCTTTGAGTCCCTCCAGTCAGAGCT ACAAATCTACGAGGCACTTTATGGCAATTCCAAGAAGGGGCTGAAAGCTTACAGCCTG GATGCCTGTCACCAAATCCCTTTGAGCAGTGACCTGAGCCACCTGGTGGCAGAGGTAC AAGCTCTGAGAGGGCAGCTGGAGCAGAGCATTCAGGGGAACAATTGTCTGCGACTGCA GCTGCAA 2AGCAGCTGGAGAGCGGTGCTGGCAAAGCCAGCCTCAGCCCCTCCTCCATT AACCAGAACTTCCCAGCCAGCACTGACCCTGGAAACAAGCAGCTGCTCCTCCAAGGTT CAGCTGTGTCCCCTCCAGTCCGGGATGTTGGTATGAATTCCCCAGCTCTGGTCTTCCC CAGCTCTGCTTCCTACTCCTGGCTCAGATTCAGTTGTGTTGTCATTTTCTTTTTCA GGCTTGGGTTTGGATACTTCTCCAGTAATGAAGACCCCTCCCAAGCTAGAGGGTGATG CTACTGATGGCTCCTTTGCCAATAAGCATGGCCGCCATGTCATTGGCCACATTGATGA CTACAGTGCCCTAAGACAGCAGATTGCGGAGGGCAAGCTGCTGGTCAAAAAGATAGTG TCTCTTGTGAGATCAGCGTGCAGCTTCCCTGGCCTTGAAGCCCAAGGCACAGAGGGCA GCAAAGGCATTCATGAGCTTCGGAGCAGCACCAGTGCCCTGCACCATGCCCTAGAGGA GTCGGCTTCCCTCCTCACCATGTTCTGGAGAGCGGCCCTGCCAAGCACCCACATCCCT GTGCTGCCTGGCAAACAGGGAGAATCAACAGAAAGGGAACTTCTGGAACTGAGAACCA

	GAGCATCTGGGCCTCATTCCTCCA	AGT	
	ORF Start: ATG at 46	ORF Stop:	TGA at 7027
	SEQ ID NO: 294	2327 aa	MW at 263034.6kD
NOV103b, CG59773-02 Protein Sequence	MSNGYRTLSQHLNDLKKENFSLKI KRELQDKKQHLDKTWADVENLNS; RLAKNEAARMAALVEAEKECNLEI IEELNQSLAAQERLVEQLSREKQ; QQSVSDSHLAELQEKIQQTEATINK KSRERETEELYQVIEGQNDTMAKI FCSQLEIQKLQRVVRQKERQLADA LQEELQNKSQQLRAWEAEKYNEIR KTLEANEMLLEKLRQRIHDKAVAL LRDVLSSNEATMQSMESLLRAKGL QQLQTSLHDRNKEVEDLSATLLCK LEHEMEIQGLLQSVSTREQESQAQI LSNAKEELELMAKKERESQMELSA DLQMQLVDPEDIPAMERLTQEVLL RSRLNEALQAERQLYSSLVKFHAH LNRLETLAAIGGAAAGDDTEDTST PSFSPPSPMGGDSNRILQEEMLH HIRNTMLSLCLENAELKEQMGETM FRKLQGKLKNAHNIINLLKEQLVL HQHQEEGNVTVRPFPRPQSLDLGA RSQLSQCKQRYQDLQEKLLLSEAT GYETCGRSENEAEREETTSPECEE NQLGKQEEFRVYGKSENILVLKED AQLPENGLEEKLAEELRSASWPGK DTVKSFEDLLRSNDIDYYLGQSFR ALRLSRELQEKEKVIEVLQAKLDA DIVSEYTHYEEKKASPSHGCSSAS SIPKLASLPQAPLPSAPSSFLPFS STVPPASTATLLSNDLEADSSYYL PQKGSVSGDLSSGSSVYQLNSKPT HRLTSTARGRGSTSNFYSQGLESI LREALLSSRSHLQELEKELEHQKV HKLVLLQQCEEKQQLFESLQSEL VAEVQALRGQLEQSIQGNNCLRLG LLQGSAVSPPVRDVGMNSPALVFP LEGDATDGSFANKHGRHVIGHIDD GTEGSKGIHELRSSTSALHHALEE ELRTKVSKQEQLLQSTTEHLKNAN LPCTPAL	NEAELRROFEE JSEKLKGVTKNW JLIHLLEEPTSM (ILQEKLNEMSY JLIHLLEEPTSM (ILQEKLNEMSY REMLHQSQLGQ IKQCVQFVEAAA ITQEQNIQHLNH JERAIDEKFSAL JEVEQLSTTCON (LGPGQSEIAEE PSRDDSTSLTA JLQSMMAVQEEE JLREKVASVESQ JEESSERDRTLQ IEFTDSIEEEAA RAEIHQHLEEK ISDGWEIEEDKE JSSKEGNSKLTP TFTVDAHQQLD TVFAQANELEKY HNSLKEMVLME LEGLAQGSQLTE JEDLKAQLUQNA JDEGWLSDGTGA LYDSLIQDQARE JEGLAQGSQLTE JEGLAGSSSSSSTPGSSS JESASLTJSSSSSSSSTPGSSS JYSALRQQIAEG JYSALRQQQIAEG JYSALRQQQIAEG JYSALRQQQIAEG JYSALRQQQIAEG JYSALRQQQIAEG JYQ	RQQETEHVYELLENKIQLLQEES EDVPGDQVKPDQYTEALAQRDRR EVQPMTEELLHQQKLNSHETTIT ELKCAQESSQFQDGTIQNLKETL LQSSEGTSPAQQQVALLDLQSAL HESEQQKEASWKHNQELRKALQQ SLSHKEQLLQEFRELLQYRDNSD EEKEKELRQLRLAVRERDHDLER LQWLKEEMETKFSRWQKEQESII LCQRLQRKERMLQDLLSDRNKQV NSELQALRQYLGGRDSLMSQAPI KEDVSIPRSTLGDLDTVAGLEKE LQVQAADMESLTRNIQIKEDLIK GQEISGNRRQQQLLLMLEGLVDE VELEGAQVLRSRLEEVLGRSLEP HHSHQQLVKVALEKSLATVETQN RKAEEELKELKAQIEEAGFSSVS KGEVMVETVVTKEGLSESSLQAE ELLVHLTSTIERINTELVGSPGK NQSQPRDPGPQPAFSLPGSTQHL RVMLSESLVKQDSKQIQVDFQDL GLCSEQGRRGSTLASSSERKPLE ENKVIQNLKSRVRSLSVTSDYSSS FYSPGLUAKKDLESLIQKVSQLE LSYLRQKIREGRGICYLITQHAK RLTSKLSTEDHKSEKDQAGLEPL SDSHRSPSSTSFLSDELEACSDM ISLPTPQNTPKEANQAHSGFHFH TTPEVSLAESQQELQMLQKQLGES TIELGRILEPGYLGSSGKWDVMR IWNLRQRLEESICINDCLREQLE EENRRLQAQLSHVSRGHSQETES KQQEVLHFREERLSLQENDSRLQ KGLKAYSLDACHQIPLSSDLSHL ASLSPSSINQNFPASTDPGNKQL VVLSFSFSGLGLDTSPVMKTPPK KLLVKKIVSLVRSACSFPGLEAC ALPSTHIPVLPGKQGESTERELL
	SEQ ID NO: 295	7084 bp	
NOV103c, CG59773-03 DNA Sequence	GTTGAGGGGGCAATCGGGCACGCT ATCGCACTCTGTCCCAGCACCTCA GCTCATCTACTTGTCCAGGAGACCTCA GCTCATCTACTTCTGTGAGGAGCACGCACACTCACAGCACTCACAGCACTCACAGCACACAGCACACAGCACACAGCACACAGCACACAGCA	ATGACCTGAAG GATGCAACAGA GAGACGGAGCA GGGAGACAGA GGGAGACCA GGGAGACCA GAATTGAAGAA CTCGGGAGAAAC CCCAATGACTGA CTCAGCAGCAC TGAAAAGCAC TGAAAAGCAGG CACAATGCAA CTCAGAGGCAC TGAAAAGCAGG CACAATGCAA CTCAGAGGCTAC CCCAACTCAGAGGCAA CTCAGAGGGTAC TATTCTGCAGC GCAACTGCAGA CACACTGCAGA CACACTACAGAA CACACAGAA	AAGGAGAACTTCAGCCTCAAGCT AGTATGAGGCCAGCCGGGAGGAC GTCAGAATGAAGCTCGAA TGTTTATGAGCTCTGGAGAATA AAGAATGAAGCTGCGGAGAGAC AGCTCTCAGAGAACCTGAGGCAAGCCCGAACCAACACAACACACAACACACAC

ACTACCTGTCAAAACCTCCAGTGGCTGAAAGAAGAAATTGGAAACCAAATTTAGCCGTT GGCAGAAGGAACAAGAGAGTATCATTCAGCAGTTACAGACGTCTCTTCATGATAGGAA CAAAGAAGTGGAGGATCTTAGTGCAACACTGCTCTGCAAACTTGGACCAGGGCAGAGT GAGATAGCAGAGGAGCTGTGCCAGCGTCTACAGCGAAAGGAAAGGATGCTGCAGGACC TTCTAAGTGATCGAAATAAACAAGTGCTGGAACATGAAATGGAGATTCAAGGCCTGCT TCAGTCTGTGAGCACCAGGGAGCAGGAAAGCCAAGCTGCTGCAGAGAAGTTGGTGCAA ACTCCCTGATGTCCCAAGCACCCATCTCTAACCAACAAGCTGAAGTTACCCCCACTGG CCGTCTTGGAAAACAGACTGATCAAGGTTCAATGCAGATACCTTCCAGAGATGATAGC ACTTCATTGACTGCCAAAGAGGATGTCAGCATACCCAGATCCACATTAGGAGATTTGG ACACAGTTGCAGGGCTGGAAAAAGAACTGAGTAATGCCAAAGAGGAACTTGAACTCAT GGCTAAAAAAGAAAGAGAATCACAGATGGAACTTTCTGCTCTACAGTCCATGATGGCT GTGCAGGAAGAAGACTGCAGGTGCAGGCTGCTGATATGGAGTCTCTGACCAGGAACA TACAGATTAAAGAAGATCTCATAAAGGACCTGCAAATGCAACTGGTTGATCCTGAAGA CATACCAGCTATGGAACGCCTGACCCAGGAAGTCTTACTTCTTCGGGAAAAAGTTGCT TCAGTAGAATCCCAGGGTCAAGAAATTTCAGGAAACCGAAGACAACAGCAGTTGCTGC TGATGCTAGAAGGACTAGTAGATGAACGGAGTCGGCTCAATGAGGCCTTACAAGCAGA GAGACAGCTCTATAGCAGTCTGGTGAAGTTCCATGCCCATCCAGAGAGCTCTGAGAGA GACCGAACTCTGCAGGTGGAACTGGAAGGGGCTCAGGTGTTACGCAGTCGGCTAGAAG AAGTTCTTGGAAGAAGCTTGGAGCGCTTAAACAGGCTGGAGACCCTGGCCGCCATTGG AGGTGCAGCTGCAGGGGATGACACCGAAGATACAAGCACTGAGTTCACTGACAGTATT GAGGAGGAGGCIGCACACCATAGTCACCAGCAACTTGTCAAGGTGGCTTTGGAGAAAA GTCTGGCAACTGTGGAGACCCAGAACCCATCTTTTTCCCCTCCTTCTCCGATGGGAGG GGACAGTAACAGGTGTCTTCAGGAAGAAATGCTCCACCTGAGGGCTGAGATCCACCAG CACTTAGAAGAGAAGGGAAAGCTGAGGAGGAACTGAAGGAGCTAAAGGCTCAAATTG AGGAAGCAGGATTCTCCTCAGTGTCCCACATCAGGAACACCATGCTGAGCCTTTGCCT TGAGAATGCGGAGCTGAAAGAGCAGATGGGAGAAACAATGTCTGATGCATGGGAGATC GAGGAAGACAAGGAGAAGGGCGAGGTGATGGTTGAGACTGTGGTAACCAAAGAGGGTC TGAGTGAGAGTAGCCTTCAGGCTGAGTTCAGAAAGCTCCAGGGAAAACTGAAGAATGC AGTAAACTTACTCCAGAGCTCCTTGTGCATCTGACCAGCACCATCGAAAGAATAAACA CAGAACTGGTTGGTTCCCCTGGGAAGCACCAACACCAAGAGGAGGGGAATGTGACTGT GAGGCCTTTCCCCAGACCCCAGAGCCTTGACCTTGGGGCTACCTTCACAGTGGATGCC GCCTACCAGGGTCCACCCAGCACCTGCGCTCCCAGCTGTCACAATGCAAACAACGCTA TCAAGATCTCCAGGAGAAGCTGCTGCTATCAGAAGCCACTGTCTTTGCTCAGGCTAAC GAGCTGGAGAAATACAGAGTTATGCTTAGTGAATCCTTGGTGAAGCAGGACAGCAAGC AGATCCAGGTGGACTTCCAGGACCTGGGCTATGAGACTTGTGGCCGAAGCGAGAATGA GGCTGAACGGGAGGAAACCACCAGTCCTGAGTGTGAGGAGCACAACAGCCTCAAGGAA ATGGTCCTGATGGAGGGCTGTGCTCTGAGCAGGGACGCCGGGGCTCAACACTGGCTA GTTCCTCTGAGAGGAAGCCCTTGGAGAACCAGCTAGGGAAGCAGGAAGAGTTCCGGGT ATATGGAAAGTCAGAAAACATCTTGGTCCTACGAAAGGACATCGAAGATCTGAAGGCC CAGCTGCAGAATGCCAACAAGGTCATTCAAAACCTCAAGAGCCGGGTCCGGTCCCTCT CAGTTACAAGTGATTATTCGTCTAGTCTGGAAAGACCCCGGAAGCTGAGAGCTGTTGG CACCTTGGAGGGGTCTTCACCTCATAGTGTCCCTGATGAGGATGAGGGGTGGCTGTCT GATGGCACTGGGGCTTTCTACTCTCCAGGGCTTCAGGCCAAAAAGGACCTGGAGAGTC TCATCCAGAGAGTATCCCAGCTGGAGGCCCAGCTCCCAGAAAATGGACTAGAAGAGAA GCTGGCTGAGGAGCTGAGATCAGCCTCGTGGCCTGGGAAATATGATTCCCTGATTCAG GATCAGGCCCGGGAACTGTCTTACCTACGGCAAAAAATACGAGAAGGGAGAGGTATTT GTTATCTTATCACCCAGCATGCAAAAGATACAGTAAAATCTTTTGAGGATCTCCTAAG GAGCAATGACATTGACTACCTGGGACAGAGCTTCCGGGAGCAACTCGCCCAGGGA AGCCAGCTGACAGAGAGGCTCACCAGCAAACTCAGCACAGAGGATCATAAAAGTGAGA AAGATCAAGCTGGACTTGAGCCACTGGCCCTCAGGCTCAGCAGGAGCTGCAGGAGAA GGAGAAAGTGATTGAAGTCCTGCAGGCCAAGCTGGATGCTCGGTCCCTCACACCCTCC AGCAGCCGTGCCTTGTCTGACTCCCACCGCTCTCCCAGCAGCACCTCTTTCCTGTCTG GAAGAAAGCTTCTCCCAGTCACTCAGGTAGCAGTGCATCTCAGGGGGGCTAAGGCCGAA TCCAACAGCAACCCCATCAGCTTGCCAACTCCCCAGAATACCCCCAAGGAGGCCAACC AAGCCCATTCAGGCTTTCATTTTCACTCCATACCCAAGCTGGCTAGCCTTCCTCAGGC ACCATTGCCCTCAGCTCCATCCAGCTTCCTGCCTTTCAGCCCCACTGGCCCTCCCCTC CTTGGCTGCTGTGAGACACCAGAGGTCTCCTTGGCTGAGTCTCAGCAGGAGCTACAGA TGCTGCAGAAGCAGTTGGGAGAAAGTAGCACTGTTCCTCCTGCTTCCACAGCTACATT GCTGAGCAACGACTTGGAAGCCGACTCTTCCTACTACCTCAACTCTGCCCAGCCTCAC TCTCCTCCAAGGGGCACCATAGAACTGGGAAGAATCCTAGAGCCTGGGTACCTGGGCA GCAGTGGCAAGTGGGATGTGATGAGGCCTCAGAAAGGGAGTGTATCTGGGGACCTATC CTCAGGCTCCTCTGTGTACCAGCTTAACTCCAAACCCACAGGGGCTGACCTGCTGGAA GAGCATCTTGGTGAAATCTGGAACCTGCGCCAGCGCCTGGAGGAGTCCATCTGCATCA ATGACTGCCTACGGGGGCAACTGGAACACCGGCTGACCTCTACTGCTCGTGGAAGGGG ATCCACTTCTAACTTCTACAGTCAGGGCCTGGAGTCCATACCTCAGCTCTGCAATGAG AACAGAGTCCTCAGGGAAGAAATCGAAGACTTCAGGCTCAACTGAGTCATGTTTCCA GAGGTCACTCCCAGGAAACAGAAAGCCTGAGGGAGGCTCTGCTGTCCTCTCGATCCCA CCTTCAAGAGCTGGAAAAGGAGCTGGAGCACCAGAAGGTGGAAAGGCAGCAGCTTTTG

GGAGCAGAGCATTCAGGGGAACAATTGTCTGCGACTGCAGCTGCAACAGCAGCTGGAG AGCGGTGCTGGCAAAGCCAGCCTCAGCCCCTCCTCCATTAACCAGAACTTCCCAGCCA GCACTGACCCTGGAAACAAGCAGCTGCTCCTCCAAGGTTCAGCTGTGTCCCCTCCAGT CCGGGATGTTGGTATGAATTCCCCAGCTCTGGTCTTCCCCAGCTCTGCTTCCTCTACT CCTGGCTCAGATTCAGTTGTGTTGTCATTTTCTTTTTCAGGCTTGGGTTTGGATACTT CTCCAGTAATGAAGACCCCTCCCAAGCTAGAGGGTGATGCTACTGATGGCTCCTTTGC CAATAAGCATGGCCGCCATGTCATTGGCCACATTGATGACTACAGTGCCCTAAGACAG CAGATTGCGGAGGGCAAGCTGCTGGTCAAAAAGATAGTGTCTCTTGTGAGATCAGCGT GCAGCTTCCCTGGCCTTGAAGCCCAAGGCACAGAGGGCAGCAAAGGCATTCATGAGCT TCGGAGCAGCACCAGTGCCCTGCACCATGCCCTAGAGGAGTCGGCTTCCCTCCTCACC ATGTTCTGGAGAGCGCCCTGCCAAGCACCCACATCCCTGTGCTGCCTGGCAAACAGG GAGAATCAACAGAAAGGGAACTTCTGGAACTGAGAACCAAAGTATCCAAACAGGAGCA GCTCCTTCAGAGCACAACTGAGCATCTGAAGAACGCCAACCAGCAGAAGGAGAGCATG GAACAGTTCATTGTCAGCGTAACCAGAACACATGATGTTTTAAAGAAGGCAAGGACTA ${\tt ACTTAGAGGTGAAATCCCTAAGGGCTCTGCCGTGTACTCCAGCCTTGTGA}{\tt CCCTTGCC}$ TTCCAGGAACCATGCAAGAAGCGCAGCCACCAGAAGTCCTTAAAACAGCAGGAAAGGT GAGCCTGTCCCCCTTTTGTGCAGCTACCTATCTGCTGAGGAGCATCTGGGCCTCATTC ORF Start: ATG at 155 ORF Stop: TGA at 6950 MW at 255081.5kD SEO ID NO: 296 2265 aa MRPAGRTSTSGGDVENLNSQNEAELRRQFEERQQETEHVYELLENKIQLLQEESRLAK NOV103c. NEAARMAALVEAEKECNLELSEKLKGVTKNWEDVPGDQVKPDQYTETLAQRDKRIEEL CG59773-03 Protein Sequence NOSLAAQERLVEQLSREKQQLLHLLEEPTSMEVQPMTEELLKQQKLNSHETTITQQSV SDSHLAELQEKIQQTEATNKILQEKLNEMSYELKCAQESSQKQDGTIQNLKETLKSRE RETEELYQVIEGQNDTMAKLREMLHQSQLGQLQSSEGTSPAQQQVALLDLQSALFCSQ LEIOKLORVVROKEROLADAKOCVOFVEAAAHESEQQKEASWKHNQELRKALQQLQEE LQNKSQQLRAWEAEKYNEIRTQEQNIQHLNHSLSHKEQLLQEFRELLQYRDNSDKTLE ANEMLLEKURQRIHUKAVALERATDEKFSALEEKEKEURQURUAVRERDHDUERURDV LSSNEATMOSMESLLRAKGLEVEQLSTTCQNLQWLKEEMETKFSRWQKEQESIIQQLQ TSLHDRNKEVEDLSATLLCKLGPGQSEIAEELCQRLQRKERMLQDLLSDRNKQVLEHE ${\tt MEIQGLLQSVSTREQESQAAAEKLVQALMERNSELQALRQYLGGRDSLMSQAPISNQQ}$ AEVTPTGRLGKQTDQGSMQIPSRDDSTSLTAKEDVSIPRSTLGDLDTVAGLEKELSNA KEELELMAKKERESQMELSALQSMMAVQEEELQVQAADMESLTRNIQIKEDLIKDLQM OLVDPEDIPAMERLTOEVLLLREKVASVESOGOEISGNRROOOLLLMLEGLVDERSRL NEALQAERQLYSSLVKFHAHPESSERDRTLQVELEGAQVLRSRLEEVLGRSLERLNRL ETLAAIGGAAAGDDTEDTSTEFTDSIEEEAAHHSHQQLVKVALEKSLATVETQNPSFS PPSPMGGDSNRCLQEEMLHLRAEIHQHLEEKRKAEEELKELKAQIEEAGFSSVSHIRN TMLSLCLENAELKEOMGETMSDGWEIEEDKEKGEVMVETVVTKEGLSESSLQAEFRKL QGKLKNAHNI INLLKEQLVLSSKEGNSKLTPELLVHLTSTIERINTELVGSPGKHQHQ EEGNVTVRPFPRPQSLDLGATFTVDAHQQLDNQSQPRDPGPQPAFSLPGSTQHLRSQL SQCKQRYQDLQEKLLLSEATVFAQANELEKYRVMLSESLVKQDSKQIQVDFQDLGYET CGRSENEAEREETTSPECEEHNSLKEMVLMEGLCSEOGRRGSTLASSSERKPLENOLG KQEEFRVYGKSENILVLRKDIEDLKAQLQNANKVIQNLKSRVRSLSVTSDYSSSLERP RKLRAVGTLEGSSPHSVPDEDEGWLSDGTGAFYSPGLQAKKDLESLIQRVSQLEAQLP ENGLEEKLAEELRSASWPGKYDSLIQDQARELSYLRQKIREGRGICYLITQHAKDTVK ${\tt SFEDLLRSNDIDYYLGQSFREQLAQGSQLTERLTSKLSTEDHKSEKDQAGLEPLALRL}$ SRELQEKEKVIEVLQAKLDARSLTPSSSRALSDSHRSPSSTSFLSDELEACSDMDIVS EYTHYEEKKASPSHSGSSASQGAKAESNSNPISLPTPQNTPKEANQAHSGFHFHSIPK LASLPOAPLPSAPSSFLPFSPTGPPLLGCCETPEVSLAESQQELQMLQKQLGESSTVP PASTATLLSNDLEADSSYYLNSAQPHSPPRGTIELGRILEPGYLGSSGKWDVMRPQKG SVSGDLSSGSSVYQLNSKPTGADLLEEHLGEIWNLRQRLEESICINDCLREQLEHRLT STARGRGSTSNFYSQGLESIPQLCNENRVLREENRRLQAQLSHVSRGHSQETESLREA LLSSRSHLQELEKELEHQKVERQQLLEDLREKQQEVLHFREERLSLQENDSRLQHKLV $\verb|LLQQQCEEKQQLFESLQSELQIYEALYGNSKKGLKAYSLDACHQIPLSSDLSHLVAEV|$ QALRGQLEQSIQGNNCLRLQLQQQLESGAGKASLSPSSINQNFPASTDPGNKQLLLQG SAVSPPVRDVGMNSPALVFPSSASSTPGSDSVVLSFSFSGLGLDTSPVMKTPPKLEGD ATDGSFANKHGRHVIGHIDDYSALRQQIAEGKLLVKKIVSLVRSACSFPGLEAQGTEG SKGIHELRSSTSALHHALEESASLLTMFWRAALPSTHIPVLPGKQGESTERELLELRT KVSKQEQLLQSTTEHLKNANQQKESMEQFIVSVTRTHDVLKKARTNLEVKSLRALPCT PAL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 103B.

¹ Table 10	3B Comi	parison of NOV103a	against NOV103b through NOV103c.
		ers ers, Residue	тепине:
	titit ii.	Match Residues	similarities for the Matched Region

NOV103b	3652196 2022016	1510/1834 (82%) 1518/1834 (82%)
NOV103c	3652196 1401954	1510/1834 (82%) 1518/1834 (82%)

Further analysis of the NOV103a protein yielded the following properties shown in Table 103C.

	Table 103C. Protein Sequence Properties NOV103a			
PSort analysis:	0.5855 probability located in mitochondrial matrix space; 0.4200 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.2957 probability located in mitochondrial inner membrane			
SignalP analysis:	Likely cleavage site between residues 39 and 40			

A search of the NOV103a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 103D.

	Table 103D. Geneseq Results for NOV103a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV103a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY71159	Human phosphodiesterase interacting protein, myomegalin - Homo sapiens, 2517 aa. [WO200027861-A1, 18-MAY-2000]	12196 12204	2193/2204 (99%) 2193/2204 (99%)	0.0	
AAM40183	Human polypeptide SEQ ID NO 3328 - Homo sapiens, 1883 aa. [WO200153312-A1, 26-JUL-2001]	6352196 11570	1557/1570 (99%) 1559/1570 (99%)	0.0	
AAY71158	Rat phosphodiesterase interacting protein, myomegalin - Rattus sp, 2326 aa. [WO200027861-A1, 18-MAY-2000]	3652197 2022017	1433/1837 (78%) 1572/1837 (85%)	0.0	
AAY67600	Human adipose tissue protein #3 - Homo sapiens, 944 aa	1934 1934	925/934 (99%) 927/934 (99%)	0.0	

sapiens, 934 aa. [WO200123546-	197934	733/738 (98%)	
A1, 05-APR-2001]	1		

In a BLAST search of public sequence databases, the NOV103a protein was found to have homology to the proteins shown in the BLASTP data in Table 103E.

	Table 103E. Public BLASTP Results for NOV103a					
Protein Accession Number	Protein/Organism/Length	NOV103a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
O75042	KIAA0454 PROTEIN - Homo sapiens (Human), 1882 aa (fragment).	6362196 11569	1558/1569 (99%) 1558/1569 (99%)	0.0		
Q9WUJ3	MYOMEGALIN - Rattus norvegicus (Rat), 2324 aa.	3652197 2022015	1444/1838 (78° o) 1581/1838 (85%)	0.0		
O75065	KIAA0477 PROTEIN - Homo sapiens (Human), 1132 aa.	11132 11132	1132/1132 (100%) 1132/1132 (100%)	0.0		
Q25893	LIVER STAGE ANTIGEN - Plasmodium falciparum (isolate NF54), 1909 aa.	3561459 6051651	243/1129 (21%) 488/1129 (42%)	4e-35		
Q13439	Golgi autoantigen, golgin subfamily A 4 (Trans-Golgi p230) (256 kDa golgin) (Golgin-245) (72.1 protein) - Homo sapiens (Human), 2230 aa.	2291749 2671814	349/1638 (21%) 679/1638 (41%)	4e-34		

PFam analysis predicts that the NOV103a protein contains the domains shown in the Table 103F.

Table 1	Table 103F. Domain Analysis of NOV103a			
Pfam Domain	NOV103a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Somatomedin_B: domain 1 of 1	150189	14/47 (30° ₀) 25/47 (53° ₀)	7.6	
recA: domain 1 of 1	621650	8/30 (27%) 22/30 (73%)	8.1	
Ribosomal_L10: domain 1 of 1	604695	20/109 (18%) 59/109 (54%)	9.9	
Dishevelled: domain 1 of 1	844914	19/74 (26%) 37/74 (50%)	2.7	
Transposase_22: domain 1 of 1	11351416	71/376 (19%) 127/376 (34%)	4.6	
Phe_tRNA-synt_N: domain 1 of 1	20792152	13/79 (16%) 49/79 (62%)	4.9	

Example 104.

The NOV104 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 104A.

Table 104A. NOV104 Sequence Analysis				
	SEQ ID NO: 297	736 bp		
NOV104a, CG57460-01 DNA Sequence	ANAGCACCGAGATGACCCGGGCTCCTCCACCAGGAGCGGGCGG			
	ORF Start: ATG at 13	ORF Stop	p: TGA at 697	
	SEQ ID NO: 298	228 aa	MW at 24767.5kD	
NOV104a, CG57460-01 Protein Sequence	AALLGLRYYYSRKVIRAYLECAI GNVVGIVAARAHEEDNTVELLR	HTDMADIEQ	, AADPRPLPPALCFAVSRSLLLTCLVP YYMEPPGVSLTALSPAGSCFWVAVLD GIAHALGRKVLEFAVVHNYSAVVLGT	

Further analysis of the NOV104a protein yielded the following properties shown in Table 104B.

	Table 104B. Protein Sequence Properties NOV104a		
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 64 and 65		

A search of the NOV104a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 104C.

	Table 104C. Genescq Results for NOV104a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV104a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB19986	Human camello 3 (Hcml3) protein (partial) - Homo sapiens, 144 aa. [WO200077024-A1, 21-DEC-2000]	42195 1144	144/154 (93%) 144/154 (93%)	7e-76	
AAB19985	Human camello 2 (Hcml2) protein - Homo sapiens, 227 aa. [WO200077024-A1, 21-DEC-2000]	47200 56203	63/158 (39%) 92/158 (57%)	1e-21	
AAB19984	Human camello 1 (Hcml1) protein - Homo sapiens, 227 aa. [WO200077024-A1, 21-DEC-2000]	41196 50199	60/160 (37%) 88/160 (54%)	7e-20	
AAY57959	Human TSC501 protein SEQ ID NO:1 - Homo sapiens, 227 aa. [JP11332579-A, 07-DEC-1999]	41196 50199	59/160 (36%) 87/160 (53%)	4e-19	
AAB19987	Mouse camello 1 (Mcml1) protein - Mus sp, 222 aa. [WO200077024-A1, 21-DEC-2000]	41194 50197	63/158 (39%) 87/158 (54%)	1e-18	

In a BLAST search of public sequence databases, the NOV104a protein was found to have homology to the proteins shown in the BLASTP data in Table 104D.

Accession Number		Residues/ Match Residues	Similarities for the Matched Portion	Value
Q9UHF3	PUTATIVE N- ACETYLTRANSFERASE CAMELLO 2 - Homo sapiens (Human), 227 aa.	47200 56203	63/158 (39%) 92/158 (57%)	5e-21
Q9UHE5	PUTATIVE N- ACETYLTRANSFERASE CML1 - Homo sapiens (Human), 227 aa.	41196 50199	60/160 (37%) 88/160 (54%)	3e-19
Q9UQ17	GLA PROTEIN - Homo sapiens (Human), 227 aa.	41196 50199	60/160 (37%) 88/160 (54%)	3e-19
Q96Q18	KIDNEY-AND LIVER-SPECIFIC GENE - Homo sapiens (Human), 227 aa.	41196 50199	59/160 (36%) 87/160 (53%)	le-18
O75839	TSC501 PROTEIN - Homo sapiens (Human), 227 aa.	41196 50199	59/160 (36%) 87/160 (53%)	1e-18

PFam analysis predicts that the NOV104a protein contains the domains shown in the Table 104E.

Tat	ole 104E. Domain Analy:	sis of NOV104a	
Pfam Domain	NOV104a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Acetyltransf: domain 1 of 1	111191	28/82 (34%) 64/82 (78%)	2.2e-17

Example 105.

The NOV105 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 105A.

Table 105A. NOV105 Sequence Analysis				
	SEQ ID NO: 299	1230 bp		
NOV105a, CG57464-01 DNA Sequence	TGTTCGCCGTGTGCTTCGTG GCAGAACCTGCTGTCGGGCT TTGCGCCGCACGGCCGCCAC CTCGGGCCGGCCGGCCGCAT GCCTCCGCCAGCTCCCCGAG	GGACAGCCCCGAGGTGACCTTCACTCTCGCCTATCTGG TTCACGCCCAACGAGTTCCACGCGGGGGGGCTCACGGT GGCTGGGCAGCGAGGACGCCGCCTTCGTGCCCTTCCAC GCTGTTGTGCCACTCGCTGCTGCCGCTCGGTGAGGCTG CCTCTCCTGCGCAGGGCTTGCTGGGAGGTCAGGAGGAGGCGC GCCCCGAAAGCGCCTTGGGCGCAGCTGGGGAGAGGCGCC		

	TGCAGCTCCTCACCATCCGTGTGCAGGCTGAACTCCACTGAGTACGAGGCCATGTGGTCATCCACTCCCTGGTAGAGGTCAACCCGAGAGGCCTGCATAGGCTGCATGCA	GCCAGCACCA GGGAGCTCTG GCCAGAGCCTA GCCTACTCAG AGACACGTGC CCAGCAGTGT AGCCGCCAGG	SCTCTCGCCAGACTCGAACTTGCCCG LACCCTGCTGTGCAGCCTTTGACAT LOGAGAAGCTCCGGCACCCCATCCGC LOGAGACCTCTCCTGGAGACATTTG LOGAGCACCTGTCCTGGAGACATTTG LOCAGCGTGAAGCCTGCTGCAGCCTGCCTCACCCCCCCCATGTGGTGCCTCC LACTGCCGCCCCCATGTGGTGCCTCA LACCCCCTGCGCCCTGACACCTGGCT LACGCTTCTGCATCCTGGATGTGTGCCCCCCCCCCCCCCC
	ORF Start: ATG at 19	ORF Stop	o: TGA at 1228
	SEQ ID NO: 300	403 aa	MW at 44585.0kD
NOV105a, CG57464-01 Protein Sequence	TLLCHSILPLGEAARAGRPHPLL PRRGLSALRGAAGLAWRLFLLLA SGWQAVASSVNTEFRRIDKFATG SRQHELSPDSNLPVQLLTIRVAS	RRACWEVRRR VTLPSIACIL APGARVIVTE TNPAVQAFDI SVPSSQVGGL	QNLLSGWLGSEDAAFVPFHLRRTAA PPPAPRGPESAWAQLGRGAGPHPEG JYYWSRDRWACHPLARTLALYALPQ DTWVMKVTTYRVHVAQQQDVHLTVTE RLNSTEYGELCEKLRAPIRRAAHVV JEACIGCMQTRASVKLVKTCQEAATG JASRVPCPTCRARFCILDVCTVR

Further analysis of the NOV105a protein yielded the following properties shown in Table 105B.

	Table 105B. Protein Sequence Properties NOV105a			
PSort analysis:	0.6760 probability located in plasma membrane; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside			
SignalP analysis:	Likely cleavage site between residues 29 and 30			

A search of the NOV105a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 105C.

	Table 105C. Geneseq Results for NOV105a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV105a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAG81377	Human AFP protein sequence SEQ ID NO:272 - Homo sapiens, 362 aa. [WO200129221-A2, 26-APR-2001]	1403 1362	344/409 (84%) 345/409 (84%)	0.0		

In a BLAST search of public sequence databases, the NOV105a protein was found to

	Table 105D. Public BLASTP Results for NOV105a				
Protein Accession Number	Protein/Organism/Length	NOV105a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
CAC38627	SEQUENCE 271 FROM PATENT WO0129221 - Homo sapiens (Human), 362 aa.	1403 1362	345/409 (84° 6) 346/409 (84° 6)	0.0	
Q9DCF3	0610039G24RIK PROTEIN - Mus musculus (Mouse), 362 aa.	1403 1362	311/403 (77%) 328/403 (81%)	e-176	
Q96GP5	SIMILAR TO RIKEN CDNA 0610039G24 GENE - Homo sapiens (Human), 232 aa.	1265 1226	211/271 (77° o) 212/271 (77° o)	e-109	
Q9VN16	CG14646 PROTEIN - Drosophila melanogaster (Fruit fly), 409 aa.	1399 1383	123/409 (30%) 202/409 (49%)	1e-55	
Q95TM4	LD39811P - Drosophila melanogaster (Fruit fly), 393 aa.	20399 4367	117/390 (30%) 192/390 (49%)	1e-51	

PFam analysis predicts that the NOV105a protein contains the domains shown in the Table 105E.

Table 105E. Domain Analysis of NOV105a					
Pfam Domain NOV105a Match Region Identities/ Similarities Expect Value For the Matched Region					
No Significant Matches Found					

Example 106.

The NOV106 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 106A.

Table 106A. NOV106 Sequence Analysis				
	SEQ ID NO: 301	1136 bp		
NOV106a, CG57466-01 DNA Sequence	ATGGACAGCTGGTGAACCCC CGCCCATGGCCTCTCAGGGG ATATCAACTTGACCCACCAC TCTCTTCTACCGCCACTGCC AGGGGCGATGTCTACCTGCT	CGCCACCACCTGGAGCCACAGAAGCCCAGAAGCCAA CAACAACTTCTGGAAGAACCCGAAAGATGTGTGCGCCCA CCCAGGCCTGGACGTGACCACCACTAACTGCTCAGCCA CCCTGGTTCCAGGTCCTGGAGCCGCAGTTCCGGCAGTT CGCTACTTCCCCATGCTGCTGAACCACCCGGAGAAGTGC TGGTGGTTGTCAAGTCGGTCATCACGCAGCACCACCCC CTGGGCGCGAGCGCCAGTCCGCGGGTGGGGGCCGACCGC		

Control of the Control of the Control of Albandary of Albandary

	GGCCTGTACGGCAAGGCCAGC GCCGGCAGCCTGGCCCGGCGCC TCGACGACGTCTTTCTGGGCAT CGAGGGCTTCAAGACTTTCGGC CCGTGCTTTTTCCGCCCCATGC	TATCCGCCGT TGCACCATGC GTGCCTGGAG ATCTCCCGGA TCGTGGTGCAC GCAATCTCACC	SAAAGACAACAAATACTACATCCCGGG CATGCAGGCGGGGGGGGCTTCCTCATG CCTGCGACACCCTGGAGCTCTACCCGA SGTGCTGGGCGTGCAGCCCACGGCCA LACCGCAACAGCCGCATGAACAAGGAG LCAAGCTGCTGCCCCTTGAGCTGCTCG CTGCTCCCGCAAGCTCCAGGTGCTCTG
	ORF Start: ATG at 9	ORF Stop	o: TGA at 1101
	SEQ ID NO: 302	364 aa	MW at 41853.8kD
NOV106a, CG57466-01 Protein Sequence	LTHQPWFQVLEPQFRQFLFYRH IRQTWARAAVRGWGPSAVRTLF FFNLTLKEIHFLKWLDIYCPHV QHARPIRRKDNKYYIPGALYGK	CRYFPMLLNH LLGTASKQEE PFIFKGDDDV ASYPPYAGGG	CVRPRPWPLRAQAWDVTTTNCSANIN IPEKCRGDVYLLVVVKSVITQHDRREA RTHYQQLLAYEDALYGDILQWGFLDT FVNPTNLLEFLADRQPQENLFVGDVL IGFLMAGSLARRLHHACDTLELYPIDD MNKEPCFFRAMLVVHKLLPPELLAMW

Further analysis of the NOV106a protein yielded the following properties shown in Table 106B.

	Table 106B. Protein Sequence Properties NOV106a
PSort analysis:	0.6400 probability located in microbody (peroxisome); 0.4500 probability located in cytoplasm; 0.3122 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV106a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 106C.

Table 106C. Geneseq Results for NOV106a				
Geneseq Identifier	Protein/Organism/Length Patent #, Date	NOV106a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB24035	Human PRO4397 protein sequence SEQ ID NO:42 - Homo sapiens, 402 aa. [WO200053750-A1, 14-SEP- 2000]	72352 84380	149/300 (49%) 191/300 (63%)	4e-76
AAU29167	Human PRO polypeptide sequence #144 - Homo sapiens, 372 aa. [WO200168848-A2, 20-SEP-2001]	26363 27371	149/348 (42%) 207/348 (58%)	9e-76
+ + D00+++	II are presented and are a second at	2/ 2/2	1 10 3 19 (120)	0 -/

	JAN-2001]			
AAB49750	Human beta 1,3-N-acetylglucosamine transferase protein G4 - Homo sapiens, 372 aa. [WO200100848-A1, 04-JAN-2001]	26363 27371	149/348 (42%) 207/348 (58%)	9 e -76
AAB49749	Human beta 1,3-N-acetylglucosamine transferase protein G4 - Homo sapiens, 372 aa. [WO200100848-A1, 04-JAN-2001]	26363 27371	149/348 (42%) 207/348 (58%)	9e-76

In a BLAST search of public sequence databases, the NOV106a protein was found to have homology to the proteins shown in the BLASTP data in Table 106D.

Table 106D. Public BLASTP Results for NOV106a				
Protein Accession Number	Protein/Organism/Length	NOV106a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAL32295	BETA-3-GALACTOSYLTRANSFERASE - Brachydanio rerio (Zebrafish) (Zebra danio), 418 aa.	46364 101417	199/319 (62%) 249/319 (77%)	e-121
AAL32297	BETA-3-GALACTOSYLTRANSFERASE - Brachydanio rerio (Zebrafish) (Zebra danio), 412 aa.	29360 82409	180/337 (53%) 244/337 (71%)	e-104
Q96EK0	UNKNOWN (PROTEIN FOR MGC:20513) - Homo sapiens (Human), 377 aa.	60352 46355	152/313 (48%) 198/313 (62%)	9 e -76
CAC39768	SEQUENCE 175 FROM PATENT EP1067182 - Homo sapiens (Human), 372 aa.	26363 27371	149/348 (42° o) 207/348 (58° o)	3c-75
Q9C0J2	BETA-1,3-N- ACETYLGLUCOSAMINYLTRANSFERASE BGNT-3 - Homo sapiens (Human), 372 aa.	26363 27371	149/348 (42° o) 207/348	3e-75

PFam analysis predicts that the NOV106a protein contains the domains shown in the Table 106E.

Table 106E. Domain Analysis of NOV106a				
Pfam Domain	NOV106a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
PI3_PI4_kinase: domain 1 of 1	195205	8/12 (67%) 10/12 (83%)	8.5	
Galactosyl_T: domain 1 of 1	112308	69/212 (33%) 148/212 (70%)	7.7e-45	

Example 107.

The NOV107 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 107A.

Table 107A. NOV107 Sequence Analysis			
	SEQ ID NO: 303	4091 bp	
NOV107a, CG57468-01 DNA Sequence	SEQ ID NO: 303 AAGCAAGAGGCTGAGATGGATC CGAGCGCGGAGGGCGGCACTTTG/ GAAGACAGTGAAAATGATTTTGGAG/ CTCCTTTTCAGTGAAATTGATTTTGAGG/ CTCCTTTCCAGTGAACTTTTCC GAAATGACTAGATATTCATTTC GCAGAAGTTTTTTCATGCATATC CCTATATACAAGTTTCATTTTC ACACTGAACTCAATACGCGG/ GTGACAAGGTTGGAATGTTCT GGGATTCATCAGAGGATGGAAC GCAAAGGATTGAATACAGCGG/ GATAGCTTTTCGGGGCCAGAA/ GCCAAAGAGATTGAATACTATTGG GTTTAATATATATGAATACAGCGG/ GCCAAAGAATACTATTTGGAGAAAAAGCAGTACG/ GCTATGGCATCATCATCATCATCATCATCATCATCAAAAGAAAAAAAA	TTGAGGCGCAAAGAACGGAACAGCCTGGCGCCCAAACTGGCGCAAACTGGCATCAGCAGCAAACAAA	
	ATTGTTGGATGAGGCCACTTCA CATGCCCTTGATAAAGCCAGGA CTGCAATTCAGAACGCAGATT AGGAACTCATCAAGAGCTCCTC CAGTCAGCGAGCAAAGGTCGGA		

	TGTTTTTCCTCAAACAAGGTTTCAGCGTAGATTTTTGTTTG
	ATTTTACGGCAGAGCAGGGGAAATTTTAACGATGAGATTAAGACACTTGGCCTTCAAA
	GCCATGTTATATCAGGATATTGCCTGGTTTGATGAAAAGGAAAACAGCACAGGAGGCT
	TGACAACAATATTAGCCATAGATATAGCACAAATTCAAGGAGCAACAGGTTCCAGGAT
	TGGCGTCTTAACACAAAATGCAACTAACATGGGACTTTCAGTTATCATTTCCTTTATA
	TATGGATGGGAGATGACATTCCTGATTCTGAGTATTGCTCCAGTACTTGCCGTGACAG
	GAATGATTGAAACCGCAGCAATGACTGGATTTGCCAACAAAGATAAGCAAGAACTTAA
	GCATGCTGGAAAGGTAAAGATAGCAACTGAAGCTTTGGAGAATATACGTACTATAGTG
	TCATTAACAAGGGAAAAAGCCTTCGAGCAAATGTATGAAGAGATGCTTCAGACTCAAC
	ACAGGAGAAATACCTCGAAGAAAGCACAGATTATTGGAAGCTGTTATGCATTCAGCCA
1	TGCCTTTATATATTTTGCCTATGCGGCAGGGTTTCGATTTGGAGCCTATTTAATTCAA
	GCTGGACGAATGTCAAATGCTTTATCTTTTGATAGAGTTTTTACTGCAATTGCATATG
	GAGCTATGGCCATCGGAGAAACGCTCGTTTTGGCTCCTGAATATTCCAAAGCCAAATC
	GGGGGCTGCGCATCTGTTTGCCTTGTTGGAAAAGAAACCAAATATAGACAGCCGCAGT
	CAAGAAGGGAAAAAGCCACTTTCACAGGACACATGTGAAGGGAATTTAGAGTTTCGAG
	AAGTCTCTTCTTCTATCCATGTCGCCCAGATGTTTTCATCCTCCGTGGCTTATCCCT
	CAGTATTGAGCGAGGAAAGACAGTAGCATTTGTGGGGAGCAGCGGCTGTGGGAAAAGC
	ACTTCTGTTCAACTTCTGCAGAGACTTTATGACCCCGTGCAAGGACAACAGCTGTTTG
	ATGGTGTGGATGCAAAAGAATTGAATGTACAGTGGCTCCGTTCCCAAATAGCAATCGT
	TCCTCAAGAGCCTGTGCTCTTCAACTGCAGCATTGCTGAGAACATCGCCTATGGTGAC
	AACAGCCGTGTGGTGCCATTAGATGAGATCAAAGAAGCCGCAAATGCAGCAAATATCC
	ATTCTTTTATTGAAGGTCTCCCTAAATACAACACACAAGTTGGACTGAAAGGAGCACA
1 	GCTTTCTGGCGGCCAGAAACAAAGACTAGCTATTGCAAGGGCCTCTTCTCCAAAAAACCC
	AAAATTTTATTGTTGGATGAGGCCACTTCAGCCCTCGATAATGACAGTGAGAAGGTAC
İ	
	AGGTGGTTCAGCATGCCCTTGATAAAGCCAGGACGGGAAGGACATGCCTAGTGGTCAC
	TCACAGGCTCTCTGCAATTCAGAACGCAGATTTGATAGTGGTTCTGCACAATGGAAAG
1	ATAAAGGAACAAGGAACTCATCAAGAGCTCCTGAGAAATCGAGACATATATTTTAAGT
	TAGTGAATGCACAGTCAGCGAGCAAAGGTCGGACTACAATCGTGGTAGCACACCGACT
į	TTCTACTATTCGAAGTGCAGATTTGATTGTGACCCTAAAGGATGGAATGCTGGCGGAG
	AAAGGAGCACATGCTGAACTAATGGCAAAACGAGGTCTATATTATTCACTTGTGATGT
<u> </u>	CACAGGTAATGCTTATGTGACATAATGCTAT
	ORF Start: ATG at 16 ORF Stop: TGA at 4078
	SEQ ID NO: 304 1354 aa MW at 149167.3kD
NOV107a,	MDLEAAKNGTAWRPTSAEGDFELGISSKQKRKKTKTVKMIGVLTLFRYSDWQDKLFMS
· ·	LGTIMAIAHGSGLPLMMIVFGEMTDKFVDTAGNFSFPVNFSLSLLNPGKILEEEMTRY
CG57468-01 Protein Sequence	AYYYSGLGAGVLVAAYIQVSFWTLAAGRQIRKIRQKFFHAILRQEIGWFDINDTTELN
1	TRLTDDISKISEGIGDKVGMFFQAVATFFAGFIVGFIRGWKLTLVIMAISPILGLSAA
	VWAKILSAFSDKELAAYAKAGAVAEEALGAIRTVIAFGGQNKELERYQKHLENAKEIG
	IKKAISANISMGIAFLLIYASYALAFWYGSTLVISKEYTIGNAMTVFFSILIGAMAIG
	ETLVLAPEYSKAKSGAAHLFALLEKKPNIDSRSQEGKKPVSDTCEGNLEFREVSFFYP
	CRPDVF1LRGLSLSIERGKTVAFVGSSGCGKSTSVQLLQRLYDPVQGQVDGVDAKELN
	VOWLRSQIAIVPQEPVLFNCSIAENIAYGDNSRVVPLDEIKEAANAANIHSFIEGLPE
į	KYNTQVGLKGAQLSGGQKQRLAIARALLQKPKILLLDEATSALDNDSEWQVVQHALDK
	ARTGRTCLVVTHRLSAIQNADLIVVLHNGKIKEQGTHQELLRNRDIYFKLVNAQSASK
	GRTTIVVAHRLSTIRSADLIVTLKDGMLAEKGAHAELMAKRGLYYSLVMSQVMLMGTL
	SDCGNSLPEVSLLKILKLNKPEWPFVVLGTLASVLNGTVHPVFSIIFAKIITVMFGNN
	DLLFFLKIFLYSFLLFFLKQGFSVDFCLFAFQGLFYGRAGEILTMRLRHLAFKAMLYQ
	DIAWFDEKENSTGGLTTILAIDIAQIQGATGSRIGVLTQNATNMGLSVIISFIYGWEM
	TFLILSIAPVLAVTGMIETAAMTGFANKDKQELKHAGKVKIATEALENIRTIVSLTRE
	KAFEQMYEEMLQTQHRRNTSKKAQIIGSCYAFSHAFIYFAYAAGFRFGAYLIQAGRMS
	NALSFDRVFTAIAYGAMAIGETLVLAPEYSKAKSGAAHLFALLEKKPNIDSRSQEGKK
	PLSQDTCEGNLEFREVSFFYPCRPDVFILRGLSLSIERGKTVAFVGSSGCGKSTSVQL
	LQRLYDPVQGQQLFDGVDAKELNVQWLRSQIAIVPQEPVLFNCSIAENIAYGDNSRVV
	PLDEIKEAANAANIHSFIEGLPKYNTQVGLKGAQLSGGQKQRLAIARALLQKPKILLL
ĺ	DEATSALDNDSEKVQVVQHALDKARTGRTCLVVTHRLSAIQNADLIVVLHNGKIKEQG
	THQELLRNRDIYFKLVNAQSASKGRTTIVVAHRLSTIRSADLIVTLKDGMLAEKGAHA ELMAKRGLYYSLVMSQVMLM

Further analysis of the NOV107a protein yielded the following properties shown in Table 107B.

Table 107B. Protein Sequence Properties NOV107a			
PSort	0.6000 probability located in plasma membrane; 0.4000 probability located in		

WO 02/072757 PCT/1 802/06908

SignalP	No Known Signal Sequence Predicted	i
analysis:		

A search of the NOV107a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 107C.

	Table 107C. Geneseq Results for NOV107a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV107a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB81064	Cynomologous monkey P-glycoprotein variant 1 - Macaca fascicularis, 1280 aa. [WO200123565-A1, 05-APR-2001]	11299 11278	750/1312 (57%) 964/1312 (73%)	0.0	
AAB81065	Cynomologous monkey P-glycoprotein variant 2 - Macaca fascicularis, 1283 aa. [WO200123565-A1, 05-APR-2001]	11299 11281	749/1312 (57%) 967/1312 (73%)	0.0	
AAB81959	Human MDR1 - Homo sapiens, 1280 aa. [WO200121762-A2, 29- MAR-2001]	11299 11278	749/1324 (56%) 967/1324 (72%)	0.0	
AAY58186	Human wild-type multidrug resistance-1 (MDR-1) protein - Homo sapiens, 1280 aa. [WO9961589-A2, 02-DEC-1999]	11299 11278	749/1324 (56%) 967/1324 (72%)	0.0	
AAW44073	Human multidrug resistance P-glycoprotein MDR1 - Homo sapiens, 1280 aa. [WO9740160-A1, 30-OCT-1997]	11299 11278	749/1324 (56%) 967/1324 (72%)	0.0	

In a BLAST search of public sequence databases, the NOV107a protein was found to have homology to the proteins shown in the BLASTP data in Table 107D.

	Table 107D. Public BLASTP Results for NOV107a				
Protein Accession Number	Protein/Organism/Length	NOV107a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P23174	Multidrug resistance protein 3 (P-glycoprotein 3) - Cricetulus griseus (Chinese hamster), 1281 aa.	11299 11279	818/1303 (62%) 999/1303 (75%)	0.0	
P21440	Multidrug resistance protein 2 (P-glycoprotein 2) - Mus musculus (Mouse), 1276 aa.	11299 11274	823/1306 (63%) 998/1306 (76%)	0.0	
Q08201	Multidrug resistance protein 2 (P-glycoprotein 2) - Rattus norvegicus (Rat), 1278 aa.	11299 11276	823/1309 (62%) 999/1309 (75%)	0.0	
CAC37764	SEQUENCE 1 FROM PATENT WO0123565 - Macaca fascicularis (Crab cating macaque) (Cynomolgus monkey), 1280 aa.	11299 11278	750/1312 (57%) 964/1312 (73%)	0.0	
CAC37765	SEQUENCE 3 FROM PATENT WO0123565 - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 1283 aa.	11299 11281	749/1312 (57%) 967/1312 (73%)	0.0	

PFam analysis predicts that the NOV107a protein contains the domains shown in the Table 107E.

Table 107E. Domain Analysis of NOV107a				
Pfam Domain	NOV107a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
ABC_membrane: domain 1 of 2	57350	115/301 (38%) 252/301 (84%)	3.3e-83	
MVIN: domain 1 of 1	57447	70/531 (13%) 263/531 (50%)	5.8	
SAA_proteins: domain 1 of 1	518524	6/7 (86%) 7/7 (100%)	3	
100 00 10 10 10 10	121 (100	76 (100 / 380()	2 15 56	

ismi comani.

		126/249 (51%)	
ABC_membrane: domain 2 of 2	7221008	80/297 (27%) 222/297 (75%)	2.2e-43
ABC_tran: domain 2 of 2	10831270	77/202 (38%) 154/202 (76%)	7.1e-54
GidB: domain 1 of 1	11701312	29/202 (14%) 97/202 (48%)	6.6

Example 108.

The NOV108 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 108A.

Table 108A. NOV108 Sequence Analysis					
	SEQ ID NO: 305	520 bp			
NOV108a, CG59609-01 DNA Sequence	CCCCGTTCTATCAGCCATGGTCAACCCCACCAGGTTCTTAGACATCATCGTGGATGGT GAGCTTCTTGGGACGTGTCTCCTTTGAGCTGTTTTGCAGACAAGATTCCAAAGACAGCAG				
	ORF Start: ATG at 17	ORF Stop	o: TAA at 506		
	SEQ ID NO: 306 163 aa MW at 17734.1kD				
NOV108a, CG59609-01 Protein Sequence	MVNPTRFLDIIVDGELLGRVSFELFADKIPKTAENFCALIIGEKGFGYKGSYFHRIVP GFMCQGGDFTQHNGTGGKSIYGKKFDDENFVLNYTGPGILSVENAGPNTNGSQFFICT CC AMSEWLDGMQVVFGKGRKVSIVEAMECFGSTNGKTSKKITIADCGQL				

Further analysis of the NOV108a protein yielded the following properties shown in Table 108B.

	Table 108B. Protein Sequence Properties NOV108a
PSort analysis:	0.6400 probability located in microbody (peroxisome); 0.6000 probability located in plasma membrane; 0.4500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV108a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 108C.

	Table 108C. Geneseq Results for NOV108a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV108a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU01195	Human cyclophilin A protein - Homo sapiens, 165 aa. [WO200132876-A2, 10-MAY-2001]	1163 1164	134/164 (81%) 147/164 (88%)	2e-75
AAW56028	Calcineurin protein - Mammalia, 165 aa. [WO9808956-A2, 05-MAR-1998]	1163 1164	134/164 (81%) 147/164 (88%)	2e-75
AAR13726	Bovine cyclophilin - Bos taurus, 163 aa. [US5047512-A, 10-SEP-1991]	2163 1163	133/163 (81%) 146/163 (88%)	5e-75
AAG65275	Haematopoietic stem cell proliferation agent related human protein #2 - Homo sapiens, 164 aa. [JP2001163798-A, 19-JUN-2001]	2163 1163	133/163 (81%) 146/163 (88%)	9e-75
AAP90431	Cyclophilin - Homo sapiens (human), 164 aa. [EP326067-A, 02-AUG-1989]	2163 1163	133/163 (81%) 146/163 (88%)	9e-75

In a BLAST search of public sequence databases, the NOV108a protein was found to have homology to the proteins shown in the BLASTP data in Table 108D.

	Table 108D. Public BLASTP Re	sults for NO	V108a	
Protein Accession Number	Protein/Organism/Length	NOV108a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
CAC39529	SEQUENCE 26 FROM PATENT WO0132876 - Homo sapiens (Human), 165 aa.	1163 1164	134/164 (81%) 147/164 (88%)	8e-75
Q9BRU4	PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A) - Homo sapiens (Human), 165 aa.	1163 1164	134/164 (81%) 146/164 (88%)	2e-74
P04374	Peptidyl-prolyl cis-trans isomerase A (EC 5.2.1.8) (PPIase) (Rotamase) (Cyclophilin A) (Cyclosporin Abinding protein) - Bos taurus (Bovine), and, 163 aa.	2163 1163	133/163 (81%) 146/163 (88%)	2e-74
P05092	Peptidyl-prolyl cis-trans isomerase A	2 163	133/163 (81%)	30.74

	binding protein) - Homo sapiens (Human),, 164 aa.			
Q9TTC6	CYCLOPHILIN 18 - Oryctolagus cuniculus (Rabbit), 164 aa.	1163 1164	133/164 (81%) 147/164 (89%)	5e-74

PFam analysis predicts that the NOV108a protein contains the domains shown in the Table 108E.

Tabl	e 108E. Domain Analys	is of NOV108a	
Pfam Domain	NOV108a Match Region	Identities/ Similarities for the Matched Region	Expect Value
pro_isomerase: domain 1 of 1	5163	101/181 (56%) 137/181 (76%)	5.2e-79

Example 109.

The NOV109 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 109A.

Table 109A. NOV109 Sequence Analysis			
	SEQ ID NO: 307	887 bp	
NOV109a, CG59613-01 DNA Sequence GATATCATTTTTATGGCAGCCATTGTTAAGCCTCCAGAACCTATACC TTAACAGATAAGCCAGTTTGGATAGAACAATTGCCAGAACCTATACCACTTTAACAGATAAGCCAGTTTGGATAGAACAATTCCCAAAAATCCATTTCCAAAAATACCACTGTGACCACAACCTAGAGCATGAGCATGACCATGACCATGACCATGAGCATGACCATGACCATGAGCATGACCATGACCATGAACAATTGCACAAAATACCACATTGCACAAAATACCACATTGCACAAAATACCACATTGCAGAAAATTCAAAAATACAACAATGGCAGTGAAAGCATCACATGAAATTCCAAAATTCAAAAATACAACAATGGAACTTAAAATTCCAAAAATACAACAATGGAACTTAAAATTCCAAAAATACAACATGGACATTTGAAAATTCATATATGCCACAAATTGGACAAAAGAAGAAAAAAAA		CCACTGAGTAAAGAGAAACTGGAGG ATAATCATTTTCCAAAAAGTGAACCT GCAGCTAACCCTGTGTGACCAGGGC CATGAGCATGAGCCTCACCAGCATGT SACATCACTACATGAGGCTGAAGG CACTGAATCAAGAGAACTTTGTGAC CAACTTGAAATTCAGAACAAGAGT CTTGTTCATATATGCCAAGATCTCAG CAAAGATGGAGTGAATTTTTTCGCA AATTGCCCAAAACAAGAATTACAATA GGCCAGTTCAGCTAACTTTTTTCACT CACTCTCTCAGATGCACCCCTTGCTG LAAGTATTATTTTTGGCTCCAAAATTG	
	ORF Start: ATG at 14	ORF Stop	o: TAG at 830
	SEQ ID NO: 308	272 aa	MW at 30831.1kD
NOV109a, CG59613-01 Protein Sequence	VSHISLVQLTLCDQGFNTYHCDF LVLEFEALNQENFVDCELKLMTI	INLAMSMSLTS LDVEQLEIPE(IIATIAQTSN)	JEALEDLVTEQFSIIIFQFVNLHSMK SMSKMLKYNNGSEDITTWRAEGTMDL DEYSCVIKMHSSEFVHICQDLSHIGE YNKEEEAVAIMMNGPVQLTFALSYLN KIEDEKGF

Further analysis of the NOV109a protein yielded the following properties shown in

	Table 109B. Protein Sequence Properties NOV109a
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	Likely cleavage site between residues 19 and 20

A search of the NOV109a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 109C.

	Table 109C. Geneseq Results for NOV109a			
Geneseq Identifier	Protein/Organism/Length Patent#, Date	NOV109a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY51639	Human PCNA protein fragment - Homo sapiens, 261 aa. [WO200008164-A2, 17-FEB-2000]	25271 8260	158/255 (61%) 184/255 (71%)	8e-78
AAY52010	Human PCNA protein - Homo sapiens, 261 aa. [DE19840771-A1, 10-FEB-2000]	25271 8260	158/255 (61%) 184/255 (71%)	8e-78
AAB43712	Human cancer associated protein sequence SEQ ID NO:1157 - Homo sapiens, 269 aa. [WO200055350-A1, 21-SEP-2000]	25271 16268	158/255 (61%) 184/255 (71%)	8e-78
AAG75139	Human colon cancer antigen protein SEQ ID NO:5903 - Homo sapiens, 268 aa. [WO200122920-A2, 05- APR-2001]	25269 16266	157/253 (62%) 182/253 (71%)	5e-77
AAW90758	Human PCNA protein fragment #2 - Homo sapiens, 236 aa. [DE19840771-A1, 10-FEB-2000]	39268 1236	149/238 (62%) 171/238 (71%)	7e-73

In a BLAST search of public sequence databases, the NOV109a protein was found to have homology to the proteins shown in the BLASTP data in Table 109D.

	Table 109D. Public BLASTP Results for NOV109a			
Protein Accession Number	Protein/Organism/Length	NOV109a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P12004	Proliferating cell nuclear antigen (PCNA) (Cyclin) - Homo sapiens (Human), 261 aa.	25271 8260	158/255 (61%) 184/255 (71%)	3e-77
P04961	Proliferating cell nuclear antigen (PCNA) (Cyclin) - Rattus norvegicus (Rat), 261 aa.	25271 8260	158/255 (61%) 185/255 (71%)	5e-77
P57761	Proliferating cell nuclear antigen (PCNA) - Cricetulus griseus (Chinese hamster), 261 aa.	25271 8260	158/255 (61%) 184/255 (71%)	7e-77
Q91ZH2	11 DAYS EMBRYO CDNA, RIKEN FULL-LENGTH ENRICHED LIBRARY, CLONE:2700095L20, FULL INSERT SEQUENCE - Mus musculus (Mouse), 261 aa.	25272 8 261	156/256 (60%) 183/256 (70%)	1e-75
P17918	Proliferating cell nuclear antigen (PCNA) (Cyclin) - Mus musculus (Mouse), 261 aa.	25270 8259	155/254 (61%) 182/254 (71%)	5e-75

PFam analysis predicts that the NOV109a protein contains the domains shown in the Table 109E.

Т	Table 109E. Domain Analysis of NOV109a			
Pfam Domain	NOV109a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
PCNA: domain 1 of 1	23143	46/128 (36%) 83/128 (65%)	2.3e-20	
PCNA_C: domain 1 of 1	145265	59/131 (45%) 98/131 (75%)	1.6e-45	

Example 110.

The NOV110 clone was analyzed, and the nucleotide and predicted polypeptide

WO 02/072757 PCT/L 802/06908

	SEQ ID NO: 309	1233 bp	
NOV110a, CG59619-01 DNA Sequence	TGCANTGCAAGAGAGACCCCCGCGCTCTTCATTGACAATGCCTCCGGCATGTGGAAGCCCCGGCACCGGGAGCCATGTGGACCCCGGGCACCAGGGCAGGCCATGCATCGTGGGAGCAAGGCCCAGAGGACCAGGGCCTGATGGTGGGCACCCGGGCACCAGGGCCAGAGGACCAGGGCCAGAGCAAGCCCAGAGCAAACTGGGAGCACCTGAACCCTGAACCCCATCAAGCATGGCATCGCCACAAACTGGGAGCACCTGGAAGCACCCTGAACCCCAGGCCCTCAAGCATGGCATCGCCACAAACTGGAGAGAGA		
	ORF Start: ATG at 6	ORF Stop	o: TAA at 1185
	SEQ ID NO: 310	393 aa	MW at 44147.5kD
NOV110a, CG59619-01 Protein Sequence	Sequence Kequence Kequence Kequence Kentqimfktfntqamyvaiqavltlhssgcttgivmdsgdgvthtvpiyerhtlphtilhldagqdltdylmkiptyrsysfntmakwkivrnikeklcyvaldfeeemataasssleksyelpdsqaiiisnerfrcpealfqpsflgmescgihestfnsimkcdmdiikdlyantvlsgvttmypgipnrmqkeitalasstmkikiscpivppeckyfvwiggstlaslstfqqmwiskqeynesgpsiihrkwtasrciafaawvnsev		

Further analysis of the NOV110a protein yielded the following properties shown in Table 110B.

	Table 110B. Protein Sequence Properties NOV110a
PSort analysis:	0.4500 probability located in cytoplasm; 0.1547 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV110a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 110C.

	Table 110C. Geneseq Resul	ts for NOV1	10a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV110a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU32060	Novel human secreted protein #2551 - Homo sapiens, 399 aa. [WO200179449-A2, 25-OCT-2001]	1376 25397	315/376 (83° o) 336/376 (88% o)	e-180
AAB43991	Human cancer associated protein sequence SEQ ID NO:1436 - Homo sapiens, 413 aa. [WO200055350-A1, 21-SEP-2000]	1376 39411	311/376 (82°°) 336/376 (88°°)	e-179
AAP61532	Sequence of beta-actin - Homo sapiens, 375 aa. [EP174608-A, 19- MAR-1986]	1376 1373	311/376 (82%) 335/376 (88%)	e-179
AAB12985	Human heta-actin protein sequence - Homo sapiens, 374 aa. [US6087398- A, 11-JUL-2000]	2376 1372	310/375 (82%) 334/375 (88%)	e-178
AAR50328	Drug resistant structural protein - Homo sapiens, 375 aa. [JP06038773-A, 15-FEB-1994]	1376 1373	309/376 (82%) 335/376 (88%)	e-178

In a BLAST search of public sequence databases, the NOV110a protein was found to have homology to the proteins shown in the BLASTP data in Table 110D.

	Table 110D. Public BLASTP Results for NOV110a			
Protein Accession Number	Protein/Organism/Length	NOV110a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P02571	Actin, cytoplasmic 2 (Gamma-actin) - Homo sapiens (Human),, 375 aa.	1376 1373	315/376 (83° o) 336/376 (88° o)	e-179
ATBOG	actin gamma (tentative sequence) - bovine, 374 aa.	2376 1372	314/375 (83%) 335/375 (88%)	e-179
P53505	Actin, cytoplasmic type 5 - Xenopus laevis (African clawed frog), 376 aa.	2376 3374	313/375 (83%) 335/375 (88%)	e-178
P29751	Actin, cytoplasmic 1 (Beta-actin) -	1376	311/376 (82%)	e-178

O93400	ACTIN, CYTOPLASMIC 1 (BETA-ACTIN) (CYTOPLASMIC BETA ACTIN) - Xenopus laevis (African clawed frog), 375 aa.	1376 1373	311/376 (82%) 336/376 (88%)	e-178
	clawed flog), 575 da.			

PFam analysis predicts that the NOV110a protein contains the domains shown in the Table 110E.

Table 110E. Domain Analysis of NOV110a			
Pfam Domain	NOV110a Match Region	Identities/ Similarities for the Matched Region	Expect Value
actin: domain 1 of 1	1378	284/382 (74%) 336/382 (88%)	2.2e-227

Example 111.

The NOV111 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 111A.

Table 1	Table 111A. NOV111 Sequence Analysis		
	SEQ ID NO: 311	1197 bp	
NOV111a, CG59621-01 DNA Sequence	TGGCTAACCAGATTCACTGAAC TGCAAAAATTGCTGGAATCTTT GGGAGCCGTTATGCCAAGGCTT CATGGTGGGCTTTCCTTGGTTC CTTACATGATGGGCAGGATAGC GGTCACAGAATATGACAAAGCATACAAGAATATGAAGAAAAGGAATAGCAAGAATGTCATCACAAGGACTCACCAGGGACGACCAGGACCAGGACCAGGACCAGGACCAGGACCAGGACCACC	TGAAGGCAC CACAGGAACACACACACACACACACACACAC	CAAAGTTATGAATTGACAAAAGCTTC CAGGTTGCAAAGTGCCCCAAGATGTCT CACTTCCAAGAAGATGACATTCT CACTTCCAAGAAGATGACATTTCT CAGGTTGCAAGAAGATGACATTTCTTTGAGG CTTACATTTACCCGATCGTAGACGACC CCCAAAGTTTTAAAGATGCAGCTGAGG CCCAAAGTTTTAAAGATGCAGCTGAGG CAAAGTTTTAAAGATGCAGCTGAGG CAAAGTTTAAAGATGCAGCTGAGG CAAAGTTTAAAGTGCAGACAATGCAGTG CAGGGACACAGGTGGCAGGACACAGGACAGCT CAGGTTAAGCTAGTGCTCACCGAAGA CACATGGTAAGGTCACAGGACAGCT CAGGCGACACAGGACCACAGAGA CCCACAGAGAACATCACAGGACAGCT CAGGCGACCACAGAGCCTCACAGGAACAATCATAATGCCCAAATATAGTGAAGG CCTCAGGCGGCCTCCCAATTATAGTGAAGG CAGGGCAACCACACAGCCAGAATCATA CAGGGCAACCACACAGCCAGAATCATA CAGTGGCCACTCAAAATGTGAATCTCA CAGGGCCACTCAAAATGTGAATCTCA CAGGGCCACTCAAAAATGTGAATCTCA CAGGGCCACTCAAAAATGTGAATCTCA CAGGGCCACTCAAAATGTGAATCTCA CAGGGCCACTCAAAATGTGAATCTCA CAGGGCCACTCAAAATGTGAATCTCA CAGGGCCACTCAAAATGTGAATCTCA CAGGGCCACTCAAAATGTGAATCTCA CAGGCCACTCAAAATGTGAATCTCA CAGGCCACTCAAAAATGTGAATCTCA CAGGCCACTCAAAATGTGAATCTCA CAGGCCACTCAAATGTGAATCTCA CAGGCCACTCAAAATGTGAATCTCA CAGGCCACTCAAATGTGAATCTCA CAGGC
: 	ORF Start: ATG at 5	ORF Stop	o: TAA at 1178
	SEQ ID NO: 312	391 aa	MW at 43193.9kD
NOV111a, CG59621-01 Protein Sequence	AVMPRLRIGMDTCAISLRHGGI TECDNMLMLLGVSNKMTDRERD VTTTVFQPNEFIMPDNAVPGDV ELANQEAMMNMVRLNRTAAGLM	SLVQTTDYIY KVMPLIIQSF 'LVLTKPLGTG IHTFNAHMATE IHGTCPETSGG	CVPQDVLQKLLESLQENHFQEDEQFLG PIVDDPYMMGRIACANVLSDLYAMGV PKDAAEEAGMSVMVSQTVLNPWIVLGG EVAVAVHQWLDIPLKWIKIKLVVTEDV EITGFGILGHVQNLAKQQRNEVSFVIH ELLICLPCQQAARFCAEIKSPKYSEGH

Further analysis of the NOV111a protein yielded the following properties shown in Table 111B.

	Table 111B. Protein Sequence Properties NOV111a
PSort analysis:	0.8500 probability located in endoplasmic reticulum (membrane); 0.4400 probability located in plasma membrane; 0.1000 probability located in mitochondrial inner membrane; 0.1000 probability located in Golgi body
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV111a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 111C.

	Table 111C. Geneseq Results for NOV111a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV111a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB58174	Lung cancer associated polypeptide sequence SEQ ID 512 - Homo sapiens, 250 aa. [WO200055180-A2, 21-SEP-2000]	166391 20243	168/227 (74%) 189/227 (83%)	2e-88
AAO01161	Human polypeptide SEQ ID NO 15053 - Homo sapiens, 122 aa. [WO200164835-A2, 07-SEP-2001]	147264 1118	81/119 (68%) 92/119 (77%)	2e-36
AAB53700	Human colon cancer antigen protein sequence SEQ ID NO:1240 - Homo sapiens, 106 aa. [WO200055351-A1, 21-SEP-2000]	4299 158	53/58 (91%) 54/58 (92%)	1e-24

In a BLAST search of public sequence databases, the NOV111a protein was found to have homology to the proteins shown in the BLASTP data in Table 111D.

	Table 111D. Public BLASTP Re	esults for NC)V111a	
Protein Accession Number	Protein/Organism/Length	NOV111a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BVT4	SELENOPHOSPHATE SYNTHETASE, HUMAN SELENIUM DONOR PROTEIN - Homo sapiens (Human), 392 aa.	1391 1392	364/392 (92%) 367/392 (92%)	0.0
P49903	Selenide,water dikinase 1 (EC 2.7.9.3) (Selenophosphate synthetase 1) (Selenium donor protein 1) - Homo sapiens (Human), 383 aa.	1375 1376	348/376 (92%) 351/376 (92%)	0.0
AAC50958	SELENOPHOSPHATE SYNTHETASE 2 - Homo sapiens (Human), 448 aa.	2391 33441	272/411 (66%) 313/411 (75%)	e-147
Q99611	Selenide,water dikinase 2 (EC 2.7.9.3) (Selenophosphate synthetase 2) (Selenium donor protein 2) - Homo sapiens (Human), 448 aa.	2391 33441	272/411 (66%) 313/411 (75%)	e-147
AAC53024	SELENOPHOSPHATE SYNTHETASE 2 - Mus musculus (Mouse), 452 aa.	2387 36441	267/407 (65%) 307/407 (74%)	e-146

PFam analysis predicts that the NOV111a protein contains the domains shown in the Table 111E.

	Table 111E. Domain Analysis of NOV111a				
Pfam Domain	Pfam Domain NOV111a Match Region Similarities for the Matched Region		Expect Value		
AIRS: domain 1 of 1	32188	29/180 (16%) 113/180 (63°%)	3e-18		
AIRS_C: domain 1 of 1	191367	34/197 (17%) 125/197 (63%)	1.1e-20		

Example 112.

The NOV112 clone was analyzed, and the nucleotide and predicted polypeptide

rable 112A, NOV 112 Sequence Analysis

	SEQ ID NO: 313	1544 bp	
NOV112a, CG59625-01 DNA Sequence	CGATGGGACAGACAGGTCACCCCAGCTCTGATCTTTGCCATCACAGTTGCTAC CGGCTCTTTCCAGTTTGGCTACAACACTGGGGTCATCAATGCTCCTGAGACGGTC ATCATAAAGGAATTTATCAATAAAACTTTGACGGACAAGGCAAATGCCCCTCCCT		TCATCAATGCTCCTGAGACGGTGCAG GGACAAGGCAAATGCCCTCCTCTG GTGGCCATATTTTCCGTCGGGGGTAT ACCGCTTTGGCAGGAGGCCAATTCA TCGCTGGTTATTGGCAGGAGGCCAATTCA TCGCTTGGTTATTGGCCTTCTTCTGCG GAGAGATCTCGCCTACTGCCCTAGG AGTTATTGGAATTCTGGTGCCCAGG AGTATTGGAATTCTGGTGCCCAGG AGAGAGCTATGGCCGGTGCTATTAGG ACAGGAGATCTCCATGTTCCCTGAAAGT ACCAGGAGATGAAGTACCCTGAAAGT ACCAGGAGATGAAGAGTACCAGCAACACACACACACACAC
	ORF Start: ATG at 3		
	SEQ ID NO: 314	i	MW at 55571.7kD
NOV112a, CG59625-01 Protein Sequence	MGHRQVTPALIFAITVATIGSF VLLTNLWSLSVAIFSVGGMIGS AESVEMLILGRLVIGLFCGLCT IFGLELILGSEELWPVLLGFTI LWGTQDVSQDIQEMKDESARMS AVVFYYSTGIFKDAGVQQPIYA LLLKLGYTVFKFNLLCSFLLQN	FSVGLFVNRF GFVPMYIGEI LPAILQSAAL QEKQVTVLEL TISAGVVNTI HYNGMSFVCI VGLLFPSAAY	PCCPESPRFLLINRKKEENATRVLQR FRVSSYRQPIIISIVLQLSQQLSGIN FTLLSVVAQMLFSWKGKLKFHVITVS GAILVFVACFEIGPGPIPWFIVAELF YLGAYVFIIFTGFLITFLAFTFFKVP

Further analysis of the NOV112a protein yielded the following properties shown in Table 112B.

	Table 112B. Protein Sequence Properties NOV112a
Psort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Likely cleavage site between residues 22 and 23

A search of the NOV112a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 112C.

sible . Heses, Ecsam

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV112a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY27289	Glucose transporter protein GLUT3 - Homo sapiens, 494 aa. [US5942398- A, 24-AUG-1999]	1505 1492	389/505 (77° °) 431/505 (85° °°)	0.0
AAR11360	Glucose Transporter Protein from CHO cells - Cricetulus sp, 492 aa. [WO9103554-A, 21-MAR-1991]	4491 6481	289/489 (59%) 364/489 (74%)	e-156
AAW17835	Human glucose transporter GLUT-1 - Homo sapiens, 492 aa. [WO9715668-A2, 01-MAY-1997]	4491 6481	287/489 (58%) 362/489 (73%)	e-155
AAW93000	Human GLUT1 protein - Homo sapiens, 492 aa. [WO9618957-A1, 20-JUN-1996]	4491 6481	284/489 (58%) 360/489 (73%)	e-153
AAB30522	Amino acid sequence of a consensus GLUT polypeptide - Synthetic, 493 aa. [US6136547-A, 24-OCT-2000]	6501 10490	289/496 (58%) 357/496 (71%)	e-151

In a BLAST search of public sequence databases, the NOV112a protein was found to have homology to the proteins shown in the BLASTP data in Table 112D.

Table 112D. Public BLASTP Results for NOV112a				
Protein Accession Number	Protein/Organism/Length	NOV112a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P11169	Solute carrier family 2, facilitated glucose transporter, member 3 (Glucose transporter type 3, brain) - Homo sapiens (Human), 496 aa.	1509 1496	446/510 (87%) 468/510 (91%)	0.0
P47842	Solute carrier family 2, facilitated glucose transporter, member 3 (Glucose transporter type 3, brain) - Canis familiaris (Dog), 495 aa.	1507	400/507 (78%) 446/507 (87%)	0.0
P47843	Solute carrier family 2, facilitated glucose transporter, member 3 (Glucose transporter type 3, brain) - Ovis arios (Shoen), 494 au	1505 1492	389/505 (77%) 431/505 (85%)	0.0

	(Glucose transporter type 3, brain) - Bos taurus (Bovine), 494 aa.			
Q07647	Solute carrier family 2, facilitated glucose transporter, member 3 (Glucose transporter type 3, brain) - Rattus norvegicus (Rat), 493 aa.	1508 1492	380/508 (74%) 422/508 (82%)	0.0

PFam analysis predicts that the NOV112a protein contains the domains shown in the Table 112E.

Table 112E. Domain Analysis of NOV112a				
Pfam Domain	NOV112a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Herpes_glycop: domain 1 of 1	1249	40/417 (10%) 171/417 (41%)	7.2	
GntP_permease: domain 1 of 1	65329	70/478 (15%) 185/478 (39%)	2.5	
sugar_tr: domain 1 of 1	12478	188/503 (37%) 410/503 (82%)	2.2e-158	

Example 113.

The NOV113 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 113A.

Table 113A. NOV113 Sequence Analysis			
	SEQ ID NO: 315	1731 bp	
NOV113a, CG59887-01 DNA Sequence	GCTCGTTCACCTCGTTTGCCCCACGCTGTTCGCCGACGCTGTTCGCCGACCGCTTTTGGTCGCCTGGTGTGCCTTTTGCCCCCGCTTTTGGTCGCCCTTGGTTACCCCCTGGTACGCCTTGCTGGCGCACCCGGATCAACCTTGCTGGCGACCACCTGCACCACCTGCACCACCTGCACCACCTGCACCACCTGCACCACCACCACCACCACCACCACCACCACCACCACCAC	CACCCCGGCTACGAGCAAAAAATGCACCGCACCATGA CTGGCCTTTTCCATGGTCTCGATCAACACCGCGCGTGGT CCAACCGCGTCGGGGGCATCGTCCTCCTGTGGCTG CTGCATCGTCATGGTCTACTGCCACCTGGCTGGCTG CACCACTGGTCATGGTCTACTGCACCTGGCTGCTCGCTCG	

	CACCACCGGGGTTACACTCGGCCCCGCCTTAACAATGGCACCGCCGCCTTGCAGCCAAAAGACAAAACCCCCCTTCCCGATGTTTGAACAGGCCAGGCGACGACCCAAGGTCCGCAC	TGGGCGTGTTGGCCGGCCGGCCGGCCGCCGCCGCCGCCCAACCCCGGCTCCAACCCCAGTCCCAGTCCCAGTCCCTGTTCCTGTTCCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTGTTGCTGTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGCTGTTGT	CCGGAAGAAGCCACACTGGCGCTAT TGTGGTGGTTGTTTTCACTGCGCACG CAAATTGCTCGACCACCACCACGAGAG GGTTTTGTCTTGTC	
	ORF Start: ATG at 43	ORF Stop	p: TAG at 1441	
	SEQ ID NO: 316	466 aa	MW at 49070.4kD	
NOV113a, CG59887-01 Protein Sequence	MHRTMSSFTSFALAFSMVSINTGVVTLFADPFNRVGGIGILLWLLVIPLVCCIVMVYC HLAGRIPLTGYAYQWSSRLAGNHFGWFTGWVAFTSFVAGTAATSAAIGTVFAPEIWAN PTQGQIQGLSIGATLVVGLLNICGIRLATRINDIGAIIEIIGTVLLAIALFFGVFFF EHTQGVAILTSAQPVSGGTLSFTTIALATLLPVSVLLGWEGAADLSEETKDPRRAAPR AMIRAVLVSSVLGFVVFALLSIAIPGSVSELLSHSENPVINIVRLQLGNAAGVGMIVI AFASILACLIAMMAVATRMTFALSRDNMLPGSKVLAKINPHFGTPVAAIVLITAIAVL LNLASGGFVTAIYSMVGLTYYCTYLLTLIAAYLAYKNGRMPGAPAGVFSLGRWLLPMI ILGGLWAIAVILTLSVPEESHTGAITTGVTLGVGVLWWLFSLRTRLNNGTAGPSGKLL DH			
	SEQ ID NO: 317	1433 bp		
NOV113b, CG59887-02 DNA Sequence	TCGATCAACACCGGCGTGGTCAC TCGGCATCACACCGGCGTGGTCAC TCGGCACCTGGCCGGGCGCATTC CTGCCACCTGGCCGGCGCCATTC CTGCGGGGCAATCACTTCGGCTG CAACCCGACACAGGGTCAGATCC TTGCTGAAATATCTGGGGATTCG CTTTGAGCACACCCAGGGCGTACTG CTTTGAGCACACCCAGGGCGTACTG GTTGGAAGGCGCCGACCTG CCGGGGATGATTCGTGCGGCGCCGACCTG CCGGGTGATCATATCGTGCGTTCC GATCGCTTCGCCTCGATCCTCG GATCGCTTCGCCTCGATCCTCG GATCGCTTCGCCTCGATCCTCG GCTGACCTCGCCTTTCCCGGA TCAACCCGCACTTCGCCAGTGCC GCTGATCATACTGCGCTTCCCGGA ACCTACTACTGCCTTCGCCTGCCGGCGCGCTGCTGCCGGATGCCTGCC	TCGTTCACCTCGTTTGCCCTGGCCTTTTCCATGGTC CGCTGTTCGCCGACCCGTTCAACCGCTCGGGGGCC GGTGATCCCGCTGGCGTTCAACCGCTCGGGGGCC GGTGATCCCGCTGACCATGGTCTACCAATGGTCCACCGC GGTTTACCGGCTGACGTTGCAATGGTCCAGCCG GGTTTACCGGCTGGGTGGCGTCACCAATGGTCCAGCCG GGCCATCGGTACGGTGTTCGCACCGGAGATCTGGGC CAGGGCCTGAGCATCGGCGCACCGTGGTGTGGGG GCCTGGCCACCGGATCAACGACATCGGCGCATCACCGCGCACCGTGTTTTTCT GCGATCCTGACCTCCGCGCAACCACTGAGCGCGGG CCCTCGCCACCTTGCTGCCGGTCTCGGTGCTGCTG GTCCGAGGAAACCAAGGACCACGCCGCCCCCCCC CTGGTCACCGAGCAACCACGCCGCCCCCCCCC CCTGGTCACGCAACCACGCCGCCCCCCCC GCCTGCTCACCGCACCAACCACGCCACCAACCACGCCACCACCACCCCCC		
	ORF Start: ATG at 5	ORF Stop	o: TAG at 1403	
	SEQ ID NO: 318	466 aa	MW at 49075.4kD	
NOV113b, CG59887-02 Protein Sequence	HLAGRIPLTGYAYQWSSRLAGNH PTQGQIQGLSIGATLVVGLLNIC EHTQGVAILTSAQPVSGGTLSFI AMIRAVLVSSVLGFVVFALLSIA AFASILACLIANMAVATRMTFAI LNLASGGFVTAIYSMVGLTYYCI	IFGWFTGWVAI GGIRLATRINI TIALATLLP\ IPGSVSELLS JSRDNMLPGSI TYLLTLIAAYI	NRVGGIGILLWLLVIPLVCCIVMVYC FTSFVAGTAATSAAIGTVFAPEIWAN DIGAIIEIIGTVLLAIALFFGVFFFF VSVLLGWEGAADLSEETKDPRRAAPR SRSENPVINIVRLQLGNAAGVGMVVI KVLAKINPHFGTFVAAIVLITAIAVL LAYKNGRMPGAPAGVFSLGRWLLPMI VGVLWWLFSLRTFLNNGTAGPSGKLL	

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 113B.

Protein Sequence	NOV113a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV113b	1466 1466	343/466 (73%) 344/466 (73%)

Further analysis of the NOV113a protein yielded the following properties shown in Table 113C.

	Table 113C. Protein Sequence Properties NOV113a				
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	Likely cleavage site between residues 59 and 60				

A search of the NOV113a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 113D.

, J. J.	Table 113D. Geneseq Results for NOV113a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV113a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG49885	Arabidopsis thaliana protein fragment SEQ ID NO: 63155 - Arabidopsis thaliana, 504 aa. [EP1033405-A2, 06-SEP-2000]	1449 17492	122/486 (25%) 217/486 (44%)	3e-31	
AAG49884	Arabidopsis thaliana protein fragment SEQ ID NO: 63154 - Arabidopsis thaliana, 516 aa. [EP1033405-A2, 06-SEP-2000]	1449 29504	122/486 (25%) 217/486 (44%)	3e-31	
AAG20282	Arabidopsis thaliana protein fragment SEQ ID NO: 22407 - Arabidopsis thaliana, 504 aa. [EP1033405-A2, 06-SEP-2000]	1449 17492	122/486 (25°° o) 217/486 (44°° o)	3e-31	
AAG20281	Arabidopsis thaliana protein fragment SEQ ID NO: 22406 - Arabidopsis thaliana, 516 aa. [EP1033405-A2, 06-	1449 29504	122/486 (25°°°) 217/486 (44°°°)	3e-31	

SEQ ID NO: 22405 - Arabidopsis	41516	217/486 (44%)	
thaliana, 528 aa. [EP1033405-A2, 06	5-		
SEP-2000]			

In a BLAST search of public sequence databases, the NOV113a protein was found to have homology to the proteins shown in the BLASTP data in Table 113E.

	Table 113E. Public BLASTP R	Results for NO	OV113a	
Protein Accession Number	Protein/Organism/Length	NOV113a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9KZF1	PROBABLE AMINO ACID/METABOLITE PERMEASE - Streptomyces coelicolor, 504 aa.	3450 27481	139/469 (29%) 214/469 (44%)	2e-41
Q98H14	AMINO ACID/METABOLITE PERMEASE - Rhizobium loti (Mesorhizobium loti), 518 aa.	1446 27485	118/466 (25%) 209/466 (44%)	1e-36
Q92NI8	PUTATIVE AMINO-ACID PERMEASE PROTEIN - Rhizobium meliloti (Sinorhizobium meliloti), 515 aa.	1449 25487	122/475 (25%) 204/475 (42%)	1e-32
O22509	PUTATIVE AMINO ACID OR GABA PERMEASE - Arabidopsis thaliana (Mouse-ear cress), 516 aa.	1449 29504	122/486 (25%) 217/486 (44%)	1e-30
Q9ZU50	PUTATIVE AMINO ACID PERMEASE - Arabidopsis thaliana (Mouse-ear cress), 517 aa.	1449 29505	120/487 (24%) 216/487 (43%)	2e-28

PFam analysis predicts that the NOV113a protein contains the domains shown in the Table 113F.

Table	113F. Domain Analysis	of NOV113a	
Pfam Domain	NOV113a Match Region	Identities/ Similarities for the Matched Region	Expect Value
oxidored_q3: domain 1 of 1	162307	28/182 (15%)	3.7

ABC2_membrane: domain 1 of 1	122377	46/273 (17%) 154/273 (56%)	8.3
SSF: domain 1 of 1	7394	77/470 (16° o) 222/470 (47° o)	7.8
Aa_trans: domain 1 of 1	29417	67/483 (14° o) 236/483 (49° o)	9.7
aa_permeases: domain 1 of 1	1451	86/516 (17%) 287/516 (56%)	1.1e-05

Example 114.

The NOV114 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 114A.

Table 1	14A. NOV114 Sequen	ce Analysis	
	SEQ ID NO: 319	876 bp	
NOV114a, CG59861-01 DNA Sequence	AACTTGCTTTTGGGAGCCAGCGGTATGGCGTCGGGCTGCAACATTGGCCCGTCCAT TCAACAGCGACCTGGCCAATTTAGGGGCCGAGTGCTCCCGGGATGCTAGACTCTGGG CGATTATCTGCACCTGGACGGAATGGACGGCAGTGCTCCAACATCACCTTTG CACCCTGTGGTGGAAAGCCTTCGAAAGCAGCTAGGCCAGGACCCTTTCTTT		
		ORF Stop: TGA at 709	
	SEQ ID NO: 320	228 aa MW at 24901.4kD	
NOV114a, CG59861-01 Protein Sequence	MASGCKIGPSILNSDLANLGAECSRMLDSGADYLHLDVMDGHFVPNITFGHPVVESLF KQLGQDPFFDMHMMVSKPEQWVKPMAVAGANQYTFHLEATEN GALIKDIRENGMKVC LAIKPGTSVEYLAFWANQIDMALVMTVEPGFGGQKFMEDMMPKVHWLRTQFPSLDIEV DGGVGPDTVHKCAEAGANMIVSGSAIMRSEDPRSVINLLRNVCSEAAQKRSLDR		
	SEQ ID NO: 321	730 bp	
NOV114b, CG59861-02 DNA Sequence	TCAACAGCGACCTGGCCAATTTA CGATTATCTGCACCTGGACGTAA CACCCTGTGGTAGAAAGCCTTCC ACATGATGGTGTCAAGCCAGAA TCAGTACACCTTTCATCTCGAGC CGGGAGAATGGGATTAATCAGATA TGGAGGGCAGAAATTCATGGAAC TTCCCATCTTTGGATATAGAGATA	STATGGCGTCGGGCTGCAAGATTGGCCCGTCCATCC GGGGCCGAGTGCCTCCGGATGCTAGACTCTGGGGC ATGGACGGCCATTTTGTTCCCAACATCACCTTTGGT GAAAGCAGCTAGGCCAGGATCTTTCTTTGACATGC ACAGTGGGTAAAGCCAATGGCTGTAGCAGGAGCCAA GCTACTGAGAACCCAGGGGCTTTGATTAAAGACATT GCCTTGCCATCAAACCAGGAACCTCAGTTGAGTATT AGATATGGCCTAGATTGACAGTGGAACCGGGGTT ATGATGATGCCAAAGGTTCACTGGTTGAGGACCCAG ACGATGGTGGAGTAGGTCCCATAAAT SATTGTGTCTGGCAGTGCTCATAAAT SATTGTGTCTGGCAGTGCTATTATGAGGAGTGAAGA CTAAGAAATGTTTGCTCAGAAGCTGCTCAGAAACGT AGGAGCCCAGTG	
	ORF Start: ATG at 25 ORF Stop: TGA at 709		
	SEU IU NO 333	236 12 XIW 4 2403 - 21D	

DGGVGPDTVHKCAEAGANMIVSGSAIMRSEDPRSVINLLRNVCSEAAQKFSLDR

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 114B.

Table 114B. Comparison of NOV114a against NOV114b.				
Protein Sequence NOV114a Residues/ Similarities for the Matched Residues				
NOV114b	1228 1228	227/228 (99%) 227/228 (99%)		

Further analysis of the NOV114a protein yielded the following properties shown in Table 114C.

	Table 114C. Protein Sequence Properties NOV114a		
PSort analysis:	0.6500 probability located in cytoplasm; 0.1753 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space; 0.0000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV114a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 114D.

	Table 114D. Geneseq Results for NOV114a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Protein/Organism/Length [Patent #, Date]	NOV114a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM41358	Human polypeptide SEQ ID NO 6289 - Homo sapiens, 247 aa. [WO200153312-A1, 26-JUL-2001]	1228 20247	227/228 (99%) 227/228 (99%)	e-132	
AAM41357	Human polypeptide SEQ ID NO 6288 - Homo sapiens, 247 aa. [WO200153312-A1, 26-JUL-2001]	1228 20247	227/228 (99%) 227/228 (99%)	e-132	
AAM39571	Human polypeptide SEQ ID NO	1228	227/228 (99%)	e-132	

AAB71912	Human ISOM-4 - Homo sapiens, 228 aa. [WO200112790-A2, 22- FEB-2001]	1228 1 228	227/228 (99%) 227/228 (99%)	e-132
AAM39572	Human polypeptide SEQ ID NO 2717 - Homo sapiens, 246 aa. [WO200153312-A1, 26-JUL-2001]	1228 1246	227/246 (92%) 227/246 (92%)	e-129

In a BLAST search of public sequence databases, the NOV114a protein was found to have homology to the proteins shown in the BLASTP data in Table 114E.

	Table 114E. Public BLASTP Results for NOV114a				
Protein Accession Number	Protein/Organism/Length	NOV114a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96AT9	HYPOTHETICAL 24.9 KDA PROTEIN - Homo sapiens (Human), 228 aa.	1228 1228	227/228 (99%) 227/228 (99%)	e-131	
Q9BSB5	HYPOTHETICAL 25.3 KDA PROTEIN - Homo sapiens (Human), 232 aa (fragment).	1228 5232	227/228 (99%) 227/228 (99%)	e-131	
AAH19126	HYPOTHETICAL 24.9 KDA PROTEIN - Mus musculus (Mouse), 228 aa.	1228 1228	221/228 (96%) 226/228 (98%)	e-129	
O43767	RIBULOSE-5-PHOSPHATE- EPIMERASE - Homo sapiens (Human), 174 aa (fragment).	55228 1174	174/174 (100%) 174/174 (100%)	2e-98	
Q96N34	CDNA FLJ31466 FIS, CLONE NT2NE2001372, HIGHLY SIMILAR TO HOMO SAPIENS PUTATIVE RIBULOSE-5-PHOSPHATE- EPIMERASE - Homo sapiens (Human), 178 aa.	69228 1178	160/178 (89%) 160/178 (89%)	2e-86	

PFam analysis predicts that the NOV114a protein contains the domains shown in the Table 114F.

Table 114F. Domain Analysis of NOV114a		14a
	T/II	ntities
· · · · · · · · · · · · · · · · · · ·	्वा <u>क</u>	1644 (1144)) 144

		Region	
Ribul_P_3_epim: domain 1 of 1	6204	95/209 (45%) 174/209 (83%)	1.9e-105
IGPS: domain 1 of 1	179213	15/35 (43%) 27/35 (77%)	0.02
trp_syntA: domain 1 of 1	34222	45/273 (16%) 124/273 (45%)	2.9

Example 115.

The NOV115 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 115A.

Table 115A. NOV115 Sequence Analysis				
	SEQ ID NO: 323	1761 bp		
NOV115a, CG59857-01 DNA Sequence	SEQ ID NO: 323 1761 bp AGTGTGGTACCTATCTGCCCCCCTCTGGAGGGGTTGACAAGGGAAAGGCCACCGGGGGCACAGAGTTGCACGACTTGCACACTCTGGAGGACCTGAATATGCTCTACATTCGCACAGAGTTGCACACTCTGAGGACCCTGAATATGCTCTACATTCGCACAAGAGGAAGGCACCAGAGCCTGAACACTCCTGAGGAAGGCACCAGAGCCTGCACCAAGAGCCTGCACCAAGAGCCTGCACCAAGAGCCTGCACCAAGAGCCTGCTCCAGCGAGAGCAGCCCCGGATGAGGCCACCAAGAGCCTGCTACACCACCAAGAGCCTGCTACACCACCAAGAGCCTGCCACCAAGAGCCTGCCCCCTGCGGGGGCGGGC			
	ORF Start: ATG at 68	ORF Stop: TGA at 1715		
	SEQ ID NO: 324	549 aa MW at 61171.0kD		
NOV115a, CG59857-01 Protein Sequence	TKSLLVCNSRILSYMGELQRRKE LMWKDTEYFKNKDLHRWAVFLLI FELRLELYGACVEEEGALTGGP PTPVVGGPRYHLLAHTTLTLAA LCMTQPTASGTLRVQQAGEMQNV ETRVRAGELDQALGRPFTLSISN WKQCCDEIMKIETPAPRKPPQAI	LEDTELQRKLDHEIRMREGACKLLAACSQREQALEA EAQVLGKTSRRPSDSGPPAERSPCRGRVCISDLRIE LQLGEHIQDTEMILVDRTLTDISFQSNVLFAEAGPE KRLATKLSSSLGRSSGRRVRASLDSAGGSGSSPILL VQDGFRTHDLTLASHEENPAWLPLYGSVCCRLAAQE WAQVHGVLKGTNLFCYRQPEDADTGEEPLLTIAVNH NQYGDDEVTHTLQTESREALQSWMEALWQLFFDMSC LAKQGSLYHEMAIEPLDDIAAVTDILTQREGARLET VAPAPCWTHPLPWSRPRTFSLDAVPPDHSPPARSVA		

Further analysis of the NOV115a protein yielded the following properties shown in Table 115B.

	Table 115B. Protein Sequence Properties NOV115a		
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1707 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV115a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 115C.

	Table 115C. Geneseq Results for NOV115a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV115a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB35241	Human rhotekin - Homo sapiens, 563 aa. [US6183990-B1, 06-FEB-2001]	24549 37563	526/527 (99%) 526/527 (99%)	0.0	
AAY44559	Human Rhotekin protein - Homo sapiens, 563 aa. [WO9958667-A1, 18-NOV-1999]	24549 37563	526/527 (99%) 526/527 (99%)	0.0	
AAB35242	Human rhotekin EST-derived protein - Homo sapiens, 527 aa. [US6183990-B1, 06-FEB-2001]	24549 1527	522/527 (99%) 523/527 (99%)	0.0	
AAY44560	Human Rhotekin variant protein - Homo sapiens, 527 aa. [WO9958667- A1, 18-NOV-1999]	24549 1527	522/527 (99%) 523/527 (99%)	0.0	
AAB26790	Human Ras correlative GTP binding kinase protein sequence - Homo sapiens, 544 aa. [CN1257924-A, 28-JUN-2000]	24549 18544	518/527 (98° o) 519/527 (98° o)	0.0	

In a BLAST search of public sequence databases, the NOV115a protein was found to have homology to the proteins shown in the BLASTP data in Table 115D.

Protein Accession Number	Protein/Organism/Length	NOV115a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAH17727	SIMILAR TO RHOTEKIN - Homo sapiens (Human), 550 aa.	1549 1550	549/550 (99%) 549/550 (99%)	0.0
Q9BST9	SIMILAR TO RHOTEKIN - Homo sapiens (Human), 587 aa (fragment).	24549 61587	526/527 (99° o) 526/527 (99° o)	0.0
Q96PT6	RTKN - Homo sapiens (Human), 544 aa.	24549 18544	518/527 (98° o) 519/527 (98° o)	0.0
Q9HB05	RHOTEKIN - Homo sapiens (Human), 567 aa (fragment).	24549 41567	505/527 (95%) 513/527 (96%)	0.0
Q61192	RHOTEKIN - Mus musculus (Mouse), 551 aa.	1549 1551	477/551 (86%) 500/551 (90%)	0.0

PFam analysis predicts that the NOV115a protein contains the domains shown in the Table 115E.

Table 115E. Domain Analysis of NOV115a						
Pfam Domain NOV115a Match Region Similarities For the Matched Region Expect Value						
HR1: domain 1 of 1	2395	17/87 (20%) 54/87 (62%)	0.27			
PH: domain 1 of 1	296397	19/102 (19%) 72/102 (71%)	1e-06			

Example 116.

The NOV116 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 116A.

Table 116A. NOV116 Sequence Analysis				
	SEQ ID NO: 325	450 bp		
NOV116a, CG59855-01 DNA Sequence	TGCTGTTGTACCAGGGGTCTAGAATTCATCTAAACAGCCCGTTCCAGACCAGTGTTGTCTGGGTCAGCCACAGTTGGTGGCCATTCTGGGCCATTCTGGGCTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGTTTGCCCTGT	CAGACCACCGGGGTATTACTCATTTCTCAGCTCTGATC TAATCAGGCCTGTGTCTGCCTTCTCCTTGAATAGCCCAG TTCCTACAGCAGCTCCCACTCCAGGTGGCCAGACGGGA TCCCGGGACACTGACACAGCGCCAAGTTTATTGGTGCT TGGCTGATTCAGGGGCTGGCATTGAGCCGCTGTTTTGGCA CAGGAAGCTGTCTCTAAGAGCAACTCCTCTTCTATGC TCTGAGGCCATGGGGCTCTTCTGTTTGATGATCCTCCTTC GAGGACCTCTGTGAGGGCTCTTCTGTTTGATGATCCCTTCCTT		

NOV116a, CG59855-01 Protein Sequence	MQTTGVLLISPALICCCTRGLIRPVSAFSLNSPENSSKQPSYSSSPLQVARREFQTSV VSRDTDTAAKFIGAGSATVGVADSGAGIGAVFGSLIIVYARKLSLKQQLLFYAILGFA C LSEAMGLFCLMISFFILFAM				
	SEQ ID NO: 327	434 bp			
NOV116b, CG59855-02 DNA Sequence	ATGCAGACCACCGGGTATTACTCATTTCTCCAGCTCTGATCTGCTGTTGTACCAGGGGTCTAATCAGGCCTGTGTTGTACCAGGGGTCTAATCAGGCCTGTGTTGTACCAGGGGTCTAATCAGGCCTGTGTCTGCTTGAATAGCCCAGAGAATTCATCTAAACAGCCTTCCTACAGCAGCGCCCACTCCAGGTGGCCAGAGGGGGGTTCCAGACCAGAGTTGGTTG				
	ORF Start: ATG at 1	ORF Stop	p: TGA at 409		
	SEQ ID NO: 328	136 aa	MW at 14456.7kD		
NOV116b, CG59855-02 Protein Sequence	MQTTGVLLISPALICCCTRGLIRPVSAFSLNSPENSSKQPSYSSSPLQVARREFQTSV VSRDTDTAAKFIGAGSATVGVADSEAGIGAVFGSLIIVYARKLSLKQQLLFYAILGFA LSEAMGLFCLMISFFILFAM				

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 116B.

Table 116B. Comparison of NOV116a against NOV116b.				
Protein Sequence NOV116a Residues/ Similarities for the Matched				
NOV116b	1136 1136	120/136 (88%) 120/136 (88%)		

Further analysis of the NOV116a protein yielded the following properties shown in Table 116C.

Table 116C. Protein Sequence Properties NOV116a			
PSort analysis:	0.9190 probability located in plasma membrane; 0.3000 probability located in lysosome (membrane); 0.1888 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis:	Likely cleavage site between residues 28 and 29		

A search of the NOV116a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 116D.

	Table 116D. Geneseq Results for NOV116a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV116a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG75142	Human colon cancer antigen protein SEQ ID NO:5906 - Homo sapiens, 142 aa. [WO200122920-A2, 05-APR- 2001]	1136 7142	115/136 (84° o) 119/136 (86° o)	2e-57	
AAB43866	Human cancer associated protein sequence SEQ ID NO:1311 - Homo sapiens, 142 aa. [WO200055350-A1, 21-SEP-2000]	1136 7142	115/136 (84° o) 119/136 (86° o)	2e-57	
AAU69713	Cell death protective sequence CNI-00730, protein #1 - Homo sapiens, 142 aa. [WO200176532-A2, 18-OCT-2001]	7136 7 142	85/136 (62%) 98/136 (71%)	2e-36	
ABB12016	Human ATP synthase subunit homologue, SEQ ID NO:2386 - Homo sapiens, 187 aa. [WO200157188-A2, 09-AUG-2001]	7136 52187	85/136 (62%) 98/136 (71%)	2e-36	
AAB53428	Human colon cancer antigen protein sequence SEQ ID NO:968 - Homo sapiens, 212 aa. [WO200055351-A1, 21-SEP-2000]	7136 77212	85/136 (62%) 98/136 (71%)	2e-36	

In a BLAST search of public sequence databases, the NOV116a protein was found to have homology to the proteins shown in the BLASTP data in Table 116E.

Table 116E. Public BLASTP Results for NOV116a					
Protein Accession Number	Protein/Organism/Length	NOV116a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P05496	ATP synthase lipid-binding protein, mitochondrial precursor (EC 3.6.1.34) (ATP synthase protein 9) (ATPase subunit C). Home	1136 1136	115/136 (84%) 119/136 (86%)	9e-57	

	mitochondrial precursor (EC 3.6.1.34) (ATP synthase proteolipid P1) (ATPase protein 9) (ATPase subunit C) - Bos taurus (Bovine), 136 aa.	1136	117/136 (85%)	
P17605	ATP synthase lipid-binding protein, mitochondrial precursor (EC 3.6.1.34) (ATP synthase proteolipid P1) (ATPasc protein 9) (ATPase subunit C) - Ovis aries (Sheep), 136 aa.	1136 1136	113/136 (83%) 117/136 (85%)	2e-54
Q9CR84	ATP SYNTHASE C CHAIN ISOFORM 1 (EC 3.6.1.34) (LIPID-BINDING PROTEIN) (SUBUNIT C) - Mus musculus (Mouse), 136 aa.	1136 1136	112/136 (82%) 117/136 (85%)	1e-53
P48202	ATP synthase lipid-binding protein, mitochondrial precursor (EC 3.6.1.34) (ATP synthase proteolipid P1) (ATPase protein 9) (ATPase subunit C) - Mus musculus (Mouse), 136 aa.	1136 1136	112/136 (82%) 117/136 (85%)	1e-53

PFam analysis predicts that the NOV116a protein contains the domains shown in the Table 116F.

Table 116F. Domain Analysis of NOV116a					
Pfam Domain	NOV116a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
ATP-synt_C: domain 1 of 1	67135	31/70 (44%) 57/70 (81%)	2.3e-18		

Example 117.

The NOV117 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 117A.

Table 117A. NOV117 Sequence Analysis			
	SEQ ID NO: 329	1769 bp	
NOV117a, CG59807-01 DNA Sequence	CAGAGCTGATCTACCAGTTC CTCCCAAAGCTCCTATCCAC TCTCACCTGGCCTTGCCTGA CAAAGAACTCCCAATTAGGC AGTCCACTTGAAAATAGGGA	GGGACTTCTCATGTCTCTGGGCTGTCCTTTGTTCAAAC GATCACAGACAGGAGCTATGGATGGCTACAAAAGACCT GGGACAACACAAAACCCCAAGACCACAGAGCCTACCTTT GGGAAGTCTTACTCCAGGAACAACTGACACAAAGAGCCT GCAATCCAAGGATCAGGATGGGCCATCTGAAATGCAAGA GTAGGCCCCCAGCGGGGAAGCTGCTGGAGAAAATGAGT GTAGGACTGATGAAATGAA	

	,				
	TCACACCTCACACGGCACCAGC				
	AATGTGGAAAGGCCTTCACCCA				
	TGGAGAAAAACCCTTTGTGTGC				
	TTCATTCGACACTACATCATCC	'ACACGGGAGA	GAAGCCCTATGAGTGCATTG.	AGTGTG	
	GGAAGGCCTTCAACCGCCGGTC	'ATACCTCACG	TGGCACCAACAGATTCACAC	TGGAGT	
	GAAACCCTTTGAATGCAACGAG	TGTGGAAAAG	CTTTTTGCGAGAGTGCAGAC	CTCATT	
	CAACACTACATTATCCACACTG	GGGAGAAGCC	CTATAAGTGCATGGAGTGTG	GGAAGG	
	CGTTCAACCGTAGGTCACACCT	CAAGCAGCAT	CAACGGATTCACACTGGGGA	GAAGCC	
	TTATGAATGCAGTGAATGTGGA	AAGGCCTTCA	CCCACTGCTCCACTTTTGTC	TTGCAT	
	AAAAGGACCCACACAGGAGAAA	AACCCTATGA	ATGCAAAGAATGTGGAAAAG	CCTTTA	
	GTGATAGGGCAGACCTCATTCG	CCACTTCAGC	ATCCACACTGGAGAGAAACC	CTATGA	
	GTGCGTGGAGTGTGGAAAGGCC	TTCAACCGCA	GCTCACACCTCACGAGGCAC	CAACAG	
	ATTCACACTGGAGAGAAACCCT	ATGAATGCAT	CCAGTGTGGGAAAGCCTTTT	GCCGGA	
	GCGCAAACCTTATTCGACACTC	CATCATTCAC	ACTGGAGAGAAGCCGTATGA.	ATGCAG	
 	TGAGTGTGGAAAGGCTTTTAAT	CGCGGCTCAT	CCCTCACACATCATCAAAGG	ATTCAT	
	ACTGGGAGAAACCCTACCATTGTAACAGATGTGGGAAGACCTTTTATGACTGCACAGA				
	CTTCAGTCAACATCCAGGAACTTTTATTAGGGAAAGAGTTTTTGAATATCACCACTGA				
	AGAAAATCTGTGGTGAAAGGGAACATCTTACCATCTGGCCATTCACACTGAAGAGAAA				
	CTTCATAAGCATCCTCTCTTTG	AGAAAAC			
	ORF Start: ATG at 7	ORF Stop	o: TGA at 1696		
	SEQ ID NO: 330	563 aa	MW at 64300.6kD		
NOV117a, CG59807-01 Protein Sequence	MLETCGLLMSLGCPLFKPELIYQLDHRQELWMATKDLSQSSYPGDNTK				
	ALLVQHERIHTQVKPYECTECG		-		
	LTRHQRIHSGEKPYKCSECGKA				
	RHYIIHTGEKPYECIECGKAFN				
	YIIHTGEKPYKCMECGKAFNRR				
	THTGEKPYECKECGKAFSDRAD				
1	TGEKPYECIQCGKAFCRSANLIRHSIIHTGEKPYECSECGKAFNRGSSLTHHQRIHTG				
1	RNPTIVTDVGRPFMTAQTSVNIQELLLGKEFLNITTEENLW				

Further analysis of the NOV117a protein yielded the following properties shown in Table 117B.

	Table 117B. Protein Sequence Properties NOV117a				
Psort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)				
SignalP analysis:	Likely cleavage site between residues 19 and 20				

A search of the NOV117a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 117C.

	Table 117C. Geneseq Results for NOV117a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV117a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM79549	Human protein SEQ ID NO 3195 - Homo sapiens, 603 aa. [WO200157190-A2, 09-AUG-2001]	1563 38603	563/566 (99%) 563/566 (99%)	0.0	
AAM78565	Human protein SEQ ID NO 1227 - Homo sapiens, 603 aa. [WO200157190-A2, 09-AUG-2001]	1563 38603	563/566 (99%) 563/566 (99%)	0.0	
ABB21767	Protein #3766 encoded by probe for measuring heart cell gene expression - Homo sapiens, 551 aa. [WO200157274-A2, 09-AUG-2001]	44562 10527	375/519 (72%) 437/519 (83%)	0.0	
AAM69575	Human bone marrow expressed probe encoded protein SEQ ID NO: 29881 - Homo sapiens, 551 aa. [WO200157276-A2, 09-AUG-2001]	44562 10527	375/519 (72%) 437/519 (83%)	0.0	
AAM57172	Human brain expressed single exon probe encoded protein SEQ ID NO: 29277 - Homo sapiens, 551 aa. [WO200157275-A2, 09-AUG-2001]	44562 10527	375/519 (72%) 437/519 (83%)	0.0	

In a BLAST search of public sequence databases, the NOV117a protein was found to have homology to the proteins shown in the BLASTP data in Table 117D.

	Table 117D. Public BLASTP Results for NOV117a					
Protein Accession Number	Protein/Organism/Length	NOV117a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
O43296	Zinc finger protein 264 - Homo sapiens (Human), 627 aa.	1562 43603	401/562 (71%) 468/562 (82%)	0.0		
Q96NL3	CDNA FLJ30663 FIS, CLONE FCBBF1000598, MODERATELY SIMILAR TO ZINC FINGER PROTEIN 84 - Homo sapiens	1535 38572	299/535 (55%) 369/535 (68%)	0.0		

	sapiens (Human), 751 aa.	58595	355/542 (65%)	
Q96SE7	ZINC FINGER 1111 - Homo sapiens (Human), 839 aa.	151541 306694	233/391 (59%) 281/391 (71%)	e-148
Q03923	Zinc finger protein 85 (Zinc finger protein HPF4) (HTF1) - Homo sapiens (Human), 595 aa.	1535 33547	266/544 (48° o) 328/544 (59° o)	e-148

PFam analysis predicts that the NOV117a protein contains the domains shown in the Table 117E.

Table 117E. Domain Analysis of NOV117a					
Pfam Domain	NOV117a Match Similaritie		Region for the Matched		Expect Value
KRAB: domain 1 of 1	134	14/66 (21%) 24/66 (36%)	0.15		
zf-C2H2: domain 1 of 13	162184	11/24 (46%) 19/24 (79%)	3.6e-06		
zf-C2H2: domain 2 of 13	190212	11/24 (46%) 19/24 (79%)	7.1e-06		
zf-C2H2: domain 3 of 13	218240	14/24 (58%) 22/24 (92%)	2.3e-07		
zf-BED: domain 1 of 3	203241	13/52 (25%) 25/52 (48%)	2		
zf-C2H2: domain 4 of 13	246268	11/24 (46%) 20/24 (83%)	4.6e-05		
LIM: domain 1 of 1	220284	16/72 (22%) 50/72 (69%)	0.69		
zf-C2H2: domain 5 of 13	274296	8/24 (33%) 18/24 (75%)	7.6e-05		
zf-C2H2: domain 6 of 13	302324	11/24 (46° o) 20/24 (83% o)	8.4e-05		
Zn_carbOpept: domain 1 of 1	312330	5/19 (26%) 17/19 (89%)	1.2		
zf-C2H2: domain 7 of 13	330352	8/24 (33%) 19/24 (79%)	9.7e-05		

zf-BED: domain 2 of 3	343381	12/52 (23%) 26/52 (50%)	1.3
zf-C2H2: domain 9 of 13	386408	11/24 (46%) 20/24 (83%)	9.4e-05
zf-C2H2: domain 10 of 13	414436	11/24 (46%) 20/24 (83%)	5e-06
zf-C2H2: domain 11 of 13	442464	12/24 (50%) 22/24 (92%)	3e-07
zf-BED: domain 3 of 3	427465	14/52 (27%) 27/52 (52%)	0.38
zf-C2H2: domain 12 of 13	470492	12/24 (50%) 19/24 (79%)	0.00044
zf-C2H2: domain 13 of 13	498520	12/24 (50%) 22/24 (92%)	9.8e-07

Example 118.

The NOV118 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 118A.

Table 118A. NOV118 Sequence Analysis				
	SEQ ID NO: 331	1899 bp		
NOV118a,	CAAACTCTACTACCTCTATATG	ACATTTCAGGTGTCTGTGACCTTTGATGATGTGGCT		
	GTGACTTTCACCCAGGAGGAGT	GGGGCCAGCTGGACCTAGCTCAGCGGACCCTGTACC		
CG59805-01 DNA Sequence	AGGAGGTGATGCTGGAAAACTG	TGGGCTCCTGGTATCTCTGGGTGGGTGTCCTGTTCC		
·	CAGACCTGAGCTGATCTACCACC	CTAGAGCATGGGCAGGAGCCATGGACCAGGAAGGAA		
	GACCTCTCCCAAGGCACCTGTC	CAGGTGACAAAGGAAAACCCAAGAGCACAGAACCTA		
	CCACCTGTGAGCTAGCCTTGTCT	rgaaggaatctctttttggggacaactaacacaagg		
	AGCTTCAGGGGACTCCCAGTTG	GGCAACCCAAGGATCAGGATGGGTTTTCAGAAATG		
	CAGGGAGAACGCTTGAGACCAG	GGTTAGATTCCCAAAAGGAGAAGCTTCCTGGAAAAA		
	TGAGCCCCAAACATGATGGTTT	AGGCACAGCTGATAGTGTGTTCAAGGATTATACA		
	GGATCGAGTCTCCTTAGGAGATC	GATGTCCATGACTGTGACTCACATGGATCAGGTAAA		
	AATCCAGTTATTCAGGAAGAGG	AAAATATCTTTAAATGCAATGAATGTGAAAAAGTGT		
	TTAACAAGAAACGCCTGCTTGCT	rcggcatgagaggaticactctggagtgaagcccta		
	TGAATGCACAGAGTGTGGAAAA	ACCTTTAGCAAGAGTACATACCTCCTGCAGCACCAC		
	ATGGTCCACACTGGGGAGAAGC	CCTATAAGTGCATGGAGTGTGGGAAGGCTTTTAATC		
	GGAAGTCACACCTTACCCAGCAC	CCAGCGGATTCACAGTGGAGAGAAGCCTTATAAGTG		
	CAGTGAATGTGGAAAGGCCTTC	ACCCACCGCTCCACTTTTGTCTTGCATAACAGGAGC		
	CACACTGGAGAAAAACCCTTTG	TGTGCAAAGAGTGTGGCAAAGCCTTTCGAGATAGGC		
	CAGGTTTCATTCGACACTACATC	CATCCACAGTGGTGAGAATCCCTACGAGTGCTTCGA		
	ATGTGGCAAGGTCTTCAAACAC	AGATCATACCTCATGTGGCACCAGCAGACTCATACC		
	GGGGAGAAGCCCTATGAGTGCAG	GTGAATGTGGGAAGGCCTTCTGTGAGAGCGCAGCGC		
	TGATTCACCACTATGTCATCCAC	CACTGGAGAGAAGCCCTTTGAGTGCCTCGAGTGTGG		
	GAAGGCTTTCAACCACCGATCC	TACCTCAAAAGGCACCAGCGGATTCACACTGGGGAG		
	AAGCCATATGTGTGTAGTGAATG	GCGGAAAGGCCTTCACCCACTGCTCTACTTTCATCT		
	TGCATAAAAGGGCCCACACTGG	AGAAAAACCTTTCGAGTGCAAAGAGTGTGGGAAAGC		
	CTTTAGCAATAGGGCAGACCTC	ATTCGCCACTTCAGCATCCACACTGGAGAGAGAGCCC		
	TATGAGTGCATGGAGTGTGGAA	AGGCCTTCAACCGCAGGTCAGGCCTCACAAGGCACC		
	AGCGGATTCATAGTGGAGAGAA	CCCTATGAATGCATCGAGTGTGGGAAAACATTTTG		
	CTGGAGCACAAACCTCATTCGAG	CACTCTATCATCCACACTGGAGAGAAGCCGTATGAG		
	TGCAGTGAATGTGGAAAGGCCT	TCAGTCGCAGCTCGTCCCTCACTCAGCATCAAAGGA		
	TGCATACTGGGAGAAATCCTATG	CAGTGTAACAGATGTGGGAAGACCTTTTACAAGTGG		
	GCAGACCTCAGTCAACATCCAAC	SAACTTTTATTGGGGAAAAACTTTTTGAATGTCACC		

	SEQ ID NO: 332	622 aa	MW at 70677.2kD
NOV118a, CG59805-01 Protein Sequence	HLEHGQEPWTRKEDLSQGTCPGL LGQPKDQDGFSEMQGERLRPGLE DDVHCCDSHGSGKNPVIQEEENI KTFSKSTYLLQHHMVHTGEKPYK FTHRSTFVLHNRSHTGEKPFVC HRSYLMWHQQTHTGEKPYCSECG SYLKRHQRIHTGEKPYVCSECGK LIRHFSIHTGEKPYECMECGKAF	KGKPKSTEPT DSQKEKLPGKM FKCNECEKVP KCMECGKAFNF KECGKAFRDRF GGKAFCESAAL TAFTHCSTFIL TNRRSGLTRHQ RSSSLTQHQRM	CEVMLENCGLLVSLGGCPVPRPELIY PTCELALSEGISFWGQLTQGASGDSQ MSPKHDGLGTADSVCSRIIQDRVSLG MKKRLLARHERIHSGVKPYECTECG RKSHLTQHQRIHSGEKPYKCSECGKA FGFIRHYIIHSGENPYECFECGKAFNHR LHKRAHTGEKPFECKECGKAFSNRAD QRIHSGEKPYECIECGKTFCWSTNL1 MHIGRNPISVTDVGRPFTSGQTSVN1 QRETPQVSSL

Further analysis of the NOV118a protein yielded the following properties shown in Table 118B.

	Table 118B. Protein Sequence Properties NOV118a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.3796 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV118a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 118C.

Table 118C. Geneseq Results for NOV118a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV118a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
ABB22693	Protein #4692 encoded by probe for measuring heart cell gene expression - Homo sapiens, 468 aa. [WO200157274-A2, 09-AUG-2001]	81548 1468	468/468 (100%) 468/468 (100%)	0.0	
AAM70526	Human bone marrow expressed probe encoded protein SEQ ID NO: 30832 - Homo sapiens, 468 aa. [WO200157276-A2, 09-AUG-2001]	81548 1468	468/468 (100° o) 468/468 (100° o)	0.0	
AAM58080	Human brain expressed single exon probe encoded protein SEQ ID NO: 30185 Home sapiens 468 aa	81548 1468	468/468 (100%) 468/468 (100%)	0.0	

4-4-100

	measuring placental gene expression - Homo sapiens, 468 aa. [WO200157272-A2, 09-AUG-2001]	1468	468/468 (100%)	
AAM18364	Peptide #4798 encoded by probe for measuring cervical gene expression - Homo sapiens, 468 aa. [WO200157278-A2, 09-AUG-2001]	81548 1468	468/468 (100%) 468/468 (100%)	0.0

In a BLAST search of public sequence databases, the NOV118a protein was found to have homology to the proteins shown in the BLASTP data in Table 118D.

	Table 118D. Public BLASTP Results for NOV118a					
Protein Accession Number	Protein/Organism/Length	NOV118a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
O43296	Zinc finger protein 264 - Homo sapiens (Human), 627 aa.	4622 11627	530/619 (85%) 567/619 (90%)	0.0		
Q96NL3	CDNA FLJ30663 FIS, CLONE FCBBF1000598, MODERATELY SIMILAR TO ZINC FINGER PROTEIN 84 - Homo sapiens (Human), 588 aa.	7572 9573	334/566 (59%) 403/566 (71%)	0.0		
Q99676	Zinc finger protein 184 - Homo sapiens (Human), 751 aa.	2571 23623	280/604 (46%) 377/604 (62%)	e-160		
P51523	Zinc finger protein 84 (Zinc finger protein HPF2) - Homo sapiens (Human), 738 aa.	4617 5626	286/637 (44%) 368/637 (56%)	e-157		
Q9BX82	EZFIT-RELATED PROTEIN 1 - Homo sapiens (Human), 626 aa.	7617 14626	278/621 (44%) 364/621 (57%)	e-156		

PFam analysis predicts that the NOV118a protein contains the domains shown in the Table 118E.

Table 118E. Domain Analysis of NOV118a				
Pfam Domain	NOV118a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
		41/66 (62°°) 54/66 (82°°)	2.2e-33	
zf-C2H2: domain 1 of 13	198220	11/24 (46%) 17/24 (71%)	3.9e-05	
BolA: domain 1 of 1	161238	14/88 (16%) 49/88 (56%)	3.4	
zf-C2H2: domain 2 of 13	226248	10/24 (42° o) 18/24 (75°,o)	6.2e-05	
zf-C2H2: domain 3 of 13	254276	14/24 (58%) 22/24 (92%)	5e-07	
TFIIS: domain 1 of 1	257292	12/39 (31%) 21/39 (54%)	5.7	
zf-C2H2: domain 4 of 13	282304	11/24 (46%) 20/24 (83%)	3.7e-05	
LIM: domain 1 of 1	256320	14/71 (20%) 48/71 (68%)	0.38	
zf-C2H2: domain 5 of 13	310332	8/24 (33%) 18/24 (75%)	7.6e-05	
zf-C2H2: domain 6 of 13	338360	11/24 (46%) 19/24 (79%)	1.1e-05	
zf-C2H2: domain 7 of 13	366388	9/24 (38%) 18/24 (75%)	0.00027	
zf-C2H2: domain 8 of 13	394416	12/24 (50%) 21/24 (88%)	7.9 e -07	
zf-C2H2: domain 9 of 13	422444	10/24 (42%) 19/24 (79%)	0.00014	
zf-C2H2: domain 10 of	450472	10/24 (42° o) 20/24 (83° o)	8.3e-06	
zf-C2H2: domain 11 of 13	478500	13/24 (54%) 21/24 (88%)	3e-07	
zf-BED domain 1 of 1	463501	14/52 (27%) 29/52 (56%)	0.1	

zf-C2H2: domain 13 of	534556	13/24 (54%)	7.2e-08
13		23/24 (96%)	

Example 119.

The NOV119 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 119A.

Table	119A. NOV119 Sequenc	ee Analysis		
	SEQ ID NO: 333	1546 bp		
NOV119a, CG59928-01 DNA Sequence	GCTCAGTAGGCGTCGGGCTGTATGCCCCAACTGCTCCAGCGTCTGCAGGCGCGCGC			
	ORF Start: ATG at 599	ORF Stop: TAG at 1505		
	SEQ ID NO: 334	302 aa MW at 33922.3kD		
NOV119a, CG59928-01 Protein Sequence	MKLQRLLVVIDAEHQQQPALQRAADVARKTGAELHLLQIEYHPSLESGLLDSHLLNRA RETILRQSHEALRASVAHLSDEGFKIAVDVRWGKRRHEEILARVAVLQPDILFKSTHP SSALRRLLFSDTSWQLIRRSPVPLWLVHDAEPHGQSLCAALDPLHSADKPAALDHQLI DASQTLQAELGLQAQYLHAQAPLPRSLLFDAEVAQEYEDYVTQCSREHREAFDKLIAQ HAIDRAQAHLLDGFAEEVIPRFVREHNIGLLVMGAIARGHLDSLLIGHTAERVLERVE CDLLVIKSHGKG			

Further analysis of the NOV119a protein yielded the following properties shown in Table 119B.

	Table 119B. Protein Sequence Properties NOV119a		
PSort analysis:	0.3000 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.2014 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		

A search of the NOV119a protein against the Geneseq database, a proprictary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 119C.

	Table 119C. Geneseq	Results for NO	OV 119a	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV119a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found		

In a BLAST search of public sequence databases, the NOV119a protein was found to have homology to the proteins shown in the BLASTP data in Table 119D.

	Table 119D. Public BLASTP F	Results for NO	OV119a	
Protein Accession Number	Protein/Organism/Length	NOV119a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9HW73	HYPOTHETICAL PROTEIN PA4328 - Pseudomonas aeruginosa, 304 aa.	1297 1299	156/299 (52%) 200/299 (66%)	1e-79
Q9KS28	HYPOTHETICAL PROTEIN VC1433 - Vibrio cholerae, 315 aa.	5300 6304	78/302 (25%) 147/302 (47%)	4e-29
CAC91106	PUTATIVE STRESS PROTEIN - Yersinia pestis, 318 aa.	2300 3303	93/310 (30%) 137/310 (44%)	2e-28
AAL20579	PUTATIVE UNIVERSAL STRESS PROTEIN - Salmonella typhimurium LT2, 315 aa.	4297 5300	91/305 (29%) 139/305 (44%)	2e-28
CAD01669	CONSERVED HYPOTHETICAL PROTEIN - Salmonella enterica subsp. enterica serovar Typhi, 315 aa.	4297 5300	91/305 (29%) 139/305 (44%)	3e-28

PFam analysis predicts that the NOV119a protein contains the domains shown in the Table 119E.

Table 119E. Domain Analysis of NOV119a					
Pfam Domain NOV119a Match Region Identities/ Similarities Expect Value for the Matched Region					
Usp: domain 1 of 2	2144	28/153 (18%) 92/153 (60%)	0.0014		
Usp: domain 2 of 2	160297	28/153 (18%) 88/153 (58%)	0.013		

Example 120.

The NOV120 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 120A.

Table 120A. NOV120 Sequence Analysis			
	SEQ ID NO: 335	2202 bp	
NOV120a, CG59947-01 DNA Sequence	SEQ ID NO: 335 CACCTCCGGCCGGCCCCCGGCGGGGGGGGCCAGGAGGGGGCCAGGGGGCAAGAGGCCGGGGGG	 	
	CCCAATGGGGATCCGGCAGCAGCAGCAGCCTGCCATGTCCCGGAAGACCTAGCCGGGACCGAGCCTGCTTCC	SAGGAGGTGATTGAGATCAACCGGGCAGATCCTCGC CAGGCGCTTGCCCACGAGGACTGCCCAGCCATTGACC CAGGAGCCCCATCACCGCTGAAGCCGTGGCCGCTA CTCCTCACCGACTATGCCCCTTCCCCTGATGGCTCC CCCACTGCCCCCCAAGACTGGCGTAAGCCAGGCC	
	CCCCAAGCTTCTTGCCGACCTCGACGACCCCCCGGGCT	caacgccaacgccgaggcctggatatcccctagtg rettgtcaccgcctgagacctcgcgagactttcg ORE Stop: TAG at 2142	

ORF Start: ATG at 27 ORF Stop: TAG at 2142

SON LOW

CG59947-01 Protein Sequence	EELGFWGIDETDVEACCWMTYRQHRDAEEALDSFEAPDPAGAANAANAAGAHDGGLDD
i Goodan Trotem Sequence	EAGAGGGGLDGAGGELKRLCFQDAGGGAGGPPGGAGGAGGIWWKRWQPRVWALFEDPI
	SSRAARYVAFASLFFILISITTFCLETHEGFIHISNKTVTQASPIPGAPPENITNVEV
Í I	ETEPFLTYVEGVCVVWFTFEFLMRITFCPDKVEFLKSSLNIIDCVAILPFYLEVGLSG
	LSSKAAKDVLGFLRVVRFVRILRIFKLTRHFVGLRVLGHTLRASTNEFLLLIIFLALG
1	VLIFATMIYYAERIGADPDDILGSNHTYFKNIPIGFWWAVVTMTTLGYGDMYPKTWSG
	MLVGALCALAGVLTIAMPVPVIVNNFGMYYSLAMAKQKLPKKKNKHIPRPPQPGSPNY
	CKPDPPPPPPPPHPHHGSGGISPPPPITPPSMGVTVAGAYPAGPHTHPGLLRGGAGGLG
i I	IMGLPPLPAPGEPCPLAQEEVIEINRADPFPNGDPAAAALAHEDCPAIDQPAMSPEDK
	SPITPGSRGRYSRDRACFLLTDYAPSPDGSIRKATGAPPLPPQDWRKPGPPSFLPDLN
	ANAAAWISP

Further analysis of the NOV120a protein yielded the following properties shown in Table 120B.

	Table 120B. Protein Sequence Properties NOV120a
PSort analysis:	0.6000 probability located in plasma membrane; 0.5071 probability located in mitochondrial inner membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV120a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 120C.

Table 120C. Geneseq Results for NOV120a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV120a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY34120	Human potassium channel K+Hnov4 - Homo sapiens, 601 aa. [WO9943696-A1, 02-SEP-1999]	32526 4476	371/510 (72%) 399/510 (77%)	0.0
AAY32016	Caenorhabditis elegans cation channel protein - Caenorhabditis elegans, 556 aa. [WO9947923-A2, 23-SEP-1999]	33512 27465	217/486 (44%) 300/486 (61%)	e-113
AAB86319	Human Kv4.2 protein - Homo sapiens, 629 aa. [DE19963612-A1, 12-JUL-2001]	16521 22441	173/511 (33%) 256/511 (49%)	5e-69
AAY13523	Amino acid sequence of KV4.2FL	16521	173/511 (33%)	8e-68

AAW42996	Putative mature potassium channel 2	17510	171/503 (33%)	2e-66
4	protein - Homo sapiens, 494 aa.	4425	240/503 (46%)	
	[US5710019-A, 20-JAN-1998]			

In a BLAST search of public sequence databases, the NOV120a protein was found to have homology to the proteins shown in the BLASTP data in Table 120D.

Table 120D. Public BLASTP Results for NOV120a						
Protein Accession Number	Protein/Organism/Length	NOV120a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q14003	Voltage-gated potassium channel protein Kv3.3 (KSHIIID) - Homo sapiens (Human), 757 aa.	1705 1757	704/757 (92%) 704/757 (92%)	0.0		
Q01956	Voltage-gated potassium channel protein Kv3.3 (KSHIIID) - Rattus norvegicus (Rat), 889 aa.	1693 1756	663/757 (87%) 668/757 (87%)	0.0		
Q63959	Voltage-gated potassium channel protein Kv3.3 (KSHIIID) - Mus musculus (Mouse), 769 aa.	1671 1724	650/725 (89%) 653/725 (89%)	0.0		
A42073	potassium channel protein Kv3.3 - mouse, 679 aa.	32607 8581	557/576 (96%) 559/576 (96%)	0.0		
Q9PVD1	KV3.1 POTASSIUM CHANNEL - Xenopus laevis (African clawed frog), 592 aa.	34671 6547	441/640 (68%) 479/640 (73%)	0.0		

PFam analysis predicts that the NOV120a protein contains the domains shown in the Table 120E.

Table 120E. Domain Analysis of NOV120a						
Pfam Domain	NOV120a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
K_tetra: domain 1 of 1	36137	50/112 (45%) 86/112 (77%)	1.6e-47			
thaumatin: domain 1 of	314319	4/6 (67%)	0.7			

ion_trans: domain 1 of 1	295486	51/231 (22%) 155/231 (67%)	2.1e-29
		155/251 (07/0)	

Example 121.

The NOV121 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 121A.

Table 121A. NOV121 Sequence Analysis				
	SEQ ID NO: 337	1943 bp		
NOV121a, CG59938-01 DNA Sequence	AGATCCACGIGATCTCCAAAGACCCCTGTTGTGTTGTTGTTGGGAGGTGGATCCTGAT CCACCCAGAGAGCCTATACCAATAAAATCCTGCTTGCTTTCCAGGAGACCCTTGC TCTTCATGTCTTTGGTGTGCACCTCTTGAACACATGCCAGGACACAGGGTGCATGA CCGACAAGCCTAATATTGTCCTAATCATGGTGATGACCATGCCAGGCACACAGGGTGCATGA CGACAAGCCTAATATTGTCCTAATCATGGTTGATGACCTGGGTATTGGAGATCTGGGC TGCTACGGCAATGACACCATCGAGCGCCTCCCTCTGCAGCCCAAGCCGGTCCGGTT CTTGACGGCAATGACACCATCCGACCGCCTCCCTCTGCAGCCCAAGCCGGTCCGGTT CTTGACGGCAATGACCCCATCCGATCAGGTTATGGTTATTGAGGTAATAGACGTGC ATCCAAAATCTTGCAGTCCCCGCAGGCCTCCCTCTTAATGAGACAACACTTGCAGCCT TGCTAAAGAAGCAAGGATACAGCACGGGCTTATAGGTAAGTTAGGCAACACTTGCAGCCT GGTTTGACGGACCACCTCCGCAAGCCTCCCTCTTAATGAGACAACACTTGCAGCCT GGTTTTAACGAGCACGAGCACCCCCCCTCTAATGAGACAACACTTGCACCCT GGTTTTTACGGGGTGCCTTTTGGACTTTTAAGCGACCCGCTCAACCATGGTTTT CACTACTTTTACGGGGTGCCTTTTGGACTTTTAAGCGACCCGCTCAACCATGGTTTT CACTACTTTTACGGGGTGCCTTTTGGACTTTTAAGCGACTGCCAGGCATCCAAGACAC CAGAACTGCACCGCTGGCTCAGGATCAAACTGTGGATCTCCACGGTAGCCCTTGCCCT GGTTCCTTTTTGCTTTCCTTCCTCCGCCTTTCTTT			
	ORF Start: ATG at 122	ORF Stop	p: TGA at 1853	
	SEQ ID NO: 338	577 aa	MW at 65099.5kD	
NOV121a, CG59938-01 Protein Sequence	MSLVCALLNTCQAHRVHDDKPNIVLIMVDDLGIGDLGCYGNDTMRTPHIDRLAREGVR LTQHISAASLCSPSRSAFLTGRYPIRSGMVSSGNRRVIQNLAVPAGLPLNETTLAALL KKQGYSTGLIGKLGKWHLGLSCASRNDHCYHPLNHGFHYFYGVPFGLLSDCQASKTPE LHRWLRIKLWISTVALALVFFLLLIPKFARWFSVPWKVIFVFALLAFLFFTSWYSSYG FTRRWNCILMRNHEIIQQPMKEEKVASLMLKEALAFIERYKREPFLLFFFSHLVHTPL ISKKKFVGRSKYGRYGDNVEEMDWMVGGKILDALDQERLANHTLVYFTSDNGGHLEPL DGAVQLGGWNGIYKGGKGMGGWEGGIRVPGIFRWPSVLEAGRVINEPTSLMDIYPTLS YIGGGILSQDRVIDGQNLMPLLEGRASHSDHEFLFHYCGVYLHTVRWHQKDTVWKAHY VTPKFYPEGTGACYGSGICSCSGDVTYHDPPLLFDISRDPSEALPLNPDNEPLFDSVI KKMEAAIREHRRTLTPVPQQFSVFNTIWKPWLQPCCGTFPFCGCDKEDDILPMAP			

Further analysis of the NOV121a protein yielded the following properties shown in Table 121B.