Set 06: Trees

CS240: Data Structures and Data Management

Jérémy Barbay

Outline

Simple Tree ADT Definitions Binary Trees

Tree Encodings

Separating structure from content Structural Encodings

Binary Representation of Ordinal Trees (and vice-versa)

The Theory Exercise

Operations

Tree ADT

- Operations
 - root(), size()
 - isInternal(node), children(node),
 parent(node)
 - attachSubtree(node, tree),
 detachSubtree(node)
- ▶ Use trees to implement other ADTs

Definitions

- ▶ Recursive: A finite collection of nodes (at least one) that is
 - 1. A single distinguished node called the root or
 - 2. Partitioned into k+1 subcollections: a designated root node connected together with k trees, $T_1 \dots T_k$, by an edge
- Graph which is
- List of nodes and oriented edges s.t.

Terminology

- parent, child, sibling, subtree
- ancestor, descendent (note: a node is its own ancestor and descendent)
- external node (leaf)
- ▶ internal node

Applications

Depth/Height

- Node Depth − The number of edges between the node, and the root of the entire tree
- Node Height − The maximum number of edges between the node and any of its descendants
- Note:
 - ▶ DEPTH(root) = 0
 - ightharpoonup HEIGHT(leaf) = 0
- **Exercise**: How do we compute each of these for a given node?

Tree variants

▶ Unordered – like a graph

Ordered – linear ordering on the children (first, second, ...)

► Cardinal – children identified by their absolute position.

Ordinal – children identified by their rank.

$$\begin{array}{cccc}
a & = & a \\
 & & \downarrow \\
b & c & & b & c
\end{array}$$

Tree variants (cont')

- Binary each node has at most 2 children (cardinal tree)
- Proper Binary each node has 0 or 2 children
- ► Full Binary proper binary tree, all leaves at the same level

Example

This tree is:

- binary
- Proper Binary
- Full Binary

We will study more binary trees with

- Priority Queue ADT (Heaps)
- Ordered Dictionaries ADT (AVL Trees)

Binary Trees

Binary Tree Data Structures

- Linked Structure
 - Tree Node with 4 fields

parent	
data	
left	right

- Parent is optional
- Array
 - An array of size 2^{h+1} , from 1 to 2^{h+1} .
 - children of cell i at positions 2i and 2i + 1.
 - Special value indicates no node.
 - More on this with heaps.
- ▶ There are more sophisticated ones...

Properties of Binary Trees

Theorem

Let |E| and |I| represent the number of external and internal nodes respectively in a proper binary tree. Then

$$|E| = |I| + 1$$

Proof: By Induction Base Case(s): Inductive Cases:

- 1. Root node has one internal child
- 2. Root node has two internal children

More Properties of proper binary trees

▶
$$h+1 \le |E| \le 2^h$$

Recursive General Traversal

General Traverse(node)

Visit node

if node has left child then

TRAVERSE(node.left)

end if

Visit node

if node has right child then

TRAVERSE(node.right)

end if

Visit *node*

This algorithm is easily modified for other depth first traversals, or for trees of higher degree.

More specific Traversals

- ► Depth-First Traversal
 - ► General Traversal:
 - Pre-Order:
 - ► In-Order:
 - Post-Order:
- ▶ Breadth-First Traversal:
 - ► Level-Order:

Representation of a binary tree

Which traversal permit to identify a binary tree by the trace?

- 1. general:
- 2. pre-order:
- 3. in-order:
- 4. post-order:
- 5. breadth-first order:
- 6. level-order:

Summary

- ▶ The Tree ADT define
 - operators for navigation and construction;
 - terms: Height, Depth, ...
 - properties
 - with many variants: Cardinal/Ordinal, ...
- ► The Binary Tree is a particular cardinal variant, which will be studied more in details later.

Outline

Simple Tree ADT
Definitions
Binary Trees

Tree Encodings

Separating structure from content Structural Encodings

Binary Representation of Ordinal Trees (and vice-versa)

The Theory

Exercise

Operations

Tree Encodings

Documents structured as a tree

Some trees represent static documents, which must be stored.

How do we encode a tree?

XML notation

Applications?

How to exchange trees between applications.

```
<section>
  <section>
    <para> (...) </para>
                                              section
    <para> (...) </para>
  </section>
  <fig> (...) </fig>
                                 section
                                            fig
                                                           section
                                                    para
  <para> (...) </para>
  <section>
                               para
                                     para
                                                            para
    <para> (...) </para>
  </section>
</section>
Totally specifies an ordinal tree?
```

Tree notation

```
\Tree
[ .{section}
   [ .{section}
     {para}
                                                 section
     {para}
                                   section
  {fig}
                                               fig
                                                       para
  {para}
                                 para
                                        para
   [ .{section}
     {para}
Totally specifies an ordinal tree?
Applications?
```

section

para

Separating structure from content

How much space do we need to encode each part?

Structural Encoding of Ordinal Trees

Theorem

An ordinal tree of n nodes can be encoded in 2n bits.

Exercises

- 1. How do we build the tree from the string?
- 2. Can we do the same for binary (cardinal) trees?

Outline

Simple Tree ADT
Definitions
Binary Trees

Tree Encodings
Separating structure from content
Structural Encodings

Binary Representation of Ordinal Trees (and vice-versa)
The Theory
Exercise
Operations

Binary Tree Representation of Ordinal Trees

Theorem

An ordinal tree T can be represented by a (cardinal) binary tree T'.

- ▶ For each internal node $v \in T$, an internal node $v' \in T'$
- ▶ If v has an immediate sibling w, then w' is the right child of v'
- ▶ If v has first child w, then w' is the left child of v'
- ▶ Fill all other spots with empty external nodes (i.e. leaves).

Ordinal Tree Representation of Binary Trees

Theorem

A (cardinal) binary tree T can be represented by forest of ordinal trees.

- Two-by-two correspondance between internal nodes.
- ▶ The right child of v is the sibling of v'.
- ► The left child of v is the first child of v'.
- Ignore empty subtrees,

Exercise Ordinal to Binary

Binary-Tree Representation T':

Original Tree *T*:

Exercise

Binary to Ordinal

Operations on this representation

Given an ordinal tree representated in a binary tree:

- 1. How to compute the height?
- 2. How to compute the maximum degree?

Exercise:

Given a binary tree representated as a forest of ordinal trees, how to compute the height?