Feuille d'exercice n° 01 : **Séries numériques** – **Corrigé**

II. Séries à termes réels positifs

Pour l'exercice ${\bf 13}$ on utilise dans la dernière question le résultat de la question ${\bf 2.b.}$ du DM n° 1.

Exercice 13

- 1) L'intervalle \mathbb{R}_+^* est stable par Arctan, donc pour tout $n, 0 < u_n$. Par IAF, pour tout $x \in \mathbb{R}_+^*$, $0 < \arctan x \le x$, donc $0 < u_{n+1} \le \frac{1}{2}u_n$. En multipliant cette relation par 2^{n+1} , on obtient que (v_n) est décroissante et strictement positive. Elle converge donc
- 2) À partir de la relation $0 < u_{n+1} \le \frac{1}{2}u_n$, et par récurrence, il vient $|u_n| \le \frac{1}{2^n}|u_0|$ donc $u_n \xrightarrow[n \to +\infty]{} 0$. Puisqu'en 0 Arctan $t = t \frac{t^3}{3} + o(t^3)$, on obtient $u_{n+1} = \frac{1}{2}u_n \left(1 \frac{u_n^2}{3} + o(u_n^2)\right)$ puis $\frac{1}{u_{n+1}^2} = \frac{4}{u_n^2} \left(1 + \frac{2u_n^2}{3} + o(u_n^2)\right)$, donc $\frac{1}{u_{n+1}^2} \frac{4}{u_n^2} \sim \frac{8}{3}$.
- 3) En multipliant la relation précédente par $\frac{1}{4^{n+1}}$, il vient $\frac{1}{v_{n+1}^2} \frac{1}{v_n^2} \sim \frac{2}{3 \cdot 4^n}$. La série de terme général $\frac{2}{3 \cdot 4^n}$ converge, donc par sommation téléscopique, la suite $\frac{1}{v_n^2}$ converge, ce qui prouve que $\lambda > 0$.
- 4) On applique le théorème de sommation des relations de comparaison : quand $N \to +\infty$, $\sum_{n=N}^{+\infty} \frac{1}{v_{n+1}^2} \frac{1}{v_n^2} \sim \sum_{n=N}^{+\infty} \frac{2}{3.4^n}$, ce qui donne $\frac{1}{\lambda^2} \frac{1}{v_N^2} \sim \frac{8}{9.4^N}$, donc

$$v_N^2 = \lambda^2 \left(1 + \frac{8\lambda^2}{9.4^N} + o\left(\frac{1}{4^N}\right) \right)$$
, et enfin $u_n = \frac{\lambda}{2^n} + \frac{\lambda^3}{9.2^{3n-2}} + o\left(\frac{1}{2^{3n}}\right)$.

Exercice 16
$$A_n = a + \frac{b(n+1)}{2}, \ln B_n = \frac{1}{n} \sum_{k=1}^n \ln(a+bk).$$

Posons $f(t) = \ln(a + bt)$ function croissante.

A l'aide d'une comparaison série-intégrale : $\sum_{k=1}^n f(k) = n \ln(a+bn) - n + o(n)$ donc $\ln \frac{B_n}{A_n} = \ln B_n - \ln A_n = \ln \left(\frac{a+bn}{a+bn/2}\right) - 1 + o(1) \to \ln 2 - 1$ d'où $\frac{B_n}{A_n} \to \frac{2}{e}.$

III. Séries à termes quelconques

Exercice 19

- 1) On a $\frac{n-2}{2^n-1} \sim \frac{n}{2^n}$ et, pour tout entier naturel n non nul, $\frac{n}{2^n} = \frac{1}{2} \times \frac{n}{2^{n-1}}$. On reconnaît la dérivée première de la série géométrique de raison $\frac{1}{2}$: $\sum_{n\geqslant 1} \frac{n}{2^{n-1}}$ converge. Par comparaison de séries à termes positifs, $\sum_{n\geqslant 1} \frac{n-2}{2^n-1}$ converge.
- 2) Cette série n'est pas à termes positifs : on étudie sa convergence absolue. Pour tout entier naturel n non nul, $\left|\frac{(-1)^n}{n^2+1}\right|=\frac{1}{n^2+1}\leqslant \frac{1}{n^2}$. Or, la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge (c'est la série de Riemann de paramètre 2). Ainsi, par comparaison de séries à termes positifs, $\sum_{n\geqslant 0}\frac{(-1)^n}{n^2+1}$ converge absolument, donc converge.
- 3) On a, pour tout entier naturel n non nul, $\sqrt[n]{2} 1 = 2\frac{1}{n} 1 = e^{\frac{\ln(2)}{n}} 1$. Ainsi, $\sqrt[n]{2} - 1 \sim \frac{\ln(2)}{n}$. De plus, $2n + 3 \sim 2n$ et donc $\frac{\sqrt[n]{2} - 1}{2n + 3} \sim \frac{\ln(2)}{2} \times \frac{1}{n^2}$ et la série $\sum_{n \ge 1} \frac{1}{n^2}$ converge (c'est la série de Riemann de paramètre 2). Ainsi,

par comparaison de séries à termes positifs, $\sum_{n\geqslant 1} \frac{\sqrt[n]{2}-1}{2n+3}$ converge.

- 4) $\left(\frac{n}{n+1}\right)$ converge vers 1 donc la série $\sum_{n\geqslant 0}\frac{n}{n+1}$ diverge grossièrement.
- 5) Cette série n'est pas à termes positifs : on étudie sa convergence absolue. Pour tout entier naturel n supérieur à $2, \left|\frac{\cos(n!)}{n^3+\cos(n!)}\right| = \frac{|\cos n!|}{n^3+\cos n!} \leqslant \frac{1}{n^3-1}$. Or, $\frac{1}{n^3-1} \sim \frac{1}{n^3}$ et la série $\sum_{n\geqslant 1} \frac{1}{n^3}$ converge (c'est la série de Riemann de paramètre 3). Ainsi, par comparaison de séries à termes positifs, $\sum_{n\geqslant 2} \frac{1}{n^3-1}$ converge et donc, toujours par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0} \frac{\cos(n!)}{n^3+\cos(n!)}$ converge absolument, donc converge.
- 6) Si $\alpha \geqslant 0$, $(\ln(1+n^{\alpha}))$ converge vers $\ln(2)$ ou diverge vers $+\infty$, donc la série $\sum_{n\geqslant 1} \ln(1+n^{\alpha}) \text{ diverge grossièrement. Si } \alpha < 0, (\ln(1+n^{\alpha})) \text{ converge vers } 0$ et donc $\ln(1+n^{\alpha}) \sim n^{\alpha}$. Or, d'après les résultats sur les séries de Riemann, $\sum_{n\geqslant 1} n^{\alpha} \text{ converge si } \alpha < -1 \text{ et diverge si } -1 \leqslant \alpha < 0. \text{ Ainsi, par comparaison}$ de séries à termes positifs, $\sum_{n\geqslant 1} \ln(1+n^{\alpha}) \text{ converge si } \alpha < -1 \text{ et diverge si } -1 \leqslant \alpha < 0.$

Exercice 20

1) Par croissances comparées, $2n(n+1) = o(2^n)$ et donc $\frac{2n(n+1)}{3^n} = o\left(\left(\frac{2}{3}\right)^n\right)$. Comme la série $\sum_{n\geqslant 0} \left(\frac{2}{3}\right)^n$ converge (c'est la série géométrique de raison $\frac{2}{3}$), par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0} \frac{2n(n+1)}{3^n}$ converge.

On a ensuite, pour tout entier naturel n,

$$\frac{2n(n+1)}{3^n} = \frac{2}{9} \times \frac{n(n-1)}{3^{n-2}} + \frac{4}{3} \times \frac{n}{3^{n-1}}.$$

On reconnaît les termes généraux des deux premières dérivées de la série géométrique de raison $\frac{1}{3}$, qui sont des séries convergentes. Ainsi :

$$\sum_{k=0}^{+\infty} \frac{2k(k+1)}{3^k} = \frac{2}{9} \sum_{k=0}^{+\infty} \frac{k(k-1)}{3^{k-2}} + \frac{4}{3} \sum_{k=0}^{+\infty} \frac{k}{3^{k-1}} = \frac{2}{9} \times \frac{2}{\left(1 - \frac{1}{3}\right)^3} + \frac{4}{3} \times \frac{1}{\left(1 - \frac{1}{3}\right)^2}$$
$$= \frac{2}{9} \times \frac{2}{\left(\frac{8}{27}\right)} + \frac{4}{3} \times \frac{1}{\left(\frac{4}{9}\right)} = \boxed{\frac{9}{2}} .$$

2) On a, par croissances comparées, $n^2(n^2+n+1)=o(n!)$ et donc $\frac{n^2+n+1}{n!}=o\left(\frac{1}{n^2}\right)$. Or, la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge (c'est la série de Riemann de paramètre 2). Ainsi, par comparaison de séries à termes positifs, $\sum_{n\geqslant 0}\frac{n^2+n+1}{n!}$ converge.

On a, pour tout entier naturel n,

$$\frac{n^2 + n + 1}{n!} = \frac{n(n-1)}{n!} + 2\frac{n}{n!} + \frac{1}{n!} .$$

Comme précédemment, les trois séries correspondant aux trois termes du

membre de droite convergent et donc

$$\sum_{k=0}^{+\infty} \frac{k^2 + k + 1}{k!} = \sum_{k=0}^{+\infty} \frac{k(k-1)}{k!} + 2\sum_{k=0}^{+\infty} \frac{k}{k!} + \sum_{k=0}^{+\infty} \frac{1}{k!}$$

$$= \sum_{k=2}^{+\infty} \frac{k(k-1)}{k!} + 2\sum_{k=1}^{+\infty} \frac{k}{k!} + \sum_{k=0}^{+\infty} \frac{1}{k!}$$

$$= \sum_{k=2}^{+\infty} \frac{1}{(k-2)!} + 2\sum_{k=1}^{+\infty} \frac{1}{(k-1)!} + \sum_{k=0}^{+\infty} \frac{1}{k!}$$

$$[\mathbf{k} = k - 2, \ \mathbf{k} = k - 1] = \sum_{k=0}^{+\infty} \frac{1}{k!} + 2\sum_{k=0}^{+\infty} \frac{1}{k!} + \sum_{k=0}^{+\infty} \frac{1}{k!}$$

$$= \boxed{4e} \ .$$

3) On a, pour tout entier naturel n,

$$\ln\left(\frac{n^3}{(n+2)(n-1)^2}\right) = \ln\left(1 + \frac{n^3}{(n+2)(n-1)^2} - 1\right)$$

$$= \ln\left(1 + \frac{n^3 - (n+2)(n-1)^2}{(n+2)(n-1)^2}\right)$$

$$= \ln\left(1 + \frac{n^3 - (n+2)(n^2 - 2n + 1)}{(n+2)(n-1)^2}\right)$$

$$= \ln\left(1 + \frac{n^3 - [n^3 - 2n^2 + n + 2n^2 - 4n + 2]}{(n+2)(n-1)^2}\right)$$

$$= \ln\left(1 + \frac{3n - 2}{(n+2)(n-1)^2}\right).$$

Or, $\frac{3n-2}{(n+2)(n-1)^2} \sim \frac{3}{n^2}$ et donc $\ln\left(\frac{n^3}{(n+2)(n-1)^2}\right) \sim \frac{3}{n^2}$. Or, la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge (c'est la série de Riemann de paramètre 2). Ainsi, par

comparaison de séries à termes positifs, $\sum_{n\geqslant 0} \ln\left(\frac{n^3}{(n+2)(n-1)^2}\right)$ converge.

Soit un entier naturel n supérieur ou égal à 3, on étudie la somme partielle

d'ordre n de cette série :

$$\sum_{k=2}^{n} \ln \left(\frac{k^3}{(k+2)(k-1)^2} \right) = \ln \left(\prod_{k=2}^{n} \frac{k^3}{(k+2)(k-1)^2} \right)$$
$$= \ln \left[\left(\prod_{k=2}^{n} \frac{k}{k+2} \right) \left(\prod_{k=2}^{n} \frac{k}{k-1} \right)^2 \right] .$$

On a, en argument du logarithme du membre de droite, des produits télescopiques. On peut se ramener à des sommes télescopiques ou bien montrer, par récurrence (on trouve les formules en amont par un petit schéma), que, pour tout entier naturel $n \ge 3$,

$$\prod_{k=2}^{n} \frac{k}{k+2} = \frac{6}{(n+1)(n+2)} \text{ et } \prod_{k=2}^{n} \frac{k}{k-1} = n .$$

Ainsi, pour tout entier naturel $n \ge 3$,

$$\sum_{k=2}^{n} \ln \left(\frac{k^3}{(k+2)(k-1)^2} \right) = \ln \left(\frac{6n^2}{(n+1)(n+2)} \right)$$
$$= \ln(6) + \ln \left(\frac{n^2}{(n+1)(n+2)} \right) .$$

La somme recherchée est donc $\ln(6)$, car le second terme du membre de droite converge vers 0.

4) Soit *n* un entier naturel. Si $0 \le n \le k-1$, alors $\frac{\binom{n}{k}}{n!} = 0$. Si $n \ge k$, on a

$$\frac{\binom{n}{k}}{n!} = \frac{1}{k!} \times \frac{1}{(n-k)!} .$$

À un décalage d'indices près, on reconnaît les termes généraux de la série exponentielle de paramètre 1 : cette série converge. On a ensuite, en posant n = n - k,

$$\sum_{n=0}^{+\infty} \frac{\binom{n}{k}}{n!} = \frac{1}{k!} \sum_{n=k}^{+\infty} \frac{1}{(n-k)!} = \frac{1}{k!} \sum_{n=0}^{+\infty} \frac{1}{n!} = \boxed{\frac{e}{k!}} \ .$$

5) On a $\left|\ln\left(1-\frac{1}{n^2}\right)\right| = -\ln\left(1-\frac{1}{n^2}\right) \sim \frac{1}{n^2}$. Or, la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge (c'est la série de Riemann de paramètre 2). Ainsi, par comparaison de séries

à termes positifs, $\sum_{n\geqslant 2} \ln\left(1-\frac{1}{n^2}\right)$ converge absolument, donc converge.

Soit un entier naturel $n \ge 2$, on peut exprimer la somme partielle d'ordre n de cette série :

$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right) = \ln\left(\prod_{k=2}^{n} 1 - \frac{1}{k^2}\right) = \ln\left(\prod_{k=2}^{n} \frac{k^2 - 1}{k^2}\right) = \ln\left(\prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2}\right)$$
$$= \ln\left[\left(\prod_{k=2}^{n} \frac{k - 1}{k}\right) \left(\prod_{k=2}^{n} \frac{k + 1}{k}\right)\right].$$

On a, en argument du logarithme du membre de droite, des produits télescopiques. On peut se ramener à des sommes télescopiques ou bien montrer, par récurrence (on trouve les formules en amont par un petit schéma), que, pour tout entier naturel $n \ge 2$,

$$\prod_{k=2}^{n} \frac{k-1}{k} = \frac{1}{n} \text{ et } \prod_{k=2}^{n} \frac{k+1}{k} = \frac{n+1}{2} .$$

Ainsi, pour tout entier naturel $n \ge 2$,

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right) = \ln \left(\frac{n+1}{2n} \right) = -\ln(2) + \ln \left(\frac{n+1}{n} \right) .$$

La somme recherchée est donc $-\ln(2)$, car le second terme du membre de droite converge vers 0.

6) La série étudiée ici n'est pas à termes positifs : on étudie donc sa convergence absolue. Pour tout entier naturel n, $\left|\ln\left(\cos\left(\frac{a}{2^n}\right)\right)\right| = -\ln\left(1+\cos\left(\frac{a}{2^n}\right)-1\right) \sim \frac{a^2}{2} \times \frac{1}{2^{2n}}.$ On reconnaît ici la série géométrique de raison $\frac{1}{4}$, qui converge. Par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0} \ln\left(\cos\left(\frac{a}{2^n}\right)\right)$ converge absolument, donc converge.

Soit un entier naturel $n \ge 2$, on peut exprimer la somme partielle d'ordre n de cette série. On va, pour cela, utiliser une formule de duplication :

$$\sin\left(\frac{a}{2^{n-1}}\right) = \sin\left(2 \times \frac{a}{2^n}\right) = 2\sin\left(\frac{a}{2^n}\right)\cos\left(\frac{a}{2^n}\right) .$$

Ainsi,

$$\sum_{k=0}^{n} \ln\left(\cos\left(\frac{a}{2^{n}}\right)\right) = \ln\left(\prod_{k=0}^{n} \cos\left(\frac{a}{2^{n}}\right)\right)$$

$$= \ln\left(\prod_{k=0}^{n} \frac{\sin\left(\frac{a}{2^{k-1}}\right)}{2\sin\left(\frac{a}{2^{k}}\right)}\right)$$

$$= \ln\left(\frac{1}{2^{n+1}} \prod_{k=0}^{n} \frac{\sin\left(\frac{a}{2^{k-1}}\right)}{\sin\left(\frac{a}{2^{k}}\right)}\right)$$

$$= \ln\left(\frac{1}{2^{n+1}} \times \frac{\sin(2a)}{\sin\left(\frac{a}{2^{n}}\right)}\right)$$

$$= \ln\left(\frac{\sin(2a)}{2a}\right) - \ln\left(\frac{\sin\left(\frac{a}{2^{n}}\right)}{\left(\frac{a}{2^{n}}\right)}\right).$$

La somme recherchée est donc $\left[\ln\left(\frac{\sin(2a)}{2a}\right)\right]$, car le second terme du membre de droite converge vers 0.

Exercice 21 $\sqrt{n^2+1} = n + \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$ donc $u_n = \frac{(-1)^n \pi}{2n} + O\left(\frac{1}{n^2}\right)$ est terme général d'une série convergente.

Exercice 22 En développant et après simplification, $(2+\sqrt{3})^n+(2-\sqrt{3})^n\in 2\mathbb{Z}$ donc $u_n=-\sin\left((2-\sqrt{3})^n\pi\right)$. Puisque $|2-\sqrt{3}|<1, u_n\sim -(2-\sqrt{3})^n\pi$ est terme général d'une série absolument convergente..

Exercice 25
$$\sum_{n=0}^{+\infty} (n+1)3^{-n} = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} \frac{1}{3^k} \frac{1}{3^{n-k}} = \left(\sum_{n=0}^{+\infty} \frac{1}{3^n}\right) \left(\sum_{m=0}^{+\infty} \frac{1}{3^m}\right) = \frac{9}{4}$$
 via produit de Cauchy.