University of British Columbia Department of Electrical & Computer Engineering ELEC341 – Signals & Systems Jan. 2020 – Apr. 2020

Take-home Assignment - 1

Contents covered: chapter 2 (focus: linearization, differential equation, transfer

function, Mason's gain formula)

Due day: Jan. 27, 2020

Mark distribution:

Textbook problem part: 16+6+10+8+10=**50** points in total.

Matlab assignment part: 8+8=16 points in total.

Textbook problems:

Problem 1: In the following figure, a two-tank system is shown. an ideal operational amplifier is used to provide the input voltage, $v_2(t)$, to a nonlinear power amplifier. The power amplifier may be approximately represented by $v_a(t)=10v_2(t)+2\exp(v_2(t))$. The DC motor is driven by the output current of the power amplifier, $i_a(t)$, and the resulting motor torque turns a shaft. The armature inductance of the DC motor is negligible, so that $L_a=0$, and the rotational friction of the motor shaft is also negligible. The motor torque constant and back-emf constant are equal and given by $K_m=K_b=10$. The inertia of the motor shaft is $J=0.01 \text{ kg.m}^2$. The motor adjusts the input valve and ultimately varying the output flow rate $Q_3(s)$.

- a. Find the transfer function $V_2(s)/V_1(s)$ of the op amp circuit, assuming. an ideal op-amp. Assume $R_1=R_2=100~k\Omega$, and $c=1~\mu F$.
- b. Assuming that the operating point is v_{20} =3 volts, determine the linearized gain $V_a(s)/V_2(s)$ near the operating point.
- c. Determine the differential equation relating $\theta(t)$ and $v_a(t)$. Assume the output y(t) is the motor speed, y(t)= $d\theta(t)/dt$. Obtain the overall transfer function Y(s)/V₁(s) near the operating point.
- d. The input flow rate for the tank is controlled by the valve as $\frac{dq_1(t)}{dt} = \theta(t) 4q_1(t); \text{ the flow Q}_2(s) \text{ and Q}_1(s) \text{ has the relationship}$ $\frac{dq_2(t)}{dt} = q_1(t) q_2(t); \text{ and the output flow Q}_3(s) \text{ is } \frac{dq_3(t)}{dt} = 2q_2(t) 3q_3(t).$

Determine the transfer function between the output flow and the motor speed $Q_3(s)/V_1(s)$.

Problem 2 (P2.1 in the 12th edition): Write down the differential equations in terms of $i_1(t)$ and $i_2(t)$ for the circuit.

Problem 3 (modified from P2.3 in the 12^{th} edition): A coupled spring-mass system is shown in the following figure. The masses and springs are assumed to be equal. Obtain the differential equations describing the system. And find the transfer functions of $X_1(s)/F(s)$ and $X_2(s)/F(s)$.

Problem 4: Determine the transfer functions $T_R(s) = Y(s)/R(s)$ and $T_D(s)=Y(s)/D(s)$ for the system in the figure.

Problem 5 (modified from P2.32 in the 12th edition): A model of the coupled motor drives is shown in the following figure. Find $Y_1(s)/R_1(s)$ and $Y_2(s)/R_2(s)$.

Matlab Assignments:

CP2.1 and CP2.2 (same as MP2.2. in the 10th edition) in the 12th edition.

