1.

(10): Find the N-point DFT of $x[n] = a^n u[n-1]$ for $|a| \neq 1$.

(10): Suppose x[n] is time-limited to n = 0, 1, 2, 3 and the 8-point DFT of x[n] is given by

$$\{5, 3 - i\sqrt{2}, 3, 3 - i\sqrt{2}, 1, 3 + i\sqrt{2}, 3, 3 + i\sqrt{2}\}.$$

Find the 4-point DFT of x[n]. (Be sure to explain your method.)

2.

- $\text{(10): A signal } x[n] \text{ has DTFT } X(\omega) = 4e^{-j13\omega} + 3e^{j2\omega} + 2e^{-j11\omega} + 7.$ Find the 11-point inverse DFT of $\left\{ \left. X(\omega) \right|_{\omega = 2\pi k/11}, \; k = 0, \ldots, 10 \right\}.$
- (10): Suppose $X_0=0, X_1=8, X_2=0$, and $X_3=8$ is the 4-point DFT of a signal x[n] that is time-limited to n=0,1,2,3. Find $X(\omega)$.

3.

- (10): The CT signal $x_a(t) = \sin(2\pi F_0 t)$ with $F_0 = 250$ Hz is sampled according to $x[n] = x_a(nT)$ with T = 1msec. Find X_k , the 4-point DFT of x[n].
- (10): Suppose that the above DT signal x[n] is filtered by a LTI system with impulse response $h[n] = \delta[n] \delta[n-2]$ to form a DT signal y[n].

Find Y_k , the 4-point DFT of y[n].

(10): Find the fastest sampling rate for which $X_k = 0$.

4.

(10): Let X_k denote the N-point DFT of a signal x[n]. Suppose you upsample the DFT values as follows:

$$Y_k = \begin{cases} X_{k/2}, & k \text{ even} \\ 0, & k \text{ odd.} \end{cases}$$

Relate y[n], the 2N-point inverse DFT of the Y_k 's, to the values x[n] of the original signal.

(10): Continuing the previous problem, suppose x[n] = 8n u[n] and N = 4. Find y[n] for n = -2, 1, 3, 6, and 8.

5.

(10): [Undergraduates only]

Write a short MATLAB m-file that uses MATLAB's filter command to compute the *exact* convolution between the following two signals:

$$x_1[n] = \begin{cases} \cos(0.3n), & n = 0, \dots, 19 \\ 0, & \text{otherwise,} \end{cases}$$
 and $x_2[n] = n(1/4)^n u[n]$.

Your MATLAB program should compute the result for $n = 0, 1, \dots, 40$.

(10): [Graduate students only]

As part of a MATLAB session, a user types:

$$X = [7 \ 0 \ 1 \ 2 \ 0 \ 0 \ 5 \ 0 \ 0 \ 4];$$

 $q = ifft(ifft(X))$

Determine what the MATLAB output is.