2018-2019 Ikasturtea, *Termodinamika eta Fisika Estatistikoa* Ohiko deialdia, 2019ko ekainaren 7a

Termodinamika

Benzenoaren (C₆H₆; masa molekularra 78 g) lurruntze-tenperatura 80°C da, presioa 1 atm denean eta, baldintza horietan, benzenoari dagokion lurruntze-beroa 86 cal/g da.

Bestalde, benzeno likidoaren eta gasaren bolumen espezifikoak, aipatutako baldintzatan, $v_l = 1.2$ cm³/g eta $v_q = 356$ cm³/g dira, hurrenez hurren.

Esku artean benzenoaren 1 g duzu, oso-osorik gas egoeran dagoena eta $C_V = 3.3$ cal/K-eko bero-ahalmeneko eta 500 K-ean dagoen sistemarekin batera.

Benzenoa kutxa itxian sartu da. Benzenoa eta sistema makina itzulgarriaren bidez termikoki konektatu dira; makina martxan jarri da eta horrela mantendu da benzenoa erabat likidotu den arte.

Lortu honako hauek:

1. Ariketa

Zer nolako makina itzulgarria da?

- (a) Onartu sistemaren fasea ez dela aldatuko; zenbatekoa da bere amaierako tenperatura, ΔT^{sis} ?
- (b) Benzenoaren eta sistemaren entropia-aldakuntzak: ΔS^{ben} , ΔS^{sis} .

2. Ariketa

- (a) Makinak egin duen lana: W.
- (b) Prozesua bukatutakoan, benzenoaren: entalpia-aldaketa (ΔH^{ben}), barne-energiaren aldaketa (ΔU^{ben}), Helmholtz-en funtzioaren aldaketa (ΔF^{ben}), Gibbs-en funtzioaren aldaketa (ΔG^{ben}).

Aurreko ariketako prozesua bukatutakoan, benzenoa dagoen kutxa 1 atm-ean eta 60°C-an dauden presio-iturriarekin eta bero-iturriarekin kontaktuan dagoen eta V=35 l-koa den hustutako gordailuan jarri dugu kutxa itxi batean. Kutxa hautsi da. Benzeno guztia lurrundu baino lehen neurtu den presioa 0.008 atm da. Benzeno likidoari dagokion zabalkuntza-koefizientea honako hau da: $\alpha=10^{-3}$ K⁻¹. Benzenoaren lurruna gas idealtzat hartu daiteke.

Lortu honako hauek:

3. Ariketa

- (a) Zenbat benzeno lurrundu da aipatutako presioa neurtu denean?
- (b) Zenbatekoa da bezenoari (elkarren arteko orekan dauden bi faseez, likidoa eta gasa, osatutako nahasturari) dagokion bolumen espezifikoa?

4. Ariketa

Benzeno guztia lurrundutakoan gordailuan neurtu dugun presioa 0.01 atm da.

- (a) Irudikatu prozesua (osoa, aurreko ariketakoa ere bai) p/T diagraman.
- (b) Lortu honako hauek: entalpia-aldaketa ($\Delta H^{\rm ben}$), barne-energiaren aldaketa ($\Delta U^{\rm ben}$), Helmholtz-en funtzioaren aldaketa ($\Delta F^{\rm ben}$), Gibbs-en funtzioaren aldaketa ($\Delta G^{\rm ben}$).

Estatistika

Lortuko duzun egoera-ekuazioak ez dauka partikularen izaerarekiko mendekotasunik: dela fermioia, dela bosoia, dela partikula klasikoa.

Har ezazu aintzakotzat fotoiz osatutako gasa, V bolumeneko barrunbean dagoena, T tenperaturan.

1. Ariketa

- (a) Idatz ezazu fotoizko gas horren partizio-funtzio gran-kanonikoa: $\mathscr{Z}(T,V;\mu=0)=\mathscr{Z}(T,V)$.
- (b) Lortu gasari dagokion gran-potentzialaren adierazpen bat. Adieraz ezazu zure emaitza $T,\,V$ eta ω maiztasunarekiko integral baten funtzioan. (Ez duzu integrala egin behar.)
- (c) Lortu gasari dagokion E energiaren adierazpena. Berebat, berori adieraz ezazu T,V eta ω maiztasunarekiko integral baten funtzioan. (Ez duzu integrala egin behar.)
- (d) Aurreko bi emaitzak erabilita, lortu $p\,V$ biderkadurari dagokion adierazpena. (Kasu honetan integrala kalkulatu behar duzu.)

Oraingo honetan, aldiz, aztertuko duzun sistema honako hau da: ultra-erlatibistak $(m c^2 \ll c p_F)$ diren elkarrekintzarik gabeko (independente) elektroiz osatutako gasa. Aipatutako limitean, honako hau da elektroiaren energiaren eta bere momentuaren arteko erlazioa: $\epsilon(\vec{p}) = c | \vec{p} |$. Horrelako N elektroi daude V bolumenean. Spina kontuan hartu behar da egoerak zenbatzeko.

2. Ariketa

- (a) Lortu gasaren μ potentzial kimikoa eta Fermiren momentua, p_F , T=0 K denenean eta N eta V aldagaien funtzioan.
- (b) Lortu sistemaren E energia osoa, T=0 K denenean eta N eta V aldagaien funtzioan.
- (c) Lortu, T=0 K denean, pV biderkadurari dagokion adierazpena. (Kasu honetan integrala kalkulatu behar duzu.)

3. Ariketa

- (a) Idatz ezazu elektroizko gas horren partizio-funtzio gran-kanonikoa, tenperatura finituan. Erabil ezazu emaitza hori gasaren potentzial gran-kanonikoaren adierazpen bat lortzeko. Adieraz ezazu $T,\,V,\,\mu$ eta energiarekiko integral baten funtzioan. (Ez duzu integrala egin behar.)
- (b) Lortu gasari dagokion E energiaren adierazpena. Berebat, berori adieraz ezazu $T,\,V,\,\mu$ eta energiarekiko integral baten funtzioan. (Ez duzu integrala egin behar.)
- (c) Aurreko bi emaitzak erabilita, lortu pV biderkadurari dagokion adierazpena.

4. Ariketa

Zein da $\epsilon(\vec{p}) = c |\vec{p}|^s$ dispertsio-erlazioko D dimentsioko espazioan bizi den gas baten pV bidera-kaduraren adierazpena?