

UCB-BF512 ユーザーズマニュアル 第 4 版

金子システム株式会社

ご注意

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。 当社製品のご購入およびご使用にあたりましては、当社ホームページを通じて公開される情報を参 照ください。
- 2. 当社から提供する情報の正確性と信頼性には万全を尽くしていますが、誤りがないことを保証する ものではありません。当社はその使用に対する責任を一切負いません。その使用によって第三者の 特許権、著作権その他知的財産が侵害された場合でも、同様に責任を負いません。
- 3. 本資料は、当社の書面による事前の明示同意がない限り、いかなる形式でも複製できません。
- 4. 当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。

<u>目次</u>

1	はじ	めに	3
	1.1	パッケージ内容	3
2	ハー	・ドウェア・リファレンス	4
	2.1	製品外観	4
	2.2	ブロック図	4
	2.3	外形寸法	5
	2.4	電気特性	5
	2.5	P1 モードピンヘッダの設定	6
	2.6	CN1/CN2 コネクタ仕様	7
	2.7	JTAGヘッダ	9
	2.8	SPIフラッシュメモリのプログラムの配置10	0
3	u-bo	ootとucLinux10	0
	3.1	UARTの接続10	0
	3.2	u-bootとucLinuxの起動	
	3.3	u-bootコマンド	3
4	更新	·履歴	4

1 はじめに

このたびは当社製品をご購入いただき、ありがとうございます。

本製品は、アナログ・デバイセズ社 DSP である Blackfin ADSP-BF512 を使用した CPU ボードです。本製品 UCB-BF512 の特徴は以下の通りです。

- 75mm×60mm と小型です
- ユニバーサル基板に挿入でき、実験や試作に最適です
- Blackfin の動作に必要な電源は基板にて生成するため、3.3V を供給すれば動作いたします
- ピンヘッダにより、ブートモードが切換えできるため、ご都合に合わせたブートが指定可能です
- 32M バイトの SDRAM を搭載しているため、ucLinux などの OS や、大きなサイズのプログラムやデータを保持することができます。
- u-boot が起動するため、UART さえ用意できれば、プログラムのロードや書き換えが可能です。

また、ADSP-BF512プロセッサの特徴は以下の通りです。

- 最大 400MHz コアクロックで動作し、2 個の MAC(積和演算器)により、800MMACs(メガ積和演算/秒)のパフォーマンスに達します
- 遅延なしで動作可能な L1 SRAM を 116k バイト内蔵
- 2個のSPI、2個のSPORT、2個のUART、1個のTWI、1個のPPI、1個のRTC
- 12個のペリフェラル DMA チャンネルと、2個のメモリ間 DMA チャンネル
- 3個の3相PWMユニット
- 176 ピン LQFP パッケージ

詳細は、アナログ・デバイセズ社の ADSP-BF512 のサイトを参照ください。

http://www.analog.com/jp/processors-dsp/blackfin/adsp-bf512/products/product.html 関連する技術資料は、以下を参照ください。

 $\underline{http://www.analog.com/jp/processors-dsp/blackfin/adsp-bf512/products/technical-documentation/index.html}$

● 回路図やサンプルプログラムは、以下のサイトを参照ください。 http://kaneko-sys.co.jp/support/

1.1 パッケージ内容

UCB-BF512 のパッケージには、以下が含まれます。

表 1 パッケージ内容

内容	数量
UCB-BF512 ボード	1枚
40×2列 ピンヘッダ(切ってお使いください)	1個
15×2列 ピンソケット	2 個
13 ピンヘッダ	1個

2 ハードウェア・リファレンス

2.1 製品外観

図 1 表面写真

2.2 ブロック図

ここでは、UCB-BF512 ボード上のプロセッサの構成を説明します。

UCB-BF512 は、ADSP-BF512 Blackfin プロセッサを中心に、動作に最低限必要となる以下の機能で構成されています。

- 32M バイト SDRAM
- 64M ビット SPI FLASH
- JTAG ヘッダ
- ブートモード用ピンヘッダ
- 25MHz 水晶
- 1.4V・2.5V リニアレギュレータ
- リセット管理(リセットスーパーバイザ)
- リセットスイッチ

2.3 外形寸法

図 3 基板外形図

*100mil = 2.54mm

2.4 電気特性

表 2 電気特性

項目	条件	記号	min	typ	max
供給電圧	_	VCC_3V3	3.0V	3.3V	3.6V
RTC 電圧	_	VCC_RTC	2.5V	_	3.6V
3.3V 供給時の消費電流	CCLK:400MHz		_	129mA	165mA
(実測・参考値)	SCLK:80MHz	ICC			
u-boot 起動後、プロンプ	CCLK:350MHx		_	118mA	

ト表示状態	SCLK:70MHz			
	CCLK:300MHz	_	107mA	
	SCLK:60MHz			
	CCLK:250MHx	_	96mA	
	SCLK:50MHz			
	CCLK:200MHz	_	85mA	
	SCLK:40MHz			
	CCLK:150MHx	_	71mA	
	SCLK:30MHz			

[※]ベースボードからの供給電流は余裕をもった設計にしてください。

2.5 P1 モードピンヘッダの設定

このピンヘッダはADSP-BF512のブートモードの設定を行います。すべてオープンの状態でSPI MASTER BOOT に設定されています。

	衣 5 に 下に ジング 版形衣								
番号	状態	説明							
MODE0	オープン	BMODE0 ピンの論理を H に設定します。							
	ショート	BMODE0 ピンの論理をLに設定します。							
MODE1	オープン	BMODE1 ピンの論理を H に設定します。							
	ショート	BMODE1 ピンの論理をLに設定します。							
MODE2	オープン	BMODE2 ピンの論理を L に設定します。							
	ショート	BMODE2 ピンの論理を H に設定します。							

表 3 モードピンヘッダ機能表

MODE0~1 と MODE2 のオープンとショート時の論理が逆なのでご注意ください。

各ブートモードに対応したスイッチ 1~3 の設定は以下の通りです。

ブートモードの詳細は、アナログ・デバイセズ社「ADSP-BF51x Blackfin Processor Hardware Reference」を参照ください。

ブートモード	ピンヘッダ		>	備考
000	M2	M1	M0	
Idle/No Boot	OPEN	SHORT	SHORT	
001	M2	M1	Mo	外部バスがピンヘッダに接続
Boot from 8- or 16-bit external				されていないため、設定でき
flash memory				ません
010	M2	M1	M0	Flash 内蔵品ではないため、
Boot from internal SPI memory				設定できません

表 4 ブートモードと DIP スイッチの対応

011	M2	M1	M0
Boot from external SPI memory	OPEN	OPEN	OPEN
(EEPROM or flash)			
100	M2	M1	M0
Boot from SPI0 host	SHORT	SHORT	SHORT
101	M2	M1	M0
Boot from OTP memory	SHORT	SHORT	OPEN
110	M2	M1	M0
Boot from SDRAM	SHORT	OPEN	SHORT
111	M2	M1	M0
Boot from UART0 Host	SHORT	OPEN	OPEN

2.6 CN1/CN2 コネクタ仕様

- ※ 各表の入出力は、ADSP-BF512 からみたもので、信号名の最後に # が付く名前は、負 論理 (Low アクティブ) であることを示します。
- ※ 各ピンの詳細は、アナログ・デバイセズ社「ADSP-BF51x Blackfin Processor Hardware Reference」を参照ください。

表 5 コネクタ仕様

ピン番号	信号名	入出力	説明	
1	VCC_3V3		3.3V 電源	
2	VCC_3V3		3.3V 電源	
3	VCC_RTC	_	RTC 用バックアップ電源(2.5V~3.6V)	
			基板側で 3.3V 電源とダイオードで接続されているた	
			め、RTC を保存しない場合、未接続にします。	
4	EXT_WAKE	出力	EXT_WAKE	
5	GND		電源グラウンド	
6	GND		電源グラウンド	
7	RESET_IN#	入力	リセット入力	
			使用しない場合は未接続にします。	
8	NMI#	入力	NMI#	
			4.7k の抵抗でプルアップされています。使用しない場	
			合は未接続にします。	
9	PH7	入出力	PH7/DR1SEC/UART1RX/TMR7/TACI2	
10	PH6	入出力	PH6/DT1SEC/UART1TX/SPI1SEL1/CZM	
11	PH5	入出力	PH5/TSCLK1/ARDY/PTP_EXT_CLKIN/CDG	
12	PH4	入出力	PH4/TFS1/AOE/SPI0SEL3/CUD	

107 11 12110	777716/41			
13	PH3	入出力	PH3/DT1PRI/SPI1MOSI/-	
14	PH2	入出力	PH2/RSCLK1/SPI1SCK/-	
15	PH1	入出力	PH1/RFS1/SPI1MISO/-	
16	PH0	入出力	PH0/DR1PRI/SPI1SS/-	
17	GND	_	電源グラウンド	
18	GND	_	電源グラウンド	
19	PF15	入出力	PF15/-/PPI D15/PWM_SYNCA	
20	PF14	入出力	PF14/-/PPI D14/PWM BL	
21	PF13	入出力	PF13/-/PPI D13/PWM BH	
22	PF12	入出力	PF12/-/PPI D12/PWM AL	
23	PF11	入出力	PF11/-/PPI D11/PWM AH/TACI3	
24	PF10	入出力	PF10/-/PPI D10/TMR3	
25	PF9	入出力	PF9/-/PPI D9/TMR2	
26	PF8	入出力	PF8/-/PPI D8/SPI1SEL4	
27	I2C_SCL	入出力	I2C クロック	
			1.5k の抵抗でプルアップされています	
28	I2C_SDA	入出力	I2C データ	
			1.5k の抵抗でプルアップされています	
29	GND	_	電源グラウンド	
30	GND	_	電源グラウンド	
31	PG0	入出力	PG0/-/-/HWAIT/SPI1SEL3	
32	PG1	入出力	PG1/-/DMAR1/PWM CH	
33	PG2	入出力	PG2/-/-/DMAR0/PWM CL	
34	PG3	入出力	PG3/DR0PRI/-/SPI0SEL5/TACLK3	
35	PG4	入出力	PG4/RSCLK0/-/TMR5/TACI5	
36	PG5	入出力	PG5/RFS0/-/PPICLK/TMRCLK	
37	PG6	入出力	PG6/TFS0/-/TMR0/PPIFS1	
38	PG7	入出力	PG7/DT0PRI/-/TMR1/PPIFS2	
39	GND		電源グラウンド	
40	GND	_	電源グラウンド	
41	PG8	入出力	PG8/TSCLK0/-/TMR6/TACI6	
42	PG9	入出力	PG9/DT0SEC/UART0TX/TMR4	
43	PG10	入出力	PG10/DR0SEC/UART0RX/TACI4	
44	PG11	入出力	PG11/SPI0SS/AMS2/SPI1SEL5/TACLK2	
45	SPI0_SCK	出力	PG12/SPI0SCK/PPICLK/TMRCLK/PTP_PPS	
46	SPI0_MISO	入力	PG13/SPI0MISO/TMR0/PPIFS1/PTP_CLKOUT	
47	SPI0_MOSI	出力	PG14/SPI0MOSI/TMR1/PPIFS2/PWM TRIP	
			/PTP_AUXIN	

48	NC	_	未接続
49	GND		電源グラウンド
50	GND	_	電源グラウンド
51	PF0	入出力	PF0/-/PPI D0/SPI1SEL2/TACLK6
52	PF1	入出力	PF1/-/PPI D1/PWM AH/TACLK7
53	PF2	入出力	PF2/-/PPI D2/PWM AL
54	PF3	入出力	PF3/-/PPI D3/PWM BH/TACLK0
55	PF4	入出力	PF4/-/PPI D4/PWM BL/TACLK1
56	PF5	入出力	PF5/-/PPI D5/PWM CH/TACI0
57	PF6	入出力	PF6/-/PPI D6/PWM CL/TACI1
58	PF7	入出力	PF7/SPI0SEL1/PPI D7/PWMSYNC
59	GND		電源グラウンド
60	GND		電源グラウンド

図 4 コネクタ結線図

2.7 JTAG ヘッダ

表 6 JTAG ピンヘッダ

ピン番号	信号名	ピン番号	信号名
1	GND	2	EMU#
3	(KEY)	4	GND

5	NC	6	TMS
7	GND	8	TCK
9	GND	10	TRST#
11	GND	12	TDI
13	GND	14	TDO

JTAG ヘッダには、以下の JTAG-ICE を使用することが可能です。

表 7 JTAG-ICE

製品名	備考
Analog Devices	http://www.analog.com/jp/processors-dsp/blackfin/usb-emulator
ADZS-HPUSB-ICE	<u>bf/processors/product.html</u>
Analog Devices	http://www.analog.com/jp/processors-dsp/blackfin/usb-emulator
ADZS-USB-ICE	<u>bf/processors/product.html</u>
Analog Devices	http://www.analog.com/jp/processors-dsp/blackfin/emulator-100/
ADZS-100B-ICE	processors/product.html
gnICE+	http://docs.blackfin.uclinux.org/doku.php?id=hw:jtag:gnice-plus

2.8 SPI フラッシュメモリのプログラムの配置

表 8 アドレスマップ

プログラム	フラッシュメモリのオフセットアドレス
u-boot	0x000000-0x07FFFF (512K バイト)
ucLinux	0x080000 以降

3 u-boot ∠ ucLinux

3.1 UART の接続

SPI フラッシュメモリには u-boot と ucLinux が書き込まれており、電源を投入すると、 u-boot と ucLinux が起動します。コンソールを取得するには、UARTOTX と UARTORX を RS-232C 変換用 IC などに接続してください。PC 側でコンソールの表示やコマンド操作を行うには、TeraTerm などのターミナルソフトをご使用ください。

FTDI 社の TTL-232R-3V3 を接続する場合の例は次の通りです。

http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

図 5 TTL-232R-3V3 との接続例

ターミナルソフトの設定は、以下の通りです。

表 9 ターミナルソフト設定

項目	値
ボー・レート	57600bps
データサイズ	8ビット
パリティ	なし
ストップビット	1ビット
フロー制御	なし

TeraTerm の場合は、次の通りです。

図 6 TeraTerm のシリアルポート設定 ※ポートは、お使いの環境に合せて設定してください。

3.2 u-boot と ucLinux の起動

UART の接続とターミナルソフトの設定が正しければ、電源投入から数秒後に下記のメッセージが表示されます。

図 7 u-boot 起動メッセージ

Hit any key to stop autoboot と表示されているときに、何らかのキーを押すと u-boot のプ

ロンプトが表示されます。そのまま何も押さずにいると、ucLinux が起動します。

図 8 ucLinux 起動メッセージ

3.3 u-boot コマンド

u-boot 起動後、プロンプトが表示されている状態では、コマンドを入力することができます。 help と入力するとコマンドの一覧が表示されます。

コマンドの入力例は以下の通りです。

【ファイルを Kermit で転送する】

Ioadb

【転送した ELF 形式(.dxe)のプログラムを起動する】

bootelf

【転送した LDR 形式(.ldr)のプログラムを起動する】

bootldr

【転送した uxLinux イメージを起動する】

bootm

【SPIフラッシュメモリを転送したファイルで書き換える】

sf probe 2

sf write \${loadaddr} 0x80000 \${filesize}

※0x80000 は、SPI フラッシュのメモリオフセットアドレスです。

【SPIOSEL5 に接続された SD カードからファイルをロードする】

mmc_spi 5

mmc rescan 0

fatload mmc 0:1 \${loadaddr} ファイル名

※SD カードとの配線方法は、拡張基板(UCB-BF512-EXT)の回路図を参照ください。

【時刻を表示する】

date

【時刻・日付を 2013/02/03 10:20 に設定する】

date 020310202013

4 更新履歴

版	更新日	更新内容
第1版	2013/01/04	初版発行
第2版	2013/01/16	P5 電気特性追加
		P4-5 SPI フラッシュメモリ容量修正
		P9 SPI フラッシュメモリのアドレスマップを追加
		P10-P13 u-boot と ucLinux 追加
第3版	2013/01/23	P5 基板外形図更新
第4版	2013/02/05	P6 図3追加
		P13 bootldr の説明追加