ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

8 факультет 1 курс 2 семестр

Московский авиационный институт (национальный исследовательский университет)

Москва, 2020

Определение 1. Пусть $f: \mathrm{U}_{\Delta}(a) \to \mathbf{R}, \mathrm{U}_{\Delta}(a) \subset \mathbf{R}^n$. Функция f имеет в точке a локальный минимум (максимум), если

$$\exists U_{\delta}(a) \subset U_{\Delta}(a): \ \forall x \in \overset{\circ}{U}_{\delta}(a) \Rightarrow f(x) \geqslant f(a) \ \ (f(x) \leqslant f(a)).$$

Если неравенства строгие, то *a* — строгий локальный минимум (максимум).

Теорема 1 [Необходимое условие экстремума]. Пусть $f: \mathrm{U}_{\Delta}(a) \to \mathbf{R}, \ \mathrm{U}_{\Delta}(a) \subset \mathbf{R}^n$. Если a является точкой локального экстремума функции f(x) и в этой точке существует частная производная f'_{x_i} , то она равна нулю.

Доказательство. Пусть $a=\begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}^T$ и

$$\varphi(x_i) = f(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n).$$

Тогда

$$\varphi'(a_i) = f'_{x_i}(a)$$

и функция $\varphi(x_i)$ имеет в точке a_i локальный экстремум. Поэтому

$$\varphi'(a_i)=0.$$

Теорема 2 [Достаточное условие экстремума]. Пусть $f \in C^2$, $f: U_{\Delta}(a) \to \mathbf{R}$, $U_{\Delta}(a) \subset \mathbf{R}^n$ и $f'_{x_i}(a) = 0, \ i = 1, 2, ..., n$. Если квадратичная форма

$$A(h_1,\ldots,h_n) = \sum_{i,j=1}^n f''_{x_ix_j}(a)h_ih_j = d^2f(a)$$

положительно определена (отрицательно определена), то a — точка строгого локального минимума (соответственно строгого локального максимума); если же квадратичная форма $A(h_1,...,h_n)$ является неопределенной, то в точке a нет экстремума.

Доказательство. Обозначим

$$\delta = \sqrt{\sum_{i=1}^{n} h_i^2}, \quad a = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}, \quad h = \begin{pmatrix} h_1 & \dots & h_n \end{pmatrix}^T$$

По формуле Тейлора, с учетом $f_{x_i}'(a)=0, \ i=1,2,...,n$,

$$f(a+h)-f(a)=rac{1}{2!}\sum_{i,j=1}^n f_{x_ix_j}^{\prime\prime}(a+\theta h)h_ih_j=$$

$$=\frac{1}{2!}\sum_{i,j=1}^{n}f_{x_{i}x_{j}}''(a)h_{i}h_{j}+\frac{1}{2!}\sum_{i,j=1}^{n}\left(f_{x_{i}x_{j}}''(a+\theta\mathrm{h})-f_{x_{i}x_{j}}''(a)\right)h_{i}h_{j}=$$

$$=\frac{\delta^2}{2!}\left(\sum_{i,j=1}^n f_{x_ix_j}''(a)\frac{h_i}{\delta}\frac{h_j}{\delta}+\sum_{i,j=1}^n \left(f_{x_ix_j}''(a+\theta\mathrm{h})-f_{x_ix_j}''(a)\right)\frac{h_i}{\delta}\frac{h_j}{\delta}\right)$$

Обозначим

$$\varepsilon(\mathbf{h}) = \varepsilon(h_1, \dots, h_n) = \sum_{i,j=1}^n \left(f_{x_i x_j}''(\mathbf{a} + \theta \mathbf{h}) - f_{x_i x_j}''(\mathbf{a}) \right) \frac{h_i}{\delta} \frac{h_j}{\delta}$$

Так как $f \in \mathcal{C}^2$ и $rac{|h_i|}{\delta} \leqslant 1$, то

$$\lim_{h\to 0}\varepsilon(h)=0.$$

Итак,

$$f(a+h)-f(a) = \frac{\delta^2}{2!} \left(\sum_{i,j=1}^n f_{x_i x_j}''(a) \frac{h_i}{\delta} \frac{h_j}{\delta} + \varepsilon(h) \right) = \frac{\delta^2}{2!} \left(A \left(\frac{h}{\delta} \right) + \varepsilon(h) \right)$$

Заметим, что квадратичная форма

$$F(y_1,\ldots,y_n)=\sum\limits_{i,j=1}^nf_{x_ix_j}(a)y_iy_j$$
 непрерывна на сфере

$$S = \{ y \in \mathbf{R}^n : ||y|| = 1 \},$$

которая является ограниченным, замкнутым множеством (компактом). Поэтому (по теореме Вейерштрасса) достигает на нем своего наименьшего *т* и наибольшего *т* значений. Кроме того,

$$rac{\mathrm{h}}{\delta} \in \mathcal{S}, \;$$
т.к. $\delta = \|\mathrm{h}\|.$

 \bigstar Пусть форма $A(h_1,...,h_n)$ положительно определена. Тогда

$$0 < m \leqslant M$$
.

Так как

$$\lim_{h\to 0}\varepsilon(h)=0,$$

то

$$\exists \delta > 0 : \forall h, \|h\| < \delta \Rightarrow |\varepsilon(h)| < m.$$

Следовательно, при $\|\mathbf{h}\| < \delta$

$$f(a+h)-f(a)=\frac{\delta^2}{2!}\left(\underbrace{\sum_{i,j=1}^n f_{x_ix_j}''(a)\frac{h_i}{\delta}\frac{h_j}{\delta}}_{\geqslant m}+\underbrace{\varepsilon(h)}_{\in(-m;m)}\right)>0.$$

Следовательно,

$$f(a+h)>f(a) \Rightarrow a$$
 – строгий лок. мин.

 $\bigstar \bigstar$ Форма $A(h_1,...,h_n)$ отрицательно определена. Аналогично $(m\leqslant M<0).$

 $\bigstar \bigstar \bigstar$ Пусть $A(h_1,...,h_n)$ является неопределенной квадратичной формой. Тогда

$$m < 0 < M$$
.

Пусть

$$e_m, e_M \in S: A(e_m) = m, A(e_M) = M$$

и $h=t\cdot e_m,\; t>0$. Тогда $\delta=\|\mathrm{h}\|=t$ и

$$f(a_1 + h_1, ..., a_n + h_n) - f(a) = \frac{\delta^2}{2!} \left(A\left(\frac{h}{\delta}\right) + \varepsilon(h) \right) \bigg|_{h=t \cdot e_m} =$$

$$= \frac{1}{2!} t^2(m + \varepsilon(h))$$

Так как m < 0 и $\lim_{\mathrm{h} o 0} arepsilon(\mathrm{h}) = 0$, то

$$\exists \delta_1 > 0: \quad \forall t \in (0; \delta_1) \Rightarrow f(a + t \cdot e_m) - f(a) < 0.$$

Аналогично для $h=t\cdot e_M,\ t>0$

$$\exists \delta_2 > 0: \quad \forall t \in (0; \delta_2) \Rightarrow f(a + t \cdot e_M) - f(a) > 0.$$

Следовательно, при любом $\delta < \min(\delta_1, \delta_2)$

$$\exists x, y \in U_{\delta}(a): f(x) > f(a), f(y) < f(a)$$

Значит, а — не экстремум. ■

Пример 1. Исследовать на экстремум функцию

$$f(x, y, z) = -x^2 - y^2 - 10z^2 + 4xz + 3yz - 2x - y + 13z + 5.$$

Решение. Решим систему уравнений

$$\begin{cases} f'_x = -2x + 4z - 2 = 0, \\ f'_y = -2y + 3z - 1 = 0, \\ f'_z = -20z + 4x + 3y + 13 = 0, \end{cases} \Rightarrow \begin{cases} x = 1, \\ y = 1, \\ z = 1. \end{cases}$$

Итак, $a=\begin{pmatrix} 1 & 1 \end{pmatrix}'$. Вычислим частные производные 2-го порядка в точке $\mathsf{M}(1,1,1)$

$$f''_{x,x} = -2$$
, $f''_{x,y} = 0$, $f''_{x,z} = 4$, $f''_{y,x} = 0$, $f''_{y,y} = -2$, $f''_{y,z} = 3$, $f''_{z,z} = -20$.

Отсюда

$$d^2f(a) = -2dx^2 - 2dy^2 - 20dz^2 + 8dxdz + 6dydz$$

Матрица формы:

$$\begin{pmatrix} -2 & 0 & 4 \\ 0 & -2 & 3 \\ 4 & 3 & -20 \end{pmatrix}$$

Проверяем критерий Сильвестра:

$$\Delta_1 = -2 < 0, \quad \Delta_2 = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = 4 > 0,$$

$$\Delta_3 = \begin{vmatrix} -2 & 0 & 4 \\ 0 & -2 & 3 \\ 4 & 3 & -20 \end{vmatrix} = -30 < 0.$$

Вывод: Форма отрицательно определенная, *a* есть точка максимума функции f и $f_{\max} = f(1,1,1) = 10$.

Пример 2. Исследовать на экстремум функцию u(x,y), заданную неявно уравнением

$$x^2 + y^2 + u^2 - 4x - 6y - 4u + 8 = 0$$
, $u > 2$.

Решение. Необходимое условие экстремума

$$\begin{cases} 2x + 2uu'_x - 4 - 4u'_x = 0; \\ 2y + 2uu'_y - 6 - 4u'_y = 0. \end{cases} \Rightarrow \begin{cases} u'_x = \frac{2x - 4}{4 - 2u} = 0; \\ u'_y = \frac{6 - 2y}{2u - 4} = 0. \end{cases}$$

Отсюда x = 2, y = 3. Из уравнения

$$x^2 + y^2 + u^2 - 4x - 6y - 4u + 8 = 0$$

находим u = 5.

Находим вторые частные производные:

$$u_{x,x}''(2,3) = \frac{2(4-2u)+2(2x-4)u_x'}{(4-2u)^2} \bigg|_{x=2,y=3} = -\frac{1}{3}.$$

$$u_{y,y}''(2,3) = \frac{-2(2u-4)-2(6-2y)u_y'}{(2u-4)^2} \bigg|_{x=2,y=3} = -\frac{1}{3}.$$

$$u_{x,y}''(2,3) = \frac{-(2x-4)(-2u_y')}{(4-2u)^2} \bigg|_{x=2,y=3} = 0.$$

Отсюда

$$d^2u(2,3)=-rac{1}{3}(dx^2+dy^2)<0\Rightarrow (2,3)$$
 локальный максимум.

Пусть $G\subset \mathbf{R}^n$ — открытое множество и $f:G\to \mathbf{R},\,g_i:G\to \mathbf{R},\,i=1,\ldots,s.$

$$X = \{x \in G : g_i(x) = 0, i = 1, 2, ..., s\}$$

Определение 2. Точка $\mathbf{a} \in X$ называется точкой локального условного экстремума функции $f(\mathbf{x})$ относительно ограничений (уравнений связи) $g_i(\mathbf{x}) = 0, \ i = 1, \dots, s$, если она является точкой обычного экстремума этой функции, рассматриваемой только на множестве X.

Вводим в рассмотрение функцию Лагранжа:

$$L(\mathbf{x}, \lambda) = \lambda_0 f(\mathbf{x}) + \sum_{j=1}^s \lambda_j g_i(\mathbf{x}), \quad \lambda = \begin{pmatrix} \lambda_0 & \dots & \lambda_s \end{pmatrix}^T.$$

Теорема 3. Пусть ${\bf a}$ — точка локального условного экстремума функции f относительно ограничений $g_i(x)=0,\ i=1,\ldots,m.$ Если функции $f,\ g_i,\ i=1,2,\ldots,s$ принадлежат $C^1,$ то существуют числа $\lambda_i^*,\ i=0,1,\ldots,s,$ называемые множителями Лагранжа, такие, что $\sum\limits_{i=0}^s (\lambda_i^*)^2 \neq 0$ и

$$\frac{\partial L}{\partial x_i}(\mathbf{a}, \lambda^*) = \lambda_0^* \frac{\partial f}{\partial x_i}(\mathbf{a}) + \sum_{i=1}^s \lambda_i^* \frac{\partial g_i}{\partial x_i}(\mathbf{a}) = 0.$$

Замечание. Если в точке a градиенты $\nabla g_i = \begin{pmatrix} \frac{\partial g_i}{\partial x_1} & \dots & \frac{\partial g_i}{\partial x_n} \end{pmatrix}^I$ линейно независимы, то $\lambda_0^* \neq 0$. Поэтому, если $\lambda_i' = \frac{\lambda_i^*}{\lambda_0^*}$, то

$$\frac{\partial L}{\partial x_i}(\mathbf{a}, \lambda') = \frac{\partial f}{\partial x_i}(\mathbf{a}) + \sum_{j=1}^{s} \lambda'_i \frac{\partial g_i}{\partial x_i}(\mathbf{a}) = 0.$$

Теорема 4. Пусть f, g_i , $i=1,\ldots,s$ класса C^2 и

$$\operatorname{rg}\begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial g_s}{\partial x_1} & \cdots & \frac{\partial g_s}{\partial x_n} \end{pmatrix} = s, \ \forall x \in G.$$

Пусть $\mathrm{a} \in X$ и $L'_{x_i}(\mathrm{a}) = 0$, $i = 1, \ldots, n$, где

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{j=1}^{s} \lambda_{i} g_{i}(\mathbf{x}).$$

Если $d^2L(\mathbf{a})$ является положительно (отрицательно) определенной квадраточной формой переменных dx_1,\ldots,dx_n , при условии, что они удовлетворяют равенствам

$$\sum_{i=1}^{n} \frac{\partial g_{j}}{\partial x_{i}}(\mathbf{a}) \cdot dx_{i} = 0, \quad j = 1, \dots, s,$$

то ${\bf a}$ — точка условного строгого минимума (максимума) функции f относительно ограничений $g_i(x)=0,\ i=1,\ldots,s.$ Если $d^2L({\bf a})$ знаконеопределенная, то ${\bf a}$ не является экстремумом.

Пример 3. Найти экстремум функции $z = e^{-3xy}$ при условии $x + \frac{y}{2} = 1$.

Решение. Составим функцию Лагранжа

$$L(x, y) = e^{-3xy} + \lambda(x + \frac{y}{2} - 1).$$

Отсюда

$$\begin{cases} \frac{\partial L}{\partial x} = -3ye^{-3xy} + \lambda = 0; \\ \frac{\partial L}{\partial y} = -3xe^{-3xy} + \frac{\lambda}{2} = 0, \\ x + \frac{y}{2} = 1. \end{cases}$$

Из системы находим $x = \frac{1}{2}$, y = 1, $\lambda = 3e^{-\frac{3}{2}}$.

Найдём частные производные второго порядка:

$$\begin{split} \frac{\partial^2 L}{\partial x^2} &= 9y^2 e^{-3xy}, \quad \frac{\partial^2 L}{\partial y^2} = 9x^2 e^{-3xy}; \\ \frac{\partial^2 L}{\partial x \partial y} &= -3e^{-3xy} + 9xye^{-3xy}, \end{split}$$

Так как

$$dx + \frac{dy}{2} = 0, \Rightarrow dy = -2dx,$$

то

$$d^{2}L\left(\frac{1}{2},1\right) = 9y^{2}e^{-3xy} \left| dx^{2} + 2\left(-3e^{-3xy} + 9xye^{-3xy}\right) \right|_{\left(\frac{1}{2},1\right)} dxdy + 9x^{2}e^{-3xy}$$

$$+9x^{2}e^{-3xy} \left| dy^{2} = 9e^{-3/2}dx^{2} - 6e^{-3/2}dx^{2} + 9e^{-3/2}dx^{2} = 0$$

$$+9x^2e^{-3xy}$$
 $dy^2=9e^{-3/2}dx^2-6e^{-3/2}dx^2+9e^{-3/2}dx^2=$ $=12e^{-3/2}dx^2>0$ \Rightarrow условный минимум.