מרצה: רון ליפשיץ מתרגל: נועם רימוק

תרגיל בית 3

שאלה 1 – חלקיק בשדה א"מ

- א. הראו שמהמשוואה $m \frac{d U^\mu}{d au} = rac{q}{c} F^{\mu
 u} U_
 u$ שפיתחנו בכיתה נובעים כוח לורנץ ומשוואת העבודה של $m \frac{d U^\mu}{d au} = rac{q}{c} F^{\mu
 u} U_
 u$ השדה הא״מ. קבעו לגבי כל אחד מהשדות החשמלי והמגנטי האם הוא מבצע עבודה?
- ב. מצאו את מסלול התנועה של חלקיק יחסותי בשדה מגנטי קבוע, וחשבו את הקירוב הלא-יחסותי. מה ההבדל בין שני המקרים?

שאלה 2 – הטנזור הדואלי

- א. הראו שהטנזור הא״מ הדואלי $F^{\mu\nu}=rac{1}{2}\mathcal{E}^{\mu
 u
 ho\sigma}F_{
 ho\sigma}$ מתקבל מהטנזור הא״מ הדואלי ההחלפה E o B,B o -E
 - F^* ב. הראו ש- $\mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B}$ ב. הראו
- ג. הראו ש- $(F^*)^{\mu\nu}F_{\mu\nu}$ הוא נגזרת שלמה, או במילים אחרות 4-דיברגנס של 4-וקטור, כלומר שקיים $F^{*\mu\nu}F_{\mu\nu}=\partial^\mu f_\mu$ כך ש: f_μ
- יני את משוואות אוילר לגראנז' (עם מקדם כלשהו), ומצאו את משוואות אוילר לגראנז' (F^*) לפעולה בכל זאת (עם מקדם כלשהו), ומצאו את לפעולה בכל זאת (θ^*) לפעולה בכל זאת מקדם מקדם מקדים לפעולה מזהות זו? החדשות. הוכיחו באמצעותן כי θ^*

שאלה 3 – כיול

נתון 4-פוטנציאל $A^{\mu}=A^{\mu}+\partial^{\mu}\chi$ ברצוננו לבצע טרנספורמציית כיול לפוטנציאל חדש $A'^{\mu}=A^{\mu}+\partial^{\mu}\chi$ מצאו (כתלות ב- A'^{μ}) כדי שיתקבל:

- $ec{
 abla} \cdot ec{A}' = 0$ א. כיול קולון שבו
- $\partial_{\mu}{A'}^{\mu}=0$ ב. כיול לורנץ שבו

מרצה: רון ליפשיץ מתרגל: נועם רימוק

שאלה 4 – פעולה פחות פשוטה

בעולם דמיוני שבו רק שני ממדים מרחביים, קיים שדה א״מ שמתואר ע״י הפעולה הבאה:

$$S = \int \mathcal{L}dVdt$$

$$\mathcal{L} = -\frac{1}{c}A_{\mu}J^{\mu} - \frac{1}{16\pi}F_{\mu\nu}F^{\mu\nu} + k\mathcal{E}^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho}$$

. כאשר כעת $\mu = 0.1.2$ וו $\mu = 0.1.2$

- א. האם הפעולה נשמרת תחת טרנספורמציות כיול?
- ?האם עדיין מתקיים עקרון הסופרפוזיציה? במונחי במונחי אוילר-לגראנג׳ החדשות במונחי י $F^{\mu
 u}$