Quiz_C3W4

Congratulations! You passed!

 $\begin{array}{lll} \mbox{Grade} & \mbox{Latest Submission} & \mbox{To pass } 80\% \mbox{ or} \\ \mbox{received } 100\% & \mbox{Grade } 100\% & \mbox{higher} \end{array}$

0% or

1.	When predicting words to generate poetry, the more words predicted the more likely it will end up gibberish. Why?
	O Because the probability of prediction compounds, and thus increases overall
	O It doesn't, the likelihood of gibberish doesn't change
	Because the probability that each word matches an existing phrase goes down the more words you create
	O Because you are more likely to hit words not in the training set
	○ Correct That's right!
2.	What is a major drawback of word-based training for text generation instead of character-based generation?
	Character based generation is more accurate because there are less characters to predict
	Because there are far more words in a typical corpus than characters, it is much more memory intensive
	There is no major drawback, it's always better to do word-based training
	Word based generation is more accurate because there is a larger body of words to draw from
3.	What are the critical steps in preparing the input sequences for the prediction model?
	✓ Pre-padding the subprhases sequences.
	○ Correct You've got it!
	Converting the seed text to a token sequence using texts_to_sequences.
	☐ Splitting the dataset into training and testing sentences.
	Generating subphrases from each line using n_gram_sequences.

4.	In natural language processing, predicting the next item in a sequence is a classification problem. Therefore, after creating inputs and labels from the subphrases, we one-hot encode the labels. What function do we use to create one-hot encoded arrays of the labels?
	O tf.keras.utils.img_to_array
	tf.keras.utils.SequenceEnqueuer
	tf.keras.utils.to_categorical
	O tf.keras.preprocessing.text.one_hot
	✓ Correct Nailed it!
5.	True or False: When building the model, we use a sigmoid activated Dense output layer with one neuron per word that lights up when we predict a given word.
	O True
	False