Introduction to Nonlinear Control Systems THE FURUTA PENDULUM

Enes USLU uslu.enes1@gmail.com

Content Table

- 1. Introduction
- 2. Modeling of the system
 - 2.1 Energy of the system
 - 2.2 Euler-Lagrange dynamic equations
 - 2.3 Passivity properties of the Furuta pendulum
- 3. Controllability of the linearized model
- 4. Stabilization algorithm
- 5. Stability analysis
- 6. Simulation results
- 7. Conclusions
- 8. References

1 Introduction

- Furuta Pendulum System
 - -Direct-drive motor
 - -Pendulum (attached to rotating shaft)
- Developed by K. Furuta at Tokyo Institute of Technology
- Underactuated mechanical system
 -Angular acceleration cannot be controlled
- Conventional inverted pendulum -movement limitation

Figure 1. Furuta Pendulum

2 Modeling of the System

Figure 2. Furuta Pendulum System

I_0	Inertia of the arm
L_0	Total length of the arm
m_1	Mass of the pendulum
$\overline{l_1}$	Distance to the center of gravity of the pendulum
J_1	Inertia of the pendulum around its center of gravity
θ_0	Rotational angle of the arm
$\overline{ heta_1}$	Rotational angle of the pendulum
τ	Input torque applied on the arm

Table 1. Notations

2.1 Energy of the system

The arm

The kinetic energy of the arm is given by: $K_0 = \frac{1}{2} I_0 \dot{\theta_0}^2$

The pendulum

The kinetic energy of the pendulum is given by:

Kinetic energy Tangential Velocity
$$K_1 = \frac{1}{2}J_1\dot{\theta_1}^2 + \frac{1}{2}m_1\left[\left\{\frac{d}{dt}(L_0\sin\theta_0 + l_1\sin\theta_1\cos\theta_0)\right\}^2 + \left\{\frac{d}{dt}(L_0\cos\theta_0 - l_1\sin\theta_1\sin\theta_0)\right\}^2 + \left\{\frac{d}{dt}(l_1\cos\theta_1)\right\}^2\right]$$
Radial Velocity Vertical Velocity

$$K_{1} = \frac{1}{2}J_{1}\dot{\theta_{1}}^{2} + \frac{1}{2}m_{1}L_{0}^{2}\dot{\theta_{0}}^{2} + \frac{1}{2}m_{1}l_{1}^{2}\dot{\theta_{1}}^{2} + \frac{1}{2}m_{1}l_{1}^{2}\dot{\theta_{1}}^{2} + \frac{1}{2}m_{1}l_{1}^{2}\sin^{2}\theta_{1}\dot{\theta_{0}}^{2} + m_{1}L_{0}l_{1}\cos\theta_{1}\dot{\theta_{0}}\dot{\theta_{1}}$$

$$P_1 = m_1 g l_1 (\cos \theta_1 - 1)$$

Table 1. Notations

I_0	Inertia of the arm
L_0	Total length of the arm
m_1	Mass of the pendulum
l_1	Distance to the center of gravity of the pendulum
J_1	Inertia of the pendulum around its center of gravity
θ_0	Rotational angle of the arm
θ_1	Rotational angle of the pendulum
τ	Input torque applied on the arm

Figure 2. Furuta Pendulum System

2.2 Euler – Lagrange dynamic equations

Euler-Lagrange formulation:
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta_i}}\right) - \frac{\partial L}{\partial \theta_i} = F_i$$
 where $L = K - P$, $K = K_0 - K_1$ and $P = P_1$

$$\begin{pmatrix} \frac{\partial L}{\partial \dot{\theta_0}} \end{pmatrix} = \left[I_0 + m_1 (L_0^2 + l_1^2 \sin^2 \theta_1) \right] \dot{\theta_0} + m_1 l_1 L_0 \cos \theta_1 \dot{\theta_1}
\begin{pmatrix} \frac{\partial L}{\partial \theta_0} \end{pmatrix} = 0
\begin{pmatrix} \frac{\partial L}{\partial \dot{\theta_1}} \end{pmatrix} = m_1 l_1 L_0 \cos \theta_1 \dot{\theta_0} + \left[J_1 + m_1 l_1^2 \right] \dot{\theta_1}
\begin{pmatrix} \frac{\partial L}{\partial \theta_1} \end{pmatrix} = m_1 l_1^2 \sin \theta_1 \cos \theta_1 \dot{\theta_0}^2 - m_1 l_1 L_0 \sin \theta_1 \dot{\theta_1} \dot{\theta_0} + m_1 g l_1 \sin \theta_1$$

the system is given by

$$\tau = \left[I_0 + m_1 (L_0^2 + l_1^2 \sin^2 \theta_1) \right] \ddot{\theta}_0 + m_1 l_1 L_0 \cos \theta_1 \ddot{\theta}_1 + m_1 l_1^2 \sin(2\theta_1) \dot{\theta}_0 \dot{\theta}_1 - m_1 l_1 L_0 \sin \theta_1 \dot{\theta}_1^2 0 = m_1 l_1 L_0 \cos \theta_1 \ddot{\theta}_0 + \left[J_1 + m_1 l_1^2 \right] \ddot{\theta}_1 - m_1 l_1^2 \sin \theta_1 \cos \theta_1 \dot{\theta}_0^2 - m_1 g l_1 \sin \theta_1$$

2.2 Euler – Lagrange dynamic equations

$$\tau = \left[I_0 + m_1 (L_0^2 + l_1^2 \sin^2 \theta_1) \right] \ddot{\theta_0} + m_1 l_1 L_0 \cos \theta_1 \ddot{\theta_1}$$
$$+ m_1 l_1^2 \sin(2\theta_1) \dot{\theta_0} \dot{\theta_1} - m_1 l_1 L_0 \sin \theta_1 \dot{\theta_1}^2$$

$$0 = m_1 l_1 L_0 \cos \theta_1 \ddot{\theta_0} + \left[J_1 + m_1 l_1^2 \right] \ddot{\theta_1} \\ -m_1 l_1^2 \sin \theta_1 \cos \theta_1 \dot{\theta_0}^2 - m_1 g l_1 \sin \theta_1$$

Can be written as $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = F$

$$q = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} \qquad D(q) = \begin{bmatrix} I_0 + m_1(L_0^2 + l_1^2 \sin^2 \theta_1) & m_1 l_1 L_0 \cos \theta_1 \\ m_1 l_1 L_0 \cos \theta_1 & J_1 + m_1 l_1^2 \end{bmatrix} \qquad g(q) = \begin{bmatrix} 0 \\ -m_1 g l_1 \sin \theta_1 \end{bmatrix}$$

$$g(q) = \left[egin{array}{c} 0 \ -m_1 g l_1 \sin heta_1 \end{array}
ight]$$

$$C(q,\dot{q}) = \begin{bmatrix} \frac{1}{2}m_1l_1^2\sin(2\theta_1)\dot{\theta_1} & -m_1l_1L_0\sin\theta_1\dot{\theta_1} + \frac{1}{2}m_1l_1^2\sin(2\theta_1)\dot{\theta_0} \\ -\frac{1}{2}m_1l_1^2\sin(2\theta_1)\dot{\theta_0} & 0 \end{bmatrix} \qquad F = \begin{bmatrix} \tau \\ 0 \end{bmatrix}$$

$$F = \left[egin{array}{c} au \ 0 \end{array}
ight]$$

$$d_{11} = I_0 + m_1(L_0^2 + l_1^2 \sin^2 \theta_1) \ge I_0 + m_1 L_0^2 > 0$$

$$\det(D(q)) = (I_0 + m_1(L_0^2 + l_1^2 \sin^2 \theta_1))(J_1 + m_1 l_1^2) - m_1^2 l_1^2 L_0^2 \cos^2 \theta_1$$

$$= (I_0 + m_1 l_1^2 \sin^2 \theta_1)(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2 + m_1^2 l_1^2 L_0^2 \sin^2 \theta_1 > 0$$

D(q): symmetric and positive definite for all a

2.2 Euler – Lagrange dynamic equations

$$D(q) = \begin{bmatrix} I_0 + m_1(L_0^2 + l_1^2 \sin^2 \theta_1) & m_1 l_1 L_0 \cos \theta_1 \\ m_1 l_1 L_0 \cos \theta_1 & J_1 + m_1 l_1^2 \end{bmatrix} \quad C(q, \dot{q}) = \begin{bmatrix} \frac{1}{2} m_1 l_1^2 \sin(2\theta_1) \dot{\theta}_1 & -m_1 l_1 L_0 \sin \theta_1 \dot{\theta}_1 + \frac{1}{2} m_1 l_1^2 \sin(2\theta_1) \dot{\theta}_0 \\ -\frac{1}{2} m_1 l_1^2 \sin(2\theta_1) \dot{\theta}_0 & 0 \end{bmatrix}$$

$$\dot{D}(q)-2C(q,\dot{q})=m_1l_1(l_1\sin(2 heta_1)\dot{ heta_0}-L_0\sin heta_1\dot{ heta_1})\left[egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight]$$
 skew-symmetric matrix

Passivity property of the Furuta Pendulum $z^T(\dot{D}(q) - 2C(q,\dot{q}))z = 0$ $\forall z$

Potential energy of the system: $P = m_1 g l_1 (\cos \theta_1 - 1)$

$$g(q) = rac{\partial P}{\partial q} = \left[egin{array}{c} 0 \ -m_1 g l_1 \sin heta_1 \end{array}
ight]$$

2.3 Passivity properties of the Furuta Pendulum

The total energy of the system:

$$E = K(q,\dot{q}) + P(q) = \frac{1}{2}\dot{q}^TD(q)\dot{q} + m_1gl_1(\cos\theta_1 - 1)$$
 Using $g(q) = \frac{\partial P}{\partial q} = \begin{bmatrix} 0 \\ -m_1gl_1\sin\theta_1 \end{bmatrix}$ \dot{E} can be found as:

$$\dot{E} = \dot{q}^T D(q) \ddot{q} + \frac{1}{2} \dot{q}^T \dot{D}(q) \dot{q} + \dot{q}^T g(q)$$
 Substitute $D(q)$ from $D(q) \ddot{q} + C(q, \dot{q}) \dot{q} + g(q) = F$

$$=\dot{q}^T(-C(q,\dot{q})\dot{q}-g(q)+F)+\tfrac{1}{2}\dot{q}^T\dot{D}(q)\dot{q}+\dot{q}^Tg(q)$$
 Substitute $\dot{D}(q)$ from $\dot{D}(q)-2C(q,\dot{q})=m_1l_1(l_1\sin(2\theta_1)\dot{\theta_0}-L_0\sin\theta_1\dot{\theta_1})\begin{bmatrix}0&-1\\1&0\end{bmatrix}$

$$\dot{E} = \dot{q}^T F = \dot{\theta}_0 \tau$$

2.3 Passivity properties of the Furuta Pendulum

$$\dot{E}=\dot{q}^TF=\dot{\theta}_0 au$$
 Integrating both sides, we obtain; $\int_0^t\dot{\theta}_0 au dt=E(t)-E(0)\geq -2m_1gl_1-E(0)$ $\dot{\theta}_0$: Output $\theta_0\in[0,2\pi[$

Subset of the system $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = F$

$$(\theta_0, \dot{\theta}_0, \theta_1, \dot{\theta}_1) = (*, 0, 0, 0)$$
: Unstable equilibrium set points (Total energy: $E(q, \dot{q}) = 0$) $(\theta_0, \dot{\theta}_0, \theta_1, \dot{\theta}_1) = (*, 0, \pi, 0)$: Stable equilibrium set points (Total energy: $E(q, \dot{q}) = -2m_1gl_1$)

Control objective: Stabilize the system around unstable equilibrium point to achieve

$$heta_0 = 0$$
 Rotational angle of the arm $heta_1 = 0$ Rotational angle of the pendulum

Bring pendulum to its upper position and the arm angle to zero simultaneously.

3 Controllability of the linearized model

When pendulum is in **neighborhood** of **top unstable equilibrium** position **a linear controller** can **stabilize** the pendulum. In order to implement a **balancing linear controller**; **linearize the system** about the **top equilibrium position**

$$\tau = [I_0 + m_1(L_0^2 + l_1^2 \sin^2 \theta_1)] \ddot{\theta_0} + m_1 l_1 L_0 \cos \theta_1 \ddot{\theta_1} \qquad 0 = m_1 l_1 L_0 \cos \theta_1 \ddot{\theta_0} + [J_1 + m_1 l_1^2] \ddot{\theta_1} + m_1 l_1^2 \sin(2\theta_1) \dot{\theta_0} \dot{\theta_1} - m_1 l_1 L_0 \sin \theta_1 \dot{\theta_1}^2 \qquad -m_1 l_1^2 \sin \theta_1 \cos \theta_1 \dot{\theta_0}^2 - m_1 g l_1 \sin \theta_1$$

The general non-linear equations are rewritten.

$$\ddot{\theta}_{0} = \frac{1}{\det(D(q))} \left[(J_{1} + m_{1}l_{1}^{2})\tau - (J_{1} + m_{1}l_{1}^{2})m_{1}l_{1}^{2}\sin(2\theta_{1})\dot{\theta_{0}}\dot{\theta_{1}} - \frac{1}{2}m_{1}^{2}l_{1}^{3}L_{0}\cos\theta_{1}\sin(2\theta_{1})\dot{\theta_{0}}^{2} + (J_{1} + m_{1}l_{1}^{2})m_{1}l_{1}L_{0}\sin\theta_{1}\dot{\theta_{1}}^{2} - m_{1}^{2}l_{1}^{2}L_{0}g\cos\theta_{1}\sin\theta_{1} \right]$$

$$\ddot{\theta}_{1} = \frac{1}{\det(D(q))} \left[-(m_{1}l_{1}L_{0}\cos\theta_{1})\tau - m_{1}^{2}l_{1}^{2}L_{0}^{2}\sin\theta_{1}\cos\theta_{1}\dot{\theta}_{1}^{2} + m_{1}l_{1}^{2}\sin(2\theta_{1})\dot{\theta}_{0} \left[m_{1}l_{1}L_{0}\cos\theta_{1}\dot{\theta}_{1} + \frac{1}{2}(I_{0} + m_{1}L_{0}^{2} + l_{1}^{2}\sin^{2}\theta_{1})\dot{\theta}_{0} \right] + (I_{0} + m_{1}L_{0}^{2} + l_{1}^{2}\sin^{2}\theta_{1})m_{1}l_{1}g\sin\theta_{1} \right]$$

3 Controllability of the linearized model

Linearizing the non-linear equations about the top unstable equilibrium point;

$$\frac{d}{dt} \begin{bmatrix} \theta_0 \\ \dot{\theta_0} \\ \theta_1 \\ \dot{\theta}_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & & & 0 \\ 0 & 0 & \frac{-m_1^2 l_1^2 L_0 g}{I_0 (J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} & 0 \\ 0 & 0 & 0 & & & 1 \\ 0 & 0 & \frac{(I_0 + m_1 L_0^2) m_1 l_1 g}{I_0 (J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} & 0 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \dot{\theta_0} \\ \theta_1 \\ \dot{\theta}_1 \end{bmatrix} + \begin{bmatrix} 0 & & & B \\ \frac{J_1 + m_1 l_1^2}{I_0 (J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} \\ 0 & & \frac{-m_1 l_1 L_0}{I_0 (J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} \end{bmatrix} \tau = AX + B\tau$$

$$B = \begin{bmatrix} 0 \\ \frac{J_1 + m_1 l_1^2}{I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} \\ 0 \\ \frac{-m_1 l_1 L_0}{I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} \end{bmatrix} AB = \begin{bmatrix} \frac{J_1 + m_1 l_1^2}{I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} \\ 0 \\ \frac{-m_1 l_1 L_0}{I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2} \end{bmatrix} A^2B = \begin{bmatrix} 0 \\ \frac{m_1^3 l_1^3 L_0^2 g}{(I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2)^2} \\ 0 \\ \frac{-m_1^2 l_1^2 L_0 g(I_0 + m_1 L_0^2)}{(I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2)^2} \end{bmatrix} A^3B = \begin{bmatrix} \frac{m_1^3 l_1^3 L_0^2 g}{(I_0(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2)^2} \\ 0 \\ 0 \end{bmatrix}$$

$$\det (B|AB|A^2B|A^3B) = \frac{m_1^4l_1^4L_0^2g^2}{(I_0(J_1+m_1l_1^2)+J_1m_1L_0^2)^4} > 0$$
 The linearized system is controllable

Full state feedback can successfully stabilize the system in a neighborhood of its unstable equilibrium point $(f = -K^T X)$

$$E = K(q, \dot{q}) + P(q) = \frac{1}{2}\dot{q}^T D(q)\dot{q} + m_1 g l_1(\cos\theta_1 - 1)$$

If:
$$\dot{\theta}_0 = 0$$
 and $E(q, \dot{q}) = 0$ then;

$$rac{1}{2}(J_1+m_1l_1^2)\dot{ heta}_1^2=m_1gl_1(1-\cos heta_1) \hspace{0.5cm}\dot{ heta}_1=0$$
 only when $heta_1=0$

Means the pendulum angular position moves clockwise or counter-clockwise until it reaches the equilibrium point $(\theta_1, \dot{\theta}_1) = (0,0)$ which solves "swinging up" the pendulum. Control must eventually be switched to a controller that guarantees (local) asymptotic stability of this equilibrium.

Lyapunov function candidate to achieve $\dot{\theta}_0 = 0$, $\theta_0 = 0$ and $E(q,\dot{q}) = 0$ $V(q,\dot{q}) = \frac{k_E}{2}E(q,\dot{q})^2 + \frac{k_\omega}{2}\dot{\theta}_0^2 + \frac{k_\theta}{2}\theta_0^2$ $V(q,\dot{q})$ is a positive semi-definite. Using $\dot{E} = \dot{q}^T F = \dot{\theta}_0 \tau$

$$\dot{V} = k_E E \dot{E} + k_\omega \dot{\theta}_0 \ddot{\theta}_0 + k_\theta \theta_0 \dot{\theta}_0 = k_E E \dot{\theta}_0 \tau + k_\omega \dot{\theta}_0 \ddot{\theta}_0 + k_\theta \theta_0 \dot{\theta}_0 = \dot{\theta}_0 (k_E E \tau + k_\omega \ddot{\theta}_0 + k_\theta \theta_0)$$

$$D^{-1}(q) = \frac{1}{[\det(D(q))]} \begin{bmatrix} J_1 + m_1 l_1^2 & -m_1 l_1 L_0 \cos \theta_1 \\ -m_1 l_1 L_0 \cos \theta_1 & I_0 + m_1 (L_0^2 + l_1^2 \sin^2 \theta_1) \end{bmatrix}$$

$$\dot{V} = k_E E \dot{E} + k_\omega \dot{\theta}_0 \ddot{\theta}_0 + k_\theta \theta_0 \dot{\theta}_0 = k_E E \dot{\theta}_0 \tau + k_\omega \dot{\theta}_0 \ddot{\theta}_0 + k_\theta \theta_0 \dot{\theta}_0 = \dot{\theta}_0 (k_E E \tau + k_\omega \ddot{\theta}_0 + k_\theta \theta_0)$$

$$D^{-1}(q) = \frac{1}{[\det(D(q))]} \begin{bmatrix} J_1 + m_1 l_1^2 & -m_1 l_1 L_0 \cos \theta_1 \\ -m_1 l_1 L_0 \cos \theta_1 & I_0 + m_1 (L_0^2 + l_1^2 \sin^2 \theta_1) \end{bmatrix}$$

$$\det(D(q)) = (I_0 + m_1 l_1^2 \sin^2 \theta_1)(J_1 + m_1 l_1^2) + J_1 m_1 L_0^2 + m_1^2 l_1^2 L_0^2 \sin^2 \theta_1$$

Using
$$\ddot{\theta}_0 = \frac{1}{\det(D(q))} \left[(J_1 + m_1 l_1^2) \tau - (J_1 + m_1 l_1^2) m_1 l_1^2 \sin(2\theta_1) \dot{\theta_0} \dot{\theta_1} \right]$$
 $D(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = F$ $-\frac{1}{2} m_1^2 l_1^3 L_0 \cos \theta_1 \sin(2\theta_1) \dot{\theta_0}^2 + (J_1 + m_1 l_1^2) m_1 l_1 L_0 \sin \theta_1 \dot{\theta_1}^2$ $-m_1^2 l_1^2 L_0 g \cos \theta_1 \sin \theta_1 \right]$

$$F\left(q,\dot{q}\right) = \left[-(J_{1} + m_{1}l_{1}^{2})m_{1}l_{1}^{2}\sin(2\theta_{1})\dot{\theta_{0}}\dot{\theta_{1}} - \frac{1}{2}m_{1}^{2}l_{1}^{3}L_{0}\cos\theta_{1}\sin(2\theta_{1})\dot{\theta_{0}}^{2} + (J_{1} + m_{1}l_{1}^{2})m_{1}l_{1}L_{0}\sin\theta_{1}\dot{\theta_{1}}^{2} - m_{1}^{2}l_{1}^{2}L_{0}g\cos\theta_{1}\sin\theta_{1}\right]$$

$$\ddot{\theta}_0 = \frac{1}{\det(D(q))} \left[(J_1 + m_1 l_1^2) \tau + F(q, \dot{q}) \right]$$
 Substituting on derivative of Lyapunov Function $\dot{V} = \dot{\theta}_0 (k_E E \tau + k_\omega \ddot{\theta}_0 + k_\theta \theta_0)$

$$\dot{V} = \dot{\theta}_0 \left[\tau \left(k_E E + \frac{k_\omega (J_1 + m_1 l_1^2)}{\det(D(q))} \right) + \frac{k_\omega F(q, \dot{q})}{\det(D(q))} + k_\theta \theta_0 \right]$$
 Propose a control law such that;

$$\tau \left(k_E E + \frac{k_\omega (J_1 + m_1 l_1^2)}{\det(D(q))} \right) + \frac{k_\omega F(q, \dot{q})}{\det(D(q))} + k_\theta \theta_0 = -k_\delta \dot{\theta}_0$$

Which will lead to $\dot{V} = -k_{\delta}\dot{\theta}_{0}^{2}$

$$\left(k_E E + \frac{k_\omega(J_1 + m_1 l_1^2)}{\det(D(q))}\right) \neq 0 \quad \text{No singularity} \quad E \geq -2m_1 g l_1 \qquad \frac{k_\omega(J_1 + m_1 l_1^2)}{\max_{\theta_1} (\det(D(q)))} > k_E(2m_1 g l_1)$$

$$rac{k_\omega}{k_E} > 2m_1gl_1(I_0+m_1l_1^2+m_1L_0^2)$$
 The pendulum can still get stuck at the (lower) stable equilibrium point, $(heta_0,\dot{ heta}_0, heta_1,\dot{ heta}_1) = (0,0,\pi,0)$ for $au=0$ occurs when $E(q,\dot{q})=-2m_1gl_1$ $|E|<2m_1gl_1$

Since V is a non-increasing function $\dot{V} = -k_{\delta}\dot{\theta}_{0}^{2}$

 $|E| < 2m_1gl_1$ will hold if the initial conditions are $V(0) < 2k_Em_1^2g^2l_1^2$ Which is region of attraction

Control law can be written as;

$$\tau = \frac{-k_{\omega}F(q,\dot{q}) - \det(D(q))\left(k_{\delta}\dot{\theta}_0 + k_{\theta}\theta_0\right)}{\det(D(q))k_EE + k_{\omega}(J_1 + m_1l_1^2)}$$

Stability analysis

5 Stability analysis

In order to apply LaSalle .s theorem, it is required to define a compact (closed and bounded) set Ω with the property that every solution of system

$$D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = F$$
 that starts in Ω remains in Ω for all future time.

$$V(q,\dot{q}) = \frac{k_E}{2}E(q,\dot{q})^2 + \frac{k_\omega}{2}\dot{\theta}_0^2 + \frac{k_\theta}{2}\theta_0^2 \quad \text{non-increasing function} \quad \dot{V} = -k_\delta\dot{\theta}_0^2 \quad \text{Than, } \theta_0,\dot{\theta}_0,\dot{\theta}_1 \text{ are bounded.}$$

Than, $cos\theta_0$, $sin\theta_0$, $cos\theta_1$, $sin\theta_1$ are bounded.

Define a state z of the closed loop system composed of: θ_0 , $\dot{\theta}_0$, $\cos\theta_1$, $\sin\theta_1$, $\dot{\theta}_1$ so that solution of closed loop system $\dot{z} = F(z)$ remains inside a compact set Ω .

LaSalle "s theorem ensures that every solution starting in Ω approaches M (largest invariant set) as $t \to \infty$

controllaw has been chosen
$$-k_{\delta}\dot{\theta_{0}}=k_{E}E\tau+k_{\omega}\ddot{\theta_{0}}+k_{\theta}\theta_{0}$$
 E_{τ} is constant in set of all points in Ω

Either
$$E = 0$$
 or $E \neq 0$

5 Stability analysis

$$-k_{\delta}\dot{\theta_0} = k_E E \tau + k_{\omega}\ddot{\theta_0} + k_{\theta}\theta_0$$

Case a: If E=0, $\theta_0=0$, τ is bounded. E=0 means the trajectories are in the homoclinic orbit. θ_0 , $\dot{\theta}_0$ and E converge to zero. τ does not necessarily converge to zero.

Case b: If $E \neq 0$, E_{τ} is constant, then τ is also constant. If $E \neq 0$ then $\tau = 0$ in set of all points in Ω

Theorem: Consider the Furuta Pendulum system;

$$\tau = \left[I_0 + m_1 (L_0^2 + l_1^2 \sin^2 \theta_1) \right] \ddot{\theta_0} + m_1 l_1 L_0 \cos \theta_1 \ddot{\theta_1} + m_1 l_1^2 \sin(2\theta_1) \dot{\theta_0} \dot{\theta_1} - m_1 l_1 L_0 \sin \theta_1 \dot{\theta_1}^2$$

$$0 = m_1 l_1 L_0 \cos \theta_1 \ddot{\theta_0} + \left[J_1 + m_1 l_1^2 \right] \ddot{\theta_1} \\ -m_1 l_1^2 \sin \theta_1 \cos \theta_1 \dot{\theta_0}^2 - m_1 g l_1 \sin \theta_1$$

and controller (with strictly positive constant $k_E \; k_W \; k_\theta \; k_\delta$)

$$\tau = \frac{-k_{\omega}F(q,\dot{q}) - \det(D(q))\left(k_{\delta}\dot{\theta}_0 + k_{\theta}\theta_0\right)}{\det(D(q))k_EE + k_{\omega}(J_1 + m_1l_1^2)}$$

The state initial conditions satisfy the inequality;

$$V(0) < 2k_E m_1^2 g^2 l_1^2$$

Region of attraction

Solution of the closed-loop system converges to the invariant set M given by the homoclinic orbit

$$\frac{1}{2}(J_1+m_1l_1^2)\dot{ heta}_1^2=m_1gl_1(1-\cos heta_1)$$

 $(\theta_0,\dot{\theta}_0)=(0,0)$ and au does not necessarily converge to zero

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$k = 1 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$

6 Simulation Results

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$k = 1 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$

6 Simulation Results

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

 $k = 1 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$

6 Simulation Results

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$$k = 1 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$$

6 Simulation Results

Initial position:
$$\theta_0 = -\frac{\pi}{2}$$
 $\dot{\theta}_0 = 0$ $\theta_1 = -\frac{2.5\pi}{3}$ $\dot{\theta}_1 = 0$

$$k = 6 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$$

$$K = [-0.1000 -0.1535 -6.0576 -1.1749]$$

6 Simulation Results

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$$k = 6 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$$

6 Simulation Results

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$$k = 6 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$$

6 Simulation Results

Swing-up & Balancing

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$$k = 6 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$$

K=[-0.1000 -0.1535 -6.0576 -1.1749]

6 Simulation Results

Initial position:
$$\theta_0=-\frac{\pi}{2}$$
 $\dot{\theta}_0=0$ $\theta_1=-\frac{2.5\pi}{3}$ $\dot{\theta}_1=0$

$$k = 6 k_E = 480 \quad k_w = 1 \quad k_\theta = 1 \quad k_\delta = 1$$

Conclusion

7 Conclusion

Proposed a control strategy to "swing up" and state-feedback implemented to balance the Furuta pendulum.

The control design is based on the passivity properties of this rotational inverted pendulum.

Convergence of the trajectories of the system to a homoclinic orbit has been proved by using LaSalle's invariance theorem.

8 References

Isabelle Fantoni and Rogelio Lozano. 2001. Non-Linear Control for Underactuated Mechanical Systems. Springer-Verlag, Berlin, Heidelberg.

THANKS

Enes USLU uslu.enes1@gmail.com

