Reconstructing Propositional Proofs in Type Theory

Jonathan Prieto-Cubides Advisor: Andrés Sicard-Ramírez

> Master in Applied Mathematics Universidad EAFIT Medellín, Colombia

Research

Goal

Formalization in type theory, classical propositional derivations generated by the Metis theorem prover.

Research

Goal

Formalization in type theory, classical propositional derivations generated by the Metis theorem prover.

Topics

- ► Automatic reasoning using automatic theorem provers (ATPs) (e.g., Metis, EProver)
- ▶ Interactive proving using proof-assistants (e.g., Agda, Coq)
- ▶ Formal methods to verify outputs of ATPs in proof-assistants

Outcomes of the Research

Academic result: paper (work in progress)
Software related results:

- ▶ Athena¹: a translator tool for Metis proofs to Agda in Haskell
- ► Agda libraries:
 - ▶ Agda-Metis²: Metis prover reasoning for propositional logic
 - ► Agda-Prop³: intuitionistic propositional logic with PEM
- ▶ Bugs found in Metis: see issues No. 2, No. 4, and commit 8a3f11e in Metis official repository⁴

In parallel, we develop:

- ▶ Online-ATPs⁵: a client for the TPTP world in Haskell This tool allowed us to use Metis without installing it
- ▶ Prop-Pack⁶: compendium of TPTP problems in classical propositional logic used to test Athena

¹https://github.com/jonaprieto/athena.

²https://github.com/jonaprieto/agda-metis.

³https://github.com/jonaprieto/agda-prop.

⁴https://github.com/gilith/metis.

⁵https://github.com/jonaprieto/online-atps.

⁶https://github.com/jonaprieto/prop-pack.

Proof Reconstruction: Overview

Inference Rules of Metis

TSTP derivations by Metis exhibit the following inferences:

Metis rule	Purpose
strip	Strip a goal into subgoals
conjunct	Takes a formula from a conjunction
resolve	A general form of the resolution theorem
canonicalize	Normalization of the formula
clausify	Performs clausification
simplify	Simplify definitions and theorems

Proposition Type

A data type for formulas

```
data Prop : Set where

\begin{array}{l} \text{Var} : \text{Fin } \mathbf{n} \to \text{Prop} \\ \top : \text{Prop} \\ \bot : \text{Prop} \\ \bot : \text{Prop} \\ \_ \land \_ : (\varphi \ \psi : \text{Prop}) \to \text{Prop} \\ \_ \lor \_ : (\varphi \ \psi : \text{Prop}) \to \text{Prop} \\ \_ \Rightarrow \_ : (\varphi \ \psi : \text{Prop}) \to \text{Prop} \\ \_ \Leftrightarrow \_ : (\varphi \ \psi : \text{Prop}) \to \text{Prop} \\ \_ \Leftrightarrow \_ : (\varphi \ \psi : \text{Prop}) \to \text{Prop} \\ \_ \to \_ : (\varphi : \text{Prop}) \to \text{Prop} \\ \_ \to \_ : (\varphi : \text{Prop}) \to \text{Prop} \\ \end{array}
```

Inference Rules For Propositional Logic I

Intuitionistic Propositional Logic + PEM $(\Gamma \vdash \varphi \lor \neg \varphi)$

Inference Rules For Propositional Logic II

$$\begin{array}{c} \dfrac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \lor \text{-intro}_1 & \dfrac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \lor \text{-intro}_2 \\ \\ \dfrac{\Gamma, \varphi \vdash \gamma \qquad \Gamma, \psi \vdash \gamma}{\Gamma, \varphi \lor \psi \vdash \gamma} \lor \text{-elim} \end{array}$$

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \Rightarrow \psi} \Rightarrow \text{-intro} \qquad \frac{\Gamma \vdash \varphi \Rightarrow \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \Rightarrow \text{-elim}$$

Useful Rules

$$\cfrac{\frac{\Gamma \vdash \varphi}{\Gamma, \, \psi \vdash \varphi} \text{ weaken}}{\frac{\Gamma, \neg \, \varphi \vdash \bot}{\Gamma \vdash \varphi} \operatorname{RAA}}$$

Syntactical Consequence Relation in Agda

▶ Inductive family _ \vdash _ with two indexes: a set of propositions Γ (the premises) and a proposition φ (the conclusion)

```
\texttt{data} \ \_\vdash\_\ : \ (\Gamma \ : \ \texttt{Ctxt})(\varphi \ : \ \texttt{Prop}) \ \to \ \texttt{Set}
```

► Constructors (inference rules)

```
assume, \top-intro, \bot-elim, \neg-intro, \neg-elim, \land-intro, \land-proj<sub>1</sub>, \land-proj<sub>2</sub>, \lor-intro<sub>1</sub>, \lor-intro<sub>2</sub>, \lor-elim, \Rightarrow-intro, \Rightarrow-elim, \Leftrightarrow-intro, \Leftrightarrow-elim<sub>1</sub>, \Leftrightarrow-elim<sub>2</sub>.
```

For example, the introduction rule for conjunction \land -intro is the constructor:

```
\begin{array}{ll} \wedge\text{-intro} \\ : & \{\Gamma\} \ \{\varphi \ \psi\} \\ \to & \Gamma \vdash \varphi \to \Gamma \vdash \psi \\ \to & \Gamma \vdash \varphi \wedge \psi \end{array}
```

▶ In [AgdaProp] we can find more than 99 theorems to reasoning in classical propositional logic

Reconstructing Metis Rules in Type Theory

Let $\mathrm{metisRule}$ be a Metis inference rule. We define in Agda the function metisRule which has the following pattern⁷:

$$\begin{split} \text{metisRule}: & \text{Premise} \rightarrow \text{Conclusion} \rightarrow \text{Prop} \\ \text{metisRule} \ \varphi \ \psi &= \begin{cases} \psi, & \text{if metisRule built } \psi \text{ by applying inference} \\ & \text{rules to } \varphi; \\ \varphi, & \text{otherwise;} \end{cases} \end{split}$$

To justify all transformations done by the metisRule rule, we prove its soundness with a theorem like the following:

If $\Gamma \vdash \varphi$ then $\Gamma \vdash$ metisRule $\varphi \ \psi$, where $\psi : \text{Conclusion}$.

 $⁷_{\mathrm{PREMISE}}$ and $\mathrm{Conclusion}$ as synonyms of the PROP type to describe in the function types the role of the arguments

Reconstructing Example

The clausify rule transforms a formula into its clausal normal form.

Example

In the following TSTP derivation by Metis, we see how clausify transforms the \mathtt{norm}_0 formula to get \mathtt{norm}_1 formula.

Theorem

Let $\psi: {\tt CONCLUSION}.$ If $\Gamma \vdash \varphi$ then $\Gamma \vdash {\sf clausify} \ \varphi \ \psi$, where

$$\mathsf{clausify} : \mathsf{PREMISE} \to \mathsf{CONCLUSION} \to \mathsf{PROP}$$

$${\rm clausify} \,\, \varphi \,\, \psi \quad = \begin{cases} \psi, & {\it if} \,\, \varphi \equiv \psi; \\ {\rm reorder}_{\land \lor} \,\, ({\rm cnf} \,\, \varphi) \,\, \psi, & {\it otherwise}. \end{cases}$$

The Intuition behind the Metis Algorithm

Algorithm 1 Metis refutation strategy

```
procedure METIS
input: the goal and a set of premises a_1, \dots, a_n
output: maybe a derivation when a_1, \dots, a_n \vdash \text{goal}, otherwise
nothing.
   strip the goal into a list of subgoals s_i
   for each subgoal s_i do
       try to find by a refutation for \neg s_i:
         apply clausification for the negated subgoal \neg s_i
       if a premise a_i is relevant then
           apply clausification to a_i
       end if
         application of Metis inference rules
       if a contradiction can be derived the assumptions then
           keep the refutation and continue with the others subgoals
       else
           exit without a proof. The conjecture can not be derived
from the premises
       end if
   end for
   print the conjecture and the premises
   print each refutation for each negated subgoal
end procedure
```

Challenges

- ▶ Formalization
 - Understanding the Metis reasoning without a proper documentation or description from the Metis author
 - ▶ Terminating of functions that reconstruct Metis inference rules
 - Intuitionistic logic implementation
- Software related
 - ▶ Parsing of TSTP derivations
 - Printing valid Agda files
 - Testing

Complete Example

The problem⁸:

$$(p\Rightarrow q)\land (q\Rightarrow p)\vdash (p\lor q)\Rightarrow (p\land q)$$

In TPTP syntax:

```
\label{eq:fof_a_1} \begin{array}{ll} \text{fof(a_1, axiom, (p $\Rightarrow$ q) $\land$ (q $\Rightarrow$ p)).} \\ \text{fof(goal, conjecture, (p $\lor$ q) $\Rightarrow$ (p $\land$ q)).} \end{array}
```

Its TSTP solution using Metis:

```
fof(a<sub>1</sub>, axiom, (p \Rightarrow q) \land (q \Rightarrow p)).
fof(goal, conjecture, (p \lor q) \Rightarrow (p \land q))).
fof(s<sub>1</sub>, (p \lor q) \Rightarrow p, inf(strip, goal)).
fof(s<sub>2</sub>, ((p \lor q) \land p) \Rightarrow q, inf(strip, goal)).
...
```

⁸Problem No. 13 in Disjunction Section in [Prieto-Cubides2017]

```
fof(s_1, (p \vee q) \Rightarrow p, inf(strip, goal)).
fof(s_2, ((p \vee q) \wedge p) \Rightarrow q, inf(strip, goal)).
fof(neg<sub>1</sub>, \neg ((p \lor q) \Rightarrow p), inf(negate, s<sub>1</sub>)).
fof(n00, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n01, \neg q \lor p, inf(conjunct, n00)).
fof(n02, \neg p \land (p \lor q), inf(canonicalize, neg<sub>1</sub>)).
fof(n03, p \vee q, inf(conjunct, n02)).
fof(n04, \neg p, inf(conjunct, n02)).
fof(n05, q, inf(simplify, [n03, n04])).
cnf(r00, \neg q \lor p, inf(canonicalize, n01)).
cnf(r01, q, inf(canonicalize, n05)).
cnf(r02, p, inf(resolve, q, [r01, r00])).
cnf(r03, \neg p, inf(canonicalize, n04)).
cnf(r04, \perp, inf(resolve, p, [r02, r03])).
fof(neg<sub>2</sub>, \neg (((p \lor q) \land p) \Rightarrow q), inf(negate, s2)).
fof(n10, \neg q \land p \land (p \lor q), inf(canonicalize, neg<sub>2</sub>)).
fof(n11, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n12, \neg p \lor q, inf(conjunct, n11)).
fof(n13, \perp, inf(simplify,[n10, n12])).
cnf(r10, \perp, inf(canonicalize, n13)).
```

TSTP Refutation of Subgoal No. 1

```
fof(s_1, (p \vee q) \Rightarrow p, inf(strip, goal)).
fof(neg<sub>1</sub>, \neg ((p \lor q) \Rightarrow p), inf(negate, s<sub>1</sub>)).
fof(n00, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n01, \neg q \lor p, inf(conjunct, n00)).
fof(n02, \neg p \land (p \lor q), inf(canonicalize, neg<sub>1</sub>)).
fof(n03, p \vee q, inf(conjunct, n02)).
fof(n04, \neg p, inf(conjunct, n02)).
fof(n05, q, inf(simplify, [n03, n04])).
cnf(r00, \neg q \lor p, inf(canonicalize, n01)).
cnf(r01, q, inf(canonicalize, n05)).
cnf(r02, p, inf(resolve, q, [r01, r00])).
cnf(r03, \neg p, inf(canonicalize, n04)).
cnf(r04, \perp, inf(resolve, p, [r02, r03])).
```

Tree for the Subgoal No. 1: $(p \lor q) \Rightarrow p$

```
\begin{array}{l} \text{fof}(\mathsf{a}_1,\;\mathsf{axiom},\;(\mathsf{p}\,\Rightarrow\,\mathsf{q})\;\land\;(\mathsf{q}\,\Rightarrow\,\mathsf{p}))\,.\\ \dots\\ \text{fof}(\mathsf{n00},\;(\neg\;\mathsf{p}\,\lor\,\mathsf{q})\;\land\;(\neg\;\mathsf{q}\,\lor\,\mathsf{p}),\;\mathsf{inf}(\mathsf{canonicalize},\;\mathsf{a}_1))\,.\\ \text{fof}(\mathsf{n01},\;\neg\;\mathsf{q}\,\lor\,\mathsf{p},\;\mathsf{inf}(\mathsf{conjunct},\;\mathsf{n00}))\,.\\ \dots\\ \\ &\frac{\overline{\Gamma\vdash(p\Rightarrow q)\land(q\Rightarrow p)}}{\overline{\Gamma,\neg s_1\vdash(p\Rightarrow q)\land(q\Rightarrow p)}}\;\mathsf{axiom}\;a_1\\ &\frac{\overline{\Gamma,\neg s_1\vdash(p\Rightarrow q)\land(q\Rightarrow p)}}{\overline{\Gamma,\neg s_1\vdash(\neg p\lor q)\land(\neg q\lor p)}}\;\mathsf{weaken}\\ &\frac{\overline{\Gamma,\neg s_1\vdash(\neg p\lor q)\land(\neg q\lor p)}}{\Gamma,\neg s_1\vdash\neg q\lor p}\;\mathsf{conjunct} \end{array}
```

```
... fof(s_1, (p \vee q) \Rightarrow p, inf(strip, goal)). fof(neg_1, \neg ((p \vee q) \Rightarrow p), inf(negate, s_1)). ... fof(no2, \neg p \wedge (p \vee q), inf(canonicalize, neg_1)). fof(no3, p \vee q, inf(conjunct, no2)). fof(no4, \neg p, inf(conjunct, no2)).
```

. . .

$$(\mathcal{D}_2) \qquad \qquad \frac{\frac{}{\Gamma, \neg s_1 \vdash \neg s_1} \text{ assume}}{\frac{\Gamma, \neg s_1 \vdash \neg p \land (p \lor q)}{\Gamma, \neg s_1 \vdash p \lor q}} \text{ canonicalize}} \\ (\mathcal{D}_3) \qquad \qquad \frac{\frac{}{\Gamma, \neg s_1 \vdash \neg s_1} \text{ assume } \neg s_1}{\frac{\Gamma, \neg s_1 \vdash \neg p \land (p \lor q)}{\Gamma, \neg s_1 \vdash \neg p}} \text{ canonicalize}}{\frac{\Gamma, \neg s_1 \vdash \neg p \land (p \lor q)}{\Gamma, \neg s_1 \vdash \neg p}} \text{ conjunct}}$$

$$(\mathcal{D}_4) \qquad \frac{ \frac{\mathcal{D}_2}{\Gamma, \neg s_1 \vdash p \lor q} \quad \frac{\mathcal{D}_3}{\Gamma, \neg s_1 \vdash \neg p}}{\Gamma, \neg s_1 \vdash q} \text{ simplify}$$

$$(\mathcal{R}_1) \frac{ \frac{\mathcal{D}_1}{\Gamma, \neg s_1 \vdash \neg q \lor p} \quad \frac{\mathcal{D}_4}{\Gamma, \neg s_1 \vdash q}}{\frac{\Gamma, \neg s_1 \vdash p}{\Gamma, \neg s_1 \vdash \bot}} \text{ resolve } q \quad \frac{\mathcal{D}_3}{\Gamma, \neg s_1 \vdash \neg p}}{\frac{\Gamma, \neg s_1 \vdash \bot}{\Gamma \vdash s_1}} \text{ RAA}$$

Tree for the Subgoal No. 2: $((p \lor q) \land p) \Rightarrow q$

```
fof(s_2, ((p \lor q) \land p) \Rightarrow q, inf(strip, goal)).
fof(neg<sub>2</sub>, \neg (((p \lor q) \land p) \Rightarrow q), inf(negate, s2)).
fof(n10, \neg q \land p \land (p \lor q), inf(canonicalize, neg<sub>2</sub>)).
fof(n11, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n12, \neg p \lor q, inf(conjunct, n11)).
fof(n13, \perp, inf(simplify,[n10, n12])).
cnf(r10, \perp, inf(canonicalize, n13)).
                     \frac{\frac{}{\Gamma, \neg s_2 \vdash \neg s_2} \operatorname{assume} \left( \neg s_2 \right)}{\frac{\Gamma, \neg s_2 \vdash \neg q \land p \land (p \lor q)}{\operatorname{canonicalize}}} \frac{\frac{\overline{\Gamma \vdash (p \Rightarrow q) \land (q \Rightarrow p)}}{\Gamma, \neg s_2 \vdash (p \Rightarrow q) \land (q \Rightarrow p)}}{\frac{\Gamma, \neg s_2 \vdash (p \Rightarrow q) \land (\neg q \lor p)}{\Gamma, \neg s_2 \vdash \neg p \lor q}} \overset{\text{axiom } a_1}{\operatorname{canonicalize}}}{\frac{\Gamma, \neg s_2 \vdash \bot}{\Gamma, \neg s_2 \vdash \neg p \lor q}} \overset{\text{oxion icalize}}{\operatorname{conjunct}}}{\frac{\Gamma, \neg s_2 \vdash \bot}{\Gamma \vdash s_2}} \operatorname{RAA}
    (\mathcal{R}_2)
```

Summarizing the Example

The problem was:

$$(p \Rightarrow q) \land (q \Rightarrow p) \vdash (p \lor q) \Rightarrow (p \land q)$$

Its TSTP solution using Metis was:

fof(a₁, axiom, (p
$$\Rightarrow$$
 q) \land (q \Rightarrow p)).
fof(goal, conjecture, (p \lor q) \Rightarrow (p \land q))).
fof(s₁, (p \lor q) \Rightarrow p, inf(strip, goal)).
fof(s₂, ((p \lor q) \land p) \Rightarrow q, inf(strip, goal)).
...

The proof is:

$$\frac{ \begin{array}{ccc} & \frac{\mathcal{R}_1}{\Gamma \vdash s_1} & \frac{\mathcal{R}_2}{\Gamma \vdash s_2} \\ \hline \frac{\Gamma \vdash (s_1 \land s_2) \Rightarrow \mathsf{goal}}{\Gamma \vdash \mathsf{goal}} & \xrightarrow{} & \wedge\text{-intro} \end{array}}{} \xrightarrow{} + \mathsf{elim}$$

Future Work

Further research directions include, but are not limited to:

- ▶ improve the performance of the canonicalize rule
- ▶ extend the proof-reconstruction presented in this paper to
 - ▶ support the proposition logic with equality of Metis
 - ▶ support other ATPs for propositional logic like EProver or Z3. See Kanso's Ph.D. thesis [Kanso2012]
 - support Metis first-order proofs

Related Work

In type theory:

- ► Kanso2012 in [Kanso2012] reconstructs in Agda propositional proofs generated by EProver and Z3
- ▶ foster2011integrating in [foster2011integrating] describe proof-reconstruction in Agda for equational logic of Waldmeister prover
- ▶ Bezem2002 in [Bezem2002] transform a proof produced by the first-order prover Bliksem in a Coq proof-term

In classical logic:

- ▶ paulson2007source in [paulson2007source] introduce SledgeHammer, a tool ables to reconstructs proofs of well-known ATPs: EProver, Vampire, among others using SystemOnTPTP server
- ► Hurd1999 in [Hurd1999] integrates the first-order resolution prover Gandalf prover for HOL proof-assistant
- ▶ kaliszyk2013 in [kaliszyk2013] reconstruct proofs of different ATPs for HOL Light

References I

BONUS SLIDES

TPTP Syntax

Thousands of Problems for Theorem Provers

- ▶ Is a language⁹ to encode problems
- ▶ Is the input of the ATPs
- ► Annotated formulas with the form language(name, role, formula).

language FOF or CNF

name to identify the formula within the problem role axiom, definition, hypothesis, conjecture formula formula in TPTP format

⁹ http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html.

Metis Theorem Prover

Metis is an automatic theorem prover for first-order logic with equality.

- ▶ Open source implemented
- ▶ Reads problems in TPTP format
- ▶ Outputs *detailed* proofs in TSTP format
- ▶ For the propositional logic, Metis has only three inference rules:

$$\frac{}{\Gamma \vdash \varphi_1 \lor \cdots \lor \varphi_n} \text{ axiom } \varphi_1, \cdots, \varphi_n$$

$$\frac{}{\Gamma \vdash \varphi \lor \neg \varphi} \text{ assume } \varphi$$

$$\frac{}{\Gamma \vdash \varphi_1 \lor \cdots \lor l \lor \cdots \lor \varphi_n} \frac{}{\Gamma \vdash \psi_1 \lor \cdots \lor \neg l \lor \cdots \lor \psi_m} \text{ resolve } l$$

TSTP Syntax

A TSTP derivation 10

- ▶ Is a Directed Acyclic Graph where

 leaf is a formula from the TPTP input

 node is a formula inferred from parent formula

 root the final derived formula
- ▶ Is a list of annotated formulas with the form

```
language(name, role, formula, source [,useful info]).
```

where source typically is an inference record

inference(rule, useful info, parents).

¹⁰ http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html.

Another TSTP Example

```
▶ Proof found by Metis for the problem p \vdash p
  $ metis --show proof problem.tptp
  fof(a, axiom, p).
  fof(goal, conjecture, p).
  fof(subgoal 0, plain, p),
    inference(strip, [], [goal])).
  fof(negate_0_0, plain, ~ p,
    inference(negate, [], [subgoal_0])).
  fof(normalize_0_0, plain, ~ p,
    inference(canonicalize, [], [negate_0_0])).
  fof(normalize_0_1, plain, p,
    inference(canonicalize, [], [a])).
  fof(normalize_0_2, plain, $false,
    inference(simplify, [],
       [normalize_0_0, normalize_0_1])).
  cnf(refute_0_0, plain, $false,
      inference(canonicalize, [], [normalize 0 2])).
```

DAG Example

By refutation, we proved $p \vdash p$:

Athena tool

Is a Haskell program that translates proofs given by Metis in TSTP format to Agda code

- ▶ Parsing of TSTP language¹¹
- ▶ Creation^{??} and analysis of **DAG** derivations
- ▶ Analysis of inference rules used in the TSTP derivation
- ► Agda code generation

Library	Purpose	
Agda-Prop	axioms and theorems of classical propositional logic	
Agda-Metis	versions of the inference rules used by Metis	

¹¹https://github.com/agomezl/tstp2agda.