Introducción al Cálculo

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas

Licenciatura en Matemática Algorítmica

Omar Porfirio García

Índice general

-1	Preliminares	
1	Lógica y conjuntos	9
1.1	Lógica proposicional	9
1.1.1	Conectores lógicos	10
1.2	Argumentos lógicos	10
1.3	Conjuntos	10
2	Demostraciones	11
2.1	Predicados	11
2.2	Métodos de demostración	11
Ш	El conjunto de los reales	
3	Los números reales	15
3.1	Axiomas de campo	15
3.2	Axiomas de orden	15
3.3	Axioma de completitud	15
3.4	Algunos teoremas sobre los números reales	15
4	Funciones reales en una variable	17
4.1	Funciones reales en una variable	17
4.2	Inyectividad, suprayectividad y biyectividad	17
4.3	Funciones inversas	17

Ш	Sucesiones y series	
5	Sucesiones	. 21
5.1	Convergencia de sucesiones	21
5.2	Algunos teoremas de convergencia	21
5.3	Subsucesiones	21
5.4	Sucesiones de Cauchy	21
5.5	Sucesiones divergentes	21
6	Series	. 23
6.1	Convergencia de series	23
6.2	Criterios de convergencia	23
6.3	Convergencia absoluta y condicional	23
IV	Límites y continuidad	
7	Límites	. 27
7 .1	Límites de funciones	27
7.2	Propiedades de los límites	27
7.3	Cálculo de límites	27
7.4	Límites al infinito	27
		_,
8	Continuidad	. 29
8.1	Continuidad de funciones	29
8.2	Teoremas fuertes de continuidad	29
8.3	Continuidad uniforme	29
V	Cálculo diferencial	
9	Diferenciabilidad	. 33
9.1	Diferenciabilidad de funciones	. 33
9.2	Cálculo de derivadas	33
9.3	Derivadas de orden superior	33
9.4	Algunos teoremas de diferenciabilidad	33
10	Aplicaciones de la derivada	. 35
10.1	Máximos, mínimos y concavidad de una función	35
10.2	Bosquejo de funciones	35
10.3	Razones de cambio	35
10.4	Diferenciales	35
10.5	Regla de L'Hôpital	35
VI	Cálculo integral	
11	Integrabilidad	. 39
11.1	Particiones de un intervalo	39

11.2	Integrabilidad de funciones	39
11.3	Propiedades de la integral	39
11.4	Teorema fundamental del Cálculo	39
11.5	Algunos teoremas de la integrabilidad	39
11.6	La integral indefinida	39
12	Funciones trascendentes	41
12.1	La función logaritmo	41
12.2	La función exponencial	41
12.3	Funciones de potencias arbitrarias	41
12.4	Las funciones trigonométricas inversas	41
12.5	Las funciones hiperbólicas	41
13	Métodos de integración	43
13.1	Método de sustitución	43
13.2	Integración por partes	43
13.3	Sustitución trigonométrica	43
13.4	Fracciones parciales	43
14	Aplicaciones de la integral	45
14.1	Cálculo de áreas y volúmenes	45
14.2	Volúmen de sólidos de revolución	45
14.3	Centroides de regiones	45

Preliminares

L	Lógica y conjuntos)
1.1	Lógica proposicional	
1.2	Argumentos lógicos	
1.3	Conjuntos	
2	Demostraciones	1
2.1	Predicados	
2 2	Mátados do domostración	

$\neg (p \land q) \equiv \neg p \lor \neg q$

1. Lógica y conjuntos

1.1 Lógica proposicional

Definición 1.1.1 — Proposición. Una *proposición* es un conjunto de símbolos con un significado (tales como una oración, afirmación o expresión matemática) el cual puede determinarse como *verdadero* o *falso*, pero no ambas.

Ejemplos de *proposiciones* pueden ser las siguientes:

- 1. 2+2=7
- 2. El día de hoy está soleado.
- 3. Esto es un texto.
- 4. Existe un infinito número de primos.

pues cada una puede determinarse como verdadera o falsa, pero no ambas. Hay algunas otras oraciones o expresiones que no se les puede determinar si son verdaderas o falsas, y por tanto no pueden considerarse proposiciones:

- 1. ¿Qué día es hoy?
- 2. ¡Vamos!
- 3. Tú y yo.
- 4. +3* = /1-

Las oraciones interrogativas e imperativas (como las primeras dos oraciones) no se les puede asignar un *valor de verdad* (verdadero o falso), por lo que no se les puede denominar proposiciones.

En el caso de "tú y yo", aunque es una oración declarativa, dado que no es posible y no tiene sentido asignarle un valor de verdad, entonces no puede ser denominada proposición tampoco.

En el último caso de la expresión +3* = /1-, dado que no tiene sentido y por tanto no tiene un significado, no se le puede asignar un valor de verdad. Por lo tanto, no es una proposición.

Un ejemplo muy peculiar y clásico de oración que parecería ser una proposición, pero que en realidad no lo es, es:

"Esta afirmación es falsa"

Supongamos que fuera verdadera, entonces por su afirmación sería falsa, por lo que no sería verdadera. Supongamos lo contrario, que es falsa, entonces afirmaría que no es falsa, es decir, verdadera, por lo que no sería falsa. Dado que nos lleva a contradicciones (algo que es pero no es al mismo tiempo), no es posible asignarle un valor de verdad y entonces no sería una proposición.

Debemos tomar en cuenta que la definición dada de proposición no es muy precisa y vaga. Sin embargo, nos es útil para introducirnos al razonamiento matemático y en realidad lo esencial es poder determinar cuando una afirmación o expresión es verdadera o falsa, pues nos ayudará para poder hacer deducciones más adelante.

Notación

Para denotar a una proposición, haremos uso de literales como p,q,r,s,...

Para denotar específicamente a qué proposición hace referencia cada literal haremos uso de la notación:

p: "proposición"

Por ejemplo:

s: "América es un continente"

significa que la literal s hará referencia a la proposición "América es un continente". Si no se especifica a qué proposición en particular una literal hace referencia, esta podrá hacer referencia a cualquier proposición y se denominará *variable lógica*. Por lo general, literales distintas harán referencia a proposiciones distintas, a menos que se especifique lo contrario.

1.1.1 Conectores lógicos

Para el estudio de las proposiciones es útil clasificar a estas en dos grupos: simples o atómicas y compuestas.

Las *proposiciones simples* o *atómicas* son aquellas que no pueden dividirse en proposiciones "más pequeñas"; su valor de verdad no depende de otras proposiciones. Por ejemplo, considere la siguiente proposición:

p: "Hoy está soleado pero hace frío"

La proposición p puede dividirse en dos proposiciones más pequeñas, las cuales son:

p₁: "Hoy está soleado" p₂: "Hace frío"

Dado que p puede dividirse en p_1 y p_2 , las cuales son proposiciones "más pequeñas", p no se considera atómica. Sin embargo, las proposiciones p_1 y p_2 no pueden dividirse en proposiciones más pequeñas, por lo que estas si se consideran atómicas o simples.

Por otro lado, las *proposiciones compuestas* son aquellas que están conformadas de varias proposiciones atómicas, como el caso de p que se conformaba de p_1 y p_2 . Otro ejemplo es:

q: "Él sabe cocinar y yo sé patinar"

la cual puede dividirse en dos subproposiciones:

 q_1 : "Él sabe cocinar" q_2 : "Yo sé patinar"

Otros ejemplos de proposiciones compuestas son las siguientes:

- 1. Un número real es o racional o irracional.
- 2. La tierra no es plana pero si redonda.
- 3. Si estudiar para el examen, lo apruebas.
- 4. No eres ni malo ni bueno.

Hay que notar que para unir proposiciones atómicas y así formar proposiciones compuestas hacemos uso de ciertas palabras como y, o; si..., entonces...; o... o..., etc. A este tipo de palabras que nos ayudan a formar proposiciones compuestas se les denomina conectores lógicos. Aunque se pueden enumerar varios conectores lógicos, los tres más básicos que podemos usar para formar proposiciones compuestas son la negación, disyunción y conjunción.

1.2 Argumentos lógicos

1.3 Conjuntos

$$\neg [\forall x \in D, P(x)] \equiv \exists x \in D, \neg P(x)$$

2. Demostraciones

- 2.1 Predicados
- 2.2 Métodos de demostración

El conjunto de los reales

3	Los números reales 18	5
3.1	Axiomas de campo	
3.2	Axiomas de orden	
3.3	Axioma de completitud	
3.4	Algunos teoremas sobre los números reales	
4	Funciones reales en una variable 1	7
4.1	Funciones reales en una variable	
4.2	Inyectividad, suprayectividad y biyectividad	
4.3	Funciones inversas	

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

3. Los números reales

- 3.1 Axiomas de campo
- 3.2 Axiomas de orden
- 3.3 Axioma de completitud
- 3.4 Algunos teoremas sobre los números reales

4. Funciones reales en una variable

- 4.1 Funciones reales en una variable
- 4.2 Inyectividad, suprayectividad y biyectividad
- 4.3 Funciones inversas

Sucesiones y series

J	Sucesiones
5.1	Convergencia de sucesiones
5.2	Algunos teoremas de convergencia
5.3	Subsucesiones
5.4	Sucesiones de Cauchy
5.5	Sucesiones divergentes
6	Series 23
6.1	Convergencia de series
6.2	Criterios de convergencia
6.3	Convergencia absoluta y condicional

5. Sucesiones

- 5.1 Convergencia de sucesiones
- 5.2 Algunos teoremas de convergencia
- 5.3 Subsucesiones
- 5.4 Sucesiones de Cauchy
- 5.5 Sucesiones divergentes

6. Series

- 6.1 Convergencia de series
- 6.2 Criterios de convergencia
- 6.3 Convergencia absoluta y condicional

Límites y continuidad

/	Limites	. 27
7.1	Límites de funciones	
7.2	Propiedades de los límites	
7.3	Cálculo de límites	
7.4	Límites al infinito	
8	Continuidad	29
8.1	Continuidad de funciones	
8.2	Teoremas fuertes de continuidad	
8.3	Continuidad uniforme	

7. Límites

- 7.1 Límites de funciones
- 7.2 Propiedades de los límites
- 7.3 Cálculo de límites
- 7.4 Límites al infinito

8. Continuidad

- 8.1 Continuidad de funciones
- 8.2 Teoremas fuertes de continuidad
- 8.3 Continuidad uniforme

Cálculo diferencial

9	Diferenciabilidad	33
9.1	Diferenciabilidad de funciones	
9.2	Cálculo de derivadas	
9.3	Derivadas de orden superior	
9.4	Algunos teoremas de diferenciabilidad	
10	Aplicaciones de la derivada	35
10.1	Máximos, mínimos y concavidad de una función	
10.2	Bosquejo de funciones	
10.3	Razones de cambio	
10.4	Diferenciales	
10.5	Regla de L'Hôpital	

9. Diferenciabilidad

- 9.1 Diferenciabilidad de funciones
- 9.2 Cálculo de derivadas
- 9.3 Derivadas de orden superior
- 9.4 Algunos teoremas de diferenciabilidad

10. Aplicaciones de la derivada

- 10.1 Máximos, mínimos y concavidad de una función
- 10.2 Bosquejo de funciones
- 10.3 Razones de cambio
- 10.4 Diferenciales
- 10.5 Regla de L'Hôpital

Cálculo integral

11	Integrabilidad	39
11.1	Particiones de un intervalo	
11.2	Integrabilidad de funciones	
11.3	Propiedades de la integral	
11.4	Teorema fundamental del Cálculo	
11.5	Algunos teoremas de la integrabilidad	
11.6	La integral indefinida	
12	Funciones trascendentes	41
12.1	La función logaritmo	
12.2	La función exponencial	
12.3	Funciones de potencias arbitrarias	
12.4	Las funciones trigonométricas inversas	
12.5	Las funciones hiperbólicas	
13	Métodos de integración	43
13.1	Método de sustitución	
13.1	Integración por partes	
13.3	Sustitución trigonométrica	
13.4	Fracciones parciales	
10.4	Tracelones pareidies	
14	Aplicaciones de la integral	45
14.1	Cálculo de áreas y volúmenes	
14.2	Volúmen de sólidos de revolución	
14.3	Centroides de regiones	

11. Integrabilidad

- 11.1 Particiones de un intervalo
- 11.2 Integrabilidad de funciones
- 11.3 Propiedades de la integral
- 11.4 Teorema fundamental del Cálculo
- 11.5 Algunos teoremas de la integrabilidad
- 11.6 La integral indefinida

12. Funciones trascendentes

- 12.1 La función logaritmo
- 12.2 La función exponencial
- 12.3 Funciones de potencias arbitrarias
- 12.4 Las funciones trigonométricas inversas
- 12.5 Las funciones hiperbólicas

13. Métodos de integración

- 13.1 Método de sustitución
- 13.2 Integración por partes
- 13.3 Sustitución trigonométrica
- 13.4 Fracciones parciales

14. Aplicaciones de la integral

- 14.1 Cálculo de áreas y volúmenes
- 14.2 Volúmen de sólidos de revolución
- 14.3 Centroides de regiones