Notes on DPI

January 28, 2019

1 Dual maps

Let $\varphi \in \mathfrak{S}_*(\mathcal{M})$, $\Phi : L_1(\mathcal{M}) \to L_1(\mathcal{N})$. Put $\varphi_0 := \Phi(\varphi)$. We will also use the notations $H := h_{\varphi}$, $H_0 := h_{\varphi_0}$.

Any positive map $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ restricts to a positive contraction $L_p(\mathcal{M}, \varphi) \to L_p(\mathcal{N}, \varphi_0)$. The dual map $\Phi_{\varphi}: L_1(\mathcal{N}) \to L_1(\mathcal{M})$ satisfies

$$\langle \Phi(h), k_0 \rangle = \langle h, \Phi_{\varphi}(k_0) \rangle, \qquad h \in L_p(\mathcal{M}, \varphi), k_0 \in L_p(\mathcal{N}, \varphi_0).$$

This map restricts to a contraction $L_p(\mathcal{N}, \varphi_0) \to L_p(\mathcal{M}, \varphi)$.

Let $h \in L_p(\mathcal{M}, \varphi)$, $h = H^{1/2q}kH^{1/2q}$ for some $k \in L_p(\mathcal{M})$. Then $\Phi(h) \in L_p(\mathcal{N}, \varphi_0)$, so that there is some $\tilde{k} \in L_p(\mathcal{N})$ such that

$$\Phi(h) = H_0^{1/2q} \tilde{k} H_0^{1/2q}.$$

Clearly, the map $k \mapsto \tilde{k}$ is a linear and positive map $L_p(\mathcal{M}) \to L_p(\mathcal{N})$, which will be denoted by $\Phi_{p,\varphi}$. Note that then we have $\Phi_{\infty,\varphi} = \Phi_{\varphi}^*$.

Lemma 1.1. Let $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p \le \infty$. Then

$$(\Phi_{\varphi})_{p,\varphi_0} = \Phi_{q,\varphi}^*.$$

Proof. Let $k_0 \in L_p(\mathcal{N})$. Then

$$\Phi_{\varphi}(H_0^{1/2q}k_0H_0^{1/2q}) = H^{1/2q}(\Phi_{\varphi})_{p,\varphi_0}(k_0)H^{1/2q}.$$

For any $k \in L_q(\mathcal{M})$, we have

$$\operatorname{Tr}\left[(\Phi_{\varphi})_{p,\varphi_{0}}(k_{0})^{*}k\right] = \langle \Phi_{\varphi}(H_{0}^{1/2q}k_{0}H_{0}^{1/2q}), H^{1/2p}kH^{1/2p}\rangle$$

$$= \langle H_{0}^{1/2q}k_{0}H_{0}^{1/2q}, \Phi(H^{1/2p}kH^{1/2p})\rangle$$

$$= \langle H_{0}^{1/2q}k_{0}H_{0}^{1/2q}, H_{0}^{1/2p}\Phi_{q,\varphi}(k)H_{0}^{1/2p}\rangle = \operatorname{Tr}k_{0}^{*}\Phi_{q,\varphi}(k).$$

2 The DPI bounds

We will use the notation as in [?, Theorem 3.11]. Let $\psi \in \mathcal{M}_*^+$, $h_{\psi} \in L_p(\mathcal{M}, \varphi)$. Then there is some $\omega \in \mathcal{M}_*^+$ such that

$$h_{\psi} = H^{1/2q} h_{\omega}^{1/p} H^{1/2q}, \qquad \|h_{\psi}\|_{p,\varphi} = \|h_{\omega}^{1/p}\|_{p} = \omega(1)^{1/p}.$$

It follows that

$$h = T_{q,\varphi}(h_{\psi}) = \omega(1)^{-1/q} H^{1/2p} h_{\omega}^{1/q} H^{1/2p}.$$

Furthermore,

$$\Phi(h_{\psi}) = H_0^{1/2q} \Phi_{p,\varphi}(h_{\omega}^{1/p}) H_0^{1/2q}, \qquad \|\Phi(h_{\psi})\|_{p,\varphi_0} = \|\Phi_{p,\varphi}(h_{\omega}^{1/p})\|_p$$

There is some element $\omega_0 \in \mathcal{N}_*^+$ such that

$$\Phi_{p,\varphi}(h_{\omega}^{1/p}) = h_{\omega_0}^{1/p}, \qquad \|\Phi_{p,\varphi}(h_{\omega}^{1/p})\|_p = \omega_0(1)^{1/p}$$

and

$$h_0 = T_{q,\varphi_0}(\Phi(h_{\psi})) = \omega_0(1)^{-1/q} H_0^{1/2p} h_{\omega_0}^{1/q} H_0^{1/2p}.$$

Let $\ell_{p,\mathcal{M}}: \mathcal{M}_*^+ \to L_p(\mathcal{M})^+$ be the map $\omega \mapsto h_\omega^{1/p}$, then $\ell_{p,\mathcal{M}}$ is a (norm) homeomorphism (?) [?] and the map $\omega \mapsto \omega_0$ is then given by

$$\ell_{p,\mathcal{N}}^{-1} \circ \Phi_{p,\varphi} \circ \ell_{p,\mathcal{M}}.$$

Now

$$\Phi_{\varphi}(h_0) = \omega_0(1)^{-1/q} H^{1/2p} \Phi_{q,\varphi}^*(h_{\omega_0}^{1/q}) H^{1/2p}$$

so that

$$||h - \Phi_{\varphi}(h_0)||_{q,\varphi} = ||\omega(1)^{-1/q} h_{\omega}^{1/q} - \omega_0(1)^{-1/q} \Phi_{q,\varphi}^*(h_{\omega_0}^{1/q})||_q$$

The following is just as in the proof of [?, Theorem 3.11].

Lemma 2.1. We have

$$1 - \omega(1)^{-1/q} \|h_{\omega}^{1/q} - \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})\|_q \le \frac{\omega_0(1)}{\omega(1)} \le \omega(1)^{-1/q} \|(h_{\omega}^{1/q} + \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q}))\|_q - 1$$

Proof. Let us compute

$$\begin{split} \frac{\omega_0(1)}{\omega(1)} &= \omega(1)^{-1/q} \mathrm{Tr} \, \frac{h_{\omega_0}^{1/p}}{\omega(1)^{1/p}} h_{\omega_0}^{1/q} = \omega(1)^{-1/q} \mathrm{Tr} \, \Phi_{p,\varphi}(\frac{h_{\omega}^{1/p}}{\omega(1)^{1/p}}) h_{\omega_0}^{1/q} \\ &= \omega(1)^{-1/q} \mathrm{Tr} \, \frac{h_{\omega}^{1/p}}{\omega(1)^{1/p}} \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q}) \\ &= \omega(1)^{-1/q} \mathrm{Tr} \, \frac{h_{\omega}^{1/p}}{\omega(1)^{1/p}} (h_{\omega}^{1/q} + \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q}) - h_{\omega}^{1/q}) \\ &= 1 - \omega(1)^{-1/q} \mathrm{Tr} \, \frac{h_{\omega}^{1/p}}{\omega(1)^{1/p}} (h_{\omega}^{1/q} - \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})) \\ &\geq 1 - \omega(1)^{-1/q} \|h_{\omega}^{1/q} - \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})\|_q \end{split}$$

At the same time, we have

$$\frac{\omega_0(1)}{\omega(1)} = \omega(1)^{-1/q} \operatorname{Tr} \frac{h_{\omega}^{1/p}}{\omega(1)^{1/p}} (h_{\omega}^{1/q} + \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q}) - h_{\omega}^{1/q})$$

$$\leq \omega(1)^{-1/q} ||(h_{\omega}^{1/q} + \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q}))||_q - 1$$

Corollary 2.2. $\omega(1) = \omega_0(1)$ if and only if $h_{\omega}^{1/q} = \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})$.

Proof. Let $\omega_0(1) = \omega(1)$, then

$$1 \le \omega(1)^{-1/q} \| (h_{\omega}^{1/q} + \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})) \|_q - 1 \le \omega(1)^{-1/q} 2 \| h_{\omega}^{1/q} \|_q - 1 \le 1,$$

so that $\|\frac{h_{\omega}^{1/q} + \Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})}{2}\|_q = \omega(1)^{1/q}$. Since both $h_{\omega}^{1/q}$ and $\Phi_{p,\varphi}^*(h_{\omega_0}^{1/q})$ are elements in the ball with radius $\omega(1)^{1/q}$ in $L_1(\mathcal{M})$, the result follows from strict convexity of $L_q(\mathcal{M})$. Converse is clear from Lemma 2.1.