斯皮尔曼相关系数

定义

定义: X和Y为两组数据, 其斯皮尔曼 (等级) 相关系数:

$$r_s = 1 - rac{6\sum_{i=1}^{n}d_i^2}{n(n^2-1)}$$

其中, d_i 为 X_i 和 Y_i 之间的等级差。

(一个数的等级,就是将它所在的一列数按照从小到大排序后,这个数所在的位置) 可以证明: r.位于-1和1之间的。

х	γ	X的等级	Y的等级	等级差	等级差的平方
3	5	2	1	1	1
8	10	5	4.5	0.5	0.25
4	8	3	3	0	0
7	10	4	4.5	-0.5	0.25
2	6	1	2	-1	1

注: 如果有的数值相同,则将它们所在的位置取算术平均。

另一种斯皮尔曼spearman相关系数的定义

斯皮尔曼相关系数被定义成等级之间的皮尔逊相关系数。

х	Υ	X的等级	Y的等级	等级差	等级差的平方
3	5	2	1	1	1
8	10	5	4.5	0.5	0.25
4	9	3	3	0	0
7	10	4	4.5	-0.5	0.25
2	6	1	2	-1	1

%% MATLAB求解皮尔逊相关系数

RX = [2 5 3 4 1]

 $RY = [1 \ 4.5 \ 3 \ 4.5 \ 2]$

R = corrcoef(RX,RY)

R =

1. 0000 0. 8721 0. 8721 1. 0000

和之前的结果有微小差别。

MATLAB中计算斯皮尔曼相关系数

两种用法

(1) corr(X, Y, 'type', 'Spearman')

这里的X和Y必须是列向量哦~

(2) corr(X, 'type', 'Spearman')

这时计算X矩阵各列之间的斯皮尔曼相关系数

X	Y
3	5
8	10
4	9
7	10
2	6

coeff =

0.8721

这说明Matlab使用的是第二种计算方法