

Dr Pooja Agarwal

Professor,

Department of Computer Science & Engineering

MODULE 5

Propositional Logic

Dr Pooja Agarwal

Department of Computer Science & Engineering

Outline

- Proof by resolution
 - Unit resolution
 - Conjunctive normal form
 - Resolution algorithm

Proof by Resolution

Proof by resolution

 Resolution yield completeness for the inference algorithms when coupled with any complete search algorithm.

Proof by Resolution

Literal

A literal is an assignment of a value to a Boolean variable

Axiom

An assumption or statement that is assumed to be true.

Clause

- A clause is satisfied or true in a possible world if and only if at least one of the literals that makes up the clause is true in that possible world.
- A clause is a set of literals considered to be an implicit disjunction.
- A clause with exactly one literal is known as unit clause, it can be a positive or a negative unit clause.

Proof by Resolution

Clashing Clauses

Let C1 and C2 be two clauses and L and L' are two literals.
 where L & C1 and L' & C2 and L' is complement of L, then
 C1 and C2 are said to be clashing clauses and clash on
 complementary literals L and L'. The resultant clause C is
 given by

Res(C1, C2) = (C1-{L})
$$\vee$$
 (C2-{L'})

Proof by Resolution

Resolution

 Resolution is a simple iterative process where two clauses are resolved yielding a new clause that has been inferred from them.

Example

- Playing Tennis or Raining
- Not Raining or working

Proof by Resolution

Resolution

 Resolution is a simple iterative process where two clauses are resolved yielding a new clause that has been inferred from them.

Example

- Playing Tennis (P) or Raining(Q)
- Not Raining or working

Proof by Resolution

Resolution

 Resolution is a simple iterative process where two clauses are resolved yielding a new clause that has been inferred from them.

Example

- Playing Tennis (P) or Raining(Q)
- Not Raining (¬Q) or working (R)

Two statements:-

Existing Knowledge Base

$$R_1$$
: $\neg P_{1,1}$

$$R_2$$
: $B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R4: \neg B_{1.1}$$

R5:
$$B_{2,1}$$

$$R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$
 by

bicond. elim R_2

$$R_7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$
 by And-Elimination to R_6

$$R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$$
 by contrapositives

$$R_9$$
: $\neg (P_{1,2} \lor P_{2,1})$ by Modus Ponens with R_8 and R_4

R10:
$$\neg$$
 P1,2 \land \neg P2,1 by De Morgan's rule

Proof by Resolution

• Let's say agent returns from [2,1] to [1,1] and goes to [1,2]

• We add:

 $R11: \neg B1,2$

 $R12: B1,2 \Leftrightarrow (P1,1 \vee P2,2 \vee P1,3)$

 $R13 : \neg P2,2$

 $R14: \neg P1,3$

R15: P1,1 \(\times \text{P2,2} \(\times \text{P3,1} \)

R16: P1,1 ∨ P3,1

R17: P3,1

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
UK	UK		
1,1	2,1 B	3,1 P!	4,1
v	v		
OK	ok		

R₃: B_{2,1}
$$\Leftrightarrow$$
 (P_{1,1} \vee P_{2,2} \vee P_{3,1})
B_{2,1} \Rightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \wedge (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \Rightarrow B_{2,1}
R5: B_{2,1}

$$\alpha \Rightarrow \beta, \alpha$$
 β

Proof by Resolution

Factoring

One more technical aspect of resolution rule: the resulting clause should contain only one copy of each literal.

The removal of multiple copies of literals is called **Factoring**.

Example:- If we resolve

A V B with A V ¬ B , we obtain

A V A

Which is reduced to just 'A'.

THANK YOU

Dr Pooja Agarwal
Department of Computer Science and
Engineering
poojaagarwal@pes.edu