

Invatare Automata in Vedere Artificiala

Curs 4: Detectia de obiecte

Recapitulare

CAT & DOG?

CAT DOG

Task-uri in Computer Vision

Semantic Segmentation

Classification + Localization

Object Detection

Instance Segmentation

Un singur obiect

Mai multe obiecte

Clasificare + Localizare

- In imagine este prezent un singur obiect. Q: este o pisica in imagine? Daca da, unde se afla aceasta in imagine?
- Output: Clasa obiectului + Coordonatele bounding box-ului (x, y, w, h)

Clasificare + Localizare

Clasificare + Localizare

- Antrenam reteaua pentru a obtine un label pentru clasificare si un bounding box pentru localizare
- Localizarea este tratata ca o problema de regresie
- Layerele convolutionale sunt conectate la:
 - Layere fully-connected pentru clasificare
 - Layere fully-connected pentru cele 4 numere care definesc bounding box-ul
- Loss = a * Loss Classification + (1 a) * Loss Localization
 - Localizare: L1, L2, smooth L1 etc.
 - Clasificare: Softmax

Detectia de obiecte

- Numar necunoscut de obiecte pe care vrem sa le detectam in imagine
- Modelul trebuie sa prezica un numar diferit de output-uri in functie de imaginea de input
- Output: Pentru fiecare obiect din imagine prezicem clasa obiectului si bounding box-ul acestuia (coordonatele)

DUCK:
$$(x, y, w, h)$$

DUCK: (x, y, w, h) \longrightarrow n x 4 = ... numere

. . . .

Detectia de obiecte: Sliding Window

- Aplicarea unei retele convolutionale (CNN) pe mai multe crop-uri diferite din imagine
- Reteaua trebuie sa clasifice fiecare crop din imagine pe care il primeste.
 Output: obiect sau background

Detectia de obiecte: Sliding Window

 Problema: Va trebui sa aplicam CNN-ul pe crop-uri de diferite scale-uri si aspect ratio-uri pentru un numar foarte mare de locatii => Computationally expensive!

Detectia de obiecte: Region Proposal

- Alegerea "automata" a regiunilor din imagine care ar putea contine obiecte
- Selective search algoritm pentru selectarea eficienta a regiunilor
- Tehnici clasice de computer vision (ex. Detectia blob-urilor)

R-CNN 2014

- 1. Input image
- 2. Extract region proposals (~2k)
- 3. Compute CNN features

- 4. Classify regions
- 1. Region Proposal: Se genereaza si se extrag regiuni cu o probabilitate mare de a contine obiecte (agnostic independente de categorie)
- 2. Feature Extractor: Se extrag trasaturile pentru fiecare regiune folosind o retea convolutionala
- 3. Clasificator: clasifica feature-urile si obtinem output-ul

Fast R-CNN

- R-CNN s-a dovedit a fi foarte incet (~2000 de regiuni per imagine sunt evaluate de CNN), iar antrenarea costisitoare d.p.d.v al timpului si spatiului.
- Fast R-CNN este versiunea imbunatatita si mai rapida a R-CNN
- Imaginea trece o singura data prin feature extractor

Fast R-CNN

Problema: Selective Search dureaza prea mult

Solutie: Selective Search este inlocuit de o retea care invata sa propuna regiuni, Region Proposal Network (**RPN**)

CNN - Receptive Field

First Stage (Region Proposal Network - RPN)

- Pentru fiecare imagine din dataset:
 - Backbone -> imaginea este trecuta prin reteaua convolutionala si se obtine un feature map
 - Region Proposal Network (RPN)

RPN:

- Se genereaza ancore (regiuni) la locatii diferite, cu diverse marimi si aspect ratio-uri
- Acelasi set de ancore este folosit pentru intreg dataset-ul; reprezinta un prior despre locatiile cel mai des intalnite ale obiectelor
- Pentru fiecare ancora, clasificam regiunea ca obiect/background si rafinam coordonatele bounding-box ului (2 loss-uri)

First Stage (Region Proposal Network - RPN)

RPN:

- \circ Rafinarea coordonatelor implica calcularea offset-urilor (Δx , Δy , Δw , Δh) pentru fiecare ancora
- GT pentru RPN o ancora e considerata pozitiva, daca are iOU > 0.5 (hiper-parametru) cu cel mai apropiat bounding-box real
- Se aleg Top 300 (hiper-parametru) ancore (regiuni) sortate descrescator in functie de probabilitatea de a contine un obiect

Second Stage

- Asemanator cu Fast R-CNN:
 - Rol pooling layer
 - Clasificarea finala (label)
 - Corectia spatiala a bounding box-ului: regresia ne ofera offset-urile pentru ancore

One Stage vs Two Stage Detector

- Faster R-CNN: detectia are loc in doua etape:
 - Prima, in care modelul propune o serie de regiuni de interes folosind RPN
 - A doua, in care clasificatorul doar proceseaza regiunile pe care le primeste din first stage.
- SSD/YOLO: detectia are loc intr-o singura etapa => mai rapid
- One Stage Detectors mai potrivite pentru aplicatii real-time

Single-Shot Detector (SSD)

SSD are 2 componente:

- Un backbone (o retea pre-antrenata de clasificare folosita ca feature extractor)
- SSD head: una sau mai multe convolutii adaugate la backbone
- Receptive field-ul este ideea de baza a SSD: acesta ne ajuta sa detectam obiecte la diferite scale-uri. Primele layere convolutionale ne ajuta sa detectam obiecte mici, iar pe masura ce avansam in retea, putem detecta obiecte din ce in ce mai mari

Single-Shot Detector (SSD)

Single-Shot Detector (SSD)

- Definirea ancorelor:
- Prior-urile (ancorele) vor fi aplicate pe feature map-uri de diverse dimensiuni
- Ancorele sunt diferite pentru fiecare feature map in parte
- Daca o ancora are un scale s, atunci aria ei este egala cu aria unui patrat cu latura s.
- La fiecare pozitie din feature map vor exista ancore cu diferite aspect ratio-uri.

Feature Map From	Feature Map Dimensions	Prior Scale	Aspect Ratios	Number of Priors per Position	Total Number of Priors on this Feature Map
conv4_3	38, 38	0.1	1:1, 2:1, 1:2 + an extra prior	4	5776
conv7	19, 19	0.2	1:1, 2:1, 1:2, 3:1, 1:3 + an extra prior	6	2166
conv8_2	10, 10	0.375	1:1, 2:1, 1:2, 3:1, 1:3 + an extra prior	6	600
conv9_2	5, 5	0.55	1:1, 2:1, 1:2, 3:1, 1:3 + an extra prior	6	150
conv10_2	3, 3	0.725	1:1, 2:1, 1:2 + an extra prior	4	36
conv11_2	1, 1	0.9	1:1, 2:1, 1:2 + an extra prior	4	4
Grand Total	-	-	<u>570</u> 1	(3)	8732 priors

Intersection over union (IoU)

$$= \frac{Aria\ of\ overlap}{Area\ of\ union}$$

- loU = 0 => nu exista suprapunere intre box-uri
- loU = 1 => intersectia box-urilor
 este egala cu reuniunea lor, deci
 acestea se suprapun perfect

NMS

- Input: o lista de box-uri propuse B, confidence score-ul S corespunzator fiecaruia si pragul de suprapunere (overlap threshold) N.
- Output: O lista filtrata de box-uri propuse D.
- Scop: elimina predictiile redundante, pastrand detectia cu cel mai mare scor.

Before non-max suppression

Non-Max Suppression

After non-max suppression

NMS

- Selecteaza box-ul cu cel mai mare confidence score
- 2. Apoi, compara suprapunerea acestuia cu alte box-uri (IoU)
- 3. Elimina bounding box-urile cu suprapunerea (IoU) >50%
- 4. Apoi, mergi la urmatorul box cu cel mai mare confidence score
- 5. Repeta pasii 2-4.

Step 1: Selecting Bounding box with highest score

Step 3: Delete Bounding box with high overlap

Step 5: Final Output

Evaluarea Retelelor de Detectie

Precision

$$ext{Precision} = rac{tp}{tp+fp}$$

Recall

$$ext{Recall} = rac{tp}{tp + fn}$$

Metricile sunt calculate pe boxuri. Consideram un box ca fiind *true positive* daca are IoU cu boxul de Ground Truth peste o anumita valoare, altfel este *false positive*. *False negative* sunt boxurile din Ground Truth pentru care modelul nu a prezis nimic.

YOLO - You Only Look Once (2020)

Key Developments in YOLO Evolution

Early Improvements (YOLOv1 to YOLOv3):

- Introduced grid division and anchor boxes
- Enhanced backbone with Darknet-53
- Multi-scale predictions using Feature Pyramid Network (FPN)

Efficiency and Speed (YOLOv4 to YOLOv6):

- CSPDarknet53 and Spatial Pyramid Pooling (SPP) for efficiency
- Simplification and speed optimization
- Anchor-free training

Recent Advances (YOLOv7 to YOLOv12):

- Unified architectures for multiple tasks
- Transformer integration and Non-Maximum Suppression (NMS) elimination
- Attention mechanisms for efficiency and accuracy

YOLO Evolution

