Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA A XI-a, SOLUŢII ŞI BAREMURI

Problema 1. Fie A, B, C trei matrice de ordin 3, care au elemente numere reale şi care îndeplinesc condițiile: $\det(A + iB) = \det(C + iA)$ şi $\det(A) = \det(B) = \det(C)$. Arătați că $\det(A + B) = \det(C + A)$.

Soluție. Fie funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \det(A + xB) - \det(C + xA)$ (1 punct). Această funcție este polinomială și are grad ≤ 3 (1 punct). Din ipoteză, coeficientul lui x^3 este $\det(B) - \det(A) = 0, f(0) = \det(A) - \det(C) = 0$ și $f(i) = \det(A + iB) - \det(C + iA) = 0$ (3 puncte). Rezultă că funcția este de forma $f(x) = ax^2 + bx$, cu $-a + bi = 0, a, b \in \mathbb{R}$, deci $a = b = 0, f(x) = 0, \forall x \in \mathbb{R}$ și $\det(A + B) - \det(C + A) = f(1) = 0$ (2 puncte).

Problema 2. Fie $n \in \mathbb{N}^*$ și o matrice $A \in \mathcal{M}_n(\mathbb{C})$, $A = (a_{pq})_{1 \leq p,q \leq n}$, cu proprietatea: $a_{ij} + a_{jk} + a_{ki} = 0, \forall i, j, k \in \{1, 2, ..., n\}$. Arătați că rang $(A) \leq 2$.

Soluție. Arătăm că, dacă $n \geq 3$, atunci orice minor de ordin 3 este nul (1 punct). Luând i = j = k rezultă $a_{ii} = 0, \forall i$ (1 punct), iar $k = i \Rightarrow a_{ij} + a_{ji} = 0, \forall i, j$ (1 punct). Să considerăm un minor oarecare D de ordin 3, făcut cu elemente de pe liniile i, j, k și coloanele p, q, r. În D, scăzând prima linie din a doua obținem linia $L = (a_{jp} - a_{ip}, a_{jq} - a_{iq}, a_{jr} - a_{ir})$. Avem $a_{js} - a_{is} = a_{js} + a_{si} = -a_{ij}$ pentru s = p, q, r, deci linia L are elementele egale. Analog, linia obținută prin scăderea primei linii din linia a treia are elemente egale. De aici, D = 0 (4 puncte).

Problema 3. Fie $(x_n)_{n\geq 1}$ un şir definit de $x_1=2, x_{n+1}=\sqrt{x_n+\frac{1}{n}}, \ \forall n\geq 1.$ Arătați că $\lim_{n\to\infty}x_n=1$ și calculați $\lim_{n\to\infty}(x_n)^n.$

Soluție. Avem, inductiv, $1 \le x_n \le 2, \forall n \in \mathbb{N}^*$ (1 punct) și $x_n \ge x_{n+1}, \forall n \in \mathbb{N}^*$ (1 punct), deci șirul $(x_n)_n$ are o limită $L \ge 1$ care verifică relația $L = \sqrt{L}$, deci L = 1 (1 punct).

Pentru a doua limită, scriem $x_n^n = u_n^{v_n}$, cu $u_n = (1 + x_n - 1)^{\frac{1}{x_n - 1}} \to e$ (1 punct), iar pentru limita șirului $v_n = n(x_n - 1)$ observăm inductiv că $x_n \ge 1 + \frac{1}{n}, \forall n \ge 5$ și $x_n < 1 + \frac{1}{n-4}, \forall n \ge 5$, deci, din teorema cleștelui, $v_n \to 1$ (3 puncte).

- **Problema 4.** a) Arătați că funcția $F: \mathbb{R} \to \mathbb{R}, F(x) = 2[x] \cos(3\pi\{x\})$ are proprietățile: funcția F este continuă pe \mathbb{R} și, pentru orice $y \in \mathbb{R}$, ecuația F(x) = y are exact trei soluții.
- b) Fie k > 0 un număr întreg par. Arătați că nu există nicio funcție $f : \mathbb{R} \to \mathbb{R}$ cu proprietățile: funcția f este continuă pe \mathbb{R} și, pentru orice $y \in \text{Im} f$, ecuația f(x) = y are exact k soluții.

Soluţie. a) Deoarece funcţia $[\cdot]$ este continuă pe $\mathbb{R} \setminus \mathbb{Z}$, F este produs, compunere şi diferenţă de funcţii continue, deci este continuă pe $\mathbb{R} \setminus \mathbb{Z}$ (1 punct). În punctele $a \in \mathbb{Z}$, $\lim_{x \searrow a} F(x) = 2a - \cos 0 = 2a - 1$, $\lim_{x \nearrow a} F(x) = 2(a - 1) - \cos 3\pi = 2a - 1$, F(a) = 2a - 1, deci F este continuă (1 punct). În plus, dacă $y \notin 2\mathbb{Z} + 1$ ecuaţia f(x) = y are trei soluţii, situate în intervalul $\left(\left[\frac{y+1}{2}\right], \left[\frac{y+1}{2}\right] + 1\right)$, iar dacă $y \in 2\mathbb{Z} + 1$ ecuaţia f(x) = y are soluţiile $\frac{y+1}{2}, \frac{3y+7}{6}$ şi $\frac{3y-1}{6}$ (numărul soluţiilor se poate deduce şi urmărind graficul funcţiei F) (1 punct).

b) Să presupunem că există o astfel de funcție. Fie $\lambda \in \text{Im } f$ și $x_1 < x_2 < \ldots < x_{2k}$ soluțiile ecuației $f(x) = \lambda$. Atunci, pe fiecare din intervalele $I_0 = (-\infty, x_1), I_1 = (x_1, x_2), \ldots, I_{2k} = (x_{2k}, \infty)$ diferența $d(x) = f(x) - \lambda$ are semn constant (2 puncte).

Dacă d(x) are semnul "+" pe I_0 şi pe I_{2k} , atunci f este mărgintă inferior pe fiecare din intervalele I_0, I_1, \ldots, I_{2k} , deci pe \mathbb{R} . În plus, marginea inferioară $m = \inf f$ este atinsă în $[x_0, x_{2k}]$. Fie $t_1 < t_2 < \ldots < t_{2k}$ punctele în care se atinge marginea inferioară. În acest caz, alegând vecinătăți disjuncte V_1, V_2, \ldots, V_{2k} ale punctelor t_1, t_2, \ldots, t_{2k} şi y > m, suficient de apropiat de m, găsim în fiecare V_i câte două soluții ale ecuației f(x) = y. Rezultă astfel cel puțin 4k soluții ale ecuației f(x) = y – contradicție. Cazul când d(x) are semnul "—" pe I_0 şi pe I_{2k} se tratează analog (1 punct).

Dacă d(x) are semne opuse pe I_0 şi I_{2k} , pe cel puţin k dintre cele 2k-1 intervale I_1, \ldots, I_{2k-1} funcţia d(x) are acelaşi semn, de exemplu "+". În acest caz, pentru $y > \lambda$, suficient de apropiat de λ , ecuaţia f(x) = y are cel puţin 2k soluţii pe $[x_0, x_{2k}]$ şi o soluţie pe I_0 sau I_{2k} – contradicţie (1 punct).