1

GATE NM-54 2022

EE23BTECH11011- Batchu Ishitha*

Q: A system with two degrees of freedom, as shown in the figure, has masses $m_1 = 200kg$ and $m_2 = 100kg$ and stiffness coefficients $k_1 = k_2 = 200N/m$. Then the lowest natural frequency of the system is _____ rad/s (rounded off to one decimal place).

Fig. 0.

GATE NM 2022

Solution:

Fig. 0.

METHOD-1:

Variable	Description	Value
m_1	Mass of block 1	200kg
m_2	Mass of block 2	100kg
k_1	Stiffness coefficient of spring1	200N/m
k_2	Stiffness coefficient of spring2	200N/m
$x_i(t)$	Displacement of <i>i</i> th block	$x_i(t) = \cos(\omega t + \phi_i), x_i \ge 0$

TABLE 0 Input Parameters

$$m_1 \ddot{x}_1(t) - k_2 (x_2(t) - x_1(t)) + k_1 x_1(t) = 0$$
 (1)
$$m_2 \ddot{x}_2(t) + k_2 (x_2(t) - x_1(t)) = 0$$
 (2)

Writing (1) and (2) in matrix form:

$$\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \ddot{x_1}(t) \\ \ddot{x_2}(t) \end{pmatrix} + \begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (3)

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
 (4)

$$x''(t) \stackrel{\mathcal{L}}{\longleftrightarrow} s^2 X(s) - sx(0) - x'(0)$$
 (5)

Applying Laplace transform for (1) and (2) assuming they are at their repective maximum displacement at t=0

$$m_1 \left(s^2 X_1(s) - s x_1(0) - 0 \right) - k_2 \left(X_2(s) - X_1(s) \right) + k_1 X_1(s) = 0$$

$$(6)$$

$$m_2 \left(s^2 X_2(s) - s x_2(0) - 0 \right) + k_2 \left(X_2(s) - X_1(s) \right) = 0$$

$$(7)$$

Writing (6) and (7) in matrix form:

$$\begin{pmatrix} m_1 s^2 + (k_1 + k_2) & -k_2 \\ -k_2 & m_2 s^2 + k_2 \end{pmatrix} \begin{pmatrix} X_1(s) \\ X_2(s) \end{pmatrix} = \begin{pmatrix} m_1 s x_1(0) \\ m_2 s x_2(0) \end{pmatrix}$$
(8)

$$\begin{pmatrix} X_1(s) \\ X_2(s) \end{pmatrix} = \frac{1}{m_1 m_2 s^4 + (k_1 + k_2) m_2 s^2 + k_2 m_1 s^2 + k_1 k_2}
\begin{pmatrix} m_2 s^2 + k_2 & k_2 \\ k_2 & m_1 s^2 + (k_1 + k_2) \end{pmatrix} \begin{pmatrix} m_1 s x_1(0) \\ m_2 s x_2(0) \end{pmatrix}$$
(9)

$$\implies X_{1}(s) = \frac{m_{1}m_{2}s^{3}x_{1}(0) + k_{2}m_{1}sx_{1}(0) + m_{2}k_{2}sx_{2}(0)}{m_{1}m_{2}s^{4} + (k_{1} + k_{2})m_{2}s^{2} + k_{2}m_{1}s^{2} + k_{1}k_{2}}$$

$$(10)$$

$$\implies X_{2}(s) = \frac{m_{1}k_{2}sx_{1}(0) + m_{1}m_{2}s^{3}x_{2}(0) + (k_{1} + k_{2})m_{2}sx_{2}(0)}{m_{1}m_{2}s^{4} + (k_{1} + k_{2})m_{2}s^{2} + k_{2}m_{1}s^{2} + k_{1}k_{2}}$$

Considering denominator of $X_i(s)$ for i = 1, 2(ie:characteristic equation of the system):

$$m_{1}m_{2}s^{4} + (k_{1} + k_{2})m_{2}s^{2} + k_{2}m_{1}s^{2} + k_{1}k_{2} = 0 (12)$$

$$s^{4} + 4s^{2} + 2 = 0 (13)$$

$$\implies s^{2} = \frac{-4 \pm \sqrt{16 - 8}}{2}$$

$$(14)$$

$$= -2 \pm \sqrt{2}$$

$$(15)$$

$$\omega = \pm \sqrt{2 \mp \sqrt{2}}$$

$$(16)$$

$$\implies \omega_{least} = 0.765rad/s$$

$$(17)$$

METHOD-2:CONVERTING MECHANICAL **SYSTEM** INTO ITS **ANALOGOUS** ELECTRICAL CIRCUIT BY FORCE VOLTAGE **METHOD**

Mechanical Quantity	Electrical Quantity
Force	Voltage
Velocity	Current
Mass	Inductance
Stiffness coefficient of spring	Inverse of Capacitance

TABLE 0 INPUT PARAMETERS

Fig. 0.

$$k_{1} \int i_{1} dt + L_{1} \frac{di_{1}}{dt} + k_{2} \int (i_{1} - i_{2}) dt = 0$$
 (18)

$$L_{2} \frac{di_{2}}{dt} - k_{2} \int (i_{1} - i_{2}) dt = 0$$
 (19)
$$\Longrightarrow I_{2}(s) = \frac{k_{2} L_{1} i'_{1}(0) + (L_{1} s^{2} + (k_{1} + k_{2})) L_{2} i'_{2}(0)}{L_{1} L_{2} s^{4} + (k_{1} + k_{2}) L_{2} s^{2} + k_{2} L_{1} s^{2} + k_{1} k_{2}}$$
 (30)

Differentiating (18) and (19) wrt t;

$$k_1 i_1 + L_1 \frac{d^2 i_1}{dt^2} + k_2 (i_1 - i_2) = 0$$

$$L_2 \frac{d^2 i_2}{dt^2} - k_2 (i_1 - i_2) = 0$$
(20)

Writing (20) and (21) in matrix form:

$$= -2 \pm \sqrt{2}$$

$$(15) \qquad \begin{pmatrix} L_1 & 0 \\ 0 & L_2 \end{pmatrix} \begin{pmatrix} \ddot{i_1}(t) \\ \ddot{i_2}(t) \end{pmatrix} + \begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} i_1(t) \\ i_2(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(22) \qquad \omega = \pm \sqrt{2 \mp \sqrt{2}}$$

$$i(t) \stackrel{\mathcal{L}}{\longleftrightarrow} I(s)$$
 (23)

$$i''(t) \stackrel{\mathcal{L}}{\longleftrightarrow} s^{2}I(s) - si(0) - i'(0) \tag{24}$$

Applying Laplace transform assuming current to be maximum:

$$L_{1}\left(s^{2}I_{1}(s) - i_{1}'(0)\right) - k_{2}\left(I_{2}(s) - I_{1}(s)\right) + k_{1}I_{1}(s) = 0$$

$$(25)$$

$$L_{2}\left(s^{2}I_{2}(s) - i_{2}'(0)\right) + k_{2}\left(I_{2}(s) - I_{1}(s)\right) = 0$$

$$(26)$$

Writing (25) and (26) in matrix form:

$$\begin{pmatrix} L_1 s^2 + (k_1 + k_2) & -k_2 \\ -k_2 & L_2 s^2 + k_2 \end{pmatrix} \begin{pmatrix} I_1(s) \\ I_2(s) \end{pmatrix} = \begin{pmatrix} L_1 i_1'(0) \\ L_2 i_2'(0) \end{pmatrix}$$
(27)

$$\begin{pmatrix}
I_{1}(s) \\
I_{2}(s)
\end{pmatrix} = \frac{1}{L_{1}L_{2}s^{4} + (k_{1} + k_{2})L_{2}s^{2} + k_{2}L_{1}s^{2} + k_{1}k_{2}}
\begin{pmatrix}
L_{2}s^{2} + k_{2} & k_{2} \\
k_{2} & L_{1}s^{2} + (k_{1} + k_{2})
\end{pmatrix} \begin{pmatrix}
L_{1}i'_{1}(0) \\
L_{2}i'_{2}(0)
\end{pmatrix} (28)$$

$$\implies I_{1}(s) = \frac{\left(L_{2}s^{2} + k_{2}\right)L_{1}i'_{1}(0) + k_{2}L_{2}i'_{2}(0)}{L_{1}L_{2}s^{4} + (k_{1} + k_{2})L_{2}s^{2} + k_{2}L_{1}s^{2} + k_{1}k_{2}} \tag{29}}$$

$$\implies I_{2}(s) = \frac{k_{2}L_{1}i'_{1}(0) + \left(L_{1}s^{2} + (k_{1} + k_{2})\right)L_{2}i'_{2}(0)}{L_{1}L_{2}s^{4} + (k_{1} + k_{2})L_{2}s^{2} + k_{2}L_{1}s^{2} + k_{1}k_{2}} \tag{30}}$$

Considering denominator of $I_i(s)$ for i = 1, 2(ie: characteristic equation of the system):

$$L_{1}L_{2}s^{4} + (k_{1} + k_{2})L_{2}s^{2} + k_{2}L_{1}s^{2} + k_{1}k_{2} = 0 (31)$$

$$s^{4} + 4s^{2} + 2 = 0 (32)$$

$$\implies s^{2} = \frac{-4 \pm \sqrt{16 - 8}}{2}$$

$$(33)$$

$$= -2 \pm \sqrt{2}$$

$$(34)$$

$$\omega = \pm \sqrt{2 \mp \sqrt{2}}$$

$$(35)$$

$$\implies \omega_{least} = 0.765rad/s$$

$$(36)$$