

Automates et analyse lexicale (AAL3)

L2 – Examen – 2h 18 décembre 2020 Nom: La correction

Prénom : bonne année

Numéro d'étudiant : 2021

Consignes:

- Tous documents ou appareils électroniques interdits.
- Vous devez répondre directement sur les traits pointillés.
- Si vous n'avez pas assez de place pour vos réponses (**ce qui ne devrait pas arriver**), demandez une copie d'examen et insérez-y ce sujet complété.
- Inscrivez vos nom, prénom et numéro d'étudiant dans l'onglet ci-dessus avant de le replier et d'en coller les bords seulement.

Les langages considérés seront sur l'alphabet $\Sigma = \{a, b\}$.

Exercice 1

Soit A et B les langages donnés par les expressions rationnelles suivantes : $(aa + b)^*ab$ et $(bab + ab)^*$. Donner les 3 plus petits mots de $A \cup B$:

1. ε 2. ab 3. bab

Exercice 2

Pour tout langage L, on définit le langage $Pal(L) = \{u\bar{u} \mid u \in L\}$, où \bar{u} désigne le miroir du mot u.

1. Donner un langage reconnaissable A infini tel que Pal(A) soit reconnaissable :

Expression rationnelle pour A	Expression rationnelle pour $Pal(A)$	
a^*	$(aa)^*$	

2. Donner un langage reconnaissable B tel que Pal(B) ne soit pas reconnaissable :

Expression rationnelle pour B	Description ensembliste pour $Pal(B)$	
a^*b	$\{a^nbba^n \mid n \in \mathbb{N}\}$	

Exercice 3

Pour tout langage L, on note $\tilde{L} = \{a^n \mid L \cap \Sigma^n \neq \emptyset\}$: a^n est dans \tilde{L} ssi L possède au moins un mot de longueur n. Le but de cet exercice est de montrer que si L est reconnaissable, alors \tilde{L} aussi.

1. Soit L le langage décrit par l'expression rationnelle $(ab)^*$. Donner ci-dessous des automates finis déterministes à 2 états pour L et \tilde{L} .

2. Soit L un langage reconnaissable, et $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ un AFD pour L.

À partir de \mathcal{A} , décrire un AFND $\tilde{\mathcal{A}}$ pour $\tilde{\mathcal{L}}$: il suffit d'étiqueter toutes les transitions de \mathcal{A} par a.

3. Conclure : à partir d'un AFD pour L, nous avons construit un AFND pour \tilde{L} , donc \tilde{L} est reconnaissable si L l'est.

Exercice 4

Soit L le langage des mots de longueur 4n, pour un certain $n \in \mathbb{N}$, contenant en leur milieu 2n lettres a:

$$L = \{ua^{2n}v \mid n \in \mathbb{N}, |u| = |v| = n\}.$$

Le but de cet exercice est de déterminer si A est reconnaissable. On considère la relation d'équivalence habituelle $u \sim_L v$ ssi $\forall w, [uw \in L \iff vw \in L]$.

- 1. Donner un mot w permettant de séparer les mots b et bb : a^2b
- 2. Soit i et j des entiers tels que i < j. Donner un mot permettant de séparer les mots b^i et b^j : $a^{2i}b^i$
- 3. Combien la relation \sim_L a-t-elle de classes d'équivalence? Une infinité
- **4.** D'après le théorème de Myhill-Nerode, on a donc (cocher la bonne réponse) :

 \square L reconnaissable \square L non reconnaissable

Exercice 5

Soit le langage $L = \{uav \mid |u| \not\equiv |v| \mod 2\}$. Est-il reconnaissable? Compléter la partie correspondante.

Oui, L est décrit par l'expression rationnelle suivante :

$$((a+b)^2)^* a(a+b) ((a+b)^2)^* + (a+b) ((a+b)^2)^* a ((a+b)^2)^*$$

(soit |u| paire et |v| impaire, soit l'inverse) ou plus court :

$$((a+b)^2)^*(aa+ab+ba)((a+b)^2)^*$$

Non.

Par l'absurde, si $L \in Rec$ alors soit N l'entier donné par
le
On choisit $u = \dots$:
alors $u cdots u cdots et u cdots$
donc il existe un découpage $u=xyz$ avec
$ xy \dots y \dots$ et
$\forall k, \ldots \ldots$
Or pour $k = \dots $ on a:
Contradiction avec
donc

Même question avec le langage $L = \{uav \mid |u| \le |v|\}.$

Oui, L est décrit par l'expression rationnelle suivante :

.....

......

Non.

Par l'absurde, si $L \in \mathsf{Rec}$ alors soit N l'entier donné par

le lemme de l'étoile.

On choisit $u = b^N a b^N$:

alors $u \in L$ et $|u| \ge N$

donc il existe un découpage u = xyz avec

 $|xy| \leq N, y \neq \varepsilon$ et

 $\forall k,\, xy^kz\in L$

Or pour k = 2 on a :

$$xy^2z=b^{N+|y|}ab^N\not\in L$$

Contradiction avec le lemme de l'étoile

doncLn'est pas reconnaissable.

Exercice 6

Soit L le langage décrit par l'expression rationnelle $a(aa+bb)^*b$. On se propose de décrire tous les résiduels de L en les ordonnant sous la forme d'un arbre.

1. Donner les expressions rationnelles e_1 et e_2 qui décrivent correctement les résiduels L_1 , L_2 dans l'arbre ci-dessous.

$$e_1 = (aa + bb)^*b$$

$$e_2 = b(aa + bb)^*b + \varepsilon$$

2. Compléter par L_0, L_1, L_2 ou \emptyset les pointillés dans l'arbre des résiduels afin que celui-ci soit correct.

3. Quel(s) résiduel(s) contien(nen)t le mot vide? (cocher la ou les bonnes réponses)

- $\Box L_0$
- $\Box L_1$
- $abla L_2$
- \square Ø
- \square aucun

4. En déduire l'automate fini déterministe et complet minimal pour L, dont les états sont les quatre résiduels ci-dessus : compléter la table de transition suivante (ne pas oublier d'indiquer, sous forme de flèches, l'état initial et le ou les états terminaux).

	a	b
$\rightarrow L_0$	L_1	Ø
L_1	L_0	L_2
$\leftarrow L_2$	Ø	L_1
Ø	Ø	Ø

Exercice 7

On considère l'AFD complet \mathcal{A} suivant reconnaissant un certain langage L.

		a	b
\rightarrow	0	1	3
\leftarrow	1	2	0
	2	0	4
	3	0	4
\leftarrow	4	2	0

Minimiser \mathcal{A} en complétant les étapes ci-dessous de l'algorithme de Moore.

- **1.** Groupes d'états à l'étape $0 : \{0, 2, 3\}$ $\{1,4\}$
- $\mathbf{2.}\ a$ et b séparent $\mathbf{0}$ de $\mathbf{2}$ et $\mathbf{3}$

Groupes d'états à l'étape $1: \{0\}$ $\{2,3\}$ $\{1,4\}$

 ${f 3.}~a$ et b ne séparent plus d'états. On obtient l'automate déterministe complet minimal suivant (indiquer les transitions sur le dessin ci-dessous) :

Afin de déterminer une expression rationnelle pour L, compléter les transitions dans les étapes de l'algorithme de Brzozowski-McCluskey ci-dessous.

Élimination de l'état 2.

Élimination de l'état 0.

Élimination de l'état 1.

$$(ba)^*(a+bb)(ab+(b+aa)(ba)^*(a+bb))^* \longrightarrow f$$

En s'aidant de l'automate minimal de L trouvé ci-dessus, ou de l'expression rationnelle obtenue par l'algorithme de Brzozowski-McCluskey, déterminer les entiers α , β et γ tels que

$$L = \{ u \mid \alpha |u|_a + \beta |u|_b \equiv \gamma \mod 3 \} :$$

$$\alpha = 1$$
 $\beta = 2$ $\gamma = 1$