Lecture 7: OLS with qualitative information

Dummy variables

- Dummy variable: an indicator that says whether a particular observation is in a category or not
 - Like a light switch: on or off
 - Most useful values: 1 & 0
- Example, predicting school attachment:
 - schattach = $\beta_1 + \beta_2$ male + u
 - The variable 'male' is equal to 1 for all males, and 0 for all females.

Example, cont.

- For males: schattach-hat = $\beta_1 + 1^*\beta_2 = \beta_1 + \beta_2 = 7.83 + .17 = 8.00$
- For females: schattach-hat = $\beta_1 + 0^* \beta_2 = \beta_1 = 7.83$

. reg schattach male

Source	SS	df	MS		Number of obs	=	6574
+					F(1, 6572)	=	11.12
Model	45.2251677	1 45.	2251677		Prob > F	=	0.0009
Residual	26719.3529	6572 4.0	6563495		R-squared	=	0.0017
+					Adj R-squared	=	0.0015
Total	26764.578	6573 4.0	7189686		Root MSE	=	2.0163
schattach	Coef.	Std. Err.			[95% Conf.	In	terval]
male	.1659059	.0497434	3.34	0.001	.0683925		2634192

Example, cont.

- To test for significant differences between two groups, we look at the estimate and standard error for the coefficient on the dummy variable.
- If we fail to reject the null that the coefficient is zero, this means that we have no evidence that the two groups differ in their means (or adjusted means) for the dependent variable.
- In the simple regression case, the regression is simply reporting the average of the dependent variable for the two groups, and whether they're statistically different

Example, cont.

. ttest schattach, by(male)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.		[95% Conf.	_
0	3234 3340	7.829004	.0363044	2.064566 1.968524	7.757822 7.928126	7.900186 8.061694
combined	6574	7.913295	.0248876	2.017894	7.864507	7.962083
diff	1	1659059	.0497434		2634192	
diff =	 = mean(0)	- mean(1)			 t	= -3.3352

$$t = -3.3352$$

Ho:
$$diff = 0$$

Ha: diff
$$< 0$$

Pr(T $<$ t) = 0.0004

Ha: diff > 0
$$Pr(T > t) = 0.9996$$

- A qualitative variable with more than two categories can also be analyzed using dummy variables. We have to create more than one dummy variable to do so.
- Let's say we have three race categories: white, black and other, and one race variable:
 - race=1 if white
 - race=2 if black
 - race=3 if other

- What happens if we enter this race variable into a regression? Gibberish! Never do this.
- A one unit increase in a qualitative variable is meaningless.
- In order to assess race differences in school attachment, we have to create a dummy variable for each race, and enter any two of these into the regression model.
- In general, if there are *j* discrete categories, we need to enter *j-1* dummy variables into the regression model

- Why *j-1*?
- If we were to include j categories, these variables would always sum to 1, and the regression wouldn't run because of perfect multicollinearity.
- So, how do we create these new variables?

. tab race

race	Freq.	Percent	Cum.
1 2 3	3,467 1,897 1,210	52.74 28.86 18.41	52.74 81.59 100.00
Total	6,574	100.00	

Technique 1:

- . gen white=race==1 if race~=.
- . gen black=race==2 if race~=.
- . gen other=race==3 if race~=.
- . summ white black other

Variable	0bs	Mean	Std. Dev.	Min	Max
white	6574	.5273806	.4992877	0	1
black	6574	.288561	.4531278	0	1
other	6574	.1840584	.3875613	0	1

Technique 2:

. tab race, gen(racecat)

race	Freq.	Percent	Cum.
1 2 3	1,897	52.74 28.86 18.41	52.74 81.59 100.00
Total	6 , 574	100.00	

. summ racecat*

Variable	Obs	Mean	Std. Dev.	Min	Max
racecat1	6574	.5273806	.4992877	0	1
racecat2	6574	.288561	.4531278	0	1
racecat3	6574	.1840584	.3875613	0	1

Technique 3:

```
. reg schattach i.race
i.race Irace 1-3 (naturally coded; Irace 1 omitted)
    Source | SS df MS
                                          Number of obs = 6574
                                           F(2, 6571) = 52.70
                                           Prob > F = 0.0000
     Model | 422.549964 2 211.274982
  Residual | 26342.0281 6571 4.00883093
                                           R-squared = 0.0158
                                           Adj R-squared = 0.0155
     Total | 26764.578 6573 4.07189686
                                           Root MSE = 2.0022
  schattach | Coef. Std. Err. t P>|t| [95% Conf. Interval]
  Irace 2 | -.5825364 .0571798 -10.19 0.000 -.6946274 -.4704454
   Irace 3 | -.1250742 .0668533 -1.87 0.061 -.2561284 .00598
   _cons | 8.104413 .0340042 238.34 0.000 8.037754 8.171072
```

- How are the regression results interpreted?
- Using the variables created using technique 1, because they have the most descriptive names, we have the following regression model:
- Schattach = $\beta_1 + \beta_2$ black+ β_3 other+ *u*

- White mean = $\beta_1 + \beta_2 * 0 + \beta_3 * 0 = \beta_1$
- Black mean = $\beta_1 + \beta_2^* + \beta_3^* = \beta_1 + \beta_2$
- 'Other' mean = $\beta_1 + \beta_2 * 0 + \beta_3 * 1 = \beta_1 + \beta_3$
- Each coefficient, β₂ and β₃ tests the difference between the associated category and the omitted one.
 - Here, β_2 is the difference between whites and blacks, β_3 is the difference between whites and 'others'.
- To test other differences, either run a new regression with a different omitted variable, or:
 - test black=other

. reg schattach black other

Source	SS	df	MS		Number of obs F(2, 6571)		6574 52.70
+-	422.549964 26342.0281	2 6571 	211.274982 4.00883093		Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.0158 0.0155 2.0022
· ·	Coef.				[95% Conf.	 In ⁻	terval]
black other	5825364	.05717	798 -10.1 533 -1.8	9 0.000 7 0.061	6946274 2561284 8.037754	-	4704454 .00598 .171072

. reg schattach white other

Source	SS	df	MS		Number of obs		6574 52.70
Model Residual +- Total	422.549964	2 6571 	211.274982		F(2, 6571) Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.0158 0.0155 2.0022
schattach	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
	.5825364 .4574622 7.521877	.05717 .07366 .04597	6.21	0.000	.4704454 .3130575 7.43176	•	6946274 6018669 .611993

- It is possible for none of the dummy variable coefficients in a set to be statistically significantly different from zero, but for the set to jointly be statistically significant.
 - If the middle category (on levels of DV) is omitted, it may not differ significantly from any other categories, but several included categories may differ from one another
 - To test joint significance in Stata, run the F-test for restricted/unrestricted models:

```
. test black other

( 1) black = 0
( 2) other = 0

F(2, 6571) = 52.70
Prob > F = 0.0000
```

Qualitative variables in multiple regression

- When dummy variables are included in multiple regression, they are interpreted as the expected difference in the outcome variable between groups, holding all other included variables constant.
- As more variables are included, the magnitude of the dummy variable coefficients tends to decrease. The raw differences are explained by other differences between the groups.

Qualitative variables in multiple regression, example

. reg schattach black other msgpa antipeer

Source	SS	df	MS		Number of obs	
Model Residual	3729.91174 23034.6663		2.477936 50657121		F(4, 6569) Prob > F R-squared Adj R-squared	= 265.92 = 0.0000 = 0.1394 = 0.1388
Total	26764.578	6573 4.	07189686		Root MSE	= 1.8726
schattach	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
black other msgpa antipeer _cons	3320044 0257976 .3420146 3588477 7.769536	.0542555 .0626731 .027845 .0137435 .0933073	-6.12 -0.41 12.28 -26.11 83.27	0.000 0.681 0.000 0.000	4383629 1486572 .2874293 3857895 7.586624	225646 .097062 .3965999 3319059 7.952449

Qualitative variables in multiple regression, cont.

- In the simple regression, the black/white difference in school attachment was .58, but when middle school grades and anti-social peers are controlled, the difference drops to .33
 - You might claim that 43 percent of the black-white gap in school attachment is "explained" by association with antisocial peers and low middle school grades.
 - Of course, low m.s. grades probably results from earlier low school attachment.
- The constant is no longer interpreted as the mean school attachment for whites. It is now the expected school attachment for whites with a 0.00 middle school gpa (not in the data), and a 0 on the antisocial peer scale.

Qualitative variables in multiple regression, cont.

 Testing for joint significance of a set of dummy variables proceeds as before

```
test black other

( 1) black = 0
( 2) other = 0

F( 2, 6569) = 19.93
Prob > F = 0.0000
```

 Notice the F statistic is now much smaller, but still statistically significant.

- Say you want to look at gender differences and race differences (black, white, other).
 There are a few different ways to do this:
- First, consider all the possible categories:

	White	Black	Other
Male			
Female			

- Example 1, assumes that race and gender don't interact (column & row effects, not cells): Schattach = $β_1+β_2$ male+ $β_3$ black+ $β_4$ other+ u
- This assumption is twofold
 - 1. The difference between males and females is the same in each race category.
 - The difference between races is the same for males and females.
- To calculate the expected school attachment for any group, plug in the appropriate zeros and ones.

- Example 2, interactive model, different effect for each cell:
- Schattach = β₁+β₂male+ β₃black+
 β₄other+β₅male*black+ β₆male*other+ u
- The two assumptions in Example 1 are dropped.
- Expected school attachment:
 - Black males= $\beta_1 + \beta_2 + \beta_3 + \beta_5$
 - Black females=β₁+ β₃
 - White males= $\beta_1 + \beta_2$
 - White females= β₁
 - Other males= $\beta_1 + \beta_2 + \beta_4 + \beta_6$
 - Other females= $\beta_1 + \beta_4$

- Example 3 (equivalent to #2 but simpler to interpret, cell effects only):
- Schattach = $\beta_1 + \beta_2$ male*black+ β_3 female*black+ β_4 white*female+ β_5 male*other+ β_6 female*other+ β_6
- Expected school attachment:
 - Black males=β₁+ β₂
 - Black females= β₁+ β₃
 - White males=β₁
 - White females= $\beta_1 + \beta_4$
 - Other males= β_1 + β_5
 - Other females= β_1 + β_6

- The models in examples 2 and 3 will have identical model diagnostics, and either can be compared to the model in example 1 (the restricted model) to jointly test that the interaction terms are equal to zero.
- We'll contrast Example 1 & Example 2.
- We use the F-test for restricted vs. unrestricted models, where the fully interactional model is unrestricted.

Reminder: F-test for restricted/unrestricted models

$$F(k_{UR} - k_{R}, n - k_{UR}) = \frac{(SSR_{R} - SSR_{UR})/(k_{UR} - k_{R})}{SSR_{UR}/(n - k_{UR})}$$

 Where SSR refers to the residual sum of squares, and k refers to the number of regressors (including the intercept).

. reg schattach male black other

Source	SS	df	MS		Number of obs F(3, 6570)	
Model Residual			.474713)367639		Prob > F R-squared Adj R-squared	= 0.0000 = 0.0172
Total	26764.578	6573 4.0	7189686		Root MSE	= 2.0009
schattach	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male black other cons	.151884 5776691 1240059 8.025645	.0493821 .0571649 .0668112 .0425518	3.08 -10.11 -1.86 188.61	0.002 0.000 0.063 0.000	.055079 6897309 2549776 7.94223	.2486891 4656072 .0069658 8.109061

```
. Xi: reg schattach i.male*i.race
i.male __Imale_0-1 (naturally coded; _Imale_0 omitted) i.race __Irace_1-3 (naturally coded; _Irace_1 omitted)
Source | SS df MS
                                    Number of obs = 6574
                                  F(5, 6568) = 24.68
    Model | 493.631924 5 98.7263847 Prob > F = 0.0000
  Residual | 26270.9461 6568 3.99983954
                                   R-squared = 0.0184
                                      Adj R-squared = 0.0177
     Total | 26764.578 6573 4.07189686 Root MSE = 2
  schattach | Coef. Std. Err. t P>|t| [95% Conf. Interval]
  Imale 1 | .0187919 .0679791 0.28 0.782 -.1144691 .152053
  Irace 2 | -.7312178 .0806422 -9.07 0.000 -.8893027 -.5731329
  Irace 3 | -.2486438 .0957312 -2.60 0.009 -.4363081 -.0609794
ImalXrac ~2 | .3068158 .114286 2.68 0.007 .0827781 .5308535
ImalXrac ~3 | .241808 .1336071 1.81 0.070 -.0201053 .5037213
    cons | 8.094667 .0489546 165.35 0.000 7.998701 8.190634
```

```
. di ((26304.15309-26270.9461)/2)/3.99983954
4.1510403
. di Ftail(2,6568,4.1510403)
.01578936
OR:
. test    ImalXrac 1 2    ImalXrac 1 3
```

(1) _ImalXrac_1_2 = 0 (2) ImalXrac 1 3 = 0

F(2, 6568) = 4.15

Prob > F = 0.0158

Multiple sets of dummy variables, review

. reg schattach male black other maleblack maleother antipeer [cut]

schattach	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male black other maleblack maleother antipeer cons	128352 6122396 2271114 .3895791 .2983765 3834192 8.870465	.0645282 .0764103 .0905682 .1081594 .1264131 .013802 .054081	-1.99 -8.01 -2.51 3.60 2.36 -27.78 164.02	0.047 0.000 0.012 0.000 0.018 0.000 0.000	2548482 7620287 4046545 .1775516 .0505657 4104757 8.764449	0018557 4624506 0495682 .6016067 .5461874 3563627 8.976482

- What does the constant represent?
- What does the coefficient on male represent?
- What is the difference in school attachment between black males and black females, holding antisocial peers constant?
- What is the difference in school attachment for black males and white males?
- What is the difference in school attachment for black females and white females?

Other points

- It is ok to include an entire set of dummy variables only if they are not mutually exclusive
 - If a '1' is allowed for more than one category, like multiple reasons for dropout, or multiple ethnic identities
 - If a '0' is allowed on all the categories, like types of arrest.
- This changes the interpretation of the coefficient to the difference between that single category and everyone else.

Other points, cont.

- By construction, any set of mutually exclusive dummy variables are highly negatively correlated. This is to be expected, and is not a multicollinearity issue.
- If you have 1 or more tiny groups, consider pooling them. You'll have little power with such small groups anyway. "Tiny" is relative.

Ordinal variables

- If X is quantitative but discrete, we force some assumptions on its measurement in a regression model
 - The meaning of the distance between any two adjacent values must be constant.
- For example, in some of the previous regression models, we included a supposedly continuous variable called antipeer. In fact, antipeer takes on only 6 values, 0 through 5, indicating how many antisocial behaviors 50% or more of one's friends are involved in.
- Does moving from a 0 to 1 mean the same thing as moving from a 1 to a 2?

Ordinal variables

- Often, the line between discrete and continuous is fuzzy.
 - Likert scale: 5 different values
 - School expectations in NLSY: 101 different values
- We can test the assumption that an ordinal variable can be modeled in a linear fashion by creating dummy variables for each category.
- When there are too many discrete values, we might create a set of dummy variables, each representing a range of values.

Ordinal variables, example

. reg schattach antipeer

- . predict phat1
 (option xb assumed; fitted values)
- . twoway (scatter schattach antipeer, jitter(10) msize(tiny)) (line phat1 antipeer, sort)

Ordinal variables, example

```
. reg schattach i.antipeer
Number of obs = 6574
    Source |
                             MS
                                          F(5, 6568) = 166.65
    Model | 3013.15977 5 602.631955
                                          Prob > F = 0.0000
  Residual | 23751.4183 6568 3.61623299
                                          R-squared = 0.1126
                                          Adj R-squared = 0.1119
                                          Root MSE = 1.9016
     Total | 26764.578 6573 4.07189686
  schattach | Coef. Std. Err. t P>|t| [95% Conf. Interval]
Iantipeer 1 | -.5739035 .0727911 -7.88 0.000 -.7165977 -.4312093
Iantipeer 2 | -.8590046
                    .0751619 -11.43 0.000 -1.006346
                                                     -.7116628
Iantipeer 3 | -1.154187
                    .0752155 -15.35 0.000 -1.301634
                                                     -1.00674
                    .070838 -22.64 0.000 -1.742759
Iantipeer 4 | -1.603894
                                                     -1.465028
Iantipeer 5 | -2.064729
                     .0931166 -22.17 0.000
                                          -2.247268 -1.88219
     cons | 8.737697
                                     0.000
                     .0428336
                              203.99
                                           8.653729
                                                    8.821664
```

[.] predict phat2
(option xb assumed; fitted values)

[.] twoway (scatter schattach antipeer, jitter(10) msize(tiny)) (line phat2 antipeer, sort)

Ordinal variables, example

- Assuming a constant linear effect, we estimated a change of -.39 in school attachment for each 1 point increase in the antisocial peer scale.
- Relaxing this assumption, we found effects of different magnitudes:
 - Moving from a 0 to a 1 associated with a .57 drop in attachment
 - Moving from a 1 to a 2 associated with a .285 drop in attachment
- Since the first model is nested within the second model, we can test whether allowing unequal changes between categories is more appropriate.

Ordinal variables, example

```
. di (23781.6696-23751.4183)/4
7.562825
. di 7.56285/3.61623299
2.0913614
. di Ftail(4,6568,2.0913614)
.07920167
```

In this case, we detected some nonlinearity in the scale with respect to school attachment, but we can't reject the assumption that the effect is linear at a .05 level, although we can at a .10 level.

Dummy variable interactions with continuous variables

- Dummy variables can also be interacted with continuous variables if we believe that the effect of the continuous variable is different for different groups.
- For example, if we feel that the relationship between test scores and school attachment differs by gender, we have to enter an interaction term into the regression model:
 - schattach = $\beta_1 + \beta_2$ male+ β_3 math+ β_4 male*math +u
- Both the intercept and the slope may differ for males and females in this regression.
- The relationship between test scores and school attachment now becomes:
 - For females: $\beta_1 + \beta_2 * 0 + \beta_3 math + \beta_4 * 0 * math = \beta_1 + \beta_3 math$
 - For males: $\beta_1 + \beta_2 * 1 + \beta_3 \text{math} + \beta_4 * 1 * \text{math} = \beta_1 + \beta_2 + (\beta_3 + \beta_4) \text{math}$

Dummy variable interactions with continuous variables

. reg schattach male math mathmale

Source	SS	df		MS		Number of obs		6574
Model Residual	789.744404 25974.8336 26764.578		263.2 3.953 4.071	55154 		F(3, 6570) Prob > F R-squared Adj R-squared Root MSE	= = =	66.59 0.0000 0.0295 0.0291 1.9884
schattach	Coef.	Std. I	Err.	t	P> t	[95% Conf.	In	terval]
male math mathmale _cons	.1890154 .401583 0630184 7.861137	.0495 .03894 .05398	152 387	3.82 10.31 -1.17 223.95	0.000 0.000 0.243 0.000	.0919224 .3252378 1688538 7.792324		2861084 4779282 0428171 7.92995

Dummy variable interactions with continuous variables, cont

- The coefficient on the interaction term tests the hypothesis that slope for males and females is the same.
- The male coefficient is the difference between males and females in school attachment when the math score is zero (the mean, in this case).
- The coefficient on math tests the hypothesis that the slope for females on math tests is equal to zero.
 - To do this same test for males, you have to test whether the sum of β_3 and β_4 is equal to zero, or rerun the regression with a female dummy variable.

Dummy variable interactions with continuous variables

. reg schattach male math mathmale

Source	SS	df	MS		Number of obs	
Model Residual	789.744404 25974.8336		.248135		F(3, 6570) Prob > F R-squared Adj R-squared	= 0.0000 = 0.0295
Total	26764.578	6573 4.0	7189686		Root MSE	= 1.9884
schattach	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male math mathmale _cons	.1890154 .401583 0630184 7.861137	.049529 .0389452 .0539887 .0351028	3.82 10.31 -1.17 223.95	0.000 0.000 0.243 0.000	.0919224 .3252378 1688538 7.792324	.2861084 .4779282 .0428171 7.92995

Ignoring statistical significance:

- Does the male/female gap in school attachment increase or decrease as math scores increase?
- Is the effect of math score on school attachment greater for males or females?

Dummy variable interactions with continuous variables: Four general cases

- No dummies, no interactions: one slope and intercept for all
- 2. Dummies: same slope for all, different levels (intercepts)
- 3. Dummies and interactions: different slopes and intercepts for each group (most general)
- 4. Interactions only: different slopes, same intercept (not normally used)

Another example + graphing interactions, a simplified conservatism model

. reg cons childs educ age tvhours inc06 male i.black##c.rel househ

Source	SS	df	MS	Number of obs = 1074 F(10, 1063) = 22.34
Model Residual			18.6320369 .834129471	Prob > F = 0.0000 R-squared = 0.1736
Total	1073	1073	. 999999997	Adj R-squared = 0.1659 Root MSE = .91331

conserv	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
childs	.0210998	.0207242	1.02	0.309	0195652	.0617649
educ	0156987	.0108031	-1.45	0.146	0368965	.0054991
age	0016935	.0022119	-0.77	0.444	0060337	.0026466
tvhours	.0122988	.0129304	0.95	0.342	0130733	.0376709
inc06	.0285528	.0064039	4.46	0.000	.0159872	.0411185
male	.1484773	.0583948	2.54	0.011	.0338951	.2630596
1.black	6813751	.0918733	-7.42	0.000	8616487	5011014
rel	.3138422	.0309431	10.14	0.000	.2531257	.3745587
black#c.rel						
1	3172576	.0927085	-3.42	0.001	4991701	1353451
househ	0226968	.0242022	-0.94	0.349	0701863	.0247927
_cons	.1229882	.2040162	0.60	0.547	277332	.5233085

What is the effect of religiosity?

Another example + graphing interactions, a simplified conservatism model

- Is there a statistically significant relationship between religiosity and conservatism for blacks?
- To test this, we ask Stata to test whether the sum of the religion effect and interaction term is equal to zero. This is the religion effect for blacks.
- But how do we refer to that weird interaction term in the previous regression? Using the "coeflegend" option will tell you.

- This shows us that we cannot reject the null hypothesis that there is no relationship between religiosity and conservatism among blacks.
- Let's look at this relationship visually. First, we need to use the correct margins command.

Another example + graphing interactions, a simplified conservatism model

. margins black, at(rel=(-2(.5)2))

	Margin	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
at#black						
1 0	5125179	.0672325	-7.62	0.000	6444415	3805944
1 1	5593778	.2262175	-2.47	0.014	-1.003261	1154942
2 0	3555968	.0538881	-6.60	0.000	4613359	2498578
2 1	5610855	.1852863	-3.03	0.003	9246538	1975171
3 0	1986757	.0420282	-4.73	0.000	2811434	116208
3 1	5627932	.1462946	-3.85	0.000	8498521	2757343
4 0	0417546	.03328	-1.25	0.210	1070565	.0235473
4 1	5645009	.1112999	-5.07	0.000	7828933	3461085
5 0	.1151665	.0304545	3.78	0.000	.0554086	.1749243
5 1	5662086	.0853679	-6.63	0.000	7337174	3986998
6 0	.2720876	.0350163	7.77	0.000	.2033787	.3407965
6 1	5679163	.0781164	-7.27	0.000	7211961	4146365
7 0	.4290087	.0447609	9.58	0.000	.3411789	.5168384
7 1	569624	.093974	-6.06	0.000	7540197	3852283
8 0	.5859298	.0570936	10.26	0.000	.4739009	.6979587
8 1	5713317	.1243967	-4.59	0.000	8154226	3272408
9 0	.7428509	.0706721	10.51	0.000	.6041781	.8815236
9 1	5730394	.1613456	-3.55	0.000	8896315	2564474

Now, just type "marginsplot" to see the magic.

Chow test revisited

- If we want to test whether our full model is the same across different groups, we run a Chow test.
- Let's run a Chow test with three subgroups: white, black & other

Chow test revisited

Unrestricted model (three groups):

$$Y = \beta_{0w} + \beta_{1w} X_1 + \beta_{2w} X_2 + \dots + \beta_{kw} X_k + u$$

$$Y = \beta_{0b} + \beta_{1b} X_1 + \beta_{2b} X_2 + \dots + \beta_{kb} X_k + u$$

$$Y = \beta_{0o} + \beta_{1o} X_1 + \beta_{2o} X_2 + \dots + \beta_{ko} X_k + u$$

Restricted model (pooled):

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + u$$

$$\beta_{0w} = \beta_{0b} = \beta_{0o} = \beta_0, \beta_{1w} = \beta_{1b} = \beta_{1o} = \beta_1, etc \leftarrow restrictions$$

Chow test, restricted model

. reg schattach male antipeer math

Source	SS	df	MS		Number of obs	
Model Residual	3329.53159 23435.0464	6570 3.50	9.84386 6697815		F(3, 6570) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1244
Total	26764.578				Root MSE	= 1.8886
schattach	Coef.	Std. Err.			[95% Conf.	Interval]
male antipeer math _cons	.0742307 3708353 .2547431 8.638187	.0468661 .0138827 .0259727 .0442618	1.58 -26.71 9.81 195.16	0.113 0.000 0.000 0.000	0176422 3980498 .203828 8.551419	.1661035 3436208 .3056581 8.724954

Chow test, unrestricted model (part 1)

. reg schattach male antipeer math if white==1

Source	SS	df	MS		Number of obs	
+ Model Residual	1795.34448 11498.858	3 598 3463 3.3	.448159 2049033		F(3, 3463) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1350
Total					Root MSE	= 1.8222
schattach	Coef.				[95% Conf.	Interval]
male antipeer math _cons	1111335 3988284 .2296658 8.867848	.0625294 .0188781 .036011 .0594835	-1.78 -21.13 6.38 149.08	0.076 0.000 0.000 0.000	2337317 4358416 .1590608 8.751222	.0114647 3618151 .3002707 8.984474

Chow test, unrestricted model (part 2)

. reg schattach male antipeer math if black==1

Source	SS	df	MS		Number of obs	
Model Residual	768.503536 7740.83858	3 2 1893 4	56.167845		F(3, 1893) Prob > F R-squared Adj R-squared	= 0.0000 = 0.0903
Total	8509.34212		.48804964		Root MSE	= 2.0222
schattach	Coef.				[95% Conf.	Interval]
male antipeer math _cons	.2880907 3490126 .1306803 8.229186	.093444 .027441 .053372 .092043	.2 -12.72 .5 2.45	0.002 0.000 0.014 0.000	.1048251 4028307 .0260051 8.048669	.4713563 2951944 .2353554 8.409703

Chow test, unrestricted model (part 3)

. reg schattach male antipeer math if other==1

Source	SS	df	MS		Number of obs	
Model Residual	551.504621 3986.97885	3 18 1206 3.	3.834874 30595261		F(3, 1206) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1215
Total					Root MSE	= 1.8182
schattach	Coef.				[95% Conf.	Interval]
male antipeer math _cons	.1819946 3088765 .3282606 8.556299	.1048028 .0301016 .0598712 .0968935	-10.26 5.48	0.083 0.000 0.000 0.000	0236215 3679339 .2107974 8.3662	.3876107 2498191 .4457239 8.746397

F-test for restricted/unrestricted models, Chow test example

Chow test proceeds as follows:

$$F(k_{UR} - k_R, n - k_{UR}) = \frac{(SSR_R - SSR_{UR})/(k_{UR} - k_R)}{SSR_{UR}/(n - k_{UR})}$$

$$F(12 - 4,6574 - 12) = \frac{(23435 - (11499 + 7741 + 3987))/(12 - 4)}{(11499 + 7741 + 3987)/(6574 - 12)}$$

$$F(8,6562) = \frac{208/8}{23227/6562} = 7.35, (p < .001)$$

Reject the null. The model differs by race.

Linear Probability Model

- Although not very common in criminology, it is possible to run multiple regression with a dummy variable as the dependent variable.
- The key to understanding what this type of regression means:
 - the expected value of Y conditional on X is the same as the probability that Y=1 conditional on X.
- So a 1 unit increase in an independent variable is associated with a β increase in the probability that Y=1.

Linear Probability Model example (Loeffler, 2013)

Table 2. Estimated Effects of Imprisonment on Recidivism within 5 Years

Variables	(1) Unconditional		(2) OL		(3) 2SL	S	(4) 2SL	
	b	(SE)	b	(SE)	b	(SE)	b	(SE)
Prison	.088***	(.007)	.031***	(.008)	.075	(.104)	035	(.113)
Female		` ′	007	(.009)	002	(.015)	027	(.034)
White			079***	(.011)	—.079***	(.011)	128***	(.037)
Hispanic			112***	(.010)	112***	(.011)	091**	(.034)
Age			008***	(.002)	009**	(.003)	003	(.007)
Age squared			*000	(.000)	*000	(000.)	.000	(.000)
Prior_conv			.037***	(.003)	.031*	(.015)	.036	(.019)
Age at first			004***	(.001)	004***	(.001)	004*	(.002)
Prior arrests			.006***	(.000)	.006***	(000.)	.008***	(.001)
Chg. class 2			058***	(.007)	061***	(.010)	056*	(.024)
Chg. class 3			135***	(.009)	137***	(.010)	−.080**	(.030)
Instruments	None		None		All judges		High/low	
N	20,297		20,297		20,297		judges 1,879	

- Dependent variable is felony re-arrest (0/1)
- Model 1 shows that those who were previously imprisoned were subsequently re-arrested at a higher rate (8.8 percentage points higher)
- Controlling for other characteristics reduces this to 3.1 percentage points – fancy stuff follows in models 3 and 4

Linear Probability Model example (Brezina et al, 2009 in *Criminology*)

Table 2. OLS Estimates of the Effects of AED on Offending Behaviors—Wave 1 and Wave 2

	Burglary	Graffiti	Assault	Property damage	Theft	Robbery	Pulled knife or gun	Shot or stabbed
Probability of being killed by 21 < 50%	023***	031***	052***	042***	028***	030***	035***	025***
	(.004)	(.005)	(.006)	(.006)	(.004)	(.005)	(.004)	(.003)
Probability of being killed by 21 > 50%	.044***	.045***	.041**	.033*	.056***	.034**	.073***	.051***
	(.014)	(.016)	(.018)	(.018)	(.014)	(.015)	(.015)	(.013)
Probability of living up to 35 < 50%	.053***	.034***	.057***	.055***	.041***	.053***	.057***	.047***
	(.009)	(.010)	(.012)	(.012)	(.009)	(.010)	(.009)	(.008)
Probability of living up to 35 > 50%	022***	032***	030***	048***	023***	024***	019***	016***
	(.003)	(.003)	(.004)	(.004)	(.002)	(.003)	(.002)	(.002)
County fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Number of observations	34,479	34,460	34,462	34,461	34,482	34,483	34,504	34,497

NOTES: Heteroskedasticity corrected robust standard errors are in parentheses.

p < .10; **p < .05; ***p < .01.

Next time:

Homework 8 Problems 7.1, C7.4, C7.6, C7.8

Read: Wooldridge Chapter 8