1. Find θ ($0 \le \theta < 2\pi$) for a given trigonometric value of θ .

trigonometric value	θ
trigoriometric value	
$\sin \theta = -\frac{1}{2}$	$\frac{7\pi}{2}$, $\frac{11\pi}{2}$
2	6 6
$\cos \theta = \frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$, $\frac{11\pi}{6}$
_	<i>r</i> 7
$\cos \theta = -\frac{\sqrt{3}}{3}$	5π 7π
$\cos\theta = -\frac{\sqrt{3}}{2}$	6,6
$\tan \theta = -1$	3π 7π
	$\frac{3}{4}$, $\frac{3}{4}$
$\sec \theta = \sqrt{2}$	$\frac{\pi}{2}$ $\frac{7\pi}{2}$
	$\frac{1}{4}$, $\frac{1}{4}$
$\sqrt{2}$	3π 5π
$\cos\theta = -\frac{\sqrt{2}}{2}$	$\frac{1}{4}$, $\frac{1}{4}$
$\csc \theta = 2$	π 5π
	$\frac{\pi}{6}$, $\frac{5\pi}{6}$
$\tan \theta = \sqrt{3}$	$\frac{\pi}{3}$, $\frac{4\pi}{3}$
	3 ' 3

2. Given a trigonometric ratio of ϕ and the quadrant in which the terminal side of ϕ lands. Find another assigned trigonometric ratio of ϕ

Given	Find	Ans
$\cot \phi = 4$ and ϕ is at the 3 rd quadrant	$\sin \phi$	$-\frac{\sqrt{17}}{17}$
$\sec \phi = -\frac{9}{4}$ and ϕ is at the 3 rd quadrant	$ an \phi$	$\frac{\sqrt{65}}{4}$
$\csc \phi = \frac{7}{6}$ and ϕ is at the 2 nd quadrant	$\cos \phi$	$-\frac{\sqrt{13}}{7}$
$\cos \phi = -\frac{8}{17}$ and ϕ is at the 3 rd quadrant	csc φ	$-\frac{17}{15}$
$\tan \phi = \frac{3}{2}$ and ϕ is at the 1 st quadrant	csc φ	$\frac{\sqrt{13}}{3}$
$\csc\phi = -2$ and ϕ is at the 4 th quadrant	$\cot \phi$	$-\sqrt{3}$
$\sec\phi = -20$ and ϕ is at the 2 nd quadrant	$\tan \phi$	$-\sqrt{399}$
$\cos \phi = -\frac{1}{5}$ and ϕ is at the 3 rd quadrant	$\sin \phi$	$-\frac{2\sqrt{6}}{5}$