Science des données I : module 8

Test d'hypothèse du Chi²

Philippe Grosjean & Guyliann Engels

Université de Mons, Belgique Laboratoire d'Écologie numérique

https://wp.sciviews.org sdd@sciviews.org

Le test de chi²

Cette présentation se divisera en 2 situations

- Le test chi² univarié : les albinos
- Le test chi² d'indépendance : Les maladies cardiovasculaires

Test chi² univarié

... blablabla...

Test Chi² d'indépendance

Situation biologique : Des patients ont été suivi afin d'étudier la présence de maladies cardio-vasculaires dans la population. Ces patients ont réalisé plusieurs test médicaux, ont eu un entretient avec un cardiologie et ont du compléter un questionnaire.

cardio	cholesterol	height	age
presence	well above normal	156	55
presence	well above normal	165	52
absence	normal	156	48
absence	above normal	151	60
absence	well above normal	157	61
absence	normal	158	48

Il s'agit d'un échantillon du jeu de données Cardiovascular Disease dataset. Nous allons nous intéresser uniquement aux femmes, ce qui représente 45530 patientes.

Question biologique : Y a t'il un lien entre la présence de maladie cardio vasculaire et la présence d'un excès de cholesterol.

(cardio_tab <- table(cardio\$cardio, cardio\$cholesterol))</pre>

Nous pouvons utiliser un test du ${\rm chi}^2$ d'indépendance pour traiter cette problématique.

Notre seuil α : 5% Nos hypothèses sont :

- \blacksquare H_0 : Indépendance entre la variable cardio et la variable cholesterol
- \blacksquare H_1 : Dépendance entre la variable cardio et la variable cholesterol.


```
(chi2. <- chisq.test(cardio_tab));</pre>
##
##
    Pearson's Chi-squared test
##
## data: cardio_tab
## X-squared = 2388.6, df = 2, p-value < 2.2e-16
cat("Expected frequencies:\n"); chi2.[["expected"]]
## Expected frequencies:
##
##
                normal above normal well above normal
##
     absence 16894.86
                           3222.454
                                             2796.686
##
     presence 16675.14 3180.546
                                             2760.314
```


cardio_tab

##

cat("Expected frequencies:\n"); chi2.[["expected"]]

```
## Expected frequencies:
```

```
## normal above normal well above normal
## absence 16894.86 3222.454 2796.686
## presence 16675.14 3180.546 2760.314
```

La présence d'un excès de cholestérol a un effet positif significatif au seuil α de 5% sur les maladies cardiovasculaires (χ^2 d'indépendance = 2388.6, ddl = 2, valeur P = $< 2.2 e^{-16}$)

