## Math 751 HW 2

## Jiaxi Huang Due: Oct 3

Chapter 1.1.2: Show that the change-of-basepoint homomorphism  $\beta_h$  depends only on the homotopy class of h.

Proof. We may suppose X is a path-connected space, otherwise we can restrict this statement in one of X path-connected component. Let x,y be its two basepoints. Suppose we have two homotopic path  $h_1,h_2: [0,1] \to X, \ h_1(0) = h_2(0) = x, \ h_1(1) = h_2(1) = y.$  Let  $g': [0,1] \to X, g'(0) = g'(1) = y.$  Then  $\beta_{h_1}([g']) = [\overline{h_1} * g' * h_1] = [\overline{h_1}][g'][h_1] = [\overline{h_2}][g'][h_2] = \beta_{h_2}([g']).$ 

Chapter 1.1.5: Show that for a space X, the following three conditions are equivalent:

- (a) Every map  $S^1 \to X$  is homotopic to a constant map, with image a point.
- (b) Every map  $S^1 \to X$  extends to a map  $D^2 \to X$ .
- (c)  $\pi_1(X, x_0) = 0$  for all  $x_0 \in X$ .

*Proof.* (i):  $a \Rightarrow b$ : Let  $f: S^1 \to X$  is a continuous map. Noticing that  $D^2$  is homeomorphic to  $C = S^1 \times I/S^1 \times 1$ . We actually need to extends f to C. Since f is homotopic to a constant map  $g: S^1 \to x_0, x_0 \in X$ , we have a homotopy  $F: S^1 \times I \to X, F(S^1, 0) = f, F(S^1, 1) = g$ . Now we define a continuous map  $f': C \to X$  by defining  $f'(\overline{x}) = F(x), x \in S^1 \times I, \overline{x} \in C$ . Then f' is well defined because  $F(S^1, 1) = x_0$  and continuous.

(ii):  $b\Rightarrow c$ : We may suppose X is a path-connected space, otherwise we can restrict this statement in one of X path-connected components. Let  $p:I=[0,1]\to S^1=[0,1]/0\sim 1$  be the quotient map. Let  $g:I=[0,1]\to X, g(0)=g(1)=x_0$ . Then we can construct a continuous map  $f:S^1\to X$ , such that  $f\circ p=g$ . In fact, we can let  $f(\overline{x})=g(x),\ x\in X,\ \overline{x}\in S^1$ . Now we know we can extend f to  $f':D^2\to X$  such that  $f'|_{S^1}=f$ . So we have following diagram which commutes:

$$D^2 \xrightarrow{f'} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

. This actually induces a commutative diagram between the fundamental groups:

$$\pi_1(D^2, \iota \circ p(0)) \xrightarrow{f'_*} \pi_1(X, x_0)$$

$$\iota_* \uparrow \qquad f_*$$

$$\pi_1(S^1, p(0)).$$

. This indicates  $f_*$  is a zero map because  $D^2$  is simply connected. So,  $[f \circ p]$  is the identity element of  $\pi_1(X, x_0)$ , because [p] is a loop of  $S^1$ . Since  $g = f \circ p$ , [g] is also the identity element of  $\pi_1(X, x_0)$ . Since g is a random continuous map,  $\pi_1(X, x_0)$  is trivial.

(iii):  $c\Rightarrow a$ : Let  $f:S^1\to X$  be a continuous map. Let  $p:I=[0,1]\to I/0\sim 1=S^1$  be the quotient map. Then  $[f\circ p]$  is an element of  $\pi_1\big(X,x_0=f\circ p(0)\big)=0$ . So,  $f\circ p$  is homotopic to a constant map  $\epsilon:I\to X, \epsilon(I)=x_0$ . Let  $\epsilon^{'}:S^1\to X, \epsilon^{'}(S^1)=x_0$ . Then we know  $f\circ p\simeq \epsilon^{'}\circ p=\epsilon$ . Suppose the homotopy rel 0,1 between  $f\circ p,\epsilon$  is  $H:I\times I\to X, H(t,0)=f\circ p(t), H(t,1)=\epsilon(t)$ . We can built a homotopy  $H^{'}(\overline{x},t)=H(x,t), x\in I, \overline{x}\in S^1$  between f and  $\epsilon^{'}$ . This is well-defined, because H is a homotopy rel  $\{0,1\}$ 

Chapter: 1.1.6: We can regard  $\pi_1(X,x_0)$  as the set of basepoint-preserving homotopy classes of maps  $(S^1, s_0) \to (X, x_0)$ . Let  $[S^1, X]$  be the set of homotopy classes of maps  $S^1 \to X$ , with no conditions on basepoints. Thus there is a natural map

$$\Phi: \pi_1(X, x_0) \to [S^1, X]$$

obtained by ignoring basepoints. Show that  $\Phi$  is onto if X is path-connected, and that  $\Phi([f]) = \Phi([g])$  iff [f] and [g] are conjugate in  $\pi_1(X,x_0)$ . Hence  $\Phi$  induces a one-to-one correspondence between  $[S^1,X]$  and the set of conjugacy classes in  $\pi_1(X)$ , when X is path-connected.

*Proof.* (i) : Suppose X is path-connected, we need to prove  $\Phi$  is surjective. Let  $h: S^1 \to X$ . We may suppose  $x_0 \notin h(S^1)$ , otherwise we can end this proof. Let l be a path from  $x_0$  to y, then we claim  $\Phi(l*h*\bar{l}) \simeq h$ . Let  $S^1 = e^{2\pi it}, t \in [0,1)$ . Then we construct a homotopy  $H: S^1 \times I \to X$ .

chaim 
$$\Phi(t*h*t) \simeq h$$
. Let  $S^1 = e^{2\pi it}, t \in [0,1)$ . Then we construct a nomotopy  $H: S^1 \times I \to X$ .  
Let  $H(e^{2\pi it_1}, t_2) = \begin{cases} l\left((1-3t_1)t_2+3t_1\right), \ t_1 \in [0,\frac{1}{3}] \\ h(e^{2\pi i(3t_1-1)}), \ t_1 \in [\frac{1}{3},\frac{2}{3}] \end{cases}$ , them  $H$  is well-defined and continuous. Let  $l^{-1}\left((1-t_2)(3t_1-2)\right), \ t_1 \in [\frac{2}{3},1]$ 

 $l': S^1 \to y \in X$  be a constant map. Then we know  $l*h*\overline{l} \simeq l'*h*\overline{l'} \simeq h$ .

(ii)  $\Rightarrow$ : Suppose  $\Phi[f] = \Phi[g]$ . Then we know there is a homotopy  $H: S^1 \times I \to X, H(s,0) =$ f(s), H(s,1) = g(s). Here we use  $e^{2\pi it}, t \in [0,1)$  to express the circle. And, we may assume  $e^{2\pi i0} = s_0$ . Let this homotopy restrict to  $(s_0,t), t \in [0,1]$ , then we can get a loop  $h(t) = H(s_0,t), t \in [0,1]$  with

basepoint on 
$$x_0$$
. Then we can get a homotopy  $H': S^1 \times I \to X$  of  $f$  and  $h * g * \overline{h}$ , be defining 
$$H'(e^{2\pi i t_1}, t_2) = \begin{cases} H(s_0, t_2 \cdot 3t_1), 0 \leq t_1 \leq \frac{1}{3} \\ H(e^{2\pi i (3t_1 - 1)}, t_2), \frac{1}{3} \leq t_1 \leq \frac{2}{3} \\ H(s_0, t_2 (-3t_1 + 3)), \frac{2}{3} \leq t_1 < 1 \end{cases}$$

. Noticing that  $H'(s_0, t) = x_0, H'(s, 0) = f(s), H'(s, 1) = h * g(s) * \overline{h}$ .

 $\Leftarrow$ : Suppose  $[f] = [h][g][h^{-1}], f, g, h : S^1 \to X$ , and we may assume  $f(e^0) = g(e^0) = h(e^0) = x_0$ , otherwise we can rotate the circle (Here we continue use  $e^{2\pi it}$  to express the circle). It suffice to prove

otherwise we can rotate the circle(here we continue use 
$$e^{-th}$$
 to express the circle). It suffice to prove  $h*g*h^{-1} \simeq g$ . We construct the homotopy  $H$  like what we did in (i) as follows:  $H(e^{2\pi i t_1}, t_2) = \begin{cases} h(e^{\left((1-3t_1)t_2+3t_1\right)2\pi i}), \ t_1 \in [0, \frac{1}{3}] \\ h(e^{2\pi i(3t_1-1)}), \ t_1 \in [\frac{1}{3}, \frac{2}{3}] \end{cases}$   $\square$   $h^{-1}(e^{\left((1-t_2)(3t_1-2)\right)2\pi i}), \ t_1 \in [\frac{2}{3}, 1]$ 

Chapter: 1.1.11: If  $X_0$  is the path-component of a space X containing the basepoint  $x_0$ , show that the inclusion  $X_0 \hookrightarrow X$  induces an isomorphism

$$\pi_1(X_0, x_0) \to \pi_1(X, x_0).$$

*Proof.* First, we prove this is injective. Let  $\iota: X_0 \to X$  be the injection. Let  $[f] \in \pi_1(X_0, x_0)$ , and suppose  $\iota_*([f])$  is the identity element of  $\pi_1(X, x_0)$ . Then we have a homotopy  $H: I \times I \to X$ , such that  $H(t,0)=f(t),\ H(t,1)=x_0,\ H(0,t)=H(1,t)=x_0.$  Since  $I\times I$  is path-connected and  $x_0\in H(I,I),$  $im(H) \subset X_0$ . So, [f] is the identity element of  $\pi_1(X_0, x_0)$ . Now, we prove this is surjective. For any  $f: I \to X, f(0) = f(1) = x_0$ , we have  $im(f) \subset X_0$ , since I is path-connected. So  $\{f: I \to X, f(0) = f(1) \in X\}$ f(1), f is continuous $= \{f: I \to X_0, f(0) = f(1), f \text{ is continuous}\}, \text{ which indicates } \iota_* \text{ is surjective.}$ 

chapter: 1.1.15: Given a map  $f: X \to Y$  and a path  $h: I \to X$  from  $x_0$  to  $x_1$ , show that  $f_*\beta_h = \beta_{fh}f_*$ in the diagram at the right.

$$\begin{array}{ccc}
\pi_1(X, x_1) & \xrightarrow{\beta_h} & \pi_1(X, x_0) \\
\downarrow^{f_*} & & \downarrow^{f_*} \\
\pi_1(Y, f(x_1)) & \xrightarrow{\beta_{fh}} & \pi_1(Y, f(x_0))
\end{array}$$

Proof. We may assume X,Y is path-connected, otherwise we can restrict the discussion to a path-connected component  $X^{'} \subset X$  and  $f(X^{'}) \subset Y$ . Let  $[g] \in \pi_1(X,x_0)$ .  $f_*\beta_h([g]) = f_*[h*g*\overline{h}] = [f \circ h]*[f \circ g]*[f \circ \overline{h}]$ .  $\beta_{fh}f_*([g]) = \beta_{fh}[f(g)] = [f \circ h][f \circ g][f \circ h] = [f \circ h][f \circ g][f \circ \overline{h}] = f_*\beta_h([g])$ .

Chapter 1.2.4: Let  $X \subset \mathbb{R}^3$  be the union of n lines through the origin. Compute  $\pi_1(\mathbb{R}^3 - X)$ .

Proof. First we can deformation retract  $\mathbb{R}^3-X$  to  $S^2$  without n pairs antipodal points by using  $H(v,t)=\frac{v}{||tv||+(1-t)},v\in\mathbb{R}^3,t\in[0,1],||\cdot||$  is norm. So, we only need to compute the foundamental group of  $S_m^2$ , which is  $S^2$  without  $m>1,m\in\mathbb{Z}$  points. Also, we know  $S^2$  removed one point is homeomorphic to plane  $\mathbb{R}^2$ . So, we acutually need to compute the foundamental group of the plane removed m-1 points. Since this space is acutually homotopy equivelent to  $\bigvee_{i=1}^{m-1} S^1$ . From the class we know  $\pi_1(\bigvee_{i=1}^{m-1} S^1)=\underbrace{\mathbb{Z}*\cdots*\mathbb{Z}}_{m-1}$ .

So, 
$$\pi_1(\mathbb{R}^3 - X) = \underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{2n-1}$$
.

Chapter 1.2.7: Let X be the quotient space of  $S^2$  obtained by identifying the north and south poles to a single point. Put a cell complex structure on X and use this to compute  $\pi_1(X)$ .

Proof. Observing that we can also get X by collapsing one Longitude of  $\mathbb{T}^2$ . So, we may get a CW structure inherited from  $\mathbb{T}^2$ 's CW structure. We have one 0 cell, one 1 cell and one 2 cell. And its 1 skeleton is  $S^1$ . So,  $\pi_1(X)$  has one generators a, b. Noticing that the attach map of the 2 cell is actually wraping  $S^1$  and wraping it again in a reverse direction. So, it gives a relation that  $aa^{-1} = 0$  which is a trivial relation. So,  $\pi_1(X) = \mathbb{Z}$ .

Chapter 1.2.9: In the surface  $M_g$  of genus g, let C be a circle that separates  $M_g$  into two compact subsurfaces  $M'_h$  and  $M'_k$  obtained from the closed surfaces  $M_h$  and  $M_k$  by deleting an open disk from each. Show that  $M'_h$  does not retract onto its boundary circle C, and hence  $M_g$  does not retract onto C. [Hint: abelianize  $\pi_1$ .] But show that  $M_g$  does retract onto the nonseparating circle C' in the figure.



*Proof.* We may suppose  $M_h^{'}$  has genus h, and  $M_k^{'}$  has genus k. From the class we know  $M_h^{'}$  can be deformation retracted to  $\bigvee_{i=1}^{2h} S^1$ , so  $\pi_1(M_h^{'}) = \underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{2h}$ . Let  $\iota: C \to M_h^{'}$  denote the inclusion, which also

induce a homomorphism  $\iota^*: \mathbb{Z} = \pi_1(C) \to \pi_1(M_h')$ . Suppose we have a retraction from  $M_h' \to C$ , and denote the induced homomorphism by  $r^*$ . Then  $r^* \circ \iota^*: \mathbb{Z} \to \mathbb{Z}$  should be identity. We first calculate that  $\iota^*(\alpha) = [a_1, b_1][a_2, b_2] \cdots [a_h, b_h]$   $a_i, b_i$  are generators of  $\pi_1(M_h')$ ,  $\alpha$  is the generator of  $\pi_1(C)$ . Noticing that  $\pi_1(M_h')$  is not abelian, but  $\pi_1(C)$  is abelian. So,  $[\pi_1(M_h'), \pi_1(M_h')] \subset \ker(r^*)([G, G])$  denote the commutator subgroup.) So,  $r^* \circ \iota^*$  is zero instead of identity. This is a contradiction.

Now we prove there is a retract from  $M_g$  to C'. Take a small tubular neighborhood A of C'; it is an annulus  $A \cong S^1 \times [-1,1]$  whose core  $S^1 \times \{0\}$  is exactly C'. suppose  $B = \overline{M_g \setminus \operatorname{int}(A)}$  is connected, and its boundary in  $M_g$  is  $\partial B = (S^1 \times \{-1\}) \sqcup (S^1 \times \{+1\}) \subset A$ .

First, we choose a basepoint  $x_0 \in C'$  and define a constant map  $r_B : B \to C'$  by  $r_B \equiv x_0$ . Identify  $S^1$  with the unit circle in  $\mathbb C$  and write  $x_0 = e^{i\theta_0}$ . Define

$$r_A: S^1 \times [-1, 1] \longrightarrow S^1, \qquad r_A(e^{i\theta}, t) = \frac{(1 - |t|) e^{i\theta} + |t| e^{i\theta_0}}{|(1 - |t|) e^{i\theta} + |t| e^{i\theta_0}|}.$$

Then  $r_A(e^{i\theta}, 0) = e^{i\theta}$  (identity on the core C'), and  $r_A(e^{i\theta}, \pm 1) = e^{i\theta_0} = x_0$  (both boundary circles collapse to  $x_0$ ). Thus  $r_A$  retracts A onto C' while fixing C' pointwise and sending  $\partial A$  to  $x_0$ .

Last, we define  $r: M_g \to C'$  by  $r\big|_A = r_A$ ,  $r\big|_B = r_B$ . On the overlap  $\partial B \subset A$  both pieces take the value  $x_0$ , so r is continuous. Moreover  $r|_{C'} = \mathrm{id}_{C'}$ . Hence r is a retraction of  $M_g$  onto C'.

Chapter 1.2.11: The mapping torus  $T_f$  of a map  $f: X \to X$  is the quotient of  $X \times I$  obtained by identifying each point (x,0) with (f(x),1). In the case  $X = S^1 \vee S^1$  with f basepoint-preserving, compute a presentation for  $\pi_1(T_f)$  in terms of the induced map  $f_*: \pi_1(X) \to \pi_1(X)$ . Do the same when  $X = S^1 \times S^1$ . [One way to do this is to regard  $T_f$  as built from  $X \vee S^1$  by attaching cells.]

Proof. FIrst suppose  $X = S^1 \vee S^1$ . Let  $f_*$  denote the group homomorphism induced from f. Let  $s_0$  denote the point where  $S^1$  "wedge sum" with another  $S^1$ . Then we can cut through  $s_0 \times I/(s_0,0) \sim (f(s_0),1)$ . Then we can get the Cell complexes structure of  $T_f(S^1 \vee S^1)$ . First, we can observe that it only has one 0-cell  $s_0$ (since f is basepoint-preserving), three 1-cells  $d_1, d_2, d_3$ , two 2-cells  $B_1, B_2$ . And attaches two ends of the  $d_1, d_2, d_3$  to  $x_0$ . So  $T_f(S^1 \vee S^1)$ 's 1-skeleton is homotopy equivalent to  $S^1 \vee S^1 \vee S^1$ , which indicates its foundamental group is  $\mathbb{Z} * \mathbb{Z} * \mathbb{Z}$ . Let a, b, c denote its generators. Now we can consider the attach map  $\Phi_1, \Phi_2$  of 2-cells. We may assume  $B_1$  is a rectangle with four sides  $r_1, r_2, r_3, r_4$ . Then  $\Phi(r_1)$  is wrapping around the  $d_1$ , and  $\Phi(r_2)$  is wrapping  $d_3$ , and  $\Phi(r_3) = f(\Phi(r_1))$  in a reverse direction, and  $\Phi(r_4)$  is wrapping  $d_3$  in the reverse direction. So, once we give this rectangle an orientation, it will donate a relation  $acf_*(a)^{-1}c^{-1}$ . Similarly, another 2-cell will give a relation  $bcf_*(b)^{-1}c^{-1}$ . So,  $\pi_1(T_f(S^1 \vee S^1)) = \langle a, b, c | acf_*(a)^{-1}c^{-1}$ ,  $bcf_*(b)^{-1}c^{-1} > c^{-1}$ .

Now we may suppose  $X = S^1 \times S^1 = \mathbb{T}^2$ . We now give  $T_f(X)$  a cell complexes structure. It suffice to construct the two-skeleton of  $T_f(X)$ . Now we have 1 0-cell  $s_0$  (since f is a basepoint preserving map), still three 1-cells  $d_1, d_2, d_3$ , but three 2-cells  $B_1, B_2, B_3$ , one of which are inherited from the cell complexes structure of  $\mathbb{T}^2$ . So,  $\pi_1(T_f(X))$  should have three generators called a, b, c(Here we may view a, b also as the generators of  $\pi_1(\mathbb{T}^2) = \mathbb{Z} \oplus \mathbb{Z}$ , which is reasonable. Because two of the 1-cells actually comes from the 1-skeleton of  $\mathbb{T}^2$ ). One 2-cell give a relation of  $aba^{-1}b^{-1}$  just like  $\mathbb{T}^2$ (This is actually inherited from  $\mathbb{T}^2$ ). Another two donate relations of  $acf_*(a)^{-1}c^{-1}$  and  $bcf_*(b)^{-1}c^{-1}$  like the situation of  $X = S^1 \vee S^1$ . So,  $\pi_1(T_f(\mathbb{T}^2)) = \langle a, b, c | ab = ba, bcf_*(b)^{-1}c^{-1}, acf_*(a)^{-1}c^{-1} \rangle$ 

Chapter 1.2.16: Show that the fundamental group of the surface of infinite genus shown below is free on



an infinite number of generators.

*Proof.* Consider the connected sum  $X^n$  of n Torus  $\mathbb{T}^2$ . First, we remove an open disk on the left surface of the left end of  $X^n$ . We know it can be deformation retracted to  $\underbrace{S^1 \vee \cdots \vee S^1}_{2n}$ . Then we remove another open

disk of  $X^n$  on the right of the surface of the right end of  $X^n$ . This action will add a new  $S^1$  to its 1 skeleton. So, after these two actions, we can get a new topological space  $X^n_*$  which is compact and can be deformation retracted to  $\underbrace{S^1 \vee \cdots \vee S^1}_{2n+1}$ . So, its foundamental group is  $\underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{2n+1}$ . Now, we prove the foundamental group

of the surface of infinite genus X is free on an infinite generators. Let  $\gamma:[0,1]\to X,\ \gamma(0)=\gamma(1)=x_0$ . Since [0,1] is compact, so  $\gamma([0,1])\subset X$  is compact. Since, X is Hausdorff, it is also closed. This indicates that we can find a  $X^n_*$  such that  $x_0\in X^n_*$ ,  $\gamma([0,1])\subset X^n_*$ . We know the foundamental group of  $X^n_*$  is  $\mathbb{Z}\underbrace{*\cdots*\mathbb{Z}}$  (We may assume their generators are  $G^n=\{a_i,b_i,c|1\leq i\leq n\}$ ), so there exists a homotopy

 $H: I \times I \to X_*^n$  between  $\gamma$  and a free product of some  $a_i, b_i, c$ , which preserve the basepoint  $x_0$ . This is actually also a homotopy in X. Now, we may view X as  $\bigcup_{n \in \mathbb{N}^*} X_*^n$ , and Let  $G = \bigcup_n G^n$ , so we just show G is

the set of generators of  $\pi_1(X)$ . Now, we eed to prove there is no relation in  $\pi_1(X)$  to show it is free. suppose  $\gamma: I \to X$ ,  $\gamma(0) = \gamma(1) = x_0$ . Now suppose it can be written as some free product of some  $a_i, b_i, c$ . Now we suppose  $[\gamma]$  is zero in  $\pi_1(X)$ , indicating there exist a homotopy  $H: I \times I \to X$  between  $\gamma$  and the constant map, which preserves the basepoint  $x_0$ . Since  $I \times I$  is a compact set, so  $H(I \times I)$  is also a subset of  $X_*^m$  for

a big enough  $m \in N^*$ , such that  $a_i, b_i, c$  is also generators of  $\pi_1(X^m_*)$  (This is true, because  $\gamma$  can be only written as a finitely product). But we have shown that for all  $n \in \mathbb{N}^*$ , we have  $\pi_1(X^n_*)$  is a free group. This indicates  $\gamma$  must be an empty word, which means there is no relation in  $\pi_1(X) \Rightarrow \pi_1(X)$  is a free group of infinitely generators.