66-я Всероссийская научная конференция МФТИ

ЛФИ - Секция «Фундаментальные взаимодействия и космология»

Возможные способы преодоления критической энергии поляризованным протонным пучком в комплексе NICA

Докладчик: Колокольчиков С. ^{1,2} (kolokolchikov@inr.ru)
Со-авторы: Сеничев Ю. ^{1,2}, Аксентьев А. ^{1,2,3} Мельников А. ^{1,2,4}

¹Институт ядерных исследований Российской академии наук, Москва

²Московский физико-технический институт, Долгопрудный

³Московский инженерно-физический институт, Москва

⁴Институт теоретической физики, Черноголовка

Долгопрудный, 4 апреля 2023 г.

Комплекс Nuclotron-NICA

Оглавление

Проблема прохождения критической энергии	
Возможные способы преодоления	
	Скачок через критическую энергию
	□ Гармоническое ВЧ
	Барьерное ВЧ
	Повышение критической энергии коллайдера
	Прохождение критической энергии в Нуклотроне

Светимость

Сначала необходимо определить требуемую интенсивность и длину синусоидальных сгустков в продольной плоскости для коллайдерного эксперимента. Оба эти параметра оказывают влияние на светимость

гралов. Первый из них, интеграл по s_0 , при $\sigma_s \ll l_D$ равен $\sigma_s \sqrt{\pi}$. В случае $B_x^* = B_y^* \equiv B^*$ получаем известное выражение светимости коллайдера на аксиально-симметричных пучках (см. [2], формулы (6.134), (6.135)):

$$L = \frac{n_{\text{bunch}} N_1 N_2 f_0}{4\pi \sqrt{\varepsilon_x \varepsilon_y} B^*} \Phi_{\text{HG}}, \quad \Phi_{\text{HG}} (\alpha) = \frac{2}{\sqrt{\pi}} \int_0^{\infty} \frac{e^{-u^2} du}{1 + (\alpha u)^2}, \quad \alpha = \frac{\sigma_s}{B^*}. \quad (1.19)$$

Здесь $\Phi_{\rm HG}(\alpha)$ — так называемый параметр песочных часов (hourglass effect), описывающий зависимость светимости от σ_s и B^* .

Светимость порядка $2 \times 10^{32} \text{см}^{-2} \text{c}^{-1}$

Светимость

1.

Светимость **явно** зависит от продольной длины пучка только в параметре песочных часов. $\Phi_{HG}(1)\cong 0,76$, $\Phi_{HG}(2)\cong 0,55$, $\Phi_{HG}(5)\cong 0,29$, то есть при неизменных параметрах и увеличении только длины сгустка в 2 раза, влияние эффекта песочных часов уменьшит исходную светимость на 30% $L_2=0.7L_1$. Для NICA предполагается достичь $\alpha=1$, $\sigma_s=0.6$ м, бета-функция в точке встречи $B^*=0.6$ м.

2.

Однако, таким образом учтена только явная зависимость от продольной длины. **Неявно**, светимость зависит и от продольного эмиттанса сгустка так как накладывает ограничение на количество частицы сгустке. При этом длина и разброс по импульсам для синусоидального сгустка связаны. Поэтому, любое увеличение конечного эмиттанса сгустка, приводит к увеличению его длины.

Уравнения продольного движения

В общем виде для гармонического ВЧ:

$$\begin{cases} \frac{d\tau}{dt} = -\frac{\eta}{\beta^2 E_0} \Delta E \\ \frac{d\Delta E}{dt} = \frac{Ze}{A} \frac{\omega_0}{2\pi} V \left[\sin(\phi_s - h\omega_0 \tau) - \sin\phi_s \right] \end{cases}$$
(1)

где τ — отклонение частицы от референсной, βc — скорость, $\omega_0 = 2\pi/T_0$ — угловая частота и соответствующее время обращения, h — гармоническое число, V — амплитуда ВЧ, $\phi_{\rm S}$ — фаза равновесной частицы.

1. Малые колебания + адиабатичность

$$\frac{d^2\tau}{dt^2} + \omega_s^2\tau = 0 \quad (2), \qquad \omega_s = \omega_0 \sqrt{-\frac{Ze}{A}\frac{hV\eta_0\cos\phi_s}{2\pi\beta_0^2E_0}}$$

2. Малые колебания + НЕадиабатичность

$$\frac{d}{dt} \left(\frac{1}{\omega(t)_s^2} \frac{d\tau}{dt} \right) + \tau = 0 \quad (3)$$

3. Малые колебания + НЕадиабатичность + нелинейность

Коэффициент скольжения (Slip-factor)

$$\frac{\Delta T_{n+1}}{T_{n+1}} = \eta_{n+1} \, \delta_{n+1} \quad \rightarrow \quad \eta(\delta) = -(\eta_0 + \eta_1 \delta + \cdots)$$

$$\frac{d^2\tau}{dt^2} + \omega(t)_s^2\tau + A\tau^2 = 0$$
 (4)

Скачок критической энергии У-70

На У-70 скачок достигается также искажением дисперсионной функции. Расположением дополнительных квадруполей через полпериода $\Delta \nu_{x,y} = 0.5 \times 0.5$ которые имеют противоположные полярности, тем самым частота остается практически неизменной, модулируя при этом дисперсионную функцию. И изменение критической энергии происходит на $\Delta \gamma_{tr}^{U-70} = 0.9$, **то есть в 10 раз больше**, по сравнению с упомянутым для НИКА.

Модулирование дисперсионной функции У-70

$$\alpha = \frac{1}{C} \int_{0}^{C} \frac{D(s)}{\rho(s)} ds$$
 (9)

Такая модуляция в синхротроне У-70 осуществляется квадруполями во 2 и 8 блоках каждого суперпериода [7]. При этом квадруполи расположены на через полпериода $\Delta v_{x,y} = 0.5 \times 0.5$ и имеют противоположные полярности.

Смена фазы ВЧ и скачок на У-70

15 Дек 2023 11:59:00

Магнитооптическая структура

$$\alpha = \frac{1}{C} \int_{0}^{C} \frac{D(s)}{\rho(s)} ds$$
 (9)

- изменение бетатронной частоты и γ_{tr}
- изменяя градиент в фокусирующих квадрупольных линзах, расположенных в максимумах β_x и D_x .
- для имеющейся структуры $\Delta \gamma_{tr} = 1$, $1\Delta \mathbf{q}$ для обеспечения скачка порядка $\Delta \gamma_{tr} = 0.09$ потребуется изменять частоту в пределах $\pm \Delta \mathbf{q} = \mathbf{0}.\mathbf{05}$.

Принципиальная схема скачка для ВЧ-2

- Ограниченная величины самого скачка $\Delta \gamma_{tr} = 0,09,$
- Ограниченный темп изменения критической энергии $d\gamma_{tr}/dt=8$, 5 c^{-1}
- Темп ускорения в гармоническом ВЧ-2 $d\gamma/dt=30\ c^{-1}$ больше максимального темпа изменения критической энергии
- Рассматриваемый скачок оказывается незначительным

Ускорение в коллайдере NICA

– Инжекция в Коллайдер из Нуклотрона при энергии 2-3 ГэВ

(ниже критической энергии коллайдера)

- Прохождение критической энергии в Коллайдере при энергии 5.7 ГэВ
- Формирование синусоидальных сгустков (в случае барьерного ВЧ)
- Эксперимент при энергии порядка 13 ГэВ

Изменение эмиттанса

Для барьерного ВЧ

Для этого нужно рассмотреть нормализованный эмиттанс как инвариант.

- Конечный с.к. эмиттанс синусоидального сгустка равен 1π мм · мрад, что соответствует нормализованному $\varepsilon_{\sin}^{\exp} = n_{bunch} \gamma_{exp} \beta_{exp} \pi \sigma_s \sigma_p = 0.9$ м ($\gamma_{exp} = 14.3$)
- Формируется из эмиттанса равномерного сгустка в барьерном ВЧ ε_{bb}^{fin} , разделенного на 22 синусоидальных сгустка $\varepsilon_{sin}^{exp} = D_{avm} \varepsilon_{bb}^{fin}$ при помощи ВЧ гимнастики.
- Эмиттанс барьерного ВЧ подвержен влиянию критической энергии на эмиттанс охлажденного пучка после инжекции ε_{bb}^{cool} , $\varepsilon_{bb}^{fin} = D_{tr} \varepsilon_{bb}^{cool}$.
- Охлажденный пучок формируется после инжекции, накопления и электронного охлаждения на 2-3 ГэВ $arepsilon_{bb}^{cool} = D_{cool} arepsilon_{bb}^{inj}$.

Продольная микроволновая неустойчивость

Кейл-Шнель критерий

Анализ дисперсионного уравнения при наличии разброса по импульсам приводит к следующему критерию устойчивости (модифицированные уравнения (6-22, 6-23)):

$$K_1 K_2 \frac{E_0}{(|Z_{\parallel}|/n)I} \frac{A_i}{Z_i} \gamma \beta^2 |\eta| \sigma_p^2 \ge 1$$
 (10)

где коэффициент $K_1=1$ выше критической энергии, ниже критической коэффициент $K_1>1$ и зависит от формы распределения по импульсам и $\frac{Z_\parallel}{n}$. Коэффициент $K_2=5.4$ для прямоугольного сгустка и 2π для синусоидального. Учитывая (10) найдем, что

Продольная микроволновая неустойчивость

Ограничение на количество частиц

$$N_p \le K_1 K_2 \frac{E_0}{(Z_{\parallel}/n)ec} |\eta| \gamma \beta \sigma_p^2 L_B$$

нормализованный эмиттанс для барьерного ВЧ $\varepsilon_{tr}=\gamma_{tr}\beta_{tr}\sqrt{\pi}\sigma_{p}L_{B}$ ($\sqrt{\pi}$ так как распределение по импульсам имеет гауссов вид, а продольный размер – равномерный). С другой стороны $\varepsilon_{tr}=\varepsilon_{bb}^{fin}=\frac{\varepsilon_{sin}^{exp}}{D_{gym}}=0.7~\mathrm{M}$

$$N_p \le K_1 K_2 \frac{E_0}{(Z_{\parallel}/n)ec} |\eta| \frac{\varepsilon_{tr}^2}{\pi \gamma \beta L_B}$$

Принципиальная схема скачка для барьерного ВЧ

для барьерного ВЧ $d\gamma/dt=0$. 2 c^{-1}

Turn number

Продольная микроволновая неустойчивость

- Светимость порядка $2 \times 10^{32} \text{см}^{-2} \text{c}^{-1}$ $N_{exp} = 1 \times 10^{12}$ в конечных 22 синусоидальных сгустках
- Требуемое количество частиц в барьерном ВЧ как минимум должно быть больше 2.2×10^{13} .

$$E_0=5.7~\Gamma$$
эВ, $\gamma=7.08$, $\beta=0.99~$ вблизи $|\eta_0|=2.5 imes10^{-4}~$ для расчётов принято $Z_\parallel/n=20~$ Ом.

$$N_p \le 1 \times 5.4 \frac{5.7 \times 10^9 \text{ эВ}}{20 \text{ Ом } 1.6 \times 10^{-19} \text{Кл } 3 \times 10^8 \text{ M/}_{\text{C}}} |2.5 \times 10^{-4}| \frac{(0.7 \text{ м})^2}{7.08 \pi L_B}$$

Таким образом ограничение для длины пучка $L_B=\frac{\mathsf{C}_{ring}}{2}=251\,\mathrm{M}$ ограничение на количество частиц $N_p\leq \mathbf{7}\!\times\!\mathbf{10^{11}}$, для $L_B=\frac{\mathsf{C}_{ring}}{10}=50\,\mathrm{M}$, $N_p\leq \mathbf{3}.\,\mathbf{5}\!\times\!\mathbf{10^{12}}$.

Принципиальная схема скачка для барьерного ВЧ

Предварительное поднятие критической энергии

Скачок критической энергии

400 - Resonator time domain
2/n = -10 Ω

200 - -400 - -400 - -400

0 200 400 600 800

Time [ns]

Ускорение в Нуклотроне

- Ускорение в Нуклотроне до 7-8 ГэВ
- Инжекция в Коллайдер из Нуклотрона при энергии 7-8 ГэВ

(ниже критической энергии коллайдера)

- Формирование синусоидальных сгустков
- Охлаждение на 7-8 ГэВ
- Эксперимент при энергии порядка 13 ГэВ

Введение суперпериодической структуры

$$\alpha = \frac{1}{\gamma_{tr}} = \frac{1}{C} \int_{0}^{C} \frac{D(s)}{\rho(s)} ds, (1)$$

$$\alpha_{S} = \frac{1}{\nu_{x,\mathrm{apk}}^{2}} \left\{ 1 + \frac{1}{4} \left(\frac{\overline{R}_{arc}}{\nu_{x,\mathrm{apk}}} \right)^{4} \sum_{k=-\infty}^{\infty} \frac{g_{k}^{2}}{(1 - kS/\nu_{x,\mathrm{apk}})[1 - (1 - kS/\nu_{x,\mathrm{apk}})^{2}]^{2}} \dots \right\}, (3)$$

Введение суперпериодической модуляции приводит к повышению значения критической энергии выше энергии эксперимента

Модулированная дисперсия

Регулярная структура

Суперпериодическая структура

Заключение

Возможность применение скачка для NICA

Гармоническое ВЧ

- Ограниченная величины скачка $\Delta \gamma_{tr} = 0.09$,
- Ограниченный темп изменения критической энергии $d\gamma_{tr}/dt=8.5~c^{-1}$

Приводят к незначительному скачку через критическую энергию.

Возможные способы преодоления

- Инжекция в коллайдер выше критической энергии
- Поднятие критической энергии коллайдера выше энергии эксперимента

Барьерное ВЧ

- Ограниченная величина скачка
- Продольная микроволновая неустойчивость

Приводят к существенному ограничению на количество частиц в сгустке и понижению светимости конечного эксперимента.

