510 Project: Predicting Flight Delays

Shune Kawaoto

2025-06-26

Motivation

As the holiday season approaches, it is common for many people to travel, whether it be for visiting friends and family or for vacation. One method of long distance travel is through flying, and it would be great if flights can accurately be predicted to have a delayed arrival.

We chose to predict arrival delay rather than departure delay because:

- 1. Arrival time is more important when transferring flights is required, especially with short layover times.
- 2. Accommodations like hotels, hostels, and Airbnbs may only allow guests to check in within a certain time window and a delayed arrival can determine whether the guests get there in time.
- 3. After flying, some locations may require a shuttle, bus, or even train in order to leave the airport, and it is possible that a plane can arrive after these services are no longer running.

It is also possible for flight situations to change: while the aircraft can leave the gate on time (and therefore classified as an on-time departure) it is possible that the plane can be delayed during the taxi and takeoff process. The opposite is also true where a flight can have a delayed departure but arrive on time. Because of this last point, we are taking the perspective of a passenger during a flight who wants to predict whether or not the plane we're on will have a delayed arrival.

Importing Libraries & Data

A quick note is that we obtained this data from Kaggle, and it records domestic flight data in the U.S. from 2019 - 2023.

```
install.packages('ggcorrplot')

## package 'ggcorrplot' successfully unpacked and MD5 sums checked

##

## The downloaded binary packages are in

## C:\Users\kawao\AppData\Local\Temp\RtmpiojU3E\downloaded_packages

library(ggcorrplot)

library(MASS)

library(car)

library(skimr)

library(tidyverse)

library(caret)

library(glmnet)

flights_full <- read.csv("flights_sample_3m.csv")</pre>
```

EDA & Data Cleaning

head(fligh	nts full)
------------	-----------

##		FL_DATE		AIR	LINE			ΑI	RLINE_DOT .	AIRLINE (CODE
##	1	2019-01-09	United Ai			United	Air		_	_	UA
			Delta Ai								DL
		2022-07-22	United Air	r Lines :	Inc.	United	Air	Lines	Inc.: UA		UA
			Delta Ai								DL
##	5	2020-02-23	Spir	it Air L	ines	Sp	irit	t Air	Lines: NK		NK
##	6	2019-07-31 \$	-			-					WN
##		DOT_CODE FL_	NUMBER OR	IGIN		ORIGIN_C	CITY	DEST		DEST_C	ITY
##	1	19977				derdale,				Newark,	
##	2	19790	1149	MSP	Minr	neapolis,	MN	SEA	:	Seattle,	WA
##	3	19977	459	DEN		Denver,	CO	MSP	Minn	eapolis,	MN
##	4	19790	2295	MSP	Minr	neapolis,	MN	SF0	San Fr	ancisco,	CA
##	5	20416	407	MCO		Orlando,	FL	DFW	Dallas/For	t Worth,	TX
##	6	19393	665	DAL		Dallas,	TX	OKC	Oklaho	ma City,	OK
##		CRS_DEP_TIME	E DEP_TIME	DEP_DEL	AY TA	XI_OUT W	HEEI	LS_OFF	WHEELS_ON	TAXI_IN	
##	1	1155	5 1151	-	-4	19		1210	1443	4	
##	2	2120	2114		-6	9		2123	2232	38	
##	3	954	1000		6	20		1020	1247	5	
##	4	1609	9 1608	-	-1	27		1635	1844	9	
##	5	1840	1838	-	-2	15		1853	2026	14	
##	6	1010	1237	14	47	15		1252	1328	3	
##		CRS_ARR_TIME	E ARR_TIME	ARR_DEL	AY CA	ANCELLED	CANO	CELLAT	ION_CODE D	IVERTED	
##	1	1501	1447	-:	14	0				0	
##	2	2315	5 2310	-	-5	0				0	
##	3	1252	2 1252		0	0				0	
##	4	1829	9 1853	:	24	0				0	
##		2041			-1	0				0	
##	6	1110			41	0				0	
##		CRS_ELAPSED_	TIME ELAP	SED_TIME	AIR_	_TIME DIS			AY_DUE_CAR	RIER	
##			186	176		153	106			NA	
##			235	236		189	139			NA	
##			118	112		87		30		NA	
##			260	285		249	158			0	
##			181	182		153	98			NA	
##	6		60	54		36	18			141	
##		DELAY_DUE_WE				ELAY_DUE_	SECU		DELAY_DUE_	LATE_AIR	
##	_		NA		NA.			NA			NA
##			NA		NA.			NA			NA
##			NA		NA			NA			NA
##			0		24			0			0
##			NA]	NA.			NA			NA
##			0		0			0			0
ski	Lm ((flights_ful)	L)								

Table 1: Data summary

Name	flights_full
Number of rows	3000000
Number of columns	32

Table 1: Data summary

Column type frequency:
character 9
numeric 23
Group variables None

Variable type: character

skim_variable	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
FL_DATE	0	1	10	10	0	1704	0
AIRLINE	0	1	9	34	0	18	0
AIRLINE_DOT	0	1	13	38	0	18	0
AIRLINE_CODE	0	1	2	2	0	18	0
ORIGIN	0	1	3	3	0	380	0
ORIGIN_CITY	0	1	8	34	0	373	0
DEST	0	1	3	3	0	380	0
DEST_CITY	0	1	8	34	0	373	0
CANCELLATION_CC	DDE 0	1	0	1	2920860	5	0

Variable type: numeric

skim_variable	n_missing comp	lete_ra	te mean	sd	p0	p25	p50	p75	p100	hist
DOT_CODE	0	1.00	19976.29	377.28	19393	19790	19930	20368	20452	
FL_NUMBER	0	1.00	2511.54	1747.26	1	1051	2152	3797	9562	
CRS_DEP_TIME	0	1.00	1327.06	485.88	1	915	1320	1730	2359	
DEP_TIME	77615	0.97	1329.78	499.31	1	916	1323	1739	2400	
DEP_DELAY	77644	0.97	10.12	49.25	-90	-6	-2	6	2966	
TAXI_OUT	78806	0.97	16.64	9.19	1	11	14	19	184	
WHEELS_OFF	78806	0.97	1352.36	500.87	1	931	1336	1752	2400	
WHEELS_ON	79944	0.97	1462.50	527.24	1	1049	1501	1908	2400	
TAXI_IN	79944	0.97	7.68	6.27	1	4	6	9	249	
CRS_ARR_TIME	0	1.00	1490.56	511.55	1	1107	1516	1919	2400	
ARR_TIME	79942	0.97	1466.51	531.84	1	1053	1505	1913	2400	
ARR_DELAY	86198	0.97	4.26	51.17	-96	-16	-7	7	2934	
CANCELLED	0	1.00	0.03	0.16	0	0	0	0	1	
DIVERTED	0	1.00	0.00	0.05	0	0	0	0	1	
CRS_ELAPSED_T	IME 14	1.00	142.28	71.56	1	90	125	172	705	
ELAPSED_TIME	86198	0.97	136.62	71.68	15	84	120	167	739	
AIR_TIME	86198	0.97	112.31	69.75	8	61	95	142	692	
DISTANCE	0	1.00	809.36	587.89	29	377	651	1046	5812	
DELAY_DUE_CAI	R B466R 37	0.18	24.76	71.77	0	0	4	23	2934	
DELAY_DUE_WE	A 2466 137	0.18	3.99	32.41	0	0	0	0	1653	
DELAY_DUE_NAS	S 2466137	0.18	13.16	33.16	0	0	0	17	1741	
DELAY_DUE_SEC	CU2R667187	0.18	0.15	3.58	0	0	0	0	1185	
DELAY_DUE_LAT	T <u>E24</u> 66113CRAFT	0.18	25.47	55.77	0	0	0	30	2557	

One thing that we noticed is that some variables like FL_DATE, AIRLINE, ..., and DIVERTED (see code below) were incorrectly encoded as characters and numeric values. We converted these to factors as our

first step. The second thing we want to point out is that our response variable ARR_DELAY is a numeric, continuous value. Because we want to predict whether the flight is delayed or not, we changed ARR_DELAY to be a binary factor variable, where all values greater than 0 are considered "delayed", denoted as 1, and less than equal to 0 are considered "not delayed", denoted as 0.

```
flights_full$FL_DATE <- as.factor(as.character(flights_full$FL_DATE))</pre>
flights_full$AIRLINE <- as.factor(flights_full$AIRLINE)</pre>
flights_full$AIRLINE_DOT <- as.factor(flights_full$AIRLINE_DOT)</pre>
flights_full$AIRLINE_CODE <- as.factor(flights_full$AIRLINE_CODE)</pre>
flights full$DOT CODE <- as.factor(flights full$DOT CODE)</pre>
flights_full$FL_NUMBER <- as.factor(flights_full$FL_NUMBER)</pre>
flights_full$ORIGIN <- as.factor(flights_full$ORIGIN)</pre>
flights_full$ORIGIN_CITY <- as.factor(flights_full$ORIGIN_CITY)</pre>
flights full$DEST <- as.factor(flights full$DEST)</pre>
flights_full$DEST_CITY <- as.factor(flights_full$DEST_CITY)</pre>
flights_full$CANCELLED <- as.factor(as.character(flights_full$CANCELLED))</pre>
flights_full$CANCELLATION_CODE <- as.factor(flights_full$CANCELLATION_CODE)</pre>
flights_full$DIVERTED <- as.factor(as.character(flights_full$DIVERTED))</pre>
flights_full$DELAYED <- as.factor(ifelse(flights_full$ARR_DELAY > 0, 1, 0))
flights <- flights_full %>% dplyr::select(-ARR_DELAY)
# delayed = 1, early or on-time = 0
```

The second thing we decided to do was to delete all variables that we didn't need:

- AIRLINE_DOT, AIRLINE_CODE, and DOT_CODE all were unique identifiers for every specific airline, so we decided to keep AIRLINE and delete these three variables instead.
- ORIGIN_CITY & DEST_CITY were locations that airports are in, so they overlap quite a lot with ORIGIN and DEST, which gives us the airport codes. Since we are more concerned with where the planes depart and arrive, which is the airport itself, we decided to delete ORIGIN_CITY & DEST_CITY.
- If flights are cancelled, then there is no possible way for flights to depart in the first place, so there is no arrival data. Therefore, because we are trying to predict arrival data, we deleted CANCELLED and CANCELLATION CODE.
- We are taking the perspective of someone who is midflight and wants to predict if their plane will arrive on time. Therefore, we can only use data that we know prior to being airborne. Using this condtion, these following variables were also removed:
 - WHEELS_ON is the time when the plane lands (wheels touch the floor).
 - TAXI IN is the time between landing and being taxied to the arrival gate.
 - ARR_TIME is the recorded arrival time, not the scheduled arrival time.
 - ELAPSED_TIME is the recorded time of how long the flight took.
 - AIR TIME is the recorded time of how long the plane was airborne.
 - DELAY_DUE_CARRIER is how many minutes the departure and arrival delay was attributed to the plane.
 - DELAY_DUE_WEATHER is how many minutes the departure and arrival delay was attributed to the weather.
 - DELAY_DUE_NAS is how many minutes the departure and arrival delay was attributed to the NAS (National Airspace System).

- DELAY_DUE_SECURITY is how many minutes the departure and arrival delay was attributed to security issues and protocols.
- DELAY_DUE_LATE_AIRCRAFT is how many minutes the departure and arrival delay was attributed to the aircraft arriving late prior to departure.

The next step is to change FL_DATE. It was imported in the yyyy-mm-dd format, and we decided to change that to three separate variables YEAR, MONTH, and DAY instead. Since the flight data is from 2019 - 2023, we believe that the COVID-19 pandemic could've had a possible effect on the flights. It is also important to note that in the airline industry, days of the week are considered more important than days of the month. Therefore, we encoded YEAR and DAY as factors, with levels ("2019", "2020", "2021", "2022", "2023") and ("Sunday", "Monday", "Tuesday", "Wednesday". "Thursday", "Friday", "Saturday"), respectively.

```
day_of_week <- weekdays(as.Date(as.character(flights$FL_DATE), format = "%Y-%m-%d"))

# Making FL_DATE into three separate columns: Year, Month, Day of the Week
flights <- flights %>%
    separate(col = FL_DATE, into = c("YEAR", "MONTH", "DAY"), sep = "-", convert = TRUE)

# COVID-19 happened in this time span so I will be making YEAR a categorical variable.
flights$YEAR <- as.factor(flights$YEAR)

flights$DAY <- as.factor(day_of_week)</pre>
```

The following variables are numeric and have been recorded in the "hhmm" form, which doesn't really make sense for our analysis. Therefore we are changing them into "minutes after midnight".

- CRS DEP TIME is the scheduled departure time.
- CRS_ARR_TIME is the scheduled arrival time.
- DEP TIME is the recorded departure time.
- WHEELS_OFF is the recorded time when the flight takes off (wheels leave the floor).

```
# CRS_DEP_TIME, CRS_ARR_TIME, DEP_TIME, WHEELS_OFF have to be converted
# into numeric values that make sense (same format as CRS_ELAPSED_TIME).
#
# Solution: I will make them into minutes after midnight.
hours_crs_dep <- floor(flights$CRS_DEP_TIME / 100)
mins_crs_dep <- flights$CRS_DEP_TIME %% 100
flights$CRS_DEP_TIME <- hours_crs_dep * 60 + mins_crs_dep
hours_crs_arr <- floor(flights$CRS_ARR_TIME / 100)
mins_crs_arr <- flights$CRS_ARR_TIME %% 100
flights$CRS_ARR_TIME <- hours_crs_arr * 60 + mins_crs_arr
hours_dep <- floor(flights$DEP_TIME / 100)
mins_dep <- flights$DEP_TIME %% 100
flights$DEP_TIME <- hours_dep * 60 + mins_dep
hours_off <- floor(flights$WHEELS_OFF / 100)
mins_off <- flights$WHEELS_OFF <- hours_off * 60 + mins_off</pre>
```

We believe the data is clean enough to starting creating visualizations at this point to better understand the data. We first remove all observations that contain NA and then create a correlation heat map and histograms for our numeric variables, and create bar graphs for our categorical variables. The heat map will tell us the relationships between the variables, and the histograms will give us a clear view about the distribution of the data. The bar graphs will give us a picture of the frequencies of each category in the variables.

```
flights <- na.omit(flights)

# Correlation plot (numeric)
ggcorrplot(cor(flights[, sapply(flights, is.numeric)]), method = "square")</pre>
```



```
# Histograms (numeric)
ggplot(flights, aes(x = CRS_DEP_TIME)) + geom_histogram(bins = 100) + theme_minimal()
```


Bar graph (categorical)
ggplot(flights, aes(x = YEAR)) + geom_bar() + theme_minimal()

 $ggplot(flights, aes(x = DAY)) + geom_bar() + theme_minimal()$

ggplot(flights, aes(x = AIRLINE)) + geom_bar() + theme_minimal()

Alaska AiANnegsialoubteNearManestakhertoytationetistenMailid/enAiMhintetsBillMierseinAintetsBillAintetsBillMierseinAintetsBillMierseinAintetsBillMierseinAintetsBillMierseinAintetsBillM

ggplot(flights, aes(x = FL_NUMBER)) + geom_bar() + theme_minimal()

ggplot(flights, aes(x = ORIGIN)) + geom_bar() + theme_minimal()

 $ggplot(flights, aes(x = DEST)) + geom_bar() + theme_minimal()$

ggplot(flights, aes(x = DIVERTED)) + geom_bar() + theme_minimal()

AIRLINE, ORIGIN, DEST, FL_NUMBER have too many levels

Some things we noticed:

- 1. Some of the numeric variables like CRS_ELAPSED_TIME, DEP_DELAY, and TAXI_OUT are heavily right-skewed. Logarithmic or root transformations may be required later on.
- 2. CRS_DEP_TIME, CRS_ARR_TIME, WHEELS_OFF, and DEP_TIME all look *close enough* to being normally distributed, so we probably won't use any transformations on them.
- 3. There are too many categories in FL_NUMBER, ORIGIN, DEST, and AIRLINE. We will consider only using the most popular levels in each.
- 4. DIVERTED essentially has no observations marked as "0". So, we will delete this variable.

Our first step was to delete DIVERTED.

```
# Delete DIVERTED because it is heavily skewed towards "no"
flights <- flights %>% dplyr::select(-DIVERTED)
```

At this point, we realized that flight numbers can be thought of license plates on cars for planes, except each plane is given a unique flight number based on their route. Since we can't really group planes ID's together, we will scrap this variable.

```
flights <- flights %>% select(-FL_NUMBER)
```

At first, we decided to only keep the top 10 popular airlines and airports. Unfortunately, it there are still a few airlines that fly a lot and a few airlines that don't fly often in comparison. To make it more even, we will take only the top 4 popular airlines, instead of 10.

```
keep_top_10 <- function(var) {
  freq <- table(var)</pre>
```

```
top_levels <- names(sort(freq, decreasing = TRUE)[1:10])
as.factor(ifelse(var %in% top_levels, as.character(var), "other"))
}

flights <- flights %>%
  mutate(
    AIRLINE = keep_top_10(AIRLINE),
    ORIGIN = keep_top_10(ORIGIN),
    DEST = keep_top_10(DEST)
) %>%
  filter(
    AIRLINE != "other",
    DEST != "other",
    ORIGIN != "other"
)

ggplot(flights, aes(x = AIRLINE)) + geom_bar() + theme_minimal()
```


American AlDientes Aind Lieus des Aind Lieux des Ai

```
ggplot(flights, aes(x = ORIGIN)) + geom_bar() + theme_minimal()
```


ggplot(flights, aes(x = DEST)) + geom_bar() + theme_minimal()


```
# AIRLINE still looks uneven --> just keep the top 4 instead

keep_top_4 <- function(var) {
    freq <- table(var)
    top_levels <- names(sort(freq, decreasing = TRUE)[1:4])
    as.factor(ifelse(var %in% top_levels, as.character(var), "other"))
}

flights <- flights %>%
    mutate(
    AIRLINE = keep_top_4(AIRLINE),
    ) %>%
    filter(
    AIRLINE != "other",
    )

ggplot(flights, aes(x = AIRLINE)) + geom_bar() + theme_minimal()
```


looks much more even, includes all 3 major U.S. airlines as well

Now that our data is clean, we will take a random sample of 50,000 from the cleaned data. We then split this into a training/testing split, and trained the default model based on the training split.

dim(flights)

Call:

```
## [1] 149948    15
# use a small sample of dataset instead

set.seed(12345678)
index <- sample(nrow(flights), 50000)
flights_sample <- flights[index, ]

# 80/20 training/testing split

set.seed(12345678)
index2 <- createDataPartition(flights_sample$DELAYED, p = 0.8, list = FALSE)
train <- flights_sample[index2, ]
test <- flights_sample[-index2, ]

default_model <- glm(DELAYED ~ ., data = train, family = "binomial")
summary(default_model)</pre>
```

```
## glm(formula = DELAYED ~ ., family = "binomial", data = train)
##
## Deviance Residuals:
              1Q
                    Median
                                 3Q
      Min
                                         Max
## -3.2618 -0.5238 -0.3024 0.0993
                                      3.3055
##
## Coefficients:
##
                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                               -1.513e+00 1.797e-01 -8.418 < 2e-16 ***
                               -1.685e-01 5.253e-02 -3.207
## YEAR2020
                                                             0.00134 **
## YEAR2021
                               -1.468e-01 4.656e-02 -3.152 0.00162 **
## YEAR2022
                               -1.441e-01 4.562e-02 -3.158
                                                             0.00159 **
## YEAR2023
                                2.864e-02 5.037e-02
                                                      0.569
                                                             0.56958
## MONTH
                               -1.388e-02 4.827e-03 -2.876
                                                             0.00403 **
                               5.416e-02 5.745e-02
                                                      0.943
## DAYMonday
                                                             0.34580
## DAYSaturday
                               -8.484e-02 6.034e-02 -1.406
                                                             0.15974
                              -2.359e-03 5.816e-02 -0.041
## DAYSunday
                                                             0.96764
## DAYThursday
                               3.687e-02 5.727e-02
                                                      0.644
                                                             0.51974
                                                      0.772 0.44027
                               4.514e-02 5.849e-02
## DAYTuesday
## DAYWednesday
                                1.647e-01 5.820e-02
                                                      2.831
                                                             0.00465 **
## AIRLINEDelta Air Lines Inc.
                               -1.038e-01 6.097e-02 -1.703 0.08864 .
## AIRLINESouthwest Airlines Co. -2.764e-02 5.908e-02 -0.468 0.63992
## AIRLINEUnited Air Lines Inc. -3.748e-01 5.645e-02 -6.638 3.17e-11 ***
## ORIGINCLT
                                -1.766e-01 8.736e-02 -2.021 0.04328 *
## ORIGINDEN
                               -8.370e-01 8.286e-02 -10.101 < 2e-16 ***
## ORIGINDFW
                               -6.972e-01 8.409e-02 -8.292 < 2e-16 ***
## ORIGINLAS
                               -1.298e+00 8.819e-02 -14.716 < 2e-16 ***
## ORIGINLAX
                               -1.251e+00 8.127e-02 -15.393 < 2e-16 ***
## ORIGINMCO
                                2.458e-01 8.125e-02
                                                      3.025 0.00249 **
## ORIGINORD
                               -5.292e-01 7.823e-02 -6.765 1.33e-11 ***
## ORIGINPHX
                               -9.485e-01 8.671e-02 -10.939 < 2e-16 ***
## ORIGINSEA
                               -1.428e+00 8.837e-02 -16.156 < 2e-16 ***
## DESTCLT
                                1.215e-01 8.931e-02
                                                      1.361
                                                             0.17361
                                1.188e+00 7.973e-02 14.899 < 2e-16 ***
## DESTDEN
## DESTDFW
                                9.850e-01 8.436e-02 11.676 < 2e-16 ***
## DESTLAS
                                1.155e+00 8.309e-02 13.902 < 2e-16 ***
## DESTLAX
                                1.039e+00 8.230e-02 12.625 < 2e-16 ***
## DESTMCO
                                1.640e-01 8.197e-02
                                                     2.001 0.04536 *
## DESTORD
                                8.573e-01 8.227e-02 10.420
                                                             < 2e-16 ***
## DESTPHX
                                1.150e+00 8.337e-02 13.795 < 2e-16 ***
## DESTSEA
                               1.824e+00 1.070e-01 17.039 < 2e-16 ***
## CRS DEP TIME
                               -3.732e-04 2.128e-04 -1.754 0.07947 .
## DEP TIME
                                2.043e-04 2.544e-04
                                                      0.803
                                                             0.42181
## DEP_DELAY
                               1.764e-01 2.237e-03 78.858 < 2e-16 ***
## TAXI OUT
                               1.734e-01 2.832e-03 61.218 < 2e-16 ***
                                                             0.54417
## WHEELS_OFF
                               -9.803e-05 1.616e-04 -0.607
## CRS_ARR_TIME
                                4.175e-04 7.279e-05
                                                      5.735 9.74e-09 ***
## CRS ELAPSED TIME
                               -6.060e-02 2.341e-03 -25.889 < 2e-16 ***
## DISTANCE
                                7.139e-03 2.744e-04 26.013 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
## Null deviance: 52029 on 40000 degrees of freedom
## Residual deviance: 26121 on 39960 degrees of freedom
## AIC: 26203
##
## Number of Fisher Scoring iterations: 8
```

Influential Points & Outliers

Now that the data is cleaned and split into training and testing portions, we used Cook's Distance to find our influential points in the training data. We analyzed the possible ranges of these points and determined that all of these are feasible, so we decided to keep all of these observations.

```
# Influential points
cooks_dist <- cooks.distance(default_model)</pre>
influential points <- which(cooks dist > 4 / nrow(train))
influential_data <- train[influential_points, ]</pre>
summary(influential_data)
##
                                                                       AIRLINE
      YEAR
                    MONTH
                                          DAY
    2019:882
##
                       : 1.000
                                  Friday
                                            :518
                                                   American Airlines Inc.: 1564
                                                                          : 930
##
    2020:592
                1st Qu.: 3.000
                                            :475
                                  Monday
                                                   Delta Air Lines Inc.
##
    2021:715
                Median : 6.000
                                  Saturday:484
##
    2022:765
                Mean
                       : 6.237
                                  Sunday
                                            :528
                                                   Southwest Airlines Co.: 477
##
    2023:622
                3rd Qu.: 9.000
                                  Thursday:551
                                                   United Air Lines Inc.: 605
##
                       :12.000
                                  Tuesday:507
                Max.
##
                                  Wednesday:513
##
        ORIGIN
                         DEST
                                     CRS_DEP_TIME
                                                          DEP_TIME
##
    ATL
                    LAX
                            : 471
            : 487
                                    Min.
                                                6.0
                                                       Min.
                                                                   1.0
##
    LAX
            : 459
                    ORD
                            : 457
                                    1st Qu.: 535.0
                                                       1st Qu.: 526.0
    ORD
                                    Median: 780.0
##
            : 403
                    DEN
                            : 411
                                                       Median : 767.5
##
    PHX
            : 372
                            : 403
                                            : 798.4
                                                              : 784.6
                    ATL
                                    Mean
                                                       Mean
##
    DFW
            : 348
                    DFW
                            : 367
                                    3rd Qu.:1036.2
                                                       3rd Qu.:1025.2
##
    DEN
            : 329
                    PHX
                            : 358
                                    Max.
                                            :1439.0
                                                       Max.
                                                              :1440.0
##
    (Other):1178
                    (Other):1109
##
      DEP_DELAY
                          TAXI_OUT
                                           WHEELS_OFF
                                                            CRS_ARR_TIME
                               : 5.00
##
           :-15.000
    Min.
                       Min.
                                        Min.
                                                :
                                                    1.0
                                                           Min.
                                                                   :
                                                                       1.0
##
    1st Qu.: -4.000
                       1st Qu.:13.00
                                         1st Qu.: 532.0
                                                           1st Qu.: 653.8
                                        Median : 769.0
##
    Median : -1.000
                       Median :16.00
                                                           Median: 905.0
##
    Mean
           :
              1.103
                       Mean
                               :17.27
                                         Mean
                                                : 782.5
                                                           Mean
                                                                   : 886.3
##
    3rd Qu.: 4.000
                       3rd Qu.:20.00
                                         3rd Qu.:1028.0
                                                           3rd Qu.:1143.2
##
           : 45.000
                               :52.00
                                                :1440.0
                                                                   :1439.0
                       Max.
                                         Max.
                                                           Max.
##
##
    CRS_ELAPSED_TIME
                          DISTANCE
                                      DELAYED
##
    Min.
           : 60.0
                      Min.
                              : 226
                                      0: 731
    1st Qu.:145.0
                      1st Qu.: 802
                                       1:2845
##
    Median :185.0
                      Median:1199
##
    Mean
            :193.8
                      Mean
                              :1230
##
    3rd Qu.:249.0
                      3rd Qu.:1744
    Max.
            :381.0
                      Max.
                              :2554
##
influential_data %>%
  filter(DISTANCE == 2554 | DISTANCE == 226)
```

##		YEAR	MONTH	DAY	AIF	RLINE	ORIGIN	DEST	CRS_DEP_TIME
##	1	2022	7	Sunday	Delta Air Lines	Inc.	MCO	SEA	1095
##	2	2021	10	Friday	American Airlines	Inc.	CLT	ATL	1244
##	3	2020	12	Wednesday	Delta Air Lines	Inc.	CLT	ATL	756
##	4	2021	7	Friday	Delta Air Lines	Inc.	ATL	CLT	652
##	5	2021	4	Saturday	Delta Air Lines	Inc.	ATL	CLT	645
##	6	2022	2	Friday	Delta Air Lines	Inc.	MCO	SEA	1080
##	7	2019	5	Wednesday	Delta Air Lines	Inc.	SEA	MCO	530
##	8	2023	3	Thursday	American Airlines	Inc.	CLT	ATL	1225
##	9	2022	4	Friday	American Airlines	Inc.	ATL	CLT	978
##	10	2019	3	Sunday	American Airlines	Inc.	CLT	ATL	799
##	11	2023	5	Tuesday	Delta Air Lines	Inc.	SEA	MCO	1425
##	12	2019	4	Thursday			ATL	CLT	940
##	13	2021	3	Thursday		Inc.	CLT	ATL	775
##	14	2022	11	Thursday	Delta Air Lines	Inc.	CLT	ATL	1018
##		2023	6	Wednesday			SEA	MCO	1417
##		2019	9	•	American Airlines		CLT	ATL	1102
##		2021	7	Wednesday			ATL	CLT	750
##		2022	4	Thursday			ATL	CLT	1048
##		2021	4	Thursday			ATL	CLT	894
##		2023	8	Thursday			SEA	MCO	1425
##		2020	12	Thursday			ATL	CLT	625
##		2019	8	Tuesday			ATL	CLT	843
##		2022			American Airlines		CLT	ATL	1218
##		2022	2	Friday			ATL	CLT	1203
##		2022	10	Sunday			CLT	ATL	723
##		2019	4	Tuesday			CLT	ATL	1145
##		2023	4	·	American Airlines		ATL	CLT	520
##		2020	8		American Airlines		CLT	ATL	904
##		2021	6 2	Thursday			SEA	MCO CLT	500
##		2023 2022	10	Tuesday			ATL ATL	CLT	748 1222
##		2019	11	·	American Airlines American Airlines		ATL	CLT	427
##		2019	3	•	American Airlines American Airlines		ATL	CLT	661
##		2013	8	Saturday			CLT	ATL	360
##		2023	1	•	Delta Air Lines		CLT	ATL	1045
		2023	3	Sunday			SEA	MCO	492
		2022	6	Thursday	Delta Air Lines		CLT	ATL	1130
		2021	9	•	American Airlines		CLT	ATL	1105
		2021	5	Friday			SEA	MCO	1390
		2019	10	3	American Airlines		ATL	CLT	743
##	41	2019	2	•	American Airlines		CLT	ATL	910
		2021	6	Tuesday			SEA	MCO	515
##	43	2019	12	Sunday	American Airlines	Inc.	ATL	CLT	737
##	44	2023	6	Wednesday	Delta Air Lines	Inc.	CLT	ATL	420
##	45	2023	1	Friday	Delta Air Lines	Inc.	SEA	MCO	480
##	46	2022	6	•	American Airlines	Inc.	CLT	ATL	1240
##	47	2021	12	Monday	Delta Air Lines	Inc.	ATL	CLT	655
##	48	2021	1	Friday	Delta Air Lines	Inc.	SEA	MCO	480
##	49	2020	3	Tuesday	Delta Air Lines	Inc.	CLT	ATL	641
##	50	2022	9	Saturday	Delta Air Lines	Inc.	SEA	MCO	1313
##	51	2019	1	Tuesday	American Airlines	Inc.	ATL	CLT	746

##	52	2019 8	Saturdav	Delta Ai	r Lines	Inc.	CLT	ATL	1070
		2023 7	•	Delta Ai			CLT	ATL	1133
##	54	2022 4	Tuesday	American A	irlines	Inc.	CLT	ATL	1241
##	55	2023 8	Sunday	Delta Ai	r Lines	Inc.	SEA	MCO	450
##	56	2022 11	Tuesday	Delta Ai	r Lines	Inc.	SEA	MCO	1420
##	57	2022 10	Wednesday	American A	irlines	Inc.	ATL	CLT	532
##	58	2023 5	Friday	Delta Ai	r Lines	Inc.	SEA	MCO	515
##	59	2019 2	Monday	American A	irlines	Inc.	CLT	ATL	565
##	60	2020 12	Wednesday	Delta Ai	r Lines	Inc.	ATL	CLT	735
##	61	2022 10	Monday	Delta Ai	r Lines	Inc.	ATL	CLT	597
##	62	2023 3	Friday	Delta Ai	r Lines	Inc.	CLT	ATL	453
##	63	2023 5	Saturday	American A	irlines	Inc.	ATL	CLT	1210
##	64	2021 11	Tuesday	American A	irlines	Inc.	ATL	CLT	1221
##	65	2022 12	Tuesday	American A	irlines	Inc.	CLT	ATL	1215
##	66	2019 9	Sunday	Delta Ai	r Lines	Inc.	ATL	CLT	530
##	67	2019 12	Monday	Delta Ai	r Lines	Inc.	ATL	CLT	1027
##	68	2023 6	Friday	American A	irlines	Inc.	ATL	CLT	395
##	69	2021 5	Saturday	Delta Ai	r Lines	Inc.	ATL	CLT	645
##	70	2023 5	Tuesday	American A	irlines	Inc.	CLT	ATL	1102
##	71	2022 11	Monday	American A	irlines	Inc.	CLT	ATL	460
##	72	2019 12	Tuesday	American A	irlines	Inc.	ATL	CLT	738
##	73	2020 8	Monday	Delta Ai	r Lines	Inc.	CLT	ATL	460
##		DEP_TIME D	EP_DELAY TA	AXI_OUT WHE	ELS_OFF	CRS_ARR_	TIME	CRS_ELAPSED	_TIME
##	1	1118	23	11	1129		1279		364
##	2	1242	-2	13	1255		1320		76
##	3	751	-5	24	775		829		73
##	4	646	-6	15	661		721		69
##	5	639	-6	15	654		715		70
##	6	1073	-7	18	1091		1281		381
	7	524	-6	28	552		1046		336
##		1219	-6	26	1245		1298		73
##		972	-6	16	988		1046		68
	10	795	-4	27	822		880		81
##	11	1421	-4	14	1435		496		331
##	12	937	-3	20	957		1012		72
##	13	784	9	13	797		851		76
	14	1012	-6	25	1037		1097		79
	15	1417	0	15	1432		486		329
	16	1111	9	15	1126		1184		82
	17	746	-4	23	769		822		72
	18	1046	-2	16	1062		1118		70
	19	894	0 9	11	905		967		73
	20 21	1434 623	-2	15 19	9 642		499 691		334 66
	22	843	0	16	859		921		78
	23	1213	-5	16	1229		1290		72
	24	1213	-5 4	10	1229		1275		72
	25	749	26	10	759		804		81
	26	1143	-2	23	1166		1230		85
	27	513	-2 -7	23 22	535		596		76
	28	911	- <i>1</i>	10	921		978		74
	29	500	0	35	535		1023		343
	30	746	-2	17	763		816		68
	31	1220	-2	25	1245		1298		76
σ π	ΟI	1220	4	20	1270		1200		10

##	32	421	-6	32	453	510	83
##	33	666	5	16	682	742	81
##	34	357	-3	22	379	427	67
##	35	1066	21	10	1076	1127	82
##	36	488	-4	30	518	1000	328
##	37	1127	-3	36	1163	1210	80
##	38	1095	-10	24	1119	1178	73
##	39	1384	-6	14	1398	453	323
##	40	742	-1	25	767	825	82
##	41	927	17	14	941	990	80
##	42	515	0	28	543	1034	339
##	43	734	-3	24	758	815	78
##	44	418	-2	20	438	489	69
##	45	482	2	32	514	988	328
##	46	1243	3	18	1261	1313	73
##	47	657	2	16	673	724	69
##	48	479	-1	28	507	983	323
##	49	636	-5	18	654	716	75
##	50	1338	25	10	1348	386	333
##	51	744	-2	21	765	823	77
##	52	1070	0	19	1089	1153	83
##	53	1138	5	32	1170	1219	86
##	54	1238	-3	17	1255	1317	76
##	55	454	4	31	485	976	346
	56	1417	-3	22	1439	469	309
##	57	527	-5	19	546	609	77
##	58	510	-5	20	530	1036	341
##	59	564	-1	19	583	640	75
##	60	732	-3	14	746	796	61
##	61	593	-4	21	614	668	71
##	62	452	-1	24	476	536	83
##	63	1208	-2	20	1228	1288	78
##	64	1220	-1	13	1233	1310	89
##	65	1210	-5	24	1234	1286	71
##	66	527	-3	24	551	609	79
##	67	1028	1	19	1047	1100	73
##		390	-5	18	408	473	78
##		642	-3	24	666	715	70
##		1097	-5	17	1114	1170	68
##		453	-7	17	470	528	68
##		742	4	14	756	814	76
##	73	456	-4	17	473	520	60
##	4	DISTANCE 2554					
##			0				
## ##		226 226	1 1				
## ##		226 226	1 1				
##		2554	1				
##		2554	1				
##		2554	1				
##		226	1				
##		226	1				
##		2554	1				
π π	11	2004	1				

##	12	226	1
##	13	226	1
##	14	226	1
##	15	2554	1
##	16	226	1
##	17	226	1
##	18	226	1
##	19	226	1
##	20	2554	0
##	21	226	1
##	22	226	1
##	23	226	1
##	24	226	
## ##	25 26	226 226	0
##	27	226	1
##	28	226	1
##	29	2554	0
##	30	226	1
##	31	226	1
##	32	226	1
##	33	226	1
##	34	226	1
##	35	226	0
##	36	2554	0
##	37	226	0
##	38	226	1
##	39	2554	1
##	40	226	1
##	41	226	0
##	42	2554	1
##	43	226	1
##	44	226	1
##	45	2554	0
##	46	226	1
##	47	226	1
##	48	2554	0
##	49	226	1
##	50	2554	0
##	51	226	1
##	52	226	1
##	53	226	0
##	54	226	1
##	55	2554	0
##	56	2554	1
##	57	226	1
##	58	2554	1
##	59	226	1
##	60	226	1
##	61	226	1
##	62 63	226	1
## ##	63 64	226 226	1
##	65	226	1
##	00	220	Т

```
## 66
           226
                      1
           226
## 67
                      1
## 68
           226
## 69
           226
                      1
## 70
           226
## 71
           226
                      1
## 72
           226
                      1
## 73
           226
                      1
# Long flights are between SEA and MCO and short flights are between ATL and CLT
influential_data %>%
  filter(CRS_DEP_TIME > 1440 | DEP_TIME > 1440, WHEELS_OFF > 1440 |
           CRS_ARR_TIME > 1440 | CRS_ELAPSED_TIME > 1440)
    [1] YEAR
                          MONTH
##
                                                              AIRLINE
                          DEST
##
   [5] ORIGIN
                                            CRS_DEP_TIME
                                                              DEP TIME
   [9] DEP DELAY
                                            WHEELS OFF
                          TAXI OUT
                                                              CRS_ARR_TIME
## [13] CRS_ELAPSED_TIME DISTANCE
                                            DELAYED
## <0 rows> (or 0-length row.names)
# None of the times are past 1440 minutes past midnight
# Everything looks good!
Our next step was to check for outliers. We decided to use the IQR method of creating the outlier bounds
using Q1 - 1.5(IQR) and Q3 + 1.5(IQR). Luckily for us, we did not have any outliers in the training data.
# Outliers
train_num <- train[, sapply(train, is.numeric)]</pre>
outliers <- train_num %>%
  mutate(row_id = row_number()) %>%
  rowwise() %>%
  mutate(outlier = any(across(everything(), ~ {
    Q1 <- quantile(., 0.25, na.rm = TRUE)
    Q3 <- quantile(., 0.75, na.rm = TRUE)
    IQR <- Q3 - Q1
    . < (Q1 - 1.5 * IQR) | . > (Q3 + 1.5 * IQR)
  }))) %>%
```

```
## integer(0)
# No outliers!
```

Variable Transformation

ungroup() %>%
filter(outlier) %>%

pull(row_id)

outliers

From the EDA, we saw that some of our numeric variables require transformations. CRS_ELAPSED_TIME and TAXI_OUT are skewed right and consist of positive values, so we applied a logarithmic transformation to them. DEP_DELAY contains negative numbers, so we applied a cube root transformation instead.

```
train_new <- train %>%
  # Right skew > 0 -> log()
  mutate(
    CRS_ELAPSED_TIME = log(CRS_ELAPSED_TIME),
    TAXI_OUT = log(TAXI_OUT),
   DISTANCE = log(DISTANCE),
  ) %>%
  # Right-skew with negative \#'s \rightarrow sign(x) * abs(x)^(1/3)
  mutate(
    DEP_DELAY = sign(DEP_DELAY) * abs(DEP_DELAY)^(1/3)
  )
ggplot(train_new, aes(x = CRS_ELAPSED_TIME)) + geom_histogram(bins = 100) + theme_minimal()
   900
 count 600
   300
     0
         4.0
                            4.5
                                               5.0
                                                                   5.5
                                                                                      6.0
                                      CRS_ELAPSED_TIME
ggplot(train_new, aes(x = TAXI_OUT)) + geom_histogram(bins = 100) + theme_minimal()
```


 $ggplot(train_new, aes(x = DISTANCE)) + geom_histogram(bins = 100) + theme_minimal()$


```
# these look closer to normal now
# DEP_DELAY is still a little right skewed, but better than before
```

Variable Selection

For our variable selection process, we decided to use stepwise selection going both directions, and BIC as our selection criterion. Since we are making an explanatory model, we decided that because BIC is stricter on the number of predictors, our model will have a simpler model that will be easier to explain. Our selected variables were DEP_DELAY, TAXI_OUT, ORIGIN, AIRLINE, WHEELS_OFF, and DEST.

```
model <- glm(DELAYED ~ ., data = train_new, family = "binomial")</pre>
bic_model <- step(glm(DELAYED ~ 1, family="binomial", data=train_new), scope = formula(model),</pre>
                  direction = "both", trace = 0, k = log(nrow(train_new)))
summary(bic_model)
##
## Call:
   glm(formula = DELAYED ~ DEP_DELAY + TAXI_OUT + ORIGIN + AIRLINE +
##
       WHEELS_OFF + DEST, family = "binomial", data = train_new)
##
##
  Deviance Residuals:
##
                       Median
                                    3Q
       Min
                  1Q
                                             Max
   -2.5134
                     -0.2958
##
            -0.5362
                                0.4938
                                          3.1219
##
```

```
## Coefficients:
##
                                    Estimate Std. Error z value Pr(>|z|)
  (Intercept)
                                  -9.230e+00
                                              1.725e-01 -53.521
## DEP_DELAY
                                   8.477e-01
                                              8.538e-03
                                                          99.289
                                                                  < 2e-16 ***
## TAXI OUT
                                   2.809e+00
                                              4.696e-02
                                                          59.822
                                                                  < 2e-16 ***
## ORIGINCLT
                                              8.011e-02
                                  -2.772e-01
                                                          -3.461 0.000539 ***
## ORIGINDEN
                                   1.149e-01
                                              6.881e-02
                                                           1.670 0.094947 .
## ORIGINDFW
                                  -1.874e-01
                                              7.479e-02
                                                          -2.506 0.012212 *
## ORIGINLAS
                                  -1.132e-01
                                              7.135e-02
                                                          -1.587 0.112492
## ORIGINLAX
                                  -1.017e-01
                                              6.494e-02
                                                          -1.566 0.117455
## ORIGINMCO
                                   1.429e-01
                                              7.589e-02
                                                           1.883 0.059662
## ORIGINORD
                                  -3.628e-01
                                              7.129e-02
                                                          -5.088 3.61e-07 ***
## ORIGINPHX
                                   3.108e-01
                                              6.974e-02
                                                           4.457 8.32e-06 ***
## ORIGINSEA
                                  -3.371e-01
                                              7.392e-02
                                                          -4.561 5.10e-06 ***
                                              5.553e-02
## AIRLINEDelta Air Lines Inc.
                                   1.161e-01
                                                           2.090 0.036596 *
## AIRLINESouthwest Airlines Co.
                                   1.945e-01
                                              5.278e-02
                                                           3.684 0.000230 ***
## AIRLINEUnited Air Lines Inc.
                                  -2.595e-01
                                              5.167e-02
                                                          -5.022 5.12e-07 ***
## WHEELS OFF
                                   2.805e-04
                                              4.971e-05
                                                           5.643 1.67e-08 ***
                                              8.133e-02
## DESTCLT
                                                           1.480 0.138780
                                   1.204e-01
## DESTDEN
                                   5.290e-01
                                              6.958e-02
                                                           7.603 2.89e-14 ***
## DESTDFW
                                   3.884e-01
                                              7.419e-02
                                                           5.236 1.65e-07 ***
## DESTLAS
                                              7.026e-02
                                                           5.339 9.32e-08 ***
                                   3.751e-01
                                              6.548e-02
## DESTLAX
                                   1.399e-02
                                                           0.214 0.830784
                                   3.282e-01
## DESTMCO
                                              7.484e-02
                                                           4.386 1.16e-05 ***
## DESTORD
                                   2.714e-01
                                              7.216e-02
                                                           3.761 0.000170 ***
## DESTPHX
                                   3.340e-01
                                              7.002e-02
                                                           4.770 1.84e-06 ***
## DESTSEA
                                   1.593e-01
                                              7.381e-02
                                                           2.158 0.030892 *
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 52029
                              on 40000
                                        degrees of freedom
  Residual deviance: 30377
                              on 39976
                                        degrees of freedom
  AIC: 30427
##
##
## Number of Fisher Scoring iterations: 5
```

Regularization

Our BIC model doesn't appear to be heavily affected by multicollinearity. However, alleviate the effects of overfitting, we still used Ridge Regression. We used the default 10-fold cross validation to find the optimal lambda value for ridge regression, and then we applied ridge regression to the variables selected from the stepwise selection process. Our ridge regression model is our final model.

```
vif(bic_model)
```

```
##
                   GVIF Df GVIF^(1/(2*Df))
               1.276994
## DEP DELAY
                         1
                                   1.130042
## TAXI OUT
               1.387168
                         1
                                   1.177781
## ORIGIN
               3.429609
                         9
                                   1.070868
## AIRLINE
               4.702428
                         3
                                   1.294356
## WHEELS_OFF 1.078845
                                   1.038675
                          1
## DEST
               2.984716
                                   1.062633
```

```
X <- model.matrix(~ DEP_DELAY + TAXI_OUT + ORIGIN + AIRLINE + DEST + WHEELS_OFF,
                  data = train_new)[, -1]
y <- as.numeric(as.character(train_new$DELAYED))</pre>
# Ridge Regression
cv_ridge <- cv.glmnet(X, y, alpha = 0, family = "binomial")</pre>
lambda ridge <- cv ridge$lambda.min</pre>
ridge_model <- glmnet(X, y, alpha = 0, family = "binomial", lambda = lambda_ridge)
ridge_coefficients <- coef(cv_ridge, s = "lambda.min")</pre>
coef matrix <- as.matrix(ridge coefficients)</pre>
ridge_variables <- rownames(coef_matrix)[coef_matrix != 0]</pre>
ridge_variables <- ridge_variables[ridge_variables != "(Intercept)"]</pre>
ridge_variables
## [1] "DEP_DELAY"
                                          "TAXI_OUT"
## [3] "ORIGINCLT"
                                          "ORIGINDEN"
## [5] "ORIGINDFW"
                                          "ORIGINLAS"
## [7] "ORIGINLAX"
                                          "ORIGINMCO"
## [9] "ORIGINORD"
                                          "ORIGINPHX"
## [11] "ORIGINSEA"
                                          "AIRLINEDelta Air Lines Inc."
## [13] "AIRLINESouthwest Airlines Co." "AIRLINEUnited Air Lines Inc."
## [15] "DESTCLT"
                                          "DESTDEN"
## [17] "DESTDFW"
                                          "DESTLAS"
## [19] "DESTLAX"
                                          "DESTMCO"
## [21] "DESTORD"
                                          "DESTPHX"
## [23] "DESTSEA"
                                          "WHEELS OFF"
# made up of DEP_DELAY, TAXI_OUT, ORIGIN, DEST, WHEELS_OFF, and AIRLINE
```

Comparisons Between Default and Final Models

```
# default model predicting the testing data
pred_default_test <- predict(default_model, test, type = "response")</pre>
confusionMatrix(as.factor(ifelse(pred_default_test > 0.5, 1, 0)),
                                        as.factor(test$DELAYED))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                0
            0 6098 994
##
            1 354 2553
##
##
##
                  Accuracy : 0.8652
##
                    95% CI : (0.8583, 0.8718)
       No Information Rate: 0.6453
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.693
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
               Sensitivity: 0.9451
##
##
               Specificity: 0.7198
            Pos Pred Value: 0.8598
##
##
            Neg Pred Value: 0.8782
                Prevalence: 0.6453
##
            Detection Rate: 0.6099
##
##
      Detection Prevalence: 0.7093
##
         Balanced Accuracy: 0.8324
##
##
          'Positive' Class : 0
##
# ridge model predicting the testing split
pred_ridge_test <- predict(ridge_model, X_ridge_test, type = "response")</pre>
confusionMatrix(as.factor(ifelse(pred_ridge_test > 0.5, 1, 0)),
                                      as.factor(test_new$DELAYED))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 0
            0 5882 1030
##
##
            1 570 2517
##
##
                  Accuracy: 0.84
##
                    95% CI: (0.8326, 0.8471)
##
       No Information Rate: 0.6453
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.64
##
##
  Mcnemar's Test P-Value : < 2.2e-16
##
```

```
##
               Sensitivity: 0.9117
##
               Specificity: 0.7096
##
            Pos Pred Value: 0.8510
##
            Neg Pred Value: 0.8154
##
                Prevalence: 0.6453
##
            Detection Rate: 0.5883
##
      Detection Prevalence: 0.6913
         Balanced Accuracy: 0.8106
##
##
##
          'Positive' Class : 0
##
# default model predicting the training split
pred_default_train <- predict(default_model, train, type = "response")</pre>
confusionMatrix(as.factor(ifelse(pred_default_train > 0.5, 1, 0)),
                                        as.factor(train$DELAYED))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
            0 24384 3865
##
##
            1 1426 10326
##
##
                  Accuracy : 0.8677
##
                    95% CI: (0.8644, 0.871)
##
       No Information Rate: 0.6452
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6995
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.9448
               Specificity: 0.7276
##
            Pos Pred Value: 0.8632
##
##
            Neg Pred Value: 0.8787
##
                Prevalence: 0.6452
            Detection Rate: 0.6096
##
##
      Detection Prevalence: 0.7062
##
         Balanced Accuracy: 0.8362
##
          'Positive' Class : 0
##
##
# ridge model predicting the training split
pred_ridge_train <- predict(ridge_model, X_ridge_train, type = "response")</pre>
confusionMatrix(as.factor(ifelse(pred_ridge_train > 0.5, 1, 0)),
                                      as.factor(train_new$DELAYED))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
##
            0 23439 4062
```

##

1 2371 10129

```
##
##
                  Accuracy : 0.8392
##
                    95% CI: (0.8355, 0.8428)
       No Information Rate: 0.6452
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
                     Kappa: 0.639
##
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.9081
               Specificity: 0.7138
##
##
            Pos Pred Value: 0.8523
##
            Neg Pred Value: 0.8103
##
                Prevalence: 0.6452
##
            Detection Rate: 0.5860
##
      Detection Prevalence: 0.6875
##
         Balanced Accuracy: 0.8109
##
##
          'Positive' Class: 0
##
c(length(coef(default_model)), length(coef(ridge_model)))
```

[1] 41 28

Ultimately, our final model's accuracy is lower than the default model on both the training and testing data. However, we believe our final model is easier to interpret as it only has 27 coefficients compared to the default model's 40, while only suffering a 0.0252 decrease in accuracy.

Testing data prediction comparisons (Default vs. Final):

Accuracy: 0.8652 vs. 0.84
Sensitivity: 0.9451 vs. 0.9117
Specificity: 0.7198 vs. 0.7096
Prevalence: 0.6453 vs. 0.6453

Training data prediction comparisons (Default vs. Final):

Accuracy: 0.8677 vs. 0.8392
Sensitivity: 0.9448 vs. 0.9081
Specificity: 0.7276 vs. 0.7138
Prevalence: 0.6452 vs. 0.6452

What can we take away from the final model?

```
## ORIGINCLT
                                  "-0.1589958274203"
## ORIGINDEN
                                  " 0.0896482564605"
## ORIGINDFW
                                  "-0.0902584878751"
                                  "-0.0785097521077"
## ORIGINLAS
## ORIGINLAX
                                  "-0.0752749348200"
                                  " 0.0505855128161"
## ORIGINMCO
## ORIGINORD
                                  "-0.1958561390079"
                                  " 0.000000000000"
## ORIGINother
## ORIGINPHX
                                  " 0.1706939263593"
## ORIGINSEA
                                  "-0.1829401449899"
## AIRLINEDelta Air Lines Inc.
                                  " 0.0006767465172"
                                  " 0.000000000000"
## AIRLINEother
## AIRLINESouthwest Airlines Co.
                                  " 0.1693151865436"
## AIRLINEUnited Air Lines Inc.
                                  "-0.1757705867800"
## DESTCLT
                                  "-0.0518126690704"
## DESTDEN
                                  " 0.2056410683805"
## DESTDFW
                                  " 0.1328973941692"
## DESTLAS
                                  " 0.1357389440032"
## DESTLAX
                                  "-0.0891056993291"
## DESTMCO
                                  " 0.1189327317487"
                                  " 0.0513680161926"
## DESTORD
## DESTother
                                  " 0.000000000000"
## DESTPHX
                                  " 0.0907569479593"
## DESTSEA
                                  " 0.0088708094930"
                                  " 0.0003550489789"
## WHEELS OFF
```

coefficients represent log odds

For the ORIGIN variable, the reference level is ATL.

- If you are departing from the following airports: {DEN, MCO, PHX} then the odds of having a delayed arrival are higher compared to departing from ATL. The origin airport that is attributed with the highest odds of a late arrival is PHX.
- If you are departing from the following airports: {CLT, DFW, LAS, LAX, ORD, SEA} then the odds of having a delayed arrival are lower compared to departing from ATL. The origin airport that is attributed with the lowest odds of a late arrival is ORD.

For the DEST variable, the reference level is ATL.

- If you are arriving at the following airports: {DEN, DFW, LAS, MCO, ORD, PHX, SEA} then the odds of having a delayed arrival are higher compared to arriving at ATL. The destination airport that is attributed with the highest odds of a late arrival is DEN.
- If you are arriving at the following airports: {CLT, LAX} then the odds of having a delayed arrival are lower compared to arriving at ATL. The destination airport that is attributed with the lowest odds of a late arrival is LAX.

Overall, it looks like the two best airports that contribute to an on-time arrival schedule are Los Angeles's LAX and Charlotte's CLT. On the other hand, it also seems the worst airports that contribute to a late arrival schedule are Denver's DEN, Orlando's MCO, and Phoenix's PHX.

For the AIRLINE variable, the reference level is American Airlines.

- If you are flying with Southwest Airlines, then the odds of having a late arrival are higher compared to flying with American Airlines.
- Delta Airlines also has higher odds of a late arrival compared to American Airlines, but because the coefficient of 0.00067 is effectively 0, the change in odds between the two are minimal.

United Airlines has the lowest odds of a late arrival compared to the other three airlines.

Now on to the numeric predictors.

- Since TAXI_OUT has the logarithmic transformation applied to it, for a 1-unit increase in $log(TAXI_OUT)$, the log odds of a delayed arrival increases by 1.8639. If we think of it in normal odds, a 1-unit increase in $log(TAXI_OUT)$ multiplies the odds of a delayed arrival by $e^{1.8639} = 6.4488$.
- Since DEP_DELAY has the cube root transformation applied to it, for a 1-unit increase in cube root of DEP_DELAY, the log odds of delayed arrived increases 0.6144, multiplies the odds of a delayed arrival by $e^{0.6144} = 1.8485$.
- WHEELS_OFF has no transformation and the coefficient 0.000355 is very close to 0. It has a positive, but mostly negligible effect on the odds.

Domain Insight: The most common causes for flight disruptions are bad weather, air traffic control issues, mechanical problems, and crew availability. Does this match our findings? We would argue it does. If certain airports have lousy air traffic control operations, then it would make sense that it might take longer for planes to depart and arrive at these airports. The taxi process also falls under the air traffic control at each airport, and TAXI_OUT has the largest positive magnitude out of all of our coefficients. Our interpretations about ORIGIN, DEST, and TAXI_OUT are consistent with what experts in the commercial aviation field say.