

Rapport de mini-projet C++

<u>Sujet</u>: Résolution du monde des cubes par éco-résolution

A l'attention de Mme Jean-Philippe Kotowicz

Sommaire

•	du besoin	
1.1. P	réliminaires	
	1.1.1. Principe de l'éco-résolution	
	1.1.2. Le monde des cubes	;
1.2. 0	omposition du système	
	1.2.1. Plateforme d'éco-résolution	7
	1.2.2.Les éco-agents	7
1.3. L	es grandes fonctionnalités	3
1.4. L	es étapes pour démarrer la résolution	3

Introduction

blabla

Partie 1: Analyse des besoins

1.1 Préliminaires

1.1.1 Principe de l'éco-résolution

L'éco-résolution est utilisée pour la résolution des problèmes en Intelligence Artificielle. Elle se compose de 2 parties :

- Un protocole suivi par l'ensemble des agents, qui est un noyau indépendant du problème à résoudre
- Un code de comportements des éco-agents spécifiques au problème à résoudre

Les éco-agents sont les entités qui constituent le système. Leur particularité est d'être en quête perpétuelle d'un état de satisfaction. Les éco-agents peuvent se gêner mutuellement ce qui donne naissance à deux comportements : l'agression des gêneurs et la fuite de ceux-ci. Ils sont également caractérisés par :

- Un but : il s'agit d'un autre éco-agent avec lequel il dit être en relation de satisfaction
- Un état interne : satisfait, en recherche de satisfaction, en fuite ou en recherche de fuite
- Des actions élémentaires : elles dépendent du domaine et correspondent aux comportements de satisfaction ou de fuite
- La perception des gêneurs : Il s'agit de la perception des éco-agents qui empêchent l'éco-agent courant d'être satisfait ou de fuir
- Des dépendances : les éco-agents dont l'éco-agent courant est le but. Elles sont satisfaites uniquement si cet éco-agent est satisfait.

Un éco-agent a la volonté d'être satisfait. Il cherche à se trouver dans un état de satisfaction. S'il est empêché par des gêneurs alors il les agresse.

Un éco-agent a l'obligation de fuir. Si un éco-agent est agressé, il doit trouver une place ou fuir.

Enfin un éco-agent peut effectuer 3 opérations :

- Agresser
- FaireSatisfaction
- FaireFuite

1.1.2 Le monde des cubes

Le monde des cubes consiste en le problème suivant : des cubes sont disposés sur une table formant des piles et l'objectif de pouvoir bouger les cubes suivant des contraintes (poser le cube A sur le cube H par exemple).

Prenons l'exemple de la situation suivante :

L'objectif est de déplacer le cube C et de le mettre sur le cube D. Cette opération sera réalisée selon les étapes suivantes :

Le cube A est posé sur la table.

Le cube B est posé sur la table, ainsi le cube C est libre.

Finalement, le cube C est déplacé sur le cube D.

Plusieurs options existent pour la résolution de ce problème : l'utilisation de robots qui déplaceraient les cubes et l'éco-résolution avec les cubes et la table comme éco-agents. Nous avons choisi cette dernière option même si de premier abord elle paraît être moins instinctive car nous pensons que ce problème illustre parfaitement l'utilisation de l'éco-résolution.

1.2 Composition du système

L'objectif affiché est donc de résoudre le problème du déplacement des cubes par l'écorésolution. Tout problème possède néanmoins une base commune : la plateforme d'écorésolution qui permet l'exécution des éco-agents et les éco-agents eux-mêmes.

1.2.1 Plateforme d'éco-résolution

La plateforme d'éco-résolution qui permet :

- l'ajout d'éco-agent
- la suppression d'éco-agent
- l'exécution des éco-agents

1.2.2 Les éco-agents

Les éco-agents précédemment décrits qui sont capables de réaliser principalement trois opérations:

- Agresser
- FaireSatisfaction
- FaireFuite

Les états successifs des éco-agents peuvent être décrits par l'automate suivant :

Diagramme d'états d'un EcoAgent

1.3 Les grandes fonctionnalités

On peut distinguer les grandes fonctionnalités suivantes :

- Créer une situation initiale : positionnement initial des cubes sur la table
- Déterminer la situation finale : positionnement final des cubes sur la table
- Démarrer la résolution
- Trace de la résolution (affichage graphique, log, etc.)

1.4 Les étapes pour démarrer la résolution

Nous allons maintenant résumer les différentes étapes nécessaires pour réaliser la résolution:

- 1. Création de l'éco-agent table
- 2. Création des éco-agents cubes
- 3. Donner aux éco-agents des conditions de satisfactions ainsi que les relations de dépendance qui en découlent
- 4. Démarrer la résolution

Conclusion

blabla