2023 年度インテリジェントシステム レポート課題 # 3(確率モデル・Bayesian Networks:解答例)

以下の問 $1\sim$ 問 に対する解答をレポートにまとめて(文書ファイルを)eALPS から提出せよ。提出するファイルは pdf であること。文書作成には latex, MS-Office などを用いることが望ましいが、手書きのレポートをスキャンして pdf に変換後提出してもよい。

- 1. 次の (a)~(f) のうち一般に成立するものを全て選べ。誤っているものについては、どこが誤りか、誤っている箇所について簡単に説明せよ。
 - (a) $P(X) \propto \sum_{y} P(X|Y=y)$
 - (b) $P(X|Y) = \frac{P(X,Y)}{\sum_{y} P(X,Y=y)}$
 - (c) $P(X|Y=y) \propto P(Y=y|X)$
 - (d) $P(X) = \sum_{y} \sum_{z} \sum_{w} P(X, Y = y, Z = z, W = w)$
 - (e) $P(X_1, X_2, \dots, X_{n-1}, X_n) = P(X_1) \prod_{i=2}^n P(X_i | X_{i-1}, \dots, X_1)$
 - (f) $P(X_1, X_2, \dots, X_{n-1}, X_n) = P(X_n) \prod_{i=1}^{n-1} P(X_{n-i} | X_n, \dots, X_{n-i+1})$

正しいものは (d), (e), (f)

誤っているものについての説明例:

- (a) $P(X) = \sum_{y} P(X, Y = y) = \sum_{y} P(X|Y = y)$ である。
- (b) $P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(X,Y)}{\sum_x P(X=x,Y)}$ となる。 元の式(右辺) $\frac{P(X,Y)}{\sum_y P(X,Y=y)}$ は $\frac{P(X,Y)}{P(X)}$ なので P(Y|X) である。
- (c) $P(X|Y=y) = \frac{P(X,Y=y)}{P(Y=y)} \propto P(X,Y=y) = P(Y=y|X)P(X)$ である。

- 2. 下の Bayesian Network で表現される確率モデルを用いて以下の確率値を求めよ。但し確率変数 A,B,C,D は全て 2 値であり、true または false を値に持つ。例えば A=true を a, A=false を $\neg a$ と 表すものとする。解答には有効数字 2 桁の小数を用いること。
 - (a) $P(\neg b)$
 - (b) P(c)
 - (c) P(c|d)
 - (d) P(a|d)

$$P(\neg b) = \sum_{A} \sum_{C} \sum_{D} \mathbf{P}(A) \mathbf{P}(\neg b|A) \mathbf{P}(C|A) \mathbf{P}(D|C)$$

$$= \sum_{A} \mathbf{P}(A) \mathbf{P}(\neg b|A) \sum_{C} \mathbf{P}(C|A) \sum_{D} \mathbf{P}(D|C)$$

$$= \sum_{A} \mathbf{P}(A) \mathbf{P}(\neg b|A)$$

$$= P(\neg b|a) P(a) + P(\neg b|\neg a) P(\neg a) = 0.7 \times 0.3 + 0.2 \times 0.7 = 0.35$$

$$P(c) = \sum_{A} \sum_{B} \sum_{D} \mathbf{P}(A) \mathbf{P}(B|A) \mathbf{P}(c|A) \mathbf{P}(D|c)$$

$$= \sum_{A} \mathbf{P}(A) (\sum_{B} \mathbf{P}(B|A)) \mathbf{P}(c|A) \sum_{D} \mathbf{P}(D|c)$$

$$= \sum_{A} \mathbf{P}(A) \mathbf{P}(c|A) = P(c|a) P(a) + P(c|\neg a) P(\neg a)$$

$$= 0.2 \times 0.3 + 0.4 \times 0.7 = 0.34$$

前の問題の解答より
$$P(c)=0.34$$
 したがって $P(\neg c)=0.66$
$$P(d)=\sum_{C} \boldsymbol{P}(C,d)=\sum_{C} \boldsymbol{P}(d|C)\boldsymbol{P}(C)=P(d|c)P(c)+P(d|\neg c)P(\neg c)$$

$$P(c|d)=\frac{P(d|c)P(c)}{P(d)}=\frac{0.3\times0.34}{0.3\times0.34+0.5\times0.66}\approx0.24$$

 $P(a|d) = rac{P(a,d)}{P(d)}$ である。P(d) は前の問題で計算済である。

$$P(a,d) = \sum_{B} \sum_{C} P(a) \mathbf{P}(B|a) \mathbf{P}(C|a) \mathbf{P}(d|C) = P(a) (\sum_{B} \mathbf{P}(B|a)) \sum_{C} \mathbf{P}(C|a) \mathbf{P}(d|C)$$

$$= P(a) (P(c|a) P(d|c) + P(\neg c|a) P(d|\neg c)$$

$$= 0.3 \times (0.2 \times 0.3 + 0.8 \times 0.5) = 0.138$$

以上より
$$P(a|d) = \frac{P(a,d)}{P(d)} = \frac{0.138}{0.432} \approx 0.32$$

- 3. 確率変数 X,Y,Z があるとき、X,Y は Z が与えられたとき条件付独立であることを $X \perp Y|Z$ と表すものとする。また、X,Y が(Z を周辺化して消去すると)独立であるとき $X \perp Y$ と表すものとする。下図の Bayesian ネットワークで表すようなモデルが与えられたとき、次の $(a) \sim (d)$ のうち正しいものを全て挙げよ。
 - (a) $D \perp E$ (b) $A \perp B \mid E$ (c) $A \perp D$ (d) $B \perp D \mid C$

正しいのは(c),(d)

4. 下図の $(1) \sim (3)$ で示された Bayesian ネットワークについて、図に示された独立性、条件付き独立性が成り立つことを証明せよ。

- (1) Bayesian ネットワークより P(A,B,C)=P(A)P(B)P(C|A,B) である。 $P(A,B)=\sum_c P(A,B,C=c)=P(A)P(B)\sum_c P(C=c|A,B)=P(A)P(B)$ となるから $A\perp B$
- (2) Bayesian ネットワークより P(A,B,C)=P(A)P(B|A)P(C|A) である。 $P(B,C|A)=\frac{P(A,B,C)}{P(A)}$ だから、 $P(B,C|A)=\frac{P(A)P(B|A)P(C|A)}{P(A)}=P(B|A)P(C|A)$ であり、したがって $B\perp C|A$
- (3)Bayesian ネットワークより P(A,B,C) = P(A)P(B|A)P(C|B) である。 $P(A,C|B) = \frac{P(A,B,C)}{P(B)} = \frac{P(A)P(B|A)P(C|B)}{P(B)}$ となるが P(A)P(B|A) = P(A,B) であり、 $P(A|B) = \frac{P(A,B)}{P(B)}$ だから P(A,C|B) = P(A|B)P(C|B) すなわち $A \perp C|B$

- 5. 下図の Bayesian ネットワークに関する問 (a),(b),(c) に解答せよ。
 - (a) 下図の Bayesian ネットワークで表されるモデルの場合の同時確率 P(A,B,C,D,E,F,G) を 条件付確率の積の形で表せ。

P(A, B, C, D, E, F, G) = P(A)P(B)P(C|A)P(D|A, B)P(E|D)P(F|D)P(G|C, E)

(b) C,D が観測済であるとき、G と独立であるノードを全て挙げよ。

A, B, F

d-分離について調べてみればよい。たとえば、A と G の間の (無向) 経路としては $A \to C \to G$ と $A \to D \to E \to G$ があるが、 $A \to C \to G$, $A \to D \to E$ は観測されたノードによって分離されている chain である。

B については $B \to D \to E$ により d-分離が示せる。

F については $F \leftarrow D \leftarrow A \rightarrow C \rightarrow G$ は A の場合に考えたのと同様の chain が含まれている。 $F \leftarrow D \rightarrow E \rightarrow G$ は $tent F \leftarrow D \rightarrow E$ を含んでいる。

(c) $C,\!D$ が観測済であるとき、A と独立であるノードを全て挙げよ。

E, F, G

 $B \to D \leftarrow A$ は v-structure であり、Dは観測されたノードなので d-分離の条件を満たさない。

6. X_1, X_2, \cdots, X_n, Y は 2 値の確率変数であり、下図の Bayesian ネットワークに示すようなモデル が与えられているものとする。いま確率変数 X_n については観測値 $X_n = x_n$ が与えられ、これに 基づいて $P(X_1|X_n=x_n)$ を不要な変数を消去(周辺化)することで求めたい。このとき以下の問 (a), (b), (c) に解答せよ。

(a) 同時確率 $P(X_1, X_2, \dots, X_n, Y)$ はどうなるか示せ。

Bayesian ネットワークより

 $P(X_1, X_2, \dots, X_n, Y) = P(Y)P(X_1|Y)P(X_2|Y) \dots P(X_n|Y)$

(b) 不要な変数を消去するとき以下の2つではどちらが適切と考えられるか理由とともに解答せよ。

i.
$$X_2 \to X_3 \to \cdots \to X_{n-1} \to Y$$

ii.
$$Y \to X_2 \to X_3 \to \cdots \to X_{n-1}$$

i の順番($X_2 \to X_3 \to \cdots \to X_{n-1} \to Y$)が望ましい。この順番で変数を消去していったときまず X_2 を消去したとき得られる factor を f_2 とおくと、

$$f_2(Y) = \sum_{x_2} P(X_2 = x_2 | Y) P(Y) = P(Y) \sum_{x_2} P(X_2 = x_2 | Y) = P(Y)$$

となる。この後同様に X_j $(j=3,\cdots,n-1)$ を順番に消去していったとき得られる factor を f_i とおくと

$$f_j(Y) = \sum_{x_j} P(X_j = x_j | Y) P(Y) = P(Y) \sum_{x_j} P(X_j = x_j | Y) = P(Y)$$

となる。 X_{n-1} まで消去を終えたとき、残っている factors はP(Y), $P(X_1|Y)$, $P(X_n=x_n|Y)$ である。最後はY を消去して

$$f(X_1, x_n) = \sum_{y} P(Y = y)P(X_1|Y = y)P(X_n = x_n|Y = y)$$

このように、生成される factor のサイズが増大することはない。

一方、ii の順番($Y \to X_2 \to X_3 \to \cdots \to X_{n-1}$)で変数を消去(周辺化)していったとき、まず最初 Y を周辺化して以下のような factor g_1 が生成される。

$$g_1(X_1, \dots, X_{n-1}, x_n) = \sum_y P(Y = y) P(X_1 | Y = y) \dots P(X_{n-1} | Y = y) P(X_n = x_n | Y = y)$$

この factor のサイズは 2^{n-1} であるから n が大きいときは非常にサイズが大きくなってしまう。この後、 $X_2, \cdots X_{n-1}$ の順番に消去を行なっていったとき生成される factor を g_j $(j=2,\cdots,n-1)$ とおくと

$$g_j(X_{j+1}, \dots, x_n) = \sum_{x_j} g_{j-1}(X_j = x_j, X_{j+1}, \dots, x_n)$$

であるから徐々にサイズは小さくなるものの、比較すると i の順番の方が生成される factor のサイズが小さいため適切であると考えられる。

(c) Bayesian ネットワークとともに与えられる条件付き確率を用いて $P(X_1|X_n=x_n)$ を表せ。(できるだけシンプルな形になるものが望ましい)

上の問題で考えたように $X_2 \to X_3 \to \cdots \to X_{n-1} \to Y$ の順番で変数を消去しいったとき、残る factor は

$$f(X_1, x_n) = \sum_{y} P(Y = y) P(X_1 | Y = y) P(X_n = x_n | Y = y)$$

であり、これは $P(X_1, X_n = x_n)$ であるから

$$P(X_1|X_n = x_n) = \frac{\sum_y P(Y = y)P(X_1|Y = y)P(X_n = x_n|Y = y)}{\sum_{x_1} \sum_y P(Y = y)P(X_1 = x_1|Y = y)P(X_n = x_n|Y = y)}$$

で求める条件付確率を計算できる。