Distributed Storage Systems

Reliable Storage Continued: Finite Fields & Linear Coding

Agenda

Reliable storage

Today's topics

- Basics of finite fields used in RAID and other storage systems
- Basics of coding for storage

Goals

This week's Learning Goals

- Understand finite field arithmetics
- Understand basics of coding for reliable storage

Class Structure

	Lecture	Lab				
Week 1	Course introduction, networking basics, socket programming	Python sockets				
Week 2	RPC, NFS, Practical RPC	Flask, JsonRPC, REST API				
Week 3	AFS, reliable storage introduction	ZeroMQ, ProtoBuf				
Week 4	Hard drives, RAID levels	RPi stack intro, RPi RAID with ZMQ				
Week 5	Finite fields, Reed-Solomon Codes	Kodo intro, RS and RLNC with Kodo				
Week 6	Repair problem, RS vs Regenerating codes	RPi simple distributed storage with Kodo RS				
Week 7	Regenerating codes, XORBAS	RPi Regenerate lost fragments with RS				
Week 8	Hadoop	RPi RLNC, recovery with recode				
Week 9	Storage Virtualization, Network Attached Storage, Storage Area Networks	RPi basic HDFS (namenode+datanode, read and write pipeline)				
Week 10	Object Storage	RPi basic S3 API				
Week 11	Compression, Delta Encoding	Mini project consultation				
Week 12	Data Deduplication	RPi Dedup				
Week 13	Fog storage	Mini project consultation				
Week 14	Security for Storage Systems and Recap	Mini project consultation				

Reliable Storage

- Level 5 with an extra parity
- Can tolerate two failures
- What are the odds of having two concurrent failures?

- Level 5 with an extra parity
- Can tolerate two failures
- What are the odds of having two concurrent failures?

- Level 5 with an extra parity
- Can tolerate two failures
- What are the odds of having two concurrent failures?

RAID6 - More than 2 stripes?

- Level 5 with an extra parity
- Can tolerate two failures

Reed Solomon codes provide the appropriate code construction

RAID6 - More than 2 stripes?

- Level 5 with an extra parity
- Can tolerate two failures

What about general number of stripes?

What is a 4 in $GF(2^2)$? How to do this?

Finite Fields

Operations: Addition, Multiplication

Property: closure

Groups

A group G, denoted {G, * } is a set of elements with a binary operation * that associates each ordered pair (a,b) of elements in G to an element (a*b) in G following

Axioms

- Closure: If a and b in G, then a * b is also in G
- Associative: a * (b * c) = (a * b) * c for all a,b,c in G
- Identity: Exists e in G, s.t. a*e = e*a = a for all a in G
- Inverse: for each a in G, exists a' in G, s.t.

$$a*a' = a'*a = e$$

Finite group: finite number of elements

Abelian Group

Group that satisfies

Commutative: If a and b in G, then a * b = b * a

Rings

A ring R, denoted by $\{R, +, x\}$ is a set of elements with two binary operations: addition, multiplication. For all a,b,c in R the following axioms are satisfied

- R is abelian group with respect to the addition
- Closure under multiplication: ab in R
- Associativity of multiplication: a(bc) = (ab)c
- Distributive laws: a(b+c) = ab + ac(a + b)c = ac + bc

Commutative Ring

A ring that also satisfies

Commutativity of multiplication: ab = ba in R

Integral Domain

R is a commutative ring that also satisfies

- Multiplicative identity: exists 1, s.t. a1 = 1 a = a
- No zero divisors: ab = 0, implies either a = 0 or b = 0

Field

F is a field, { F, +, x } that satisfies

- F is an integral domain
- Multiplicative inverse: for each a in F, except 0, exists an element a⁻¹, s.t. a(a⁻¹)= (a⁻¹)a = 1

Finite Fields GF(p)

Can write fields of the form $GF(p^n)$, where p is prime Addition and multiplication over GF(p) are mod p Focus on p = 2

Example:

GF(2) addition: equivalent to XOR multiplication: equivalent to AND

How to divide? Multiply by multiplicative inverse Finding the multiplicative inverse

- 1.- Can look for a^{-1} such that $(a^{-1} \cdot a) \equiv 1$
- 2.- Can use the extended Euclidean algorithm

Finite Fields - Applying GF(2) to NC

Example:

GF(2) addition: XOR

multiplication: AND

Given 2 data packets

P1: 01011001 P2: 10001001

calculate the content of the coded packet P1+P2.

What are the coefficients?

Modulus

If a is an integer, n > 0 integer, we define a mod n to be the remainder when a is divided by n

- The integer n is called the modulus
- For any integer a, we can write

$$\mathbf{a} = \mathbf{qn} + \mathbf{r}$$
, with $0 \le \mathbf{r} < \mathbf{n}$, and $\mathbf{q} = \mathbf{a} / \mathbf{n}$

• E.g., $11 \mod 7 = 4$, $-11 \mod 7 = 3$

Congruent modulo n

If (a mod n) = (b mod n), and it's expressed $a \equiv b \pmod{n}$

• E.g., $20 \equiv 6 \pmod{7}$

Properties of congruencies

- $a \equiv b \pmod{n}$ if $n \mid (a-b)$
- $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
- $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Modular arithmetic operations

- [(a mod n) + (b mod n)] mod n = (a+b) mod n
- [(a mod n) (b mod n)] mod n = (a-b) mod n
- [(a mod n) x (b mod n)] mod n = (a x b) mod n

Rules of ordinary arithmetic involving addition, subtraction, multiplication carry over

Properties of modular arithmetic

Define $Z_n = \{0, 1, ..., n-1\}$ as the set of **residues** or **residue classes** mod n.

Each element of Z_n is a residue class and can define it as $[j] = \{a : a \text{ is integer}, a \equiv j \pmod{n}\}$

• Reducing k mod n: finding smallest non-negative integer a, such that $k \equiv a \pmod{n}$

Properties of modular arithmetic

- $(w + x) \mod n = (x + w) \mod n$
- $(w x y) \mod n = (y x w) \mod n$
- $((w + x) + y) \mod n = (w + (x + y)) \mod n$
- $((w x j) x y) \mod n = (w x (j x y)) \mod n$
- $(w x (y + j)) \mod n = ((w x y) + (w x j)) \mod n$
- $(0 + w) \mod n = w \mod n$
- (1 x w) mod n = w mod n

Properties of modular arithmetic

- If $(a + b) \equiv (a + c) \pmod{n}$, then $b \equiv c \pmod{n}$
- If $(a \times b) \equiv (a \times c)$ (mod n), then $b \equiv c$ (mod n) if a is relatively prime to n, i.e., gcd(a,n) = 1

Why is the last property important?

What happens when "p" is not a prime? Will modular arithmetic still work?

Example 1:

```
If gcd(a,n) \neq 1, the last equation does not hold e.g. 6 \times 3 = 18 = 2 \mod 8 and 6 \times 7 = 42 = 2 \mod 8 but 3 \mod 8 \neq 7 \mod 8
```

What happens when "p" is not a prime? Will modular arithmetic still work?

+	0	1	2	3	X	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

What about $GF(2^n)$?

Since 2ⁿ is not a prime, operations are defined in a different way => **polynomial arithmetic**

Ordinary polynomial arithmetic:

A polynomial of degree n

$$F(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 x^0 = \sum a_i x^i$$

a, are the coefficients, chosen from a set

Operations:

Addition
$$f(x) + g(x) = \sum (a_i + b_i) x^i$$

Multiplication
$$f(x) x g(x) = \sum C_i x^i$$

with $c_k = a_0 b_k + a_1 b_{k-1} + ... + a_k b_0$

What about $GF(2^n)$?

Polynomial arithmetic in GF(2ⁿ):

- Arithmetic follows rules of polynomial arithmetic
- Arithmetic of coefficients is performed modulo 2
 - i.e., using GF(2) addition/multiplication for coefficients of the same order
 - $e.g., (a_i + b_i) \mod 2$
- If multiplication results in a polynomial greater than n-1, then the polynomial is reduced modulo an irreducible polynomial p(x)
 - Think of it as a mod p(x) operation: divide by p(x), keep the remainder

Example GF(2²)

Irreducible polynomial $p(x) = x^2 + x + 1$ (111)

+ 0 1 2 3
0 0 1 2 3 How about 2 +3?
2 =
$$(10)_b$$
 and 3 = $(11)_b$
1 1 0 3 2
As polynomials:
2 2 3 0 1 $2 \equiv x$ and $3 \equiv x + 1$
3 3 2 1 0
Thus, 2 + 3 becomes

x + (x + 1) = 1

Example GF(2²)

Irreducible polynomial
$$p(x) = x^2 + x + 1$$
 (111)_b

Equal number of each element: RLNC's properties

Que required when recoding
$$x (x + 1) = (x^2 + x) \mod p(x)$$
1 0 1 2 3

Multiplicative inverses; easy to spot in table
1

Can we compute without generating table?
$$x^2 + x + 1$$

How to implement multiplication GF(2ⁿ)?

A.- Product (shifts+ XORs)

- 1) Pick one as multiplier (M) and another as multiplicand (m)
- 2) For each "1" in "M", left shift the "m" by the position of the "1"
- 3) XOR shifted versions

B.- Modulo irreducible polynomial (long division)

- 4) Initialize: F(0) = Result of part A
- 5) Take irreducible polynomial p(x) left shift until first "1" of polynomial and of value F match
- 6) F(i+1) = (shifted p(x)) XOR (F(i))
- 7) Stop if first "1" of F(i+1) occurs in the (n-1)-th bit

How to implement multiplication?

$$M = (00010001)_{b}$$
 and $m = (10100111)_{b}$
 101001110000 (m shifted 4 times)
 (XOR) 10100111 (m shifted 0 times)
 1010110101111

B.- Modulo irreducible polynomial

$$p(x) = x^8 + x^4 + x^3 + x + 1$$
 (100011011)_b

$$101011010111 \mod p(x)$$

001000001111

$$000000111001 \rightarrow (00111001)_{b}$$

Generating Coded Fragments/Stripes

Generating a linear coded fragment/stripe (C)

$$C_i = \sum a_{ij} P_j$$

How you pick the coefficients determines properties and performance

Generating Coded Packets

- Some data coded, some is not
- Called: 'Systematic' Code

- Some data coded, some is not
- Called: 'Systematic' Code

- Some data coded, some is not
- Called: 'Systematic' Code

- Some data coded, some is not
- Called: 'Systematic' Code

 $P_1 \qquad P_2 \qquad \cdots$

• P₆

1

RAID6

- Some data coded, some is not
- Called: 'Systematic' Code

P₁ P₂ ...

• P₆

 P_1

• • •

 $P_1 + \dots$

RAID6

- Some data coded, some is not
- Called: 'Systematic' Code

What are good constructions of the (coefficient) matrix?

What are good constructions of the (coefficient) matrix?

Depends on performance objective:

- Storage reduction
- Reduced I/O operations
- ...

What are good constructions of the (coefficient) matrix?

Depends on performance objective:

- Storage reduction: MDS codes, e.g., Reed Solomon
- Reduced I/O operations

- ...

MDS Codes

- A maximum distance separable code, denoted by MDS(n, k), has the property that any k (< n) out of n nodes can be used to reconstruct original native blocks
 - i.e., at most n-k disk failures can be tolerated
- Example:
 - RAID-5 is an MDS(n, n-1) code as it can tolerate 1 disk failure
 - RAID-6 is an MDS(n,n-2) code as it can tolerate 2 disk failures

Not systematic

Not systematic

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ \alpha_1^{\ 1} & \alpha_2^{\ 1} & \alpha_3^{\ 1} & \alpha_4^{\ 1} & \dots & \alpha_k^{\ 1} \\ \alpha_1^{\ 2} & \alpha_2^{\ 2} & \alpha_3^{\ 2} & \alpha_4^{\ 2} & \dots & \alpha_k^{\ 2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{\ (n-1)} \alpha_2^{\ (n-1)} \alpha_3^{\ (n-1)} \alpha_4^{\ (n-1)} \dots & \alpha_k^{\ (n-1)} \end{pmatrix}$$

Not systematic

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 3 & 4 & \dots & k \\ 1^2 & 2^2 & 3^2 & 4^2 & \dots & k^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1^{(n-1)} & 2^{(n-1)} & 3^{(n-1)} & 4^{(n-1)} & \dots & k^{(n-1)} \end{pmatrix}$$

There is a limit on the value of $n \rightarrow n$ cannot be larger than (size of field -1) For $GF(2^m)$, $n < 2^m-1$

Not systematic n = 6, k = 4

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \\ 1 & 2^4 & 3^4 & 4^4 \\ 1 & 2^5 & 3^5 & 4^5 \end{pmatrix}$$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) polynomial: x^3+x^2+1

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \\ 1 & 2^4 & 3^4 & 4^4 \\ 1 & 2^5 & 3^5 & 4^5 \end{pmatrix}$$
Mapping to polynomial $0 \to 0$ $1 \to 1$ $2 \to x$ $3 \to x + 1$ $4 \to x^2$ $5 \to x^2 + 1$ $6 \to x^2 + x$ $7 \to x^2 + x + 1$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) primitive polynomial: x^3+x^2+1
- What about the exponents?

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \\ 1 & 2^4 & 3^4 & 4^4 \\ 1 & 2^5 & 3^5 & 4^5 \end{pmatrix} \begin{pmatrix} \text{Mapping to polynomial} & \text{Mapping to polynomial} \\ 0 \to 0 & 2^2 \to x^2 & \to 4 \\ 2^3 \to x^3 \to R(x^3/x^3 + x^2 + 1) \to x^2 + 1 & \to 5 \\ 2^4 \to x^4 \to x(x^2 + 1) \to x^2 + x + 1 & \to 7 \\ 2^5 \to x \cdot x^4 \to x(x^2 + 1) \to x^2 + x + 1 & \to 3 \\ 2^6 \to x \cdot x^5 \to x(x + 1) \to x^2 + x & \to 6 \\ 2^7 \to x \cdot x^6 \to x(x^2 + x) \to x^3 + x^2 & \to 1 \end{pmatrix}$$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) primitive polynomial: x^3+x^2+1
- What about the exponents?

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 3^2 & 4^2 \\ 1 & 5 & 3^2 & 4^2 \\ 1 & 7 & 3^2 & 4^2 \\ 1 & 3 & 3^5 & 4^5 \end{pmatrix} \begin{pmatrix} \text{Mapping to polynomial} & \text{Mapping to polynomial} \\ 0 \to 0 & 2^2 \to x^2 & \to 4 \\ 2^3 \to x^3 \to R(x^3/x^3 + x^2 + 1) \to x^2 + 1 & \to 5 \\ 2^4 \to x^4 \to x(x^2 + 1) \to x^2 + x + 1 & \to 7 \\ 2^5 \to x \cdot x^4 \to x(x^2 + 1) \to x^2 + x + 1 & \to 3 \\ 2^6 \to x \cdot x^5 \to x(x + 1) \to x^2 + x & \to 6 \\ 2^7 \to x \cdot x^6 \to x(x^2 + x) \to x^3 + x^2 & \to 1 \end{pmatrix}$$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) primitive polynomial: x^3+x^2+1
- What about the exponents?

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 3^2 & 4^2 \\ 1 & 5 & 3^3 & 4^3 \\ 1 & 7 & 3^4 & 4^4 \\ 1 & 3 & 3^5 & 4^5 \end{pmatrix} \begin{pmatrix} \text{Mapping to polynomial} & \text{Mapping to polynomial} \\ 0 \to 0 & 3^2 \to (x+1)^2 \to x^2 + 1 & \to 5 \\ 1 \to 1 & 3 & 3^5 & 4^5 \\ 3^3 \to (x^2+1)(x+1) \to x & \to 2 \\ 3 \to x + 1 & 3^4 \to x(x+1) \to (x^2+x) & \to 6 \\ 4 \to x^2 & 3^5 \to (x^2+x)(x+1) \to x^2 + x + 1 & \to 7 \\ 5 \to x^2 + 1 & 6 \to x^2 + x \\ 7 \to x^2 + x + 1 & & 7 \end{pmatrix}$$

Mapping to polynomial
$$3^2 \rightarrow (x+1)^2 \rightarrow x^2+1 \rightarrow 5$$
 $3^3 \rightarrow (x^2+1)(x+1) \rightarrow x \rightarrow 2$ $3^4 \rightarrow x(x+1) \rightarrow (x^2+x) \rightarrow 6$ $3^5 \rightarrow (x^2+x)(x+1) \rightarrow x^2+x+1 \rightarrow 7$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) primitive polynomial: x^3+x^2+1
- What about the exponents?

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 5 & 4^2 \\ 1 & 5 & 2 & 4^3 \\ 1 & 7 & 6 & 4^4 \\ 1 & 3 & 7 & 4^5 \end{pmatrix} \qquad \begin{array}{lllll} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\$$

Mapping to polynomial
$$3^{2} \rightarrow (x+1)^{2} \rightarrow x^{2}+1 \qquad \rightarrow 5$$

$$3^{3} \rightarrow (x^{2}+1)(x+1) \rightarrow x \qquad \rightarrow 2$$

$$3^{4} \rightarrow x(x+1) \rightarrow (x^{2}+x) \qquad \rightarrow 6$$

$$3^{5} \rightarrow (x^{2}+x)(x+1) \rightarrow x^{2}+x+1 \qquad \rightarrow 7$$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) primitive polynomial: x^3+x^2+1
- What about the exponents?

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 5 & 4^2 \\ 1 & 5 & 2 & 4^3 \\ 1 & 7 & 6 & 4^4 \\ 1 & 3 & 7 & 4^5 \end{pmatrix} \qquad \begin{array}{c} \text{Mapping to polynomial} & \text{Mapping to polynomial} \\ 0 \to 0 & 4^2 \to x^4 \to x^2 + x + 1 \\ 4^3 \to x^2 (x^2 + x + 1) \to x^2 + x \\ 4^3 \to x^2 (x^2 + x + 1) \to x^2 + x \\ 4^4 \to x^2 (x^2 + x) \to x \\ 4^5 \to x^3 \to x^2 + 1 \\ 5 \to x^2 + x \\ 7 \to x^2 + x + 1 \\ \end{array}$$

Mapping to polynomial
$$4^2 \rightarrow x^4 \rightarrow x^2 + x + 1 \qquad \rightarrow 7$$
 $4^3 \rightarrow x^2(x^2 + x + 1) \rightarrow x^2 + x \qquad \rightarrow 6$ $4^4 \rightarrow x^2(x^2 + x) \rightarrow x \qquad \rightarrow 2$ $4^5 \rightarrow x^3 \rightarrow x^2 + 1 \qquad \rightarrow 5$

- Not systematic n = 6, k = 4
- Need GF(2³) (at least) primitive polynomial: x^3+x^2+1
- What about the exponents?

- Systematic different procedures starting with H
- Simple:
 - Transpose H
 - Perform Gaussian Elimination on $H^T \to H_{svs}^T = [I \mid R]$
 - Transpose again to reach H_{sys}

Systematic by design

$$X = \{x_1, x_2, x_3, \dots, x_k\}$$
 and $Y = \{y_1, y_2, y_3, \dots, y_{n-k}\}$, where $x_i \neq y_i \forall i, j$

Systematic by design

Example: k = 2, $n = 7 \rightarrow X = \{1, 2\}$ and $Y = \{0, 3, 4, 5, 6\}$

• n = 6, k = 4 and $X = \{1, 2, 3, 4\}$ and $Y = \{0, 5\}$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2^{-1} & 3^{-1} & 4^{-1} \\ 4^{-1} & 7^{-1} & 6^{-1} & 1 \end{pmatrix}$$

Find inverses How?

• n = 6, k = 4 and $X = \{1, 2, 3, 4\}$ and $Y = \{0, 5\}$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2^{-1} & 3^{-1} & 4^{-1} \\ 4^{-1} & 7^{-1} & 6^{-1} & 1 \end{pmatrix}$$

Tables or Computation

$$2.2^{-1} = 1$$
?
 $2.6 = x (x^2 + x) \rightarrow 1$
Thus, $2^{-1} = 6$

• n = 6, k = 4 but with $X = \{1, 3, 4, 5\}$ and $Y = \{0, 2\}$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 3^{-1} & 4^{-1} & 5^{-1} \\ 3^{-1} & 1 & 6^{-1} & 7^{-1} \end{pmatrix}$$

Large number of Cauchy
Alternatives - not all built equally

Distributed Storage: Reliability Beyond a Single Server

Distributed storage systems

- Numerous disk failures per day.
- Failures are the norm rather than the exception
- Must introduce redundancy for reliability
- Replication or erasure coding?
 - Current question in Hadoop HDFS, OpenStack Swift,
 Ceph, ...

State of the Art

Overhead: 200%

State of the Art

One failure results in one traffic unit

10:4 Code (Facebook)

P1 P2 P3 P4

Overhead: 40%

10:4 Code (Facebook)

Overhead: 40%

One failure results in 10 traffic units

Is repair frequent?

20 node failures * 15TB = 300TB if 8% RS coded, 588TB network traffic/day. (average total network: 2PB/day) ~30% of network traffic is repair in a normal day