Метод опорных векторов

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Линейно разделимый случай
- 2 Линейно неразделимый случай
- ③ Оптимизация напоминание
- 4 Решение через двойственную задачу
- 5 Визуализация работы SVM с ядрами

Метод опорных векторов

Рассмотрим бинарную классификацию $y \in \{+1, -1\}$ линейно разделимой выборки.

Идея метода опорных векторов (support vector machines, SVM)

Выберем гиперплоскость, разделяющую классы с максимальным зазором.

Гиперплоскости
$$x_i^T w + w_0 = 0$$
, $x_i^T w + w_0 = b$, $x_i^T w + w_0 = -b$ поэтому величина зазора $\frac{2b}{\|w\|}$.

Метод опорных векторов

Объекты (x_i,y_i) отделены от разделяющей гиперплоскости $\geq \frac{b}{\|w\|}$, если

$$\begin{cases} x_i^T w + w_0 \ge b, & y_i = +1 \\ x_i^T w + w_0 \le -b & y_i = -1 \end{cases} \quad i = 1, 2, ...N.$$

Это можно записать в виде

$$y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N.$$

Максимизация зазора между классами:

$$2b/\|w\| \to \max_{w,w_0,b}$$

Оптимизационная задача

Оптимизационная задача:

$$\begin{cases} \frac{2b}{\|w\|} \to \max_{w,w_0,b} \\ y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N. \end{cases}$$

Если (w,w_0,b) -решение, то $(\alpha w,\alpha w_0,\alpha b)$ - тоже решение $\forall \alpha>0$. Положим b=1 $(\alpha=\frac{1}{b})$.

$$\begin{cases} \frac{2}{\|w\|} \to \max_{w,w_0} \\ y_i(x_i^T w + w_0) \ge 1 \quad i = 1, 2, ...N. \end{cases}$$

Используя свойство arg max $\frac{2}{\|w\|}=$ arg min $\frac{\|w\|}{2}=$ arg min $\frac{\|w\|^2}{2}:$

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w, w_0} \\ y_i(x_i^T w + w_0) = M(x_i, y_i) \ge 1, & i = 1, 2, ... N. \end{cases}$$

Типы объектов

Неинформативные объекты: $y_i(x_i^T w + w_0) > 1$

• не влияют на решение

Опорные вектора: $y_i(x_i^T w + w_0) = 1$

- лежат на расстоянии $1/\left\|w\right\|$ к разделяющей гиперплоскости
- влияют на решение

Содержание

- Линейно разделимый случай
- 2 Линейно неразделимый случай
- 3 Оптимизация напоминание
- 4 Решение через двойственную задачу
- 5 Визуализация работы SVM с ядрами

Линейно неразделимый случай

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w, w_0} \\ y_i(x_i^T w + w_0) = M(x_i, y_i) \ge 1, & i = 1, 2, ...N. \end{cases}$$

Ограничения становятся несовместными=>пустое множество решений.

Линейно неразделимый случай

Разрешим частичные нарушения ограничений на величины нарушений ξ_i (slack variables):

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w, w_0, \xi} \\ y_i (w^T x_i + w_0) = M(x_i, y_i) \ge 1 - \xi_i, \ i = 1, 2, ... N \\ \xi_i \ge 0, \ i = 1, 2, ... N \end{cases}$$

- Штраф за нарушение С контролирует точность модели (в противовес простоте).
- Подбирается по сетке на валидации.
- Другие штрафы возможны, например $C \sum_{i} \xi_{i}^{2}$.

Типы объектов

- Неинформативные объекты:
 - $y_i(w^Tx_i + w_0) > 1$
- Опорные вектора SV:
 - $y_i(w^Tx_i + w_0) \leq 1$
 - пограничные \widetilde{SV} :
 - $y_i(w^Tx_i + w_0) = 1$
 - объекты-нарушители:
 - $y_i(w^Tx_i + w_0) > 0$: нарушитель корректно классифицирован
 - $y_i(w^Tx_i + w_0) < 0$: нарушитель некорректно классифицирован

Безусловная оптимизация

Оптимизационная задача:

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w,w_0,\xi} \\ y_i (w^T x_i + w_0) = M_i (w, w_0) \ge 1 - \xi_i, \\ \xi_i \ge 0, \ i = 1, 2, ... N \end{cases}$$

может быть переписана как

$$\frac{1}{2C} \|w\|_2^2 + \sum_{i=1}^N [1 - M_i(w, w_0)]_+ \to \min_{w, w_0}$$

Таким образом, метод - линейный классификатор с функцией потерь $\mathcal{L}(M)=[1-M]_+$ и L_2 регуляризацией (обобщается на другие).

Разреженность решения

- Решение зависит только от опорных векторов.
- Это видно из условия $\mathcal{L}(M) = 0$ для $M \ge 1$.
 - хорошо классифицированные объекты с $M \! \geq \! 1$ не влияют на решение
- Разреженность решения метод менее устойчив к выбросам
 - выбросы всегда опорные объекты

Многоклассовый метод опорных векторов

С дискриминантных ф-ций строятся одновременно:

$$g_c(x) = (\mathbf{w}^c)^T x + w_0^c, \qquad c = \overline{1, C}.$$

Линейно разделимый случай:

$$\begin{cases} \sum_{c=1}^{C} (\mathbf{w}^c)^T \mathbf{w}^c \to \min_{\mathbf{w}} \\ (\mathbf{w}^{y_n})^T x_n + w_0^{y_n} - (\mathbf{w}^c)^T x - w_0^c \ge 1 \quad \forall c \ne y_n, \\ n = \overline{1, N}. \end{cases}$$

Линейно неразделимый случай:

$$\begin{cases} \sum_{c=1}^{C} (\mathbf{w}^c)^T \mathbf{w}^c + C \sum_{n=1}^{N} \xi_n \to \min_w \\ (\mathbf{w}^{y_n})^T x + w_0^{y_n} - (\mathbf{w}^c)^T x - w_0^c \ge 1 - \xi_n & \forall c \ne y_n, \\ \xi_n \ge 0, \quad n = \overline{1, N}. \end{cases}$$

Настраивается медленнее, по точности сравним с бинарным обобщением через один-против-всех и один-против-одного.

Содержание

- 1 Линейно разделимый случай
- 2 Линейно неразделимый случай
- ③ Оптимизация напоминание
- 4 Решение через двойственную задачу
- 5 Визуализация работы SVM с ядрами

Условия Каруша-Куна-Таккера

Рассмотрим оптимизационную задачу:

$$\begin{cases} f(x) \to \min_{x} \\ g_{m}(x) \le 0 & m = \overline{1, M} \end{cases}$$
 (1)

Необходимые условия оптимальности

Определим Лагранжиан

$$L(x,\lambda) = f(x) + \sum_{m=1}^{M} \lambda_m g_m(x)$$

Теорема (необходимые условия оптимальности):

- Пусть x* решение (1),
- $f(x^*)$ и $g_m(x^*)$, m = 1, 2, ...M непрерывно-дифференцируемы в x^* .
- Выполнены условия регулярности Слейтера: $\exists x: g_m(x) < 0 \, \forall m.$

Тогда $\exists \lambda_1^*, \lambda_2^*, ... \lambda_M^*$, что x^* удовлетворяет условию:

$$\left\{\begin{array}{ll} \nabla_x f(x^*) + \sum_{i=1}^M \lambda_i^* \nabla_x g_i(x^*) = 0 & \text{стационарность} \\ g_m(x^*) \leq 0, \ m = \overline{1, M} & \text{достижимость} \\ \lambda_m^* \geq 0, \ m = \overline{1, M} & \text{неотрицательность} \\ \lambda_m^* g_m(x^*) = 0, \ m = \overline{1, M} & \text{дополняющая нежесткость} \end{array}\right.$$

Условия Каруша-Куна-Таккера (ККТ)

Предположим f(x) и $g_m(x), m = \overline{1,M}$ выпуклы. Тогда

- Условия Каруша-Куна-Таккера (2) становятся **достаточными**, чтобы x^* было решением (1).
- **2** (x^*, λ^*) являются седловой точкой Лагранжиана:

$$L(x^*, \lambda) \le L(x^*, \lambda^*) \le L(x, \lambda^*) \quad \forall x \, \forall \lambda \in \mathbb{R}_+^M$$

Седловая точка

Двойственная задача

Из условия $\nabla_x L(x^*,\lambda^*)=0$ можем найти $x^*=x(\lambda^*)$. Поскольку (x^*,λ^*) - седловая точка $L(x,\lambda)$ можем найти λ^* из двойственной задачи:

$$\begin{cases} L(x(\lambda), \lambda) \to \max_{\lambda} \\ g_m(x(\lambda)) \le 0 & m = \overline{1, M} \\ \lambda_m \ge 0 & m = \overline{1, M} \\ \lambda_m g_m(x(\lambda)) = 0 & m = \overline{1, M} \end{cases}$$

В целом, выпуклость f(x) и $g_m(x)$, $m=\overline{1,M}$ обеспечивает:

- все локальные минимумы являются глобальными
- множество минимумов выпукло
- \bullet если f(x) строго выпукла и минимум существует, то он единственный.

Содержание

- Линейно разделимый случай
- 2 Линейно неразделимый случай
- ③ Оптимизация напоминание
- 4 Решение через двойственную задачу
- 5 Визуализация работы SVM с ядрами

Линейно неразделимый случай

$$\begin{cases} \frac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i \to \min_{w,w_0,\xi} \\ y_i(w^Tx_i + w_0) = M(x_i, y_i) \ge 1 - \xi_i, \ i = 1, 2, ...N \\ \xi_i \ge 0, \ i = 1, 2, ...N \end{cases}$$

Лагранжиан:

$$L = \frac{1}{2} w^{T} w + C \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} (y_{i} (w^{T} x_{i} + w_{0}) - 1 + \xi_{i}) - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

Условия ККТ:

$$\begin{cases} \frac{\partial L_P}{\partial w} = \overrightarrow{0}, \ \frac{\partial L_P}{\partial w_0} = 0, \ \frac{\partial L_P}{\partial \xi_i} = 0 & \text{стационарность} \\ y_i(x_i^T w + w_0) \geq 1 - \xi_i, \ \xi_i \geq 0 & \text{достижимость} \\ \alpha_i \geq 0, \ \beta_i \geq 0 & \text{двойственные переменные} \geq 0 \\ \alpha_i(y_i(w^T x_i + w_0) - 1 + \xi_i) = 0 & \text{дополняющая нежесткость} \\ \beta_i \xi_i = 0, \quad i = 1, 2, ... N \end{cases}$$

Решение условий ККТ

$$\frac{\partial L}{\partial w} = \overrightarrow{0} : w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial w_0} = 0 : \sum_{i=1}^{N} \alpha_i y_i = 0$$
(3)

$$\frac{\partial L}{\partial \xi_i} = 0: C - \alpha_i - \beta_i = 0 \tag{4}$$

Подставляя эти ограничения в L, получим двойственную задачу 1 :

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j x_i^T x_j \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \quad \text{(используя (4) и } \alpha_i \ge 0, \ r_i \ge 0) \end{cases}$$
 (5)

 $^{^{1}}$ Седловая точка лагранжиана, min для w, w_0, ξ_i и max для $lpha_i, eta_i$

Определение типа объектов

- неинформативные объекты: $y_i(w^Tx_i + w_0) > 1 <=> \xi_i = 0$, $y_i(w^Tx_i + w_0) 1 + \xi_i > 0 => \alpha_i = 0$ опорные вектора SV будут имет $\alpha_i > 0$.
- опорные объекты нарушители $SV \setminus \tilde{SV}$: $y_i(w^Tx_i + w_0) < 1 <=> \xi_i > 0 => \beta_i = 0 <=> \alpha_i = C$.
- опорные пограничные объекты $\widetilde{\mathcal{SV}}$: $y_i(w^Tx_i + w_0) = 1$ =>
 - $\xi_i = 0 => \beta_i > 0 => \alpha_i < C$ в общем случае
 - $y_i(w^Tx_i + w_0) 1 + \xi_i = 0 => \alpha_i > 0$ в общем случае

В общем случае $\alpha_i \in (0, C)$, $(\alpha_i = 0, C$ - частный случай).

Решение

- **1** Решим (5), чтобы найти α_i^*
- ② Используя (3) и условие $\alpha_i^* = 0$ для неинформативный объектов, получим оптимальную w

$$w = \sum_{i \in \mathcal{SV}} \alpha_i^* y_i x_i$$

$$y_i(x_i^T w + w_0) = 1, \forall i \in \widetilde{SV}$$
 (6)

Решение для w_0

Домножая (6) на y_i , получим

$$x_i^T w + w_0 = y_i \quad \forall i \in \widetilde{\mathcal{SV}}$$
 (7)

Вычислительно более устойчивое решение: просуммируем 7 по всем $i \in \widetilde{\mathcal{SV}}$:

$$n_{\tilde{SV}}w_0 = \sum_{j \in \tilde{SV}} \left(y_j - x_j^T w \right) = \sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} x_j^T w,$$

$$w_0 = \frac{1}{\left|\tilde{SV}\right|} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \underbrace{\sum_{i \in \mathcal{SV}} \alpha_i^* y_i x_i^T}_{w^* i \in \mathcal{SV}} x_j \right)$$

Если нет пограничных объектов, можно найти w_0 одномерной оптимизацией.

Построение прогнозов

lacktriangle Решаем двойственную задачу, что найти $lpha_i^*, \, i = 1, 2, ... N$

$$\begin{cases} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C \quad \text{(используя (4) и } \alpha_i \geq 0, \ r_i \geq 0) \end{cases}$$

Находим w₀:

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle x_i, x_j \rangle \right)$$

3 Строим прогноз для нового x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

Построение прогнозов

① Решаем двойственную задачу, что найти $\alpha_i^*, i = 1, 2, ...N$

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C \quad \text{(используя (4) и } \alpha_i \geq 0, \ r_i \geq 0) \end{cases}$$

Находим w₀:

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{i \in \tilde{SV}} y_i - \sum_{i \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x}_j \rangle \right)$$

3 Строим прогноз для нового x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

• На всех этапах нам нужно знать не x, а скалярные произведения $\langle x, x' \rangle$!

Обобщение через ядра

1 Решаем двойственную задачу, что найти $\alpha_i^*, i = 1, 2, ...N$

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \mathsf{K}(\mathbf{x}_i, \mathbf{x}_j) \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \quad \text{(используя (4) и } \alpha_i \ge 0, \ r_i \ge 0) \end{cases}$$

Находим w₀:

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x_j) \right)$$

3 Строим прогноз для нового x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i K(x_i, x) + w_0]$$

• Заменили $\langle x, x' \rangle \to K(x, x')$ для $K(x, x') = \langle \phi(x), \phi(x') \rangle$ с некоторым преобразованием признаков $\phi(\cdot)$.

Обобщение

Ядерно-обобщенный метод x:

$$\widehat{y}(x) = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x) + w_0]$$

$$K(x,z) = \langle \phi(x), \phi(z) \rangle$$
 - ядро Мерсера.

Ядро	K(x,z)
линейное	$\langle x,z \rangle$
полиномиальное	$(a\langle x,z\rangle +b)^d$, $a>0$, $b\geq 0$, $d=1,2,$
RBF (Гауссово)	$e^{-\gamma \ x-z\ ^2}, \ \gamma > 0$

Содержание

- Линейно разделимый случай
- 2 Линейно неразделимый случай
- Оптимизация напоминание
- 4 Решение через двойственную задачу
- 5 Визуализация работы SVM с ядрами
 - SVM линейное ядро
 - SVM полиномиальное ядро
 - SVM Гауссово ядро

- 5 Визуализация работы SVM с ядрами
 - SVM линейное ядро
 - SVM полиномиальное ядро
 - SVM Гауссово ядро

Параметр C

Условная оптимизация:

$$\begin{cases} \frac{1}{2}w^Tw + C\sum_{i=1}^{N} \xi_i \to \min_{w,w_0,\xi} \\ y_i(w^Tx_i + w_0) = M(x_i, y_i) \ge 1 - \xi_i, \ i = 1, 2, ...N \\ \xi_i \ge 0, \ i = 1, 2, ...N \end{cases}$$

Безусловная оптимизация:

$$\frac{1}{2C} \|w\|_2^2 + \sum_{i=1}^N [1 - M_i(w, w_0)]_+ \to \min_{w, w_0}$$

Параметр C контролирует противоречие: простота \leftrightarrow точность.

SVM - линейное ядро

SVM - линейное ядро

SVM - линейное ядро

Визуализация работы SVM с ядрами

SVM - линейное ядро

- 5 Визуализация работы SVM с ядрами
 - SVM линейное ядро
 - SVM полиномиальное ядро
 - SVM Гауссово ядро

Полиномиальное ядро

Полиномиальное ядро:

$$K(x,z) = (a\langle x,z\rangle + b)^{d}, \ a > 0, \ b \ge 0, \ d = 1,2,...$$

Прогноз

$$\widehat{y}(x) = \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x) + w_0\right) =$$

$$= \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i \left(a\langle x, x_i \rangle + b\right)^d + w_0\right)$$

Граница между классами - полиномиальная поверхность порядка d.

SVM - полиномиальное ядро

SVM - полиномиальное ядро

SVM - полиномиальное ядро

- 5 Визуализация работы SVM с ядрами
 - SVM линейное ядро
 - SVM полиномиальное ядро
 - SVM Гауссово ядро

Гауссово ядро

Гауссово ядро:

$$K(x,z) = e^{-\gamma ||x-z||^2}, \ \gamma > 0$$

Прогноз

$$\widehat{y}(x) = \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x) + w_0\right)$$
$$= \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i e^{-\gamma \|x - x_i\|^2} + w_0\right)$$

Классификация на основе близости x к опорным объектам в весами α_i^* (их важность).

SVM - Гауссово ядро

Визуализация работы SVM с ядрами

SVM - Гауссово ядро

SVM - Гауссово ядро

SVM - Гауссово ядро

Заключение

- Метод опорных векторов линейный классификатор с L_2 регуляризацией и функцией потерь hinge.
- Геометрически метод максимизирует зазор между классами.
- Решение зависит только от опорных векторов с $M \le 1$.
- Решение через двойственную задачу зависит не от x, а от $\langle x_i, x_j \rangle$
 - ullet допускает обобщение $\langle x_i, x_j
 angle \longrightarrow \mathcal{K}(x_i, x_j) = \langle \phi(x_i), \phi(x_j)
 angle$
 - линейное ядро без обобщения
 - полиномиальное ядро полиномиальная граница
 - Гауссово ядро метрический метод