【2019 年青浦一模 20 题】

- 20. (1) 已知双曲线的中心在原点,焦点在x轴上,实轴长为 4,渐近线方程为 $y = \pm \sqrt{3}x$,求双曲线的标准方程;
- (2)过(1)中双曲线上一点P的直线分别交两条渐近线于 $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 两点,且P是线段AB的中点,求证: $x_1 \cdot x_2$ 为常数;
- (3) 我们知道函数 $y = \frac{1}{x}$ 图像是由双曲线 $x^2 y^2 = 1$ 的图像逆时针旋转 45° 得到的,函数

$$y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{2}$$
 图像也是双曲线,请尝试写出双曲线 $y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{2}$ 的性质(不必证明).

【2019年浦东一模20题】

20. 已知双曲线 $\Gamma: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点分别是 F_1 、 F_2 ,左、右两顶点分别是 A_1 、 A_2 ,弦 AB 和 CD 所在直线分别平行于 x 轴与 y 轴,线段 BA 的延长线与线段 CD 相交于点P(如图).

- (1) 若 \vec{d} = (2, $\sqrt{3}$) 是 Γ 的一条渐近线的一个方向向量,试求 Γ 的两渐近线的夹角 θ ;
- (2) 若|PA|=1, |PB|=5 , |PC|=2, |PD|=4, 试求双曲线 Γ 的方程;
- (3)在(1)的条件下,且 $|A_1A_2|$ =4,点C与双曲线的顶点不重合,直线 CA_1 和直线 CA_2 与直线l:x=1分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.

【2019年金山一模20题】

- 20. 已知椭圆C以坐标原点为中心,焦点在y轴上,焦距为2,且经过点(1,0).
- (1) 求椭圆C的方程;
- (2) 设点 A(a,0), 点 P 为曲线 C 上任一点, 求点 A 到点 P 距离的最大值 d(a);
- (3)在(2)的条件下,当0 < a < 1时,设 $\square QOA$ 的面积为 S_1 (O 是坐标原点,Q 是曲线 C 上横坐标为a 的点),以d(a) 为边长的正方形的面积为 S_2 ,若正数m满足 $S_1 \le mS_2$,问m是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

【2019年奉贤一模20题】

- 20. 已知抛物线 $y = x^2$ 上的 A、B 两点满足 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 2$,点 A、B 在抛物线对称轴的左右两侧,且 A 的横坐标小于零,抛物线顶点为 O ,焦点为 F .
- (1) 当点B的横坐标为2,求点A的坐标;
- (2) 抛物线上是否存在点M, 使得 $|MF| = \lambda |MO|$ ($\lambda > 0$), 若请说明理由;
- (3) 设焦点 F 关于直线 OB 的对称点是 C ,求当四边形 OABC 面积最小值时点 B 的坐标.

【2019年黄浦一模 20 题】

- 20. 已知椭圆 $\Gamma: \frac{x^2}{9} + \frac{y^2}{4} = 1$.
 - (1) 若抛物线C的焦点与 Γ 的焦点重合,求C的标准方程;
 - (2) 若 Γ 的上顶点A、右焦点F及x轴上一点M构成直角三角形,求点M的坐标;
- (3) 若O为 Γ 的中心,P为 Γ 上一点(非 Γ 的顶点),过 Γ 的左顶点B,作BQ // OP,

BQ 交 y 轴于点 Q , 交 Γ 于点 N , 求证: $\overrightarrow{BN} \cdot \overrightarrow{BQ} = 2\overrightarrow{OP}^2$.