

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento 4 — Exame Final 8 de janeiro de 2020

Duração: 2h30min

[35pts]

- 1. Seja f a função real de variável real tal que $f(x) = \text{arctg}(e^x + 1)$.
 - (a) Determine o domínio e o contradomínio de f.
 - (b) Calcule, caso exista, $\lim_{x \to -\infty} \frac{f(x) \frac{\pi}{4}}{e^x}$.
 - (c) Justifique que f é invertível e caracterize a sua inversa, indicando o seu domínio e expressão analítica.

[30pts]

- 2. Seja $F:]-\frac{\pi}{3}, \frac{\pi}{3}[\to \mathbb{R} \text{ tal que } F(x) = \int_0^{\sin x} \frac{e^t}{t^2-1} dt.$
 - (a) Mostre que F é diferenciável e verifique que $F'(x) = -\sec(x)e^{\sin(x)}, x \in]-\frac{\pi}{3}, \frac{\pi}{3}[.$
 - (b) Estude a monotonia e a existência de extremos globais de F .

[15pts]

3. Calcule $\int_0^1 xe^x dx$.

[18pts]

- 4. Considere a região plana $\mathcal{R} = \left\{ (x,y) \in \mathbb{R}^2 \colon x \leq 4 \land y \geq 0 \land y \leq x \land y \leq \frac{1}{\sqrt{x}} \right\}$.
 - (a) Faça um esboço gráfico da região \mathcal{R} .
 - (b) Calcule a área de \mathcal{R} .

[20pts]

5. Usando a mudança de variável $x = \sec t, t \in [0, \frac{\pi}{2}[$, determine $\int \frac{\sqrt{x^2 - 1}}{x} dx$.

[17pts]

- 6. Estude a natureza do integral impróprio $\int_{1}^{+\infty} \frac{1}{(1+x^2) \arctan x} dx$, indicando o seu valor em caso de convergência.
- [15pts]
- 7. Verifique se a seguinte série é convergente e, em caso afirmativo, determine a sua soma:

$$\sum_{n=1}^{+\infty} \left(\sqrt{\frac{n-1}{n}} - \sqrt{\frac{n}{n+1}} \right) .$$

[20pts]

8. Estude a natureza da série $\sum_{i=1}^{+\infty} \frac{(-1)^n}{1+\sqrt{n}}$. Em caso de convergência, diga se a série converge absoluta-

[15pts]

9. Sabendo que a série $\sum_{n=1}^{+\infty} a_n$ é convergente analise a natureza da série $\sum_{n=1}^{+\infty} (a_n)^n$.

[15pts]

10. Sejam $a, b \in \mathbb{R}$, com a < b, e g uma função diferenciável em \mathbb{R} tal que

$$g(a) + 2 < 0 < g(b) - 1$$

$$g(a) + 2 < 0 < g(b) - 1$$
 e $g'(x) = 0 \Leftrightarrow x = a \lor x = b$.

Diga, justificando, quantos zeros tem a função g no intervalo [a, b].