David Nieto-Barba davidphbarba@outlook.com

Ignacio Montes

Enrique Miranda mirandaenrique@uniovi.es

Imprecise total variation

20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems

Motivation

Preliminaries

Given $P_0 \in \mathbb{P}(\mathcal{X}), \ \delta > 0$, $d: \mathbb{P}(\mathcal{X}) \times \mathbb{P}(\mathcal{X}) \to [0, \infty),$ d convex and continuous $\Rightarrow B_d^{\delta}(P_0) = \mathcal{M}(\underline{P})$

Imprecise total variation

Given $P, \delta > 0$,

Preliminaries

Motivation

Given
$$P_0 \in \mathbb{P}(\mathcal{X})$$
, $\delta > 0$, $d: \mathbb{P}(\mathcal{X}) \times \mathbb{P}(\mathcal{X}) \to [0, \infty)$, d convex and continuous $\Rightarrow B_d^{\delta}(P_0) = \mathcal{M}(\underline{P})$

Imprecise total variation

Given $P, \delta > 0$,

2 Distortion of imprecise models

3 Imprecise total variation

4 Conclusions

Preliminaries

•000

- ② Distortion of imprecise models
- 3 Imprecise total variation
- 4 Conclusions

• Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a possibility space.

- Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a possibility space.
- A function $P: \mathcal{P}(\mathcal{X}) \to [0,1]$ is called a *lower probability* whenever:

$$\underline{P}(\emptyset) = 0, \quad \underline{P}(\mathcal{X}) = 1 \quad \text{and} \quad A \subseteq B \Rightarrow \underline{P}(A) \leq \underline{P}(B).$$

- Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a possibility space.
- A function $\underline{P}: \mathcal{P}(\mathcal{X}) \to [0,1]$ is called a *lower probability* whenever:

$$\underline{P}(\emptyset) = 0, \quad \underline{P}(\mathcal{X}) = 1 \quad \text{and} \quad A \subseteq B \Rightarrow \underline{P}(A) \leq \underline{P}(B).$$

Also know as (normalised) capacity, monotone game or fuzzy measure.

- Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a possibility space.
- A function $\underline{P}: \mathcal{P}(\mathcal{X}) \to [0,1]$ is called a *lower probability* whenever:

$$\underline{P}(\emptyset) = 0, \quad \underline{P}(\mathcal{X}) = 1 \quad \text{and} \quad A \subseteq B \Rightarrow \underline{P}(A) \leq \underline{P}(B).$$

Also know as (normalised) capacity, monotone game or fuzzy measure.

• It has an associated credal set:

$$\mathcal{M}(\underline{P}) = \{ P \in \mathbb{P}(\mathcal{X}) : P(A) \ge \underline{P}(A), \ \forall A \subseteq \mathcal{X} \}.$$

- Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a possibility space.
- A function $\underline{P}: \mathcal{P}(\mathcal{X}) \to [0,1]$ is called a *lower probability* whenever:

$$\underline{P}(\emptyset) = 0$$
, $\underline{P}(\mathcal{X}) = 1$ and $A \subseteq B \Rightarrow \underline{P}(A) \leq \underline{P}(B)$.

Also know as (normalised) capacity, monotone game or fuzzy measure.

• It has an associated credal set:

$$\mathcal{M}(\underline{P}) = \{ P \in \mathbb{P}(\mathcal{X}) : P(A) \ge \underline{P}(A), \ \forall A \subseteq \mathcal{X} \}.$$

• A lower probability is said to be *coherent* if:

$$\underline{P}(A) = \min\{P(A): P \in \mathcal{M}(\underline{P})\}, \forall A \subseteq \mathcal{X}.$$

Imprecise total variation

Preliminaries: lower probabilities

Some particular properties that a coherent lower probability may satisfy are:

1 2-monotonicity. For every $A, B \subseteq \mathcal{X}$:

$$\underline{P}(A \cup B) + \underline{P}(A \cap B) \ge \underline{P}(A) + \underline{P}(B).$$

Some particular properties that a coherent lower probability may satisfy are:

1 2-monotonicity. For every $A, B \subseteq \mathcal{X}$:

Distortion of imprecise models

$$\underline{P}(A \cup B) + \underline{P}(A \cap B) \ge \underline{P}(A) + \underline{P}(B).$$

\textcircled{h} k-monotonicity. For every $A_1, \ldots, A_p \subseteq \mathcal{X}$ and $1 \leq p \leq k$:

$$\underline{P}\left(\bigcup_{i=1}^p A_i\right) \geq \sum_{I \subset \{1,\dots p\}} (-1)^{|I|+1} \underline{P}\left(\bigcap_{i \in I} A_i\right).$$

Some particular properties that a coherent lower probability may satisfy are:

1 2-monotonicity. For every $A, B \subseteq \mathcal{X}$:

$$\underline{P}(A \cup B) + \underline{P}(A \cap B) \ge \underline{P}(A) + \underline{P}(B).$$

\textcircled{\textbf{m}} k-monotonicity. For every $A_1, \ldots, A_p \subseteq \mathcal{X}$ and $1 \leq p \leq k$:

$$\underline{P}\left(\bigcup_{i=1}^p A_i\right) \geq \sum_{I \subseteq \{1,\dots p\}} (-1)^{|I|+1} \underline{P}\left(\bigcap_{i \in I} A_i\right).$$

m *minitivity*. For every $A, B \subseteq \mathcal{X}$:

$$P(A \cap B) = \min\{P(A), P(B)\}.$$

• Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or **gambles**.

- Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or **gambles**.
- Any function $\underline{P}:\mathcal{L}(\mathcal{X})\to\mathbb{R}$ is called *lower prevision*.

- Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or **gambles**.
- Any function $P: \mathcal{L}(\mathcal{X}) \to \mathbb{R}$ is called *lower prevision*.
- It is said to be coherent if:

$$\underline{P}(f) = \min_{P \in \mathcal{M}(\underline{P})} E_P(f) \quad \forall f \in \mathcal{L}(\mathcal{X}),$$

where E_P denotes the expectation operator w.r.t. $P \in \mathbb{P}(\mathcal{X})$

- Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or **gambles**.
- Any function $\underline{P}:\mathcal{L}(\mathcal{X})\to\mathbb{R}$ is called *lower prevision*.
- It is said to be coherent if:

$$\underline{P}(f) = \min_{P \in \mathcal{M}(\underline{P})} E_P(f) \quad \forall f \in \mathcal{L}(\mathcal{X}),$$

where E_P denotes the expectation operator w.r.t. $P \in \mathbb{P}(\mathcal{X})$ and $\mathcal{M}(\underline{P}) := \{ P \in \mathbb{P}(\mathcal{X}) : E_P(f) \geq \underline{P}(f) \ \forall f \in \mathcal{L}(\mathcal{X}) \}.$

- Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or *gambles*.
- Any function $\underline{P}:\mathcal{L}(\mathcal{X})\to\mathbb{R}$ is called *lower prevision*.
- It is said to be coherent if:

$$\underline{P}(f) = \min_{P \in \mathcal{M}(\underline{P})} E_P(f) \quad \forall f \in \mathcal{L}(\mathcal{X}),$$

where E_P denotes the expectation operator w.r.t. $P \in \mathbb{P}(\mathcal{X})$ and $\mathcal{M}(\underline{P}) := \{P \in \mathbb{P}(\mathcal{X}) : E_P(f) \geq \underline{P}(f) \ \forall f \in \mathcal{L}(\mathcal{X})\}.$

• It is said to be 2-monotone if:

- Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or **gambles**.
- Any function $\underline{P}:\mathcal{L}(\mathcal{X})\to\mathbb{R}$ is called *lower prevision*.
- It is said to be coherent if:

$$\underline{P}(f) = \min_{P \in \mathcal{M}(\underline{P})} E_P(f) \quad \forall f \in \mathcal{L}(\mathcal{X}),$$

where E_P denotes the expectation operator w.r.t. $P \in \mathbb{P}(\mathcal{X})$ and $\mathcal{M}(\underline{P}) := \{ P \in \mathbb{P}(\mathcal{X}) : E_P(f) \geq \underline{P}(f) \ \forall f \in \mathcal{L}(\mathcal{X}) \}.$

• It is said to be 2-monotone if:

$$P(f \wedge g) + P(f \vee g) \ge P(f) + P(g).$$

• Let $\mathcal{L}(\mathcal{X})$ be the set of real-valued functionals on \mathcal{X} or **gambles**.

- Any function $\underline{P}:\mathcal{L}(\mathcal{X})\to\mathbb{R}$ is called *lower prevision*.

Distortion of imprecise models

• It is said to be coherent if:

$$\underline{P}(f) = \min_{P \in \mathcal{M}(\underline{P})} E_P(f) \quad \forall f \in \mathcal{L}(\mathcal{X}),$$

where E_P denotes the expectation operator w.r.t. $P \in \mathbb{P}(\mathcal{X})$ and $\mathcal{M}(\underline{P}) := \{P \in \mathbb{P}(\mathcal{X}) : E_P(f) \geq \underline{P}(f) \ \forall f \in \mathcal{L}(\mathcal{X})\}.$

• It is said to be 2-monotone if:

$$P(f \land g) + P(f \lor g) \ge P(f) + P(g).$$

In this case, lower probabilities \leftrightarrow lower previsions (Choquet integral).

2 Distortion of imprecise models

3 Imprecise total variation

4 Conclusions

Distortion procedures

	$P_0 \in \mathbb{P}(\mathcal{X})$	<u>P</u>
(a)	$ \begin{vmatrix} B_d^{\delta}(P_0) = \{Q \in \mathbb{P}(\mathcal{X}) : d(Q, P_0) \leq \delta\} \\ \text{lower} \downarrow \text{envelope} \\ \underline{Q}(A) = \inf\{P(A) : P \in B_d^{\delta}(P_0)\} \end{vmatrix} $	$igcup_{P\in\mathcal{M}(\underline{P})} B_d^\delta(P)$ lower \downarrow envelope $\underline{Q}(A)$

Distortion procedures

	$P_0 \in \mathbb{P}(\mathcal{X})$	<u>P</u>
(a)	$B_d^{\delta}(P_0) = \{Q \in \mathbb{P}(\mathcal{X}) : d(Q, P_0) \le \delta\}$ lower \downarrow envelope	$igcup_{P\in\mathcal{M}(\underline{P})} B_d^\delta(P)$ lower \downarrow envelope
	$\underline{Q}(A) = \inf\{P(A) : P \in B_d^{\delta}(P_0)\}\$	$\underline{Q}(A)$
	$f_\delta:[0,1]\! o\![0,1]$ increasing,	$f_{\delta}:[0,1]\! ightarrow\![0,1]$ increasing,
(L)	$f_{\delta}(0)=0, f_{\delta}(1)=1$	$f_{\delta}(0) = 0, f_{\delta}(1) = 1$
(b)	$\underline{Q}_{\delta}(A) := f_{\delta}(P_0(A))$	$\underline{Q}_{\delta}(A) := f_{\delta}(\underline{P}(A))$

1 Expansion. Given $\delta_1 > \delta_2 > 0$:

$$\underline{Q}_{\delta_1}(\underline{P}) \le \underline{Q}_{\delta_2}(\underline{P}).$$

1 Expansion. Given $\delta_1 > \delta_2 > 0$:

$$\underline{Q}_{\delta_1}(\underline{P}) \le \underline{Q}_{\delta_2}(\underline{P}).$$

f Aggregation. For any $\delta_1, \delta_2 > 0$:

$$\underline{Q}_{\delta_2+\delta_1}(\underline{P}) = \underline{Q}_{\delta_2}\big(\underline{Q}_{\delta_1}(\underline{P})\big).$$

1 Expansion. Given $\delta_1 > \delta_2 > 0$:

$$\underline{Q}_{\delta_1}(\underline{P}) \le \underline{Q}_{\delta_2}(\underline{P}).$$

f Aggregation. For any $\delta_1, \delta_2 > 0$:

$$\underline{Q}_{\delta_2+\delta_1}(\underline{P}) = \underline{Q}_{\delta_2}\big(\underline{Q}_{\delta_1}(\underline{P})\big).$$

6 Structure preservation. For every $\delta > 0$:

 \underline{P} coherent (resp. 2-monotone, k-monotone, minitive) \Rightarrow so is $Q_s(\underline{P})$.

Distortion of imprecise models

1 Expansion. Given $\delta_1 > \delta_2 > 0$:

$$\underline{Q}_{\delta_1}(\underline{P}) \leq \underline{Q}_{\delta_2}(\underline{P}).$$

f Aggregation. For any $\delta_1, \delta_2 > 0$:

$$\underline{Q}_{\delta_2+\delta_1}(\underline{P}) = \underline{Q}_{\delta_2}\big(\underline{Q}_{\delta_1}(\underline{P})\big).$$

- **6** Structure preservation. For every $\delta > 0$:
 - \underline{P} coherent (resp. 2-monotone, k-monotone, minitive) \Rightarrow so is $Q_s(\underline{P})$.
- **©** Commutativity. If P is coherent, then for any $\delta > 0$:

$$\mathcal{M}\big(\underline{Q}_{\delta}(\underline{P})\big) = \bigcup_{P \in \mathcal{M}(P)} \mathcal{M}\big(\underline{Q}_{\delta}(P)\big).$$

Distortion of imprecise models

Distortion of imprecise models

3 Imprecise total variation

4 Conclusions

Imprecise total variation

00000000

Total Variation distance

Definition (Total Variation distance)

$$d_{TV}: \mathbb{P}(\mathcal{X}) \times \mathbb{P}(\mathcal{X}) \to [0, \infty)$$
 given by:

$$d_{\mathrm{TV}}(P,Q) = \max_{A \subseteq \mathcal{X}} |P(A) - Q(A)| \quad \forall P, Q \in \mathbb{P}(\mathcal{X}).$$

Total Variation distance

Definition (Total Variation distance)

$$d_{TV}: \mathbb{P}(\mathcal{X}) \times \mathbb{P}(\mathcal{X}) \to [0, \infty)$$
 given by:

$$d_{\mathrm{TV}}(P,Q) = \max_{A \subset \mathcal{X}} |P(A) - Q(A)| \quad \forall P, Q \in \mathbb{P}(\mathcal{X}).$$

Proposition (Herron et al. '97)

The lower envelope of $B_{dow}^{\delta}(P)$ is given by:

$$Q_{D}(A) = \max\{P(A) - \delta, 0\} \quad \forall A \subset \mathcal{X}, \quad Q_{D}(\mathcal{X}) = 1.$$

Imprecise Total Variation (first approach)

Definition (Imprecise Total Variation)

Let \underline{P} be a coherent lower probability and $\delta > 0$. The imprecise total variation model induced by (P, δ) is the lower probability Q given by

$$Q(A) = \max \{\underline{P}(A) - \delta, 0\} \quad \forall A \subset \mathcal{X}, \quad Q(\mathcal{X}) = 1.$$
 (ITV1)

Imprecise Total Variation (first approach)

Definition (Imprecise Total Variation)

Let \underline{P} be a coherent lower probability and $\delta>0$. The imprecise total variation model induced by (\underline{P},δ) is the lower probability Q given by

$$\underline{Q}(A) = \max \left\{ \underline{P}(A) - \delta, 0 \right\} \quad \forall A \subset \mathcal{X}, \quad \underline{Q}(\mathcal{X}) = 1. \tag{ITV1}$$

This generalises the eponymous model for the precise case, and has also appeared as the *strong* δ -core in game theory (used to find a solution of a distorted game when $\mathcal{M}(P) = \emptyset$).

Proposition (Expansion and Aggregation)

The imprecise total variation (ITV1) satisfies expansion and aggregation.

Proposition (Expansion and Aggregation)

The imprecise total variation (ITV1) satisfies expansion and aggregation.

Proposition (Structure preservation)

Let P be a lower probability, $\delta > 0$ and let Q be the total variation model they induce. If P has any of the following properties:

- **1** avoiding sure loss (i.e. $\mathcal{M}(P) \neq \emptyset$),
- coherence.
- 2-monotonicity.
- minitivity,

so does Q.

Proposition (Expansion and Aggregation)

Distortion of imprecise models

The imprecise total variation (ITV1) satisfies expansion and aggregation.

Proposition (Structure preservation)

Let P be a lower probability, $\delta > 0$ and let Q be the total variation model they induce. If P has any of the following properties:

- **1** avoiding sure loss (i.e. $\mathcal{M}(P) \neq \emptyset$),
- coherence.
- 2-monotonicity.
- minitivity,

so does Q.

However, k-monotonicity is not preserved in general.

Imprecise Total Variation (second approach)

What about commutativity?

Imprecise total variation

Consider:

$$\underline{Q}'(A) = \min \left\{ Q(A) : Q \in \bigcup_{P \in \mathcal{M}(\underline{P})} \mathcal{M}(\underline{Q}_P) \right\}, \quad \forall A \subseteq \mathcal{X}.$$
 (ITV2)

Imprecise Total Variation (second approach)

What about commutativity?

Consider:

$$\underline{Q}'(A) = \min \left\{ Q(A) : Q \in \bigcup_{P \in \mathcal{M}(\underline{P})} \mathcal{M}(\underline{Q}_P) \right\}, \quad \forall A \subseteq \mathcal{X}. \quad (ITV2)$$

Proposition

Let \underline{P} be a coherent lower probability, $\delta>0$ and $\underline{Q},\underline{Q}'$ the lower probabilities induced by Eqs. (ITV1), (ITV2). Then Q'=Q.

Consider the premetric:

$$d_{\mathrm{TV}}^{\min}(\underline{P},\underline{Q}) = \min_{\substack{P \in \mathcal{M}(\underline{P}) \\ Q \in \mathcal{M}(Q)}} d_{\mathrm{TV}}(P,Q) = \min_{\substack{P \in \mathcal{M}(\underline{P}) \\ Q \in \mathcal{M}(Q)}} \max_{A \subseteq \mathcal{X}} |P(A) - Q(A)|.$$

Consider the premetric:

$$d_{\mathrm{TV}}^{\min}(\underline{P},\underline{Q}) = \min_{\substack{P \in \mathcal{M}(\underline{P}) \\ Q \in \mathcal{M}(\underline{Q})}} d_{\mathrm{TV}}(P,Q) = \min_{\substack{P \in \mathcal{M}(\underline{P}) \\ Q \in \mathcal{M}(\underline{Q})}} \max_{A \subseteq \mathcal{X}} |P(A) - Q(A)|.$$

Proposition

Let \underline{P} be a coherent lower probability and $\delta > 0$. The following set is closed and convex:

$$B_{d_{\text{min}}}^{\delta}(\underline{P}) = \{ Q \in \mathbb{P}(\mathcal{X}) : d_{\text{TV}}^{\min}(Q, \underline{P}) \le \delta \}.$$

Consider the premetric:

$$d_{\mathrm{TV}}^{\min}(\underline{P},\underline{Q}) = \min_{\substack{P \in \mathcal{M}(\underline{P}) \\ Q \in \mathcal{M}(\underline{Q})}} d_{\mathrm{TV}}(P,Q) = \min_{\substack{P \in \mathcal{M}(\underline{P}) \\ Q \in \mathcal{M}(\underline{Q})}} \max_{A \subseteq \mathcal{X}} |P(A) - Q(A)|.$$

Proposition

Let \underline{P} be a coherent lower probability and $\delta > 0$. The following set is closed and convex:

$$B_{d^{\min}}^{\delta}(\underline{P}) = \{ Q \in \mathbb{P}(\mathcal{X}) : d_{\mathrm{TV}}^{\min}(Q, \underline{P}) \le \delta \}.$$

It holds:

$$B_{d_{\mathrm{TV}}^{\min}}^{\delta}(\underline{P}) = \bigcup_{P \in \mathcal{M}(P)} \mathcal{M}(\underline{Q}_{P}).$$

Is
$$\mathcal{M}(\underline{Q})$$
 equal to $B_{d_{\mathrm{TV}}^{\min}}^{\delta}(\underline{P}) = \bigcup_{P \in \mathcal{M}(\underline{P})} \mathcal{M}(\underline{Q}_{P})$?

Imprecise total variation

00000000

Preliminaries

Preliminaries

Is
$$\mathcal{M}(\underline{Q})$$
 equal to $B_{d_{\mathrm{TV}}^{\min}}^{\delta}(\underline{P}) = \bigcup_{P \in \mathcal{M}(\underline{P})} \mathcal{M}(\underline{Q}_{P})$?

Example

A	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$	$\{x_6\}$
$P_1(A)$	0.2	0.061	0.061	0.19	0.199	0.289
$P_2(A)$	0.161	0.1	0.1	0.238	0.141	0.26
$P_3(A)$	0.239	0.099	0.12	0.161	0.17	0.211
$P_4(A)$	0.161	0.177	0.13	0.161	0.102	0.269
$P_5(A)$	0.22	0.041	0.109	0.21	0.199	0.221
$P_6(A)$	0.22	0.041	0.041	0.23	0.199	0.269
$P_7(A)$	0.178	0.16	0.111	0.161	0.1	0.29
$P_8(A)$	0.161	0.157	0.14	0.181	0.073	0.288
$P_9(A)$	0.19	0.073	0.078	0.21	0.15	0.299

Preliminaries

$A \mid$	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$	$\{x_6\}$
$P_{10}(A)$	0.161	0.158	0.159	0.161	0.112	0.249
$P_{11}(A)$	0.2	0.071	0.14	0.199	0.199	0.191
$P_{12}(A)$	0.161	0.177	0.138	0.161	0.073	0.29
$P_{13}(A)$	0.239	0.071	0.1	0.189	0.199	0.202
$P_{14}(A)$	0.22	0.041	0.081	0.238	0.199	0.221
$P_{15}(A)$	0.219	0.119	0.061	0.161	0.17	0.27
$P_{16}(A)$	0.218	0.043	0.062	0.238	0.168	0.271
$P_{17}(A)$	0.2	0.0705	0.1585	0.1805	0.199	0.1915

Example (Continuation)

A	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$	$\{x_6\}$
$P_{10}(A)$	0.161	0.158	0.159	0.161	0.112	0.249
$P_{11}(A)$	0.2	0.071	0.14	0.199	0.199	0.191
$P_{12}(A)$	0.161	0.177	0.138	0.161	0.073	0.29
$P_{13}(A)$	0.239	0.071	0.1	0.189	0.199	0.202
$P_{14}(A)$	0.22	0.041	0.081	0.238	0.199	0.221
$P_{15}(A)$	0.219	0.119	0.061	0.161	0.17	0.27
$P_{16}(A)$	0.218	0.043	0.062	0.238	0.168	0.271
$P_{17}(A)$	0.2	0.0705	0.1585	0.1805	0.199	0.1915

$$Q := (0.2, 0.05, 0.05, 0.201, 0.199, 0.3) \in \mathcal{M}(\underline{Q}) \setminus B_{d_{\mathrm{TV}}^{\min}}^{\delta}(\underline{P}),$$

where $P(A) = \min\{P_i(A) : i = 1, ..., 17\}$ for any $A \subseteq \mathcal{X}$, $\delta = 0.011$.

18 / 25

Let \underline{P} be a 2-monotone lower probability, $\delta > 0$ and let Q be the lower probability defined by (ITV1). Then, $\mathcal{M}(\underline{Q}) = B_{d_{\mathrm{TV}}^{\min}}^{\delta}(\underline{P}).$

Let \underline{P} be a 2-monotone lower probability, $\delta>0$ and let \underline{Q} be the lower probability defined by (ITV1). Then, $\mathcal{M}(\underline{Q})=B_{d_{\mathrm{TN}}}^{\delta}(\underline{P})$.

Proof.

Let $\mathcal{H} \subseteq \mathcal{L}(\mathcal{X})$ be the set of gambles that take values in [0,1].

Let P be a 2-monotone lower probability, $\delta > 0$ and let Q be the lower probability defined by (ITV1). Then, $\mathcal{M}(Q) = B_{d^{\min}}^{\delta}(\underline{P})$.

Proof.

Let $\mathcal{H} \subseteq \mathcal{L}(\mathcal{X})$ be the set of gambles that take values in [0,1]. Define, for a given $Q \in \mathbb{P}(\mathcal{X})$, $f_Q(P,g) := P(g) - Q(g)$ over $\mathcal{M}(\underline{P}) \times \mathcal{H}$.

Let \underline{P} be a 2-monotone lower probability, $\delta>0$ and let \underline{Q} be the lower probability defined by (ITV1). Then, $\mathcal{M}(\underline{Q})=B_{d\min}^{\delta}(\underline{P})$.

Proof.

Let $\mathcal{H}\subseteq\mathcal{L}(\mathcal{X})$ be the set of gambles that take values in [0,1]. Define, for a given $Q\in\mathbb{P}(\mathcal{X}),\ f_Q(P,g):=P(g)-Q(g)$ over $\mathcal{M}(\underline{P})\times\mathcal{H}.$

$$\max_{\mathcal{H}} \min_{\mathcal{M}(\underline{P})} f_Q(P,g) \leq \delta \Leftrightarrow Q \in \mathcal{M}(\underline{Q}) \quad \text{and} \quad \\ \min_{\mathcal{M}(P)} \max_{\mathcal{H}} f_Q(P,g) \leq \delta \Leftrightarrow Q \in B_{d_{\mathrm{TV}}^{\min}}^{\delta}(\underline{P}).$$

Let \underline{P} be a 2-monotone lower probability, $\delta>0$ and let \underline{Q} be the lower probability defined by (ITV1). Then, $\mathcal{M}(\underline{Q})=B_{d\min}^{\delta}(\underline{P})$.

Proof.

Let $\mathcal{H}\subseteq\mathcal{L}(\mathcal{X})$ be the set of gambles that take values in [0,1]. Define, for a given $Q\in\mathbb{P}(\mathcal{X})$, $f_Q(P,g):=P(g)-Q(g)$ over $\mathcal{M}(\underline{P})\times\mathcal{H}$.

$$\max_{\mathcal{H}} \min_{\mathcal{M}(\underline{P})} f_Q(P,g) \leq \delta \Leftrightarrow Q \in \mathcal{M}(\underline{Q}) \quad \text{and} \quad \\ \min_{\mathcal{M}(P)} \max_{\mathcal{H}} f_Q(P,g) \leq \delta \Leftrightarrow Q \in B^{\delta}_{d^{\min}_{\mathrm{TV}}}(\underline{P}).$$

Applying the min-max theorem,

$$\min_{\mathcal{M}(P)} \max_{\mathcal{H}} f_Q(P, g) = \max_{\mathcal{H}} \min_{\mathcal{M}(P)} f_Q(P, g). \quad \Box$$

- Preliminaries
- Distortion of imprecise models
- 3 Imprecise total variation
- 4 Conclusions

Synthesis

Properties	Imprecise TV
Expansion	✓
Aggregation	✓
Structure Preservation	

Properties	Imprecise TV	
Expansion	✓	
Aggregation	✓	
Structure Preservation (ASL, coherence, 2-monot., minitivity)	√	
Structure Preservation (k-monotonicity)	X	
Commutativity	\sim (\checkmark under 2-monot.)	

Imprecise total variation

The dashed line expresses the partial correspondence, in this case, under 2-monotonicity.

• Extensions of 'classical' distortion models to the imprecise setting.

- Extensions of 'classical' distortion models to the imprecise setting.
- ullet Analysis of other desirable properties (e.g. Destercke, Moral) such as invariance under permutations on ${\cal X}$ and under marginalization.

Future lines

- Extensions of 'classical' distortion models to the imprecise setting.
- Analysis of other desirable properties (e.g. Destercke, Moral) such as invariance under permutations on \mathcal{X} and under marginalization.
- Distortion of other IP models (e.g. Moral), and also through different premetrics (e.g. maximum instead of minimum).

Future lines

- Extensions of 'classical' distortion models to the imprecise setting.
- ullet Analysis of other desirable properties (e.g. Destercke, Moral) such as invariance under permutations on ${\cal X}$ and under marginalization.
- Distortion of other IP models (e.g. Moral), and also through different premetrics (e.g. maximum instead of minimum).
- Connections with game theory (e.g. weak δ -core, through a penalised version of d_{TV}).

References

- Herron, T., Seidenfeld, T., Wasserman, L.: Divisive conditioning: further results on dilation. Philosophy of Science 64, 411-444 (1997)
- Montes, I., Miranda, E., Destercke, S.: Unifying neighbourhood and distortion models: Part I- New results on old models. International Journal of General Systems **49**(6), 602–635 (2020)
- Moral, S.: Discounting imprecise probabilities. In: Gil, E., Gil, E., Gil, J., Gil, M. (eds.) The Mathematics of the Uncertain, Studies in Systems, Decision and Control, vol. 142. Springer (2018)
 - Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

Preliminaries

Imprecise total variation

Proyecto PID2022-140585NB-I00 financiado por MICIU/AEI/10.13039/501100011033 y por FEDER, UE