

Abstract Algebra

MATH1530

Professor Jordan Kostiuk

Brown University

EDITED BY
RICHARD TANG

Contents

1	\mathbf{Set}	Theory
	1.1	Sets
		1.1.1 The Well-Ordering Principle
	1.2	Functions
2		oups: Part I
	2.1	Motivation
		2.1.1 Permutations
	2.2	(Abstract) Groups
		2.2.1 Examples of Groups
		2.2.2. Cyclic Groups

Set Theory

Set theory forms a basis for all of higher mathematics. We begin with a brief introduction.

§1.1 Sets

Definition 1.1.1: Sets

A set is a (possibly empty) collection of elements. If S is a set and a is some object, then a is either an element of S or not. We write:

- $a \in S$ if a is an element of S.
- $a \notin S$ if a is not an element of S.

The empty set is denoted \varnothing . We use |S| or #S to denote the cardinality (number of elements) in a finite set.

Definition 1.1.2: Natural Numbers

The natural numbers are the set

$$\mathbb{N} = \{1, 2, \ldots\}.$$

Formally, we define \mathbb{N} as follows:

- 1. IN contains an initial element 1.
- 2. $\forall n \in \mathbb{N}$, there is an incremental rule that creates the next element n+1.
- 3. We can reach every element of $\mathbb N$ by starting with 1 and repeatedly adding 1.

Remark 1. \mathbb{N} is totally ordered. We say m is less than n if n appears before n when we start from 1 and add repeatedly. In this case we write m < n or $m \le n$ if m = n.

Example 1. Let

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

denote the set of integers, and

$$Q = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}.$$

the set of rationals.

Definition 1.1.3: Set Operations

Let S, T be sets.

1. S is a **subset** of T if every element of S is an element of T, i.e. $a \in S \rightarrow a \in T$. We write

$$S \subset T$$
.

2. The **union** of S and T is the set of elements that belong to S or belong to T, denoted

$$S \cup T = \{ a \mid a \in S \text{ or } a \in T \}.$$

3. The **intersection** of S and T is the set of elements that belong to both S and T, denoted

$$S\cap T=\{a\mid a\in S\text{ and }a\in T\}.$$

4. If $S \subset T$, the **complement** of S in T is the set of elements in T not in S:

$$S^c = T - S = T\S = \{a \in T \mid a \notin S\}.$$

5. The **product** of S and T is the set of ordered pairs

$$S \times T = \{(a, b) \mid a \in S, b \in T\}.$$

We have projection maps

$$proj_1: S \times T \longrightarrow S$$

 $(a,b) \longmapsto a.$

and

$$proj_2: S \times T \longrightarrow T$$

 $(a,b) \longmapsto b.$

These definitions extend to sets S_1, \ldots, S_n :

$$S_1 \cup \ldots \cup S_n = \bigcup_{i \in I} S_i = \{ a \mid a \in S_1 \text{ and } \ldots \text{ and } a \in S_n \}$$
 (1.1)

§1.1.1 The Well-Ordering Principle

Theorem 1.1.1: Well-Ordering Principle

Let $S \subset N$ be a non-empty subset of $\mathbb N$. Then S has a minimal element. That is,

 $\exists m \in S \text{ s.t. } n \geq m, \forall n \in S.$ Informally, there exists a minimum element that is smaller than all other natural elements.

Proof. Since S is non-empty, we can pick $k \in S$. By definition of \mathbb{N} , we can start with 1 and add 1 repeatedly to get k. So, there are only k elements of \mathbb{N} less than or equal to k:

$$1 < 2 < \ldots < k - 1 < k$$
.

So, we can keep moving down from k, until we find an element $j \notin S$; since there are no smaller elements than $j+1 \in S$, j+1 is the minimal element.

§1.2 Functions

Definition 1.2.1: Functions

A **function** from S to T is a rule that assigns some element of T to each element of S:

$$f: S \to T, s \mapsto f(s)$$
.

S is the **domain**, and T the **codomain**.

Definition 1.2.2: Composition of Functions

If $f: S \to T$ and $S: T \to U$, then the **composition** of f and g is

$$g \circ f = S \to U, a \mapsto g(f(a)).$$

Definition 1.2.3: Bijectivity

Let $f: S \to T$ be a function.

1. f is **injective** or one-to-one if distinct elements of S go to distinct elements of T. In other words,

$$f(a) = f(b) \rightarrow a = b.$$

2. f is **surjective** or onto if every element of T comes from some element in S:

$$\forall t \in T, \exists s \in S \text{ s.t. } f(s) = t.$$

3. f is **bijective** if it is both injective and surjective.

Definition 1.2.4: Invertibility

Let $f: S \to T$ be a function. f is **invertible** if

$$\exists g: T \to S, (g \circ f)(s) = s, s \in S \text{ and } (f \circ g)(t) = t, t \in T.$$

Theorem 1.2.1: Bijective iff Invertible

Let $f:S \to T$ be a function. Then f is invertible $\iff f$ is bijective.

Proof. Suppose first that f is invertible. Let $g: T \to S$ denote the inverse. We need to prove that f is bijective.

To prove injectivity, suppose f(a) = f(b) for some $a, b \in S$. Applying g to both sides and using the fact that g is the inverse of f, we have

$$g(f(a)) = g(f(b)) \Rightarrow a = b.$$

Thus f is injective.

To prove surjectivity, let $t \in T$; we need to find $s \in S$ such that f(s) = t. Using the inverse, let s = g(t). Then

$$f(s) = f(g(t)) = t.$$

Thus f is surjective.

Since f is both injective and surjective, f is bijective.

Now, suppose that f is bijective. Then $\forall t \in T, !\exists s \in S \text{ s.t. } f(s) = t$. Define a new function $g: T \to S$

$$g(t) :=$$
 "the unique $s \in S$ s.t. $f(s) = t$ ".

We now show that $(g \circ f)(s) = s$ and $(f \circ g)(t) = t$ for $s \in S, t \in T$.

Given $t \in T$, f(g(t)) = t by definition of t. Given $s \in S$, we know that s maps to f(s); so, by definition of g, g(f(s)) = s.

Thus,
$$g$$
 is the inverse of f .

Groups: Part I

Groups are a fundamental baseline for abstract algebra. We start with motivating examples, then move on to a concrete definition.

§2.1 Motivation

§2.1.1 Permutations

Definition 2.1.1: Permutations

Let X be a set. A **permutation** of X is a bijective function

$$\pi:X\to X$$

with the property: $\forall x \in X, !\exists x' \in X \text{ such that } \pi(x') = x.$ This allows us to define an inverse π^{-1} to be the permutation

$$\pi^{-1}: X \to X$$

with the rule that $\pi^{-1}(x) = x'$, where $x' \in X$ is the unique element such that $\pi(x') = x$.

The **identity permutation** of X is the identity map

$$e: X \to X, e(x) = x \forall x \in X.$$

In general, a permutation of a set X is a rule that "mixes up" the elements of X.

Example 2. Let $X = \{1, 2, 3, 4\}$. Then a permutation $\sigma : X \to X$ can be thought of as a shuffling of X and visualized as follows:

 $1 \Rightarrow 2$

 $2 \Rightarrow 3$

 $3 \Rightarrow 1$

 $4 \Rightarrow 4$

 σ^{-1} would be defined as

 $1 \Rightarrow 3$

 $2 \Rightarrow 1$

 $3 \Rightarrow 2$

 $4 \Rightarrow 4$

Now, suppose τ is defined as $1 \Rightarrow 1, 2 \Rightarrow 3, 3 \Rightarrow 2, 4 \Rightarrow 4$. Then $\sigma \circ \tau$ is

 $1 \rightarrow 2$

 $2 \Rightarrow 1$

 $3 \Rightarrow 3$

 $4 \Rightarrow 4$

and $\tau \circ \sigma$ is

 $1 \Rightarrow 3$

 $2 \Rightarrow 2$

 $3 \Rightarrow 1$

 $4 \Rightarrow 4$

From this, we gather some observations.

- Given any 2 permutations, we can compose to get a new one.
- There was a permutation that didn't do anything $(\sigma \circ \sigma^{-1})$.
- We can invert any permutation.
- If σ, τ are two permutations, then we don't necessarily have $\tau \circ \sigma = \sigma \circ \tau$ (in other words, the group of permutations with composition is not commutative).

Definition 2.1.2: Transformations

Let X be a figure in \mathbb{R}^2 . Then Trafo(X) is the set of transformations on X.

Consider the symmetries of a square (involving reflections/rotations on a square) as a motivating example of transformations; are they invertible? commutative?

Remark 2. Each transformation gives a permutation of the vertices $\{A, B, C, D\}$.

§2.2 (Abstract) Groups

Definition 2.2.1: Groups

A **group** $\{X,\cdot\}$ consists of a set X, together with a rule

satisfying the following axioms:

1. (identity) there is an element $e \in G$ such that

$$e \cdot g = g \cdot e = g.$$

for all $g \in G$.

2. (inverse) For all $g \in G$, there is an $h \in G$ such that

$$g \cdot h = h \cdot g = e$$
.

The element h is called g^{-1} , the inverse of g.

3. (associativity) Given g_1, g_2, g_3 , we have

$$g_1(g_2 \cdot g_3) = (g_1 \cdot g_2)g_3.$$

If, in addition, the group satisfies

4. (commutative) Given $g_1, g_2 \in G$, we have

$$g_1 \cdot g_2 = g_2 \cdot g_1.$$

then G is an **Abelian** group.

Now, we observe some interesting properties that follow from the group axioms.

Proposition 2.2.1: Group Properties

Let G be a group.

- 1. The identity element is unique.
- 2. Each element of G has only one inverse.
- 3. If $g, h \in G$, then $(gh)^{-1} = h^{-1}g^{-1}$.
- 4. Given $g \in G$, $(g^{-1})^{-1} = g$.

Proof of (b). Suppose $g \in G$ and that both h_1, h_2 satisfy the inverse axiom. Then

$$g \cdot h_1 = e = g \cdot h_2.$$

By the inverse axiom, we multiply on the left by an inverse of g:

$$e \cdot h_1 = e \cdot h_2$$
$$h_1 = h_2.$$

Thus the inverse is unique.

Definition 2.2.2: Order

- The **order** of a group G is denoted #G or |G| is the number of elements in G if finite, and ∞ if infinite.
- If G is a group and $g \in G$, the smallest n in which $g^n = e$ is called **the order**

of g. If no n exists, we say g has infinite order.

Proposition 2.2.2: Individual Order and Group Order

Suppose G is a finite group and suppose $g^n = e$. Then the order of g divides n.

Proof. Let n be the order of $g \in G$. Then, by long division, we can write

$$m = n \cdot g + r, \ 0 \le r < m.$$

Using this equality together with $g^n = e$ and $g^m = e$, we get

$$e = g^n = g^{m \cdot q + r} = (g^m)^q \cdot g^r = e^q \cdot g^r = e \cdot g^r = g^r.$$

We find that $g^r = e$; but r < m and m is the order of g.

[TODO]: Finish this exercise with a well-defined proof, not this bullshit

§2.2.1 Examples of Groups

Example 3. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are all Abelian groups with respect to addition. However, \mathbb{Z} is not a group with respect to multiplication, as the multiplicative inverse does not exist. Additionally, \mathbb{Q} , \mathbb{R} , and \mathbb{C} are not groups with respect to multiplication, due to zero; but $\mathbb{Q} \setminus \{0\}$, $\mathbb{R} \setminus \{0\}$, and $\mathbb{C} \setminus \{0\}$ are all groups under multiplication.

Example 4. Let $\mathbb{Z}/m\mathbb{Z}$ be the set of integers modulo m. Then $\mathbb{Z}/m\mathbb{Z}$ is a group under addition modulo m, $+_m$; $\mathbb{Z}/m\mathbb{Z}$ is finite with order m. We also observe that $\mathbb{Z}/m\mathbb{Z}$ is a cyclic group.

Example 5. Let the set of $n \times n$ matrices be M_n . Then M_n is an Abelian group under addition, but not multiplication (since not all matrices have inverses).

Let

$$GL_n(\mathbb{R}) = \{ M \in M_n \mid \det(M) \neq 0 \}$$

, denote the **general linear group**. Then $GL_n(\mathbb{R})$ is a group using matrix multiplication (not Abelian though).

§2.2.2 Cyclic Groups

Definition 2.2.3: Cyclic Groups

A group G is **cyclic** if there is a $g \in G$ such that

$$G = \{\dots, g^{-2}, g^{-1}, e, g, g^2, g^3, \dots\}.$$

We call g a **generator**.

Some examples of cyclic groups are \mathbb{Z} and $\mathbb{Z}/m\mathbb{Z}$; both have generators 1. Another one is the permutation group.

Definition 2.2.4: Permutation Groups

Given X a set, let S_X denote the **symmetric group of** X, or the group of permutations of X. If

$$X = \{1, \dots, n\},\$$

we use the notation S_n .

Let P_n be a regular n-gon with vertices $1, \ldots, n$. The group of transformations of P_n (e.g. rotations, reflections, and compositions of such) is called the **dihedral** group D_n . We will later prove that D_n has order 2n.