Seed Composition and Amino Acid Profiles for Quinoa Accessions Grown in Washington State

Evan B. Craine and Kevin M. Murphy

Sustainable Seed Systems Lab

Department of Crop and Soil Sciences – Washington State University C1/C9 Breeding for Improved Nutrition to Feed the World Oral

<u>Overview</u>

Introduction to Quinoa

Part 1: Amino Acid Study

Part 2: NIR calibration and application

Domestication & Diversification

Jarvis et al. (2017) Maughan et al. (2004; 2016) Wilson and Manhart (1993) KAUST Elodie Rey Mark Tester

Translating Visionary Science to Practice

Quinoa as a Keystone Protein Crop for Global Food Security

Murphy et al. (2016)

- Quinoa is gaining worldwide attention, leading to a rapid expansion
- Excellent nutritional quality & potential to improve global food security, especially in marginal environments

Front. Nutr., 12 August 2020 | https://doi.org/10.3389/fnut.2020.00126

Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States

- 1. Provide a baseline for nutritional quality of Washington grown quinoa
- Test the hypothesis that these samples contain adequate amounts of essential amino acids to meet daily requirements set by the World Health Organization (WHO)

Sample Selection

200 samples of WA grown quinoa

100 samples randomly selected across distribution

Germplasm

- F5:F6 advanced breeding lines (n=85)
 - 6 biparental populations from 2013
- Varieties/landraces (n=15)

Locations

Legend (inches per year)

Locations

Wet Chemistry

- 30g of raw, whole grain samples sent for analysis
 - ground into a flour before analysis

Complete **Amino Acid Profile** (AAP) (n=23)

Seed Composition Components

- Crude Protein: total nitrogen x 6.25
- Ash
- Crude Fat
- Moisture
- Total Carbohydrates, crude 'by difference'

WHO/FAO/UNU, 2007

Translating Visionary Science to Practice

Summary

- Testing the universality of the claim that quinoa is a complete protein
- Observed lower protein content, but high protein quality
 - Higher value for 7/9 essential AA compared to Nowak et al., 2016
- Nowak et al., 2016 mean values do not meet:
 - Adult and infant requirements: Val
 - Infant requirements: Ile, Leu, Lys
- WA samples:
 - Mean value for Leu does not meet infant requirements
 - 9% meet all requirements for Leu
 - 52% meet all requirements for Lys
 - 94% meet all requirements for Trp
- Evidence of possible genotype-dependent G X E interactions

WSU Nutritional Phenotyping Pipeline

NIR Calibration Development

$$N = 27$$

$$N = 116$$

$$N = 175$$

RPDCV Seed Components

$$\mathsf{RPDCV} \ = \ \frac{standard\ deviation\ reference\ data}{standard\ error\ of\ cross\ validation\ (or\ prediction)}$$

Excellent: RPD > 4 & R2 > 0.95 Quality Measurement: RPD 5-8

Good: RPD = 3–4 & R2 = 0.9–0.95 Screening & Ranking: RPD 3-5

RPDCV Essential Amino Acids

$$RPDCV = \frac{standard\ deviation\ reference\ data}{standard\ error\ of\ cross\ validation\ (or\ prediction)}$$

Excellent: RPD > 4 & R2 > 0.95 Quality Measurement: RPD 5-8

Good: RPD = 3-4 & R2 = 0.9-0.95 Screening & Ranking: RPD 3-5

Acknowledgments

Lab Members (current)

- •Dr. Kevin Murphy (PI)
- •Dr. Dan Packer (Research Associate)
- •Dr. Cedric Habiyaremye (Research Associate)
- Julianne Kellogg

Lab Members (former)

- •Halle Choi
- •Dr. Leonardo Hinojosa Sanchez
- Adam Peterson

Perten Instruments

- Ryan Bishop
- David Honigs

Grant Number 2016-51300-25808

Front. Nutr., 12 August 2020 | https://doi.org/10.3389/fnut.2020.00126

Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State

Evan B. Craine and Mr Kevin M. Murphy

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States

Search "Postharvest Phenotyping" on YouTube

Search "Nutritional Phenotyping Pipeline" on YouTube

Extra Slides

Protein Digestibility-Corrected Amino Acid Score

Source	PDCAAS				
Milka	1.00				
Wheya	1.00				
Egg ^a	1.00				
Beefa	0.92				
Soya	0.91				
Quinoa (raw) ^b	0.86				
Quinoa (washed)b	0.85				
Quinoa (boiled) ^c	0.72				
Peaa	0.67				
Oata	0.57				
Whole wheata	0.45				

WHO, 1991

- Actual amount of amino acid/reference
 - Amino Acid Score (AAS)
- Lowest Amino Acid x Protein Digestibility

"A <u>nearly</u> complete protein"

- •AAA, Thr, Lys (Ruales and Nair, 1992)
- •Met & Trp (Mahoney et al., 1975)
 - *certain amino acids in limiting amounts*

^a Schaafsma, 2000 ^bRuales and Nair 1992 ^cMahoney et al. 1975

Comparing Literature Review to Daily Requirements

	His	lle	Leu	Lys	Met	Cys	Phe + Tyr	Thr	Trp	Val
Infant	2	3.2	6.6	5.7	2.04	0.76	5.2	3.1	0.85	4.3
3-10	1.6	3.1	6.1	4.8	1.75	0.65	4.1	2.5	0.66	4
Adult	1.5	3	5.9	4.5	1.6	0.6	3.8	2.3	0.6	3.9
Quinoa, raw mean	2.7	3.1	6	4.8	1.9	1.4	6.3	3.7	0.9	3.7
Min-Max	1.4-5.1	0.8-7.4	2.3-9.4	2.4-7.8	0.3-9.1	0.1-2.7	2.7-10.3	2.1-8.9	0.6-1.9	0.8-6.1
n	42	42	42	42	41	11	41	42	27	42

Adapted from Nowak et al. 2016

Suggested patterns of requirements for each age group reported as g/100g protein (WHO/FAO/UNU, 2007)

V3 CALIBRATION METRICS

$$RPDCV = \frac{standard\ deviation\ reference\ data}{standard\ error\ of\ cross\ validation\ (or\ prediction)}$$

Excellent = R2 > 0.95 & RPD > 4Good = R2 = 0.9-0.95 & RPD = 3-4RPD 3-5 = screening RPD 5-8 = quality measurement

V3 Calibration Metrics

$$RPDCV = \frac{standard\ deviation\ reference\ data}{standard\ error\ of\ cross\ validation\ (or\ prediction)}$$

Excellent = R2 > 0.95 & RPD > 4 Good = R2 = 0.9-0.95 & RPD = 3-4 RPD 3-5 = screening RPD 5-8 = quality measurement

