4509 - Bridging Mathematics

Matrices

PAULO FAGANDINI

$$\mathbf{v} = -2 \times \hat{\imath} + 1 \times \hat{\jmath} = -2 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Being not very rigorous, we can define a linear transformation as a transformation on every vector on the plane that must satisfy 2 things:

- 1. Lines must be transformed into lines
- 2. The origin must remain in the same place

We will deal with the formal definition and rigor later...

$$\hat{\imath}' = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \quad \hat{\jmath}' = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\mathbf{v} = -2 \times \hat{\imath}' + 1 \times \hat{\jmath}' = -2 \times \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 1 \times \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \end{bmatrix}$$

$$w = \begin{bmatrix} x \\ y \end{bmatrix}$$
 lands on $x \times \begin{bmatrix} 4 \\ 1 \end{bmatrix} + y \times \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4x + 3y \\ 1x + 2y \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} = x \times \hat{i} + y \times \hat{j}$$
$$\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4x + 3y \\ 1x + 2y \end{bmatrix} = x \times \hat{i}' + y \times \hat{j}'$$

What about another vector in the same "direction" than v? say

$$z = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$$

. . .

What about another vector in the same "direction" than v? say

$$z = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$$

. . .

$$\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.5 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 0 \end{bmatrix}$$

So transforming two vectors in the same line, they both end up also in the same line... keep this in mind.

Could we take back $\hat{\imath}'$ to $\hat{\imath}$ and $\hat{\jmath}'$ to $\hat{\jmath}$?

Could we take back $\hat{\imath}'$ to $\hat{\imath}$ and $\hat{\jmath}'$ to $\hat{\jmath}$? Sure, if we apply the transform

$$\begin{bmatrix} 0.4 & -0.6 \\ -0.2 & 0.8 \end{bmatrix}$$

Could we take back $\hat{\imath}'$ to $\hat{\imath}$ and $\hat{\jmath}'$ to $\hat{\jmath}$? Sure, if we apply the transform

$$\begin{bmatrix} 0.4 & -0.6 \\ -0.2 & 0.8 \end{bmatrix}$$

$$\begin{bmatrix} 0.4 & -0.6 \\ -0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Applying the inverse!

The important thing is that: if the vectors are linearly dependent, then we cannot invert the matrix, we just saw that two vectors that reside on the same line, end up in the same (although probably a different one) line.

There are a couple of interesting vectors on the whole space when we apply this linear transformation...

Take for example the following vector:
$$e = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

There are a couple of interesting vectors on the whole space when we apply this linear transformation...

Take for example the following vector:
$$e = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Or the vector:
$$f = \begin{bmatrix} 0.9487 \\ 0.3162 \end{bmatrix}$$

Or the vector:
$$f = \begin{bmatrix} 0.9487 \\ 0.3162 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0.9487 \\ 0.3162 \end{bmatrix} = \begin{bmatrix} 4.7434 \\ 1.5811 \end{bmatrix}$$

$$5 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.9487 \\ 0.3162 \end{bmatrix} = \begin{bmatrix} 4.7434 \\ 1.5811 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0.9487 \\ 0.3162 \end{bmatrix}$$

$$e.v._2 = \begin{vmatrix} 0.9487 \\ 0.3162 \end{vmatrix}, \quad \lambda_2 = 3$$

	ev_1	ev_2
$A \times$	$\begin{bmatrix} -1 \end{bmatrix}$	4.7434
	$\lfloor 1 \rfloor$	$\lfloor 1.5811 \rfloor$

	ev_1	ev_2
$A \times$	$\begin{bmatrix} -1 \end{bmatrix}$	4.7434
		$\lfloor 1.5811 \rfloor$
$A^2 imes$	$\lceil -1 \rceil$	[23.7171]
		$\lfloor 7.9057 \rfloor$

	ev_1	ev_2
$A \times$	$\begin{bmatrix} -1 \end{bmatrix}$	$\boxed{4.7434}$
		$\lfloor 1.5811 \rfloor$
$A^2 \times$	$\begin{bmatrix} -1 \end{bmatrix}$	23.7171
71 /		$\lfloor 7.9057 \rfloor$
$A^3 \times$	$\begin{bmatrix} -1 \end{bmatrix}$	$\boxed{118.585}$
		39.528

	ev_1	ev_2
$A \times$	$\begin{bmatrix} -1 \end{bmatrix}$	$\boxed{4.7434}$
		$\lfloor 1.5811 \rfloor$
$A^2 \times$	$\left -1 \right $	23.7171
		7.9057
$A^3 \times$	$\left -1 \right $	118.585
		39.528
λ	1	5

Definition

A real matrix is a rectangular array of real numbers.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{nm} \end{pmatrix}$$

Where $a_{ii} \in \mathbb{R}$. A is said to be an element of $\mathbb{R}^{m \times n}$

A vector would be then a matrix with only 1 column!

Let $A, B \in \mathbb{R}^{m \times n}$. Let $C \in \mathbb{R}^{n \times l}$. Finally, let $\alpha \in \mathbb{R}$.

- 1. $[A + B]_{ij} = a_{ij} + b_{ij}$
- 2. $[A \cdot C]_{ik} = \sum_{i=1}^{n} a_{ij} \cdot c_{jk}$, and it has a dimension $m \times I$
- 3. $[\alpha A]_{ij} = \alpha a_{ij}$

Definition

Let $A \in \mathbb{R}^{m \times n}$, A's **transpose**, denoted $A^t \in \mathbb{R}^{n \times m}$ is such that its elements are:

$$a_{ij}^t = a_{ji}$$

Definition

Matrix $A \in \mathbb{R}^{m \times n}$ is said to be **squared** if n = m

Definition

Matrix A is said to be **symmetric** if $A^t = A$

Definition

Matrix A is said to be **antisymmetric** if $A^t = -A$

The **Identity** is a squared matrix $I_n \in \mathbb{R}^{n \times n}$ that has $I_{ij} = 0$ if $i \neq j$, and $I_{ij} = 1$ if i = j.

The identity has a nice property: $AI_n = I_m A = A$ for any $A \in \mathbb{R}^{m \times n}$.

Definition

Matrix A is **invertible**, if there is another matrix A^{-1} such that $A \cdot A^{-1} = A^{-1} \cdot A = I$

Given $A, B, C \in \mathbb{R}^{n \times n}$

- 1. A + B = B + A
- 2. A(BC) = (AB)C
- 3. A(B + C) = AB + AC
- 4. $(A + B)^t = A^t + B^t$
- 5. $(AB)^t = B^t A^t$
- 6. $(A^t)^t = A$
- 7. If A and B are invertible, then AB and BA are invertible as well. Furthermore $(AB)^{-1}=B^{-1}A^{-1}$
- 8. If *A* is invertible, then $(A^{t})^{-1} = (A^{-1})^{t}$

Quick quiz, 15 min, prove points 7 and 8. You can use points 1-6 as true and given.

Solution

- 7 Start with AB, multiply by A^{-1} from the left, you are left with $A^{-1}AB = IdB = B$. Now multiply by B^{-1} , so you get $B^{-1}A^{-1}AB = B^{-1}IdB = B^{-1}B = Id$. Then $(B^{-1}A^{-1})(AB) = Id$ so it must be that $B^{-1}A^{-1} = (AB)^{-1}$. To complete the proof, you need to show that you can do the same from the "right".
- 8 Start with $(A^{-1}A)^t = Id^t = Id$, use property 5 and you get $(A^{-1}A)^t = A^t(A^{-1})^t = Id$, then $(A^{-1})^t$ must be the inverse (again the only thing that is missing is to show that it works if you start with $(AA^{-1})^t$ as well which is trivial.

The set of the matrices in $\mathbb{R}^{m \times n}$, together with the sum and scalar multiplication is a vector space.

Conjecture

A squared matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if all of its columns are linearly independent.

Matrix $A \in \mathbb{R}^{m \times n}$ is **upper triangular** if it has the following shape:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2m} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & a_{mm} & \dots & a_{mn} \end{bmatrix}$$

That is, it has zeroes below its main diagonal.

Conjecture

The set of the upper triangular matrices in $\mathbb{R}^{n \times m}$, with the sum and scalar multiplication is a vector subspace of $\mathbb{R}^{n \times m}$.

Matrix A is **lower triangular** if A^t is upper triangular.

Definition

Matrix A is **diagonal** if it is upper and lower triangular at the same time.

Definition

The **rank** of a matrix A, denoted by rank(A) is the maximum number of linearly independent rows or columns of A.

A convenient way to write down a system of equations:

It would be AX = B, where,

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Given a system of equations AX = B,

- $\hat{X} \in \mathbb{R}^n$ is a **particular solution** of the system if $A\hat{X} = B$.
- X_0 is an homogeneous solution if $AX_0 = 0$.

Note that for $\lambda \in \mathbb{R}$, $A(\hat{X} + \lambda X_0) = A\hat{X} + \lambda AX_0 = B + 0 = B$.

The **kernel** of $A \in \mathbb{R}^{m \times n}$ is defined as:

$$Ker(A) := \{X \in \mathbb{R}^n | AX = 0\}$$

Conjecture

 $Ker(A) \subseteq \mathbb{R}^n$ is a vector subspace of \mathbb{R}^n

Definition

The dimension of Ker(A) is called the **nullity** — or nullspace —, and it is denoted by Null(A). If $Ker(A) = \{0\}$, then Null(A) = 0.

Note that a system of equations as the one shown before, has unique solution only if Null(A)=0.

Matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if Null(A) = 0.

Conjecture

 $A \in \mathbb{R}^{n \times n}$ is invertible if and only if the system AX = B as a unique solution, for any $B \in \mathbb{R}^n$.

The **image** of $A \in \mathbb{R}^{n \times n}$ is defined as:

$$Im(A) := \{ Y \in \mathbb{R}^n | \exists X \in \mathbb{R}^n, Y = AX \} \equiv \{ AX | X \in \mathbb{R}^n \}$$

Conjecture

Let $A \in \mathbb{R}^{n \times n}$. Im(A) is a vector subspace of \mathbb{R}^n .

Definition

The dimension of Im(A) is called the **range** of A. Let's denote it as R(A).

Let $A \in \mathbb{R}^{n \times n}$. R(A) is the number of l.i. columns of A.

Conjecture

Consider $A \in \mathbb{R}^{n \times n}$. It holds that Null(A) + R(A) = n.

The quadratic form associated to A is a function $Q_A: \mathbb{R}^n \to \mathbb{R}$ such that for any $X \in \mathbb{R}^n$,

$$Q_A(X) = X^t A X \in \mathbb{R}$$

For any matrix $A \in \mathbb{R}^{n \times n}$, there are always symmetric and antisymmetric matrices S and T such that

$$A = S + T$$

Note: Let $S = \frac{A+A^t}{2}$ and $T = \frac{A-A^t}{2}$. While S is symmetric, T is antisymmetric,

Corollary

A quadratic form can be represented as

$$Q_A(X) = X^t S X$$

with S symmetric.

Quick quiz! 15 min to prove the corollary.

Solution

- Let A = (S + T)
- Then $Q_A(X) = X^t(S+T)X = X^tSX + X^tTX$
- But $X^tTX \in \mathbb{R}$, so $(X^tTX)^t = X^tTX$ (a number trasposed is the same number).
- So you end up that $X^tTX = (X^tTX)^t = X^tT^tX$
- But T is anytsymmetric so $T^t = -T...$
- Then $X^tTX = -X^tTX$, so if X^tTX is the number z, you have z = -z, that only is true for z = 0.
- Then $Q_A(X) = X^t SX$

Let $A \in \mathbb{R}^{n \times n}$, symmetric. Consider the quadratic form $Q_A(X) = X^t A X$. If for any $X \in \mathbb{R}^n \setminus \{0\}$,

- 1. $Q_A(X) > 0$, A is positive definite,
- 2. $Q_A(X) \ge 0$, A is positive semi-definite,
- 3. $Q_A(X) < 0$, A is negative definite,
- 4. $Q_A(X) \le 0$, A is negative semi-definite.

 $\lambda \in \mathbb{C}$ is an **eigenvalue** (or characteristic value) of matrix $A \in \mathbb{R}^{n \times n}$ if there is a vector, called **eigenvector**, $X_{\lambda} \in \mathbb{R}^{n} \setminus \{0\}$ such that

$$AX_{\lambda} = \lambda X_{\lambda}$$

Let $A \in \mathbb{R}^{n \times n}$, and λ_1 and λ_2 two eigenvalues of A, with $\lambda_1 \neq \lambda_2$. If V_1 in the vector subspace associated to λ_1 , and V_2 in the vector subspace of λ_2 then V_1 and V_2 are linearly independent.

Conjecture

Given $A \in \mathbb{R}^{n \times n}$ symmetric, then its eigenvalues are real valued.

The **determinant** of a squared matrix A is the hyper-volume of the figure formed by the column vectors of the matrix.

Example

Consider the matrices,

$$A = \begin{pmatrix} 1/2 & 2 \\ 3/2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$$

It is easy to see that, given our definition, det(B)=0. It is also easy to show that $det(A)=|1/2\times 1-3/2\times 2|=5/2$.

How to calculate the determinant of a big matrix? Recursively. Let $A \in \mathbb{R}^{n \times n}$. Define A_{ij} as:

$$A_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}$$

That is, what is left of A after removing row i and column j.

Then,

$$det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} det(A_{ik})$$

You can choose any *i* that you prefer.

- A squared matrix is invertible if and only if its determinant is different from zero.
- Take a finite set of matrices $\mathbb{A} \subseteq \mathbb{R}^{n \times n}$, with A_i being the ith element of \mathbb{A} then,

$$det(A_1A_2...A_k) = det(A_1)det(A_2)...det(A_k)$$

■ If A is invertible, then

$$det(A^{-1}) = \frac{1}{det(A)}$$

■ For any squared A it holds that $det(A^t) = det(A)$.

Note that λ is an eigenvalue if

$$AX_{\lambda} = \lambda X_{\lambda}$$
 with $X_{\lambda} \neq 0$

so λ is an eigenvalue of A if

$$(A - \lambda I)X_{\lambda} = 0$$

or $X_{\lambda} \in ker(A - \lambda I)$, which implies that $ker(A - \lambda I) \neq \{0\}$, and therefore $(A - \lambda I)$ must be not invertible! But if $(A - \lambda I)$ is not invertible, then $det(A - \lambda I) = 0$.

Corollary

 λ is an eigenvalue of A if and only if $det(A - \lambda I) = 0$.

Given $A \in \mathbb{R}^{n \times n}$, the **characteristic polynomial** of A is defined as the function $p_A : \mathbb{R} \to \mathbb{R}$ such that

$$p_A(\lambda) = det[A - \lambda I]$$

So, λ is an eigenvalue of A if $p_A(\lambda) = 0$

If A is symmetric, then the eigenvectors of different eigenvalues are orthogonal.

For practical reasons, consider the matrix V as the matrix that has in its columns the eigenvectors of A, and $D(\lambda)$ the diagonal matrix that contains in the column i, the eigenvalue that corresponds to the eigenvector in the column i in V.

Note that:

$$AV = VD(\lambda) \Leftrightarrow A = VD(\lambda)V^{-1}$$

Note that given the properties of matrix multiplication

$$A^{-1} = VD\left(\frac{1}{\lambda}\right)V^{-1}$$

which is one of the fundamental properties of the symmetric matrices.

Given $A \in \mathbb{R}^{n \times n}$, symmetric. It holds that,

$$A = VDV^t$$

With D the diagonal with the eigenvalues of A and V the unit eigenvectors of A.

Let $A \in \mathbb{R}^{n \times n}$, symmetric.

- 1. A is positive definite if all the eigenvalues of A are strictly positive.
- 2. A is positive semi definite if all the eigenvalues are nonnegative.
- 3. A is negative definite if all the eigenvalues are strictly negative.
- 4. A is negative semidefinite if all the eigenvalues are non positive.

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear if, for any $X, Y \in \mathbb{R}^n$, and for any $\alpha \in \mathbb{R}$

$$f(X + Y) = f(X) + f(Y), \quad f(\alpha X) = \alpha f(X)$$

The **trace** of a square matrix A(tr(A)) is the sum of the elements of its diagonal.

Theorem

Let $A \in \mathbb{R}^{n \times n}$, then:

■ the product of the eigenvalues of A is equal to its determinant, that is,

$$det(A) = \prod_{i=1}^{n} \lambda_i$$

■ the sum of the eigenvalues of A is equal to its trace, that is,

$$\sum_{i=1}^{n} a_{i,i} = \sum_{i=1}^{n} \lambda_i$$

■ if A is a triangular matrix, then its eigenvalues are the coefficients in the principal diagonal of the matrix, i.e.,

$$\lambda_i = a_{i,i}$$

