Technical Data Storytelling Sample Work

Airline Data Challenge

The Problem Statement

- Objective: Enter the United States domestic airline market.
- Initial Plan: Launch 5 round trip routes between medium and large US airports.
- Example Roundtrip Route: JFK to ORD and ORD to JFK.
- Investment: Acquire 5 new airplanes, each costing \$90 million.
- **Brand Motto:** "On time, for you" emphasizing punctuality as a key brand value.

Available Data

- File Name: Flights.csv Loaded into Dataframe Flights_df
- Number of Rows: 1,915,886
- Number of Fields: 16

- File Name: Tickets.csv Loaded into Dataframe Tickets_df
- Number of Rows: 1,167,285
- Number of Fields: 12

- File Name: Airport_Codes.csv Loaded into Dataframe Airport_Codes_df
- Number of Rows: 55,369
- Number of Fields: 8

How Did I Approach?

Recommended_Paths

Recommended_Paths_Filtered_df

Data Cleaning

- 1. Lookup: Merges dataframes on specified columns and Renames
- 2. <u>Clean_Numeric_Column:</u> Cleans input, converts to float, returns NaN if conversion fails.
- 3. Clean_Percentile: Removed top and bottom 1% outliers

How Did I Approach?

Quality Checks:

- Data Completeness: Filtered out rows with missing values
- Data Consistency: Removed non-numeric characters and corrected data type
- **Data Validation**: Excluded canceled flights, non-zero air time and distance
- **Handling Outliers**: Removed extreme values (top and bottom 1%) for key metrics.

Data Visualization:

- **Box Plots:** To check outliers and skewness in key metrics
- Histograms: To analyze data before and after outlier treatment

Data Cleaning

Filtering Conditions:

- Large or Medium Airports.
- Flights were not cancelled.
- Has non-zero Air time and distance data.
- Occupancy rate data is available.

AIR_TIME	DISTANCE
\$\$\$	****
\$\$\$	****
\$\$\$	*213
\$\$\$	****

AIR_TIME	DISTANCE
NaN	NaN
NaN	NaN
NaN	213
NaN	NaN

Filtering Conditions:

>>>>>

• Excluding the non departed flights (AIR_TIME or DISTANCE is ≤ 0)

Number of Rows Originally: 1,915,886 ~ 1.91M Number of rows after filtering= 1,840,541 ~ 1.84M

Plotting Box Plot:

It is evident that each of these four Box Plots indicates a significant number of **outliers** that require attention.

The data is right-skewed, with outliers at the higher end needing attention.

Plotting Histogram:

Removed top and bottom 1% outliers of right-skewed data

Data Cleaning

Tickets_df

- Q1 2019 **round-trip** flights between **large** and **medium** US airports.
- Include passenger count and fares.

Detected anomaly in 28,771 tickets priced at \$11 across diverse flight routes.

Removed top and bottom 1% outliers of right-skewed data

Data Cleaning Summary

- Functions Created: Lookup, Clean_Numeric_Column, Clean_Percentile
- Flights.csv Rows Cleaned: 1.9M to 1.7M (10.76% of the rows cleaned)
- Tickets.csv Rows Cleaned: 1.1M to 681K (41.63% of the sample data cleaned)
- New Fields Created: ORIGIN_TYPE and DESTINATION_TYPE created in both Flights and Tickets dataframes
- Names: Flights_df -> Flights_filtered_df and Tickets_df -> Tickets_filtered_df

Busiest Round Trip Routes

Problem Statement:

Identify the 10 busiest round trip routes in terms of number of round trip flights in 1Q2019.

4. **Round_Trip:** Concatenates origin and destination to find flight path regardless of order.

(III.) Busiest Round Trip Routes

ORIGIN	DESTINATION
RSW	CLE
RSW	CMH
CMH	RSW
JFK	CMH

ORIGIN	DESTINATION	Flight_Path
RSW RSW CMH	CLE CMH RSW	RSW_CLE RSW_CMH RSW_CMH
JFK	CMH	JFK_CMH

Busiest Round Trip Routes

Calculate Passenger
Occupancy

PASSENGERS_OCCUPIED = OCCUPANCY_RATE X 200

Round Trip
Identification

Group by: Flight_Path and TAIL_NUM Filter: Flight_Count ≥ 2

Round Trip Calculation and Summarize

Round_Trip_Count = Flight_Count // 2
Total_Round_Trips = Σ (Round_Trip_Count)

Sorting

Total_Passengers_Occupied: Descending Total_Round_Trips: Descending

Busiest Round Trip Routes

Top 10 Routes

By <u>Total Passengers</u> Occupied:

- Identifies high-demand routes based on passenger occupancy.
- Optimize service delivery by prioritizing high-demand routes.

By <u>Total Round Trips</u>:

- Highlight routes with frequent round trip patterns.
- Allocate resources efficiently based on repetitive travel demand.

Final Output:

Out[52]:		Flight_Path	Total_Round_Trips	Total_Passengers_Occupied
	2077	LAX_SFO	3758	1,018,254.00
	2118	LGA_ORD	3202	866,108.00
	1985	LAS_LAX	2829	791,502.00
	2076	LAX_SEA	2296	629,440.00
	2515	PDX_SEA	2266	603,760.00
	525	BOS_LGA	2170	581,536.00
	178	ATL_MCO	2121	574,294.00
	146	ATL_FLL	2085	565,112.00
	174	ATL_LGA	2031	551,090.00
	2672	SEA_SFO	1987	545,578.00

Top 10 Busiest Round Trip Routes

- 1. Los Angeles, CA (LAX) San Francisco, CA (SFO)
- 2. New York, NY (LGA) Chicago, IL (ORD)
- 3. Las Vegas, NV (LAS) Los Angeles, CA (LAX)
- 4. Los Angeles, CA (LAX) Seattle, WA (SEA)
- 5. Portland, OR (PDX) Seattle, WA (SEA)
- 6. Boston, MA (BOS) New York, NY (LGA)
- 7. Atlanta, GA (ATL) Orlando, FL (MCO)
- 8. Atlanta, GA (ATL) Fort Lauderdale, FL (FLL)
- 9. Atlanta, GA (ATL) New York, NY (LGA)
- 10. Seattle, WA (SEA) San Francisco, CA (SFO)

Profitable Round Trip Routes

Problem Statement:

Identify the 10 most profitable round trip routes (without considering the upfront airplane cost) in 1Q2019.

MINISPROPRIES PROBLES

Calculate **Average Ticket Price**

Avg_Ticket_Price = Mean (ITIN_FARE) for each Flight_Path

Flight_Path	Avg_Ticket_Price
ABE_ABI	758.00
ABE_ABQ	534.00
ABE_AGS	391.00
ABE_AMA	654.00
ABE_ASE	742.00

Combining Average Ticket Prices with Flights Data on Flight_Path

TAIL_NUM	ORIGIN	DESTINATION	DEP_DELAY	ARR_DELAY	Flight_Path	PASSENGERS_OCCUPIED	Avg_Ticket_Price
N955WN	RSW	CLE	-8.00	-6.00	CLE_RSW	194.00	289.26
N754SW	RSW	CLE	-7.00	-22.00	CLE_RSW	126.00	289.26
N14249	CLE	RSW	-10.00	-23.00	CLE_RSW	152.00	289.26
N14240	RSW	CLE	-1.00	8.00	CLE_RSW	72.00	289.26
N14240	CLE	RSW	-4.00	-23.00	CLE_RSW	132.00	289.26

Profitable Round Trip Routes

Revenue

Ticket Revenue =
Occupancy Rate X 200 X
Avg Ticket Price

Baggage Revenue =
Occupancy Rate X 200 X
0.5 X \$70

Total Revenue =
Ticket Revenue +
Baggage Revenue

Cost

Mileage Cost (Fuel maintenance and Depreciation Insurance) = Distance X (\$8 + \$1.18)

Airport Cost = \$5,000 for medium airports and \$10,000 for large airports

Delay Cost =

\$75 X MAX(0, Delay Minutes - 15), applied only if Delay Minutes > 0

Delay costs apply at \$75 per minute after a 15-minute grace

period, for late flights only.

Total Cost = Mileage Cost + Airport Cost + Delay Cost

M Profitable Round Trip Routes

Total Profit

Total Revenue

>>>>>

Total Cost

FL_DATE	TAIL_NUM	ORIGIN	DESTINATION	DEP_DELAY	ARR_DELAY	AIR_TIME	DISTANCE	OCCUPANCY_RATE	ORIGIN_TYPE	Airport_Cost	Dep_Delay_Cost	Arr_Delay_Cost	Total_Delay_Cost	Total_Cost	Ticket_Revenue	Baggage_Fee_Revenue	Total_Revenue	Profit
2019-03-02	N955WN	RSW	CLE	-8.00	-6.00	143.00	1,025.00	0.97	large_airport	20000	0.00	0.00	0.00	29,409.50	56,116.01	6,790.00	62,906.01	33,496.51
2019-03-09	N754SW	RSW	CLE	-7.00	-22.00	137.00	1,025.00	0.63	large_airport	20000	0.00	0.00	0.00	29,409.50	36,446.48	4,410.00	40,856.48	11,446.98
2019-03-24	N14249	CLE	RSW	-10.00	-23.00	136.00	1,025.00	0.76	large_airport	20000	0.00	0.00	0.00	29,409.50	43,967.18	5,320.00	49,287.18	19,877.68
2019-03-11	N14240	RSW	CLE	-1.00	8.00	138.00	1,025.00	0.36	large_airport	20000	0.00	0.00	0.00	29,409.50	20,826.56	2,520.00	23,346.56	-6,062.94
2019-03-11	N14240	CLE	RSW	-4.00	-23.00	130.00	1,025.00	0.66	large_airport	20000	0.00	0.00	0.00	29,409.50	38,182.02	4,620.00	42,802.02	13,392.52

Calculating Average Daily Flights (ADF) as it helps in capacity planning and operational efficiency.

Group Daily Flights:

Counting daily flights by grouping data by Flight_Path, TAIL_NUM, and FL_DATE

Calculate Average
Daily Flights:

Computing average daily flights for each TAIL_NUM within each Flight_Path

Compute Overall ADF:

Calculate overall average
daily flights (ADF) across all
tail numbers for each
Flight_Path

Profitable Round Trip Routes

Top 10 Profitable Routes:

Flight_Path	Total_Profit	Total_Revenue	Total_Cost	Total_Round_Trip_Flights	Total_Passengers_Occupied	Avg_Ticket_Price	Total_Distance	Total_Mileage_Cost	Total_Airport_Cost	Total_Dep_Delay_Cost	Total_Baggage_Fee_Revenue	Average_Average_Daily_Flights
DCA_ORD	164,101,597.10	259,434,989.38	95,333,392.28	3583	464,304.00	523.76	2,192,796.00	20,129,867.28	71660000	1,656,300.00	16,250,640.00	1.39
ATL_LGA	155,286,624.99	280,795,942.59	125,509,317.60	4485	584,148.00	445.69	3,417,570.00	31,373,292.60	89700000	2,113,650.00	20,445,180.00	1.24
LGA_ORD	151,796,332.99	343,956,966.03	192,160,633.04	6766	877,430.00	357.01	4,959,478.00	45,528,008.04	135320000	5,044,275.00	30,710,050.00	1.72
LAX_SFO	142,849,235.23	340,836,858.17	197,987,622.94	8009	1,040,274.00	292.64	2,699,033.00	24,777,122.94	160180000	6,025,875.00	36,409,590.00	2.06
DCA_LGA	141,081,382.54	216,952,218.50	75,870,835.96	3248	424,656.00	475.89	695,072.00	6,380,760.96	64960000	1,866,900.00	14,862,960.00	2.22
ATL_CLT	134,437,957.99	203,026,334.87	68,588,376.88	3041	394,584.00	479.53	687,266.00	6,309,101.88	60820000	748,875.00	13,810,440.00	1.47
ATL_DCA	130,866,045.90	218,848,993.30	87,982,947.40	3440	447,004.00	454.59	1,881,680.00	17,273,822.40	68800000	879,450.00	15,645,140.00	1.27
BOS_LGA	129,525,785.68	234,820,051.36	105,294,265.68	4539	591,240.00	362.17	835,176.00	7,666,915.68	90780000	3,266,700.00	20,693,400.00	2.02
JFK_LAX	126,523,370.14	302,041,924.64	175,518,554.50	4049	528,704.00	536.29	10,021,275.00	91,995,304.50	80980000	1,489,800.00	18,504,640.00	1.19
DFW_IAH	122,226,010.86	188,611,944.62	66,385,933.76	2893	376,898.00	465.43	648,032.00	5,948,933.76	57860000	1,193,175.00	13,191,430.00	1.43

Key Insights:

- <u>Top Performing Routes</u>: DCA_ORD and ATL_LGA are the most profitable, generating over \$150 million in profit each. They also have high total revenues and relatively low costs compared to other routes.
- <u>High Passenger Volume</u>: LGA_ORD and LAX_SFO have the highest total passengers occupied (~877K and ~1M, respectively), indicating strong demand and high utilization.
- <u>Strategic Opportunities in High-Density Short-Haul Routes</u>: Routes like <u>LAX_SFO</u> and <u>BOS_LGA</u> leverage <u>lower average ticket prices</u> with <u>high total passenger volume</u> which drives substantial <u>baggage fee revenue</u>.

Profitable Round Trip Routes

Top 10 Profitable Routes

- 1. Washington, D.C. (DCA) Chicago, IL (ORD)
- 2. Atlanta, GA (ATL) New York, NY (LGA)
- 3. New York, NY (LGA) Chicago, IL (ORD)
- 4. Los Angeles, CA (LAX) San Francisco, CA (SFO)
- 5. Washington, D.C. (DCA) New York, NY (LGA)
- 6. Atlanta, GA (ATL) Charlotte, NC (CLT)
- 7. Atlanta, GA (ATL) Washington, D.C. (DCA)
- 8. Boston, MA (BOS) New York, NY (LGA)
- 9. New York, NY (JFK) Los Angeles, CA (LAX)
- 10. Dallas, TX (DFW) Houston, TX (IAH)

Recommended Routes

Problem Statement:

5 round trip routes that you recommend to invest in based on any factors that you choose.

Recommended Routes

Defining KPIs

On-Time Performance (OTP):

% of flights departing and arriving on schedule

On-time flights

Total flights

X 100

On-time flight: DEP_DELAY & ARR_DELAY ≤ 0

Available Seat Miles (ASM):

Total seat miles available for passengers

200 X Flight Distance

Cost per Available Seat Mile (CASM):

Cost efficiency of operations

Total Cost
ASM

Revenue per Available Seat Mile (RASM):

Revenue generation relative to capacity

Total Revenue
ASM

Profit Per Passenger:

Profitability per occupied seat

Profit

Number of Occupied Passengers

Defining KPI

Breakeven Round Trips:

Number of round-trip flights needed to recover the **\$90 million** airplane cost for each route (CapEx)

For Each Flight Path:

Airplane Cost (\$90M)

Total Profit

X Total Round Trip Flights

Summary Statistics:

	Total_Revenue	Total_Cost	Total_Profit	Average_Flight_Path_OTP	Average_Daily_Flights	Average_ASM	Average_CASM	Average_RASM	Average_Occupancy_Rate	Average_Profit_Per_Passenger	Breakeven_Round_Trips
count	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00	2,734.00
mean	37,341,838.13	16,762,039.28	20,579,798.85	55.79	1.42	171,093.66	0.22	0.53	0.65	221.66	-21,588.36
std	40,000,112.94	19,309,060.72	22,213,210.33	11.46	0.33	107,658.25	0.14	0.46	0.02	119.15	1,570,416.45
min	42,288.00	19,030.20	-2,293,305.80	0.00	1.00	20,400.00	0.08	0.08	0.42	-130.82	-81,753,554.50
25%	9,383,030.30	4,544,280.13	4,595,480.24	49.65	1.12	89,050.00	0.13	0.24	0.64	144.54	2,079.02
50%	25,456,953.81	10,703,802.36	13,590,470.43	56.16	1.39	148,900.00	0.18	0.38	0.65	212.52	2,828.97
75%	50,533,284.80	21,523,836.70	28,510,100.86	63.26	1.67	224,200.00	0.26	0.65	0.66	299.54	3,931.70
max	343,956,966.03	197,987,622.94	164,101,597.10	100.00	3.19	499,200.00	1.02	3.76	0.95	683.00	6,115,530.09

KPI	Threshold (Percentile)	Rationale
On Time Performance OTP	< 63.26 (75th Percentile)	Improve Punctuality: Targeting routes with potential for better punctuality
Available Seat Miles ASM	> 89,050 (25th Percentile)	Maximize Revenue: Focusing on routes with significant seating capacity and distance
Revenue per ASM RASM	> 0.24 (25th Percentile)	Boost Revenue Efficiency: Choosing routes generating high revenue
Occupancy Rate	> 0.64 (25th Percentile)	Optimize Utilization: Prefering routes with higher seat occupancy
Profit Per Passenger	> 144.54 (25th Percentile)	Enhance Profit Margins: Selecting routes with high profit per passenger
Breakeven Round Trips	< 3931.70 (75th Percentile)	Minimize Financial Risk: Ensuring fewer flights needed to cover costs

- Punctuality
- High Revenue

- Optimized Utilization
- Minimized Financial Risk

Top 5 Profitable Routes Meeting Filtering Conditions:

Flight_Path	Total_Profit	Average_Flight_Path_OTP	Average_Daily_Flights	Average_ASM	Average_CASM	Average_RASM	Average_Occupancy_Rate	Average_Profit_Per_Passenger
DCA_ORD	164,101,597.10	60.20	1.39	122,400.00	0.22	0.59	0.65	328.89
ATL_LGA	155,286,624.99	51.62	1.24	152,400.00	0.18	0.41	0.65	240.38
ATL_DCA	130,866,045.90	58.84	1.27	109,400.00	0.23	0.58	0.65	269.42
DFW_ORD	118,221,449.86	48.62	1.13	160,203.87	0.18	0.41	0.66	259.30
ATL_DFW	107,836,823.55	53.68	1.50	146,200.00	0.19	0.42	0.65	232.64

Recommended Routes

Reccomended Round Trip Routes

- 1. Washington, D.C. (DCA) Chicago, IL (ORD)
- 2. Atlanta, GA (ATL) New York, NY (LGA)
- 3. Atlanta, GA (ATL) Washington, D.C. (DCA)
- 4. Dallas/Fort Worth, TX (DFW) Chicago, IL (ORD)
- 5. Atlanta, GA (ATL) Dallas/Fort Worth, TX (DFW)

Cyclic Route Advantages:

- Optimizes network efficiency and asset utilization
- Enhances passenger connectivity (fewer transfers)
- Improves scheduling flexibility, market penetration
- Provides competitive differentiation from point-to-point carriers

Breakeven

Problem Statement:

Find the number of round trip flights it will take to breakeven on the upfront airplane cost. Print key summary components fo these routes.

Defining KPI

Break-Even Point (BEP in Days):Days needed to reach the break-even

Breakeven Round Trips
Average Daily Flights

Final Output:

Flight_Path	Breakeven_Round_Trips	Average_Daily_Flights	Total_Cost	Total_Revenue	Total_Profit	Total_Passengers_Occupied	Average_Ticket_Price	BEP_in_Days
DCA_ORD	1,965.06	1.39	95,333,392.28	259,434,989.38	164,101,597.10	464,304.00	523.76	1,412.29
ATL_LGA	2,599.39	1.24	125,509,317.60	280,795,942.59	155,286,624.99	584,148.00	445.69	2,096.57
ATL_DCA	2,365.78	1.27	87,982,947.40	218,848,993.30	130,866,045.90	447,004.00	454.59	1,866.82
DFW_ORD	2,400.33	1.13	89,772,461.52	207,993,911.38	118,221,449.86	414,808.00	466.42	2,133.35
ATL_DFW	2,675.71	1.50	87,824,194.48	195,661,018.03	107,836,823.55	418,232.00	432.83	1,779.18

We can recover our capital in approximately **3 years and 10 months** to **5 years and 10 months**, after which we will start generating profit. High Revenue

Recommended KPIs

Problem Statement:

Key Performance Indicators (KPI's) that you recommend tracking in the future to measure the success of the round trip routes that you recommend

Why Track These KPIs?

- Our Motto "On time, for you": Ensuring punctuality and reliability.
- Maximize Profits: Focus on profitability, revenue, and cost-efficiency.
- Operational Efficiency: High resource utilization and minimal risk.
- Customer-Centric Approach: Enhancing customer satisfaction and loyalty.
- Competitive Advantage: Staying ahead of competitors with superior service and efficiency.
- Sustainability: Minimizing environmental impact.

Financial Metrics:

Primary KPIs

- **Profit:** Net income from airline operations.
- Break-Even Point (BEP in Days): Days needed to reach the breakeven point.

Operational Metrics:

• On-Time Performance (OTP): Percentage of flights departing and arriving on time.

- Aircraft Utilization: Time an aircraft is generating revenue.
- Operational Reliability: Flights operating as scheduled without major issues.

Customer-Centric Metrics:

- Customer Satisfaction Score: Passenger satisfaction via surveys.
- Customer Retention Rate: Percentage of repeat bookings.

• Profit Per Passenger: Profit earned per passenger.

Secondary KPIs

- Route Profitability: Profitability of each flight route.
- Available Seat Miles (ASM): Seat miles available for passengers.
- Cost per Available Seat Mile (CASM): Cost per seat mile available for passengers.
- Revenue per Available Seat Mile (RASM): Revenue per seat mile available for passengers.
- Average Daily Flights: Average number of flights operated per day.
- Market Share: Seat miles or passengers compared to competitors.
- Baggage Handling Efficiency: Percentage of mishandled baggage.
- Customer Loyalty Index: Measurement of loyalty and repeat bookings.
- Environmental Impact: Airline's environmental footprint.

Thank You