Bài 1. ĐIỂM BIỂU DIỄN SỐ PHỰC

A. KIẾN THỨC CẦN NHỚ

1. Biểu diễn hình học của số phức

Biểu diễn hình học của số phức z = a + bi $(a, b \in \mathbb{R})$.

- a) M(a;b) là điểm biểu diễn của z.
- b) $OM = r = \sqrt{a^2 + b^2}$ là mô-đun của z.

B. BÀI TẬP MẪU

VÍ DU 1. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 - 6i có tọa độ là

- (A) (-6;7).
- **(B)** (6; 7).
- (\mathbf{C}) (7;6).
- **(D)** (7; -6).

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 1.

Số phức nào dưới đây có điểm biểu diễn trên mặt phẳng tọa độ là $\tilde{\text{diem}} M$ như hình vẽ bên?

- (A) 1 2i.
- **(B)** i + 2.
- (C) i 2.
- **(D)** 1 + 2i.

CÂU 2.

Điểm M trong hình bên là điểm biểu diễn của số phức z. Mệnh đề nào sau đây đúng?

- (A) Số phức z có phần thực là 3 và phần ảo là -4.
- **(B)** Số phức z có phần thực là 3 và phần ảo là -4i.
- (**C**) Số phức z có phần thực là -4 và phần ảo là 3.
- (**D**) Số phức z có phần thực là -4 và phần ảo là 3i.

CÂU 3.

Điểm nào trong hình vẽ bên là điểm biểu diễn số phức

- z = -1 + 2i?
 - $(\mathbf{A}) N.$

Số phức nào dưới đây có điểm biểu diễn trên mặt phẳng tọa độ là $\tilde{\text{diem}} M$ như hình vẽ bên?

- (A) $z_4 = 2 + i$.
- **B**) $z_2 = 1 2i$.
- (**C**) $z_3 = -2 + i$.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

0 0		
		_
	QUICK NOTE	
		_
		•
		•
		•
		•
• • • • • • • •		

CÂU 5.

Cho số phức z = (1+i)(2-i). Điểm nào trong hình vẽ dưới đây là điểm biểu diễn của z?

 $(\mathbf{A}) M.$

 $(\mathbf{B}) P.$

CÂU 6. Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=(1+2i)^2$ là điểm nào dưới đây?

(A) P(-3;4).

(B) Q(5;4).

(**C**) N(4:-3).

(D) M(4;5).

CÂU 7. Biết M(1; -2) là điểm biểu diễn số phức \overline{z} , số phức z bằng

(A) 2 + i.

(B) 1 + 2i.

(C) 2-i.

CẦU 8. Gọi M và M' lần lượt là các điểm biểu diễn cho các số phức z và \overline{z} . Xác định mệnh đề đúng.

 $(\mathbf{A}) M$ và M' đối xứng với nhau qua trục hoành.

 $(\mathbf{B}) M$ và M' đối xứng với nhau qua trục tung.

 $(\mathbf{C})M$ và M' đối xứng với nhau qua gốc tọa độ.

(**D**) Ba điểm O, M, M' thẳng hàng.

Trong hình vẽ bên, điểm P biển diễn số phức z_1 , điểm Q biểu diễn số phức z_2 . Tìm số phức $z = z_1 + z_2$?

(A) 1+3i. **(B)** -3+i. **(C)** -1+2i.

CÂU 10. Cho số phức $z = 1 + \sqrt{3}i$. Nghịch đảo của z có điểm biểu diễn là

$$(A) N \left(\frac{1}{2}; \frac{\sqrt{3}}{2} \right). \qquad (B) M \left(\frac{1}{2}; -\frac{\sqrt{3}}{2} \right). \qquad (C) P \left(\frac{1}{4}; \frac{\sqrt{3}}{4} \right).$$

$$\bigcirc P\left(\frac{1}{4}; \frac{\sqrt{3}}{4}\right)$$

$$\bigcirc Q\left(\frac{1}{4}; -\frac{\sqrt{3}}{4}\right)$$

CÂU 11. Cho số phức $z_1 = 1 - 2i$, $z_2 = -3 + i$. Điểm nào dưới đây là điểm biểu diễn của số phức $w = z_1 + z_2$ trên mặt phẳng tọa độ?

(A) N(4; -3).

(B) M(2; -5).

(**C**) P(-2;-1).

 $(\mathbf{D}) Q(-1;7).$

CÂU 12. Cho số phức z=1-2i. Điểm nào dưới đây là điểm biểu diễn của số phức w=iztrên mặt phẳng tọa độ?

(A) Q(1;2).

(B) N(2;1).

(C) M(1; -2).

(D) P(-2;1).

CÂU 13. Cho số phức z=3-2i. Khi đó số phức $w=z+i\overline{z}$ có điểm biểu diễn trên mặt phẳng tọa độ là điểm nào dưới đây?

(A) H(1; -5).

(B) G(5; -5).

(**C**) E(1;1).

(D) F(5;1).

CÂU 14. Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của ztrên mặt phẳng tọa độ Oxy đến điểm M(3; -4) bằng

(A) $2\sqrt{5}$.

(B) $\sqrt{13}$.

(C) $2\sqrt{10}$.

 $(\mathbf{D}) 2\sqrt{2}.$

CÂU 15. Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i, điểm B biểu diễn số phức -1 + 6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau?

(A) 1 - 2i.

(B) 2-4i.

(C) 2+4i.

CÂU 16. Trên mặt phẳng phức, các điểm A, B, C lần lượt là các điểm biểu diễn của các số phức $z_1=-3i$ và $z_2=2-2i, z_3=-i-5$. Số phức z biểu diễn trọng tâm G của tam giác ABC là

(A) z = -1 - 2i.

(B) z = -2 + i. **(C)** z = -1 - i.

(D) z = -1 + i.

CÂU 17. Nếu điểm M(x;y) là điểm biểu diễn hình học của số phức z trong mặt phẳng tọa độ Oxythoả mãn OM=4thì

(B) |z| = 4.

(**C**) |z| = 16.

CÂU 18. Cho các số phức z, z' có biểu diễn hình học lần lượt là các điểm M, M' trong mặt phẳng tọa độ Oxy. Nếu OM = 2OM' thì

$$(\mathbf{A})|z| = 2|z'|.$$

$$\mathbf{B}) z' = 2z.$$

$$(\mathbf{c}) z = 2z'.$$

$$(\mathbf{D})|z'|=2|z|.$$

CÂU 19. Gọi M, N, P lần lượt là các điểm biểu diễn của các số phức $z_1 = 1 + i$, $z_2 = 8 + i$, $z_3 = 1 - 3i$ trong mặt phẳng phức Oxy. Khẳng định nào sau đây là khẳng định đúng?

 $(\mathbf{A}) \triangle MNP$ vuông.

 $(\mathbf{B}) \triangle MNP$ đều.

 $(\hat{\mathbf{C}}) \triangle MNP$ cân.

 \bigcirc $\triangle MNP$ vuông cân.

CÂU 20.

Cho tam giác ABC như hình vẽ. Biết trọng tâm G của tam giác ABC là điểm biểu diễn của số phức z. Tìm phần ảo của số phức \overline{z} .

$$(B) -1.$$

$$(\mathbf{C})$$
 $-i$.

$$\bigcirc$$
 i .

D. BẢNG ĐÁP ÁN

1. A 2. A	3. D 4. C	5. D	6. A 7. B	8. A	9. A	10.D
11.C 12.B	13.C 14.C	15.D	16.A 17.B	18.A	19.A	20.B

Bài 2. HÀM SỐ LOGARIT

A. KIẾN THỨC CẦN NHỚ

1. Hàm số logarit

Với a là số thực dương khác 1.

- Θ Hàm số logarit cho bởi công thức: $y = \log_a x$.
- Θ Tập xác định: $\mathscr{D} = (0; +\infty)$.
- $oldsymbol{\Theta}$ Với hàm số $y = \log_a u(x)$ thì điều kiện xác định là u(x) > 0.

2. Đạo hàm của hàm số logarit

$$\bullet$$
 Với $y = \ln x \text{ thì } y' = \frac{1}{x}$.

$$oldsymbol{\Theta}$$
 Với $y = \log_a x$ thì $y' = \frac{1}{x \ln a}$.

$$oldsymbol{\Theta}$$
 Với $y = \ln u(x)$ thì $y' = \frac{u'(x)}{u(x)}$.

$$oldsymbol{\Theta}$$
 Hàm số hợp $y = \log_a \left[u(x) \right]$ thì $y' = \frac{u'(x)}{u(x) \ln a}.$

$$m{\Theta}$$
 Với $y = \log_a |u(x)|$ thì $y' = \frac{u'(x)}{u(x) \ln a}$.

3. Sự biến thiên của hàm số logarit

GV VŨ NGOC PHÁT — ĐT: 0962.940.819

- **9** Với a > 1 thì hàm số $y = \log_a x$ đồng biến trên $(0; +\infty)$.
- $\mbox{\bf \Theta}$ Với 0 < a < 1thì hàm số $y = \log_a x$ ng
hịch biến trên $(0; +\infty).$

QUICK NOTE

B. BÀI TẬP MẪU

VÍ DỤ 2 (Đề minh họa BGD 2022-2023). Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = \log_3 x$ là

$$\bigcirc y' = \frac{\ln 2}{r}.$$

(A)
$$y' = \frac{1}{x}$$
. **(B)** $y' = \frac{1}{x \ln 3}$. **(C)** $y' = \frac{\ln 2}{x}$. **(D)** $y' = -\frac{1}{x \ln 3}$.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 21. Tính đạo hàm của hàm số $y = \log_3(3x + 1)$.

(A)
$$y' = \frac{3}{(3x+1)\ln 3}$$
.
(C) $y' = \frac{3}{3x+1}$.

B
$$y' = \frac{1}{(3x+1)\ln 3}$$
.

$$\bigcirc y' = \frac{3}{3x+1}$$

$$\mathbf{D} y' = \frac{1}{3x+1}.$$

CÂU 22. Đạo hàm của hàm số $y = \log_3 (1 - 2x)$ là

(A)
$$y' = \frac{2}{(1-2x)\ln 3}$$

B
$$y' = \frac{1}{(1 - 2x) \ln 3}$$
.
D $y' = \frac{-2 \ln 3}{1 - 2x}$.

$$\mathbf{A} \ y' = \frac{2}{(1 - 2x) \ln 3}.$$

$$\mathbf{C} \ y' = \frac{-2}{(1 - 2x) \ln 3}.$$

$$D y' = \frac{-2\ln 3}{1 - 2x}.$$

CÂU 23. Đạo hàm của hàm số $y = \log_3(2-x)$ là

(A)
$$y' = \frac{1}{(x-2)\ln 3}$$
.

$$\mathbf{B} y' = \frac{\ln 3}{2 - x}.$$

©
$$y' = \frac{1}{(2-x)\ln 3}$$
.

CÂU 24. Tính đạo hàm của hàm số $y = \log_3(2x+1)$.

B
$$y' = \frac{2}{(2x+1)\ln 3}$$
.
D $y' = \frac{1}{(2x+1)\ln 3}$.

CÂU 25. Tính đạo hàm của hàm số $y = \log_3(3x + 2)$.

$$\mathbf{B} \ y' = \frac{3}{(3x+2)}.$$

(A)
$$y' = \frac{1}{(3x+2)}$$
.
(C) $y' = \frac{3}{(3x+2)\ln 3}$.

B
$$y' = \frac{3}{(3x+2)}$$
.
D $y' = \frac{1}{(3x+2)\ln 3}$.

CÂU 26. Đạo hàm của hàm số $y = \ln \left(x^2 + x + 1 \right)$ là hàm số nào sau đây? **A** $y' = \frac{-(2x+1)}{x^2 + x + 1}$. **B** $y' = \frac{-1}{x^2 + x + 1}$. **C** $y' = \frac{2x+1}{x^2 + x + 1}$. **D** $y' = \frac{1}{x^2 + x + 1}$.

$$\mathbf{A} \ y' = \frac{-(2x+1)}{x^2+x+1}$$

B)
$$y' = \frac{-1}{2}$$

$$\mathbf{C}$$
 $y' = \frac{2x+1}{x^2+x+1}$.

D
$$y' = \frac{1}{x^2 + x + 1}$$
.

CÂU 27. Đạo hàm của hàm số $y = x + \ln^2 x$ là hàm số nào dưới đây? **(A)** $y' = 1 + 2x \ln x$. **(B)** $y' = 1 + 2 \ln x$. **(C)** $y' = 1 + \frac{2}{x \ln x}$. **(D)** $y' = 1 + \frac{2 \ln x}{x}$.

©
$$y' = 1 + \frac{2}{r \ln r}$$

$$\bigcirc y' = \frac{1}{x \ln 10}.$$

CÂU 29. Đạo hàm của hàm số $y = \log(1 - x)$ bằng

B
$$\frac{1}{(x-1)\ln 10}$$

$$\bigcirc$$
 $\frac{1}{1-x}$

B
$$\frac{1}{(x-1)\ln 10}$$
. **C** $\frac{1}{1-x}$. **D** $\frac{1}{(1-x)\ln 10}$.

CÂU 30. Tính đạo hàm của hàm số $f(x) = \ln |x|$.

(A)
$$f'(x) = \frac{1}{|x|}$$
. **(B)** $f'(x) = \frac{1}{x}$. **(C)** $f'(x) = -\frac{1}{x}$. **(D)** $f'(x) = -\frac{1}{|x|}$.

$$\bigcirc$$
 2 ln 3.

$$\bigcirc$$
 1.

CÂU 32. Đạo hàm của hàm số $y = \log_3 (4x + 1)$ là

$$\mathbf{A} y' = \frac{4 \ln 3}{4x + 1}.$$

B
$$y' = \frac{1}{(4x+1)\ln 3}$$
.

©
$$y' = \frac{4}{(4x+1)\ln 3}$$
.

$$\mathbf{D} y' = \frac{\ln 3}{4x+1}.$$

CÂU 33. Tính đạo hàm của hàm số $y = \ln (3x^2 + 1)$.

B
$$y' = \frac{6x+1}{3x^2+1}$$
.

$$\mathbf{C}$$
 $y' = \frac{1}{3x^2 + 1}$

(A)
$$y' = \frac{6x}{3x^2 + 1}$$
. **(B)** $y' = \frac{6x + 1}{3x^2 + 1}$. **(C)** $y' = \frac{1}{3x^2 + 1}$. **(D)** $y' = \frac{3x}{3x^2 + 1}$.

CÂU 34. Tính đạo hàm của hàm số $y = \log_5 (x^2 + 2)$.

B
$$y' = \frac{2x}{(x^2 + 2)\ln 5}$$

$$\mathbf{C} y' = \frac{2x \ln 5}{x^2 + 2}.$$

B
$$y' = \frac{2x}{(x^2 + 2) \ln 5}$$
.
D $y' = \frac{1}{(x^2 + 2) \ln 5}$.

CÂU 35. Đạo hàm của hàm số $y = \log_2{(x-1)}$ trên tập xác định là

(A)
$$\frac{1}{(x-1)\ln 2}$$
. (B) $\frac{\ln 2}{x-1}$.

$$\bullet \frac{1}{(1-x)\ln 2}$$
. $\bullet \frac{\ln 2}{1-x}$.

$$\bigcirc \frac{\ln 2}{1-x}.$$

CÂU 36. Tính đạo hàm của hàm số $y = \log_8 (6x - 5)$.

(A)
$$y' = \frac{2}{(6x-5)\ln 2}$$
.

B
$$y' = \frac{1}{(6x-5)\ln 8}$$
.

D
$$y' = \frac{6}{(6x-5)\ln 4}$$

CÂU 37. Tìm đạo hàm của hàm số $y = \log_2(1-x)$.

$$\widehat{\mathbf{A}} \ y' = \frac{1}{\log_2(1-x)}.$$

$$\widehat{\mathbf{C}} \ y' = \frac{\ln 2}{1-x}.$$

$$\mathbf{B}'y' = \frac{1}{1-x}.$$

CÂU 38. Tính đạo hàm của hàm số $y = \ln(\sin x)$.

$$\mathbf{B} \ y' = -\tan x. \qquad \mathbf{C} \ y' = \cot x.$$

$$(\mathbf{c}) y' = \cot x$$

$$\mathbf{D} y' = -\cot x.$$

CÂU 39. Đạo hàm của hàm số $y = \ln x + x^2$ là

(A)
$$y' = \frac{1}{x} + \frac{x^3}{3}$$
. **(B)** $y' = \frac{1}{x} + x$. **(C)** $y' = \frac{1}{x} + 2x$. **(D)** $y' = \frac{1}{x} - 2x$.

©
$$y' = \frac{1}{x} + 2x$$
.

CÂU 40. Đạo hàm của hàm số $y = \log_8 (x^2 - 3x - 4)$ là

$$(A) y' = \frac{2x-3}{(x^2-3x-4)\ln 2}$$

B
$$y' = \frac{2x-3}{r^2-3x-4}$$

$$\mathbf{A} \ y' = \frac{2x - 3}{(x^2 - 3x - 4) \ln 2}.$$

$$\mathbf{C} \ y' = \frac{1}{(x^2 - 3x - 4) \ln 8}.$$

B
$$y' = \frac{2x-3}{x^2-3x-4}$$
.
D $y' = \frac{2x-3}{(x^2-3x-4)\ln 8}$

D. BẢNG ĐÁP ÁN

Bài 3. ĐẠO HÀM HÀM LŨY THỪA - HÀM MŨ -LOGARIT

	•	•	•	•						•	•	•	•	•						•	

 • •	 ٠.	•	 •		•	•	٠.	•	•	•	•	•	•	•	•	•	•	•	•	•

•	٠		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•																													

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ລເເ		Ν	\bigcirc	4
	-		O.	14

A. KIẾN THỨC CẦN NHỚ

$$(a^u)' = a^u \ln a \cdot u' \Rightarrow (a^x)' = a^x \cdot \ln a.$$

$$\Theta (e^u)' = u' \cdot e^u \Rightarrow (e^x)' = e^x.$$

$$\Theta (\log_a u)' = \frac{u'}{u \ln a} \Rightarrow (\log_a x)' = \frac{1}{x \ln a}.$$

$$\Theta (\ln x)' = \frac{1}{x} \Rightarrow (\ln u)' = \frac{u'}{u}.$$

B. BÀI TẬP MẪU

VÍ DỤ 3 (Đề Minh họa BGD 2022-2023). Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^{\pi}$ là

$$\textcircled{\textbf{B}} \ y' = x^{\pi-1}$$

(A)
$$y' = \pi x^{\pi - 1}$$
. **(B)** $y' = x^{\pi - 1}$. **(C)** $y' = \frac{1}{\pi} x^{\pi - 1}$. **(D)** $y' = \pi x^{\pi}$.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 41. Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y=x^{\rm e}$ là

$$\mathbf{C}$$
 $y' = \frac{1}{e} x^{e-1}$.

CÂU 42. Tính đạo hàm của hàm số $y = (x^2 + x)^{\alpha}$ với α là hằng số.

B
$$\alpha \left(x^2 + x\right)^{\alpha+1} (2x+1)$$
.
D $\alpha \left(x^2 + x\right)^{\alpha-1}$.

$$\begin{array}{c} \widehat{\textbf{A}} \ 2\alpha \left(x^2+x\right)^{\alpha-1}. \\ \widehat{\textbf{C}} \ \alpha \left(x^2+x\right)^{\alpha-1} \left(2x+1\right). \end{array}$$

$$(\mathbf{D}) \alpha (x^2 + x)^{\alpha - 1}$$
.

CÂU 43. Đạo hàm của hàm số $y = \sqrt[3]{x^2 \cdot \sqrt{x^3}}$ trên khoảng $(0; +\infty)$ là

©
$$7\sqrt[6]{x}$$
.

$$\bigcirc$$
 $\sqrt[9]{x}$.

CÂU 44. Cho hàm số $y = x^{\pi}$. Giá tri của y''(1) bằng

$$\mathbf{A}$$
 $\ln^2 \pi$.

$$(\mathbf{B}) \pi \ln \pi.$$

$$(\mathbf{C})$$
 0.

CÂU 45. Tính đạo hàm của hàm số $y = 2019^x$.

A
$$y' = 2019^{x-1}$$
.

(B)
$$y' = 2019^x$$
.

$$\mathbf{C}$$
 $y' = 2019^x \cdot \ln 2019$.

$$(\mathbf{D}) y' = x \cdot 2019^{x-1}.$$

CÂU 46. Đạo hàm của hàm số $y = 5^x$ là

$$\bigcirc$$
 $5^x \cdot \ln x$.

(B)
$$x \cdot 5^{x-1}$$
.

$$(\mathbf{C})$$
 $5^x \cdot \ln 5$.

$$\bigcirc$$
 5^x .

CÂU 47. Đạo hàm của hàm số $f(x) = \left(\frac{1}{2}\right)^x$ là

$$B f'(x) = \left(\frac{1}{2}\right)^x \cdot \log 2.$$

CÂU 48. Đạo hàm của hàm số $y=2^{2x^2+x}$ là

(A)
$$2^{2x^2+x} \cdot \ln 2$$
.

B)
$$(4x+1) \cdot 2^{2x^2+x} \cdot \ln 2$$
.

$$(2x^2+x) 2^{2x^2+x} \ln 2.$$

(D)
$$(4x+1) \ln (2x^2+x)$$
.

CÂU 49. Đạo hàm của hàm số $y = e^{2x-3}$ là

(A)
$$y' = 2e^{2x}$$
.

$$\mathbf{B}) y' = e^{2x-3}.$$

$$\mathbf{C}$$
 $y' = (2x - 3)e^{2x - 3}$.

$$\mathbf{D} y' = 2e^{2x-3}.$$

CÂU 50. Đạo hàm của hàm số $y = e^{x^2 + x}$ là

A
$$(x^2 + x) \cdot e^{2x+1}$$
. **B** $(2x+1) \cdot e^{2x+1}$.

©
$$(2x+1) \cdot e^{x^2+x}$$
. **©** $(2x+1) \cdot e^x$.

$$(2x+1) \cdot e^x.$$

CÂU 51. Tính đạo hàm của hàm số $y = e^{\cos 2x}$.

$$\mathbf{C} y' = 2\cos 2x \cdot e^{\sin 2x}.$$

$$(\mathbf{D}) y' = -2\sin 2x \cdot e^{\cos 2x}$$

CÂU 52. Hàm số $f(x) = 2^{x^2+3x+1}$ có đạo hàm là

AU 52. Ham so
$$f(x) = 2^{x}$$
.
A $f'(x) = \frac{2x+3}{2^{x^2+3x+1} \ln 2}$.
C $f'(x) = \frac{2x+3}{2^{x^2+3x+1}}$.

B)
$$f'(x) = 2^{x^2+3x+1}(2x+3) \ln 2$$
.

$$c f'(x) = \frac{2x+3}{2^{x^2+3x+1}}$$

$$\mathbf{D} f'(x) = 2^{x^2 + 3x + 1} (2x + 3).$$

CÂU 53. Đạo hàm của hàm số $y = 3^x + 1$ là

$$\bigcirc y' = \frac{3^x}{\ln 3}.$$

CÂU 54. Đạo hàm của hàm số $y = 5^{\sin x}$ là

$$(\mathbf{A}) \, 5^{\sin x} \cdot \ln 5 \cdot \cos x.$$

$$(\mathbf{B}) \, 5^{\sin x} \cdot \cos x.$$

$$\bigcirc 5^{\sin x - 1} \cdot \sin x.$$

$$(\mathbf{D}) \, 5^{\sin x} \cdot \ln 5.$$

CÂU 55. Đạo hàm của hàm số $y = (x^2 - 2x + 2) e^x$ là

A
$$(x^2+2)e^x$$
.

$$\bigcirc$$
 $x^2 e^x$.

$$(2x-2)e^x$$
.

$$\bigcirc$$
 $-2xe^x$.

CÂU 56. Đạo hàm của hàm số $y = \log_2{(2x+1)}$ là $\frac{2}{(2x+1) \cdot \ln{x}}. \qquad \textbf{B} \ \frac{2}{(2x+1) \cdot \ln{2}}. \qquad \textbf{C} \ \frac{2 \cdot \ln{2}}{x+1}.$

$$\bigcirc \mathbf{B} \frac{2}{(2x+1) \cdot \ln 2}$$

$$\frac{2 \cdot \ln 2}{m+1}$$

$$\bigcirc \frac{2}{(x+1) \cdot \ln 2}$$

B
$$\frac{1}{x^2+1}$$
.

$$\mathbf{c} \frac{1}{(x^2+1)\cdot \ln 2}$$

$$\bigcirc \frac{2x}{x^2+1}$$

$$\bigcirc \frac{2x-1}{(x^2-x)\cdot \ln 10}$$

CÂU 59. Đạo hàm của hàm số $y = \log(e^x + 2)$ là $\frac{e^x}{(e^x + 2) \cdot \ln 10}$. **B** $\frac{e^x}{e^x + 2}$. **C** $\frac{1}{(e^x + 2) \cdot \ln 10}$. **D** $\frac{1}{e^x + 2}$.

$$(e^x + 2) \cdot \ln 10.$$

$$\bigcirc \frac{1}{(e^x + 2) \cdot \ln 10}$$

$$\bigcirc \frac{1}{e^x + 2}$$

CÂU 60. Đạo hàm của hàm số $y = e^x - \ln(3x)$ là

(A)
$$e^x - \frac{1}{3x}$$
. **(B)** $e^x - \frac{1}{x}$. **(C)** $e^x - \frac{3}{x}$. **(D)** $e^x + \frac{1}{x}$.

$$e^x - \frac{3}{r}$$

D. BẢNG ĐÁP ÁN

41.A	42.C	43.A	44. D	45.C	46.C	47.A	48. B	49. D	50.C
51. D	52. B	53.A	54. A	55.B	56.B	57. A	58.C	59.A	60.B

Bài 4. PHƯƠNG TRÌNH MŨ – BẤT PHƯƠNG TRÌNH MŨ

A. KIẾN THỨC CẦN NHỚ

1. Công thức nghiệm của phương trình mũ

- \bigcirc Dạng $a^x = b \mid (1)$, với a > 0 và $a \neq 1$.
- Θ Về mặt đồ thị, nghiệm của (1) là hoành độ giao điểm của đồ thị $y=a^x$ với đường thẳng y = b (nằm ngang).

Từ hình vẽ, ta có các kết quả sau:

- a) b > 0 (1) có nghiệm duy nhất x = $\log_a b$.
- b) $b \le 0$ (1) vô nghiệm.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•						•	•	•	•	•	•						•	

•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•			•	•	•	

• • • • •	

ລເມ	ICK	Ν	\frown T	
Z/10/	$\mathbf{L} \cdot \mathbf{N}$		OT	_

O Tóm lại: Với a > 0 và $a \neq 1$, b > 0, ta có các công thức sau đây:

a)
$$a^{f(x)} = b \Leftrightarrow f(x) = \log_a b$$
.

b)
$$a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$$
.

2. Công thức nghiệm của bất phương trình mũ

Minh họa dạng $|a^x > b|$, với a > 0 và $a \neq 1$.

- Nếu $b \leq 0$ thì tập nghiệm của bất phương trình là \mathbb{R} .
- Nếu b > 0, ta có hai trường hợp:
 - a) Với a > 1 thì $a^x > b \Leftrightarrow x > \log_a b$ (Hình 1).
 - b) Với 0 < a < 1 thì $a^x > b \Leftrightarrow x < \log_a b$ (Hình 2).

B. BÀI TẬP MÂU

VÍ DỤ 4. Tập nghiệm của bất phương trình $2^{x+1} < 4$ là

$$\bigcirc$$
 $(-\infty;1].$

$$\bigcirc$$
 $(1; +\infty).$

$$\bigcirc$$
 $[1;+\infty).$

$$\bigcirc$$
 $(-\infty;1).$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 61. Phương trình $\left(\frac{1}{3}\right)^{x^2-2x-3}=3^{x+1}$ có bao nhiều nghiệm?

$$\bigcirc$$
 3.

CÂU 62. Nghiệm của phương trình $4^{x+1} = 8^{2x-3}$ là **(A)** $x = \frac{11}{2}$. **(B)** $x = \frac{11}{3}$.

(A)
$$x = \frac{11}{2}$$
.

B
$$x = \frac{11}{3}$$
.

(D)
$$x = \frac{11}{5}$$
.

CÂU 63. Tìm tập nghiệm của phương trình $4^{x^2} = 2^{x+1}$

$$igate S = \{0; 1\}.$$

$$\label{eq:section} \boxed{\mathbf{D}}\,S = \left\{-1; \frac{1}{2}\right\}.$$

CÂU 64. Nghiệm của phương trình $3^{2x+1} = 27$ là

$$\mathbf{B} \ x = 1.$$

(D)
$$x = \frac{3}{2}$$
.

CÂU 65. Tập nghiệm của bất phương trình $3^{x+2} < 9^{2x+7}$.

$$(\mathbf{A})$$
 $(-5; +\infty)$.

$$(\mathbf{B})$$
 $(-\infty; -5)$.

$$(-4;+\infty).$$

$$(-\infty; -4).$$

CÂU 66. Tập nghiệm của bất phương trình $2^{100x} \ge 4^{200}$ là

$$(-\infty;4].$$

$$lackbox{\textbf{B}}$$
 $[4;+\infty).$

$$\mathbf{C}^{-}[2;+\infty).$$

$$\bigcirc$$
 $(4; +\infty).$

CÂU 67. Nghiệm của phương trình $5^{x-4} = \left(\frac{1}{25}\right)^{3x-1}$

$$\mathbf{C}$$
 $x = 1$

CÂU 68. Bất phương trình $3^{x^2+1} > 3^{2x+1}$ có tập nghiệm là

$$(A)$$
 $S = (-2; 0).$

$$(B)$$
 $S = (0; 2).$

$$\bigcirc S = \mathbb{R}.$$

CÂU 69. Nghiệm của phương trình $5^{2x+1} = 125$ là

$$\mathbf{\widehat{A}} \ x = 1.$$

$$(\mathbf{B}) x = 3.$$

$$(\mathbf{C}) x = 2.$$

$$\bigcirc$$
 $x = 4.$

CÂU 70. Tập nghiệm của phương trình $2^{x^2-3x}=\frac{1}{4}$ là

$$(\mathbf{A}) S = \emptyset.$$

(B)
$$S = \{1; 2\}.$$

$$(\mathbf{C}) S = \{0\}.$$

$$\widehat{\mathbf{D}} S = \{1\}.$$

CÂU 71. Bất phương trình $\left(\frac{1}{2}\right)^{x^2-2x}>\frac{1}{8}$ có tập nghiệm là (a;b). Khi đó giá trị của b-a

$$\bigcirc$$
 -2 .

B
$$-4$$
.

$$\bigcirc$$
 2.

$$\bigcirc$$
 4.

CÂU 72. Giải phương trình $\left(\frac{1}{25}\right)^{x-1} = 125^{2x}$.

(A)
$$x = -\frac{1}{8}$$
. **(B)** $x = \frac{1}{4}$.

B
$$x = \frac{1}{4}$$
.

$$\mathbf{\widehat{C}}) x = 4.$$

CÂU 73. Nghiệm của phương trình $\left(\sqrt{2}\right)^{2x+1} = \left(\frac{1}{2}\right)^{3x}$ là

(A)
$$x = -\frac{1}{2}$$
.

B
$$x = -\frac{1}{5}$$
.

©
$$x = \frac{1}{4}$$
.

D
$$x = -\frac{1}{8}$$
.

CÂU 74. Tập nghiệm của bất phương trình $2^{2x} < 2^{x+6}$ là

$$(-\infty; 6).$$

$$\bigcirc$$
 $(6; +\infty).$

$$\bigcirc$$
 (0; 6).

CÂU 75. Tìm tập nghiệm của bất phương trình $2^{x^2-5x+4} \le 1$.

$$(\mathbf{C})(-\infty;1].$$

$$\bigcirc$$
 $[4; +\infty).$

CÂU 76. Nghiệm của phương trình $2^{x+2} = 32$ là

$$\mathbf{B} \ x = 8.$$

(c)
$$x = 3$$
.

CÂU 77. Nghiệm của phương trình $5^{x-4} = \left(\frac{1}{25}\right)^{3x-1}$ là

(A)
$$x = \frac{7}{6}$$
.

CÂU 78. Tập nghiệm của phương trình $2^{x^2+x+1}=8$ là

B
$$\{-2; 1\}.$$

$$(\mathbf{C})\{-2\}.$$

$$\bigcirc$$
 {1; 2}.

CÂU 79. Nghiệm của phương trình $3^{2x-1} = 27$

(c)
$$x = 3$$
.

CÂU 80. Tập nghiệm của phương trình $2^{x^2-3x}=\frac{1}{4}$ là

B
$$S = \{1\}.$$

$$(\mathbf{C}) S = \emptyset.$$

$$lackbox{D} S = \{1; 2\}.$$

CÂU 81. Số nghiệm của phương trình $3^x = \left(\frac{1}{2}\right)^x$ là

CÂU 82. Tập nghiệm của bất phương trình $2^{x+2} < \left(\frac{1}{4}\right)^x$ là

$$\bigcirc$$
 $(0; +\infty) \setminus \{1\}$

CÂU 83. Tập nghiệm bất phương trình $2^{x^2-3x} < 16$ là

$$(4; +\infty).$$

B
$$(-1;4)$$
.

$$\bullet$$
 $(-\infty; -1) \cup (4; +\infty).$

$$\bigcirc$$
 $(-\infty;-1).$

D. BẢNG ĐÁP ÁN

GV VŨ NGOC PHÁT — ĐT: 0962.940.819

							•																				•	•	•				
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	(<u> </u>	j	Į	J	(•)	K	(١	()			
																•

Bài 5. CẤP SỐ CỘNG, CẤP SỐ NHÂN

A. KIẾN THỨC CẦN NHỚ

1. Nhận dạng cấp số cộng, cấp số nhân

- $oldsymbol{\Theta}$ Nếu $u_{n+1}=u_n+d,$ với d là hằng số $\Rightarrow (u_n)$ là cấp số cộng.
- Θ Nếu $u_{n+1} = u_n \cdot q$, với q là hằng số $\Rightarrow (u_n)$ là cấp số nhân.

2. Số hạng tổng quát, số hạng thứ n

- $oldsymbol{\Theta}$ Nếu (u_n) là cấp số cộng thì số hạng tổng quát của (u_n) là $u_n = u_1 + (n-1) \cdot d$.
- $oldsymbol{\Theta}$ Nếu (u_n) là cấp số nhân, thì số hạng tổng quát của (u_n) là $u_n=u_1\cdot q^{n-1}$.

3. Công sai, công bội

- Θ Cấp số cộng (u_n) có công sai là $d = u_{n+1} u_n$.
- $oldsymbol{\Theta}$ Cấp số nhân (u_n) có công bội là $q = \frac{u_{n+1}}{u_n}$.

4. Tổng n số hạng đầu của cấp số cộng, cấp số nhân

 $oldsymbol{\Theta}$ Tổng n số hạng đầu tiên S_n của cấp số cộng (u_n) được xác định bởi công thức

$$S_n = u_1 + u_2 + \ldots + u_n = \frac{n}{2} (u_1 + u_n) = \frac{n}{2} [2u_1 + (n-1) d].$$

 $oldsymbol{\Theta}$ Tổng n số hạng đầu tiên S_n của cấp số nhân (u_n) được xác định bởi công thức

$$S_n = u_1 + u_2 + \ldots + u_n = u_1 \cdot \frac{1 - q^n}{1 - q}.$$

5. Điều kiện tạo thành cấp số cộng, cấp số nhân

- Θ Ba số a, b, c theo thứ tự tạo thành một cấp số cộng $\Leftrightarrow a + c = 2b$.
- Θ Ba số a, b, c theo thứ tự tạo thành một cấp số nhân $\Leftrightarrow a \cdot c = b^2$.

B. BÀI TẬP MẪU

VÍ DỤ 5 (Đề minh họa BGD 2020-2021). Cho cấp số nhân (u_n) với $u_1=2$ và công bội $q=\frac{1}{2}$. Giá trị u_3 bằng

B
$$\frac{1}{2}$$
.

$$\bigcirc \frac{1}{4}$$
.

$$\bigcirc \frac{7}{2}$$
.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 84. Trong các dãy số sau, dãy số nào là một cấp số nhân?

$$\bigcirc$$
 -2; -3; -4; -5; -6; -7;

$$(\mathbf{D})$$
 1; 2; 3; 4; 5; 6;

CÂU 85. Cho cấp số nhân (u_n) với $u_1 = 3$ và $u_2 = 6$. Công bội của cấp số nhân đã cho bằng

$$\bigcirc$$
 2.

$$\bigcirc \hspace{-3pt} \boxed{\frac{1}{2}}.$$

CÂU 86. Cho cấp số nhân (u_n) có $u_1=2$ và công bội q=2. Tính u_3 ?

(A)	u_3	=	18.
--------------	-------	---	-----

(B)
$$u_3 = 6$$
.

$$u_3 = 8.$$

(D)
$$u_3 = 4$$
.

CÂU 87. Cho cấp số nhân (u_n) thỏa mãn $u_1=3; u_5=48$. Công bội của cấp số nhân

(A) 2.

$$\bigcirc$$
 ± 2 .

$$\bigcirc$$
 -2

CÂU 88. Cho cấp số cộng (u_n) có $u_1 = -2$ và công sai d = 3. Số hạng tổng quát u_n của cấp số cộng là

(A) $u_n = -3n + 2$. **(B)** $u_n = 3n - 2$.

$$\mathbf{B} u_n = 3n - 2$$

$$\mathbf{C} u_n = 3n - 5.$$

$$\widehat{\mathbf{D}} u_n = -2n + 3.$$

CÂU 89. Cho cấp số cộng (u_n) với số hạng đầu u_1 và công sai d. Tìm số hạng tổng quát của (u_n) ?

(A) $u_n = u_1 + (n-1) d, n \ge 2.$

$$\mathbf{B}) u_n = u_1 \cdot d^n.$$

$$(\mathbf{C}) u_n = u_1 \cdot d^{n-1}.$$

$$(\mathbf{\overline{D}})u_n = u_1 + nd.$$

CÂU 90. Cho cấp số cộng (u_n) có $u_1 = -3$, $u_6 = 27$. Tính công sai d?

B)
$$d = 8$$
.

(C)
$$d = 6$$
.

(D)
$$d = 7$$
.

CÂU 91. Cho cấp số cộng (u_n) với $u_1 = 3$ và công sai d = 4. Số hạng thứ hai của cấp số cộng đã cho là

(**A**) 12.

(**B**) 10.

$$(\mathbf{D})$$
 -1

CÂU 92. Cho cấp số cộng (u_n) có $u_2 = 1$ và $u_3 = 3$. Giá trị của u_4 bằng

CÂU 93. Cho cấp số nhân (u_n) với $u_1=2$ và $u_2=-6$. Công bội của cấp số nhân đã cho bằng

 $(\mathbf{c}) - \frac{1}{3}$.

CÂU 94. Cho cấp số cộng (u_n) có $u_1 = 123$, $u_3 - u_{15} = 84$. Số hạng u_{17} bằng

 $(\mathbf{C}) 132$.

CÂU 95. Cho cấp số cộng với số hạng đầu $u_1 = -3$, số hạng cuối $u_n = 487$ và công sai d = 5. Hỏi cấp số cộng có bao nhiều số hạng?

CÂU 96. Cho cấp số nhân (u_n) với $u_2=2$ và $u_4=18$. Công bội của cấp số nhân đã cho bằng

(**A**) 16.

 \bigcirc $\frac{1}{0}$.

 (\mathbf{D}) 9.

CÂU 97. Cho cấp số nhân (u_n) với $u_1 = 3$ và $u_4 = -24$. Công bội của cấp số nhân đã cho bằng

 $(\mathbf{C}) - 8.$

CÂU 98. Cho cấp số nhân (u_n) có số hạng đầu $u_1=2$ và công bội q=3. Giá trị của u_6 bằng

(**B**) 1458.

(C) 243.

(**D**) 486.

CÂU 99. Cho cấp số nhân (u_n) có số hạng đầu $u_1=2$ và công bội q=3. Số hạng thứ 5 bằng

(B) 486.

(C) 162.

(**D**) 96.

CÂU 100. Cho cấp số nhân (u_n) có số hạng đầu $u_1=2$ và $u_6=486$. Công bội q bằng

(B) q = 5.

 \mathbf{C} $q = \frac{3}{2}$.

CÂU 101. Cho cấp số nhân (u_n) , biết $u_2 = 1$; $u_3 = 5$. Công bội q của cấp số nhân đã cho bằng

(**A**) 5.

(B) ± 4 .

(C) 4.

CÂU 102. Cho cấp số nhân (u_n) có $u_1=3$, công bội q=2. Ta có u_5 bằng

(**A**) 11.

(B) 48.

(C) 9.

CÂU 103. Cho cấp số nhân (u_n) , với $u_1 = -9$, $u_4 = \frac{1}{3}$. Công bội của cấp số nhân đã cho

bằng

(A) -

 $\bigcirc \frac{1}{3}$.

<u> </u>
QUICK NOTE

D. BẢNG ĐÁP ÁN

84. A 85. A	86. C	87. B	88. C	89. A	90. C	91. C
92. D 93. B	94. A	95. D	96. B	97. B	98. D	99. C
	100.A	101.A	102.B	103.A		

Bài 6. PHƯƠNG TRÌNH MẶT PHẮNG

A. KIẾN THỨC CẦN NHỚ

1. Phương trình mặt phẳng

- $oldsymbol{\Theta}$ Trong không gian, véc-tơ \overrightarrow{n} khác $\overrightarrow{0}$ là véc-tơ pháp tuyến của mặt phẳng (P) nếu giá của nó vuông góc với mặt phẳng (P). Hơn nữa với $k \neq 0$ ta cũng có $k\vec{n}$ cũng là một véc-tơ pháp tuyến của (P).
- $oldsymbol{\Theta}$ Trong không gian Oxyz. Đường thẳng (d) đi qua điểm $A(x_0;y_0;z_0)$ và nhận $\overrightarrow{n}=$ (a;b;c) làm véc-tơ pháp tuyến có phương trình tổng quát là

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

 \odot Trong không gian Oxyz. Phương trình

$$ax + by + cz + d = 0$$

 $(v\acute{o}i\ a,\ b,\ c\ không\ dồng\ thời\ bằng\ 0)$ là phương trình của một đường thẳng nào đó có véc-tơ pháp tuyến là $\vec{n} = (a; b; c)$.

2. Phương trình đường thẳng

- $oldsymbol{\Theta}$ Trong không gian, véc-tơ \overrightarrow{u} khác $\overrightarrow{0}$ là véc-tơ chỉ phương của đường thẳng d nếu giá của nó song song với đường thẳng d. Hơn nữa với $k \neq 0$ ta cũng có $k \vec{n}$ cũng là một véc-tơ chỉ phương của đường thẳng d.
- $oldsymbol{\Theta}$ Trong không gian Oxyz Đường thẳng d đi qua điểm $A(x_0;y_0;z_0)$ và nhận $\overrightarrow{u}=$ (a;b;c) làm véc-tơ chỉ phương có phương trình là

Phương trình tham số d: $\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$

Phương trình chính tắc d: $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ (với $abc \neq 0$).

B. BÀI TẬP MẪU

VÍ DU 6 (Đề minh hoa BGD 2022-2023). Trong không gian Oxyz, mặt phẳng (P): x + y + z + 1 = 0 có một véc-tơ pháp tuyến là

(A)
$$\overrightarrow{n_1} = (-1; 1; 1)$$
. (B) $\overrightarrow{n_4} = (1; 1; -1)$. (C) $\overrightarrow{n_3} = (1; 1; 1)$. (D) $\overrightarrow{n_2} = (1; -1; 1)$.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 104. Trong không gian Oxyz. Mặt phẳng (Oxy) có một véc-tơ pháp tuyến là

(A)
$$\vec{i} = (1;0;0)$$
. (B) $\vec{j} = (0;1;0)$. (C) $\vec{k} = (0;0;1)$. (D) $\vec{t} = (1;1;1)$.

B
$$\vec{j} = (0; 1; 0).$$

$$(\vec{c}) \vec{k} = (0; 0; 1).$$

(D)
$$\vec{t} = (1; 1; 1)$$

CÂU 105. Trong không gian Oxyz, cho mặt phẳng (P): 4x - 2y + z - 1 = 0. Véc-tơ nào dưới đây là một véc-tơ pháp tuyến của (P)?

B
$$\vec{n_4} = (4; 2; 1).$$

$$(\mathbf{c}) \vec{n_3} = (4; -2; 0).$$

$$\overrightarrow{\mathbf{D}}$$
 $\overrightarrow{n_2}(4;-2;1)$.

CÂU 106. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $(\alpha): 2x - y + 3z - 1 = 0$. Véc-to nào sau đây là véc-to pháp tuyến của mặt phẳng (α) ?

$$(\mathbf{A}) \ \vec{n} = (2; 1; 3).$$

(B)
$$\vec{n} = (-4:2:-6)$$

$$(\vec{c}) \vec{n} = (2; 1; -3)$$

B
$$\vec{n} = (-4; 2; -6)$$
. **C** $\vec{n} = (2; 1; -3)$. **D** $\vec{n} = (-2; 1; 3)$.

CÂU 107. Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Véc-tơ pháp tuyến của mặt phẳng (P) có tọa độ là

$$(A)$$
 $(-3;1;1).$

$$(\mathbf{B})$$
 (3; 0; -1).

$$(\mathbf{C})$$
 (3; -1; 1).

$$(\mathbf{D})$$
 (3; -1; 0).

CÂU 108. Trong không gian tọa độ Oxyz, mặt phẳng (Q): x-2y+5z+2023=0 có một véc-tơ pháp tuyến là

$$(\mathbf{A}) \vec{n_2} = (3; 6; 15).$$

B
$$\overrightarrow{n_3} = (-1; 2; 5).$$

$$(\mathbf{C}) \vec{n_1} = (-2; 4; -10).$$

$$(\vec{\mathbf{D}}) \vec{n_4} = (-2; 4; 10).$$

CÂU 109. Trong không gian Oxyz, mặt phẳng (P): 2x + y + 3z - 1 = 0 có một véc-tơ pháp tuyến là

(A)
$$\vec{n_3} = (2; 1; 3)$$
.

(B)
$$\overrightarrow{n_2} = (-1; 3; 2)$$
. **(C)** $\overrightarrow{n_4} = (1; 3; 2)$.

$$\mathbf{C} \overrightarrow{n_4} = (1; 3; 2)$$

$$(\mathbf{D}) \vec{n_1} = (3; 1; 2).$$

CÂU 110. Trong không gian với hệ trục tọa độ Oxyz, véc-tơ nào sau đây không phải véc-tơ pháp tuyến của mặt phẳng (P): x + 3y - 5z + 2 = 0?

$$(\mathbf{A}) \ \vec{n} = (2; 6; -10).$$

(B)
$$\vec{n} = (-2; -6; -10).$$

$$(\vec{\mathbf{C}}) \vec{n} = (-3; -9; 15).$$

$$(\mathbf{D}) \vec{n} = (-1; -3; -5).$$

CÂU 111. Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng nào sau đây nhận véc-tơ $\vec{n} = (2; 1; -1)$ làm véc-tơ pháp tuyến?

(A)
$$2x + y - z - 1 = 0$$
.

(B)
$$2x + y + z - 1 = 0$$
.

(c)
$$4x + 2y - z - 1 = 0$$
.

$$(\mathbf{D}) -2x - y - z + 1 = 0.$$

CÂU 112. Trong không gian Oxyz, cho mặt phẳng (P): $\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1$. Véc-tơ nào dưới đây là véc-tơ pháp tuyến của mặt phẳng (P)?

$$(\mathbf{A}) \ \vec{n} = (3; 2; 6).$$

B)
$$\vec{n} = (2; 3; 6)$$
.

$$(\vec{c}) \vec{n} = (3; 2; 1).$$

$$\vec{n} = (3; -2; -2).$$

CÂU 113. Trong không gian Oxyz, cho các điểm A(-1;1;3), B(2;1;0) và C(4;-1;5). Một véc-tơ pháp tuyến của mặt phẳng (ABC) có tọa độ là

B)
$$(-2;7;-2)$$
.

$$\bigcirc$$
 (16; -1; 6).

CÂU 114. Trong không gian Oxyz, véc-tơ nào dưới đây là véc-tơ chỉ phương của đường thẳng $d\colon \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{-1}$.

$$(\mathbf{A}) \ \overrightarrow{u_2} = (1; 1; 2).$$

B)
$$\overrightarrow{u_3} = (1; -1; 2)$$

(A)
$$\overrightarrow{u_2} = (1; 1; 2)$$
. **(B)** $\overrightarrow{u_3} = (1; -1; 2)$. **(C)** $\overrightarrow{u_4} = (2; 1; -1)$. **(D)** $\overrightarrow{u_1} = (2; 1; 1)$.

$$\overrightarrow{\mathbf{D}}$$
 $\overrightarrow{u_1} = (2; 1; 1)$

CÂU 115. Trong không gian với hệ tọa độ Oxyz, véc-tơ nào sau đây là một véc-tơ chỉ phương của đường thẳng $d: \frac{x}{2} = \frac{y+1}{-3} = \frac{z}{1}$?

A
$$\vec{u} = (1; -3; 2)$$
. **B** $\vec{u} = (2; 3; 1)$.

$$(\mathbf{B}) \ \vec{u} = (2; 3; 1)$$

$$\vec{\mathbf{C}}$$
 $\vec{u} = (2; -6; 1).$

©
$$\vec{u} = (2; -6; 1)$$
. **D** $\vec{u} = (4; -6; 2)$.

CÂU 116. Trong không gian Oxyz, cho đường thẳng d: $\begin{cases} x=1-2t\\ y=1+t & (t\in\mathbb{R}). \text{ Tìm tọa độ}\\ z=t+2 \end{cases}$

một véc-tơ chỉ phương của đường thẳng d.

$$\bigcirc$$
 (-2; 1; 1).

$$\bigcirc$$
 (2; -1; -2). \bigcirc (-2; 1; 2).

$$\bigcirc$$
 $(-2;1;2).$

CÂU 117. Trong không gian Oxyz, cho đường thẳng $\Delta : \frac{x+1}{3} = \frac{y-2}{2} = \frac{z+1}{1}$. Tìm tọa độ một véc-tơ chỉ phương của Δ .

$$(-1;2;-1).$$

B
$$(1; -2; 1)$$
.

$$\bigcirc$$
 (3; -2; -1).

$$\bigcirc$$
 $(-3; 2; 0)$

CÂU 118. Trong không gian Oxyz, cho đường thẳng d: $\begin{cases} x=2\\ y=3+4t \ (t\in\mathbb{R}). \text{ Véc-tơ nào} \end{cases}$

dưới đây là một véc-tơ chỉ phương của đường thẳng d?

$$(\mathbf{A}) \ \overrightarrow{u_2} = (2; 3; 5).$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{u_3} = (0; 4; -1).$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{u_1} = (2; 4; -1).$

$$\overrightarrow{\mathbf{D}}$$
 $\overrightarrow{u_4} = (2; -4; -1).$

•																

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																	•	•	•	•		•	•										

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

						_
သ		\sim		N	\frown	
71	U I	v.	Κ.	N	u	

CÂU 119. Trong không gian Oxyz, cho đường thẳng (Δ) có phương trình $\frac{x-1}{2} = \frac{y+2}{3} =$

 $\frac{z+1}{-1}$. Véc-tơ chỉ phương của đường thẳng là

(A) $\vec{u} = (2; 3; -1)$.

(B) $\vec{u} = (2; 3; 1).$

 $(\mathbf{C}) \ \vec{u} = (-2; 3; -1).$

 $(\mathbf{D}) \vec{u} = (-2; -3; -1).$

CÂU 120. Trong không gian Oxyz, đường thẳng $d: \frac{x-1}{3} = \frac{y-5}{2} = \frac{z+2}{-5}$ có một véc-tơ

- chỉ phương là
- (A) $\vec{u} = (1; 5; -2)$. (B) $\vec{u} = (3; 2; -5)$. (C) $\vec{u} = (-3; 2; -5)$. (D) $\vec{u} = (2; 3; -5)$.

CÂU 121. Trong không gian Oxyz, cho đường thẳng $d: \frac{x+2}{1} = \frac{y-1}{-3} = \frac{z+1}{2}$. Véc-tơ nào sau đây là một véc-tơ chỉ phương của đường thẳng d?

(A) $\overrightarrow{u_1} = (-2; 1; -1).$

(B) $\overrightarrow{u_1} = (1; -3; 2).$

 $(\mathbf{C}) \overrightarrow{u_3} = (-1; -3; 2).$

 $(\mathbf{D}) \vec{u_4} = (1; 3; -2).$

CÂU 122. Trong không gian Oxyz, đường thẳng d song song với đường thẳng $\Delta : \frac{x+2}{1} =$ $\frac{y+1}{-2} = \frac{z-3}{1}$ có véc-tơ chỉ phương là

- (A) $\vec{u} = (1; -2; 1)$. (B) $\vec{u} = (-1; -3; 4)$. (C) $\vec{u} = (-2; -1; 3)$. (D) $\vec{u} = (0; -2; 3)$.

CÂU 123. Trong không gian Oxyz, cho đường thẳng $d: \frac{x-1}{5} = \frac{y-2}{-8} = \frac{z+3}{7}$. Véc-tơ nào sau đây là một véc-tơ chỉ phương của d?

(A) $\overrightarrow{u_3} = (1; 2; -3).$

(B) $\overrightarrow{u_4} = (7; -8; 5).$

 $(\mathbf{C}) \vec{u_1} = (-1; -2; 3).$

 $(\mathbf{D}) \vec{u_3} = (5; -8; 7).$

D. BẢNG ĐÁP ÁN

104.C	105.D	106.B	107.B	108.C	110.B	111.A	112.B
113.A	114.C	115.D	116.A	117.C	118.B	119.A	120.B
		121	.B 12	2.A 123	B.D		

Bài 7. BÀI TOÁN LIÊN QUAN ĐẾN GIAO ĐIỂM GIỮA CÁC ĐÔ THI

A. KIẾN THỨC CẦN NHỚ

1. Số giao điểm của hai đồ thi

- $oldsymbol{\Theta}$ Muốn tìm số giao điểm giữa đồ thị hàm y = f(x) và đường thẳng y = a ta chỉ việc vẽ đường thẳng y=a (là đường thẳng song song với trực Ox và đi qua điểm có tọa độ (0;a)) và xác định số giao điểm.
- \odot Chú ý: Phương trình của trục hoành (hay trục Ox) là y=0.
- \bullet Cho hai hàm số y = f(x) và y = g(x), khi đó số giao điểm giữa hai đồ thị hàm số trên bằng số nghiệm của phương trình hoành độ giao điểm f(x) = g(x).
- $oldsymbol{\Theta}$ Trường hợp đề cho bảng biến thiên của hàm y=f(x), để biểu diễn đường y=ata vẽ một đường ngang sao cho hợp lí với đề bài.

2. Tìm giao điểm của hai đồ thi

- ② Dưa vào đồ thi để tìm tao đô giao điểm.
- ❷ Tìm nghiêm của phương trình hoành đô giao điểm, ta được hoành đô của giao điểm sau đó thay vào hàm số để tìm tung đô.
- $oldsymbol{\Theta}$ Muốn tìm nghiệm của phương trình f(u(x)) = a, ta đi giải phương trình $u(x) = x_0$ (trong đó x_0 là nghiệm của phương trình f(x) = a).

$\mathbf{B.} \ \ \mathbf{B} \mathbf{\hat{A}} \mathbf{I} \, \mathbf{T} \mathbf{\hat{A}} \mathbf{P} \, \mathbf{M} \mathbf{\tilde{\hat{A}}} \mathbf{U}$

VÍ DỤ 7 (Đề tham khảo BGD 2023).

 Cho hàm số $f(x) = \frac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số với trục hoành là

- (0;-2).
- **B**) (2; 0).
- $(\mathbf{C})(-2;0).$
- (0; 2).

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 124.

Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình bên. Phương trình 3f(x) + 4 = 0 có tất cả bao nhiêu nghiệm?

- **(A)** 3.
- **(B)** 0.
- $(\mathbf{C}) 1.$

CÂU 125.

Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình bên. Phương trình 2f(x) - 5 = 0 có tất cả bao nhiêu nghiệm?

- **(A)** 3.
- $(\mathbf{C}) 1.$

CÂU 126.

Cho hàm số $f(x) = ax^4 + bx^2 + c$ có đồ thị như hình bên. Số nghiệm thực của phương trình 4f(x) - 3 = 0

- (**A**) 4.

- $(\mathbf{D}) 0.$

Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình bên. Số nghiệm thực của phương trình $f(x^2) = -2$ là

(A) 3.

B 4.

 (\mathbf{C}) 0.

 \bigcirc 2.

CÂU 128.

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ có đồ thị như hình bên. Phương trình $f(x^2-2)=3$ có tất cả bao nhiêu nghiệm?

A 3.

B) 2.

 \bigcirc 1.

 \bigcirc 4.

CÂU 129. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

Số nghiệm của phương trình 2f(x) + 3 = 0 là

 \bigcirc 4.

(B) 3.

 (\mathbf{C}) 2.

 \bigcirc 1.

CÂU 130. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

x	$-\infty$	-2	ę	3	$+\infty$
y'	+	-	_	+	
y	$-\infty$				+∞

Số nghiệm thực của phương trình 2f(x) - 3 = 0 là

A 2.

 (\mathbf{B}) 1.

(c) 3.

 \bigcirc 4.

CÂU 131. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

Số nghiệm của phương trình 2f(x) - 3 = 0 là

- **A** 4.
- **B** 3.
- \bigcirc 2.
- \bigcirc 1.

CÂU 132. Cho hàm số y = f(x) có bảng biến thiên nhu hình vẽ.

x	$-\infty$		-1		3		$+\infty$
y'		+	0	_	0	+	
y	2		5				+∞

Phương trình f(x) - 2 = 0 có bao nhiều nghiệm?

- \bigcirc 1.
- **(B)** 3.
- (\mathbf{C}) 2.
- \bigcirc 0.

CÂU 133.

Cho hàm số $f(x) = \frac{ax+b}{cx+d}$ có đồ thị như hình bên.

Tìm tọa độ giao điểm của đồ thị hàm số bên với đường thẳng y=-1.

- (A)(0;1).
- **B** (0; -1).
- (C) (-1;-1).
- $(\mathbf{D})(-1;0).$

CÂU 134. Giao điểm của đồ thị hàm số $y=\frac{2x+1}{x+1}$ với trục hoành là điểm

- $\bigcirc Q(-1;0).$
- **D** M(0;1).

CÂU 135. Cho hàm số $y=x^3-3x$ có đồ thị (C). Tìm số giao điểm của (C) và trục hoành.

- **(A)** 3.
- **B**) 1.
- **C** 0.
- **D** 2.

CÂU 136. Đồ thị hàm số $y = (x^2 - 1)(x^2 + 1)$ cắt trục hoành tại bao nhiêu điểm phân biệt?

- (A) 1.
- \bigcirc 2.
- $\bigcirc 0.$
- **D** 4.

CÂU 137. Đường thẳng y=x-1 cắt đồ thị hàm số $y=x^3-x^2+x-1$ tại hai điểm phân biệt. Tìm tổng tung độ các giao điểm đó.

- **A** 2.
- **B** -1.
- \bigcirc -3.
- $\bigcirc 0.$

CÂU 138. Tính tổng hoành độ của các giao điểm của đồ thị hàm số $y = \frac{5x+6}{x+2}$ và đường thẳng y = -x.

- (\mathbf{A}) -5.
- **B**) -7.
- **(C**) 5.
- **D** 7.

വ്വ	CK	N	ΩТ	
	CK	14	vi	-

CÂU 139. Đồ thị của hàm số $y = 4x^4 - 2x^2 + 1$ và đồ thị của hàm số $y = x^2 + x + 1$ có tất cả bao nhiêu điểm chung?

 \bigcirc 4.

B 1.

 $(\mathbf{C}) 2.$

(D) 3.

CÂU 140. Trong các điểm sau điểm nào là giao điểm của đồ thị hàm số $y=x+\frac{2}{x-1}$ và đường thẳng y=2x.

(2;-4).

B (-2; -2).

 (\mathbf{C}) (-1; 2).

 \bigcirc (2; 4).

CÂU 141. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

Tìm số nghiệm thực của phương trình f(x) - 1 = 0?

A 3.

 \bigcirc 1.

 \bigcirc 2.

 \bigcirc 0.

CÂU 142.

Cho hàm số y=f(x) có đồ thị trong hình bên. Phương trình f(x)-1=0 có bao nhiều nghiệm thực phân biệt nhỏ hơn 2?

(A) 1.

B 2.

(C) 3.

 \bigcirc 0.

CÂU 143.

Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình bên. Phương trình 3f(x) - 2 = 0 có bao nhiêu nghiệm lớn hơn 1?

(A) 3.

 (\mathbf{B}) 0.

 \bigcirc 1.

D 2.

D. BẢNG ĐÁP ÁN

124.A	125.C	126.A	127.D	128.D	129.A	130.C	131.C
132.C	133.B	134.A	135.A	136.B	137.B	138.B	139.D
		140.D	141.A	142.B	143.C		

Bài 8. TÍNH CHẤT TÍCH PHÂN

A. KIẾN THỰC CẦN NHỚ

1. Định nghĩa

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b], hiệu số F(b)-F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a;b]) của hàm số f(x).

Kí hiệu $\int f(x) dx$.

2. Các tính chất

$$\oint_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(u) du = \dots$$

$$\oint_a^b f(x) dx = -\int_b^a f(x) dx.$$

$$\oint_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

$$\label{eq:definition} \mbox{\Large \Theta} \ \int^b f(x) \mathrm{d}x = \int^c f(x) \mathrm{d}x + \int^b f(x) \mathrm{d}x \ (\text{v\'oi} \ a < b < c).$$

B. BÀI TẬP MẪU

VÍ DỤ 8 (Đề minh họa BGD 2022-2023). Nếu $\int_{-1}^{1} f(x) dx = 2 \text{ và } \int_{-1}^{1} g(x) dx = 3 \text{ thì}$

 $\int [f(x) + g(x)] dx \text{ bằng}$

 (\mathbf{C}) 1.

(D) 7.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 144. Biết $\int f(x) dx = \frac{1}{3}$ và $\int g(x) dx = \frac{4}{3}$. Khi đó $\int [f(x) - g(x)] dx$ bằng

CÂU 145. Cho $I = \int_{-\infty}^{\infty} f(x) dx = 4$, $J = \int_{-\infty}^{\infty} g(x) dx = 3$. Khi đó $K = \int_{-\infty}^{\infty} [4f(x) - 3g(x)] dx$

bằng

(A) 4.

(C) 7.

(D) 8.

QUICK NOTE

•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	
	•																																	

P P				🕜 TỔNG ÔN THPTQG 2023
QUICK NOTE	CÂU 146. Cho	hàm số $y = f(x)$ liên	tục trên $[a;b]$, nếu $\int\limits_{-\infty}^{d}$	$f(x)dx = 5$ và $\int_{0}^{d} f(x)dx = 2$
		h	$\stackrel{J}{a}$	$\stackrel{J}{b}$
	với $a < d < b $ thì	$\int f(x) dx$ bằng		
	707 @ (@ (0 0111			
	(A) 10.	B) 3.	(C) 7.	\bigcirc $\frac{5}{2}$.
		<u> </u>	0	2
	dây sai?	ham so $f(x)$, $g(x)$ lie	n tục trên K và a, b, c	thuộc K . Công thức nào sau
	h	<i>b</i> С	ь С	
	$\int [f(x) +$	$g(x)$] $dx = \int_{-\infty}^{\infty} f(x) dx$	$+\int g(x)\mathrm{d}x.$	
		a	a	
	$(\mathbf{B}) \int k f(x) dx$	$x = k \int_{0}^{x} f(x) dx.$		
	a	a		
	$ \bigcirc \int_{a}^{b} f(x) dx $	\int_{-a}^{a}		
	$\int f(x) dx$	$=\int f(x)\mathrm{d}x.$		
	$\int f(x) dx$	$+ \int_{c}^{c} f(x) dx = \int_{c}^{c} f(x)$	$\mathrm{d}x.$	
	$\begin{bmatrix} & J & \\ & a & \end{bmatrix}$	$egin{array}{ccc} J & & J \ b & & a \end{array}$		
		$\begin{pmatrix} 0 & 1 & f \end{pmatrix}$		f
	CÂU 148. Cho	$\int f(x) dx = 3 \text{ và } \int g(x) dx$	(x)dx = -4. Giá trị của	$\int_{0}^{1} \left[f(x) - 2g(x) \right] \mathrm{d}x \text{ bằng}$ $\mathbf{D} 5.$
	A 11	1 0	6 1	0
	A) 11.	B) 7.	(−1.	ە. م
			$\boldsymbol{\mathcal{L}}$	-3 và $\int_{0}^{3} f(x) dx = 4$. Khi đó
	CAU 149. Cho	$\lim so y = f(x) th$	oa man $\int_{1}^{1} f(x) dx = -$	-5 va $\int_{2}^{1} f(x) dx = 4$. Kin do
	3		1	2
	$\int f(x) dx$ bằng			
	1	(a) 10	(a) 1	<u> </u>
	(A) 12.	B -12 .	© 1.	(D) 7.
	CÂU 150 Diất	$\int_{-1}^{1} f(x) dx = 2 \text{ leh; } dx$	$\int_{1}^{1} [4m - 2f(m)] dm h \delta m$	
	CAU 150. Blet	$\int_{0}^{\infty} f(x) dx = 3, \text{ km do}$	$\int_{0}^{1} \left[4x - 3f(x)\right] dx \text{ bằn}$ $\bigcirc -5.$	g
	\bigcirc	(\mathbf{B}) -7 .	\mathbf{C} -5 .	(D) 11.
	CÂU 151. Biết	$\int f(x) dx = 2$, $\int g(x) dx = 2$	$dx = -4. \text{ Khi d\'o } \int_{0}^{1} [f]$	(x) + 2g(x) dx bằng
				-
	\bigcirc -6.	B 6.	\bigcirc -2.	D 2.
	CÂU 152. Cho	hai số thực a; b tùy ý	f, $F(x)$ là một nguyên h	àm của hàm số $f(x)$ trên tập
	R. Mệnh đề nào		,	• • • • • • • • • • • • • • • • • • • •
	$\int_{a}^{b} f(x) dx$	= E(b) E(c)	$\bigcap_{b} \int_{a}^{b} f(x) dx$	-F(a) $F(b)$
	$\int_{C} \int_{C} f(x) dx$	= F(b) - F(a).	$\int_{a}^{b} \int_{a}^{b} f(x) dx$	= F(a) - F(b).
	b 6		- b	
	$\int f(r)dr$	= F(b) + F(a).	$(\mathbf{D}) \int f(r) dr$	= f(b) - f(a).

$$\mathbf{A} \int_{a}^{b} f(x) dx = F(b) - F(a).$$

$$\mathbf{B} \int_{a}^{b} f(x) dx = F(a) - F(b)$$

$$\mathbf{C} \int_{a}^{b} f(x) dx = F(b) + F(a).$$

$$\mathbf{D} \int_{a}^{b} f(x) dx = f(b) - f(a).$$

CÂU 153. Cho $\int_{-1}^{2} f(x) dx = 2$ và $\int_{-1}^{2} g(x) dx = -1$. Giá trị của $\int_{-1}^{2} \left[2f(x) + 3g(x) \right] dx$ bằng **(A)** -7. **(B)** 1.

$$\bigcirc$$
 -7.

CÂU 154. Nếu $\int_{-1}^{3} f(x) dx = 2$ và $\int_{-1}^{3} g(x) dx = -1$ thì $\int_{-1}^{3} [f(x) - g(x)] dx$ bằng

(A) 3.

(B) 4.

 $(\mathbf{C}) - 3.$

(**D**) -1.

CÂU 155. Cho $\int f(x) dx = 2$ và $\int g(x) dx = 5$, khi đó $\int [3f(x) - 2g(x)] dx$ bằng:

(A) 11.

(C) 16.

CÂU 156. Nếu $\int f(x) dx = 3$ và $\int g(x) dx = -2$ thì $\int [f(x) - g(x)] dx$ bằng

(A) 5.

CÂU 157. Cho hàm số f(x) liên tục trên $\mathbb R$ và có $\int f(x) \mathrm{d} x = 9; \int f(x) \mathrm{d} x = 4.$ Tính

 $I = \int f(x) \mathrm{d}x.$

B $I = \frac{9}{4}$.

(c) I = 36.

(D) I = 13.

CÂU 158. Cho $\int_{0}^{x} f(x) dx = -4$ và $\int_{0}^{x} f(x) dx = 2$. Khi đó $\int_{0}^{1} f(x) dx$ bằng

(**D**) -6.

CÂU 159. Cho f(x), g(x) là các hàm số liên tục trên \mathbb{R} . Trong các mệnh đề sau, mệnh đề

 $(\mathbf{B}) \int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx.$

CÂU 160. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [2;4] và thỏa mãn f(2)=2, f(4) = 2020. Tính $I = \int f'(2x) dx$.

(A) I = 1009.

(B) I = 2018.

(**c**) I = 2022.

(D) I = 1011.

CÂU 161. Cho $\int f(x) \mathrm{d}x = 18$. Khi đó $\int [5-2f(x)] \, \mathrm{d}x$ bằng

CÂU 162. Cho $\int f(x) dx = 3$ và $\int g(x) dx = 7$, khi đó $\int [f(x) + 3g(x)] dx$ bằng

(A) 10.

(B) 16.

(C) -18.

(D) 24.

CÂU 163. Cho $\int f(x) dx = 5$, $\int f(u) du = 2$ và $\int g(x) dx = 3$. Tính $I = \int [f(x) + g(x)] dx$

(A) I = 5.

(B) I = 10.

(D) I = 6.

D. BẢNG ĐÁP ÁN

144.B	145.C	146.B	147.C	148.D	149.C	150.B		
152.A	153.B	154.A	155.B	156.A	157.D	158.D	159.A	
		160 A	161 A	162 D	162 D			

QUICK NOTE

വി		Ν	\triangle T	
710	II K		OI	

Bài 9. NHẬN DẠNG ĐỒ THỊ HÀM SỐ

A. KIẾN THỨC CẦN NHỚ

1. Hàm số bậc 3: $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$

Trường hợp	a > 0	a < 0
$y'=0$ có 2 nghiệm phân biệt $(b^2-3ac>0)$	$x \rightarrow x$	
$y'=0$ có nghiệm kép hoặc vô nghiệm $(b^2-3ac\leq 0)$	$x \rightarrow x$	y \

2. Hàm số trùng phương $y = ax^4 + bx^2 + c \ (a \neq 0)$

- 1				
	Trường hợp	a > 0	a < 0)
	Phương trình $y'=0$ có 3 nghiệm phân biệt $(a.b<0)$			\overrightarrow{x}
	Phương trình $y'=0$ có 1 nghiệm $(a.b\geq 0)$			\overrightarrow{x}

B. BÀI TẬP MẪU

VÍ DU 9 (De Tham khao BGD 2023).

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên

(a)
$$y = x^4 - 3x^2 + 2$$
.
(b) $y = \frac{x-3}{x-1}$.
(c) $y = x^2 - 4x + 1$.
(d) $y = x^3 - 3x - 5$.

B
$$y = \frac{x-3}{x-1}$$
.

(c)
$$y = x^2 - 4x + 1$$
.

$$(\mathbf{D}) y = x^3 - 3x - 5.$$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 164. Đồ thị hàm số $y = -x^4 + 2x^2$ là hình nào sau đây?

Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây?

B
$$y = x^3 - 3x^2 - 1$$
.

(D)
$$y = \frac{x+1}{x-1}$$
.

CÂU 166.

Đồ thị sau đây là của hàm số nào?

$$(\mathbf{A}) y = -x^3 + 3x^2 + 1.$$

B
$$y = x^3 - 3x + 1$$
.

©
$$y = -x^3 - 3x^2 - 1$$
. **D** $y = x^3 - 3x - 1$.

$$\mathbf{D} \ y = x^3 - 3x + 1.$$

$$\mathbf{D} \ y = x^3 - 3x - 1.$$

CÂU 167.

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

(A)
$$y = x^3 - 3x - 1$$
.
(C) $y = -x^3 - 3x - 1$.

(B)
$$y = x^4 - 3x^2 - 1$$
.

$$\mathbf{C}$$
 $y = -x^3 - 3x - 1$.

B
$$y = x^4 - 3x^2 - 1$$
.
D $y = -x^4 + x^2 - 1$.

CÂU 168.

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

(A)
$$y = -x^3 + 3x^2$$
.

(B)
$$y = x^4 + 2x^2$$
.

$$(\hat{\mathbf{C}}) y = x^3 - 3x^2.$$

$$(\mathbf{D}) y = -x^4 + 2x^2.$$

CÂU 169.

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

B
$$y = -x^4 + 2x^2 + 1$$
.
D $y = x^3 - 3x + 1$.

$$(\mathbf{c}) y = -x^3 + 3x + 1.$$

(D)
$$y = x^3 - 3x + 1$$
.

CÂU 170.

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

(B)
$$y = x^3 - x^2 + 2$$
.

$$(\mathbf{C}) y = x^3 - x + 2.$$

$$(\mathbf{D}) y = -x^4 + x^2 + 2.$$

CÂU 171.

Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới

$$\mathbf{A} \quad y = \frac{x-2}{x+1}.$$

$$\mathbf{C} \quad y = \frac{x+2}{x-2}.$$

B
$$y = \frac{x+2}{x-1}$$
.
D $y = \frac{x-2}{x-1}$.

QUICK NOTE

CÂU 172. Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới

B
$$y = \frac{2x+1}{x+1}$$
.

$$\mathbf{C} \ y = \frac{x+1}{2x+1}.$$

CÂU 173.

Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây?

$$\mathbf{D} y = -x^4 + 2x^2 + 1.$$

CÂU 174.

Đồ thị của hàm số nào dưới đây có dạng đường cong như hình vẽ?

B
$$y = x^3 - 3x^2 + 2$$
.

Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây?

(A)
$$y = \frac{x-1}{x+1}$$
.

$$\mathbf{\hat{A}} \ y = \frac{x-1}{x+1}.$$

$$\mathbf{\hat{C}} \ y = \frac{2x+1}{x+1}.$$

$$\mathbf{B} \ y = \frac{x+2}{x+1}.$$

$$\mathbf{D} \ y = \frac{x+3}{1-x}.$$

CÂU 176.

Đồ thị sau đây là của hàm số nào?

$$(\mathbf{A}) y = x^3 + 3x^2.$$

(A)
$$y = x^3 + 3x^2$$
.
(C) $y = x^3 - 3x^2$.

B
$$y = x^3 + 3x$$
.

CÂU 177.

Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây?

B
$$y = x^4 + x^2 + 1$$
.

CÂU 178.

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

B
$$y = x^4 - 3x^2 + 1$$

$$\mathbf{C}$$
 $y = x^3 - 3x + 1$.

CÂU 179.

Hình vẽ bên là đồ thị của hàm số nào?

(B)
$$y = x^4 - 2x^2 + 3x^2$$

(A)
$$y = x^3 - 3x + 1$$
.
(B) $y = x^4 - 2x^2 + 3$.
(C) $y = x^3 - 3x^2 + 3x + 1$.
(D) $y = -x^3 - 3x^2 - 1$.

$$() y = -x^3 - 3x^2 - 1$$

CÂU 180. Hàm số nào sau đây có bảng biến thiên như hình dưới?

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		× ² \		* -2		$+\infty$

B $y = -x^3 + 3x$. **D** $y = x^3 - 3x$.

CÂU 181. Hàm số nào sau đây có bảng biến thiên như hình dưới?

x	$-\infty$		-1		1		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	+∞		\		<i>4</i> \		8

- (A) $y = x^4 2x^2 3$.
- **©** $y = x^3 3x + 4$.

- **(B)** $y = -x^3 + 3x + 2$. **(D)** $y = \frac{x-1}{2x-1}$.

CÂU 182. Hàm số nào sau đây có bảng biến thiên như hình dưới?

(A) $y = 2|x^3| - 3x^2 - 3.$

 $(\mathbf{C}) y = 2|x^3| - 3|x| - 3.$

CÂU 183. Hàm số nào sau đây có bảng biến thiên như hình dưới?

x	-∞ -	-1 $+\infty$
f'(x)	_	_
f(x)	-2 $-\infty$	$-\infty$ -2

- **(A)** $y = \frac{-2x+3}{x+1}$. **(B)** $y = \frac{-2x-4}{x+1}$. **(C)** $y = \frac{x-4}{2x+2}$. **(D)** $y = \frac{2-x}{x+1}$.

D. BẢNG ĐÁP ÁN

164.B	165.D	166.B	167.A	168.D	169.C	170.A	171.D
172.D	173.C	174.D	175.C	176.C	177.A	178.C	179.C
		180.D	181.B	182.A	183.A		

Bài 10. PHƯƠNG TRÌNH MẶT CẦU

UICK NOTE	A. KIẾN THỨ (C CẦN NHỚ			
	⊘ Mặt cầu (S): (:	$(x-a)^2 + (y-b)^2 + (z^2)^2$	$(-c)^2 = R^2$ có tâm I	(a;b;c), bán kính R .	
	. , , ,	, (0	,	, , ,	
	Mạt cau (S) : x tâm $I(a;b;c)$, b	$z^2 + y^2 + z^2 - 2ax - 2b$ án kính $R = \sqrt{a^2 + b^2}$	$\frac{y - 2cz + d}{+c^2 - d}.$	$a^2 + b^2 + c^2 - d > 0$) có	
	B. BÀI TẬP MÁ	AU			
	VÍ DU 10 (Đề minl	n hoa BGD 2022-20)23). Trong không gi	ian $Oxyz$, cho mặt cầu	
	. ,	x - 4y - 6z + 1 = 0. T	_ ` '		
	(A) $(-1; -2; -3)$.	B $(2;4;6)$.	(\mathbf{C}) $(-2; -4; -6).$	(D) $(1;2;3)$.	
	C. BÀI TẬP TU	PONC TIPVÀ D	LI ÁT TDIỂN		_
	_	•		. 2 4 . 0 . 10 . 0	0
I .	CAU 184. Irong knor là	ig gian $Oxyz$, tam cua	mạt cau (S) : x^2+y^2	$+z^2 - 4x + 2y + 6z - 2 = 0$	J
	A $B(-2;1;3)$.	B $D(2;-1;-3)$.	\bigcirc $A(-4;2;6).$	D $C(4; -2; -6)$.	
			cầu (S) : $x^2 + y^2 + z^2$	$x^2 - 2x + 6y - 8z - 10 = 0$	١.
	Bán kính R của mặt cầ	` '			
	•				
			$(S): (x+4)^2 + (y-5)^2$	$(5)^2 + (z+6)^2 = 9$ có tân	1
	và bán kính lần lượt là \mathbf{A} $I(4; -5; 6), R =$		B) $I(-4:5:-6)$. B	R = 81.	
	I(4; -5; 6), R =		B $I(-4;5;-6)$, R D $I(-4;5;-6)$, R	R=3.	
	CÂU 187. Trong khôi	ng gian <i>Oxuz</i> , cho mă		$(y+3)^2 + (z-4)^2 = 4$	·.
	Tìm tọa độ tâm I và b				
	I(1; -3; 4), R =		B $I(-1;3;-4), R$	R=4.	
	$(\mathbf{C}) I(-1;3;-4), R =$	=2.	$lackbox{D} I(1; -3; 4), R =$	= 2.	
		ng gian $Oxyz$, mặt cầu	$x(S): x^2 + y^2 + z^2 - z^2$	2x + 4y - 2z - 10 = 0 co	5
	bán kính bằng A 6.	B) 3.	© 4.	(D) 5.	
	_		<u> </u>		
	CAU 189. Trong khôi Tâm của (S) có tọa độ		t cau (S): $(x-2)^2 +$	$(y+4)^2 + (z-1)^2 = 9$	•
	(2; 4; 1).		\bigcirc $(-2;4;-1).$	\bigcirc (2; -4; 1).	
	CÂU 190. Trong khôi	ng gian $Oxuz$, cho mặt	$z \text{ cầu } (S): x^2 + u^2 + z^2$	$x^2 - 4x + 6y - 8z - 3 = 0$	١.
	Tâm của (S) có tọa độ	là			
	A $(4; -6; 8)$.	B $(2; -3; 4)$.	© $(-4;6;-8)$.	(D) $(-2;3;-4)$.	
		ng gian $Oxyz$, mặt cầu	$(S): (x+1)^2 + (y-2)^2$	$(2)^2 + (z+3)^2 = 4$ có tân	n
	và bán kính lần lượt là	9	D 1/1 0.0\ D	0	
	(A) $I(-1;2;-3)$, $R =$ (C) $I(1;-2;3)$, $R =$		(B) $I(1; -2; 3), R =$ (D) $I(-1; 2; -3), R$		
	•		<u> </u>		
	CAU 192. Trong khôi của (S) có tọa độ là	ng gian $Oxyz$, cho mặ	t cau (S) : $(x-1)^2 +$	$(y-2)^2 + z^2 = 16$. Tân	.1
		B $(-1;2;0)$.	\bigcirc $(-1; -2; 0).$	\bigcirc (1; 2; 0).	
				$\int_{0}^{2} -2x - 4y - 6z - 2 = 0$).
	Tọa độ tâm I của mặt	cầu (S) là			•
	A $I(2;4;6)$.	B $I(-2; -4; -6)$.	\bigcirc $I(1;2;3).$	D $I(-1;-2;-3)$.	
			t cầu (S) : $(x+3)^2 +$	$(y+1)^2 + (z-1)^2 = 2$	١.
	Xác định tọa độ tâm c	ủa mặt cầu (S) .	_	_	
	$(\mathbf{A}) (-3; -1; 1).$	B) $(3:-1:1)$.	(C)(-3:1:-1)	(D) $(3:1:-1)$.	

CÂU 195. Trong không gian Oxyz, cho mặt cầu $(S): (x-1)^2 + (y+2)^2 + (z-3)^2 = 9$. Tâm I và bán kính R của mặt cầu là

(A) I(1;2;3), R=3.

(B) I(-1;2;-3), R=3.

(**C**) I(1;-2;3), R=3.

(D) I(1;2;-3), R=3.

CÂU 196. Trong không gian Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 6x + 4y - 8z + 4 = 0$. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).

(A) I(-3;2;-4), R=5.

- **(B)** I(3; -2; 4), R = 5.
- (C) I(-3;2;-4), R=25.

(D) I(3;-2;4), R=25.

CÂU 197. Trong không gian Oxyz, tâm của mặt cầu (S): $x^2 + y^2 + z^2 + 2x - 4y + 6z - 1 = 0$ có tọa độ là

- (A) (1; -2; 3).
- (B) (2; -4; 6).
- (\mathbf{C}) (-2; 4; -6).

CÂU 198. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 4y + 1 = 0$. Tâm của mặt cầu (S) có tọa độ là

- (A) (-1; 2; 0).
- **(B)** (2;-1;0).
- (\mathbf{C}) (1: -2: 0).
- $(\mathbf{D})(-2;1;0).$

CÂU 199. Trong không gian Oxyz, cho mặt cầu (S) có phương trình (S): $x^2 + y^2 + z^2 +$ 4x - 4y + 8z = 0. Tìm toa đô tâm I và bán kính R.

- (A) $I(2;-2;4), R=2\sqrt{6}$.
- **(B)** I(-2;2;-4), R=24.

(**c**) I(2; -2; 4), R = 24.

(D) I(-2;2;-4), $R=2\sqrt{6}$.

CÂU 200. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 4y - 6z - 12 = 0$, gọi I(a;b;c) là tâm của mặt cầu (S). Tính T=a+b-c.

CÂU 201. Trong không gian Oxyz, tâm I của mặt cầu (S): $x^2 + y^2 + z^2 - 8x - 2y + 1 = 0$ có tọa độ là

- (A) I(4;1;0).
- **B**) I(4;-1;0).
- (\mathbf{C}) (-4; 1; 0).
- $(\mathbf{D})(-4;-1;0).$

CÂU 202. Trong không gian Oxyz, cho mặt cầu $(S): (x-1)^2 + (y+2)^2 + (z+3)^2 = 16$. Toa đô tâm I của (S) là

- (A) I(-1; -2; -3).
- **B**) I(-1;2;3).
- **(C)** I(1;-2;-3). **(D)** I(1;-2;3).

CÂU 203. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x - 4y + 6z + 10 = 0$ có bán kính R bằng

- $(\mathbf{A}) R = 1.$
- **(B)** R = 2.
- (**C**) R = 3.
- $(\mathbf{D}) R = 4.$

D. BẢNG ĐÁP ÁN

184.B	185.D	186.D	187.D	188.C	189.D	190.B	191.A
192.D	193.C	194.A	195.C	196.B	197.D	198.C	199.D
		200.B	201.Δ	202.C	203.B		

Bài 11. GÓC GIỮA HAI MẶT PHẨNG

A. KIẾN THỰC CẦN NHỚ

lacksquare Trong không gian Oxyz, cho hai mặt phẳng $(P): a_1x + b_1y + c_1z + d_1 = 0$ và (Q): $a_2x + b_2y + c_2z + d_2 = 0$. Khi đó

$$\cos\left((P),(Q)\right) = \left|\cos\left(\overrightarrow{n}_{(P)},\overrightarrow{n}_{(Q)}\right)\right| = \frac{|a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}.$$

Y Luu ý: $0^{\circ} \leq ((P), (Q)) \leq 90^{\circ}$.

QUICK NOTE	B. BÀI TẬP N	МÃ̂U		
			- 2023). Trong không	g gian $Oxyz$, góc giữa hai
	mặt phẳng (Oxy)	` ~ ~	600	000
	(A) 30°.	(B) 45°.	© 60°.	D 90°.
	C. BAITAPT	TƯƠNG TỰ VÀ	PHATTRIEN	
				: x - 2y - z + 1 = 0 và
	1 ' ' ' _ '	= 0. Tính góc giữa ha		1200
	A 30°.	B 60°.	© 45°.	D 120°.
			mặt phẳng (P) : $x-z$	-3 = 0. Tính góc giữa (P)
	và mặt phẳng (Oxy) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 45°.	_	200	(A) COO
	A) 45°.	B 90°.	© 30°.	D 60°.
				t phẳng (P) là $H(2;-1;-2)$.
	Số do góc giữa mặt (A) 90°.		$and (Q): x - y - 5 = $ (C) 45° .	
	A) 90°.	B) 60°.	6 45°.	(D) 30°.
				x-y-6=0 và (Q) . Biết
		-2) la hình chiều vuoi mặt phẳng (P) và mặ		O(0;0;0) xuống mặt phẳng
	(4) 50 do goo grad	(B) 60°.	(c) 30°.	(D) 90°.
	phẳng (Oxy) là	thong gian $Oxyz$, god	giữa mặt phang (α) : γ	$\sqrt{2}x + y + z - 5 = 0$ và mặt
	(*************************************	(B) 30°.	(C) 45°.	(D) 60°.
	•			
				nh chiếu vuông góc của gốc phẳng (Q) : $x - y - 11 = 0$
	bằng bao nhiêu?	, plicing (1), so do got	s graa mat (1) va mat	pricing (q) . $u = y = 11 = 0$
	A 90°.	B 60°.	© 45°.	D 30°.
	CÂU 210. Trong k	hông gian $Oxyz$, cho h	nai mặt phẳng (P) : $x-$	-2y - z + 2 = 0 và $(Q): 2x -$
	$y + z + 1 = 0. \text{ G\'oc } g$		** F ** O () **	<i>y</i> (v)
	A 120°.	B 90°.	© 30°.	D 60°.
	CÂU 211. Trong k	thông gian $Oxyz$, cho	hai mặt phẳng (P) : a	c + (m+1)y - 2z + m = 0
	và (Q) : $2x - y + 3 =$	= 0, với m là tham số	thực. Để (P) vuông gó	ốc với (Q) thì giá trị của m
	bằng bao nhiêu?			
		(B) $m = -1$.	© $m = -5$.	$(\mathbf{D}) m = 1.$
				qua các điểm $A(-2;0;0)$,
	B(0;3;0), C(0;0;-3)	3). Mặt phăng (P) vu	ông góc với mặt phẳng	g nào trong các mặt phẳng
		+6=0.	\bigcirc $\mathbf{B}) x - 2y - z -$	-3 = 0.
	A $3x - 2y + 2z = 0$ C $2x + 2y - z = 0$	-1 = 0.	(B) $x - 2y - z - $ (D) $x + y + z + $	1 = 0.
	_			$-1 = 0 \; (m \in \mathbb{R})$, mặt phẳng
				mặt phẳng (P) , (Q) vuông
	góc.		·	
	$m = -\frac{1}{3}$.	B $m = \frac{1}{2}$.	© $m = 3$.	D $m = -3$.
		9		
	(Q): $x - 3u + 5z - 5$	mong gian $Oxyz$, cho $2 = 0$. Cô-sin của góc	mặt phảng (P) : $x + 2$ giữa hai mặt phẳng (P)	y-2z+3=0, mặt phẳng P). (Q) là
		B $-\frac{\sqrt{35}}{7}$.		$\sqrt{35}$.
	$-\frac{4}{7}$	\bigcirc $-{7}$.	$\overline{}$ $\overline{7}$.	$\frac{\mathbf{U}}{7}$.
	CÂU 215. Trong k	hông gian $Oxyz$, gọi α	là góc giữa hai mặt ph	$ \stackrel{\text{den}}{=} (P) : x - \sqrt{3}y + 2z + 1 = $
	,	(xy). Khẳng định nào s		
		(B) $\alpha = 60^{\circ}$.	$\bigcirc \alpha = 90^{\circ}.$	$(\mathbf{D}) \alpha = 45^{\circ}.$

CÂU 216. Trong hệ tọa độ Oxyz, cho hai mặt phẳng (P): $\frac{x-2}{3} + \frac{y-1}{2} + \frac{z-4}{-6} = 1$ và $(Q)\colon x+2y+3z+7=0.$ Tính tan góc tạo bởi hai mặt phẳng đã cho.

CÂU 217. Trong không gian Oxyz, cho mặt phẳng (P): x - 2y + 2z - 5 = 0. Xét mặt phẳng (Q): x + (2m-1)z + 7 = 0, với m là tham số thực. Tìm tất cả giá trị của m để (P)tạo với (Q) góc $\frac{n}{4}$

CÂU 218. Trong không gian Oxyz, cho hai mặt phẳng (α) : x + y + z - 1 = 0 và (β) : 2x-y+mz-m+1=0, với m là tham số thực. Giá trị của m để $(\alpha)\perp(\beta)$

- (**A**) 1.

CÂU 219. Trong không gian Oxyz, cho mặt phẳng $(\alpha): 2x - y + z - 3 = 0$ và $(\beta): 3x - y + z - 3 = 0$ 4y + 5z = 0. Góc tạo bởi hai mặt phẳng (α) và (β) bằng

- (A) 90°.
- **(B)** 30°.

CÂU 220. Trong không gian Oxyz, cho hai mặt phẳng (P): x - y - 6 = 0 và (Q). Biết rằng điểm H(2;-1;-2) là hình chiếu vuông góc của gốc tọa độ O(0;0;0) xuống mặt phẳng (Q). Số đo góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng

- (**A**) 60°.
- **(B)** 45° .

CÂU 221. Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai véc-tơ pháp tuyến là $\vec{n}_{(P)}$ và $\vec{n}_{(Q)}$. Biết góc giữa hai véc-to $\vec{n}_{(P)}$ và $\vec{n}_{(Q)}$ bằng 30°. Góc giữa hai mặt phẳng (P) và (Q) bằng

- **(A)** 30°.
- **(B)** 45°.
- **(D)** 90°.

CÂU 222. Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai véc-tơ pháp tuyến là $\vec{n}_{(P)}$ và $\vec{n}_{(Q)}$. Biết góc giữa hai véc-tơ $\vec{n}_{(P)}$ và $\vec{n}_{(Q)}$ bằng 120°. Góc giữa hai mặt phẳng (P) và (Q) bằng

- (A) 30°.
- **(B)** 45°.
- (C) 60°.
- (**D**) 90°.

CÂU 223. Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai véc-tơ pháp tuyến là $\vec{n}_{(P)}$ và $\vec{n}_{(Q)}$. Biết cô-sin góc giữa hai véc-tơ $\vec{n}_{(P)}$ và $\vec{n}_{(Q)}$ bằng $\frac{1}{2}$. Góc giữa hai mặt phẳng (P) và (Q) bằng

- (A) 30°.
- **(B)** 45°.
- **(C)** 60°.
- **(D)** 90° .

D. BÁNG ĐÁP ÁN

204.B	205.A	206.C	207.A	208.D	209.C	210.D	211.D
212.C	213.C	214.D	215.D	216.D	217.A	218.C	219.B
		220.B	221.A	222.C	223.C		

Bài 12. CÁC PHÉP TOÁN CƠ BẨN CỦA SỐ PHÚC

A. KIẾN THỰC CẦN NHỚ

1. Đinh nghĩa

- a) Một số phức là một biểu thức dạng z = a + bi với $a, b \in \mathbb{R}$ và $i^2 = -1$, i được gọi là đơn vị ảo, a được gọi là phần thực và b được gọi là phần ảo của số phức z = a + bi.
- b) Tập hợp các số phức được kí hiệu là \mathbb{C} , $\mathbb{C} = \{a + bi | a, b \in \mathbb{R}; i^2 = -1\}$.
- c) Chú ý
 - Θ Khi phần ảo $b = 0 \Leftrightarrow z = a$ là số thực.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	•
	•											•																					•

•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•								•																									

♥ ♥			Ø	TỔNG ÔN THPTQG 202
QUICK NOTE	_	n thực $a = 0 \Leftrightarrow z = 0$ + $0i$ vừa là số thực,	$bi \Leftrightarrow z$ là số thuần ảo. vừa là số ảo.	
	d) Hai số phức b	oằng nhau $a + bi = c$	$+ di \Leftrightarrow \begin{cases} a = c \\ b = d \end{cases} $ với a, b	$b, c, d \in \mathbb{R}$.
	e) Hai số phức z	$z_1 = a + bi; z_2 = -a -$	- bi được gọi là hai số	phức đối nhau.
	2. Số phức liê	èn hợp		
	Số phức liên hợp củ $\overline{\overline{z}} = z$	ủa $z = a + bi$ với a ,	$b \in \mathbb{R}$ là $a - bi$ và đượ	ợc kí hiệu bởi \overline{z} . Rõ ràng
	3. Biễu diễn h	nình học		
	Trong mặt phẳng p	•), số phức $z = a + bi$ với
	4. Mô-đun củ	,	, -) -	
		$c z = a + bi(a, b \in \mathbb{R})$) là $ z = \sqrt{a^2 + b^2}$.	
	5. Các phép to	oán trên tập số	phức	
		• •	i với $a,b,a',b'\in\mathbb{R}$ và số	$\hat{\delta} \ k \in \mathbb{R}.$
	a) Tổng hai số p	hức: $z + z' = a + a'$	+(b+b')i.	
	b) Hiệu hai số pl	hức: $z + z' = a - a'$	+(b-b')i.	
	c) Nhân hai số p	ohức: $z \cdot z' = (a + bi)$	$(a' + b'i) = (a \cdot a' - b \cdot a')$	$b') + (a \cdot b' + a' \cdot b)i.$
	d) Chia 2 số phú	íc:		
	_		_	
	So phức	nghịch đảo: $\frac{1}{z} = \frac{1}{ z ^2}$	$\overline{2}^{z}$.	
	$oldsymbol{\Theta}$ Nếu $z \neq$	$z = 0$ thì $\frac{z'}{z} = \frac{z' \cdot \overline{z}}{1 + 12}$, r	nghĩa là nếu muốn chia	a số phức z' cho số phức
		' '	\tilde{a} u của thương $\frac{z'}{\tilde{z}}$ cho	
	$z \neq 0 \text{ tm}$	i ta nnan ca tu va m	au cua thương — cho z	z.
	B. BÀI TẬP M	IÃU		
	ví 511 42 /5 Ì 141			4 2 2 2 1 1 2 1
	VI DỤ 12 (ĐE MI của số phức z^2 bằng		22-2023). Cho sô ph	ức $z = 2 + 9i$, phần thực
	(A) −77.	B 4.	© 36.	D 85.
			?	
	C. BÀI TẬP T	ƯƠNG TỰ VÀ	A PHÁT TRIỀN	
	CÂU 224. Số phức l	liên hợp của $z = (2 - $	(4i) + (1-3i) là	
		$\mathbf{B} \ \overline{z} = 1 + 3i.$		$\bigcirc \overline{\mathbf{D}} \ \overline{z} = 3 - i.$
	CÂU 225. Tìm phầi	n ảo của số phức 🔻 l	$\text{bi\'et. } z = \frac{(1+i)3i}{}$	
	_			
		(B) -1 .	© 3.	(D) -3 .
	CÂU 226. Số phức I (A) $3 + 2i$.		(3-2i) là (C) $-2+3i$.	$(\hat{\mathbf{D}}) - 3 + 2i.$
			•	
	$w = 2(z_2 - z_1)$ là	so pinuc $z_1 = z +$	$3\iota, \ 2 = 4 + 3\iota. \ 50 \ \mathrm{p}$	ohức liên hợp của số phứ
			$\bigcirc \overline{\mathbf{C}} \ \overline{w} = 4 - 4i.$	
	CÂU 228. Cho số p	hức $z = 4 - 2i$. Phần	n ảo của số phức $3-4$	z là

5. Các phép	$z = a + bi; \ z' = a' + b'$	$'$ 2 V 01 a b a' $b' \in \mathbb{R}$ V 2	
	z = a + bi, z = a + b $phức: z + z' = a + a'$		50 N C 12.
	phúc: $z + z' = a + a'$ phức: $z + z' = a - a'$		
			$(a \cdot b') + (a \cdot b' + a' \cdot b)i.$
d) Chia 2 số pl		$f(a + b t) = (a \cdot a - b)$	$(a \cdot b) + (a \cdot b) + (a \cdot b)t.$
⊘ Số phứ	c nghịch đảo: $\frac{1}{z} = \frac{1}{ z }$		
$\ensuremath{\mathbf{\Theta}}$ Nếu z	$\neq 0 \text{ thì } \frac{z'}{z} = \frac{z' \cdot \overline{z}}{ z ^2},$	nghĩa là nếu muốn ch	ia số phức z' cho số phức
		nẫu của thương $\frac{z'}{z}$ cho	
		z	
B. BÀI TẬP	MÃU		
VÍ DU 12 (ĐỀ M	IINH HOA BGD 20	22-2023). Cho số pl	hức $z = 2 + 9i$, phần thực
		,	
của số phức z^2 bằ -77 .		© 36.	(D) 85.
của số phức z^2 bằ \bigcirc	(B) 4.	© 36.	D 85.
của số phức z^2 bằ \bigcirc	(B) 4.	_	D 85.
của số phức z^2 bằ -77 .	TƯƠNG TỰ VÀ c liên hợp của $z=(2,2)$	© 36. À PHÁT TRIỂN + 4i) + (1 – 3i) là	D 85.
của số phức z^2 bằ $\sqrt{\mathbf{A}}$ -77 . C. BÀI TẬP ' CÂU 224. Số phức $\sqrt{\mathbf{A}}$ $\overline{z} = -3 - i$.	TƯƠNG TỰ VÀ c liên hợp của $z = (2 + 3i)$.	$\mathbf{\hat{C}}$ 36. $\mathbf{\hat{A}} \mathbf{PH\hat{A}T} \mathbf{TRI\hat{E}N}$ $+4i) + (1-3i) \text{ là}$ $\mathbf{\hat{C}} \ \overline{z} = 3+i.$	D 85.
của số phức z^2 bằ $\sqrt{\mathbf{A}}$ -77 . C. BÀI TẬP ' CÂU 224. Số phức $\sqrt{\mathbf{A}}$ $\overline{z} = -3 - i$.	TƯƠNG TỰ VÀ c liên hợp của $z = (2 + 3i)$.	$\mathbf{\hat{C}}$ 36. $\mathbf{\hat{A}} \mathbf{PH\hat{A}T} \mathbf{TRI\hat{E}N}$ $+4i) + (1-3i) \text{ là}$ $\mathbf{\hat{C}} \ \overline{z} = 3+i.$	D 85.
của số phức z^2 bằ $\sqrt{\mathbf{A}}$ -77 . C. BÀI TẬP ' CÂU 224. Số phức $\overline{z} = -3 - i$.	TƯƠNG TỰ VÀ c liên hợp của $z=(2,2)$	$\mathbf{\hat{C}}$ 36. $\mathbf{\hat{A}} \mathbf{PH\hat{A}T} \mathbf{TRI\hat{E}N}$ $+4i) + (1-3i) \text{ là}$ $\mathbf{\hat{C}} \ \overline{z} = 3+i.$	D 85.
của số phức z^2 bằ \overline{A} -77 . C. BÀI TẬP ' CÂU 224. Số phức \overline{A} $\overline{z} = -3 - i$. CÂU 225. Tìm ph \overline{A} 0.	TƯƠNG TỰ VÃ c liên hợp của $z = (2 + 3i)$ tần ảo của số phức \overline{z} , \bigcirc	$ \begin{array}{c} \mathbf{\hat{C}} \ 36. \\ \mathbf{\hat{A}} \ \mathbf{PH\acute{AT}} \ \mathbf{TR} \mathbf{\hat{E}} \mathbf{\hat{N}} \\ + 4i) + (1 - 3i) \ \text{là} \\ \mathbf{\hat{C}} \ \overline{z} = 3 + i. \\ \text{biết } z = \frac{(1 + i)3i}{1 - i}. \\ \mathbf{\hat{C}} \ 3. \\ c \ 3 - 2i \ \text{là} \end{array} $	\bigcirc 85. \bigcirc \bigcirc $\overline{z} = 3 - i$. \bigcirc
của số phức z^2 bằ $\overline{\bf A}$ -77 . C. BÀI TẬP '. CÂU 224. Số phức $\overline{\bf A}$ $\overline{z} = -3 - i$. CÂU 225. Tìm ph	TƯƠNG TỰ VÃ c liên hợp của $z = (2 + 3i)$ tần ảo của số phức \overline{z} , \bigcirc	$ \begin{array}{c} \mathbf{\hat{C}} \ 36. \\ \mathbf{\hat{A}} \ \mathbf{PH\acute{AT}} \ \mathbf{TR} \mathbf{\hat{E}} \mathbf{\hat{N}} \\ + 4i) + (1 - 3i) \ \text{là} \\ \mathbf{\hat{C}} \ \overline{z} = 3 + i. \\ \text{biết } z = \frac{(1 + i)3i}{1 - i}. \\ \mathbf{\hat{C}} \ 3. \end{array} $	$lackbox{\textbf{D}}$ 85. $lackbox{\textbf{D}} \ \overline{z} = 3 - i.$
của số phức z^2 bằ \overline{A} -77 . C. BÀI TẬP 'C. ÂU 224. Số phức \overline{A} $\overline{z} = -3 - i$. CÂU 225. Tìm ph \overline{A} 0. CÂU 226. Số phức \overline{A} $3 + 2i$. CÂU 227. Cho cá	TƯỚNG TỰ VÃ c liên hợp của $z = (2 + 3i)$. Tần ảo của số phức \overline{z} , Tần ảo của số phức \overline{z} , Tần hợp của số phức \overline{z} , Tần hợp của số phức \overline{z} , Tần hợp của số phức \overline{z} ,	© 36. A PHÁT TRIỂN $+4i) + (1 - 3i) \text{ là}$ © $\overline{z} = 3 + i$. biết $z = \frac{(1+i)3i}{1-i}$. © 3. $c \ 3 - 2i \text{ là}$ $c \ 3 - 2 + 3i$.	\bigcirc 85. \bigcirc \bigcirc $\overline{z} = 3 - i$. \bigcirc
của số phức z^2 bằ \overline{A} -77 . C. BÀI TẬP 'C. ÂU 224. Số phức \overline{A} $\overline{z} = -3 - i$. CÂU 225. Tìm ph \overline{A} 0. CÂU 226. Số phức \overline{A} $3 + 2i$. CÂU 227. Cho cá	TƯƠNG TỰ VÃ c liên hợp của $z = (2 - 1)$ c liên hợp của số phức \overline{z} , $\boxed{\mathbf{B}} = 1 + 3i$. c liên hợp của số phức \boxed{z} , c liên hợp của số phức $\boxed{\mathbf{B}} = 3 - 2i$. c số phức $z_1 = 2 + 1$	© 36. A PHÁT TRIỂN +4i) + (1-3i) là © $\overline{z} = 3 + i$. biết $z = \frac{(1+i)3i}{1-i}$. © 3. c = 3 - 2i là © $-2 + 3i$. 3i, $z_2 = 4 + 5i$. Số	$egin{aligned} oldsymbol{f D} & 85. \end{aligned}$ $oldsymbol{f D} & -3. $ $oldsymbol{f D} & -3+2i. $ phức liên hợp của số phức
của số phức z^2 bằ \overline{A} -77 . C. BÀI TẬP \overline{A} Số phức \overline{A} $\overline{z} = -3 - i$. SÂU 225. Tìm ph \overline{A} 0. SÂU 226. Số phức \overline{A} $3 + 2i$. SÂU 227. Cho cá \overline{z} z	TƯƠNG TỰ VÃ c liên hợp của $z = (2 - 1)$ c liên hợp của số phức \overline{z} , $\boxed{\mathbf{B}} = 1 + 3i$. c liên hợp của số phức $\boxed{\mathbf{B}} = 3 - 2i$. c số phức $z_1 = 2 + 2i$. $\boxed{\mathbf{B}} = 4 + 4i$.	© 36. A PHÁT TRIỂN $+4i) + (1-3i) \text{ là}$ © $\overline{z} = 3 + i$. biết $z = \frac{(1+i)3i}{1-i}$. © 3. $c \ 3 - 2i \text{ là}$ © $-2 + 3i$. $3i, \ z_2 = 4 + 5i$. Số	$egin{aligned} oldsymbol{f D} & 85. \end{aligned}$ $oldsymbol{f D} & 3 - i. $ $oldsymbol{f D} & -3. $ $oldsymbol{f D} & -3 + 2i. $ phức liên hợp của số phức $oldsymbol{f W} & 0 & 0 \ \hline oldsymbol{ar{w}} & 0 & 0 \ \hline oldsymbol{w} & 0 & 0 \ \hline oldsymbol{w} & 0 \ \hline oldsymbol{w} & 0 & 0 \ \hline oldsymbol{w} & 0 \ \hline oldsymbol{w} & 0 & 0 \ \hline oldsymbol{w} & 0 \ \hline $
của số phức z^2 bằ \overline{A} -77 . C. BÀI TẬP \overline{A} CÂU 224. Số phức \overline{A} $\overline{z} = -3 - i$. CÂU 225. Tìm ph \overline{A} 0. CÂU 226. Số phức \overline{A} $3 + 2i$. CÂU 227. Cho cá $\overline{w} = 2(z_2 - z_1)$ là \overline{A} $\overline{w} = 8 - 15i$.	TƯƠNG TỰ VÃ c liên hợp của $z = (2 - 1)$ c liên hợp của số phức \overline{z} , $\boxed{\mathbf{B}} = 1 + 3i$. c liên hợp của số phức $\boxed{\mathbf{B}} = 3 - 2i$. c số phức $z_1 = 2 + 2i$. $\boxed{\mathbf{B}} = 4 + 4i$.	© 36. A PHÁT TRIỂN +4i) + (1-3i) là © $\overline{z} = 3 + i$. biết $z = \frac{(1+i)3i}{1-i}$. © 3. c = 3 - 2i là © $-2 + 3i$. 3i, $z_2 = 4 + 5i$. Số	$egin{aligned} oldsymbol{f D} & 85. \end{aligned}$ $oldsymbol{f D} & 3 - i. $ $oldsymbol{f D} & -3. $ $oldsymbol{f D} & -3 + 2i. $ phức liên hợp của số phức $oldsymbol{f W} & 0 & 0 \ \hline oldsymbol{ar{w}} & 0 & 0 \ \hline oldsymbol{w} & 0 & 0 \ \hline oldsymbol{w} & 0 \ \hline oldsymbol{w} & 0 & 0 \ \hline oldsymbol{w} & 0 \ \hline oldsymbol{w} & 0 & 0 \ \hline oldsymbol{w} & 0 \ \hline $
của số phức z^2 bằ A -77 . C. BÀI TẬP Z CÂU 224. Số phức \overline{A} $\overline{z} = -3 - i$. CÂU 225. Tìm ph A	TƯƠNG TỰ VÃ c liên hợp của $z = (2 - 1)$ c liên hợp của số phức \overline{z} , $\boxed{\mathbf{B}} = 1 + 3i$. c liên hợp của số phức $\boxed{\mathbf{B}} = 3 - 2i$. c số phức $z_1 = 2 + 1$ $\boxed{\mathbf{B}} = 3 - 2i$ $\boxed{\mathbf{B}} = $	© 36. A PHÁT TRIỂN $+4i) + (1-3i) \text{ là}$ © $\overline{z} = 3 + i$. biết $z = \frac{(1+i)3i}{1-i}$. © 3. $c \ 3 - 2i \text{ là}$ © $-2 + 3i$. 3i, $z_2 = 4 + 5i$. Số $\overline{w} = 4 - 4i$ In ảo của số phức $3 - 4i$	$egin{aligned} oldsymbol{f D} & 85. \end{aligned}$ $oldsymbol{f D} & 3 = 3 - i. $ $oldsymbol{f D} & -3. $ $oldsymbol{f D} & -3 + 2i. $ $oldsymbol{f D} & 0 = 8 + 15i. $ $oldsymbol{f Z} & 0 = 8 + 15i. $ $oldsymbol{4}z & 1 a a a a a a a a a a a a a a a a a a$

$$(B)$$
 -10*i*.

$$(\mathbf{C}) - 14i.$$

$$(\mathbf{D}) - 14.$$

CÂU 231. Cho số phức $z=-2+xi, (x\in\mathbb{R})$ có mô-đun bằng

(A)
$$\sqrt{x^2 + 2}$$
.

(B)
$$\sqrt{x^2 + 4}$$
.

$$(c) |x| + 2.$$

$$\bigcirc$$
 $|2x|$.

CÂU 232. Cho hai số phức $z_1=1+2i$ và $z_2=2-3i$. Phần ảo của số phức $w=3z_1-2z_2$

(**A**) 1.

$$\bigcirc$$
 12i.

CÂU 233. Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô-đun của số phức z.

(A)
$$|z| = \frac{5\sqrt{34}}{3}$$
.

(B)
$$|z| = 34$$
.

©
$$|z| = \sqrt{34}$$
.

$$\mathbf{D}|z| = \frac{\sqrt{34}}{3}.$$

CÂU 234. Cho số phức $z = (1+i)^2(1+2i)$. Số phức z có phần ảo là

$$\bigcirc$$
 -4 .

$$(\mathbf{B})$$
 $2i$.

$$(\hat{\mathbf{C}})$$
 4

$$\bigcirc$$
 2.

CÂU 235. Tìm số phức liên hợp của số phức z = 3 + 2i.

$$(\overline{\mathbf{A}}) \ \overline{z} = 3 - 2i.$$

$$\mathbf{B}) \, \overline{z} = -3 - 2i.$$

$$\widehat{\mathbf{C}})\,\overline{z}=2-3i.$$

$$\widehat{\mathbf{D}})\,\overline{z} = -2 - 3i.$$

CÂU 236. Số phức z = 4 - 3i có mô-đun bằng

$$\bigcirc$$
 8

CÂU 237. Cho số phức z = 5 - 4i. Số phức z - 2 có

- (**A**) Phần thực bằng 5 và phần ảo bằng -4.
- (**B**) Phần thực bằng 3 và phần ảo bằng -4.
- (**C**) Phần thực bằng -4 và phần ảo bằng 3.
- (**D**) Phần thực bằng 3 và phần ảo bằng -4i.

CÂU 238. Cho số phức $z_1=2+3i$ và $z_2=1-2i$. Số phức liên hợp của số phức $w=z_1+z_2$

 $(\mathbf{A}) \, \overline{w} = 3 + i.$

$$(\mathbf{B}) \, \overline{w} = 3 - i.$$

$$\mathbf{\overline{C}} \, \overline{w} = 3 - 2i.$$

CÂU 239. Cho các số phức $z_1 = 2 - 3i$, $z_2 = 1 + 4i$. Tìm số phức liên hợp với số phức

 $(\mathbf{A}) - 14 - 5i.$

B
$$-10 - 5i$$
.

$$\bigcirc$$
 -10 + 5*i*.

D
$$14 - 5i$$
.

CÂU 240. Cho hai số phức $z_1 = 1 + i$ và $z_2 = 2 - 3i$. Tính mô-đun của số phức $z_1 + z_2$.

(A)
$$|z_1 + z_2| = 5$$
.

B
$$|z_1 + z_2| = \sqrt{13}$$
. **C** $|z_1 + z_2| = 1$.

$$|z_1 + z_2| = 1.$$

$$|z_1 + z_2| = \sqrt{5}.$$

CÂU 241. Tìm số phức liên hợp của số phức z = (-3 - 4i)(2 + i) + 1 - 3i.

CÂU 242. Cho hai số phức $z_1 = 1 + i$ và $z_2 = 2 - 3i$. Tính mô-đun của $z_1 + z_2$.

$$\mathbf{(A)} |z_1 + z_2| = 1.$$

B
$$|z_1 + z_2| = \sqrt{5}$$
.

B
$$|z_1 + z_2| = \sqrt{5}$$
. **C** $|z_1 + z_2| = \sqrt{13}$. **D** $|z_1 + z_2| = 5$.

$$|z_1 + z_2| = 5.$$

CÂU 243. Cho hai số phức $z_1 = 3 + i$ và $z_2 = 2 - 4i$. Mô-đun của số phức $z_1 z_2$ bằng **(B)** $10\sqrt{2}$.

D. BẢNG ĐÁP ÁN

224.D	225.A	226.A	227.C	228.D	229.A	230.D	231.B
232.C	233.C	234.D	235.A	236.C	237.B	238.B	239.D
		240.B	241.A	242.C	243.B		

Bài 13. TÍNH THỂ TÍCH KHỐI LĂNG TRỤ ĐỨNG

A. KIẾN THỨC CẦN NHỚ

- a) Thể tích khối lăng trụ $V = B \cdot h$ với B: diện tích đáy, h: chiều cao.
- b) Các hệ thức lượng trong tam giác vuông.

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Khi đó

$$\Theta$$
 BH · BC = AB²; CH · CB = CA².

$$\Theta \ AB \cdot AC = AH \cdot BC; \ AM = \frac{1}{2}BC.$$

$$\odot$$
 $CH \cdot BH = AH^2$.

$$\Theta \frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AC^2}$$

d) Đường cao của tam giác đều cạnh
$$a$$
 có độ dài bằng $\frac{a\sqrt{3}}{2}$.

e) Diện tích tam giác bất kỳ

$$\mathbf{\Theta} \ S_{\triangle ABC} = \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c$$
, trong đó h_a, h_b, h_c lần lượt là đường cao hạ từ các đỉnh A, B, C của tam giác $ABC; BC = a, AC = b, AB = c$.

$$\Theta \ S_{\triangle ABC} = \frac{1}{2} \cdot b \cdot c \cdot \sin A = \frac{1}{2} \cdot a \cdot c \cdot \sin B = \frac{1}{2} \cdot a \cdot b \cdot \sin C.$$

$$m{\Theta}\ S_{\triangle ABC}=rac{abc}{4R},$$
 trong đó R là bán kính đường tròn ngoại tiếp $\triangle ABC.$

$$oldsymbol{\Theta}\ S_{\triangle ABC}=p\cdot r$$
, trong đó r là bán kính đường tròn nội tiếp $\triangle ABC$.

$$\Theta$$
 $S_{\triangle ABC} = \sqrt{p(p-a)(p-b)(p-c)}$, trong đó $p = \frac{a+b+c}{2}$.

f) Trường hợp đặc biệt

$$\ensuremath{m \Theta}$$
 Diện tích tam giác $\triangle ABC$ vuông tại A là $S=\frac{1}{2}\cdot AB\cdot AC.$

$$\mbox{\Large \mbox{\boldmath Θ}}$$
 Diện tích của tam giác đều cạnh a là $S=\frac{a^2\sqrt{3}}{4}.$

g) Diện tích hình chữ nhật $S=a\cdot b$, trong đó $a,\,b$ lần lượt là chiều dài và chiều rộng của hình chữ nhật.

h) Diện tích hình vuông cạnh a là $S=a^2$.

i) Diện tích hình thoi $S = \frac{1}{2} \cdot AC \cdot BD$, trong đó AC và BD là hai đường chéo.

j) Diện tích hình thang $S=\frac{(\text{đáy lớn}+\text{đáy b\'e})\cdot h}{2},$ trong đó h là chiều cao của hình thang.

k) Diện tích hình bình hành ABCD là $S=AH\cdot CD,$ trong đó AH là chiều cao của tam giác ABD.

l) Định lí hàm số sin:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
.

m) Định lí hàm số côsin

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A.$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos B.$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C.$$

n) Công thức đường trung tuyến

B. BÀI TẬP MẪU

VÍ DỤ 13 (Đề tham khảo 2023). Cho khối lăng trụ có diện tích đáy B=3 và chiều cao h=4. Thể tích của khối lăng trụ đã cho bằng

$$\bigcirc$$
 6.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 244. Thể tích của khối hộp chữ nhật có độ dài các cạnh lần lượt là a, 2a, 3a bằng

(A)
$$3a^3$$
.

(B)
$$2a^3$$
.

(c)
$$6a^3$$
.

$$\bigcirc \frac{2a^3}{3}$$

CÂU 245. Gọi h, S, V lần lượt là chiều cao, diện tích đáy và thể tích của hình lăng trụ. Chiều cao khối lăng trụ là

$$\bigcirc \frac{V}{S}$$
.

$$\bigcirc B \frac{S}{V}$$
.

$$\bigcirc \frac{3V}{S}$$
.

CÂU 246. Cho lăng trụ tứ giác ABCD.A'B'C'D' có đáy là hình vuông cạnh a và có thể tích bằng $3a^3$. Tính chiều cao h của lặng trụ đã cho.

$$(\mathbf{A}) \ h = a.$$

$$\bigcirc$$
 $h = 3a.$

$$\bigcirc h = 9a.$$

CẦU 247. Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng $2a^2$. Thể tích khối lăng trụ đã cho bằng

$$\mathbf{C} V = \frac{4a^3}{3}.$$

$$\bigcirc V = \frac{4a^2}{3}.$$

CÂU 248. Thể tích khối lăng trụ có diện tích đáy bằng 4 và chiều cao bằng 3 là

(**A**) 4.

CÂU 249. Khối lăng trụ có diện tích đáy bằng 24 cm², chiều cao bằng 3 cm thì có thể tích

(A) 8 cm^3 .

(B) 72 cm^3 .

 (\mathbf{C}) 126 cm³.

(D) 24 cm^3 .

CÂU 250. Cho khối lăng trụ có diện tích đáy bằng $4a^2$ và khoảng cách giữa hai đáy bằng a. Thể tích của khối lặng trụ đã cho bằng

(A) $4a^3$.

CÂU 251. Khối lăng trụ có chiều cao bằng h, diện tích đáy bằng B có thể tích là \mathbf{A} $V = \frac{1}{3}B \cdot h$. \mathbf{B} $V = \frac{1}{2}B \cdot h$. \mathbf{C} $V = \frac{1}{6}B \cdot h$. \mathbf{D} $V = B \cdot h$

$$\bigcirc V = B \cdot h.$$

CÂU 252. Biết rằng thể tích của một khối lập phương bằng 8. Tính tổng diện tích các mặt của hình lập phương đó?

(**A**) 36.

(D) 24.

CÂU 253. Khối lăng trụ có diện tích đáy bằng 4 cm^2 , chiều cao bằng 2 cm có thể tích bằng

(A) 8 cm^3 .

 $\bigcirc 8 \text{ cm}^3.$

 $(\mathbf{C}) 4 \text{ cm}^3.$

(D) 6 cm^3 .

CÂU 254. Thể tích của khối lăng trụ có diện tích đáy a^2 và chiều cao a là

(D) $2a^3$.

CÂU 255. Nếu một khối lăng trụ đứng có diện tích đáy bằng B và cạnh bên bằng h thì có thể tích là

 $(\mathbf{A}) Bh.$

 \bigcirc $\frac{1}{2}Bh$.

 \bigcirc $\frac{1}{2}Bh.$

 $(\mathbf{D}) \, 3Bh.$

	-				
ດ	ш	_	N	\sim	ш
			w	v	

CÂU 256. Cho hình lăng trụ ABC.A'B'C' có diện tích đáy là 15 và chiều cao của lăng trụ là 10. Thể tích khối lăng trụ ABC.A'B'C' là

(A) 200.

(B) 150.

 $(\mathbf{C}) 100.$

(**D**) 50.

CÂU 257. Nếu cạnh của hình lập phương tăng lên gấp 2 lần thì thể tích của hình lập phương đó sẽ tăng lên bao nhiêu lần?

(A) 9.

B) 8.

 (\mathbf{C}) 6

 \bigcirc 4.

CÂU 258. Thể tích của khối lăng trụ đứng tam giác đều có tất cả các cạnh bằng a bằng

 \bigcirc $\frac{a^3}{3}$.

 $\mathbf{c} \frac{a^3\sqrt{3}}{4}$

 $\bigcirc \frac{a^3\sqrt{3}}{6}.$

CÂU 259. Tính thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng 2a và cạnh bên bằng a.

 $\mathbf{A} \frac{a^3\sqrt{3}}{4}.$

 \bigcirc a^3 .

© $\frac{a^3\sqrt{3}}{3}$.

CÂU 260. Tính thể tích V của khối lập phương $ABCD \cdot A'B'C'D'$ biết $AC' = 2a\sqrt{3}$.

(A) $V = a^3$.

(B) $V = 24\sqrt{3}a^3$.

(C) $V = 8a^3$.

 $\mathbf{\hat{D}}) V = 3\sqrt{3}a^3$

CÂU 261. Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A. Biết $AB=a,\ AC=2a,\ AA'=3a.$ Thể tích khối lăng trụ đã cho bằng

(A) $3a^3$.

(B) $6a^3$.

 $(\mathbf{c}) a^3$

(D) $3a^2$.

CÂU 262. Thể tích của khối hộp chữ nhật ABCD.A'B'C'D' có các cạnh $AB=4,\,AD=5$ và AA'=6 là

(A) V = 200.

(B) V = 100.

(C) V = 120.

 $(\mathbf{D}) V = 130.$

CÂU 263. Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi có độ dài hai đường chéo AC=2a và BD=a, cạnh bên AA'=3a. Thể tích V của khối lăng trụ đã cho là

 $(A) V = 6a^3.$

(B) $V = 12a^3$.

 $(\mathbf{C}) V = 3a^3.$

(D) $V = 2a^3$.

D. BẢNG ĐÁP ÁN

244.C	245.A	246.B	247.B	248.D	249.B	250.A	251.D
252.D	253.A	254.A	255.A	256.B	257.B	258.C	259.D
		260.C	261.A	262.C	263.C		

Bài 14. THỂ TÍCH KHỐI CHÓP

A. KIẾN THỰC CẦN NHỚ

1. Thể tích khối chóp

 $V = \frac{1}{3} \cdot B \cdot h.$

Trong đó:

- Θ B là diện tích đa giác đáy.
- Θ h là chiều cao khối chóp.

2. Diện tích đa giác

- $\mbox{\bf \Theta}$ Diện tích tam giác vuông: $S_{\triangle ABC} = \frac{1}{2}AB \cdot AC.$
- $\mbox{\ensuremath{\mbox{$\Theta$}}}$ Diện tích tam giác đều: $S_{\triangle ABC} = \frac{AB^2\sqrt{3}}{4}.$
- $\mbox{\Large \ensuremath{ \Theta}}$ Diện tích hình chữ nhật: $S_{ABCD} = \frac{1}{2}AB\cdot AD.$

- $\mbox{\Large \ensuremath{ \Theta}}$ Diện tích hình thoi: $S_{ABCD} = \frac{1}{2}AC \cdot BD.$
- $\ensuremath{\mathbf{\Theta}}$ Diện tích lục giác đều: $S_{ABCDEF} = 6 \cdot S_{\triangle OAB}.$

B. BÀI TẬP MẪU

VÍ DỤ 14 (Đề minh họa BGD 2022-2023).

۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•			•			•	•	•	•	•	•				•		•	

QUICK NOTE	AB = 2, SA vuôn vẽ). Thể tích khố:	ABC có đáy là tam gi ng góc với đáy và $SA =$ i chóp đã cho bằng \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	_	S A A B	
	C RÀITÂD'	TƯƠNG TỰ VÀ	DHÁT TRIỂN		
	· ·	•		vuông tại B . Cạnh bên S .	
				tích của khối chóp $S.AB6$	
	$\stackrel{\text{là}}{}$ \bigcirc	(B) $3a^3$.	\bigcirc $4a^3$.	$(\widehat{\mathbf{D}}) 2a^3.$	
		\smile	<u> </u>	\smile	,
		lỗi chóp $S.ABCD$ có đ ược tính theo công thứ		BCD là hình thơi. Thể tíc	1
			4 *	BD.	
	မှ		$ \begin{array}{c} \textbf{B} \ \frac{1}{3} SA \cdot AC \cdot \\ \textbf{D} \ \frac{1}{2} SA \cdot AB^2. \end{array} $		
	$\bigcirc \frac{1}{6}SA \cdot AC \cdot B$	BD.	$(\mathbf{D}) = SA \cdot AB^2.$		
				hẳng (ABC) . Biết $SA = 2$	
	_	ruông tại A có $AB = 3$	a, AC = 4a. Tính thể	tích khối chóp $S.ABC$ the	;(
	$\stackrel{a.}{\bigcirc} 6a^3.$	(B) $8a^3$.	(c) $4a^3$.	\bigcirc 12 a^3 .	
		\smile	<u> </u>	cạnh a , cạnh bên SA vuôn	
	góc với đáy, $SA = a$	a . Thể tích của khối c	hóp S.ABC bằng		- 6
	$\mathbf{A} \frac{a^3\sqrt{3}}{12}$.	$\mathbf{B} \frac{a^3\sqrt{3}}{4}$.	$\mathbf{c} \frac{a^3\sqrt{3}}{6}$.	\bigcirc $\frac{a^3}{4}$.	
	•	4	O	-1	
		nn chóp $s.ABCD$ có $a\sqrt{3}$. Thể tích của khố		vuông cạnh a . Biết SA	L
,	$\mathbf{\hat{A}} \ a^3 \sqrt{3}.$		$\mathbf{c} \frac{a^3\sqrt{3}}{3}$.	$\bigcirc \!$	
	CAU 269. Cho kh tích của khối chóp		eu cao bằng 3, đáy AB	C có diện tích bằng 10. Th	Ľ
	\bigcirc A) 2.	(B) 15.	(C) 10.	(D) 30.	
			<u> </u>	ng tại $B, AB = a, BC = 2a$	n
		= 3a. Thể tích của khố			
	\mathbf{A} a^3 .	B $\frac{1}{2}a^3$.	© $3a^3$.	$\bigcirc \frac{1}{6}a^3$.	
	CÂU 271 Cha là	3		∵ 6 ∂i một vuông góc với nhau	
		nn chop $S.ABC$ co ca $=4, SC=5, \text{thể tích kl}$.1
	A 60.	B 10.	© 20.	D 30.	
	CÂU 272. Cho hì	nh chóp $S.ABC$ có đấ	\dot{M}_{ABC} là tam giác v	ruông cân tại $A, AC = 2a$	ī
	I .	g góc với mặt phẳng đá	y và $SA = a$. Thể tích l	khối chóp $S.ABC$ bằng	
	\bigcirc 4 a^3 .	B $\frac{2a^3}{3}$.	© $2a^3$.	\bigcirc $\frac{4a^3}{3}$.	
		nh chóp $S.ABCD$ có		anh a , $SA \perp (ABCD)$ v	r
	SA = a. The tich k	hối chóp $S.ABCD$ bằn	\mathbf{C} $3a^3$.	\bigcirc a^3 .	
		nh chóp S ARCD có để	áy $ABCD$ là hình chữ $_{2}$	nhật, $AB = 3a$ và $AD = 4a$	n
				$\sqrt{2}$. Thể tích của khối chó	
	S.ABCD bằng		4 /2 3	o /o 3	
	\bigcirc 4. \bigcirc 3	\bigcirc 12. $\sqrt{2}a^3$	$4\sqrt{2}a^3$	$\sum_{\mathbf{n}} 2\sqrt{2}a^3$	

CÂU 275. Cho hình chóp S.ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B, biết SA = AC = 2a. Tính thể tích khối chóp S.ABC.

(A)
$$\frac{2\sqrt{2}}{3}a^3$$

B
$$\frac{4}{3}a^3$$
.

$$\bigcirc$$
 $\frac{2}{3}a^3$.

$$\bigcirc$$
 $\frac{1}{3}a^3$.

CÂU 276. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SAvuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD.

(A)
$$3a^3$$
.

$$\bigcirc$$
 9 a^3 .

$$\bigcirc$$
 a^3 .

CÂU 277. Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại A, AC = 3, AB = 4,SA vuông góc với mặt phẳng (ABC) và SA = 3. Thể tích của khối chóp đã cho bằng

$$(\mathbf{D})$$
 20.

CÂU 278. Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4, AB = 6, BC = 10 và CA = 8. Thể tích V của khối chóp S.ABC

(A)
$$V = 32$$
.

B
$$V = 192$$
.

(c)
$$V = 40$$
.

$$(D) V = 24.$$

CÂU 279. Cho hình chóp lục giác đều có cạnh đáy bằng 1 chiều cao bằng 4. Thể tích của khối chóp đã cho bằng

$$(\mathbf{A}) \ 2\sqrt{3}.$$

(B)
$$6\sqrt{3}$$
.

$$\bigcirc \frac{2\sqrt{3}}{3}$$
.

D
$$\frac{\sqrt{3}}{3}$$
.

CÂU 280. Cho khối chóp tam giác đều có cạnh đáy bằng 2 và chiều cao h=12. Thể tích của khối chóp đã cho bằng

(A)
$$24\sqrt{3}$$
.

(B)
$$12\sqrt{3}$$
.

(c)
$$6\sqrt{3}$$
.

$$(\mathbf{D}) \, 4\sqrt{3}.$$

CẦU 281. Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh bằng $a\sqrt{3}$ và các cạnh bên bằng $a\sqrt{2}$. Thể tích khối chóp S.ABCD bằng

$$\mathbf{c} \frac{a^3\sqrt{3}}{3}$$
.

CÂU 282. Cho khối chóp tứ giác đều có cạnh đáy bằng a, có chiều cao bằng $\frac{a\sqrt{2}}{2}$. Thể tích của khối chóp đã cho bằng

$$\mathbf{A} \frac{a^3 \sqrt{2}}{2}.$$

$$\bigcirc \frac{\sqrt{2}a^3}{2}.$$

CÂU 283. Thể tích khối tứ diện đều có cạnh bằng 3 là

$$\mathbf{c}$$
 $\frac{9\sqrt{2}}{4}$.

$$\bigcirc$$
 $\sqrt{2}$.

D. BẢNG ĐÁP ÁN

OM = R.

264.D	265.C	266.C	267.A	268.C	269.C	270.A	271.B
272.B	273.A	274.A	275.C	276.D	277.B	278.A	279.A
		280.D	281.A	282.B	283.C		

Bài 15. ĐỊNH NGHĨA, TÍNH CHẤT, VỊ TRÍ TƯƠNG ĐỐI LIÊN QUAN ĐẾN MẶT CẦU

A. KIẾN THỰC CẦN NHỚ

Đinh nghĩa liên quan mặt câu

 $oldsymbol{\Theta}$ Tập hợp các điểm M trong không gian cách điểm O cho trước một khoảng cách luôn bằng R không đổi được gọi là mặt cầu tâm O, bán kính R, kí hiệu S(O,R), tức là

❷ Đoạn thẳng nối 2 điểm phân biệt trên mặt cầu gọi là dây cung của mặt cầu.

◆ Dây cung lớn nhất của mặt cầu được gọi là đường kính của mặt cầu(gấp đôi bán

QUICK NOTE

			 	-	
ລ	ш		Ν	\frown	115
~.	u	v	N	u	ш

kính).

2. Các công thức tính toán

- Θ Diện tích mặt cầu có bán kính R là $S=4\pi R^2$.
- \bullet Thể tích khối cầu có bán kính R là $V = \frac{4}{3}\pi R^3$.

3. Vị trí tương đối giữa một điểm và mặt cầu

Có 3 vị trí tương đối giữa một điểm M và mặt cầu S(O,R), đó là

- \bigcirc M thuộc S(O,R) khi và chỉ khi OM=R.
- Θ M nằm bên trong S(O,R) khi và chỉ khi OM <
- Θ M nằm ngoài S(O,R) khi và chỉ khi OM > R.

4. Vị trí tương đối giữa đường thẳng và mặt cầu

Có 3 vị trí tương đối giữa một đường thẳng Δ và mặt cầu S(O,R), đó là

- \bullet Δ không có điểm chung với S(O,R) khi và chỉ khi $d(O,\Delta) > R$.
- \bullet Δ tiếp xúc với S(O,R) khi và chỉ khi Δ và S(O,R) có 1 điểm chung $\Leftrightarrow d(O,\Delta) =$
- \odot Δ cắt S(O,R) tại hai điểm phân biệt khi và chỉ khi $d(O,\Delta) < R$.
- Trường hợp đường thẳng Δ tiếp xúc với mặt cầu tại H ta gọi Δ là tiếp tuyến của mặt cầu và H là tiếp điểm của Δ với mặt cầu.

5. Vị trí tương đối giữa mặt phẳng và mặt cầu

Có 3 vị trí tương đối giữa một mặt phẳng (P) và mặt cầu S(O,R), đó là

- $oldsymbol{\Theta}$ (P) không có điểm chung với S(O,R) khi và chỉ khi $d\big(O,(P)\big)>R.$
- $\mbox{\bf \textcircled{O}}\ (P)$ tiếp xúc S(O,R) khi và chỉ khi
 (P) và S(O,R) có 1 điểm chung
 $\Leftrightarrow d\big(O,(P)\big)=R$
- Θ (P) cắt S(O,R) theo giao tuyến là một đường tròn khi và chỉ khi d(O,(P)) < R.

- ♥ Trường hợp mặt phẳng đi qua tâm của mặt cầu cầu thì đường tròn giao tuyến được gọi là đường tròn lớn và mặt phẳng được gọi là mặt phẳng kính của mặt cầu.
- **②** Khi mặt phẳng cắt mặt cầu theo giao tuyến là đường tròn (C) thì (C) có tâm H là hình chiếu vuông góc của tâm O mặt cầu lên mặt phẳng (P), đồng thời (C) có bán kính r tính theo công thức $r = \sqrt{R^2 d^2}$, với d = d(O, (P)).

B. BÀI TẬP MẪU

VÍ DỤ 15 (Đề tham khảo 2023). Cho mặt phẳng (P) tiếp xúc với mặt cầu S(O;R). Gọi d là khoảng cách từ O đến (P). Khẳng định nào dưới đây đúng?

 $(\mathbf{C}) d = R.$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 284. Cho mặt cầu có diện tích bằng 36π thì khối cầu tương ứng có thể tích bằng

 \bigcirc 72 π .

B 18π .

© 9π .

 \bigcirc 36π .

CÂU 285. Diện tích mặt cầu có đường kính R là

B $4\pi R^2$.

 \mathbf{C} $\frac{4}{3}\pi R^2$.

 $lackbox{D}$ πR^2 .

CÂU 286. Cho khối cầu có bán kính R=3. Thể tích khối cầu đã cho bằng

A 108π .

(B) 36π .

? 4π

12

CÂU 287. Diện tích S của mặt cầu có bán kính r bằng

(A) $S = 4\pi r^2$.

(B) $S = 3\pi r^2$.

(**c**) $S = \pi r^2$.

 $(\mathbf{D}) S = 2\pi r^2.$

CÂU 288. Công thức tính thể tích khối cầu bán kính R là

 $\bigcirc V = \frac{1}{3}\pi R^3.$

CÂU 289. Cho khối cầu có bán kính R=2. Thể tích khối cầu đã cho bằng

 \bigcirc 32 π .

B 16π .

 $\bigcirc \frac{16\pi}{3}$.

 $\bigcirc \frac{32\pi}{3}.$

CÂU 290. Cho khối cầu (\mathcal{T}) tâm O bán kính R. Gọi S và V lần lượt là diện tích mặt cầu và thể tích khối cầu tương ứng. Mệnh đề nào sau đây là đúng?

B $V = \frac{4}{3}\pi R^3$.

CÂU 291. Khối cầu có bán kính R=6 có thể tích bằng bao nhiêu?

Δ 144π.

B) 288π .

(C) 18\pi

(D) 72π .

ລແ		Ν	$\overline{}$		
711	ĸ	N	റ	1 .	1
		N	v		-

CÂU 292. Cho mặt cầu có diện tích bằng $\frac{8\pi a^2}{3}$. Khi đó bán kính của mặt cầu là

$$\bigcirc R = \frac{a\sqrt{6}}{3}.$$

CÂU 293. Cho mặt cầu có bán kính $r=\frac{\sqrt{3}}{2}$. Diện tích của mặt cầu đã cho bằng

$$\bigcirc \sqrt{3}\pi$$
.

 \bigcirc 3π .

CÂU 294. Mặt cầu có bán kính bằng 6 thì diện có diện tích bằng

- \bigcirc 36 π .
- **B**) 288π .
- $(\mathbf{C}) 144\pi.$
- \bigcirc 72π .

CÂU 295. Cho mặt cầu (S_1) có bán kính R_1 , mặt cầu (S_2) có bán kính $R_2 = 2R_1$. Tính tỉ số diện tích của mặt cầu (S_2) và (S_1) .

B
$$\frac{1}{2}$$
.

C 3.

 \bigcirc 4.

CÂU 296. Mặt cầu có bán kính bằng 1 thì diện tích bằng

$$\bigcirc$$
 4π .

(B) 16π .

$$\mathbf{C} \frac{4\pi}{3}$$
.

 \bigcirc 2π .

CÂU 297. Cho mặt cầu có bán kính R=5. Diện tích của mặt cầu đã cho bằng

(A)
$$\frac{100\pi}{3}$$
.

B
$$\frac{500\pi}{3}$$
.

(c)
$$100\pi$$
.

 \bigcirc 25 π

CÂU 298. Một mặt cầu có diện tích bằng 36π , bán kính của mặt cầu đó bằng

 \bigcirc 3.

(B) $3\sqrt{3}$.

(C) $3\sqrt{2}$.

D 6.

CÂU 299. Diện tích của mặt cầu có bán kính R=3 bằng

 \bigcirc 12 π .

 \bigcirc 6π .

(C) 36π .

D 18π .

CÂU 300. Số mặt cầu chứa một đường tròn cho trước là

 \bigcirc 0.

B Vô số.

 \bigcirc 2.

(D) 1

CÂU 301. Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua hai điểm A và B là

 (\mathbf{A}) Mặt phẳng trung trực của đoạn thẳng AB.

 (\mathbf{B}) Trung điểm của đường thẳng AB.

 \bigcirc Đường thẳng trung trực của đoạn thẳng AB.

 \bigcirc Mặt phẳng song song với đường thẳng AB.

CÂU 302. Cho mặt cầu S(O;R) và điểm A cố định nằm ngoài mặt cầu với OA=d. Qua A kẻ đường thẳng Δ tiếp xúc với mặt cầu S(O;R) tại M. Công thức nào sau đây được dùng để tính độ dài đoạn thẳng AM?

$$(A) \sqrt{R^2 - 2d^2}.$$

B
$$\sqrt{R^2 + d^2}$$
.

$$\bigcirc \sqrt{d^2 - R^2}.$$

 $(\mathbf{D}) \sqrt{2R^2 - d^2}.$

CÂU 303. Số điểm chung giữa mặt cầu và mặt phẳng không thể là

A 2.

B Vô số

(c) 0.

 \bigcirc 1.

D. BẢNG ĐÁP ÁN

284.D	285.D	286.B	287.A	288.B	289.D	290.B	291.B
292.C	293.D	294.C	295.D	296.A	297.C	298.A	299.C
		300.B	301.A	302.C	303.A		

Bài 16. SỐ PHỰC VÀ CÁC PHÉP TOÁN

A. KIẾN THỰC CẦN NHỚ

1. Phần thực, phần ảo của số phức, số phức liên hợp

- Số phức có dạng z = a + bi $(a, b \in \mathbb{R}, i^2 = -1)$. Phần thực của z là a, phần ảo của z là b và i được gọi là đơn vị ảo.
- Số phức liên hợp của z là $\overline{z} = \overline{a + bi} = a bi$.

$$\oplus \ z \cdot \bar{z} = a^2 + b^2$$

$$\oplus \ \overline{z_1 \pm z_2} = \bar{z}_1 \pm \bar{z}_2$$

$$\oplus \ \overline{z_1 \cdot z_2} = \bar{z}_1 \cdot \bar{z}_2$$

$$\oplus \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z}_1}{\bar{z}_2}$$

 \oplus Tổng và tích của z và \bar{z} luôn là một số thực.

• Lưu ý: $i^{4n} = 1$; $i^{4n+1} = i$; $i^{4n+2} = -1$; $i^{4n+3} = -i$; với $n \in \mathbb{N}$.

2. Hai số phức bằng nhau

Cho hai số phức $z_1 = a_1 + b_1 i, z_2 = a_2 + b_2 i (a_1, a_2, b_2, b_2 \in \mathbb{R}).$ Khi đó:

$$z_1 = z_2 \Leftrightarrow \begin{cases} a_1 = a_2 \\ b_1 = b_2 \end{cases}$$

3. Biểu diễn hình học của số phức, môđun của số phức

• Biễu diễn hình học của số phức

 $\mbox{\bf \Theta}$ Số phức $z=a+bi(a,b\in\mathbb{R})$ được biểu diễn bởi điểm M(a;b) trong mặt phẳng tọa độ

 \odot z và \bar{z} được biểu diễn bởi hai điểm đối xứng nhau qua trục Ox.

• Mô đun của số phức

 $oldsymbol{\Theta}$ Mô đun của số phức z là $|z|=|\overrightarrow{OM}|=\sqrt{a^2+b^2}.$

 $m{\Theta}$ Ta có: $|z| = \sqrt{z \cdot \bar{z}}; |z| = |\bar{z}|.$

B. BÀI TẬP MẪU

VÍ DỤ 16 (Đề minh họa BGD 2022-2023). Phần ảo của số phức z=2-3i là

B -2.

 $(\hat{\mathbf{C}})$ 2.

D 3.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 304. Phần thực và phần ảo của số phức z=(1+2i)i lần lượt là

 \bigcirc -2 và 1.

 \bigcirc 1 và -2.

D 2 và 1

CÂU 305. Cho hai số phức $z_1 = 5 - 3i$, $z_2 = -1 + 2i$. Tổng phần thực, phần ảo của tổng hai số phức đã cho là

$$(\mathbf{A}) S = 3.$$

B S = 7.

 $\bigcirc S = 4$

 $\bigcirc S = 5.$

CÂU 306. Phần ảo của số phức z=4-5i là

$$\bigcirc$$
 $-5i$.

B -5.

C 5.

 \bigcirc 4.

QUICK NOTE	CÂU 307. Số phức A $-1 + 2i$.	liên hợp của số phức 1	$-2i$ là \bigcirc $1+2i$.	\bigcirc D $-2 + i$.
	CÂU 308. Cho số p	phức $z = 2 - 3i$. Số phú	\hat{x} c liên hợp z là	
	$ \overline{z} = -2 - 3i. $	$\mathbf{B}) \ \overline{z} = 3 - 2i.$		$\mathbf{D} \ \overline{z} = 2 + 3i.$
	CÂU 309. Số phức A 8.	z thỏa mãn $z = 5 - 8i$	\mathbf{c} có phần ảo là \mathbf{c} -8 .	D 5.
	CÂU 310. Mô-đun $\mathbf{\hat{A}}$ $2\sqrt{5}$.	của số phức $z = 4 - 2i$ (B) 4.	$\hat{\mathbf{c}}$ bằng \mathbf{c} $2\sqrt{3}$.	\bigcirc $3\sqrt{2}$.
	CÂU 311. Cho $z =$ (A) $ z = 5$.	$3 + 2i$. Tìm mô-đun co $(\mathbf{B}) z = 13$.	$\overset{\circ}{\mathbf{C}} z = \sqrt{13}.$	$(\mathbf{\overline{D}}) z = \sqrt{5}.$
	CÂU 312. Số phức (A) $-6 + 8i$.	liên hợp của số phức z $(\mathbf{B}) 6 + 8i.$	<u> </u>	\bigcirc 8 - 6 i .
	CÂU 313. Số phức	liên hợp của số phức z	c có phần thực bằng 4,	phần ảo bằng 5 là
			$\mathbf{C} \ \overline{z} = 5 - 4i.$ độ nào dưới đây sai?	$(\mathbf{D})\overline{z} = 5 + 4i.$
	A Số phức liên ho	ợp của z là $3-4i$.		
		phần ảo của <i>z</i> lần lượt hức <i>z</i> lên mặt phẳng to	là 3 và -4 . ọa độ là điểm $M(3; -4)$	ı.
	D Mô-đun của số			
	CÂU 315. Số phức $\mathbf{\hat{A}}$ $z = -2i$.	nào dưới đây là số thu $\mathbf{B} z = 2 + 2i.$	ần ảo	$(\widehat{\mathbf{D}}) z = -2.$
		của số phức $z = 2 + 3$		<u> </u>
	A 2i.	B 3 <i>i</i> .	© 2.	D 3.
	CÂU 317. Số phức	liên hợp của số phức z	z = 2 - 3i là	
	$\mathbf{A} \ \overline{z} = 2 + 3i.$		© $z = 3 + 2i$.	$\bigcirc \overline{z} = 3 - 2i.$
	CÂU 318. Mô-đun \mathbf{A} $2\sqrt{6}$.	của số phức $z = 7 - 5i$	bằng (C) 24.	\bigcirc $\sqrt{74}$.
		ohức $z = 3 + 4i$. Tính	<u> </u>	○ √ √ · · · ·
	$ z = \sqrt{5}.$	B $ z = 13$.	$ z = \sqrt{13}.$	(D) $ z = 5$.
		phức $z = 3 - 4i$. Mô-đu		
	(A) 12.	(B) 5.	(C) 7.	D 1.
	CAU 321. Cho số p (A) −8.	phức z thỏa mãn $z = 5$ (B) 8.	$-8i$ có phần ảo là \bigcirc 5.	\bigcirc $-8i$.
				5
	(A) $\sqrt{13}$.	của số phức $2 + 3i$ bằn \bigcirc 13.	\mathbf{C} $\sqrt{5}$.	D 5.
	CÂU 323. Mô-đun	của số phức $z = 3 + 4i$	i là	<u> </u>
	A 5.	B 7.	© 3.	D 4.
	CÂU 324. Gọi <i>a, b</i> l	lần lượt là phần thực v	à phần ảo của số phức	z = -3 + 2i. Giá trị $a - b$
	bằng			
	(A) 1.	B 5.	(c) -5.	(D) -1 .
	CAU 325. Số phức A $3-2i$.	có phần thực bằng 3 v \bigcirc B) $3 + 2i$.	$\stackrel{\text{và phần ảo bằng 2 là}}{\text{\textbf{C}}} 2 + 3i.$	$(\mathbf{D}) 2 - 3i.$
		<u> </u>		
	CAU 326. Với x, y I (A) $y = -2$.		$\text{ fix } z = x - 1 + (y + 2)i \text{ là} 2. \qquad \textbf{(C)} \ y = -2, \ x \neq 1.$	
		0	$y = 2, x \neq 1$ chân thực và phần ảo c	
		z = -z + i. 1 m p ng 2 và phần ảo bằng 1		ua so piiue 2.
		g 2 và phần ảo bằng i		

- \bigcirc Phần thực bằng -2 và phần ảo bằng -i.
- \bigcirc Phần thực bằng -2 và phần ảo bằng -1.

CÂU 328. Mô-đun của số phức z = 5 - 4i bằng

- \bigcirc 1.
- **B**) 41.
- **(C)** $\sqrt{41}$.
- **(D)** 3.

CÂU 329. Cho số phức $z=2+\sqrt{3}i$. Mô-đun của z bằng

- **(A)** 5.
- \bigcirc \mathbf{B} $\sqrt{5}$.
- \bigcirc $\sqrt{7}$.
- **(D)** 7.

CÂU 330. Phần thực của số phức (2-i)(1+2i) là

- **(A)** 5.
- **B**) 3.
- \bigcirc 4.
- \bigcirc 0.

CÂU 331. Số phức liên hợp của số phức z=1-2i là

- \bigcirc -1 + 2*i*.
- (B) -1-2i.
- **(c)** 2 i.
- **D** 1 + 2i.

CÂU 332. Mô-đun của số phức z = 5 - 2i bằng

- (A) 29.
- \bigcirc \mathbf{B} $\sqrt{29}$.
- **(C)** 3.
- \bigcirc 7.

D. BẢNG ĐÁP ÁN

304.B	305.A	306.B	307.C	308.D	309.C	310.A	311.C
312.B	313.B	314.A	315.A	316.D	317.A	318.D	319.D
320.B	321.A	322.A	323.A	324.C	325.B	326.D	327.D
	328	.C 329).C 330).C 331	.D 332	.B	

Bài 17. HÌNH NÓN, HÌNH TRỤ

A. KIẾN THỨC CẦN NHỚ

1. Hình nón, khối nón

- $\mbox{\Large \ensuremath{ \bigodot}}$ Công thức tính diện tích xung quanh của hình nón $S_{\rm xq}=\pi rl.$
- **O** Công thức tính diện tích toàn phần của hình nón $S_{\rm tp} = S_{\rm xq} + S_{\rm dáy} = \pi r l + \pi r^2 = \pi r (l+r)$.
- $m{\Theta}$ Công thức tính thể tích của khối nón $V_{\rm nón}=rac{1}{3}\pi r^2 h.$
- $\ensuremath{\mathbf{\Theta}}$ Áp dụng Pitago và các hệ thức lượng giác trong tam giác vuông SOA,ta có

$$l^2 = h^2 + r^2; \cos \widehat{ASO} = \frac{h}{l}; \sin \widehat{ASO} = \frac{r}{l}; \tan \widehat{ASO} = \frac{r}{h}.$$

	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			

ı																		

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

)		c)																						
		•			(1		1	7	2	•	k	2	N	7		5	U						
						Ì	1	•	1			-		•	•		Ì	-							
•									•		•												_	_	

2. Hình tru, khối tru

- \odot Công thức tính diện tích xung quanh của hình trụ $S_{xq} = 2\pi rl$.
- $oldsymbol{\odot}$ Công thức tính diện tích toàn phần của hình trụ $S_{\mathrm{tp}} = S_{\mathrm{xq}} + 2S_{\mathrm{dáy}} = 2\pi r l + 2\pi r^2$.
- $oldsymbol{\Theta}$ Công thức tính thể tích của khối nón $V_{\rm tru} = \pi r^2 h$.

B. BÀI TẬP MẪU

VÍ DU 17 (Đề minh họa BGD 2022-2023). Cho hình nón có đường kính đáy 2rvà độ dài đường sinh $\ell.$ Diện tích xung quanh của hình nón đã cho bằng

$$\bigcirc$$
 $2\pi r\ell$.

$$\bigcirc$$
 $\pi r \ell$.

$$\bigcirc \frac{1}{3}\pi r^2 \ell.$$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 333. Cho hình nón có bán kính đáy r=a và độ dài đường sinh l=3a. Diện tích xung quanh của hình nón đã cho bằng

$$lackbox{\textbf{B}} \pi a^2.$$

$$\bigcirc$$
 $4\pi a^2$.

(D)
$$10\pi a^2$$
.

CÂU 334. Một khối nón có chiều cao bằng 3, độ dài đường sinh bằng 5. Thể tích của khối nón là

A
$$12\pi$$
.

B)
$$16\pi$$
.

(C)
$$15\pi$$
.

$$\bigcirc \frac{80\pi}{3}$$

CÂU 335. Cho khối nón có bán kính đáy bằng R=1, đường sinh l=4. Diện tích xung quanh của khối nón là

$$\bigcirc$$
 8π .

B
$$12\pi$$
.

$$\bigcirc 4\pi$$

$$\bigcirc 6\pi$$

CÂU 336. Cho khối nón có bán kính đáy $r=\sqrt{3}$ và chiều cao h=4. Thể tích của khối nón đã cho bằng

$$\bigcirc$$
 4π .

$$\bigcirc$$
 12 π .

$$\bigcirc$$
 4.

CẦU 337. Cho khối nón có độ dài đường cao bằng 2a và bán kính đáy bằng a. Thể tích của khối nón đã cho bằng

B
$$\frac{4\pi a^3}{3}$$
.

$$\bigcirc \frac{\pi a^3}{3}.$$

B
$$\frac{4\pi a^3}{3}$$
. **C** $\frac{\pi a^3}{3}$.

CÂU 338. Cho khối nón có bán kính đáy r=2, chiều cao $h=\sqrt{3}$. Thể tích của khối nón đã cho là

B
$$4\pi\sqrt{3}$$
.

$$\mathbf{c} \frac{4\pi\sqrt{3}}{3}$$
.

$$\bigcirc$$
 $\frac{4\pi}{3}$.

CÂU 339. Cho khối nón có thể tích V. Khi tăng bán kính đường tròn đáy lên 2 lần thì được khối nón mới có thể tích bằng

$$\bigcirc$$
 $4V$.

$$\bigcirc$$
 $2V$.

$$\bigcirc$$
 $\frac{2V}{3}$.

$$\bigcirc$$
 $\frac{4V}{3}$

CÂU 340. Diện tích xung quanh của hình nón có độ dài đường sinh l và bán kính đáy $\frac{1}{2}$

$$\frac{1}{2}\pi rl.$$

$$\bigcirc$$
 $\pi rl.$

$$\bigcirc \frac{1}{6}\pi rl.$$

$$\bigcirc$$
 $2\pi rl.$

CÂU 341. Một khối trụ có chiều cao bằng 2a và diện tích đáy bằng $2a^2$. Tính thể tích khối lăng trụ?

(A)
$$V = \frac{4a^2}{3}$$
.

(B)
$$V = \frac{4a^3}{3}$$
. **(C)** $V = 4a^3$.

$$\bigcirc V = 4a^3.$$

$$\bigcirc V = \frac{2a^3}{3}.$$

CÂU 342. Diện tích xung quanh của hình trụ có độ dài đường sinh l và bán kính đáy $r = \frac{1}{2}l$ là

$$lack A$$
 l^2 .

$$\bigcirc$$
 πl^2 .

(**c**)
$$2\pi l^3$$
.

$$\bigcirc$$
 $2\pi l$.

CÂU 343. Một hình trụ có bán kính đáy r=5 cm, chiều cao h=7 cm. Diện tích xung quanh của hình trụ này là

A
$$70\pi \text{ cm}^2$$
.

B
$$\frac{70}{3}\pi \text{ cm}^2$$
.

$$\mathbf{c} \frac{35}{3} \pi \text{ cm}^2.$$

D
$$35\pi \ {\rm cm}^2$$
.

CÂU 344. Một hình trụ tròn có bán kính đáy $r=50~\mathrm{cm}$ và chiều cao $h=50~\mathrm{cm}$. Diện tích xung quanh hình trụ bằng

$$\bigcirc$$
 5000 π cm².

B)
$$5000 \text{ cm}^2$$
.

$$\bigcirc$$
 2500 π cm².

$$\bigcirc$$
 2500 cm².

CÂU 345. Diện tích xung quanh của hình trụ có độ dài đường cao h và bán kính đáy rbằng

$$\bigcirc$$
 $4\pi rh$.

$$\bigcirc$$
 $\pi rh.$

$$\bigcirc$$
 $2\pi rh$.

CÂU 346. Cho một khối trụ có độ dài đường sinh bằng 10cm. Biết thể tích khối trụ bằng $90\pi \text{ cm}^3$. Tính diện tích xung quanh của khối trụ.

$$\bigcirc$$
 36 π cm².

(B)
$$81\pi \text{ cm}^2$$
.

$$(\mathbf{C}) 60\pi \text{ cm}^2.$$

D
$$78\pi \text{ cm}^2$$
.

CÂU 347. Tính diện tích xung quanh của một hình trụ có chiều cao 20 m, chu vi đáy bằng 5 m.

(A)
$$100\pi \text{ m}^2$$
.

B)
$$100 \text{ m}^2$$
.

$$\bigcirc$$
 50 m².

D
$$50\pi \text{ m}^2$$
.

CẦU 348. Cho khối trụ có bán kính đáy bằng a và chiều cao bằng $3a\sqrt{3}$. Thể tích của khối trụ đó là

$$\mathbf{\hat{A}}$$
 $3\pi a^3$.

B)
$$3\pi a^3 \sqrt{3}$$
.

$$\mathbf{C}$$
 πa^3 .

$$\mathbf{(D)} \, \pi a^3 \sqrt{3}.$$

CÂU 349. Cho hình trụ có bán kính đáy bằng a, chu vi của thiết diện qua trục bằng 12a. Thể tích của khối tru đã cho bằng

$$(\mathbf{A}) \pi a^3$$
.

©
$$6\pi a^3$$
.

D
$$5\pi a^3$$
.

CÂU 350. Cho khối trụ có đường sinh bằng 2, thể tích 18π . Diện tích toàn phần của khối trụ bằng

$$\bigcirc$$
 20 π .

$$\bigcirc$$
 10π .

©
$$12\pi$$
.

D
$$30\pi$$
.

CÂU 351. Cho khối trụ có bán kính đáy bằng 2, chiều cao bằng 3. Thể tích của khối trụ đã cho bằng

$$\bigcirc$$
 12 π .

$$\bigcirc$$
 6π .

$$\bigcirc$$
 4π .

D
$$18\pi$$
.

CÂU 352. Công thức tính thể tích khối trụ tròn xoay có bán kính r và chiều cao h là

$$\mathbf{B} V = \pi r h.$$

$$\bigcirc V = \pi r^2 h$$

$$\bigcirc V = 2\pi r h.$$

D. BẢNG ĐÁP ÁN

333.A	334.B	335.C	336.A	337.D	338.C	339.A	340.A
341.C	342.B	343.A	344.A	345.C	346.C	347.B	348.B
		349 R	350 D	351 A	352 C		

Bài 18. PHƯƠNG TRÌNH ĐƯỜNG THẮNG

A. KIẾN THỨC CẦN NHỚ

QUICK NOTE	1. Phương trìn	h đường thẳng		
			(z_0) và có véc-tơ chỉ r	ohuong (VTCP) $\vec{u}_d =$
	• Duong thoms w	ar qua areni 111 (w0, 90	$\int x = x_0 + a_1 t$	ording (, i ci) wa
	$(a_1; a_2; a_3)$ có pl	hương trình tham số \cdot	$\begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \\ z = z_0 + a_3 t \end{cases}, (t \in \mathbb{R})$).
			$z = z_0 + a_3 t$	
	$oldsymbol{\Theta}$ Điểm M thuộc	đường thẳng $d \Leftrightarrow M(a)$	$x_0 + at_1; y_0 + at_2; z_0 +$	at_3).
	Mấu a a a	$\neq 0$ thi $\frac{x-x_0}{x} = \frac{y-y}{x}$	$y0 = \frac{z - z_0}{z}$ duce goi	là phương trình chính
	$\operatorname{tcute{ac}} \operatorname{tac} d_1 \cdot d_2 \cdot d_3 \cdot d_4$	a_1 a_2	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	ia phuong trinii ciniii
	tac cua a.			
	B. BÀI TẬP MẨ	Ŭ		
	,		r-1	y-2 $z+3$
			rờng thẳng $d: \frac{x-1}{2} =$	$= \frac{y-2}{-1} = \frac{z+3}{-2}$. Điểm
	nào dưới đây thuộc d		(A) N(0, 1, 0)	A 14(0, 1, 0)
	(A) $P(1;2;3)$.	B) $Q(1;2;-3)$.	(c) $N(2;1;2).$	M(2;-1;-2).
	C. BÀI TẬP TU	ONC THUND	HÁT TĐIỂN	
	CÂU 353. Cho đường	thẳng $\Delta : \frac{x-2}{2} = \frac{9}{2}$	$\frac{g-3}{3} = \frac{z}{1}$. Khi đó Δ	đi qua điểm M có tọ
	độ	_		
			© $(1; -1; 2)$.	
	CÂU 354. Trong khôn	g gian với hệ tọa độ O	xyz, cho đường thẳng a	$d: \frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{2}$
	Điểm nào dưới đây khô	ng thuộc d?		
	A $N(1;0;1)$.	B $F(3; -4; 5)$.	\bigcirc $M(0;2;1).$	D $E(2;-2;3)$.
	CÂU 355. Trong khôn	ng gian $Oxuz$, cho đười	ng thẳng $d: \frac{x+1}{} = \frac{y}{}$	$\frac{z-1}{z-1} = \frac{z+3}{z-1}$. Điểm nào
	dưới đây thuộc d ?		2	3 -2
		B $M(1;1;-3)$.	\bigcirc $Q(3;2;-2).$	\bigcirc $P(-1;1;-3).$
	CÂU 356. Trong khôn			
	y-1 $z+2$	ig gian $Oxyz$, diem	nao duoi day thuọc d	$\frac{1}{1}$
	$\frac{y-1}{1} = \frac{z+2}{2} ?$			
	A $P(1;1;2)$.	B $N(2;-1;2)$.	© $Q(-2;1;-2)$.	(D) $M(-2; -2; 1)$.
	CÂU 357. Trong khôn	ng gian $Oxyz$, đường t	thẳng $d \colon \frac{x-1}{1} = \frac{y-1}{2}$	$\frac{2}{z} = \frac{z+3}{z}$ không đi qua
	điểm nào dưới đây?		1 –3	5
		B $Q(1;2;-3)$.	\bigcirc $M(2;-1;2).$	$\bigcirc P(0;2;-8).$
	CÂU 358. Trong khôn	ıg gian với hệ trục toạ	$d\hat{\rho} \ Oxyz \ \text{cho dường to}$	hẳng Δ có phương trìnl
	CÂU 358. Trong khôn $\Delta : \frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{2}$	$\frac{+3}{4}$. Đường thẳng Δ o	đi qua điểm M nào bê	n dưới?
		4		
	M $(5; -4; 7)$. M $(-5; 7; -12)$.		B M $(-5; 11; -15)$ D M $(5; 4; -7)$.	,-
	•	**2	_	
	CÂU 359. Trong khôn $y=1$ $y=2$	ng gian $Oxyz$, điểm	nao dươi dây thuộc đ	uong thang $d: {1} =$
	$\frac{y-1}{1} = \frac{z+2}{2}.$			
	$\bigcirc Q(-2;1;-2).$	B $M(-2;-2;1).$	\bigcirc $P(1;1;2).$	$lefte{\mathbf{D}} N(2;-1;2).$
			$\int x = 2 + 3t$	
	CÂU 360. Trong khôn	ng gian $Oxyz$, đường	thẳng d : $\begin{cases} y = -1 - 1 \end{cases}$	4t đi qua điểm nào sa
			z = 5t	
	đây? $(5:5:5).$	(D) M (2: 4 F)	$(\mathbf{C}) M(2:-1:0).$	A M (0: 0.10)
	\ A / /V/ (a: a: b).	(D) /// (3: -4:51	$\langle \mathbf{L}_{\mathbf{L}} \rangle / V L (Z; -1; U)$	(14) /// (8: . 9: 10)

CÂU 361. Trong không gian Oxyz, điểm nào sau đây không nằm trên đường thẳng $\Delta\colon \frac{x-1}{2}=\frac{y+1}{1}=\frac{z}{3}?$

(A) M(1;-1;0). **(B)** N(3;0;3).

© P(-3; -3; -6). **D** Q(5; 1; 5).

CÂU 362. Trong không gian Oxyz , cho đường thẳng (d): $\begin{cases} x=1-t \\ y=2t \\ z=2+t \end{cases}$. Điểm nào dưới đây

thuộc (d)?

(A) M(1;2;2).

B) N(0;2;3).

© P(-1;4;2). **D** Q(-1;2;1).

CÂU 363. Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng $d \colon \frac{x-2}{-3} =$ $\frac{y+1}{2} = \frac{z+3}{1}?$

B) (2;-1;-3). **C**) (-2;1;3).

(-3; 2; 1).

CÂU 364. Trong không gian Oxyz, điểm nào sau đây không thuộc đường thẳng d: $\begin{cases} x = 1 + 2t \\ y = 3 - 4t? \\ z = 6 - 5t \end{cases}$

A P(-1; -3; -6). **B** Q(-1; 7; 11).

© M(1;3;6).

 $(\mathbf{D}) N(3;-1;1).$

CÂU 365. Trong không gian Oxyz, điểm nào sau đây thuộc đường thẳng $d \colon \frac{x+1}{-1} =$

điểm nào dưới đây?

A Q(1;2;3).

(B) M(3;-1;2). **(C)** P(2;-2;3). **(D)** N(-1;5;4).

CÂU 367. Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{y+1}{2}$

(B) N(1;5;2). **(C)** Q(-1;1;3). **(D)** M(1;1;3).

CÂU 369. Trong không gian với hệ trực tọa độ Oxyz, đường thẳng $d \colon \frac{x-1}{3} = \frac{y+2}{-4} = z-3$... $\frac{z-3}{-5}$ đi qua điểm

 $(\mathbf{A}) (-1; 2; -3).$

(B) (1; -2; 3). **(C)** (-3; 4; 5).

(D) (3; -4; -5)

CÂU 370. Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng d: $\begin{cases} x=1-t \\ y=5+t \end{cases}?$ z=2+3t

(A) P(1;2;5). **(B)** N(1;5;2) . **(C)** M(1;1;3). **(D)** Q(-1;1;3). **(CÂU 371.** Trong không gian Oxyz, cho đường thẳng $d: \frac{x-3}{-1} = \frac{y-2}{3} = \frac{z+1}{-2}$. Điểm nào sau đây không thuộc d?

A P(3;2;-1).

(B) Q(-3;-2;1). **(C)** M(4;-1;1). **(D)** N(2;5;-3).

CÂU 372. Trong không gian Oxyz, đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z}{3}$ đi qua điểm nào dưới đây?

(A) (3; 2; 3).

(B) (2; 1; 3).

 (\mathbf{C}) (3; 1; 2).

 (\mathbf{D}) (3; 1; 3).

_			
ລແ	ICK	N(
7 JU	II .K	NO	

CÂU 373. Đường thẳng $d : \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{-2}$ không đi qua điểm nào sau đây?

B) M(1;2;1). **C**) M(-1;1;1).

CÂU 374. Trong không gian Oxyz, cho đường thẳng $d : \frac{x+2}{1} = \frac{y-3}{2} = \frac{z}{-5}$. Đường thẳng d không đi qua điểm nào sau đây?

(A) P(3;1;5).

(A) M(1;2;-1).

(B) Q(0;7;-10).

 $(\mathbf{C}) M (-2; 3; 0).$

CÂU 375. Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng

y = 2 - 2t ?

(A) Q(0;1;4).

B) M(3;2;-2).

(**C**) N(1;1;2).

(D) M(3; 3; -6).

CÂU 376. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{1} = \frac{y}{-2} = \frac{z-1}{2}$. Điểm nào dưới đây không thuộc d?

(A) N(1;0;1).

(B) F(3; -4; 5).

 $(\mathbf{C}) M(0; 2; 1).$

(**D**) E(2;-2;3).

CÂU 377. Trong không gian tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z+2}{-2}$.

Điểm nào dưới đây KHÔNG thuộc đường thẳng d?

(A) N(1; -1; -2). **(B)** P(-1; 0; 0).

(C) Q(-3; 1; -2). **(D)** M(3; -2; -4).

CÂU 378. Trong không gian Oxyz, điểm nào sau đây không thuộc đường thẳng $d : \frac{x+2}{2} =$ $\frac{y-1}{-3} = \frac{z-4}{2}$?

(A) Q(2; -5; 4).

B) N(0; -2; 6).

 $(\mathbf{C}) P(4; -8; 10).$

(D) M(-2;1;4).

D. BẢNG ĐÁP ÁN

353.A	354.C	355.D	356.C	357.D	358.B	359.A	360.C
361.D	362.B	363.B	364.A	365.D	366.C	367.C	368.B
369.B	370.B	371.B	372.D	373.B	374.A	375.D	376.C
			377.C	378.A			

Bài 19. TÌM CỰC TRỊ CỦA HÀM SỐ BIẾT BẢNG BIẾN THIÊN HOẶC ĐỔ THỊ

A. KIẾN THỨC CẦN NHỚ

Dựa vào bảng biến thiên hoặc đồ thị hàm số nhận biết việc đổi dấu của đạo hàm f'(x)để kết luân

- Θ Nếu f'(x) đối dấu từ âm sang dương khi qua điểm x_0 thì x_0 là điểm cực tiểu của
- $oldsymbol{\Theta}$ Nếu f'(x) đổi dấu từ dương sang âm khi qua điểm x_0 thì x_0 là điểm cực đại của hàm số.

B. BÀI TẬP MẪU

VÍ DU 19 (Đề minh hoa BGD 2022-2023).

Cho hàm số $y = ax^4 + bx^2 + c$ có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

(A) (-1; 2). **(B)** (0; 1).

 (\mathbf{C}) (1; 2).

 $(\mathbf{D})(1;0).$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN CÂU 379.

Cho hàm số y = f(x) xác định trong khoảng (a,b) và có đồ thị như hình bên dưới. Trong các khẳng định dưới đây, khẳng định nào sai?

igapha Hàm số y = f(x) có đạo hàm trong khoảng (a; b).

(B) $f'(x_2) > 0$.

(C) $f'(x_3) = 0$.

(D) $f'(x_1) > 0$.

CÂU 380. Cho hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$		-2		0		2		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞				× 3 ×		\		+∞

Chọn khẳng định sai.

 $(\mathbf{A}) f(x) \ge 0, \, \forall x \in \mathbb{R}.$

B) Hàm số f(x) đồng biến trên $(3; +\infty)$.

(**C**) Hàm số f(x) đạt cực đại tại x=3.

(**D**) Hàm số f(x) nghịch biến trên $(-\infty; -3)$.

CÂU 381. Cho hàm số y = f(x) liên tục trên $\mathbb R$ và có bảng xét dấu của đạo hàm như hình vē.

x	$-\infty$		-1		0		2		4		$+\infty$
f'(x)		+	0	_		+	0	_	0	+	

Hàm số đã cho có bao nhiều điểm cực trị?

 (\mathbf{A}) 2.

(B) 1.

(C) 3.

 (\mathbf{D}) 4.

CÂU 382. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như bảng sau.

Р Р
QUICK NOTE

x	$-\infty$	-3	-2	3	$+\infty$
y'	_	+	- 0 -	-	+
	$+\infty$		22		+∞
y				_3	/
		21		-0	

Tổng các giá trị cực tiểu của hàm số trên bằng

- **(A)** 19.
- **(B)** 18.
- $(\mathbf{C}) 0.$
- (**D**) 22.

CÂU 383.

Cho hàm số y = f(x) liên tục trên đoạn [-4;3] và có đồ thị trên đoạn [-4; 3] như hình bên. Hãy xác định số điểm cực đại của đồ thị hàm số đó.

(A)

3.

(**B**)

0.

2.

1.

 (\mathbf{D})

y

CÂU 384. Cho hàm số $y = ax^3 + bx^2 + cx + d$, với a, b, c, d là các số thực và $a \neq 0$, có đồ thị như hình bên. Khẳng định nào sau đây sai?

- (A) $y' < 0, \ \forall x \in (-2; 0).$
- **(B)** Hàm số đạt giá trị lớn nhất tại điểm x = -2.
- (C) Đồ thị hàm số có đúng hai điểm cực trị.

CÂU 385.

Cho hàm số bậc bốn y = f(x) liên tục trên $\mathbb R$ và có đồ thị là đường cong như hình vẽ bên. Tìm điểm cực tiểu của đồ thị hàm số y = f(x).

- $(\mathbf{A}) x = 0.$
- **B** y = -2.
- $(\mathbf{C})M(0;-2).$
- **(D)** N(2;2).

CÂU 386. Cho hàm số y = f(x) liên tục trên từng khoảng xác định và có bảng biến thiên như sau.

x	$-\infty$ x	$x_1 x_2 +\infty$
y'	+	- +
y	+∞	$+\infty$ $+\infty$ 0

Khẳng định nào sau đây đúng?

(A) Hàm số đã cho không có cực trị.

- (B) Hàm số đã cho có một điểm cực tiểu và không có điểm cực đại.
- (C) Hàm số đã cho có một điểm cực đại và có một điểm cực tiểu.
- (D) Hàm số đã cho có một điểm cực đại và không có điểm cực tiểu.

CÂU 387. Cho hàm số y = f(x) liên tục trên $(-\infty; 4]$ và có bảng biến thiên như hình vẽ sau

Số điểm cực tri của hàm số đã cho là

 \bigcirc 4.

(B) 3.

 (\mathbf{C}) 2.

 \bigcirc 5.

CÂU 388. Cho hàm số y=f(x) liên tục trên $\mathbb R$ và có bảng biến thiên như sau.

x	$-\infty$	-1	1	0	1	$+\infty$
f'(x)	+	0	_	+	0	_
f(x)	$-\infty$	4		3	4	$-\infty$

Khẳng định nào dưới đây sai?

- (A) Hàm số có ba điểm cực trị.
- **B**) Hàm số đạt cực tiểu tại điểm x = 0.
- (C) Hàm số có giá trị cực tiểu bằng 0.
- (**D**) Hàm số có giá trị cực tiểu bằng 3.

CĂU 389. Cho hàm số y = f(x) liên tục trên $\mathbb R$ và có bảng xét dấu của f'(x) như sau

x	$-\infty$	_	-2		1		5		$+\infty$
f'(x)		+		_	0	_	0	+	

Số điểm cực trị của hàm số y = f(x) là

(A) 3.

(B) 2.

 $(\mathbf{C}) 0.$

 (\mathbf{D}) 1.

CÂU 390.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Biết rằng hàm số y = f'(x) có đồ thị như hình bên. Đặt g(x) = f(x) + x. Hỏi hàm số có bao nhiêu điểm cực đại và bao nhiêu điểm cực tiểu trên khoảng (-1;3)?

- (A) Hàm số có một điểm cực đại và hai điểm cực tiểu.
- (B) Hàm số có một điểm cực đại và một điểm cực tiểu.
- (C) Hàm số không có điểm cực đại và có một điểm cực tiểu.
- (**D**) Hàm số có hai điểm cực đại và một điểm cực tiểu.

CÂU 391. Cho hàm số bậc ba y = f(x) có bảng biến thiên như hình vẽ.

•	
QUICK NOTE	
	=
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

x	$-\infty$		0		2		$+\infty$
y'		-	0	+	0	_	
y	+∞		-3		1		-∞

Hàm số y = f(f(x)) có bao nhiều điểm cực trị?

- **(B)** 6.
- **(D)** 7.

CÂU 392. Cho hàm số y=f(x) xác định và liên tục trên $\mathbb R$ và có đạo hàm $f'(x) = x^3(x+1)^2(2-x)$. Hàm số đã cho có bao nhiều điểm cực trị?

- **(B)** 2.

CÂU 393. Cho hàm số y = f(x) có đạo hàm trên $\mathbb R$ và có bảng biến thiên như hình vẽ sau

Hàm số y = f(2x) đạt cực đại tại điểm nào dưới đây?

- **(c)** x = 1.
- **(D)** x = -1.

CÂU 394.

Cho hàm số bậc năm y = f(x) liên tục trên \mathbb{R} , hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số y =

- **(A)** 3.
- (**B**) 2.
- $(\mathbf{C}) 1.$
- **(D)** 4.

CÂU 395. Cho hàm số bậc ba $y = ax^3 + bx^2 + cx + d$ có đồ thị nhận hai điểm A(1;3) và B(3;-1) làm hai điểm cực trị. Khi đó số điểm cực trị của đồ thị hàm số $y=|ax^2|x|+bx^2+c|x|+d$

- là
 - **(A)** 7.
- **(B)** 11.
- (\mathbf{C}) 5.
- $(\mathbf{D}) 9.$

CÂU 396.

Cho hàm số bậc bốn y = f(x). Biết rằng hàm số y = f'(x)có đồ thị như hình vẽ bên. Hỏi hàm số $y = f(5 - x^2)$ có bao nhiêu điểm cực trị?

- $(\mathbf{C}) 3.$

CÂU 397. Cho hàm số y = f(x) có bảng biến thiên như sau

Đồ thị hàm số y = |f(x)| có bao nhiều điểm cực trị?

- (**A**) 2.
- **(B)** 5.
- **(D)** 4.

CÂU 398.

Cho hàm số bậc bốn y = f(x) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số y = |f(x)| có bao nhiêu điểm cực trị?

- (A) 5.
- **(B)** 3.

D. BẢNG ĐÁP ÁN

379.B	380.C	381.D	382.B	383.D	384.B	385.C	386.B
387.B	388.C	389.B	390.D	391.B	392.B	393.C	394.D
		395.B	396.B	397.C	398.A		

Bài 20. ĐƯỜNG TIỆM CẬN

A. KIẾN THỰC CẦN NHỚ

1. Đường tiêm cân ngang

Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng $(a; +\infty)$), $(-\infty;a)$ hoặc $(-\infty;+\infty)$). Đường thẳng $y=y_0$ là đường **tiệm cận ngang** (hay tiệm cận ngang) của đồ thị y=f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn

$$\lim_{x \to +\infty} f(x) = y_0, \lim_{x \to -\infty} f(x) = y_0.$$

Như vậy, để tìm tìm cận ngang của đồ thị hàm số ta chỉ cần tính giới hạn của hàm số đó tai vô cực.

2. Đường tiêm cân đứng

Đường thẳng $x = x_0$ được gọi là đường **tiệm cận đứng** (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn

$$\lim_{x \to x_0^+} f(x) = +\infty, \\ \lim_{x \to x_0^-} f(x) = -\infty, \\ \lim_{x \to x_0^+} f(x) = -\infty, \\ \lim_{x \to x_0^-} f(x) = +\infty.$$

B. BÀI TẬP MẪU

VÍ DỤ 20 (Đề minh họa BGD 2022-2023). Tiệm cận ngang của đồ thị hàm số $y = \frac{2x+1}{3x-1}$ là đường thẳng có phương trình

- **(A)** $y = \frac{1}{3}$.
- **©** $y = -\frac{1}{3}$. **D** $y = \frac{2}{3}$.

• • • • • • •	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•

ဩ	ш	_	Ν	$\boldsymbol{-}$	т	
71	T.	•	N	u	ш	

	` ^				~?
C.	BAITAP	TƯƠNG T	Tľ VA	PHAT	TRIEN
~•		1001.01	·		

CÂU 399. Đồ thị của hàm số nào trong các hàm số sau đây có tiệm cận ngang? **B**) $y = x^3 - x^2 + x - 3$.

 $\bigcirc y = \frac{3x^2 - 1}{x + 1}.$ $(\mathbf{C}) y = x^4 - x^2 - 2.$

CÂU 400. Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số y=10+

(B) x = -10. **(c)** y = 10. **(A)** y = -10.

CÂU 401. Đồ thị hàm số $y = \frac{x-2}{x+1}$ có đường tiệm cận đứng là

CÂU 402. Tìm tiệm cận ngang của đồ thị hàm số $y = \frac{2x+1}{x-1}$

(A) x = -1. **(D)** y = 2.

CÂU 403. Số đường tiệm cận của đồ thị hàm số $y = \frac{x-1}{x+1}$ là

(A) 2. $(\mathbf{D}) 0.$

CÂU 404. Đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số nào sau đây?

(A) $y = \frac{2x^2 + 3x + 2}{2 - x}$. **(C)** $y = \frac{1 + x^2}{1 + x}$. **B** $y = \frac{2x-2}{x+2}$

CÂU 405. Đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số nào sau đây?

B $y = \frac{2x^2 + 3x + 2}{2 - x}$. **D** $y = \frac{1 + x^2}{1 + x}$. **(A)** $y = \frac{1+x}{1-x}$. **(C)** $y = \frac{2x-2}{x+2}$.

CÂU 406. Tiệm cân đứng của đồ thị hàm số $y = \frac{2x+1}{2x-1}$ là

B $x = \frac{1}{2}$. **©** $y = \frac{1}{2}$.

CÂU 407. Đồ thị hàm số $y=\frac{x+3}{x-2}$ có các đường tiệm cận đứng và tiệm cận ngang lần lượt là

(B) x = 1 và y = 2.**(A)** x = 2 và y = 1. $(\mathbf{D}) x = -2 \text{ và } u = 1.$ **(C)** x = 2 và y = -3.

CÂU 408. Cho hàm số $y = \frac{x-2}{x-1}$. Đường tiệm cận đứng của đồ thị hàm số là

 $\bigcirc x = 1.$ **(A)** x = 2.

CÂU 409. Đường tiệm ngang của đồ thị hàm số $y = \frac{2x-6}{x-2}$ là

 $(\mathbf{C}) x - 3 = 0.$ **(A)** y - 3 = 0.

CÂU 410. Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y = \frac{1-2x}{-x+2}$ là

(A) x = -2, y = -2. **(B)** x = -2, y = -2. **(C)** x = -2, y = -2. **(D)** x = 2, y = 2.

CÂU 411. Đồ thị hàm số $y=\frac{x-1}{x^2+1}$ có tất cả bao nhiêu đường tiệm cận (nếu chỉ tính TCĐ và TCN)?

B) 2. **(D)** 1. **(A)** 3.

CÂU 412. Tiệm cận đứng của đồ thị hàm số $y = \frac{x-2}{x+3}$ là **(A)** x = -3. **(B)** y = 1.

CÂU 413. Đồ thị của hàm số nào sau đầy không có tiệm cận ngang?

 $(\mathbf{C}) y = 2x^2 + x.$ **B** $) y = e^x.$

CÂU 414. Tiệm cận ngang của đồ thị hàm số $y = \frac{2-x}{x+1}$ là

(A)
$$y = -1$$
.

$$\bigcirc$$
 $y=2.$

$$(\mathbf{C}) x = -1$$

$$(D) x = 2.$$

CÂU 415. Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số $y = \frac{1-4x}{2x-1}$?

(A)
$$y = \frac{1}{2}$$
.

$$\mathbf{B} y = -2.$$

$$\bigcirc$$
 $y=2$

CÂU 416. Đồ thị hàm số $y = \frac{2x+1}{x+1}$ có tiệm cận đứng là

B)
$$x = -1$$
.

$$(\mathbf{c}) y = -1.$$

$$(\mathbf{D}) x = 1.$$

CÂU 417. Đồ thị hàm số nào sau đây có đường tiệm cận đứng là x=1? **(A)** $y=\frac{x-1}{x}$. **(B)** $y=\frac{2x}{1+x^2}$. **(C)** $y=\frac{2x}{1-x}$.

CÂU 418. Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số $y = \frac{2-x}{x+3}$?

$$(\mathbf{A}) x = 2.$$

$$\mathbf{B} x = -3.$$

(c)
$$y = -1$$
.

$$(\widehat{\mathbf{D}}) y = -3.$$

D. BẢNG ĐÁP ÁN

399.A	400.C	401.B	402.D	403.D	404.D	405.A	406.B
407.A	408.C	409.D	410.D	411.D	412.A	413.C	414.A
		415.B	416.B	417.C	418.B		

Bài 21. PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT

A. KIẾN THỨC CẦN NHỚ

1. Phương trình logarit

$$\Theta \log_a x = b \Leftrightarrow x = a^b$$
.

$$\Theta \log_a f(x) = \log_a g(x) \Leftrightarrow \begin{cases} g(x) > 0 \\ f(x) = g(x). \end{cases}$$

2. Bất phương trình logarit

- a) Nếu a > 1 thì
 - $\Theta \log_a x > b \Leftrightarrow x > a^b$.
 - $\Theta \log_a x < b \Leftrightarrow 0 < x < a^b$.
 - Θ $\log_a f(x) > \log_a g(x) \Leftrightarrow f(x) > g(x) > 0.$
- b) Nếu 0 < a < 1 thì
 - $\Theta \log_a x > b \Leftrightarrow 0 < x < a^b$.
 - $\Theta \log_a x < b \Leftrightarrow x > a^b$.
 - $\Theta \log_a f(x) > \log_a g(x) \Leftrightarrow g(x) > f(x) > 0.$

B. BÀI TẬP MẪU

VÍ DỤ 21 (Đề minh họa BGD 2022-2023). Tập nghiệm của bất phương trình $\log(x-2) > 0$ là

$$(\mathbf{B})$$
 $(-\infty;3)$.

$$\bigcirc$$
 $(3; +\infty).$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 419. Nghiệm của phương trình $\log_2(x-1) = 4$ là

$$(\mathbf{A}) x = 15.$$

$$(\mathbf{C}) x = 17$$

$$\bigcirc$$
 $x=2.$

QUICK NOTE		iệm nhỏ nhất của phương		
	(A) 1.	(B) 3.	© 0.	(D) -3 .
	CÂU 421. Tìm	nghiệm của phương trình	$\log_{64}(x+1) = \frac{1}{2}.$	
	A 7.	B $-\frac{1}{2}$.	\bigcirc -1.	D 4.
	CÂU 422 Tim	nahism of a physical trival	h lam (m + 1) 1	
	0.0	nghiệm của phương trình		
	(A) $x = \frac{23}{2}$.	B $x = -6$.	$\bigcirc x = 6.$	$(\mathbf{D}) x = 4.$
	CÂU 423. Ngh	iệm của phương trình log	$t_5 (2x-1)^3 = 6$ là	
	A 10.	B 12.	© 13.	D 14.
	CÂU 424. Tìm	các nghiệm của phương	$\operatorname{trình}\log_3\left(2x-3\right) = 2$	
	(A) $x = \frac{9}{2}$.		$\bigcirc x = 5.$	(D) $x = \frac{11}{2}$.
	CÂU 425. Số n	ghiệm của phương trình	$\log_2(x^2 - 2x) = 2 \mathrm{la}$	2
	(A) 1.	(B) 2.	(C) 4.	(D) 3.
	^	nghiệm của bất phương t	trình $\log_2(r^2 + 3r) <$	_
	(A) $[-4; -3)$		$(\mathbf{B}) (0;1].$	2 10
	(\mathbf{C}) $(-\infty; -3)$	·	$\left(0;\frac{1}{2}\right]$.	
	•		\ 21	
		nghiệm S của phương trì	_	
	(A) $S = \{1\}.$	(B) $S = \{3\}.$	© $S = \{-1\}.$	$ (D) S = \{0\}. $
		nghiệm của bất phương t		
	$(\blacktriangle) S = (-\infty)$	(3). B $S = (\frac{1}{2}; 3).$	(C) $S = (-2; 3).$	
	CÂU 429. Tập	nghiệm của bất phương t	trình $\log x \ge 2$ là	
	$ (10; +\infty). $	$lackbox{\textbf{B}}(0;+\infty).$	© $[100; +\infty)$.	\bigcirc $(-\infty;10).$
	CÂU 430. Phư	ong trình $\log_2(3x+1) =$	−4 có tập nghiệm là	
	lacklacklack $arnothing$.	B $\left\{-\frac{5}{16}\right\}$.		D {5}.
	_			
	(A) $[6; +\infty)$.	hợp nghiệm của bất phư $oxedsymbol{\mathbb{B}}$ $[9;+\infty).$	ong trinn $\log_2 x \geq 3$ ia	$lackbox{\textbf{D}}[8;+\infty).$
	•	_		
	(A) {2}.	nghiệm của phương trình $(\mathbf{B}) \varnothing$.	$\log_2(x^2-1) = \log_2(x^2-1) = \log_2(x^2-1)$	(2x-1) la $(0;2)$.
		<u> </u>		•
	(A) $x = 2$.	iệm của phương trình log $(\mathbf{B}) x = 1.$	$(x+3) + \log_2(x-1)$ $(x+3) + \log_2(x-1)$	$y = \log_2 5$ ra $ (\mathbf{D}) x = 3. $
	•	<u> </u>		
	(A) (5; 6).	nghiệm S của bất phương \bigcirc	(c) (1;6).	5) $+\log_2(x-1) > 0$ Ia (D) $(1; +\infty)$.
	•	<u> </u>		
	_	ghiệm nguyên của bất ph	<u> </u>	$\overline{\frown}$
	A 1.	(B) 4.	© 2.	(D) 3.
		iệm của phương trình log		
	$ \textbf{A} \ x = 3. $	$\mathbf{B} \ x = 6.$	© $x = 4$.	(D) x = 5.
	CÂU 437. Tập	nghiệm của bất phương t	trình $\log_{\frac{\pi}{4}}(x+1) > \log$	$g_{\frac{\pi}{4}}(2x-5)$ là
	\bigcirc (-1; 6).	$lackbox{\textbf{B}}\left(\frac{5}{2};6\right)$.	\bigcirc $(-\infty;6)$.	$\bigcirc \mathbf{D} \ (6;+\infty).$
	CÂU 438 Tân	nghiệm của phương trình	$\log_{x}(x-1) = \log_{x}(2)$	r) là
	_	. B $\left\{2+\sqrt{3}\right\}$.	~ (2)	(a) Ia (b) $\{2-\sqrt{3}\}.$
	→ \2 ± \3}	. \(\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2}	$lacksquare$ $(\overline{2})$.	□ \2 - \3 \3 \.

D. BẢNG ĐÁP ÁN

419.C	420.C	421.A	422.D	423.C	424.B	425.B	426.A
427.D	428.B	429.C	430.B	431.D	432.A	433.A	434.A
		435.B	436.D	437.D	438.B		

Bài 22. PHÉP ĐẾM - HOÁN VỊ - CHỈNH HỢP - TỐ HỢP

A. KIẾN THỰC CẦN NHỚ

1. Quy tắc công

Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có mcách thực hiện, hành động kia có n các thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.

2. Quy tắc nhân

Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện cho hành động thứ hai thì có $m \cdot n$ cách hoàn thành công việc.

3. Hoán vi

- \odot Cho tập hợp A gồm n phần tử $(n \ge 1)$. Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.
- Θ Số các hoán vị của n phần tử là $P_n = n(n-1)\cdots 2\cdot 1 = n!$.

4. Chính hợp

- $oldsymbol{\Theta}$ Cho tập hợp A gồm n phần tử $(n\geq 1)$. Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
- $oldsymbol{\Theta}$ Số chỉnh hợp chập k của n phần tử là $A_n^k = \frac{n!}{(n-k)!}$ với $1 \le k \le n$.

5. Tổ hợp

- $oldsymbol{\Theta}$ Cho tập hợp A gồm n phần tử $(n \geq 1)$. Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.
- $\pmb{\Theta}$ Số các tổ hợp chập k của n phần tử là $\mathbf{C}_n^k = \frac{n!}{k!(n-k)!}$ với $0 \leq k \leq n.$
- Θ Một số tính chất của các số C_n^k :
 - i) $C_n^k = C_n^{n-k}$ với $0 \le k \le n$.
 - ii) $C_{n-1}^{k-1} + C_{n-1}^k = C_n^k$ với $1 \le k < n$.

B. BÀI TẬP MẪU

VÍ DỤ 22 (Đề minh họa BGD 2022-2023). Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng

- (A) 225.
- **(B)** 30.
- **(C)** 210.
- (**D**) 105.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 439. Với k, n là hai số nguyên dương tùy ý thỏa mãn $k \leq n$, mệnh đề nào dưới đây

 $(\mathbf{A}) C_n^k + C_n^{k+1} = C_{n+1}^{k+1}.$

QUICK NOTE	$\mathbf{C}^k = \frac{\mathbf{A}_n^k}{k!}.$			
	n:	à số tư nhiên lớn hơn '	2. Số các chỉnh hợp chậ	in 9 của n nhận tử là
	(A) $n(n-1)$.	$egin{array}{c} \textbf{B} \ 2n. \end{array}$		
	CÂU 441. Cho tậj	$p A = \{1; 2; 3; 4; 5; 6\},$	có bao nhiêu tập con g	ồm 3 phần tử của tập hợp
	$A?$ A_6^3 .	$lackbox{f B}$ ${ m P}_6.$	\bigcirc P_3 .	\bigcirc C^3_6 .
		<u> </u>	<u> </u>	$lue{oldsymbol{\mathcal{C}}_6}$.
		$k\in\mathbb{N}^*$ và $n\geq k.$ Tìm	cong thuc dung. $n!$	
			$\mathbf{B} A_n^k = \frac{n!}{(n-k)!}$	$\frac{ k }{n!}$
	$\mathbf{C} \mathbf{A}_n^k = \frac{n!}{(n-k)!}$	<u>)i</u> .	$\mathbf{D} \mathbf{C}_n^k = \frac{1}{(n-k)^k}$	$\frac{n!}{(k+1)!}$.
	CÂU 443. Số tập	con có hai phần tử của	a tập hợp gồm 10 phần	tử là
	A 20.	B 90.	© 100.	D 45.
	CÂU 444. Cho tậ _l	p hợp X gồm 10 phần	tử. Số các hoán vị của	10 phần tử của tập hợp X
	$\hat{\mathbf{A}}$ 10 ¹⁰ .	(B) 10^2 .	\bigcirc 2^{10} .	(D) 10!.
		\smile	\smile	
	(A) $\{1; 2\}$.	$p A = \{1; 2; 3; \dots; 9; 10\}$ (B) 2!.	$\$ Một tổ hợp chập 2 cử \mathbf{C} \mathbf{A}_{10}^2 .	ia 10 phan từ của A la \bigcirc \mathbf{D} C^2_{10} .
		u hức nào dưới đây đúng	<u> </u>	<u> </u>
	$\mathbf{A} \mathbf{A}_n^k = \frac{n!}{(n-k)!}$		$\mathbf{B} \mathbf{A}_n^k = \frac{(n-k)^k}{k!}$)!
)!`	κ :	
				$\overline{k)!}$.
	CÂU 447. Với <i>n</i> là	à số nguyên dương, côi	ng thức nào dưới đây đ	úng?
				!. \bigcirc $P_n = n$.
				họn ngẫu nhiên 1 học sinh
	từ lớp 12A và 12B. (A) 43.	Hỏi có bao nhiêu cách (B) 30.	chọn? (C) 1290.	(D) 73.
	_			
				bút chì. Các cây bút mực u. Như vậy, học sinh đó có
	bao nhiêu cách chọi			
	(A) 16.	(B) 2.	© 3.	D 64.
			ây bút để viết bài. Bút sinh đó có bao nhiêu c	mực có 8 loại khác nhau
	(A) 16.	B 2.	© 3.	(D) 64.
	CÂU 451. Có bao	nhiêu cách chọn ra 3 h	nọc sinh từ một nhóm c	có 7 học sinh nam và 3 học
	sinh nữ?	_		_
	$(A) C_3^3$.	B C_{10}^3 .	$\mathbf{C} A_{10}^3$.	\bigcirc P ₃ .
				, từ thành phố B có 7 con lêu cách đi từ A đến C mà
	$chi \stackrel{\frown}{\text{di}} qua B \stackrel{\frown}{\text{dúng r}}$	nột lần?	_	_
	(A) 10.	B 7.	© 17.	D 70.
				ơn gồm 1 món ăn trong 5
	mon, 1 loại qua troi đơn?	ng ə roạr, 1 roại nước t		có bao nhiêu cách lập thực
	A 73.	B 75.	© 85.	D 95.
			6 học sinh nữ. Hỏi có	bao nhiều cách chọn ra 3
	học sinh trong đó co \mathbf{A} $\mathbf{C}_4^2 + \mathbf{C}_6^1$.	\bullet 2 học sinh nam?	\mathbf{C} $A_4^2 \cdot A_6^1$.	$igotimes_{1}^{2} A_{4}^{2} + A_{6}^{1}.$
	\ \ \ \ \ 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\langle \ \rangle \ \ \langle \ 4 \ \ \rangle \ \ $	<-ノ4 6・	\ \ \4 \ - * 6*

CÂU 455. Trong một trận chung kết bóng đá phải phân định thắng thua bằng đá luân lưu 11 mét. Huấn luyện viên của mỗi đội cần trình với trọng tài một danh sách sắp thứ tự 5

W IONG ON II	HPIQG	2023							
cầu thủ trong 1: đội sẽ có bao nh		h lập danh		ự đá luân l				nỗi	QUICK NOTE
(A) C_{11}^5 .		(B) A_{11}^5 .		(C) 5!.		D 11!	•		
CÂU 456. Có khối 10. Hỏi có k (A) $C_6^2 \cdot C_5^2 \cdot C_5^2$	oao nhiê	eu cách chọ	n ra 6 học	sinh sao ch		có đúng 2 l	-		
$\Box_6 \cdot \Box_5 \cdot \Box_5$	\circ_4 .	\mathbf{B} \mathbf{A}_6 .	$A_5 \cdot A_4$.	\bigcirc	$+ \circ_5 + \circ_4.$	\mathbf{P} \mathbf{A}_6	$+ \Lambda_5 + \Lambda_4$.	
CÂU 457. Một 1 chủ tịch, 1 phá				. Có bao nl	hiêu cách cl	họn một ba	n quản lí g	ồm	
\mathbf{A} A_{30}^3 .		B C_{30}^3 .		© 30!.		D 3!.			
CÂU 458. Một	hộp ch	nứa 10 quả	cầu phân	biệt. Số cá	ch lấy ra ci	ùng lúc 3 q	uả cầu từ h	ıộp	
đó là (A) 720.		B) 10^3 .		\bigcirc 120		$ig(m{D} ig) 3^{10}$)		
^		$\overline{}$				\circ			
CÂU 459. Giả nào được dùng 2								iàu	
(A) A ₆ .		B) 10.		\bigcirc C ₆ .		\bigcirc 6^4 .			•••••
CÂU 460. Có 1	L 1. !:		â â 9 1		4	. #2 1> 4	.al. 049		
(A) 9 ³ .	oao mne	eu cach ph $(\mathbf{B}) 3^9$.	an cong 5 i	\mathbf{C} \mathbf{A}_9^3 .		$(\mathbf{D}) \mathrm{C}_9^3$			•••••
A) 9 .		b 3.		\bullet A_9 .		\bigcirc \bigcirc \bigcirc \bigcirc	•		
CÂU 461. Cho			ệt nằm trê	n một đườ	ng tròn. He	ỏi có bao n	hiêu tam g	iác	
được tạo thành (A) 8000.	từ các c	fiêm này? (B) 1140		(C) 648	0	(D) 600)		
^		\cup		<u> </u>		<u> </u>			
CÂU 462. Tro			4 viên bi d	tỏ và 3 viêr	ı bi xanh. I	Lấy ngẫu nh	niên đồng tl	hời	
2 viên. Có bao n	ihiëu ca	~ "		(a) 40		A 10			
(A) 18.		B) 21.		(C) 42.		(D) 10.			
CÂU 463. Số c	cách sắp	xếp 6 học	sinh nữ và	_		nh một hàn	g dọc là		
(A) $6! + 4!$.		B) $6! \cdot 4$!.	$(\mathbf{C}) \mathrm{C}^4_{10}$	$\cdot { m C}_{10}^{6}.$	(D) 10!			
CÂU 464. Cho	tập hơ	$\operatorname{fp} X = \{1$: 2: 3: 4: 5: 6	5;7}. Từ tấ	\hat{a} p hợp X ,	hỏi có thể	lâp được b	oao	
nhiêu số tự nhiê					.1 .1 ,		.1 .		
A 35.		B 210.		© 840		$\bigcirc 504$	40.		
CÂU 465. Có i	hao nhi	ên số tư n	hiện có hại	chữ số kh	ác nhau m	à các chữ s	số được lấy	tir	
tập hợp $X = \{1:$			incii co na	. chu so kh	iac illiau ili	a cac cha s	o duọc lay		
(A) 5^2 .		B) 2^5 .		\bigcirc A ₅ .		$igotimes C_5^2$			
	² - O		. 41	_ ,					
CÂU 466. Giả có hai vận động									
các vị trí thứ nh		,				144 00 0110 1	10, 10 001		
A 84.		B 729.		$\bigcirc 504$:•	(D) 3^9 .			
CÂU 467. Có 1	hao nhi	ôu tôn con	rồm 3 nhề	in từ của ti	ân hơn Y -	- \frac{1.9.3.4.}{	7. 8. 0l?		
$oxed{A} C_7^3.$	Dao IIII	$(\mathbf{B}) A_0^3.$	gom 5 pm	(C) A_7^3 .		$(\mathbf{D}) C_0^3$	-		
^		<u> </u>		<u> </u>		<u> </u>			
CÂU 468. Một			, 5 bi đỏ v	à 4 bi vàng	g. Có bao n	nhiêu cách o	chọn ra 3 v	iên	
bi sao cho có đú	_	_	A 2	(a) c1	G^2	A 1	a 1 a 1		
$ (A) C_5^1 \cdot C_8^1 \cdot ($	\circ_4 .	\mathbf{B} \mathbf{A}_5^{\star} .	$A_{\overline{1}2}$.		$\cdot \cup_{\overline{1}2}$.	$lackbox{D}$ A_5^1	$\cdot A_8 \cdot A_4$.		
D. BÅNG	ĐÁP	ÁN							
439.B 4	40.A	441.D	442.C	443.D	444.D	445.A	446.A]	
	48.D	449.D	450.A	451.B	452.D	453.B	454.B		
	56.A	457.A	458.C	459 A	460 D	461.R	462 B		

Bài 23. NGUYÊN HÀM

465.C

466.C

467.A

468.C

464.B

463.D

all		NC	
7 JU	III. K) I F

A. KIẾN THỰC CẦN NHỚ

1. Đinh nghĩa nguyên hàm

Cho hàm số f(x) xác định trên $\mathbb K$. Hàm số F(x) được gọi là nguyên hàm của hàm số $F'(x) = f(x), \ \forall x \in \mathbb{R}.$ f(x) trên **K** nếu

Nếu F(x) là một nguyên hàm của hàm số f(x) trên \mathbb{K} thì mọi nguyên hàm của f(x)trên K đều có dạng F(x) + C với C là hằng số.

2. Tính chất của nguyên hàm

$$\bullet \int f'(x) \, \mathrm{d}x = f(x) + C.$$

•
$$\int kf(x) dx = k \int f(x) dx$$
 với $k \neq 0$.

•
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$
.

3. Bảng nguyên hàm của một số hàm số thường gặp

Nguyên hàm cơ bản	Nguyên hàm mở rộng	g
• $\int 0 dx = C$ • $\int dx = x + C$ • $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, (\alpha \neq -1)$ • $\int \frac{1}{x} dx = \ln x + C$ • $\int \alpha^{x} dx = \frac{\alpha^{x}}{\ln \alpha} + C, (0 < \alpha \neq 1)$ • $\int e^{x} dx = e^{x} + C$	$ \bullet \int (ax+b)^{\alpha} dx = \frac{1}{a} \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C, $ $ \bullet \int \frac{1}{ax+b} dx = \frac{1}{a} \cdot \ln ax+b + C $ $ \bullet \int \alpha^{ax+b} = \frac{1}{a} \cdot \frac{\alpha^{ax+b}}{\ln \alpha} + C $ $ \bullet \int e^{(ax+b)} dx = \frac{1}{a} \cdot e^{(ax+b)} + C $	
$ \bullet \int \sin x \mathrm{d}x = -\cos x + C $	$ \oint \sin(ax+b) \mathrm{d}x = -\frac{1}{a}\cos(ax+b) + C $	$(a \neq 0)$
$ \bullet \int \cos x dx = \sin x + C $ $ \bullet \int \frac{1}{\cos^2 x} dx = \tan x + C $	$ \bullet \int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + C, $ $ \bullet \int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a}\tan(ax+b) + C $	
$ \bullet \int \frac{\cos^2 x}{\sin^2 x} \mathrm{d}x = -\cot x + C $	$ \bullet \int \frac{\cos^2(ax+b)}{\sin^2(ax+b)} dx = -\frac{1}{a}\cot(ax+b) + \frac{1}{a}\cot(ax+b) + 1$	

B. BÀI TẬP MẪU

VÍ DỤ 23. Cho $\int \frac{1}{x} dx = F(x) + C$. Khẳng định nào dưới đây **đúng** ? (A) $F'(x) = \frac{2}{x^2}$. (B) $F'(x) = \ln x$. (C) $F'(x) = \frac{1}{x}$. (D) $F'(x) = -\frac{1}{x^2}$.

$$\bigcirc F'(x) = \frac{1}{x}$$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 469. Hàm số $f(x) = \cos(4x+7)$ có một nguyên hàm là

A
$$\frac{1}{4}\sin(4x+7) - 3$$
.

B
$$-\frac{1}{4}\sin(4x+7) + 3$$
.

$$(\mathbf{C})\sin(4x+7)-1.$$

$$(\mathbf{D}) - \sin(4x + 7) + x$$

CÂU 470. Họ nguyên hàm của hàm số $f(x) = \frac{1}{x^2} - x^2 - \frac{1}{3}$ là:

$$\frac{-2}{x^2} - 2x + C$$

$$\bullet \frac{x^4 + x^2 + 3}{3x} + C.$$

B
$$\frac{-2}{x^2} - 2x + C$$
.
D $\frac{-x^4 + x^2 + 3}{3x} + C$.

CÂU 471. Tìm $\int \sin 5x \, dx$

$$\int \sin 5x \, \mathrm{d}x = -\cos 5x + C.$$

CÂU 472. Tìm họ nguyên hàm F(x) của hàm số $f(x) = \cos(2x + 3)$.

(A)
$$F(x) = \frac{1}{2}\sin(2x+3) + C$$
.

B
$$F(x) = -\frac{1}{2}\sin(2x+3) + C.$$

©
$$F(x) = \sin(2x+3) + C$$
.

D
$$F(x) = -\sin(2x+3) + C$$
.

CÂU 473. Nguyên hàm của hàm số $f(x) = 3^{2x+1}$ là:

(A)
$$\frac{1}{2\ln 3}3^{2x+1} + C$$
. (B) $\frac{1}{\ln 3}3^{2x+1} + C$.

$$\bigcirc$$
 $\frac{1}{2}3^{2x+1} + C.$

CÂU 474. Nguyên hàm của hàm số $f(x) = 3x^2 + e^x + 1$ là

(A)
$$F(x) = x^3 + e^x + x + C$$
.

B
$$F(x) = x^3 + e^x + 1 + C$$
.

$$F(x) = 2x^3 + e^x + x + C.$$

$$(\mathbf{D}) F(x) = 6x + e^x + C.$$

CÂU 475. Công thức nguyên hàm nào sau đây không đúng?

$$\mathbf{D} \int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + C \ (0 < a \neq 1).$$

$$\bigcirc$$
 $-3e^{-3x+1} + C.$

B
$$\frac{1}{3}e^{-3x+1} + C$$

$$\mathbf{C} - \frac{1}{3}e^{-3x+1} + C. \quad \mathbf{D} 3e^{-3x+1} + C.$$

D
$$3e^{-3x+1} + C$$
.

CÂU 477. Họ tất cả nguyên hàm của hàm số $f(x) = \cos x + 6x$ là

$$(\mathbf{A}) - \sin x + C.$$

$$\mathbf{B} - \sin x + 3x^2 + C.$$

$$(\mathbf{C})\sin x + 3x^2 + C.$$

$$(\mathbf{D})\cos x + 6x^2 + C.$$

CÂU 478. Họ nguyên hàm của hàm số $f(x) = \sin 2x + \cos x$ là

$$(\mathbf{A})\cos^2 x - \sin x + C.$$

$$\mathbf{B})\sin^2 x + \sin x + C.$$

$$\bigcirc \cos 2x - \sin x + C.$$

$$\mathbf{\overline{D}} - \cos 2x + \sin x + C.$$

CÂU 479. Họ nguyên hàm của hàm số $f(x) = e^{-x} - 1$ là

B
$$e^{-x} - x + C$$
.

$$\bigcirc \mathbf{c}) e^x + x + C.$$

$$\bigcirc \mathbf{D} - \mathrm{e}^{-x} - x + C.$$

CÂU 480. Khẳng định nào đây đúng?

$$\widehat{\mathbf{C}} \int \sin x \, \mathrm{d}x = \cos x + C.$$

$$(\mathbf{D}) \int \sin x \, \mathrm{d}x = -\cos x + C.$$

CÂU 481. Họ tất cả các nguyên hàm của hàm số $f(x) = 2^x + 4x$ là **A** $2^x \ln 2 + 2x^2 + C$. **B** $\frac{2^x}{\ln 2} + 2x^2 + C$. **C** $2^x \ln 2 + C$. **D** $\frac{2^x}{\ln 2} + C$.

A
$$2^x \ln 2 + 2x^2 + C$$
.

B
$$\frac{\hat{2}^{x'}}{\ln 2} + 2x^2 + C$$

$$\bigcirc \mathbf{D} \frac{2^x}{\ln 2} + C$$

CÂU 482. Nguyên hàm của hàm số $f(x) = 2x^3 - 9$ là:

$$\frac{1}{4}x^4 + C.$$

B
$$4x^3 - 9x + C$$
.

$$\mathbf{C} \frac{1}{2}x^4 - 9x + C$$

$$\mathbf{C}$$
 $\frac{1}{2}x^4 - 9x + C$. \mathbf{D} $4x^4 - 9x + C$.

CÂU 483. Mệnh đề nào sau đây đúng?

©
$$\int a^x dx = a^x + C \ (0 < a \neq 1).$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{x} dx = -\frac{1}{x^{2}} + C \ (x \neq 0).$$

CÂU 484. Khẳng định nào sau đây là sai?

(A) Mọi hàm số f(x) liên tục trên đoạn [a;b] đều có nguyên hàm trên đoạn [a;b].

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•																																

ລ	\cap
w	П
IC	
ĸ	
N	М
O	

CÂU 485.	Họ nguyên hàm của hàm số f	$(x) = \frac{1}{x^2} - x^2$	$-\frac{1}{3}$ là
4	0	a o	U

$$\bigcirc A - \frac{x^4 + x^2 + 3}{2x} + C$$

$$\mathbf{A} - \frac{x^4 + x^2 + 3}{3x} + C.$$

$$\mathbf{C} \frac{-x^4 + x^2 + 3}{3x} + C.$$

$$\bigcirc \frac{-2}{x^2} - 2x + C.$$

CÂU 486. Nếu hàm số $y = \sin x$ là một nguyên hàm của hàm số y = f(x) thì

$$A) $f(x) = -\sin x.$ **B**) $f(x) = -\cos x.$$$

$$\mathbf{D} f(x) = \cos x.$$

CÂU 487. Nguyên hàm của hàm số $f(x) = \sqrt[3]{x}$ là

$$(A) F(x) = \frac{3x\sqrt[3]{x}}{4} + C.$$

$$\mathbf{B} F(x) = \frac{4x}{3\sqrt[3]{x}} + C.$$

©
$$F(x) = \frac{4x}{3\sqrt[3]{x^2}} + C.$$

D
$$F(x) = \frac{3\sqrt[3]{x^2}}{4} + C.$$

CÂU 488. Họ nguyên hàm của hàm số $f(x) = \frac{1}{x-1}$ là

(A)
$$\ln |x-1| + C$$
. (B) $-\frac{1}{(x-1)^2} + C$. (C) $2 \ln |x-1| + C$. (D) $\ln (x-1) + C$.

$$(c)$$
 $2 \ln |x-1| + C$

$$(\mathbf{D}) \ln (x-1) + C$$

D. BẢNG ĐÁP ÁN

469.A	470.A	471.A	472.A	473.A	474.A	475.A	476.C
477.C	478.B	479.D	480.D	481.B	482.C	483.B	484.D
		485.B	486.D	487.A	488.A		

Bài 24. TÍCH PHÂN

A. KIẾN THỰC CẦN NHỚ

1. Đinh nghĩa tích phân

Cho hàm số y = f(x) liên tục và xác định trên đoạn [a;b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoan [a; b].

Hiệu số F(b) - F(a) được gọi là tích phân từ a đến b của hàm số f(x). Kí hiệu là

$$\int_{a}^{b} f(x) \, \mathrm{d}x.$$

Vậy
$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

2. Tính chất tích phân xác đinh

Tính chất của tích phân xác đinh.

$$\oint_{a}^{b} f'(x) dx = f(x) \Big|_{a}^{b} = f(b) - f(a).$$

B. BÀI TẬP MẪU

VÍ DỤ 24 (Đề minh họa BGD 2022-2023). Nếu $\int_0^2 f(x) \mathrm{d}x = 4$ thì $\int_0^2 f(x) \mathrm{d}x = 4$

$$\int_0^2 \left[\frac{1}{2} f(x) - 2 \right] \mathrm{d}x \text{ bằng}$$

- $\mathbf{A} = 0.$
- **B** 6.
- **(c)** 8.
- \bigcirc -2.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 489. Cho $\int_{1}^{2} f(x) dx = 3$ và $\int_{1}^{2} [3f(x) - g(x)] dx = 10$, khi đó $\int_{1}^{2} g(x) dx$ bằng

- \bigcirc -1.
- **B**) -4.
- **(C)** 17.
- \bigcirc 1

CÂU 490. Trong các công thức sau đây, công thức nào đúng?

- $(\mathbf{A}) \int_{a}^{b} u \, \mathrm{d}v = uv \bigg|_{a}^{b} \int_{a}^{a} v \, \mathrm{d}u.$

CÂU 491. Cho hàm số f(x) có đạo hàm trên đoạn [1;3], f(3)=5 và $\int\limits_{1}^{3}f'(x)\,\mathrm{d}x=6$. Khi

đó f(1) bằng

- **A** 10.
- **(B**) 11.
- (\mathbf{c}) 1.
- \bigcirc -1.

CÂU 492. Biết F(x) là một nguyên hàm của f(x) trên đoạn [a;b] và $\int\limits_a^b f(x)\,\mathrm{d}x=1;$

F(b) = 2. Tính F(a).

- (\mathbf{A}) 1
- **B**) 3.
- (c) -1.
- \bigcirc 2.

CÂU 493. Cho $\int_{-3}^{2} f(x) dx = -7$. Tính $\int_{-3}^{2} 3 \cdot f(x) dx$?

- \bigcirc 4.
- **B** 21.
- (\mathbf{c}) -21.
- $(\mathbf{D}) 4.$

CÂU 494. Nếu $\int_{1}^{4} f(x) dx = 9 \text{ và } \int_{3}^{4} f(x) dx = -1 \text{ thì } \int_{1}^{3} f(x) dx \text{ bằng}$

- \bigcirc -8.
- (B) -10.
- **(c**) 8.
- **D** 10.

CÂU 495. Nếu $F'(x) = \frac{1}{2x+1}$ và F(1) = 1 thì giá trị của F(2) bằng

- \mathbf{A} 1 + $\frac{1}{2}$ ln 5.
- **B** $1 + \frac{1}{2} \ln \frac{5}{3}$.
- \bigcirc 1 + ln $\frac{5}{3}$.
- **D** $1 + \ln 5$.

CÂU 496. Cho hàm số f, g liên tục trên K và a, b, c thuộc K. Công thức nào sau đây sai?

$$(\mathbf{A}) \int_{a}^{b} kf(x) \, \mathrm{d}x = k \int_{a}^{b} f(x) \, \mathrm{d}x.$$

.....

.....

.....

.....

.....

.....

b	b	b
$\bigcirc \int [f(x) + g(x)] dx$	$\mathrm{d}x = \int f(x) \mathrm{d}x$	$x + \int g(x) \mathrm{d}x.$
a	a	a

CÂU 497. Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(1) - F(2)

$$\widehat{\mathbf{C}} \int_{-1}^{2} [-f(x)] \, \mathrm{d}x. \qquad \widehat{\mathbf{D}} \int_{-1}^{1} F(x) \, \mathrm{d}x.$$

CÂU 498. Với mọi hàm số f(x) liên tục trên \mathbb{R} , ta có

$$(\mathbf{A}) \int_{0}^{3} f(x) \, \mathrm{d}x = \int_{3}^{0} f(x) \, \mathrm{d}x.$$

$$\mathbf{B} \int_{0}^{3} f(x) \, \mathrm{d}x = \int_{2}^{0} f(x) \, \mathrm{d}x.$$

CÂU 499. Nếu $\int_{-1}^{3} f(x) dx = 2$ và $\int_{-1}^{3} g(x) dx = -1$ thì $\int_{-1}^{3} [f(x) - g(x)] dx$ bằng

$$\bigcirc$$
 -3 .

$$(B) -1.$$

$$\bigcirc$$
 4.

CÂU 500. Nếu $\int f(x) dx = -3$ và $\int f(x) dx = -1$ thì $\int f(x) dx$ bằng

$$\bigcirc$$
 -2 .

$$\bigcirc$$
 2.

$$\bigcirc$$
 -4

CÂU 501. Cho $\int f(x) dx = 1$ và $\int f(x) dx = -2$. Giá trị của $\int f(x) dx$ bằng

$$(C) -3.$$

$$\bigcirc$$
 -1 .

CÂU 502. Cho f(x) là một hàm số liên tục trên \mathbb{R} và F(x) là một nguyên hàm của hàm số f(x) thoả $\int f(x) dx = 5$; F(2) = 11. Khi đó F(1) bằng

CÂU 503. Nếu $\int f(x) dx = 2$ và $\int f(x) dx = -3$ thi $\int f(x) dx$ bằng

$$\bigcirc$$
 -6.

$$(B) -1.$$

$$(\mathbf{C})$$
 -5

CÂU 504. Nếu $\int f(x) dx = 5$ và $\int f(x) dx = -2$ thì $\int f(x) dx$ bằng

$$\bigcirc$$
 -7.

$$\bigcirc$$
 -10.

CÂU 505. Giả sử $\int f(x) dx = 37 \text{ và } \int g(x) dx = 16.$ Khi đó, $I = \int [2f(x) + 3g(x)] dx$

A
$$I = 143$$
.

(B)
$$I = 58$$
.

$$(\mathbf{C}) I = 122.$$

D
$$I = 26$$
.

CÂU 506. Cho $\int f(x) dx = 10$. Khi đó $\int [2 - 4f(x)] dx$ bằng

B
$$-36$$
.

$$\bigcirc$$
 -34.

nhiêu?

- **A** 11.
- **B**) 5.
- (c) -1.
- **D** 7.

CÂU 508. Cho hàm số y = f(x) liên tục trên khoảng K và $a, b, c \in K$. Mệnh đề nào sau đây sai?

$$\mathbf{B} \int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} f(t) \, \mathrm{d}t.$$

CÂU 509. Cho hàm số f(x) liên tục trên [a;b] và F(x) là một nguyên hàm của f(x). Tìm khẳng định **sai**.

$$\oint_{a}^{b} f(x) dx = F(a) - F(b).$$

CÂU 510. Cho hàm số phức f(x) và g(x) liên tục trên đoạn [1;7] sao cho $\int\limits_{1}^{7}f(x)\,\mathrm{d}x=2$

và $\int\limits_{1}^{7}g(x)\,\mathrm{d}x=-3.$ Giá trị của $\int\limits_{1}^{7}\left[f(x)-g(x)\right]\mathrm{d}x$ bằng

- \bigcirc -1.
- (B) -5.
- **C** 5.
- \bigcirc 6.

CÂU 511. Cho các số thực $a, b \ (a < b)$. Nếu hàm số y = f(x) có đạo hàm là hàm số liên tục trên $\mathbb R$ thì

CÂU 512. Cho hàm số y=f(x) xác định và liên tục trên R, có f(8)=20; f(4)=12.

Tính tích phân $I = \int_{A}^{\circ} f'(x) dx$.

- $\begin{tabular}{|c|c|c|c|c|} \hline \textbf{B} & I=4. \\ \hline \end{tabular}$
- **C** I = 32.
- **(D)**<math>I = 8.

CÂU 513. Cho hàm số y=f(x) thoả mãn điều kiện f(1)=12, f'(x) liên tục trên $\mathbb R$ và $\int\limits_1^4 f'(x)\,\mathrm{d}x=17.$ Khi đó f(4) bằng

- **(A)** 5.
- **B** 29.
- **(C)** 19.
- **D** 9.

CÂU 514. Cho hàm số y=f(x) liên tục trên khoảng K và $a,\,b,\,c\in K$. Mệnh đề nào sau đây sai?

CÂU 515. Cho $\int_{1}^{5} h(x) dx = 4 \text{ và } \int_{1}^{7} h(x) dx = 10$, khi đó $\int_{5}^{7} h(x) dx$ bằng

.....

.....

QUICK NOTE	A 6.	B 5.	© 7.	D 2.
	CÂU 516. Cho $\int_{0}^{2} f(x)$	$dx = 1, \int_{0}^{4} f(t) dt = -1$	4. Tính $I = \int_{-1}^{4} f(y) \mathrm{d}y$	
	-2	-2	2	
	A I = -3.	B $I = -5$.	© $I = 5$.	
				<i>b</i> Г
	CÂU 517. Cho hàm số	f(x) có đạo hàm $f'(x)$	liên tục trên $[a;b]$, $f(b)$	$f(x) = 5 \text{ và } \int f'(x) \mathrm{d}x = 0$
	1, khi đó $f(a)$ bằng			$\stackrel{\mathcal{S}}{a}$
	$(\mathbf{A}) 4.$	B) 6.	(C) -4.	(\mathbf{D}) -6 .
	CÂUE10 Mânh đầ nà			<u> </u>
	CÂU 518. Mệnh đề nà $\frac{b}{a}$			
		$(x) \mathrm{d}x = 0.$		
	$\begin{bmatrix} J & J & J \\ a & b \end{bmatrix}$			
	$ \begin{array}{c c} & b \\ \hline & f(n) dn & E(n) \end{array} $	E(h)/E(m) 13 m 2t .	a conversion la la la constant $f(m)$	
	$\int_{a}^{b} \int_{a}^{b} f(x) \mathrm{d}x = F(a)$	-F(b) $(F(x)$ là một n	iguyen nam cua $f(x)$).	
	$\int f(x) \mathrm{d}x = 0.$			
	-a b c	c		
	$\int \int f(x) \mathrm{d}x + \int $	$f(x) dx = \int f(x) dx.$		
		$\int\limits_{b}^{a}$		
	2	2	2	
	CÂU 519. Cho $\int f(x)$	$\int dx = 2 \text{ và } \int g(x) dx$	$=-1$. Tính $I=\int [3]$	$x + 2f(x) + 3g(x)] \mathrm{d}x$
	-1	$ \begin{array}{c} J \\ -1 \end{array} $	<i>J</i> -1	
	bằng 5	7	2 . 17	1 1
	$(\mathbf{A}) I = \frac{1}{2}.$		$I = \frac{1}{2}$.	$(\mathbf{D}) I = \frac{1}{2}.$
	2 	2	2	
	CÂU 520. Cho $\int f(x)$	$\int dx = 2 \text{ và } \int_{-1}^{\infty} g(x) dx$	$= -1$. Tinh $I = \int_{-1}^{1} x ^2$	x + 2f(x) + 3g(x) dx
	bằng			
	$\mathbf{A} I = \frac{17}{2}.$	\bigcirc $I = \frac{5}{2}$	$\bigcirc I = \frac{11}{2}.$	D $I = \frac{7}{2}$.
		<u> </u>		
	CÂU 521. Tính $I=\int_{-1}^{1}$	$a^{3x} dx$		
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	c d.c.		
			\bigcirc $I - \rho - 1$	$ \bigcirc \frac{e^3-1}{3} $.
	$I = e + \frac{1}{2}.$	b 1 = e = 1.		\bigcirc ${3}$.
	$\begin{pmatrix} \hat{\mathbf{r}} & \hat{\mathbf{r}} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{r}} & \hat{\mathbf{r}} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{r}} & \hat{\mathbf{r}} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{r}} & \hat{\mathbf{r}} \end{pmatrix}$	$\int_{-\pi}^{\pi} f(x) dx$	a la Senar	
	CÂU 522. Nếu $\int_{1}^{\infty} f(x)$	$dx = 5 \text{ tm} \int_{2}^{\pi} \pi f(x) dx$	coang	
	\bigcirc 5π .	$\bigcirc \mathbf{B} \frac{\pi}{5}.$	$\bigcirc -5\pi$	\bigcirc $\frac{-\pi}{}$
		ů,		5.
	CÂU 523. Cho $\int_{1}^{2} f(x)$	$\int_{1}^{3} dx = -3 \text{ và } \int_{1}^{3} f(x) dx$	- 4 khi đó tích phân	$\int_{-1}^{3} f(x) dx \text{ bằng}$
	CAU 323. Cho $\int_{1}^{1} f(x)$	$\int dx = -3 \text{ va} \int_{2}^{3} f(x) dx$	= 4, km do tien phan	$\int_{1}^{\infty} f(x) dx \text{ Dailg}$
	A 7.	(B) 1.	© 12.	$(\mathbf{D}) - 12.$
	1	1	1	
	CÂU 524. Nếu $\int\limits_0^1 f(x)$	$\mathrm{d}x = 2 \ \mathrm{va} \ \int g(x) \mathrm{d}x =$	= 3 thì $\int [f(x) + g(x)]$	$\mathrm{d}x$ bằng
			\int_{0}^{J}	
	A 2.	B 6.	© 5.	D 3.
				\int_{Γ}^{b} .
	CÂU 525. Cho hàm số	f(x) có đạo hàm $f'(x)$	liên tục trên $[a;b]$, $f(b)$	$=5 \text{ và } \int f'(x) \mathrm{d}x =$
	$3\sqrt{5}$. Tính $f(a)$.			$\overset{\circ}{a}$
	$ \circ v \circ \cdot \perp \min j(a).$			

(B)
$$f(a) = 3\sqrt{5}$$
.

CÂU 526. Tính tích phân $I = \int_{x}^{2} (2x+1) dx$.

$$\mathbf{B}) I = 4.$$

(C)
$$I = 5$$
.

$$(\mathbf{D}) I = 6.$$

CÂU 527. Tích phân $\int_{1}^{2} 3^{x-1} dx$ bằng

$$\bigcirc \frac{3}{2}$$
.

$$\bigcirc$$
 2.

D. BẢNG ĐÁP ÁN

489.A	490.B	491.D	492.A	493.C	494.D	495.B	496.D
497.C	498.D	499.C	500.D	501.D	502.C	503.B	504.B
505.D	506.D	507.B	508.A	509.A	510.C	511.B	512.D
513.B	514.A	515.A	516.B	517.A	518.A	519.A	520.B
	522.C	523.B	524.C	525.A	526.D	527.A	

Bài 25. NGUYÊN HÀM

A. KIẾN THỰC CẦN NHỚ

1. Định nghĩa

 $\mbox{\Large \ \ } F(x)$ là một nguyên hàm của f(x) trên K nếu $F'(x)=f(x),\,\forall x\in K.$ Họ nguyên hàm của f(x) trên K là $\int f(x)\,\mathrm{d}x=F(x)+C$

2. Tính chất

$$f'(x) dx = f(x) + C.$$

3. Một số công thức nguyên hàm cơ bản

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•							•		•	•	•	•	•	•	•										•	•	•	•	•	•	

•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

• •	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		•	•						•	•	•	•	•						•	

•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠
•	•	٠	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

		_				
\boldsymbol{a}			N	$\boldsymbol{-}$		
-	U		N	v	11	

B. BÀI TẬP MẪU

VÍ DU 25 (Đề minh họa BGD 2022-2023). Cho hàm số $f(x) = \cos x + x$. Khẳng đinh nào dưới đây đúng?

©
$$\int f(x) dx = -\sin x + \frac{x^2}{2} + C.$$
 D $\int f(x) dx = \sin x + \frac{x^2}{2} + C.$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 528. Họ nguyên hàm của hàm $f(x) = \sin x$ là

CÂU 529. Họ nguyên hàm của hàm $f(x) = 4^x$ là

B
$$\int f(x) dx = 4^{x+1} + C$$
.

CÂU 530. Họ nguyên hàm của hàm $f(x) = \cos 2x$ là

CÂU 531. Họ nguyên hàm của hàm f(x) = 2x + 3 là

$$\mathbf{B} \int f(x) \, \mathrm{d}x = x^2 + C.$$

CÂU 532. Họ nguyên hàm của hàm $f(x) = e^{2x} - 2x$ là

B
$$\int_{0}^{\infty} f(x) dx = \frac{1}{2}e^{2x} - x^{2} + C.$$

©
$$\int f(x) dx = e^{2x} - x^2 + C.$$

CÂU 533. Họ nguyên hàm của hàm $f(x) = \frac{1}{2x+1}$ là

B
$$\int f(x) dx = -\ln|2x+1| + C.$$

$$\int f(x) \, \mathrm{d}x = \frac{1}{2} \ln|2x+1| + C.$$

CÂU 534. Trong các khẳng định sau, khẳng định nào sai?

CAU 535. Họ nguyên hàm của hàm $f(x) = \sin(2x+1)$ là

B
$$\int f(x) dx = 2\cos(2x+1) + C.$$

$$\int f(x) dx = -2\cos(2x+1) + C$$

CÂU 536. Họ nguyên hàm của hàm $f(x) = -4\sin 2x + 2\cos x - e^x$ là

B
$$\int f(x) dx = 2\cos 2x + 2\sin x - e^x + C.$$

$$\int f(x) dx = 8\cos 2x + 2\sin x - e^x + C.$$

CÂU 537. Trong các khẳng định sau, khẳng định nào đúng?

$$\mathbf{C} \int \cos x \, \mathrm{d}x = -\sin x + C.$$

CÂU 538. Họ nguyên hàm của hàm $f(x) = x^3 - 3x^2 + 5$ là

(A)
$$\int f(x) dx = \frac{x^4}{4} - x^3 + 5x + C$$
. (B) $\int f(x) dx = x^4 - x^3 + 5x + C$.

B
$$\int f(x) dx = x^4 - x^3 + 5x + C.$$

$$\int f(x) dx = 3x^2 - 6x + C.$$

$$\mathbf{D} \int f(x) \, \mathrm{d}x = x^4 - \frac{1}{3}x^3 + 5x + C.$$

$$\int x^{e} dx = \frac{x^{e+1}}{e+1} + C.$$

B
$$\int x^2 \, \mathrm{d}x = \frac{1}{3}x^3 + C.$$

$$\mathbf{C}$$
 $\int e^x dx = \frac{e^{x+1}}{x+1} + C.$

CÂU 540. $F(x) = \sin 2x$ là nguyên hàm của hàm số nào dưới đây?

$$(\mathbf{A}) f(x) = \cos 2x.$$

$$\mathbf{B} f(x) = 2\cos 2x.$$

CÂU 541. Họ nguyên hàm của hàm $f(x) = 2x + \frac{1}{x}$ là

(A)
$$\int f(x) dx = 4x^2 - \frac{1}{x^2} + C$$
. (B) $\int f(x) dx = x^2 - \frac{1}{x^2} + C$.

$$\int f(x) dx = 4x^2 + \ln|x| + C.$$

CÂU 542. Họ nguyên hàm của hàm $f(x) = x^3 - \frac{2}{x} + \sqrt{x}$ là

(A)
$$\int f(x) dx = \frac{1}{4}x^4 - 2\ln|x| - \frac{2}{3}\sqrt{x^3} + C$$
.

B
$$\int f(x) dx = \frac{1}{4}x^4 + 2\ln|x| + \frac{2}{3}\sqrt{x^3} + C.$$

CÂU 543. Họ nguyên hàm của hàm $f(x) = \sin 3x + \cos 4x$ là

(A)
$$\int f(x) dx = -\frac{1}{3} \cos x + \frac{1}{4} \sin x + C$$
. (B) $\int f(x) dx = -\frac{1}{3} \cos 3x + \frac{1}{4} \sin 4x + C$.

CÂU 544. Họ nguyên hàm của hàm $f(x) = \cos\left(2x + \frac{\pi}{6}\right)$ là

CÂU 545. Họ nguyên hàm của hàm $f(x) = 2x^2 + x + 1$ là

	$\int f(x) \mathrm{d}x =$	$2x^3$	x^2	
A	f(x) dx =	3	2	+x+C.

$$f(x) dx = \frac{2x^3}{3} + x^2 + x + C.$$

CÂU 546. Họ nguyên hàm của hàm $f(x) = 7^x$ là

B
$$\int f(x) dx = \frac{7^{x+1}}{x+1} + C.$$

CÂU 547. Họ nguyên hàm của hàm $f(x) = \frac{1}{1+x}$ là

$$\int f(x) \, \mathrm{d}x = \ln(1+x) + C.$$

D. BẢNG ĐÁP ÁN

528.C	529.D	530.B	531.C	532.B	533.C	534.D	535.A
536.B	537.D	538.A	539.C	540.B	541.D	542.C	543.B
		544.B	545.A	546.A	547.D		

Bài 26. XÉT TÍNH ĐƠN ĐIỆU DỰA VÀO BẢNG BIẾN THIÊN CỦA HÀM SỐ

A. KIẾN THỨC CẦN NHỚ

Định lý.

Cho hàm số y = f(x) có đạo hàm trên K.

- a) Nếu f'(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.
- b) Nếu f'(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.

Chú ý:

- \odot f(x) đồng biến trên K: đồ thị hàm số là đường đi lên từ trái sang phải.
- \odot f(x) nghịch biến trên K: đồ thị hàm số là đường đi xuống từ trái sang phải.

B. BÀI TẬP MẪU

VÍ DỤ 26 (Để tham khảo BGD 2022-2023). Cho hàm số y = f(x) có bảng biến thiên như sau

 $-\infty$ f'(x)f(x)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- (A) (0; 2).
- **(B)** $(3; +\infty)$.
- **(C)** $(-\infty; 1)$.
- $(\mathbf{D}) (1;3).$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 548. Cho hàm số f(x) có bảng biến thiên như sau

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$$(\mathbf{B})(0; +\infty).$$

$$(-2;0).$$

$$(2; +\infty).$$

CÂU 549. Cho hàm số f(x) có bảng biến thiên

x	$-\infty$		1		3		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	$+\infty$		-2		~ ² ~		$-\infty$

Hàm số đã cho đồng biến trên khoảng

$$\bigcirc$$
 $(-\infty;1).$

$$\bigcirc$$
 \mathbf{B} $(3; +\infty)$.

$$(\mathbf{C})$$
 (1; 3).

$$(\mathbf{D})$$
 $(-2; -2)$.

CÂU 550. Cho hàm số y = f(x) có bảng biến thiên như sau

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$$\bigcirc$$
 \mathbf{B} $(0; +\infty)$.

$$\bigcirc$$
 (0;1).

$$\bigcirc$$
 $(-1;0).$

CÂU 551. Cho hàm số y = f(x) có bảng xét dấu đạo hàm như hình bên dưới. Mệnh đề nào sau đây **đúng**?

- $(\widehat{\mathbf{A}})$ Hàm số đồng biến trên khoảng (-1;0).
- $lackbox{\textbf{B}}$ Hàm số nghịch biến trên khoảng (1;3).
- \bullet Hàm số nghịch biến trên khoảng (-1;2).
- $lackbox{ } lackbox{ } lac$

CÂU 552. Cho hàm số y = f(x) có bảng biến thiên như sau.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

B
$$(-3;2)$$
.

$$(2;+\infty)$$

$$(\mathbf{D})$$
 $(-\infty; -3)$.

CÂU 553. Cho hàm số y = f(x) có bảng biến thiên như sau

<u> </u>	
QUICK NOTE	
	Hàm số
	A (-
	CÂU 55
	f'(x)
	f(x)
	Hàm số
	A (-
	CÂU 55
	Hàm số (A) (C
	• `
	CÂU 55
	Hàm số
	(A) (2
	CÂU 55
	đồng biế
	A (0

x	$-\infty$	-2	1	1	2	$+\infty$
f'(x)	_	0	+	+	0	_
f(x)	$+\infty$		+∞	$-\infty$	<i>y</i> ³ \	$-\infty$

đã cho đồng biến trên khoảng nào dưới đây?

- **(B)** (-2;2).
- **(C)** $(-\infty; -2)$.
- $(1; +\infty).$

54. Cho hàm số y = f(x) có bảng biến thiên như sau

y = f(x) nghịch biến trên khoảng nào dưới đây?

- **(B)** $(-\infty; -2)$.
- $(\mathbf{C})(0; 2).$
- $(0; +\infty).$

55. Cho hàm số f(x) có bảng biến thiên sau:

f(x) đồng biến trên khoảng nào sau đây?

- **(B)** (0;2).
- (\mathbf{C}) $(-\infty; 5)$.
- (\mathbf{D}) $(2; +\infty)$.

56. Cho hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$		2		3		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	$+\infty$		~ ₂ /		4		$-\infty$

đã cho nghịch biến trên khoảng nào sau đây?

- **(B)** $(-\infty; -2)$.
- (\mathbf{C}) (2; 3).
- $(\mathbf{D})(-2;3).$

57. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới. Hàm số y = f(x)èn trên khoảng

x	$-\infty$		0		1		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		✓ ⁰ <		* _1		$+\infty$

- $0; +\infty$).
- **B** (0; 1).
- (\mathbf{C}) (-3; -2).
- $(\mathbf{D})(-1;+\infty).$

CÂU 558. Cho hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$	-3		-2		-1		$+\infty$
y'	+	0	_		_	0	+	
y	$-\infty$		$-\infty$	$+\infty$		` ₀ /		+∞

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$$(\mathbf{A})$$
 $(-\infty; -3)$.

$$(B)$$
 $(-3; -2)$.

$$(-3;-1).$$

$$\bigcirc (-1; +\infty).$$

CÂU 559. Cho hàm số f(x)có bảng biến thiên như sau

x	$-\infty$		-1		0		1		$+\infty$
f'(x)		_	0	+	0	_	0	+	
f(x)	+∞				× ³ \		` ₂ /		+∞

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$$(-\infty; 1).$$

B
$$(0;1)$$
.

$$(\mathbf{C})$$
 $(-2;3)$.

$$\bigcirc$$
 $(1; +\infty).$

CÂU 560. Cho hàm số y=f(x)có bảng biến thiên như sau

x	$-\infty$		-1		1		$+\infty$
y'		_	0	+	0	_	
y	+∞		-2		- ² \		$-\infty$

Mệnh đề nào dưới đây sai?

- (A) Hàm số y = f(x) đồng biến trên khoảng (-1; 1).
- **B**) Hàm số y = f(x) nghịch biến trên khoảng $(1; +\infty)$.
- (**C**) Hàm số y = f(x) nghịch biến trên khoảng $(-\infty; -1)$.
- (**D**) Hàm số y = f(x) đồng biến trên khoảng (-2, 2).

CÂU 561. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ

x	$-\infty$	$+\infty$
f'(x)	+	+
f(x)	+∞ 1	$-\infty$ 3

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$$(\mathbf{A})$$
 $(2; +\infty)$.

$$\bigcirc$$
 $(-\infty;3).$

$$\bigcirc$$
 $(-\infty; +\infty).$

CÂU 562. Cho hàm số y = f(x) có bảng biến thiên như hình bên dưới

x	$-\infty$		-2		0	2		$+\infty$
y'		_	0	+	+	0	_	
y	$+\infty$		` 3 /	$+\infty$	$-\infty$	1.		$-\infty$

-				•	•		-				-		
	•	•	•	•	•								
	•	•	•	•	•								
	•	•	•	•	•								
	•	•	•	•	•								
	•	•	•	•	•								
	•	•	•	•	•	•		•	•	•			
•							•				•	•	
	•	•	•	•	•	•	•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	•	٠	٠	٠	•	٠	•	•	•	•	•	•

ລເມ	ICK	Ν	\sim	-
9 111	ICK	м		
- 40			_	-

Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

- (\mathbf{A}) $(-\infty;1)$.
- **B**) (-2; 2).
- (\mathbf{C}) (0; 2).
- \bigcirc $(3; +\infty).$

CÂU 563. Hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$		-2		1		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		× 1 \		-3		$+\infty$

Hàm số đã cho đồng biến trên khoảng

- (2;3).
- **B**) (-2;3).
- (\mathbf{C}) $(-3; +\infty)$.
- \bigcirc $(-\infty;1).$

CÂU 564. Cho hàm số y = f(x) có bảng biến thiên như sau

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- $(-\infty;0)$.
- **B**) (0; 2).
- (\mathbf{C}) $(2; +\infty)$
- (-2;2).

CÂU 565. Cho hàm số f(x)có bảng biến thiên như sau

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		-2		<i>,</i> 0 <i>,</i>		-2		$+\infty$

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

- (0;1).
- **B** (-1;0).
- $(\mathbf{C})(-2;0).$
- $(\mathbf{D})(0;+\infty).$

CÂU 566. Cho hàm số y=f(x) xác định và liên tục trên khoảng $(-\infty;+\infty)$, có bảng biến thiên như hình sau

x	$-\infty$		-1		1		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× ² \		-1	/	+∞

Mệnh đề nào sau đây đúng?

- (\mathbf{A}) Hàm số nghịch biến trên khoảng $(1; +\infty)$.
- **B**) Hàm số đồng biến trên khoảng $(-1; +\infty)$.
- **(C)** Hàm số đồng biến trên khoảng $(-\infty; -1)$.
- (\mathbf{D}) Hàm số nghịch biến trên khoảng $(-\infty; 1)$.

CÂU 567. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới

x	$-\infty$ –	- 1 +∞
y'	+	+
y	$+\infty$	$-\infty$ 2

Mệnh đề nào sau đây đúng?

- (\mathbf{A}) Hàm số đồng biến trên khoảng $(-\infty; -1)$.
- (\mathbf{B}) Hàm số đồng biến trên $\mathbb{R}\setminus\{-1\}$.
- \bigcirc Hàm số đồng biến trên \mathbb{R} .
- (\mathbf{D}) Hàm số đồng biến trên khoảng $(-\infty; 2)$.

D. BẢNG ĐÁP ÁN

548A 549C	550D 551D	552B	553A	554 A	555D	556B	557C
558B 559D	560D 561A	562C	563A	564B	565B	566C	567 A

Bài 27. TÌM CỰC TRỊ CỦA HÀM SỐ DỰA VÀO ĐỒ THỊ

A. KIẾN THỨC CẦN NHỚ

1. Định nghĩa

Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là $-\infty$, b là $+\infty$) và điểm $x_0 \in (a; b)$.

- **②** Nếu tồn tại số h > 0 sao cho $f(x) < f(x_0)$ với mọi $x \in (x_0 h; x_0 + h)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt **cực đại** tại x_0 .
- $m{\Theta}$ Nếu tồn tại số h>0 sao cho $f(x)>f(x_0)$ với mọi $x\in(x_0-h;x_0+h)$ và $x\neq x_0$ thì ta nói hàm số f(x) đạt **cực tiểu** tại x_0 .

2. Chú ý

- a) Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x_0 thì x_0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; $f(x_0)$ được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là $y_{\rm CD}$ ($y_{\rm CT}$), còn điểm $M(x_0; f(x_0))$ được gọi là điểm cực đại (điểm cực tiểu) của đồ thị.
- b) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị.

B. BÀI TẬP MẪU

VÍ DỤ 27 (Đề tham khảo BGD 2022-2023).

Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số đã cho là

 \bigcirc -1

B 3.

 (\mathbf{C}) 2.

 \bigcirc 0

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 568.

Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ bên. Mệnh đề nào sau đây **sai**?

- (\mathbf{A}) Hàm số đạt cực đại tại x = 0.
- (\mathbf{B}) Hàm số đạt cực tiểu tại x=2.
- \bigcirc Hàm số đạt cực đại tại x=4.
- **D** Hàm số có hai điểm cực trị.

CÂU 569.

Cho hàm số y=f(x) liên tục trên $\mathbb R$ và có đồ thị như hình bên. Hỏi hàm số có bao nhiêu điểm cực trị?

 \bigcirc 2.

B 3.

 (\mathbf{C}) 4.

 \bigcirc 5.

CÂU 570.

Cho hàm số $y = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ bên. Hàm số đã cho có bao nhiêu điểm cực trị?

(**A**) 2.

(B) 1.

 (\mathbf{C}) 3

 \bigcirc 4.

CÂU 571.

Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm điểm cực đại của hàm số.

(A) y = -2.

 \bigcirc x = -1.

 $(\mathbf{C}) x = 1.$

 \bigcirc u - 2

CÂU 572.

Cho hàm số y=f(x). Đồ thị hàm số y=f'(x) như hình bên. Tìm mệnh đề đúng.

- (A) Hàm số y = f(x) nghịch biến trên khoảng (0; 2).
- ullet Hàm số y = f(x) có hai cực trị.
- **C** Hàm số y = f(x) đạt cực tiểu tại x = 2.
- $(\hat{\mathbf{D}})$ Hàm số y = f(x) chỉ có một cực trị.

CÂU 573.

Cho hàm số f(x) xác định, liên tục trên tập số thực \mathbb{R} và có đồ thị như hình bên. Hàm số y = f(x) đạt cực tiểu tại điểm nào dưới đâv?

B)
$$x = -2 \text{ và } x = 0.$$

$$(\mathbf{c}) x = -2.$$

$$(\mathbf{\overline{D}}) x = 1.$$

CÂU 574.

Tìm điểm cực tiểu của hàm số y = f(x), biết hàm số y = f(x) có đồ thị như hình vẽ.

$$\mathbf{B} x = -2.$$

(c)
$$x = 1$$
.

$$\widehat{\mathbf{D}} x = 2.$$

CÂU 575.

Cho hàm đa thức bậc ba y = f(x) có đồ thị như hình vẽ bên. Biết hàm số f(x) có các điểm cực trị là x_1, x_2 . Tích x_1x_2 bằng

$$\bigcirc 0.$$

$$(c)$$
 -4.

$$(\mathbf{D})$$
 -2 .

CÂU 576.

Cho đồ thị hàm số như hình vẽ bên. Giá trị cực đại của hàm số

CÂU 577.

Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?

- (A) Giá trị cực đại của hàm số là 0.
- (**B**) Giá trị cực tiểu của hàm số bằng -1.
- (**C**) Điểm cực tiểu của hàm số là -1.
- (**D**) Điểm cực đại của hàm số là 3.

CÂU 578.

Cho hàm số $y = ax^4 + bx^2 + c$, $(a \neq 0)$ có đồ thị như hình vẽ bên. Số điểm cực đại của hàm số là

- **(A)** 3.
- **(B)** 4.
- **(C)** 1.
- (\mathbf{D}) 2.

CÂU 579.

						_
သ		\sim		N	\frown	
71	U I	v.	Κ.	N	u	

Cho hàm số y=f(x) có đồ thị như hình bên. Giá trị cực đại của hàm số bằng

A 1.

B 3.

 (\mathbf{C}) 2.

 (\mathbf{D}) -1.

CÂU 580.

Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là

A 1.

B) 2.

(C) 3.

 \bigcirc 0.

CÂU 581.

Cho hàm số y=f(x) có đồ thị như hình vẽ sau. Khẳng định nào sau đây đúng?

(A) Hàm số có hai điểm cực trị âm và một điểm cực trị dương.

(B) Hàm số có hai điểm cực trị dương và một điểm cực trị âm.

 \bigcirc Hàm số đạt cực tiểu tại x = -2.

 (\mathbf{D}) Hàm số đạt cực đại tại x = 0.

CÂU 582.

Cho hàm số bậc bốn y=f(x) có đồ thị hàm số như hình bên. Số điểm cực tiểu của hàm số đã cho là

 \bigcirc 2.

B 1.

C 3.

 $\bigcirc 0.$

CÂU 583.

Cho hàm số $y=ax^3+bx^2+cx+d$ $(a,b,c,d\in\mathbb{R})$, có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là

(**A**) 2.

B) 0.

(c) 3

D 1

CÂU 584.

Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây. Giá trị cực tiểu của hàm số là

 \bigcirc 2.

 (\mathbf{B}) 0.

 (\mathbf{C}) 5.

 $\bigcirc 1$

CÂU 585.

Cho hàm số y = f(x) xác định, liên tục trên đoạn [-4; 0]và có đồ thi là đường cong trong hình vẽ bên. Hàm số f(x)đạt cực tiểu tại điểm nào dưới đây?

$$\mathbf{B} x = -1.$$

(A)
$$x = -2$$
. **(B)** $x = -1$. **(C)** $x = -3$.

$$\widehat{\mathbf{D}}) x = 2.$$

CÂU 586.

Cho hàm số y = f(x) liên tục trên đoạn [0; 4] có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?

- (A) Hàm số đạt cực tiểu tại x = 3.
- **(B)** Hàm số đạt cực tiểu tại x = 0.
- (**C**) Hàm số đạt cực đại tại x = 4.
- (**D**) Hàm số đạt cực đại tại x=2.

CÂU 587.

Cho hàm số f(x) có đồ thị như hình vẽ bên. Số điểm cực đại của hàm số đã cho là

$$\bigcirc$$
 0.

D. BẢNG ĐÁP ÁN

568.C	569.D	570.A	571.B	572.D	573.C	574.D	575.B
576.A	577.B	578.D	579.B	580.C	581.B	582.A	583.A
		584.D	585.B	586.A	587.B		

Bài 28. LÔGARIT

A. KIẾN THỰC CẦN NHỚ

- \odot Cho hai số dương a, b với $a \neq 1$. Số α thỏa mãn đẳng thức $a^{\alpha} = b$ được gọi là lôgarit cơ số a của b và kí hiệu là $\log_a b$. Ta viết $\alpha = \log_a b \Leftrightarrow \alpha^\alpha = b$
- $\Theta \log_a a = 1, \log_a 1 = 0$
 - Θ $a^{\log_a b} = b$, $\log_a(a^\alpha) = \alpha$
- b) Lôgarit của một tích: Cho 3 số dương a, b_1, b_2 với $a \neq 1$, ta có:
 - $\bullet \log_a(b_1b_2) = \log_a b_1 + \log_a b_2$
- c) Lôgarit của một thương: Cho 3 số dương a, b_1, b_2 với $a \neq 1$, ta có:
 - $\Theta \log_a \frac{b_1}{b_2} = \log_a b_1 \log_a b_2$
 - $oldsymbol{\Theta}$ Đặc biệt: với $a, b > 0, a \neq 1 \log_a \frac{1}{a} = -\log_a b$
- d) Lôgarit của lũy thừa: Cho $a, b > 0, a \neq 1$, với mọi α ta có:
 - $\Theta \log_a b^{\alpha} = \alpha \log_a b$
- e) Công thức đổi cơ số: Cho 3 số dương a, b, c với $a \neq 1, c \neq 1$, ta có:

 ٠.	•		 •		•					•	•	•	•	•	•	•	•	•								•	
 ٠.	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

QUICK NOTE	f) Lôgarit thập p	hân và Lôgarit tự nh	iên	
	, , ,	nập phân là lôgarit co		
		$\int_{0}^{b} b = \log b = \lg b$		
		r nhiên và lôgarit cơ s		
	Viet: \log_e	$b = \ln b$ với $e \approx 2,718$	328	
	B. BÀI TẬP M	ÃIJ		
	•			
			2-2023). Với a là số	ố thực dương tùy ý,
	$\ln(3a) - \ln(2a)$ bằng \bigcirc	$\mathbf{B} \ln \frac{2}{3}$.	\bigcirc ln $(6a^2)$.	\bigcirc $\ln \frac{3}{2}$.
	\mathbf{A}) III a .	\mathbf{B} in $\frac{1}{3}$.	\mathbf{C} in (oa).	\mathbf{D} in $\frac{1}{2}$.
	CÂU 588. Với <i>a</i> là số	ố nguyên dương tùy ý	v , $\log_1 a^3$ bằng	
			2 0	
			2	$ig(\mathbf{D} ig) 3 \log_2 a$.
	CÂU 589. Với <i>a</i> là số			<u> </u>
		(B) $\frac{1}{2} + \log_3 a$.	\bigcirc $2\log_3 a$.	$\mathbf{D} - \frac{1}{2} \log_3 a \ .$
	CÂU 590. Với <i>a</i> là số	ố thực dương tùy ý, lợ	$\log_3\left(\frac{3}{-}\right)$ bằng	
			$\langle u \rangle$	1 1
			$\bigcup \frac{\mathbf{C}}{\log_3 a}$.	$ D 1 + \log_3 a . $
	CÂU 591. Với <i>a</i> là số	$\hat{\mathbb{S}}$ thực dương khác 1,	giá trị $\log_a\left(a^3\sqrt[4]{a}\right)$ bằn	
	$\mathbf{A} \frac{3}{4}$.	B 7.	© 12 .	\bigcirc $\frac{13}{4}$.
	CÂU 592. Với mọi <i>a</i> .	, b , x là các số thực d	u ong thoả mãn $\log_2 x =$	= $5\log_2 a + 3\log_2 b$. Mệnh
	đề nào dưới đây đúng			
		<u> </u>		<u> </u>
	CÂU 593. Cho $0 < a$	$a \neq 1$. Giá trị của biểu	1 thức $A = \log_a \left(a^3 \sqrt{a^3} \right)$	′
	A 3.	$\bigcirc \mathbf{B} \frac{\iota}{2}$.	$\bigcirc \frac{15}{2}$.	\bigcirc $\frac{5}{3}$.
	CÂU 594. Cho hai s	iố thực dương $x, y > 0$	$\rightarrow 1$ thoả mãn $y = x\sqrt{x}$	\overline{x} . Giá trị của $\log_x(x^2y)$
	băng			7
		\bigcirc $\frac{8}{3}$.	© 3.	$\bigcirc \frac{l}{2}$.
	CÂU 595. Với <i>a</i> là số	ố thực dương tuỳ ý, lợ	$\log_2\left(\frac{a^2}{-}\right)$ bằng	
			$\mathbf{C} \ 2(\log_2 a - 1).$	(D) $2(\log_2 a + 1)$.
				_
		_	và $\log_{\sqrt[3]{a}} a^3$. Mệnh đề n	
		P=9.	© $P = \frac{1}{3}$.	D $P = 3. $
	CÂU 597. Với <i>a</i> , <i>b</i> là			
	(A) $3\log_3 a + \frac{1}{2}\log_3 a$	$_3 b$.		$_3$ b .
	$\bigcirc \mathbf{c} \frac{3}{2} \log_3{(ab)}.$		$\mathbf{D} \frac{3}{2} \log_3{(a+b)}.$	
	CÂU 598. Xét tất cả	a các số thực dương a	2	$=\log_{27}\left(a^2\sqrt{b}\right)$. Mệnh đề
	nào dưới đây đúng ?		03 W	021 (, ,)
	CÂU 599. Với <i>a</i> là số	ố thực dương tùy ý, lo	$\log_2 a^2$ bằng	1
		$\textcircled{\textbf{B}} \ 2 + \log_2 a.$	\bigcirc $2\log_2 a$.	$\bigcirc \mathbf{D} \frac{1}{2} + \log_2 a.$
	CÂU 600. Với <i>a</i> là số	ố thực dương tùy ý, lợ	$\log_1(9a^2)$ bằng	-
			3	D $2 + 2 \log_3 a$.
	$-2-2\log_3 a$.	B) $-2 - 2\log_{\frac{1}{3}}a$.	3	
			GV VŨ NGỌC PHÁT — I	DT: 0962.940.819 82

CÂU 601. Cho $0 < a \neq 1$. Giá trị của biểu thức $P = \log_a \left(a \cdot \sqrt[3]{a^2} \right)$ là

- **(A)** 3.
- **B** $\frac{5}{2}$.
- $\bigcirc \frac{5}{2}$
- **(D)** $\frac{4}{3}$.

CÂU 602. Cho a là số thực dương tùy ý. Giá trị của $\log_2(4a^2)$ bằng

- **(A)** $4 + \frac{1}{2} \log_2 a$.
- **B** $2(\log_2 a + 1)$.
- \bigcirc 2 + $\log_2 a$.
- \bigcirc $8 \log_2 a$.

CÂU 603. Cho a là số thực dương tùy ý, $\ln\left(\frac{e}{a^2}\right)$ bằng

- **(A)** $1 + 2 \ln a$.
- **B** $1 2 \ln a$.
- (c) 1 + ln(2a).
- $(\mathbf{D}) 1 \ln(2a).$

CÂU 604. Cho a và b là hai số thực dương thỏa mãn $\sqrt{a} \cdot b^3 = 27$. Giá trị của $\log_3 a + 6 \log_3 b$ bằng

- **(A)** 3.
- \bigcirc 6.
- **C** 9.
- \bigcirc 1.

CÂU 605. Giá trị của $\log_2(4\sqrt{2})$ bằng

- **B** 4.
- **(c**) 3.
- \bigcirc $\frac{3}{2}$

CÂU 606. Với a là số thực dương khác 1, $\log_{a^2}{(a\sqrt{a})}$ bằng

- $\bigcirc 1_4$.
- **B** $\frac{3}{4}$.
- **C** 3.
- \bigcirc $\frac{3}{2}$.

CÂU 607. Cho $a,\ b$ là các số thực dương và a khác 1, thỏa mãn $\log_{a^3}\left(\frac{a^5}{\sqrt[4]{b}}\right)=2$. Giá trị của biểu thức $\log_a b$ bằng

- $\bigcirc 1_4$
- **B** $-\frac{1}{4}$.
- \bigcirc 4.
- \bigcirc -4.

C. BẢNG ĐÁP ÁN

588.B	589.A	590.A	591.D	592.C	593.C	594.D	595.C
596.B	597.A	598.B	599.C	600.A	601.B	602.B	603.B
		604.B	605.A	606.B	607.D		

Bài 29. ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY

A. KIẾN THỰC CẦN NHỚ

 $oldsymbol{\Theta}$ Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y=f(x), trục hoành và hai đường thẳng $x=a,\,x=b$ quanh trục Ox

$$\begin{cases} (C) \colon y = f(x) \\ (Ox) \colon y = 0 \\ x = a \end{cases}$$

$$V = \pi \int_{a}^{b} [f(x)]^2 dx$$

 $oldsymbol{\Theta}$ Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường $y=f(x),\,y=g(x)$ (cùng nằm một phía so với Ox) và hai đường thẳng x=a, x=b quanh trục Ox:

$$V = \pi \int_{a}^{b} \left| f^{2}(x) - g^{2}(x) \right| dx$$

B. BÀI TẬP MẪU

VÍ DU 29 (Đề tham khảo BGD 2022-2023). Thể tích khối tròn xoay thu được khi

$$\frac{16}{15}$$
.

B
$$\frac{16\pi}{9}$$
.

$$\bigcirc \frac{16}{9}$$
.

$$\bigcirc \frac{16\pi}{15}.$$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 608. Cho hình phẳng \mathscr{D} giới hạn bởi đường cong $y=\mathrm{e}^x$, trục hoành và các đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay \mathcal{D} quanh trục hoành có thể tích Vbằng bao nhiêu?

(A)
$$V = \frac{\pi \left(e^2 + 1\right)}{2}$$
. **(B)** $V = \frac{\pi \left(e^2 - 1\right)}{2}$. **(C)** $\frac{\pi e^2}{2}$.

$$\bigcirc \frac{\pi e^2}{2}$$
.

$$\bigcirc V = \frac{\mathrm{e}^2 - 1}{2}.$$

CẦU 609. Cho hình phẳng \mathscr{D} giới hạn bởi các đường $y = \sqrt{2019x + 2020}$, trực Ox và hai đường thẳng x=0; x=1. Gọi V là thể tích của khối tròn xoay được tạo thành khi quay \mathscr{D} quanh trục Ox. Khẳng định nào sau đây đúng?

$$(A) V = \int_{0}^{1} (2019x + 2020) \, \mathrm{d}x.$$

B
$$V = \pi \int_{0}^{1} (2019x + 2020) \, dx.$$

$$\mathbf{C} V = \int_{0}^{1} \sqrt{2019x + 2020} \, \mathrm{d}x.$$

$$D V = \pi \int_{0}^{1} \sqrt{2019x + 2020} \, \mathrm{d}x.$$

CĂU 610. Cho hình phẳng \mathcal{H} giới hạn bởi đồ thị hàm số $y = x \cdot \ln x$, trục hoành và hai đường thẳng x=1; x=2. Thể tích vật thể tròn xoay sinh bới \mathcal{H} khi nó quay quanh trục hoành có thể tích V được xác định bởi

$$B) V = \int_{-\infty}^{\infty} (x \cdot \ln x) \, \mathrm{d}x.$$

$$(\mathbf{D}) V = \pi \int_{1}^{2} (x \cdot \ln x)^{2} dx.$$

CÂU 611. Gọi \mathscr{D} là hình phẳng giới hạn bởi các đường $y=\frac{x}{4},\ y=0,\ x=1,\ x=4.$ Tính thể tích vật thể tròn xoay tạo thành khi quay hình \mathscr{D} quanh trục Ox.

(A) $\frac{15\pi}{8}$.

(B) $\frac{21\pi}{16}$.

(C) $\frac{21}{16}$.

A
$$\frac{15\pi}{8}$$
.

B
$$\frac{21\pi}{16}$$
.

$$\bigcirc$$
 $\frac{21}{16}$.

D
$$\frac{15}{16}$$
.

CÂU 612. Cho hình phẳng \mathcal{H} giới hạn bởi các đường $y = x^2 + 3, y = 0, x = 1, x = 3$. Gọi V là thể tích của khối tròn xoay được tạo thành khi quay \mathscr{H} xung quanh trực Ox. Mệnh đề nào sau đây đúng?

$$(A) V = \int_{1}^{3} (x^2 + 3) \, \mathrm{d}x.$$

$$\mathbf{B} V = \pi \int_{0}^{3} (x^2 + 3) \, \mathrm{d}x.$$

©
$$V = \pi \int_{1}^{3} (x^2 + 3)^2 dx$$
.

(D)
$$V = \int_{1}^{3} (x^2 + 3)^2 dx.$$

CÂU 613. Cho hình phẳng \mathscr{D} được giới hạn bởi các đường $f(x) = \sqrt{2x+1}, Ox, x=0, x=0$ 1. Gọi V là thể tích của khối tròn xoay tạo thành khi quay \mathscr{D} xung quanh trục Ox. Khẳng định nào sau đây đúng?

B
$$V = \int_{0}^{1} (2x+1) dx.$$

(c)
$$V = \pi \int_{0}^{1} (2x+1) \, \mathrm{d}x.$$

CÂU 614. Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường $y=x\cdot {\rm e}^x,\ y=0,\ x=0,\ x=1$ xung quanh trực Ox là

$$\mathbf{B} V = \pi \int_{-\infty}^{1} x^2 e^{2x} dx.$$

$$\bigcirc V = \pi \int_{0}^{1} x^{2} e^{x} dx.$$

CÂU 615. Thể tích khối tròn xoay sinh ra khi quay quanh trục hoành hình phẳng giới hạn bởi đồ thị hàm số $y=\mathrm{e}^{\frac{x}{2}}$, trục hoành, trục tung và đường thẳng x=2 bằng

$$\mathbf{A}$$
 πe^2 .

B
$$e^2 - 1$$
.

$$(\mathbf{c}) \pi (e^2 - 1).$$

$$\mathbf{D}$$
 π (e – 1).

CÂU 616. Cho hình phẳng $\mathcal H$ được giới hạn bởi các đường $x=0, \ x=\pi, \ y=0$ và $y=-\cos x$. Gọi V là thể tích của khối tròn xoay tạo thành khi quay $\mathcal H$ xung quanh trục Ox. Khẳng định nào sau đây đúng?

$$\mathbf{A} V = \pi \int_{0}^{\pi} \cos^2 x \, \mathrm{d}x.$$

$$B) V = \pi \left| \int_{0}^{\pi} (-\cos x) \, \mathrm{d}x \right|.$$

CÂU 617. Cho hình phẳng \mathcal{H} giới hạn bởi các đường $y=x^3-x+1$, y=0, x=0, x=2. Gọi V là thể tích khối tròn xoay được tạo thành khi quay \mathcal{H} xung quanh trực Ox. Mệnh đề nào sau đây đúng?

(A)
$$V = \pi \int_{0}^{2} (x^3 - x^2 + 1) dx$$
.

B
$$V = \pi \int_{-\infty}^{2} (x^3 - x + 1) dx.$$

©
$$V = \int_{1}^{2} (x^3 - x + 1)^2 dx.$$

(D)
$$V = \pi \int_{0}^{2} (x^3 - x + 1)^2 dx.$$

CÂU 618. Cho hình phẳng $\mathcal H$ giới hạn bởi đồ thị hàm số $y=\frac{1}{x}$ và các đường thẳng y=0, $x=1,\ x=4$. Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng $\mathcal H$ quay quanh trục Ox bằng

(A)
$$\frac{3}{4}$$
.

$$\bigcirc$$
 2 ln 2.

$$\bigcirc$$
 $2\pi \ln 2$.

CÂU 619. Cho hình phẳng \mathscr{D} được giới hạn bởi các đường $x=0,\ x=1,\ y=0$ và $y=\sqrt{2x+1}$. Gọi V là thể tích của khối tròn xoay tạo thành khi quay \mathscr{D} xung quanh trục Ox. Mệnh đề nào sau đây đúng?

(A)
$$V = \pi \int_{0}^{1} (2x+1) dx$$
.

$$B) V = \int_{-\infty}^{\infty} (2x+1) \, \mathrm{d}x.$$

CÂU 620. Cho hình phẳng $\mathcal H$ được giới hạn bởi đồ thị hàm số $y=\sqrt{x}$ và các đường thẳng x=0; x=1 và trục hoành. Tính thể tích V của khối tròn xoay sinh bởi hình $\mathcal H$ quay xung quanh trục Ox.

$$\bigcirc \frac{\pi}{2}$$
.

$$\mathbf{c}$$
 $\frac{\pi}{3}$

$$lue{\mathbf{D}}$$
 π

CÂU 621. Goi \mathcal{H} là hình phẳng giới hạn bởi đồ thị hàm số $y=\mathrm{e}^x$, trục Ox và hai đường thẳng $x=0,\ x=1.$ Thể tích của khối tròn xoay tạo thành khi quay \mathcal{H} xung quanh trục Ox bằng

$$\mathbf{A} \frac{\ddot{\pi}}{2} \left(e^2 + 1 \right).$$

B
$$\pi$$
 (e² – 1).

$$\mathbf{c} \frac{\pi}{2} (e^2 - 1).$$

$$\mathbf{D} \pi (e^2 + 1).$$

)																										
			Ć)	l		ľ	ć		K	7	ľ	١	ľ	ć)	ī	ŀ							
			ļ	ļ			•		Ì		ļ		ļ	ļ			1	ļ	ļ	ļ						ļ
	•		•	•			•	•	•	•	•	•	•	•	•	•						•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

CÂU 622. Cho hình phẳng $\mathscr D$ giới hạn bởi đồ thị hàm số $y=\sin x$, trục hoành và hai đường thẳng x=0; $x=\pi$. Thể tích khối tròn xoay thu được khi quay \mathscr{D} quanh trực Oxbằng

$$\textcircled{\textbf{B}} \; \frac{\pi^2}{4}.$$

$$\bigcirc \frac{\pi}{4}$$
.

$$\mathbf{D} \frac{\pi}{2}$$
.

CÂU 623. Tính thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số $y = 3x - x^2$ và trực hoành, quanh trực hoành.

$$\mathbf{A} \frac{41\pi}{7}.$$

$$\bigcirc \frac{85\pi}{10}$$
.

CÂU 624. Tính thể tích vật thể tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường parabol $y=x^2$, trục hoành và đường thẳng x=1 quay xung quanh trục Ox.

A
$$\frac{1}{5}$$
.

B
$$\frac{1}{3}$$
.

$$\overset{\circ}{\mathbf{C}}\frac{\pi}{5}$$
.

$$\bigcirc$$
 $\frac{\pi}{3}$.

CÂU 625. Cho hình phẳng \mathscr{D} giới hạn bởi đường cong $y = \sqrt{2 + \cos x}$, trục hoành và các đường thẳng $x=0, x=\frac{\pi}{2}$. Khối tròn xoay tạo thành khi cho \mathscr{D} quay quanh trực hoành có thể tích V bằng bao nhiêu?

(A)
$$V = (\pi - 1)\pi$$
.

B
$$V = (\pi + 1)\pi$$
.

$$\mathbf{\widehat{C}}) V = \pi - 1.$$

CẦU 626. Kí hiệu \mathcal{H} là hình phẳng giới hạn bởi đồ thị hàm số $y=2x-x^2$ và y=0. Tính thể tích vật thể tròn xoay được sinh ra bởi hình phẳng \mathscr{H} khi quay quanh trục Ox.

(A) $\frac{19\pi}{15}$.

(B) $\frac{17\pi}{15}$.

(C) $\frac{18\pi}{15}$.

(D) $\frac{16\pi}{15}$.

A
$$\frac{19\pi}{15}$$
.

B
$$\frac{17\pi}{15}$$

$$\bigcirc \frac{16\pi}{15}$$

CÂU 627. Cho hình phẳng \mathcal{H} giới hạn bởi các đường $y = \cos x, y = 0, x = 0, x = \frac{\pi}{4}$. Thể tích của khối tròn xoay được tạo thành khi quay \mathscr{H} xung quanh trục Ox bằng $\boxed{\mathbf{A}} \frac{\pi+2}{8}$. $\boxed{\mathbf{C}} \frac{\pi^2+1}{4}$. $\boxed{\mathbf{D}} \frac{\pi(\pi+2)}{4}$

$$\frac{\pi + 2}{8}$$
.

$$\mathbf{B} \frac{\pi(\pi+2)}{8}$$

$$\frac{\pi^2+1}{4}$$
.

$$\bigcirc \frac{\pi(\pi+2)}{4}$$

D. BẢNG ĐÁP ÁN

608.B	609.B	610.D	611.B	612.C	613.C	614.B	615.C
616.A	617.D	618.D	619.A	620.A	621.C	622.A	623.C
		624.C	625.B	626.D	627.B		

Bài 30. GÓC GIỮA HAI MẶT PHẮNG TRONG KHÔNG GIAN

A. KIẾN THỨC CẦN NHỚ

1. Góc giữa hai mặt phẳng

1.1. Khái niệm

- Ø Góc giữa 2 mặt phẳng là góc được tạo bởi hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
- ❷ Trong không gian 3 chiều, góc giữa 2 mặt phẳng còn được gọi là 'góc khối', là phần không gian bị giới hạn bởi 2 mặt phẳng. Góc giữa 2 mặt phẳng được đo bằng góc giữa 2 đường thẳng trên mặt 2 phẳng có cùng trực giao với giao tuyến của 2 mặt phẳng.

1.2. Tính chất

- **⊘** Góc giữa 2 mặt phẳng song song bằng 0 độ;
- **⊘** Góc giữa 2 mặt phẳng trùng nhau bằng 0 độ.

2. Cách xác định góc giữa 2 mặt phẳng

Để có thể xác định chính xác góc giữa 2 mặt phẳng, chúng ta thường áp dụng những

Gọi P là mặt phẳng 1, Q là mặt phẳng 2.

- **\odot** Trường hợp 1: Hai mặt phẳng (P), (Q) song song hoặc trùng nhau thì góc của 2 mặt phẳng bằng 0° ;
- \bigcirc Trường hợp 2: Hai mặt phẳng (P),(Q) không song song hoặc trùng nhau.
 - Cách 1: Dựng 2 đường thẳng n và p vuông góc lần lượt với 2 mặt phẳng (P), (Q). Khi đó góc giữa 2 mặt phẳng (P), (Q) là góc giữa 2 đường thẳng n và p.
 - Cách 2: Để xác định góc giữa 2 mặt phẳng đầu tiên bạn cần xác định giao tuyến Δ của 2 mặt phẳng (P) và (Q). Tiếp theo, bạn tìm một mặt phẳng (R) vuông góc với giao tuyến Δ của 2 mặt phẳng (P), (Q) và cắt 2 mặt phẳng tại các giao tuyến a,b. Khi đó, góc giữa 2 mặt phẳng (P), (Q) là góc giữa a và b.

B. BÀI TẬP MẪU

VÍ DỤ 30 (Đề tham khảo BGD 2022-2023).

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, SA vuông góc với đáy và SA = AB (tham khảo hình bên). Góc giữa hai mặt phẳng (SBC) và (ABC) bằng

(A) 60°.

B 30°.

(c) 90°.

(D) 45°.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 628. Cho tứ diện ABCD có $AB \perp (BCD)$. Góc giữa hai mặt phẳng (ABC) và (BCD) là

(A) 90°.

B 45°.

© 60°.

(D) 120°.

CÂU 629. Gọi α là số đo góc giữa hai mặt phẳng (P) và (Q). Nếu (P) và (Q) song song nhau thì α bằng

(A) 45°.

(B) 90°.

(C) 60°.

 $(\mathbf{D}) 0^{\circ}.$

CÂU 630. Cho hình chóp SABC có $SA \perp (ABC)$ và $AB \perp BC$. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?

(A) \widehat{ASB} .

 $(\mathbf{B}) \widehat{SCB}.$

 $(\mathbf{C})\,\widehat{S}B\widehat{A}.$

(**D**) \widehat{SCA} .

CÂU 631. Cho hình chóp tứ giác đều S.ABCD có đáy là ABCD và độ dài các cạnh đáy bằng a, SA = SB = SC = SD = a. Tính cos góc giữa hai mặt phẳng (SAB) và (SAD).

 \bigcirc 0.

B $\frac{1}{3}$.

 \mathbf{C}

 $\bigcirc \frac{\sqrt{3}}{2}$

CÂU 632. Gọi α là số đo góc giữa hai mặt phẳng (P) và (Q). Nếu (P) và (Q) trùng nhau thì α bằng

 \bigcirc 180°.

B 90°.

© 60°.

D 0°.

QUICK NOTE					
	CÂU 633. Cho Ilà trung điểm			D và BC = BD. (dây sai?	Gọi $_A$
	$igate{A}(ACD)$	$\perp (AIB).$			
	B Góc giữa	$\sim 2~{ m mặt~phẳng}$ ((ACD) và $(BC$	(D) là góc $\widehat{(AI;BI)}$	<u>r</u> j.
	© (BCD)	$\perp (AIB).$			B/I
	D Góc giữa	$\sim 2~{ m mặt~phẳng}$ ((ABC) và $(AB$	$D)$ là góc \widehat{CBD} .	
					$\stackrel{\checkmark}{C}$
				SC là tam giác vuố	
	cân tại A và A hai mặt phẳng			và $SA = a$. Góc g	iữa
	A) 60°.	(B) 90°.	(C) 45°.	(D) 30°.	
		9 0 .	9 49 .	9 50 .	A
					7
					M
					B
		1 > 1 1 > 1	tà 4 DC 4/D	101 (1 1)	
				'C' có cạnh đáy hai mặt phẳng	A' $I \sim C'$
	(AB'C') và (A')	'B'C').		nai mặc phang	
	$\mathbf{A} \stackrel{\acute{\pi}}{=} .$	$\mathbf{B} \frac{3\pi}{2}.$	$(\mathbf{c}) \frac{\pi}{-}$.	\bigcirc $\frac{\pi}{3}$.	B'
		\smile 2	6	\smile 3	
					A & C
					B
	_				
				riác ABC vuông	S
	giữa hai mặt p			\perp (ABC). Góc	
	(A) 60°.	(B) 90°.	(C) 30°.	(D) 45°.	
					15
					A = C
					B
	CÂU 637. Ch	o hình chóp $S.A$	ABC có cạnh S	A vuông góc với	S
	mặt phẳng (AB	BC), biết $AB =$	AC = a, BC =	$= a\sqrt{3}$. Tính góc	
	giữa hai mặt p	_ ` '			
	A 60°.	B 45°.	© 30°.	D 90°.	
					A = C
					B
				am giác đều cạnh (ABC) và (SBC)	S_{8}
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ı maı pılang (<i>F</i>	1DC) va (3DC)	
	$\mathbf{A} \frac{a}{\sqrt{2}}.$		$\bigcirc a\sqrt{3}$.	\bigcirc $\frac{3a}{}$.	
	$\sqrt{3}$		_ ~ v •.		
					A \Box
					C
					B

CÂU 639. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và $OB = OC = a\sqrt{6}$, OA = a. Tính góc giữa hai mặt phẳng (ABC) và (OBC).

- (A) 90°.
- **(B)** 60° .
- **(C)** 30°.
- **(D)** 45° .

CÂU 640. Cho hình chóp S.ABC có canh SA vuông góc với mặt phẳng (ABC), biết AB = AC = a, $BC = a\sqrt{3}$. Tính góc giữa hai mặt phẳng (SAB) và (SAC).

- (A) 60°.
- **(B)** 150°.
- **(C)** 30°.
- **(D)** 120° .

CÂU 641. Cho hình chóp S.ABCcó $SA \perp (ABC)$ và $AB \perp$ BC, gọi Ilà trung điểm BC. Góc giữa hai mặt phẳng (SBC)và (ABC) là góc nào sau đây?

- $(\mathbf{A}) \widehat{SIA}.$
- (**B**) $\widehat{S}B\widehat{A}$.
- (**C**) \widehat{SCA} .
- $(\mathbf{D})\,\widehat{SCB}.$

CÂU 642. Cho hình chóp tam giác đều có cạnh đáy bằng a. Góc giữa cạnh bên và mặt đáy bằng 60° (tham khảo hình vẽ bên). Cosin của góc giữa mặt bên và mặt đáy của hình chóp

- **(A)** $\frac{1}{\sqrt{13}}$. **(B)** $\frac{1}{2\sqrt{3}}$. **(C)** $\frac{2\sqrt{3}}{\sqrt{13}}$. **(D)** $\frac{1}{\sqrt{3}}$.

CÂU 643. Cho tứ diện đều ABCD. Cosin của góc giữa hai mặt phẳng (ABC) và (DBC) bằng

- \bigcirc $\frac{\sqrt{2}}{2}$.

CÂU 644. Cho khối chóp S.ABC có mặt đáy ABC là tam giác cân tại A với BC = 2a, góc $\widehat{B}\widehat{AC} = 120^{\circ}$. Biết cạnh bên SA vuông góc với mặt đáy và thể tích khối chóp S.ABCbằng $\frac{a^3}{9}$. Tính góc hợp bởi mặt phẳng (SBC) và mặt phẳng đáy.

- **(A)** 45° .
- **(B)** 60°.
- (**C**) 30°.
- **(D**) 90°.

CÂU 645. Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai mặt phẳng (A'AC) và (ABCD) bằng

QUICK NOTE	A	90°.		B 60°.		© 30°		D 45°	
	CÂU	646.	Cho hình l	ập phương	ABCD.A'	B'C'D'. Go	óc giữa hai	mặt phẳng	(ADD'A') và
		"D") b	ằng	(A) 470		(a) 000			
		60°.		B 45°.		© 90°		D 30°	
			Cho hình l	ập phương	ABCD.A'	BC'D'. Tír	nh góc giữa	mặt phẳng	$(ABB^{\prime}A^{\prime})$ và
	(ABC)	30°.		B 90°.		© 45°		D 60°	
	_	•				O 19	•	9 00	•
	D.	BAN	G ĐÁP	AN	_			_	
	62	8.A	629.D	630.C	631.B	632.D	633.D	634.C	635.C
	63	6.A	637.A	638.D	639.C	640.A	641.B	642.A	643.D
				644.A	645.A	646.C	647.C		
	_								