PROTOCOLO OSPF

Open Shortest Path First

CARACTERÍSTICAS

- Link-state
- Sin clase
- Métricas: **costo**, la mejor ruta es la que tenga el costo más bajo basado en el ancho de banda del enlace
- Distancia Administrativa 110
- Algoritmo Dijkstra
- Autenticación
- OSPFv2 para IPV4
- OSPFv3 para IPV6

MENSAJE

	Data Link Frame Header	IP Packet Header	OSPF Packet Header	OSPF Packet Type-Specific Data
- 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1			

Data Link Frame (Ethernet Fields Shown Here)

MAC Source Address = Address of Sending Interface

MAC Destination Address = Multicast: 01-00-5E-00-00-05 or 01-00-5E-00-00-06

IP Packet

IP Source Address = Address of Sending Interface

IP Destination Address = Multicast: 224.0.0.5 or 224.0.0.6

Protocol Field = 89 for OSPF

OSPF Packet Header

Type Code for OSPF Packet Type Router ID and Area ID

OSPF Packet Types

0x01 Hello

0x02 Database Description

0x03 Link State Request

0x04 Link State Update

0x05 Link State Acknowledgment

TIPOS DE PAQUETES

Tipo	Nombre del paquete	Descripción
1	Saludo	Descubre los vecinos y construye adyacencias entre ellos
2	Descripción de la base de datos (DBD)	Controla la sincronización de la base de datos entre routers
3	Solicitud de estado de enlace (LSR)	Solicita registros específicos de estado de enlace de router a router
4	Actualización de estado de enlace (LSU)	Envía los registros de estado de enlace específicamente solicitados
5	Acuse de recibo de estado de enlace (LSAck)	Reconoce los demás tipos de paquetes

PAQUETE SALUDO

Función del paquete de saludo

- Detectar vecinos OSPF y establecer adyacencias. Para establecer las adyacencias los ID de área, intervalo de saludo y el tipo de red debe ser el mismo
- Publicar pautas acerca de qué enrutadores deben estar de acuerdo para convertirse en vecinos
- Utilizado por redes de accesos múltiples para elegir un enrutador designado (DR) y un enrutador designado de respaldo (BDR)
- Contiene el ID del enrutador que realiza la transmisión

Intervalos de saludo OSPF

- Generalmente, multicast (224.0.0.5)
- Enviados cada 30 segundos para segmentos NBMA (Multiacceso sin broadcast)

Intervalo muerto OSPF

- Éste es el tiempo que debe transcurrir antes de que el vecino se considere inactivo
- El tiempo por defecto es de 4 veces el intervalo de saludo

ACTUALIZACIONES

- Función de una actualización de estado de enlace (LSU)
 - Utilizada para entregar notificaciones del estado de enlace
- Función de una notificación de estado de enlace (LSA)
 - Contiene información acerca de los vecinos y los costos de las rutas

ALGORITMO OSPF

- La información que aparece en la base de datos se utiliza tras la ejecución del algoritmo SPF de Dijkstra
- El algoritmo SPF se utiliza para crear un árbol SPF
- El árbol SPF se utiliza para completar la tabla de enrutamiento

CONFIGURACIÓN

Protocolo	`\ \(\text{C}\times\)	
No necesita coincidir le número del proceso. (1-65535)	R1(config) #router ospf process-id	
Network Es necesaria la wildcard, el ID del área debe de ser la misma para todos los enrutadores	Router(config-router)#network network-address wildcard-mask area area-id	
Ancho de Banda	Router(config-if)#bandwidth bandwidth-kbps	
Enrutador ID	Router(config-router) #router-id #IP	
Costo	Router(config-if)#ip ospf cost cost	
Prioridad	Router(config-if)#ip ospf priority prioridad	
Ancho de banda de referencia	Router(config-router) #auto-cost reference-bandwidth reference	
Intervalos de saludo Detección más rápida de las fallas en la red Mismo entre vecinos	Router(config-if)#ip ospf hello-interval seconds	
Intervalos muertos Mismo entre vecinos	Router(config-if)#ip ospf dead-interval seconds	

DETERMINACIÓN DEL ENRUTADOR ID

- 1.- Dirección IP configurada con el comando OSPF **router-id**, tiene prioridad sobre las direcciones de las interfaces loopback y física
- 2.- Si router-id no está configurado, el enrutador elige la dirección IP más alta de cualquiera de sus interfaces **loopback**. "Para asegurar la estabilidad de OSPF, deberá haber una interfaz activa para el proceso OSPF en todo momento. Es posible configurar una interfaz de loopback, que es una interfaz lógica, para este propósito. Al configurarse una interfaz loopback, OSPF usa esta dirección como ID del router, sin importar el valor. En un router que tiene más de una interfaz loopback, OSPF toma la dirección IP de loopback más alta como su ID de router."
- 3.- Si no hay ninguna interfaz loopback configurada, el enrutador elige la dirección IP activa más alta de cualquiera de sus interfaces **físicas**.

VERIFICACIÓN

Comando	Descripción	
show ip protocols	Muestra la ID del proceso OSPF, la ID del router, el router de red que se encuentra notificando y la distancia administrativa.	
show ip ospf	Muestra la ID del proceso OSPF, la ID del router, información del área OSPF y la última vez que se calculó el algoritmo SPF.	
show ip ospf interface	Muestra el intervalo de saludo y el intervalo muerto.	
show ip ospf neighbor	Muestra adyacencia de los vecinos y el ID.	
show ip ospf database	Muestra la lista de los enlaces que están participando en OSPF.	
show running-config	El número 2 identifica la instancia particular de OSPF en el enrutador.	

MÉTRICA

- Valor acumulado desde un enrutador hasta el siguiente
- Ancho de banda predeterminado →
 1.544 Mbps
- Es necesario que el ancho de banda refleje la velocidad del enlace para que la tabla de enrutamiento contenga la información de la mejor ruta

Tipo de interfaz	Ancho de banda de referencia en bps	Ancho de banda predeterminado en bps	Costo
10 Gigabit Ethernet 10 Gbps	100,000,000 ÷	10,000,000,000	1
Gigabit Ethernet 1 Gbps	100,000,000 ÷	1,000,000,000	1
Fast Ethernet 100 Mbps	100,000,000 ÷	100,000,000	1 .
Ethernet 10 Mbps	100,000,000 ÷	10,000,000	10
Serial 1,544 Mbps	100,000,000 ÷	1,544,000	64
Serial 128 kbps	100,000,000 ÷	128,000	781
Serial 64 kbps	100,000,000 ÷	64,000	1562

ACCESOS MÚLTIPLES

La cantidad de adyacencias crece exponencialmente

- OSPF define cinco tipos de redes:
 - Punto a punto
 - Accesos múltiples con broadcast
 - Accesos múltiples sin broadcast (NBMA)
 - Punto a multipunto
 - Enlaces virtuales

Routers	Adyacencias
<u>n</u>	<u>n(n-1)/2</u>
5 10	10 45
20	190
100	4950

Cantidad de adyacencias = n(n-1)/2 n = cantidad de routers Ejemplo: 5 routers (5 - 1)/2 = 10 adjacencies

M. en P. Gabriela Azucena Pampos García

PROBLEMAS

- Adyacencias múltiples
- Flooding LSA masivo
 Se envía ACK por cada transmisión

- La solución del problema del flooding de LSA es la utilización de:
 - Router designado (DR)
 - Router designado de respaldo BDR)

- Selección de DR y BDR
 Se eligen los enrutadores para enviar y recibir LSA
 No ocurre en las redes punto a punto
- Envío y recepción de LSA (Link-State Advertisements)
 Los DRothers envían LSA mediante la dirección multicast
 224.0.0.6 al DR y el BDR
 El DR reenvía las LSA mediante la dirección multicast
 224.0.0.5 a todos los otros enrutadores

SELECCIÓN DR Y BDR

- DR: enrutador con la prioridad de interfaz OSPF más alta.
- BDR: enrutador con la segunda prioridad de interfaz OSPF más alta.

• Si las prioridades de la interfaz OSPF son iguales, se utiliza la ID del enrutador más alta

para romper dicha igualdad.

MOMENTO EN QUE OCURRE LA SELECCIÓN DE DR Y BDR

- Ocurre apenas se habilita la interfaz del 1.er enrutador en la red de accesos múltiples
- Cuando se elige un DR, éste permanece como DR hasta que ocurre una de las siguientes situaciones:
 - El DR falla
 - El proceso OSPF en el DR falla
 - La interfaz de accesos múltiples en el DR falla
 - Si se agrega un enrutador no pasa nada

MANIPULACIÓN DEL PROCESO DE SELECCIÓN

- Si desea tener influencia sobre la selección de DR y BDR, realice uno de los procesos siguientes:
 - Primero inicie el DR, después el BDR y luego inicie todos los otros enrutadores
- O
- Apague la interfaz en todos los enrutadores, utilice el comando **no shutdown** en el DR, luego, en el BDR y, por último, en todos los otros enrutadores
- Use el comando ip ospf priority interface
- Ejemplo: Router(config-if)#ip ospf priority {o 255}
 - El número de prioridad varía entre o y 255
 - o significa que el router no puede convertirse en DR o BDR
 - 1 es el valor de prioridad por defecto
- Se tiene que realizar todo el proceso para que se tome en cuenta la prioridad

REDISTRIBUCIÓN DE LA RUTA PREDETERMINADA

• R(config-router)#default-information originate

Aparecerá en la tabla de enrutamiento como:

0*E2 0.0.0.0/0 [110/1] via 192.168.10.10, 00:05:34, Serial0/0/1

Ruta OSPF externa de tipo 2 que no se incrementará en costo