Predictive information criteria in hierarchical Bayesian models for clustered data

Sophia Rabe-Hesketh & Daniel Furr

Education & Biostatistics University of California, Berkeley sophiarh@berkeley.edu

Joint work with Ed Merkle

Psychological Sciences, University of Missouri

StanCon 2018, Asilomar, Pacific Grove

► Predictive information criteria
DIC and WAIC with connections to leave-one-out (LOO)
cross-validation

- Predictive information criteria
 DIC and WAIC with connections to leave-one-out (LOO)
 cross-validation
- Hierarchical Bayesian models for clustered data
 Mixed/multilevel models (MLM), structural equation models (SEM), item response theory (IRT) models

- Predictive information criteria
 DIC and WAIC with connections to leave-one-out (LOO)
 cross-validation
- Hierarchical Bayesian models for clustered data
 Mixed/multilevel models (MLM), structural equation models
 (SEM), item response theory (IRT) models
- Marginal versus conditional versions of DIC, WAIC, and LOO

- Predictive information criteria
 DIC and WAIC with connections to leave-one-out (LOO)
 cross-validation
- Hierarchical Bayesian models for clustered data
 Mixed/multilevel models (MLM), structural equation models
 (SEM), item response theory (IRT) models
- Marginal versus conditional versions of DIC, WAIC, and LOO
- Application to IRT

▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$

- ▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$
- \triangleright Assess model by how well it predicts future, out-of-sample data y^r

- ▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$
- lacktriangle Assess model by how well it predicts future, out-of-sample data $y^{
 m r}$
- Measure of prediction error (scoring function) is deviance:

$$-2\log f(\boldsymbol{y}^{\mathsf{r}}|\boldsymbol{\theta}) = -2\sum_{i=1}^{N}\log f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

- ▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$
- lacktriangle Assess model by how well it predicts future, out-of-sample data $y^{
 m r}$
- Measure of prediction error (scoring function) is deviance:

$$-2\log f(\boldsymbol{y}^{\mathsf{r}}|\boldsymbol{\theta}) = -2\sum_{i=1}^{N}\log f(y_i^{\mathsf{r}}|\boldsymbol{\theta})$$

▶ What to do about unknowable θ ?

- ▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$
- lacktriangle Assess model by how well it predicts future, out-of-sample data $y^{
 m r}$
- ▶ Measure of prediction error (scoring function) is deviance:

$$-2\log f(\boldsymbol{y}^{\mathsf{r}}|\boldsymbol{\theta}) = -2\sum_{i=1}^{N}\log f(y_i^{\mathsf{r}}|\boldsymbol{\theta})$$

- ▶ What to do about unknowable θ ?
 - DIC: plug in posterior mean $\widetilde{ heta}$

plug-in deviance =
$$-2\log f(\boldsymbol{y}^{\mathrm{r}}|\widetilde{\boldsymbol{\theta}})$$

- ▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$
- lacktriangle Assess model by how well it predicts future, out-of-sample data $y^{
 m r}$
- ▶ Measure of prediction error (scoring function) is deviance:

$$-2\log f(\boldsymbol{y}^{\mathsf{r}}|\boldsymbol{\theta}) = -2\sum_{i=1}^{N}\log f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

- ▶ What to do about unknowable θ ?
 - DIC: plug in posterior mean $\widetilde{ heta}$

plug-in deviance
$$= -2\log f(\boldsymbol{y}^{\mathrm{r}}|\widetilde{\boldsymbol{\theta}})$$

• WAIC: integrate over $p(\theta|y)$, but use **pointwise** predictive densities

$$-2\log \text{ pointwise predictive density} = -2\sum_{i=1}^{N}\log \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}}f(y_i^{\mathsf{r}}|\boldsymbol{\theta})$$

[Gelman, Hwang & Vehtari, 2014]

- ▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$
- lacktriangle Assess model by how well it predicts future, out-of-sample data $y^{
 m r}$
- Measure of prediction error (scoring function) is deviance:

$$-2\log f(\boldsymbol{y}^{\mathsf{r}}|\boldsymbol{\theta}) = -2\sum_{i=1}^{N}\log f(y_i^{\mathsf{r}}|\boldsymbol{\theta})$$

- ▶ What to do about unknowable θ ?
 - DIC: plug in posterior mean $\widetilde{ heta}$

$$\mathsf{plug-in}\ \mathsf{deviance} = -2\mathsf{log}\,f(\boldsymbol{y}^\mathsf{r}|\boldsymbol{\widetilde{\theta}})$$

• WAIC: integrate over $p(\theta|y)$, but use **pointwise** predictive densities

$$-2\log$$
 pointwise predictive density $=-2\sum_{i=1}^{r}\log \mathsf{E}_{\pmb{\theta}|\pmb{y}}f(y_i^{\mathsf{r}}|\pmb{\theta})$

lacktriangledown Targets are **expectations** of the above over out-of-sample data $oldsymbol{y}^{\mathrm{r}}$

[Gelman, Hwang & Vehtari, 2014]

Expectation of plug-in deviance (pid) over distribution of y^r :

expected pid =
$$-2\mathbf{E}_{\boldsymbol{y}^{\mathsf{r}}}\log f(\boldsymbol{y}^{\mathsf{r}}|\widetilde{\boldsymbol{\theta}})$$

Expectation of plug-in deviance (pid) over distribution of y^r :

Data-generating distribution of y^r unknown & validation data y^r not available

Expectation of plug-in deviance (pid) over distribution of y^r :

- Data-generating distribution of y^r unknown & validation data y^r not available
- ▶ Use within-sample pid and penalize for using data twice

$$\mathsf{DIC} = -2\mathsf{log}\,f(\boldsymbol{y}|\widetilde{\boldsymbol{\theta}}) + 2p_{\mathsf{D}}$$

where p_{D} in penalty term is effective number of parameters

$$p_{\mathsf{D}} = \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}}[-2\mathsf{log}\,f(\boldsymbol{y}|\boldsymbol{\theta})] - [-2\mathsf{log}\,f(\boldsymbol{y}|\tilde{\boldsymbol{\theta}})]$$

Expectation of plug-in deviance (pid) over distribution of y^r :

- Data-generating distribution of y^r unknown & validation data y^r not available
- Use within-sample pid and penalize for using data twice

$$\mathsf{DIC} \ = \ -2\mathsf{log}\, f(\boldsymbol{y}|\widetilde{\boldsymbol{\theta}}) + 2p_{\mathsf{D}}$$

where p_{D} in penalty term is effective number of parameters

$$p_{\mathsf{D}} = \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}}[-2\mathsf{log}\,f(\boldsymbol{y}|\boldsymbol{\theta})] - [-2\mathsf{log}\,f(\boldsymbol{y}|\tilde{\boldsymbol{\theta}})]$$

▶ Posterior means estimated as averages over MCMC draws

▶ -2 expected log pointwise predictive density (elppd) over distribution of y^r :

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N} \mathsf{E}_{\boldsymbol{y}^{\mathsf{r}}} \mathsf{log}\, \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

▶ -2 expected log pointwise predictive density (elppd) over distribution of y^r :

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N} \mathsf{E}_{\boldsymbol{y}^{\mathsf{r}}} \mathsf{log}\, \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

▶ Data-generating distribution of y^r unknown & validation data y^r not available

▶ -2 expected log pointwise predictive density (elppd) over distribution of y^r :

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N} \mathsf{E}_{oldsymbol{y}^{\mathsf{r}}} \mathsf{log}\,\mathsf{E}_{oldsymbol{ heta}|oldsymbol{y}} f(y_i^{\mathsf{r}}|oldsymbol{ heta})$$

- lacktriangle Data-generating distribution of y^{r} unknown & validation data y^{r} not available
- ▶ Use within-sample lppd and penalize for using data twice

WAIC =
$$-2\sum_{i=1}^{N} \log \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} f(y_i|\boldsymbol{\theta}) + 2p_{\mathsf{W}}$$

where p_{W} in penalty term is effective number of parameters

$$p_{\mathsf{W}} = \sum_{i=1}^{N} \mathsf{Var}_{\boldsymbol{\theta}|\boldsymbol{y}} \mathsf{log} f(y_i|\boldsymbol{\theta})$$

▶ -2 expected log pointwise predictive density (elppd) over distribution of y^r :

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N} \mathsf{E}_{\boldsymbol{y}^{\mathsf{r}}} \mathsf{log}\, \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

- lacktriangle Data-generating distribution of $m{y}^{
 m r}$ unknown & validation data $m{y}^{
 m r}$ not available
- ▶ Use within-sample lppd and penalize for using data twice

WAIC =
$$-2\sum_{i=1}^{N} \log \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} f(y_i|\boldsymbol{\theta}) + 2p_{\mathsf{W}}$$

where p_{W} in penalty term is effective number of parameters

$$p_{\mathsf{W}} = \sum_{i=1}^{N} \mathsf{Var}_{\boldsymbol{\theta}|\boldsymbol{y}} \mathsf{log} f(y_i|\boldsymbol{\theta})$$

Posterior means and variances estimated from MCMC draws

▶ -2 expected log pointwise predictive density (elppd) over distribution of y^r :

$$\begin{aligned} & \boldsymbol{y} \; . \\ & -2 \, \mathsf{elppd} = -2 \sum_{i=1}^{N} \mathsf{E}_{\boldsymbol{y}^\mathsf{r}} \mathsf{log} \, \mathsf{E}_{\boldsymbol{\theta} | \boldsymbol{y}} f(y_i^\mathsf{r} | \boldsymbol{\theta}) \end{aligned}$$

- lacktriangle Data-generating distribution of $y^{
 m r}$ unknown & validation data $y^{
 m r}$ not available
- ▶ Use within-sample lppd and penalize for using data twice

WAIC =
$$-2\sum_{i=1}^{N} \log \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} f(y_i|\boldsymbol{\theta}) + 2p_{\mathsf{W}}$$

where p_{W} in penalty term is effective number of parameters

$$p_{\mathsf{W}} = \sum_{i=1}^{N} \mathsf{Var}_{\boldsymbol{\theta}|\boldsymbol{y}} \mathsf{log} f(y_i|\boldsymbol{\theta})$$

- ▶ Posterior means and variances estimated from MCMC draws
- Asymptotically equivalent to LOO cross-validation (LOO-CV)

LOO-CV and PSIS-LOO (non-hierarchical Bayesian model)

► Same target as WAIC

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N}\operatorname{E}_{\boldsymbol{y}^{\mathsf{r}}}\!\log\operatorname{E}_{\boldsymbol{\theta}|\boldsymbol{y}}f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

LOO-CV and PSIS-LOO (non-hierarchical Bayesian model)

► Same target as WAIC

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N}\mathsf{E}_{\boldsymbol{y}^{\mathsf{r}}}\mathsf{log}\,\mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}}f(y_{i}^{\mathsf{r}}|\boldsymbol{\theta})$$

Estimate using LOO-CV

$$-2 \operatorname{LOO-CV} = -2 \sum_{i=1}^{N} \log \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}_{-i}} f(\boldsymbol{y}_{i}|\boldsymbol{\theta})$$

- Where y_{-i} is the "training" data without unit i
- ullet Requires running MCMC on each of N training datasets

LOO-CV and PSIS-LOO (non-hierarchical Bayesian model)

► Same target as WAIC

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N}\mathsf{E}_{oldsymbol{y}^{\mathsf{r}}}\mathsf{log}\,\mathsf{E}_{oldsymbol{ heta}|oldsymbol{y}}f(y_{i}^{\mathsf{r}}|oldsymbol{ heta})$$

Estimate using LOO-CV

$$-2 \operatorname{LOO-CV} = -2 \sum_{i=1}^{N} \log \operatorname{E}_{\boldsymbol{\theta}|\boldsymbol{y}_{-i}} f(\boldsymbol{y}_{i}|\boldsymbol{\theta})$$

- Where y_{-i} is the "training" data without unit i
- ullet Requires running MCMC on each of N training datasets
- Approximate by Pareto-smoothed importance sampling (PSIS)
 - Idea of importance sampling (IS)

$$-2 \, \mathsf{IS-LOO} \ = \ -2 \sum_{i=1}^{N} \log \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{y}} \underbrace{\left[\frac{p(\boldsymbol{\theta} \mid \boldsymbol{y}_{-i})}{p(\boldsymbol{\theta} \mid \boldsymbol{y})} \right]}_{\text{importance ratio}} f(y_i \mid \boldsymbol{\theta})$$

• Importance ratios $\propto \frac{1}{f(u_i|\theta)}$; Unstable, hence Pareto smoothing

[Vehtari, Gelman & Gabry, 2017]

Stage 3	MLM Example	
3		
2		

St	age	MLM Example	
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$	
		unit $i=1,\dots,n_j$	
2			

St	age	MLM Example
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$
		unit $i=1,\ldots,n_j$
2	Direct param.	$\zeta_j \sim N(0, \psi)$
		cluster $j=1,\ldots,J$

St	age	MLM Example
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$
		unit $i=1,\dots,n_j$
2	Direct param.	$\zeta_j \sim N(0, \psi)$
		cluster $j=1,\ldots,J$
Fully Bayesian ↓		Bayesian ↓
		prior for $lpha,\sigma^2$
1	Hyperparameters	hyperprior for ψ

Stage		MLM Example	Densities, general notation	
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$	$f_c(y_{ij} \boldsymbol{\omega},\boldsymbol{\zeta_j})$	$\boldsymbol{\omega} \equiv (\alpha, \sigma^2)'$
		unit $i=1,\ldots,n_j$		$\zeta_j \equiv \zeta_j$
2	Direct param.	$\zeta_j \sim N(0, \psi)$	$g(oldsymbol{\zeta}_j oldsymbol{\psi})$	$\psi \equiv \psi$
		cluster $j=1,\ldots,J$		
Fully Bayesian ↓				
		prior for $lpha,\sigma^2$	$p(oldsymbol{\omega})$	
1	Hyperparameters	hyperprior for ψ	$p(\boldsymbol{\psi})$	

Stage		MLM Example	Densities, general notation	
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$	$f_c(y_{ij} \boldsymbol{\omega},\boldsymbol{\zeta_j})$	$\boldsymbol{\omega} \equiv (\alpha, \sigma^2)'$
		unit $i=1,\ldots,n_j$		$\zeta_j \equiv \zeta_j$
2	Direct param.	$\zeta_j \sim N(0, \psi)$	$g(oldsymbol{\zeta}_j oldsymbol{\psi})$	$oldsymbol{\psi} \equiv \psi$
		cluster $j=1,\ldots,J$		
Fully Bayesian ↓				
		prior for $lpha,\sigma^2$	$p(oldsymbol{\omega})$	
1	Hyperparameters	hyperprior for ψ	$p(oldsymbol{\psi})$	_

 \triangleright ζ_i are direct parameters, varying intercepts/coefficients (MLM), latent variables (SEM/IRT), missing data

Stage		MLM Example	Densities, general notation	
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$	$f_c(y_{ij} \boldsymbol{\omega},\boldsymbol{\zeta_j})$	$\boldsymbol{\omega} \equiv (\alpha, \sigma^2)'$
		unit $i=1,\ldots,n_j$		$\zeta_j \equiv \zeta_j$
2	Direct param.	$\zeta_j \sim N(0, \psi)$	$g(oldsymbol{\zeta}_j oldsymbol{\psi})$	$oldsymbol{\psi} \equiv \psi$
		cluster $j=1,\ldots,J$		
	Fully Bayesian			

 $p(\boldsymbol{\omega})$

▶ In Bayesian setting, ambiguous whether ζ_j are parameters or (latent) variables

prior for α, σ^2

Revisit DIC Two versions of the likelihood (or deviance)

▶ Conditional likelihood: $\prod_j f_c(y_j|\omega,\zeta_j)$, where

$$f_c(\boldsymbol{y}_j|\boldsymbol{\omega}, \boldsymbol{\zeta}_j) = \prod_{i=1}^{n_j} f_c(y_{ij}|\boldsymbol{\omega}, \boldsymbol{\zeta}_j)$$

- Natural definition in Stan (or BUGS/JAGS) code
- Condition on ω and $\zeta = ({\zeta_1}', \dots, {\zeta_J}')'$

Revisit DIC

Two versions of the likelihood (or deviance)

▶ Conditional likelihood: $\prod_j f_c(y_j|\omega,\zeta_j)$, where

$$f_c(\boldsymbol{y}_j|\boldsymbol{\omega},\boldsymbol{\zeta_j}) = \prod_{i=1}^{n_j} f_c(y_{ij}|\boldsymbol{\omega},\boldsymbol{\zeta_j})$$

- Natural definition in Stan (or BUGS/JAGS) code
- Condition on ω and $\boldsymbol{\zeta} = ({\boldsymbol{\zeta_1}}', \dots, {\boldsymbol{\zeta_J}}')'$
- ▶ Marginal likelihood: $\prod_j f_m(\boldsymbol{y}_j|\boldsymbol{\omega},\boldsymbol{\psi})$, where

$$f_m(\mathbf{y}_j|\boldsymbol{\omega}, \boldsymbol{\psi}) = \int f_c(\mathbf{y}_j|\boldsymbol{\omega}, \boldsymbol{\zeta_j}) g(\boldsymbol{\zeta_j}|\boldsymbol{\psi}) d\boldsymbol{\zeta_j}$$

- Natural in maximum likelihood (ML) estimation (e.g., lmer in R)
- ullet Condition on ω and ψ , the only parameters in ML setting
- In MLM example, $f_m(y_j|\omega,\psi)$ is MVN with means α , variances $\psi+\sigma^2$, and covariances ψ

Conditional and marginal DIC

Conditional DIC

 ζ (and ω) "in focus" [Spiegelhalter, Best, Carlin & van der Linde, 2002]

$$\begin{aligned} \mathsf{DIC_c} &= -2\log f_\mathsf{c}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}},\tilde{\boldsymbol{\zeta}}) + 2p_\mathsf{Dc} \\ p_\mathsf{Dc} &= \mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}|\boldsymbol{y}}[-2\log f_\mathsf{c}(\boldsymbol{y}|\boldsymbol{\omega},\boldsymbol{\zeta})] + 2\log f_\mathsf{c}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}},\tilde{\boldsymbol{\zeta}}) \end{aligned}$$

Used in almost all application, easy with Stan, BUGS, JAGS

Conditional and marginal DIC

Conditional DIC

 ζ (and ω) "in focus" [Spiegelhalter, Best, Carlin & van der Linde, 2002]

$$\begin{aligned} \mathsf{DIC_c} &= -2\log f_\mathsf{c}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}},\tilde{\boldsymbol{\zeta}}) + 2p_\mathsf{Dc} \\ p_\mathsf{Dc} &= \mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}|\boldsymbol{y}}[-2\log f_\mathsf{c}(\boldsymbol{y}|\boldsymbol{\omega},\boldsymbol{\zeta})] + 2\log f_\mathsf{c}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}},\tilde{\boldsymbol{\zeta}}) \end{aligned}$$

• Used in almost all application, easy with Stan, BUGS, JAGS

► Marginal DIC

 ψ (and ω) "in focus"

$$DIC_{m} = -2\log f_{m}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}},\tilde{\boldsymbol{\psi}}) + 2p_{Dm}$$

$$p_{\mathsf{Dm}} = \mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} | \boldsymbol{y}}[-2\mathsf{log}f_{\mathsf{m}}(\boldsymbol{y} | \boldsymbol{\omega}, \boldsymbol{\psi})] + 2\mathsf{log}f_{\mathsf{m}}(\boldsymbol{y} | \tilde{\boldsymbol{\omega}}, \tilde{\boldsymbol{\psi}})$$

- Provided by R package blavaan [Merkle & Rosseel, 2018] for SEM (which evaluates $f_{
 m m}(y|\omega,\psi)$ using lavaan) and by Mplus
- Efficient adaptive quadrature to evaluate intractable integrals
 [Furr, 2017; Rabe-Hesketh, Skrondal & Pickles, 2005]

Revisit WAIC

Two versions of predictive distributions

Posterior predictive distribution for new unit in existing cluster

$$\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{\mathsf{c}}(y_{ij}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) = \int f_{\mathsf{c}}(y_{ij}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\int p(\boldsymbol{\zeta}_{j}|\boldsymbol{y}_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j}$$

Uses **posterior** for $\zeta_j \Rightarrow$ directly influenced by $y_j \Rightarrow$ treats ζ_j and therefore cluster as within-sample

Revisit WAIC

Two versions of predictive distributions

▶ Posterior predictive distribution for new unit in existing cluster

$$\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{\mathsf{c}}(y_{ij}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) = \int f_{\mathsf{c}}(y_{ij}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\int p(\boldsymbol{\zeta}_{j}|\boldsymbol{y}_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j}$$

Uses **posterior** for $\zeta_j \Rightarrow$ directly influenced by $y_j \Rightarrow$ treats ζ_j and therefore cluster as within-sample

▶ Mixed predictive distribution for new units in *new* cluster:

$$\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y}}f_{\mathsf{m}}(\boldsymbol{y}_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\psi}) = \int \underbrace{\left[\int f_{\mathsf{c}}(\boldsymbol{y}_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j})g(\boldsymbol{\zeta}_{j}|\boldsymbol{\psi})d\boldsymbol{\zeta}_{j}\right]}_{f_{\mathsf{m}}(\boldsymbol{y}_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\psi})} p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\omega}d\boldsymbol{\psi}$$

Uses **prior** for ζ_j

 \Rightarrow treats ζ_j and therefore cluster as out-of-sample

[Gelman, Meng & Stern, 1996]

Conditional WAIC and LOuO-CV

$$\begin{aligned} \text{WAIC}_{\mathsf{c}} &= -2\sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\log\left[\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta_{j}}|\boldsymbol{y}}f_{\mathsf{c}}(y_{ij}|\boldsymbol{\omega},\boldsymbol{\zeta_{j}})\right] + 2p_{\mathsf{Wc}} \\ p_{\mathsf{Wc}} &= \sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\mathsf{Var}_{\boldsymbol{\omega},\boldsymbol{\zeta_{j}}|\boldsymbol{y}}\left[\log f_{\mathsf{c}}(y_{ij}|\boldsymbol{\omega},\boldsymbol{\zeta_{j}})\right] \end{aligned}$$

Same target as leave-one-unit out (LOuO) CV

$$-2 \operatorname{LOuO-CV} \ = \ -2 \sum_{j=1}^J \sum_{i=1}^{n_j} \log \mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\zeta}_j | \boldsymbol{y}_{-ij}} f_{\mathsf{c}}(\boldsymbol{y}_{ij} | \boldsymbol{\omega}, \boldsymbol{\zeta}_j)$$

Conditional WAIC and LOuO-CV

$$\begin{aligned} \text{WAIC}_{\text{c}} &= -2\sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\log\left[\mathsf{E}_{\pmb{\omega},\pmb{\zeta}_{j}|\pmb{y}}f_{\text{c}}(y_{ij}|\pmb{\omega},\pmb{\zeta}_{j})\right] + 2p_{\text{Wc}} \\ p_{\text{Wc}} &= \sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\mathsf{Var}_{\pmb{\omega},\pmb{\zeta}_{j}|\pmb{y}}\left[\log f_{\text{c}}(y_{ij}|\pmb{\omega},\pmb{\zeta}_{j})\right] \end{aligned}$$

Same target as leave-one-unit out (LOuO) CV

$$-2 \operatorname{\mathsf{LOuO-CV}} \ = \ -2 \sum_{j=1}^J \sum_{i=1}^{n_j} \log \mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\zeta}_j | \boldsymbol{y}_{-ij}} f_{\mathsf{c}}(\boldsymbol{y}_{ij} | \boldsymbol{\omega}, \boldsymbol{\zeta}_j)$$

▶ WAIC_c and PSIS-LOuO provided by combination of Stan and R package loo [Vehtari, Gelman & Gabry, 2016]

$$\begin{aligned} \mathsf{WAIC}_{\mathsf{m}} \; &= \; -2\sum_{j=1}^{J} \log \left[\mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi}) \right] + 2p_{\mathsf{Wm}} \\ p_{\mathsf{Wm}} \; &= \; \sum_{j=1}^{J} \mathsf{Var}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} \left[\mathsf{log} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi}) \right] \end{aligned}$$

► Same target as leave-one-cluster out (LOcO) CV

$$-2 \operatorname{LOcO-CV} = -2 \sum_{j=1}^{J} \log \mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} | \boldsymbol{y}_{-j}} f_{\mathsf{m}}(\boldsymbol{y}_{j} | \boldsymbol{\omega}, \boldsymbol{\psi})$$

$$\begin{aligned} \mathsf{WAIC}_{\mathsf{m}} \; &= \; -2\sum_{j=1}^{J} \mathsf{log}\left[\mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi})\right] + 2p_{\mathsf{Wm}} \\ p_{\mathsf{Wm}} \; &= \; \sum_{j=1}^{J} \mathsf{Var}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}}\left[\mathsf{log} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi})\right] \end{aligned}$$

► Same target as leave-one-cluster out (LOcO) CV

$$-2 \operatorname{LOcO-CV} = -2 \sum_{j=1}^{J} \log \mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} | \boldsymbol{y}_{-j}} f_{\mathsf{m}}(\boldsymbol{y}_{j} | \boldsymbol{\omega}, \boldsymbol{\psi})$$

▶ Can compute PSIS-LOcO using 100 package with posterior samples of $f_m(y_j|\omega,\psi)$ as input; automated in blavaan for SEM!

$$\begin{aligned} \mathsf{WAIC}_{\mathsf{m}} \; &= \; -2\sum_{j=1}^{J} \log \left[\mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi}) \right] + 2p_{\mathsf{Wm}} \\ p_{\mathsf{Wm}} \; &= \; \sum_{j=1}^{J} \mathsf{Var}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} \left[\mathsf{log} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi}) \right] \end{aligned}$$

Same target as leave-one-cluster out (LOcO) CV

$$-2 \operatorname{LOcO-CV} = -2 \sum_{j=1}^{J} \log \operatorname{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} | \boldsymbol{y}_{-j}} f_{\mathsf{m}}(\boldsymbol{y}_{j} | \boldsymbol{\omega}, \boldsymbol{\psi})$$

- ▶ Can compute PSIS-LOcO using loo package with posterior samples of $f_m(y_j|\omega,\psi)$ as input; automated in blavaan for SEM!
- Ever used??

$$\begin{aligned} \mathsf{WAIC}_{\mathsf{m}} \; &= \; -2\sum_{j=1}^{J} \mathsf{log}\left[\mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi})\right] + 2p_{\mathsf{Wm}} \\ p_{\mathsf{Wm}} \; &= \; \sum_{j=1}^{J} \mathsf{Var}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}}\left[\mathsf{log} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi})\right] \end{aligned}$$

Same target as leave-one-cluster out (LOcO) CV

$$-2\operatorname{LOcO-CV} \ = \ -2\sum_{j=1}^{J}\log\operatorname{E}_{\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y}_{-j}}f_{\mathsf{m}}(\boldsymbol{y}_{j}|\boldsymbol{\omega},\boldsymbol{\psi})$$

- ▶ Can compute PSIS-LOcO using loo package with posterior samples of $f_m(y_j|\omega,\psi)$ as input; automated in blavaan for SEM!
- Ever used??
 - Hinted at [e.g., Gelman, Hwang & Vehtari, 2014 Section 2.5]

$$\begin{aligned} \mathsf{WAIC}_{\mathsf{m}} \; &= \; -2\sum_{j=1}^{J} \mathsf{log}\left[\mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi})\right] + 2p_{\mathsf{Wm}} \\ p_{\mathsf{Wm}} \; &= \; \sum_{j=1}^{J} \mathsf{Var}_{\boldsymbol{\omega}, \boldsymbol{\psi} \mid \boldsymbol{y}}\left[\mathsf{log} f_{\mathsf{m}}(\boldsymbol{y}_{j} \mid \boldsymbol{\omega}, \boldsymbol{\psi})\right] \end{aligned}$$

Same target as leave-one-cluster out (LOcO) CV

$$-2 \operatorname{LOcO-CV} = -2 \sum_{j=1}^{J} \log \mathsf{E}_{\boldsymbol{\omega}, \boldsymbol{\psi} | \boldsymbol{y}_{-j}} f_{\mathsf{m}}(\boldsymbol{y}_{j} | \boldsymbol{\omega}, \boldsymbol{\psi})$$

- ► Can compute PSIS-LOcO using 100 package with posterior samples of $f_m(y_i|\omega,\psi)$ as input; automated in blavaan for SEM!
- Ever used??
 - Hinted at [e.g., Gelman, Hwang & Vehtari, 2014 Section 2.5]
 - Used for unclustered data with latent variables (e.g., overdispersed Poisson, meta-analysis) [Li, Qui & Feng, 2016; Millar, 2018]

▶ In unclustered data with **univariate** y_j (instead of y_j), posterior predictive density collapses to mixed predictive density

$$\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) = \int f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\int p(\boldsymbol{\zeta}_{j}|y_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j}$$

▶ In unclustered data with **univariate** y_j (instead of y_j), posterior predictive density collapses to mixed predictive density

$$\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) = \underbrace{\int} f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\underbrace{\int} p(\boldsymbol{\zeta}_{j}|\boldsymbol{y}_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j}$$

No data for unit $j \Rightarrow$ **posterior** for ζ_i equals **prior** for ζ_i

▶ In unclustered data with **univariate** y_j (instead of y_j), posterior predictive density collapses to mixed predictive density

$$\mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) = \underbrace{\int} f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\underbrace{\int} p(\boldsymbol{\zeta}_{j}|\boldsymbol{y}_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j}$$

No data for unit $j \Rightarrow$ **posterior** for ζ_i equals **prior** for ζ_i

▶ In unclustered data with **univariate** y_j (instead of y_j), posterior predictive density collapses to mixed predictive density

$$\begin{split} \mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) &= \int f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\int p(\boldsymbol{\zeta}_{j}|\boldsymbol{y}_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j} \\ &= \int \underbrace{\left[\int f_{\mathsf{c}}(y_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j})g(\boldsymbol{\zeta}_{j}|\boldsymbol{\psi})d\boldsymbol{\zeta}_{j}\right]}_{f_{\mathsf{m}}(\boldsymbol{y}_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\psi})} p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\omega}d\boldsymbol{\psi} = \mathsf{E}_{\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y}}f_{\mathsf{m}}(\boldsymbol{y}_{j}^{\mathsf{r}}|\boldsymbol{\omega},\boldsymbol{\psi}) \end{split}$$

No data for unit $j \Rightarrow \mathbf{posterior}$ for ζ_i equals **prior** for ζ_i

▶ In unclustered data with **univariate** y_j (instead of y_j), posterior predictive density collapses to mixed predictive density

$$E_{\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y}}f_{c}(y_{j}^{r}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) = \int f_{c}(y_{j}^{r}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j}) \underbrace{\left[\int p(\boldsymbol{\zeta}_{j}|\boldsymbol{y}_{j},\boldsymbol{\omega},\boldsymbol{\psi})p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\psi}\right]}_{p(\boldsymbol{\omega},\boldsymbol{\zeta}_{j}|\boldsymbol{y})} d\boldsymbol{\omega}d\boldsymbol{\zeta}_{j}$$

$$= \int \underbrace{\left[\int f_{c}(y_{j}^{r}|\boldsymbol{\omega},\boldsymbol{\zeta}_{j})g(\boldsymbol{\zeta}_{j}|\boldsymbol{\psi})d\boldsymbol{\zeta}_{j}\right]}_{fm(y_{j}^{r}|\boldsymbol{\omega},\boldsymbol{\omega})} p(\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y})d\boldsymbol{\omega}d\boldsymbol{\psi} = E_{\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y}}f_{m}(\boldsymbol{y}_{j}^{r}|\boldsymbol{\omega},\boldsymbol{\psi})$$

No data for unit $j \Rightarrow$ **posterior** for ζ_i equals **prior** for ζ_i

► Therefore conditional PSIS-LOO makes no sense and not clear what WAIC_c represents!

- lacktriangle Meta-analysis of SAT prep. programs in 8 schools $(j=1,\ldots,8)$
- lacktriangle Effect size estimates y_j with standard error estimates σ_j

- ▶ Meta-analysis of SAT prep. programs in 8 schools (j = 1, ..., 8)
- lacktriangle Effect size estimates y_j with standard error estimates σ_j
- Hierarchical model

$$y_j|\zeta_j, \sigma_j^2 \sim N(\zeta_j, \sigma_j^2), \quad \zeta_j|\mu, \tau^2 \sim N(\mu, \tau^2), \quad p(\alpha, \tau) \propto 1$$

- ▶ Meta-analysis of SAT prep. programs in 8 schools (j = 1, ..., 8)
- lacktriangle Effect size estimates y_j with standard error estimates σ_j
- Hierarchical model

$$y_j|\zeta_j, \sigma_j^2 \sim N(\zeta_j, \sigma_j^2), \quad \zeta_j|\mu, \tau^2 \sim N(\mu, \tau^2), \quad p(\alpha, \tau) \propto 1$$

$$f_{\mathsf{c}}(y_j|\zeta_j) = N(y_j|\zeta_j, \sigma_j^2) \qquad f_{\mathsf{m}}(y_j|\tau^2) = N(y_j|\mu, \tau^2 + \sigma_j^2)$$

- ▶ Meta-analysis of SAT prep. programs in 8 schools (j = 1, ..., 8)
- lacktriangle Effect size estimates y_j with standard error estimates σ_j
- Hierarchical model

$$y_j|\zeta_j, \sigma_j^2 \sim N(\zeta_j, \sigma_j^2), \quad \zeta_j|\mu, \tau^2 \sim N(\mu, \tau^2), \quad p(\alpha, \tau) \propto 1$$
$$f_{\mathsf{c}}(y_j|\zeta_j) = N(y_j|\zeta_j, \sigma_j^2) \qquad f_{\mathsf{m}}(y_j|\tau^2) = N(y_j|\mu, \tau^2 + \sigma_j^2)$$

lacktriangle Scale data $y_j^* = S imes y_j$, σ_j unchanged [Vehtari, Gelman & Gabry, 2017]

- ▶ Meta-analysis of SAT prep. programs in 8 schools (j = 1, ..., 8)
- lacktriangle Effect size estimates y_j with standard error estimates σ_j
- Hierarchical model

$$y_j|\zeta_j, \sigma_j^2 \sim N(\zeta_j, \sigma_j^2), \quad \zeta_j|\mu, \tau^2 \sim N(\mu, \tau^2), \quad p(\alpha, \tau) \propto 1$$

$$f_{\mathsf{c}}(y_j|\zeta_j) = N(y_j|\zeta_j, \sigma_j^2) \qquad f_{\mathsf{m}}(y_j|\tau^2) = N(y_j|\mu, \tau^2 + \sigma_j^2)$$

lacktriangle Scale data $y_j^* = S imes y_j$, σ_j unchanged [Vehtari, Gelman & Gabry, 2017]

Scale factor S	$WAIC_c$	LOO-CV	WAIC _m
1	61.8	62.6	62.6
4	68.7	86.0	85.5

- ▶ Meta-analysis of SAT prep. programs in 8 schools (j = 1, ..., 8)
- lacktriangle Effect size estimates y_j with standard error estimates σ_j
- Hierarchical model

$$\begin{split} y_j|\zeta_j,\sigma_j^2 &\sim N(\zeta_j,\sigma_j^2), \quad \zeta_j|\mu,\tau^2 \sim N(\mu,\tau^2), \quad p(\alpha,\tau) \propto 1 \\ f_{\rm c}(y_j|\zeta_j) &= N(y_j|\zeta_j,\sigma_j^2) \qquad f_{\rm m}(y_j|\tau^2) = N(y_j|\mu,\tau^2+\sigma_j^2) \end{split}$$

lacktriangle Scale data $y_j^* = S imes y_j$, σ_j unchanged [Vehtari, Gelman & Gabry, 2017]

Scale factor S	WAIC _c	LOO-CV	WAIC _m
1	61.8	62.6	62.6
4	68.7	86.0	85.5

▶ WAIC_c terrible approximation to LOO-CV when S=4 [Vehtari, Gelman & Gabry, 2017 – Figure 1a (did not consider WAIC_m)]

- ▶ Meta-analysis of SAT prep. programs in 8 schools (j = 1, ..., 8)
- lacktriangle Effect size estimates y_j with standard error estimates σ_j
- Hierarchical model

$$\begin{split} y_j|\zeta_j,\sigma_j^2 \, \sim \, N(\zeta_j,\sigma_j^2), \quad \zeta_j|\mu,\tau^2 \, \sim \, N(\mu,\tau^2), \quad p(\alpha,\tau) \propto 1 \\ f_{\rm c}(y_j|\zeta_j) = N(y_j|\zeta_j,\sigma_j^2) \qquad f_{\rm m}(y_j|\tau^2) = N(y_j|\mu,\tau^2+\sigma_j^2) \end{split}$$

lacktriangle Scale data $y_j^* = S imes y_j$, σ_j unchanged [Vehtari, Gelman & Gabry, 2017]

S	cale factor S	$WAIC_c$	LOO-CV	$WAIC_m$
1		61.8	62.6	62.6
4		68.7	86.0	85.5

- ▶ WAIC_c terrible approximation to LOO-CV when S=4 [Vehtari, Gelman & Gabry, 2017 Figure 1a (did not consider WAIC_m)]
- ► WAIC_m much better approximation to LOO-CV Also found in other applications [Li, Qui & Feng, 2016; Millar, 2018]

Dan Furr: Application to IRT

▶ Make informed choice between conditional and marginal ICs

- ▶ Make informed choice between conditional and marginal ICs
- ► Marginal ICs generally more justified than conditional ICs

- Make informed choice between conditional and marginal ICs
- ► Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$

- Make informed choice between conditional and marginal ICs
- ► Marginal ICs generally more justified than conditional ICs
 - ullet Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters

- Make informed choice between conditional and marginal ICs
- Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters
- ► Theoretical problems with conditional ICs

- Make informed choice between conditional and marginal ICs
- ► Marginal ICs generally more justified than conditional ICs
 - ullet Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters
- Theoretical problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data

- Make informed choice between conditional and marginal ICs
- Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters
- Theoretical problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data
 - WAIC_c does not meet regularity conditions: (a) $y_{ij}|\omega,\zeta_j$ not iid (b) number of parameters increases with sample size [Millar, 2018]

- Make informed choice between conditional and marginal ICs
- ► Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters
- ▶ Theoretical problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data
 - WAIC_c does not meet regularity conditions: (a) $y_{ij}|\omega,\zeta_j$ not iid (b) number of parameters increases with sample size [Millar, 2018]
 - Penalty term for DIC_c problematic because number of parameters increases with sample size [Plummer, 2008]

- Make informed choice between conditional and marginal ICs
- Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters
- ▶ Theoretical problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data
 - WAIC_c does not meet regularity conditions: (a) $y_{ij}|\omega,\zeta_j$ not iid (b) number of parameters increases with sample size [Millar, 2018]
 - Penalty term for DIC_c problematic because number of parameters increases with sample size [Plummer, 2008]
- Empirical problem with conditional ICs

- Make informed choice between conditional and marginal ICs
- Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(\pmb{\zeta}_j|\pmb{\psi})$
 - And/or want to generalize to other clusters
- ▶ Theoretical problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data
 - WAIC_c does not meet regularity conditions: (a) $y_{ij}|\omega,\zeta_j$ not iid (b) number of parameters increases with sample size [Millar, 2018]
 - Penalty term for DIC_c problematic because number of parameters increases with sample size [Plummer, 2008]
- ► Empirical problem with conditional ICs
 - Both WAIC_c and DIC_c can have huge Monte Carlo errors

- Make informed choice between conditional and marginal ICs
- Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(oldsymbol{\zeta}_j|oldsymbol{\psi})$
 - And/or want to generalize to other clusters
- Theoretical problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data
 - WAIC_c does not meet regularity conditions: (a) $y_{ij}|\omega,\zeta_j$ not iid (b) number of parameters increases with sample size [Millar, 2018]
 - Penalty term for DIC_c problematic because number of parameters increases with sample size [Plummer, 2008]
- ► Empirical problem with conditional ICs
 - Both WAIC_c and DIC_c can have huge Monte Carlo errors
 - WAIC_c can be poor approximation to PSIS-LOuO

References to other authors

▶ Li, Qui & Feng (2016). Approximating cross-validatory predictive evaluation in Bayesian latent variable models with integrated IS and WAIC. *Statistics and Computing* 26, 881-897.

 Millar (2018). Conditional vs. marginal estimation of predictive loss of hierarchical models using WAIC and cross-validation. Statistics and Computing. In press.

▶ Vehtari, Gelman & Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27, 1413-1432.

References to other authors

- Li, Qui & Feng (2016). Approximating cross-validatory predictive evaluation in Bayesian latent variable models with integrated IS and WAIC. Statistics and Computing 26, 881-897.
- Gelman, Meng & Stern (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6, 733-807.
- Gelman, Hwang & Vehtari (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing 24, 997-1016.
- Millar (2018). Conditional vs. marginal estimation of predictive loss of hierarchical models using WAIC and cross-validation. Statistics and Computing. In press.
- Plummer (2008). Penalized loss functions for Bayesian model comparison. Biostatistics 9, 523-539.
- Spiegelhalter, Best, Carlin & van der Linde (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B 64, 583-639.
- Vehtari, Gelman & Gabry (2016). loo: Efficient leave-one-out crossvalidation and WAIC for Bayesian models. https://github.com/stan-dev/loo
- ▶ Vehtari, Gelman & Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27, 1413-1432.
- Watanabe (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. *Journal of Machine Learning Research* 11, 3571-3594.

► Merkle, Furr & Rabe-Hesketh (2018). Bayesian model assessment: Use of conditional vs marginal likelihoods. *arXiv:1802.04452*. http://arxiv.org/abs/1802.04452

► Furr (2017). Bayesian and frequentist cross-validation methods for explanatory item response models. PhD Thesis. UC Berkeley

► Merkle, Furr & Rabe-Hesketh (2018). Bayesian model assessment: Use of conditional vs marginal likelihoods. *arXiv:1802.04452*. http://arxiv.org/abs/1802.04452

- ► Furr (2017). Bayesian and frequentist cross-validation methods for explanatory item response models. PhD Thesis. UC Berkeley
- Merkle & Rosseel (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software. In Press.
- ► Merkle, Furr & Rabe-Hesketh (2018). Bayesian model assessment: Use of conditional vs marginal likelihoods. *arXiv:1802.04452*. http://arxiv.org/abs/1802.04452

- ► Furr (2017). Bayesian and frequentist cross-validation methods for explanatory item response models. PhD Thesis. UC Berkeley
- Merkle & Rosseel (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software. In Press.
- ► Merkle, Furr & Rabe-Hesketh (2018). Bayesian model assessment: Use of conditional vs marginal likelihoods. *arXiv:1802.04452*. http://arxiv.org/abs/1802.04452
- ▶ Rabe-Hesketh, Skrondal & Pickles (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal of Econometrics* 128, 301-323.

- ► Furr (2017). Bayesian and frequentist cross-validation methods for explanatory item response models. PhD Thesis. UC Berkeley
- Merkle & Rosseel (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software. In Press.
- ► Merkle, Furr & Rabe-Hesketh (2018). Bayesian model assessment: Use of conditional vs marginal likelihoods. *arXiv:1802.04452*. http://arxiv.org/abs/1802.04452
- ▶ Rabe-Hesketh, Skrondal & Pickles (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal of Econometrics* 128, 301-323.
- Web page on Education Research using Stan: https://education-stan.github.io (contributions welcome)
 - Tutorial and case-studies on IRT
 - Papers that use Stan in education research, broadly construed