

Flashwriter II

Users Guide

FLASHWRITER II BOARD

Manual Revision 3
March 29, 1979

Copyright 1979 Vector Graphic Inc.

Copyright 1979 Vector Graphic Inc.

Revision Numbers

The revision number and date of release of each page herein appears at the bottom of each page. The revision number and date of release on the Title Page corresponds to that of the page most recently revised.

Vector Graphic Flashwriter II Board

REPAIR AGREEMENT

The Flashwriter II Board sold hereunder is sold "as is", with all faults and without any warranty, either expressed or implied, including any implied warranty of fitness for intended use or merchantability. However, the above notwithstanding, VECTOR GRAPHIC, INC., will, for a period of ninety (90) days following delivery to customer, repair or replace any Flashwriter II Board that is found to contain defects in materials or workmanship, provided:

1. Such defect in material or workmanship existed at the time the Flashwriter II Board left the VECTOR GRAPHIC, INC., factory;
2. VECTOR GRAPHIC, INC., is given notice of the precise defect claimed within ten (10) days after its discovery;
3. The Flashwriter II Board is promptly returned to VECTOR GRAPHIC, INC., at customer's expense, for examination by VECTOR GRAPHIC, INC., to confirm the alleged defect, and for subsequent repair or replacement if found to be in order.

Repair, replacement or correction of any defects in material or workmanship which are discovered after expiration of the period set forth above will be performed by VECTOR GRAPHIC, INC., at Buyer's expense, provided the Flashwriter II Board is returned, also at Buyer's expense, to VECTOR GRAPHIC, INC., for such repair, replacement or correction. In performing any repair, replacement or correction after expiration of the period set forth above, Buyer will be charged in addition to the cost of parts the then-current VECTOR GRAPHIC, INC., repair rate. At the present time the applicable rate is \$35.00 for the first hour, and \$18.00 per hour for every hour of work required thereafter. Prior to commencing any repair, replacement or correction of defects in material or workmanship discovered after expiration of the period for no-cost-to-Buyer repairs, VECTOR GRAPHIC, INC., will submit to Buyer a written estimate of the expected charges, and VECTOR GRAPHIC, INC., will not commence repair until such time as the written estimate of charges has been returned by Buyer to VECTOR GRAPHIC, INC., signed by duly authorized representative authorizing VECTOR GRAPHIC, INC., to commence with the repair work involved. VECTOR GRAPHIC, INC., shall have no obligation to repair, replace or correct any Flashwriter II Board until the written estimate has been returned with approval to proceed, and VECTOR GRAPHIC, INC., may at its option also require prepayment of the estimated repair charges prior to commencing work.

Repair Agreement void if the enclosed card is not returned to VECTOR GRAPHIC, INC. within ten (10) days of end consumer purchase.

Vector Graphic Flashwriter II Board

TABLE OF CONTENTS

Section	Page
Repair Agreement	
Table of Contents	
I. Introduction	
1.1 Description of the Board.....	1-1
1.2 Description of the Manual.....	1-1
II. Theory of Operation	
2.1 Keyboard Port.....	2-1
2.2 Horizontal Sync Circuitry.....	2-2
2.3 Vertical Sync Circuitry.....	2-2
2.4 Memory Address Multiplexer.....	2-2
2.5 Memory Latch.....	2-3
2.6 Character Generator and Shift Register.....	2-3
2.7 Video Combiner.....	2-3
2.8 Monitor ROM Circuit.....	2-4
III. User's Guide	
3.1 Modifications to the Standard Configuration.....	3-1
3.1.1 Creating a New Character Set.....	3-1
3.1.2 Changing the Address of Video Memory.....	3-2
3.1.3 Putting a Monitor PROM on the Board.....	3-2
3.1.4 Address of the Monitor PROM on the Board.....	3-2
3.1.5 Specifying whether Monitor PROM on Board is 2708 or 2715.....	3-3
3.1.6 Enabling a Jump on Reset.....	3-3
3.1.7 Changing the Keyboard Port Address.....	3-3
3.1.8 Changing the Polarity of the Vertical Sync Signal.....	3-4
3.1.9 Obtaining MWRITE.....	3-4
3.1.10 Changing the Polarity of the Keyboard Strobe.....	3-4
3.1.11 Using Interrupt Driven Software.....	3-5
3.1.12 Supplying a Keyboard with a Negative Voltage Power Supply.....	3-5
3.1.13 Using a Spare Key on the Keyboard for Reset.....	3-5
3.1.14 Accessing the 60 Hz Vertical Blanking Signal.....	3-5

vector Graphic Flashwriter II Board

<u>Section</u>	<u>Page</u>
3.2 Programming for the Flashwriter II Board.....	3-6
3.2.1 Vector Graphic Monitors.....	3-6
3.2.2 Displaying Characters Without Using the Vector Graphic Monitor Video Driver.....	3-8
3.2.3 Producing Reverse Video.....	3-8
3.2.4 Determining Whether a Character is in the Keyboard Buffer.....	3-10
3.2.5 Accessing the 60 Hz Vertical Blanking Signal.....	3-10
3.3 Adjusting Your TV Monitor.....	3-10
3.4 Connecting the Board to the Video Display and the Keyboard.....	3-11
3.4.1 Connecting a Video Display Requiring Separate Sync and Video.....	3-12
3.4.2 Connecting a Video Display Requiring Combined Sync and Video.....	3-12
3.4.3 Connecting a Keyboard.....	3-13
IV. Diagrams	
Character Set, Low Order 128 Characters.....	4-1
Character Set, High Order 128 Characters.....	4-2
Blank Form, Low Order Character Set.....	4-3
Blank Form, High Order Character Set.....	4-4
80 X 24 Video Display Module Block Diagram.....	4-5
Board Layout with Jumper Pads.....	4-6
Schematic.....	4-7

I. INTRODUCTON

1.1 Description of the Board

The Flashwriter II Video Board is Vector Graphic's advanced 80 x 24 memory mapped video board. By "80 x 24" we mean that the board displays characters on the screen in 24 rows of 80 characters each. Each character is made up of an 8 x 10 matrix of dots.

The Flashwriter II can be installed in ANY S-100 8080 or Z-80 computer, including existing Vector Graphic computers, in order to convert the existing memory mapped display to 80 x 24, or to make use of memory mapped video for the first time if a serial terminal had been used. It can be used with almost any standard computer video monitor, since it can produce either separate or combined video and sync signals. However, the monitor must have a band width of at least 12 MHz. The board is definitely applicable to the Vector Graphic Mindless Terminal, which requires separate signals. (Note: in this manual, the word "monitor" refers to a video display unit, and the word "Monitor" with an upper-case M refers to a kind of computer program which handles basic housekeeping functions for the computer.)

The Flashwriter II makes use of the most up-to-date ideas in circuit design such as flicker-free updating of the screen, separate sync outputs for video monitors requiring it, on-board user-programmable PROMs storing the character set, on-board socket for a video-driver and/or Monitor, Jump-on-Reset capability, to be used if the on-board video-driver socket is used, the availability of inverted or non-inverted vertical sync signals, the availability of combined or separate video and sync signals, and the capability for reverse video. To make the board adaptable to many different systems, you are free by using jumpers to specify the memory addresses used by the on-board video memory RAM and the on-board video driver.

Further, a parallel keyboard input port is incorporated on the board, with the port numbers changeable by jumper anywhere from 00 and 01 (status and data) up to 0E and 0F. Although the board is shipped jumpered so that it strobes the keyboard data into the input latch on the rising edge of the key-depression strobe, a jumper can be installed to strobe the data on the falling edge, as required by some keyboards. The board can also be jumpered to generate an interrupt when a key is depressed, instead of waiting to be polled.

A particularly useful feature of the board is the ability to accept a user-created character set, which can be either a 128 or 256 character set. If a 256 character set is desired, then the user must sacrifice the use of reverse video. The board is shipped with a 128 character set, on a PROM. This set consists of the 96 standard ASCII characters and 16 special graphics characters which can be used to build graphics images or large characters.

Instructions are provided for creating your own character set and encoding it on 2708 or 2716 EPROMs (the latter for a 256 character set), if desired.

Instructions are given in this manual for writing programs to use the board. In addition, the user can purchase, if not already included in his computer system, the Vector Graphic Extended Systems Monitor with video driver, Version 3 EV-II. Before making this decision, section 3.2.1 should be read. Use of this Monitor will eliminate some or all of the assembly language programming necessary to use the board. The EVIOS program, a sophisticated video driver used with the Flashwriter I board, canNOT be used with the Flashwriter II board, but Version 3 of the Monitor makes it largely unnecessary. For user's familiar with Flashwriter I, this is partly due to the fact that Flashwriter II does not have a separate memory block containing character attributes. In Flashwriter II, there are no special vertical and horizontal lines outside of those in the graphics characters, there is no reduced intensity, and the graphics characters are produced in response to ASCII codes 00 to 1F and 80 to 9F.

The Flashwriter II board is a major addition to the Vector Graphic product line. Vector Graphic has now applied its well known excellence in video display quality and product flexibility to the creation of an advanced 80 x 24 video display board.

1.2 Description of the Manual

This manual provides a discussion of the theory of operation of the Flashwriter II, and a User's Guide describing 1) when and how to modify the board's electronics and PROM's, 2) how to program for the board, how to adjust the TV monitor, and how to connect the board to keyboard and video. Since the board is not sold as a kit, assembly information and parts list are not included.

II. THEORY OF OPERATION

A block diagram of the video display module is shown on page 4-5. Each of the blocks is comprised of several integrated circuits as shown on the schematic diagram on page 4-7.

2.1 Keyboard Port

Starting with the keyboard port, U46 is an 8 bit latch which internally stores the data from the keyboard coming through J1 when the STB (pin 11) input goes low. A jumper option allows the correct strobe polarity to be selected. U46 contains a service request flip flop which is set by the same strobe edge that latches the data, causing INT to go low (pin 23). This signal can optionally be connected to PINT on the bus (pin 73) for interrupt driven keyboard input, or can be tested by accessing the status port. Two adjacent ports are always occupied by the status and data with the status being the lower one. The port address is decoded by U39 and the associated sections of U27 and U38. A jumper allows the selection of port addresses from 0 and 1 to E and F. (Each pair of ports refers to status and data, respectively.) Signals INPS and INPD enable tristate bus drivers U45 and U21 to gate the INT signal and data onto the bus at the appropriate time. Both inverted and non-inverted status are available, for keyboard drivers using different conventions. The vertical blanking signal is also available, from the status port, for use as a 60Hz clock signal, or for synchronizing data transfers with the vertical retrace.

2.2 Horizontal Sync Circuitry

The timing for the characters, horizontal blanking and horizontal sync pulse is provided by U15, U29, U3 and U1. A crystal oscillator at 14.318 MHz provides the clock for all the signals. This is the frequency at which the individual dots making up the characters are displayed. U15 divides this clock by 8 to generate a character clock output every time a new character is to be displayed. This signal is further divided by U29 and U3 to generate a horizontal period of 63.69 micro-seconds. The outputs H0-H6 are binary outputs representing the 80 character positions per line. H7 goes high at the end of the displayed line of characters, and is used as the horizontal blanking signal. At the count of 207, decoded by U2 pin 8, the counter string is preset to the value of 94 and starts counting over again. This signal also triggers U1, a dual one-shot to generate a horizontal sync pulse. The delay of this pulse can be varied by the horizontal position potentiometer to allow centering the display on the TV screen.

2.3 Vertical Sync Circuitry

The vertical sync counters U6, U4 and U5 are clocked by the horizontal sync pulse from U1 pin 5 to produce a count from 0 to 261. Each row of characters occupies 10 scan lines. U6 is a decade counter, so it generates a terminal count (TC) every 10 lines. The displayed characters occupy 240 lines, and U19 pin 12 goes low at the count of 240 to blank the display. A vertical sync pulse is generated by a section of U5 and U20 pin 1 which is 2 lines long, from 240 to 242. This is slightly shorter than a standard TV sync signal, and produces a minimum disturbance to the horizontal sync of the TV. The video output remains blanked until the counters are preset to 0 at the count of 261 for a total of 262 scan lines.

2.4 Memory Address Multiplexer

The on board memory is multiplexed between the CPU and the sync circuitry. This is done using tristate drivers U40, U41, U28 and the tristate outputs of U16. Thus when the CPU addresses memory, the address bus signals drive the memory address inputs, and while the characters are displayed on the screen, the address inputs are generated by the sync circuitry. One complication is that since 80 is not a binary power, there is not a convenient separation of horizontal and vertical address inputs. 80 is divisible by 16, so the least significant 4 bits from U29 are applied directly to the memory address inputs. The remaining 3 horizontal counter outputs H4-H6 and the vertical sync signals V0-V4 are mapped into 7 bits using a 256 x 8 ROM U16. This effectively maps the displayed characters in a linear fashion into the 2K of address space occupied by the memory. Since $80 \times 24 = 1920$, there are 128 locations in RAM that are not displayed on the screen.

If the memory is addressed by the CPU, it will not be able to generate the proper output to be displayed on the screen. This would cause undesirable glitches, or flashes of light on the screen as the display was being written into. To prevent this, access is inhibited by the CPU except during the horizontal retrace interval. U12 provides the necessary arbitration and pulls PRDY (pin 72) low to put the CPU in a wait state until it can access the memory. Two sections of U12 provide delays to ensure that control is transferred properly. U12 pin 13 provides a delay to ensure that the CPU has finished its current memory access cycle, and U12 provides a similar delay to ensure that the memory access time is satisfied before the CPU proceeds. The data bus is buffered by U44 and U33.

2.5 Memory Latch

The combined access time of the memory and the character generator ROM exceeds the character period of 558 ns. Thus the data is "pipelined" using U34 and U35 to latch the memory data. This

provides 558 ns access time for both the RAM and character generator. The output of U34, U35 is delayed by one character clock period from the sync counter outputs, while the data strobed into the dot shift register U8 is delayed two character clocks. To compensate for this delay, it is necessary to delay the horizontal blanking signal also. This is done using sections of U35, and the output of pin 12 is H Blank DLD, the delayed horizontal blanking signal.

2.6 Character Generator and Shift Register

The dot patterns for each character are generated by U22 and U23. The 8 bit output from these user programmable EPROMs is supplied in parallel to U8 which shifts the dots out at the high dot clock (14.318 MHz) rate. The addressing of U22, 23 is arranged so that there are several options as far as the ROMs are concerned. U22 generates the top 8 lines of each character cell. If only upper case characters are used with no descenders, this is the only ROM required. For the descenders of lower case characters and graphic symbols, a second ROM is required (U23) which generates the bottom two lines of each character cell. If in addition, a full 256 characters are used, U22 is replaced with a TMS 2716. For the 128 character ASCII character set, the most significant memory bit is not required. This is normally jumpered to U7 pin 12 to control the reverse video. If the 256 character set is used, this bit is connected to U22 pin 20 to select the upper half of the ROM. More information on this subject is provided in the User's Guide, Section III of this manual.

2.7 Video Combiner

The horizontal and vertical sync signals are available at J2 pin 4,5 for monitors such as the Ball Brothers TV 120 used in the Vector Graphic Mindless Terminal which require separate sync and video. U19 pin 8 is the combined video and blanking signal which is available at J2 pin 3 with the proper polarity for the Mindless Terminal. The sync signals and video are combined in the circuitry associated with U10, and are available at J2 pin 1. The horizontal and vertical sync are first combined in U7 and then summed with the video using the open collector outputs of U10 and the resistive network. The resistor values have been chosen to give the proper sync and video amplitudes and to provide a 75 ohm source impedance to drive a terminated video cable. Very good video rise and fall times are obtained with this circuit. In order to compensate for the limited bandwidth of most TV monitors, some high frequency preemphasis is provided by the 470 pf capacitor shunting the 100 ohm output resistor. If the video display is not satisfactory, it may be improved by changing this value.

2.8 Monitor ROM Circuit

A socket is provided for a 2708/2716 ROM to be used as a monitor and/or video driver. U26 selects both the address for the video memory RAM and also the ROM with jumper options every 2K in the upper 16K of memory. A Jump on Reset flip flop consisting of U9 sections has two functions: 1) to disable RAM after the system is powered up or reset; 2) to enable the on-board Monitor ROM at address 0. If the first three instructions of the ROM are JMP XX03, where XX00 is the normal ROM address, then when the system is powered on or the reset key is depressed, these instructions will be executed, causing the CPU to continue executing with the 4th byte of the ROM. After the jump takes place, the circuitry automatically resets the flip flop and restores normal operation of the RAM. Circuitry is also provided to generate MWRITE, a signal produced in some computers by the front panel. This is not required in Vector Graphic equipment as it is generated by the Z-80 CPU board.

3.1 MODIFICATIONS AND ADDITIONAL FEATURES

3.1.1 Creating a New Character Set

The sub-sections which follow describe the modifications which can be made to the Vector Board, both to its internal circuitry and to the board. In each case, the modification which is used if you want to do something which might make the machine difficult to service. This section should be consulted whenever you constitute the standard character set. To find the location of chips, memory, and logic within each area, refer to the diagram on page 4-1.

Each of the parts to be modified is described with a brief description of the modification, the location of the part, the necessary tools, and information about the effect. In some cases, the

3.1.1.1 Creating a New Character Set

The Flashwriter II comes with 128 standard ASCII character set plus 32 graphic or graphics characters. You will find a diagram of this character set on page 4-1. The graphics characters can be used to create a drawing, and appearing to create a large variety of graphical designs on the screen. These 128 characters are those that are displayed on the video screen when the corresponding code is stored in the on-board RAM. The code for each character consists of the value of the lower 7 bits of each stored byte. The eighth bit is used to converts the character into reverse video (black on white, for example). Otherwise it is normal video. Reverse video, you may note, the graphics characters are found on page 4-2.

The characters are stored in the PROM's U20, U21, U22 and U23. Each character consists of an 8 by 16 matrix of cells, as illustrated on page 4-1. PROM U22 stores the first 8 lines (lines 0 to 7) and U23 stores the last 2 lines (line 8 and 9). The lowest addresses on U22 contain the first 8 lines of all 128 characters, then come the second lines of all 128 characters, and so on, up to the eighth line of all 128 characters. U23 contains the characters with the ninth line from top to bottom.

If you wish to replace these characters, you need only create a new pair of PROM's, using the arrangement described above. For a nominal fee, Vector Graphic will do this for you. You must provide Vector Graphic with a drawing of each character, darkening the appropriate cells in an 8 by 16 matrix. Use the blank character form on page 4-3. When done, if you limit yourself to only upper-case characters, not using the bottom two lines in each character, you will now need the U23 column. To order custom character PROM's from Vector Graphic, please contact the company directly to make arrangements.

You can also create a full 256 character set. To do this, you use a

TMS 2716 2K x 8 PROM or equivalent for U22, and 2708 for U23. The data is organized in the same way as with a 128 character set, except that 256, instead of 128, consecutive addresses contain the first lines of all the characters, and so on for each line in the character matrices. With a 256 character set, you sacrifice the use of reverse video, because all 8 bits of each byte are used to designate the character. Vector Graphic will also create the PROM's for you for a 256 character set, for an appropriate fee. Use both of the blank character forms found on pages 4-3 and 4-4 when sending your character set to Vector Graphic, putting the first 128 characters on the first page, and the second 128 characters on the second page.

The board is shipped jumpered for a 128 character set. Jumpers must be changed as follows for a 256 character set.

	<u>128 character set</u>	<u>256 character set</u>
Area I	2 - 1	Cut 2 - 1
Area B	2 - 4 3 - 1	2 - 1 3 - 4 Cut 2 - 4 Cut 3 - 1
Area E	1 - 3 2 - 5	1 - 3 Cut 2 - 5 2 - 4

3.1.2 Changing the Address of the Video Memory

2K of RAM are provided on-board for storage of the current screen image. Since the screen contains only 1920 character locations, the last 128 bytes of this RAM is available for any other purpose. The board is shipped with this RAM addressed at D000. Since the Vector Graphic Extended Systems Monitor assumes this location, do not change it if you are using the video driver in this Monitor, unless you are willing to modify the Monitor on PROM. If you do want to change the address of video memory, a jumper must be changed in Area F. The jumper which determines the address of the RAM goes from pad 2 to one of the 8 pads below it. Each of the 8 pads corresponds to one address, as indicated in the diagram below. Cut the existing jumper and install a new one as required.

3.1.3 Putting a Monitor PROM on the Board

The Flashwriter II board is not shipped with a Monitor PROM on the board. However, socket U42 is available for either a 1K 2708 or a 2K 2716 PROM holding a Monitor and/or video driver. This program can be one of the Vector Graphic Monitors (see section 3.2.1) or one you have written yourself (see section 3.2.2.) (Note that in Vector Graphic computers the Monitor PROM resides on the 12K PROM/RAM board.) If you do install a Monitor PROM on the Flashwriter board in U42, it will function if the board is properly jumpered. Refer to sections 3.1.4, 3.1.5, and 3.1.6.

3.1.4 Address of the Monitor PROM on the Board

If you choose to use the socket provided on the board for a Monitor and/or Video Driver PROM, you must put a jumper in Area F to specify the address of this PROM. The jumper goes from pad 1 to one of the 8 pads below it. Each of the 8 pads corresponds to one address, as indicated in the diagram in section 3.1.2. Obviously, you cannot use the same block of memory that is used for the on-board RAM.

3.1.5 Specifying whether Monitor PROM on Board is 2708 or 2716

If you choose to use the socket provided on the board for a Monitor and/or video driver PROM, the chip used can be either a 1K or 2K chip, i.e. a 2708 or 2716 respectively. The board is shipped to accept a 1K PROM, as determined by the jumpers in Area D. In order to use a 2716 PROM, cut the jumpers from 1 - 4 and from 2 - 3 and replace with a jumper from 1 - 3 and a jumper from 4 to Area M. (There is only one pad in Area M.)

3.1.6 Enabling Jump-on-Reset

At this time, the Flashwriter II board is not shipped with a Monitor PROM, and therefore is not responsible for Jump-on-Reset. If you install a PROM on the board, you will want to enable Jump-on-Reset. If this is enabled, when the operator powers on the system or depresses the front panel reset switch, the CPU will automatically read the first 3 bytes of the Monitor PROM on the board. Thus, the first three bytes of the Monitor PROM must be a jump to some other address in memory. Usually this address is simply the next address on the same PROM, namely the beginning address of the PROM plus 3.

In order to enable Jump on Reset, install a jumper in Area C from 1 - 2, and in Area K from 1 - 2. If you are writing your own Monitor PROM, then the program which begins at the 4th byte of the PROM must be an appropriate response to the reset.

3.1.7 Changing the Keyboard Port Address

Normally the keyboard is accessed through ports 00 and 01 (status and data, respectively). You can change this to any consecutive pair of ports up to 0E and 0F. This is done by changing the jumper in Area J. Cut the existing jumper. Then, install a jumper from pad 1 to the pad corresponding to the desired port address, as illustrated below.

3.1.8 Changing the Polarity of Vertical Sync Signal

The board is shipped to output an inverted vertical sync signal, as required by the Vector Graphic Mindless Terminal. If you are using a video monitor which requires a non-inverted vertical sync signal, then cut the jumper in Area A from 1 - 2, and install a jumper from 1 - 3.

3.1.9 Obtaining MWRITE

The composite S-100 signal MWRITE is produced by the Vector Graphic Z-80 CPU board. In other computers, it is produced by the front panel. If your computer does not generate MWRITE, then you will need it in order to write to memory. The Flashwriter II board will generate it if you place a jumper in area G, from 1 - 2.

3.1.10 Changing the Polarity of the Keyboard Strobe

There are 4 common types of strobes generated by keyboards to indicate that a key has been depressed, as illustrated below:

The first type is the one used by the keyboard on the Vector Graphic Mindless Terminal. Both it and the fourth type require that the key data be strobed into the Flashwriter keyboard latch on the rising edge of the strobe.. The Flashwriter II board is shipped to strobe the data into the latch on the rising edge. On the other hand, if your keyboard generates the second or third type of strobe, cut the jumper in Area H.

3.1.11 Using Interrupt Driven Software

If you want the keyboard to generate an interrupt whenever a key is depressed, put a jumper in Area L from 1 - 2. If this jumper is not in place, then keyboard data can only be obtained by polling the status port. (See section 3.2).

3.1.12 Supplying a Keyboard with a Negative Voltage Power Supply

If you have a keyboard which requires a negative voltage power supply in addition to the +5V, and you are technically oriented, then there are pads in Area N of the board to install a zener regulated power supply. The circuit diagram on the left, below, will be completed if you insert the correct resistor and zener in Area N, as shown on the right, below.

The zener voltage will depend on the keyboard requirements if it is needed at all, and the resistor should be selected to bias the zener with at least 10 mA of current in addition to the current required by the keyboard. For example, with a keyboard requiring 10 mA of current at -6V, the zener could be a IN752A (5.6V) and the resistor could be $10/.02 = 500$ ohms (470 nominal). The zener power dissipation would be 60 mw and the resistor dissipation would be 200

mw. Use a 1/2 watt resistor to allow for higher supply voltages.

3.1.13 Using a Spare Key on the Keyboard for Reset

If your keyboard has an extra key not connected to the keyboard encoder logic, it can be used to reset the system, as an alternate to the reset key on the front panel. This is not possible with the Vector Graphic Mindless Terminal. Simply connect the key so that when it is depressed it grounds pin 11 of J1, the keyboard socket. See section 3.4.3 for a diagram of J1.

This pin is connected to pin 75 on the bus (RESET). When the line is grounded by depressing the key, the jump-on-reset circuit on this or another board will enable the Monitor PROM on the same board.

3.1.14 Accessing the 60 Hz Vertical Blanking Signal

Bit 5 of the input status port is low during vertical retrace.

3.2 Programming for the Flashwriter II Board

3.2.1 Vector Graphic Extended Systems Monitor 3 EV-II

By far the most convenient way to use the Flashwriter II board is through the use of the Vector Graphic Extended Systems Monitor, Version 3, Option EV-II or CV-II. This program comes on a PROM to be installed in position 8 on the Vector Graphic 12K PROM/RAM board. The Monitor is NOT automatically included with any order of the Flashwriter II board, and therefore must be ordered as a separate item. If you are upgrading a system from a Flashwriter I board, the Extended System Monitor used for that board will not work with Flashwriter II. You must order Monitor 3.

In contrast with earlier Vector Graphic Monitors, the video driver in Monitor Version 3 allows you to write anywhere on the screen, either by moving the cursor from the keyboard or entering X,Y coordinates from an assembly language or BASIC program. (BASIC must have POKE, as does M.BASIC provided with Vector Graphic Systems.) It also allows you to toggle reverse video from program or keyboard, and offers several less significant additional features. Both Monitor Version 3 and earlier versions contain keyboard input routines. Option EV-II interfaces to parallel keyboards, while Option CV-II interfaces to serial keyboards as on printing

terminals.

In addition to the video driver, and keyboard input routines, the Version 3 Monitor offers a wide range of useful utility programs, including ASCII Dump, Hex Dump, Jump to Micropolis Bootstrap Loader (D800), Compare Blocks of Memory, Jump to Extension PROM (C400 - the start of MZOS or a user written PROM), Find Two Bytes, Go To and Execute, Input from a Port, Jump to Loaded DOS (jumps to the warmstart location of MZOS or MDOS, whichever is running), Jump to 0000, Move Memory Block, Non-destructive Memory Test, Output to Port, Accessing Program Memory (for displaying and changing consecutive addresses), Compute Checksum, Jump to DC00, Search for Single Byte, Test Memory, Jump to 2A00, Wide Screen ASCII Dump, Exchange Memory Blocks, Keyboard Echo, and Zero or Fill Memory. These routines are accessed when the Monitor Executive routine is running, as indicated by the Monitor prompt *.

Version 3 of the Monitor contains several methods of displaying characters. Although the documentation to the Monitor describes these, a review here is useful. The basic technique is to call the video driver (CALL C006) with the desired character in the A register. This is sometimes called "sending" a character to the driver. This is the method used by all Vector Graphic operating system software such as MDOS and MZOS to display characters. By itself, this can only be used to display normal alphanumeric characters, those with codes between 20 and 7F (Hex). (The driver converts the codes higher than 7F to the corresponding code from 00 to 7F, by changing the 8th bit from 1 to 0.) Then, only the codes between 20 and 7F are displayed. Any code between 00 and 1F is interpreted as a command rather than a character, or if not a valid command, then ignored.

How then are graphics characters displayed? To get around the above restrictions in order to print characters outside the range 20 to 7F, first put the character you want to print in the B register, then put Hex 05 in the A register, and then call the video driver at C006. If the character is from 80 to FF, then it will be displayed in reverse video if your board is jumpered for reverse video as shipped. If not jumpered for reverse video and you are using a 256 character set, then codes 80 to FF will produce whatever characters are specified in the character generator PROM (see section 3.1.1.) If the character is from 00 to 1F, the corresponding graphics character will be displayed, or whatever other character is stored in the character PROM if you have created your own character set.

cancel, send another Control-T.

3.2.2 Displaying Characters Without Using the Vector Graphic Monitor Video Driver

This section is of concern if you are bypassing the Vector Graphic Extended Systems Monitor video driver, or writing your own video driver.

To display a character somewhere on the screen, simply write the corresponding ASCII code into the appropriate RAM location, using the RAM on the Flashwriter II board. Unless you have changed the location of this RAM as described in section 3.1.2, it is the 2K block from D000 to D7FF. Since the screen is 80 x 24, the last 128 bytes of this block are not used. The first location of this RAM corresponds to the upper left-hand corner of the screen, and successive locations move across the screen from left to right, going to the left edge of the next line down at the end of each line.

If the board is used as shipped, the characters which will be produced by each ASCII code are shown on the diagrams on pages 4-1 and 4-2. This includes special graphics characters which you can use to build graphic images such as pictures or large letters. Note that the characters from 80 to 9F are reverse video versions of those from 80 to 1F. Similarly, if you display a character having a code from A0 to F0, it will be the reverse video version of normal alphanumeric characters from 20 to 7F. (This assumes that the board is jumpered for reverse video, as shipped.) As explained in 3.1.1, you may create your own characters to replace those supplied with the board.

If you are writing your own Monitor program, including a video driver, you can if you choose install this PROM on the Flashwriter Board. The socket is labelled U42 on the board. If you do this, you should refer to sections 3.1.3, 3.1.4, and 3.1.5 in order to make appropriate hardware modifications if necessary.

3.2.3 Producing Reverse Video

This section specifically covers reverse video, even though it has been discussed in preceding sections. Reverse video refers to displaying a character in black, on a white background. This section is only relevant if the Flashwriter Board is jumpered for reverse video, as shipped from Vector Graphic, rather than for a 256 character set. (See section 3.1.1.)

The easiest way to cause reverse video is to go the Monitor Executive routine (if you have the Vector Graphic Monitor Version 3) by depressing ESC on the keyboard. Then depress Control-T (CTRL and

T keys simultaneously). Any characters displayed after that will be in reverse video, until another Control-T is depressed.

Any character stored in the Video Memory RAM will be displayed as a reverse video character if the 8th bit of the character is a 1. This corresponds to Hex codes 80 to FF. If the 8th bit is 0, i.e. codes 00 to 7F, video will be normal. In other words, if you display a character with a code between 80 and FF, it will be the reverse video version of the corresponding character between 00 and 7F. The chart on page 4-1 shows characters corresponding to 00 to 7F (Hex). On page 4-2 a number of additional graphics characters are shown having codes from 80 to 9F (Hex). Notice that the graphics characters from 80 to 9F are reverse video versions of those from 00 to 1F. In the same way, if you store in video RAM the codes beyond 9F, that is A0 to FF, they will be displayed as the reverse video versions of the normal ASCII characters, having codes 20 to 7F.

There are three ways to store the reverse video characters in video memory. First, you can create the appropriate 8 bit code in a program and then store it in video RAM. For the second and third methods you must have the Vector Graphic Monitor Version 3.

As the second method, you can send the character Control-T (14 Hex) to the video driver. This is how the method given in the first paragraph of this section works. Control-T toggles reverse video, so that any characters sent after it, assuming they are in the displayable range, i.e. between 20 and 7F, will be displayed in reverse video (i.e. the driver will set the 8th bit.) The Control-T itself will not be displayed.

(Sending a character to the video driver means putting the code in the A register and calling C006. The Monitor Executive routine, and M.BASIC and MDOS do this automatically when displaying a character on the screen, so that all you have to do is cause the character to be displayed in any way available. For example, since the Monitor Executive echoes characters as they are entered, just depress Control-T on the keyboard after the Monitor prompt * in order to toggle reverse video. In contrast, the MZOS executive will pass Control-T (and all other Control characters) only if it is the first character of a line. The CP/M executive will not pass it at all, so that you cannot send a control-T from the keyboard under the CP/M executive.

Third, you can send the character Control-E (05 Hex) to the video driver. Following this, you can put any character code in register B and call C006, and the code will be displayed. If it is in the range 80 to FF, then it will be reverse video because the 8th bit is set in these codes. Refer to the Monitor documentation for more discussion of Monitor commands.

3.2.4 Determining Whether a Character is in the Keyboard Buffer

This section is of concern if you are not using the keyboard input routine in the Vector Graphic Monitor. Bit 6 of the status port (usually port 00, unless the board is jumpered as described in section 3.1.6) is high and bit 0 is low when a character is available in the data port. You can test either one of these bits. When the test is successful, simply input the data from the data port (data port = status port + 1).

3.2.5 Accessing the Vertical Blanking Signal

For programmers interested in accessing the vertical blanking signal, bit 5 of the status port is low during vertical retrace and high at all other times.

3.3 Adjusting Your TV Monitor

If your monitor is the Mindless Terminal from Vector Graphic, then refer to the handbook for the Mindless Terminal instead of this section.

The FLASHWRITER is designed to utilize every line of the TV raster (picture). Therefore, some adjustment of the TV monitor is usually required to make all of the characters visible on the screen. Other adjustments may also be necessary. Most monitors have the following controls, either at the rear of the set, or as in the case of the Hitachi, inside the back panel. Often times an insulated screw driver is necessary to turn the controls.

1. HEIGHT - controls the amplitude of the vertical deflection.
2. VERTICAL LINEARITY - controls the line spacing usually at the top of the picture.
3. WIDTH - controls the amplitude of the horizontal deflection.
4. CENTERING - controls the positioning of the raster on the tube.
5. HORIZONTAL HOLD - sets the frequency of the horizontal oscillator.
6. VERTICAL HOLD - sets the frequency of the vertical oscillator.
7. BRIGHTNESS - sets the background picture brightness.
8. CONTRAST - sets the video amplifier gain.

Begin the adjustment of the set with the HEIGHT and VERTICAL linearity. Fill the screen with a pattern of characters. (If you are using the Vector Graphic Extended Systems Monitor, then enter Z

D000 DFFF 30 following the Monitor prompt. The missing character in the bottom line is normal - it is the cursor location.) Adjust the WEIGHT control, which is usually at the rear of the set, until all the characters fit on the screen with an adequate margin on top and bottom. Notice whether the top line of characters is exactly the same height as the bottom line. If it is not, adjust the VERTICAL LINEARITY control until it is. These controls tend to interact to some degree, so several adjustments back and forth may be necessary until a satisfactory adjustment is obtained. Do not be concerned if the display is not exactly centered from top to bottom. The HORIZONTAL BIAS should now be adjusted so that the control is in the center of the range over which the display is in sync, i.e., no characters are missnapped. For some types of displays, this may be over the whole range. At this point, the horizontal position control on the Flashwriter Board should be adjusted so that the rows of characters are centered on the screen horizontally. This control is the small black potentiometer on the upper left hand corner of the board.

Hopefully, at this point you have satisfactorily adjusted your display. If the characters extend off the sides of the display, it will be necessary to adjust the WIDTH control. Some newer sets do not have WIDTH controls. If you are electronically oriented, you can handle this as follows: You can install a choke in series with the horizontal deflection yoke. Local radio-TV stores may be able to supply a width choke if this is necessary, or it is possible to wind one on a small powdered iron form on a cut-and-try basis. Another possibility is to slightly increase the high voltage if the set has this adjustment.

After this, if the display is not exactly centered, it may be desirable to adjust the centering rings on the deflection yoke. On the rear of the deflection yoke are two metal rings with tabs protruding from them. These rings are magnetized, and by rotating them independently, the display can be shifted in any direction up to 1/2 inch or so.

The adjustment of the BRIGHTNESS and CONTRAST should be so that the background is just barely blacked out or slightly grey, while the characters are just bright enough. Too much contrast will result in excessive overshoot on the left edges of the characters, or "hot spots" in the characters.

3.4 Connecting the Board to the Video Display and the Keyboard

This section is only relevant if the board is purchased as a separate item, not already integrated into a computer at the factory.

The 6-pin molex connector, called J2, jutting from the top left corner of the board is used to connect the board to the video

display. The pins are numbered 1 to 6 from the left. Pin 1 is composite video, pin 2 is ground, pin 3 is TTL video, pin 4 is horizontal sync, and pin 5 is vertical sync. Accompanying the board in the same shipping container, you will find a small envelope containing one 6-socket molex connector, and 6 small pins that insert into it. Solder the wires of a cable of your choice onto as many pins as you need. Then, insert these pins into the sockets corresponding to the pins on J2 which you require, as described in sections 3.4.1 and 3.4.2.

As an alternate to using the enclosed 6-socket connector and assembling your own cable, Vector Graphic supplies two cables, factory assembled, which you can use if one or the other meets your needs. They are described in sections 3.4.1 and 3.4.2.

3.4.1 Connecting a Video Display Requiring Separate Sync and Video

Access pins 2, 3, 4, and 5 of J2.

The cable supplied with the Vector Graphic Mindless Terminal comes with an appropriate socket attached. If you have ordered the Vector Graphic Mindless Terminal, then this cable will be enclosed with it. Use of this cable is described in the Mindless Terminal manual. You may discard the socket and insertable pins accompanying the Flashwriter II board.

3.4.2 Connecting a Video Display Requiring Combined Sync and Video

Access pins 1 and 2 of J2. If you are using a monitor having a coaxial cable, you will probably want to assemble a cable having a compatible socket at one end, and install it in the rear of your computer, with the other end connected to J2 of the Flashwriter Board.

You can order from Vector Graphic a cable equipped with a 2-socket molex connector at one end and a BNC (circular) socket at the other end which can be installed in the rear panel of a computer. When ordering, refer to it as the "VBC" cable. Vector Graphic computers have cutouts at the rear which are the right size for this socket.

3.4.3 Connecting a Keyboard

The keyboard is connected via a 24-pin dip plug to socket J1 on the right side of the board. The following diagram shows the pin assignments:

The cable shipped with the Vector Graphic Mindless Terminal has a properly wired 24-pin dip plug already attached. Simply plug it in. The use of pins 9 and 11 are discussed in sections 3.1.12 and 3.1.13.

Vector Graphic Flashwriter II Board

Revision 2 2/7/79

		NORMAL VIDEO															
BINARY DIGITS	4 → 3 → 2 → 1 →	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0	0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1	0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1	0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1	0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1	0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1	0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1	0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0	0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
HEX 1 DIGITS	0 D7...D0	1 D7...D0	2 D7...D0	3 D7...D0	4 D7...D0	5 D7...D0	6 D7...D0	7 D7...D0	8 D7...D0	9 D7...D0	A D7...D0	B D7...D0	C D7...D0	D D7...D0	E D7...D0	F D7...D0	
8765	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0
0000	0 R9	1 R9	0001	1 R9	0010	2 R9	0011	3 R9	0100	4 R9	0101	5 R9	0110	6 R9	0111	7 R9	

Vector Graphic Flashwriter II Board

Revision 2 2/7/79

		REVERSE VIDEO 8 TH BIT IS SET															
BINARY DIGITS	4 → 3 → 2 → 1 →	0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1	0 0 0 1 1 0 1 1	0 1 0 0 1 0 0 1	0 1 0 1 1 0 1 1	0 1 0 0 1 1 1 0	1 0 1 0 0 0 0 1	1 0 1 0 0 1 0 0	1 0 1 0 1 0 1 1	1 0 1 0 1 1 0 0	1 1 1 0 0 1 0 0	1 1 1 0 1 1 1 0	1 1 1 0 1 1 1 1	1 1 1 0 1 1 1 1	1 1 1 0 1 1 1 1	
8 7 6 5	HEX 1 DIGITS 2	0 D7 D0	1 D7 D0	2 D7 D0	3 D7 D0	4 D7 D0	5 D7 D0	6 D7 D0	7 D7 D0	8 D7 D0	9 A B C D E F	D7 D0					
10 0 0	8	RO R9															
10 0 1	9	RO R9															
10 1 0	A	RO R9															
11 0 0	B	RO R9															
11 0 0	C	RO R9															
11 0	D	RO R9															
11 1 0	E	RO R9															
11 1 1	F	RO R9															

* REVERSE VIDEO VERSIONS OF GRAPHICS CHARACTERS

** REVERSE VIDEO VERSIONS OF ASCII CHARACTERS

Vector Graphic Flashwriter II Board

Revision 2 2/7/79

BINARY DIGITS	4 → 3 → 2 → 1 →	0 0 0 0 0 1 0 0	0 0 0 1 1 0 0 0	0 1 0 1 0 0 1 0	0 0 1 0 1 1 0 1	0 1 1 1 0 0 1 0	0 0 0 1 1 0 0 1	1 0 0 0 1 1 0 0	1 0 0 1 0 1 1 0	1 1 1 0 1 1 1 1	1 1 1 1 1 0 1 1	
HEX 1 DIGITS	0 2	1 D7 .. D0	2 D7 .. D0	3 D7 .. D0	4 D7 .. D0	5 D7 .. D0	6 D7 .. D0	7 D7 .. D0	8 D7 .. D0	A D7 .. D0	B D7 .. D0	C D7 .. D0
8 7 6 5 2	R0 R9	R0 R9										
0 0 0 0 0	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 0 0 1 1	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 0 1 0 2	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 0 1 1 3	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 1 0 0 4	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 1 0 1 5	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 1 1 0 6	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1
0 1 1 1 7	0 0 0 0 0	0 0 0 1 1	0 0 1 0 0	0 1 0 0 1	0 1 0 1 1	0 1 1 0 0	0 1 1 1 1	0 0 0 1 1	0 0 1 0 0	0 0 1 1 1	0 1 0 0 0	0 1 0 1 1

* REVERSE VIDEO VERSIONS OF GRAPHICS CHARACTERS

**REVERSE VIDEO VERSIONS OF ASCII CHARACTERS

80 X 24 VIDEO DISPLAY MODULE BLOCK DIAGRAM


```

0000 E000 = BASE      EQU    0E000H ;ASSEMBLY ADDRESS
0000 E000 = PR        EQU    0E000H ;PROM/RAM ADDRESS
0000           LINK    'M6'
0000
0000 * *****
0000 * VECTOR MZ MONITOR - VERSION 4.2
0000 * R. S. HAIP 7/16/79 MODIFIED 6/1/80
0000 *
0000 * *****
0000 * SYSTEM EQUATES
0000 0000 = CONS      EQU    0      ;CONS STATUS PRT
0000 0001 = COND      EQU    1      ;CONS DATA PORT
0000 0040 = RDA       EQU    40H   ;RECEIVE FLAG
0000 0000 = STPOL     EQU    0      ;STATUS POLARITY
0000 F100 = SPTR      EQU    PR101FD0H ;STACK POINTER
0000 F800 = DSNRPT    EQU    0E800H ;DUALSTAR BOOTSTRAP
0000 E802 = ASRNPRT  EQU    0E802H ;MEGASTAR BOOTSTRAP
0000 E80C = FLRNPRT  EQU    0E80CH ;FLOPPY BOOTSTRAP
0000 FF10 = DRSY      EQU    OFF10H ;CONTROLLER BUSY
0000
0000 * *****
0000 * COMMAND FORMAT *****
0000 * A SSSS FFFF ASCII DUMP OF MEMORY
0000 * B JUMP TO BOOTSTRAP LOADER
0000 * C SSSS FFFF CCCC COMPARE BLOCKS
0000 * D SSSS FFFF DUMP MEMORY IN HEX & ASCII
0000 * E EXTERNAL COMMUNICATIONS
0000 * F SSSS FFFF DD DD TWO BYTE SEARCH
0000 * G SSSS GO TO AND EXECUTE
0000 * H JUMP TO HIGH RAM AT F000
0000 * I PP INPUT FROM PORT
0000 * J JUMP TO DOS
0000 * K LIJL SET A BREAKPOINT
0000 * L JUMP TO LOW RAM AT 0
0000 * M SSSS FFFF DDDD MOVE BLOCK
0000 * N NON DESTRUCTIVE MEMORY TEST
0000 * O PP DD OUTPUT TO PORT
0000 * P LIJL PROGRAM MEMORY
0000 * Q SSSS FFFF COMPUTE CHECKSUM
0000 * R DUMP Z-80 REGISTERS
0000 * S SSSS FFFF DD SEARCH FOR SINGLE BYTE
0000 * T SSSS FFFF TEST MEMORY
0000 * U JUMP TO USER AREA AT 2800
0000 * V BOOT FROM 8 INCH DISK
0000 * W BOOT WINCHESTER DISK
0000 * X SSSS FFFF DDDD EXCHANGE BLOCK
0000 * Y KEYBOARD ECHO
0000 * Z SSSS FFFF DD ZERO OR FILL MEMORY
0000
0000 * *****
0000      ONG      BASE
0000 * JUMP TABLE OF ENTRY POINTS
E000 C315E0  MNIT    JMP    INIT    ;INITIALIZE ALL
E001 C31CE1  KEYST  JMP    KEYSTAT ;TEST KEYBOARD
E006 C31BE1  KEYATA JMP    CONVERT ;INPUT KEYBOARD
E009 C31DE1  CRP    JMP    VIDEO   ;OUTPUT TO SCREEN
E00C C32FE1  ESC    JMP    ESCAPE  ;KEYBOARD INPUT

```

```

E00F      *
E00F      * TABLE OF COMMANDS FOR USART
E00F 00000040 INITABLE DB    0,0,0,40H,0CEH,27H
E013 CE27
E015
E015 31D0FF INIT   LXI   SP,SPTR ;INIT STACK
E018 CD2F81 CALL   ESCAPE ;DUMP LATCH
E01B AF      XRA   A
E01C 32EAPP STA    XYFLAG
E01F 3210FF STA    DDOSY  ;CLEAR CONTROLLER FLAG
E022
E022 0E03
E024 0E06 INITLOOP LXI   H,INITABLE
E026 210FEO
E029 ED83 OUTIR
E02B OC      INR   C
E02C OC      INR   C
E02D 79      MOV   A,C
E02E FE09 CPI   9
E030 20F2 JRNZ  INITLOOP
E032
E032 3EC3
E034 323800
E037 21C8E6
E03A 223900
E03D
E03D CDCF84
E040
E040 2AE7FF CLRBRK LHLD  BKPTLOC
E043 11E9FF LXI   D,BRKCODE
E046 ED51E7FF SDED  BKPTLOC
E04A 1A      LDAX  D
E04B 77      MOV   M,A
E04C 31D0FF STARP
E04F 2100P0
E052 220FPP
E055 CD2B55
E058 CD2PE1 KEYPOL
E05B 38PB
E05D E65P
E05F 214C80
E062 B5      PUSH  H
E063 FE04
E065 CC7BE3
E068 FE41
E06A D8      RC
E06B FE5B
E06D D0      RNC
E06E 21F9E0
E071 F5      LXI   H,CMDB+7EH
E072 B7      PUSH  PSW
E073 B5      ADD   A
E074 6F      ADD   L
E075 5E      MOV   L,A
E076 23      MOV   E,M
E077 56      MOV   D,M
E078 ED      XORG

```

E079 F1
 E07A F9
 E07B
 E07B 34E5
 E07D 0CE6
 E07F E2E2
 E081 B8E5
 E083 CDE7
 E085 05E3
 E087 AFE0
 E089 56F2
 E08D 53E3
 E08D 96E1
 E08F B2E7
 E091 62E2
 E093 96E2
 E095 BEE2
 E097 65F3
 E099 05F6
 E09B 79E1
 E09D BCE6
 E09F 12F3
 E0A1 C3E1
 E0A3 47E2
 E0A5 00E8
 E0A7 02E8
 E0A9 87E2
 E0AB ACE1
 E0AD 6EE2
 E0AF
 E0AF *** EXECUTE THE PROGRAM AT THE ADDRESS ***
 E0AF
 E0AF CALL PTSTNG
 E0B2 474F2054 UTH '00 TO '
 E0B6 4FA0
 E0B8 CD3DE0
 E0B9 EB
 E0C1 F9
 E0D0
 E0D0 *** CONVERT UP TO 4 HEX DIGITS TO BIN
 E0D0
 E0D0 0E04 AHEX MVI C,4 ;COUNT OF 4 DIGITS
 E0D0 210000 AHE0 LXI H,0 ;16 BIT ZERO
 E0C2 CD2FE1 CALL ESCAPE
 E0C5 FE20 CPI '' ;SPACE?
 E0C7 CAE800 JZ SPOV
 E0CA CD3DE0 CALL HEX ;CHECK VALUE
 E0C9 38F3 JRC AHE1 ;MULT H*16
 E0CF 29 DAD H
 E0D0 29 DAD H
 E0D1 29 DAD H
 E0D2 29 DAD H
 E0D3 85 ADD L
 E0D4 6F MOV L,A
 E0D5 01 DCR C
 E0D6 C2C2E0 JNZ AHE1 ;4 DIGITS?
 E0D9 E3 XCHG ;KEEP READING

;AWAY WE GO
 ;A
 ;B — 47 E2 -1804
 ;C
 ;D
 ;E
 ;F
 ;G
 ;H
 ;I
 ;J
 ;K
 ;L
 ;M
 ;N
 ;O
 ;P
 ;Q
 ;R
 ;S
 ;T
 ;U — E800 180C 1812
 ;V
 ;W
 ;X
 ;Y
 ;Z

1815
 /
 180E
 /
 180C
 /
 180C
 /
 180A
 /
 1804
 /
 0600
 ↴

E0DA 3E20 SPCE MVI A,20H ;PRINT SPACE
 E0DC C37BE3 PTON JMP VIDEO
 E0DF 3E0D CRLF MVI A,0DH ;PRINT CR
 E0E1 CDCE0 CALL PTON
 E0E4 3E0A MVI A,0NI
 E0E6 18F4 JR PTON
 E0E9 *
 E0E8 CD7BE3 SPOV R CN.L VIDEO
 E0EB 18EC JR SPCE-1
 E0ED *
 E0ED * CHECK FOR HEX VALUE, CONVERT
 E0ED FE30 IHEX CPI 30H <0
 E0FF D8 RC
 E0F0 FE3A CPI :>
 E0F2 3809 JRC NUM >9
 E0F4 E65F ANI \$F11 ;UPPER & LOWER CASE
 E0F6 FE41 CPI 'A'
 E0F8 DB RC
 E0F9 FE47 CPI 'G'
 E0FB 3F CNC
 E0FC DB RC
 E0FD CD7BE3 NUM CALL VIDEO
 E100 D630 SUI 48 ;ASCII BIAS
 E102 FE0A CPI 10 ;DIGIT 0-10
 E104 3802 JRC ALPA ;ALPA BIAS
 E106 D607 SUI 7 ;ALPA BIAS
 E108 A7 ALPA ANA A ;CLEAR CY
 E109 C9 RET ;WITH CY CLEAR
 E10A *
 E10A * READ 2 DIGITS FROM THE CONSOLE
 E10A 0E02 AHE2 MVI C,2
 E10C 18B1 JR AHED
 E10E *
 E10E * SHORT ROUTINE TO SAVE CODE
 E10E CD3DE0 TABEX CALL AHEX
 E111 18AA JR AHEX
 E113 *
 E113 *** READ FROM CONSOLE TO REG A ***
 E113 *
 E113 CD2FE1 FDON CALL ESCAPE ;READ KEYBOARD
 E116 28FB JRZ RDN
 E118 FE60 CPI 60H
 E11A 38C0 JRC PTON
 E11C E65F ANI \$F11
 E11E 18DC JR PTON
 E120 *
 E120 CD2FE1 PAUSE CALL ESCAPE
 E123 FE20 CPI 20H
 E125 C0 INZ
 E126 CD2FE1 PLOOP CALL ESCAPE
 E129 FE20 CPI 20H
 E12D C226E1 JNZ PLOOP
 E12E C9 RET
 E12F *
 E12F CDCE1 ESCAPE- CN.L KEYSTAT
 E132 C8 RZ
 E133 CD41E1 CN.L CONVERT

```

E136 FE1B          CPI    1BH    ;ESCAPE
E138 CA4CE0          JZ     START
E13D C9             RET
E13C
E13C DB00          KEYSTAT   IN     CONS
E13E E640          ANI     F0A
E140 C9             RET
E141
E141 * KEYBOARD CODE CONVERSION
E141 DB01          CONVERT   IN     COND   ;KEYBOARD DATA
E143 E5             PUSHH   H
E144 C5             PUSHH   B
E145 010500          LXI     B,TABLEND-KTABL/2
E148 2150E1          LXI     H,KTABL
E14B EDA1          LOOP     CCI
E14D 2806          JRZ     FND
E14F 23             INX     H
E150 EA4BE1          JPE     LOOP   ;CONT LOOKING
E153 1801          JR     NFND
E155 7E             END     MOV    A,M   ;NEW CODE
E156 E67P          NFEND   ANI    7FH   ;MASK DOWN
E158 C1             POP     B
E159 E1             POP     H
E15A C9             RET
E15B
E15B * THIS TABLE CAN BE EXTENDED IF DESIRED
E15D KTABL   DD    0E150H
E15D F15B   DD    0F15BH
E15F A17E   DD    0A17BH
E161 B15C   DD    0B15CH
E163 6015   DD    06015H ;CURSOR UP
E165 E165 = TABLEND EQU    $
E165 ORG    KTABL+30 ;ROOM FOR 15 CONVS
E179
E179 * CHECKSUM ROUTINE
E179 CDC4E4          CKSM    CALL   PTSTNG
E17C 43484543          DTH    'CHECKSUM'
E180 40535540
E184 AD
E185 CD0E81          CALL   TAHEX
E188 0600          MVI    B,0
E18A 7E             CKSHIP  MOV    A,M
E18B 80             ADD    B
E18C 47             MOV    B,A
E18D CD3FE2          CALL   BMP
E190 20F8          JRNZ   CKSHLP
E192 78             MOV    A,B
E193 C326E2          JMP    PT2
E196
E196 * WARM START
E196
E196 CDC4E4          WARM   CALL   PTSTNG
E199 4A554050          DTH    'JUMP TO DOS'
E19D 20544F20
E1A1 444FD3
E1A4 21E704          LXI    H,04E7H ;MDOS RESTART
E1A7 7E             MOV    A,M

```

```

E1A8 FEC3          CPI    0C3H
E1A9 C20000         JNZ   0
E1AD E9             POIL
E1AB
E1AB * KEYBOARD ECHO ROUTINE
E1AB CDC4E4          ECHO    CALL   PTSTNG
E1B1 4543484F          DTH    'ECIO KEYS'
E1B5 204B4559
E1B9 53A0
E1BB CD2FE1          ECOLP  CALL   ESCAPE
E1B2 C4DCP0          CNZ    PTON
E1C1 10F8          JR     ECOLP
E1C3
E1C3 *** MEMORY TEST ROUTINE ***
E1C3 * TMEM    CALL   PTSTNG
E1C6 54455354          DTH    'TEST'
E1CA A0
E1CB CD0E81          CALL   TAHEX
E1CE 015ASA          LXT    B,SASAI
E1D1 CD0E81          CYCL
E1D4 C5             PUSHH   B
E1D5 E5             PUSHH   H
E1D6 D5             PUSHH   D
E1D7 CD0E81          TLOP
E1DA 70             MOV    H,B
E1DE CD3FE2          CALL   BMP
E1DE C2D7E1          JNZ    TLOP
E1B1 D1             POP    D
E1E2 E1             POP    H
E1E3 C1             POP    B
E1E4 E5             PUSHH   H
E1E5 D5             PUSHH   D
E1E6 CD0E81          RLOP
E1E9 7B             CALL   RNDM
E1FA BB             MOV    A,M
E1FB C41DE2          CNZ    ERR
E1EB CD3FE2          CALL   BMP
E1F1 C2E6E1          JNZ    RLOP
E1F4 D1             POP    D
E1F5 E1             POP    H
E1F6 3E2E          MVI    A,?
E1FB CD7BE3          CALL   VIDEO
E1FB 18D4          JR     CYCL
E1FD *** THIS ROUTINE GENERATES RANDOM NOS ***
E1FD CD20E1          RNDM
E200 78             MOV    A,B
E201 E6B4          ANI    084H
E203 A7             ANA    A
E204 EA08E2          JPE    PEVE
E207 37             STC
E208 79             PEVE
E209 17             RAJ
E20A 4F             MOV    C,A
E20B 78             MOV    A,B
E20C 17             RAJ
E20D 47             MOV    B,A

```

;CP/M RESTART
;MDOS WARM START
;LOOK AT KEYBOARD
;PRINT IP KEYPRESS
;CONTINUE LOOPING
;READ ADDRESSES
;INI B,C
;KEEP ALL REGS
;WRITE IN MEM
;REPEAT LOOP
;RESTORE ORIG
;VALUES OF
;GEN NEW SQZ
;READ MEM
;COMP MEM
;CALL ERROR RTN
;LOOK AT B
;MASK BITS
;CLEAR CY
;JUMP IF EVEN
;LOOK AT C
;ROTATE CY IN
;RESTORE C
;LOOK AT B
;ROTATE CY IN
;RESTORE B

E20E C9		RET	;RETURN W NEW B,C		
E20F	*				
E20F	***	ERROR PRINT OUT ROUTINE			
E20F	*				
E20F CDC4E0	PTAD	CALL, CR1P	;PRINT CR,LF		
E212 CD20E1		CALL, PAUSE			
E215 7C		MOV A,H	;PRINT		
E216 CD26E2		CALL PT2	;ASCII		
E219 7D		MOV A,L	;CODES		
E21A C31CE7		JMP PT2S	;FOR ADDRESS		
E21D	*				
E21D F5	ERR	PUSH PSW	;SAVE ACC		
E21E CD0FE2		CALL PTAD	;PRINT ADD.		
E221 78		MOV A,B	;DATA		
E222 CD1CE7		CALL PT2S	;WRITTEN		
E223 F1		POP PSW	;DATA READ		
E226 F5	PT2	PUSH PSW			
E227 CD2DE2		CALL BINL			
E22A F1		POP PSW			
E22B 1804		JR BINL			
E22D 1F	BINL	RAR	;SHIFT RIT 4 BITS		
E22E 1F		RAR			
E22F 1F		RAR			
E230 1F		RAR			
E231 E60F	BINL	ANI 0FH	;LOW 4 BITS		
E233 C630		ADI 48	;ASCII BIAS		
E235 FE3A		CPI 58	;DIGIT 0-9		
E237 DADCB0		JC PTON			
E23A C607		ADI 7	;DIGIT A-F		
E23C C3DCB0		JMP PTON			
E23F	*				
E23F 7B	BMP	MOV A,E	* COMPARE ADDRESSES AND INCREMENT H		
E240 95		SUB L			
E241 2002		JRNZ GOON			
E243 7A		MOV A,D			
E244 9C		SSB H			
E245 23	GOON	INX H			
E246 C9		RET			
E247	*				
E247 CDC4E4	USER	CALL PTSTNG	* JUMP TO USER RAM		
E24A 55534552		DTM 'USER AREA'			
E24E 20415245					
E252 C1		JMP 0100H			
E253 C30001					
E256	*				
E256 CDC4E4	RAM	CALL PTSTNG	* JUMP TO RAM AT PR+1C00		
E259 48492052		DTM 'HI RAM'			
E25D 41CD		JMP PR+1C00H			
E25F C300PC					
E262	*				
E262 CDC4E4	I/DRAM	CALL PTSTNG	* JUMP TO RAM AT 0		
E265 4C4F2052		DTM 'LO RAM'			
E269 41CD					

E26B C30000		JMP 0			
E26E	*				
E26E CDC4E4	ZEROM	CALL PTSTNG	* ZERO OR FILL MEMORY WITH A CONSTANT		
E271 46494C4C		DTM 'FILL'			
E275 A0					
E276 CD0EE1		CALL TN1EX	;READ ADDRESSES		
E279 E5		PUSH H	;SAVE H		
E27A CD0AE1		CALL ANIE2	;READ 2 DIGITS		
E27D EB3		XCHG			
E27E E3		XTHL	;RESTORE H,L		
E27F C1		POP B			
E280 71	ZLOOP	MOV M,C	;WRITE INTO MEM		
E281 CD3FE2		CALL BMP	;COMP ADD, INCR H		
E284 C8		RZ	;RETURN IF DONE		
E285 18F9		JR ZLOOP	;CONTINUE TIL DONE		
E287	*				
E287 EX0IG		MOV B,A	* EXCHANGE OR MOVE A BLOCK OF MEMORY		
E288 CDC4E4		CALL PTSTNG			
E28B 45584348		DTM 'EXCHANGE'			
E28F 414E4745					
E293 A0					
E294 1809		JR MOVENTR			
E296 47	MOVEB	MOV B,A	;SAVE CODE		
E297 CDC4E4		CALL PTSTNG			
E29A 4D4F5645		DTM 'MOVE'			
E29E A0					
E29F CD0EE1	MOVENTR	CALL TN1EX	;READ ADDRESSES		
E2A2 E5		PUSH H			
E2A3 CD0DE0		CALL ANEX			
E2A6 EB		XCHG			
E2A7 E3		XTHL	;BACK TO NORMAL		
E2A8 4E	MLOOP	MOV C,M			
E2A9 E3		XTHL			
E2AA 78		MOV A,B			
E2AB FE4D		CPI 'H'			
E2AD 2004		JR2 NEXCH			
E2AF 7E		MOV A,M			
E2B0 E3		XTHL			
E2B1 77		MOV M,A			
E2B2 E3		XTHL			
E2B3 71	NEXCH	MOV M,C			
E2B4 23		INX H			
E2B5 E3		XTHL			
E2B6 CD3FE2		CALL BMP			
E2B9 CA4CE0		JZ START			
E2BC 18EA		JR MLOOP			
E2BE	*		* NON DESTRUCTIVE MEMORY TEST		
E2BE CDC4E4	NDMT	CALL PTSTNG			
E2C1 4D454D20		DTM 'MEM CHECK'			
E2C5 43484543					
E2C9 C8					
E2CA 210000		LXI H,0	;START AT ZERO)		
E2CD 4E	NDLOOP	MOV C,M			
E2CE 06FF		MVI B,0FFH			
E2DD 70		MOV H,B			
E2D1 7E		MOV A,M			

89

E2D2 B8		OMP	B		E338 2012	JRNZ	SKP	;SKIP IF NO COMP
E2D3 C2DDE2		JNZ	ERRJP	;PRINT ERROR	E33A F1	POP	PSW	;FETCH CONTROL
E2D6 0600		MVI	B,0		E33D FE53	CPI	'S'	
E2D8 70		MOV	M,B		E33E F5	PUSH	PSW	
E2D9 7E		MOV	A,M		E33B 2806	JRZ	ORCP	
E2DA B8		OMP	B		E340 23	INX	H	
E2D1 C21DE2	ERUP	JNZ	ERR		E341 7E	MOV	A,M	
E2D6 71		MOV	M,C		E342 2B	DCX	H	
E2DF 23		INX	H		E343 89	CMP	C	
E2E0 18EB		JR	NDLOP		E344 2006	JRNZ	SKP	
E2E2	* COMPARE TWO BLOCKS OF MEMORY	CALL	PTSTNG		E346 23	ODCP	INX	H
E2E2 CDC4E4	COMPR	DTH	'COMPARE '		E347 7B	MOV	A,M	;READ NEXT BYTE
E2E5 434P4D50		CALL	TAEIX		E348 2B	DCX	H	;DCCR ADDRESS
E2E9 415245A0		PUSH	H		E349 C01DE2	CALL	ERR	;PRINT CODES
E2E9 CD0FE2		CALL	AHEX		E34C C03FE2	SKP	CALL	BMP
E2F0 E5		CALL	TAEIX		E34F 20F5	JRNZ	CONT	;CHECK IF DONE
E2F1 C0D0E0		PUSH	H		E351 F1	POP	PSW	;BACK FOR MORE
E2F4 EB		CALL	AHEX		E352 C9	RET		
E2F5 7E	VMLOP	XCHG			E353	*		
E2F6 23		MOV	A,M		E353	*	INPUT DATA FROM A PORT	
E2F7 8J		INX	H		E353 CDC4E4	PINPT	CALL	PTSTNG
E2F8 HE		XTHL			E356 494E5055	DTH	'INPUT '	
E2F9 46		OMP	M		E35A 54A0			
E2FA C41DE2		MOV	B,M		E35C C00AE1	CALL	A1E2	;READ 2 DIGITS
E2FD CD3FE2		ONZ	ERR		E35F 4B	MOV	C,E	
E300 E3		CALL	BMP		E360 ED78	INP	A	
E301 20F2		XTHL			E362 C326E2	JMP	PF2	
E303 F1		JRNZ	VMLOP		E365	*		
E304 C9		POP	PSW		E365 CDC4E4	POUTP	CALL	PTSTNG
E305	* SEARCH FOR SPECIFIC CODES	RET			E368 4F555450	DTH	'OUTPUT '	
E305 F5	FIND	PUSH	PSW		E36C 5554A0			
E306 CDC4E4		CALL	PTSTNG		E36P C00AE1	CALL	A1E2	;READ 2 DIGITS
E309 46494E44		DTH	'FIND-2 '		E372 C00AE1	CALL	A1E2	;READ 2 DIGITS
E310 2D32A0		JR	SRCIENT		E375 4D	MOV	C,L	
E310 1800		PUSH	PSW		E376 ED59	OUTP	E	
E312 F5	SRCH	CALL	PTSTNG		E378 C9	RET		
E313 CDC4E4		DTH	'SEARCH-1 '		E379	*		
E316 53454152								
E31A 43482D31								
E31E AD								
E31F CD0EE1	SRCHENT	CALL	TAEIX					
E322 E5		PUSH	H	;SAVE H				
E323 CD0AE1		CALL	A1E2	;READ 2 DIGITS				
E326 EB		XCHG		;H=CODE, D=F				
E327 45		MOV	B,L	;PUT CODE IN B				
E328 E1		POP	H	;RESTORE H				
E329 F1		POP	PSW					
E32A FE53		CPI	'S'					
E32C F5		PUSH	PSW					
E32D 2807		JRZ	CONT					
E32F E5		PUSH	H					
E330 C00AE1		CALL	A1E2	;READ 2 DIGITS				
E333 EB		XCHG						
E334 4D		MOV	C,L					
E335 F1		POP	H					
E336 7E	CONT	MOV	A,M	;READ MEMORY				
E337 08		OMP	B	;COMPARE TO CODE				

PAGE 17

PAGE 12

```

E379
E379 ***** * * * * *
E379 * * * * * VIDEO DRIVER FOR FLASHWRITER II * * *
E379 * * * * * ***** * * * * *
E379
E379 * * * * *
E379 F000 = PAGE EQU PR+1000H ;SCREEN LOCATION
E379 0020 = SPACE EQU 20I
E379 0004 = CLRSCRN EQU 4
E379 ***** * * * * *
E379 * * * * *
E379 * CONTROL CODE COMMANDS:
E379 * (B) HOME CURSOR
E379 * (D) CLEAR SCREEN
E379 * (E) PRINT CONTROL CODE
E379 * (II) BACKSPACE
E379 * (I) TAB
E379 * (J) LINEFEED
E379 * (M) CARRIAGE RETURN
E379 * (N) NO CURSOR
E379 * (P) CLEAR TO END OF SCREEN
E379 * (Q) CLEAR TO END OF LINE
E379 * (R) CURSOR DOWN
E379 * (T) TOGGLE REVERSE VIDEO
E379 * (U) CURSOR UP
E379 * (W) CURSOR LEFT
E379 * (X) CLEAR TO START OF LINE
E379 * (Z) CURSOR RIGHT
E379 * ESC XY POSITION LEAD-IN
E379 * *
E379 ***** * * * * *
E379 * * * * *
E379 * VIDEO BOARD PARAMETERS
E379 0050 = HORIZ EQU 80 ;NO. OF CHARACTERS
E379 0018 = VERT EQU 24 ;NO. OF LINES
E379 * *
E379 3E14 TVIDEO MVI A, 'T'-64 ;TOGGLE VIDEO
E378 * *
E378 F5 VIDRO PUSH PSW
E37C C5 PUSH B
E370 D5 PUSH D
E37E E5 PUSH H
E37F E67F ANI 07FH
E381 4F MOV C,A
E382 3A00E8 LDA BASE+800H
E385 FEC3 CPI 0C3H ;PROM THERE?
E387 79 MOV A,C
E388 CC00E8 CZ BASE+800H ;CALL IT IF SO
E388 CD60E4 DISPL CALL LIFTCURS ;ERASE CURSOR
E38E 3A0AFF LDA XYFLAG
E391 A7 ANA A
E392 280A JRZ NORX
E394 3D DCR A
E395 32EAFF STA XYFLAG
E398 CAAFE4 JZ YPOS
E399 CJA6E4 JMP XPOS

```

E39B 79	NOXY	MOV	A,C	;RECOVER CHARACTER
E39F FE20		CPI	SPACE	;PRINTING CODE?
E3A1 F2D0E3		JP	PRINT	
E3A4 FE1C		CPI	PCL-TABL	;TOO LARGE?
E3A6 F242E4		JP	RET	
E3A9 E5		PUSH	H	
E3AA 21B8E3		LXI	H,TABL	;CURSOR IN MEMORY
E3AD 5F		MOV	E,A	;TABLE START
E3AB 1600		MVI	D,0	
E3B0 19		DAD	D	
E3B1 5E		MJV	E,M	
E3B2 21D4E3		LXI	H,PCL	
E3B5 19		DAD	D	
E3B6 E3		XTHL		;RECOVER H
E3B7 C9		RET		;EXECUTE ROUTINE
E3B8	* CONTROL CHARACTER JUMP TABLE			
E3B8 6E	TABL	DB	RET-PCL	;E
E3B9 6E		DB	RET-PCL	;A
E3BA 63		DB	HOME-PCL	;B HOME CURSOR
E3BB 6E		DB	RET-PCL	;C
E3BC 60		DB	FORM-PCL	;D CLEAR SCREEN
E3BD 00		DB	PCL-PCL	;E PRT CONTROL
E3BE 6E		DB	RPT-PCL	;F
E3BF 6E		DB	RET-PCL	;G
E3C0 42		DB	DBACKSP-PCL	;H BACKSPACE
E3C1 59		DB	TAB-PCL	;I TAB OVER
E3C2 12		DB	LINP-PCL	;J LINE FEED
E3C3 6E		DB	RET-PCL	;K
E3C4 6E		DB	RET-PCL	;L
E3C5 6A		DB	CRET4-PCL	;M CARRIAGE RET
E3C6 71		DB	RETJ3-PCL	;N NO CURSOR
E3C7 6E		DB	RET-PCL	;O
E3C8 A7		DB	CLEND-PCL	;P CLR SCR TO END
E3C9 AC		DB	CLLINE-PCL	;Q CLR LINE TO END
E3CA 12		DB	LINF-PCL	;R CURSOR DOWN
E3CB 6E		DB	RPT-PCL	;S
E3CC 76		DB	TV1DF-PCL	;T TOGGLE VIDEO
E3CD 80		DB	CURSUP-PCL	;U CURSOR UP
E3CE 6E		DB	RET-PCL	;V
E3CF 50		DB	BACKSP-PCL	;W CURSOR LEFT
E3D0 E4		DB	CLSTRT-PCL	;X CLR START OF LN
E3D1 6E		DB	RPT-PCL	;Y
E3D2 06		DB	BOL-PCL	;Z CURSOR RIGHT
E3D3 CB		DB	LEDIN-PCL	; ESC=XY LEADIN
E3D4	*			
E3D4	* PRINT CODE IN B REGARDLESS			
E3D4 48	PCL	MOV	C,B	
E3D5	* PRINT THE CHARACTER ON THE SCREEN			
E3D5 3ADDFF	PRINT	LDA	VFL	
E3D8 A9		XRA	C	
E3D9 77		MOV	H,A	
E3DA	* BOL CHECKS THE CURS POS FOR END OF LINE			
E3DA 3ADDFF	BOL	LDA	CURPOS	
E3DD 3C		INR	A	
E3DE FE50		CPI	HORIZ	
E3EO 3050		JNC	TANHET	
E3F2 AP		XRA	A	

E3E3 32D6FF		STA	CURPOS	
E3E6	* MOVE DN 1 LINE	LINP	LDA	LINENO
E3E6 3ADCFF		CPI	VERT-1	
E3E9 FE17		JRNZ	NOSCRN	
E3E9 2023				
E3F0 215000	* SCROLL UP ONE LINE	SCROLL	LXI	H,HORIZ
E3F0 ED5B0BFF		LDED	TOSCN	
E3F4 19		DAD	D	
E3F5 EDA0	SCRL	LDI		
E3F7 EDA0		LDI		
E3F9 7C		MOV	A,II	
E3FA FEF7		CPI	HORIZ*VERT+PAGE/256	
E3FC 20F7		JRNZ	SCRL	
E3FE 7D		MV	A,L	
E3FF FE80		CPI	HORIZ*VERT+PAGE&0FFH	
E401 20F2		JRNZ	SCRL	
E403 3ADCFF		LDA	LINENO	
E406	* ERASE BOTTOM LINE	EBOTL	XOIG	
E406 FB		MVI	B,HORIZ	
E407 0650		MVI	M,SPACE	
E409 3620	ELOP	INX	H	
E40B 23		DCR	B	
E40C 05		JRNZ	ELOP	
E40D 20FA		DCR	A	
E40F 3D		INR	A	
E410 3C	NOSCRN	STA	LINENO	
E414 182C		JR	RET	
E416	*			
E416	* ERASE BEFORE BACKSPACING	DBACKSP	MVI	M,20H
E416 3620		LDA	CURPOS	
E418 3ADBFF		ANA	A	
E41B A7		JRZ	RET	
E41C 2824		DCR	A	
E41F 2B		DCX	H	
E420 3620		MVI	M,20H	
E422 1818		JR	TABRET	
E424	* MOVE THE CURSOR BACK	BACKSP	LDA	CURPOS
E424 3ADBFF		CPI	VERT	
E427 3D		INR	A	
E428 F23FE4		JP	TABRET	
E42B 1811		JR	CRET	
E42D	* TAB OVER TO THE NEXT 8 MULTIPLE	TAB	LDA	CURPOS
E42D 3ADBFF		ORI	7	
E430 F607		JR	EOL+3	
E432 18A9				
E434	* CLEAR THE SCREEN AND HOME UP	FORM	CALL	CLEAR
E434 CD8DE4		HOME	XRA	A
E437 AF		STA	LINENO	
E438 32DCFF		STA	VFL	
E43B 32DOFF				
E43E	* CARRIAGE RETURN	CRET	XRA	A
E43E AF		TABRET	STA	CURPOS
E43F 32DBFF				
E442	* RETURN TO THE CALLING ROUTINE			

;CLR VID FLAG

E442 CD60F4	RET	CALI.	LIFTCURS
E445 E1		POP	II
E446 D1		POP	D
E447 C1		POP	B
E448 F1		POP	PSW
E449 C9		RET	
E44A 3ADDFF	TVDF	LDA	VFL
E44D EE80		XRI	BOH
E44F 32DFFF		STA	VFL
E452 18E2		JR	RET
E454	*		
E454 3ADCFF	CURSUP	LDA	LINENO
E457 A7		ANA	A
E458 2BE8		JRZ	RET
E45A 3D		DCR	A
E45B 32DCFF	STORLN	STA	LINENO
E45E 18E2		JR	RET
E460	* CALCULATE MEM ADD FROM CURSOR POSITION	LIFTCURS	LXI H,HORIZ*VERT+PAGE
E460 2180F7		LXI	H,HORIZ*VERT+PAGE
E463 11B0FF		LXI	D,-HORIZ
E466 3ADCFF		LDA	LINENO
E469 3C	CLOP	INR	A
E46A 19		DAD	D
E46B FE18		CPI	VERT
E46D 20FA		JRNZ	CLOP
E46F ED5B0BFF	CFIN	LDED	CURPOS
E473 1600		MVI	D,0
E475 19		DAD	D
E476	* REVERSE THE VIDEO		
E476 7B		MOV	A,M
E477 EE80		XRI	BOH
E479 77		MOV	M,A
E47A C9		RET	
E47B	* CLEAR TO END OF SCREEN		
E47B CD96E4	CLEND	CALL	WRSPC
E47E 18C2		JR	RET
E480	* CLEAR TO END OF LINE		
E480 3ADBFF	CLLINE	LDA	CURPOS
E483 3620		MVI	M,20H
E485 23		INX	H
E486 3C		INR	A
E487 FE50		CPI	50H
E489 20F8		JRNZ	CLLINE+3
E48D 18B5		JR	RET
E48D	* CLEAR THE SCREEN		
E48D 2100F0	CLEAR	LXI	H,PAGE
E490 22DFFF		SHLD	TOSCN
E493 22FAFF		SHLD	XYFLAG
E496 3620		WRSPC	MVI M,20H
E498 23		INX	H
E499 7C		MOV	A,H
E49A FEF8		CPI	PAGE+2048/256
E49C 20F8		JRNZ	WRSPC
E49E C9		RET	
E49F	*		
E49F	* PROCESS LEAD IN CODE		

;OPTIMIZED AT BOTTOM


```

E49F 3E02 LEDIN    MVI    A, 2
E4A1 32EAFF STA     XYFLAG
E4A4 189C   JR      RET
E4A6   *
E4A6   * SET X AND Y CURSOR POSITIONS
E4A6 79   XPOS    MOV    A,C
E4A7 FB50   CPI    80
E4A9 3802   JRC    XINRG
E4AB 3E4F   MVI    A,79
E4AD 1890   XINIG   JR    TABRET
E4AF   *
E4AF 79   YPOS    MOV    A,C
E4B0 FB18   CPI    24
E4B2 3802   JRC    YINRG
E4B4 3E17   MVI    A,23
E4B6 18A3   YINIG   JR    STORLN
E4B8 AF    CLSTRT  XRA    A
E4B9 320BFF STA     CURPOS
E4C0 CD60E4  CALL   LIFTCURS
E4D1 18BF   JR    CLINE
E4C1 E4C1 - HSEND   EQU    $
E4C1   * CURSOR STORAGE LOCATIONS
E4C1   ORG    SPTR+0BH
FFDB CURPOS  DS    1      ;POS ON LINE
FFDC LINENO  DS    1      ;LINE NUMBER
FFDD VFL    DS    1      ;REVERSE VID FLAG
FFDE WIDTHH DS    1      ;PRINT WIDTH
FFDP TOSON   DS    2      ;TOP OF SCREEN
FFE1 TCURPOS DS    2      ;TEMP POSITION
FFE3   *
FFE3   * ADDITIONS TO 4.0 MONITOR
FFE3   ORG    HSEND
E4C1   * PRINT A STRING
E4C1 CDOFE0  RPTSTRG CALL   CRLF
E4C4 E3    PTSTNG  CALL   CRLF FIRST
E4C5 7E    XTHL    MOV    A,H
E4C6 23    INX    H
E4C7 E3    XTHL    ANA    A
E4C8 A7    ANA    A
E4C9 CD7BE3  CALL   VIDEO
E4CC F8    RM     PRINT IT
E4CD 18F5   JR    PTSTNG
--E4CF   *
E4CF 3E04  SIGN    MVI    A,4
E4D1 CD7BE3  CALI   VIDEO
E4D4 2150F1  LXI    H,PAGE+150H
E4D7 E5    PUSH   H
E4D8 1151F1  LXI    D,PAGE+151H
E4D9 013000  LXI    B,30H
E4D2 3E12  MVI    H,12H
E4D0 ED80  LDIR    POP    H
E4E2 E1    POP    H
E4E3 11A0F1  LXI    D,PAGE+1A0H
E4E6 018002  LXI    B,64H
E4F9 ED80  LDIR    PTSTNG

```

+9

```

E4EB 1B    DB    27    ;ESC
E4EF 2007  DD    2007H  ;X=32 Y=7
E4F1 20564543 DT    ' VECTOR GRAPHIC '
E4F5 544F5220
E4F9 47524150
E4FD 48494320
E501 1B    DB    27    ;ESC
E502 2008  DD    2008H  ;X=32 Y=8
E504 20202020 DT    ' MONITOR '
E508 4D4F4E49
E50C 544F5220
E510 20202020
E514 1B    DB    27    ;ESC
E515 2009  DD    2009H  ;X=32 Y=9
E517 20205645 DT    ' VERSION 4.2 '
E51B 5253494F
E51F 4E20342E
E523 32202020
E527 1B    DB    27    ;ESC
E528 008D  DD    8DH  ;X=0 Y=13
E52A C9    RET
E52B CDC1E4  PROMPT CALL   DTII  RPTSNG
E52E 4D6F6B3E
E532 A0    RET
E533 C9    RET
E534   *
E534   * WIDE ASCII DUMP
E534 CDC4E4  WASCII CALL   DTII  PTSTNG
E537 41534349
E538 49204455
E53F 4D50A0
E542 CD0EE1  CALL   TAHEX
E545 CD8885  CALL   HOMECL
E548   * MAKE A RULER FOR ASCII DUMP
E548 78    RULELP MOV    A,B
E549 FE40  CPI    64
E54B 201A  JRZ    TERMIN
E54D B60F  ANI    OFH
E54F 2810  JRZ    NUMBER
E551 E603  ANI    3
E553 2808  JRZ    MARKER
E555 3E20  MVI    A,'
E557 CD7BE3  REENTR CALL   VIDEO
E55A 04    INR    B
E55B 18FB  JR    RULELP
E550 3E6C  MARKER MVI    A,'1'
E55F 18F6  JR    REENTR
E561 78    NUMBER MOV    A,B
E562 CD20E2  CALL   BINI
E565 18F3  JR    REENTR+3
E567   * TOGGLE REVERSE VIDEO
E567 CD79E3  TERMIN CALL   TVIDEO
E56A CD4F65  CNIL   SETSCRLL
E56D CD0FF2  CALL   PTAD
E570 0E3F  MVI    C,63
E572 CD79E5  CALL   WMP2
E575 F46A65  JM    WMP1

```

B578 C8		R2		B5E4 E1	POP	H
B579 7E	WMP2	MOV	A,M	B5E5 0E0P	MVI	C,15
B57A 47		MOV	B,A	B5E7 CD0AE0	CALL	SPCE
B57B 3E05		MOV	A, 'E'-64	B5E8 CD0AE0	CALL	SPCE
B57D CD70E3		CALL	VIDEO	B5F0 CD79E5	CALL	WMP2
B580 CD3FE2		CALL	BMP	B5F1 FAD0E5	JM	HLP1-3
B583 C8		R2		B5F3 C9	RET	
B584 0D		DCR	C	B5F4 * CIOPK TO SET SCROLL POINT		
B585 F8		RM		B5F4 3ADEF	SETSCRL	LDA WIDTH
B586 18F1		JR	WMP2	B5F7 3D	DCR	A
B588 * HOME CURSOR, PRINT "ADDR"		CALL	RPTSTNG	B5F8 32DEFF	STA	WIDTH
B588 CDC1E4	HOME	CALL	RPTSTNG	B5FB 2007	JNZ	CTSCRL
B588 14		DB	'T'-64	B5FD 0150F0	LXI	B,PAGE+50H ;2ND LINE
B58C 41444452		DTHI	'ADDR'	B600 ED43DFFF	SCD	TOSN ;SCROLL POINT
B590 A0				B604 C9	CTSCRL	RET
B591 0600		MVI	B,0	B605 *		
B593 3E18		MVI	A,24	B605 * PROGRAM MEMORY		
B595 32DEFF		STA	WIDTM	B605 CDC4E4	PROGRAM	CALL PRTING 'PROGRAM'
B598 C9		RET		B608 50524F47		
B599 * MAKE A RULER FOR HEX DUMP				B60C 52414DA0		
B599 78	HEXRULER	MOV	A,B	B610 CD80E0	CALL	AHEX ;ADDR IN HL
B59A FE10		CPI	16	B613 ED53E1FF	SDO	TCURPOS
B59C 2806		JRZ	HEXRCT	B617 CD88E5	CALL	HOME
B59E CD1CE7		CALL	PT2S	B61A CD99E5	CALL	HEXRULER
B5A1 04		INR	B	B61D CD79E3	CALL	TVIDEO
B5A2 18F5		JR	HEXRULER	B620 AF	XRA	A
B5A4 * EXTEND FOR ASCII				B621 32DEFF	STA	WIDTM
B5A4 CD0AE0	HEXRCT	CALL	SPCE	B624 CD8EE6	CALL	PRTILINE
B5A7 CD0AE0		CALL	SPCE	B627 CD2F81	POLLOOP	CALL ESCAPE
B5AA 0600		MVI	B,0	B62A CD0E80		CALL HEX
B5AC 78	HEXRULP	MOV	A,B	B62D 2AE1FF	LILD	TCURPOS
B5AD FE10		CPI	16	B630 301A	JNC	MODMEM
B5AF C8		R2		B632 * CONTROL CODE TABLE		
B5B0 E60F		ANI	OFH	B632 FE20	CPI	
B5B2 CD31E2		CALL	BINL	B634 2846	JRZ	CSRT
B5B5 04		INR	B	B636 FE08	CPI	B
B5B6 18F4		JR	HEXRULP	B638 2845	JRZ	CSLT
B5B8 * HEX DUMP ROUTINE				B63A FE12	CPI	'R'-64
B5B8 CDC4E4	HEXRUL	CALL	PRTSTNG	B63C 2839	JRZ	CSDN
B5B8 48455820		DTHI	'HEX DUMP'	B63E FE15	CPI	'U'-64
B5BF 44554D50				B640 282F	JRZ	CSUP
B5C3 A0				B642 FE17	CPI	'W'-64
B5C4 CD0EE1		CALL	TNIEX	B644 2839	JRZ	CSLT
B5C7 CD88E5		CALL	HOME	B646 FE1A	CPI	'Z'-64
B5CA CD99E5		CALL	HEXRULER	B648 2832	JRZ	CSRT
B5CD CD79E3		CALL	TVIDEO	B64A 180B	JR	POLLOOP
B5D0 CD0E85		CALL	SETSCRL	B64C * MODIFY A MEMORY LOCATION		
B5D3 CD0FE2	HLP1	CALL	PTAD	B64C 2AE1FF	MODMEM	LILD TCURPOS
B5D6 E5		PUSH	II	B64F 4F	MOV	C,A
B5D7 D5		PUSH	D	B650 3ADEF	LDA	WIDTM
B5D8 0E10		MVI	C,16	B653 A7	ANA	A
B5D9 7E	HLP2	MOV	A,M	B654 7E	MOV	A,M
B5D9 CD1CE7		CALL	PT2S	B655 280D	JRZ	LSNBL
B5DE 23		INX	II	B657 26F0	ANI	OFH
B5DF 0D		DCR	C	B659 B1	ORA	C
B5E0 C21A85		JNZ	HLP2	B65A 77	REMEM	MOV M,A
B5E3 D1		POP	D	B65B 3ADEF	LDA	WIDTM

E65E E601	XRI	I		E686	* A = 5+3*LW		
E660 201F	JNZ	RTRIN+1		E686 32D0FF	STA	CURPOS	
E662 1818	JR	CSRT		E689 C360E4	JMP	LIFTCURS	
E664 17	LSN1BL	RAL		E6BC *			
E665 17		RAL		E6BC *			
E666 17		RAL		E6BC * DISPLAY REGISTERS			
E667 17		RAL		E6BC CDC4E4	DREGS	CALL	PISING
E668 E6FO	ANI	OFOH		E68P 52454749	DTII	'REGISTERS'	
E66A B1	ORA	C		E6C1 53544552			
E66B 0F	RRC			E6C7 D3			
E66C 0F	RRC			E6C8 * DUMP REGISTERS AFTER ENTRY FROM RGT 7			
E66D 0F	RRC			E6C8 E3	DUMPREGS	XTHL	
E66E 0F	RRC			E6C9 F5		PUSHI PSW	
E66F 18E9	JR	REMEM		E6CA CD2287		CALL DISPREGS	
E671	* MOVE UP ONE LINE			E6CD 2B		DCX H	
E671 11F0FF	CSUP	LXI D,-16		E6CE CD0FE2		CALL PTAD	GET BREAK ADD
E674 19		DAD D		E6D1 E1		POP H	
E675 1809		JR RTRIN		E6D2 CS		PUSH B	
E677	* MOVE DOWN ONE LINE			E6D3 CD77E7		CALL PR1FLO	
E677 111000	CSDN	LXI D,16		E6D6 C1		POP B	
E67A 18F8	JR	CSUP+3		E6D7 CD12E2		CALL PTAD+3	PRINT AF
E67C	* MOVE RIGHT ONE SPACE			E6D9 E1		POP H	
E67C 23	CSRT	INX H		E6DB 22E3FF		SHLD HITEMP	
E67D 1801	JR	RTRIN		E6D8 CD98E7		CALL PT1REE	PRINT B D H
E67F	* MOVE LEFT ONE SPACE			E6E1 D0E5		PUSH IX	
E67F 2B	CSU	DCX H		E6E3 E1		POP H	
E680	*			E6E4 CD12E2		CALL PTAD+3	PRINT IX
E680 AF	RTRIN	XRA A		E6E7 FD5		PUSHI IY	
E681 12DEFF		STA WIDTH		E6E9 E1		POP H	
E684 22E1FF		SHLD TCURPOS		E6EA CD12E2		CALL PTAD+3	PRINT IY
E687 3E15	UPAROW	MVI A,'U'-64		E6FD 210000		LXI H,0	
E689 CD7BE3		CALL VIDEO		E6F0 39		DAD SP	
E68C 1896		JR PLOOP-3		E6F1 22E5FF		SHLD SPTEMP	
E68E	* PRINT A LINE CONTAINING ((H))			E6F4 CD12E2		CALL PTAD+3	PRINT SP
E68E 2AE1FF	PRFLINE	LHLD TCURPOS		E6F7 08		EXAF	
E691 E5		PUSH H		E6F8 F5		PUSHI PSW	
E692 D1		POP D		E6F9 E1		POP H	
E693 7D		MOV A,L		E6FA CD12E2		CALL PTAD+3	
E694 F60F		ORI ORI		E6FD D9		EXX	
E696 5F		MOV E,A		E6FB CD98E7		CALL PT1REE	
E697 E6FO		ANI OFOH		E701 D9		EXX	
E699 6F		MOV L,A		E702 0A		LDAX B	
E69A CDD3E5		CALL HLP1		E703 CD1CE7		CALL PT2S	
E69D	* NOW PUT CURSOR WHERE IT GOES			E706 IA		LDAX D	
E69D CD60E4		CALL LIFTCURS		E707 CD1CE7		CALL PT2S	
E6A0 2AE1FF		LHLD TCURPOS		E70A 2AE3FF		LHLD HITEMP	
E6A3 7D		MOV A,L		E70D 7E		MV A,M	
E6A4 E60F		ANI OFI		E70E CD1CE7		CALL PT2S	
E6A6 6F		MOV L,A		E711 2AE5FF		LHLD SPTEMP	
E6A7 3E05		MVI A,5		E714 F9		SPHL	
E6A9 2D	PLOOP1	DCR L		E715 E1		POP H	
E6AA FAB1E6		JM PGCONT		E716 CD12E2		CALL PTAD+3	
E6AD C603		ADI 3		E719 C340E0		JMP CLRBRK	CLEAR BREAK(MI)
E6AF 18F8		JR PLOOP1		E71C CD26E2			
E6B1 6F	PGCONT	MOV L,A		E71F CD3DAE0			
E6B2 3ADFFF		LDA WIDTH		E722 * DISPLAY REGISTER HEADER ON SCREEN			
E6B5 85		ADD L					

E722 CDC1E4 DISPREGS CALL RPTSTNG
 E725 14 DB 'T'-64
 E726 41444452 DT 'ADDR FLAGS AF BC DE'
 E72A 20464C41
 E72E 47532020
 E732 41462020
 E736 20424320
 E73A 20204445
 E73E 20202048 DT HL IX IY SP
 E742 4C202020
 E746 49582020
 E74A 20495920
 E74B 20205350
 E752 20
 E753 20204146 DT AF
 E757 27 DB 27H
 E758 20204243 DT BC
 E75C 27 DB 27H
 E75D 20204445 DT DE
 E761 27 DB 27H
 E762 2020484C DT HL
 E766 27 DB 27H
 E767 20404220 DT BB EO EI ESP
 E768 40442040
 E76F 48204053
 E773 5020
 E775 94 DB 'T'+64
 E776 C9 RET
 E777 *
 E777 PRINT FLAGS PRIFLGs LXI B,405AII 12
 E77A CD17E7 CALL MASKFLG
 E77D 014301 LXI B,143H 1C
 E780 CD17E7 CALL MASKFLG
 E783 014080 LXI B,804DH 1M
 E786 CD17E7 CALL MASKFLG
 E789 014504 LXI B,445II 1E
 E78C CD17E7 CALL MASKFLG
 E78F 014810 LXI B,1048II 1H
 E792 CD17E7 CALL MASKFLG
 E795 C3DAE0 JMP SPCE
 E798 *
 E798 ES PRINCE PUSH H
 E799 C5 PUSH B
 E79A E1 POP H
 E79B CD12E2 CALL PTAD+3
 E79E D5 PUSH D
 E79F E1 POP H
 E7A0 CD12E2 CALL PTAD+3
 E7A3 E1 POP H
 E7A4 C312E2 JMP PTAD+3
 E7A7 *
 E7A7 7D MASKFLG MOV A,L
 E7A8 A0 ANA B
 E7A9 JE20 MVI A,20H
 E7AB CA78E3 JZ VIDEO

E7AE 79 HTV A,C
 E7AF C37B63 JMP VIDEO
 E7B2 *
 E7B2 SETBREAK SETBK CALL PTTNG
 E7B2 CDC1E4 DTN 'BREAK AT'
 E7B5 42524541
 E7B9 4B204154
 E7B0 A0
 E7B8 CDBDE0 CALL NIEX
 E7C1 1A LDAX D
 E7C2 32E9FF STA BKPCODE
 E7C5 ED53E7FF SED BKPTLOC
 E7C9 3EFP MVI A,0FFH ;RST 7
 E7C9 12 STAX D
 E7CC C9 RET
 E7CD * EXTERNAL COMMUNICATIONS
 E7CD CDC1E4 EXTOM CALL PTTNG
 E7D0 45585420 DTN 'EXT COM'
 E7D4 434F4DAO
 E7D8 D805 RECEIVE IN 5
 E7DA E602 ANI 2
 E7DC 2805 JRZ NEXCIR
 E7DE D804 IN 4
 E7E0 CD7BE3 CALL VIDEO
 E7E3 CD2FE1 NEXCIR CALL ESCAPE
 E7E6 28F0 JRZ RECEIVE
 E7E8 D304 OUT 4
 E7EA 18EC JR RECEIVE
 E7EC *
 E7EC * TEMPORARY STORAGE LOCATIONS FOR REGISTERS, ETC.
 E7EC ORG TCUPOS+2
 FFE3 HITEMP DS 2
 FFE5 SPTEMP DS 2
 FFE7 BKPTLOC DS 2 ;BREAKPOINT LOCATION
 FFE9 BKPCODE DS 1 ;CODE AT BREAKPT
 FFEA XYFLAG DS 1 ;CURSOR XY FLAG

