4. 胞的遗传物质及其维持

- 4.2. DNA是遗传物质实验证据4. 胞的遗传物质及其维持
 - 1. 细菌转化实验→DNA为遗传物质(Griffith, 肺炎双球菌转化; Avery, DNA介导转化)
 - 2. 病毒研究 → DNA 是遗传物质 (Hershey 和Chase, 噬菌体侵染)
- 4.3. DNA的结构
 - 4.3.1. DNA的二级结构: 双螺旋结构
 - 4.3.1.1. 双螺旋结构概述:反向平行/碱基配对/右手螺旋;外 脱氧核糖--磷酸骨架/内碱基

- 4.3.1.2. 多种DNA螺线结构
 - (1)B,A,Z,DNA
 - B-DNA(生理状态,右手螺旋)A-DNA; Z-DNA(左手螺旋)
 - (2)异常DNA二级结构

- 4.3.1.4. DNA二级结构与疾病:GAA异常重复ightarrow弗里德希氏 共济失调
- 4.3.2. DNA的高级结构: 超螺旋结构
 - 4.3.2.1. 超螺旋结构概述

1. 含义: DNA双螺旋环超螺旋

2. 种类: (见上图)右手螺旋

3. 意义:使DNA致密,推动DNA结构转化

● 4.3.2.4. 拓扑异构酶:水解 /连接磷酸二酯键 →调节DNA拓扑 结构

- 4.3.3. 真核生物染色体的组装
 - 4.3.3.1. 一些前导知识
 - 1. 染色质=1/2DNA+1/2蛋白质(组蛋白+非组蛋白)
 - 2. 组蛋白种类:核小体核心颗粒(H2A, H2B, H3, H4)+组蛋白H1
 - 3. 组蛋白八聚体:两个H2A-H2B二聚体 + 一个H3-H4-H3-H4四 聚体
 - 4.3.3.2. DNA→核小体/串珠结构

4.3.3.3. 串珠/核小体→纤丝→袢环→玫瑰花结→染色体, 染色体长度能压缩一万倍

- 4.3.1. 半保留复制: 亲代两条链都是模板, 子链一条来自亲代一条自己 合成
 - 4.3.1.3. 参与DNA复制的物质

模板(DNA母链),引物(提供末端便于聚合),底物,聚合,蛋白质因子

ullet 4.3.1.4. 复制过程图示 $(注意新链是5^{'}
ightarrow 3^{'})$

- 4.3.2. DNA聚合酶
 - 4.3.2.1. DNA聚合酶分类

原核生物					真核生物	
DNA-Pol 酶类	5′-3′聚合	5′-3′外切	3′-5′外切	备注	DNA-Pol 酶类	作用与功能
Pol I				DNA 复制中校对;可以切除 RNA 引物;修复损伤 DNA	DNA-pol α	起始引发, 是引物酶
Pol II				DNA 复制中校对(应急修复);对模板特异性低	DNA-pol β	参与低保真度复制
PolIII				延申 DNA; DNA 复制校对	DNA-pol γ	线粒体 DNA 复制中催化
PolIV				DNA 修复;移损合成	DNA-pol δ	延长子链,是螺旋酶
Pol V				移损合成	DNA-pol ε	校读、修复、填补缺口

4.3.2.2. DNA聚合酶结构: 手掌(引物+模板接头+DNA着点)+手指+拇指

4.3.2.3. DNA聚合酶作用机制

4.3.3. DNA复制过程

以下的内容为对视频的补充和小结

4.3.3.1. 复制起始

DanA蛋白识别撬开复制起始区域解旋酶+DanC使DNA解旋SSB 维持单链稳定拓扑异构酶理顺DNA释放张力

4.3.3.2. 复制延长

解旋酶/SSB/拓扑异构酶功能不变引物酶合成一段RNA引物 DNA聚合酶Ⅲ延长链滑动夹保持DNA聚合酶高延伸 PS.滑动夹装载器:加载并固定滑动夹

4.3.3.3. 复制终止

RNA酶切除引物DNA聚合酶 I 填补引物空缺DNA连接酶连接所有片段

• 4.3.3.4. 冈崎片段: 详见视频,