COMPUTER ORGANIZATION

Lecture 6 Arithmetic Operations on Integers

2024 Spring

Recap

1-bit adder

$$Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$$

$$CarryOut = (b \cdot CarryIn) + (a \cdot CarryIn) + (a \cdot b)$$

Inputs		Outputs			
а	b	Carryin	CarryOut	Sum	Comments
0	0	0	0	0	$0 + 0 + 0 = 00_{two}$
0	0	1	0	1	$0 + 0 + 1 = 01_{two}$
0	1	0	0	1	$0 + 1 + 0 = 01_{two}$
0	1	1	1	0	$0 + 1 + 1 = 10_{two}$
1	0	0	0	1	$1 + 0 + 0 = 01_{two}$
1	0	1	1	0	$1 + 0 + 1 = 10_{two}$
1	1	0	1	0	$1 + 1 + 0 = 10_{two}$
1	1	1	1	1	1 + 1 + 1 = 11 _{two}

1-bit ALU and 32-bit ALU

- ALU: arithmetic logical unit
- 1-bit ALU and 32-bit ALU
 - If op = 0, o = a & b (and)
 - If op = 1, o = a | b (or)
 - If op = 2, o = a + b (add)

Integer Addition

• Example: 7 + 6

- Overflow if result out of range
 - For signed integer addition:
 - no overflow, if adding +ve(positive) and -ve(negative) operands
 - Overflow, if:
 - Adding two +ve operands, get –ve operand
 - Adding two -ve operands, get +ve operand

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - -6: 1111 1111 ... 1111 1010
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - No overflow, if subtracting two +ve or two –ve operands
 - Overflow, if:
 - Subtracting +ve from –ve operand, and the result sign is 0 (+ve)
 - Subtracting –ve from +ve operand, and the result sign is 1 (-ve)

Overflow Example

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥ 0

• Example, 8-bit signed operation:

$$12-3 = 12+(-3)$$

Overflow Detection for Signed & Unsigned Addition

Signed addition

```
add t0, t1, t2  # t0 = sum

xor t3, t1, t2  # Check if signs differ

slt t3, t3, zero  # t3 = 1 if signs differ

bne t3, zero, No_overflow # t1, t2 signs \neq, no overflow

xor t3, t0, t1  # t1, t2 signs =, check sum

slt t3, t3, zero  # t3 = 1 if sum sign\neq

bne t3, zero, Overflow # sum signs \neq operands; overflow
```

Unsigned addition(unsigned overflow is also called carry)

```
add t0, t1, t2  # t0 = sum  
xori t3, t1, -1  # t3 = NOT t1 (i.e. 2^{32}-1 - t1)  
sltu t3, t3, t2  # (2^{32}-1 - t1) < t2  
bne t3, zero, Overflow  # if(2^{32}-1 < t1+t2), overflow
```

Arithmetic for Multimedia — Saturating 有文件技术等 Operation

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., change the volume and brightness in audio or video

Multiplication Hardware

- In every step
 - multiplicand is shifted
 - next bit of multiplier is examined (also a shifting step)
 - if this bit is 1, shifted multiplicand is added to the product

For Internal Use Only!

4-bit version Multiply 2_{ten} (0010_{two}) by 7_{ten} (0111_{two})

• Multiply 2_{ten} (0010_{two}) by 7_{ten} (0111_{two})

- Multiply 2_{ten} (0010_{two}) by 7_{ten} (0111_{two})
 - How values change in Mcand, Mplier and Product Registers?

Iter	Step	Multiplier	Multiplicand	Product
0	Initial values	0111	0000 0010	0000 0000
1	1 ⇒ Prod = Prod + Mcand	0111	0000 0010	0000 0010
	Shift left Multiplicand	0111	0000 0100	0000 0010
	Shift right Multiplier	<u>001</u> 1	<u>0000 0100</u>	<u>0000 0010</u>
2	Same steps as 1	0011	0000 0100	0000 0110
		0011	0000 1000	0000 0110
		<u>000</u> 1	<u>0000 1000</u>	<u>0000 0110</u>
3	Same steps as 1	0001	0000 1000	0000 1110
		0001	0001 0000	0000 1110
		<u>000</u> 0	<u>0001 0000</u>	<u>0000 1110</u>
4	0 ⇒ No operation	0000	0001 0000	0000 1110
	Shift left Multiplicand	0000	0010 0000	0000 1110
	Shift right Multiplier	nly! 0000	<u>0010 0000</u>	<u>0000 1110</u>

Slow Multiplier -> Optimized version

- Oberservation
 - Half of the bits in multiplicand always 0
 - 64-bit adder is wasted
 - 0's inserted in right of multiplicand as shifted
 - least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?

 Product register wastes space => combine Multiplier and Product register

 $\begin{array}{r}
1000 \\
\times 1001 \\
\hline
1000 \\
00000 \\
100000 \\
\hline
1001000
\end{array}$

Optimized Multiplier

- Multiplier initially in right half of product register, 32-bit ALU and multiplicand is untouched
- Check the 0th bit in Product register, if 1, add left half of product with multiplicand
- The sum keeps shifting right, at every step, number of bits in product + multiplier = 64

Optimized Multiplier Example

Example:

- Multiply 2_{ten} (0010_{two}) by 7_{ten} (0111_{two})
- result = 00001110_{two} (14_{ten})

iter	Multiplicand	Product	Operation	
0	0010	0000 011 1		
1	0010	0010 0111	1: Prod left half accumulate	
	0010	0001 001 1	Shift right Prod	
2	0010	0011 0011	1: Prod left half accumulate	
	0010	0001 100 1	Shift right Prod	
3	0010	0011 1001	1: Prod left half accumulate	
	0010	0001 110 0	Shift right Prod	
4	0010	0000 1110	0: Shift right Prod	
		res=00001r1n1e0al	Use Only! done	

Faster Multiplier

- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs – it then has to wait for the result of each add to propagate down – faster because no clock is involved
- high transistor cost

Faster Multiplier

- Wallace Tree (Carry Save)
 - Use Carry-Save Adder for partial products addition
 - Carry-save adder passes (saves) the carries to the output, rather than propagating them.
 - With this technique, we can avoid carry propagation until final addition
 - Carry-save is fast (no carry propagation) and inexpensive (full adders)

a: 0101 b: 0110 c: 1001

carry save: a+b+c = c+s

RISC-V Multiplication

- Four multiply instructions:
 - mul: multiply
 - Gives the lower 32 bits of the product
 - mulh: multiply high
 - Gives the upper 32 bits of the product, assuming the operands are signed
 - mulhu: multiply high unsigned
 - Gives the upper 32 bits of the product, assuming the operands are unsigned
 - mulhsu: multiply high signed/unsigned
 - Gives the upper 32 bits of the product, assuming one operand is signed and the other unsigned

Division

n-bit operands yield nbitquotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

4-bit version Divide 7_{ten} (0111_{two}) by 2_{ten} (0010_{two})

• Divide 7_{ten} (0111_{two}) by 2_{ten} (0010_{two})

• Divide 7_{ten} (0111_{two}) by 2_{ten} (0010_{two})

• Divide 7_{ten} (0111 $_{two}$) by 2_{ten} (0010 $_{two}$)

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div Rem < 0 → +Div, shift 0 into Q Shift Div right	0000 0000 <u>0000</u>	0010 0000 0010 0000 <u>0001 0000</u>	1110 0111 0000 0111 0000 0111
2	Same steps as 1	0000 0000 <u>0000</u>	0001 0000 0001 0000 <u>0000 1000</u>	1111 0111 0000 0111 0000 0111
3	Same steps as 1	0000 0000 <u>0000</u>	0000 1000 0000 1000 <u>0000 0100</u>	1111 1111 0000 0111 00000111
4	Rem = Rem – Div Rem >= 0 → shift 1 into Q Shift Div right	0000 0001 <u>0001</u>	0000 0100 0000 0100 <u>0000 0010</u>	0000 0011 0000 0011 0000 0011
5	Same steps as 4 For Internal Use Only!	0001 0011 0011	0000 0010 0000 0010 <u>0000 0001</u>	0000 0001 0000 0001 0000 0001

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Signed Division

- Convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:

```
+7 div +2 Quo = +3 Rem = +1

-7 div +2 Quo = -3 Rem = -1

• Why not -7 div +2 Quo = -4 Rem = +1?
```

- If so, -(x div y) != (-x) div y => programming challenge!
- Convention:
 - Dividend and remainder have the same sign
 - Quotient is negative if signs disagree
 - These rules fulfill the equation above
 - Example:

$$+7 \text{ div } -2$$
 Quo = -3 Rem = +1
-7 div -2 Quo = +3 Rem = -1

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps

RISC-V Division

- Four instructions:
 - div, rem: signed divide, remainder
 - divu, remu: unsigned divide, remainder
- Overflow and division-by-zero don't produce errors
 - Just return defined results
 - Faster for the common case of no error