



## Pattern Recognition (PR)

Prof. Dr.-Ing. Andreas Maier Pattern Recognition Lab (CS 5), Friedrich-Alexander-Universität Erlangen-Nürnberg Winter Term 2020/21







This is a printable version of the slides of the lecture

#### Pattern Recognition (PR)

Winter term 2020/21 Friedrich-Alexander University of Erlangen-Nuremberg.

These slides are are release under Creative Commons License Attribution CC BY 4.0.

Please feel free to reuse any of the figures and slides, as long as you keep a reference to the source of these slides at https://lme.tf.fau.de/teaching/acknowledging the authors Niemann, Hornegger, Hahn, Steidl, Nöth, Seitz, Rodriguez, Das and Maier.

Erlangen, January 8, 2021 Prof. Dr.-Ing. Andreas Maier





## **Optimization**







### **Motivation**

- Optimization is crucial for many solutions in pattern recognition, pattern analysis, machine learning, artificial intelligence, etc.
- Optimization has many faces:
  - discrete optimization,
  - combinatorial optimization,
  - · genetic algorithms,
  - gradient descent,
  - unconstrained and constrained optimization,
  - linear programming,
  - convex optimization, etc.
- There is no lecture on pattern recognition without a refresher course on optimization techniques.
- Each researcher has his own favorite optimization algorithm.





## **Convexity**

#### **Definition**

A function  $f: \mathbb{R}^d \to \mathbb{R}$  is *convex* if the domain dom(f) of f is a convex set and if  $\forall x, y \in \text{dom}(f)$ , and  $\theta$  with  $0 \le \theta \le 1$ , we have

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

A function  $f: \mathbb{R}^d \to \mathbb{R}$  is *concave* if -f is convex.

#### Geometric interpretation:

The line segment between (x, f(x)) and (y, f(y)) lies above the graph of f.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## **Unconstrained Optimization**

Let us assume in the following that we have to compute the minimum of a convex function

$$f: \mathbb{R}^d \to \mathbb{R}$$

that is twice differentiable.

The unconstrained optimization problem is just the solution of the minimization problem

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$$

where  $x^*$  denotes the optimal point.





## **Unconstrained Optimization (cont.)**

For this particular family of functions, a necessary and sufficient condition for the minumum are the zero-crossings of the function's gradient:

$$\nabla f(\mathbf{x}^*) = 0.$$

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## **Unconstrained Optimization (cont.)**

Most methods follow an iterative scheme:

initialization

 $oldsymbol{x}^{(0)} \ oldsymbol{x}^{(k+1)} = g(oldsymbol{x}^{(k)})$ iteration step

where  $g: \mathbb{R}^d \to \mathbb{R}^d$  is the update function.

The iterations terminate, if

$$\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\| < \varepsilon,$$

i. e. no further significant change.





#### **Descent Methods**

We now consider iteration schemes that produce a sequence of estimates according to the update function

$$\mathbf{x}^{(k+1)} = g(\mathbf{x}^{(k)}) = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}.$$

where

 $\Delta \mathbf{x}^{(k)} \in \mathbb{R}^d$ : is the search direction in the k-th iteration

 $t^{(k)} \in \mathbb{R}$  : denotes the step length in the k-th iteration

and where we expect

$$f(\boldsymbol{x}^{(k+1)}) < f(\boldsymbol{x}^{(k)})$$
, i.e.  $\nabla f(\boldsymbol{x}^{(k)})^T \Delta \boldsymbol{x}^{(k)} < 0$ 

except  $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} = \mathbf{x}^*$ .

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## **Taylor Approximation**

For many problems it is always good to know the second order Taylor approximation:

$$f(\mathbf{x} + t \cdot \Delta \mathbf{x}) \approx f(\mathbf{x}) + t \cdot \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x} + \frac{1}{2} t^2 \cdot \Delta \mathbf{x}^{\mathsf{T}} \nabla^2 f(\mathbf{x}) \Delta \mathbf{x}$$





## **Descent Methods** (cont.)

Input: function f, initial estimate  $\mathbf{x}^{(0)}$ 

Initialize: k := 0

repeat

Select (or compute) descent direction

Line search (1-D optimization):

$$t^{(k)} = \underset{t \geq 0}{\operatorname{argmin}} f(\mathbf{x}^{(k)} + t \cdot \Delta \mathbf{x}^{(k)})$$

Update:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}.$$

$$k := k+1$$
 until  $\| \pmb{x}^{(k)} - \pmb{x}^{(k-1)} \| < \varepsilon$  Output:  $\pmb{x}^{(k)}$ 

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

10





## **Line Search Methods**

- Multivariate optimization in its described form requires a proper line search method.
- Exact line search along the straight line  $\{x + t\Delta x \mid t \ge 0\}$  has to solve

$$t^* = \operatorname*{argmin}_{t>0} f(\mathbf{x} + t\Delta \mathbf{x})$$

and is rarely used.

An overview of methods can be found in numerical recipes.





## Line Search Methods (cont.)

Setting t = 0.25:



© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

12





## Line Search Methods (cont.)

Setting t = 1.9:







## Line Search Methods (cont.)

Setting  $t^{(k+1)} = \frac{1}{2}t^{(k)}$  and starting with  $t^{(0)} = 0.5$ :



© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## **Backtracking Line Search**







## **Backtracking Line Search** (cont.)

The Armijo-Goldstein line search algorithm:

Input: function f, search direction  $\Delta x$ 

Initialize: t := 1

Select:  $\alpha \in [0, 0.5]$  and  $\beta \in [0, 1]$ . while  $f(\mathbf{x} + t\Delta \mathbf{x}) > f(\mathbf{x}) + \alpha t \cdot \nabla f(\mathbf{x})^T \Delta \mathbf{x}$  do

end while Output: t

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

16





## **Gradient Descent Methods**

A natural choice of the search direction is the negative gradient:

$$\Delta \mathbf{x}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$$

#### Rule of thumb:

The negative gradient is the steepest descent direction.





## **Gradient Descent Methods (cont.)**

Input: function f, initial estimate  $\mathbf{x}^{(0)}$ 

intialize: k := 0

repeat

Set descent direction:  $\Delta extbf{ extit{x}}^{(k)} = - 
abla extit{f}( extbf{ extit{x}}^{(k)})$ 

Line search (1-D optimization):

$$t^{(k)} = \underset{t \geq 0}{\operatorname{argmin}} f(\mathbf{x}^{(k)} + t \cdot \Delta \mathbf{x}^{(k)})$$

Update:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}.$$

$$k := k+1$$
**until**  $\| \boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)} \|_2 < \varepsilon$ 
Output:  $\boldsymbol{x}^{(k)}$ 

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





**TECHNISCHE FAKULTÄT** 

# **Next Time in** Pattern Recogn











## **Steepest Descent Methods**

(Normalized) steepest descent, what does it mean?

We search for the unit vector that shows the largest decrease in the linear approximation of f:

$$\Delta \mathbf{x} = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f(\mathbf{x})^T \mathbf{u}; \ \|\mathbf{u}\|_p = 1 \}$$

#### Conclusions:

- The steepest descent direction depends on the chosen norm.
- The negative gradient is not necessarily the best choice for the search direction.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## Steepest Descent Methods (cont.)

We consider now the first order Taylor approximation of f(x + u)around the selected position x:

$$f(\mathbf{x} + \mathbf{u}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{u}.$$

- Here  $\nabla f(\mathbf{x})^T \mathbf{u}$  is the directional derivative at  $\mathbf{x}$  in direction  $\mathbf{u}$ .
- The vector **u** denotes a descent direction if the inner product with the gradient vetor is negative, i. e.

$$\nabla f(\mathbf{x})^T \mathbf{u} < 0$$
.





## Steepest Descent Methods (cont.)

Input: function f, initial estimate  $\mathbf{x}^{(0)}$ , norm  $\|.\|$ 

intialize: k := 0

repeat

Compute highest descent direction:

$$\Delta \boldsymbol{x}^{(k)} = \operatorname{argmin} \{ \nabla f(\boldsymbol{x}^{(k)})^T \boldsymbol{u}; \ \|\boldsymbol{u}\| = 1 \}$$

Line search (1-D optimization):

$$t^{(k)} = \underset{t \geq 0}{\operatorname{argmin}} f(\mathbf{x}^{(k)} + t \cdot \Delta \mathbf{x}^{(k)})$$

Update:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}$$

$$k:=k+1$$
 until  $\|oldsymbol{x}^{(k)}-oldsymbol{x}^{(k-1)}\| Output:  $oldsymbol{x}^{(k)}$$ 

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## L<sub>2</sub>-Norm

The unit ball for the  $L_2$ -norm:



For the  $L_2$ -norm the steepest descent direction is the negative gradient:

$$\Delta \mathbf{x} = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f(\mathbf{x})^T \mathbf{u}; \ \|\mathbf{u}\|_2 = 1 \} = -\nabla f(\mathbf{x})$$





## $L_1$ -Norm

The unit ball for the  $L_1$ -norm:





© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## $L_1$ -Norm (cont.)

- The steepest descent for the  $L_1$ -norm selects in each iteration the component of  $\nabla f(\mathbf{x})$  with maximum absolute value and then decreases or increases dependent on the sign of the selected component.
- Let *i* be the index of the gradient component with maximum absolute value, and let  $\mathbf{e}_i \in \mathbb{R}^d$  denote the corresponding base vector. The steepest descent direction is given by:

$$\Delta \mathbf{x} = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f(\mathbf{x})^T \mathbf{u}; \ \|\mathbf{u}\|_1 = 1 \}$$
$$= -\operatorname{sgn} \left( \frac{\partial}{\partial x_i} f(\mathbf{x}) \right) \mathbf{e}_i$$

Note: Steepest descent using the  $L_1$ -norm results in the *coordinate descent* algorithm.





## $L_{\infty}$ -Norm

The unit ball for the  $L_{\infty}$ -norm:





© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## L<sub>P</sub>-Norm

The unit ball for the  $L_{P}$ -norm:







## Lp-Norm (cont.)

The steepest descent for the  $L_{P}$ -norm is given by:

$$\Delta \mathbf{x} = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f(\mathbf{x})^T \mathbf{u}; \ \|\mathbf{u}\|_{\mathbf{P}} = 1 \}$$

$$= \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f(\mathbf{x})^T \mathbf{u}; \ (\mathbf{u}^T \mathbf{P} \mathbf{u})^{\frac{1}{2}} = 1 \}$$

$$= \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f(\mathbf{x})^T \mathbf{u}; \ \|\mathbf{P}^{\frac{1}{2}} \mathbf{u}\|_2 = 1 \}$$

As we did in the LDA-transform, we introduce a transform to get spherical data:

$$u' = P^{\frac{1}{2}}u$$

and thus

$$f(\mathbf{u}) = f(\mathbf{P}^{-\frac{1}{2}}\mathbf{u}') = f'(\mathbf{u}')$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## Lp-Norm (cont.)

Instead of  $f(\mathbf{x})$  we now minimize  $f'(\mathbf{x}')$  using the  $L_2$ -norm and back-transform the result:

$$\Delta \mathbf{x}' = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \nabla f'(\mathbf{x}')^T \mathbf{u}'; \| \mathbf{u}' \|_2 = 1 \}$$

$$= -\nabla f'(\mathbf{x}')$$

$$= -\mathbf{P}^{-\frac{1}{2}} \nabla f(\mathbf{P}^{-\frac{1}{2}} \mathbf{x}')$$

$$= -\mathbf{P}^{-\frac{1}{2}} \nabla f(\mathbf{x})$$





## Lp-Norm (cont.)

Now we get for  $\Delta x$ :

$$\Delta \mathbf{x} = \mathbf{P}^{-\frac{1}{2}} \Delta \mathbf{x}'$$

$$= \mathbf{P}^{-\frac{1}{2}} \left( -\mathbf{P}^{-\frac{1}{2}} \nabla f(\mathbf{x}) \right)$$

$$= -\mathbf{P}^{-1} \nabla f(\mathbf{x}).$$

Conclusion: The steepest descent for the  $L_{P}$ -norm is given by

$$\Delta \mathbf{x} = -\mathbf{P}^{-1} \nabla f(\mathbf{x}) .$$

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## **Newton's Method**

The idea:

- · Select a point.
- Compute the minimum of the second order Taylor approximation.







## Newton's Method (cont.)

Second order Taylor approximation:

$$f(\mathbf{x} + \Delta \mathbf{x}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T (\nabla^2 f(\mathbf{x})) \Delta \mathbf{x}$$

Now we select  $\Delta x$  such that

$$\nabla\{f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x} + \frac{1}{2} \Delta \boldsymbol{x}^T (\nabla^2 f(\boldsymbol{x})) \Delta \boldsymbol{x}\} = 0$$

Obviously the gradient is

$$\nabla f(\mathbf{x}) + \nabla^2 f(\mathbf{x}) \Delta \mathbf{x} = 0$$

and thus

$$\Delta \mathbf{x} = -(\nabla^2 f(\mathbf{x}))^{-1} \nabla f(\mathbf{x})$$

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## Newton's Method (cont.)

#### Conclusion:

Newton's method is an x-dependent steepest descent method regarding the  $L_{\mathbf{P}}$ -norm, where  $\mathbf{P} = \nabla^2 f(\mathbf{x})$  is the Hessian.





## **Damped Newton's Method**

Input: function f, initial estimate  $\mathbf{x}^{(0)}$ 

intialize: k := 0

repeat

Compute Newton step:

$$\Delta \mathbf{x}^{(k)} = -\nabla^2 f(\mathbf{x}^{(k)})^{-1} \nabla f(\mathbf{x}^{(k)})$$

Line search (1-D optimization):

$$t^{(k)} = \underset{t \geq 0}{\operatorname{argmin}} f(\mathbf{x}^{(k)} + t \cdot \Delta \mathbf{x}^{(k)})$$

Update:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}.$$

$$k:=k+1$$
 until  $\|oldsymbol{x}^{(k)}-oldsymbol{x}^{(k-1)}\| Output:  $oldsymbol{x}^{(k)}$$ 

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21





## **Lessons Learned**

- · Gradient descent is widely applied.
- Gradient descent and coordinate descent are special cases of steepest descent methods.
- Steepest descent method depends on the chosen norm.





# **Next Time in** Pattern Recogni











## **Further Readings**

This chapter is basically copied from:

- S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004. http://www.stanford.edu/~boyd/cvxbook/
- Jorge Nocedal, Stephen Wright: Numerical Optimization, Springer, New York, 1999.





## **Comprehensive Questions**

- What is the general formulation for an unconstrained optimization problem?
- Why do we need a line search in gradient descent approaches?
- What is the Armijo-Goldstein line search algorithm?
- What are the steepest descent directions if we apply the  $L_{\infty}$ ,  $L_1$ ,  $L_2$ , and  $L_{P}$  norm?

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21