Summary of Matrix Calculus

15.1 Definitions, Notation and Preliminaries

- Derivative of scalar-valued function f with input $\mathbf{x} = (x_1, \dots, x_m)$
 - Interior point: $\{\mathbf{x} \in \mathbb{R}^{m \times 1} : ||\mathbf{x} \mathbf{c}|| < r\}$ for some pos. const rApplies to matrices too: $\{\mathbf{X} \in \mathcal{R}^{m \times n} : ||\mathbf{X} - \mathbf{C}|| < r\}$
 - **Def:** j^{th} (first) partial derivative (scalar-value function with vector input $\mathbf{x} = (x_1, \dots, x_m)^T$ $D_i f(\mathbf{c})$ denotes the jth part. deriv. of f at \mathbf{c} :

 $Df_j(\mathbf{c}) = \lim_{t \to 0} = \frac{f(\mathbf{c} + t\mathbf{u}_j) - f(\mathbf{c})}{t}$ where \mathbf{u}_j is the *j*th row of identity mx.

Alternative notation: $\frac{\partial f(\mathbf{x})}{\partial x_j}$ Alternative notation: At times, it may be more convenient to reshape vector x as matrix \mathbf{X} and denote its partial derivative wrt element x_{ij} as $\frac{\partial f(\mathbf{X})}{x_{ij}}$. The way we treat this derivative depends on whether the elements of \mathbf{X} are dependent (e.g. symmetric matrix) or independent (Sec. 15.1.f)

- **Def:** Vector of partial derivatives $\mathbf{D}f(\mathbf{c})$ denotes vector of all part. derivs of f at \mathbf{c} : $\mathbf{D}f(\mathbf{c}) = (D_1 f(\mathbf{c}), D_2 f(\mathbf{c}), \dots, D_m f(\mathbf{c}))'$ Alternative notation: $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}'}$
- **Def:** $(\mathbf{D}f)'$ is called *gradient vector* Alternative notation: $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$
- **Def:** continuously differentiable: Function f with domain $S \in \mathbb{R}^{m \times 1}$ is continuously differentiable at the interior pt $\mathbf{c} \in S$ if

 $D_1 f(\mathbf{x}), \dots, D_m f(\mathbf{x})$ exist and are continuous at every pt in some neighbourhood of \mathbf{c} .

In this case the following holds: $\lim_{\mathbf{x}\to\mathbf{c}} \frac{f(\mathbf{x})-[f(\mathbf{c})+\mathbf{D}f(\mathbf{c})(\mathbf{x}-\mathbf{c})]}{||\mathbf{x}-\mathbf{c}||}$

- **Def:** ij^{th} (second) partial derivative $D_{ij}^2 f(\mathbf{x})$ Alternative notation: $\frac{\partial^2 f(\mathbf{x})}{\partial x_i x_j}$
- **Def:** Hessian Matrix **H**f An $m \times m$ matrix whose ijth element is $D_{ij}^2 f(\mathbf{x})$
- Derivative of vector-valued fn $\mathbf{f} = (f_1, \dots, f_p)'$ where each f_i takes input $\mathbf{x} = (x_1, \dots, x_m)'$.
 - $D_j f_s(\mathbf{c})$: jth partial derivative of f_s
 - $D_j \mathbf{f}(\mathbf{c})$ is $p \times 1$ vector $D_j \mathbf{f}(\mathbf{c}) = [D_j f_1(\mathbf{c}), \dots, D_j f_p(\mathbf{c})]'$ Alternative notation $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}'}$ (row vector, $1 \times p$ see Sec 15.1.c #287) Alternative notation $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$ (column vector, $p \times 1$)
 - **Df** is $p \times m$ matrix: **Df**(**c**) = $[D_1 \mathbf{f}(\mathbf{c}), \dots, D_p \mathbf{f}(\mathbf{c})]$ **Df** is called *Jacobian* of **f** and it's the matrix whose sjth element is $D_i f_s$. $(\mathbf{Df})'$ is called the *gradient (matrix)* of \mathbf{f} . Alternative notation to Jacobian: $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}'}$ and it's the matrix whose sjth element is $\frac{\partial f_s(\mathbf{x})}{\partial x_j}$
- Derivative of matrix of functions $F = f_{st}$ where **F** is $p \times q$
 - It's preferable to keep the jth partial derivatives of \mathbf{F} as a separate $p \times q$ matrix, denoted as : $\frac{\partial \mathbf{F}(\mathbf{x})}{\partial x_j}$ or $D_j \mathbf{F}(\mathbf{x})$

15.2 Differentiation of Scalar-valued Functions

- Lem 15.2.1 If $f(\mathbf{x})$ does not vary wrt x_j at \mathbf{c} then $D_j f(\mathbf{c}) = 0$
- Lem 15.2.2 Let l, h, r be functions defined as: l = af + bg, h = fg and r = f/g. The rules of derivative for single-variable calculus function apply for the jth partial derivative of l, h, g.

15.3 Differentiation of Linear and Quadratic Forms

• Let $\mathbf{a} = (a_1, \dots, a_m)$ be constant (or fn of \mathbf{x} that is invariant wrt x_j), and \mathbf{A} be an $m \times m$ constant matrix (or matrix of functions invariant wrt x_i). Then:

$$-\frac{\partial \mathbf{a}' \mathbf{x}}{\partial x_i} = a_j \text{ (see } #294)$$

$$-\frac{\partial \mathbf{a}' \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \text{ or } \frac{\partial \mathbf{a}' \mathbf{x}}{\partial \mathbf{x}'} = \mathbf{a}'$$

$$- \frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial x_j} = \sum_{i=1}^m a_{ij} x_i + \sum_{k=1}^m a_{jk} x_k \text{ (see #295)}$$

$$-\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}') \mathbf{x} - \text{if } \mathbf{A} \text{ symmetric then } \frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$$
$$-\frac{\partial^2 \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial x_s x_j} = a_{sj} + a_{js} \text{ (see } \#295)$$

$$-\frac{\partial^2 \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial x_s x_i} = a_{sj} + a_{js} \text{ (see } \#295)$$

$$\frac{\partial^2 \mathbf{x'Ax}}{\partial \mathbf{x}^2} = (\mathbf{A} + \mathbf{A'})$$
 — if **A** symmetric then $\frac{\partial^2 \mathbf{x'Ax}}{\partial \mathbf{x}^2} = 2\mathbf{A}$