IBM Capstone Project Report Analysis of Seattle Traffic Accidents Data Law Lap Wun, Natalie

1. Introduction and Understand the problem

Traffic accidents occur in everywhere around the world with very high frequency. There are many factors that cause a traffic accident to happen. For example, poor weather condition, difficult road condition, insufficient light intensity and irresponsible drivers.

In order to reduce the number of traffic accidents, we need to understand the causes of common traffic accidents so as to remind people to be aware of these traffic accidents and minimize the chances of inducing traffic accidents.

Therefore, we deeply hope that by doing this analysis, we can educate people and give some useful insights to related authority like transport department.

2. Data Sources

The data contributing in this capstone project come from IBM Data Science Capstone Course. The data is about all accidents or collisions that happened in Seattle. From these data, we will be able to understand the causes of traffic accidents and what makes the accidents more serious.

3. Summary of data set

- Title: Collisions—All Years
- Abstract: All collisions provided by SPD and recorded by Traffic Records.
- Description: This includes all types of collisions. Collisions will display at the intersection or
- mid-block of a segment. Timeframe: 2004 to Present.
- Update Frequency: Weekly
- Keyword(s): SDOT, Seattle, Transportation, Accidents, Bicycle, Car, Collisions, Pedestrian,

Traffic, Vehicle

- Organization: SDOT Traffic Management Division, Traffic Records Group
- Contact Person: SDOT GIS Analyst
- Contact Email: DOT IT GIS@seattle.gov

4. Attribute information

Description	Data Type, Length	Attribute
ESRI unique identifier	Long	OBJECTID
ESRI geometry field	Geometry	SHAPE
A unique key for the incident	Long	INCKEY
Collision address type: Alley, Block, Intersection	Text, 12	ADDRTYPE
Key that corresponds to the intersection associated with a collision	Double	INTKEY
Description of the general location of the collision	Text, 255	LOCATION
	Text, 10	EXCEPTRSNCODE
	Text, 300	EXCEPTRSNDESC
A code that corresponds to the severity of the collision: 3—fatality, 2b—serious injury, 2—injury, 1—prop damage, 0—unknown	Text, 100	SEVERITYCODE
A detailed description of the severity of the collision	Text	SEVERITYDESC
Collision Type	Text, 300	COLLISIONTYPE
The total number of people involved in the collision	Double	PERSONCOUNT
The number of pedestrians involved in the collision. This is entered by the state.	Double	PEDCOUNT
The number of bicycles involved in the collision. This is entered by the state.	Double	PEDCYLCOUNT
The number of vehicles involved in the collision. This is entered by the state.	Double	VEHCOUNT
The number of total injuries in the collision. This is entered by the state.	Double	INJURIES
The number of serious injuries in the collision. This is entered by the state.	Double	SERIOUSINJURIES
The number of fatalities in the collision. This is entered by the state.	Double	FATALITIES
The date of the incident.	Date	INCDATE
The date and time of the incident.	Text, 30	INCDTTM
Category of junction at which collision took place	Text, 300	JUNCTIONTYPE
A code given to the collision by SDOT.	Text, 10	SDOT_COLCODE
A description of the collision corresponding to the collision code.	Text, 300	SDOT_COLDESC
Whether or not collision was due to inattention. (Y/N)	Text, 1	INATTENTIONIND
Whether or not a driver involved was under the influence of drugs or alcohol.	Text, 10	UNDERINFL
A description of the weather conditions during the time of the collision.	Text, 300	WEATHER
The condition of the road during the collision.	Text, 300	ROADCOND
The light conditions during the collision.	Text, 300	LIGHTCOND
Whether or not the pedestrian right of way was not granted. (Y/N)	Text, 1	PEDROWNOTGRNT
A number given to the collision by SDOT.	Text, 10	SDOTCOLNUM
Whether or not speeding was a factor in the collision. (Y/N)	Text, 1	SPEEDING
A code provided by the state that describes the collision. For more information about these codes, please see the State Collision Code Dictionary.	Text, 10	ST_COLCODE
A description that corresponds to the state's coding designation.	Text, 300	ST_COLDESC
A key for the lane segment in which the collision occurred.	Long	SEGLANEKEY
A key for the crosswalk at which the collision occurred.	Long	CROSSWALKKEY
Whether or not the collision involved hitting a parked car. (Y/N)	Text, 1	HITPARKEDCAR

5. Data Cleaning

Since there are missing values, incorrect data types and useless columns and features, therefore, I will drop the unneeded columns, columns with missing values, columns that have the same value in all columns. Also, I will use the desc column as well.

Next, I will fix ST_COLCODE data because there are duplicated values and empty data.

Before:

```
array(['10', '11', '32', '23', '5', '22', '14', '30', ' ', '28', '51', '13', '50', '12', '45', '0', '20', '21', '1', '52', '16', '15', '74', '81', '26', '19', '2', '66', '71', '3', '24', '40', '57', '6', '83', '25', '27', '4', '72', '29', '56', '73', '41', '17', '65', '82', '67', '49', '84', '31', '43', '42', '48', '64', '53', 32, 50, 15, 10, 14, 20, 13, 22, 51, 11, 28, 12, 52, 21, 0, 19, 30, 16, 40, 26, 27, 83, 2, 45, 65, 23, 24, 71, 1, 29, 81, 25, 4, 73, 74, 72, 3, 84, 64, 57, 42, 41, 48, 66, 56, 31, 82, 67, '54', '60', 53, 43, 87, 54, '87', nan, '7', '8', '85', '88', '18'], dtype=object)
```

After:

```
array([10., 11., 32., 23., 5., 22., 14., 30., nan, 28., 51., 13., 50., 12., 45., 0., 20., 21., 1., 52., 16., 15., 74., 81., 26., 19., 2., 66., 71., 3., 24., 40., 57., 6., 83., 25., 27., 4., 72., 29., 56., 73., 41., 17., 65., 82., 67., 49., 84., 31., 43., 42., 48., 64., 53., 54., 60., 87., 7., 8., 85., 88., 18.])
```

6. Exploratory Data Analysis

By using df.describe(), I can check the distribution of numerical columns.

	PERSONCOUNT	PEDCOUNT	PEDCYLCOUNT	VEHCOUNT	UNDERINFL	ST_COLCODE
count	182895.000000	182895.000000	182895.000000	182895.000000	182895.000000	182895.000000
mean	2.476268	0.038995	0.029831	1.971984	0.049192	22.583411
std	1.370912	0.202960	0.171435	0.563237	0.216270	14.575891
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	2.000000	0.000000	0.000000	2.000000	0.000000	11.000000
50%	2.000000	0.000000	0.000000	2.000000	0.000000	15.000000
75%	3.000000	0.000000	0.000000	2.000000	0.000000	32.000000
max	81.000000	6.000000	2.000000	12.000000	1.000000	88.000000

Furthermore, I checked the distribution of the categorical columns.

	ADDRTYPE	SEVERITYDESC	COLLISIONTYPE	JUNCTIONTYPE	SDOT_COLDESC	WEATHER	ROADCOND	LIGHTCOND	ST_COLDESC	HITPARKEDCAR
count	182895	182895	182895	182895	182895	182895	182895	182895	182895	182895
unique	3	2	10	7	39	11	9	9	62	2
top	Block	Property Damage Only Collision	Parked Car	Mid-Block (not related to intersection)	MOTOR VEHICLE STRUCK MOTOR VEHICLE, FRONT END	Clear	Dry	Daylight	One parked one moving	N
freq	119362	126270	43119	86609	83024	109059	122153	113837	39619	177205

Here is the distribution of the Severitydesc column, Collisiontype data and Junctiontype column respectively.

Here is the distributions of other categorical columns.

Then, I compare the ratio between Severitydesc injury collision and property damage only collision in different conditions.

SEVERITYDESC	Injury Collision	Property Damage Only Collision
WEATHER		
Partly Cloudy	0.600000	0.400000
Raining	0.339532	0.660468
Fog/Smog/Smoke	0.334532	0.665468
Clear	0.326273	0.673727
Overcast	0.318986	0.681014
Severe Crosswind	0.280000	0.720000
Blowing Sand/Dirt	0.265306	0.734694
Sleet/Hail/Freezing Rain	0.241071	0.758929
Snowing	0.189557	0.810443
Other	0.152815	0.847185
Unknown	0.066254	0.933746

SEVERITYDESC Injury Collision Property Damage Only Collision ROADCOND

Oil	0.400000	0.600000
Other	0.341463	0.658537
Wet	0.334618	0.665382
Sand/Mud/Dirt	0.328358	0.671642
Dry	0.325322	0.674678
Standing Water	0.268519	0.731481
Ice	0.226848	0.773152
Snow/Slush	0.168712	0.831288
Unknown	0.061377	0.938623

SEVERITYDESC

LIGHTCOND Dark - Unknown Lighting 0.363636 0.636364 Daylight 0.336059 0.663941 Dawn 0.333877 0.666123 Dusk 0.333738 0.666262 Dark - Street Lights On 0.301828 0.698172 Dark - Street Lights Off 0.270527 0.729473 0.752381 Other 0.247619 Dark - No Street Lights 0.224504 0.775496 Unknown 0.055130 0.944870

Injury Collision Property Damage Only Collision

Next, I check the impact on total number of people involved in collision due to weather, road and light condition.

Then, I will see if the traffic accidents happened due to the fact that the driver took drugs or alcohol.

SEVERITYDESC Injury Collision Property Damage Only Collision
UNDERINFL

1	0.392131	0.607869
0	0.305334	0.694666

7. Prediction modelling

I used Random Forest Classifier Algorithm.

Here is the evaluation.

	precision	recall	f1-score	support
Injury Collision Property Damage Only Collision	0.34 0.70	0.79 0.25	0.47 0.37	16597 33757
accuracy macro avg weighted avg	0.52 0.58	0.52 0.43	0.43 0.42 0.40	50354 50354 50354

8. Result

The performance model did make sense. However, it is difficult to determine what type of accidents or collisions that we cannot predict under what circumstances the accidents will happen. It makes senses because accidents are what we cannot predict.

9. Conclusion

Although the data only recorded the traffic accidents in Seattle, not other places, it can still be used as reference in other places all over the world.

Also, it is safer for drivers not to take any drugs and drink any alcohol before driving.

Last but not least, though there is no direct relation in different conditions in weather, road and light etc, we should be more aware of poor weather condition, difficult road condition and insufficient light intensity before and during driving.