ACTIVITE

But de l'exercice : approcher $\ln(l+a)$ par un polynôme de degré 5 lorsque a appartient à l'intervalle $[0;+\infty[$.

Soit a dans l'intervalle $[0; +\infty[$; on note $I_0(a) = \int_0^a \frac{dt}{1+t}$ et pour $k \in \mathbb{N}^*$, on pose $I_k(a) = \int_0^a \frac{(t-a)^k}{(1+t)^{k+1}} dt$.

- 1. Calculez $I_0(a)$ en fonction de a.
- 2. A l'aide d'une intégration par partie, exprimez $I_1(a)$ en fonction de a.
- A l'aide d'une intégration par partie, démontrez que I_{k+1}(a) = (-1)^{k+1} a^{k+1} / k (a) pour tout k ∈ N*.
- 4. Soit P le polynôme défini sur \mathbb{R} par $P(x) = \frac{1}{5}x^5 \frac{1}{4}x^4 + \frac{1}{3}x^3 \frac{1}{2}x^2 + x$. Démontrez en calculant $I_2(a)$, $I_3(a)$ et $I_4(a)$, que $I_5(a) = \ln(1+a) P(a)$.
- 5. Soit $J(a) = \int_0^a (t-a)^5 dt$. Calculez J(a).
- 6. a. Démontrez que pour tout $t \in [0; a]$, $\frac{(t-a)^5}{(1+t)^6} \ge (t-a)^5$.
- b. Démontrez que pour tout $a \in [0; +\infty[, J(a) \le I_5(a) \le 0]$.
- 7. En déduire que pour tout $a \in [0; +\infty[, |\ln(1+a) P(a)| \le \frac{a^6}{6}]$.
- Déterminez, en justifiant votre réponse, un intervalle sur lequel P(a) est une valeur approchée de ln(1 + a) à 10⁻³ près.