Devoir surveillé n°8 Version n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$, soit E un ensemble à n éléments.

- 1) Soit $p \in [0, n]$, soit X une partie à p éléments de E. Combien y a-t-il de parties Y de E disjointes de X?
- 2) Combien y a-t-il de couples (X,Y) formés de parties disjointes de E?

II. Calcul d'une intégrale.

Partie A: Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = \frac{x \ln x}{x+1}$ si x > 0 et f(0) = 0.

- 1) Montrer que l'équation $x + 1 + \ln x = 0$ admet sur \mathbb{R}_+^* une solution unique α , comprise entre 0 et 1.
- 2) a) La fonction f est-elle continue en 0? Est-elle dérivable en ce point?
 - b) Étudier les variations de f et préciser sa limite en $+\infty$.
 - c) Soit (\mathscr{C}) la courbe représentant f dans un repère orthonormé du plan. Déterminer les points d'intersection de (\mathscr{C}) et de la droite d'équation y = -x.

Représenter (\mathscr{C}) .

L'objet de la suite du problème est le calcul de l'intégrale

$$I = \int_0^1 f(x) dx = \int_0^1 \frac{x \ln x}{x+1} dx.$$

Partie B: Limite d'une suite réelle

On considère la suite (S_n) définie sur \mathbb{N}^* par $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k^2}$.

3) Déterminer un réel a tel que pour tout $n \in \mathbb{N}^*$,

$$\int_0^{\pi} at^2 \cos(nt) \, \mathrm{d}t = \frac{(-1)^{n-1}}{n^2}.$$

Indication: on pourra procéder par intégrations par parties.

- 4) Pour chaque $n \in \mathbb{N}^*$, exprimer S_n à l'aide d'une intégrale.
- 5) Démontrer que, pour tout réel t différent de $2p\pi$ pour tout $p \in \mathbb{Z}$,

$$\sum_{k=1}^{n} \cos(kt) = \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}.$$

6) On considère la fonction g définie sur $[0, 2\pi[$ par $g(t) = \frac{t^2}{\sin(\frac{t}{2})}$ si $t \in]0, 2\pi[$ et g(0) = 0.

Montrer que g est de classe \mathscr{C}^1 sur $[0, 2\pi]$.

7) a) Vérifier que, pour tout $n \in \mathbb{N}^*$,

$$S_n = \frac{\pi^2}{12} - \frac{1}{4\pi} \int_0^{\pi} g(t) \sin\left(n + \frac{1}{2}\right) t dt.$$

b) À l'aide d'une intégration par parties, montrer que si h est une fonction de classe \mathscr{C}^1 sur $[0,\pi]$, on a, pour tout $n\in\mathbb{N}^*$,

$$\left| \int_0^\pi h(t) \sin\left(n + \frac{1}{2}\right) t \, \mathrm{d}t \right| \leqslant \frac{|h(0)|}{n + \frac{1}{2}} + \frac{\pi}{n + \frac{1}{2}} \, \, \max_{t \in [0,\pi]} |h'(t)|.$$

c) En déduire l'existence et la valeur de la limite de la suite (S_n) .

Partie C : Calcul de I.

Pour tout entier $k \ge 1$, on considère les fonctions f_k définies sur \mathbb{R}_+ par : $f_k(x) = x^k \ln x$ si x > 0 et $f_k(0) = 0$.

- 8) a) Étudier la continuité de f_1 sur [0,1].
 - **b)** Pour $k \ge 2$, montrer que f_k est dérivable sur [0,1] et exprimer sa dérivée à l'aide de f_{k-1} .
- 9) Pour tout entier $k \ge 1$, calculer l'intégrale $I_k = \int_0^1 f_k(x) dx$.

10) On pose $m = \max_{t \in [0,1]} |f(t)|$. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\left| I - \sum_{k=1}^{n} (-1)^{k-1} I_k \right| \le m \int_0^1 x^n \, \mathrm{d}x.$$

11) En déduire la valeur de I.

III. Nombre de dérangements

Soit E un ensemble, on appelle $d\acute{e}rangement$ de E une permutation E sans aucun point fixe, i.e. une application $\sigma: E \to E$ bijective vérifiant $\forall x \in E, \ \sigma(x) \neq x$. Pour chaque $n \in \mathbb{N}^*$, on note d_n le nombre de dérangements d'un ensemble à n éléments, et on pose $d_0 = 1$.

- 1) Question préliminaire
 - a) Montrer que, pour tout $n, \ell \in \mathbb{N}$ vérifiant $\ell \geqslant n$, on a

$$\sum_{k=0}^{n-\ell} (-1)^k \binom{n+1-\ell}{k} = (-1)^{n-\ell}.$$

b) En déduire que, pour tout $n, \ell \in \mathbb{N}$ vérifiant $\ell \geqslant n$, on a

$$\sum_{k=\ell}^{n} \binom{k}{n+1} (-1)^{k-\ell} \binom{k}{\ell} = (-1)^{n-\ell} \binom{n+1}{\ell}.$$

c) Montrer la formule d'inversion de Pascal : pour tout $u, v \in \mathbb{C}^{\mathbb{N}}$, si

$$\forall n \in \mathbb{N}, \ v_n = \sum_{k=0}^n \binom{n}{k} u_k,$$

alors

$$\forall n \in \mathbb{N}, \ u_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} v_k.$$

Indication : on pourra mettre en œuvre un raisonnement par récurrence.

- 2) Soit $1 \le k \le n$ et $A \subset E$ de cardinal k. Combien y a-t-il de permutations de E ayant exactement pour ensemble de points fixes A?
- 3) En déduire que, pour tout $n \in \mathbb{N}$,

$$n! = \sum_{k=0}^{n} \binom{n}{k} d_k.$$

4) En déduire que pour tout $n \in \mathbb{N}$,

$$d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

5) Montrer que

$$d_n \sim \frac{n!}{\mathrm{e}}.$$

— FIN —