Grupo Crupo Crupo

Estrutura de Dados

PROVA 01 Valor 10pts

1. Você foi contratado para auxiliar em um sistema de um cinema que controlará venda de ingressos para ocupação das poltronas de uma sessão.

A identificação das poltronas segue a sequência estabelecida pelas filas existentes e suas respectivas colunas (corredores).

Hoje a sala do cinema possui 16 filas, que tem a numeração dividida de 0 a 15 e (a fila 0 representa o corredor superior).

Para cada fila, temos 20 poltronas, sendo que 10 poltronas (indicadas de 0 a 9) estão localizadas à esquerda e 10 poltronas (indicadas de 11 a 20) localizadas à direita.

A coluna 10 representa o corredor central.

Para entendimento gráfico, vamos imaginar o mapa da sala de cinema para a alocação das reservas como se fosse uma matriz bidimensional (utiliza um tipo abstrato de dados para representar este tipo de aplicação).

-	0		9	10	11		20
0							
1	LADO ESQUERDO				LADO DIDEITO		
	LAI	JO ESQUER	(DO	CORREDOR	LADO DIREITO		
15							

Verificando uma alocação, dizer que [8,11] (Considerar [linha,coluna]) identifica a poltrona número 11 do lado esquerdo da fila 8.

Para identificar que a poltrona[8,11] está ocupada consideramos o valor armazenado como sendo 1, ou seja, poltrona[8,11]=1; caso contrário ela receberá 0, ou seja, poltrona[8,11]=0 identificando que está livre.

Para qualquer posição a qual a coluna é 10 (poltrona[i,10]) e, qualquer posição a qual a fila é 0 (poltrona[0,j]), consideramos com caso especial por se tratar do corredor, sendo assim não poderá receber valor 0, sempre será 1.

Poderíamos entender a matriz RESERVA como da seguinte forma e considerar utilizar este tipo dentre de uma estrutura:

typedef int CINEMA[16][21];

CINEMA RESERVA;

Atualmente, para se reservar uma poltrona, inicialmente faz-se uma verificação para ver se a mesma está desocupada e em caso positivo esta é reservada, caso contrário é solicitado ao interessado que informe outra poltrona e o procedimento é repetido.

Por exemplo:

- Reservar a poltrona i da coluna j, faz-se uma consulta.
- caso RESERVA [i, j] = 1, deve-se escolher outro lugar;
- caso RESERVA[i, j] = 0, a reserva é concedida e o mapa alterado através da atribuição RESERVA[i, j] = 1.

A partir então com o cenário descrito faça:

- a. Implemente as estruturas necessárias para a criação do sistema para esta situação.
- b. Crie um procedimento ou função para realizar uma reserva no cinema (considerar a poltrona não estar reservada).
- c. Crie um procedimento ou função para cancelar uma reserva no cinema (considerar que a poltrona está reservada).
- d. Crie um procedimento ou função para verificar se uma poltrona está reservada ou não.
- e. Criar um procedimento ou função para mostrar todas as poltronas indicando se estão reservadas ou não.
- f. Crie um procedimento ou função para mostrar todas as poltronas que estão reservadas.
- g. Crie um procedimento ou função para mostrar todas as poltronas que estão livres.
- 2. Suponha agora que irão ocorrer duas sessões de cinema a cada dia. Assim precisaremos de uma estrutura para a matriz RESERVA tridimensional, a qual consideraremos um novo índice k que será 1 ou 2, conforme a sessão desejada.

Poderíamos considerar a implementação desta matriz como sendo

typedef int CINEMASESSAO[2][16][21];

CINEMASESSAO RESERVASESSAO;

A partir então com o cenário atual descrito faça:

a. Realiza o mesmo apresentado nas letras de a) a g) da questão 1 considerando que teremos 2 sessões no mesmo dia.