

1. Aplique el criterio de la integral para decidir si las siguientes series convergen o no.

a)
$$\sum \frac{n}{e^n}$$
.

$$c) \sum \frac{50}{n(n+1)}.$$

b)
$$\sum \frac{1}{n \ln n}$$
.

$$d) \sum \frac{n}{(n+1)(n+2)}.$$

2. Aplique el criterio de comparación para decidir si las siguientes series convergen o no.

$$a) \sum \frac{1}{n^3 - 1}.$$

$$c) \sum \frac{1}{3^n + 1}.$$

$$b) \sum \frac{\ln n}{n}$$

$$d) \sum \frac{n^4 - 5}{n^5}.$$

3. Aplique el criterio del cociente para decidir si las siguientes series convergen o no.

$$a) \sum \frac{(n+1)(n+2)}{n!}.$$

$$c) \sum \frac{2^n}{2n-1}.$$

$$b) \sum \frac{n^n}{n!}$$

$$d) \sum n \left(\frac{3}{4}\right)^n$$

- 4. Muestre que $\mathbb{Z} \times \mathbb{Z}$ es contable.
- 5. Sea $A = \{2^n 3^n : n \in \mathbb{Z}\}$. Muestre que A es contable.
- 6. Muestre que $(0,1) \sim \mathbb{R}$.
- 7. Decida si las siguientes afirmaciones son verdaderas o falsas. Argumente sus respuestas o dé un contraejemplo en su caso
 - a) El conjunto \mathbb{Q} es contable.
 - b) El conjunto $\mathbb{Q} \cap [0,1)$ no es contable.
 - c) Si A y B son conjuntos contables, entonces $A \cup B$ también es contable.
 - d) Si A y B son conjuntos contables, entonces $A \cap B$ también es contable.
 - e) El conjunto $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ no es contable.
 - f) Sean A y B conjuntos tales que $A \subset B$. Si A no es contable, entonces B tampoco es contable