Operácie s mnohočlenmi

- Opačný mnohočlen
- Sčítanie mnohočlenov
- Odčítanie mnohočlenov
- Násobenie mnohočlenov
 - o mnohočlen . jednočlen
 - o mnohočlen . mnohočlen
- Delenie mnohočlenov
 - o mnohočlen: jednočlen
 - o mnohočlen : mnohočlen

Opačný mnohočlen

Napíšte opačný mnohočlen k mnohočlenu $x^6 - 3x^4 + 2x^2 - 7x + 4$ $- x^6 + 3x^4 - 2x^1 + 7x - 4$

Sformulujte pravidlo:

· (-1) Locficienty -> opační čísla muchoč + opačný muchoč =0

Sčítanie mnohočlenov

Sčítajte mnohočleny $x^4 + 2x^2 - 3x + 5$ a $3x^3 - 2x^2 + x - 4$.

X+2x-3x+5+3x-2x+ x-5 = x+ +3x3-2x+1

Sformuluite pravidlo:

sértame "romalé" clemy

Odčítanie mnohočlenov

Odčítajte mnohočleny $3x^2 - xy + 2x - 2$ a $4x^2y - 2xy - \sqrt{3}x + 3$.

3}-xy+2x-2-(4x2y-2xy-13x+3)=3x2+xy+(2+3)x-4x2y-5

Sformuluite pravidlo:

odéilam "romati" ileng

resident frage +

Násobenie jednočlen . mnohočlen

Vynásobte jednočlen2x s mnohočlenom $\left(x^3 - \frac{1}{2}x + 3\right)$. Overte dosadením za x = 1.

$$2x \cdot (x^3 - x^2 + 3) = 2x^4 - x^2 + 6x$$

Sformulujte pravidlo

Kazdý člen mohočena vynásomit jednochnom

Násobenie mnohočlen . mnohočlen

Vynásobte dvojčlen (2x + 3) s dvojčlenom $(x^2 + 2)$. Overte dosadením za x = 1.

Sformulujte pravidlo:

" kardy člem s kardými"

Geometricky interpretujte

$$S = \alpha \cdot (b+c) = \alpha \cdot b + \alpha \cdot c$$

$$S = \beta_1 + \beta_2 = \alpha \cdot b + \alpha \cdot c$$

$$S = \beta_1 + \beta_2 = \alpha \cdot b + \alpha \cdot c$$

$$S = (a+b)(c+d)$$

$$S = S_{2} S_{1} + S_{3} S_{4} = c+d$$

$$c = ad + ac + bd + bc$$

(a+6) = à + 2ab + 6.

 $(a+b).(a+b) = a + ab + ab + b^2 = a + 2ab + b^2$

Príklady:

1.
$$2x^2 + 3x - 2 + 2(x^2 + 1) = (3x^2 - 2x + 1) = 2x^2 + 3x - 2x + 2x^2 + 2x - 3x^2 + 2x$$

2.
$$2x^4 - 3x + x(x^3 - 2x + 2) - x^2(3x^2 - x - 2)^2$$

3. Určte súčin mnohočlenov
$$= 2x^{1} - 3x + x^{1} - 2x^{2} + 2x - 3x^{1} + x^{3} + 2x^{2} = x^{3} - x$$

a.
$$(x^2 - 2x) = (xy - 2x + 1) = x^2y - 2x^2 + x^2 - 2x^2y + 4x^2 - 2x = x^2y - 2x^3 + 5x^2 - 2x^2y - 2x$$

(b.) $(3x^2 - xy + 2x - 2) = (4x^2y - 2xy - x)$

(a+b)=2+2ab+6

4. Zjednodušte
$$(x+2)^2 - (x+1)(x-3) = x^2 + 2 \cdot 2 \times + 4 - x^2 + 3 \times - x + 3 = 6 \times + 7$$

5. Výraz
$$a^2 - bc$$
 vyjadrite ako mnohočlen, ak $a = 2x + 1, b = 1 - 3x, c = 4 + 2x$.

$$(2x+3)^2 - (1-3x) \cdot (4+2x) = 4x^2 + 4x + 1 - 4 - 2x + 12x + 6x^2 = -10x^2 + 11x - 3$$

6. Určte mnohočlen, ktorý je potrebné pričítať k mnohočlenu $(x+y)^2+r^2$ tak, aby sme

dostali mnohočlen $(x + y + z)^2$

$$= 2 \times 2 + 2 \cdot 3 = 12$$

$$= (x + 2 + 2) - x^{2} - 2 = 12$$

$$= (x + 2 + 2) - x^{2} - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x + 2 + 2) - 2 = 12$$

$$= (x$$

7. Určte o koľko sa zväčší hodnota výrazu $(x+2)(x^2-x-3)$, keď sa x zväčší o 2.

(2)
$$-(x+2)$$
 $(x+2)^2 - (x+2)^{-3} = (x+2)$

Samostatne

1. Výraz ab + c vyjadrite ako mnohočlen, ak

a.
$$a = x + 1, b = x^2 - 1, c = x^3 + 1.$$

b.
$$a = b = c = 3x-2$$

- 2. Určte o koľko sa zväčší hodnota výrazu $(a + b + 1)^2$ keď sa α zväčší o 1.
- 3. Zjednodušte

a.
$$x(x^2 + xy + y^2) - y(x^2 - xy - y^2) - x(x^2 + 2y^2)$$

b.
$$(a^2b^3)^2 + (2a^2)^2y^2 - (a^2y)^2 - a^4(b^6 + 1)$$

c.
$$[(p+1)^2 - (p-1)^2]^2$$

Delenie	mnohočlen	• 1	iedn	očlen
Deletile	IIIIIOIIOCIEII	•	Cuii	OCICII

Vydeľte mnohočlen $(9x^3y^2 - 6x^2y^2 + 12xy - 2x)$ jednočlenom 3x.

Vydeľte mnohočlen $(8a^4 - 6a^3 + 2\sqrt{3}a^2 - 14)$ jednočlenom $(-2a^2)$.

Sformuluite pravidlo:

Je výsledkom delenia stále mnohočlen?

A nesmieme zabudnúť, že

Delenie mnohočlen: mnohočlen

Inšpirujme sa postupom delenia viacciferných čísel

2275: 13 =	$(3x^3-2x^2+x-3):(x+2)=$

Úloha: Vydeľte $(x^5 - 3x^2 - 4x + 6)$: $(x^2 - 2)$ a vykonajte skúšku.

Príklady:

1. Vydeľte mnohočleny

a.
$$(2x^3 + 5x^2 - 5x + 1): (2x - 1)$$

b.
$$(6x^6 - 8x^5 + 14x^4 - 21x^3 + 3x^2 + 8x - 14): (3x^3 - x^2 + 2)$$

c.
$$(x^6 + x^3 + 5 - 2x^4 - 2x)$$
: $(x + x^3 - 2)$

d.
$$x^7:(x^2-2x+3)$$

e.
$$(a^3 + b^3): (a + b)$$

f. Nájdite reálne číslo t tak, aby delenie nemalo zvyšok: $(12x^2 + 17x + t)$: (3x + 8)

Samostatne

1. Vydeľte mnohočleny, určte podmienky

a.
$$(6x^2 - 11x - 10)$$
: $(3x + 2)$

b.
$$(9y^4 + 26y^2 + 25): (3y^2 - 2y + 5)$$

c.
$$(11p^3 - 32 + 19p^2 + 3p^4 - 28p): (4 - 3p)$$

d.
$$(a^3 - b^3): (a - b)$$