



# **Studies of young Hawai‘ian lava tubes: Implications for planetary habitability and human exploration**

Amy McAdam, Jacob Bleacher, Kelsey Young, Sarah Stewart Johnson,  
Debra Needham, Nicholas Schmerr, Brian Shiro, Brent Garry, Patrick  
Whelley, Christine Knudson, Slavka Andrejkovicova

# Habitability

- Subsurface environments may preserve records of habitability or biosignatures
  - More stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity)
  - Reduced exposure to radiation
- Lava tubes are expected on Mars, and candidates are observed from orbit
- Few detailed studies of microbial populations in terrestrial lava caves
- Also contain a variety of secondary minerals
- Microbial activity may play a role in mineral formation or be preserved in these minerals
- Minerals can provide insight into fluids (e.g., pH, temperature)



Collapse pit and skylight on Pavonis Mons, Mars



Lunar chain of collapse pits (~50 km long), NW of Gruithuisen crater

# Relevance to human exploration

- Science targets
  - Likely sites for geological and astrobiological investigations
  - Careful contamination mitigation strategies needed (biological, chemical)
- Resource targets
  - Potential subsurface volatiles? (e.g., ice)
  - Natural shelters (e.g., from radiation)
  - Understanding any potential hazards to astronaut health
  - Contamination mitigation needed



# Lava tubes on Mauna Loa volcano

- Several unique, and Mars-relevant, environmental conditions
  - Very young geologically (~200 years)
  - Intermittent exposure to acid aerosols
    - Degassing at Kīlauea lava lake
    - Adjacent periodic (1880-1940) Mauna Loa lava flow emplacement (< 1 km away)
  - High elevation (~8,000 ft), basalt or volcanic aerosols more likely source of secondary salt ions than ocean
- Located near the Hawai‘i Space Exploration Analog and Simulation (HI-SEAS) Mars analog station
  - Team members serve as science support
  - HI-SEAS team explores tubes for use as safe havens



# Preliminary studies of Lava Tubes

- Magnetometry
- LiDAR mapping
- Field X-ray Fluorescence (XRF) chemical analyses
- X-ray Diffraction (XRD) mineralogical analyses
- Evolved Gas Analysis Mass Spectrometry (EGA-MS) for constraints on mineralogy and chemistry
- Sequencing of DNA from collected samples to understand the microbial populations



# Magnetometry

Nick Schmerr, Brian Shiro



- Measured total magnetic field anomaly on lava flow with a GEM Systems Overhauser Magnetometer
- Search for subsurface cavities by looking for a deficit in local magnetic field strength





# LiDAR

Brent Garry, Patrick Whelley



## Lidar captures details of flow textures



# XRF analyses

Kelsey Young, Debra Needham

- Field analyses enabled in situ constraints on sample chemistry
  - e.g., white powdery deposits hypothesized to be Na sulfate based on field spectra dominated by Na and S
  - Confirmed by XRD analyses
- Spectra were collected from a large variety of cave features, data analysis still in progress



# XRD analyses

Amy McAdam, Slavka Andrejkovicova,  
Christine Knudson

- Samples collected for EGA-MS and microbial analyses in the same areas
- Samples cleanly processed in the lab
- Analyzed on an Olympus Terra XRD instrument or Bruker D8 Discover diffractometer



# XRD analyses

- Basalts contain minor pyrite
- White powdery deposits of Na sulfates
- White coatings of gypsum
- Small branched features: monohydrocalcite, calcite, and gypsum
  - Monohydrocalcite is metastable and forms from an Mg-bearing, amorphous Ca carbonate precursor (e.g., Rodriguez-Blanco et al., 2014)



# EGA-MS analyses

Amy McAdam, Christine Knudson,  
Slavka Andrejkovicova,

- Samples are heated; evolved volatiles are detected by a mass spectrometer
- Enables constraints on mineralogy, organic chemistry, and organic-mineral relationships



# Preliminary DNA Sequencing

Sarah Stewart Johnson

- Sample collection in Zymo DNA/RNA Shield Lysis Tubes in the field
- Homogenization followed by extraction with a Zymo Quick DNA kit
- Preliminary 16S sequencing on 8 samples from two lava tube areas (two replicates per sample)



# Phylum-Level Bacterial Diversity

Sarah Stewart Johnson

- Broadly similar community profiles
- System dominated by bacteria by *Proteobacteria* and *Actinobacteria*
- Large proportion of unclassified bacteria (teal bars) and candidate divisions
- Deeper sequencing underway to elucidate metabolic pathways and novel organisms



# Summary

- Lava tubes in the martian subsurface could be detected by astronauts using magnetometry and mapped in detail with LiDAR
- Chemistry, mineralogy and microbiology data indicate that ongoing studies will help illuminate alteration characteristics and microbial associations within tube deposits, with implications for:
  - Habitability and astrobiology on Mars
  - Knowledge of minimum environmental conditions for sustaining life in young basaltic terrains
- Ongoing work will provide important information for HEOMD studies of potential human exploration or use of lava caves on Mars
- Caves are both a science target and a potential resource for manned missions
  - How do we minimize human contamination of sensitive locations?
  - How do we ensure safe subsurface spaces for humans?
  - What instruments are needed and what types of missions (robotic missions, telerobotics during manned missions)?

A photograph showing a dark, rocky landscape, possibly a cave entrance or a deep ravine. A bright, glowing opening is visible in the distance, illuminating the surrounding rock formations.

Thanks!



# Preliminary DNA Sequencing

Sarah Stewart Johnson



|                         |         |
|-------------------------|---------|
| Gemmatimonadetes        | 0.8%    |
| Chlamydiae              | 0.5%    |
| Nitrospirae             | 0.3%    |
| Candidate_division_TM7  | 0.2%    |
| Cyanobacteria           | 0.2%    |
| Chlorobi                | 0.1%    |
| Fibrobacteres           | 0.1%    |
| Candidate_division_TM6  | 0.09%   |
| Firmicutes              | 0.09%   |
| Deinococcus-Thermus     | 0.08%   |
| Candidate_division_BRC1 | 0.07%   |
| WCHB1-60                | 0.05%   |
| Candidate_division_OD1  | 0.02%   |
| Spirochaetes            | 0.004%  |
| Fusobacteria            | 0.004%  |
| Candidate_division_TG-1 | 0.0007% |

- Several interesting bacteria present
  - Candidate divisions, unclassified bacteria, deltaproteobacteria (can be sulfur oxidizers and reducers)
  - Next step: sequence down to the next level to get an idea of metabolisms