Title:

Design and implement encoder and decoder using logic gates

Objectives:

- To understand the concepts of encoders and decoders in digital logic circuits.
- To design and implement a 4-to-2 binary encoder using logic gates.
- To design and implement a 2-to-4 binary decoder using logic gates.
- To verify the functionality of the encoder and decoder using truth tables and simulations.

Equipment:

- Power supply
- Connecting wires
- Logic gates (AND, OR, NOT)
- Breadboard

Truth-Table of Encoder:

INPUTS									OUTPUTS		
Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀	A ₂	A ₁	A ₀	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

Logic Diagram of Encoder:

Truth-Table of Decoder:

	Inputs		Outputs					
E	$\mathbf{A_1}$	$\mathbf{A_0}$	$\mathbf{Y_0}$	$\mathbf{Y_1}$	Y ₂	Y ₃		
1	0	0	1	0	0	0		
1	0	1	0	1	0	0		
1	1	0	0	0	1	0		
1	1	1	0	0	0	1		

Logic Diagram of Decoder:

Conclusion:

Encoders and decoders are essential components in digital communication systems. They play a crucial role in converting information between different formats. By designing and implementing a 4-to-2 binary encoder and a 2-to-4 binary decoder, we have gained a deeper understanding of these fundamental digital logic circuits.