CME 307 / MS&E 311 / OIT 676: Optimization

LP geometry, modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

September 22, 2025

Course survey

you're interested in:

- modeling real-world problems, from political science and economics to energy and desalination!
- robustness and modeling under uncertainty
- understanding core optimization concepts like duality and KKT conditions
- ...

questions:

- recommended resource for linear algebra?
- how to ask questions in class?

requests:

slower on proofs, please!

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $\pm \infty$

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $\pm \infty$

Q: if $p^* = -\infty$, does a solution exist?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $\pm \infty$

Q: if $p^* = -\infty$, does a solution exist?

Q: if $p^* = \infty$, does a solution exist?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $\pm \infty$

Q: if $p^* = -\infty$, does a solution exist?

Q: if $p^* = \infty$, does a solution exist?

henceforth assume $A \in \mathbb{R}^{m \times n}$ has full row rank m

Q: why? how to check?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $\pm \infty$

Q: if $p^* = -\infty$, does a solution exist?

Q: if $p^* = \infty$, does a solution exist?

henceforth assume $A \in \mathbb{R}^{m \times n}$ has full row rank m

Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and remove

- \triangleright x_i servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_i$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient $i, i = 1, \ldots, m$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- \triangleright x_i servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient i, i = 1, ..., m

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

extensions:

▶ foods come from recipes? x = By

- \triangleright x_j servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient $i, i = 1, \dots, m$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

extensions:

- ightharpoonup foods come from recipes? x = By
- ightharpoonup ensure diversity in diet? $y \leq u$

- \triangleright x_i servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient $i, i = 1, \dots, m$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

extensions:

- ▶ foods come from recipes? x = By
- ightharpoonup ensure diversity in diet? $y \leq u$
- ▶ ranges of nutrients? Ax + s = b, $1 \le s \le u$

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints.

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$$\{Ax \mid x \geq 0\} = \left\{ \sum_{i=1}^{n} a_i x_i \mid x \geq 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$$\{Ax \mid x \geq 0\} = \left\{ \sum_{i=1}^{n} a_i x_i \mid x \geq 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

▶ LP is feasible if $b \in \mathbf{cone}(a_1, \ldots, a_n)$

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$${Ax \mid x \ge 0} = \left\{ \sum_{i=1}^{n} a_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

▶ LP is feasible if $b \in \mathbf{cone}(a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

▶ define a **hyperplane** $\{x \mid Ax = b\}$

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$$\{Ax \mid x \geq 0\} = \left\{ \sum_{i=1}^n a_i x_i \mid x \geq 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

▶ LP is feasible if $b \in \mathbf{cone}(a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?)

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, \dots a_n]$:

$$\{Ax \mid x \geq 0\} = \left\{ \sum_{i=1}^{n} a_i x_i \mid x \geq 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

▶ LP is feasible if $b \in \mathbf{cone}(a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

- ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?)
- ▶ define a **halfspace** $\{x \mid a^T x \ge b\}$

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$$\{Ax \mid x \geq 0\} = \left\{ \sum_{i=1}^{n} a_i x_i \mid x \geq 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

▶ LP is feasible if $b \in \mathbf{cone}(a_1, \dots, a_n)$

interpretation: intersection of hyperplane and halfspaces

- ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?)
- ▶ define a **halfspace** $\{x \mid a^T x \ge b\}$
- **•** the **positive orthant** $x \ge 0$ is an intersection of halfspaces

the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$$\{Ax \mid x \geq 0\} = \left\{ \sum_{i=1}^{n} a_i x_i \mid x \geq 0 \right\} = \mathbf{cone}(a_1, \dots, a_n)$$

▶ LP is feasible if $b \in \mathbf{cone}(a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

- ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?)
- ▶ define a **halfspace** $\{x \mid a^T x \ge b\}$
- ▶ the **positive orthant** $x \ge 0$ is an intersection of halfspaces
- ▶ LP is feasible if hyperplane $\{x \mid Ax = b\}$ intersects the positive orthant

▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 - \theta)y$ for $\theta \in [0, 1]$

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$\operatorname{\mathsf{conv}}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \; \theta_i \geq 0, \; \sum_{i=1}^k \theta_i = 1 \right\}$$

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

define the convex hull of a set S:

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

▶ define **polytope**: the convex hull of a finite set: $conv(\{x_1, ..., x_k\})$ some useful convex sets:

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets:
 - ▶ a hyperplane is convex

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets:
 - a hyperplane is convex
 - a halfspace is convex

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: $conv(\{x_1, ..., x_k\})$ some useful convex sets:
 - a hyperplane is convex
 - a halfspace is convex
 - the intersection of convex sets is convex

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$\mathsf{conv}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \ \theta_i \geq 0, \ \sum_{i=1}^k \theta_i = 1 \right\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets:
 - ▶ a hyperplane is convex
 - a halfspace is convex
 - the intersection of convex sets is convex
 - ▶ the feasible set $\{x : Ax = b, x \ge 0\}$ is convex

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

LP inequality form

another useful form for LP is inequality form

minimize $c^T x$ subject to $Ax \le b$

LP inequality form

another useful form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

interpretation: halfspaces

- $ightharpoonup a_i^T x \le b_i$ defines a halfspace
- $ightharpoonup Ax \le b$ defines a **polyhedron**: intersection of halfspaces
- ▶ LP is feasible if polyhedron $\{x \mid Ax \leq b\}$ is nonempty

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_i amount of resource j available
- $ightharpoonup d_i$ demand for product i

minimize $c^T x$ subject to $Ax \le b$ $0 \le x \le d$

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_i amount of resource j available
- $ightharpoonup d_i$ demand for product i

minimize	$c^T x$
subject to	$Ax \leq b$
	$0 \le x \le a$

extensions:

▶ fixed cost for producing product *i* at all?

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_i amount of resource j available
- \triangleright d_i demand for product i

minimize	$c^T x$
subject to	$Ax \leq b$
	$0 \le x \le a$

extensions:

▶ fixed cost for producing product i at all? $c^Tx + f^Tz$, $z_i \in \{0, 1\}$, $x_i \leq Mz_i$ for M large

LP inequality form to standard form

standard form to inequality form

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array} \rightarrow$$

LP inequality form to standard form

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

minimize $c^T x$
subject to $Ax \le b$
 $Ax \ge b$
 $-x < 0$

LP inequality form to standard form

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

minimize $c^T x$
subject to $Ax \le b$
 $Ax \ge b$
 $-x < 0$

inequality form to standard form

minimize
$$c^T x$$

subject to $Ax \le b$

LP inequality form to standard form

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

minimize $c^T x$
subject to $Ax \le b$
 $Ax \ge b$
 $-x < 0$

inequality form to standard form

minimize
$$c^T x$$

subject to $Ax \le b$

minimize $c^T (x_+ - x_-)$
subject to $A(x_+ - x_-) + s = b$
 $s, x_+, x_- > 0$

so both forms have the same expressive power, and feasible sets are polyhedra

Active constraints

for constraint set $Ax \le b$, an **active constraint** at x is one that holds with equality:

$$a_i^T x = b_i$$

Active constraints

for constraint set $Ax \leq b$, an **active constraint** at x is one that holds with equality:

$$a_i^T x = b_i$$

• the **active set** at x is the set of indices of active constraints $\{i \mid a_i^T x = b_i\}$

Active constraints

for constraint set $Ax \leq b$, an **active constraint** at x is one that holds with equality:

$$a_i^T x = b_i$$

▶ the **active set** at x is the set of indices of active constraints $\{i \mid a_i^T x = b_i\}$

for nonnegative variable $x \ge 0$, x_i is **active** if $x_i > 0$

example: active slack variables are dual to active constraints

$$\begin{array}{cccc} Ax \leq b & \Longleftrightarrow & Ax+s=b, \ s \geq 0 \\ a_i^Tx = b_i & \Longleftrightarrow & s_i = 0 \\ \text{constraint } i \text{ is active} & \Longleftrightarrow & \text{slack variable } s_i \text{ is inactive} \end{array}$$

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S.

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S.

proof: suppose by way of contradiction that x^* is not extreme in S:

$$x^* = \theta y + (1 - \theta)z \quad \text{for } y, z \in S, \theta \in (0, 1)$$
$$p^* := c^T x^* = \theta c^T y + (1 - \theta)c^T z > \theta p^* + (1 - \theta)p^* = p^*$$

where the inequality follows from the (unique) optimality of x^* . Contradiction!

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S.

proof: suppose by way of contradiction that x^* is not extreme in S:

$$egin{array}{lll} x^\star &=& heta y + (1- heta)z & ext{for } y,z \in \mathcal{S}, heta \in (0,1) \ p^\star := c^T x^\star &=& heta c^T y + (1- heta)c^T z > heta p^\star + (1- heta)p^\star = p^\star \end{array}$$

where the inequality follows from the (unique) optimality of x^* . Contradiction!

Q: Example of a problem with a non-extreme solution?

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S.

proof: suppose by way of contradiction that x^* is not extreme in S:

$$x^{\star} = \theta y + (1 - \theta)z \quad \text{for } y, z \in S, \theta \in (0, 1)$$
$$p^{\star} := c^{T}x^{\star} = \theta c^{T}y + (1 - \theta)c^{T}z > \theta p^{\star} + (1 - \theta)p^{\star} = p^{\star}$$

where the inequality follows from the (unique) optimality of x^* . Contradiction!

Q: Example of a problem with a non-extreme solution?

Q: Does there always exist an extreme solution?

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$

interpretation: $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$

interpretation: $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x

fact: x is a vertex of $S \implies x$ is an extreme point of S

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$

interpretation: $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x

fact: x is a vertex of $S \implies x$ is an extreme point of S

proof:

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$

interpretation: $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x

fact: x is a vertex of $S \implies x$ is an extreme point of S

proof: x is a vertex of S. suppose its defining vector is c and consider the optimization problem

minimize
$$c^T x$$

subject to $x \in S$

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$

interpretation: $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x

fact: x is a vertex of $S \implies x$ is an extreme point of S **proof:** x is a vertex of S. suppose its defining vector is c and consider the optimization problem

minimize
$$c^T x$$
 subject to $x \in S$

x is the unique optimum of this problem, so the proof of this statement follows from the previous proof.

recall the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$ (LP)

recall the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$ (LP)

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, ..., n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

▶ $A_S \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S

recall the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$ (LP)

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \ldots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S
- ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$

recall the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$ (LP)

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \ldots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S
- ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$

recall the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$ (LP)

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, ..., n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S
- ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$

Q: how to find a BFS?

recall the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$ (LP)

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \dots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \ge 0.$$

- $ightharpoonup A_S \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S
- ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$

Q: how to find a BFS?

A: choose *m* linearly independent columns of *A* and set $x = A_s^{-1}b$; check $x \ge 0$.

Extreme point ← vertex ← BFS

fact. consider the feasible set $F = \{x \mid Ax = b, x \ge 0\}$ in \mathbb{R}^n . the following are equivalent:

- \triangleright x is an extreme point of F
- x is a vertex of F
- ▶ x is a BFS of F

Extreme point \iff vertex \iff BFS

fact. consider the feasible set $F = \{x \mid Ax = b, x \ge 0\}$ in \mathbb{R}^n . the following are equivalent:

- \triangleright x is an extreme point of F
- x is a vertex of F
- x is a BFS of F

implications: since any polyhedron $Ax \le b$ can be written as Ax = b, $x \ge 0$,

- ▶ (BFS ⇒) a polyhedron has a finite number of extreme points
- $lackbox{}$ (extreme point \Longrightarrow) BFS are independent of the representation of the feasible set

Extreme point \iff vertex \iff BFS

fact. consider the feasible set $F = \{x \mid Ax = b, x \ge 0\}$ in \mathbb{R}^n . the following are equivalent:

- \triangleright x is an extreme point of F
- x is a vertex of F
- x is a BFS of F

implications: since any polyhedron $Ax \leq b$ can be written as Ax = b, $x \geq 0$,

- ▶ (BFS ⇒) a polyhedron has a finite number of extreme points
- lackbox (extreme point \Longrightarrow) BFS are independent of the representation of the feasible set

we have already shown that vertex \implies extreme point. need to show

- ▶ extreme point ⇒ BFS
- ▶ BFS ⇒ vertex

we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point

we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $x^* \in F$ but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $x_S^* = A_S^{-1}b$, and $x_{\overline{5}}^* = 0$.

we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $x^* \in F$ but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $x_S^* = A_S^{-1}b$, and $x_{\overline{S}}^* = 0$. consider $I = \{i : x_i^* > 0\}$, the active set of variables in x^* .

- \blacktriangleright if A_I were full rank |I|, we could complete A_I to an invertible A_S ,
- ▶ so there is some $d_I \in \text{nullspace}(A_I)$, $d_I \neq 0$.

we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $x^{\star} \in F$ but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $x_S^{\star} = A_S^{-1}b$, and $x_{\overline{S}}^{\star} = 0$. consider $I = \{i : x_i^{\star} > 0\}$, the active set of variables in x^{\star} .

- ightharpoonup if A_I were full rank |I|, we could complete A_I to an invertible A_S ,
- ▶ so there is some $d_I \in \text{nullspace}(A_I)$, $d_I \neq 0$.

extend this vector to $d \in \mathbb{R}^n$ with $d_{\bar{l}} = 0$, so $Ad = A_l d_l = 0$. now for $\epsilon \leq \min_i x_i^* / \max_i |d_i|$, define $x^+, x^- \in \mathbb{R}^n$ as

$$x^+ = x^* + \epsilon d, \qquad x^- = x^* - \epsilon d.$$

these are feasible:

- $x^+, x^- \ge 0$ by our choice of ϵ ,
- $Ax^+ = Ax^- = b$ since Ad = 0.

we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $x^* \in F$ but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $x_S^* = A_S^{-1}b$, and $x_{\bar{S}}^* = 0$. consider $I = \{i : x_i^* > 0\}$, the active set of variables in x^* .

- \blacktriangleright if A_I were full rank |I|, we could complete A_I to an invertible A_S ,
- ▶ so there is some $d_I \in \text{nullspace}(A_I)$, $d_I \neq 0$.

extend this vector to $d \in \mathbb{R}^n$ with $d_{\bar{l}} = 0$, so $Ad = A_l d_l = 0$. now for $\epsilon \leq \min_i x_i^* / \max_i |d_i|$, define $x^+, x^- \in \mathbb{R}^n$ as

$$x^+ = x^* + \epsilon d, \qquad x^- = x^* - \epsilon d.$$

these are feasible:

- $x^+, x^- \ge 0$ by our choice of ϵ ,
- $Ax^+ = Ax^- = b$ since Ad = 0.

so $x^* = \frac{1}{2}x^+ + \frac{1}{2}x^-$ is not extreme in F.

$BFS \implies vertex$

suppose x^* is a BFS of F with active set S and A_S invertible. define $c \in \mathbb{R}^n$ as

$$c_i = egin{cases} 0 & ext{if } i \in S \ 1 & ext{otherwise} \end{cases}$$

so
$$c^T x^* = 0$$
.

$BFS \implies vertex$

suppose x^* is a BFS of F with active set S and A_S invertible. define $c \in \mathbb{R}^n$ as

$$c_i = egin{cases} 0 & ext{if } i \in S \ 1 & ext{otherwise} \end{cases}$$

so $c^T x^* = 0$.

- $ightharpoonup x^*$ is the only point in F supported on S, as $\operatorname{nullspace}(A_S)=0$,
- **>** so any other feasible point $x \in F$ has a positive objective value $c^T x > 0$.

hence x^* is a vertex of F with defining vector c.

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

Solving LPs

algorithms:

- enumerate all vertices and check
- ▶ fourier-motzkin elimination
- simplex method
- ellipsoid method
- ▶ interior point methods
- ► first-order methods
- **.**...

Solving LPs

algorithms:

- enumerate all vertices and check
- fourier-motzkin elimination
- simplex method
- ellipsoid method
- interior point methods
- first-order methods
- **.**...

remarks:

- enumeration and elimination are simple but not practical
- simplex was the first practical algorithm; still used today
- ellipsoid method is the first polynomial-time algorithm; not practical
- ▶ interior point methods are polynomial-time and practical
- first-order methods are practical and scale to large problems

consider the system of inequalities

$$x_1 + 2x_2 \le 4$$

 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

consider the system of inequalities

$$x_1 + 2x_2 \le 4$$

 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

we can collect inequalities on x_1 into those bounding it above and below:

$$\{0, x_2 - 1\} \le x_1 \le 4 - 2x_2$$

consider the system of inequalities

$$x_1 + 2x_2 \le 4$$

 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

we can collect inequalities on x_1 into those bounding it above and below:

$$\{0, x_2 - 1\} \le x_1 \le 4 - 2x_2$$

by appending all pairwise inequalities to existing inequalities on x_2 , we recover the feasible set for x_2 :

$$\begin{array}{rcl}
0 & \leq & 4 - 2x_2 \\
x_2 - 1 & \leq & 4 - 2x_2 \\
x_2 & \geq & 0
\end{array}$$

$$\implies x_2 \in [0, 5/3].$$

consider the system of inequalities

$$x_1 + 2x_2 \le 4$$

 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

we can collect inequalities on x_1 into those bounding it above and below:

$$\{0, x_2 - 1\} \le x_1 \le 4 - 2x_2$$

by appending all pairwise inequalities to existing inequalities on x_2 , we recover the feasible set for x_2 :

$$\begin{array}{rcl}
0 & \leq & 4 - 2x_2 \\
x_2 - 1 & \leq & 4 - 2x_2 \\
x_2 & \geq & 0
\end{array}$$

$$\implies x_2 \in [0, 5/3].$$

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- ▶ $A_S \in \mathbb{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_{S} \geq 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbb{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there?

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, ..., n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbb{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ▶ if $x_S \ge 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there? n choose m is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ ("exponentially many")

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective c^Tx
- ightharpoonup move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective c^Tx
- ightharpoonup move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

discuss in groups:

- how to find an initial BFS?
- how to find a neighboring BFS with better objective?
- how to prove optimality?

solve an auxiliary problem for which a BFS is known:

solve an auxiliary problem for which a BFS is known:

minimize
$$\sum_{i=1}^{m} z_i$$
 subject to
$$Ax + Dz = b$$

$$x, z \ge 0$$

where $D \in \mathbb{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for $i = 1, \dots, m$.

solve an auxiliary problem for which a BFS is known:

minimize
$$\sum_{i=1}^{m} z_i$$
 subject to
$$Ax + Dz = b$$

$$x, z \ge 0$$

where $D \in \mathbb{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for $i = 1, \dots, m$.

ightharpoonup x = 0, z = |b| is a BFS of this problem

solve an auxiliary problem for which a BFS is known:

minimize
$$\sum_{i=1}^{m} z_i$$
 subject to
$$Ax + Dz = b$$

$$x, z \ge 0$$

where $D \in \mathbb{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for $i = 1, \dots, m$.

- ightharpoonup x = 0, z = |b| is a BFS of this problem
- (x,z)=(x,0) is a BFS of this problem $\iff x$ is a BFS of the original problem

start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$

$$x^+ \leftarrow x + \theta d^j, \qquad \theta > 0$$

where $d_j^j=1$ and $d_i^j=0$ for $i
ot\in S\cup\{j\}.$ need to solve for $d_S^j.$

start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$

$$x^+ \leftarrow x + \theta d^j, \qquad \theta > 0$$

where $d_{j}^{j}=1$ and $d_{i}^{j}=0$ for $i
ot\in\mathcal{S}\cup\{j\}.$ need to solve for $d_{\mathcal{S}}^{j}.$

need to stay feasible wrt equality constraints, so need

$$0 = Ad^j = A_S d_S^j + a_j \implies d_S^j = -A_S^{-1} a_j$$

start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$

$$x^+ \leftarrow x + \theta d^j, \qquad \theta > 0$$

where $d_{j}^{j}=1$ and $d_{i}^{j}=0$ for $i
ot\in\mathcal{S}\cup\{j\}$. need to solve for $d_{\mathcal{S}}^{j}$.

need to stay feasible wrt equality constraints, so need

$$0 = Ad^j = A_S d_S^j + a_j \implies d_S^j = -A_S^{-1} a_j$$

▶ as $x_S > 0$ is non-degenerate, $\exists \theta > 0$ st $x^+ \ge 0$

start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$

$$x^+ \leftarrow x + \theta d^j, \quad \theta > 0$$

where $d_{j}^{j}=1$ and $d_{i}^{j}=0$ for $i
ot\in S \cup \{j\}$. need to solve for d_{S}^{j} .

need to stay feasible wrt equality constraints, so need

$$0 = Ad^j = A_S d_S^j + a_j \implies d_S^j = -A_S^{-1} a_j$$

- ▶ as $x_S > 0$ is non-degenerate, $\exists \theta > 0$ st $x^+ \geq 0$
- how does objective change if we move to $x^+ = x + \theta d^j$?

$$c^T x^+ - c^T x = \theta c^T d^j = \theta c_j - \theta c_S^T A_S^{-1} a_j$$

Reduced cost

define **reduced cost** $\bar{c}_j = c_j - c_S^T A_S^{-1} a_j$, $j \notin S$

Reduced cost

define **reduced cost**
$$\bar{c}_j = c_j - c_S^T A_S^{-1} a_j, j \notin S$$

fact:

- ightharpoonup if $\bar{c} \geq 0$, x is optimal
- if x is optimal and nondegenerate $(x_S > 0)$, then $\bar{c} \ge 0$

why might x be degenerate? why might that pose a problem?

three steps to the proof:

▶ every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$)

three steps to the proof:

• every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta \geq 0$,

$$A(x + \theta d) = b, \quad x + \theta d \ge 0$$

- ▶ nonnegativity requires $d_j \ge 0$ for $j \notin S$
- feasibility requires $0 = Ad = A(d_S + \sum_{i \neq S} \alpha_i e_i)$ for some $\alpha \geq 0$
- ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$
- ightharpoonup so $d = \sum_{j \notin S} \alpha_j (d_S^j + e_j) = \sum_{j \notin S} \alpha_j d^j$

three steps to the proof:

• every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta \geq 0$,

$$A(x + \theta d) = b, \quad x + \theta d \ge 0$$

- ▶ nonnegativity requires $d_j \ge 0$ for $j \notin S$
- feasibility requires $0 = Ad = A(d_S + \sum_{j \notin S} \alpha_j e_j)$ for some $\alpha \ge 0$
- ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$
- ightharpoonup so $d = \sum_{j \notin S} \alpha_j (d_S^j + e_j) = \sum_{j \notin S} \alpha_j d^j$
- ▶ the feasible set $F = \{x \mid Ax = b, x \ge 0\} \subseteq x + \mathbf{cone}(\{d_j \mid j \notin S\})$

three steps to the proof:

• every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta \geq 0$,

$$A(x + \theta d) = b, \quad x + \theta d \ge 0$$

- ▶ nonnegativity requires $d_j \ge 0$ for $j \notin S$
- feasibility requires $0 = Ad = A(d_S + \sum_{i \neq S} \alpha_i e_i)$ for some $\alpha \geq 0$
- ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$
- \blacktriangleright so $d = \sum_{i \notin S} \alpha_j (d_S^j + e_j) = \sum_{i \notin S} \alpha_i d^j$
- ▶ the feasible set $F = \{x \mid Ax = b, x \ge 0\} \subseteq x + \mathbf{cone}(\{d_j \mid j \notin S\})$ by convexity

three steps to the proof:

• every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta > 0$,

$$A(x + \theta d) = b$$
, $x + \theta d > 0$

- ▶ nonnegativity requires $d_i \ge 0$ for $i \notin S$
- feasibility requires $0 = Ad = A(d_S + \sum_{i \neq S} \alpha_i e_i)$ for some $\alpha \geq 0$
- ► solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$
- \blacktriangleright so $d = \sum_{i \neq S} \alpha_i (d_S^j + e_i) = \sum_{i \neq S} \alpha_i d^j$
- ▶ the feasible set $F = \{x \mid Ax = \overline{b}, x \geq 0\} \subseteq x + \mathbf{cone}(\{d_j \mid j \notin S\})$ by convexity
- so

$$p^* = \min_{x' \in F} c^T x' \geq \min_{\alpha \geq 0} c^T (x + \sum_{j \notin S} \alpha_j d_j)$$
$$= c^T x + \min_{\alpha \geq 0} \sum_{j \notin S} \alpha_j \bar{c}_j = c^T x$$

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

- ► Gurobi and COPT are state-of-the-art commercial solvers
- ▶ GLPK and SCIP are free solvers that are not as fast

- ► Gurobi and COPT are state-of-the-art commercial solvers
- ▶ GLPK and SCIP are free solvers that are not as fast
- gurobipy is a python interface to Gurobi
- CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems

- Gurobi and COPT are state-of-the-art commercial solvers
- ▶ GLPK and SCIP are free solvers that are not as fast
- gurobipy is a python interface to Gurobi
- CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems
- OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code https://optimus-solver.com/dashboard

- ► Gurobi and COPT are state-of-the-art commercial solvers
- ▶ GLPK and SCIP are free solvers that are not as fast
- gurobipy is a python interface to Gurobi
- CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems
- OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code https://optimus-solver.com/dashboard
- JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super speedy for MILP applications

- ► Gurobi and COPT are state-of-the-art commercial solvers
- ▶ GLPK and SCIP are free solvers that are not as fast
- gurobipy is a python interface to Gurobi
- ► CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems
- OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code https://optimus-solver.com/dashboard
- ▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super speedy for MILP applications demos:
 - power systems https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
 - multicast routing https://colab.research.google.com/drive/ 1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Oro Verde case + tutorial

https://github.com/stanford-cme-307/demos/tree/main/gurobipy

Modeling challenges

model the following as standard form LPs:

- 1. inequality constraints. $Ax \leq b$
- 2. free variable. $x \in \mathbb{R}$
- 3. **absolute value.** constraint $|x| \le 10$
- 4. **piecewise linear.** objective $max(x_1, x_2)$
- 5. assignment. e.g., every class is assigned exactly one classroom
- 6. **logic.** e.g., class enrollment \leq capacity of assigned room
- 7. **(big-M).** $Ax \le b$ if $x \ge 10$
- 8. **flow.** e.g., the least cost way to ship an item from s to t

Modeling challenges

model the following as standard form LPs:

- 1. inequality constraints. $Ax \leq b$
- 2. free variable. $x \in \mathbb{R}$
- 3. **absolute value.** constraint $|x| \le 10$
- 4. **piecewise linear.** objective $max(x_1, x_2)$
- 5. assignment. e.g., every class is assigned exactly one classroom
- 6. **logic.** e.g., class enrollment \leq capacity of assigned room
- 7. **(big-M).** $Ax \le b$ if $x \ge 10$
- 8. **flow.** e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb for a detailed treatment of a flow problem.)

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

introduce slack variable
$$s \in \mathbb{R}^m$$
: $Ax + s = b$, $s \ge 0 \iff Ax \le b$

minimize $c^Tx + 0^Ts$

subject to $Ax + s = b$
 $x, s > 0$

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize $c^T x$ subject to Ax = b

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize
$$c^T x$$

subject to $Ax = b$

introduce positive variables x_+, x_- so $x = x_+ - x_-$:

minimize
$$c^T x_+ - c^T x_-$$

subject to $Ax_+ - Ax_- = b$
 $x_+, x_- \ge 0$

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize
$$||x||_1 = \sum_{i=1}^n |x_i|$$

subject to $Ax = b$
 $x \ge 0$

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize
$$||x||_1 = \sum_{i=1}^n |x_i|$$

subject to $Ax = b$
 $x \ge 0$

introduce epigraph variable $t \in \mathbb{R}^n$ so $|x_i| \leq t_i$:

minimize
$$1^T t$$

subject to $Ax = b$
 $-t \le x \le t$
 $x, t > 0$

verify these constraints ensure $|x_i| \le t_i$.

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize
$$||x||_1 = \sum_{i=1}^n |x_i|$$

subject to $Ax = b$
 $x \ge 0$

introduce epigraph variable $t \in \mathbb{R}^n$ so $|x_i| \le t_i$:

minimize
$$1^T t$$

subject to $Ax = b$
 $-t \le x \le t$
 $x, t > 0$

verify these constraints ensure $|x_i| \le t_i$.

Q: Why does this work? For what kinds of functions can we use this trick?

Use binary variables to handle assignment

every class is assigned exactly one classroom: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

Use binary variables to handle assignment

every class is assigned exactly one classroom: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

now solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to
$$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \quad \text{(every class assigned one room)}$$

$$\sum_{i=1}^{n} X_{ij} \leq 1, \ \forall j \text{(no more than one class per room)}$$

$$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$

where C_{ij} is the cost of assigning class i to room j.

Use binary variables to handle logic

model class enrollment $p_i \leq \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $X_{ij} = \begin{cases} 1 & \text{class } i \text{ is assigned to room } j \\ 0 & \text{otherwise} \end{cases}$

Use binary variables to handle logic

model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to
$$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \quad \text{(every class assigned one room)}$$

$$\sum_{i=1}^{n} X_{ij} \leq 1, \ \forall j \text{(no more than one class per room)}$$

$$\sum_{i=1}^{n} p_{i} X_{ij} \leq c_{j}, \ \forall j \quad \text{(capacity constraint)}$$

$$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$

where C_{ij} is the cost of assigning class i to room j.

Use binary variables to handle logic

model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to
$$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \quad \text{(every class assigned one room)}$$

$$\sum_{i=1}^{n} X_{ij} \leq 1, \ \forall j \text{(no more than one class per room)}$$

$$\sum_{i=1}^{n} p_i X_{ij} \leq c_j, \ \forall j \quad \text{(capacity constraint)}$$

$$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$

where C_{ij} is the cost of assigning class i to room j. what if we want enrollment p to be a variable, too?

... or use a big-M relaxation!

model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = \begin{cases} 1 & \text{class } i \text{ is assigned to room } j \\ 0 & \text{otherwise} \end{cases}$$

suppose M is a very large number.

...or use a big-M relaxation!

model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

suppose M is a very large number. solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to
$$\sum_{i=1}^{n} X_{ij} = 1, \ \forall j \quad \text{(every class assigned one room)}$$

$$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \text{(no more than one class per room)}$$

$$p_i \leq c_j + (1 - X_{ij})M, \ \forall i,j \quad \text{(capacity constraint)}$$

$$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$

where C_{ij} is the cost of assigning class i to room j.