令和8年度 京都大学大学院理学研究科 数学・数理解析専攻

数学系·数理解析系 入学試験問題

2026 Entrance Examination (Mathematics Course/Mathematical Sciences Course)
Master's Program, Division of Mathematics and Mathematical Sciences, Kyoto University

専門科目 Advanced Mathematics

◎ 問題は 13 題ある.数学系志望者は 11~11 のうちの 2 題を選択して解答せよ.数理
解析系志望者は, 1 \sim 13 のうちの 2 題を選択して解答せよ $.$ (数学系と数理解析系の一方
のみを志望している者の解答問題数は 2 題であり,両系をともに志望している者の解答問
題数は,選択によって 2~4 題となる.)選択した問題番号を選択票に記入すること.
There are 13 problems. Applicants to the Mathematics Course (数学系) should select and
answer 2 problems out of the 11 problems 1 – 11. Applicants to the Mathematical Sciences
Course (数理解析系) should select and answer 2 problems out of the 13 problems $1-13$.
(Applicants to either the Mathematics Course or the Mathematical Sciences Course should
only answer 2 problems, and applicants to both courses should answer 2-4 problems in total,
depending on their choices.) Write the problem numbers you choose on the selection sheet.

- ◎ 解答時間は 2 時間 30 分 である.
- The duration of the examination is 2 hours and 30 minutes.
- ◎ 問題は日本語および英語で書かれている.解答は日本語または英語どちらかで書くこと.

The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.

◎ 参考書・ノート類・電卓・携帯電話・情報機器・<u>時計</u>等の持ち込みは <u>禁止</u> する. 指 定された荷物置場に置くこと.

It is <u>not allowed</u> to refer to any textbooks, notebooks, calculators, cell phones, information devices or <u>personal watches/clocks</u> during the examination. Such materials and devices must be kept in the designated area.

「注意」 Instructions

- 1. 指示のあるまで問題文を見ないこと.
 Do not look at the problems until it is permitted by the proctor.
- 2. 答案用紙・下書用紙のすべてに、受験番号・氏名を記入せよ.
 Write your name and applicant number on each answer sheet and each draft/calculation sheet.
- 3. 解答は問題ごとに別の答案用紙を用い、問題番号を各答案用紙の枠内に記入せよ. Use a separate answer sheet for each problem and, on each sheet, write the number of the problem being attempted within the box.
- 4. 1 間を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること.

If you need more than one answer sheet for a problem, you may continue to an additional answer sheet (or more). If you do so, indicate clearly at the bottom of the page that there is a continuation.

5. 提出の際は、上から選択票、答案用紙(問題番号順)、下書用紙の順に重ね、記入した面を外にして一括して二つ折りにして提出すること.

When handing in your exam to the proctor, stack your selection sheet and answer sheets (ordered by problem number), followed by the draft/calculation sheets. Fold the stack in half, with the filled-in side facing outward.

6. この問題冊子は持ち帰ってよい.

You may keep this problem sheet.

[記号] Notation

以下の問題で \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ,整数の全体,有理数の全体,実数の全体,複素数の全体を表す. In the problems, we denote the set of all integers by \mathbb{Z} , the set of all rational numbers by \mathbb{Q} , the set of all real numbers by \mathbb{R} and the set of all complex numbers by \mathbb{C} .

The English translation follows.

- 1 環 $R = \mathbb{R}[X,Y]/(X^2 + Y^2 1)$ に対して次の問に答えよ.
 - (1) *R* は整域であることを示せ.
 - (2) Rが単項イデアル整域 (PID) かどうかを決定せよ.
- $X = \mathbb{Q}(\sqrt[3]{1+\sqrt{-3}})$ とし、K を含む \mathbb{Q} 上の最小のガロア拡大体を F とする.このとき、ガロア群 $G = \operatorname{Gal}(F/\mathbb{Q})$ を求めよ.
- |4| \mathbb{R}^2 上の C^∞ 級微分形式 arphi を次のように定める.

$$\varphi = \frac{dx \wedge dy}{(1 + x^2 + y^2)^4}.$$

また、 \mathbb{R}^3 の C^∞ 級部分多様体 S^2 を次のように

$$S^2 = \{(s, t, u) \in \mathbb{R}^3 \mid s^2 + t^2 + u^2 = 1\}$$

おく.

(1) 写像 $f: \mathbb{R}^2 \to S^2$ を次のように

$$f(x,y) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{-1+x^2+y^2}{1+x^2+y^2}\right)$$

定める. S^2 上の C^∞ 級微分形式 ψ で $f^*\psi = \varphi$ をみたすものが一意的に存在することを示せ.

- (2) $\iota: S^2 \to \mathbb{R}^3$ を包含写像とする. \mathbb{R}^3 上の C^∞ 級閉微分形式 $\tilde{\varphi}$ で $(\iota \circ f)^* \tilde{\varphi} = \varphi$ を みたすものは存在しないことを証明せよ.
- |5| $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ の部分集合 U, V, W を次のように定める.

$$\begin{split} U &= \big\{ (p,q,r) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \ \big| \ p \neq q \big\}, \\ V &= \big\{ (p,q,r) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \ \big| \ q \neq r \big\}, \\ W &= \big\{ (p,q,r) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \ \big| \ r \neq p \big\}. \end{split}$$

- (1) $X = U \cup V \cup W$ の整数係数ホモロジー群を求めよ.
- (2) $Y = U \cap V \cap W$ の整数係数ホモロジー群を求めよ.

 (X, \mathcal{M}, μ) は $\mu(X) < \infty$ をみたす測度空間とし,L は正の実数とする。X 上の実数値または複素数値 μ -可積分関数 f について,次の命題 P を考える。

命題 P: $\left| \int_A f \, d\mu \right| \le L\mu(A)$ が任意の $A \in \mathcal{M}$ について成り立つならば、

$$|f(x)| \le L$$
, μ -a.e. x

が成り立つ.

- (1) f が実数値であるとき、命題 P を証明せよ.
- (2) f が複素数値であるとき, 命題 P を証明せよ.
- $oxed{7}$ $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ とする. $H^\infty(\mathbb{D})$ を \mathbb{D} 上の有界正則関数全体のなす複素バナッハ空間とし、 $f\in H^\infty(\mathbb{D})$ のノルムを

$$||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|$$

とする. $0 < r \le 1$ に対して、作用素 $T_r: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ を

$$(T_r f)(z) = \int_0^r f(tz) dt$$

と定める.

(1) 0 < r < s < 1 を固定する. 次の条件 (*) を満たす連続関数

$$k \colon [0,r] \times [0,2\pi] \times \mathbb{D} \to \mathbb{C}$$

が存在することを示せ.

(*) 任意の $f\in H^\infty(\mathbb{D})$ と $z\in\mathbb{D}$ に対して

$$(T_r f)(z) = \int_0^r \int_0^{2\pi} k(t, \theta, z) f(se^{i\theta}) d\theta dt.$$

ただしiは虚数単位とする.

- (2) T_1 はコンパクト作用素であることを示せ.
- $\Omega \subset \mathbb{R}^3$ は C^{∞} 級の境界 $\partial\Omega$ をもつ有界領域とし, $\overline{\Omega}$ を Ω の閉包とする. $\nu(x) = (\nu_1(x), \nu_2(x), \nu_3(x))$ を $x \in \partial\Omega$ における $\partial\Omega$ の外向き単位法線ベクトルとする.関数 $u: \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ は連続で $\Omega \times (0, \infty)$ 上 C^{∞} 級であり,かつ u の各階の偏導関数は $\overline{\Omega} \times [0, \infty)$ 上の有界な連続関数として拡張でき,さらに u は次をみたすとする:

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u = 0, & (x,t) \in \Omega \times (0,\infty) \\ \frac{\partial u}{\partial \nu} = 0, & (x,t) \in \partial \Omega \times (0,\infty) \\ \int_{\Omega} u(x,0) \, dx \neq 0. \end{cases}$$

ただし、
$$\Delta u = \sum_{k=1}^3 \frac{\partial^2 u}{\partial x_k^2}$$
 、 $\frac{\partial u}{\partial \nu} = \sum_{k=1}^3 \frac{\partial u}{\partial x_k} \nu_k$ である.関数 $M(t), E(t)$ を

$$M(t) = \int_{\Omega} u(x,t) dx$$
, $E(t) = \int_{\Omega} |u(x,t)|^2 dx$

により定めるとき、以下の(1)、(2)、(3)、(4)を示せ.

- (1) M(t) は t によらない定数関数である.
- (2) 任意のt > 0に対して、E(t) < E(0)が成り立つ.
- (3) $H(t) = \log E(t)$ とおくとき、任意の t > 0 に対して、 $\frac{d^2H}{dt^2}(t) \ge 0$ が成り立つ.
- (4) 任意のT > 0と $t \in (0,T)$ に対して, $E(t) \leq E(0)^{1-\frac{t}{T}} E(T)^{\frac{t}{T}}$ が成り立つ.
- $\boxed{9}$ C^2 級関数 $p: \mathbb{R} \to \mathbb{R}$ は p(x+1) = p(x) かつ |p'(x)| < 1 を満たす.このとき, $t \in \mathbb{R}$ の 関数 $(x(t), y(t)) \in \mathbb{R}^2$ に対する以下の微分方程式

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = 2 - y - p'(x).$$

を考える. 以下の問いに答えよ.

- (1) $y_0 \in [1,3]$ とする. 初期値を x(0) = 0, $y(0) = y_0$ とする初期値問題を考える. このとき,初期値問題の相空間 (x,y) における解軌道は,ある有限の時間 T で,x = 1 とただ一点で交わることを示せ.
- (2) p(x) の周期性より,この微分方程式は相空間 $\mathbb{R}/\mathbb{Z} \times \mathbb{R}$ 上の解を定めている.このとき,(1) で得られた初期値問題の解の中に,この相空間上の周期 T の周期軌道が存在することを示せ.
- (3) A(t) &

$$A(t) = \frac{y^2(t)}{2} + p(x(t))$$

で定める. このとき, (2) で得られた任意の周期軌道に対して A(0) = A(T) となることを使って, (2) の周期軌道がただ一つであることを示せ.

10 3次元空間中の非圧縮性磁気流体を考える. 直交座標系を (x,y,z) として, 流体の速度場 u と磁場 B, ならびに圧力場 p は次の式に従う.

$$\begin{split} & \nabla \cdot \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0, \\ & \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \left(p + \frac{|\boldsymbol{B}|^2}{2} \right) + \boldsymbol{B} \cdot \nabla \boldsymbol{B}, \\ & \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{B} - \boldsymbol{B} \cdot \nabla \boldsymbol{u} = \beta \nabla^2 \boldsymbol{B}. \end{split}$$

ここで $\beta > 0$ は磁気拡散率であり定数である.

- (1) $\mathbf{u} = (0, v(x, t), 0), \mathbf{B} = (1, b(x, t), 0), p = p(x, t)$ とするときの b(x, t) の従う偏微分方程式を導け.
- (2) x=0 にて $b(0,t)=e^{-it}$ が与えられたときの x>0 での b(x,t) を考える. $b=\hat{b}(x)e^{-it}$ の形を仮定し, $x\to\infty$ で $|\hat{b}|$ が有界であるとする.

$$\alpha^2 = \frac{1}{1 - i\beta}, \text{ Im } \alpha > 0$$

のように定義される複素数 α を用いて $\hat{b}(x)$ 及び b(x,t) を求めよ. ここで i は虚数単位とする.

- (3) (2) の b について $f = -\frac{1}{|b|^2} \frac{d|b|^2}{dx}$ を計算せよ.
- (4) (3) で求めた f を β の関数とみて, $0 < \beta < \infty$ の範囲で $f(\beta)$ の最大値を求めて $f(\beta)$ の振る舞いを記述せよ.

|11| 以下の文法

$$\mathsf{Term} \ni M ::= \mathbf{K} \mid \mathbf{W} \mid (M M)$$

で定まる項の集合 Term を考える. すなわち、Term は、

- (i) **K**と**W**を要素に持ち,かつ,
- (ii) M_1 と M_2 が要素であるとき $(M_1 M_2)$ も要素である

ような集合のなかで最小のものである. 評価関係 $(_) \downarrow (_) \subseteq \mathsf{Term} \times \mathsf{Term}$ を、以下の 6 個の規則

$$\frac{M \Downarrow \mathbf{K}}{\mathbf{K} \Downarrow \mathbf{K}} \qquad \frac{M \Downarrow \mathbf{K}}{(M N) \Downarrow (\mathbf{K} N)} \qquad \frac{M \Downarrow \mathbf{W}}{(M N) \Downarrow (\mathbf{W} N)}$$

$$\frac{M \Downarrow (\mathbf{K} L) \quad L \Downarrow V}{(M N) \Downarrow V} \qquad \frac{M \Downarrow (\mathbf{W} L) \quad ((L N) N) \Downarrow V}{(M N) \Downarrow V}$$

をみたす Term 上の二項関係のなかで最小のものとする. ただし、規則

$$\frac{A_1 \quad \dots \quad A_n}{B}$$

 $(n \ge 0)$ は, $\lceil A_1, \ldots, A_n$ が成り立つならば B が成り立つ」ということを表す.以下の問いに答えよ.

- (1) 任意の項 $M, V \in \mathsf{Term}$ について, $M \Downarrow V$ であることと $(IM) \Downarrow V$ であること が同値となるような項 $I \in \mathsf{Term}$ の例をひとつ挙げよ.
- (2) $M \downarrow V$ をみたす $V \in \text{Term}$ が存在しない項 $M \in \text{Term}$ の例をひとつ挙げよ.
- (3) 項 $M, V_1, V_2 \in \mathsf{Term}$ について, $M \Downarrow V_1 \wr M \Downarrow V_2$ がともに成り立つとき, $V_1 \wr V_2$ は一致することを示せ.

- [12] G = (V, E) を有限の頂点集合 V と辺集合 E を持つ有向グラフとし、 $w: E \to \mathbb{R}_{>0}$ を辺重みとする.ただし、 $\mathbb{R}_{>0}$ は正の実数全体とする.以下の条件 (I) と (II) が同値であることを示せ.
 - (I) G の任意の単純有向閉路 C に対して, $\prod_{e \in E(C)} w(e) \le 1$ が成立する. ただし, E(C) は C の辺集合とする.
 - (II) ある関数 $p: V \to \mathbb{R}_{>0}$ が存在して、任意の辺 $e = (u, v) \in E$ に対して、 $p(u)w(e) \leq p(v)$ が成立する.
- 13 有界なハミルトニアン H を持つ量子力学系を考える.そのヒルベルト空間 \mathcal{H} の完全 正規直交系としてエネルギー固有状態 $\{|n\rangle\}_{n=0}^{\infty}$ が取れるものと仮定する.ただし, $|n\rangle$ に対するエネルギー固有値を E_n と記す. \mathcal{H} 上の有界な自己共役演算子 A が与えられ たとき,任意の非負整数 k について

$$\sum_{n=0}^{\infty} (E_n - E_k) \left| \langle k | A | n \rangle \right|^2 = \langle k | B | k \rangle$$

となるような \mathcal{H} 上の自己共役演算子 \mathcal{B} で \mathcal{A} と \mathcal{H} を用いて表されるものをひとつ求めよ.

The English translation starts here.

- Answer the following questions concerning the ring $R = \mathbb{R}[X,Y]/(X^2 + Y^2 1)$.
 - (1) Show that R is an integral domain.
 - (2) Determine whether or not R is a principal ideal domain (PID).
- Let $K = \mathbb{Q}(\sqrt[3]{1+\sqrt{-3}})$. Denote by F the minimal Galois extension over \mathbb{Q} containing K. Determine the Galois group $G = \operatorname{Gal}(F/\mathbb{Q})$.
- Let $G = GL_2(\mathbb{F}_p)$ be the general linear group of degree 2 over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, for p an odd prime number. Find the number of subgroups H of G isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$.
- We define a C^{∞} differential form φ on \mathbb{R}^2 by

$$\varphi = \frac{dx \wedge dy}{(1 + x^2 + y^2)^4}.$$

We define a C^{∞} submanifold of \mathbb{R}^3 by

$$S^2 = \{(s, t, u) \in \mathbb{R}^3 \mid s^2 + t^2 + u^2 = 1\}.$$

(1) We define a map $f: \mathbb{R}^2 \to S^2$ by

$$f(x,y) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{-1+x^2+y^2}{1+x^2+y^2}\right).$$

Prove that there exists a unique C^{∞} differential form ψ on S^2 such that $f^*\psi = \varphi$.

- (2) Let $\iota \colon S^2 \to \mathbb{R}^3$ denote the inclusion map. Prove that there does not exist a C^{∞} closed differential form $\tilde{\varphi}$ on \mathbb{R}^3 such that $(\iota \circ f)^*\tilde{\varphi} = \varphi$.
- $\boxed{5}$ We define subsets U, V, W of $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ by

$$U = \big\{ (p,q,r) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \, \big| \, p \neq q \big\},\,$$

$$V = \{(p, q, r) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \mid q \neq r\},\$$

$$W = \big\{ (p,q,r) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \, \big| \, r \neq p \big\}.$$

- (1) Compute the homology groups with integer coefficients of $X = U \cup V \cup W$.
- (2) Compute the homology groups with integer coefficients of $Y = U \cap V \cap W$.

Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Let L be a positive real number. Consider the following Proposition P for μ -integrable, real-valued or complex-valued functions f on X.

Proposition P. If $\left| \int_A f \, d\mu \right| \leq L\mu(A)$ for every $A \in \mathcal{M}$, then it holds that

$$|f(x)| \le L$$
, μ -a.e. x .

- (1) Prove Proposition P when f is real-valued.
- (2) Prove Proposition P when f is complex-valued.
- Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Let $H^{\infty}(\mathbb{D})$ be the complex Banach space of all bounded holomorphic functions over \mathbb{D} , and we define the norm of $f \in H^{\infty}(\mathbb{D})$ by

$$||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|.$$

For each $0 < r \le 1$, we define an operator $T_r \colon H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ by

$$(T_r f)(z) = \int_0^r f(tz) dt.$$

(1) Fix 0 < r < s < 1. Show that there exists a continuous function

$$k \colon [0,r] \times [0,2\pi] \times \mathbb{D} \to \mathbb{C}$$

satisfying the following condition (*).

(*) For every $f \in H^{\infty}(\mathbb{D})$ and $z \in \mathbb{D}$, we have

$$(T_r f)(z) = \int_0^r \int_0^{2\pi} k(t, \theta, z) f(se^{i\theta}) d\theta dt.$$

Here i denotes the imaginary unit.

- (2) Show that T_1 is a compact operator.
- S Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with C^{∞} boundary $\partial\Omega$ and let $\overline{\Omega}$ be the closure of Ω . Let $\nu(x) = (\nu_1(x), \nu_2(x), \nu_3(x))$ be the outward unit normal vector of $\partial\Omega$ at $x \in \partial\Omega$. Assume that $u : \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ is continuous and infinitely many times differentiable in $\Omega \times (0, \infty)$, and that each partial derivative of u of any order is extendable as a bounded continuous function on $\overline{\Omega} \times [0, \infty)$. Assume in addition that u satisfies the following:

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u = 0, & (x,t) \in \Omega \times (0,\infty) \\ \frac{\partial u}{\partial \nu} = 0, & (x,t) \in \partial \Omega \times (0,\infty) \\ \int_{\Omega} u(x,0) \, dx \neq 0. \end{cases}$$

Here $\Delta u = \sum_{k=1}^{3} \frac{\partial^2 u}{\partial x_k^2}$ and $\frac{\partial u}{\partial \nu} = \sum_{k=1}^{3} \frac{\partial u}{\partial x_k} \nu_k$. Let us define M(t), E(t) as follows:

$$M(t) = \int_{\Omega} u(x,t) dx, \qquad E(t) = \int_{\Omega} |u(x,t)|^2 dx.$$

Show the following (1), (2), (3), and (4).

- (1) M(t) is a constant function, i.e., M(t) is independent of t.
- (2) For any t > 0, the inequality $E(t) \leq E(0)$ holds.
- (3) Set $H(t) = \log E(t)$. Then for any t > 0, the inequality $\frac{d^2H}{dt^2}(t) \ge 0$ holds.
- (4) For any T > 0 and $t \in (0,T)$, the inequality $E(t) \leq E(0)^{1-\frac{t}{T}} E(T)^{\frac{t}{T}}$ holds.
- Let $p: \mathbb{R} \to \mathbb{R}$ be a C^2 function that satisfies p(x+1) = p(x) and |p'(x)| < 1, and consider the following ordinary differential equations for $(x(t), y(t)) \in \mathbb{R}^2$ with respect to $t \in \mathbb{R}$:

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = 2 - y - p'(x).$$

Answer the following questions.

- (1) We consider an initial value problem with initial values x(0) = 0 and $y(0) = y_0$ with $y_0 \in [1,3]$. Prove that the solution orbit in phase space (x,y) intersects with x = 1 at exactly one point at a finite time T.
- (2) In light of the periodicity of p(x), the above differential equations define a solution on the phase space $\mathbb{R}/\mathbb{Z} \times \mathbb{R}$. Prove that there exists a periodic orbit of period T in this phase space as a solution to the initial value problem of (1).
- (3) Define A(t) as follows:

$$A(t) = \frac{y^2(t)}{2} + p(x(t)).$$

Prove, by using A(0) = A(T) for any periodic orbit obtained in (2), that the periodic orbit is unique.

Let us consider an incompressible magneto-hydrodynamic fluid in three-dimensional space. In cartesian coordinates (x, y, z), the velocity, magnetic and pressure fields of the fluid u, B, and p obey the following equations

$$\begin{split} & \nabla \cdot \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0, \\ & \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \left(p + \frac{|\boldsymbol{B}|^2}{2} \right) + \boldsymbol{B} \cdot \nabla \boldsymbol{B}, \\ & \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{B} - \boldsymbol{B} \cdot \nabla \boldsymbol{u} = \beta \nabla^2 \boldsymbol{B}, \end{split}$$

where $\beta > 0$ is the constant magnetic diffusivity.

- (1) Derive the partial differential equation for b(x,t) by assuming $\mathbf{u} = (0, v(x,t), 0)$, $\mathbf{B} = (1, b(x,t), 0)$ and p = p(x,t).
- (2) Let us consider b(x,t) for x > 0 when $b(0,t) = e^{-it}$ is given at x = 0. Assuming that $b = \hat{b}(x)e^{-it}$, and $|\hat{b}|$ is bounded as $x \to \infty$, describe $\hat{b}(x)$ and b(x,t) by using the complex number α defined as follows:

$$\alpha^2 = \frac{1}{1 - i\beta}, \text{ Im } \alpha > 0,$$

where i denotes the imaginary unit.

- (3) Calculate $f = -\frac{1}{|b|^2} \frac{d|b|^2}{dx}$, where b is as in (2).
- (4) Let us consider the function f obtained in (3) as a function of β . Find the maximum of $f(\beta)$ for $0 < \beta < \infty$, and describe the behavior of $f(\beta)$.
- |11| Consider the set Term of terms generated by the following grammar:

$$\mathsf{Term} \ni M ::= \mathbf{K} \mid \mathbf{W} \mid (M M).$$

That is, Term is the smallest set such that

- (i) **K** and **W** are elements of the set, and
- (ii) whenever M_1 and M_2 are elements of the set, so is $(M_1 M_2)$.

Let the evaluation relation $(_) \Downarrow (_) \subseteq \mathsf{Term} \times \mathsf{Term}$ be the smallest binary relation on Term satisfying the following six rules:

where the rule

$$\frac{A_1 \quad \dots \quad A_n}{B}$$

 $(n \ge 0)$ means that B holds whenever A_1, \ldots, A_n hold. Answer the following questions.

- (1) Give a term $I \in \mathsf{Term}$ such that, for any terms $M, V \in \mathsf{Term}$, $M \downarrow V$ holds if and only if $(I M) \downarrow V$ holds.
- (2) Give a term $M \in \mathsf{Term}$ such that there is no $V \in \mathsf{Term}$ satisfying $M \Downarrow V$.
- (3) Let $M, V_1, V_2 \in \text{Term}$. Show that, if both $M \downarrow V_1$ and $M \downarrow V_2$ hold, then V_1 and V_2 are the same term.

- Let G = (V, E) be a directed graph with finite vertex set V and edge set E, and let $w \colon E \to \mathbb{R}_{>0}$ be an edge weight, where $\mathbb{R}_{>0}$ is the set of all positive real numbers. Show that the following conditions (I) and (II) are equivalent.
 - (I) For any simple directed cycle C in G, $\prod_{e \in E(C)} w(e) \leq 1$ holds, where E(C) is the set of edges in C.
 - (II) There exists a function $p: V \to \mathbb{R}_{>0}$ such that $p(u)w(e) \leq p(v)$ holds for any edge $e = (u, v) \in E$.
- Consider a quantum mechanical system whose Hamiltonian H is bounded. Suppose that its Hilbert space \mathcal{H} has a complete orthonormal system given by energy eigenstates $\{|n\rangle\}_{n=0}^{\infty}$. We denote by E_n the energy eigenvalue corresponding to the eigenstate $|n\rangle$. Let A be a bounded self-adjoint operator on \mathcal{H} . Find a self-adjoint operator B on \mathcal{H} given in terms of A and B satisfying

$$\sum_{n=0}^{\infty} (E_n - E_k) |\langle k | A | n \rangle|^2 = \langle k | B | k \rangle$$

for all non-negative integers k.