PSY9511: Seminar 1

Introduction to machine learning

Esten H. Leonardsen 07.11.24

Outline

Plan for the day

- · Round of introductions
- Course information
- · Introduction to machine learning
- Presentation of assignment 1

Introduction to machine learning

Model performance will depend on the dataset we use to calculate the performance metrics

- · Training set: The data we use to estimate the model
 - With a sufficiently flexible model we can always achieve 0 error in the training set
- Test set: Data held-out from the training set such that it remains unseen by the model
 - Performance in the test set is indicative of how well the model generalizes to new data (almost always worse than in the training set)
 - If our model performs well in new data, we can assume that it accurately describes the relationship between the predictors and the response in the general case

How can our model perform poorly?

- <u>Underfitting</u>: The model is too simple to capture the relationship between the predictors and the response
 - · High error in both the training and test set
- Overfitting: The model is too complex and captures noise in the training set
 - · Low error in the training set, high error in the test set

$$\mathbb{E}\left[\left(y-\hat{f}(x)\right)^{2}\right] = \operatorname{Var}(\hat{f}(x)) + \left[\operatorname{Bias}(\hat{f}(x))\right]^{2} + \operatorname{Var}(\epsilon)$$

$$\mathbb{E}\left[\left(y - \hat{f}(x)\right)^{2}\right] = \operatorname{Var}(\hat{f}(x)) + \left[\operatorname{Bias}(\hat{f}(x))\right]^{2} + \operatorname{Var}(\epsilon)$$
| Irreducible error

$$\mathbb{E}\left[\left(y - \hat{f}(x)\right)^{2}\right] = \operatorname{Var}(\hat{f}(x)) + \left[\operatorname{Bias}(\hat{f}(x))\right]^{2} + \operatorname{Var}(\epsilon)$$

$$\uparrow \qquad \qquad \uparrow$$
Variance Bias

