Allu (Lassif		ADSURP	FOR INF TION COE H H LI	PPILIE	ON AND NT OF A	ALKALI	CAL DAT HALIDES AFOSR-T	. PART	T.(U)	1ETC	.5
1 or 3 4 - 7 18800	CINDA							. ند			
					\						

ľ

2

A118801

AFOSR-TR- 82-0687

THERMOPHYSICAL PROPERTIES RESEARCH CENTER **ELECTRONIC PROPERTIES INFORMATION CENTER** THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER UNDERGROUND EXCAVATION AND ROCK PROPERTIES INFORMATION CENTER

ABSORPTION COEFFICIENT OF ALKALI HALIDES (PART I)

Ву

H. H. LI

CINDAS - REPORT 54

March 1979

Copy available to DTIC does not permit fully legible reproduction

Approved for public release, Alegsibation wilingted.

Prepared for

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Department of the Air Force Bolling Air Force Base Washington, D.C. 20332

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS

PURDUE UNIVERSITY
PURDUE INDUSTRIAL RESEARCH PARK
2505 YEAGER ROAD
47005 WEST LAFAYETTE, INDIANA 47906

The same of the sa

029

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER Z. GOVT ACCESSION NO	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 82-0687 AD-A/18 801	The state of the s
TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
BSORPTION COEFFICIENT OF ALKE A HALIDES (PART I)	INTERIM 1 MAY 78 - 30 APR 79
	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)
H LI	F49620-76-C-0105
,	
PERFORMING ORGANIZATION NAME AND ADDRESS URDUE UNIVERSITY	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
595 YEAGER RD , ,	2308/A1
AST LAFAYETTE, IN 47906	611:02F
CONTROLLING OFFICE NAME AND SOFRESS IN FORCE OFFICE OF SCIENTIFIC RESEARCH/NA	12. REPORT DATE
OLLING AIR FORCE BASE, DC 20332 :	MARCH 1979
. •	262
MONITORING AGENCY NAME & ADDRESS(II different from Controlling DINds)	15. SECURITY CLASS. (of this report)
•	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLI	,
DISTRIBUTION STATEMENT (of the photon mineral in Block 20, 14 Million	
DISTRIBUTION STATEMENT (of the electract entered in Block 20, if different from	m Report)
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	n Report)
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different fro	i m Report)
	m Report)
	n Report)
	m Report)
	n Report)
SUPPLEMENTARY NOTES	m Report)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side II necessary and identify by black number)	m Report)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identity by black number) ABSORPTION COEFFICIENT	m Report)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side II necessary and identity by block number) ABSORPTION COEFFICIENT PTICAL CONSTANTS	m Report)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side II necessary and identity by block number) ABSORPTION COEFFICIENT PTICAL CONSTANTS	m Report)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ABSORPTION COEFFICIENT PTICAL CONSTANTS LKALI HALIDES	m Report)
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from the supplementary notes KEY WORDS (Continue on reverse aids if necessary and identity by block number) ABSORPTION COEFFICIENT PTICAL CONSTANTS LKALI HALIDES ABSTRACT (Continue on reverse aids if necessary and identity by block number) at a on absorption coefficients of alkali halides we	
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ABSORPTION COEFFICIENT PTICAL CONSTANTS LKALI HALIDES ABSTRACT (Continue on reverse side if necessary and identify by block number) ata on absorption coefficients of alkali halides w	were complied and analyzed.
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ABSORPTION COEFFICIENT PTICAL CONSTANTS LKALI HALIDES	were complied and analyzed. e absorption edges of the erials LiF, NaF, NaCl, KCl,

cies occur in the region where absorption is extremely low. At low absorption levels, extrinsic absorptions due to impurities and surface contamination domin-

DD 1 JAN 73 1473

UNCLASSIFIED

UNCLASSIFIE:

CURITY CLASSIFICATION OF THIS PAGE (F) at Date Entered)

Tate the intrinsic absorption by factors ranging from fractions to factors by ten. Experience has shown that extrinsic contributions can be reduced through improved crystal preparation. Another possible reason for the discrepancies may be the limit of instrument sensitivity. The results of this work on the alkali halides are given in two separate reports. Presented in this report are essentially the up-to-date wouledge of available data and the recommended room-temperature values of sorption coefficient in the laser wavelength and multiphonon absorption reg at In the second report, results on the data analysis and theoretical dies for the temperature dependence of absorption coefficient will be given k

UNCLASSIFIED
SECURITY CLASSIFICATION OF THE PAGE(When Date Entered

ABSORPTION COEFFICIENT OF ALKALI HALIDES (PART I)

Ву

H. H. LI

CINDAS REPORT 54

March 1979

Prepared for

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Department of the Air Force
Bolling Air Force Base
Washington, D.C. 20332

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFTC)
MOTICE OF TRANSMITTAL TO DTIC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12.
Distribution is unlimited.
MATTHEW J. WERPER
Chief, Technical Information Division

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS Purdue Industrial Research Park 2595 Yeager Road West Lafayette, Indiana 47906

ABSTRACT

Experimental data on the absorption coefficient of alkali halides were searched, compiled, and analyzed. It was found that the bulk of available data were concentrated to the absorption edges of the main transparent region and were for the seven materials LiF, NaF, NaCl, KCl, KBr, KI, and CsI. Although the intrinsic absorption can be calculated by using the exponential dependence of absorption coefficient on frequency which is formulated on the basis of available data, discrepancies occur in the region where absorption is extremely low, as observed at the wavelengths of interest to laser technology. At low absorption levels, extrinsic absorptions due to impurities and surface contamination dominate the intrinsic absorption by factors ranging from fractions to factors by ten. Experience has shown that extrinsic contributions can be reduced through improved crystal growing and surface polishing techniques. Another possible reason for the discrepancies may be the limit of instrument sensitivity, since absorption coefficient lower than 7 x 10⁻⁶ cm⁻¹ cannot be detected with certainty.

The results of this work on the alkali halides are given in two separate reports. Presented in this report are essentially the up-to-date knowledge of available data and the recommended room-temperature values of absorption coefficient in the laser wavelength and multiphonon absorption region. In the second report, results on the data analysis and theoretical studies for the temperature dependence of absorption coefficient will be given.

Accession row.

NTIS GRARI

NTIS TAB

Unanaounced

Unanaounced

Justification

Availability Codes

Availability Special

Dist Special

Key Words: absorption coefficient, optical constants, alkali halides

TABLE OF CONTENTS

																									Page
LIST	OF TABLE	Es .	•	•	•			•	•			•		•	•			•	•	•	•			•	viı
LIST	OF FIGU	RES .		•		•	•	•		•						•				•	•			•	хi
LIST	OF SYMBO	OLS .	•		•		•											•	•		•				хv
1.	INTRODUCT	CION		•	•					•					•	•		•		•	•				1
	BACKGROUI																		-						
	MEASUREM	ENT .	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	7
3.	NUMERICA	L DATA		•	•		•	•		•	•	•			•	•		•		•	•			•	17
	Presenta	ion o	f I)at	а					•		•				•	•	•							17
		thium																							21
		lium F																							69
	3.3. Soc																								97
	3.4. Pot	tassiu	m C	ch1	or:	ide	٠,	KC1	Ļ		•					•		•			•				127
	3.5. Por	tassiu	m E	Bro	mic	ie,	K	Br											•						159
	3.6. Pot	assiu	m I	lod	ide	е,	ΚI	•																	189
	3.7. Ces																								215
4.	SUMMARY (F RES	UL'I	rs .	ANI	D R	EC	OMM	ŒN	DA'	rio	ns							•		•				235
5.	REFERENCI	ES .	•	•	•									•	•	•				•	•	•	•	•	241
APPE	NDTX		_																						255

LIST OF TABLES

		Page
1.	Some Physical Properties of Alkali Halides	. 4
2.	Available Parameters for Dispersion Equations of Alkali Halides at Room Temperature	. 15
3.	Summary of Measurements on the Absorption Coefficient of Lithium Fluoride (Wavenumber Dependence)	. 30
4.	Experimental Data on the Absorption Coefficient of Lithium Fluoride (Wavenumber Dependence)	. 35
5.	Summary of Measurements on the Absorption Coefficient of Lithium Fluoride (Temperature Dependence)	. 43
6.	Experimental Data on the Absorption Coefficient of Lithium Fluoride (Temperature Dependence)	. 44
7.	Summary of Measurements on the Reflectivity of Lithium Fluoride .	46
8.	Experimental Data on the Reflectivity of Lithium Fluoride	. 49
9.	Summary of Measurements on the Transmission of Lithium Fluoride .	58
10.	Experimental Data on the Transmission of Lithium Fluoride	61
11.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Lithium Fluoride	. 66
12.	Recommended Values on Absorption Coefficient of Lithium Fluoride in IR Region at 300 K	67
13.	Summary of Measurements on the Absorption Coefficient of Sodium Fluoride (Wavenumber Dependence)	. 77
14.	Experimental Data on the Absorption Coefficient of Sodium Fluoride (Wavenumber Dependence)	78
15.	Summary of Measurements on the Absorption Coefficient of Sodium Fluoride (Temperature Dependence)	81
16.	Experimental Data on the Absorption Coefficient of Sodium Fluoride (Temperature Dependence)	82
17.	Summary of Measurements on the Reflectivity of Sodium Fluoride	85
18.	Experimental Data on the Reflectivity of Sodium Fluoride	87
19.	Summary of Measurements on the Transmission of Sodium Fluoride	93
20.	Experimental Data on the Transmission of Sodium Fluoride	94

21.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Sodium Fluoride	95
22.	Recommended Values on Absorption Coefficient of Sodium Fluoride in IR Region at 300 K	96
23.	Summary of Measurements on the Absorption Coefficient of Sodium Chloride (Wavenumber Dependence)	105
24.	Experimental Data on the Absorption Coefficient of Sodium Chloride (Wavenumber Dependence)	109
25.	Summary of Measurements on the Absorption Coefficient of Sodium Chloride (Temperature Dependence)	115
26.	Experimental Data on the Absorption Coefficient of Sodium Chloride (Temperature Dependence)	116
27.	Summary of Measurements on the Reflectivity of Sodium Chloride	118
28.	Experimental Data on the Reflectivity of Sodium Chloride	119
29.	Summary of Measurements on the Transmission of Sodium Chloride	121
30.	Experimental Data on the Transmission of Sodium Chloride	122
31.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Sodium Chloride	124
32.	Recommended Values on Absorption Coefficient of Sodium Chloride in IR Region at 300 K	125
33.	Summary of Measurements on the Absorption Coefficient of Potassium Chloride (Wavenumber Dependence)	137
34.	Experimental Data on the Absorption Coefficient of Potassium Chloride (Wavenumber Dependence)	141
35.	Summary of Measurements on the Absorption Coefficient of Potassium Chloride (Temperature Dependence)	147
36.	Experimental Data on the Absrotpion Coefficient of Potassium Chloride (Temperature Dependence)	148
37.	Summary of Measurements on the Reflectivity of Potassium Chloride	150
38.	Experimental Data on the Reflectivity of Potassium Chloride	15
39.	Summary of Measurements on the Transmission of Potassium Chloride	15
40.	Experimental Data on the Transmission of Potassium Chloride	156

41.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Potassium Chloride	157
42.	Recommended Values on Absorption Coefficient of Potassium Chloride in IR Region at 300 K	158
43.	Summary of Measurements on the Absorption Coefficient of Potassium Bromide (Wavenumber Dependence)	167
44.	Experimental Data on the Absorption Coefficient of Potassium Bromide (Wavenumber Dependence)	171
45.	Summary of Measurements on the Absorption Coefficient of Potassium Bromide (Temperature Dependence)	176
46.	Experimental Data on the Absorption Coefficient of Potassium Bromide (Temperature Dependence)	177
47.	Summary of Measurements on the Reflectivity of Potassium Bromide	179
48.	Experimental Data on the Reflectivity of Potassium Bromide	180
49.	Summary of Measurements on the Transmission of Potassium Bromide	184
50.	Experimental Data on the Transmission of Potassium Bromide	185
51.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Potassium Bromide	186
52.	Recommended Values on Absorption Coefficient of Potassium Bromide in IR Region at 300 K	187
53.	Summary of Measurements on the Absorption Coefficient of Potassium Iodide (Wavenumber Dependence)	195
54.	Experimental Data on the Absorption Coefficient of Potassium Iodide (Wavenumber Dependence)	197
55.	Summary of Measurement on the Absorption Coefficient of Potassium Iodide (Temperature Dependence)	201
56.	Experimental Data on the Absorption Coefficient of Potassium Iodide (Temperature Dependence)	202
57.	Summary of Measurements on the Reflectivity of Potassium Iodide	204
58.	Experimental Data on the Reflectivity of Potassium Iodide	206
59.	Summary of Measurements on the Transmission of Potassium Iodide	211

60.	Experimental Data on the Transmission of Potassium Iodide	212
61.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Potassium Iodide	213
62.	Recommended Values on Absorption Coefficient of Potassium Iodide in IR Region at 300 K	214
63.	Summary of Measurements on the Absorption Coefficient of Cesium Iodide (Wavenumber Dependence)	220
64.	Experimental Data on the Absorption Coefficient of Cesium Iodide (Wavenumber Dependence)	222
65.	Summary of Measurements on the Absorption Coefficient of Cesium Iodide (Temperature Dependence)	226
66.	Experimental Data on the Absorption Coefficient of Cesium Iodide (Temperature Dependence)	227
67.	Summary of Measurements on the Reflectivity of Cesium Iodide	229
68.	Experimental Data on the Reflectivity of Cesium Iodide	230
69.	Summary of Measurements on the Transmission of Cesium Iodide	232
70.	Experimental Data on the Transmission of Cesium Iodide	233
71.	Peak Positions (λ_{max}) in μm and Half-Widths (W) in eV for the F, R, M, and N Absorption Bands in Cesium Iodide	234

LIST OF FIGURES

		Page
1.	Typical Absorption Spectrum of an Alkali-Halide Crystal	2
2.	Schematic Absorption Spectrum of an Alkali Halide in Semilogarithismic Scale	13
3.	Absorption Coefficient of Lithium Fluoride (Wavenumber Dependence)	27
4.	Absorption Coefficient of Lithium Fluoride in the Urbach Tail Region	28
5.	Absorption Coefficient of Lithium Fluoride in the Multiphonon Region	29
6.	Absorption Coefficient of Lithium Fluoride (Temperature Dependence)	42
7.	Reflectivity of Lithium Fluoride	45
8.	Transmission of Lithium Fluoride	57
9.	Absorption Coefficient of Sodium Fluoride (Wavenumber Dependence)	74
LO.	Absorption Coefficient of Soidum Fluoride in the Urbach Tail Region	75
1.	Absorption Coefficient of Sodium Fluoride in the Multiphonon Region	76
12.	Absorption Coefficient of Sodium Fluoride (Temperature Dependence)	80
13.	Reflectivity of Sodium Fluoride	84
L4.	Transmission of Sodium Fluoride	92
L5.	Absorption Coefficient of Sodium Chloride (Wavenumber Dependence)	102
16.	Absorption Coefficient of Sodium Chloride in the Urbach Tail Region	103
17.	Absorption Coefficient of Sodium Chloride in the Multiphonon Region	104
18.	Absorption Coefficient of Sodium Chloride (Temperature Dependence)	114
19.	Reflectivity of Sodium Chloride	117
20.	Transmission of Sodium Chloride	120

21.	Absorption Coefficient of Potassium Dependence)		134
22.	Absorption Coefficient of Potassium Region		135
23.	Absorption Coefficient of Potassium Region		136
24.	Absorption Coefficient of Potassium Dependence)		146
25.	Reflectivity of Potassium Chloride		149
26.	Transmission of Potassium Chloride		154
27.	Absorption Coefficient of Potassium Dependence)		164
28.	Absorption Coefficient of Potassium Region		165
29.	Absorption Coefficient of Potassium Region		166
30.	Absorption Coefficient of Potassium Dependence)		175
31.	Reflectivity of Potassium Bromide .		178
32.	Transmission of Potassium Bromide .		183
33.	Absorption Coefficient of Potassium Dependence)		192
34.	Absorption Coefficient of Potassium Region		193
35.	Absorption Coefficient of Potassium Region	Iodide in the Multiphonon	194
36.	Absorption Coefficient of Potassium Dependence)	Iodide (Temperature	200
37.	Reflectivity of Potassium Iodide .		203
38.	Transmission of Potassium Iodide .		210
39.	Absorption Coefficient of Cesium Ioo	dide (Wavenumber Dependence) 2	217
40.	Absorption Coefficient of Cesium Ioo Region	iide in the Urbach Tail	218
41.	Absorption Coefficient of Cesium Ioo Region	iide in the Multiphonon	219

42.	Absorption Coefficient o	of Cesium Iodide (Temperature Depend	len	ce))	•	225
43.	Reflectivity of Cesium I	odide			•	•	228
44.	Transmission of Cesium I	Codide			•	•	231
45.	Semi-Log Plot of v_0 of A	Alkali Halides as a Function of 1/M	•	,	•	•	237
Apper Figur							
A1.	Absorption Coefficient of	of Lithium Fluoride in vuv Region		•	•	•	256
A2.	Absorption Coefficient of	of Sodium Fluoride in vuv Region			•	•	257
A3.	Absorption Coefficient of	of Sodium Chloride in vuv Region		,			258
A4.	Absorption Coefficient of	of Potassium Chloride in vuv Region	•	•			259
A5.	Absorption Coefficient of	of Potassium Bromide in vuv Region		•		•	260
A6.	Absorption Coefficient of	of Potassium Iodide in vuv Region	• •	•	•		261
A7.	Absorption Coefficient of	of Cesium Iodide in vuv Region .			•		262

LIST OF SYMBOLS

A	constant
В	constant
с	constant
С	constant; calorimetric method
d	thickness of specimen
E	energy in units of eV
Eo	constant
Ea	energy absorbed
ET	energy transmitted
f	frequency of radiation
h	Plank constant
k	Boltzmann constant
L	length of specimen
n	refractive index
R	apparent reflectivity; reflection method
R_{∞}	reflectivity at normal incidence without contribution from multiple internal reflection $% \left(1\right) =\left(1\right) +\left(1\right) +\left($
R	complex reflectivity
$s_{\mathbf{i}}$	strengths of the ith oscillator
t	thickness of specimen
T	temperature; trnamission method
Z	transmission and reflection method
Greek	Symbols
α	absorption coefficient in units of cm ⁻¹

constant

phase angle

DERCROTAG PAGE

'i	dadping factor of the 1th voctifator
ε	complex dielectric constant
ε1	real part of complex dielectric constant
€2	imaginary part of complex dielectric constant
в	phase angle
κ	absorption index
λ	wavelength in units of μm
ν	wavenumber in units of cm ⁻¹
σ	absorption per surface
σs	steepness parameter in Urbach relations
σ so	constant
τ	transmission
τ_{∞}	transmission at normal incidence without contribution from multiple internal reflection
ψ	phase change upon reflection
ω	frequency of radiation

frequency of the ith oscillator

1. INTRODUCTION

The purpose of this work is to present and review the available data and information on the absorption coefficient of alkali halides, to critically evaluate, analyze, and synthesize the data, and to make recommendations for the most probable values of the absorption coefficient. The investigation covers the widest possible wavelength and temperature ranges and is based on the purest samples of alkali halides.

The need for ultraviolet and infrared photographic and detecting devices and the development of high-energy lasers and their associated applications have resulted in requirements for a wide variety of highly transparent optical components, such as windows, lenses, and polarizers. In selecting materials of practical importance, one is concerned with the transparent region which covers various lines of interest. For a given crystal, the width of the main transparent region is governed by two factors. On the short wavelength side, transmission is restricted by electronic excitation, and for long wavelengths by molecular vibrations and rotations. The width of the transparent spectral range increases as the energy for electronic excitation is increased and that for molecular vibrations decreased. Theoretical and experimental studies on the ionic crystals indicate that crytslas having small ions with strong bonding have a wide ultraviolet transparency; this is true for alkali halides. In Figure 1, a schematic view of the absorption spectrum of a typical alkali halide crystal is shown. At the right (~40 µm) are seen the absorption peaks associated with optical phonons while nearer to the left (~ 0.15 µm) are seen the absorption peaks associated with excitons. It is seen that the transparent region of alkali halides covers a spectral range that is suitable to most practical applications.

The alkali halides are typical ionic compounds and their physical properties are in general well understood. The majority of the alkali halides crystallize in the rock salt structure in which each cation (alkali metal ion) is surrounded by six nearest neighbor anions (halogen ions), and each anion by six nearest neighbor cations. The cations and anions are each situated on the points of separate face-centered cubic lattices, and these two lattices are interleaved with each other. This type of crystal is called the β -form. A few of the alkali halides normally crystallize in a slightly different arrangement,

Figure 1. Typical Absorption Spectrum of an Alkali-Halide Crystal

typified by the room-temperature structure of cesium chloride. In this structure, each cation is surrounded by eight nearest neighbor anions and conversely. The cations and anions in this structure may be considered to occupy, respectively, the points of two inter-penetrating simple cubic lattices. This type of crystal is called the α -form. A few physical properties of alkali halide crystals are listed in Table 1.

The applications of high-power infrared lasers, which are now being developed at a rapid rate, are largely limited by the lack of suitable transparent optical materials. As a result, much of the high-power laser research is directed toward finding adequate high-temperature window and dome materials in the wavelength region of 2 to 6 μm and near 10.6 μm . The alkali halides have large transmission ranges from the ultraviolet to the infrared and are available in large sizes and high purity. They are excellent materials for photochemists who are interested in ultraviolet transparency and for laser scientists who are considered with infrared transmission. In spite of their intrinsic physical weaknesses, they are considered good window materials and are recommended by the National Materials Advisory Board [1]. Efforts are being made to improve their mechanical strength and thermal endurance without altering their optical properties.

Among the various optical properties, those of practical importance are refractive index and absorption coefficient. The latter is especially important in the application of high-energy lasers because many unfavorable effects, which are not observed at low energy level, are developed at high power levels. No matter how low the absorption is, the effect is objectionable at high-energy levels. As a natural consequence, the magnitude of absorption coefficient is the key parameter in selecting the laser window materials.

Over the past years extensive theoretical and experimental investigations have been conducted in an effort to determine the absorption property for optical materials and to identify the mechanisms influencing the absorption. As a result, numerous measurements and calculations have been reported. However, the available information is dispersed through the literature chronologically as well as geographically. A concise and comprehensive literature survey, data compilation, and analysis is still not available. Yet the overall profile of the available data and predictions of most probable values are indispensible for scientific research and engineering applications. Because of this reason,

TABLE 1. SOME PHYSICAL PROPERTIES OF ALKALI HALDES

Chin al	Structure ^a	Space Group ^a	Density ^a (g cm ⁻³)	Melting ^c Point (K)	Energy d Gap (ev)	Solubilia, b in Water at 295 K (10° g cm ⁻³)	Molecular Weighte	I mour ² Exp. Cocf. at 193 K (10 ⁻⁶ K ⁻¹)	Thermal ^e Conductivity at 293 K (W m ⁻¹ K ⁻¹)	Specifie ⁶ Heat at 298 K (cal mole ⁻¹ K ⁻¹)	Transii ission Region (gm)	Years	i i dalas Julia ya Nulij
l1"	Cable (NaCl)	Em Sm	2.661	1121.3	13.1	0.27	25.9374	33.2		9.994	0.12-9.0	C. 451	10213
ال	Cunter NaCl)	FmSm	2.06	833 ± 2	~ 10	63.7	42.397	43.8		11.479			
ini r	Cubic (NaCl)	F.n3m	3. 46;	623	~ 8.5	145.0	\$6.843	49.8		11.692			
l.:	Cubic (NaCl)	Fm3m	4.061	742	≥ 5.9	165.0	133, 8434	59.4		11.970			
S - P	Culac(NaCl)	Fm0m	2.79	1269 ± 2	10.5	4.22	41.9682	31.7		11.198	0.19-15.0		
:	Cubic	Fin3m	2.164	1073.5 ± 1.0	8.97	35.7	35.448	39.7	6.4	12.072	0.21-16.0	3,999	19,2
ir	Cubie (NaCl)	សំពេងជា	3.210	1020	7.7	116.0	102.907	42,3		12.285			
·a!	Cubic(NcCl	Fmam	3.605	933	2 5.8	184.6	149.901	45, 5		12.432			
.¥	Cubic (NaCl)	FmSm	2.505	1131	10.9	92.3	58, 1604	34.8		11.707			
.c:	Cultic (NaCl)	Fm3m	1.9917	1044	8.5	34.7	74.555	37.1	7.0	12.258	0.21-30.0	2.965	9.3
.Dr	Cubic (NaC!)	Fm3m	2.754	1007	7,6	53.48	119 011	38.7	5. 0	12.500	0.25-40.0	2. 689	7.0
ď	Cubic(NaCl)	Fni3m	3.114	954	6.2	127.5	166.0664	40.8	3. 1	12.614	0.25-45.0	2. 151	
N.E	Cuhier NaCt)	Fm3m	2.68	1033	10.4	130.6	104.47	27.5					
ther.	Cabic (NaCl)	Fm3m	2.76	958	8.3	77.0	120. 92	36.0					
OBt	Cubic (NaCl)	Fm3m	3.35	955	7.7	98.0	165. 38	37. 5					
:b:	Cubic (NaCh	Fm37g	3.55	913	5, 63	152.0	212.37	41.5					
. , 5	Cusic (NaCl)	Fn:Om	3. 55	976	10.0	367.0	151.9034	32.0		12.420			
:- (*1	Calec	Pm3m	3.938	tr. 743	≥ 8.0								
iscli g)	Cubic (NaCl)	Fm3m	3.54(chle.)	918	≥ 7.5	162.22	168. 358	46.3		12.534			
`-3r	Cubic(CsCl)	ParSm	4.433	909	7.0-8.0	124.3	212. 51	47.4	0.94		0.3 -55.0	1.586	19.5
-1	Cubic (CsCl)	Pm0m	4.51	894	≥ 6.3	41.0	259. 81	49.0	1.2		0.25-50.0	0.520	

^{*} information is triven from American Institute of Physics Handbook, 3rd Edition, Ref. (2), except the Bicor expansion coefficients of six materials; those of KF, RbF are from Ref. (3), while those of KBCL, RbBr, PbL, and CsF are from Ref. [4].

Values are from Handleck of Chemistry and Physics, Ref. [5].

whose from JANAF Theracelemical Tables, Ref. [6].

Notes are from JANAF Theracelemical Tables, Ref. [6].

C. Values are chained from Hambook of Milliary intrared Technology, Ref. [8].

the present work was initiated. Inherent in the character of this work is the fact that we have drawn most heavily upon the scientific literature and feel a debt of gratitude to the authors whose results have been used.

Although all of the alkali halides are, in principle, good optical materials, some of them, however, are intrinsically unsuitable for ordinary applications. They are either physically inadequate or chemically unstable. As a result, available data on the optical constants are concentrate to the following seven materials: LiF, NaF, NaCl, KCl, KBr, KI, and CsI, which are being presented in this work.

Results of the present work are given in two separate reports, Part I and Part II. The first report constitutes essentially the reporting of current status of available data. Material is comprehensively compiled and displayed so that one can see at a glance the spectral distribution of available data and the variation of data with respect to temperature and frequency. In addition, efforts are made to generate recommended values of absorption coefficient for the laser wavelengths and the multiphonon region. The result is an expression that relates the molecular weight of the crystal and a key parameter in an equation that predicts the intrinsic absorption coefficient. Details of this finding is discussed in the section of the report entitled "Summary of Results and Recommendations." In the second report, which will be submitted later, efforts on data analysis and theoretical studies are discussed. It has been experimentally observed in alkali halide crystals, that the exponential dependence of absorption coefficient on frequency holds in the multiphonon region as well as in the Urbach tail region. Furthermore, a power law seems to be generally valid in relating the absorption coefficient with temperature in the temperature region >200 K. All of these features are clearly displayed in the first report. It can be seen that analytical expressions similar to those for the Urbach tail can be formulated for the multiphonon region.

1

.

The study of the propagation of light through matter, particularly solids, comprises one of the important and interesting branches of optics. The many and varied optical phenomena exhibited by solids include selective absorption, dispersion, double refraction, polarization effects, and electro-optical and magneto-optical effects. Many of the optical properties of solids can be understood on the basis of classical electromagnetic theory.

The macroscopic electromagnetic state of solids, at a given site, is described by four quantities:

- (i) The volume density of electric charge
- (ii) The volume density of electric dipoles, called the polarization
- (iii) The volume density of magnetic dipoles, called the magnetization
- (iv) The electric current per unit area, called the current density

All of these quantities are considered to be macroscopically averaged in order to smooth out the microscopic variations due to the atomic makeup of matter. They are related to the macroscopically averaged electric and magnetic fields by the well known Maxwell equations [9].

Detailed discussion of Maxwell's equations is beyond the intended scope of the present work. What we should bear in mind is that the general solution of Maxwell's equations is a wave function for electric or magnetic field.

In the treatment of the interaction of light and matter, the light is considered as an oscillating electric field that engulfs the constituent molecules of matter. Each of the molecules may be considered to be a charged simple harmonic oscillator. When these constituent oscillators are driven by the engulfing electric field of light they become excited by that field and emit Huygens-like spherical wavelets. In the early development of the theory of propagation of light in matter, there was no practical alternative to treating the matter as a collection of charged harmonic oscillators subject, perhaps, to damping forces. The modern developments in the theory of matter and its interaction with radiation, have shown that this simple model has broad utility, and that it can be employed in the discussion of optical constants.

The theory of the optical properties of single crystals is well known and has been extensively reviewed. Hence, in this section, rather than discuss the derivation of the theory in detail, we will instead simply define

PRECEDING FACE B

theoretical constants, their inter-relationship, and how they appear in expressions for experimentally measurable quantities such as transmission, reflectivity, refractive index, and absorption coefficient.

The response of a nonmagnetic solid with isotropic or cubic symmetry to incident electromagnetic radiation can be generally described in terms of two optical constants, which are related to each other through dispersion relations. These two optical constants can consist of either the refractive index n and the extinction coefficient κ , or ϵ_1 and ϵ_2 , which are respectively the real and imaginary part of the complex dielectric constant ϵ . These two pairs of constants are related as follows:

$$\varepsilon = c_1 + i\varepsilon_2 + (n + i\kappa)^2 = (n^2 - \kappa^2) + 2in\kappa$$
 (1)

Let R_{∞} be the reflectivity at normal incidence of a solid of sufficient thickness so that there is negligible reflection from the rear surface of the solid and τ_{∞} be the corresponding transmission at normal incidence, then R_{∞} can be expressed in terms of n and κ as follows:

$$R_{\infty} = \frac{(n-n!)^2 + \kappa^2}{(n+n!)^2 + \kappa^2}$$
 (2)

Generally, the solid is either in air or in a vacuum, where n' = 1. Therefore, Eq. (2) becomes

$$R_{\infty} = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$
 (3)

Similarly, $\tau_{\alpha\alpha}$ can be expressed as

$$\tau_{m} = \{ (1 - R_{m})^{2} + 4R_{m} \sin^{2} \Psi \} e^{-\alpha t}$$
 (4)

where

 α = absorption coefficient = $4\pi\kappa/\lambda$

 λ = wavelength of incident radiation

t = thickness of the sample

 $\Psi = \tan^{-1} \left[2\kappa/(n^2 + \kappa^2 - 1) \right]$

If $n \gg \kappa$, Eq. (4) becomes

$$t_{m} = (1 - R_{m})^{2} e^{-\alpha t}$$
 (5)

Equation (5) is commonly used to determine the absorption coefficient directly by observing the decay of incident light with the thickness of sample.

As we mentioned earlier, the above equations are valid only if the reflection from the rear surface of the solid is negligible. For thin samples, where the reflection from the rear surface cannot be neglected, then the expressions for apparent reflectivity and transmission are:

$$R = \frac{R_{\infty} [(1 - e^{-\alpha t})^{2} + 4e^{-\alpha t} \sin^{2} \gamma]}{(1 - R_{\infty}e^{-\alpha t})^{2} + 4R_{\infty}e^{-\alpha t} \sin^{2} (\Psi + \gamma)}$$
(6)

9

$$\tau = \frac{e^{-\alpha t} \left[(1 - R_{\infty})^2 + 4R_{\infty} \sin^2 \Psi \right]}{(1 - R_{\infty}e^{-\alpha t})^2 + 4R_{\infty}e^{-\alpha t} \sin^2 (\Psi + \gamma)}$$
(7)

where

 $\gamma = \frac{2\pi nt}{\lambda}$ (n is an integer),

t = thickness of a thin sample,

R = apparent reflectivity,

 τ = apparent transmission.

The second term in the denominator in Eqs. (6) and (7) is an interference term. If no interference fringes are observed because of thickness variation, we then average over γ and obtain:

$$R = \frac{R_{\infty} (1 - e^{-2\alpha t})}{1 - R_{\infty}^2 e^{-2\alpha t}}$$
 (8)

$$\tau = \frac{[(1 - R_{\infty})^2 + 4R_{\infty} \sin^2 \Psi] e^{-\alpha t}}{1 - R_{\infty}^2 e^{-2\alpha t}}$$
(9)

It appears that if we know R_{∞} and either n or κ , the remaining one can be calculated from this relation. But this usage is only limited to the transparent region where direct measurement of n can be made. It is obvious that the key roles in this method rest on τ and R which are usually difficult to measure accurately because of influencing surface conditions, such as flatness, aging, oxide layers, adsorbed gas, etc. Errors of 1 to 5% in the resulting absorption coefficient are typical. However, this method is self-contained at a given wavelength, and it does not require additional data at other wavelengths or other properties.

Beyond the transparent region, in the high absorption regions, where neither n nor κ are observable, one has to rely on the reflection spectrum from which the optical constants can be derived by the Kramers-Kronig analysis or by the multiple-oscillator fit based on the Lorentz theory [10].

The Kramers-Kronig relations are derived from the dispersion relation in that the phase angle $\theta(\omega)$ of the complex reflectivity, $\overline{R}(\omega)$, is evaluated based on the observed reflection spectrum

$$\bar{R}(\omega) = R(\omega)e^{i\theta(\omega)}$$
 (10)

$$\theta(\omega) = \frac{\omega}{\pi} P \int_0^{\infty} \frac{[\ln R(\omega') - \ln R(\omega)]}{\omega^2 - {\omega'}^2} d\omega'$$
 (11)

where ω is the frequency of radiation and P is the principal value of the Cauchy integral. Based on the amplitude $R(\omega)$, and phase angle of the reflectivity, the refractive index and absorption index can be calculated according to the following equations:

$$n(\omega) = \frac{1 - R(\omega)}{1 + R(\omega) - 2\sqrt{R(\omega)}\cos\theta(\omega)}$$
(12)

and

$$\kappa(\omega) = \frac{2\sqrt{R(\omega)} \sin\theta(\omega)}{1 + R(\omega) - 2\sqrt{R(\omega)}\cos\theta(\omega)}$$
(13)

In principle, the calculation of θ requires a complete reflection spectrum with frequency ranging from zero to infinity. In practice, however, since R is measured only in a limited range of frequencies, errors are inevitable in the calculation of θ and hence in n and κ . These errors arise from the extrapolation of R(ω) beyond the range of measurements. The typical errors in the resulting n and κ are 5 to 10%, or more.

In the Lorentz theory, the refractive index and absorption index are related to the oscillator frequencies, $\boldsymbol{\omega}_i$, the oscillator strengths, \boldsymbol{S}_i , and the damping factors, $\boldsymbol{\gamma}_i$, by the expressions

$$n^{2} - \kappa^{2} = \varepsilon_{\infty} + \Sigma \frac{S_{1} \left[1 - (\omega/\omega_{1})^{2}\right]}{\left[1 - (\omega/\omega_{4})^{2}\right]^{2} + \gamma_{1}^{2} (\omega/\omega_{4})^{2}}$$
(14)

$$2n\kappa = \sum_{i} \frac{S_{i}\gamma_{i} (\omega/\omega_{i})}{\left[1 - (\omega/\omega_{i})^{2}\right]^{2} + \gamma_{i}^{2} (\omega/\omega_{i})^{2}}$$
(15)

where ϵ_{∞} is the optical dielectric constant. The resulting n and κ have to satisfy the observed reflectivity by the relation

$$R(\omega) \approx \left| \frac{n(\omega) - 1 + i\kappa(\omega)}{n(\omega) + 1 + i\kappa(\omega)} \right|^2$$
 (16)

It is clear that this approach requires the knowledge of the osc'llator frequencies which in general is not complete because of experimental difficulties. This leaves us no choice but to use only the observed predominant ones. Nevertneless, this method, similar to the Kramers-Kronig analysis, yields good approximations to the properties under consideration.

Precise determination for small absorption coefficients, in the order of $10^{-3}~\rm cm^{-1}$ or lower, was considered impossible until the laser source became available. As the bulk absorption becomes smaller than surface losses, uncovering the former requires amplification of the absorption effect which in turn requires high-level energy input to the sample. The two commonly used methods are laser calorimetry [11] and the differential technique [12].

In the laser calorimetric method, the absorbed energy is measured in the form of heat. It can be shown that the total absorption is related to the absorbed energy, $\mathbf{E}_{\mathbf{a}}$, by

$$\alpha L + 2\sigma = \frac{E_a}{E_T} \left(\frac{2n}{1+n^2} \right)$$
 (17)

provided $\alpha L < 1$. Here, L is the sample length through which a laser beam passes and σ is the loss per unit surface area. E_a can be calculated using the specific heat and mass of the sample and the measured temperature rise. The transmitted energy can be determined using a black body and its temperature rise. In order to separate the bulk and surface absorptions, the total absorption of a series of samples of different thickness, cut from the same piece of material and polished in the same way must be measured. A plot of total absorption versus sample thic ness will give a straight line with slope α and intercept 2σ . This method yields very accurate results and is used to measure absorption as low as 10^{-5} cm⁻¹.

In the differential technique, a dual-beam spectrometer is the basic apparatus and the transmissions and thicknesses of a thick sample (τ_s and d_s) and a reference sample (τ_r and d_r) are measured. An optical wedge is added to the reference beam and its transverse position is so adjusted as to balance the transmitted intensity of the sample beam. The transmission of the wedge, τ_w , is then measured. The relation of the three measured transmissions is, therefore

$$\tau_{r} \times \tau_{w} = \tau_{s} \tag{18}$$

hence, by using Eq. (9)

$$\tau_{w} = e^{-\alpha \Lambda d} \left(\frac{1 - R^{2}e^{-2\alpha d}r}{1 - R^{2}e^{-2\alpha d}s} \right)$$
 (19)

where $\Delta d = d_s - d_r$, and

$$R = \left(\frac{n-1}{n+1}\right)^2 \tag{20}$$

The accuracy of this method depends on the accuracies of the refractive index and transmission, respectively. While the former can be determined with high accuracy, accuracies of the latter depend on the instrument utilized. An uncertainty of $\pm 1\%$ or greater is in general expected. This imposes a limit, on the order of 1 x 10^{-3} cm⁻¹, to the lowest absorption coefficient that can be measured by this method.

The typical absorption spectrum of an alkali halide is shown in Figure 1. If we plot the absorption coefficients versus frequency on a semi-log scale, we obtain the absorption spectrum as shown in Figure 2. Behavior of the absorption coefficients in the multiphonon and Urbach regions, respectively, suggests an exponential relation between absorption coefficient and frequency, i.e., $\alpha = \alpha_0 e^{CV}$, where α_0 and c are constants. In the transparent region, absorption coefficients of a pure crystal are usually low. If reflectivity can be accurately measured, absorption coefficient can be determined using Eq. (3).

It should be noted that Eq. (3) does not apply to crystals with impurities and defects which are characterized by the emergence, in the transparent region, of a number of absorption bands, the so-called "color centers." The

Figure 2. Schematic Absorption Spectrum of an Alkali Halide in Semilogarithismic Scale

well known ones are the F, R, M, and N absorption bands. Absorption coefficients at these bands vary considerably with temperature, radiation, and time. However, at wavelengths other than these bands, differences in n are negligibly small between samples, and Eq. (3) is valid. The importance of n in relating other optical quantities is self-revealed. Essential parameters for formulae of refractive indices of pure crystals are given in Table 2.

and the second s

.**_**

TABLE 2. AVAILABLE PARAMETERS FOR DISPERSION EQUATIONS OF ALKALI HALIDES AT ROOM TEMPERATURE

	€, ^a	€ b	Ultraviolet Absorption Peaks ^c	Infrared Ab orption Peaks			
laterial			(μικ) λ _i	Wavelength $\lambda_{\hat{I}}$ (μ m)	Oscillator Strength	Datapoig Factor γ_1 (gen)	
Lif	9.01	1.93		32.79, 19.86	6.80, 0.11	1.967, 3.578	
LiCI	11.8G	2.75	0.100, 0.143	49.26			
LiBr	13. 23	3, 16	0.156, 0.162, 0.173	57. 80			
Lil	11.03	3, 80	0.120, 0.140, 0.167, 0.176, 0.183, 0.197, 0.212	70.42			
Na F	5. 072	1.174	0.117	10.57			
SaCl	5.90	2.33	0.050 0.100 0.128 0.158	60.98, 40.50, 120.34	3.2001, 0.6500, 0.331	2,281, 5,700, 108,39	
la Br	6.096	2.00	0.125, 0.115, 0.176, 0.188	74.63			
Naj	7.28	3. 61	0.122, 0.141, 0.170, 0.187, 0.228	86.21			
CF.	5, 50	1.85	0.126	51.55			
C1	4.55	2.17	6.131, 0.162	76.42			
Ger	4.50	2.36	0.146, 0.173, 0.187	87.72, 60.61	2.4861, 0.1885	4,561, 13,910	
ši –	5. 00	2.65	0.129, 0.175, 0.187, 0.219	98.01, 69.44	2.1363, 0.2765	8, 235, 20, 832	
or.	6.48	1.93	0.115, 0.132	63.29			
:bC1	1.92	2.13	0.108, 0.166	85, 81			
thBr	4. SG	2.34	0.123, 0.116, 0.155, 0.178, 0.191	114.29			
tol .	4.51	2. 58	0.120, 0.131, 0.156, 0.179, 0.187, 0.223	132.45			
SF	8.08	2. 1 G	0.110, 0.118, 0.106	78.71			
/scl	6.93	2.63	0.119, 0.137, 0.145, 0.462	100, 50, 80,00	4.0212, 6.2513	7, 50%, 20, 600	
rBr	6.08	2.78	0.100, 0.146, 0.160, 0.173, 0.187	106.05, 97.09	3,5688, 0,1131	8, 163, 15, 531	
Si	6.31	3.02	0.100, 0.117, 0.163, 0.177, 0.185, 0.206, 0.218	161, 29, 117, 65	3.2673, 0.0628	11,290, 17,648	

^a Static dielectric constant data are from Ref. [13, 14, 15, 16, 17].

h Hi L-frequency dielectric compant data are from Ref. [13, 16, 18].

C The ultraviolet als orption peaks are measured by Bilbeh and Pohl [19] Schneider and O'Bryan [20] and Romachenhan [21].

The order of C's and y's corresponds to the order of the λ('s. Data sources: see Ref. [13, 16]; for LiF see Ref. [22]; for NaCi see Ref. [23]; for KBr see Ref. [24] for KBr see Ref. [25], for CsCl, CsBr, and CsI see Ref. [26].

3. NUMERICAL DATA

Presentation of Data

Data in the open literature are reported in various units. Absorptions are given in units of cm⁻¹, or as extinction index, optical density, or normalized values. Energy is presented in terms of wavelength, wavenumber, frequency, or electron volt. In the present work, the absorption coefficient is consistently reported in units of cm⁻¹ and the energy in units of wavenumber, cm⁻¹. All of absorption data were converted, when necessary, to these uniform set of units. However, in the case of reflectivity and transmission data, the energy unit is in wavelength, µm, as conventionally accepted. Although we have surveyed the absorption coefficient in the vacuum ultraviolet (vuv) region and a number of data sets have been collected, no attempt was made to analyze the spectrum in the vuv region as it is beyond the scope of this work. However, it was felt desirable to see the complete spectrum of absorption coefficient. For this reason the vuv absorption spectra are given in the Appendix.

A number of figures and tables summarize the information and data. The conventions used in this presentation, and specific comments on the interpretation and use of data are given below. Each sub-section in this section gives all the information and data for a given material. The sub-sections are arranged in the following order:

- 3.1 Lithium Fluoride, LiF
- 3.2 Sodium Fluoride, NaF
- 3.3 Sodium Chloride, NaCl
- 3.4 Potassium Chloride, KC1
- 3.5 Potassium Bromide, KBr
- 3.6 Potassium lodide, KI
- 3.7 Cesium Iodide, CsI

Presented in each sub-section are information and data in the following order:

a. A text describing and discussing the data, analysis, and recommendations. With the thought that in general a reader will only concern himself with a specific substance, it was felt highly desirable to include in each sub-section important information even if it should constitute a repetition of some of the subject matter found in other sections or sub-sections.

PRECEDING FACE BY

- b. A figure of experimental absorption coefficient (wavenumber dependence).
 For the purpose of showing the details in each of the multiphonon and
 Urbach tail regions, additional figures are included for visual clarity.
- c. A summary table of measurements on the absorption coefficient (wavenumber dependence). An extract of pertinent information for each data set is given in this table.
- d. A table of experimental data on the absorption coefficient (wavenumber dependence). The original data reported in this table are converted to the adopted set of units. The order of magnitude of absorption coefficient varies over a wide range, from 10⁻⁶ cm⁻¹ to 10⁶ cm⁻¹, and that of wavenumber varies from 10 cm⁻¹ to 10⁵ cm⁻¹. Therefore, it is convenient to present the data in powers of ten. In this table, the numerical value 1.259E±n stands for 1.259·10^{±n}.
- e. A figure of experimental absorption coefficients (temperature dependence).
- f. A summary table of measurements on the absorption coefficient (temperature dependence).
- g. A table of experimental data on the absorption coefficient (temperature dependence).
- h. A figure of experimental reflectivity.
- i. A summary table of measurements on the reflectivity
- j. A table of experimental data on the reflectivity.
- k. A figure of experimental transmission.
- 1. A summary table of measurements on the transmission.
- m. A table of experimental data on the transmission.
- n. A table of peak positions and the corresponding half-widths of the well known F, R, M, and N absorption bands.
- o. A table of recommended values on the absorption coefficient in the infrared wavelength region. It is rather difficult to give recommendations in this region since most of the data are still in a provisional status, as evidenced by new claims of the discovery of lower values obtained through improvements in sample preparation and experimental

techniques. As a result, in our tables of recommended values, we give the lower limits predicted by the theoretical relations, the lowest available values, or the most probable range of values for a randomly selected sample.

In figures containing experimental data, if data sets are distinguishable, the data sets are labeled by appropriate legends and denoted by the numbers corresponding to those assigned in the corresponding tables on the summary of measurements and experimental data. The tables on the summary of measurements give for each set of data the following information: the reference number, author's name (or names), year of publication, wavelength range covered by the data, temperature range, the description and characterization of the specimen, and information on measurement conditions contained in the original paper.

There are a number of experimental methods used for absorption coefficient determinations. Listed below are the four most commonly used ones and their corresponding code symbols used in the tables:

- C calorimetric method
- Z transmission and refraction method
- T transmission method
- R reflection method

The methods listed above are arranged in the order of their inherent accuracies. The calorimetric method is by far the most accurate method in the determination of the absorption coefficient. It is used for measuring very low absorptions with the lowest attainable level, in the order of 10^{-5} cm⁻¹. Absorption coefficients determined by the second method are usually reliable if the multiple internal reflection and transmission are accounted for. The transmission method is the most popular one used for absorption measurements because of its simplicity. The reflection method is the least accurate method, mince errors of 5 to 10% or more are typical. It should be noted that neither the second nor the third method is suitable for absorption coefficient lower than 0.001 cm⁻¹ as their sensitivities are considerably reduced at low absorption levels.

Wavelength and wavenumber are two equivalent units to describe the spectral dependence of a property. The conversion table given below should prove convenient.

WAVENUMBER VS WAVELENGTH EQUIVALENTS

Wavenumber, cm-1	Wavelength, um
100,000	0.1
10,000	1.0
9,434	1.06
5,000	2.0
3,571.4	2.8
3,333.3	3.0
2,631.6	3.8
2,500	4.0
2,000	5.0
1,886.8	5.3
1,666.7	6.0
1,428.6	7.0
1,250	8.0
1,111.1	9.0
1,052.6	9.5
1,000	10.0
943.4	10.6
909.1	11.0

.__

3.1. Lithium Fluoride, LiF

Lithium fluoride has long been of practical interest to spectroscopy because of its attractive optical properties. Its large electronic band gap places its useful transmission limit near 0.11 µm, further into the vacuum ultraviolet region than any other known material. It is, therefore, a useful substrate for absorption studies on thin films of other materials and has long been used as such. In the range of 0.25-4.5 µm the dispersion is low and transmission is high. Less transmission and higher dispersion are found in the low ultraviolet and the infrared. In the low ultraviolet, optical components must be made very thin in order to obtain maximum transmission. Selected specimens of lithium fluoride, in moderately thin pieces, may be expected to transmit several percent of the light down to wavelengths as short as 0.11 µm. Impurities in the crystal, poor polish, and layers of foreign material on the surface may reduce the transmission in the Schumann region down to a negligible quantity. In the infrared, transmission begins to fall off rapidly at 7 µm, and a prism is useful to 5 µm.

Optically speaking, lithium fluoride closely resembles calcium fluoride. However, lithium fluoride is preferable to calcium fluoride for use in prismatic form because of its much greater dispersion in the infrared and greater transparency in the extreme ultraviolet.

Unlike the other alkali halides, lithium fluoride is practically insoluble, and advantage is taken of this fact in the purification of the salt. High purity single crystals of lithium fluoride up to more than 5 inches in diameter and 4 kg in weight are commercially available and are suitable for making optical components in various sizes.

Measurements of the refractive index of lithium fluoride date back to 1927. The existing data cover a spectral range from 0.00236 to 600 μ m and at 2000 μ m. Based on the optical behavior of the material and the experimental techniques, these data fall quite naturally into two categories: the transparent region (\sim 0.11 to \sim 9.0 μ m) and the absorption regions (<0.11 and <9.0 μ m). For the high transparency region, since large sizes of LiF are easily obtained, the deviation method is commonly used with the sample in prismatic form. This method was adopted by a number of researchers: Gyulai [27], Schneider [28],

Hohls [29], Harting [30], Durie [31], and Tilton and Plyler [32]. The deviation method, though the oldest, is often considered as the most accurate; less accurate data can be obtained by the interference method. Due to the high absorption in the low uv and near IR at the end of transparent region, the deviation method and interferometry cannot be used. Refractive indices are obtained either by measuring transmission of thin films or by theoretical analysis of the reflection spectra from the bulk material.

Li [33] reduced the experimentally measured data then available to a common emperature of 293 K and after careful analysis generated a Sellmeier type formula representing the refractive index of LiF at 293 K in the spectral region from 0.10 to $11.0~\mu m$,

$$n = 1 + \frac{0.92549 \lambda^2}{\lambda^2 - (0.07376)^2} + \frac{6.96747 \lambda^2}{\lambda^2 - (32.79)^2}$$
 (21)

where λ is in units of μm .

Investigations of absorption coefficient for practical applications are generally classified into three wavelength regions: the ultraviolet and the infrared limits of transparent regions, and the transparent regions. In the ultraviolet limit, the motivation of the researches was to investigate the exciton states in the crystal and to determine the Urbach-rule parameters at the absorption edge.

Kato [34] determined absorption coefficients in the wavelength range from 0.09 to 0.19 µm by applying the Kramers-Kronig relation to the observed reflection spectra of bulk crystal. The peak position of the fundamental band was determined to be at 0.0976 ± 0.0008 µm where the corresponding absorption coefficient was found to be 2.2 ± 0.1 x 10⁶ cm⁻¹. In the investigation of the effects of hydrolysis on the absorption coefficient, crystals grown in air were studied. It was found that absorption near 2.8 µm was due to the vibration of 0-H bond and in addition it gave a broader absorption at the tail of the fundamental band. Roessler and Walker [35] reported absorption index in the wavelength region from 0.0443 to 0.248 µm. The absorption coefficient was derived from the near normal reflection spectra of freshly cleaved crystal by Kramers-Kronig analysis. Since any defects or surface contamination tend to decrease the sharpness of uv reflectance structure, the reflection spectra from surfaces showing highest reflectance at structure peaks were selected for their analysis to assure minimum surface contamination and defects.

Schneider [28] determined absorption coefficient (in the wavelength region from 0.11 to 0.16 μm) directly through measurements of transmissions of plate specimens of various thickness. The crystals used are believed to be of high purity and quality polished, as evidenced by higher transmission at short wavelength, 0.11 μm . It was noted that the main factor of decreased transmission was due to the deposits as a result of chemical reaction of the surface with moisture.

Görlich et al. [36] investigated crystals grown by both of the Bridgman and Kyropoulos methods. Absorption spectra in the wavelength range from 0.20 to 0.79 µm were measured for both crystals. Although impurity contents and concentrations had no spectroscopically detectable difference, the crystal grown in air showed much higher absorption coefficients in the region 0.2 to 0.4 um than that grown in vacuum, particularly steeply rising toward 0.2 um. In addition, absorption bands in the range between 2.6 to 2.8 µm were observed in air grown crystals but not in vacuum grown ones. This observation is consistent with the results of Kato [34], the extinction of crystals grown in air is chiefly composed of the scattering of light by the microscopic irregularities of the crystalline structure and of the absorption of the additionally incorporated OH or oxygen ions. Gyulai [27] reported absorption coefficients in the region between 0.18 and 0.40 µm for a crystal grown by the Kyropoulos method. Owing to the differences in impurity contents and defects, the absorption spectrum showed different profile from that of Görlich et al. [36]. However, both reported weak selective absorption bands between 0.25 and 0.30 μm where the F center is located. Tomiki and Miyata [37] measured absorption coefficients in the Urbach tail region at four temperatures, from 300 to 573 K. They found the tail at 300 K was extrinsic. Based on the data at three higher temperatures, it was possible to find the following parameters:

$$E_o = 13.00 \text{ eV},$$
 $\alpha_o = 1.0 \times 10^{10} \text{ cm}^{-1},$
 $hf = 0.23 \text{ meV},$

u

$$\sigma_{so} = 0.70,$$

for the equations representing the intrinsic absorption in the tail region:

$$\alpha(E,T) = \alpha_0 e^{-\sigma_S(T)(E_0 - E)/kT}$$
(22)

and

$$\sigma_s = \sigma_{so} \frac{2kT}{hf} \tanh \frac{hf}{2kT}$$

Measurements of absorption coefficient for the infrared region were made for the purpose of studying the optically active lattice vibrations and fundamental resonant frequencies. On the short wavelength side of the fundamental absorption band, multiphonon absorption, in which a photon is absorbed and two or more phonons are generated, can occur and lead to absorption coefficients that range from $10^{-3}~{\rm cm}^{-1}$ to $10^2~{\rm cm}^{-1}$, depending on the number of phonons generated.

Jasperse et al. [22] made self-consistent measurements of the infrared reflectivity for a wide temperature range from 7.5 to 1060 K. The absorption index was computed by using a two-resonance damped oscillator model. Through the classical pole-fit procedures, by assuming the optical dielectric constant to be temperature independent, they were able to establish the temperature dependence of the resonant frequencies, the damping factors, and the oscillator strengths.

Barker [38] studied the multiphonon infrared absorption by samples of crystalline and molten LiF at temperatures between 300 and 1160 K (melting temperature 1115 K). It was found that the absorption behavior of the molten salt could be closely predicted from the absorption behavior of the solid as if there was no phase transition occurring. The observed relatively small change during the phase transition from solid to liquid implies that at least the high frequency limit of the vibrational spectra are approximately the same in the solid and liquid phases close to the melting point. However, at temperatures from 10-30 K higher than the melting point, the absorption coefficient decreased noticeably and the static dielectric constant changed from 10.76 to 7.84 [39].

Kachare et al. [40] determined the absorption coefficient by a Kramers-Kronig analysis of the reflection spectra. The reflection spectra were measured accurately, particularly in the difficult minimum reflection region. It was concluded that the classic dispersion analysis could not provide reliable values of optical constants for highly anharmonic crystals while the KK analysis could, but required reliable reflectivity data.

--

Deutsch [12], using a differential technique with a dual beam spectrometer, measured the absorption coefficient for the wavelength range from 4.3 to 7.0 μ m at room temperature. It was found that these data could be represented by an exponential relation as:

$$\alpha = \alpha_o \exp(-v/v_o) \tag{23}$$

where $\alpha_{\rm o}$ = 21,317 cm⁻¹ and $\nu_{\rm o}$ = 153.2 cm⁻¹, according to Deutsch. Klier [41] reported the absorption index in the wavelength range between 5.4 and 14.7 µm. Hohl [29] also reported the absorption index in the range between 4.5 and 15.7 µm. Hohl's values agreed with Klier's in general except that Hohl's measurements showed distinct structure features in the wavelength region beyond 13 µm. In the region from 5 to 11 µm the results of Hohl and Klier agree well with Deutsch's exponential relation, Eq. (23).

Owens [42] measured absorption coefficient at three wavelengths in the millimeter-wave region. Combined with the measurements of other investigations, Owens observed that the extinction coefficient decreased with increasing wavelength and approached a constant value of about 1 x 10⁻⁴ below 1 GHz. The origin of this constant background loss, which appeared to be independent of temperature, is unknown. It may be due to imperfections in the crystal. Stolen and Dransfeld [43] measured absorption at a wavelength 320 µm between 200 and 425 K. It was found that the absorption increases as a quadratic function of temperature.

Figures 3 to 6 are plots of the available data. The pertinent information of each data source and the corresponding original values are given in Tables 3 to 6. In addition, available information and data on the reflectivity and transmission are also presented in a similar manner (in Figures 7 and 8 and Tables 7 to 10) for completeness and comparison. For the visible and near visible regions, Table 11 gives the spectral positions of the well-known color centers. Noticeable absorptions are likely to occur at these centers when the crystal is exposed to ultraviolet or x-ray radiation.

Recommended values given in Table 12 were calculated according to Eq. (23). In the range between 4.37 and 7 µm, these values are supported by the measurements of Deutsch. It appears that LiF has a high intrinsic absorption coefficient in this region. However, if Eq. (23) holds in the range below 3.9 µm, we can see the intrinsic absorption coefficients in this region are lower than

 10^{-4} cm⁻¹. There is an absorption band in the range between 2.6 to 2.8 μ m which owes its origin to the inclusion of hydroxyl ions. This absorption band is diminished in vacuum grown crystals. It should be noted that the values in the column "intrinsic" are the lowest limits that one can obtain for ideal samples. In practice, the observed values are generally higher than the limiting values. Unless values appear in the column "observed," the limiting values should be considered as guidelines for estimation and investigation.

Although it was not the aim of this investigation to compile and evaluate the absorption data in the vacuum ultraviolet region, this was done to provide the users a total picture of the available absorption data. The plot of selected curves in this region is given in the Appendix of this report.

Figure 3. Absorption Coefficient of Lithium Fluoride (Wavenumber Dependence)

Figure 4. Absorption Coefficient of Lithium Fluoride in the Urbach Tail Region

Figure 5. Absorption Coefficient of Lithium Fluoride in the Multiphonon Region

TABLE 3. SUMMARY OF MEASUREMENTS ON THE ADSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Mavenamber Dependence)

Data Set No.	Ref.	Author(s)	Year	Method Used	Range, cm	Temperature Range, K	Specifications and Resurks
1	22	Jasperse, J.R., Kahan, A., Plendi, J.N., and Mitras, S.	1966	R	100-588	7.5	High purity; single crestal; hand polished until optically flat to about 1/2 wavelength of the mean sodium D lines; annealed in a vacuum furnace for two days at a temperature of about 3/4 of the melting temperature of the crystal; near normal (averaged about 11 degrees) reflectivities in the spectral range from 12.5 to 50 and determined by comparing spectral reflectioness from the sample and from an aluminized infrom infredictivity in the spectral region under consideration; reflectivity data were checked several times for different samples and for several cycles of beating and cooling and repreduced to within 11 to 12%; the reflection spectra were analyzed by means of a two-remonant damped-oscillater model; absorption coefficients were calculated from the resulting equations.
2	22	Jasperse, J.R., et al.	1966	R	100-588	85	Same as above.
3	22	Jasperse, J.R., et al.	1966	R	100-588	295	Same as above.
4	22	Jusperse, J.R., et al.	1966	R	100-538	420	Same as above.
5	22	Jasperse, J.A., et al.	1966	R	100-538	605	Same as above.
6	22	Jasperse, J.R., et al.	1966	R	100-588	840	Same as above.
7	22	Jasperse, J.R., et al.	1966	R	100-588	1060	Same as above.
8	34	Kato, R.	1961	Ř	9.6x10*-1.1x10 ^f	298	Bigh purity; single crystal; freshly clouded specious; near normal (15 degrees incident angle) reflectivity obtained; Kraners-Kronig relations applied to derive the optical con- stants n and 6 from the reflectivity; data extracted free a figure.
9	34	Kato, R.	1961	к	6.4x10"-9.6x10"	298	Same as above but only for details at the tail of fund contal band: absorption-coefficient data extracted from a floure.
10	34	Kato, R.	1961	к	5.2x10"-8.0x10"	298	Similar to above; absorption-coefficient data extracted from a figure.
11	36	Görlich, P., Karrus, H., and Kötitz, G.	1963	т	1.89x10*-4.84x10*	390	Simple crystal; green by the Evrepoulos (in air) rathed; i partitles of M. C., Cr. Cu. Na. Ma. Ma. Si. and T. altheonic concentrations estimated to be between 10 7-10 %; unspecified specimen configurations; absorption spectrum obtained and obserption coefficients determined; absorption coefficients determined; absorption coefficient data extracted from a figure.
12	36	Görlich, P., et al.	1963	т	2.68×10*-4.72×10*	390	Similar to above except for crystal grown by the Bridgmin (in vacuum) method.

TABLE 3. SUMMARY OF MEASUREMENTS OF THE ABSORPTION COLFFICIENT OF LITHIUM FLICARDL (Resenumber Dependance) (continued)

Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Runge, cm 1	Temperature Range, K	Specifications and Acmarks
13	36	Görlich, P., Karras, H., and Kötítz, G.	1963	T	3.54×10 ³ -3.87×10 ³	300	Similar to above for crystal grown by the Kyropoulos (in air) method and measured for intrared region where the crystal grown by the Bridgman (in vacuum) showing no absorption.
14	27	Gyulai, Z.	1927	T	3.2×10 ⁴ -5.4×10 ⁴	293	Single crystal; grown by the Kyropoulos method; plate speci- men of 1.4 mm thick; absorption coefficient determined by Smakula for the author; data extracted from a fluore; to per- ature not specified, 293 K assumed.
.5	29	Hohls, H.W.	1936	т	6.34×10 ² -2.23×10 ³	293	Crystal; grown by the Kyropoulos method; 14 plate specifiens of thicknesses from 0.008 rm to 10.53 mm; absorption coefficients directly determined; data extracted from a figure; temperature not specified, 293 K assumed.
6	28	Schneider, E.G.	1936	т	6.25x10*-8.90x10*	293	High purity; single crystal; grown by the Bridgran method; plate specimens of thickness from 0.5 to 25.0 nm; physocial coefficients directly determined; data extracted from a figure.
17	44	üldridge, J.E.	1972	т	1.8×10 ² ~3.0×10 ²	10	High purity; single crystal; obtained from the bore of Chesical Co.; plate specimens with talebase of such and 0.8 on and mechanically polished; spectral true with intensities measured; absorption coefficients det relacd with the aid of refractive index calculated from a dispersion formula; absorption-coefficient data extracted from a figure; estimated uncertainty about 102 except at long wavelength encounter 100% uncertainty estimated.
.8	35	Roessler, D.M. and Walker, W.C.	1967	R	9.47×10°-2.02×10 ^f	300	Single crystal; obtained from the Harshaw Chesical Co.; freshly cleaved specimens; absorption coefficients determine from a Kramers-Kronig analysis of experimentally determined near normal reflection spectra; data extracted from a table.
19	41	Klier, M.	1958	R	6.79×10 ² -1.83×10 ³	17	Crystal; absorption-coefficient data deduced from reflectance and transmittance measurements on specimens of various taken nesses; data extracted from a figure.
20	41	Klier, M.	1958	R	$7.71 \times 10^{2} - 1.83 \times 10^{3}$	195	Same as above.
21	41	Alier, M.	1958	Ř	7.03×10°-1.82×10 ³	293	Same as above.
22	41	Slier, M.	1958	к	7.28×10 ³ -1.83×10 ³	573	Same as above.
23	41	Elier, M.	1958	2.	25.7-191	77	Crystal; plate specimen; absorption coefficients deduced for transmittance accounterents and estimated reflectivity for flectivity estimated by assuming n = 1.07 for the shole wave length range; data extracted from a figure; estimated uncer- tainty about 5 to 10%.
24	41	Klier, M.	1958	R	29-191	293	Since as above.

TABLE 3. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Mavenumber Dependence) (continued)

ata Set No.	Ref.	Author(s)	Year	Method Used	Range, cm	Temperature Range, K	Specifications and Remarks
25	43	Klier, M.	1958	R	29-193	573	Same as above.
26	38	Barker, A.J.	1972	R	1.19x10 ³ -1.95x10 ³	300	Synthetic crystal; high purity; highly polished specimen of 1-2 mm chick; absorption coefficients deduced from measurements of reflectivity obtained using the obscured-mirror technique; absorption-coefficient data extracted from a figure.
27	38	Barker, A.J.	1972	R	1.34×10 ³ -2.05×10 ³	705	Similar to above but at a higher temperature.
28	38	Barker, A.J.	1972	R	1.39×10 ³ -2.1×10 ³	855	Similar to above but at a higher temperature.
29	38	Barker, A.J.	1972	R	1,43×10 ³ -2.35×10 ³	975	Similar to above but at a higher temperature.
30	38	Barker, A.J.	1972	R	1.59×10 ³ -2.4×10 ³	1160	Molton LiF specimen of 1-2 mm thick; reflectivity measure- ments carried out in a large inert gas atmosphere; absorption coefficients deduced from reflection spectra; absorption— coefficient data extracted from a figure; melting temperature of LiF is 41152.
31	12	Deutsch, T.F.	1973	D	1.44×10 ³ -2.31×10 ³	300	Single crystal; obtained from Barshas Chemical Co.; specimes of 2.5 cm diameter and 2.5 cm long; differential technique used to determine absorption-coefficient data extracted from a figure.
32	42	Owens, J.	1968	L	2.53×10 ⁻¹ -3.4	298	Single crystals; obtained from the Burdow Chemical Co.; cylinder shaped specimen; filled resonant cavity method used for measuring dielectric constant and loss tangent; absorption coefficient then determined; data extracted from a figure.
53	39	Mead, D.	1974	R	1.0×10 ² -7.3×10	1175	Lif melt; high purity; obtained from BDM Ltd.; near normal reflection spectrum obtained; absorption coefficient obtained by the Kraners-Kronig and classical oscillator analysis; datextracted from a smooth curve.
34	40	Kachare, A., Soriaga, M., and Endermann, G.	1974	7	7.71×10 ² -1.16×10 ³	300	Single crystal; polished and annualed; near normal reflectic spectrum obtained; absorption coefficient deduced from reflection spectrum by the Brances-Kronig analysis; data extracted from a figure.
35	40	Kachare, A., ct al.	1974	R	7.1×10 -1.2×10 -	80	Similar to above but at a lower temperature.
36	40	Kachare, A., ot al.	1974	R	7.19x10 ⁻ -1.15x10 ³	20	Similar to above but at a lower temperature.
37	45	Eldridge, J.E.	1972	1	75-178	63	Natural LIF crystals obtained from the Harshaw Charical Co.; specificus of 1 x 2.5 cm with thicknesses varying from 0.02 t 0.1 cm; mechanically polished; absorption coefficients obtained from transmission measurements; data extracted from a figure.

 \cdot

THE WAS AS AS AS AS A STANDARD PROFESSIONARD

. .

. . .

-

TABLE 3. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Varenumber Dependence) (continued)

Dota Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Range, cm 1	Temperature Range, K	Specifications and Remarks
38	45	Eldridge, J.E.	1972	ī	70-292	77	Same as above.
39	45	Eldridge, J.E.	1972	1	29-149	300	Same as above.
40	46	Heilmann, G.	1958	R	277-667	293	Single crystal; absorption coefficients determined from the reflectivity measurements from the polarized light at 20° and 70° incident angle; data extracted from a figure.
41	46	Heilmann, G.	1958	R	277-623	573	Same as above.
42	46	Heilmann, G.	1958	Ŕ	277-667	873	Same as above.
43	47	Genzel, L. and Klier, M.	1956	T	8.6-147	298	LiF crystal; plate specimens of 145 µm, 725 µm and 4.1 cm thick; absorption coefficients determined based on transmission measurements; data extracted from a figure.
44	48	Fröhlich, D.	1962	R	264-431	300.0	Thin evaporated film specimens of 2 to 8 um thick; absorption coefficients determined from reflectivity measurements; but a extracted from a figure.
45	49	Fröhlich, D.	1964	R	271-357	70	Single crystals; thin plate specimens; absorption coefficients determined from reflectivity measurements; data extracted from a figure.
-6	49	Fröhlich, D.	1964	R	263-362	200	Same as above.
47	49	Fröhlich, D.	1964	R	263-364	300	Same as above.
48	50	Seger, G. and Genzel, L.	1962	T	10-33	298	Single crystals; plate specimens of 3, 6, 15, and 30 mm thick; absorption determined from trummission measurements; data extracted from a figure.
49	37	To-iki, T. and Miyata, T.	1969	Z	9.1×10 ⁴ -9.8×10 ⁴	298.5	Single crystal; ultraviolet quality from the Marshae deviced Co.; freshly eleaved specimens for absorption coefficient below 100 cm ⁻¹ ; specimens for higher absorption prepared in high vacuum by melting the flakes of crystals between two plates of glassy curbon and pressed; reflection and transmission appetra obtained and absorption coefficient determined; data extracted from a figure.
50	37	Tomiki, T. and Miyata, T.	1969	Z	8.6×10*-9.4×10*	437	Same as above.
51	37	Tomiki, T. and Mipari, T.	1969	z	8.5x10*-9.3x10*	510	Same as above.
52	37	Toniki, T. and Miyata, T.	1969	z	8.5×10*-9.2×10*	573	Sume as above. ಟ ಟ

TABLE 3. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

Data Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Runge, cm ⁻¹	Temperature Range, K	Specifications and Remarks
53	37	Tomiki, T. and Miyata, T.	1969	Z	5.3x10 ⁴ -9.7x10 ⁴	300	Above specimen except aged for two weeks.
54	37	Tomiki, T. and Miyata, T.	1969	2.	7.9x10*-9.8x10*	300	Similar to above except sample aged for one week.

TABLE 4. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence)

[".venumber, ">, cm⁻¹; Temperature, T, K; Absorption Coefficient, a, cm⁻¹]

∨ a	V a	, a	v n	ν α ,	υ α
DATA SET 1	JATA SET 2	DATA SET 3	DATA SET 4	CATA SET 5	DATA SET 6
T = 7.5	1 = 85.1	7 = 295.6	r = 420.0	T = 505.0	T = 3+0.3
5.8822.42 6.8756+3	5.3326.0 6.3.16.3	5.3922+2 6.8552+3	5.8326+2 7.3536+3	5.8822+2 6.69,2+3	3.3dcc+2 c.420E+3
5.2032+2 8.7952+3	5.2016.0 0.3036.3	5.2056+2 9.6156+3	5.2532+2 9.226E+3	5.2036+2 9.1556+3	5.2036+2 0.59-2+3
4.702242 2.417244	4.7026+2 9.3336+3	4.7025+2 9.7125+3	4.7626+2 9.7755+3	4.7022+2 9.7722+3	4.7 62642 9.65y543
4.3452.02 2.2352.4	4.3.456.4 2 2.2476.44	4.3446+2 1.1526+4	4.348E+2 1.135E++	4.3436+2 1.635=+4	4.345242 2.637244
4.167242 1.391244	7.1676+2 1.3.35+4	4.1676+2 1.2548+4	4.1676+2 1.2316+4	4.107E.2 1.1E:E.44	4.1676+2 2.4535+4
4.1.6644 2.4336+4	4.0015+5 2.4395++	4.6005+2 1.3645+4	4.3266+2 1.3326+4	4.36.42+2 2.250=++	4.4002+2 1.1532+4
1.3401.42 1.0.35**	5.140242 1.2342+4	3.8401+2 1.4876+4	3.5.62.42 1.4446.44	3.4-52+2 1.3-62+4	3.3406.42 4.64 92.14
3.1.42.42 1.5576.44	J.7J+L+2 1.75+L+4	3.7442+2 1.6352++	3.7446+2 1.9666+4	3.1.46+2 1.442=+4	3.70+4.42 1.2556.4
र्देक करिकेट ₹८ ± कहे महे हे में म	3.5812.2 4.1.42.	3.5716+2 1.8.55+4	3.571:+2 1.711E++	3.5712+4 1.5462+4	3.571=+2 2.35==++
3.443_14 2.557214	3.4496+2 2.3496+4	s.++8€+2 2.633E+4	3.++8£+2 1.085£++	3.4436+2 1.0555+4	3.441642 1.415644
3.3942+2 2.9396+4	3.33.6+2 2.59-6+4	3.396E+2 2.177E+4	3.3946+2 1.9876+4	3.390E+2 1.717E+4	3.09cz+2 1.44c£+4
3.3532+2 3.4778+4	3.3332+2 2.3341+4	3.3336+2 2.3476+4	3.3336+2 2.1666+4	3,3336+2 1.7746+4	3.333: +2 1.4/92+4
5.3545+6 3.3775+4	3.279c+2 3.43cc++	3.3.65+2 2.460 6+4	3.36.6+2 2.1736+4	3.3.úc+2 1.81-c+4	3.2006 +< 2.4926+4
3.2796+2 4.43+6+4	3.226c+2 4.24.6+4	3.2792+2 2.553E+4	3.279E+2 2.223L+4	3.2796+2 1.6395+4	3.1791+2 1.5.46+4
3.2572+2 5.1372+4	3.2.>.+2 4.0926+4	3.2576+2 2.0476+4	3.2576+2 2.2756+4	3.2576+2 1.0615+4	3.1572+2 1.5116+4
2,22,62,000 6,239,200	3.1156+2 5.1076+4	3.23ci+2 2.7.8E++	3.2356+2 2.3276+4	3.2361+2 1.8831+4	3.23t1+2 1.52u1+4
3-220=+2 0.3-55+4	3.1706 +5 5.3186+4	3.2c02+c 2.d.,c++	3.2266+4 2,3546+4	3.220242 1.594244	3-2260+2 1.5252++
3.4.5.12 7.753614	3.1006+2 5.2816+4	3.2192+2 2.5542+4	3.215E+2 2.386î+4	3.2156+2 1.9656+4	3.21560 1.529200
3.265246 7.362644	3.4552+2 4.9392+4	3.2.56+2 2.9.96+4	3.2.56+2 2.4652+4	3.2052+2 1.9152+4	1.2652+2 1.5334+4
5.1951+2 7.7.15+4	1.1452+2 4.2766+4	3.1956+2 2.3c56+4	3.1956+2 2.4316+4	3.1956+2 1.9256+4	3.1456+2 1.5376+4
3.125_+2 3.2356+4	35c+2 3.47it+4	3.1852+2 3.6212+4	3,1352+2 2,4558+4	3.1556.02 2.9342.04	3.20>2+2 2.5+42+4
3.1755+6 1.4575+4	3.1252+2 2.7252+4	3.1756+2 3.1762+4	3.175E+2 2.479c14	3.1752+2 1.9-32++	3752+2 2.5436+4
3.165.46 1.363.44	3.1.52+2 1.09+6+4	3.2052+2 3.2292+4	3.1056+2 2.5616+4	3.1656+2 1.951:+4	3,2002+2 2,3406+4
3.1552+2 9.4352+3	3.4774+2 9.4736+3	3,1552+4 3,1792+4	3.1555+2 2.5216+4	3.1952+2 1.4502+4	3.1552+2 1.5-92++
1.1351+2 5.6331+3	3 3 + 2 4 . 70 + 3	3,1355+2 3,2596+4	3.1356+2 2.5556+4	3.1356+2 1.9716+4	3354.42 2.5932.44
3.1155+2 3.8355+3	2.1356+2 2.9636+3	3.1156+2 3.2936+4	3.1156+2 2.5766+4	3.1152+2 1.9792++	3 2.5576+4
351+2 2.3.18+3	2.4416.42 2.4336.43	3.4956+2 3.2496+4	3.6966+2 2.5795+4	3.396242 1.954244	2yoz+2 1.553±+4
3.4//2+2 2.2002+3	2.5992.+2 2.5362+3	3.6776+2 3.6436+4	3.1776+2 2.5586+4	3.0776+2 1.9436+4	3.4772+2 2.556E+4
3.6352+2 1.3332+3	さいカラスキと ふいんりしゅる	3.45.2+2 2.3132+4	3.6366+2 2.3786+4	3.4332+2 1.9526+4	3.0302+2 2.5028+4
といろりうじゃく ひいょろうたやく	2.7636+2 5.77+6+2	2.5336+2 6.3146+3	2.5998+2 1.2348+4	2.899.+2 1.581:++	2.3352.02 2.4736.04
2.7.32.2 2.3776.2	2.5002+2 3.1426+2	2.7632+2 2.1322+3	2.7.3:+2 4276+3	c.7.3c+2 7.7~12+3	2.733.+2 1.400674
2.5666+2 1.2576+2	2.2226.2 1.3906.2	2.5.02+2 9.9.22+2	2.53(6.2 1.3636.3	2.5 2 3.052:+3	2.50.202 6.2008+3
2.2225+2 5.5452+1	2.0336+2 1.3656+2	2.2226+2 4.5916+2	2.2226+2 8.3696+2	2.2226+2 1.6135+3	2.2226+2 4.9058+3
2.0005+2 5.0276+1	1.423.42 3.59.641	ZGE+2 Z.767E+2	2.0006+2 4.9816+2	2.1.26+2 9.4156+2	2.34.6+2 1.7366+3
1.6572+2 2.3946+1	1.0306+2 1.257:+1	1.0076+2 1.3936+2	1.6076+2 2.4346+2	1.6676+2 4.5992+2	1.007:+2 4.3302+2
		1.4665+2 3.4685+1	1.100E+2 6.057E+1	1.3C8E+2 1.398E+2	1.66642 1.549642

TABLE 4. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

, a	v a	ν α	ν α	v a	ν α
SATA SET 7	DATA SET 8	DATA SET SICONT.	DATA SET 11 (CONT.)	DATA SET 13(CONT.)	DATA SET 13 (CONT.)
T = 1000.0	T = 298.6				
		7.4638+4 5.6.82-1	3.62iE++ i.u.6e-1	3.757 3 1.73 1	3.5032+3 1,3332-2
5.682:+2 5.6176+3	1.1955.5 3.3102.5	7.8692++ 5.566-1	2.9376+4 8.6666-2	3.754E+3 2.85#L-1	3.550=+3 6.4,16-3
5.2032+2 7.do72+3	19.2+5 3.09+2+5	6.866E++ 3.L.6c-1	2.5395+4 6.5664-2	3.7486+3 2.570=-1	3.535c+3 2.0002-3
4.702-+2 9.302E+3	1.182.+5 5.44.6+5	b.4.5i+- 2.ilúi-1	2.7.36+4 5.5.66-2	3.7472+3 2.990=-1	
3-42.42 1	173.+5 8.2236+5		2.5976+4 4.4662-2	3.7386+3 3.8202-1	ÚATA SET 1→
4.15/5+2 1.43/5+4	iaác+5 ii8c+á	DATA SET 10	2.459E+4 3.16LE-2	3.7366+3 3.93.6-1	T = 293.0
****** lau53: **	1.0000+0 1.2636+0	T = 295.u	2.3316+4 2.3666-2	3.731£+3 3.84vi=1	
3.446246 1.637644	1.4472+5 1.403£+6		Z•ĉ1<€+4 1•766€ - £	3.727c+3 3.52vc-1	5,3482+4 3,4526+8
3.764242 2.2-3244	1.45245 1.542646	8.4682+4 6.4662+1	2.L75E++ 1.2GLE-2	3.720c+3 2.6u.c-i	5.455c+4 c.447±+ Q
3.5712+2 1.1326+4	1.0.416.5 1.7146.00	7.855£++ +.839£+1	1.9728+4 9	3.7166+3 2.0632-1	5.425204 1.814808
3 . + + 5 . + 2 2 2 2 2 4 4	1.01145 1.0392+6	7.6856+6 3.4348+1	1.3962+4 7.6662-3	3.711E+3 1.66uz+4	4. 520LP4 1.555E+B
3.39.202 1.202:00	133_+5 2.181k+6	7.5652+4 2.440E+1		3.7.56+3 1.3655-1	4.3756+4 1.4492+3
7.333±02 1.255E04	123:+5 2.1016+6	7.4702+4 1.7142+1	DATA SET 12	3.6956+3 1.4942=1	4.739204 1.351E0D
3.36.6+2 1.2556+4	1.1202+5 2.2316+6	7.3555+4 1.26+2+1	T = 390.0	3.006c+3 9.4Cve-2	4.673. ** 1.1516 **
3.2792+2 2.2762+4	1.J15_+5 2.152£+á	7.1532+4 7.5.62+6		3.6812+3 7.4662-2	4.5006+4 8.41.641
3.2572+2 1.2752+4	1.117245 2.432246	6.40LE+4 5.3LUE+0	4.717644 2.116-2	3.6700+3 8.3460-0	4.444274 5.376241
3.23t2 * 4 1.633 2 * 4	1, 1.521£+6	6. 5392+4 4.6662+5	4,232E+4 1.246E-2	3.6726+3 9.5136-2	4.3166++ 6.3.66-2
3.2692 46 2.652244	9.3476+9	6.718E+4 3.333E+G	4.115£+4 1.45u£-2	3.6746+3 8.06.2-2	4.2 5.332
1.217:02 1.210204	9.327244 0.4876+3	6.645£+4 2.~(J2+u	3.7172+4 8.3642-3	3.000£*3 b.1.11=c	4.432644 2.134241
3.669.46 2.635644	3.d03.++ 4.6i+£+ã	0 702+ - 2	3.3336*4 4.0.66-3	3.0022+3 4.4172+2	3,5372** 3,17,2*1
3.1952+2 1.2442+4	9.7822+4 2.95.1.+5	6.323E+- 1.7CDE+E	2.95LE+4 1.70GE-3	3.659E+3 4.466E+2	3./48244 3.4746+1
3.1151+2 1.4912+4	3.6772.4 1.5316.5	6.0056+4 1.3006+6	2.6816.4 8	3.6556+3 4.8666+2	3.7172+4 3.3326-1
3,1756+2 1,2718+4	9,613:+4 8.456E+4	5.815E+4 1.3iJE+C		3.0476+3	1.62464 1.9342-1
3.15-2. +2 1.2936+4		5.589E+4 l.i.úč+4	SATA SET 13	3.643643 5.766242	3.0712+4 1.4046+1
3.1055+2 1.29+2+4	DATA SET 9	5.4j3E+4 1.LCBE+C	7 = 3ii.u	3.64 uz + 3 5.7 Cv = ~ 2	3.>u>c++ 0.882542
3.13y±+2 1.29x€++	T = 233.ú	5.251E+4 1.1LGE+ G		3.6332+3 5.6	3: <up£00 9:445e="3</td"></up£00>
3.115142 1.233644			3.0526+3 4.3635-3	3.6306+3 5.4666-2	
3.,36246 1.235644	3.573c+4 3.63jc+1	DATA SET 11	3.8.52+3 7.0006-3	3.6662+3 8.8662-2	OATA SET 15
3.5772+2 2.62132+-	J.5101+4 1.49.£+1	T = 39C	3.d3-t+3 1.66tt-2	3. (232+3 9.7 4,2 + 2	T = 275.0
3.0302+2 2.6232+4	9.405:44 9.9442+\$		3.8c4£+3 1.4LûE-2	3.619c+3 1.65cc-1	
2.8331+2 1.23/6+4	9,419644 0.361642	4.8316+4 5.46j£-1	3.8:46+3 1.9.66-2	3.5182.3 9.7662-2	d.ccci+3 3.7.G∈~2
2.7.32+4 1.35+2++	9.347=+4 4.466=+1	4.7852+4 4.5132-1	3.5.76+3 2.50.6+2	3.611E+3 5.0CC=-2	1.818214 1.9502-1
2.5662+2 7.9.76+3	4.1832+4 2.8iuc+7	4.5876+- 3.5656-1	3.7956+3 3.66.6-2	3.6092+3 3.3(02-2	1.6672+3 4.41
2.22.2+63-32+3	9	4.3368+4 2.9236-1	3.7+2E+3 3.9646-2	3.6.46+3 2.4612+6	1.25tc+3 9.9E-1
2.0302+2 2.6392+3	8.3715+4 2.20-6+6	4.1075+4 2.4435-1	3.7,56+3 4.9.46-2	3.5982+3 2.4612-2	1.+296+3 2.6006+3
2.667242 2.273543	8.035244 2.864643	4.44(2+4 2.1742-1	3.775c+3 6.166e-2	3.5932+3 1.6035-6	1.3336+3 4.1.46+0
1.,(02+2 2.35<6+2	8.54.2.4 1.7636.40	3.8402+4 2.4242+1	3.77+E+3 7.600E-2	3.509£+3 1.600=-2	1.25,2.3 7.3.,2.8
	8.347c+4 1.50.6+0	3.5216+4 1.773E+1	3.7082+3 9.7002-2	3.5626.3 2.46.6-2	1768+\$ 9.5036+8
	8.1216+4 1.2	3.269E+4 1.55mE-1	3.764643 1.2366-1	3.57 82+3 2.4 43=-2	1.1116+3 1.2006+1
	7.8152+4 1.2.42+0	3.155E+4 1.22JE-1	3.7592•3 1.5+66-1	3.571E+3 1.7C4E-2	1.ú53£+3 1.95úE+1

TABLE 4. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

v	a	v	и	v	œ	ν	à	ν	a	V	3
DATA SET 1	(. 14051 2	DATA SET	10(00)(1.)	OATA SET T = 303.0		DATA SET	18 (CONT.)	DATA SET	18(CCNT.)	DATA SET	19 (CONT.)
1,6.52+3 3		7.648104	4.4562-1	1 - 343.1	•	1.1692+5	1 876 +6) - 855£+5	1.7256+6	4.5426+2	2.3465+1
9.5442+2			3.7442-1	9.4762+4	1.191E+4		1 35:+6		1.682:+6	4.32.2+2	c . 4+72+1
9.4911.6			3. wii £ -1	9.6772**			1.3675+6		1.639E+6	4366+2	2.85 52 +1
0.0962+2 6			4.5.L.E-1		2.54.6+5		1.4725+6		1.552: +0	3.1416.02	3.527£+1
0.936142			2.1.v£-1		4.113E45		1.416+6		1. 46+2 +0	3.7:32+6	4.302512
1,3331+2 1			1.80.5-1		5 . 8 6 a E + 5		9>86.5	1.6876+5	1.399: +0	8.5342+2	5.0675+1
3.699646			1.3-16-1		1.4826+6		9.2686.5	1.9.32+5	1.3346+0	3.3472+2	7.4006+1
0.103:+2			0.uli E - 2		2.+25.+6		8.27+£+5	1.9116+5	1.2612+0	8.19.1+4	9.70 -E+2
4.0002+2 2				1 24 5	2.6E7E+6	1.274E+5	7.5205+5	1.935£+5	1.0226.0	8.4325+2	1.236c+Z
7.9522.06		JATA SET	1.7		2.8192+6	1.2322.5	6.768E+5	1.9766.05	7.697:+5	7.3026+2	1.3958+2
7.8992.02		T = 13.3			2.8435+6		6.046E+5	2.0166+5	5.827E+5	7.7162+2	136+2
7.5582.42				1.6322.5	2.7632+0	1.2932+5	6.363c+5			7476+6	1.3402+2
7		2.31.6+2	420:+1	1.6362+5	2.6312+6	1.3. EE+5	6.4636+5	DATA SET	19	7.2891+2	2.4322+2
7.7402+2			0.0376+1	1.046.645	2.484616	1.3232+5	6.5485.65	T = 77.4			1.5752+2
7.6935.42	2.3252+2	2.9:35+2	3-5E+0	1.6446+5	2.323E+6	1.3632+5	85.6+5				1.77 uč +2
7.03.202		2.9.26+2	3.3412+3	1.446.45	2.1616+6	1.3956+5	8.9412+5		3.663=-2		2+440£+2
7.037: +2 2	2.2512.02	2.3832+2	2.5531.03	1.6528+5	2.0236+6	1.4.36+5	9.1692+5		b.393:-2	0.793£+2	2.417E+2
7.593: 06	2.15.67.	2.3075+2	1.9356+0	1.1562+5	1.8995+6	1.4116+5	9.3992+5	1.6812+3	1.0152-1		
7.5.75.66	297E+c	2.33+2+2	1.4.5 : + 0	1.6666+5	1.7726+6	1,4196+5	9.2752+5	1.6116+3	1. 35 35 -1	UMTA SET	
7.5.5.02	752+2	2.0.36.02	1 +3 = +3	1.6055+5	1.0-25+6	1.427E+5	9.327E+5		3.4 692 - 2	1 = 132.	•
7.405. 42 6	5+2676	2.77+=+2	7.935:-1	1.1695+5	1.4772+6	1.45:£+5	8.75c£+5		4.3162-1		
7.4672+2	c 37 = + 2	2.7372.2	5.337:-1	1.6732+5	1.3616+6		8.345E+5		4.7132-1		5.756E-2
7.30-1-2	2.2.76.02	2.7.,2+2	4.6778-1		1.2455+6		8.2.56+5		6. 345 ± =1		5.0176-2
7.2-1:+2	2 * + + + 5 = + 2	2.0565+2	3.5786-1	1.061c+5	1.1416 **		8.249E+5		9,2002-1		1.5325-1
7.143:42	5.1.15.2	2.0001:+2	i.dile-1		1.636646		8.2942+5		1.347.+.		2.475[-:
6. 3971+2 :	2.2-1:12	2.555=+2	c.33-e-1	1.0996+5	9.1605+5		9. 45. 6+5		2.1-5: **		4.1E-1
0.to7: * 6			1.9415-1		7.964£+5		1.3472+6		2.5 55=+-		c.2c-1
1.452146			1.5776-1		6.6916.5		1.1702+6		3.2172+4		9-4-62-1
0.3495 +6 4	4 • 2 u j E • 3		1.53JE-1		5.948E+5		1.3566+6		3.773=+6		1.4256+8
			1.146-1		5 • 8 31 c +5		1.5546+6		4.352=+6		1 . 6 . ZE + 3
5: T4 SET 1	l Ó		9.4796-2		6.41JE+5		1.735E+6		4.76454		2.2.06+8
1 = 293			7 .6 242-2		7.2725+5		1.9392+6		5.4856+6		2.5568+6
			6.2526.0		7.86JE+5		1.9446+6		5.253.+0		3.2> = = +5
2.5975++ 6			5.572E-2		8.3116+5		2.2736+6		5.492244		4.4536.00
3.7.3.++ 2			4.7.26-2		5.705E+5		2.115€+¢		5.730=+-		5.294248
3.518:++ 1		1.3236+2	4.131£-2		9. 48.215		266£+0		5.7-76+0		5.7476+3
6 • 3 <u>4 4 £ • • </u>					9.7172+5		1.9936+6		6.1122 ***		6.499E+9 7.256£+3
3.1752++ 4					1.055E+6		1.8726+6		7.4282+6		7.4955.3
Sabe take !					1.6+32+6		1.8168+6		1.1476+1		8.53bE+3
7.3621+4	o.o.jE-i			1.161E+5	1.0056+6	1.8516+5	1.768E+6	9.7856+2	1.9672+1	2.4 736 73	0.730273

TABLE 4. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

ν	a	ν	α	ν	à	ν	α	v	a	ν	3
DATA SET	25100NT+)	DATA SÉT	21 (CONT.)	DATA SET	22 (CONT.)	DATA SET	26 (C CNT .)	DATA SET		JATA SET	31 (CCNT.)
				W W. C. C. A. D.	7 / ** * * * * * *	4 . 35.47	5 3775	T = 975.	i		
1.1561+3			4.J22E+1		3.425E+2 3.887E+2	1.5.52+3		2 2 25 2		1.0556.43	
130 + 3			4.7-96.1			1.345E+3		2.3+55+3		1.5022+3	
135.3			5.0736+1	1.2036+2	4.737E+2		2.53.E+0	6.2412.43		1.75.2.5	
9.7661.2			6.3566+1	DATA SET	2.7	1.346E+3		2.142E+3 2.142E+3		1.7.12.45	
9.550.+2			8.3276+1	T = 77.6	23					1.6556+3	
9			1.36+6+2	1 = //.u			5.60(E+6	1.343£+3		1.6052+3	
3.715.+2			1 - 13 - 5 + 2		2	1.245£+3 1.191£+3		3.3.3.43		1.55.2.3	
8.3546+2			1.5266+2		2.4106+1	1-147542	3.300	1.7-36+3		2++97c+3 2++96+3	
5.153.+2			2.0.26+2		1.7236+1	3444 644		1.7.12.3		1.449543	1.7/4548
5+296+2			2.1436+2		1.133E+1	DATA SET T = 7.5.		1.64-2+3		DATA SET	
7.97-:+2			2+39+6+2		8.7346+8	1 = (->-	y	1.5928+3			
7.71,2+2	1.5036+2		2 - 30 5 E + 2		1.8592+0			1.5+32+3		T = 249	•
	_		2.3871+2	2.871:+1	1.167E-1		1.63.6-1	1.4906+3			
DATA SET			2.4746+2				3E-1	1.434E+3	9.5602+6	3.4646 +6	
T = 293.0		7.5322+2	2.681E+2	DATA SET			5.40.6-1			3.75.8-1	
				1 = 293.	3		9.7.6-1	DATA SET		2.535641	1.2462-3
1.315:+3		DATA SET					1.7812+4	T = 1161.	. ŭ		
1.7.22.+3		T = 573.	Ú		2.1795+2	1.5972+3				JATA SET	
1.6071+3					1.63, 2+2	1.5442.3		2.4005.3		T = 1175.	
			2.4556-1		1.1672+2		4.26.2.5	2.29.213			
2 . 54 3 2 + 3			4.167£-1		8.7i+E+1	1 • 4 + 5 £ + 3		2.193:+3		7.27.2+2	
1.563:+3			0.7556-1		2.49vE+1	1.389£+3		2.1945+3		6.87.6.2	
2.4302.43			1516.1	2.3045+2	2.467E+4	1.3416+3	9.5868+9	1.992:+3		0.5+6612	
1 0 + 3			1.567240					1.3425+3		Doubeste	
1. +33:+3			2	DATA SET		DATA SET		1.3-56+3		5.7 ive+2	
2 2 + 3			3.1186.3	1 = 573.	Ú	T = 835.	Ú	1.7981+3		5.4000+2	
2.315243			4.1956+3					1.743E+3		4.3+2	
1.3002+3			5 . 7 CEL+3		6.625E+2		1. 30 LE-1	1.097£+3		4.0202+2	
1,33)1+3			7.4202+1		5.1312.2		3.30té-1	1.:39:+3		4.37.2+4	
1.3611+3			4 - 32 36 + 3		3.7:7E+2		ċ.ż.uE-1	1.5916+3	9.5246+6	4.13.6.45	
1.30.1+3			1.21.6+1		2.8926+2	1.7952+3				3.30.2+2	
5			1.7671+1		9.5936+1	1.7435 + 5		DATA SET		3.07.612	
1,2295+3			2.415:+1	2.4115+1	1.189E+1		1.92.£+4	T = 3)	3.446=+2	
1.2111+3		13	3.471£+1				2.5268+6			3.24.E+c	
1.1402+3			5.2942.1	TER ATAC			3.3162+6	2.3046+3		2.36.6+2	
1.15:15:43			7.0366+1	T = 300.	3	1.5426+3		2.2.35+3		2.57JE+2	
1.11.3			1.1372+2				5.75üE+0	2.161:+3		۲۰۲۶،=+۲	
1.12 e ± + 3	9.927:+0	* 4.7202+2	1.374=+2	1.9+5E+3	9.4602-2	1.44úE+3		¿. Ju 4=+3		2.1100+5	
131.+3	1.136241	3.35+=+2	4 - 333 - +2	1.5442+3	1.243E-1	1.393E+3	9.726 E+8	1.9496+3		2.09.2+2	
3.594.44	2.3926+1	8.4192+2	2.5676+2	1.7442+3	2.4GGE-1			1.9616+3	8.2 (je-2	1.365£+2	1.1116+3

TABLE 4. EXPERIMENTAL DATA ON THE ABBORPTION CONFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

	, 4	.A.	v a	y a	V 3
DATA SET 33 (CONT.)	DATA SET 35 (CONT.)	DATA SET 37(CONT.)	DATA SET 38(CONT.)	DATA SET 48 (CONT.)	JATA SET 42
					T = c73.0
1.1011+2 5.9052+2	7.31.2.2 1.3256+2	0.3446+2 0.22:E+1	1.208E+3 6.40ZE+2	4.5466+2 8.8486+3	
21,010	7.29 (2.2 1.4722+2	0.9465+2 6.2135+1	G.276E+3 C.494E+2	4.3536+2 1.073=+4	6.005E+c 4.150E+3
DATA SET 34	7.14.6+2 1.9546+2	1+3+ use u s+1.86 ed	0.23-£+3 L.017E+2	4.3.46.+2 1.63.6.+4	0.2752+2 7.1702+3
T = 3.2.2		2.1.31.5 0.2322+1	5.207£+3 L.734E+2	3.845242 1.135244	5.3332.02 8.3092.03
	DATA SET 30	0.109E+3 0.263E+1	0.2926+3 6.8336+2	3.6946+2 1.234=+4	5.547c+c d.ot4c+3
1.1002+3 0.7-52+6	T = 23.0	0.113E+3 u.c55E+1		3.5716 +2 1.2946 +4	5.2426+2 5.3726+3
1.1392+3 8.5836+4		4.1246+3 4.3696+1	DATA SET 39	3.4366+2 1.5526+4	4.3372+6 8.5462+3
1.1612+3 4.1512+4	1.15.2+3 5.7812+3	0.1335+3 3.3735+1	T = 3.6.0	3.324= 12 1.709= +4	4.761:+2 8.9326+3
1.0012+3 9.3332+4	1.3322+3 5.4396+3	5.139£+3 L.398£+1		3.211c+2 1.93o=++	4.754242 9.249243
20.000.000 9.245546	1.4732+3 6.7428+0	3.1402+3 6.392E+1	:+366E.4 \$+36E+:	3.1176+2 2.1976+4	4.339242 9.044843
90:16:12 2:491891	1 15.2.2	0.1546+3 6.5126+1	ù. ∠73c+2 G. 985£+ 6	3.429642 2.763244	4.20.215 2.270314
: +5202+2 4.2272+2	130=+3 1.u+26+1	w.io3z+3 w.5ow£+1	5.239:12 6.1465.1	2.9442.42 1.5532.44	3.3522.46 2.2076.44
7.42c.42 4.999242	1.022c+3 1.7956+1	4.1075+3 6.0.46+1	j.300E+2 G.KHLE+1	2.4502.42 9.2572.43	3.3432+2 1.22-24.
3.220294 5.329692	1.0176+3 6.2756+1	G.17UC+3 0.600E+1	0.4246+2 4.4576+2	c. 113c+c 7.746c+3	3.744242 1.156244
9.1102.00 6.9076.01	i2:+3 2.392t+1	4.178£+3 0.660£+1	D.514E+2 0.389E+1		3.50+2+4 1.25.5+4
3.3.6.4. 3.3-72+1	4.4916+2 2.1136+1		g.593£+2 w.19c=+2	DATA SET 41	3.+352+2 1.3572+4
4.374214 1.5242+2	9.12.1.12 2.1351.11	DATA SET 38	3.6765+2 0.2375+2	T = 571.0	3.000040 1.351294
4.000042 1.7.4242	9.7.16+2 2.3:06+1	T = 77.6	5.7.25.2 0.3322.42		3.2222+2 1.3592+4
3.4.02.42 2.4272.46	9.190c+2 3.455c+1		4.7556+2 4.6546+2	6.2326+2 6.2652+3	3.227646 2.294844
3.1.42+2 2.1176+2	8.3142+2 4.5066+1	1.096E+2 6.971E+4	\$ + 0 £ 4 £ + 2 4 ± 9 5 0 £ + 2	5.5+76+2 9.8146+3	3.028642 1.697144
5.5160+6 2.135+2	3.7546+2 5.4436+1	0.7352+2 3.2172+1	0.8048+2 0.1056+3	5.2736+2 1.6626+4	2.94.542 2.1375*+
7.900242 6.099242	4.bilit2 6.outs+1	6.7015+2 0.4135+1	4.9156.0 5.3616.3	4.9976+2 1.0415+4	2.356546 1.1.4644
7.5141+2 2.4011+4	7.403c+2 1.42it+2	6.787c+2 U.E59E+1	£.959£+2 w.like+3	4.7016+2 1.0-26+4	2.1736+2 9.5016+3
7.7142+2 2.17,642	7.03.2.42 2.4572.42	0.828E+2 0.724E+1	9.137E+3 C.116E+3	4.5576+2 1.0016+4	
7.71.6.5 2.3156+2	7+3cc+2 1+405£+2	1.3643.4 \$+3602.1	0-1116+3 6-1216+3	4.3396+2 1.156+4	3-14 SET 43
	7.70] 6+2 6.+356+2	1+362004 5+301604	u-1192+3 L-1162+3	4.1706+2 1.2436+4	7 = 293.u
DATA SET 35	7, 53, 2+2 1, 3, 3, 42	6.1116+3 4.6916+1	U.12;E+3 0.123E+3	3.9996.02 1.3656.00	
u . ف و ف 1 = 1	7.5712+2 1.1832+2	0.11c2+8 4.714E+1	0.1346+3 6.1256+3	3.8432 +2 1422+4	1.4776+2 2.5+36+2
	7.53.1+2 1.16+2+2	0.1216+3 C.76v6+1	0.149E+3 B.125E+3	3.7146+2 1.5852+4	1.3126.5 2.2326.2
1,1025+3 1.3165+2	7.4202+2 2.2356+2	J.1352+3 J.05J2+1		3.5042.44 3.0592.44	1.230212 2.123212
1.153143 1.279141	7.3242+2 1.37.6+2	4.146.43 6.7936.1	DATA SET 40	3.4422.02 1.6532.04	1.119642 1.436242
1.6762+3 1.7452+1	2.2432.45 2.4328.4	0.1472+3 6.8772+1	T = 293.w	3.3176.2 1.7156.4	1.25/24. 1.9242.2
1.2591+3 1.312.44	7,13,002 1,59,1002	0.2502+3 0.0242+2		3.282242 1.462244	1
7.19.2° 2 2.0592° 4		4.1032+3 4.1242+2	0.6076+2 2786+3	3.1226 + 2 1.04 + 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	9.524211 1.641212
3.46.6.45 2.3.46.46	DATA SET 37	G.181E+3 U.1346+2	6.25.6.2 3.3596.3		8.929:+1 1.43:2:+2
3.3942+2 5.4232+2	T = 63.9	Q.197E+3 4.165E+2	5.8898+2 6.7+18+3	2.9416+2 1.8796+4	3.433141 1.333542
0.2042+21752+2		0.2225.3 6.2316.2	5.5042+2 5.2646+3	2.930c+2 1.6572+- 2.8576+2 1.5596+4	7.815:4: 1.227:42
7.9942+2 2.4245+2	6.7342+2 6.9716+0	239E+3 0.275E+2	5.2736.2 1.66664	2.1786+2 1.31/6+4	7.4672+1 7.1952+1
7.7842+2 1.57+6+2	4.7632+2 4.249£+1	1.250E+3 G.3C7E+2	3.116.5 9.7416.3	C-11 GC-C 7-37,C-A	0.5796+1 4.5886+1
7.5942+236-2+2		4.257E+3 4.351E+2	4.7736+2 9.9456+3		0.7/7571 4.730571

w

TABLE 4. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

,	3	V	α	ν	a	**	۵	ν	2	ν	٤
2411 SET	43 (CCNT 43	DATA SET	43 (00%) 1.1	DATA SET	45 (CONT.)	DATA SET T = 3-64		BATA SET	49(CJ4T.)	3474 SET	51 (CONT.)
6.4335*1	4.53564	1 . 1 . 2 4 1	2.2738+3	3.378F+2	2.4235+4			9.5036+4	1.2512+1	336=++	7.90.5+3
9.4642*1			2 - 11 - 1 - 0		2.5832+4	3.6362+2	1.6.81+4	9.01.6++	3. +7. = +.	3	1.1235+1
5.435:+1			2.1145.0		2.3628+4	3.5718+2	1.795E+4	9.633c++	4.4302+1	97.6+4	1.73.E12
4.7025+1			1.94.6+4		3.2736+4	3.5392+2	1.9226+4	9.0055+4	1.12GE+2	9.1306++	2.53.2.1
*****			1.75+2+4		3.8+5=++	3.4952+2	2 70 6+4	9.5922+4	1.8201+6	3.2746+4	5
	7.5/1.00		1.4241.43	3.1155+2	3.099200	3.3902+2	2.3208+4	9.0032++	2.32.2+2	9.214204	1.1
	5.411.		1.3502+3	377:+2	2.417E+4	3.3442+2	2.0092+4	9.750 € + +	5.0512.06	9.4C.C++	2.0-0:+2
	4.5105*6		1.2346+0	3.4362+2	1.3592+4	3.279£+2	2.7526+4			9.25.6.4	3.17.2+2
	bi+.	9 92+4	1-1-36+3	2.9945+2	135 E+4	3.2265+2	3.6322+4	JATA SET		3.32úc+4	5.6302+2
	3.7-16+6	0.021E+u	6 67£ -1	2.94.5+2	6.943E+3	3.1556+2	3.0542+4	T = 437.	û		
	3.0000.			2.9.72+2	4.4205+3	3.1256.2	3.4442+4			TEZ ATAC	
	3.5.12+4	DATA SET	44	2.8652.2	2.843E+3		3.269E+4		3.6102-1	T = 575.	:
	3.4.56+6	T = 3		1.7seE+2	1.12JE+3		2.0366+4	8.7232+4	3.000:-1		
	3.3. :=		=	2.71LE+2	5.449E+2	2.9552+2	1. 3622+4		5.6462-1		4.65.2-1
	3.7-7:+6	4.32.2+2	1.2.26++			2.9545.42	1.4312+4		6.110:-:		L. 22-1-1
	4.4772+2	4052+2	2,3958+4	DATA SET	¥ Ď		8.008£+3		8.1000-1		< 3 - 2 + 3
	3.371E+.	3.8316+2	2.5742+4	T = .3	٤	2.8578.2	5. u 62£+3		5.9112-1		3,9425+3
2.2:7:+1	3.2725+4	3.5.2:+2	1.749214				2.095£+3		1-1-02+6		1 * * * * * 1
2.123:+1	2.9.55+.	3.03ni+2	1.3196+4		1.598E+4		1.7ú3E+3		1.32.2		2.16.5.1
4.25644	4.5762.	3.472c+2	2.2476+4		1.6936++	2.6326+2	1.157E+3		2.48124		gevanî#1
2.1621+1	2. +5+6+.	3.37 15+2	2 41 - +		1.7442++				4.6502+0		9.73.2+1
4.0002211	2.55+=++	3.3:1:+2	2.3216.4		1.9696+4	JATA SET			1.4112.1		2.350E+2
1.9/21.12	2.7.2=+.	3.4.52+2	3 97 . + 4		2.258E+4	r = 298.	ũ		1.990= +4	9.17.6.44	4.4248+2
	2.70620.	3356.02	3,4756+4		2.465£+4				2.7962+1		
1.6271+1	2.322.00	3.2,50+2	3.4526++		2.6iuE+4		5.153E+6		5.24.2+1	DATA SET	
1.4026+1	4.52.6+6	3.6806+2	3.3232+4		2.911E+4		3-43-2+0		8-1 [v:+1	1 = 3.3.	ũ
1.7786*1	2.7.26+4		3.5146+4		3.416614		1.965E+[1.5 2 + 2		
1.7272+1	2 . 4 ? . = * 4		2.49.6+4		3.5495+4		7.4698-1		2.8502.2		2.1.06+2
	6.3:52+6		2.0232++		3285+4	1702+1	4. 074c-1	9.440=+4	4.03. £+.		1.17:6.2
1.6/92*4	4 . 1 . / 2 + 6		1.5146+4		4405+4				. .		3.5
1.51.141	2.3652.03		7.0736+3		1.4475+4	DATA SET		DATA SET			1.3005 1
しゅうじゃじゃん	2.272.		··· 663E+3		8.1672+3	T = 298.	5	T = 514.	v		4.34664)
	2.3195**	2.0392+2	3.579£+3		5.699£+3						3 8
2.447.44	2.101-+-				3.7016+3		5.57LE-1		3.99.6-1		د • ل ـ ل د • ق
	2.2092.06	jata sēt			1.955E+3		5.046-1		3.9866-1		2.01:2+0
	6.0322.	T = 70.5			1.153 E+3		7.3166-1		4.82.		1.92.203
	1.7516.0			2.632E+2	7.937E+2		1.46 E+B		6.75.6-1		1.3-42-3
	2.75.6+6		1.07 lek+4				1.7642+6		2.2700+6		1.925240
	1.301:1.		1.3836+4				4.4966+6		2.6222.00		1.70.2+4
1.1575+1	∠. 243±+ú	3.4435+2	2.273E+4			9.5568+4	9.79.2+6	9.104694	5.15.2+3	7.4175.44	1.7632+3

TABLE 4. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Wavenumber Dependence) (continued)

v	ů.	ν	3	ν	œ.
DATA SET	53 (CONT.)	DATA SET	\$3 (CGNT.)	DATA SET	
	1.3.2.1		5.32.6-1		
	1.63]c+u 1.55jc+i	0.0045++ 0.50j_+4	4.67.1-1	7.95.6+4	
	1.50,20		4.45.6-1	8.1452+4	
		6.53.204	4.0300 L		7.89.6-1
3.3662**	1.5016+0	0.56.6+4	3.77.E-1	8. +46. 2 + 4	
3.7+62+4		0.52.6*4	c.31	8.5265+4	
7: - 1: - 1: -		0++5-2+4	3.52.t-1	5.cili:+-	
	1.55,203	67.2+4	2.9202-1	8.73 14	
##\$\$# #	1.50.2+.	6.4116+4		8.90.204	
3.54.274		0.30,2*4		3.37.2+4	9.3712-1
	1.3022+0		2.16.6-1	9.14.214	
	4 64 6 4 4	6.3112+4		9.22.2+4	
4.3502+4	1. + 7/2+2		1.7062-1	9.26.5++	
	1.40.110		1.91	9.3362+4	
- 5-2-1-4		0.20.2**	1.35.4-1	9.33.5+4	
	1.92020		1.9.001	9.45.214	
	1.3012+1		1.9t-1 1.9t-1	9.4725++	
	1.3015+4		1.0706-1	9.56.5+4	
7.596.**			1.7506-1	9.70.2.4	
7.3642+4		0.42 42 + 4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,
7.775:+4			1.3.,2-1		
7.7.4-+4			1.07.65-1		
	1.1535.	0.14.144			
7.5002+4		6.12,1+4	1.41.t-1 1.07.i-1		
7.436=+4		0.111114	1.75.6-1		
7		E	1.75.6-1		
	9.0:15.1	2.75.5.4	1.75.2.1		
7.2562.4	9.23.6-1	5.33.20+	1.41.1-1		
	1.0612+0	5.03.2+4	1.19.6-1		
7.134 = + +		5.744.4	1.4.4-1		
7.07.204		5.69.6+4	1.21		
	7.32.5-1	5.55.2++	1.040E-1 1.040E-1		
	7.1716-1		1.24.5-1		
	0.23.5-1		1.0926-1		
	6.04.6-2		1.691E-1		
			- · - ·		

Figure 6. Absorption Coefficient of Lithium Fluoride (Temperature Dependence)

TABLE 5. SUPPARY OF NEASCRIMENTS ON THE ABSORPTION CONFFICIENT OF LITTLEM FLUORIDE (Temperature Dependence)

Data Set No.	Ref.	Author(s)	Year	Method Used	Ravenumber Range, cm 1	Temperature Range, K	Specifications and Remarks
1	43	Stolen, R. and Dransfeld, K.	1965	т	31.25	2-413	Single crystals; obtained from the Barshaw Chemical Co. and Isonet Corp.; cylindrical specimen of diameter 2.5 cm, and of varying thickness between 0.1 and 2.5 cm; absorption coefficients directly determined; data extracted from a figure.
2	43	Klier, M.	1958	Z	192.3	77-561	Crystal; plate specimen; absorption coefficients deduced from transmittance seasurements and estimated reflectivity; reflectivity estimated by assuming n = 3.07 for the wavelength and in the entire temperature range; data extracted from a figure; estimated uncertainty about 5 to 10%.
3	41	Klier, M.	1958	z	157.7	77-536	Same as above.
4	41	Klier, M.	1958	z	122.7	77-552	Same as above.
خ	41	Klier, M.	1958	z	95.24	77-553	Same as above.
6	4:	Klier, M.	1958	Z	71.43	77-571	Same as above.
7	41	Klier, M.	1958	z	28.57	120-555	Same as allove.

TABLE 6. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE (Temperature Dependence)

[Wavenumber, v, cm⁻¹; Temperature, T, K; Absorption Coefficient, a, cm⁻¹]

T	α	T	α	T	ox.
JATA SET	:	DATA SET		132 4140	6 (CCNT.)
· = 3.12	5E+1	v = 1.22	7E+2		
				87.7	2.893E+0
5:1:5	4.79+E+2	76.9	1+367E+1	97 • 3	3.393£+ú
<26. J	6 41 £ +2	93.0	1.924E+1	116.2	3.537E+6
2.6.0	7.365242	132.4	2.53.6+1	1.9.6	3.9072+4
275.0	4.7+22+2	157.4	3. 39. 6+1	122.2	5.31+2+6
30.00	1202+5	134.5	4.5196+1	132.1	5.7276+6
327.0	1.2525+3	2.3.4	6.555£+1	179.1	8.4:9E+0
331.0	1.2:3=+3	239.7	1.11+£+2	197.7	1.2575+1
₹69. 8	1.435-43	366	1.5716+2	215.8	1.1742+1
415.0	1.915£+3	~51.9	2.2652+2	235.0	1.3592+1
		526.5	3246+2	253.6	1.8592+1
Ditt Set		ララビ・	3.35.£+2	276.7	2.1932.1
v = 1.92	32+2			239.1	2.595€+1
		DATA SET		330.4	3.5.96+1
76.3	c.3+1E+1	v = 3.52	4Ē+1	377.6	4.1L3E+1
65.5	3.2.7.			414.G	5.7826+1
111.2	**\$316*%	70.3	7.385E+3	5.1.2	6.9998+1
154.4	7.5+1	32.2	9.311E+ü	571.5	1.316E+2
210.3	1.65:012	66.5	1.1356+1		_
65-01	6.1392.00	9+	1.35pi +1	BATA SET	
3-7.5	2.7155+2	17	1.399-+1	v = 2.85	7E+1
39+.5	3.0325+2	753.0	1.0.85.1		
-01.3	4.07,542	122.7	1.77.E+1	119.9	2.5856-1
517.6	5.3632+2	137.4	2.467£+1	.23.5	J. 231E-1
551.6	6.3272+2	-07.4	3.443E+1	404.4	5.852E-1
	_	2.3.7	59.6+1	135.7	9.1556-1
CATA SET		224.0	3. 1506 +1	155.5	1.0998+0
. = 1.57	76+2	249.5	6.53.L.	218.8	1.4C7E+6
		265.5	7.6921+1	229.6	1.501E+6
75.9	20325211	328.9	1.1221.2	231.7	2.2916+0
90.8	2.3615+1	394.5	1.4326.42	375.8	5.1885+1
116.1	3.0720+2	43. • 5	1.7532.42	435.5	5.5478+6
.55.2	5.8.92.	499	2.183E+2	444.6	6.6146+1
117.3	9.9:05.01	553.4	2.4556+2	473.2	716+9
219.7	1.0112.02			515.2	8.153E+6
331.9	22+2.2	DATA SET		554.6	1.4746+1
396.5	2.5.80.0	∨ = 7.1+	3E+1		
+39.5	3.3.36.2				
479.7	3.6435+2	76.9	1.6516+8		
535.8	+.3A7E+2	82.2	2.1306+1		

Figure 7. Reflectivity of Lithium Fluoride

TABLE 7. SUMMARY OF MEASUFFMENTS ON THE REFLECTIVITY OF LITHIUM FLUORIDE

5 22 6 22 7 22	Jasperse, J.R., Kahan, A., Plendi, J.N., and Mitra, S.S. Jasperse, J.R. et al. Jasperse, J.R. et al.	1966	R	12.5-40.0	7.5	High purity; single crystal; hand polished until ortically flut to about 1/2 wavelength of the mean sodium D lines; annualed in a vacuum
3 22 4 22 5 22 6 22 7 22		1966				furnace for 2 days at a temperature of about 3/4 of the melting tem- perature of the crystal; near normal reflectivity determined with aluminized mirror reference; reflectivity data checked several times for different samples and for several cycles of heating and cooling and reproduced to within :1 to :27; data extracted from a figure.
4 22 5 22 6 22 7 22	Jasperse, J.R. et al.		R	12.5-44.0	85	Same as above.
5 22 6 22 7 22		1966	R	12.8-45.3	295	Same as above except sample temperatures measured with chrome-alumel thermocouple accurate to within 22% of the absolute value.
6 22 7 22	Jasperse, J.R. et al.	1966	Я	14.2-46.0	420	Same as above.
7 22	Jasperse, J.R. et al.	1966	R	13.9-45.3	605	Same as above.
,	Jusperse, J.R. et al.	1966	R	13.4-46.0	840	Same as above except sample temperatures measured with an optical pyrometer accurate to within ± 27 of the absolute value.
8 34	Jasperse, J.R. et al.	1966	R	13.9-45.3	1060	Same as above.
	Kato, R.	1961	R	0.086-50.183	287	High purity; single crystal; freshly cleaved specimens; mean normal (15° incident angle) reflectivities determined from the intensity ratios of the reflected light to the incident light; uncertainties in the reflectivities about 5% in the wavelength region below 0.095 µm and about 1% above 0.095 µm; data extracted from a figure.
9 34	Kato, R.	1961	R	0.087-0.198	283	Same as above except the crystal grown in air in order to see the effects of hydrolysis on the reflectivities.
10 29	Hchls, H.W.	1936	R	12.0-55.4	293	Crystal; grown by the Kyropoulos method; specimen configuration and surface condition unspecified; normal reflectivity determined by using a freshly vacuum couted silver mirror as reference standard; data extracted from a figure; estimated uncertainty about :10%; temperature was not given, 293 K assumed.
11 35	Rocssler, D.M. and Walker, W.C.	1967	R	0.045-0.105	300	Single crystal; obtained from the Barshaw Chemical Co.; specimens cleaved in air and exposed to low lumidity atmosphere for about 2 minutes before transferred to vacuum system of reflectometer; near normal reflectivities obtained over a long period of accountments; no contamination from the use of an oil diffusion pump and no damage due to operations of radiation source observed; data extracted from a figure; estimated uncertainty about 5%.
12 41	Klier, M.	1958		13.4-26.0	77	Crystal; specimen with top surface highly polished; reflection spectrum measured and determined with respect to a reference mirror mide of German V ₂ A steel; data extracted from a figure.
13 41		1958	R	13.5-25.0	293	Samo as abave.

TABLE 7. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

Deta Set	Ref.	Suthor(s)	Year	Method Used	Wavelength Range, pm	Temperature, K	Specifications and Remarks
14	41	Klier, M.	1958	R	14-25.4	573	Same as above.
15	51	Cottlieb, M.	1960	R	14.5-36.0	300	${\rm Li}^7{\rm F}$ crystals obtained by reaction of Li (97.7% pure ${\rm Li}^7$), ${\rm R}_2{\rm O}$ and HF; vacuum evaporated film (10 $\mu{\rm m}$ thick) onto a natural crystal of LiF; heated to 523 K then cooled; data extracted from a figure.
16	51	Cottlieb, M.	1960	R	14.5-36.0	300	Same as above except material obtained from a chemical reactor of $LiCO_2$ (99.9% pure Li^6) with HF.
17	52	Johnson, B.K.	1941	Ř	0.134-0.164	298	Single crystal; polished surface; back surface ground; measurements made in vacuum; data extracted from a table.
18	53	Sulzbach, F. and Turner, A.F.	1956	R	8.0-36.9	298	Thin film; evaporated in vacuum onto a glass substrute at 528 k; reflectivity measurements made at 298 K using spectrophotometer; data extracted from a figure.
19	53	Sulzbuch, F. and Turner, A.F.	1966	R	10.9-36.9	298	Same as above except film was deposited onto glass at 423 K.
20	53	Sulzbach, F. and Turner, A.F.	1966	R	10.6-34.5	298	Crystal; polished surface; data extracted from a figure.
21	54	McCarthy, D.E.	1963	R	2.0-50.0	298	Synthetic crystal; 5 mm thick; polished to flatness of seven filinge on both sides; 30° reflectivity measured; aluminum micros reference standard; data extracted from a curve.
22	55	Stephan, G., Lemonnier, J., and Robin, G.	1967	R	0.0306-0.103	298	Cleaved; 20° spectral reflectivity measured in vacuum; $d_{\rm ata}$ extractifrem a figure.
23	55	Stephan, G. et al.	1967	R	0.0306-0.103	298	Same as above except for 60° reflectivity.
24	55	Stephun, G. et al.	1967	R	0.37-0.10	298	Polished; 20° reflectivity measured in vacuum; data extracted from curve.
25	56	Martin, T.P. and Turner, A.F.	1966	R	14.5-28.1	298	Thin film evaporated onto glass substrate in vacuum; temperature of substrate 308 K; near normal reflectivity measured; data extracted from a curve.
26	56	Martin, T.P. and Turner, A.F.	1966	R	14.6-36.0	298	Same as above except substrate temperature 373 K.
27	56	Martin, T.P. and Turner, A.F.	1966	R	14.4-36.0	298	Same as above except substrate temperature 423 K.
:8	56	Nurtin, T.P. and Turner, A.F.	1966	R	14.5-36.0	298	Same as above except substrate temperature 523 K.
29	36	Martin, T.P. and Turner, A.F.	1966	R	16.9-36.0	298	Same as above except substrate temperature 573 K.

TABLE 7. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

sta Set So	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
30	56	Martin, T.P. and Turner, A.F.	1966	R	13.7-35.7	298	Single crystal; normal reflectivity measured; data extracted from a figure.
31	57	Ruo, K.K., Moruvec, T.J., Rife, J.C., and Dexter, R.N.	1975	Ř	0.041-0.104	100	Single crystal; obtained from the Harsha. Chemical Co.; cleaved specimen of 1 cm diameter and 3 mm thick; specimen kept in vacuum during measurements; near normal reflectivity obtained; data extracted from a curve.
32	58	Schaefer, J.C. and Hill, E.R.	1965	R	2.5-34.8	300	Single crystal from the Hurshaw Chemical Co.; geometry not specified; General Electric and Perkin Elmer spectrophotomaters used; data extracted from smooth curve.
33	59	Gottlieb, M.	1960	R	15.9-34.7	135	Single crystal from Harshaw Chemical Co.; polished with water coa- pound, normal reflectance measured in vacuum with aluminum mirror referce standard; data extracted from a curve.
34	59	Gottlieb, M.	1900	R	16.5-29.7	210	Same as above.
35	39	Cottlieb, M.	1960	R	11.14-64.11	300	Same as above.
36	59	Gottlieb, M.	1960	R	16.5-28.3	355	Same as above.
37	59	Gottlieb, M.	1960	R	2.0-14.1	300	Same as above.
38	60	Turner, A.F., Chang, L., and Martin, T.R.	1965	R	14-39	293	Polished single crystal; near normal reflectivity neasured with aluminum mirror for reference; data extracted from a figure.
39	61	Naka gawa, I.	1971	2	14.7-47.7	293	Single crystal; near normal reflectivity measurements made in a vacuum; data extructed from a curve.
40	37	Toniki, T. and Miyata, T.	1969	R	0.095-50.155	293	Single crystal; obtained from the Harshaw Chemical Co.; freshly cleaved; normal reflectivity measured in vacuum; data extracted from a curve.
41	40	Machare, A., Soriaga, M.P., and Andermann, G.	1974	1	8.69-50.0	300	Single crystal; well polished and carefully annealed specimens; near normal reflectivity obtained; in the long-wavelength-shoulder region, random error about 2-2.3%; in the high reflectance region, random error about 0.5%; in the low-wavelength-shoulder, random error about 1.5%; data extracted from a table.
42	40	Nuchure, A. et al.	1974	R	8.69-50.0	80	Same as above.
13	40	Nuchure, A. et al.	1974	R	8.69-50.0	50	Same as above.

. **`**

No action of the control of the cont

The area applications into application or an experience of

in the second

TABLE 8. EXPERIMENTAL DATA ON THE REFLECTIVITY OF LITHIUM FLUORIDE

[Wavelength, λ , μ m; Temperature, T, K; Reflectivity, D]

λ	٥	λ	p	λ	c	λ	ą.	λ	ρ	λ	٥
DATA SE	T 1	DATA SET	1 (COAT.)	DATA SET	2 (CONT.)	DATA SET	3 (CONT.)	DATA SET	3(CONT.)	DATA SET	+ (CONT +)
1 = 7.5											
		27.62	6.98	19.64	0.76	14.49	0.22	34.24	6. 57	23.89	26.4
12.5.	3 1	20.40	4.37	2	3.82	14.72	6.31	35.58	6.52	به به به بن ج	ú.34
13.33	2.64	23.23	C.95	24.43	3.63	14.94	Û 4 44	36.94	6.47	62 o i i	3.34
13.53	4.54	34.12		25.63	3.65	15.15	6.55	33.46	£. 43	25.7.	∵. 55
13.7.	4.45	31.05	3 . 5 C	21.27	0.85	15.38	3.05	35.84	4.44	20.45	4.35
13.9.	49	32.05	3.69	21.73	2.90	15.66	6.09	41.49	G. 37	27.1û	v . 8 ↔
14.43	4.13	33.22	2.63	22.22	4.91	15.54	6.72	43.29	G. 35	27.93	6.84
14.28	4.19	34.30	₽.52	22.72	6.92	16.10	6.74	45.24	£.33	<8.E5	v.83
1 + . 5 .	2.23	35.58	0-47	23.25	3.93	26.36	L.76			£++ #5	ŭ . B 3
14.04	23	30.30	4.43	23.85	3.94	16.66	4.76	DATA SET	4	35	₩.62
14.79	. 61	33.31	3.43	24.50	3.94	16.94	6.76	T = 420.	0	32.34	i.31
15	6.71	39.00	0.35	25.06	3.95	17.21	6.7E			32.46	6.77
15.35	2.77			25.73	3.95	17.51	0.76	14.26	£.15	33.50	59
15.5.	4.79	DATA SET	2	26.38	0.95	17.82	ú.75	14.49	i. 21	34.72	0.60
15.3+	51	Y = 85.0		27.13	3.95	18.14	ŭ.74	14.70	C. 35	35.37	3.52
16.1.	31			27.55	§ . 95	18.48	G.73	14.92	4.41	37.32	8
:6.35	2.32	12.50	u • ÷ 2	28.65	4.95	18.53	G.72	15.14	4.51	33.34	i . 44
10.01	1.53	13.31	3	29.53	3.93	19.15	2.76	15.30	(.59	· · · 32	4.43
10.93	3.32	13.49	J. 23	34.48	3.90	19.56	0.69	15.56	(.64	42	3.37
:7.64	3.32	13.00		3:.44	8 - 82	19.96	6.69	15.84	4.63	44.5	w.35
17.51	2.31	13.88	6.03	32.36	0.72	23.32	0.70	16.10	û. 7ù	45 . S7	34
17.79	i . 61	14.26	54.4	33.55	3.61	21.79	6.75	16.39	ú.71		
13.1-	6.33	14.20	u •17	34.64	3.53	21.14	G.78	16.66	0.72	UATA SET	
1 5	1.73	14.47	L.23	35.97	0.47	21.69	4.80	16.94	0.72	T = 665.	e e
13.35	73	1+.79	J.52	37.3:	0.44	22.12	6.63	17.24	€.7€		
19.50		15.23	6.67	38.61	0.41	22.57	6.86	17.54	4.71	:3.25	Ç5
19.92	35	15.30	73	46.32	3.38	23.14	6.87	17. tó	4.71	24.00	u - û 6
26.32	2.49	15.0.	3.70	44.01	0.36	23.63	4.87	13.18	6.76	14.23	52
25.74	: . 9 .	15.8.	0.78	+3.85	3.34	24.27	0.68	18.55	£.69	14.49	8.14
21-:5	3.92	10.12	J . B .			24.47	2.89	11.50	6.68	4.7.	4 - 4 9
21.04	2.33	16.39	1.81	DATA SET	3	25.57	6.96	19.23	C. 67	14.94	4.27
22	3.9.	10.60	U .9 2	T = 235.	ũ	26.17	4.94	19.64	û.65	25.15	ú.36
22.57	6.99	16.94	81			26.88	0.96	20.00	C.65	15.38	0.46
23.1.	3.95	17.24	u.61	12.82	3.01	27.62	6.96	23.40	Ç. €6	1>.62	5.52
23.5-	3.30	17.54	2.63	13.33	53.0	29.40	ù.89	∠J.63	6.63	15.34	u.57
24.61	4.97	17.85	83	13.53	0.03	29.23	0.89	21.27	0.71	16.10	ű.ai
24.47	2.97	14.16	0.05	13.71	3.04	30.12	ù.89	21.69	6.74	10.30	6.63
25.51	2.97	14.51	3.79	13.88	3.27	31.65	0.85	22.22	C. 76	40.63	6.04
26.2.	3 . 35	14.60	6.77	14.03	0.12	32.05	0.81	22.72	79	20.94	し・セラ
20.55	36 · 3	19.23	4.75	14.31	3.17	33.22	ù.7i	23.31	G.8û	17.24	0.66

TABLE 8. EXPERIMENTAL DATA ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

	٥	λ	đ	λ	ę.	À	٥	λ	٥	Ä	þ
DATA SET	f 5(CONT.)	CATA SE		DATA SET	6(CONT.)	DATA SET	7 (CONT .)	DATA SET	8 (CONT.)	CATA SET	& (CONT.)
17.5+	1.65			29.49	0.68	21.23	1.55	3.49.7	4.234	6.1227	b . u 99
17.82	6.00	13.49	(• 62	36.48	0.07	21.73	6.55	Fr F v	y - 32,	6.1238	0.143
13.15	. 66	13. 30	0.04	31.54	3.67	22,17	C.56	3.4953	6. 333	4.1658	(- 6 3 3
18.51	1.65	14.30	6.66	32.46	J . 65	22.72	u.56	6.4958	C. 243	U.1275	89
13.63	6.65	14.28	6.28	33.55	0 - 64	23.25	C.57	303	u. 3+7	4.1647	4 45
15.13	2.64	14.47	5.35	34.84	u • 62	23.75	0.57	6.6368	6.352	4.13.3	L . L B 3
19.55	: • ć3	14.73	5 20 0	35.97	0.50	24.33	0.57	6.6973	£. 3.9	6.1323	3.283
19.95	2.63	24.43	U-16	37.31	0.55	24.57	0.58	9.6977	(.34.	4.1347	L 8 i
22.35	lc. 2	15.15	6.23	38.75	3.51	25.57	6.58	4.6981	6.329	3.1374	5.379
26.79	1.63	15.38	C • 23	+1.32	0.47	26.31	û.58	· · · · 984	6.312		0.079
21.23		15.62	- • 3 0	42.ti1	6.43	26.35	Ç.59	C.0384	£25.µ	4.1.43	77
22.69	1.0+	15.37	6 - 4 -	+3.65	6.41	27.70	i.59	6.4989	しゅ ミララ	t.1-79	3.675
22.12	67	16.12	J.47	45.87	5.38	28.49	6.66	0.6994	0. 123	4.1514	75
22.07	6.59	16.39	ü.53			29.32	4.61	6.4998	6 - 202	6.1356	6 72
23.20	3.71	16.06	3.53	DATA SET		33.22	G.61	0.1004	u. 192	4.1535	71
£4.25	2.73	10.34	3.55	T = 1666		3:.15	ú.6 _L	6.1869	C. 167	6.1627	75
24.35	3.75	17.27	56			32.25	6.06	6.2015	L . 15 j	u. 1677	
24.87	7à	17.57	58	13.92	3.34	33.22	0.59	4.2463	6. 137	2-1776	65
25.57	2.77	17.85	59	14.33	0.6	34.36	ŭ • 5 d	0.:328	6.133	18c é	5.003
20.24	77	14.14	6 .	24.74	1.63	35.56	G.56	0.1535	u. 123		
25.93	2.77	18.55	3.59	14.97	0.11	36.94	6.54	2.1846	6.119	DATA SET	9
27.02	5.77	18.93	4.59	15.17	6.14	38.46	4.52	Ú+1-5Û	4510	1 = 243.	4
29.44	÷-77	19.26	3.59	15.43	6.19	39.84	6.56	0.1655	6. 132		
29.23	1.77	19.00	4.60	15.64	0.23	41.32	6.48	6-1404	4. 133.	6.4676	6.617
36.12	75	25.64	0.59	15.59	0.28	43.29	2.45	C.1669	3-1-1	6.6851	114
11	4.75	24.44	6.53	10.12	0.34	45.24	4.42	6.1673	6. 137	0 636	
32.15	3.73	25.57	5.63	20.42	3.37			6.1677	4. 139	しゃしがらて	ű.il3
33.22	4.74	21.27	u . 63	16.63	0.48	DATA SET		1.1688	4.13.	599	6.461
34.24	i • 65	22.75	j.66	16.97	ŭ • 44	1 = 283.	•	6.1494	L. 132	5.59.1	يۇ يە ع
35.50	6.58	22.21	0.01	17.24	0.46			4.1149	4- 127	311	6.675
36. 95	3 . 53	22.77	ú . 61	17.57	3.47	1.3861	0.620	0.1117	6. 127	0911	5.384
30.31	U . +8	23.31	(.02	17.85	0.49	9.1875	5.420	6.1227	ù- ;22	4.49.5	3.114
39.8.	5 . 44	23.53	63	18.14	0.51	0.1885	t.620	135	. 115		49
42.43	5.41	24.53	. 6	18.51	4.52	4.4898	0.617	0-11-7	C- 117	u.uico	163
43.24	38	25.12	U . 60	16.86	9 • 52	6 ن 9 ب د ن	5-017	C.1156	6. 24.	J. 69cb	4.173
45.24	J. 36	25.73	C.67	19.23	G.53	6.3913	ú. L50	6.1105	6.198	i. 493î	193
		26,45	6.68	19.60	0.53	3.,918	û 88	4.2176	6-2-6	6.395.	6.195
		27.17	3.08	20.00	0.54	0.5926	6.142	0.1195	6.102	L. 4435	4.224
		27.93	û .68	26.40	0.54	3.3936	0.181	0.12.3	6-192	6.3941	2.257
		24.73	4 - 68	25.83	0.55	1.1936	6.237	9.1214	6. 696	4.3945	u.275

TABLE 8. EXPERIMENTAL DATA ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

DATA SET 9(CONT.) DATA SET 10(CONT.) DATA SET 10(CONT.) DATA SET 11(CONT.) DATA SE	Å	p	2.	¢	λ	۵	λ	p	λ	٥	•	2
1.00	DATA SET	9(CONT.)	GATA SET	9 (CONT.)	DATA SET	16 (CONT.)	T32 ATAG	1. (CONT.)	GATA SET	11 (CONT.)	DATA SET	11 (CONT.)
0.299	3.69.5	4.272	3-1279	ü-649	12.50	0.6179	46,02	6.278	ŷ . ú 0 4 5	£ -652	2.63.5	
1.281	3.6352	27 8	4.13.1	4.649	12.88	0.3274	46.19	C.265	L.L 657	いししょ		6.247
0.1093 0.253 0.1352 0.056 13.76 0.4920 0.474 SET 11 0.0641 0.655 0.4056 0.1262 0.1355 0.1555 14.055 14.132 0.175 0.1555	0.1955	0.25-	4.1316	しゅしろい	13-18	6.6429	51.46	6.252	6.4008	4.5+6	1.11	6.278
0.4772 0.252 0.1355 0.155 14.02 1.136 0.478 5.11 0.473 0.155 0.136 0.266 0.2	301	1.281	ŭ.133u	C-051	13.45	0.0619	55.33	6.252	6.6076	L- 443	3.1.11	6.269
\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.6923	J.253	v•13+2	v • v 5 4	13.74	J.:928			2603.0	C • Q • 3	4.1.11	5.263
0.093 0.298 0.198 0.198 0.198 0.195 14.52 0.245 0.126 0.172 0.150 0.150 0.150 0.195 0.170 0.163 0.162 15.15 0.260 0.1452 0.126 0.171 0.055 0.162	3.6972	4.252	2.1355	4.055	14,62	3.134	DATA SET	11	6692	L- 65+	walucó	8.20-
0.093	6.6974	3.235	0.1379	0.059	1 + - 19	3.175	1 = 364.	. C	5.57.3	6. 155		6.149
1.199	4.4933					4.237			6.67.2	C. (6)	5.10.5	6.175
0.996 1.150 0.292 0.1004 15.01 15.02 0.735 0.005 0.156 0.0718 0.025	5.6954	6.195		1602	14.75	0.478	8.3452	0.426	6.6726	4.66+	3.15.3	0.150
0.996	938					û.éGû	3.2458	6.635	6.3713	j. 855		
	0 9 5 6				15.41	2.726	3.3405	4.456	5 71d	C. C5 1	JATA SET	12
\$\partial 10.10.3 \partial 1.10.2 \partial 1.10.2 \partial 1.10.3 \parti	3.24.3			0.004	15.52	0.731	ú • u 4 is 3	6.665	720	ひ・じうと	1 = 77.0	
\$\\ \text{C}_1\text{C}_2\text{C}_3\t	0.1015	:2:	0.1445	u.L67	15.73	3.745	472	5.162	6.67e3	4. (36		
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	4.1419	0.115	3.1402	C.67	15.99	0.763	J - 3 483	0.089	0.4771	ù. L 3 j	13.49	63
\$\frac{1}{25}\$ \$\frac{1}{3}.297\$ \$\frac{1}{1}.31\$ \$\frac{1}{1}.37\$ \$\frac{1}{1}.737\$ \$\frac{1}{1}.737\$ \$\frac{1}.737\$ \$\frac{1}.737\$ \$\frac{1}.737\$ \$\frac{1}.737\$ \$\frac{1}.737\$ \$\frac{1}.739\$ \$\frac{1}.137\$ \$\frac{1}.137\$ \$\frac{1}.137\$ \$\frac{1}.137\$ \$\frac{1}.137\$ \$\frac{1}.139\$ \$\rrac{1}.153\$ \$\rrac{1}.154\$ \$\rac{1}.154\$ \$\rrac{1}.154\$ \$\rrac{1}.154\$ \$\rrac{1}.154\$ \$\rrac{1}	6.1023	0.113	6.2477	J-472	10.33	ú.773	1430	6.649	5.5771	35 ن در	13.90	4 . 4 . 7
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	S-lie9		6.1425	4.473	20.03	0.778	ũ • u 49 c	5.132	3.6786	5.637	. 4 . 34	4.634
1.107 1.108		397	4.23.4	4.674	17.37	Q.775	5.3.32		5.675.	6.5-1	15.45	C • 5 32
C.103 J.104 J.1051 J.051 J.999 W.711 J.W.S.W C.198 J.W.S.Z L.096 J.W.W. J.050 J.190 J.191 J.501	2.1339	33.	4.1519	478	18.43	2.763	2.5494	0.137	2.051.4	u.[33	10.97	4 . 3 %
C.103 J.104 J.104 J.105 J.999 J.711 J.1054 C.196 J.1052 J.105 J.	6.12.7		4.153.	1.175	19.67	1.710	5.0494	0.148	6.6514	L. C93	16.57	6.362
C.1003 J.102	4.1.53		4.25.1		19.99	0.711		6.198	6.6522	[90	15.444	6.3.2
0.1073 0.00 0.1575 0.003 21.68 0.003 0.0512 0.211 0.0035 0.1.3 20.00 0.791 0.1692 0.077 0.1593 0.003 21.28 0.003 0.0525 0.248 0.0555 0.000 0.001 2.000 0.001 0.001 2.007 0.0593 0.003 0.0525 0.2663 0.0050 0.001 2.000 0.001 0	C.1603						3.35:2		5.6835	C. 105	13.90	0.319
	0.1473			6.283	21.65	3.746	3.4512	6.211	6.0835	6.1.3	26	.791
1.113	0.1692	6.077	3.1593	2.683	21.28	Q.8J3	4.35.5	u.248	5.6845	5. 1. +	23.99	G.871
3.123 3.173 4.1017 1.079 22.54 0.852 3.0533 C.291 4.0362 C.336 22.96 4.951 3.1110 3.772 4.1045 3.175 23.38 0.635 3.538 C.297 4.0373 C.113 23.37 4.953 3.1124 3.168 3.1666 4.076 24.26 3.961 4.0549 C.277 6.0382 6.692 24.96 0.910 3.1135 3.156 4.1634 0.076 25.35 4.912 4.0551 4.257 0.0694 3.193 26.04 6.928 0.1135 3.164 3.1714 0.072 26.85 0.912 3.0562 8.200 6.4094 3.173 0.1157 4.169 4.1734 6.672 28.11 4.896 3.0575 4.136 4.0945 6.643 0.474 567 13 0.1157 4.158 4.158 4.159 4.1544 4.155 3.246 4.174 4.1846 3.1857 4.1858 4.112 4.1945 4.112 4.1945 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1144 3.158 4.1154 3.158 4.1144 3.158 4.1154 3.158 4.1154 3.158 4.1154 3.158 4.1154 3.158 4.1154 3.158 4.1154 3.158 4.1164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.158 4.164 3.164 3.164 3.164 3.164 3.166 3	4					3.928			6.6354	v- 1i J	22.00	6.464
3.1110 J.072 U.1040 J.079 23.38 0.035 J.0538 U.297 U.0373 U.103 23.37 U.933 U.1124 J.108 D.1060 U.076 24.26 J.961 U.0549 U.277 G.1082 U.692 24.90 D.910 U.1156 J.156 U.1044 J.072 26.88 U.912 J.0562 U.257 U.0382 U.693 U.173 U.072 26.88 U.912 J.0562 U.207 U.0893 U.079 U.1734 U.072 26.88 U.912 J.0562 U.207 U.0893 U.079 U.1734 U.072 28.11 J.896 J.0575 U.136 U.0945 U.0945 U.0945 U.079 U.1734 U.072 28.11 J.896 J.0575 U.136 U.0945 U.						Sed. S		C. 691	6.0362	6. (36	22.96	u.951
0.112+ 0.308									6.6373	6.169	23.97	6.933
0.1136	3.112+	3.308	0.1606	ŭ.67€	24.26	2.901	J. J. 549	6.277	6.0882	6.692	24.96	0.910
0.11-3									2	2.633	26.0.	G.528
\$\\ \begin{array}{cccccccccccccccccccccccccccccccccccc									6.6893	6.673		
\$\\ \text{C.1157} \text{C.062} \text{C.1771} \text{C.659} \qqq \qqq \qqq \qqq \qqq \qqq \qqq \qqq \qqq \qqq \q	6.1154		ŭ.1734	6.072	28.11	4.896	ú.u575	0.136	4.49.5	6. (+)	DATA SET	13
\$\\\\^{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										i. (+5	7 = 293.	ė.
0.1144 0.158 0.1804 0.105 32.66 0.776 0.0584 0.112 0.0925 0.183 13.51 0.004 0.1215 0.156 0.110 0.064 33.34 0.732 0.0605 0.053 0.4043 0.278 14.51 0.004 0.1220 0.155 0.1977 0.062 34.51 0.676 0.0165 0.068 0.6943 0.208 0.404 0.024 0.1231 0.156 37.75 0.467 0.0016 0.076 0.0943 0.274 14.35 0.275 0.1240 0.157 0ATA SET 10 38.90 0.404 0.0627 0.071 0.0962 0.337 15.45 0.455 0.1255 0.154 0.055 0.154 0.405 0.406 0.0638 0.665 0.4962 0.405 15.97 0.458												
C.12.8 0.156											13.51	6.064
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\												L 33
## ## ## ## ## ## ## ## ## ## ## ## ##												
D.12+3 C.27												6.235
3:12+8 0:155			TAZ ATAD	1a							15.45	0.495
C.1255 J. 15.4 42.G7 J. 321 J. J641 C.156 C.1977 C.429 16.46 G.436												6.138
				-							16.46	9.636
### ##################################	6.1278	3.351	12.15	4.61[3	44.05	0.295	0.0645	C.C58	0.8984	6.422	6.99	3.823

TABLE 8. EXPERIMENTAL DATA ON THE REPLECTIVITY OF LITHIUM FLUORIDE (continued)

								-			
À	v	λ	٥	λ	ρ	λ	ρ	λ	٥	λ	p
DATA SE	T 13(30NT.)	DATA SE	T 14(00NT.)	DATA SET T = 298.		32 ATAC	T 19 (CCNT.)	DATA SET	1. TRUCH ES	DATA SET 1 = 298.	
17, **	2.533	244	u .831			15.4	0.436	13.9	5.72p		. •
17.97	3.318	24.93	0.794	1347	0.65	16.0	0.477	23.5	0.7-3	0.0366	20 ن
18.47	2.3.6	25.42	0.794	438	0.05	17.1	0.549	21.3	3. 794	3.372	L.u.3
13.40	4.785		••••	J.157J	0.64	18.1	8.549	22.0	6.847	4.458	ù . u 6 6
19.47	769	CATA SET	1 1 5	3.1646	0.02	19.6	6 • 5 u 8	22.9	0.884	0.0501	0.101
: 3.97	4.754	T = 300.				20.0	0.506	23.8	3.898	U . Ú 544	ú · 1 + 0
65	3.757		•	DATA SET	18	21.6	6.528	25.2	(.933	i592	4.051
2 .98	0.754	14.5	0.24	T = 298.		22.0	0.562	27.4	6.934	u. úo20	6.057
21.45	2.922	15.0	6,53			23.9	Ú . 0 u 8	.9.5	0.88+	u. u711	3
21.96	2	15.5	6 e 5 u	6.5	0.616	25.0	C.61C	30.7	Q.86+	u . u 7 + 7	6.443
24.45	3.539	17.3	5 . 7ú	12.7	4.074	26.1	(.629	31.8	0.804	J. 0776	55
22.95	6.552	13. ú	ú . 66	14.1	0.344	27.1	6.630	32.4	6.75.	3032	0.660
23.44	5.875	19.0	65	14.5	0.484	28.1	6.621	32.1	S. 687	0.6914	09
2 4 +	3.875	2	U.73	14.9	0.499	29.0	ú. b. 6	34.5	C.591	6.89+3	0.149
24.95	3.663	22.0	6.83	15.7	0.678	30.0	0.667			L. ú973	3.224
		25.4	J.83	16.1	4.713	39	L . 5 96	DATA SET	21	ù - 1 i-	W - 1 Ou
DATA SE	T 14	26	3.81	17.0	3.718	31.9	6.572	T = 298.		uC3	0.163
1 = 573		31.6	76	13.6	0.711	32.9	0.536				
		33.0	1.06	19.0	4.686	33.9	C.49L	2.00	G. C56	BATA SET	23
14.6.	3.427	30	ŭ.58	3.65	6.671	36.6	6.398	4.96	U . G48	T = 298	
14.51	4.258	35.)	6.53	9.05	3.741	36.9	u.359	13.7	0.654		-
14.95		30.2	3	22.6	6.771			14.1	139	4.6366	6.078
15.40	6.469			6.55	3.8.2	CATA SE	T 24	14.1	6.467	4. 4374	3.160
15.97	2.003	CATA SE	T 16	24.5	0.827	T = 298		15.4	6.625	3.447	6.224
16.45	2.731	T = 363.		25.8	4.806			16. t	i. t.c	0 4 b 2 b 3	
: 3. 30	6.705		•	26.8	. 871	10.6	C.368	13.4	6.593	J. Ú5+9	6.252
17.48	u.736	14.5	6.16	27.7	6.874	12.0	5.619	21.3	i.712	79	3.2.1
17.57	4.772	15.3	8.56	29.4	1.058	12.7	C.L33	23.5	6.799	4.5060	149
18.5.	2.772	16.0	6.60	31.6	0.815	13-1	6 64	26.8	U . 5 . L	711	0.124
19.93	y . 766	18.0	62	32.9	G. 751	13.6	C.113	29.9	6. AL 2	6.3702	w.136
19.45	9.7+9	.9. ú	6.66	33.5	0.737	13.9	6.191	33.3	6.59+	4.2839	J.162
19.98	4.719	2	L . 73	33.9	0.644	14.4	2.369	33.1	L. 435	3.3959	0.1-1
26.40	3.717	45	82	34.9	0.523	15.5	6.663	39.5	4.374	436	71
26.95	. 71.2	28.3	J.8C	36.9	0.474	15.4	6.719	42.0	6.292	4.69.6	4.214
21.44	3.746	3	v . 76			16.4	5.773	43.8	v. ćv3	906	3.274
21.95	0.730	32.6	5 . 64	DATA SET	19	16.0	6.792	45.0	6.242	6.1.3	4.155
22.45	1.761	34.5	ū.48	T = 298.		17.1	0.795	46.3	C. 151		
22.9+	3.03-	36. ű	u.34			17.9	7.787	47.7	4. :33		
23.44	5.315	*		13.5	6.068	18.6	3.766	53.0	6.152		
21.9.	6.815				3.327	10.1	6.233				

TABLE 8. EXPERIMENTAL DATA ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

À	۵	λ	p	λ	ŧ	λ	ě.	λ	۵	,	÷
32 ATA SE 1 = 2 = 1		JATA SET	25 (CCNT.)	DATA SET	26 (CONT	DATA SET	(.TROD) 85	TES ATAU		DATA SET	SI(CCNT.)
1 4 295	• •	25.6	i.61 &	3 4	0.581	17.1	6.258			0.6729	4.142
372		20.2		35.2	G.536	13.7	û.eto	13.7	i- 11u	70.	ې کان په پ
2.5.4.7	1.113	27.6	647	35.9	u.5J9	19,3	6.647	1 3	6.625	775	Ç., 23
3531		29.1	0.6+7	37.7	••••	2006	i.627	15.3	7-2		0.072
6.6537	0.4+3	31.0	632	DATA SÉT	27	24,3	6.520	17.7	C. 757	i. 1115	6 8 5
C. 654		31.0	J.612	1 = 298.		21.5	i. 675	13.7	6.697	4.6360	6.033
553	****	32.4	1.590	2,55	•	22.0	5.714	21.0	3.832	6.35-5	13.
		33.4	57.	14.5	J. 420	23.4	6.7	23.5	373		3 -
4.6954		J3.3	J:543	14.9	3.453	23	4.777	35.6	G. 895		3
	7		0:540 0:513	15.5	3.478	25.3	4.796	ن و ل د		200	i.s33
ن څن د د د	2	54.0	6.492	17.1	0.54G	20.1	1.815	23.7	4.853	ذ د جي	W . + 22
		35.2 30.0	0.45-	18.3	3.523	27.0	6.629	23.0	C . 75.		6.643
6.67+8	*****	30.5	0.474	13.2	3.524	26.1	4.937	35.9		j. i	70
	4 - 4 - 5	CATA SET		19.5	0.504			35.1	3.5+3		5
4.6354	****	7 = 295.		2	3.524	DATA SE	T 24			13-6	4 - 2 4 7
		1 - 273.	• •	21.1	3	1 = 298		54T4 3EF	3:		
4.059-			392	22.5	F+2.5	633	••	T = 1		Ju14 567	÷ڏ
	1 >	-4.7	417	23.1	2. e73	16.9	2.578			T = 3	
7_0	23	15.2		23.5	1.637	14.5	u.691	3.6413	:4		
		15.7	5.458	25.1	3.713	3.5	6.091	u ∠ 3	6.515	2.54	5.5 E+
316.0	3.133	10.3	6.402	23.5	3.755	19.5		35		6.57	
5+.371	v•33+	17.3	5.452	27.3	3.5.7	i 9. s	6.040	6.6444	21	2.53	53
413755	79			40.3	0.525	23	L . 54 S	51		2.07	C.usi
		14.2	₩ + + → Z ₩ + + + → +	29.7	1.325	22.2	721	1.1.52	4.650	2.63	[c E
3414 3=		i i i i	Ú = 473	3	3.412	23.1	1.701	(70	(5/	2.73	u.sel
1 = 410) • ä	19.6		31.4	ŭ. a. i	24.4	79.	6495	L+ 1>+	4.50	
		2:42	6.473	31.7	2.756	25.6	4.827	6 6 6 7 . 4		2.04	ففني
. 4. 8	2.235	64.0	6.432	33.5	1.716	20.0	0.343	6521	2.277	4.95	53
15.3		41.2	523	39	0.651	27.9	C.358	しゅっしょ	345	2.97	3.000
15.7	3.355	22.1	0.55 E		3.639	29.2	6.353	532		35	
. 5 . 0	357	23.3	593	50.6	2 6 6 3	32	6.541	i.(>30	1.3	3.17	355
1++7	350	3 ٠٠٠	021	DATA SE		35.9	0.523	65.5	2.232	3	
10.1	1.300	22.0	- • • • • •			31.5	(.8	3	6.197	3,12	
15.9	353	26.9	721	T = 298			753	4 702	6.1-3	3.10	55
بدوني		23	756			32.↓ 33.3	i.7u-	£ .2570	1. 137	3.17	
2t	27	29.2	- 772	14.5	0-420	34.3	5,653	043	5.5.4.	2.35	0.353
21.3	6.476	3	6.772	. → • d	0.501	34.3 35.0	t23	U + U Č > Y	3.1	3. + 4	
44.1	++54	42.5	752	15.3	3.543	35.U 36.L	(.592	# o? u	3		2-
65.9	1.542	قمكة	.724	15.4	2.537	36.5	6 4 2 74	6.6692	40 652	4.24	
22.3	529	ں ۔ قائ	2.679	15.9	3.028			Ú 10 7 0 4		4.44	6.357
2 3	4.533	33.0	63 <u>.</u>	16.4	u • 653			646744	01.02	74 77	

		, , -c -ur	electronical	Se Plantik ettodio	iğ (contii	(ued)
TIPES.	FABRALOW. *** -			^	À	c

		7.					ĉ.	À	Ł		
					3	1,	-			inta Sit	T.A.
		_		4 ,	-			C: T	35(CONT-)	[m] m 361	33
	•	à					351 CONT.)	DAIN DE.	3410	7 = 193.4	
).	\$				34 (CONT+)	اعد متنز	39,00				
		DATA SET 3	ALC CAT. I	3214 251	34133.11						• •
		DATA SET J	51004141	-		_	2.550	29.34		24.0	677
THE ETAC	321CCNT+1	-				23.67		23.Eb	6.693		4.565
34111				29.25	3.103	23.30	ુ. તદ્ક		6.7 +4	.4.0	
			534	15.33	3.773		3.8.5	30		_4.3	
5.00	253	29.32	. • 36 3	2000	3.793	233		22.22	? ₹ \$		73
				2		25.64	2.893		. 635	1 > • *	
5.3%				23.0-	5.553		390	23.47		12.7	40124
C			ai≎		ال رب و في	25, 47		24.27	4. 693		2.749
	فقرور	3	. 430	23.47		66.33	ú.555		2.450	17.0	
2.663	3			24.67	3.923		u.375	23.57		17.9	4.703
5.24	4 4 4 4	31.15	. , ? . €		U.C23	27.35		27.16	3.053		6.74:
		3	9:7	25.57		28.57	C.361		6.325	24.3	
6.35	2.	3-17-		26.73	J. 925		: 5 6	25.24	•••	_7.2	: .7 20
7.22		32.55	9:7		2.932	27.55					L.70£
7.63			1.314	27.02		30.48		JATA SE	7 37	4	
				23.57	3,857		6.794	J4.4 75			6.524
5.32		3-022	2.759	2 3 6 6 .		32.25		7 = 360	• •		4.300
23.52		4				32.94	765	•		. 3	dés
				DATA SĒ	T 35		4.727		i. (3.6	c3.3	
22.53		3 5 . 3 3	377	2.17	•	33	26	2.06	(. (.)	24.9	3.527
. 3 7	4 گروون	3 2.00		7 = 316	• •	34.04	554	2.72	2.63.0		3 ii
							5.5.6			£500	
13	• • • • • • • • • • • • • • • • • • • •	DATA SET	3.3		i 3 -	35.33		3.93		21	44.46
13.75	273	341111		11.13		3:.30	6.440	4.76	6.0205		5
		T = 135.4	•	11.61	77	30,03	3.427			c1.5	
				12.19	37		39.	7.45		23	4 . 4
20020			7: 5			3c.70		63	C. 223 -		2.374
	2	20.02		_ 1 . 52	1,115	37.3:	6.375		2.22.23	24.5	
24.25		20.33	705	3.44	59		329	6.61		3 9	143
		434 12	2.513			37.59	2.32	7.27	6.6124		734
	16 7	* 2 4 3 m	825	13.53		33.31	i.317		1.6123	32.9	
7.7		27.34		24,23	3.132		a	7.59		3	9
2-474		17.73	6	. ***	3,258	39.75		2.25	3 30	-	
	?	210.3	3.799	5.30		4	0.289			3 7	
1 50 13	717	16.34		:3.57	0.434			0.77		35.0	
. 7. **	4.414	. 3 4	797		3.567	-2.00		9.21	3.65-7	30.1	6.476
\$5.77	. 7 13			-2.12		47.16	3 . و نوع	9.07	31		33
724,		44		15.97	3.659		1		J. (š	59.0	2.433
15.77		243	35:	• • • • • • • • • • • • • • • • • • • •	5.725	ラレ・ダロ	30.6	13.33			
	3		4.944	10.33		54.64	6.244	: 1. 61	0 (2)		. 7 7.3
	4.545	3.62		13.01	3.751	57.0.	2.230			SATA S	51 37
22.57		25.00	. 907		2.756		0.236	23.20		Ϋ́ ≈ ∡9	3.4
<u>.</u> 7. 3≤	6. +34		3+5	17.03		64.14	4.200	11.57	2. (3.2.2	,	
	: 3 4	28.42		7.5.					4. 45 35		
23.72		23.07	. 1.5	17.73			cat to	12.10	44.5	24.72	45.4
: 7.23	77 9	32.75	157	71.633	3.743	3,12	SET 30	12.30	しょしょうフ		6.473
	751		7	13.51		7 = 3	55.4		į. (23t	27.49	
33.72		34.72		\$, 15	9.735	, - •	-	:2.75		15.35	2.553
24	7:-	•		• • • • • • • • • • • • • • • • • • • •	1.723		•-	: 3. 3 c	6.63.3		5
63.6.	52. 9		v 7	. 9.34		1 t. 44	714	11.19	6.550	15.04	4.054
	,	tata Se	,; 34	15.6+	3.716			14043		20.54	4.07
		7 = 429	1. i			10.77		13.47	[000	. 6. 33	4.03%
21.69		,	,	22	. 445	17.39	3.748	14.32	1.1249		
2.067			A-2-5	26.44	4.725			70035	• • • • • •	10.39	. 695
20.03		20.50	756			17.80	7			:7.47	3.057
23.65			755	27.		. 5.41	725				
		20.30		292	3.193						2.534
237		27.35	705		6.775	19.00	•				
23.5	. :.442		735	21.32		.9.4	2639				
	•	\$7.55		21.00	522						
ن و و ر		13.4-	u.77c								
25.3	3	• • • • •									
	-										

TABLE 8. EXPERIMENTAL DATA ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

λ	¢	,	Þ	λ	۵	λ	٥	λ	0	λ	t
DATA SET	39 CJNT.)	CATA SET	43(CONT.)	JATA SET	41 (JONT.)	DATA SET	4; (CONT.)	DATA SET T = 6J.S	42	DATA SÉT	+21C3NT.1
18.53	2.565	4.1.65	u . C 5 43	9.34	3.034	£7.85	6.752			15.35	6.755
13.23	5	4.1372	u 7 82	9.43	1.624	18.18	C.742	6.69	L. Cia	.5.52	£.763
:3.50	1.627	5.1279	J.67 82	9.52	0.003	181	u.73č	8.77	0.000	15.67	6.755
19.70	1.625		u . L 7 3 i	9.61	3.033	18.56	8.721	6.64	i. Co	.06	3.512
25.24	J. 530	6.1335	U.5723	9.70	u.ú13	19.23	6.711	5.92	u. Cû S	.0.39	1.363
2:-1-	4.738	0.11.3	5.6763	9.82	0.022	19.66	6.700	9.46	6.4.5	15.00	1.824
22.62	4.75.	V.1117	6.6713	9.5.	C+122	20.40	6.038	9.53	C.tes	20.54	2.923
23.25	713	201125	v • € 5 € 3	20. 3	j. Liz	2	6.765	9.17	0.0.4	17 . 3 ↔	5.913
2	22	J.11+0	ú. ° 6∠+	10.10	3.641	233	6.7-6	9.25	334	47.54	4.746
22.57	.,5.7	0.1102	4.6005	20.23	3.031	52.67	6.776	9.3+	i. 13-	-1.02	6.776
27.11	* 51	4.2270	i573	130	3.6.1	21.73	6.798	9.43			7 3 3
20.65	Q. 553	192	C. 05 78	11.76	J. 641	22.22	6.825	9.52	i. 133	10.54	5.781
29.75		0.1216	2 5 57	11.93	3.622	27.72	€.85%	9,61	C. 013	18.10	u.772
35.95	3.317	23.	i . l 5 46	12.04	3.643	23.25	u.87i	9,75	6.633	19.23	6.752
31.84	6.773	U.1246	4.4526	12.13	0.024	23.9.	C.085	9.04	632	47.5.	i.75.
32.75	4.01+	0.1200	5 4 2	12.34	u•i.5	24.39	6.594	4.46	(.332		J. 7:2
33.73	7	0,1251	Unit 525	12.52	4	25.00	i.3.6	14.24	0.002	4	6.1.9
3 2-	J. 535	3.1334	L~82	12.65	G.i18	25.64	6.962	13.18	0. 651	20.03	J. 535
35 . 3 .	J.5.J	6.1364	4.4.65	12.82	3.513	26.31	2.962	13.20	4.0.4	21.27	2.357
37.43	v. 45 š	5.14.2	ü•€→85	12.95	i. (17	27.42	0.302	13.34	i. [] 1	¿1.73	3 37
33.75].→15	3.2430	5.5447	13.15	3.621	27.77	4.962	11.76		44.22	0.254
~3.31	3.399	v• ± + 17	4.5443	13.33	3.627	28.57	3.962	11.9.	60.00	22.71	7
43.65	3.374	4	v • 4 4 4 6	13.51	u35	29.41	4.9.2	12	0	23.25	
45.42	2.368	4.1527	v • C • 2 à	13.69	6.6+3	3L • 34	C.846	12.19	6. +	<3.0 ₀	ن۰۰۰
47.0L	3.353	2.1530	4.6462	13.35	3.455	31.25	4.582	12.34	(.Cus	24.39	1.3-3
		0.15+3		14.08	6.671	32.25	û.835	12.56	6.3.7	22	i.952
DATA SET		4.1544	6 - 6 42 -	14.28	0.126	33.33	6.732	12.65	[.01.	25.04	4.354
T = 235.	C	ũ•155ú	じ•639÷	14.49	6.182	34.48	4.624	12.62		.0.5.	0.756
				14.70	0.290	35.71	0.544	12.95	C.017	27.42	4.455
ひゃんりゃる	1.2163	CATA SET		14.92	J. 44 6	37.u3	U . 476	13.15	4. Sc2	27.77	0.35.
40.90+	29.0	T = 300.	. 5	15.15	4.63C	33.46	0.477	13.33	1. [23	23.57	2.952
6.6971	3.3.94			15.38	0.68+	40.66	C.426	13.51	E. 833	29.44	***5
\$ S : G	4.2343	8.67	6.33€	:5.62	4.718	41.66	064	13.69	しゅいうと	332	0.426
366.03	3.2460	8.77		15.57	3.741	43.47	6.384	13.66	t. (7)	32.60	3 92
0.10.2	6.1915	8.84	i.(. t	10.12	J.758	45.45	i.368	14.15	4.493	36.25	3.731
0.2.26	3.1357	5.32	5 35	16.33	1.768	47.61	6.355	14.25	C- 14J	33.33	₽. □ ·
0.1.25	229	9	5 د تا د ت	16.65	3.772	56.35	6.342	14.49	6. 21.5	34.43	ŭ.>
353	3.2565	9.33	L.CO 5	10.94	3.772			14.76	9.318	35.7.	70
2.22.3	3.1315	9.17	6.034	_7.24	0.768			56.43	C • 521	37.53	u = + 3 u
0.1651	0.2373	9.25	ũ • L u 4	17.54	3.761			15.15	J. 7. 5	33.40	Jamesi

TABLE 8. EXPERIMENTAL DATA ON THE REFLECTIVITY OF LITHIUM FLUORIDE (continued)

λ	٩	,	e e	λ	c
DATA SET	42 (CONT.)	CATA SET	43(CCNT.)	DATA SET	43 (CONT .)
46.65	0.378	13.51	ú.:42	24.41	8.966
41.60	352	13.69	U.L5 5	30.30	0.9+2
43.47	3.372	13.83	J. 475	31.25	0.398
45.45	3.3+2	14.08	J.196	32.25	6.796
+7.02	3.332	14.23	0.137	33.33	3.615
5	322	14.49	5.269	34.45	0.53+
		24.7.	234	35.71	3.475
DATA SET	43	14.32	u . 524	37.03	3.426
1 = 23.6		15.15	0.717	38.46	0.398
		15.33	76E	40.30	J. 374
3.69	356	15.05	6.791	41.66	3.357
4.77		15.37		43.47	2.343
8.34	w5	16.14	558	45.45	0.335
8.92	>	20,39	4.933	47.61	ù.326
9.66	5	20.50	0. 536	5:.63	0.326
9.69		10.54	32		
9.17	:.534	17.24	û.825		
9.65		17.54	4.817		
9.3.	4.024	17.35	4.865		
3.43	3	16.15	8.1		
9.52	13	13.51	793		
9.02	3	15.80	C • 784		
9.70	4.233	19,23	6.774		
3.00	6.442	.9.6.	u . 76ú		
9.90	3.462	25.44	€ •816		
16.00	(.i.2	č 4 .	6.358		
11.10	6.532	20.33	268.		
2-02-	3.5.2	21.27	C.9.2		
15.3.	4.132	e 73	919		
11.75		22.22	6.933		
11.9.	2	22.72	6.945		
16. u+	3	23.25	v.955		
12.13	5.434	23.6.	. 903		
12.3+	20,00	24.39	u . 96 9		
12.50	7	23.00	2.972		
15. 22		25.0+	6.975		
22.74	44.4	20.3:	976		
12.93	19	27.22	0.977		
13.15	24	27.77	6.977		
13.35		28.57	6.975		

Figure 8. Transmission of Lithium Fluoride

TABLE 9. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF LITHIUM FLUCRIDE

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
1	34	Kato, R.	1961	Т	1.8-11.0	283	High purity; single crystal; freshly cleaved specimens with thick- nesses unspecified; data extracted from a curve.
2	34	Kato, R.	1961	T	1.9-11.0	283	Similar to above except crystal grown in air in order to see the effects of hydrolysis on the transmittances; transmission spectrum shows an absorption near 2.8 µm due to the vibration of O-H bond.
3	41	Klier, M.	1958	T	4.5-8.0	77	Crystal; thin specimen of 6153 µm thick; transmittance spectrum mcusured; data extracted from a figure.
4	41	Klier, M.	1958	T	4.5-8.0	195	Same as above.
5	41	Klier, M.	1958	. T	4.5-8.0	293	Same as above.
6	41	Klier, M.	1958	T	4.5-8.0	573	Same as above.
7	41	Klier, M.	1958	T	6.0-9.50	77	Same as above except for specimen of 2021 µm thick.
8	41	Klier, M.	1958	T	5.5-9.32	195	Same as above.
9	41	Klier, M.	1958	T	5.5-9.12	293	Same as above.
10	41	Klier, M.	1958	T	5.5-58.1	573	Same as above.
11	41	Klier, M.	1958	T	6.0-10.3	77	Same as above except for specimen of 726 µm thick.
12	41	Klier, H.	1958	r	6.6-10.3	195	Same as above.
13	41	Klier, M.	1958	T	6.0-10.3	293	Same as above.
14	41	Klier, M.	1958	T	6.0-9.7	573	Same as above.
15	41	Klier, M.	1958	T	75-14.2	77	Same as above except for specimen of 145 µm thick.
16	41	Klier, M.	1958	7	7.5-13.2	195	Same as above.
17	41	Klier, M.	1958	T	7.5-12.7	293	Same as above.
18	41	Klier, H.	1958	T	7.4-12.2	573	Same as above.
19	41	Klier, M.	1958	T	10.9-15.3	77	Same as above except for specimen of 60.1 µm thick.
20	41	Klier, M.	1958	T	10.9-14.5	195	Same as above.
21	41	Klier, M.	1958	T	10.9-13.8	293	Same as above.
22	54	McCarthy, D.E.	1963	T	2-50	298	Synthetic crystal; 5 mm thick; polished to flatness of seven fring on both sides; data extracted from a curve.

TABLE 9. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF LITHIUM FLUORIDE (continued)

Duta Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, pm	Temperature, K	Specifications and Remarks
23	62	Davis, R.J.	1966	T	0.104-0.205	298	Single crystal; freshly cleaved; 1.3 mm thick; measured in vacuum; dra extracted from a curve.
24	62	Davis, R.J.	1966	T	0.104-0.205	298	$T^{\prime} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
25	62	Davis, R.J.	1966	T	0.104-0.205	298	The above specimen measured after 2 minutes of ultrasonic cleaning in absolute ethyl alcohol.
26	62	Davis, R.J.	1966	T	0.104-0.205	298	Polished; 2.0 mm thick; measured in vacuum; data extracted from curve.
27	62	Davis, R.J.	1966	T	0.104-0.205	298	The above specimen measured after 11 months storage in uncontrolled environment (lumidity never exceeding 95 K).
28	62	Davis, R.J.	196 6	T	0.104-0.205	298	The above specimen measured after 2 minutes of ultrasonic cleaning in absolute ethyl alcohol.
29	63	Jones, D.A., Jones, R.V., and Stevenson, R.W.	1952	Ť	5.00-7.19	298	Single crystal; reflection losses eliminated and transmission adjusted to standard thickness of 1 cm; data extracted from a smooth curve.
30	64	Laufer, A.H., Pirog, I.A., and Moneby, J.R.	1965	T	0.104-0.145	299	Single crystal; obtained from Hurshaw Chemical Co.; freshly cleaved specimen; 1.5 mm thick; stored and measured in vacuum; data extracted from a curve.
31	64	Laufer, A.H. et al.	1965	T	0.105-0.145	336	Above specimen and conditions.
32	64	Laufer, A.H. et al.	1965	T	0.106-0.119	374	Above specimen and conditions.
33	64	Laufer, A.H. et al.	1965	T	0.107-0.109	407	Above specimen and conditions.
34	65	Heath, D.F. and Sacher, P.A.	1966	Т	0.105-0.300	298	Synthetic crystal; obtained from Harshaw Chemical Co.; optically polished specimen of 2.09 mm thick; measured in vacuum; data extracted from a curve.
3 5	66	McCubbin, T.K. and Sinton, W.M.	1950	т	109-486	298	Specimen of 1 mm thick; data extructed from a curve.
36	67	Bolot, G.	1965	т	0.105-0.350	298	Pure LiF, 0.82 mm thick; data extracted from a curve.
37	68	Linsteadt, G.	1964	T	1.0-10.5	50	Single crystal; specimens of 1.02 mm thick and 1.27 cm in diameter; data extracted from a curve.
38	68	Linsteadt, G.	1964	T	1.0-10.5	85	Similar to above.
39	68	Linsteadt, G.	1964	T	1.0-10.5	300	Similar to above.
40	37	Toriki, T. and Miyata, T.	1969	T	0.104-0.193	298	Single crystal; obtained from Harshaw Chemical Co.; freshly cleaved specimen of 0.221 cm thick; measurements made in a vacuum; data extracted from a curve.

TABLE 9. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF LITHIUM FLUORIDE (concinued)

Data Set No.	Ref.	Author(s)	Year	Method Used	Wavelength Range, pm	Temperature, K	Specifications and Remarks
41	37	Tomiki, T. and Miyata, T.	1969	T	0.104-0.210	298	Above conditions except for specimen of 0.200 cm thick.
42	39	Mead, D.	1974	Ť	43.8-438.6	6.2	Single crystal from BHD Ltd.; hand polished specimen of 1.2 mm thick; data extracted from a curve.
43	39	Mead, D.	1974	T	76.1-448.5	99.7	Above specimen and conditions.
44	39	Mead, D.	1974	T	133.5-535.0	290	Above specimen and conditions.

TABLE 10. EMPERIMENTAL DATA ON THE TRANSMISSION OF LITHIUM FLUORIDE

[Wavelength, λ , μm ; Temperature, T, K; Transmission, T]

λ	τ	λ	τ	λ	τ	λ	τ	λ	τ	λ	7
3474 S	£7 1	DATA SET	2 (CONT.)	DATA SE	T 3 (CONT.)	DATA SE	T S (CONT.)	DATA SE		DATA SE	7 8 (CCNT.)
T = 283	3.0							T = 77.	u u		
		2.83	4.689	6.34	2.844	4.76	8.943			5.63	
1.88	:.393	2.50	i.821	6.45	0.403	4.99	C.937	6.03	C. 945	8.57	0.218
2.19	5.9.9	2.89	û . 847	0.39	3.743	5.25	0.926	6.26	6.926	9.12	4.168
2.58	5.922	3.25	8 6 4	3.73	4.723	5.49	6.517	6.49		4.32	4.135
3.12	4.934	43	€.B74	ó • 55	4.677	5.72	6.506	0.74	35.		
3.67	2.943	4.43	2.874	2.34	ý . 62 ÷	5.97	L.847	0.93	3.8:4	טבור פר	
4.33	J. 351	4.83	6.857	7.16	3.572	0.24	G.769	7.07	6.790	1 = 293	. (
5.13	3.951	5.02	0.871	7.22	9.516	6.45	€. ćo5	7.22	C.775		
5.66	3.937	5.33	6.871	7.35	3.467	0.53	6.612	7.34	8.754	5.54	0.944
D • £ 5	156.0	5.72	4.548	7.47	3.417	6.72	6.5ċ0	7.47	0.717	2.73	636.6
5.71	3.430	0.63	4.8.6	7.53	2.356	2.32	6.494	7.63	6.65)	6.63	5 . 5
77	1.552	6.32	u . 735	7.72	ŭ • 23 1	6.99	0.410	7.69	0.620	6.20	3.293
7.23	2.339	c.52	1.699	7.5-	4.215	7	Loŝoć	7.83	6.5 +7	0.37	4.463
7.71	2.733	6.78	ù . o 5 d	8	3.171	7.21	3.296	7.97	4.433	p. 53	3.759
7.42	3.695	6.91	€ . € 6 9			7.32	C.25C	8.07	6.450	7.07	6.692
8.64	J. 031	7.47	J.554	DATA SE	T 4	7.44	ú . žu 3	8.17	4.412	7.32	8.624
3.13	6.598	7.20	6.474	7 = 195		7.57	4.150	8.32	6.393	7.50	£.529
1.56	3.35.	7.42	304			7.74	C.118	8.45	6,37	7.83	C+421
d.n.	3.513	7.57	4.236	5.5.	3.937			6.56	(. 355	69	
9.11	u . +73	7.74	22 à	5.75	3.911	DATA SE	Τ 6	8.76	C. 3+1	8.34	
9.23	3.427	7.9.	J.182	5.98	2.88.2	T = 573		8.81	C. 33.	8. 03	6.175
3.56	3.4	35	0.1-1	6.19	Q. A36		•••	8.95	0.322	8.87	3.135
9.73	6.25+	8.24	3.146	6.33	0.739	4.51	6.925	9.49	3.319	9.12	0.133
16.61	w.i71	8 3	u.G75	6.45	0.754	+ - 7 4	6.915	9.20	(.31,	****	
20.17	B	8.9.		5.58	0.713	4.39	6.9.1	9.32	G. 275	DAYA SE	T 19
11.27	0.15¢	9. +3	0.644	0.76	3.671	5.25	6.372	9.47	C. 237	1 = 573	
	1.190	14.07	1.636	6.83	3.616	5.53	1.826	3.41	4. 53.		• •
10.01	75	26.73	2.436	9.90	ù.555	5.70	6.743	DATA SE	T A	5.54	6.919
10.87	3.357	42013	2.930	7.19	8.496	5.98	1.6+1	T = 195		5.73	5.467
15.0.	3.4371	DATA SET		7.44	3.443	5.24	2.517	277	• •	07	
DATA SE		T = 77.		7.32	1.369	6.34	1.432	6.03	9.925	0.28	6.772
T = 263		1 - // • 4	ľ	7.32	0.326		6.377	6.28	G. 595	b. 57	3.091
1 - 20:	•••	4.51	3.961	7.56	3.272	6.44 0.58	2.313	6.57	0.55→	6. 33	590
										7.37	2.476
1.94	3.3-1	4.7-	0.901	7.74	0.2:8	6.72	C - 2 6 5	6.53	4.86.		3.376
27	4. 3.5	4.93	w.9b1	7.84	8.169	0.84	6.199	7.67	C. 733	7.52	
2.53	4.352	5.25	6.958			6.38	53	7.32	C. 677	7.55	269
2.64	05t . J	5.52	J. 949	DATA SE		7.11	0.111	7.58	0.6.3	7.83	6 - 2 6 B
2.67	3.795	5.75	u.936	T = 233	• 6	7.19	0.176	7.83	6.484	8.69	6
2.73	3.091	6	0.914	_				8.63	0. 163		
2.70	3 . £7 5	0.25	y.8o4	4.51	0.9+9			8.34	C.3Lo		

TABLE 10. EXPERIMENTAL DATA ON THE TRANSMISSION OF LITHIUM FLUORIDE (continued)

¥	:	f	τ	λ	τ	λ	τ	λ	τ	λ	τ
SE ATAC	T LL	CATA SE	(T _3(30NT.)	DATA SET	15 (CONT.)	DATA SET	16 (CONT.)	DATA SET	18 (CONT.)	DATA SET	20(CONT.)
1 = 77.	3										
		7.:5	i.855	8.72	3.915	10.35	6.509	8.54	Q. 753	12.46	3.36.
03		7.33	6.838	8.98	3.965	11.13	2.567	9.48	C.722	22.7.	û.277
5.54	1.95%	7.64	u . 754	9.26	5.342	11.65	0.347	9.59	[.613	12.94	6.244
6.39	a. žės	7.07	6.633	9.40	4.979	12.18	2.181	13.07	L • 51 a	13.22	4.221
7.5	2.572	4.15	C • 623	9.73	3. 244	12.74	i . ii 9 4	10.63	L. 260	23.45	6.2:7
7.75	31.5	3.41	500	9.97	1.795	13.17	6.355	21.16	1. 22>	13.75	5.627
a.13	2.757	3.05	5.513	16.21	3.7.6			:1.69	0.119	13.93	4.2.6
6.23	4.736	8.91	C.483	10.46	0.719	DATA SET	17	12.13	0.655	14.22	0.177
5.56	3.635	9.16	-38	11.74	4.695	T = 293	. 5			14.45	4-12
5.76	576.2	3.34	J-381	10.96	û. 659			DATA SET	19		
8.96	550	9.07	3.289	11.21	0.596	7.5%	5.911	1 = 77.4		J= 14 5=1	2:
9.64	4.7:0	9.95	ة دد د	11.46	3.527	7.75	3.896			T = _95.	L
3.45	552	11.51	4.143	11.71	3.447	8 2	5.879	13.97	t.775		
9.00	i • +5 ?			11.95	0.345	65.8	4. 266	11.66	ú.75 ₄	14.97	u • 551
9.95	2.343	CATA SE	T 14	12.61	6.254	8.56	4.862	11.47	0.719	11.20	ù • • 7 à
123	1.252	7 * 573		12.46	0.167	8.89	6.55.	22.74	0.033	22.47	b - 424
	*****			:2.72	0.131	9.19	0.830	11.95	C. 611	11.73	6.374
DATA Sa	1 12	5.,3	4.519	12.96	3.126	9.30	4.812	12.19	3.931	11 35	6.315
1 = 195		0.03	j. 55 6	13.22	1.133	4.59	C.765	12.48	1. 463	-49	4 - 455
,.		66.0	w · t · b	13.49	2-1-2	9.83	4.715	12.67	422	12.40	4 - 2 - 3
6.03	3.925	7	6.748	13.71	u.129	10.68	6 . 643	12.94	3.372	12.07	4 - 2 + 8
7.15	1.731	7.37	6.686	: 3.94	2.132	13.34	3.584	55.51	6.572	12.94	G-1:2
7.39		7.63	6.669	14.21	3.663	16.64	6.526	13.46	C. 39J	23.46	0.036
7.04	3.734	7.9.	b • 53 *			168	61	13.75	£ . 36.	13.45	5.47.
7.47	3.742	5.15	6.442	DATA SET	1.0	11.14	6.390	13.98	4. 25 1	15.75	6 1077
5.15		3.44	35 E	T = 195		11.37	1.336	14.22	0.337		• • • • • • • • • • • • • • • • • • • •
8.41		5.05	u • 27d		•	11,65	j.292	14.45	6. 205	CATA SET	22
8.05		8.91	6.225	7.51	1.935	11.59	0.186	14.7ú	U. 193	1 = 438.	
3.91	2. 200	3.46	₩.225 ₩.15€	7.79	3.922	12.13	v. 117	14.93	2.121		•
	3.355	9.30	ù.::7	5.23	0.933	12.41	0.676	15.23	6. 67:	٠	0.935
i.1e		3.30		8.27	3.932	12.72	5.544	13460	4	3.84	1.540
9.35	5. 77	1.51	w + 2 8 i	8.56	G.887	16.76	0.644	DATA SET	26.	5.44	0.953
9.07	3 - 3	21.				D. T. C.		T = 195.		6.6.	£50.0
9.95	2.280	DATA Si		8.87	3.576	DATA SE'		1 - 199			
12+		7 = 77.	. 5	9.15 9.34	2.676 8.859	T = 573.	•	10.97	t. 7	6.35	J.232
DATA SE	7 13	7.51	ù •955 `	9.57	1.824	7.49	1.854	11.26	6.074	DATA SET	23
T = 293		7.73	i .942	9.82	3.764	7.74	(.872	11.47	4.651	T = 294.	
1 - 492	,.,	8.,3	ù.927	16.67	3.719	7.39	0.053	11.70	6.573		-
	u.3+1	8.27	0.914	10.38	0.655	8.24	6.427	11.95	C. 507	6.106	0.229
3 3							6.798	12.19	0.437	J.1.9	u . 3 8 8
6.63	0.915	8.52	0.905	11.65	û.á10	0.57	U . / 7¥	7 60 7 3	4. 73/	44763	4 + 2 0 0

TABLE 10. EMPERIMENTAL DATA ON THE TRANSMISSION OF LITHIUM FLUORIDE (continued)

λ	τ	λ	Ŧ	λ	τ	λ	1	λ	τ	<i>j.</i>	=
SATA SE	7 23 (CONT.)	GATA SET	25(C CYT.)	DATA SET	27 (CONT.)	JATA SE	T 34 (CONT.)	0414 SE T = 498		שב גוונים	E 34CONT.3
5.113	3.451	ű.115	0.511	3.165	3.585	0.157	C-464			p.155	6.805
622	V . 2 C D		572	2.185	9.718	4.149	i . + 5 9	6.165	L. 191	4.17-	3.861
w.1.3	59.	6.129	637	1.192	1.731	J.119	6.663	0.166	6.349	w. 17c	
37	. 124	(-12)	v • 0 5 8	٠٠٤٠٠	4.777	0.127	6.779	0.137	9 - 425	2.175	3.972
	. 7. 1	3 3		205	6.865	13-	2.859	Loils	45 .		375
	/43	4.2	77 &	*	• • -	5.140	4.346	4.139	3.475	3.1 3€	6.377
	4.3.3	U-153	637	DATA SET	23	2.145	4.937	4.111	0.569	4.19.	0.573
1.100	3.353	106	L.373	7 = 298.			• • • •	L -112	6,523	3-	4.575
	3. +3-	1.102	3.337			DATA SE	T 31	[-113	C.537	3.200	0.679
	922	3.2.5	584	3.2.7	3-141	T = 336		C-11-	C. 53+		3.035
	••••	*****	••••	113	4.263			£ .11>	1.55.	6.2:-	193
CATA SE	7 2	DATA SET	26	3.133	306	5.140	0.319		6.536	5	J
1 = 11:		T = 293.		3.141	5.417	7	1.504	7	539		40207
	• •	,,,,	•	1.151	2 • 5 • 4	0.1(8	4.428	18	6.503	2.625	3.935
	7	U-137	6.172	1.159	0.637	4.169	6.462	0.115	6.534	4.33.	5.928
(,11	77	Jeii	256	3.165	0.682	0.116	g. 627	u.iè.	597	J . 23:	L.316
	7	J.110	311	1.175	5.731		C.73C	\$51.0	5.535		
	4.3	3.120	5.308	83	4.733	6.129	6.844	23	6. 595	4.2.2	6.927
		6.133	19	j.i9+	1.759	4.130	915	6.125	4.0.3	25.	
	3.112	3.232		1.265	3.835	4.142	C. 362	0.160	4.44.	2.255	- + 76 3
(J. 151	537	3.203	••••	U 5	6.974	627	012		6.927
well id			673	DATA SET	20			6.128	5.624	4.255	4.43.
	4.419	ü	i.095	T = 238.		DATA SE	T 32	W.145	4.53.4	2.27.	4.523
6.1.5		3.173	95	250.	· ·	T = 374		6.132	6.610	275	4.323
	1.634	0-113 0-163	6.735	3.46	2.975	3/4	••	C.134	L. 635	2è	2.928
	3.7 4		1.747	5.29	0.943	6	C.035	6.136	6.645	55	0.91.
u . 1 52	3.774	U.130	2.807	5.53	u . 336	0.16	2.365	G.139	6.601	4.29.	\$. 927
		****	9.007	5.73	u. 513	4.143	6.487	6.14.	6.562	2.292	. 933
1.163 1.172	2.324	CATA SET		5.92	9.713	5.111	[.56G	6.1-3	3.75	2.3.	3.526
		F = 245.		0.26	C. 485	0.117	6.078	ó	u. 727		
1.173	u. 527 3. 453	1 = 295.	· u	5 · c i	ŭ.335	3.119	725	6.148	6.737	JATA SE	7 44
			C.úti	ö.95	3.174	4.773	6.767	149	L. 705	1 = 293	
6.4.5	J. 905	4.137	1.135	7.19	3.114	BATA SE	T 17	3.152	(.81)		••
		U-117		1.74	3+114	T = 407		1.155	u. để ó	1:3.4	3.64
DATA SE		0.131	L+178	DATA SET		1 - 407	••	i.157	1.83.		****
? = <u>2</u> 98.	••	4.1-0	3.208				6.486	0.157	4.357	17000	6.6.3 6.4.3
	_	0.1-4	u . 251	1 = 544.	•	7			1.853	450.e	****
3.155	1+3	****	6.327			u.169	6.432	6.162	4.873 €.86+	234.6	5.31
L - 1 u7		4.193	L .437	1.104	3.476			4.104	i. 57j	345	0.53
	30	4.150	6.563	3.165	0.293			4.166		344.3	3.53
::2	4.413	J.16u	5 + 5	1.16	J.370			ú.1 E7	u.865	374.4	4.33

TABLE 10. EXPERIMENTAL DATA ON THE TRANSMISSION OF LITHIUM FLUORIDE (continued)

1	τ	À	τ	λ	-	λ	τ	λ	τ	λ	7
DATA SE	T 35(CONT.)	DATA SET	37(CONT.)	DATA SET	36 (CONT.)	0474 SET T = 293.		DATA SET	40 (CONT.)	CATA SET	+1 (CCNT.)
4.5.:	2.53	7.33	6.746	7.97	C.5c7		•	8.1771	C+897	6.1472	2.539
400	ů o žá	7.5:	6.09[8.13	1.526	3.16-2	0.008	0.1928	ŭ. 898	6.1550	2.675
	• • • • • • • • • • • • • • • • • • • •	7.62	853.1	3.37	J.5.+	3.2044	6.664			4.1579	ié
DATE DE	T 35	7.71	3.558	3.02	ũ•+36	4.1.43	57	04TA SIT		しいようせき	73.
1 = 295		7.52	Ç.553	3.63	ù • 473	4.1047	6.121	I = 295.	ý .		6.742
		7.37	v . 527	3.97	3.455	0.165.	[.246			0.1471	i.7s1
	4.137	63	u •52•	9.58	0 - 437	3.1.53	C.347	€.1(+2	C. CuB	w+1745	9.777
3.105		8.37	1.52 c	9.19	0.294	0 - 11554	C.38+	0.1C+4	€• FZ•	0.1323	3.791
3.109	6.239	3.62	J.432	9.34	2.328	2.1057	6.442		6.057	3.1905	3.438
0.112	L . 5+7	3.33	L.476	9.5+	3.239	3.1060	6.465	6.1(-7	4.114	i.21u1	3.313
1 - 1 2 5	024	3.37	3.455	9.65	3.167	1.65	C.491	6.1152	(.:~7		
7	ú. éti	9.43		3.54	3.121	3.2.76	G.512	4.1651	235	DATA SET	~ 2
	2.720	3.13	i.394	iteti	J = £04	3.1677	ú.525	\$ • 13 5 +	6.243	I = 0.2	
3.123	755	9.34	€.32 €	16.22	0.0+0	3.1084	6.534	0.1356	Ç. 315		
27	2.792	9.5+	J.235			1.1.52	6.545	0.1658	C. 223	43.6	4.253
3.	522	9.66	w.ib7	DATA SET		6.1135	(.551	6.1.03	6.342	53.2	0.284
157	u. 35.	9.84	121	T = 3	J	· ·1118	C.55C	6.1672	Ç. 357	53.0	٠٠٤٠.
1.145	7.5		8 4			9:1122	C.ftZ		4.371	56	
55	. 926	12.	2.0+3	1.51	3.935	1133	3.57	9.1991	4 6	3!	
	0.329			3.01	0.935	6.11-3	6.577	(.11.1	6. 231	co.5	> > 7
206.0	i	DATA SET		→.37	0.953	1158	C.588	w.11.2	C. 351	75.)	3.443
2.237	3.949	T = 55.6		5.33	0.953	1172	5.642	6.1156	41.3	75.9	20467
3.403	534			5.65	0.943		5.61-	(.i1c.	0.413	32.1	3.43.
6.35.	J.36J	2065	6.935	5.92	U.925	J.1260	2.639	C-1225	0 - 444	87.7	1.500
•		3.6.	935	6.35	9. 573	3269	0.555	£ • 1 2 3 2	5 - 442	9++3	3.512
JATA Sa		4.37	956	9.00	5.844	3.1368	C.674	4.12.44	2. 4-3	20403	6.534
7 = 5	:	· . 35	 958	5.39	3.350	9.1383	0.722	6.500	E = 442	447	5:5
		2.37	ء 19. و	7.63	3.713	3.2440	L.772		4 1	.34.4	4.546
1	3.935	5.35	· • 9 • 9	7.43	1.053	1521	6.938	\$. 1.257	4.40	.04.5	0.2-0
3.51		9.14	6.935	7.65	3.525	3.1509	0.875	1291	Ç. 445	193.3	3.544
4.37	1. 35 .	0.4.	0.9.7	7.83	3.454	3.1591	3.354	1.13.4	0.45.	2:4.4	0.546
9.53	. 35 5	0.73	u.58 ~	39	5.455	1612	J.896	L.1334	C. 453	231.4	6.5:
5.37	; , 153	0.93	560	3.07	0.333	4.1055	6.391	352	C++57	438.5	÷ .577
3.43	4 . 1 . 3	74	-38	3.14	2.225	J.1638	6.99	6.1373	3.46.	0.7. 6.7	•
3.i.	2.339	7.25	 79→	3.33	186	1 640	0.585	0.1391	C • 496	CATA SET	4.3
6	6.3.7	7.30	746	9.55	3.129	.1066	6.883	1.:449	6.474	T = 99.7	
ć.73	6.354	7.5.	u.65L	3. 61	9.508	1.1003	286.3	3.1425	C. 463		
	1.022	7.52	J. t2 d	10.02	1.153	4.1687	54	60.49.3	6.495	70.1	2.313
7.63	4.555	7.7:	568	16.24	0.635	4.1768	6.891	0.1452	1.5.3	73.0	4.4
7.26	2.794	7.3.	6.553			ù.1734	C.896	i.1462	G. 523	81.4	3.317

TABLE 10. EXPERIMENTAL DATA ON THE TRANSMISSION OF LITHIUM FLUORIDE (continued)

```
04TA SET 43 (CONT.)

86.2
90.1
90.1
90.1
10.26
95.9
10.29
10.20
10.21
11.29
10.21
11.20
10.21
11.20
10.21
11.20
10.21
11.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10.20
10
```

λ

TABLE 11. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WIDTHS (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN LITHIUM FLUORIDE*

Interionic		F band	d	R ₁ band	R ₂ band	M ba	nd	N bands
dist., d (Å)	Temp.	λ max	W	λ max	λ	λ max	W	λ
2.01	RT	(0.254)†		(0.295)	(0.320)	(0.416)		
		0.245	0.74	0.306	0.376	0.444		N ₁ : 0.520
		0.248	0.76	0.308	0.378	0.445		N2: 0.540
		0.249	0.7	0.310	0.380	0.447		
		0.250		0.313		0.450		
		0.257		0.316				
	NT	0.242	0.47					
	HТ	0.243	0.58					
			0.43					

^{*} Values were taken from Ref. [69].

 $[\]dot{\bar{\tau}}$ Values given in parentheses are calculated from the Ivey relations [70].

F band $\lambda_{\text{max}} = 703 \text{ d}^{1.84}$ for NaCl structure, $\lambda_{\text{max}} = 251 \text{ d}^{2.5}$ for CsCl structure. R_1 band $\lambda_{\text{max}} = 816 \text{ d}^{1.84}$

 R_2 band $\lambda_{\text{max}} = 884 \text{ d}^{1.84}$

 $[\]lambda_{\text{max}}^{\text{max}} = 1400 \text{ d}^{1.56}$ M band

TABLE 12. RECOMMENDED VALUES ON ABSORPTION COEFFICIENT OF LITHIUM FLUORIDE IN IR REGION AT 300 K

v, cm ⁻¹	λ, μm	Absorption Coe	Coefficient, cm		
	, µm	Intrinsic*	Observed (Selected)		
1.100E+03	9.09	1.6E+1			
1.191E+03	8.40	8.9E+0	9.9E+0		
1.240E+03	8.06	6.5E+0	7.8E+0		
1.292E+03	7.74	4.6E+0	5.6E+0		
1.346E+03	7.43	3.2E+0	3.6E+0		
1.395E+03	7.17	2.3E+0	2.5E+0		
1.449E+03	6.90	1.6E+0	1.5E+0		
1.497E+03	6.68	1.2E+0	1.3E+0		
1.550E+03	6.45	8.6E-1	9.3E-1		
1.605E+03	6.23	6.0E-1	7.0E-1		
1.658E+03	6.03	4.2E-1	5.0E-1		
1.701E+03	5.88	3.2E-1	3.4E-1		
1.751E+03	5.71	2.3E-1	2.4E-1		
1.802E+03	5.55	1.6E-1	1.7E-1		
1.855E+03	5.39	1.1E-1	1.1E-1		
1.887E+03	5.30	9.5E-2			
1.901E+03	5.26	8.7E-2	8.2E-2		
1.949E+03	5.13	6.3E-2	6.2E-2		
2.004E+03	4.99	4.4E-2	4.2E-2		
2.101E+03	4.76	2.3E-2	2.1E-2		
2.203E+03	4.54	1.2E-2	1.1E-2		
2.304E+03	4.34	6.2E-3	5.9E-3		
2.400E+03	4.17	3.3E-3			
2.500E+03	4.00	1.7E-3			
2.600E+03	3.85	9.0E-4			
2.632E+03	3.80	7.3E-4			
2.700E+03	3.70	4.7E-4			
2.800E+03	3.57	2.4E-4			
2.900E+03	3.45	1.2E-4			
3.000E+03	3.33	6.6E-5			
3.704E+03	2.70	6.7E-7			

^{*}Intrinsic values were calculated according to Eq. (23) with uncertainties about ±10%.

[†]Values in this column are the total absorption coefficient which are either lowest reported or those used to define the constants in Eq. (23). Uncertainties of these values are about $\pm 10\%$.

3.2. Sodium Fluoride, NaF

Sodium fluoride is less hygroscopic than the other alkali halides, with the exception of lithium fluoride. It is transparent over the same range of wavelengths as calcium fluoride, a wider range than that of lithium fluoride. It is deficient in its mechanical properties, but it has some uses in cases where a particularly low refractive index is desired. It can be easily evaporated as a thin film and can be used as reflection-reducing coating.

Available data on the refractive index of NaF are not abundant, mainly because of its mechanical weakness. The ultraviolet absorption region was investigated by Sano [71], the transparent region by Hohls [29], Harting [30], Kublitzky [72], and Spangenberg [73], and the infrared region by Randall [74]. Zarzyski and Naudin [75] obtained n for molten NaF for the Hg green line at a temperature of 1273 K.

Li [33], in 1976, reduced the then available experimental data on the refractive index to a common temperature of 293 K and after careful evaluation and analysis adopted a Sellmeier type dispersion equation to calculate the refractive index at 293 K in the wavelength range $0.15-17.0~\mu m$:

n = 1.41572 +
$$\frac{0.32785 \ \lambda^2}{\lambda^2 - (0.117)^2}$$
 + $\frac{3.18248 \ \lambda^2}{\lambda^2 - (40.57)^2}$ (24)

where λ is in units of μm .

Investigations of absorption coefficient for practical applications are generally classified into three wavelength regions: the ultraviolet and the infrared limits of transparency, and the transparent regions. In the ultraviolet region, the purposes of the studies were to investigate the exciton states in the crystal and to determine the Urbach-rule parameters.

Tomiki and Miyata [37] performed reflectivity and absorption measurements in the intrinsic wavelength region of cleaved NaF samples to clarify the thermal and spectral dependences of absorptions in the tail region. Effects induced by the ultraviolet radiation were observed. Sizable changes in transmission and reflectivity were observed during the course of uv exposure, suggesting the specimen underwent some kind of damage by the radiation. For this reason, experiments were conducted on freshly cleaved specimens. The absorption spectra of a Harshaw NaF plate of optical quality, displayed broad absorptions

1.

around 0.14 μm due to impurities. However, it showed an exponential absorption tail in the highest energy end of the spectrum, 0.125-0.127 μm , where absorption coefficients were higher than 50 cm⁻¹. Since the tail spectra of intrinsic exciton lines as well as of impurity-induced exciton lines equally obey the Urbach rule, the fact alone that a given tail obeys the Urbach rule does not always constitute in itself a criterion with which the tail can be judged as intrinsic or extrinsic. As evidenced by the broad absorption band around 0.14 μm , the observed tail of this specimen can be regarded as an impurity obsorption tail. Sano [71] also investigated the Harshaw NaF single crystals at 78 and 300 K in the spectral region 0.104 to 0.21 μm . Results similar to that of Tomiki and Miyata were observed; namely, broad and prominent impurity absorptions followed by the extrinsic exponential tail. The dependence of the experimental band tail on temperature was compared with the theoretical curves for the intrinsic Urbach tails:

$$\alpha = \alpha_0 \exp[-\sigma_s(T)(E_0 - E)/kT]$$
 (25)

and

$$\sigma_s(T) = \sigma_{so} \frac{2kT}{hf} \tanh \frac{hf}{2kT}$$

The constants, E_0 and α_0 , are the coordinates of the theoretical cross-over point. Sano estimated cross-over point for intrinsic Urbach and at (40.70 eV, 10^{10} cm⁻¹), $\phi_{so} = 0.69$ and hf = 16.5 meV. Chemically purified and zone refined NaF single crystals were prepared and measured by Földvari et al. [76] in the vacuum uv region at temperatures 100 K, 190 K, and 298 K. The reduction of concentration of OH, C1, and Br impurities, through the purification process, resulted in the low absorption in the region of 0.13 to 0.16 µm. The specimens were placed behind the exist slit of the optical system in order to avoid the irradiation effects. Their experimental results indicated a theoretical cross-over point at (10.70 eV, 10^9 cm⁻¹) in agreement with Sano's estimation. As the extrapolated experimental absorption curves directed towards a common cross-over point, even at low temperatures, they concluded that the absorption is intrinsic.

Tomiki et al. [77] reported absorption coefficients of NaF at 29 K on the lower energy side of the lowest-energy exciton peak. In this spectral region, absorption rises with increasing energy first exponentially and subsequently non-exponentially forming the lower energy branch of the asymmetric Lorentzian shape of the main peak. This feature owes its origin to the fluorine ion.

In the laser wavelength region, Harrington and Hass [78] investigated the temperature dependence of multiphonon absorption at 10.6 µm from room temperature to 1110 K for NaF samples using transmission measurements with a laser and power meter. All measurements were carried out inside a stabilized oven on samples polished mechanically, followed by chemical polishing. It was observed that the absorption coefficient increases monotonically and smoothly with temperature and appeared nearly as a straight line on logarithmic scale, as anticipated for the near-intrinsic abosrption of the crystal. Since the absorption levels of NaF at 10.6 µm are in the order of 1 cm⁻¹, it is sufficiently high to be ascribed to intrinsic behavior.

Pohl and Meier [79] studied the absorption at the wavelengths $9.3~\mu m$ (1020 $\rm cm^{-1}$) and 10.6 μm (943.4 $\rm cm^{-1}$) in the temperature range from 4 to 400 K on two samples of different purity. One was grown by standard techniques, with exposure to air, the other was grown in an argon atmosphere. Thus the main difference between the two samples was the concentrations of oxygencontaining impurities, whose effects on the absorption coefficient were revealed by an almost temperature independent amount of $0.25~\text{cm}^{-1}$ higher at $10.6~\mu\text{m}$ and by 0.30 cm^{-1} at 9.3 μm . Being about of the same order of magnitude as the total absorption, the impurity induced absorption masks the intrinsic temperature dependence of the impure sample in the low temperature region. In the high temperature region, however, the discrepancies between the two samples became less significant as the total absorption is considerably higher than the impurity absorption. As a consequence, data from both of the samples agreed reasonably well with the results of Harrington and Hass [78] which are slightly larger by an almost constant difference of $\Delta\alpha$ = 0.09 cm⁻¹ than those of the second sample. Similarly, at 9.3 µm, Klier's results [41] are in line with the above mentioned data. At both wavelengths, three distinct temperature dependencies can be clearly observed: (i) a constant low-temperature absorption in the region T ? 150 K, indicating negligible occupation of phonon levels, (ii) the increase of absorption in the region >150 indicating phonon population rising, (iii) eventual compliance to the power-law, increasing at $T > T_{\text{Debye}}$.

The infrared multiphonon spectrum of many ionic crystals is characterized by a uniform, almost exponential, decay of absorption with frequency. A key

to the experimental identification of the various multiphonon processes is the temperature dependence of the absorption. The larger the number of phonons participating, the steeper the increase of absorption with temperature. McNelly and Pohl [80], in an attempt to split the exponential wing of the restrablen band of NaF into the component phonon absorptions, systematically measured absorption coefficients in the range 6.67 to 16.67 µm and 100 to 850 K. Extremely pure samples, which were believed to be intrinsic as evidenced by the very small absorption at high frequencies, were employed. Although their studies were able to separate the resultant absorption spectrum into component phonons, the observed absorption spectrum does not indicate distinct peaks.

Figures 9 to 12 represent the available data. The pertinent information on each data set and the corresponding original values are given in Tables 13 to 16. In addition, for completeness and comparison, available information and data on the reflectivity and transmission are also presented in the same manner (in Figures 13 and 14 and Tables 17 to 20). For the visible and near visible regions, Table 21 gives the spectral positions of the well-known color centers. Noticeable absorptions are likely to occur at these centers when the crystal is exposed to ultraviolet, x-ray, or high energy radiation. However, these absorption bands may disappear at high temperatures or by appropriate radiation exposure, as a result of the so-called "thermal and optical bleaching."

In the multiphonon absorption region (shown in Figure 11), the absorption coefficients vary linearly with wavenumber in the semi-log plot indicating an exponential relation

$$\alpha = \alpha_{o} e$$
 (26)

In this region, Hohls [29] measured absorption coefficient of NaF for the spectral range from 7.5 to 24.0 μ m at room temperature. Klier [41] reported his results on NaF in the range 7.9 to 19.1 μ m at temperatures 79 K, 293 K, and 573 K. When compared with Hohl's results, a close agreement is observed. Fivever, we found that their results were not adequate to define the constants in Eq. (26). It was based on the results of McNelly and Pohl [80], the constants were found to be $v_0 = 79.5$ cm⁻¹ and $\alpha_0 = 6.1053 \times 10^4$ cm⁻¹. Details of this finding are given in the section entitled "Summary of Results and Recommendations."

The recommended values given in Table 22 were calculated according to Eq. (26). It appears that NaF has high intrinsic absorption at 10.6 μm . However, if Eq. (26) holds in the region <5 μm , the intrinsic absorption there is lower than 10^{-4} cm. However, like most optical crystals, one expects to observe an absorption band in the range between 2.6 to 2.8 μm due to the hydroxyl ions in the crystal. This absorption band can be eliminated through improved crystal growing techniques. It should be noted that the values in the column "intrinsic" are the lowest limits that one can obtain for ideal samples. In practice, the observed values are generally higher than the limiting values at low absorption levels. Unless values are reported in the "observed" column, the limiting values are considered as guidelines for estimation and investigation.

Although it was not the intent of this work to compile and evaluate the absorption data in the vacuum ultraviolet region, for the purpose of providing the reader with a total picture of the available absorption data, a plot of the available data in this region is given in the Appendix of this report.

Figure 9. Absorption Coefficient of Sodium Fluoride (Wavenumber Dependence)

....

~

Figure 10. Absorption Coefficient of Sodium Fluoride in the Urbach Tail Region

·

and the second s

,

•

Figure 11. Absorption Coefficient of Sodium Fluoride in the Multiphonon Region

TABLE 13. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF SODIUM FLUORIDE (Mavenumber Dependence)

Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Range, cm 1	Temperature Range, K	Specifications and Remarks
1	29	Nohls, H.W.	1936	Т	41.6x10 ² -1.34x10 ³	293	Crystal; grown by the Kyropoulos method; 14 plate specimens of thicknesses from 0.024 to 10.62 mm; absorption coefficients determined from transmission measurements; data extracted from a figure; temperature not specified, 293 K assumed.
2	41	Klier, M.	1958	R	5.24x10 ² -1.06x10 ³	77	Crystal; absorption-coefficient data deduced from reflectivity and transmittance measurements on specimens of various thicknesses; data extracted from a figure.
3	41	Klier, M.	1958	R	5.7x10 ² -1.12x10 ³	293	Same as above.
4	41	Klier, M.	1958	R	6.06×10 ² -1.26×10 ³	573	Same as above.
5	76	földvari, I., Yosika, k., and Raksanyi, K.	1974	R	6.46×10*-7.94×10*	298	Pure single crystals; chemically purified and zone relined; freshly cleaved specimens of 0.2-6 mm thick; absorption coefficient data extracted from a figure.
6	76	Földvari, I., et al.	1974	R	6.46×10°-8.1×10°	190	Above specimen and conditions except at a lower temperature.
7	76	Püldvari, I., et al.	1974	R	6.46×10*-8.3×10*	100	Above specimen and conditions except at a lower temperature.
8	71	Sano, K.	1969	R	7.66×10°-8.7×10°	78	Single crystal; obtained from the Harshaw Chelical Co., cleaved specimens of 10 mm x 15 mm x $0.17-2.50$ mm, approximately; a thinner specimen of 0.08 mm thickness used for absorption measurement in the range of absorption coefficient as high as 10^2 cm ⁻¹ + 5 x 10^2 cm ⁻¹ ; data extracted from a figure.
9	71	Sano, R.	1969	R	5.0x10"-8.7x10"	295	Similar to above except at a high temperature.
10	77	Temiki, T., Miyata, T., and Isokamoto, H.	1974	R	8.53×10 ⁴ -8.62×10 ⁴	29	Single crystals obtained from the Harshaw Chemical Co.; absorption coefficients deduced from reflection spectrum; data extracted from a curve.
11	81	Beck, H. and Pehl, J.W.	1975	Ť	6.5xlC -1.1xl0 ³	100	Single crystal of extreme purity; no indication of any entrus- sic honorption; specimens of 54.98 mm and 3.82 mm thick; ab- sorption measured by means of infrared spectrophotemetee; data extracted from a figure.
12	37	Tomiki, T. and Miyata, T.	1969	Z	5.2×10*-8.0×10*	300	Single crystal; ultraviolet quality from the Barshaw Chemical Co.; freshly cleaved specimes for absorption coefficient below 100 cm ⁻¹ ; specimes for higher absorption prepared in becauseous by melting the flakes of crystals between two plates of glassy carbon and pressed; reflection and transfission spectra obtained and absorption coefficients determined; data extracted from a figure.

TABLE 14. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM FLUORIDE (Wavenumber Dependence)

[Wavenumber, v, cm-1; Temperature, T, K; Absorption Coefficient, a, cm-1]

ν	a	V	a	v	2	ν	α	v	3.	ν	a
0474 5ET T = 293.1		TEZ ATAC	1 (CONT.)	DATA SET	3 (0 04 %)	3474 SET	41 CONT.)	DATA SET	6 (CCNT.)	DATA SET	8 (CCNT .)
2,0	•	+ .373=+2	2.2046+2	9.5512+2	9.57-2-1	6585+2	4.659E+1	6.5792+4	1.300E+C	3.2716+4	3.8025+2
1.3331+3	9		2.34.£+2	9.1475+2	1.2436+1			6. 4042 +4	1.8JüE+L	3.2316+4	3.4235.2
1.25.5+3		4.0512+2	3.5 + 4	3.7.35+2	1.7-36+0	DATA SET	5			8.243=+4	2.2916+2
1.1765+3	2.5 5-1	4.545.+2	4.3+2	8.3612+2	2.3455+9	T = 298.8		DATA SET	7	3.227:+4	1.3255+2
1,1,1,+5	3.21	+++++2	6 - + - 4 2	3.1335+2	2.545 2+6			T = 1.0.0		9.6.32+4	1.3.05+2
1	3	4.3-42+2	7.7.02+2	8325+2	3.3732+6	7.9372+4	4.66CE+1			8.2752+4	
1.15.243	5 . +	4,2555+2	1.1556+3	7.8635+2	3.794E+2	7.8936+4	2.8116+1	8.2716+4	2.59tE+1	8.1236+4	
9.564:+2	7.7.45-1	4.1675+2	1.3506+3	7.7152+2	4.69+E+-	7.862E+4	1.59.E+1	5.2-45+4	1.330E+1	きょころうこナル	5.4455+1
9.1311.46	1.1135+0			7.5325+2	5.3182+0	7.8436+4	1.)3LE+1	8.2132+4		7.0235+4	
0.5702+4	1.0000	JATA SET	2	7.2835+2	6.5148+6	7.812E+4		5.1775+4	9.8062+6	7.5726+4	
0.3331+4	6.25.0	T = 77.5			7.4772+6		€.6iiE+ i	8.130E+4		7.9232+4	
a.w*&	3 4 2 4 3 2 4 3			6.9.12+2		7.034E+4		8.1132+4		7.33,50.5	
7. 6921+2	サモラ・レントレ	よっしラジニャ3	1 - 556 £ -1		1.132E+1	7.53ÉE+4		8.J13c+4		7.3275+4	
7.4472+2	うゅうしょことし	13:+3	3.18.1-1		1.335E+1		4.966E+0	7.6.35+4		7.7485+4	
7.143E+c			5.4456-1	6.2542+2		7.293E+4		7.634£+4		7.7712+4	
0.8372+2	3.0.42+6		7.7000-1	604€+2		7.14BE+4		7.5361++		7.748E+4	
6.5571+2			1.1535+0		2.012E+1		2. oliE+0	7.445£+4		7.6612+4	2.2235+1
5. 4325+2			1. +32£+û	5.7185+2	3.948E+1	5.1492+4		7.299E++			
6.65.206	1.75.1.		.,1-12+3				2.31:E+C	7.1452+4		DATA SET	
0.4522+6			373:+3	DATA SET			1.866£+0	6.5996+4		T = 295.0	;
5.3022+2			4.C1i.+i	T = 573.	S	6.464E+4	1.80LE+G	6.349E+4			
う。かりかきる			4.367=+3					6.7235+4		6.6345+4	
3.737c+2			5.32		1.537E-1	SATA SET		6.579E+4		5.6506+4	
5.7576+6			2.407:+3	1.1032+3		7 = 196.	L	6.4645+4	1.800:+6	30035244	
5.72+496			5.7.72+3		4.2735-1				_	3.61/644	
5.0/55+2			b.783£+4		7.3676-1		3.65.2+1	SATA SET	8	8.5315.++	
5.018:+4			7.9326+3		1.1235+4		1.07. 2+1	T = 79.3		8.559244	
5.559: +6			9.9.26+1		1.05+2+6		1.2566+1				
5.550:+2			1.375E+1		2.116E+4		9.9562+6	3.095=++		8,544(*4	
5.5132.02			6.365£+1		2.5296+0		9.75(E+3	5.6832++		3.5296++	
5.4035+2			3.1131+1		3.1236+5			8.6582+4		8.514.44	
5.4.72+6			2.932: +1		4.2535+1		6.61.E+B	5.6212++	2.1796+6	8.53cê+4 3.412£+4	
5.3,		5.643542	3.478£+1		6.669č+C		5. 3.(2.0	5.6132++		5.45614	
5.759.+4			_		5.9592+0		5.2.LE+4 4.3LLE+6	8.5852+4		8.4522.44	
5.313692		DATA SET			1.1576+1	7.440274		6.3482+4		8.437244	
3.263142		T = 643.	9		1.5182+1			6.5316+4		8.416£+4	
3.2:2:42					1.833E+1		3.35LE+6			0.416244	
5.131			1.31.6-1		2.456E+1		2.60CE+G	8.5132+4		8.3916+4	
5.125_+4			3.1951-1		3.3496+1		2.30CE+0	8.4822+4		0.3716+4	
20224246	-•75.E+2	9.49.5+2	5.21.2-1	0.2386.4	3.799£+1	0.7266+4	2.3002+6	5.4525.**	3.04.2+4	0.3/56 **	< 0 = + 0

TABLE 14. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM FLUORIDE (Wavenumber Dependence) (continued)

ν	a	V	α	ν	α	ν	a
CATA SET	9 (0047.)	73E 4146	9(00%7.)	DATA SET	11(CQNT.)	DATA SET	12 (CONT.)
5.3435.44	9.3.82+5	5.75.644	5.1528-1	9.6665+2	1.381E-1	7.436 [+4	2.12(6+1
	5.1006.40		444004-1	9.94.2+2		7.4306+4	
	4. 3.36.45		3.5+82-1		6.700E-2	7.50.6.4	
	-+ ±77£+3		4.65€€±1		4.7+3E-2	7.62.6+4	
	5.023:+4		2.4151-1	20000		7.6336+4	
	6.4.15.46		2.7.32-1	DATA SET	1 7	7.700=+4	
	7.4.32.42		1.3951-1	T = 293.		7.91.5+4	
	2.3326.2		4.3ò5Ē-1			7.3246.4	4.336 E+1
	5+36++4		2.2596-1	5.2506+4	1.4733-1	7.3322+4	5. č. L É+1
	3.7922+1		1.0191-1		1.91	7 . 59GE+4	8.71.E+1
	******		262E-1		2.6'05-1	7.9268+4	1.3966+2
	-,2352+1			5.43.7 **	2.3 (18-1	7.91.E+4	
	4.537.41	DATA SET	11		2.46.6-1	7 . 95 . E++	
	3.327E+:	7 = 29.2			3.3262-1	7.9308+4	5.+955+2
	3.119=+-				3.4665-1	8 . L L J E + 4	5.9866+2
	4.2	4.62264	3.339E+6	5.851E++	4.5305-1		
	2.00/=+1		++++++6	5.99: = +4	6. : 4: 5-1		
	2.4742+1		3. 7301 +0	6	0.5). [-1		
7.530: +4	1.73.2+1	3.0:::+4	3, 5366+5	6.10.: +4	7.45.E-1		
7.42.244	1.03.E+.	3.5.1=+4	3. 4862 + 5	6.13.E++	8.5205-1		
7.3032++	4.0.7=+1	3.592.+4	3.5200+6	6.23LE++	9.28.6-1		
7.3.02++	1.335E+1	0.21:2+4	3.0562+6	6.2656+4	1.16.5+6		
7.1252+4	1.3+32+1	8.5702+4	3.4672+5	6.32.2.4	1.310E+1		
7.129=++	1.3 £	8.003:+4	€.955E+5	6.3761+4	1.59.E+1		
0.332:+4	1.0.02+1	8.2.36+4	1.1756 +6	6.42(E+4			
6.9275++	3.7 322+6	8.53++	3.1066+5	6.4965+4	2.7136+6		
0.355204	7.047246			6.54.214			
6.7335++	5.5.5.	DATA SET	11		6.35CE+W		
	4.3.3.1.	T = 1	Ċ		8.255E+5		
6.5311.	3.2756+4				3.790E+j		
	2.3052+4		4.36.2 + 3		1.210E+1		
	2.963210		3.7502+0		1.21@E+1		
	2.3412+0		2.8526+3		1.3232+1		
	1.300000		2.12.3		1.5.05+1		
	7.025244		1.4612+4		1.8642+1		
	7.0252-1		1.0-0-0		306E+1		
	2-3-56.0		7.11.8-1		1.7802+1		
	e.952£=1		5.30.6-1		1.94JE+1		
	0.137E-1		4.28.£-1		1.940 €+ 1		
5.8135++	5.83+6-1	9.22.5+2	2.51.6-1	7.35.2+4	1.940E+1		

Figure 12. Absorption Coefficient of Sodium Fluoride (Temperature Dependence)

TABLE 15. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF SODIUM FIGORIDE (Temperature Dependence)

Set No.	Kef. No.	Author(s)	Year	Method Used	Range, cm	Temperature Range, K	Specifications and Remarks
1	79	Pohl, D.W. and Meier, P.F.	1974	Т	943.2	31-390	Single crystal; made from Merck Suprapur NaF; grown in an argon atmosphere; specimen configurations and experimental details not given; absorption coefficient obtained; data extracted from a figure.
2	79	Pohl, D.W. and Meier, P.F.	1974	т	1.075 x 10 ³	32-397	Same as above.
3	78	Hatrington, J.A. and Hass, M.	1973	τ	943.4	300-1110	Single crystal; specimen with surfaces mechanically and then chemically polished; absorption coefficients measured by transmission method with a laser and power meter; data extracted from a figure.
4	80	McNelly, T.F. and Pohl, D.W.	1974	T	700	108-843	Single crystals of extreme purity; specimens of 54.98 and 3.52 mm thick; no indication of any extrinsic absorption; absorption measured by means of infrared spectrophotometer; data extracted from a figure.
5	60	McNelly, T.F. and Pohl, D.W.	1974	τ	900	105-849	Same as above.
6	90	No. No. 11 y. T.F. and Pobl. D.W.	1974	τ	1100	200~861	Same as above.
7	80	McNelly, T.F. and Pohl, D.W.	1974	т	1300	207~681	Same as above.
8	80	McNelly, T.F. and Pohl, D.W.	1974	Ť	1400	221~899	Same as above.
9	81	Beck, H. and Pohl, D.W.	1975	Ť	800	103~845	Same as above and measured by McNelly and Pohl but reported in this reference.

TABLE 16. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM FLUORIDE (Temperature Dependence) {Wavenumber, v, cm^{-1} ; Temperature, T, K; Absorption Coefficient, a, cm^{-1} }

τ	a	T	a.	Ť	2	τ	Q.	τ	α	T	α
DATA SE	Y 1	JATA SET	(TRODIS 1	DATA SET	4 (CONT.)	SATA SET	SICONT.1	DATA SET	6 (CONT.)	JATA SE	T 8
y = 9.4										v = 1.4	00 € + 3
		10 ć. o	1.2285-1	231.6	5.060E+C	134.0	4.3668-1	323.0	5.6(62		
31.4	2.7.,£+1	124.4	1.2026-1	213.6	5.42vE+6	197.0	4.89.5-1	342.9	6.3102-2	êci.l	9.7306-4
30.8	2.32.4-1	139.9	1.30-1	226.3	5.83.5+6	239.6	5. 26.2-1	361.5	5.670==4	240.8	1.3.00-3
42.7	2.7612-1	150. ô	1 . 39-E-1	2+0.0	6.10¢E+0	224.0	5.66.E-1	366.7	8-4705-2	207.4	1.4506-3
+6.7	2.3616-1	:76.5	1.514£+1	26	6.9EJE+0	241.0	6.0968-1	410.6	7.0105-6	284.4	1.4442-3
34.3	2.5535-1	192.2	1.03.1-1	24	7.175E+6	255.0	6,40.E-1	462.3	9.13::-2	314.7	1.4175-3
22.	2.72	2.5.5	1.7381-1	232.0	6.90.2+6	270.0	t.96.2-1	527.2	ioituz wa	324.3	2.99.5+3
63.6	2.70,6-1	220.5	1.407E-1	3,5.6	7.8366+6	232.0	7.6366-1	553.4	1.36vć-1	3>7.4	1.0.02-3
79.0	2.7.52-1	246.5	1.3952-1	314.0	8.183E+0	303.2	8.ú6(E-1	665.5	1.7566-1	375.7	4.6/CE-3
80.4	2.7.6-1	276.3	2.3291-1	332.4	a.550E+0	31c.3	8.43i E-1	677.6	1.9762-1	4.7.0	3.19CE-3
99.5	2.7:.5-1	29:.3	2.0136-1	337.0	8.554E+3	330.0	9762~1	725.3	5.5517-1	473.6	4.5335+3
105.6	2.3556-1	3 44.3	3 . 180E-1	362.€	9.480 £+0	345.û	9.3+LE-1	767.8	2.80.2-1	527.8	6.31,6+3
1.19.3	2.7352-1	390.2	3.7775-1	373.0	1.61GE+1	356.1	1.010£*6	832.6	2.9942-1	276	3.6205-3
119.1	2.9.42-1			383.2	1.01.E+1	376.2	1.6562+0	663.5	3.3602-1	625.0	4.7205-5
.27.3	2.5272-2	DATA SET	T 3	394.2	1,270E+1	351.0	1			034.5	1.6342-2
1+3.2	4.35.2-1	v = 9.4	34£+2	440.8	1.16JE+1	398.0	1.02.2+6	DATA SET		7.3.0	1.65)=-2
:40.2	3. 100:-1			430.0	1.1665+1	-4 4 - 4	1.13(E+0	v = 1.3ú	0E+3	832.5	2.591E-2
154.0	3.2456-1	3.1.9	6.682E-1	455.6	1.2742+1	428.6	1.456646			3+3.0	3.0932-2
185.7	3.43.2-1	350.9	8.165 € -1	462.0	1.37;£+1	447.0	1.4846+6	227.4	3.1765-3	893.5	3-890£ - 2
2.2.2	3.03.2-1	4,5,5	4.79-6-1	432.6	i.43i£+1	460. L	1.620.500	0 • 6 6 3	4.4 202-3		
224.0	4.12.2-1	443.6	1.1326+3	5:0.0	1.506 641	450.0	1.2745+4	271.7	4.8352-3	OATA SE	
243.7	4. +5. 2.1	5.1.2	1.3586+8	525.6	1.56.6+1	51:00	1.254.6+6	3.3.2	+. 38ic-3	V = 8.6	** C + 2
2 2 3 4 5	4.825==1	592.5	1.760£ +3	5+6.5	1.630E+1	522.6	1,5602+0	325.3	0.0915-3		
235.0	5.277 t-1	690.0	2.2916+3	564.6	1.78u£+1	5-2-6	1.6265+3	355.9	7.3003	10300	1.36.1.4
565.5	5.5c+E-1	3.3.5	2.3656+1	539.0	1.896E+1	561.6	1.78LE+0	341.7	8.3C5c-3	147.0	1.46CE+#
322.3	6.47cE=1	922.5	3.60-6+4	3.+56	2. L1JE+1	536.€	2.u76E+8	413.5	9.55	16.00	1.5442+4
35 7	6.329E-1	977.2	4.473E+3	649.4	2.36CE+1	625.0	2.3066+6	432.6	1.116:-2	145.0	1.64.2.43
319.9	7.7336-1	1004.1	4.5296.3	751.C	2.436E+1	635.3	2.85LE+C	466.2	1.33uE-2	152.6	2.6516.0
		11-9-1	5.0126.7	8.9.0	2.9116+1	736.6	3.3162+6	515.2	1-9965-4	274.5	1.0
2474 55	7 4			843.0	2.94GE+1	362.0	3.72iE+6	563.7	2.3962-2	185.0	2.70.274
= 1.3		JATA SE	T 4			849.6	4,446 &+0	623.6	2.092	ره ڏلان	1.30021
		v = 7	iuE+2	T32 ATAU	5			681.7	3.8[; -2	227.0	1.9725+0
32.8	1.2426-1			v = 9.50	35+2	JATA SET	` 6	173.5	4.276E-c	2	2.0366.0
42.2	1,2195-1	150.5	3.6952+1			v = 1.10	LE+3	78E.5	5.416E-c	23463	2.1566.9
+9.6	1.2.56-1		3. 32. [+3	115.6	3,86CE-1			822.7	6.810:-2	273	2.32.2.0
50.4	1.2255-1	133.5	4.43.2+3	116.0	3.46.5-1	199.8	3.59LE-2	883.€	8.5 &; = = 2	283	2.4232+6
c:.2	1.2536-1	1 -5. 6	4.15.2+0	132.6	4.15CE-1	234.5	3.6652-2			297.i	2.6156+4
72.6	1.2.46-1	155, ù	4.2866+3	244.6	4.3+ùE-1	256.6	4.13.E-2			るいともよ	2-8-6-44
85.5	1.2306-1	172.0	4.070€+0	152.0	4.540E-1	284.8	4.6766-2			32++3	2.7262+0
4=	2454-1	1.42.3	4.96(-4.)	166.3	4 - 883 F - 1	367.2	4.71LE-2			334.1	2.350E+0

TABLE 16. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM FLUORIDE (Temperature Dependence) (continued)

344.0 2.983.0 3
353.0 3.16.0 0
353.0 3.353.0 1
355.0 3.553.0 1
355.0 3.553.0 1
355.0 3.553.0 1
355.0 3.553.0 1
453.0 3.77.0 0
471.0 4.1112.0 4
471.0 4.112.0 1
471.0 4.112.0 1
471.0 4.512.0 1
471.0 5.523.0 6
527.0 5.523.0 6
543.0 5.533.0 6
543.0 5.533.0 6
543.0 5.533.0 6
543.0 5.533.0 6
743.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0
747.0 5.37.0 0

AD-A118		CENTER FOR INFOHMATION AND NUMERICAL DATA ANALYSIS AN-ETC F/G 7/2 ABSORPTION COEFFICIENT OF ALKALI HALIDES, PART I.(U) MAR 79 H H LI CINDAS-54 AFOSR-TR-82-0687 NL										
2 0 3	. 4											
					. ,							
								i				
									2			
										v 1		
										,		

Figure 13. Reflectivity of Sodium Fluoride

TABLE 17. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF SOBIUM FLUORIDE

sta Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temporature, K	Specifications and Remarks
3	29	Hohls, H.W.	1936	R	19.8-54.1	293	Crystal; grown by the Kyropoulos method; specimen configuration and surface condition unspecified; normal reflectivity determined by using a freshly vacuum coated silver mirror as reference stindard; data extracted from a figure; estimated uncertainty about 10Z; resperature was not given, 293 K assumed.
2	82	Rocssler, D.M. and Walker, W.C.	1967	R	0.105-0.138	300	Bulk sodium fluoride; no information about the specimens given; reflection spectrum obtained; data extracted from a figure.
3	82	Roessler, D.M. and Walker, W.C.	1967	R	0.103-0.127	17	Same as above except at a lower temperature.
4	41	Klier, M.	1958	R	20.9-26.0	77	Crystal; specimen with top surface highly polished; reflection spectrum measured with a reference mirror made of German V ₂ A steel; data extracted from a figure.
5	41	Klier, H.	1958	R	20.5-26.0	293	Same as above.
6	41	Klier, M.	1958	R	21.4-26.0	573	Same as above.
7	83	Chang, I.F. and Mitra, S.S.	1972	Ř	19.5-58.2	132	Crystal; obtained from the Harshaw Chemical Co.; specimens with highly polished surface (with or without unnealing) or freshly cleaved surface; reflection spectra measured and repeated several times and reproduced within 2% error in intensity and less than 1% error in band position; data extracted from a figure.
8	83	Chang, I.F. and Mitra, S.S.	1972	R	19.5-60.5	215	Same as above except at a higher temperature.
9	83	Chang, I.F. and Mitra, S.S.	1972	R	19.5-60.5	298	Same as above except at a ligher temperature.
0	83	Chang, I.F. and Mitra, S.S.	1972	R	19.5-61.7	423	Same as above except at a higher temperature.
1	83	Chang, I.F. and Mitra, S.S.	1972	R	19.5-61.7	605	Same as above except at a higher temperature.
2	83	Chang, I.F. and sitra, S.S.	1972	R	19.5~60.5	792	Same as above except at a higher temperature.
3	83	Chang, I.F. and Mitra, S.S.	1972	R	19.5-60.5	958	Same as above except at a higher temperature.
4	54	McCarthy, D.E.	1965	R	2.00-50.0	298	Synthetic crystal; 2.16 mm thick; polished to flatness of 10 fringes 30° reflectivity measured with aluminum mirror as reference standard data extracted from a curve.
15	84	Nitsuishi, A., Yamada, Y. and Yoshinay, H.	1962	Ř	19.9-51.6	300	Single crystal; near normal reflectivity; neasured in vacuum with aluminum mirrors as reference standard; data extracted from a curve.

TABLE 17. SUMMLWY OF MEASUREMENTS ON THE REFLECTIVITY OF SODIUM FLUORIDE (continued)

Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, pm	Temperature, K	Specifications and Remarks
16	57	Rao, K.K., Moravec, T.J., Rife, J.C., and Dexter, R.N.	1975	R	0.044-0.207	30	Single crystal; obtained from the Harshaw Chemical Co.; cleaved specimen of 1 cm diameter and 3 mm thick; specimen kept in vacuum during reflectivity measurements; near normal reflectivity obtained; data extracted from a curve.
17	71	Sano, R.	1969	R	0.108-0.128	78	Single crystal; obtained from the Harshaw Chemical Co.; cleaved specimens of 10 mm x 15 mm x 0.17-2.50 mm approximately; near normal reflectivity obtained; data extracted from a figure.
18	71	Sano, R.	1959	R	0.099-0.210	295	Same as above except at a higher temperature.
19	61	Nakagawa, I.	1971	R	21.5-74.7	293	Single crystal; near normal reflectivity measurements made in a vacuum; data extracted from a curve.
20	37	Tomiki, T. and Miyata, T.	1969	R	0.11-0.16	273	Single crystal; obtained from the Harshaw Chemical Co.; freshly cleaved; normal reflectivity measured in vacuum; data extracted from a curve.

TABLE 18. EXPERIMENTAL DATA ON THE REFLECTIVITY OF SODIUM FLUORIDE

[Wavelength, λ , μ m; Temperature, T, K; Reflectivity, ρ]

)	p	λ	p	λ	p	λ	ø	λ	۵	λ	ŧ
32 ATAC	T 1	CATA SET	1 (CONT.)	DATA SET	2(CONT.)	DATA SET	3 (CONT.)	DATA SET	3(CONT.)	JUTA SET	3 (CCNT.)
T = 293		****								_	
	••	54.47	0.307	1193	ŭ.241	0.1479	3.08	6.1152	0.378	6.1262	3.466
19.51	0.3150		••••	0.1193	3.239	0.1031	L.Cu5	w.i152	C.382	************	••••
23.7.	u359	DATA SET	2	2.1193	u.222	1584	0.665	6.1153	ú.385	GATA SET	•
21.42	44.544	1 = 350.		3.1193	4.219	0.1680	6.663	u . 1150	391	T = 77.2	
21.87	6349		_	3.1232	u.2:5	6.1.59	6.063	4.1150	L. 397		
22.214	4.1.7	4-14-51	2.420	0.1203	0.216	92	6.5.3	6.1150	C . 3 + 1	238	u . u 32
24.5+	3.131	ۇ دىد . ئ	U-12E	1.12.5	0.145	0.1195	6.665	4.1101	U	C 9G	1.034
22.85	1.2.	4.1652	6.026	3.121.	4.177	3.11	C. G11	6.1165	0.399	297	J.193
23.52	3.+19	4.1.67	y : 2 t	3.1213	4.173	8.11.2	ú . ű c 5	6.1168	B. Zio	23.96	0.445
23.93	3.437	0 7 ù	J.LZb	3.1219	0.133	3.1166	G. C36	(.1166	4. 392	24.94	60509
24.2:	3.535	5-1473	0.126	0.1226	0.133	u.ii.b	U. LOZ	3	0.353	20.00	4.437
2	u. :) 5	6.1177	3.122	3.123.	4.1.6	3.11.9	6.665	4.1172	33+		
(1)	2.473	0.1.14	1.119	1.12.2	31	3.1113	33	75	2.355	JATA SET	5
23.65		60110	0.014	3.1247	3.664	ù.1116	0.165	0.1173	د د د د	1 = 693.	
25.23	> 1	1.134	9	1251	1.683	4.1110	ú.176	0.11/3	0.349		•
25.53	36	0-1196	ŭ = L L 7	1.1262	4.171	U-1117	6.192	v.1176	3.2	26.49	
26.49	523	U-11-1		3.1273	ù.uó7	5.1120	6.267	w.1173	0.296	295	419
26.75	3.44.	0.1112		1.1263	3.409	1.1119	i. <15	2.1179	6.289	21.47	W - 3 + 3
21.57		3-1116	521	j.ic3+	3.664	J.1121	5.224	U-1152	6.257	41.90	03
31.11	1.325	0-1119	0.031	1.1339	u.Có1	3.1123	6.227	679	4.247	22.44	0.169
31.41	3.356	3.1123	037	J.1329	3.696	J.1123	3.246	0.1182	£, 239	£6.34	11
33.25		0.122	6.646	4.1336	3.157	0.1123	6.253	i -1164	6.22.	23.+5	4.25.
3-172		v.1124	40000	1.1340	0.054	J.1125	£.266	6.119.	ű. 15.	23.90	0.270
39.03	j. 5 ; j	3.1127	3.663	2.1355	û.U54	3.1128	5.266	6.1191	C. 167	24.40	i.516
35.25		W.1132	4.125	9.1365	0.653	3.1128	6.272	0.1193	£. 15.	£4.74	0.535
37.60	6.370			1.1374			6.292	0.1139	(.131	25.44	0.505
45	1.154	J.1135 J.1137	J.138 J.153	1.1370	0.155	0.1131 u.1133	C.298	6.1159	i. 132	20.00	6.472
•.•.5				1.7210	3.051				1.122	20105	9.472
11.23	4:4 766	0-11-0	40.0	DATA SET		9.1133	(.316	0.12.0		DATA SET	_
		8-1146	4.136		3	0.1135	4.311	6.22.6	0.115	T = 573.	
+2 + 15	4.613	6.12.47	6.193	T = 77.G		3.1137	C-314	6.22.2	ن. ن. خ د ما	1 - 7/3,	u
• 2 • 7 5	1.635	0.1143	2.2.2			3.1137	ũ · 322	0.12<1	L. 137		
-3.23	L = 533	4.1124	u • 2 • 8	u.1L51	6.036	0.1137	3.327	0.1225	3.103	21.46	3.529
415	3.5.0	0.1155	6.212	4.1652	0.632	4.1141	0.326	6.1236	6.135	21.95	0 54
+55	5	v.1158	6.261	1.1.50	4.652	3.1139	4.328	0.1232	u. 633	55.40	4 . 4 9 9
+0.13	02	1.1100	233	1.1653	4.630	1.1141	(.3+5	6.1233	0.113	¿ç.95	6.256
+/.5+		3.1100	3	3.2.62	3.625	3.1145	C.352	237	66 645	43.77	ý•čci
44.04	4.357	J. 1106	248	3-1665	1.621	4.1145	6.359	0.1239	L. [3a	23.90	ú . 3 5 u
• 7.5 •	L. 305	ù.117J	6.259	3.1469	4.617	0.1148	6.365	0.1238	u • 095	24.43	9.435
5 4 5	3→2	C.1176	257	1.1173	0.613	u • 115 i	L.367	6.1245	i. (93	24.95	89
52.35	3.325	u.i191		3.1676	J. £18	ŭ•115⊾	6.376	251	u. 63.	25.44	0-464

TABLE 19. EXPERIMENTAL DATA ON THE REFLECTIVITY OF SODIUM FLUORIDE (continued)

λ	٥	λ	Þ	λ	p	λ	o	λ	۵	λ	۵
DATA SET	6 (CONT.)	CATA SET	7 (CONT.)	DATE SET	8 (CONT.)	DATA SET	SECONT.3	DATA SET	9(CONT.)	DATA SET	10 (CGNT.)
25.5+	6.424	35.73	J. 97 3	23.71	w. 432	49.26	6.278	3]. 65	Q. 875	21.44	2 3 á
		30.36	3.461	23.97	4.435	542	266	31.39	4.9.0	22.74	2-45
DATE SET		37.35	Ú.935	24.18	3.537	52.21	6.246	32.21	C. 91 3	¿<.J3	0.451
1 = 132.	•	30.00	0.910	2 + . 39	4.544	53.53	5.236	32.34	4.925	25.35	386
		38.59	€.87p	24.70	0.527	54.79	b.23.	33.44	(.935	22.68	0.113
÷9.5.	3.020	33.43	J. 09 9	25.11	. +497	56.40	G.222	34.11	4.933	23.62	··150
2	4 - 4 < 1	429	ú.57i	25.54	0.463	58.24	L.218	35.00	C.947	23.29	6.208
26.72	6.527	42.86	9.479	25.79	0.456	64.53	6.221	35.73	u - 943	23.51	6.251
62.67	2.237	42.47	6-457	26.19	6.469			3£.30	6.940	23.7:	v.3.6
21.44	2-344	42.87	ŭ.43€	20.69	0.526	BATA SET		37.30	u.9+>	23.97	4.573
21.7+	4	42.75	8.295	27.11	0.597	1 = 293.	0	38.35	6.434	24.45	6.422
22.63	4.272	+3.73	0.355	27.70	0.683			38.59	ú. 5 2 3	24.39	4.467
22.32		aging a fair	6.332	28.15	3.755	19.50	i.Czi	39.43	6.053	24.7.	G -4 57
22,65	2.272	45.45	2.365	28.66	g. 836	2:.:0	021	44.29	4.453	25.11	
23.62	i . 255	46.25	ü.231	29.25	0.883	2:.72	550.0	41.22	ú.683	65.54	L. + BZ
23,23	3.344	47.41	0.273	29.94	J.916	21.47	6.435	41.47	€.6+0	25.75	u . 469
23.51	5.416	48.).	3.264	3ú.63	8.944	21.44	0.638	41.87	u. dli	20.19	6.449
23.72	2 . 47 4	49.20	165.0	31.39	6.951	21.74	ŭ . u5 u	42.75	1.521	20.69	3.4.5
23.37	5.537	5,442	238	32.21	3.962	22.43	5.664	43.78	423	27.11	5.413
č++:3	J. 5+5	52.21	225	32.84	4.964	22.32	6.196	44.44	6.422	c7.74	4.423
č37	5+9	53.53	ü.216	33.44	3.967	22.68	ü.147	45.45	4.363	£1.15	£-450
24.71	3.5.2	34.79	v-212	34.11	3.565	23.,2	i . 266	46.25	L. 25 a	25.50	6.473
25	0.532	56.43	6.265	35.36	3.959	23.29	L. £72	47.41	6.333	29.25	0.585
25.5+	516	50.24	6.199	35.73	0.954	23.51	0.341	45.36	5. 21 .	29.34	6.071
25.79	5.521			36.36	3.9+6	23.71	0.416	+9.26	C. 291	34.65	3.744
25.19	5.532	DATA SET	6	37.36	3.326	23.97	ú.467	きょいっと	ú. 27a	31.34	6.00-2
20.63	657	T = 215.	Ü	38.43	4.913	8: 5	6.498	52.21	0.254	30000	u . 63i
27.11	1.762			38,59	1.876	24.39	9.526	53.53	しってっう	56.84	C.458
27.7.	6.324	19.53	0.026	39.43	4.765	24.76	G.527	54.19	C. 235	33.44	6.456
28.15	4.848	24024	5.021	43.23	0.677	25.11	6.512	5£.40	L . i20	34.11	2.864
29.55	0.334	212	0.627	41,22	4.532	25.54	6.487	58.24	6. 225	35	4.674
29.25	3.913	22.47	u.,3E	42.47	4.567	25.79	ü.469	63.53	L. ĉŹŁ	35.73	9.379
29.90	935	ياجا و راغ	6.642	41.67	4.526	26.19	0.449			50.30	4.583
34.65	ù.953	21.74	51	42.75	0.475	25.69	6.436	DATA SET	10	37.30	8.878
31.35	751	223	4.467	+3.78	3.427	27.11	6.465	1 = 423.	}	34	0.676
15.51	4.37.4	22.32	0.497	44.44	0.305	27.73	4.533			38.59	J.665
32	479	22.65	52	45.45	0.354	28.15	4.596	15. Fu	u. [2]	393	0.345
33.44	1.902	23.32	4.232	46.25	3.334	28.66	6.667	24.16	£. (2:	*4.29	4.613
34.11	1.954	23.29	2.33.6	47.42	3.310	29.25	4.764	23.72	4. 427	41.22	0.7.5
35.60	362	23.52	369	44.66	1.294	29.94	0.536	21-07	5.632	41.47	569.0

TABLE 18. EXPERIMENTAL DATA ON THE REFLECTIVITY OF SODIUM FLUORICE (continued)

λ	a	λ	p	λ	ø	λ	۵	λ	þ	λ	٥
DATA SE	T 10 (CONT.)	DATA SET	11 (CONT.)	DATA SET	11(CONT-)	DATA SET	12 (CONT.)	DATA SET	13 GUNT .	DATA SET	13(CONT.)
42.87	G.643	25.73	5.457	56.53	1.245	35.26	ú.663	23.29	U . C92	-71	8.448
42.75	6.563	20.19	6.449	61.72	4.2+5	35.73	C +076	23.51	C. 105	**	4.427
43.75	6.454	26.03	6.439			30.36	084	23.7:	1.160	49.20	£ •3 9 8
4	¥.433	27	U.43L	DATA SET		37.36	6.762	23.97	u. 145	5	4.577
45.45	2.198	27.74		T = 792.)	38-05	L - 7L4	24.18	u . 172	92.21	5.345
49.25	6.372	28.15	6.4:3			38.59	6.763	24.39	i. 150	53.53	6.332
47.41	2.3+2	28.66	6.414	13.50	0.620	39.43	6.299	24.76	C. 223	54.79	6.315
48.50	3.323	29,25	C. 400	2	3.621	4 29	6.692	25.1.	w. 251	ラモ・サレ	6.296
49.25	3.3	29,94	ù ,F24	272	4.627	+1.22	6.680	25.54	C. 243	98.2→	6.282
54.42	2.255	365	4.567	21.47	0.123	42.47	6.673	25.79	L. 3. 4	£ċ.,3	6.267
52.22	2.2.3	3:.39	5.627	21.44	0.631	+1+97	ů.ôċĉ	26.19	2.336		
53.53	3.254	34.2:	u . 68 D	£1.74	0.0+2	→2.75	u. 645	20.09	ಳ. ತಿರಿತ	CLTA SET	
573	4.2	34.04	72.	22.53	J. 155	43.78	L.616	27.11	ī. 289	t = :98.	
50.43	w.235	33.44	4.749	\$2.32	1.663	44 44 44	i.588	27.7.	4. 593		
58.2.	227	34. 11	6.773	22.68	C.i91	45.45	0.547	24.15	0.397	5.00	w.u23
0.,53	2.221	6	3.798	23.12	6.113	46.25	0.510	c d . 60	Ç.395	8.30	0.023
01.72	1.214	35.73	4.6.J	23.23	J. 135	47.41	6.474	29.25	i. 25 a	2	
		30.30	4.811	23.51	4.154	+3. uc	U.+39	c 3.94	273	cč•1	6.15.
34T4 3E	T 11	37.36	4.611	23.72	4.15	49460	C.395	31.65	La isa	23.4	72
T = 935	• •	33,	0.867	23.97	3 • 20	56.42	6.356	31.37	€.36 3	24.5	551
		35,53	0.824	24.16	8.274	52.21	0.327	32.2:	L. 395	20.3	3 30
19.5.	1.12.	39.43	.783	24.39	2.2.9	53.53	u . 3i 6	32.6+	6.413	21.4	
20.13	3.361	44.29	J.772	24.73	3.344	54.79	C.294	33.44	43+	3	1 4016
24.72	2.,27	41.22	4.7-1	25.11	0.353	56.4.	u. 27 a	34.11	6.450	2	4 4 7 4 6
22.7	3.232	71.77	J.73L	25.54	5.39*	56.24	6.26é	35.40	j. 455	37.5	u .511
6		42.37	6.7:7	25.79	3.41.	06.53	6.255	35.73	5.502	~~ .i	6.942
21.74	w + 3	42.75	u. 075	26.19	023			36.30	6.510	-1.3	6.767
22.13		43.70	L. D	26.69	1.419	GATA SET	13	37.30	6.547	42.3	w.576
22.32	J. 293	44,44	2.527	27.11	3.430	T = 958.	ເ	34.44	6.557	43.3	8 - 437
22.65	3.113	45.42	3.407	27.76	3.424		-	3:.59	202	-50-	376
232	i.15.	40.22	32	28.15	3.415	19.54	0.126	39.+3	3.573	44.3	6.236
23.29	78	47.4.	398	24.60	3.459	2:-:-	:53	43.29	5.57:	5	4.249
23.54	3.213	43.44	4.378	29.25	0.520	272	6.627	41.44	6.505		
23.71	2.253	+3.60	6.5.0	29.9.	5.402	21.47	552.0	41.47	. 507	3414 SET	15
23.97	3.3.9	50.42	1.324	35.65	419	22.44	4 . 627	41.87	3.564	1 = 300.	
24.13		54.21	3.33.1	31.39	5 . 4 à 8	21.74	6.028	42.75	y . 552		
2 4. 33	2.379	53.53	286	32.21	1.525	223	:.032	43.76	0.533	.3.9	6.247
24.7.	1.433	579	ŭ •278	32.8.	3,563	22.32	i. L-2	44.44	4.518	2	Q.ûdd
25.11	2.+33	30.41	1.266	33.44	3.599	22.03	C. 658	45.45	6.433	2202	8
25.5.	53	58.24	258	34.11	0.625	23.65	4.675	46.22	4.462	¿3.3	6.417
42121		20164	4.620	3-677	4 2 45 3		4-5-7		4		

TABLE 18. EXPERIMENTAL DATA ON THE REFLECTIVITY OF SODIUM FLUORIDE (continued)

λ	۵	λ	¢	λ	ρ	λ	p	λ	٥	λ	٥
DATA SET	15 (CONT.)	CATA SET	16(CGNT.)	DATA SET	17 (CONT.)	OATA SET	18 (CONT.)	DATA SET	18 (CONT.)	DATA SET	19(CGNT.)
23.3	0.51	4.3599	2 - [4 8 5	4.1125	4.289	0.1647	0.03+	0,1253	(. (3a	24.5098	J - 421
24.2	1.503	ى د ئ ئ د <u>د</u>	0.6433	1126	2.2.2	5.1052	C. 034	6.1207	(. (93	24.752.	G.421
24.0	2.537	3.26.3	4.65.3	4.112+	J-232	1.1659	5.334	u • 1 277	1. 179	45.2	3.445
25.3	3.433		2.0365	3.1128	3.262	1.1600	6.132	629.	4.476	45.4422	3.260
át.:	2.472	J. J Co 3	2.6159	6.1134	0.315	3.1570	C.L32	6.13.2	4.464	6:0-750	5.347
26.7	3.531	i.ua77	4.0119	J.1145	0.380	4.1578	0.629	6.1313	£62 .9	26,4553	0.351
29.5	0.3**	133	L.L133	U-1147	0.391	6.11.82	5.625	6.1326	G. 163	26 + 95 + 1	€.306
36.1	1.199	ŭ.u716	J.6346	1.1149	0.403	4.165	6.023	6.1336	6.657	26.7350	4.574
31.5	3.932	2.3733	C+6+72	0.1192	3-4-3	G-1Jd9	· · 6 : 6	6-13-0	ず・ レラロ	29.3255	1.527
34.1	i. 9+3	5.5751	j.u5i9	0.1161	5.482	ù.1.95	6.611	6.1359	2. (55	3	4.081
35.5	:.354	4705	0.4491	J.1166	J62	4.1162	0.666	6.1371	£a 45\$	3 9: 97	c.733
*4.3	J. 53Z	5.2776	4.6462	L. 116+	3 • • 5 8	::::	ů. CCá	6.1385	S. 053	32.2580	1.772
-1.4	1.57.	4.2779	4 - 4 7 7 5	j.1166	3.453	4-1167	a.667	4.238>	6. 653	33.0963	\$ • 5 • B
42.1	\$. 437	4.1794	ü.i.476	ũ.1169	ű.43 Z	3.1110	6 - v 2 L	6.1354	L. (5 <u>1</u>	35.5712	4.524
43.4	3.424	Git S	J.6473	5.1173	9 - 41 8	4-1116	6.322	6.1396	i. L+7	37.337.	6.798
45. 6	j.358	6.4592	J. 31 á	4.1170	B.344	1119	4.638	6.1631	6-133	30.3.	4.768
.7.3	5.329	725	J Z 12	3.1179	0.150	4-1121	C.151	6.1859	e - 63 .	34.2:56	J. 744
91.€	2.279	2.1976	3+53.42	3.1187	5 • 21 8	1124	0.071	4.1661	6.623		6.762
			u . L Z Z 4	0.1191	J. 205	33	60.46	4,19.1	6.633		L. 633
JATA SET		w.i.33	J. 6 C 4 S	1198	u.165	4.1147	\$.223	19.0	131		₩•57 <u>1</u>
1 = 3		****	i av 245	4.1205	0.144	3.1152	t,25t	0.1931	£2033	0261.50	6.501
		6.11.09	3.6223	J.1215	4.122	J-1161	(.28i	0.1952	boles.	43.2.34	8.457
6-6-13	J. 6334	6.11.17	ع <i>ن نا</i> د ه	0.1233	6.163	U-1166	6.294	6.1971	6. (2 /	+3.5390	Govei
3.6463	34	4-11-58	4.4.58	5.124.	0.092	3.1172	6.316	6.1993	ú. úc 7.	72 754	J -3 > -
+35	6.5543	4-12-3	4.1414	9.1252	8.186	6.1175	4.313	4.2114	(• (20	40.7289	36+
		4.1240		0.1201	5.581	4.1161	6.315	4.2529	L. LÊ Ó		しょうきゃ
57		c+1231	598	3-1277	0.081	6.1163	0.311	6.2546	6. C26	\$2.3564	0.3.4
		w. i 333	3 - 6 71	3.1278	0.074	0-1188	u-31i	6.2366	0.620	54.3-70	₩.29 3
و 17 م م م	4453	4.24.3	3.44:3			u • 1151	6.364			50.179?	# • £ 05
6	7		i - 6 32 9	DATA SET		0.1193	895.û	DATA SET		59.1710	3.2.1
5.6.5.2	30.192	v.1771	4.4297	T = 235.	ũ	0.1199	985.0	7 = 293.	g .	05.691.	E-234
6.63.0	55	u.2.00	u.6288			joičul	6.273			68.9055	0.228
2.6527	". "2 6 3			5.6932	u. 631	3.12.5	0.247	21.5053	2.417	14.0253	0.222
32	2-5	DATA SET	71	4.14.3	j. (34	u•iei£	6.265	21.6919	ندا دا		
553		T = 70.0		6.1607	0.03+	3.1215	4 - 188	22.9786	us vil	CATA SET	
6.05.5	24-277			4.1017	3.435	3-1519	6-175	22.3214	6. (4)	1 = 273.1	•
î.i.551	5 - 1 1 3 1	6.::42	6:9	C.1626	0.633	0.:224	6.159	22.7272	163.0		
6.6528	j.,133	6 5	**653	1.31	u.133	4.125	0.:36	23.3414	6. 15.4	¥.1150	w.281
6.6575	b • . 121	4.1128	6.658	j.1i35	ŭ. u 3 3	0.1248	0 • 115	23.9234	2. 533	J. 1106	4.244
5.L 567	. · C1 38	6.1217	ù.15t	0.2042	0.035	3.1246	6.165	24.3363	ù dùs	6.1169	3.368

TABLE 18. EXPERIMENTAL DATA ON THE REFLECTIVITY OF SODIUM FLUORIDE (continued)

P

91

1

~.·

.

Figure 14. Transmission of Sodium Fluoride

TABLE 19. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF SODIUM FLUORIDE

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
1	54	McCarthy, D.E.	1965	T	2.20-16.8	298	Synthetic crystal; 2.16 mm thick; polished to flatness of 10 fringes of sodium D line; data extracted from a curve.
2	85	McCarthy, D.E.	1967	T	0.171-3.00	298	Single synthetic crystal; obtained from Harshaw Chemical Co.; thickness of 2.16 mm; the two surfaces of the specimen were parallel to within 0.001 mm/mm length; polished to flatness of 10 fringes of the mercury green line; data extracted from a curve.
3	37	Tomiki, T. and Miyata, T.	1969	τ	0.13-0.19	298	Single crystal; obtained from Harshaw Chemical Co.; freshly cleaved speckmen of 0.188 cm; transmittance measured in vacuum; data extracted from a curve.

TABLE 10. EXPLANMENTAL DATA OF THE ASMISSION OF SOUTH CHECKING رُ ﴿ وَالْمُعْلِمُ وَمَا وَالْمُوا وَالْمُعْلِمُ عَلَيْكِ اللَّهِ وَأَ وَالْمُعْلِمُ وَأَوْ وَالْمُعْلِمُ وَأَ

•	τ	λ	τ	
DATA 5	eT 1	CATA SET	3(005[.]	
T = 29				
		0.140	4.46€	
6.65	152	3.144	0.181	
3.44	3 66	6.144	0.198	
3.50	4. 12.0		3.133	
11.9	120	0.147	4.185	
12.1	6.6.3	3.143	0.285	
?		J-15.	5,41,	
6		1.152	3.437	
22.5	i.:	3.124	6.744	
10.6	1.019		w. 611	
10.0	7		0.622 0.633	
CATA S		C+155	3.709	
1 = 29	3.0		J.747	
			u . 77 u	
7:	3.253	2-163	793	
4.2.7	/35		527	
4.656	_, 5+7		u.c37	
2.28.			2.845	
4.32+	1.911	75	₩ . 863	
3.347	1.923		ù.87£	
0.421	3.936		C.892	
55.	5.943		4.892	
35,	·	3.133	0.913	
3.50	3.351			
3-7: 3	21 3			
7 = 29	a.:			
):			
ŭ3.	3			
333	وزرو			
	45			
6.13.				
335	u3			
1.137	1.116			
1.135	1.1.9			
J. 133	323			
1.139	123			
	L23			
9.142				

TABLE 21. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WIDTHS (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN SODIUM FLUORIDE*

nterionic		F ban	1	R ₁ band	R ₂ ba.1	M ba	nd	N bands
dist., d (Å)	Temp.	λ max	W	λ max	λ max	λ max	W	λ max
2.31	RT	(0.328)		(0.381)	(0.412)	(0.516)		
		0.335	0.70	(0.415	0.505	0.16	
		0.340	0.51			0.507		
		0.341				0.510		
		0.342						
	NT	0.332	0.50			0.498		
	нт	0.336						

^{*} Values were taken from Ref. [69].

 $^{^{\}dagger}$ Values given in parentheses are calculated from the Ivey relations [70].

 $[\]lambda_{\text{max}}$ = 703 d^{1.84} for NaCl structure, λ_{max} = 251 d^{2.5} for CsCl structure. F band

R₁ band $\lambda_{\text{max}} = 816 \text{ d}^{1.84}$ R₂ band $\lambda_{\text{max}} = 884 \text{ d}^{1.84}$

M band $\lambda_{\text{max}} = 1400 \text{ d}^{1.56}$

TABLE 22. RECOMMENDED VALUES ON ABSORPTION COEFFICIENT OF SODIUM FLUORIDE IN IR REGION AT 300 K

-1		Absorption Coe	fficient, cm-1
v, cm ⁻¹	λ, μm	Intrinsic*	Observed† (Selected)
6.000E+02	16.7	3.2E+1	
7.000E+02	14.3	9.1E+0	7.4E+0
8.000E+02	12.5	2.6E+0	2.7E+0
9.000E+02	11.1	7.3E-1	8.0E-1
9.434E+02	10.6	4.2E-1	5.5E-1
1.000E+03	10.0	2.1E-1	
1.075E+03	9.30	8.1E-2	2.7E-1
1.100E+03	9.09	5.9E-2	4.6E-2
1.200E+03	8.33	1.6E-2	
1.300E+03	7.69	4.8E-3	4.8E-3
1.400E+03	7.14	1.3E-3	1.4E-3
1.500E+03	6.67	3.9E-4	
1.600E+03	6.25	1.1E-4	
1.700E+03	5.88	3.1E-5	
1.800E+03	5.56	8.9E-6	
1.887E+03	5.30	3.0E-6	
1.900E+03	5.26	2.5E-6	
2.000E+03	5.00	7.2E-7	
2.100E+03	4.76	2.0E-7	
2.200E+03	4.55	5.8E-8	
2.300E+03	4.35	1.6E-8	
2.400E+03	4.17	4.7E-9	
2.500E+03	4.00	1.3E-9	
2.600E+03	3.85	3.8E-10	
2.632E+03	3.80	2.5E-10	

^{*}Intrinsic values were calculated according to Eq. (26) with uncertainties about ±10%.

 $^{^{\}dagger}$ Values in this column are the total absorption coefficient which are either lowest reported or those used to define the constants in Eq. (26). Uncertainties of these values are about $\pm 10\%$.

3.3. Sodium Chloride, NaCl

Pure rock salt is uniformly transparent from 0.2 μm in the ultraviolet to 12 μm in the infrared. In the region of 15 μm the absorption increases rapidly. Rock salt, in moderately thin pieces, may be expected to transmit several percent of the light up to wavelengths as long as 26.0 μm . However, a plate 1 cm in thickness is completely opaque to radiation of wavelengths greater than 20 μm .

Rock salt has long been a favorite material for infrared spectroscopy. It polishes easily and, although hygroscopic, it can be protected by evaporated plastic coatings on its surfaces. It shows excellent dispersion over its entire transmission range. It has been difficult, however, to obtain natural rock salt crystals of sufficient size and purity for making optical components. As crystal-growing techniques advanced, synthetic sodium chloride crystals have been grown commercially up to 30 inch diameter and half-ton in weight, making this material readily available for large optical parts and thus stimulating the design and construction of infrared instruments.

Measurement of the refractive index of sodium chloride dates back to 1871, when Stefan [86] determined the refractive indices of a rock salt prism for solar lines B, D, and F. Since then, a large amount of data in the transparent region has been contributed by a number of investigators, among them are Martens [87], Paschen [88], and Langley [89]. They used either the deviation method or interferometry in their experiments. It was not until 1929 that measurements were carried out beyond the transparent region in the infrared. Kellner [90] determined refractive indices of NaCl in the 23-35 µm region, based on information on transmission and reflection of thin specimens. In the vacuum ultraviolet region, Rossler and Walker [91] observed the region from 0.0476 to 0.2480 µm, and Miyata and Tomiki [92] studied from 0.10 to 0.25 µm. Data on the refractive index are now available from 0.0476 µm up to 300 µm and at 2000 µm. It was found that refractive index data in the transparent regions for colorless natural rock salt are in close agreement with those for synthetic sodium chloride crystal with discrepancies occurring in the third decimal place.

Li [33] reduced the then available experimental data on the refractive index to a common temperature of 293 K and after careful critical evaluation and analysis adopted a Sellmeier type dispersion equation to evaluate the refractive index at 293 K in the wavelength range $0.20-30.0~\mu m$:

$$n^{2} = 1.00055 + \frac{0.19800 \lambda^{2}}{\lambda^{2} - (0.050)^{2}} + \frac{0.48398 \lambda^{2}}{\lambda^{2} - (0.100)^{2}} + \frac{0.38696 \lambda^{2}}{\lambda^{2} - (0.128)^{2}} + \frac{0.25998 \lambda^{2}}{\lambda^{2} - (0.158)^{2}} + \frac{0.08796 \lambda^{2}}{\lambda^{2} - (40.50)^{2}} + \frac{3.17064 \lambda^{2}}{\lambda^{2} - (60.98)^{2}} + \frac{0.30038 \lambda^{2}}{\lambda^{2} - (120.34)^{2}}$$
(27)

where λ is in units of μm .

Investigations of absorption coefficient for practical applications are generally classified into three wavelength regions: the ultraviolet and the infrared limits of the transparent region and the transparent regions. In the ultraviolet side, the purposes of the studies were to investigate the exciton states in the crystal and to determine the Urbach-rule parameters. Roessler and Walker [91] determined the absorption index of NaCl in the spectral range from 0.047 to $0.248~\mu m$ by a Kramers-Kronig analysis of reflection spectrum. Evidenced by the strong temperature dependence of reflectivity in the exciton region and the appearance of spin-orbit split doublets, the surfaces of the specimen examined were believed to be near perfect. Kobayashi and Tomiki [93] studied the effects of impurities on the absorption coefficient and found significant differences between crystals in the spectral range from 0.171 to 0.231 μm . The main soruces of such discrepancies were the presence of hydroxyl ions and dislocations in the crystals. Miyata and Tomiki [94] and Tomiki et al. [77] studied the absorption of NaCl in the region 0.156 to 0.205 µm for the purpose of determining the Urbach-rule parameters and finding the features characteristic of the intrinsic tail. Through a systematic observation and analysis they found the following empirical relations among certain parameters:

$$E_0 = 8.025 \text{ eV}$$

 $\alpha_0 = 1.2 \times 10^{10} \text{ cm}^{-1}$
 $hf = 9.5 \text{ meV}$
 $\sigma_{SO} = 0.741$

for the expression of absorption coefficient of the intrinsic tail

$$\alpha(E,T) = \alpha_0 \exp \left[-\sigma_s(T) \left(E_0 - E\right)/kT\right]$$

where

$$\sigma_{s}(T) = \sigma_{so} \frac{2kT}{hf} \tanh \frac{hf}{2kT}$$
 (28)

Measurements of absorption coefficient at the infrared side were made for the purpose of studying the optically active lattice vibrations. On the short wavelength side of the reststrahl band, where a photon is absorbed and two or more phonons are generated, multiphonon absorption can occur and lead to absorption coefficients that range from 10^{-3} cm⁻¹ to 100 cm⁻¹, depending on the number of phonons generated.

Measurements of the absorption coefficient in the transparent region are relatively recent events as the development of high-power IR lasers has led to a need for better characterization of IR window materials. Among other things, the absorption coefficient plays a decisive role in determining whether a material is adequate for laser optical components. For this reason, absorption coefficients of a number of selected materials were investigated at wavelengths of laser interest. Sodium chloride is among the candidate laser window materials and its absorption coefficients at wavelengths 1.06, 2.7, 3.8, 5.3, and 10.6 µm were intensively studied in order to determine the influencing factors that contribute to the extrinsic absorption. These studies are very informative and provide clues and means for material preparation and parts fabrication in order to minimize the extrinsic components in the absorption. Califano and Czerny [95] examined the region, 11-14 µm, at room temperature. Barker [38] measured the region, 11-20 µm, at temperatures from 300 K up to 1105 K, 31 degrees beyond the melting temperature of NaCl. Harrigan and Rudko [96] obtained the 10.6 μ m absorption coefficient, 1.3 x 10⁻³ cm⁻¹, for NaCl by a CO2 laser calorimetric method. This value was believed intrinsic, as evidenced by the fact that no noticeable improvement could be obtained by improvements in purity and growth techniques.

Deutsch [12], using a differential technique with a dual beam spectrometer measured the absorption coefficient for the wavelength range from Il.7 to 20 μ m, at room temperature. Together with data from earlier investigations, it was found that the absorption coefficient in the multiphonon absorption region can be represented by the expression

$$\alpha = \alpha_0 \exp \left(-\nu/\nu_0\right) \tag{29}$$

where v_0 = 56.0 cm⁻¹, and α_0 = 2.4273 x 10⁴ cm⁻¹. This relation covers the ranges of α = 0.001 to 44 cm⁻¹ and λ = 10.6 to 28.1 μ m. It is not known if the exponential relations hold for the lower wavelength regions. If they do, the extrapolated values at 5.3 μ m should be 6 x 10⁻¹⁰.

Harrington and Hass [78] studied the temperature dependence of multiphonon absorption at a wavelength of 10.6 µm, from room temperature to near the melting point, by the calorimetric method. It was observed that the absorption coefficient increases monotonically with temperature as it would be anticipated for the near-intrinsic absorption of the crystal. Based on their high temperature (above 450 K) results, the extrapolated value at 300 K is in close agreement with that of Horrigan and Rudko [96]. However, their experimental values in the range below 450 K are considerably higher than the extrapolated values. Their value at 300 K is 2.8×10^{-3} cm⁻¹, apparently higher than 1.3×10^{-3} cm⁻¹ reported by Horrigan and Rudko. This situation is quite similar to the case of KCl whose 10.6 µm absorption is complicated by the existence of a surface absorption band at 9.5 µm. The only difference between NaCl and ACl is that the intrinsic absorption of NaCl is about 2 to 3 orders of magnitude higher than that of KC1 while the value of surface absorption observed in the case of KCl is about one order of magnitude higher. As a result, contribution form surface absorption dominates the 10.6 µm absorption of KC1, whereas the reverse is true in the case of NaCl for a surface absorption of similar magnitude and spectral location.

Hass et al. [97] used an improved laser calorimetric technique in the determination of the 1.06 μ m absorption coefficient for NaCl. The observation of the temperature-time curve (thermal rise curve) indicated that the slope of the curve during the lasing duration is constant and corresponds to an absorption coefficient of 7 x 10^{-6} cm⁻¹, which is the lowest value of absorption coefficient reported so far for a crystalline material. In this technique, if the slope varies with time, the initial slope of the curve corresponds to the bulk absorption. With elapsed time, surface absorptions and other contributions are revealed as evidenced by an increase in the slope.

Allen and Harrington [98] measured the total absor; ion coefficients at infrared laser wavelengths of 2.8, 3.8, 5.3, 9.27, and 10.6 µm, using the calorimetric method. The samples, cut from a given boule, were reactive-atmosphere-processed single crystals. It was found that samples of higher purity exhibit lower absorption. Although all samples indicated essentially intrinsic absorption at 10.6 µm, absorption at other wavelengths were considerably higher than the intrinsics. Such excess absorption are mainly due to surface absorption and chemical impurities, which play an important role at low intrinsic !evels.

At 3.8 μ m, Rosenstock et al. [99] studied samples procured from a wide variety of sources and found that the bulk absorption coefficient was 9 x 10^{-4} cm⁻¹ and the surface absorption 4 x 10^{-2} cm⁻¹. Rowe and Harrington [100] studied the temperature dependence of absorption coefficient at 10.6 μ m, in the temperature range from 100 to 300 K. Combined with the results of Harrington and Hass [78], they found that the multiphonon theory of McGill and Winston [111] adequately fit the experimental data.

Figures 15 to 18 are plots of the available data. The pertinent information of each data set and the corresponding original values are given in Tables 23 to 26. In addition, available information and data on the reflectivity and transmission are also presented in the same manner (in Figures 19 and 20 and Tables 27 to 30) for completeness and comparison. For the visible and near visible regions, Table 31 gives the spectral positions of the well-known color centers. Noticeable absorptions are likely to occur at these centers when the crystal is exposed to ultraviolet, x-ray, or high energy radiation. However, these absorption bands may disappear at high temperature or by appropriate radiation exposure, resulting from the so-called "thermal and optical beaching."

Recommended room-temperature values given in Table 32 were calculated according to Eq. (29). In the range between 11 to 23 μ m, these values are supported by measurements of Califano et al. [95] and Barker [38]. It appears that NaCl has high intrinsic absorption in this region. If Eq. (29) holds in the region <5 μ m, the intrinsic absorptions in this region are lower than 10^{-4} cm. However, like most of optical crystals, one expects to observe an absorption band in the range between 2.6 to 2.8 μ m due to the hydroxyl ions in the crystal. This absorption band can be reduced or eliminated through improved crystal growing techniques. It should be noted that the values in the "intrinsic" column are the lowest limits that one can obtain for ideal samples. In practice, the observed values are generally higher than the limiting values at low absorption levels. Unless values appear in the "observed" column, the limiting values are considered as guidelines for estimation and investigation.

Although it was not the intention of this study to compile and evaluate the absorption data in the vacuum ultraviolet region, in order to assist users to obtain a total picture of the available absorption data, a plot of available data in this region is given in the Appendix of this report.

Figure 15. Absorption Coefficient of Sodium Chloride (Wavenumber Dependence)

--

Figure 16. Absorption Coefficient of Sodium Chloride in the Urbach Tail Region

Figure 17. Absorption Coefficient of Sodium Chloride in the Multiphonon Region

TABLE 23. SCHOOLS OF MEASUREMENTS ON THE ADSORPTION CONFFICIENT OF SOUTH CHEORIDE (Mavenumber Dependence)

i∷ta Set ∴o.	Ref. No.	Author(s)	Year	Method Used	Wavenumber Range, cm 1	Temperature Range, K	Specifications and Ecmarks
1	91	Roessler, D.M. and W.Blker, W.C.	1968	R	5.64×10°-2.1×10°	300	Single crystal; obtained from the Harshaw Chemical Co. or the Medinghouse Electric Corp.; absorption coefficients derived from a Kramers-Kronig analysis of the near normal reflection spectra; data extracted from a table.
?	101	Czerny, M.	1930	т	2.1x10 ² -2.9x10 ²	293	Crystal; plate specimens of thicknesses 8, 14, 19, 24 mm; transmittances measured; absorption coefficients deduce from the exponential decay relation; data extracted from a table; temperature not given, 293 K assumed.
3	101	Czerny, M.	1930	Т	6.5x10 ¹ -1.54x16 ²	293	Similar to above except for specimens of various thicknesses from 20 to 385 mm. $$
4	102	Cartwright, C.H. and Czerny, M.	1934	Z	9.3×10 ¹ -1.36×10 ²	293	Crystal; thin plate specimen of 60 mm; absorption coefficients deduced from transmittance and thickness measurements; data extracted from a figure.
5	162	Cartwright, C.H. and Ezerny, M.	1934	z	55.7,69.3	293	Similar to above except for specimen of 97 am thick.
5	102	Cartwright, C.H. Czerny, M.	1934	z	4.53x10 ¹ -1.37x10 ²	293	Similar to above except for specimen of 147 mm thick.
7	102	Cartwright, C.H. and Czerny, M.	1934	Z	44.7-78.0	293	Similar to above except for specimen of 237 mm thick.
s	103	Curturight, C.H. and Czerny, M.	1934	Z	42.8-52.5	293	Similar to above except for Specimen of 350 nm thick.
9	95	Califano, S. and Czerny, M.	1958	т	7.14x10 ² -9.1x10 ²	293	Crystal; block specimens of 10.52 and 16.77 cm; extinction coefficients determined from transmittance measurements; data extracted from a figure.
10	38	Barker, A.J.	1972	R	4.4×10²-7.0×10²	300	Synthetic crystal; high purity; lighly polished section of 1-2 rm thick; absorption coefficients deduced from measurements of reflectivity; absorption-coefficient data estracted from a figure.
11	38	Barker, A.J.	1972	R	5.1x16 ⁷ -7.4x10 ⁷	615	Similar to above except at a higher to perature.
10	38	Barker, A.J.	1977	R	5.2×10 ² -7.7×10 ²	775	Similar to above except at a higher to perature.
13	38	Barker, A.J.	1972	R	$5.4 \times 10^{2} - 8.1 \times 10^{2}$	935	Similar to above except at a higher to aperature.
14	38	Barker, A.J.	1972	R	5.6x10°-8.6x10°	1105	Molten NaCl specimen of 1-2 pm thics; reflectivity measurements carried out in a largely incit as attemphere; absorption coefficients deduced from reflection spectra; description coefficient data extracted from a figure; politing to perature of NaCl 4s 1074 K.

Set Set Jo	Ref. No.	Author(s)	Year	Method Used	Wavenumber Runge, cm	Temperature Range, K	Specifications and Remarks
15	12	Doutsch, T.F.	1973	Т	5.0x10 ² ~8.5x10 ²	300	Single crystal; obtained from Optovac Co.; specimen of 2.5% om diameter and 2.5% om thick; absorption coefficients determined using a differential technique with a dual-beam spectrophoto- meter; data extracted from a figure.
16	77	Tomiki, T., Miyata, T., and Tsukanoto, H.	1974	R	6.37×10*~6.50×10*	10	Single crystal; obtained from the Barshaw Chemical Co.; ob- sorption coefficients deduced from reflection spectra; data extracted from a figure.
17	193	Ikezawa, M. and	1973	R	9.3x10 ¹ -1.6x10 ²	1.8	Single crystal; grown from pure synthesized powders distilled in vacuum and zoned refined in a quartz tube in chlorine gas; cleaved; geometry not specified; data taken from a curve.
18	42	Owens, J.	1969	T	0.31~4.0	298	Single crystal; obtained from the Barshaw Chemical Co.; cylinder shaped specimen; filled resonant cavity method used for measuring dielectric constant and loss tangent; aboutation coefficient then determined; data extracted from a figure.
19	93	Kobayashi, K. and Tomiki, T.	1960	R	4.3×10°~5.83×10°	285	Single crystal; grown by vacuum distillation; cleaved specimens of 0.06-1.0 mm thick; absorption coefficients reasured with a vacuum ultraviolet spectrophotometer; data extracted from a figure.
: 0	97	Hass, M., Davison, J.W., Rosenstock, H.B. and Babiskin, J.	1975	С	9434	298	Single crystal; obtained from the Harshaw Chemical Co.; rectangular parallelepiped specimen of 1.2 cm x 1.3 cm x 10.1 cm laser calorimetric method used and the thermal rise curve obtained; bulk absorption coefficient determined from the initial slope of the curve.
1	28	Allen, S.D. and Harrington, J.A.	1978	c	943.4,1079	298	Single crystal; produced by reactive-atmosphere-process; samples sectioned from a given boule; calorimetric method used and total absorption determined; data extracted from a table.
2	98	Allen, S.D. and Harrington, J.A.	1978	С	943.4-3571	298	Same as above but for a sample from other section of the boule.
23	98	Allen, S.D. and Marrington, J.A.	1978	С	943.4,1079	298	Same as above.
!4	98	Allen, S.D. and Harrington, J.A.	1978	С	943.4-3571	298	Same as above.
?5	104	Barrington, J.A., Bothler, C.J., Patten, F.W. and Bloss, M.	1976	С	449-879	300	Single crystal; obtained from the Harshaw Chemical Co.; expectimental details not given; data extracted from a figure.
?6	104	Harrington, J.A. et al.	1976	С	411-713	80	Same as above.

TABLE 23. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF SODIUM CHLORIDE (Wevenumber Dependence) (continued)

Data Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Range, cm ⁻¹	Temperature Runge, K	Specifications and Remarks
27	94	Miyata, T. and Tomiki, T.	1967	2	6.07×10*-6.36×10*	10	Single crystal; obtained from the Harchew Chemical Co. and also prepared by a chemical reaction and purified by vacuum distillation and followed by zone melting in chlorine atmosphere; specimens cleaved from ingots zone refined many cycles; dimension of specimen S mm x 10 mm x 0.2% mm; thinner specimens of M0.08 mm prepared by melting and pressing small pieces zone refined crystals between two parallel glassy carbon plates in vacuum; transmission and reflection measured with uv spectrophotometer; absorption coefficients then deduced; data extracted from a figure.
28	94	Miyata, T. and Temiki, T.	1967	z	5.10x10 ^h -6.36x10 ^h	18	Same as above.
29	94	Miyata, T. and Tomiki, T.	1967	z	5.87×10 ⁴ -6.33×10 ⁴	70	Same as above.
30	94	Miyatu, T. and Tomiki, T.	1967	z	4.96×10 ⁴ -6.12×10 ⁴	95	Same as above.
31	94	Miyata, T. and Tomiki, T.	1967	z	5.58×10*-6.30×10*	95	Same as above.
32	94	Miyata, T. and Toniki, T.	1967	z	5.99x10"-6.13x10"	195	Same as above.
33	94	Miyata, T. and Tomiki, T.	1967	2	5.64×10*-5.98×10*	298	Same as above.
34	94	Miyata, T. and Tomiki, T.	1967	2	4.95×10*-5.99×10*	298	Same as above.
35	94	Miyata, T. and Tomiki, T.	1967	2	5.39×10 ⁴ -5.74×10 ⁴	473	Same as above.
36	94	Hiyata, T. and Tomiki, T.	1967	z	4.84x10 ⁴ -5.74x10 ⁴	473	Same as above.
37	94	Miyata, T. and Toukki, T.	1967	z	5.19x10*-5.60x10*	573 -	Same as above.
38	94	Miyata, T. and Tomiki, T.	1967	z	4.83x10*-5.60x10*	573	Same as above.
39	23	Gearel, L., Happ, H., and Weber, R.	1959	7	3.2-33	298	Crystal; plane parallel plate specifies of 1.07, 2.10, 5.0, and 47.5 mm thick; transdission beasured and absorption coefficient determined; data extracted from a figure.
40	105	Geick, R.	1962	Z	149~181	298	Evaporated NaCl film of 10 pm thick; samples put in a sice for 4 weeks before use; absorption coefficient determined from reflectivity and transmission measurements; data extracted from a figure.

acted from a right

TABLE 23. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF SODIUM CHLORIDE (Wavenumber Dependence) (continued)

Data Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Range, cm	Temperature Range, K	Specifications and Remarks
41	105	Geick, R.	1962	Z	60-143	298	Similar to above except for thin specimen shaved from the bulk.
42	106	Cartwright, C.H. and Czerny, M.	1933	Z	83-143	293	Natural NaCl crystal; thin plate specimens of 21.5 to 147 and thick; absorption coefficients determined from the transmission measurement; data extracted from a table.
43	107	Dötsch, H. and Happ, H.	1964	τ	3.2-11	300	Single crystal; plate specimen of 150 mm thick; absorption coefficient determined from transmission measurements; data extracted from a figure.
:4	107	Dötsch, H. and Eapp, H.	1964	τ	3.3-8.2	360	Same as above.
45	107	Dötsch, H. and Happ, H.	1964	T	3.3-8.2	280	Same as above.
46	107	Dörsch, H. and Hipp, H.	1964	T	3.3-8.2	200	Same as above.
47	107	Dötsch, H. and Happ, H.	1964	T	3.3-8.2	120	Same as above.
48	107	Dötsch, H. and Happ, H.	1964	T	3.3-8.2	80	Same as above.
49	108	Dianov, E.M. and Irisova, N.A.	1966	r	5	298	Natural crystal; plate specimens of 12 and 18 mm thick; absorption coefficient determined from transmission measurement; data extracted from a table.
50	99	Rosenstock, H.B., Gregory, D.A., and Harrington, J.A.	1976	С	2631.6	298	Single crystals; obtained from the Naval Research Lib., the Harshaw Chemical Co., and the Raythcon Corp.; mechanically polished and chemically cleaned with spectrograde CCl.; laser calorimetric method used; data extracted from a table; it was found that the surface absorption was about 45 times higher than the bulk absorption.

TABLE 24. EXPERIMENTAL DATA OF THE ASSORPTION COEFFICIENT OF SODIUM CHEORIDE (Wavenumber Dependence)

[Wavenumber, v, cm⁻¹; Temperature, T, K; Absorption Coefficient, a, cm⁻¹]

ų.	a	ν	¥	ν	ī	ν	a	v	2	•	3
DATA SET	1	DATA SET	± (CON 1-)	DATA SET	1(CO4T.)	DATA SET	1(CG:T.)	DATA SET	1 (CONT.)	JATA SET	
1 = 3.3.5	-									T = 293.0	
		1.581:+5	6.3502+5	1.169E+5	1.176£+6	9.6732+4	1.357£+6	6.2715 4	1.145= +6		
237:+5	3.9526+5	1.573=+5	6.120£+5	1.1055+5	1.1362+6	3.0322.44	1.3658+6	6.3556+4	1.1654.0	1.30.206	
2.105:+5	4.41.245		5 . 19 +5	1.1616+5	1.1972+0	3.9526+4	1.27.6+6		1.1552.0	1.2522.+2	
C+2+8E+5	4.3756+5	1.0000-5	5.0726+5	1.1535+5	1.2176+6	3.8716+4	1 + 037 £ + 6		1.1821 0	1.0.90+2	
2.132:+5	(.5372+5	1.041_+9	5.0436 +5	1.149515	1.2636+6	8.7366+4	6.5202+5		1.3132+3	1.095246	
4.3255.00	4.5525.45	1.24.6.5	5.3672.45	1.1452+5	1.2352+6	3.5+36++	6.0162.5		1.112±+c	9.057: 12	
201 1200	4.242:15	1.52+4+5	0.321:+5	1,137£+5	1.6576+6	3.4235.44	5.04.2+5		1.3452 +0	3.333: *1	d • 45 t = +1
1.11/200	5.5. +5	1.020-+5	6.473645	1.1292+5	1.2636+6	9.427E+4	5.7196+5		9.0732+5		
1.35.24.	2.17:6+2	2.5. 52+5	6.5336+5		1.2055+6	9.3076+4	5.9626+5		8.1932 •5	JATA SET	
1.944500	5.373:+5	1.55	6.5376.5	1.113E+5	1.253E+6	3.347E+4	0.1862+5		4.5746.+5	T = 233.J	
1.93:215	5.5:46.5	1.492645	6.502:+5	1.1.5E+5	1.2355+6	6.1352+4	7.2666+5		C+ = cf 0 . S		
1.9271+9	5.5712.55	4,4145 +5	6.5256.65	1.0896+5	1.1632+6	8.1+52+4	7.2076+5	6.2092**	2.000.+5	0.93.2+2	
12. + 5	5.571245	1.4/02+5	5.3.7.+5	1732+5	1.6922+6	8.1132+4	7.236E+5		1.672=+5	ラ・ラアーミャン	4.3545+1
1.42/249	5.571.5.5	i.40 tc+5	6.4872+5	1.6565+5	9.8246+5	8076+4	7.1925+5	6.3635+4	1.3592.5		
	5.739245	1.4525+5	5	1.0+32+5	9.3546+5	7.9.32+4	6.95ZE+5	5.508:+4	1.1252+5	DATA SET	
7:42	5. +5.5 +5	20427245	5.9.76.5	1.0442+5	9.:37:+5	7.7426+4	6.0102+5	5.357c+4	6.653. **	T = 293.0	
1.17 12 + 2		1. **** 5	5.352.45	1.14, 2+3	9.15:E+5	7.55:2+4	6. 492E+5	5.3056**	3.048=+4		
	4. 237 = +5	i.395.+5	5.951:5	1365+5	9.246£+5	7.419E+4	5.874E+5	5.6456+4	7.0946+3	1.366:+2	
1.0031.5	4. 115. 15		6.2391.15	1345+5	9.21.6+5	7.2586+4	5.4725+5			1.34.5+2	
	4.3415.45	4 7 + 5	0.37-6+5	1.0242+5	9.0532+5	7.177E+4	5.3216+5	GATA SET	2	1.307.46	
1.02-1.05	2.32.42	1.3032+5	0.5.36.5	1.0100+5	1.13+2+6	7.137:+4	5.3511.5	T = 233.	J	1.65 12+6	
	2.959649	1.350.+5	0. +7. 2 + 2	1	1.6565+6	7302+4	5.2324+5			1.6032 *6	
1.15.15		1.3+7.+5	6.431.45	1.004-+5	1.00) £+6	7.620244	5.262t+5		6.15+2+2	2.642242	
1.5.5:+2		1.331:+5	0.37+2+5	1.44.5+5	1. i e 3E + 6	6.9356+4	5.425£+5	2.773=+2	7.6791+2	20064246	
	6.99-4.19		6.4826.+5	3.46.E+4	1.40+6+0	6.3556+4	4.9906+5	2.7436+2	1.1552+3	1:+2	
	6.7.72.45		6.0.71.+5	9.9195+4	1.1032+6	6.8156+4	4.3678+5	2.6326+2	1.053:+3	1.2716 +2	
	5 + 3 2 4 5 + 5		7 5 3 . + 5	9. 339=+4	1.025600	5.7748+4	4.5376+5	2.56+6+2	1.9332+3	72+2	
	7.4.22.5	** 2 13 6 13	7.3461.5	9.7235+3	5.0878.5	6.73-6+4	4.5231.45	2.5032+2	2.235243	1.1.52+2	1.237_+2
	7.172.05		7.5502.15	9.6776+4	9.6.72.5	6.6346+4	4.879:+5	2.439=+2	2.1452+3	13:=+2	
	6 . 172 = +5	4.600-45	3.7336.+5	9.5376++	9.5276+5	6.6232+4	4.8492+5	2.326£+c	2.45-2+3	1306+2	9.4522+1
	0.061.45		5.95+L+5	9.516:+4	9.5676+5	6.513E+4	4.956E+5	2.1746.2	3.1906+3	5.5912+4	9.7452+1
	5.33.6.5		9.2.56+5	9.4355+4	1.1238+6	6.5732+4	5.309£+5			9.323:+1	9.1556+2
	0.32.46.5		9.3.36 +5	9.395	1.6516+6	6.5726+4	6.C 14E+5	DATA SET	3	5 . 5 5 + É *.	7.1-7E+1
	0.253245		7.25.6+5	9.3555++	1.1296+6	0.5:64	6.5516+5	T = 295.	ù	0.3:3:+.	3
	0. + 2 • 5		1.4122+0		1.2415+6		7.20145			7.71.611	7.5362+1
	6.7232+5		1.4556.0		1.3298+6		8.4566+5	1.5312+2	5.9662+2	7.28224.	
	0.722545		1.117=+0		1.381E+6		6.916E+5		4.4692+2	6.1772+1	5.231:+1
	b.d 11.2+5		1.1+36+0		1.398E+6		9.5432+5	1.3642+2	1.337:+2	5.274691	
1.6251.0			1.15+6+0		1.415£+6		1.135=+6	6.5796+1	5.2912+1	510c+1	3.8.7E+1
	6.8221.5		1.1626+0		1.3976+6		1938+6			4.0376+1	2.4202+1
20751217	0.000	2027 0277		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

TABLE 24. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SOURY CHECKIDE (Wavenumber Dependence) (continued)

. α	v a	ν α	ν α	v a	v a
gata SET 7	DATA SET 10 (CONT.)	0414 SET 13	DATA SET 15(CONT.)	DATA SET 17(CONT.)	DATA SET 19 (CONT.)
T = 233.5		T = 935.0		1.3036+2 1.2196+4	5.77.6.4 4.3126.8
	4.55.c+2 7.2462+8		5.1366+2 1.4446-2	1.350114 8.4921-1	2.7006++ 3.07.6+3
7.79-1-1 7.32-141	4.44[2+2 8.6362+]	d7.£+20[u€−1	7.5.32+2 4.1946-2	1.3-4=+2 7.883=-1	5.7516+4 3.5246+1
0.4534+1 6254+1		7.70.2+2 2.01	5.9756+2 1916-1	1.3342+2 7.1292-1	3.742204 3.434243
0.1005+1 0.402=+1	DATA SET 11	7.466£+2 4.306E-1	6.510E+2 2.7-1E-1	1.3206+2 7.1796-1	5.716: ** 2.63: 1.43
5.51.2+1 3.5932+1	T = E.5.0	7.16CE+2 6.7LCE-1	6 2.E+2 5.70dE+1	1.2916+2 7.7806-1	5.0776+4 2.0408+3
4.9.42.1 3.3916.1		a.8au£+2 1.660£+G	5.5146+2 1.2946+4	1.2796+2 9.375=-1	2.0235.44 6.4445.40
4.4/86+1 2.7156+1	7.3744+2 1.5446-1	6.6768+2 1.4168+0	5.010E+2 2.500E+0	1.2742+2 8.3722-1	3.2502.44 1.43.241
70 11 14 2 2 1	7.050c+2 2.8Cut-1	6762+2 2.8442+6		1.2402+2 9.754=-1	5.20.6+4 1.47.6.42
S TEZ ATAC	6.766=+2 5.1136-1	6.2662 2.510 6+6	DATA SET 16	1.2302+2 1.072±+0	5.4276+4
1 = 293.4	0.5032+2 7.6566-1	6.0002+2 3.2862+4	T = 11.4	1.230242 1.072246	5.377644 20204243
23010	0.303_+2 1.4512+4	5.95(E+2 3.96,E+ i			2.3236+ 1.2.46+1
5.2442+2 3.7902+2	b.ipis+2 i.Suut+ü	5.84CE+2 4.59GE+6	6.432E+4 1.646E+E	1.2006+2 6.3835-1	5.2582+4 1.6302+4
4.7982+1 3.3/56+1	5.3516+2 2.1966+3	5.7.CE+2 5.333E+0	0.459£+4 9.880E+5	1.1936+2 6.4676-1	5.177£** 1.13vE*3
286z+1 2.11ii+1	5.740=+2 2.96.143	5.64Gi+2 6.32GE+G	6.4592+4 1.1792+6	1.1346+2 5.9436-1	3.11/Evy 1.1302.v
4.6862.1	5.04.2+2 3.56.6+3	5.55LE+2 7.450E+C	6,4472+4 1.0562+6	1.1706+2 6.950=	5.0.52+4 7.6308-1
0414 3E1 9	3.534442 4.24.240	5.432E+2 9.160E+C	6.435£++ 2.2++£+6	1.1616+2 6.5776-1	9.05525** 1.0005=1 4.9525** 6.7.06=1
T = 293.4	5436+2 4.3436+3		6,425£+4 2.773£+6	1.1500+2 5.5001-1	
1 - 293.4	5.3412+2 5.7968+0	DATA SET 14	6.411£*4 8.185£*5	1.1458+2 4.9396-1	4.335244 6.7.12-1
9 1.7712-3	5.2312+2 6.89.8+8	T = 1135.5	6.4JEE+4 3.236E+5	1.1.00.00 3.6502-1	4.3736+4 4.9466+1
0.1965.4 0.9955.43	5.12.2+2 8.3932+3	,	6.393£+4 1.766£+5	1.190: 2 3.396: -1	4.8.c. 4 4.9. E-1
7.7582+2 2.6636-2	30120111	8.57GE+2 1.4CJE-1	6.384E+4 3.42vE+4	1.03yE+c 3.21+E-1	4.7535+4 4.3066-1
	DATA SET 12	8.26vE+2 2.16vE-1	6.3786+4 1.7226+4	1.370c+2 3.66b=+.	4.5342** ******
7.1432+2 8.9686-2	T = 775.u	7.97uE+2 3.1uúE-1		1.8306+2 2.3006-1	4.427=+4 3.1446=1
	1 - 77700	7.65.2+2 5.1632-1	JATA SET 17	1.3336+2 1.9652-1	1.JuiE-1
CATA SET 1-		7.3746+2 7.6506-1	T = 1.8	9.3656+1 1.1696-1	
$T = 3.3 \cdot 6$	7.05uc+2 2.uict=1 7.3puc+2 3.2.it=1	7.0006+2 1.1266+6			DATA SET 26
		6.8766+2 1.5146+4	1.6. (E+2 1. 00 4 E+1	DATA SET 18	r = 293.0
6.97ú£+c 1.1ú£=1	7ou#+2 5.1uck-1	6.67(2+2 2302+6	1.5844+2 6674+4	1 = 298.3	
0.6565+4 2.2446-2	0.7062+2 8.4662-1	b. 47\E+2 2.73\E+6	1.5766+2 5.4536+6		432+3 7.0002+6
6.35.5+2 3.5.36-1	0.2002+2 1.1536+3	6.20[5+2 3.69] [+1	1.5506+2 5.4356+0	4.300E+3 2.128c+3	
5,6505+2 7.6046-1	6.3506+2 1.0006+4	6.65LE+2 4.79JE+1	1.5356+2 3.3966+\$	1.2-75+0 5.9165-4	DATA SET 21
9.4402°€ 3.440°°=1	07.6+2 2.2006+0	5.95(£+2 5.850E+i	1.5166+2 2.8382+4	3. J9GE-1 1.432E-4	T = 290
niésiété liélueti	5.9+.2+2 3.6916+8	5.8645+2 6.0845+4	1.5.LE+2 2.754E+A		
5.4362+2 2.7.32+4	5.4432+2 3.3465+3	5.74LE+2 7.830E+G	1.4936+2 2.7736+0	DATA SET 19	1.6792+3 2.068E=4
5,2462+2 2,44,32+3	5.75u2+2 4.16uE+0	5.64LE+2 9.51GE+G	1.4861.42 2.8511.46	1 = 285.0	9.4342+2 1.duuE=3
j.15.5+2 2.57.15+6	5.0422+2 4.338244	31940515 313705.0	1.4606+2 3.1926+6	-	
73kc+2 3.4iúi+i	3.5542+2 5.826246	DATA SET 15	15(6+2 3.2146+6	5.3316+4 1.5816+1	JATA SÉT 22
4.5.6.5+2 4.,146+4	5542+2 0.9526+4		1.4406+2 3.6966+6	3.815£+4 1.L8££+1	T = 298.0
2+i	5.3316+2 8.2012+3	T = 330.0	1.36GE+2 1.429E+G	5.7982+4 7.7752+4	
4.7502+2 5.2432+6	5.2516+2 9.4216+0		1.3766+2 1.3276+6	5.742E+4 6.14CE+4	3.5716+3 5.8cui-5
4,6312+2 6.21.2+6		8.5112+2 4.6632+3	TABLETE VIDELEAR	,	

TABLE 24. EXPERIMENTAL DATA ON THE ASSORPTION COEFFICIENT OF SUDIUM CHLORIDE (Wavenumber Dependence) (continued)

v	α	v	α	ν	a	V	α	ڼ	а	٠	7
DATA SET	(.1 mc2152	DATA SET	25 (CONT.)	OATA SET	27(CONT.)	DATA SET	28 (001.7.)	DATA SET	30 (C) (1.)	آعد ۱۹۱۸	32106hT+)
2.6325+3	5.3.32-5	7.9632+2	1 - 28 g E - 2	6.1616+4	2.1966+0	6.2666.4	2.4468+1	5.7428+4	2.910: +6	6.5056+4	
1.887E+3	5.11JE-6	d.15.2+2	6 . 1 8 . £ - 3	6.1692+4	2.46CE+G	6.232514	3.uót £+1	5.7582+4		D JC +4	
179=+3	3.0625-4	3.35.1.+2	5.5316-3	6.2.25**	3.6936+4	5.3156+4	4.LZ.E+1	5.7986+4	2.1502+6	6.61 0±+4	2.910=+6
9.434244	1.4.36-3		3.5368-3		3. ±10 £ + C		6.37LE+1		1.5%:+.		3.63686
		3.73.5+2	2.32.6-3		4.2106+0	6.3555+4	1.375£+2		1.4765+6		3.5406+3
DATA SÉT					4.9.02+6			6.4632++			4.425243
1 = 233.	J .	DATA SET	20		6.92.6+0	DATA SET	29		2.649-+-		5,31+4
		F = 5]			8.380 E+0	T = 78.8			3.19.2 *6		0.2:52.3
	4.1.12-4				1.050E+1			6.1212+4	4.693:+0		7.9142+8
9.43-:+2	1.0342-3		3.2508+0		1.43.6+1		3.746 E+6				9. 90. £+3
			2.33.2+3		2.2782+1		3.00000	DATA SET	32		1.2506 +1
DATA SET			1.701E+c		2.540 E+1		3 9 . E + 0	T = 95.ù		D37:++	
T = 233.	í		1.2002.03		4.U33E+1		3.3366+6			0.113:+4	
			1.4146+3		5.913E+1		2.3606+0		5.75.2+.	03504	
	c • 9 . • E • 5		7.61	6.135E+4	9.7168+1		2 . 05 CE+8		3.950=+6		£.201.+1
	0.5012+5		6.48.2-1				2.45.6+3		3.272=+-	0.123644	1.00002+2
	3.4.,:-5		4.85.2-1	3414 S_T	28		2.456.6		3 5 6		
	5.54.644		3.47.E-1	T = 13.			2.1006+6		2.92.=+6	JATA SET	
9.434542	. 4 . u c = 3		2.931t-1				1.190243		2.72.2+.	1 = 275.	•
			4 • 2 4 • 4 • 4		1.1302.8		9 E+i		2.43.2+0		
JATA JET			1.7716-1		1.130£*0		9. u ču £+1		2.2632+4		1.3368-1
1 = 3			1.59.E-1		2.530E+0		5.4562-1		2.260:+.		3.2326-1
			1.01.1-1		5.6802+0		3.456£-1		2.4400+6		1.00-2 **
	9.450∑+0		1.3786-1		6.0432+3		1.726£+2		5.9		1.5015+0
	5.12.6+0		6.11.£-2		5.7565+3		1.27 u£+2		7.7202+L		5.35.6+3
4.95.5+2			b. 47 wz - 2		4.590E+C	6.331E+4	1.5966+2		1.0.6.		1.659511
	2.47.20.		4 . i 3 . t - 2		2.9136+3				1.5702+2		1.0
5.46.216			4.02.2-2		2.7.6E+0	DATA SET			2.533:+1		2.3:42
	1.1352+0		3.7436-2	5.5066+4	2.150E+C	T = 95.3			2.3465+1		4.54 u £+1
	9.0305-2		2.30.2-2		1.59JE+J				3,31,2+1		77.51
5.9061+2			2.230t-2		1.42JE+i		3.85.t-1		4.0202+1		1.49.5+2
	12bc-1		1-1006-2		1.6036+0		3.4965-1		5 56 . + .		1.07.22.42
5 • 39 • 2 • 2	2.35.5-1	7.136=+2	1.2155-2		2.0456+4		1.22.5+6	6.293£+4	8.9702+1		2.27.6.2
	4-11-5-1				3.19uE+0		1.93CE+C		9.0906+2		2.85.2.2
0.7362+2		DATA SET	27		4.07.£ * ü		2.3+6E+0	6.3662+4	1.6502+2		3.3352+2
5 + 35 - 2 + 2		T = 1			5.473E+C		3.5766+6			5.346+4	4.13úE+2
	6.52				7.72uE+6		4.00.6+6	DATA SET			
7.37.2.42			1.33LE+3		1.0105+1		6.046.6+6	T = 195.	.		
	2.31.6-2		1.8846.42		1.652E+1		5.75LE+9				
7.7605+4	1.7932-2	6.1452+4	2.1000+3	6.2342+4	1.870E+1	5.645E+4	4.59LE+0	5.9922+4	2.2306+6		

TABLE 24. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM CHLORIDE (Wavenumber Dependence) (continued)

v	3	v	α	ν	a	v	3 .	ν	3	ν	a
DATA SET 34		DATA SET	35 (CO NT.)	DATA SET	37(CONT.)	DATA SET	39 (CGNT.)	DATA SET	41(CO4T.)	DATA SET	41 (CONT.)
1 = 255.											
		5.444.44	5.38.2-1	5.2348+4	3.c1uE-1	1.2532+1	2.1422+6	1.1536.42	1.2136 .	0246+1	4. 7096+1
4.9522+4 1.2		>.+702+4	1.1002+3	5.2742+4	1.1202+0	1.1152+1	1.5+12+0	3 é É + 2	1.1425 +2		
4.9525+4 4.3	3,200	5.532=+4	4.446.6.43	5.2982+4	1.28.E.C	1.048£+1	1.253E+0	1.1116.2	1.6752+2	JATA SET	42
4.9346+4 1.3	luié+u	5.5000+4	7.03.2+3	5.339E+4	2.563E+6	9.0916+0	1 8. £+0	1.3674+2	1.02+2+6	1 = 298.	3
5.6161+4 1.3	152+0	5.5972+4	1.40.2+1	5.387£+4	8.46.22+0	8.4u3E+i	9.356E-1	1.3046+2	9.6932+1		
5.0372+4 2.4	2,2,5	5.0132+4	1.9162+1	5.4445+4	2.370E+1	7.143E+0	5.976£-1	1.4426+2	9.465=+2	1.4298.42	3.631E+2
5.145244 4.3	3+22+2	5.5212+4	2.59.2+1		4.350E+1		4.621E-1		9.1(4=+1	1.379±+ċ	6.0306.02
5.1372+4 3.4	245+6	7.301E++	5.38.2+1		1.2306+2		3.619£-1		6.746E+1	1.333:+2	2.2255+2
3,1941+4 4 ₄ ,			b 3. c +1		1.6502+2	4.695£+8	2.578£-1	9.9.42+1	8.5616.1	1.2312+2	1.5972+2
5.226284 4.5			8.2000+1	5.537£+4	4.210E+2		2.228E-1		8.3372+2		- · 00>= • 4
5.232=+4 4.5	3346+6	2.6976+4	1.40uE+2			3.1556+6	1.312E-1		8.18.2.1	1.1762.2	1.4646+2
5.3952++ 5.7	'4j£+i		1.51JE+2	DATA SET	38			9.25941	8.629=+1	1.1116.4	1.2+32+2
5.4445+4 5.7	7012+6	5.7.22+4	4 . 25 J £ + Z	T = 573.		DATA SET		9.J91£+1	7.9972+1	153c+2	1.146.02
5.532E++ 5.3	373E+1					T = 298.	•	8.9696+1	7.854=+1		1.6-35+2
5.5502 ** 5.3	132261	DATA SET	36	4.831E+4	1.140E+C			8.7726+1	7.825:+1	9.52-6.	9.0342+1
5.537200 5.5	3.36 *.	T = +73.		4.847E+4	1.233E+C	1.6185+2	9.3912+3	8.0212+1	7.6922+1	9412+1	9.139: 11
5 . 553 <u>5 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u>	esužėj			4.9352+4	2.65JE+0	1.786E+2	1,0552+4	8.475L+1	7.668:+1	8.055242	6.7-2E+1
5.721244 3.7	12.245	4.3472+4	9.40[[-1	5.ú32E+4	3.39JE+C	1.754E+2	1.164E+4	8.333E+1	7,6455+1	8.3332+1	6.378c+1
5.7422+4 3.5	9.2+6	4.5-76+4	9.46, 6+3	5.1372+4	+.47åE+\$	1.724E+2	1.369614		7.5198+1		
2.732£+4 3.4	7.646	4.3272+4	1.03.6.4	5.2522+4	0.1412+4	1.635£42	1.431 2 44	6.4052+1	7.499	JATA SET	43
5.7982+4 3.7	1615+1	5322.+4	3 23 0	5.3392+4	5.6532+0	1.6076+2	1.5736+4	7.9374.1	7.4832.42	T = 3.0.4	ì
3.9152++ 4.7	720200	5.2376+4	4.3.12+1	5.3672++	1.14.211	1.6392+2	1.337£+4	7. £13E+1	7.363: +1		
5.8505++ 3.7	183246	5.2326+4	5 . 59 . 6 + 5	5.4442+4	2.5636+1	1.6135+2	7.216£+3	7.6926+1	7.2502+1	3.2362+0	7.1:25-2
5.07:20- 1.0	11111	2.375214	0.1342+3	5.+042+4	4.38uE+1	1.5576+2	4.0296+3	7.5762+1	7.14.2+1	4.32.00	1 - 3 - 62 - 1
5.679294 2.3	31+1	5.476:+4	0 . u . u £ + 0	5.4842+4	4.73GE+1	1.503E+2	2.631243	7.4632+1	7.123:+1	5.3762+4	2-1266-1
5.37 16++ 1.6	3:45+1	5. 54.5 **	8 - 03 JE + G	5.532E+4	1.23GE+2	1.5386+2	1.6826+3	7.3532+1	0.535c+1	0.+52E+i	3.272E-1
5.395 = + 2.0	5.E+1	5.5500+4	1.16.6.1	5.556モト4	1.6316+2	1.515E+2	1.219 £+3	7.2466.1	6.7392+1	7.5196+0	4. 5. 1E-1
5.9272++ +.5	****	5.5036++	1.91	5.597E+4	4.060E+2	1.4936+2	9.6L3E+2	7.1-36+1	6.5522+1	4.0212+6	6.4832-1
5.9442+4 7.4	·7·£+1	5.613:+4	2 . d £ + 1					7.4425.1	6.3726.	9.7656+4	5.2546-1
5.92.200	·3,5+2	5.5552+4	5.37.E+1	DATA SET	39	DATA SET	41	6.9**=+1	6.1902+1	1.467641	1.147E+0
5.96.1++ 1.6	5+2	5.0536+4	6.0302+1	1 = 293.	Ŀ	T = 298.	C	6.9496+1	6.0252+1		
5.955:++ 2.	335+6	7.6692+4	8.19.6+1					6.7572+1	5.9446 +1	JATA SET	44
5.9342+4 2.6	9532+2	5.6856*4	1.4562+2	3.311E+1	1.423E+1	1.4296+2	4.542642	6.6076+1	5.7816+1	T = 360.0)
5.976: ** 3.:	915+2	5.7.25+4	1 . 03út + 2	2.4515+1	7.858E+C	1.389E+2	3.4216+2	6.579£+1	5. 6 222 +1		
5.992= ** 4.3	353E+2	5.7426+4	4.1.0E+2	2.2426+1	6.537E+Q	1.3516+2	2.5648+2	6.4942+1	5.4676+1	3.3422+0	8. 4585-2
				2.0125+1	5.714E+i	1.3165+2	2. u83E+2	6.4132+1	5.3172.1	4.744E+J	2.015E-1
JATA SET 35		TEE ATAC	37	1.321E+1	4.669E+0	1.2326+2	1.8646+2	6.329c+1	5.249: *1	0.0226+4	3.929E-1
: = 473.		T = 573.		1.0015+1	3.653€+€	1.25CE12	1.57:E+2	6.2556+2	ラ・1 ロコピ・1	4.1356+3	E.351E-1
					2.780E+1	1.22úE+2	1.416E+2	6.173:+1	4.9652+1		
5.395=+4 2.6		5.1942+4	2. →6JE-1	1.337E+1	2.470E+6	1.196E+2	1.287E+2	6.0986+1	4.027£+1		

TABLE 24. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM CHLORIDE (Wavenumber Dependence) (continued)

2.63.2+3 9.4411-4

Ξ

· ·

Figure 18. Absorption Coefficient of Sodium Chloride (Temperature Dependence)

TABLE 25. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COLFFICIENT OF SODIEM CHLORIDE (Temperature Dependence)

ota Set	Ref.	Author(s)	Year	Method Used	Range, cm	Temperature Ranje, K	Specifications and Remarks
1	43	Stolen, R. and Dransfeld, K.	1965	T	31.25	96-402	High purity; single crystal; grown by the Bridgman method; plate specimens of thickness from 0.5 to 25.0 mm; absorption coefficients directly determined; data extracted from a figure.
2	43	Stolen, R. and Dransfeld, K.	1965	1	20	96-402	Same as above.
3	43	Stolen, R. and Dransfeld, K.	1965	T	9.804	96-402	Same as above.
4	72	Harrington, J.A. and Hass, M.	1973	С	943.4	304-1035	Single crystal; specimen with surfaces mechanically and then chemically polished; absorption coefficients measured by calorimetric method using a ${\rm CO}_2$ laser source; data extracted from a figure.
5	107	Dötsch, H. and Happ, H.	1964	τ	8.62	80-297	Single crystal; plate specimen of 150 mm thick; absorption coeffi- cients determined from transmission measurements; data extracted from a figure.
į	167	Datsch, H. and Dapp, H.	1964	τ	7.52	80-297	Same us above.
•	167	Dötsch, H. and Happ, H.	1964	Ť	6.45	80-297	Same as above.
3	107	Dötsch, H. and Happ, H.	1964	T	5.38	80-297	Same as above.
)	107	Dötsch, H. and Happ, H.	1964	Ť	4.21	80-297	Same as above.
)	107	Dötsch, H. and Happ, H.	1964	T	3.24	80-297	Same as above.
	100	Rowe, J.N. and Harrington, J.A.	1976	С	943.4	100-300	Single crystals; grown by the reactive-air spheresprocess; obtained from the Naval Research Lab.; red specimens of 2.5 cm district and ovarious lengths; chemically etched surface; bulk absorption determined at extracted from a figure; data at low temperature carried large uncertainty of (1007; uncertainty diminished toward higher temperatures.

TABLE 26. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF SODIUM CHLORIDE (Temperature Dependence) [Wavenumber, v, cm^{-1} ; Temperature, T. K; Absorption Coefficient, α , cm^{-1}]

7	ć	:	3	T	2	T	a
DATA SET		JATA SÉT	r 3 (2047.)	D414_\$£		SE ATHE	T 11 (CONT.)
- = 3.1	ráit.			v = 7.5	195+0		
		8	3.379: *1			246.0	3.461€-2
9206	8.25+£+2	34	4・うり ましゃし	8	3.5792-2	296.5	7.231E-2
110.0	: = + 3	20000	0.0296 .	33.7	1.2035-1		
_ 2 1 . û	1.2422+3	-2	7.4916+1	150.3	2.076E-1	JATA SE	
	_ + + + 1_ + 3	132.2	0.7106*1	234.6	2.9545-1	v = 9.4	342+2
15700	1.51.1+3		2.00.96.02	296.5	4.92+=-1		
:/>	2.3.42.43	->+	1.1476+2			140.0	1.426E-4
1 12.6	2 37 2 + 3	203.1	33- 6 + 2	DATA SE		124.0	1.5662-4
2:7.	2+3,603	103.4	2.5276+2	v = 6.4	52£+u	143.0	1.3565-4
237.0	2.3452+3	191.0	1.7136+2			174.4	2.16iE-4
67.E	7.1351+3	2:3.5	1.3116.2	83.3	5.86.5-2	199.4	2.7166-4
279.5	3. + > 5 = + 3	43200	4 • 151: +2	93.7	7.9235-2	223.0	3.486E-4
3	3.512.03	27	2 . +2 + +2	156.3	1.3736-1	248.3	4.61; 2-4
332.0	3.5E+3	£75	6.719=+2	2-6-6	1.9815-1	273.0	6.36CE-4
354.5	4.3672+3	3	3 + 44 £ + 2	296.5	3.4266-1	299.0	8.91UE-4
	3.4396+3						
		DATA SET	T 4	DATA SË	T 8		
DATA SE	T ;	V = 3. w		v = 5.3	76E+3		
2			• - •				
		3	4.7-4-6-3	8	3.7:35-2		
37.	3.35.242	37	3.53.2.3	93.7	4.728E-2		
	****	771.7	3	153.3	7.951E-2		
141.4	2.11.2.6	3-7-2	05.1-3	2	1.184E-1		
1.00	0.9312+2	9-7	5.09.6-3	290.5	2.2518-1		
157.0	2.1:75.42	734.5	1.2.76-2		•		
175.0	9.1:1: •2	923.3	7 5 6 = 2	JATA SÉ	T Q		
1,200	1	3:0.2	2 • 250£ = 2	v = 4.3			
4.7.		1.35.2	6.30.4.2	V - 413			
	1.0335.+3	-3330-	E 4 30 2 4 - 2	8	2.1coE-2		
23700		DATA SE	• •	33.7	2.7276-2		
د ۲۰۰۰	1,30,56+3 1,50,46+3	JAI 5: ∨ = 3.6		150.3	4.536E-2		
279.5		v = 3.0	51E+2	2000	6.9452-2		
3	1.11.6+3		3-45-1	236.5	1.3332-1		
332.0	2 7 . c + 3	0		270.7	1.2225-1		
Saç	2.3.32.43	13.7	1-1001-1	DATA SE	* • •		
٠. ٥. ٠	2.0-16+3	155	3.307:-1	V = 3.2			
		<	4.2731-1	V = 3.2	365.76		
JATA SE		250.5	6.7726-1		4 44 35 3		
v # 9.3	1.424a			8	1.1435-2		
				99.7	: -393E-2		
73	i. 07; £+:			156.3	2.235E-2		

Figure 19. Reflectivity of Sodium Chloride

117

TABLE 27. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF SODIUM CHLORIDE

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
1	109	Surnes, R.B. and Czerny, M.	1931	R	43-70.0	293	Crystal; plate specimen; normal spectral reflectivity obtained; silver mirror used as reference; data extracted from a figure; temperature not given, 293 K assumed.
2	101	Czerny, M.	1930	R	44.0-71.4	293	Crystal; plate specimen of about 30 x 40 mm ¹ ; polished top surface; normal spectral reflectivity obtained with a silver mirror as reference; data extracted from a figure; temperature not given, 293 K assumed.
3	101	Czerny, M.	1930	R	35.0-47.0	293	Same as above.
4	102	Carturight, C.H. and Czerny, M.	1934	R	126.0-231.0	293	Bulk NaCl; surface conditions unspecified; near normal reflectivities obtained; linearly averaged values of the tabulated data extracted.
5	110	Baldini, C. and Besacchi, B.	1968	R	0.124-0.187	300	Single crystal; specimen with cleaved surface; back surface of the specimen treated with an emery cloth to reduce the reflection from the back; near normal reflectivity obtained with specimen in vacuum; data extracted from a figure.
6	116	Baldini, G. and Bosacchi, B.	1968	R	0.124-0.179	55	Same as above except at a low temperature.
7	94	Miyata, T. and Tomiki, T.	1967	R	0.157-0.212	78	Single crystal; obtained from the Harshaw Chemical Co. or grown by zone refined from melt; cleaved specimens of 8 mm x 10 mm x 0.2-4 mm; near normal reflectivity measured by an ultra violet spectrophotometer; data extracted from a curve.
8	54	McCarthy, D.E.	1963	T	2.1-50.4	298	Synthetic crystal; plate specimen of 5 cm thick; ground and polished to a flatness of seven fringes or better on both sides; incident angle 30°; data extracted from a figure.

TABLE 28. EMPERIMENTAL DATA ON THE REFLECTIVITY OF SODIUM CHLORIDE [Wavelength,), Lm; Temperature, T, K; Feflectivity, p]

,	ų	λ	ρ	\	ρ	λ	۵	λ	٢	λ	p
DATA S.	.7 1	DATA SE	T 2(00NT.)	DATA SET	3 (CONT.)	DATA SET	S (CONT.)	0.71 6.7		3134 648	
1 = 293	3			5412 361	310011187	DATA SET	310001.1	0414 2E1	6(CONT.)	132 21 M	7 (CGNT.)
		+5.1	3 S6 . u	42.1	i • 30 u	J.156	C.29+5	i.150	C. 35 si		
→ 3 · C		49.3	6.855	+2.2	0.369	ŭ . 157	0.3185	6.157	L. 37 71 V. 3 0 7	3.2163	0-142
42	33	>: . ċ	4.910	+3.ú	0.374	1.159	£.3573	6.158	L. 2673	4.4.35	0.141
45.4	4.724	54.,	u •8 35	43.1	0.377	0.162	C.3192	6.160		0. ĉ1el	258
45.7	754	57.4	4.306	43.8	4.427	6.163	6.2612	6.164	6.2334	4.21.3	0.145
45.5	3.757	51.3	1.8.5	43.9	ŭ. 457	3.165	u.227u	û • 1 c7		6.21.9	w.135
-7.4	2.732	c9	u . 7+5	44.7	3.5+9	0.167	6.2628	6.171	67.1		_
	75	D3.4	(.617	44.8	C.558	J.169	1.1795	6.175	6.1531 6.1410	UHTA SÉT	
>3	6.533	65.9	4.531	45.7	9.659	8.174	u.1588	6.179		7 = 298.	•
52		43.4	0.442	46.6	0.718	U.178	0.1965 0.1445	6.279	(.13.9		
£ 2 • 6	1.71	63.9	6.308		*****	3.183	0.1330	DATA SET	7	2 - 1	
53.7	0.935	7:.3	0.417	DATA SET		U.187	4.1256	T = 78.6	,	5.1	663
j., 3	1.712	7:.4	3.307	T = 293.		••••	C . 12 30	1 - /0.0		7.5	33
j 4 . J			• • • • • • • • • • • • • • • • • • • •		•	DATA SET	4	0.1575	6.403	31	3 3:
: c • 6	3.33-	DATA SET	7 3	120.1	3.196	T = 55.0		6.1565	2.35+	14.7	
57.2	2.227	T = 433.		147.5	ŭ.232	>>. 0		4.1585		15.2	6.626
			- •	174.3	0.179	3.124	6.1164	6.1505 6.15.i	C.315 (.365	47.3	6.315
59.5		35.2	44675	2	0.177	0.126	0.1114			21.1	
55.7	7 3 2	3600	1.133	231.3	4.197	J.126	U.1114	6.1014	6.643	23.7	4.411
94.5	. 012	30.1	0.137	202.0	44171	0.131	0.111→ C.11±7	6.1519	0.237	3 = • :	خ د د د
5 3 . b	4.557	30.1	0.165	DATA SET	5	ù.132	0.1167	4.1622	6. 236	30.7	0.071
03.1	3.54.	30.9	2.2.	T = 300.		J.134		6.1630	235	37	6 - 4 3 3
D 4. 1		37.3	4.214	5.01	•	3.136	6.1119 6.1119	6.2033	Ļo žod	37.5	0,255
64.2	4.534	37.4	3.227	3.124	û.1324	J.137	6.1119	0.1638	(. 244	37.9	ع د د نوز
3		37.7	3.25	ú.ic9	G-1273	2.139		> ۱۰۱۰۰	6.23+	33.4	فهدي
3>.3	6 . 42 .	37.9	6.25 b	1.130	0.1273	9.145	0.1148 6.1137	0.25+3	و33 ، ب	39.4	
55.0	4. 42.2	37.9	0.26 5	3.131	U-1297	J.142		593		***1	3+257
37.0	4.347	37.3	u • 251	2.132	0.1237	4.144	6.1169	4.1725	L.183	41	₩ .29 E
64.5	351	39.0	i . 20:	J.135	0.1233	0.145	G -1169 G - 1117	6.1773	1. 161	46.2	0.375
7	339	33.0	u.c88	3.137	0.1197			6.1500	C. 147	44.5	£.375
		30.7			U-1197	0.146 0.147	1. 76	4 - 1 3 5 6	0.133	4 Ĉ o ĝ	
JATA SE	T 2	31.7	L • 2 5 3	J.:41	5.1169		C . C833	1.1853	133	-3.3	L • 3 • =
1 = 293		39.5	1.257	3.145	0.1169	9.1.8 3.148	C.1612	1.2807	(+131	47.0	4.427
	• •	37.5	u.269	9	0.1113		6.0416	6.19.9	[. 131	45.2	u . 5 t ü
û	2. +56	39.6	6.231	0.153	3985	0.149 0.15L	G. G283	0.1927	(. 133	49.9	¥ • 0 6 5
44.9		44	3.262	3.151	ú.152d		6.1.11	6.1902	G-137	46.2	0.759
47.0	72,	44.4	3.286	J.152	0 · 1 · 2 0	0.151	6.1754		6.16.	***	u • • • • • •
4c. J	729	40.5	Ú.244	J.152	u.1496	J.152 J.153	L.2691	6.2553	141	40.9	0.563
47.3		41.2	u . 28 E	3.155	G.211+		0.3973	5.2312	3.1-3	+7.8	u • 7 9 6
4/+1	795	41.3	u.311	4.155		4.154	6 . 27 86	6.2026	£+ 1++	45.9	4.765
• • •		74.0	4.44	4 + 7 23	0.2565	0.155	G.4533	[.2[.3	u. 144	۶۰ •3	ú •71o

Figure 20. Transmission of Sodium Chloride

TABLE 29. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF SODIUM CHLORIDE

Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, pm	Temperature, K	Specifications and Remarks
1	109	Barnes, R.B. and Czerny, M.	1931	T	33.5-74.7	293	Vacuum evaporated thin film specimen of 0.17 mm thick on celluloid substrate; transmittunce spectrum obtained; data extracted from a figure.
2	109	Barnes, R.B. and Czerny, M.	1931	T	32.3-75.0	293	Same as above except for specimen of 1.35 mm thick.
3	109	Barnes, R.B. and Czerny, M.	1931	T	32.3-75.0	293	Same as above except for specimen of 1.7 mm thick.
4	109	Barnes, R.B. and Czerny, M.	1931	T	34.6-75.0	293	Same as above except for specimen of 2.3 cm thick.
5	109	Barnes, R.B. and Czerny, M.	1931	T	33.5-75.0	293	Same as above except for specimen of 3.4 mm thick.
6	109	Barnes, R.B. and Czerny, M.	1931	T	33.5-75.0	293	Same as above except for specimen of 3.6 mm thick.
7	101	Czerny, M.	1930	Т	35.8-46.3	293	Crystal; plate specimen of 8 mm thick; spectral transmittance obtained; data extracted from a figure; temperature not given; 293 K assumed.
8	i 01	Czerny, M.	1930	T	35.8-47.4	293	Same as above except for other specimen of some thickness.
9	:01	Czerny, M.	1930	T	35.0-44.3	293	Same as above except for other specimen of 14 mm thick.
10	101	Czerny, M.	1930	T	33.4-40.8	293	Sume as above except for other specimen of 19 mm thick.
11	101	Czerny, M.	1930	T	35.8-46.3	293	Sume as above except for other specimen of 24 mm thick.
12	94	Miyata, T. and Tomiki, T.	1967	R	0.159-0.213	78	Single crystal; obtained from Harshaw Chemical Co. or grown by zon refined from molt; cleave specimens of 0.63 mm thick; transmission determined by an ultraviolet spectrophotometer; data extracted from a curve.
13	85	McCarthy, D.E.	1967	T	0.17-3.0	298	Synthetic crystal; plate specimen of 5.0 mm thick with surfaces parallel to within 0.001 mm/mm of length and flat to within 10 fringes or better of the mercury green line; measurements rade on double-beam instruments with accuracy of 12%; data extracted from figure; temperature not given, 298 K assumed.
14	54	McCarthy, D.E.	1963	Т	2.0-21.0	298	Synthetic crystal; plate specimen of 5 cm thick; ground and polish to a flatness of seven fringes or better on both sides; data extracted from a figure.

(wavelength,	٠,		Temperature,	Τ,	Κ;	Transfirsion, T	
--------------	----	--	--------------	----	----	-----------------	--

DATA SET 1 DATA SET 1 (DONT.) DATA SET 2 (DONT.) DATA SET 3 (DONT.) DATA SET 4 (DONT.) DATA SET 5 (DONT.)	λ	τ	*	Ŧ	À	7	λ	T	¥	۲	λ	•
Total Tota	DATA S	:T:	DATA SE	T 1(00%T.)	JATA S	ET 24CONT.3	2 4716	ET 3 (CONT-1	DATA S	ET 4(C0NT.)	DATA SET	5 (0041.)
1.00	1 = 23	٠. د										
1			77	1	73	6.756	1	7 . 5	67.9	C• 63,	67.5	4.500
1	23.5	1.333			74.6	6.553	72	C.732	5 S . L	73 +	69.4	6.599
1			DATA SE	17 2	73.7	166.0	71.4	5.736	69.2	C. 735	75.2	4.026
1.11					75.C	0.918	72.5	ŭ.78o	71.3	u • 71.5	71.4	0.657
13.2 32.3 4.975 34.7 1.900				• •		• •	73.7	842	72.5	763	74.5	075
1			32.3	4.97 9	3414 SI	ET 3	75.6	2.854	75.3	6.879	73.7	4.72+
1					1 = 29.	3		-			73	دوغي
1						- • •	DATA S	il 4	DATA S	ET 5		
1.21					32.3	3.970			T = 29	3. 0	0-14 SE1	٠.
1936 1938 1937 1939 1939 1949 1946 1943 1945												
#2.6	-						3640	2.943	33.5	4.914		•
#5.0											32.5	1.356
1												
7.3												
1,352												
\$1.7												
\$2.0												
31.6 3.72 43.3 4.76 46.0 2.766 43.3 4.733 42.6 4.037 44.0 6.003 5-12 1.334 49.7 1.699 47.3 3.711 43.8 4.722 43.8 4.613 43.8 4.623 43.8 4.623 43.8 4.623 43.8 4.623 43.8 4.623 43.8 4.623 43.8 4.623 43.8 4.624 43.8 4.62												
5-12												
53.3												
\$1.3												
\$7.6	£ 5 . 3											
\$7.6	2.5 4.5											
53.7 3.77 55.4 0.538 54.1 3.544 50.7 0.491 50.7 0.323 52.0 0.300 50.0 1.544 50.5 0.474 55.3 0.510 51.9 0.493 52.0 0.510 51.9 0.296 62.2 0.571 57.0 0.447 55.3 0.510 51.9 0.493 52.0 0.510 51.9 0.296 02.4 0.510 51.9 0.296 02.4 0.510 51.9 0.296 02.4 0.510 51.9 0.296 02.4 0.510 51.9 0.296 02.4 0.510 51.9 0.296 02.4 0.510 51.0 0.296 52.0 0.274 0.205 51.0 0.296 52.0 0.274 0.205 52.0 0.274 0.205 52.0 0.274 0.205 52.0 0.274 0.205 52.0 0.274 0.205 52.0 0.27												
5	57.€											
62.2 J. 77; 57.0 J. 4.7 56.5 0.443 53.6 J. 471 53.6 L. 234 53.6 d. 2474 1.713 50.3 L. 222 57.0 D. 378 54.2 L. 471 55.4 L. 623 54.2 0.274 1.713 1.425 59.9 L. 21.1 53.6 J. 291 59.3 L. 442 56.5 C. 277 54.2 L. 471 1.713 1.425 59.9 L. 21.1 53.6 J. 291 59.3 L. 442 56.5 C. 277 54.2 L. 472 1.713 1.425 59.9 L. 21.1 54.9 L. 135 55.3 L. 451 57.7 L. 452 56.5 54.2 L. 227 1.714 1.715 1.715 54.9 L. 135 55.3 L. 451 57.7 L. 452 56.5 55.3 L. 453 1.715 1.715 1.715 54.9 L. 135 55.3 L. 451 57.7 L. 453 1.716 1.716 1.716 1.716 1.716 1.716 1.716 57.0 L. 134 56.5 L. 134 56.7 L. 444 56 57.0 L. 444 56 57.9 L. 455 57.0 L. 135 56.7 L. 445 56	53.7	1.757	2204									
1.713 38.5 1.322 97.0 0.378 54.2 1.471 55.4 0.263 54.2 0.274 1.713 1.713 59.9 1.711 59.4 0.291 59.3 1.402 56.5 0.275 54.2 1.201 1.713 1.713 59.9 1.711 59.9 0.185 59.3 1.402 57.7 0.201 1.713 1.713 0.11 1.171 59.9 0.185 59.3 0.227 1.714 1.715 0.315 0.311 0.315 0.311 0.315 59.8 0.185 59.3 0.234 1.715 1.715 0.315 0.315 0.311 0.315 57.6 0.351 59.8 0.185 59.3 0.234 1.715 1.715 0.315 0.315 0.311 0.327 57.6 0.351 59.9 0.134 57.0 0.147 1.716 1.716 0.316 0.162 0.164 0.327 59.9 0.109 62.2 0.102 50.7 0.014 1.716 1.716 0.316 0.012 0.012 0.165 0.161 0.161 0.314 0.327 1.717 1.716 0.316 0.012 0.012 0.013 0.012 0.014 1.718 1.719 0.311 0.326 0.719 0.537 0.211 0.311 0.311 0.357 0.359 0.11 0.014 1.718 1.719 0.311 0.326 0.719 0.693 0.45 0.411 0.371 0.450 0.200 1.718 1.719 0.311 0.326 0.719 0.693 0.45 0.411 0.371 0.450 0.200 1.718 1.719 0.311 0.320 0.45 0.411 0.371 0.200 1.718 1.719 0.311 0.320 0.45 0.411 0.371 0.200 1.718 1.719 0.311 0.320 0.45 0.411 0.371 0.200 1.718 1.719 0.311 0.320 0.45 0.411 0.371 0.200 1.718 1.719 0.310 0.310 0.200 0.450 0.411 0.371 0.200 1.718 1.719 0.310 0.310 0.420 0.719 0.450 0.450 0.411 0.371 0.420 0.450 0.4	6.00	2.5.4	50.5									
7:17	62.2	1.577	57.0									
Circ 1.2.3 Oli Cil7 54.9 Uil5 55.3 U.451 57.7 U.cod >>.3 U.227 C5.7 1.9.1 62.2 U.213 61.1 J.155 55.8 U.351 55.8 U.185 55.0 U.453 C5.8 U.321 03.5 U.351 92.2 U.355 55.8 U.185 55.0 U.453 C6.1 U.323 04.5 U.351 57.0 U.355 59.9 U.334 56.5 J.491 C6.1 U.335 05.7 U.354 03.4 0.327 59.9 U.109 62.2 U.122 50.7 U.047 C6.1 U.335 05.7 U.355 04.6 04.445 61.1 U.109 62.2 U.122 50.7 U.004 C7.1 U.335 05.7 U.356 04.6 04.445 61.1 U.109 62.2 U.022 04.7 U.004 C7.1 U.335 05.7 U.357 0	03.4	2.7:5	58.5	6.522	57.0	0.37B	54.2					
Color Colo	7419		ا و و دَ		5 o o d	3.291						
the 1.521 o3.5 v.351 o2.2 s.197 o7.6 v.354 59.9 v.134 50.5 J.190 o6.6 J.323 o4.5 v.457 o3.4 9.331 56.7 0.258 o1.1 C.11u 57.0 v.447 69.1 J.325 o5.7 0.554 o3.4 9.327 59.9 v.109 62.2 t.12 56.7 v.457 70.2 v.333 o6.3 v.062 o4.6 9.445 o1.1 0.141 o3.4 v.652 ov.4 v.457 71.3 1 0 09.0 0.791 o5.7 v.537 o2.2 t.122 o4.5 0.353 o1.1 v.443 71.4 t.325 o3.1 t.626 o7.9 0.693 o4.5 0.411 o5.7 v.460 o2.4 t.408	t t	3	0	2.171	54.9	4.155	55.3					
cb.8 921 03.5 v.351 06.2 y.197 57.6 t.356 59.9 u.134 90.5 J.191 60.6 y.193 04.5 y.193 04.5 0.258 01.1 C.11 57.0 v.147 69.1 y.193.5 65.7 1.554 03.4 y.327 59.9 v.109 62.2 t.142 50.7 t.045 70.2 v.393 00.3 v.092 04.6 9.445 61.1 0.141 03.4 v.625 00.0 v.045 71.1 t.316 03.1 t.026 07.9 0.693 04.5 0.411 65.7 v.480 02.2 t.008	65.7	9	62.2	u.2:3	64.1	3.155	56.5	2.351	53.8		55.3	6.434
68.6		921	03.5	v.351	56.2	9.197	57.6	t.356	59.9	u. 13+	56.5	3.193
69:1			9413	4.457	03.4	3.331	58.7	0.258	61.1	E. 110	57.0	3 - 2 4 7
70.2 0.333 00.3 0.052 04.6 8.445 61.1 0.141 03.4 0.652 00.0 0.445 71.3 1.10 09.0 0.791 05.7 0.537 02.2 0.122 04.5 0.353 01.1 0.448 71.6 0.336 03.1 0.826 07.9 0.693 04.5 0.411 65.7 0.480 02.4 0.408							59.9		62.2	E. i. 2	56.7	L Bi
71.3 1.14 09.4 4.791 05.7 4.537 02.2 6.122 60.5 0.353 01.1 4.445 70.6 4.335 01.1 4.445 00.6 4.45 0.45 0.45 0.45 0.45 0.45 0.450 02.4 6.408											0	
77.1 (.936 03.1 (.826 07.9 0.693 04.5 0.411 65.7 4.450 02.4 6.408												
764, 677,0												
-73.7 1.30m 76.2 6.625 69.1 6.70m 65.6 6.517 66.8 6.529 53.4 4.158				6.025	69.1	0.70-	65.6	4.517	66,8	£.529	53.4	155

TABLE 30. EXPERIMENTAL DATA ON THE TRANSMISSION OF SODIUM CHLORIDE (continued)

À	τ	λ	τ	λ	τ	λ	τ	i,	τ
547A S	el stocki.)	CATA S	it accent.)	DATA SET		BATA SET		CATA SET	14(CONT.;
				T = 293.	ē	T = 3.6.	£.		
64.5	3 75	ب م و ز	J.EZZ					:3.6	C. 157
		42.5	v • ≟ å +	33.,	0.347	4.151	6.05	23.3	6. L#7
05.7	374	40.4	6.154	33.8	3.291	4.133	C • 17	23.2	3.643
50. h	v + ++5	47.4	· • 1 č 4	34.6	0.277	0.203	C • 29		
			_	34.9	1.230	0.203	6.5i		
* 3 • •	\$. 5 ? 3	GATA 3		30.0	0.199	v • c • d	i • 5 5		
֥:		T = 293		35.1	133	0.21.	77		
1.702				52.9	3.154	4 + 2 = 7	€+82		
7	4 . 2 . 3	35	v • 3 à 3	37.3	⊍• ⊾ 6 3	ون ≤ ، ت	C • 5 5		
7	53-	32.5	311	33.1	2.652	J.327	2.89		
72.0	9 + 200	30.4	211	30.5	0.025	3.428	ú.91		
73.5	2.353	37.3	7 :	39.0	0.013	2.552	1.91		
7		33.0		49	u.ú15	v • 5 96	C.91		
73.6	\$ • × 6 =	3000	5.877			370	. 91		
75		→ ₹ • ₽	• • • • •	Jala SET	12	1.15	9.91		
75.0	• • • •	~		T = 73.0		1.40	1.41		
75 · ·	وذبي	41.0	52			1.96	i.91		
		-:.+	J-207	1.15+5		ن ذ ، هُ	6.91		
Jata Sa		46. F	L + L + 7		0.537	2.35	i.91		
i + 47	· -	44.5	6 - 6 - 6 -	J.1600	32	3.,0	0.91		
				\$.1532	1.552				
25.5	• • • • •) mTA 55		1.17.2	i. Ena	J-TA SET	14		
.î ⊌	• • • •	T + 491	i • •	4.17	1.672	T = 293.	•		
	37 3			3.1762	0.569				
39.3	35 4	٠3٠٠	- • 37 -		0.559	2.2	0.511		
	3.046	33.7	. • 37 .	1.1756	Ú• f + 5	5.5	4.911		
+1.6	3. 0	14.0	₩ • C 3 S	3.18.	1.513	10.3	2.367		
• ? • 4	4 • 14 2	3	C+254	1.1813	2.531	12.5	6.900		
~ G. J	152.	30.3		3 3 1	6.000	13.5			
		Jo. 1	173		2.5.3	43	6.5÷7		
7 - 7 - Si		30.3	1-3	3.1871	3.515	15.	i.758		
~ = {4,	•••	37.3	₩•1.58		6.527	15.5	\$.739		
		23.1		2.1.35	3.555	16.1	i.c59		
33.1	1.7+3		4.6-2	1971	1.575	10.8	\$.593		
* 4	3	37.0	30	26	2.725	17.5	526		
: • •	3.3.,	4	3.422	3.2.25	J.739	17.e	6.453		
· · · · · · ·				J . C . + .	0.754	18.1	2.395		
***				زۇ ئەمەن	702	کی ڈی	5.356		
***	w = 23 k			210;	5.773	13.3	0.277		
42.5	22			0.2122	0.777	19.3	6.219		

TABLE 31. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WIDTHS (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN SODIUM CHLORIDE*

Interionic		F ban	d	R ₁ band	R ₂ band	M bar	nd	N bands
dist., d (Å)	Temp.	λ max	W	λ max	λ max	λ max	W	λ max
2.81	RT	(0.471) [±] 0.458 0.465 0.466	0.46 6.47 0.49	(0.547)	(0.592)	(0.701) 0.720 0.725		
	NT	0.470 0.448 0.450 0.452	0.50 0.28 0.31 0.41	0.545	0.596	0.706 0.713		0.823
	HT	0.450	0.25 0.28 0.29					

^{*} Values were taken from Ref. [69].

 $^{^{\}dagger}$ Values given in parentheses are calculated from the Ivey relations [70].

F band $\lambda_{\text{max}} = 703 \text{ d}^{1.84}$ for NaCl structure, $\lambda_{\text{max}} = 251 \text{ d}^{2.5}$ for CsCl structure.

 R_1 band $\lambda_{max} = 816 d^{1.84}$

 R_2 band $\lambda_{max} = 884 d^{1.84}$

M band $\lambda_{\text{max}} = 1400 \text{ d}^{1.56}$

TABLE 32. RECOMMENDED VALUES ON ABSORPTION COEFFICIENT OF SODIUM CHLORIDE IN IR REGION AT 300 K

~1		Absorption Co	Absorption Coefficient, cm^{-1}				
∨, cm ⁻¹	λ, μm	Intrinsic*	Observed+				
			(Selected)				
4.000E+02	25.0	1.9E+1					
5.000E+02	20.0	3.2E+0					
5.010E+02	20.0	3.1E+0	2.5E+0				
5.510E+02	18.1	1.2E+0	1.2E+0				
6.000E+02	16.7	5.3E-1					
6.020E+02	16.6	5.2E-1	5.7E-1				
6.510E+02	15.4	2.1E-1	2.7E-1				
6.998E+02	14.3	9.0E-2	1.0E-1				
7.000E+02	14.3	9.0E-2					
7.508E+02	13.3	3.6E-2	4.1E-2				
8.000E+02	12.5	1.5E-2	1.4E-2				
8.511E+02	11.7	6.0E-3	4.6E-3				
9.000E+02	11.1	2.5E-3					
9.434E+02	10.6	1.1E-3	1.0E-3				
1.000E+03	10.0	4.2E-4					
1.079E+03	9.27	1.0E-4	2.6E-4				
1.100E+03	9.09	7.1E-5					
1.200E+03	8.33	1.1E-5					
1.300E+03	7.69	2.0E-6					
1.400E+03	7.14	3.3E-7					
1.500E+03	6.67	5.6E-8					
1.600E+03	6.25	9.4E-9					
1.700E+03	5.88	1.5E-9					
1.800E+03	5.56	2.6E-10					
1.887E+03	5.30	5.6E-11	3.4E-5				
2.632E+03	3.80	9.4E-17	5.3E-5				

^{*}Intrinsic values were calculated according to Eq. (29) with uncertainties about $\pm 10\%$.

[†]Values in this column are the total absorption coefficient which are either lowest reported or those used to define the constants in Eq. (29). Uncertainties of these values are about ±10%. Values lower than 1.0E-3 carry higher uncertainties up to ±30%.

3.4. Potassium Chloride, KC1

Potassium chloride is widely used in spectroscopy, since its optical properties make it à convenient window and prism material over the spectrum from the ultraviolet to the infrared. The transmission range is about 0.21 to 30 µm. A plate 1 cm in thickness transmits radiation up to 24 µm. Since strong absorption occurs near the transmission limits, the transmission range of KCl is about 0.38 to 21 μm . Of all the substances which are otherwise suitable for optical parts, KCl is transparent over the widest range of the infrared spectrum.

KC1 crystals are grown in the same way as NaC1, but sometimes multiple crystals instead of single-crystal ingots result. Therefore, large prisms are somewhat rare and expensive. As crystal growth techniques improved, crystals 30 cm in diameter are now available.

Measurement of the refractive index of potassium chloride dates back to 1871, when Stefan [86] determined the refractive index of a sylvite prism for the B, D, and F of Fraunhofer lines. Later work, represented by Rubens [112], Martens [87], Paschen [88], and Gyulai [27], provided a large amount of data in the transparent region. Measurements beyond the transparent region were not made until 1934 when Cartwright et al. [102] analyzed the reflection and transmission spectra of KC1 thin films in the infrared region, 126 to 232 $\mu\text{m}\text{.}$ In the low ultraviolet region, Tomiki [113] published values obtained by analyzing the reflection spectra. Refractive index data are now available for a wide wavelength range from 0.106 to 232 μm .

Li [33] reduced the then available experimental data on the refractive index to a common temperature of 293 K and after careful evaluation and analysis adopted a Sellmeier type dispersion equation to calculate the refractive index at 293 K in the wavelength range of 0.18-35.0 $\mu m\colon$

$$n^2 = 1.26486 + \frac{0.30523 \ \lambda^2}{\lambda^2 - (0.100)^2} + \frac{0.41620 \ \lambda^2}{\lambda^2 - (0.131)^2} + \frac{0.18870 \ \lambda^2}{\lambda^2 - (0.162)^2} + \frac{2.62\%}{\lambda^2 - (70.42)^2}$$
(30)

where λ is in units of μm .

Investigations of absorption coefficient for practical applications are generally classified into three wavelength regions: the ultraviolet and the

PRECEDING FAR

far infrared limits of the transparent region, and the transparent regions. In the ultraviolet region, the main motivation for the study was to investigate and to determine the Urbach-rule parameters.

Roessler and Walker [91] determined the absorption index for KCl, in the spectral range from 0.047 to 0.248 µm, by a Kramers-Kronig analysis of the reflectance spectrum. Evidenced by the strong temperature dependence of reflectance in the exciton region and the appearance of spin-orbit split doublets, the surfaces of the KCl specimen examined were near perfect. Kobayashi and Tomiki [93] studied the effects of impurities on the absorption coefficient and found significant shifts in the position of the fundamental absorption edge and an absorption band at $0.204 \ \mu m$. The latter is due to the presence of OH ion as an impurity in KC1 grown in air. However, the shift of the position of the edge may not be caused by the OH ions; it may be due to the presence of bromine and/or dislocation in the crystals. Tomiki [114] and Tomiki et al. [77] studied the absorption of KCl in the wavelength region between 0.1 and 0.4 µm for the purpose of determining the Urbach-rule parameters and finding the features characteristic of the intrinsic tail. Through a systematic observation and analysis made at various temperatures they found the following empirical relations between some parameters

$$E_{o} \approx 7.834 \text{ eV}$$
 $\alpha_{o} \approx 1.26 \times 10^{10} \text{ cm}^{-1}$
 $hf \approx 13.5 \text{ meV}$
 $\sigma_{SO} \approx 0.745$

for the expression of absorption coefficient of the intrinsic tail

$$\alpha = \alpha_{o} \exp \left[-\sigma_{s}(T) \left(E_{o} - E\right)/kT\right]$$
 (31)

where

$$\sigma_{s}(T) = \sigma_{so} \frac{2kT}{hf} \tanh \frac{hf}{2kT}$$

Measurements of the absorption coefficient for the infrared transparent region are just recent occurrences as the development of high-power IR lasers has led to a need for better characterization of IR window materials. Among other things, the absorption coefficient plays a decisive role in determining whether a material is adequate for laser optical components. For this reason, absorption coefficients of a number of selected materials were investigated at wavelengths of laser interest. Potassium chloride is among the best laser

window materials and its absorption coefficients at wavelengths 1.06, 2.7, 3.8, 5.3, and 10.6 µm were intensively studied in order to determine the influencing factors that contribute to the extrinsic absorption. These studies are very informative and provide clues and means for material preparation and parts fabrication in order to minimize the extrinsic components in the absorption.

To see whether or not certain intrinsic mechanical and optical properties at $10.6~\mu m$ could be achieved with the polycrystalline KCl, investigations were made on KCl specimens with various dopants. Shrader [115] observed that while the $10.6~\mu m$ absorption coefficients of the tested specimens were, in general, about the same magnitude as that of a pure KCl sample, $8.9~x~10^{-4}~cm^{-1}$, the absorption coefficients of doped KCl in the uv region are very much higher than the pure specimen.

Hass et al. [116] studied the infrared absorption in KCl single crystals near 10.6 μm using calorimetric techniques. They were able to separate the surface and bulk absorptions and a value of 8 x 10⁻⁵ cm⁻¹ was assigned to the bulk part which is close to the estimated intrinsic limit of the crystal. They also found that an absorption band near 9.8 μm was present in all samples examined and appeared to be largely contributed by the surface absorption. The existence of this surface absorption band prevents observation of the intrinsic. They concluded that careful preparation and finishing of KCl crystals can give a near intrinsic absorption level at 10.6 μm .

Harrington and Hass [78] investigated the temperature dependence of multiphonon absorption at 10.6 μm for KCl samples. The absorption coefficient and its temperature dependence have been observed to vary markedly from sample to sample. In most cases, the absorption coefficient below 600 K is essentially independent of temperature. For purer samples the absorption coefficient increases more sharply at higher temperatures as would be expected for intrinsic behavior.

Boyer et al.[117] studied the temperature dependence of the absorption coefficients of pure KC1 crystals at 10.6 µm from room temperature to within 50 K of the melting point, using laser calorimetric techniques. Crystals from a number of different sources were employed and the lowest absorption coefficient was observed with a crystal grown in a CC1, reactive atmosphere designed to minimize the introduction of oxygen-containing impurities. The temperature

dependence of the absorption is observed to be very sensitive to impurities, but for the best crystal with the lowest absorption, the dependence monotonically increases, which is anticipated for near-intrinsic absorption of the crystal. However, there always exists a surface absorption band at 9.5 μ m whose wing contributes to the total absorption at 10.6 μ m. When this surface component is subtracted, the bulk absorption coefficient is 8 x 10⁻⁵ cm⁻¹, which is in good agreement with other investigations. It has been experienced by many workers that the surface absorption can be considerably reduced by appropriate chemical polishing.

Deutsch [12], using a differential technique with a dual beam spectrometer, obtained absorption coefficients in the wavelength range from 13.3 to 32 μm for both single crystals and polycrystalline KCl provided by different suppliers. It was found that within the accuracy of the measurement, the long wavelength absorption coefficients of the polycrystalline KCl are the same as those of the single crystal. Furthermore, it was also found that the experimental data could be represented by an exponential relation of the form

$$\alpha = \alpha_0 \exp(-v/v_0) \tag{32}$$

where

$$\alpha_0 = 8696 \text{ cm}^{-1}$$
 and $v_0 = 50.8 \text{ cm}^{-1}$

This relation was believed to represent the intrinsic absorption of KC1. The extrapolated absorption coefficient at 10.6 μm is approximately 8 x 10^{-5} cm⁻¹, which is somewhat lower than the measured values, 5 x 10^{-4} cm⁻¹ and 3.5 x 10^{-4} cm⁻¹, for high purity samples. In a later study, Deutsch [118] reported the CO_2 laser calorimeter measurements on the 5.3 and 10.6 μm absorption coefficients of numerous KC1 crystals with provisions made to eliminate the effect of surface absorption. One of the crystals showed a 10.6 μm absorption coefficient of 6.6 \pm 2 x 10^{-5} cm⁻¹ which corresponded to the predicted intrinsic value by the exponential relation, Eq. (32). It was then estimated the surface absorption to be 1.1 \pm 2 x 10^{-4} per surface and, thus, the total absorption was dominated by surface loss. The lowest value of the 5.3 μm absorption coefficient he obtained was 1.5 x 10^{-5} cm⁻¹.

Hass et al. [119] measured absorption coefficients by calorimetric techniques at 1.06, 2.7, and 3.8 μm for a number of KCl samples. The results at 1.06 μm are generally in the 10^{-5} cm⁻¹ range with the lowest reported at 7 x 10^{-6} cm⁻¹

which is very close to the limit of the method used. However, at wavelengths 2.7 and 3.8 μ m, their best measurements were 3.7 x 10^{-4} cm⁻¹ and 2.1 x 10^{-4} cm⁻¹, respectively. Compared with the absorption coefficients at 1.06 and 5.3 μ m, the data imply excess absorption at 2.7 and 3.8 μ m even in the purest available crystals. This has been observed not only in the KCl crystals but also in a number of low absorption alkali halide and alkaline each fluoride crystals. The cause of such excessive absorption was not understood. They suggested the possibility of being attributable to the OH and CH impurities. If these were eliminated, the absorption level at these wavelengths could be reduced to 10^{-5} cm⁻¹ range or lower.

Klein [120] investigated the origins of the extrinsic absorption at 2.7 and 3.8 μm . Correlation with vacuum-ultraviolet absorption measurements indicated that all of the excess 2.7 μm absorption can be accounted for by the OH content of the crystals. At 3.8 μm , the surplus absorption in the specimens are most likely contributed by the carbon-oxygen lineages, e.g., COF_2 , CO_3^{-2} , HCO_3 . Klein s ggested that diminished residual absorption at these wavelengths can be achieved by substituting hydrogen chloride for carbon tetrachloride in purification procedures and treating the salt below its melting point.

Hass et al. [97] used an improved laser calorimetric technique in the determination of the 10.6 μ m absorption coefficient of the material. As time elapses, the effect of surface absorptions and other contributions is reflected by the increase of slope at equilibrium. As a consequence, the surface and bulk absorptions can be separated by this technique. The bulk 10.6 μ m absorption coefficient of KCl obtained by this method is 8 x 10⁻⁵ cm ¹.

The currently available lowest bulk absorption coefficients of KCl in the laser wavelength region were obtained by Allen and Harrington [98]. Since all of their calorimetric measurements were performed on one pure sample and at one laboratory, their results provided a more consistent and exact description of the dependence of the absorption on laser wavelength. All of their results are below 6 x 10^{-5} cm⁻¹ level with the lowest value, observed at 5.3 μ m, of 5 x 10^{-7} cm⁻¹ which is at the limit of their instrument sensitivity. Earlier investigations of wavelength dependence of absorption by Rowe and Harrington [121] and others yielded considerably higher results than this data set.

It has been found that the following facts are common to all of the measurements in the laser wavelength region:

- 1. Surface absorption predominates at low bulk absorption levels. As a consequence, the observed total absorption is higher than the bulk. The surface absorption band at 9.6 µm is strong enough to mask the intrinsic behavior of the crystal in the wavelength region centered at 9.6 µm.
- 2. Absorption due to impurities contributes to bulk absorption as well as to surface absorption. At wavelengths 2.8 µm and 3.8 µm, absorptions due to hydroxyl ion and oxygen impurities are particularly outstanding.
- 3. It appears that the above mentioned extrinsic absorptions may render the crystal an unfavorable window material. It has been found, however, that the objectionable extrinsic absorption can be reduced through improved purification and polishing processes.
- 4. Low total and bulk absorptions, of the order of 10⁻⁶ cm⁻¹ or less, were found, at wavelengths 1.03 and 5.3 µm. Although this value is still very much higher than the respective intrinsic limits, the results represent the limit of instrument sensitivity. Were the sensitivity of the instrument increased considerably, one might be able to observe very low absorption.

Figures 21 to 24 are plots of the available data. The pertinent information for each data source and the corresponding original values are given in Tables 33 to 36. In addition, available information and data on the reflectivity and transmission are also presented in the same manner (in Figures 25 and 26 and Tables 37 to 40), for completeness and comparison. For the visible and near visible regions, Table 41 gives the spectral positions of the well known color centers. Noticeable absorptions are likely to occur at these centers when the crystal is exposed to ultraviolet, x-ray, or high energy radiation. However, these absorption bands may disappear at high temperatures or by appropriate radiation, corresponding to the so-called "thermal and optical bleaching of color centers."

The recommended values given in Table 42 were calculated from Eq. (32). In the range between 10 to 32 μ m, these values are supported by measurements

of Deutsch [12]. At other laser wavelengths, the observed values are generally higher than the calculated ones because of extrinsic contributions due to surface contamination and impurities. Current research has shown that the extrinsic absorptions can be reduced through improved techniques of sample preparation. Therefore, intrinsic values may serve useful purposes. It should be noted that the values in the "intrinsic" column are the lowest limits that we can obtain for ideal samples. In practice, the observed values are generally higher than the limiting values at low absorption levels. Unless values appear in the "observed" column, the limiting values are considered as guidelines for estimation and investigation.

Although it was not the intent of this study to evaluate the absorption data in the vacuum ultraviolet region, in order to provide the users a total picture of the available absorption data, plots of available data in this region are given in the Appendix of this report.

Figure 21. Absorption Coefficient of Potassium Chloride (Wavenumber Dependence)

Figure 22. Absorption Coefficient of Potassium Chloride in the Urbach Tail Region

Figure 23. Absorption Coefficient of Potassium Chloride in the Multiphonon Region

TABLE 33. SUMMARY OF MAMURIMENTS ON THE ALSOMPTION COLFFICIENT OF POTASSIUM CHRONIDE (Management Dependence)

Set No_	Ref. No.	Author(s)	Year	Method Used	Range, cm 1	Temperature Range, K	Specifications and Remarks
1	91	koessler, D.M. and Malker, W.C.	1968	R	5.80×10*-2.1×10'	300	Single crystal; obtained from the Barshaw Chemical Co. or the Westinghouse Electric Corp.; absorption coefficients derived from a Brance-Bronig analysis of the near normal reflection spectra; data extracted from a table.
2	122	Antinori, M., Balzarotti, A., and Pincentini, M.	1973	Ř	1.04x10 ³ -1.66x20 ⁵	293	Single crystal; obtained from the Harshaw Chemical Co.; specimen cleaved in air just before being mounted in the sample chamber to be vacuum purped; reflection spectrum obtained with a conochromater of bond width 1.5 Å; poetra obtained on the same specimen after 24 hours did not show significant channes and reproduced attained extractly of about 5.; absorption coefficients derived by comes of the Krieto-Kronig analysis of the reflection spectral obtained in this paper from 13.5 to 20.5 eV, below 13.5 eV reflectivity data of Tomiki utilized while those of Plechschmidt et al. used beyond 20.5 eV; data extracted from a figure:
3	116	Hans, M., Invisson, J.W., Flein, 7.H., and Boyer, L.L.	1974	с	9.2×10 ² -1.02×10 ³	300	Single crystal; grown by the Bridgean rethod in a cerbon tetraculoride atmosphere; window specision chemically polished in concentrated BCI; absorption coefficients to sured with a tunable CO; laser by calorimetric actiod; the total absorption coefficient (balk absorption + surface absorption coefficient (balk absorption + surface absorption band mear 9.8 mm prevents asservation of U.Ik absorption.
4	102	Cartwright, C.B. and Czerny, M.	1934	ī	49-92	293	Crystal; thin plate specimen of 123 mr thick; absorption coefficients deduced from transmittunce and thickness measurements; data extracted from a figure.
5	102	Cortvright, C.H. and Crerny, N.	1934	T	43-91	293	Similar to above except for a specimen of 163 mm chick.
ů	102	Contaright, C.H. and Coerny, M.	1934	т	42~94	293	Similar to above except for a specimen of 256 cm thick.
7	102	Curtwright, C.H. and Czerny, M.	1934	Ţ	42-70	293	Similar to above except for a specimen of 347 cm thick.
s	103	Blockschmidt, D., Elucker, R., and Ssibowski, M.	1569	ĸ	9.5x10 ⁴ -2.5x10	293	Single crystal; provided by Karl Kurth, kiel, Cor may; freshly cleaved specifica; absorption co.fflerents derived with the reflectivity versus angle of incidence cothod; data extracted from a figure.
9	93	Kohayeshi, K. and Tomiki, T.	1961	т	5.6×10*-5.73×10*	299	Urystal; specially parified; containing fro thus of 9×10 ⁻¹ in mole fraction, divalent retailing for to parities of 1×10 ¹⁵ per ce and hydroxyl ions of 2×10 ¹⁵ per ce; transittances at the absorption tail measured with a vacuum ultraviolet spectrophotometer; data extracted from a figure.
: 0	93	Kebayashi, K. and Louki, T.	1961	T	5.5x10"-5.7x10"	327	Same as above.

TABLE 33. SUMMED OF MEASUREMENTS ON THE ADSORPTION COEFFICIENT OF POIASSIEM CHLORIDE (Playenmenter dependence) (continued)

Set Set	Ref. No.	Author(s)	Year	Method Used	Wavenumber Range, cm 1	Temperature Range, K	Specifications and Semarks
:1	93	Keb.yashi, K. and Toriki, T.	1961	т	5.45×10"-5.6×10"	373	Similar to above except at a higher temperature.
12	93	Pobayashi, K. and Tomiki, T.	1961	τ	5.35x10"~5.53x10"	420	Similar to above except at a higher temperature.
13	93	Kobayasni, K. and Tomiki, T.	1961	T	5.25×10°-5.44×10°	469	Similar to above except at a higher temperature.
14	124	Deutsch, T.F.	1974	T	8.0x10 ² -1.25x10 ³	298	Single crystal; bar specimens of 6.4 cm long; absorption coefficients determined from transmission reasurements; data extracted from a figure.
15	12	Deutsch, T.F.	1973	τ	5.0x10 ² -7.5x10 ²	300	Single crystal; obtained from the Harshaw Chemical Co.; specimen of 2.54 cm diameter and 2.54 cm thick; absorption coefficients determined using a differential technique with a dual-beam spectrophotometer; data extracted from a figure.
16	12	Doutsch, T.F.	1973	T	5.98×10 ² -7.53×10 ²	300	Similar to above except for an Optovac single crystal.
17	12	Doutsch, T.F.	1973	ī	$4.49 \times 10^{2} - 7.50 \times 10^{2}$	300	Similar to above except for a Harshaw polycrystalline.
15	125	Tomiki, T.	1966	Z	5.6×10*-6.2×10*	4.2	Single crystal; obtained by a zone retining in chlorine atmosphere following vacuum distillation; cleaved specimens of 0.0175 cm to 0.497 cm thick; absorption coefficients deduced from reflectivity and transmission; data extracted from a figure.
19	125	Tomiki, T.	1966	z	5.6x10'-6.2x10'	81	Similar to above except at a higher temperature.
20	125	Tomiki. T.	1966	z	5.6x10"-5.8x10"	295	Similar to above except at a higher temperature.
21	126	Philipp, H.R. and Chreureich, H.	1963	R	5.8×10 ⁴ -1.83×10 ⁵	298	Single crystal; obtained from the Harshaw Chemical Co.; absorption coefficients deduced from reflection spectrum; data extracted from a figure.
22	127	Kobuyashi, K. and Tomiki, T.	1960	R	5.3x10 ⁴ -5.52x10 ⁴	285	Single crystal; grown by vacuum distillation; cleaved specimens of 0.6-1.0 mm thick; absorption coefficients measured with a vacuum ultraviolet spectrophotometer; data extracted from a figure.
23	128	Johnson, K. and Bell, E.	1965	R	5.89×10 ² -2.86×10 ²	300	Single crystal; well polished single surface; reflectivity and phase simultaneously reasoned by asymmetric Peuricr-transform spectroscopy and absorptica coefficients deduced from the measurements; data extracted from a figure.
24	105	Ikezawa, M. and Nasu, K.	1973	R	9.0x10 ¹ -1.3x10 ²	1.8	Single crystal; grown from pure synthesized penders distilled in vacuum and zoned refined in a quartz tube in elderine gas; cleaved; peacetry not specified; data taken from a cuive.

TABLE 33. SUMMARY OF MEASUREMENTS ON THE ADSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence) (continued)

Set No.	Ref. No.	Author(s)	Year	Method Used	Navenumber Range, cm ⁻¹	Temperature Range, K	Specifications and Remarks
25	115	Shrader, E.F.	1974	С	943.4	298	Pure crystal; polished disc specimens of 1 cm thick; absorption coefficient measured by calorimetric method; averaged value of the measurement 0.00089 cm ⁻¹ ; absorption coefficients of doped KCI samples also measured with results of similar order of magnifude as that of pure crystal, temperature was not specified, 298 K discussed.
26	9,	Hass, M., Davison, J.W., Rosenstock, H.B., and Bubiskin, J.	1975	С	943.4	298	Single crystal; grown in reactive atmosphere; rectangular patallelepiped specimen of length 6.9 cm; all six sides chemically polished; laser calorimetric method used and the thermal rise curve obtained; bulk absorption coefficient actermined based on the initial slope of the curve.
27	93	Allen, S.D. and Harrington, J.A.	1978	С	943.4-3571	298	Single crystal; grown by a reactive atmosphere process; rod specimen of 1 cm ² x 13.97 cm; calorimetric method used; bulk absorption coefficient; data extracted from a figure.
28	119	Hass, M., Harrington, J.A., Gregory, D.A., and Davison, J.W.	1976	С	943.4,3571,2632	298	Single crystal; highly purified and polished rod specimens; measured with laser calorimetric techniques; data entraced from a table; origins of higher absorption at 2.7 and 3.8 in due to impurities in bulk material and surface contamination.
29	118	Deutsch, T.F.	1975	c	1887	298	Single crystal; rod specimen; calorimetric method used; duta extracted from a tuble.
30	129	Mentzel, A.	1934	T	222-455	298	Single crystals; thin film and plate specimens of thickness from 16 µm to 10 mm; absorption coefficients determined from transmission measurements; data extracted from a table.
31	129	Mentzel, A.	1934	2	422-769	298	Single crystals; plate specimens of 10.7 mm to 1 cm; trans- mission measured by Ruben and Trombridge [175] in 1597; incorporated with reflectivity obtained in this reference, the absorption coefficient determined; data extracted from a table.
32	23	Genzel, L., Happ, H., and Weber, R.	1959	T	3.1-33	298	Crystal; plate specimens of 2.5, 5.0, and 35.0 cm thick; transmission measured and absorption coefficient determined; data extracted from a figure.
33	114	Toolki, T.	1967	Z	6.1x10*-6.8x10*	10	Single crystals; zone refined in the discophere of coloride after the process of the vacuum distillation from the st rting powder; specimens with cleaved surfaces; absorption coefficients determined from reflectivity and transmission becausements; data extracted from a figure.
34	114	Tomiki, T.	1967	Z.	5.6x30*-6.7x10*	78	Same as above.
35	114	Tomiki, T.	1967	2	5.6x104-6.2x104	85	Same as above.

TABLE 33. SUPMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence) (continued)

Set No.	Ref. No.	Author(s)	Year	Nethod Used	Wavenumber Range, cm	Temperature Range, K	Specifications and Remurks
36	114	Tomiki, T.	1967	z	5.5x10 -6.2x10	183	Same as above.
37	114	Tomiki. T.	1967	Z	5.4x10 -6.8x1C*	295	Same as above.
38	114	Tomiki, T.	1967	z	5.3x104-5.7x104	373	Same as above.
39	114	Tomiki, T.	1967	z	5.8x10 -6.3x10	387	Same as above.
40	114	Temiki, T.	1967	2	5.0x104-6.3x104	477	Same as above.
41	114	Tomiki, T.	1967	Z	4.8x10*-6.8x10*	573	Same as above.
42	99	Rosenstock, H.B., Gregory, D.A., and Harrington, J.A.	1976	c	943.4	298	Single crystals; obtained from the Naval Research Lab., the Harshaw Chemical Co., and the Raytheon Corp.; mechanically polished and chemically cleaned with spectrograde CCI.; lawer calorimetric method used; duta taken from a table; it was found that the surface absorption was about 45 times higher than the bulk absorption.
43	121	Rowe, J.M. and Harrington, J.A.	1976	С	943.4-1048	300	Single crystal; grown by the early reactive-atmosphere- process; chemically etched surfaces; total absorption coef- ficient determined with luser calorimetric method; higher absorption near 9.6 µm due to extrinsic sources; data taken from a figure.
44	121	Rowe, J.M. and Harrington, J.A.	1976	с	943.4-1048	300	Similar to above except for samples grown by improved reac- tive-atmosphere-process and absorption newn 9.6 µm decreased.
45	121	Rowe, J.M. and Harrington, J.A.	1976	С	943.4-1048	100	Same as above.
46	121	Rowe, J.M. and Harrington, J.A.	1976	С	943.4-1048	200	Same as above.

TABLE 34. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence)

[Wavenumber, v, cm⁻¹; Temperature, T, K; Absorption Coefficient, a, cm⁻¹]

ν	2	ν	a	v	4	ν	a	ν	a	v	a
DATA SET :		DATA SET	1 (CONT.)	DATA SET	1(CONT.)	DATA SET	1(CONT.)	JATA SET	1(CONT.)	132 2146	2(CONT.)
T = 3.3.0	-										
		1.023:+5	6.95 - +5	1 245 +5	1.467E+6	7.053E+4	1.337E+6	6.210£+4	1.3974 +0	1.5466+5	9.430E+5
2.1972+5 2	2.0352+5	1.0252+5	7.90+E+5	1	1.5135+6	7.0456 +4	1.355 E+6	6.2626+4	1.4200+6	1.5322+5	5.2566+5
4.4395+5		1.0216+5	9.1006+5	1.8162+5	1.532E+6	7.513E+4	1.3972+6	0.1946+4	1.4482+0	1.5.26+5	9.294E+5
2.601:+5	3.001.6+5	1.6174+5	9.9561+5	1.1.22+5	1.526 €+6	7.5812+4	1.4416.06	6.1856+4	1.4612+6	1.5.06+5	8.22.6+5
2.250.+5		1.013:+5		1.4.62+5	1.4.7E+6	7.540£+4	1.364446	6.177£+4	1.4936+0	1936+5	7.4402+5
2.1162+5	5.3745+5	1.0.96+5	1.4922+5	9.9195+4	1.271E+6	7.5CLE04	1.2826.6	6.1696+4	1.4896+6	1.483:+5	6.7762+5
1.3002+5	5.9126+5	1.6.52+5	1.1396+6	9.0776+4	1.069E+E	7.4192+4	1.0546+6	6.1016+4	1.4716+6		0.5165+5
1.952:45		1.5372+5	1.1442+5	9.375=++	7.0412+5	7.2552.44	0.3325.45	6.1532+4	1.4542 00	1,404645	6.32+3
1.994245	6.1152+5	1.5812+5	1.132: +5		6+9322+5	7.177£+4	5. 753E+5	0.1456+4	1.+292.+6		t
1.9351+5	C 51 £ +5	1.0002.+5	1.14.610	9.1135+4	6.4135+5	7.0162+4	4.7612+5		1.383: **	4.44.615	
1.927:+5	6.3572+5	1.5432+5	1.1. 35+6	9.0325+4	ó.ú1óE+5	6.935E+4	4.445 £+5		1.350=+6	1.+27:+5	
1.927:+5	6.455£+5	1.432c+5	8.3565+5	8.9525+4	5.8492+5	6.895£+4	4.4192+5	0.1131+4	1.207:+0		6.532645
1.8576+5	6.877±+5	1. +0.2+5	0.37:215	3.9116+4	5.599E+5	6.8558.44	4.3932+5		1.679: +0	263:45	
1.571:+5	7.2395+5	1 526+5	6.7495+5	8.871£+4	5.239E+5	6 • 315 £ • 4	4.4536+5		7.1452+5	1.445245	
1.8035+5	7.4912+5	1.444645	6.7:26+5	8.7942+4	4.529E+5		4.437£+5		3.7752+5		6.50.245
1.5532.00	7.7292+5	5	6.917£+5		4.4872+5		4.341E+5		1.5GCE+5	1.3636.0	
455: +5	7.3255.5	2355+5	7.5.3:+5		→•297£+5		4.161:+5		1.48][+4		5.50(2+5
1.7-7:+3	1 252 + 5	えゅぶさアニキラ	0.9766+5		4.3635+5		3.3936+5	5.806è+4	7.2972+3		3.44×£ +5
1.79:215	7.5342+5	1 . 37 32 +5	6.9321.5		4.5322+5		3.365€+5			1.337:+5	
1.782:+>	7.4572+5	1.3722+5	6 . 3 9 . 5 + 5	8.3475+4	4.51JE+5		2.7426+5	DATA SET			4.7.46.45
1.7742+5	7.13+2+5	1.347245	5 . 3236+5		¬•175€+5		2.7262.5	T = 293.	•	1.32.20	
1.700245	0 - 11 - 2 + 5	よっちょうこりう	4.2955+5		4.631E+5		2.7916.5			1,6376.42	
1.75 41+5 (0.0232+5		4.2636.+5		3.889E+5		2.948E+5		7.2712+5		4.3
751 + 5	5.537:+5	2 . 6 9 1 2 + 5	4.1792+5		3.7506+5		3.0265+5		7.5 132+5		4.525
1.73+1+5	7.4.3:+5		4.5206.+5		3.63.2+5		3.1866+5		7.8402+5		4.72
1.7201.05	3.07,2+5		4.74×£+5		3.7202+5		3. 5045+5		8.3 6.6 +5	1.417647	
1.71 (1+5			5.3996.05		3.9(56+5		3.82.6+5		9.2212.5		5.613645
2.7242.05	1.075:+6		5.8736.15		*.:38E+5		4.378E+5		1.0.00.00	1.19.215	
1.7145.5	1.117:+6		7.00.26.+5		4.5682+5		4.7716+5		1.1952 +6		0.1502.15
7. 5. +5			7.7456+5		5.7312+5		5.0+62+5		1.1965+0		6.4.35.
1.7.2:+5			8.1912.5		7.176E+5		7.2652+5		1.16-2 +0		6.5568+9
1.0941.	175:+6		9.23-6+5		9 35E+5		8.3362+5		1.152=+0		0.71.215
1.0052+5	1.3436+6		1.0.36+6		1416+6		1 435+6		1.162: +6		7.3:.:+5
1.065±+5			1.0472+6		1.1672+6		1.1276+0		1.191.+0		7.32.5.5
			1.1235+0		1,163E+6		1.21:E+6		1.12+= +0		0.4362+5
1.657215			1.181E+6		1.218£+6		1.2+9E+6		1.016: +6		8.9232.5
1.6:3:+5	6+5+92+5		1.2426+6		1.2-6E+6		1. ¿94 E+6		9.910.+5		9.44.245
2.043:45	0.4675+5		1.3LZL+0		1.2742+6		1.3326+6		1.002: +5		5.63.645
1.0-::-5	c.522c+5		1.362=+6		1.301E+6		1.3:15+6		1.6742+5		1
1.6375+5	ġ∙ġ\$£+ÿ	1.3282+5	1.4216+6	7.661E+4	1.3198+6	6.2136+4	1.3996+6	1.561£+5	1.0626+5	1.4736+>	1.0502+6

TABLE 34. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence) (continued)

v	2	ν	a	y	a	v	a	ν	à	ν	ù
JATH SET 20	SUATA)	JATA SET	SCCONT.1	0414 SET 1 = 293		DATA SET	8 (CCNT.)	DATA SET	TO (COAL")	732 ATAC .ees = 7	
1722.5 1.	71500	6.9695+1	>.7978+1	1 - 2730	•	1.345845	6.2146+5	5.5465+4	1.4056+4	4730	•
1.0002.5			3.0296+1	2.4855+5	7.5876+5	1.3.36+5				1.245: +3	6.3.62-5
612+5 1.			1.3916+1	2.426.45			4.1935+5	GATA SET	11		1.3:46.4
1.057:+5 1.		***,000		2.3792+5			4.7598+5	1 = 373.			3
1.6525.05		DATA SET	5	2.35.2+5		1.4256.45					7.8
1.1.51.5		7 = 193.		2.3.85.45		1.1991+5	5.1692+5	2.0.2244	1.082.02	3=6+3	7.2
			•	2.2538+5			5.7645+5		7.7802.41		9.4
JATA SET 3		i dalata	7.5746+1	2.4582.5		1.1391.5	6.663£+5	5.5625++	5.1 126 +1	1.16.2+3	1.23
T = 3			6.979E+1	2.2376+5	5.5272+5	1.1166+5	7.91 t E+5	5.5485+4	1.8285 +1	1-1-75+3	1.7132-3
			0 31 L + 1	2.2212+5	5.3456+5	1	1.3542+6	5.529:++	1.0112.1	1.135:+3	7.2-3
1.6782+3 5.	75.2.4		5.30+1+1	2.1916.5	3.646E+5	1.03-2+5	1.447E+6	5.51 EE+4	6.745E+C	1.1226+3	2.6205-3
1.474=>3 5.			4.54:61	2.1-25.5	1.6:16+6	1.7216+5	1.54[. 6	5.5.6. **	5.0126.4	1.1336+3	3.6206-3
55.+3 2.			5.467E+1	2732+5		9.8318+4	1.174E+6	5.4352+4	2.7546+-	1.,036+5	5.00:1-3
1.1552+3 0.	17	5	2.8.26+1	2.6475+5	1.1595+6	9.7128+4	1.6682+6	5.4552+4	1.0000	1.0518+3	6.11.2.I
1.1501 5.	51.2-4	4.3076+1	4.1736+1	2.4275+5	1.593E+6	9.532E+4	9.7515+5			100432+3	c.422E-3
1.355.43 5.				1.9736+5	3+3510.1			DATA SET	12	1.337E'3	6.54.0-3
1.434:+3 5.	91,6-4	JATA JET	6	1.9005+5	9.6552+5	DATA SET	9	T = 426.	3	20.29293	t.5462-3
1.33.2+3 6.	23	Y = 293.		1-919:+5	9.4512+5	T = 299.	٥			1 272+3	6.33.2-3
1.627:+3 7.				1.8022+5	9.6502+5			5.5245+4	1.0 63 6 + 2	4.353c+2	5.30LE-3
9.51-1+2 2.	. →32 t-+	9.3762+1	7.879: +1	1.36.2+5	1.L2JE+6	5.7275+4	1.6565+2	5.5152+4	7.7822+1	9.78.2+2	4.5:58-3
9.760: +2 2.	2235-4	8 5 + £ + :	0.0746+1	1.0-(E+5	ニ・レーラモ・6	5.7246+4	7.7862+1	5.499=+4	5.012:+1	9.05.2+2	3.73.2-3
4.7: +4 2.			5 . 9. 36 +2	1.817245			3.0122+1		1.323241		2.47uE=3
9.0532+6 4.	とつよこつち	E. 472c+1	5.12+6+1	1.7966+5			1.828£+1		1.0002		1.0636-3
9.6152+6 6.		j,4246+1	4.161E+1	1.7812+5			1.6766+1		6.7482+6		4.2008-4
9.5245+6 1.			3.3246+1	1.7452+5			6.745E+G		5.6 12E+6		1
7.479:+6 1.			2.0+0:+1	1.75,6+5			5.1126+6		2.7546+6		2.0:02-5
7.4342+2 i.			2.4766+2	1.7316+5			2.7548+6	5.359£+4	1-0:0E+C		1.02005-4
9.3981+2 2.	ب=غرۇن.	+.223E+1	£.43.£+i	1.7115+5		5.006.644	1.0000+0				8.3.62-4
9.255.04				1.6772+5				DATA SET			4.20CE-4
9.3.2206 2.		DATA SET		1.6455+5		CATA SET		1 = 469.	Ÿ		E.3.,E-+
9.295272 6.		1 = 293.	i		1.1175+6	T = 329.	€				8.91.25-4
9				1.0.85.+5					1.0365+2	9.7605.5	1.3765-3
4.2.86+4 4.	40 Ú C = 4		5.5476+1		1.1676+6		1.CCCE+2		7.75.6.1		
			4.8951+1	1.5516.5			7.7 EL E+1		5.012.+1	CATA_SET	
GATA SET 4			3.971E+1	1.5242.5			5.1126+1		1.9 28=+1	T = 3	Ü
1 = 233.6			3 77 . +1	1.49.5.5			1 - 32 8E+1		1.5.15.1		
			2.9876+1	1.4032+5			1?LE+1		6.74524		3.2001~3
9.26 3=+: 7.			2.0236+1	1.44(2+5			6.7452+6		5.0122.0		6.9342-3
d. 3÷u£+1 6.		4386+1	2.2265+1	1.4168.5			5.3126+6		2.7546+4		2.4962~2
7.702:+1 5.	1512+1			1,3942+5	7.793E+5	5.5752+4	2.7546+3	5.2566+4	1.66.5	5.5928+2	6.2235-2

TABLE 34. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence) (continued)

	IABLE 34.	EAFERINES.	IAL DATA ON III.	L ADDUM TEOM				•			
v	œ	ν	a	ν	α	v	α	V	a	V	3
				3474 557	23 (C3NT.)	2411 551	21(00%7.)	DATA SET	23(CONT.)	DATA SET	24
DATA SE	T 15 (CONT.)	132 ATAC	18 (CONT.)	DATA SET	23 (6341.0)	JA14 321	2110011111	0274 027		T = 1.5	
		e u •	2.3232-2	5 70" 544	8.5112+6	1.0305+5	1.5 % £ + 6	2.309£+2	1.6676-1		
	2 1.8-52-1				4.6568+6		9.83.1.	2.2636.5	1.8116-1		3.631643
> 64 u = +	2 5.1522-1		2-1881-5		2.92+5+4		7.2.6E+5		2.0615-1		2.911E+3
		2.042514	1.43UE-2		2.7935+0		5.16.E+5		5.224		2.6125+3
Be ATAC		JATA SET	• 71		1705.0		4.1CL±+5		5.5-02-1		2.3015+0
7 = 3.0	• •	JAIA 301			3.457t-1		4 £ + 5		5.5-51		1.993245
		1 = 3			4.76+E-1		4.11 LE+5		5.37.2-4		1.35.2
	2				3.0195-1		5.20E+5	2.1742+2	5.1 (52-1		1.32.504
	¿		2.2156+1		2.6998-1		1.39u£+6		5.1(5c-1		1.5235+3
5.3011	2 5.32;2-2		1.5496+1		1.38GE-1		5.0602+5		5.1522-1		1.7505+0
			6.382:41		8.3566-2		3.966E+5		5.2972-1		1.7355+3
JATA SĒ			3.4516+4		5.5935-2		3.4		6.5776-1	1.2196+2	1.552.45
1 = 3	••		3.1565		+.285č-2		2.766.5		7.83-1-1	1.4145+2	1.0016.0
			3366+4	7.647274	4.2596-6		5.1.15.5		3.71.5-1	1.1010+2	1.5435+8
	2 3.00.1£+3		2.57.6.1	CATA SET	24		1.23.2+6		1.2592	1.1946+2	1.4732+3
			. ¿. 3 ĉ a c + .	T = 299.			1.5.51+5		1.91.46.4	2.1396.2	1. 795 - 5
	2 1.01-2-1		1.01-170	1 = 2974	•		5.00 CE+4		2.75+2+6	1.1952+2	1.5.72+6
	4 4.077==1		35.6.		1.2235+6		3.46 6 2 4		3.3202+.	1.17.8.2	1.5-12+0
44 45Ci+	2 1.15311.		- + 1 a c		1.0205.6	3. 33.05.44	3.000		5.3464.	1.1742+2	1.77.42.3
	_		7.2442=1		9.7638+5	DATA SET	22		5.75+€+6	1.1718+2	1.9915 + 8
Jala 35			4.055.*1		9.4165+5	T = 285.			2.6422+6	1.15:5+2	2.0755.0
1 = 4.2			2.131-1		1545+6	200.	•		3.9632-1	1,1=7:+2	1.9911+3
			1.7226-1		1.3435.6	5.514144	1.3422+1		2.6135-1	1 élé+2	1.3346.0
	- 2-195111		7.5212		1.4232+6		9.7068+0		2.0232-2	1.511.42	9.376E-1
	- 1.337: 1		6.5776-2		1.3502+6		D. 31 (E+0		1.6296-1		1.4532-1
	4 5.34ic+6		7.447E-2		9.000E+5		4. 9582+6		1.3611-1		4.7142-1
	- 3.31ic+.		5.542		4.2352+5		2.82LE+G		1,1122-1	1.1232+2	5.3402-1
	4 3.3c7c+.		, 4.74 <u>2</u> 6-2		8.9032+5		1.3162-1		3, 954: **		4.542541
	 1.4955** 		4.467:46		1.4135+6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			6.932:-2		c77:
	4 1.126E+v		3.3556-2		7.4852+5	DATA SET	23	9.19.201	0.457E-c	1.1 162.4	4.25tE-1
	* 3.47,5**		3.1136-2		6.7:45+5	T = 300.			6.5 15: -2		4.13.5-1
	+ > + + > = + = = = = = = = = = = = = =		2.8585#2		7.2605+5		-	6.3425.1	6.8552-2		4,13.2-1
	4 4.4/42-2		2.3586-2		7.2.0E+5	2 . 8565 42	1512-2		8.4542-2		4.2765-1
	4 3.5732-1		2232-3		6.c. E+5		2.139E-2		9.2472-2		5.241
	4 2.5352-2		1.154L-2		5.3032+5		2.416E-2		1.0232-1		: 5.303E-1
	- 1.7526-1	2.0425.			4.5035+5		2.5946-2		1.1276-1		5.10-E-1
	+ 1.2-2:-1			1.200: *3	5.4(JE+5		2.5.56-2		1.1112-1	1746.	9.602E-1
	* 3.35+E=2	DATA SE			7.50u£+5		1.426E-1		1.6524-1	1	2 4.4572-1
	4 0.3062-Z	1 = 235			9.5.35+5		1.578E-1		9.7275-2	1.0392+2	335E-1
	4 4.6.7 E-E				5 1.04JE+E		1.637E-1		4.4462-2	1 43 6 + 6	2 4.235E-1
3.554:+	4 3. 491E-6	5.3.32+4	. 1.5286+1	1.0012.	7 1 4 C 40 C 7 C	£ . 370E TE	710315-7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

143

TABLE 34. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence) (continued)

						•		•	
, <u>a</u>	ν α	V	æ	٠,	3.	V	7	v	د
3414 521 24 (33414)	DATA SET 29	DATA SET	3210057.1	DATA SET	1. TAGO1 EE	DATA SET	34(CGat.)	0414 551	35(0057.)
	J.665 = T								
1438 +4 +.1036-1		2.6176+1	4.686	6736+4	1.1536+6	6.29.244	1.13.200	5, 1-12++	4.5915-1
1.0.0242 2.3775-1	1.1376+3 1.5122-5	1.82.2+1	3.6915+3	5.4375+4	1.4585+6	6.204544	1.598246	5.0725++	4.135c=1
1 * £ 6.99+6=1		1.6016+1	3.1525+4	6.4025+4	1.007£+6	6.2525+4	1.6392.00	5.3416*4	3.0456-1
9.950=12.2.3645-1	JATA SET 3.	1.54681	2.7582+4	6.3756++	2.6188+6	6.244644	1.1 £9£ +c	5,7172++	2-2766-1
9.9.024. 2.9.4642	1 = 231.0	1,4375+1	2.4198+0	5.755644	2.7542+6	t.ZifE+4	2.3552.+5	5.637:++	1.3156-1
9.044246 6.5966-1		1.3371+1	2.15.241	6.2312.44	1.5162.6	6.265++	1.547:45		
9.913291 2.915291	4.5-28+2 1.6576+5	1,2556+1	1.961500	6.3296+4	1.4092+6	6.156244	2.9925.46	SATA SET	₹ó
9.0	4.1272+6 6.4518+3	2,2762+2	1.026204	5.323244	6.091245	6,145244	1.556242	T = 153.	,
	3.5506+2 4.3936+4	1,.552 11	1.2936+4	5.339214	8 912+5	0.1392++	5.3972+1		
3474 3ET 25	3.57.4.+2 6.7342+3	15=+1	1.132240	5.2366+4	1.412646	6.165644	1, 1792+1	£.2161++	1.236546
T = 295	3.321.+2 1.2576+2	9.6156+3	1.0328+6	6.2372+4	2. 1236+5	6.1192+4	8.7492+6	E.194£++	1.1535.6
	3.1252+2 2.0036+1	8.4296.4	8.9476-1	6,2732+4	2. +32£+6	6.1572++	5.1526+4	6.169£ ++	7.4702 +5
3.454842 3.96,844	2.yalu#2 3.a3ot#1	8.6215+3	7.5625-1	6.2026+4	1.5771+6	6.1.2614	3.162.06	6.155244	7.6 2 + 5
	2.7732+2 0.9828+2	7.8:ZE+1	6.8532-1	6.2326+4	3. 35.6+5	6.3345+4	2.5+2:+1	6.121144	2.1.15.5
MATA SET 25	2.032=+2 1.22+2+2	3.4638+0	0.727E+:	6.242244	1.2.72.5	086=++	2.762: +.	6.4955+4	8.8712+4
7 = 693.4	<pre><pre></pre></pre> <pre></pre>	7.240640	5.5375-1	6,213E+-	3.336+2	6.0542+4	1.282: *:	6 775+4	1.541600
	4.3016+1 3.19.6+2	7.1432+6	4.8925-1	0.1902++	8.433E+1	6.3272+4	8.9932-1	5. 5374+4	1.3612 *2
50-3-200 20000000	2+273+2 c+.035.+2	0.3292+3	3.9102-1	6.1915+4	3.490E+1	5.992244	6.3::	5.55.6*4	2,7152+1
	₹•₹₹₹₹₹₹₹₹	5.5072+3	3.468E-1	6.154644	1.9076+1	5.979£+4	5.7:24-1	5,9376+4	1.253611
CITA SET 27		5.6565+6	2.8A2E-1	5.1772+4	1.4862+1	5.9412+4	4,5 92 2 41	5.9276+4	E.836E+G
1 = 295,6	DATA SET 31	4.6355+6	1.87u£-1	6.169244	9.375 £+0	5.8925+4	4.1835-1	5.9122+4	2.7756.0
	T = 233.6	2.9532+4	1.3902-1	6.152644	5.0235.0	5,9412+4	2.0455-1	5.900246	1.7452+3
3.5/2505 5.0		3.9536+6	1.2862 1	6.111E+4	ž. Subieů	5.7876+4	2.27641	5.3305+4	1.1168 + [
4. £\$2: +3 0.5=0	7.0326+2 0.6036-3	3.1255+4	6.7152-2			5,6448+4	1.3402-1	5.5/2244	0.13-1-1
1.f372+3 3.44,,2-7	7.1-35+2 4.2408-2			JATA SET	34			きょせつしょせゃ	4.1036-1
1.1745+3 1.5126-5	0.007542 7.358642	DATA SET	33	T = 74.3		DATA SET	35	5. 234=+4	1-3561.5
20047293 9000000	3,25.2°2 2,200£*1	7 = 10.0				T = 55.J			2.8186-1
9.796242 3.3.4245	5, 5521.02 1.361(-1				7.624E+4			5.73ec++	
9.434646 9ac=3	きょういかにかく じゅってつしゃん		3.4926+9		4. +672+4		1.5701+2	5.644£+4	1.863641
	50203242 40303642		2.464645		5,526614		5.7542+2	5,535£+4	
Satu pet 2s	maddined defineme	6.777= **			1,2+12+5		4012-5+1	5.5256+4	1.646E-1
1 = 2+3	4	0.755204			3.0956+5		1.7292+1		
		5.7676.44			7,244205	0.1605+4	1.647641	TãZ ATÁC	
Southfol Towards	Juta set 32	0.0452+4			1. v f6t • 6		4. 1616 + 6	Y = 295.1	1
3.744543 3.742544	1 = 240.0		1.55-215		1.5.06+6	6.094294			
2.6322.43 2.2.36-4		6.0192+4			1.977=+0		1.7626+6	6.753214	
	J. 3112+1 1.373c+1	6.5442.44			2.3962+6	0.354214		4.7.9£+4	
	2.04-6+2 4.6526+4	6.505644			2.396£+6		8.995£-1	€, € à 3 £ + +	
	Zobelsta Zombaktu		6.664E+=		1,3365+6		6.3106+1	0.0445+4	
	2,2,2241 5,3176+1	6,5,10+4	9.1622+5	6 . 3 Q 0 E + 4	1.264E+6	5.9796+4	5.7022-1	0.5106+4	1. 6522 16

TABLE 34. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Wavenumber Dependence) (continued)

ν	a	ν	α	ν	ū	y	3	ν	ı
UATA SE	T 37(50kT.)	DATA SET		DATA SET	40 (CONT.)	TAZ ATAC	41 (CONT .)	DATA SET	43(CONT.)
		1 = 373.	J		* (* * * * * *	6 43		2 2115.2	
	4 2.3232.5				7.6915+5		8.5916+5		6.336ē-4
	4 2.,232+5		7 - 1782 + 1		5.248E+5		7.5166+5		2.100-3
	+ 2.2036+5		2.0792+1		3.5648.5		6.3315+5	7.3625.42	2.3892-3
	+ 2+5.25+5		1.3121+1		2.6985.5		352€+5		
	+ 2.0+7E+5		5.7546+6		1.4725+5		4.617E+5	DATA SET	
	+ +.6976.5		1.977E+u		6.6372+4		2.2166+5	T = 200.	J
	~ 23+E+5		1.471L+3		4.742E+4		1 E+5		4 0000
	4 7		4.55ut-1		1.5.02+4		1.5266.4		1.9502-4
	7.702.+5		3.130E-1		1.3(65+2		2.3.15+2		1.3355-4
	+ 8.9.2.+5		2 • 153t - 1		7.7626+:		8.1286+1		4.4 (DE-4
	+ 1.u.50£#6		1-27oE-1		3.235E+1		2.642E+1	1.341543	4.1 262-4
	- A-11-50		1.4914-1		2		1.4382+1		
	- 1.2-15+b	2.32+4	5-16Ec+6		9.1206+0		1.0375+1	DATA SET	
	4 1.1.7.+0				2.937E+3		8.1656+4	T = 160.	L
	4 9.51/2+5	JATA SET			8.395E-1		4.3985+0		
	4 3.4 1.5+5	1 = 337.	•		+ • L 36 E = 1		3.999:+6		8.2862-5
	· 0.165=+5				2.7296-1		3.3155+0		1.1322-4
	+ 432+3		6.39+2.5		1.2716-1		2.7666+4		4.2192-4
	4 2.7/22/5		9.55-0.05		1.2656-1		1.621E+6	1.5472.53	2.9612-4
			1.11.600		6.9832-2		5.6492-1		
	- 2.75kc+4		1 • 153 6 * 5		6.1462-2		289£-1	DATA SET	
	4 2.753244		1276+6	5 1(=++	5.1512-2		1.2946-1	T = 260.	J
	- 3.3376+3		9.26+6+5				8.5.4.5-5		
	×		6.3631+5	DATA SET			5.6.62		1.5 (25-4
	4 / .5v.s+1		4.2.7:+5	7 = 573.	c		ちゃもタレビーと		1.5725
	u E.lev£+i		3.2026+5				3.6+62-2		4.4 675-4
	- 4.30-2.1		6.370E+5		3.00-2+5		3.536E-2	1.047E+3	3.4935-4
	- 2 i: +.	まゅうこうこりゅ	37 - = +5		3.0478+5	+. 534E+4	3.87.E-2		
	4 2.303246		4.8752+4		3.981245				
5.665=+	w 1.305:-:	うゅうろうシャル	1.2415+6		3.9815+5	JATA SET			
5.537=+	→ 5.572i=1				3.564815	T = 298.	č .		
	- 2.9112-1	JATA SET			3.5045.45				
	サース・ランドニーム	1 = -77.	C		3.3616.5	9,434E+2	8 . D 3C E-5		
	- 1.5.,2-1				4305+5		_		
	→ 1.619:-1		6.729:+5		4.698E+5	DATA SET			
5. +07=+	+ 1.613:-1		0.2412+5		5.9726+5	T = 300.	C,		
			6.0855.42		6.9826.5				
			1.2005+0		7.9065+5		8. 33CE-4		
			1.066.6+6		8.6695+5		7.3542-4		
		6.0302+4	9.375£+5	6.3545+4	9.289E+5	9.7295+2	8.025E-4		

145

Figure 24. Absorption Coefficient of Potassium Chloride (Temperature Dependence)

TABLE 35. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF POTASSIEM CHEORIDE (Temperature Dependence)

Data Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Range, cm	Temperature Range, K	Specifications and Remarks
1	78	Harrington, J.A. and Hass, M.	1973	С	943.4	297-1000	Single crystal; obtained from the Harshaw Chemical Co.; specimen with surfaces mechanically and then chemically polished; absorption coefficients measured by calorimetric method using a CO2 laser source; data extracted from a figure.
2	78	Harrington, J.A. and Hass, M.	1973	С	943.4	299-944	Similar to above except for crystal obtained from Hughes Research Laboratories.
3	117	Boyer, L.L., Harrington, J.A., Hass, M., and Rosenstock, H.B.	1974	с	943.4	312-920	Crystal; obtained from the Harshaw Chemical Co.; absorption coefficients measured by calorimetric method with a laser source; data extracted from a figure.
4	117	Boyer, L.L., et al.	1974	С	943.4	312-960	Similar to above except for crystal obtained from the Hughes Co.
5	117	Doyer, L.L., et al.	1974	С	943.4	327-796	Similar to above except for crystals grown by the Nural Research Lab, under conditions designed to minimize the introduction of organ-containing impurities which can give rise to absorption bunds in the mid-infrared replan.
6	117	Loyer, L.L., et al.	1974	С	943.4	337.3	Similar to above except for crystals grown in a CCL, reactive atmosphere; it was observed that the crystal grown in this way has the least absorption among the crystals from various sources.
7	100	Rose, J.M. and liurrington, J.A.	1976	с	943.4	100-300	Single crystals; grown by the reactive-atmosphere-process; obtained from the Naval Research Laboratory; rod specimens of 2.5 cm diameter and of various lengths; chemically eithed surface; bulk absorption determined; data extracted from a figure; data at low temperature carried large uncertainty of ±1002; uncertainty diminished toward higher temperatures.

TABLE 36. EXPERIMENTAL DATA ON THE ASSORPTION COEFFICIENT OF POTASSIUM CHLORIDE (Temperature Dependence) [Wavenumber, V. cm-1; Temperature, I, K; Absorption Coefficient, V. cm-1]

T	œ.	Ţ	a
SATA SET		DATA SET	4 (CONT.)
J = 9.43	4:+2		
		573.1	1.6708-3
297.1	3.57.2-3	333.7	2.81út-3
358.9	4.752E-3	359.→	4.54(2-3
479.7	4.3025-3		
t.tc2	4.2425-3	JATA SET	÷
C 2 3 . L	3.55,2+3	J = €.+3	+č+2
736	4.4.25-3		
433. ń	3.4012-3	337.3	3.2LLE-+
3:6.2	3. 161 2-3	3 9 9 . 3	5.15.2-+
	4.7426-3	+30.4	0.43.E=4
		576.2	9.526E-4
DATA SET	2	ćá 7	1.32.4-3
. = 9.+3		735	1.4535-3
•		750.2	<.5502-3
239.2	3		
371.5	1.43,2-3	DATA SET	ь
454.5	1.12)2-3	v = 9.43	•= • 2
553.8	1.65.2-3		
676.2	2.2538-3	337.3	4.9.LE=+
3.6.5	2.07.2-3		
3	4.4312-3	JATA SET	7
		v = 9.43	4E+2
DATA SET	3		
v = 9.43	→_+2	10.03	3.47.65-5
		22403	2.3332-5
212.6	3.5112-3	15	2.3366-5
192	4. 15. E-3	275.4	3
-30.4	••• E = 3	≟÷1.∪	3.6312-5
275.4	4.4.6-3	22.00	55ût -5
699.9	3.722=3	243.4	5.37.t=5
757.4	4.5776-3	27:	7.87.2-5
333.7	3.21.4-3	291.1	1.07.=-+
923.4	4.1116-3		
3474 357	•		
y = 9.+5	+=+2		
312.6	1.6712-3		
35€. ₩	1.5136-3		

Figure 25. Reflectivity of Potassium Chloride

TABLE 37. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF POTASSIUM CHLORIDE

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Ronge, µm	Temperature, K	Specifications and Remarks
ì	122	Antinori, M., Baizarotti, A., and Piucentini, M.	1973	R	0.061-0.094	293	Single crystal; obtained from the Marshaw Chemical Co.; specimen cleaved in air just before being mounted in the sample chamber to be vacuum pumped; reflection spectrum obtained with a memorhrorator of band width of 1.5 A; measurement performed on the same specimen after 24 hrs did not show significant changes and reproduced with uncertainty of about 5%; data extracted from a figure.
2	101	Czetny, M.	1930	R	42.6-70.4	293	Synthetic crystal; plate specimen; polished surface; normal spectral reflectivity obtained with silver mirror as reference; data extracted from a figure; temperature not given, 293 K assumed.
3	102	Cartwright, C.M. and Czerny, M.	1434	R	126.0-231.0	293	Bulk KCl; surface conditions unspecified; near normal reflectivity obtained; linearly averaged values of tabulated data were extracted.
4	12,	Blechschmidt, D., Klucker, R., and Skibowski, M.	1969	3	0.035-0.089	293	Single crystals provided by Karl Korth, Kiel, Germmy; freshly cleaved specimen; near normal reflectivity measured in vacuum for polarized light with normal of the specimen lying on both sides of the incident beam for increased accuracy; data extracted from a figure.
5	110	Baldini, G. and Rosacchi, B.	1968	R	0.122-0.179	300	Single crystals; specimen with cleaved surface; back surface of the specimen treated with an emery cloth to reduce the reflection from the back; near normal reflectivity obtained with specimen in vacuum; data extracted from a figure.
6	110	Baldini, G. and Bosacchi, B.	1968	R	0.120-0.170	5\$	Same as above except at low temperature.
7	126	Philipp, H.R. and Ehrenreich, H.	1963	R	0.055-0.653	298	Single crystal; near normal reflection spectrum measured; data extracted from a cutve.
8	114	Tomiki, T.	1967	R	0.147-0.171	10	Single crystal; grown by the Kyropoulos technique; specimen cleared from the grown ingots; near normal reflectivity measured; data extracted from a figure.
9	114	Tomiki, T.	1967	R	0.147-0.173	18	Same as above.
10	114	Tomiki, T.	1967	R	0.106-0.148	295	Sime as above.
11	123	Johnson, K. und Bell, E.	1969	R	27.2-229.2	300	Single crystal; well polished single surface; reflectivity measured by asymmetric Fourier-transform spectroscopy; data extracted from a figure.

TABLE 38. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM CHLORIDE

(Wavelength,	λ,	um;	Temperature,	τ,	K;	Reflectivity,	ſα
--------------	----	-----	--------------	----	----	---------------	----

À	ø	λ	¢.	7.	ρ	λ	ρ	λ	٥	Å	٥
JATA SE	T L	JATA SET	(. T4 0 3) 1	DATA SET	S (CONT.)	DATA SET	3	DATA SET	4(CONT.)	JATA SET	SICONTO
1 = 293	.0					T = 293.	i				
	_	3.2748	0.0214	46.1	3.203	_		6.0513	6. 364	1.125	0.0552
3	1.03.17	4755	J. 0194	47.2	0.150	126.0	0.172	ŭ.u 527	6.484	û.125	1.4519
0.66.5	4.255+	6.2046	83	47.2	272.0	147.0	6.154	0.6534	0.525	4.120	6553
C. 6.3	4.2.432	775	4.4133	+8.3	0.164	174.0	u . 16.	L.,344	6.547	147	0.1132
6611	V C	444737	4.4.93	48.4	4.188	214.4	0.151	4.6550	ú.533	4.166	4.1667
0		J. 47 15	213	49.4	3.232	231.0	Ú. 161	6.2555	0.505	123	6.2642
	E 5 04		3.6237	+9.0	2.243			0.0561	L. 493	4.123	4.3319
0.0014		4.00.1	3.6c e7	24.6	4.235	DATA SET	4	6.2500	3.537	1.13.	J.3.5u
545	735	4.43.7		57	4.319	7 = 293.		6.5575	1.400	4.131	2.3.92
4.4515		5562.2	6.6343	51.8	0.359		-	0 5 40	3.663	0.132	4.4834
4.0617	4.1924	1.4925	6.6335	51.9	0.391	0.3353	0.151	C+4596	C. 402	J. 139	0.2613
0.6619	6.1737	4. 4333	6.6455	52.9	U. 473	3.5357	6.693	6.4590	0.333	6.137	4.1694
1.1.521	0.1016	839	5.7	5 3.2	2.463	0.636.	669	(1	u. 33 5	.139	4.1483
	7 44	348	ŭ . u 5 75	54.1	1,957	2060.4	60009	6.6665	6.32:		Sexia?
v . 1 t è 7		لاعلىيي	u . L 0 3 8	54.2	3.53+	2.3372	v.1.5		500.0	J. 143	3-1170
4.38.5	4594	4104	1.60 13	55.2	1.617	4.4375	4.133	u.ū622	3.635		3
1.0031	4570		4.2375	33.4	1.629	3.3378	6.153	6.4028	** 648	6.143	6.1544
	2	4.6 855	6.22 73	>6.4	3.725	3.0383	€.16€	6.0635	2.662	9	4.69.3
0.2635	1.2348	3+6	4.1243	36.5	3.714	4.4386	6.175	6.623	0.45.	9.151	4.1663
3.6633	J. 4002	6693	1.1488	š 7.5	6.797	4398	0.178	5.4500	C. 334	4.154	6 453
J 6 . 1	3	0.5934	6.1365	57.7	J. 616	40.44.2	6.193	4.4675	4.311	4.153	6 7
4467+3	20074	4.1337	.:367	23.7	0.819	3.64.5	6.269	0685	6.29.		
[.ies]	3537	4.9.4		55.8	3.845	1412	6.206	5599	0.323	6.155	6.0732
1	>1.5	400320	0.1496	55.8	4.886	.546.	C. 36 č	6.27.9	i. 343	v + 1.50	ŭ - i - i i i
2005	22.0343	4450	1.1243	59.8	0.933	4.3460	6.427	4 720	6.320	57	L.1315
6.4651	5.0510	4926	1593	59.9	3.362	6.1435	L.451	6.6724	6. 350	L.158	4.2574
[.Lto5	432	4.4930	i.1642	61.3	4.534	D.6433	0.434	6.2747	6.177	6.159	.2631
	538	4.4933		01.2	0.00	4.2438	û.352	6.6761	6. 154	0.10.	3.3546
6.4673	3.3353	3335	1557 u.1746	02.2	3.963		8.293	1.2777	i. 175	53	.33-1
4.45/5	3.35	539	3.1963	2.30	4.553	3.3444	1.272	i73.	ا د د د د	4.105	u.3152
		4.1.39	3.1063	93.3	3.059	2.2.56	C.205	6.08.5	u. 25 3	J. 207	6.6222
	5.53.5 5.5293	DATA SEY	2	63.4	C.872	4.1455	0.313	U 851	2.553	.1.23.	6.2168
9.6695		T = 293.			1.539	û59	û.352	C.6874	C. 786	2.171	1374
v057	9279	1 * 243.	b	64.6						V. 15	4.1592
6.693	5.0279			65.7	3.539	6 . 466	436	1.5847	6.975	1.179	6.1399
4.4747	3.3524	42.0	0.092	07.9	3.812	3.2.74	u.538	DATA SET	=	W 7	77
6.6714	L.2351	42.7	rita	05.1	2.517	76	572			DATA SET	_
7.8	3 - 3 - 3 - 3	73.7	32	37.5	1.956	0.4452	0.5-9	T = 300.	U	1 = 55.4	a
4720	6.6314	*3.8	6.205	69.3	4.61.	3.444	6.430			1 + 22.4	
4.673+	0.230	74.5	7	73.3	0.533	0.6499	6.385	6.122	6. 6729		
1.07+2	249	49.9	1.227	73.4	3.772	8.1503	6.371	6.124	e. 604 5	5.125	3.0032

TABLE 36. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM CHLORIDE (continued)

λ	į.	λ	2	λ	e	λ	p	λ	٥	1,	<u> </u>
DATA SET	6(CONT.)	DATA SET	1.740234	DATA SET T = 13.0	6	DATA SET	8 (CONT.)	DATA SET	9 (00×1.)	OATA SÉT	16(CONT.)
1.121	1,3578		1.2-13			0.164	L.19L	10101	€• £55	v o	U.3762
6.123	4.443	4.204	v.2.32	4.147	2-494	u . ž ėš	6.172	4.2 = 2	u . 27:	1.0	v.L.57
1.123	33+	u b 5	6.1749	3.1.7	C - C 7 B	J.: 60	6.153	4.162	6. 657	4.127	3.6202
2.125	6	4.468	0.1573	1.148	0.152	0.176	3.169	42	J. 2+0	v.1c3	\$. 2014
1.125	i i o i	4.203	6.1469	0.149	852.0	3.176	6.123	4.163	i. i3.	0.129	6.3322
1.120	155			3.150	0.416			4.163	4.224	0.129	8.2013
6.125	ü 396	GATA SET	7	1.151	3.616	DATA SET	9	0.164	v. 25 g	v. 129	3:51
6.127	1	7 = 299.1	6	1.151	4.354	1 = 78.0		4.165	40.29.	4.13.	
1.127	3.1340			52	1.395			6.165	0.197	1	4.3.52
25	4.22.47	355	386	4.153	4 . 2 . 9	3.147	102	6.1 co	6.105	ü. 131	6.2713
	6.6735		3.458	4.153	4 - 22 9	5,147	C . (8 ?	6.175			6 2 . 3
1.11.	u a 3 i → î	53	6.131	0.153	J. 325	1.148	4.661	5.17.	6.131	5.133	9.2269
C . L 3 _	3.75		0.042	154	6.398	4.149	0.036	8.174	3.129		b . 2216
6.13.	3.3226	3.003	u.132	4.154	4.454	u . 15 a	u. 116	6.172	4. 12+	3.134	0.2557
4.25	6.27.42	60000	u.C34	3.155	U. 461	3.151	6.6:3	G.172	6.15:	w.13+	6.19.7
1 - 1 3 5	5.2177	Je. 72		3.155	8.553	0.151	333.0			4.135	3.2773
	L.177.	44475	2.641	1.156	8.533	1.152	6.655	JATA SET	10	450	3.2003
1.135	35	4.470	1.423	J 50	6.633	ũ.153	6.155	T = 295.	3	دذ:	w.1573
2.23	257	478	6.120	4.150	2.636	6.153	6.252			c. 137	v + 2 440
6.239	5+11+2		L.636	4.57	J.58Z	6.254	0.297	i.166	6.1333	6.137	₩•¥352
6.141	1114	4.249	Q.129	3.157	3.553	0.154	5.385	6.266	4.14.3	4.139	6.119Z
0 + 2 4 3	b = 24 54	3636	0.141	1.157	4.493	0.155	6.463	6.119	L. 1431	4 - 2 4 4	V-11u5
6.143	:1-4	u.u36	1.201	4.157	3.420	J.156	₿.557	b = 1.16	605204	4.141	U+1054
		1	3	4.157	0.373	1.150	u.571	6.111	U = L7 = 5	40.46	*****
2.145	w.1114		i . ù 6 9	4.153	9.321	9.157	C,57 i	6.112	G . C67 S	C. 143	6.0973
4.247	109	û.ii>	6.E4E	1 . 1 5 3	0.2ó8	J.157	6.559	6.114	4. LSC6	4 - 2 - 4	4 . 4 9 2 4
1-7	3.1124		4.047	4.156	6.271	U-157	:.490	6.115	£ • 649 3	C - 145	5.0904
24249	4	0.122	6.642	3.156	3.353	158	L.439	G.Lie	4 - 64 7 8	0.240	v + v 5 0 +
しゅようょ	4-46 35	2.129	6.326	4.159	8.457	J.158	C.377	6.116	3.6.37	u • 146	v • • 850
44151	1.1.2	0.244	3.133	0.159	8.527	0.158	5.354	0.117	i. i. +5	u.147	J 3 43
3.152	232.	4.147	U.u74	4.159	ű. 5J1	158	6.324	G • 1 18	C+C475	J. 148	0.48.5
53	374	4.153	0 - 1 - 4 1	153	2.424	3.159	0.342	6.229	U+ L+0;	. 4247	3.3732
1.15.	2370		0.3.2	0.167	4.369	4.159	3.366	ù.12L	ú• £43 5	30200	6.6293
3.55	3.5435	4.107	J.157	160	4.3+0	9.159	0.417	0.12.	u4 £43 5		b - û 435
55	2.5135	w.173	0.142	163	2.307	0.160	0.454	0.121	C. C3 4 5	4.15.	6 - 456
4.157	4 - 53 95	6.293	U.C71	0.161	6.293	3.166	0.453	0.752	2.6302	ú. 152	4.420
4.157	1.4.63	3.217	2.166	3.101	4.267	3.162	6.463	8.123	6.6362	ひいようと	ü365
6.253	:.3228	275	IJ . [4 5	62	0.236	6.100	û.358	£ -12 +	£ + 6 5 7 2	3.153	6325
1.10)	6.4230	J.354	ی در نونو	63	C. 21 C	ű.lé1	1.361	425	4.6427	4.254	538
1.1€1	5.3240	 65≥	5.046	1.163	4.261	2.161	u , 314	G-125	ũ. (552	4.154	0 365

TABLE 38. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM CHLORIDE (continued)

à.	٥	λ	ρ
DATA SET	11 (CONT.)	CATA SET	11(CCNT.)
0.15-	1.6422	43.1	4.321
Ū•15÷		43.4	0.025
	v . 1.7 31	43.7	32
1.153	3.0533	3	6.041
0 - 1 50	1.1239	45.	J. 672
50	4	45.3	0.142
57	593	45.3	i.i+č
55		→7.3	u.1.1
1.153	1155	47.7	€.691
3.153	w.43oo	→6. 3	6.111
2.153	1605.0	49.5	J.131
5 . 1 é 4	3.3342		6.252
0-163	3142	52.3	€.353
0 • 1 ti	1.3221	54.7	i.494
1.161		5000	6.€75
1€€	3: 22	57.3	L.797
50	1.3285	31.5	3 > ?
1.163	3	ći, ć	6.577
		b `	867
DATA SET		b~ • 3	6.876
T = 3.5.	:	65.5	L.856
		60.5	.755
27.2	9	7	J. BBS
20.5		73.0	L.+1:
25.5	3.013	70.1	319
32.5		33.2	1.248
32.€	33	97.0	0.177
34.5		1:2.3	4.:5€
37.1	3.301	136.2	135
34.5			6.2-4
39.2		224	3.144
3 5 . 4	غذبه		
45,2	4		
46	7		
B			
42.6	1.111		
41.4	0.013		
41.7	1.11.		
ا با با با	15		
46.4	0.417		

_

Figure 26. Transmission of Potassium Chloride

TABLE 39. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF POTASSIUM CHLORIDE

Data Set No.	Ref.	Author(s)	Year	Method Used	Wavelength Range, pm	Temperature,	Specifications and Remarks
1	124	Deutsch, T.F.	1974	T	7.69-12.50	298	Single crystal; bur specimens of 6.4 cm long; transmission measured with 1% error; data extructed from a figure.
2	35	McCarthy, D.E.	1967	τ	0.17-3.0	298	Synthetic crystal; plate specimen of 10.0 mm thick with surfaces parallel to within 0.001 mm/mm of length and flat to within 10 fringes or better of the mercury green line; measurements made on double-beam instruments with accuracy of 12%; data extructed from a figure; temperature not given, 298 K assumed.
3	118	Deutsch, T.F.	1975	T	2.5-21.0	298	Single crystal; specimen of 6.4 cm thick; spectrophotometer used in the transmission measurements; a broad absorption band centered at 9.8 µm observed, the wings of which clearly extended to 10.6 µm; data extracted from a figure.
4	118	Deutsch, T.F.	1975	T	2.5-21.0	298	Same as above except for a specimen of 2.35 cm thick.

[Wavelength, λ , μ m; Temperature, T, K; Transmission, T]

λ	τ	à	τ	λ	τ	λ	•
DATA SET	f 1.	0414 521	1 3	DATA SET	3 (CONT.)	DATA SET	4 (CONT.)
1 = 298.	.:	ر ښود ≃ ۲ م	.:				
				15.53	5.70	8.22	6.93
7.09	4.36.	2.51	6.80	10.36	0.67	8 - 5 8	ŭ .9 i
9.11	6.921	2.53	3.56	10.65	0.55	9.24	4 . 87
81	916	2.63	38	18.11	J. 32	9.05	L . 84
3.71	3.916	2.76	4.89	13.72	3.18	11.10	0.85
3.15		6.80	i.89	12.33	0.09	16.49	5.39
9.25	3.499	2.40	₹.89	34.69	3.44	11.36	u . 93
9. : :	1.342	3.39	J - 5 6	24.66	0.61	126	6 • 94
9.03	1.33.	3.27	6.83			13.16	£ . 4 è
3.72	1.35%	3.33	J. 59	DATA SET		14.87	0.89
9.38	2.333	3.35	6.39	7 = 310.	.3	16.33	ú.83
16.13	2.839	3.62	2.89			16.63	6.86
18.52	1.302	3.83	i.39	2.50	9.95	18.49	G • 55
173	2.312	4.13	69	2.52	1.94	19.19	0.40
11	3.365	4.23	J.89	2.65	0.93	19.89	ċ.33
7		→.37	0.93	2,55	3.93	21.13	6.27
11.53	1.92.	***3	6 6	2.76	ŭ. 94	21.66	6.26
11.97	1.917	4.3 3	U +38	2.76	G.93	22.79	6.65
12.5.	3.4.2	57	3.89	2.32	0.93	23.79	6.62
		57	. 95	2.83	Ç.93		
DATA SE	1.5	5.22	89	2.98	3. 93		
T = 34.	• 6	5.27	91	37	6.93		
		5. +2	4.91	3.21	C • 9+		
3	4 3	5.5→	J . 71	3.3%	6.94		
3.213	37	5.6+	u.91	3. **	0.94		
£.223		5.73	- • 91	3.57	ù • 94		
2.225	3.72	ō.l.	J.91	3.73	3.94		
6.245	J. 73	5.53	5.32	3.94	0.94		
6.275	15	0.33	··91	4.12	5.94		
3		7.22	2.92	·.28	J. 95		
79	6 . 3 6	7.56	i.92	+.46	0.94		
	1.92	0.36	6.92	4.65	ú. 34		
2.933	36.6	8.91	95	4.95	J.95		
1.65	⊊. 9 2	3.+5	4 . 65	5.23	u • 9+		
1.73	÷ • 92	20.32	ü.9u	5.54	1.93		
2.25	9.33	10.51	u .91	5.87	5.94		
2.35	3.95	11.22	i.33	6.22	5.94		
		12.44	6.93	0.6+	ن ۽ جب		
		13.61	[•94	7.12	ü.93		
		14.42	3.86	7.76	0.93		

TABLE 41. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WID'1 '? (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN POTASSIUM CHLORIDE *

Interionic		F band		R ₁ band	R ₂ band	M ba	N bands		
dist., d Temp.		λ max	W	λ max	λ max	λ max	W	λ max	
3.14	RT	(0.576) [†]		(0.669)	(0.725)	(0.835)			
		0.556	0.31	0.680	0.740	0.820	0.12		
		0.557	0.34			0.822-0.825	0.13		
		0.560	0.35			0.825			
		0.562	0.36			0.830			
		0.563	0.39						
	NT	0.534	0.19	0.650	0.724	0.800-0.820	0.06-0.07	$N_1: 0.95$	
		0.538	0.2	0.656	0.725	0.801-0.802	0.09	N2: 1.08	
		0.539	0.22	0.657	0.727	0.803		N1: 0.96	
		0.540	0.26	0.658	0.729	0.805		W = 0.08	
		0.543	0.3	0.659	W = 0.08	0.808		$N_2: 1.02$	
		0.546		W = 0.12				W = 0.09	
	HT	0.536	0.16			0.798-0.799	0.05-0.06		
		0.537	0.17						
		0.539	0.18						

^{*} Values were taken from Ref. [69].

 $^{^{\}dagger}$ Values given in parentheses are calculated from the Ivey relations [70].

 $[\]lambda_{\text{max}}$ = 703 d^{1.84} for NaCl structure, λ_{max} = 251 d^{2.5} for CsCl structure. F band

R₁ band $\lambda_{\text{max}} = 816 \ d^{1.84}$ R₂ band $\lambda_{\text{max}} = 884 \ d^{1.84}$ M band $\lambda_{\text{max}} = 1400 \ d^{1.56}$

TABLE 42. RECOMMENDED VALUES ON ABSORPTION COEFFICIENT OF POTASSIUM CHLORIDE IN IR REGION AT 300 K

V. cm ⁻¹	λ. uma	Absorption Coefficient, cm ⁻¹					
		Intrinsic*	Observed [†] (Selected				
4.000E+02	25.0	3.3E+0					
4.490E+02	22.3	1.2E+0	1.1E+0				
4.970E+02	20.1	4.9E-1	4.6E-1				
5.000E+02	20.0	4.6E-1					
5.510E+02	18.1	1.6E-1	1.6E-1				
5.992E+02	16.7	6.5E-2	6.2E-2				
6.439E+02	15.5	2.7E-2	2.4E-2				
6.969E+02	14.3	9.5E-3	8.8E-3				
7.502E+02	13.3	3.3E-3	3.2E-3				
8.000E+02	12.5	1.2E-3	1.3E-3				
8.540E+02	11.7	4.3E-4	1.0E-4				
9.000E+02	11.1	1.7E-4	1.0E-4				
9.310E+02	10.7	9.5E-5	1.6E-3				
9.434E+02	10.6	7.4E-5	6.0E-5(B), 1.2E-4(7				
9.756E+02	10.3	3.9E-5	3.3E-5(B), 1.0E~4(T				
9.780E+02	10.2	3.7E-5	4.5E-3				
9.950E+02	10.1	2.7E-5	5.3E-3				
1.028E+03	9.73	1.4E-5	6.5E-3				
1.047E+03	9.55	9.7E-6	9.0E-6(B), 9.0E-5(1				
1.079E+03	9.27	5.1E-6	1.8E-5(B), 8.0E-5(1				
1.122E+03	8.91	2.2E-6	2,6E-3				
1.174E+03	8.52	7.9E-7	9.8E-4				
1.202E+03	8.32	4.6E-7	4.8E-4				
1.232E+03	8.12	2.5E-7	1.3E-4				
1.245E+03	8.03	1.9E-7	6.0E-5				
1.300E+03	7.69	6.6E-8					
1.887E+03	5.30	6.4E-13	5.0E-7(B), 4.2E-6(1				
2.632E+03	3.80	2.7E-19	6.5E-6(B), 5.6E-5(T				
3.571E+03	2.80		5.5E-6(B), 5.9E-5(T				

^{*}Intrinsic values were calculated according to Eq. (32) with uncertainties about ±10%.

[†]Values in this column are the total abosprtion coefficient which are either lowest reported or those used to define the constants in Eq. (32). Uncertainties of these values are about ±10%. Values lower than 1.0E-3 carry higher uncertainties up to ±30%. Letters in the parentheses have the following meaning: B - bulk absorption and T - total absorption.

3.5. Potassium Bromide, KBr

Potassium bromide has optical characteristics similar to those of rock salt, but, having a higher molecular weight, it transmits further into the infrared. Crystals up to 11 kg in size are available from the Harshaw Chemical Company. Very pure samples have been obtained and they can be cleaved easily. KBr is of interest to designers of optical instruments because of its transparency in the infrared region. Although KBr is transparent from 0.20 to 42 μm , the useful region is from 0.3 to 30 μm because strong absorption occurs near the transparency limits.

Measurements of the refractive index of KBr date back to 1874. For the transparent region experimental values were obtained mainly by the deviation method and reported by Spindler and Rodney [130], Stephens et al. [131], Forrest [132], Harting [30], and Gundelach [133]. For low ultraviolet and far infrared wavelengths, there were no measurements until 1967, when Vishnevskii et al. [134] reported their results for the region from 0.170 to 0.197 µm and Handi et al. [24] reported results for the range of 35 to 770 µm.

Li [33] reduced the then available experimental data on the refractive index to a common temperature of 293 K and after careful critical evaluation and analysis adopted a Sellmeier type dispersion equation to calculate refractive index at 293 K in the transparent wavelength region, 0.20 to 42.0 μ m.

$$n^{2} = 1.39408 + \frac{0.79221 \lambda^{4}}{\lambda^{2} - (0.146)^{2}} + \frac{0.01981 \lambda^{2}}{\lambda^{2} - (0.173)^{2}} + \frac{0.15587 \lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{0.17673 \lambda^{2}}{\lambda^{2} - (60.61)^{2}} + \frac{2.06217 \lambda^{2}}{\lambda^{2} - (87.72)^{2}}$$
(33)

where λ is in units of μm .

Investigations of the absorption coefficient for practical applications are generally classified into three wavelength regions: the ultraviolet and the far infrared absorption edges and the transparent regions. In the ultraviolet region, Martienssen [135] investigated absorption coefficients of KBr in the range 0.18 to 0.30 μ m and at 20 to 1000 K. He found that the expression

$$\alpha(f,T) = \alpha_0 e^{-\sigma h(f_0 - f)/kT}$$

can be used to describe the absorption behavior of KBr crystals. The constants in the equation were found to be α_0 = 2.4 x 10^6 cm $^{-1}$, σ = 0.79, and hf $_0$ = 6.76 eV. Tomiki et al. [71] studied the absorption of KBr in the wavelength range between 0.170 and 0.240 µm for the purpose of determining the Urbach-rule parameters and finding the features characteristic of the intrinsic tail. Through a systematic observation and analysis they found the empirical relations of the parameters:

$$E_{o} = 6.840 \text{ eV}$$
 $\alpha_{o} = 0.6 \times 10^{10} \text{ cm}^{-1}$
 $hf = 10.5 \text{ meV}$
 $\sigma_{so} = 0.774$

for the expression of absorption coefficient of the intrinsic tail

$$\alpha = \alpha_{o} \exp[-\sigma_{s}(T)(E_{o}-E)/kT], \qquad (34)$$

where

$$\sigma_{s}(T) = \sigma_{so} \frac{2kT}{hf} \tanh \frac{hf}{2kT}$$

Measurements of absorption coefficients in the infrared transparent region are recent occurrences as the development of high-power I.R. lasers has led to a need for better characterization of I.R. window materials. Among other factors, the absorption coefficient plays a decisive role in determining whether a material is adequate for laser optical components. For this reason, absorption coefficients of a number of selected materials were investigated at wavelengths of laser interest. Potassium bromide is among the best laser window materials and its absorption coefficients at wavelengths 1.06, 2.7, 3.8, 5.3, and 10.6 µm were intensively studied in order to determine the influencing factors that contribute to the extrinsic absorption. These studies are very informative and provide clues and means for material preparation and parts fabrication in order to minimize the extrinsic components in the absorption.

beutsch [12], using a differential technique with a dual beam spectrometer, obtained aboseption coefficients for KBr samples in the wavelength range 16.7-33.3 μm . It was found that the observed absorption coefficient together with earlier literature data in the multiphonon absorption region could be represented by the expression

$$\alpha = \alpha_0 \exp(-v/v_0) \tag{35}$$

where

$$\alpha_{o} = 6,077 \text{ cm}^{-1}, \qquad v_{o} = 39.1 \text{ cm}^{-1}$$

This expression, based on the available data that cover the regions $\alpha=0.002$ to $12~\rm cm^{-1}$ and $\nu=250$ to $600~\rm cm^{-1}$, is believed to represent the intrinsic absorption of KBr. Extrapolations to the wavelengths 10.6 and $5.3~\mu m$ yield intrinsic absorption coefficients of $2.0~\rm x~10^{-7} cm^{-1}$ and $8~\rm x~10^{-18} cm^{-1}$, respectively. These values are considerably lower than the corresponding experimental results [118], of $4.2~\rm x~10^{-4} cm^{-1}$ and $2.1~\rm x~10^{-4} cm^{-1}$, respectively.

Hass et al. [119] measured absorption coefficients by calorimetric techniques at 1.06, 2.7, and 3.8 μm for a number of KBr samples. The results at 1.06 μm were usually in the $10^{-5} cm^{-1}$ region with the lowest reported value at $<3 \times 10^{-6} \, \mathrm{cm}^{-1}$ which was very close to the limit of their instrument sensitivity. However, at wavelengths 2.7 and 3.8 μm , their best measurements yielded 1.2 x 10 4 cm and 2.2 x 10 4 cm, respectively. From the observed similarities of a number of other quality crystals, they estimated the absorption coefficient of KBr at 5.3 μ m should be in the region 10^{-5} cm⁻¹ or lower. Compared with the absorption coefficients at these wavelengths, the data imply excess absorption at 2.7 and 3.8 µm even in the purest available crystals. This has been observed not only in the KBr crystals but also in a number of alkali halide and alkaline earth fluoride crystals. The origin of such excessive absorption was not clearly understood. The authors suggested the possibility that this was associated with the OH and CH impurities. If these were eliminated, the absorption level at 2.7 and 3.8 μm could be reduced to the level of $10^{-5} cm^{-1}$ or lower,

In a later study, Klein [120] investigated the origins of the excessive extrinsic absorption at 2.7 and 3.8 μ m. Correlation with vacuum-ultraviolet absorption measurements indicated that all of the excess 2.7 μ m absorption can be accounted for by the OH content of the crystals. At 3.8 μ m, the surplus absorption are most likely contributed by the carbon-oxygen lineages, e.g., ${\rm COF}_2$, ${\rm CO}_3^{-2}$, ${\rm HCO}_3^{-2}$, in the specimens. He suggested that diminishing residual absorption at these wavelengths can be achieved by the substitution of hydrogen halides for carbon tetrachloride in the purification procedures and treating the salt below its melting point.

Rowe and Harrington [121] and Klein et al. [136] produced purified KBr crystals by reactive-halide purification processes with various reagents in an effort to minimize oxygen-containing impurities which are known to contribute significantly to extrinsic absorption in the 10.6 μm region. Among the reagents attempted, carbon tetrachloride processing yielded a KBr crystal that had one of the lowest bulk absorption coefficients at 10.6 μm . Among the samples measured, one sample had a bulk absorption coefficient of 7 x 10⁻⁶ cm⁻¹, the lowest for any solid, at 10.6 µm, that so far has been known; even lower than that for KCl crystal. Similar to KCl, for all the KBr samples measured, there exists a persistant absorption band at 9.6 µm. For the purest and best polished crystal, the absorption coefficient at 9.6 µm is greater than that at 10.6 µm by a factor of 2 to 3, yet the near-intrinsic behavior requires a lesser absorption at 9.6 µm. Unless this absorption band were eliminated, or reduced considerably, through purification and polishing process, the use of KBr in the 9.0-9.6 µm region would be limited. Since the method used in their investigation was able to identify the bulk and surface absorptions, an important finding was that the extrinsic absorption band near 9.6 µm is not due entirely to surface absorption, but is in fact due to impurity sources present in the bulk as well as on the surface of the sample.

Figures 27 to 30 are plots of the available data. The pertinent information of each data source and the corresponding original values are given in Tables 43 to 46. In addition, available information and data on the reflectivity and transmission are also presented in the same manner (in Figures 31 and 32 and Tables 47 to 50), for completeness and comparison. For the visible and near visible regions, Table 51 gives the spectral positions of the well known color centers. Noticeable absorptions are likely to occur at these centers when the crystal is exposed to ultraviolet, x-ray, or high energy radiations. However, these absorption bands may disappear at high temperatures or eliminated by appropriate irradiation, corresponding to the so-called "the thermal and optical bleaching of color centers."

Recommended values given in Table 52 were calculated from Eq. (35). In the range between 16.7 to 35 µm, these values are supported by measurements of Deutsch [12] and Barker [38]. In the laser wavelength region, the predicted values are lower than the existing data. It is not known if Eq. (35) holds for this region because the observation of very low absorption is handicapped

by the limit of the best available instrument sensitivity. However, like most of optical crystals, one expects to observe absorption bands in the range between 2.6 to 2.8 µm and at 3.8 µm due to the hydroxyl ions in the crystal and due to surface contamination. These absorption bands can be eliminated through improved crystal growing and polishing techniques. Therefore, it should be noted that the values in the "intrinsic" column are the lower limits that one can obtain for ideal samples. In practice, the observed values are higher than the limiting values at low absorption levels. Unless values appear in the "observed" column, the limiting values are considered as guidelines for estimation and investigation.

Although it was not the intent of this study to evaluate the absorption data in the vacuum ultraviolet region, in order to provide the users a total picture of the available absorption data, the plots of available data in this region are given in the Appendix to this report.

Absorption Coefficient of Potassium Bromide (Wavenumber Dependence)

Figure 28. Absorption Coefficient of Potassium Bromide in the Urbach Tail Region

Figure 29. Absorption Coefficient of Potassium Bromide in the Multiphonon Region

TABLE 43. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COLFFICIENT OF POTASSIEM BROWING (Knychumber Dependence)

Set No.	Ref.	Author(s)	Year	Method Used	Range, cm	Temperature Range, K	Specifications and Remarks
1	19	Hilsch, R. and Fohl, R.W.	1931	T	3.98×10*-4.95×10*	293	Nigh purity; single crystal; grown from melt; absorption coefficients determined from transmission measurements; data extracted from a figure.
2	19	Hilsch, R. and Pohl, R.W.	1931	τ	4.32×10°-4.93×10°	293	Similar to above except for a conscretal crystal.
3	122	Balzarotti, A., and Piacentini, M.		1.04×10 ⁵ -1.65×10 ⁵	293	Single crystal; obtained from the Harshaw Chemical Co.; specimen cleaved in air just before being mounted in the sample chamber to be vacuus pung-d; reflection spectrum obtained with a monochro after of Land width of 1.5 Å; spectra performed on the same specimen after 24 hours did not allow significant changes and reproducible with uncertainty of about 52; absorption coefficients derived by Leans of the Kramers-Krenig analysis on the reflection spectrum obtained from 13.5 to 20.5 eV, below 12.5 eV the reflection data of Rubloff were utilized while close of Blechschmidt et al. were used beyond 20.5 eV; absorption-coefficient data extracted from a figure.	
÷	95	Califano, S. and Czerny, M.	1958	•	4.19x10 ² -5.9x10 ²	293	Crystil; block specifiens of 15.15 and 16.80 cm; absorption coefficients determined from transmittance real community; data extracted from a figure.
ڌ	137	Bauer, G.	1934	Т	5.26×10°-5.4×10°	293	Can tal; trun film specimens of various thicknesses; absorp- tion coefficients of bulk crystal deduced from transmittince and specimen tulckness measurements; data extracted from a tible.
6	123	Elechschmidt, D., klucker, R., and Skibowski, M.	1969	R	9.29x10 ⁴ -2.42x10 ⁵	293	Single are toll provided by Karl Korth, Kiel, Germany: freshly eleved specimen; assorption coefficients derived with the reflectivity are remarke of incidence method; data cutracted from a reject.
7	38	Barker, A.J.	1972	R	2.58×10 ² -4.38×10 ²	30%	Synthetic of still aigh parify. Gary polished appoints of 1-2 mm thirty absorption coefficies deduced from reflectivity; data extracted from a fig
3	38	I rker, A.J.	1972	R	2.98x10 ² -4.67×10 ²	500	Si Har to move except at a higher to perature.
÷	3a	marker, A.J.	1972	ĸ	3.17x10 ² -4.87x10 ²	740	Similar to above except at a higher to perstare.
10	8ز	Barker, A.J.	1972	R	$3.28 \times 10^2 - 5.08 \times 10^2$	885	Similar to above except at a higher temperature.
11	38	Barker, A.J.	1972	R	3.38×10 ² ~5.18×10 ²	1035	Molton khr of them of 1-2 methick; reflectivity collars ents- carried out in a largely inert gas atmosphere; absorption coefficients deduced from reflection spectra; absorption— coefficient data extracted from a figure; relting temperature of KBr is 1003 K.

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavenumber Range, cm 1	Temperature Range, K	Specifications and Remarks
12	12	Deutsch, T.F.	1973	т	2.99×10 ² -6.0×10 ²	300	Single crystal; obtained from Optovac Co.; specimentf 2.54 ca diameter and 2.54 on thick; absorption coefficients determined using a differential technique with a dual-beam spectrophoto- meter; data extracted from a figure.
13	77	Tomiki, T., Miyata, T., and Tsukamato, H.	1974	R	4.88×10*-5.37×10*	84	Single crystal; obtained from Barshaw Chemical Co.; absorption coefficients deduced from reflection measurements; data extracted from a figure.
14	77	Tomiki, T., et al.	1974	R	4.83×10°-5.19×10°	194	Similar to above except at a higher temperature.
15	77	Tomiki, T., et al.	1974	R	4.76×10 -5.04×10	300	Similar to above except at a higher temperature.
16	77	Tomiki, T., et al.	1974	R	4.69x10"-4.94x10"	373	Similar to above except at a higher temperature.
17	77	Tomiki, T., et al.	1974	ĸ	4.54×10"-4.80×10"	473	Similar to above except at a higher temperature.
i S	77	Tomiki, T., et al.	1974	R	4.42×10*-4.68×10*	536	Similar to above except at a higher temperature.
19	126	Philipp, H.R. and Ehrenreich, H.	1963	R	5.32×10 ⁴ -1.94×10 ⁵	298	Single crystal; near normal reflection spectrum obtained; absorption coefficients deduced by the Kramers-Kronig relations absorption-coefficient data extracted from a figure.
2C	128	Johnson, K. and Bell, E.	1969	R	20,7-220	300	Single crystal; well polished single surface; reflectivity and phase simultaneously measured by asymmetric Fourier transform spectroscopy and absorption coefficient deduced from the measurements; data extracted from a figure.
21	42	Owens, J.	1968	T	0.25-3.5	298	Single crystals; obtained from the Harshaw Chemical Co.; cylinder shaped specimen; filled resonant cavity method used for measuring dielectric constant and loss tangent; absorption coefficient then determined; data extracted from a figure.
22	136	Klein, P.H., Davison, J.W., and Harrington, J.A.	1976	С	350,400,450	298	High purity crystal; purified with reagent IBr; bar specimens water ground followed by polishing with like solution; measure with laser calorimetry; data extracted from a table.
23	136	Kiela, P.H. et al.	197ô	С	350,400,450	298	Similar to above except purified with $\mathrm{C_2Er_6}$ in the halide process.
24	136	Klein, P.N. et al.	1976	С	350,400,450	298	Similar to above except purified with $C_{\psi} \text{Br}_{\psi}$ in the halide process.
25	136	Klein, P.H. et al.	197ó	C	350,400,450	298	Similar to above except purified with reagent COL, in the halide process.
26	136	Klein, P.H. et al.	1976	С	943,9434	298	Similar to above except purified with reagent IBr in the halide process and concentration of 1 droxyl ion 0.005 per million anion (ppm A).

TABLE 43. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF POTASSIUM BROMIDE (Wavenumber Dependence) (continued)

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavenumber Range, cm ⁻¹	Temperature Range, K	Specifications and Remarks
27	136	Klein, P.H., Davison, J.W., and Harrington, J.A.	1976	С	943,9434	298	Similar to above except purified with reagent C_2Br_6 in the halide process and concentration of hydroxyl ion 0.07 pr= A.
28	136	Klein, P.H. et al.	1976	С	943,2632,3704,9434	293	Similar to above except purified with reagent CCl, in the halide process and concentration of hydroxyl ion 0.05 ppm A.
29	136	Klein, P.H. et al.	1976	С	943,2632,3704,9434	298	Similar to above except concentration of hydroxyl ion $< 0.01 \ ppm$ A.
30	136	Klein, P.H. et al.	1976	c	926~1046	298	Above specimen; total absorption coefficients measured.
31	136	Klein, P.H. et al.	1976	С	926-1046	298	Above specimen; bulk absorption deduced from total absorption
32	136	Klein, P.H. et al.	1976	С	926-1046	298	Similar to above specimen except concentration of hydroxyl ion 0.05 ppm A and total absorption measured.
33	119	Hass, M., Harrington, J.A., Cregory, D.A., and Davison, J.W.	1976	С	9434,3571,2632	298	Single crystal; highly purified and polished rod specimens; measured with laser calorimetric method; data extracted from a table; origins of higher absorption at 2.7 µm and 3.8 µm due to impurities in bulk material and surface contamination.
34	104	Harrington, J.A., Duchler, C.J., Patten, F.W., and Hass, M.	1976	С	272-576	300	Single crystal; obtained from the Harshaw Chemical Co.; experimental details not given; data extracted from a figure.
35	104	Harrington, J.A. et al.	1976	c	285-498	80	Name as above.
36	129	Mentzel, A.	1934	T	192-625	298	Single crystals; thin film and plate specimens of thickness from 43 µm to 13 mm; absorption coefficients determined from trunsmission measurements; data extracted from a table.
37	23	Genzel, L., Happ, H., and Weber, R.	1959	τ	4.8-28	298	Crystal; plane parallel plate specimens of 2.5, 5.0, 38.3 rm thick; absorption coefficient determined based on transmission measurements; data extracted from a figure.
8 .	99	Rose: stock, H.B., Gregory, D.A., and Harrington, J.A.	1976	c	943.4,3703	298	Single crystals; obtained from the Naval Research Lab., the Harshaw Chemical Co., and the Raytheon Corp.; mechanically polished and chemically cleaned with spectrograde CCl.; laser calorimetric method used; data extracted from a table; it was found that the surface absorption was about 45 times higher than the bulk absorption.
39	121	Rowe, J.M. and Harrington, J.A.	1976	С	926-1044	300	Single crystals; grown by the reactive-achosphore-process; carefully polished surfaces; total absorption determined with laser calorimetric method; higher absorption occurred near 9.6 mm due to extrinsic contributions; data extracted from a figure.

TABLE 43. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF FOTASSIUM BROWIDE (Wavenumber Dependence) (continued)

Daka Set No.	Ref.	Auchor(s)	Year	Method Used	Wavenumber Range, cm 1	Temperature Range, K	Specifications and Acourks
40	121	Rowe, J.M. and Harrington, J.A.	1976	С	926-1044	300	Same as above except the bulk absorption obtained.
41	121	Rowe, J.M. and Harrington, J.A.	1976	С	926-1044	300	Similar to above except for purer samples and bulk absorption obtained.

TABLE 44. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM BROMIDE (Wavenumber Dependence)

(Wavenumber, v, cm⁻¹; Temperature, T, K; Absorption Coefficient, a, cm⁻¹)

v	3	v	a	ν	Q.	ν	α	v	a	v	α
DATA SET :	1	Tás ATAG	3 (CONT.)	DATA SET	3 (CONT.)	JATA SET	6(CONT.)	DATA SET	GICCHI.)	GATA SET	Ģ
T = 233.2		• . •								1 = 742.	
		1.614.45	8.5135+5	1.15.2+5	4.1246+5	2.2936+5	8.6726+5	9.9196**	8.4C1E+5		_
4.926:+4	3.0748+4		9.29,6+5		4.260545		935+5	9.6456+4		4. 67. 5+2	1.53.2-1
++9.21*+ 6	b1		9.2345.45		+++512+5		8.928645	9.2946+4	1.401E+6	4.070=+2	3.1006-1
4.07	2.5.36-1	1.601545	9.43.E+5	1.1265+5	4.870E+5	2.2235+5	8 447 2 + 5			4.4742+2	4. 8 . u£ - 1
4.333= +4			9.3416+5		5.230E+5		8. J39E+5	DATA SET	7	4.270216	
4.702E+4 .	4.BE-1	1.533:+5	8.73.E+5	1.1.76+5	5.374E+5	2.156£+5	7.8595+5	7 = 3	4	4J£+2	1.17CE+0
4.73 15+4	1.4.16-1		8. 4945+5		5.5138+5		7.9762+5			3.3726+2	1.7-15+3
4.673E++		1.573:+5	7.25,1.5	1.0352.5	5.8186.5	2.114645	8.3816+5	4.3802.2	1.2006-1	3.77.2+2	4.1942+4
4.566:+4	7.336-2	1.5072+5	6.54,2+3	1.3762+5	6.170E+5	2.1335+5	8.612E+5	4-1762+2	2.4632-1	3.45.212	2.7362+3
44465244 (0.0.32-2	1.50.5+5	6.294.5	1.1032+5	6 . 5 6u E+5	2.47 £45	8.8222+5	3.9742+2	3.56.2-2	3.23.2+2	3. 4 43
4,3,,2+4	52	1 • 55 2 = +5	6 . 15, 6 +5	1595+5	7.6685+5	1.9946+5	8.593£+5	3.774.42	5.10.2-1	3.74.1+2	:1.2+3
3,9542+4	5-3610.0	1.533:+5	6.3251+5	1.0482+5	8.633E+5	1.9262+5	8.131E+5	3.5701+2	6. 8	3.35- 6+6	5.2-46.43
		1.519: +5	6.57 uE+5			1.895E+5	7.792E+5	3.380£+2	1.3502+0	3.48.2+2	£.50,2+3
DATA SET	2	1.5.3c+5	7.us3E+5	DATA SET	i,	1.635€+5	7.5998+5	3.134=+2	2.070=+.	3.1766+2	d • 5 + u c + B
T = 293.2		1.47 46+5	7.39,6+5	7 = 293.	î	1.778E+5	7.624£+5	3.1796+2	2.490216		
			6.5652+5				8.8-16+5	2.9706+2	3.13,2+6	Jala Set	
+.966E++ .	3,51,2+.	1.40.515	8.46.6+5	5.9362+2	3.452E-3	1.7176+5	204746+6	2.875= .2	3.99.2+.	7 = 335	•
9.2i++ :		1.4492+5	7.3766+5	5.5,22+2	6.1835-3	1・7にしに+ラ	1.1176+6	2.7835+2	5.2502+6		
4.373204			7.07; 6+5		1.2.56-2		1. u 69£+6	2.6742+2			2.1.JE-1
37 Hz++ 3		1.+205+5	7.0636+5		2.2925-2		7. +266+5	2.5886+2	9.9742+6		۵.8
4.55-144 (7.3.56.5		4.569E-2		6.93ò£+5				4.3c.i-1
4,9,32+4)			6.72.2.5		7 . v 66 E-2		7. b 16 £ + 5	DATA SET			D.7: u==1
4.7025+4 3			ちゅうしょとチラ		1.6715-1		8.6602.+5	T = 59	}		5.3.46-1
73 7=++ .			0.73;6+5	4.1952+2	1.629E-1		7.5416+5				1.45.248
- + + t 7 J = + + :			6.41.2+5		_		6.942845		1.7602-1		1.0.02.3
******			5.03.6+5	DATA SET			6.5672+5	4.47.2+2			2.2502+3
4.5.5.++			5.5.06.65	7 = 293.	ù		6.035£+5		4.700=-2		6.746213
4.40-2+4			5,4402+3				7.5266+5		7.9036-1		3.4526+0
4.4255+4			5 . 4 E + 5		6.46SE+5		7.868E+5		1.21)[4.37:2+3
→•329E•• •	4.5.00-1		5.5248+3		8.7 by £+5		7.6505+5		1.3602+0		Soudures
	_		5.7466+3		9.2405+5		7392+5		2.3012.00		6.57.240
DATA SET	3		6.49.2+5		3.9036.5		6.3166+5		2.9605+6	る。ときしこりと	ひゅうこしをきり
1 = 293.3			6.4946.3	5.2612++	7.630E+5		5,3922+5	5.380£+2			
			5 . 37 +5				5.4.66+5		4.76ùE+u	DATA SET	
: .649: +5			5.37:2+5	DATA SET			4.932E+5		6.09	1 = 1435	• b
035.*2			4.75.6+5	1 = 293.	3		4.263E+5	3.3806+2			
3.0342+51			4.4616.65				3.7456+5	2.98úz+Z	9.32(6.4)		2.2656-1
1.5275.65			+ - 2166+5		6.2876+5		3.8135+5				3.0E-1
5232.5			4.0 DE+5		7.1392+5		4.7622+5				7.4442-1
1.6.3: **	/.o.jt+>	1.1046.+5	4. ù 3y £ + 5	2.3142+3	7.9678+5	1.025645	7.3166+5			4.50.5+2	1-4465-1

TABLE 44. EMPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM BROMIDE (Wavenumber Dependence) (continued)

,	α	٧	a	ν	a	ν	α	ν	α	ν	۵
3414 SET	11(0041.)	TEC ATAG	13 CONT.F	DATA SET	14(CONT.)	DATA SÉT	16 (CONT.)	DATA SET	17(C)41.)	3474 SET T = 298.0	
4.376246	1.195604	5.17.2.4	2.188E+3	4.8795+4	2.466E-1	4.9185.4	7.586E+G	4. 66+6+4	8.091E-1		
1.1745+2			2.189:+3	4. 3562+4	2.34+E-1	4.953644	6.138E+C	4.6546 +4	6.5102-1	1.9356+5	8.2.42.5
30.3.226		5.131.+4	2 . 11 d £ + 0	4.833E++	2.178E-1	4.9025+4	4.9čLÉ+ů	4.6446+4		1.5472+5	
3.37 45+6	2.3212+4	5 4 . + 4	1.5635+3				3.0646.0	4.E31c+4		2.7532.43	
1.37.2.2		5 752+4	2. 4 23 = +3	DATA SET	15	4.879244	2.7462+6		3.637£-1	1,75.6+5	
5.77	3.30.2+6	5512+4	0.300c-1	7 = 32	Ĺ		2.,14£+8	4.6162.4		1.7252+>	
3.554.+2	4.3.364.	5. 20:+4	3.0486-1			4.6506+4	1.600E+0	4.5985+4	2.9116-1	1.677215	
3.5446.6	5.03.6+6	5.0022+4	2.700E-1	5.6462+4	1.774E+1	4.9432+4	1.2715+1		2.4 896-1	1.6536+5	
3.4742+2	7.121600	4.377=+4	2. 3.E-1	5.4362+4	1.374641	4.6335+4	9.772E-1	4.5446+4	2.280:-1	1.6375+5	
3.38.2+2	8.65.246	4.9496+4	2.128E-1	5.6292+4	1.676E+1	4. 3242+4	8.279E-1			1.6296+5	1.02.5+6
		4.927244	2.1451-1	5.4256+4	9.4026+6	4.916E+4	6.792E-1	DATA SET	18	1.0」さとサラ	らってししぎ 45
TER ATTC	11	4.3.2:++	2.01.42-1	5.4.22.++	5. 336E+G	4.7305+4	5.91cE-1	1 = 530.0	ن	えゅうりんとりう	
[= 3.J.		4.3322+4	1.778E-1	5.0025+4	4.374E+0	4,7886+4	4.9432-1			1.505£+5	7.8JűÉ+5
	-			4.99JE++	3.1652+8	4.776E+4	4.266E-1	4.6726+4	1.5562+1	1.532c+5	7.866245
5.9992+2	1.5.42-3	DATA SET	14	4.9762+4	2.338E+0	4,766544	3.926E-1	4.6076+4	1.247: +2	1 ++ 84 £ +5	9.6362+5
	4E-3	T = 194.	8	4.905c++	1.871E+C	4.7546+4	4.13.E-1	4.6592+4	1.1625+1	1,40+5	9.6-45+5
5.3165+2			-	4.9522+4	1.563E+0	4.7+62+4	3 34E-1	4.6516*4	8. 472=+4	1.+352+5	
4.5.C±+c		5.193204	1.3598-1	4.937E++	1.337E+0	4.718E+4	2.344E-1	4.649 €++	7.1122+6	1,-1,6+5	7.40.2+5
40.165*			5.75.1.4	4. 9272+4	1.1752+4	4.6765+4	2.41vE-1	4.6296+4	0.1692+4	1.5372+5	6.7 +5
2.27.2.2		24.71244	4.03+2+	4.9156+4	9.162E+1			4.619: **	4.8532+6	1.3316+5	
-		5.1016+4	3.707E+0	4.9.56+4	8.3182-1	DATA SET	17	4.6116+4	3.8522+0	1.2936.5	
DATA SET	13	5. : 55: +4	2.8712+6	4.891E+4	6.95uE-1	T = 473.	ů.	4.6062+4	3.5322+0	1.2826+5	8.JJJE+5
T = 6 ++ +		5.1472+4	2.6796+6	4. 8795+4	6.95;E-1			4.5992+4	3.373=++	1.2552.45	
		3.138:+4	2.5766+3	4.865E+4	4.8532-1	4.734644	1.472641	4.5936+4	2.3656+6	1.234645	5.4046+5
5. 165E+w	1.5236+1	5.1212+4	2.27LE+0	4.85c£+4	4.853E-1	4.787E+4	1.2476.1	4.585:+4	2.667=+-	1.4.46.45	
	7.9.7:	5.1250+4	2.2346.5	4.8442+4	4.ú3áE-1	4.783E+4	1.4672+1	4.5616+4	2.2495+6	1,1426+3	5.5
	0.1675+6	5.1.26+4	1.5595+3	4.832E+4	3.436E-1	4.770E+4	9.1tlé+3	4.5676+4	1.9656+4		7.9.52+5
5.3425**			1.9.56+4	4.8236+4	3.436E-1	4.7728+4	7.3794+0	4.5582.4	1.4456+6	2.624645	8.6.GE+5
2.3312+4			2.77.E+3	4.81uE+4	3.076E-1	4.7622+4	6.194E+D	4.5+8=+4	1.349£+4	4.429604	9.5.32.5
	6. 6546.6		1.637E+2	4.797E+4	2.4896-1	4.756E+4	5.495£+0	4.531£+4	1.3282+4		1.3602+6
	1.4325+2	5.0522+4	1.445E+3	4.785£+4	2.615E-1	4.7-86+4	4.9265+0	4.525£+4	9.376=-1	8.79.244	
	1.247246	5.2332+4	1.3501+3	4.7762+4	2.897E-1	4.7486+4	4.5486+6	4.5196+4	7.6216-1	4 .: + d£ ++	7JCE+5
	1.10.514	5.620.+4	1.3.12+0	4.763=+4	2.366E-1	4.741E+4	3. 381£+0		6. +36c -1	\$ bàc++	6.65
	1.16.5.		1.047E+3			4.7365+4	3.2366+6	4.4996+4	5.6752	7.3236+4	5.4
	1.29+2+4		8 - 83 LE-1	DATA SET	16	4.769644	3. u34£+C	4.485E+4	4.9832-1		ゲーレーレビナラ
	1.3476+3		8.1546-1	1 = 373.	G	4.719E+4	2.3G1E+U	4.4636+4	3,6986-1	7.497£++	7.700E+5
	1.637E+C		7.3471-1		-	4.765E+4	1.837E+G	4 - 444 - +4	3.918£-i	6.335E44	1.130E+6
	1.9.55+3		5.272E-1	4.939E+4	1.514E+1	4.6946+4	1.459E+0	4.4236++	3,2812-1	6.65-6+4	8.4242+5
	2.4515+0		3.8126-1		1.268E+1		1.148E+6			o.532£+4	5.1JGE+5
	2.0012+-		2.897£-1		9.683E+C	4.674E+4	9.55 CE-1			6. £18E++	3.91.2+5

TABLE 44. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM BROMIDE (Wavenumber Dependence) (continued)

ν	Œ	ν	α	ν	Q.	ν	α	ν	a.	v	α
CATA SET	19 (CONT.)	DATA SET	ZL (CGNT.)	DATA SET	24	DATA SET	36	DATA SET	33	JATA SÉT	35
			•••••	T = 295.6		1 = 298.1	,	T = 298		T = 66.0	
5.9082+4	4.2032+5	1.1442+2	4. 3556+3								
5.0.6.++	7.92.2+5	1.1435+2	2.5948+4	4.5362+2	1.2632-1	1.0462+3		9.4346+3		2.55.2+2	
5.645=+4	3.0.,:+5		1.2.56+-	4+2		1.35£+3		3.7342+3		2.3956+2	
5.5652+4	3.1CiE+5	1.3436+2	6.2816-1	3.530E+2	7.30JE-1	1.0356+3		2.632£+3	2.2G3&-4	2.4766+2	
	8.96.6+5		1.543E-1			9.83+E+2				3	
5.323:+4	1.6416+5		1 - 4 4 c E - 1	DATA SET		9.7392+2		DATA SET		3.11.6+2	
			1.318E-1	T = 293.6		9.52-6+2		T = 3	1	3.20-6+2	
TEC ATAC			1.21:5-1			3.5248+2				3.21.2.2	
T = 3.0.	5		1.1482-1	4.51(E+2		9.4346+2		2.72.5.+2		3.23.2.4	
		7262+1		4.0.662		9.4346+2		5.919:+2		3.34.6+2	
	1.4.9E+2		1.1.76-1	3.5:.2+2	8.408E-1	9.259£+2	5.084£≠5	2.921:+2			3. 1002-1
	1.7525-2		i • û 4û È - 1					3.313:+2		3.40-6+2	
	2-1192-2		9.661E-2	DATA SET		DATA SET		3.1106.+2		3.4316.42	
	4.6+95-2		7.889E-2	T = 293.0		T = 298.0	i .	3.1:0:+2		3.2502+2	
	3.13+6-2		5.848E-2					3 - 3 Ju £ + 2		3.55.2+2	
	3.435==2	2.073=+1	1.774E-2	9.+3+E+3		1o£+3		3.3246+2		3.02:202	
	3.775=-2			9.4342+2	2.5655-4	1352+3		3.473=+2		3.01.2+2	
	433:-2	DATA SET				3.3u4£+2		3.+7.5+2		3.72.2.4	
	5.3.35-2	T = 298.	L.	DATA SET		9.7198+2		3.760=+2		3.79.242	
	5.023£-2			T = 298.C		9.5248+2		3.7+CE+2		3.52.2.2	
1.5965+2	1.4792-1		2.716E-4			9.5246+2		3 • 963 £ • 2		3.57.2+2	-
	1.7335-1		5586-4	9.4345+3		9.4348+2		3.3602+2		3.95.6+2	
1.3435+2	1.963=-1	2.59+6-1	1.1751-3	9.4345+2	2.466-4	9.4346+2		4.1506.42		بافت سينسه و	
	1.3552-2					9.4346+2		4.1536+2		43.2+2	
1.7712+2	2.2446-1	DATA SET		DATA SET		3.4346+2		4. 2005+2		******	
	2.4052-1	T = 298.	Ľ	T = 298.0		9.2596+2	1.846E-5	4.3005 + 2		4.13.6+6	
	2.0926-1							4.440=+2			4.87.2-2
	3.325:+:		4.3úuE-2	9.4342+3		DATA SET		4. 490 6 + 2		4.10.0+2	
	+.1995-1		2.366E-1	3.7u4E+3		7 = 298.0	3	4.5906+2		4.35.6.42	
	4.4/7:-:	3.5012+2	7.2.L-1	2.6362.3				4.6032+2			2.77.6-2
	4.5366-1			9.434E+2	605-5	1.6465+3		4.7436+2		4.24.242	
	4.596 ==1	DATA SET				1352+3		4.3135+2		4.044212	
	4.6335-1	T = 23d.	ע	DATA SET			1. u 3u E-4	4.9206+2		4.71.2+2	
	4.342:-1			T = 299.0		9.7496+2		5.3636+2		4.64.212	
	3.222£-1		9. 660 E-2			3.52.5+2		5.1535+2		4.9862+2	1.0000-2
	1.7935+0		7.Jue£-1	9.4342+3			1.4362-4		غ- عدا نا من		
1.1752+2	3.436=+6	3.5116+2	8.800E-1	3.7042+3			8.7 EG E-5		6.4642-3	DATA SET	
	4.8195+3			1.6325+3		9.2592+2	1.026E-+	5.703£+2	3.8672-3	T = 2×3.6	,
	5.249E+6			9.+34E+2	1.4636-5						
1.11.42.42	5.175E+L									6.2532+2	1.021E-2

TABLE 44. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM BROWIDE (Wavenumber Dependence) (continued)

```
v
                                                                                                                       DATA SET 39
T = 311.5
 DATA SET 35(CONT.)
5.(002+c 7.5422-2
4.1675+2 2.+135-1
3.5715+2 7.5732-1
3.1251+1 2.4-21+6
2.7732+2 4.5355+6
2.5041+2 1.6576+1
2.2732-2 3.4276+1
2.2732-2 3.4276+1
1.9231+2 2.34+2+2
                                                                                                                        3.253c+2 1.33Cc-4
                                                                                                                       9.259c+2 1.J3Cc-+
9.n3x±+2 1.Jnuin-+
9.n3x±+2 6.6102-5
9.51x±+2 8.310E-5
9.51x±+2 9.2412-5
9.5145+2 1.C51E-4
1.L336+3 2.271E-4
1.L4x±+3 2.271E-4
 5414 SET 37
T = 296.4
                                                                                                                        JATA SET 4.
T = 3,0.0
                                                                                                                       9.299242 5.71225

9.434242 5.46925

9.434242 5.49925

9.524242 6.27425

9.524242 6.27425

9.514242 6.27425

9.514242 6.39425

1.33243 1.04024

1.33243 1.20424
2.8175+1 1.033±+1
2.817±+1 1.0435+1
2.2035+1 5.453±+0
2.5005+1 7.791±+
2.1021+1 4.2732+
1.4035+1 3.3900+1
1.9311.41 3.3951.4

1.004.641 2.404.4

1.940.641 2.424.4

1.4251.4 1.302.4

1.350.641 1.231.6

1.2551.4 1.331.6

1.1.51.4 1.9.331.6

1.1.51.4 1.9.331.6

1.1.51.4 1.9.331.6

1.1.51.4 1.9.331.6

1.1.51.4 1.9.331.6

1.1.374.6 1.1.931.6

1.374.6 1.1.931.6

1.374.6 1.1.931.6

1.397.6 1.1.931.6

1.397.6 1.1.931.6

1.397.6 1.1.931.6

1.397.6 1.1.931.6

1.397.6 1.1.931.6
                                                                                                                          1.044c+3 1.100E-4
                                                                                                                         DATA SET 41
T = 300+0
                                                                                                                       9.2532+2 1.3532-5

9.3542+2 6.57.2-5

9.342+2 1.2402-5

9.342+2 1.3522-5

9.3422+2 2.3322-5

9.5242+2 2.4222-5

9.5242+2 2.4222-5

9.7242+2 2.4222-5

1.0332+3 2.6922-5

1.0442+3 3.3922-5
  JATH 55T 30
  9.4342+2 1.2.7E=4
3.7.32+3 9....2=9
```


Figure 30. Absorption Coefficient of Potassium Bromide (Temperature Dependence)

Set No.	Ref.	Auchor(s)	Year	Mcthod Used	Wavenumber Range, cm	Temperature Range, K	Specifications and Remarks
1	43	Stolen, R. and Dransfeld, K.	1965	T	31.25	41-300	High purity; single crystal; grown by the Bridgman Method; plate specimens of thickness 0.5 to 25.0 mm; absorption coefficients directly determined; data extracted from a figure.
2	43	Stolen, R. and Dransfeld, K.	1965	τ	20.0	77-300	Same as above except for a longer wavelength.
3	43	Stolen, R. and	1965	T	11.11	80-300	Same as above except for a longer wavelength.

TABLE 46. EXPERIMENTAL DATA ON THE ALSORPTION COEFFICIENT OF POTASSIUM BROWIDE (Temperature Dependence) [Wavenumber, ν , cm⁻¹; Temperature, T, K; Absorption Coefficient, α , cm⁻¹]

T	3	ĭ	O.
DATA SE	T 1	DATA SE	T 3 (CONT.)
v = 3.1	25č+1		
		27	1.785E+2
42.6	2.4191+2	3.3.3	2.19:6+2
	2.8525+2		
50.0	3.58+5+2		
55.4	*. +3LE+2		
65.6	5.6282+2		
76	7.1.12+2		
99.2	3 ++£+2		
237.3	1.1046+3		
129.6	1.5.02+3		
1.40.0	1.6152+3		
164. 0	2.4716+3		
133.1	2.4752+3		
2:2.0	2.8546+3		
241.6	3.3+52+3		
3	4.362:+3		
CATA SE	T 2		
v = 2.3	98E+1		
77.	1.3695.2		
134.3	2.1052.2		
134	3.2135.2		
157.4	4.1206.02		
173.4	₩.783E+2		
156.u	5.4412+2		
209.û	6.3735+2		
246.0	7.6132+2		
267.6	9.151E+2		
324.3	1		
DATA SE	т з		
v = 1.1			
a3.5	1.31.5.1		
11	2.4316+1		
139.5	+.323E+1		
17404	6.8532+1		
2.3.5	9.0695+1		
233	1.3185+2		

Figure 31. Reflectivity of Potassium Bromide

TABLE 47. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF POTASSIUM BROMIDE

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
1	122	Antinori, M., Balzarotti, A., and Piacentini, M.	1973	R	0.06-0.094	293	Single crystal; obtained from the Harshaw Chemical Co.; specimen cleaved in air just before being mounted in the sample chamber to be vacuum pumped; reflection spectrum obtained with a monochromator of band width of 1.5 A; spectra performed on the same specimen after 24 hrs did not show significant changes and reproduced with uncertainty of about 5%; data extracted from a figure.
2	123	Blechschmidt, D., Klucker, R., and Skibowski, M.	1969	R	0.034-0.094	293	Single crystal; provided by Karl Korth, Kiel, Germany; freshly cleaved specimen; near normal reflectivity measured in vacuum for polarized light with normal of the specimen lying on both sides of the incident beam for increased accuracy; data extracted from a figure.
3	110	Baldini, C. and Basacchi, B.	1968	R	0.136-0.222	300	Single crystals specimen with cleaved surface; back surface of the specimen treated with an emery cloth to reduce the reflection from the back; near normal reflectivity obtained with specimen in vacuum; data extracted from a figure.
4	110	Baldiet, G. and Bosacchi, B.	1968	R	0.127-0.214	55	Same as above except at a low temperature.
5	138	Petroff, Y., Pinchaux, R., Chekroun, C., Balkanski, M., and Kamimura, H.	1971	R	0.155-0.188	1.8	Single crystal; specimen cleaved in liquid helium; near normal reflection spectrum obtained; data extracted from a curve.
6	24	Hudni, A., Claudel, J., Chanal, D., Strimer, P., and Vergnat, P.	1967	R	18.6-120	300	Single crystal; specimen of prism shape to avoid interference; near normal reflectivity obtained; data extracted from a curve.
7	24	Hadni, A. et al.	1967	R	18.6-120	72	Above specimen and conditions except at a lower temperature.
8	24	Hadni, A. et al.	1967	R	18.6-20	4.2	Above specimen and conditions except at a lower temperature.
9	126	Philipp, H.R. and Ehrenreich, H.	1963	R	0.049-0.62	298	Single crystal; near normal reflection spectrum obtained; data extracted from a curve.
10	128	Johnson, K. and Bell, E.	1969	R	27.4-278.5	300	Single crystal; well polished single surface; reflectivity measured by asymmetric Fourier-transform spectroscopy; data extracted from a figure.
11	54	McCarthy, D.E.	1963	R	1.9-40.0	298	Synthetic crystal; plate specimen of 5 cm thick; ground and polished to a flatness of seven fringes or better on both sides; incident angle 30°; data extracted from a figure.

TABLE 48. EMPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM BROWIDS

[Wavelength, A, pm; Temperature, T, K; Reflectivity, p]

λ	٥	λ	ρ	Ä	¢	λ	۵	λ	٥	Ä	٥
DATA SE	T :	CATA SET	1 (CONT.)	DATA SET	I.TACOIS	DATA SET	2 (CONT.)	DATA SET	3(CONT.)	DATA SET	4 (CGNT.)
7 = 693	. 3										
	•	3.1754	2.6275	6384	u - 137	0.3768	C.274	6.130	6. 17:2	1-5	
4.1613	2 El	708	4.6315	L. L 392	1.219	u.u731	26 J	6.137	4. 2404	J. 15 J	0.2710
5	235	772	J. J. Z. 8	0.0452	4.234	3.0799	ë • 2 - 3	C.189	4.3230	4.102	0.1507
e.7		779	3.5311	û. i+û 3	2.253	J. 0813	£ - 178	6.139	0. 3331	4.150	4.1131
	376	782	4.5258	6.041+	0.275	J. u 831	6.190	0.19.	4.3.70	e - 158	0.1112
0.2623		732	€ .520b	3.0425	u.339	6 356	6.257	6.192	L. 2300	9	C 130
3021	1	3.3795	2.0251	1.1430	0.453	3	6.553	6 6 2 3 4	4.1929	2.1-2	L 3+
West 23	531	0.43.5	4.6265	9.0433	3.457	3.4930	6.371	6.197	(. 1652	0.164	4.0491
46.4	5.7	311	2.12/14	36	0.453			6.6.0	L. 1453	i65	1
	74	33.0	ZZ7	4+0	322.0	JATA SET	3	1.215	. 1312		514
3	33	2522	4.0002	253	5.313	T = 324.		6.6214	11 59	0.103	2537
3.0631	5	v 5 . 5	0.0163	1.2451	4.314		-	6.221	ũ. 1ù +9	J.106	1575
2.6632	4 3	337	79	4.6474	2.433	3.136	0 719			3.178	9. € 931
2.2633	33.0	4.2347	0.0179	3.4.79	0.453	137	C 93	DATA SET	4	0.171	0.3260
2637	5291	6.2357	5913.0	1.4487	0.434	3.14.	0.1330	T = 55.0		0.171	4.2965
1033		165		4.42.0	5.321	2	4.2465			3.175	0.1273
1		176	c 232	4.4523	5.296	4.143	2459	6.127	C. 6534	75	3
(++		577	4.6261	u.,535	3.301	0.144	6.203.	6.123	645	w. 177	3 61
7	35	2.0330	291	554	3.372	J.145	C.2631	29		4.175	111
100001	J . J . 34	U 854	u . £ 321	4.4542	3.435	U + 1 7 D	4.6472		1.6336	4.100	· · · > 17
	2 5 .	Ú 593	i 3 71	8.0572	3.455	0.147	0.2163	6.131	L. (35)	ù.151	3.1462
652	5161.1	5.2392	6.6419	J. 4575	6.684	J - 1 48	6.2699	0.131	c. C339	3.182	0.4667
ú.C to t	5.3363	0 3 75	6 . 3 4 55	573	2.756	2.151	C.22u5	6.132		4.153	4.0513
i +/2		ů • i 3 d d	£8+3.0	3.4590	258	155	L . 15.0	6.233	6.0272	4.133	
5. v £7a		1 9	4.65.1	643	3.235	158	6.1374	2.234	1.6251	4.13>	6.3524
3.5 653	353	913	55	639	J. 25 J		0.1657	€.135	6.0318		4.69 E5
652	6.3.53	6.6322	w.Co74	1.3015	428	w.1t6	C.0931	6.1 = 7	6.6325	6.137	3.2495
5.607		330	4.19.3	619	356	4.166	C. 1389	J.135	0. (709	4.139	u • Ž • 35
5.6595	6	2	6.1446	023	ů. +32	4.166	6:080.0		6.6321	0.193	6.1775
3 7 - 3				J.1633	G.239	5.169	6.6955	û.139	6.1837	197	4531
3		DATA SET	2	ŭ • ŭ 537	3.214	3.17.	i . 1575	6.240	L. (3+9	4.2:2	J-1361
2.07.4	4.4375	1 = 293.	£ i	2.6643	ú.225	4.130	L.1852	6.240	i. (910		3.1227
1715	2339			658 نوبو	3.337	u.173	0.2.99	0.142	(.1052	u.214	6.1119
6.0764	2323	3	ŭ • 1 5 4	0.665	Ú.464	0.174	6.2318	6.142	C . 2 . 3 5		
	(345	₩.169	0.4675	4.485	U . 277	6.1982	6.143	L. 2079	DATA SET	ŝ
0.6733	u	3-9	0.181	6.5684	0.469	3.179	6.1549	6.144	6.2730	6 = 7	•
3.6737	b2e8	6353	4.181	727	1.240	3,181	0.1234	6.: 4	4.692		
5.67-3	****	3.9	6.174	6.4737	1.223	4.151	1.1064	4.1.40	L. 2130	i.155	0.165
4.4751	Ç.:248	333	U.164	3.5752	1.237	1.102	C. 1970	6.147	6. 187	u . 15â	v · 161
6.0759	258	6.4373	u - 1 b4	ù.u757	3.255	0.183	U.1479	6.147	C.15+8	6.156	U-157

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AN--ETC F/G 7/2
ABSORPTION COEFFICIENT OF ALKALI HALIDES. PART I.(U)
MARK 79 H H LI
CINDAS-54

AFOSR-IR-82-06A7

NL AD-A118 801 UNCLASSIFIED 3∈3 11680

TABLE 48. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM BROMIDE (continued)

ž.	p	À	þ	λ	٩	λ	P	λ	c	,	£
SZ ATAC	1 5(CCNT.)	CATA SET	f 5 (CONT.)	DATA SET T = 72.0		JATA SE	F 8 (CGNT.)	DATA SET	9 (CONT.)	DATA SET	18(CONT.)
1.155	5.151	0.133	(.40î			ēŝ.3		J.5673	C. G.	43.4	ui.
i 7	1.174	33		18.6	6.648	02.2	350		u. 673	-1.0	•2
57		4.24	J. 29 L	32.3	3.237	62.5	0.528	6.2733	L. (6+	5-•:	
i . 1 5 3	u.177	5.134	1.255	+1.5	552.8	53.1	6.646	4.47.7	3.651	5 ć	2.5.1
53	0.232	135	6.234	52.7	0.435	65.2	£ .767	b.6789	6.451	52.2	w • • • · · · · · · · · · · · · · · · ·
0.1:3	4.1+5	w.180	4.2.4	54.3	0.565	67.1	C.551		£50.5	53.3	6 - 2 4
3.16.	3.132	3.187	6.175	56.9	129	68.3	6.896	0.1521	4.664	÷3.7	
1.16:	22.21		•	59.3	3.221	72	919	しゅじきゅう	C. C32	5 4. 4	4.515
1.161	û.235	DATA SET	7 6	c1.3	ü.364	72.5	6.939	3.3332	G. 199	55.5	6.634
1.152	3.110	T = 3.2.		62.5	6.559	7 - 6	6.522	1.6901	€• 21 ÷	56.2	30.52
1.152	5,111		· -	54.5	₫•€73	?8.€	925		4. 167	21.5	4.72
	0.130	20.0	u • û • d	07.6	3.836	79.5	6.9.6	6.2042	0.120	0. • 9	44454
		32.3	7	99.1	0.878	86.7	G . & 3 c	6.1103	6. 4. 2	به بره	2
	17.6	41.5	u.u22	71.2	6.969	35.1	C • 5 5 8	C-1227	(. [95	62.6	3.641
6.165	U 1 4	47.5	9.0.0	74.5	3.528	80.3	6.487	0.1275	(• ú 7 7	2000	3.367
4.162	6.125	52.5	4.649	77.6	3.928	\$7.2	428	1323	5 . 6 . 3	75.0	3.7.3
7		၁၈. ဒိ		79.2	5	£ • e ¢	352	¥ 4 + 4 - 3	4. 252	73.5	4 - 5 - 2 2
3 . L 67	133	62	J.:29	E.38	6.493	52.1	6.311	1-1-9-	C-184	#1 × 3	
3.150	5.293	6 3. 1	0.190	35.3°	3.72.	95.2	0.273	6,2075	C. C+2	3 - 4 - 7	.001
	9.373	02.7	u.253	3.06	3.459	90.4	u a 247	6.17-5	ن، ندخ	٤7٠.	.7:1
3.16.	3.478	61.5	3.496	39.6	û.394	1.1.9	1.225	6.1797	6. (3)	57.2	3.563
3.209	373	7	u.591	32.5	6.349	105.0	212	6.1378	233	3440	6.904
6.173	3.35+	72.0	2.694	9+.6	3.335	210.1	u . 2 . 4	937	£. 15+	43.7	4.364
:.:7.	1.3+6	74.3	€.754	30.4	0.275	113.3	186	6.2366		2.9.2	ا ، ذ ذ -
3.171	3.351	77.7	₩.792	99.3	4.243	263.5	3,176	C.2339	C. 675	11 10 9	9 3 4
3.171		74.2	J.Ö.Š	161.9	0.232			6.2952	u. 459	7	6.15
3.171	4.475	81.8	w.798	286.3	G.215	DATA SE		2.36-7	E. (5+	د ،	
1 72	1.1.9	33.+	4.784	143.3	0.168	T = 293	• •	0.02.0	6.644	207.5 273.4	1.151
3.173		85.2	u • 722	120.0	G.173				- 4	213.4	3 - 2 4 2
75	40.45	85.7	4.52			û.ú49c	i.ibi	DATA SET			
4.175	7	89.2	4.513	CATA SE'	T 8	0.4534	6.608	T = 35û.	J	JATA SET T = 295.	
6.277	77	93	6.455	T = 4.2		u.u553	i £ 2			1 = 195.	3
5 - 1 77	û a u + 6	93.2	308			0.2571	6.659	27.→	i. (3)		6 135
6.173	22	92	6.322	18.6	3.548	4.0554	5.69	29.3	0.033	1.9	0.135 0.131
73		47.5	2.292	32.3	2.437	3.3596	0.699	31.1	c. 629	** 5	075
3-173	6.297	101.2	:.262	+1.5	0.622	J. 4 6 4 1	6.693	33.3	0. (27	40.0	
4 . 2 3 2	6. 227	2.5.0	J . 22 S	51.1	6.633	5.3613	520	35.2	Lever	≥• دُ	4.676
31	4.542	1:	6.214	53.1	y. 163	J., 629	6.643	38.4	6.623	2000	u ?
3.252	2.255	113.3	158	54.8	3.297	J.3642	ù43	44.4	Louis	۲۵۰3	663
131	4.054	<u> </u>	179	56.9	j.156	i.i£59	L.G47	41.7	214	29.9	57

TABLE 48. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM BROWIDE (continued)

Figure 32. Transmission of Potassium Bromide

TABLE 49. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF POTASSIUM BROWIDE

			TABL	E 49. SL:	TIANS OF HERIDAN		· · · · · · · · · · · · · · · · · · ·
						AND THE PERSON NAMED OF TH	
	* * ****	医乳状 化催化 医肾炎 人名英格兰 化二氯甲烷 化二氯甲烷 医二氯甲烷	HA THE WALL	Method	Wavelength	Temperature,	Specifications and Remarks
∂u:a	Ref.	Author(s)	Year	Used	Range, um	K _	and overested from a
Set No.	No.				89.2-172.1	4.2	Single crystal; specimen of 2.5 cm thick; data extracted from a
1	24 85	Hadni, A., Claudel, J., Chanal, D., Strimer, P., and Vergnat, P. McCarthy, D.E.	1967	T	0.17-3.0	298	Synthetic crystal; plute specimen of 5.0 mm thick with surfaces parallel to within 0.001 mm/mm of length and flat to within 10 fringes or better of the mercury green line; measurements made on double-beam instruments with accuracy of 12%; data extracted from a figure; temperature not given, 298 K assumed.
3	\$4	McCarthy, D.E.	1963	т	2.0-37.0	298	s figure; temperature has sectimen of 5 mm thick; ground and polished Synthetic crystal; plate specimen of 5 mm thick; ground and polished to a flatness of seven fringes or better on both sides; data taken from a figure.

TABLE 50. EYPERIMENTAL DATA ON THE TRANSMISSION OF POTASSIUM BROWIDE [Wavelength, λ , μ m; Temperature, T, K; Transmission, τ]

, z		
DATA SET 1	DATA SE	
	7 = 298	٠٤
59.2 0.099 95.1 - 238	7 = 298 2.1 5.2 1.5.2 2.5.2 2.5.7 2.5.6 2.1.3 2.1.3 2.1.3 3.1.3 3.5.3 3.5.7	0.933 0.929 0.929 0.925 0.915 0.965 0.7912 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505
2014 367 c 1 a 38000 1 2 3 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6		

TABLE 51. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WIDTHS (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN POTASSIUM BROMIDE*

Interionic		F band		R ₁ band	R ₂ band	M ba	N bands		
dist d (A)	Temp.	λ max	W	λ max	λ _{max}	λ max	W) max	
3.29	RT	(0.630) [†]		(0.732)	(0.792)	(0.897)			
		0.625	0.35		•	0.917-0.918	0.12-0.13	1.080	
		0.628	0.38						
		0.630	0.42						
		0.631							
	NT	0.599	0.19	0.735	0.790	0.887	0.06-0.07		
		0.601	0.20			0.892			
		0.603	0.22						
		0.607	0.30						
		0.608							
	HT	0.599	0.16			0.883-0.884	0.05		
		0.602	0.20						

^{*} Values were taken from Ref. [69].

 $^{^{\}dagger}$ Values given in parentheses are calculated from the Ivey relations [70]. F band $\lambda_{max} = 703 \text{ d}^{1.84}$ for NaCl structure, $\lambda_{max} = 251 \text{ d}^{2.5}$ for CsCl structure. R₁ band $\lambda_{max} = 816 \text{ d}^{1.84}$ R₂ band $\lambda_{max} = 884 \text{ d}^{1.84}$

M band $\lambda_{\text{max}} = 1400 \text{ d}^{1.56}$

TABLE 52. RECOMMENDED VALUES ON ABSORPTION COEFFICIENT OF POTASSIUM BROMIDE IN IR REGION AT 300 K

v, cm ⁻¹	λ, μms	Absorption	Absorption Coefficient, cm ⁻¹					
		Intrinsic*	Observed† (Selected)					
2.990E+02	33.4	2.9E+0	2.0E+0					
3.000E+02	33.3	2.8E+0						
3.500E+02	28.6	7.8E-1	7.0E~1					
4.000E+02	25.0	2.1E-1	2.0E-1					
4.010E+02	24.9	2.1E-1	2.7E-1					
4.500E+02	22.2	6.1E-2	1.8E-2					
5.000E+02	20.0	1.6E-2						
5.010E+02	20.0	1.6E-2	1.3E-2					
5.491E+02	18.2	4.8E-3	4.QE-3					
6.000E+02	16.7	1.3E-3	1.5E-3					
7.000E+02	14.3	1.0E-4						
8.000E+02	12.5	7.9E-6						
9.000E+02	11.1	6.1E-7						
9.259E+02	10.8	3.1E-7	1.8E-5(B), 5.6E-5(T)					
9.434E+02	10.6	2.0E-7	1.4E-5(B), 5.6E-5(T)					
9.524E+02	10.5	1.6E-7	2./E-5(B), 6.4E-5(T)					
9.709E+02	10.3	9.9E-8	1.5E-5(B), 6.0E-5(T)					
9.804E+02	10.2	7.8E-8	2.2E-5(B), 6.8E-5(T)					
1.000E+03	10.0	4.7E-8						
1.035E+03	9.66	1.9E-8	2.7E-5(B), 1.1E-4(T)					
1.046E+03	9.56	1.4E-8	3.3E-5(B), 1.0E-4(T)					
1.079E+03	9.27	6.2E-9	3.3E-5					
2.632E+03	3.80	3.5E-26	1.7E-4					
3.704E+03	2.70		1.2E-4					
9.434E+03	1.06		3.0E-6					

^{*}Intrinsic values were calculated according to Eq. (35) with uncertainties about ±10%.

[†]Values in this column are the total absorption coefficient which are either lowest reported or those used to define the constants in Eq. (35). Uncertainties of these values are about $\pm 10\%$. Values lower than 1.0%-3 carry higher uncertainties up to $\pm 30\%$. Letters in the parentheses have the following meaning: B - bulk absorption and T - total absorption.

3.6. Potassium Iodide, KI

Potassium iodide is valuable as prism material, but it is too hygroscopic (being about twice as soluble in water as potassium bromide) and too soft for field use. It is also soluble in alcohol and in ammonia. Crystal ingots 19 cm in diameter are available. Although KI is one of the softest rock salt-structure alkali halides, thus not a suitable optical material, its wide transparency, 0.25 to 50 µm, draws considerable interest in research. Fundamental absorptions in the ultraviolet and infrared regions, as well as static and high-frequency dielectric constants have been measured by a number of investigators, and the results are reported in Table 2.

A reasonable quantity of data on the refractive index of KI are available in the open literature. By careful examination of the available data we find that for the transparent wavelength region the results of Gyulai [27] and Harting [30] are consistent (with temperature effects considered) to the fourth decimal place, in spite of the fact that Gyulai quoted an accuracy of one unit in the third decimal place. Korth's values [139], although being reported to the fourth decimal place, are good only to the third place. Data reported by Sprockhoff [140] and Topsöe and Christiansen [141] appear slightly too high at the assumed temperature; they either observed at a considerably lower temperature or used inadequate samples. In the infrared region, 40 µm and up, data were deduced by analyzing the information on reflection and transmission spectra. Data are available from the figures of Hadni et al. [24], Eldridge et al. [142], and Berg et al. [143].

Li [33] reduced the then available experimental data on the refractive index to a common temperature of 293 K and after careful critical evaluation and analysis adopted a Sellmeier type dispersion equation to evaluate the refractive index at 293 K in the transparent wavelength range 0.25-50 μm

$$n^{2} = 1.47285 + \frac{0.16512 \lambda^{2}}{\lambda^{2} - (0.129)^{2}} + \frac{0.41222 \lambda^{2}}{\lambda^{2} - (0.175)^{2}} + \frac{0.44163 \lambda^{2}}{\lambda^{2} - (0.187)^{2}} + \frac{0.16076 \lambda^{2}}{\lambda^{2} - (0.219)^{2}} + \frac{0.33571 \lambda^{2}}{\lambda^{2} - (69.44)^{2}} + \frac{1.92474 \lambda^{2}}{\lambda^{2} - (98.04)^{2}}$$
(36)

where λ is in units of μm .

Available data on the absorption coefficient, reflectivity, and transmission of KI compiled in the present work are given in Tables 53 and 60 and are plotted in Figures 33 to 38. Investigations of absorption coefficient for practical applications are generally classified into three wavelength regions: the ultraviolet and the infrared absorption edges and the transparent regions. In the case of KI, much of the absorption measurement was carried out in the vacuum uv region for the purposes of studying the band structure of the crystal. Many observations were performed in the far infrared region for study of the dielectric properties. Little information could be found in the transparent and absorption edge regions. In the uv absorption edge, early studies of the Urbach tail of KI were made by Martienssen [135] and Haupt [144]. Later, Tomiki et al. [77] studied the absorption of KI in the wavelength range between 0.200 and 0.280 µm for the purpose of determining the Urbach-rule parameters and finding the features characteristic of the intrinsic tail. Through a systematic observation and analysis, the following empirical relations of the parameters were found

$$E_o = 5.890 \text{ eV}$$
 $\alpha_o = 0.6 \times 10^{10} \text{ cm}^{-1}$
 $hf = 4.5 \text{ meV}$
 $\sigma_{SO} = 0.830$

for the expression of absorption coefficient of the intrinsic tail

$$\alpha = \alpha_{o} \exp \left[-\sigma_{s}(T)(E_{o}-E)/kT\right]$$
 (37)

where

$$\sigma_s(T) = \sigma_{so} \frac{2kT}{hf} \tanh \frac{hf}{2kT}$$

This equation represents the intrinsic absorption coefficient for pure KI crystals.

In the multiphonon absorption region, absorption coefficients on the high frequency side of the reststrahlen band were measured by Berg and Bell [143] based on transmission and reflection measurements using the method of asymmetric Fourier spectroscopy. Eldridge and Kembry [142] investigated the optical properties in the vicinity of reststrahlen band at various temperatures using a Fourier spectrometer for specimens of a range of thicknesses. Their results

agreed with those of Berg and Bell at corresponding temperature as shown in Figure 34 where the exponential relation between the variables are clearly seen. We found that the room temperature data can be represented by the relation

$$\alpha = \alpha_0 e$$
 (38)

with v_o = 36 cm⁻¹ and α_o = 3458 cm⁻¹. Detailed discussion of this finding is given in the section entitled "Summary of Results and Recommendations".

We have seen that the intrinsic absorption coefficients of KI in the Urbach and multiphonon regions, respectively, obey the exponential law. It is not known if the two relations hold for the transparent region. If they did, absorption in the transparent region would be negligible. However, at the color centers (given in Table 61), possible absorptions should be considered. The intensity of absorption depends on the purity, thermal and irradiation history of the sample, and its physical environment. As the color centers may be bleached as well as created by appropriate thermal and/or radiation energy, absorption at these bands varies considerably. As a result, no definite values can be assigned other than the spectral positions of these bands.

Figures 33 to 36 are plots of the available data. The pertinent information of each data source and the corresponding original values are given in Tables 53 to 56. In addition, available information and data on the reflectivity and transmission are also presented in the same manner (in Figures 37 and 38 and Tables 57 and 60), for completeness and comparison. For the visible and near visible regions, Table 61 gives the spectral positions of the well known color centers.

Recommended values given in Table 62 were calculated from Eq. (38). It should be noted that the values in the "intrinsic" column are the lowest limits that one can obtain for ideal samples. In practice, the observed values are generally higher than the limiting values at low absorption levels. Unless values appear in the "observed" column, the limiting values are considered as guidelines for estimation and investigation.

Although it was not within the scope of this study to compile and evaluate the absorption data in the vacuum ultraviolet region, in order to provide the reader a total picture of the available absorption data of KI, a plot of selected data sets in the uv region is given in the Appendix to this report.

Figure 33. Absorption Coefficient of Potassium Iodide (Wavenumber Dependence)

Figure 34. Absorption Coefficient of Potassium Iodide in the Urbach Tail Region

Figure 35. Absorption Coefficient of Potassium Iodide in the Multiphonon Region

TABLE 53. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF POTASSIUM 1001DE (Wavenumber Dependence)

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Range, cm 1	Temperature Range, K	Specifications and Remarks
1	143	Berg, J.T. and Bell, E.E.	1971	Z	2.2×10 ¹ -2.28×16 ²	300	Crystal; obtained from the Barshaw Chemical Co.; two kinds of specimens used, lapped and polished lamellar specimens as thin as 100 pm for transmittance measurements and plate specimens of about 1 cm thick with one surface lapped and polished for refractivity measurements; measurements made using a Michelson interferometer operated in the asymmetric mode; absorption coefficients deduced from transmittance and reflectance measurements; data extracted from a figure.
2	137	Bauer, G.	1934	T	4.41×10*-5.4×10*	293	Crystal; thin film specimens of various thicknesses; absorp- tion coefficients of bulk crystal deduced from transmittance and specimen thickness measurements; data extracted from a table.
3	123	Blechschmidt, D., Klucker, R., and Skitewski, M.	1969	R	9.58×10 ⁴ -2.22×10 ⁵	293	Single crystal; provided by Karl Korth, Kiel, Germany; freshly cleaved specimen; absorption coefficients derived with the reflectivity versus angle of incidence method; data extracted from a figure.
4	145	Delbecq, C.J. and Yuster, P.H.	1954	R	1.42×10 ⁴ -4.51×16 ⁴	293	Single crystal; obtained from the Harshaw Chesical Co. or grown by the Kyropoulos method; geometry not specified; absorption-coefficient data extracted from a figure.
5	142	Eldridge, J.E. and Kembry, K.A.	1973	T	2.5×10 ¹ -3.0×10 ²	300	Single crystal from Barshaw Chemical Co.; sample cleaned in toluenc, rinsed in alcohol, then dried and polished; sample thickness 0.01-1.0 cm (wedge shape); absorption coefficients deduced from transmission measurements; data extracted from a figure.
Ó	142	Eldridge, J.E. and Kembry, K.A.	1973	τ	2.8x10 ¹ -2.52x10 ²	77	Above specimen and conditions except measured at a lower temperature.
7	142	Eldridge, J.E. and Kembry, K.A.	1973	τ	6.9×10 ² -2.4×10 ²	12	Above specimen and conditions except measured at a lower temperature.
8	77	Tomiki, T., Miyata, T., and Tsukamato, N.	1974	R	4,54×10 ⁴ -4.65×10 ⁴	65	Single crystal; obtained from the Harshaw Chemical Co.; absorption coefficients deduced from reflection spectrum; data extracted from a figure.
9	77	Tomiki, T., et al.	1974	R	4.25×10*-4.5×10*	185	Similar to above except at a higher temperature.
10	77	Tomiki, T., et al.	1974	R	4.03×10*-4.32×10*	295	Similar to above except at a higher temperature.
11	77	Tomiki, T., et al.	1974	R	3.93×10*-4.22×10*	367	Same as above except at a higher temperature.
12	77	Toziki, T., et al.	1974	R	3.8×10*-4.1×10*	455	Same as above except at a higher temperature,
13	77	Tomiki, Tr, et al.	1974	R	3.64×10°-3.95×10°	595	Same as above except at a higher temperature.

TABLE 53. SCHMERY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF POLANSIEM 1001DE (Mavenember Dependence) (Centimied)

ba ta Set	Ref.	Author(s)	year	Method Used	Mavenu-ber Range,	Temperature Range, K	Specifications and Remarks
	126	Philipp, H.R. and Electricity, H.	1963	R	4.35×10 ⁴ -1.86×10 ⁵	298	Single crystal; near normal reflection spectrum obtained; absorption coefficients deduced by the Krasera-Krunig relations; absorption-coefficient data extracted from a figure.
15	104	Harrington, J.A., Duthler, C.J., Patten, F.W., and Huss, K.	1976	С	244-495	300	Single crystal; obtained from the Harshaw Chemical Co.; experimental detail not given; data extracted from a figure.
16	136	Earrington, J.A. et al.	1976	c	242-427	80	Same as above.

TABLE 54. EXPERIMENTAL DATA ON THE ASSORPTION COEFFICIENT OF POTASSIUM IODIDE (Wavenumber Dependence) [Wavenumber, ν , cm⁻¹; Temperature, T, K; Absorption Coefficient, α , cm⁻¹]

٠	Œ	ν	æ	ν	α	v	a	v	α	٧	ā
DATA SET	1	DATA SET	1 (CCNT.)	OATA SET	3 (CONT.)	DATA SET	4(CONT.)	DATA SET	5 (CONT.)	DATA SET	6(CONT.)
T = 3.0.6											
		4.35.241	8.2565 *1	1.7546+5	5.7315+5	4.4256 +4	2.20i£41	1.531:+2	4.265=+2	1.031642	1.5356+2
2.2761+2	3. +32E+1		6.1551+1	1.7386+5	5.039545	4.3366.4	33 + 1	1.5256+2	5.2452 +4	1.024242	2.2945+2
2.1652+4			4.6756+1	1.69.5+5	d.939E+5	4.3452+4	1,65,241	8.4436+1	3,6315+2	1.02.0+2	2.5242
19:+2		3.3934.1		1.002:+5	0.579=+5	4.3102+4	1. +6. 2+1	4.0	2.75+6+6	1.0	6.344542
9541+2		3.5446+1	2.362641	1.6536+5	5.672E+5	4.2742+4	1.2666.1	8.3.35+1	2.188±+2	1.0000	
1.0452+2	6.3752+1	3	1.4756+1	1.6476+5	8.654E+5	4.2372.4	1.13CE+1	7.56.E+1	1.7385+2	1.5166+2	1.7756+2
2.7176+2	1.2926.42	2.45.2+1	8.56GE+4	1.5966+5	8.4222+9	4.242644	9.5C(L+ G	6.6612+1	1.7382+2	1.57.c+2	
1.5675+2	1.0956+2	2.582 6+1	5.2526+3	1.5772+5	b.L35£+5	4.1672+4	8.000==+4	4.363 ±+1	1.4795+2	1.50.6+2	
1.6262.2	2+395+2	2.21.2+1	2 . 472£+3	1.5595+5	5.4856+9	4.1325+4	7.3.(£+6	5.4000+1	1.472=+4	1.76.2.42	3.69.2+2
1.0432+2	c./u32+2			1.5188+5	4.9452+5	4.115614	6.5iv£+î	4.766.1	7.2445.1	1.5032+2	4.5716+2
1.500=+2	3.3525+2	DATA SET	ż	1.4512+5	4.689E+5	4.LO5E+4	€. ¿GeE+à	4.162£+1	4.4742 +2	1.49.2+2	4.2002+2
1.5741+2	4.4.72+2	1 = 293.		1.4452+5	4.575E+5	4.0000000	5.2062+4	3.5462+1	2.689=+1	1.46.1.+2	3.6312+2
1.5371+2			•	1.4182+5	4.543E+5	3.8+66+4	4.5602+6	3.1.0:+1	9.12.5+6	1155+2	
1	7.5116+6	5. 3425+4	9.3:62+5	1. 383E+5	4.538E+5	2.036644	3.566E+C	2.8632+1	5.4126+6	9. + 262 + 2	B. 5 £ + 1
1.4632+2			1.3771+6	1.3632+5	4.847E+5	1.8156+4	3.6.GE+0	2.5035+1	1.4[, £-1	4.340=+1	4.571241
1.449:+2			7.5-i L+5	1.335E+5	5.035E+5	1.0072+4	3. 20LE+6			S.cuuz+i	4 - 10 12 + 1
5+131+11			2.33.6+3	1.3232+5	5.745E+5	1.538214	3.600£+6	DATA SET	6	7.0.021	5.1292+1
1.35/2+4			2.57.5+5		5.7442+5	1.427614	3.664E+C	T = 77.0		7.00.212	4.5716+1
1.3351+2			2.59.1.5		5.7345+5					E.S.,c+:	3.3556.4
1.2945+2			4.57.6+3		5 - 3 3 5 5 + 5	DATA SET	5	2.5616+2	1.349:-:	5	1.775642
1.2585+2			2.25 (1.5	1.2356+5	6 74 2+5	T = 3	Ĺ	2.4035+2	1.770=-1	+.0,	1.2335.47
1.2002.0			2.926.5	1.2:06+5	6.166E+5			2.4242+2	2.3+4= -1	4.2.32+2	5.12.6.6
1.1632+2			7.13.6+5		5.140 €+5	3.006E+Z	6.617E-1	2, 344 6+2	3.467:-2	3,5,,,,+;	0.0466+8
1.1566+2			4.31.644	1.1662+5	4.4025+5	2.80.E+2	5.316E-1	2.3642+2	7.4136-1	3,40.0+2	3.1026+3
1,1241+2				1.1472+5	4.3395+5	2.6+42+2	1.349244	2.2746+2	1.1432 ***	3.3.4:+2	2.635643
1,4121,41		DATA SET	3		4.1885+5	2.5.35+2	2.3956+6	2.1906+2	1.362=+6	2.7	2.03:2-1
9.00		1 = 243.			4. C 96 E+5	2.37.6+2	3.98:2+2	2.1442+2	2.7542+4	2.0632+2	1.5.36-1
3.7u. = 4.			•		4.03. 6+5	2.28.6+2	6. 0v 7£+ v	2.450=+2	3.031.00		
9.4842+1		2.2:3645	6.8702+5		4.684E+5		2.0422+1	2. 1.4:+2	4.1 69: +L	THE ATEC	7
9.4.45.1			6.7205+5		4.2715.5	1.95.6+2	4.1696+1	1.370=+2	5.3762+5	T = 12,0	
9.2305+:			6.5965.05		4.364E+5	1.85.6+2	6.4576+1	1.95.2.2	7.4796+6		
93.2+1			6.547:+5		4.4236+5	1.8.02+2	7.796E+1	1.9006+2	1.6722+2	2.334246	15-1
0.71.241			6.07.6.5		4.9612.5	1.7046+2	8.711E+1	1.4526+2	1.349: +1	2.3002+2	1.4135-1
3.71.271			0.73:E+5		5.422E+5		1.1226+2	1.8794.2	1.6952+1	2.3446+2	2.75+6-1
3.1305+1			6.5316+5				1.+13E+2		1.9955+1	2.32.2.2	3.9312-1
/ /3=+=			D.20.E+5	DATA SET	6		1.778£+2	1.7442+2	3.311:+1	2.3+2	4.730E-1
0.33.174			0.47.6+5	T = 293.			2.2351+2		4.3652+1	2. < 312+2	7.2445-2
07			5.9326+5		-		2.8946.2		5.8556+1	2.2142+2	1.2.35.0
2.05			5.8532+5	4.5056+4	3.160E+1		4.677E+2		6.5116.1	2.45.42	1.3496+0
3.29.2+1			5.6946+5		2.634E+1		3.981E+2		1.1226+2		1.5355+6
		****	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	******	~~~~~~						

TABLE 34. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM IODIDE (Wavenumber Dependence) (continued)

	э	ν	a	v	a	ν	α	ν	α	v	a
DATA SET	7(0041.)	132 ATAC	9 (JONT.)	DATA SET	10 (CONT.)	DATA SET	11 (CONT .)	DATA SÉT	12(CONT.)	DATA SET	13 (CONT.)
1.96.E+2	2.4336+4		4.3656+3		5.2376-1		5.42.6-1		3.386:-1		2.7346-1
1.014.242	2.592.+1	4.4532+4	2.077640		3.75.6-1		4.:1:E-:		1 • 1 19 = • 1		2.249E-1
9.3012+1	3.3551+u	4.444=*4	1.0751+4		3.43oE-1		シ・シレンモーコ		2. 918= -1	3.7105.44	
5.7.02.1	1.4132+1		2 - 2076+3		1.953:-1		3.1196-1		5.0655-1	3.6446+4	1.386E-1
3.1612.1	7.2++2-1	4.4322+4	0.1726-1		1.4936-1		2 • 6 • 6 £ = 1		2.2492-1		
7.7.1242	5.435E+1	4.4225+4	7.3456-1		1-255-1		1.9656-1		2.3612-1	DATA SET	
7.4+:	4.677£-1	4.4626+4	6 - 1 23 5 - 1		1.31+6-1		1.29-E-1		1.4802-1	T = 295.	9
0.9006+1	4.3742-1	4.4.56.44	6.138t-1		7.447E-2		1.0472-1		1.4 [6:-1		
		4.432644	4.966E-1		d.318E-2		1.0962-1		1.5-2:-1		9.1.12.5
DATA SET	8	4.4.25+4	3.4.02-1	4.6945**	8.1282-2		8.1c6£-2		1.614:-1		7.9.62+5
1 = 03.0		4.3902+4	2.37 35-1	4,3705+4	8.1206-2		8.1662-2		1.15CE-1		7.4662+5
		4.3336+4	2.5478-1	4.66.614	9.3332-2		6.0076-2		8.954£-2		8.2.66+5
4.542£##	9.93646	4.3762+4	2.158t-1	4.6476*4	6.9826-2	3.933£+4	7.762E-2	3.8u1c+4	9.247 == 2		0.900E+5
++63n±+4	7.43.50	4.50å£#4	と・こうかとーム	4. 43. 2 14	0.823E-2						8.9
+.635±++	0.0316.	4.3742+4	1.3736-1			JATA SET		DATA SET			8.46.2.65
4.63.204	4.3.95.+6	4.3+06+4	1.714E-1	DATA SET	11	T = 455.	ů .	T = 595.	j		7.400615
027: +4	5.3576+4	4.3356+4	1.57 BE-1	T = 367.	ن						8.3
4.0232+4	3.3+5=+.	4.327=+4	1.3476-1				1.86££+1		1.9 65 6 + 1		1.67-2+6
w	3.3572.00	4.3132+4	1.5076-1	4.2192+4	1.9145+1		1.7788+1		1.5.42+2		8.4
	2.553600	4.2372+4	1.420£-1	4.2:35+4	2.458E+1	40672544	1.3466+1		1.2476+2		7.6.22+5
4.5171+4	3.0.35+6	4.6736+4	1.2426-1	4.2126+4	1.71+E+1	4.6562.04	1.3181+1		9.5 (5: +6		6.8;;£.5
4. ÉL EL +4	2.2135+6	4.2526+4	1.335E-1	4.2.52+4	1.5566+1	40:2+4	1.191£+1		7.98CE+6		05
4.6.454	. 2.547E+ü			4.255E+4	1.2198 1	4.6572+4	9,29LE+L		6.5165+0		6.143E+5
4.6.35.44	1.173=+.	TãE ATRE	1.	4.1985+4	1.1756+1	451644	8.356£+3		5.26.2.6	2.3476.5	6.76+5
7.3.6.44		T = 295.		4.197E+4	1.657E+1	4.C.BE++	7.211E+C		4.9202+6		7.4.15+5
4.533:04	1.37.200			4.1926+4	8.710E+G	4.5382+4	5.9086+4		4.240. +.		7.42CE+5
538-+4	1.2592+.	4.3162+4	2.3326+1	4.18cE+4	0.223E+G	4.1296+4	4.786E+G	3.377£+4	3.631:+.	34=+5	6.5
	1.1596.	4.3126+4	1.5356+1	4.173E+4	5.612E+C	4 23 . +4	4. J85E+J	3.3072+4	3.1926 +6		6.74úE+3
	3.3755-1	4.5.5.4	1.1436+1	4.1026+4	4. L 18 E+ U	4156+4	3.63.E+0	3.860=+4	2.710=+.		0.3.02+5
	7.4736-1		8 . +7 £ £ + 3	4.1582+4	2.793E+4	4 y E £ + 4	2.858L+8	3.855244	2.41,644	1.1535+5	4.60CE+5
	9.5512-1	4.23 : 6 + 4	7.2446+3	4.1495+4	2 23 . + 0	3.998€+4	2.3772+G	3.843E+4	1.683=+6		5.1#2E+5
	5.5.56-1	4.273644	4.853E+B	4.14.5+4	1.7608+6	3.93, 2 +4	1.863E+6	3.539E+4	1.6226+4	173c+5	5.15.6+5
			3.3732+0	4.13cE+4	1.459E+L	3.9356+4	1.5632+6	3.8336+4	1.460246	1326+5	ゅっちょしを45
SATA SET	9		2.5236+3	4.129E+4	1.5492+6	3.9706+4	1.3436+4	3.8242+4	1.0456+6		J. L. JE + 5
T = 135.			1.5786+3		1.138E-C	3.9092+4	1.1436+4	3.817£+4	9.7725-1		5.3.JE+5
	•		1.1696.0	4.115E+4	9.638E-1	3.96uE+4	1.L:51+8		8.2646-1		7.3.uE+5
4.484504	. 1.6L7E+1		8.395E-1	4.115E+4	8.710E-1	3.9526+4	7.447E-1	3.7986+4	6.081£-1	7.323E+4	9.4.JE+5
	1.271E+1		7.4136-1		7.345E-1	3.944244	6.1096-1		4.83:4-1		8.3E+5
	9.8175+6		6.5161-1	4.1.05+4	6.792E-1	3.935€+4	5.37.1-1		3.784E-1		5.uJGE+5
	7.447E+u	4.2376+4	4.764E-1	4.490214	5.8632-1	3.9332+4	4.406£-1	3.7562++	3.4832-1	0.0946+4	5.5cuE+ 5

TABLE 54. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM IODIDE (Wavenumber Dependence) (continued)

v	3	ν	o.	ν	ů.
SATA SET	1+(CONT.)	DATA SET	15(001.1.)	DATA SET	16(CONT.)
	5.6.12+5 3.8.12+5		1.8iuE-2 7.546£-3		9.396E-2 5.966E-3
5.3375.4	6.3332+5	4,6316+2	6.74J£-3	4.4502+2	4.2+GE-3
	0.9.JE+5		6.332E-3 4.54EE-3		321E-3 2.281E-3
	0.00JE+5	4.7732	4.7465-3	4.210242	212305-3
		TER ATAC	16		
	2.7:3:+5	1 = 81.3			
		2.4232+2	9.230E-1		
	8.4.26+5	2.5426+2	6.2166-1		
	3.6.32.5	2.53.2+2			
	5.443244	2.7132+2			
		2.7-32+2	2.116E-1		
7474 SET		2.34.2+2			
1 - 3.3.	•	2.9:JE+2			
		2.8.12.42			
	2.71.14.	2.933E+2 3.614E+2	8.5316-2		
	1.834244		4.5706-2		
	1.231c+.		1.270E-1		
	9.53.2-1 7.8+16-1	3.1302+2			
	0.2535-1		1.0111-1		
	4.93.6-1	3.23.2+2			
	3.55,1-1 2.6781-1	3.2002+2	9.59.6-2		
	2.25.6-1	3.35.6+2			
		3.42j£+2			
	1.215E-1 7.695E-2	3.4+32+2			
	5.79)2-2		3.46(E-2		
	5.47.5-2	3.5932+2	5 - 456 2 + 2		
	4.37; c=2 2.9-1E-2	3.50+2			
	2.2116-2				
4.320:+2	1.57.6-2	3.81ü£+2	2-47GE-2		
4.4:6.46	1.3372-2	3-5602+2	7.920£-2		

Figure 36. Absorption Coefficient of Potassium Iodide (Temperature Dependence)

TABLE 55. SUMMARY OF MEASUREMENT ON THE "USOMPTION COEFFICIENT OF POTASSIUM TODIDE (Temperature Dependence)

Set No.	Ref.	Author(s)	Year	Method Used	Wavenumber Range, cm	Temperature Range, K	Specifications and Remarks
1	43	Stolen, R. and Dransfeld, K.	1965	Т	31.25	83~300	High purity; single crystal; grown by the Bridgman method; plate specimens of thickness from 0.5 to 25.0 mm; absorption coefficients directly determined; data extracted from a figure.
2	43	Stolen, R. and	1965	Т	20	162-300	Same as above except for a longer wavelength.

TABLE 56. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF POTASSIUM HODIDE (Temperature Dependence) [Wavenumber, v, cm-1; Temperature, T, K; Absorption Coefficient, a, cm-1]

```
T
DATA SET 1
v = 3.1256+1
                                                                3.3192+2

4.3795.2

6.82+2+2

3.0+7±+2

1.3125+3

1.5125+3

1.7272+3

2.2795+3

2.6715+3
33.4
97.5
12.0
123.0
153.0
154.0
266.6
222.0
206.0
206.0
331.0
  04TA SET 2
0 = 0.0.001
                                                                   1.3...1+2

1.0551-2

2.03-11+2

2.0238+2

3.1.5602

3.5711+2

3.5711+2

4.55711+2

4.55711+2

4.55711+2

5.2.1102

5.0418-2

5.0418-2

6.3018-2
  2700 U
2200 U
2200 U
2310 U
2570 U
2570 U
2570 U
2570 U
2500 U
```


Figure 37. Reflectivity of Potassium Iodide

TABLE 57. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF POTASSIUM FOODIDE

Duta Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
1	143	Eerg, J.I. and Beil, E.E.	1971	R	47.34-218.8	300	Crystal; obtained from the Harshaw Chemical Co.; lapped and polished plate specimens of about 1 cm thick; reflection spectrum obtained; data extracted from a figure.
2	123	Blechschmidt, D., Klucker, R., and Skibowski, M.	196 9	R	0.035-0.099	293	Single crystal; provided by Karl Korth, Kiel, Germany; freshly cleaved specimen; near normal reflectivity measured in vacuum for polarized light with normal of the specimen lying on both sides of the incident beam for increased accuracy; data extracted from a figure.
3	110	Baldini, G. and Bosacchi, B.	1968	R	0.124-0.243	300	Single crystal; specimen with cleaved surface; back surface of the specimen treated with an emery cloth to reduce the reflection from the back; near normal reflectivity obtained with specimen in vacuum; data extructed from a figure.
4	110	Baldini, G. and Bosacchi, B.	1968	R	0.124-0.243	55	Same as above except at low temperature.
5	146	Baldini, G., Bosacchi, A., and Bosacchi, B.	1969	R	0.198-0.216	6	Cleaved crystal; sumple geometry and origin not specified; near normal incidence; data extracted from a curve.
6	138	Petroff, Y., Pinchaux, R., Chekroun, C., Balkanski, H., and Kamimura, H.	1971	R	0.209-0.213	1.8	Single crystal; specimen cleaved in liquid helium to avoid surface contamination; near normal reflection spectrum obtained; data extracted from a curve.
7	147	Roessler, D.M.	1967	R	0.110-0.248	298	Crystal specimen cleaved in sir; exposed to atmosphere for 2 minutes; near normal reflectivity measured in vacuum; data extracted from a curve.
8	147	Rocssler, D.M.	1967	R	0.110-0.248	77	Same as above except at a low temperature.
9	148	Weeks, R.F.	1958	R	0.201-0.253	93	Single crystal; cleaved; near normal reflectivity measured in vacuum; data extracted from a curve.
10	149	Kato, R. and Witinabe, M.	1968	R	0.165-0.248	298	Single crystal; grown from the melt; 2 nm thick; freshly cleaved in air; near normal reflectivity measured in vacuum; data extracted from a curve.
11	84	Mitsuiski, A. and Yamada, Y.	1962	R	59.9-149	300	Single crystal; near normal reflectivity measured in vacuum with aluminum mizror reference standard; data extracted from a curve.
12	149	Kato, R. and Watanabe, M.	1968	R	0.165-0.248	298	Film specimen deposited on LiF substitute; near normaleflectivity measured in vacuum; data extracted from a curve.
13	150	Vishnevski, V.N., Stefanski, I.V., Kuzyk, M.P., Kulik, Z.S., and Kulik, L.N.	1973	R	0.154-0.239	298	Single crystal; grown by Kyropoulos method; near normal reflection spectrum obtained; data extracted from a figure.

TABLE 57. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF POTASSIUM IODIDE (continued)

Set No.	Ref.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
14	142	Eidrige, J.E. and Kembry, K.A.	1973	R	62.5-333.4	300	Crystal specimen cleaved in air; exposed to atmosphere for 2 minutes; near normal reflectivity measured in vacuum; data extracted from a curve.
15	126	Philipp, H.R. and Ehrenreich, H.	1963	R	0.053-0.653	298	Single crystal; near normal reflection spectrum obtained; data ex- tracted from a curve.
16	25	Hadni, A., Claudel, J., Morlot, G., and Strimer, P.	1968	R	42-196	290	Single crystal; high purity; reflectivity spectrum of 15° incident angle obtained; data extracted from a figure.
17	25	Hadni, A. et al.	1968	R	42-600	80	Same us above.
18	25	Hadni, A. et al.	1968	R	38-195	4.2	Same as above.

TABLE 38. EXPERIMENTAL DATA ON THE REPLECTIVITY OF POTASSIUM IDDIDE [Mavelength, %, bm; Temperature, T, K; Reflectivity, 4]

Λ.	۵	λ	్	à .	۵	λ	э	λ			
2474 Sã	7 :	CATA SET	1 (COPT.)	JATA SET	2 (CONT.)	DATA SET	2 (CONT.)	DATA SET	3(CU4T.)	JATA SET	+ (CONT.)
T = 300	_	• • .	•								
		101.0	u.571	3472	6.157	3613	0.438	6 -2 3 0	Q . 235 W	5.14:	6.032.
47.3		203.4		475	3.176	i2i	6.431	92	u. 22 yo	1-5	a 5 £ 5
41.4	125.	1.5.7	u . + 15		w.233	0.13	C.34C	6.195	i.19.5		u57u
5.8		i. 9. s	3.4	453	3.245	2. 277	J.246	36	6. 25.75	4.1.3	3510
54.7	212235	114.5	u.291	3.0492	G.237	3.4928	6.335	262	(. :5 + 5	3.244	£ • • • 3
51		114.3	258	J. 3535	8.194	3.3549	G.324	5.2.7	C. 14+ 3	4.245	
53.2	1	:24.2	1.231		J.135	6902	0.347	1.2.9	£ c 2 2 3 3		/ **
55.5	4.5123	132.2	9.237	3.6527	2.192	2.4993	b.497	4.212	4・シャンプ	4.147	791
57.2		138.5	95	6.6525	3.235			6.213	4 93 0	4	633
56.2		47.5	i.i.93	3531	3.191	TER ATAC	3	i.21→	6.2345		40.513
59.9	1.11	123.0	1.181	541	0.106	ī = 3.ú.	ζ	6.217	6.2243	15.	(.1.12
£:.>	****	.76.4	3.175	4.1543	0.161			6.219			9 9 9 9
2	223	193.7	4.175	557	3.175	0.124	6.1452	6.221	4.3470	4.153	6.1132
53	6.1332	234.9	0.172	5.4563	4.198	0.126	C. 1607	6.265	4. 24+4	154	7.0
0:.6	44430	2:8.8	ú ·165	575	i.285	3.128	L. 1824	55200	L. 19/7	152	E 753
08		22000	• • • • • • • • • • • • • • • • • • • •	533	3.307	3.129	5.1919	6.63.	4. 2075		6.4030
52.1		CATA SET	r 2	550	2.510	6.13.	6.1977	i34	4.1220	6.157	3.0573
	2	T = 233		595	u.370	J.132	6.1977	6.239	L-1-23	7	3-63-3
33.3			•	t:1	U . 410	J.135	6.1799	6.243	6.1357	6.255	5 6 3
330.2	******	2.4.356	0.130	1.1015	4.201	u . ; 36	6.15~2				4.2545
55.4	25.	w. 4371	.136	639	0.211	0-142	0.1327	DATA SET	•	w.102	w.uc79
05.0	35.	376	1.143	1012	0.489	4.143	b.1276	7 = >5.6		+ - 105	852.
65.3	4		€ .13 €	4.4654	ú. 39 ö	3.140	6.1-10			b . i 60	6
73.1	3.374	0.2365	124	1625	3.367	4.150	6.1525	€.12→		w.107	5.1033
74.2		0.0339	0.114	233	4.1.5	3.151	c.1559	625	6.6977	w + 155	
73.3	73	352	1.114	1.1638	3.131	3.15+	6.1559	620	6.2730	**157	606514
79		L. v 3 3 d	لمنذا	4.6647	4.122	J.156	u . 15+5	6.233		07	. 2353
75.ò		6.3416	33		6.131	0 - 1 61	6.1545	8.:27	[. 12 o t	4.17.	4.3.64
77.1	1.153	3.3426		3.5672	0.1+2	9.163	0.1439	626	6.23.3	6.17.	-:4534
78.6		3.3410	ŷ5+	2695	2 - 155	4.100	L.1324	129	6.1352	4.174	3.2344
	3.351	0.0×10	4.1-9	******	3.175	0.165	6.1463		4.1324	4.177	6 - 1 - 3 +
3	u.430	30.424	0.145	6712	3.199	4 9	0.1762	1.172	6.2324	4.177	1994
31.0		J. 4 3 2	(54	6.0726	9.237	2.170	6.61.0	6.133	3. :3. 3		2.30.3
3		J. 455	0.191	753	4.43.	7.	6.2275	6.133	4353	4.15.	35.2
87	3.753 3.757	5.4475 5.4475	3.273	3.4763	4.444	6.172	5.2-15	6.13-	6. 1313	6.182	3.3177
35.	3.759	3.3447	1.297	3.4707	0.437	4.175	4.2466	0.135	C. 13	4.134	6.3551
19.2			2.216	3.6775	1.396	3.177	L.246i	4.435	6. 32+3	185	6.3973
91.7	3.781	4.45J Ú.J.55	3.295	1.1752	9.385	1.:85	4.2393	4.136		50	3775
99	6.793		u.262	2.1793	3.393	4.166	6.3698	6.137	4.1000	4.116	2.2717
95.7	3.776	4.6406		3.6820	0.430	440	3.3342	0.1+0	¿. C953	195	3.22**
99.6	3.6+5	5407	3.419		0.430	4 4 4 4 4					

TABLE 58. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM IODIDE (continued)

¥	p	λ	٤	λ	o	X	۵	λ	p	λ	3
3414 SE	T 4(CONT.)	DATA SET	5 (CONT .)	DATA SET T = 1.8	6	DATA SET	6 (CONT.)	THE ATAC	(.Trooss	DATA SET	8 (CCNT.)
2.192	5.2345	0.201	i.154			ũ.211	i - 8 L 8	6.139	L = 3 + à	J.106	0.130
1.19.	i . : 754		4.142	1.269	3.516	3.211	6.794	6.195	5. 23.	J. 153	6.252
2.190	4.1050	4.242	122	u.2.9	1.538	6.211	6.75.	97	6. 17 .	6.171	3 95
5.199		6.203	4.1.4	U.218	1.500	4.2.1	6.7Eù	ابدنذ	44.151	173	310
6.253	4043	3,2.4	7 9	0.215	3.580	0.211	1.735	0.611	0.133	4-177	w. 654
	4.13.9	4.2.5	J. U.S.L	21.	0.638	4.212	4.711	0.213	v9i	6.175	6.33+
6.264	0.1291	0.267	0.028	0.216	3.615	0.212	5.689	6.216	0.112	184	3.424
	1.3776	2.257	2., 23	3.213	3.633	0.2:2	4.673	0.222	₽• 35+	0.133	0.37 C
2 . 3	5 372	0.238	023	0.213	ij. Ġ5u	3.212	C.043	6.227	0.217	4. 130	4.44.
3.21.	v.1517	4.448	0.129	3.215	6.665	U-212	6.669	0.230	6. 132		3.299
5.211	1.51.41	3,2,3	V46	6.213	8.677	U - 2:2	G.588	0.234	17.	4.13.	w . Z y
3.212	6.7764	0.233	v.i 0:	4.213	3.037	0.212	6.549	2+2+2	w. 173	4.1.35	6.2.3
215	4.49	2,208	23.	210	1.093	3.212	C.516	6.245	4.157	2.22.	5
217	2.2739	J.2L9	U.+26	3.215	0.763	• • • • • • • • • • • • • • • • • • • •			••••	2.213	4.2.5
0.213	2249	1.519	4.542	4.21)	3.708	DATA SET	7	DATA SET	A	4.2.9	52
3.223	0.1932	0.2.3	6.639	0,210	w.719	1 = 300.		1 = 77.3	-	0.21.	4-428
1.223	1.1071	3.213	v.557	213	€.7×€					0.2.3	4.733
1.135	59	5.21)	727	4.2:0	a.75a	3.110	0.162	C.110	č. 197	0.216	1.162
3.243	3.1315	J. 21.	2.779	3.473	1.750	1:2	50102	i.114	u. 130	215	2.232
	*****	4.214	1.8.1	0.213	1.734	4.442	6.102	6.115	. 196	****	4.600
JATA 55	7 5	3.21.	2.827	4,211	3.791	V.117	u.168	6.117	21.7	6.227	9.17c
T = 3.3	• •	6.211	# . 5 + 6	4.211	3.542	6.119	(.100	ŭ • 113	6.251	50636	*** 03
		u.21i	6.878	4.21:	0.314	4.465	6.268	0.12.	250	2+2	L 7 +
0.195	534	J.21_	1.507	4.211	0.326	3.129	G . 224	0.122		2.2.5	7
1.59	29		0.914	0.211	ū.8→3	4.132	6.266	5.14+	C. 236		••••
	u.132		6.916		1.555	J.136	5.151	0.127	1.333	SHITA SET	4
4 . 4 . 7 . 7		4.612	2.973	w.211 w.211	J. 57 9	4.139	û.13b	6.125	6.310	1 = 93	•
	5.132	4.211				3.23		6.131	t. 272	1 - 3046	
664.00 664.00	3.232	. 212	6.833	J. 211	0.895 0.899	3.145	6.126 3.127	6.134	1. 2.3	2.:	144
		1.212	3.75€	4.61.					i. 243		6.233
1 1 1 3	30	4.212	0.629	4.21.	. 899	0.15.	ù . 15 <u>C</u>	1.30		 	0.133
9.199	6.2.5	v.213	u . 565	4.411	0.895	3.155	4 - 147	4.30	0.151	j. 2.3	
5.200	6.235	0.213	5 . 7	5.21:	J.857	0.161	. 153	6.139	(.16)	0.233 0.234	w.110
3.64.	9	2	4.404	1:	5.676	é <u>4</u>	C.142	42	(+ 111		6.163
6.26.	7	0.213	25	1.21.	u. 872	4-167	1.142	4.14.	6-113	3.56	112
3.25.	7	2.214	6.337	J. 211	6.863	3.168	158	L.140	6.173	u . 2 ú 5	0.0517
4.6.3		0.314	366	4.4.1	3.869		4.192	6.1.9	193	4.240	4.4675
	1-1-7		C.339	6.211	0.864	v • 173	(.261	. 155	i.15:	w. 2:7	571
1.2	1.174	4.2.5	4.313	0.211	3.653	0.176	2.262	0.166	L. 19i	4.2.7	6
2	V+179	4.513	L.292	4.411	6.5.5	4.178	C.263	0.161	L. 173	2.3	6366
	3.17.			3.211	0.626	9-785	i.253	6.164	û. 1è 5	2.2.8	43500

TABLE 58. EXPERIMENTAL DATA ON THE REPLECTIVITY OF POTASSIUM IODIDE (continued)

λ	£	λ	÷)	ა	λ	٥	j	<i>;</i>	λ	p
0474 SE	T 9(654T.)	0274 SE T = 298		DATA SE	T 11(CONT.)	JATA SET	12 (CGNT.)	03T4 SET	13 (CONT +)	unta set	141654741
5.263	4.5232			102.	9.491	4.2.4	(. 695	0.219	2	235.4	J.151
2.299	b.5465	4.200	4.11€	10	0.399	0.248	6.092	ű.Zž.	(.643	253.0	C.104
6.21.	3.136	4.171	21 6	167.	3.337			6.224	u. 15 ś	176.5	v.154
0.2:3	2.23?	72	7.55.0	112.	2.285	CATA SET	1 13	6.225	6.io:	212.7	6.149
2:.	!.2	4.1/3	227	117.	2.256	7 = 293.	. 6	C.226	6. 150	333.3	4.153
	6.455	4.173	· · 2:2	125.	u.225			6.63.	i. ::3		
0.412	2. 5		244	13b.	J.2:3	54	1.099	3:	دُ نَا الله	CLTL SLT	15
2.213	J.55-	3.133	0.256	149.	0.203	u + 1 56	0.495	6.233	ú. ú95	T = _3s.	í
6.213	v.št.	6.233	₩ •279			÷-166	6.689	· • £35	4. L91		
1.21+	6.391	4.133	i•:9€	DATA SE	T 12	₫•±€•	3.69.	6.238	£.689	354	u 37
5.2.5	31316	4.137	2.104	7 = 298	.i	3.160	û. ú 5 3			J.155	329
2:5	6.200	4.2.3	L.131			0.107	i.i37	DATA SET		5b	J C C
2.410	6.2.44	2.203	6.114	1.165	0.129	J.1 = 9	i • 11.5	T = 3.j.	C	€.058	3.037
1 7	4.4.4		5.636	3.157	6.133	3.171	C.131			4.427	
2 : 7	1.2:3		w.u38	3.168	u . i + 3	4.173	6.139	62.5	L. C27	3.265	8.3-1
3	5.632	0.215	96	3.171	3.159	2.175	L . 15 0	03.2	C . L3 .	*****	4.534
:.213	2.133	4.219	J.232	3.172	3.166	41177	0.146	64.9	û. Q34	0.362	032
t.225	i • 165	4.22.	324	4.274	3.166	i + I di	6.148	65.7	u. £3 3	u + ⊊ o ⊃	L .C39
1.22.0	C.154	3.225	₩•135	3.176	5.161	2.103	0.138	07.1	C. (53	7	32
135.0		23.	5	3.178		4.204	6 + 144	00.0	66.473	W. WC 7	L 20
1.223	u • • 5 •	0.233	6.131	ن م ≟ څو	ićó	u36	6.169	72.9	(- (31	4.672	
4.223		4.233	u •15 7	182	0.174	6.187	6.174	74.6	i. (95	0.573	ũ • 32
6.525	4.142	6.2+3	0.132	3.154	0.185	3.188	6.184	75.7	i. 130	4.375	Ü.u45
3.225	ម្តី ។ ទី ទ	4.245		3.186	3.210	0.139	ú • 187	76.9	i. 17d	079	443
5.227	**135	246	ü.186	9.188	0.214	3.19.	5.183	81.6	L-413	4.632	4 . 4 4 4
6.223	34			0.193	4.249	5.191	6.169	83.3	U - 55 u	6.653	4 - 4 - 5
229	0.132	DATA SE		4.191	3.158	0.193	0.162	64.3	6.585		4 31
23 -	<u>។</u>	T = 3.6	• Ü	0.194	0.199	4.196	1.113	85.4	ù. 613		3 23
5.23.	1.129			1.195	0.15C	ú. <u>:</u> 98	6.1.1	88.4	[.e5J	0.031	2.333
u • 23c	40127	63.3	C • ú 2 4	3.197	0.1-1	3.261	0.095	93.3	0.609	3.09+	35
\$.233	w.125	07.4	6.672	0.261	0.125	0.262	0.086	93.9	0.698	6.698	C - + 31
23.	u • 123	72.0		1.269	0.164	0.264	4.461	93.4	6.673	0.1 12	6.015
J.235	:-119	75.3	3.119	5.211	6.151	w.217	5.654	96.1	£• €e7	1-7	L 46
	4.169	77.2	1.135	4.214	0.113	6.269	û. L8+	39.1	u o č. ú	0-113	673
3.245	3.140	d	650	0.210	3.121	i.216	0.130	102-0	U-432	425	67
i • 2 • 5	53	50.2	732	3,219	0.154	0.211	6.674	134.1	J. 366	133	6.133
4.25.	1.160	99.7	5.768	1.221	0.157	5.2.2	E . 67 a	138.6	6. 195	0 - 1 + 1	J-u61
2.253	i • 1 5 1	92.2	6.768	3.230	3.127		C. G73	113.6	G. 25u	0.155	0-114
		95.5	₩ • 7 • E	2.233	6.112	3.216	4.460	119	u. 21.7	6.102	166
		90.5	711	3.243	3.163	U.218	· . 457	125.6	:. 19 ₀	4.169	558

TABLE 58. EXPERIMENTAL DATA ON THE REFLECTIVITY OF POTASSIUM IODIDE (continued)

			INDEL JO.		
λ	ρ	λ	۵	λ	ວ
DATA SET	15 (CONT.)	JATA SET	17(GSRT.)	TEC ATAC	18 (COMT.)
: • 1 7 3	3.107	53.5	J.631	127.5	0.167
1.185	1.657	62.5	ú.∵ú 5	195.0	3.152
6.197	5.137	64.5	¿.C35		
4.247	3.113	66.1	85		
213	277	74.1	1.143		
v. ć15	115	76.2	33		
1.225	J.i.+9	74.6	392		
J . 2 - 5	1112	70.1	4.6		
1.275	3.493	79.3	.764		
0.319	4.179	84.1	4.799		
3.425	357	83.5	793		
3.053	62	90.+	6.529		
2.693	*****	100.03	3. i		
Sata Sat	• •	11	2.2.9		
1 = 291.			u.184		
, - 232.	•	213.1	U.162		
+2.i		69	i.146		
46.1	67	V,	•••		
51.5	1,518	UATA SET	1.8		
25.3	+7	I = →•3	• -		
23.9	171				
6.4.3	3.3	37.5	23		
73.8	5.119	49.6	G.LL 7		
77.2	C.131	54.0	7		
81.2	6.443	57.7	O.ií3		
8 3	5.53+	0	0.0.7		
33.5	4.244	63.7	31		
9	2.00	65.7	i76		
95.0	3.612	67.5	6.119		
93.3	3.476	03.8	0.22:		
196	6.297	71.3	30 €		
119.3	5.2.2	73.4	£41		
196.4	5.168	75	C.7>8		
		76.7	J.787		
DATA SET	1 17	85.9	4.816		
T = 31.1		34.3	J.5∪€		
•		87.7	6.753		
42.3	5.510	93.7	6.572		
53		99.4	U.284		
54.3	62	2.7.6	u.211		

Figure 38. Transmission of Potassium Iodide

TABLE 59. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF POTASSIUM IODIDE

	وروا والمعاطب						医电影 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医 克勒氏征 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性
Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature, K	Specifications and Remarks
1	158	McCarthy, D.E.	1968	T	0.233-3.03	298	Single crystal; obtained from Harshaw Chemical Co.; 4.3 mm thick;

TABLE 60. ELPERIMENTAL DATA ON THE TRANSMISSION OF POTASSIUM IODIDE

(Wavelength, λ , um; Temperature, T, K; Transmission, t)

•

TABLE 61. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WIDTHS (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN POTASSIUM IODIDE*

Interionic		F band	i	R ₁ band	R ₂ band	M bar	id	N bands
dist., d (Å)	Temp.	λ _{max} _	W	λ max	λ max	λ max	W	h max
3.53	RT	(0.718) [†] 0.685	0.34	(0.834)	(0.902)	(1.000)		
		0.689	0.35					
		0.692	0.41					
		0.695						
	NT	0.661	0.19					
		0.663	0.21					
		0.664	0.22					
		0.673	0.26					
		0.675						
		0.676						
	HT	0.659	0.14	0.810	0.905	1.010		
		0.666	0.18					
	_	0.674						

^{*} Values were taken from Ref. [69].

 $[\]dot{}^{\circ}$ Values given in parentheses are calculated from the Ivey relations [70].

F band $\lambda_{\text{max}} = 703 \text{ d}^{1.84}$ for NaCl structure, $\lambda_{\text{max}} = 251 \text{ d}^{2.5}$ for CsCl structure. R band $\lambda_{\text{max}} = 816 \text{ d}^{1.84}$

R band $\lambda_{\text{max}} = 884 \text{ d}^{1.84}$

max = 1400 d1.56 M band

TABLE 62. RECOMMENDED VALUES ON ABSORPTION COEFFICIENT OF POTASSIUM IODIDE IN 1R REGION AT 300 K

		Absorption Co	efficient, co
ν, cm ⁻¹	λ, μm	Intrinsic*	Observed† (Selected)
2.000E+02	50.0	1.4E+1	
2.440E+02	41.0	4.1E+0	3.6E+0
2.490E+02	40.2	3.5E+0	2.7E+0
2.640E+02	37.9	2.3E+0	2.4E+0
2.690E+02	37.2	2.0E+0	1.8E+0
2.830E+02	35.3	1.3E+0	1.2E+0
2.900E+02	34.5	1.1E+0	9.8E-1
3.030E+02	33.0	7.6E-1	7.8E-1
3.070E+02	32.6	6.8E-1	6.2E-1
3.240E+02	30.9	4.2E-1	4.9E-1
3.320E+02	30.1	3.3E-1	3.5E-1
3.420E+02	29.2	2.5E-1	2.6E-1
3.540E+02	28.2	1.7E-1	2.2E-1
3.630E+02	27.5	1.3E-1	1.6E-1
3.730E+02	26.8	1.0E-1	1.2E-1
3.830E+02	26.1	7.8E-2	5.7E-2
3.930E+02	25.4	5.8E-2	5.4E-2
4.020E+02	24.9	4.5E-2	4.3E-2
4.120E+02	24.3	3.4E-2	2.9E-2
4.220E+02	23.7	2.5E-2	2.2E-2
4.320E+02	23.1	1.9E-2	1.5E-2
4.410E+02	22.7	1.5E-2	1.3E-2
4.510E+02	22.2	1.1E-2	1.0E-2
4.580E+02	21.8	9.2E-3	7.5E-3
4.680E+02	21.4	6.9E-3	6.7E-3
4.830E+02	20.7	4.5E-3	6.0E-3
4.950E+02	20.2	3.2E-3	4.5E-3
5.000E+02	20.0	2.7E-3	
6.000E+02	16.7	1.6E-4	
7.000E+02	14.3	9.3E-6	
8.000E+02	12.5	5.4E-7	
9.000E+02	11.1	3.1E-8	
9.434E+02	10.6	9.1E-9	
1.000E+03	10.0	1.8E-9	

^{*}Intrinsic values were calculated according to Eq. (38) with uncertainties about $\pm 10\%$.

Values in this column are the total absorption coefficient which are either lowest reported or those used to define the constants in Eq. (38). Uncertainties of these values are about ±10%. Values lower than 1.0E-3 carry higher uncertainties up to ±30%.

3.7. Cesium Iodide, CsI

Early measurements on the refractive index of CsI were made by Sprockhoff [140] in 1904, using a minimum deviation method for three visible spectral lines, 0.486, 0.589, and 0.656 µm. These three values were the only available data for about 50 years. The main reason for such a long period of inactivity was the difficulty in growing adequate CsI crystals. Large and good quality crystals, suitable for optical components, were not available; also, the need for infrared transparency was not generally felt.

It was not until 1955 that the refractive index for a wide range of transmission (0.129 to 53 μ m) was measured by Rodney [151] on several cesium iodide samples grown by the Harshaw Chemical Company. The temperature coefficients of the refractive index were determined for each wavelength and all data were reduced to 297 K. Rodney adopted a dispersion equation of the Sellmeier type, simplified to five terms, to fit the reduced data.

In the ultraviolet region, $0.20-0.25~\mu m$, Lamatsch et al. [152] derived the refractive indices from information on the transmission and reflection spectra. Since they used vacuum-evaporated thin film samples, the wavelengths of the two absorption bands obtained are higher than that of the bulk material. The large discrepancies between this set of data and that calculated from Rodney's work are to be expected.

Values of the refractive index beyond the transparent region, in the infrared, were obtained by Vergnat et al. [26] in 1969, by analyzing the reflection spectrum. They found that the wavelengths of infrared absorption bands are 117.65 and 161.29 μm at room temperature. One of the two is in close agreement with that of Rodney, which predominantly contributes to the absorption. Li [33] reduced the experimental data then available to a common temperature of 293 K and after careful analysis, generated a Sellmeier type formula representing the refractive index of CsI at 293 K in the spectral region between 0.25 and 67 μm ,

$$n = 1.27587 + \frac{0.68689 \ \lambda^2}{\lambda^2 - (0.130)^2} + \frac{0.26090 \ \lambda^2}{\lambda^2 - (0.147)^2} + \frac{0.06256 \ \lambda^2}{\lambda^2 - (0.163)^2} + \frac{0.06527 \ \lambda^2}{\lambda^2 - (0.177)^2} + \frac{0.14991}{\lambda^2 - (0.185)^2} + \frac{0.51818}{\lambda^2 - (0.206)^2} + \frac{0.01918}{\lambda^2 - (0.218)^2} + \frac{3.38229}{\lambda^2 - (161.29)^2}$$
(39)

where λ is in units of μm .

Available da'a on the absorption coefficient, reflectivity, and transmission of Cs! compiled in the present work are given in Tables 62 to 70 and are plotted in Figures 39 to 44. Investigations of absorption coefficient for practical applications are generally classified into three spectral regions: the ultraviolet and infrared absorption edges, and the transparent regions. In the case of CsI, available data in these regions are very limited. In the ultraviolet absorption edge region, Philipp and Taft [153] reported their absorption measurements for evaporated films of CsI. Their results were in reasonable agreement with earlier observation of Hilsch and Pohl [19] and Schneider and O'Bryan [20]. Lamatsch et al. [152] measured absorption coefficient for CsI film in the excitonic region, their results in the absorption edge were in concordance with those of Philipp and Taft [153].

In the multiphonon absorption region, Beairsto and Eldridge [154] determined absorption coefficient for CsI by measuring the transmission of samples of various thicknesses using a Fourier spectrophotometer. They found that the most reliable values of the absorption coefficient, α , were obtained when the thickness of the sample, d, was such that $\alpha d = 1.0$. As CsI does not cleave, the samples were cut with a wire saw and then carefully polished. With appropriate care, they found that the samples, stored over long periods, showed little deterioration.

As shown in Figures 39 to 44, the optical properties of CsI behave similarly as the other members of alkali ahlides. Although it is clearly suggested that in both of the absorption edges the exponential dependence of the absorption coefficient on frequency should hold, data at hand are insufficient to define unique solutions. As a result, it is not feasible to report recommended values, and only measurement information and original data are presented here in Tables 63 to 71.

Figure 39. Absorption Coefficient of Cesium Iodide (Wavenumber Dependence)

Figure 40. Absorption Coefficient of Cesium Iodide in the Urbach Tail Region

Figure 41. Absorption Coefficient of Cesium Iodide in the Multiphonon Region

Set No.	Ref. No.	Author(s)	Year	Mcthod Used	Wavenaber Raame, cm	Temperature Range, K	Specifications and Remarks
1	154	Scairsto, J.A.B. and Eldridge, J.E.	1973	Т	3.79×10 ³ -1,49×10 ²	12	Single crystal; plate specimens of different thickness; mechanically and chemically polished; transmittance spectra obtained and absorption coefficients deduced; absorption-coefficient data extracted from a figure.
2	154	Beairsto, J.A.B. and Eldridge, J.E.	1973	r	$1.5 \times 10^{1} - 1.7 \times 10^{2}$	77	Same as above except at a higher temperature.
3	154	Beairsto, J.A.B. and Eldridge, J.E.	1973	τ	$1.5 \times 10^{1} - 2.0 \times 10^{2}$	300	Same as above except at a higher temperature.
4	153	Mitolidi, E.N., Neklyudov, I.M., and Panova, A.N.	1974	T	3.8×10 ¹ -4.2×10 ¹	300	Single crystal; grown in evacuated quartz vials by the Stockbarger method from melt of pure salts; 2.5 x 3 x 8 mm specimen; mechanically ground and chemically polished; annually for six hours at 773.15 K; absorption-coefficient data taken from a figure.
5	153	Philipp, H. and Ture, E.	1956	R	4.03x10 ⁴ -5.4x10 ⁴	470	Pure CsI; obtained from the Fairmount Chemical Co.; thin film specimens evaporated onto a sapphire substrate; absorption coefficients measured; data extracted from a figure.
6	153	Philipp, H. and Taft, E.	1956	R	4.1x10*-5.4x10*	300	Similar to above except at a lower temperature.
7	153	Philipp, H. and Tait, E.	1956	R	4.3x10*-5.4x10*	180	Similar to above except at a lower temperature.
3	153	Philipp, H. and Taft, E.	1956	R	4.0x10"-5.4x10"	80	Similar to above except at a lower temperature.
9	156	Dianov, E.M.	1967	т	1.5×10 ¹ -2.1×10 ¹	293	Single crystal; plane-parallel plate or disk specimens of 50-80 mm diameter and various thicknesses; average absorption coefficients determined from the measured values of transmission in the absence of internal interference; data extracted from a figure.
10	156	Dianov, E.M.	1967	R	7.27-20.8	293	Sine as above.
11	156	Dinnov, E.M.	1967	R	7.25~20.8	78	Similar to above except at a lower temperature.
12	152	Lamatsch, H., Rossel, J., and Saurer, E.	1972	z	4.0x10*~5.0x10*	300	Thin fi'm speciment evaporated on suprasil quarticularitate; absorption coefficients deduced from transmission and reflect vity measurements; data extracted from a figure.
13	152	Lmatsch, H., et al.	1972	Z	4.0x10"-5.0x10"	77	Same as above except at a lower temperature.

TABLE 63. SUMMARY OF MEASUREMENTS ON THE ABSORPTION COEFFICIENT OF CESTUM IODIDE (Wavenumber Dependence) (continued)

Data		***************	化	essagen am grand dess	Wavenumber	all the state of t	ilika karen (). e Mandi ligak era sal similikkanda ades gara para di engarya, ma yaren (1911.) - e yapida yawa sal
Set No.	Ref. No.	Author(s)	Year	Method Used	Range, cm 1	Temperature Range, K	Specifications and Remarks
14	157	Said, K.I. and Green, G.W.	1977	R	4.3x10*-9.2x10*	300	Crystal; mechanically polished in mineral oil them rinsed and kept at 10 ⁻⁶ Torr; unnealed at 400 K for several hours before measurement; reflection spectrum taken and analyzed by the Kramers-Kronig relation to obtain absorption coefficients; data extracted from a figure.
15	157	Said, K.I. and Green, G.W.	1977	R	4.4x10 ⁴ -9.2x10 ⁴	25	Same as above.
16	108	Dianov, E.M. and Irisova, N.A.	1966	T	5	298	Natural crystal; plate specimen of 5.5 and 22 mm thick; absorption coefficient determined from transmission measurement; data extracted from a tuble.

TABLE 64. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF CESIUM ("DDDE (Wavenumber Dependence) [Wavenumber, v, cm⁻¹; Temperature, T, K; Absorption Coefficient, a, cm⁻¹]

٠	1	v	u	ν	Q.	ν	a	٧	a	ν	a
DATA SET	1	DATA SET	1 (Can T.)	DATA SET	2 (CONT.)	DATA SET	3	DATA SET	3(CONT.)	BATA SET	4
T = 12.4	-		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	T = 34			• • • • • • • • • • • • • • • • • • • •	I = 330.5	
		5	4.5712-1	1.1726+2	5.4126+1			1.170 £+2	b.761E+1		
1.4325+6	1.3501	4.83.c+1	3.7155-1	1.1598+2	5.754E+1	1.93.8+2	2.9515-1	1.16:2+2	7.762.+1	4.161641	1.41>2+1
1.47.5+2	2 2 1	+.71,2241	2.3948-1	1.134:+2	6.457E+1	1.9616+2	3.467E-1	1.1+3 [+2	9.3332+1	4.1596+1	1.3116 *1
20447242	2.2398-1	4.5332+1	2.2916-1	1.1156+2	5.37cE+1	1,9+36+2	4.0746-1	1.1 2.6	1.1952+2	4.1532+1	1.2.05.1
1 2 • 4	2.4555-1	4.65,2+1	1.562:-1		4.7302+1	1.9275+2		1.1232+2		4+2525+1	
1.411142			1.5496-1		4.7868+1	1.9146+2		1.111E+2		4.137: *1	
2.5445.6		3.79.6+1	1-23-E-1		5.6232+1	1,8426+2		1.4841.2		40121511	
1.3512+2					0.0.76+1	1.8826.2		1.457£+2		4.1142+2	
1.3742+2		DATA SET	2		8.129E+1	1.5000+6		1.3242.62		4936.+1	
1.307:14		T = 77.0			9.7726+1	1,3256+2		1.412=+2		4048-24	
2.3545+2					1.143E+2	2+3466+2		9-3566+1		4.056+1	
			3.3852-1		1.3835+2	1.7826.2		9.65.6+1		40.43642	
1.3341+2			3.3.20-1		1.6982.2	1.7556+2		9.493641		4.000	
1.3131+4			4 . 25 OE -1		2.0422+2	1.7326+2		5.5142+1		3.900E+1	
1.3.4142			4.7602-1		5.4956+1	1.71.6.2			1.06.2.02	3.9392+1	
1.2972+2			5.2.66-1		4.363E+1	1.0335+2			1.3836+2	3.9032+1	
1.2395+2			5.75-1-1		3.6316+1	1.6556+2		5.340=+1		3.8702+1	
1.2922.2			6 • 45 7 £ = 1		2.9516+1	5+3860.1		4. 380 6 4 2		3.446c+i	4.47.6
1.2732+2			0.3151-1		2.4552+1	1.6166+2		4.9302+1		DATA SET	c
1.25.112			7 • 702 = -1 8 • 511 E = 1		1.9952+1	1.5556+2		4.650E+1 4.550E+1		T = 470	
1.2511.02						1.5626+2				1	
1.2431+2			3.550E=1 1.122E+0		1.343£+1 1.122£+1	1.5368+2		4.253£+1		5.4332+4	2 . 2
1.24.54.4			1.1226.4		9.333£+C	1.92/646		4.234541		5.33264	
1.2175.42		1.3372+2			8.1236+0	1.4556+2		3.3546+1		5.323:+4	
6.75.42			2.6426+0		7792+6	1.4096 42		3.74661		5.323244	
6.31.241			2.5126+3		6.105£+1	1.413:+2		3.5.0:+1		5.232244	
E.3131+1			3.2366+1		5.0232.0	1.3576.2		3.3932+1		5.25.2.	
0.29.20.			+.1096+1		4.8935.0	1.3052+2		2.9942.1		2	
b.2iu£+1			5 - 5 3		4.266E+4	1.3.56+2		2.30.201		5.1.524.	
6.17.2.1			6.9151+3		3.7.56.6	1.32-5.2		2.64::+1		55.+4	
0.1742+1			5.5411+3		3.1626+4	1.2991.42		2.4716+1		5.0 242 +4	
0.45.2+1			1 + 4 + 7 = + 1		2.6925+6	1.2776+2		2.3552+1		5.0602.44	
6.5244			1.26541		2.3996+6	1.256£+2		2.2000		4.570544	
2.03.1.1			1.5495+1		242645	1.2.56+2		2.1336+1		4.687.44	
5.91.1+.			1.35.441		1.738E+L	1.2296.2		1.9.02+1		4.879644	
5.72.2+1			2.3931.1		1.445 € 4 3	1.2156+2		1.6704+1		4.8632+4	
5.3162.1	5.3175-1	1.1992+2	2 . 3 :8 E + 1	1.5.GE+1	1.2.26+4	1.1496+2	4.169£+1	1.533E+1	4.7 80E+L	**839E+*	
5.280:+1	6. 701E-1	1.1892+2	3.4672+1			1.1086+2	5. w12E+1			4.0232+4	2.623645
5.19.£∀1	5.0635-2	1.1812+2	4.1096+1			1.1796+2	5.888E+1			4.077: 44	1.350E+5

TABLE 64. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF CESIUM IODIDE (Wavenumber Dependence) (continued)

			·		•
ν α	ν α	v a	<i>u a</i>	v a	ν α
DATA SET S(CONT.)	DATA SET 6 (CONT.)	DATA SET 7(CONT.)	DATA SET BICONT.)	0ATA SET 9 T = 293.0	GATA SET 1110041.1
	37' . / a 3305 AE	4.diaE+4 3.350E+5	4.9356+4 1.5646+5	273.0	8.096t+J 5.1366-1
4.045244 1.279645	4.037644 1.330645	4.7982+4 2.8666+5	4.9196 4 1.0866+5	2.3585+1 9.7486+6	7.2576+4 3.6486-1
4.556244 2.3.2245	4.0216+4 1.3966+5 4.5466++ 2.8365+9	4.766±4 2.6136+5	4.8956+4 2.6666+5	1.3452+1 8.2482+4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4.5166+4 1.3736+5	4.3242+4 2.6326+3	4.7342+4 1.4512.5	+.917è++ 2.50£E+5	1.6692+1 6.965=+4	3474 SET 12
4.450014 1.5.4:45		4.7186.4 1.3106.5	4.8552+4 3.3446+5	1.5112+1 5.7525+6	7 = 3.4.0
4. +35214 : .521215	4.5)32+4 2.15(1+5 4.5)22+4 2.15(1+5	4.71.E+4 1.27úE+5	4.8.76.4 3.9916.5	20322012 30170010	
4.411244 1.43,675	4.930204 2.170207	4.0946+4 142436+5	4.6395+4 4.36,6+5	DATA SET 10	4.9555++ 5.2896+5
4.3792++ 1.2016+5	4.470244 2.462643	4.651E+4 1.37JE+5	4.5315+4 4.3106+5	T = 293.0	4.152244 0.520245
4.3c3c+4 1.usuz+5 4.33s2+4 9.1uuz+4	4.4522+4 1.4202+5	4.0376+4 1.5916+5	4.823E+4 3.05(£+5		4. tele*4 7.52Gc+5
	4.4352+4 1.4202+5	4.6216+4 2.161E+5	4.7986++ 2.9666+5	2.1756+1 9.3642+4	4.34.6 + 0.4.76+5
4.3152+4 6.864E+4 4.29(2+4 5.36]E+4	4.3952+4 6.3552+4	4.6,52+4 2.7432+5	4.7966+4 2.3066+5	1.904E+1 8.6774+4	4.815244 7.733245
4.242244 3.363244	4.3712+4 5	4.5976+4 3.3206+5	4.7746.4 2.0056.5	1.8024+1 7.8634+4	4.73-2+4 7.1036+5
4.194244 3.344244	4.353244 3.343244	4,539:+4 3,5102+5	4.7665+4 1.47.6+5	1.715:+1 6.769:+4	4.770=++ 4.1475+5
4.137:44 1.2.36.44	4.3460+4 3.1440+4	4.5816+4 3.5406+5	4.7536+4 1346+5	1.5946+1 6.4136+4	4.745244 3.834245
4.13/244 (.201244 4.13/244 5.11/243	4.2002+4 2.2412+4	4.5736+4 3.4916+5	4.7422+4 9.3.00+4	1.4532+1 4.9492+6	4.725244 3.197245
4 5.4.3.4.3	4.19+6+4 1.2606+4	4.5482+4 2.890 6+5	4.7266+4 1.4266+5	1.3502+1 4.5252+0	4.09.244 3.3
SHTA SET 6	4.1132+4 8.00122+3	4.54.5+4 2.4755+5	4.71(E+4 1.11LE+5	1.2926+1 3.99+2+4	4.04.6*4 3.2006.5
7 = 3.0.0	4.177.4 0.000.12	4.5326+4 1.9536+5	4.7.25.4 1.5265.5	1.2176+1 3.6376+4	4.5952++ 3.8+22+5
1 - 3.0.5	DATA SET 7	4.51b£+4 1.454£+5	4.6776+4 2.5166+5	1.1432+1 3.6952+.	4.2205++ 5.4275+5
5.4.3:04 3.73,203	T = 10.40	4.5.82+4 9.9666+4	4.6536+4 3.3666+5	1.3896 +1 2.9956 +.	4.23:6* 5.8566*5
5.3712** 3.34)2*5	1 - 10010	4.4925+4 7.0005+4	4.6.52+4 4.3166+5	1.331.11 2.7056.45	4.0156*4 5.2196*5
3.3572.** 3.3346.*	5.4.32+4 4.6926+5	4.4085+4 6.6665+4	4.629244 4.8542+5	9.862 + 4 2.528 + + +	4.496644 4.553645
5.3.14. 3.6.14.5	2.3352+4 4.4262+5	4.4352+4 4.2632+4	4.0248+4 4.4066+5	9.315++ 2.1246+.	+.474244 3.526245
5.20624- 3.4426-5	5.347_+4 3.5745+5	4.387E+4 2.8(BE+4	4.6212+4 4.1102+3	8.9.56+4 2.1826+4	4.456244 2.615245
5.0712.4 2.1326.45	5.242244 3.446645	4.3152+4 1.8402+4	4.603E+4 3.63CE+5	8.165E*u 1.672E*u	4.435244 1.657245
5.446244 2.634245	5.2342+4 2.78uk+5	4.0130.4 1.0000	4.5976++ 2.5246+5	7.273E+0 1.545E+u	4.423644 1.100245
5.30024 2.03245	5.1612+4 2.5136+5	DATA SET 6	4.5976+4 21.6+5		4.+625++ 6.2565+4
4.9702+4 2.,516+5	5.1212.4 2.3542.49	T = 81.0	4.5396+4 1.466+5	DATA SET 11	4.307244 4.6046**
4.352±44 2.131€+5	5.1652+4 2.1112+5		4.5732+4 1.5462+5	T = 78.3	4.3232+4 3.4972+4
4.9272*4 2.2-2*5	5.4.54 1.34.6+5	5. 413±+4 3.781E+5	4.556244 7.866244	_	4,21,244 1.542544
4.3111+4 2.441C+5	4.972614 1.94619	5.3435+4 3.4116.5	4.510E+4 5.3+6E+4	2.1752+1 2.2162+4	4.145244 1.42924
4.371244 2.312245	4.9632+4 1.7928+5	5.25.2+4 2.5742+3	4.4082+4 4.1662+4	1.8356+1 1.7556+4	+. Li. E++ 7. 024E+3
4.647214 3.121215	4.903E*4 1.940E*5	5.161644 2.240645	4.427644 3.106644	1.689c+1 1.592=+	
4.647274 3.121275 4.831274 3.141C+5	4.3112+4 2.4941+5	5.1216+4 2.226+5	4.3556 4 2.4464	1,565E+1 1,3376+.	JATA SET 13
4.0152+4 J.1122+5	4.8352+4 2.4642+5	5.1495+4 2.1966+5	4.2062+ 1.4662+	1.4336+1 1.1792+4	1 = 77.3
4.79.2+4 2.4216+5	4.371=+4 2.91=£+5	5.1736+4 2.13,6+5	4. : 946 +4 1 [6 6 +4	1.242541 1.411646	
75Hz+- 2.02,145	4.1552+4 3.2822+5	5.(.8:44 1.79,215	4.165E+4 7.46LE+3	1.2451+1 9.6911-1	4.558644 4.196645
4.7105*4 1.2005*5	+.8392*4 3.6366+5	4.9842+4 1.5916+5	4.032E+6 3.064E+3	1.1996+1 6.7396-1	4. 3312 + 4. 3672+5
4.365244 1.343245	+.8316+4 3.636E+5	4. 3085+4 1.5685+5		1.3786+1 7.1776-1	4.3425+4 5.7635+5
4.563274 4.443273	4.631E+4 3.631E+3	4.9525+4 1.5406+5		9.9916+4 6.4666-1	4.070c++ 5.241E+9

TABLE 64. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF CESIUM HODICE (Wavenumber Dependence) (continued)

ν	α	v	a	v	7	v	Œ.	~	ı	v	1
CATA SET 1	.3 (CONT.)	JATA SET	14(30)7.1	DATA SET	14(CONT.)	DATA SET	15 (CONT.)	DATA SET	15(CONT.)	JATA SET	15400NT.)
+.851±++ 9	3.12.5	8.9812+4	4.345£+5	5.5046+4	4.739E+5	5.u57c+4	1.233£+6	0.1346+4	6.455.+5	4.750244	4.035245
4.8542+4 9).5s?=+5	8.79+2+4	4.542L+5	5.527E+4	7.9172+5	7.919E+4	1.2028+6	6.1345+4	4.571.+5	4.72.244	2.3345.5
4.840:+4 9	3.352.+5	8.5316+4		5.49JE+4	7.455£+5	7.863E+4	1.566E+6	6.373c+4	3.408: +>	4.7636.44	1.9996.05
4.9262+4 5			5.4416+5		7.1925+5		1.598£+6	0.6055+4		w.731E**	3. 402: +5
ಇಂದಿದಿದ್ದ ∀ಳು ನ	1.1978+5	さ・15コーキャ	0.335.+3		5.5716+5	7.7032+4	1.6442+6	5,6482+4	3.3 to= +>	4.702644	5.5112.05
++5122+4 7			さ・マレラニチ ラ		4.1122.15		1.582£+0	5.3736+4			8.3-4645
4.7925++ 6		7.3352+4			2.9716+5		1.456E+6	5.317:++		* . = t. E **	1 - 11 3E +o
4.7055+4 4			8.8752+5		2.034£+5	7.5056+4	1.3362+0	5.70üč++			i. i. se • o
77di++ 2	.553£+5	7.0:.:+4	8.7782+5	5996+4	2.3586+5	7.4732+4	1. <41£+6	9.741644	1.1852+0	4.097244	1.51.6.6
4.7782+4 2			8.942£+5		2.369E+5	7.38JE+4	1.1746+6	5.7226++	1.3546+6		1.5796+6
4.771E+4 2			9.25:8+5		2.6695+5		1.136E+6	5.65:+4	1.4092.06	4.06.E+4	1.34-6+6
?53E :			9.4952+5		3.258E+5		1.u23E+e		1.5572+0		1.1356.0
4.7462+4 .		7.6336+4			4.6535+5		9.1756+5	5.5732+4			1.135:46
4.719.04			1.4556+6		4.533E+5		9 45£+5	5.5556.04			5.2322.5
well-cate :			1.1382+6		4.3665		9.2496+5	5.5501+4		4.04-274	0.5.26.5
4.4:22++ 6			1.0016+6		2.648£+5		8.383E+5		6.0492+5		3. 39.645
4.5455.44			1.3576+6		1.668E+5	5.859E+4	1.J41E+6		4.2552+2	4.0272.44	1.454545
539E 9			1.→57८+6		1.049£+5		1.2268+6		2.327:+5		9.7586+4
4.6:3:+4			1.403.+6		5.181E+4		1.384£+6	5.449c+4		4.0075 44	b . nû 3£ +4
4.613c+4 c			1.4916+6		5.250E++	6.727£+→		5.3350+4		*****	
4.513£44 7		6.5355+4			1.4495+5		1.3572+6	5.2936.44		4.535.44	
** 5 . d £ * 4 . C		0 4 4 1 4 4			2 • 4 55 E + 5		1.2112+6	5.200:+4		4.4532+4	
- 4.5335+4 Z		0.4695*4		4.4812+4		6.5986+4	1.1626+6	5.1850+4		4.46.614	1.0622+4
4.573214 2			1.2672+6		1.4026+5		1.1552+6	5 4			
4.398244 1		6.2752+4			7.838E+4	6.5236+4		5.3186+4		DATA SET	
4.56°: *4 9		0.2312++		4.3692+4	1.7.2E++		9.574£+5	4.3258.4	2.2592+5	T = 499.1	•
4.55.204		0.6.15+4				6.4496+4	9 936+5	4.5.66.4			
••5311 •• J		0.105:+4		DATA SET	15		9.492 [+5	4.3316.4		ラ・. ふしをナン	6.472£-1
4.5.62.44 1		5.12:21.		T = 25.6		5.374=+4	1.u77£+6	* . 83u c * •			
4.48+2++ 2		00.325+4					1.1416+6	4.3696+4			
			5 . 191 L + 5		7.cl7E+5	6.3:9:+4		4.0246.			
4.427=+4 2		0 - 1 7 - + 4			7.456E+5		1.2216+6	4.8692+4			
4.32.6+4 9		0.0192+4			7.5995+5		1.2146+6	4.8126+4			
150 <u>-</u> +4 9		5.342=+4			7.5672+5		1.1.42+6	4.7922+4			
wellette i	3.2236+3		4.7091+5		7.09+2+5	6.2536 **		4.7332.44			
		5.814-1.4		8.442E+4		6.2265++		4.7942+4			
DATA SET 1	. 🕶	5.7522+4			5.065245	6.2448+4		4.794E+4			
T = 3,5.6		5.7142+4			8.8235+5		9.614.6+5	4.756E+4			
			9.2858+5		1.1425+6	6.109E+4		4.756€+4			
9.1882++ 4	.157:+5	5.6136+4	9.0116+5	8.1.65+4	1.1862+6	6.1792+4	b.692E+5	4.756E+4	5.0 (3:+5		

Figure 42. Absorption Coefficient of Cesium Iodide (Temperature Dependence)

Data Set No.	kef.	Acthor(s)	Year	Method Used	Wavenumber Range, em	Temperature Range, K	Cycerfications and Besserks
1	156	Diancy, E.M.	1967	T	20.41	78-292	Single crystal; plane-parallel plate or disk specimens of 50-80 in diameter and various thicknesses; absorption coefficients determined from the measured transmission in the absence of internal interference; data extracted from a figure.
2	156	Di.nov, E.M.	1967	т	13.33	73-292	Same as above except for a longer wavelength.
3	1.6	Dianov, E.M.	1967	T	99	78-387	Same as above except for a longer wavelength.
4	156	Dianov, E.M.	1967	Ţ	5	78-386	Same as above except for a longer wavelength.

TABLE 66. EXPERIMENTAL DATA ON THE ABSORPTION COEFFICIENT OF CESIUM 100 IDE (Temperature Dependence)

[Wavenumber, v, cm-1; Temperature, T, K; Absorption Coefficient, a, cm-1]

DATA SET 1

77.7 2...576.6

77.7 2...576.6

134.7 6.131.6

292.4 9.7456.6

DATA SET 2

V = 1.3336.1

78.2 1...3122.6

194.7 6.7416.6

692.4 3335.3

LATA SET 3

V = 9.931.6

77.7 5.5126-1

194.7 1.5296.6

252.4 2.594.6

367.3 3.1596.6

DATA SET 4

V = 5.44.6

77.7 1.3496.1

194.7 2.9916.6

77.7 1.3496.1

194.7 3.0206.1

292.4 6.5236.1

292.4 6.5236.1

292.4 6.5236.1

385.8 8.4996.1

Os.

Figure 43. Reflectivity of Cesium Iodide

TABLE 67. SUMMARY OF MEASUREMENTS ON THE REFLECTIVITY OF CESSUM IODIDE

Data Set No.	Ref. No.	Author(s)	Year	Method Used	Wavelength Range, µm	Temperature,	Specifications and Remarks
1	154	Bealisto, J.A.B. and Eldridge, J.E.	1973	Ř	67.2-236.4	300	Single crystal; specimen with surface polished mechanically and then chemically; reflectivity measured; data extracted from a figure.
2	54	McCarthy, D.E.	1963	R	2.10-20.0	298	Synthetic crystal (1 cm thick); polished to flatness of seven fringes on both sides; 30° reflectivity measurements made with aluminum mirror reference standard; data extracted from a curve.
3	84	Mitsuichi, A., Yamada, Y., and Yoshinaga, H.	1962	R	49.7-223	298	Single crystal; near normal reflectivity measured in vacuum with aluminum reference standard; data extracted from a curve.
4	152	Lamatsch, H., Rosse, J., and Saurer, E.	1972	R	0.20~0.23	77	Single crystal; near normal reflectivity observed; data extracted from a curve.
5	26	Vergnat, P., Claudel, J., Hadni, A., and Strimer, P.	1969	R	66-297	290	CSI crystals; reflectivities at 15° incidence obtained; data extracted from a figure.
6	26	Vergnat, P. et al.	1969	R	82-246	80	Same as above.
7	26	Vergnat, P. et al.	1969	R	72-254	4.2	Same as above.

TABLE 68. IN EMINEUTAL DATA ON THE REFLECTIVITY OF CESIAN INDIDE (Wavelength, 1, um; Temperature, T, K; Reflectivity, 2]

A	۶	1,	e	\	ř.	À	\$	λ	0	¥	٤
SATA SE	ī 1	DATA SE	T 2 (CONT.)	DATA SET	4	DATA SET	4 (CONT.)	DATA SET	5(60:1.)	JATA SET	7 (CONT.)
7 ~ 330	L			1 = 77.0							
	••	35	563.0			9.2137	6.265	1+5.3	u = 77 +	1.0.1	6 4 2 4 4
s7.2	2,243	****	4.642	3.2003	0.163	4.2141	ŭ.:35	157.4	i - 721	139.3	4.291
70.5	6000	45.2	4.662	2.2.12	561.0	1.21.1	6.205	162.2	543.0	449.4	0.434
3 5	2.	47.9		0.2021	0.158	4.2-45	6.356	164.4	6.533	111.0	6.562
3 ç. v		5	1 50.0	263.	4.155	6.2145	6.321	173.5	6.417	2.4.9	
91.0	4,443			3.2.37	4.155	ũ.2154	6.339	130.4	3.312	4.9.0	54
35.3	2.025	DATA 35	7 3	3,25,5	6.158	J.2153	û.321	222.4	2-3	232.2	9 o t
99.0	v. 21 5	r = 3		6.2043	3.173	5.2163	6.346	297.1	6.211	1-4	3.3E£
101.4	623		,	6.2553	6.236	3.2160	C.276			151.7	u.927
113.3	5	49.7	v.57E	0.2.32	1.195	4.217.	6.244	DATA SET	6	203.5	315
		30.4	J16	3.2554	5.216	- + 217+	6.260	1 = 0veu		101.0	3
1		163.	J.: 35	4.2.56	0.246	1.2177	4.204			27000	
112.7	1.320	1.7.	3	2.2457	2,273	5.2156	6.179	81.7	3.623	135.5	6.343
5.7	5.272	û.u	5.146	3.4.59	4.293	0.2194	(.159	87.5	6.01.	6.2.2	6.27
2.5.9	325	215.	0.252	2.63	8.295	0.22.1	6.144	96.1	C. C63	225.9	1.241
122.1	↓ • 3± 3 □ • • 3• •	114.	6.293	**<	ù.289	0.2215	L. 138	132.1	4. 454		
125.7	1.577	:2	5.369	3.2.7.	3.272	4.621.5	6.131	245.5	C. 597	OATA SET	5
120.7	4.73 ₋		4.368	3.2675	0.2-6	3.2214	6.125	136.7	4. 19.	T = 290.	
	3.322	2.24	-536	3.2.7.	3.224	1.2623	021	138.1	6.327		
23963		1.3.	4.6.7	1.2.70	2.2.1	234	2.121	113.2	4.420	2.6	2.277
1.424		: 3	4.749	1.2.77	9.195	3.22.7	165	117.5	6.593	4.9	J
140.3		134.	v.793	1.2174	3.201	1.2261	6.131	.27	6.835	iueć	55
152.3	y . 353			1.2.65	4.192	u.2276	6.136	127.1	4.929	24.5	4.476
193.5	6.5+4	133.	8⊌2 8≎k	1.6192	4.199	0.2297	i.138	137.9	L. 95.	24.3	0.575
165.1	757	249.		1.2136	0.223	4.6621		146.4	4.946	25.2	1.273
167.5		4.30	U. 10.	4.2666	3.233	GATA SET	£	150.4	(.02)	3	73
. 54. 3	2,547	25 6 .			3.253	T = 290.		157.1	4.637	32.2	
172.5	3. 737	197.	0.416	4.2485		2741	•	162.6	4.515	39.9	44-57
175.1	29	• 26. •	V . 757	1.2.3+	0.239	66.7	635	179.3	0 . 347	44.9	6.654
22304	2.377	ino.	67¢	4.5084		79.6	6.839	246.4	6. 231	46.8	4 - 4 7
:57.0	5.223	#/y•	J.533	26.20	v-190		6.317	240.4	4. 131	48.9	020
2-1.3	635	£73.		2.2699	C.170	96.3	6.36	DATA SET	•	7047	4.36
235	4.455	.71.	L.43 &	4.2.63	3 - 121	95.7		7 = 4.2	r		
		283.	c .373	1.2:27	0.120	2.00	6.667	1 - 416			
DATA SE		2	.,329	وحتته	1.119	147.5	7-	72.1	6.6.		
1 = 294		2::-	4.297	4.2118	5.248	114.3	4 4 2 4				
		223.	u.27 6	6.2121	0.112	110.9	3.9	78.3	u. 132		
2.14	%			3.2127	2.121	. 23 . 6	6.418	65.6	6.623		
3.46	****			4.£13.	1.130	129.5	6.612	91.5	0.91-		
45				4.2124	4.158	.31.7	G.717	96. €	6. 624		
36.3	1.150			2136	j.19û	.37.4	1.753	131.7	6.630		

Figure 44. Transmission of Cesium Iodide

TABLE 69. SUMMARY OF MEASUREMENTS ON THE TRANSMISSION OF CESIUM TODIDE

Set No.	Ref. No.	Author(s)	Year	Method Used	Wave Iongth Range, Lm	Temperatur€, K	Specifications and Remarks
1	54	McCarthy, D.E.	1963	T	2.00-50.00	298	Synthetic crystal; 1 cm thick; polished both sides; data extracted from a curve.
2	159	Plyler, E.K. and Blaine, L.R.	1960	T	17.2-55.5	298	High purity crystal; obtained from Hurshaw Chemical Co.; 5 mm thick; data extracted from a curve.
3	85	McCarthy, D.E.	1967	T	0.203-3.00	298	Single synthetic crystal; 10 mm thick; polished; data extracted from a curve.
4	160	Viehmann, W., Arens, J.F., and Simon, M.	1974	T	0.33-0.67	298	Single crystal; plate specimen of 2.7 cm thick; not encapsulated; transmission measurements performed utilizing a HeNe laser of 1 mW output at 0.633 µm; data extracted from a figure.
5	160	Vichmann, W. et al.	1974	τ	0.33-0.67	298	Similar to above except the specimen encapsulated in Si-oil and lucite.
6	160	Viehmann, W. et al.	1974	T	0.33-0.67	298	Similar to above except specimen of 5 cm thick and not encapsulated.
7	160	Vichmann, W. et al.	1974	Ť	0.33-0.67	298	Similar to above except specimen encapsulated.
8	160	Viehmann, W. et al.	1974	T	0.33-0.67	298	Similar to above except specimen of 2 cm thick and not encapsulated.
9	160	Viehmann, W. et al.	1974	T	0.33-0.67	298	Similar to above except specimen encapsulated.

Table 70. Exterimental data on the Transmission of Cesium 10DIDE $(Wavelength,\ \lambda,\ bm;\ Temperature,\ T,\ R;\ Transmission,\ T)$

3	:	λ	τ	1	τ	λ	τ
DATA SET	1	DATA SET	3 (20 NT .)	DATA SE	T 6	32 £ 14C	
7 = 295.	1			1 = 216	. ü	T = 298	٥.
		32 -	2.833				
فالممة	4.597	13	.851	332	1.659	3.365	6.663
1	1.7:7	1.34	u . (50	2.339	3.114	.327	5.032
1909	** 1 77	2	6.37€	4.342	3.229	٠.334	6.143
30.0	7	3	879		3.3-5	ú - 33d	€.17€
35.5	16:47			1.352	3.434	339	0.214
+2.0	1 ' 2	DATA SET	•	J.355	2.425		238
•7 • i	**552	T = 298.	Ĺ	u . 3 o 3	3.454	6.343	[.267
ź				349	5.473	3.360	6.293
		333	6	2.466	2.431	2.395	6.31c
3414 381	1 2	6.540	L . 3 . P	3.433	3.435	1 5	0.360
7 = 590.	. 6	4.324		4.445	3.613	6.436	6.343
		J.301	437	⊾• ₩ 35	3.535	÷ • • • 8	[.359
17.2	1.9.€	4.31.	L • • 7 7	v.5:4	3.573	J-459	1.381
.5.7	1 . 2	3.420		1.551	2.599	i: • 469	C.394
32.9	4 . 71.	24.45	6.554	545	9. e13	J-\$38	0.431
-: . 4		J . 5 . "	5.000	6.616	0.618	2.59~	6.455
-1.3		4.57.	2.527	J.c36	1.625	J.552	€.476
-3.2			6+9	Ç. C45	. c32		
	4.352	ي د د و ي	6ó:			JATA SE	1 9
+6.5	4 - 3 - 3			DATA SE	7 7	T = 298	• •
4 5. c	C . 773	0414 351	5	T = 238	-5		
>3.7	6.093	T = .33.	i			3 →8	63
35.5	5.2			ú.30÷	ひ・レラン	0.339	0.363
		2.340	 €	9.307	C-176	350	(
Data Sal	7 3	3.353	188	4.372	8.298	0.3c1	u . 127
1 = 295.		355	30.	J.375	53	L . 3 6 a	€ • ≥57
		4.357	u ++ 35	₩.373	0.523	4.372	6.464
		u.is.		4.3:3	3.574	J. 373	6.491
5.212		6.300	7ê	3.393	C.EJ3	u • 39 i	5.529
4.662	J. 272	4.373	712	i9	3.624	2.391	€.⇒76
6.645	1.357	337	3.747	3.434	3.648	18	0.597
	1 .	4.4.0	L.7át	J . ~ c č	C. 17 6	· · + c 2	(.b2ė
ولادون	20.00	54	J.737	4.453	3.713	3	E.645
4.363	24	13	w • 0 - ÷	1.531	3.737	2.535	0.000
3.300			. 8.9	J.565	4.7+3	3.377	676.3
ú. +2 >	2.7.2	よ・ラッチ		200.2	0.756	0.512	6.087
		2.6.2	u.52:	1.629	7.762	6.633	E. 693
3.55+	u.773		634	6+3	3.765	65.	6.7.3
L.057	5						

TABLE 71. PEAK POSITIONS (λ_{max}) IN μm AND HALF-WIDTHS (W) IN eV FOR THE F, R, M, AND N ABSORPTION BANDS IN CESIUM IODIDE*

Interionic		F band		R ₁ band	R ₂ band	M ba		N bands	
dist., d (Å)	Temp.	max	W	λ max	λ max	max	W	λmax	
3.95	RT	(0.778) 0.785	0.36			1 220	0.1		
	NT	0.750	0.36			1.220 1.185	0.1 0.05		

^{*} Values were taken from Ref. [69].

^{*} Values given in parentheses are calculated from the Ivey relations [70].

F band $\lambda_{\text{max}} = 703 \text{ d}^{1.84}$ for NaCl structure, $\lambda_{\text{max}} = 251 \text{ d}^{2.5}$ for CsCl structure.

R₁ band $\lambda_{\text{max}} = 816 \text{ d}^{1.84}$ R₂ band $\lambda_{\text{max}} = 884 \text{ d}^{1.84}$ M band $\lambda_{\text{max}} = 1400 \text{ d}^{1.56}$

4. SUMMARY OF RESULTS AND RECOMMENDATIONS

The purpose of the present work is to survey and compile the available information on the absorption coefficient of alkali halides and to generate recommended values on the absorption coefficient in the infrared region. The results of this study are summarized below.

The Urbach rule appears to be generally applicable to the uv absorption edge of alkali halides. Measurements of absorption coefficients as a function of frequency at various temperatures, enable the establishment of the equations for the Urbach tails. These equations are useful in predicting the intrinsic absorption coefficients for these materials. Compared with the experimental results at the tails, this rule provides clues regarding the extent of impurity or defect in the samples. To ascertain if the Urbach rule can be extended into the transparent region requires experimental data on ultrapure samples. The current available data are less than adequate to provide such positive evidence.

In the highly transparent region, absorption coefficients are usually low. Since refractive indices in the transparent region can be measured accurately, the corresponding absorption coefficients can be calculated from the expressions

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

and

 $\alpha = 4\pi k v$

It is clear that α can be determined provided that reliable reflectivity data are available. Such important data are currently missing as reflectivity measurements are concentrated in the fundamental uv absorption band and the reststrahlen region.

Available data in the multiphonon region indicate that the absorption coefficient can be expressed as an exponential function of frequency. Deutsch's results [12] supported the exponential dependence of the absorption coefficient on frequency for LiF, NaCl, KCl, and KBr; however, due to inadequate data, such a relation could not be developed for NaF and KI. However, we have found in this study that such an exponential relation can also be formulated for NaF and KI based on the following findings:

1. Listed below are the constant, $\nu_{_{\rm O}}$, in Eqs. (23), (29), (32), and (35) for LiF, NaCl, KCl, and KBr, respectively, and their corresponding molecular weights, M, including those of NaF, KI, and CsI. In addition, the corresponding 1/M are also given.

	Lif	NaF	NaC1	KC1	KBr	KI	CsI		
v_0 , cm^{-1} M, g $mole^{-1}$	153.2		56.0	50.8	39.1				
M, g mole ⁻¹	26	42	58.5	74.5	120	166	260		
1/M, mole ⁻¹ g	0.0385	0.0238	0.0171	0.0134	0.0083	0.0060	0.0038		
A plot of log v_o versus 1/M for LiF, NaCl, KCl, and KBr as shown in									
Figure 45 rev	Figure 45 reveals that these four points can be approximated by a								
straight line	. Based	on this	plot, t	he predi	cted val	ues of V	for		
NaF, KI, and	CsI are,	respect	ively, 7	8.5 cm ⁻¹	, 35 cm	i, and 3	2 cm ⁻¹ .		

- 2. In the case of NaF, available data by Hohls [29] and Klier [41] (see Fig. 11) suggested a much higher value for v_0 . However, the data set obtained by McNelly and Pohl [80], read off from Figure 12, for a temperature of 300 K gave a value of 79.5 cm⁻¹ for v_0 , closely in accordance with the predicted value 78.5 cm⁻¹. Careful review of their reports indicated that McNelly and Pohl used samples of extreme purity and they found no indications of any extrinsic absorption. Based on this evidence and the match of predicted v_0 value, we confidently adopted Eq. (26) to represent the absorption coefficient of pure NaF in the multiphonon region at room temperature.
- 3. In the case of KI, similar situations were encountered. Available data reported by Harrington et al. [104] were used to test the prediction. Indeed, a value of 35.1 cm $^{-1}$ for v_o was found and Eq. (38) was consequently adopted. In the case of CsI, unfortunately the current state of available data is inadequate either to substantiate the prediction or to define a unique value for v_o .

With two additional points, those of NaF and KI, in Figure 45, there is little doubt to believe that log ν_o is proportional to 1/M in the form of equation

$$v_{o} = Ae^{B/M}$$

where A and B are constants. No attempt was made to assign numerical values to these constants until the physical meaning of this equation is understood.

A close examination of the absorption spectra in the multiphonon region for LiF, NaCl, KCl, and KBr (shown in Figs. 5, 17, 23, and 29), one will appreciate the strong possibilities that analytical expressions similar to those for the Urbach tail region can be formulated for the multiphonon region. Results toward these ends will be presented in the second report of this study on alkali halides.

In the wavelength region of laser interest, absorption coefficients were made available at a few selected wavelengths. Although it appeared that absorption coefficients at some wavelengths, 10.6 µm for example, could be predicted by Eqs. (29), (32), and (35) in the cases of NaCl, KCl, and KBr, experimental data showed considerable discrepancies due to impurities and surface contaminations. Furthermore, determination of extreme low absorption is hampered by the limit of instrument sensitivity, hence the inevitable discrepancies. Many investigators treated the bulk and surface absorption as two separate parts and efforts have been made to identify them separately. As a result, very low bulk absorption coefficients (close to the intrinsic) were reported with surface absorption generally many times higher. In practice, however, the total absorption actually accounts for the objectionable effects at highpower levels. Natural consequences of this are numerous investigations aimed at eliminating or reducing the extrinsic contributions. Growing of crystals with the reactive-atmosphere process and cleaning the surface with various chemical techniques are two popular means that have been employed. To date, only modest success has been achieved.

Assignment of the bulk and surface origins of extrinsic absorption at 9.5 and 3.8 μm has been controversial. Some workers believe that surface contamination is the main cause of excess absorption; others think bulk impurities are the reason. No clear line can be drawn between these two views based on currently available information.

Some materials have relatively high intrinsic absorption at certain laser wavelengths. However, it has been made clear by the advances of laser technology that laser wavelengths are no longer limited to the 2-6 μ m region and to 10.6 μ m, the so-called chemical and CO₂ laser wavelengths. New developments have shown that laser action can be produced at other wavelengths in the near infrared, visible, near ultraviolet, and ultraviolet regions. Optical materials that are not suitable at certain wavelengths may be found to be important

at other wavelengths. It is clear, therefore, that well planned and systematic experimental investigation of absorption should be carried out, covering wide spectral and temperature ranges for a wide variety of optical materials.

(

5. REFERENCES

- National Materials Advisory Board, "High-Power Infrared Laser Windows," National Academy of Sciences-National Academy of Engineering, Washington, DC, Publication NMAB-292, 168 pp. (1972).
- Gray, D.E. (Editor), <u>American Institute of Physics Handbook</u>, 3rd Ed., McGraw-Hill Book Co., New York, 2342 pp. (1972).
- 3. Trost, K.F., "Thermal Expansion of Alkali Halides of the Na-Cl Type at High and Low Temperatures," Z. Naturforsch., B18(8), 662-4 (1963).
- Kirchner, H.P., Scheetz, H.A., Brown, W.R., and Smyth, H.T., "Investigation of Theoretical and Practical Aspects of the Thermal Expansion of Ceramic Materials," Cornell Aeronautical Lab. Rept., 101 pp. (1962). [AD 296 188]
- 5. Weast, R.C. (Editor), <u>Handbook of Chemistry and Physics</u>, The Chemical Rubber Co., Ohio (1969).
- Stull, D.R. and Prophet, H., "JANAF Thermochemical Tables," National Standard Reference Data Series-National Bureau of Standards Rept. NSRDS-NBS 37, 1141 pp. (1971).
- Strehlow, W.H. and Cook, E.L., "Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators," J. Phys. Chem. Ref. Data, 2(1), 163-99 (1973).
- 8. Wolfe, W.L., <u>Handbook of Military Infrared Technology</u>, U.S. Government Printing Office, Washington, DC, 906 pp. (1965).
- 9. Fowles, G.R., <u>Introduction to Modern Optics</u>, Holt, Rinehart and Winston, Inc., New York, 304 pp. (1968).
- 10. Hodgson, J.N., Optical Absorption and Dispersion in Solids, Chapman and Hall, Ltd., London, 138 pp. (1970).
- Klein, C.A. and Rudko, R.L., "CO₂ Laser Radiation Absorption in Semi-Insulating Gallium Arsenide," Appl. Phys. Lett., <u>1</u>3, 129 (1968).
- Deutsch, T.F., "Absorption Coefficient of Infrared Laser Window Materials,"
 J. Phys. Chem. Solids, 34, 2091-104 (1973).
- 13. Lowndes, R.P. and Martin, D.H., "Dielectric Dispersion and the Structures of Ionic Lattices," Proc. Roy. Soc. London, A308, 473-96 (1969).

- 14. Lowndrs, R.P., "The Temperature Dependence of the Static Dielectric Constant of Alkali, Silver, and Thallium Halides," Phys. Lett., 21(1), 26-7 (1966).
- 15. Andeen, C., Fontanella, J., and Donald, S., "Low-Frequency Dielectric Constant of LiF, NaF, NaCl, NaBr, KCl, and KBr by the Method of Substitution," Phys. Rev., B2(12), 5068-73 (1970).
- 16. Kurtheuser, E., "Dielectric Properties of Polar Crystals," in <u>Polarons</u>
 in <u>Ionic Crystals and Polar Semiconductors</u>, (Devreese, J.T., Ed.), NorthHolland/American Elsevier, 717-33 (1972).
- 17. Young, K.F. and Frederikse, H.P.R., "Compilation of the Static Dielectric Constant of Inorganic Solids," J. Phys. Chem. Ref. Data, 2(2), 313-409 (1973).
- 18. Hodby, J.W., Borders, J.A., and Brown, F.C., "Cyclotron Resonance of the Polaron in KC1, KBr, KI, RbC1, AgC1, AgBr, and TIC1," Phys. Rev. Lett., 19(17), 952-5 (1967).
- 19. Hilsch, R. and Pohl, R.W., "Dispersion Frequencies of Alkali Halides in the Schumann Region," Z. Phys., <u>59</u>, 812-9 (1930).
- Schneider, E.G. and O'Bryan, H.M., "The Absorption of Ionic Crystals in the Ultraviolet," Phys. Rev., 51(5), 293-8 (1937).
- 21. Ramachandrau, G.N., "Thermo-optic Behavior of Solids, V. Alkali Halides," Proc. 'ndian Acad. Sci., 25A, 481-97 (1947).
- 22. Jusperse, J.R., Kahan, A., and Plendl, J.N., "Temperature Dependence of Infrared Dispersion in Ionic Crystals LiF and MgO," Phys. Rev., 146(2), 526-42 (1966).
- 23. Genzel, L., Happ, H., and Weber, R., "Dispersion Measurement on NaCl, KCl, and KBr Between 0.3 and 3 mm Wavelength," Z. Phys., 154, 13-8 (1959).
- 24. Handi, A., Claudel, J., Chanal, D., Strimer, P., and Vergnat, P., "Optical Constants of Potassium Bromide in the Far Infrared," Phys. Rev., 163(3), 836-43 (1967).
- 25. Handi, A., Claudel, J., Morlot, G., and Strimer, P., "Transmission and Reflection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5 (1968).

- 26. Vergnat, P., Claudel, J., Handi, A., Strimer, P., and Vermillard, F., "Far Infrared Optical Constants of Cesium Halides at Low Temperatures," J. Phys., 30(8-9), 723-35 (1969).
- Gyulai, Z., "The Dispersion of Some Alkall Halides in Ultraviolet Region,"
 Phys., 46, 80-7 (1927).
- 28. Schneider, E.G., "Optical Properties of Lithium Fluoride in the Extreme Ultraviolet," Phys. Rev., 49(9), 341-5 (1936).
- 29. Hohls, H.W., "Dispersion and Absorption of Lithium Fluoride and Sodium Fluoride in the Infrared," Ann. Phys., 29, 433-48 (1937).
- 30. Harting, H., "The Optical Aspect of Some Crystals and Their Representation by the Hartmann Equation," Z. Instrum., 63, 125-31 (1943).
- 31. Durie, D.S.L., "The Refractive Indices of Lithium Fluoride," J. Opt. Soc. Amer., 40(12), 878-9 (1950).
- 32. Tilton, W.L. and Plyler, E.K., "Refractivity of Lithium Fluoride With Application to the Calibration of Infrared Spectrometers," J. Res. Natl. Bur. Stand., 47(1), 25-30 (1951).
- Li, H.H., "Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives," J. Phys. Chem. Ref. Data, 5(2), 329-528 (1976).
- 34. Kato, R., "Optical Properties of LiF in the Extreme Ultraviolet," J. Phys. Soc. Jpn., 16, 2525-33 (1961).
- 35. Roessler, D.M. and Walker, W.C., "Optical Constants of Magnesium Oxide and Lithium Fluoride in the Far Ultraviolet," J. Opt. Soc. Am., <u>57</u>, 835-6 (1967).
- 36. Görlich, H., Karras, H., and Kötitz, G., "Studies on the Coloration of LiF Crystals," Phys. Status Solidi, 3, 1629-45 (1963).
- 37. Tomiki, T. and Miyata, T., "Optical Studies of Alkali Fluorides and Alkaline Earth Fluorides in VUV Region," J. Phys. Soc. Jpn., 27(3), 658-78 (1969).
- 38. Barker, A.J., "The Effect of Melting on the Multiphonon Infrared Absorption Spectra of KBr, NaCl and LiF," J. Phys. C: Solid State Phys., 5, 2276-82 (1972).

- 39. Mead, D.G., "Comparison of the Optical an Dielectric Properties of Crystalline and Molten Lithium Fluoride," J. Phys. C: Solid State Phys., 7, 445-53 (1974).
- 40. Kachare, A., Soriaga, M.P., and Andermann, G., "Kramers-Kronig Dispersion Analysis of LiF Reflectance Data Obtained at Ambient and Low Temperatures,"

 J. Opt. Soc. Am., 64(11), 1450-5 (1974).
- 41. Klier, M., "The Temperature Coefficient of Optical Constants of Lithium Fluoride and Sodium Fluoride in Infrared," Z. Phys., 150, 49-63 (1958).
- 42. Owens, J.C., "Anharmonicity and Millimeter-wave Absorption in Alkali-Halide Crystals," Phys. Rev., 181(3), 1228-36 (1969).
- 43. Stolen, R. and Dransfeld, K., "Far-Infrared Lattice Absorption in Alkali Halide Crystals," Phys. Rev., 139(4A), A1295-303 (1965).
- 44. Eldridge, J.E., "Measurement and Analysis of the Isotope-Induced One-Phonon Infrared Absorption LiF," Phys. Rev. B, 6(8), 3128-34 (1972).
- 45. Eldridge, J.E., "Assignments of the 'o-Phonon Infrared Absorption Spectrum of Lif," Phys. Rev. B, 6(4), 1510-9 (1972).
- 46. Heilmana, G., "The Temperature Dependence on the Optical Constants of LIF in the Region of Infrared Characteristic Frequencies," Z. Phys., 152, 368-83 (1958).
- 47. Ge zel, L. and Klier, M., "Spectral Investigations in the Region Around 1 mm Wavelength. III. Dispersion Measurements on Lif," Z. Phys., 144, 25-30 (1956).
- 48. Fröhlich, D., "The Optical Constants of LiF in the Region of Infrared Characteristic Frequencies," Z. Phys., 169, 114-25 (1962).
- 49. Fröhlich, D., "Temperature Dependence of the Optical Constants of LiF in Region of Infrared Characteristic Frequencies," Z. Phys., <u>177</u>, 126-37 (1964).
- 50. Seger, G. and Genzel, L., "Absorption Measurement on LiF Between Wavelength Region 0.3 and 0.9 mm," 2. Phys., 169, 66-71 (1962).
- 51. Gottlieb, M., "Optical Properties of Lithium Fluoride in the Infrared," J. Opt. Soc. Am., 50(4), 343-9 (1960).

- 52. Johnson, B.K., "Reflecting Power Measurements in the Spectral Region 2000 Å to 1300 Å," Proc. Phys. Soc. London, 53, 258-64 (1941).
- 53. Sulzbach, F. and Turner, A.F., "Infrared Coating Studies," Bausch and Lomb, Inc., Rochester, NY, 1-33 (1966). [AD 635 670]
- 54. McCarthy, D.E., "The Reflection and Transmission of Infrared Materials:

 I. Spectra from 2-50 Microns," Appl. Opt., 2(6), 591-603 (1963).
- 55. Stephan, G., Lemonnier, J.C., and Robin, S., "Optical Properties of Insulators in the Extreme Ultraviolet," J. Opt. Soc. Am., <u>57</u>(4), 486-92 (1967).
- 56. Martin, T.P. and Turner, A.F., "Effect of Crystallite Size on the Infrared Dispersion of Lithium Fluoride Films," J. Appl. Phys., 37(4), 1749-54 (1966).
- 57. Rao, K.K., Moravec, T.J., Rife, J.C., and Dexter, R.N., "Vacuum Ultraviolet Reflectivities of LiF, NaF, and KF," Phys. Rev. B, <u>12</u>(12), 5937-48 (1975).
- 58. Schaefer, J.C. and Hill, E.R., "Optical Coatings for CdS Photovoltaic Film Cells," NASA Rept. NASA CR 54965 (1965).
- 59. Gottlieb, M., "Reflectivity of Li-6F and Li-7F," J. Opt. Soc. Am., <u>50</u>, 350-1 (1960).
- 60. Turner, A.F., Chang, L., and Martin, T.R., "Enhanced Reflectance of Reststrahlen Reflection Filters," Appl. Opt., 4(8), 927-33 (1965).
- 61. Nakagawa, I., "Far-Infrared Reflection Spectra, Optical and Dielectric Constants, and Lattice Vibrations of Some Fluoride Crystals," Bull. Chem. Soc. Jpn., 44, 3014-20 (1971).
- 62. Davis, R.J., "Factors Affecting the Transmittance of Lithium Fluoride and Barium Fluoride in the Vacuum Ultraviolet," J. Opt. Soc. Am., <u>56</u>(6), 837-9 (1966).
- 63. Jones, D.A., Jones, R.V., and Stevenson, R.W., "Infrared Transmission Limits of Single Crystals of Some Fluorides," Proc. Phys. Soc. London, <u>B65</u>, 906-7 (1952).
- 64. Laufer, A.H., Pirog, J.A., and McNesby, J.R., "Effect of Temperature on the Vacuum Ultraviolet Transmittance of Lithium Fluoride, Calcium Fluoride, Barium Fluoride and Sapphire," J. Opt. Soc. Am., 55(1), 64-6 (1965).

- 65. Heath, D.F. and Sacher, P.A., "Effects of a Simulated High-Energy Space Environment on the Ultraviolet Transmittance of Optical Material Between 1050 A and 3000 A," Appl. Opt., 5(6), 937-43 (1966).
- 66. McCubbin, T.K. and Sinton, W.M., "Recent Investigations in the Far Infrared," J. Opt. Soc. Am., 40(8), 537-9 (1950).
- 67. Bolot, G., "Ultraviolet Windows and Filters for the Spectral Region Between 1000 A and 3000 A," NASA Rept. ESRO-SM-6, 14 pp., 1965.
- 68. Linsteadt, G., "Infrared Transmittance of Optical Materials at Low Temperatures," Appl. Opt., 3(12), 1453-6 (1964).
- 69. Compton, W.D. and Rabin, H., "F-Aggregate Centers in Alkali Halide Crystals," Solid State Phys., 16, 121-226 (1964).
- 70. Ivey, H.F., "Spectral Location of the Absorption Due to Color Centers in Alkali Halide Crystals," Phys. Rev., 72, 341-3 (1947).
- Sano, R., "Optical Properties of NaF Single Crystals in VUV Region,"
 J. Phys. Soc. Jpn., <u>27</u>(3), 695-705 (1969).
- 72. Kublitzky, A., "Some Optical Constants of Alkali Halide Crystals," Ann. Phys., 5, 20, 793-808 (1934).
- 73. Spangenberg, K., "Density and Refraction of Alkali Halides," Z. Kristallogr., 57, 494-534 (1923).
- 74. Randall, C.M., "Interferometric Measurements of the Far-Infrared Refractive Index of NaF at Low Temperature," Aspen International Conference on Fourier Spectroscopy (1970), 371-6 (1971).
- Zarzyski, J. and Naudin, F., "Index of Refraction and Refractivity of Molten Salts," C. R. Hebd. Seances Acad. Sci., <u>256</u>, 1282-5 (1963).
- Földvari, I., Veszka, R., and Raksanyi, K., "Optical Absorption of NaF Single Crystals in the VUV Region," Phys. Status Solidi, 26A, K83-5 (1974).
- 77. Tomiki, T., Miyata, T., and Tsukamoto, H., "The Urbach Rule for the Sodium-and Potassium-Halides," Z. Naturforsch., 29A, 145-57 (1974).
- 78. Harrington, J.A. and Hass, M., "Temperature Dependence of Multiphonon Absorption," Phys. Rev. Lett., 31(11), 710-4 (1973).

- 79. Pohl, D.W. and Meier, P.F., "Multiphonon Absorption in NaF," Phys. Rev. Lett., 32(2), 58-61 (1974).
- 80. McNelly, T.F. and Pohl, D.W., "Multiphonon Optical Spectrum of NaF," Phys. Rev. Lett., 32(23), 1305-8 (1974).
- 81. Beck, H. and Pohl, D.W., "Multiphonon Absorption in Alkali Halides," in Proceedings of the 2nd International Conference on Phonon Scattering Solids, 361-3 (1976).
- 82. Roessler, D.M. and Walker, W.C., "Electronic Spectrum of Crystalline Lithium Fluoride," J. Phys. Chem. Solids, <u>28</u>, 1507-15 (1967).
- 83. Chang. I.F. and Miyata, S.S., "Temperature Dependence of Long-Wavelength Optic Phonons of NaF Single Crystals," Phys. Rev. B, 5(10), 4094-101 (1972).
- 84. Mitsuishi, A., Yamada, Y., and Yoshinaga, H., "Reflection Measurements on Reststrahlen Crystals in the Far-Infrared Region," J. Opt. Soc. Am., 52, 14-6 (1962).
- 85. McCarthy, D.E., "Transmittance of Optical Materials from 0.17 μm to 3.0 μm ," Appl. Opt., <u>6</u>(11), 1896-8 (1967).
- 86. Stefan, J.M., "The Influence of Heat on the Light Refraction of Solids," Sitzungsber. Akad. Wiss. Wien, 2, 63, 223-45 (1871).
- 87. Martens, F.F., "The Dispersion of Ultraviolet Radiation," Ann. Phys., 6, 603-40 (1901).
- 88. Paschen, F., "The Dispersion of Rocksalt and Sylvite in Infrared," Ann. Phys., 26, 120-38 (1908).
- 89. Langley, S.P., "The Dispersion of Roc? Salt and Fluorite," Ann. Astrophys. Obs. Smithsonian Inst., 1, 219-37 (1900).
- 90. Kellner, L., "Investigations in the Spectral Region Between 20 and 40 Microns," Z. Phys., <u>56</u>, 215-34 (1929).
- 91. Roessler, D.M. and Walker, W.C., "Optical Constants of Sodium Chloride and Potassium Chloride in the Far Ultraviolet," J. Opt. Soc. Am., <u>58</u>, 279-81 (1968).
- 92. Miyata, T. and Tomiki, T., "Optical Studies of NaCl Single Crystals in 10 eV Region. II. The Spectra of Conductivity at Low Temperatures, Absorption Constant and Energy Loss," J. Phys. Soc. Jpn., 24(6), 1286-302 (1968).

- 93. Kobayashi, K. and Tomiki, T., "Temperature Dependences of the Fundamental Absorption Tail of KCl and the Absorption Due to Bromines in KCl," J. Phys. Soc. Jpn., 16(7), 1417 (1961).
- 94. Miyata, T. and Tomiki, T., "The Urbach Tails and Reflection Spectra of NaCl Single Crystals," J. Phys. Soc. Jpn., 22(1), 209-18 (1967).
- 95. Califano, S. and Czerny, M., "Absorption of NaCl and KBr in Short Infrared Wavelength Rebion," Z. Phys., 150, 1-3 (1958).
- 96. Horrigan, F.A. and Rudko, R., "Materials for High-Power CO₂ Lasers," Final Technical Report, Contract No. DAAHO1-69-0038, Raytheon Research Division, Waltham, Mass. (Internal Number S-1170) (1969).
- 97. Hass, M., Davison, J.W., Rosenstock, H.B., and Babiskin, J., "Measurement of Very Low Absorption Coefficients by Laser Calorimetry," Appl. Opt., 14(5), 1128-30 (1975).
- 98. Allen, S.D. and Harrington, J.A., "Optical Absorption in KCl and NaCl at Infrared Laser Wavelengths," Appl. Opt., 17(11), 1679-80 (1978).
- 99. Rosenstock, H.B., Gregory, D.A., and Harrington, J.A., "Infrared Bulk and Surface Absorption by Nearly Transparent Crystals," Appl. Opt., 15(9), 2075-9 (1976).
- 100. Rowe, J.M. and Harrington, J.A., "Temperature Dependence of Surface and Bulk Absorption in NaCl and KCl at 10.6 μ m," Phys. Rev. B, $\underline{14}(12)$, 5442-50 (1976).
- 101. Czerny, M., "Measurements on the Refractive Index of NaCl in the Infrared to Prove the Dispersion Theory," Z. Phys., 65, 600-31 (1930).
- 102. Cartwright, C.H. and Czerny, M., "Dispersion Measurements on NaCl and KCl in the Far Infrared Region. II.," Z. Phys., 90, 457-67 (1934).
- 103. Ikezawa, M. and Nasu, K., "Isotope-Induced Far-Infrared Absorption in NaCl and KCl Crystals," J. Phys. Soc. Jpn., 34(6), 1563-6 (1973).
- 104. Harrington, J.A., Duthler, C.J., Patten, F.W., and Hass, M., "Multiphonon Absorption of Alkali Halides and Quasiselection Rules," Solid State Commun., 18, 1043-6 (1976).
- 105. Geick, R., "Dispersion of NaCl in the Region of Infrared Characteristic Frequencies," Z. Phys., 166, 122-47 (1962).

- 106. Cartwright, C.H. and Czerny, M., "Dispersion Measurements on NaCl in the Far Infrared," Z. Phys., 85, 269-77 (1933).
- 107. Dötsch, H. and Happ, H., "Temperature Dependence of Absorption of NaCl Between 1 and 3 mm Wavelength Range," Z. Phys., 177, 360-8 (1964).
- 108. Dianov, E.M. and Irisova, N.A., "Determination of the Absorption Coefficient of Solids in the Short-Wave Region of the Millimeter Band," J. Appl. Spectrosc., 5(2), 187-9 (1966).
- 109. Barnes, R.B. and Czerny, M., "Measurements on NaCl and KCl in the Spectral Region of Their Infrared Natural Frequencies," Z. Phys., 72, 447-61 (1931).
- 110. Baldini, G. and Bosacchi, B., "Optical Properties of Alkali-Halide Crystals," Phys. Rev., 166(3), 863-70 (1968).
- 111. McGill, T.C. and Winston, H.V., "Temperature Dependence of Multiphonon Absorption in Ionic Insulators," Solid State Commun., 13, 1459 (1973).
- 112. Rubens, H., "The Ketteler-Helmholtz Dispersion Formula," Wied. Ann., 54, 476-85 (1895).
- 113. Tomíkí, T., "Optical Constants and Exciton States in KCl Single Crystals.
 J. The Low Temperature Properties," J. Phys. Soc. Jpn., 22(2), 463-87 (1967).
- 114. Tomiki, T., "Optical Constants and Exciton States in KCl Single Crystals. II. The Spectra of Reflectivity and Absorption Constant," J. Phys. Soc. Jpn., 23(6), 1280-96 (1967).
- 115. Shrader, E.F., "Chemically Strengthened Polycrystalline Potassium Chloride for High-Power, IR Laser Windows," U.S. Air Force Rept. AFML-TR-74-165, 79 pp. (1974).
- 116. Hass, M., Davison, J.W., Klein, P.H., and Boyer, L.L., "Infrared Absorption in Low-Loss KCl Single Crystals Near 10.6 µm," J. Appl. Phys., 45(9), 3959-63 (1974).
- 117. Boyer, L.L., Harrington, J.A., Hass, M., and Rosenstock, H.B., "Multiphonon Absorption in Ionic Crystals," Phys. Rev. B, 11(4), 1665-80 (1975).
- 118. Deutsch, T.F., "Laser Window Materials An Overview," J. Elec. Materials, $\underline{4}(4)$, 663-719 (1975).

- 119. Hass, M., Harrington, J.A., Gregory, D.A., and Davisson, J.W., "Infrared Absorption Limits of HF and DF Laser Windows," Appl. Phys. Lett., 28(10), 610-1 (1976).
- 120. Klein, P.H., "Compounds Containing Carbon-Oxygen and Hydroxyl Linkages as Limiting Contaminants in HF and DF Laser Window Materials," in
 Proceedings of the Infrared Laser Window Materials Meeting, 117-24 (1976).
- 121. Rowe, J.M. and Harrington, J.A., "Extrinsic Absorption in KCl and KBr at CO₂ Laser Frequencies," J. Appl. Phys., 47(11), 4926-8 (1976).
- 122. Antinori, M., Balzarotti, A., and Piacentini, M., "High-Resolution Reflection Spectra of Alkali Halides in the Far Ultraviolet," Phys. Rev. B, 7(4), 1541-9 (1973).
- 123. Blechschmidt, D., Klucker, R., and Skibowski, M., "Dielectric Properties of KCl, KBr, and KI Single Crystals in the Extreme Ultraviolet Up to 35 eV," Phys. Status Solidi, 36, 625-34 (1969).
- 124. Deutsch, T.F., "The 10.6 μm Absorption of KCl," Appl. Phys. Lett., <u>25</u>(2), 109-12 (1974).
- 125. Tomiki, T., "Absorption Edges of KCl Single Crystals," J. Phys. Soc. Jpn., 21, 403-4 (1966).
- 126. Philipp, H.R. and Ehrenreich, H., "Intrinsic Optical Properties of Alkali Halides," Phys. Rev., 131(5), 2016-22 (1963).
- 127. Kobayashi, K. and Tomiki, T., "Studies on the Preparation of Pure Alkali Chlorides," J. Phys. Soc. Jpn., 15(11), 1982-90 (1960).
- 128. Johnson, K.W. and Bell, E.E., "Far-Infrared Optical Properties of KCl and KBr," Phys. Rev., <u>187</u>(3), 1044-52 (1969).
- 129. Mentzel, A., "Investigation of Absorption of KCl and KBr on the Short Wavelength Side of Infrared Characteristic Vibration," Z. Phys., 88, 178-96 (1934).
- 130. Spindler, R.J. and Rodney, W.S., "Refractivity of Potassium Bromide for Visible Wavelengths," J. Res. Natl. Bur. Stand., 49(4), 253-62 (1952).
- 131. Stephens, R.E., Plyler, E.K., Rodney, W.S., and Spindler, R.J., "Refractive Index of Potassium Bromide for Infrared Radiant Energy," J. Opt. Soc. Am., 43(2), 110-2 (1953).

- 132. Forrest, J.W., "Refractive Index Values for Potassium Bromide," J. Opt. Soc. Am., 32, 382 (1942).
- 133. Gundelach, E., "The Dispersion of KBr Crystal in the Infrared," Z. Phys., 66, 775-83 (1930).
- 134. Vishnevskii, V.N., Kulik, L.N., and Romanyuk, N.A., "On the Refractive Properties of Alkali Halide Single Crystals in the Vacuum Ultraviolet Region," Opt. Spectros. (USSR), 22(4), 317-8 (1967).
- 135. Martienssen, W., "The Exciton Band of Alkali Halide Crystals," J. Phys. Chem. Solids, 2, 257-67 (1957).
- 136. Klein, P.H., Davison, J.W., and Harrington, J.A., "Potassium Bromide for Infrared Laser Windows: Crystal Growth, Chemical Polishing, and Optical Absorption," Mater. Res. Bull., <u>11</u>, 1335-42 (1976).
- 137. Bauer, G., "Absolute Values of the Optical Absorption Constants of Alkali-Halide Crystals in the Region of Their Ultraviolet Characteristic Frequencies," Ann. Phys., 5, 19, 434-64 (1934).
- 138. Petroff, Y., Pinchaux, R., Chekroun, C., Balkanski, M., and Kamimura, H., "Excitonic Structure of Alkali Halides," Phys. Rev. Lett., 27(20), 1377-80 (1971).
- 139. Korth, K., "Dispersion Measurements on Potassium Bromide and Potassium Iodide in the Infrared Region," Z. Phys., <u>84</u>, 677-85 (1933).
- 140. Sprockhoff, M., "Contributions to the Relationships Between the Crystal and Its Chemical Stability," Neues Jahrb. Mineral., Geol. Palacont., Beilage, 18, 117-54 (1904).
- 141. Topsoe, H. and Christiansen, C., "Optical Researches on Some Series of Isomorphous Substances," Ann. Chem., Phys., <u>1</u>, 5-99 (1874).
- 142. Eldridge, J.E. and Kembry, K.A., "Further Measurements and Calculations of the Far-Infrared Anharmonic Optical Properties of KI Between 12 and 300 K," Phys. Rev. B, 8(2), 746-55 (1973).
- 143. Berg, J.I. and Bell, E.E., "Far-Infrared Optical Constants of KI," Phys. Rev. B, 4(10), 3572-80 (1971).
- 144. Haupt, U., "Temperature Dependence and Shape of Long Wavelength Side of Exciton Band in KI Crystal," Z. Phys., 157, 232-46 (1959).

- 145. Delbecq, C.J. and Yuster, P.H., "Photon-Induced Diffusion in Thin Films and Single Crystals of Potassium Iodide," J. Chem. Phys., 22(5), 921-5 (1954).
- 146. Baldini, G., Bosacchi, A., and Bosacchi, B., "Exciton-Phonon Interaction in Alkali Halides," Phys. Rev. Lett., 23(15), 846-8 (1969).
- 147. Roessler, D.M. and Walker, W.C., "Exciton Structure in the Ultraviolet Spectra of KI and RbI," J. Opt. Soc. Am., 57(5), 677-82 (1967).
- 148. Weeks, R.F., "Simple Wide Range Specular Reflectometer," J. Opt. Soc. Am., 48(11), 775-7 (1958).
- 149. Kato, R. and Watanabe, M., "Optical Study on Alkali Halide Films in the Ultraviolet," J. Appl. Phys. Jpn., 7(1), 21-6 (1968).
- 150. Vishnevskii, V.N., Stefanskii, I.V., Kuzyk, M.P., Kulik, Z.S., and Kulik, L.N., "Influence of Uniaxial Mechanical Deformation on the Optical Properties of Alkali Halide Crystals," Sov. Phys.-Solid State, 15(1), 242-3 (1973).
- 151. Rodney, W.S., "Optical Properties of Cesium Iodide," J. Opt. Soc. Am., 45(11), 987-92 (1955).
- 152. Lamatsch, H., Rossel, J., and Saurer, E., "The Optical Constants of Csl in the Excitonic Region," Phys. Status Solidi, B49(1), 311-6 (1972).
- 153. Philipp, H.R. and Taft, E.A., "Photoelectric Emission from the Valence Band of Cesium Lodide," J. Chem. Phys. Solids, 1, 159-63 (1956).
- 154. Beairste, J.A.B. and Eldridge, J.E., "Far-Infrared Measurements of the Optical Properties of CsI Between 12 and 300 K, Compared with Calculations Based on Cubic Anharmonicity Only," Can. J. Phys., 51, 2550-63 (1973).
- 155. Metolidi, E.N., Neklyudov, I.M., and Panova, A.N., "Effect of Plastic Deformation on Optical Absorption of CsI Crystals," Sov. Phys.-Solid State, 16(5), 1008-9 (1974).
- 156. Dianov, E.M., "Experimental Investigation of the Absorption of CsI and CsBr Single Crystals in the Wavelength Range 0.38-2 mm," Sov. Phys.-Solid State, 9(2), 464-6 (1967).
- 157. Said, K.I. and Green, G.W., "Optical Properties of Cesium Iodide in the Vacuum Ultraviolet," J. Phys. C: Solid State Phys., 10, 479-88 (1977).

- 158. McCarthy, D.E., "Transmittance of Six Optical Materials from 0.2 Microns to 3.0 Microns," Appl. Opt., 7(6), 1243 (1968).
- 159. Plyler, E.K. and Blaine, L.R., "Transmittance of Materials in the Far Infrared," J. Res. Natl. Bur. Stand., <u>C64(1)</u>, 55-6 (1960).
- 160. Viehmann, W., Arens, J.F., and Simon, M., "Optical Transmission Measurements on Monocrystalline and Polycrystalline Cesium Iodide," Nucl. Inst. Methods, 116, 283-95 (1974).
- 161. Milgram, A. and Givens, M.P., "Extreme Ultraviolet Absorption by Lithium Fluoride," Phys. Rev., 125, 1506 (1962).
- 162. Vinogradov, A.S., Zimkina, T.M., and Mal'tsev, Yu.F., "Fine Structure of Fluorine K Absorption Spectra in Alkali Halide Crystals," Sov. Phys.-Solid State, 11, 2721 (1970).
- 163. Brown, F.C., Gähwiller, C., Kunz, A.B., and Lipari, N.O., "Soft X-Ray Spectra of the Lithium Halides and Their Interpretation," Phys. Rev. Lett., 25, 927 (1970).
- 164. Haensel, R., Kunz, C., Sasaki, T., and Sonntag, B., "Measurement of Photoabsorption of the Sodium Halides Near the Sodium $L_{2,3}$ Edge," Phys. Rev. Lett., $\underline{20}$, 1436 (1968).
- 165. Watanabe, M., Ejiri, A., Yamashita, H., Saito, H., Sato, S., Shibaguchi, T., and Nishida, H., "Absorption Spectra of Rubidium Halides in the Extreme Ultraviolet," J. Phys. Soc. Jpn., 31, 1085 (1971).
- 166. Tecgarden, K. and Baldini, G., "Optical Absorption Spectra of the Alkali Halides at 10 K," Phys. Rev., 155, 896 (1967).
- 167. Iguchi, Y., Sagawa, T., Sato, S., Watanabe, M., Yamashita, H., Ejiri, A., Sasanuma, M., Nakai, S., Nakamura, M., Yamaguchi, S., Nakai, Y., and Oshio, T., "C1-L23 Absorption Spectra of Alkali Chlorides Obtained at 80°K With Synchrotron Radiation," Solid State Commun., 6, 575 (1968).
- 168. Saito, H., Saito, S., Onaka, R., and Ikeo, B., "Extreme Ultraviolet Absorption of Alkali Halides," J. Phys. Soc. Jpn., 24, 1095 (1968).
- 169. Le Comte, A., Savary, A., Morlais, M., and Robin, S., "Absorption of NaF and NaCl Thin Films in the Region Between 25 and 72 eV," Opt. Commun., 4, 296 (1971).

- 170. Saito, H., Watanabe, M., Ejiri, A., Sato, S., Yamashita, H., Shibaguchi, T., Nishida, H., and Yamaguchi, S., "Absorption Spectra of KC1 and RbC1 in the Extreme Ultraviolet Region," Solid State Commun., 8, 1861 (1970).
- 171. Lukirskii, A.P. and Zimkina, T.M., in <u>Rontgenspectra and Chemical Bindings</u>, Karl-Marx-Univ., Leipzig, 187-93 (1966).
- 172. Brown, F.C., Gähwiller, C., Fujita, H., Kunz, A.B., Scheifley, W., and Carrera, N., "Extreme-Ultraviolet Spectra of Ionic Crystals," Phys. Rev. B, 2, 2126 (1970).
- 173. Ejiri, A., Watanabe, M., Saito, H., Yamashita, H., Shibaguchi, T.,
 Nishida, H., and Sato, S., "Absorption Spectra of Potassium and Rubidium
 Halides in the Extreme Ultraviolet," in <u>Proceedings of the 3rd International</u>
 Conference on Vacuum Ultraviolet Radiation Physics (Nakai, Y., Ed.) (1971).
- 174. Cardona, M., Haensel, R., Lynch, D.W., and Sonntag, B., "Optical Properties of the Rubidium and Cesium Halides in the Extreme Ultraviolet,"

 Phys. Rev. B, 2, 1117 (1970).
- 175. Rubens, H. and Trowbridge, A., "Contribution to the Knowledge on the Refractive Index and Absorption of Infrared Radiation for Rocksalt and Sylvite," Ann. Phys. Chem., 60, 724-39 (1897).

APPENDIX

The figures included in the Appendix are vuv absorption spectra of the seven materials which are presented in this report. For each data set, the purposes of the investigations, where the curve was taken from, differences for different spectral regions are specified. Some researchers were interested in the absolute values of absorption coefficients, some simply wanted to show the spectral structure. As a result, m ny workers adopted arbitrary (arb) units for the absorption coefficient (a:. Since the purpose of including these figures is to provide the readers the supplemental parts of the complete absorption spectra, selected, typical results are plotted in a single scale and the appropriate scaling magnitudes are given in the legend.

Figure Al. Absorption Coefficient of Lithium Fluoride in vuv Region

Figure A2. Absorption Coefficient of Sodium Fluoride in vuv Region

257

Figure A3. Absorption Coefficient of Sodium Chloride in vuv Region

Figure A4. Absorption Coefficient of Potassium Chloride in vuv Region

259

Figure A5. Absorption Coefficient of Potassium Bromide in vuv Region

Figure A6. Absorption Coefficient of Potassium Iodide in vuv Region

261

Figure A7. Absorption Coefficient of Cesium Iodide in vuv Region

END DATE FILMED