Analízis II Előadás jegyzet

1. óra

A jegyzetet UMANN Kristóf készítette Dr. SZILI László előadásán. (2017. május 29.) Külön köszönet jár CSONKA Szilviának a képek elkészítésért.

 $Tant\'argyi\ honlap: \ http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/index_An2_2016.htm$

1. Követelményrendszer:

- Heti rendszeres számonkérés
- megajánlott
- kötelező előadásra járás (12:15kor kezdés)
- gyakorlati jegy kell (aminek anyaga már a honlapon kint van)

2. Függvények folytonossága

2.1. Szemléletes jelentése:

1. ábra. Nem folytonos, "ha $x \sim a$ -hoz akkor f(x) nincs közel f(a)-hoz".

2.1.1. Megjegyzés. Hasonló probléma: fv. határértéke (végesben vett véges h.é.)

$$a, A \in \mathbb{R}, \quad f \in \mathbb{R} \to \mathbb{R}, \quad a \in \mathcal{D}_f'$$

$$\lim_{a} f = A \quad \Leftrightarrow \quad \begin{cases} \forall \varepsilon > 0, \quad \exists \sigma > 0, \quad \forall x \in \mathcal{D}_{f} \\ 0 < |x - a| < \sigma \quad \text{eset\'en} \quad |f(x) - A| < \varepsilon \end{cases}$$

azaz, ha ,, $x \sim a$, akkor $f(x) \sim A$.

2.2. Pontbéli folytonosság

2.2.1. Definíció. Az $f \in \mathbb{R} \to \mathbb{R}$ fy az $a \in \mathcal{D}_f$ pontban folytonos, ha

$$\forall \varepsilon > 0 \quad \exists \delta > 0, \quad \forall x \in \mathcal{D}_f: \quad |x - a| < \delta, \quad |f(x) - f(a)| < \varepsilon$$

Jelölése: $f \in C(a)$.

2.2.2. Megjegyzés.

- 1. Csak ÉT-beli pontban ért. a folytonosság
- 2. Személetes jelentése "ha $x \sim a \Rightarrow f(x) \sim f(a)$ "

2.2.3. Példa. $f(x) := sign(x) \quad (x \in \mathbb{R})$

2. ábra. sign(x) és a Dirichlet függvény

 $f \not\in C\{0\}, \quad \text{ui.} \quad \exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists |x| < \delta: \quad |f(x) - 0| \geq \varepsilon.$

2.2.4. Példa. Dirichlet fv.
$$f(x) = \begin{cases} x \in \mathbb{Q} \\ -x \in \mathbb{Q}^* \end{cases}$$
 Ekkor:
$$\begin{cases} f \in C\{0\} \\ f \notin C\{a\} \text{ ha } a \in \mathbb{R} \setminus \{0\} \end{cases}$$

2.2.5. Tétel. Ha $a \in \mathcal{D}_f$ izolált pont (azaz $\exists K(a) : K(a) \cap \mathcal{D}_f = \{a\}) \Rightarrow f \in C\{a\}$ Biz: $\checkmark \blacksquare$

2.2.6. Tétel. (A folyt. és határérték kapcsolata)

Ha $a \in \mathcal{D}_f \cap \mathcal{D}'_f$, akkor

$$f \in C\{a\} \quad \Leftrightarrow \quad \exists \lim_a f \text{ \'es } \lim_a f = f(a).$$

Biz: ✓ ■

- 2.2.7. Tétel. Hatványsor összegfüggvénye a konvergenciahalmaz minden
 - 1. pontjában folytonos
 - 2. Az exp, sin, cos, sh, ch, $\forall \mathbb{R}$ -beli pontban folytonos.

2.2.8. Tétel. (Folytonosságra vonatkozó átviteli elv)

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$; $a \in \mathcal{D}_f$.

$$f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \quad \lim(x_n) = a$$

esetén

$$\lim_{n \to +\infty} f(x_n) = f(a).$$

Bizonyítás:

- Ha $a \in \mathcal{D}_f \cap \mathcal{D'}_f$, akkor \checkmark
- Ha $a \in \mathcal{D}_f$ és $a \notin \mathcal{D'}_f \Rightarrow a$ izolált pont. ■

2.2.9. Tétel. (Műveletek és folytonosság)

Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$, $f, g \in C\{a\}$. Ekkor

1.
$$\lambda f$$
, $f+g$, $f\cdot g$, $\frac{f}{g}$ $(g(a)\neq 0)$ $\in C\{a\}$. $(\lambda\in\mathbb{R} \text{ tetszőleges})$

2. Ha
$$\mathcal{R}_g \subset \mathcal{D}_f$$
, $g \in C\{a\}$, $f \in C\{g(a)\}$ \Rightarrow $f \circ g \in C\{a\}$

Bizonyítás: Műveleti tételek.

2.3. Egyoldali folytonosság

2.3.1. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Az f függvény jobbról folytonos a-ban, ha

$$\forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall x \in \mathcal{D}_f, \quad a \leq x < a + \delta \quad \text{esetén} \quad |f(x) - f(a)| < \varepsilon$$

2

- 2.3.2. Megjegyzés. Balról folyt. hasonló
- **2.3.3. Tétel.** $f \in C\{a\} \Leftrightarrow \text{ha jobbról és balról is folytonos.}$

2.4. Halmazon folytonos függvények.

2.4.1. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $A \subset \mathcal{D}_f$. Az f fv. folytonos az A halmazon, ha

$$\forall a \in A$$
 esetén $f|_A \in C\{a\}$.

Jelölése: $f \in C(A)$

2.4.2. Megjegyzés. Müvelete tételek halmazon folytonos függvényekre is érvényesek.

2.5. Korlátos és zárt [a,b] intervallumon folytonos függvények tulajdonságai

(végig: $-\infty < a < b < +\infty$, un. kompakt intervallum)

2.5.1. Tétel. ([a, b] folytonos függvény korlátos)

Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ $f:[a,b] \to f$ korlátos.

2.5.2. Megjegyzés.

3. ábra. Folytonos, de nem korlátos!

Bizonyítás: f korlátos, ha

$$\exists K > 0, \quad \forall x \in [a, b] : \quad |f(x)| \le K$$

Indirekt: Tegyük fel, hogy nem korlátos, azaz,

$$\forall K > 0, \quad \exists x \in [a, b] : \quad |f(x)| > K$$

$$\Rightarrow \forall n = 1, 2 \quad \exists x_n \in [a, b], \quad |f(x_n)| \ge n$$
(1)

Tehát: $(x_n) \subset [a,b]$ korlátos sorozat $\xrightarrow{\text{B-W kiv.}} \exists (x_{n_k})$ konv. részsorozat.

Legyen

$$\alpha := \lim(x_{n_k})$$

Ekkor: $\alpha \in [a, b]$.

(Indirekt: Tegyük fel, hogy $\alpha \notin [a,b] \quad \Rightarrow \quad \exists K(\alpha) \cap [a,b] = \emptyset.$

 $\alpha := \lim(x_{n_k}) \quad \Rightarrow \quad \exists k_0 \in \mathbb{N}, \quad \forall k \geq k_0, \quad x_{n_k} \in K(\alpha). \text{ Ez ellentmondás, ui. } x_{n_k} \in [a, b]).$

Az f folytonos [a, b]-n \Rightarrow

$$f \in C\{\alpha\} \quad \overset{\text{átviteli elv}}{\Rightarrow} \quad x_{n_k} \to \alpha \quad \Rightarrow \quad f(x_{n_k}) \to f(\alpha) \quad \Rightarrow \quad (f(x_{n_k})) \quad \text{korlátos, mert konv.}$$

Ez ellentmond 1-nek. ■

2.5.3. Definíció. Az $f \in \mathbb{R} \to \mathbb{R}$ fv-nek van abszolút (vagy globális) maximuma, ha

$$\exists \alpha \in \mathcal{D}_f : \forall x \in \mathcal{D}_f : f(x) \leq f(\alpha)$$

 α : absz. maximum hely

 $f(\alpha)$: a fv. absz. maximuma.

2.5.4. Megjegyzés. Abszolút minimum hasonló.

2.5.5. Megjegyzés. Abszolút szélső érték: abszolút max. vagy abszolút min.

2.5.6. Példa.
$$f(x) = \frac{1}{x}$$
 $(x \in (0,1))$

4. ábra. Folytonos, NINCS szélső értéke.

2.5.7. Példa. f(x) = x

5. ábra. Folytonos, NINCS szélső értéke.

2.5.8. Példa.

6. ábra. Nem folytonos, nincs szélső értéke.

2.5.9. Megjegyzés. Azonban: [a, b]-n folytonos fv-nek van absz. sz.é.-e.

2.5.10. Tétel. (Weierstrass)

Tegyük fel, hogy:

$$\left. \begin{array}{l} f:[a,b] \to \mathbb{R} \\ \text{folytonos} \ [a,b] \end{array} \right\} \Rightarrow \begin{array}{l} f\text{-nek} \ \exists \ \text{absz. szélsőértéke, azaz} & \exists \alpha,\beta, \in [a,b]: \\ f(x) \le f(\alpha) & (x \in [a,b]) \\ f(\beta) \le f(x) & \end{array}$$

Biz: f folytonos [a, b]-n $\Rightarrow f$ korlátos.

Ekkor:

$$\exists \sup\{f(x) \mid x \in [a,b]\} =: M \in \mathbb{R}$$
$$\exists \inf\{f(x) \mid x \in [a,b]\} =: m \in \mathbb{R}$$

Igazoljuk: $\exists \alpha \in [a, b]: f(\alpha) = M.$

$$M \sup \quad \Rightarrow \quad \forall n \in \mathbb{N}, \quad \exists y_n \in \mathcal{R}_f : \quad M - \frac{1}{n} < y_n \le M$$
 (2)

Viszont:

$$y_n \in \mathcal{R}_f \quad \Rightarrow \quad \exists x_n \in [a, b] : \quad f(x_n) = y_n, \quad (\forall n \in \mathbb{N})$$

Az $(x_n): \mathbb{N} \to [a, b]$ korlátos sorozat $\stackrel{\text{B-W kiv.}}{\underset{\text{tétel}}{\rightleftharpoons}} \exists (x_{n_k})$ konvergens részsorozata. Legyen $\lim(x_{n_k}) =: \alpha \in [a, b]$ (indirekt)

$$f \text{ folyt. } [a,b]\text{-n} \quad \Rightarrow \quad f \in C\{\alpha\} \quad \overset{\text{átviteli elv}}{\Rightarrow} \quad \lim \underbrace{f(x_{n_k})}_{y_{n_k}} = f(\alpha)$$

$$\lim_{n \to +\infty} y_{n_k} = f(\alpha) \quad \Rightarrow \quad M = f(\alpha)$$

Ez ellentmondás. (lásd: 2) ■