Lab 3

Problem 1: Evaluating stability of second order systems

In this problem, we will evaluate the stability of LTI systems described by a second order difference equation.

a) From the provided block diagram, we can infer that the difference equation must be

$$x[n] = y[n] - y[n-1] + c_0 y[n-2]. (1)$$

b) If we allow x[n] = u[n-10] and $c_0 = 0.2$, we can evaluate the output y[n] recursively. The output, y[n], is plotted below for n = 0, 1, 2, ..., 200:

<MINTED>

c) Repeating part (a) with $c_0 = 0.7$, $c_0 = 0.9$, and $c_0 = 1.1$, we observe the following plots:

We can directly observe that when $c_0 < 1$, the plots of y[n] oscillate before damping to convergence as $n \to \infty$, more accurately described by $\lim_{n \to \infty} y[n] =$

- 0. On the other hand, the plot of y[n] with $c_0 = 1.1$ begins at stability before oscillating to divergence as n increases, analogous to $\lim_{n\to\infty} y[n] = \infty$. We are also able to directly observe that as we increase the value of c_0 , the maximum value within the plotted range decreases.
- d) Repeating this process for $c_0 = 0.2, 0.7, 0.9, 1.1$ and with $x[n] = \cos\left[\frac{\pi n}{3}\right]$, we observe the following plots:

<MINTED>

We see here that the amplitude of y[n] increases with an increased c_0 . Furthermore, we observe that when $c_0 = 1.1$, y[n] becomes unbounded as $n \to \infty$, with its amplitude also approaching ∞ .

e) In this part, we will create an array for w_0 and repeat the procedure with $x[n] = cos(\omega_0 n)$, with $c_0 = 0.8$. The plot of $y_{\text{max}}(\omega_0)$ versus ω_0 is shown below:

<MINTED>

Here, we can observe that the peak of $y_{\rm max}(\omega_0)$ is at $\omega_0 \approx 0.942$.