

FCC PART 15.247

MEASUREMENT AND TEST REPORT

For

Wi2Wi, Inc.

2107 N. First Street, Ste. 540 San Jose, CA 95131

FCCID: U9R-W2CBW003 Model: W2CBW003

Report Type:	Product Type: 802.11b/g +Bluetooth Module		
Test Engineer(s):	James Ma James Mu		
Report Number:	R0703307-247 BT		
Report Date:	2007-05-02		
Reviewed By:	RF Engineering Lead: Daniel Deng		reco
Prepared By: (ct)	Bay Area Compliance Laboratories Corp. 1274 Anvilwood Ave. Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164		

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TABLE OF CONTENTS

1	(GENERAL INFORMATION	
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION OF EUT	5
	1.3	ANTENNA DESCRIPTION	5
	1.4	EUT PHOTOGRAPH	
	1.5	Objective	
	1.6	RELATED SUBMITTAL(S)/GRANT(S)	
	1.7	TEST METHODOLOGY	6
	1.8	MEASUREMENT UNCERTAINTY	
	1.9	TEST FACILITY	
2	S	YSTEM TEST CONFIGURATION	8
	2.1	JUSTIFICATION	8
	2.2	EUT Exercise Software	8
	2.3	SPECIAL ACCESSORIES	
	2.4	EQUIPMENT MODIFICATIONS	
	2.5	LOCAL SUPPORT EQUIPMENT	
	2.6	INTERFACE PORTS AND CABLES	
3	S	SUMMARY OF TEST RESULTS FOR FCC PART 15	9
4	8	15.203 - ANTENNA REQUIREMENT	10
•		APPLICABLE STANDARD	
	4.1		
		RESULT	
5	§	15.207 – CONDUCTED EMISSIONS	
	5.1	APPLICABLE STANDARD	11
	5.2	TEST SETUP	
	5.3	TEST EQUIPMENT LIST AND DETAILS.	
	5.4	TEST PROCEDURE	
	5.5	TEST SETUP DIAGRAM	
	5.6	ENVIRONMENTAL CONDITIONS	
	5.7 5.8	SUMMARY OF TEST RESULTS	12
6	§	15.205, §15.209(a) & §15.247(d) - RADIATED EMISSIONS	
	6.1	APPLICABLE STANDARD: FCC §15.205 (A)	
	6.2	APPLICABLE STANDARD: FCC §15.209 RADIATED EMISSION LIMITS, GENERAL REQUIREMENTS	
	6.3	TEST SETUP	
	6.4	TEST EQUIPMENT LIST AND DETAILS	
	6.5	ENVIRONMENTAL CONDITIONS	
	6.6 6.7	TEST PROCEDURE	1 / 17
	6.8	SUMMARY OF TEST RESULTS	
	6.9	RADIATED SPURIOUS EMISSIONS TEST DATA	
7	e		
7		15.247 (D) SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	7.1	APPLICABLE STANDARD	
	7.2 7.3	Measurement Procedure	
	7.3 7.4	TEST SETUP DIAGRAM	
	7.5	ENVIRONMENTAL CONDITIONS	
	7.6	MEASUREMENT RESULTS	
0			
8		15.247 (a) (1) - HOPPING CHANNEL SEPARATION	
	8.1	APPLICABLE STANDARD	
	8.2	MEASUREMENT PROCEDURE	
	8.3	TEST EQUIPMENT	27

	W	i2Wi, Inc. FCCID: U9	R-W2CBW003
8	.4	TEST SETUP DIAGRAM	27
8	.5	ENVIRONMENTAL CONDITIONS	
	.6	MEASUREMENT RESULTS.	
9	£1	15.247 (a) (1) – HOPPING CHANNEL BANDWIDTH	20
-	.1	STANDARD APPLICABLE	
_	.2	MEASUREMENT PROCEDURE	
-	.3	TEST EQUIPMENT LIST AND DETAILS	
	.4	TEST SETUP DIAGRAM	
	.5	ENVIRONMENTAL CONDITIONS	
-	.6 .7	MEASUREMENT RESULTSMEASUREMENT TEST RESULT	
9	• •		
10	§1	15.247 (a) (1) (iii) - NUMBER OF HOPPING FREQUENCIES USED	
1	0.1	STANDARD APPLICABLE	34
1	0.2	MEASUREMENT PROCEDURE	
1	0.3	TEST EQUIPMENT LIST AND DETAILS	34
1	0.4	TEST SETUP DIAGRAM	
1	0.5	Environmental Conditions	34
1	0.6	Measurement Result	35
11	81	15.247(a) (1) (iii) - DWELL TIME	37
	1.1	APPLICABLE STANDARD	
	1.1	MEASUREMENT PROCEDURE	
_	1.3	TEST EQUIPMENT LIST AND DETAILS	
_	1.4	TEST SETUP DIAGRAM	
	1.5	MEASUREMENT RESULTS	
_			
12		15.247(B) (2) - MAXIMUM PEAK OUTPUT POWER	
_	2.1	STANDARD APPLICABLE	
_	2.2	MEASUREMENT PROCEDURE	
_	2.3	TEST EQUIPMENT LIST AND DETAILS	
_	2.4	TEST SETUP DIAGRAM	
1	2.5	MEASUREMENT RESULT	42
13	§1	15.247 (d) - 100 KHz BANDWIDTH OF BAND EDGES	45
1	3.1	APPLICABLE STANDARD.	45
	3.2	MEASUREMENT PROCEDURE	
_	3.3	TEST EQUIPMENT LIST AND DETAILS	
	3.4	TEST SETUP DIAGRAM	
	3.5	PLOTS OF 100 KHz BANDWIDTH OF BAND EDGE	46
14	8	15.247 (e) (i) and § 2.1091 - RF EXPOSURE	47
	4.1	APPLICABLE STANDARD.	
	4.1	MPE Prediction	
_	4.3	TEST RESULT.	
		XHIBIT A - FCC ID LABEL INFORMATION	
15			
	5.1	FCC § 2.925 IDENTIFICATION OF EQUIPMENT	
	5.2	FCC ID LABELING REQUIREMENTS AS PER FCC § 15.19	
	5.3 5.4	SUGGESTED FCC ID LABEL	
16	E	XHIBIT B - TEST SETUP PHOTOGRAPHS	
	6.1	CONDUCTED EMISSIONS – FRONT VIEW	
	6.2	CONDUCTED EMISSIONS – SIDE VIEW	
	6.3	Transmitter Radiated Emissions – Front View	
1	6.4	Transmitter Radiated Emissions – Rear View	52
17	E	XHIBIT C - EUT PHOTOGRAPHS	53
1	7.1	EUT BUILT IN THE TEST BOARD	
_	7.2	TEST BOARD SOLDER SIDE VIEW	

Wi	2Wi, Inc.	FCCID: U9R-W2CBW003
17.3	EUT Front View	54
17.4	EUT WITHOUT SHIELDING VIEW 1	54
17.5	EUT WITHOUT SHIELDING VIEW 2	55
17.6	TESTING ANTENNA VIEW	55

1 GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *Wi2Wi*, *Inc.* product, *FCC ID: U9R-W2CBW003*, *model: W2CBW003*, or the "EUT" as referred to in this report, is a 802.11b/g + Bluetooth module. Unlike a typical module the W2CBW003 includes all radio components, clocking and regulation for a complete WLAN radio subsystem. It also included in the solution is Wi2Wi's coexistence solution for simultaneous operation of Wi-Fi and Bluetooth Radios.

The small, compact, low power design is targeted specifically for the developers of portable electronics such as MP3/MP4 players, PDAs and Smart Phones. The W2CBW003 features one of the smallest footprints in the industry and provides the interfaces commonly required by handheld/portable devices. The W2CBW003 offers a single module integration of Wi-Fi and Bluetooth functionality into end-user products.

The transceiver uses 78 channels for frequency hopping in the 2402 to 2480 MHz band. The lowest channel is centered at 2402 MHz and the highest channel is centered at 2480 MHz.

The transceiver uses OFDM and CCK modulation for the 802.11b/g module; GFSK, $\pi/4$ DQPSK, 8DPSK modulation for the Bluetooth module.

1.2 Mechanical Description of EUT

The Wi2Wi, Inc. product, FCC ID: U9R-W2CBW003, model: W2CBW003, measures approximately 12 mmL x 12 mmW x 1.4 mmH, and weighs approximately 1 g.

*The test data gathered are from production sample, serial number: 07110114, provided by the manufacturer.

1.3 Antenna Description

The antenna used is portable, center fed, whip antenna. It is a coaxial sleeve design with an omnidirectional pattern.

Item Number	Model/Type		
	Model number:	HG2403RD-RSF	
	Manufacturer:	HyperLink Technologies, Inc.	
	Frequency Range:	2400-2500 MHz	
Antenna 1.	Connector Type/ Maximum Gain	Reverse Polarity SMA Plug/ 3 dBi	
	Antenna Type/ Pattern:	Monopole/omni-directional	
	Measurement:	Length: 13 mmD x 137 mmL; Weight: 23 g	

1.4 EUT Photograph

EUT built in the support board

Please refer to Exhibit C for more EUT photographs.

1.5 Objective

This type approval report is prepared on behalf of *Wi2Wi*, *Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, and C of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC 15.247 Standard's limits rules for Antenna Requirements, Conducted Emissions, Radiated Emissions, Spurious Emissions at Antenna Port, Hopping Channel Separation, Hopping Channel Bandwidth, Number of Hopping Frequencies Used, Dwell Time of Each Frequency, Maximum Peak Output Power, 100 kHz Bandwidth of Frequency Band Edge and RF Exposure.

1.6 Related Submittal(s)/Grant(s)

Please refer to Bay Area Compliance Laboratories Corp's report number: R0703307-247 802.11 (FCC ID: U9R-W2CBW003) for 802.11 b/g test results.

1.7 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003.

1.8 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency

interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.9 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11, 1997 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2003 & TIA/EIA-603.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration Number: R-2463 and C-2698. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is a National Institute of Standards and Technology (NIST) accredited laboratory under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm.

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to ANSI C63.4-2003.

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

The software is provided by customer. The EUT exercise program used during radiated testing was designed to exercise the system components.

2.3 Special Accessories

N/A

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Local Support Equipment

Manufacturer	Description	Model	Serial Number
Toshiba	Laptop	Satellite R15-S829	Y5040228H
Toshiba	AC/DC Adapter	PA3282U-1ACA	G71C0002SB10

2.6 Interface Ports and Cables

Cable Description	Length (M)	From	То
USB Cable	1.5	EUT	Laptop

3 SUMMARY OF TEST RESULTS FOR FCC PART 15

FCC RULES DESCRIPTION OF TEST		RESULT
§15.203	Antenna Requirement	Compliant
§ 15.207 (a)	Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(d)	Spurious Emissions at Antenna Terminals	Compliant
§15.247 (a) (1)	Hopping Channel Separation	Compliant
§15.247 (a) (1)	Channel Bandwidth	Compliant
§15.247 (a) (1) (iii)	Number of Hopping Frequencies Used	Compliant
§15.247 (a) (1) (i)	Dwell Time of Each Frequency	Compliant
§15.247 (b)(1)	Maximum Peak Output Power	Compliant
§ 15.247 (d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)(i) §2.1091	RF Exposure	Compliant

4 §15.203 - ANTENNA REQUIREMENT

4.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to § 15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 Result

The antenna, model: HG2403RD-RSF for this device is a center fed monopole whip antennae with a maximum gain of 3 dBi that uses a reverse polarity SMA connector thus complying with the 15.203 unique coupling requirement.

Compliant

N/A

Please refer to the following antenna photo for details.

Antenna photo

5 §15.207 – CONDUCTED EMISSIONS

5.1 Applicable Standard

According to FCC §15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency Range	Conducted limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency

5.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4 – 2003 measurement procedure. The specification used was FCC Class B limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The laptop was connected with LISN-1.

5.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2007-03-08
Rohde & Schwarz	LISN, Artificial Mains	ESH2-Z5	871884/039	2006-11-12

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.4 Test Procedure

During the conducted emissions test, the power cord of adaptor was connected to the mains outlet of the LISN-1.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".

5.5 Test Setup Diagram

5.6 Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40 %
ATM Pressure:	102.0 kPa

^{*} The testing was performed by James Ma on 2007-05-31.

5.7 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC standard's</u> conducted emissions limits for Class B devices, with the *worst* margin reading of:

-13.8 dB at 1.778000 MHz in the Hot Conductor

Please refer to the following plots and tables for complete test results

5.8 Conducted Emissions Test plot & data

120V/60Hz Hot Conductor

QP Measurements

Frequency (MHz)	Quasi-Peak (dBμV)	Conductor (H/N)	Limit (dBµV)	Margin (dB)
1.514000	34.8	Н	56.0	-21.2
4.938000	34.8	Н	56.0	-21.2
4.674000	33.4	Н	56.0	-22.6
4.870000	32.8	Н	56.0	-23.2
4.802000	30.8	Н	56.0	-25.2
0.190000	36.3	Н	64.0	-27.8

Average Measurements

Frequency (MHz)	Average (dBμV)	Conductor (H/N)	Limit (dBµV)	Margin (dB)
1.778000	32.2	Н	46.0	-13.8
1.514000	32.1	Н	46.0	-13.9
1.382000	32.0	Н	46.0	-14.0
1.118000	31.8	Н	46.0	-14.2
0.922000	31.7	Н	46.0	-14.3
1.974000	31.0	Н	46.0	-15.0

120V/60Hz, Neutral Conductor

QP Measurements

Frequency (MHz)	Quasi-Peak (dBµV)	Conductor (H/N)	Limit (dBµV)	Margin (dB)
0.198000	45.1	N	63.7	-18.6
0.922000	33.1	N	56.0	-22.9
1.318000	32.6	N	56.0	-23.4
0.526000	31.9	N	56.0	-24.1
1.122000	31.9	N	56.0	-24.1
0.262000	35.6	N	61.4	-25.8

Average Measurements

Frequency (MHz)	Average (dBµV)	Conductor (H/N)	Limit (dBµV)	Margin (dB)
1.186000	31.7	N	46.0	-14.3
0.922000	30.5	N	46.0	-15.5
1.582000	29.8	N	46.0	-16.2
1.386000	29.6	N	46.0	-16.4
1.122000	29.2	N	46.0	-16.8
1.318000	28.7	N	46.0	-17.3

6 §15.205, §15.209(a) & §15.247(d) - RADIATED EMISSIONS

6.1 Applicable Standard: FCC §15.205 (a)

a) As Per 15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5. 35 – 5. 46
2.1735 - 2.1905	25.5 - 25.67	1435 – 1626.5	7.25 - 7.75
4.125 - 4.128	37.5 - 38.25	1645.5 – 1646.5	8.025 - 8.5
4.17725 – 4.17775	73 - 74.6	1660 - 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 – 1722.2	9.3 - 9.5
6.215 – 6.218	108 - 121.94	2200 - 2300	10.6 - 12.7
6.26775 - 6.26825	123 - 138	2310 - 2390	13.25 - 13.4
6.31175 – 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 - 8.294	156.52475 – 156.52525	2690 – 2900	15.35 - 16.2
8.362 - 8.366	156.7 – 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 -167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 - 173.2	3 3458 – 3 358	23.6 - 24.0
12.29 – 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 – 12.52025	322 - 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 - 410		Above 38.6
13.36 – 13.41	608 - 614		

- **b)** Except as provided in 15.205 paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

⊠ Compliant	□N/A
-------------	------

6.2 Applicable Standard: FCC §15.209 Radiated emission limits, general requirements.

a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/m)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

b) In the emission table above, the tighter limit applies at the band edges.

◯ Compliant	□N/A
--------------------	------

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.3 Test Setup

The radiated emissions tests were performed in the shielded room, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C limits.

6.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	MY44303352	2007-02-23
НР	Pre, Amplifier (1 ~ 26.5 GHz)	8449B	3147A00400	2007-04-26
A.R.A	Antenna, Horn, DRG	DRG-118/A	1132	2005-08-17*

^{*} Two years calibration cycle.

6.5 Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40 %
ATM Pressure:	102.0 kPa

^{*}The testing was performed by James Ma on 2007-04-13.

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.6 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 mete, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000MHz:

```
(1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto
```

6.7 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emissions are 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

6.8 Summary of Test Results

According to the test data, the EUT <u>complied with the FCC Title 47, Part 15 Subpart C sections 205, 209 and 247 standards' limits</u>, with the closest margins from the limit listed below:

- -16.6 dB at 7206.0000 MHz in the Vertical polarization, Low Channel
- -16.2 dB at 7323.0000 MHz in the Vertical polarization, Middle Channel
- -14.8 dB at 7440.0000 MHz in the Vertical polarization, High Channel

6.9 Radiated Spurious Emissions Test Data

Run#1 Radiated Harmonics and Spurious Emissions

Low Channel (2402 MHz)

Frequency	Reading	Azimuth	Height	Polarization	Antenna	Cable	Pre- Amp.	Corrected	FCC 1	15 C	G 4
(MHz)		(Degrees)		(H / V)	Factor (dB/m)	loss (dB)	Gain (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
2402.0000	98.2	10	1.3	V	28.7	1.5	35.8	92.5			Fund/Peak
2402.0000	90.4	30	1.2	Н	28.7	1.5	35.8	84.7			Fund/Peak
2402.0000	58.9	10	1.3	V	28.7	1.5	35.8	53.2			Ave
2402.0000	55.4	30	1.2	Н	28.7	1.5	35.8	49.7			Ave
7206.0000	31.2	180	2.0	V	36.7	4.2	34.7	37.4	54	-16.6	Ave
7206.0000	30.0	90	2.0	Н	36.7	4.2	34.7	36.2	54	-17.8	Ave
4804.0000	34.7	270	2.4	V	32.5	1.9	34.8	34.3	54	-19.7	Ave
4804.0000	31.2	180	2.3	Н	32.5	1.9	34.8	30.8	54	-23.2	Ave
4804.0000	47.6	270	2.4	V	32.5	1.9	34.8	47.2	74	-26.8	Peak
7206.0000	40.9	90	2.0	V	36.7	4.2	34.7	47.1	74	-26.9	Peak
7206.0000	38.2	180	2.0	Н	36.7	4.2	34.7	44.4	74	-29.6	Peak
4804.0000	43.4	180	2.3	Н	32.5	1.9	34.8	43.0	74	-31.0	Peak

Middle Channel (2441 MHz)

Frequency	Reading	Azimuth	Height	Polarization	Antenna	Cable	Pre-Amp.		FCC 1	FCC 15 C	
(MHz)	(dBµV)	(Degrees)	(m)	(H / V)	Factor (dB/m)	loss (dB)	Gain (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
2441.0000	100.8	20	1.1	V	28.7	1.5	35.8	95.1			Fund/Peak
2441.0000	92.8	50	1.2	Н	28.7	1.5	35.8	87.1			Fund/Peak
2441.0000	62.3	20	1.1	V	28.7	1.5	35.8	56.6			Ave
2441.0000	53.3	50	1.2	Н	28.7	1.5	35.8	47.6			Ave
7323.0000	31.6	270	2.4	V	36.7	4.2	34.7	37.8	54	-16.2	Ave
7323.0000	29.8	180	2.1	Н	36.7	4.2	34.7	36.0	54	-18.0	Ave
4882.0000	35.4	330	2.0	V	32.5	1.9	34.8	35.0	54	-19.0	Ave
4882.0000	30.6	180	2.2	Н	32.5	1.9	34.8	30.2	54	-23.8	Ave
4882.0000	49.8	330	2.0	V	32.5	1.9	34.8	49.4	74	-24.6	Peak
7323.0000	42.3	270	2.4	V	36.7	4.2	34.7	48.5	74	-25.5	Peak
7323.0000	41.0	180	2.3	Н	36.7	4.2	34.7	47.2	74	-26.8	Peak
4882.0000	43.7	180	2.2	Н	32.5	1.9	34.8	43.3	74	-30.7	Peak

High Channel (2480 MHz)

Frequency	Reading	Azimuth	Height	Polarization	Antenna	Cable	Pre-Amp.	•	FCC 1	15 C	FCC 15 C	
(MHz)	(dBµV)	(Degrees)	_	(H / V)	Factor (dB/m)	loss (dB)	Gain (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments	
2480.0000	101.3	30	1.3	V	28.7	1.5	35.8	95.6			Fund/Peak	
2480.0000	93.5	50	1.2	Н	28.7	1.5	35.8	87.8			Fund/Peak	
2480.0000	64.4	30	1.3	V	28.7	1.5	35.8	58.7			Ave	
2480.0000	54.8	50	1.2	Н	28.7	1.5	35.8	49.1			Ave	
7440.0000	33.0	270	2.4	V	36.7	4.2	34.7	39.2	54	-14.8	Ave	
7440.0000	31.5	90	2.1	Н	36.7	4.2	34.7	37.7	54	-16.3	Ave	
4960.0000	37.2	270	2.4	V	32.5	1.9	34.8	36.8	54	-17.2	Ave	
4960.0000	32.0	90	2.1	Н	32.5	1.9	34.8	31.6	54	-22.4	Ave	
7440.0000	43.9	270	2.4	V	36.7	4.2	34.7	50.1	74	-23.9	Peak	
4960.0000	50.3	270	2.4	V	32.5	1.9	34.8	49.9	74	-24.1	Peak	
7440.0000	42.2	90	2.1	Н	36.7	4.2	34.7	48.4	74	-25.6	Peak	
4960.0000	44.6	90	2.1	Н	32.5	1.9	34.8	44.2	74	-29.8	Peak	

7 §15.247 (D) SPURIOUS EMISSIONS AT ANTENNA TERMINALS

7.1 Applicable Standard

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

7.3 Test Equipment

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2006-04-26

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Setup Diagram

7.5 Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	40 %	
ATM Pressure:	102.0 kPa	

^{*}The testing was performed by James Ma on 2007-04-13.

Please refer to the following plots.

7.6 Measurement Results

Low Channel

Middle Channel

High Channel

8 §15.247 (a) (1) - HOPPING CHANNEL SEPARATION

8.1 Applicable Standard

According to §15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the Max-Hold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

8.3 Test Equipment

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2006-04-26

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Test Setup Diagram

8.5 Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	40 %	
ATM Pressure:	102.0 kPa	

^{*}The testing was performed by James Ma on 2007-04-13.

8.6 Measurement Results

Channel	Frequency (MHz)	Channel Separation (kHz)	Limit (kHz)
Low	2402	1042	684.7
Mid	2441	1042	684.7
High	2480	1042	684.7

Please refer to the following plots.

Low Channel

Middle Channel

High Channel

9 §15.247 (a) (1) – HOPPING CHANNEL BANDWIDTH

9.1 Standard Applicable

According to §15.247 (a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emissions bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

9.3 Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2006-04-26

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Setup Diagram

9.5 Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	40 %	
ATM Pressure:	102.0 kPa	

^{*}The testing was performed by James Ma on 2007-04-13.

9.6 Measurement Results

Channel	Frequency (MHz)	20 dB Channel Bandwidth (kHz)
Low	2402	1027
Mid	2441	1027
High	2480	1027

Please refer to the following plots.

9.7 Measurement Test Result

Low Channel

Middle Channel

High Channel

10 §15.247 (a) (1) (iii) - NUMBER OF HOPPING FREQUENCIES USED

10.1 Standard Applicable

According to §15.247(a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

10.3 Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2006-04-26

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Setup Diagram

10.5 Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	40 %	
ATM Pressure:	102.0 kPa	

^{*}The testing was performed by James Ma on 2007-04-13.

10.6 Measurement Result

Frequency Range (MHz)	Number of Hopping Channels	Limit
2402-2480	79	>15

Please refer to the following plot:

Number of Channels: 39

Number of Channels: 40

11 §15.247(a) (1) (iii) - DWELL TIME

11.1 Applicable Standard

According to §15.247 (a)(1)(iii), According to §15.247(a)(1)(iii), For Frequency hopping systems in the 2400–2483.5 MHz band the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

11.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

11.3 Test Equipment List and Details

Manufacturer	Description	cription Model Number		Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2006-04-26

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

11.4 Test Setup Diagram

11.4.1 Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40 %
ATM Pressure:	102.0 kPa

^{*}The testing was performed by James Ma on 2007-04-13.

11.5 Measurement Results

Channel	Frequency (MHz)	Pulse Width (ms)	Pulse Quantity Per 2 Sec	Dwell Time (sec.)	Limit (Sec.)	Result
Low	2402	483.3	21	0.1604	0.4	Compliant
Mid	2441	508.3	20	0.1606	0.4	Compliant
High	2480	583.3	20	0.1843	0.4	Compliant

Please refer the following plots.

Low Channel

Middle Channel

High Channel

12 §15.247(B) (2) - MAXIMUM PEAK OUTPUT POWER

12.1 Standard Applicable

According to §15.247(b) (1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

12.2 Measurement Procedure

- 1. Place the EUT on the turntable and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

12.3 Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Agilent	Agilent Analyzer, Spectrum		US44300386	2006-04-26

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Setup Diagram

12.4.2 Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40 %
ATM Pressure:	102.0 kPa

^{*}The testing was performed by James Ma on 2007-04-13.

12.5 Measurement Result

Channel	Frequency	Max Peak Ou	tput Power	Limit	Result	
Chamier	(MHz)	(dBm)	(mw)	(mw)	Result	
Low	2402	4.24	2.65	1000	Compliant	
Mid	2441	4.88	3.08	1000	Compliant	
High	2480	5.26	3.36	1000	Compliant	

Please see the following plots:

Low Channel

Middle Channel

High Channel

13 §15.247 (d) - 100 KHz BANDWIDTH OF BAND EDGES

13.1 Applicable Standard

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

13.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

13.3 Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Agilent	Agilent Analyzer, Spectrum		US44300386	2006-04-26

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

13.4 Test Setup Diagram

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40 %
ATM Pressure:	102.0 kPa

^{*}The testing was performed by James Ma on 2007-04-13.

Please refer to the following plots for results.

13.5 Plots of 100 KHz Bandwidth of Band Edge

Low Channel

High Channel

14 § 15.247 (e) (i) and § 2.1091 - RF EXPOSURE

14.1 Applicable Standard

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

14.2 MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

14.2.3 Test Data

Maximum peak output power at antenna input terminal (dBm): 5.26
Maximum peak output power at antenna input terminal (mW): 3.36

Prediction distance (cm): $\frac{20}{20}$

Prediction frequency (MHz): $\underline{2480}$ Maximum Antenna Gain, typical (dBi): $\underline{3}$

Maximum Antenna Gain (numeric): 1.995

Power density of prediction frequency at $20.0 \text{ cm (mW/cm}^2)$: 0.0013 MPE limit for uncontrolled exposure at prediction frequency (mW/cm^2) : 1.00

^{* =} Plane-wave equivalent power density

14.3 Test Result

The power density level at 20 cm is 0.0013 mW/cm^2 , which is below the uncontrolled exposure limit of 1.00 mW/cm^2 at 2480 MHz. The EUT is used at least 20cm away from user's body. It is determined as mobile equipment.

15 EXHIBIT A - FCC ID LABEL INFORMATION

15.1 FCC § 2.925 Identification of equipment

- (a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:
- (1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX—Grantee Code 123—Equipment Product Code

15.2 FCC ID Labeling Requirements as per FCC § 15.19

- (a) In addition to the requirements in part 2 of this chapter, a device subject to certification, or verification shall be labeled as follows:
- (3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified above is required to be affixed only to the main control unit. If the EUT is integrated within another device then a label affixed to the host shall also state, "Contains FCC ID:XXXXXXX"
- (5) When the device is so small or for such use that it is not practicale to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

15.3 Suggested FCC ID Label

Model: W2CBW003

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC ID: U9R-W2CBW003 IC: 7089A-W2CBW003

Wi2Wi, Inc.

15.4 Suggested Label Location

16 EXHIBIT B - TEST SETUP PHOTOGRAPHS

16.1 Conducted Emissions – Front View

16.2 Conducted Emissions – Side View

16.3 Transmitter Radiated Emissions – Front View

16.4 Transmitter Radiated Emissions – Rear View

17 EXHIBIT C - EUT PHOTOGRAPHS

17.1 EUT Built in the Test Board

17.2 Test Board Solder Side View

17.3 EUT Front View

17.4 EUT without Shielding View 1

17.5 EUT without Shielding View 2

17.6 Testing Antenna View

END OF REPORT