Contents

1	Mathematical induction 1 Lecture 0909
2	Divisibility theory in the integers 1 The division algorithm
3	The greatest common divisor
4	Euclidean algorithm

Section 1. Mathematical induction

1.1 Theorem: well-ordering principle(axiom)

Every nonempty set S of non-negative integers contains a least element, i.e., there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

Consider $S' = \{x - b : x \in S\}$. Then S' must have a least element, say y. Then y + b is the least element of S.

1.2 Theorem: Archimedean property

let a, b be positive integers. Then there exists a positive integer n such that $an \ge b$.

Proof) Suppose by contradiction, $\forall k \in \mathbb{N}, ak < b$. Consider that $S = \{b - ak | k \in \mathbb{N}\}$ consists of integers large than or equal to 1. By well-ordering principle, S contains the minimal element, say b - am ($m \in \mathbb{N}$). Then 0 < b - a(m+1) < b - am $\Longrightarrow b - a(m+1) \in S$, leading to a contradiction.

1.3 Theorem: First principle of finite induction

Suppose that S is a set of integers satisfying

- (a) $1 \in S$;
- (b) if $k \in S$, then $k + 1 \in S$.

Then S is the set of all positive integers.

Proof) Let $T = \mathbb{N}\backslash S$. Suppose that T is not empty. By the well-ordering principle, T contains a least element, say n. Then $n \geq 2$ ($\because 1 \in S \implies 1 \notin T$), and $n-1 \notin T \implies n-1 \in S$. By (b), $n \in S$, leading to a contradiction.

Example 1.4 Show that for all $n \in \mathbb{N}$,

$$1+3+5+\cdots+(2n-1)=n^2$$

Proof) $n=1 \implies 1=1^2=1$. Suppose the assertion holds for n=k. Then $1+3+\cdots+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2$, holds for n=k+1.

Remark (b) can be repalted by the condition (b') If k is a positive integer and $1, 2, \ldots, k \in S$, then $k + 1 \in S$.

1.5 Theorem: Second principle of finite induction

Let S be a sef of positive integer satisfying (a),(b'). Then $S = \mathbb{N}$

The proof is similar

1

2 2

Example 1.6 Let $\{a_n\}$ be a sequence with $a_1 = 1$, $a_2 = 2$, $a_3 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for all $n \ge 4$. Show that $a_n < 2^n$ for all $n \in \mathbb{N}$

The proof is an exercise.

1.7 Theorem: The binomial theorem

 $\binom{n}{k} =_n C_k$: the number of ways of choosing k numbers in $\{1, 2, \dots\}$.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad (0 \le k \le n)$$

1.8 Theorem: Pascal's rule

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \quad (1 \le k \le n)$$

$$\text{Proof)} \quad \text{LHS} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{n-k+1} + \frac{1}{k} \right) = \frac{n!}{(k-1)!(n-k)!} \left(\frac{n+1}{(n-k+1)k} \right) = \frac{(n+1)!}{k!(n-k+1)!}.$$

1.9 Theorem: Binomial expansion

Complete exansion of $(a + b)^n$ $(n \ge 1)$ into a sum of poners of a and b.

$$(a+b)^1 = a+b \tag{1}$$

$$(a+b)^2 = a^2 + 2ab + b^2 (2)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
(3)

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
(4)

1.10 Theorem

For $n \geq 1$, positive integer

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proof) Use induction on n. n = 1: clear. Suppose the equality holds for n = m. Then

$$(a+b)(a+b)^m = \left(\sum_{k=0}^m (m,k)a^k b^{m-k}\right)(a+b)$$
 (5)

$$= \sum_{k=0}^{m} (m,k)a^{k+1}b^{m-k} + \sum_{k=0}^{m} (m,k)a^{k}b^{m-k+1}$$
(6)

$$= (m,k)a^{m+1} + \sum_{k=0}^{m-1} (m,k)a^{k+1}b^{m-k} + (m,0)b^{m+1} + \sum_{k=1}^{m} (m,k)a^{k}b^{m-k+1}$$

$$= a^{m+1} + \sum_{k=1}^{m} ((m, k-1) + (m, k)) a^{k} b^{m-k+1} + b^{m+1}$$
(8)

$$= a^{m+1} + \sum_{k=1}^{m} (m+1,k)a^k b^{m-k+1} + b^{m+1}$$
(9)

$$=\sum_{k=0}^{m+1} (m+1,k)a^k b^{m+1-k} \tag{10}$$

Example 1.11 For $n \geq 1$,

(a)
$$\sum_{k=0}^{n} (n,k) = 2^n$$

(b)
$$\sum_{k=0}^{n} (-1)^k (n,k) = 0$$

(c)
$$(n,1) + (n,3) + \cdots = (n,0) + (n,2) + (n,4) + \cdots = 2^{n-1}$$

The proof is trivial.

Lecture 0909

Section 2. Divisibility theory in the integers

The division algorithm

2.1 Theorem

Suppose $a, b \in \mathbb{Z}$ and b > 0. Then there exists unique integers q and r such that a = qb + r and $0 \le r < b$. q,r is called the **quotient** and **remainder** respectively.

Proof) Let $S = \{a - kb : k \in \mathbb{Z}, a - kb \ge 0\}$. Clearly $S \ne \emptyset$. By the well-ordering pinrciple, S has the minimal element, say r. Assume r = a - qb. We claim that $0 \le r < b$. Suppose to the contrary $r \ge b$. Then $0 \le a - (q+1)b = a - qb - b < a - qb$,

which contradicts to the minimality of r. The existence of such q, r follows. To prove uniqueness, suppose $a = q_1b + r_1 = q_2b + r_2$. Then $|b(q_1 - q_2)| = |r_1 - r_2|$. Since $|r_1 - r_2| < b$ and $b|(r_1 - r_2), r_1 = r_2$.

2.2 Corollary

Suppose a, b are integers and $b \neq 0$. Then there exists unique $q, r \in \mathbb{Z}$ such that

- (a) a = qb + r.
- (b) $0 \le r < |b|$.

П

Proof) The case b > 0 holds by the previous theorem. If b < 0, there exists $q', r' \in \mathbb{Z}$ such that a = q'|b| + r' = b(-q') + r' = bq + r where $0 \le r' < |b|$. By the uniqueness of q, r, q' = -q and r = r'.

Example 2.3 Let $a \in \mathbb{Z}$ and b = 2. Division algorithm says that a is of the form 2q or 2q + 1.

Example 2.4 a^2 leaves the remainder 0 or 1 when divided by 4(remainder 0,1,or 4 when divided by 8). $a=2q \implies a^2=4q^2$. $a=2q+1 \implies a^2=4q^2+4q+1=4q(q+1)+1=8k+1$.

Example 2.5 a^4 is of the form 5k or 5k+1. a = 5q+r $0 \le r \le 4$. $a^4 = (5q = r)^4 = (5q)^4 + \cdots + \binom{4}{4}r^4$. $r^4 \equiv 1 \mod 5$.

Example 2.6 More generally, if p is a prime, then a^{r-1} is of the form pk or pk + 1 (Fermat's little theorem).

Section 3. The greatest common divisor

3.1 Definition

An integer b is said to be **divisible** by $a \neq 0$ if $\exists c \in \mathbb{Z}$ such that b = ac, we write $a \mid b$. We write $x \nmid y$ to mean b is not divisible by a.

3.2 Theorem

Suppose $a, b, c \in \mathbb{Z}$ and $a \neq 0$. Then

- (a) $a \mid 0, 1 \mid b, \text{ and } a \mid a$.
- (b) $a \mid 1 \iff a = 1 \text{ or } a = -1.$
- (c) $a \mid b, c \mid d \implies ac \mid db$.
- (d) $a \mid b, b \mid c \implies a \mid c$.
- (e) $a \mid b, b \mid a \iff a = b \text{ or } a = -b.$
- (f) $a \mid b, b \neq 0 \implies |a| \leq |b|$.
- (g) $a \mid x_1, a \mid x_2, ..., a \mid x_n$, then $a \mid (b_1x_1 + b_2x_2 + ... + b_nx_n)$ with $b_i \in \mathbb{Z}$

Proof) (f) b = ac $(c \neq 0)$. Then $|b| = |ac| = |a||c| \ge |a|$.

3.3 Definition

Suppose a, b are integers. An integer d such that $d \mid a$ and $d \mid b$ is called a **common divisor** of a and b.

3.4 Definition

Suppose $a, b \in \mathbb{Z}$ and $a \neq 0$ or $b \neq 0$. Then the greatest common divisor(g.c.d) a and b, denoted by gcd(a, b), is the positive integer d satisfying

- (a) $d \mid a$ and $d \mid b$.
- (b) If $c \mid a$ and $c \mid b$, then $c \leq d$.

Remark For any nonzero interger b, there are only finitely many divisors. Therefore, gcd(a,b) exists if $a \neq 0$ or $b \neq 0$.

3.5 Theorem

Suppose $a, b \in \mathbb{Z}$, $a \neq 0$ or $b \neq 0$, and d = gcd(a, b). Then there exists $x, y \in \mathbb{Z}$ such that ax + by = d.

Proof) Consider a set $S = \{am + bn \mid m, n \in \mathbb{Z}, am + bn > 0\}$. By the Archimedean property, $S \neq \emptyset$. By the well-ordering principle, the smallest element $\exists s \in S$. Claim $s = d = \gcd(a, b)$. To prove s is a common divisor, use division algorithm: a = qs + r with $0 \le r < s$. If $r \ne 0$, then $r = a - qs = a - q(ax + by) = a(1 - qx) + b(-qy) \in S$. It is a contradiction, so r = 0 and $s \mid a$. Similarly, $s \mid b$. Let $c \mid ax + by = s \implies |c| \le |s| = s$. Thus $s = d = \gcd(a, b)$.

3.6 Corollary

Supppose $a, b \in \mathbb{Z}$, $a \neq 0$ or $b \neq 0$. Then $T = \{ax + by \mid x, y \in \mathbb{Z}\}$ is precisely the set of all multiples of $\gcd(a, b) = d$.

Proof) $T' = \{dn \mid n \in \mathbb{Z}\}. \text{ WTS: } T = T'$

- $(\supset) d = am + bk \text{ for } m, k \in \mathbb{Z}. dn = a(mn) + b(kn) \in T.$
- $(\subset) \forall ax + by \in T \text{ is a multiple of } d \implies T \subset T'.$

3.7 Definition

Suppose $a, b \in \mathbb{Z}$ and $a \neq 0$ or $b \neq 0$. Then a, b are said to be **relatively prime** if gcd(a, b) = 1

3.8 Theorem

suppose $a, b \in \mathbb{Z}$ and $a \neq 0$ or $b \neq 0$.

 $gcd(a,b) = 1 \iff \exists m, n \in \mathbb{Z} \text{ such that } 1 = am + ba$

3.9 Proposition

- (\Rightarrow) Follows from the previous thm.
- (\Leftarrow) If c is a common divisor of a and b, then c | 1 and c = + − 1 ≤ 1 \Longrightarrow gcd(a, b) = 1.

3.10 Corollary

If gcd(a, b) = d, then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof) $\exists m, n \in \mathbb{Z}, am + bn = d \implies (\frac{a}{d}m + (\frac{b}{d})n = 1) \implies \gcd(\frac{a}{d}, \frac{b}{d}) = 1.$

3.11 Corollary

If $a \mid c, b \mid c$ and gcd(a, b) = 1, then $ab \mid c$.

Proof) $\gcd(a,b) = 1 \implies \exists m,n \in \mathbb{Z} \text{ such that } 1 = am + bn.$ Then $c = 1c = (am + bn)c = acm + cbn = abrm + absm (: c = br = as for some <math>r, s \in \mathbb{Z}$). \square

3.12 Theorem: Euclid's lemma

If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof) 1 = am + bn for some $m, n \in \mathbb{Z}$. Then c = 1c = c(am + bn) = acm + bcn, which is divisible by a.

3.13 Theorem: Alternative definition of gcd

Suppose $a, b \in \mathbb{Z}$ and $a \neq 0$ or $b \neq 0$. For a positive integer $d, d = qcd(a, b) \iff$

- (a) $d \mid a$ and $d \mid d$
- (b) If $c \mid a$ and $c \mid b$, then $c \mid d$.

Proof) (\Leftarrow) Clear as (b) implies that if $c \mid a$ and $c \mid b$, then $c \leq |c| \leq |d| = d$. (\Rightarrow) If $c \mid a$ and $c \mid b$, then $c \mid ax + by$ for any $x, y \in \mathbb{Z}$. $\exists m, n \in \mathbb{Z}$ such that am + bn = d.

Remark $gcd(a, b) = gcd(c, d) \iff$

- (a) Every common divisor of a and b is a common divisor of c and d.
- (b) Every common divisor of c and d is a comoon divisor of a and b.

Example 3.14 gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b).

Section 4. Euclidean algorithm

Example 4.1

- (a) Find gcd(a, b)
- (b) gcd(a, b) = d. We know $\exists x, y \in \mathbb{Z}$ such that d = ax + by.

The Euclidean algorithm gives us x, y. Suppose $a, b \in \mathbb{Z}$ and $a \neq 0$ or $b \neq 0$. $\gcd(a, b) = \gcd(|a|, |b|)$. We may assume a, b > 0. $a = q_1b + r_1$ for $(0 \leq r_1 < b)$. If $r_1 = 0$, $\gcd(a, b) = b$. If $r_1 \neq 0$, then for b and r_1 , $b = q_2r_1 + r_2$ $(0 \leq r_2 < r_1)$. The algorithm terminate when we arrive at $r_{n+1} = 0$. Then $\gcd(a, b) = r_n$.

4.2 Theorem

If a = qb + r, then gcd(a, b) = gcd(b, r).

Proof) $c \mid a, b \implies c \mid r \implies c \mid b, r$. Thus, $\gcd(a, b) \mid \gcd(b, r)$. Similarly if $c' \mid b, r$, then $c' \mid a = qb + r$.

Example 4.3

$$\gcd(a,b) = r_n = r_{n-2} - q_n r_{n-1} \tag{11}$$

$$=r_{n-2} - q_n(r_{n-3} - q_{n-1}r_{n-2}) (12)$$

$$\vdots (13)$$

$$=a(X) + b(Y) \tag{14}$$