Experimento #3

Termistores

Objetivo: Introdução ao conceito de coeficiente térmico de dispositivos e à variação da resistividade de materiais condutores e semicondutores em função da temperatura. Caracterização elétrica, de termistores PTC (*Positive Temperature Coefficient*) e NTC (*Negative Temperature Coefficient*).

Mate	rial	
Man	ı ıaı	

2) Monte o circuito da figura com o termistor NTC 5D-9 (\mathbf{R}_1) e realize as medidas das tensões \mathbf{V}_A e \mathbf{V}_B com o multímetro digital, sempre com a melhor escala, e sempre <u>aumentando</u> \mathbf{V}_{DC} . Calcule os valores da resistência \mathbf{R}_1 [Ω]. A partir dos parâmetros do modelo fornecido pelo fabricante, calcule a temperatura \mathbf{T} [\mathbf{K}] e preencha a tabela (Use o programa SCILAB **Termistor_NTC.sce**). **Cuidado:** O Termistor NTC e o Resistor \mathbf{R}_2 atingem temperaturas altas, e podem causar queimaduras. Sempre aguarde pelo menos <u>30 segundos</u> para o equilíbrio térmico entre as medidas. Evite correntes de ar sobre o arranjo experimental.

$V_{DC}[V]$	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0
$V_A[V]$	0								
$V_B[V]$	0								
$\mathbf{R}_{1}\left[\Omega\right]$	-								
T[K]	TAmbiente								

$$\mathbf{R}_2 = \underline{\hspace{1cm}} +\text{/-} \underline{\hspace{1cm}} [\Omega] \hspace{1cm} \mathbf{T}_{\textbf{Ambiente}} = \underline{\hspace{1cm}} +\text{/-} \underline{\hspace{1cm}} [^{\circ}C]$$

3) Modifique o programa SCILAB **Termistor_NTC.sce** para que, além de plotar o gráfico dos valores calculados dos pontos experimentais para a Resistência \mathbf{R}_1 [Ω] x Temperatura \mathbf{T} [${}^{\mathrm{o}}$ C] do termistor NTC, também ajuste os parâmetros do modelo de **Steinhart-Hart** pelo método dos mínimos quadrados. Plote a curva ajustada deste modelo no mesmo gráfico. Calcule o **EQM** (Erro Quadrático Médio) e justifique se o modelo é adequado. Encontre um método e estime o valor de \mathbf{R}_1 [Ω] na temperatura ambiente, com $\mathbf{V}_{DC} = 0$.

EXTRA: Plote no mesmo gráfico obtido no item-3 os valores da resistência $\mathbf{R}_1[\Omega]$ do Termistor NTC, em função da temperatura $\mathbf{T}[^{\circ}C]$, calculados a partir dos parâmetros do modelo de **Steinhart-Hart** fornecidos pelo fabricante (r_{∞} , R_0 , B). Explique a diferença entre as curvas obtidas.

4) Responda:

- a) **Pesquisa:** Explique como podem ser usados os termistores NTC para medir a temperatura ambiente. Apresente o esquemático do circuito de um termômetro eletrônico com NTC. Cite as suas referências.
- b) Pesquisa: Como são fabricados os termistores NTC e PTC comerciais? Cite as suas fontes, relatando:
- i) <u>Tipo do material usado</u>; ii) <u>Mecanismo físico de sensibilidade à temperatura; iii) Faixa de operação, relatando temperaturas máxima e mínima</u>.

P.FDE - 2/2024 Prof. Marcus V. Batistuta