=4.76,所以我們棄卻 H_0 ,也就是認為四種食品包裝對銷售量影

因子完全隨機實驗的 F 檢定結果是棄卻 H₀,則我們可以 **点理)對實驗單位的影響有顯著差異。但是,這樣的檢定** 固處理的影響效果之間,至少有兩個有顯著差異而已。通 11,2> Fo. 05(3,6)=47.6

$$SSTR = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2 \qquad n - k \qquad MSE = \frac{SSE}{(n-k)}$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2 \qquad n - 1$$

7=300+390+570+540=1800 85+140+120+120+120+120+200+300

55T=354400- 1000 =30400

A、B、C、D四種外殼顏色對銷售量的影響,得到數家直營店的資 分子下 = (如如) + 1390) + (5100) (5400) — 25800

(單位:支)

包装 銷售量 A 120f180 = 390 B 140f120f130 = 390 C 190f170f210 = 170 D 240f300 = 540

$$T_2 = 140 + 120 + 130 = 390$$

$$T_4 = 240 + 300 = 540$$

1.54+1.98+1.9+1.541.91+1.14=9.19 1198+1,57+1118+zirot 1172+2,25=11.44 3,15+9,19+11,44=23,18 3,15+9,19+11,44=23,18 1,44 1,44 1,91

 \mathbb{E} 験中有k個處理,我們可以同時考慮 $\binom{k}{2} = m$ 對母體平均數差異

它們同時包含 $\mu_i - \mu_l(i \neq l)$ 的總信賴程度是 100(

電験中有
$$k$$
 個處理,我们可以问题 3 起 (2) 整定們同時包含 $\mu_i - \mu_i (i \neq l)$ 的總信賴程度是 $100(1-\alpha)\%$: $(\overline{Y}_i - \overline{Y}_l) \pm t_{\frac{2m}{2m}}(n-k)S\sqrt{\frac{1}{n_i}} + \frac{1}{n_l}$ 3 $-\frac{1}{3}$ $-\frac{1}{3}$ $-\frac{1}{3}$ $-\frac{1}{3}$ $-\frac{1}{3}$ 別信賴區間總數。

藥的功效,將 17個自願者隨機分成三組,記錄 30 天後的減

25.05>Finsterial FULL	中在秦安县	t	3M = 5.118
反應值	總和	平均數	The second live is the second live in the second live in the second live is the second live in the second li
0.88, 0.64, 0.82, 0.76, 0.05	$T_1 = 3.15$	$\overline{y}_1 = 0.63$	5= 50.092 20303
1.54, 1.78, 1.29, 1.53, 1.91, 1.14	$T_2 = 9.19$	$\bar{y}_2 = 1.53$	45 7000
1.98, 1.51, 1.78, 2.20, 1.72, 2.25	$T_3 = 11.44$	$\bar{y}_3 = 1.91$	
1.98, 1.51, 1.70, 2.25	T = 23.78	$\overline{y} = 1.40$	and the same of th

 $M_3-M_1=(1.53-1.63)$ ± 2.118 $\times 0.503$ $\times 50$ $\times 50$

變異來源	Parent	**************************************				
要	自由度	均方	F檢定值			
減肥藥	SSTR = 4.609	3 - 1 = 2	MSTR = 2.305	$\frac{2.305}{0.092} = 25.05$		
隨機誤差	SSE = 1.286	17 - 3 = 14		0.092		
總和	SST = 5.895	17 - 1 = 16				

由變異數分析表可知、 $F = 25.05 > F_{0.05}(2.14) = 3.74$ 、 所以我們棄卻 H_0 ,認為三種減肥藥對減重的影響力有明顯差異。

聯合信賴區間計算

$$m = {3 \choose 2} = 3 \cdot \frac{\alpha}{2m} = \frac{0.05}{2 \times 3} = 0.0083 \cdot$$

$$t_{\frac{\alpha}{2m}}(14) = t_{0.0083}(14) = 2.718 \cdot S = \sqrt{MSE} = \sqrt{0.092} = 0.303 \cdot$$

則可求出信賴程度為95%的三個聯合信賴區間如下:

則可求出信賴程度為 93%的二屆4日 出版
$$\mu_2 - \mu_1: (1.53 - 0.63) \pm 2.718 \times 0.303 \times \sqrt{\frac{1}{6} + \frac{1}{5}} = (0.401, 1.399)$$
,不包含 $0.401, 1.399$,不是 0

其中 $S=\sqrt{MSE}=\sqrt{\frac{SSE}{n-k}}$, $F=F_{lpha}(v_1,v_2)$ 分配査表值(附錄表五), $v_1=k-k$ $v_2 = n - k \circ$

若依照此公式算出 $m = \binom{k}{2}$ 個信賴區間,則這m個區間包含全部m個 (μ_i) 1) 真值的聯合信賴程度至少為 $(1-\alpha) \times 100\%$ 。

9.12

依例 9.10, $m = \binom{3}{2} = 3$, $F_{0.05}(3-1, 17-3) = 3.74$, $S = \sqrt{MSE} = \sqrt{0.092} = 0.303 \cdot \sqrt{(k-1)F} = \sqrt{(3-1)3.74} = 2.73$

可求出信賴程度為95%的聯合信賴區間如下:

出信賴程度為 95%的聯合信賴區間如下:
$$\mu_2 - \mu_1: (1.53 - 0.63) \pm 2.73 \times 0.303 \times \sqrt{\frac{1}{6} + \frac{1}{5}} = (0.399, 1.401) \cdot 不包含 0$$

$$\mu_2 - \mu_1: (1.53 - 0.63) \pm 2.73 \times 0.303 \times \sqrt{\frac{1}{6} + \frac{1}{6}} = (-0.098, 0.858) \cdot 包含 0$$