Chapter 3

Magnetoresistance

韩伟 量子材料科学中心 2015年10月11日

Review of last class

How to induce magnetic moment

Doping

Proximity effect

Interface hybridization

Review of last class

Induce M in two Quantum Materials

Graphene

Topological Insulator

Review of last class

Magnetic field

Control

Electric field

Spin torque

Ultrafast Laser

Interface Strain

Outline |

1. Magnetoresistance and ordinary MR

2. Anisotropic MR

3. Tunneling AMR

4. Colossal MR

5. Giant MR

6. Tunneling MR

7. Spin Hall MR

8. Nonlocal MR

9. Hanle MR

Outline |

1. Magnetoresistance

Magnetoresistance

Ordinary magnetoresistance (OMR)

Anisotropic magnetoresistace (AMR)

Tunneling AMR (TAMR)

Colossal magnetoresistance (CMR)

Giant magnetoresistance (GMR)

Tunneling magnetoresistance (TMR)

Spin Hall magnetoresistance (SMR)

Hanle magnetoresistance

A resistor in magnetic field

The resistance change in a magnetic field

Ordinary MR in a semiconductor—Lorentz force

$$v = \mu(E + v \times B)$$

$$v = \frac{\mu E x}{(1 + (\mu B)^2)}$$

$$\mu_{eff} = \frac{\mu(0T)}{(1 + (\mu B)^2)}$$

$$\sigma = ne\mu = \frac{\sigma(0T)}{(1 + (\mu B)^2)}$$

$$\sigma = ne\mu = \frac{\sigma(0T)}{(1 + (\mu B)^2)}$$

Two carriers MR

First type

$$\sigma_{1xx} = \frac{en_1\mu_1}{(1 + (\mu_1 B)^2)}$$

$$\sigma_{1xy} = \frac{eBn_1\mu_1^2}{(1 + (\mu_1 B)^2)}$$

Second type

$$\sigma_{2xx} = \frac{en_2\mu_2}{(1 + (\mu_2 B)^2)}$$

$$\sigma_{2xy} = \frac{eBn_2\mu_2^2}{(1 + (\mu_2 B)^2)}$$

Two carriers MR
$$\sigma = \sigma_1 + \sigma_2$$

$$\rho = \sigma^{-1}$$

$$\rho = \sigma^{-1}$$

$$\rho = \begin{bmatrix} \frac{\sigma_{xx}}{\sigma_{xx}^{2} + \sigma_{xy}^{2}} & \frac{\sigma_{xy}}{\sigma_{xx}^{2} + \sigma_{xy}^{2}} \\ -\sigma_{xy} & \sigma_{xx} \end{bmatrix} \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xy} \\ \sigma_{xx} & \sigma_{xy} & \sigma_{xx} \end{bmatrix}$$

Two carriers MR

$$e\rho_{xx} = \frac{\frac{n_1\mu_1}{1+B^2\mu_1^2} + \frac{n_2\mu_2}{1+B^2\mu_2^2}}{\left(\frac{n_1\mu_1}{1+B^2\mu_1^2} + \frac{n_2\mu_2}{1+B^2\mu_2^2}\right)^2 + B^2\left(\frac{n_1\mu_1^2}{1+B^2\mu_1^2} + \frac{n_2\mu_2^2}{1+B^2\mu_2^2}\right)^2}$$

$$e\rho_{xy} = B \frac{\frac{n_1 \mu_1^2}{1 + B^2 \mu_1^2} + \frac{n_2 \mu_2^2}{1 + B^2 \mu_2^2}}{\left(\frac{n_1 \mu_1}{1 + B^2 \mu_1^2} + \frac{n_2 \mu_2}{1 + B^2 \mu_2^2}\right)^2 + B^2 \left(\frac{n_1 \mu_1^2}{1 + B^2 \mu_1^2} + \frac{n_2 \mu_2^2}{1 + B^2 \mu_2^2}\right)^2}$$

Two carriers MR

$$e\rho_{xx} = \frac{\frac{n_1\mu_1}{1+B^2\mu_1^2} + \frac{n_2\mu_2}{1+B^2\mu_2^2}}{\left(\frac{n_1\mu_1}{1+B^2\mu_1^2} + \frac{n_2\mu_2}{1+B^2\mu_2^2}\right)^2 + B^2\left(\frac{n_1\mu_1^2}{1+B^2\mu_1^2} + \frac{n_2\mu_2^2}{1+B^2\mu_2^2}\right)^2}$$

$$B > 1/\mu_1$$
; $B > 1/\mu_1$

$$e\rho_{xx} = \frac{(\frac{n_1}{\mu_1} + \frac{n_2}{\mu_2})}{(n_1 + n_2)^2 + \frac{1}{B^2}(\frac{n_1}{\mu_1} + \frac{n_2}{\mu_2})^2} \sim \frac{n_1\mu_2 + n_2\mu_1}{(n_1 + n_2)\mu_1\mu_2}$$

Two carriers MR

$$B = 0 \qquad e\rho_{xx}(0) = \frac{1}{(n_1\mu_1 + n_2\mu_2)}$$

$$MR = \frac{\rho_{xx} - \rho_0}{\rho_0} = \frac{\frac{n_1\mu_2 + n_2\mu_1}{(n_1 + n_2)\mu_1\mu_2} - \frac{1}{(n_1\mu_1 + n_2\mu_2)}}{\frac{1}{(n_1\mu_1 + n_2\mu_2)}}$$

$$\mu_1 \gg \mu_2$$
; $n_2 \mu_1 \gg n_1 \mu_2$

$$MR = \frac{n_1 n_2}{(n_1 + n_2)^2} \frac{\mu_1}{\mu_2}$$

Large MR in Graphene with two carriers

	n ₁ (cm ⁻²)	$\mu_1(\text{cm}^2/\text{Vs})$	n ₂ (cm ⁻²)	$\mu_2 (\text{cm}^2/\text{Vs})$
Ι	1011	20,000	1.1×10 ¹¹	1,000
II	8×10 ¹²	5000	1.1×10 ¹¹	1,000
III	10 ¹¹	200,000	1.1×10 ¹¹	10,000

Large MR in Graphene with two carriers

Gopinadhan, et al, Nature Commun. (2015)

Large ordinary MR in Weyl semimetal

Large ordinary MR in Weyl semimetal: NbP

Large ordinary MR in Weyl semimetal: NbP

Outline |

2. Anisotropic MR

Discovery of AMR

AMR of a Nickel

Discovered by William Thompson (1857)

Mechanism

NM vs FM

Non magnetic Cu

Magnetic Fe

Mechanism

Why AMR?

I parallel to M

Increased cross section for scatetring

I perpendicular to M

Reduced cross section for scatetring

AMR of 3d FM

NiCo

AMR of 3d FM

Py: Large AMR

AMR of 3d FM alloy

Py: Large AMR

Fig. 2. Anisotropic magnetoresistivity ratio in percent for $Ni_x Fe_{(1-x)}$ alloys at room temperature (Bozorth [7]).

McGuire & Potter, et al, IEEE Magnetics (1975)

AMR of 3d FM alloy

Alloy

McGuire & Potter, et al, IEEE Magnetics (1975)

Pt and Bi2Se3

Huang, et al, PRL (2012)

Pt and Bi2Se3

Outline |

FIG. 2 (color online). ϕ scans at 4.2 K (a) in a saturation magnetic field $|\mathbf{H}| = 300$ mT, and (b) $V_B = 5$ mV at $|\mathbf{H}| = 25$ mT, just sufficient to switch M between easy axes.

Ruster, et al, PRL (2005)

Outline

4. Colossal MR

CMR in LaCaMnO₃

Tokura & Tomioka, JMMM (1999) $_{37}$

Small B → high R

Tokura & Tomioka, JMMM (1999) $_{39}$

Large B→ Low R

Tokura & Tomioka, JMMM (1999) $_{
m 40}$

Why? -→ John Teller distortion and Double-exchange mechanism

Source: wikipedia.org $_{41}$

Why? → John Teller distortion and Double-exchange mechanism

Source: wikipedia.org $_{42}$

Summary

1. Magnetoresistance and ordinary MR

2. Anisotropic MR

3. Tunneling AMR

4. Colossal MR

5. Giant MR

6. Tunneling MR

7. Spin Hall MR

8. Nonlocal MR

9. Hanle MR

休息10分钟

Outline

5. Giant MR

Observation of GMR

Baibich, et al, PRL (1988) Fert, Rev. Mod. Phys. (2007)

GMR--mechanism

Julie Model

Julie Model

GMR--mechanism

Why this is favored at low magnetic field?

Antiferromagnetic exchange interaction

GMR—RKKY coupling

GMR—RKKY coupling

GMR—RKKY coupling

Outline

6. Tunneling MR

Al₂O₃ barrier for tunneling

FIG. 2. Resistance of $CoFe/Al_2O_3/Co$ junction plotted as a function of H in the film plane, at 295 K. Also shown is the variation in the CoFe and Co film resistance. The arrows indicate the direction of M in the two films (see text).

JS Moodera, et al, PRL (1995)

MgO barrier for tunneling: MR >100%

Epitaxial MgO

Parkin, et al, Nature Mater (2004) Yuasa, et al, Nature Mater (2004)

MgO barrier for tunneling: MR >100%

 Δ_1 , symmetry, slow decaying Tunneling of Co majority spin (SP)

Zhang & Butler, et al, PRB (2004)

MgO barrier for tunneling: MR >100%

TMR for MRAM

MRAM

TMR for MRAM

MRAM

STT-MRAM

STT-MRAM

Kent & Worledge, Nature Nano (2015)

STT-MRAM

	SRAM	eDRAM	DRAM	eFlash (NOR)	Flash (NAND)	FeRAM	PCM	STT-MRAM	RRAM
Endurance (cycles)	Unlimited	Unlimited	Unlimited	10 ⁵	105	1014	109	Unlimited	10°
Read/write access time (ns)	<1	1-2	30	10/ 10 ³	100/ 10 ⁶	30	10/100	2-30	1-100
Density	Low (six transistors)	Medium	Medium	Medium	High (multiple bits per cell)	Low (limited scalability)	High (multiple bits per cell)	Medium	High (multiple bits per cell)
Write power	Medium	Medium	Medium	High	High	Medium	Medium	Medium	Medium
Standby power	High	Medium	Medium	Low	Low	Low	Low	Low	Low
Other	Volatile	Volatile. Refresh power and time needed	Volatile. Refresh power and time needed	High voltage required	High voltage required	Destructive readout	Operating T<125°C	Low read signal	Complex mechanism

Kent & Worledge, Nature Nano (2015)

ARTICLES

PUBLISHED ONLINE: 13 NOVEMBER 2011 | DOI: 10.1038/NMAT3171

Electric-field-assisted switching in magnetic tunnel junctions

Wei-Gang Wang*, Mingen Li, Stephen Hageman and C. L. Chien*

Electric-field H_C

Electric-field switching

Electric-field switching

TMR by Multiferroics

TMR by Multiferroics

Garcia, et al, Science (2010)

TMR by Multiferroics

Garcia, et al, Science (2010)

Outline

7. Spin Hall MR

Spin Hall effect

D'yakonov, M. I. & Perel', J. Exp. Theor. Phys. Lett. 13, 467-469, (1971). Hirsch, J. E. Phys. Rev. Lett. 83, 1834-1837, (1999). Zhang, S. Phys. Rev. Lett. 85, 393-396, (2000).

Nakayama, et al, PRL (2013)

SMR mechanism: Interfacial spin scattering

SMR mechanism: Interfacial spin scattering

$$\tau_{ST} = \frac{\hbar}{2} \widehat{m} \times (\widehat{\sigma} \times \widehat{m})$$

Spin polarized electrons pass the interface and apply a torque on the M, then relaxed in FM insulator

Outline

7. Nonlocal MR

Johnson and Silsbee, PRL (1985)

Spin Injector Spin Detector

Pure spin current: Flow of spin without net flow of charge

Nonlocal MR = $(V_P - V_{AP})/I_{INJ}$

Han, et al, APL (2009) $_{82}$

Outline

8. Hanle MR

$$\vec{\tau} = -g\mu_B \vec{s} \times \vec{B}$$

Hanle effect on the spin accumulation

Summary

1. Magnetoresistance and ordinary MR

2. Anisotropic MR

3. Tunneling AMR

4. Colossal MR

5. Giant MR

6. Tunneling MR

7. Spin Hall MR

8. Nonlocal MR

9. Hanle MR

下一节课: Oct. 18th

Chapter 4: Spin Valves

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html

谢谢!