CS223: Computer Architecture & Organization

Lecture 33 [26.04.2022]

Network on Chip – Topology & Routing

Associate Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Tiled Chip Many-Core Processor (TCMP)

What is NoC?

- Processing units interconnected via packet based network
- ❖ Each resource is called as a 'tile'
- All resources organized as rectangular tiles on the chip.
- ❖ Each tile have an address (X, Y)
- Tiles interconnected by network of routers
- Communication by packet transmission

Routers and Tiles

- East, West, North and South neighbors
- Packets are divided into flow control units called flits
- ❖L1 and L2 cache misses create NoC traffic packets

Packets & Flits

- Packet
 - Unit of transfer for network
- Flit
 - Basic unit of transfer between a pair of routers
 - Unit of flow control within network

Building Blocks of NoC

- Topology
- **❖**Routing
- **❖Flow control**
- **❖**Router micro-architecture

Topology

❖ Determines the physical layout and connection pattern between nodes and channels in the network.

Mesh

- ❖ Each node connected to 4 neighbors (N, E, S, W)
- ❖ Easy to layout on-chip: regular and equal-length links
- Path diversity: many ways to get from one node to another

Torus

- Mesh is not symmetric on edges: performance very sensitive to placement of task on edge vs. middle
- Torus avoids this problem
- Harder to lay out on-chip
- Unequal link lengths

Hierarchical Rings

- ❖More scalable
- Lower latency
- ❖More complex

Trees

- Planar, hierarchical topology
- Good for local traffic
- Easy to Layout
- Root can become a bottleneck
- Fat trees avoid this problem

Routing Algorithm

- Compute the path route for packets to reach destination.
 - Deterministic: always chooses the same path for a communicating source-destination pair
 - Oblivious: chooses different paths, without considering network state
 - Adaptive: can choose different paths, adapting to the state of the network
- Minimal Routing vs Non-Minimal Routing
- Source Routing vs Node Routing
- Deterministic Routing vs Adaptive Routing

Minimal & Non-Minimal Routing

- Profitable route: The route that always leads the packet closer to the destination.
- Misroute: A route that leads the packet away from the destination.

Minimal routing

Non-Minimal routing

Deterministic Routing

- All packets between the same (source, dest) pair take the same path
- ❖ Dimension-order routing Eg. XY routing
 - ❖ First traverse dimension X, then traverse dimension Y
 - ❖ Simple
 - Deadlock freedom
 - Could lead to high contention
 - Does not exploit path diversity

Reference

- Route Packets not wires, William J. Dally, Brian Towles https://dl.acm.org/doi/10.1145/378239.379048.
- **❖ NPTEL Video Links:**
 - https://tinyurl.com/ybwpo99z
 - https://tinyurl.com/yjq85rym
 - https://tinyurl.com/yhclb2xd

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/