```
In [1]:
```

```
%matplotlib inline
### import libraries
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns
```

In [2]:

```
#read Csv
data = pd.read_csv('health care diabetes.csv')
```

In [3]:

data.head()

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Week 1

Data Exploration:

- 1. Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value:
- Glucose
- BloodPressure
- SkinThickness
- Insulin
- BMI
 - 1. Visually explore these variables using histograms. Treat the missing values accordingly.
 - 2. There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

In [4]:

```
#check for null data.isnull().any()
```

Out[4]:

Pregnancies	False
Glucose	False
BloodPressure	False
SkinThickness	False
Insulin	False
BMI	False
DiabetesPedigreeFunction	False
Age	False
Outcome	False
dtype: bool	

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnancies
                             768 non-null int64
Glucose
                             768 non-null int64
BloodPressure
                              768 non-null int64
SkinThickness
                              768 non-null int64
Insulin
                              768 non-null int64
BMT
                             768 non-null float64
DiabetesPedigreeFunction
                             768 non-null float64
Age
                              768 non-null int64
Outcome
                              768 non-null int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
In [6]:
Positive = data[data['Outcome']==1]
Positive.head(5)
Out[6]:
  Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
0
           6
                              72
                                           35
                                                  0 33.6
                 148
                                                                         0.627
                                                                                50
                                                                                         1
2
           8
                                            0
                                                  0 23.3
                                                                         0.672
                 183
                              64
                                                                                32
                                                                                         1
4
                 137
                               40
                                           35
                                                168 43.1
                                                                         2.288
                                                                                33
           3
                                                                         0.248
6
                  78
                              50
                                           32
                                                 88 31.0
                                                                                26
                                                                                         1
           2
                 197
                               70
                                                                                         1
                                           45
                                                543 30.5
                                                                         0.158
                                                                                53
8
In [7]:
data['Glucose'].value_counts().head(7)
Out[7]:
100
       17
99
       17
129
       14
125
       14
111
       14
106
       14
95
       13
Name: Glucose, dtype: int64
In [8]:
plt.hist(data['Glucose'])
Out[8]:
(array([ 5.,
                     4., 32., 156., 211., 163., 95., 56., 46.]),
                 0.,
 array([ 0., 19.9, 39.8, 59.7, 79.6, 99.5, 119.4, 139.3, 159.2,
        179.1, 199.]),
 <a list of 10 Patch objects>)
 200
175
150
125
 100
 75
  50
 25
  0
```

data['RloodPressure'] value counts() head(7)

100

75

In [9]:

In [5]:

```
Out[9]:
70
      57
74
      52
68
      45
78
      45
72
      44
64
      43
      40
80
Name: BloodPressure, dtype: int64
In [10]:
plt.hist(data['BloodPressure'])
Out[10]:
<a list of 10 Patch objects>)
 250
 200
 150
 100
 50
           20
                        60
                                           120
                               80
                                     100
                  40
In [11]:
data['SkinThickness'].value counts().head(7)
Out[11]:
      227
32
       31
30
       27
27
       23
23
       22
33
       20
18
       20
Name: SkinThickness, dtype: int64
In [12]:
plt.hist(data['SkinThickness'])
Out[12]:
(array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]),
array([ 0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]),
 <a list of 10 Patch objects>)
 200
 150
 100
 50
  0 -
                                     80
                                            100
```

In [13]:

```
data['Insulin'].value counts().head(7)
0
         374
105
         11
140
           9
130
           9
120
           8
100
           7
           7
94
Name: Insulin, dtype: int64
In [14]:
plt.hist(data['Insulin'])
 (array([48/., 155., 70., 30., 8., 9., 5., 1., 2., 1.]), array([ 0., 84.6, 169.2, 253.8, 338.4, 423., 507.6, 592.2, 676.8, 761.4, 846.]),
(array([487., 155., 70., 30.,
  <a list of 10 Patch objects>)
 500
  400
  200
 100
                 200
                            400
                                        600
                                                   800
       0
In [15]:
data['BMI'].value counts().head(7)
Out[15]:
32.0
         13
31.6
          12
31.2
          12
0.0
          11
33.3
          10
32.4
         10
32.8
          9
Name: BMI, dtype: int64
In [16]:
plt.hist(data['BMI'])
Out[16]:
(array([ 11., 0., 15., 156., 268., 224., 78., 12., 3., 1.]), array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68, 60.39, 67.1 ]),
  <a list of 10 Patch objects>)
 250
 200
 150
 100
  50
```

Tn [171:

```
data.describe().transpose()
```

Out[17]:

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

In []:

Week 2

Data Exploration:

- 1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.
- 2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
- 3. Perform correlation analysis. Visually explore it using a heat map.

```
In [18]:
```

```
plt.hist(Positive['BMI'], histtype='stepfilled', bins=20)
```

Out[18]:


```
In [19]:
```

```
Positive['BMI'].value_counts().head(7)
```

Out[19]:

```
32.9 8
31.6 7
33.3 6
30.5 5
32.0 5
```

31.2 5 32.4 4

```
Name: BMI, dtype: int64
In [20]:
plt.hist(Positive['Glucose'], histtype='stepfilled', bins=20)
Out[20]:
(array([ 2., 0., 0., 0., 0., 0., 1., 4., 9., 28., 26., 36., 27., 29., 22., 24., 21., 25., 14.]),
 array([ 0. , 9.95, 19.9 , 29.85, 39.8 , 49.75, 59.7 , 69.65,
           79.6, 89.55, 99.5, 109.45, 119.4, 129.35, 139.3, 149.25,
          159.2 , 169.15, 179.1 , 189.05, 199. ]),
 <a list of 1 Patch objects>)
 35
 30
 25
 20
 15
 10
  5
  0
                             100
                                  125
                                        150
                                              175
In [21]:
Positive['Glucose'].value_counts().head(7)
Out[21]:
125
158
        6
128
115
        6
129
        6
146
        5
162
Name: Glucose, dtype: int64
In [22]:
plt.hist(Positive['BloodPressure'], histtype='stepfilled', bins=20)
Out[22]:
(array([16., 0., 0., 0., 0., 1., 0., 1., 6., 6., 19., 37., 56., 36., 41., 31., 7., 4., 4., 3.]),
array([ 0., 5.7, 11.4, 17.1, 22.8, 28.5, 34.2, 39.9, 45.6, 51.3, 57., 62.7, 68.4, 74.1, 79.8, 85.5, 91.2, 96.9, 102.6, 108.3, 114. ]),
 <a list of 1 Patch objects>)
 50
 40
 30
 20
 10
              20
                              60
                                              100
      0
                      40
                                      80
```

In [23]:

Out[23]:

Positive['BloodPressure'].value counts().head(7)

```
1/6
78
      17
74
       17
72
      16
0
       16
82
      13
Name: BloodPressure, dtype: int64
In [24]:
plt.hist(Positive['SkinThickness'], histtype='stepfilled', bins=20)
Out[24]:
(array([88., 1., 4., 10., 18., 30., 41., 34., 23., 15., 1., 1., 1.,
 <a list of 1 Patch objects>)
 80
 60
 40
 20
             20
                               60
                                                100
In [25]:
Positive['SkinThickness'].value_counts().head(7)
Out[25]:
0
      88
32
      14
33
        9
30
        9
39
35
        8
36
Name: SkinThickness, dtype: int64
In [26]:
plt.hist(Positive['Insulin'], histtype='stepfilled', bins=20)
Out[26]:
         [141., 6., 23., 33., 24., 12., 7., 7., 2., 1., 5., 3., 1., 1., 0., 0., 0., 0., 1.]), [ 0., 42.3, 84.6, 126.9, 169.2, 211.5, 253.8, 296.1, 338.4, 380.7, 423., 465.3, 507.6, 549.9, 592.2, 634.5, 676.8, 719.1,
(array([141.,
                                                                          1., 1.,
         761.4, 803.7, 846. ]),
 <a list of 1 Patch objects>)
 140
 120
 100
 80
  60
  40
  20
               200
                         400
                                    600
                                              800
```

In [27]:

```
Positive['Insulin'].value counts().head(7)
Out[27]:
0
        138
130
          6
180
          4
156
          3
175
          3
194
          2
125
          2
Name: Insulin, dtype: int64
In [28]:
#Scatter plot
In [29]:
BloodPressure = Positive['BloodPressure']
Glucose = Positive['Glucose']
SkinThickness = Positive['SkinThickness']
Insulin = Positive['Insulin']
BMI = Positive['BMI']
In [30]:
plt.scatter(BloodPressure, Glucose, color=['b'])
plt.xlabel('BloodPressure')
plt.ylabel('Glucose')
plt.title('BloodPressure & Glucose')
plt.show()
                   BloodPressure & Glucose
   200
   175
   150
   125
 Glucose
   100
    75
    50
    25
     0
               20
                      40
                              60
                                            100
                        BloodPressure
In [31]:
g =sns.scatterplot(x= "Glucose", y= "BloodPressure",
                hue="Outcome",
                data=data);
   120
            Outcome
           0
   100
    80
 BloodPressure
    60
    40
    20
     0
             25
                            100
                                  125
                                       150
                                            175
                                                  200
                           Glucose
In [32]:
B =sns.scatterplot(x= "BMI", y= "Insulin",
                hue="Outcome",
                data=data);
```

```
800 - Outcome 0 1 600 - 1 - 200 - 200 - 0 10 20 30 40 50 60 70 BMI
```

In [33]:

In [34]:

correlation matrix
data.corr()

Out[34]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Out
Pregnancies	1.000000	0.129459	0.141282	-0.081672	0.073535	0.017683	-0.033523	0.544341	0.2
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.4
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.0
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	- 0.113970	0.0
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	0.042163	0.1
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.2
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.1
Age	0.544341	0.263514	0.239528	-0.113970	0.042163	0.036242	0.033561	1.000000	0.2
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.0
•									Þ

In [38]:

```
### create correlation heat map
sns.heatmap(data.corr())
```

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x27015588cc8>

In [39]:

```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis') ### gives correlation value
```

Out[39]:

<matplotlib.axes. subplots.AxesSubplot at 0x2701564f108>

In [40]:

```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True) ### gives correlation value
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x2701588e788>

Logistic Regression and model building

Week 3

Data Modeling:

- 1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.
- 2. Apply an appropriate classification algorithm to build a model. Compare various models with the results from KNN algorithm.

```
In []:
```

```
In [41]:
```

data.head(5)

Out[41]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

```
In [42]:
```

```
features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
label = data.iloc[:,8].values
```

In [43]:

```
In [44]:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,y_train)
C:\Users\cugagu\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\linear model\logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning
 FutureWarning)
Out[44]:
LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept scaling=1, 11 ratio=None, max iter=100,
                   multi class='warn', n jobs=None, penalty='12',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm start=False)
In [45]:
print(model.score(X train, y train))
print(model.score(X_test,y_test))
0.7801302931596091
0.7337662337662337
In [46]:
from sklearn.metrics import confusion matrix
cm = confusion matrix(label, model.predict(features))
Out[46]:
array([[450, 50],
       [126, 142]], dtype=int64)
In [47]:
from sklearn.metrics import classification report
print(classification_report(label, model.predict(features)))
              precision recall f1-score support
                   0.78
                             0.90
                                       0.84
           1
                   0.74
                             0.53
                                       0.62
                                                  268
   accuracy
                                       0.77
                                                  768
                   0.76
                             0.71
                                       0.73
                                                  768
   macro avg
weighted avg
                   0.77
                             0.77
                                       0.76
                                                  768
In [48]:
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc curve
from sklearn.metrics import roc auc score
# predict probabilities
probs = model.predict proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc curve(label, probs)
# plot no skill
```

AUC: 0.834

Out[48]:

[<matplotlib.lines.Line2D at 0x270174a2988>]

plt.plot([0, 1], [0, 1], linestyle='--')
plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')

```
0.8

0.6

0.4

0.2

0.0

0.0

0.0

0.2

0.4

0.6

0.8

10
```

```
In [49]:
```

```
#Applying Decission Tree Classifier
from sklearn.tree import DecisionTreeClassifier
model3 = DecisionTreeClassifier(max_depth=5)
model3.fit(X_train,y_train)
```

Out[49]:

Using Decision Tree

```
In [50]:
model3.score(X_train,y_train)
Out[50]:
0.8289902280130294
In [51]:
model3.score(X_test,y_test)
Out[51]:
0.7662337662337663
In []:
```

In [52]:

```
#Applying Random Forest
from sklearn.ensemble import RandomForestClassifier
model4 = RandomForestClassifier(n_estimators=11)
model4.fit(X_train,y_train)
```

Out[52]:

Using Random Forest

```
In [53]:
```

```
model4.score(X_train,y_train)
```

Out[53]:

0.99185667752443

```
In [54]:
model4.score(X_test,y_test)
Out[54]:
0.72727272727273
In [551:
#Support Vector Classifier
from sklearn.svm import SVC
model5 = SVC(kernel='rbf',
           gamma='auto')
model5.fit(X_train,y_train)
Out[55]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision function shape='ovr', degree=3, gamma='auto', kernel='rbf',
    max iter=-1, probability=False, random state=None, shrinking=True,
    tol=0.001, verbose=False)
Using Support Vector Classifier
In [56]:
model5.score(X train, y train)
Out[56]:
1.0
In [57]:
model5.score(X test, y test)
Out[57]:
0.6168831168831169
In [58]:
#Applying K-NN
from sklearn.neighbors import KNeighborsClassifier
model2 = KNeighborsClassifier(n neighbors=7,
                             metric='minkowski',
                             p = 2)
model2.fit(X_train,y_train)
Out[58]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric_params=None, n_jobs=None, n_neighbors=7, p=2,
                     weights='uniform')
In [59]:
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc_curve
from sklearn.metrics import roc auc score
# predict probabilities
probs = model2.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc auc score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc curve(label, probs)
print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".format(tpr,fpr,thresholds))
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
AUC: 0.836
True Positive Rate - [0.
                                 0.06716418 0.23880597 0.44776119 0.60074627 0.75373134
```

Out[59]:

Text(0, 0.5, 'True Positive Rate')

In [60]:

```
#Precision Recall Curve for Logistic Regression
from sklearn.metrics import precision recall curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average precision score
# predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision recall curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.617 auc=0.728 ap=0.729

Out[60]:

[<matplotlib.lines.Line2D at 0x270176fdf08>]

In [61]:

```
#Precision Recall Curve for KNN
from sklearn.metrics import precision_recall_curve
```

```
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average precision score
# predict probabilities
probs = model2.predict proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model2.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average precision score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.658 auc=0.752 ap=0.709

Out[61]:

[<matplotlib.lines.Line2D at 0x270177dd1c8>]

In [62]:

```
#Precision Recall Curve for Decission Tree Classifier
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model3.predict proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model3.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision recall curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.712 auc=0.812 ap=0.765

Out[62]:

[<matplotlib.lines.Line2D at 0x270177dd408>]

```
0.9
```

```
0.8
0.7
0.6
0.5
0.4
     0.0
                  0.2
                              0.4
                                           0.6
                                                       0.8
                                                                    1.0
```

In [63]:

```
#Precision Recall Curve for Random Forest
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average precision score
# predict probabilities
probs = model4.predict proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model4.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average precision score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.911 auc=0.964 ap=0.955

Out[63]:

[<matplotlib.lines.Line2D at 0x27017859a48>]


```
In [ ]:
```

```
In [ ]:
```

In []: