

## IST - $1^{o}$ Semestre de 2016/17

## EXERCÍCIOS DE ÁLGEBRA LINEAR

FICHA 4 - Determinantes. Vectores e valores próprios

#### 1 Determinantes

Pode-se definir det  $\mathbf{A}$ , o **determinante** de uma matriz  $\mathbf{A} \in \mathbb{M}_{n \times n}(\mathbb{K})$ , como o valor da função de  $\mathbb{M}_{n \times n}(\mathbb{K})$  em  $\mathbb{K}$  que satisfaz as seguintes propriedades:

- i) Se  $\mathbf{I}_n$  é a matriz identidade, então det  $\mathbf{I}_n = 1$ .
- ii) Se a matriz  ${\bf A}'$ se obtém da matriz  ${\bf A}$  multiplicando uma das suas linhas por  $\alpha$ , então det  ${\bf A}'=\alpha$  det  ${\bf A}$
- iii) det A não se altera se uma linha for substituída pela sua soma com outra linha.

Partindo destas propriedades axiomáticas é possível mostrar que a função  $\mathbf{A} \to \det \mathbf{A}$  também tem que satisfazer as seguintes:

- iii') det **A** não se altera se uma linha for substituída pela sua soma com o múltiplo de outra linha.
- iv) Se a matriz  $\mathbf{A}'$ se obtém da matriz  $\mathbf{A}$  permutando duas das suas linhas, então det  $\mathbf{A}'=-\det\mathbf{A}$

Com base nas propriedades acima descritas é possível calcular qualquer determinante através do método de eliminação de Gauss. Por exemplo:

<sup>&</sup>lt;sup>1</sup>Coligidos por: João Ferreira Alves, Ricardo Coutinho e José M. Ferreira.

$$\det \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 8 \\ 2 & 5 & 3 \end{bmatrix} = \det \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 5 \\ 0 & 3 & 1 \end{bmatrix} \quad \text{por iii'})$$

$$= -\det \begin{bmatrix} 2 & 2 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 5 \end{bmatrix} \quad \text{por iv})$$

$$= -2 \times 3 \times 5 \times \det \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{por iii'})$$

$$= -30 \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{por iii'})$$

$$= -30 \quad \text{por i})$$

#### 1.1 Propriedades dos determinantes

Representando a matriz A através das suas linhas:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}'_1 \\ \mathbf{a}'_2 \\ \dots \\ \mathbf{a}'_n \end{bmatrix},$$

podemos descrever a linearidade do determinante em função das suas linhas nas seguintes duas primeiras propriedades.

$$1. \det \begin{bmatrix} \mathbf{a}_1' \\ \dots \\ \mathbf{a}_i' + \mathbf{a} \\ \dots \\ \mathbf{a}_n' \end{bmatrix} = \det \begin{bmatrix} \mathbf{a}_1' \\ \dots \\ \mathbf{a}_i' \\ \dots \\ \mathbf{a}_n' \end{bmatrix} + \det \begin{bmatrix} \mathbf{a}_1' \\ \dots \\ \mathbf{a} \\ \dots \\ \mathbf{a}_n' \end{bmatrix}.$$

2. 
$$\det \begin{bmatrix} \mathbf{a}'_1 \\ \dots \\ \alpha \mathbf{a}'_i \\ \dots \\ \mathbf{a}'_n \end{bmatrix} = \alpha \det \begin{bmatrix} \mathbf{a}'_1 \\ \dots \\ \mathbf{a}'_i \\ \dots \\ \mathbf{a}'_n \end{bmatrix} \quad (\forall \alpha).$$

- 3.  $\det \mathbf{A}^T = \det \mathbf{A}$ .
- 4. O determinante muda de sinal por permutação entre pares de linhas (ou de colunas).
- 5. det **A** não se altera se uma linha (ou coluna) for substituída pela sua soma com o múltiplo de outra linha (respectivamente coluna).

6. Se

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

é uma matriz triangular superior (ou triangular inferior) então

$$\det \mathbf{A} = a_{11} a_{22} ... a_{nn}.$$

- 7. Se A tiver duas linhas (ou duas colunas) iguais então det A = 0.
- 8.  $\det \mathbf{A} = 0$ , se **A** tiver uma linha (ou coluna) nula.
- 9. As linhas (ou colunas) de  $\mathbf{A}$  são linearmente dependentes se e só se det  $\mathbf{A} = 0$ .
- 10. A é invertível se e só se det  $A \neq 0$ . Nestas circunstâncias

$$\det \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}.$$

11.  $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$ .

### 1.2 Outros métodos para o cálculo de determinantes

Existem outros métodos directos para calcular determinantes de uma matriz  $n \times n$ 

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}.$$

• Regra de Laplace<sup>2</sup>: Para qualquer i = 1, 2, ..., n,

$$\det \mathbf{A} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det \mathbf{A}_{ij} = \sum_{j=1}^{n} a_{ij} c_{ij}$$

$$= a_{i1} \det \mathbf{A}_{i1} - a_{i2} \det \mathbf{A}_{i2} + a_{i3} \det \mathbf{A}_{i3} - \dots + (-1)^{i+n} a_{in} \det \mathbf{A}_{in}$$

$$= a_{i1} c_{i1} + a_{i2} c_{i2} + a_{i3} c_{i3} + \dots + a_{in} c_{in}$$

Para qualquer j = 1, 2, ..., n,

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det \mathbf{A}_{ij} = \sum_{i=1}^{n} a_{ij} c_{ij}$$

$$= a_{1j} \det \mathbf{A}_{1j} - a_{2j} \det \mathbf{A}_{2j} + a_{3j} \det \mathbf{A}_{3j} - \dots + (-1)^{n+j} a_{nj} \det \mathbf{A}_{nj}$$

$$= a_{1j} c_{1j} + a_{2j} c_{2j} + a_{3j} c_{3j} + \dots + a_{nj} c_{nj}$$

onde  $\mathbf{A}_{ij}$  é a matriz que se obtem de  $\mathbf{A}$  por supressão da linha i e da coluna j. O valor  $c_{ij} = (-1)^{i+j} \det \mathbf{A}_{ij}$  é chamado de cofactor (i,j) da matriz  $\mathbf{A}$ .

<sup>&</sup>lt;sup>2</sup>Pierre Simon Laplace, n. Beaumont-en-Ange (Normandia) França, a 23 de Março de 1749, m. Paris, a 5 de Março de 1827.

• Expansão permutacional: Designemos por  $\mathcal{P}$  o conjunto de todas as permutações  $\sigma = (\sigma_1, ..., \sigma_n)$  de  $\{1, 2, ..., n\}$ . Obtemos,

$$\det \mathbf{A} = \sum_{\sigma \in \mathcal{P}} \epsilon_{\sigma} a_{1\sigma_1} a_{2\sigma_2} ... a_{n\sigma_n} = \sum_{\sigma \in \mathcal{P}} \epsilon_{\sigma} a_{\sigma_1 1} a_{\sigma_2 2} ... a_{\sigma_n n},$$

onde  $\epsilon_{\sigma}$  é o sinal da permutação  $\sigma$  (i. e.  $\epsilon_{\sigma} = (-1)^{i_{\sigma}}$ , onde  $i_{\sigma}$  designa o número total de inversões de  $\sigma$ ; dada uma permutação  $\sigma$  dizemos que ocorre uma inversão sempre que i < j e  $\sigma_i > \sigma_j$ ).

#### 1.3 Determinantes de matrizes $2 \times 2$ e $3 \times 3$

Para o caso de uma matriz  $2 \times 2$ ,

$$\mathbf{A} = \left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

$$\det \mathbf{A} = a_{11}a_{22} - a_{12}a_{21}.$$

Uma utilização importante deste determinante prende-se com o cálculo de áreas de paralelogramos P do plano gerados por dois vectores  $\mathbf{v}_1 = (a, b)$  e  $\mathbf{v}_2 = (c, d)$  de  $\mathbb{R}^2$ :

área de 
$$P = \left| \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right| = |ad - bc|$$
.

Relativamente a uma matriz  $3 \times 3$ ,

$$\mathbf{A} = \left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right],$$

podemos estabelecer que

$$\det \mathbf{A} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

dando origem à chamada regra de Sarrus<sup>3</sup>

Estes determinantes permitem a obtenção do cálculo de volumes de paralelepípedos, P, gerados por três vectores  $\mathbf{v}_1 = (x_1, y_1, z_1)$ ,  $\mathbf{v}_2 = (x_2, y_2, z_2)$  e  $\mathbf{v}_3 = (x_3, y_3, z_3)$  de  $\mathbb{R}^3$ :

volume de 
$$P = \begin{vmatrix} \det \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} \end{vmatrix}$$
$$= \begin{vmatrix} x_1y_2z_3 + x_3y_1z_2 + x_2y_3z_1 - x_1y_3z_2 - x_2y_1z_3 - x_3y_2z_1 \end{vmatrix}.$$

<sup>&</sup>lt;sup>3</sup>Pierre Frédéric Sarrus, n. Saint Affrique (Midi-Pyrenées) França, a 10 de Março de 1798, m. Estrasburgo, França, a 20 de Novembro de 1861.

#### 1.4 Matriz dos cofactores

Considerando os cofactores

$$c_{ij} = (-1)^{i+j} \det \mathbf{A}_{ij}$$

chama-se matriz dos cofactores de A à matriz

$$cof \mathbf{A} = [c_{ij}]_{i,j=1,\dots n} 
= \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}.$$

A matriz cof A satisfaz a seguinte relação com a matriz  $\mathbf{A} \in \mathbb{M}_{n \times n}$  ( $\mathbb{K}$ ),  $n \geq 2$ :

$$\mathbf{A} \left( \operatorname{cof} \mathbf{A} \right)^{T} = \left( \det \mathbf{A} \right) \mathbf{I}_{n}.$$

Desta igualdade resulta que se A é invertível então

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \left( \operatorname{cof} \mathbf{A} \right)^{T}.$$

## 1.5 Regra de Cramer<sup>4</sup>

Seja  $\mathbf{A}\mathbf{x} = \mathbf{d}$  um sistema de n equações a n incógnitas tal que det  $\mathbf{A} \neq 0$ . Então o sistema possui uma única solução cujas componentes são dadas por

$$x_1 = \frac{\det \mathbf{A}_1}{\det \mathbf{A}}, \ x_2 = \frac{\det \mathbf{A}_2}{\det \mathbf{A}}, ..., \ x_n = \frac{\det \mathbf{A}_n}{\det \mathbf{A}},$$

onde com j = 1, 2, ..., n,  $\mathbf{A}_j$  é a matriz que se obtém de  $\mathbf{A}$  substituindo a coluna j de  $\mathbf{A}$  pelo vector coluna  $\mathbf{d}$ .

### 1.6 Exercícios

Exercício 1 Use eliminação de Gauss para calcular os determinantes das seguintes matrizes:

a) 
$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
. b)  $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ . c)  $\begin{bmatrix} 3 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & 5 & 0 \end{bmatrix}$ .  
d)  $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ . e)  $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 5 & 0 \end{bmatrix}$ . f)  $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ .

<sup>&</sup>lt;sup>4</sup>Gabriel Cramer, n. a 31 Julho de 1704 em Geneva, m. a 4 de Janeiro de 1752 em Bagnols-sur-Cèze (França).

Exercício 2 Use eliminação de Gauss para calcular os determinantes das seguintes matrizes. Aproveite o resultado para indicar as que são invertíveis.

a) 
$$\begin{bmatrix} 1 & 12 & 22 & 31 \\ 0 & 3 & 11 & 16 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b) 
$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 1 & 1 & 3 & 3 \\ 0 & 3 & 0 & 0 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$
 c) 
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 0 & 3 \\ 0 & 3 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$
 d) 
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 1 & 2 \\ 3 & 3 & 0 & 1 \end{bmatrix}$$
 e) 
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ -5 & 2 & 2 & 2 \end{bmatrix}$$
 f) 
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 4 & 0 & 6 & 0 \\ 1 & 1 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 & 3 \\ 0 & 0 & 0 & 2 & 5 \end{bmatrix}$$
.

Exercício 3 Sabendo que

$$\det \left[ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] = 5,$$

calcule:

a) 
$$\det \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix}$$
. b)  $\det \begin{bmatrix} -a & -b & -c \\ 2d & 2e & 2f \\ -g & -h & -i \end{bmatrix}$ .  
c)  $\det \begin{bmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{bmatrix}$ . d)  $\det \begin{bmatrix} a & b & c \\ d-3a & e-3b & f-3c \\ 2g & 2h & 2i \end{bmatrix}$ .

**Exercício 4** Sabendo que os valores reais  $\gamma$  e  $\delta$  são tais que:

$$\det \begin{bmatrix} 1 & 2 & \gamma \\ \delta & 1 & 1 \\ 1 & \gamma + \delta & 2 \end{bmatrix} = 1,$$

determine

$$\det \begin{bmatrix} 1 & 2 & \gamma \\ \delta & \delta\gamma + \delta^2 & 2\delta \\ \delta\gamma & \gamma & \gamma \end{bmatrix}.$$

Exercício 5 Mostre que

$$\det \begin{bmatrix} \lambda & 1 & 1 & 1 & 1 & 1 \\ \lambda & \lambda + 1 & 2 & 2 & 2 & 2 \\ \lambda & \lambda + 1 & \lambda + 2 & 3 & 3 & 3 \\ \lambda & \lambda + 1 & \lambda + 2 & \lambda + 3 & 4 & 4 \\ \lambda & \lambda + 1 & \lambda + 2 & \lambda + 3 & \lambda + 4 & 5 \\ \lambda & \lambda + 1 & \lambda + 2 & \lambda + 3 & \lambda + 4 & \lambda + 5 \end{bmatrix} = \lambda^6.$$

**Exercício 6** Calcule o determinante da matriz  $n \times n$ 

$$\mathbf{B} = \begin{bmatrix} \lambda & \lambda & \lambda & \dots & \lambda \\ 1 & \lambda + 1 & 1 & \dots & 1 \\ 1 & 1 & \lambda + 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 & \lambda + 1 \end{bmatrix}.$$

Exercício 7 Mostre que

$$\det \begin{bmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{bmatrix} = (\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)(\lambda_2 - \lambda_1).$$

Exercício 8 Utilize sucessivamente a regra de Laplace para calcular os determinantes das matrizes indicadas a seguir.

a) 
$$\begin{bmatrix} 1 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$
 b) 
$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 1 & 6 & 0 \end{bmatrix}$$
 c) 
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 5 & 6 & -3 \end{bmatrix}$$
 d) 
$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 1 & 1 & 3 & 3 \\ 0 & 3 & 0 & 0 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$
 e) 
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ -5 & 2 & 2 & 2 \end{bmatrix}$$
 f) 
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 4 & 0 & 6 & 0 \\ 1 & 1 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 & 3 \\ 0 & 0 & 0 & 2 & 5 \end{bmatrix}$$
.

Exercício 9 Uma matriz cujas entradas são 0 ou 1 tem determinante igual a 0, 1 ou -1. Verdadeiro ou falso?

Exercício 10 Através da regra de Sarrus calcule os determinantes das seguintes matrizes:

a) 
$$\begin{bmatrix} 1 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$
. b)  $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 1 & 6 & 0 \end{bmatrix}$ . c)  $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 5 & 6 & -3 \end{bmatrix}$ .

Exercício 11 Calcule as áreas dos paralelogramos cujos vértices são:

- a) (0,0), (-1,3), (4,-5) e(3,-2).
- b) (-1,0), (0,5), (1,-4) e(2,1).
- c) (0,-2), (6,-1), (-3,1) e(3,2).

Exercício 12 Calcule os volumes dos paralelepípedos gerados pelos vectores u, v e w onde:

a) 
$$\mathbf{u} = (1, 0, -2), \mathbf{v} = (1, 2, 4) \ e \ \mathbf{w} = (7, 1, 0).$$

b) 
$$\mathbf{u} = (1, 4, 0), \mathbf{v} = (-2, -5, 2) \ e \ \mathbf{w} = (-1, 2 - 1).$$

Exercício 13 Calcule os determinantes das matrizes

$$\mathbf{A} = \left[ egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & 5 \ 3 & 0 & 1 \end{array} 
ight] \ e \ \mathbf{B} = \left[ egin{array}{ccc} 2 & 2 & 2 \ 0 & 2 & 2 \ 1 & 1 & 2 \end{array} 
ight].$$

 $E \text{ ainda: a) } \det(3\mathbf{A}). \text{ b) } \det(\mathbf{A}^3\mathbf{B}^2). \text{ c) } \det(\mathbf{A}^{-1}\mathbf{B}^T). \text{ d) } \det(\mathbf{A}^4\mathbf{B}^{-2}).$ 

Exercício 14 i) Para as matrizes indicadas a seguir verifique a validade da fórmula:

$$\mathbf{A} \left( \operatorname{Cof} \mathbf{A} \right)^{T} = \left( \det \mathbf{A} \right) \mathbf{I},$$

onde Cof A designa a matriz dos cofactores.

a) 
$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 4 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$
. b)  $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ . c)  $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$  d)  $\begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 4 \\ 3 & 6 & 3 \end{bmatrix}$ .

ii) Caso seja possível, determine a matriz inversa de cada uma destas matrizes.

Exercício 15 Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 7 & 7 & 0 & 7 \\ 3 & 0 & 8 & 0 \\ 7 & 7 & 1 & 8 \\ 7 & 7 & 1 & 7 \end{bmatrix}, \quad e \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 & 8 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 5 \end{bmatrix}.$$

- a) Calcule det A.
- b)  $Calcule \det \mathbf{B}$
- c) Calcule  $\det\left(\frac{1}{3}\mathbf{A}\mathbf{B}^3\right)$
- d) Calcule a entrada (1,2) de  $\mathbf{A}^{-1}$ .

Exercício 16 Use a regra de Cramer para resolver os sistemas de equações lineares:

a) 
$$\begin{cases} y + 2z = 1 \\ 2x + 4y + z = 0 \\ x + 2y = 1 \end{cases}$$
 b) 
$$\begin{cases} x + y = 1 \\ 2x + z = 1 \\ x + 2y + 2z = -1 \end{cases}$$
.

**Exercício 17** Sejam  $f_1$ ,  $f_2$  e  $f_3$  funções do espaço vectorial  $C^2(\mathbb{R})$ , das funções reais de de variável real que são duas vezes diferenciáveis. Mostre que se existe  $t_0 \in \mathbb{R}$  de modo que o determinante<sup>5</sup>

$$\det \begin{bmatrix} f_1(t_0) & f_2(t_0) & f_3(t_0) \\ f'_1(t_0) & f'_2(t_0) & f'_3(t_0) \\ f''_1(t_0) & f''_2(t_0) & f''_3(t_0) \end{bmatrix} \neq 0,$$

então  $f_1$ ,  $f_2$  e  $f_3$  são linearmente independentes.

**Exercício 18** Aplicando o exercício anterior, mostre que  $\{1, e^{-t}, t e^{-t}\}$  é constituído por funções linearmente independentes.

 $<sup>^5</sup>$ Este determinante é conhecido pelo nome de wronskiano das funções  $f_1$ ,  $f_2$  e  $f_3$ . Esta condição de independência linear é devida a Josef-Maria Hoëné Wronski (n. Wolsztyn, Polónia, 23 de Agosto de 1778; m. Neilly-sur-Seine, França, em 8 de Agosto de 1853).

## 2 Vectores e valores próprios de transformações lineares

Dada uma transformação linear  $T: E \to E$  do espaço vectorial E nele próprio, se com  $\mathbf{v} \in E \setminus \{0\}$  e  $\lambda$  escalar se tem

$$T(\mathbf{v}) = \lambda \mathbf{v},$$

diremos que v é um vector próprio de T e  $\lambda$  um seu valor próprio.

Designando por  $I: E \to E$  a transformação linear identidade, ou seja a transformação tal que  $I(\mathbf{x}) = \mathbf{x}$ , qualquer que seja  $\mathbf{x} \in E$ , temos que

$$T(\mathbf{v}) = \lambda \mathbf{v} \Leftrightarrow (T - \lambda I)(\mathbf{v}) = 0.$$

Assim, se  $\lambda$  é um valor próprio de T, então v será um vector próprio de T associado a  $\lambda$  se e só se

$$\mathbf{v} \in \operatorname{Nuc}(T - \lambda I) \setminus \{0\}$$
.

Como tal, podemos afirmar que  $\lambda$  é um valor próprio de T se e só se Nuc $(T - \lambda I) \neq \{0\}$ , sendo qualquer elemento não nulo de Nuc $(T - \lambda I)$  um vector próprio de T associado a  $\lambda$ .

O subespaço de E, Nuc $(T - \lambda I)$ , é chamado de **subespaço próprio** associado a  $\lambda$ , que representaremos por  $E(\lambda)$ :

$$E(\lambda) = \operatorname{Nuc}(T - \lambda I)$$
.

## 2.1 Vectores e valores próprios de matrizes

Analogamente, podem definir-se os conceitos de valor próprio e vector próprio de uma matriz  $\mathbf{A}$   $(n \times n)$ . Nesse sentido, um vector  $\mathbf{v} \neq 0$  e um escalar  $\lambda$  são, respectivamente, um vector próprio de  $\mathbf{A}$  e um valor próprio de  $\mathbf{A}$ , se

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}.$$

O conjunto dos valores próprios de  $\bf A$  é designado por **espectro** da matriz  $\bf A$  e representado por  $\sigma(\bf A)$ . Ao contrário do que sucede para uma transformação linear qualquer, para uma matriz podemos obter uma caracterização dos seus valores próprios. Na verdade, atendendo a que

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \Leftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0},$$

se  $\mathbf{v}$  é um vector próprio associado ao valor próprio  $\lambda$ , podemos afirmar que  $\mathbf{v}$  é uma solução não nula do sistema homogéneo  $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$ , e portanto concluir que

$$\lambda \in \sigma(A) \Leftrightarrow \det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

Facilmente se verifica que det  $(\mathbf{A} - \lambda \mathbf{I})$  é um polinómio em  $\lambda$  de grau n, chamado de **polinómio característico** de  $\mathbf{A}$ . Logo o conjunto dos valores próprios de uma matriz  $\mathbf{A}$  é analiticamente identificado pelas raízes de um polinómio:

$$\sigma(\mathbf{A}) = \{\lambda : \det(\mathbf{A} - \lambda \mathbf{I}) = 0\}.$$

O conjunto dos vectores próprios associados a um mesmo valor próprio de  $\mathbf{A}$ , é constituído por todos os vectores não nulos que são solução do sistema homogéneo  $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$ , ou seja Nul $(\mathbf{A} - \lambda \mathbf{I}) \setminus \{\mathbf{0}\}$ . O subespaço Nul $(\mathbf{A} - \lambda \mathbf{I})$  é também designado por espaço próprio associado ao valor próprio  $\lambda$  e igualmente representado por  $E(\lambda)$ .

## 2.2 Vectores e valores próprios de transformações lineares em espaços de dimensão finita

Seja agora  $T: E \to E$  uma transformação linear em que o espaço E é de dimensão finita. Considerando a matriz  $[T]_{\mathcal{B}}$  que representa T, relativamente a uma dada base  $\mathcal{B}$  de E, de

$$[T(\mathbf{v})]_{\mathcal{B}} = [T]_{\mathcal{B}} [\mathbf{v}]_{\mathcal{B}},$$

podemos concluir que a relação

$$T(\mathbf{v}) = \lambda \mathbf{v}$$

é equivalente a

$$[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = \lambda [\mathbf{v}]_{\mathcal{B}}.$$

Deste modo, os valores próprios de T são valores próprios da matriz  $[T]_{\mathcal{B}}$ . O espaço próprio associado a um valor próprio  $\lambda$ , pode também ser caracterizado através da matriz  $[T]_{\mathcal{B}}$ :

$$E(\lambda) = \operatorname{Nuc}(T - \lambda I) = \{ \mathbf{v} \in E : [\mathbf{v}]_{\mathcal{B}} \in \operatorname{Nul}([T]_{\mathcal{B}} - \lambda \mathbf{I}) \}.$$

No caso de ser  $E=\mathbb{R}^n$  ou  $\mathbb{C}^n$  como há uma identificação entre vectores e coordenadas na base canónica temos que

$$E(\lambda) = \operatorname{Nuc}(T - \lambda I) = \operatorname{Nul}([T]_{\varepsilon} - \lambda I),$$

onde  $[T]_{\mathcal{E}}$  é a representação matricial de T na base canónica de  $\mathbb{R}^n$  ou  $\mathbb{C}^n$ .

## 2.3 Diagonalização de matrizes

Uma matriz  $\mathbf{D}$   $(n \times n)$  diz-se uma matriz **diagonal** se forem nulos todos os elementos de  $\mathbf{D}$  que estão fora da diagonal principal:

$$\mathbf{D} = \begin{bmatrix} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ 0 & 0 & d_3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & d_n \end{bmatrix}.$$

Por exemplo, a matriz identidade é uma matriz diagonal.

Uma matriz  $\mathbf{A}$   $(n \times n)$  é dita **diagonalizável** se for **semelhante** a uma matriz diagonal  $\mathbf{D}$ . Ou seja, se existir uma matriz invertível,  $\mathbf{S}$ , dita matriz de semelhança, tal que

$$\mathbf{A} = \mathbf{SDS}^{-1}.$$

Teorema da diagonalização. Uma matriz A (n × n) é diagonalizável se e só se admitir n vectores próprios, v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>, linearmente independentes.
A matriz de semelhança, S, terá como colunas as coordenadas dos vectores próprios v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>:

$$\mathbf{S} = [\mathbf{v}_1 \ \mathbf{v}_2...\mathbf{v}_n].$$

A matriz diagonal

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

será formada de maneira que  $\lambda_j$  é um valor próprio associado a  $\mathbf{v}_j$ , para j=1,...,n.

• Corolário. Se A tiver n valores próprios distintos, então A é diagonalizável.

Com E um espaço de dimensão finita (dim E=n) seja  $T:E\to E$  uma transformação linear representada por uma matriz [T] diagonalizável. Nestas condições, aos n vectores próprios de [T] linearmente independentes, associamos n vectores próprios de T também linearmente independentes que desse modo constituirão uma base  $\mathcal B$  do espaço E e dizemos que a transformação T é diagonalizável. A matriz diagonal  $\mathbf D=[T]_{\mathcal B}$  semelhante a [T] será a representação de T relativamente à base  $\mathcal B$ .

#### 2.4 Exercícios

**Exercício 19** Seja  $T: \mathbb{R}^2 \to \mathbb{R}^2$  a transformação linear definida por

$$T(x_1, x_2) = (x_1 + 2x_2, 2x_1 + x_2)$$

e considere os vectores  $\mathbf{v}_1 = (2,1)$ ,  $\mathbf{v}_2 = (-1,1)$ ,  $\mathbf{v}_3 = (2,3)$  e  $\mathbf{v}_4 = (4,4)$ . Identifique os que são vectores próprios de T. Nos casos afirmativos, indique os respectivos valores próprios de T.

Exercício 20 Considere a transformação linear definida por

$$T(x_1, x_2, x_3) = (0, x_2 + 3x_3, 3x_2 + x_3).$$

Dentre os vectores  $\mathbf{v}_1 = (2, 1, 1)$ ,  $\mathbf{v}_2 = (0, -1, 1)$ ,  $\mathbf{v}_3 = (1, 0, 0)$ ,  $\mathbf{v}_4 = (0, 1, 3)$  e  $\mathbf{v}_5 = (0, 3, 3)$ , quais são vectores próprios de T? E que valores próprios de T que lhes estão associados?

Exercício 21 T é a transformação linear definida por:

$$T(x_1, x_2, x_3) = (x_1 + 2x_2 + 2x_3, 2x_1 + x_2 + 2x_3, 2x_1 + 2x_2 + x_3).$$

Verifique se alguns dos vectores  $\mathbf{v}_1 = (2, 1, 1)$ ,  $\mathbf{v}_2 = (1, 1, 1)$ ,  $\mathbf{v}_3 = (-2, 0, 2)$ ,  $\mathbf{v}_4 = (-1, 1, 3)$  e  $\mathbf{v}_5 = (-1, 1, 0)$  são vectores próprios de T. A que valores próprios de T estão associados?

**Exercício 22** Seja  $T: \mathbb{R}^2 \to \mathbb{R}^2$  a transformação linear definida por

$$T(x_1, x_2) = (x_1 + x_2, x_1 + x_2).$$

Mostre que os vectores  $\mathbf{v}_1 = (1, -1)$  e  $\mathbf{v}_2 = (1, 1)$  determinam uma base de  $\mathbb{R}^2$  constituída por vectores próprios de T. Nesta base, determine a representação matricial de T.

**Exercício 23**  $T: \mathbb{R}^3 \to \mathbb{R}^3$  é a transformação linear dada por:

$$T(x_1, x_2, x_3) = (x_2, x_2, x_2)$$
.

Justifique que os vectores  $\mathbf{v}_1 = (1,0,0)$ ,  $\mathbf{v}_2 = (1,1,1)$  e  $\mathbf{v}_3 = (0,0,1)$  determinam uma base de  $\mathbb{R}^3$  constituída por vectores próprios de T. Qual a representação matricial de T nesta base?

**Exercício 24** T é a transformação linear definida por  $T(x_1, x_2) = (x_1 + 2x_2, 3x_2)$ .

- a) Indique o polinómio característico de T.
- b) Calcule os valores próprios e os subespaços próprios de T que lhes estão associados.
- c) Determine uma base de  $\mathbb{R}^2$  constituída por vectores próprios de T. Qual a representação matricial de T nesta base?

**Exercício 25** Seja  $T: \mathbb{R}^2 \to \mathbb{R}^2$  a transformação linear que na base canónica de  $\mathbb{R}^2$  é representada pela matriz

$$\mathbf{A} = \left[ \begin{array}{cc} 2 & 3 \\ 3 & 2 \end{array} \right].$$

- a) Especifique  $\sigma(\mathbf{A})$ .
- b) Calcule os subespaços próprios de T.
- c) Determine uma matriz de mudança de base S e uma matriz diagonal D tais que

$$\mathbf{D} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S}.$$

**Exercício 26** Na base canónica de  $\mathbb{R}^2$  a transformação linear T é representada pela matriz

$$\mathbf{A} = \left[ \begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array} \right].$$

- a) Determine  $\sigma(\mathbf{A})$ .
- b) Calcule os subespaços próprios de T.
- c) Mostre que não existe uma base de  $\mathbb{R}^2$  constituída por vectores próprios de T.

**Exercício 27** Seja  $T: \mathbb{R}^3 \to \mathbb{R}^3$  a transformação linear definida por

$$T(x_1, x_2, x_3) = (x_2 + x_3, 2x_2 + x_3, x_2 + 2x_3).$$

a) Indique o polinómio característico de T.

- b) Calcule os valores próprios e os subespaços próprios de T.
- c) Determine uma base de  $\mathbb{R}^3$  constituída por vectores próprios de T. Qual é a representação matricial de T nesta base?
- d) Designando por  $\mathbf{A}$  a matriz que representa T na base canónica de  $\mathbb{R}^3$ , determine uma matriz  $\mathbf{S}$  e uma matriz diagonal  $\mathbf{D}$  tais que  $\mathbf{D} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ .

**Exercício 28**  $T: \mathbb{R}^3 \to \mathbb{R}^3$  é a transformação linear dada por

$$T(x_1, x_2, x_3) = (3x_1, 2x_2 + x_3, 2x_3).$$

- a) Qual o polinómio característico de T?
- b) Calcule os valores próprios e os subespaços próprios de T.
- c) Mostre que não existe uma base de  $\mathbb{R}^3$  constituída por vectores próprios de T.

**Exercício 29** Seja  $T: \mathbb{R}^3 \to \mathbb{R}^3$  a transformação linear que na base canónica de  $\mathbb{R}^3$  é representada pela matriz

$$\mathbf{A} = \left[ \begin{array}{ccc} 9 & 0 & 0 \\ 3 & 7 & -1 \\ 3 & -2 & 8 \end{array} \right].$$

- a) Determine  $\sigma(\mathbf{A})$ .
- b) Calcule os subespaços próprios de T.
- c) Determine uma matriz S e uma matriz diagonal D tais que  $D = S^{-1}AS$ .

**Exercício 30**  $T: \mathbb{P}_1 \to \mathbb{P}_1$  é uma transformação linear que na base canónica de  $\mathbb{P}_1$ , (1,t), é representada pela matriz

$$\mathbf{A} = \left[ \begin{array}{cc} -1 & -3 \\ 2 & 4 \end{array} \right].$$

- a) Determine  $\sigma(\mathbf{A})$ .
- b) Calcule os subespaços próprios de T.
- c) Indique uma base de  $\mathbb{P}_2$  tal que a representação matricial de T nessa base seja diagonal.

**Exercício 31** Considere a transformação linear  $T: \mathbb{P}_2 \to \mathbb{P}_2$  dada por

$$T(p(t)) = p'(t) + p(t).$$

- a) Relativamente à base canónica de  $\mathbb{P}_2$ ,  $(1, t, t^2)$ , que matriz representa T?
- b) Qual o polinómio característico de T?
- c) Calcule os valores próprios e os subespaços próprios de T.
- ${\bf d)}\ \textit{Pode}\ \textit{T}\ \textit{ser}\ \textit{representada}\ \textit{por}\ \textit{uma}\ \textit{matriz}\ \textit{diagonal?}\ \textit{Justifique}.$

Exercício 32 Considere a transformação que a cada polinómio p(t) de grau inferior a 3 faz corresponder o polinómio

$$T(p(t)) = (1 + 2t) p(t) + (1 - 2t) p(-t)$$
.

- a) Mostre que T é uma transformação linear de  $\mathbb{P}_2$  em  $\mathbb{P}_2$ .
- b) Relativamente à base  $(1, t, t^2)$  de  $\mathbb{P}_2$ , que matriz representa T?
- c) Calcule os valores próprios e os subespaços próprios de T.
- d) A transformação T diagonalizável? Justifique.

**Exercício 33** Duas matrizes quadradas A e B dizem-se semelhantes se existe uma matriz S invertível tal que  $B = S^{-1}AS$ . Mostre que:

- a) Qualquer matriz quadrada é semelhante a ela própria (A é semelhante a A).
- b) Se A e B são semelhantes, então também B e A são semelhantes.
- c) Se A e B são semelhantes e se B e C são semelhantes, então A e C são semelhantes.
- d) Se A e B são semelhantes e A é diagonalizável, então B é diagonalizável.
- e) Se A e B são semelhantes, então têm o mesmo polinómio característico.

## 3 Valores próprios complexos

Mesmo que  $\mathbf{A}$  seja uma matriz real  $(n \times n)$ ,  $\mathbf{A}$  pode admitir valores próprios complexos. Nestas condições, se  $\lambda \in \mathbb{C}$  é um valor próprio de  $\mathbf{A}$  então um vector próprio  $\mathbf{v}$  que lhe esteja associado será necessariamente um vector de  $\mathbb{C}^n$ :  $\mathbf{v} = (v_1, ..., v_n)$ , com  $v_1, ..., v_n \in \mathbb{C}$ . Numa circunstância destas é possível então concluir que  $\overline{\lambda}$ , o complexo conjugado de  $\lambda$ , é igualmente um valor próprio de A e que o chamado vector conjugado de  $\mathbf{v}$ ,

$$\overline{\mathbf{v}} = (\overline{v}_1, ..., \overline{v}_n),$$

é vector próprio de **A** associado a  $\overline{\lambda}$ .

#### 3.1 Exercícios

Exercício 34 Resolva as seguintes equações na variável complexa z.

a) 
$$z^4 - 1 = 0$$
. b)  $z^3 + 8 = 0$ . c)  $z^4 + 1 = 0$ . d)  $z(z - 3)^2 + 16z = 0$ .

**Exercício 35** Seja  $T: \mathbb{C}^2 \to \mathbb{C}^2$  a transformação linear definida por  $T(z_1, z_2) = (-z_2, z_1)$ .

- a) Calcule o polinómio característico de T.
- b) Quais os valores próprios e os subespaços próprios de T?
- c) Determine uma base de  $\mathbb{C}^2$  constituída por vectores próprios de T. Qual é a representação matricial de T nesta base?

**Exercício 36**  $T: \mathbb{C}^2 \to \mathbb{C}^2$  é a transformação linear que na base canónica de  $\mathbb{C}^2$  é representada pela matriz

$$\mathbf{A} = \left[ \begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array} \right].$$

- a) Indique o polinómio característico de A.
- b) Calcule os valores próprios e os subespaços próprios de T.
- c) Determine uma matriz de mudança de base S e uma matriz diagonal D tais que  $D = S^{-1}AS$ .

**Exercício 37** Seja  $T: \mathbb{C}^3 \to \mathbb{C}^3$  a transformação linear definida por

$$T(z_1, z_2, z_3) = (z_1 + z_2 - z_3, z_2, z_1 - z_2 + z_3).$$

- a) Calcule o polinómio característico de T.
- b) Determine os valores próprios e os subespaços próprios de T.
- c) Determine uma base de  $\mathbb{C}^3$  constituída por vectores próprios de T. Qual é a representação matricial de T nesta base?
- d) Designando por  $\mathbf{A}$  a matriz que representa T na base canónica de  $\mathbb{C}^3$ , determine uma matriz de mudança de base  $\mathbf{S}$  e uma matriz diagonal  $\mathbf{D}$  tais que  $\mathbf{D} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ .

Exercício 38 Considere as matrizes:

$$\mathbf{A} = \left[ \begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right] \ , \quad \mathbf{B} = \left[ \begin{array}{cc} -1 & 2 \\ -4 & 5 \end{array} \right] \quad e \quad \mathbf{C} = \left[ \begin{array}{cc} 10 & -4 \\ 24 & -10 \end{array} \right].$$

Mostre que todas são diagonalizáveis e calcule  $\mathbf{A}^n$ ,  $\mathbf{B}^n$  e  $\mathbf{C}^n$ , para  $n \in \mathbb{N}$ .

Exercício 39 Considere as matrizes:

$$\mathbf{A} = \left[ \begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right] \quad e \quad \mathbf{B} = \left[ \begin{array}{cc} 2 & 1 \\ -4 & 2 \end{array} \right].$$

Mostre que as matrizes  $\mathbf{A}$  e  $\mathbf{B}$  (não sendo diagonalizáveis enquanto matrizes reais) são diagonalizáveis enquanto matrizes complexas. Calcule  $\mathbf{A}^n$  e  $\mathbf{B}^n$ , para  $n \in \mathbb{N}$ .

Exercício 40 A matriz

$$\mathbf{A} = \left[ \begin{array}{cc} a & -b \\ b & a \end{array} \right]$$

com  $a, b \in \mathbb{R}$ ,  $b \neq 0$ , tem valores próprios complexos  $\lambda = a \pm ib$ . Mostre que transformação linear que A representa consiste na composição de uma rotação seguida de uma mudança de escala. Ou seja, que

$$\mathbf{A} = \begin{bmatrix} \rho & 0 \\ 0 & \rho \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

**Exercício 41** Com base no exercício anterior calcule  $A^n$ , onde

$$\mathbf{A} = \left[ \begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right].$$

Particularize para o cálculo de  $\mathbf{A}^{10}$  e  $\mathbf{A}^{12}$ .

# 4 Aplicação à resolução de algumas equações diferenciais

**Exercício 42** Seja  $T: \mathbb{P}_2 \to \mathbb{P}_2$  a transformação linear definida por

$$T(p(t)) = p'(t) - 2p(t).$$

- a) Qual a matriz que representa T na base canónica  $\{1, t, t^2\}$  de  $\mathbb{P}_2$ ?
- b) Mostre que T é bijectiva e calcule a matriz que representa  $T^{-1}$  na mesma base. Justifique que, para qualquer polinómio  $q(t) \in \mathbb{P}_2$ ,

$$T^{-1}(q(t)) = -\frac{1}{2}q(t) - \frac{1}{4}q'(t) - \frac{1}{8}q''(t).$$

c) Resolva em  $\mathbb{P}_2$  a equação diferencial  $p'(t) - 2p(t) = 1 + t + t^2$ .

**Exercício 43** Seja  $T: \mathbb{P}_2 \to \mathbb{P}_2$  a transformação linear definida por

$$T(p(t)) = t^2 p''(t) - 2p(t).$$

- a) Que matriz representa T na base canónica  $\{1, t, t^2\}$  de  $\mathbb{P}_2$ ?
- b) Determine uma base do Nuc T e conclua que T não é injectiva nem sobrejectiva.
- c) Resolva em  $\mathbb{P}_2$  a equação diferencial  $t^2p''(t) 2p(t) = 1$ .

**Exercício 44** No espaço vectorial  $C^2(\mathbb{R})$  das funções reais de variável real duas vezes diferenciáveis, considere a transformação linear  $T:C^2(\mathbb{R})\to C^2(\mathbb{R})$  definida por

$$T(f) = f'' - 2f' + f.$$

- a) Indique uma base de Nuc T (ver Exercício 49 da Ficha 2).
- b) Sabendo que  $f(t) \equiv 1$  é uma solução da equação linear T(f) = 1, calcule a única solução da mesma equação que verifica f(0) = f'(0) = 0.

Exercício 45 Considere o sistema de equações diferenciais lineares

$$\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, com \ \mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Decida quais dos seguintes pares de funções são soluções deste sistema:  $(-e^t, e^t)$ ,  $(e^{3t}, e^{3t})$ ,  $(e^t, e^{3t})$ .

Exercício 46 Considere uma matriz  $\mathbf{A} \in \mathbb{M}_{2\times 2}(\mathbb{R})$  e designe por  $\mathcal{S}_{\mathbf{A}}$  o conjunto das soluções do sistema

$$\left[\begin{array}{c} x_1'(t) \\ x_2'(t) \end{array}\right] = \mathbf{A} \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right].$$

a) Mostre que  $S_{\mathbf{A}}$  com as operações usuais de adição e multiplicação por escalar tem estrutura de espaço linear.

b) Mostre que se  $\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ , então os pares de funções  $(e^{\lambda_1 t}, 0)$  e  $(0, e^{\lambda_2 t})$  constituem uma base para  $\mathcal{S}_{\mathbf{D}}$ , e portanto

$$\mathcal{S}_{\mathbf{D}} = \left\{ \left( c_1 e^{\lambda_1 t}, c_2 e^{\lambda_2 t} \right) : c_1, c_2 \in \mathbb{R} \right\}.$$

Sugestão: mostre que se  $(x_1(t),x_2(t)) \in S_{\mathbf{D}}$ , então  $x_1(t)e^{-\lambda_1 t}$  e  $x_2(t)e^{-\lambda_2 t}$  são funções constantes.

c) Mostre que se  $\mathbf{J} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$ , então os pares de funções  $(e^{\lambda t}, 0)$  e  $(te^{\lambda t}, e^{\lambda t})$  constituem uma base para  $\mathcal{S}_J$ , e portanto

$$\mathcal{S}_{\mathbf{J}} = \left\{ \left( c_1 e^{\lambda t} + c_2 t e^{\lambda t}, c_2 e^{\lambda t} \right) : c_1, c_2 \in \mathbb{R} \right\}.$$

Sugestão: mostre que se  $(x_1(t), x_2(t)) \in \mathcal{S}_{\mathbf{J}}$  então  $x_2(t)e^{-\lambda t}$  é uma função constante e  $x_1(t)e^{-\lambda t}$  é um polinómio com grau  $\leq 1$ .

d) Mostre que se S é uma matriz de mudança de base e  $B = S^{-1}AS$ , então tem-se:

$$\mathcal{S}_{\mathbf{A}} = \left\{ \mathbf{S} \left[ \begin{array}{c} y_1(t) \\ y_2(t) \end{array} \right] : (y_1(t), y_2(t)) \in \mathcal{S}_{\mathbf{B}} \right\}.$$

Exercício 47 Considere a matriz

$$\mathbf{A} = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right].$$

- a) Mostre que A é diagonalizável, identificando uma matriz diagonal D e uma matriz de mudança de base S tais que  $A = SDS^{-1}$ .
- b) Resolva o sistema de equações diferenciais

$$\begin{cases} x_1'(t) = 2x_1(t) + x_2(t) \\ x_2'(t) = x_1(t) + 2x_2(t) \end{cases}$$

Exercício 48 Considere a matriz

$$\mathbf{A} = \left[ \begin{array}{cc} 2 & 1 \\ -2 & 5 \end{array} \right].$$

- a) Mostre que A é diagonalizável, identificando uma matriz diagonal D e uma matriz de mudança de base S tais que  $A = SDS^{-1}$ .
- b) Calcule a única solução do problema de valores iniciais

$$\begin{cases} x_1'(t) = 2x_1(t) + x_2(t) \\ x_2'(t) = -2x_1(t) + 5x_2(t) \end{cases}, x_1(0) = 1, x_2(0) = -1.$$

## 5 Soluções

4) 
$$-\delta\gamma$$
.

6)  $\lambda^n$ , onde n é o número de linhas (e de colunas da matriz).

8)a) 
$$-9$$
; b)  $-5$ ; c)  $-7$ ; d) 6; e) 15; f)  $-45$ .

9) Falso; 
$$\det \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 2.$$

10) a) 
$$-9$$
. b)  $-5$ . c)  $-7$ .

12) a) 22. b) 15.

13) 
$$\det \mathbf{A} = -2$$
,  $\det \mathbf{B} = 4$ . a)  $-54$ . b)  $-128$ . c)  $-2$ . d) 1.

14) a) 
$$\operatorname{Cof} \mathbf{A} = \begin{bmatrix} -2 & 1 & 0 \\ 4 & -2 & 1 \\ -7 & 4 & -2 \end{bmatrix}$$
,  $\det \mathbf{A} = 1 \text{ e } \mathbf{A}^{-1} = \begin{bmatrix} -2 & 4 & -7 \\ 1 & -2 & 4 \\ 0 & 1 & -2 \end{bmatrix}$ .

b) 
$$\operatorname{Cof} \mathbf{A} = \begin{bmatrix} -2 & -3 & 4 \\ -2 & 2 & -1 \\ 1 & -1 & -2 \end{bmatrix}$$
,  $\det \mathbf{A} = -5 \text{ e } \mathbf{A}^{-1} = \begin{bmatrix} 2/5 & 2/5 & -1/5 \\ 3/5 & -2/5 & 1/5 \\ -4/5 & 1/5 & 2/5 \end{bmatrix}$ .

c) 
$$\operatorname{Cof} \mathbf{A} = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$
,  $\det \mathbf{A} = 3 e \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1/3 & 0 \\ -2/3 & -1/3 & 1 \end{bmatrix}$ .

d) 
$$\operatorname{Cof} \mathbf{A} = \begin{bmatrix} -9 & 6 & -3 \\ 18 & -12 & 6 \\ -9 & 6 & -3 \end{bmatrix}$$
,  $\det \mathbf{A} = 0$  e  $\mathbf{A}$  não é invertível.

15) a) det 
$$A = 21$$
, b) det  $B = -3$ , c) det  $\left(\frac{1}{3}\mathbf{A}\mathbf{B}^3\right) = -7$ , d)  $\left[\mathbf{A}^{-1}\right]_{12} = \frac{1}{3}$ .

16) a) 
$$(-9, 5, -2)$$
. b)  $(1, 0, -1)$ .

19)  $\mathbf{v}_1$  e  $\mathbf{v}_3$  não são vectores próprios de T;  $\mathbf{v}_2$  é vector próprio de T associado ao valor próprio -1,  $\mathbf{v}_4$  é vector próprio de T associado ao valor próprio 3.

20)  $\mathbf{v}_2$ ,  $\mathbf{v}_3$  e  $\mathbf{v}_5$  são vectores próprios de T; -2, 0 e 4 são os respectivos valores próprios.

21)  $\mathbf{v}_2$  é vector próprio de T associado ao valor próprio 5,  $\mathbf{v}_3$  e  $\mathbf{v}_5$  são vectores próprio associados ao valor próprio -1.

$$22) \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}. 23) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

24) a) 
$$P(\lambda) = (\lambda - 1)(\lambda - 3)$$
.

b) 1 e 3 são os valores próprios de T. Os subespaços próprios de T são:

$$E(1) = \mathcal{L}\{(1,0)\} \in E(3) = \mathcal{L}\{(1,1)\}.$$

c) 
$$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
.

25) a) 
$$\sigma(\mathbf{A}) = \{-1, 5\}$$
 b)  $E(-1) = \mathcal{L}\{(-1, 1)\} \in E(5) = \mathcal{L}\{(1, 1)\}.$  c)  $\mathbf{D} = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$  e  $\mathbf{S} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$ 

26 a) 
$$\sigma(\mathbf{A}) = \{2\}$$
. b)  $E(2) = \mathcal{L}\{(1,0)\}$ . c)  $\dim E(2) = 1 \neq \dim \mathbb{R}^2 = 2$ .

27) a) 
$$P(\lambda) = \lambda (3 - \lambda) (\lambda - 1)$$
.

b) 0, 1 e 3 são os valores próprios de T. Os subespaços próprios são:

$$E(0) = \mathcal{L}\{(1,0,0)\}, E(1) = \mathcal{L}\{(0,-1,1)\} \in E(3) = \mathcal{L}\{(2,3,3)\}.$$

c) 
$$\{(1,0,0),(0,-1,1),(2,3,3)\}$$
.

d) 
$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 e  $\mathbf{S} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 0 & 1 & 3 \end{bmatrix}$ .

28) a) 
$$P(\lambda) = (3 - \lambda) (\lambda - 2)^2$$
.

b) 2 e 3 são os valores próprios de T. Os subespaços próprios são:

$$E(2) = \mathcal{L}\{(0,1,0)\} \in E(3) = \mathcal{L}\{(1,0,0)\}.$$

c) Não existe uma base de  $\mathbb{R}^3$  formada por vectores próprios de T porque dim  $E\left(2\right)+\dim E\left(3\right)=2\neq\dim\,\mathbb{R}^3.$ 

29) a) 
$$\sigma(\mathbf{A}) = \{6, 9\}$$
.

b) 
$$E(6) = \mathcal{L}\{(0,1,1)\} \in E(9) = \mathcal{L}\{(2,3,0), (1,0,3)\}.$$

c) 
$$\mathbf{S} = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix} \mathbf{e} \ \mathbf{D} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}.$$

30) a) 
$$\sigma(\mathbf{A}) = \{1, 2\}$$
.

b) 
$$E(1) = \mathcal{L}(\{t - 3/2\}), E(2) = \mathcal{L}(\{t - 1\}).$$

c) 
$$T$$
 é representada por  $\mathbf{D}=\left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right]$  na base  $\{t-3/2,t-1\}$  .

31) a) 
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
. b)  $(1 - \lambda)^3$ .

c) 1 é valor próprio de 
$$T.$$
  $E\left(1\right)=\mathcal{L}\left\{ 1\right\} .$ 

d) Não: 
$$\dim E(1) = 1 \neq 3 = \dim \mathbb{P}_2$$
.

32) b) 
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4 & 2 \end{bmatrix}$$
. c)  $\sigma(T) = \{0, 2\}$ .  $E(0) = \mathcal{L}\{t - 2t^2\} \in E(2) = \mathcal{L}\{1, t\}$ . d)

Sim:  $\dim E(0) + \dim \overline{E}(2) = \dim \mathbb{P}_2$ .

34) a) 
$$z = \pm 1$$
 e  $z = \pm i$ . b)  $z = 1 \pm i\sqrt{3}$  e  $z = -2$ .

c) 
$$z = (\sqrt{2} \pm i\sqrt{2})/2$$
 e  $z = (-\sqrt{2} \pm i\sqrt{2})/2$ . d)  $z = 0$  e  $z = 3 \pm 4i$ .

35) a) 
$$P(z) = z^2 + 1$$
. b)  $\pm i$  são os valores próprios de  $T; E(i) = \mathcal{L}\{(i,1)\}$  e  $E(-i) = \mathcal{L}\{(-i,1)\}$ .

c) 
$$\{(i,1),(-i,1)\}$$
 é base de  $\mathbb{C}^2$ ;  $\mathbf{D} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$ .

36) a) 
$$P(z) = z^2 + 4$$
. b)  $\pm 2i$  são os valores próprios de  $T$ ;  $E(2i) = \mathcal{L}\{(-i, 1)\}$  e  $E(-2i) = \mathcal{L}\{(i, 1)\}$ .

c) 
$$\{(i,1),(-i,1)\}$$
 é base de  $\mathbb{C}^2$ ;  $\mathbf{D} = \begin{bmatrix} -2i & 0 \\ 0 & 2i \end{bmatrix}$ ,  $\mathbf{S} = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$ .

37) a) 
$$P(z) = (1-z)[(1-z)^2+1]$$
. b) 1 e  $1 \pm i$  são os valores próprios de  $T$ ;

$$E(1) = \mathcal{L}\{(1,1,1)\}, E(1+i) = \mathcal{L}\{(i,0,1)\} \in E(1-i) = \mathcal{L}\{(-i,0,1)\}.$$

c) 
$$\{(1,1,1),(i,0,1),(-i,0,1)\}$$
 é base de  $\mathbb{C}^2$ ;  $\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 1-i \end{bmatrix}$ .

d) 
$$\mathbf{S} = \begin{bmatrix} 1 & i & -i \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} e \mathbf{D}.$$

38 
$$\mathbf{A}^n = \begin{bmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{bmatrix}$$
,  $\mathbf{B}^n = \begin{bmatrix} 2 - 3^n & 3^n - 1 \\ 2 - 2(3^n) & 2(3^n) - 1 \end{bmatrix}$  e

$$\mathbf{C}^{n} = \begin{bmatrix} 3(2^{n}) - 2(-2)^{n} & (-2)^{n} - (2^{n}) \\ 6(2^{n}) - 6(-2)^{n} & 3(-2)^{n} - 2(2^{n}) \end{bmatrix}.$$

39) 
$$\mathbf{A}^n = \sqrt{2^n} \begin{bmatrix} \cos(n\pi/4) & \sin(n\pi/4) \\ -\sin(n\pi/4) & \cos(n\pi/4) \end{bmatrix} e \mathbf{B}^n = \sqrt{8^n} \begin{bmatrix} \cos(\pi n/4) & \frac{1}{2}\sin(\pi n/4) \\ -2\sin(\pi n/4) & \cos(\pi n/4) \end{bmatrix}$$
.

41) 
$$\mathbf{A}^{n} = \begin{bmatrix} 2^{n/2} \cos(n\pi/4) & -2^{n/2} \sin(n\pi/4) \\ 2^{n/2} \sin(n\pi/4) & 2^{n/2} \cos(n\pi/4) \end{bmatrix}$$
.  $\mathbf{A}^{10} = \begin{bmatrix} 0 & -32 \\ 32 & 0 \end{bmatrix}$ ;  $\mathbf{A}^{12} = \begin{bmatrix} -64 & 0 \\ 0 & 64 \end{bmatrix}$ .

42) a) 
$$\begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$
 b)  $\begin{bmatrix} -1/2 & -1/4 & -1/4 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & -1/2 \end{bmatrix}$  c)  $-1 - t - t^2/2$ .

43) a) 
$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. b)  $\{t^2\}$  é base de Nuc  $T$ . c)  $p(t) = -1/2 + at^2$ , com  $a \in \mathbb{R}$ .

44) a) 
$$\{e^t, te^t\}$$
. b)  $f(t) = te^t - e^t + 1$ .

45) Sim, sim, não.

47) a) 
$$\mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
 e  $\mathbf{S} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ ; b)  $\mathcal{S}_{\mathbf{A}} = \{(-c_1e^t + c_2e^{3t}, c_1e^t + c_2e^{3t}) : c_1, c_2 \in \mathbb{R}\}$ 

48) a) 
$$\mathbf{S} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 e  $\mathbf{D} = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ ; b)  $(3e^{3t} - 2e^{4t}, 3e^{3t} - 4e^{4t})$