Técnicas de Concepção de Algoritmos (1ª parte): Programação Dinâmica

Desenho de Algoritmos DA, L.EIC

Técnicas de Concepção de Algoritmos, DA - L.EIC

2

Programação dinâmica (dynamic programming)

Aplicabilidade e abordagem

- Problemas resolúveis recursivamente (solução é uma combinação de soluções de subproblemas similares)
- ... Mas, em que a resolução recursiva directa duplicaria trabalho (resolução repetida do mesmo subproblema)
- ♦ Abordagem:
 - > 1°) Economizar tempo (evitar repetir trabalho), memorizando as soluções parciais dos subproblemas (gastando memória!)
 - > 2°) Economizar memória, resolvendo subproblemas por ordem que minimiza n° de soluções parciais a memorizar (*bottom-up*, começando pelos casos-base)
- Termo "Programação" vem da Investigação Operacional, no sentido de "formular restrições ao problema que o tornam num método aplicável" e autocontido, de decisão.

Técnicas de Concepção de Algoritmos, DA - L.EIC

Técnicas de Concepção de Algoritmos, DA - L.EIC

Exemplo: ⁿC_k, versão recursiva

```
long combRec (int n, int k) {
    if (k == 0 || k == n)
        return 1;
    else
        return combRec (n-1, k) + combRec (n-1, k-1);
}

Executa Ck-1 vezes (no de somas a efectuar é no de parcelas -1)

Executa Ck-1 vezes (no de 1s / parcelas que é preciso somar)

Executa 2Ck-1 vezes para calcular Ck!!

Pode-se melhorar muito, evitando repetição de trabalho (cálculos intermédios Cj)
```

Técnicas de Concepção de Algoritmos

Memorização (memoization)

Para economizar tempo, basta aplicar a técnica de memorização (memoization), com array ou hash map.

```
long combMem(int n, int k) {
   // memory to store solutions (initially none)
   static long mem[100][100]; // n <= 99
   // if instance already solved, return from memory
   if (mem[n][k] != 0)
      return mem[n][k];
   // solve recursively
   long sol;
   if (k == 0||k == n) sol = 1;
   else sol = combMem(n-1, k) + combMem(n-1, k-1);
   // memorize and return solution
   mem[n][k] = sol;
   return sol;
}</pre>
```

Técnicas de Concepção de Algoritmos

ⁿC_k - Programação dinâmica

Para economizar memória, passa-se a abordagem bottom-up.

Para o exemplo ⁵C₂:

Calculando da esquerda para a direita, basta memorizar uma coluna.

ou

Calculando de cima para baixo, basta memorizar uma linha (diagonal).

Técnicas de Concepção de Algoritmos, DA - L.EIC

Implementação

Guardar apenas uma coluna, e calcular da esq. para dir. :

```
long combDynProg(int n, int k) {
  int maxj = n - k;
  long c[1 + maxj];
  for (int j = 0; j <= maxj; j++)
    c[j] = 1;
  for (int i = 1; i <= k; i++)
    for (int j = 1; j <= maxj; j++)
    c[j] += c[j-1];
  return c[maxj];
}</pre>
Tempo: T(n,k) = O(k(n-k))
Espaço: S(n,k) = O(n-k)
```

(0<k<n, senão O(1))

◆ Um ladrão encontra o cofre cheio de itens de vários tamanhos e valores, mas tem apenas uma mochila de capacidade limitada; qual a combinação de itens que deve levar para maximizar o valor do roubo? ➤ Tamanhos e capacidades inteiros ➤ Vamos assumir n°

ilimitado de itens de cada tipo

Formalização como problema de programação linear

- Dados
 - \rightarrow m capacidade da mochila $(m \in \mathbb{N})$
 - > $s_1, ..., s_n$ tamanhos dos itens 1, ..., $n (s_i \in \mathbb{N})$
 - \triangleright $v_1, ..., v_n$ valores dos itens 1, ..., n
- ◆ Encontrar valores das variáveis de decisão
 - $\rightarrow x_1, ..., x_n$ n° de cópias a usar de cada item $(x_i \in \mathbb{N})$
- lacktriangle Por forma a maximizar a função objetivo: $\sum_{i=1}^n v_i x_i$
- Sujeito à **restrição** (inequação): $\sum_{i=1}^{n} s_i x_i \leq m$

Problema de <u>programação linear</u>: problema de otimização em que a função objetivo e as restrições envolvem combinações lineares das variáveis de decisão (no caso geral não resolúvel em tempo polinomial).

Técnicas de Concepção de Algoritmos, DA - L.EIC

Formulação recursiva

- Necessário para depois aplicar programação dinâmica
- O valor máximo que se consegue colocar numa mochila de capacidade $k \in \mathbb{N}$, usando itens 1,..., i de tamanho $s_1,..., s_i \in \mathbb{N}$) e valor $v_1,..., v_i$ pode ser dado pela função:

Usando item
$$i$$

$$f(i,k) = \begin{cases} 0, & se \ k=0 \ \lor i=0 \\ v_i+f(i,k-s_i), se \ s_i \le k \land v_i+f(i,k-s_i) > f(i-1,k) \end{cases}$$
 N\text{N\text{\text{0}} usando item } i \tag{f(i-1,k)}, & noutros casos}

O último item na solução ótima é dado pela função:

$$g(i,k) = \begin{cases} 0 \text{ (nenhum)}, & se \ k = 0 \ \forall i = 0\\ i, se \ s_i \le k \land v_i + f(i,k-s_i) > f(i-1,k)\\ g(i-1,k), & noutros \ casos \end{cases}$$

ullet O valor ótimo é f(n,m) c/itens $g(n,m),\ g(n,m-s_{g(n,m)}),\ ...$

Técnicas de Concepção de Algoritmos, DA - L.EK

2

.

Estratégia de prog. dinâmica

- Calcular a melhor combinação para todas as mochilas de capacidade k, de 1 até M (capacidade pretendida)
- ◆ Começar por considerar que só se pode usar o item 1, depois os itens 1 e 2, etc., e finalmente todos os itens de 1 a N (N = n° de itens)
- Cálculo é eficiente em tempo e espaço se efectuado pela ordem apropriada

Técnicas de Concepção de Algoritmos, DA - L.EIC

Evolução dos dados de trabalho															15							
i	s	v	k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	-	-	f[]	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	3	4	Iter																			
2	4	5				• M;																
3	7	10																				
4	8	11																				
5	9	13																				
Técnica	s de Co	ncepção	de Algoritmo	s, D	4 - L.E	EIC																

																					16
Evolução dos dados de trabalho																					
	• •		3			•															
i	s	v	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	-	-	f[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			g[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	3	4	f[k]	0	0	0	4	4	4	8	8	8	12	12	12	16	16	16	20	20	20
			g[k]	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	5	Itera	ção																	
			i = 1																		
3	7	10	size[М;														
4	8	11	sizeſ		(= k	ANI) va			cost	- [k-			osti							
_			THEN																		
5	9	13																			
Técnicas	de Co	ncepção	de Algoritmos,	DA - L.	EIC																

																					17
E	EV	ol	ução)	d	O:	S	d	ac	d)S	6	de	, ć	tr	a	b	al	h	0	
			3																		
i	s	v	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	-	-	f[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			g[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	3	4	f[k]	0	0	0	4	4	4	8	8	8	12	12	12	16	16	16	20	20	20
l			g[k]	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	5	f[k]	0	0	0	4	5	5	8	9	10	12	13	14	16	17	18	20	21	22
			g[k]	0	0	0	1	2	2	1	2	2	1	2	2	1	2	2	1	2	2
3	7	10	f[k]	0	0	0	4	5	5	8	10	10	12	14	15	16	18	20	20	22	24
<u> </u>			g[k]	0	0	0	1	2	2	1	3	2	1	3	3	1	3	3	1	3	3
4	8	11	f[k]	0	0	0	4	5	5	8	10	11	12	14	15	16	18	20	21	22	24
l			g[k]	0	0	0	1	2	2	1	3	4	1	3	3	1	3	3	4	3	3
5	9	13	f[k]	0	0	0	4	5	5	8	10	11	13	14	15	17	18	20	21	23	24
			g[k]	0	0	0	1	2	2	1	3	4	5	<u>3</u>	3	5	3	3	4	5	<u>3</u>
Técnica	ıs de Co	ncepção	de Algoritmos, D	A - L.	EIC																

Implem. com prog. dinâmica

- ◆ Calculando f e g por ordem de valores de i e k crescentes, basta memorizar valores para último i
- \bullet **f**[k] e **g**[k] na iteração *i* têm valores de f(i,k) e g(i,k)

```
int f[m+1] = {0}; // iniciado c/ 0's (i=0)
int g[m+1] = {0}; // iniciado c/ 0's (i=0)

for (int i = 1; i <= n; i++ )
  for (int k = s[i]; k <= m; k++)
    if (v[i] + f[k-s[i]] > f[k]) {
        f[k] = v[i] + f[k-s[i]];
        g[k] = i;
    }
    Como k é percorrido por ordem crescente
    f[k-s[i]] já tem o valor da iteração i

// impressão de resultados (valor e itens)
print(f[m]);
for(int k = m; k > 0 && g[k] > 0; k -= s[g[k]])
        print(g[k]);
```

Números de Fibonacci

- $\bullet \quad \mathbf{F} = \{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...\}$
- ◆ Fórmula de recorrência: F(n) = F(n-1) + F(n-2), n > 1

```
> F(0) = 0
> F(1) = 1
```

◆ Para calcular F(n), basta memorizar os dois últimos elementos da sequência para calcular o seguinte:

```
int Fib(int n) {
  int a = 1, b = 0; // F(1), F(0)
  for (int i=1; i <= n; i++) {int t = a; a = b; b += t; }
  return b;
}</pre>
```

Técnicas de Concepção de Algoritmos, DA - L.EIC

20

Subsequência crescente mais comprida (LIS - longest increasing subsequence)

- Exemplo:
 - \rightarrow Sequência s = (9, 5, 2, 8, 7, 3, 1, 6, 4)
 - Subsequência crescente mais comprida (elem's não necessariamente contíguos): (2, 3, 4) ou (2, 3, 6)
- Formulação recursiva 'oficial':
 - > s₁, ..., s_n sequência
 - l_i compr. da maior subseq. crescente de (s₁, ..., s_i) terminando em s_i
 - p_i predecessor de s_i nessa subsequência crescente
 - $l_i = 1 + \max \{ l_k \mid 0 < k < i \land s_k < s_i \}$ (max{} = 0)
 - p_i = valor de k escolhido para o máx. na expr. de l_i
 - > Comprimento final: max(l_i)

LIS - Cálculos para o exemplo dado

i 0 1 2 3 4 5 6 7 8 9

Sequência si 9 5 <u>2</u> 8 7 <u>3</u> 1 <u>6</u> 4

Tamanho li 1 1 1 2 2 2 1 <u>3</u> 3

Predecessor pi - - - 2 2 <u>3</u> - <u>6</u> 6

Resposta: (2, 3, 6)

Técnicas de Concepção de Algoritmos, DA - L.EI

22

Aplicações em Grafos

Caminho mais curto em grafos dirigidos: Caso de arestas com peso negativo

- Neste caso pode ser necessário processar cada vértice mais do que uma vez.
- Se existirem ciclos com peso negativo, o problema não tem solucão.
- Não existindo ciclos com peso negativo, o problema é resolúvel em tempo O(|V||E|) pelo algoritmo de Bellman-Ford (a seguir).

Sem solução, pois tem um ciclo de peso negativo (-1).

Com solução, pois não tem ciclos de peso negativo.

Técnicas de Concepção de Algoritmos, DA - L.EIC

24

Algoritmo de Bellman-Ford

- O algoritmo de Bellman-Ford é um exemplo de Programação Dinâmica: começa com um vértice inicial e calcula as distâncias a outros vértices que podem ser alcançados com uma aresta, e continua a encontrar caminhos com duas arestas, e assim sucessivamente.
- Em cada iteração *i*, o algoritmo processa todas as arestas e garante que encontra todos os caminhos mais curtos com até *i* arestas (e possivelmente alguns mais longos) (invariante do ciclo principal).
- ◆ Uma vez que o caminho mais comprido, sem ciclos, tem |V|-1 arestas, basta executar no máximo |V|-1 iterações do ciclo principal para assegurar que todos os caminhos mais curtos são encontrados.
- No final é executada mais uma iteração para ver se alguma distância pode ser melhorada; se for o caso, significa que há um caminho mais curto com |V| arestas, o que só pode acontecer se existir pelo menos um ciclo de peso negativo.
- Podem ser efetuadas algumas melhorias ao algoritmo, mas que mantêm a complexidade temporal de O (|V| |E|).

Algoritmo de Bellman-Ford

```
BELLMAN-FORD (G, s): // G=(V,E), s \in V
                                                     Tempo de
     for each ∨ ∈ ∨ do
1.
                                                     execução:
2.
        dist(v) \leftarrow \infty
                                                    O(|E| |V|)
3.
        path(v) \leftarrow nil
     dist(s) \leftarrow 0
5.
     for i = 1 to |V|-1 do
        for each (v, w) \in E do
7.
           if dist(w) > dist(v) + weight(v,w) then
8.
              dist(w) \leftarrow dist(v) + weight(v, w)
9.
              path(w) \leftarrow v
10. for each (v, w) \in E do
        if dist(v) + weight(v,w) < dist(w) then</pre>
11.
           fail("there are cycles of negative weight")
12.
```

Técnicas de Concepção de Algoritmos, DA - L.EIG

Caminho mais curto entre todos os pares de vértices

- Relevante por exemplo para pré-processamento de um mapa de estradas
- ◆ Execução repetida do algoritmo de Dijkstra (ganancioso):
 O(|V| (|V|+|E|) log|V|)
 - Bom se o grafo for esparso (|E| ~ |V|), como é o caso das redes viárias
- Algoritmo de Floyd-Warshall, programação dinâmica: Θ(|V|³)
 - Melhor que o anterior se o grafo for denso $(|E| \sim |V|^2)$
 - Mesmo em grafos pouco densos pode ser melhor porque o código é mais simples
 - ▶ Baseia-se em matriz de adjacências W[i,j] com pesos (∞ quando não há aresta; 0 quando i = j)
 - Calcula a matriz de distâncias mínimas D[i,j] e a matriz P[i,j] de predecessor no caminho mais curto de i para j

Técnicas de Concepção de Algoritmos, DA - L.EIC

6

Algoritmo de Floyd-Warshall

- Invariante do ciclo principal: em cada iteração k (de 0 a |V|),
 D[i,j] tem a distância mínima do vértice i a j, usando apenas vértices intermédios do conjunto {1, ..., k}
- ♦ Inicialização (k=0):

```
D[i,j]^{(0)} = W[i,j] 	 P[i,j]^{(0)} = nil
```

◆ Recorrência (k=1,..., |V|):

$$D[i,j]^{(k)} = min(D[i,j]^{(k-1)}, D[i,k]^{(k-1)} + D[k,j]^{(k-1)})$$

- > Valor de P[i,j]^(k) é atualizado conforme o termo mínimo escolhido
- Para minimizar memória, pode-se atualizar a matriz em cada iteração k, em vez de criar uma nova matriz

Técnicas de Concepção de Algoritmos, DA - L.EIC

28

Em resumo...

- ◆ Algoritmos gananciosos (greedy algorithms)
 - > Contexto: Problemas de optimização (max. ou min.)
 - > Objectivo: Atingir a solução óptima, ou uma boa aproximação.
 - > Forma: tomar uma decisão óptima localmente, i.e., que maximiza o ganho (ou minimiza o custo) imediato.
- Algoritmos de retrocesso (backtracking)
 - > Contexto: problemas sem algoritmos eficientes (convergentes) para chegar à solução.
 - > Objectivo: Convergir para uma solução.
 - > Forma: tentativa-erro. Gerar estados possíveis e verificar todos até encontrar solução, retrocedendo sempre que se chegar a um "beco sem saída".

Em resumo...

- ◆ Divisão e conquista (divide and conquer)
 - > Contexto: Problemas passíveis de se conseguirem sub-dividir.
 - > Objectivo: melhorar eficiencia temporal.
 - > Forma: agregação linear da resolução de sub-problemas de dimensão semelhantes até chegar ao caso-base.
- ◆ Programação dinâmica (dynamic programming)
 - > Contexto: Problemas de solução recursiva.
 - > Objectivo: Minimizar tempo e espaço.
 - > Forma: Induzir uma progressão iterativa de transformações sucessivas de um espaço linear de soluções.

Técnicas de Concepção de Algoritmos, DA - L.EIC

30

Referências

- ◆ T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009
 - Capítulo 15 (Dynamic Programming)
- Mark Allen Weiss. Data Structures & Algorithm Analysis in Java. Addison-Wesley, 1999
- Steven S. Skiena. The Algorithm Design Manual. Springer 1998
- ◆ Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992