Scientific Computing HW 3

Ryan Chen

February 18, 2023

Problem 1. Pf. From the Butcher array,

$$A = \begin{bmatrix} \gamma & 0 \\ 1 - \gamma & \gamma \end{bmatrix}, \quad b = \begin{bmatrix} 1 - \gamma \\ \gamma \end{bmatrix}, \quad c = \begin{bmatrix} \gamma \\ 1 \end{bmatrix}$$

Check the 1st order accuracy condition.

$$\sum_{l=1}^{2} b_{l} = (1 - \gamma) + \gamma = 1$$

Check the 2nd order accuracy condition.

$$\sum_{l=1}^{2} b_l c_l = (1-\gamma)\gamma + \gamma \cdot 1 = \gamma - \gamma^2 + \gamma = 2\gamma - \gamma^2 = 2 - 2^{1/2} - 1 - 2^{-1} + 2^{1/2} = 1 - 2^{-1} = \frac{1}{2}$$

Thus the method is 2nd order accurate. To show it is A-stable, we first find the stability function R(z) and let $|z| \to \infty$.

$$I - zA = \begin{bmatrix} 1 - \gamma z & 0 \\ -(1 - \gamma)z & 1 - \gamma z \end{bmatrix} \implies D := \det(I - zA) = (1 - \gamma z)^2 = \gamma^2 z^2 - 2\gamma z + 1$$

$$\implies (I - zA)^{-1} = \frac{1}{D} \begin{bmatrix} 1 - \gamma z & 0 \\ (1 - \gamma)z & 1 - \gamma z \end{bmatrix} \implies (I - zA)^{-1} \mathbf{1}_{s \times 1} = \frac{1}{D} \begin{bmatrix} 1 - \gamma z \\ (1 - \gamma)z + 1 - \gamma z \end{bmatrix} = \frac{1}{D} \begin{bmatrix} 1 - \gamma z \\ (1 - 2\gamma)z + 1 \end{bmatrix}$$

$$R(z) - 1 = zb^T (I - zA)^{-1} \mathbf{1}_{s \times 1} = \frac{z}{D} \left[(1 - \gamma)(1 - \gamma z) + \gamma((1 - 2\gamma)z + 1) \right] = \frac{z}{D} \left[1 - \gamma z - \gamma + \gamma^2 z + (\gamma - 2\gamma^2)z + \gamma \right]$$

$$\implies R(z) - 1 = \frac{z}{D} \left[1 - \gamma^2 z \right] = \frac{-\gamma^2 z^2 + z}{\gamma^2 z^2 - 2\gamma z + 1} \implies R(z) = \frac{-\gamma^2 z^2 + z}{\gamma^2 z^2 - 2\gamma z + 1} + 1 \xrightarrow{|z| \to \infty} -1 + 1 = 0$$

To finish showing A-stability, we plot |R(z)| < 1 and see that it contains the left half plane.