Permit Number 48978

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source Air		Contaminant	Emission	Rates *
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
1		PM ₁₀ SO ₂	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
2		PM ₁₀ SO ₂	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
3		PM ₁₀ SO ₂	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
4		PM ₁₀ SO ₂	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
5		PM ₁₀ SO ₂	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12

Emission	Source	Air	Contaminant	Emission	Rates *
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
					_
6	Cooper Bessemer GMV10)	CO	6.04	26.46
	(1,250-HP) (5)		NO_x	49.57	217.12
		PM_{10}	0.35	1.52	
		SO_2	0.01	0.03	
		VOC	1.88	8.23	
7	Cooper Bessemer GMV10)	CO	6.04	26.46
	(1,250-HP) (5)		NO_x	49.57	217.12
		PM_{10}	0.35	1.52	
		SO_2	0.01	0.03	
		VOC	1.88	8.23	
8	Cooper Bessemer GMV10)	СО	6.04	26.46
	(1,250-HP) (5)		NO_x	49.57	217.12
		PM_{10}	0.35	1.52	
		SO_2	0.01	0.03	
		VOC	1.88	8.23	
9	Cooper Bessemer GMV10)	СО	6.04	26.46
	(1,250-HP) (5)		NO_x	49.57	217.12
	, , ,	PM_{10}	0.35	1.52	
		SO_2	0.01	0.03	
		VOC	1.88	8.23	
10	Cooper Bessemer GMV10)	СО	6.04	26.46
	(1,250-HP) (5)		NO_x	49.57	217.12
	, , ,	PM_{10}	0.35	1.52	
		SO_2	0.01	0.03	
		VOC	1.88	8.23	
11	Cooper Bessemer GMV10)	СО	6.04	26.46
	(1,250-HP) (5)		NO_x	49.57	217.12
		PM_{10}	0.35	1.52	
		SO_2	0.01	0.03	
		VOC	1.88	8.23	

12	Cooper Bessemer GMV10 (1,250-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.35 0.01 1.88	6.04 49.57 1.52 0.03 8.23	26.46 217.12
13	Cooper Bessemer GMVA: (1,350-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.37 0.01 2.03	6.51 53.52 1.64 0.03 8.90	28.52 234.44
14	Cooper Bessemer GMVA: (1,350-HP) (5)	PM ₁₀ SO ₂ VOC	CO NO _x 0.37 0.01 2.03	6.51 53.52 1.64 0.03 8.90	28.52 234.44
15	Cooper Bessemer GMVH: (2,000-HP) (6)	PM ₁₀ SO ₂	CO NO _x 0.56 0.01 2.30	7.39 60.65 2.43 0.05 10.06	32.34 265.63
		CO (TNO _x (PM ₁₀ SO ₂ (VOC	(7) (7) (7)	5.72 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30
16	Cooper Bessemer GMVH: (2,000-HP) (6)	PM ₁₀ SO ₂	CO NO _x 0.56 0.01 2.30	7.39 60.65 2.43 0.05 10.06	32.34 265.63

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**

Permit Number 48978 Page 4

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission	nission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
	• 7	CO (7) NO _x (7) PM ₁₀ (7) SO ₂ (7) VOC (7)	5.72 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30	
17	Cooper Bessemer GMVH (2,000-HP) (6)	10 CO NO _x PM ₁₀ 0.56 SO ₂ 0.01 VOC2.30	7.39 60.65 2.43 0.05 10.06	32.34 265.63	
		CO (7) NO _x (7) PM ₁₀ (7) SO ₂ (7) VOC (7)	5.72 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30	
20	Cooper Bessemer GMVH (2,000-HP) (6)	10 CO NO_{x} $PM_{10}0.56$ $SO_{2}0.01$ VOC2.30	7.39 60.65 2.43 0.05 10.06	32.34 265.63	
		CO (7) NO _x (7) PM ₁₀ (7) SO ₂ (7) VOC (7)	5.72 30.83 0.56 0.01 4.40	19.30 135.07 2.43 0.05 19.30	

Emission	Source	ce Air Contaminant		Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
21	Cooper Bessemer GMVH10	СО	7.39	32.34
	(2,000-HP) (6)	NO_x	60.65	265.63
	PM ₁₀ 0.56 SO ₂ 0.01 VOC2.30		2.43	
			0.05	
			10.06	

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		CO (7) NO _x (7)	5.72 30.83	19.30 135.07
		PM_{10} (7)	0.56	2.43
		SO ₂ (7)	0.01	0.05
		VOC (7)	4.40	19.30
22	Cooper Bessemer GMVH1	10 CO	7.39	32.34
	(2,000-HP) (6)	NO_x	60.65	265.63
		PM ₁₀ 0.56	2.43	
		SO ₂ 0.01	0.05	
		VOC2.30	10.06	
		CO (7)	5.72	19.30
		NO _x (7)	30.83	135.07
		PM ₁₀ (7)	0.56	2.43
		SO ₂ (7)	0.01	0.05
		VOC (7)	4.40	19.30
30	Cooper Bessemer JS8 (5)	СО	1.90	8.30
	(715-HP)	NO_x	24.39	106.82
		PM ₁₀ 0.20	0.87	
		SO ₂ 0.01	0.02	
		VOC0.71	3.09	
31	Cooper Bessemer JS8 (5)	СО	1.90	8.30
	(715-HP)	NO_x	24.39	106.82
	,	PM ₁₀ 0.20	0.87	
		SO ₂ 0.01	0.02	
		VOC0.71	3.09	
32	Cooper Bessemer JS8 (5)	СО	1.90	8.30
	(715-HP)	NO_x	24.39	106.82
	•	PM ₁₀ 0.20	0.87	
		SO ₂ 0.01	0.02	
		VOC0.71	3.09	

Emission	n Source Air Co		Emission	ion Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
33	Cooper Bessemer JS8 (5)		1.90	8.30	
	(715-HP)	NO_x	24.39	106.82	
		PM ₁₀ 0.20	0.87		
		SO ₂ 0.01	0.02		
		VOC0.71	3.09		
34	Dresser Rand PKVG8 (5)	СО	2.34	10.24	
	(880-HP)	NO_x	30.00	131.40	
	,	PM ₁₀ 0.24	1.07		
		SO ₂ 0.01	0.02		
		VOC0.87	3.83		
35	Dresser Rand PKVG8 (5)	СО	2.34	10.24	
	(880-HP)	NO_x	30.00	131.40	
	,	PM ₁₀ 0.24	1.07		
		SO ₂ 0.01	0.02		
		VOC0.87	3.83		
HTR-37	Borne Heater	СО	3.61	15.80	
	(41.1 MMBtu/hr)	NO_x	4.30	18.81	
	,	PM ₁₀ 0.33	1.43		
		SO ₂ 0.03	0.11		
		VOC0.24	1.04		
FUG	Process Fugitive Area (4)	VOC	6.81	29.83	

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) CO carbon monoxide
 - NO_x nitrogen oxides
 - PM₁₀ particulate matter less than 10 microns
 - SO₂ sulfur dioxide
 - VOC volatile organic compounds as defined in the Title 30 Texas Administrative Code § 101.1
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) These engines shall be permanently shutdown and rendered inoperable by December 31, 2007.
- (6) Emission rate prior to the engine rebuild that is required by Special Condition No. 1. The rebuild of this engine must be complete by December 31, 2007.
- (7) Emission rate after engine rebuild completion.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

_____24_Hrs/day _7_Days/week _52_Weeks/year

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated _