<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 3: Optimization / Lecture 9: Second derivative test

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

Previous

25:58:25

☐ Bookmark this page

Reflect

Another explanation

Start of transcript. Skip to the end.

PROFESSOR: OK so let's continue.

Oh, before we continue--

Let's see, I wanted to point out one small thing.

So here we have this magic quantity 4ac minus b squared.

You've probably seen that before in your life.

Yeah, it looks like the quadratic

0:00 / 0:00

▶ 2.0x

X

CC 66

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Video Download video file

You may recognize the expression $4ac-b^2$ or rather b^2-4ac as something that arises in the quadratic formula. This connection exists and can be made explicit if we rewrite our function $w\left(x,y\right)$ in another way.

$$w(x,y) = ax^2 + bxy + cy^2 (4.64)$$

$$= \underbrace{y^2}_{\geq 0} \underbrace{\left[a \left(\frac{x}{y} \right)^2 + b \left(\frac{x}{y} \right) + c \right]}_{(*)} \tag{4.65}$$

We can try to understand the behavior of this function by exploring the expression (*) above.

- ullet If $b^2-4ac>0$, this is the case that this expression has two roots. In this case, that means that this equation (*) takes both positive and negative values. Thus $w\left(x,y
 ight)$ also takes both positive and negative values, which means that the critical point must be a saddle point.
- If $b^2-4ac < 0$, this equation (st) has no roots, which means the equation (st) is everywhere nonpositive, or everywhere nonnegative. Thus $w\left(x,y
 ight)\geq0$ or $w\left(x,y
 ight)\leq0$ (with equality occurring at the critical point $w\left(0,0
 ight)=0$). If $w\left(x,y
 ight)\geq0$, then the critical point is a minimum. If $w\left(x,y
 ight)\leq0$, then the critical point is a maximum.

7. Comparison to the quadratic formula

Topic: Unit 3: Optimization / 7. Comparison to the quadratic formula

Hide Discussion

by recent activity >

Add a Post

Show all posts

<u>Degenerate function</u>

Could anyone tell me degenerate case in detail? What actually the term degenerate means here?

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>