第四次報告

4105053128 應用數學系 唐永承

Separate Signal

- 1. When separating a signal, we need to map that signal into high dimension.
- 2. Use pre trained D_1 and D_2 to find its sparse representation x_1 and x_2 .
- 3. Use decoder to recover image D_1x_1 and D_2x_2 .

Dictionary Learning

 $\underset{D1,D2,x1,x2}{\operatorname{argmin}} \|y_{1} - D_{1}x_{1}\|_{F}^{2} + \|y_{2} - D_{2}x_{2}\|_{F}^{2} + \lambda \|D_{1}^{T}D_{2}\|_{F}^{2} + \Gamma_{x}(x_{1}) + \Gamma_{x}(x_{2}) + \Gamma_{D}(D_{1}) + \Gamma_{D}(D_{2})$

 y_1 : picture 1

 y_2 : picture 2

 D_1 : dictionary for picture 1

 D_2 : dictionary for picture 2

 x_1 : sparse representation of picture 1 for D_1

 x_2 : sparse representation of picture 2 for D_2

 λ : regularization parameters

 Γ_{χ} : constraint for x (make it sparse)

 Γ_D : constraint for D (normalize)

Training Dictionary

- 1. Random D and x
- 2. Train both D and x, until they converge
- 3. L0 proximal mapping of x replace by L1 proximal mapping. Fix D, and find x
- 4. Use those pre trained D and x, and back to step 2
- 5. Repeat step 3 and 4 until D and x converge

Reconstructing by Dictionary

- 1. Random x
- 2. Use l1 proximal mapping to find x
- 3. Make previous x as initial value, then use 10 proximal mapping to find final x

Problem & Solution

Problem:

- It still cannot get correct x.
- The calculated nonzero value of x can have the same position as the correct x, but the value is slightly different.

Solution:

So we decided to train decoder with some noise added on nonzero value's position of x.

Result of Denoise Decoder

- Training decoder with some noise added on nonzero value's position of x (5% of ||x||).
- Reconstructed y1 by y1 and random initial value of x.
- In order to remove noise, decoded image will be blurred.

Better Method?

- CNN Encoder and Decoder
- GAN