Set #1

- 1. In the Bohr's model of the H atom, give an expression for:
 - a. the electron speed as a function of the orbit radius.
 - b. the total energy as a function of the orbit radius.
- 2. How many different photons could be emitted upon a transition from the n=5 down to the fundamental n=1 of an H atom. Compute the exact frequency for one of the transitions.
- 3. A commercial (green) laser pointer has a max/output power $P \le 1$ mW and a beam spot $w_o = 1.1$ mm. If $\lambda = 532$ nm is the light source wavelength, compute the (1.) pointer photon's flux and (2.) the number of photons emitted in 10 sec when you purposely cover half of the exit hole with your finger. (Neglect divergence).
- 4.
- a. Give the potential energy of a charge q_2 located at \mathbf{r}_2 due to the presence of a charge q_1 located at \mathbf{r}_1 .
- b.Derive the force exerted on the charge q_2 as due to the charge q_1 .
- c.Discuss the two charge possibilities.
- d. Apply the above results to the case of an electron placed at a distance r from a nucleus of a H atom (Bohr's model).
- e.Redo part d. for a nucleus of charge Ze.

Extra.

In a photoelectric experiment Ca is used as photocathode and the following values of stopping potential V_s vs. wavelength λ are measured:

λ, Å	2536	3132	3650	4047
1 , Hz \times 10 ¹⁵	1.18	0.958	0.822	0.741
V_s , V	1.95	0.98	0.50	0.14

Calculate the Planck constant \hbar and the work function Φ .

- 1. In the Bohr's model of the hydrogen atom, give an expression of:
 - a. the electron speed as a function of the orbit radius.
 - b. the total energy as a function of the orbit radius.
 - c. the fraction of the potential energy that contributes to the total energy.

1. 9.) In open punto dell'orbite torre di Contoners deve enu upuole al

forte radide:
$$\frac{e^2}{\gamma^2} = \frac{uv^2}{\gamma} = v^2 = \frac{e^2}{u\gamma}$$

b. Eu. potentiale: U= - e2 (U= 9192 F= 9192)

Eu. Guerce:
$$k = \frac{1}{2} \pi v^2 = \frac{1}{2} \frac{v}{v} = \frac{e^2}{2r}$$

$$E = Eu$$
. Totale = $U+K = \frac{e^2}{2Y} - \frac{e^2}{Y} = -\frac{1}{2}\frac{e^2}{Y}$

$$\underline{C}$$
. $\xi = \frac{1}{\lambda} \left(-\frac{e^2}{\gamma} \right)$

How many different photons could be emitted upon a transition from the n=5 down to the fundamental n=1 of an hydrogen atom. Show the frequencies.

Da
$$n=2 \rightarrow n=1$$
 $\frac{1}{2}$ un ble formi
Da $n=3 \rightarrow n=1$ $\frac{1}{2}$ 3 diverni formi

Dau=5-n=1
$$\frac{\overline{1}}{1}$$
 10 diverni foroni

Lu quincle, de n'alfondementale (n=1) une he foroni enussi.

· Transitione n=5 -> n=4

$$E_{4} = -\frac{R}{h^{2}} \qquad E_{5} - E_{4} = -\frac{R}{25} + \frac{R}{16} = R\left(\frac{1}{16} - \frac{1}{25}\right) = 13.6 \text{ eV} \qquad \left(\frac{1}{16} - \frac{1}{25}\right) = 0.306 \text{ eV}$$

$$= h = \frac{LC}{\lambda_{54}}$$

$$\lambda_{54} = \frac{0.306 \text{ eV}}{12.6 \times 10^{3} \text{ eV}} \stackrel{\text{=}}{A} \qquad \lambda_{54} \cong 40523 \text{ A} \cong 4 \text{ prod}$$

Transtrue N=5-10=3

$$\frac{1}{25} - \frac{1}{25} = R \left(\frac{1}{9} - \frac{1}{25} \right) = 0.964 eV$$

$$= \frac{hC}{\lambda_{5h}}$$

$$\frac{1}{2.h} = \frac{12.h \times 10^3 eV}{0.964 eV} = \frac{12.8 \mu m}{0.964 eV}$$

Transme U=5-M=2

$$E_{5}-E_{2} = R\left(\frac{1}{4}-\frac{1}{25}\right) = 2.85eV$$

$$= \frac{hC}{\lambda_{52}}$$

$$\lambda_{52} = \frac{hC}{2.85eV} = \frac{12.4 \times 10^{3} EV^{2}}{12.4 \times 10^{3} EV^{2}} = ... \approx 0.43 \mu m$$

A commercial (green) laser pointer has a max/output power $P \leq 1$ mW and a beam spot $w_o = 1.1$ mm. If $\lambda = 532$ nm is the light source wavelength, compute the (1.) pointer photon's flux and (2.) the number of photons emitted in 10 sec when you purposely cover half of the exit hole with your finger. (Neglect divergence).

1.) Every server
$$\frac{1}{2}$$
 because that $\frac{1}{2}$ because that $\frac{1}{2}$ because the $\frac{1}{2}$ because $\frac{1}{2}$

- a. Give the potential energy of a charge q_2 located at r_2 due to the 5. presence of a charge q_1 located at r_1 .
 - b. Derive the force exerted on the charge q2 as due to the charge q1.
 - c.Discuss the two charge possibilities.
 - d. Apply the above results to the case of an electron placed at a distance r from a nucleus of a H atom (Bohr's model).

distance r from a nucleus of a H atom (Bohr's model).

e.Redo part d. for a nucleus of charge Ze.

$$\frac{q_1}{\sqrt{2}-\overline{r_1}}$$

$$\frac{q_2}{\sqrt{2}-\overline{r_2}}$$

$$\frac{q_1}{\sqrt{2}-\overline{r_2}}$$

$$\frac{q_2}{\sqrt{2}-\overline{r_2}}$$

$$\frac{q_1}{\sqrt{2}-\overline{r_2}}$$

$$\frac{\partial}{\partial x} \left(x^{2} + y^{2} + 2^{2} \right)^{1/2} = -\frac{1}{2} \frac{2x}{(x^{2} + y^{2} + 2^{2})^{1/2}} = -\frac{1}{2} \frac{2x}{(x^{2} + y^{2} + 2^{2})^{3/2}} = -\frac{1}{|7|^{3}}$$
fruitarly for $77, 02$:

$$\vec{F} = -9.92 \left(-\frac{21}{1713} - \frac{1}{1713} - \frac{21}{1713} \right) = +9.92 \left(-\frac{7}{1713} \right) \left[+9.92 - \frac{12-51}{182-711} \right]$$

C.) If
$$q_1 = +iei$$
 $q_2 = -iei$ $\overline{F}_1 = -iei^2 \frac{\overline{V}}{|\overline{V}|^3}$ force is opposite to $\overline{V}_2 = -iei$

If
$$9_1 = +101$$
 $9_2 = +101$ $\overline{7}_2 = +101^2 \frac{7}{|7|^3}$ u u along $\overline{9}_1$ (Repulsive)

d.)
$$\phi = -\frac{1012}{|\vec{r}|} \vec{F} = -\frac{1012}{|\vec{r}|^3}$$
 (Attractive)

In a photoelectric experiment Ca is used as photocathode, and the following values of stopping potential vs. wavelength are measured:

λ, Å	2536	. 3132	3650	4047
ν , Hz $\times 10^{15}$	1.18	0.958	0.822	0.741
V _s ; V	1.95	0.98	0.50	0.14

Calculate the Planck constant \hbar and the work function Φ .

giseV	L Company	λ	2536	3650	hoh4 (R)	
(√)		Ύ.		0.82	0,74 (101542	P
	0 0,5 1 V (H2 x1015)	N _L			0,iu (V)	6

$$hv = E + \phi$$

$$E = e \text{ Virop} \qquad e \text{Verop} = hv - \phi \qquad \text{Virop} = (\frac{h}{e})v - \frac{\phi}{e}$$

$$\text{Shape} = \frac{(1.95 - 0.14) \times}{(1.18 - 0.74) 10^{15} \text{ Hz}} = \frac{h}{e}$$

*

$$h = \frac{e(1.95 - 0.14) \vee}{(1.1.8 - 0.74) \cdot 10^{15} \, \text{Hz}} = \frac{(1.6 \times 10^{19} \, \text{C}) \cdot (1.81 \, \text{V})}{0.44 \times 10^{15} \, \text{Hz}} = \frac{6.59 \times 10^{34} \, \text{J/Aee.}^{1}}{\text{Planck's coust.}}$$

Le Verop = 0 =
$$\frac{d}{e} = \frac{h}{e} v_{th}$$
 $v_{th} \simeq 0.7 \times 10^{15} Hz$
 $\phi \simeq 6.6 \times 10^{-314} \text{ J/Hz} \times 0.7 \times 10^{15} \text{ Hz} = h.62 \times 10^{-19} \text{ J} \simeq 2.9 \text{ eV}$

using best fit:

Thu:
$$h = 10^{15} = 4.08 \left[\frac{V}{164.7} \right] = h = 4.08 \times 10^{15} \cdot 10^{15} \cdot$$

In a photoelectric experiment Ca is used as photocathode, and the following values of stopping potential vs. wavelength are measured:

λ, Å	2536 ·	. 3132	3650	4047
ν , Hz \times 10 ¹⁵	1.18	0.958	0.822	0.741
V _s , V	1.95	0.98	0.50	0.14

Calculate the Planck constant \hbar and the work function Φ .

Usiop de	λ 2536 3650	hoha
(v)	v 1.18 0.82	pt,0
0 0.5 1 N (H2 ×1015)	Nz 1.95 0.50	o,ih

(R)

$$hv = E + \phi$$

$$E = e \text{ Virop} \qquad e \text{ Virop} = hv - \phi \qquad \text{ Virop} = (\frac{h}{e})v - \frac{\phi}{e}$$

$$\text{Shape} = \frac{(1.95 - 0.14) \times}{(1.18 - 0.74) 10^{15} \text{ Hz}} = \frac{h}{e}$$

Le
$$VPROP = 0 = D \qquad \frac{d}{e} = \frac{h}{e} V + h$$
 $V + 2 = 0.7 \times 10^{15} Hz$
 $\Phi \cong 6.6 \times 10^{-31} J Hz \times 0.7 \times 10^{15} Hz = h.62 \times 10^{-19} J \cong 2.9 eV$

using best fit:

Thu:
$$\frac{h}{e} \cdot 10^{15} = 4.08 \left[\frac{V}{Aee.} \right] = h = h \cdot 0.08 \times 10^{15} \cdot e \left[\frac{V}{Aee.} \right] = 4.08 \times 10^{15} \cdot 1.6 \times 10^{15}$$

$$= 6.54 \times 10^{34} \text{ J. Nee.}$$

$$\frac{d}{c} = 2.8 \text{ V} = 0 \quad d = 1.8 \text{ eV}$$

$$2.8 \text{ V} \cdot 1.6 \times 10^{19} \text{ C} = 4.5 \times 10^{19} \text{ J}$$