

Ensemble Models

The idea

- The idea: construct a set of classifiers and combine them in certain way to classify new samples.
- The key to winning competitions

- To make it success: more accurate than each individual classifier
 - Need "accurate" (i.e. better than random guessing) and "diverse" (i.e. make errors on different data samples) classifiers
- The question: why does the idea of ensemble work?

- The three fundamental reasons
 - Statistical
 - Average out the votings to reduce the variance or bias
 - Computational
 - Combine the solutions obtained from local search
 - Representational
 - Possible to expand the space of the representation functions

Several Representatives

- General steps
 - 1. Producing a distribution of simple models on the subsets of the original data
 - 2. Combining the distribution into an "aggregated" model
- Three strategies
 - Bagging: decreasing variance
 - Boosting: decreasing bias
 - Stacking: improving the prediction power

Bagging

 Abbreviated for bootstrap aggregating

 Generating m new training sets by bootstrapping (i.e. sampling with replacement)

 Training each base classifier

Combining them by averaging the output

Bagging 10 decision trees

Source: Ensemble methods: Foundation and Algorithms. Zhou (2012)

Out-of-bag (oob) examples for estimating generalization error

$$H^{oob}(\boldsymbol{x}) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \sum_{t=1}^{T} \mathbb{I}(h_t(\boldsymbol{x}) = y) \cdot \mathbb{I}(\boldsymbol{x} \notin D_t)$$

$$err^{oob} = \frac{1}{|D|} \sum_{(\boldsymbol{x},y)\in D} \mathbb{I}(H^{oob}(\boldsymbol{x}) \neq y)$$

- Bagging requires diverse/independent learners, and so stable learners do not help.
 - KNN is stable.
 - Decision trees are unstable learners w.r.t. bootstrap subsets, particularly unpruned trees.

Bagging 1-NN

Bagging 1-NN

With increasing ensemble size, the generalization converges.

• Why?

- An example: random forest
 - Ensemble method designed for decision trees.
 - Two sources of randomness.
 - Bagging: each tree is grown using a bootstrap sample of data
 - Random input vectors: at each node, best split is chosen from random m attributes instead of all attributes

Leo Breiman, 1928 - 2005

1954: PhD Berkeley (mathematics)

1960 - 1967: UCLA (mathematics)

1969 -1982: Consultant

1982 - 1993 Berkeley (statistics)

1984 "Classification & Regression Trees" (with Friedman, Olshen, Stone)

1996 "Bagging"

2001 "Random Forests"

- Methods for growing the trees
 Fix a m <= p, at each node
 - Method 1
 - Choose d attributes randomly, compute their information gain, and choose the attribute with the largest gain to split.
 - Method 2
 - Compute a linear combination of L random attributes using weights generated from [-1, 1] randomly.
 - Method 3
 - Compute the information gain of all D attributes. Select the top d attributes by information gain. Randomly select one of d attributes as the splitting node.

Random Forest based on method 1

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

base classifiers of bagging

base classifiers of RF

Convergence property

Some Remarks

- Bagging works through reducing the prediction variance.
- Some simple analysis

$$P(h_i(\mathbf{x}) \neq f(\mathbf{x})) = \epsilon$$

$$H(oldsymbol{x}) = extstyle{ extstyle sign} \left(\sum_{i=1}^T h_i\left(oldsymbol{x}
ight)
ight)$$

H makes errors when at least half of the base classifiers make error

Assuming independence

$$P\left(H\left(x\right) \neq f(x)\right) = \sum_{k=0}^{\lfloor T/2 \rfloor} \binom{T}{k} (1-\epsilon)^k \epsilon^{T-k} \leq \exp\left(-\frac{1}{2}T\left(2\epsilon-1\right)^2\right) \quad \text{Hoeffding inequality}$$

Bagging is amenable to parallel processing.

Bagging can reduce variance, can we decrease bias?

Boosting

- A family of algorithms that turn weak learners to strong ones.
- The idea
 - Sequentially train a set of classifiers and combine them
 - Late learners focus more on mistakes of the earlier learners

```
Input: Sample distribution \mathcal{D};

Base learning algorithm \mathcal{L};

Number of learning rounds T.

Process:

1. \mathcal{D}_1 = \mathcal{D}. % Initialize distribution

2. for t = 1, \dots, T:

3. h_t = \mathcal{L}(\mathcal{D}_t); % Train a weak learner from distribution \mathcal{D}_t

4. \epsilon_t = P_{\boldsymbol{x} \sim D_t}(h_t(\boldsymbol{x}) \neq f(\boldsymbol{x})); % Evaluate the error of h_t

5. \mathcal{D}_{t+1} = Adjust\_Distribution(\mathcal{D}_t, \epsilon_t)

6. end

Output: H(\boldsymbol{x}) = Combine\_Outputs(\{h_1(\boldsymbol{x}), \dots, h_t(\boldsymbol{x})\})
```


 An instantiation of boosting: AdaBoost (Freund and Schapire 1997, Friedman et.al 2000)

```
Input: Data set D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}; Base learning algorithm \mathfrak{L}; Number of learning rounds T.
```

Process:

- 1. $\mathfrak{D}_1(x) = 1/m$. % Initialize the weight distribution
- 2. **for** t = 1, ..., T:
- 3. $h_t = \mathfrak{L}(D, \mathfrak{D}_t)$; % Train a classifier h_t from D under distribution \mathfrak{D}_t
- 4. $\epsilon_t = P_{\boldsymbol{x} \sim \mathcal{D}_t}(h_t(\boldsymbol{x}) \neq f(\boldsymbol{x}));$ % Evaluate the error of h_t
- 5. if $\epsilon_t > 0.5$ then break
- 6. $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$; % Determine the weight of h_t

7.
$$\mathcal{D}_{t+1}(x) = \frac{\mathcal{D}_{t}(x)}{Z_{t}} \times \begin{cases} \exp(-\alpha_{t}) \text{ if } h_{t}(x) = f(x) \\ \exp(\alpha_{t}) \text{ if } h_{t}(x) \neq f(x) \end{cases}$$
 Re-weighting
$$= \frac{\mathcal{D}_{t}(x)\exp(-\alpha_{t}f(x)h_{t}(x))}{Z_{t}} \text{ % Update the distribution, where } \\ \% Z_{t} \text{ is a normalization factor which } \% \text{ enables } \mathcal{D}_{t+1} \text{ to be a distribution}$$

8. **end**

Output:
$$H(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

Minimizing exponential loss

$$\ell_{\exp}(h \mid \mathcal{D}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})h(\boldsymbol{x})}] \qquad H(\boldsymbol{x}) = \sum_{t=1}^{I} \alpha_t h_t(\boldsymbol{x})$$

When the H is optimal, the following should hold.

$$\frac{\partial e^{-f(\boldsymbol{x})H(\boldsymbol{x})}}{\partial H(\boldsymbol{x})} = -f(\boldsymbol{x})e^{-f(\boldsymbol{x})H(\boldsymbol{x})}$$

$$= -e^{-H(\boldsymbol{x})}P(f(\boldsymbol{x}) = 1 \mid \boldsymbol{x}) + e^{H(\boldsymbol{x})}P(f(\boldsymbol{x}) = -1 \mid \boldsymbol{x})$$

$$= 0.$$

$$H(\boldsymbol{x}) = \frac{1}{2}\ln\frac{P(f(\boldsymbol{x}) = 1 \mid \boldsymbol{x})}{P(f(\boldsymbol{x}) = -1 \mid \boldsymbol{x})}$$

$$\begin{split} \operatorname{sign}(H(\boldsymbol{x})) &= \operatorname{sign}\left(\frac{1}{2}\ln\frac{P(f(\boldsymbol{x}) = 1\mid \boldsymbol{x})}{P(f(\boldsymbol{x}) = -1\mid \boldsymbol{x})}\right) \\ &= \begin{cases} 1, & P(f(\boldsymbol{x}) = 1\mid \boldsymbol{x}) > P(f(\boldsymbol{x}) = -1\mid \boldsymbol{x}) \\ -1, & P(f(\boldsymbol{x}) = 1\mid \boldsymbol{x}) < P(f(\boldsymbol{x}) = -1\mid \boldsymbol{x}) \end{cases} \\ &= \underset{y \in \{-1,1\}}{\operatorname{arg\,max}} P(f(\boldsymbol{x}) = y\mid \boldsymbol{x}) , \quad \text{Bayesian error rate} \end{split}$$

Construct from individual learner:

$$\begin{split} \ell_{\exp}(\alpha_t h_t \mid \mathcal{D}_t) &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_t} [e^{-f(\boldsymbol{x})\alpha_t h_t(\boldsymbol{x})}] \\ &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_t} \left[e^{-\alpha_t} \mathbb{I}(f(\boldsymbol{x}) = h_t(\boldsymbol{x})) + e^{\alpha_t} \mathbb{I}(f(\boldsymbol{x}) \neq h_t(\boldsymbol{x})) \right] \\ &= e^{-\alpha_t} P_{\boldsymbol{x} \sim \mathcal{D}_t} (f(\boldsymbol{x}) = h_t(\boldsymbol{x})) + e^{\alpha_t} P_{\boldsymbol{x} \sim \mathcal{D}_t} (f(\boldsymbol{x}) \neq h_t(\boldsymbol{x})) \\ &= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t \;, \end{split}$$
 Optimal weight:

$$\frac{\partial \ell_{\exp}(\alpha_t h_t \mid \mathcal{D}_t)}{\partial \alpha_t} = -e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t = 0 \longrightarrow \alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Minimizing the loss:

$$\ell_{\exp}(H_{t-1} + h_t \mid \mathcal{D}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})(H_{t-1}(\boldsymbol{x}) + h_t(\boldsymbol{x}))}]$$
$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}e^{-f(\boldsymbol{x})h_t(\boldsymbol{x})}]$$

Taylor expansion:

$$\ell_{\exp}(H_{t-1} + h_t \mid \mathcal{D}) \approx \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h_t(\boldsymbol{x}) + \frac{f(\boldsymbol{x})^2 h_t(\boldsymbol{x})^2}{2} \right) \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h_t(\boldsymbol{x}) + \frac{1}{2} \right) \right]$$

$$h_t(\boldsymbol{x}) = \underset{h}{\operatorname{arg min}} \ell_{\exp}(H_{t-1} + h \mid \mathcal{D})$$

$$= \underset{h}{\operatorname{arg min}} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h(\boldsymbol{x}) + \frac{1}{2} \right) \right]$$

$$= \underset{h}{\operatorname{arg max}} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} f(\boldsymbol{x})h(\boldsymbol{x}) \right]$$

$$= \underset{h}{\operatorname{arg max}} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[\frac{e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}]} f(\boldsymbol{x})h(\boldsymbol{x}) \right],$$

$$h_{t}(\boldsymbol{x}) = \arg\max_{h} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[\frac{e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}]} f(\boldsymbol{x}) h(\boldsymbol{x}) \right]$$

$$= \arg\max_{h} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left[f(\boldsymbol{x}) h(\boldsymbol{x}) \right] .$$

$$f(\boldsymbol{x}) h_{t}(\boldsymbol{x}) = 1 - 2\mathbb{I}(f(\boldsymbol{x}) \neq h_{t}(\boldsymbol{x}))$$

$$h_{t}(\boldsymbol{x}) = \arg\min_{h} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left[\mathbb{I}(f(\boldsymbol{x}) \neq h(\boldsymbol{x})) \right]$$

$$\mathcal{D}_{t+1}(\boldsymbol{x}) = \frac{\mathcal{D}(\boldsymbol{x})e^{-f(\boldsymbol{x})H_t(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[e^{-f(\boldsymbol{x})H_t(\boldsymbol{x})}]}
= \frac{\mathcal{D}(\boldsymbol{x})e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}e^{-f(\boldsymbol{x})\alpha_t h_t(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[e^{-f(\boldsymbol{x})H_t(\boldsymbol{x})}]}
= \mathcal{D}_t(\boldsymbol{x}) \cdot e^{-f(\boldsymbol{x})\alpha_t h_t(\boldsymbol{x})} \frac{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}]}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[e^{-f(\boldsymbol{x})H_t(\boldsymbol{x})}]}$$

A simple example:

(a) The XOR data

(b) 1st round

(c) 2nd round

(d) 3rd round

$$h_1(x) = \begin{cases} +1, & \text{if } (x_1 > -0.5) \\ -1, & \text{otherwise} \end{cases} \quad h_2(x) = \begin{cases} -1, & \text{if } (x_1 > -0.5) \\ +1, & \text{otherwise} \end{cases}$$

$$h_3(x) = \begin{cases} +1, & \text{if } (x_1 > +0.5) \\ -1, & \text{otherwise} \end{cases} \quad h_4(x) = \begin{cases} -1, & \text{if } (x_1 > +0.5) \\ +1, & \text{otherwise} \end{cases}$$

$$h_5(x) = \begin{cases} +1, & \text{if } (x_2 > -0.5) \\ -1, & \text{otherwise} \end{cases} \quad h_6(x) = \begin{cases} -1, & \text{if } (x_2 > -0.5) \\ +1, & \text{otherwise} \end{cases}$$

$$h_7(x) = \begin{cases} +1, & \text{if } (x_2 > +0.5) \\ -1, & \text{otherwise} \end{cases} \quad h_8(x) = \begin{cases} -1, & \text{if } (x_2 > +0.5) \\ +1, & \text{otherwise} \end{cases}$$

where x_1 and x_2 are the values of x at the first and the second dimension, respectively.

Rethinking AdaBoot

- Boosting is an additive model constructed sequentially.
- The exponential loss is an surrogate loss, an upper bound of 0-1 loss.

$$P(f(\boldsymbol{x}) = 1 \mid \boldsymbol{x}) = \frac{e^{H(\boldsymbol{x})}}{e^{H(\boldsymbol{x})} + e^{-H(\boldsymbol{x})}}$$

Log loss:
$$\ell_{log}(h \mid \mathcal{D}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[\ln \left(1 + e^{-2f(\boldsymbol{x})h(\boldsymbol{x})} \right) \right]$$

- Optimization log loss with gradient descent with base regression models: LogitBoost
- Other variants: L2Boost, or more generally Gradient Boosting (functional gradient descent)
 - XGBoost Library

Input: Data set $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};$ Least square base learning algorithm \mathfrak{L} ; Number of learning rounds T.

Process:

- 1. $y_0(x) = f(x)$. % Initialize target
- 2. $H_0(x) = 0$. % Initialize function
- 3. **for** t = 1, ..., T:
- 4. $p_t(x) = \frac{1}{1+e^{-2H_{t-1}(x)}}$; %Calculate probability
- 5. $y_t(x) = \frac{y_{t-1}(x) p_t(x)}{p_t(x)(1-p_t(x))}$; % Update target
- 6. $\mathcal{D}_t(x) = p_t(x)(1 p_t(x))$; % Update weight
- 7. $h_t = \mathfrak{L}(D, y_t, \mathfrak{D}_t)$; % Train a least square classifier h_t to fit y_t in data set D under distribution \mathfrak{D}_t
- 8. $H_t(x) = H_{t-1}(x) + \frac{1}{2}h_t(x)$; %Update combined classifier
- 9. **end**

Output:
$$H(x) = \operatorname{sign}\left(\sum_{t=1}^T h_t(x)\right)$$

LogitBoost

Stacking

- Meta-learning methods: learning to combine (Wolpert 1992, Smyth and Wolpert 1998)
- A generalization of many ensemble methods
- The idea: the output of the base learners (the first-level learners) are used as the input features of the meta-learners (the second-level learners).


```
Input: Data set D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};
        First-level learning algorithms \mathfrak{L}_1, \ldots, \mathfrak{L}_T;
        Second-level learning algorithm \mathfrak{L}.
Process:
1. for t = 1, ..., T: % Train a first-level learner by applying the
2. h_t = \mathfrak{L}_t(D); % first-level learning algorithm \mathfrak{L}_t
end
4. D' = \emptyset;
                          % Generate a new data set
5. for i = 1, ..., m:
6. for t = 1, ..., T:
7. z_{it} = h_t(\boldsymbol{x}_i);
8. end
9. D' = D' \cup ((z_{i1}, \dots, z_{iT}), y_i);
10. end
11. h' = \mathfrak{L}(D');
                     % Train the second-level learner h' by applying
                             % the second-level learning algorithm \mathfrak{L} to the
```

Output: $H(x) = h'(h_1(x), ..., h_T(x))$

% new data set \mathcal{D}' .

A recent example: Deep Forest (Zhou and Feng 2017)

- More topics of Boosting (for further study)
 - How to extend to multi-class cases?
 - Noise sensitivity (why sensitive?)
 - Generalization bound

Summary

- Ensemble models: combining different learners in various ways
 - Bagging: variance reduction, parellel
 - Random forest
 - Boosting: bias reduction, sequentially
 - AdaBoost
 - Stacking: learn how to combine
- Key: how to construct diverse base learners by introducing various types of randomness
- Typically an important trick to win competitions

Generalization error analysis

Exercises

- Derive how LogitBoost works.
- Readings
 - Generalization error analysis of AdaBoost
 - Freund, Yoav, and Robert E. Schapire. "A decision-theoretic generalization of on-line learning and an application to boosting." *Journal of computer and system sciences* 55.1 (1997): 119-139.
 - Schapire, Robert E., et al. "Boosting the margin: A new explanation for the effectiveness of voting methods." The annals of statistics 26.5 (1998): 1651-1686.