Первый курс, весенний семестр

Практика по алгоритмам #6

Matching, Cover, Independent Set

1 Новые задачи

- 1. Необходимо покрыть клетчатое поле $n \times m$ с дырками доминошками. Каждая клетка поля должна быть покрыта доминошкой ровно один раз. $\mathcal{O}(Polynom(n,m))$.
- 2. Найти максимальную двудольную клику в двудольном графе за время $\mathcal{O}(VE)$. "Двудольная клика" полный двудольный подграф.
- 3. Выбрать в двудольном графе подмножество вершин первой доли A такое, что величина |A|-|N(A)| максимальна, где N(A) множество соседей A во второй доле. $\mathcal{O}(VE)$.
- 4. По данному максимальному паросочетанию в **двудольном** графе необходимо проверить, является ли оно единственным. $\mathcal{O}(E)$.
- 5. Верно ли утверждение, что в любом двудольном графе чётное число совершенных паросочетаний? Если верно, то докажите его, иначе приведите контрпример.
- 6. Рассмотрим ориентированный граф. За одно действие можно удалить все входящие или все исходящие (но не одновременно) из одной вершины рёбра. Необходимо удалить все рёбра графа за минимальное число действий.
- 7. За один ход можно покрасить один произвольный вертикальный или горизонтальный отрезок матрицы в белый цвет, мазки могут перекрываться. Необходимо за минимальное число действий привести чёрную матрицу к заданному виду.
- 8. Разбить массив на минимальное число подпоследовательностей таких, что в каждой подпоследовательности разность соседних элементов по модулю не превышает X. $\mathcal{O}(n^3)$.
- 9. По графу с заданной метрикой (расстояние между вершинами) ездят такси. Заказ на такси характеризуется тремя параметрами: начальная вершина, конечная вершина и время отправления из начальной вершины. Необходимо выполнить все заказы, используя минимальное число машин.
- 10. Придумайте алгоритм, который строит паросочетание, покрывающее множество A вершин первой доли за время $\mathcal{O}(VE)$, докажите его корректность.
- 11*. Дана матрица, состоящая из неотрицательных вещественных чисел, обладающая следующим свойством: сумма элементов в каждой строке и каждом столбце равна 1. Необходимо разложить заданную матрицу на сумму перестановочных матриц с коэффициентами за время
 - a) $\mathcal{O}(n^5)$
 - $\stackrel{\frown}{\mathrm{b}}$ $\mathcal{O}(n^4)$

Перестановочная матрица — перестановка единичной матрицы.

- 12**. Классифицируйте рёбра заданного графа: какие обязательно лежат в максимальном паросочетании, какие могут лежать, и какие точно не лежат, за время:
 - a) $\mathcal{O}(E^2)$
 - b) $\mathcal{O}(VE)$
 - c) $\mathcal{O}(E)$ по данному максимальному паросочетанию

2 Домашнее задание

2.1 Обязательная часть

- 1. (2) Для заданного клетчатого поля с дырками выберите максимальное количество попарно не смежных клеток. Смежными считаются клетки с общей стороной.
- 2. (3) Дан граф (возможно не двудольный) и алгоритм, который за $\mathcal{O}(E)$ ищет дополняющую чередующуюся цепь. Для каждого ребра графа небходимо проверить, обязательно ли оно лежит в максимальном паросочетании. $\mathcal{O}(VE)$.
- 3. (2) В двудольном графе найдите лексикографически минимальное из минимальных по размеру контролирующих множеств. $\mathcal{O}(Polynom(V, E))$.
- 4. (3) Разбейте вершины ориентированного графа на циклы. Т.е. каждая вершина должна быть покрыта ровно одним циклом.
- 5. (2) Докажите, что в регулярном двудольном графе есть полное паросочетание.
- 6. (3) Дан произвольный неориентированный граф. Найдите максимальное по количеству мультиподмножество ребёр графа такое, что степень каждой вершины не более двух. Любое ребро можно брать два раза.
- 7. (3) Дано N различных прямых. Нужно выбрать максимальное по размеру подмножество прямых такое, что никакие две прямые не параллельны, и никакие прямые не пересекаются в точке с x=0

2.2 Дополнительная часть

- 1. (3) Найти за $\mathcal{O}(VE)$ лексикографически минимальное из минимальных по размеру контролирующее множество .
- 2. (3) В двудольном графе сопоставим каждой вершине первой доли число a_i её вес. Вес ребра задается весом его конца из первой доли, найдите паросочетание максимального веса за время $\mathcal{O}(VE)$.
- 3. (3) В двудольном графе сопоставим каждой вершине первой доли число a_i , а каждой вершине второй доли число b_i их веса. Тогда вес ребра задается суммой весов его концов. Найдите паросочетание максимального веса за время $\mathcal{O}(VE)$.
- 4. (3) Приведите полиномиальный алгоритм для нахождения чётности количества совершенных паросочетаний в двудольном графе.