CH7 ORIGINE DE L'ASYMETRIE MATIERE-ANTIMATIÈRE DANS L'UNIVERS 7.1 Généralités 7.1.1 Observations:) On observe par de quelike nacroscopique d'auti-matine dans l'univers: il n'y a que des bongons, par d'artibangon. Lo le CMB penut de restreindre Roh = 0,0222(2) et la BBN 2 0,021 < 28h (0,024 à 91% de CI. Ceci implique 9,3% < RB (5,3% (5) 5,8.1010 < 4 (5,6.1010) 1 = NB/NY (3) 8,3.10" < NB/S < 9,4.10" -> On observe que des électrons: ne-= np = nB → Pour l'asymétrie V-V, on ne sait pas 7-1.2 Ratio baryons- photons très grand: I Le ratio no 1000 est très grand s'ilig avait pas d'asgnétire. En effet, lorsque T.S. GeV, ou a P+p -> 17+17: catastrophe d'annihilation

⇒ Nb = Nt \(10^{-18} \)

¬ Il just one asymtric priexistante, avant Tr-GeV

Inp/T 7.1.3 Ratio banyour photons très petit: -> Ce neve volto est petit can lorique T>GeV, on a Manin M7 Li La travition entre T>GeV et T<GeV, tout in artigiants doirent s'annihiler sout 1 pour 109 Lo en T>GeV, on a 100 q et (105+1) q en TKGeV, on a og et 19 - Asymetrie préexistant très faible!

7.1.4	Inflation: (voir plus tand)
-	Vers la sin de l'inflation, il n'y a pas que quark ni d'antiquark. L'asymétrie o du apparaitre soit perdant la transition extre l'inflation et le bain thermique, soit après l'inflation.
	On se concentrera sor le scenario où l'asymétric apparait pendat le bain therwique.
7.1.5	Modele Standard:
	Du sein du SM, il n'y a par ou nécavirue pour explique celte asynétrie. Il faut de la physique au dela du SM (BSM). C'est un exemple d'une conséquence de la cosmologie sur la physique
	des particules.
7.1.6	Les 3 conditions de Sakharov:
→ Ø	Il y a 3 conditions à respecter pour créen une asynétrie: Il faut un processes qui brite le nombre banjonique B
•	Il dont on processes qui brise C et CP to P
	→ Si CP est conservé, le nombre de V et de Paprale égal.
3	(Ce(s) procenus doivent être hors équilibre thermique.

£3

7.2 Exemple de banyogénère : désutegration

- 7.2.1 Nouvelle particules lourdes:
 - → On introduit 2 novuelles particules lourdes: X et Y. On suppose que chacere se désirtègne ou nois de 2 nonières:

- -> ±1 Jant que Bin+Bin to et Bin+Bin + Bin + Bin + Bin + On choisi (par exemple) de prendre Bin + Bin = 1 et Bin + Bin = 0
- du SM du bair theringer
- On néglige la désirtegration de X en posent my >> mx
- 7.2.2 Première étape: T>>mx
 - Dorsque TDDMX, ou suppose ou get/ou g' supplisament grand

 pour être en épuilibre themique auc le plasma du SM:

 Inx = NEQ (T, MX = 0) où NEQ = IF-D ou IB-E

 NX = NEQ (T, MX = 0)

 Li Per d'asynétric en T> mx
- 7.2.3 Derxièn étape: T&Mx
 - $\Rightarrow S_{1} = \sum_{x} \frac{1}{x} + \sum_{x} \frac{1}{x} = \sum_$

- > Si Titot < H: par d'équilibre thermique ⇒ il n'y a que des désirtegrations × à i, i, et × à i, i, et ⇒ Dous a con aussi, les × et × disparaissent.
- Posoni alors $\Gamma(X \to i, i_e) \neq \Gamma(\overline{X} \to \overline{i} i_e)$ (Cet CP bries).

 Alors a chaque désirtégration, il y a en moyenne une production de $\Delta B_x = \frac{\Gamma(X \to i_1 i_e)}{\Gamma_x^{1+1}} \cdot \frac{(B_{i_1} + B_{i_2})}{= 1}$ $\Delta B_{\overline{X}} = \frac{\Gamma(\overline{X} \to \overline{i}, \overline{i}_e)}{\Gamma_x^{1+1}} \cdot \frac{(B_{\overline{i}_1} + B_{\overline{i}_2})}{= -1}$
- DEF de pert définir le paramètre d'asynétrie CP Ecp relon Eqp = $\Gamma(x \rightarrow i, ie) - \Gamma(\bar{x} \rightarrow \bar{t}, t_{\bar{t}})$. (Bi, + Bie) = ΔB
 - Si CP est conservé, M(X→ ciú) = M(X→ tite) → Un jois tout les X et X désirtegrés, on a :
 - MB = NEO · Ecp
 - 5; × = 9x 5(3)+3/12. Ecp ~ 2gx. 10-3 Ecp
 - Lo Il fact Ecp ~ 10-6 pour obtenir no/5~ 10-10
- 7.3 Asymétrie CP
 - → Do tree level, Ecp=0. En effet,

 Γ(X→cice) = |g_X|². I_X et Γ(X→ tite) = |g_X|². I_X

 are I_X = I_X
 - → Au NLO (bouch), ou pert avoir Ecp ±0. En effet,

En écrivant X > (sx ~) cu(0) = gx. Cx 1 on a

[(X→itia) & cu(1) & (40) + cu(0) * cu(1) = 3 * 9 * 9 * 9 , cx Ix>> + 9 x 9 * 9 * 9 * c* ± * >>

→ Simolarment pour X → iii :

$$\overline{X} = \overline{Y} =$$

Au loop- level, toutes les quartier sont nélles $C_X = C_X =$

PROP Il y a ou asgrétiu CP si

1 Imf gx g'x g'x g, f + 0 (= couplage complete)

@ Imf Ixxx f to (= miz + mix < mx)

7.4 Brisure explicite de B

- Par avoir Exp to, il fallait Bis + Bis + Bis + Bis

- Exemple of ça marche pas: On prend Bx = Bx = Bi+Bi= = Bis+Bis.

Alors les diagranes NLO soul:

Bx=1 B2+13; +13; +13; +13; +13; =0

On obtact NB =0

4 De nue pour l'autre désirtignation possible:

7.5 Condition de désequilibre thermique

Pour avoir $n_B = \frac{N_X}{5}$. Ecp, on avoit support qu'il u'y $\frac{1}{5}$ | $\frac{$

Li Il fait être hors équilibre thermique Li Si [x→iiie > H, alors X+iie et X+iii. Dans ce con, nême si

on produit plus de i, ie que de tite (asyritic), ou anna statistiquent plus de i, ie > x que de tite x

-) L'asymétric ut réduite à 0 par effet statistique.

=> Il fact Tx+iice < N pour conserver l'asgnétrie.

> 5: mx >> mx , la désirtegration der Y en T5 my pert créer un asymétrie banyonique, mais les procenus i, i2 → X , i, t2 → X aurant lout le temps d'effacer cette asymétrie par effet statistique.

7.6 Equations de Boltzmann

3= MOM/T -> Pour la matière noir, on avait trouvé: $\Lambda \lesssim N(\zeta) \frac{dy_{DM}}{d\zeta} = 2 \chi^{EQ} \left(1 - \frac{\chi_{DM}^2}{\chi_{DM}^2}\right)$ où: +2: # de particule de DM apparaissant par SMSM -> DM PM -2: # de particule de DM apparaissant par DMPM -> SMSM YEQ = NEQ < ODM DM > SMSM. 2> . # de transitions de DM DM -> SMSM à l'équilibre therique, par temps pour volume. X EQ You : # de francision DMDM → SMSM hors équilibre DM (pour Nom quelconqu). Pour un particle X, on oura de novière analogue: 3 = mx / (3) d/x = you (1 - /x/x Ea) a: ±1: # de × apparaisent dan × → ... YD = nEQ (Tx tot) = nx eq Tx tot (mx/Ex) (worse? à check! Si X relativiste: boost → Le nowbre banyonique, pour X = X et Bi, = 1, Biz=0 (asynctric baryonique dans is-t,), est domé par: 13 H(3) dy8 = YDEQ (Yx - 1). EC, - YB. YEQ. YD, 8 as: yEQ = NEO. [x, x (Ex/Mx) anc [x, x = [x >i, iz

 $n_{B} = \Delta n_{i_{1}} = n_{i_{1}} - n_{i_{1}} \ll n_{i_{1}}^{EQ} + A_{i_{1}} / 2$ $|n_{i_{1}} = n_{i_{1}}^{EQ} - \Delta n_{i_{1}} / 2$

et on a i,iz > x ~> YD, & (1 + ANi) 2 Ni, EQ

TITE -X ~ YDIB (1 - ANI) (rappel: 80,8 = ni, Ed ([x + i, in))

