Instituto Politécnico Nacional

Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas Integración de un Sistema Robótico

Seguimiento de Trayectoria con Robot Antropomórfico

Equipo 6:

- Fierro De La Rosa Abril Evangelina
- Islas Estrada Luis Rafael
- Luna Reyes Rodrigo
- Montero Rasgado Josué Emiliano

Table of Contents

Robot Puma	1
Cinemática Directa	
La representación de Denavit - Hartenberg	
Cinemática Inversa	
7. Robot PUMA 260 con Muñeca Esférica	
a) Coordenadas Deseadas del Centro de la Muñeca	
b) Posición Inversa	
c) Orientación Inversa	

Robot Puma

Para comenzar con el proyecto final es necesario retomar algunos conceptos, con los cuáles se nos facilitará la comprensión del proyecto que a continuación se presenta.

Cinemática Directa

El problema de **la cinemática directa** es donde "dadas las variables de las juntas de un robot, determinamos la posición y orientación de nuestro efector final.

En el análisis cinemático, el robot es pensado como un conjunto de cuerpos rígidos conectados entre sí por varias juntas o uniones. El objetivo es determinar el efecto acumulativo del conjunto de variables de las juntas, para esto se presentan de manera sistemática ciertas convenciones, el objetivo de las convenciones es simplificar el análisis, dando lugar a un lenguaje común en el cual los ingenieros pueden comunicarse.

A cada eslabón se le adhiere un marco coordenado, siendo un marco inercial s la base el cual es el marco O, después se escogen los marcos del 1 al n en dónde cada marco coordenado esta rígidamente adherido al marco al eslabón i. Esto significa que sin importar el movimiento del robot las coordenadas de cada punto en el eslabón i son constantes cuando son expresadas en términos del marco i.

Suponiendo que A_i es una transformación homogénea de coordenadas

en un punto del marco i el marco i-1, la matriz A no es constante, varía conforme la configuración del robot cambia. La suposición de que todas las juntas pueden ser una combinación entre juntas prismática o de revoluta donde A_i es función de sólo una variable de junta (q_i):

•
$$A_i = A(q_i)$$

Para denotar la posición del efector final con respecto al marco inercial (Base) se usa un vector d_0^n de 3x1 y una matriz de rotación de $3x3R_0^n$.

$$H = \begin{bmatrix} R_0^n & d_0^n \\ 0 & 1 \end{bmatrix}$$

Donde $H=T^0_n=A_1(q_1)***A(q_n)$ cada transformación homogénea A_1 .

$$A_1 = \begin{bmatrix} R_i^i - 1 & d_i^i - 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_i^j & d_i^j \\ 0 & 1 \end{bmatrix}$$

La representación de Denavit - Hartenberg

Abreviada como la convención **D-H**. Cada transformación homogénea A_i es representada como un producto de cuatro transformaciones básicas.

$$A_1 = Rot_{z,\theta} Trasl_{z,d} Trasl_{x,\alpha} Rot_{x,\alpha} = \begin{bmatrix} C\theta_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i & a_i C\theta_i \\ S\theta_i & C\theta_i C\alpha_i & -C\theta_i S\alpha_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Donde las cuatro cantidades θ_i , a_i , d_i , α_i son parámetros del eslabón i y de la junta i.

- a_i : Longitud (*length*): Distancia entre los ejes z_0 y z_1 y es medida a lo largo del eje x_1 .
- α_i : Giro (*Twist*): Ángulo entre los ejes z_0 y z_1 medido en el plano normal de x_1 , el sentido positivo de α es determinado de z_0 y z_1 por la regla de la mano derecha.
- d_i : Desplazamiento de Compensación (*Offset*): Distancia entre el origen O_0 y la intersección de los ejes $x_1 \cos z_0$ medida a lo largo de z_0 .
- θ_i : Ángulo (*Angle*): Ángulo entre x_0 y x_1 medido en el plano normal al eje z_0 .

Un movimiento rígido es caracterizado por 6 cantidades (3 de posición y 3 de orientación), estas cantidades pueden ser sintetizadas para describir el movimiento rígido mediante una transformación homogénea. Gracias a la convención de Denavit-Hartenberg se puede obtener una transformación homogénea con sólo tres parámetros.

Dado un sistema O_i y un sistema O_0 donde O_i se obtuvo mediante una transformación homogénea arbitraria y sean a, α , d y θ los parámetros; de la convención Denavit-Hartenberg es:

- (DH1) el eje x_1 es perpendicular al eje z_0 .
- (DH2) el eje x_1 intersecta al eje z_0 .

Cuando existen estas condiciones, decimos que existen unos únicos números θ , d, a y α tal que **A** se cumple, pudiendo quedar una matriz **A** como:

$$A = \begin{bmatrix} R & d \\ 0 & 1 \end{bmatrix}$$

Cinemática Inversa

• Paso 1: Se asignan los ejes $z_0, z_1, z_2, z_3, z_4, z_5$ como los ejes de rotación de $q_1, q_2, q_3, q_4, q_5, q_6$.

- ullet Paso 2: Para el origen O_0 , se usa la referencia brindada por el diagrama.
- Pasos 3-5: Dado que z_1 es perpendicular a z_0 , el marco O_1 se coloca en el punto de intersección entre ambos ejes. Para O_2 se usa como referencia la distancia física entre los ejes de giro z_1 y z_2 , además de considerar que, dada la anchura de los eslabones, existe una distancia d_1 que separa a ambos marcos en dirección de sus ejes z.
- **Paso 6:** Finalmente, dado que los ejes z_3 , z_4 , z_5 , son perpendiculares entre sí y se intersectan en el mismo punto se decide colocar un mismo origen O para las tres juntas (sin olvidar las distancias que existen entre las juntas en el diagrama).

De esta forma, la tabla de parámetros de Denavit - Hartenberg queda de la siguiente forma:

Eslabón	a_i	α_i	d_i	$oldsymbol{ heta}_i$
1	0	$-\frac{\pi}{2}$	d1	q1
2	a1	0	d2	q2
3	a2	0	0	q3
4	0	$-\frac{\pi}{2}$	0	$q4-\frac{\pi}{2}$
5	0	$\frac{\pi}{2}$	0	$q5 + \frac{\pi}{2}$
6	0	0	d3	q6

```
clc; clear; close all;
syms a1 a2 d1 d2 d3 d4 a alpha d theta q1 q2 q3 q4 q5 q6

A(a, alpha, d, theta) = [cos(theta) -sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta);
    sin(theta) cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta);
    0 sin(alpha) cos(alpha) d;
```

A(a, alpha, d, theta) =

$$\begin{pmatrix} \cos(\theta) & -\cos(\alpha)\sin(\theta) & \sin(\alpha)\sin(\theta) & a\cos(\theta) \\ \sin(\theta) & \cos(\alpha)\cos(\theta) & -\sin(\alpha)\cos(\theta) & a\sin(\theta) \\ 0 & \sin(\alpha) & \cos(\alpha) & d \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Por lo que las matrices de transformación quedan así:

$$A1 = A(0, -pi/2, d1, q1)$$

A1 =

$$\begin{pmatrix} \cos(q_1) & 0 & -\sin(q_1) & 0 \\ \sin(q_1) & 0 & \cos(q_1) & 0 \\ 0 & -1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A2 = A(a1, 0, d2, q2)$$

A2 =

$$\begin{pmatrix} \cos(q_2) & -\sin(q_2) & 0 & a_1\cos(q_2) \\ \sin(q_2) & \cos(q_2) & 0 & a_1\sin(q_2) \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A3 = A(a2, 0, 0, q3)$$

A3 =

$$\begin{pmatrix}
\cos(q_3) & -\sin(q_3) & 0 & a_2\cos(q_3) \\
\sin(q_3) & \cos(q_3) & 0 & a_2\sin(q_3) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$A4 = A(0, -pi/2, 0, q4-pi/2)$$

A4 =

$$\begin{pmatrix} \cos\left(q_{4} - \frac{\pi}{2}\right) & 0 & -\sin\left(q_{4} - \frac{\pi}{2}\right) & 0 \\ \sin\left(q_{4} - \frac{\pi}{2}\right) & 0 & \cos\left(q_{4} - \frac{\pi}{2}\right) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A5 = A(0, pi/2, 0, q5+pi/2)$$

A5 =

$$\begin{pmatrix}
\cos\left(q_{5} + \frac{\pi}{2}\right) & 0 & \sin\left(q_{5} + \frac{\pi}{2}\right) & 0 \\
\sin\left(q_{5} + \frac{\pi}{2}\right) & 0 & -\cos\left(q_{5} + \frac{\pi}{2}\right) & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$A6 = A(0, 0, d3, q6)$$

A6 =

$$\begin{pmatrix}
\cos(q_6) & -\sin(q_6) & 0 & 0 \\
\sin(q_6) & \cos(q_6) & 0 & 0 \\
0 & 0 & 1 & d_3 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Multiplicando estas matrices obtenemos la matriz de transformación del robot completo T_6^0 .

```
T06 = A1*A2*A3*simplify(A4)*simplify(A5)*A6;
R06 = simplify(T06(1:3,1:3),10)
```

R06 =

$$\begin{pmatrix} \cos(q_6) \, \sigma_2 + \sigma_1 \cos(q_1) \sin(q_6) & \sigma_1 \cos(q_1) \cos(q_6) - \sin(q_6) \, \sigma_2 & \sin(q_1) \sin(q_5) + \sigma_4 \cos(q_1) \cos(q_5) \\ \sigma_1 \sin(q_1) \sin(q_6) - \cos(q_6) \, \sigma_3 & \sin(q_6) \, \sigma_3 + \sigma_1 \cos(q_6) \sin(q_1) & \sigma_4 \cos(q_5) \sin(q_1) - \cos(q_1) \sin(q_5) \\ -\sigma_4 \sin(q_6) - \sigma_1 \cos(q_6) \sin(q_5) & \sigma_1 \sin(q_5) \sin(q_6) - \sigma_4 \cos(q_6) & \sigma_1 \cos(q_5) \end{pmatrix}$$

where

$$\sigma_1 = \cos(q_2 + q_3 + q_4)$$

$$\sigma_2 = \cos(q_5)\sin(q_1) - \sigma_4\cos(q_1)\sin(q_5)$$

$$\sigma_3 = \cos(q_1)\cos(q_5) + \sigma_4\sin(q_1)\sin(q_5)$$

$$\sigma_4 = \sin(q_2 + q_3 + q_4)$$

D06 = simplify(T06(1:3,4),10)

D06 =

$$\begin{pmatrix} d_3 \left(\sin(q_1) \sin(q_5) + \sigma_1 \cos(q_1) \cos(q_5) \right) - d_2 \sin(q_1) + a_1 \cos(q_1) \cos(q_2) + a_2 \cos(q_1) \cos(q_2) \cos(q_3) - d_2 \cos(q_1) + a_1 \cos(q_2) \sin(q_1) - d_3 \cos(q_1) \sin(q_5) + a_2 \cos(q_2) \cos(q_3) \sin(q_1) - a_2 \sin(q_1) \sin(q_2) \sin(q_2) + d_3 \cos(q_2) \cos(q_2) \cos(q_3) \sin(q_3) - d_3 \sin(q_2) \sin(q_3) - a_3 \sin(q_2) + d_3 \cos(q_2) \cos(q_3) \cos$$

where

$$\sigma_1 = \sin(q_2 + q_3 + q_4)$$

7. Robot PUMA 260 con Muñeca Esférica

a) Coordenadas Deseadas del Centro de la Muñeca

Dado que los orígenes $o_{x_4y_4z_4}$ y $o_{x_5y_5z_5}$ coinciden con o_c , entonces se tiene que:

$$O = O_c + d_6 R \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Por lo tanto:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

Donde d_6 es la distancia entre la herramienta (o_6) y o_c medida sobre z_5

b) Posición Inversa

Tomando las primeras 3 transformaciones del problema 1h:

```
clc; clear; close all;
syms theta_1 theta_2 theta_3 a_1 d_1 a_2 d_2
A = @(a, d, al, th) trotz(th)*transl([0, 0, d])*transl([a, 0, 0])*trotx(al);
A03 = simplify(A(0, d_1, pi/2, theta_1)*A(a_1, d_2, 0, theta_2)*A(a_2, 0, 0, theta_3))
```

A03 =

$$\begin{pmatrix} \cos(\theta_2+\theta_3)\cos(\theta_1) & -\sin(\theta_2+\theta_3)\cos(\theta_1) & \sin(\theta_1) & d_2\sin(\theta_1) + a_1\cos(\theta_1)\cos(\theta_2) + a_2\cos(\theta_1)\cos(\theta_2) \\ \cos(\theta_2+\theta_3)\sin(\theta_1) & -\sin(\theta_2+\theta_3)\sin(\theta_1) & -\cos(\theta_1) & a_1\cos(\theta_2)\sin(\theta_1) - d_2\cos(\theta_1) + a_2\cos(\theta_2)\cos(\theta_2)\cos(\theta_2) \\ \sin(\theta_2+\theta_3) & \cos(\theta_2+\theta_3) & 0 & d_1+d_2\sin(\theta_2+\theta_3) + d_2\sin(\theta_2+\theta_3) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Se pueden obtener la cinemática inversa resolviendo para θ_1 , θ_2 y θ_3 el siguiente sistema de ecuaciones:

$$\begin{bmatrix} A_{14} \\ A_{24} \\ A_{34} \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

Sin embargo, resulta muy complicado resolver este sistema de ecuaciones, por lo que un enfoque geométrico es más práctico.

En realidad, el robot PUMA que se incluye en este ejercicio tiene dos codos. Sin embargo, como se ve geometricamente, los resultados son los mismos, podría considerarse que el codo está entre la segunda y la tercera junta o que se encuentran ambos codos y sólo importaría conocer la longitud total que suman ambos codos.

Cuando se proyecta sobre el plano $x_0 - y_0$ se obtiene lo siguiente:

$$\theta_1 = \phi - \alpha = \operatorname{atan2}(x_c, y_c) - \operatorname{atan2}(\sqrt{r^2 - d_2^2}, d_2) = \operatorname{atan2}(x_c, y_c) - \operatorname{atan2}(\sqrt{x_c^2 + y_c^2 - d_2^2}, d_2)$$

Con $x_c = o_x - d_6 r_{13}$, $y_c = o_y - d_6 r_{23}$ y d_2 es la longitud que suman ambos codos.

No obstante, la siguiente también es una solución:

$$\theta_1 = \beta + \alpha = \pi + \gamma + \alpha = \pi + \text{atan2}(x_c, y_c) + \text{atan2}\left(\sqrt{x_c^2 + y_c^2 - d_2^2}, d_2\right) = \text{atan2}(x_c, y_c) + + \text{atan2}\left(-\sqrt{x_c^2 + y_c^2 - d_2^2}, -d_2\right)$$

Proyectando sobre el plano formado por las juntas 2 y 3

Usando la ley de cosenos:

$$a_2^2 + a_3^2 - 2a_2a_3\cos(\pi - \theta_3) = s^2 + r^2$$

$$a_2^2 + a_3^2 + 2a_2a_3\cos(\theta_3) = (z_c - d_1)^2 + x_c^2 + y_c^2 - d_2^2$$

Entonces

$$c_3 = \cos(\theta_3) = \frac{(z_c - d_1)^2 + x_c^2 + y_c^2 - d_2^2 - a_2^2 - a_3^2}{2a_2a_3}$$

Por lo tanto,

$$\theta_3 = \text{atan2}(c_3, \pm \sqrt{1 - c_3^2})$$

Con $z_c = o_z - d_6 r_{33}$ y d_1 la distancia entre la junta 1 y el suelo medido sobre z_0 .

Por último,

$$\theta_2 = \operatorname{atan2}(r, s) - \operatorname{atan2}(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3)) = \operatorname{atan2}\left(\sqrt{x_c^2 + y_c^2 - d_2^2}, z_c - d_1\right) - \operatorname{atan2}(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3)) = \operatorname{atan2}(r, s) - \operatorname{atan2}(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3)) = \operatorname{atan2}(r, s) - \operatorname{atan2}(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3)) = \operatorname{atan2}(r, s) - \operatorname{atan2}(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3)) = \operatorname{atan2}(r, s) - \operatorname{atan2}(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3)) = \operatorname{atan2}(r, s) - \operatorname{atan2}$$

En total se tienen dos pares de soluciones de θ_2 y θ_3 , y 2 soluciones independientes de θ_1 . Entonces, el problema de cinemática inversa de la posición de o_c del manipulador PUMA tiene 4 soluciones diferentes.

c) Orientación Inversa

Para resolver el problema de cinemática inversa de orientación partimos de que conocemos la orientación *R* de la muñeca esférica y que ya se han determinado 3 de las 6 variables que tiene un manipulador PUMA con muñeca esférica. Entonces:

$$R = R_3^0 R_6^3$$

Donde R_3^0 se determina evaluando $A_1A_2A_3$ con θ_1 , θ_2 y θ_3 .

```
R03=A03(1:3, 1:3)
```

R03 =

$$\begin{pmatrix} \cos(\theta_2 + \theta_3) \cos(\theta_1) & -\sin(\theta_2 + \theta_3) \cos(\theta_1) & \sin(\theta_1) \\ \cos(\theta_2 + \theta_3) \sin(\theta_1) & -\sin(\theta_2 + \theta_3) \sin(\theta_1) & -\cos(\theta_1) \\ \sin(\theta_2 + \theta_3) & \cos(\theta_2 + \theta_3) & 0 \end{pmatrix}$$

Por lo tanto,

$$R_6^3 = (R_3^0)^T R =$$

```
syms r11 r12 r13 r21 r22 r23 r31 r32 r33
R36= simplify(R03.'*[r11, r12, r13; r21, r22, r23; r31, r32, r33])
```

R36 =

$$\begin{cases} r_{31}\sin(\theta_{2}+\theta_{3}) + r_{11}\cos(\theta_{2}+\theta_{3})\cos(\theta_{1}) + r_{21}\cos(\theta_{2}+\theta_{3})\sin(\theta_{1}) & r_{32}\sin(\theta_{2}+\theta_{3}) + r_{12}\cos(\theta_{2}+\theta_{3})\cos(\theta_{2}+\theta_{3})\cos(\theta_{2}+\theta_{3})\sin(\theta_{1}) & r_{32}\sin(\theta_{2}+\theta_{3}) + r_{12}\sin(\theta_{2}+\theta_{3})\cos(\theta_{2}+\theta_{3$$

Y la matriz de ángulos de euler está dada:

```
syms theta_4 theta_5 theta_6
H = trotz(theta_4)*troty(theta_5)*trotz(theta_6);
Eu = H(1:3, 1:3)
```

Eu =

$$\begin{pmatrix} \cos(\theta_4)\cos(\theta_5)\cos(\theta_6) - \sin(\theta_4)\sin(\theta_6) & -\cos(\theta_6)\sin(\theta_4) - \cos(\theta_4)\cos(\theta_5)\sin(\theta_6) & \cos(\theta_4)\sin(\theta_5) \\ \cos(\theta_4)\sin(\theta_6) + \cos(\theta_5)\cos(\theta_6)\sin(\theta_4) & \cos(\theta_4)\cos(\theta_6) - \cos(\theta_5)\sin(\theta_4)\sin(\theta_6) & \sin(\theta_4)\sin(\theta_5) \\ -\cos(\theta_6)\sin(\theta_5) & \sin(\theta_5) & \sin(\theta_6) & \cos(\theta_5) \end{pmatrix}$$

Ambas matrices representan la misma rotación, entonces es posible determinar los ángulos θ_4 , θ_5 y θ_6 para los siguientes casos:

1. Si $\left(R_6^3\right)_{13}$ y $\left(R_6^3\right)_{23}$ son distintos de cero, entonces $\sin(\theta_5) \neq 0$ y los ángulos pueden determinarse de la siguiente forma:

$$c_5 = \cos(\theta_5) = r_{13}\sin(\theta_1) - r_{23}\cos(\theta_1)$$

Por lo tanto:

$$\theta_5 = \operatorname{atan2}(c5, \pm \sqrt{1 - c_5^2}) = \operatorname{atan2}(r_{13}\sin(\theta_1) - r_{23}\cos(\theta_1), \pm \sqrt{1 - (r_{13}\sin(\theta_1) - r_{23}\cos(\theta_1))^2})$$

a). Si se toma la solución donde \pm es +, se tiene que $\sin(\theta_5) > 0$ y:

$$\theta_4 = \operatorname{atan2}(\cos(\theta_4)\sin(\theta_5), \sin(\theta_4)\sin(\theta_5)) = \operatorname{atan2}(r_{33}s_{23} + r_{13}c_{23}c_1 + r_{23}c_{23}s_1, r_{33}c_{23} - r_{13}s_{23}c_1 - r_{23}s_{23}s_1)$$

$$\theta_6 = \operatorname{atan2}(\cos(\theta_6)\sin(\theta_5), \sin(\theta_6)\sin(\theta_5)) = \operatorname{atan2}(r_{21}c_1 - r_{11}s_1, r_{12}s_1 - r_{22}c_1)$$

b). Si se toma la solución donde \pm es -, se tiene que $\sin(\theta_5) < 0$. Por lo tanto:

$$\theta_4 = \operatorname{atan2}(-\cos(\theta_4)\sin(\theta_5), -\sin(\theta_4)\sin(\theta_5)) = \operatorname{atan2}(-r_{33}s_{23} - r_{13}c_{23}c_1 - r_{23}c_{23}s_1, -r_{33}c_{23} + r_{13}s_{23}c_1 + r_{23}s_{23}s_1)$$

$$\theta_6 = \operatorname{atan2}(-\cos(\theta_6)\sin(\theta_5), -\sin(\theta_6)\sin(\theta_5)) = \operatorname{atan2}(r_{11}s_1 - r_{21}c_1, r_{22}c_1 - r_{12}s_1)$$

2. Si $(R_6^3)_{13}$ y $(R_6^3)_{23}$ son iguales a cero, entonces $\sin(\theta_5) = 0$. Como R_6^3 es ortogonal, entonces $\cos(\theta_5) = \pm 1$. En este caso no se pueden obtener soluciones para los 3 ángulos. Se parte de que se tienen dos soluciones para θ_5 :

• Si
$$\left(R_6^3\right)_{33}=r_{13}\mathrm{sin}(\theta_1)-r_{23}\mathrm{cos}(\theta_1)=1$$
, entonces $\theta_5=0$

En este caso $\left(R_6^3\right)_{11} = \cos(\theta_4 + \theta_6)$ y $\left(R_6^3\right)_{21} = \sin(\theta_4 + \theta_6)$, por lo tanto:

$$\theta_4 + \theta_6 = \operatorname{atan2}\left(\left(R_6^3\right)_{11}, \left(R_6^3\right)_{21}\right) = \operatorname{atan2}(r_{31}s_{23} + r_{11}c_{23}c_1 + r_{21}c_{23}s_1, r_{31}c_{23} - r_{11}s_{23}c_1 - r_{21}s_{23}s_1)$$

• Si
$$\left(R_6^3\right)_{33}=r_{13}\mathrm{sin}(\theta_1)-r_{23}\mathrm{cos}(\theta_1)=-1$$
 , entonces $\theta_5=\pi$

Para este caso, $\left(R_6^3\right)_{11} = -\cos(\theta_4 - \theta_6)$ y $\left(R_6^3\right)_{21} = \sin(\theta_4 - \theta_6)$. Por lo tanto:

$$\theta_4 - \theta_6 = \operatorname{atan2}\left(-\left(R_6^3\right)_{11}, \left(R_6^3\right)_{21}\right) = \operatorname{atan2}\left(-r_{31}s_{23} - r_{11}c_{23}c_1 - r_{21}c_{23}s_1, r_{31}c_{23} - r_{11}s_{23}c_1 - r_{21}s_{23}s_1\right)$$

Concluyendo

Existen 4 soluciones distintas de la terna (θ_1 , θ_2 , θ_3). Conociendo la posición de la herramienta y su orientación, y por la forma del robot, se sabe que estas 4 soluciones son indenpendientes de (θ_4 , θ_5 , θ_6) la cual tiene dos soluciones diferentes mientras no haya una singularidad ($\sin(\theta_5) = 0$). Entonces, cuando no hay singularidades, existen 8 soluciones diferentes. Por otro lado, cuando hay una singularidad, la cantidad de soluciones para θ_4 y θ_6 es infinita. En este caso se recomienda tomar un valor arbitrario de θ_4 y después calcular θ_6 .