AMENDMENTS TO THE CLAIMS

Clair 1 (Withdrawn): A process for producing the following fluorosulfonyl group-containing compound (5), characterized in that the following compound (3) is fluorinated to form the following compound (4), and then, the compound (4) is subjected to a decomposition reaction:

$$FSO_{2}R^{A} \qquad FSO_{2}R^{AF} \qquad FSO_{2}R^{AF} \qquad CX^{1}X^{2}X^{3} \qquad FSO_{2}R^{AF} \qquad CX^{1F}X^{2F}X^{3F} \qquad (4)$$

provided that the symbols in the formulae have the following meanings:

at least one selected from R^A to R^E , X^I to X^3 and E is a hydrogen atom or a group having hydrogen atom(s), and at least one selected from R^{AF} to R^{EF} , X^{IF} to X^{3F} and E^F is a fluorinated group or a fluorine atom;

R^A: a bivalent organic group;

 R^{AF} : a group corresponding to R^{A} , i.e. a bivalent organic group having R^{A} fluorinated, or the same bivalent organic group as R^{A} ;

R^B, R^C, R^D: each independently being a hydrogen atom, a halogen atom or a monovalent organic group;

 R^{BF} , R^{CF} , R^{DF} : R^{BF} , R^{CF} and R^{DF} are groups which correspond to R^{B} , R^{C} and R^{D} , respectively; when any one of R^{B} to R^{D} is a hydrogen atom, the one of R^{BF} to R^{DF} corresponding to the hydrogen atom is a hydrogen atom or a fluorine atom; when any one of

 R^B to R^D is a halogen atom, the one of R^{BF} to R^{DF} corresponding to the halogen atom is a halogen atom; when any one of R^B to R^D is a monovalent organic group, the one of R^{BF} to R^{DF} corresponding to the monovalent organic group is a monovalent organic group having the corresponding one of R^B to R^D fluorinated, or the same group as the corresponding one of R^B to R^D ;

R^E: a monovalent organic group;

 R^{EF} : a group corresponding to R^{E} , i.e. a monovalent organic group having R^{E} fluorinated, or the same monovalent organic group as R^{E} ;

E: a bivalent connecting group;

E^F: a group corresponding to E, i.e. the same bivalent connecting group as E, or a bivalent connecting group having E fluorinated;

E^{F1}: a group formed by scission of E^F;

 X^1, X^2, X^3 : each independently being a hydrogen atom, a chlorine atom, or a fluorine atom;

 X^{1F} , X^{2F} , X^{3F} : X^{1F} , X^{2F} and X^{3F} correspond to X^1 , X^2 , X^3 , respectively; when any one of X^1 to X^3 is a hydrogen atom, the one of X^{1F} to X^{3F} corresponding to the hydrogen atom, is a hydrogen atom or a fluorine atom; when any one of X^1 to X^3 is a fluorine atom, the one of X^{1F} to X^{3F} corresponding to the fluorine atom, is a fluorine atom; and when any one of X^1 to X^3 is a chlorine atom, the one of X^{1F} to X^{3F} corresponding to the chlorine atom, is a chlorine atom.

Claim 2 (Withdrawn): The process according to Claim 1, wherein the fluorination reaction is carried out by the reaction with fluorine in a liquid phase.

Claim 3 (Withdrawn): The process according to Claim 2, wherein the fluorine content of the compound (3) is from 20 to 86 mass%.

Claim 4 (Withdrawn): The process according to Claim 2, wherein the molecular weight of the compound (3) is from 200 to 1,000.

Claim 5 (Withdrawn): The process according to Claim 1, wherein R^E is a perfluorinated monovalent organic group, and R^{EF} is the same group as R^E .

Claim 6 (Withdrawn): The process according to Claim 1, wherein the fluorination is a reaction whereby the compound (3) is substantially perfluorinated.

Claim 7 (Withdrawn): The process according to Claim 1, wherein the compound (3) is the following compound (3-1), the compound (4) is the following compound (4-1), and the compound (5) is the following compound (5-1):

FSO₂R^A

$$R^{B}$$
 $CF_{CH_{2}OCOR^{E}}$
 R^{DF}
 $CF_{2}OCOR^{EF}$
 R^{DF}
 R^{CF}
 R^{DF}
 R

provided that the symbols in the formulae have the same meanings as defined above.

Claim 8 (Withdrawn): The process according to Claim 7, wherein the compound (3-1) is a reaction product of the following compound (A1-1) and the following compound (A2-1), a reaction product of the following compound (B1-1) and the following compound (B2-1), or a reaction product obtained by reacting the following compound (C1-1) with acetone to form the following compound (C1-2) and reacting the compound (C1-2) and the following compound (B2-1):

FSO₂R^A

$$R^{B}$$
 R^{C}
 $CH_{2}OH$
 CH_{3}
 $(A1-1)$
 R^{B}
 R^{C}
 $CH_{3}CCH_{2}OCOR^{E}$
 $(B2-1)$

FSO₂R^A
 R^{D}
 R^{C}
 R^{C}

provided that the symbols in the formulae have the same meanings as defined above.

Claim 9 (Withdrawn): The process according to Claim 8, wherein the compound (3-1) is a compound obtained by reacting the compound (C1-1) with acetone to obtain a reaction product containing the compound (C1-2) and acetone, and using the reaction product as it contains the acetone, for the reaction with the compound (B2-1).

Claim 10 (Withdrawn): A process for producing the following compound (7-1), characterized in that the following compound (5-1) is thermally decomposed:

$$R^{BF}$$
 R^{CF}
 R^{DF} O COF $(5-1)$

provided that the symbols in the formulae have the same meanings as defined above.

Application No. 10/830,140 Reply to Final Rejection of November 8, 2006

Claim 11 (Previously Presented): A process for producing a fluorosulfonyl groupcontaining polymer, comprising:

polymerizing at least one member of compound (7-1), or

polymerizing at least one member of compound (7-1) and at least one member of a polymerizable monomer which is copolymerizable with compound (7-1):

$$\begin{array}{cccc}
R^{BF} & R^{CF} \\
FSO_2 R^{AF} & O \\
\hline
 & CF_2
\end{array} (7-1)$$

wherein:

R^{AF} is a bivalent organic group

 R^{BF} , R^{CF} and R^{DF} are, independently, a hydrogen atom, a halogen atom or a monovalent organic group.

Claim 12 (Previously Presented): A fluorosulfonyl group-containing polymer, comprising:

polymerized monomer units of at least one member of compound (7-1), or polymerized monomer units of at least one member of compound (7-1) and monomer units of at least one member of a polymerizable monomer which is copolymerizable with compound (7-1), wherein compound (7-1) is:

$$R^{BF}$$
 R^{CF}
 R^{DF} CF_2 (7-1)

wherein:

R^{AF} is a bivalent organic group

R^{BF}, R^{CF} and R^{DF} are, independently, a hydrogen atom, a halogen atom or a monovalent organic group.

Claim 13 (Previously Presented): The fluorosulfonyl group-containing polymer according to Claim 12, which has an average molecular weight of from 5×10^3 to 5×10^6 and contains from 0.1 to 99.9 mol% of the monomer units having polymerized at least one member of a polymerizable monomer which is copolymerizable with compound (7-1).

Claim 14 (Currently Amended): A process for producing a sulfonate or sulfonic group-containing polymer, comprising:

subjecting to alkali hydrolysis fluorosulfonyl groups of the fluorosulfonyl groupcontaining polymer produced by the process of Claim 11, [[s,]]

optionally followed by acid treatment.

Claim 15 (Previously Presented): A fluorosulfonic group-containing polymer comprising:

monomer units represented by the following formula, or

such monomer units and monomer units of another monomer which is copolymerizable with such monomer units:

$$CF_2$$
 O
 O
 R^{DF}
 R^{DF}
 R^{CF}

wherein M is a hydrogen atom or a counter ion, wherein

R^{AF} is a bivalent organic group

 R^{BF} , R^{CF} and R^{DF} are, independently, a hydrogen atom, a halogen atom or a monovalent organic group.

Claim 16 (Previously Presented): The fluorosulfonic group-containing polymer according to Claim 15, which has an average molecular weight of from 5×10^3 to 5×10^6 and contains from 0.1 to 99.9 mol% of the monomer units of another copolymerizable monomer.

Application No. 10/830,140
Reply to Final Rejection of November 8, 2006

Claim 17 (Previously Presented): A compound represented by the following formula (7-1A):

$$FSO_2 \xrightarrow{R^{AF10}} F$$

$$CF_2$$

$$(7-1A)$$

wherein R^{AF10} is a C_{1-20} perfluoroalkylene group or a C_{1-20} perfluoro(etheric oxygen atom-containing alkylene) group.

Claim 18 (Withdrawn): Any one of the compounds represented by the following formulae, wherein M^2 is an alkali metal ion: