Different Faces of Information Centric Networking

Haris Abdullah haris.abdullah@aalto.fi

(acknowledgment: Nam Vo Huoang)

AGENDA

- Current Internet
 - Features & Issues
- Information Centric Networking (ICN)
 - Common Characteristics
- Different ICN Approaches
 - DONA, CCN, PURSUIT / PSIRP
- From IOT Perspective
- Transition from IP to Contents
- Comments & Questions

POINT TO PONDER

IS CURRENT INTERNET FRAMEWORK THE WAY TO GO FOR FUTURE DEVELOPMENT

IP BASED INTERNET

ISSUES & CHALLENGES

- Used out of Context
 - Resource sharing, used for content sharing
- Trust Assumption
 - Every one was trust worthy
- Works on Sender's Terms
 - Anyone can send data EVEN if not wanted
- "Where" vs "What"
- Security as an Add on feature
 - No effective mechanism to counter DDOS still
 - Privacy and Confidentiality
- Scalable and Cost Efficient Content Distribution

IP BASED INTERNET

ISSUES

- Lack of Persistent and Unique Name Space
- The current protocols have ossified
- Monopoly of Tier 1 Operators
- Source of Revenue

CHALLENGES

Massive demand for replicated content

INFORMATION CENTRIC NETWORKING

Everything is Information

- Why not route on information
- Replace WHERE with WHAT?
- System Level Security (in built)
 - Will provide solutions for problems like DDOS
- Receiver Driven Model
 - No unsolicited traffic (unsubscribed data to be received)

INFORMATION CENTRIC NETWORKING

Projects

- EUROPE:
 - PSIRP, 4WARD, PURSUIT and SAIL
- USA
 - CCN, DONA and NDN

INFORMATION CENTRIC NETWORKING

Characteristics

- Routing on Information content
 - What rather than where
- Caching
 - Can be at the network edge and in-network caching

Guiding principles

- Most of the problem lie in how internet names are structured and resolved
- Names handle persistence and authenticity
- Name resolution handles availability
- Replaces the hierarchical DNS name space
 - Cryptographic
 - Self-certifying
 - Pseudo flat

Features

- Names organized around principles
 - P(cryptographic hash function of principals public key):L
 (label chosen by principal)
 - Two tier approach makes it scalable
- Each principal associated with public private key pair
- Packets / Messages
 - Find (P:L) & Register(P:L)
- Names do not refer to location, data can be hosted anywhere: satisfies persistence
 - How users will learn flat, long names
 - Using services

Features

- Name discovery and routing using "Anycast"
- Does not support caching originally (but can be extended to do so): needed for availability
- Self certifying names: satisfies authentication
- Name Resolution
 - Instead of DNS, use Resolution Handlers(RH)
 - Find and Register packets
 - Each client knows local RH through some local mechanism

COMMUNICATION SCENARIO

Guiding Principles

- Routing should be done based on content rather than location
- Decouple location from identity, security and access

Features

- Communication is driven by "consumers of data"
- Packets
 - Packets: Interest and Data
- Consumer Broadcasts interest
 - Data is transmitted only in response to interest and consumes that interest
- Data matches if
 - Interest <contentName> PREFIX data <contentName>
- Forwarding engine with 3 data structures:
 - Forwarding Information Base (FIB)
 - Content Store (buffer memory)
 - Pending Interest Table (PIT)

Features

- Data packets follow the same path as Interest packets (in reverse order)
 - Each PIT entry is a "bread crumb" marking
 Content-based Security
 - Security and trust is a property of content rather than the location on which is travels
- All content authenticated with signatures, private content encrypted
 - Enhances usability since the names are not complicated hashes
 - Needs more time to verify content ?
- Packet contains information about public key

Interest packet

Content Name

Selector (order preference, publisher filter, scope, ...)

Nonce

Data packet

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator, stale time, ...)

Data

CCN PACKETS

CCN FORWARDING ENGINE

Merits

- Very simple and understandable scheme
- Shown to work with streamed media
- Easy to implement based on current routing software
- Easy to deploy on existing routing protocols and IP networks
- Easy, human-readable naming scheme

Possible Concerns

- The simple hierarchical (URI-like) naming scheme is built deep into the design
- Will it scale to hundreds of billions of nodes?
 - Flooding (send out through all available faces)
 - Flow balance an Interest for every Data
 - How large can the FIB grow (soft state)?
 - Data takes the same (possibly non-optimal)
- Security architecture looks very conventional

Design Principles

- Internet based on Pub / Sub paradigm
- Routing based on Bloom Filter
- Security based on Packet Level Authentication

Core Functionalities

- Rendezvous
- Forwarding
- Topology Management

User usage API

Generic Pub / Sub functions

Use of Scoping

Information targeted to solve a particular problem

Rendezvous

- Link Local
 - Pubs subs on the same node
- Intra Domain
 - Scenarios like IPTV, multicast services
 - Network access through forwarders
 - Rendezvous node broadcasts to forwarders
 - Forwarders send publications / subscriptions to RN

Rendezvous

- Inter Domain
 - Local RN's join to form larger Rendezvous Networks
 - Larger RNs joined into a Rendezvous Interconnect that uses Chord DHT as a distribution strategy
 - Rendezvous Core provides Anycast routing strategy

Topology Management

 To find optimal forwarding paths from subscribers to publishers

Forwarding

- Based on Bloom Filter
- Path information encoded into packet header
- Lends itself to multicast

Security

- Packet Level Authentication
 - Analogy to paper currency
 - Allows any node to verify packet authenticity and validity
 - Sender adds header on top of network layer containing cryptographic identity, certificate from third party, signature over packet

USE OF SCOPING

Communication in Intra Domain Scenario

FRAMEWORK ARCHITECTURE

Large Scale Deployment

COMPARISON

	DONA	CCN	PURSUIT
Clean Slate Approach	For naming & name resolution		Yes
Messaging	Find / Register	Interest / Data	Publish / Subscribe
Compatibility With current IP	Active	Active	Passive
Security	Self Certifying	PKI like	Self certifying+ trust
Mobility & Multihoming	yes	yes	yes
Scalability	Pseudo flat	Hierarchical	flat
Feasibility Demonstration	Simulation Level / Modeling	Secure Voice	Simulation Level / Modeling

IOT and ICN

ISSUES & CONSIDERATIONS

- Receiver Driven Architecture
- Simple communication paradigm
 - Get / Put
 - Energy Efficient ?
- Network built security
- Performance compared to current WSN Communications

MISCELLANEOUS CHALLENGES

- Implementation
 - Overlay on top of current IP
- How to trigger a change
 - Strong push by established giants (Facebook vs Google+)
 - Some large scale DDOS attack?
- Energy Issues
- Monopoly of Tier 1 operators

- QUESTIONS

- COMMENTS

THANKS!

REFERENCES

DONA

 T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica, A Data-Oriented (and Beyond) Network Architecture, In SIGCOMM '07

CCN

- Networking Named content, Van Jacobson et al. http://conferences.sigcomm.org/co-next/2009/papers/Jacobson.pdf
- VoCCN: Voice-over Content-Centric Networks, Von Jacobson et al, http://conferences.sigcomm.org/conext/2009/workshops/rearch/papers/Jacobson.pdf
- Von Jacobsen Video talk CCN, http://video.google.com/videoplay?docid=-6972678839686672840

PURSUIT / PSIRP

- Dirk Trossen et al. PURSUIT Conceptual Architecture
- Arto Karila et al. PURSUIT State of the art
 - http://www.fp7-pursuit.eu/PursuitWeb/?page id=162

REFERENCES

Miscellaneous

- "Why the internet Only just works", Mark Handley,
- David D. Clark et al. Tussle in Cyberspace: Defining Tomorrow's Internet
- "Survey of Information-Centric Networking" (Draft); Ahlgren, Bengt, Dannewitz, Christian, Imbrenda, Claudio, Kutscher, Dirk Ohlman, Börje. http://drops.dagstuhl.de/opus/volltexte/2011/2941/