See the website to see a solved copy of Monday's test.

Today - finish \$3.1

- in \$3.2, discuss the Weak Duality Theorem (Thm 3.4)

Thm 3.2 and 3.3 (generalized)

Given a dual pair of problems, each equality constraint in one problem is associated with an unrestricted variable in the other problem.

Proof. (in one instance):

Given the primal problem:

Maximize $Z = X_1 + 2X_2 = 5t$. $3X_1 - 4X_2 = 5$ $4X_1 + 7X_2 \le 8$

X, >0, 72 unrestricted

In primal standard form, this is equivalent to $Maximize = X_1 + 2X_2^{+} - 2X_2^{-}$

 $3x_{1} - 4x_{2}^{+} + 4x_{2}^{-} \le 5$ $-3x_{1} + 4x_{2}^{+} - 4x_{2}^{-} \le -5$ $6x_{1} + 7x_{2}^{+} - 7x_{2}^{-} \le 8$

 $X_1 \ge 0$, $X_2^+ \ge 0$, $X_2^- \ge 0$

(where $x_2 = x_2^+ - x_2^-$)

Its dual is:

Maximize $z = 5w_1^{\dagger} - 5w_1^{-} + 8w_2$ s.t. $3w_1^{\dagger} - 3w_1^{-} + 6w_2 \ge 1$ $-4w_1^{\dagger} + 4w_1^{-} + 7w_2 \ge 2$ $4w_1^{\dagger} - 4w_1^{-} - 7w_2 \ge -2$ $w_1^{\dagger} \ge 0$, $w_1^{\prime} \ge 0$, $x_2 \ge 0$

With $W_1 = W_1^+ - W_1^-$, the dual is equivalent to Minimize $Z = 5W_1 + 8W_2$ S.t. $3W_1 + 6W_2 \ge 1$

 $-4w_1 + 7w_2 = 2$ w_1 unrestricted, $w_2 \ge 0$.

Remark: Theorem 3.1.3.2, and 3.3 can be used to find the dual of any maximization problem having
constraints (plus equalities)

and any minimization problem have > constraints. (plus equalities)

Eg The primal standard problem:

Maximize $Z=X_1+2X_2$ s.t. $3X_1+4X_2 \leq 5$ $6X_1+7X_2 \leq 8$

X120,7220

has dual

Maximize $Z'=5\omega_1+8\omega_2$ S.t. $3\omega_1+6\omega_2 \ge 1$ $4\omega_1+7\omega_2 \ge 2$ $\omega_1 \ge 0$. $\omega_2 \ge 0$

In canonical form, the primal problem is

Naximize $z = x_1 + 2x_2 + 0 \cdot x_3 + 0 \cdot x_4 \quad s.t.$ $3x_1 + 4x_2 + x_3 = 5$ $5x_1 + 7x_2 + x_4 = 8$ $x_1 \ge 0 \cdot x_2 \ge 0 \cdot x_3 \ge 0 \cdot x_4 \ge 0$

According to theorem 3.2, its dual is

Minimize $\mathbb{Z}'=5\text{W1}+8\text{W2}$ s.t. $3\text{W1}+6\text{W2} \ge 1$ $4\text{W1}+7\text{W2} \ge 2$ W1 ≥ 0

Wz 20 W. mrestricted, Wz unrestricted

(Actually the same problem as the last version of the dual.)

Weak Duality Theorem

Given a dual pair of problem:

Maximize z = Cxs.t

 $Ax \leq b$

x≥o ∈R"

and Maximize Z'=bTw s.t.

ATW>C

w≥0 € IRn

(A is mxn)

It to is teasible for the primal problem and wo is feasible for the dual problem, then CTXO & bTW.

(comparison of objective values)

all components

Proof: We have: Axo < b, xo >0 < Rm, A wo > c, wo >0 < Rm Then wo TAX. $\leq W_0$ Tb (since $Ax_0 - b \geq 0 \in \mathbb{R}^m$, so U_0 (b-Ax.) ≥ 0

Taking transposes (XoTATwo & bTwo)

Since A Two >c and No >0, we have (xo TATWO > XOTC = CTXO)

The 2 circled enequelities say CTX. = XOTATWO, SO CTXO SDTWO, SO CTXO SDTWO