

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

NÁZEV PRÁCE

THESIS TITLE

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

JMÉNO PŘÍJMENÍ

AUTHOR

VEDOUCÍ PRÁCE

prof. RNDr. JMÉNO PŘÍJMENÍ, Ph.D.

SUPERVISOR

BRNO 2025

Abstrakt
Do tohoto odstavce bude zapsán výtah (abstrakt) práce v českém (slovenském) jazyce.
A la atmospt
Abstract Do tohoto odstavce bude zapsán výtah (abstrakt) práce v anglickém jazyce.
Do tohoto odstavce bude zapsan vytan (abstrakt) prace v anguckem jazyce.
Klíčová slova
Sem budou zapsána jednotlivá klíčová slova v českém (slovenském) jazyce, oddělená čár
kami.
Keywords
Sem budou zapsána jednotlivá klíčová slova v anglickém jazyce, oddělená čárkami.

Citace

PŘÍJMENÍ, Jméno. *Název práce*. Brno, 2025. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí práce prof. RNDr. Jméno Příjmení, Ph.D.

Název práce

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana X... Další informace mi poskytli... Uvedl jsem všechny literární prameny, publikace a další zdroje, ze kterých jsem čerpal.

Jméno Příjmení 6. prosince 2024

Poděkování

V této sekci je možno uvést poděkování vedoucímu práce a těm, kteří poskytli odbornou pomoc (externí zadavatel, konzultant apod.).

Obsah

1	$\mathbf{\acute{U}vod}$	Úvod 4			
	1.1 Po	$ojmy \dots \dots$			
2	Teoret	tické základy 5			
		efinice podpisu a jeho charakteristiky			
	2.2 B	iometrická autentizace			
	2.3 D	ynamické parametry podpisu			
	2.4 R	ozpoznávání falsifikátů			
3	Analý	za současných řešení 6			
	3.1 Sc	oučasná řešení v oblasti biometrie			
	3.2 P	říklady systémů pro digitální snímání podpisu 6			
	3.3 H	odnocení výhod a nevýhod existujících řešení 6			
4	Návrh	snímacího pera 7			
		ýběr senzorů a technologií			
		1.1 EPS32			
	4.	1.2 MPU-6050 (akcelerometr a gyroskop)			
	4.	1.3 Tlakový senzor Interlink Electronics FSR® 400			
	4.2 Se	chéma a popis návrhu			
5	Imple	mentace prototypu 8			
	_	ývoj hardwaru			
		bírání dat v reálném čase			
		kládání dat pro následnou replikaci podpisu			
6	Replik	cace podpisu 9			
	_	yužití robotické ruky nebo 3D tiskárny			
		ransformace nasnímaných dat na kód pro replikaci			
		estování a výsledky replikace			
7	Hodno	ocení výsledků 10			
		nalýza dosažených výsledků			
		orovnání s očekáváními			
		iskuze o spolehlivosti a přesnosti replikace			
8	Možná	á vylepšení a rozšíření 11			
		ávrhy na zlepšení prototypu			
		ložnosti dalšího výzkumu a vývoje			

9	Záv	èr	12	
	9.1	Shrnutí hlavních poznatků	12	
	9.2	Zhodnocení významu práce	12	
	9.3	Budoucí perspektivy	12	
\mathbf{Li}	Literatura			

Seznam obrázků

$\mathbf{\acute{U}vod}$

Podpis je jednou z nejstarších metod používanou pro ověření totožnosti, určení autorství či udělení pravního souhlasu. V této práci půjde především o ověření totožnosti, které spadá pod obor zvaný biometrie. Biometrie se zabývá analýzou biologických a behaviorálních charakteristik používaných mimo jiné k autentizaci. Zkoumáním pravosti podpisu a jiných textů se zabývá písmoznalectví neboli grafognózie. U podpisu lze analyzovat statické a dynamické parametry písma.

Podpis je v praxi stále nejrozsáhlejším způsobem autentizace. Podaří-li se důveryhodně podpis napodobit, bude možnost obejít bezpečností zabezpečení. To představuje velké bezpečností riziko a nutnost upravení dosavadních bezpečnostích metod pro autentizaci. Bavíme se zde spíše o digitálním podpisu. Ten obsahuje daleko méně informací a je tedy méně náročné ho falzifikovat.

1.1 Pojmy

- Biologické autentizační metody zkoumají biologické charakteristiky člověka, s jimiž se narodí. Tyto charakteristiky má každý člověk unikátní a jsou neměnitelné. Patří mezi ně například otisky prstů, skeny sítnice či duhovky.
- Behaviorální autentizační metody porovnávají behaviorální charakteristiky související s chováním člověka. Může například porovnávat, jakým způsobem jedinec mluví nebo jak pohybuje očima.
- Statické parametry písma jde o parametry, které nezahrnují informace o procesu
 psaní podpisu. Patří mezi ně například tvar a vzhled písma, umístění podpisu na
 stránce nebo také tloušťka čar.
- Dynamické parametry písma tyto parametry se vytahují k samotnému průbehu psaní podpisu. Například rychlost psaní, akceleraci, tlak nebo průběh tahů.

Teoretické základy

Pro plné pochopení problematiky bylo potřeba nastudovat podkaldy z několika odvětví. V této části budou shrnuty všechny potřebné informace. Pro snažší orientaci jsou niže rozděleny do bloků.

2.1 Definice podpisu a jeho charakteristiky

Definice podpisu je poněkud problematická. Podpis jako takový není v zákoně nijak přímo definován. Obecně je ale bráno za podpis vlastnoruční uvedění jména a příjmení, nebo jiného jedinečného a nezaměnitelného označení.

Charakteristiky podpisu je nepřeberné množství informací, podle kterých jde jednotlivé podpisy od sebe odlišit. Charakteristiky se dělí na statické a dynamické 1.1. Jsou ovlivňovány jak fyzickým, tak i psychologickým stavem člověka v době podpisu. Mezi hlavní zkoumané charakteristiky

- 2.2 Biometrická autentizace
- 2.3 Dynamické parametry podpisu
- 2.4 Rozpoznávání falsifikátů

Analýza současných řešení

- 3.1 Současná řešení v oblasti biometrie
- 3.2 Příklady systémů pro digitální snímání podpisu
- 3.3 Hodnocení výhod a nevýhod existujících řešení

Návrh snímacího pera

- 4.1 Výběr senzorů a technologií
- 4.1.1 EPS32
- 4.1.2 MPU-6050 (akcelerometr a gyroskop)
- 4.1.3 Tlakový senzor Interlink Electronics FSR® 400
- 4.2 Schéma a popis návrhu

Implementace prototypu

- 5.1 Vývoj hardwaru
- 5.2 Sbírání dat v reálném čase
- 5.3 Ukládání dat pro následnou replikaci podpisu

Replikace podpisu

- 6.1 Využití robotické ruky nebo 3D tiskárny
- 6.2 Transformace nasnímaných dat na kód pro replikaci
- 6.3 Testování a výsledky replikace

Hodnocení výsledků

- 7.1 Analýza dosažených výsledků
- 7.2 Porovnání s očekáváními
- 7.3 Diskuze o spolehlivosti a přesnosti replikace

Možná vylepšení a rozšíření

- 8.1 Návrhy na zlepšení prototypu
- 8.2 Možnosti dalšího výzkumu a vývoje

Závěr

- 9.1 Shrnutí hlavních poznatků
- 9.2 Zhodnocení významu práce
- 9.3 Budoucí perspektivy

Literatura