МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №3

з дисципліни «Дискретна математика»

Виконав:

студент групи КН-114 Брила Ярослав

Викладач:

Мельникова.Н.І

Лабораторна робота № 3

Тема: Побудова матриці бінарного відношення

Мета роботи: набуття практичних вмінь та навичок при побудові матриць бінарних відношень та визначені їх типів.

Теоритичні відомості:

Декартів добуток множин A і B (позначається $A \times B$) — це множина всіх упорядкованих пар елементів (a,b), де $a \in A$, $b \in B$. При цьому вважається, що (a1,b1) = (a2,b2) тоді і тільки тоді, коли a1 = a2, b1 = b2.

Бінарним відношенням R називається підмножина декартового добутку $A \times B$ (тобто $R \subset A \times B$). Якщо пара (a,b) належить відношенню R , то пишуть $(a,b) \in R$, або aRb.

Нехай задано бінарне відношення R на множині.

- 1. Бінарне відношення R на множині A називається рефлексивним, якщо для будь якого а ∈ A виконується aRa, тобто (a,a)∈R. Головна діагональ матриці рефлексивного відношення складається з одиниць. Граф рефлексивного відношення обов'язково має петлі у кожній вершині.
- 2. Бінарне відношення R на множині A називається антирефлексивним, якщо для будь якого а ∈ A не виконується aRa , тобто (a,a) ∉ R . Головна діагональ матриці антирефлексивного відношення складається з нулів. Граф антирефлексивного відношення не має петель.
- 3. Бінарне відношення R на множині A називається симетричним, якщо для будь яких a,b∈ A з aRb слідує bRa , тобто якщо (a,b)∈ R то і (b,a)∈ R . Матриця симетричного відношення симетрична відносно головної діагоналі. Граф симетричного відношення не є орієнтованим.
- 4. Бінарне відношення R на множині A називається антисиметричним, якщо для будь яких a,b∈ A з aRb та bRa слідує що a = b . Тобто якщо (a,b)∈ R і (b,a)∈ R , то a = b . Матриця антисиметричного відношення не має жодної пари одиниць, які знаходяться на симетричних місцях по відношенню до головної діагоналі. У графа антисиметричного відношення вершини з'єднуються тільки однією напрямною дугою.
- 5. Бінарне відношення R на множині A називається транзитивним, якщо для будь яких a, b, c ∈ A з aRb та bRc слідує, що aRc. Тобто якщо (a,b) ∈ R і (b,c) ∈ R , то (a,c) ∈ R . Матриця транзитивного відношення характеризується тим, що якщо елемент матриці σ іj = 1 та σ jm = 1 , то обов'язково σ im = 1 . Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад,

перша-друга та друга- третя вершини, то обов'язково ϵ дуга з першої в третю вершину.

6. Бінарне відношення R на множині A називається антитранзитивним, якщо для будь яких a,b, $c \in A$ з aRb та bRc слідує що не виконується aRc . Тобто якщо $(a, b) \in R$ і $(b, c) \in R$, то $(a, c) \notin R$. Матриця антитранзитивного відношення характеризується тим, що якщо елемент матриці σ іј = 1 та σ јт =1, то обов'язково σ іт =0

Завдання

Варіант 2

- 1. Чи ϵ вірною рівність $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$?
- **2.** Знайти матрицю відношення $R \subset 2^A \times 2^B$: $R = \{(x, y) | x \in A \& y \subset B \& |y| = |x|, x \cap y = \emptyset\}$, де $A = \{1,2\}, B = \{1,3,5\}$.
 - 3. Зобразити відношення графічно:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x^2 - 2x + y^2 \le 3\}, \text{ де } \mathbb{R}$$
 - множина дійсних чисел.

4. Маємо бінарне відношення $R \subset A \times A$, де $A = \{a, b, c, d, e\}$, яке задане своєю матрицею:

$$A(R) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$
 Перевірити чи ϵ дане відношення рефлексивним, симетричним, транзитивним,

антисиметричним?

Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним: $\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& y = \ln |x| \}$.

Розв'язок

1.
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

 $(x,y) \in (A \cap B) \times (C \cap D) \Leftrightarrow (x \in A \cap B) \& (y \in C \cap D) \Leftrightarrow (x \in A \& x \in B) \& (y \in C \& y \in D) \Leftrightarrow (x \in A \& y \in C) \& (x \in B \& y \in D) \Leftrightarrow (x,y) \in (A \times C) \& (x,y) \in (B \times D) \Leftrightarrow (x,y) \in (A \times C) \cap (B \times D)$

Отже, ця вірність ϵ правильною.

2. $A=\{1,2\}, B=\{1,3,5\}.$

 $R = \{(x,y) | x \in A \& y \subset B \& |y| = |x|, x \cap y = \bigoplus \}$

	{Ø}	{1}	{2}	{1,2}
{Ø}	0	1	1	1
{1}	1	0	1	0
{3}	1	1	1	1
{5}	1	1	1	1
{1,3}	1	0	1	0
{3,5}	1	1	1	1
{1,5}	1	0	1	0
{1,3,5}	1	0	1	0

 $3.\alpha=\{(x,y)|(x,y)\in R, x^2-2*x+y^2\leq 3\}$, де R - множина дійсних чисел. $x^2-2*x+y^2\leq 3=(x^2-2*x+1)+y^2\leq 4$

4. $R \subset A \times A$, де $A = \{a,b,c,d,e\}$

Матриця:

_1	1	0	0	0
0	0	1	1	0
1	0	0	0	1
0	0	0	0	0
0	0	0	1	0

- -Дана матриця не ϵ рефлексивною, тому що її діагональ не складається з одиниць.
- -Дана матриця $\,$ не $\,\varepsilon$ симетричною.
- -Дана матриця не ϵ транзитивною, тому що якщо σ Ij=1 та σ jk= 1 , то обов'язково σ ik=1.
- 5. Визначити множину (якщо це можливо), на якій дане відношення ϵ :
- а) функціональним; б) бієктивним:

$$\alpha = \{(x, y)(x, y) \in R^2 \& y = \ln |x|\}$$

А) Якщо кожному елементу х X відповідає не більше одного елементу у Y, то така відповідність називається функціональним відношенням X у множину Y. Задане відношення є функціональним на всій множині дійсних чисел $(-\infty,\infty)$, оскільки в нашій функції одному х відповідає один у.

Б) Функція називається бієктивною , якщо вона ін'єктивна та сюр'єктивна одночасно. Таку функцію ще називають взаємнооднозначним відображенням. Задане відношення не ϵ бієктивним на всій множині дійсних чисел $(-\infty,\infty)$, оскільки одному Y відповідає два X.

Додаток 2

Написати програму, яка знаходить матрицю бінарного відношення $\rho \subset A \times B$, заданого на двох числових множинах. Реалізувати введення цих множин, та виведення на екран матриці відношення. Перевірити програмно якого типу ε задане відношення. Навести різні варіанти тестових прикладів.

 $\rho = \{(a, b) \ a \in A\&b \in B \& \ a < b\};$

```
#include <iostream>
#include <cmath>
#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>

#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>
#include <cmath>#include <cmath>
#include <cmath>#include <cmath>
#include <cmath>#include <c
```

```
cout<<endl<<"The first array A={ ";</pre>
for(int i=0;i<n;i++)</pre>
    cout<<A[i]<<" ";
cout<<'}'<<endl<<"The second array B={ ";</pre>
for(int i=0;i<n;i++)</pre>
    cout<<B[i]<<" ";
cout<<'}'<<endl<<"R: ";
    for (int j = 0; j < m; ++j) {
        cout<<'{'<<A[i]<<';'<<B[j]<<'}';
cout<<endl<<"a<b: ";</pre>
for (int i = 0; i < n; ++i) {
    for (int j = 0; j < m; ++j) {
        if(A[i] < B[j])</pre>
             cout<<'{'<<A[i]<<';'<<B[j]<<'}';
cout<<endl<<"The matrix: "<<endl;</pre>
for (int i = 0; i < n; ++i) {
    for (int j = 0; j < m; ++j) {
        if(A[i] < B[j])</pre>
           {C[i][j]=1;}
        {C[i][j]=0;}
        cout<<C[i][j]<<' ';
    cout<<endl;
```

```
int t=1;
                         if( C[i][j]==1)
                         {
                                 if (C[j][k] == C[i][k] && C[j][k] == 1) {
94
                         if(C[i][j] != 1)
                       if(C[j][i]!=C[i][j])
```

Вивід програми:

```
Enter the size of the first array

Enter the elements

2 8 6

Enter the size of the second array

Enter the elements

1 4 10

The first array A={ 8 2 6 }

The second array B={ 4 1 10 }

R: {8;4}{8;1}{8;10}{2;4}{2;1}{2;10}{6;4}{6;1}{6;10}

a<b: {8;10}{2;4}{2;10}{6;10}

The matrix:

0 0 1

1 0 1

0 0 1

Transactive matrix: No

Reflexive matrix: No

Symmetrical matrix: No
```

Висновок: На лабораторній роботі №3, я навчився будувати матриці бінарного відношення, вирішив завдання додатку 1, а також написав програму, яка будує матрицю бінарного відношення і яка показує тип даної матриці.