Versuch 2: Pendel

Jascha Fricker, Benedict Brouwer

1. April 2022

Abstract

In diesen beiden Versuchsaufbauten werden verschiedene Pendel untersucht. Zum einen wird mit einem Reversionspendel die Erdbeschleunigung g gemessen, zum anderen werden zwei mit einer Feder gekoppelte Pendel untersucht und mit den Messwerten u.a. die Federkonstante berechnet.

Inhaltsverzeichnis

1	Reversionspendel				
	1.1	Experimenteller Aufbau und Theorie	1		
	1.2	Ergebnisse	2		
2	Gekoppelte Pendel				
	2.1	Experimenteller Aufbau und Theorie	3		
	2.2	Ergebnisse	4		
3	Anhang				
	3.1	Fehlerberechung 1	4		

Reversionspendel 1

1.1 Experimenteller Aufbau und Theorie

Ein Reversionspendel hat zwei Aufhängepunkte und zwei Massen, die alle auf einer Geraden liegen. Dabei kann ein Masse verschoben werden. Es gibt zwei Positionen des verschiebbaren Gewichts, an dem die Periode der Schwingung an beiden Aufhängepunkten gleich ist. Für ein Reversionspendel in dieser Konfiguration ist die Periode

$$\tau^2 = 4\pi^2 \cdot \frac{l_r}{g} \tag{1}$$

$$\tau^{2} = 4\pi^{2} \cdot \frac{l_{r}}{g}$$

$$\Rightarrow g = 4\pi^{2} \cdot \frac{l_{r}}{\tau^{2}}$$
(1)

(Herleitung siehe [3, Abschitt 1.3]). Daraus ist ersichtlich, dass, wenn dieser Fall eintritt, die Periodendauer unabängig von der Masse und des Trägheitsmoments ist. So kann mit der Periodendauer und dem Abstand der beiden Aufhängungspunkte l_r die Erdbeschleunigung ausgerechnet werden. Um diese besonderen Positionen der zweite Masse zu finden, wird im Experiment die Periodendauer mit der Masse an verschieden Positionen von beiden Aufhängungen gemessen, um dann mithilfe des Schnittpunkts der Ausgleichgeraden die gewünschten Punkte zu bestimmen.

1.2 Ergebnisse

Abbildung 1: Grobe Darstellung der Messdaten

Im Graphen 1 wurde die Periodendauer abhängig vom Ort der zweiten Masse für beide Aufhängungspunkte dargestellt. In dem Graphen 2 können die beiden Schnittpunkte der Periodendauer der verschiedenen Aufhängungen nochmal näher gesehen werden. Für den Fehler der Zeitmessung wurden 2ms angenommen, da in den Messdaten eine maximale Abweichung von 1ms bei verschiedenen Messungen der gleichen Periodendauer vorkam und die Lichtchranke selber auch eine Genauigkeit von 1ms hat. Auf eine genaue Fehlerfortpflanzung wurde wegen der geringen Abweichung verzichtet, da wahrscheilich durch die Kleinwinkelnäherung viel größere Fehler entstehen. Beachtenswert ist, dass das Pendel einge Zeit braucht bis es sich eingependelt"hat und konsistente Messwerte gemessen werden können. Der Abstand

Abbildung 2: Genauere Darstellung der Schnittpunkte

	Schnittpunkt 1	Schnittpunkt 2	
Periodendauer	1794,96(456) ms	1795,00(234) ms	
Erdbeschleunigung	9,803(51)m s ⁻²	$9,802(26) \mathrm{m s^{-2}}$	
gewichtetes Mittel	$g = 9,802(23) \text{m s}^{-2}$		

Tabelle 1: Ergebisse

der beiden Aufhängungspunkte l_r beträgt 800,0(11)¢m.

Der vom International Gravimetric Bureau in München gemesse Wert von $g=9,807232 \mathrm{m\,s^{-2}}$ [2] liegt eindeutig im Konfidenzintervall unserer Messungen, die in Tabelle 1 dargestellt sind, und sogar relativ nahe am berechneten Wert.

2 Gekoppelte Pendel

2.1 Experimenteller Aufbau und Theorie

Gekoppelte Pendel sind zwei Pendel, die mit irgendwie miteinander gekoppelt sind. In diesem Fall sind zwei Pendel mit einer Feder auf einer veräanderbaren Höhe verbunden.

2.2 Ergebnisse

3 Anhang

3.1 Fehlerberechung 1

Unsicherheit l_r : l_r wurde mit einem Metalllineal gemessen werden. Deshalb kann mithilfe von [1, Gleichung (40)] und [1, Tabelle 5] die Unsicherheit des Lineals (Länge L=1m)

$$u(L) = 0.5 \text{mm} \tag{3}$$

und mit [1, Tabelle 1] die Ablesegenauigkeit

$$u_a = \frac{0.5 \text{mm}}{2\sqrt{3}} = 0.15 \text{mm} \tag{4}$$

berechnet werden. Das Metallineal hat jede 0.5mm ein Ablesestrich. Die Unsicherheiten werden zur Gesamtunsicherheit

$$u_l = \sqrt{u(L)^2 + u_a^2} = 0.52$$
mm (5)

zusammengefasst.

Unsicherheit τ : Die Unsicherheiten wurden mithilfe von der Formel in der Aufgabenstellung [3, Aufgabe 8] berechnet.

Unsicherheiten von g_1 und g_2 : Mit der Formel 2 kann die allgemeinen Formel für Fehlerfortpflanzung [1, Formel (20)] für diesen Fall angepasst werden:

$$u(\bar{g}) = \sqrt{\left(\frac{\partial g}{\partial l_r}\right)^2 u(l_r)^2 + \left(\frac{\partial g}{\partial \theta}\right)^2 u(\theta)^2}$$
$$= \sqrt{\frac{16\pi^4}{\theta^2} u(l_r)^2 + \frac{64\pi^4 l_r^2}{\theta^3} u(\theta)^2}$$
(6)

Gewichteter Mittelwert: Der Gewichtete Mittelwert und seine Unsicherheit wurde mithilfe von Formeln (29) bis (32) im ABW Skript[1] berechnet. da u_{int} mit $0.023 \,\mathrm{m\,s^{-2}}$ größer als $u_{ext} = 0.00019 \,\mathrm{m\,s^{-2}}$ ist, wird u_{int} als Ungenauigkeit angenommen.

Literatur

[1] Technische Universität München. Hinweise zur Beurteilung von Messungen, Messergebnissen und Messunsicherheiten (ABW). https://www.ph.tum.de/academics/org/labs/ap/org/ABW.pdf, März 2021.

- [2] Andreas Lindau Roman Schwartz. Das europäische gravitationszonenkonzept nach welmec für eichpflichtige waagen.
- [3] Technische Universität München. Aufgabenstellung Pendel (PEN). https://www.ph.tum.de/academics/org/labs/ap/ap1/PEN.pdf, August 2021.