Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

1. Given the following contour plot,

Which starting points (from 1 to 5) are likely to converge to the global minimum (shown by the mobile phone) when using a steepest descent algorithm?

- Starting point 1 In this case, the algorithm descends smoothly down the slope. ☐ Starting point 2 Starting point 3 In this case, the algorithm descends smoothly down the slope. Starting point 4 In this case, the algorithm descends smoothly down the slope.
- Starting point 5
- ☐ None of the above

2. Again, which starting points converge to the global minimum?

☐ Starting point 1
☐ Starting point 2
✓ Starting point 3
 ✓ Correct This should converge to the global minimum.
✓ Starting point 4
Correct This should converge to the global minimum.
✓ Starting point 5
⊘ Correct This should converge to the global minimum.

☐ None of the above

3. Which starting points converge to the global minimum?

- Starting point 1
- Starting point 2
 - **⊘** Correct

From here, the algorithm will descend the hill to the global minimum.

- ☐ Starting point 3
- ☐ Starting point 4
- ☐ None of the above

4. What's happening in this gradient descent?

- O The algorithm is getting stuck near saddle points.
- $\begin{picture}(60,0)\put(0,0){\line(0,0){100}}\end{picture}$ The algorithm is getting stuck near local minima.
- $\ensuremath{\bigcirc}$ The global minimum is in a wide and flat basin, so convergence is slow.
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Correct
 This could be improved by increasing the aggression.

5. What is happening here?

- O The algorithm is passing either side of a local maximum.
- O None of the other options.
- O There is noise in the system.
- The algorithm is passing either side of a saddle point.
- The algorithm is passing either side of a local minimum.

⊘ Correct

6. What is happening here?

- O There is noise in the system
- The marked points are saddle points.
- The Jacobian at the starting point is very large.
- O None of the other options.
 - ✓ Correct

This is causing the algorithm to overshoot. In one case into a different basin.