Problem Set Three

Josh Virene

February 2024

1 Question One: Forecasts and Non-stationary time series.

Forecasts and Non-stationary time series. Let time series Y_t satisfy $y_t = \mu + \rho_{y_t(t-1)} + \epsilon_t$ where ϵ_t is an i.i.d. Gaussian process with zero mean and variance σ_t^2 .

(a) Assume that the process Y_t is stationary, i.e., $|\rho| < 1$. Compute unconditional mean EY_t

```
We know E(\epsilon_t)=0 as it is i.i.d, E(\mu)=\mu, E(\rho Y_t)=\rho(E(y_{t-1})) for all E(Y_t) E(Y_t)=E(\mu)+E(\rho_{y_(t-1)})+E(\epsilon_t) E(Y_t)=\mu+\rho(EY_t) E(Y_t)-\rho(EY_t)=\mu E(Y_t)(1-\rho)=\mu E(Y_t)=\mu/(1-\rho)
```

(b) Compute conditional expectation $E(y_{t+h}|y_t)$. For integer h $\downarrow 0$

$$E(Y_{t+1}) = E(\mu|Y_t) + \rho(E(Y_t|Y_t) + E(\epsilon_i|Y_t))$$

$$= \mu * 1 + \rho E Y_t$$

$$E(Y_{t+2}) = E(\mu|Y_t) + \rho(E(Y_{t+1}|Y_t) + E(\epsilon_i|Y_t))$$

$$=\mu(1+\rho)+\rho^2Y_t$$

$$E(Y_{t+3}) = E(\mu|Y_t) + \rho(E(Y_{t+2}|Y_t) + E(\epsilon_i|Y_t))$$

$$= \mu(1 + \rho + \rho^2) + \rho^3 Y_t$$

These establish the pattern needed for our final result.

$$E(Y_{t+h}) = E(\mu|Y_t) + \rho(E(Y_{t+h}|Y_t))$$

= $\mu(1 + \rho^{h-1} + \rho^h) + \rho^h * Y_t$

Finally, apply the equation for a geometric sequence, our answer becomes $E(Y_{t+h}) = \mu(1-\rho^h)/(1-\rho) + (p^h * Y_t)$

(c) Compute $\lim_{h \to \infty} E(y_{t+h}|y_t)$ Does it depend on y_t ?

In the previous expression, $E(Y_{t+h}) = \mu(1-\rho^h)/(1-\rho) + (p^h * Y_t)$

We know that both the terms ρ^h will become zero as $h->\infty$, because $|\rho|<1$.

The expression then becomes $\mu/1-\rho$

(d) Now assume that $\rho=1$. Compute $\lim_{h\to\infty} E(y_{t+h}|y_t)$. Does it depend on y_t ?

 $E(Y_{t+h}) = \mu(1 - \rho^h)/(1 - \rho) + (p^h * Y_t)$

The expression simplifies to 1^hY_t , where $\rho = 1$, $\lim_{h \to \infty} 1^hY_t$ and we see that the limit does in fact depend on Y_t

2 Question Two: Seasonal Patterns

In this problem, you use the cement dataset (cement and its description cement Description are on Canvas). Note that you have to use tsset first to indicate to stata that your data consists of a time series. Write down the regression equation for each regression you perform. (a) **Seasonal Dummies** Generate new variable seasonal that is equal to 1 for t corresponding to January and 0 otherwise. Compute regression of gcem on L(0/10)seasonal. Which months has the largest and the smallest average values for gcem? Report the values.

Regression model: $gcem = \beta_0 + \beta_1 * I(month) + \epsilon_i$ Lagged regression: $\hat{\epsilon_t} = \beta_0 + \beta_1 * (\epsilon_{t-1}) + \hat{\beta_2} * (grres)$

Linear regression
Number of obs = 299 F(12, 287) = 210.04 Prob > F = 0.0000 R-squared = 0.8572 Root MSE = .0726

gcem	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
seasonal						
	2466031	.0289752	-8.51	0.000	303634	1895722
L1.	.1491136	.02525	5.91	0.000	.0994149	.1988124
L2.	.2396536	.0195931	12.23	0.000	.2010892	.278218
L3.	.2135449	.0115148	18.55	0.000	.1908808	.2362091
L4.	.0913427	.0089842	10.17	0.000	.0736594	.109026
L5.	.1108637	.0054218	20.45	0.000	.1001922	.1215353
L6.	0450786	.0077029	-5.85	0.000	0602401	0299172
L7.	.0664325	.005373	12.36	0.000	.055857	.0770079
L8.	0444787	.0065029	-6.84	0.000	0572782	0316792
L9.	.0159906	.0062976	2.54	0.012	.0035952	.028386
L10.	2346745	.011197	-20.96	0.000	2567131	2126358
L11.	3081064	.011494	-26.81	0.000	3307297	2854831
	I					

From this regression output, we see that the month with the largest average value for gcem is March, and the month with the smallest average value for gcem is December.

- (b) **Breusch-Godfrey Test of Serial Correlation.** Perform the test for serial correlation in the error term for the regression of gcem on grees for serial correlation of order 1, 3 and 5. Compute the nR2 test using the procedure outlined below, with the statistic from the ready-made command for the Breusch-Godfrey test, which is estat bgodfrey lags(p), following regress gcem grees, where p is the order of serial correlation. Do both methods deliver the same test? What is the asymptotic distribution of the Breusch-Godfrey statistic for serial correlation of order 1, 3, and 5? The following steps outline how to perform the Breusch-Godfrey test for first-order serial correlation in the error term:
- i. Perform the OLS regression gcem on grres.
- ii. Obtain residuals from that regression.
- iii. Generate the lagged residual.
- iv. Perform the auxiliary regression of the residual on its own lag and the regressor grres.
- v. Compute the Breusch-Godfrey statistic using nR2 from the above regression. Regression model for gcem on grres: $gcem = \beta_0 + \beta_1(grres) + \epsilon_i$ Regression output:

Source	SS	df	MS		er of obs	=	309
Model Residual	.071508688 10.7902283	1 307	.071508688	Prob R-sq	F(1, 307) Prob > F R-squared		2.03 0.1548 0.0066
Total	Total 10.8617369	308	.03526538		Adj R-squared Root MSE		0.0033 .18748
gcem	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
grres _cons	.5119081 .0026237	.3588878 .0106727		0.155 0.806	194283 018377		1.218099 .0236246

First set of figures, Breusch-Godfrey test using the Stata command:

lags(p)	chi2	df	Prob > chi2	
1	69.237	1	0.0000	
	H0: no seria	al correlation		
estat bgodfrey	, lags(3)			
Inquesh-Godfray	LM test for autocorr	elation		
reasen-dourney	in test for autocorr	CIRCION		
lags(p)	chi2	df	Prob > chi2	
3	103.322	3	0.0000	
'	H0: no seria	al correlation		
estat bgodfrey		al correlation		
	, lags(5)		Prob > chi2	

Reported figures for the manual method of conducting the Breusch-Godfrey Test: (See appendix for regression output given by Stata) Serial correlation of order one. $nR^2 = 0.224(308) = 68.99$ Serial correlation of order three. $nR^2 = 0.333(306) = 101.898$ Serial correlation of order five. $nR^2 = 0.378(304) = 114.912$

The asymptotic distribution of the Breusch-Godfrey statistic for serial correlation of order 1,3, and 5 is a chi-squared distribution; the degrees of freedom are given by the number of lags.

(c) Correcting for Serial Correlation. In order to correct for serial correlation, you can use Newey-West standard errors, using the newey command in stata. Choose the number of lags that is appropriate according to your results in (b). Report the Newey-West standard errors and compare them to the standard errors you get from the regress command. What is the difference between the Newey-West standard errors and the robust standard errors you obtain from regress. Based on the results in part (b), the appropriate number of lags is five. The reason for this is that five lags yields the highest value for the chi-squared statistic. This means that five lags is the most statistically robust. The Newey-West standard errors are reported in the following figure:

Regression wi Maximum lag =		standard err	rors	Number o F(1, Prob > F	f obs = 307) = =	309 1.57 0.2110
gcem	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
grres _cons	.5119081 .0026237	.4083955 .0122009	1.25 0.22	0.211 0.830	2917004 0213843	1.315517 .0266317

In the above model specification, 5 lags were chosen. This comes from the formula: $p = 0.75 * T^{(1/3)}$

Both the non-robust, as well as the heteroscedasticity-robust standard errors are reported in the following figure:

30	obs =	Number (sion	near regres:
1.8	=	F(1, 30				
0.174	=	Prob > 1				
0.006	=	R-square				
.1874	-	Root MS				
				Robust		
interval	[95% conf.	P> t	t i	std. err.	Coefficient	gcem
1.2520	2282536	0.175	1.36	.3761517	.5119081	grres
					.0026237	
.023690	0184428	0.807		.010706 ular regre	n grres // reg	_cons regress gcer
.023690					n grres // reg	regress gcer
30	of obs =	Numb	ssion	ular regre		
30 2.0	of obs = 07) =	Numb	ssion	ular regre	n grres // reg	regress gcer
30 2.0 0.154	of obs = 07) = F =	Number F(1,	ssion MS	ular regre df	n grres // reg	regress gcer Source
30 2.0 0.154 0.006	of obs = 07) = F =	Numb F(1, Prob R-sq	MS .071508688	ular regre df	ss .071508688	regress gcer Source Model
30 2.0 0.154 0.006 0.003	of obs = 97) = F = red = squared =	Numbi F(1, Prob R-sq	MS .071508688	ular regre df	ss .071508688	regress gcer Source Model
30 2.0 0.154 0.006 0.003 .1874	of obs = 97) = F = red = squared =	Numb F(1, Prob R-sq	MS .071508688 .035147323 .03526538	ular regre df 1 307 308	ss .071508688 10.7902283	Source Model Residual
30 2.0 0.154 0.006 0.003 .1874	of obs = 07) = F = red = squared = SSE =	Numb F(1, Prob R-sq Adj	MS .071508688 .035147323 .03526538	ular regre df 1 307 308	ss .071508688 10.7902283 10.8617369	Source Model Residual Total

Comparing the standard errors from the regress command to the Newey-West standard errors, and those obtained from the robust command, we see that the non-robust regression yields the smallest standard errors, the robust regression yields slightly higher standard errors, and the Newey-West standard errors are the largest.

(d) **Testing for a structural break** Formulate a statistical hypothesis to test for significant difference in mean between January and February in notation from (a). Test this statistical hypothesis using t-test.

	Number of obs = Root MSE =	51 .134572	R-squar Adj R-s	red =	0.6907 0.6844
Source	Partial SS	df	MS	F	Prob>F
Model	1.9819689	1	1.9819689	109.44	0.0000
month	1.9819689	1	1.9819689	109.44	0.0000
Residual	.88737572	49	.01810971		
Total	2.8693446	50	.05738689		

The hypothesis we are testing is that there is no significant difference in the mean between January and February. The statistical decision is as follows, H_0 : There not is a difference in means between these two months p for $\beta_1 < 0.05$ (the coefficient on month is statistically significant)

Based on the result from this table P < 0.05, so we reject the null hypothesis in favor of the alternative, meaning there is a statistically significant difference in means between these months.

3 Question Three: Time Trend

Demonstrate that the OLS estimator of δ in the model $Y_t = \beta_1 + \delta(t) + \epsilon_t t = 1, ..., T$ is superconsistent (here ϵ_t is an i.i.d zero mean rv). Show also that it is unbiased in finite samples, despite the fact that Y_t is nonstationary.

Equation: $Y_t = \beta_1 + \delta_t + \epsilon_t t = 1, ..., T$ Showing that the OLS estimator of $\hat{\delta}$ is unbiased:

$$Y_t = \beta_1 + \delta_t + \epsilon_t$$

$$\overline{y} = \beta_1 + \delta_t(\overline{t}) + (1/T)\Sigma_{t=1}^T(t)$$

$$\overline{t} = (1/T)\Sigma_{t=1}^T(t)$$

$$Y_t - \overline{Y} = (\beta_1 + \delta(t) + \epsilon_t) - (\beta_1 + \delta(\overline{t} + (1/T)\Sigma_{t=1}^T(t))$$

$$= \delta(t - \overline{t}) + \epsilon_t - (1/T)\Sigma_{t=1}^T(t)$$

Plugging into the OLS formula for delta

$$\begin{split} \hat{\delta} &= \Sigma_{t=1}^T ((Y_t - \overline{Y})(t-\overline{t}))/\Sigma_{t=1}^T (t-\overline{t})^2 \\ \hat{\delta} &= \Sigma_{t=1}^T (\delta(t-\overline{t}) + \epsilon_t)(t-\overline{t})/\Sigma_{t=1}^T (t-\overline{t})^2 \\ \hat{\delta} &= \delta \Sigma_{t=1}^T (t-\overline{t})^2/\Sigma_{t=1}^T (t-\overline{t})^2 + \Sigma_{t=1}^T \epsilon_t (t-\overline{t})/\Sigma_{t=1}^T (t-\overline{t})^2 \end{split}$$

This final expression shows that $\hat{\delta} = \delta$ because the second term, $\Sigma_{t=1}^T \epsilon_t (t - \bar{t})/\Sigma_{t=1}^T (t - \bar{t})^2$ is equal to zero by the property $E(\epsilon_t) = 0$

Now to show that the OLS estimator of $\hat{\delta}$ is superconsistent. Reminder, the criteria for this is $\sqrt{t}(\hat{\delta} - \delta) - > 0$

$$\begin{split} \hat{\delta} - \delta &= \Sigma_{t=1}^T \epsilon_t (t - \bar{t}) / \Sigma_{t=1}^T (t - \bar{t})^2 \\ &= 1 / \Sigma_{t=1}^T (t - \bar{t})^2 + (\epsilon_1 (1 - \bar{t} + \dots + \epsilon_T (T - \bar{t}) \\ var(\hat{\delta} - \delta) &= (1 / \Sigma_{t=1}^T (t - \bar{t})^2)^2 ((1 - \bar{t}) var(\epsilon_1) + \dots + (T - \bar{t} var(\epsilon_T))) \end{split}$$

This simplifies to: $1/\Sigma_{t=1}^T(t-\bar{t})^2$ since ϵ_t is i.i.d At this point, simplification is algebraic:

$$\begin{split} 1/\Sigma_{t=1}^T(t^2-2t\bar{t}+\bar{t}^2) \\ 1/\Sigma_{t=1}^T(t^2) &= T(T+1)(T+6)/6 \\ &= 2T^3 + 2T^2 + T/6 \\ \\ 1/\Sigma_{t=1}^T(t) &= T(T+1)/2 \\ 1/\Sigma_{t=1}^T(\bar{t}) &= (T+1)/2 \\ 2t\bar{t} &= 2(T(T+1)/T)((T+1)/2) \\ &= 3T^3 + 6T^2 + 3T/6 \\ \\ 1/\Sigma_{t=1}^T(\bar{t})^2 &= T((T+1)/2)^2 \\ 1/\Sigma_{t=1}^T(\bar{t})^2 &= T^3 + 2T^2 + T/4 \\ \\ 1/\Sigma_{t=1}^T(\bar{t})^2 &= T^3 - T/12 \\ var(\hat{\delta} - \delta) &= 12\sigma_{\epsilon}^2/(T^3 - T) \\ var(\sqrt{T}\hat{\delta} - \delta) &= 12\sigma_{\epsilon}^2/(T^3 - T) \\ \end{split}$$

Finally we can see that as t-; ∞ , the above term -; 0 As $t->\infty$ the above expression ->0

Appendix:

Second set of figures: Breusch-Godfrey test using the outlined process.

Source	SS	df	MS	Numb	er of obs	=	308
Model Residual	2.41780816 8.35981439	2 305	1.20890408	Prob R-sq	305) > F uared	=	44.11 0.0000 0.2243
Total	10.7776225	307	.035106262	_	R-squared MSE	=	0.2192 .16556
ehat	Coefficient	Std. err.	t	P> t	[95% cor	ıf.	interval]
ehatlag_1 grres _cons	.4736578 .0907785 0003738	.0504315 .3170783 .0094403	9.39 0.29 -0.04	0.000 0.775 0.968	.37442 5331594 0189503	1	.5728956 .7147165 .0182026

. esttab, se r2

	(1)
	ehat
ehatlag_1	0.474***
	(0.0504)
grres	0.0908
	(0.317)
_cons	-0.000374
	(0.00944)
N	308
R-sq	0.224

Figure 1: Serial correlation of order one. $nR^2=0.224(308)=68.99$

Source	SS	df	MS		per of obs	=	308
Model	2.41780816	2	1.20890408	3 Prol	, 305) > F	=	44.11 0.0000
Residual	8.35981439	305	.027409228		quared	=	0.2243
Total	10.7776225	307	.035106262	_	R-squared t MSE	=	0.2192 .16556
ehat	Coefficient	Std. err.	t	P> t	[95% conf	۴.	interval]
grres	.0907785	.3170783	0.29	0.775	5331594		.7147165
ehat L1.	.4736578	.0504315	9.39	0.000	.37442		.5728956
_cons	0003738	.0094403	-0.04	0.968	0189503		.0182026

	(1)
	ehat
grres	0.0908
	(0.317)
L.ehat	0.474***
	(0.0504)
_cons	-0.000374
	(0.00944)
N	308
R-sq	0.224

Figure 2: Serial correlation of order three. $nR^2 = 0.333(306) = 101.898$

ehat	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
grres	.0595326	.2953768	0.20	0.840	521764	.6408292
ehat						
L1.	.4989758	.0560789	8.90	0.000	.3886134	.6093382
L2.	0848685	.0626184	-1.36	0.176	2081004	.0383634
L3.	344268	.0596829	-5.77	0.000	461723	2268131
L4.	.1490127	.0627468	2.37	0.018	.025528	.2724973
L5.	2644178	.0559814	-4.72	0.000	3745883	1542472
_cons	002121	.0085615	-0.25	0.805	0189698	.0147278

	(1)
	ehat
grres	0.0595
	(0.295)
L.ehat	0.499***
	(0.0561)
L2.ehat	-0.0849
	(0.0626)
L3.ehat	-0.344***
	(0.0597)
L4.ehat	0.149*
	(0.0627)
L5.ehat	-0.264***
	(0.0560)
_cons	-0.00212
	(0.00856)
N	304
R-sq	0.378

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

Figure 3: Serial correlation of order five. $nR^2 = 0.378(304) = 114.912$

```
*Title: Problem Set Three
*VirenePS3.do
*date: 2.20.2024
* Name: Josh Virene*
* ARE256B- Applied Econometrics II
* Purpose: The purpose of this script is to accomplish the tasks that
are outlined in the problem set three assignment
* -----
*----
*Program Setup
*----
clear all
set more off
* set working directory:
global path = "C:\Users\jwvirene\Desktop\Virene PS3"
cd "C:\Users\jwvirene\Desktop\Virene PS3"
pwd // to verify directory was changed
* import the dataset upon which we run the analysis:
use "C:\Users\jwvirene\Desktop\Virene PS3\cement.dta", clear
*Program Setup
*----
version 14 // Set Version number for backward
compatibility
set more off // Disable partitioned output
set linesize 80 // Line size limit to make output more
readable
capture log close // Close existing log files
log using ps3, replace // Open log file
* preview dataset (if needed)
browse
* we want to know the variable names:
ds
// commands so that stata knows this is time series data:
gen date = ym(year, month)
tsset date
*----
* Question Two: Seasonal Patterns
```

```
// (a): Seasonal dummies
gen seasonal = .
replace seasonal = 1 if month == 1
replace seasonal = 0 if month != 1
// running the regression
reg gcem L(0/11).seasonal, nocons robust
// alternative way to show means
regress gcem i.month, robust
// (b): Breusch-Godfrey Test of Serial Correlation.
// set x as white noise
// perform ols regression gcem on grres
regress gcem grres // regular regression
// regress gcem grres, robust // heteroscedasticity robust regression
// method one, using the commands
estat bgodfrey, lags(1)
estat bgodfrey, lags(3)
estat bgodfrey, lags(5)
// method two, running through the steps:
// obtain residuals
predict ehat, residuals
ac ehat // checking for autocorrelation
// lagged residuals
gen ehatlag_1 = ehat[_n-1]
// Perform the auxiliary regression of the residual on its own lag and
the regressor grres
regress ehat ehatlag 1 grres
esttab, se r2
// Compute the Breusch-Godfrey statistic using nR2 from the above
regression.
// p = 1:
reg ehat grres L(1/1).ehat
esttab, se r2
di e(N)
reg ehat grres L(1/3).ehat
esttab, se r2
di e(N)
reg ehat grres L(1/5).ehat
```

```
esttab, se r2
di e(N)
// From the output, we can see that the results via the manual process
are the same as those calculated by running the Breusch-Godfrey
command estat bgodfrey, lags(n) above. The product n*R^2 gives the
same values
// (c): Correcting for Serial Correlation
// need to use the Newey command to compute the Newey-West standard
newey gcem grres, lag(5) force
// (d): Testing for a structural break.
// subset the data so there are only two months- January and February
keep if month == 1 | month == 2
// re-run the regression
reg gcem month
anova gcem month
// from the ANOVA output, it is clear that we may reject the null
hypothesis that the mean value for gcem in January is the same as that
in February.
log close // Close the log, end the file
global path "C:\Users\jwvirene\Desktop\Virene PS3"
translate "$path\ps3.smcl" ///
          "$path\ps3.pdf", translator(smcl2pdf)
```


T.11.

-.3081064

.011494

-26.81

-.3307297

-.2854831

```
name: <unnamed>
        log: C:\Users\jwvirene\Desktop\Virene PS3\ps3.smcl
  log type: smcl
opened on: 22 Feb 2024, 12:51:42
1 . *-----
3 . * preview dataset (if needed)
4 . browse
5 . * we want to know the variable names:
6 . ds
 year
          prcpet
                    rdefs
                             grprcpet grdefs
                                               apr
                                                 mar
                                                          jul
                                                                    nov
                             grres gmilemp
grnon jan
 month
          rresc
                    milemp
                                                          aug
                                                                    dec
                                                         sep
 prccem
         rnonc
                    gprc
                                                 may
 ipcem
          ip
                    gcem
                             gip
                                       feb
                                                 jun
                                                          oct
\boldsymbol{8} . // commands so that stata knows this is time series data:
9 . gen date = ym(year, month)
10. tsset date
 Time variable: date, 48 to 359
         Delta: 1 unit
13. * Question Two: Seasonal Patterns
14. *-----
15.
16. // (a): Seasonal dummies
17. gen seasonal = \cdot
 (312 missing values generated)
18. replace seasonal = 1 if month == 1
 (26 real changes made)
19. replace seasonal = 0 if month != 1
 (286 real changes made)
20. // running the regression
21. reg gcem L(0/11).seasonal, nocons robust
                                               Number of obs =
                                                                        299
 Linear regression
                                                                     210.04
                                                               =
                                               F(12, 287)
                                               Prob > F
                                                                      0.0000
                                                                =
                                               R-squared
                                                                      0.8572
                                               Root MSE
                                                                      .0726
                             Robust
               Coefficient std. err.
                                        t P>|t| [95% conf. interval]
         gcem
     seasonal
          --.
                           .0289752
                                      -8.51
                -.2466031
                                              0.000
                                                       -.303634
                                                                  -.1895722
                 .1491136
                                                                   .1988124
          L1.
                            .02525
                                        5.91
                                              0.000
                                                        .0994149
                           .0195931
                                       12.23
          L2.
                 .2396536
                                              0.000
                                                        .2010892
                                                                     .278218
                 .2135449
          L3.
                           .0115148
                                       18.55
                                              0.000
                                                        .1908808
                                                                   .2362091
                           .0089842
                                       10.17
                                              0.000
                                                        .0736594
                 .0913427
                                                                    .109026
          L4.
          L5.
                 .1108637
                            .0054218
                                       20.45
                                               0.000
                                                        .1001922
                                                                    .1215353
                           .0077029
          L6.
                 -.0450786
                                       -5.85
                                              0.000
                                                        -.0602401
                                                                   -.0299172
          L7.
                 .0664325
                             .005373
                                       12.36
                                              0.000
                                                         .055857
                                                                   .0770079
                            .0065029
          L8.
                 -.0444787
                                       -6.84
                                               0.000
                                                        -.0572782
                                                                   -.0316792
         L9.
                 .0159906
                                                        .0035952
                            .0062976
                                       2.54
                                              0.012
                                                                    .028386
         L10.
                 -.2346745
                            .011197
                                       -20.96
                                               0.000
                                                        -.2567131
                                                                   -.2126358
                                              0.000
```

 $22.\ //\ {\it alternative way to show means}$

23. regress gcem i.month, robust

Linear regression

Number of obs = F(11, 297) = Prob > F = 224.02 = 0.0000 R-squared Root MSE 0.8576 .07217

309

gcem	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
month						
2	.3943454	.0378018	10.43	0.000	.3199521	.4687388
3	. 4843566	.0345903	14.00	0.000	.4162834	.5524297
4	.4615874	.031031	14.88	0.000	.4005189	.5226559
5	.3428241	.0306066	11.20	0.000	.2825909	.4030573
6	.3557875	.0294685	12.07	0.000	.2977939	.413781
7	.2035547	.0299556	6.80	0.000	.1446026	.2625068
8	.3117213	.0294417	10.59	0.000	.2537806	.369662
9	.2015412	.0296279	6.80	0.000	.1432339	. 2598485
10	.2639279	.0296113	8.91	0.000	.2056534	.3222025
11	.0086097	.0310615	0.28	0.782	0525189	.0697383
12	0615033	.0311507	-1.97	0.049	1228073	0001993
_cons	2466031	.0289556	-8.52	0.000	3035873	1896188

25. // (b): Breusch-Godfrey Test of Serial Correlation.26. // set x as white noise

27. 28.

29. // perform ols regression gcem on grres

30. regress gcem grres // regular regression

Source	SS	df	MS		er of obs	s = =	309
Model Residual	.071508688 10.7902283	1 307	.071508688	Prob R-sq	F(1, 307) Prob > F R-squared Adi R-squared		2.03 0.1548 0.0066 0.0033
Total	10.8617369	308	.03526538	_	_	d = =	.18748
gcem	Coefficient	Std. err.	t	P> t	[95% (conf.	interval]
grres _cons	.5119081 .0026237	.3588878 .0106727	1.43 0.25	0.155 0.806	19428 0183		1.218099

- 31. // regress gcem grres, robust // heteroscedasticity robust regression 32. // method one, using the commands 33. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	69.237	1	0.0000

HO: no serial correlation

34. estat bgodfrey, lags(3)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
3	103.322	3	0.0000

HO: no serial correlation

35. estat bgodfrey, lags(5)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
5	117.311	5	0.0000

HO: no serial correlation

36. // method two, running through the steps:

37.

38.

39. // obtain residuals40. predict ehat, residuals (3 missing values generated)

41. ac ehat // checking for autocorrelation

42.

43. // lagged residuals
44. gen ehatlag 1 = ehat[_n-1] (3 missing values generated)

46. // Perform the auxiliary regression of the residual on its own lag and the regressor

> grres
47. regress ehat ehatlag_1 grres

Source	SS	df	MS	Number of obs	=	308
Model Residual	2.41780816 8.35981439	2 305	1.20890408	F(2, 305) Prob > F R-squared	= = =	44.11 0.0000 0.2243
Total	10.7776225	307	.035106262	Adj R-squared Root MSE	= =	0.2192 .16556

 ehat	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ehatlag_1	.4736578	.0504315	9.39	0.000	.37442	.5728956
grres	.0907785	.3170783	0.29	0.775	5331594	.7147165
_cons	0003738	.0094403	-0.04	0.968	0189503	.0182026

48. esttab, se r2

	(1) ehat
ehatlag_1	0.474*** (0.0504)
grres	0.0908 (0.317)

_cons	-0.000374 (0.00944)		
N	308		
R-sq	0.224		

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

49. 50. // Compute the Breusch-Godfrey statistic using nR2 from the above regression.

52. // p = 1:

53. $reg^-ehat grres L(1/1).ehat$

	Source	SS	df	MS		per of obs	=	308 44.11
	Model Residual	2.41780816 8.35981439	2 305	1.20890408 .027409228	Prol R-so	F(2, 305) Prob > F R-squared Adj R-squared		0.0000 0.2243 0.2192
	Total	10.7776225	307	.035106262	_	t MSE	=	.16556
_	ehat	Coefficient	Std. err.	t	P> t	[95% cc	onf.	interval]
	grres	.0907785	.3170783	0.29	0.775	533159	94	.7147165
	ehat L1.	. 4736578	.0504315	9.39	0.000	. 3744	12	. 5728956
	_cons	0003738	.0094403	-0.04	0.968	018950)3	.0182026

54. esttab, se r2

	(1) ehat
grres	0.0908 (0.317)
L.ehat	0.474*** (0.0504)
_cons	-0.000374 (0.00944)
N R-sq	308 0.224

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

55. di e(N) 308

56. 57.

58. reg ehat grres L(1/3).ehat

	Source	SS	df	MS	Number of obs	=	306
_	Model	3.55654624	4	.88913656	F(4, 301) Prob > F	=	37.59 0.0000
_	Residual	7.11878784	301	.023650458	R-squared Adj R-squared	=	0.3332
	Total	10.6753341	305	.035001095	Root MSE	=	.15379

ehat	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
grres	0493155	.3017448	-0.16	0.870	6431119	.544481
ehat L1. L2. L3.	.4948265 .002565 3350572	.054205 .0615926 .0542174	9.13 0.04 -6.18	0.000 0.967 0.000	.3881578 1186415 4417503	.6014951 .1237716 2283641
_cons	0013079	.0087979	-0.15	0.882	0186212	.0160054

	(1) ehat
grres	-0.0493 (0.302)
L.ehat	0.495*** (0.0542)
L2.ehat	0.00257 (0.0616)
L3.ehat	-0.335*** (0.0542)
_cons	-0.00131 (0.00880)
N R-sq	306 0.333

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

60. di e(N) 306

61. 62.

63. reg ehat grres L(1/5).ehat

Source	SS	df	MS	Number of obs F(6, 297)	=
Model Residual	4.00940058 6.60210857	6 297	.668233429 .022229322	Prob > F R-squared	=
Total	10.6115091	303	.035021482	Adj R-squared Root MSE	=

ehat	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
grres	.0595326	.2953768	0.20	0.840	521764	. 6408292
ehat L1. L2. L3. L4. L5.	.4989758 0848685 344268 .1490127 2644178	.0560789 .0626184 .0596829 .0627468 .0559814	8.90 -1.36 -5.77 2.37 -4.72	0.000 0.176 0.000 0.018 0.000	.3886134 2081004 461723 .025528 3745883	.6093382 .0383634 2268131 .2724973 1542472
_cons	002121	.0085615	-0.25	0.805	0189698	.0147278

304 30.06 0.0000

0.3778 0.3653 .1491

	(1) ehat
grres	0.0595 (0.295)
L.ehat	0.499*** (0.0561)
L2.ehat	-0.0849 (0.0626)
L3.ehat	-0.344*** (0.0597)
L4.ehat	0.149* (0.0627)
L5.ehat	-0.264*** (0.0560)
_cons	-0.00212 (0.00856)
N R-sq	30 4 0.378

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

65. di e(N) 304

66.

67. // From the output, we can see that the results via the manual process are the same > as those calculated by running the Breusch-Godfrey command estat bgodfrey, lags(n) a > bove. The product n*R^2 gives the same values

69. // (c): Correcting for Serial Correlation
70. // need to use the Newey command to compute the Newey-West standard errors
71. newey gcem grres, lag(5) force

Regression with Newey-West standard errors Maximum lag = 5

Number of obs = F(1, 307) = Prob > F = 1.57 0.2110

gcem	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
grres	.5119081	.4083955	1.25	0.211	2917004	1.315517
_cons	.0026237	.0122009	0.22	0.830	0213843	.0266317

73. // (d): Testing for a structural break.

```
75. // subset the data so there are only two months- January and February
76. keep if month == 1 \mid month == 2
 (260 observations deleted)
```

78. // re-run the regression

79. reg gcem month

Source	SS	df	MS		er of obs	=	51
Model Residual	1.98196887 .887375717	1 49	1.98196887 .018109709	F(1, 49) Prob > F R-squared Adj R-squared		= = =	109.44 0.0000 0.6907 0.6844
Total	2.86934459	50	.057386892		-	=	.13457
gcem	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
month _cons	.3943454 6409485	.037695 .0599507		0.000 0.000	.3185944 7614239		.4700964 5204732

80. anova gcem month

	Number of obs = Root MSE =	51 .134572		ed = quared =	0.6907 0.6844
 Source	Partial SS	df	MS	F	Prob>F
Model	1.9819689	1	1.9819689	109.44	0.0000
month	1.9819689	1	1.9819689	109.44	0.0000
Residual	.88737572	49	.01810971		
Total	2.8693446	50	.05738689		

81. $82.\ //\ {
m from\ the\ ANOVA\ output,}$ it is clear that we may reject the null hypothesis that th > e mean value for gcem in January is the same as that in February. 83.

84. 85. *-----

86.

87. log close // Close the log, end the file

name: <unnamed>

log: C:\Users\jwvirene\Desktop\Virene PS3\ps3.smcl smcl closed on: 22 Feb 2024, 12:51:49