Math 425: Abstract Algebra 1

Section 1.3: Integers mod n

Mckenzie West

Last Updated: September 19, 2022

Last Time.

- Division Algorithm
- GCD
- Bézout's Identity
- Euclidean Algorithm
- Prime Factorization Theorem

Today.

- Congruence modulo n
- Relations and Equivalence Classes
- Integers and Arithmetic modulo n
- Arithmetic Modulo n
- Inverses Modulo n

Definition.

Let $a, b, n \in \mathbb{Z}$ with $n \ge 2$. We say that a and b are congruent modulo n if

$$n | (a - b).$$

In that case, we write $a \equiv b \pmod{n}$.

Theorem 1.3.1.

Congruence modulo n is an equivalence relation on \mathbb{Z} .

Exercise 1.

Write the equivalence classes of $(\mathbb{Z}, \equiv \pmod{2})$.

Exercise 2.

Write the equivalence classes of $(\mathbb{Z}, \equiv \pmod{3})$.

Definition.

If $a \in \mathbb{Z}$, then its equivalence class, [a], with respect to congruence modulo n is called its residue class modulo n and we write \overline{a} for convenience.

$$\overline{a} = \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$$

Definition.

The set of integers modulo n is denoted \mathbb{Z}_n and is given by

$$\mathbb{Z}_n = {\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}}.$$

Example.

 $\mathbb{Z}_7 =$

Exercise 3.

What is $\overline{47}$ in \mathbb{Z}_7 ? What is $\overline{-16}$?

Claim.

Addition and multiplication in \mathbb{Z}_n , as defined below, are well-defined:

- (1) $\overline{a} + \overline{b} = \overline{a+b}$
- (2) $\overline{a}\overline{b} = \overline{ab}$

Note.

The important point here is that any well-defined arithmetic operation on \mathbb{Z}_n should NOT depend on the choice of residue class representative.

Example.

In \mathbb{Z}_7 , $\overline{48} = \overline{6}$ and $\overline{3} = \overline{10}$. Is it true that $\overline{48} + \overline{3} = \overline{6} + \overline{10}$?

Proof.

It suffices to show that if $\overline{a_1}=\overline{a_2}$ and $\overline{b_1}=\overline{b_2}$ in \mathbb{Z}_n , then $\overline{a_1+b_1}=\overline{a_2+b_2}$ and $\overline{a_1b_1}=\overline{a_2b_2}$.

Exercise 4.

Fill out the addition and multiplication tables for \mathbb{Z}_4 .

$+_4$	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
0				
$\overline{1}$				
2				
3				

\times_4	0	$\overline{1}$	2	3
0				
$\overline{1}$				
2				
3				

Claim.

An integer $n \in \mathbb{Z}$ is divisible by 9 if and only if the sum of its digits is divisible by 9.

Summary.

• The set of integers modulo *n* is

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$$

• If r is the remainder you get when dividing a by n, then

$$a \equiv r \pmod{n}$$
 or equivalently $\overline{a} = \overline{r}$.

• Addition in \mathbb{Z}_n is defined by:

$$\overline{a} + \overline{b} = \overline{a+b}$$
.

• Multiplication in \mathbb{Z}_n is defined by

$$\overline{a}\overline{b}=\overline{ab}.$$

Theorem 1.3.4.

Let $n \ge 2$ be a fixed modulus and let a, b and c denote arbitrary integers. Then the following hold in \mathbb{Z}_n .

- 1. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ and $\overline{a}\overline{b} = \overline{b}\overline{a}$.
- **2.** $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$ and $\overline{a}(\overline{b}\overline{c}) = (\overline{a}\overline{b})\overline{c}$.
- **3.** $\overline{a} + \overline{0} = \overline{a}$ and $\overline{a}\overline{1} = \overline{a}$.
- **4.** $\overline{a} + \overline{-a} = \overline{0}$.
- **5.** $\overline{a}(\overline{b}+\overline{c})=\overline{a}\overline{b}+\overline{a}\overline{c}$.

Note.

The proof of (5) is in the book. And (2) is proved in a video.

Moral from last Theorem: Arithmetic in \mathbb{Z}_n behaves very similarly to arithmetic in \mathbb{Z} !

There's a zero, $\overline{0}$, and unity, $\overline{1}$, in \mathbb{Z}_n .

Every $\overline{a} \in \mathbb{Z}_n$ has an negative or additive inverse, $\overline{-a}$, in \mathbb{Z}_n , which we write as $-\overline{a}$ and satisfies

$$\overline{a} + \overline{-a} = \overline{0}$$
.

Subtraction is then naturally defined as

$$\overline{a} - \overline{b} = \overline{a} + \overline{-b} = \overline{a-b}.$$

Exercise 5.

What is the additive inverse of $\overline{6}$ in \mathbb{Z}_8 ?

Definition.

We call a class $\overline{a} \in \mathbb{Z}_n$ invertible if there is some $\overline{b} \in Z_n$ such that $\overline{a}\overline{b} = \overline{1}$.

Example.

Consider \mathbb{Z}_4 .

Exercise 6.

Show $\overline{6} \in \mathbb{Z}_8$ has no multiplicative inverse.

Note.

Looking at this question as a polynomial equation, there is no solution to $\overline{6}x = \overline{1}$ in \mathbb{Z}_8 .

Exercise 7.

- (a) Solve $\overline{5}x = \overline{1}$ in \mathbb{Z}_8 , if possible. Brute force is a great plan.
- (b) Solve $\overline{5}x = \overline{2}$ in \mathbb{Z}_8 , if possible.
- (c) Solve $\overline{6}x = \overline{2}$ in \mathbb{Z}_8 , if possible.

Note.

Here's some Sage code for some brute force that will print it nicely.

```
Zmod8=Integers(8)
for a in Zmod8:
print(f"5*{a}={5*a} mod 8")
```

Use at https://sagecell.sagemath.org/.

Question 8.

What do you notice about the relationship between n and the values in \mathbb{Z}_n that have inverses?

This slide and the next have multiplication tables for \mathbb{Z}_7 , \mathbb{Z}_8 , \mathbb{Z}_9 , and \mathbb{Z}_{10} . Identify the rows that have a 1 in them - these are the classes with inverses.

Multiplication in \mathbb{Z}_7											
×	0	1	2	3	4	5	6				
0	0	0	0	0	0	0	0	-			
1	0	1	2	3	4	5	6				
2	0	2	4	6	1	3	5				
3	0	3	6	2	5	1	4				
4	0	4	1	5	2	6	3				
5	0	5	3	1	6	4	2				
6	0	6	5	4	3	2	1				

Multiplication in \mathbb{Z}_8												
×	0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0				
1	0	1	2	3	4	5	6	7				
2	0	2	4	6	0	2	4	6				
3	0	3	6	1	4	7	2	5				
4	0	4	0	4	0	4	0	4				
5	0	5	2	7	4	1	6	3				
6	0	6	4	2	0	6	4	2				
7	0	7	6	5	4	3	2	1				

^{*} Overlines omitted for the sake of visual appearance.

N /1 I .	:اسا:	+:	:	_ 7/						Mu	ltipl	icat	ion	in Z	\mathbb{Z}_{10}					
Mul	tipii	cati	on i		19					0	0	1	2	3	4	5	6	7	8	9
\times	0	1	2	3	4	5	6	7	8					<u> </u>				<u>.</u>	_	
0	0	Λ	Λ	Λ	Λ	Λ	0	Λ		0	0	U	U	U	0	U	0	0	U	0
U	0	U	U	U	U	U	U	U	U	1	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	_	٦	2	_	6	-	-	-		-	-
2	0	2	4	6	8	1	3	5	7	2	0	2	4	6	8	0	2	4	6	8
	-	_	4	U	-	1	•	-	,	3	0	3	6	9	2	5	8	1	4*	7
3	0	3	6	0	3	6	0	3	6		-	-	-	2	_				*	
4	0	4	8	3	7	2	6	1	5	4	0	4	8	2	6	0	4	8	2	6
-	-	_		•	'	_	•			5	0	5	0	5	0	5	0	5	0	5
5	0	5	1	6	2	7	3	8	4	6	_	-	2	0	4	^	-	-	0	4
6	0	6	3	Λ	6	3	0	6	3	6	0	6	2	8	4	0	6	2	8	4
-	-	_	_	0	_	-	•		-	7	0	7	4	1	8	5	2	9	6	3
7	0	7	5	3	1	8	6	4	2	8	0	0	6	1	2	0	8	6	4	2
8	0	8	7	6	5	4	3	2	1	0	U	8	6	4	2	U	0	U	4	2
U	0	J	•	J	J	т	9	_	-	9	0	9	8	7	6	5	4	3	2	1

Overlines omitted for the sake of $\dot{\text{visual}}$ appearance.

Theorem 1.3.5.

Let $a, n \in \mathbb{Z}$ with $n \ge 2$. Then \overline{a} has a multiplicative inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

Before starting the proof of Theorem 1.3.5, we recall two important Theorems: $\ \ \,$

Theorem 1.2.4.

Let $m, n \in Z$ not both zero. Then

m, n relatively prime $\Leftrightarrow \exists r, s \in \mathbb{Z}$ such that 1 = rm + sn

Theorem 1.3.2.

Given $n \ge 2$, $\overline{a} = \overline{b} \Leftrightarrow a \equiv b \pmod{n}$.

Theorem 1.3.5.

Let $a, n \in \mathbb{Z}$ with $n \ge 2$. Then \overline{a} has a multiplicative inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

Note.

The proof of the reverse direction of Theorem 1.3.5 helps us to find inverses.

Example.

Find the inverse of $\overline{16}$ in \mathbb{Z}_{35} .

Euclidean Algorithm:

$$35 = 2(16) + 3$$

 $16 = 5(3) + 1$
 $3 = 3(1) + 0$

Bézout:

$$1 = 16 - 5(3)$$

 $= 16 - 5(35 - 2(16))$
 $= 11(16) - 5(35)$

The equation 1 = 11(16) - 5(35) modulo 35 gives:

$$1 \equiv 11 \cdot 16 \pmod{35}$$
.

Therefore, the multiplicative inverse of $\overline{16}$ in \mathbb{Z}_{35} is $\overline{11}$.

Exercise 9.

Solve the equation $\overline{16}x = \overline{9}$, in \mathbb{Z}_{35} .

Exercise 10.

Solve the system of equations in \mathbb{Z}_{13}

$$\begin{cases} \overline{5}x + \overline{2}y = \overline{1} \\ \overline{2}x + \overline{10}y = \overline{2}. \end{cases}$$

Theorem 1.3.6 (The Chinese Remainder Theorem).

Let m and n be relatively prime integers. If s and t are arbitrary integers, then there is an integer b for which

$$b \equiv s \pmod{m}$$
 and $b \equiv t \pmod{n}$.

Note.

How do we find this b?

Since gcd(m, n) = 1, we can find $p, q \in \mathbb{Z}$ such that 1 = mp + nq.

Set b = (mp)t + (nq)s. why does this work???

Theorem 1.3.7.

The following are equivalent for any integer $n \ge 2$.

- **1.** Every element $\bar{a} \neq \bar{0}$ in \mathbb{Z}_n has a multiplicative inverse.
- **2.** If $\overline{a}\overline{b} = \overline{0}$ in \mathbb{Z}_n , then either $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.
- **3.** The integer n is prime.

Wilson's Theorem - A Corollary to 1.3.7.

If p is prime then $(p-1)! \equiv -1 \pmod{p}$.

Note.

Think about how numbers and their inverses mod p appear in the product

$$1 \cdot 2 \cdot 3 \cdots (p-1)$$
.

Theorem 1.3.8 (Fermat's Theorem).

If p is prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$. Moreover, if $\gcd(a,p)=1$, then $a^{p-1}\equiv 1 \pmod{p}$.