

32 Vassar St, Room 32-D712, Cambridge, MA 02139

□+1 (617) 909-2935 +86 185-0259-2963 | ■leix@mit.edu | ★ www.citr.me | □ leix28

Research Interests: Automated Data Science, Natural Language Generation, Deep Learning

Education _

Ph.D, Dept of Electronical Engineering and Computer Science(EECS), MIT

Cambridge, MA, USA

Sept. 2017 - Present

SUPERVISED BY DR. KALYAN VEERAMACHANENI

- GPA: 5.0.
- · Working on automated data science.

B.E, Dept of Computer Science and Technology, Tsinghua University

Beijing, China

Sept. 2013 - Jul. 2017

SUPERVISED BY PROF. ZHIYUAN LIU

- Average Score: 92; Rank: 5/127; Excellent Graduation of Beijing City.
- · Working on natural language processing.
- Thesis: Neural Abstractive Summarization with Keyword Reinforcement.

Exchange, Computer Science Department, Carnegie Mellon University

Pittsburgh, PA, USA

SUPERVISED BY PROF. J. ZICO KOLTER

Jun. 2016 - Sept. 2016

• Working on deep reinforcement learning and convex optimization.

Research Experiences

Trane, Automated Prediction Problems Generation

Cambridge, MA, USA
Nov. 2017 - Present

SUPERVISED BY DR. KALYAN VEERAMACHANENI

- · Data science is challenging because people don't know what problem to solve when they get some new data.
- $\bullet \ \ \text{Our goal is to propose and solve potentially interesting predictive problems on any relational database}.$
- We design a language to represent predictive problems so we can easily generate problems on a relational database.
- · We build an end-to-end system which generates predictive problems and labels for supervised learning.

ICNN, A Neural Network for Reinforcement Learning and Image Completion

Pittsburgh, PA, USA

SUPERVISED BY PROF. J. ZICO KOLTER

Jun. 2016 - Sept. 2016

- By designing ICNN, the scalar output of the network is a convex function of the input.
- We use ICNN to model Q-function in reinforcement learning so that we can easily optimize actions over a continuous space.
- · We compare ICNN with other methods on a robot simulation software and show the advantages of our model.

CWE, Joint Learning of Character and Word Embeddings

Beijing, China

SUPERVISED BY DR. ZHIYUAN LIU

Sept. 2014 - Feb. 2015

- The challenge of word representation lies on how to represent the meaning of low-frequency words accurately.
- Taking advantage of Chinese characters, we propose to jointly learn the meaning of characters and words.
- Our model can infer the meaning of a new word by its characters.

Abstractive Summarization with Keyword Reinforcement

Beijing, China

Feb. 2017 - May. 2017

Supervised by Dr. Zhiyuan Liu

• We focus on how to help the model generate correct keywords in the summary.

- We add supervision to the attention mechanism so the model focuses on the correct context and learns faster.
- · We also reward the model when it generates correct keywords which do not appear in the ground truth.

March 22, 2018 Lei Xu · Resume

Publications

2017

• Brandon Amos, Lei Xu, J. Zico Kolter, Input Convex Neural Networks, ICML-2017.

2016

· Lei Xu, Ziyun Wang, Ayana, Zhiyuan Liu, Maosong Sun, Topic Sensitive Neural Headline Generation, ArXiv.

2015

• Xinxiong Chen*, Lei Xu*, Zhiyuan Liu, Maosong Sun, Huanbo Luan. *Joint Learning of Character and Word Embeddings*, IJCAI-2015. (* equal contribution)

Skills

Program Language C/C++, Java, Python, Tensorflow, Latex.

Teaching Experiences

2017 **Teaching Assistant** Media Programing (Tsinghua University)

Interesting Projects

Reconstruct Functions from Contour

Cambridge, MA, USA

SUPERVISED BY PROF. WILLIAM T. FREEMAN, ANTONIO TORRALBA

Oct. 2017 - Dec. 2017

- · Human have strong ability to reconstruct 3D objects by looking at contour curves. We want to build a CV system with similar ability.
- · We generate contour plots of 2-variable functions and design neural models to reconstruct the functions and depth maps.
- · We show that models trained on 2-variable functions have strong generality and can be used on real objects.

Clothing Perception by GelSight Touch Sensors

Cambridge, MA, USA

SUPERVISED BY PROF. DEVAVRAT SHAH, DAVID SONTAG, SUVRIT SRA

Oct. 2017 - Dec. 2017

- We collect clothes material data using a touch sensor.
- We design neural models to classify clothes materials and washing methods.
- This model can be applied to automatic laundry in the future.

Real-time Digit Recognition on FPGA

Beijing, China

SUPERVISED BY PROF. YOUJIAN ZHAO

Mar. 2015 - Jun. 2015

- We train a CNN on a computer and deploy the model on a low-end FPGA chip.
- We overcome the challenge of limited computing capability on FPGA and get acceptable accuracy.

Weibo Keywords Web App

Beijing, China

SUPERVISED BY PROF. ZHIYUAN LIU

Feb. 2014 - Sept. 2014

- We use keyword extraction technology to visualize Weibo user's keywords.
- · We reach millions of uses.

Honors & Awards

2017 Excellect Graduation of Beijing City

2016 **Scholarship** Excellent Student, Tsinghua University

2016 **Scholarship** Tsinghua Top Open Program for Overseas Visiting

2015 **Second Prize** Tsinghua University Mathematical Contest in Modeling

2015 **Scholarship** Excellent Student, Tsinghua University

2014 **Scholarship** Excellent Student, Tsinghua University