OSI Model Layers and Protocols in Computer Network

What is OSI Model?

The OSI Model is a logical and conceptual model that defines network communication used by systems open to interconnection and communication with other systems. The Open System Interconnection (OSI Model) also defines a logical network and effectively describes computer packet transfer by using various layers of protocols.

Characteristics of OSI Model

Here are some important characteristics of the OSI model:

- A layer should only be created where the definite levels of abstraction are needed.
- The function of each layer should be selected as per the internationally standardized protocols.
- The number of layers should be large so that separate functions should not be put in the same layer. At the same time, it should be small enough so that architecture doesn't become very complicated.
- In the OSI model, each layer relies on the next lower layer to perform primitive functions. Every level should able to provide services to the next higher layer
- Changes made in one layer should not need changes in other layers.

Why of OSI Model?

- Helps you to understand communication over a network
- Troubleshooting is easier by separating functions into different network layers.
- Helps you to understand new technologies as they are developed.
- Allows you to compare primary functional relationships on various network layers.

History of OSI Model

Here are essential landmarks from the history of OSI model:

- In the late 1970s, the ISO conducted a program to develop general standards and methods of networking.
- In 1973, an Experimental Packet Switched System in the UK identified the requirement for defining the higher-level protocols.
- In the year 1983, OSI model was initially intended to be a detailed specification of actual interfaces.
- In 1984, the OSI architecture was formally adopted by ISO as an international standard

One of the main benefits of the OSI model is that devices can have different functions and designs on a network while communicating with other devices. Data sent across a network that follows the uniformity of the OSI model can be understood by other devices.

What Is Encapsulation in Networking?

- **Encapsulation** is the process of **adding protocol-specific headers (and sometimes trailers)** to data as it moves **down the OSI layers** from the application to the physical layer (on the sender side), and **removing** them as it moves **up** the layers (on the receiver side).
- It's a **core concept** of the OSI model, enabling **modular communication**, where each layer only cares about its own responsibilities.
- At every individual layer that data travels through, specific processes take place, and pieces of information are added to this data

Analogy

Imagine sending a letter:

- 1. You write the message (Application Layer).
- 2. Put it in an envelope with a name (Transport Layer).
- 3. Put that envelope in a package with an address (Network Layer).
- 4. Seal and label the box for shipping (Data Link Layer).
- 5. Hand it to the courier (Physical Layer).

Each step adds more "wrapping" — this is **encapsulation**.

How Encapsulation Works in the OSI Model

Here's what happens when data is sent:

OSI Layer	Encapsulation Element	What's Added
7. Application	Data	Application data (e.g., HTTP request)
6. Presentation	Data	Formatting/encryption (optional)
5. Session	Data	Session ID, sync info (optional)
4. Transport	Segment	TCP/UDP header (port numbers, sequencing)
3. Network	Packet	IP header (source/destination IP)
2. Data Link	Frame	MAC address header + trailer (like CRC)
1. Physical	Bits	Actual 1s and 0s sent over the wire

Why Encapsulation Matters

- **Modularity**: Each layer operates independently with its own headers.
- **Interoperability**: Different devices and systems can work together.
- **Flexibility**: You can change one layer (e.g., switch from TCP to QUIC) without affecting others.
- **Security**: Encapsulation allows for encryption and integrity checks at multiple layers (e.g., SSL/TLS at Layer 6, IPsec at Layer 3).

Security Note

Encapsulation can also hide internal structure:

- Attackers may try to **exploit encapsulated headers** (e.g., tunneling malicious traffic).
- Some attacks use **double encapsulation** to bypass firewalls or IDS systems (e.g., VPN inside HTTP).

7.	Application
6.	Presentation
5.	Session
4.	Transport
3.	Network
2.	Data link
1.	Physical

OSI Layer 1: Physical Layer

Purpose:

The **Physical Layer** is the **foundation** of the OSI model. It deals with the **actual physical connection** between devices. It defines the **hardware elements** involved in data transmission and how **bits (0s and 1s)** are converted to electrical, optical, or radio signals.

Key Functions of the Physical Layer:

Function	Description
Bit Transmission	Converts binary data into signals (electrical, light, or radio)
Media Type	Defines cables, wireless signals, connectors
Topology	Defines physical layout of network devices
Signal Type	Specifies analog or digital signals
Data Rate Control	Regulates transmission speed (baud rate)
Physical Interface	Defines pin layout, voltage levels

Examples of Physical Layer Components:

Component	Description	
Cables	Ethernet (Cat5e, Cat6), fiber optic, coaxial	
Connectors	RJ45 (Ethernet), LC/SC (fiber)	
Hubs/Switches	Basic switches that forward raw bits (Layer 1)	
Network Interface Cards (NICs)	Convert data to physical signals	
Wi-Fi Radios	Transmit/receive wireless RF signals	
Modems	Modulate/demodulate signals for transmission	

Cybersecurity Relevance of the Physical Layer

You might think Layer 1 is "too low" for cybersecurity — but **that's a mistake.** Attackers target this layer too, especially in **critical infrastructure**, **air-gapped systems**, or **internal sabotage**.

Physical Layer Threats & Real-Time Examples:

Threat	Description	Real-World Example
Physical Intrusion	Unauthorized access to network rooms or data centers	An insider physically plugging a rogue device (Raspberry Pi) into a switch port to sniff traffic
Cable Tapping	Tapping into Ethernet/fiber cables to sniff data	Fiber optic splitters used in espionage to intercept backbone traffic
Device Tampering	Installing backdoors or hardware keyloggers	USB-based keylogger added to keyboard cable by a contractor
Wi-Fi Jamming	Disrupting RF signals to block communication	Wireless jammer used near a building to prevent alarm systems from alerting over Wi-Fi
Power Attacks	Attacks on the power supply to bring down devices	Cutting power to switches, causing a DoS on the internal network

SOC Analyst View: Monitoring & Mitigation at Layer 1

Even though most SIEM tools operate at higher layers, you must be aware of indicators that suggest a Layer 1 compromise:

Technique	Example
Physical Access Logs Door badge access, CCTV footage in data centers	
Port Status Monitoring Alert when unused ports become active suddenly	
Out-of-Band Management	Detect when a device goes offline due to power loss or tampering
Wi-Fi Heatmaps	Detect unauthorized or strong RF interference in sensitive areas
Environmental Monitoring	Sensors for open rack doors, motion detection in secure areas

Mitigation Strategies:

- Lock server racks and restrict access to network closets
- Use **port security** on switches (e.g., MAC address binding)
- Deploy CCTV and access control systems
- Deploy **RF monitoring** tools to detect jamming
- Use **fiber over copper** where possible (harder to tap)

• Implement uninterruptible power supply (UPS) and tamper sensors

Real-World Scenario (SOC Analyst Use Case):

Incident: Suspicious Traffic Detected

Your SIEM alerts you to strange broadcast traffic originating from an unusual MAC address.

Upon investigation:

- A **Raspberry Pi** was hidden under a desk, plugged into an unused Ethernet jack.
- The attacker was using it to **sniff credentials** and pivot into other VLANs.
- Your response included:
 - Isolating the device at Layer 1 by disabling the port.
 - Reviewing CCTV and access logs to trace the intrusion.
 - Enforcing **802.1X port authentication** going forward.

✓ Layer 1: Components (Hardware & Media)

These are **tangible, physical devices** that are directly involved in transmitting raw data bits (0s and 1s) over physical media.

Component	Description / Purpose
Cables	Copper (Cat5e, Cat6), Fiber Optic (single/multimode), Coaxial
Connectors	RJ-45 (Ethernet), LC/SC (Fiber), BNC
Network Interface Card (NIC)	Converts data to/from electrical or optical signals
Hubs	Layer 1 device that blindly rebroadcasts all input to all outputs
Media Converters	Convert signals (e.g., fiber-to-ethernet)
Patch Panels	Used in structured cabling systems to organize and route cables
Repeaters	Regenerate and amplify signals to extend distance
Modems	Modulate/demodulate digital data over analog lines (e.g., DSL)
Wireless Radios	For Wi-Fi or Bluetooth – transmit/receive RF signals
Antennas	Used in wireless devices to send and receive signals
Transceivers (SFPs, GBICs)	Plug-in modules in switches/routers to support various media types

Component	Description / Pr	ırpose
Component	Description / 1 (ai posc

Power Supply Units (PSUs) Deliver stable power to hardware components

Uninterruptible Power

Environmental Sensors

Supply (UPS)

Protect against power loss or fluctuations

Grounding Systems Prevent electrical surges damaging equipment

Temperature, motion, tamper sensors for physical

intrusion detection

🗱 Layer 1: Functionalities

Layer 1 handles **physical transmission** of data — not logical operations.

Functionality	Explanation
Bit Transmission	Transmits raw binary data as electrical, optical, or RF signals
Signal Encoding	Converts bits to signal forms like voltage levels, light pulses, or radio waves
Media Specification	Defines the type of physical medium (copper, fiber, wireless)
Data Rate	Defines bandwidth and data speed (e.g. 1Gbps 10Gbps)

Defines bandwidth and data speed (e.g., 1Gbps, 10Gbps) Management

Determines how devices are physically laid out (e.g., star, **Topology Definition** mesh)

Ensures sender and receiver are synchronized to interpret **Synchronization**

signals

Voltage and Pin Governs the electrical interface (e.g., RS-232, Ethernet

Layouts standards)

Physical Establishes whether devices are physically connected and

Connectivity powered

Other Needs / Operational and Security Requirements

From a **network operations and cybersecurity** perspective, Layer 1 requires the following controls and considerations:

Need **Purpose**

Prevent unauthorized access to networking **Physical Access Control**

hardware

Tamper-Proof Racks & Locks Protect switches, routers, and servers

Cable Management &

Hide and secure cables to prevent tapping **Concealment**

Port Security Disable unused physical ports on switches Need Purpose

802.1X Authentication Enforce device authentication before network

access

RF Shielding Prevent signal leakage or interference in wireless

setups

Video Surveillance (CCTV)Monitor physical environments for unauthorized

access

Motion & Tamper Sensors Alert when racks or panels are opened

Faraday Cages / Secure Protect sensitive devices from RF interception or

Enclosures EM attacks

Need Description

Structured Cabling DesignFor scalable and maintainable physical

networks

Power Redundancy (UPS, Backup

Generators)

Ensure uptime during outages

Cooling and Ventilation Avoid hardware failures due to overheating

Environmental MonitoringCheck for humidity, temperature, or fire

risk

Labeling and Documentation Track and manage physical connections

Regular InspectionsDetect wear, damage, or unauthorized

modifications

Testing Tools (TDR, OTDR)Troubleshoot cable faults and signal

integrity issues

Grounding and Surge Protection Avoid damage from electrical spikes

© Summary Table

Category Examples

Hardware

Components

Cables, NICs, hubs, antennas, SFPs, repeaters

FunctionsBit transmission, signal encoding, synchronization, data rate

control

Security Controls Port security, CCTV, tamper sensors, physical access control

Power redundancy, cabling structure, cooling, grounding,

Summary

What You Need to Know as an Analyst

Physical layer = **cables**, **ports**, **signals** — it's tangible!

Physical attacks are low-tech but high-impact

Not all attacks are digital — many start with **badges and bolt cutters**

Always consider **Layer 1** in **insider threat models**

Tools like **NetFlow** or Wireshark may not help — you need **physical monitoring** and **access controls**

▼ TL;DR for SOC/Cybersecurity Analysts:

- If there's no Layer 1, nothing else in the OSI model works.
- Even **simple physical access** can lead to **serious breaches** (e.g., traffic sniffing, hardware implants).
- **Don't ignore the "unsexy" stuff** patch panels, cables, and locked doors are your **first line of defense**.
- **Zero Trust begins at the wire** don't let rogue devices even plug in.

🚨 Layer 1 (Physical Layer) Security Attacks & Threats

These are **hardware-based**, **signal-based**, or **access-based attacks** that occur **before** data even hits the network stack.

#	Attack Type	Description	Real-World Example
1	Unauthorized Physical Access	Intruders gain access to networking hardware	An attacker sneaks into a server room and installs a rogue device
2	Cable Tapping / Sniffing	Physically intercepting copper/fiber cables to read data	Fiber-optic splitters used to tap ISP backbone traffic
3	Rogue Devices	Devices inserted into the network (e.g., hidden Raspberry Pi, USB drops)	Insider plants a rogue AP to create a backdoor
4	Hardware Keyloggers	Devices connected between keyboard and system to capture keystrokes	A USB keylogger attached to an executive's machine
5	Electromagnetic (EM) Eavesdropping	Capturing radiation from cables or screens (TEMPEST attack)	NSA-classified surveillance capturing data via emissions
6	Signal Jamming	Disrupting RF signals (Wi-	A jammer blocks wireless

#	Attack Type	Description	Real-World Example
		Fi, cellular, Bluetooth) via interference	security cameras in a facility
7	Power Attacks / Outages	Cutting or manipulating power to shut down devices (DoS)	Attacker unplugs switch or trips breaker to cause downtime
8	Device Theft	Stealing physical devices (laptops, routers, servers) for data extraction	A lost or stolen server containing unencrypted logs or backups
9	Port Hijacking	Plugging into an open Ethernet jack to access LAN	Attacker in a lobby plugs laptop into unmonitored wall port
10	Hardware Implants / Supply Chain Attacks	Malicious chips or altered components in switches, NICs	Supermicro server implant (alleged espionage attack on US cloud providers)

Mitigation Strategies for Each Attack Type

Here's how **Cybersecurity Analysts and SOC teams** should prevent, detect, or respond to these threats:

Attack	Mitigation Strategy		
Unauthorized Physical Access			
Cable Tapping / Sniffing	Use fiber optic cables (harder to tap), physical cable concealment, conduit tubing, cable integrity checks		
Rogue Devices	Enable port security, use 802.1X authentication, set up alerts for new MAC addresses, physically audit workstations		
Hardware Keyloggers	Regular hardware inspections, USB port locks, BIOSUSB restrictions, disable unused ports		
EM Eavesdropping (TEMPEST)	Use shielded cabling (STP/FTP), Faraday cages, and TEMPEST-rated equipment in secure zones		
Signal Jamming	Use wireless intrusion detection systems (WIDS), deploy directional antennas, isolate critical systems from RF		
Power Attacks	✓ Install UPS systems, tamper alarms on plugs, lock power access, use power monitoring systems		
Device Theft	Use BIOS passwords, full-disk encryption, secure boot, asset tagging, and GPS tracking		
Port Hijacking	Obsable unused ports, implement 802.1X + NAC (Network Access Control), lock down switch port configurations		
Hardware Implants	• Perform supply chain audits, inspect for unauthorized		

Attack

Mitigation Strategy

hardware, conduct forensic analysis of unexpected device behavior

Proactive Steps for Cybersecurity/SOC Teams

Category	Action	
Monitoring	- Use environmental sensors (motion, tamper, open rack) - SIEM alerts for unexpected MACs or port activity	
₩ Access Control	- Log all physical access - Role-based restrictions (server room access only to network engineers)	
Policies	 Enforce clean desk and no-unauthorized-device policies - Regular hardware audits and inspections 	
Penetration Testing	- Include physical pen testing (e.g., red team placing rogue devices)	
Physical Layer Hardening	- Lock Ethernet jacks in public or uncontrolled areas - Disable unused ports by default	
Incident Response Plans	- Include physical intrusion and rogue device playbooks in IR plans	

❖ OSI Layer 2: Data Link Layer

What is Layer 2?

The Data Link Layer ensures reliable node-to-node communication between devices on the same network or link. It packages data into frames and is responsible for MAC addressing, error detection, and flow control on the local link.

Think of it as the layer that:

- Connects devices on the same LAN
- Provides error handling and framing
- Deals with physical addressing (MAC addresses)

Key Functions of Layer 2

Function	Description		
Framing	Encapsulates packets from Layer 3 (Network Layer) into frames for transmission		
MAC Addressing	Adds source and destination MAC addresses		
Error Detection (not correction)	Uses techniques like CRC (Cyclic Redundancy Check) to detect errors in frames		
Flow Control	Manages pace of data transmission (prevents fast sender overwhelming a slow receiver)		
Access Control	Uses MAC protocols like CSMA/CD or CSMA/CA to control access to the shared medium		

Examples of Data Link Layer Components

Network Interface Cards (NICs)

- Switches
- Bridges
- MAC (Media Access Control) addresses
- Frame Relay, Ethernet, PPP, HDLC, ARP (related protocols)

OVER IT IS ADDITION OF THE PARTY OF THE CONTROL OF THE PARTY OF THE CONTROL OF THE PARTY OF THE

While Layer 2 is traditionally considered low in the stack, it's **critical in cybersecurity** because:

- It's the first place where trust is assumed based on MAC addresses
- Many low-level attacks target this layer before reaching higher ones

• Compromise here can bypass IP-layer defenses

***** Relevance in Cybersecurity:

Aspect	Example
--------	---------

Device identity spoofing MAC spoofing for bypassing access controls

ARP poisoning to redirect local traffic Lateral movement

Detecting unauthorized devices on the network **Rogue device detection**

Segmentation enforcement VLANs are Layer 2 constructs for network isolation

⚠ Common Layer 2 Threats with Real-World Examples

Threat	Description	Real Example
MAC Spoofing	Attacker changes MAC address to impersonate another device	Bypassing NAC (Network Access Control)
ARP Spoofing / Attacker sends fake ARP replies to redirect traffic		Intercepting LAN traffic for credentials
CAM Table Overflow	Attacker floods switch with MAC addresses to force it to act like a hub	Sniffing traffic on a switch
VLAN Hopping	Attacker crafts VLAN-tagged frames to access unauthorized VLANs	Gaining access to admin VLAN from user VLAN
STP Attacks	Exploiting Spanning Tree Protocol to become the root bridge	Redirecting traffic via attacker's switch

🕵 SOC Analyst Perspective – Monitoring and Mitigation at Layer 2

Method	Purpose	
Port Mirroring (SPAN)	Mirror switch ports to IDS/IPS for inspection	
ARP Table Monitoring	Detect unauthorized ARP entries	
MAC Address Whitelisting	Allow only known MAC addresses on ports	
SIEM Integration	Correlate logs from switches, NAC, and sensors	
NetFlow (Layer 2 extensions)	Track flow patterns and anomalies	

Mitigations & Best Practices

Control	Description	
Port Security (on switches)	Limit MAC addresses per port; shut down on violation	
Dynamic ARP Inspection (DAI)	Drops invalid ARP replies	
DHCP Snooping	Prevents rogue DHCP servers; builds MAC-IP bindings	
802.1X Authentication	Device/user authentication before access granted	
VLAN Segmentation	Separate user groups and critical systems	
BPDU Guard	Protects against rogue STP bridge announcements	
Regular Switch Firmware Updates	Patch STP, VLAN, DAI vulnerabilities	

Real-Time Use Case Example (SOC Context)

Scenario: Internal ARP Poisoning Attempt

Step	Description		
Detection	SIEM receives alert from IDS: Duplicate IP/MAC detected		
Investigation	Analyst uses ARP tables from multiple endpoints		
Triage	Confirmed attacker MAC associated with multiple IPs		
Containment	Network team applies port shutdown via NAC		
Eradication	Device isolated; credentials reset if needed		
Recovery	Switch port security + ARP inspection enabled		
Lesson Learned	SOC updates Layer 2 visibility with ARP monitoring scripts		

Structure of an Ethernet Frame (Layer 2 Frame)

An Ethernet frame is the most common type of Layer 2 frame on modern networks.

Basic Ethernet Frame Format:

Field	Size (Bytes)	Description
Preamble	7	Synchronization pattern for the receiver
Start Frame Delimiter (SFD)	1	Marks the start of the frame
Destination MAC Address	6	MAC address of the receiver
Source MAC Address	6	MAC address of the sender
EtherType / Length	2	Indicates protocol in payload (e.g., IPv4, ARP)

Field	Size (Bytes)	Description
Payload (Data)	46–1500	Actual data (e.g., an IP packet)
Frame Check Sequence (FCS)	4	CRC used for error detection

- Minimum Frame Size: 64 bytes
- Maximum Frame Size (without jumbo frames): 1518 bytes

Example Ethernet Frame (in Hexadecimal)

Preamble + SFD:

55 55 55 55 55 55 D5

Destination MAC:

00 0C 29 3E 5C A1

Source MAC:

00 50 56 C0 00 08

EtherType:

08 00 (IPv4)

Payload (IPv4 Packet - beginning):

45 00 00 54 00 00 40 00 40 01 ...

FCS (Frame Check Sequence - CRC):

AB CD EF 12

📦 Real-World Frame Example Explained

Let's say you ping a printer (IP: 192.168.1.100) from your laptop on the same network.

- Your laptop resolves the MAC address of the printer via ARP.
- It then creates an **Ethernet frame**:
 - **Destination MAC**: MAC of the printer
 - Source MAC: MAC of your laptop's NIC
 - **EtherType**: 0x0800 (IPv4)
 - Payload: The ICMP "Echo Request" packet

• **FCS**: A CRC to ensure frame integrity

This frame is sent out onto the Ethernet. The switch uses the destination MAC to forward the frame to the right port.

SOC Analyst Tip

If you capture packets using **Wireshark**, you can view Layer 2 frames. Here's how the Ethernet frame shows up:

Ethernet II

Destination: 00:0c:29:3e:5c:a1

Source: 00:50:56:c0:00:08

Type: IPv4 (0x0800)

This helps in:

- Verifying MAC spoofing
- Diagnosing ARP poisoning
- Tracking unauthorized devices by MAC

Real-World Use Cases of Layer 2

1. Corporate LAN with VLAN Segmentation

- Purpose: Isolate departments (e.g., HR, Finance, IT) via VLANs
- Layer 2 Role: Ensures devices on the same VLAN communicate; prevents unauthorized cross-VLAN access
- Security Consideration: Use 802.1Q tagging, VLAN ACLs, DAI, BPDU Guard

2. Network Access Control (NAC) Implementation

- **Purpose**: Allow only authorized devices on the network
- Layer 2 Role: Uses MAC addresses and 802.1X for device/user authentication
- **Security Consideration**: Prevent **rogue devices**, **MAC spoofing**, and enforce identity-based access

All Layer 2 Components

Category **Components**

Hardware Network Interface Cards (NICs), Ethernet switches, bridges

Ethernet, ARP, PPP, Frame Relay, HDLC, STP (Spanning Tree

Protocol), 802.1X

Identifiers MAC addresses

Frame Preamble, SFD, MAC address, EtherType, FCS

Structure

Error detection (CRC), MAC-based addressing, frame delimiting, **Services**

media access control

X Layer 2 Function List

Function Purpose

Framing Convert data into manageable frame units

Physical Addressing

Protocols

Use MAC addresses to identify source/destination

Flow Control Prevent overwhelming slow receivers

Error Detection Use CRC for frame integrity

Access Control CSMA/CD (Ethernet), CSMA/CA (Wi-Fi) for media access

Link Management STP, Link aggregation, Duplex modes **VLAN Tagging** Logical segmentation using 802.1Q

🧩 Operational and Security Requirements

Requirements **Type**

Stable and low-latency switching, fast MAC learning, redundancy **Operational**

(STP), VLAN support

Port security, MAC filtering, ARP protection, rogue device Security

detection, logging & monitoring, secure STP configuration

Layer 2 Security Attacks, Threats & Mitigations

1. MAC Spoofing

• **Threat**: Attacker changes MAC to impersonate a legitimate device

• **Impact**: Bypass access control (e.g., NAC), session hijacking

Mitigations:

- Port security (limit MACs per port)
- MAC filtering & authentication (802.1X)
- Logging & MAC anomaly detection via SIEM

2. ARP Spoofing / Poisoning

- Threat: Attacker sends forged ARP replies to associate their MAC with a victim's IP
- Impact: MITM attacks, data theft

Mitigations:

- Dynamic ARP Inspection (DAI)
- Static ARP entries for critical systems
- ARP monitoring via IDS/IPS or SIEM

3. CAM Table Overflow (MAC Flooding)

- Threat: Attacker floods switch with bogus MACs to force it to broadcast
- **Impact**: Switch acts like a hub attacker can sniff traffic

Mitigations:

- Port security with MAC limit
- Monitor switch logs for abnormal MAC learning
- Use secure switches that drop unknown MAC floods

4. VLAN Hopping

- Threat: Attacker sends double-tagged VLAN frames
- Impact: Access unauthorized VLANs

Mitigations:

- Disable trunking on user ports
- Use native VLAN ID ≠ user VLANs
- Prune VLANs on trunk ports

5. Spanning Tree Protocol (STP) Attack

- Threat: Attacker sends spoofed STP BPDUs to become root bridge
- **Impact**: Redirect traffic through attacker-controlled path

Mitigations:

- Enable BPDU Guard, Root Guard on access ports
- Use Rapid STP (RSTP) for faster convergence
- Monitor bridge roles via SNMP or config audit

Mitigation Strategy Matrix

Attack	Tools/Tech	Configurations
MAC Spoofing	Port Security	switchport port-security, maximum 1
ARP Poisoning	DAI, DHCP Snooping	ip arp inspection, ip dhcp snooping
CAM Flooding	Port Security	Set maximum mac per port
VLAN Hopping	VLAN ACLs, Native VLAN control	Avoid native VLAN 1; prune unnecessary VLANs
STP Attack	BPDU Guard, Root Guard	spanning-tree bpduguard enable

SOC Team & Proactive Cybersecurity Steps

Monitoring

- **Enable SPAN/Port Mirroring**: Forward Layer 2 traffic to NIDS
- Track MAC/IP pairs: Compare DHCP logs and ARP tables
- Syslog/SNMP: Monitor switch events in SIEM
- SIEM Use Cases:
 - MAC address flapping
 - Multiple MACs on one port
 - Unauthorized MAC detected

Detection

- IDS/IPS signatures for:
 - Gratuitous ARP storms
 - VLAN hopping attempts
 - BPDU packet injection
- Behavioral analytics for MAC spoofing

Mitigation & Response

- Automated port shutdown on suspicious activity
- Quarantine rogue MACs via NAC
- Use EDR/XDR for endpoint lateral movement blocking
- Regular switch firmware updates

Policy & Audit

- Enforce Layer 2 hardening baseline
- Conduct regular audits of:
 - VLAN mappings
 - STP configurations
 - ARP tables
 - Port MAC bindings

Real-World Use Case: ARP Spoofing Attack Detected and Mitigated

Scenario: Corporate Office – Finance Department

Network Design:

- VLAN 20 Finance Department
- NAC-enabled switches with 802.1X authentication
- DHCP leases monitored and logged
- Endpoint protection and IDS in place
- SIEM: Splunk

Attack Begins – ARP Spoofing

A **compromised user laptop** in the Finance VLAN attempts to launch a **man-in-the-middle (MITM)** attack using **ARP spoofing** with a tool like **Ettercap** or **Bettercap**.

It starts poisoning the ARP cache of nearby devices by claiming:

- "I am the default gateway" (e.g., 192.168.20.1)
- Uses its own MAC address for gateway IP

SIEM Alert – Detected by IDS + Switch Logs

Alert: Suspicious ARP Activity Detected

Source: Suricata IDS + Switch Syslogs

SIEM Correlation Rule:

Trigger if:

- >10 unsolicited ARP replies within 5 seconds
- AND source MAC/IP does not match DHCP records
- AND destination is the gateway

SIEM Alert Details:

• **Event Type**: ARP Spoofing Attempt

• **Device**: Laptop on port Gi1/0/18

• **MAC Address**: 08:92:4A:32:B1:7F

• **Spoofed IP**: 192.168.20.1 (gateway)

• VLAN: 20

• **Timestamp**: 2025-07-23T11:32:15Z

SOC Investigation Steps

Action Step Confirmed device sending unsolicited ARP replies for 1. Triage gateway IP 2. Endpoint Checked laptop logs – found ARP poisoning tools Check installed 3. Network Verified multiple endpoints received spoofed ARP **Analysis** responses 4. Cross-DHCP logs showed MAC-IP mismatch reference 5. Isolation Used NAC to quarantine port Gi1/0/18 immediately

X Mitigation & Remediation

🔐 Network-Level:

- Enabled Dynamic ARP Inspection (DAI) on VLAN 20
- **DHCP Snooping** was used to build IP-to-MAC bindings for validation
- Implemented **Port Security** on access ports:

switchport port-security

switchport port-security maximum 1

switchport port-security violation shutdown

Endpoint-Level:

- Removed ARP tools
- Performed full malware scan
- Reimaged compromised laptop

Policy-Level:

- Enforced stricter NAC policy for Finance VLAN
- Conducted user awareness training on insider threats
- Updated SOC runbook with ARP detection and DAI validation steps

■ SIEM Dashboard After Remediation

- No further ARP anomalies detected
- DAI blocked 3 spoofed ARP attempts from test lab the following week
- SOC added alert rule:

index=network sourcetype="switch-logs"

| stats count by src_mac, src_ip, arp_type

| where count > 5 and arp_type="reply"

🧠 Lessons Learned

Category	Insight		
Detection	SIEM rules and IDS are effective when properly tuned		
Response	NAC + DAI allows fast containment		
Prevention	Layer 2 controls like port security & DHCP snooping are essential		
Visibility	ARP monitoring tools (like ARPWatch) should be integrated		
User Risk	Even internal employees can be entry points to attacks		

Layer 2 Network Devices – Uses, Functions & Why They're **Important**

Layer 2 operates at the Data Link Layer of the OSI model and is responsible for MAC-address-based communication on a local network (LAN). Devices at this layer handle frames, not IP packets.

🔌 1. Network Switch

Use/Function:

- Connects multiple devices within the same LAN segment
- Forwards frames based on MAC addresses
- Maintains a **MAC address table** (also known as CAM table)
- Supports VLANs for logical segmentation

Why It's Important:

- Replaces legacy hubs with intelligent forwarding
- Core of modern wired LANs
- Enables segmentation and traffic control
- Critical for enforcing access controls, port security, and QoS policies

🔌 2. Bridge

Use/Function:

- Connects and filters traffic between two LAN segments
- Operates based on MAC addresses
- Works similarly to a switch, but typically with fewer ports and simpler logic

Why It's Important:

- Was an early form of LAN segmentation
- Still used in some **software-defined networking (SDN)** or virtualized environments
- Useful for **traffic isolation** in small setups

3. Wireless Access Point (AP) (in Layer 2 bridging mode)

Use/Function:

Extends LAN access wirelessly

- Forwards Layer 2 frames between wired and wireless clients
- Can act as a **bridge between wired and wireless segments**

Why It's Important:

- Key component in wireless LANs
- Can be configured to bridge VLANs or operate in different wireless modes (e.g., WDS, mesh)
- Needs security hardening (WPA3, 802.1X) to prevent Layer 2 wireless threats like spoofing or sniffing

🔌 4. Network Interface Card (NIC)

Use/Function:

- Hardware in every device that connects to a network
- Provides MAC address and Layer 2 framing
- Encapsulates and decapsulates Layer 2 frames

Why It's Important:

- NICs are the origin and endpoint of Layer 2 communication
- Used in MAC-based filtering, ARP, spoofing detection
- Can be used in **monitor mode** for packet capture

3. Layer 2 Tunneling Devices (e.g., L2TP endpoints)

Use/Function:

- Used in VPNs to tunnel Layer 2 traffic over Layer 3 networks
- Preserve Layer 2 headers (e.g., MAC addresses)

Why It's Important:

- Allows bridging remote systems into LAN-like environments
- Used in scenarios needing **broadcast** or **non-IP protocol** support
- Must be secured due to spoofing or bridging risks

4 6. Virtual Switches (vSwitch)

Use/Function:

Software-based switches in virtualization environments (e.g., VMware, Hyper-V)

• Connect virtual machines (VMs) within the same hypervisor

Why It's Important:

- Same behavior as physical Layer 2 switch
- Enforce virtual port security, VLAN tagging, and monitoring
- Attack surface for **VM-to-VM sniffing or ARP spoofing** in cloud/virtual environments

Summary Table of Layer 2 Devices

Device	Role	Common Use	Why Important in Security
Switch	MAC-based frame forwarding	Core LAN connectivity	Enforce VLANs, port security, DAI
Bridge	Segments LANs	Small networks, virtualization	Isolate and filter traffic
Access Point	Wireless LAN bridging	Wi-Fi client access	WPA3, rogue AP detection
NIC	Device network interface	PC/server network access	Origin of MAC, monitor mode
L2TP Tunnel	VPN over Layer 3	Remote Layer 2 bridging	Carries MAC frames over WAN
Virtual Switch	Software switch for VMs	Virtualized environments	VLANs, segmentation, isolation of VMs

Security Use Cases for SOC Analysts

Use Case	Layer 2 Device Involved	Example
Detecting rogue devices	Switch/NIC	Monitor unknown MACs via SIEM
Preventing ARP spoofing	Switch with DAI	Block malicious ARP replies
Enforcing NAC	Switch/AP	Only allow authenticated MACs
VLAN isolation	Switch/vSwitch	Limit lateral movement between departments
Wireless security	Access Point	Monitor for rogue APs or spoofed SSIDs

OSI Layer 3: Network Layer

o Purpose of Layer 3 (Network Layer)

The **Network Layer** is responsible for **routing packets** between devices **across different networks**. It ensures that data is delivered from the source to the destination based on **IP addresses**, even if the two devices are on **different LANs or** subnets.

🔑 Key Functions of the Network Layer

Function Description

Logical Addressing Assigns and manages **IP addresses** for routing **Routing** Chooses optimal path for packets using routers

Packet Forwarding Moves packets from source to destination

Fragmentation Breaks large packets into smaller ones for transmission

Error Handling &

Drops packets when TTL expires; avoids routing loops **TTL**

Traffic Control Handles congestion, prioritization (e.g., QoS policies)

Examples of Network Layer Components

Role Component

Route IP packets between networks Routers

Layer 3

Combine switching and routing functions **Switches**

IP Protocol IPv4/IPv6 for logical addressing

Routing

OSPF, BGP, RIP, EIGRP **Protocols**

ICMP Used for diagnostics (e.g., ping, traceroute) Firewalls (at Block/allow traffic based on IP, protocol, port

L3)

NAT Devices Translate private to public IPs for internet access

VPN Gateways Encapsulate traffic for secure routing over untrusted networks

Cybersecurity Relevance of Layer 3

Why Layer 3 is Crucial in Security:

- IP addresses are key to identity and control
- It's where **routing decisions** happen (affecting traffic flow and segmentation)

- Most **firewalls, SIEMs, and NIDS** inspect Layer 3 headers
- Attackers often exploit **IP-based trust**, **routing weaknesses**, or **packet** crafting

⚠ Common Layer 3 Threats with Real-World Examples

Threat	Description	Real-World Example
IP Spoofing	Attacker fakes source IP	Bypassing IP-based access control
ICMP Flood / Smurf Attack	Sends ping floods or broadcasts with spoofed IPs	DoS attack on a bank's network
Route Manipulation (BGP/OSPF)	Misconfigures or hijacks routing tables	BGP hijack to redirect traffic (e.g., YouTube 2008)
TTL Expiry Manipulation	Detect network layout via TTL analysis	Traceroute-based reconnaissance
NAT Bypass / Evasion	Exploiting NAT holes or mapping errors	Reaching internal IPs via split- tunnel VPN misconfigs
IP Fragmentation Attacks	Bypass IDS by splitting payloads	Teardrop attacks or IDS evasion by tiny fragments

🧖 SOC Analyst View – Monitoring & Mitigation at Layer 3

Tool/Method	What It Does
SIEM (e.g., Splunk, QRadar)	Aggregates IP logs, NetFlow, alerts
IDS/IPS (Snort, Suricata)	Detects IP anomalies, floods, spoofing
NetFlow/IPFIX	Tracks traffic by source/destination IP
Traceroute, Ping Monitoring	Detects routing issues and latency
Firewall Logs	Log dropped IPs, denied routes, suspicious protocols
Routing Table Monitoring	Detects unexpected BGP/OSPF changes

Mitigations & Proactive Defenses

Threat	Mitigation
IP Spoofing	Ingress filtering (RFC 3704), egress filtering, IP reputation blocklists

Threat Mitigation

ICMP Abuse Rate-limit ICMP, allow only echo replies, block broadcasts

Route HijackingUse routing protocol authentication (MD5 for BGP/OSPF),

monitor for prefix leaks

Fragmentation Attacks Normalize packets at firewall/IDS, drop tiny fragments

NAT Abuse Strict NAT rules, disable unnecessary port forwarding

Recon Tools (e.g., Block outbound ICMP TTL expired responses if

Traceroute) unnecessary

SOC Playbook Actions for Layer 3 Events

Event	Analyst Response
Repeated ICMP traffic from internal host	Check for scanning or malware beaconing
External IP spoofing alert	Check firewall ingress/egress rules
Unexpected OSPF route change	Investigate switch/router logs; verify config
High TTL expiry messages	Possible scanning — analyze source
NetFlow shows sudden traffic spike to one IP	Look for beaconing, C2, or exfiltration

Real-World Layer 3 Use Cases

- Use Case 1: Ransomware Beacon Detection via NetFlow
 - **Tool**: SIEM + NetFlow
 - **Event**: Internal host (192.168.10.25) makes thousands of short connections to random public IPs
 - Analysis:
 - Connections on port 443 but short duration
 - DNS shows random domains
 - SIEM correlation suggests possible C2 behavior
 - Mitigation:
 - Block outbound connections from that host at Layer 3 firewall
 - Quarantine host
 - Conduct full IR investigation

Use Case 2: IP Spoofing Bypass on VPN Gateway

• **Attack:** Remote attacker spoofs IP of internal dev server and sends crafted packets

• Detection:

- IDS alerts: Spoofed source IP packets detected
- SIEM rule triggered by geo-IP mismatch (external country source IP spoofed to internal range)

• Mitigation:

- Drop spoofed packets at firewall (with strict ingress filter)
- Harden VPN config: enforce mutual authentication
- Audit routing/NAT tables

Layer 3 Components (Hardware & Software)

Component	Description
Router	Primary Layer 3 device that routes packets between networks
Layer 3 Switch	Combines routing and switching within enterprise networks
Firewall (L3)	Inspects, filters, and controls IP packets based on rules
VPN Gateway	Routes encrypted traffic over public networks securely
Load Balancer (L3)	Distributes traffic across multiple servers based on IP
Routing Protocols	OSPF, BGP, RIP, EIGRP for path determination
IP Protocol Stack	IPv4, IPv6 protocols used to address and route data
ICMP	Protocol for diagnostics and error messaging (e.g., ping, traceroute)

X Functionalities of the Network Layer

Function	Description
Logical Addressing	Assigns IP addresses to hosts and networks
Routing & Forwarding	Selects best path and moves packets across networks
Fragmentation	Breaks up packets to accommodate MTU limits

Function Description

Traffic Control Prioritizes and shapes traffic (e.g., QoS)

Time to Live (TTL) Prevents infinite packet loops

NAT (Network Address Translates private IPs to public IPs for Internet

Translation) access

🗱 Operational Requirements at Layer 3

Requirement **Detail**

Accurate IP Addressing Prevent IP conflicts and ensure subnet efficiency Plan

Reliable Routing

Ensure optimal and fault-tolerant path selection **Protocols**

Redundancy Avoid single points of failure at gateway level (HSRP/VRRP)

MTU Configuration Prevent fragmentation and transmission errors **Network Segmentation** Organize subnets by function/security domain

Track latency, drops, and routing issues using NetFlow **Performance Monitoring**

or SNMP

Security Requirement Purpose

Permit or deny IP traffic based on ACLs (Access Control Lists) source/destination/protocol

Deep inspection and enforcement of IP-based traffic **Firewall Rules**

policies

Routing Protocol Prevent BGP/OSPF hijacks using MD5 or keychain

Authentication auth

IPsec/VPN Ensure confidentiality, integrity of IP traffic Prevent internal-to-internal spoofing and leaks **NAT Boundary Controls Network Segmentation** Isolate sensitive systems (e.g., PCI, OT, finance)

Layer 3 Attacks, Threats & Mitigations

Threat	Description	Mitigation
IP Spoofing	Attacker sends packets with forged source IP	Ingress/Egress filtering (RFC 3704), uRPF
ICMP Flood /	Flood using ICMP echo	Rate limit ICMP, disable IP-
Smurf Attack	requests	directed broadcasts

Threat	Description	Mitigation
BGP Hijacking	Malicious route announcements	Enable BGP prefix filtering, RPKI, BGP session authentication
OSPF Poisoning	Fake OSPF updates change route tables	OSPF MD5 auth, passive interfaces, hello/dead timers
IP Fragmentation Attack	Split payloads to bypass IDS	Normalize fragments, drop tiny or overlapping fragments
NAT Bypass	Exploit NAT misconfig to reach internal IPs	Use strict NAT policies, deny split tunneling in VPN
Traceroute-based Recon	Use TTL expiry messages to map networks	Block or restrict outbound ICMP TTL expired responses
TTL Expiry Probing	Fingerprint devices and network hops	Limit or obscure ICMP responses from internal devices

Proactive Steps for SOC Teams at Layer 3

SOC Action	Description
Enable NetFlow/IPFIX	Capture source/destination IP, protocol, and traffic volume
Log & Monitor ACL/FW Events	Detect blocked IPs, denied routing attempts
Use SIEM Rules	Correlate abnormal IP behavior (e.g., scanning, beaconing)
GeoIP Tagging	Flag unexpected IP locations
Threat Intel Integration	Block known malicious IPs at firewall or router
Packet Capture for Forensics	Analyze raw packets to trace attacks (via SPAN/TAP)
Routing Table Audit	Detect unexpected route injections or misroutes
Daily Reports	Summarize top talkers, blocked IPs, unknown protocols

- Use Case 1: IP Spoofing Attack Detected via SIEM
 - **Scenario**: A host within the network receives packets appearing to come from the internal gateway.
 - **Detection**: SIEM correlates NetFlow logs + firewall logs showing source IP 192.168.1.1 (the gateway) from an unauthorized MAC.

• Response:

- Shut down the port
- Validate switch MAC table
- Harden firewall to drop spoofed internal IPs

Use Case 2: BGP Hijack Detected in ISP Network

- **Scenario**: Large-scale traffic from a CDN was rerouted via a foreign network.
- **Detection**: BGP monitoring tools showed unexpected path for CDN prefixes.
- Response:
 - Applied BGP prefix filtering
 - Notified upstream provider
 - Added route authenticity checks using RPKI

Network Devices of Layer 3

1. Router

What It Does:

- Routes packets between **different networks** or subnets based on IP addresses
- Uses routing tables and **protocols** like OSPF, BGP, RIP
- Supports NAT, ACLs, QoS, and IPsec VPN

Why It's Important:

- Enables communication between LANs and WANs
- Core backbone of any IP-based network
- First line of defense with **traffic filtering (ACLs)** and **IP inspection**

2. Layer 3 Switch

What It Does:

- Combines functions of a switch (Layer 2) and router (Layer 3)
- Performs **routing within VLANs or subnets** internally (inter-VLAN routing)
- Supports **static and dynamic routing** (e.g., OSPF)

@ Why It's Important:

- Offers **faster performance** than routers in enterprise LANs
- Common in campus networks, data centers

• Supports ACLs, VLANs, segmentation, and traffic policies

▲ 3. Firewall (Layer 3)

What It Does:

- Inspects and filters **Layer 3 and Layer 4** traffic (IP, TCP/UDP)
- Enforces security policies based on **source/destination IP**, ports, and protocols
- Supports NAT, VPN, stateful inspection, and IPS/IDS modules

Why It's Important:

- Critical for **perimeter security**
- Blocks **malicious traffic**, scans, spoofed IPs
- Essential in **zero-trust** and **segmentation** architectures

4. VPN Gateway

What It Does:

- Connects remote users/sites to the enterprise network securely
- Tunnels Layer 3 packets over IPsec, SSL, or GRE
- Routes internal traffic through encrypted paths

Why It's Important:

- Secures data in transit across untrusted networks (e.g., Internet)
- Enables remote access while enforcing access policies
- Supports split tunneling, NAT-T, IPsec ACLs

▲ 5. Load Balancer (Layer 3/4)

What It Does:

- Distributes incoming IP traffic to multiple backend servers
- Operates at Layer 3 (IP) or Layer 4 (port/protocol) or even Layer 7 (HTTP)

@ Why It's Important:

- Enhances **availability** and **performance**
- Can route traffic based on IP/subnet
- Can block or filter based on IP reputation or rate limits

6. Multilayer Security Appliances (e.g., UTM, NGFW)

What It Does:

- Combines firewall, IDS/IPS, antivirus, and routing in one appliance
- Operates at multiple layers but often starts at Layer 3 with IP analysis

Why It's Important:

- Provides deep packet inspection and IP-based threat detection
- Consolidates multiple security functions around IP traffic flow
- Ideal for SOC-managed perimeter or cloud edge

7. Network Address Translation (NAT) Device

(Often part of routers/firewalls)

What It Does:

- Translates **private IPs to public IPs** (and vice versa)
- Hides internal IP scheme from external networks

@ Why It's Important:

- Enables private network devices to access the Internet
- Adds a layer of **security via IP obfuscation**
- Prevents direct access to internal devices

👮 For Cybersecurity Teams & SOC Analysts

₱ Why Layer 3 Devices Matter in Security Monitoring:

- These devices **generate logs** for all IP-based communications
- Allow implementation of network segmentation, access control, VPN enforcement
- Can be monitored via SIEM for anomaly detection (e.g., beaconing, IP scanning)
- Serve as control points for threat hunting and incident response

What Is a Packet in Networking? (Full Breakdown)

4. Why Is a Packet Needed?

Purpose:

A **packet** is the **standard unit of data** sent across **Layer 3** (Network Layer) of the OSI model. It allows data to be:

- Routed across multiple networks
- **Delivered** reliably or efficiently
- **Controlled** and inspected (for security, QoS, filtering)

Without packets:

- The network would need to send entire files/data as one unit (inefficient, fragile).
- Routers wouldn't know how to route the data, since they rely on the IP **header** in packets.

2. How Is a Packet Formed?

📤 Encapsulation Process (from Layer 7 to Layer 1):

Let's say you're sending a message to a website.

- 1. **Layer 7 (App)**: User sends data (e.g., HTTP request)
- 2. Layer 4 (Transport): Data becomes a segment (TCP/UDP), with port numbers
- 3. **Layer 3 (Network)**: Segment becomes a **packet**
 - Adds **IP header**: source IP, destination IP, TTL, etc.
- 4. Layer 2 (Data Link): Packet is encapsulated into a frame (adds MAC addresses)
- 5. **Layer 1 (Physical)**: Frame is converted to bits and sent
- 3. Structure of a Packet (IPv4 Example)

***** Key IP Header Fields:

- **Source IP**: Where it's from
- **Destination IP**: Where it's going
- TTL: Max hops allowed
- **Protocol**: TCP/UDP/ICMP identifier
- **Checksum**: Error-checking for header

4. What Is a Packet Used For?

Use Case Why the Packet Is Important

Routers read the **destination IP** in the packet to Routing

forward it

Firewall Firewalls inspect packets to allow/block traffic **Use Case** Why the Packet Is Important

Filtering

Traffic NetFlow, SIEMs, and IDS analyze packets for

Monitoring threats

Load Balancing Packets are inspected to distribute requests among

servers

VPN Encryption VPNs encrypt the **entire packet** to protect data in

transit

DDoS Mitigation

Rate of packets helps identify **flooding attacks**

i 5. Real-World Packet Examples

• Example 1: Sending an Email

- Your device sends an email to Gmail.
- Your mail client creates data → TCP segment (port 587) → IP packet.
- The packet contains:
 - Source IP: 192.168.1.10
 - Destination IP: 142.250.190.5 (Gmail server)
 - Protocol: TCP
- Routed through ISP → Internet → Google server

Example 2: Ping Packet (ICMP)

- You ping google.com
- OS forms an ICMP Echo Request packet
- Includes:
 - Src IP: 10.0.0.1
 - Dst IP: Google's IP
 - Protocol: ICMP
- Used to **test connectivity** or discover hosts (also used in attacks like Smurf)

Example 3: Malicious Packet – IP Spoofing

- An attacker crafts a packet with:
 - Fake Source IP (e.g., your gateway's IP)
 - Legit Destination IP

- Goal: Confuse firewall or bypass IP-based filtering
- Firewalls & routers may block this using ingress filtering

🔐 6. Cybersecurity Relevance of Packets

Security Use Description

Packet InspectionFirewalls/IDS parse IP headers to detect threats

SIEM Logging Packet headers help correlate malicious activity

Threat DetectionPackets reveal scanning, spoofing, DDoS, C2 traffic

Forensics Analyzing PCAPs reveals source of breach or lateral movement

🧖 7. SOC Analyst View: Packet Monitoring in Action

Scenario	Packet Behavior	Action Taken
Beaconing to C2 server	Small, periodic packets to suspicious IP	SIEM alert → block IP
IP Fragmentation attack	Multiple small packets with overlapping offsets	IDS detects → drop at firewall
DDoS Flood	Sudden burst of millions of packets from same IP	Mitigate via rate-limiting or GeoIP blocking

8. Summary: Why Packets Matter

Feature Value

Fundamental Unit of Data at Layer 3

Contains Critical Metadata
Essential for Routing & Used by routers, firewalls, IDS, SIEMs

Everything in networking boils down to packets
IP, protocol, TTL, source/destination
Used by routers, firewalls, IDS, SIEMs

Used in Attack & Defense Packets are tools for both attackers and defenders

III How OSI Layers 1, 2, and 3 Communicate with Each Other and with Other Devices

OSI Layer Roles Recap

Layer	Name	Role
L1	Physical	Sends raw bits (0s and 1s) via medium (cable, fiber, Wi-Fi)
L2	Data Link	Frames data, adds MAC addresses, handles access to media

Layer	Name	Role
L3	Network	Adds IP addresses, routes packets between networks

☐ How These Layers Communicate (Encapsulation)

When data is sent from **your device** to another **networked device**, it passes through these layers in this order:

Sending Side (Encapsulation Process)

- 1. Layer 3 (Network Layer)
 - Creates a packet
 - Adds source & destination IP addresses
 - e.g., Source: 192.168.1.5, Destination: 142.250.190.78

2. Layer 2 (Data Link Layer)

- Wraps the packet into a **frame**
- Adds source & destination MAC addresses
- e.g., Source MAC: 00:0a:95:9d:68:16, Dest MAC: next-hop router

3. Layer 1 (Physical Layer)

- Converts the frame into **electrical**, **light**, **or radio signals** (**bits**)
- Sends those bits across the physical medium (copper, fiber, Wi-Fi)

Receiving Side (De-Encapsulation Process)

- 1. **Layer 1** receives raw bits via cable/wireless
- 2. **Layer 2** reconstructs the frame, checks MAC address
 - If it's the right device (MAC match), passes it up
- 3. Layer 3 reads IP packet
 - If IP matches the device, delivers it to higher layers (TCP/HTTP/etc.)

B How They Communicate With Other Devices

In the Same Network (LAN):

- **Layer 2** is the focus
- Devices communicate using MAC addresses
- No routing required
- Switches forward based on MAC tables

Example:

- PC1 (MAC A, IP 192.168.1.10) sends data to PC2 (MAC B, IP 192.168.1.20)
- Uses ARP to resolve MAC from IP
- Switch forwards frame based on MAC address

Across Networks (WAN/Internet):

- **Layer 3** is used (routing)
- Devices communicate using **IP addresses**
- Routers forward based on routing tables

Sexample:

- PC1 wants to access google.com
- Destination IP is outside its network → packet is sent to default gateway (router)
- Router strips L2 frame and forwards packet to next hop
- New L2 frame is created at each hop, but IP stays the same (except TTL decreases)

Washington How Packets Communicate and Flow in a Network

What is a Packet?

A **packet** is a formatted unit of data that carries information through a network. It contains:

- **Header**: Control info like source & destination IP addresses, protocol info, TTL (Time to Live), etc.
- **Payload**: The actual data (e.g., part of an email, webpage, or file)

Packet Creation

When you send data (like browsing a website), your computer:

- Splits the data into chunks
- Adds Layer 4 info (TCP/UDP ports)
- Adds Layer 3 info (IP addresses) → **creates packets**

Packet Flow Inside Your Local Network (LAN)

1. Your device knows the **destination IP**.

- 2. If destination is in the same subnet, it resolves the destination's MAC address using **ARP** (Address Resolution Protocol).
- 3. Packet is wrapped into a **frame** (Layer 2) with source and destination MAC addresses.
- 4. Frame sent via physical media (Ethernet/Wi-Fi).
- 5. The **switch** receives the frame and forwards it based on MAC address.
- 6. Destination device receives the frame, extracts the packet, and processes it.

Packet Flow Across Different Networks (WAN / Internet)

If the destination IP is outside your subnet:

- 1. Your device sends the packet to the **default gateway (router)** MAC address.
- 2. The router strips off Layer 2 info and reads the Layer 3 IP header.
- 3. Router consults its **routing table** to find the next hop toward the destination IP.
- 4. Router encapsulates the packet into a new Layer 2 frame for the next network segment.
- 5. Packet is forwarded hop-by-hop, with each router performing:
 - Layer 2 de-encapsulation and re-encapsulation (new MAC addresses)
 - Layer 3 header check and TTL decrement
 - Routing decision based on IP destination
- 6. This repeats until the packet reaches the router connected to the destination network.
- 7. Final router delivers packet to the destination device using Layer 2 forwarding.

Packet Flow Illustrated

[Your PC] --(L2 Frame with your MAC \rightarrow router MAC)--> [Router A] --(next hop)--> [Router B] --...-> [Destination Network Router] --(L2 frame with dest MAC)--> [Destination PC]

At every router hop:

- **Layer 3 header** stays mostly the same (except TTL decrements)
- Layer 2 header (MAC addresses) updates for each network segment

[6] Important Concepts During Packet Flow

TTL (Time To Prevents infinite looping by decrementing at each hop; packet discarded if TTL=0

Fragmentation Large packets may be broken into smaller ones to fit MTU limits Routing Table Determines next hop IP/device for forwarding packet Resolves IP → MAC addresses in local network

NAT Translates private IPs to public IPs at gateway for internet access

Real-World Example

You open your browser and go to example.com:

- DNS resolves example.com to IP 93.184.216.34
- Your PC creates IP packet: src IP = your local IP, dest IP = 93.184.216.34
- If outside your subnet, packet sent to router MAC address
- Router forwards packet across the internet (many routers hop-by-hop)
- Packet reaches destination server's network
- Server sends response packets back to your IP

Cybersecurity Angle

- Packet inspection (firewalls, IDS) watches headers and payload for malicious patterns
- Packet drops happen if suspicious (spoofed IP, malformed headers)
- Logs generated for packet flow help SOCs track anomalies
- Flow analysis can identify scans, DDoS, or exfiltration

William How Layer 2 Frames Carry Layer 3 Packets Over Physical Media

What is Layer 3 Packet?

- At Layer 3 (Network Layer), data is encapsulated into a packet.
- This packet contains Layer 3 header info source and destination IP addresses, TTL, protocol, etc.
- The packet doesn't know about physical addresses (MAC), only logical IPs.

What is Layer 2 Frame?

- Layer 2 (Data Link Layer) prepares the packet for physical transmission.
- It wraps the Layer 3 packet inside a **frame** by adding its own header and trailer.

- The frame header contains Layer 2 addresses:
 - **Source MAC address** (sender's hardware address)
 - **Destination MAC address** (next-hop device's MAC)

Why Does Layer 2 Frame the Packet?

- Layer 2 is responsible for **delivering packets reliably across the local physical network segment** (LAN or point-to-point link).
- Physical media (cables, fiber, wireless) work with **frames and bits**, not packets.
- Switches and NICs use **MAC addresses** in Layer 2 frames to forward data correctly.

Step-by-Step: From Packet to Frame to Physical Media

Step **Description** Layer 3 creates a **packet** with IP addresses (e.g., from your PC to a web 1 server) Layer 2 takes that packet and wraps it into a frame by adding MAC 2 addresses and control info The frame is passed to Layer 1, which **converts it into** 3 electrical/optical/radio signals These signals travel over the **physical medium** (Ethernet cable, Wi-Fi, 4 fiber optic) The receiving device's Layer 1 captures signals, Layer 2 extracts the frame, verifies MAC destination, and **unwraps the packet** to pass up to 5 Layer 3

What's Inside a Layer 2 Frame? (Ethernet example)

| Preamble | Destination MAC | Source MAC | EtherType | Payload (Layer 3 Packet) | CRC |

Preamble: Synchronizes communication

- **Destination MAC:** Who gets the frame next
- **Source MAC:** Who sent the frame
- **EtherType:** Indicates the payload type (e.g., IPv4 = 0x0800)
- **Payload:** The actual Layer 3 packet (IP packet)
- **CRC:** Error-checking trailer

6 Putting It All Together

- Imagine you send a webpage request from your laptop:
 - Your laptop **creates an IP packet** (Layer 3) destined for the webserver's IP.
 - Your NIC then wraps that packet inside a Layer 2 Ethernet frame, adding MAC addresses.
 - The frame is sent as electrical signals over your Ethernet cable.
 - Your network switch reads the **destination MAC** and forwards the frame to the correct port. The receiving device unwraps the frame and processes the IP packet at Layer 3.

Layer 4: Transport Layer

Purpose of Layer 4: Transport Layer

The **Transport Layer** ensures **reliable data transfer** between **end systems** (hosts), such as between a client and a server. Its primary purpose is to:

- Manage end-to-end communication
- Ensure data integrity
- Control data flow
- Handle error correction and retransmission

Key Functions of the Transport Layer

Function Segmentation & Reassembly	Description Breaks large data from upper layers into smaller segments; reassembles at the destination.
Connection Establishment & Termination	Creates and tears down connections (e.g., TCP 3-way handshake).
Flow Control Error Detection & Correction	Manages the rate of data transmission between sender and receiver to prevent overwhelming the receiver. Uses checksums to detect and retransmit corrupted or lost data.
Multiplexing/ Demultiplexing Reliable vs. Unreliable Delivery	Uses port numbers to allow multiple connections on the same host (e.g., HTTP on port 80, SSH on 22). TCP provides reliability (retransmissions, ordering), while UDP is connectionless and faster but unreliable.

Examples of Transport Layer Protocols

Protocol	Description
TCP (Transmission	Reliable, connection-oriented, ensures ordered and
Control Protocol)	complete data delivery (e.g., HTTPS, FTP, SSH).
UDP (User Datagram	Unreliable, connectionless, used where speed matters more
Protocol)	than reliability (e.g., DNS, VoIP, video streaming).
SCTP (Stream Control	Used in telecom systems for reliable, message-oriented
Transmission Protocol)	communication.
DCCP (Datagram	Experimental; blends TCP's congestion control with UDP's

Protocol	Description
----------	-------------

Congestion Control	
Protocol)	

Cybersecurity Relevance of the Transport Layer

speed.

Layer 4 is **critical in cybersecurity** because many attacks and defensive mechanisms happen here:

Why it's targeted:

- It carries actual application data
- Uses port numbers (attackers scan for open ports)
- Manages session states (vulnerable to hijacking or DoS)

Key Cybersecurity Relevance:

Security Element	Relevance
Port Scanning	Attackers use tools like Nmap to scan for open TCP/UDP ports
DoS/DDoS	SYN floods target TCP handshakes to exhaust server resources
Session Hijacking	Attacker injects packets into a TCP session to hijack
Firewall Rules	Firewalls inspect Layer 4 (ports, TCP flags) to allow/deny traffic
TLS/SSL (in TCP)	Though encryption happens in Layer 5-6, it's implemented over TCP
UDP Amplification Attacks	Used in DDoS (e.g., DNS, NTP amplification)
Spoofed Packets	Malicious packets crafted with spoofed headers at this layer

Real-World Threats and Examples

Threat	Description	Example
TCP SYN Flood	Overwhelms a server with half-open connections	Mirai botnet used this in IoT DDoS attacks
UDP Flood	Sends massive UDP packets to random ports, forcing ICMP responses	Common in gaming platform attacks
Port Scanning	Identifies live services by scanning for open ports	Nmap used to find services like SSH on port 22
Session Hijacking	Intercepts active TCP sessions	ARP spoofing + session hijack in

Threat	Description	Example
		. 1 .111 1

man-in-the-middle attacks

TLS Downgrade Forces a server to use a weaker POODLE attack on SSL 3.0 encryption protocol over TCP Attacks

SOC Analyst View: Monitoring & Mitigation at Layer 4

What SOC Analysts Monitor:

Tool	Function
SIEM (e.g., Splunk, QRadar)	Correlates logs involving unusual port access or traffic spikes
IDS/IPS (e.g., Snort, Suricata)	Detects Layer 4 anomalies like port scans or malformed TCP packets
NetFlow Analysis	Analyzes network traffic flows at Layer 4 (port, protocol)
Firewall Logs	Tracks denied/allowed traffic based on Layer 4 rules

🚨 What They Look For:

- Abnormal port activity (e.g., SSH brute force on port 22)
- Multiple SYN packets without completion (SYN flood)
- High number of connections from one source (DDoS indicators)
- Suspicious port/protocol mismatches (e.g., HTTP traffic on non-standard ports)
- Unusual UDP traffic (possible amplification attack)

Ommon Mitigations:

Technique	Description
Stateful Firewalls	Track connection states; drop suspicious SYN floods or spoofed packets
Rate Limiting / Throttling	Reduces effectiveness of flood attacks
TCP Intercept / SYN Cookies	Protects against SYN floods by validating before full handshake
Geo-IP Filtering	Blocks traffic from suspicious regions
Port Knocking	Hides open ports until a specific sequence of packets is sent
Segmentation / Microsegmentation	Limits lateral movement within the network
Zero Trust Access Controls	Verifies identity before opening ports or sessions
Behavioral Analytics	Uses machine learning to detect anomalies in session

Technique

Description

patterns

Layer 4 is where real communication happens — it takes abstract data and ensures it gets to the right application, reliably or quickly depending on the use case. It's also where attackers often test your defenses.

As a SOC Analyst or Cybersecurity Professional:

- Understand TCP/UDP behaviors deeply.
- Monitor for behavioral anomalies and flag port/protocol misuse.
- Build layered defenses (firewalls, IDS, EDR) with clear Layer 4 visibility.
- Always correlate with higher layers (like Layer 7 logs) for a full picture.

1. Real-World Use Cases of Layer 4

Use Case	Description	Protocol Used	
Web browsing	Ensures HTTP(S) data gets to the right app on the server via port 80 or 443	TCP	
Video streaming	Real-time data delivery with acceptable loss	UDP	
Email transmission Reliable data for SMTP, IMAP, POP3 TCP			
VoIP Calls	Low-latency, loss-tolerant communication	UDP	
Remote access (SSH/RDP)	Encrypted, reliable session for remote admin	TCP	
Online Gaming	Fast and responsive communication	UDP	
DNS Resolution	Fast domain lookups	UDP (fallback TCP)	

2. Layer 4 Components and Functionalities

Component	Role	Example
Port Numbers	Logical channels for services (e.g., port 80 = HTTP)	Well-known and ephemeral ports
TCP Segments / UDP Datagrams	Encapsulate data with header info (ports, sequence numbers, checksum)	Segment in TCP, Datagram in UDP
Connection Management	Establish/terminate sessions	TCP 3-way handshake
Flow Control	Manages data rate to avoid overloading receivers	TCP sliding window

Component	Role	Example
Error Detection	Validates data integrity using checksum	TCP/UDP header checksum
Multiplexing	Multiple apps use network simultaneously	Browser & SSH use different ports
Congestion Control	Adjusts sending rate based on network load	TCP congestion avoidance

3. Operational Requirements for Layer 4

Requirement	Why it matters	Example
Latency Sensitivity	Real-time apps like VoIP, gaming need fast delivery	Use UDP
Reliability	Business-critical services require data integrity	Use TCP
Port Accessibility	Services must listen on open ports	Web server uses port 443
Bandwidth Efficiency	Reduce overhead for high-performance	UDP is preferred for media
Scalability	Need to handle many concurrent sessions	Load balancing TCP connections

4. Security Requirements for Layer 4

Requirement	Purpose
Port Filtering / Firewalling	Control which services are accessible
Protocol Enforcement	Ensure only allowed L4 protocols (e.g., block P2P)
Rate Limiting	Prevent abuse like DoS or brute force
Logging & Visibility	Track and analyze port-based traffic
Session Tracking	Monitor connection state (especially for TCP)
Integrity Checks	Use checksum, TLS for secure transmission

🐹 5. Security Attacks & Threats at Layer 4

Threat Type	Description	Target	Protoco l	Real-World Example
TCP SYN Flood	Attacker sends SYNs, doesn't complete	Servers	TCP	Mirai Botnet

Threat Type	Description	Target	Protoco l	Real-World Example
	handshake			
UDP Flood	Sends massive UDP traffic to random ports	Servers/ Endpoints	UDP	VoIP servers
Port Scanning	Probes open ports for services	Any exposed host	TCP/ UDP	Nmap scanning
Session Hijacking	Injects packets into active TCP session	Web apps, RDP, SSH	TCP	Man-in-the-middle
Reflection/ Amplification	Sends spoofed requests to reflect traffic to victim	DNS/NTP servers	UDP	DNS Amplification
TLS Downgrade	Forces weaker encryption over TCP	HTTPS	TCP	POODLE, SSLStrip
TCP Reset Attack	Sends forged TCP RST to terminate session	VPNs, BGP	TCP	Nation-state censorship
Fragmentation Evasion	Fragments packets to evade IDS	IDS/ Firewall	TCP/ UDP	Attack on Snort 2.x

6. Mitigation Strategies Per Attack Type

Attack Type	Description	Affected Protocols	Mitigation Strategies
TCP SYN Flood	Floods target with SYN packets, exhausting resources by leaving connections half- open	ТСР	- Enable SYN Cookies to defer resource allocation until ACK is received- Rate-limit SYN packets using firewall or router ACLs- Deploy Stateful Firewalls to track connections- Use TCP Intercept feature (Cisco)- Implement reverse proxies / DDoS protection (e.g., Cloudflare, Akamai)
UDP Flood	Sends large numbers of UDP packets to overwhelm server or network	UDP	- Block unnecessary inbound UDP traffic- Use rate limiting on border routers- Geo-blocking or ASN filtering for attack sources- DDoS detection systems (e.g., Arbor, Radware)- Disable unused UDP services (e.g., TFTP, NTP)
UDP Amplification	Attacker spoofs victim IP, sends small UDP	UDP	- Disable recursion on DNS servers- Implement BCP 38 for ingress filtering (prevents IP spoofing)-

Attack Type	Description	Affected Protocols	Mitigation Strategies
	request to servers that respond with large payloads (e.g., DNS, NTP)		Rate-limit responses for known amplification ports- Deploy anti-spoofing firewall rules- Use application-layer firewalls or scrubbing centers
Port Scanning	Probes target for open TCP/UDP ports to find exploitable services	TCP/ UDP	- Enable IPS/IDS signatures for scan detection (e.g., SYN scan, FIN scan)- Log and alert on connection attempts to blocked/unused ports- Use port knocking or dynamic port access for sensitive services- Use SOAR to automatically block repeat scanners
Session Hijacking	Injects malicious packets into an active TCP session to steal or manipulate data	TCP	- Use encryption (TLS/SSH/IPSec) to secure sessions- Implement MAC-IP binding to prevent spoofing-Session timeout & re-authentication policies- Monitor TCP sequence anomalies with IDS- Enable anti-replay protections
TLS Downgrade Attack (e.g., SSLStrip, POODLE)	Forces client/server to fall back to insecure protocols or weak ciphers	TCP (HTTPS, SMTP, etc.)	- Disable SSLv2, SSLv3, TLS 1.0, 1.1- Enforce TLS 1.2 or 1.3 only- Enable HSTS (HTTP Strict Transport Security)- Configure strong cipher suites- Scan servers with tools like Qualys SSL Labs
TCP Reset (RST Injection)	Spoofed TCP RST packet terminates legitimate session	ТСР	- Encrypt communication (prevents tampering)- Validate RST packets with firewall rules- Monitor for suspicious RST behavior (e.g., Snort rule)- Tunnel apps through VPN/IPSec to hide TCP control flags
Fragmentation Evasion / Overlapping Segments	Sends fragmented TCP/UDP packets to evade IDS/IPS detection		- Enable full packet reassembly on IDS/IPS- Drop overlapping or malformed segments - Use traffic normalization on perimeter firewalls-Apply deep packet inspection (DPI) and logging
Low & Slow TCP Attacks (e.g., Slowloris)	Opens many slow HTTP sessions using TCP to exhaust resources	TCP	- Set low timeouts for idle TCP connections- Limit simultaneous connections per IP- Use Web Application Firewalls (WAFs)-

Detect using **behavioral anomaly** detection

1. Proactive Steps for Cybersecurity Teams / SOC at Layer 4

A proactive SOC focuses on **prevention**, **detection**, **and response**. Here's how to address Layer 4 threats **before they happen**:

Monitoring & Visibility

- Enable **NetFlow/sFlow/IPFIX** on routers/switches to monitor Layer 4 flow records (e.g., source/destination ports and protocols).
- Deploy **IDS/IPS** (e.g., Snort, Suricata) to inspect TCP/UDP headers and detect port scans, flood attacks, and anomalies.

🔒 Hardening & Access Control

- **Restrict exposed ports** with firewalls (only allow required services).
- Use **stateful firewalls** that track TCP connection states and drop invalid connections.
- Enforce **zero-trust principles**: require authentication even within internal networks.

- Isolate critical systems with **Layer 4-aware firewalls**.
- Use **microsegmentation** to limit lateral movement between applications or zones.

X Configuration & Hygiene

- Close unused TCP/UDP ports on servers and endpoints.
- Use **port randomization** for services that don't require fixed ports.
- Keep **device firmware and OS patches** up to date to avoid protocol-level exploits.

■ Alerting & Correlation

- Configure SIEM to alert on TCP SYN flood patterns, unusual port connections, or port sweep behavior.
- Use **threat intelligence feeds** to block traffic from known malicious IPs trying to hit common Layer 4 ports.

1. Core Purpose of Layer 4

Purpose	Description
End-to-End Communication	Establishes logical communication between applications on different hosts
Communication	
Reliable Delivery	Ensures correct and ordered delivery of data (TCP), or fast delivery (UDP)
Segmentation & Reassembly	Breaks large data into segments (TCP) or datagrams (UDP), and reassembles them at the receiver
Multiplexing/ Demultiplexing	Uses port numbers to direct data to the correct process/application (e.g., web server, email, FTP)
Flow & Congestion	Adjusts data flow rate (TCP only) to match network and
Control	receiver capacity
Error Checking	Ensures data integrity using checksums in headers

2. Network Device Roles at Layer 4

Device	Role at Layer 4	Why It Matters
Stateful Firewall	Tracks TCP/UDP sessions and enforces access control based on ports	Filters traffic by port/protocol; protects against session-based threats
Load Balancer	Distributes TCP/UDP traffic	Helps scale applications while
(Layer 4)	based on IP and port (L4 info)	preserving sessions
Next-Gen Firewall (NGFW)	Combines L4 filtering with L7 inspection (deep packet inspection)	Detects app-based threats using L4 context
Routers with ACLs	Can filter traffic based on TCP/UDP ports and IPs	Basic traffic filtering by service type
VPN Gateway	Manages L4-based tunneling over TCP/UDP (e.g., OpenVPN, IPsec)	Secures traffic with encrypted Layer 4 tunnels
IPS/IDS	Detects and blocks anomalies or known attack patterns in L4 sessions	Detects scans, floods, hijacks, RST injection, etc.
Proxies /	Intercept or forward traffic at	Enforce protocol rules or security
Gateways	TCP layer (L4) or beyond	policies

3. Common Layer 4 Protocols

Protocol	Port	Description
TCP (Transmission Control	N/A	Reliable, connection-oriented (used for

n
for DNS, VoIP,
% UDP (used
media apps

UDP

UDP

Service	Port	Protocol
HTTP	80	TCP
HTTPS	443	TCP
DNS	53	UDP/TCP
SSH	22	TCP
RDP	3389	TCP
NTP	123	UDP

67/68

DHCP

VoIP (SIP/RTP) 5060/5004

4. Common Layer 4 Security Issues

Security Issue	Description	Risk Example	Mitigation
SYN Flood Attack	TCP SYN packets overwhelm server without completing handshakes	Denial of Service (DoS)	SYN cookies, rate limiting, firewall rules
UDP Flood	Sends massive datagrams to cause resource exhaustion	DoS on DNS or VoIP servers	Block unused UDP ports, rate limit
Port Scanning	Attacker probes open ports for vulnerabilities	Recon phase of attack	IDS/IPS alerts, firewall rules, autoblocking
Session Hijacking	Injects packets into active TCP session	Credential theft or data tampering	Encrypt sessions (TLS, SSH), session timeout
TCP Reset Attack	Spoofed RST packet breaks legitimate connection	Disrupts communication (e.g., BGP reset)	Inspect RSTs, VPN tunneling, firewall validation
TLS Downgrade	Forces weak encryption	Enables SSL attacks (e.g.,	Enforce TLS 1.2+, HSTS, disable SSL

Security Issue	Description	Risk Example	Mitigation
		POODLE)	
UDP Amplification/R eflection	Spoofs victim IP to reflect large UDP responses	DDoS with high bandwidth	Disable open recursion, ingress filtering
Fragmentation Evasion	Breaks payloads into fragments to evade detection	Bypass IDS/IPS, smuggle payloads	Enable packet reassembly on IDS, normalize traffic

OSI Layer 5: Session Layer

1. Core Purpose of the Session Layer

Purpose	Description
Session Management	Establishes, maintains, and terminates sessions between two endpoints (e.g., a user and a server)
Synchronization	Adds checkpoints for \boldsymbol{data} $\boldsymbol{recovery}$ in case of interruption
Dialog Control	Controls whether communication is half-duplex (one at a time) or full-duplex (simultaneous)
Connection Persistence	Manages long-lived connections like VPNs, remote desktop, audio/video calls
Authentication & Authorization	Involved in managing credentials & tokens that control session access

a 2. Device Roles at Layer 5

Layer 5 is **logical (not physical)** and is handled **within systems or applications**, but **some devices and services** contribute to session layer operations:

Device / Component	Role in Session Layer
Application Servers	Host session-aware services (e.g., HTTP/HTTPS sessions, VoIP, file transfers)
VPN Gateways	Manage encrypted session tunnels (IPSec, SSL VPN)
RDP Servers / Clients	Maintain persistent desktop sessions
VoIP Phones / PBXs	Initiate and control voice session streams
Session Border Controllers (SBCs)	Manage VoIP session setup, QoS, and security
Web Servers	Handle HTTP/HTTPS session tokens, cookies

Device / Component	Role in Session Layer
Authentication Systems	Validate user sessions and manage authentication
(LDAP, Kerberos)	tokens

3. Common Session Layer Protocols and Technologies

Although modern stacks blur the layers, **Layer 5 protocols** (or session-aware components) include:

Protocol / Tech	Description
RPC (Remote Procedure Call)	Allows remote execution of functions over a network
NetBIOS	Used for session management in older Windows environments
SMB (Server Message Block)	Establishes sessions for file/printer sharing
SIP (Session Initiation Protocol)	Establishes and manages VoIP sessions
L2TP/PPTP/SSL-VPN	Used in VPNs to manage encrypted session tunnels
RDP (Remote Desktop Protocol)	Maintains interactive session with remote host
TLS/SSL (Session tokens)	Manages encrypted sessions for HTTP, email, etc.
LDAP / Kerberos	Provide session-level authentication and authorization

4. Key Security Issues at Layer 5

Threat	Description	Example
Session Hijacking	Attacker takes over an existing session (e.g., stealing session ID or token)	Using stolen cookie to impersonate a user in a web app
Session Replay	Reusing captured session tokens or credentials	Replay of Kerberos tickets to gain access
Token Theft (Man-in-the-Browser)	Malware steals authentication tokens from user's browser	Stealing OAuth tokens or JWTs
Session Fixation	Attacker sets a session ID before user logs in and hijacks it afterward	Victim logs in with attacker's preset session ID
Insufficient Session Timeout	Sessions left open too long increase attack window	Session remains active after hours of inactivity
Broken Session Termination	Logout doesn't invalidate session token	Token still usable after logout

5. Cybersecurity Relevance of Layer 5

Security Aspect	Relevance
User	Sessions start after credentials are validated — protecting
Authentication	sessions is key to identity security
Access Control	Session state can enforce RBAC (Role-Based Access Control)
Application	Web apps use session tokens (cookies, JWTs), vulnerable to
Security	hijacking and replay
Zero Trust	Session-based re-authentication is critical in Zero Trust architectures
Incident Response	Session hijacking or token replay often indicate compromised
	access
VPN and RDP Security	Persistent remote access sessions are high-value targets

1 6. Real-World Threat Scenarios at Layer 5

Scenario	Description
Stolen RDP Session	Attacker compromises user credentials and hijacks a valid RDP session to maintain persistence
Cookie Theft via XSS	Attacker injects malicious script to exfiltrate session cookies, leading to account takeover
SIP Flood	VoIP server is flooded with SIP INVITE messages, crashing its ability to manage calls
Token Replay in OAuth	Attacker reuses captured token to access web APIs posing as a legitimate user
Weak VPN Session Timeout	Long-lived VPN sessions stay active even after disconnection, creating backdoors

7. SOC Analyst View: Monitoring & Mitigation at Layer 5

Monitoring Practices

Technique	What to Watch
SIEM Logs	Session creation, login attempts, logout events, abnormal session duration
Session Token Alerts	Unusual reuse of session tokens or mismatched geolocation/IP
VPN Logs / RDP Logs	Repeated session restarts, long active sessions, unauthorized attempts

Technique What to Watch

VoIP Session LogsINVITE flooding, session timeout anomalies

(SIP)

Web App Firewall(WAF)Session tampering, token anomalies, cookie manipulation

X Mitigation Strategies

Threat Mitigation

Session Hijacking

Use secure cookies, HttpOnly, SameSite, TLS, and short

session tokens

Token ReplayBind tokens to device/IP/fingerprint; use nonce or timestamp-

based tokens

Session Fixation Regenerate session IDs on login

Rogue Sessions Enforce idle timeouts and forced logouts

SIP Abuse / VoIP

Flood
Use SIP-aware firewalls or SBCs with rate limiting

VPN Misuse Enforce MFA, IP whitelisting, and device posture checks

8. Examples of Session Layer Components

Component Role

Token) Represents authenticated user sessions in web APIs

SSL/TLS Sessions

Provides session encryption and key exchange for

HTTPS

RDP Sessions Persist user remote login sessions with session IDs

Kerberos TicketsManages secure session-based authentication in Active

Directory

OAuth Access Tokens Represent access sessions in federated login

environments

Session Cookies Hold session state in browsers during web interactions

1. Real-World Use Case Scenarios (Layer 5: Session Layer)

(a) Use Case 1: Remote Work via RDP (Remote Desktop Protocol)

Scenario:

A multinational enterprise allows employees to connect to internal systems via RDP from home.

Risk Detail

Attack Brute-force or credential stuffing to hijack RDP sessions

Impact Full system compromise, lateral movement inside network

Real BlueKeep (CVE-2019-0708) exploited RDP to execute

Incident remote code

Mitigation:

- Enforce MFA on RDP
- **Geo-IP filtering** (block unauthorized countries)
- Use RDP Gateway, not direct access
- Implement session timeout policies
- Monitor RDP logins in SIEM (Event IDs: 4624, 4625, 4778, 4779)

1 Use Case 2: Web App Session Management with JWT

Scenario:

A healthcare web app uses JWTs (JSON Web Tokens) for authenticated sessions.

Risk Detail

Attack JWT stolen via XSS → session hijacking **Impact** Patient data exfiltration, HIPAA violation

Real Insecure JWT handling found in multiple APIs of major telehealth apps

Incident (2021-2023)

🔐 Mitigation:

- Use **HttpOnly**, **Secure**, **SameSite** flags on cookies
- Rotate and expire tokens frequently
- Bind JWTs to user-agent/IP
- Monitor for token reuse or anomalies

1 Use Case 3: VoIP SIP Attack on a PBX System

Scenario:

An organization uses SIP for voice communication via an IP PBX system.

Risk Detail

Attack SIP flood (INVITE packets) overwhelms server, disrupts calls

Risk **Detail**

DoS on phone service, operational disruption **Impact**

Real Several SIP-based DDoS attacks reported by telecoms during COVID-

Incident 19 surge in VoIP usage

🤐 Mitigation:

- Deploy **Session Border Controller (SBC)** to validate SIP traffic
- Use **SIP-aware firewalls** with rate limiting
- Geo/IP filtering and call rate limiting per user/IP
- Log and monitor SIP INVITE and REGISTER spikes

© Use Case 4: VPN Session Exploitation

Scenario:

Remote users connect using SSL-VPN to access internal tools.

Risk Detail

Reuse of hijacked VPN session (e.g., from infected machine or session Attack

cookie theft)

Impact Bypass MFA, gain persistent access

Real SolarWinds attackers used stolen VPN credentials and session hijacking

Incident techniques

🔐 Mitigation:

- Enable **device posture checks** before VPN access
- Enforce short VPN idle timeouts
- Use **IP binding for sessions**
- Monitor **VPN login logs** for anomalies (multiple logins from different regions/IPs)

1 2. Session Layer Attack Types & Mitigation Table

Attack Type	Description	Mitigation
Session	Attacker steals session	Use TLS , HttpOnly cookies ,
Hijacking	ID/cookie to impersonate user	token binding, and SIEM alerts
Session	Force victim to use attacker-	Regenerate session IDs on login
Fixation	controlled session ID	Regenerate session 1Ds on login

Attack Type	Description	Mitigation
Token Replay	Reuse valid tokens for unauthorized access	Use short-lived, one-time tokens , nonces , and timestamps
Weak Session Timeout	Sessions persist after logout or idle time	Implement idle and absolute timeouts
SIP Session Flood	Overload VoIP services with SIP requests	Deploy SBCs , set rate limits , block spoofed IPs
Broken Session Logout	Sessions stay valid even after logout	Invalidate session server-side on logout

3. Proactive SOC & Security Team Steps at Session Layer

Category	Step
Monitoring	Ingest RDP, VPN, SIP, and web session logs into SIEM
Alerting	Create rules for long session durations , geolocation mismatch , token reuse , or session reuse across devices
Threat Hunting	Hunt for reused session IDs, multiple logins from different IPs, and odd session behavior
Training	Educate devs on secure token handling , logout mechanisms , and cookie security
Policy	Enforce MFA , session timeout, and session termination policies organization-wide
Response	Integrate SOAR playbooks to block IPs or kill sessions on session anomalies

4. Network Devices Involved in Session Layer & Their Roles

Device / Component	Role	Why It's Used
Session Border Controller (SBC)	Manages and secures VoIP/SIP sessions	Controls SIP floods, ensures call reliability
VPN Gateway	Creates/manages secure session tunnels	Enables encrypted remote access
Web Server / App Server	Manages HTTP/HTTPS sessions	Handles session cookies, JWTs, tokens
RDP Gateway / Bastion Host	Manages authenticated remote desktop sessions	Provides secure, auditable RDP access

Device / Component	Role	Why It's Used
Authentication Server	Validates and issues session	Enables SSO and access
(Kerberos, LDAP)	credentials	control
Reverse Proxy (e.g., NGINX, HAProxy)	Manages and forwards HTTP sessions	Can apply session-based access logic
SIEM / SOAR	Monitors session logs for anomalies	Detects hijack/reuse and enables response

1. Core Purpose of Layer 5 (Session Layer)

Element Description

Manages and controls the dialogue (sessions) between two endpoints Main Role

(apps/devices).

Establishes, maintains, and terminates sessions between Function

communicating hosts.

Scope Helps coordinate which side transmits, when, and for how long.

🗩 2. Components / Services Operating at Layer 5

Layer 5 isn't implemented as standalone software/hardware, but its services are embedded within protocols and apps.

Component / Service	Role
---------------------	------

Provided by OS/app to enable sessions (e.g., Windows **Session APIs**

sockets).

RPC (Remote Procedure Allows execution of code on another system, maintaining

Call) session state.

Used in legacy Windows systems for session-level **NetBIOS**

communication.

SSL/TLS Session Layer Maintains secure sessions (session keys, session reuse).

RDP Sessions Handles persistent connections for remote desktop access.

SIP/VoIP Signaling Manages media sessions (start, hold, resume).

File-sharing protocols requiring session control and state NFS/SMB

tracking.

🗱 3. Functionalities of the Session Layer

Function	Description
----------	-------------

Session Initiates and authenticates a connection (e.g., TLS handshake). **Establishment**

Session Keeps track of dialog status and ensures orderly

Maintenance communication.

Function	Description
----------	-------------

Session Synchronization	Inserts checkpoints for error recovery (esp. in file transfers).
Session Termination	Gracefully closes the communication after data transfer.
Dialog Control	Manages who can send/receive at a time (half/full-duplex).
Token Management	Controls ownership of communication (e.g., only one side can modify state).

4. Operational Requirements for Layer 5

Requirement	Description	
Reliability	Maintain stable and recoverable sessions (especially for long-running ones).	
State Management	Track session states, user identity, and context.	
Timeout Handling	Detect idle or dead sessions and close them to free resources.	
Concurrency Control	Handle multiple simultaneous sessions efficiently.	
Failover Support	Resume sessions after temporary network failures.	

3. Security Requirements for Layer 5

Security Need	Description
Session Authentication	Verify both ends before allowing communication.
Session Encryption	Use secure protocols like TLS to protect session data.
Session Timeout / Expiry	Prevent stale sessions from being reused or hijacked.
Session Binding	Tie session to device, IP, or certificate to avoid token theft.
Session Logging	Track session creation, IP, duration, termination reason.
Replay Protection	Prevent reuse of old sessions (e.g., TLS session replay).

⚠ 6. Session Layer Attacks & Threats

Threat	Description	Real Example	Mitigation
Session Hijacking	Attacker steals or predicts valid session token/ID.	Sidejacking via Wi-Fi sniffing (Firesheep tool)	Use HTTPS, regenerate session IDs after login, HttpOnly/SameSite cookies
Session Fixation	Attacker sets a known session ID	Attacker sends crafted link with	Regenerate session ID after auth; reject pre-set

Threat	Description	Real Example	Mitigation
	before login.	preset session	session IDs
Replay Attacks	Old session messages reused by attacker.	TLS 1.0 with weak nonce reuse exploited	Use strong encryption (TLS 1.3), unique nonces, anti-replay counters
Man-in-the- Middle (MITM)	Attacker intercepts session data.	Public Wi-Fi snooping stealing RDP sessions	Use mutual TLS, certificate pinning, enforce HSTS
Timeout Manipulation	Attacker prevents session expiry to keep access.	Keeping web session alive to maintain access	Enforce absolute timeouts, detect abnormal session durations
Token Theft via XSS	Stealing session tokens via script injection.	Stolen JWT via XSS attack	HttpOnly, SameSite cookies; CSP headers
Protocol Abuse (SIP/VoIP)	SIP session flooding, malformed signaling packets	SIP Invite floods in VoIP systems	Rate limiting, SIP-aware firewalls, anomaly detection
RPC Abuse	Exploiting open RPC sessions to run remote code.	EternalBlue (SMBv1 + RPC abuse) in WannaCry	Disable unused RPC, patch vulnerabilities, restrict access

7. Mitigation Strategies by Threat

Attack Type	Mitigation
Session Hijacking	Enforce HTTPS; regenerate session IDs after login; session binding; monitor IP/device changes.
Session Fixation	Never accept external session tokens; always issue new tokens on login; use short-lived tokens.
Replay Attacks	Use TLS 1.2/1.3; include timestamps, nonces, and sequence counters.
MITM	TLS with strong ciphers, HSTS, cert pinning, disable legacy protocols.
Timeout Abuse	Set both idle and absolute session expiration; monitor long sessions.
XSS-Based Token Theft	Sanitize inputs, use CSP headers, set cookies as HttpOnly + Secure + SameSite.
VoIP/SIP Abuse	Use SIP-aware firewalls, enable DoS protection, validate SIP headers.
RPC Exploits	Restrict RPC ports via firewall; patch vulnerabilities; disable

Attack Type Mitigation

legacy services.

8. SOC Monitoring Tips (Session Layer)

Source What to Watch

Web Server Logs Session reuse from new IP/device, excessive session duration

TLS Logs Session resumption abuse, weak ciphers used

Firewall/IDS SIP flood, SMB/RPC traffic anomalies

SIEM Alerts Token anomalies, login from new geo/IP with same session ID

VPN/RDP Logs Concurrent logins, long sessions, sudden termination

OSI Layer 6 – Presentation Layer

1. Core Purpose of the Presentation Layer

Element Description

Translates and transforms data between the **application layer**

Main Role (Layer 7) and the **lower layers**. It ensures that data is **readable**,

structured, and secure across platforms.

Key Data formatting, encryption, decryption, compression, encoding,

Responsibility and **translation** (syntax and semantics).

User/Device Not directly user-facing, but acts as a critical bridge between user-

Facing friendly formats and raw transmission formats.

Think of it as the "interpreter" of the OSI model.

a 2. Key Functions of the Presentation Layer

Function	Description
Data	Translates data to standard formats like ASCII, UTF-8,
Encoding/Decoding	Base64.
Serialization/ Deserialization	Converts data structures (e.g., JSON, XML) to/from byte streams.
Data Compression	Reduces data size for efficient transmission (e.g., gzip, zlib).

Function Description

Applies security to data before transport (e.g., TLS **Encryption/Decryption**

encryption).

Converts between application formats (e.g., EBCDIC ↔ **Format Translation**

ASCII).

Media Format Translates audio, image, and video data formats (JPEG,

Handling MP3, MPEG).

3. Examples of Layer 6 Components & Technologies

Component/Protocol	Role
TLS/SSL	Encrypts/decrypts data for secure communication
Base64, ASCII, UTF-8	Character encoding and decoding
MIME (Multipurpose Internet Mail Extensions)	Encodes multimedia in emails
gzip/zlib	Data compression utilities
JSON/XML/YAML/Protobuf	Serialization formats
HTML/CSS/JS rendering engines	Handle data interpretation in browsers
Video/audio codecs (H.264, MP3)	Encode/decode media streams

🔐 4. Cybersecurity Relevance of the Presentation Layer

Security Aspect	Description		
TLS Encryption	Ensures confidentiality and integrity of data in transit (Layer 6 & 7 boundary).		
Data Obfuscation	Prevents raw access to sensitive data structures or payloads.		
Secure Format	Prevents attackers from exploiting data parsing vulnerabilities		
Handling	(e.g., XML bombs).		
Compression	Vulnerabilities can occur via compression (e.g., CRIME,		
Attacks	BREACH).		
Sanitization Risks	Insecure or incorrect encoding may allow bypass of security filters.		

1 5. Presentation Layer Threats & Real-Time Examples

Threat	Description	Real Example	Mitigation
TLS Downgrade Attack	Forces weaker cipher usage (e.g., SSLv3).	POODLE attack	Disable insecure ciphers/protocols, use TLS 1.2+

Threat	Description	Real Example	Mitigation
CRIME/ BREACH Attacks	Exploits compression with encrypted traffic to extract secrets.	HTTPS + gzip combo vulnerabilities	Disable TLS compression or selectively apply it
XML External Entity (XXE)	Exploits poorly configured XML parsers.	CVEs in SOAP APIs, XML parsers	Disable external entity parsing, validate inputs
Encoding Bypass	Attack payloads obfuscated via alternate encoding (Base64, Unicode)	Bypassing XSS filters	Normalize and validate input on server side
Certificate Spoofing	Using invalid or forged certs in TLS sessions	MITM attacks with fake certs	Use cert pinning, CA validation
MIME Sniffing Exploits	Forcing browsers to treat files as scripts	Used in drive-by downloads	Set strict content-type headers, X-Content-Type- Options: nosniff

6. SOC Analyst View: Monitoring & Mitigations at Layer 6

Source	What to Watch
TLS Handshakes (Firewall/Proxy)	Weak cipher suites, failed negotiations
Web Server Logs	Content-type mismatches, Base64-encoded payloads in parameters
SIEM Logs	TLS session anomalies, gzip compression on sensitive endpoints
API Gateways	Unexpected media types (e.g., image uploads with JS), excessive JSON parsing errors
IDS/IPS	Obfuscated attacks using encoding tricks

Mitigation Strategies for Layer 6 Threats

Threat	Mitigation
TLS Downgrade /	Enforce TLS 1.2+ or 1.3, disable SSLv3/TLS 1.0/1.1, use
MITM	HSTS, cert pinning
Compression-based	Disable TLS compression, avoid compressing secrets in
Attacks	same context

Threat	Mitigation
Encoding Bypass	Normalize input (decode multiple times), reject unexpected encodings
MIME Sniffing	Use X-Content-Type-Options: nosniff, strict MIME type enforcement
Certificate Issues	Use trusted CAs, certificate pinning, rotate keys regularly
XML/JSON Attacks	Harden parsers (disable DTDs in XML), enforce schema validation, use secure libraries

7. Real-World Scenarios

Case Study 1: POODLE (Padding Oracle On Downgraded Legacy Encryption)

- Layer 6 Flaw: TLS could fall back to SSLv3 if not configured securely.
- **Impact**: Allowed attackers to decrypt HTTPS traffic.
- **Mitigation**: Disable SSLv3, enforce strong ciphers.

Case Study 2: CRIME Attack

- **Scenario**: Attacker guesses secrets by observing size of compressed + encrypted packets.
- **Exploit Vector**: TLS compression + HTTP cookie.
- Mitigation: Disable TLS-level compression.

Case Study 3: XXE in XML APIs

- **Scenario**: SOAP API processes malicious XML that accesses internal files via entity references.
- **Mitigation**: Disable DTD, use secure XML parsers, schema validation.

Example Use Case: You log into a secure web app over HTTPS from your laptop. The app uses JWT tokens and stores data in a database.

Step-by-Step Flow from Layer 5 to Layer 1 (Sender Side)

OSI Layer	Action	Example
Layer 5:	Starts/maintains session between	Browser establishes HTTPS session;
Session	client and server	stores JWT token
Layer 4: Transport	Breaks data into segments, assigns port numbers, ensures delivery	Uses TCP, assigns source port (random) and destination port 443
Layer 3:	Adds source and destination IP	IP header is created (e.g.,
Network	addresses; decides routing	$192.168.1.2 \rightarrow 172.217.12.174)$
Layer 2: Data Link	Adds MAC addresses, creates frames for local delivery	MAC header: Your NIC's MAC → router MAC
Layer 1: Physical	Converts bits to electrical/light/wireless signals	Signals travel over Ethernet cable or Wi-Fi antenna

Inbound Flow (Receiving Data)

(from Physical up to Session)

When the server responds, the packet travels in reverse from Layer 1 \rightarrow Layer 5:

OSI Layer	Action	Example
Layer 1:	Receiver gets raw signal (e.g.,	Wi-Fi NIC receives bits

OSI Layer	Action	Example
Physical	Wi-Fi radio wave)	
Layer 2: Data Link	NIC checks MAC address, extracts frame	Verifies destination MAC address; strips Ethernet header
Layer 3: Network	IP layer checks IP address, routes it to correct machine	Verifies IP (e.g., 192.168.1.2), strips IP header
Layer 4: Transport	TCP reassembles segments, checks ports and ACKs	Checks destination port, sends ACK for reliable transfer
Layer 5: Session	Maintains session state, passes data to app	Session remains valid (JWT/token still active), app continues use

Real-Life Analogy: A Secure Phone Call

Imagine sending a **secure message** during a phone call. Here's how it maps to OSI:

OSI Layer	Analogy
Layer 5 (Session)	You start the call and decide to keep the line open
Layer 4 (Transport)	You break your message into parts to speak clearly; confirm the other person hears it
Layer 3 (Network)	You know the phone number of the person you're calling
Layer 2 (Data Link)	The cell tower or switch routes your call locally
Layer 1 (Physical)	Your voice is converted to radio signals or electrical pulses

1. Core Purpose of Layer 7 (Application Layer)

Element Description

Interface between the user/application and the network stack. It's

Main Role where network-enabled applications (web, email, file transfer, VoIP,

etc.) operate.

Enables communication and data exchange across networks for Function

services like HTTP, FTP, DNS, SMTP, VoIP, REST APIs, etc.

Facing

Human/User The only layer directly interacting with end-user software.

Tt delivers application services to users and devices, ensuring data is formatted, encrypted, and interpreted correctly.

2. Device Roles at Layer 7

These devices **analyze**, **interact with**, **or secure** traffic based on Layer 7 content (e.g., HTTP methods, URI paths, cookies, app logic):

Device	Role	
Web Application Firewalls	Analyze HTTP/HTTPS traffic; block malicious	
(WAF)	requests	
Load Balancers (L7-aware)	Distribute traffic based on URLs, headers,	
Luau Balancers (L7-aware)	cookies	
API Gateways	Authenticate and route REST/GraphQL API calls	

Device Role

Proxy Servers / Reverse Intercept and forward client requests; may cache

Proxies or filter

Handle SMTP, IMAP, POP3 at application layer **Mail Servers**

DNS Servers Resolve domain names using DNS protocol

Host HTTP/HTTPS content (e.g., Apache, Web Servers

NGINX, IIS)

3. Common Layer 7 Protocols

Protocol Use

Web communication (browsers, HTTP/HTTPS

APIs)

FTP/SFTP File transfers

SMTP/IMAP/

Email delivery and retrieval POP3

DNS Domain name resolution

SNMP Device/network management LDAP Directory access/authentication

SIP VoIP call initiation **REST/GraphQL** API communication

X 4. Key Functions of the Application Layer

Function Description

Service Advertisement & Apps announce availability (e.g., mDNS,

Bonjour) Discovery

JSON, XML, HTML, and Base64 formats **Data Encoding/Decoding Authentication &** Login mechanisms (e.g., SSO, OAuth,

Authorization JWT)

API rate limiting, user sessions, session Session Control (L7)

cookies

404, 403, 500 response codes **Error Handling**

Access to files, services, cloud data via **Resource Access**

protocols

🔐 5. Cybersecurity Relevance of Layer 7

Relevance Area **Details**

Biggest Attack Web apps, APIs, cloud services — most attacks happen here

Relevance Area	Details
Surface	
Direct User Interaction	Any compromise affects real users, often publicly accessible
Authentication Gate	Manages user credentials, tokens, sessions
Data Exfiltration Path	Often used to exfiltrate data through HTTP, DNS, etc.
Encrypted Traffic Visibility	Encrypted L7 traffic (HTTPS) hides malicious activity unless inspected by SSL decryptors or WAFs

⚠ 6. Layer 7 Threats & Real-Time Examples

Threat	Description	Real-World Example	Mitigation
SQL Injection (SQLi)	Injecting SQL via form fields or URLs	Equifax breach (2017)	WAF, input validation, ORM
Cross-Site Scripting (XSS)	Running JS in user browser via unsanitized inputs	WordPress/Drupal plugin flaws	Output encoding, CSP headers
Command Injection	Shell commands injected into backend logic	Web-to-shell attacks on IoT	Input sanitization, WAF rules
API Abuse	Automated abuse of public APIs (e.g., account takeovers, scraping)	Twitter API abuse, scraping bots	Rate limits, API keys, behavioral analytics
Broken Authentication	Poor login/token logic enables account takeover	Facebook token bug (2018)	MFA, secure token handling, short expiry
Session Hijacking	Hijack JWT or cookie to impersonate users	XSS steals session cookies	HttpOnly/SameSite flags, re-auth flows
Malicious File Uploads	Uploading backdoors/scripts as images/docs	Shells in uploads to PHP apps	File scanning, extension/type enforcement
DNS Tunneling / Exfiltration	Using DNS to sneak data out	Malware (e.g., Backdoor.Win32. Denis)	Monitor DNS anomalies, DNS firewall

7. SOC Analyst View: Monitoring & Mitigations at Layer 7

What to Monitor:

Source What to Monitor

WAF Logs Blocked payloads (XSS, SQLi), URI patterns

Proxy/Reverse Proxy Unusual headers, excessive requests

API Gateway Logs
Rate abuse, invalid tokens, unauthorized calls
Web Server Logs
HTTP errors, large POSTs, unknown endpoints
Long/odd queries, consistent external lookups
Aggregate above into session & threat views

Mitigation Strategies:

Threat Type Mitigation

Web Exploits (XSS,

SQLi)

Use **WAF**, sanitize input/output, encode HTML

Broken Auth Apply MFA, use short-lived tokens (OAuth2), enforce

session timeout

Bot Attacks / Scraping Implement **bot mitigation**, CAPTCHAs, rate limits

API Attacks Use **API keys, token auth, RBAC**, and schema validation

Malware via Enable **TLS inspection**, DNS filtering, and malware

HTTP/DNS sandboxing

8. Real-World Use Cases & Scenarios at Layer 7

Case Study 1: Capital One Data Breach (2019)

- **Threat:** SSRF (Server-Side Request Forgery) exploited in a WAF's metadata API
- Layer 7 Flaw: Application allowed internal metadata URL access via user input
- **Impact:** Exfiltrated 100M+ customer records
- **Mitigation:** Harden WAF logic, use deny-lists, strict API validation, cloud IAM controls

Case Study 2: API Abuse in Mobile Banking App

- **Scenario:** Attackers reverse-engineer app and automate API calls to **harvest** account data
- **Layer 7 Exploit:** No proper authentication, rate limiting, or endpoint segmentation
- **Mitigation:** API gateway with behavior-based alerts, token binding, device fingerprinting

Case Study 3: XSS + Session Hijack in eCommerce Site

- Threat: XSS allows attacker to steal logged-in users' session cookies
- Layer 7 Flaw: Product review input not encoded in HTML output
- Impact: Account takeovers and fraudulent transactions
- Mitigation: CSP headers, output encoding, HttpOnly and SameSite flags

Functionalities of Layer 7

Function	Description
Application Services	Offers services like web browsing (HTTP), email (SMTP, IMAP), file transfer (FTP).
Data Encoding & Formatting	Ensures data is presented in a format the application can use (e.g., MIME, JSON, XML).
Resource Sharing	Facilitates shared access to networked applications and databases.
User Authentication	Provides login prompts, credential validation, token exchange, etc.
Session Management	Maintains sessions and handles persistent or stateful communication (e.g., cookies, JWTs).
Error Handling	Manages errors encountered during data transfer at the application level.
Service	Some protocols announce available services (e.g., mDNS,
Advertisement	NetBIOS).

Operational Requirements of Layer 7 Systems

Requirement	Description
Availability	Web and application services must be highly available (e.g., 99.9% uptime).
Scalability	Systems should scale horizontally (load balancing) and vertically to meet user demand.

Requirement	Description	
Latency	Reduced response time via caching, CDNs, and content	
Optimization	compression (gzip).	
API Rate Limiting	Control over how often APIs are accessed to prevent abuse.	
Session Persistence	Needed for stateful web apps (via sticky sessions, tokens, etc.).	

Security Requirements at Layer 7

Requirement	Description	
Input Validation	Prevent injection attacks by sanitizing inputs (SQL, XSS, etc.).	
Authentication & Authorization	Secure user access via MFA, OAuth, SSO, etc.	
Data Encryption	Use TLS for secure data transport (HTTPS).	
Logging & Monitoring	Detect anomalies, audit access, and investigate incidents.	
WAF (Web Application Firewall)	Filters and blocks malicious HTTP traffic at Layer 7.	
API Security	Use API gateways, key rotation, OAuth tokens, and access scopes.	
6 6 11 75 1	T I I I I I OT TA CD A CT TO	

Secure Coding Practices Implement standards like OWASP ASVS.

Common Layer 7 Attacks & Threats

Threat/Attack	Description	Mitigation
SQL Injection	Injecting malicious SQL via user input.	Input validation, parameterized queries.
Cross-Site Scripting (XSS)	Inserting malicious scripts in web pages.	Output encoding, content security policy.
Cross-Site Request Forgery (CSRF)	Forcing user to perform unwanted actions.	CSRF tokens, same-site cookies.
Remote Code Execution (RCE)	Executing commands remotely via flaws in application logic.	Patch management, input validation.
Session Hijacking	Stealing session IDs to impersonate users.	Secure cookies, token expiration, TLS.
Broken Authentication	Weak or exposed auth mechanisms.	MFA, account lockouts, password hashing.
API Abuse	Excessive or unauthorized API usage.	Rate limiting, authentication, quotas.

Threat/Attack	Description	Mitigation
Denial of Service	Overwhelming application	Rate limits, WAFs, DDoS
(DoS)	resources.	protection services.

Tools & Technologies Used in Layer 7 Security

Type Examples

WAFs Cloudflare, AWS WAF, Imperva, ModSecurity

API Gateways Kong, Apigee, AWS API Gateway

Identity Management Okta, Auth0, Azure AD

SIEM Splunk, QRadar, ELK Stack

Vulnerability Scanners Burp Suite, OWASP ZAP, Nessus

Code Analysis SonarQube, Checkmarx, Fortify

7. Best Practices for Securing Layer 7

- 1. **Use HTTPS with HSTS** for all web communication.
- 2. **Implement secure authentication** (MFA, SSO, OAuth2).
- 3. Validate and sanitize all inputs server-side.
- 4. **Deploy WAF and reverse proxy** for filtering.
- 5. **Use rate limiting and throttling** for APIs.
- 6. Log user activity and anomalies; monitor for strange patterns.
- 7. Keep application frameworks and libraries updated.
- 8. Use CSP headers and secure cookies.
- 9. **Apply the Principle of Least Privilege (PoLP)** in access control.

We'll use an example of visiting a secure website like https://bank.com to illustrate both sending (client \rightarrow server) and receiving (server \rightarrow client) paths.

Outbound Flow (Client to Server)

Your browser is sending a request to https://bank.com.

OSI Layer	Action	Example Data
Layer 7 – Application	User initiates action (e.g., login); browser creates an HTTPS GET request	GET /login HTTP/1.1
Layer 6 – Presentation	Data is formatted (e.g., JSON), encrypted via SSL/TLS	TLS encrypts: email=you@example.com&passwor d=12345
Layer 5 – Session	TLS handshake creates/maintains a secure session	TLS Session ID, session ticket exchanged
Layer 4 – Transport	Breaks into segments; assigns ports (TCP port 443)	TCP Header: Source Port 57300, Dest Port 443
Layer 3 – Network	Adds IP header with source and destination IP addresses	Source IP: 192.168.1.10 → Dest IP: 172.217.12.174
Layer 2 – Data	Adds MAC addresses for local	Source MAC: $PC \rightarrow Dest MAC$:

OSI Layer	Action	Example Data
Link	delivery (Ethernet/Wi-Fi)	Router
Layer 1 –	Converts all bits into signals	Bits sent over Ethernet cable, fiber,
Physical	(electrical, optical, or RF)	or Wi-Fi

Inbound Flow (Server to Client)

The server responds with a secure page (HTTP/1.1 200 OK).

OSI Layer	Action	Example Data
Layer 1 – Physical	Signal (e.g., light, radio) hits your NIC and is converted to bits	010101
Layer 2 – Data Link	MAC header checked to ensure frame is for you; frame is stripped	Frame → Source MAC: Router, Dest MAC: Your NIC
Layer 3 – Network	IP header processed; routing and delivery confirmed	IP → Dest IP: 192.168.1.10
Layer 4 – Transport	TCP segment reassembled; server response acknowledged (ACK)	TCP → Port 443; ACK flag set
Layer 5 – Session	TLS session used to decrypt data; session maintained	Valid TLS session resumed
Layer 6 – Presentation	Decrypts and decodes content (e.g., HTML, JSON)	TLS decryption; data in readable form
Layer 7 – Application	Data rendered in the browser; user sees login result	Browser displays dashboard or error

Real-World Analogy: Postal Mail

OSI Layer	Analogy
Layer 7 (Application)	You write a letter to the bank
Layer 6 (Presentation)	You write in English (common format), seal it in a secure envelope
Layer 5 (Session)	You track the conversation thread (ongoing correspondence)
Layer 4 (Transport)	You break the letter into 2 pages and number them
Layer 3 (Network)	You write the address and return address on the envelope
Layer 2 (Data Link)	The envelope is routed via local mail truck or post office
Layer 1 (Physical)	The paper physically moves via trucks, planes, etc.

Layer	Security Monitoring Examples
L7 (Application)	WAF, API Gateway, logs of user actions, web exploits
L6 (Presentation)	TLS inspection for encrypted threats (HTTPS malware)
L5 (Session)	Session hijack, token replay, TLS session resumption abuse
L4 (Transport)	Port scans, TCP SYN floods, brute-force login attempts
L3 (Network)	IP spoofing, routing anomalies, geolocation anomalies
L2 (Data Link)	ARP spoofing, MAC flooding, switch attacks
L1 (Physical)	Cable tapping, radio interference, jamming (Wi-Fi)

Attack Mapping to OSI Layers (SOC Analyst View)

OSI Layer	Function	Examples of Attacks	SOC Analyst Focus
7. Application	User interface for network services	Malware (e.g., ransomware)PhishingSQL injectionXSS (Cross-Site Scripting)API abuse	 SIEM log analysis (web, email) EDR/AV alerts User behavior analytics (UBA) Application firewall (WAF) logs
6. Presentation	Data formatting, encryption/decryption	SSL/TLS attacksMan-in-the-Middle(MiTM)Protocol downgrade attacks	TLS inspectionCertificate validationAnomalous encryption useIDS/IPS pattern detection
5. Session	Session control and authentication	Session hijackingCookie stealingBrute-force login attempts	Web session logsAuthentication logs (Okta, AD)Anomaly detection in login patterns
4. Transport	Reliable data transmission (TCP/UDP)	TCP SYN FloodPort scanningDoS attacksUDP Flood	Firewall/IDS logsNetFlow analysisPacket inspectionDetection of unusual port

OSI Layer	Function	Examples of Attacks	SOC Analyst Focus
3. Network	Routing and logical addressing (IP)	- IP spoofing- ICMP flood- Route hijacking- DoS/DDoS	traffic - IPS alerts - Network traffic monitoring - Geo-IP anomalies - Edge firewall logs
2. Data Link	MAC addressing and frame transmission	ARP spoofingMAC floodingVLAN hopping	Switch log analysisARP table monitoringNAC (Network Access Control) logs
1. Physical	Transmission media and hardware	Cable tappingHardwarekeyloggersPower interferencePhysical break-in	 Physical security systems Camera footage Device tampering alerts USB usage monitoring

₩ MITRE ATT&CK + OSI Layer Mapping (with IOCs)

OSI Layer	MITRE ATT&CK Techniques	Example TTPs	Typical IOCs
Layer 7 – Application	 T1566: Phishing T1059: Command and Scripting Interpreter T1190: Exploit Public Facing Application T1071: Application Layer Protocol 	Phishing emailWeb shelldeploymentSQLi/XSSC2 via HTTPS orDNS	Suspicious email headersWeb server logsUnexpected outbound trafficNew or modified scripts/files
Layer 6 –	- T1573: Encrypted Channel	- HTTPS/TLS C2	- Self-signed/expired certs
Presentation	- T1608.001: Upload Malware - T1557.002: TLS MiTM	 Malicious TLS certificates Packet payload obfuscation	Abnormal TLS handshakeEncrypted payloads to unknown IPs
Layer 5 – Session	T1078: Valid Accounts-T1110: Brute ForceT1550: Use AlternateAuthentication Material	- Stolen session cookies	Multiple login failuresLogin from abnormal geosNew token generation

OSI Layer	MITRE ATT&CK Techniques	Example TTPs	Typical IOCs
		sessions	
Layer 4 – Transport	- T1040: Network Sniffing- T1498: Network Denial ofService- T1583.006: Port Scanning	SYN floodPort scanenumerationUDP flood to apps	- Abnormal TCP/UDP flows- IDS alerts- Connection spikes (NetFlow)
Layer 3 – Network	- T1565.001: DNS Spoofing- T1090: Proxy- T1595.001: ActiveScanning	- IP spoofing- DNS tunneling-VPN usage to hide origin	DNS anomaliesSpoofed IpsHidden or rare ASN lookups
Layer 2 – Data Link	- T1557: Man-in-the-Middle- T1040: Network Sniffing(ARP spoofing)- T1590.002: NetworkTopology Discovery	ARP poisoningMAC addressspoofingVLAN hopping	- ARP cache changes- Duplicate MACs- Unusual MAC/IP pairs
Layer 1 – Physical	T1200: Hardware AdditionsT1050: New ServiceT1203: Exploitation forPrivilege Escalation (USB)	Rogue USBHardwarekeyloggersCable tampering	Device enumeration logsUnauthorized USB useBIOS/firmware change logs

SOC Analyst Playbook Tips:

Q IOC Types by Layer:

Layer	Common IOC Types
Layer 7	URL patterns, email metadata, HTTP POST anomalies, web shell indicators
Layer 6	TLS fingerprint mismatches, abnormal cert issuers
Layer 5	Authentication failures, geolocation anomalies
Layer 4	Port scans, protocol anomalies, flow irregularities
Layer 3	IP reputation, DNS tunneling, IP range anomalies
Layer 2	MAC anomalies, ARP spoof attempts, switch port changes
Layer 1	USB events, BIOS changes, physical intrusion alerts

Use Cases

• **Detection**: Correlate SIEM alerts across OSI layers and ATT&CK techniques for better confidence in threat detection.

- **Triage**: Use OSI-aligned IOCs to prioritize incidents (e.g., Layer 3–4 = preattack recon, Layer 7 = exploitation).
- **Hunting**: Hunt for TTPs using a layered approach e.g., find C2 at Layer 7, trace transport at Layer 4, track source IP at Layer 3.

7 Layers of the OSI Model and Their Core Responsibilities

Layer	Name	Core Responsibility
7	Applicati on	Interface for end-user processes; enables network services (like email, file transfer, web browsing).
6	Presentat ion	Data translation, encryption/decryption, and compression; ensures data is readable by the receiving system.
5	Session	Manages sessions (start, control, end) between applications; handles connection setup, maintenance, and termination.
4	Transport	Ensures reliable data transfer with error recovery and flow control (e.g., TCP); manages segmentation and reassembly.
3	Network	Determines data routing and logical addressing (IP); handles packet forwarding across networks.

Layer	Name	Core Responsibility
2	Data Link	Handles physical addressing (MAC), error detection/correction in frames; controls access to the physical medium.
1	Physical	Transmits raw bit stream over physical medium (cables, radio); defines hardware specs (cables, signals, voltages).