FONCTIONS - Généralités

Leçon : FONCTIONS - Généralités Présentation globale *Chapitre nº 1*

PROF: ATMANI NAJIB

- I) Définitions et Domaine de définitions.
- 1 Définitions
- 2 Exemples
- 3 Domaine de définitions.

Chapitre nº 2

II) Egalité de deux fonctions - Représentations graphique

- 1 Egalité de deux fonctions
- 2 Représentations graphique

Chapitre nº 3

III) Fonctions paires et Fonctions impaires 1 Définitions

2 le graphe et la parité de la fonction *Chapitre nº 4*

IV) Les variations d'une fonction numérique

- 1 Fonction croissante -décroissante -fonction constantes
- 2 Le taux d'accroissement d'une fonction

Chapitre nº 5

- V) Les extremums d'une fonction numérique
- VI) Etude et représentation graphique des fonctions $x \xrightarrow{f} ax^2$
- VII) Etude et représentation graphique des fonctions $x \xrightarrow{f} ax^2 + bx + c$
- VIII) Etude et représentation graphique des fonctions : $x \xrightarrow{f} \frac{a}{x}$
- IX) Etude et représentation graphique des fonctions homographique : $x \xrightarrow{f} \frac{ax + b}{cx + d}$

I) Définitions et Domaine de définitions

1°) Définitions

Définition : Une <u>fonction</u> est une relation qui a un nombre x appartenant à un ensemble D associe un nombre y

On note: $x \mapsto y$ ou encore $f: x \mapsto y$ ou encore y = f(x)

On dit que y est l'image de x par la fonction f et que x est un antécédent de y par la fonction f

2)Exemples:

Exemple 1: Soit Les fonctions numériques suivants :

$$f(x) = x^2 + 2x - 5$$
 $g(x) = \frac{3x^3 + 2x^2 - 1}{5x^2 - 4}$.

;
$$h(x) = \frac{2x-1}{5x-4}$$
; $l(x) = \sqrt{x}$; $R(x) = \frac{\sin x - \cos x}{\tan x}$

- f S'appelle une fonction polynôme
- g S'appelle une fonction rationnelle
- h S'appelle une fonction rationnelle et s'appelle aussi une fonction homographique :Une fonctions homographique s'écrit

sous la forme :
$$h(x) = \frac{ax+b}{cx+d}$$

l S'appelle la fonction racine carré

R S'appelle la fonction circulaire ou fonction trigonométrique

Exemple 2: Soit la fonction f définie par , $f(x) = 3x^2 - 1$

1)Calculer l'image de 1 et $\sqrt{2}$ et -1 par f.

2)Déterminer les antécédents éventuels de 2 par f,

Réponses : 1) $f(1) = 3 \times 1^2 - 1 = 3 - 1 = 2$ et

$$f(\sqrt{2}) = 3 \times (\sqrt{2})^2 - 1 = 6 - 1 = 4$$

$$f(-1) = 3 \times (-1)^2 - 1 = 3 - 1 = 2$$

2)
$$f(x) = 2$$
 ssi $3 \times x^2 - 1 = 2$

ssi
$$3 \times x^2 = 2 + 1$$
 ssi $3 \times x^2 = 3$ ssi $x^2 = 1$

ssi
$$x=-1$$
 ou $x=1$

donc les antécédents éventuels de 2 par f sont -1 et 1

3°) Domaine de définitions

ACTIVITES:

a. On considère la fonction définie par : $x \mapsto \frac{1}{x-3}$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par f? 0; 2; -3; 3.

- **b.** On considère la fonction définie par : $x \mapsto \sqrt{x-3}$ Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas donc $D_f = \mathbb{R} - \{-2, 2\}$ d'image par g? 0; 2; -3; 4.
- c. On considère la fonction définie par : $x \mapsto \frac{1}{\sqrt{7-x}}$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par h? 5; -6; 9; 7.

Définition: Pour une fonction f donnée, l'ensemble de tous les donc $D_f = \mathbb{R} - \{-\sqrt{2}; 0; \sqrt{2}\}$ nombres réels qui ont une image par cette fonction est appelé 5) $f(x) = \sqrt{-3x+6}$. ensemble de définition de la fonction f, que l'on notera D f

Exemple: Déterminer l'ensemble de définition des fonctions suivantes définie par :

1)
$$f(x) = 3x^2 - x + 1$$
.

1)
$$f(x) = 3x^2 - x + 1$$
. 2) $f(x) = \frac{x^3}{2x - 4}$.

$$f(x) = \frac{2x^4}{x^2 - 4}.$$

4)
$$f(x) = \frac{7x-1}{x^3-2x}$$
.

$$5) \quad f(x) = \sqrt{-3x + 6}$$

5)
$$f(x) = \sqrt{-3x+6}$$
. 6) $f(x) = \frac{x-5}{2x^2-5x-3}$.

7)
$$f(x) = \sqrt{x^2 - 3x + 2}$$
.

8)
$$f(x) = \sqrt{\frac{-3x+9}{x+1}}$$
.

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2 + x + 3}}$$
. 10) $f(x) = \frac{|x-5|}{x^2 + 1}$.

10)
$$f(x) = \frac{|x-5|}{x^2+1}$$
.

11)
$$f(x) = \frac{\sqrt{|x|}}{x}.$$

$$12) \quad f(x) = \frac{\sqrt{x+2}}{x-1} .$$

13)
$$f(x) = \sqrt{-2x^2 + x + 3}$$
. 14) $f(x) = \frac{|x - 5|}{x^2 + 1}$.

14)
$$f(x) = \frac{|x-5|}{x^2+1}$$
.

15)
$$f(x) = \frac{\sqrt{|x|}}{x}$$
.

16)
$$f(x) = \frac{\sqrt{x-2}}{2x+4}$$
.

17)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$

17)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$
. 18) $f(x) = \frac{x}{|2x - 4| - |x - 1|} \cdot \Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$

19)
$$f(x) = \frac{2\sin x}{2\cos x - 1}$$
.

20)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$

21)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

Solutions

- 1) $f(x) = 3x^2 x + 1$ f est une fonction polynôme donc Un réel a toujours une image. Donc $D_f = \mathbb{R}$
- 2) $f(x) = \frac{x^3}{2x-4}$. Pour les fonctions du type fractions

rationnelles, l'ensemble de définition est l'ensemble des nombres pour lesquels le dénominateur est non nul.

$$D_f = \left\{ x \in \mathbb{R} / 2x - 4 \neq 0 \right\}$$

$$2x-4=0$$
 ssi $x=\frac{4}{2}=2$ Donc $D_f=\mathbb{R}-\{2\}$

On dira aussi que 2est une valeur interdite pour la fonction f

3)
$$f(x) = \frac{2x^4}{x^2 - 4}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 - 4 \neq 0 \right\}$$

$$x^{2}-4=0$$
 ssi $x^{2}-2^{2}=0$ ssi $(x-2)(x+2)=0$
ssi $x-2=0$ ou $x+2=0$ ssi $x=2$ ou $x=-2$
donc $D_{f} = \mathbb{R} - \{-2, 2\}$

4)
$$f(x) = \frac{7x-1}{x^3 - 2x}$$
. $D_f = \left\{ x \in \mathbb{R} / x^3 - 2x \neq 0 \right\}$
 $x^3 - 2x = 0$ ssi $x(x^2 - 2) = 0$ ssi $x = 0$ ou $x^2 - 2 = 0$ ssi $x = 0$ ou $x^2 - 2 = 0$ ssi $x = 0$ ou $x = \sqrt{2}$ ou $x = -\sqrt{2}$
donc $D_f = \mathbb{R} - \left\{ -\sqrt{2}; 0; \sqrt{2} \right\}$

5)
$$f(x) = \sqrt{-3x+6}$$

Pour les fonctions du type racine carrée, l'ensemble de définition est l'ensemble des nombres pour lesquels l'intérieur de la racine est positif: $D_f = \{x \in \mathbb{R} / -3x + 6 \ge 0\}$

3)
$$-3x+6 \ge 0$$
 ssi $x \le 2$ ssi $x \le \frac{-6}{-3}$ ssi $-3x \ge -6$

Donc
$$D_f =]-\infty; 2]$$

6)
$$f(x) = \frac{x-5}{2x^2-5x-3}$$
. $D_f = \left\{ x \in \mathbb{R} / 2x^2 - 5x - 3 \neq 0 \right\}$

$$2x^2 - 5x - 3 = 0$$
 $a = 2$ et $b = -5$ et $c = -3$

$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49 = (7)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-5) + \sqrt{49}}{2 \times 2} = \frac{7+5}{4} = \frac{12}{4} = 3$$
 et $x_2 = \frac{(-5) - \sqrt{49}}{2 \times 2} = \frac{5-7}{4} = \frac{-2}{4} = -\frac{1}{2}$

Donc
$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}; 3 \right\}$$

7)
$$f(x) = \sqrt{2x^2 - 3x + 1}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 - 3x + 1 \ge 0 \right\}$$
 soit Δ son discriminant

$$D_f = \left(\frac{3}{4} + \frac{3}{$$

17)
$$f(x) = 3x^2 - - + \sqrt{-x}$$
. 18) $f(x) = \frac{1}{|2x - 4| - |x - 1|}$ $\frac{|2x - 4| - |x - 1|}{|x - 4|}$ $\frac{|2x$

x	$-\infty$		1/2		1		$+\infty$
P(x)		+	0	_	0	+	

Donc
$$D_f = \left[-\infty, \frac{1}{2} \right] \cup \left[1, +\infty \right[$$

8)
$$f(x) = \sqrt{\frac{-9x+3}{x+1}}$$
. $D_f = \left\{ x \in \mathbb{R} / \frac{-9x+3}{x+1} \ge 0 \text{ et } x + 1 \ne 0 \right\}$

$$-9x+3=0$$
 ssi $x=\frac{1}{3}$ ssi $-9x=-3$

$$x+1=0$$
 SSi $x=-1$

x	$-\infty$	-1		$\frac{1}{3}$	$+\infty$
-9x + 3	+		+	þ	_
x+1	_	þ	+		+
$\frac{-9x+3}{x+1}$	_		+	þ	_

Donc
$$D_f = \left[-1, \frac{1}{3} \right]$$

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2 + x + 3}}$$
.

$$D_f = \left\{ x \in \mathbb{R} / -2x^2 + x + 3 > 0 \right\}$$

$$-2x^2 + x + 3 = 0$$
 $a = -2$ et $b = 1$ et $c = 3$

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times (-2) \times 3 = 1 + 24 = 25 = (5)^2 > 0$$

Donc on a deux racines

$$x_1 = \frac{-1+5}{2 \times (-2)} = \frac{4}{-4} = -1$$
 et $x_2 = \frac{-1-5}{2 \times (-2)} = \frac{-6}{-4} = \frac{3}{2}$

x	$-\infty$	-1		3/2	$+\infty$
$-2x^2+x^{-1}$	+3 -	þ	+	0	_

Donc
$$D_f = \left[-1, \frac{3}{2} \right]$$

10)
$$f(x) = \frac{|x-5|}{x^2+1}$$
. $D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$

$$x^2 + 1 = 0$$
 ssi $x^2 = -1$

Cette équation n'admet pas de solution dans \mathbb{R}

Donc $D_f = \mathbb{R}$

11)
$$f(x) = \frac{\sqrt{|x|}}{x}.$$

$$f(x) \in \mathbb{R} \text{ ssi } \sqrt{|x|} \in \mathbb{R} \text{ et } x \neq 0$$

Or on sait que $|x| \ge 0$ pour tout $x \in \mathbb{R}$

Donc $f(x) \in \mathbb{R}$ ssi $x \neq 0$ Donc $D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$

16)
$$f(x) = \frac{\sqrt{x+2}}{x-1}$$
. $D_f = \{x \in \mathbb{R} \mid x+2 \ge 0etx - 1 \ne 0\}$

$$D_f = \left\{ x \in \mathbb{R} \, / \, x \ge -2etx \ne 1 \right\}$$

$$D_f = [-2,1[\, \cup \,]1,+\infty[$$

17)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$

$$D_f = \{ x \in \mathbb{R} / -x \ge 0 etx \ne 0 \}$$

$$D_f = \left\{ x \in \mathbb{R} \, / \, x \le 0 \\ etx \ne 0 \right\} \text{ donc } : D_f = \left] -\infty, 0 \right[$$

18)
$$f(x) = \frac{x}{|2x-4|-|x-1|}$$
.

$$D_f = \{ x \in \mathbb{R} / |2x - 4| - |x - 1| \neq 0 \}$$

$$|2x-4|-|x-1|=0$$
 ssi $|2x-4|=|x-1|$

ssi
$$2x-4=x-1$$
 ou $2x-4=-(x-1)$

ssi
$$2x-x=4-1$$
 ou $2x-4=-x+1$

ssi
$$x = 3$$
 ou $2x + x = 4 + 1$

ssi
$$x = 3$$
 ou $3x = 5$ ssi $x = 3$ ou $x = \frac{5}{3}$

Donc
$$D_f = \mathbb{R} - \left\{ \frac{5}{3}, 3 \right\}$$

19)
$$f(x) = \frac{2\sin x}{2\cos x - 1}$$
. $D_f = \{x \in \mathbb{R} / 2\cos x - 1 \neq 0\}$

$$2\cos x - 1 = 0 \quad \text{ssi} \quad \cos x = \frac{1}{2}$$

$$\cos x = \frac{1}{2} \quad \text{ssi} \quad \cos x = \cos\left(\frac{\pi}{3}\right)$$

$$x = \frac{\pi}{3} + 2k\pi$$
 ou $x = -\frac{\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

Donc:
$$D_f = \mathbb{R} - \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

20)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$

$$D_f = \left\{ x \in \mathbb{R} / \frac{-2x^2 + 2x + 13}{x^2 - x - 6} \ge 0 e t x^2 - x - 6 \ne 0 \right\}$$

- On détermine les racines du trinôme $-2x^2 + 2x + 13$: Le discriminant est $\Delta' = 2^2 - 4x$ (-2) x 13 = 108 et ses racines sont :

$$x_1 = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2}$$
 et $x_2 = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$

- On détermine les racines du trinôme $x^2 - x - 6$: Le discriminant est $\Delta = (-1)^2 - 4 \times (-6) \times 1 = 25$ et ses

$$x_1' = \frac{-(-1) - \sqrt{25}}{2 \times 1} = \frac{1 - 5}{2} = -2$$
 et $x_2' = \frac{-(-1) + \sqrt{25}}{2 \times 1} = \frac{1 + 5}{2} = 3$

On obtient le tableau de signe :

x	-∞		$\frac{1-3\sqrt{3}}{2}$		-2		3	1-	+3√3 2		+∞
$-2x^2+2x+13$		-	φ	+		+		+	φ	-	
$x^2 - x - 6$		+		+	φ	-	Φ	+		+	
$\frac{-2x^2 + 2x + 13}{x^2 - x - 6}$		-	φ	+		-		+	0	-	

21)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + \left(2\sqrt{3} - \sqrt{2}\right)x - 2\sqrt{6} \ge 0 \right\}$$

$$\Delta = b^2 - 4ac = (2\sqrt{3} + \sqrt{2})^2 - 4 \times 1 \times 2\sqrt{6}$$

$$\Delta = 12 - 4\sqrt{6} + 2 + 8\sqrt{6} = 14 + 4\sqrt{6}$$

$$14 + 4\sqrt{6} = 14 + 2 \times 2\sqrt{3} \times \sqrt{2} = (2\sqrt{3})^2 + 2 \times 2\sqrt{3} \times \sqrt{2} + (\sqrt{2})^2$$

$$14+4\sqrt{6}=(2\sqrt{3}+\sqrt{2})^2$$

On a
$$\Delta = 14 + 4\sqrt{6} > 0$$
 donc

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + \sqrt{14 + 4\sqrt{6}}}{2 \times 1} = \frac{-2\sqrt{3} + \sqrt{2} + \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1}$$

et
$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - \left|2\sqrt{3} + \sqrt{2}\right|}{2 \times 1}$$

 $x_1 = \frac{-2\sqrt{3} + \sqrt{2} + 2\sqrt{3} + \sqrt{2}}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ et $x_2 = \frac{-2\sqrt{3} + \sqrt{2} - 2\sqrt{3} - \sqrt{2}}{2 \times 1} = \frac{-4\sqrt{3}}{2} = -2\sqrt{3}$

X	-∞	-2.√3	√2	+∞
$x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}$	+	0	- 0	+

On a donc: $D_f = \left[-\infty; -2\sqrt{3} \right] \cup \left[\sqrt{2}; +\infty \right]$

II) Egalité de deux fonctions – Représentations graphique

1)Egalité de deux fonctions

Définition : Soient f et g deux fonctions, et D_f et D_g leurs domaines de définition respectifs on dit que f et g sont égaux et on écrit f=g. si et seulement si :

 $D_f = D_g$ et pour tout $x \in D_f$ (ou $x \in D_g$) on a f(x)=g(x)

Exemple 1: Soient les deux fonctions :

$$f(x) = \frac{3x^2 + 1}{\sqrt{x^2}}$$
 et $g(x) = \frac{1 + 3x^2}{|x|}$

- on a
$$f(x) \in \mathbb{R}$$
 ssi $\sqrt{x^2} \in \mathbb{R}$ et $x \neq 0$

or on sait que $x^2 \ge 0$ donc $\sqrt{x^2} \in \mathbb{R}$ pour tout $x \in \mathbb{R}$ alors $f(x) \in \mathbb{R}$ ssi $x \ne 0$ donc $D_f = \mathbb{R}^*$

on a
$$g(x) \in \mathbb{R}$$
 ssi $|x| \neq 0$ ssi $x \neq 0$
donc $D_{g} = \mathbb{R}^{*}$

alors
$$D_f = D_g = \mathbb{R}^*$$

on sait que $\sqrt{x^2} = |x|$ et $3x^2 + 1 = 1 + 3x^2$ donc f(x) = g(x)

donc finalement on a trouvé que : $D_f = D_g = \mathbb{R}^*$ et f(x) = g(x) donc : f = g.

Exemple 2 : Soient les deux fonctions :

$$h(x) = \frac{x^2 - x}{x} \quad \text{et } t(x) = x - 1$$

- on a $h(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_h = \mathbb{R}^*$
- on a t(x) est un polynôme donc $D_t = \mathbb{R}$

alors $D_h \neq D_t$ donc: $h \neq t$

2) Représentations graphique

Dans ce paragraphe le plan est rapporté a un repère (O, \vec{i}, \vec{j})

Définition : Soit f une fonction , et \mathcal{D}_f son domaine de définition

l'ensemble des points $M\left(x,f\left(x\right)\right)$ forme la courbe représentative de la fonction f, souvent notée C_{f} .

$$C_f = \left\{ M\left(x, f\left(x\right)\right) / x \in D_f \right\}$$

Méthode :

Pour tracer la courbe représentative de la fonction On calcule des images en nombre suffisant, et on présente les résultats dans un tableau de valeurs.

Exemple 1 : Tracer la représentation graphique de la

fonction
$$f$$
 tq: $f(x) = \frac{1}{x^2 + 1}$

Sur I un l'intervalle I = [-2;3]

Réponses :

X,	-2	- 1	0	1	2	3
f(X)	0,2	0,5	1	0,5	0,2	0,1

Exemple 2 : la courbe représentative d'une fonction affine $f(f(x) = ax + b \text{ avec } a \in \mathbb{R} \text{ et } b \in \mathbb{R})$ est une droite d'équation y = ax + b

Exemple 3 : Soil f une fonction tq : f(x) = |2x+3|

- on a $f(x) \in \mathbb{R}$ donc $D_f = \mathbb{R}$

x	=	$\frac{3}{2}$ $+\infty$
2x+3	- (+
2x+3	-2x-3	2x+3

$$2x+3=0$$
 ssi $x=\frac{-3}{2}$

Donc
$$f(x) = 2x + 3$$
 si $x \in \left[-\frac{3}{2}, +\infty \right[$

$$f(x) = -2x - 3$$
 si $x \in \left[-\infty, -\frac{3}{2}\right]$

Exemple 4: Soil f une fonction tq: f(x) = |x-2| + |x+2|

- on a
$$f(x) \in \mathbb{R}$$
 donc $D_f = \mathbb{R}$

$$x+2=0 \text{ ssi } x=-2$$

$$x-2=0$$
 ssi $x=2$

x	$-\infty$ –	-2	$2 + \infty$
x-2	_	- () +
x-2	-x+2	-x+2	x-2
x+2	- (+	+
x+2	-x-2	x+2	x+2
x-2 + x+2	-2x	4	2x

Donc f(x) = -2x si $x \in]-\infty, -2]$ et f(x) = 4 si $x \in [-2, 2]$ et f(x) = 2x si $x \in [2, +\infty[$

Exemple 5 : La courbe ci-dessous représente la fonction f définie sur [-6;7]

Soie f une fonction

Questions : Répondre par lecture graphique :

- 1- Quelles sont les images des réels -5, -3, 0 et 6?
- 2- Quels sont les antécédents de -1 et 0 ?
- 3- Résoudre graphiquement f(x) = 0
- 4- Quel est, en fonction de m , le nombre de solutions de f(x) = m
- 5- Résoudre graphiquement f(x) < 0
- 6- Résoudre graphiquement $f(x) \ge 2$

Réponses: 1) Image de -5 est 0 (ordonnée du point d'abscisse -5) Image de -3 est 4

Image de 0 est -2 Image de 6 est -2

2) Antécédents de -1 sont : -5,5 -1,75 0,5 et 5

Antécédents de 0 sont : -5 -2 1 et 4

3) La solution est l'ensemble des antécédents de 0 :

$$S = \{-5, -2, 1, 4\}$$

4) Nombre de solutions de f(x) = m C'est le nombre de

points d'intersection de courbe avec une la droite parallèle à l'axes des abscisses et d'ordonnées m.

Si $m \prec -4$: pas de solution

Si m = -4: une solution

Si: -4 < m < -3 deux solutions

Si -3 < m < -2: trois solutions

Si $-2 \prec m \prec 2$: quatre solutions

Si m=2: trois solutions

Si: $2 \prec m \prec 4$ deux solutions

Sim = 4: une solution

Si m > 4: pas de solution

5) f(x) < 0 Cela correspond aux valeurs de x pour lesquelles

 C_f est au-dessous de l'axe des abscisses.

$$S = [-6;7] \cup]-2;1[\cup]4;7]$$

6) $f(x) \ge 2$ Cela correspond aux valeurs de x pour

lesquelles C_f est au-dessus de la droite d'équation y = 2

donc
$$S = [-4; 2.5] \cup \{2\}$$

III) Fonctions paires et Fonctions impaires

1. Définitions :

a. Ensemble de définition centré

Soit f une fonction. Soit D_f son ensemble de définition.

On dit que D_f est un ensemble de définition centré si et et seulement si :Pour tout réel x, si $x \in D_f$, alors $-x \in D_f$.

b. Fonction paire

On dit qu'une fonction f est paire si et seulement si :

- 1. Son ensemble de définition est centré
- 2. Pour tout réel x de D_f , on a : f(-x) = f(x)

Remarques:

- si n est un entier pair, positif ou négatif, la fonction définie par $f(x) = kx^n$ est paire.

(C'est d'ailleurs de cet exemple que vient la dénomination de fonction paire)

- la fonction $x \mapsto |x|$ est une fonction paire,
- la fonction $x \mapsto \cos(x)$ est une fonction paire,
- l'opposée d'une fonction paire est une fonction paire,
- l'inverse d'une fonction paire est une fonction paire,
- la somme de deux fonctions paires est une fonction paire,

- le produit de 2 fonctions paires ou de 2 fonctions impaires Donc h est une fonction ni paire ni impaire, est une fonction paire.

c. Fonction impaire

On dit qu'une fonction f est impaire si et seulement si :

- 1. Son ensemble de définition est centré,
- 2. Pour tout réel x de D_f , on a : f(-x) = -f(x)

Remarques:

- si n est un entier impair, positif ou négatif, la fonction $x \mapsto kx^n$ est impaire.
- la fonction $x \mapsto \sin(x)$ est impaire,
- la fonction $x \rightarrow \tan x$ est impaire,
- l'opposée d'une fonction impaire est une fonction impaire,
- l'inverse d'une fonction impaire est une fonction impaire,
- la somme de deux fonctions impaires est une fonction impaire.
- le produit d'une fonction paire et d'une fonction impaire est symétrique par rapport à l'origine. une fonction impaire.

Exemples: 1) Soit f une fonction tq: $f(x) = 3x^2 - 5$

f est une fonction polynôme donc Un réel a toujours une image.

Donc
$$D_f = \mathbb{R}$$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = 3(-x)^2 - 5 = 3x^2 - 5$$

$$f(-x) = f(x)$$

Donc f est une fonction paire,

2) Soit g une fonction tq: $g(x) = \frac{3}{x}$

on a
$$g(x) \in \mathbb{R}$$
 ssi $x \neq 0$

donc
$$D_g = \mathbb{R}^*$$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$g\left(-x\right) = \frac{3}{-x} = -\frac{3}{x}$$

$$g(-x) = -g(x)$$

Donc g est une fonction impaire,

3) Soit h une fonction tq: $h(x) = 2x^3 + x^2$

h est une fonction polynôme donc Un réel a toujours une image. Donc $D_h = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$- h(-x) = 2(-x)^3 + (-x)^2 = -2x^3 + x^2$$

$$h(-x) = -(2x^3 - x^2) \neq -h(x)$$

Donc h est une fonction ni paire ni impaire,

4) Soit tune fonction tq : $t(x) = \frac{x}{x-2}$

on a
$$t(x) \in \mathbb{R}$$
 ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc
$$D_t = \mathbb{R} - \{2\}$$

on a
$$-2 \in D_t$$
 mais $-(-2) = 2 \notin D_t$

Donc D_t n'est pas symétrique par rapport a O

2. le graphe et la parité de la fonction

· la courbe représentative d'une fonction paire est symétrique par à l'axe des ordonnées.

la courbe représentative d'une fonction impaire est

Application:

Etudier la parité des fonctions suivantes définie par

1)
$$f(x) = \frac{x^2 - 1}{x}$$
. 2) $f(x) = x^2 + \frac{1}{x}$.

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
 4) $f(x) = \sqrt{1 - x^2}$ 5) $f(x) = \frac{2x^3}{x^2 + 5}$.

6)
$$f(x) = |x| - \sqrt{2x^2 + 4}$$
. 7) $f(x) = \frac{\sqrt{x}}{2}$.

Solutions

1)
$$f(x) = \frac{x^2 - 1}{x}$$
 on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$

donc
$$D_f = \mathbb{R}^*$$

Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{(-x)^2 - 1}{-x} = -\frac{x^2 - 1}{x}$$

$$f\left(-x\right) = -f\left(x\right)$$

Donc f est une fonction impaire,

2)
$$f(x) = x^2 + \frac{1}{x}$$
 on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$

donc
$$D_f = \mathbb{R}^*$$

Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = (-x)^{2} + \frac{1}{-x} = x^{2} - \frac{1}{x} = \left(-x^{2} + \frac{1}{x}\right)$$
$$f(-x) \neq -f(x)$$

Donc f est une fonction ni paire ni impaire,

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
 on a $f(x) \in \mathbb{R}$ ssi $x^2 - 1 \neq 0$
 $x^2 - 1 = 0$ ssi $x^2 = 1$ ssi $x = 1$ ou $x = -1$
donc $D_f = \mathbb{R} - \{-1; 1\}$

- Pour tout réel x, si $x \in \mathbb{R} - \{-1, 1\}$, alors

$$-x \in \mathbb{R} - \{-1; 1\}$$

$$f(-x) = \frac{|-x|}{(-x)^2 - 1} = \frac{|x|}{x^2 - 1}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

4)
$$f(x) = \sqrt{1-x^2}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 1 - x^2 \ge 0 \right\}$$

$$1-x^2 = 0$$
 ssi $x^2 = 1$ ssi $x = 1$ ou $x = -1$

Donc
$$D_f = [-1,1]$$

- Pour tout réel x, si $x \in [-1,1]$, alors $-x \in [-1,1]$

$$f(-x) = \sqrt{1 - (-x)^2} = \sqrt{1 - x^2}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

5)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
.

$$D_f = \{x \in \mathbb{R} / x^2 + 5 \neq 0\}$$

 $x^2 + 5 = 0$ ssi $x^2 = -5$ pas de solutions

Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = \frac{2(-x)^3}{(-x)^2 + 5} = \frac{-2x^3}{x^2 + 5}$$

$$f\left(-x\right) = -f\left(x\right)$$

Donc f est une fonction impaire

6)
$$f(x) = |x| - \sqrt{2x^2 + 4}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 + 4 \ge 0 \right\}$$

Or on sait que $2x^2 \ge 0$ Pour tout réel x, donc $2x^2 + 4 \ge 0 + 4$ donc $2x^2 + 4 \ge 4 \ge 0$

Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = |-x| - \sqrt{2(-x)^2 + 4} = |x| - \sqrt{2x^2 + 4}$$

$$f(-x) = f(x)$$

Donc f est une fonction paire

6)
$$f(x) = \frac{\sqrt{x}}{2}$$
. $D_f = \{x \in \mathbb{R} / x \ge 0\}$ Donc
$$D_f = \mathbb{R}^+ = [0; +\infty[$$

On a $2 \in \mathbb{R}^+$ mais $-2 \notin \mathbb{R}^+$ Donc f est une fonction ni paire ni impaire

IV) Les variations d'une fonction numérique

1) Sens de variation d'une fonction :fonction croissante -décroissante -fonction constantes

Définition : Soit f une fonction et D_f son domaine de définition et soit I un intervalle inclus dans D_f

- Dire f que est strictement croissante sur I (croissante sur I) signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) \prec f(x_2)$ $(f(x_1) \leq f(x_2))$

Rq: Une fonction croissante « conserve l'ordre ».

- Dire f que est strictement décroissante sur I (décroissante sur I) signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) \succ f(x_2)$ $(f(x_1) \ge f(x_2))$

Rq: Une fonction décroissante « inverse l'ordre ».

- Dire f que est constante sur *I* signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) = f(x_2)$

- Une fonction définie sur un intervalle I est monotone sur cet intervalle si elle est : soit croissante sur I soit décroissante sur I

Illustration graphique :

Exemples: 1) Soit f une fonction tq: f(x) = 7x - 5

f est une fonction polynôme donc $D_f = \mathbb{R}$

Soit
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$ tq $x_1 \prec x_2$

Donc
$$7x_1 \prec 7x_2$$
 car $7 \succ 0$

Donc
$$7x_1 - 5 < 7x_2 - 5$$

Alors $f(x_1) \prec f(x_2)$ d'où f que est strictement croissante Le réel noté $T(x_1; x_2)$ est $tq: T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$

2) Soit g une fonction tq:
$$g(x) = \frac{2}{x}$$

$$g(x) \in \mathbb{R} \text{ ssi } x \neq 0$$

$$\operatorname{Donc} D_{\varrho} = \mathbb{R} - \{0\} = \mathbb{R}^*$$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} \succ \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} \succ \frac{2}{x_2}$ car $2 \succ 0$

Alors $f(x_1) > f(x_2)$ d'où f que est strictement décroissante sur $[0; +\infty]$

b)Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} \succ \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} \succ \frac{2}{x_2}$ car $2 \succ 0$

Alors $f(x_1) > f(x_2)$ d'où f que est strictement décroissante sur $]-\infty;0]$

b) tableau de variation :

	x	$-\infty$	0	$+\infty$
	f(x)			_
3)			

х	-5	-2	2	5
f(x)	5 🔪	0,5	2	-2

Propriété: Soit f une fonction numérique définie sur un intervalle I

On dit que f est strictement constante sur I ssi il existe un réel k tq: f(x) = k

pour tout $x \in I$

2) Le taux d'accroissement d'une fonction

a) **Définition :** Soit f une fonction et D_f son domaine de

Et soient
$$x_1 \in D_f$$
 et $x_2 \in D_f$ tq $x_1 \neq x_2$

On appelle Le taux d'accroissement (taux de variation) de la d'où f que est décroissante sur]-∞;0] fonction f entre x_1 et x_2

Le réel noté
$$T(x_1; x_2)$$
 est $tq: T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$

Exemple: Soit f une fonction tq: $f(x) = 3x^2 + 2$

f est une fonction polynôme donc $D_{\scriptscriptstyle f} = \mathbb{R}$

soient
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$

$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(3x_1^2 + 2) - (3x_2^2 + 2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3x_1^2 - 3x_2^2 + 2 - 2}{x_1 - x_2} = \frac{3(x_1^2 - x_2^2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3(x_1 - x_2)(x_1 + x_2)}{x_1 - x_2} = 3(x_1 + x_2)$$

b) Le taux d'accroissement d'une fonction et les variations :

Propriété : Soit f une fonction numérique définie sur un intervalle $\it I$

• On dit que f est strictement croissante(croissante) sur I ssi pour tout $x_1 \in I$ et $x_{\ell} \in I$ et $x_1 \neq x_2$ on a

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0 \quad (\frac{f(x_1) - f(x_2)}{x_1 - x_2} \ge 0)$$

• On dit que f est strictement décroissante(décroissante) sur I ssi pour tout $x_1 \in I$ et $x_{\ell} \in I$ et $x_1 \neq x_2$ on a

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0 \quad (\frac{f(x_1) - f(x_2)}{x_1 - x_2} \le 0)$$

• On dit que f est constante sur I ssi pour tout $x_1 \in I$ et

$$x_{\ell} \in I \text{ et } x_1 \neq x_2 \text{ on a } \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 0$$

Exemples: 1)Soit f une fonction tq: $f(x) = 3x^2 + 2$

$$D_f = \mathbb{R}$$

soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$

$$T(x_1; x_2) = 3(x_1 + x_2)$$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$

Donc
$$x_1 \ge 0$$
 et $x_2 \ge 0$ Donc $x_1 + x_2 \ge 0$

Donc
$$3(x_1 + x_2) \ge 0$$
 car $3 > 0$

Donc
$$T(x_1; x_2) = 3(x_1 + x_2) \ge 0$$

d'où f que est croissante sur $[0; +\infty]$

b)Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$

Donc
$$x_1 \le 0$$
 et $x_2 \le 0$ Donc $x_1 + x_2 \le 0$

Donc
$$3(x_1+x_2) \le 0$$
 car $3 > 0$

Donc
$$T(x_1; x_2) = 3(x_1 + x_2) \le 0$$

b) <u>résumé</u>: **tableau de variation**: $f(0) = 3 \times 0^2 + 2 = 2$

\boldsymbol{x}	$-\infty$ 0 $+\infty$
f(x)	

2)Soit f une fonction tq: $g(x) = \frac{x}{x+1}$

on a $f(x) \in \mathbb{R}$ ssi $x+1 \neq 0$ ssi $x \neq -1$

Donc $D_g = \mathbb{R} - \{-1\}$

soient $x_1 \in D_g$ et $x_2 \in D_g$ tq $x_1 \neq x_2$

on a:
$$T(x_1; x_2) = \frac{g(x_1) - g(x_2)}{x_1 - x_2}$$

$$g(x_1) - g(x_2) = \frac{x_1}{x_1 + 1} - \frac{x_2}{x_2 + 1} = \frac{x_1(x_2 + 1) - x_2(x_1 + 1)}{(x_1 + 1)(x_2 + 1)}$$

$$T(x_1; x_2) = \frac{x_1 - x_2}{(x_1 + 1)(x_2 + 1)} \times \frac{1}{x_1 - x_2} = \frac{1}{(x_1 + 1)(x_2 + 1)}$$

a)sur $I =]-\infty; -1[$

Soit
$$x_1 \in]-\infty; -1[$$
 et $x_2 \in]-\infty; -1[$ $x_1 \neq x_2$

Donc $x_1 \prec -1$ et $x_2 \prec -1$ Donc $x_1 + 1 \prec 0$ et

 $x_2 + 1 < 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$ Donc

$$T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0 \text{ sur } I =]-\infty; -1[$$

d'où g que est strictement croissante sur $I =]-\infty;-1[$

b)sur $J =]-1; +\infty[$

Soit
$$x_1 \in]-1; +\infty[$$
 et $x_2 \in]-1; +\infty[$ $x_1 \neq x_2$

Donc $x_1 > -1$ et $x_2 > -1$ Donc $x_1 + 1 > 0$ et

 $x_2 + 1 > 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$ Donc

$$T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0 \text{ sur } J =]-1; +\infty[$$

d'où g que est strictement croissante sur $J =]-1; +\infty[$

c) résumé : tableau de variation :

x	$-\infty$ –	$1 + \infty$
f(x)	1	1

c) les variations et la parité :

Propriété : Soit f une fonction numérique définie sur un intervalle $I \subset \mathbb{R}^+$ et soit I' le symétrique de l'intervalle I Si f est paire alors :

- f est croissante sur I ssi f est décroissante sur I'
- f est décroissante sur I ssi f est croissante sur I' Si f est impaire alors :
- f est croissante sur I ssi f est croissante sur I'

• f est décroissante sur I ssi f est décroissante sur I' Conséquences :

Si f est paire ou impaire alors il suffit d'étudier ses variations sur $D_f \cap \mathbb{R}^+$ et en déduire ses variations sur D_f

Applications: Soit f une fonction tq: $f(x) = x + \frac{1}{x}$

1)Déterminer D_f et étudier la parité de f

2)Calculer Le taux d'accroissement $T(x_1; x_2)$ de f entre x_1

et x_2 deux éléments de D_f tq $x_1 \neq x_2$

3)Étudier les variations de f sur I = [0;1] puis sur

$$J = [1; +\infty]$$

4)En déduire les variations de f sur D_f

5)Dresser le tableau de variations de f sur $\,D_{_f}\,$

Réponses: 1) on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ Donc

$$D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = -x + \frac{1}{-x} = -x - \frac{1}{x} = -\left(x + \frac{1}{x}\right)$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

2)
$$f(x_1) - f(x_2) = \left(x_1 + \frac{1}{x_1}\right) - \left(x_2 + \frac{1}{x_2}\right) = x_1 + \frac{1}{x_1} - x_2 - \frac{1}{x_2}$$

$$= \frac{x_1^2 \times x_2 + x_2 - x_2^2 \times x_1 - x_1}{x_1 \times x_2} = \frac{x_1 \times x_2 (x_1 - x_2) + x_2 - x_1}{x_1 \times x_2} = \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2}$$

$$T(x_1; x_2) = \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2} \times \frac{1}{x_1 - x_2} = \frac{x_1 \times x_2 - 1}{x_1 \times x_2}$$

a)sur
$$I = [0;1]$$

Soit
$$x_1 \in [0;1]$$
 et $x_2 \in [0;1]$

Donc
$$0 \prec x_1 \le 1$$
 et $0 \prec x_2 \le 1$ $x_2 + 1 \prec 0$

Donc
$$0 \prec x_1 x_2 \leq 1$$
 et $x_1 \neq x_2$ Donc $x_1 x_2 - 1 \prec 0$ et on

a
$$0 < x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} < 0$

d'où f que est strictement décroissante sur I =]0;1]

b)sur
$$J = [1; +\infty[$$

Soit
$$x_1 \in [1; +\infty[$$
 et $x_2 \in [1; +\infty[$

Donc $x_1 \ge 1$ et $x_2 \ge 1$ Donc $x_1 x_2 \ge 1$ et $x_1 \ne x_2$

Donc
$$x_1x_2 \succ 1$$
 Donc $x_1x_2 - 1 \succ 0$

et on a
$$0 < x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} > 0$

d'où f que est strictement croissante sur $J = \begin{bmatrix} 1; +\infty \end{bmatrix}$

3) f est impaire et le symétrique de I = [0;1] est l'intervalle d'où f(0) = 3 est un minimum de f sur \mathbb{R}

I' = [-1; 0[et le symétrique de $J = [1; +\infty[$ est l'intervalle 2° Soit g une fonction numérique tq : $g(x) = -4x^2 + 1$ $J' =]-\infty;-1]$

Donc : f est strictement décroissante sur I Donc f est strictement décroissante sur I'

f est strictement croissante sur J Donc f est strictement croissante sur J'

5) le tableau de variations de f sur D_f

$$f\left(x\right) = 1 + \frac{1}{1} = 2$$

x	$-\infty$ -1	0	$1 + \infty$
Variations $\operatorname{de} f(x)$	-2		

$$f(-1) = -1 - \frac{1}{1} = -2$$

V) Les extremums d'une fonction numérique 1)Définitions:

Soit f une fonction numérique définie sur un intervalle ouvert I et soit $a \in I$

 \triangleright Dire que f(a) est une valeur maximale de f sur I (ou f(a) est un maximum de f sur I) ssi pour tout que $x \in I$ $: f(x) \leq f(a)$

 \triangleright Dire que f(a) est une valeur minimale de f sur I (ou f(a) est un minimum de f sur I) ssi pour tout $x \in I$: $f(x) \ge f(a)$

2)Exemples

1° Soit f une fonction numérique tq : $f(x) = 5x^2 + 3$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $5x^2 \ge 0$ car 5 > 0 Donc $f\left(\frac{1}{2}\right) = 6$ est un maximum de f sur \mathbb{R} Par suite $5x^2 + 3 \ge 3$ et on a f(0) = 3

Donc pour tout $x \in \mathbb{R}$ $f(x) \ge f(0)$

 $D_g = \mathbb{R}$ et On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$

Donc $-4x^2 \le 0$ car -4 < 0

Par suite $-4x^2 + 1 \le 1$ et on a g(0) = 1

Donc pour tout $x \in \mathbb{R}$ $g(x) \le g(0)$

d'où g(0)=1 est un maximum de g sur \mathbb{R}

3)Propriétés :

Soit f une fonction numérique définie sur un intervalle ouvert I = [a;b] (a et b dans \mathbb{R}) et soit $c \in I$

 \triangleright Si f est croissante sur [a;c] et décroissante sur [c;b]

alors f(c) est une valeur maximale de f sur I

 \triangleright Si f est décroissante sur [a;c] et croissante sur [c;b]

alors f(c) est une valeur minimale de f sur I

x	a	c	b
f(x)	,	f(0	:)

x	a	c		b
f(x)	/	f(a)	/ (c)	

Application: Soit f une fonction numérique tq:

$$f(x) = -4x^2 + 4x + 5$$

1°a) montrer que $f(x) = 6 - (2x - 1)^2$ pour tout $x \in \mathbb{R}$

b) montrer que $f(x) \le 6$ pour tout $x \in \mathbb{R}$

2° calculer : $f\left(\frac{1}{2}\right)$ et en déduire les extrémums de f sur \mathbb{R}

Reponses: $1^{\circ}a$) on a $D_f = \mathbb{R}$

$$6-(2x-1)^2=6-(4x^2-4x+1)$$

$$=6-4x^2+4x-1=-4x^2+4x+5$$

Donc:
$$f(x) = 6 - (2x - 1)^2$$

b) Donc pour tout $x \in \mathbb{R}$ on a $(2x-1)^2 \ge 0$

Par suite
$$-(2x-1)^2 \le 0$$
 donc $6-(2x-1)^2 \le 6$

Donc pour tout $x \in \mathbb{R}$ $f(x) \le 6$

$$2^{\circ}$$
 on a $f\left(\frac{1}{2}\right) = 6 - \left(2 \times \frac{1}{2} - 1\right)^2 = 6 - \left(1 - 1\right)^2 = 6$

on a pour tout $x \in \mathbb{R}$ $6-(2x-1)^2 \le 6$ alors

$$f(x) \le f\left(\frac{1}{2}\right)$$
 pour tout $x \in \mathbb{R}$

VI) Etude et représentation graphique des fonctions sont son sommet qui est l'origine du repére et son axe de $x \xrightarrow{f} ax^2$

Soit f une fonction numérique tq : $f(x) = ax^2$ avec $a \in \mathbb{R}^*$

 $\mathbf{1}^{\circ}$ on a f est une fonction polynôme donc $D_f = \mathbb{R}$

2° Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f\left(-x\right) = a\left(-x\right)^2 = ax^2$$

$$f(-x)=f(x)$$

Donc f est une fonction paire,

Donc il suffit d'étudier la monotonie sur $I = [0; +\infty]$

3° soient $x_1 \in [0; +\infty[$ et $x_2 \in [0; +\infty[$ tq $x_1 \neq x_2$

$$T(x_1;x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{ax_1^2 - ax_2^2}{x_1 - x_2} = \frac{a(x_1 - x_2)(x_1 + x_2)}{x_1 - x_2}$$

Donc
$$T(x_1; x_2) = a(x_1 + x_2)$$

1iér cas : si a > 0

On a: $x_1 \in [0; +\infty[$ donc $x_1 \ge 0$ et $x_2 \in [0; +\infty[$ donc $x_2 \ge 0$

Donc $x_1 + x_2 \ge 0$ et puisque $x_1 \ne x_2$ Donc $x_1 + x_2 > 0$

Et on a : $a \succ 0$ donc sur $[0; +\infty[T(x_1; x_2) \succ 0]$

Et alors f est strictement croissante sur $[0; +\infty]$

et puisque f est une fonction paire alors f est strictement décroissante sur $]-\infty;0]$

Tableau de variations de f si a > 0

x	$-\infty$	0	$+\infty$
f(x)	$+\infty$	<u></u>	$+\infty$

2iér cas : si a < 0

On a: $x_1 \in]-\infty;0]$ donc $x_1 \le 0$ et $x_2 \in]-\infty;0]$ donc $x_2 \le 0$

Donc $x_1 + x_2 \le 0$ et puisque $x_1 \ne x_2$ Donc $x_1 + x_2 < 0$

Et on a : a < 0 donc sur $]-\infty;0]$ $T(x_1;x_2)<0$

Et alors f est strictement décroissante croissante sur $[0; +\infty]$ et puisque f est une fonction paire alors f est strictement croissante sur $]-\infty;0]$

Tableau de variations de f si a < 0

x	$-\infty$	0	$+\infty$
f(x)	$+\infty$	7 0\	\searrow $+\infty$

4° Représentation graphique

Définition : dans un Repére orthonormé $(0; \vec{i}; \vec{j})$ la courbe

représentative de la fonction $X \xrightarrow{f} ax^2$ avec $a \in \mathbb{R}^*$ s'appelle une parabole dont les éléments caractéristiques

symétrie qui est l'axe des ordonnées

Exemples

1° Soit f une fonction numérique tq : $f(x) = \frac{1}{2}x^2$

$$D_f = \mathbb{R}$$
 et On a $a = \frac{1}{2} \succ 0$

Donc : Tableau de variations de f

x	$-\infty$	0	$+\infty$
f(x)	$+\infty$		$+\infty$

х	0	1	2	3
f(x)	0	$\frac{1}{2}$	2	$\frac{9}{2}$

Représentation graphique :

2° Soit f une fonction numérique tq : $f(x) = -\frac{1}{2}x^2$

$$D_f = \mathbb{R}$$

On a $a = -\frac{1}{2} < 0$ Donc: <u>Tableau de variations de f</u>

X	0	$\frac{1}{2}$	1	2
f(x)	0	$-\frac{1}{8}$	$-\frac{1}{2}$	-2

Représentation graphique :

VII) Etude et représentation graphique des **fonctions** $x \xrightarrow{f} ax^2 + bx + c$

1)Formules du changement d'origine du repére

Soit $W(\alpha; \beta)$ un point dans le Repére (0; i; j) et M un point du plan et

M(x;y) les coordonnée de M dans le repére $(0;\vec{i};\vec{j})$

M(X;Y) les coordonnée de M dans le repére $(W;\vec{i};\vec{j})$

On a
$$\overrightarrow{OM} = x \vec{i} + y \vec{j}$$
 et $\overrightarrow{WM} = X \vec{i} + Y \vec{j}$ et

$$\overrightarrow{OW} = \alpha \overrightarrow{i} + \beta \overrightarrow{j}$$

$$\overrightarrow{WM} = \overrightarrow{WO} + \overrightarrow{OM} = -\overrightarrow{OW} + \overrightarrow{OM}$$
 Donc:

$$X \vec{i} + Y \vec{j} = -\alpha \vec{i} - \beta \vec{j} + x \vec{i} + y \vec{j} = (x - \alpha) \vec{i} + (y - \beta)$$
Soit W (1;-4) Donc dans le repére $(0; \vec{i}; \vec{j})$ la courbe

Donc
$$\begin{cases} X = x - \alpha \\ Y = y - \beta \end{cases}$$
 sont des formules du changement de

l'origine de repére

2) Etude et graphe de $x \xrightarrow{f} ax^2 + bx + c$

Propriétés: 1° Soit f une fonction numérique tq:

$$f(x) = ax^2 + bx + c$$

Avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$ et $c \in \mathbb{R}$

1° On a f est une fonction polynôme donc $D_f = \mathbb{R}$

2° Pour tout réel $x \in \mathbb{R}$ on peut écrire sous la forme :

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$

Avec $\Delta = b^2 - 4ac$ et s'appelle la forme canonique de

$$f(x)$$
 On pose $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a}$

Alors
$$f(x) = a(x - \alpha)^2 + \beta$$
 c a d

$$f(x) - \beta = a(x - \alpha)^2$$

3° On a f(x) = y on pose $Y = y - \beta$ et $X = x - \alpha$

et soit $W(\alpha; \beta)$ Alors:

Dans le repére $(W; \vec{i}; \vec{j})$ la courbe (C_f) de f est

d'équation $Y = aX^2$ donc c'est une parabole de sommet W et son axe de symétrie est l'axe des ordonnées

Conséquences : 1° Dans le repére $(0; \vec{i}; \vec{j})$ la courbe

 (C_f) c'est une parabole de sommet $W(\alpha; \beta)$ et d'axe de symétrie la droite $x = \alpha$

2° Les variations de f

Si $a \succ 0$

x	$-\infty$ α	$+\infty$
f(x)	<i>\</i> β	1

Si a < 0

$\underline{\iota} a \setminus 0$		
x	$-\infty$ · α	$+\infty$
f(x)	B	*

Exemples: 1° Soit f une fonction numérique tq:

$$f(x) = 2x^2 - 4x - 2$$

on a f est une fonction polynôme donc $D_f = \mathbb{R}$

On a
$$a = 2$$
 et $b = -4$ et $c = -2(f(x)) = ax^2 + bx + c$

Donc
$$\alpha = -\frac{b}{2a} = \frac{4}{2 \times 2} = 1$$
 et $\beta = -\frac{\Delta}{4a} = -\frac{32}{4 \times 2} = -4$

Pour tout réel $x \in \mathbb{R}$ on peut écrire sous la forme :

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 2(x - 1)^2 - 4$$
$$(f(1) = 2 - 4 - 2 = -4)$$

 $\left(C_{f}
ight)$ c'est une parabole de sommet W $\left(1;-4
ight)$ et d'axe de symétrie la droite x = 1

Tableau de variations de f

On a $a = 2 \succ 0$ donc :

x	$-\infty$	1	$+\infty$
f(x)		_ _4	1

2° Soit g une fonction numérique tq:

$$g(x) = -\frac{1}{2}x^2 + 2x + 1$$

on a g est une fonction polynôme donc $D_{_g}=\mathbb{R}$

On a
$$a = -\frac{1}{2}$$
 et $b = 2$ et $c = 1(g(x) = ax^2 + bx + c)$

Donc
$$\alpha = -\frac{b}{2a} = \frac{-2}{2 \times \left(-\frac{1}{2}\right)} = 2$$
 et $\beta = -\frac{\Delta}{4a} = -\frac{4+2}{-2} = 3$

Donc pour tout réel $x \in \mathbb{R}$ on peut écrire sous la forme :

$$g(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = -\frac{1}{2}(x - 2)^2 + 3$$

$$g(2) = -\frac{1}{2}(2-2) + 3 = 3$$

c'est une parabole de sommet W (2;3) et d'axe de symétrie Tableau de variations de f si a > 0

la droite x = 2

<u>Tableau de variations de f</u>

On a
$$a = -\frac{1}{2} < 0$$
 donc :

x	$-\infty \ 2 + \infty$
f(x)	3

VIII) Etude et représentation graphique des

fonctions:
$$x \xrightarrow{f} \frac{a}{x} (a \in \mathbb{R}^*)$$

Soit f une fonction tq: $f(x) = \frac{a}{x}$

1) <u>La parité de la fonction</u> : On a $f(x) \in \mathbb{R}$ ssi $x \neq 0$

Donc $D_f = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{a}{-x} = -\frac{a}{x}$$
$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

2) Les variations de la fonction :soient $x_1 \in \mathbb{R}^*$ et

$$x_2 \in \mathbb{R}^* \text{ tq } x_1 \neq x_2 \quad \text{ on a : } T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

$$T\left(x_{1};x_{2}\right) = \frac{\frac{a}{x_{1}} - \frac{a}{x_{2}}}{x_{1} - x_{2}} = \frac{ax_{2} - ax_{1}}{\left(x_{1} - x_{2}\right)\left(x_{1}x_{2}\right)} = \frac{-a\left(x_{1} - x_{2}\right)}{x_{1}x_{2}\left(x_{1} - x_{2}\right)} = \frac{-a}{x_{1}x_{2}}$$

a)sur $I = \mathbb{R}^{*+}$

Soit $x_1 \in \mathbb{R}^{*+}$ et $x_2 \in \mathbb{R}^{*+}$ $x_1 \neq x_2$

Donc $x_1 > 0$ et $x_2 > 0$ Donc $x_1 x_2 > 0$

Donc $\frac{1}{x_1 x_2} > 0$

1iér cas : si a > 0

Donc : $\frac{-a}{x_1 x_2} < 0$ donc sur $I = \mathbb{R}^{*+} T(x_1; x_2) < 0$

Et alors f est strictement décroissante sur $I = \mathbb{R}^{*+}$

Soit W (2;3) Donc dans le repére $(0;\vec{i};\vec{j})$ la courbe (C_s) et puisque f est une fonction impaire alors f est strictement

x	$-\infty$	$0 + \infty$
f(x)	_	_

2iér cas : si a < 0

Donc :
$$\frac{-a}{x_1 x_2} \succ 0$$
 donc sur $I = \mathbb{R}^{*+} T(x_1; x_2) \succ 0$

Et alors f est strictement croissante sur $I = \mathbb{R}^{*+}$ et puisque f est une fonction impaire alors f est strictement croissante sur $J=\mathbb{R}^{*-}$

Tableau de variations de f si a < 0

x	$-\infty$	$0 + \infty$
f(x)		

Représentation graphique

Définition: dans un Repére orthonormé $(0; \vec{i}; \vec{j})$ la courbe

représentative de la fonction $x \xrightarrow{f} \frac{a}{x}$ avec $a \in \mathbb{R}^*$

s'appelle une hyperbole d'équation $y = \frac{a}{r}$ dont les éléments

caractéristiques sont : son centre de symétrie qui est l'origine du repére et Ses deux asymptotes qui sont l'axe des abscisses et l'axe des ordonnées

Exemples: Soit f une fonction numérique tq:

$$f(x) = \frac{2}{x}$$

IX) Etude et représentation graphique des fonctions

homographique:
$$x \xrightarrow{f} \frac{ax+b}{cx+d}$$
 $a \ne 0$ et $c \ne 0$

1) Soit f une fonction tq:
$$f(x) = \frac{ax + b}{cx + d}$$
 on a $f(x) \in \mathbb{R}$

ssi
$$cx + d \neq 0$$
 ssi $x \neq -\frac{d}{c}$

Donc
$$D_f = \mathbb{R} - \left\{ -\frac{d}{c} \right\}$$

2)Pour tout
$$x \in D_f$$

$$f(x) = \frac{ax+b}{cx+d} = \frac{a\left(x+\frac{b}{a}\right)}{c\left(x+\frac{d}{c}\right)} = \frac{a}{c} \frac{\left(x+\frac{d}{c}-\frac{d}{c}+\frac{b}{a}\right)}{x+\frac{d}{c}}$$

$$f(x) = \frac{a}{c} \left(1 + \frac{bc - ad}{\frac{ac}{x + d/c}} \right) = \frac{a}{c} + \frac{bc - ad}{\frac{c^2}{x + d/c}}$$

On pose
$$\alpha = -\frac{d}{c}$$
 et $\beta = \frac{a}{c}$ et $\gamma = \frac{-\det f}{c^2}$ avec

$$\det f = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

1)Résumé et propriété : Soit f une fonction

homographique tq :
$$f(x) = \frac{ax + b}{cx + d}$$

$$a \neq 0$$
 et $c \neq 0$ et $ad -bc \neq 0$

• Pour
$$x \in \mathbb{R} - \left\{ -\frac{d}{c} \right\}$$
 on a $f(x) = \beta + \frac{\gamma}{x - \alpha}$ dite

forme réduite de f(x)

Avec
$$\alpha = -\frac{d}{c}$$
 et $\beta = \frac{a}{c}$ et $\gamma = \frac{-\det f}{c^2}$ avec

$$\det f = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

• Soit
$$W\left(\alpha;\beta\right)$$
 Donc dans le repére $\left(W;\vec{i};\vec{j}\right)$ l'équation

de
$$(C_f)$$
 est $Y = \frac{\gamma}{X}$ avec $Y = y - \beta$ et $X = x - \alpha$ donc

 $\left(C_{f}\right)$ est une hyperbole de centre W_{f} et d'asymptotes 1'axe des abscisse et l'axe des ordonnées

• dans le repére $\left(O;\vec{i};\vec{j}\right)$ $\left(C_{f}\right)$ est l'hyperbole de centre

W et d'asymptotes les droites d'équations respectives $x = \alpha$ et $y = \beta$

Conséquences : 1iér cas : si det
$$f = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc > 0$$

Tableau de variations de f:

$$\begin{array}{c|cccc}
x & -\infty & -\frac{d}{c} & +\infty \\
\hline
f(x) & \nearrow & \nearrow
\end{array}$$

2iér cas : si det
$$f = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc < 0$$

Tableau de variations de f:

x	$-\infty$ -	$\frac{d}{c} + \infty$
f(x)		1

Exemples 1: Soit f une fonction numérique tq:

$$f(x) = \frac{-2x+1}{2x-4}$$

on a
$$f(x) \in \mathbb{R}$$
 ssi $2x - 4 \neq 0$ ssi $x \neq 2$

Donc
$$D_f = \mathbb{R} - \{2\}$$

Si
$$x \in \mathbb{R} - \{2\}$$
 on a

$$f(x) = \frac{-(2x-4)-3}{2x-4} = \frac{-(2x-4)}{2x-4} + \frac{-3}{2x-4} = -1 + \frac{-\frac{3}{2}}{x-2}$$

$$f(x)+1=\frac{-3/2}{x-2}$$

On pose $\alpha = 2$ et $\beta = -1$ et soit W(2; -1)

• Donc dans le repére $(W; \vec{i}; \vec{j})$ l'équation de (C_f) est

$$Y = \frac{-3/2}{X}$$
 avec $Y = y + 1$ et $X = x - 2$ donc (C_f) est

une hyperbole de centre W et d'asymptotes les droites d'équations respectives x=2 et y=-1

• Tableau de variations
$$X \longrightarrow \frac{-3/2}{X} \left(-3/2 < 0\right)$$

x	$-\infty$	0		+	$+\infty$			
f(x)		/	×		/			
-2	1-	0	1	2	3	4		
1	$\frac{1}{2}$	-1		5	$\frac{7}{2}$	3		

Exemples 2: Soit f une fonction numérique tq :

$$f(x) = \frac{2x+1}{x-1}$$

on a $f(x) \in \mathbb{R}$ ssi $x - 1 \neq 0$ ssi $x \neq 1$

Donc
$$D_f = \mathbb{R} - \{1\}$$

Si $x \in \mathbb{R} - \{1\}$ on a:

$$\begin{array}{c|cccc}
2x+1 & & x-1 \\
-2x+2 & & & & \\
\hline
& & & & & \\
\end{array}$$

$$f(x) = \frac{2x+1}{x-1} = \frac{2(x-1)+3}{x-1} = \frac{2(x-1)}{x-1} + \frac{3}{x-1} = 2 + \frac{3}{x-1} \left| g(x) \right| = \frac{-x}{x-2} = \frac{-1(x-2)-2}{x-2} = \frac{-1(x-2)-2}{x-2} + \frac{-2}{x-2} = -1 + \frac{-2$$

$$f(x)-2=\frac{3}{x-1}$$
 ssi $y-2=\frac{3}{x-1}$

On pose $\begin{cases} x - 1 = X \\ y - 2 = Y \end{cases}$ donc $\begin{cases} x = X + 1 \\ y = Y + 2 \end{cases}$

$$y = \frac{2x+1}{x-1} \operatorname{ssi} Y = \frac{3}{X}$$

• Tableau de variations de $X \longrightarrow \frac{3}{x} (3 \succ 0)$

x	$-\infty$	0		$+\infty$
f(x)			\	

On a
$$\begin{cases} X = 0 \\ Y = 0 \end{cases} \text{donc} \begin{cases} x = 1 \\ y = 2 \end{cases}$$

 $\underbrace{\text{Donc le tableau de variations de } x}_{\text{constant}} \xrightarrow{2x+1}$

x	$-\infty$]	<u>+∞</u>
f(x)	_	

Représentation graphique

Exemples 3: Soit g une fonction numérique tq :

$$g(x) = \frac{-x}{x-2}$$

on a $g(x) \in \mathbb{R}$ ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc
$$D_g = \mathbb{R} - \{2\}$$

Si $x \in \mathbb{R} - \{2\}$ on a

$$-x$$
 $x - 2$
 -2
 -2

$$g(x) = \frac{-x}{x-2} = \frac{-1(x-2)-2}{x-2} = \frac{-1(x-2)}{x-2} + \frac{-2}{x-2} = -1 + \frac{-2}{x-2}$$

$$g(x)+1 = \frac{-2}{x-2}$$
 ssi $y+1 = \frac{-2}{x-2}$

On pose $\begin{cases} x - 2 = X \\ y + 1 = Y \end{cases}$ donc $\begin{cases} x = X + 2 \\ y = Y - 1 \end{cases}$

$$y = \frac{-x}{x - 2} \text{ ssi } Y = \frac{-2}{X}$$

• <u>Tableau de variations de</u> $X \longrightarrow \frac{-2}{Y} (-2 < 0)$

Ī	x	$-\infty$ () +∞
	f(x)	1	1

On a
$$\begin{cases} X = 0 \\ Y = 0 \end{cases} \text{ donc } \begin{cases} x = 2 \\ y = -1 \end{cases}$$

Donc le tableau de variations de $x \longrightarrow \frac{-x}{x-2}$

x	$-\infty$ 2	$2 + \infty$
f(x)	1	1

Représentation graphique

	1		0		1			2			3			4			5	
-1	/ 3		0		1						-3			-2		-4	5/3	3
					5 4		-	a										
					3 2													
							/	x=2										
-7	-6 -5	-4	-3	-2	1 0		1	2	3	4	5	6	7	8	9	10	11	12
					-2 y	-1												
					-3			7	/									
					-4													
					1			1										

X) Applications : Position relative de courbes, interprétation graphique d'équations et d'inéquations

Le but de ce chapitre est de pouvoir déterminer par le calcul, entre 2 courbes, quelle courbe se situe au-dessus de l'autre et sur quel(s) intervalle (s).

1) Position relative de deux courbes et intersection Soient (C_f) la courbe représentative de f et (C_g) la courbe représentative de g.

On peut établir les relations suivantes :

$$M(x;y) \in (C_f)$$
 ssi $y = f(x)$

$$M(x;y) \in (C_g)$$
 ssi $y = g(x)$

Aux points d'intersection de (C_f) et de (C_g) , on a

$$M \in (C_f)$$
 et $M \in (C_g)$ donc : soit $f(x) = g(x)$

A retenir:

- les solutions de l'équation f(x) = g(x) sont les abscisses des points D'intersection de (C_f) et de (C_g)
- les solutions de l'inéquation $f(x) \ge g(x)$ sont les abscisses des points de (C_f) situées au-dessus de (C_g) .
- les solutions de l'inéquation $f\left(x\right) \leq g\left(x\right)$ sont les abscisses des points de $\left(C_{f}\right)$ situées au-dessous de $\left(C_{g}\right)$

Un cas particulier : équation f(x) = m et inéquation

$$f(x) \ge m$$

- Les solutions de l'équation f(x) = m sont les abscisses des points d'intersection de (C_f) avec la droite d'équation y = m
- Les solutions de l'inéquation $f(x) \ge m$ sont les abscisses des points de (C_f) situés au-dessus de la droite d'équation y = m.

2) Quelques exercices d'application

Exercice1 : Soit la courbe (C_f) représentative de f telle que $f(x) = x^3 - 4x^2 + 3$ et la droite (D) d'équation y = -x - 3

- 1- Résoudre graphiquement l'équation f(x) = 3
- 2- puis l'inéquation $f(x) \prec 3$.
- 3- Résoudre graphiquement l'équation f(x) = 0 et l'inéquation $f(x) \ge 0$

4- Résoudre graphiquement l'équation f(x) = -x - 3puis l'inéquation $f(x) \le -x - 3$

Réponses : 1) f(x) = 3 La solution est l'ensemble des antécédents de 3 : $S = \{0, 4\}$

$$0: S = \{a; 1; b\} \text{ Avec } -1 \prec a \prec -0.5 \text{ et } 3.5 \prec b \prec 4$$

$$f(x) \ge 0$$
 $S = [a;1] \cup [b;+\infty[$

3- f(x) = -x - 3 La solution l'ensemble des abscisses des donc $S = \{-2, 8\}$

points d'intersection de (C_f) et de D: y = -x - 3 donc

$$S = \{-1, 2, 3\}$$

$$f(x) \le -x - 3$$
 $S =]-\infty; -1] \cup [2;3]$

Exercice2: Soient f et g les deux fonctions définies sur R par: $f(x) = x^2 - 3x - 4$ et g(x) = 3x + 12

- 1) Tracer Les courbes représentatives (C_f) et (C_g)
- 2) Résoudre graphiquement et algébriquement l'équation f(x) = g(x)
- 3) Résoudre graphiquement et algébriquement l'inéquation $f(x) \ge g(x)$
- 4) Trouver les points d'intersection de la courbe (C_f) avec les axes du repére

Réponses : 1) Les courbes représentatives (C_f) (en rouge) $Donc S =]-\infty; -2[\cup]8; +\infty[$

et (C_g) (en bleu) sont données dans le repére ci-dessous

2) a) résolution graphique de l'équation f(x) = g(x)Il suffit de chercher les abscisses des points d'intersection des courbes (C_f) et (C_g)

On a donc
$$x = -2$$
 et $x = 8$ donc $S = \{-2, 8\}$

b) résolution algébrique de l'équation f(x) = g(x)

$$f(x) = g(x)$$
 ssi $x^2 - 3x - 4 = 3x + 12$ ssi

$$x^2 - 6x - 16 = 0$$

$$a = 1$$
 et $b = -6$ et $c = -16$

$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times 1 \times (-16) = 36 + 64 = 100 = (10)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

2-
$$f(x) = 0$$
 La solution est l'ensemble des antécédents de $0: S = \{a; 1; b\}$ Avec $-1 \prec a \prec -0.5$ et $3.5 \prec b \prec 4$ $f(x) \ge 0$ $S = [a; 1] \cup [b; +\infty[$ $x_1 = \frac{-(-6) + \sqrt{100}}{2 \times 1} = \frac{6+10}{2} = \frac{16}{2} = 8$ et $x_2 = \frac{-(-6) - \sqrt{100}}{2 \times 1} = \frac{6-10}{2} = \frac{-4}{2} = -2$

3) a) résolution graphique de l'inéquation f(x) > g(x)

La courbe (C_f) est au-dessus de (C_g) si

$$x \in]-\infty; -2[\cup]8; +\infty[$$

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

b) résolution algébrique de l'inéquation $f(x) \succ g(x)$

$$f(x) \succ g(x)$$
 ssi $x^2 - 3x - 4 \succ 3x + 12$ ssi

$$x^2 - 6x - 16 > 0$$

Les racines sont : $x_1 = 8$ et $x_2 = -2$

x	$-\infty$	-2		8	$+\infty$
$x^2-6x-16$	+	þ	_	þ	+

4)a) Intersection de la courbe (C_f) avec l'axe des abscisses Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équation f(x) = 0

$$f(x) = 0$$
 ssi $x^2 - 3x - 4 = 0$

$$a = 1$$
 et $b = -3$ et $c = -4$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (-4) = 9 + 16 = 25 = (5)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-3) + \sqrt{25}}{2 \times 1} = \frac{3+5}{2} = \frac{8}{2} = 4$$
 et

$$x_2 = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{3 - 5}{2} = \frac{-2}{2} = -1$$

donc les points d'intersection de la courbe (C_f) avec l'axe des abscisses sont :

$$C(-1;0)$$
 et $D(4;0)$

b) Intersection de la courbe (C_f) avec l'axe des

le point d'intersection de la courbe (C_f) avec l'axe des ordonnées a une abscisse nulle

et on a
$$f(0) = 0^2 - 3 \times 0 - 4 = -4$$

donc le point d'intersection de la courbe (C_f) avec l'axe

des ordonnées est : $E\left(-4;0\right)$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien