Problem 1. Найдите базис суммы и пересечения для подпространств $V = R[t] \le 6$ вида $U_1 = \{ f \in V \mid f : t^2 - 4t + 3 \}$ и $U_2 = \{ f \in V \mid f : t^2 - 5t + 4 \}$

Solutions 1. $t^2 - 4t + 3 = (t - 3)(t - 1), t^2 - 5t + 4 = (t - 4)(t - 1) \Rightarrow$ каждый вектор v из базиса $U_1 \cap U_2$ делится на (t - 4)(t - 3)(t - 1) и $\deg v \leqslant 6$, в качестве базиса можно взять $(t - 4)(t - 3)(t - 1), t(t - 4)(t - 3)(t - 1), t^2(t - 4)(t - 3)(t - 1), t^3(t - 4)(t - 3)(t - 1)$. Аналогично каждый вектор v из базиса $U_1 + U_2$ должен делиться на (t - 1) и $\deg v \leqslant 6$, в качестве базиса можно взять $(t - 1), t(t - 1), t^2(t - 1), t^3(t - 1), t^4(t - 1), t^5(t - 1)$. Действительно, нетрудно видеть, что любой вектор из суммы попадает в наш базис, ровно как и то что мы указали ЛНЗ набор. По формуле Грассмана в пересечении дродно быть 5 + 5 - 6 = 4 ЛНЗ вектора что мы и предоставили. Любой вектор из нашего базиса лежит в заданных пространствах, ровно как и наоборот \Rightarrow базис выбран корректно ч.т.д.

Problem 2. Пусть U_1 , U_2 , U_3 – подпространства конечномерного пространства V. Доказать, что подпространство $(U_1 \cap U_2) + (U_2 \cap U_3) + (U_3 \cap U_1)$ содержится в подпространстве $(U_1 + U_2) \cap (U_2 + U_3) \cap (U_3 + U_1)$ и разность размерностей этих подпространств есть четное число.

Solutions 2. Каждое слоагаемое суммы содержится в пересечении пространств, значит сумма тоже содержится.

 $\dim(U+V)=\dim U+\dim V-\dim(U\cap V)\Rightarrow\dim((U_2+U_3)\cap(U_3+U_1))=\dim(U_2+U_3)+\dim(U_3+U_1)-\dim(U_1+U_2+U_3).$ Обозначим через U подпространство, размерность которого мы только что нашли. Ясно, что оно содержит U_3 . Поэтому его сумма с U_1+U_2 будет равна $U_1+U_2+U_3$. Отсюда, применяя ту же формулу, имеем $\dim(U\cap(U_1+U_2))=\dim(U)+\dim(U_1+U_2)-\dim(U_1+U_2+U_3)$.

Таким образом, размерность пересечения трёх подпространств, то есть $\dim((U_2+U_3)\cap(U_3+U_1)\cap(U_1+U_2))$, равна $\dim(U_1+U_2)+\dim(U_2+U_3)+\dim(U_3+U_1)-2\dim(U_1+U_2+U_3)$.

Теперь вычислим размерность суммы трёх подпространств, указанных в начале. Заметим, что $(U_2 \cap U_3) + (U_3 \cap U_1) \leqslant U_3$ в пересечении с $U_1 \cap U_2$ даёт $U_1 \cap U_2 \cap U_3$. Поэтому $\dim((U_2 \cap U_3) + (U_3 \cap U_1) + (U_1 \cap U_2))$ равна $\dim((U_2 \cap U_3) + (U_3 \cap U_1)) + \dim(U_1 \cap U_2) - \dim(U_1 \cap U_2 \cap U_3)$, а это в свою очередь равно $\dim(U_1 \cap U_2) + \dim(U_2 \cap U_3) + \dim(U_3 \cap U_1) - 2\dim(U_1 \cap U_2 \cap U_3)$.

Наконец, выражая размерности пересечений, получаем $2(\dim U_1 + \dim U_2 + \dim U_3) - \dim(U_1 + U_2) - \dim(U_2 + U_3) - \dim(U_3 + U_1) - 2\dim(U_1 \cap U_2 \cap U_3).$

Видно, что разность размерностей одного и другого подпространства чётна.

Problem 3. Найти базис пересечения и суммы подпространств $U = \langle u_1, u_2, u_3 \rangle$, $V = \langle v_1, v_2, v_3 \rangle$ в R^5 если

$$u_{1} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 0 \\ 1 \end{pmatrix}, u_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, u_{3} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 3 \end{pmatrix}, v_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}, v_{2} = \begin{pmatrix} 5 \\ 2 \\ 5 \\ 2 \\ 8 \end{pmatrix}, v_{3} = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 4 \\ 7 \end{pmatrix}$$

Solutions 3.
$$\begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 3 & 2 & 0 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 & 5 & 1 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 1 & 1 & 3 & 2 & 8 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 0 & -1 & -6 & -2 & -13 & -11 \\ 0 & -2 & -3 & -1 & -5 & -7 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 3 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & -2 & -3 & -1 & -5 & -7 \\ 0 & 1 & 6 & 2 & 13 & 11 \\ 0 & 0 & 1 & 1 & 3 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & -1 & 1 & -1 & 1 \\ 0 & 0 & 5 & 1 & 11 & 7 \\ 0 & 0 & 1 & 1 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 3 & 3 \\ 0 & 0 & 5 & 1 & 11 & 7 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 3 & 3 \\ 0 & 0 & 0 & -4 & -4 & -8 \\ 0 & 0 & 0 & -2 & -2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 5 & 4 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 & 3 & 3 \\ 0 & 0 & 0 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Линейно независимых столбцов 4, в качестве базиса суммы можно взять четыре первых вектора, они ЛНЗ.

2 линейно зависимых столбца \Rightarrow должно получиться два вектора в пересечении. Для пары $(t_6,t_5)=(1,0)$ и пары $(t_6,t_5)=(0,1)$ получаем $t_4=-2$ и $t_4=-1$, по формуле $-(t_6v_3+t_5v_2+t_4v_1)$ имеем:

$$\begin{pmatrix} -2\\1\\1\\-2\\-3 \end{pmatrix} \bowtie \begin{pmatrix} 4\\1\\4\\1\\6 \end{pmatrix}$$

Павел Костин

Problem 4. Найти определитель

$$A = \begin{vmatrix} x & 0 & 0 & \dots & 0 & c_n \\ -1 & x & 0 & \dots & 0 & c_{n-1} \\ 0 & -1 & x & \dots & 0 & c_{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & c_2 \\ 0 & 0 & 0 & \dots & -1 & x + c_1 \end{vmatrix}$$

Solutions 4. Разложим определитель по последнему столбцу:

 $\det A = c_n(-1)^{n+1}A_1 + c_{n-1}(-1)^{n+2}A_2 + \dots + c_2(-1)^{2n-1}A_{n-1} + (x+c_1)(-1)^{2n}A_n$ Где $A_i = x^{n-1-(i-1)}(-1)^{i-1}$, так как это матрица с нулевыми наддиагональными элементами $\Rightarrow \det A = \sum_{i=0}^{n-1} c_{n-i} x^i + x^n$

Problem 5. Обратите матрицу и посчитайте её определитель

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix}$$

Solutions 5. A
$$\sim$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -1 & 0 & \dots & 0 \\ 0 & 0 & 1 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} n & n-1 & n-2 & \dots & 2 & 1 \\ n-1 & n-1 & n-2 & \dots & 2 & 1 \\ n-1 & n-1 & n-2 & \dots & 2 & 1 \\ \dots & \dots & \dots & \dots & \dots & 2 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \det A = 1$$