1. Ejercicio 1

Se procederá al análisis del circuito de la Figura 1. El mismo es un circuito destinado al análisis del disparo de un transistor MOSFET.

Figura 1: Circuito para análisis de disparo de transistor MOSFET

1.1. Circuito Driver

Los transistores Q_1 y Q_2 forman una configuración Totem-Pole, y se encuentran funcionando en saturación (push-pull output). Nótese que para prender el transistor, se requiere cargar las capacidades internas del MOSFET, por lo que se requiere un pico de corriente que un generador de señales no es capaz de proveer. Utilizando esta configuración, se puede activar y desactivar este circuito utilizando un generador de señales, mientras que la corriente es provista por la fuente de tensión. Idealmente, la salida de este circuito valdrá $V_{out} = V_1 - 0.7V$ cuando el circuito esté activado, y $V_{out} = 0.7V$ cuando se encuentre desactivado. Este circuito afectará la curva de control del Gate, pues la misma no es un escalón ideal. Se tendrá en cuenta el delay para la interpretación de los resultados obtenidos (de ser necesario), pero no nos centraremos en el análisis de esta configuración.

1.2. Carga Inductiva

La carga está compuesta por un circuito RL. Para conocer las condiciones de operación de este circuito, hay que plantear las ecuaciones en funcionamiento. Estas ecuaciones son

$$I_1 = I_0 \exp(-t_1/\tau_{RL}) + \frac{V_2}{R_2} (1 - \exp(-t_1/\tau_{RL}))$$
(1)

$$I_0 = I_1 \exp(-t_2/\tau_{RL}),$$
 (2)

donde $t_1 = D/f_s$, $t_2 = (1 - D)/f_s$, $\tau_{RL} = L/R$, f_s la frecuencia del switch y D el duty cycle. Resolviendo el sistema de ecuaciones queda

$$I_0 = \frac{V_2}{R_2} \frac{1 - exp(-t_1/\tau_{RL})}{exp(t_2/\tau_{RL}) - exp(-t_1/\tau_{RL})}$$
(3)

$$I_{1} = \frac{V_{2}}{R_{2}} \frac{1 - exp(-t_{1}/\tau_{RL})}{exp(t_{2}/\tau_{RL}) - exp(-t_{1}/\tau_{RL})} \exp(t_{2}/\tau_{RL}). \tag{4}$$

Notese que I_0 corresponde a la corriente en el inductor cuando se prende el MOSFET, e I_1 corresponde a la corriente en el inductor cuando se apaga el MOSFET.

1.3. Conmutación MOSFET

Durante la conmutación del MOSFET, circula corriente por el Gate. Esta corriente es debida a capacidades internas del transistor, que se cargan durante la conmutación. Dichas capacidades corresponden básicamente a las cargas de la capa de inversión e ionización que se forman en el Body del transistor para formar el canal N (Capacidad Gate-Source C_{GS} - recordar que el Body y el Source se encuentran cortocircuitados internamente), y las cargas asociadas a la capa de acumulación o de deplexión que se forma en el Drain del transistor (Capacidad Gate-Drain C_{GD}), que ayudan a minimizar la resistencia del MOSFET cuando se encuentra activado. Es importante destacar que esta capacidad depende del tamaño de la capa de acumulación / deplexión, y por lo tanto cambia durante la conmutación del MOSFET. Se buscará introducir las ecuaciones a utilizar, sin entrar en detalle sobre el funcionamiento del transistor.

1.3.1. Encendido del MOSFET

Considerando que, ante un escalón de tensión en provisto por el circuito Driver, dichas capacidades comienzan a cargarse, se puede modelar la primera etapa del prendido del MOSFET con un circuito RC, por lo que la tensión V_G en función del tiempo puede ser aproximada por

$$V_G(t) = V_1(1 - \exp(-t/\tau_1)). \tag{5}$$

donde $\tau_1 = R_1 \tilde{C}_{G,1}$ y $\tilde{C}_{G,1} = C_{GS} + C_{GD,1}$. Cuando la tensión en el Gate llega a $V_{GS,th}$ (en $t = t_{d,on}$), comienza a formarse la capa de inversión, por lo que la corriente del Drain I_D comienza a aumentar hasta llegar al valor I_0 impuesto por la carga inductiva y hasta que el diodo deje de conducir (en $t = t_1$). Esto ocurrirá cuando la tensión en el Gate llegue a un valor $V_G = V_{G,I_D=I_0}$. El tiempo entre que comienza a circular corriente hasta que se alcanza el valor I_0 se denomina t_{ri} . Se puede demostrar que

$$t_{d,on} = -\tau_1 \ln \left(1 - \frac{V_{G,th}}{V_1} \right) \tag{6}$$

$$t_1 = -\tau_1 \ln \left(1 - \frac{V_{G, I_D = I_0}}{V_1} \right) \tag{7}$$

$$t_{ri} = t_1 - t_{d.on}. (8)$$

Luego, cuando la corriente de Drain llega al valor I_0 , el valor de la tensión en el Gate se mantiene temporalmente en $V_G = V_{G,I_D=I_0}$, por lo que la capacidad C_{GS} deja de cargarse, mientras se sigue cargando C_{GD} a corriente constante. A medida se cargue C_{GD} se formará la capa de acumulación, bajando la resistencia R_{DS} , por lo que disminuye la tensión V_{DS} hasta alcanzar el valor $V_{DS,on}$. Dado que la capacidad C_{GD} varía durante este proceso, pues varían la longitud de la capa de acumulación, suele utilizarse el valor de la carga total ΔQ para estimar la duración de esta etapa. Con esto, el tiempo que transcurre desde que empieza a caer la tensión V_{DS} hasta que alcanza el valor $V_{DS,on}$ puede estimarse según:

$$t_{fv} = \Delta Q / I_{G,on} = \frac{\Delta Q R_1}{V_1 - V_{G,I_D = I_0}}$$
(9)

A lo largo de esta etapa, cambia el valor de C_{GD} de $C_{GD,1}$ a $C_{GD,2}$. El cambio de la tensión V_{DG} en función del tiempo puede expresarse según

$$\frac{dV_{DG}}{dt} = \frac{V_{GG} - V_{G,I_D = I_0}}{R_1 C_{GD}}.$$
(10)

Una aproximación es considerar que esto ocurre en dos etapas: una donde $C_{GD} = C_{GD,1}$ y otra donde $C_{GD} = C_{GD,2}$.

Luego, la tensión en el Gate sigue creciendo hasta llegar al valor V_{GG} . El tiempo característico asociado está dado por:

$$\tau_2 = R_1 \tilde{C}_{G,2} \tag{11}$$

Donde $\tilde{C}_{G,2} = C_{GS} + C_{GD,2}$

1.3.2. Apagado del MOSFET

El apagado del MOSFET es similar al encendido, pero en orden contrario:

Primero, se comienzan a descargar las capacidades internas por el Gate, por lo que la tensión del Gate en la primera etapa está dada por:

$$V_G(t) = V_{GG} \exp(-t/\tau_2) \tag{12}$$

Esto ocurrirá hasta que la tensión V_G alcance el valor $V_{G,I_D=I_0}$ en $t=t_{d,off}$. Puede demostrarse que:

$$t_{d,off} = -\tau_2 \ln \left(\frac{V_{G,I_D=I_0}}{V_{GG}} \right) \tag{13}$$

Luego, la tensión en el Gate permanecerá constante mientras se descarga $C_{GD,2}$ a corriente constante durante un tiempo t_{rv} . Análogo al caso de encendido, este tiempo está dado por

$$t_{rv} = \Delta Q / I_{G,off} = \frac{\Delta Q R_1}{V_{G,I_D=I_0}}$$

$$\tag{14}$$

Notar que, al igual que durante el prendido, la capacidad C_{GD} cambia de valor durante este proceso. La misma aproximación en dos etapas aplica para este caso. Finalmente, la tensión en el Gate baja según la ecuación

$$V_G = V_{G,I_D=I_0} \exp(-t/\tau_1). \tag{15}$$

A medida que la tensión cae, comienza a deshacerse el canal formado, por lo que baja el valor de I_D hasta hacerse nulo cuando $V_G = V_{G,th}$. Esto ocurre luego de un intervalo t_{fi} . El valor de t_{fi} está dado por

$$t_{fi} = -\tau_1 \ln \left(\frac{V_{G,th}}{V_{G,I_D=I_0}} \right). \tag{16}$$

Un gráfico esquemático mostrando la conmutación del MOSFET se muestra en la Figura 2.

Figura 2: Curvas de tensión y corriente en el MOSFET durante el encendido

1.4. Diodo

También resulta importante analizar la dinámica del Diodo durante la conmutación, dado que afecta a las curvas de conmutación del MOSFET, que es lo que se busca analizar en este punto. Con este objetivo, se realizará un breve análisis de la conmutación de un diodo real. El análisis se realiza considerando un switch que impone un cambio de corriente di/dt. Recordar que un diodo de potencia está formado por dos junturas: $p^+n^-n^+$.

Figura 3: Curvas de encendido y de apagado de un diodo de potencia (tensión y corriente)

1.4.1. Encendido del Diodo

Cuando el diodo se encuentra polarizado en inversa y se lo prende, la corriente sube de acuerdo con el di/dt impuesto por el circuito, a medida que se restaura la carga en la zona de deplexión hasta el valor de equilibrio térmico y se comienza a polarizar en directa. A medida que el diodo se polariza en directa, baja su la resistencia hasta que la tensión en el diodo llega a V_{on} . Por la corriente que circula mientras que el diodo no está completamente polarizado, motivo por el cual su resistencia interna es alta, se produce un pico de tensión en el diodo. Este pico puede resultar mayor considerando las inductancias parásitas, si se aplican valores altos de di/dt. Este overshoot puede afectar seriamente algunos circuitos de potencia. La curva de encendido del diodo se puede encontrar en la Figura 3.

1.4.2. Apagado del Diodo

El apagado del diodo es esencialmente el proceso inverso al encendido. Primero, los portadores de carga libres deben ser removidos para que la juntura llegue al equilibrio térmico antes de que la misma pueda ser polarizada en inversa. Siempre que haya exceso de portadores de carga libre en las zonas de drift, las junturas estarán polarizadas en directa, por lo que la tensión en el diodo no varia más alla de pequeñas diferencias por pérdidas ohmicas. Una vez que suficientes portadores de carga sean removidos y la corriente se vuelva negativa, la o las junturas se polarizan en inversa, momento en el que la corriente deja de volverse más negativa y tiende al valor de cero. Este pico de corriente negativo se denomina I_{rr} . Durante este último intervalo hay pérdidas de potencia debido a que crece la resistencia del diodo al polarizarse en inversa, por lo que hay un pico de tensión negativo, y luego la corriente tiende a cero (y la tensión baja en módulo y tiende al valor de tensión aplicado en el diodo). La curva de apagado del diodo se puede encontrar en la Figura 3.

1.4.3. Efecto de I_{rr} en la conmutación del MOSFET

El valor de I_{rr} afecta en la conmutación del MOSFET. Nótese que este efecto se da cuando el diodo se apaga, es decir, durante el encendido del MOSFET.

Por causa de la corriente I_{rr} , la corriente de Drain I_D crece hasta el valor $I_0 + I_{rr}$, por lo que el valor de V_G crece por arriba de $V_{G,I_D=I_0}$. Cuando el diodo se recupera y la corriente vuelve a cero (y, por lo tanto, la corriente I_D baja a I_0), el valor de V_G baja a $V_{G,I_D=I_0}$, y el cambio de tensión provee corriente adicional a la capacidad C_{GD} , produciendo que V_{GD} y V_{DS} decrezcan rápidamente durante este intervalo de recovery. Los efectos de la corriente I_{rr} en la conmutación del MOSFET pueden observarse en la Figura 4.

Figura 4: Efectos de I_{rr} en el encendido del MOSFET.

Esta corriente no se tendrá en cuenta para el análisis teórico.

1.5. Valores de los componentes y variables

Los valores de los componentes y las variables se muestran en la Tabla 1 y la Tabla 2.

Componente	Q_1	Q_2	R_1	R_2	R_3
Valor	BC337-25	BC557B	100Ω	15Ω	$1 K\Omega$
Componente	M_1	L_1	D_1	V_2	V_1
Valor	IRF530	$220~\mu H$	MUR460	50 V	Ver Tabla V_1

Tabla 1: Valores de los componentes utilizados.

Parámetro	Valor
V_0 (on)	15 V
V_0 (off)	0 V
f_s	50 KHz
D (Duty Cycle)	50 %

Tabla 2: Valores asociados a generador de V_1 .

1.6. Búsqueda de parámetros en datasheet y cálculo de valores

Los valores de los parámetros del circuito obtenidos a partir del datasheet del transistor se muestran en la Tabla 3 y la Tabla 4.

Figura 5: Curvas teóricas de V_G , V_{DS} e I_D .

Variable	$I_{0_{off}}$	$I_{0_{on}}$	$V_{G,th}$	$V_{G,I_D=I_{0_{off}}}$	$V_{G,I_D=I_{0on}}$	$\tilde{C}_{G,1}$	$\tilde{C}_{GD,2}$	ΔQ	
Valor	2,21 A	1,12 A	4 V	4,8 V	4,5 V	650 pF	1120 pF	7 nC	

Tabla 3: Valores obtenidos del datasheet

Variable	$C_{gd,1}$	$C_{gd,2}$	C_{gs}
Valor	50 pF	520 pF	600 pF

Tabla 4: Valores de los capacitores

Los tiempos de conmutación teóricos se muestran en la Tabla 5.

Variable	$t_{d,on}$	t_{ri}	t_{fv}	$t_{d,off}$	t_{rv}	t_{fi}
Valor	21.32 ns	$3.23~\mathrm{ns}$	71.43 ns	127.62 ns	145.83 ns	11.85 ns

Tabla 5: Tiempos de conmutación calculados

1.7. Curvas teóricas

Las curvas obtenidas a partir de la teoría se muestran en la Figura 5.

1.8. Curvas Simuladas y valores obtenidos con la simulación

Las curvas de conmutación obtenidas en la simulación pueden observarse en la Figura 6. Los valores de los tiempos de conmutación obtenidos a partir de la simulación se muestran en la Tabla 6

Variable	$t_{d,on}$	t_{ri}	t_{fv}	$t_{d,off}$	t_{rv}	t_{fi}
Valor	28 ns	12 ns	183 ns	170 ns	450 ns	13 ns

Tabla 6: Tiempos de conmutación obtenidos a partir de la simulación.

Figura 6: Curvas simuladas de V_G , V_{DS} e I_D , y detalle de conmutación de encendido y apagado.

1.9. Comparación de resultados obtenidos

Al comparar los resultados teóricos y las simulaciones, la diferencia más significativa es el pico de corriente que aparece en la corriente de Drain I_D . Este pico es debido a la corriente I_{rr} desarrollada en la Subsubsección 1.4.3. Este efecto no fue considerado para graficar las curvas teóricas, pero los resultados obtenidos en la simulación ($I_{D,max} = 10.29A$, cuando $I_0 = 1.15A$) muestran la importancia de tener en consideración este análisis.

Con respecto a la forma de las curvas obtenidas, las curvas teóricas y simuladas resultan semejantes en forma, con desviaciones por la aproximación del modelo teórico con respecto al modelo de la simulación, presentando algunas diferencias en los tiempos de las distintas etapas de la conmutación.

Los tiempos de las distintas etapas obtenidos con la simulación difieren de los valores calculados teóricamente. Este resultado es de esperar, dado que los valores utilizados y obtenidos a partir del datasheet pueden diferir con respecto a los valores tanto del componente real como de aquellos utilizados en el modelo de la simulación. Sin embargo, los valores son comparables en cuanto a su orden de magnitud. Se muestra en la Tabla 7 los errores relativos porcentuales de los tiempos de conmutación, asi como la diferencia de orden de magnitud entre los valores teóricos y simulados.

Variable	$t_{d,on}$	t_{ri}	t_{fv}	$t_{d,off}$	t_{rv}	t_{fi}
Error porcentual	23.8%	73%	60.9%	24.9%	67.5%	8.84%
$\log_{10}(\text{Teórico/Simulado})$	-0.11	-0.56	-0.4	-0.12	-0.48	-0.04

Tabla 7: Errores porcentuales y diferencias en orden de magnitud de tiempos de conmutación.

Se puede observar que las diferencias más importantes se dan para los valores de $t_{d,on}$, t_{fv} y t_{rv} . Es de esperar una desviación en el valor de $t_{d,on}$ con respecto al calculado teóricamente, por los efectos de la corriente $I_r r$. Con respecto a las desviaciones de los valores de t_{fv} y t_{rv} , estos dos valores presentan desviaciones similares, y ambos están asociados al valor de la carga ΔQ , por lo que un posible motivo de estas desviaciones es que el valor de ΔQ obtenido a partir del datasheet para calcular los valores de t_{fv} y t_{rv} difieren del valor utilizado para el modelo de la simulación.

Figura 7: Superposición de curvas simuladas (lineas sólidas) y obtenidas a partir de la teoría (lineas discontinuas).