CARTAS DE CONTROLE PARA ATRIBUTOS

- Cartas de Controle para Fração Não Conforme P
- Cartas de Controle tipo NP
- Diretrizes para a Implementação de Cartas de Controle

INTRODUÇÃO

- Muitas características de qualidade não podem ser representadas numericamente. Nestes casos os ítens são classificados como Conformes ou Não conformes às especificações de qualidade.
- É usual a terminologia Defeituoso ou Não defeituoso, embora a primeira já tenha se tornado mais popular. Características deste tipo são chamadas de Atributos.
- As cartas de controle usadas para atributos são:
 - 1. Cartas de Controle para Frações Não conformes, ou Cartas p (expressa a fração de produtos defeituosos ou não conformes)
 - Cartas de Controle para Não conformidades, ou Cartas c
 (expressa o número de defeitos ou não conformidades observados ao invés da fração em uma unidade de produto)
 - 3. Cartas de Controle para Não conformidades por Unidade, ou Cartas u (para quando o número médio de defeitos por unidade é a melhor representação para CEP)

- A fração não conforme é definida como a razão entre o número de ítens não conformes em uma população e o número total de ítens desta população.
- Os ítems podem possuir várias características de qualidade examinadas, simultaneamente, pelo inspetor.
 - Se alguma delas está fora da especificação padrão, o ítem é classificado como não conforme. Usualmente esta fração é representada como decimal, embora a representação percentual também seja possível.
- Os princípios estatísticos destas cartas são baseados na distribuição binomial.

- Se o processo de produção opera de maneira estável, a probabilidade de ocorrência de uma unidade não conforme é p e as unidades produzidas, sucessivamente, são independentes.
 - Assim cada unidade produzida é a realização de uma variável aleatória de Bernoulli com parâmetro p.
- Selecionando-se uma amostra aleatória, de n unidades do produto, com D unidades não conformes, obtém-se D com uma distribuição binomial com parâmetros n e p:

$$p(D = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$
 onde $x = 0,1,2,...,n$

A média e a variância da variável aleatória D são:

$$\mu = np$$
 e $\sigma^2 = np(1-p)$

 A fração amostral não conforme é definida como a taxa do número de unidades não conformes na amostra, D, para o tamanho da mesma, n, qual seja:

$$p = \frac{D}{n}$$

 A distribuição da variável aleatória P pode ser obtida da distribuição binomial, e sua média e variância são:

$$\mu = p$$
 e $\sigma_p^2 = \frac{p(1-p)}{n}$

 Se w é a estatística que mede uma característica de qualidade, e se a média de w é μw e sua variância σ²w, então, o modelo geral da carta de Shewhart é:

Cartas de Controle Tipo p

$$LSC = \mu_w + L\sigma_w$$
Linha Central = μ_w

$$LIC = \mu_w - L\sigma_w$$

onde **L** é a distância dos limites de controle para a linha central, em múltiplos do desvio padrão de **w** que é, usualmente, escolhido como sendo **L=3**.

Supondo que a verdadeira fração não conforme do processo, p, é conhecida ou que o seu valor padrão é definido pela gerência, os limites de controle e a linha central da carta de controle anterior poderiam ser substituído por:

Cartas de Controle para a Fração Não conforme - Tipo p:

com Padrão Definido

$$LSC = p + 3\sqrt{\frac{p(1-p)}{n}}$$

Linha Central = p

$$LIC = p - 3\sqrt{\frac{p(1-p)}{n}}$$

- Quando a fração de não conformidade, p, é desconhecida ela deve ser estimada dos dados observados.
 - O procedimento usual é selecionar m amostras, entre 20 e 25, de tamanho n, estimar p, considerando D, o número de ítens não conformes em cada amostra.

$$\hat{p}_{i} = \frac{D_{i}}{n} \implies \bar{p} = \frac{\sum_{i=1}^{m} D_{i}}{nm}$$

$$\Rightarrow \bar{p} = \frac{\sum_{i=1}^{m} \hat{p}_{i}}{m} \quad i = 1, 2, ..., m$$

Limites de Controle de Tentativa (escolha definitiva como nas cartas de variáveis)

Cartas de Controle de Fração Não conforme - Tipo p:
$$\frac{\text{sem Padrão Definido}}{LSC} = \frac{-}{p} + 3\sqrt{\frac{p(1-p)}{n}}$$

Linha Central = $\frac{-}{p}$

$$LIC = \frac{-}{p} - 3\sqrt{\frac{p(1-p)}{n}}$$

- Suco de laranja concentrado e congelado é embalado em latas de papelão de 6oz. Estas embalagens possuem um fundo de metal sobre o papelão enrolado. Inspecionando-se estas embalagens pode-se determinar se quando cheias haverá vazamentos na junta lateral do papelão ou na junta do fundo.
- Deseja-se uma carta de controle para melhorar a fração de embalagens não conformes, produzidas por esta máquina.
- Para tanto foram selecionadas 30 amostras de 50 embalagens cada, em intervalos de 1/2h, por três turnos consecutivos (Tabela 6.1).

Tabela 1: Dados para cálculo dos Limites de Controle Tentativos, com tamanho de amostra n = 50.

Número amostra	Número Latas Não- Conformes	Fração amostral Não- Conforme - pi	Número amostra	Número Latas Não- Conformes	Fração amostral Não- Conforme - pi
1	12	0.24	17	10	0.20
2	15	0.30	18	5	0.10
3	8	0.16	19	13	0.26
4	10	0.20	20	11	0.22
5	4	0.08	21	20	0.40
6	7	0.14	22	18	0.36
7	16	0.32	23	24	0.48
8	9	0.18	24	15	0.30
9	14	0.28	25	9	0.18
10	10	0.20	26	12	0.24
11	5	0.10	27	7	0.14
12	6	0.12	28	13	0.26
13	17	0.34	29	9	0.18
14	12	0.24	30	6	0.12
15	22	0.44		347	$\overline{p} = 0.2313$
16	8	0.16			•

- Constrói-se uma carta de controle preliminar para verificar se o processo estava sob controle estatístico, quando os dados foram coletados.
 - Como as 30 amostras possuem D=347 embalagens nãoconformes, pode-se determinar a estimativa da verdadeira fração não conforme do processo:

$$\bar{p} = \frac{\sum_{i=1}^{m} D_i}{nm} = \frac{347}{30.50} = 0,2313$$

Pode-se, agora, calcular os limites superior e inferior de controle como:

$$\overline{p} \pm 3\sqrt{\frac{\overline{p(1-\overline{p})}}{n}} = 0,2313 \pm 3\sqrt{\frac{0,2313(0,7687)}{50}}$$

$$= 0,2313 \pm 0,1789$$

$$LSC = \overline{p} + 3\sqrt{\frac{\overline{p(1-\overline{p})}}{n}} = 0,2313 + 0.1789 = 0.4102$$

$$LIC = \overline{p} - 3\sqrt{\frac{\overline{p(1-\overline{p})}}{n}} = 0,2313 - 0.1789 = 0.0524$$

Figura 1: Carta de Controle para Fração Não-Conforme – (Fase I – Projeto Preliminar - Tentativo) para Dados da Tabela 6.1

- Notam-se dois pontos fora de controle, pontos 15 e 23.
 - Investigando-se, descobre-se a existência de causas atribuíveis para eles, como mudança de matéria prima. Estas duas amostras são, portanto, eliminadas e uma nova linha central, bem como, novos limites de controle são calculados:

$$D = 347 - 22 - 24 = D = 301$$

$$\overline{p} = \frac{301}{(28)(50)} = 0.2150$$

$$LSC = \overline{p} + 3\sqrt{\frac{\overline{p(1-\overline{p})}}{n}} = 0.2150 + 3\sqrt{\frac{0.2150(0.7850)}{50}} = 0.3389$$

$$LIC = \overline{p} - 3\sqrt{\frac{\overline{p(1-\overline{p})}}{n}} = 0.2150 - 3\sqrt{\frac{0.2150(0.7850)}{50}} = 0.0407$$

As amostras 15
e 23 foram
desconsideradas no
novo projeto, mas
estão representadas
na carta para visão
histórica do
processo.

Figura 2: Carta com Limites de Controle revisados para os dados da tabela 6.1.

- Conclui-se que o processo está em Estado de Controle Estatístico, no nível p=0,2150, apesar do ponto 21 ainda estar fora dos limites, pois mesmo analisando-se os dados nenhuma causa especial foi detectada.
- Este ponto foi mantido e os novos limites de controle aceitos como os limites a serem usados nas cartas para análise das amostras futuras.

- O processo já opera de maneira estável e não há problemas não-comuns que sejam controláveis pelo operador. É preciso ajustar as máquinas, o processo.
 - Suponha que a gerência decidiu-se por investir em melhorias do processo, por meio da sua equipe de engenharia, para minimizar a fração de não conformidade, que é alta, apesar do processo estar sob controle estatístico.

Foram feitos vários ajustes nas máquinas deste processo e novas 24 amostras, com n = 50 dados, são coletadas e suas análises são efetuadas.

Número amostra	Número Latas Não- Conformes	Fração amostral Não- Conforme - pi	Número amostra	Número Latas Não- Conformes	Fração amostral Não- Conforme - pi
31	9	0.18	44	6	0.12
32	6	0.12	45	5	0.10
33	12	0.24	46	4	0.08
34	5	0.10	47	8	0.16
35	6	0.12	48	5	0.10
36	4	0.08	49	6	0.12
37	6	0.12	50	7	0.14
38	3	0.06	51	5	0.10
39	7	0.14	52	6	0.12
40	6	0.12	53	3	0.06
41	2	0.04	54	5	0.10
42	4	0.08		133	$\overline{p} = 0.1108$
43	3	0.06			•

Tabela 2: Novos dados , com n=50, de latas de suco de laranja concentrado, após melhorias no processo.

 A linha central aqui está em p=0.2150, e os limites de controle em UCL=0.3893 e LCL=0.0407, estimados a partir da massa de dados anterior, após os ajustes feitos.

Figura 3: Carta de Controle do Exemplo1, com os novos dados após melhorias no processo.

 Observa-se um novo limite de qualidade, a partir dos ajustes efetuados nas máquinas, bem melhor que o definido anteriormente pela linha central em p=0,2150.

 Baseado nos ajustes feitos no processo, aparentemente bem sucedidos, é razoável revisar os limites de controle, e a linha central da Carta p, usando apenas os dados mais recentes, obtidos após os ajustes realizados (amostras 31 a 54).

$$\overline{p} = \frac{\sum_{1}^{m} D_{i}}{nm} = \frac{133}{24.50} = 0,1108$$

$$\overline{p} = 0.1108 \rightarrow \text{Linha Central}$$

$$LSC = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} = 0,1108 + 3\sqrt{\frac{(0.1108)(0.8892)}{50}} = 0.2440$$

$$LIC = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} = 0,1108 - 3\sqrt{\frac{(0.1108)(0.8892)}{50}} = -0.0224 = 0$$

Figura 4: Carta de Controle do Exemplo 6.1, com os novos Limites de Controle, calculados após as melhorias no processo.

Amostras coletadas durante os cinco turnos subsequentes ao novo projeto da **Carta p.**

Número amostra	Número Latas Não- Conformes	Fração amostral Não- Conforme - pi	Número amostra	Número Latas Não- Conformes	Fração amostral Não- Conforme - pi
55	8	0.16	75	5	0.10
56	7	0.14	76	8	0.16
57	5	0.10	77	11	0.22
58	6	0.12	78	9	0.18
59	4	0.08	79	7	0.14
60	5	0.10	80	3	0.06
61	2	0.04	81	5	0.10
62	3	0.06	82	2	0.04
63	4	0.08	83	1	0.02
64	7	0.14	84	4	0.08
65	6	0.12	85	5	0.10
66	5	0.10	86	3	0.06
67	5	0.10	87	7	0.14
68	3	0.06	88	6	0.12
69	7	0.14	89	4	0.08
70	9	0.18	90	4	0.08
71	6	0.12	91	6	0.12
72	10	0.20	92	8	0.16
73	4	0.08	93	5	0.10
74	3	0.06	94	6	0.12

Tabela 3: Novos dados de fração de Não-Conformidade para o exemplo 6.1, após melhorias no processo e ajustes da Carta de Controle

Figura 5: Carta de Controle para Fração de Não-Conformidade, para o Exemplo 6.1, completa.

- Novos ajustes podem ser estudados e projetados estatisticamente para reduzir ainda mais a fração média de não conformidade que, ainda, é elevada.
 - As cartas de controle podem registrar as mudanças de patamar na qualidade da produção e serem uma espécie de logbook (diário de bordo) destas melhorias.

PROJETO DE CARTAS DE CONTROLE PARA FRAÇÃO NÃO CONFORME - P

- Três parâmetros devem ser especificados:
 - O tamanho da amostra
 - A freqüência de amostragem
 - A distância entre os limites de controle (nível de variabilidade)
- É comum basear-se o projeto deste tipo de carta em 100% de inspeção de todas as saídas do processo, em algum período conveniente de tempo, por ex. 1 turno de produção ou 1 dia.
 - Neste caso, a frequência de amostragem e o tamanho da amostra estão correlacionados.
 - Em geral, seleciona-se uma frequência de amostragem para a taxa de produção e isso fixa o tamanho da amostra.

PROJETO DE CARTAS DE CONTROLE PARA FRAÇÃO NÃO CONFORME - P

- A escolha de sub-grupos racionais pode definir algum critério importante na escolha da frequência de amostragem.
 - Por ex., se desconfia-se que em três turnos de produção há diferenças de qualidade, deve-se usar a saída de cada turno como um sub-grupo, ao invés de combinar as saídas dos três, para obter uma fração diária de não-conformidades.
 - Precisamos de uma regra para escolher n. Duncan(1986) sugeriu que o tamanho da amostra deveria ser grande o bastante para termos uma chance aproximada de 50% de detectar uma mudança no processo de algum tamanho especificado.
 - Por ex., suponha que p=0,01 e que a probabilidade de detectar uma mudança de p para p=0,05 é de 50% (0,5).
 - Considerando a aproximação da normal para a binomial, devemos escolher n tal que o limite de controle superior seja exatamente a fração não-conforme da condição de fora de controle.
 - Se δ é o tamanho da mudança do processo, então n deve ser:

$$\delta = L\sqrt{\frac{p(1-p)}{n}} \Rightarrow n = \left(\frac{L}{\delta}\right)^2 p(1-p)$$

• No nosso exemplo, Lic=0,303, p=0,01, δ =0,05-0,01=0,04 e limites de 3 σ :

$$n = \left(\frac{3}{0.04}\right)^2 0.01(1-0.01) = 56$$

INTERPRETAÇÃO DOS PONTOS DE UMA CARTA DE CONTROLE PARA FRAÇÃO NÃO-CONFORME

- Pontos abaixo da linha central numa Carta de Controle Tipo p, nem sempre significam melhorias na qualidade do processo. Muitas vezes são causados por erros ou negligência na inspeção.
- Lembrar sempre que a análise aqui procede sobre dados recolhidos por inspeção humana e não por medidas efetuadas e transmitidas remota e automaticamente por instrumentos de medida de um sistema de monitoramento e controle.
 - É preciso, pois, cuidado ao procurar causas atribuíveis, para pontos abaixo do limite de controle.

CARTA DE CONTROLE TIPO NP

 É possível, também, basear uma carta de controle no número de não conformidades ao invés de na fração de não conformidade.

Esta carta é chamada de **np** e seus parâmetros são

definidos como sendo:

Cartas de Controle Tipo np
$$UCL = np + 3\sqrt{np(1-p)}$$
Linha Central = np

$$LCL = np - 3\sqrt{np(1-p)}$$

- Se o valor padrão de p para o processo não for conhecido deverá ser estimado, como para as cartas tipo p.
 - Para o exemplo das latas de suco, a estimativa inicial de p era 0.2313 e o n=50. Os parâmetros para uma carta np, calculados com os limites indicados acima produzem LSC=20.510 e LIC=2.620.
 - Alguns preferem lidar com limites inteiros, e neste caso seriam: 2 e 21.

DIRETRIZES PARA A IMPLEMENTAÇÃO DE CARTAS DE CONTROLE

- 1. Determinar quais características do processo controlar.
- 2. Determinar onde, no processo, as cartas devem ser implementadas.
- 3. Escolher o tipo adequado de Cartas de Controle.
- 4. Selecionar os sistemas de aquisição de dados e os softwares mais adequados para cada caso.
- 5. Projetar as Cartas de Controle.
- 6. Definir e implementar as ações a serem assumidas para melhorar o processo, a partir das análises providas pelo CEP.

DETERMINAÇÃO DAS CARACTERÍSTICAS A CONTROLAR E ONDE ALOCAR CARTAS DE CONTROLE

- A princípio pode não ser elementar determinar-se as características de qualidade a serem controladas e onde aplicar as cartas de controle.
- Consideram-se diretrizes úteis para estas escolhas:
 - 1. No início do processo de uso de CEP, pode-se aplicar as cartas de controle nas características que se acredita serem as mais adequadas. Avaliando-se o desempenho das mesmas será possível detectar, normalmente, se são ou não mesmo importantes.
 - 2. Cartas de controle avaliadas como desnecessárias devem ser removidas. Se a engenharia ou a operação tiver novas sugestões, acrescentar e avaliar.

DETERMINAÇÃO DAS CARACTERÍSTICAS A CONTROLAR E ONDE ALOCAR CARTAS DE CONTROLE

- 3. Manter atualizadas as informações sobre o número e o tipo de Cartas de Controle em uso. Manter registros separados sobre cartas de variáveis e cartas de atributos.
 - ✓ Após estabilizada a concepção do uso de CEP num processo, o número e o tipo das cartas se mantem de um ano para outro, mas não são necessariamente as mesmas (mesmo projeto) devido às mudanças no processo e nos equipamentos (desgastes ou novos ajustes e substituições).
- 4. Geralmente observa-se que quando as Cartas de Controle são devidamente utilizadas e novos conhecimentos sobre variáveis que determinam o comportamento do processo vão sendo adquiridos, o número de Cartas tipo \overline{X} e R aumenta e o número de Cartas de Atributos diminui.

DETERMINAÇÃO DAS CARACTERÍSTICAS A CONTROLAR E ONDE ALOCAR CARTAS DE CONTROLE

- 6. Esta mudança deve-se ao conhecimento de variáveis chave do processo, que determinam a qualidade do produto, e possibilitam um controle antecipado das características finais, evitando a ocorrência de não conformidades (controle efetuado já no final da produção).
- 7. As cartas de controle são ferramentas de análise, monitoramento e controle on-line da qualidade do processo.
 - ✓ Devem ser implementadas e mantidas o mais próximo possível dos centros de trabalho ou com comunicação facilitada com eles, para que as ações de correção a serem implementadas, a partir da detecção de causas atribuíveis ou especiais, sejam feitas o mais rapidamente possível.
 - ✓ Isto possibilita a retomada da operação do processo em estado de controle estatístico proporcionando uma operação estável e capaz (no sentido estrito do CEP).

AÇÕES POSSÍVEIS PARA MELHORAR O PROCESSO

O processo é Capaz?

		SIM	NÃO
O processo encontra	SIM	CEP	CEP Projeto Baseado em Experimentos Especificações Investigadas Mudanças no Processo
-se em Estado de CEP?	NÃO	CEP	CEP Projeto Baseado em Experimentos Especificações Investigadas Mudanças no Processo

BIBLIOGRAFIA

- **1. Douglas C. Montgomery**: *Introduction to Statistical Quality Control*, 4th Edition.
- 2. Manzic, C. L.: "Statistical Process Control: Practical Guides for Measurement and Control", ISA, 1995.