PROJECT OVERVIEW

ADVANCED

PROJECT OVERVIEW

 Kyphosis is an abnormally excessive convex curvature of the spine. The kyphosis data frame has 81 rows and 4 columns representing data on children who have had corrective spinal surgery. Dataset contains 3 inputs and 1 output

INPUTS:

- o Age: in months
- Number: the number of vertebrae involved
- Start: the number of the first (topmost) vertebra operated on.

OUTPUTS:

 Kyphosis: a factor with levels "absent" or "present" indicating if a kyphosis (a type of deformation) was present after the operation.

- Link to dataset: https://www.kaggle.com/abbasit/kyphosis-dataset
- Source: John M. Chambers and Trevor J. Hastie eds. (1992) Statistical Models in S, Wadsworth and Brooks/Cole, Pacific Grove, CA.
- Photo Credit: https://commons.wikimedia.org/wiki/File:Kyphosis.png

K NEAREST NEIGHBORS (KNN) ALGORITHM

K NEAREST NEIGHBORS (KNN): INTUITION

• K-Nearest Neighbors (KNN) algorithm is a classification algorithm

 KNN works by finding the most similar data points in the training data, and attempt to make an educated guess based on their classifications

K NEARSET NEIGHBORS (KNN): ALGORITHM STEP

EUCLIDEAN DISTANCE: INTUITION

K NEARSET NEIGHBORS (KNN): EXAMPLE

- KNN will look for the 5 data points that are closest to the new customer data point
- The algorithm will determine which category (class) are these 5 points in

Since 4 points had class "SMALL" and 1 had "LARGE", then new customer shall be

assigned small size

Height	Weight	T-Shirt Size	Euclidian Dist	Vote
158	58	S	4.242640687	
158	59	S	3.605551275	
158	63	S	3.605551275	
160	59	S	2.236067977	3
160	60	S	1.414213562	1
163	60	S	2.236067977	3
163	61	S	2	2
160	64	L	3.16227766	5
163	64	L	4	
165	61	L	4.123105626	
165	62	L	5.656858249	

New Customer Information:

Height: 161

Weight: 61

Assume, k= 5

Example Source: https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html

K NEAREST NEIGHBORS (KNN): EXAMPLE

Let's understand this example visually!

K NEAREST NEIGHBORS (KNN) ALGORITHM IN SAGEMAKER

K NEAREST NEIGHBORS (KNN) IN SAGEMAKER

- KNN in SageMaker could be used to perform simple classification or regression
 - Classification: algorithm finds the K-closest points to a given sample point and return the most frequent label
 - o **Regression:** algorithm finds K-closest points to a given sample point and return the average value.
- KNN is a lazy algorithm, it does not try to generalize the model for the entire training dataset, but it rely on neighbouring data points.
- Training with the KNN algorithm has three steps:
 - Sampling
 - Dimension reduction
 - Index building
- Sampling is used to minimize the size of dataset to optimize memory.
- Dimensionality reduction is performed to:
 - Decrease the feature dimension of the data to reduce the footprint of the k-NN model in memory and inference latency and avoids the "curse of dimensionality"

K NEAREST NEIGHBORS (KNN): HYPERPARAMETERS

- Full set of hyperparameters: <u>https://docs.aws.amazon.com/sagemaker/latest/dg/kNN_hyperparameters.html</u>
- K: The number of nearest neighbors
- Sample_size: The number of data points to be sampled from the training data set.
- feature_dim: The number of features in the input data.
- predictor_type: classification or regression
- dimension_reduction_target: The target dimension to reduce to.

K NEAREST NEIGHBORS (KNN): INPUT/OUTPUT

- KNN supports two channels:
 - o Train channel contains training data
 - Test channel to provide test scores such as accuracy for classifier or MSE for regressor
- SageMaker KNN algorithm supports recordIO-protobuf or CSV formats
- KNN can be used in both File or pipe mode

K NEAREST NEIGHBORS (KNN): INSTANCE TYPES

- For KNN Training:
 - o CPU such as Ml.m5.2xlarge
 - o GPU such as Ml.p2.xlarge
- For Inference:
 - o GPU for higher throughput on large batches
 - CPU generally provides lower latency

CODE DEMO

CODE DEMO

FINAL END-OF-DAY CAPSTONE PROJECT

PROJECT TASKS

Using the same dataset, perform the following tasks:

- 1. Train a random forest classifier model in SKLearn and assess its performance
- 2. Plot the confusion matrix
- 3. Print the classification Report
- 4. Train a decision tree classifier model in SKLearn and assess its performance
- Plot the confusion matrix
- 6. Print the classification Report
- 7. Calculate Feature Importance
- 8. Train an XG-Boost Algorithm in SageMaker
- 9. Comment on the results
- 10. Delete the endpoint