ANTIGEN

A foreign glycoprotein on the surface of a pathogen that stimulates the production of specific antibodies

ANTIBODY

A glycoprotein produced by **B-lymphocytes** in response to a specific antigen, which attaches to the antigen and destroys it

• B lymphocytes produce antibodies.

LEUCOCYTE

A white blood cell, such as:

lymphocytes = produce **antibodies**

phagocytes = engulf and digest pathogens

Erythrocytes are red blood cells.

B. SPECIFIC v NON-SPECIFIC IMMUNITY

NON-SPECIFIC IMMUNITY

Not specific to the pathogen

Kill any type of bacteria

- Skin
- Mucous membranes
- Stomach acid
- Tears
- Phagocytes

SPECIFIC IMMUNITY

Specific to the pathogen
Kill specific types of bacteria

B cells and antibodies

C. NON-SPECIFIC IMMUNITY

1. SKIN

- tough, impermeable outer layer
- sebaceous glands secrete lactic acid and fatty acids to prevent bacterial growth

2. MUCOUS MEMBRANES

- nose, trachea, urethra, trachea, vagina are lined with these soft areas of skin
- mucus contains lysozyme, which kills bacteria
- mucus traps bacteria and cilia hairs push this up to the throat and out of the trachea

3. PHAGOCYTOSIS

• Phagocytes can also leave the blood and enter tissues to destroy pathogens.

D. WHY EACH ANTIBODY IS SPECIFIC FOR ONLY ONE ANTIGEN

- Antibodies are proteins (= polypeptides)
- They have a specific tertiary structure
- They have an antigen binding site of a specific shape
- This can only attach to an antigen that has a complementary shape

E. SPECIFIC IMMUNITY: HOW ANTIBODIES ARE PRODUCED

F. BLOOD CLOTTING

- Blood **proteins** help to form a **clot** to:
 - prevent further loss of blood
 - prevent pathogens from entering the blood

Forms a mesh/net of fibres across wounds

This traps **red** blood cells and dries to form a scab if exposed to air

- prevents further loss of blood
- prevents pathogens from entering the blood

- Like antibodies and lysozyme enzyme in phagocytes, these are all blood proteins.
- You **need** to know this for **long-answer questions**, so you can write about all of them.

G. ANTIBIOTICS

What they do

- Chemicals produced by microorganisms that inhibit the growth of or kill bacteria.
- Antibiotics block processes that occur in prokaryotic cells but not in eukaryotic cells.

TARGETS

1. PREVENT CELL WALL SYNTHESIS

- Bacteria will burst (lyse)
- Human cells do not have cell walls

2. PREVENT PROTEIN SYNTHESIS

 Eukaryotic ribosomes (80S) are structurally different to prokaryotic ribosomes (70S)

3. PREVENT DNA SYNTHESIS

 Eukaryotic enzymes are structurally different to prokaryotic enzymes involved in DNA replication

Why do antibiotics kill bacteria but not viruses?

- Viruses do not have organelles (e.g. cell wall and ribosomes)
- Viruses do not have their own metabolism (chemical reactions).
- They use the organelles in human cells to reproduce.

There is no way of inhibiting the virus without inhibiting human metabolism

H. HUMAN IMMUNODEFICIENCY VIRUS (HIV)

- HIV is the virus that causes the disease AIDS
- HIV infects and destroys white blood cells called lymphocytes
- This means that less antibodies are produced
- Meaning, people with AIDS can die of diseases that do not usually harm us = 'opportunistic infections'

- Prevention methods include:
 - free condoms
 - free needles for drug users
 - test blood for HIV
 - free and anonymous HIV tests
 - education about HIV and AIDS
 - infected pregnant mothers take anti-HIV drugs during pregnancy

I. FLOREY & CHAIN'S EXPERIMENTS

• They tested the ability of the antibiotic **penicillin** to treat **bacterial infections** in **mice**.

- Nowadays, the **ethics** of this may be questioned.
- However, it has led to the development of several synthetic derivatives of penicillin
 e.g. amoxycillin, which offer extra benefits including killing a greater variety of bacteria,
 greater stability and greater tolerance.

I. ALEXANDER FLEMING - THE ACCIDENTAL DISCOVERY OF PENICILLIN

- The discovery of penicillin was a fortuitous **accident**, resulting from the **accidental contamination** of a **dish** containing the bacterial pathogen **Staphylococcus aureus**.
- A Penicillium mould (fungus) began to grow on the plate and a halo of inhibited bacterial growth was observed around the mould
- Fleming concluded that the mould was releasing a substance (penicillin) that was killing the nearby bacteria.

