Package 'RI2by2'

November 11, 2023

Type Package
Title Randomization Inference for Treatment Effects on a Binary Outcome
Version 1.4
Date 2023-11-07
Author Joseph Rigdon <pre><jrigdon@wakehealth.edu></jrigdon@wakehealth.edu></pre>
Maintainer Joseph Rigdon <pre><jrigdon@wakehealth.edu></jrigdon@wakehealth.edu></pre>
Imports compiler, gtools, Rcpp
LinkingTo Rcpp
Description Computes attributable effects based confidence interval, permutation test confidence interval, or asymptotic confidence interval for the average treatment effect on a binary outcome. Methods outlined in further detail in Rigdon and Hudgens (2015) <doi:10.1002 sim.6384="">.</doi:10.1002>
License GPL (>= 3)
Suggests testthat
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-11-11 11:33:20 UTC
R topics documented:
AE.CI Perm.CI Perm.CI.RLH Robins.CI
Index

2 AE.CI

AE.CI	Attributable effects based confidence interval for a treatment effect on a binary outcome
	a binary outcome

Description

Computes the attributable effects based confidence interval for the average treatment effect on a binary outcome in an experiment where m of n individuals are randomized to treatment by design.

Usage

```
AE.CI(data, level)
```

Arguments

data observed 2 by 2 table in matrix form where row 1 is the treatment assignment

Z=1 and column 1 is the binary outcome Y=1

level significance level of hypothesis tests, i.e., method yields a 100(1-level)% con-

fidence interval

Details

The attributable effects based confidence interval from inverting n+2 hypothesis tests.

Value

tau.hat estimated average treatment effect
lower lower bound of confidence interval
upper upper bound of confidence interval

Author(s)

Joseph Rigdon <jrigdon@wakehealth.edu>

References

Rigdon, J.R. and Hudgens, M.G. (2015). Randomization inference for treatment effects on a binary outcome. *Statistics in Medicine*, 34(6), 924-935.

Examples

```
ex = matrix(c(8,2,3,7),2,2,byrow=TRUE)
AE.CI(ex,0.05)
```

Perm.CI 3

Perm.CI Permutation test confidence interval for a treatment effect on a binary outcome

Description

Computes permutation-based confidence intervals for the average treatment effect on a binary outcome in an experiment where m of n individuals are randomized to treatment by design.

Usage

```
Perm.CI(data, level, nperm)
```

Arguments

data observed 2 by	2 table in matrix form where row 1 is the treatment assignment
--------------------	--

Z=1 and column 1 is the binary outcome Y=1

level significance level of hypothesis tests, i.e., method yields a 100(1-level)% con-

fidence interval

nperm number of randomizations to perform for each hypothesis test

Details

The permutation confidence interval results from inverting $O(n^4)$ hypothesis tests where n is the total number of observations in the observed 2 by 2 table. For each hypothesis test, if $\binom{n}{m}$ is less than or equal to nperm, $\binom{n}{m}$ randomizations are performed, but if $\binom{n}{m}$ is greater than nperm, a random sample with replacement of nperm randomizations are performed.

Value

tau.hat	estimated average treatment effect
lower	lower bound of confidence interval
upper	upper bound of confidence interval

Author(s)

Joseph Rigdon <jrigdon@wakehealth.edu>

References

Rigdon, J.R. and Hudgens, M.G. (2015). Randomization inference for treatment effects on a binary outcome. *Statistics in Medicine*, 34(6), 924-935.

Examples

```
ex = matrix(c(8,2,3,7),2,2,byrow=TRUE)
Perm.CI(ex,0.05,100)
```

4 Perm.CI.RLH

Perm.CI.RLH	Permutation test confidence interval for a treatment effect on a binary outcome

Description

Computes permutation-based confidence intervals for the average treatment effect on a binary outcome in an experiment where m of n individuals are randomized to treatment by design. This function is based on the modified approach (RLH) in Rigdon, Loh and Hudgens (forthcoming). The Chiba (2015) and Blaker (2000) intervals are also returned. There is an additional option of specifying the maximum number of hypothesis tests to be carried out.

Usage

```
Perm.CI.RLH(data, level, verbose=FALSE, total_tests=NA)
```

Arguments

total_tests

data	observed 2 by 2 table in matrix form where row 1 is the treatment assignment $Z=1$ and column 1 is the binary outcome $Y=1$
level	significance level of hypothesis tests, i.e., method yields a $100(1\text{-level})\%$ confidence interval
verbose	If TRUE, returns an additional data frame listing all the values of $(n_{11}, n_{10}, n_{01}, n_{00})$ tested, and the corresponding p-values; default = FALSE.

maximum number of hypotheses to be tested in total, with a minimum of two for each possible value of $(n_{10}-n_{01})/n$; default = NA. By default, all hypotheses are evaluated until the minimum and maximum values of $(n_{10}-n_{01})/n$ with

p-values \geq level (or level/2 for the Chiba intervals) are found.

Value

A list with the following items:

Chiba Chiba confidence interval
RLH RLH confidence interval
Blaker Blaker confidence interval

tau.hat estimated average treatment effect

p_values if verbose=TRUE, a data frame with all the p-values from the hypothesis tests;

default=FALSE

Author(s)

Wen Wei Loh <wen.wei.loh@emory.edu>

Robins.CI 5

References

Rigdon, J.R. and Hudgens, M.G. (2015). Randomization inference for treatment effects on a binary outcome. *Statistics in Medicine*, 34(6), 924-935.

Chiba, Y. (2015). Exact tests for the weak causal null hypothesis on a binary outcome in randomized trials. *Journal of Biometrics & Biostatistics*, 6(244).

Chiba, Y. (2016). A note on exact confidence interval for causal effects on a binary outcome in randomized trials. *Statistics in Medicine*, 35(10), 1739-1741.

Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. *Canadian Journal of Statistics*, 28(4), 783-798.

Rigdon, J.R., Loh W.W. and Hudgens, M.G. (forthcoming). Response to comment on "Randomization inference for treatment effects on a binary outcome."

Examples

```
ex = matrix(c(11,1,7,21),2,2,byrow=TRUE)
Perm.CI.RLH(ex,0.05)

ex = matrix(c(7,5,1,27),2,2,byrow=TRUE)
Perm.CI.RLH(ex,0.05)
Perm.CI.RLH(ex,0.05, verbose=TRUE)

ex = matrix(c(33,15,11,37),2,2,byrow=TRUE)
Perm.CI.RLH(ex,0.05, total_tests=1000)
Perm.CI.RLH(ex,0.05)
```

Robins.CI

Asymptotic confidence interval for a treatment effect on a binary outcome

Description

Computes the Robins (1988) confidence interval for the average treatment effect on a binary outcome in an experiment where m of n individuals are randomized to treatment by design.

Usage

```
Robins.CI(data, level)
```

Arguments

data observed 2 by 2 table in matrix form where row 1 is the treatment assignment

Z=1 and column 1 is the binary outcome Y=1

level significance level of hypothesis tests, i.e., method yields a 100(1-level)% con-

fidence interval

6 Robins.CI

Details

The Robins (1988) confidence interval is similar in form to the well known Wald confidence interval for a difference in proportions, but is guaranteed to have smaller width.

Value

tau.hat estimated average treatment effect lower lower bound of confidence interval upper upper bound of confidence interval

Author(s)

Joseph Rigdon <jrigdon@wakehealth.edu>

References

Robins, J.M. (1988). Confidence intervals for causal parameters. *Statistics in Medicine*, 7(7), 773-785.

Examples

```
#Example 1 from Robins (1988)
ex = matrix(c(40,60,15,85),2,2,byrow=TRUE)
Robins.CI(ex,0.05)
```

Index

```
* attributable effects
    AE.CI, 2

* permutation test
    Perm.CI, 3

* randomization inference
    AE.CI, 2
    Perm.CI, 3
    Robins.CI, 5

AE.CI, 2

Perm.CI, 3

Rem.CI, 4

Robins.CI, 5
```