TD 2

Une courbe elliptique E est une équation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

où les coefficients $(a_i)_{i\in\{1,\cdots,4,6\}}$ sont des éléments d'un corps $\mathbb K.$ En abrégé,

$$E = [a_1, a_2, a_3, a_4, a_6].$$

Exercice 1. Soit E une courbe elliptique d'efinie sur un corps \mathbb{K} . L'objectif de cet exercice est de calculer, via l'algorithme de la fenêtre flexible, [n]P étant donnés un entier naturel n et un point P de E.

1. Écrire une procédure qui, étant donné un entier naturel non-nul k et un point P de E, calcule le vecteur

$$(P, [2]P, [4]P, \cdots, [2^k]P)$$
.

Appelez-là powinit(E, P, k).

2. Écrire une procédure qui, étant donné un entier naturel n et un point P de E, calcule le point [n]P. Appelez-là flexpow(E,P,n). Conseil : écrire

$$n = 2^v (2^k q + r)$$

où $0 \leqslant r < 2^k$ est un entier naturel impair, q et v sont deux entiers naturels.

- 3. Tester sur de nombreux exemples de courbes elliptiques sur des corps finis pour des valeurs de k différentes et comparer avec la fonction ellpow. Conseil : Écrire une procédure qui, étant donnée une courbe elliptique E sur le corps fini \mathbb{F}_q avec $q = p^m$ renvoie un point aléatoire sur E i.e. un élément aléatoire de $E(\mathbb{F}_q)$. Appelez-là ellrand(E,p,m).
- 4. Si E est la courbe elliptique rationnelle, i.e. sur \mathbb{Q} , définie par $y^2 = x^3 + 256$ alors calculer son discriminant à l'aide de gp puis vérifier que P = (0, 16) est bien sur la courbe elliptique et est un point de torsion. Calculer son ordre à l'aide de la procédure précédente. Comparer avec la fonction ellorder.
- 5. Si E est la courbe elliptique rationnelle définie par $y^2 = x^3 + x/4$ alors calculer son discriminant à l'aide de gp puis vérifier que P = (1/2, 1/2) est bien sur la courbe elliptique et est un point de torsion. Calculer son ordre à l'aide de la procédure précédente. Comparer avec la fonction ellorder.
- 6. Si E est la courbe elliptique rationnelle définie par $y^2 = x^3 43x + 166$ alors calculer son discriminant à l'aide de gp puis vérifier que P = (3,8) est bien sur la courbe elliptique et est un point de torsion. Calculer son ordre à l'aide de la procédure précédente. Comparer avec la fonction *ellorder*.

Exercice 2. L'objectif de cet exercice est de calculer quelques logarithmes discrets via la méthode ρ de Pollard. Soit E une courbe elliptique sur \mathbb{F}_q avec $q=p^m$. Soient P et Q dans $E(\mathbb{F}_q)$ avec

$$Q \in \langle P \rangle := \{ [k]P, k \in \mathbb{Z} \}.$$

On cherche un entier naturel n (modulo l'ordre de P...) satisfaisant Q = [n]P, i.e. on cherche $\log_P(Q)$. Soit $\langle P \rangle = G_1 \coprod G_2 \coprod G_3$ une partition de $\langle P \rangle$ en trois sous-ensembles de taille equivalente. On définit une marche aléatoire sur $\langle P \rangle$ par $w_0 = P$ et

$$w_{i+1} = \Phi(w_i) = \begin{cases} w_i + Q & \text{si } w_i \in G_1, \\ [2]w_i & \text{si } w_i \in G_2, \\ w_i + P & \text{sinon} \end{cases}$$

pour tout entier naturel i.

- 1. Imaginer une facon de partitionner $\langle P \rangle$.
- 2. Montrer que si cette marche aléatoire présente une collision alors vous êtes capables de trouver $\log_P(Q)$.
- 3. Montrer qu'il existe un entier naturel i grand satisfaisant $w_i = w_{2i}$. Écrire une procédure qui, étant donnés P et Q renvoie n. Appelez-là pollard(E,P,Q,p,m). Discutez ses avantages et ses inconvénients.
- 4. Écrire une première amélioration sachant qu'il existe un entier naturel i satisfaisant $w_i = w_{\ell(i)-1}$ où $\ell(i)$ est la plus grande puissance de 2 inférieure à i ie $\ell(i) := 2^{E(\log(i))}$ où E(x) est la partie entière de x. Appelez-là pollard2(E,P,Q,p,m). Discutez ses avantages et ses inconvénients.
- 5. Écrire une deuxième amélioration sachant qu'il existe un entier naturel i satisfaisant $w_i = w_{\ell(i)-1}$ et $3\ell(i)/2 \le i \le 2i$. Appelez-là pollard3(E,P,Q,p,m). Discutez ses avantages et ses inconvénients.
- 6. Comparer ces diverses procédures sur l'exemple suivant : E est la courbe elliptique définie sur \mathbb{F}_{173} par

$$y^2 = x^3 + 146x + 33$$

et
$$P = (168, 133)$$
 et $Q = (147, 74)$.

7. Tester sur vos exemples préférés.

Exercice 3. L'objectif de cet exercice est de calculer quelques logarithmes discrets via la méthode Pas de bébés-Pas de géants. Soient E une courbe elliptique sur un corps $\mathbb K$ et P un point d'ordre ℓ . Tout repose sur le fait que si $s=E(\sqrt{l})+1$ alors il existe des entiers naturels U et V compris entre 0 et s tels que

$$n = U + Vs$$
.

- 1. Étant donnés une courbe elliptique, $Q \in \langle P \rangle$ sur celle-ci et deux réels i_{min} et i_{max} , écrire une procédure déterminant un entier relatif i satisfaisant i.P = Q et $i_{min} \leqslant i \leqslant i_{max}$. Appelez-là babygiant(E,P,Q,min,max).
- 2. En déduire une procédure déterminant l'ordre d'un point connaissant un encadrement d'un multiple de l'ordre.
- 3. En déduire une procédure déterminant l'ordre d'un point sur une courbe elliptique sur un corps fini
- 4. Appliquer la procédure suivante à la courbe elliptique définie sur \mathbb{F}_{173} par

$$y^2 = x^3 + 146x + 33$$

et aux points P = (168, 133) et Q = (147, 74).

Exercice 4. L'objectif de cet exercice est d'avoir en stock des procédures permettant de calculer l'ordre d'un point sur une courbe elliptique E sur un corps \mathbb{K} .

- 1. Écrire une procédure déterminant l'ordre d'un point connaissant la factorisation d'un multiple de l'ordre.
- 2. En déduire une procédure déterminant l'ordre d'un point connaissant un multiple de l'ordre.
- 3. Appliquer les procédures précédentes à la courbe elliptique définie sur \mathbb{F}_{173} par

$$y^2 = x^3 + 146x + 33$$

et aux points P = (168, 133) et Q = (147, 74).