## CSE 1729:Principles of Programming

## Lecture 18: Huffman Coding, ADT and Stacks

Kaleel Mahmood

Department of Computer Science and Engineering

University of Connecticut

#### CODING ON A MODERN COMPUTER

- All data in a computer is maintained in memory cells that can hold one "bit" of data:
  - a 0 or a 1.
- Alphabet symbols (e.g., letters, numbers, etc.) are usually encoded with 8 bits (for 256 combinations).
- You could get by with less—say 7, but 8 is convenient for other reasons.

| Conversion Chart |          |       |     |       |         |          |       |     |       |         |          |       |     |       |         |          |       |     |       |
|------------------|----------|-------|-----|-------|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|
| Decimal          | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII |
| 0                | 00000000 | 000   | 00  | NUL   | 32      | 00100000 | 040   | 20  | SP    | 64      | 01000000 | 100   | 40  | @     | 96      | 01100000 | 140   | 60  |       |
| 1                | 00000001 | 001   | 01  | SOH   | 33      | 00100001 | 041   | 21  | 1     | 65      | 01000001 | 101   | 41  | A     | 97      | 01100001 | 141   | 61  | a     |
| 2                | 00000010 | 002   | 02  | STX   | 34      | 00100010 | 042   | 22  | *     | 66      | 01000010 | 102   | 42  | В     | 98      | 01100010 | 142   | 62  | b     |
| 3                | 00000011 | 003   | 03  | ETX   | 35      | 00100011 | 043   | 23  | #     | 67      | 01000011 | 103   | 43  | С     | 99      | 01100011 | 143   | 63  | c     |
| 4                | 00000100 | 004   | 04  | EOT   | 36      | 00100100 | 044   | 24  | \$    | 68      | 01000100 | 104   | 44  | D     | 100     | 01100100 | 144   | 64  | d     |
| 5                | 00000101 | 005   | 05  | ENQ   | 37      | 00100101 | 045   | 25  | %     | 69      | 01000101 | 105   | 45  | E     | 101     | 01100101 | 145   | 65  | e     |
| 6                | 00000110 | 006   | 06  | ACK   | 38      | 00100110 | 046   | 26  | &     | 70      | 01000110 | 106   | 46  | F     | 102     | 01100110 | 146   | 66  | f     |
| 7                | 00000111 | 007   | 07  | BEL   | 39      | 00100111 | 047   | 27  |       | 71      | 01000111 | 107   | 47  | G     | 103     | 01100111 | 147   | 67  | g     |
| 8                | 00001000 | 010   | 08  | BS    | 40      | 00101000 | 050   | 28  | (     | 72      | 01001000 | 110   | 48  | Н     | 104     | 01101000 | 150   | 68  | h     |
| 9                | 00001001 | 011   | 09  | HT    | 41      | 00101001 | 051   | 29  | )     | 73      | 01001001 | 111   | 49  | 1     | 105     | 01101001 | 151   | 69  | i     |
| 10               | 00001010 | 012   | 0A  | LF    | 42      | 00101010 | 052   | 2A  | *     | 74      | 01001010 | 112   | 4A  | J     | 106     | 01101010 | 152   | 6A  | j     |
| 11               | 00001011 | 013   | OB  | VT    | 43      | 00101011 | 053   | 2B  | +     | 75      | 01001011 | 113   | 4B  | K     | 107     | 01101011 | 153   | 6B  | k     |

#### Example: How would we write "hello" in ASCII binary?

- h = 01101000
- e = 01100101
- I = 01101100
- o = 01101111

How much data is required? Well every 1 or 0 is a bit.

Each letter requires 8 bits

Hello has 5 letters

So total is 40 bits

## Now consider a sequence of words...

## "Hello Kaleel everything edible?"



• You may say this sentence if we are having lunch together. What do you notice about the frequency of the letters?

• 27 letters and "e" appears 7 times so roughly 26% of the letters are e.

#### AN APPLICATION OF BINARY TREES: HUFFMAN CODING

- Consider the problem of digitally representing documents in English.
  - One straightforward approach: each letter is represented by an 8-bit sequence.
  - (This gives 256 "letters," enough for basic text.)
- Now consider the natural data compression problem:
  - We'd like to store documents using the least number of bits.
- If the documents are just random sequences of these 256 "letters" there's nothing you can do.
- However, in English text, for example, the letter "a" is far more common than the letter "z".
  - Perhaps we can exploit this by coding "a" using a shorter bit string, and "make up for this" by using a longer bit string for "z"?

#### VARIABLE-LENGTH ENCODING

- This suggests a variable-length encoding.
  - "Frequent" letters should get short encodings;
  - "Infrequent" letters will be stuck with the longer encodings
  - ...turns out this is a good idea!
- Problem: Some care is necessary...how do we "decode"?
  - If
    - 0 represents a
    - ∘ 1 represents e
    - o 01 represents c

we don't know how to decode "01"!

#### PREFIX-FREE CODES

- Solution: Prefix-free encoding--no "codeword" is a prefix of any other codeword.
- Scanning an encoded string left-to-right, one can decode in a unique fashion.
  - Why?
- Once a codeword is observed in the sequence, it cannot be the prefix of any other codeword; then you can decode with confidence!

## A PREFIX FREE CODE IN ACTION

- 0 represents a
- 11 represents b
- 100 represents c
- 101 represents d



#### PREFIX-FREE CODES CAN BE REPRESENTED AS BINARY TREES

 One natural way to represent a prefix-free code is as a binary tree where leaves are labelled with alphabet symbols.



Moving left in the tree corresponds to a 0; moving right a 1.

- 0 represents a
- 11 represents b
- 100 represents c
- 101 represents d

Decode: 110101



Decode: 110101



Decode: 110101

Letters: B



Decode: 110101

Letters: BA



Decode: 110101

Letters: BA



Decode: 110101

Letters: BA



Decode: 110101

Letters: BAD

 And we've reached the end of the sequence so we are done decoding.



# Why is having different length decode paths for different letters important?





- Recall that each time we traverse the tree, the time taken is proportional to the time it takes to reach a leaf node.
- If we make the leaf nodes (letters) that appear more frequently have shorter paths, it will take less time to decode.
- Basic concept: If you have to travel somewhere frequently, having it closer means quicker.

## GIVEN FREQUENCIES... WE WANT THE BEST TREE

- Consider frequencies for English:
  - "a" appears 8.1% of the time,
  - "b" 1.4%, ...
- Consider a long document D that exactly matches this distribution (8.1% of the letters are "a"s, etc.)
  - We want a code that minimizes the total length of the encoded document.
  - If we let frequency(L) denote the number of times the letter L appears, what is our goal?
- Goal: Find the code that minimizes

$$\text{Total Length} = \sum_{\text{letters } \ell} \text{codelength}(\ell) \cdot \text{frequency}(\ell)$$

#### DETERMINING THE OPTIMAL CODE... HUFFMAN'S IDEA

- Begin with each letter in its own tree.
  - The *weight* of the tree is the frequency of the letter.
- Find the two lightest trees.
  - Join them with a root above;
  - new weight is their sum.
- Repeat until a single tree emerges.
- Huffman proved that this tree is optimal:
  - it encodes any such document with the least number of bits.
  - Equivalently, it minimizes the average codelength, when symbols are drawn from the document at random.
  - (Note that it depends on the distribution of the input symbol.)



Step 1: Pick the smallest weighted tree and combine:





Step 1: Pick the smallest weighted tree and combine:



Step 2: Pick the smallest weighted tree and combine:



Step 2: Pick the smallest weighted tree and combine:



Step 3: Pick the smallest weighted tree and combine:



Step 3: Pick the smallest weighted tree and combine:



Step 4: Pick the smallest weighted tree and combine:



We'll then skip ahead to the final tree...



Final Tree





Final Step: Assign 1 and 0 to each branch.

## TRIES (OR PREFIX TREES)

- We have focused on binary trees, where each node has 0, 1, or 2 children.
- In principle, you can operate with trees of various branching factors.
- As an example, we consider tries, also called prefix trees, a data structure often used to maintain dictionary entries of fixed length.

#### THE COST OF TRIE OPERATIONS

- Roughly, the time taken to search a trie (answer a ismember? query) or insert grows linearly with the length of the key.
- This can be much worse than a binary search tree!
- However, for large sets of data of roughly the same length (e.g., an English dictionary) this can be a good solution.
- Note that no "balancing" is required (cf. our discussion of search trees).

## TRIES: EXAMPLES, AN INFORMAL DEFINITION

- Idea: Suppose set items are words over an alphabet.
  - English words are over the alphabet  $\{a, b, c, \dots, z, A, B, \dots, Z\}$
  - Positive integers are words over the alphabet  $\{0, 1, 2, ..., 9\}$
- In a trie over the alphabet A, each node may have up to |A| children.
- Words are "stored" at the end of the path they index.
- Thus, each leaf corresponds to a stored element.



A trie over the English alphabet containing A, to, tea, ted, ten, and inn.

#### IMPLEMENTING THE TRIE

- Imagine a trie for storing large numbers.
- One natural way to implement a node:

```
(trie0 trie1 ... trie9)
```

• Each node must store a (sub)trie for each numeral {0, 1, ..., 9}.

Any issues?

- Note that tries are often very sparse: a given node may often have only a few nonempty subtries.
- For this reason, we may choose the following implementation:

```
((0 . trie0) (1 . trie1) ... (9 . trie9))
```

where the subtries are left out if they are empty.

### AN EXAMPLE WITH THIS IMPLEMENTATION

• Then, the top node:

• Its leftmost child:



#### Abstract Data Types: Buying a Dog



- Let's say you want to buy a dog.
   Almost all potential dog buyers assume the following:
- 1. The dog can bark.
- 2. The dog can walk.
- 3. The dog can eat.
- 4. The dog can be petted (very important!)

# No dog buyer ever asks: What should the functionality of my dog be?



Why don't they ask this important question?

# No dog buyer ever asks: What should the functionality of my dog be?

- That is because the functionality of the dog is assumed!
- We assume that the dog can eat, walk and be petted because those are the built in dog functions we expect.

- In the field of computer science we have similar requirements for certain data structures.
- Without knowing the back-end or gritty details, we want certain data structures to have built in functionality.

#### ABSTRACT DATA TYPES

- Computer Scientists frequently organize their thinking about data types with the idea of an Abstract Data Type.
- An abstract data type is a high-level description of the functionality provided by a data type, without any reference to exactly how it is implemented.
- This "abstraction layer" hides implementation details: any implementation of an ADT can be "plugged in" to a computing infrastructure that requires it.

What abstract data type have we seen already?

Lists

Binary Trees

Tries

How are these data types related?

#### THE SET ADT

- Recall our discussion of the Set ADT.
- A Set datatype must offer two functions: insert(x, S) and ismember(x, S).
  - (It also provides a distinguished object called emptyset).
  - To fully describe the ADT, we describe the functions it provides and, more importantly, the semantics that these functions offer.
  - For Set, this is easy: ismember(x, S) returns True if insert(x, S) has ever been called, and False otherwise.
- Note that we have defined the behavior of these operations without specifying the implementation.

#### A RICHER SET ADT

- We've been discussing a very basic notion of the Set ADT.
- You could ask for much more:
  - Union $(S_1, S_2)$
  - Intersection $(S_1, S_2)$
  - $\blacksquare$  Delete $(x, S_1)$
- Producing an efficient implementation of such a rich set ADT is a deep mathematical issue: it was a longstanding research problem with fairly sweeping successes in the late 1990s.

## Stacks

- A container of objects, similar to a stack of coins or Pez dispenser.
- Objects can be inserted at any time.
- Only the top (last placed object) can be removed. Last-in-first out (LIFO).
- Pushing An object is added to the top of the stack.
- Popping Removing the top object (the last one added) from the stack.



## Simple Pushing and Popping Example



#### Stack Code in Python

```
∃class Stack:
         def init (self):
 2
 3
              #Keep track of the top of the stack
              self.topIndex = -1
 4
             #Python list to hold the data
              self.data = []
 6
         #Method to add an object to the stack
 8
         def push(self, object):
 9
              self.topIndex = self.topIndex + 1
10
              self.data.append(object)
11
12
13
         #Method to remove an object from the stack
         def pop(self):
14
15
             #Make sure that the stack is not empty
16
             if self.isEmpty() == True:
17
                  return None
18
              #Get the top object on the stack
19
             topObject = self.data[self.topIndex]
              self.data.pop(self.topIndex)
20
             #Reduce the index of the stack by 1
21
22
              self.topIndex = self.topIndex - 1
23
             #Return the top object
24
             return topObject
25
         #Check if the stack is empty
26
         def isEmpty(self):
27
             if self.topIndex < 0:</pre>
28
                  return True
29
              else:
                  return False
30
```

```
32
     #Make the stack
33
     s1 = Stack()
34
     #Add three elements to the stack
35
     s1.push('a')
36
     s1.push('b')
37
     s1.push('c')
38
39
     #Remove three elements from the stack
40
     print(s1.pop())
     print(s1.pop())
41
42
     print(s1.pop())
43
44
     #Now check if the stack is empty
     if s1.isEmpty() == True:
45
          print("The stack is now empty.")
46
```

#### **Code Output:**

C:\WINDOWS\system32\cmd.exe

```
c
b
a
The stack is now empty.
Press any key to continue . . .
```

#### IMPLEMENTING A STACK IN SCHEME

Stacks can (of course) be naturally implemented in terms of lists:

```
(define (push x S) (cons x S))
(define (top S) (car S))
(define (pop S) (cdr S))
(define (empty? S) (if (null? S) #t #f))
```

- This implementation seems hard to beat:
  - any of these operations requires a fixed number of procedure calls.



- A container of objects, similar to a line in a grocery store.
- Elements are inserted at the back and removed at the front. E.g. If you are in line first, you get served first.
  - FIFO- First in, first out.
  - Enqueue Insert an element at the back.
  - Dequeue Remove the element at the front.

## Simple Enqueue and Dequeue Example



Figure Source: https://en.wikipedia.org/wiki/FIFO\_(computing\_and\_electronics)#/media/File:Fifo\_queue.png

### IMPLEMENTING THE QUEUE ADT IN SCHEME

 We can naturally implement the queue ADT as a list in Scheme.

```
(define (enqueue x Q)
  (if (null? Q)
      (list x)
      (cons (car Q)
           (enqueue x (cdr Q)))))
(define (front Q) (car Q))
(define (empty? Q) (null? Q))
(define (dequeue Q) (cdr Q))
```

#### Figure Sources

- https://pbs.twimg.com/media/DoZ5YBVXsAEVAwg.jpg
- https://hips.hearstapps.com/hmgprod.s3.amazonaws.com/images/funny-dog-captions-1563456605.jpg
- https://dogecoin.com/assets/img/doge.png