10 minutes to Koalas

This is a short introduction to Koalas, geared mainly for new users. This notebook shows you some key differences between pandas and Koalas. You can run this examples by yourself on a live notebook https://mybinder.org/v2/gh/databricks/koalas/master?

<u>filepath=docs%2Fsource%2Fgetting_started%2F10min.ipynb</u>). For Databricks users, you can import <u>the current_ipynb</u> file

(https://raw.githubusercontent.com/databricks/koalas/master/docs/source/getting_started/10min.ipynb) and run it after installing Koalas (https://github.com/databricks/koalas#how-do-i-use-this-on-databricks).

Customarily, we import Koalas as follows:

```
In [1]:
```

```
import pandas as pd
import numpy as np
import databricks.koalas as ks
from pyspark.sql import SparkSession
```

Object Creation

Creating a Koalas Series by passing a list of values, letting Koalas create a default integer index:

```
In [2]:
s = ks.Series([1, 3, 5, np.nan, 6, 8])
In [3]:
s
Out[3]:
0
     1.0
1
     3.0
2
     5.0
3
     NaN
4
     6.0
5
     8.0
Name: 0, dtype: float64
```

Creating a Koalas DataFrame by passing a dict of objects that can be converted to series-like.

```
In [4]:
```

```
In [5]:
```

kdf

```
Out[5]:
```

```
        a
        b
        c

        10
        1
        100
        one

        20
        2
        200
        two

        30
        3
        300
        three

        40
        4
        400
        four

        50
        5
        500
        five

        60
        6
        600
        six
```

Creating a pandas DataFrame by passing a numpy array, with a datetime index and labeled columns:

```
In [6]:
```

```
dates = pd.date_range('20130101', periods=6)
```

In [7]:

```
dates
```

Out[7]:

In [8]:

```
pdf = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
```

In [9]:

pdf

Out[9]:

	Α	В	С	D
2013-01-01	-0.407291	0.066551	-0.073149	0.648219
2013-01-02	-0.848735	0.437277	0.632657	0.312861
2013-01-03	-0.415537	-1.787072	0.242221	0.125543
2013-01-04	-1.637271	1.134810	0.282532	0.133995
2013-01-05	-1.230477	-1.925734	0.736288	-0.547677
2013-01-06	1.092894	-1.071281	0.318752	-0.477591

Now, this pandas DataFrame can be converted to a Koalas DataFrame

```
In [10]:
```

```
kdf = ks.from_pandas(pdf)
```

In [11]:

```
type(kdf)
```

Out[11]:

databricks.koalas.frame.DataFrame

It looks and behaves the same as a pandas DataFrame though

In [12]:

kdf

Out[12]:

	Α	В	С	D
2013-01-01	-0.407291	0.066551	-0.073149	0.648219
2013-01-02	-0.848735	0.437277	0.632657	0.312861
2013-01-03	-0.415537	-1.787072	0.242221	0.125543
2013-01-04	-1.637271	1.134810	0.282532	0.133995
2013-01-05	-1.230477	-1.925734	0.736288	-0.547677
2013-01-06	1.092894	-1.071281	0.318752	-0.477591

Also, it is possible to create a Koalas DataFrame from Spark DataFrame.

Creating a Spark DataFrame from pandas DataFrame

In [13]:

```
spark = SparkSession.builder.getOrCreate()
```

In [14]:

```
sdf = spark.createDataFrame(pdf)
```

In [15]:

```
sdf.show()
                           В
                                          Cl
             A
D \mid
82187447085683
  -0.848735274668907|0.43727685786558224| 0.6326566086816865| 0.3
12860815784838
|-0.41553692955141575|-1.7870717259038067| |0.24222142308402184| |0.184|
25543462922973
  99483028402598
-1.2304766522352943 | -1.9257342346663335 | 0.7362879432261002 | -0.54
76765308367703
  1.0928943198263723 | -1.0712812856772376 | 0.31875224896792975 | -0.47
75906715060247
+----+
```

Creating Koalas DataFrame from Spark DataFrame. to_koalas() is automatically attached to Spark DataFrame and available as an API when Koalas is imported.

```
In [16]:
```

```
kdf = sdf.to_koalas()
```

In [17]:

kdf

Out[17]:

	Α	В	С	D
0	-0.407291	0.066551	-0.073149	0.648219
1	-0.848735	0.437277	0.632657	0.312861
2	-0.415537	-1.787072	0.242221	0.125543
3	-1.637271	1.134810	0.282532	0.133995
4	-1.230477	-1.925734	0.736288	-0.547677
5	1.092894	-1.071281	0.318752	-0.477591

Having specific <u>dtypes (http://pandas.pydata.org/pandas-docs/stable/basics.html#basics-dtypes)</u>. Types that are common to both Spark and pandas are currently supported.

```
In [18]:
kdf.dtypes

Out[18]:

A    float64
B    float64
C    float64
D    float64
dtype: object
```

Viewing Data

See the API Reference (https://koalas.readthedocs.io/en/latest/reference/index.html).

See the top rows of the frame. The results may not be the same as pandas though: unlike pandas, the data in a Spark dataframe is not *ordered*, it has no intrinsic notion of index. When asked for the head of a dataframe, Spark will just take the requested number of rows from a partition. Do not rely on it to return specific rows, use .loc or iloc instead.

```
In [19]:
```

```
kdf.head()
```

Out[19]:

	Α	В	С	D
0	-0.407291	0.066551	-0.073149	0.648219
1	-0.848735	0.437277	0.632657	0.312861
2	-0.415537	-1.787072	0.242221	0.125543
3	-1.637271	1.134810	0.282532	0.133995
4	-1.230477	-1.925734	0.736288	-0.547677

Display the index, columns, and the underlying numpy data.

Index(['A', 'B', 'C', 'D'], dtype='object')

You can also retrieve the index; the index column can be ascribed to a DataFrame, see later

```
In [20]:
kdf.index
Out[20]:
Int64Index([0, 1, 2, 3, 4, 5], dtype='int64')
In [21]:
kdf.columns
Out[21]:
```

In [22]:

```
kdf.to_numpy()
```

Out[22]:

```
array([[-0.40729126, 0.06655086, -0.07314879, 0.64821874], [-0.84873527, 0.43727686, 0.63265661, 0.31286082], [-0.41553693, -1.78707173, 0.24222142, 0.12554346], [-1.63727052, 1.13480992, 0.28253243, 0.13399483], [-1.23047665, -1.92573423, 0.73628794, -0.54767653], [ 1.09289432, -1.07128129, 0.31875225, -0.47759067]])
```

Describe shows a quick statistic summary of your data

In [23]:

```
kdf.describe()
```

Out[23]:

	Α	В	С	D
count	6.000000	6.000000	6.000000	6.000000
mean	-0.574403	-0.524242	0.356550	0.032558
std	0.945349	1.255721	0.291566	0.463350
min	-1.637271	-1.925734	-0.073149	-0.547677
25%	-1.230477	-1.787072	0.242221	-0.477591
50%	-0.848735	-1.071281	0.282532	0.125543
75%	-0.407291	0.437277	0.632657	0.312861
max	1.092894	1.134810	0.736288	0.648219

Transposing your data

In [24]:

```
kdf.T
```

Out[24]:

	0	1	2	3	4	5
Α	-0.407291	-0.848735	-0.415537	-1.637271	-1.230477	1.092894
В	0.066551	0.437277	-1.787072	1.134810	-1.925734	-1.071281
С	-0.073149	0.632657	0.242221	0.282532	0.736288	0.318752
D	0.648219	0.312861	0.125543	0.133995	-0.547677	-0.477591

Sorting by its index

```
In [25]:
```

```
kdf.sort_index(ascending=False)
```

Out[25]:

	Α	В	С	D
5	1.092894	-1.071281	0.318752	-0.477591
4	-1.230477	-1.925734	0.736288	-0.547677
3	-1.637271	1.134810	0.282532	0.133995
2	-0.415537	-1.787072	0.242221	0.125543
1	-0.848735	0.437277	0.632657	0.312861
0	-0.407291	0.066551	-0.073149	0.648219

Sorting by value

In [26]:

```
kdf.sort_values(by='B')
```

Out[26]:

	Α	В	С	D
4	-1.230477	-1.925734	0.736288	-0.547677
2	-0.415537	-1.787072	0.242221	0.125543
5	1.092894	-1.071281	0.318752	-0.477591
0	-0.407291	0.066551	-0.073149	0.648219
1	-0.848735	0.437277	0.632657	0.312861
3	-1.637271	1.134810	0.282532	0.133995

Missing Data

Koalas primarily uses the value <code>np.nan</code> to represent missing data. It is by default not included in computations.

```
In [27]:
```

```
pdf1 = pdf.reindex(index=dates[0:4], columns=list(pdf.columns) + ['E'])
```

In [28]:

```
pdf1.loc[dates[0]:dates[1], 'E'] = 1
```

In [29]:

```
kdf1 = ks.from_pandas(pdf1)
```

```
In [30]:
```

kdf1

Out[30]:

	Α	В	С	D	E
2013-01-01	-0.407291	0.066551	-0.073149	0.648219	1.0
2013-01-02	-0.848735	0.437277	0.632657	0.312861	1.0
2013-01-03	-0.415537	-1.787072	0.242221	0.125543	NaN
2013-01-04	-1.637271	1.134810	0.282532	0.133995	NaN

To drop any rows that have missing data.

In [31]:

```
kdf1.dropna(how='any')
```

Out[31]:

	Α	В	C	D	Е
2013-01-01	-0.407291	0.066551	-0.073149	0.648219	1.0
2013-01-02	-0.848735	0.437277	0.632657	0.312861	1.0

Filling missing data.

In [32]:

```
kdf1.fillna(value=5)
```

Out[32]:

	Α	В	С	D	Е
2013-01-01	-0.407291	0.066551	-0.073149	0.648219	1.0
2013-01-02	-0.848735	0.437277	0.632657	0.312861	1.0
2013-01-03	-0.415537	-1.787072	0.242221	0.125543	5.0
2013-01-04	-1.637271	1.134810	0.282532	0.133995	5.0

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

```
In [33]:
kdf.mean()

Out[33]:

A   -0.574403
B   -0.524242
C   0.356550
D   0.032558
dtype: float64
```

Spark Configurations

Various configurations in PySpark could be applied internally in Koalas. For example, you can enable Arrow optimization to hugely speed up internal pandas conversion. See PySpark Usage Guide for Pandas with Apache Arrow (https://spark.apache.org/docs/latest/sql-pyspark-pandas-with-arrow.html).

```
In [34]:
prev = spark.conf.get("spark.sql.execution.arrow.enabled") # Keep its default v
alue.
ks.set option("compute.default index type", "distributed") # Use default index
 prevent overhead.
import warnings
warnings.filterwarnings("ignore") # Ignore warnings coming from Arrow optimizat
ions.
In [35]:
spark.conf.set("spark.sql.execution.arrow.enabled", True)
%timeit ks.range(300000).to pandas()
493 ms ± 157 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [36]:
spark.conf.set("spark.sql.execution.arrow.enabled", False)
%timeit ks.range(300000).to pandas()
1.39 s \pm 109 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
In [37]:
ks.reset option("compute.default index type")
spark.conf.set("spark.sql.execution.arrow.enabled", prev) # Set its default val
```

Grouping

ue back.

By "group by" we are referring to a process involving one or more of the following steps:

- Splitting the data into groups based on some criteria
- Applying a function to each group independently
- · Combining the results into a data structure

In [38]:

In [39]:

```
kdf
```

Out[39]:

	Α	В	С	D
0	foo	one	1.028745	-0.804571
1	bar	one	0.593379	-1.592110
2	foo	two	0.051362	0.466273
3	bar	three	0.977622	-0.822670
4	foo	two	-1.105357	-0.027466
5	bar	two	-0.009076	0.977587
6	foo	one	0.643092	0.403405
7	foo	three	-1.451129	0.230347

Grouping and then applying the sum()

 $\underline{(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.groupby.GroupBy.sum.html\#databrick function to the resulting groups.}$

In [40]:

```
kdf.groupby('A').sum()
```

Out[40]:

```
    A
    C
    D

    bar
    1.561925
    -1.437193

    foo
    -0.833286
    0.267988
```

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

```
        A
        B

        one
        0.593379
        -1.592110

        bar
        three
        0.977622
        -0.822670

        two
        -0.009076
        0.977587

        one
        1.671837
        -0.401166

        foo
        three
        -1.451129
        0.230347

        two
        -1.053995
        0.438807
```

Plotting

See the Plotting (https://koalas.readthedocs.io/en/latest/reference/frame.html#plotting) docs.

```
In [42]:
```

```
In [44]:
kser = ks.Series(pser)
```

```
In [45]:
```

```
kser = kser.cummax()
```

```
In [46]:
```

```
kser.plot()
```

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x7feeb4b350b8>

On a DataFrame, the plot()

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.frame.DataFrame.plot.html#databricks method is a convenience to plot all of the columns with labels:

```
In [47]:
```

```
In [48]:
```

```
kdf = ks.from_pandas(pdf)
```

```
In [49]:
```

```
kdf = kdf.cummax()
```

In [50]:

kdf.plot()

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x7feebe266978>

Getting data in/out

See the Input/Output (https://koalas.readthedocs.io/en/latest/reference/io.html) docs.

CSV

CSV is straightforward and easy to use. See here

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.DataFrame.to csv.html#databricks.ko to write a CSV file and here

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.read_csv.html#databricks.koalas.read to read a CSV file.

```
In [51]:
```

```
kdf.to_csv('foo.csv')
ks.read_csv('foo.csv').head(10)
```

Out[51]:

	Α	В	С	D
0	0.976091	0.910572	-0.640756	0.034655
1	0.976091	0.910572	-0.150827	0.034655
2	0.976091	0.910572	0.796879	0.034655
3	0.976091	0.910572	0.849741	0.034655
4	0.976091	0.910572	0.849741	0.370709
5	0.976091	0.910572	0.849741	0.698402
6	0.976091	0.910572	1.217456	0.698402
7	0.976091	0.910572	1.217456	0.698402
8	0.976091	0.910572	1.217456	0.698402
9	0.976091	0.910572	1.217456	0.698402

Parquet

Parquet is an efficient and compact file format to read and write faster. See here

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.DataFrame.to_parquet.html#databrick to write a Parquet file and here

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.read_parquet.html#databricks.koalas.to read a Parquet file.

In [52]:

```
kdf.to_parquet('bar.parquet')
ks.read_parquet('bar.parquet').head(10)
```

Out[52]:

	Α	В	С	D
0	0.976091	0.910572	-0.640756	0.034655
1	0.976091	0.910572	-0.150827	0.034655
2	0.976091	0.910572	0.796879	0.034655
3	0.976091	0.910572	0.849741	0.034655
4	0.976091	0.910572	0.849741	0.370709
5	0.976091	0.910572	0.849741	0.698402
6	0.976091	0.910572	1.217456	0.698402
7	0.976091	0.910572	1.217456	0.698402
8	0.976091	0.910572	1.217456	0.698402
9	0.976091	0.910572	1.217456	0.698402

Spark IO

In addition, Koalas fully support Spark's various datasources such as ORC and an external datasource. See here

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.DataFrame.to_spark_io.html#databric to write it to the specified datasource and here

(https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.read_spark_io.html#databricks.koalas to read it from the datasource.

In [53]:

```
kdf.to_spark_io('zoo.orc', format="orc")
ks.read_spark_io('zoo.orc', format="orc").head(10)
```

Out[53]:

	Α	В	С	D
0	0.976091	0.910572	-0.640756	0.034655
1	0.976091	0.910572	-0.150827	0.034655
2	0.976091	0.910572	0.796879	0.034655
3	0.976091	0.910572	0.849741	0.034655
4	0.976091	0.910572	0.849741	0.370709
5	0.976091	0.910572	0.849741	0.698402
6	0.976091	0.910572	1.217456	0.698402
7	0.976091	0.910572	1.217456	0.698402
8	0.976091	0.910572	1.217456	0.698402
9	0.976091	0.910572	1.217456	0.698402