

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Patentschrift
⑯ DE 198 36 585 C 1

⑯ Int. Cl.⁷:
B 01 J 23/89

C01 B 3/58
B 01 D 53/62
C01 B 31/20

DE 198 36 585 C 1

⑯ Aktenzeichen: 198 36 585.3-41
 ⑯ Anmeldetag: 12. 8. 1998
 ⑯ Offenlegungstag: -
 ⑯ Veröffentlichungstag
 der Patenterteilung: 11. 5. 2000

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Patentinhaber:

Zentrum für Sonnenenergie- und
Wasserstoff-Forschung Baden-Württemberg (ZSW),
70565 Stuttgart, DE

⑯ Vertreter:

TER MEER STEINMEISTER & Partner GbR
Patentanwälte, 81679 München

⑯ Erfinder:

Plzak, Vojtech, Dr., 73207 Plochingen, DE

⑯ Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:

DE 42 38 640 A1
Applied Catalysis A: General 134 (1996) S.275-283;

⑯ Au/Fe₂O₃-Katalysatormaterialien, Verfahren zu deren Herstellung und deren Verwendung

⑯ Au/Fe₂O₃-Katalysatormaterial aus einem teilchenförmigen, co-katalytisch wirksamen Fe₂O₃-Trägermaterial mit darauf abgeschiedenen, metallischen Au-Clustern, die einen Durchmesser von weniger als 4,5 nm aufweisen, erhältlich durch
 a) Umsetzen eines wasserlöslichen Fe(III)-salzes in einem wässrigen Medium mit einer Base,
 b) Imprägnieren des dabei gebildeten, noch feuchten Hydroxidgels mit einer Lösung einer wasserlöslichen Au-Verbindung zur Abscheidung komplexierter Au-Cluster auf der Oberfläche des Hydroxidgels,
 c) Entfernen von Wasser von der Suspension des dabei gebildeten Reaktionsproduktes, und
 d) Unterziehen des getrockneten Reaktionsproduktes einer Kalzinierung bei Temperaturen zwischen 350 und 700°C.

Das erfindungsgemäße Katalysatormaterial eignet sich insbesondere zur selektiven Niedertemperatur-CO-Oxidation in Reformat-Wasserstoff, der als Brenngas für Polymer-Elektrolyt-Membran(PEM)-Brennstoffzellen eingesetzt wird.

DE 198 36 585 C 1

Beschreibung

Die vorliegende Erfindung betrifft Au/Fe₂O₃-Katalysatormaterialien aus einem teilchenförmigen, co-katalytisch wirksamen Fe₂O₃-Trägermaterial mit darauf abgeschiedenen, metallischen Au-Clustern, die einen Durchmesser von weniger als 4,5 nm aufweisen, verschiedene Verfahren zu deren Herstellung sowie deren Verwendung, insbesondere zur selektiven Niedertemperatur-CO-Oxidation in Reformat-Wasserstoff.

Der Gehalt an CO in Reformat-Wasserstoff aus einem Kohlenwasserstoff-Reformer beträgt ca. 5.000 ppm bzw. über 10.000 ppm bis 20.000 ppm unmittelbar hinter einem Methanol-Reformer. Bei Anwendung eines solchen Reformat-Wasserstoffs als Brenngas in Polymer-Elektrolyt-Membran (PEM)-Brennstoffzellen muß dieses CO fast vollständig, das heißt auf maximal ca. 30 ppm abgesenkt werden, um die überlicherweise eingesetzten Pt/Ru-C-Anoden der PEM-Brennstoffzelle nicht zu vergiften. Zur Absenkung des CO-Gehaltes in Reformat-Wasserstoff gibt es mehrere verfahrenstechnische Konzepte, von denen aber für mobile Anwendungen und kleine stationäre Anlagen die selektive CO-Oxidation aus Kosten- und Selektivitätsgründen, aber auch wegen der vergleichsweise hohen Raum-Zeit-Ausbeute derzeit bevorzugt wird.

Diese oxidative CO-Entfernung wird herkömmlicherweise in einem mehrstufigen Reaktor mittels bekannten Hochtemperatur-Katalysatoren, beispielsweise Pt/Al₂O₃, bei 200°C durchgeführt. Die Regelung eines solchen Reaktorsystems für die stete Gewährleistung eines restlichen CO-Gehaltes von etwa 30 ppm bei verschiedenen Lastzuständen der Brennstoffzelle ist jedoch äußerst aufwendig und kompliziert. Einer der Hauptgründe hierfür, welcher vor allem beim Übergang zu Schwachlasten mit damit verbundenen größeren Verweilzeiten auftritt, ist die zu den nachstehend gezeigten Reaktionsgleichungen (1) und (2) konkurrierende Retschiftreaktion (3), die beispielsweise durch schnelle Erhöhung der Sauerstoffzufuhr unter Verringerung der erwünschten Selektivität zurückgedrängt werden muß.

Es sind Katalysatormaterialien entwickelt worden, bei denen das Pt durch Ru oder ein anderes Pt-Gruppennmetall ersetzt worden ist, und welche im Temperaturbereich von 120 bis 150°C bei vergleichbarem Edelmetallgehalt die gleiche Aktivität und Selektivität aufweisen, wie das herkömmliche Pt/Al₂O₃-Katalysatormaterial.

Aus kinetischen und prozeßtechnischen Gründen ist es vorteilhaft, die CO-Grobreinigung im Temperaturbereich von 190 bis 230°C in einem mit herkömmlichen Pt/Al₂O₃-Pellets gefüllten, möglichst isotherm arbeitenden Festbettreaktor ablaufen zu lassen. Die zweite bzw. letzte Reinigungsstufe (CO-Einreinigung bei CO-Ausgangsgehalten von 1.000 bis 2.000 ppm) wird dann bei wesentlich niedrigeren Temperaturen, beispielsweise bei 120°C, mit den oben genannten Katalysatormaterialien durchgeführt.

Weiterhin ist vorgeschlagen worden, die CO-Einreinigung in den Arbeitsbereich der PEM-Brennstoffzelle, das heißt bei Temperaturen bis 80°C zu verschieben, wofür jedoch ein Niedertemperatur-CO-Oxidationskatalysator erforderlich ist.

Es ist bekannt, daß metalloxidgetragene Au-Katalysatoren auch in reduzierender Atmosphäre eine hohe katalytische Aktivität bei der Niedertemperatur-Oxidation von CO zeigen. So geht aus Journal of Catalysis 168 (1997) 125–127 hervor, daß ein auf Manganoxiden getragener Au-Katalysator (Au/MnO_x-Katalysator) zur selektiven Oxidation von CO in Wasserstoff eingesetzt werden kann. Die Herstellung des Au/MnO_x-Katalysators erfolgt durch Copräzipitation einer wässrigen Lösung von Tetrachlorogoldsäure und Mangannitrat mit einer wässrigen Lithiumcarbonatlösung, Trocknen und Kalzinieren der Copräzipitate an Luft bei 300°C. Die kalzinierte Probe besteht hierbei hauptsächlich aus metallischen Goldteilchen und MnCO₃. Nach Messung der katalytischen Aktivität für die CO-Oxidation in Wasserstoff während eines Tages trat eine Zersetzung des MnCO₃ auf unter Bildung kristalliner Manganoxide, MnO, Mn₃O₄ und Mn₂O₃. Begleitend trat eine Sinterung der Goldteilchen auf, wobei ein mittlerer Teilchendurchmesser von 2,8 nm erhalten wurde. Die CO-Umsatzrate eines solchen Katalysatormaterials ist jedoch relativ gering und für die praktische Anwendung nicht zufriedenstellend.

In Applied Catalysis A: General 134 (1996) 275–283 wird über die Niedertemperatur-Wassergas-Shiftreaktion auf durch Copräzipitation hergestellten Au/Fe₂O₃-Katalysatoren berichtet. Hieraus geht hervor, daß bei kleinerem Durchmesser der Goldteilchen eine höhere katalytische Aktivität resultiert. Die CO-Umsatzrate eines durch Copräzipitation hergestellten Au/Fe₂O₃-Katalysatormaterials ist jedoch ebenfalls nicht zufriedenstellend.

Die DE 42 38 640 A1 beschreibt Au/Fe₂O₃-Katalysatoren zur Hydrierung von CO und CO₂, welche ebenfalls durch Mischfällung einer Goldverbindung und eines Eisensalzes hergestellt werden.

Der vorliegende Erfindung liegt die Aufgabe zugrunde, ein Au/Fe₂O₃-Katalysatormaterial mit erhöhter Aktivität und Selektivität insbesondere für die Niedertemperatur-CO-Oxidation, und ausreichender Langzeitstabilität sowie Verfahren zu dessen Herstellung vorzusehen.

Diese Aufgabe wird durch ein Katalysatormaterial gemäß den Ansprüchen 1 und 3 sowie Verfahren gemäß den Ansprüchen 7, 8 und 9 gelöst. Vorteilhafte bzw. bevorzugte Ausgestaltungen des Erfindungsgegenstandes sind in den Unteransprüchen angegeben.

Gegenstand der Erfindung ist demnach ein Au/Fe₂O₃-Katalysatormaterial aus einem teilchenförmigen, co-katalytisch wirksamen Fe₂O₃-Trägermaterial mit darauf abgeschiedenen, metallischen Au-Clustern, die einen Durchmesser von weniger als 4,5 nm aufweisen, erhältlich durch

- Umsetzen eines wasserlöslichen Fe(III)-salzes in einem wässrigen Medium mit einer Base,
- Imprägnieren des dabei gebildeten, noch feuchten Hydroxidgeis mit einer Lösung einer wasserlöslichen Au-Ver-

bindung zur Ahscheidung komplexierter Au-Cluster auf der Oberfläche des Hydroxidgels.

- c) Entfernen von Wasser von der Suspension des dabei gebildeten Reaktionsproduktes, und
- d) Unterziehen des getrockneten Reaktionsproduktes einer Kalzinierung bei Temperaturen zwischen 350 und 700°C.

5

Gemäß einer bevorzugten Ausführungsform enthält dieses Katalysatormaterial weiterhin mindestens einen aus Al_2O_3 , Cr_2O_3 und MgO gewählten Fe_2O_3 -Sinterinhibitor.

Gegenstand der Erfindung ist weiterhin ein $\text{Au/Fe}_2\text{O}_3$ -Katalysatormaterial aus einem teilchenförmigen, co-katalytisch wirksamen Fe_2O_3 -Trägermaterial mit einem Gehalt an mindestens einem aus Al_2O_3 , Cr_2O_3 und MgO gewählten Fe_2O_3 -Sinterinhibitor und mit darauf abgeschiedenen, metallischen Au-Clustern, die einen Durchmesser von weniger als 4,5 nm aufweisen, erhältlich durch:

10

- i) gleichzeitiges Umsetzen eines wasserlöslichen $\text{Fe}(\text{III})$ -salzes, mindestens eines wasserlöslichen Salzes von Al, Cr, Mg und einer wasserlöslichen Au-Verbindung in einem wäßrigen Medium mit einer Base,
- ii) Entfernen von Wasser von der Suspension des dabei gebildeten Reaktionsproduktes und
- iii) Unterziehen des getrockneten Reaktionsproduktes einer Kalzinierung bei Temperaturen zwischen 350 und 700°C.

15

Das erfindungsgemäße Katalysatormaterial enthält vorzugsweise 2-8 Gew.-% Au, da bei einer solchen Goldbelegung die besten Resultate erzielt werden.

20

Weiterhin ist es erwünscht, daß das erfindungsgemäße Katalysatormaterial eine möglichst hohe spezifische Oberfläche aufweist, vorzugsweise von mindestens 50 m²/g gemäß der BET-Methode. Ferner weisen die Au-Cluster beim erfindungsgemäßen Katalysatormaterial einen möglichst hohen Dispersionsgrad auf, so daß die Au-Cluster vorzugsweise einen Durchmesser von weniger als 4 nm, weiter vorzugsweise von 1-3 nm besitzen.

25

Eine hohe spezifische Oxidoberfläche sowie ein hoher Dispersionsgrad der Au-Cluster sind unter kinetischen Gesichtspunkten besonders vorteilhaft, da der die Reaktionsgeschwindigkeit bestimmende Schritt bei der CO-Oxidation an der Gold-Eisenoxid-Grenzfläche stattfindet. Daher ist bei gleicher Au-Belegung der Dispersionsgrad des Goldes sehr wichtig im Hinblick auf die CO-Umsatzrate.

30

Hinsichtlich der CO-Selektivität der erfindungsgemäßen Katalysatormaterialien hat sich gezeigt, daß bei einer Temperaturniedrigung von beispielsweise 80 auf 20°C die Selektivität steigt. Dies läßt sich dadurch erklären, daß bei tiefen Temperaturen im allgemeinen CO stärker absorbiert wird als H_2 . Allerdings sinkt bei einer Temperaturniedrigung auch die Rate der CO-Oxidation.

35

Die erfindungsgemäßen $\text{Au/Fe}_2\text{O}_3$ -Katalysatormaterialien zeigen eine ausgezeichnete Langzeitstabilität. Beispielsweise zeigt das erfindungsgemäße Katalysatormaterial bei einwöchiger Lagerung unter realer Reformergasatmosphäre mit Sauerstoffspuren bei 80°C keine Veränderung. Die Gegenwart von 0,3 bis 1% Sauerstoff im Reformergas unterdrückt die Reduktion des Fe_2O_3 zu Fe_3O_4 sowie die Bildung von FeCO_3 .

35

Untersuchungen haben gezeigt, daß die CO-Oxidationsaktivität des erfindungsgemäßen $\text{Au/Fe}_2\text{O}_3$ -Katalysators bei vergleichbarer Goldpartikelgröße zwischen 2,5 und 4,5 nm um mindestens den Faktor 50 höher liegt als beim bekannten Au/MnO_x -Katalysator (siehe auch Beispiele).

40

Bei einer Ausführungsform des erfindungsgemäßen Verfahrens wird das Katalysatormaterial nicht durch Copräzipitation hergestellt, sondern es erfolgt zunächst eine Umsetzung eines wasserlöslichen $\text{Fe}(\text{III})$ -salzes in einem wäßrigen Medium mit einer Base unter Bildung eines Eisenoxidvorläufers, nämlich eines Eisenhydroxidgels, wobei in einem zweiten Schritt unmittelbar danach das noch feuchte Hydroxidgel mit einer Lösung einer wasserlöslichen Au-Verbindung imprägniert wird, um komplexierte Au-Cluster auf der Oberfläche des Hydroxidgels in feinster Verteilung abzuscheiden. Nach Entfernung von Wasser wird dann das getrocknete Reaktionsprodukt einer Kalzinierung bei Temperaturen zwischen 350 und 700°C unterzogen.

45

Das erfindungsgemäße Herstellungsverfahren erlaubt eine bessere, das heißt unabhängige Kontrolle der optimierten Vorstrukturen der beiden Reaktionskomponenten. So kann beispielsweise bei der ersten Füllung durch geeignete Temperatursteuerung über die Kornwachstumsrate der $\text{Fe}(\text{O})(\text{OH})_x$ -Vorläufermatrix der Gehalt an Oberflächenhydroxylgruppen und der Wasseradsorbate nicht nur im Hydroxidgel selbst, sondern letztendlich im vorgetrockneten Endprodukt eingestellt werden. Im Anschluß daran folgt die Belegung mit dem dissozierten, anionischen Au-Komplex, beispielsweise in Form eines $(\text{Au}(\text{Cl})_{4-x}(\text{OH})_x)^-$ -Komplexes bei Verwendung von Tetrachlorogoldsäure als wasserlösliche Au-Verbindung.

50

Erfindungsgemäß lassen sich durch dieses Verfahren der Hintereinanderfüllung viel kleinere Au-Cluster mit einem mittleren Durchmesser von weniger als 4,5 nm, insbesondere zwischen 1 und 3 nm, auf dem Fe_2O_3 -Trägermaterial fixieren als durch die bekannte Copräzipitation, bei der hestenfalls Goldinseln mit einem Durchmesser von etwa 4,5 nm erhalten werden. Der erfindungsgemäß erzielte, erhöhte Dispersionsgrad des Goldes ermöglicht eine CO-Umsatzsteigerung pro Gramm Gold um den Faktor 3 bis 5.

55

Gemäß einer modifizierten Ausführungsform des oben beschriebenen, erfindungsgemäßen Verfahrens erfolgt der erste Schritt des Umsetzens eines wasserlöslichen $\text{Fe}(\text{III})$ -salzes in Gegenwart mindestens eines wasserlöslichen Salzes von Al, Cr oder Mg, um ein Katalysatormaterial zu erhalten, das weiterhin mindestens einen aus Al_2O_3 , Cr_2O_3 und MgO gewählten Fe_2O_3 -Sinterinhibitor enthält.

60

Bei einer dritten Ausführungsform wird das $\text{Au/Fe}_2\text{O}_3$ -Katalysatormaterial mit einem Gehalt an mindestens einem aus Al_2O_3 , Cr_2O_3 und MgO gewählten Fe_2O_3 -Sinterinhibitor gemäß einem Verfahren hergestellt, das folgende Schritte umfaßt:

65

- i) gleichzeitiges Umsetzen eines wasserlöslichen $\text{Fe}(\text{III})$ -salzes, mindestens eines wasserlöslichen Salzes von Al, Cr, Mg und einer wasserlöslichen Au-Verbindung in einem wäßrigen Medium mit einer Base,

DE 198 36 585 C 1

- ii) Entfernen von Wasser von der Suspension des dabei gebildeten Reaktionsproduktes und
- iii) Unterziehen des getrockneten Reaktionsproduktes einer Kalzinierung bei Temperaturen zwischen 350 und 700°C.

5 Die Wirkung der nach dem Kalzinieren gehildeten und in die Fe_2O_3 -Kristallmatrix eingewachsenen Oxide Al_2O_3 , Cr_2O_3 oder MgO besteht darin, die langsame Versinterung des Hämatit ($\alpha\text{-Fe}_2\text{O}_3$)- bzw. Magnetit (Fe_3O_4)-Substrates sowie die Wanderung und Koagulation der Goldcluster während des Einsatzes des Katalysatormaterials zu verhindern. Hierbei wird erfahrungsgemäß die Verwendung von MgO als "Spacer" besonders bevorzugt, da hierbei während der Herstellung des Katalysatormaterials die beiden Fe- und Mg-Oxidvorläufer nicht getrennt voneinander vorliegen, sondern als eine Mg-Fe-Verbindung, beispielsweise als $\text{Mg}_6\text{Fe}_2\text{CO}_3(\text{OH})_{16} \cdot 4\text{H}_2\text{O}$ (Pyroaurit), zusammen mit amorphem Fe_2O_3 . Dadurch wird während der Kalzinierung eine sehr homogene Verunreinigung der beiden Oxide erreicht und die "Spacer"-Wirkung des MgO auf das Fe_2O_3 bzw. auf den MgFe_2O_4 -Vorläufer maximiert. Gleichzeitig wird schon während der Aufheizzeit des Kalzinierungsschrittes dadurch die Beweglichkeit der Au-Partikel auf der oxidischen Oberfläche eingeschränkt, wodurch sehr kleine Goldcluster konserviert werden. Weiterhin kann angenommen werden, daß das amorphe

10 MgO den katalytischen Synergieeffekt der molekularen Sauerstoffanregung bzw. -spaltung an der Fe_2O_3 -Oberfläche verstärkt. Schließlich hewirkt das Kohlendioxid, welches während der Kalzinierung bei etwa 350–400°C als Gas entweicht, die Aushildung einer sekundären Gasporenstruktur, was bei der anschließenden Bildung von Katalysator-Pellets oder bei der Herstellung eines verpreßten Katalysator-Liniegechlasses erwünscht ist.

15 Beim erfahrungsgemäßen Verfahren werden die Fällungs- und Imprägnierschritte vorzugsweise bei Temperaturen von 40–95°C, weiter vorzugsweise bei 60–85°C, durchgeführt.

20 Der pH-Wert bei den Fällungs- und Imprägnierschritten beträgt vorzugsweise 6–10, weiter vorzugsweise 7–9.

Als Basen eignen sich bekannte Metallhydroxide und/oder Metallcarbonate, wobei vorzugsweise NaOH und/oder Na_2CO_3 , insbesondere Na_2CO_3 , eingesetzt werden.

25 Die wasserlöslichen Salze von Al, Cr oder Mg werden vorzugsweise in einem Anteil von 0,1–3,0 Mol, weiter vorzugsweise 0,1–1,0 Mol, noch weiter vorzugsweise 0,1–0,5 Mol, pro Mol Au eingesetzt.

Als wasserlösliche Goldverbindungen eignen sich beispielsweise Tetrachlorogoldsäure oder Tetranitratogoldsäure, wobei Tetrachlorogoldsäure besonders bevorzugt ist. Als wasserlösliches $\text{Fe}(\text{III})$ -salz wird vorzugsweise $\text{Fe}(\text{NO}_3)_3$ verwendet, welches wahlweise Kristallwasser enthalten kann.

30 Die Kalzinierung erfolgt geeigneterweise bei Temperaturen zwischen 350 und 700°C, vorzugsweise zwischen 350 und 500°C, weiter vorzugsweise zwischen 350 und 400°C, wobei der zuletzt genannte Temperaturbereich besonders dann angewandt wird, wenn keine der genannten Sinterinhibitoren eingesetzt werden.

35 Das erfahrungsgemäße Katalysatormaterial eignet sich beispielsweise zur selektiven CO-Oxidation in Reformatt-Wasserstoff, zur Methanisierung, zur CO-Konvertierung oder zur oxidativen Entfernung von CO sowie von Kohlenwasserstoffen aus Luft. Besonders bevorzugt ist die Verwendung zur selektiven Niedertemperatur-CO-Oxidation in Reformatt-Wasserstoff für PEM-Brennstoffzellen. Hierbei kann das erfahrungsgemäße Katalysatormaterial gemäß herkömmlichen Verfahren zu Pellets verarbeitet oder zu einem Katalysator-Liniegechlass verpreßt werden.

40 Die nachfolgenden Beispiele erläutern die Erfindung.

Vergleichsbeispiel 1

40 Gemäß dem in Applied Catalysis A: General 134 (1996) 275–283 beschriebenen Verfahren werden 50,5 g $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ und 1,12 g $\text{HAuCl}_4 \cdot 3\text{H}_2\text{O}$ in 125 ml deionisiertem Wasser gelöst und zusammen mit einer 1 M Na_2CO_3 -Lösung unter intensivem Rühren zu 150 ml auf 80°C vorgewärmtes Wasser zugetropft. Der pH-Wert wird hierbei auf 7,9 bis 8,1 eingestellt und die Temperatur bei 80°C konstant gehalten. Nach ca. 30 Minuten ist die Fällung beendet und es wird noch etwa 45 Minuten nachgerührt. Nach der Abkühlung wird die Suspension filtriert und mehrmals mit warmem Wasser chloridfrei (Überprüfung durch AgNO_3 -Test) gewaschen. Anschließend wird der Filterkuchen über Nacht bei 80°C getrocknet und danach gemahlen.

45 Die Röntgenbeugungsaufnahme zeigt eine amorphe, dem α -hzw. $\gamma\text{-Fe}_2\text{O}_3$ verwandte Struktur. Die BET-Oberfläche beträgt ca. $170 \text{ m}^2/\text{g}$, wobei die mittleren Porendurchmesser einerseits unterhalb von 0,8 nm und andererseits ziemlich eng bei 1,8 nm liegen. Nach der Kalzinierung über 30 Minuten bei 400°C beträgt die BET-Oberfläche ca. $54 \text{ m}^2/\text{g}$. Die Röntgenbeugung zeigt eine halbkristalline $\alpha\text{-Fe}_2\text{O}_3$ -Phase (Hämatit). Der Goldpartikeldurchmesser kann hierbei mittels der Scherrer-Gleichung auf 4,5 nm abgeschätzt werden.

50 Die Probe enthält 3,2 Gew.-% Au (60%-iger Abscheidungsgrad), bezogen auf die wasserfreie Oxidmasse. Die kinetische CO-Umsatzmessung bei 80°C in einem Festbett-Mikroreaktor unter Differentialströmungshedingungen (Gasatmosphäre: 1% CO, 1% O_2 , 75% H_2 , Rest N_2) ergibt eine CO-Umsatzrate von $1,14 \cdot 10^{-3} \text{ Mol/s} \cdot \text{g} (\text{Au})$. Wie der Vergleich zu einem aus Journal of Catalysis 168 (1997) 125–127 bekannten Au/MnO_x -Katalysator (Referenz 1) in der nachfolgenden Tabelle zeigt, erweist sich die CO-Umsatzrate beim herkömmlichen $\text{Au}/\text{Fe}_2\text{O}_3$ -Katalysatormaterial zwar um mindestens den Faktor 25 größer, ist jedoch noch nicht zufriedenstellend.

Beispiel 1

60 Das Verfahren des Vergleichsbeispiels 1 wird wiederholt, mit der Ausnahme, daß die Fällung in Abwesenheit von Tetrachlorogoldsäure erfolgt. Nach der Fällung wird die Suspension unter Röhren auf 60°C gekühlt, und es werden innerhalb von 5 Minuten bei pH 8,0 tropfenweise 30 ml 0,1 molare Tetrachlorogoldsäurelösung zugegeben, mit Na_2CO_3 -Lösung abgepuffert und anschließend 30 Minuten nachgerührt. Die weitere Aufarbeitung erfolgt gemäß dem Vergleichsbeispiel 1.

65 Die BET-Oberfläche des völlig amorphen Pulvers nach dem Trocknen beträgt ca. $280 \text{ m}^2/\text{g}$. Die entsprechenden Katalysatordaten nach der Kalzinierung (ebenfalls 30 Minuten bei 400°C) sind in der nachfolgenden Tabelle angegeben.

DE 198 36 585 C 1

Wie zu erkennen, ist die Aktivität (Rate der CO-Oxidation pro Gramm Gold) des erfindungsgemäßen Katalysatormaterials gegenüber Referenz 1 und dem Vergleichsbeispiel 1 deutlich gesteigert.

Beispiel 2

35,9 g $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$, 22,8 g an $\text{Mg}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ und 1,59 g an $11\text{AuCl}_4 \cdot 3\text{H}_2\text{O}$ werden in 180 ml Wasser gelöst und diese Lösung zusammen mit 1 M Na_2CO_3 -Lösung zu einer Wasservorlage (400 ml) in gleicher Weise wie im Vergleichsbeispiel 1 beschrieben bei 85 bis 90°C und pH 7 zugetropft. Entsprechend den weiteren Schritten gemäß Vergleichsbeispiel 1 erhält man nach der Trocknung ein hellbraunes Pulver mit einer sehr amphoren Grundstruktur in der sich anteilmäßig das Pyroaurit ($\text{Mg}_6\text{Fe}_2\text{CO}_3(\text{OH})_{16} \cdot 4\text{H}_2\text{O}$) identifizieren lässt. Die Analyse des Zersetzungsvorläufers in der TGA-Apparatur unterstützt das Vorhandensein dieser Verbindung. Nach der Kalzinierung (30 Minuten bei 400°C) bleibt trotz des Überschusses von Fe_2O_3 das Pulver röntgenographisch amorph, wie auch die hohe spezifische (BET)-Oberfläche von $190 \text{ m}^2/\text{g}$ in der letzten Zeile der folgenden Tabelle bestätigt. Die Aktivität des so hergestellten Katalysatorpulvers ist mit der Aktivität des nach der Imprägniermethode hergestellten Katalysators aus Beispiel 1 vergleichbar.

Tabelle

	System	Au-Gehalt	Durchmes- ser der Au- Partikel	Spezifische Oberfläche (BET)	Phasen nach Röntgenbeug- ung	Rate ^a mMol CO/s·g(Au)
		Gew.-%	nm	m^2/g		
Referenz 1	Au/MnO_x	5	2,8	nicht gemessen	$\text{Mn}_3\text{O}_4 + \text{Rest}$ MnCO_3	0,05 b
Vergleichs- beispiel 1	$\text{Au}/\text{Fe}_2\text{O}_3$	3,2	4,5	54	$\alpha\text{-Fe}_2\text{O}_3$	1,14
Beispiel 1	$\text{Au}/\text{Fe}_2\text{O}_3$	2,3	2,5	60	$\alpha\text{-Fe}_2\text{O}_3$	5,7
Beispiel 2	$\text{Au}/\text{Fe}_2\text{O}_3$ mit MgO	2,3	< 4	190	amorph	4,6

a) bei 80°C nach 2 h in 1 % CO, 1 % O_2 , 75 % H_2 , Rest N_2

b) 98 % H_2 , kein N_2

Patentansprüche

1. Au/ Fe_2O_3 -Katalysatormaterial aus einem teilchenförmigen, co-katalytisch wirksamen Fe_2O_3 -Trägermaterial mit darauf abgeschiedenen, metallischen Au-Clustern, die einen Durchmesser von weniger als 4,5 nm aufweisen, erhältlich durch

- a) Umsetzen eines wasserlöslichen $\text{Fe}(\text{III})$ -salzes in einem wässrigen Medium mit einer Base,
- b) Imprägnieren des dabei gebildeten, noch feuchten Hydroxidgels mit einer Lösung einer wasserlöslichen Au-Verbindung zur Abscheidung komplexierter Au-Cluster auf der Oberfläche des Hydroxidgels,
- c) Entfernen von Wasser von der Suspension des dabei gebildeten Reaktionsproduktes, und
- d) Unterziehen des getrockneten Reaktionsproduktes einer Kalzinierung bei Temperaturen zwischen 350 und 700°C.

2. Au/ Fe_2O_3 -Katalysatormaterial nach Anspruch 1, enthaltend weiterhin mindestens einen aus Al_2O_3 , Cr_2O_3 und MgO gewählten Fe_2O_3 -Sinterinhibitor, dadurch erhältlich, daß in Schritt a) mindestens ein wasserlösliches Salz von Al, Cr oder Mg zugesetzt wird.

3. Au/ Fe_2O_3 -Katalysatormaterial aus einem teilchenförmigen, co-katalytisch wirksamen Fe_2O_3 -Trägermaterial mit einem Gehalt an mindestens einem aus Al_2O_3 , Cr_2O_3 und MgO gewählten Fe_2O_3 -Sinterinhibitor und mit darauf abgeschiedenen, metallischen Au-Clustern, die einen Durchmesser von weniger als 4,5 nm aufweisen, erhältlich durch:

- i) gleichzeitiges Umsetzen eines wasserlöslichen $\text{Fe}(\text{III})$ -salzes, mindestens eines wasserlöslichen Salzes von Al, Cr, Mg und einer wasserlöslichen Au-Verbindung in einem wässrigen Medium mit einer Base,
- ii) Entfernen von Wasser von der Suspension des dabei gebildeten Reaktionsproduktes und

DE 198 36 585 C 1

50

55

60