Formális Nyelvek - 2.

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Nyelvek sokféle módon előállíthatók, például **logikai formulával, strukturális rekurzióval, algoritmussal, matematikai gépekkel, vagy produkciós rendszerekkel**.

A produkciós rendszerekkel való előállítás egyik módja a **nyelvek generálása grammatikával**.

Generatív grammatika - Definíció

Egy G generatív grammatikán (grammatikán vagy (generatív) nyelvtanon) egy (N,T,P,S) négyest értünk, ahol

- ullet N és T diszjunkt ábécék, a **nemterminális** és a **terminális** szimbólumok ábécéi;
- $S \in N$ a **kezdőszimbólum** (axióma),
- P véges halmaza (x,y) alakú rendezett pároknak, ahol $x,y \in (N \cup T)^*$ és x legalább egy nemterminális szimbólumot tartalmaz.

A *P* halmaz elemeit **átírási szabályoknak** (röviden szabályoknak) vagy **produkcióknak** nevezzük.

Az (x,y) jelölés helyett használhatjuk az $x \to y$ jelölést is, ahol a \to szimbólum nem eleme az $(N \cup T)$ halmaznak.

Példa Generativ Grammatikára

Legyen G = (N, T, P, S) egy generatív grammatika, ahol

 $N = \{S\}$ a nemterminálisok ábécéje,

 $T = \{a, b\}$ a terminálisok ábécéje, és

$$P = \{S \to aSb, \quad S \to ab, \\ S \to ba\} \quad \square$$

a szabályok halmaza.

Közvetlen levezetési lépés - Definíció

Legyen G = (N, T, P, S) egy generatív grammatika és legyen $u, v \in (N \cup T)^*$.

Azt mondjuk, hogy a v szó **közvetlenül** vagy **egy lépésben levezet-hető** az u szóból G-ben és ezt

$$u \Longrightarrow_G v$$

módon jelöljük, ha $u=u_1xu_2$, $v=u_1yu_2$, $u_1,u_2\in (N\cup T)^*$ és $x\to y\in P$.

Példa közvetlen levezetésre

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S\}$ a nemterminálisok ábécéje, $T=\{a,b\}$ a terminálisok ábécéje és $P=\{S\to aSb,S\to ab,S\to ba\}$ a szabályok halmaza.

Legyen u = aaaSbbb.

Akkor v=aaaaSbbb közvetlenül (egy lépésben) levezethető u-ból, azaz

$$u \Longrightarrow_G v,$$

ugyanis $u_1 = aaa$, $u_2 = bbb$, x = S, y = aSb és $S \rightarrow aSb \in P$.

Levezetés - Definíció

Legyen G = (N, T, P, S) egy generatív grammatika és legyen $u, v \in (N \cup T)^*$.

Azt mondjuk, hogy a v szó k **lépésben levezethető** az u szóból G-ben, $k \geq 1$, ha létezik olyan $u_1, \ldots, u_{k+1} \in (N \cup T)^*$ szavakból álló sorozat, amelyre $u = u_1, \ v = u_{k+1}$, valamint $u_i \Longrightarrow_G u_{i+1}$, $1 \leq i \leq k$ teljesül.

A v szó **levezethető** az u szóból G-ben, ha vagy u=v, vagy létezik olyan $k\geq 1$ szám, hogy a v szó az u szóból k lépésben levezethető.

Levezetés

Legyen G = (N, T, P, S) egy tetszőleges generatív grammatika és legyen $u, v \in (N \cup T)^*$.

Azt mondjuk, hogy a v szó levezethető az u szóból G-ben és ezt

$$u \Longrightarrow_G^* v$$

módon jelöljük, ha vagy u=v vagy valamely $z\in (N\cup T)^*$ szóra fennáll, hogy $u\Longrightarrow_G^*z$ és $z\Longrightarrow_Gv$ teljesül.

⇒* a ⇒ reláció reflexív tranzitív lezártját jelöli.

A ⇒ reláció tranzítív lezártját ⇒ +-val jelöljük.

A kezdőszimbólumból levezethető sztringeket mondatformának nevezzük.

A generált nyelv - Definíció

Legyen G = (N, T, P, S) egy tetszőleges generatív grammatika. A G grammatika által generált L(G) nyelv alatt az

$$L(G) = \{w | S \Longrightarrow_G^* w, w \in T^*\}$$

szavakból álló halmazt értjük.

Azaz, a G grammatika által generált nyelv a T^* halmaz azon elemeiből áll, amelyek levezethetők a G grammatika S kezdőszimbólumából.

Példa

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S\}$, $T=\{a,b\}$ és $P=\{S\to aSb,S\to ab,S\to ba\}$.

Akkor $L(G) = \{a^n abb^n, a^n bab^n | n \ge 0\}.$

Példa egy levezetésre:

$$S \Longrightarrow_G aSb \Longrightarrow_G aaSbb \Longrightarrow_G aababb.$$

Példa

Legyen G = (N, T, P, S) egy generatív grammatika, ahol $N = \{S, X, Y\}$, $T = \{a, b, c\}$. Legyen

$$P = \{S \to abc, \quad S \to aXbc, \\ Xb \to bX, \quad Xc \to Ybcc, \\ bY \to Yb, \quad aY \to aaX, \quad aY \to aa\}.$$

Akkor $L(G) = \{a^n b^n c^n | n \ge 1\}.$

Példa egy levezetésre:

$$S \Longrightarrow_G aXbc \Longrightarrow_G abXc \Longrightarrow_G abYbcc \Longrightarrow_G aYbbcc \Longrightarrow_G aabbcc.$$

Ekvivalens Grammatikák és Nyelvek

Két generatív grammatikát (gyengén) **ekvivalensnek** nevezünk, ha ugyanazt a nyelvet generálják.

Két nyelvet **gyengén ekvivalensnek** mondunk, ha legfeljebb az üres szóban különböznek.

A Chomsky-féle hierarchia

A G = (N, T, P, S) generatív grammatikát i-típusúnak mondjuk, i = 0, 1, 2, 3, ha P szabályhalmazára teljesülnek a következők:

- i = 0: Nincs korlátozás.
- i=1: P minden szabálya $u_1Au_2 \to u_1vu_2$ alakú, ahol $u_1,u_2,v\in (N\cup T)^*$, $A\in N$, és $v\neq \varepsilon$, kivéve az $S\to \varepsilon$ alakú szabályt, feltéve, hogy P-ben ilyen szabály létezik. Ha P tartalmazza az $S\to \varepsilon$ szabályt, akkor S nem fordul elő P egyetlen szabályának jobboldalán sem. \square
 - \bigcirc
- i = 2: P minden szabálya $A \to v$ alakú, ahol $A \in N$ és $v \in (N \cup T)^*$.
- i=3: P minden szabálya vagy $A\to uB$ vagy $A\to u$, alakú, ahol $A,B\in N$ és $u\in T^*.$

Példa

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S\}$, $T=\{a,b\}$ és $P=\{S\to aSb,S\to ab,S\to ba\}$.

Ez a grammatika 2-típusú (környezetfüggetlen).

A Chomsky-féle hierarchia - folytatás

Legyen i=0,1,2,3. Egy L nyelvet i-típusúnak mondunk, ha i-típusú grammatikával generálható.

Az i-típusú nyelvek osztályát \mathcal{L}_i -vel jelöljük.

A 0-típusú grammatikát **mondatszerkezetű grammatikának**, az 1-típusú grammatikát **környezetfüggő grammatikának**, a 2-típusú grammatikát **környezetfügget-len grammatikának** is nevezzük. A 3-típusú grammatikát **reguláris** vagy **véges állapotú** grammatikának is mondjuk.

A 0,1,2,3-típusú nyelvek osztályait rendre **rekurzíven felsorolható**, **környezetfüggő**, **környezetfüggetlen**, valamint **reguláris nyelvosztálynak** is mondjuk.

A Chomsky-féle hierarchia - folytatás

Nyilvánvaló, hogy $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_0$ és $\mathcal{L}_1 \subseteq \mathcal{L}_0$.

A későbbiekben megmutatjuk, hogy

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
.

Megjegyzés: Könnyen észrevehetjük, hogy a \mathcal{L}_2 és a \mathcal{L}_1 nyelvosztályok közötti, a tartalmazásra vonatkozó reláció nem azonnal látható a megfelelő grammatikák definíciójából.

Generatív grammatikák egy normálformája

Tétel:

Minden G = (N, T, P, S) generatív grammatikához meg tudunk konstruálni egy vele ekvivalens és azonos típusú G' = (N', T, P', S) generatív grammatikát úgy, hogy P' egyetlen szabályának baloldalán sem fordul elő terminális szimbólum.

A bizonyítás vázlata:

- 2- és 3-típusú grammatikák esetében az állítás azonnal adódik a definíciókból.
- Legyen G = (N, T, P, S) 0-típusú vagy 1-típusú grammatika.

Megkonstruáljuk a G' = (N', T, P', S) grammatikát.

Tekintsük az $N'=N\cup \bar{T}$ halmazt, ahol $\bar{T}=\{\bar{a}\mid a\in T\}$. Képezzük P'-t a P szabályhalmazból úgy, hogy minden $a\in T$ szimbólumot \bar{a} szimbólumra cserélünk minden egyes olyan szabály mindkét oldalán P-ben, ahol a előfordul, továbbá az így kapott szabályhalmazhoz adjuk hozzá minden $a\in T$ szimbólumra a $\bar{a}\to a$ szabályt.

Álljon P' az így kapott szabályokból.

(1) Megmutatjuk, hogy $L(G) \subseteq L(G')$.

Azonnal látható, hogyha $u=a_1\ldots a_n\in L(G)$, ahol $a_i\in T$, $1\leq i\leq n$, akkor $v=\bar{a}_1\ldots \bar{a}_n$ levezethető G'-ben. Ekkor a $\bar{a}_i\to a_i$ szabályok alkalmazásával u is levezethető G'-ben.

Az üres szó esetében nyilvánvaló, hogyha $\varepsilon \in L(G)$, akkor $\varepsilon \in L(G')$ is teljesül.

(2) Megmutatjuk, hogy $L(G') \subseteq L(G)$.

Definiáljuk a h homomorfizmust úgy, hogy $h(\bar{a})=a$ minden $\bar{a}\in \bar{T}$ szimbólumra és h(x)=x minden $x\in (N\cup T)$ szimbólumra.

Ha $u \Longrightarrow_{G'} v$, akkor fennáll $h(u) \Longrightarrow_G^* h(v)$ is. Ha a v szó levezethető az u szóból valamely $\bar{a} \to a$ szabály alkalmazásával, akkor h(u) = h(v). Egyébként az $u \Longrightarrow_{G'} v$ levezetés P valamely szabályának alkalmazását kívánja meg, és így $h(u) \Longrightarrow_G h(v)$ szintén fennáll. Vagyis, $u \Longrightarrow_{G'}^* v$ teljesülése maga után vonja $h(u) \Longrightarrow_G^* h(v)$ teljesülését. Azaz, ha $S \Longrightarrow_{G'}^* w$, ahol $w \in T^*$, akkor $S = h(S) \Longrightarrow_G^* h(w) = w$.

Nyelvosztályok zártsági tulajdonságai

Az unió, a konkatenáció, valamint a lezárás (a *) műveleteket együttesen **reguláris** műveleteknek nevezzük.

Tétel:

Az \mathcal{L}_i , i=0,1,2,3 nyelvosztályok mindegyike zárt a reguláris műveletekre nézve.

Tétel:

Az \mathcal{L}_i , i = 0, 1, 2, 3 nyelvosztályok mindegyike zárt a reguláris műveletekre nézve.

Bizonyításvázlat:

Legyen L és L' két i-típusú nyelv, ahol i=0,1,2,3. Tegyük fel, hogy L és L' rendre generálhatók az i-típusú G=(N,T,P,S) és G'=(N',T',P',S') grammatikákkal. Az általánosság megszorítása nélkül feltehetjük, hogy G és G' a korábbiakban ismertetett normálformában adott (a szabályok baloldalán nincs terminális szimbólum), valamint hogy $N\cap N'=\emptyset$.

Unió:

- (1) i = 0, 2, 3 esetében legyen $S_0 \notin (N \cup N')$ és legyen $G_u = (N \cup N' \cup \{S_0\}, T \cup T', P \cup P' \cup \{S_0 \to S, S_0 \to S'\}, S_0).$
- (2) Nyilvánvaló, hogy G_u egyazon típusú, mint G és G'.
- (3) Az is azonnal látható, hogy $L(G) \cup L(G') \subseteq L(G_u)$.
- (4) $L(G_u) \subseteq L(G) \cup L(G')$ szintén fennáll, mivel N és N' diszjunktak és az $S_0 \to S$, $S_0 \to S'$ szabályok garantálják, hogy $L(G_u)$ egyetlen elemének levezetésekor sem használhatunk szabályt mind a P és mind a P' szabályhalmazból.

Az i=1 és $\varepsilon \notin (L \cup L')$ esetben megkonstruálunk egy G_u grammatikát az előbbi módon.

Ha i=1 és $\varepsilon\in(L\cup L')$, akkor először tekintjük az $L_1=L-\{\varepsilon\}$ és az $L_2=L'-\{\varepsilon\}$ nyelveket. Tegyük fel, hogy a G_1 és a G_2 grammatikák 1-típusúak, valamint rendre generálják az G_1 és az G_2 nyelveket. Ezután az előbbieknek megfelelően megkonstruálunk egy G_2 grammatikát, amely az G_1 0 nyelvet generálja. Majd bevezetünk egy új G_2 1 kezdőszimbólumot és a G_2 1 szabályhalmazához hozzáadjuk az G_1 2 nyelvet generálja.

Konkatenáció:

Tekintsük először az i=0,2 eseteket. Legyen $S_0\notin (N\cup N')$ és $G_c=(N\cup N'\cup \{S_0\}, T\cup T', P\cup P'\cup \{S_0\to SS'\}, S_0).$

- (2) Nyilvánvaló, hogy G_c egyazon típusú, mint G és G'.
- (3) Az is azonnal látható, hogy $L(G)L(G') \subseteq L(G_c)$.

Konkatenáció - folytatás

(4) Megmutatjuk, hogy $L(G_c) \subseteq L(G)L(G')$. Tekintsük az

$$S_0 \Longrightarrow u_1 \Longrightarrow u_2 \Longrightarrow \ldots \Longrightarrow u_m = u, \ m \ge 1$$

 G_c -beli levezetést, ahol $u \in (T \cup T')^*$.

j-szerinti indukcióval megmutatjuk, hogy

$$u_j = v_j v_j'$$

alakú valamely v_j és v_j' -re, ahol $S \Longrightarrow_G^* v_j$ és $S' \Longrightarrow_{G'}^* v_j'$ teljesül. A j=1 esetben az állítás triviális, hiszen $u_1 = SS'$ kell, hogy legyen. Tegyük fel, hogy az állítás igaz u_j -re. Akkor viszont igaz u_{j+1} -re is, mivel N és N' diszjunktak, terminális szimbólum nem fordul elő a baloldalon, és ahhoz, hogy az u_{j+1} szót megkapjuk, vagy a v_j , vagy a v_j' mondatformát át kell írnunk. Ez alapján az $L(G_c)$ minden eleme egyben eleme az L(G)L(G') nyelvnek is.

Konkatenáció - folytatás

- (5) Legyen i = 1.
- (a) Ha $\varepsilon \notin L$ és $\varepsilon \notin L'$ akkor G_c -t az előzőeknek megfelelően konstruáljuk meg.
- (b) Ha $\varepsilon \in LL'$, akkor először vegyük az $L_1 = L \{\varepsilon\}$ és $L_2 = L' \{\varepsilon\}$ nyelveket, és konstruáljuk meg G_c -t a fenti módon. Az LL' nyelv megegyezik a következő nyelvek valamelyikével:

$$L_1L_2 \cup L_2$$
, $L_1L_2 \cup L_1$, $L_1L_2 \cup L_1 \cup L_2 \cup \{\epsilon\}$,

attól függően, hogy $\varepsilon \in L$ és $\varepsilon \notin L'$, vagy fordítva, vagy ε mindkét nyelv eleme.

Mindegyik esetben $LL' \in \mathcal{L}_1$ következik abból, hogy $L_1L_2 \in \mathcal{L}_1$ és \mathcal{L}_1 zárt az unió műveletére nézve.

Konkatenáció - folytatás

Legyen i = 3.

A P szabályhalmazból megkonstruálunk egy P_1 szabályhalmazt úgy, hogy minden $A \to u$ alakú szabályt, ahol $A \in N$ és $u \in T^*$ felcserélünk egy $A \to uS'$ alakú szabályra $(S' \notin (N \cup T))$ és a többi szabályt változatlanul hagyjuk. A

$$G_c = (N \cup N', T \cup T', P_1 \cup P', S)$$

grammatika nyilvánvalóan 3-típusú és generálja az L(G)L(G') nyelvet.

Megmutatjuk, hogy $L(G_c) \subseteq L(G)L(G')$. A G_c grammatikában minden terminális szóhoz vezető levezetés $S \Longrightarrow_{G_c}^* wS' \Longrightarrow_{G_c}^* ww'$ alakú, ahol ahhoz, hogy a w szót előállítsuk P-beli szabályokat, ahhoz, hogy a w' szó elemeit előállítsuk, P'-beli szabályokat kell használnunk. Azaz, $L(G_c) \subseteq L(G)L(G')$. A fordított irányú tartalmazás könnyen látható.

A lezárás:

(1) Legyen i=2 és legyen $S_0 \notin N$. Akkor

$$G_* = (N \cup \{S_0\}, T, P \cup \{S_0 \to \varepsilon, S_0 \to SS_0\}, S_0)$$

generálja az L^* nyelvet.

(2) Legyen i=3. Definiáljuk a P_* szabályhalmazt úgy, hogy $A\to uS$ eleme P_* -nak minden $A\to u$ P-beli szabályra, ahol $u\in T^*$. Akkor

$$G_* = (N \cup \{S_0\}, T, P_* \cup P \cup \{S_0 \to \varepsilon, S_0 \to S\}, S_0)$$

grammatika generálja az L^* nyelvet.

A lezárás - folytatás

(3) Legyen i=0,1 és $\varepsilon \notin L$. Tegyük fel, hogy $S_0,S_1\notin N$.

Legyen

$$G_* = (N \cup \{S_0, S_1\}, T, P \cup \{S_0 \to \varepsilon, S_0 \to S, S_0 \to S_1 S\} \cup \{S_1 a \to S_1 S a \mid a \in T\} \cup \{S_1 a \to S a \mid a \in T\}, S_0)$$
 grammatika.

Legyen $L_* = L(G_*)$. Könnyen látható, hogy $L^* \subseteq L_*$. Megmutatjuk a fordított irányú tartalmazást.

A lezárás - folytatás

$$G_* = (N \cup \{S_0, S_1\}, T, P \cup \{S_0 \to \varepsilon, S_0 \to S, S_0 \to S_1 S\} \cup \{S_1 a \to S_1 S a \mid a \in T\} \cup \{S_1 a \to S a \mid a \in T\}, S_0)$$

Megmutatjuk, hogy $L(G_*) \subseteq L^*$.

Tekintsük az

$$S_0 \Longrightarrow_{G_*} u_1 \Longrightarrow_{G_*} u_2 \Longrightarrow_{G_*} \ldots \Longrightarrow_{G_*} u_m = u, \ m \geq 1$$

levezetést, ahol $u \in T^*$.

Ha az első lépésben az $S_0 \to \varepsilon$ szabályt használjuk, akkor m=1 és $u_m=\varepsilon \in L^*$.

Ha $u_1 = S$, akkor $u \in L^*$, egyébként $u = S_1 S$ és minden j-re, $1 \le j \le m$ indukcióval j szerint megmutatható, hogy u_j alakja a következő két alak közül valamelyik:

- (a) $S_1v_1...v_k$, $k \ge 1$, ahol $S \Longrightarrow_G^* v_l$, l = 1,...,k és a $v_2,...,v_k$ szavak mindegyike terminális szimbólummal kezdődik; vagy
- (b) $v_1 \dots v_k$, $k \ge 0$, ahol $S \Longrightarrow_G^* v_l$, $l = 0, \dots, k$ és a v_2, \dots, v_k szavak mindegyike terminális szimbólummal kezdődik.

Az $u=S_1S$ eset az (a) esetnek felel meg. A G_* szabályait megvizsgálva láthatjuk, hogy u_{j+1} vagy (a), vagy (b) formájú, ha u_j rendelkezik ezzel a tulajdonsággal. azaz (a) vagy (b) formájú. Azaz, $L(G_*) \subseteq L^*$.

A lezárás - folytatás

Ha i=0,1 és $\varepsilon\in L$, akkor először veszünk egy G_1 grammatikát, ahol $L(G_1)=L-\{\varepsilon\}$.

- (a) i=1 esetében elhagyjuk az $S \to \varepsilon$ szabályt.
- (b) i=0 esetben a következőképpen járunk el: Jelölje P_{ε} azon $u\to \varepsilon$ alakú szabályok halmazát, amelyek elemei P-nek.

Akkor legyen $P_1 = (P - P_{\varepsilon}) \bigcup_u P_u$, ahol $P_u = \{uX \to X, Xu \to X \mid X \in (N \cup T), u \to \varepsilon \in P\}$.

 G_1 típusa ugyanaz marad, mint G típusa és $(L - \{\varepsilon\})^* = L^*$.

Korollárium

Ha az L nyelv i-típusú, i = 0, 1, 2, 3, akkor L^+ is az.

Néhány további tulajdonság

- (1) A \mathcal{L}_i , ahol i=0,1,2 is zárt a megfordítás (tükrözés) műveletére nézve.
- (2) \mathcal{L}_i , ahol i = 0,2 zárt a homomorfizmus és \mathcal{L}_1 zárt a ε -mentes homomorfizmus műveletére nézve.
- (3) Minden véges nyelv eleme \mathcal{L}_3 -nak.