Particle spectrograph

Wave operator and propagator

_	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{ ext{#2}}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1-\alpha}^{\#1}$	$\sigma_{1-\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_1^{\sharp 1} \dagger^{lpha eta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1+k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	0	0	0	0
$\sigma_{1}^{\#2}$ † lphaeta	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1+k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$\frac{6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0
$\tau_1^{\#1} \dagger^{\alpha\beta}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$-\frac{ik(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{k^2 \left(6 k^2 \left(2 r_1 + r_5\right) + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 \left(2 r_1 + r_5\right) \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_1^{\!\#1}\dagger^lpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$ au_1^{#2} \dagger^{lpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

$\omega_{2}^{\#1}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
			k^2
$f_2^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}_{2}$ $f_{2}^{\#1}$	<u>†1</u>	$\frac{i k t_1}{\sqrt{2}}$	0
- 1	$-\alpha\beta$	$-\alpha\beta$	$\alpha \beta \chi$
	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_{2}^{#1} +^{\alpha \beta \chi}$
$f_{0}^{#2} \omega_{0}^{#1}$	_		

Source constraints			
SO(3) irreps	6O(3) irreps Fundamental fields Multiplicitie		
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1	
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1	
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3	
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3	
$\tau_{1^+}^{\#1\alpha\beta} + ik\sigma_{1^+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3	
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$		
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$		
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$		
$\frac{\tau_{2+}^{\#1}\alpha\beta} - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right.$	5	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$		
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$		
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$		
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$		
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$		
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$		
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$		
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$		
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$		
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$		
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}{}_{\delta}) == 0$		
Total constraints/gau	ge generators:	16	

Quadratic (free) action		
S==		
$\iiint (\frac{1}{6} (6t_1 \omega_{\alpha}^{\alpha i} \omega_{i\theta}^{\theta} + 6f^{\alpha\beta} \tau_{\alpha\beta} + 6\omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 12t_1 \omega_{\alpha\theta}^{\theta} \partial_i f^{\alpha i} + 12t_1$		
$\omega_{_{\prime}}^{\theta}\partial_{}'f^{\alpha}_{\alpha}$ -6 $t_{1}\partial_{_{\prime}}f^{\theta}_{}\partial_{}'f^{\alpha}_{\alpha}$ -6 $t_{1}\partial_{_{\prime}}f^{\alpha\prime}\partial_{\theta}f^{\alpha}_{}\theta$ +		
$12 t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f_{i}^{\theta} + 4 t_1 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 4 t_2 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} -$		
$4t_1\partial_\alpha f_{_{l\theta}}\partial^\theta f^{\alpha l}+2t_2\partial_\alpha f_{_{l\theta}}\partial^\theta f^{\alpha l}-4t_1\partial_\alpha f_{_{\theta l}}\partial^\theta f^{\alpha l}-$		
$t_2 \partial_{\alpha} f_{\theta i} \partial^{\theta} f^{\alpha i} + 2 t_1 \partial_i f_{\alpha \theta} \partial^{\theta} f^{\alpha i} - t_2 \partial_i f_{\alpha \theta} \partial^{\theta} f^{\alpha i} +$		
$4 t_1 \partial_{\theta} f_{\alpha_i} \partial^{\theta} f^{\alpha_i} + t_2 \partial_{\theta} f_{\alpha_i} \partial^{\theta} f^{\alpha_i} + 2 t_1 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha_i} -$		
$t_2 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 2 (t_1 + t_2) \omega_{\alpha i \theta} (\omega^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i}) +$		
$2 \omega_{\alpha\theta i} ((t_1 - 2t_2) \omega^{\alpha i\theta} + 2(2t_1 - t_2) \partial^{\theta} f^{\alpha i}) -$		
$8 r_1 \partial_{\beta} \omega_{\alpha i \theta} \partial^{\theta} \omega^{\alpha \beta i} + 4 r_1 \partial_{\beta} \omega_{\alpha \theta i} \partial^{\theta} \omega^{\alpha \beta i} -$		
$16r_1\partial_\beta\omega_{\iota\theta\alpha}\partial^\theta\omega^{\alpha\beta\iota}-4r_1\partial_\iota\omega_{\alpha\beta\theta}\partial^\theta\omega^{\alpha\beta\iota}+$		
$4r_1\partial_\theta\omega_{\alpha\beta_l}\partial^\theta\omega^{\alpha\beta_l}+4r_1\partial_\theta\omega_{\alpha_l\beta}\partial^\theta\omega^{\alpha\beta_l}+$		
$6r_5\partial_i\omega_{\theta}^{\ \kappa}\partial^{\theta}\omega_{\alpha}^{\alpha i}-6r_5\partial_{\theta}\omega_{i\kappa}^{\ \kappa}\partial^{\theta}\omega_{\alpha}^{\alpha i}-6r_5\partial_{\alpha}\omega_{\alpha}^{\alpha i\theta}$		
$\partial_{\kappa}\omega_{i\theta}^{\kappa} + 12r_{5}\partial^{\theta}\omega_{\alpha}^{\alpha i}\partial_{\kappa}\omega_{i\theta}^{\kappa} + 6r_{5}\partial_{\alpha}\omega_{\theta}^{\alpha i\theta}\partial_{\kappa}\omega_{\theta}^{\kappa}$		
$12 r_5 \partial^{\theta} \omega_{\alpha}^{\alpha l} \partial_{\kappa} \omega_{\theta_{l}}^{\kappa}))[t, x, y, z] dz dy dx dt$		

Massive and massless spectra

Massive particle			
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))}>0$		
Polarisations:	3		
Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$		
Spin:	1		
Parity:	Even		

Massive particle		
Pole residue:	$-\frac{1}{r_1} > 0$	
Polarisations:	5	
Square mass:	$-\frac{t_1}{2r_1} > 0$	
Spin:	2	
Parity:	Odd	

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$