

Principles of Genetics

ในทางชีววิทยา เชลแต่ละเชลในพืชชั้นสูงและสัตว์ประกอบด้วยนิวเคลียส (nucleus) 1 เชล แต่ละนิวเคลียสประกอบด้วยโครโมโชม (chromosome) จำนวนหนึ่ง โดยโครโมโชมจะอยู่กันเป็นคู่มาจากพ่อและแม่อย่างละเส้น โครโมโชมแต่ละเส้นจะมียืน (gene) เป็นตัวกำหนดลักษณะถ้ายทอดทางพันธุกรรมของสิ่งมีชีวิต ในขณะที่มีการจับคู่ กันของโครโมโชมอาจเกิด การใชว้เปลี่ยน (crossover) ซึ่งเป็นการที่ยืนจากโครโมโชมพ่อ แม่สลับเปลี่ยนกัน ทำให้เกิดโครโมโชมใหม่ขึ้น 2 คู่ และในขณะที่เชลแบ่งตัวจะเกิด กระบวนการ คัดลอกโครโมโชม (chromosome copying) ซึ่งบางครั้งจะมีการเปลี่ยนแปลง ของยืนที่มาจากยืนพ่อแม่ เกิดเป็นยืนที่ไม่เคยมีมาก่อน เราเรียกการเกิดยีนลักษณะนี้ว่า การกลายพันธ์ (mutation)

เราอาจกล่าวใต้ว่า การคัดเลือกโดยธรรมชาติ (Natural Selection) เกิดจาก การเปลี่ยนแปลงทางพันธุกรรมอันเป็นผลมาจาก *การใขวัเปลี่ยน (crossover)* ของ ลักษณะทางพันธุกรรม และ *การกลายพันธุ์ (mutation)*

2110773-10 2/2566

Natural Selection

- Charles Darwin ได้อธิบายการสืบทอดของสิ่งมีชีวิตด้วยกฎ Evolution through Natural Selection :-
 - สิ่งมีชีวิตมีแนวโน้มที่จะสืบทอดลักษณะพิเศษให้ลูกหลาน
 - ธรรมชาติจะผลิตสิ่งมีชีวิตที่มีลักษณะพิเศษแตกต่างไปจากเดิม
 - สิ่งมีชีวิตที่เหมาะสมที่สุด (fittest) หรือที่มีลักษณะพิเศษที่ธรรมชาติพอใจมากที่สุด มีแนวโน้มที่จะ มีลูกหลานมากกว่าตัวที่ไม่เหมาะสม ดังนั้น ประชากรจะโน้มเอียงไปทางตัวที่เหมาะสม
 - การเปลี่ยนแปลงจะสะสมไปเรื่อยและเกิด species ใหม่ที่เหมาะกับสภาพแวดล้อม เมื่อเวลาผ่านไป นานๆ

2110773-10 2/2566

Genetic Algorithm (GA)

- · Goldberg and Holland, 1988
- GA has its core idea from Darwin's theory of natural evolution "survival of the fittest"
- one of random-based evolutionary algorithms (EAs)
- search-based optimization technique GA wint optimize
- optimization → "how to find the best value for k that maximizes the performance of kNN classifier?"
- in order to find a solution, random changes applied to the current solutions to generate new ones.

2110773-10 2/2566

4

How GA works

- GA works on a population consisting of some solutions
- population size is the number of solutions
- · each solution is called individual/ hypothesis
- each individual solution has a chromosome
- chromosome is represented as a set of parameters (features) that defines the individual
- each chromosome has a set of genes
- each gene is represented by somehow such as a string of 0s and 1s

2110773-10 2/2566

Genetic Operators

การไขวัเปลี่ยน (Crossover) เป็นการสร้างสายอักขระลูกหลาน 2 สาย จากสายอักขระพ่อแม่ 2 สาย โดยการคัดลอกบิตจากสายอักขระพ่อแม่ตามตำแหน่งที่ กำหนดโดยหน้ากากใขวัเปลี่ยน (Crossover Mask) การไขวัเปลี่ยนทำได้หลายวิธีดัง ตัวอย่างที่แสดงข้างล่าง อาทิ การใขวัเปลี่ยน 1 ตำแหน่ง (Single-point Crossover) การ ใขวัเปลี่ยน 2 ตำแหน่ง (Two-point crossover) การใขวัเปลี่ยนยูนิฟอร์ม (Uniform Crossover) เพื่อให้เกิดความของผลาย (Diversty)

• การกลายพันธุ์ (Mutation) เป็นการสร้างการเปลี่ยนแปลงต่อสายอักขระ ลูกหลาน โดยสุ่มเลือกเปลี่ยนคำบิตใดบิตหนึ่งดังแสดงในตัวอย่างข้างล่าง

2110773-10 2/2566

GA Parameters

- Fitness function for ranking candidate patterns
- Stopping Criteria:
 - ➤ Maximum of hypotheses' fitness values >= fitness threshold
 - ➤ Max fitness does not change after many generations
 - ➤ Reach fixed number of iterations of learning process
- Size of population p to be maintained
- Ratio of population r to be replaced at each generation
- Mutation rate m

2110773-10 2/2566 10

12 Fitness Function and Selection

โดยทั่วไป โครโมโซมจะถูกเลือกแบบสุ่มเพื่อสร้างประชากรรุ่นใหม่ด้วยค่าความ น่าจะเป็นตามสมการที่แสดงใน GA Algorithm ข้างต้น ซึ่งวิธีการเลือกดังกล่าว เรียกว่า Fitness Proportionate selection หรือ Roulette wheel selection เราจะสังเกตได้ว่า ฟังก์ชันค่าความเหมาะ (fitness function) จะเป็นตัวกำหนดความน่าจะเป็นที่โครโมโซมจะ อยู่รอดในประชากรรุ่น (generation) ถัดไป ซึ่งโครโมโซมที่มีค่าความเหมาะสูงจะมีโอกาส อยู่รอดมากกว่าโครโมโซมเส้นอื่น ๆ แต่ก็ไม่ได้หมายความว่า โครโมโซมที่มีค่าความเหมาะ สูงสุดจะถูกเลือกทุกครั้ง ขึ้นอยู่กับการสุ่มค่า

2

ุ หน้าชายีน เพลือ นเดิม ไม่ฝ่อบหลา กาล 18

Crowding เป็นปรากฏการณ์ที่สมาชิกบางตัวในประชากร ซึ่งมีค่าความเหมาะสูง ถูก reproduce อย่างรวดเร็ว ทำให้ความหลากหลาย (diversity) ของประชากรลดลง การ แก้บัญหา Crowding สามารถกระทำได้โดย

- เปลี่ยนวิธีการเลือกความเหมาะ (Altering fitness selection) โดยใช้ Tournament Selection หรือ Rank Selection
- ใช้วิธีการ Fitness sharing พมายถึง ลดค่าความเหมาะของสมาชิกใน ประชากรรุ่นหนึ่งที่มีความคล้ายกัน (the fitness of a member is reduced by the presence of similar members) ลอโจกรส์ก็จะกาส่มเข้ามาใหม่

2110773-10 2/2566

Tournament selection – เลือกสมาชิก 1 คู่จากประชากรรุ่นปัจจุบันแบบสุ่ม แล้ว
จึงสุ่มเลือกระหว่างสมาชิกคู่นั้น โดยสมาชิกตัวที่มีค่าความเหมาะสูงกว่าจะถูกสุ่มเลือกด้วย
ค่าความน่าจะเป็นที่กำหนดใว้ล่วงหน้า p ส่วนสมาชิกตัวที่มีค่าความเหมาะค่ำกว่าจะถูก
สุ่มเลือกด้วยความน่าจะเป็น (1-p) คนที่ถูกเลือกอื่น p ไม่ถูกเลือกที่ปีน 1-p ซึ่ง p เทมาก็อั

Rank selection – เป็นวิธีที่ใช้ควบคุมการเลือกโครโมโซมโดยไม่สนใจค่าความ เหมาะของโครโมโซมว่ามีค่าเท่าไร แต่จะใช้ค่าความเหมาะเพียงแค่จัดลำดับเรียง โครโมโซมตามค่าความเหมาะที่มีค่าสูงสุดจนถึงค่ำสุด จากนั้น กำหนดค่าคงที่ ρ เป็น ความน่าจะเป็นที่โครโมโซมลำดับที่ 1 จะถูกเลือก และเป็นความน่าจะเป็นที่โครโมโซมลำดับที่ 2 จะถูกเลือกเมื่อโครโมโซมลำดับที่ 1 ไม่ถูกเลือก และเป็นความน่าจะเป็นที่โครโมโซมลำดับที่ 3 จะถูกเลือกเมื่อลำดับที่ 1 และ 2 ไม่ถูกเลือก เรื่อยไปจนกระทั่งถึง ลำดับสุดท้ายซึ่งจะถูกเลือกเมื่อลำดับก่อนหน้าไม่ถูกเลือกเลย ดังนั้น ความน่าจะเป็นที่โครโมโซมลำดับที่ r จะถูกเลือก เท่ากับ $\rho(1-\rho)^{-1}$; r=1,2,3,...

2110773-10 2/2566 14

	Hypothesis	Selection	P(h,)	Rank	Probability of Rank(h _i)
	h ₁	4	0.4	1	=p = 0.667
	h ₂	3	0.3	2	=p(1-p) = 0.667x0.333 = 0.222
	h ₃	2	0.2	3	$= p(1-p)^{2} = 0.667(0.333)^{2} = 0.074$
	h ₄	1	0.1	4	$=p(1-p)^3 = 0.667(0.333)^3 = 0.025$
	h ₅	0	0	5	=p(1-p)4 = 0.667(0.333)4 = 0.012 กามัลย์ แต่ชีโอ
2110773-1	.0 2/2566 No.	omalir Hy	pothesis	พ้อยๆ ถณ่	รอดไปรุ่นสม ใ ล้อก 15

	(No) Credit = Te	~,)	Mutahus No	_N _a	5			
$H_{j} = \angle 20 - 30k$	Vo, Tes, Male, 3	0-39>;	$F(H_1) = \frac{2}{0}$	+0+2+0 +1+1+2+1 +(Ann Yes)	= 4 < 1;	lon crossover		
	Exam	ole GA	Appli	cation	filmess F(H ₁) = N/M		
ตัวอย่างชุดฯ	ข้อมูลสอนการจำแนก	าประเภทลักษณ	เะลูกค้าที่สนใจ	Life Insuranc	e Promotion	n		
Trainir Instan	•	Life Insurance Promotion	Credit Card Insurance	Sex	Age			
1	30-40K	Yes	Yes	Male	30-39			
2	30-40K	Yes	No	Female	40-49			
3	50-60K	Yes	No	Female	30-39			
4	20-30K	No	No	Female	50-59			
5	20-30K	No	No	Male	20-29			
. 6	30-40K *	No	No	Male	40-49			
2110773-10 2/2566						16		

 $H_3 = 2^{9}$, No, Male, 40-49 > 7 FCH₃ $) = \frac{0+3+2+1}{0+2+1+1+1} = \frac{6}{5} > 1$ With a crossover

4

Fitness function

 $F(E_i) = N / (M+1)$

where

N คือ จำนวนตัวอย่างในชุดข้อมูลสอนซึ่งอยู่ ในคลาสเดียวกับ E_i ที่มีค่าคุณลักษณะตรงกัน

M คือ จำนวนตัวอย่างในชุดข้อมูลสอนซึ่ง ไม่อยู่ในคลาสเดียวกับ E_i ที่มีค่าคุณลักษณะ ตรงกัน

<u>หมายเหตุ</u> เพื่อป้องกันการหารด้วยค่าศูนย์ จึงบวกหนึ่ง ที่ตัวหารใบฟังก์ซับความเหมาะ

2110773-10 2/2566

กฎการคัดเลือกสมาชิกของประชากรรุ่นถัดไป

- สมาชิกที่มีค่าความเหมาะน้อยกว่า ค่าขีดแบ่ง (threshold) ที่กำหนดไว้มีค่าเท่ากับ 1 จะถูก นำไป crossover หรือ mutation
- ถ้าสมาชิกทุกตัวมีค่าความเหมาะไม่น้อยกว่าค่าขีด แบ่ง จะสุ่มเลือกสมาชิกเพื่อไป crossover หรือ mutation
- ในประชากรทุกรุ่น จะต้องมีสมาชิกที่อยู่ในคลาส "Yes" และ "No" อย่างละ 2 ตัว

17

กำหนดขนาดประชากรแต่ละรุ่นเท่ากับ 4 ตัว Income Range = ? \rightarrow don't care

สมาชิกประชากรรุ่นแรก

An Initial Population for Supervised Genetic Learning

Population Element	Income Range	Class Life Insurance Promotion	Credit Card Insurance	Sex	Age
1	20-30K	No	Yes	Male	30-39
2	30-40K	Yes	No	Fernale	50-59
3	?	No	No	Male	40-49
4	30-40K	Yes	Yes	Male	40-49

2110773-10 2/2566

ตัวอย่างการคำนวณ F(E₁)

- . Income Range = 20-30K ตรงกับ ตัวอย่างสอนที่ 4 และ 5
- Credit Card Insurance = Yes ไม่ตรง กับตัวอย่างสอนใดๆ
- Sex = Male ตรงกับตัวอย่างสอนที่ 5
- Age = 30-39 ไม่ตรงกับตัวอย่างสอนใดๆ
- จะได้ว่า ค่า N = 2+0+2+0 = 4

- Income Range = 20-30K ไม่ตรงกับ ตัวอย่างสอนใดๆ
- Credit Card Insurance = Yes ตรงกับ ตัวอย่างสอนที่ 1
- Sex = Male ตรงกับตัวอย่างสอนที่ 1
- Age = 30-39 ตรงกับตัวอย่างสอนที่ 1 และ 3
- จะได้ว่า ค่า M = 0+1+1+2 = 4

2110773-10,2/2566

การไขว้เปลี่ยนเพื่อสร้าง สมาชิกลักษณะใหม่

- F(E1) = 4/5 = 0.80, F(E2) = 6/7 = 0.86; F(E1) and F(E2) < 1

 → crossover
- F(E3) = 6/5 = 1.20, F(E4) = 5/5 = 1.00; F(E3) and F(E4) >= 1

Crossover un umbrias class lanel

Population Element	Income Range	1/2	Credit Card Insurance	Sex	Age		Population Element	Income Range	Life Insurance Promotion	Credit Card Insurance	Sex	Age
#1	20-30K	No	Yes	Male	30-39	\	#2	30-40K	Yes	Yes	Male	30-39
						X.						
Population	Income	Life Insurance	Credit Card	Sex	Age	$/ \setminus $	Population	Income	Life Insurance	Credit Card	<u></u>	
	D	Doministra	Insurance			Age	\ \	Element	Range	Promotion	Insurance	Sex
Element	Range	Promotion	Ilisulatice						1 1011100011	moundine		

2110773-10 2/2566

_