Math 154 HW3

Neo Lee

04/26/2023

Problem 1.

Proposition 1. Any tree with $n \ge 2$ vertices has at least 2 leaves.

Proof. Let $P = (v_1, \ldots, v_k)$ be the longest path in any arbitrary tree T with $n \geq 2$ vertices. Then, we know that all the neighbors of v_1 and v_k must be in P. Assume for the sake of contradiction that v_1 has more than one neighbor, let v_2, v_r be two of them, then $v_2, v_r \in P$, and there would be a cycle $(v_1, v_2, \ldots, v_r, v_1)$, which contradicts the definition of tree. Hence, v_1 has only one neighbor. Similarly, v_k has only one neighbor. Therefore, v_1 and v_k are the leaves of T.

Problem 2.

Proposition 2. If G is a graph in which there is a unique path between each pair of vertices, then G is a tree.

Proof. We seek to prove that G is connected and acyclic.

Firstly, G is connected because there is a path between each pair of vertices.

Then, assume for the sake of contradiction that G has a cycle $C = (v_1, \ldots, v_k, \ldots, v_1)$. Then, there are two paths between v_1 and v_k with the one path being the first half of C and the other path being the other half of C, which contradicts the assumption that there is a unique path between each pair of vertices.

Therefore, G is a tree.

Problem 3.

(a)

Proposition 3. Any forest with n vertices and k components has exactly n-k edges.

Proof. Let T_1, \ldots, T_k be the components of the forest. Then, each T_i is a tree, and has n_i vertices and $n_i - 1$ edges.

Therefore, the forest has $\sum_{i=1}^{k} n_i = n$ vertices and $\sum_{i=1}^{k} n_i - 1 = \left(\sum_{i=1}^{k} n_i\right) - k = n - k$ edges. \square

(b)

Proposition 4. Any n-vertex graph with at least n edges contains a cycle.

Proof. Let an arbitrary graph G with n vertices.

- Case 1: If G is connected. Assume for the sake of contradiction that G has no cycle. Then, G is a tree, and has n-1 edges, which contradicts the assumption that G has at least n edges. Hence, G must have a cycle.
- Case 2: If G is not connected. Let G_1, \ldots, G_k be the components of G. Now assume for the sake of contradiction that all components G_i have $|E(G_i)| < |V(G_i)|$. However, notice that all components are disjoint, so $\sum_{i=1}^k |E(G_i)| \ge \sum_{i=1}^k |V(G_i)|$, which is impossible under our contrary assumption. Hence, there must exist G_j such that $|E(G_j)| \ge |V(G_j)|$. Then, consider only that component G_j , and with the same argument from Case 1, there is a cycle in G_j .

Problem 4.

(a)

- (b) Height of the BFS tree is 3, and height of the DFS tree is 5.
- (c) Radius of the graph is 2.
- (d) Diameter of the graph is 3.