EXAM 1 STUDY GUIDE JACOB HUESMAN, 07 FEB 2016

1 Chapter 5. Proof Techniques

1.1 Problem 5.3

Theorem

If n is an integer, then $n^2 + 3n + 2$ is an even integer.

Lemma

- (a) An even number multiplied by an odd number is even.
- (b) A given integer that is even or odd, remains even or odd when summed with an even integer.

Proof

We start by factoring $n^2 + 3n + 2$ to get n(n+3) + 2.

Suppose n is even, then (n+3) must be odd, as

$$(n+3) = (2k+3) : k \in \mathbb{Z} = 2k+1 \tag{1}$$

For $n \in 2\mathbb{Z}$ the expression n(n+3)+2 is then an even number by lemma a and b.

Now suppose n is odd, then (n+3) must be even as

$$(n+3) = (2k+1+3) : k \in \mathbb{Z} = 2k \tag{2}$$

For $n \in 2\mathbb{Z} + 1$ the expression n(n+3) + 2 is then an even number by lemma a and b.

We have proven that the expression is even when n is even and n is odd.

The union of the two sets is the integer set, so we conclude through proof by cases the following.

If n is an integer, then $n^2 + 3n + 2$ is an even integer.

1.2 Problem 5.13

Theorem

$$sin^2(x) \le |sin(x)|$$
 for all $x \in \mathbb{R}$

Definition

(a)
$$sin(x) \in \{-1 \le y \le 1 : y \in \mathbb{R}\}$$

<u>Lemma</u>

(a)
$$x^2 \le |x|$$
 for $-1 \le x \le 1$ where $x \in \mathbb{R}$

Proof

We start by proving Lemma a.

Note that the range of x^2 and |x| for $-1 \le x \le 1$ is limited to [0,1].

A real number x where $0 < x \le 1$ can be represented by $x = \frac{1}{a}, a \in \{\mathbb{N} > 0\}$

Observe that $x^2 = (\frac{1}{a})^2 = \frac{1}{a^2}$.

Since $a^2 \ge a$ for any integer greater than 0, $(\frac{1}{a})^2 \le \frac{1}{a}$.

The above is equivalent to saying $x^2 \leq x$ for $x \in \mathbb{R}$ where $0 < x \leq 1$.

This leaves the case where x = 0.

Well if x = 0, then $x^2 = 0$ as well.

So $x^2 \le |x|$ for $-1 \le x \le 1$ where $x \in \mathbb{R}$.

Note that the range of $sin^2(x)$ and |sin(x)| is [0,1].

We can then conclude by Lemma a the following.

$$sin^2(x) \le |sin(x)| \text{ for all } x \in \mathbb{R}$$
 (1)

Notes:

Just factor more

Don't use same letter for k in both cases, switch it.

$\underline{\text{Theorem}}$

TODO

$\underline{\mathrm{Lemma}}$

- (a) TODO
- (b) TODO

$\underline{\text{Proof}}$

TODO

$\underline{\text{Theorem}}$

TODO

$\underline{\mathrm{Lemma}}$

- (a) TODO
- (b) TODO

$\underline{\text{Proof}}$

TODO