STA 314: Statistical Methods for Machine Learning I

Lecture 7 - Logistic regression, metrics for binary classification

Xin Bing

Department of Statistical Sciences University of Toronto

Review

- In classification, $X \in \mathbb{R}^p$ and $Y \in C = \{0, 1, ..., K 1\}$.
- The Bayes rule

$$\arg\max_{k\in C} \mathbb{P}\left\{Y = k \mid X = x\right\}, \qquad \forall x \in \mathbb{R}^{p}$$

has the smallest expected error rate.

For binary classification, our goal is to estimate

$$p(x) = \mathbb{P}\left\{Y = 1 \mid X = x\right\}, \quad \forall x \in \mathbb{R}^{p}.$$

Logistic Regression

Logistic Regression is a parametric approach that assumes parametric structure on

$$p(X) = \mathbb{P}(Y = 1 \mid X).$$

It assumes

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$

The function $f(t) = e^t/(1 + e^t)$ is called the logistic function. β_0, \dots, β_D are the parameters.

- It is easy to see that we always have $0 \le p(X) \le 1$.
- Note that p(X) is **NOT** a linear function either in X or in β .

Logistic Regression

A bit of rearrangement gives

$$\underbrace{\frac{p(X)}{1-p(X)}}_{\text{odds}} = e^{\beta_0+\beta_1X_1+\cdots+\beta_pX_p},$$

$$\underbrace{\log\left[\frac{p(X)}{1-p(X)}\right]}_{\text{log-odds (a.k.a. logit)}} = \beta_0+\beta_1X_1+\cdots+\beta_pX_p.$$

odds $\in [0, \infty)$ and log-odds $\in (-\infty, \infty)$.

- Similar interpretation as linear models.
- How to estimate β_0, \ldots, β_p ?

Maximum Likelihood Estimator (MLE)

Given $\mathcal{D}^{train} = \{(x_1, y_1), ..., (x_n, y_n)\}$ with $y_i \in \{0, 1\}$, we estimate the parameters by **maximizing the likelihood** of \mathcal{D}^{train} .

The maximum likelihood principle

The maximum likelihood principle is that we seek the estimates of parameters such that the fitted probability are the closest to the individual's observed outcome.

Cont'd: MLE under logistic regression

General steps of computing the MLE:

- Write down the likelihood, as always!
- Solve the optimization (maximization) problem.

Likelihood under Logistic Regression

For simplicity, let us set $\beta_0 = 0$ such that

$$p(x) = \frac{e^{x^{\top}\beta}}{1 + e^{x^{\top}\beta}}, \qquad 1 - p(x) = \frac{1}{1 + e^{x^{\top}\beta}}.$$

The data consists of $(x_1, y_1), \dots, (x_n, y_n)$ with

$$y_i \sim \text{Bernoulli}(p(x_i)), \qquad p(x_i) = \frac{e^{x_i^\top \beta}}{1 + e^{x_i^\top \beta}}, \quad 1 \le i \le n.$$

• What is the likelihood of y_i ?

Likelihood under Logistic Regression

The likelihood of each data point (x_i, y_i) at any β is

$$L_i(\beta) = [p(x_i)]^{y_i} [1 - p(x_i)]^{1-y_i}$$

with

$$p(x_i) = \frac{e^{x_i^\top \beta}}{1 + e^{x_i^\top \beta}}.$$

The joint likelihood of all data points is

$$L(\beta) = \prod_{i=1}^{n} [p(x_i)]^{y_i} [1 - p(x_i)]^{1-y_i}.$$

Log-likelihood under Logistic Regression

The log-likelihood at any β is

$$\ell(\beta) = \log \left\{ \prod_{i=1}^{n} [p(x_i)]^{y_i} [1 - p(x_i)]^{1 - y_i} \right\}$$

$$= \sum_{i=1}^{n} [y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))]$$

$$= \sum_{i=1}^{n} \left[y_i \log \left(\frac{p(x_i)}{1 - p(x_i)} \right) + \log(1 - p(x_i)) \right]$$

$$= \sum_{i=1}^{n} \left[y_i x_i^{\top} \beta - \log \left(1 + e^{x_i^{\top} \beta} \right) \right].$$

How to compute the MLE?

How do we maximize the log-likelihood

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i x_i^{\top} \beta - \log \left(1 + e^{x_i^{\top} \beta} \right) \right]$$

for logistic regression?

- No direct solution: taking derivatives of $\ell(\beta)$ w.r.t. β and setting them to 0 doesn't have an explicit solution.
- Need to use iterative procedure, later...

Cont'd: MLE under logistic regression

Let

$$\hat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}) = \arg\max_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left[y_{i} x_{i}^{\top} \boldsymbol{\beta} - \log \left(1 + e^{x_{i}^{\top} \boldsymbol{\beta}} \right) \right]$$

The estimator $\hat{\beta}$ is called the Maximum Likelihood Estimator (MLE).

The MLE has many nice properties!

- Asymp consistent.
- Asymp normal.
- And more.....

Inference under logistic regression

Z-statistic is similar to t-statistic in regression, and is defined as

$$\frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}, \quad \forall j \in \{0, 1, \dots, p\}.$$

It produces p-value for testing the null hypothesis

$$H_0: \beta_j = 0$$
 v.s. $H_1: \beta_j \neq 0$.

A large (absolute) value of the z-statistic or small p-value indicates evidence against H_0 .

Example: Default data

Consider the Default data using balance, income, and student status as predictors.

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Prediction at different levels under logistic regression

Let $\hat{\beta}_0, \dots, \hat{\beta}_p$ be the MLE.

• Prediction of the logit at $x \in \mathbb{R}^p$:

$$\hat{\log}it(x) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$

• Prediction of $\mathbb{P}(Y = 1 \mid X = x)$:

$$\hat{\mathbb{P}}(Y = 1 \mid X = x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}$$

• Prediction of Y (i.e. classification) at X = x:

$$\hat{y} = \left\{ \begin{array}{ll} 1, & \text{if} & \hat{\mathbb{P}}(Y=1 \mid X=x) \geq 0.5; \\ \\ 0, & \text{otherwise.} \end{array} \right.$$

Prediction of $\mathbb{P}(Y = 1 \mid X)$

Consider the Default data with student status as the only feature. What is our estimated probability of default for a student?

To fit the model, we encode student status as 1 for student and 0 otherwise.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

Metrics used for evaluating classifiers

In classification, we have several metrics that can be used to evaluate a given classifier.

- The most commonly used metric is the overall classification accuracy.
- For binary classification, there are a few more out there.....

Logistic Regression on the Default Data

Classify whether or not an individual will default on the basis of credit card balance and student status. The confusion matrix on default data.

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

- The training error rate is (23 + 252)/10000 = 2.75%.
- False positive rate (FPR): The fraction of negative examples that are classified as positive: 23/9667 = 0.2% in default data.
- False negative rate (FNR): The fraction of positive examples that are classified as negative: 75.7% in default data.
- For a credit card company that is trying to identify high-risk individuals, an error rate of 252/333 = 75.7% among individuals who default is unacceptable.

Types of Errors for binary classification

- The false negative rate is too high. How can we modify the LDA rule to lower the FNR?
- The current classifier is based on the rule

$$\mathbb{P}(\text{default} = yes \mid X = x) \ge 0.5.$$

- We can achieve better balance between FPR and FNR by varying the threshold:
 - ▶ To lower FNR, we reduce the number of negative predictions. Classify X = x to yes if

$$\mathbb{P}(Y = yes \mid X = x) \ge thresh.$$

for some thresh < 0.5.

Trade-off between FPR and FNR

ROC Curve

The ROC curve is a popular graphic for simultaneously displaying FPR and TPR for all possible thresholds.

The overall performance of a classifier, summarized over all thresholds, is given by the area under the curve (AUC). High AUC is good.

More metrics in the binary classification

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N*	

The above also defines **sensitivity** and **specificity**.