Contact information:

Email: carter.bryson@bea.gov

Website: carterbryson.com

Sectoral Reallocation and the Firm Life Cycle

Carter Bryson

Bureau of Economic Analysis (BEA)

Trends in Average Establishment Size by Cohort

Overview

Goal:

- Investigate the interaction between sectoral reallocation and firm dynamics since the 1980s/1990s.
- Conceptually: Sector i expands relative to sector j if:
- 1. Incumbent firms in *i* grow relative to incumbent firms in *j*
- 2. The marginal entrepreneur enters in *i* relative to *j*
- Research question: How did each margin contribute to observed changes in employment shares?
- Current: Quantify 1. using simple structural model
- Future: Produce new estimates of trends in firm dynamics by sector/cohort

Methodology:

- 1. Document new facts on life cycle firm employment growth
 - Establishment size at entry \(\psi \) in recent cohorts, no change in exit rates
 - Trend stronger in manufacturing relative to service sector
- 2. Estimate firm dynamics model to uncover structural factors:
 - Fixed costs of production [De Ridder, 2024]
 - ii. Fixed costs of entry [Gutiérrez et al., 2021; Kozeniauskas, 2024]
 - iii. Persistence of firm-level productivity [Decker et al., 2020]
- iv. Dispersion of firm-level productivity [Barth et al., 2016; Decker et al., 2020]
- 3. Decompose structural change using parameter estimates

Findings:

- 1. Sector-level trends defy aggregate trends in firm dynamics
- Estimated fixed costs decrease in both services and manufacturing
- Estimated entry costs increase (decrease) in services (manufacturing)
- Productivity persistence decreases in both services and manufacturing
- 2. Fixed costs and entry costs explain little of within-sector trends
 - → Changes in output mostly driven by changes in productivity process
- 3. Sector-level firm dynamics work against aggregate reallocation
- \rightarrow Only within-sector forces \Longrightarrow growth in manufacturing relative to services

Literature:

- Business Dynamism: Decker et al. (2016); Akcigit and Ates (2020, 2023); Hopenhayn et al. (2022); Karahan et al. (2024)
- Structural Change and Labor Reallocation: Hopenhayn and Rogerson (1993); Dent et al. (2016); Ding et al. (2022)

Motivating Evidence

Source: Bureau of Labor Statistics (BLS) Business Employment Dynamics.

Trends in Exit Rate by Cohort

Source: Bureau of Labor Statistics (BLS) Business Employment Dynamics.

Regression Evidence

- Estimate sector-specific establishment dynamics by cohort
- Let $j \equiv$ sector, $k \equiv$ cohort, $t \equiv$ year
- Group cohorts into 5-year bins
- Parameterize as quadratic in establishment age
- (1) In (Average Establishment Size)_{j,k,t} = $\alpha_k^j + \beta_k^j$ Age + γ_k^j Age² + $\delta_t + \varepsilon_{j,k,t}$
- (2) Exit Rate_{j,k,t} = $a_k^j + b_k^j$ Age + c_k^j Age² + $d_t + e_{j,k,t}$

Estimates: Average Firm Size (α_k)

Firm Dynamics Model

Setup

- Each sector is its own island \rightarrow Hopenhayn (1992) economy
- Representative household
 - Consumes final output Y and supplies labor L inelastically
- Heterogeneous firms
 - Differ in productivity level z that evolves according to P(z'|z)
 - \circ Produce using labor ℓ only, no adjustment costs
 - Operate decreasing returns to scale production function $y = z\ell^{\alpha}$, $\alpha < 1$
- Incumbent firms pay per period fixed costs C_f
- Potential entrants pay fixed entry cost c_e to enter market, draw z
- Distribution of firms $\mu(z)$ determined in equilibrium

Firm Problem

• Firm chooses labor input $\ell(z; p)$ and exit $\chi(z; p)$ to maximize

$$V(z; p) = \max_{\theta} [pz\ell^{\alpha} - w\ell - c_f] + \beta \max\{E[V(z'; p)], 0\}$$

Assume productivity z is AR(1) in logs

$$ln(z') = \rho_z ln(z) + \varepsilon; \quad \varepsilon \sim N(0, \sigma_z)$$

Free entry condition

$$\beta \int V(z;p)g(z)\,\mathrm{d}\,z=c_e$$

where g(z) is stationary distribution of P(z'|z)

Estimation Results

	Services				Manufacturing			
Year	C _f	Ce	$ ho_{\it Z}$	$\sigma_{\it z}$	C_f	Ce	$ ho_{\it Z}$	$\sigma_{\it z}$
94-1998	1.237	4.298	0.968	0.180	0.837	11.346	0.970	0.215
99-2003	0.833	4.389	0.962	0.213	0.556	11.431	0.971	0.220
04-2008	0.553	4.245	0.951	0.256	0.303	9.583	0.961	0.289
09-2013	0.582	4.877	0.924	0.308	0.297	9.100	0.942	0.366
14-2018	0.610	5.139	0.899	0.362	0.478	9.127	0.895	0.496
	94-1998 99-2003 04-2008 09-2013	94-1998 1.237 99-2003 0.833 04-2008 0.553 09-2013 0.582	Year <i>C_f C_e</i> 94–1998 1.237 4.298 99–2003 0.833 4.389 04–2008 0.553 4.245 09–2013 0.582 4.877	Year c_f c_e ρ_z $94-1998$ 1.237 4.298 0.968 $99-2003$ 0.833 4.389 0.962 $0.4-2008$ 0.553 4.245 0.951 $0.9-2013$ 0.582 4.877 0.924	Year C_f C_e ρ_Z σ_Z $0.94-1998$ 1.237 4.298 0.968 0.180 0.99-2003 0.833 4.389 0.962 0.213 0.4-2008 0.553 4.245 0.951 0.256 0.9-2013 0.582 4.877 0.924 0.308	Year C_f C_e ρ_Z σ_Z C_f $94-1998$ 1.237 4.298 0.968 0.180 0.837 $99-2003$ 0.833 4.389 0.962 0.213 0.556 $0.04-2008$ 0.553 4.245 0.951 0.256 0.303 $0.99-2013$ 0.582 4.877 0.924 0.308 0.297	Year	

Decomposition

(b) Manufacturing