产品名称 Product Name		
域格 4G 模块		
产品版本 Produce Version	- Total 20 pages 共 20页	
ALL		

4G 模块 LINUX 集成用户手册

版本_V 2.00

上海域格信息技术有限公司

YUGA Technology Co., Ltd.

All rights reserved 版权所有 侵权必究

目 录

1. Linux 系统加载域格模块 USB 驱动	3
1.1 添加 USB 串口驱动系统组件 1.2 增加设备驱动	
2. Linux 系统下交互 AT 过程	4
3. Linux 系统下拨号上网过程	6
4. Linux 系统加载域格模块 NDIS 驱动	8
4.1 过滤 NDIS 接口4.2 添加 NDIS 驱动系统组件	
4.3 编译 NDIS 驱动	
4.4 加载 NDIS 驱动	10
5. Linux 系统下域格模块 NDIS 拨号上网	10
5.1 NDIS 拨号相关命令	10
5.2 NDIS 网卡获取 IP	11
5.3 查看 IP 地址与网络测试	11
6. Linux 系统域格模块 ECM 拨号说明	12
6.1 过滤 ECM 接口	12
6.2 查看 ECM 网卡	
6.3 ECM 网卡获取 IP	
6.4 ECM 拨号相关命令6.5 网络测试	
7. Linux 系统域格模块 RNDIS 拨号说明	
7.1 过滤 RNDIS 接口	15
	16
7.3 RNDIS 网卡获取 IP	
7.4 RNDIS 拨号相关命令	
7.5 网络测试	
8. Linux 下 FAQ	19
8.1 问:内核里添加了域格模块 VID PID,为何 ls /dev/ttyU*仍查看不到端口?	
8.2 问: linux 下如何通过 echo cat 手动发送 AT 命令?	
8.3 问: 为何在 linux 下读取不到模块的主动上报信息?	19

版本信息

版本号	发布日期	修改人	详细描述
2.00	2015/11/11	域格文档组	第3章中添加模块可统一用*99#拨号相关说明; 新增第5章 NDIS 拨号相关内容; 新增第6章 ECM 拨号相关内容; 新增第7章 RNDIS 拨号相关内容; 新增第8章 linux下FAQ。
1.90	2015/06/20	域格文档组	新增 NDIS 接口过滤方法、NDIS 驱动编译及加载说明。
1.80	2014/11/14	域格文档组	增加驱动加载具体方法; 新增第3章拨号上网过程说明。

1. Linux 系统加载域格模块 USB 驱动

1.1 添加 USB 串口驱动系统组件

在 Linux 系统中通常使用 USB 转串口的驱动。添加驱动需要配置 Linux 内核,方法如下:

cd kernel

make menuconfig

device drivers -> usb support -> usb serial converter support

选中如下组件:

USB driver for GSM and CDMA modems

选中后保存配置。

1.2 增加设备驱动

使用 Isusb 查看 usb 设备,确认发现设备。

```
test@yuge-info:~$ lsusb
Bus 001 Device 002: ID 05c6:9025 Qualcomm, Inc. Qualcomm HSUSB Device
如上图,模块的 VID、PID 默认为 0x05C6、0x9025。
```

设备确认连接后,可执行命令: sudo modprobe usbserial vendor=0x05c6 product=0x9025,加载 USB 串口驱动。通过查询命令: ls /dev/ttyU*,可查看 USB 串口加载情况。

嵌入式系统若不支持以上命令,则需修改内核源码文件 option.c (路径一般为 drivers/usb/serial/option.c)。在文件中找到 option_ids[]的数组,在数组中添加域格产品的 VID 和 PID。VID 0x05C6 一般已存在,可根据实际情况,参照以下方法添加 VID、PID。

```
#define QUALCOMM_VENDOR_ID 0x05C6
#define YUGA PRODUCT CLM920 0x9025
```

添加数组元素

编译完成后,通过查询命令: ls /dev/ttyU*, 可查看 USB 串口加载情况,如下图上海域格信息技术有限公司 第 3 页 / 共 19 页

test@yuge-info:~\$ ls /dev/ttyU*

/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2 /dev/ttyUSB3 /dev/ttyUSB4

2. Linux 系统下交互 AT 过程

1) 将 USIM/SIM 卡正确插入应用终端,将 4G 全频天线连接到模块的射频连接器。模块 开机,加载 USB 驱动,获取 USB 端口: ttyUSB0~ttyUSB4。

ttyUSB0 -> DIAG

ttyUSB1 -> ADB

ttyUSB2 -> AT

ttyUSB3 -> Modem

ttyUSB4 -> 暂不使用(使用 NDIS 需将该口过滤)

2) 启动 Linux 系统串口应用程序 minicom, 使用如下指令:

#minicom -s

在 minicom 菜单中选择 "Serial port setup",配置 "Serial device" 为/dev/ttyUSB2(模块的串口中 AT(ttyUSB2), Modem(ttyUSB3)可以发 AT 命令,其他不能发 AT 指令); 修改完毕后退出到 minicom 菜单,选择 "Save setup as dfl"保存配置后选择 "exit" 退出 minicom 配置。

3) 通过 minicom 发送 AT 指令进行系统测试

#minicom

将得到如下的返回结果:

Welcome to minicom 2.7

OPTIONS: I18n

Compiled on Jan 1 2014, 17:13:22.

Port /dev/ttyUSB2

Press CTRL-A Z for help on special keys

输入如下指令,打开回显:

ATE

如果系统工作正常,将得到如下的返回结果:

OK

输入如下指令,查询产品信息:

ATI

将得到如下信息:

Manufacturer: YUGE

Model: CLM920

Revision: CLM920-v1 [Aug 3 2015 13:11:41]

IMEI: 357941053041368

+GCAP: +CIS707-A, CIS-856, +MS, +ES, +DS, +FCLASS

输入如下命令,查询 PIN 码信息:

AT+CPIN?

将得到如下信息:

+CPIN: READY

输入如下命令,查询信号:

AT+CSQ

将得到如下信号强度和误码率信息:

+CSQ: 31,99

输入如下指令,查询注册状态:

AT+CREG?

将得到如下注册信息:

+CREG: 0,1

输入如下指令,查询网络运营商信息:

AT+COPS?

将得到如下运营商信息(不同运营商返回信息不同,以下以中国联通 USIM 卡为例)+COPS: 0,0,"CHN-UNICOM",0

3. Linux 系统下拨号上网过程

- 1) 重复模块的 USB 加载过程和 AT 交互流程。确保模块正确注册到网络,信号强度 CSQ 返回的第一个参数在 9 以上:
- 2) 确认 Linux 系统带有 pppd 和 chat 可执行程序。如果系统没有 pppd, 请安装 kppp, 里面带有 pppd 应用程序(推荐使用 pppd 2.4.3、pppd 2.4.5);
- 3) 软件版本在[Jun 11 2015 12:00:32]及之后的域格模块,在电信 2G、3G 模式下,拨号号码可与其他制式统一,支持使用*99#拨号;

拨号上网有两种方式:

- a) 直接使用我们提供的拨号脚本(CDMA 及 evdo 下使用 evdo.gprs-pppd, 其他网络下使用 wcdma.gprs-pppd, 或在 wcdma.gprs-pppd 中加入电信拨号时需要的用户名和密码,可供电信 2G、3G下使用),注意给脚本执行权限;
- b) 分别写 pppd 脚本和 chat 脚本:
 - (1) /etc/ppp/peers/evdo 文件,内容如下:

Usage: root>pppd call evdo&

/dev/ttyUSB3

115200

crtscts

modem

debug

nodetach

usepeerdns

noipdefault

defaultroute

user card

password card

connect '/usr/sbin/chat -s -v -f /etc/ppp/evdo-connect-chat'

(2) /etc/ppp/evdo-connect-chat 文件, 内容如下:

#/etc/ppp/evdo-connect-chat

chat script for China telecom.

TIMEOUT 15

ABORT "DELAYED"

ABORT "BUSY"

ABORT "ERROR"

ABORT "NO DIALTONE"

ABORT "NO CARRIER"

"" AT

OK ATEO

OK ATDT*99#

CONNECT

两个脚本写好后,执行 pppd call evdo&, 拨号上网。

注:

- ① 软件版本在[Jun 11 2015 12:00:32]及之后的域格模块,各制式下可统一使用 chat 脚本中的 ATDT*99#拨号。
- ② pppd 脚本中的用户名和密码是注册在电信 2G、3G 时使用的,对其他网络无影响。

4) 测试连接 Internet

测试是否连接 Internet, 用如下指令:

ping 115.239.210.27

测试是否 ping 通 baidu 的 IP 地址。

如果 IP 地址能 ping 通,而 ping 域名不通,如下指令:

ping www.baidu.com

则需要添加 DNS(114.114.114.114)到/etc/resolv.conf。

- 5) 断开 Internet 连接:
 - a) 调用我们提供的结束脚本 ppp-off
 - b) 使用指令: # killall pppd

4. Linux 系统加载域格模块 NDIS 驱动

4.1 过滤 NDIS 接口

由于 USB 串口跟 NDIS 都属于非标准 CDC 设备,需要防止 NDIS 口被 USB 串口驱动加载而导致无法正常加载 NDIS 口驱动。以下提供三种解决方式,可根据实际情况选择处理。

1、kernel 版本 3.8 以上的,在 option.c 中的 option_ids 中添加 blacklist,可使驱动在加载时自动跳过 blacklist 指定的 interface。

先添加模块的 VID 和 PID:

2、对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先添加模块的 VID 和 PID:

```
#define QUALCOMM_VENDOR_ID 0x05C6
#define YUGA PRODUCT CLM920 0x9025
```


3、对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe() 函数开始增加如下判断来过滤 NDIS 接口:

NDIS 接口过滤完成后,通过查询命令: ls /dev/ttyU*, 查看 USB 串口加载情况,只有四个端口被加载为 ttyUSB 口,如下图。

```
test@yuge-info:~$ ls /dev/ttyU*
/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2 /dev/ttyUSB3
```

4.2 添加 NDIS 驱动系统组件

return - ENODEV;

NDIS 驱动需要系统的 usbnet 驱动支持,因此需要配置 Linux 内核,方法如下:

cd kernel

make menuconfig

device drivers -> Network device support -> usb Network Adapters

选中如下组件:

Multi-purpose USB Networking Framework

选中后保存配置,重新编译内核。

4.3 编译 NDIS 驱动

NDIS 驱动以原代码的形式提供,由用户在自己的系统编译。

ki_cdc_ether.c 为 ndis 口驱动,qmi 开头的文件为 QMI 协议相关文件,用于解析 iocti 的 QMI 包。

将内核源码文件解压到 drivers/net/usb 目录下。在解压后形成的 ndis-linux-driver_v2 目录下执行 make modules 命令,即可在该目录下生成 ki ether.ko 文件。

4.4 加载 NDIS 驱动

通过 insmod 命令加载 NDIS 驱动: sudo insmod ki ether.ko。

在 ndis_driver 目录执行 make install 命令: sudo make install。该命令会将驱动安装到系统的 module 目录中,并且分析依赖关系,将相关模块同时加载。

使用 ifconfig 命令查看网卡信息,如果出现 wan0 表示驱动加载成功,如图。

```
wan0 Link encap:Ethernet HWaddr 00:a0:c6:00:00:00
inet6 addr: fe80::2a0:c6ff:fe00:0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:258 (258.0 B)
```

5. Linux 系统下域格模块 NDIS 拨号上网

5.1 NDIS 拨号相关命令

1) 拨号前请查询以下命令,确认模块成功注册到网络,具体返回结果参考 AT 手册。

AT+CPIN?

AT^SYSINFO

AT+CSQ

AT+CGREG? //注册在电信 2G 或 3G 时,查询 AT+CREG?

2) 确认模块注册上网络后,通过以下命令进行 NDIS 拨号及查询连接情况。

AT^NETACT=1,0 //发起 NDIS 拨号,连接 0 口

AT^NETACT? //查询。连接成功后,能查询到如下信息

^NETACT:

0,1,4,"10.113.243.81","10.113.243.80","255.255.255.252","211.136.150.66","211.1 36.112.5"

//依次表示: NDIS 接口,连接状态,地址类型,网关,IP 地址,掩码,主 DNS,次 DNS

3) 断开拨号命令

AT^NETACT=0,0

5.2 NDIS 网卡获取 IP

模块成功获取 IP 后,通过 DHCP 将 IP 赋给网卡 wan0。可参考以下命令: udhcpc -i wan0

注: 该操作需在模块获取 IP 后 2 分钟内进行。2 分钟后,若网卡没有成功获取 IP,模块获取的连接会断开,需重新通过 AT^NETACT=1,0 拨号。

5.3 查看 IP 地址与网络测试

输入 ifconfig 查看 wan0 的 IP 地址,如下图:

```
wan0 Link encap:Ethernet HWaddr 00:a0:c6:00:00:00
inet addr:10.113.243.80 Bcast:10.113.243.83 Mask:255.255.252
inet6 addr: fe80::2a0:c6ff:fe00:0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7 errors:0 dropped:0 overruns:0 frame:0
TX packets:50 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1388 (1.3 KB) TX bytes:9582 (9.5 KB)
```

之后,就可通过 ping 测试是否连接 Internet。

6. Linux 系统域格模块 ECM 拨号说明

域格模块支持 ECM 拨号(APP 版本为 Oct 15 2015 18:24:48),需使用命令 AT+USBCFG=905A 将模块 PID 切为 905A。模块端口顺序与默认也有所不同,具体 VID、PID 信息及端口对应 interface 信息如下:

VID PID: 05C6 905A 端口: modem, AT, ADB, ECM modem — interface 0 AT — interface 1 ADB — interface 2

ECM — interface 3, 4

6.1 过滤 ECM 接口

由于 USB 串口跟 ECM 都属于非标准 CDC 设备,需要防止 ECM 口被 USB 串口驱动加载而导致无法正常加载 ECM 口驱动。以下提供三种解决方式,可根据实际情况选择处理。

1、kernel 版本 3.8 以上的,在 option.c 中的 option_ids 中添加 blacklist,可使驱动在加载时自动跳过 blacklist 指定的 interface。

先添加模块的 VID 和 PID:

2、对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先添加模块的 VID 和 PID:

```
#define QUALCOMM VENDOR ID
                                           0x05C6
  #define YUGA PRODUCT CLM920 ECM
                                           0x905A
static const struct usb device id option ids[] = {
      /************ Add for YUGA ECM ************/
      { USB DEVICE(QUALCOMM VENDOR ID, YUGA PRODUCT CLM920 ECM) },
      在 option_probe 函数内判断当前 interface 号进行过滤:
/*********************** Add for YUGA ECM ******************/
if(serial->dev->descriptor.idVendor == QUALCOMM VENDOR ID &&
      serial->dev->descriptor.idProduct == YUGA PRODUCT CLM920 ECM &&
      serial->interface->cur altsetting->desc.bInterfaceNumber >= 3) {
     printk(KERN_INFO"Discover the 3rd and 4th interface for YUGA ECM\n");
     return -ENODEV;
```

3、对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe() 函数开始增加如下判断来过滤 ECM 接口:

ECM 接口过滤完成后,通过查询命令: ls /dev/ttyU*, 查看 USB 串口加载情况,只有三个端口被加载为 ttyUSB 口,如下图。

```
test@yuge-info:~$ ls /dev/ttyU*
/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2
```

其中,ttyUSB0 为 modem 口; ttyUSB1 为 AT 口; ttyUSB2 为 ADB 口。

6.2 查看 ECM 网卡

ECM 驱动为系统自带,模块 USB 接入后,可使用 ifconfig 命令查看网卡信息,如果出现 usb0 表示网卡加载成功。

6.3 ECM 网卡获取 IP

在模块 USB 成功接入后 2 分钟内,可通过 DHCP 将 IP 赋给网卡 usb0。可参考以下命令:

udhcpc -i usb0

usb0 获取的 IP 为模块分配的内网 IP, 信息如下:

Link encap:Ethernet HWaddr 4e:b2:10:a4:e2:05
inet addr:192.168.225.4 Bcast:192.168.225.255 Mask:255.255.0
inet6 addr: fe80::4cb2:10ff:fea4:e205/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:31 errors:0 dropped:0 overruns:0 frame:0
TX packets:79 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2401 (2.4 KB) TX bytes:10567 (10.5 KB)

注: 若在模块 USB 接入 2 分钟后再操作获取 IP, 会导致 usb0 无法获取 IP。当 usb0 获取不到 IP 时,可以通过重新断连 USB 来解决。USB 重新连接时,dhcp server 会重新启动,但也需要在 2 分钟之内获取 IP, 否则还会超时。

6.4 ECM 拨号相关命令

1) 拨号前请查询以下命令,确认模块成功注册到网络,具体返回结果参考 AT 手册。

AT+CPIN?

AT^SYSINFO

AT+CSQ

AT+CGREG? //注册在电信 2G 或 3G 时,查询 AT+CREG?

2) 确认模块注册上网络后,通过以下命令进行 NDIS 拨号及查询连接情况。

AT+CONN=1,1 //发起 ECM 拨号

AT+CONN=1,? //查询

+CONN:2 //0 表示断开, 1 表示正在连接, 2 表示已连接, 3 表示正在断开

3) 断开拨号命令

AT+CONN=1,0

6.5 网络测试

确认 usb0 成功获取 IP, 拨号命令发送后, 就可通过 ping 测试是否连接 Internet。

7. Linux 系统域格模块 RNDIS 拨号说明

域格模块支持 RNDIS 拨号(APP 版本为 Oct 15 2015 18:24:48),需使用命令 AT+USBCFG=9059 将模块 PID 切为 9059。模块端口顺序与默认也有所不同,具体 VID、PID 信息及端口对应 interface 信息如下:

```
VID PID: 05C6 9059
端口: RNDIS, modem, AT, ADB
RNDIS —— interface 0、1
modem —— interface 2
AT —— interface 3
```

7.1 过滤 RNDIS 接口

由于 USB 串口跟 RNDIS 都属于非标准 CDC 设备,需要防止 RNDIS 口被 USB 串口驱动加载而导致无法正常加载 RNDIS 口驱动。以下提供三种解决方式,可根据实际情况选择处理。

1、kernel 版本 3.8 以上的,在 option.c 中的 option_ids 中添加 blacklist,可使驱动在加载时自动跳过 blacklist 指定的 interface。

先添加模块的 VID 和 PID:

```
#define QUALCOMM_VENDOR_ID 0x05C6
#define YUGA PRODUCT CLM920 RNDIS 0x9059
```

设置 interface 0、1 不加载 option 驱动,添加内容如下:

2、对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先添加模块的 VID 和 PID:

```
#define QUALCOMM VENDOR ID
                                            0x05C6
   #define YUGA PRODUCT CLM920 RNDIS
                                            0x9059
static const struct usb device id option ids[] = {
      /************* Add for YUGA RNDIS ************/
      { USB DEVICE(QUALCOMM VENDOR ID, YUGA PRODUCT CLM920 RNDIS) },
      在 option_probe 函数内判断当前 interface 号进行过滤:
/*********************** Add for YUGA RNDIS ******************/
if(serial->dev->descriptor.idVendor == QUALCOMM VENDOR ID &&
      serial->dev->descriptor.idProduct == YUGA PRODUCT CLM920 RNDIS &&
      serial->interface->cur altsetting->desc.bInterfaceNumber <= 1) {</pre>
      printk(KERN INFO"Discover the 0th and 1st interface for YUGA RNDIS\n");
      return - ENODEV;
```

3、对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe() 函数开始增加如下判断来过滤 RNDIS 接口:

RNDIS 接口过滤完成后,通过查询命令: ls /dev/ttyU*, 查看 USB 串口加载情况,只有三个端口被加载为 ttyUSB 口,如下图。

```
test@yuge-info:~$ ls /dev/ttyU*
/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2
```

其中,ttyUSB0 为 modem 口; ttyUSB1 为 AT 口; ttyUSB2 为 ADB 口。

7.2 加载 RNDIS 驱动

使用 RNDIS,需要安装驱动 rndis_host.ko。一般发行版均已经编译好,直接运行即可。如果嵌入式开发板可以配置内核的 rndis host 为动态模块,它位于


```
Symbol: USB_NET_RNDIS_HOST [=m]
Type : tristate
Prompt: Host for RNDIS and ActiveSync devices (EXPERIMENTAL)
Defined at drivers/net/usb/Kconfig:258
Depends on: NETDEVICES [=y] && USB [=y] && NET [=y] && USB USBNET [=m] && EXPERIMENT

Location:
    -> Device Drivers
    -> Network device support (NETDEVICES [=y])
    -> USB Network Adapters
    -> Multi-purpose USB Networking Framework (USB USBNET [=m])

Selects: USB_NET_CDCETHER [=m]
Selected by: USB_NET_RNDIS_WLAN [=m] && NETDEVICES [=y] && WLAN [=y] && USB [=y] &&
```

```
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters
are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press
<Esc><to exit, <?> for Help, </> for Search. Legend: [*] built-in [ ] excluded
<M> module < > module capable
       <M> USB Pegasus/Pegasus-II based ethernet device support
       <M>> USB RTL8150 based ethernet device support (EXPERIMENTAL)
       {M} Multi-purpose USB Networking Framework
            ASIX AX88xxx Based USB 2.0 Ethernet Adapters
            CDC Ethernet support (smart devices such as cable modems)
       - M -
       <M> CDC EEM support
       <M>
             Davicom DM9601 based USB 1.1 10/100 ethernet devices
             SMSC LAN75XX based USB 2.0 gigabit ethernet devices
       <M>
       <M> SMSC LAN95XX based USB 2.0 10/100 ethernet devices
       <M>
             GeneSys GL620USB-A based cables
       <M> NetChip 1080 based cables (Laplink, ...)
       <M> Prolific PL-2301/2302 based cables
             MosChip MCS7830 based Ethernet adapters
Host for RNDIS and ActiveSync devices (EXPERIMENTAL)
Simple USB Network Links (CDC Ethernet subset)
       [*]
               ALi M5632 based 'USB 2.0 Data Link' cables
                           <Select>
                                      < Exit >
                                                     < Help >
```

驱动加载好,模块 USB 接入后,可使用 ifconfig 命令查看网卡信息,如果出现 usb0 表示网卡加载成功。

7.3 RNDIS 网卡获取 IP

在模块 USB 成功接入后 2 分钟内,可通过 DHCP 将 IP 赋给网卡 usb0。可参考以下命令:

udhcpc -i usb0

usb0 获取的 IP 为模块分配的内网 IP, 信息如下:

Link encap:Ethernet HWaddr 3a:4a:93:9a:2d:a7
inet addr:192.168.225.4 Bcast:192.168.225.255 Mask:255.255.0
inet6 addr: fe80::384a:93ff:fe9a:2da7/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:17 errors:0 dropped:0 overruns:0 frame:0
TX packets:109 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1532 (1.5 KB) TX bytes:20299 (20.2 KB)

注: 若在模块 USB 接入 2 分钟后再操作获取 IP, 会导致 usb0 无法获取 IP。当 usb0 获取不到 IP 时,可以通过重新断连 USB 来解决。USB 重新连接时,dhcp server 会重新启动,但也需要在 2 分钟之内获取 IP, 否则还会超时。

7.4 RNDIS 拨号相关命令

1) 拨号前请查询以下命令,确认模块成功注册到网络,具体返回结果参考 AT 手册。

AT+CPIN?

AT^SYSINFO

AT+CSQ

AT+CGREG? //注册在电信 2G 或 3G 时,查询 AT+CREG?

2) 确认模块注册上网络后,通过以下命令进行 NDIS 拨号及查询连接情况。

AT+CONN=1,1 //发起 RNDIS 拨号

AT+CONN=1,? //查询

+CONN:2 //0 表示断开, 1 表示正在连接, 2 表示已连接, 3 表示正在断开

3) 断开拨号命令

AT+CONN=1,0

7.5 网络测试

确认 usb0 成功获取 IP, 拨号命令发送后, 就可通过 ping 测试是否连接 Internet。

8. Linux 下 FAQ

8.1 问:内核里添加了域格模块 VID PID,为何 ls /dev/ttyU*仍查看不到端口?

答: 首先,要确认已给模块上电,且 USB 已成功接入。可通过 Isusb 或 dmesg 查看接入的 USB 设备信息,确认模块已接入到系统,否则要先确认硬件连接是否正确。

如图为接入域格模块(VID:05C6 PID:9025)后, lsusb 相关信息。

test@yuge-info:~\$ lsusb

Bus 001 Device 010: ID 05c6:9025 Qualcomm, Inc. Qualcomm HSUSB Device 如图为接入域格模块(VID:05C6 PID:9025)后,dmesg 相关信息。

usb 1-1: New USB device found, idVendor=05c6, idProduct=9025 通过 lsusb 或 dmesg 查看到模块信息后,再确认添加的 VID PID 是否正确。核对无误后,最终确认修改的信息是否被系统编译到。

以上信息都确认无误,就能通过 ls /dev/ttyU*查看到端口了。

8.2 问: linux 下如何通过 echo cat 手动发送 AT 命令?

答:以向 ttyUSB2 发送命令 AT 为例,可按以下命令操作(通过 ctrl+c 退出) sudo echo -en "AT\r\n" > /dev/ttyUSB2;cat /dev/ttyUSB2

test@yuge-info:~\$ sudo echo -en "ATE\r\n" > /dev/ttyUSB2;cat /dev/ttyUSB2

OK
^C
test@yuge-info:~\$ sudo echo -en "AT\r\n" > /dev/ttyUSB2;cat /dev/ttyUSB2
AT
OK

8.3 问: 为何在 linux 下读取不到模块的主动上报信息?

答:不可在 generic.c 中添加模块 VID PID,需在 option.c 文件中添加,确认模块加载为 GSM modem。如下图为域格模块加载且过滤 NDIS 接口后,dmesq 中的相关信息。

```
USB Serial support registered for GSM modem (1-port) option 1-1:1.0: GSM modem (1-port) converter detected usb 1-1: GSM modem (1-port) converter now attached to ttyUSB0 option 1-1:1.1: GSM modem (1-port) converter detected usb 1-1: GSM modem (1-port) converter now attached to ttyUSB1 option 1-1:1.2: GSM modem (1-port) converter detected usb 1-1: GSM modem (1-port) converter now attached to ttyUSB2 option 1-1:1.3: GSM modem (1-port) converter detected usb 1-1: GSM modem (1-port) converter now attached to ttyUSB3 Discover the 4th interface for YUGA NDIS
```