Análise Matemática I 6 de Janeiro de 2005

LEAero, LEBiom, LEFT e LMAC

 2° Teste – Perguntas 4, 5, 6 e 7 – 90 minutos 1° Exame − Todas as Perguntas − 3 horas

Apresente os cálculos

1. Calcule em $\overline{\mathbb{R}}$, caso exista:

a)
$$\lim \sqrt[3]{\frac{n^2+3}{4n^2+n+2}}$$
, (1)
b) $\lim \left(\frac{2}{3}\right)^n \left(\frac{3}{2}\right)^{100}$, (1)
c) $\lim \left(1 + \frac{1}{2n}\right)^n$.

b)
$$\lim \left(\frac{2}{3}\right)^n \left(\frac{3}{2}\right)^{100}$$
, (1)
c) $\lim \left(1 + \frac{1}{2}\right)^n$. (1)

2. Estude a convergência das séries:

a)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n^2}\right)$$
, (1)

b)
$$\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^{n^2}$$
, (1)

c)
$$\sum_{n=0}^{\infty} \left(\frac{n+1}{n^2+2}\right)^3$$
, (1)

a)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n^2}\right)$$
, (1)
b) $\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^{n^2}$, (1)
c) $\sum_{n=0}^{\infty} \left(\frac{n+1}{n^2+2}\right)^3$, (1)
d) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$. (1)

3. Seja $k \in \mathbb{N} \setminus \{0,1\}$ e

$$s_k := \sum_{n=1}^k \left[(-1)^n \left(\frac{1}{n} - \frac{1}{n+2} \right) \right].$$

- a) Determine uma fórmula simplificada para s_k . (1)
- b) Prove por indução a igualdade que obteve na alínea anterior. (1.5)
- c) Calcule a soma da série que tem como sucessão das somas parciais a (0.5)sucessão (s_k) .

4. Calcule

a)
$$\frac{d}{dx} \left(\cos x \, e^x + \arctan \sqrt{x} + \ln^3 x\right),$$
 (1.5)

$$\mathbf{b)} \ \frac{\overline{d}}{dx}|x-1|, \tag{0.5}$$

a)
$$\frac{d}{dx} (\cos x e^x + \arctan \sqrt{x} + \ln^3 x),$$
 (1.5)
b) $\frac{d}{dx} |x - 1|,$ (0.5)
c) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}.$ (0.5)

5. Considere a função $f: \mathbb{R}^+ \to \mathbb{R}$, definida por $f(x) = x \ln x$.

- a) Calcule os limites de f em 0 e $+\infty$. (1)
- b) Designando por \bar{f} o prolongamento por continuidade de f a 0, analise (0.5)a existência de derivada à direita de \bar{f} no ponto 0.

- c) Determine a equação da recta tangente ao gráfico de f no ponto de abcissa 1. (1)
- d) Determine os intervalos de monotonia, os extremos locais e esboce o (2.5) gráfico de f.
- **6.** Seja $f: \mathbb{R} \to \mathbb{R}$ diferenciável e $c \in \mathbb{R}$. Existirão necessariamente $a, b \in \mathbb{R}$, (0.5) com $c \in]a, b[$, tais que $f'(c) = \frac{f(b) f(a)}{b a}?$

Justifique ou apresente um contraexemplo.

7. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua e $n \in \mathbb{N}$.

a) A função
$$f$$
 tem máximo em $[-n, n]$. Justifique. (1)

Suponha que

$$\exists_{K \in \mathbb{N}} \forall_{n \in \mathbb{N}} \, x_n \in [-K, K],$$

para uma certa sucessão (x_n) tal que x_n é ponto de máximo de $f|_{[-n,n]}$.

- b) Será que f tem necessariamente máximo em \mathbb{R} ? Justifique. (0.5)
- c) Será que toda a sucessão maximizante (i.e. toda a sucessão (z_n) tal que $f(z_n) \to \sup_{\mathbb{R}} f \in \overline{\mathbb{R}}$) tem que ser limitada? Justifique.