ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5

ТЕМА: *«ТАБЛИЧНЫЙ ПРОЦЕССОР MS EXCEL ». ПРИМЕНЕНИЕ СТАНДАРТНЫХ ФУНКЦИЙ.*

Цель занятия: Ознакомить студентов с широкими возможностями, элементами программы табличного процессора MS EXCEL. Обучить их самостоятельному созданию документов, расчету в табличном процессоре MS EXCEL.

ЗАДАНИЕ:

В автотормозном отделении локомотивного депо производится мойка деталей автотормоза в моечной машине, площадь ванны F, м²; часов в день; n, дней в году. Определить максимально разовый и валовый выброс загрязняющих веществ в атмосферу.

Таблица № 1.

Исходные		Варианты								
данные	1	2	3	4	5	6	7	8	9	10
Площадь зеркала ванны, F, M^2	3	4	2	3,5	4,5	2,8	3,2	4,4	2,4	3,9
Время мойки в день, t	4	5	3	4	6	3	4	6	3	5
Число дней работы ванны в году, п	160	170	180	190	200	210	220	230	240	250

При обмывке узлов и деталей подвижного состава с обмывочных ванн в воздух в зависимости от типа моечного раствора могут выделяться: аэрозоль карбоната натрия, гидроокись натрия, пары керосина.

1. Определить валовый выброс загрязняющих веществ M_i , кг/год при обмывке узлов и деталей подвижного состава тремя моющим растворами по формуле:

$$M_i = g_i \cdot F \cdot t \cdot n \cdot 3600 \cdot 10^{-3}$$
,

где g_i – удельный выброс i-го загрязнителя, г/см², (Таблица 2).

Таблица № 2.

Виды работ	Загрязнитель	g _i Γ/c·m ²
Мойка деталей в растворах:		
Карбонат натрия	аэрозоль карбоната натрия	0,0016
Каустическая сода	натрия гидроокись	0,55
Керосин	пары керосина	0,433

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Электронные таблицы предназначены для ввода и обра-ботки табличных данных. С помощью **Excel** можно выпол-нять сложные вычисления с большими массивами чисел, строить диаграммы и печатать финансовые отчеты.

Документ **Excel** – это файл с произвольным именем и расширением .xls(x), называется рабочей книгой. Как и любая книга, книга Excel состоит из листов. Каждый лист имеет свое имя (по умолчанию – Лист 1, Лист 2 и т.д.) и состоит из строк (нумеруются целыми числами от 1 до 1048576) и столбцов (обозначаются латинскими буквами A, B, C, D..., всего 16384 столбцов).

На пересечении строк и столбцов образуются ячейки. Каждая ячейка имеет адрес, который формируется из обо-значения столбца и номера строки (A1, B3, AB456). Одна из ячеек всегда выделена рамкой и называется текущей или активной, в нее можно вводить исходные данные — число, текст или формулу. Содержимое текущей ячейки выводит-ся в строке формул.

Если на рабочем столе **Windows** есть ярлык программы **Microsoft Excel**, нажмите на нем два раза быстро на левую кнопку мыши или нажмите кнопку **Пуск** - **Microsoft Office-Microsoft Excel**. После запуска на экране откроется окно **Excel** с пустым документом, рабочая область окна пред-ставляет собой таблицу, одна из ячеек которой выделена (имеет черную рамку).

Создать новый документ можно несколькими способами:

- выбрать меню Φ айл Создать Новая книга или Ctrl+N;
- щелкнуть по кнопке-иконке *Создать* на *Панели быстрого доступа*.

Правила ввода информации:

- щелкните по нужной ячейке левой кнопкой мышки, ав-томатически начинается ввод данных в ячейку, по окон-чании ввода нажмите клавишу *Enter*;
- содержимое ячейки выравнивается автоматически: тек-стовые данные по левому краю, числовые по правому;
- при необходимости отредактировать содержимое ячейки нажмите клавишу *F2* или дважды щелкните мышкой по ячейке, клавишами *Backspece* или *Del* удалите информа-цию и введите новую, нажмите клавишу *Enter*.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

1. Запустите программу MS EXCEL. Microsoft Excel 2010

2. Введите исходные данные с таблиц:

4	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0	р
2		Наустила					Вари	анты						Виды работ	Загрязнитель	gi г/с ⋅м2
3		Исходные данные данные	1	2	3	4	5	6	7	8	9	10		Мойка деталей в растворах:		
4		Площадь зеркала ванны, F, м2	3	4	2	3,5	4,5	2,8	3,2	4,4	2,4	3,9		Карбонат натрия	аэрозоль карбоната натрия	0,0016
5		Время мойки в день, t	4	5	3	4	6	3	4	6	3	5		Каустическа я сода	натрия гидроокись	0,55
6		Число дней работы ванны в году, п	160	170	180	190	200	210	220	230	240	250		Керосин	пары керосина	0,433
7		F*t*n=														

3. Для вычисления F*t*n нужно ввести в ячейку C7 формулу используя относительную адресацию: =C4*C5*C6 и нажать Enter.

4. С помощью маркера заполнения, который находиться в нижнем правом углу ячейки в виде чёрного креста, протягиваем формулу до конца вычисляемой строки.

A	А	В	С	D	Е	F	G	Н	1	J	K	L
1												
2		Исходные					Варис	инты				
3		данные	1	2	3	4	5	6	7	8	9	10
4		Площадь зеркала ванны, F, м2	3	4	2	3,5	4,5	2,8	3,2	4,4	2,4	3,9
5		Время мойки в день, t	4	5	3	4	6	3	4	6	3	5
6		Число дней работы ванны в году, п	160	170	180	190	200	210	220	230	240	250
7		F*t*n=	1920	3400	1080	2660	5400	1764	2816	6072	1728	4875

5. Далее составим следующую таблицу:

6. Вычислим валовый выброс загрязняющих веществ формулой $M_i=g_i\cdot F\cdot t\cdot n\cdot 3600\cdot 10^{-3}$. Для этого в ячейку С9 введём следующую формулу: =C7*3,6*P4, где P4 нужно сделать абсолютным адресом с помощью клавиши F4. Формула примет следующий вид: =C7*3,6*P\$4\$.

\triangle	Α	В	С	D
8				
9	1брос щих Мі] =C	7*3,6*\$1	P\$4
10	аловый выброс загрязняющих веществ М _і	M_2		
11	Вало загр ве	M_3		

7. Используя маркер заполнения заполняем вычисляемую строку.

9	ыброс ощих Мі	\mathbf{M}_1	11,059	19,584	6,2208	15,322	31,104	10,161	16,22	34,975	9,9533	28,08	
10	ый вы зняно еств	\mathbf{M}_2											.
11	Валові загря вещ	M_3											

- 8. Пункты 5-7 повторяем для ячеек С10 и С11, где g_2 и g_3 соответственно Р5 и Р6.
 - 9. Итоговая таблицы будет выглядеть так:

Δ	А	В	С	D	E	F	G	Н	1	J	K	L	N
8													
9	выброс нощих в Мі	\mathbf{M}_1	11,059	19,584	6,2208	15,322	31,104	10,161	16,22	34,975	9,9533	28,08	
10		\mathbf{M}_2	3801,6	6732	2138,4	5266,8	10692	3492,7	5575,7	12023	3421,4	9652,5	
11	Валовый загрязн вещест	M ₃	2992,9	5299,9	1683,5	4146,4	8417,5	2749,7	4389,6	9465	2693,6	7599,2	
40													P

- 10. С помощью функций МАКС, МИН, СРЗНАЧ и СУММ вычисляем наибольшее, наименьшее, среднее значение и сумму по строкам данной таблицы.
 - 11. Рассмотрим применение функции МАКС. Для этого на строке

формул нажимаем на

вставить функцию и вызываем мастер функций:

12. Укажите диапозон ячеек с значениями и нажмите ОК:

13. Маркером заполнения протяните функцию вниз.

Наибольшее значение	Наименьшее значение	Среднее значение	Сумма
34,97472			
12022,56			
9465,0336			

14. Вычислите остальные значения с соответствующими функциями.

Наибольшее значение	Наименьшее значение	Среднее значение	Сумма
34,97472	6,2208	18,26784	182,678
12022,56	2138,4	6279,57	62795,7
9465,0336	1683,504	4943,7342	49437,3

15. В итоге получим следующий результат:

d	(A	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	Р	Q
2		Исходные					Bapua	нты						Виды работ	Загрязнитель	gi г/с ∙м2	
3		данные	1	2	3	4	5	6	7	8	9	10		Мойка деталей в растворах:			
4		Площадь зеркала ванны, F, м2	3	4	2	3,5	4,5	2,8	3,2	4,4	2,4	3,9		Карбонат натрия	аэрозоль карбоната натрия	0,0016	
5		Время мойки в день, t	4	5	3	4	6	3	4	6	3	5		Каустическа я сода	натрия гидроокись	0,55	
6		Число дней работы ванны в году, п	160	170	180	190	200	210	220	230	240	250		Керосин	пары керосина	0,433	
7		F*t*n=	1920	3400	1080	2660	5400	1764	2816	6072	1728	4875		Наибольшее значение	Наименьшее значение	Среднее значение	Сумма
9		M_1	11,059	19,584	6,2208	15,322	31,104	10,161	16,22	34,975	9,9533	28,08		34,97472	6,2208	18,26784	182,678
10	Валовый выброс загрязняющих веществ Мі	M ₂	3801,6	6732	2138,4	5266,8	10692	3492,7	5575,7	12023	3421,4	9652,5		12022,56	2138,4	6279,57	62795,7
11		M ₃	2992,9	5299,9	1683,5	4146,4	8417,5	2749,7	4389,6	9465	2693,6	7599,2		9465,0336	1683,504	4943,7342	49437,3

Сохраните таблицы в своей папке.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ.

Задание № 1

На железнодорожном предприятии медницкие работы проводятся "а" часов в день, п дней в году. Работы ведутся на k постах. Определить валовые выбросы олова и свинца отдельно.

Исходные		Варианты									
данные	1	2	3	4	5	6	7	8	9	10	
Время пайки											
в день, а, час	4	3	2	4	3	2	4	3	2	4	
Кол-во рабочих дней	250	240	230	220	210	200	190	180	170	160	
в году, п											
Кол-во											
постов, k	5	4	3	5	4	3	5	4	3	5	

При поведении медницких работ (пайки) используют мягкие припои, плавящиеся при температуре $180 \div 230 \, \text{C}^{\text{o}}$. Эти припои содержат свинец и олово, поэтому при пайке в воздух выделяются их аэрозоли.

Расчет валовых выбросов M_i (кг/год) проводится по олову и свинцу отдельно для 3-х марок припоя по формуле M_i = g_i ·a·n·k·3600·10 ⁻³ , где g_i – удельное выделение свинца и олова, г/с(приложение 2).

Наименование	Марка припоя	Удельный выброс, г/с							
технологической		Свинец	Олово						
операции									
Пайка изделий	ПОС-30	0,0000075	0,0000033						
паяльниками	ПОС40	0,000005	0,0000033						
ручного типа	ПОС-60	0,000004	0,0000031						

Задание № 2

Эколого-экономический ущерб до проведения природоохранных мероприятий $У_1$, млн.руб./год, после их проведения составил $У_2$, руб./год. Дополнительный годовой доход после проведения экологических мероприятий составляет Д млн.руб. Оценить экономический результат от проведения природоохранных мероприятий.

Исходные данные	Варианты									
	1	2	3	4	5	6	7	8	9	10
Эколого- экономический ущерб: до проведения природоохранных мероприятий, У ₁ млн.руб./год после проведения	300	400	350	500	450	300	400	350	500	700
${ m Y}_2$ млн. руб./год	50	150	100	100	50	50	60	70	90	40
Дополнительный доход, Д	150	250	200	300	200	150	150	100	130	400

Методические указания

1. Величина предотвращенного экономического ущерба от загрязнения

У определяется как разность между расчетными величинами ущерба, который имел место до осуществления рассматриваемого мероприятия У1, и остаточного ущерба после проведения этого мероприятия У2.

$$y = y_1 - y_2$$

2. Величина экономического результата от проведения природоохранных мероприятий определяется по формуле

$$P = Y + Д$$
, млн.руб./год,

где Д - годовой прирост дохода (дополнительный доход) от улучшения производительности показателей деятельности предприятий в результате оздоровления окружающей среды, млн.руб./год.

Задание № 3

В автотормозном отделении локомотивного депо производится мойка деталей автотормоза в моечной машине, площадь ванны F, M^2 ; часов в день; п, дней в году. Определить максимально разовый и валовый выброс

загрязняющих веществ в атмосферу.

Исходные	Варианты									
данные	1	2	3	4	5	6	7	8	9	10
Площадь зеркала ванны, F, м ²	3	4	2	3.5	4.5	2.8	3.2	4.4	2.4	3.9
Время мойки в	4	5	3	4	6	3	4	6	3	5
день, t										
Число дней работы ванны в году, п	160	170	180	190	200	210	220	230	240	250

Методические указания

При обмывке узлов и деталей подвижного состава с обмывочных ванн в воздух в зависимости от типа моечного раствора могут выделяться: аэрозоль карбоната натрия, гидроокись натрия, пары керосина.

1.Определить валовый выброс загрязняющих веществ М;, кг/год при обмывке узлов и деталей подвижного состава тремя моющим растворами по формуле:

м_i= $g_i \cdot F \cdot t \cdot n \cdot 3600 \cdot 10^{-3}$, где g_i – удельный выброс i-го загрязнителя, г/см², (приложение 3).

2. Максимально разовый выброс загрязнителей определяется по зависимости

 $G_i=g_i\cdot F$.

Виды работ	Загрязнитель	g _i г/с·м ²		
Мойка деталей в растворах:				
Карбонат натрия	аэрозоль карбоната натрия	0,0016		
Каустическая сода	натрия гидроокись	0,55		
Керосин	пары керосина	0,433		