Material Studio Tutorial

A introduction for beginner

HU ZHENG

Chemical Engineering Academy
Tianjin University
February 25, 2019

Content

1 Background

2 Material Studio Introduction

3 Castep package

Background

Calculational Material Science

From **Schrodinger** to post-**DFT**

Schrodinger Eq.

$$H\Phi = E\Phi$$

Hydrogen atom (1e)

Born Oppenheimer Approximation

$$H = T + W + V$$

- ✓ Hartree-Fock Methods Rigorously time-consuming
- ✓ DFT Methods Effectively fast

- **✓** Many-body Problem
- ✓ One-election like Eq.

Exchange functional approximation:

- ✓ LDA
- ✓ GGA
- ✓ Hybird-GGA

Content

Background

2 Material Studio Introduction

3 Castep package

Material Studio

Status bar

Modeling

Modeling ~ Organic Molecules

ethane model

Single molecule

Sketch atoms, bonds, cycles, etc.

Auto-add H atoms Change atoms/bonds

Modeling ~ Organic Molecules

Single molecule Ethane model

dio Build Tools Statistics Modules Window Help **Build Polymers 6** ♦ ▼ 🛱 🛭 3D Atomistic.xsd * - - X

Molecule system

- √ Gas
- ✓ Liquid
- ✓ Solid
 - > Crystal
 - > Amorphous

Modeling ~ Metal & Other Crystals

"import" operation

Modeling ~ Metal & Other Crystals

http://crystallography.net/cod/search.html

Modeling ~ Export file

Content

Background

2 Material Studio Introduction

3 Castep package

关于CASTAP

CASTAP是特别为固体材料学而设计的一个现代的量子力学基本程序, 其使用了密度泛函(DFT) 平面波赝势方法,进行第一性原理量子力学计 算,以探索如半导体,陶瓷,金属,矿物和沸石等材料的晶体和表面性质。

典型的应用包括表面化学,键结构,态密度和光学性质等研究, CASTAP也可用于研究体系的电荷密度和波函数的3D形式。此外, CASTAP可用于有效研究点缺陷(空位,间隙和置换杂质)和扩展缺陷 (如晶界和位错)的性质。

Material Studio使用组件对话框中的CASTAP选项允许准备,启动,分析和监测CASTAP服役工作。

计算:允许选择计算选项(如基集,交换关联势和收敛判据),作业控制和文档控制。

分析:允许处理和演示CASTAP计算结果。这一工具提供加速整体直观化以及键结构图,态密度图形和光学性质图形。

http://www.castep.org/

Castep package

- ✓ Task
 - > Energy
 - Geometry Optimization
 - > Dynamics
- **✓** Quality
 - Coarse
 - > Medium
 - > Fine
 - ➤ Ultra-fine
- ✓ Functional
 - ➤ GGA-PBE
 - ► LDA-CA-PZ
- ✓ Metal options

Castep package ~ Calculation quality control

- ✓ Energy cutoff
 - Coarse
 - Medium
 - > Fine
 - ➤ Ultra-fine
- **✓ SCF** tolerance
 - > Medium
- ✓ k-points
 - > Gamma
 - Coarse
 - Medium
 - > Fine
- **✓** Pseudopotentials

Castep package ~ Calculation results control

- **✓** Band structure
- **✓ Density of State**
- **✓** Electron density difference
- **✓** Spectrum

Castep package ~ Job Control

- **✓ Parallel Setting**
 - Maximum: 4 (for most personal computer)
- **✓ Runtime optimization**

Example 1: Predict MoS₂ lattice parameter using castep

Parameter Setting:

- ✓ Task
 - ➤ Geometry Optimization
- **✓** Quality
 - > Medium
- ✓ Functional
 - ➤ GGA-PBE
- ✓ Metal options
 - > Selected
- **✓** Parallel Setting
 - Maximum: 4 (for most personal computer)
- **✓** Runtime optimization
 - > default

- **✓** Energy cutoff
 - > Medium
- **✓ SCF** tolerance
 - > Medium
- ✓ k-points
 - > Medium
- **✓** Pseudopotentials

Example 1: Predict MoS₂ lattice parameter using castep

Example 1: Predict MoS₂ lattice parameter using castep

Example 2: Predict MoS₂ lattice parameter using castep

Test 1: Predict H@MoS₂ structure

- ✓ Use **drawer tools** add H atoms
- \checkmark Use **optimized** MoS₂ structure as template
- ✓ Try **top and bridge** adsorption site

Example 2: Predict H@monolayer-MoS₂ structure

Slab Model

- ✓ Select facet (here is (001))
- ✓ Cleave face

Example 2: Predict H@monolayer-MoS₂ structure

Slab Model

✓ Build vacuum layer

Example 2: Predict H@monolayer-MoS₂ structure

Slab Model

- \checkmark Move MoS₂
- ✓ Add H atom

Example 2: Predict H@monolayer-MoS₂ structure

Castep module

- ✓ Task
 - ➤ Geometry Optimization
- **✓** Quality
 - > Medium
- ✓ Functional
 - ➤ GGA-PBE
- **✓** Metal options
 - > Selected
- **✓** Parallel Setting
 - Maximum: 4 (for most personal computer)
- **✓ Runtime optimization**
 - default

- **✓** Energy cutoff
 - > Medium
- **✓ SCF** tolerance
 - > Medium
- ✓ k-points
 - Medium
- **✓** Pseudopotentials

Same Parameters

Example 2: Predict H@monolayer-MoS₂ structure

Results

Example 2: Predict H@monolayer-MoS₂ structure

Adsorption energy

$$\Delta E_{\rm H} = \frac{1}{n} [E(surf + nH) - E(surf) - \frac{n}{2} E(H_2)]$$

$$E(surf + nH)$$
 MoS₂ energy

$$E(surf)$$
 H@MoS₂ energy

$$E(H_2)$$
 H energy

Example 3: MoS₂ Density of State

Castep module

- ✓ Task
 - ➤ Geometry Optimization
- **✓** Quality
 - > High
- ✓ Functional
 - ➤ GGA-PBE
- ✓ Metal options
 - > Selected
- **✓** Parallel Setting
 - Maximum: 4 (for most personal computer)
- **✓ Runtime optimization**
 - > default

- **✓** Energy cutoff
 - > High
- **✓ SCF** tolerance
 - > Medium
- ✓ k-points
 - > High
- **✓** Pseudopotentials

Example 3: MoS₂ Density of State

Results

Installation Question Collection

Q: Lic文件在哪里?

Q

2020-02-20 12:37 74KB

A:

Thanks for your attention!