

Transferts de Chaleur

Exercices

Pierre Le Cloirec

CONDUCTION

Exercice 2.1

Calculer la perte de chaleur par conduction à travers une paroi de brique d'épaisseur 0,50 m de hauteur 3 m et de largeur 2 m. Les températures des faces externes sont 150 °C et 50°C. On prendra la conductivité thermique égale à 0,7 J s⁻¹ m⁻¹K⁻¹.

Exercice 2.2

Calculer la perte de chaleur par conduction à travers la paroi d'un tube 20/27 de longueur 30 m. La température de la paroi interne est de 100 °C et celle de la paroi externe de 99 °C. On prendra la conductivité thermique égale à 58 J s⁻¹ m⁻¹K⁻¹.

Exercice 2.3

Calculer la perte de chaleur par conduction à travers un mur d'épaisseur 0,40 m, de 3 m de hauteur et de 1,80 m de large. Les températures des faces sont respectivement 230 et 60 °C.

- 2.3.1 On considère la conductivité (K) comme constante et égale à 0,7 W m⁻¹K⁻¹.
- 2.3.2 On prend pour K [kcal h⁻¹m⁻¹°C⁻¹] la fonction suivante : $K = 0.57(1 + 5.10^{-4} \text{ T})$

Exercice 2.4

Soit une sphère métallique creuse de rayon intérieur x_1 et de rayon extérieur x_2 . Soient T_1 et T_2 les températures des faces internes et externes $(T_1 > T_2)$, K_m la conductivité moyenne du métal. Calculer la quantité de chaleur $[\Phi]$ traversant les parois de la sphère par unité de temps.

On pourra écrire $\Phi = K_m A_m \frac{dT}{dx}$ et exprimer A_m en fonction de x_1 et x_2 (rayons intérieurs et extérieurs de la sphère).

Exercice 2.5

Soit un cône de révolution d'axe 0x, limité par deux plans $x = x_1$ et $x = x_2$ (Figure 1). T_1 et T_2 sont les températures des faces extrêmes. On suppose $T_1 > T_2$, K_m la conductivité moyenne du solide.

Calculer la quantité de chaleur Φ qui traverse le solide par unité de temps.

Figure 1

CONVECTION

Exercice 3.1

Soit un tube de 50/60 dans lequel circule un fluide à 25°C. Calculer le coefficient d'échange fluide-paroi interne dans les deux cas suivants :

3.1.1 le fluide est de l'eau circulant à un débit de 3,5 L s⁻¹

 $K = 0.61 \text{ J s}^{-1}\text{m}^{-1}\text{K}^{-1}$

 $\mu = 10^{-3} \text{ Pl}$

 $C_p = 4.18 \text{ kJ kg}^{-1}\text{K}^{-1}$

 $\rho = 1000 \text{ kg m}^{-3}$

3.1.2 Le fluide est de l'air circulant à un débit de 108 m³ h⁻¹.

 $K = 0.0255 \text{ J s}^{-1}\text{m}^{-1}\text{K}^{-1}$

 $\mu = 1.8 \ 10^{-5} \ Pl$

 $C_p = 1 \text{ kJ kg}^{-1} \text{K}^{-1}$

 $\rho = 1.2 \text{ kg m}^{-3}$

Exercice 3.2

Soit deux tubes concentriques dans lesquels circulent deux fluides. Dans le tube intérieur de 50/60 passe de l'eau à un débit de 10,8 m³ h⁻¹ servant à refroidir du toluène circulant dans la portion annulaire à un débit de 3 10⁻³ m³ s⁻¹. Le tube extérieur a un diamètre intérieur de 80

Calculer les coefficients d'échange eau-paroi interne du tube intérieur et toluène-paroi externe du tube intérieur. On donne :

pour l'eau

Conductivité

0,565 kcal h⁻¹m⁻¹°C⁻¹

Capacité calorifique :

1 kcal kg⁻¹°C⁻¹

Viscosité

1 cPoise

Conductivité

Masse volumique

1 kg L⁻¹

pour le toluène

0.12 kcal h⁻¹m⁻¹°C⁻¹

Capacité calorifique :

0,4 kcal kg⁻¹°C⁻¹

Viscosité

0,6 cPoise

Masse volumique

 0.86 kg L^{-1}

Exercice 3.3

Du benzène circule dans un tube 18/21 à une vitesse de 1,5 m s⁻¹. Calculer le coefficient d'échange benzène-paroi.

On donne pour le benzène les valeurs suivantes :

Viscosité

0,44 10⁻³ Pa s

Masse volumique

 870 kg m^{-3}

Capacité calorifique :

0,44 kcal kg⁻¹°C⁻¹

Conductivité du tube:

0,13 kcal h⁻¹m⁻¹°C⁻¹

Exercice 3.4

Effectuer le même calcul que l'exercice précédent, mais on suppose que le benzène circule dans un espace annulaire compris entre deux tubes :

Diamètre extérieur du tube intérieur : 21 mm Diamètre intérieur du tube extérieur : 50 mm

Exercice 3.5

On condense 1 000 kg h⁻¹ de vapeur d'eau à 100 °C sur des tubes verticaux. Calculer le coefficient d'échange vapeur—paroi sachant qu'il y a 100 tubes de diamètre extérieur 6 cm. On donne :

Viscosité : 0,283 10⁻³ Pa s Masse volumique : 960 kg m⁻³

Conductivité thermique : 0,586 kcal h⁻¹m⁻¹°C⁻¹

Exercice 3.6

Soit une conduite 50/60 de 30 m de long dans laquelle circule de la vapeur d'eau à la température de 150 °C. La température extérieure de l'air est de 20 °C.

3.6.1 Calculer la déperdition de chaleur.

3.6.2 Calculer les températures des parois intérieures et extérieures - Conclusions On donne :

 $K_1 = 50 \; kcal \; h^{\text{-}1} m^{\text{-}1\circ} C^{\text{-}1} \qquad \quad h_1 = 10 \; 000 \; kcal \; h^{\text{-}1} m^{\text{-}2\circ} C^{\text{-}1} \quad h_2 = 15 \; kcal \; h^{\text{-}1} m^{\text{-}2\circ} C^{\text{-}1}$

Exercice 3.7

La conduite présentée à l'exercice 3.6 est entourée par une couche de calorifugeage de 6 cm de conductivité thermique égale à 0,05 kcal h⁻¹m⁻¹°C⁻¹.

- 3.7.1 Calculer dans ce cas la chaleur perdue si la conductivité thermique de la couche du matériau de calorifugeage est égale à 4 W m⁻¹°C⁻¹.
- 3.7.2 Etudier la fonction : Perte thermique = f(épaisseur du calorifugeage)
- 3.7.3 Conclusions quant à la valeur trouvée en 3.7.

RAYONNEMENT

Exercice 4.1

Le soleil est considéré comme un corps noir. Calculer la température de surface du soleil ?

On donne

Flux énergétique rayonné par le soleil : 4,52 10^{26} W

Rayon du soleil: 696 300 km

Exercice 4.2

Soit un mur blanc ($\epsilon=0,1$) de $10~m^2$ de surface à la température de $13~^{\circ}C$ est au contact avec de l'air extérieur à $12~^{\circ}C$.

- 4.1.1 Donner le flux de chaleur échangé par rayonnement
- 4.1.2 Calculer le flux de chaleur par convection sachant que le coefficient de convection mur/air est de $25~W~m^{-2}K^{-1}$ Conclusions.

ECHANGEURS THERMIQUES

Exercice 6.1

On veut refroidir du benzène (2 000 kg h⁻¹) de 70 à 30 °C dans un échangeur tubulaire par de l'eau circulant à l'extérieur des tubes. Le débit d'eau est de 2 000 kg h⁻¹ et sa température d'entrée est de 20 °C.

- 6.1.1 Calculer la température de l'eau à la sortie de l'échangeur
- 6.1.2 Quelle valeur doit-on prendre pour ΔT_{moven} ?
 - si l'échangeur est à courants parallèles ;
 - si l'échangeur fonctionne à contre-courant.

On donne

 $C_{Peau} = 4.18 \text{ kJ kg}^{-1}\text{K}^{-1}$

 $C_{Pbenz\`{e}ne} = 1,84 \text{ kJ kg}^{-1} \text{K}^{-1}$

Exercice 6.2

On suppose que l'échangeur utilisé à l'exercice 6.1 est constitué de deux tubes concentriques. Le tube intérieur, dans lequel circule le benzène, est de dimensions 20/27. Le tube extérieur a un diamètre intérieur de 50 mm.

Calculer les coefficients d'échange benzène – paroi interne du tube intérieur et eau - paroi externe du tube intérieur.

On donne

- Pour le benzène à 50 °C

 $\begin{array}{lll} viscosit\acute{e} & : & 0,44\ 10^{\text{-}3}\ Pl \\ masse volumique & : & 870\ kg\ m^{\text{-}3} \\ conductivit\acute{e} & : & 0,156\ W\ m^{\text{-}1}\ K^{\text{-}1} \\ capacit\acute{e}\ calorifique & : & 1,84\ kJ\ kg^{\text{-}1}K^{\text{-}1} \end{array}$

- Pour l'eau à 29 °C

viscosité : $0.82 ext{ } 10^{-3} ext{ Pl}$ masse volumique : $1000 ext{ kg m}^{-3}$ conductivité : $0.630 ext{ W m}^{-1} ext{ K}^{-1}$ capacité calorifique : $4.18 ext{ kJ kg}^{-1} ext{K}^{-1}$

Exercice 6.3

En se servant des résultats des deux exercices 6.1 et 6.2, calculer le coefficient global d'échange et la longueur de l'échangeur.

On donne la conductivité thermique moyenne du métal de l'échangeur : 0,0464 kW m⁻¹ K⁻¹.

Exercice 6.4

On veut condenser 1 000 kg h⁻¹ d'un composé A dans un échangeur tubulaire, en utilisant de l'eau comme fluide réfrigérant. Le gaz A circule dans la partie annulaire de l'échangeur. Sa température d'entrée est de 80°C et en sortie il est liquide à la température de 60°C. La température de l'eau d'entrée est de 20°C et celle de sortie de 60°C. Calculer la longueur de l'échangeur. Sachant que

- L'échangeur est horizontal
- Le tube intérieur a les dimensions de 50/60
- La conductivité thermique du métal est de 46,44 W m⁻¹K⁻¹

- Les constantes physiques de l'eau à sa température moyenne dans l'échangeur sont :

masse volumique
 capacité calorifique
 viscosité
 conductivité thermique
 1000 kg m⁻³
 4,180 kJ kg⁻¹K⁻¹
 0,656 10⁻³ Pl
 0,657 W m⁻¹K⁻¹

- La chaleur latente d'évaporation de A à 80 °C est de 393 kJ kg⁻¹

- Les constantes physiques de A à 60 °C sont :

masse volumique
 viscosité
 conductivité thermique
 double de la constante de

viscosité
 conductivité thermique
 0,38 10⁻³ Pl
 conductivité thermique
 0,5434 W m⁻¹K⁻¹

Exercice 6.5

On condense 200 kg h⁻¹ de vapeur d'eau à 100 °C dans un échangeur, le fluide réfrigérant étant de l'eau à 10 °C. Sachant que le coefficient d'échange est U = 1741,7 W m⁻²K⁻¹, calculer la surface du condenseur. On donne :

chaleur de vaporisation de l'eau à 100 °C : 2 250 kJ kg⁻¹
chaleur spécifique de l'eau liquide : 4180 J kg⁻¹K⁻¹
débit d'eau froide : 4 000 kg h⁻¹

Exercice 6.6

On veut refroidir 200 kg d'eau liquide de 100 à 20 °C en utilisant comme fluide réfrigérant 4 000 kg h⁻¹ d'eau à 10 °C. Calculer la surface d'échangeur, sachant que $U = 464,4 \text{ kJ s}^{-1} \text{ m}^{-2}\text{K}^{-1}$. On prendra pour la chaleur spécifique de l'eau 4180 J kg⁻¹.

Exercice 6.7

On veut refroidir 3 000 kg h⁻¹ de nitrobenzène de 80 à 30 °C en utilisant 1 500 kg h⁻¹ d'eau de température initiale 20 °C.

On utilise un échangeur constitué de deux tubes concentriques de dimensions respectives 25/33 et 50/60. Le nitrobenzène est dans le tube intérieur et l'eau dans l'espace annulaire.

- 6.7.1 Calculer la température de sortie de l'eau.
- 6.7.2 Doit-on opérer à courants parallèles ou à contre-courant ?
- 6.7.3 Calculer ΔT .
- 6.7.4 Calculer le coefficient de convection intérieure (h₁) connaissant les caractéristiques physiques du nitrobenzène :

- masse volumique 1 200 kg m⁻³ - capacité calorifique 1,38 kJ kg⁻¹K⁻¹

- viscosité 10⁻³ Pl

conductivité thermique 0,159 W m⁻¹K⁻¹

6.7.5 Calculer le coefficient de convection extérieure (h₂) connaissant les caractéristiques physiques du nitrobenzène :

masse volumique 1 000 kg m⁻³
capacité calorifique 4,18 kJ kg⁻¹K⁻¹
viscosité 0,7 10⁻³ Pl
conductivité thermique 0,630 W m⁻¹K⁻¹

- 6.7.6 Calculer U_{ext}, sachant que la conductivité thermique de paroi est de 46,44 W m⁻¹K⁻¹.
- 6.7.7 Calculer la longueur de l'échangeur.

Exercice 6.8

On souhaite refroidir de l'huile de 149 °C à 71 °C dans un échangeur tubulaire par de l'eau à 10 °C. Calculer la longueur de l'échangeur si l'on travaille à Co ou Contre-courant.

On donne

Pour l'huile Débit : 0,186 kg/s

Capacité Calorifique: 2,18 kJ/kg/K

Coefficient de convection (h₁): 2270 W/m².K

Pour l'eau Débit : 0,150 kg/s

Capacité Calorifique: 4,19 kJ/kg/K

Coefficient de convection (h₂): 5970 W/m².K

Caractéristiques du tube de l'échangeur

Diamètre : 12,7 mm Epaisseur : faible

Conductivité thermique : élevé