

10th Edition of India Smart Utility Week (ISUW) 2024

LONG DURATION ENERGY STORAGE SYSTEMS

"Advanced Grid-scale Energy Storage Technologies"

March 15, 2024

Arun Kumar

Department of Hydro and Renewable Energy Indian Institute of Technology, Roorkee, India Email: arun.kumar@hre.iitr.ac.in

Study Objectives

- Assessment of grid scale energy storage technology options for Indian conditions.
- Development of indigenized cost matrix for grid scale energy storage technologies.
- Assessment of domestic manufacturing of these technologies and critical elements of their value chain; assessment of import substitution potential.
- Lifecycle cost of storage and life cycle emission of the energy storage options.
- Policy and regulatory recommendations to incentivize and prioritize storage technologies in India for achieving energy decarbonisation goal.

Completed during September 2022 – July 2023.

Energy Storage Technologies

Assumption for Economical Analysis

Storage Technology	Round-trip Efficiency	Lifetime (Years)	CAPEX	Project construction time (years)	LCoS most sensitive parameter
Pumped Hydro Storage	80%	40	₹4 Crores/MW	5	Electricity Buy price
Compressed Air ES	60%	40	₹4 Crores/MW	5	Electricity Buy price
Lithium-ion Battery	90%	8	₹ 18,450/kWh	1	CAPEX
Molten Salt Storage	80%	25	₹ 24 Crores/MW	3	CAPEX
Vanadium Redox Flow Battery	83%	24	₹ 26,650/kWh	1	CAPEX

One Charging and discharging cycle per day of 4 hours. However for PSP and thermal this may go up to 8-10 hours

Equity	30%	Return on Equity	16.5%
Interest on loan	9%	Discount rate	11.75%

Life cycle cost of storage (LCOS)

Sensitivity analysis of LCOS for PSP with CAPEX

Input Electricity Cost Rs. 3 per unit

Levelised Cost of Storage vs Global Warming Potential

Recommendations

- **To frame appropriate regulations** to monetize ancillary services and develop peak and off-peak tariffs. These actions to be finalized by regulatory bodies.
- **Allotment of technology and sites:** A transparent process for meeting energy storage requirements at state, regional and national level.
- Supply chain and manufacturing drivers
- Financial institutions to treat storage projects at par with RE projects.
- GoI to provide R&D support for developing globally competitive energy storage technologies.
- Pilot plants be supported.
- CERC & SERCs to declare and enforce energy storage obligation (ESO) for all RE power for GENCOs and DISCOMs as declared for RPO.
- To develop Model Regulations for all the State Regulators.
- Market-based mechanisms to identify right price for energy & capacity

Thank You

