Introduccion a la Bioinformática Data Clustering

Fernán Agüero

Instituto de Investigaciones Biotecnológicas, UNSAM

Fernán Agüero

Agrupamiento de datos / Data Clustering

- El *agrupamiento de datos* consiste en la clasificación de objetos diferentes grupos, de manera que objetos similares son agrupados en el mismo grupo.
- Otra definición: particionar un conjunto de datos en subconjuntos o clusters de tal manera que estos tengan "algo en común".
 - El problema: cuantificar "algo en común"
 - Proximidad
 - Similitud
- Es un tipo de aprendizaje no supervisado
- Es un problema combinatorio difícil

Hay muchos tipos de datos ...

Se pueden agrupar:

- Secuencias (DNA, RNA)
 - Ej: Agrupar por similitud/identidad global
 - Ej: Agrupar por presencia de motivos o señales
- Medidas de expresión de genes
 - Ej: Agrupar todos los genes que tienen alta expresión
- Abstracts en PubMed
 - Ej: Agrupar abstracts en base a número de palabras compartidas
- Marcadores morfológicos
 - Ej: Puntos fluorescentes en una imagen de microscopía (por ej para delinar una membrana o cualquier otra estructura celular)
- O todo a la vez
 - Vectores multidimensionales

Data clustering example

Steps in data clustering

Feature selection:

• Identificar en el dataset el subset de características (features) más informativo para agrupar objetos

Pattern representations:

 La manera de representar una característica afecta directamente a las medidas de similitud

Pattern proximity:

 Hay muchas maneras de medir proximidad (distancias). En general se calculan distancias de a pares, para todos los objetos a agrupar

Clustering:

Hay muchos algoritmos (estrategias) de clustering

Cluster validation analysis

 La estructura de agrupamiento es válida si no puede obtenerse simplemente por azar o no es producto de un artefacto del método

Fernán Agüero

Objetivo

Fernán Agüero

Objetivo del algoritmo

Minimizar la distancia intracluster Maximizar la distancia entre clusters

Formas de los clusters

Clustering: data representation example

Cluster curvilineo, donde los puntos están mas o menos equidistantes del origen. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.

Clustering in bioinformatics: expression data

Expresión de genes a lo largo de un experimento.

No importa tanto si los genes se expresan mucho o poco (ej agrupar por nivel de expresión no tiene sentido)

Importa el comportamiento de cada gen a lo largo de un tratamiento experimental.

Correlation distance. Mide la dependencia entre datos.

CD = 0 si los datos son independientes.

CD = 1 si tienen dependencia.

Clustering of ESTs found to be differentially expressed during fat cell differentiation. Shown is k-means clustering of 780 ESTs found to be more than twofold upregulated or downregulated at a minimum of four time points during fat cell differentiation. ESTs were grouped into 12 clusters with distinct expression profiles. Hackl *et al. Genome Biology* 2005 **6**:R108 doi:10.1186/gb-2005-6-13-r108

Correlation distance: Pearson's correlation

Several sets of (x, y) points, with the Pearson correlation coefficient of x and y for each set. Note that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is zero.

http://en.wikipedia.org/wiki/Correlation

Clustering algorithms: hierarchical clustering

 \mathbf{m}

Todos los algoritmos jerárquicos producen como resultado un dendograma

A partir del dendograma se pueden obtener varias particiones (estructuras de clusters) de los datos.

Fernán Agüero

Estrategias de Clustering: Clustering jerárquico

Divisible

Estrategias de Clustering: clustering particional

A diferencia de los algoritmos jerárquicos, se obtiene una única partición de los datos (una única estructura de clusters)

Propiedades de los clusters

Numéricos vs. Categóricos

Cómo calcular distancias entre objetos?

Propiedades de los clusters

Disjuntos vs. No disjuntos (hard) (fuzzy)

Propiedades de los clusters

Completos vs. Incompletos

Dado un conjunto de N (5) elementos a ser agrupado y una matriz de distancia (o similitud) de N x N:

d	1	2	3	4	5
1	0	5	6	10	13
2	5	0	1	5	8
3	6	1	0	4	7
4	10	5	4	0	3
5	13	8	7	3	0

Comenzar por asignar cada item a un cluster.

Tenemos 5 clusters

En este paso, las distancias entre los clusters son las mismas que entre los elementos de cada cluster

d	1	2	3	4	5
1	0	5	6	10	13
2	5	0	1	5	8
3	6	1	0	4	7
4	10	5	4	0	3
5	13	8	7	3	0

Encontrar el par más cercano de clusters y unirlo en un único cluster.

Tenemos 4 clusters

d	1	2	3	4	5
1	0	5	6	10	13
2	5	0	1	5	8
3	6	1	0	4	7
4	10	5	4	0	3
5	13	8	7	3	0

Calcular las distancias entre el nuevo cluster y los viejos clusters

En single-linkage la distancia que se usa es la *mínima* entre distintos elementos de un cluster

Los elementos se agrupan *siempre* encontrando la *mínima* distancia en la matriz

d	1	2	3	4	5
1	0	5	6	10	13
2	5	0	1	5	8
3	6	1	0	4	7
4	10	5	4	0	3
5	13	8	7	3	0

d	1	2-3	4	5
1	0	5	10	13
2-3	5	0	4	7
4	10	4	0	3
5	13	7	3	0

En el algoritmo complete-linkage la distancia que se usa en la nueva matriz es la *máxima* entre distintos elementos de un cluster

Los elementos se agrupan *siempre* encontrando la *mínima* distancia en la matriz

Y en average-linkage?

d	1	2	3	4	5
1	0	5	6	10	13
2	5	0	1	5	8
3	6	1	0	4	7
4	10	5	4	0	3
5	13	8	7	3	0

d	1	2-3	4	5
1	0	6	10	13
2-3	6	0	5	8
4	10	5	0	3
5	13	8	3	0

Single-linkage

Repetir los pasos 2 y 3 hasta que todos los elementos se encuentren en el mismo cluster de tamaño N (5)

Diferencias entre single vs complete linkage

Ejemplo: dataset compuesto por elementos pertenecientes a dos clases, conectadas por una cadena de datos ruidosos. Tomado de Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.

Fernán Agüero

Hierarchical clustering: interactive demo

Hierarchical Clustering - Interactive demo

This applet requires Java Runtime Environment version 1.3 or later. You can download it from the Sun Java website.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html

Otras Variantes

Hierarchical clustering techniques applied to phylogenetic reconstruction:

UPGMA (Unweighted Pair Group Method with Arithmetic Mean)

Usado para reconstruir filogenias

Usa la media aritmética (average-link)

Distancias ultramétricas

Neighbor-joining
Usado para reconstruir filogenias
Usa la media aritmética
Las distancias son aditivas

Clustering algorithms: K-means

Es muy rapido!

Particional

Usa Distancia euclídea

Necesita el valor de k (Nro de clusters)

Util para búsqueda de prototipos

Sensible a outliers

K-means - Interactive demo

This applet requires Java Runtime Environment version 1.3 or later. You can download it from the Sun Java website.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Clustering: hay que analizar los resultados!

Dado un set de datos al azar, sin ninguna estructura, los algoritmos de clustering siempre encuentran agrupamientos!

Gold Standard: los agrupamientos, corresponden a categorías naturales? (Validación externa)

Cuán bien están maximizados y minimizados la similitud intra-cluster y la disimilaridad inter-cluster? (Validación interna)

Validación interna: Silhouette Index

$$\frac{1}{k} \sum_{k} \left(\frac{1}{|c_k|} \sum_{\vec{x}_i \in c_k} \frac{b(\vec{x}_i) - a(\vec{x}_i)}{\max[b(\vec{x}_i), a(\vec{x}_i)]} \right)$$

- $a(\vec{x}_i)$ average distance from \vec{x}_i to other instances in same cluster
- $b(\vec{x}_i)$ average distance from \vec{x}_i to instances in next closest cluster
 - SI = 1 means element is well placed in its cluster
 - SI = 0 means element might well be placed in another cluster

Validación interna: Silhouette Index

Final

Agradecimientos: Dra. Rocío Romero Zaliz
 (Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada)

Bibliografía adicional:

- Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. (PDF disponible en la página de la materia)
- Witten IH, Frank E, Hall MA (2011) Data Mining: Practical Machine Learning Tools and Techniques, 3rd Edition.

Filogenia Reconstrucción filogenética Inferencia de filogenias

Fernán Agüero

Instituto de Investigaciones Biotecnológicas UNSAM

Filogenia

- Una filogenia es un árbol que describe la secuencia de eventos que llevó a producir los caracteres que observamos en la actualidad
- Es una hipótesis!
- Los eventos pasados son desconocidos. Se infieren
- Un árbol es un grafo
 - Nodos y ejes
- En particular:
 - Los nodos exteriores (hojas del árbol) son los eventos observados (especies actuales)
 - Los nodos internos son los eventos (ancestros) postulados
 - La longitud de los ejes (ramas) representa el tiempo de evolucion entre nodos

Espacio de árboles posibles

Taxa	Rooted trees	Unrooted trees
3	3	1
4	15	3
5	105	15
-	-	-
7	10,395	954

Métodos de reconstrucción de filogenias

- Basados en
 - Distancias
 - Parsimonia
 - Verosimilitud (likelihood)

Métodos basados en distancias

Cómo inferir la filogenia?

- Definir los caracteres a seguir
- Construir una matriz de distancias
- Seleccionar un algoritmo para reconstruir la filogenia a partir de los datos de distancias

Caracteres y estados

- Los caracteres deben evolucionar en forma independiente
- Los estados observados comparten un origen común

Para secuencias de ADN un caracter corresponde a una posición en la secuencia y los estados posibles, son los nucleótidos A, T, C, G.

Tipos de caracteres

MORFOLÓGICOS Medidas Corporales Medidas Parciales Presencia de estructuras	MOLECULARES Hibridación DNA-DNA RFLP Secuencias (DNA ó Proteínas)
CONTINUOS Medidas Corporales Medidas Parciales Hibridación de DNA-DNA	DISCRETOS Presencia de estructuras RFLP Secuencias (DNA ó Proteínas)

Matriz de caracteres

	1	2	3	4	5	6	7	8	9
1	Α	Α	G	Α	G	Т	G	С	Α
2	Α	G	С	С	G	1	G	С	G
3	Α	G	Α	Т	Α	Т	þ	С	Α
4	Α	G	Α	G	Α	Т	C	С	G

	Sp. 1	Sp. 2	Sp. 3	Sp. 4
Sp. 1	0			
Sp. 2	4	0		
Sp. 3	5	5	0	
Sp. 4	6	4	2	0

45 Fernán Agüero

Algoritmos basados en distancias

- Los pares de secuencias más cercanos (neighbors) comparten un ancestro común y están unidos a él por ramas
- El objetivo del método es encontrar un árbol que acomode a todos los vecinos correctamente
- El largo de las ramas tiene que concordar con los datos de distancia
- Usan métodos de clustering para agrupar vecinos

Distintos tipos de distancias

Aditivas

- La suma de las longitudes de las ramas de dos especies con su nodo ancestral es igual a la distancia calculada entre las especies

	Sp. 1	Sp. 2	Sp. 3	Sp. 4
Sp. 1	-			
Sp. 2	3	-		
Sp. 3	7	6	-	
Sp. 4	8	7	3	-

Ultramétricas

- Cada ancestro común está equidistante de sus descendientes
- Util para visualizar similitud en contextos no evolutivos

Máxima parsimonia

- Predicen el árbol (o árboles) que minimizan el número de cambios (o pasos) que es necesario hacer para generar la variación observada entre las secuencias
- También conocido como método de evolución mínima

	1	2	3	4	5	6	7	8	9
1	Α	Α	G	Α	G	Т	G	С	Α
2	Α	G	С	С	G	Т	G	С	G
3	Α	G	Α	T	Α	Т	С	С	Α
4	Α	G	Α	G	A	Т	С	С	G

Ejemplo

- Para ser informativo un sitio debe tener dos estados presentes en al menos dos especies
- Sitios no informativos: 1, 2, 3, 4, 6 y 8
- Sitios informativos: 5, 7 y 9
- Sólo se analizan los sitios informativos

Máxima parsimonia: ejemplo

- Hay 3 árboles posibles (sin raíz) para describir la evolución de 4 especies
- Menor número de cambios para explicar la evolución: árbol 1 (1 cambio)
- El mismo análisis se repite para cada uno de los sitios informativos
- El resultado es el árbol que provee el menor número de pasos para acomodar los datos en los sitios informativos (el más parsimonioso)

Fernán Agüero

Máxima parsimonia: detalles

- Asume que la velocidad de evolución es similar en todas las ramas
 - La inferencia obviamente falla cuando esto no se cumple
 - Ejemplo: cambio de G a A en forma independiente en dos especies
 - Especie 1: G > A
 - Especie 2: G > C > T > G > C > A
- Se pueden asignar puntajes a los árboles
 - En lugar de contar cambios se pueden asignar distintos valores a los cambios (por ejemplo usando una matriz)
- A diferencia de los métodos de distancia, el método permite obtener la secuencia postulada de cualquier ancestro

Maxima verosimilitud

Maximum likelihood

- Similar al método de máxima parsimonia: usa todas las columnas del alineamiento, considera todos los árboles posibles
- Usa probabilidades

Testeo de árboles

Bootstrap test

- Bootstrap resampling technique (Efron 1982)
- Dado un número de secuencias M de longitud N (un alineamiento), y un árbol calculado por un método cualquiera, se genera un nuevo set de secuencias M' en el cual N' bases/residuos elegidos al azar son reemplazados, también al azar.
- En base a este nuevo set M' se recalcula el árbol utilizando el mismo método y se comparan las topologías del árbol.
- Esto se repite varias veces (100, 1000 repeticiones) y se calcula, para cada rama un valor de bootstrap
- Bootstrap value: % de veces que la rama aparece en los distintos árboles
- Bootstrap values >= 95% corresponden a ramas "correctas" 85

98

Testeo de árboles

Jacknife

- Muy similar al test de bootstrapping
- Se generan nuevos data sets por muestreo parcial del original
- Usualmente se muestrea el 50% de los datos originales
- Se rehacen los árboles y se verifica la topología
- Se hacen varios re-muestreos (100-1000 veces)
- Se construye un árbol consenso con valores de confidencia para cada rama

Selección de secuencias: parálogos

Problemas con parálogos

Si sólo usamos

Fernán Agüero

Paquetes de software

Phylip

- Unix, linea de comando. Gratuito.
- DNA, Proteinas,
- Distancias, Parsimonia
- Bootstrap, Jacknife

PAUP

- Similar a Phylip. Comercial. Interfase gráfica, linea de comando.

PhyML

- Maximum likelihood