Low power consumption headphone driver for digital audio BA3577FS

The BA3577FS is a headphone driver developed for portable digital audio equipment that supports a voltage of 1.5V.

Applications

Portable MD players and others

Features

- 1) 1.5V supported.
- 2) Low current consumption
 (At Po = 0.5mW / ch, Vcc inflow current = 3.3mA, and
 + B inflow current = 6.8mA (Typ.)).
- 3) Output coupling capacitor of 100 μ F produces fc = 45Hz (RL = 16 Ω).
- 4) Internal muting switch.
- 5) Internal ripple filter.
- 6) Internal BEEP circuit.

■Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	4.0	V
rower supply voltage	+ B	9.0	V
Power dissipation	Pd	600*1	mW
Operating temperature	Topr	−15~ +60	°C
Storage temperature Tstg		-55~ + 125	°C

^{*1} Reduced by 6.5mW for each increase in Ta of 1℃ over 25℃.

•Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	2.2	2.8	3.6	٧
	+в	0.8	1.2	4.0	٧

Block diagram

•Electrical characteristics (unless otherwise noted, Ta = 25 °C, Vcc = 2.8V, +B = 1.2V, PWSTB = 2.8V, MUTE = 0V, RL = 16 Ω , f = 1kHz, DIN AUDIO)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
Vcc quiescent current	lo ₁	_	3.2	5.0	mA	V _{IN1,2} =0
+B quiescent current	lo ₂	_	3.3	6.4	mA	V _{IN1,2} =0
Vcc operating current	lin1	_	3.3	5.2	mA	P _{01,2} =0.5mW
+B operating current	lın2	_	6.8	9.8	mA	Po _{1,2} =0.5mW
+B leak current	Δ І+в	_	0	3.0	μΑ	+B input current when Vcc=0V
Voltage gain	Gv	9.6	11.6	13.9	dB	_
Frequency characteristic 1	∆Gv1	1.1	3.3	5.5	dB	Gv (1kHz) — Gv (50Hz)
Frequency characteristic 2	∆Gv2	0	0.5	3.0	dB	Gv (1kHz)—Gv (20kHz), 80kHz LPF
Total harmonic distortion	THD	_	0.1	0.5	%	Vo=0.1Vrms
Rated output	Po	5.6	10.0	_	mW	THD=10%
Output noise voltage	Vno	_	-98	-92	dBm	Rg=0, IHF A
Input resistance	Rin	15	20.7	25	kΩ	_
Channel separation	CS	60	77	_	dB	Rg=0, Vo=0.2Vrms, 1kHz BPF
Muting level	ML	_	-98	-92	dBm	V _{IN} =-30dBV, V ₉ =2.8V, 1kHz BPF
Ripple rejection 1	RR ₁	62	72	_	dB	Rg=0, fn=100Hz, 100Hz BPF Vn=-20dBm applied only to Vcc
Ripple rejection 2	RR₂	63	73	_	dB	Rg=0, fn=100Hz, 100Hz BPF Vn=-20dBm applied only to +B
BEEP IN pin inflow current	Івр	_	50	100	μΑ	I ₁₁ when V ₁₁ =V _{CC}
BEEP output voltage	V _{BP}	2.6	6.0	10.0	mV _{P-P}	V _{BPIN} =2.8V _{P-P} , f=1kHz
PWSTB OFF pin voltage	Vs	_	0.95	1.4	V	V_7 when $V_8 \ge 0.5 V$
PWSTB OFF pin inflow current	ls	_	52	100	μΑ	I ₇ when V ₇ =V _{CC}
MUTE ON pin voltage	Vм	_	0.95	1.4	V	V_9 when $V_{10} \ge 0.5V$
MUTE ON pin inflow current	Ім	_	52	100	μΑ	Is when Vs=Vcc

ONot designed for radiation resistance.

Measurement circuit

Fig.1

Units
Resistance : Ω ($\pm 1\%$)
Capacitance (film) : F ($\pm 1\%$)
Capacitance (electrolytic) : F ($\pm 5\%$)

Application example

Fig.2

Electrical characteristic curves

Fig.3 Quiescent current vs. power supply voltage

Fig.4 Current consumption vs. output power

Fig.5 Output voltage vs. input voltage

●External dimensions (Units: mm)

