Tropical algebra for piecewise complexity

Isa Vialard Joint work with Maëva Veron and Philippe Schnoebelen

Subword relation

$RADAR \leq ABRACADABRA$

♦ Simon's congruence

$$u \equiv_m v \text{ iff } \forall w \text{ s.t. } |w| \leq m, \ w \leq u \iff w \leq v$$

Ex. NATIONALIST \equiv_2 ANTINATIONALIST,

but $NATIONALIST \not\equiv_3 ANTINATIONALIST$: INO is a distinguisher.

Definition (Piecewise complexity)

h(u) is the smallest k such that $u \equiv_k v$ implies u = v.

\Display Example: h(abba) = 3

abba is the only word u such that aba, bb $\leq u$ but bab, aaa, bbb $\nleq u$

¹Sakarovitch J., Simon I. Subwords. Combinatorics on Words.

Definition (Piecewise complexity)

h(u) is the smallest k such that $u \equiv_k v$ implies u = v.

\Display Example: h(abba) = 3

abba is the only word u such that $aba, bb \leq u$ but $bab, aaa, bbb \not\leq u$

Definition (Distance¹)

$$\delta(u, v) = \max\{k \colon u \equiv_k v\}$$

= $|s| - 1$ for s a shortest distinguisher.

\Display Example: $\delta(abba, baba) = 2$

baa is a shortest distinguisher so abba \equiv_2 baba

¹Sakarovitch J., Simon I. Subwords. Combinatorics on Words.

Definition (Piecewise complexity)

h(u) is the smallest k such that $u \equiv_k v$ implies u = v.

\Display Example:
$$h(abba) = 3$$

abba is the only word u such that $aba, bb \leq u$ but $bab, aaa, bbb \not \leq u$

Definition (Distance¹)

$$\delta(u, v) = \max\{k : u \equiv_k v\}$$

= $|s| - 1$ for s a shortest distinguisher.

♦ Not intuitive

$$\delta(aaaaaa, b) = 0$$
 but $\delta(aaaaaa, aaaaaaa) = 6$

¹Sakarovitch J., Simon I. Subwords. Combinatorics on Words.

$h = \max \text{ of distance}$

Definition (Piecewise complexity)

h(u) is the smallest k such that $u \equiv_k v$ implies u = v.

Definition (Distance²)

$$\delta(u, v) = \max\{k \colon u \equiv_k v\}$$

= $|s| - 1$ for s a shortest distinguisher.

♦ Theorem

$$h(u) = \max_{v \neq u} \delta(u, v) + 1$$

$h = \max of distance$

Definition (Piecewise complexity)

h(u) is the smallest k such that $u \equiv_k v$ implies u = v.

Definition (Distance²)

$$\delta(u, v) = \max\{k \colon u \equiv_k v\}$$

= $|s| - 1$ for s a shortest distinguisher.

♦ Theorem

$$h(u) = \max_{v \neq u} \delta(u, v) + 1$$
$$= \max_{\substack{u = u_1 u_2 \\ a \in \Sigma}} \delta(u, u_1 a u_2) + 1$$

²Sakarovitch J., Simon I. Subwords. Combinatorics on Words.

$h = \max \text{ of distance}$

$$h(u) = \max_{\substack{u = u_1 u_2 \\ a \in \Sigma}} \delta(u, u_1 a u_2) + 1$$

and

$$\delta(u, u_1 a u_2) = \delta(u_1, u_1 a) + \delta(u_2, a u_2)$$

= $r(u_1, a) + \ell(a, u_2)^3$

³Simon, I. Piecewise testable events. In Automata Theory and Formal Languages (1975)

³Simon, I. Piecewise testable events. In Automata Theory and Formal Languages

Computing *r*

♦ Theorem ⁴

$$r(\epsilon, a) = 0$$

$$r(ub, a) = \begin{cases} r(u, a) + 1 & \text{if } a = b, \\ \min(r(u, b) + 1, r(u, a)) & \text{if } a \neq b. \end{cases}$$

⁴Schnoebelen, Vialard, On the piecewise complexity of words. Acta Informatica (2025) 6/23

Computing *r*

♦ Theorem ⁵

$$r(\epsilon, a) = 0$$

$$r(ub, a) = \begin{cases} r(u, a) + 1 & \text{if } a = b, \\ \min(r(u, b) + 1, r(u, a)) & \text{if } a \neq b. \end{cases}$$

♣ Example

Let u = ABBACCBCCABAABC over $A = \{A, B, C\}$. The r-table of u is

⁵Schnoebelen, Vialard, On the piecewise complexity of words. Acta Informatica (2025) 7/22

Computing h from r and ℓ

Definition

The r-table R_u : $R_u(i,j) = r(u_j,a_i)$ where $u_j = u[1,j]$

The ℓ -table L_u : $L_u(i,j) = \ell(a_i,u_i')$ where $u_i' = u[j+1,|u|]$

♣ Example

Here are R_u and L_u for u = CBBCAC, assuming $\Sigma = \{A, B, C\}$:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 1 & 2 \end{pmatrix} \qquad r(u[,4],C) = 2 \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 2 & 1 & 1 & 0 \end{pmatrix}$$

♦ Scanning $(R + L)_u$ for maximum: Complexity in $|u| \cdot |\Sigma|^{-6}$

⁶Schnoebelen, Vialard, On the piecewise complexity of words. Acta Informatica (2025)

Definition

 $\mathsf{SLP} = \mathsf{deterministic} \ \mathsf{production} \ \mathsf{rules} \ X o YZ, X o \mathtt{A}, \ \mathsf{generating} \ 1 \ \mathsf{word}$

♦ Goal: compute h(u) for u given as a SLP

 \dots in size of SLP (instead of size of u)

Definition

 $\mathsf{SLP} = \mathsf{deterministic}$ production rules $X \to YZ, X \to \mathtt{A}$, generating 1 word

- ♦ Goal: compute h(u) for u given as a SLP
- \dots in size of SLP (instead of size of u)
- **♣** Unfortunately $h(uv) \neq h(u) + h(v)$

Ex:
$$h(ab) = h(ba) = 2$$
 but $h(abba) = 3$

Definition

 $\mathsf{SLP} = \mathsf{deterministic}$ production rules $X \to YZ, X \to \mathtt{A}$, generating 1 word

- ♦ Goal: compute h(u) for u given as a SLP
- \dots in size of SLP (instead of size of u)
- **♣** Unfortunately $h(uv) \neq h(u) + h(v)$

Ex:
$$h(ab) = h(ba) = 2$$
 but $h(abba) = 3$

Convexity:
$$h(u), h(v) \le h(uv) \le h(u) + h(v) - 1$$

Definition

 $SLP = deterministic production rules X \rightarrow YZ, X \rightarrow A, generating 1 word$

- ♦ Goal: compute h(u) for u given as a SLP
- \dots in size of SLP (instead of size of u)
- **♣** Unfortunately $h(uv) \neq h(u) + h(v)$

Ex:
$$h(ab) = h(ba) = 2$$
 but $h(abba) = 3$

Convexity:
$$h(u), h(v) \le h(uv) \le h(u) + h(v) - 1$$

We need a signature S(u)

- with enough information to compute h(u)
- such that S(uv) can be computed from S(u) and S(v)

Now tropical algebra appears!

Example

Let u = ABBACCBCCABAABC over $A = \{A, B, C\}$. The r-table of u is

$$\begin{pmatrix} 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1+1 \\ \min 2, 1+1 \\ \min 4, 1+1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

$$M_{A}$$

Now tropical algebra appears!

- ♦ Min-plus algebra
 - Just like Max-plus
 - * denotes $+\infty$

$$(2 \ 2 \ 2) = \begin{pmatrix} 1+1 \\ \min 2, 1+1 \\ \min 4, 1+1 \end{pmatrix} = \begin{pmatrix} 1 \ 2 \ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \ 1 \ 1 \\ * \ 0 \ * \\ * \ * \ 0 \end{pmatrix}$$

$$M_A$$

♣ Introduced by Simon

- $\exists m$? s.t. $A^m = A^*$
- Finding minimal paths in graph

Now tropical algebra appears!

- ♦ Min-plus algebra
 - Just like Max-plus
 - * denotes $+\infty$

Definition

For $u = u_1 \dots u_m$, $M_u = M_{u_1} \dots M_{u_n}$.

$$\begin{pmatrix} 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1+1 \\ \min 2, 1+1 \\ \min 4, 1+1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \cdot M_{u}$$

Expanding the *r***-table**

Definition

The matrix r-table F_u :

$$r(i,a_j) = (0 \dots 0) \cdot M_{u_i}(\cdot,j) = (0 \dots 0) \cdot F_u(i,j)$$

\clubsuit **Example** (u = CBBCAC)

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} \begin{pmatrix} 0 \\ * \\ * \end{pmatrix} & \begin{pmatrix} 0 \\ * \\ 1 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} * \\ 0 \\ * \end{pmatrix} & \begin{pmatrix} * \\ 0 \\ 1 \end{pmatrix} & \begin{pmatrix} * \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix} * \\ 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \end{pmatrix}$$

Now combining the new r and ℓ -tables

 \clubsuit **Example** (u = CBBCAC)

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 1 & 2 \end{pmatrix} \qquad r(u[,4],C) = 2 \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 2 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{vmatrix} \binom{0}{*} & \binom{0}{1} & \binom{0}{1} & \binom{0}{1} & \binom{0}{1} & \binom{1}{1} & \binom{1}{2} & \binom{1}{2} \\ \binom{0}{*} & \binom{0}{1} & \binom{1}{1} & \binom{1}{1} & \binom{1}{2} & \binom{1}{2} & \binom{1}{2} \\ \binom{0}{*} & \binom{0}{1} & \binom{1}{2} & \binom{2}{3} & \binom{2}{2} & \binom{1}{2} & \binom{1}{2} \\ \binom{1}{3} & \binom{1}{3} & \binom{1}{2} & \binom{1}{1} & \binom{1}{1} & \binom{1}{2} & \binom{0}{1} & \binom{0}{1} & \binom{0}{1} \\ \binom{3}{3} & \binom{2}{3} & \binom{2}{3} & \binom{2}{1} & \binom{1}{2} & \binom{1}{1} & \binom{1}{1} & \binom{0}{1} & \binom{0}{1} \\ \binom{3}{4} & \binom{3}{4} & \binom{2}{1} & \binom{2}{1} & \binom{2}{1} & \binom{1}{1} & \binom$$

Our signature

- **♦ Signature** S(u)
 - M_u, M_{uR}
 - H_u the maximum elements of $F_u \otimes G_u$
- **\clubsuit Compute** h(u) from S(u)
 - $r(u_i, a_i) = (0 \dots 0) \cdot F_u(i, j) = \min F_u(i, j)$
 - $r(u_j, a_i) + \ell(a_i, u') = \min(F_u \otimes G_u)(i, j)$ for $u = u_j u'$

Hence

$$\begin{aligned} \max_{i,j} r(u_j, a_i) + \ell(a_i, u') + 1 &= \max_{i,j} \min(F_u \otimes G_u)(i, j) + 1 \\ &= \max_{M \in H_u} \min(F_u \otimes G_u)(i, j) + 1 \end{aligned}$$

Concatenating tables

\Display Example: F_{uv} for u = CBB, v = CAC

$$\begin{vmatrix}
C & B & B & C & A & C \\
\begin{pmatrix} 0 \\ * \\ * \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ * \\ * \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\
\begin{pmatrix} * \\ * \\ * \end{pmatrix} & \begin{pmatrix} * \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix} * \\ * \\ 1 \end{pmatrix} & \begin{pmatrix} * \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix} * \\ * \\ 1 \end{pmatrix} & \begin{pmatrix} * \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix} * \\ * \\ 1 \end{pmatrix} & \begin{pmatrix} * \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix}$$

Concatenating tables

\Display Example: F_{uv} for u = CBB, v = CAC

Concatenating tables

- **♦ Signature** S(u)
 - M_u, M_{uR}
 - H_u the maximum elements of $F_u \otimes G_u$
- **♣** Compute S(uv) from S(u) and S(v)
 - $F_{uv}(i,j) = F_u(i,j)$ or $M_u \cdot F_v(i,j)$
 - $G_{uv}(i,j) = G_u(i,j) \cdot M_{v^R}$ or $F_v(i,j)$

Hence $H_{uv} \subseteq M_u \cdot H_v \cup H_u \cdot M_{v^R}$

Size of our signature

- **♦ Signature** S(u)
 - M_u, M_{uR}
 - H_u the set of maximum elements of $F_u \otimes G_u$
- **♣** Does $|H_u|$ explodes when concatenating?

Size of our signature

- **♦ Signature** S(u)
 - M_{u}, M_{uR}
 - H_u the set of maximum elements of $F_u \otimes G_u$
- **♣** Does $|H_u|$ explodes when concatenating?

NO:
$$H_u \leq |\Sigma| \cdot (2|\Sigma| + 1)$$

• Bound on the largest antichain if $F_u \otimes G_u$

Size of our signature

- **♦ Signature** S(u)
 - M_{u}, M_{uR}
 - H_u the set of maximum elements of $F_u \otimes G_u$
- **♣** Does $|H_u|$ explodes when concatenating?

NO:
$$H_u \leq |\Sigma| \cdot (2|\Sigma| + 1)$$

- Bound on the largest antichain if $F_u \otimes G_u$
- Almost tight: $|H_{u_k}| \ge k \cdot (k+1)$ for

$$u_k = a_1 \dots a_k a_k a_{k-1} a_k \dots a_2 \dots a_k a_1 a_k \dots a_2 \dots a_k a_{k-1} a_k a_k \dots a_1$$

Definition

Minimality index $\rho(u)$ is the smallest k such that $u \equiv_k v$ implies $u = v \dots$

... for all $v \leq u$

Definition

Minimality index $\rho(u)$ is the smallest k such that $u \equiv_k v$ implies $u = v \dots$

... for all
$$v \leq u$$

- **♦** Theorem
 - $\bullet \ \rho(u) = \max_{u=u_1,u_2} \delta(u,u_1u_2) + 1$
 - $\rho(u) \le h(u) 1$ (= if $|\Sigma| = 2$)

Definition

Minimality index $\rho(u)$ is the smallest k such that $u \equiv_k v$ implies $u = v \dots$

... for all
$$v \leq u$$

- **♦** Theorem
 - $\bullet \ \rho(u) = \max_{u=u_1,u_2} \delta(u,u_1u_2) + 1$
 - $\rho(u) \le h(u) 1$ (= if $|\Sigma| = 2$)
- **\clubsuit** Tweak our algorithm for ρ :

Bounds on $|H_u|$?

- $|H_u| \leq |\Sigma| \cdot (|\Sigma| + 2)$.
- Might not be tight

Definition

Universality index $\iota(u) = \max\{k : |v| \le k \implies v \le u\}$

Ex:
$$\iota(u) = 3$$

 \clubsuit **Example** (u = ACABBACACCBCB)

Theorem

$$\iota(u)=\min M_u$$

$$M_{u} = \begin{pmatrix} 4 & 5 & 5 \\ 3 & 4 & 4 \\ 3 & 4 & 4 \end{pmatrix}$$

Definition

Circular universality index

$$\zeta(u) = \max_{u=u_1u_2} \iota(u_2u_1)$$

ВС

Ex:
$$\iota(u) = 1$$
 but $\zeta(u) = 2$

Definition

Circular universality index

$$\zeta(u) = \max_{u=u_1u_2} \iota(u_2u_1)$$

Ex:
$$\iota(u) = 1$$
 but $\zeta(u) = 2$

♣ Can you see the pattern ?

$$M_{\text{ABBCAC}} = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

♦ Theorem

If
$$\iota(u) = n$$
, then $\zeta(u) = n + 1$ iff:

Otherwise
$$\zeta(u) = n$$

$$\exists C_i \\ \forall C_j \prec C_i$$

♣ Can't guess this pattern ⁷

$$M_{\text{ABBCAC}} = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

⁷Schnoebelen, Veron,(2023). On Arch Factorization and Subword Universality for Words and Compressed Words, WORDS 2023.

Conclusion

- ♣ Tropical algebra is a natural tool to study these kind of measures
 - Easy to implement data structures
 - M_u is a gold mine: we can extract $\iota(u), \zeta(u), \ldots$
 - ... and how u "behaves" when concatenated to other words

♦ Some open questions

- Tight bounds on H_u for $\rho(u)$
- Bounds on the relation between |u| and h(u)
- Same question for $\rho(u)$