Algorithmenentwurf HA 12

Lukas Brandt: 7011823, Clemens Damke: 7011488, Lukas Giesel: 7011495 14. Juli 2016

Aufgabe 23

a. Algorithmus

Für alle eingehenden Requests r = (v, p) auf Seiten p der Größe D an Knoten $v \in \{v_1, v_2\}$:

1.
$$\begin{cases} \text{Bewege } p \text{ zu } v. & \textbf{falls } p \textbf{ nicht bei } v \\ \text{NOP} & \textbf{sonst} \end{cases}$$

2. Schicke p von Knoten v aus.

b. Competitiveness

o. B. d. A. fragen alle Requests die selbe Seite p der Größe D an, da Requests auf unterschiedliche Seiten sich gegenseitig nicht beeinflussen.

 $A := \text{Der in } (\widehat{\mathbf{a}}) \text{ beschriebene online Algorithmus.}$

O :=Ein optimaler offline Page-Migration Algorithmus.

 $r := \text{Eingabesequenz von Requests} = (r_1, \dots, r_n) \text{ mit } r_i = (t_i, p)$

 $t := (t_1, \dots, t_n)$

 $c_X(t) := \text{Von Algorihmus } X$ produzierte Kosten bei Knoteneingabefolge t.

$$b(i) := \min\{j \in \{b(i-1)+1,\ldots,n\} \mid t_{j-1} \neq t_j\}, \quad b(1) := 1$$

$$s(i) := (t_{b(2i-1)}, \dots, t_{b(2i+1)-1})$$

 $|s| = \text{Anzahl von Werten } i \in \mathbb{N} \text{ für die } s(i) \text{ definiert ist.}$

t (und somit r) wird also in Teilsequenzen $s(1), \ldots, s(|s|)$ zerlegt, die jeweils Folgen von Knoten der Form $(v_x, \ldots, v_x, v_y, \ldots, v_y)$ mit $x, y \in \{1, 2\} \land x \neq y$ sind.

 $\implies c_O(s(i)) \ge d(v_1, v_2) = 1$, da entweder v_1 oder v_2 die Seite p nicht haben kann.

 $\land c_A(s(i)) \leq 2D$, da je nach Position von p beim ersten Request an v_x eine oder keine Page-Migration stattfindet (kostet max. $D \cdot d(v_1, v_2) = D$) und beim ersten Request an v_y genau eine Page-Migration stattfindet (kostet D).

$$\Longrightarrow |s| \le c_O(t) \le c_A(t) \le |s| \cdot 2D$$

 \implies A ist 2D-competitive.