

Rethinking Network Pruning under the Pre-train and Fine-tune Paradigm

Dongkuan Xu¹, Ian En-Hsu Yen², Jinxi Zhao², Zhibin Xiao²

¹The Pennsylvania State University, ²Moffett AI

Welcome! Email: dux19@psu.edu Twitter: DongkuanXu WeChat: xudongkuan220019

Background

Model Compression

• Compression is desirable

Fig. Resources are constrained [1]

Pruning is a popular approach

Fig. Illustration of network pruning

Structural vs. Sparse

- Structural pruning: a layer
- Sparse pruning: a neuron

Fig. Structural pruning vs. sparse pruning [2]

Motivation

 Sparse pruning is more impressive than structural pruning in CNN community

Width	Sparsity	NNZ params	Top-1 acc.	Top-5 acc.	
0.25	0%	0.46M	50.6%	75.0%	Structural
0.5	0%	1.32M	63.7%	85.4%	result
0.75	0%	2.57M	68.4%	88.2%	
1.0	0%	4.21M	70.6%	89.5%	
	50%	2.13M	69.5%	89.5%	Sparse
	75%	1.09M	67.7%	88.5%	result ;
	90%	0.46M	61.8%	84.7%	γ
	95%	0.25M	53.6%	78.9%	

Fig. MobileNets sparse vs structural results [3]

 However, existing sparse pruning of BERT yields inferior results than its small-dense counterparts

Proposed: Knowledge-Aware Sparse Pruning

M Proposed: Pruning At Distilling

Fig. General pre-training & fine-tuning

Fig. Pruning at distilling (proposed)

Model

Fig. Distillation details

Fig. Pruning details

Pruning

Distillation

(finetuning)

Evaluation

Experiments

GLUE (dev set)

Method	Remain. Weights	QNLI (Acc)	MRPC (F1)	RTE (Acc)	CoLA (Mcc)	Avg.		
Without Pruning								
BERT-base	-	91.8	88.6	69.3	56.3	76.5		
ELMo	-	71.1	76.6	53.4	44.1	61.3		
Structural Pruning								
BERT ₆ -PKD	50%	89.0	85.0	65.5	45.5	71.3		
BERT-of-Theseus	50%	89.5	89.0	68.2	51.1	74.5		
DistilBERT	50%	89.2	87.5	59.9	51.3	72.0		
MiniLM ₆	50%	91.0	88.4	71.5	49.2	75.0		
TinyBERT ₆	50%	90.4	87.3	66.0	54.0	74.4		
TinyBERT ₄	18%	88.7	86.8	66.5	49.7	72.9		
Sparse Pruning								
BERT-Tickets	30-50%	88.9	84.9	66.0	53.8	73.2		
CompressBERT	10%	76.8	-	-	-	-		
RPP	11.6%	88.0	81.9	67.5	-	-		
SparseBERT	5%	90.6	88.5	69.1	52.1	75.1		

Compression ratio = x20, but only 1.4% performance drop

Mardware Performance

Performance under different compression ratios on MRPC (Moffett AI's latest hardware platform ANTOM)

^[1] https://www.robots.ox.ac.uk/~namhoon/doc/slides-snip-msr.pdf

^[2] Chen, L., Chen, Y., Xi, J., & Le, X. (2021). Knowledge from the original network: restore a better pruned network with knowledge distillation. Complex & Intelligent Systems, 1-10.

^[3] Zhu, M., & Gupta, S. (2017). To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878.