Amazon Music Clustering Project

Objective

The goal of this project is to use unsupervised machine learning to automatically group songs that share similar musical characteristics. By analysing each song's rhythmic, acoustic, and emotional features, the project aims to uncover hidden patterns that could be used for playlist generation, mood detection, or music recommendation system

Dataset Overview

The dataset (single_genre_artists.csv) contained various audio features (e.g., energy, danceability, valence, loudness, tempo) describing the sonic and emotional qualities of songs.

Methodology

The workflow followed a complete machine-learning pipeline:

- **Data Preprocessing** Checked for missing values, duplicates, and data types; removed identifiers.
- Feature Scaling Standardized all numeric features using StandardScaler.
- Clustering Algorithms Applied both K-Means.
- **Model Evaluation** Compared Silhouette Score and Davies–Bouldin Index to judge cluster quality.
- **Visualization** Used PCA 2-D scatter plots, bar charts, heatmaps, and boxplots to interpret cluster structure

Results & Cluster Analysis

K-Means (k = 3)

- Silhouette Score: 0.242
- SSE (Elbow Method): Showed a strong elbow at k = 3, indicating optimal compactness.
- Three well-separated groups captured distinct song moods.

Cluster	Dominant Traits	Interpretation
K 0	High energy, high danceability, positive valence	Upbeat / Pop songs
K 1	High acousticness, lower tempo and energy	Acoustic / Calm songs
K 2	High loudness and energy	Energetic / Rock or EDM songs

Key Visual Insights

- PCA Plots: Showed distinct cluster separation.
- Heatmaps: Highlighted contrasting features such as acousticness vs. energy.
- Boxplots: Displayed feature distribution differences for each cluster.
- Dendrogram: Confirmed three major branches with strong distance separation.

Final Deliverables

- Source Code: Preprocessing, Clustering Implementation, Visualization (clean modular notebook).
- CSV Outputs:
 - o clustered_songs_kmeans_k3.csv
 - $\circ \quad clustered_songs_final_combined.csv$
- Cluster Summary: cluster_summary_kmeans.csv
- Visualizations: PCA, heatmap, and dendrogram images.

Conclusion

Both K-Means consistently identified three natural musical groups in the dataset:

- 1. Energetic & danceable tracks (Pop / Electronic)
- 2. Calm & acoustic songs
- 3. Loud & high-energy performances (Rock / EDM)