Exercise 3 - Theory

Abdelaziz, Ibrahim Somkiadcharoen, Robroo Berg, Oliver

January 20, 2018

1 Theory

1.1 T1

Point x_0 constrains the position of x_1 to lie on the corresponding epipolar line l_1 on the second image. where $l_1 = Fx_0$.

1.2 T2

Using the equation $x_i = K_i[R_i|t_i].X$ we can get two linearly independent equations for each camera, for two cameras we will have 4 linearly independent equations to solve for 3 unknowns in X.

1.3 T3

Since epipole e is the image of the center of the other camera C' it can be computed as e = PC'. Since all epipolar planes rotate around the same baseline, then all epipolar lines intersect at the epipole point.

1.4 T4

For each corresponding points x, x' it satisfies the following equation $x'^TFx=0$, where F is a 3*3 matrix (9 unkowns). We can set up a homogeneous linear system with 9 unkowns, and given enough corresponding points we can solve for the 9 unkowns of F.

1.5 T5

Given the camera calibration, the fundamental matrix can be computed using the following equation

 $F = K'^{-T}.[t].R.K^{-1}$ (1)

2 Implementation

You may find the implementation code inside the main.py file. To run the code, call python main.py.