Assignment 3

Tanay Yadav - AI20BTECH11026

Download the python codes from

https://github.com/tanayyadav28/Assignments/blob/main/Assignment%203/code/assignment3.py

and latex-tikz codes from

https://github.com/tanayyadav28/Assignments/blob/main/Assignment%203/assignment3.tex

1 Problem

(GATE EC, Q. 25) A fair coin is tossed till a head appears for the first time. The probability that the number of requried tosses is odd,is

(A)
$$\frac{1}{3}$$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{2}{3}$$

(D)
$$\frac{3}{4}$$

2 SOLUTION

Let X be the Bernoulli random variable such that $X = \{0, 1\}$ denotes the outcome of the given experiment.

X = 0 denotes the outcome that odd number of tries are required to get the first head.

X = 1 denotes all the other outcomes.

Probability that head appears on the fair coin is $\frac{1}{2}$.

$$\Pr(X = 0) = \frac{1}{2} + \left(\frac{1}{2}\right) \times \left(\frac{1}{$$

Hence, $\Pr(X = 0)$ is an infinite sum of a Geometric Progression with $a = \frac{1}{2}$ and $r = \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{4}$.

$$\Pr(X=0) = \frac{\frac{1}{2}}{1 - \frac{1}{4}}$$
 (2.0.2)

$$\Pr(X = 0) = \frac{\left(\frac{1}{2}\right)}{\left(\frac{3}{4}\right)}$$
 (2.0.3)

$$\Pr(X = 0) = \frac{1}{2} \times \frac{4}{3}$$
 (2.0.4)

$$\therefore \Pr(X = 0) = \frac{2}{3}$$
 (2.0.5)