Adressage IPv6

Naissance du protocole IPv4 en 1973

- Problématique en 2009
 - Pénurie d'adresses IPv4 (2³²)
 - Croissance des tables de routage (classe C)
 - Ajout de services supplémentaires
 - Sécurité
 - QOS (Qualité de service)
 - Voix, mobile, télévision sur IP
 - Domotique, alarmes, loisirs sur IP

 Croissance des utilisateurs ayant recours à Internet donc à IP.

Asie2.5 Milliard de personnes

Europe de l'est 250 Millions

Afrique 800 Millions

- Amérique du sud 500 Millions

- Solutions possibles IPv4
 - NAT
 - Adresse Privée
 - Problématique
 - » Trafic entrant (VoIP)
 - » Trafic bidirectionnel (Ipsec, Peer to peer, visioconférence)
 - » Protocole bloqué par le NAT (Kerberos, RTP, Multicast)
 - Optimisation des adresses IP
 - Long à réaliser et peu d'adresses récupérées

- Besoins futurs
 - Adresses IP fixes pour Internet
 - Téléphonie IP
 - Téléphone fixe (VoIP)
 - Radio/TV
 - Système Multimédia (Ipod, Nintendo, console de jeux, ...)
 - Equipements industriels (télémaintenance, ...)
 - Combien d'adresses ? Réponse : xx milliards

- Aujourd'hui :
 - IPv4 « Best effort » : aucune garantie de la qualité (QoS), ni de sécurité
- Avenir proche :
 - IPv6: Fonctions de
 - Qualité (QoS)
 - Sécurité (chiffrement, Ipsec)

Besoin en IPv6

Sommes-nous intéressés par IPv6 ?

- Fonctionnement des réseaux actuellement en IPv4
- Migration IPv4 -> IPv6 doit être simple
- Aucune contrainte au niveau d'une date

Assignement IPv6

Arin Amerique du nord

Lacnic Sud Amérique et Caraïbes

Afrinic Afrique

Ripe Europe et Asie centrale

Apnic Asie et Pacifique

Déploiement IPv6

Futur avec IPv6

- Grande capacité d'adressage
- Taille des tables de routage
 - (BGP connaît 400'000 routes)
- Routage « lent » dû à la complexité de l'en-tête IPv4
- Sécurité insuffisante face aux attaques informatiques
- Auto-configuration

Caractéristiques d'IPv6

- Nom: IP next generation (IPng) ou IPv6
- Adresse sur 128 bits
 - Organisation hiérarchique afin de diminuer la taille des table de routage
- En-tête fixe de 40 octets
 - Moins complexe qu'IPv4 (8 champs au lieu de 12)
 - Accélération du routage
- Extensions Headers
 - Différenciation des options
 - Traitement par le destinataire
 - Chiffrement des données

Caractéristiques d'IPv6

- Adresse sur 128 bits
 - Soit 2¹²⁸ ou 3.4*10³⁸ adresses
 - Environs 6*10¹⁴ adresses/personne
- Une interface a plusieurs adresses
 - Adresses locales (lien)
 - Adresse globale

- Représentation
 - 8 groupes de 4 chiffres hexadécimaux (de 0 à F)
 - Chaque groupe est séparé par « : »
 - Ex: FE8C:0123:4567:89AB:CDEF:A44D:BCAD:AF3F
 - Appelé : Forme préférée ou complète

- Il est possible de supprimer les premiers zéros d'un groupe
 - Ex : 0123 peut être écrit 123
- Il est possible de compresser les « 0 » d'un groupe
 - Ex: 0.0.0.0 est identique à 0
- OU de plusieurs groupes
 - Ex: 0:0:0:0:0:0:0:0:1 est identique à ::10:0:0:0:0:0:0:0:0:0 est identique à ::

- L'expression de deux « :: » indique un ou plusieurs groupes de 16 bits à « 0 ».
 - Ex: FEDC::1 est identique à FEDC:0:0:0:0:0:0:1 ou FEDC:0000:0000:0000:0000:0000:0000

Attention : Les « :: » ne peuvent apparaître qu'un seule fois dans une adresse IPv6

- Encapsulation IPv4 dans IPv6
 - Les 4 derniers octets représenteront
 l'adressage IPv4 dans une adresse IPv6.
 - Ex: 0:0:0:0:0:0:192:168:1:1
 - 6 groupes de 2 octets sont hexadécimales
 - 4 groupes de 2 octets sont décimales
 - Format compressé
 - ::192:168:1:1

Préfixes

- Représentation des préfixes
 - La notation des préfixes est similaire à la notation CIDR (notation slash)
 - Un préfixe est représenté par la notation :
 - Adresse IPv6/longueur du préfixe
 - 2001:0DC5:0000:AB20:0000:0000:0000:0001/64 pour le grand public
 - 2001:DC5:0:AB20::1/48 pour les entreprises
 - 2001:0DC5:0:AB20:0:0:1/3 pour l'IANA
 - Le chiffre après le «Slash» représentant le nombre de bits alloué

Préfixes

- Adresse de l'interface et préfixe
 - Si l'adresse de l'interface est

2001:0DC5:0:AB20:123:4567:89AB:CDEF/64

– Son préfixe est :

2001:0DC5:0:AB20::/64

- L'ID hôte est :

::123:4567:89AB:CDEF

Identification

Type d'adresse	Préfix (binaire)	Notation en hexa	Fraction de l'espace
Global Unicast	001	2xxx::0 ou 3xxx::0	1/8
Link Local unicast	1111 1110 10	FE8x::0 à FEBx::0	1/1024
Compatible IPv4	(96 zéros)	::d.d.d.d	
Multicast	1111 1111	FFxx::0	1/256

Le premier bit de l'adresse identifie le type d'adresse

Ex:

2 ou 3 pour un global unicast FE8x à FEBx pour un link local FFxx pour du multicast

Allocation IPv6

http://www.iana.org/assignments/ipv6-address-space

(last updated 2007-07-19)					
IPv6 Prefix	Allocation	Reference	Note		
0000::/8	Reserved by IETF	[RFC4291]	[1] [5]		
0100::/8	Reserved by IETF	[RFC4291]			
0200::/7	Reserved by IETF	[RFC4048]	[2]		
0400::/6	Reserved by IETF	[RFC4291]			
0800::/5	Reserved by IETF	[RFC4291]			
1000::/4	Reserved by IETF	[RFC4291]			
2000::/3	Global Unicast	[RFC4291]	[3]		
4000::/3	Reserved by IETF	[RFC4291]			
6000::/3	Reserved by IETF	[RFC4291]			
8000::/3	Reserved by IETF	[RFC4291]			
A000::/3	Reserved by IETF	[RFC4291]			
C000::/3	Reserved by IETF	[RFC4291]			
E000::/4	Reserved by IETF	[RFC4291]			
F000::/5	Reserved by IETF	[RFC4291]			
F800::/6	Reserved by IETF	[RFC4291]			
FC00::/7	Unique Local Unicast	[RFC4193]			
FE00::/9	Reserved by IETF	[RFC4291]			
FE80::/10	Link Local Unicast	[RFC4291]			
FEC0::/10	Reserved by IETF	[RFC3879]	[4]		
FF00::/8	Multicast	[RFC4291]			

Identification

Identification des types d'adresse

Type d'adresse	Préfixe	Notation IPv6
Link-local	FE8 0:0:0:0:0:0:1	FE80::1/10
Unique local	FC 00:0:0:0:0:0:1	FC00::1/7
Multicast	FF 00:0:0:0:0:0:1	FF00::1/8
Global unicast	2 001:0:0:0:1:2:3:4	2001::1:2:3:4/48
Unspecified	::	::/128
Loopback	0:0:0:0:0:0:1	::1/128

Adresses spéciales

- Adresse non spécifiée
 - -0:0:0:0:0:0:0 ou ::
 - Utilisée pendant l'initialisation d'un nœud
- Adresse de bouclage
 - -0:0:0:0:0:0:0:1
 - Utilisée pour la communication interprocessus dans un nœud

Types d'adresses IPv6

Allocation IPv6

- IANA /3
- RIR /23 Ripe pour l'Europe
- LIR /32 ISP prefix
- Subnet /48 Sous-réseaux de l'organisation
- Interface ID: /64 Utilisateur final

```
/3 /23 /32 /48 /64

RIR LIR Subnet Interface ID
```

2 001: 0A00:102F:0001: 02FF:COB1:12AB:C0A1

Types de communication

- Unicast : Communication de un à un (one-to-one)
 - Un identificateur d'une seule interface. Une interface peut être associée à plusieurs adresses.
- Multicast : Communication de un à plusieurs (one-tomany)
 - Un identificateur pour un groupe d'interfaces situés n'importe où sur Internet. Une interface peut être associée à plusieurs groupes multicast.
- Anycast : Communication de un à un proche (one-tonearest)
 - Identique au multicast, mais acheminé vers un membre et non pas au groupe.

Link-local address

Adresse de monodiffusion de liaison locale

- Adresse obligatoire pour communiquer avec le nœud
- Ne sont jamais utilisée pour le routage
- Limitée au propre sous-réseau
- Format : FE80::<interface ID>

Unique local address

Adresse de monodiffusion de site local

- Peut être utilisée pour du routage entre sousréseau.
- Format : FC00::<Global ID><Subnet ID><interface ID> (Si L = 1 FD00::)

Global unicast Address

- Adresse de monodiffusion globale
 - Adresse utilisée pour l'accès à Internet
 - Adresse générique utilisée pour tous les devices

Multicast address

- Adresse de multidiffusion de nœuds
 - Peut se trouver n'importe où dans le réseau
 - Remplace le broadcast

Flag T: temporaire 1 / Permanent 0

Scope: Int local 1 / lien local 2 / subnet local 3 / site local 5 / org.

Local 6

Multicast address

- Scope indique la portée du groupe de multidiffusion
 - All nodes Portée locale (FF01:1)
 - All routers Portée locale (FF02::2)
 - All hosts (FF02::3)
 - All OSPF router (FF02::5)
 - All DHCP agents (FF02::1:2)

—

Interfaces

- Identifiant d'interface
 - Identifie une interface sur une liaison
 - Il doit être unique
 - Il peut être utilisé sur plusieurs interfaces sur des sous-réseaux différents
 - Longueur de 64bits

Interface ID

- Configuration des adresses IPv6
 - Manuellement
 - Aléatoirement (auto-configuration)
 - Basée sur l'adresse MAC (Transformation en EUI-64)

Auto-configuration

- Auto-configuration d'adresses IPv6
 - Facilité la gestion du réseau
- Deux modes d'auto-configuration
 - Stateless dit sans états ou SLAAC (StateLess Address AutoConfiguration)
 - Configuration d'adresses sans informations préalables
 - Statefull dit avec états
 - Configuration d'adresses avec informations préalables disponibles sur un serveur DHCPv6

Configuration IPv6

- Auto-configuration avec états
 - Configuration basée sur un DHCPv6
 - Offre un contrôle des paramètres affectés
 - Utilise les ports UDP 546 et 547
 - Utilise le multicast pour obtenir les serveurs disponibles

Configuration IPv6

- Auto-configuration sans états
 - Autoconfiguration IPv6
 - Assure l'unicité de l'adresse sur une interface
 - Pas de DNS (manuel ou DHCP)
 - Applicable uniquement aux hosts (pas aux routeurs)

- Suppression des protocoles ARP, RARP, IGMP
- Remplacement par ICMPv6

Couche Réseau

- ICMPv4

- Détection des erreurs de routage
- Tests (ping, traceroute)
- ICMPv6 ajoute :
 - Configuration automatique des systèmes
 - Gestion des groupes multicast
 - Résolution d'adresse
 - Gestion de la mobilité

Messages ICMPv6

- Neighbor Solicitation (NS)
 - Résolution d'une adresse IPv6 avec une adresse MAC (ARP request)
 - La station A veut émettre vers B, mais a besoin de l'adresse Mac de B
 - La station A émet un message NS sur le lien

- Neighbor Advertisement (NA)
 - Chaque station de destination répond avec un message NA (ARP reply)
 - La station A récupère l'adresse Mac de B

- Router Solicitation (RS)
 - Une station recherche une passerelle par défaut
 - Elle émet un message Router solicitation

Page 41

- Router Advertisement (RA)
 - Chaque routeur émet un message RA à intervalles réguliers
 - Il indique le préfixe réseau, une priorité et certains flags

