For the following questions, follow your S18S632_01-11-18.pdf lecture notes

1. We have shown (or will show) in class that

$$bias(\hat{y}|\mathbf{x}_i) = (\mathbf{x}_{1,i}^{\top}(\mathbf{X}_1^{\top}\mathbf{X}_1)^{-1}\mathbf{X}_1^{\top}\mathbf{X}_2 - \mathbf{x}_{2,i}^{\top})\boldsymbol{\beta}_2.$$

Due date: 1/16/18

Show that

$$\sum_{i=1}^{n} \{bias(\hat{y}|\mathbf{x}_i)\}^2 = (\mathbf{X}_2\boldsymbol{\beta}_2)^{\top}(\mathbf{I} - \mathbf{H}_1)(\mathbf{X}_2\boldsymbol{\beta}_2)$$

- 2. Let $\mathbf{X} = (\mathbf{X}_1 | \mathbf{X}_2)$, \mathbf{H} the hat matrix for \mathbf{X} , and \mathbf{H}_1 the hat matrix for \mathbf{X}_1 .
 - a) Show that $\mathbf{H} \mathbf{H}_1$ is positive semidefinite, i.e., show that for any non-zero vector \mathbf{z} ,

$$\mathbf{z}^{\top}(\mathbf{H} - \mathbf{H}_1)\mathbf{z} \ge 0$$

Hint: Recall that $\mathbf{a}^{\top}\mathbf{a} = \sum a_i^2$

b) Find the $n \times 1$ vector \mathbf{z} , such that using $\mathbf{z}^{\top}(\mathbf{H} - \mathbf{H}_1)\mathbf{z}$ you can show that

$$h_{ii}^F \ge h_{ii}^R$$

for all i = 1, ..., n, where h_{ii}^F and h_{ii}^R are the *i*th diagonal elements of **H** and **H**₁, respectively.

Hint: It should be a very simple non-zero vector