Aprendizaje profundo

REDES DENSAS (PERCEPTRÓN MULTICAPA)

Gibran Fuentes-Pineda Agosto 2023

Aproximación de la compuerta lógica XOR (⊕)

 Minsky y Papert mostraron que no era posible aproximar una compuerta lógica XOR con una sola neurona con función de activación escalón unitario

<i>X</i> ₁	X_2	$X_1 \oplus X_2$
0	0	0
1	0	1
0	1	1
1	1	0

 Es aproximarla con múltiples neuronas conectadas entre sí (ver https://playground.tensorflow.org/).

Múltiples neuronas en capa

· Podemos usar la fórmula

$$X_1 \oplus X_2 = \neg((X_1 \land X_2) \lor \neg(X_1 \lor X_2))$$

Red neuronal densa

 Está compuesta por capas densas o completamente conectadas

Red neuronal densa

Red neuronal densa: caracteristicas

- Aproximadores universales (con 1 sola capa oculta con un número finito de neuronas^{1,2})
- Frecuentemente sobreparametrizados³
- Usualmente empleados como bloques de clasificación (no tan profundos) en conjunto con otros tipos de capas

¹Cybenko. Approximation by Superpositions of a Sigmoidal Function, 1989

²Hornik et al. Multilayer Feedforward Networks are Universal Approximators, 1989.

³Allen-Zhu et al. Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers, 2020.

Pérdida para redes neuronales multicapa (1)

 Para múltiples capas de neuronas la función de pérdida no es convexa (ver https://losslandscape.com/explorer)

Pérdida para redes neuronales multicapa (2)

· Pueden existir varios puntos sillas

Entrenamiento de redes neuronales multicapa

- Aunque en problemas convexos SGD aproxima al GD, en la práctica se ha observado que en el entrenamiento de redes neuronales SGD encuentra mejores soluciones, especialmente con minilotes pequeños^{4,5,6}
- Problema: calcular eficientemente las derivadas parciales respecto a los pesos y sesgos de las capas ocultas

⁴Kleinberg et al. An Alternative View: When Does SGD Escape Local Minima?, 2018

⁵Zhu et al. The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects, 2019.

⁶Keskar et al. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, 2017.

Propagación hacia adelante de red densa (1)

 Considera una red densa con 1 capa de entrada, 2 capas ocultas con 5 y 4 neuronas con función de activación sigmoide y 3 neuronas de salida con función de activación lineal.

Propagación hacia adelante de red densa (2)

Propagación hacia adelante de red densa (3)

• ¿Cómo calculo los gradientes de la función de pérdida respecto a los pesos de la primera capa?

Propagación hacia adelante de red densa (4)

• ¿Cómo calculo los gradientes de la función de pérdida respecto a los pesos de la primera capa?

Algoritmo de retro-propagación

- 1. Propagamos cada entrada $\mathbf{x}^{(i)}$ hacia adelante para generar la correspondiente salida $\hat{\mathbf{y}}^{(i)}$
- Calculamos derivadas parciales de la pérdida respecto a cada peso y sesgo capa por capa, empezando con la de salida y propagándolas hacia atrás para calcular las de la capa anterior

Propagación hacia atrás (1)

 Presuponiendo que se busca minimizar la función de pérdida de error cuadrático medio (ECM)

Propagación hacia atrás (2)

 Se calcula el error de la predicción y se propaga hacia la última capa

Propagación hacia atrás (3)

 Se calcula el error de la última capa usando el error de la predicción y se propaga hacia la penúltima capa

Propagación hacia atrás (4)

 Se calcula el error de la penúltima capa usando el error de la última capa y se propaga hacia la primera capa

Ejemplo: propagación hacia adelante

- Considera una red densa con 1 capa de entrada, 1 capa oculta con M neuronas sigmoide y 1 neurona de salida con activación lineal.
- · La propagación hacia adelante estaría dada por

$$\begin{split} z^{\{2\}} &= W^{\{1\}} \cdot x^{(i)} \\ a^{\{2\}} &= \phi(z^{\{2\}}) \\ z^{\{3\}} &= W^{\{2\}} \cdot a^{\{2\}} \\ \hat{y}^{(i)} &= \phi(z^{\{3\}}) \end{split}$$

 Presuponemos una tarea de regresión y la función de pérdida

$$ECM(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

Ejemplo: retropropagación (1)

 Calculamos el gradiente de la función de pérdida con respecto a W^{2} de la siguiente forma

$$\frac{\partial ECM}{\partial \mathbf{W}^{\{2\}}} = \frac{\partial \sum_{i} \frac{1}{2} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}}$$

$$= \frac{\sum_{i} \partial \frac{1}{2} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}}$$

$$\frac{\partial \frac{1}{2} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}} = (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \cdot \left(-\frac{\partial \hat{\mathbf{y}}^{(i)}}{\partial \mathbf{W}^{\{2\}}} \right)$$

$$= (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \cdot \left(-\frac{\partial \hat{\mathbf{y}}^{(i)}}{\partial \mathbf{Z}^{\{3\}}} \cdot \frac{\partial \mathbf{Z}^{\{3\}}}{\partial \mathbf{W}^{\{2\}}} \right)$$

$$= \underbrace{-(\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \cdot \frac{\partial \hat{\mathbf{y}}^{(i)}}{\partial \mathbf{Z}^{\{3\}}}}_{\mathbf{E}^{\{3\}}} \cdot \mathbf{a}^{\{2\}}$$

Ejemplo: propagación hacia atrás (1)

 Calculamos el gradiente de la función de pérdida respecto a W^{1} de la siguiente forma

$$\begin{split} \frac{\partial ECM}{\partial \mathbf{W}^{\{1\}}} &= \frac{\partial \sum_{i} \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}} \\ &= \frac{\sum_{i} \partial \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}} \\ \frac{\partial \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}} &= (y^{(i)} - \hat{y}^{(i)}) \left(-\frac{\partial \hat{y}^{(i)}}{\partial \mathbf{W}^{\{1\}}} \right) \\ &= (y^{(i)} - \hat{y}^{(i)}) \left(-\frac{\partial \hat{y}^{(i)}}{\partial \mathbf{z}^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} \right) \\ &= \underbrace{-(y^{(i)} - \hat{y}^{(i)}) \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{\{3\}}}}_{\mathbf{S}^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} = \delta^{\{3\}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} \end{split}$$

Ejemplo: propagación hacia atrás (2)

$$\begin{split} &= \delta^{\{3\}} \cdot \left(\overbrace{\frac{\partial z^{\{3\}}}{\partial a^{\{2\}}}}^{W^{\{2\}}} \cdot \frac{\partial a^{\{2\}}}{\partial W^{\{1\}}} \right) \\ &= \delta^{\{3\}} \cdot W^{\{2\}} \cdot \left(\frac{\partial a^{\{2\}}}{\partial W^{\{1\}}} \right) \\ &= \delta^{\{3\}} \cdot W^{\{2\}} \cdot \left(\frac{\partial a^{\{2\}}}{\partial z^{\{2\}}} \cdot \underbrace{\frac{\partial z^{\{2\}}}{\partial W^{\{1\}}}}_{x^{(i)}} \right) \\ &= \delta^{\{3\}} \cdot W^{\{2\}} \cdot \frac{\partial a^{\{2\}}}{\partial z^{\{2\}}} \cdot x^{(i)} \end{split}$$

Diferenciación automática

Imagen tomada de Baydin et. al. Automatic Differentiation in Machine Learning: a Survey, 2018.

Características generales de las redes neuronales densas

- Aproximadores universales (con 1 sola capa oculta con un número finito de neuronas^{7,8})
- Frecuentemente sobreparametrizados⁹
- Usualmente empleados como bloques de clasificación (no tan profundos) en conjunto con otros tipos de capas

Cybenko. Approximation by Superpositions of a Sigmoidal Function, 1989

⁸ Hornik et al. Multilayer Feedforward Networks are Universal Approximators, 1989.

⁹ Allen-Zhu et al. Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers, 2020.