Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di Geometria 2

A.A. 2009-2010 - Docente: Prof. A. Verra Tutori: Dott.ssa Paola Stolfi e Annamaria Iezzi

> Tutorato numero 4 (25 Novembre 2009) Affinità e Teorema spettrale

I testi e le soluzioni dei tutorati sono disponibili al seguente indirizzo: http://www.lifedreamers.it/liuck

- 1. Sia f un'affinità di \mathbb{A} . Verificare che se f fissa due punti P e $Q \in \mathbb{A}$ allora f fissa tutti i punti della retta r passante per P e Q.
- 2. Sia $\mathbb{A} = \mathbb{A}^2(\mathbb{R})$ un piano affine con riferimento Oe_1e_2 .
 - (a) Determinare l'equazione di ogni affinità f di \mathbb{A} che fissa i punti della retta r di equazione x+y=1.
 - (b) Considerati i punti $P=(1,2),\,Q=(2,1)\in\mathbb{A},$ tra le affinità considerate in (a) determinare quelle (eventuali) che trasformano P in Q.
 - (c) Tra le affinità considerate in (a) determinare eventuali traslazioni.
- 3. Sia $\mathbb{A} = \mathbb{A}^3(\mathbb{R})$ uno spazio affine con riferimento $Oe_1e_2e_3$. Sia $f = (f, \varphi)$ l'affinità di \mathbb{A} definita dalle seguenti condizioni:

$$\begin{array}{l} f(P) = P', \ {\rm con} \ P = (1,2,0) \ {\rm e} \ P' = (2,-1,1) \\ f(Q) = Q', \ {\rm con} \ Q = (1,3,1) \ {\rm e} \ Q' = (3,-1,0) \\ \varphi(\overrightarrow{e_1}) = \overrightarrow{e_1} + \overrightarrow{e_3}; \qquad \varphi(\overrightarrow{e_2}) = \overrightarrow{e_1} - \overrightarrow{e_2}. \end{array}$$

- (a) Determinare le equazioni di f.
- (b) Determinare i punti fissi dif.
- 4. Sia fissato un riferimento cartesiano Oe_1e_2 di \mathbb{E}^2 .
 - (a) Scrivere l'equazione della rotazione $R_{P,\vartheta}$ di \mathbb{E}^2 di centro P=(1,2) ed angolo $\vartheta=\frac{\pi}{3}$ (in senso antiorario).
 - (b) Scrivere le equazioni della riflessione ρ_r , con r avente equazione x y + 1 = 0.
 - (c) Scrivere le equazioni della riflessione ρ_s tale che $\rho_r \circ \rho_s = R_{P,\vartheta}$; individuare la retta s (passante per P).
- 5. Sia fissato un riferimento cartesiano Oe_1e_2 di \mathbb{E}^2 . Sia f la rotazione di centro C=(1,0) ed angolo $\vartheta=\frac{\pi}{2}$ (in senso antiorario). Sia g la riflessione di asse la retta x=0.
 - (a) Scrivere le equazioni dell'isometria $g \circ f$.

- (b) Dire se tale isometria è una traslazione, una rotazione, una glissori-flessione o una rotazione di \mathbb{E}^2 .
- 6. In \mathbb{R}^2 è assegnato un prodotto scalare \langle,\rangle definito rispetto ad una base $\mathbb E$ dalla matrice

$$\mathbf{C} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array} \right)$$

Per ogni $\alpha \in \mathbb{R}$, sia $T_{\alpha} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ l'operatore definito (in base \mathbb{E}) dalla matrice

$$\mathbf{A}_{\alpha} = \left(\begin{array}{cc} \alpha & 0 \\ 1 & 1 \end{array} \right)$$

- (a) Verificare che T_{α} non è unitario $\forall \alpha \in \mathbb{R}$.
- (b) Verificare che T_{α} è autoaggiunto $\iff \alpha = 2$.
- (c) Determinare una base ortonormale \mathbb{F} di \mathbb{R}^2 e verificare che (rispetto ad \mathbb{F}) la matrice di T_2 è simmetrica.
- (d) Trovare una base ortonormale che diagonalizzi T_2 .
- 7. In \mathbb{R}^4 , dotato di prodotto scalare standard, è assegnato l'operatore lineare T definito, rispetto alla base canonica E di \mathbb{R}^4 , dalla matrice

$$\mathbf{A} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Determinare una base ortonormale F di autovettori di T e scrivere la matrice di T rispetto a tale base.