```
for v \in V do label(v) \leftarrow \infty
label(s) \leftarrow 0
last \leftarrow s
T \leftarrow V - \{s\}
while T \neq \emptyset do
     for v \in T do
        if label(v) > label(last) + w_{last,v}
            then \begin{cases} label(v) \leftarrow label(last) + w_{last,v} \\ pred(v) \leftarrow last \end{cases}
     u \leftarrow любая вершина с label(u) = \min\{label(k) : k \in T\}
     T \leftarrow T - \{u\}
     last \leftarrow u
// определить кратчайшие пути P(s, v) для всех v \in V - \{s\}
for v \in V - \{s\} do
   if label(v) \neq \infty
       then \begin{cases} // \text{ существует путь от } s \text{ до } v \\ P(s,v) \leftarrow (s,...,pred(pred(v)),pred(v),v) \end{cases}
       else // не существует пути от s до v
         Алгоритм 1. Алгоритм Дейкстры поиска кратчайших путей
```

P(s, v) = (s, ..., pred(pred(pred(v))), pred(pred(v)), (pred(v), v).



| Шаг | a   | b        | С        | d        | е        | f        | g        |  |  |
|-----|-----|----------|----------|----------|----------|----------|----------|--|--|
| 0   | [0] | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |  |  |
| 1   | [0] | 8        | $\infty$ | $\infty$ | 10       | [1]      | $\infty$ |  |  |
| 2   | [0] | 6        | [3]      | $\infty$ | 10       | [1]      | 8        |  |  |
| 3   | [0] | [5]      | [3]      | 9        | 10       | [1]      | 6        |  |  |
| 4   | [0] | [5]      | [3]      | 9        | 10       | [1]      | [6]      |  |  |
| 5   | [0] | [5]      | [3]      | [8]      | 10       | [1]      | [6]      |  |  |
| 6   | [0] | [5]      | [3]      | [8]      | [9]      | [1]      | [6]      |  |  |
| б   |     |          |          |          |          |          |          |  |  |

| Шаг | a | b | c | d                | e | f | <u>g</u> | Путь    | dist ( | v) | Вершины пути     |
|-----|---|---|---|------------------|---|---|----------|---------|--------|----|------------------|
| 0   | _ | _ | _ | _                | _ | _ | _        | P(a, b) | 5      |    | a, f, c, b       |
| 1   | - | a | _ | _                | a | a | _        | P(a, c) | 3      |    | a, f, c          |
| 2   | _ | f | f | _                | a | a | _        | P(a, d) | 8      |    | a, f, c, g, d    |
| 3   | - | c | f | $\boldsymbol{c}$ | a | a | c        | P(a, e) |        |    | a, f, c, g, d, e |
| 4   | _ | c | f | c                | a | a | c        | P(a, f) | 1      |    | a, f             |
| 5   | _ | c | f | g                | a | a | c        | P(a, g) | 6      |    | a, f, c, g       |
| 6   | - | c | f | g                | d | a | c        |         |        |    |                  |
|     |   |   | в |                  |   |   |          |         |        |    | г                |

Рис. 1. Процесс работы алгоритма Дейкстры: a — взвешенный орграф;  $\delta$  — процесс присвоения меток label(v) (окончательные метки заключены в квадратные скобки); s — процесс формирования указателей pred(v);  $\varepsilon$  — кратчайшие пути от вершины a до всех остальных вершин орграфа