

Mathématiques

Classe: 4ème Mathématiques

Devoir de synthèse N°2

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 60 min

5 pts

- \uparrow Etudier suivant $n \in \mathbb{N}$ le reste de la division euclidienne de 5^n par 7.
- Pour tout entier naturel n, on pose : $S_n = 1 + 5 + 5^2 + \cdots + 5^n$.
 - \bigcirc Montrer que : $4S_n = 5^{n+1} 1$
 - Soit $a \in \mathbb{Z}$, montrer que : $4S_n \equiv a \pmod{7} \iff S_n \equiv 2a \pmod{7}$
 - \bigcirc En déduire le reste de la division euclidienne de S_{2010} par 7.
- soit n un entier naturel donné.

On considère dans $\mathbb{Z} \times \mathbb{Z}$ les équations $(E_0): 5^n x - S_n y = 0$ et $(E): 5^n x - S_n y = 7$.

- \bigcirc Montrer que pour tout n de \mathbb{N} , S_n et 5^n sont premiers entre eux.
- \triangle Résoudre l'équation (E_0).
- \bigcirc Montrer que les solutions de (E) sont les couples (x, y) de la forme :

$$x = 35 + kS_n$$
 et $y = 28 + k5^n$ avec $k \in \mathbb{Z}$.

Exercice 2

(5) 60 min

5 pts

Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = e^{1-x} - \ln x.$

- - Montrer que l'équation f(x) = 0 admet dans]0; +∞[une unique solution α et que 1 < α < 2.
 - Tracer la courbe C_f de f dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.
- Soit $\lambda \in]0;1]$ et $A(\lambda)$ l'aire de la partie du plan limitée par la courbe C_f , l'axe des abscisses et les droites d'équations $x = \lambda$ et x = 1.
 - a Montrer que $A(\lambda) = e^{1-\lambda} + \lambda \ln(\lambda) \lambda$.
 - \triangle Calculer $\lim_{\lambda \to 0^+} A(\lambda)$.
- Soit *n* un entier naturel supérieur ou égal à 2 et $S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$.
 - \bigcirc Montrer que pour tout entier k tel que $1 \le k \le n-1$;

$$\frac{1}{n}f\left(\frac{k+1}{n}\right) \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt \leqslant \frac{1}{n}f\left(\frac{k}{n}\right)$$

- En déduire que pour tout entier $n \ge 2$, $S_n \frac{1}{n} f\left(\frac{1}{n}\right) \le A\left(\frac{1}{n}\right) \le S_n \frac{1}{n}$.
- \bigcirc Montrer alors que $\lim_{n\to+\infty} S_n = e$.

$$u_n = \frac{1}{n} \sum_{k=1}^n \ln\left(\frac{k}{n}\right)$$
 et $v_n = \frac{e}{n} \sum_{k=1}^n e^{-\frac{k}{n}}$

- Etablir les égalités : $u_n = \frac{1}{n} \ln \left(\frac{n!}{n^n} \right)$ et $v_n = \frac{e-1}{n \left(e^{\frac{1}{n}} 1 \right)}$ pour tout $n \in \mathbb{N}^*$.
- \triangle Vérifier que pour tout entier $n \ge 2$: $S_n = v_n u_n$.
- \bigcirc Utiliser les résultats précédents pour démontrer que $\lim_{n\to+\infty} u_n = -1$.
- En déduire que $\lim_{n \to +\infty} \frac{n}{\sqrt[n]{n!}} = e$

Exercice 3

6 pts

Le plan est orienté.

Dans la figure de l'annexe jointe, ABC est un triangle équilatéral direct de centre O. I, J et K sont les milieu respectifs des segments [BC], [AC] et [AB]. Soit S la similitude direct de centre B telle que S(J) = C

- 1) Déterminer l'angle de S et montrer que son rapport est égal à $\frac{2\sqrt{3}}{3}$.
- (2) Soit Γ le cercle de diamètre $\lceil AB \rceil$ et Γ' le cercle circonscrit au triangle ABC.
 - (a) Montrer que S(K) = O.
 - **(b)** En déduire que $S(\Gamma) = \Gamma'$.
 - (c) Déterminer et construire le point A' = S(A).
- (3) La droite (OC) recoupe Γ' en P et la droite (BP) recoupe Γ en Q. On note S^{-1} l'application réciproque de S.
 - (a) Donner la nature et les éléments caractéristiques de S^{-1} .
 - **(b)** Montrer que $S^{-1}(A) = Q$.

- (c) Quelle est la nature du triangle BJQ ?
- d Prouver que K est le milieu du segment [QI].
- (4) Soit $\sigma = S \circ S_{(AB)}$ où $S_{(AB)}$ est la symétrie orthogonale d'axe (AB).
 - (a) Justifier que σ est une similitude indirecte et déterminer ses éléments caractéristiques.
 - **b** Déterminer $\sigma(Q)$ et $\sigma(J)$.
 - $oldsymbol{c}$ La droite (IJ) coupe la droite (QB) en un point M. Déterminer et construire le point $M' = \sigma(M)$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000