Package 'GWASpoly'

June 18, 2020				
Title Genome-wide Association Studies for Autopolyploids				
Version 2.0				
Author Jeffrey B. Endelman, Umesh R. Rosyara				
Maintainer Jeffrey Endelman <endelman@wisc.edu></endelman@wisc.edu>				
Description Designed for genome-wide association studies in autopolyploids.				
License GPL-3				
LazyData true				
RoxygenNote 7.1.0				
Encoding UTF-8				
Imports rrBLUP, methods, ggplot2, tidyr, stats				
Suggests parallel, knitr				
VignetteBuilder knitr				
Collate 'GWASpoly.data.R' 'GWASpoly.K.R' 'GWASpoly.fitted.R' 'GWASpoly.thresh.R' 'design.score.R' 'get.QTL.R' 'get_x.R' 'make.full.R' 'manhattan.plot.R' 'qq.plot.R' 'qvalue.R' 'read.GWASpoly.R' 'score.calc.R' 'set.K.R' 'set.params.R' 'set.threshold.R' 'write.GWASpoly.R'				
R topics documented:				
get.QTL				

2 GWASpoly

	10
write.GWASpoly	9
set.threshold	9
set.params	8
set.K	7
read.GWASpoly	6
qq.plot	6
manhattan.plot	5
GWASpoly.thresh-class	5
GWASpoly.K-class	4
GWASpoly.fitted-class	4

get.QTL

Index

Extract significant QTL

Description

Output a table with all significant markers

Usage

```
get.QTL(data, traits = NULL, models = NULL)
```

Arguments

data Output from set.threshold

traits Vector of trait names (by default, all traits)
models Vector of model names (by default, all models)

Details

Score = -log10(p). Effect = marker effect (not available for the general and diplo-general models).

Value

Data frame with results for significant markers

GWASpoly

Compute marker significance scores

Description

Compute marker significance scores

Usage

```
GWASpoly(data, models, traits = NULL, params = NULL, n.core = 1, quiet = F)
```

GWASpoly.data-class 3

Arguments

data	Output from set.K
models	Vector of model names
traits	Vector trait names (by default, all traits)
params	Optional list of params created by set.params
n.core	Number of cores for parallel computing
quiet	TRUE/FALSE whether to suppress output charting progress

Details

The following marker-effect models are available:

- "additive": Indicates the marker effect is proportional to the dosage of the alternate allele
- "X-dom": where X can be any integer between 1 and ploidy/2 and refers to the allele dosage needed for complete dominance (e.g., "1-dom" = simplex dominance, "2-dom" = duplex dominance). The software tries both dominance patterns for a given dosage model, e.g., whether the reference or alternate allele is dominant
- "diplo-general": All heterozygotes have the same effect
- "diplo-additive": All heterozygotes have the same effect, constrained to be halfway between the homozygous effects
- "general": There are no constraints on the effects of the different dosage levels

To specify additional model parameters, such as the inclusion of fixed effects (Q matrix) and the minimum minor allele frequency, use set.params

Value

Variable of class GWASpoly.fitted

GWASpoly.data-class S4 class with genotype and phenotype data

Description

S4 class with genotype and phenotype data

Slots

```
map data frame with marker,chrom,and position (either bp or cM)
pheno data frame of phenotypes
geno matrix with allele dosages
fixed data frame of fixed effects
ploidy ploidy
```

4 GWASpoly.K-class

GWASpoly.fitted-class S4 class with results from genome-wide scan

Description

S4 class with results from genome-wide scan

Slots

```
map data frame with marker,chrom,and position (either bp or cM)
pheno data frame of phenotypes
geno matrix with allele dosages
fixed data frame of fixed effects
ploidy ploidy
K covariance matrix for polygenic effect
scores -log10(p) results
effects estimated marker effects
params parameters used for the analysis
```

GWASpoly.K-class

S4 class with genotypes, phenotypes, and polygenic covariance

Description

S4 class with genotypes, phenotypes, and polygenic covariance

Slots

```
map data frame with marker, chrom, and position (either bp or cM)
pheno data frame of phenotypes
geno matrix with allele dosages
fixed data frame of fixed effects
ploidy ploidy
K covariance matrix for polygenic effect
```

GWASpoly.thresh-class S4 class with results from genome-wide scan and detection threshold

Description

S4 class with results from genome-wide scan and detection threshold

Slots

```
map data frame with marker,chrom,and position (either bp or cM) pheno data frame of phenotypes geno matrix with allele dosages fixed data frame of fixed effects ploidy ploidy

K covariance matrix for polygenic effect scores -log10(p) results
effects estimated marker effects
params parameters used for the analysis threshold thresholds for significance
```

 ${\tt manhattan.plot}$

Create Manhattan plot

Description

Create Manhattan plot

Usage

```
manhattan.plot(data, traits = NULL, models = NULL)
```

Arguments

data Variable of class GWASpoly.fitted

traits Vector of trait names (by default, all traits plotted)
models Vector of model names (by default, all models plotted)

Details

Results for the ref and alt versions of the dominance model are combined

Value

ggplot2 object

6 read.GWASpoly

qq.plot

Quantile-Quantile (QQ) Plot

Description

Inspect p-value inflation using a QQ plot

Usage

```
qq.plot(data, traits = NULL, models = NULL)
```

Arguments

data Variable of class GWASpoly.fitted

traits Vector of trait names (by default, all traits plotted)

models Vector of model names (by default, all models plotted)

Value

ggplot2 object

read. GWASpoly

Read in marker and phenotype data

Description

Read in marker and phenotype data

Usage

```
read.GWASpoly(ploidy, pheno.file, geno.file, format, n.traits, delim = ",")
```

Arguments

ploidy Ploidy (e.g., 2 for diploid, 4 for tetraploid)

pheno.file Name of the phenotype file geno.file Name of the genotype file

format Format for the marker data. See details.

n.traits Number of traits

delim Character to indicate the delimiter in the data files (e.g., "," for csv, "\t" for

tab-delimited)

set.K

Details

The first column of the phenotype file contains the genotype identifier, columns 2 through (n.traits + 1) contain trait values, and subsequent columns contain the levels (for factors) or numeric values (for covariates) of any fixed effects. The first three columns of the genotype file are (1) marker name, (2) chromosome, and (3) position. Subsequent columns contain the marker data for each individual in the population. Marker data can be coded in one of three formats:

- "numeric": markers are coded based on the dosage of the alternate allele, taking on integer values between 0 and ploidy (fractional values not allowed)
- "AB": e.g., AAAB, ABBB for tetraploids
- "ACGT": e.g., AAAT, GGCC for tetraploids

Only bi-allelic markers are allowed. Missing marker data will be imputed with the population mode (most frequent value) for each marker.

Value

Variable of class GWASpoly.data

set.K

Set covariance matrix for polygenic effect

Description

Set covariance matrix for polygenic effect

Usage

```
set.K(data, K = NULL)
```

Arguments

data Output from read.GWASpoly

K Optional: user-supplied matrix

Details

By default, K is computed as \$K=MM'\$, where M is the centered genotype matrix (lines x markers). For GWAS, the overall scaling of K is irrelevant. At present, K is scaled such that the mean of its diagonal elements is 1. Alternatively, the user can supply any positive semidefinite K (with row.names that match the genotype identifiers).

Value

Variable of class GWASpoly.K

8 set.params

set.params	Set parameters
------------	----------------

Description

Set parameters

Usage

```
set.params(
  fixed = NULL,
  fixed.type = NULL,
  n.PC = 0,
  MAF = 0.05,
  geno.freq = 0.95,
  P3D = T
)
```

Arguments

fixed	Vector of names of fixed effects
fixed.type	Vector of effect types ("numeric" or "factor"), corresponding to the effects listed in "fixed"
n.PC	Number of principal components to include as covariates
MAF	Minimum minor allele frequency
geno.freq	Maximum genotype frequency (after applying dominance relations)
P3D	TRUE/FALSE whether to use the P3D approximation (variance components not re-estimated for every marker)

Details

The list returned by the function should be passed to GWASpoly function.

Value

A list with the following components

fixed	Names of fixed effects
fixed.type	Types of fixed effects
n.PC	Number of principal components to include as covariates
min.MAF	Minimum minor allele frequency
max.geno.freq	Maximum genotype frequency (after applying dominance relations)
P3D	TRUE/FALSE whether to use the P3D approximation

set.threshold 9

Description

Set the significance threshold

Usage

```
set.threshold(data, method, level = 0.05, n.permute = 1000, n.core = 1)
```

Arguments

data Variable of class GWASpoly.fitted

method One of the following: "Bonferroni", "FDR", "permute"

level Genome-wide false positive rate for the Bonferroni or permutation methods;

false discovery rate for method FDR

n.permuten.coreNumber of permutations for method "permute"n.coreNumber of cores to use for multicore processing

Details

The FDR method is based on version 1.30.0 of the qvalue package

Value

Variable of class GWASpoly. thresh

write.GWASpoly	Write results to file

Description

Write results to file

Usage

```
write.GWASpoly(data, trait, filename, what = "scores", delim = ",")
```

Arguments

data Variable of class GWASpoly.fitted

trait Trait name filename Filename

what Either "scores" or "effects"

delim Delimiter to use in the output file (default is comma)

Details

Score = -log10(p). Effect = marker effect (not available for the general and diplo-general models).

Index

```
get.QTL, 2
GWASpoly, 2
GWASpoly.data(GWASpoly.data-class), 3
GWASpoly.data-class, 3
GWASpoly.fitted
         ({\sf GWASpoly.fitted-class}), 4
GWASpoly.fitted-class,4
GWASpoly.K (GWASpoly.K-class), 4
GWASpoly.K-class, 4
{\it GWASpoly.} thresh
         (GWASpoly.thresh-class), 5
GWASpoly.thresh-class, 5
manhattan.plot, 5
qq.plot, 6
read.GWASpoly,6
set.K, 7
set.params, 8
set.threshold, 9
{\tt write.GWASpoly}, {\color{red} 9}
```