

Tópicos

- Introdução
- Ameaças à Computação na Cloud
- Problemas de Design
- Problemas de Implementação
- Conclusão

Introdução

Importância das boas práticas para desenvolvimento de software seguro;

Platform as a Service (PaaS).

Ameaças à Computação na Cloud

- Perda, Vazamento e Violação de dados
 - Ex: SQL Injection numa aplicação Web vs num ambiente Cloud com vários servidores.
 - Extração ou acesso não autorizados a máquinas virtuais "adjacentes".
 - Possibilidade de recuperar dados que possam ter sido modificados (logs, backups...)
 - Desafios da correta implementação de encriptação (em que camada/s implementar, gestão das chaves, políticas em caso de perda da chave)

Ameaças à Computação na Cloud

- Interfaces e APIs Inseguras
 - Um cloud provider fornece uma API que permite diversas operações.
 - Design e implementação correta de autenticação, controlo de acesso, entre outros mecanismos de segurança

Ameaças à Computação na Cloud

- Negação de Serviço (DoS)
 - Várias camadas a proteger (máquinas virtuais, memória, espaço em disco, rede, bases de dados...).
 - Arquiteturas com mais camadas têm maior superfície de ataque.
 - Um ataque numa camada pode comprometer a disponibilidade de um sistema inteiro.

- Multitenancy Vários clientes ("inquilinos") num ambiente cloud
 - Isolamento lógico mas integração física
 - Não devem poder identificar ou determinar a existência de outros inquilinos
 - Nenhum inquilino deve ser capaz de aceder a dados de outro
 - Operações feitas por um inquilino não podem interferir ou impedir o serviço de outro inquilino
 - As configurações de cada inquilino devem ser independentes
 - Devem ser feitas auditorias por inquilino
 - Uma base de dados para todos os inquilinos vs uma base de dados por inquilino

- Tokenization of Sensitive Data
 - Substituir dados sensíveis por um token
 - Agente central mantém mapeamento entre dados e token

- Mascarar dados
 - Desassociar os dados dos elementos que os identificam.
 - Sistemas não têm de obedecer a regras apertadas de armazenamento de dados sensíveis e proteção de dados útil para sistemas em teste.

- Encriptação dos dados
 - Data-in-motion vs Data-at-rest
 - Importância da boa implementação e uso de criptografia

- Gestão de chaves
 - Alguns algoritmos já fazem a gestão das chaves (TLS/SSL, IPSec)
 - Criptografia assimétrica requer a autenticação das chaves (in-house ou third-party)
 - Data encryption key (DEK) + Key encription key (KEK)

- Autenticação e gestão de identidade
 - Diferentes ambientes de autenticação: público, privado e híbrido.
 - Microsoft Windows Domain e LDAP
 - OATH e OpenID
 - Autenticar uma vez (SSO) ou múltiplas vezes -> Usabilidade vs Segurança.
 - Security Assertion Markup Language (SAML).

Problemas de Implementação

- Problemas de partilha de domínio
 - Client-side Javascript
- Garantir a segurança das APIs
 - Desenvolvimento seguro.
 - Restringir o acesso às APIs.
 - Autenticação SSL, regras de Firewall...
 - Analisar ficheiros carregados.

Conclusão

Aumento do uso da computação cloud.

- Não chega cumprir uma lista de boas práticas.
 - Compliant != Secure

• Usar métodos de desenvolvimento de aplicações seguras como base, e compreender os desafios de segurança de uma aplicação *cloud*.