On The Expressiveness Of Masked Hard-Attention Transformers

Course in Foundations of Neural Networks

BORELLI ROBERTO borelli.roberto@spes.uniud.it

University of Udine

January 30, 2025

January 30, 2025

Abstract

This work presents the paper by Yang et al. which characterizes the expressiveness of a particular class of transformers with hard attention, where attention is focused on exactly one position at a time. It is shown how to compile a transformer model into the language B-RASP. Furthermore, it is established that B-RASP is equivalent to star-free languages. The proof proceeds in two directions, employing two distinct characterizations of star-free languages: linear temporal logic over finite traces and cascades of reset automata. This study offers a deeper understanding of the transformer formalism, revealing that (i) both the feed-forward and self-attention sublayers play crucial roles, and (ii) increasing the number of layers in a transformer enhances its expressive power. This latter result contrasts with the universal approximation theorem for standard feedforward neural networks

Contents

- Introduction
 - Transformers
 - B-RASP
- Transformers and B-RASP
 - Transformers → B-RASP
 - Transformers ← B-RASP
- B-RASP and Star Free Languages
 - B-RASP → LTL
 - B-RASP ← Automata Cascades
- 4 Conclusions

Introduction

Transformer: assumptions

The Transformer studied here:

- is an encoder-only model
- uses unique hard attention: all attention is focused on exactly one position

Further simplifications:

- only single-head attention
- no layer normalization
- no positional embeddings

- T(w) is the output on input w
- $[T(w)]_i \in \mathbb{R}^d$ is the i-th output vector

- T(w) is the output on input w
- $[T(w)]_i \in \mathbb{R}^d$ is the i-th output vector

- T(w) is the output on input w
- $[T(w)]_i \in \mathbb{R}^d$ is the i-th output vector

- T(w) is the output on input w
- $[T(w)]_i \in \mathbb{R}^d$ is the i-th output vector
- A word w is accepted iff the linear projection of $[T(w)]_n$ is nonnegative

Transformer: layer

$$Layer_j : (\mathbb{R}^d)^+ \to (\mathbb{R}^d)^+$$
$$(x_1, \dots, x_n) \to (y_1, \dots, y_n)$$

Transformer: layer

FeedForward SubLayer

It's a feed forward network with two layers and ReLU activation

$$FF(x_i) = (\max\{x_i \cdot W_1 + b_1, 0\}) W_2 + b_2$$

Transformer: layer

Self Attention SubLayer

- score function: bilinear function $f_S : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$
- value function: linear trasformation $f_V : \mathbb{R}^d \to \mathbb{R}^d$
- mask: one of M(i,j) = 1; M(i,j) = i < j; M(i,j) = j < i
- selector function: either $f_C = \max$ or $f_C = \min$

Let M(i,j) = j < i and $f_C = \min$. Let x_1, \ldots, x_5 be input vectors. The steps for $SA(x_4)$ are the following.

Inputs

Let M(i,j) = j < i and $f_C = \min$. Let x_1, \ldots, x_5 be input vectors. The steps for $SA(x_4)$ are the following.

Inputs

Unmasked inputs

Let M(i, j) = j < i and $f_C = \min$. Let x_1, \ldots, x_5 be input vectors. The steps for $SA(x_4)$ are the following.

Inputs

Unmasked inputs

(max) scores

$$f_S(x_4, x_1)$$
 3.2

$$f_S(x_4, x_2)$$
 2.3

$$f_S(x_4, x_3)$$
 3.2

Let M(i,j) = j < i and $f_C = \min$. Let x_1, \ldots, x_5 be input vectors. The steps for $SA(x_4)$ are the following.

Inputs

$$x_1$$

$$x_2$$

 x_4

$$x_5$$

Unmasked inputs

(max) scores

$$f_S(x_4, x_1)$$
 3.2

$$f_S(x_4, x_2)$$
 2.3

$$f_S(x_4, x_3)$$
 3.2

selected input

Let M(i, j) = i < i and $f_C = \min$. Let x_1, \ldots, x_5 be input vectors. The steps for $SA(x_4)$ are the following.

Inputs

$$x_5$$

Unmasked inputs

(max) scores

$$f_S(x_4, x_1)$$
 3.2

$$f_S(x_4, x_2)$$
 2.3

$$f_S(x_4,x_3)$$
 3.2

selected input

Introduction

B-RASP: definition

• It's a programming language intended to help think like transformers

- It's a programming language intended to help think like transformers
- ullet A B-RASP program p is a sequence of definitions of boolean vectors
- Let $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ be an alphabet and $w = w_1 \dots w_n$ a word in Σ^*

- It's a programming language intended to help think like transformers
- A B-RASP program *p* is a sequence of definitions of boolean vectors
- Let $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ be an alphabet and $w = w_1 \dots w_n$ a word in Σ^*
- Initial vectors: one-hot encoding of the input

- It's a programming language intended to help think like transformers
- A B-RASP program *p* is a sequence of definitions of boolean vectors
- Let $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ be an alphabet and $w = w_1 \dots w_n$ a word in Σ^*
- Initial vectors: $P_i(i) = 1 \leftrightarrow w_i = \sigma_i$ j = 1, ..., m

- It's a programming language intended to help think like transformers
- A B-RASP program *p* is a sequence of definitions of boolean vectors
- Let $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ be an alphabet and $w = w_1 \dots w_n$ a word in Σ^*
- Initial vectors: $P_j(i) = 1 \leftrightarrow w_i = \sigma_j$ j = 1, ..., m
- New vectors: for $k \ge m$ the vector P_{k+1} is defined combining the values of P_1, \ldots, P_k with some operators
- **Output vector:** The last vector is the output vector denoted with *Y*

- It's a programming language intended to help think like transformers
- A B-RASP program p is a sequence of definitions of boolean vectors
- Let $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ be an alphabet and $w = w_1 \dots w_n$ a word in Σ^*
- Initial vectors: $P_j(i) = 1 \leftrightarrow w_i = \sigma_j$ j = 1, ..., m
- New vectors: for $k \ge m$ the vector P_{k+1} is defined combining the values of P_1, \ldots, P_k with some operators
- **Output vector:** The last vector is the output vector denoted with *Y*
- $w \in \mathcal{L}(p) \leftrightarrow Y(n) = 1$

Introduction

B-RASP: operations

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := \mathsf{BoolCombination}(\{P_1(i), \dots, P_k(i)\})$$

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := BoolCombination(\{P_1(i), \dots, P_k(i)\})$$

Syntax
$$P_{k+1}(i) := selector_j [test] V(i,j) : D(i)$$

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := BoolCombination(\{P_1(i), \dots, P_k(i)\})$$

```
Syntax P_{k+1}(i) := \operatorname{selector}_j [\operatorname{test}] V(i,j) : D(i)

Semantics

j' = \operatorname{select} j \text{ such that test is satisfied}

if j' == \operatorname{NULL}

P_{k+1}(i) = D(i)

else

P_{k+1}(i) = V(i,j')
```

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := BoolCombination(\{P_1(i), \dots, P_k(i)\})$$

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := BoolCombination(\{P_1(i), \dots, P_k(i)\})$$

$$P_{k+1}(i) \coloneqq \min/\max_{j} [M(i,j) \land S(i,j)] \ V(i,j) : D(i)$$

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := BoolCombination(\{P_1(i), \dots, P_k(i)\})$$

Attention operations

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[\boxed{\textit{M}(i,j)} \land \textit{S}(i,j) \right] \, \textit{V}(i,j) \; : \; \textit{D}(i)$$

Mask predicate

$$M(i,j) = egin{cases} 1 & ext{no masking} \\ j < i & ext{future masking} \\ j > i & ext{past masking} \end{cases}$$

January 30, 2025

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := \mathsf{BoolCombination}(\{P_1(i), \dots, P_k(i)\})$$

Attention operations

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \wedge \boxed{S(i,j)} \right] \ V(i,j) \ : \ D(i)$$

Score predicate

$$S(i,j) = \mathsf{BoolCombination}(\{P_1(i),\ldots,P_k(i)\} \cup \{P_1(j),\ldots,P_k(j)\})$$

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := BoolCombination(\{P_1(i), \dots, P_k(i)\})$$

Attention operations

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \land S(i,j) \right] \left[V(i,j) \right] : D(i)$$

Value predicate

$$V(i,j) = \mathsf{BoolCombination}(\{P_1(i), \dots, P_k(i)\} \cup \{P_1(j), \dots, P_k(j)\})$$

New vectors can be defined in the following way.

Position-wise operations

$$P_{k+1}(i) := \mathsf{BoolCombination}(\{P_1(i), \dots, P_k(i)\})$$

Attention operations

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \land S(i,j) \right] V(i,j) : \boxed{D(i)}$$

Default Value predicate

$$D(i) = BoolCombination(\{P_1(i), \dots P_k(i)\})$$

B-RASP: example

Consider $\Sigma = \{a, b\}$, let Q_a and Q_b be the two input vectors. We define the following program p.

$$P_{a}(i) := \max_{j} [j < i, 1] Q_{a}(j) : 0$$

$$S_{b}(i) := \min_{j} [j > i, 1] Q_{b}(j) : 0$$

$$V := (Q_{a} \land S_{b}) \lor (Q_{b} \land P_{a})$$

$$Y := \max_{j} [1, \neg V(j)] 0 : 1$$

It is easy to check that $\mathcal{L}(p) = (ab)^*$

B-RASP: normal form

Lemma (Normalization)

Any B-RASP program is equivalent to one in which all value predicates V(i,j) and all score predicates S(i,j) depend only on j.

Notice that the normalization procedure may require an exponential blowup.

Transformers and B-RASP

Transformers → B-RASP Transformers ← B-RASP

Transformers \rightarrow B-RASP

Transformers and computed values

Lemma

Let T be a transformer. Let \mathbb{F} be the union over all layers of the possible attention scores and components of the possible activation vectors. It holds that \mathbb{F} is finite.

Transformers → B-RASF

Transformers and computed values

Lemma

Let T be a transformer. Let \mathbb{F} be the union over all layers of the possible attention scores and components of the possible activation vectors. It holds that \mathbb{F} is finite.

- Any attention score or component of an activation vector, can be represented with $B = \lceil \log_2 \mathbb{F} \rceil$ bits
- For a value v, let $\langle v \rangle_b$ be the bit corresponding to 2^b

Transformers and computed values

Lemma

Let T be a transformer. Let \mathbb{F} be the union over all layers of the possible attention scores and components of the possible activation vectors. It holds that \mathbb{F} is finite.

- Any attention score or component of an activation vector, can be represented with $B = \lceil \log_2 \mathbb{F} \rceil$ bits
- ullet For a value v, let $\langle v \rangle_b$ be the bit corresponding to 2^b

Definition

A B-RASP program p simulates a transformer $T: \Sigma^+ \to (\mathbb{R}^d)^+$ if

- for each $b \in [B]$ and $k \in [d]$, p contains boolean vectors $Y_{k,b}$
- for every word w of length n, for $i \in [n], b \in [B], k \in [d]$, it holds $Y_{k,b}(i) = 1$ iff $\langle [T(w)]_{i,k} \rangle_b = 1$

Translating transformers to B-RASP

Lemma

For any masked hard-attention transformer T, there is a B-RASP program p_T that simulates T.

Transformers → B-RASF

Translating transformers to B-RASP

Lemma

For any masked hard-attention transformer T, there is a B-RASP program p_T that simulates T.

Proof sketch

• The embedding function is simulated by $E_{k,b}(i) := \bigwedge_{\sigma \in \Sigma} Q_{\sigma}(i) \to \langle [Emb(\sigma)]_k \rangle_b$

-RASP program

...e empedding function is simulated by

$$E_{k,b}(i) := \bigwedge_{\sigma \in \Sigma} Q_{\sigma}(i) \to \langle [Emb(\sigma)]_k \rangle_b$$

Translating transformers to B-RASP

Lemma

For any masked hard-attention transformer T, there is a B-RASP program p_T that simulates T.

Proof sketch

- The embedding function is simulated by $E_{k,b}(i) \coloneqq \bigwedge_{\sigma \in \Sigma} Q_{\sigma}(i) \to \langle [Emb(\sigma)]_k \rangle_b$
- \bullet Assume that the first L layers are simulated by p, we extend p to simulate layer L+1
- If layer L + 1 is a FF layer, it's translated into B-RASP using position-wise operations
- If layer L + 1 is a SA layer, it's translated into B-RASP using attention operations

Translating transformers to B-RASP

Lemma

For any masked hard-attention transformer T, there is a B-RASP program p_T that simulates T.

Proof sketch

- The embedding function is simulated by $E_{k,b}(i) := \bigwedge_{\sigma \in \Sigma} Q_{\sigma}(i) \rightarrow \langle [Emb(\sigma)]_k \rangle_b$
- Assume that the first L layers are simulated by p, we extend p to simulate layer L+1
- If layer L + 1 is a FF layer, it's translated into B-RASP using position-wise operations
- If layer L+1 is a SA layer, it's translated into B-RASP using attention operations
- ullet Lastly, we add into the program an output vector Y to simulate T's output layer

Transformers \leftarrow B-RASF

Translating B-RASP to transformers

Definition

Let p be a B-RASP program with vectors P_1, \ldots, P_d . The transformer T (with $d' \ge d$ dimensions) simulates p iff for every word w of length n, for all $i \in [n], k \in [d]$ it holds

$$[T(w)]_{i,k} = \begin{cases} 1 & P_k(i) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Transformers ← B-RASF

Translating B-RASP to transformers

Definition

Let p be a B-RASP program with vectors P_1, \ldots, P_d . The transformer T (with $d' \ge d$ dimensions) simulates p iff for every word w of length n, for all $i \in [n], k \in [d]$ it holds

$$[T(w)]_{i,k} = \begin{cases} 1 & P_k(i) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

14 / 32

Transformers \leftarrow B-RASP

Translating B-RASP to transformers

Definition

Let p be a B-RASP program with vectors P_1, \ldots, P_d . The transformer T (with $d' \ge d$ dimensions) simulates p iff for every word w of length n, for all $i \in [n], k \in [d]$ it holds

$$[T(w)]_{i,k} = \begin{cases} 1 & P_k(i) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

Proof sketch

The proof is by induction of the number of vectors of p. Assume that the vectors P_1, \ldots, P_k can be simulated by T_p . We show that P_{k+1} can be simulated as well.

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

Proof sketch (cont.)

• Case P_{k+1} is an initial boolean vector for $\sigma \in \Sigma$. we set $Emb(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is at position k+1

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

- Case P_{k+1} is an initial boolean vector for $\sigma \in \Sigma$. we set $Emb(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is at position k+1
- Case $P_{k+1}(i)$ is BoolCombination($\{P_1(i), \ldots, P_k(i)\}$). It can be put in DNF and computed by the two layer FFN.

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

Proof sketch (cont.)

- Case P_{k+1} is an initial boolean vector for $\sigma \in \Sigma$. we set $Emb(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is at position k+1
- Case $P_{k+1}(i)$ is BoolCombination($\{P_1(i), \dots, P_k(i)\}$).

Example:

$$(a_1 \wedge \neg a_2 \wedge \neg a_3) \vee (b_1 \wedge b_2)$$

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

Proof sketch (cont.)

- Case P_{k+1} is an initial boolean vector for $\sigma \in \Sigma$. we set $Emb(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is at position k+1
- Case $P_{k+1}(i)$ is BoolCombination $(\{P_1(i), \dots, P_k(i)\})$.

Example:

$$(a_1 \wedge \neg a_2 \wedge \neg a_3) \vee (b_1 \wedge b_2)$$

The first layer computes conjunctions

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

Proof sketch (cont.)

- Case P_{k+1} is an initial boolean vector for $\sigma \in \Sigma$. we set $Emb(\sigma) = (0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is at position k+1
- Case $P_{k+1}(i)$ is BoolCombination($\{P_1(i), \ldots, P_k(i)\}$).

Example:

$$(a_1 \land \neg a_2 \land \neg a_3) \lor (b_1 \land b_2)$$

The second layer computes

disjunctions

Translating B-RASP to transformers: attention operations

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \land S(i,j) \right] \ V(i,j) \ : \ D(i).$$

Translating B-RASP to transformers: attention operations

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

Proof sketch (cont.)

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \land S(i,j) \right] \ V(i,j) \ : \ D(i).$$

• Input vector: $(P_1(i), \dots, P_k(i), 0^{d-k}, 0, 0, \dots)$

Transformers \leftarrow B-RASP

Translating B-RASP to transformers: attention operations

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

$$P_{k+1}(i) \coloneqq \min/{\max_j} \left[M(i,j) \, \wedge \, S(i,j) \right] \, V(i,j) \; : \; D(i).$$

- Input vector: $(P_1(i), \dots, P_k(i), 0^{d-k}, 0, 0, \dots)$
- First layer: The SA sub-layer does nothing (identity function). The FFN adds (at free positions) information in order to compute S(i,j)

Translating B-RASP to transformers: attention operations

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \land S(i,j) \right] \ V(i,j) \ : \ D(i).$$

- Input vector: $(P_1(i), \dots, P_k(i), 0^{d-k}, 0, 0, \dots)$
- ullet First layer: The SA sub-layer does nothing (identity function). The FFN adds (at free positions) information in order to compute S(i,j)
- Second Layer: The SA uses mask M and computes either V(i,j') or D(i). The FFN copies the desired result to position k+1.

Translating B-RASP to transformers: attention operations

Lemma

For any B-RASP program p, there is a transformer T_p that simulates p.

$$P_{k+1}(i) \coloneqq \min/\max_{j} \left[M(i,j) \land S(i,j) \right] \ V(i,j) \ : \ D(i).$$

- Input vector: $(P_1(i), \dots, P_k(i), 0^{d-k}, 0, 0, \dots)$
- First layer: The SA sub-layer does nothing (identity function). The FFN adds (at free positions) information in order to compute S(i,j)
- Second Layer: The SA uses mask M and computes either V(i,j') or D(i). The FFN copies the desired result to position k+1.
- Output vector: either $(P_1(i), ..., P_k(i), V(i, j'), 0^{d-k-1}, ...)$ or $(P_1(i), ..., P_k(i), D(i), 0^{d-k-1}, ...)$

B-RASP and Star Free Languages

Syntax

$$\phi := p \mid \neg \phi \mid \phi \lor \phi$$
$$\mid \mathsf{X}\phi \mid \phi \lor \phi$$
$$\mid \mathsf{Y}\phi \mid \phi \lor \phi$$

Boolean operators
Future operators
Past operators

Syntax

$$\phi := p \mid \neg \phi \mid \phi \lor \phi$$
$$\mid \mathsf{X}\phi \mid \phi \lor \phi$$
$$\mid \mathsf{Y}\phi \mid \phi \lor \phi$$

Boolean operators
Future operators
Past operators

Semantics

Let \mathcal{AP} be a set of atomic propositions, and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace. Satisfaction of ϕ by σ at time $0 \le i < |\sigma|$ is defined as follows.

Syntax

$$\phi := p \mid \neg \phi \mid \phi \lor \phi$$
$$\mid \mathsf{X}\phi \mid \phi \lor \phi$$
$$\mid \mathsf{Y}\phi \mid \phi \lor \phi$$

Boolean operators
Future operators
Past operators

Semantics

Let \mathcal{AP} be a set of atomic propositions, and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace. Satisfaction of ϕ by σ at time $0 \leqslant i < |\sigma|$ is defined as follows. Boolean operators

- σ , $i \models p$ iff $p \in \sigma_i$;
- σ , $i \models \neg \phi$ iff σ , $i \not\models \phi$;
- σ , $i \models \phi_1 \lor \phi_2$ iff σ , $i \models \phi_1$ or σ , $i \models \phi_2$;

Syntax

$$\phi := p \mid \neg \phi \mid \phi \lor \phi$$
$$\mid \mathsf{X}\phi \mid \phi \lor \phi$$
$$\mid \mathsf{Y}\phi \mid \phi \lor \phi$$

Boolean operators
Future operators
Past operators

Semantics

Let \mathcal{AP} be a set of atomic propositions, and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace. Satisfaction of ϕ by σ at time $0 \le i < |\sigma|$ is defined as follows.

Future operators

- $\sigma, i \models X\phi$ iff $i + 1 < |\sigma|$ and $\sigma, i + 1 \models \phi$;
- $\sigma, i \models \phi_1 \cup \phi_2$ iff there exists $i \leqslant j < |\sigma|$ such that $\sigma, j \models \phi_2$, and $\sigma, k \models \phi_1$ for all k, with $i \leqslant k < j$;

Syntax

$$\phi := \rho \mid \neg \phi \mid \phi \lor \phi$$
$$\mid X\phi \mid \phi \lor \phi$$
$$\mid Y\phi \mid \phi \lor \phi$$

Boolean operators
Future operators
Past operators

Semantics

Let \mathcal{AP} be a set of atomic propositions, and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace. Satisfaction of ϕ by σ at time $0 \le i < |\sigma|$ is defined as follows.

Past operators

- $\sigma, i \models \mathsf{Y}\phi \text{ iff } i > 0 \text{ and } \sigma, i 1 \models \phi;$
- $\sigma, i \models \phi_1 \ S \ \phi_2$ iff there exists $j \leqslant i$ such that $\sigma, j \models \phi_2$, and $\sigma, k \models \phi_1$ for all k, with $j < k \leqslant i$;

LTL: shortcuts

We define the following shortcuts.

(True)	True $= p \vee \neg p$
(False)	$False := \neg True$
(Weak Tomorrow)	$\tilde{X}\phi \coloneqq \neg X \neg \phi$
(Eventually)	$F\phi \coloneqq \mathit{True}\ U\ \phi$
(Globally)	$G\phi \coloneqq \neg F \neg \phi$
(Weak Yesterday)	$\tilde{Y}\phi\coloneqq \neg Y \neg \phi$
(Once)	$O\phi \coloneqq \mathit{True} \ \mathcal{S} \ \phi$
(Historically)	$H\phi \coloneqq \neg O \neg \phi$

Translating B-RASP to LTL

Lemma

For any Boolean vector P_k of a B-RASP program in normal form, there is a LTL formula ϕ_k such that for any input w of length n and all $i \in [n]$, it holds $P_k(i) = 1$ iff $w, i \models \phi_k$.

Translating B-RASP to LTL

Lemma

For any Boolean vector P_k of a B-RASP program in normal form, there is a LTL formula ϕ_k such that for any input w of length n and all $i \in [n]$, it holds $P_k(i) = 1$ iff $w, i \models \phi_k$.

Proof

Initial vectors and new vectors defined using point-wise operations are easily translated.

In the following, we show how to perform translation of vectors defined with attention operations starting with *max*. The cases with *min* are analogous.

Translating B-RASP to LTL: future masking

Lemma

For any Boolean vector P_k of a B-RASP program in normal form, there is a LTL formula ϕ_k such that for any input w of length n and all $i \in [n]$, it holds $P_k(i) = 1$ iff $w, i \models \phi_k$.

Proof (cont.)

$$P_k(i) \coloneqq \max_j [j < i, S(j)] V(j) : D(i)$$

is translated to

$$\phi_k \coloneqq Y(\neg \phi_S \ S \ (\phi_S \land \phi_V)) \lor ((\tilde{Y}H \ \neg \phi_S) \land \phi_D)$$

Formulas ϕ_S , ϕ_V and ϕ_D exist by induction hypothesis.

4 □ →

Future masking is translated using only past operators

re masking

ogram in normal form, there is v of length n and all $i \in [n]$, it

$$P_k(i) \coloneqq \max_j [j < i, S(j)] V(j) : D(i)$$

is translated to

$$\phi_{k} \coloneqq Y(\neg \phi_{S} \ S \ (\phi_{S} \wedge \phi_{V})) \vee ((\tilde{Y}H \ \neg \phi_{S}) \wedge \phi_{D})$$

Formulas ϕ_S , ϕ_V and ϕ_D exist by induction hypothesis.

Translating B-RASP to LTL: past masking

Lemma

For any Boolean vector P_k of a B-RASP program in normal form, there is a LTL formula ϕ_k such that for any input w of length n and all $i \in [n]$, it holds $P_k(i) = 1$ iff $w, i \models \phi_k$.

Proof (cont.)

$$P_k(i) \coloneqq \max_j [j > i, S(j)] V(j) : D(i)$$

is translated to

$$\phi_{k} \coloneqq XF(\phi_{S} \land \phi_{V} \land (\tilde{X}G \neg \phi_{S})) \lor ((\tilde{X}G \neg \phi_{S}) \land \phi_{D})$$

Formulas ϕ_S , ϕ_V and ϕ_D exist by induction hypothesis.

4 □ ▶

Past masking is translated using only future operators

masking

ogram in normal form, there is v of length n and all $i \in [n]$, it

$$P_k(i) := \max_j [j > i, S(j)] V(j) : D(i)$$

is translated to

$$\phi_{k} \coloneqq XF(\phi_{S} \land \phi_{V} \land (\tilde{X}G \neg \phi_{S})) \lor ((\tilde{X}G \neg \phi_{S}) \land \phi_{D})$$

Formulas ϕ_S , ϕ_V and ϕ_D exist by induction hypothesis.

Translating B-RASP to LTL: no masking

Lemma

For any Boolean vector P_k of a B-RASP program in normal form, there is a LTL formula ϕ_k such that for any input w of length n and all $i \in [n]$, it holds $P_k(i) = 1$ iff $w, i \models \phi_k$.

Proof (cont.)

$$P_k(i) := \max_{j} [1, S(j)] V(j) : D(i)$$
is translated to

$$\begin{split} \textit{exists}(\phi) &\coloneqq (\textit{F}\phi) \lor (\textit{O}\phi) \\ \textit{rightmost}(\phi, \psi) &\coloneqq \phi \land \psi \land (\tilde{\textit{X}}\textit{G} \ \neg \phi) \\ \phi_{\textit{k}} &\coloneqq \textit{exists}(\textit{rightmost}(\phi_{\textit{S}}, \phi_{\textit{v}})) \lor (\neg \textit{exists}(\phi_{\textit{S}}) \land \phi_{\textit{D}}) \end{split}$$

Formulas ϕ_S , ϕ_V and ϕ_D exist by induction hypothesis.

_ _ _ _ _

B-RASP ← Automata Cascades

Automata Cascades and Krohn-Rhodes theory

Cascade product of automota is the generalization of the direct product

$$\begin{split} \mathcal{A} \circ \mathcal{B} &= (\Sigma, Q_{\mathcal{A}} \times Q_{\mathcal{B}}, \delta) \text{ where} \\ \delta((q_{\mathcal{A}}, q_{\mathcal{B}}), \sigma) &= (\delta_{\mathcal{A}}(q_{\mathcal{A}}, \sigma), \delta_{\mathcal{B}}(q_{\mathcal{B}}, (q_{\mathcal{A}}, \sigma))) \end{split}$$

The second automaton reads the current state of the first one

B-RASP ← Automata Cascades

Automata Cascades and Krohn-Rhodes theory

Cascade product of automota is the generalization of the direct product

$$\begin{split} \mathcal{A} \circ \mathcal{B} &= (\Sigma, Q_{\mathcal{A}} \times Q_{\mathcal{B}}, \delta) \text{ where } \\ \delta((q_{\mathcal{A}}, q_{\mathcal{B}}), \sigma) &= (\delta_{\mathcal{A}}(q_{\mathcal{A}}, \sigma), \delta_{\mathcal{B}}(q_{\mathcal{B}}, (q_{\mathcal{A}}, \sigma))) \end{split}$$

The second automaton reads the current state of the first one

Lemma

Every counter-free automaton A can be decomposed into a cascade $\mathcal{B}_1 \circ \cdots \circ \mathcal{B}_n$ where each component \mathcal{B}_i is a two-state reset automaton

Two-states reset automaton

A transition labelled with σ can be of two types:

- Identity transition: $\forall q \ \delta(q, \sigma) = q$
- Reset transition on state $q: \forall q' \ \delta(q', \sigma) = q$

Two-states reset automaton

A transition labelled with σ can be of two types:

- Identity transition: $\forall q \ \delta(q, \sigma) = q$
- Reset transition on state $q: \forall q' \ \delta(q', \sigma) = q$

The alphabet Σ can be partitioned into sets of symbols I, R_{a_0}, R_{a_1} which respectively induce identity transitions, reset transitions entering state q_0 and reset transitions entering state q_1 . We denote with R the set of symbols which induce a reset transition on some state q.

B-RASP state simulation

Let \mathcal{A} be an automaton and let $w=w_1\ldots w_n$ be an input word. Let τ be the run s_0,\ldots,s_n induced by w on \mathcal{A} starting from a certain state s.

B-RASP state simulation

Let \mathcal{A} be an automaton and let $w=w_1\dots w_n$ be an input word. Let τ be the run s_0,\dots,s_n induced by w on \mathcal{A} starting from a certain state s. By definition of the run we have $s_{i+1}=\delta(s_i,w_i)$. s_i is the state reached before reading the i-th symbol.

B-RASP state simulation

Let $\mathcal A$ be an automaton and let $w=w_1\dots w_n$ be an input word. Let τ be the run s_0,\dots,s_n induced by w on $\mathcal A$ starting from a certain state s. By definition of the run we have $s_{i+1}=\delta(s_i,w_i)$. s_i is the state reached before reading the i-th symbol.

Definition

A B-RASP program p is said to *simulate* A starting from state s iff

- for each state q there is a boolean vector P_q ;
- for every input word w, $P_q(i) = 1$ iff $s_i = q$.

B-RASP from state simulation to language recognition

Given a program p which simulates the automaton A, for every state r we define the predicate that decides whether A started in state s ends up in state r after reading the symbol at position i:

$$A_r(i) := \bigvee_{\substack{q \in Q \\ \sigma \in \Sigma \\ \delta(q,\sigma) = r}} P_q(i) \wedge Q_{\sigma}(i)$$

B-RASP from state simulation to language recognition

Given a program p which simulates the automaton A, for every state r we define the predicate that decides whether A started in state s ends up in state r after reading the symbol at position i:

$$A_r(i) := \bigvee_{\substack{q \in Q \\ \sigma \in \Sigma \\ \delta(q,\sigma) = r}} P_q(i) \wedge Q_{\sigma}(i)$$

Given a set of final states F we can define the output vector of the program as

$$Y \coloneqq \bigvee_{r \in F} A_r$$

and so $w \in \mathcal{L}(p)$ iff $w \in \mathcal{L}(\mathcal{A})$

Translating cascades to B-RASP

Lemma

Every cascade $C = \mathcal{B}_1 \circ \cdots \circ \mathcal{B}_k$ of two-states reset automata can be simulated by a B-RASP program p_C from state (s_1, \ldots, s_k) .

Translating cascades to B-RASP

Lemma

Every cascade $C = \mathcal{B}_1 \circ \cdots \circ \mathcal{B}_k$ of two-states reset automata can be simulated by a B-RASP program p_C from state (s_1, \ldots, s_k) .

Proof

We will proceed by induction on k the height of the cascade. The base case is a two-states reset automaton. For the inductive case, assume that the automaton $\mathcal{A} = \mathcal{B}_1 \circ \cdots \circ \mathcal{B}_k$ can be simulated by the program $p_{\mathcal{A}}$ and show that $\mathcal{C} = \mathcal{A} \circ \mathcal{B}_{k+1}$ can be simulated by the program $p_{\mathcal{C}}$.

Translating cascades to B-RASP: base case

Lemma

Every cascade $C = \mathcal{B}_1 \circ \cdots \circ \mathcal{B}_k$ of two-states reset automata can be simulated by a B-RASP program p_C from state (s_1, \ldots, s_k) .

Proof (cont.)

Let $\mathcal{A} = (\Sigma, Q, \delta)$ be a reset automaton. The following program p_A , simulates A starting from state $s \in Q$. Q_{σ} denotes the input vector of σ .

$$P_q(i) := \max_{j} \left[j < i, \bigvee_{\sigma \in R} Q_{\sigma}(j) \right] \bigvee_{\sigma \in R_q} Q_{\sigma}(j) : 0$$
 if $q \neq s$

$$P_q(i) := \max_{j} \left[j < i, \bigvee_{\sigma \in R} Q_{\sigma}(j) \right] \bigvee_{\sigma \in R_{\sigma}} Q_{\sigma}(j) : 1$$
 if $q = s$

28 / 32

Translating cascades to B-RASP: inductive case

Lemma

Every cascade $\mathcal{C} = \mathcal{B}_1 \circ \cdots \circ \mathcal{B}_k$ of two-states reset automata can be simulated by a B-RASP program p_C from state (s_1, \ldots, s_k) .

Proof (cont.)

The automaton $\mathcal{A} = (\Sigma, Q_{\mathcal{A}}, \delta_{\mathcal{A}})$ is simulated by $p_{\mathcal{A}}$. $P_{q_{\mathcal{A}}}$ is the predicate for state q_{\perp} .

The reset automaton $\mathcal{B} = (\Sigma \times Q, Q_{\mathcal{B}}, \delta_{\mathcal{B}})$ is simulated by $p_{\mathcal{B}}$. $P_{a_{\mathcal{B}}}$ is the predicate for state $q_{\mathcal{B}}$.

Define $Q'_{(q_A,\sigma)}=P_{q_A}\wedge Q_\sigma$ and P'_{q_B} as a clone of P_{q_B} where $Q_{(q_A,\sigma)}$ is replaced by $Q'_{(q_4,\sigma)}$.

For a state $(s_A, s_B) \in Q_A \times Q_B$ of $C = A \circ B$ we define the predicate $P_{(s_A,s_B)}$ as $P_{(s_A,s_B)} := P_{s_A} \wedge P'_{s_B}$

29 / 32

Conclusions

Well known results of LTL have deep consequences on transformers

Lemma

Pure Past LTL (pLTL) is equivalent to LTL

Lemma

LTL with non-strict operators recognize exactly the stutter-invariant star-free languages

Lemma

There exists a language L_k such that no LTL formula with temporal depth 2k recognizes L_k , but there exists an LTL formula with temporal depth 2k+1 which recognizes L_k

Well known results of LTL have deep consequences on transformers

Lemma

Transformers with only future-masked rightmost-hard attention recognize exactly the star-free languages.

Lemma

LTL with non-strict operators recognize exactly the stutter-invariant star-free languages

Lemma

There exists a language L_k such that no LTL formula with temporal depth 2k recognizes L_k , but there exists an LTL formula with temporal depth 2k+1 which recognizes L_k

Well known results of LTL have deep consequences on transformers

Lemma

Transformers with only future-masked rightmost-hard attention recognize exactly the star-free languages.

Lemma

Masked hard-attention transformers with only non-strict masking recognize exactly the stutter-invariant star-free languages.

Lemma

There exists a language L_k such that no LTL formula with temporal depth 2k recognizes L_k , but there exists an LTL formula with temporal depth 2k+1 which recognizes L_k

Well known results of LTL have deep consequences on transformers

Lemma

Transformers with only future-masked rightmost-hard attention recognize exactly the star-free languages.

Lemma

Masked hard-attention transformers with only non-strict masking recognize exactly the stutter-invariant star-free languages.

Lemma

There exists a language L_k such that no multi-head masked hard-attention transformer of depth k recognizes L_k , but there exists a transformer of depth O(k) which recognizes L_k

Depth Hierarchy

This last result is in contrast to the universal approximation theorem for standard FFN

equences on transformers

most-hard attention recognize

Masked hard-attention transformers with only non-strict masking recognize exactly the stutter-invariant star-free languages.

Lemma

There exists a language L_k such that no multi-head masked hard-attention transformer of depth k recognizes L_k , but there exists a transformer of depth O(k) which recognizes L_k

Conclusions and final comments

Recap

- B-RASP has been used as an intermediate language which facilitates translation to LTL
- Both SA and FF sub-layers of a transformer play a significant role. FF corresponds to boolean operators while SA corresponds to temporal operators

Future Work

- Extend the study to soft-attention transformers
- Extend the study to encoder-decoder transformers

My Questions

- How does training transformers compare to automata learning algorithms?
- LTL is used to derive results about transformers: is the converse possible?
- How do reset automata cascades connect to transformer expressiveness?

Bibliography

Main paper

Andy Yang, David Chiang, and Dana Angluin. Masked Hard-Attention Transformers Recognize Exactly the Star-Free Languages. 2024. URL:

https://arxiv.org/abs/2310.13897

LTL reference

Geatti Luca. Temporal Logic Specifications: Expressiveness, Satisfiability And Realizability. 2022

Automata Cascades reference

Borelli Roberto, Geatti Luca, Montali Marco, and Montanari Angelo. *On Cascades of Reset Automata*. 2025