AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Currently Amended) A semiconductor integrated circuit, comprising: pads;

a first power supply I/O cell which is connected to [an external pin through a corresponding one of said pads] a first pad of said pads, said first pad being provided corresponding to said first power supply I/O cell; [and]

a wire line that is connected to said first power supply I/O cell;

a second power supply I/O cell which is [not connected to an external pin through a corresponding one of said pads, but receives] connected to a second pad of said pads and is connected to said wire line to receive power supply from said first power supply I/O cell, said second pad being provided corresponding to said second power supply I/O cell and being, different from said first pad;

an internal cell; and

a power supply line which provides power supply to said internal cell, wherein said first power supply I/O cell and said second power supply I/O cell are each connected to said power supply line;

wherein said first pad is connected to at least one external pin and wherein said second pad is not connected to any of the at least one external pin.

2. (Canceled) The semiconductor integrated circuit as claimed in claim 1, further comprising:

an internal cell;

a power supply line which provides power supply to said internal cell;

a line which connects between said first power supply I/O cell and said power supply line; and

a line which connects between said second power supply I/O cell and said power supply line.

- 3. (Original) The semiconductor integrated circuit as claimed in claim 1, wherein said second power supply I/O cell is not connected to the corresponding one of pads that corresponds to said second power supply I/O cell.
- 4. (Withdrawn) A method of designing a power supply layout of a semiconductor integrated circuit, comprising the steps of:

identifying an unused I/O cell having no external connection; and assigning the I/O cell to be a power supply I/O cell having no direct external connection.

- 5. (Withdrawn) The method as claimed in claim 4, further comprising a step of connecting the power supply I/O cell to a power supply line for providing power supply to an internal cell and connecting the power supply I/O cell to a power supply I/O cell having direct external connection through a pad.
- 6. (Withdrawn) The method as claimed in claim 4, further comprising a step of identifying a portion that is lacking in a power supply current inside a chip, wherein said step of assigning the I/O cell assigns the power supply I/O cell with respect to said portion.
- 7. (Withdrawn) The method as claimed in claim 6, wherein said step of identifying a portion that is lacking in a power supply current includes the steps of:

obtaining first information about assignment of pins to I/O cells;

obtaining second information about an amount of a necessary power supply current needed at each position inside the chip;

calculating an amount of a provided power supply current in an initial state based on the first information; and

comparing the calculated amount of a provided power supply current with the amount of a necessary power supply current indicated by the second information.

- 8. (Withdrawn) The method as claimed in claim 4, wherein said step of assigning the I/O cell includes a step of identifying the I/O cell to be assigned by use of a pointing device on a screen display that presents an illustration of a chip.
- 9. (Withdrawn) The method as claimed in claim 4, wherein said step of assigning the I/O cell includes a step of identifying the I/O cell to be assigned by specifying a number that has been allocated on the chip.
- 10. (Canceled) A semiconductor integrated circuit, made by a designing process that comprises:

identifying an unused I/O cell having no external connection; and assigning the I/O cell to be a power supply I/O cell having no direct external connection.

(Currently Amended) A semiconductor integrated circuit, comprising:
 at least one pad;

a first power supply I/O cell which is connected to <u>at least one external pin</u> through <u>a</u> <u>first pad</u> of said at least one pad, <u>said first pad being provided corresponding to said first power supply I/O cell;</u>

a second power supply I/O cell which is not connected to <u>any of the at least one</u>

<u>external pin</u> through <u>a second pad</u> of said at least one pad, said second power supply I/O

cell being connected to said first power supply cell via a wire line, <u>said second pad being</u>

<u>provided corresponding to said second power supply I/O cell and being different from said</u>

<u>first pad;</u>

an internal cell; and

a power supply line which is connected to said first power supply I/O cell, said second power supply I/O cell and said internal cell.