

Cognitive mechanisms of the defer-speedup and date-delay framing effects in intertemporal choice

**Bram Zandbelt & Roshan Cools** 



# Time framing matters in intertemporal choice

#### Intertemporal choice





### Subjective value of rewards declines with delay



### Time framing shifts preferences: defer-speedup and date-delay effects

(neutral) delay frame

Choose between:

€21.76 €43.52 today in 32 days defer frame

You are scheduled to receive €21.76 today. Choose between:

> As planned: €21.76 today

Defer: €43.52 in 32 days speedup frame

You are scheduled to receive €43.52 in 32 days. Choose between:

> Speedup: €21.76 today

As planned: €43.52 in 32 days

delay frame

Choose between:

€21.76 today

€43.52 in 32 days date frame

Choose between:

€21.76 September 27, 2018 October 29, 2018

€43.52

# What cognitive mechanism explains time framing effects?

### **Hypotheses**

Framing influences

outcome valuation

Framing influences

time perception

Defer-speedup effect Adaptation to expected outcome

Loewenstein & Prelec, Q J Econ, 1992; Scholten & Read, J Exp Psychol LMC 2013

Date-delay effect Outcomes are assigned greater

value for dates (precise) than

delays (vague)

Read et al., Manag Sci, 2005;

Dshemuchadse et al., J Exp Psychol Gen, 2013

Adaptation to expected timing

Scholten & Read, J Exp Psychol LMC, 2013

Date intervals appear shorter

than delay intervals

Read et al., *Manag Sci*, 2005; Zauberman et al., *J Mark Res*, 2009

#### **Aim**

To test whether defer-speedup and date-delay framing effects can be explained in terms of outcome valuation, time perception, or both, using computational modeling of choices and response times

# Modeling intertemporal choice and framing effects



## Intertemporal choice tasks and procedure

#### SS amounts are based on IPs



### Trial timings



### Calibration task: determine indifference points (IPs)

- Motivation: framing effects largest around IPs

### Defer-speedup & date-delay tasks: data for modeling

- Fixed variables:
  - SS delay (0 days),
  - LL amount (€43.52)
- Manipulated variables:
  - Frame (defer, speedup, neutral / date, delay)
  - LL delay (2, 4, 8, 16, 32, 64, 128 days)
  - SS amount (above, at, below IP)
- Number of trials:
  - Defer/speedup: 276 trials (9% catch), 45 min. total

4 x

Date/delay: 184 trials (9% catch), 30 min. total

### Sample size estimation: max. 120 hrs of lab time

- Model recovery: 94% accuracy with 4 repetitions
- Bayes factor design analysis:  $N_{max} = 96$  per task (incl. 20% dropout), based on  $\delta = 0.55$ .  $N_{mean} = 30$ . Koffarnus et al., *J Exp Anal Behav*, 2013

## Computational modeling & control analyses

#### Models to be tested

- Core models
  - outcome valuation model: μ varies between frames
  - time perception model:  $\kappa$  varies between frames
  - combination model:  $\mu$  and  $\kappa$  vary between frames

### Model fitting approach

- Outcome measures: choices & response times
- Algorithm: constrained differential evolution
- Cost function: negative log-likelihood
- Model comparison: Bayesian Information Criterion
- Visualization: observed & predicted choice probabilities and response time distributions

### **Control analyses**

- Task compliance & comprehension: accuracy on catch trials and instruction manipulation check trials (>75%)
- Replication of framing effects: one-sided Bayesian paired t-test of area under the curve

## Relevance and impact

#### How the outcomes are relevant to the central issue

- Computational modeling results:
  - will identify whether time framing in intertemporal choice alters outcome valuation, time perception, or both.
- Control analyses:
  - will verify that modeling analysis provides a fair test of the research question

#### **Broader impact**

- The results may:
  - further our understanding of contextual effects in decision-making
  - inspire new models of decision-making
  - inspire new 'nudging' strategies (e.g. taking advantage of time perception)
- The open materials, code and data:
  - enable others to build on this work (e.g. re-use of task & model, re-analysis of the data)