Processamento Digital de Sinais

Prof. Carlos Speranza

Lista de exercícios 2 – Amostragem e Reconstrução de Sinais Contínuos

- P3.19 An analog signal $x_a(t) = \frac{\sin(1999\pi t)}{\sin(1999\pi t)}$ is sampled using the following sampling intervals. In each case, plot the spectrum of the resulting discrete-time signal.
 - 1. $T_s = 0.1 \text{ ms}$
 - 2. $T_s = 1 \text{ ms}$
 - 3. $T_s = 0.01 \text{ sec}$

Atenção: usar $x_a(t) = sin(1000\pi t + \pi/4)$

P3.20 We implement the following analog filter using a discrete filter.

$$x_a\left(t\right) \longrightarrow \boxed{\mathrm{A/D}} \stackrel{x(n)}{\longrightarrow} \boxed{h(n)} \stackrel{y(n)}{\longrightarrow} \boxed{\mathrm{D/A}} \longrightarrow y_a\left(t\right)$$

The sampling rate in the A/D and D/A is 8000 sam/sec, and the impulse response is $h(n) = (-0.9)^n u(n)$.

- 1. What is the digital frequency in x(n) if $x_a(t) = 10 \cos(10,000\pi t)$?
- 2. Determine the steady-state output $y_a\left(t\right)$ if $x_a\left(t\right)=10\cos\left(10,000\pi t\right)$.
- 3. Determine the steady-state output $y_a(t)$ if $x_a(t) = 5\sin(8,000\pi t)$.
- 4. Find two other analog signals $x_a(t)$, with different analog frequencies, that will give the same steady-state output $y_a(t)$ when $x_a(t) = 10\cos(10,000\pi t)$ is applied.
- 5. To prevent aliasing, a prefilter would be required to process $x_a(t)$ before it passes to the A/D converter. What type of filter should be used, and what should be the largest cutoff frequency that would work for the given configuration?
- **P3.21** Consider an analog signal $x_a(t) = \cos(20\pi t)$, $0 \le t \le 1$. It is sampled at $T_s = 0.01$, 0.05, and 0.1 sec intervals to obtain x(n).
 - 1. For each T_s plot x(n).
 - 2. Reconstruct the analog signal $y_a(t)$ from the samples x(n) using the sinc interpolation (use $\Delta t = 0.001$) and determine the frequency in $y_a(t)$ from your plot. (Ignore the end effects.)
 - 3. Reconstruct the analog signal $y_a(t)$ from the samples x(n) using the cubic spline interpolation, and determine the frequency in $y_a(t)$ from your plot. (Again, ignore the end effects.)
 - 4. Comment on your results.

Fonte: Ingle/Proakis, Digital Signal Processing Using Matlab - 3ª Edição.