

Virtualisation & Cloud Computing

Dr. Wael Sellami

wael.sellami@gmail.com

Objectifs du cours

- I. Comprendre les concepts généraux des systèmes distribués.
- 2. Décrire les avantages de la virtualisation pour le fonctionnement des systèmes informatiques.
- 3. Décrire les principes à prendre en compte lors de la migration ou de la conception de nouveaux systèmes pour le cloud.
- 4. Découvrir et essayer pratiquement des plateformes Clouds (Azure, OpenStack, etc).
- 5. Exploiter les fonctionnalités des conteneurs en Docker.

Plan du cours

Plan du cours

- ▶ Chapitre I : Introduction aux systèmes distribués
- ▶ Chapitre 2 : Virtualisation
- Chapitre 3 : Cloud computing
- ▶ Chapitre 4 : Conteneurs dans le Cloud Computing

Chapitre I : Introduction aux systèmes distribués

Plan du chapitre

I. Serveurs informatiques

2. Sécurité physique des serveurs

3. Systèmes d'exploitation

4. Systèmes distribués

Serveur informatique

- Un serveur informatique est un ordinateur spécifique partageant ses ressources avec d'autres ordinateurs appelés clients. Il fournit un service en réponse à une demande d'un client.
- ▶ Un serveur doit servir différents services (contrôleur de domaine, serveur Web , serveur de fichiers,...) pour plusieurs utilisateurs et avec des données importantes.

Serveur informatique

La moindre panne logicielle ou matérielle du serveur provoque immédiatement l'arrêt de l'entreprise ou de sa production.

- La conception matérielle et logicielle des serveurs doit donc être plus rigoureuse afin d'assurer :
 - Le fonctionnement sans arrêt et la haute disponibilité
 - La fiabilité de fonctionnement
 - La grande sécurité

Types de serveurs

Serveur dédié

- Ordinateur mis à la disposition d'un seul client. Le client pourra bénéficier pleinement des capacités et des ressources de ce serveur:
 - dédié « réel » : serveur dédie entièrement administré par le client
 - dédié « infogère » : l'administration du serveur est réalisée par un prestataire.

Types de serveurs

Serveur mutualisé

Ce serveur héberge plusieurs sites internet sur un seul et même serveur physiques.

Serveur virtuel

Il se comporte comme un serveur dédié mais le dispositif qui l'héberge est mutualisé. La machine physiques héberge plusieurs serveurs virtuels simultanément, d'ou son caractère mutualisé.

Aspect matérielles des serveurs

Constitution d'un serveur

Le serveur est composé de composants similaires à un PC :

- Un boitier
- Une ou plusieurs alimentations
- Une carte mère avec contrôleurs/périphériques intégrés
- Un ou plusieurs processeurs
- Une mémoire vive
- Un ou plusieurs disques dur
- Un lecteur/graveurs et des cartes périphériques

Boitier serveur

On trouve généralement trois types de modèles de boitier serveur :

- Les tours pouvant avoir plusieurs disques dur
- Les boitiers rackables 19" dont la hauteur dépend du nombre d'éléments à insérer
- Les châssis de serveurs lame (blade chassis)

Serveur Rack

Serveur Lame

Serveur Tour

- Premier serveur.
- Choix du nombre de disques durs et de processeurs installés.
- Exemple d'utilisation :
 - Entreprise avec moins de 25 employés :
 - ✓ un serveur équipé d'un processeur et de 2 à 4 disques durs
 - Entreprise avec plus de 25 employés ou volumes important de données
 - ✓ serveur équipé de 2 processeurs et de 4 à 6 disques durs.

Serveur Rack

La plupart des serveurs physiques sont des serveurs en rack 19" : ils sont prévus pour rentrer dans une armoire réseau ayant une largeur standard de 19" (48,26 cm).

Il est à noter que le matériel réseau professionnel (switch, routeur, firewall, ...) se conforme aussi à ces dimensions (19" et xU avec 1U = 1,75).

Ils occupent généralement une salle dédiée, climatisée, avec un accès sécurisé.

Serveurs Lame (Blade)

- Les servers lames (blade server) ont un encombrement réduit
 - Le plus compact.
 - Format ultracompact qui permet d'installer davantage de serveurs dans un espace réduit.

- Avantages :
 - Gains d'espace et d'énergie.
 - Augmentation de la puissance de traitement.

Sécurité physique des serveurs

- Protection des boutons de démarrage, ports USB,... par des clés pour interdire les erreurs de manipulations ou d'interventions non autorisées.
- Salle informatique dédiées (salle climatisée (20~C)).
- Protection contre les incendies (système anti-feu)
- Branchements électriques sont reliées à des onduleurs.
- Protection des accès (badge, empreint digitale, etc)

Système d'exploitation

Ensemble de programmes permettant d'assurer la liaison entre les ressources matérielles, l'utilisateur et les applications (traitement de texte, jeu vidéo, application ...)

Système d'exploitation

Dissocier les programmes et le matériel, afin de faciliter la gestion des ressources et offrir à l'utilisateur une interface simple permettant de s'affranchir de la complexité de la machine physique.

Rôles d'un système d'exploitation

- Gestion du processeur
- Gestion de la mémoire vive
- Gestion des entrées/sorties
- Gestion de l'exécution des applications
- Gestion des fichiers

MAC

Linux

iOS

Windows 10

Linux vs Windows

Linux et Windows sont des systèmes d'exploitation très puissants et adaptés à l'hébergement Web.

Linux est basé sur UNIX et il est flexible, évolutif et abordable, plus apprécié car il est « open source » et disponible gratuitement.

Avec Windows, il y a des frais de licence que nous devons les payer pour chaque version.

Linux vs Windows

Linux	Windows Server
Linux est un système d'exploitation open source qui s'articule autour du noyau Linux.	Windows Server est essentiellement un produit Microsoft.
Dans le cas de Linux, il s'agit d'une combinaison de formes, appelée distribution Linux à la fois pour les ordinateurs et les serveurs. Il est principalement centré sur le noyau Linux	Dans le cas du serveur Windows, il s'agit d'un ensemble de systèmes d'exploitation crée par Microsoft et l'architecture de base est mis en couches en mode utilisateur et en mode noyau.
En tant que produit open-source, Linux est facilement accessible au public et fournit des licences gratuites aux utilisateurs finaux. Il suffit de payer pour le support d'installation et de maintenance.	Dans le cas du serveur Windows, un utilisateur doit acheter les licences pour les besoins de son utilisation.
Linux est principalement basé sur le mode de fonctionnement en ligne de commande	Les serveurs Windows utilisent l'interface graphique pour implémenter des opérations
Il existe également un support communautaire pour Linux et ses utilisateurs.	Bien que cela soit coûteux, ils fournissent une plus grande gamme de support communautaire. Normalement, toutes les versions de serveur utiliser pour fournir un support client à long terme

Systèmes centralisés

- Systèmes centralisés
 - Terminaux
 - Compatible IBM
 - Unix

- Composants localisés sur un site unique
- Centralisation des données, des traitements et de la présentation
- Historiquement sur systèmes propriétaires
- Terminaux légers

Client-serveur 1/4

Client-serveur 2 niveaux (2-tier)

- Le poste de travail héberge l'ensemble de la gestion d'interface homme-machine et le traitement,
- Le serveur est un serveur de base de données
- Architecture dénommée « client lourd »

- Le poste de travail n'héberge que l'interface homme-machine
- Le serveur héberge les données et les traitements
- Architecture dénommée « client léger »

Client-serveur 3/4

- Client-serveur 3 niveaux (3-tier)
 - Le poste de travail héberge la gestion d'Interface hommemachine (IHM)
 - Le serveur d'applications gère la partie des traitements
 - Le serveur de données gère les accès aux données
 - Architecture dénommée « traitements coopératifs »

Client-serveur 4/4

Avantages

- Première infrastructure informatique pour un travail coopératif
- Centralisation des traitements au niveau du serveur
- Pas de duplication des données (état global observable)
- Gestion plus simple de la cohérence et de l'intégrité des données
- Maîtrise globale des processus (workflow) relativement élémentaire

Système distribué en opposition à système centralisé.

 Système distribué est un ensemble d'ordinateurs indépendants interconnectés en réseau et communiquant via ce réseau.

 Cet ensemble apparaît du point de vue de l'utilisateur comme une unique entité.

- Vision matérielle d'un système distribué :
 - ✓ Machine multi-processeurs avec mémoire partagée.
 - ✓ Cluster d'ordinateurs dédiés au calcul/traitement massif parallèle.

- Vision logicielle d'un système distribué :
 - ✓ Système logiciel composé de plusieurs entités s'exécutant indépendamment et en parallèle sur un ensemble d'ordinateurs connectés en réseau

Serveur de fichiers

- Accès aux fichiers de l'utilisateur quelque soit la machine utilisée
- Machines du département informatique :
 - ✓ Clients: user l
 - ✓ serveur de fichier
 - ✓ Sur toutes les machines : /home/userl est le « home directory » de l'utilisateur userl
 - ✓ Physiquement : fichiers se trouvent uniquement sur les serveurs
 - ✓ Virtuellement : accès à ces fichiers à partir de n'importe quelle machine cliente en faisant « croire » que ces fichiers sont stockés localement

Calculs scientifiques

- Plusieurs architectures matérielles généralement utilisées :
 - ✓ Ensemble de machines identiques reliées entre elles par un réseau dédié et très rapide (cluster).
 - ✓ Ensemble de machines hétérogènes connectées dans un réseau local ou bien encore par Internet (grille).
- Principe général
 - ✓ Un (ou des) serveur distribue des calculs aux machines clients.
 - ✓ Un client exécute son calcul puis renvoie le résultat au serveur.

Serveur Web (Apache)

- Un serveur Web auquel se connecte un nombre quelconque de navigateurs (clients)
- Accès à distance à l'information
 - ✓ Accès simple : Serveur renvoie une page HTML statique qu'il stocke localement
 - ✓ Traitement plus complexe : Serveur interroge une base de données pour générer dynamiquement le contenu de la page

✓ Transparent pour l'utilisateur : les informations s'affichent dans son navigateur quelque soit la façon dont le serveur les génère

Intérêts des systèmes distribués

- Utiliser et partager des ressources distantes :
 - ✓ Système de fichiers : utiliser des fichiers à partir de n'importe quelle machine.
 - ✓ Imprimante : partagée entre toutes les machines.
- Optimiser l'utilisation des ressources disponibles :
 - ✓ Calculs scientifiques distribués sur un ensemble de machines.
- Système plus robuste :
 - ✓ Duplication pour la fiabilité : deux serveurs de fichiers dupliqués, avec sauvegarde.
 - ✓ Plusieurs éléments identiques pour résister à la montée en charge ...

Particularités des systèmes distribués Hétérogénéité

- Des machines utilisées (puissance, architecture matérielle).
- Des systèmes d'exploitation tournant sur ces machines (Windows server, Linux server, etc).
- Des langages de programmation des éléments logiciels formant le système (Spring boot, PHP, etc)
- Des réseaux utilisés : impact sur la performance, débit, disponibilité (réseau local, réseaux sans fil, etc)

Particularités des systèmes distribués Transparences

- Transparence d'accès :
 - ✓ Accès à des ressources distantes facilement
 - ✓ Accès aux données indépendamment de leur format de représentation
- Transparence d'echelle :
 - ✓ Doit supporter l'augmentation de la taille du système (nombre d'éléments, de ressources, etc)
- Transparence de localisation
 - ✓ Accès aux éléments/ressources indépendamment de leur localisation
- Transparence de concurrence
 - ✓ Exécution possible de plusieurs processus en parallèle avec utilisation de ressources partagées

Particularités des systèmes distribués Transparences

- Transparence de replication
 - ✓ Possibilité de dupliquer certains éléments/ressources pour augmenter la fiabilité.

- Transparence de panne
 - ✓ Doit supporter qu'un ou plusieurs éléments tombe en panne.
- Transparence de performance
 - ✓ Possibilité de reconfigurer le système pour en augmenter les performances.

Particularités des systèmes distribués Sécurité des systèmes distribués

- Nature d'un système distribué fait qu'il est beaucoup plus sujet à des attaques :
 - ✓ Communication à travers le réseau peuvent être interceptées.
 - ✓ On ne connaît pas toujours bien un élément distant avec qui on communique.

Solutions:

- ✓ Connexion sécurisée par authentification avec les éléments distants.
- ✓ Cryptage des messages circulant sur le réseau.

Inconvénients/points faibles

- Si le problème au niveau du réseau :
 - ✓ Le système marche mal ou plus du tout
- Bien souvent, un élément est central au fonctionnement du système : serveur
 - ✓ Si le serveur plante : plus rien ne fonctionne
 - ✓ Goulot potentiel d'étranglement si le débit d'information très important.
 - ✓ Sans élément central :
 - Nécessite la mise en place d'algorithmes +/- complexes.
 - Gestion du système totalement décentralisée et distribuée.

Points de discussions

- Qui utilise les serveurs ?
- Pourquoi il y a des processeurs spécifiques pour les serveurs ?
- Qu'est ce qu'un data center ?
- Est-ce que les serveurs ont besoin de système d'exploitation spécifique (dédié) ?
- Quels sont les résultats de l'utilisation massive des serveurs informatiques dans les environnements de production ?

Réferences

▶ Erik JOURDAIN, Mise en œuvre d'une solution de virtualisation de serveurs, ENI, 2016.

 « Virtualisation des systèmes d'information avec VMware Architecture », Philippe GILLET, Edition ENI,2010

René J. CHEVANCE, Architecture des serveurs, Bull Enterprise Information Systems, 1997.