

目录

- 从有限长序列的DTFT到DFT
- **从DFS到DFT**
- 3 DFT的性质

1、从有限长序列的DTFT到DFT

$$X(e^{j\Omega}) = \sum_{n=0}^{N-1} x(n)e^{-j\Omega n} = X(\Omega)$$

$$x(n) = \frac{1}{2\pi} \int_0^{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$

- 非周期信号的频谱是频率的连续函数,无法用计算机计算
- 离散信号的DTFT,是Ω的连续周期函数。需要一种时域和频域上都是 离散的傅里叶变换对,实现计算机的快速计算,即DFT

能量有限、时间长度为L的有限长序列的DTFT为

$$X(\Omega) = \sum_{n=0}^{L-1} x(n)e^{-j\Omega n}$$

$$k\Omega_0 = k2\pi/N \to \Omega$$
 频率离散化

$$X(k\frac{2\pi}{N}) = \sum_{n=0}^{L-1} x(n)e^{-jk2\pi n/N}$$

频率采样点数N已知, 2π/N为定数

$$X(k) = \sum_{n=0}^{L-1} x(n)e^{-jk2\pi n/N}$$

N点DFT是有限长序列 (L≤N)的DTFT的N点 均匀取样值,也就是非 周期序列频谱的样值

2、从DFS到DFT

DFS:
$$X(k\Omega_0) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-jk\Omega_0 n} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}nk}$$

$$x(n) = \sum_{k=0}^{N-1} X(k\Omega_0) e^{jk\Omega_0 n}$$

非周期序列的DTFT是信号的频谱密度,将1/N移到 x(n) 中,不会 改变信号的性质和物理含义

$$X(k\Omega_0) = \sum_{n=0}^{N-1} x(n)e^{-j\Omega_0 nk}$$

$$X(k\Omega_0) = \sum_{n=0}^{N-1} x(n)e^{-j\Omega_0 nk} \qquad x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k\Omega_0)e^{jk\Omega_0 n}$$

2、从DFS到DFT

• 设
$$\tilde{x}_N(n) \stackrel{DFS}{\longleftrightarrow} \tilde{X}_N(k\Omega_0)$$
 , 令

R_N(n)为 矩形序列

$$x(n) = R_N(n)\tilde{x}_N(n) = \begin{cases} \tilde{x}_N(n), & n = 0 \sim N - 1 \\ 0, & n = 其他 \end{cases}$$

$$X(k) = R_N(k)\tilde{X}_N(k\Omega_0) = \begin{cases} \tilde{X}_N(k\Omega_0), & k = 0 \sim N - 1 \\ 0, & k = \sharp \text{ the } \end{cases}$$

 $\mathbf{x(n)}$ 、 $\mathbf{X(k)}$ 分别称作 $\tilde{x}_{N}(n)$ 、 $\tilde{X}_{N}(k)$ 的主值

DFT
$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{-nk}$$

$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{-nk} \qquad x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) w_N^{nk}$$

DFT又可看作以有限长

序列x(n)为一个周期,进行

周期延拓后所形成的周期序

列xp(n)的离散频谱

DFT小结

- DFT 是 DFS 的主值序列
- · DFS 是严格按傅立叶分析的概念得来的
- DFT 只是一种借用形式,一种算法
- 用DFT 计算信号的频谱时
 - 时域离散化时需满足时域采样定理
 - 频域离散化时需满足频域采样定理
 - 对周期信号要截取整周期

- 3、DFT的性质
 - ・线性
 - ・圆周移位
 - ・圆周卷积

(1) 线性

・若

$$x_1(n) \stackrel{DFT}{\longleftrightarrow} X_1(k)$$

$$x_2(n) \stackrel{DFT}{\longleftrightarrow} X_2(k)$$

如果x₁(n)、x₂(n) 长度不同,长度短的 序列要补零,使它与 另一序列长度相同

・那么

$$ax_1(n) + bx_2(n) \stackrel{DFT}{\longleftrightarrow} aX_1(k) + bX_2(k)$$

(2) 圆周移位

余数运算:

如果n=n₁+mN, 0≤n₁≤N-1, m为整数。则有:

$$((n))_N = (n_1)$$

此运算符表示n被N除,商为m,余数为n₁

 (n_1) 是 $((n))_N$ 的解,或称作取余数,或称作n对N取模值

(2) 圆周移位

$$n = 25, N = 9$$

 $n = 25 = 2 \times 9 + 7 = 2N + n_1$
 $((25))_9 = 7$

$$n = -4, N = 9$$

$$n = -4 = -9 + 5 = -N + 5$$

$$((-4))_9 = 5$$

$$x((n))_N = x(n_1) 含 义$$

- 先取模值,后进行函数运算
- $x(n_1) = x((n))_N$ 视作将 $x(n_1)$ 周期延拓

(2)圆周移位

・序列x(n)的圆周位移定义

$$x((n-n_0))_N R_N(n) = \tilde{x}_N(n-n_0) R_N(n)$$

 $\cdot n_0$ 是位移值, $R_N(n)$ 是矩形序列

→ x(n)周期延拓、移位、取主值

圆周位移的概念

• 有限长序列 x(n) $0 \le n \le N-1$

• 周期延拓 $x((n))_N$

・线性位移 $X((n-m))_N$

・加窗,得到圆周位移序列 $x((n-m))_N R_N(n)$

时移特性

• 若
$$x(n) \stackrel{DFT}{\longleftrightarrow} X(k)$$
 $y(n) = x((n-m))_N R_N(n)$

频移特性

• **若**
$$x(n) \leftrightarrow X(k)$$

•则

$$\mathbf{Y}(k) = e^{-j\Omega_0 mk} X(k)$$

$$e^{j\Omega_0 k_0 n} x(n) \stackrel{DFT}{\longleftrightarrow} X((k-k_0))_N \mathbf{R}_N(\mathbf{k})$$

时域圆周卷积定理

N点圆周卷积的定义

x(n)和h(n)必须长度相等, 圆周卷积后所得序列长度 与原序列相同。短序列需 补零

$$x(n) \otimes h(n) = \sum_{m=0}^{N-1} h(m) x((n-m))_N R_N(n)$$

・若
$$y(n) = x(n) \otimes h(n)$$

•则
$$Y(k) = X(k)H(k)$$

例 计算
$$x_1(n)$$
、 $x_2(n)$ 的N点圆周卷积,其中 $x_1(n) = x_2(n) = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{其他} \end{cases}$

• 解:
$$\mathbf{x_1}(\mathbf{n})$$
、 $\mathbf{x_2}(\mathbf{n})$ 的N点DFT为 $X_1(k) = X_2(k) = \sum_{n=0}^{N-1} w_N^{-nk} = \begin{cases} N & k=0 \\ 0 & 其他 \end{cases}$

• **有**
$$X(k) = X_1(k)X_2(k) ==$$

$$\begin{cases} N^2 & k = 0 \\ 0 & \text{其他} \end{cases}$$

■ x₁(n)、x₂(n) 的N点圆周卷积是X(k)的反DFT变换

$$x(n) = \begin{cases} N & 0 \le n \le N - 1 \\ 0 & \text{ #.d.} \end{cases}$$

频域圆周卷积定理

・若
$$y(n) = x(n)h(n)$$

• N

$$Y(k) = \frac{1}{N} X(k) \otimes Y(k)$$

$$= \sum_{l=0}^{N-1} X(l) H((k-l))_N R_N(k)$$

$$= \frac{1}{N} \sum_{l=0}^{N-1} H(l) X((k-l))_N R_N(k)$$

