Втор парцијален испит по Основи на електротехника

17.01.2019

І-група (испитот трае 120 минути)

1. (9 *поени*) Во колото прикажано на сликата моќноста на напонскиот извор E_3 изнесува P_{E3} =100W

и има два пати поголема вредност во однос на моќноста на отпорникот R_6 за кој тоа претставува максимална моќност според неговата вредност. Да се определи отпорноста на отпорникот R_6 . Да се определи непознатата вредност на напонскиот извор E_3 . Да се определи непознатата вредност на напонскиот извор E_2 .

$$R_1{=}50~\Omega$$
 $R_2{=}100~\Omega$ $R_3{=}35~\Omega$ $R_4{=}30~\Omega$ $R_5{=}70~\Omega$ $I_{S1}{=}200mA$ $I_{S2}{=}400mA$

2. (6 *поени*) За колото прикажано на сликата да се определи струјата I и напонот U_{R3} за следниве случаи:

- а) Прекинувачот П1 е затворен а П2 во положба 2
- б) Преклопката $\Pi 2$ во положба 1 а прекинувачот $\Pi 1$ е отворен
- в) Прекинувачот П1 е затворен а П2 во положба 1

$$R_1$$
=30 Ω R_2 =60 Ω Ω R_3 =180 Ω
 I_S =3A E =45V

3. (10 *поени*) Метален диск со радиус a = 1m прави сложено движење бидејќи ротира со константна

аголна брзина $\omega=100~{\rm rad/s}$ околу оската О во рамнината на сликата, а истовремено неговата оската се движи хоризонтално кон десно со константна линиска брзина $v=10{\rm m/s}$. Во просторот постои хомогено магнетно поле со интензитет $B=1{\rm T}$ и вектор насочен како на сликата. Да се определи потенцијалната разлика меѓу точките A, B, C, D и E кои лежат на периферијата на дискот во однос на оската на дискот О за моментната положба прикажана на сликата. (Точките A, B, C, D и E се меѓусебно на еднакво растојание долж периферијата на дискот при што точките A и E се дијаметрално поставени).

4. (3 поени - бонус) Да се определи меѓусебната индуктивност на двете контури k1 и k2 во сите три случаи a), б) и в). Контурата k1 е долга соленоидна намотка со N навивки на единица должина и мал кружен напречен пресек со радиус a (во соленоидот магнетното поле е хомогено). Втората контура е мала и кружна со радиус b (b<a).

Втор парцијален испит по Основи на електротехника

17.01.2019

II-група (испитот трае 120 минути)

1. (9 *поени*) Во колото прикажано на сликата моќноста на напонскиот извор E_3 изнесува P_{E3} =150W

и има три пати поголема вредност во однос на моќноста на отпорникот R_6 за кој тоа претставува максимална моќност според неговата вредност. Да се определи отпорноста на отпорникот R_6 . Да се определи непознатата вредност на напонскиот извор E_3 . Да се определи непознатата вредност на напонскиот извор E_2 .

$$R_1{=}50~\Omega$$
 $R_2{=}100~\Omega$ $R_3{=}35~\Omega$ $R_4{=}30~\Omega$ $R_5{=}70~\Omega$ $I_{S1}{=}200mA$ $I_{S2}{=}400mA$

2. (6 *поени*) За колото прикажано на сликата да се определи струјата I и напонот U_{R3} за следниве случаи:

- а) Прекинувачот $\Pi 1$ е затворен а преколпката $\Pi 2$ во положба 2
- б) Преклопката $\Pi 2$ во положба 1 а прекинувачот $\Pi 1$ е отворен
- в) Прекинувачот П1 е затворен а П2 во положба 1

$$R_1$$
=60 Ω R_2 =30 Ω Ω R_3 =180 Ω
 I_S =3A E =45 V

3. (10 поени) Метален диск со радиус a=1m прави сложено движење бидејќи ротира со константна

аголна брзина $\omega=100$ rad/s околу оската O во рамнината на сликата, а истовремено неговата оската се движи хоризонтално кон лево со константна линиска брзина $v=10 \mathrm{m/s}$. Во просторот постои хомогено магнетно поле со интензитет $B=1 \mathrm{T}$ и вектор насочен како на сликата. Да се определи потенцијалната разлика меѓу точките A, B, C, D и E кои лежат на периферијата на дискот во однос на оската на дискот O за моментната положба прикажана на сликата. (Точките A, B, C, D и E се меѓусебно на еднакво растојание долж периферијата на дискот при што точките A и E се дијаметрално поставени).

4. (3 поени - бонус) Да се определи меѓусебната индуктивност на двете контури k1 и k2 во сите три случаи a), б) и в). Контурата k1 е долга соленоидна намотка со N навивки на единица должина и мал кружен напречен пресек со радиус a (во соленоидот магнетното поле е хомогено). Втората контура е мала кружна со радиус b (b<a).

