Article 2: Finding Irreducible Polynomials

Debadatta Kar

June 9, 2025

1 Introduction

We want to prove Theorem 1.4 in this article, which we used as a result in the previous article (article 1).

Theorem 1.1. If F is a finite field with q elements, then every element of F satisfies $a^q = a$.

Proof. It is trivial to see that $0 \in F$ satisfies the relation.

For the rest of the elements we have F^* , which is a cyclic group of order q-1

Thus, $a^{q-1} = 1$

Now multiplying a on both sides, we obtain

 $a^q = a$

Theorem 1.2. Let $f \in F[x]$ be irreducible and deg(f) = m then $f|x^{q^n} - x$ iff m|n.

Proof. Let, m|n then we have F_{q^m} is a subfield of F_{q^n} .

If α is a root of f in splitting field of f over F_q then $[F_q(\alpha):F_q]=m$ and so $F_q(\alpha)=F_{q^m}$. and since, $\alpha\in F_{q^m}$.

$$\alpha^{q^m} = \alpha$$

and thus, α is a root of $x^{q^n} - x \in F_q[x]$

Conversely, if $f|x^{q^n}-x$

Let α be a root of f in its splitting field over F_q .

Then, we have $\alpha^{q^n} = \alpha$ so that $\alpha \in F_{q^n}$.

Now, $F(\alpha)$ is a subfield of F_{q^n} . And if we consider $[F(\alpha):F_{q^n}]=m$ and $[F_{q^n}:F_q]=n$. we have,

m|n

Result 1.3. $b \in F$ is a multiple root of $f \in F[x]$ iff it is a root of both f and f'

Theorem 1.4. $x^{p^n} - x$ is precisely the product of all distinct irreducible monic polynomials in $F_p[x]$ whose degree divides n

Proof. From Theorem 1.2, we can see that all the factors of $x^{q^n} - x$ are of degree d such that d|n. Now we claim that all the factors are non-repetitive. We will use result 1.3 here. $g(x) = x^{q^n} - x$, Then on differentiating w.r.t x we obtain,

$$g'(x) = q^{n} x^{q^{n}-1} - 1 = 0 - 1 = -1$$

Now, for any α we have $g'(\alpha) \neq 0$ as g'(x) = -1.

Clearly, this shows that we don't have multiple roots. Thus, the distinct factors of $x^{q^n} - x$ can be expressed as the product of irreducible polynomials, s.t. none of them is repeated.

2 Algorithm for Checking Irreducibility

Suppose that we have a field F_q where q is some prime or power of a prime.

We know that $x^{q^n} - x$ factors out as the product of all monic irreducible polynomials of degree d|n.

Using this fact we obtain the following algorithm:

Algorithm 1 Polynomial Irreducibility Check

- 1: Initialize $P(x) \leftarrow x$
- 2: **for** i = 1 to n **do**
- 3: $P(x) \leftarrow (P(x))^q \mod T(x)$
- 4: end for
- 5: if P(x) = x then
- 6: **return** true
- 7: else
- 8: **return** false
- 9: **end if**

Here we are given a polynomial T(x), which is of degree n and whose irreducibility is verified. Similarly, we can also check irreducibility by computing the gcd.

References

- [1] Lidl R, Niederreiter H, Finite Fields, 2nd ed. Cambridge University Press; 1996
- [2] Richard P. Brent, Paul Zimmermann, Three Ways to Test Irreducibility