# IMPACT OF ALCOHOL COMSUMPTION ON STUDENT GPA

# **Contents**

| Executive Summary                                      |    |
|--------------------------------------------------------|----|
| Project Motivation:                                    | 2  |
| Dataset used:                                          |    |
| Data Description:                                      | 1  |
| Data Preparation:                                      | 4  |
| Models :                                               | 3  |
| 1. Cluster analysis :                                  | 3  |
| Final Conclusion from Cluster Analysis:                | 6  |
| 2. Linear Regression :                                 | ε  |
| Results from linear regression model:                  | 10 |
| 3. Decision Tree :                                     | 13 |
| Output of the decision tree is shown in above diagram. | 15 |
| Conclusion from Decision Tree :                        | 16 |
| 4. Logistic Regression :                               | 16 |
| Odds Ratio:                                            | 18 |
| Confusion matrix:                                      | 20 |
| Accuracy of the model                                  | 20 |
| 5:Neural Networks :                                    | 20 |
| Managerial Implications and conclusions                | 21 |
| References:                                            | 21 |

## **EXECUTIVE SUMMARY:**

School is a period that gives students their first chance to settle on their own choices and at times it is inseparable from drinking. People decide to drink liquor differs from one individual to another, yet liquor utilization has consistently been considered as a large part of the school culture. This analysis centers around the impact of liquor use on students' academic performance.

## PROJECT MOTIVATION:

This project will aim to determine how alcohol consumption influences the GPA of two groups of students taking Math and Portuguese. The target variable will be GPA and the predictors can be workday alcohol consumption and weekend alcohol consumption, as these are the only two attributes involved with alcohol consumption. Other variables could affect GPA as well, but we will be focusing on alcohol consumption.

This project uses methods like linear regression, cluster analysis and other techniques to develop the predictions. Moreover, as the age group in this data set is between 15 to 22, this data set is interesting as being a college student.

## **DATASET USED:**

For this Prediction, we are using secondhand data obtained from the below source https://www.kaggle.com/uciml/student-alcohol-consumption

## DATA DESCRIPTION:

- 1. School student's school (binary: 'GP' Gabriel Pereira or 'MS' Mousinho da Silveira)
- 2. Sex student's sex (binary: 'F' female or 'M' male)
- 3. Age student's age (numeric: from 15 to 22)
- 4. Address student's home address type (binary: 'U' urban or 'R' rural)
- 5. Famsize family size (binary: 'LE3' less or equal to 3 or 'GT3' greater than 3)
- 6. Pstatus parent's cohabitation status (binary: 'T' living together or 'A' apart)
- 7. Medu mother's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade,
- 3 secondary education or 4 higher education)
- 8. Fedu father's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
- 9. Mjob mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at\_home' or 'other')
- 10. Fjob father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at\_home' or 'other')
- 11. Reason reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other')
- 12. Guardian student's guardian (nominal: 'mother', 'father' or 'other')

- 13. Traveltime home to school travel time (numeric: 1 <15 min., 2 15 to 30 min., 3 30 min. to 1 hour, or 4 >1 hour)
- 14. Studytime weekly study time (numeric: 1 <2 hours, 2 2 to 5 hours, 3 5 to 10 hours, or 4 >10 hours)
- 15. Failures number of past class failures (numeric: n if 1<=n<3, else 4)
- 16. Schoolsup extra educational support (binary: yes or no)
- 17. Famsup family educational support (binary: yes or no)
- 18. Paid extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
- 19. Activities extra-curricular activities (binary: yes or no)
- 20. Nursery attended nursery school (binary: yes or no)
- 21. Higher wants to take higher education (binary: yes or no)
- 22. Internet Internet access at home (binary: yes or no)
- 23. Romantic with a romantic relationship (binary: yes or no)
- 24. Famrel quality of family relationships (numeric: from 1 very bad to 5 excellent)
- 25. Freetime free time after school (numeric: from 1 very low to 5 very high)
- 26. goout going out with friends (numeric: from 1 very low to 5 very high)
- 27. Dalc workday alcohol consumption (numeric: from 1 very low to 5 very high)
- 28. Walc weekend alcohol consumption (numeric: from 1 very low to 5 very high)
- 29. Health current health status (numeric: from 1 very bad to 5 very good)
- 30. Absences number of school absences (numeric: from 0 to 93)

These grades are related with the course subject, Math or Portuguese:

- 1. G1 first period grade (numeric: from 0 to 20)
- 2. G2 second period grade (numeric: from 0 to 20)
- 3. G3 final grade (numeric: from 0 to 20, Target Variable)

## DATA PREPARATION ACTIVITIES:

NOTE: IN THE PROJECT WE WILL BE NEGLECTING G1 AND G2 ATTRIBUTES BECAUSE THESE TWO VARIABLES HAVE HIGH COLLINEARITY WITH THE OUTPUT VARIABLE G3.

| Name         | Use     | Report | Role  | Level    |
|--------------|---------|--------|-------|----------|
| Dalc         | Default | No     | Input | Interval |
| Fedu         | Default | No     | Input | Interval |
| Fjob         | Default | No     | Input | Nominal  |
| G1           | No      | No     | Input | Interval |
| G2           | No      | No     | Input | Interval |
| G3           | Default | No     | Input | Interval |
| Medu         | Default | No     | Input | Interval |
| Mjob         | Default | No     | Input | Nominal  |
| Overall_Perc | Default | No     | Input | Interval |
| Pstatus      | Default | No     | Input | Nominal  |
| Walc         | Default | No     | Input | Interval |
| absences     | Default | No     | Input | Interval |
| activities   | Default | No     | Input | Nominal  |
| address      | Default | No     | Input | Nominal  |
| age          | Default | No     | Input | Interval |
| failures     | Default | No     | Input | Interval |
| famrel       | Default | No     | Input | Interval |
| famsize      | Default | No     | Input | Nominal  |
| famsup       | Default | No     | Input | Nominal  |
| freetime     | Default | No     | Input | Interval |
| goout        | Default | No     | Input | Interval |
| guardian     | Default | No     | Input | Nominal  |
| health       | Default | No     | Input | Interval |
| higher       | Default | No     | Input | Nominal  |
| internet     | Default | No     | Input | Nominal  |
| nursery      | Default | No     | Input | Nominal  |
| naid         | Default | No     | Innut | Nominal  |

# **MODELS**

# 1. CLUSTER ANALYSIS:



As shown in this figure we will attach the cluster node to file import and in cluster analysis we will be rejecting the G1 and G2 attributes because of them having high collinearity with G3.

|       |            |       | Manufactura |         |        |            |          |            |
|-------|------------|-------|-------------|---------|--------|------------|----------|------------|
|       |            |       | Number      |         |        |            |          |            |
| Data  | Variable   |       | of          |         |        | Mode       |          | Mode2      |
| Role  | Name       | Role  | Levels      | Missing | Mode   | Percentage | Mode2    | Percentage |
|       |            |       |             |         |        |            |          |            |
| TRAIN | Fjob       | INPUT | 5           | 0       | other  | 55.94      | services | 27.97      |
| TRAIN | Mjob       | INPUT | 5           | 0       | other  | 38.22      | services | 22.89      |
| TRAIN | Pstatus    | INPUT | 2           | 0       | T      | 88.41      | Α        | 11.59      |
| TRAIN | activities | INPUT | 2           | 0       | no     | 50.57      | yes      | 49.43      |
| TRAIN | address    | INPUT | 2           | 0       | U      | 72.70      | Ř        | 27.30      |
| TRAIN | famsize    | INPUT | 2           | 0       | GT3    | 70.69      | LE3      | 29.31      |
| TRAIN | famsup     | INPUT | 2           | 0       | yes    | 61.30      | no       | 38.70      |
| TRAIN | guardian   | INPUT | 3           | 0       | mother | 69.73      | father   | 23.28      |
| TRAIN | higher     | INPUT | 2           | 0       | yes    | 91.48      | no       | 8.52       |
| TRAIN | internet   | INPUT | 2           | 0       | yes    | 79.21      | no       | 20.79      |
| TRAIN | nursery    | INPUT | 2           | 0       | yes    | 79.98      | no       | 20.02      |
| TRAIN | paid       | INPUT | 2           | 0       | no     | 78.93      | yes      | 21.07      |
| TRAIN | reason     | INPUT | 4           | 0       | course | 41.19      | home     | 24.71      |
| TRAIN | romantic   | INPUT | 2           | 0       | no     | 64.46      | ves      | 35.54      |
| TRAIN | school     | INPUT | 2           | 0       | GP     | 73.95      | MS       | 26.05      |
| TRAIN | schoolsup  | INPUT | 2           | 0       | no     | 88.60      | ves      | 11.40      |
| TRAIN | sex        | INPUT | 2           | 0       | F      | 56.61      | M        | 43.39      |
|       |            |       | _           | _       |        |            |          |            |
|       |            |       |             |         |        |            |          |            |
|       |            |       |             |         |        |            |          |            |

The above figure is the output from StatExplore node and data is trained data:

- This data does not have missing values.
- Most of student's father jobs and Mother's job is mentioned as 'other' and the second highest kind of jobs is mentioned as 'services.
- Most of the students are shown to have family support.
- Most of the students are from the school GP (Gabriel Pereira).
- Most of the students are not having school support.
- Most of students in trained data are Females.



Initially we performed cluster analysis by specifying the number of clusters to be automatic. We found out that there are 6 clusters in it. The interpretation becomes difficult by using 6 clusters.



After specifying number of clusters = 2, we got to know information from the above diagram, **From Segment plot:** 

- 1. Failure Segment Plot:
  - In Cluster 1, most of the students have 1 to 3 failure subjects.
  - In Cluster 2, the students have no subject failures until now but, some of the students might have failed in one subject.
- 2. DALC (Weekday alcohol consumption) Segment Plot:
  - In Cluster 1, it shows the rating of student's alcohol consumption on weekdays is mostly 2 to 5. This means that the students are consuming alcohol regularly.
  - In Cluster 2, the rating of the student's alcohol consumption is a bit low if compared to Cluster 1. This tells you that, the students in the Cluster 2 consume alcohol rarely during weekdays.
- 3. WALC (Weekend alcohol consumption) Segment Plot:
  - The weekend alcohol consumption of Cluster 1 is very high. The consumption rating of 57% of students is mostly greater than 3(out of 5).
  - In Cluster 2, 92% of the student's alcohol consumption is similarly high.
- 4. Absence Segment Plot:
  - In cluster 1, the students tend to be absent a greater number of times.
  - In cluster 2, we have only few people with absence in classes.
- Sex(M/F) Segment Plot:
  - In Cluster 1, there are 72% of male students whereas, In Cluster 2 there are a greater number of female students i.e 68%.
- 6. Study time Segment Plot:
  - In Cluster 1, 93% of students have their study time between 1-2 hours and remaining students have study time more than 2 hours.
  - In cluster 2, 30% of students have their study time more than 2 hours and remaining students have 1-2 hours.

- This shows that, Cluster 2 students study more than the cluster 1 students.
- 7. Travel Segment Plot:
  - In Cluster 1, students travel for more time as compared to Cluster 2.
- 8. G3 Segment Plot:
  - In Cluster 1, 63% of students got the final grade below 10 (out of 20)
  - In Cluster 2, 83% students got final grade more than 10(out of 20)

## **According to Mean Statistics:**

By comparing both the clusters,

- DALC of cluster 1 is greater than the DALC of Cluster 2.
- G3 of cluster 1 is lesser than G3 of cluster 2.
- WALC of Cluster 1 is greater than that of cluster 2.
- Absence of students in cluster 1 is greater, compared to of cluster 2.
- Cluster 1 has more chances of failing in 1 subject compared to cluster 2.
- Cluster 1 students go out to enjoy more than the cluster 2 students.
- Cluster 1 has an average of 1.5 hours of study time and cluster 2 has an average of 2.2 hours of study time.
- Travel time for students in cluster 1 is more than cluster 2 students. It may also be the one of the reasons reduced grades.
- Cluster 2 has more interest in Higher Studies than cluster 2.
- Cluster 1 has more free time than cluster 2. This can influence on overall grade (The students who have more leisure time or free time tend to get less grade).

## Final Conclusion from Cluster Analysis:

- CLUSTER 1 'WEAKER STUDENTS': The students who have more free time, who drink regularly on weekdays as well as on weekends, who have more travel time, who have no internet, who don't have school support tend to get poor overall grade.
- CLUSTER 2 'BRIGHTER STUDENTS': The students who don't drink regularly on weekdays as well as weekends, who have less travel time, who have internet, who have school support tend to get good overall grade.

## 2. LINEAR REGRESSION:

NOTE: IN THE PROJECT WE WILL BE NEGLECTING G1 AND G2 ATRRIBUITES BECAUSE THESE TWO VARIABLES HAVE HIGH COLINEARITY WITH OUTPUT VARIABLE G3.

| Name         | Use      | Report | Role  | Level    |
|--------------|----------|--------|-------|----------|
| Dalc         | Default  | No     | Input | Interval |
| Fedu         | Default  | No     | Input | Interval |
| Fjob         | Default  | No     | Input | Nominal  |
| G1           | No       | No     | Input | Interval |
| G2           | No       | No     | Input | Interval |
| G3           | Default  | No     | Input | Interval |
| Medu         | Default  | No     | Input | Interval |
| Mjob         | Default  | No     | Input | Nominal  |
| Overall_Perc | (Default | No     | Input | Interval |
| Pstatus      | Default  | No     | Input | Nominal  |
| Walc         | Default  | No     | Input | Interval |
| absences     | Default  | No     | Input | Interval |
| activities   | Default  | No     | Input | Nominal  |
| address      | Default  | No     | Input | Nominal  |
| age          | Default  | No     | Input | Interval |
| failures     | Default  | No     | Input | Interval |
| famrel       | Default  | No     | Input | Interval |
| famsize      | Default  | No     | Input | Nominal  |
| famsup       | Default  | No     | Input | Nominal  |
| freetime     | Default  | No     | Input | Interval |
| goout        | Default  | No     | Input | Interval |
| guardian     | Default  | No     | Input | Nominal  |
| health       | Default  | No     | Input | Interval |
| higher       | Default  | No     | Input | Nominal  |
| internet     | Default  | No     | Input | Nominal  |
| nursery      | Default  | No     | Input | Nominal  |
| naid         | Default  | No     | Innut | Nominal  |



In Linear regression we used variable in selection node because it refers to the process of reducing the inputs for processing and analysis, or of finding the most meaningful inputs to model.



## According to above figure,

• Failure is the most important variable among all the variables. Whereas the other variables such as paid, nursery, activities, sex, Pstatus, famsup are the lesser important variables.



## According to Correlation plot of the dataset,

- Mother's education (Medu) is highly correlated with G3(Target variable). Which means, if
  the student's mother is education good then the student tends to get good knowledge and
  can get good overall marks(G3).
- The study time is also positively correlated with G3. Therefore, if we study for more time, it can give good overall score.
- The WALC (weekend alcohol consumption) variable, which is negatively correlated, means if you have more alcohol consumption on weekends student's marks tend to decrease.
- DALC (Weekday alcohol consumption) variable, which is negatively correlated. Which means, if you have more alcohol consumptions on weekdays, the student's marks tend to

- decrease. If you compare WALC and DALC, Weekday consumption of alcohol (DALC) affects more than Weekday alcohol consumption.
- Failures are highly negatively correlated with the target variable G3. This means, the less the number of failures, more will be the overall marks and vice versa.

| The DMINE Procedure |                               |          |            |         |             |            |  |  |  |  |  |
|---------------------|-------------------------------|----------|------------|---------|-------------|------------|--|--|--|--|--|
|                     | Effects Chosen for Target: G3 |          |            |         |             |            |  |  |  |  |  |
|                     |                               |          |            |         | Sum of      | Error Mean |  |  |  |  |  |
| Effect              | DF                            | R-Square | F Value    | p-Value | Squares     | Square     |  |  |  |  |  |
| /ar: failures       | 1                             | 0.146800 | 179.285013 | <.0001  | 2286.990568 | 12.756173  |  |  |  |  |  |
| Class: Mjob         | 4                             | 0.020341 | 6.337653   | <.0001  | 316.883810  | 12.500046  |  |  |  |  |  |
| Class: higher       | 1                             | 0.012666 | 16.014400  | <.0001  | 197.326467  | 12.321814  |  |  |  |  |  |
| /ar: studytime      | 1                             | 0.007710 | 9.830512   | 0.0018  | 120.106976  | 12.217775  |  |  |  |  |  |
| Class: schoolsup    | 1                             | 0.007769 | 9.991934   | 0.0016  | 121.028735  | 12.112643  |  |  |  |  |  |
| Group: Fjob         | 3                             | 0.006079 | 2.618530   | 0.0497  | 94.707657   | 12.056084  |  |  |  |  |  |
| /ar: health         | 1                             | 0.005650 | 7.346181   | 0.0068  | 88.024876   | 11.982399  |  |  |  |  |  |
| /ar: goout          | 1                             | 0.005235 | 6.845056   | 0.0090  | 81.557816   | 11.914850  |  |  |  |  |  |
| Class: romantic     | 1                             | 0.005201 | 6.838853   | 0.0091  | 81.024599   | 11.847688  |  |  |  |  |  |
| Class: address      | 1                             | 0.004492 | 5.934422   | 0.0150  | 69.973636   | 11.791145  |  |  |  |  |  |
| Class: internet     | 1                             | 0.001851 | 2.449470   | 0.1179  | 28.841385   | 11.774543  |  |  |  |  |  |
| Group: reason       | 2                             | 0.001584 | 1.047834   | 0.3511  | 24.673237   | 11.773446  |  |  |  |  |  |
| /ar: Dalc           | 1                             | 0.001066 | 1.410712   | 0.2352  | 16.602293   | 11.768731  |  |  |  |  |  |
| /ar: Medu           | 1                             | 0.001154 | 1.528541   | 0.2166  | 17.979705   | 11.762659  |  |  |  |  |  |
| Class: guardian     | 2                             | 0.000999 | 0.661234   | 0.5164  | 15.566047   | 11.770455  |  |  |  |  |  |
| Class: school       | 1                             | 0.000724 | 0.958493   | 0.3278  | 11.282362   | 11.770934  |  |  |  |  |  |

These are the most important variables for the model, which resulted from variable selection node.

- Failures
- Mjob
- Higher
- Studytime
- School sup
- Fjob
- Health
- Go out
- Romantic
- Address
- Internet
- Reason
- Dalc
- Guardian
- School

These variables are fed into linear regression model as inputs.



Results from linear regression model:

After removing the insignificant variables from model. These are the significant variables shown in below figure.

| C               |                 |                      | Sum of            | M                | 5 V-1     | D      |  |
|-----------------|-----------------|----------------------|-------------------|------------------|-----------|--------|--|
| Source          |                 | DF                   | Squares           | Mean Square      | e F Value | Pr > F |  |
| Model           |                 | 6 2                  | 802.827032        | 467.137839       | 37.92     | <.0001 |  |
| Error           |                 | 1037                 | 12776             | 12.320246        |           |        |  |
| Corrected To    | tal             | 1043                 | 15579             |                  |           |        |  |
|                 |                 |                      |                   |                  |           |        |  |
|                 | Model           | Fit Statist          | ics               |                  |           |        |  |
|                 |                 |                      |                   |                  |           |        |  |
| R-Square<br>AIC | 0.17<br>2628.71 | ,                    |                   | 0.1752<br>0.8095 |           |        |  |
| SBC             | 2663.37         |                      |                   | 7.0000           |           |        |  |
|                 | 2003137         | ου (τρ)              | •                 | 10000            |           |        |  |
|                 |                 |                      |                   |                  |           |        |  |
|                 | Type 3          | Analysis of          | Effects           |                  |           |        |  |
|                 |                 | Sum of               |                   |                  |           |        |  |
| Effect          | DF              | Squares              |                   | Pr > F           |           |        |  |
| Liicet          | Di              | Squares              | 1 vacue           | 11 / 1           |           |        |  |
| failures        | 1               | 1859.7535            | 150.95            | <.0001           |           |        |  |
| goout           | 1               | 73.4168              |                   | 0.0148           |           |        |  |
| health          | 1               | 50.6988              |                   | 0.0428           |           |        |  |
| romantic        | 1               | 109.1747             |                   | 0.0030           |           |        |  |
| schoolsup       | 1<br>1          | 145.0962<br>180.0490 |                   | 0.0006<br>0.0001 |           |        |  |
| studytime       | 1               | 100.0490             | 14.01             | 0.0001           |           |        |  |
|                 |                 |                      |                   |                  |           |        |  |
|                 | Analysi         | s of Maximu          | m Likelihood      | Estimates        |           |        |  |
|                 |                 |                      | 611               |                  |           |        |  |
| Parameter       | DF              | Estimate             | Standard<br>Error | t Value          | Dr > 1+1  |        |  |
| Parameter       | DΓ              | ESTIMATE             | Error             | t value          | Pr >  t   |        |  |
| Intercept       | 1               | 11.6154              | 0.5383            | 21.58            | <.0001    |        |  |
| failures        | 1               | -2.0727              |                   | -12.29           | <.0001    |        |  |
| goout           | 1               | -0.2316              |                   | -2.44            | 0.0148    |        |  |
| health          | 1               | -0.1552              |                   | -2.03            | 0.0428    |        |  |
| romantic no     |                 | 0.3408               |                   | 2.98             | 0.0030    |        |  |
| schoolsup no    |                 | 0.5914               |                   | 3.43             | 0.0006    |        |  |
| studytime       | 1               | 0.5077               | 0.1328            | 3.82             | 0.0001    |        |  |

#### Fit Statistics Target=G3 Target Label=' ' Fit Validation Statistics Statistics Label Train \_AIC\_ Akaike's Information Criterion 1837.42 \_ASE\_ Average Squared Error 12.58 12.11 Average Error Function \_AVERR\_ 12.11 12.58 724.00 \_DFE\_ Degrees of Freedom for Error Model Degrees of Freedom 7.00 \_DFM\_ \_DFT\_ Total Degrees of Freedom 731.00 Divisor for ASE \_DIV\_ 731.00 313.00 \_ERR\_ Error Function 8855.79 3937.22 \_FPE\_ Final Prediction Error 12.35 12.38 MAX\_ Maximum Absolute Error 13.46 \_MSE\_ Mean Square Error 12.23 12.58 Sum of Frequencies \_NOBS\_ 731.00 313.00 NW Number of Estimate Weights 7.00 \_RASE\_ Root Average Sum of Squares 3.48 3.55 Root Final Prediction Error \_RFPE\_ 3.51 \_RMSE\_ Root Mean Squared Error 3.50 3.55 Schwarz's Bayesian Criterion \_SBC\_ 1869.58 SSE Sum of Squared Errors 8855.79 3937.22 Sum of Case Weights Times Freq 731.00 \_SUMW\_ 313.00

Here, the F-test value is less than 0.05. Therefore, model is significant.

From these results, the significant variables are **failures**, **go out**, **health**, **romantic**, **schoolsup** (**school support**), **studytime**.

R square - 0.1799 Adjusted R square - 0.1752.

## Multi linear regression line equation is:

G3= Estimate (Intercept)+failures\* Estimate(failures)+go out\* Estimate(go out)+health \* Estimate(health)+romantic \* Estimate(romantic)+ school sup\* Estimate(school sup)+ studytime\*Estimate(studytime).

# 4. DECISION TREE:

NOTE: IN THE PROJECT WE WILL BE NEGLECTING G1 AND G2 ATRRIBUITES BECAUSE THESE TWO VARIABLES HAVE HIGH COLINEARITY WITH OUTPUT VARIABLE G3.

| Name        | Use       | Report | Role  | Level    |
|-------------|-----------|--------|-------|----------|
| Dalc        | Default   | No     | Input | Interval |
| Fedu        | Default   | No     | Input | Interval |
| Fjob        | Default   | No     | Input | Nominal  |
| G1          | No        | No     | Input | Interval |
| G2          | No        | No     | Input | Interval |
| G3          | Default   | No     | Input | Interval |
| Medu        | Default   | No     | Input | Interval |
| Mjob        | Default   | No     | Input | Nominal  |
| Overall_Per | c∢Default | No     | Input | Interval |
| Pstatus     | Default   | No     | Input | Nominal  |
| Walc        | Default   | No     | Input | Interval |
| absences    | Default   | No     | Input | Interval |
| activities  | Default   | No     | Input | Nominal  |
| address     | Default   | No     | Input | Nominal  |
| age         | Default   | No     | Input | Interval |
| failures    | Default   | No     | Input | Interval |
| famrel      | Default   | No     | Input | Interval |
| famsize     | Default   | No     | Input | Nominal  |
| famsup      | Default   | No     | Input | Nominal  |
| freetime    | Default   | No     | Input | Interval |
| goout       | Default   | No     | Input | Interval |
| guardian    | Default   | No     | Input | Nominal  |
| health      | Default   | No     | Input | Interval |
| higher      | Default   | No     | Input | Nominal  |
| internet    | Default   | No     | Input | Nominal  |
| nursery     | Default   | No     | Input | Nominal  |
| naid        | Default   | No     | Innut | Nominal  |

|            |        | ary Statisti<br>ons printed) |           |         |         |         |        |         |          |          |
|------------|--------|------------------------------|-----------|---------|---------|---------|--------|---------|----------|----------|
| ata Role=T | RAIN   |                              |           |         |         |         |        |         |          |          |
|            |        |                              | Standard  | Non     |         |         |        |         |          |          |
| ariable/   | Role   | Mean                         | Deviation | Missing | Missing | Minimum | Median | Maximum | Skewness | Kurtosis |
| alc        | INPUT  | 1.494253                     | 0.911714  | 1044    | 0       | 1       | 1      | 5       | 2.157973 | 4.476565 |
| edu        | INPUT  | 2.387931                     | 1.099938  | 1044    | 0       | 0       | 2      | 4       | 0.119447 | -1.16724 |
| ledu       | INPUT  | 2.603448                     | 1.124907  | 1044    | 0       | 0       | 3      | 4       | -0.13953 | -1.22795 |
| /alc       | INPUT  | 2.284483                     | 1.285105  | 1044    | 0       | 1       | 2      | 5       | 0.625923 | -0.78049 |
| bsences    | INPUT  | 4.434866                     | 6.210017  | 1044    | 0       | 0       | 2      | 75      | 3.741347 | 26.5962  |
| ige        | INPUT  | 16.72605                     | 1.239975  | 1044    | 0       | 15      | 17     | 22      | 0.434028 | 0.036774 |
| ailures    | INPUT  | 0.264368                     | 0.656142  | 1044    | 0       | 0       | 0      | 3       | 2.78366  | 7.49535  |
| amrel      | INPUT  | 3.935824                     | 0.933401  | 1044    | 0       | 1       | 4      | 5       | -1.05577 | 1.29178  |
| reetime    | INPUT  | 3.201149                     | 1.031507  | 1044    | 0       | 1       | 3      | 5       | -0.17871 | -0.36034 |
| oout       | INPUT  | 3.15613                      | 1.152575  | 1044    | 0       | 1       | 3      | 5       | 0.038928 | -0.83549 |
| ealth      | INPUT  | 3.543103                     | 1.424703  | 1044    | 0       | 1       | 4      | 5       | -0.4988  | -1.08155 |
| tudytime   | INPUT  | 1.970307                     | 0.834353  | 1044    | 0       | 1       | 2      | 4       | 0.670982 | 0.00662  |
| raveltime  | INPUT  | 1.522989                     | 0.731727  | 1044    | 0       | 1       | 1      | 4       | 1.369314 | 1.475579 |
| 3          | TARGET | 11.34195                     | 3.864796  | 1044    | 0       | 0       | 11     | 20      | -0.98596 | 1.744319 |

Since there are no missing values in the data, we need not use replacement node or impute to clean the data.



The next thing done was Adding data partition node to split the data into 70 percent training data and 30 percent validation data.

| Property               | Value             |
|------------------------|-------------------|
| General                |                   |
| Node ID                | Part              |
| Imported Data          |                   |
| Exported Data          |                   |
| Notes                  |                   |
| Train                  |                   |
| Variables              |                   |
| Output Type            | Data              |
| Partitioning Method    | Default           |
| Random Seed            | 12345             |
| □ Data Set Allocations |                   |
| Training               | 70.0              |
| -Validation            | 30.0              |
| Test Test              | 0.0               |
| Report                 |                   |
| Interval Targets       | Yes               |
| Class Targets          | Yes               |
| Status                 |                   |
| Create Time            | 12/11/19 4:24 AM  |
| Run ID                 | 8db124e9-bf85-374 |
| Last Error             |                   |
|                        |                   |

Next, the Decision tree was created using average square error as the model assessment statistic:

| □ Split Search                    |                      |
|-----------------------------------|----------------------|
| Use Decisions                     | No                   |
| -Use Priors                       | No                   |
| - Exhaustive                      | 5000                 |
| - Node Sample                     | 20000                |
| □Subtree                          |                      |
| Method                            | Assessment           |
| Number of Leaves                  | 1                    |
| -Assessment Measure               | Average Square Error |
| -Assessment Fraction              | 0.25                 |
| □Cross Validation                 |                      |
| Perform Cross Validat             | No                   |
| Number of Subsets                 | 10                   |
| Number of Repeats                 | 1                    |
| <sup>L</sup> Seed                 | 12345                |
| □Observation Based Im             |                      |
| Observation Based Im              | No                   |
| <sup>L</sup> Number Single Var Im | 5                    |



Output of the decision tree is shown in above diagram.

- The weight of the line is heavier for the node where most observations are located.
- Darker the node, more the purity of node. Which means, the node which is darker tells you that the node has number of observations with "Yes"?
- If the node is white, there are a greater number of observations with a "No"
- In failures split, if it is less than 0.5 student has more probability of passing the subject. The pass percentage is 84.51% in validation data.
  - If the failures are greater than 0.5, the students have more than 54% of chance to fail in that subject.
- In the second split higher, if the student has an interest about pursuing his/her higher studies he has probability of more than 85% to pass the subject. If he does not have any thought of doing higher studies, he has 65% of pass rate.
- In the third split paid, if the student has paid for extra hours within subjects, he/she has 77% of passing that subject.

• In the third split paid, If the students do not require any extra studying hours for that subject, they have 89% of passing the subject. Since because they could have good knowledge with that subject. So, they will not require to pay extra amount.

## **Sub-Tree Assessment Plot:**



The line represents minimum miss-classification rate at node 4, it has average square error of 0.1377.

The competing nodes for node1 are in the figure below.



Here - Log(p) means, it is chi-square based number created which is called log worth. It shows us which variable is best to use for splitting our data to get better predictions.

## CONCLUSION FROM DECISION TREE:

From this decision tree model, we cannot directly derive that Alcohol consumption has any impact the overall grades of the students. This model only tells you whether the students pass or fail the subject or students get good grade or not. Because, this is classification type model, it has the target variable as categorical variables.

## 4: LOGISTIC REGRESSION:

NOTE: IN THE PROJECT WE WILL BE NEGLECTING G1 AND G2 ATRRIBUITES BECAUSE THESE TWO VARIABLES HAVE HIGH COLINEARITY WITH OUTPUT VARIABLE G3.



| Name         | Use      | Report | Role  | Level    |
|--------------|----------|--------|-------|----------|
| Dalc         | Default  | No     | Input | Interval |
| Fedu         | Default  | No     | Input | Interval |
| Fjob         | Default  | No     | Input | Nominal  |
| G1           | No       | No     | Input | Interval |
| G2           | No       | No     | Input | Interval |
| G3           | Default  | No     | Input | Interval |
| Medu         | Default  | No     | Input | Interval |
| Mjob         | Default  | No     | Input | Nominal  |
| Overall_Perc | ∢Default | No     | Input | Interval |
| Pstatus      | Default  | No     | Input | Nominal  |
| Walc         | Default  | No     | Input | Interval |
| absences     | Default  | No     | Input | Interval |
| activities   | Default  | No     | Input | Nominal  |
| address      | Default  | No     | Input | Nominal  |
| age          | Default  | No     | Input | Interval |
| failures     | Default  | No     | Input | Interval |
| famrel       | Default  | No     | Input | Interval |
| famsize      | Default  | No     | Input | Nominal  |
| famsup       | Default  | No     | Input | Nominal  |
| freetime     | Default  | No     | Input | Interval |
| goout        | Default  | No     | Input | Interval |
| guardian     | Default  | No     | Input | Nominal  |
| health       | Default  | No     | Input | Interval |
| higher       | Default  | No     | Input | Nominal  |
| internet     | Default  | No     | Input | Nominal  |
| nursery      | Default  | No     | Input | Nominal  |
| naid         | Default  | No     | Input | Nominal  |

Add data partition node to split the data into 70 percent training data and 30 percent validation data.



We used stepwise model. Stepwise linear regression is a method of regressing multiple variables while simultaneously removing those that are not important. Stepwise regression essentially does multiple regression several times, each time removing the weakest correlated variable.

| -2 Lo     | og Likeli  | hood           | Likelihood    |                   |                  |            |              |          |  |
|-----------|------------|----------------|---------------|-------------------|------------------|------------|--------------|----------|--|
| Intercep  | ot In      | tercept &      | Ratio         |                   |                  |            |              |          |  |
| 0n1       | ly Co      | ovariates      | Chi-Square    | DF Pr             | > ChiSq          |            |              |          |  |
|           |            |                |               |                   |                  |            |              |          |  |
| 767.26    | 59         | 657.857        | 109.4118      | 7                 | <.0001           |            |              |          |  |
|           |            |                |               |                   |                  |            |              |          |  |
| -         | Type 3 An: | alvsis of Eff  | ects          |                   |                  |            |              |          |  |
|           | Type 5 And | atysis of Life | eccs          |                   |                  |            |              |          |  |
|           |            | Wald           |               |                   |                  |            |              |          |  |
| Effect    | DF         | Chi-Square     | Pr > ChiSq    |                   |                  |            |              |          |  |
|           |            |                |               |                   |                  |            |              |          |  |
| bsences   | 1          | 4.4602         | 0.0347        |                   |                  |            |              |          |  |
| ailures   | 1          | 47.7957        | <.0001        |                   |                  |            |              |          |  |
| oout      | 1          | 6.3364         | 0.0118        |                   |                  |            |              |          |  |
| nigher    | 1          | 5.6015         | 0.0179        |                   |                  |            |              |          |  |
| paid      | 1          | 11.7724        | 0.0006        |                   |                  |            |              |          |  |
| school    | 1          | 11.4668        |               |                   |                  |            |              |          |  |
| schoolsup | ī          | 5.7893         |               |                   |                  |            |              |          |  |
|           | _          |                |               |                   |                  |            |              |          |  |
|           |            |                | Analysis      | of Maximum I      | ikelihood Estima | ates       |              |          |  |
|           |            |                | 71110 ( ) 515 | OT TIGALINGIII E. | INC CINOCA ESCIM |            |              |          |  |
|           |            |                |               | Standard          | Wald             |            | Standardized |          |  |
| Parameter |            | G3Pass         | DF Estimate   | Error             | Chi-Square       | Pr > ChiSq | Estimate     | Exp(Est) |  |
|           |            |                |               |                   |                  |            |              |          |  |
| Intercept |            | Pass           | 1 1.5165      |                   | 18.00            | <.0001     |              | 4.556    |  |
| absences  |            | Pass           | 1 -0.0304     |                   | 4.46             | 0.0347     | -0.1032      | 0.970    |  |
| failures  |            | Pass           | 1 -0.9786     | 0.1415            | 47.80            | <.0001     | -0.3449      | 0.376    |  |
| goout     |            | Pass           | 1 -0.2112     | 0.0839            | 6.34             | 0.0118     | -0.1356      | 0.810    |  |
| nigher    | no         | Pass           | 1 -0.3748     | 0.1584            | 5.60             | 0.0179     |              | 0.687    |  |
|           | no         | Pass           | 1 0.3920      |                   | 11.77            | 0.0006     |              | 1.480    |  |
|           | GP         | Pass           | 1 0.3711      |                   | 11.47            | 0.0007     |              | 1.449    |  |
| schoolsup |            | Pass           | 1 0.3590      |                   | 5.79             | 0.0161     |              | 1.432    |  |
| choocsup  | 110        | 1 033          | 1 0.3390      | 0.1492            | 3.79             | 0.0101     |              | 1.432    |  |
|           |            |                |               |                   |                  |            |              |          |  |

## Odds Ratio:

| ч | as itatio.                                                             |                      |          |  |  |  |                                              |                                                             |  |  |  |  |  |
|---|------------------------------------------------------------------------|----------------------|----------|--|--|--|----------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|
|   |                                                                        | Odds Ratio Estimates |          |  |  |  |                                              |                                                             |  |  |  |  |  |
|   | Effect                                                                 |                      |          |  |  |  | G3Pass                                       | Point<br>Estimate                                           |  |  |  |  |  |
|   | absences<br>failures<br>goout<br>higher<br>paid<br>school<br>schoolsup | no<br>GP             | vs<br>vs |  |  |  | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | 0.970<br>0.376<br>0.810<br>0.473<br>2.190<br>2.101<br>2.050 |  |  |  |  |  |
|   |                                                                        |                      |          |  |  |  |                                              |                                                             |  |  |  |  |  |

- The odds ratio got decreased by 0.3 for absences.
- Failures, go out, higher odds ratio is less than 1.
- Odds ratio Paid, school, schoolsup is greater than 1.

## Confusion matrix:



Accuracy of the model: can be determined by using validating data.

Accuracy= TP+ TN/(FN+TN+FP+TP) = 238+18/7+18+52+238 = 0.81 = 81% accuracy

## **4.NEURAL NETWORKS:**



We added auto neural network node.

Results are shown below:

| Event Classification Table                        |                  |                   |                  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------|------------------|-------------------|------------------|--|--|--|--|--|--|--|--|--|
| Data Role=TRAIN Target=G3Pass Target Label=' '    |                  |                   |                  |  |  |  |  |  |  |  |  |  |
| False<br>Negative                                 | True<br>Negative | False<br>Positive | True<br>Positive |  |  |  |  |  |  |  |  |  |
| 18                                                | 90               | 70                | 551              |  |  |  |  |  |  |  |  |  |
| Data Role=VALIDATE Target=G3Pass Target Label=' ' |                  |                   |                  |  |  |  |  |  |  |  |  |  |
| False<br>Negative                                 | True<br>Negative | False<br>Positive | True<br>Positive |  |  |  |  |  |  |  |  |  |
| 23                                                | 26               | 44                | 222              |  |  |  |  |  |  |  |  |  |

## **MODEL COMPARISON NODE:**



# Output:

| Selected<br>Model | Predecess<br>or Node | Model<br>Node | Model<br>Descriptio<br>n | Target<br>Variable | Label | Criterion: | Sum of<br>Frequencie | Misclassifi<br>cation | Maximum<br>Absolute | Train:<br>Sum of<br>Squared<br>Errors | Average<br>Squared<br>Error | Root     | Train:<br>Divisor<br>for ASE | Total | Valid:<br>Sum of<br>Frequencie<br>s | Valid:<br>Misclas<br>cation<br>Rate |
|-------------------|----------------------|---------------|--------------------------|--------------------|-------|------------|----------------------|-----------------------|---------------------|---------------------------------------|-----------------------------|----------|------------------------------|-------|-------------------------------------|-------------------------------------|
| Υ                 | Reg2                 | Reg2          | Logistic                 |                    |       | 0.187302   |                      |                       |                     |                                       | 0.144228                    |          |                              |       |                                     | 0.187                               |
|                   | Tree                 | Tree          | Decision                 |                    |       | 0.193651   |                      |                       |                     |                                       | 0.146457                    |          |                              |       |                                     | 0.193                               |
|                   | AutoNeu              | AutoNeu       | . AutoNeu                | G3Pass             |       | 0.212698   | 729                  | 0.120713              | 0.98551             | 126.1234                              | 0.086504                    | 0.294116 | 1458                         | 729   | 315                                 | 0.212                               |
|                   |                      |               |                          |                    |       |            |                      |                       |                     |                                       |                             |          |                              |       |                                     |                                     |

According to model comparison, it shows logistic regression is best model for this data.

## Managerial Implications and conclusions:

- Linear regression and regression tree models establishes the level of impact of alcohol consumption on GPA, it was only derivable for either one of the groups.
- From Cluster analysis, the students who have more free time, who drink on weekdays as well as on weekends, who travel more, who have no internet, who do not have school support tend to get poor overall grade. The students who do not drink regularly on weekdays as well as weekends, who have less travel time, who have internet, who have school support tend to get good overall grade.
- The alcohol impact is high on male student's GPA, they consume alcohol and gets less GPA.
   whereas, most of the female students do consume alcohol yet they tend to get good overall GPA.

## References:

- Turrisi R, Larimer ME, Mallett KA, Kilmer JR, Ray AE, Mastroleo NR, et al. A randomized clinical trial evaluating a combined alcohol intervention for high-risk college students. J Stud Alcohol Drugs. 2009;70:555–67. [PMC free article] [PubMed]
- Hingson R, Heeren T, Winter M, Wechsler H. Magnitude of alcohol-related mortality and morbidity among U.S. college students ages 18-24: Changes from1998 to 2001. Annu Rev Public Health. 2005;26:259–79. [PubMed]
- P. Cortez and A. Silva. Using Data Mining to Predict Secondary School Student Performance.
   In A. Brito and J. Teixeira Eds., Proceedings of 5th Future Business Technology Conference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7.
   https://archive.ics.uci.edu/ml/datasets/STUDENT+ALCOHOL+CONSUMPTION