논문 3

논문 pdf 파일

1-s2.0-S1574119222001006-main.pdf

요약

논문 제목	Multi-task learning neural networks for breath sound detection and classification in pervasive healthcare
논문 링크	https://www.sciencedirect.com/science/article/pii/S1574119222001006
논문 pdf 링크	https://www.sciencedirect.com/science/article/pii/S1574119222001006/pdfft? md5=03924ee5411ee3c6303f965d6d745911&pid=1-s2.0- S1574119222001006-main.pdf
저널명 (학회명)	Pervasive and Mobile Computing
IF (H-index)	1
저자 정보	Khanh Nguyen-Trong
저자 소속	University Lecturer at Ho Chi Minh City University of Technology
제안하는 방법 (~ 를 위해 어떠한 방 법을 사용하여 ~ 인 결과를 보였 다., 인풋 데이터/ 사용한 모델 종류/ 아웃풋 데이터)	본 연구에서는 SincNet-CNN, Residual BiLSTM, 그리고 Multi-task learning neural network를 사용하여 호흡 데이터를 분석하였다. BreathSet과 ICBHI'17 데이터셋을 사용하였다.
실험 결과 요약	

제안하는 방법

딥러닝이 사용되는 수단 : 낮은 수준의 호흡 신호를 유용한 수준의 높은 호흡 신호로 만들기 위해 사용되었다.

- CNN
- RNN
- LSTM
- BiLSTM

위와 같은 신경망이 많이 사용된다.

데이터 세트

4가지 유형의 호흡 소리 데이터로 구성된 BreathSet 공개 데이터세트 (27명의 환자로부터 만들 어짐)

분류 클래스

입을 통한 호흡

- 1. heavy
- 2. deep
- 3. normal breaths

위 호흡들을 감지하고, 분류하기 위한 신경망을 설계함.

1. 노이즈 감소를 위한 딥러닝 모델 이용

RNNoise 신경망 - 딥러닝 모델

RNNoise: 소음 감소를 위한 딥러닝 모델

http://hacks.mozilla.or.kr/2017/10/rnnoise-using-deep-learning-for-noise-suppression/

2. 호흡을 감지하고, 분류하는 신경망

SincNet-Convolutional neural (SincNet-CNN) + Residual Bi-LSTM 신경망을 사용

위 두 신경망을 그림으로 나타낸 것.

• SIncNet - CNN 신경망 구조

Table 1

Layer	Output shape	# params
SincConvFast	(None, 2150, 64)	-
MaxPooling1D	(None, 716, 64)	0
LayerNormalization	(None, 716, 64)	128
LeakyReLU	(None, 716, 64)	0
Conv1D	(None, 712, 32)	10 272
MaxPooling1	(None, 237, 32)	0
LayerNormalization1	(None, 237, 32)	64
LeakyReLU	(None, 237, 32)	0
Flatten	(None, 7584)	0
LayerNormalization2	(None, 7584)	15 168
Dense	(None, 64)	485 440
BatchNormalization	(None, 64)	256
LeakyReLU	(None, 64	0
Dense	(None, 64)	4160
BatcNormalization1	(None, 64)	256
LeakyReLU	(None, 64)	0
Dense	(None, 4)	1040
Dense	(None, 2)	520
Total	_	517,557

• BiLSTM 신경망 구조

Table 2

Layer	Structure	Output shape	# params	
Input	-	(Other, 1200, 12)	-	
Bi_lstm	32	(None, 1200, 64)	11.776K	
Bi_lstm	32	(None, 1200, 64)	25.088K	
Add	-	(None, 1200, 64)	0	
Bi_lstm	32	(None, 1200, 64)	25.088K	
Bi_lstm	32	(None, 64)	25.088K	
Add	-	(None, 1200, 12)	0	
Flatten	-	(None, 76 800)	0	
Dense	256	(None, 64)	4915.264K	
Dropout	-	(None, 64)	0	
Dense	-	(None, 4)	297	
Dense	-	(None, 2)	149	
Total	-	-	5002.71K	

Demographic information of studied subjects.

Gender	Number of patients	Age (years)	Weight (kg)	Height (cm)		
Male	21	36	58	173		
Female	6	35.4	45	158.7		

detection (breath or not) or classification (normal, deep, heavy breath, or other).

데이터 세트

• BreathSet 데이터 세트

실험자 \rightarrow 앉기, 서기, 걷기 등 일상적인 활동 수행하면서 호흡 소리 데이터를 수집 다음 3가지 호흡에 대한 총 552분 길이의 데이터를 수집

- 1. deep 호흡
- 2. heavy 호흡
- 3. normal 호흡

BreathSet 데이터 세트에서 정확도 비교

Table 5
Results on the feature evaluation with BreathSet.

		SincNet-CNN			LSTM			Residual BiLSTM		
		Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
	Normal	0.79	0.74	0.74	0.80	0.76	0.78	0.86	0.83	0.81
Spectrogram	Deep	0.85	0.75	0.80	0.82	0.78	0.81	0.89	0.86	0.88
	Heavy	0.89	0.82	0.85	0.93	0.92	0.93	0.93	0.89	0.91
	Other	0.87	0.89	0.89	0.89	0.94	0.92	0.89	0.94	0.92
	Mean/Std	0.85	0.80	0.82	0.86	0.85	0.86	0.90	0.88	0.88
MFCC	Normal	0.81	0.82	0.79	0.82	0.79	0.80	0.87	0.88	0.86
MFCC	Deep	0.83	0.82	0.82	0.84	0.78	0.83	0.87	0.88	0.87
	Heavy	0.89	0.94	0.91	0.91	0.89	0.90	0.92	0.94	0.93
	Other	0.87	0.94	0.91	0.87	0.94	0.91	0.93	0.94	0.94
	Mean/Std	0.85	0.88	0.86	0.86	0.85	0.86	0.90	0.91	0.90
RNNoise filter	Normal	0.96	0.97	0.98	0.92	0.82	0.87	0.92	0.89	0.93
	Deep	0.74	0.83	0.95	0.92	0.83	0.88	0.96	0.90	0.94
& MFCC	Heavy	0.94	0.92	0.90	0.97	0.92	0.94	0.97	0.98	0.96
	Other	0.99	0.92	0.85	0.83	0.99	0.91	0.95	0.99	0.97
	Mean/Std	0.92	0.91	0.91	0.91	0.89	0.90	0.95	0.94	0.95

• ICBHI'17 데이터 세트로 모델을 테스트 함.

Papers with Code - ICBHI Respiratory Sound Database Dataset

The Respiratory Sound database was originally compiled to support the scientific challenge organized at Int. Conf. on Biomedical Health Informatics - ICBHI 2017. The database consists of a total of 5.5 hours

두 데이터 세트로 학습 결과

논문 3 4

Table 6
Results on multi-task learning of the proposed models.

		SincNet-CN	N		LSTM			Residual BiLSTM		
		Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
BreathSet										
Classification	Normal	0.96	0.97	0.98	0.92	0.82	0.87	0.92	0.89	0.93
	Deep	0.74	0.83	0.95	0.92	0.83	0.88	0.96	0.90	0.94
Classification	Heavy	0.94	0.92	0.90	0.97	0.92	0.94	0.97	0.98	0.96
	Other	0.99	0.92	0.85	0.83	0.99	0.91	0.95	0.99	0.97
	Mean/Std	0.92	0.91	0.91	0.91	0.89	0.90	0.95	0.94	0.95
	Breath	0.90	0.91	0.90	0.92	0.88	0.89	0.93	0.87	0.90
Detection	Non-Breath	0.92	0.91	0.90	0.92	0.88	0.89	0.93	0.87	0.90
	Mean/Std	0.91	0.91	0.90	0.92	0.88	0.89	0.93	0.87	0.90
ICHBI Dataset										
Classic and a	Crackle	0.94	0.76	0.84	0.83	0.83	0.83	0.88	0.86	0.87
	Normal	0.87	0.94	0.90	0.90	0.88	0.89	0.96	0.97	0.97
Classification	Wheeze	0.72	0.75	0.73	0.70	0.76	0.73	0.75	0.76	0.75
	Mean/Std	0.84	0.82	0.83	0.81	0.82	0.82	0.86	0.86	0.86
	Abnormal	0.96	0.72	0.82	0.84	0.91	0.87	0.89	0.92	0.91
Detection	Normal	0.80	0.97	0.88	0.92	0.84	0.88	0.94	88.0	0.92
	Mean/Std	0.87	0.85	0.85	0.88	0.88	0.88	0.91	0.90	0.91

INPUT DATA

자체 제작한 임베디드 위에러블 IOT 장치 (호흡을 감지)

논문 3 5

OUTPUT DATA

• 다음 3가지를 분류한다.

deep 호흡

Heavy 호흡

Normal 호흡

- 호흡을 감지한다.
 - 。 호흡
 - 。 무호흡

결론

분류와 탐지에 있어서 F1점수가 90%로 높은 점수에 있다 따라서 신뢰할 수 있다.

논문 3

6

논문 3 7