IFCE - Campus Maracanaú Lógica para Computação

Ciência da Computação Prof. Thiago Alves

6^a Lista de Exercícios

Aluno(a):	Matrícula:	
0 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0		

- 1. Defina uma função para retornar o conjunto de variáveis ligadas de uma fórmula da Lógica de Primeira Ordem.
- 2. Seja φ uma fórmula da lógica de Primeira Ordem. Os símbolos livres de φ são as variáveis livres, os símbolos de função, os símbolos de constante e os símbolos de predicado que ocorrem em φ .
 - (a) Quais os símbolos livres de $\forall x \exists y (\forall z P(x, y, w, z) \rightarrow \forall y Q(z, y, x, z))$?
 - (b) Defina uma função que retorna o conjunto de símbolos livres de uma fórmula qualquer φ .
- 3. Seja φ uma fórmula da lógica de Primeira Ordem e $free(\varphi) = \{x_1, ..., x_k\}$. O fecho universal de φ é dado pela fórmula $\forall x_1... \forall x_k \varphi$. Qual o fecho universal de $\forall x \exists y (\forall z P(x, y, w, z) \rightarrow \forall y Q(z, y, x, z))$?
- 4. Considere a fórmula $\phi = \forall x \forall y Q(g(x,y), g(y,y), z)$.
 - (a) Ache uma interpretação \mathcal{I}_1 tal que $\mathcal{I}_1 \models \phi$.
 - (b) Ache uma interpretação \mathcal{I}_2 tal que $\mathcal{I}_2 \not\models \phi$.
- 5. Seja a fórmula $\phi = \forall x \forall y \exists z (R(x,y) \to R(y,z)).$
 - (a) Seja $\mathcal{A}_1 = (A_1, R^{\mathcal{A}_1})$ uma estrutura com domínio $A_1 = \{a, b, c, d\}$ e $R^{\mathcal{A}_1} = \{(b, c), (b, b), (b, a)\}$. Verifique se $\mathcal{A}_1 \models \phi$.
 - (b) Seja a estrutura $\mathcal{A}_2 = (A_2, R^{\mathcal{A}_2})$ com $A_2 = \{a, b, c\}$ e $R^{\mathcal{A}_2} = \{(b, c), (a, b), (c, b)\}$. Verifique se $\mathcal{A}_2 \models \phi$.
- 6. Seja $\varphi = \forall x (\exists y P(x,y) \land (\exists z P(z,x) \rightarrow \forall y P(x,y)))$. Seja $\mathcal{A} = (A, P^{\mathcal{A}})$ uma estrutura com $A = \{0,1,2\}$ e $P^{\mathcal{A}} = \{1,2\}$. Seja l um contexto tal que l(x) = l(y) = l(z) = 1. Seja a interpretação $\mathcal{I} = (\mathcal{A}, l)$, verifique se $\mathcal{I} \models \varphi$.
- 7. Seja $\phi = \forall x \exists y \exists z ((P(x,y) \land P(z,y)) \land (P(x,z) \rightarrow P(z,x))).$
 - (a) Seja a estrutura $\mathcal{A} = (A, P^{\mathcal{A}})$ com $A = \{0, 1, 2, ...\}$ e $P^{\mathcal{A}} = \{(m, n) \mid m < n\}$. Verifique se $\mathcal{A} \models \phi$.
 - (b) Seja a estrutura $\mathcal{B} = (B, P^{\mathcal{B}})$ com $B = \{0, 1, 2, ...\}$ e $P^{\mathcal{A}} = \{(m, 2m) \mid m \in B\}$. Verifique se $\mathcal{B} \models \phi$.
- 8. Represente, em uma fórmula φ da Lógica de Primeira Ordem, a seguinte sentença: "Se o Fortaleza ganha do Barcelona, então o Fortaleza não perde para nenhum time te futebol."
 - (a) Mostre uma interpretação \mathcal{I}_1 tal que $\mathcal{I}_1 \models \varphi$.
 - (b) Mostre uma interpretação \mathcal{I}_2 tal que $\mathcal{I}_2 \not\models \varphi$.
- 9. Seja $\mathcal{G} = (V, E^{\mathcal{G}})$ um grafo com conjunto de vértices $V = \{1, 2, 3, 4\}$ e conjunto de arestas $E^{\mathcal{G}} = \{(1, 2), (1, 3), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2)\}$. Verifique se $\mathcal{G} \models \forall x \forall y (E(x, y) \leftrightarrow E(y, x))$.

10. Seja $\varphi = \forall x \neg R(x, x) \wedge \forall x \exists y R(x, y) \wedge \forall x \forall y \forall z (R(x, y) \wedge R(y, z) \rightarrow R(x, z))$. Mostre uma estrutura \mathcal{A} tal que $\mathcal{A} \models \varphi$.