Pick K random cluster centers, c¹...c^k For t=1..T: • for j = 1.. n: [recompute assignments]

$$a^j = \arg\min_i dist(x^j, c^i)$$
• for j= 1...k: [recompute cluster centers]

 $c^{j} = \frac{1}{|\{i|a^{i} = j\}|} \sum_{\{i|a^{i} = j\}} x^{i}$

$$\mathbf{x_2}$$

$$dist(x, x') = \sum_{i} (x_i - x'_i)^2$$

Random cluster means:

- $c^1 = [-1,0], c^2 = [0,0]$ t=0: $d(x^i,c^i)$ x^1 x^2 x^3 c^1 0 1 13 c^2 1 0 8
- $a^{1} = \operatorname{argmin}_{i} \operatorname{dist}(x^{1}, c^{i}) = 1$
- a² = argmin_i dist(x²,cⁱ) = 2
 a³ = argmin_i dist(x³,cⁱ) = 2
- a¹ = argmin_i dist(x¹,cⁱ) = 1
 a² = argmin_i dist(x²,cⁱ) = 1
- $a^3 = argmin_i dist(x^3, c^i) = 2$
- $c^1 = (1/2) * ([-1,0]+[0,0]) = [-0.5,0]$
- $c^2 = (1/1) * ([2,2]) = [2,1]$ t=2:
- Stop!! (cluster assignments a won't change in next round; you can verify!)