CS4670 / 5670: Computer Vision

Noah Snavely

Segmentation

Consumer face application: Apple iPhoto (Picasa, Facebook, etc.)

http://www.apple.com/ilife/iphoto/

Consumer application: Apple iPhoto

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Consumer application: Apple iPhoto

Things iPhoto thinks are faces

"The Nikon S60 detects up to 12 faces." Nikon To Nikon S60 detects up to 12 faces."

The goals of segmentation

- Group together similar-looking pixels for efficiency of further processing
 - "Bottom-up" process

"superpixels"

X. Ren and J. Malik. <u>Learning a classification model for segmentation</u>. ICCV 2003.

The goals of segmentation

- · Separate image into coherent "objects"
 - "Bottom-up" or "top-down" process?

imag

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

The Gestalt school

- Elements in a collection can have properties that result from relationships
 - "The whole is greater than the sum of its parts"

Illusory contours

http://en.wikipedia.org/wiki/Gestalt_psychology

Segmentation as clustering

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - · Clusters don't have to be spatially coherent

K-Means for segmentation

- Pros
 - · Very simple method
 - · Converges to a local minimum of the error function
- Cons
 - · Memory-intensive
 - · Need to pick K
 - · Sensitive to initialization
 - · Sensitive to outliers
 - Only finds "spherical" clusters

Mean shift clustering and segmentation

 An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Mean shift algorithm • The mean shift algorithm seeks modes or local maxima of density in the feature space image Feature space (L*u*v* color values)

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel

Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- · Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

More results

More results

Mean shift pros and cons

- Pros
 - · Does not assume spherical clusters
 - Just a single parameter (window size)
 - · Finds variable number of modes
 - · Robust to outliers
- Cons
 - · Output depends on window size
 - · Computationally expensive
 - · Does not scale well with dimension of feature space