$$\frac{1}{\int (x)} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{2}}{2 \cdot x \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{2}}{2 \cdot x \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{2}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{2}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{2}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}} + \lambda ||x||^{\frac{1}{2}}}{2 \cdot x} = \frac{1}{|A \cdot x - y|^{\frac{1}{2}}} + \frac{1}{|A \cdot x - y|^{\frac{1}{2}}}} + \frac{1}{|A \cdot x - y|^{\frac{1}{2}}} + \frac{1}{|A \cdot x - y|^{\frac{1}{2}}} + \frac{1}{|A \cdot x - y|$$

$$= \mu^{2} g^{T}(w_{n-1})Dg(w_{n-1}) - g^{T}(w_{n-1})Dw_{n-1}$$

$$+ \mu^{T}(w_{n-1})Dg(w_{n-1}) - g^{T}(w_{n-1})Dw_{n-1}$$

$$+ g^{T}(w_{n-1})A^{T}y + y^{T}Ag(w_{n-1})^{T} + G^{T}y$$

$$\text{The reason very do not write C explicitly is we will get the fraction will respect to μ , therefore we only convorm towns having μ).

$$\lambda \| w_{n-1} - \mu g(w_{n-1}) \|^{2}_{2}$$

$$= \lambda(w_{n-1} - \mu g(w_{n-1}))^{T}(w_{n-1} - \mu g(w_{n-1}))$$

$$= \lambda(w_{n-1} - \mu g(w_{n-1}))^{T}(w_{n-1} - \mu g(w_{n-1}))$$

$$= \lambda(w_{n-1} - \mu g(w_{n-1}))^{T}(w_{n-1} - \mu g(w_{n-1}))$$

$$= \mu^{2} g^{T}(w_{n-1}) g(w_{n-1}) \lambda - 2\mu w_{n-1} g(w_{n-1}) \lambda$$

$$+ \mu^{2} g^{T}(w_{n-1}) g(w_{n-1}) \lambda - 2\mu w_{n-1} g(w_{n-1}) \lambda$$

$$+ \mu^{2} g^{T}(w_{n-1}) g(w_{n-1}) \lambda + 2\mu^{2} g^{T}(w_{n-1}) \lambda^{T}y$$

$$- \mu^{2} g^{T}(w_{n-1}) g(w_{n-1}) \lambda^{T}y$$

$$+ \mu^{2} g^{T}(w_{n-1}) g(w_{n-1$$$$

By netting
$$\frac{\partial J(n)}{\partial n} = 0$$
, we have:

$$\mu_{n} = \frac{\mathcal{V}_{n-1} \mathcal{D}_{g}(\mathcal{U}_{n-1}) - g^{T}(\mathcal{U}_{n-1}) A^{T}y + \lambda \mathcal{V}_{n-1} g(\mathcal{U}_{n-1})}{g^{T}(\mathcal{U}_{n-1}) \mathcal{D}_{g}(\mathcal{U}_{n-1}) + \lambda g^{T}(\mathcal{U}_{n-1}) g(\mathcal{U}_{n-1})}$$

$$= \frac{\mathcal{L}_{n-1}^{\mathsf{T}} \left(D + \lambda \mathcal{I} \right) g(\mathcal{L}_{n-1}) - g^{\mathsf{T}} (\mathcal{L}_{n-1}) A^{\mathsf{T}} y}{g^{\mathsf{T}} (\mathcal{L}_{n-1}) \left(D + \lambda \mathcal{I} \right) g(\mathcal{L}_{n-1})}.$$

In summary, in the step n-1 of Graduat Descent, we got $v_{n-1} \in \mathbb{R}^{D\times 1}$, $g(v_{n-1}) \in \mathbb{R}^{D\times 4}$ by plugging v_{n-1} into the just joinnula appearing in solution. Then we calculate the optimal step size u_n by:

$$\mathcal{M}_{n}^{*} = \frac{\mathcal{L}_{n-1} \left(D + \lambda I\right) g\left(\mathcal{L}_{n-1}\right) - g^{T}\left(\mathcal{L}_{n}^{-1}\right) A^{T}y}{g^{T}\left(\mathcal{L}_{n-1}\right) \left(D + \lambda I\right) g\left(\mathcal{L}_{n}^{-1}\right)}$$

Then update the new parameter in by:

$$V_n = V_{n-1} - \mu_n^* g(w_{n-1})$$

5 The objective junction $J(u) = 1 Au - yll^2 + 2 u _2^2 is$
also called ridge regression by putting additional teem
2/1 x/2 into estimate mean equare error (1 Ax-y/2).
-) By inclusing 2, we are able to handle the ;
linearly multicolum dependence in dota which make ATA is not
invertible (oc = (ATA) + Ay, also known as closed
invertible (oc = (ATA) + Ay, also known as closed yours solution) when we want to jind the exact solution
in 1 shot.
Atso, the characteristic of 12-norm is unigornity which
Also, the characteristic of 12-norm is unigormity which restrict all element is to love rate and therefore can help
Reducing orversetting.
End Q1

$$S(x) = \left[g(x) - g(x)\right]^{2}$$

Dosta model:

$$y(x) = y(x) + E$$
 (f is unknown, deterministic)

Trained function
$$\hat{j}(x)$$
 that estimates $\hat{j}(x)$

Bias $(\hat{j}(x)) = \hat{j}(x) - \hat{E}_{S}[\hat{j}(x)]$

$$- \frac{1}{2} \sqrt{200} \left(\hat{f}(x) \right) = E_{S} \left[\left(\hat{f}(x) - E_{S} \left[\hat{f}(x) \right] \right)^{2} \right]$$

$$\rightarrow MSE\left(\int_{S,\ell} (x) = E_{S,\ell} \left[s(x) \right] \right)$$

$$= \mathbb{E}\left[\left(y(x) - \hat{y}(x)\right)^2\right]$$

We need to prove

$$MSE_{S,e}(\hat{j}(x)) = Bias_{S}(\hat{j}(x)) + Var_{S}(\hat{j}(x))$$

Ve have:

MSE = E[(y-j)] =
$$\frac{y=j+\epsilon}{\sum_{s,\epsilon}}$$
 = $\left[\left(j+\epsilon-\hat{j}\right)^2\right]$

$$= E\left(\left(\frac{1-\hat{j}}{1-\hat{j}}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \hat{j}\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \hat{j}\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \hat{j}\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \hat{j}\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \hat{j}\right)\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \hat{j}\right)\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \hat{j}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)\right)\right)\right)$$

$$= E\left(\left(\frac{1}{2} - \frac{1}{2}\right)^{2} + E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)\right)\right)$$

$$= E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)\right)$$

$$= \frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)$$

$$= \frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)\right)$$

$$= \frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)$$

$$= \frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)$$

$$= \frac{1}{2} + 2E\left(\frac{1}{2} + 2E\left(\frac{1}{2} - \frac{1}{2}\right)$$

$$=$$

$$vor(e) = E(e^2) - E(e)^2$$

$$\sigma_e^2 = E(e^2) - 0 \Rightarrow E(e^2) = \delta_e^2$$

= Edg-g) Edey = Edg-gg 0 = 0 in de pendence

Turipre:

Consider Ef(g-j)25, re have:

$$E\{(g-\hat{j})^2\} = E\{\hat{j} - \lambda_j \hat{g} + \hat{j}^2\}$$

$$= E\{g^2\} - \lambda_j E\{g\} + E\{\hat{j}^2\}$$
Because gie deterministre =>) $E\{g^2\} = g^2$

$$= \int_{0}^{2} + E + \int_{0}^{2} \int_{0}^{2} - 2JE + \int_{0}^{2} \int_{0}^{2} - E + \int_{0}^{2} \int_{0}^{2} - 2JE + \int_{0}^{2} \int_{0}^{2} + E + \int_{0}^{2} \int_{0}^{2} - 2JE + \int_{0}^{2} \int_{0}^{2} - 2JE + \int_{0}^{2} \int_{0}^{2} + E + \int_{0}^{2} \int_{0}^{2} - 2JE + \int_{0}^{2} \int_{0}$$

End Q2

3/
The term "The corse of dinnersionality" in non-parametric
learning regers to challenges in high-dimensional space (i.e., d
grove jast)
_ One of parts was influduced is curse of sample size. It means
that as the number of dimensions of increases, the spacetion
or volume considered as neighborhoods would be increase exponentially
Sevieral challenges:
+ computational complexity: d groves just -> cost por
ealcularing distance between data point increase exponentially.
Increased sporety of data: d1 then sparsify 1 which leads
un reliable clensity extimation, hard to determine the techniships
between variables accusately.
+ Overytting and generalization: d1, Pa (overyitting) 1, Rerejoque
need to provide moke training data -> poor generalization
on unseen data ·
_ Some teniques to mitigate Curve of Dimensionality
+ Dimensionality reduction (LDA, PCA) } islow down d
+ realite selection
+ Regularization (11) make model sparsity, Ld

4 Parametric model
$y = b(x)^T x + \epsilon$, $x \in \mathbb{R}^D$
{ (yi, xi) } = Naining data.
Prior:
$- \mathcal{V} \sim \mathcal{N}(m_0, C_0)$, $m_0 \in \mathbb{R}^p$, $C_0 \in \mathbb{R}^{p \times D}$
on $f_{\mathcal{R}}(u) = N(m_0, C_0)$ MAP try to solve:
MAP try to solve:
max g* (kly, X)
W J *
By Bayes rule, re can reverite jx (ve / y, X) as:
* (w y , X) = &* (y , X w) &* (w)
$\mathcal{F}_{\mathcal{F}}$ ($\mathcal{G}_{\mathcal{F}}$)
= 1* (y (x), x); (x/x) f* (x).
Д _* (у, X)
= 1* (81x, w) f* (x) f* (x)
ξ* (y, X)
- f* (y X, u) f* (v) c
-veish c = 1* (X) > 0
14 (u. X)
theregore max g* (kly, X) is veritten equivalently as:
max gx (y/X, v) gx (v)
V -

$$= \max_{x} \ln \left(\frac{1}{5} \times (y \mid X, x) \right) + \ln \left(\frac{1}{3} \times (x) \right) \quad (\% \times)$$
By MLE, we found:
$$= \frac{1}{5} \times (y \mid X, x) = N \left(\frac{1}{5} \times (y \mid X) \right) \quad c_{1} > 0$$

$$= \frac{1}{5} \times (y \mid X, x) = N \left(\frac{1}{5} \times (y \mid X) \right) \quad c_{1} > 0$$
By prior distribution:
$$= \frac{1}{5} \times (x) = N \left(\frac{1}{5} \times (y \mid X, x) \right) = \ln \left(\frac{1}{5} \times ($$

By applying Stationary Condition:
$-2x^{1}(VG^{-1})m_{o}$
$\frac{\partial T(x)}{\partial T(x)} = \frac{\partial (y^Ty + x^THH^Tx - 2x^THy + x^T(y^{-1})x + m_{\delta}(y^{-1})m_{\delta}}{2x^THy + x^T(y^{-1})x + m_{\delta}(y^{-1})m_{\delta}}$
λ_{N}
$= 2HH^{T} \times -2Hy + 2(VC_{o}^{-1}) \times -2(VC_{o}^{-1})m_{o}$ yet D
$\Rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$
map solumon
The sommen in pile TI-1
The solution in MLE WE = (HH ^T) Hy MLE
We can see short the MAP work when we have book
tenoubledge about prior dustribution and given dataset.
In case of MLE, we only know training data {(yi, xi)};=1
while in MAP, les are given prior distibusion of w.
-> MAP is generalized version of MLE.
I Je ke don't know prior knowledge, we boil down to
MLE by considering $C_0 = a I \times ith a \to \infty$ $V_{MAP} \xrightarrow{C_0 \to 0} (HH^T)^{-1} Hy = V_{MLE}$ $V_{MAP} \xrightarrow{C_0 \to 0} (HH^T)^{-1} Hy = V_{MLE}$
I we do not have dataset then we tran into priver
dust sib wer'or maximization
$H \to 0 \implies \text{VMAP} = (0 + VC_0^{-1})^{-1} (0 + C_0^{-1} m_0 V)$ $= (VC_0^{-1})^{-1} (VC_0^{-1}) m_0 = m_0$
$\frac{1}{10000000000000000000000000000000000$

-> Another seek of MAP is least square + regularization min Ily - HTx II + (x-mo) T (V Co) (x-mo) x	L
min 1y-HTx11+ (x-mo)+ (VCo+) (x-mo)	
x 2 /	
Beart square error pernatized term	
by prior knowledge.	
End Q4	

Binary classification voith Logistic gregoesion and training data $\{(t_n,x_n)\}_{n=1}^N$ Cross-entropy loss: $(x) = -\sum_{n=1}^{\infty} (l_n(y_n)t_n + l_n(1-y_n)(1-t_n))$ $= - \stackrel{N}{\succeq} \left(ln \left(\sigma'(\mathbf{x}^{\mathsf{T}}b(\mathbf{x}_n)) \right) t_n + ln \left(1 - \sigma'(\mathbf{x}^{\mathsf{T}}b(\mathbf{x}_n)) \right) \left(1 - t_n \right) \right)$ The gradient of L(ve): $\sum_{n=1}^{N} \left[\ln \left(\sigma' \left(\kappa^{T} b \left(\chi_{n} \right) \right) \right) t_{n} + \ln \left(1 - \sigma' \left(\kappa^{T} b \left(\chi_{n} \right) \right) \right) \left(1 - t_{n} \right) \right]$ $= -\frac{N}{2} \left(\nabla_{\mathcal{K}} \ln \left(\sigma' \left(\mathcal{K}^{\mathsf{T}} b \left(x_{n} \right) \right) \right) + 1$ + 7. ln (1- or (kTb (2,))(1-tn)) · Consider Vx ln (o (xTb (xn))) $\nabla_{v} \delta(\mathbf{w}^{\mathsf{T}}b(\mathbf{x}_n))$ of (xT b (xn))) of (wtb (2m))) (1-of (wtb (2n))) b (2n) of (xTb (xn)))... $(1-o'(\kappa^Tb(x_n)))b(x_n)$ $\nabla_{x} \ln \left(1 - \sigma'(x^T b(x_n)) \right)$

$$= \frac{1}{1 - \sigma'(x^Tb(x_n))} \nabla_x \left(1 - \sigma'(x^Tb(x_n))\right)$$

$$= \frac{1}{1 - \sigma'(x^Tb(x_n))} \nabla_x \left(-\sigma'(x^Tb(x_n))\right)$$

$$= \frac{1}{1 - \sigma'(x^Tb(x_n))} \nabla_x \left(-\sigma'(x^Tb(x_n))\right)$$

$$= \frac{-1}{4-\delta'(x^{T}b(x_{n}))} \left(1-\beta'(x^{T}b(x_{n}))\right)b(x_{n})$$

$$= - o'(xTb(xn))b(xn)$$

Therefore
$$g(x) = \sqrt{\frac{1}{x}} L(x) = -\sum_{n=1}^{N} b(x_n) (t_n - o'(x^Tb(x_n)))$$

. (a.lgorishm	
1/	Initialize W_0 ; $S_0 = 0$; $\Delta_0 = 0$	
2/	For $i=1,2,$ until termination ority	eava holds
3/	Update Si: \[\Si] = r \[s_{i-1} \] + (1-y) \[g_i]	.e
4	Bias connections: $3 = 5$: $\frac{1}{1-y^i}$	
5/	Vedate $V_i = 2V_{i-1} + (1-2)g_i$	
	Update $V_i = \omega V_{i-1} + (1-\omega) g_i$ Bus correction $V: V = V_i \frac{1}{1-\omega^i}$	_
7/	Vedate parameter W: Wi= Wi-1-1	$\left(diag(s) + \varepsilon I\right)$
<u>g</u> /	Refun W	
Potential	nerits of Adam:	
	t combines benegits of Momentum SGD and RMSP	Prap
b	RMS Propéharaeturistic: adaptively change the	learning rate
	Momentum characteristic: accelerate convergence.	
21 It	includes bias correction which helps gixing the bras	g rehan
	izing momenit estimates at zero -> note acci	
estimat	tions, specially in early steps of training.	
3/ Han	tions, specially in early steps of training. Idles noisy data and works well with sequale of	radients
m orl	essectively compared to Momentum SGD and RMSProp	
4 Car	r get good perjogmance vithout too much eyest	t in
	tuning hyperparameturs.	End Q6
	u ·	

End 07 -

8
$\{(x_n \in \mathbb{R}^D)\}_{n=1}^N$
LA DCA America
$\max = 11 G x_0 V_0$
max $= 11 \text{ GF} \times_n \text{ N}$ $G \in \mathbb{R}^{D \times K}, G = I_K$ $n = 1$
Fixed point iturations algorithm:
1/ Initialize BEZ-1, 13NXK arbitearity
2/ Repeat until termination conditions hold
3/ U, S, VT < thinsvD (HB)
$G \leftarrow UV^T$
5/ B - sign (HTG)
6/ Ceturn G
s/ Cawiii u
End Q8
EE 6363. Advanced Machine Learning
EE 6363. Advanced Machine Leconning Teen Van Nguyen xdp 076
vdo 076