

SEQUENCE LISTING

<110> DeLaney, William IV
Locality: STEPHEN ALISTER
Chen, Robert Yung Ming
Bartholomeusz, Angeline
Isom, Harriet

<120> An assay

<130> 2378750/EJH

<140> 09/781,891
<141> 2001-02-02

<150> 60/179,948
<151> 2000-02-03

<160> 22

<170> PatentIn version 3.0

<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 1
gcctcatttt gtgggtcacc ata

23

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 2
tctctgacat actttccaaat

20

<210> 3
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 3
tgcacgattc ctgctcaa

18

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 4

tttctcaaag gtggagacag

20

<210> 5
<211> 181
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Reference HBV
(Formula I)

<220>
<221> variant
<222> (2)..(2)
<223> X = N or D

<220>
<221> variant
<222> (17)..(17)
<223> X = I or P

<220>
<221> variant
<222> (29)..(29)
<223> X = I or V

<220>
<221> variant
<222> (35)..(35)
<223> X = S or D

<220>
<221> variant
<222> (44)..(44)
<223> X = T or N

<220>
<221> variant
<222> (46)..(46)
<223> X = R or N

<220>
<221> variant
<222> (47)..(47)
<223> X = N or I

<220>
<221> variant
<222> (48)..(48)
<223> X = any amino acid

<220>
<221> variant
<222> (49)..(49)
<223> X = N

<220>
<221> variant
<222> (50)..(50)
<223> X = N or Y or H

<220>
<221> variant
<222> (52)..(52)

<223> X = H or Y

<220>
<221> variant
<222> (53)..(53)
<223> X = G or R

<220>
<221> variant
<222> (54)..(56)
<223> X = any amino acid

<220>
<221> variant
<222> (57)..(57)
<223> X = D or N

<220>
<221> variant
<222> (60)..(60)
<223> X = D or N

<220>
<221> variant
<222> (61)..(61)
<223> X = S or Y

<220>
<221> variant
<222> (65)..(65)
<223> X = N or Q

<220>
<221> variant
<222> (71)..(71)
<223> X = L or M

<220>
<221> variant
<222> (75)..(75)
<223> X = K or Q

<220>
<221> variant
<222> (77)..(77)
<223> X = Y or F

<220>
<221> variant
<222> (79)..(79)
<223> X = R or W

<220>
<221> variant
<222> (84)..(84)
<223> X = Y or L

<220>
<221> variant
<222> (85)..(85)
<223> X = S or A

<220>
<221> variant

<222> (89)..(89)
<223> X = I or V

<220>
<221> variant
<222> (95)..(95)
<223> X = I or L

<220>
<221> variant
<222> (99)..(99)
<223> X = V or G

<220>
<221> variant
<222> (114)..(114)
<223> X = C or L

<220>
<221> variant
<222> (115)..(115)
<223> X = A or S

<220>
<221> variant
<222> (116)..(116)
<223> X = V or M

<220>
<221> variant
<222> (117)..(117)
<223> X = V or T

<220>
<221> variant
<222> (118)..(118)
<223> X = R or C

<220>
<221> variant
<222> (122)..(122)
<223> X = F or P

<220>
<221> variant
<222> (125)..(125)
<223> X = L or V

<220>
<221> variant
<222> (126)..(126)
<223> X = A or V

<220>
<221> variant
<222> (128)..(128)
<223> X = S or A

<220>
<221> variant
<222> (130)..(130)
<223> M = amino acid 550

<220>

<221> variant
<222> (133)..(133)
<223> X = V or L or M

<220>
<221> variant
<222> (138)..(138)
<223> X = K or R

<220>
<221> variant
<222> (139)..(139)
<223> X = S or T

<220>
<221> variant
<222> (140)..(140)
<223> X = V or G

<220>
<221> variant
<222> (141)..(141)
<223> X = Q or E

<220>
<221> variant
<222> (143)..(143)
<223> X = L or S or R

<220>
<221> variant
<222> (145)..(145)
<223> X = S or F

<220>
<221> variant
<222> (147)..(147)
<223> X = F or Y

<220>
<221> variant
<222> (148)..(148)
<223> X = T or A

<220>
<221> variant
<222> (149)..(149)
<223> X = A or S

<220>
<221> variant
<222> (150)..(150)
<223> X = V or I

<220>
<221> variant
<222> (151)..(151)
<223> X = T or C

<220>
<221> variant
<222> (152)..(152)
<223> X = F or V

<220>
<221> variant
<222> (153)..(153)
<223> X = F or V

<220>
<221> variant
<222> (156)..(156)
<223> X = S or D

<220>
<221> variant
<222> (157)..(157)
<223> X = L or V

<220>
<221> variant
<222> (162)..(162)
<223> X = N

<220>
<221> variant
<222> (164)..(165)
<223> X = N or Q

<220>
<221> variant
<222> (174)..(174)
<223> X = N

<220>
<221> variant
<222> (179)..(179)
<223> X = V or I

<400> 5
Ser Xaa Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His
1 5 10 15

Glx Pro Leu His Pro Ala Ala Met Pro His Leu Leu Xaa Gly Ser Ser
20 25 30

Gly Leu Xaa Arg Tyr Val Ala Arg Leu Ser Ser Xaa Ser Xaa Xaa Xaa
35 40 45

Xaa Glx Gln Xaa Xaa Xaa Xaa Xaa Xaa Leu His Xaa Xaa Cys Ser Arg
50 55 60

Xaa Leu Tyr Val Ser Leu Xaa Leu Leu Tyr Xaa Thr Xaa Gly Xaa Lys
65 70 75 80

Leu His Leu Xaa Xaa His Pro Ile Xaa Leu Gly Phe Arg Lys Xaa Pro
85 90 95

Met Gly Xaa Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala
100 105 110

Ile Xaa Xaa Xaa Xaa Arg Ala Phe Xaa His Cys Xaa Xaa Phe Xaa
115 120 125

Tyr Met Asp Asp Xaa Val Leu Gly Ala Xaa Xaa Xaa His Xaa Glu
130 135 140

Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Leu Xaa Xaa Gly Ile His
145 150 155 160

Leu Xaa Pro Xaa Lys Thr Lys Arg Trp Gly Tyr Ser Leu Xaa Phe Met
165 170 175

Gly Tyr Xaa Ile Gly
180

<210> 6
<211> 226
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Reference HBV
(Formula II)

<220>
<221> variant
<222> (2)..(2)
<223> X = E or G or D

<220>
<221> variant
<222> (3)..(3)
<223> X = N or S or K

<220>
<221> variant
<222> (4)..(4)
<223> X = I or T

<220>
<221> variant
<222> (5)..(5)
<223> X = T or A

<220>
<221> variant
<222> (8)..(8)
<223> X = F or L

<220>
<221> variant
<222> (10)..(10)
<223> X = G or R

<220>
<221> variant
<222> (13)..(13)
<223> X = L or R

<220>
<221> variant
<222> (18)..(18)
<223> X = G or V

<220>
<221> variant
<222> (19)..(19)
<223> X = F or C

<220>

```
<221> variant
<222> (21)..(21)
<223> X = L or S or W

<220>
<221> variant
<222> (24)..(24)
<223> X = R or K

<220>
<221> variant
<222> (26)..(26)
<223> X = L or R

<220>
<221> variant
<222> (27)..(27)
<223> X = T or K

<220>
<221> variant
<222> (30)..(30)
<223> X = Q or K

<220>
<221> variant
<222> (31)..(31)
<223> X = D or H

<220>
<221> variant
<222> (40)..(40)
<223> X = N

<220>
<221> variant
<222> (44)..(44)
<223> X = G or E or A

<220>
<221> variant
<222> (45)..(45)
<223> X = S or A or V or T or L

<220>
<221> variant
<222> (46)..(46)
<223> X = P or T

<220>
<221> variant
<222> (47)..(47)
<223> X = V or R or T or K or G

<220>
<221> variant
<222> (49)..(49)
<223> X = L or P

<220>
<221> variant
<222> (51)..(51)
<223> X = Q or L or K
```

<220>
<221> variant
<222> (52)..(52)
<223> X = N

<220>
<221> variant
<222> (53)..(53)
<223> X = S or L

<220>
<221> variant
<222> (56)..(56)
<223> X = P or Q

<220>
<221> variant
<222> (57)..(57)
<223> X = T or I

<220>
<221> variant
<222> (59)..(59)
<223> X = N or S

<220>
<221> variant
<222> (61)..(61)
<223> X = S or L

<220>
<221> variant
<222> (63)..(63)
<223> X = T or I

<220>
<221> variant
<222> (64)..(64)
<223> X = S or C

<220>
<221> variant
<222> (68)..(68)
<223> X = I or T

<220>
<221> variant
<222> (70)..(70)
<223> X = P or A

<220>
<221> variant
<222> (78)..(78)
<223> X = R or Q

<220>
<221> variant
<222> (85)..(85)
<223> X = F or C

<220>
<221> variant
<222> (100)..(100)
<223> X = Y or C

```
<220>
<221> variant
<222> (105)..(105)
<223> X = P or H or S

<220>
<221> variant
<222> (110)..(110)
<223> X = I or L

<220>
<221> variant
<222> (112)..(112)
<223> X = G or R

<220>
<221> variant
<222> (113)..(113)
<223> X = S or T

<220>
<221> variant
<222> (114)..(114)
<223> X = T or S

<220>
<221> variant
<222> (118)..(118)
<223> X = T or V or A

<220>
<221> variant
<222> (119)..(119)
<223> X = G or E or Q

<220>
<221> variant
<222> (120)..(120)
<223> X = P or A or s

<220>
<221> variant
<222> (122)..(122)
<223> X = K or R

<220>
<221> variant
<222> (125)..(125)
<223> X = T or M

<220>
<221> variant
<222> (126)..(126)
<223> X = T or I or S or A

<220>
<221> variant
<222> (127)..(127)
<223> X = P or T or A or I or L

<220>
<221> variant
<222> (128)..(128)
```

```
<223> X = A or V  
  
<220>  
<221> variant  
<222> (131)..(131)  
<223> X = N or T  
  
<220>  
<221> variant  
<222> (133)..(133)  
<223> X = M or K or L  
  
<220>  
<221> variant  
<222> (134)..(134)  
<223> X = F or Y or I  
  
<220>  
<221> variant  
<222> (136)..(136)  
<223> X = S or Y  
  
<220>  
<221> variant  
<222> (137)..(137)  
<223> X = C or S  
  
<220>  
<221> variant  
<222> (140)..(140)  
<223> X = T or I or S  
  
<220>  
<221> variant  
<222> (143)..(143)  
<223> X = T or S  
  
<220>  
<221> variant  
<222> (144)..(144)  
<223> X = D or A  
  
<220>  
<221> variant  
<222> (146)..(146)  
<223> X = N  
  
<220>  
<221> variant  
<222> (155)..(155)  
<223> X = S or T  
  
<220>  
<221> variant  
<222> (158)..(158)  
<223> X = F or L  
  
<220>  
<221> variant  
<222> (159)..(159)  
<223> X = A or G or V  
  
<220>  
<221> variant
```

<222> (160)..(160)
<223> X = K or R or T

<220>
<221> variant
<222> (161)..(161)
<223> X = Y or F

<220>
<221> variant
<222> (165)..(165)
<223> X = W or G

<220>
<221> variant
<222> (166)..(166)
<223> X = A or G

<220>
<221> variant
<222> (168)..(168)
<223> X = V or A

<220>
<221> variant
<222> (170)..(170)
<223> X = F or L

<220>
<221> variant
<222> (174)..(174)
<223> X = S or N

<220>
<221> variant
<222> (176)..(176)
<223> X = V or A

<220>
<221> variant
<222> (177)..(177)
<223> X = P or Q

<220>
<221> variant
<222> (182)..(182)
<223> X = W or C or S

<220>
<221> variant
<222> (183)..(183)
<223> X = F or C

<220>
<221> variant
<222> (184)..(184)
<223> X = V or D or A

<220>
<221> variant
<222> (185)..(185)
<223> X = G or E

<220>

```
<221> variant
<222> (187)..(187)
<223> X = S or F

<220>
<221> variant
<222> (189)..(189)
<223> X = T or I

<220>
<221> variant
<222> (192)..(192)
<223> X = L or P

<220>
<221> variant
<222> (193)..(193)
<223> X = S or L

<220>
<221> variant
<222> (194)..(194)
<223> X = A or V

<220>
<221> variant
<222> (197)..(197)
<223> X = M or I

<220>
<221> variant
<222> (198)..(198)
<223> X = M or I

<220>
<221> variant
<222> (200)..(200)
<223> X = Y or F

<220>
<221> variant
<222> (202)..(202)
<223> X = G or E

<220>
<221> variant
<222> (204)..(204)
<223> X = S or N or K

<220>
<221> variant
<222> (205)..(205)
<223> X = L or Q

<220>
<221> variant
<222> (206)..(206)
<223> X = Y or F or H or C

<220>
<221> variant
<222> (207)..(207)
<223> X = S or G or N or D or T
```

<220>
<221> variant
<222> (209)..(209)
<223> X = V or L

<220>
<221> variant
<222> (210)..(210)
<223> X = S or N

<220>
<221> variant
<222> (213)..(213)
<223> X = I or M or L

<220>
<221> variant
<222> (220)..(220)
<223> X = F or C

<220>
<221> variant
<222> (221)..(221)
<223> X = C or Y

<220>
<221> variant
<222> (223)..(223)
<223> X = W or R

<220>
<221> variant
<222> (224)..(224)
<223> X = V or A

<220>
<221> variant
<222> (225)..(225)
<223> X = Y or I or S

<400> 6
Met Xaa Xaa Xaa Xaa Ser Gly Xaa Leu Xaa Pro Leu Xaa Val Leu Gln
1 5 10 15

Ala Xaa Xaa Phe Xaa Leu Thr Xaa Ile Xaa Xaa Ile Pro Xaa Ser Leu
20 25 30

Xaa Ser Trp Trp Thr Ser Leu Xaa Phe Leu Gly Xaa Xaa Xaa Cys
35 40 45

Xaa Gly Xaa Xaa Xaa Gln Ser Xaa Xaa Ser Xaa His Xaa Pro Xaa Xaa
50 55 60

Cys Pro Pro Xaa Cys Xaa Gly Tyr Arg Trp Met Cys Leu Xaa Arg Phe
65 70 75 80

Ile Ile Phe Leu Xaa Ile Leu Leu Cys Leu Ile Phe Leu Leu Val
85 90 95

Leu Leu Asp Xaa Gln Gly Met Leu Xaa Val Cys Pro Leu Xaa Pro Xaa
100 105 110

Xaa Xaa Thr Thr Ser Xaa Xaa Xaa Cys Xaa Thr Cys Xaa Xaa Xaa Xaa
115 120 125

Gln Gly Xaa Ser Xaa Xaa Pro Xaa .Xaa Cys Cys Xaa Lys Pro Xaa Xaa
130 135 140

Gly Xaa Cys Thr Cys Ile Pro Ile Pro Ser Xaa Trp Ala Xaa Xaa Xaa
145 150 155 160

Xaa Leu Trp Glu Xaa Xaa Ser Xaa Arg Xaa Ser Trp Leu Xaa Leu Leu
165 170 175

Xaa Xaa Phe Val Gln Xaa Xaa Xaa Leu Xaa Pro Xaa Val Trp Xaa
180 185 190

Xaa Xaa Ile Trp Xaa Xaa Trp Xaa Trp Xaa Pro Xaa Xaa Xaa Ile
195 200 205

Xaa Xaa Pro Phe Xaa Pro Leu Leu Pro Ile Phe Xaa Xaa Leu Xaa Xaa
210 215 220

Xaa Ile
225

<210> 7

<211> 261

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Reference HBV
(Formula III)

<220>

<221> variant

<222> (3)..(3)

<223> X = A or C

<220>

<221> variant

<222> (10)..(10)

<223> X = T or A

<220>

<221> variant

<222> (11)..(11)

<223> X = C or T

<220>

<221> variant

<222> (15)..(15)

<223> X = C or T

<220>

<221> variant

<222> (21)..(21)

<223> X = C or T

<220>

<221> variant

<222> (27)..(27)

<223> X = C or T

<220>

<221> variant

<222> (45)..(45)

<223> X = A or G

<220>
<221> variant
<222> (48)..(48)
<223> X = T or C

<220>
<221> variant
<222> (59)..(59)
<223> X = C or G

<220>
<221> variant
<222> (61)..(61)
<223> X = G or A

<220>
<221> variant
<222> (65)..(65)
<223> X = T or A

<220>
<221> variant
<222> (76)..(76)
<223> X = T or G

<220>
<221> variant
<222> (86)..(86)
<223> X = T or C

<220>
<221> variant
<222> (96)..(96)
<223> X = C or T

<220>
<221> variant
<222> (134)..(134)
<223> X = T or C

<220>
<221> variant
<222> (153)..(153)
<223> X = T or C

<220>
<221> variant
<222> (164)..(164)
<223> X = T or C

<220>
<221> variant
<222> (182)..(182)
<223> X = A or T

<220>
<221> variant
<222> (203)..(203)
<223> X = A or G

<220>
<221> variant

<222> (208)..(208)
<223> X = T or G

<220>
<221> variant
<222> (220)..(220)
<223> X = A or T

<220>
<221> variant
<222> (222)..(222)
<223> X = A or G

<220>
<221> variant
<222> (225)..(225)
<223> X = T or G

<220>
<221> variant
<222> (228)..(228)
<223> X = A or G

<220>
<221> variant
<222> (243)..(243)
<223> X = T or C

<220>
<221> variant
<222> (249)..(249)
<223> X = T or C

<220>
<221> variant
<222> (254)..(254)
<223> X = T or C

<400> 7
Ala Cys Xaa Ala Ala Ala Cys Cys Thr Xaa Xaa Gly Gly Ala Xaa Gly
1 5 10 15
Gly Ala Ala Ala Xaa Thr Gly Cys Ala Cys Xaa Thr Gly Thr Ala Thr
20 25 30
Thr Cys Cys Cys Ala Thr Cys Cys Cys Ala Thr Cys Xaa Thr Cys Xaa
35 40 45
Thr Gly Gly Gly Cys Thr Thr Cys Gly Xaa Ala Ala Xaa Ala Thr
50 55 60
Xaa Cys Cys Thr Ala Thr Gly Gly Ala Gly Xaa Gly Gly Cys
65 70 75 80
Cys Thr Cys Ala Gly Xaa Cys Cys Gly Thr Thr Thr Cys Thr Cys Xaa
85 90 95
Thr Gly Gly Cys Thr Cys Ala Gly Thr Thr Thr Ala Cys Thr Ala Gly
100 105 110
Thr Gly Cys Cys Ala Thr Thr Thr Gly Thr Thr Cys Ala Gly Thr Gly
115 120 125
Gly Thr Thr Cys Gly Xaa Ala Gly Gly Cys Thr Thr Thr Cys Cys
17

130	135	140													
Cys	Cys	Cys	Ala	Cys	Thr	Gly	Thr	xaa	Thr	Gly	Gly	Cys	Thr	Thr	Thr
145					150				155				160		
Cys	Ala	Gly	Xaa	Thr	Ala	Thr	Ala	Thr	Gly	Gly	Ala	Thr	Gly	Ala	Thr
					165				170				175		
Gly	Thr	Gly	Gly	Thr	Xaa	Thr	Thr	Gly	Gly	Gly	Gly	Cys	Cys	Ala	
					180			185				190			
Ala	Gly	Thr	Cys	Thr	Gly	Thr	Ala	Cys	Ala	Xaa	Cys	Ala	Thr	Cys	Xaa
							195	200				205			
Thr	Gly	Ala	Gly	Thr	Cys	Cys	Thr	Thr	Thr	Xaa	Thr	Xaa	Cys	Cys	
					210		215			220					
Xaa	Cys	Thr	Xaa	Thr	Thr	Ala	Cys	Cys	Ala	Ala	Thr	Thr	Thr	Thr	Cys
						225	230			235					240
Thr	Thr	Xaa	Thr	Gly	Thr	Cys	Thr	Xaa	Thr	Gly	Gly	Gly	Xaa	Ala	Thr
					245			250					255		
Ala	Cys	Ala	Thr	Thr											
					260										

```

<210> 8
<211> 230
<212> PRT
<213> consensus

<220>
<221> misc_feature
<222> (2)..(2)
<223> X = N

<220>
<221> misc_feature
<222> (49)..(49)
<223> X = N

<220>
<221> misc_feature
<222> (52)..(52)
<223> X = N

<220>
<221> misc_feature
<222> (53)..(53)
<223> X = N

<220>
<221> misc_feature
<222> (55)..(55)
<223> X = N

<220>
<221> misc_feature
<222> (56)..(56)
<223> X = N

<220>
<221> misc_feature
<222> (65)..(65)

```

<223> X = N

<220>

<221> misc_feature
<222> (69)..(69)
<223> X = N

<220>

<221> misc_feature
<222> (75)..(75)
<223> X = N

<220>

<221> misc_feature
<222> (195)..(195)
<223> X = N

<220>

<221> misc_feature
<222> (209)..(209)
<223> X = N

<220>

<221> misc_feature
<222> (211)..(211)
<223> X = N

<220>

<221> misc_feature
<222> (222)..(222)
<223> X = N

<400> 8

Ser Xaa Asp Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr
1 5 10 15

His Ile Pro Pro Leu His Pro Ala Ala Met Pro His Leu Leu Ile Val
20 25 30

Gly Ser Ser Gly Leu Ser Asp Arg Tyr Val Ala Arg Leu Ser Ser Thr
35 40 45

Xaa Ser Arg Xaa Xaa Ile Xaa Xaa Tyr His Gln His Tyr Gly Arg Asp
50 55 60

Xaa Leu His Asp Xaa Ser Tyr Cys Ser Arg Xaa Gln Leu Tyr Val Ser
65 70 75 80

Leu Leu Met Leu Leu Tyr Lys Gln Thr Tyr Phe Gly Arg Trp Lys Leu
85 90 95

His Leu Tyr Leu Ser Ala His Pro Ile Ile Val Leu Gly Phe Arg Lys
100 105 110

Ile Leu Pro Met Gly Val Gly Leu Ser Pro Phe Leu Leu Ala Gln
115 120 125

Phe Thr Ser Ala Ile Cys Leu Ala Ser Val Met Val Thr Arg Cys Arg
130 135 140

Ala Phe Phe Pro His Cys Leu Val Ala Val Phe Ser Ala Tyr Met Asp
145 150 155 160

Asp Val Leu Met Val Leu Gly Ala Lys Arg Ser Thr Val Gly Gln Glu
165 170 175

His Leu Ser Arg Glu Ser Phe Leu Phe Tyr Thr Ala Ala Ser Val Ile
180 185 190

Thr Cys Xaa Ser Phe Val Leu Leu Ser Asp Leu Val Gly Ile His Leu
195 200 205

Xaa Pro Xaa Gln Lys Thr Lys Arg Trp Gly Tyr Ser Leu Xaa Phe Met
210 215 220

Gly Tyr Val Ile Ile Gly
225 230

<210> 9
<211> 426
<212> DNA
<213> HBV

<400> 9
atccctgctgc tatgcctcat cttcttgggtt gttcttcgg actaccaagg tatgttgtct 60
gtttgtcctc tacttccaag aacatcaact accagcacgg gaccatgcaa gacctgcacg 120
attcctgctc aaggaacctc tatgtttccc tcttcttgct gtacaaaacc ttcggacgga 180
aactgcacct gtattcccat cccatcatct tgggcttgc caagattcct atgggagtgg 240
gcctcagtcc gtttctccgt gctcagttta cttagtgcatt ttgttcagtg gttcgttaggg 300
ctttccccca ctgtttggct ttcaagtata tggatgtatgt ggtattgggg gccaagtctg 360
tacaacatct tgagtccctt ttacactcta ttaccaattt tctttgtct ttgggtatac 420
atttga 426

<210> 10
<211> 425
<212> DNA
<213> HBV

<400> 10
atccctgctgc tatgcctcat cttcttgggtt gttcttcgg actatcaagg tatgttgccc 60
gtttgtcctc taattccagg atcatcaacc accagcacag gaccatgcaa aacctgcacg 120
actccctgctc aaggaacctc tatgtttccc tcatgttgct gtacaaaacc tacggacgga 180
aactgcacct gtattcccat cccatcatct tgggcttgc caaaataccat atgggagtgg 240
gcctcagtcc gtttctccgt gctcagttta cttagtgcatt ttgttcagtg gttcgttaggg 300
ctttccccca ctgtctggct ttcaagtata tggatgtatgt ggttttgggg gccaagtctg 360
tacaacatct tgagtccctt tatgccgctg ttaccaattt tctttgtct ttgggtatac 420
attna 425

<210> 11
<211> 426
<212> DNA
<213> HBV

<400> 11
atccctgctgc tatgcctcat cttcttgggtt gttcttcgg actaccaagg tatgttgccc 60
gtttgtcctc tacttccagg aacatcaact accagcacgg gaccatgcaa gacctgcacg 120
attcctgctc aaggaacctc tatgtttccc tcttcttggt gtacaaaacc ttcggacgga 180
aactgcacct gtattcccat cccatcatcc tgggcttgc caagattcct atgggagtgg 240
gcctcagtcc gtttctccgt gctcagttta cttagtgcatt ttgttcagtg gttcgcaggg 300
ctttccccca ctgtttggct ttcaagtata tggatgtatgt ggtattgggg gccaagtctg 360
tacaacatct tgagtccctt ttacactcta ttaccaattt tctttgtct ttgggtatac 420
attna 426

<210> 12
<211> 426
<212> DNA
<213> HBV

<400> 12
atcctgctgc tatgcctcat cttcttgg gttcttctgg actatcaagg tatgttgc
gtttgcctc taattccagg atcttcaact accagcacgg gaccatgc
actcctgctc aaggaaccc tatgtatccc tcctgttgct gtaccaaacc
aattgcacct gtattcccat cccatcatcc tgggcttgc gaaaattc
gcctcagccc gtttctccct gctcagttta cttagtgc
ctttccccca ctgtttgct ttca
tacagcatct tgagtccctt ttaccgc
atttaa

<210> 13
<211> 426
<212> DNA
<213> HBV

<400> 13
atcctgctgc tatgcctcat cttcttgg gttcttctgg actatcaagg tatgttgc
gtttgcctc taattccagg atcttcaaca accagcacgg gaccatgc
actcctgctc aaggaaccc tatgtatccc tcctgttgct gtaccaaacc
aattgcacct gtattcccat cccatcatcc tgggcttgc gaaaattc
gcctcagccc gtttctccct gctcagttta cttagtgc
ctttccccca ctgtttgct ttca
tacagcatct tgagtccctt ttaccgc
atttaa

<210> 14
<211> 426
<212> DNA
<213> HBV

<400> 14
atcctgctgc tatgcctcat cttcttgg gttcttctgg actatcaagg tatgttgc
gtttgcctc taattccagg atcctcaacc accagcacgg gaccatgc
actcctgctc aaggaaccc tatgtatccc tcctgttgct gtaccaaacc
aattgcacct gtattcccat cccatcatcc tgggcttgc gaaaattc
gcctcagccc gtttctccct gctcagttta cttagtgc
ctttccccca ctgtttgct ttca
tacagcatct tgagtccctt ttaccgc
atttaa

<210> 15
<211> 426
<212> DNA
<213> HBV

<400> 15
atcctgctgc tatgcctcat cttcttattt gttcttctgg attatcaagg tatgttgc
gtttgcctc taattccagg atcaacaaca accagta
actcctgctc aaggcaactc tatgttccc tcata
aattgcacct gtattcccat cccatcg
gcctcagtc gtttctctt gctcagttta cttagtgc
ctttccccca ctgtttgct ttca
tacagcatcg tgagtccctt tata
atttaa

<210> 16
<211> 426
<212> DNA
<213> HBV

<400> 16
atcctgctgc tatgcctcat cttcttgg gttcttctgg actaccaagg tatgttgc
gtttgcctc tacttccagg aacatcaacc accagcacgg gaccatgc
21

atccctgctc	aaggaacctc	tatgtttccc	tcttggttgc	gtacaaaacc	ttcggacgga	180
aactgcactt	gtattcccat	cccatcatcc	tgggcttcg	caagattcct	atgggagggg	240
gcctcagtcc	gtttctccctg	gctcagttta	ctagtgccat	ttgttcagtg	ttcgttaggg	300
ctttccccca	ctgtttggct	ttcagttata	tggatgtatgt	ggtattgggg	gccaagtctg	360
tacaacatct	tgagtcctt	tttacctcta	ttaccaattt	tctttgtct	ttgggtatac	420
atttga						426

<210> 17
<211> 426
<212> DNA
<213> HBV

<400>	17					
atccctgctgc	tatgcctcat	cttcttgg	gttcttctgg	actaccaagg	tatgttgccc	60
gtttgcctc	tacttccagg	aacatcaact	accagcacgg	gaccatgcaa	gacctgcacg	120
atccctgctc	aaggaacctc	tatgtttccc	tcttggttgc	gtacaaaacc	ttcggacgga	180
aactgcactt	gtattcccat	cccatcatcc	tgggcttcg	caagattcct	atgggagggg	240
gcctcagtcc	gtttctccctg	gctcagttta	ctagtgccat	ttgttcagtg	ttcgttaggg	300
ctttccccca	ctgtttggct	ttcagttata	tggatgtatgt	ggtattgggg	gccaagtctg	360
tacaacatct	tgagtcctt	tttacctcta	ttaccaattt	tctttgtct	ttgggtatac	420
atttaa						426

<210> 18
<211> 426
<212> DNA
<213> HBV

<400>	18					
atccctgctgc	tatgcctcat	cttcttgg	gttcttctgg	actatcaagg	tatgttgccc	60
gtttgcctc	taattccagg	atcccaaca	accagcacgg	gaccatgccc	gacctgcatg	120
actactgctc	aaggaacctc	tatgtatccc	tccctggttgc	gtaccaaacc	ttcggacgga	180
aattgcacct	gtattcccat	cccatcatcc	tgggcttcg	gaaaattcct	atgggagtgg	240
gcctcagccc	gtttctccctg	gctcagttta	ctagtgccat	ttgttcagtg	ttcgttaggg	300
ctttccccca	ctgtttggct	ttcagttata	tggatgtatgt	ggtattgggg	gccaagtctg	360
tacagcatct	tgagtcctt	tttacccgtg	ttaccaattt	tctttgtct	ttgggtatac	420
atttaa						426

<210> 19
<211> 426
<212> DNA
<213> HBV

<400>	19					
atccctgctgc	tatgcctcat	cttcttgg	gttcttctgg	actatcaagg	tatgttgccc	60
gtttgcctc	taattccagg	atctcaacc	accagcacgg	gaccatgcag	gacctgcacg	120
actccctgctc	aaggcaactc	tatgtatccc	tccctggttgc	gtaccaaacc	ttcggacgga	180
aattgcacct	gtattcccat	cccatcatct	tgggcttcg	gaaaattcct	atgggagtgg	240
gcctcagccc	gtttctccctg	gctcagttta	ctagtgccat	ttgttcagtg	ttcgttaggg	300
ctttccccca	ctgtttggct	ttcagttata	tggatgtatgt	ggtattgggg	gccaagtctg	360
tacagcatct	tgagtcctt	tttacccgtg	ttaccaattt	tctttgtct	ttgggcatac	420
atttaa						426

<210> 20
<211> 426
<212> DNA
<213> HBV

<400>	20					
atccctgctgc	tatgcctcat	cttcttgg	gttcttctgg	actatcaagg	tatgttgccc	60
gtttgcctc	taattccagg	atcatcaacc	accagcacgg	gaccatgcaa	gacctgcaca	120
actccctgctc	aaggcaaccc	tatgtttccc	tcatggttgc	gtacaaaacc	tatggatgga	180
aactgcacct	gtattcccat	cccatcatct	tgggcttcg	caaaatacct	atgggagtgg	240
gcctcagtc	gtttctccctg	gctcagttta	ctagtgccat	ttgttcagtg	ttcgttaggg	300
ctttccccca	ctgtctggct	ttcagttata	tggatgtatgt	ggtattgggg	gccaagtctg	360

tacaacatct tgagtccctt tatgccgctg ttaccaattt tctttgtct ttgggtatac
atttaa

<210> 21
<211> 4084
<212> DNA
<213> HBV

tctctttacg	cggctccccc	gtctgtgcct	tctcatctgc	cggccgtgt	gcacttcgct	3360
tcaccctctgc	acgttgcatt	gagaccacccg	tgaacgcca	tcagatcctg	cccaaggct	3420
tacataagag	gactcttgg	ctcccgaa	tgtcaacgac	cgaccccttg	gcctacttca	3480
aagactgtgt	gtttaaggac	tgggaggagc	tgggggagga	gattaggtt	aaggctttg	3540
tattaggagg	ctgttaggc	aaattggct	gcccacccg	accatgcaac	ttttcacct	3600
ctgcctaatt	atctcttgc	catgtcccac	tgttcaagcc	tccaagctgt	gccttgggt	3660
gctttgggc	atggacattt	acccttataa	agaatttgg	gctactgtgg	agttactctc	3720
gttttgcct	tctgacttct	ttccctccgt	cagagatctc	ctagacaccg	cctcagctct	3780
gtatcgagaa	gccttagagt	ctccgtggca	ttgctcacct	caccatactg	cactcaggca	3840
agccattctc	tgctgggggg	aatttgcac	tctagctacc	tgggtggta	ataatttgg	3900
agatccagca	tccaggggatc	tagtagtcaa	ttatgttaat	actaacatgg	gtttaagat	3960
caggcaacta	ttgtgggttc	atatatctt	ccttactttt	ggaagagaga	ctgtacttga	4020
atatttggtc	tctttcgag	tgtggattcg	caactccttca	gcctatagac	caccaaattgc	4080
ccct						4084

<210> 22
<211> 4496
<212> DNA
<213> HBV 1.5 genome

<400> 22						
gatatccctgc	cttaatgcct	ttgtatgcatt	gtataacaagc	taaacaggct	ttcactttct	60
cgccaaactta	caaggcctt	ctaagtaaac	agtacatgaa	cctttacccc	gttgctcggc	120
aacggccttgc	tctgtgcctt	gtgtttgcgt	acgcacccccc	cactggctgg	ggcttggcca	180
taggcattca	gcccattca	ggaaaccttgc	tggctccctt	ggcgcattcc	actgcggAAC	240
tcctagccgc	ttgttttgc	cgcagccgg	ctggagcaaa	gctcatcgga	actgacaatt	300
ctgtcgcttc	ctcgcggaaa	tatacatcg	ttccatggct	gctaggctgt	actgccaact	360
ggatcctcg	cgggacgtcc	tttgcattcg	tcccgtggc	gctgaatccc	gcggacgacc	420
cctcgcgggg	ccgcttggg	ctctctcg	cccttctcc	tctgcccgtt	cagccgacca	480
cggggcgcac	ctctctttac	gcggctcc	cgtctgttcc	ttctcatctg	ccggtccgt	540
tgcacattcg	ttcacctctg	cacgttgc	ggagaccacc	gtgaacgccc	atcagatcct	600
gcccaagggtc	ttacataaga	ggactcttgg	actcccagca	atgtcaacga	ccgacattga	660
ggcctacttc	aaagactgtg	tgtttaagga	ctgggaggag	ctgggggagg	agatttagtt	720
aaaggctttt	gtttagggag	gctgtaggca	taaatttgg	tgcgcaccag	caccatgcaa	780
cttttcacc	tctgcctaat	catctcttgc	acatgtccca	ctgttcaagc	ctccaagctg	840
tgccttgggt	ggctttggg	catggacatt	gaccctata	aagaatttgg	agctactgtg	900
gagttactct	cggttttgc	ttctgacttc	tttccttcc	tcagagatct	cctagacacc	960
gcctcagctc	tgtatcgaga	agcccttagag	tctcctgagc	attgtctacc	tcaccatact	1020
gcactcaggc	aagccatttc	ctgttgggg	gaatttgc	ctctagtcac	ctgggtgggt	1080
aataatttgg	agatccgc	atccaggat	ctagtagtca	attatgttta	tactaacatg	1140
ggtttaaaga	tccaggca	attgtgggtt	catatatctt	gccttactt	tggaaagagag	1200
actgtacttgc	aatatttgg	ctcttgc	gtgtggattc	gcactcctcc	agcctataga	1260
ccaccaaattg	ccccctatctt	atcaacactt	ccggaaacta	ctgttggtag	acgacgggac	1320
cgaggcagg	ccccctagaag	aagaactccc	tcgcctcgca	gacgcagatc	tcaatcgccg	1380
cgtcgagaa	gatctcaatc	tcggaaatct	caatgttagt	attccttgg	ctcataaggt	1440
gggaaacttt	acggggctt	attcctctac	agtacctatc	ttaatccctg	aatggcaaac	1500
tccttcttgc	cctaagatcc	atttacaaga	ggacattatt	aatagggtgc	aacaatttgt	1560
gggcctctc	actgtaaatg	aaaagagaag	attgaaatta	attatgcctg	ctagattcta	1620
tcctaccctac	actaaatatt	tgcccttgc	caaaggatt	aaaccttatt	atccagatca	1680
ggtagttat	cattacttcc	aaaccagaca	ttatccat	actcttgg	aggctggat	1740
tctatataag	agggaaacc	cacgttgc	atcatttgc	gggtcaccat	attcttgg	1800
acaagagcta	cagcatgg	gttggatc	aaaacctcg	caaaggcatg	gggacgaatc	1860
tttctgttcc	caaccctctg	ggattcttc	ccgatcatca	gttggaccct	gcattcggag	1920
ccaaactcaa	caatccagat	tgggacttca	accccatcaa	ggaccactgg	ccagcagcca	1980
accaggtag	agtgggagca	ttcgggccc	ggctcacccc	tccacacggc	gttattttgg	2040
ggtggagccc	tcaggctcag	ggcatattga	ccacagtgtc	aacaattct	cctcctgcct	2100
ccaccaatcg	gcagtcagg	aggcagcc	cttccacca	tccacctcta	agagacagtc	2160
atcctcaggc	catgcagg	aatttccat	ccttccacca	agctctgcag	gatcccagag	2220
tcagggttct	gtatcttc	gctgtggct	ccagttcagg	aacagtaaac	cctcgtccga	2280
atattgcctc	tcacatctcg	tcaatctcg	cgaggactgg	ggaccctgtg	acgaacatgg	2340
agaacatcac	atcaggattc	ctaggacccc	tgctcggtt	acaggcgggg	tttttcttgc	2400
tgacaagaat	cctcacaata	ccgcagatc	tagactcg	gtggacttct	ctcaatttc	2460
taggggatc	ccccctgtgt	cttggccaaa	attcgcagtc	cccaacctcc	aatcaactcac	2520
caacccctcg	tcctccaatt	tgtctgg	atcgctggat	gtgtctgcgg	cgttttatca	2580

tattcctt	catcctgctg	ctatgcctca	tcttcatttt	ggttcttctg	gattatcaag	2640
gtatgttgc	cgtttgtcct	ctaattccag	gatcaacaac	aaccagtacg	ggaccatgca	2700
aaacctgcac	gactcctgct	caaggcaact	ctatgttcc	ctcatgttgc	tgtacaaaac	2760
ctacggatgg	aaattgcacc	tgatttcca	tcccacatgc	ctgggcttcc	gcaaaaatacc	2820
tatgggagtg	ggcctcagtc	cgtttctt	ggctcagtt	actagtgcctt	tttgttcagt	2880
ggttcgttagg	gctttcccc	actgtttggc	tttcagctat	atggatgtat	tggtaattggg	2940
ggccaagtct	gtacagcatc	gtgagtcctt	tttacccgt	tttaccaatt	ttcttttgc	3000
tctgggtata	catttaaac	ctaacaaaaac	aaaaagatgg	ggttatttccc	taaacttcat	3060
gggtcacata	attggaaagt	gggaaacttt	gccacaggat	catattgtac	aaaagatcaa	3120
acactgtttt	agaaaaacttc	ctgttaacag	gccttatgtat	tgaaaagat	gtcaaagaat	3180
tgtgggtctt	ttgggcttt	ctgctccatt	tacacaatgt	ggatatcctg	ccttaatgcc	3240
tttgtatgca	tgtatacaag	ctaaacaggc	tttacccccc	tcgccaactt	acaaggcctt	3300
tctaagtaaa	cagtagatga	acctttaccc	cggtgcctgg	caacggcctg	gtctgtgcctt	3360
agtgtttgct	gacgcacccc	ccactggctg	gggcttggcc	ataggccatc	agcgcacatgcg	3420
tggAACCTT	gtggctcc	tgccgatcca	tactgcggaa	ctccctagccg	tttgtttgc	3480
tcgcagccgg	tctggagcaa	agtcatcg	aactgacaat	tctgtcgtcc	tctcgcggaa	3540
atatacatcg	tttccatggc	tgctaggctg	tactgccaac	tggatcctt	gcgggacgtc	3600
ctttgtttac	gtcccgtcg	cgctgaatcc	cgcggacgac	ccctcgcgggg	gccgcttggg	3660
actctctcg	cccccttcc	gtctgcgcgtt	ccagccgacc	acggggcgca	cctctttta	3720
cgccgtctcc	ccgtctgtc	cttctcatct	gccggccgt	gtgcacttc	tttcacccct	3780
gcacgttgca	tggagaccac	cgtgaacgc	catcagatcc	tgcccaaggt	tttacataag	3840
aggactcttg	gactccca	aatgtcaacg	accgaccc	aggcctactt	caaagactgt	3900
gtgtttaagg	actggggaga	gctggggggag	gagattaggt	taaaggctt	tgtatttagga	3960
ggctgttaggc	ataaaattgt	ctgcgcacca	gcaccatgca	acttttccac	ctctgcctaa	4020
tcatctctt	tacatgtccc	actgttcaag	cctccaa	gtgccttggg	tggcttggg	4080
gcatggacat	tgacccttat	aaagaatttg	gagctactgt	ggagttactc	tcgtttttgc	4140
cttctgactt	ctttccttcc	gtcagagatc	tccttagacac	cgccctcagct	ctgtatcgag	4200
aaggccctaga	gtctcctgag	cattgctcac	ctcaccat	tgcactcagg	caagccattc	4260
tctgctgggg	ggaatttgat	actctagct	cctgggtggg	taataatttg	gaagatccag	4320
catccaggga	tctagtagtc	aattatgtta	atactaacat	gggtttaaag	atcaggcaac	4380
tattgtggtt	tcatatatct	tgccttactt	tttggaaagaga	gactgtactt	aatatttgg	4440
tctctttcg	agtgtggatt	cgca	cactcc	cagcctata	accaccaa	4496