

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیر کبیر

وقفهها

در میکروکنترلرهای خانواده AVR

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

فهرست مطالب

- آنچه در این بخش خواهیم دید:
 - وقفهها
 - وقفههای خارجی

• بازاء هر منبع ایجاد وقفه یک بیت فعال ساز وقفه (enable bit) وجود دارد که تا این بیت و نیز بیت فعال ساز وقفه در صورت این بیت فعال ساز وقفه در صورت رخداد پذیرفته و اجراء نمی شود.

•بعضی از منابع وقفه علاوه بر بیت فعالساز، یک پرچم هم دارند که چنانچه آن وقفه رخ دهد، آن پرچم یک میشود.

انواع وقفه را می توان به دو دسته تقسیم کرد:

اولين نوع وقفه:

- این نوع وقفه توسط یک واقعه که <mark>پرچم وقفه </mark>را فعال میکند تحریک میشود.
- برای این نوع وقفهها آدرس شروع روال وقفه در شمارنده برنامه قرار می گیرد تا بدین ترتیب روال این وقفه اجراء شود.
- پس از اجرای وقفه متعاقباً سختافزار میکروکنترلر، پرچم وقفه رخ داده را غیرفعال میسازد. با غیرفعال کرد.

اولین نوع وقفه (ادامه):

• اگر شرایط رخداد یک وقفه هنگامی که بیت فعالساز وقفه مربوطه غیرفعال است فراهم شود، پرچم وقفه یک شده و در همین وضعیت باقی میماند تا زمانی که وقفه فعال شده (بیت فعالساز وقفه یک شود)، یا پرچم وقفه توسط نرمافزار صفر شود.

• بطور مشابه اگر شرایط رخداد وقفه برای یک یا تعداد بیشتری وقفه هنگامی که بیت سراسری وقفه صفر (غیرفعال) است فراهم شود، پرچم(ها)ی وقفه مربوطه یک شده و تا زمان فعال شدن بیت وقفه سراسری در همان وضعیت باقی میمانند و بعدا متناسب با ترتیب اولویت، روالهای وقفه رخ داده اجرا میشوند.

دومين نوع وقفه:

• این نوع از وقفهها ضرورتاً دارای پرچم وقفه نیستند و در صورت یک بودن بیت فعالساز آنها، در زمانیکه شرایط وقفه فراهم است تحریک و اجراء میشوند.

• به دلیل نداشتن پرچم وقفه، برای این نوع از وقفهها اگر شرایط وقفه قبل از فعال شدن وقفه برطرف شود، وقفه عملا آغاز نمی شود.

• هنگامیکه یک وفقه در حال اجرا باشد و یک وقفه معوق هم داشته باشیم، اجرای وقفه جاری تمام میشود، میکروکنترلر به برنامه اصلی بازگشته و یک یا تعداد بیشتری از دستورالعملها را قبل از اجرای وقفه معوق اجرا مینماید.

• توجه داشته باشید که ثبات وضعیت با ورود به روال وقفه بطور اتوماتیک ذخیره نمیشود و نیز هنگام بازگشت از روال وقفه بازیابی نمیشود. اینکار میتواند توسط نرمفزار انجام شود.

بازنشانی و کنترل وقفه ها

- هنگامی که دستورالعمل CLI که پرچم وقفه سراسری را غیرفعال میکند را بکار میبریم، وقفهها بلافاصله غیرفعال میشوند.
- بعد از اجرای دستورالعمل CLI، هیچ وقفهای اجرا نخواهد شد حتی اگر آن وقفه همزمان با اجرای دستورالعمل CLI رخ دهد.
- برنامههای اسلایدهای بعد نشان می دهد که چطور می توان از این نکته استفاده کرد تا از بروز وقفه ها در طی عملیات نوشتن در حافطه EEPROM جلوگیری کرد.

بازنشانی و کنترل وقفه ها

Assembly Code Example

```
in r16, SREG; store SREG value
cli; disable interrupts during timed sequence
sbi EECR, EEMWE; start EEPROM write
sbi EECR, EEWE
out SREG, r16; restore SREG value (I-bit)
```

C Code Example

```
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);
SREG = cSREG; /* restore SREG value (I-bit) */
```

در صورت استفاده از دستورالعمل SEI برای فعال کردن وقفهها، همانطور که مثال زیر نشان میدهد، <mark>دستورالعمل بعد از دستور SEI</mark> (در مثال زیر دستور sleep)، قبل از هر وقفه معوق اجرا میشود:

```
sei ; set global interrupt enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending
; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */
```

بازنشانی و کنترل وقفه ها

• زمان پاسخ دادن به وقفهها برای تمامی وقفههای فعال شده ATmega16 حداقل چهار پالس ساعت به طول میانجامد.

- بعد از چهار پالس ساعت، وقفه رخ داده از آدرس مربوطه اجرا میشود.
- در طی این چهار پالس ساعت، محتوی شمارنده برنامه به درون پشته ارسال میشود.

بازنشانی و کنترل وقفه ها

- اگر یک وقفه در طی اجرای یک دستورالعمل که در چند چرخه ساعت اجرا میشود، فعال شود، این دستورالعمل قبل از شروع روال وقفه کامل میشود.
- اگر یک وقفه هنگامی که میکروکنترلر در حالت خواب قرار دارد رخ دهد، زمان پاسخ اجرای روال وقفه به اندازه ۴ چرخه ساعت افزایش مییابد.
 - یک روال بازگشت از وقفه چهار پالس ساعت بطول میانجامد.
- در طی این چهار پالس ساعت، شمارنده برنامه (دو بایت) از بالای پشته بازیابی و اشاره گر پشته بازیابی و اشاره گر پشته به اندازه دو واحد افزایش می یابد و بیت I در ثبات وضعیت SREG یک می شود.

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow
11	\$014	SPI, STC	Serial Transfer Complete
12	\$016	USART, RXC	USART, Rx Complete
13	\$018	USART, UDRE	USART Data Register Empty
14	\$01A	USART, TXC	USART, Tx Complete
15	\$01C	ADC	ADC Conversion Complete
16	\$01E	EE_RDY	EEPROM Ready
17	\$020	ANA_COMP	Analog Comparator
18	\$022	TWI	Two-wire Serial Interface
19	\$024	INT2	External Interrupt Request 2
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match
21	\$028	SPM_RDY	Store Program Memory Ready

بردارهای وقفه و باز نشانی

هنگامی که فیوز BOOTRST برنامهریزی شود، پس از بازنشانی میکروکنترلر به Boot Loader میرود.

هنگامی که IVSEL در GICR یک شود، بردارهای وقفه به شروع قسمت boot فلش منتقل میشوند. آدرس هر بردار وقفه در اینصورت برابر با آدرس موجود در جدول فوق بعلاوه آدرس شروع قسمت boot فلش خواهد بود.

BOOTRST: Boot reset

• بخش برنامه Boot در انتهای فضای حافظه برنامه و بعد از بخش برنامه کاربردی قرار می گیرد.

اگر برنامه هیچگاه یک منبع وقفه را فعال نکند، بردارهای وقفه عملاً استفاده نمیشوند
 و کد برنامه اصلی می تواند در این مکانها قرار بگیرد.

•اگر هنگامی که بردارهای وقفه در بخش boot قرار دارند، بردار بازنشانی در بخش کاربرد قرار داشته باشد و بالعکس نیز به همین صورت میباشد.

BOOTRST	IVSEL	Reset address	Interrupt Vectors Start Address		
1	0	\$0000	\$0002		
1	1	\$0000	Boot Reset Address + \$0002		
0	0	Boot Reset Address	\$0002		
0	1	Boot Reset Address	Boot Reset Address + \$0002		

فیوز BOOTRST برابر "1" به معنی برنامهریزی نشده و "0" به معنی برنامهریزی شده است.

پیکربندی تخصیص فضای حافظه به بخش boot و بخش برنامههای کاربردی

BOOTSZ1	BOOTSZ0	Boot Size	Pages	Application Flash Section	Boot Loader Flash Section	End Application section	Boot Reset Address (start Boot Loader Section)
1	1	128 words	2	\$0000 - \$1F7F	\$1F80 - \$1FFF	\$1F7F	\$1F80
1	0	256 words	4	\$0000 - \$1EFF	\$1F00 - \$1FFF	\$1EFF	\$1F00
0	1	512 words	8	\$0000 - \$1DFF	\$1E00 - \$1FFF	\$1DFF	\$1E00
0	0	1024 words	16	\$0000 - \$1BFF	\$1C00 - \$1FFF	\$1BFF	\$1C00

Address	Labels	Code	Comments
ΦΩΩΩ			Comments
\$000		jmp RESET	; Reset Handler
\$002		jmp EXT_INT0	; IRQ0 Handler
\$004		jmp EXT_INT1	; IRQ1 Handler
\$006		jmp TIM2_COMP	; Timer2 Compare Handler
\$008		jmp TIM2_OVF	; Timer2 Overflow Handler
\$00A		jmp TIM1_CAPT	; Timer1 Capture Handler
\$00C		jmp TIM1_COMPA	; Timer1 CompareA Handler
\$00E		jmp TIM1_COMPB	; Timer1 CompareB Handler
\$010		jmp TIM1_OVF	; Timer1 Overflow Handler
\$012		jmp TIM0_OVF	; Timer0 Overflow Handler
\$014		jmp SPI_STC	; SPI Transfer Complete Handler
\$016		jmp USART_RXC	; USART RX Complete Handler
\$018		jmp USART_UDRE	; UDR Empty Handler
\$01A		jmp USART_TXC	; USART TX Complete Handler
\$01C		jmp ADC	; ADC Conversion Complete Handler
\$01E		jmp EE_RDY	; EEPROM Ready Handler
\$020		jmp ANA_COMP	; Analog Comparator Handler
\$022		jmp TWSI	; Two-wire Serial Interface Handler
\$024		jmp EXT_INT2	; IRQ2 Handler
\$026		jmp TIM0_COMP	; Timer0 Compare Handler
\$028		jmp SPM_RDY	; Store Program Memory Ready Handler
;			
\$02A	RESET:	ldi r16, high(RAMEND)	; Main program start
\$02B		out SPH, r16	; Set Stack Pointer to top of RAM
\$02C		ldi r16, low(RAMEND)	- Company
\$02D		out SPL, r16	= '\'.
\$02E		sei	; Enable interrupts
\$02F		<instr> xxx</instr>	

معمول ترین و عمومی ترین برنامه برای تنظیم آدرس بردارهای بازنشانی و وقفه در میکروکنترلر ATmega16

- معمول ترین و عمومی ترین برنامه برای تنظیم آدرس بردارهای بازنشانی و وقفه ، هنگامی که:
 - فيوز BOOTRST برنامهريزي نشده است
 - اندازه قسمت Boot روی ۲ کیلوبایت تنظیم شده باشد
- بیت IVSEL در ثبات GICR قبل از این که هر وقفهای فعال شود، یک شده باشد.
 - •روال بازنشانی از بخش کاربرد (آدرس 000\$) اجرا می شود.
 - بردارهای سایر وقفهها در بخش boot قرار دارند.

```
Address Labels Code Comments
$000 RESET: Idi r16, high(RAMEND); Main program start
$001 out SPH,r16; Set Stack Pointer to top of RAM
$002 Idi r16, low (RAMEND)
$003 out SPL, r16
$004 sei; Enable interrupts
$005 <instr> xxx
;
.org $1C02
$1C02 jmp EXT_INT0; IRQ0 Handler
$1C04 jmp EXT_INT1; IRQ1 Handler
... ... ..;
$1C28 jmp SPM_RDY; Store Program Memory Ready Handler
```

- و معمول ترین و عمومی ترین برنامه برای تنظیم آدرس بردارهای بازنشانی و وقفه، هنگامی که:
 - فيوز BOOTRST برنامهريزي شده باشد
 - اندازه قسمت Boot روی ۲ کیلوبایت تنظیم شده باشد
 - بردارهای وقفه در بخش کاربرد قرار داشته باشند.
 - •روال بازنشانی از شروع بخش حافظه boot (آدرس 1C00\$) اجرا می شود.

```
Address Labels Code Comments
.org $002
$002 jmp EXT_INT0 ; IRQ0 Handler
$004 jmp EXT_INT1 ; IRQ1 Handler
......;
$028 jmp SPM_RDY ; Store Program Memory Ready Handler
;
.org $1C00
$1C00 RESET: ldi r16,high(RAMEND) ; Main program start
$1C01 out SPH,r16 ; Set Stack Pointer to top of RAM
$1C02 ldi r16,low(RAMEND)
$1C03 out SPL,r16
$1C04 sei ; Enable interrupts
$1C05 <instr> xxx
```

- معمول ترین و عمومی ترین برنامه برای تنظیم آدرس بردارهای بازنشانی و وقفه، هنگامی که:
 - فيوز BOOTRST برنامهريزي شده باشد
 - اندازه بخش Boot روی ۲ کیلوبایت تنظیم شده باشد
- بیت IVSEL در ثبات GICR پیش از این که هر وقفهای فعال باشد، یک شده باشد.
 - بردار وقفه بازنشانی و بردارهای سایر وقفهها در بخش boot قرار دارند.
 - •برنامه وقفه بازنشانی در بخش boot قرار دارد.

```
Address Labels Code Comments
.org $1C00
$1C00 jmp RESET; Reset handler
$1C02 jmp EXT_INT0; IRQ0 Handler
$1C04 jmp EXT_INT1; IRQ1 Handler
... ... .;
$1C28 jmp SPM_RDY; Store Program Memory Ready Handler
;
$1C2A RESET: Idi r16,high(RAMEND); Main program start
$1C2B out SPH,r16; Set Stack Pointer to top of RAM
$1C2C Idi r16,low(RAMEND)
$1C2D out SPL,r16
$1C2E sei; Enable interrupts
$1C2F < instr> xxx
```

- ثبات كنترل وقفه سراسرى:
- مكان جدول بردار وقفه را تعيين مى كند.
- امكان فعال يا غير فعالسازي وقفههاي خارجي INT1، INT0 وINT2 را فراهم ميسازد.

Bit	7	6	5	4	3	2	1	0	_
	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

GICR: General Interrupt Control Register

بیت ۱-<mark>IVSEL؛</mark> بیت انتخاب بردار وقفه

• وقتی که بیت IVSEL صفر شود، بردارهای وقفه در آغاز حافظه فلش قرار داده میشوند. هنگامی که این بیت یک شود، بردارهای وقفه به آغاز بخش Boot Loader فلش برده میشوند. آدرس واقعی شروع بخش Boot توسط فیوزهای BOOTSZ تعیین میشود.

بیت IVCE - 0: بیت فعال سازی تغییر بردار وقفه

بیت IVCE باید برای فراهم ساختن امکان تغییر در بیت IVSEL به حالت یک منطقی تنظیم شود

برای جلوگیری از ایجاد تغییرات ناخواسته در جدول بردار وقفه، یک روند ویژه نوشتن باید برای تغییر بیت IVSEL طی شود:

- ابتدا باید بیت فعالسازی تغییر بردار وقفه (IVCE) باید یک شود.
- مقدار مورد نظر را در IVSEL قرار دهیم. بیت IVCE بعد از ۴ چرخه ساعت از زمان نوشتن در آن به صورت سختافزاری صفر میشود.

- در حین اجری مراحل فوق، وقفهها به طور خودکار غیرفعال میشوند.
- وقفهها در چرخهای که IVCE یک میشود، غیر فعال شده و تا دستورالعمل بعد از نوشته شدن IVSEL نیز غیرفعال باقی میمانند.
 - اگر IVSEL نوشته نشود، وقفهها به مدت ۴ چرخه ساعت غیرفعال باقی میمانند.
- بیت I موجود در ثبات وضعیت در طی این غیر فعالسازی خودکار، دست نخورده باقی میماند.

```
Assembly Code Example

Move_interrupts:
; Enable change of interrupt vectors
   Idi r16, (1<<IVCE)
   out GICR, r16
; Move interrupts to boot Flash section
   Idi r16, (1<<IVSEL)
   out GICR, r16
   ret

C Code Example

void Move_interrupts(void)
{

/* Enable change of interrupt vectors */
   GICR = (1<<IVCE);

/* Move interrupts to boot Flash section */
   GICR = (1<<IVSEL);
}
```

• در این برنامه ابتدا IVCE و سپس IVSEL به کمک ثبات 16 و دستور out یک می شوند. با اینکار بردارهای وقفه به آغاز بخش Boot Loader فلش برده می شوند.

پیکر بندی تخصیص فضای حافظه به بخش boot و بخش کاربرد

BOOTSZ1	BOOTSZ0	Boot Size	Pages	Application Flash Section	Boot Loader Flash Section	End Application section	Boot Reset Address (start Boot Loader Section)
1	1	128 words	2	\$0000 - \$1F7F	\$1F80 - \$1FFF	\$1F7F	\$1F80
1	0	256 words	4	\$0000 - \$1EFF	\$1F00 - \$1FFF	\$1EFF	\$1F00
0	1	512 words	8	\$0000 - \$1DFF	\$1E00 - \$1FFF	\$1DFF	\$1E00
0	0	1024 words	16	\$0000 - \$1BFF	\$1C00 - \$1FFF	\$1BFF	\$1C00

توجه:

- بسته به مقدار موجود در شمارنده برنامه که ممکن است به آدرسی در حافظه برنامه بخش کاربرد یا در حافظه boot اشاره کند، وقفهها با توجه به برنامهریزی شده بودن یا نبودن بیتهای BLB02 یا BLB12 ممکن است فعال یا غیر فعال شوند.
- اگر بردارهای وقفه در بخش Boot Loader قرار داشته باشند و بیت BLB02 روزی شده باشد، هنگامی که برنامه در قسمت کاربرد (application section) در حال اجرا باشد وقفهها غیرفعال میشوند.
- اگر بردارهای وقفه در بخش کاربرد قرار داشته و بیت BLB12 برنامهریزی شده باشد، هنگامیکه برنامه در قسمت Boot Loader در حال اجرا باشد وقفهها غیرفعال میشوند.

وقفههای خارجی

- وقفههای خارجی توسط پایههای INT1 ،INT0 و INT2 تحریک میشوند.
- در صورتی که وقفهها فعال باشند، حتی اگر پایههای INT0..2 در وضعیت خروجی پیکربندی شده باشند، وقفهها تحریک خواهند شد. این ویژگی، راهی را برای تولید یک وقفه نرمافزاری فراهم میآورد.
- وقفههای خارجی میتوانند بوسیله لبه پایین یا بالا رونده و یا با یک سطح ولتاژ پایین تحریک شوند. INT2یک وقفه فعال شونده با لبه میباشد
- این تنظیم آنطور که در تعاریف MCUCR (ثبات کنترل میکروکنترلر) و MCUCSR (ثبات کنترل میشود. (ثبات کنترل و وضعیت میکروکنترلر) آمده است، انجام میشود.

(یادآوری از فصل ۱/۵)

- $oxed{ ext{INT0}}$ **بیت ۲ از درگاه oxed{ ext{D}}ا**ین پایه ورودی وقفه خارجی شماره $oxed{ ext{NT0}}$
- - <mark>۱NT2 بیت ۲ از درگاه B</mark> :این پایه ورودی وقفه خارجی شماره ۲ است.

وقفههای خارجی

- هنگامی که یک وقفه خارجی تحریک شود و بصورت حساس به سطح (فقط در مورد INT0 و یا INT1) تنظیم شود، وقفه، وقتی که پایه در سطح پایین نگه داشته می شود، تحریک خواهد شد.
- تشخیص لبه بالا یا پایین رونده وقفهها بر روی پایههای INT0 و INT1 مستلزم
 وجود clk_{i/o} است که در بخش سیستمهای ساعت و توزیع آنها توضیح داده شد.
- وقفههای حساس به سطح پایین بر روی INT0 و یا INT1 و وقفه حساس به لبه بر روی INT2 بصورت ناهمگام دریافت میشوند.
- این بدین معنی است که این وقفهها میتوانند برای بیدار کردن قطعه از حالات خواب (sleep) به جز حالت بیکار، بکار روند.
- ساعت <mark>Clk_{i/O} در تمامی حالتهای خواب به جز حالت بیکار، متوقف (halt) می شود.</mark>

وقفههای خارجی

- اگر یک وقفه حساس به سطح برای بیدار شدن از حالت خاموش (power down) بکار رود، سطح ولتاژ تغییر یافته باید به مدت معینی برای بیدار کردن میکروکنترلر حفظ شود. این باعث می شود که میکروکنترلر کمتر نسبت به نویز حساس باشد.
- در صورتی که ورودی وقفه در طول این نمونهبرداری، سطح مورد نظر را داشته باشد و یا اینکه تا پایان زمان start-up سطح ولتاژ نگه داشته شود، میکروکنترلر بیدار خواهد شد.
- زمان start-up توسط فیوزهای SUT که در بخش سیستم ساعت سیستم و تنظیمات آن آمده است، تعریف شد.

نوسانساز کریستالی (یادآوری از فصل Clock system)

) در حالت انتخاب ساعت power save و power down بعد از حالات صرفهجویی در توان (مثل حالات start-upزمانهای نوسانساز کریستالی

CKSEL0 SUT10		Start-up Time from Power-down and Power-save	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage		
o	00	258 CK ⁽¹⁾	4.1 ms	Ceramic resonator, fast rising power		
o	0 01 258 CK ⁽¹⁾		65 ms	Ceramic resonator, slowly rising power		
О	0 10 1K CK ⁽²⁾		-	Ceramic resonator, BOD enabled		
О	11	1K CK ⁽²⁾	4.1 ms	Ceramic resonator, fast rising power		
1	00	1K CK ⁽²⁾	65 ms	Ceramic resonator, slowly rising power		
1	01	16K CK	_	Crystal Oscillator, BOD enabled		
1	10	16K CK	4.1 ms	Crystal Oscillator, fast rising power		
1	11	16K CK	65 ms	Crystal Oscillator, slowly rising power		

ثبات كنترلى MCUCR :MCU

ثبات کنترلی میکروکنترلر شامل بیتهایی برای کنترل نحوه حس وقفه و همچنین عملکردهای عمومی میکروکنترلر میباشد.

Bit	7	6	5	4	3	2	1	0	_
	SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

MCUCR: MCU Control Register

وقفه خارجي ١

- لبهها و سطحی که در صورت مشاهده آنها برروی پایه خارجی INT1، وقفه فعال میشود، در جدول اسلاید بعد تعریف شده است.
- مقدار روی پایه INT1 نمونهبرداری میشود. در صورتی که وقفه حساس به لبه و یا وقفه تغییر حالت انتخاب شود، پالسهایی که بیش از یک پریود پالس ساعت بطول میانجامند، یک وقفه تولید خواهند کرد. پالسهای کوتاهتر تضمینی نیست که یک وقفه ایجاد نمایند.
- در صورتی که وقفه حساس به سطح پایین انتخاب شود، برای اینکه وقفهای تولید شود، سطح پایین باید تا زمان اتمام دستورالعمل در حال اجرا، حفظ شود.

بیتهای ۲ و ۳ (ICS10 و ICS11): بیتهای کنترل نحوه حس وقفه در پایه وقفه خارجی ۱

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

وقفه خارجی ۰

- در صورتی که بیت وقفه سراسری ا در SREG و بیت پوشش وقفه شماره ۰ در ثبات GICR یک شوند، وقفه خارجی ۰ میتواند توسط پایه خارجی فعال شود.
- لبهها و سطحی که در صورت مشاهده آنها برروی پایه خارجی INTO، وقفه فعال میشود، در جدول اسلاید بعد تعریف شده است.
- مقدار روی پایه INT0 نمونهبرداری میشود. در صورتی که وقفه حساس به لبه و یا وقفه تغییر حالت انتخاب شود، پالسهایی که بیش از یک پریود پالس ساعت بطول میانجامند، یک وقفه تولید خواهند کرد.
- پالسهای کوتاهتر تضمینی نیست که یک وقفه ایجاد نمایند. در صورتی که وقفه حساس به سطح پایین انتخاب شود، برای اینکه وقفهای تولید شود، سطح پایین باید تا زمان اتمام دستورالعمل در حال اجرا، حفظ شود.

بیتهای ۱ و ۱ (ISC01 و ISC00) بیتهای کنترل نحوه حس وقفه در پایه وقفه خارجی ۰

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Any logical change on INT0 generates an interrupt request.
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

بیت ششم (ISC2): بیت کنترل نحوه حس وقفه در پایه وقفه خارجی ۲

- در صورتی که بیت وقفه سراسری I در SREG و بیت پوشش وقفه شماره ۲ در GICR یک شوند، وقفه خارجی و ناهمگام ۲ میتواند توسط پایه خارجی و ناهمگام ۲ میتواند توسط پایه خارجی iNT2 فعال شود.
- در صورتی که مقدار صفر در ISC2 نوشته شود، یک لبه پایین رونده بر پایه INT2 وقفه را فعال خواهد کرد و در صورتی که مقدار یک در ISC2 نوشته شود، یک لبه بالا رونده بر پایه INT2 وقفه را فعال خواهد کرد.
 - لبهها بر روی پایه INT2 بصورت ناهمگام ثبت میشوند.
- در حین تغییر بیت ISC2، وقفه می تواند به وقوع بپیوندد. بنابراین، توصیه می شود که INT2 ابتدا به وسیله صفر کردن بیت فعال ساز مربوط به آن در GICR، غیر فعال شود و سپس بیت ISC2 تغییر داده شود.

ثبات کنترلی و وضعیت میکروکنترلر: MCUCSR

Bit	7	6	5	4	3	2	1	0	
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0		See	Bit Descrip	otion		

MCUCSR: MCU Control and Status Register

حداقل عرض پالس برای وقفه خارجی ناهمگام

Symbol	Parameter	Condition	Min	Тур	Max	Units
t _{INT}	Minimum pulse width for asynchronous external interrupt			50		ns

Bit	7	6	5	4	3	2	1	0	_
	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

GICR: General Interrupt Control Register

بیت هفتم (INT1): بیت فعال ساز در خواست وقفه خارجی ۱

- هنگامی که بیت INT1 و همچنین بیت وقفه سراسری I از ثبات وضعیت (ثبات SREG) یک شوند، وقفه پایه خارجی INT1 فعال میشود.
- بیتهای کنترلی ISC11 و ISC10 در ثبات MCUCR، تعیین میکنند که وقفه خارجی در لبههای پایه INT1 (لبه بالارونده و یا پایینرونده) تشخیص داده شود یا در سطح.
- فعال کردن این پایه، گرچه INT1 در وضعیت خروجی تنظیم شده باشد، موجب درخواست یک وقفه میشود. وقفه متناظر با درخواست وقفه خارجی ۱، از بردار وقفه INT1 اجرا می شود.

بیت ششم (INT0): بیت فعال ساز در خواست وقفه خارجی ۰

- هنگامی که بیت INT0 و همچنین بیت وقفه سراسری I از ثبات وضعیت (ثبات SREG) یک باشند، وقفه پایه خارجی INT0 فعال میشود.
- بیتهای کنترلی ISC01 و ISC00 در ثبات MCUCR، اینکه وقفه خارجی در لبههای پایه INT0 (لبه بالارونده و یا پایینرونده) و یا در سطح تشخیص داده شود را تعیین میکنند.
- فعالیت بر روی پایه، گرچه INT0 در وضعیت خروجی تنظیم شده باشد، موجب درخواست یک وقفه میشود. وقفه متناظر با درخواست وقفه خارجی ۰، از بردار وقفه INT0 اجرا می شود.

بیت پنجم (INT2): بیت فعال ساز در خواست وقفه خارجی ۲

- هنگامی که بیت INT2 و همچنین بیت وقفه سراسری I از ثبات وضعیت (ثبات SREG) یک باشند، وقفه پایه خارجی INT2 فعال میشود.
- بیت کنترلی ISC2 در ثبات MCUCR، اینکه وقفه خارجی در لبههای پایه INT2 (لبه بالارونده و یا پایینرونده) و یا در سطح تشخیص داده شود را تعیین می کنند.
- فعالیت بر روی پایه، گرچه INT2 در وضعیت خروجی تنظیم شده باشد، موجب درخواست یک وقفه می شود. وقفه متناظر با درخواست وقفه خارجی ۲، از بردار وقفه INT2 اجرا می شود.

ثبات عمومی پرچمهای وقفه: GIFR

Bit	7	6	5	4	3	2	1	0	
	INTF1	INTF0	INTF2	-	-	-	-	-	GIFR
Read/Write	R/W	R/W	R/W	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	

GIFR: General Interrupt Flag Register

بیت هفتم (INTF1): پرچم وقفه خارجی ۱

- هنگامی که یک لبه و یا تغییر سطح بر روی پایه INT۱، یک درخواست وقفه را تحریک میکند، پرچمINTF۱ یک میشود.
- در صورتی که بیت I از ثبات SREG و بیت INT1 از GICR یک باشند، میکروکنترلر
 به بردار وقفه متناظر پرش خواهد کرد.
- این پرچم، وقتی که روال وقفه اجرا شود، صفر می گردد و یا اینکه می توان با نوشتن یک منطقی در آن، آن را صفر نمود.

بیت ششم (INTF0): پرچم وقفه خارجی صفر

- هنگامی که یک لبه و یا تغییر سطح بر روی پایه INT0، یک درخواست وقفه را تحریک میکند، پرچم INT0 یک میشود.
- در صورتی که بیت ااز ثبات SREG و بیت INTO از GICR یک باشند، میکروکنترلر به بردار وقفه متناظر پرش خواهد کرد.
- این پرچم، وقتی که روال وقفه اجرا شود، صفر می گردد و یا اینکه می توان با نوشتن یک منطقی در آن، آن را صفر نمود.

بیت پنجم (INTF2): پرچم وقفه خارجی ۲

- هنگامی که یک رویداد بر روی پایه INT2، یک درخواست وقفه را تحریک میکند، پرچم INT2 یک میشود.
- در صورتی که بیت وقفه سراسری I از ثبات SREG و بیت INT2 از GICR یک باشند، میکروکنترلر به بردار وقفه متناظر پرش خواهد کرد. این پرچم، وقتی که روال وقفه اجرا شود، صفر می گردد، و یا اینکه می توان با نوشتن یک منطقی در آن، آن را صفر کرد.