Dynamics 2

FAR – Rotating Unbalance (Dynamics of Systems of Bodies)

Rotating Unbalance

- rotating unbalance applies the force equation ie GN2
- remember:
 sum of external forces and the body inertia force = 0
- and inertia force acts in opposite direction to a_G
- enormous consequence for rotating machinery

Perfect Rotor

- mathematically perfect at constant Ω
- G lies on centre line between bearings
 - no acceleration so no inertia force
- bearings simply oppose weight

- real rotors are subject to machining tolerances
 - not mathematically perfect
 - G will not lie on the centre line
- during rotation G will follow a circle of radius e
 - where e is the eccentricity of G
- G will have a centripetal acceleration
 - FBD needs an inertia force acting radially outwards through G
- bearing forces will oscillate

- G at eccentric radius e (generally very small)
 - Inertia force is $Me\Omega^2$ acting radially outwards

- G at eccentric radius e (generally very small)
 - Inertia force is $Me\Omega^2$ acting radially outwards
- by ∑ forces & moments on FBD
 - define horizontal and vertical bearing forces

$$H_1 = \frac{b}{L} M e \Omega^2 \cos \Omega t$$

$$V_1 = -\frac{b}{L}M e \Omega^2 \sin \Omega t$$

- G at eccentric radius e (generally very small)
 - Inertia force is $Me\Omega^2$ acting radially outwards
- by ∑ forces & moments on FBD
 - define horizontal and vertical bearing forces

$$H_1 = \frac{b}{L} M e \Omega^2 \cos \Omega t$$

$$V_1 = -\frac{b}{L}M e \Omega^2 \sin \Omega t$$

- similarly for H₂ and V₂
- bearing forces are oscillatory
 - proportional to $e \& \Omega^2$. This is Rotating Unbalance

Rotor Balancing

- unbalanced rotors cause excessive noise, wear and fatigue failure
 - balancing is standard practice
- two approaches
 - Static
 - Dynamic

Static Balancing

- rotor is placed in a low-friction support
- mass added until no obvious pendulum action
 - G on bearing centre line
- unreliable except for thin rotors (as single plane)

Dynamic Balancing

- rotor mounted in balancing machine
 - run at high speed through a flexible coupling
- bearings very flexible in the horizontal plane
 - transducers detect the unbalance vibration

Dynamic Balancing

- two balancing planes chosen
 - machine computes the mass to be added at specific angular locations in each plane
- reliable
 - zero deformation
 - not for large rotors

Dynamic Balancing

- two balancing planes chosen
 - machine computes the mass to be added at specific angular locations in each plane
- reliable
 - zero deformation
 - not for large rotors

- Kwik-Fit
 - tyre balancing

Dynamic Balancing – Car Tyre

Summary

- causes and effects of rotating unbalance
- static balancing
- dynamic balancing