Elettrotecnica (LT Ing. Elettronica) -Prova scritta del 6/07/2017 -A

NOME	COGNOME	MATRICOLA	ORALE SUBITO

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 k_N pari al numero di lettere del proprio nome; k_C pari al numero di lettere del proprio cognome.

Dato il circuito in figura, determinare la potenza assorbita dai resistori e la potenza erogata dai generatori ideali V_g e I_g . Verificate poi il bilancio energetico.

DATI $V_g = k_N [V], I_g = k_C [A], R_1 = 1 [\Omega],$ $R_2 = 2 [\Omega], R_3 = 3 [\Omega], R_4 = 4 [\Omega], R_5 = 5 [\Omega]$

Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare $\mathbf{v}_{\mathbf{C}}(t)$ per t>0, sapendo che all'istante t=0 in cui viene connesso il condensatore C la tensione $\mathbf{v}_{\mathbf{C}}(t)$ vale $\mathbf{v}_{\mathbf{C}}(t=0^-)=5$ [V], Rappresentarne poi su un grafico l'andamento temporale.

DATI $V_g = \mathbf{k}_N [V], I_g = 2 [A], R_1 = 1[\Omega], R_2 = 4[\Omega],$ $R_3 = 2 [\Omega], R_4 = 2 [\Omega], R_5 = \mathbf{k}_C [\Omega], C = 20 [nF]$

Esercizio n° 3 (12 punti)

Vg

R

R

R

C

R

g

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea generata dal generatore di corrente Ig e rappresentare l'andamento temporale della potenza istantanea; (2) il fattore di potenza del generatore di tensione Vg e la sua potenza apparente

DATI:

 V_g = 2cos(ωt)+ k_N sen(ωt) [V], I_g =- k_C cos(ωt)-sen(ωt) [A], R_1 = 2 [Ω], R_2 = 1 [Ω], R_3 = 2 [Ω], C =0.0025[F], L= 20[mH], ω=100 [rad/s]

Elettrotecnica (LT Ing. Elettronica) -Prova scritta del 6/07/2017 -B

NOME	COGNOME	MATRICOLA	ORALE SUBITO

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 k_N pari al numero di lettere del proprio nome; k_C pari al numero di lettere del proprio cognome.

Esercizio nº 1 (9 punti)

Dato il circuito in figura, determinare la potenza assorbita dai resistori e la potenza erogata dai generatori ideali V_g e I_g. Verificate poi il bilancio energetico.

DATI

$$V_g = k_N [V], I_g = k_C [A], R_1 = 5 [\Omega], R_2 = 4 [\Omega], R_3 = 3 [\Omega], R_4 = 2 [\Omega], R_5 = 1 [\Omega]$$

Esercizio n° 2 (9 punti)

Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare $\mathbf{v}_{\mathbf{C}}(t)$ per t > 0, sapendo che all'istante t=0 in cui viene connesso il condensatore \mathbf{C} la tensione $\mathbf{v}_{\mathbf{C}}(t)$ vale $\mathbf{v}_{\mathbf{C}}(t=0) = \mathbf{5}$ [V], Rappresentarne poi su un grafico l'andamento temporale.

DATI

$$V_g = k_N [V], I_g = 1 [A], R_1 = 2[\Omega], R_2 = 4[\Omega],$$

 $R_3 = 5 [\Omega], R_4 = 4 [\Omega], R_5 = k_C [\Omega], C = 50 [nF]$

Esercizio n° 3 (12 punti)

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea generata dal generatore di corrente Ig e rappresentare l'andamento temporale della potenza istantanea; (2) il fattore di potenza del generatore di tensione Vg e la sua potenza apparente

DATI:

 V_g = $k_N \cos(\omega t)$ + 2 sen(ωt) [V], I_g =- cos(ωt)- k_C sen(ωt) [A], R_1 = 2 [Ω], R_2 = 1 [Ω], R_3 = 2 [Ω], C =0.0025[F], L= 20[mH], ω=200 [rad/s]