Model 1.)

		0		REG lodel: ent Va	mod	el1	tscr				
		Number of Observations Read									
		Num	ber of	Observations Used				420			
			Ana	ly sis d	of Var	iance					
Sou	roe		OF :	Sum Squar			ean are	F V	alue	Pr	> F
Mod	el		1 779	4.110	05 7	794.11	005	2	2.58	<.00	001
Error		4	18	1443	15	345.25	45.25235				
Corrected Tota		al 4	19	1521	10						
	Root I	MSE		18.5	58097	R-Sc	quar	e 0.	0512		
	Deper	ndent	Mean	654.	15655	Adj	R-Sc	0.	0490		
	Coeff	Var		2.0	84045	5					
			Para	mete	r Esti	mates					
	Variable	DF	Parar	neter mate				alue	Pr>	· t	
	Intercept	1	698.9	3295	9.	48749		3.82			
	str	1	-22	27981	0.	47983		4.75	<.00	001	

- Based on the p-value of <.0001, you can see that the probability of obtaining a more
 extreme value is very small, so this variable is highly statistically significant at the 1%
 level.
- The model does not appear to fit the data well. This can be seen through the R^2 value of 0.0512. This is interpreted as 5.12% of the variation in Y is explained by variation in X, which is a very small amount. This could be due to the fact that many relevant predictor variables were left out of the regression. The adjusted R^2 is also very small and similar to R^2, which is expected since there's only one predictor variable.

Model 2.)

						SAS								
The REG Procedure Model: model2 Dependent Variable: testscr														
	Number of Observations Read 420													
	Number of Observations Used									d	420	0		
Analysis of Variance														
Sc						oum c quare					F Value		ie	Pr> F
Me	ode	el		2		7780	1	38901)1	218.30		30	<.0001
Er	ror			417	7430		8 1	178.19690		90				
Co	опте	ected T	otal	419	15211		0							
		Root	MSE			13.3	3490	14	R-Sc	quai	re	0.5	115	
		Depe	nden	t Mea	an	654.1	1565	5655 Adj R		R-S	-Sq 0.50		091	
		Coeff	Var			2.04065								
			mete	r Es	tin	nates	,							
	Variable [DF			neter nate	Stan		dard mor	t V	t Value		Pr	> 4
Intercept		t 1	63	8.7	72915		7.44908		8	85.75		<.0001		
	stı	г	1	-	0.6	4874	0).3	5440		-1.8	83	0.0	679
avginc 1			1		1.8	3911	0	0.0	9279	1	19.82		<.0001	

- The results of this regression are a little surprising. For one, when looking at the p-value, class size (str) becomes statistically significant at the 10% level, but not the 5% level. This decrease could be due to multicollinearity. Also, we find that average income per capita (avginc) does have a statistically significant effect on Y at the 1% level. This can be seen through its low p-value of <.0001, which proves that the probability of getting a more extreme value than the null is very small, interpreted by the p-value of <.0001.
- This model is a much better fit of the data than the first model. This can be seen through the R^2 value of .5115, which means that 51.15% of the variation in Y is caused by variation in X. The Adjusted R^2 makes sense that it decreased the R^2 slightly as it accounted for the degrees of freedom in the model. The high F-Value also hints that the model is statistically significant.

Model 3.)

- Based on the p-value of <.0001, the variable that measures the percentage of students that qualify for a reduced price lunch is statistically significant at the 1% level, along with both of the other variables. The large t-value of -23.23 also provides evidence against the null hypothesis that there is a significant effect.
- The estimated coefficient for meal_pct in this model is -0.50631. This can be interpreted as for every 1% rise in the percentage of students that qualify for a reduced price lunch, the average test score decreases by 0.51 points.

Model 4.)

- The model does the best job at fitting our data. Its R^2 value of 0.7913 shows that 79.13% of the variation in Y is caused by the variation in X. This is a huge improvement from our first and second model, but not much more than the third model that has a R^2 of .7873.
- The p-value on the computers per student (comp_stu) shows that it is statistically significant at a 1% level.

Complete Regression Output Summary

Key: *** - statistically significant at the 1% level

* - statistically significant at the 10% level

	Model 1	Model 2	Model 3	Model 4
intercept	698.93	638.73	685.0312	678.3554**
s.e.	9.467	7.4491	5.3096	5.7706
str	-2.2798***	-0.6487*	-0.8307***	-0.6397***
s.e.	0.4798	0.3544	0.2343	0.2419
avginc		1.8391***	0.5273***	0.5219***
s.e.		0.0928	0.0834	0.0827
meal_pct			-0.50631***	-04994***
s.e.			0.0218	0.0218
comp_stu				19.8432***
s.e.				7.0182
R2	0.0512	0.5115	0.7873	0.7913
Adj R2	0.0490	0.5091	0.7858	0.7893

Method of Semi-Averages:

The SAS System

The MEANS Procedure

split	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
1	210	str testscr		18.1867016 658.2783319			
2	210	str testscr		21.0941489 650.0347642			

Calculate SSR by hand:

Below are the calcluations used in my excel document to find the SSR

A	Α	В	C		D	E	F	G	Н	I	J	K	(L	М
1	Obs	ob	district		split	str	testscr				Predicted	Residu	als 5	Squared Residuals	SSR
2	1	1	McCloud Union Elementary		1	14	635.599975	66	X(bar) first split		670.149006	-34.54	903037	1193.6355	144778.2581
3	2	2	Chicago Park Elementary		1	14.20176315	656	.5	18.18670163		669.5769412	-13.07	694118	171.0063907	
4	3	3	Woodside Elementary		1	14.54213619	695.29998	78			668.6118718	26.68	811596	712.2555337	
5	4	4	Fort Jones Union Elementary		1	14.70588207	666.84997	6	X(bar) second split		668.1475985	-1.297	622893	1.683825172	
6	5	5	Hillsborough City Elementary		1	15.13898468	698.2	25	21.09414889		666.9196104	31.33	038964	981.5933148	
7	6	6	Dunsmuir Elementary		1	15.22435951	646.400024	14			666.6775447	-20.27	752028	411.1778289	
8	7	7	Loleta Union Elementary		1	15.25885487	653.84997	6	Y(bar) first split		666.579739	-12.72	976341	162.0468765	
9	8	8	Montague Elementary		1	15.27272701	635.450012	22	658.2783319		666.5404069	-31.09	039474	966.6126449	
10	9	9	Liberty Elementary		1	15.29304028	681.29998	78			666.4828121	14.81	717565	219.5486943	
11	10		Portola Valley Elementary		1	15.40704155	699.09997	6	Y(bar) second split		666.1595811	32.94	039449	1085.069589	
12	11		Big Springs Union Elementary		1	15.4285717	643	.5	650,0347642		666.0985361	-22.59	853606	510.6938322	
13	12		Etna Union Elementary		1	15.51246643	655.050048	88			665.860667	-10.81	061815	116.8694648	
14	13		Latrobe Elementary			15.59139729			B1		665.636872		152356	68.27968687	
15	14		Kenwood Elementary			15.60418606			-2.835328397		665.6006117		937612	246.4704105	
16	15		Fort Ross Elementary			15.88235283			21000020007		664.8119175		810686	184.6366481	
17	16		Raisin City Elementary			16.22857094			Intercept		663.8302755		302999	1349.114931	
18	17		Reed Union Elementary			16.26228523			709.8436035		663,7346844		532778	912.9660331	
19	18		Two Rock Union Elementary			16.29310226			7031040000		663.647308		679784	88.41038712	
20	19		West Park Elementary			16.31168747	635.				663.5946128		461284	775.3224643	
	A		·	D				3	Н			-27.04		775.5224045	M
1 0		lob	-	split	etr	testscr	G		н		I Predicted		K Residua	lls Squared Residuals	
2 1		1		1	14	635,59997	56	X(bar) first	split	\top	=\$H\$18+(\$H\$	15*E2)	=F2-J2	=K2^2	=SUM(L2:L421)
3 2		2		1	14.201	76315 656.5		=AVERAGE	•		=\$H\$18+(\$H\$		=F3-J3	=K3^2	,
4 3		3	Woodside Elementary	1	14.542	13619 695.29998	78				=\$H\$18+(\$H\$	15*E4)	=F4-J4	=K4^2	
5 4		4	Fort Jones Union Elementary	1	14.705	88207 666.84997	56	X(bar) seco	ond split		=\$H\$18+(\$H\$	15*E5)	=F5-J5	=K5^2	
6 5		5	Hillsborough City Elementary	1	15.138	98468 698.25		=AVERAGE	(E212:E421)		=\$H\$18+(\$H\$	15*E6)	=F6-J6	=K6^2	
7 6		6	Dunsmuir Elementary	1	15.224	35951 646.40002	44				=\$H\$18+(\$H\$	15*E7)	=F7-J7	=K7^2	
8 7		7	Loleta Union Elementary	1	15.258	85487 653.84997	56	Y(bar) first	split		=\$H\$18+(\$H\$	15*E8)	=F8-J8	=K8^2	
9 8		8	Montague Elementary	1	15.272	72701 635.45001	22	=AVERAGE	(F1:F211)		=\$H\$18+(\$H\$	15*E9)	=F9-J9	=K9^2	
10 9		9	Liberty Elementary	1	15.293	04028 681.29998	78				=\$H\$18+(\$H\$	15*E10)	=F10-J10	0 =K10^2	
11 10	0	10	Portola Valley Elementary	1	15.407	04155 699.09997	56	Y(bar) seco	ond split		=\$H\$18+(\$H\$	15*E11)	=F11-J11	1 =K11^2	
12 1	1	11	Big Springs Union Elementary	1	15.428	5717 643.5		=AVERAGE	(F212:F421)		=\$H\$18+(\$H\$	15*E12)	=F12-J12	2 =K12^2	
13 1	2	12	Etna Union Elementary	1	15.512	46643 655.05004	88				=\$H\$18+(\$H\$	15*E13)	=F13-J13	3 =K13^2	
14 1	3	13	Latrobe Elementary	1	15.591	39729 673.90002	44	B1			=\$H\$18+(\$H\$	15*E14)	=F14-J14	4 =K14^2	
15 1	4	14	Kenwood Elementary	1	15.604	18606 681.29998	78	=(H12-H9)/	(H6-H3)		=\$H\$18+(\$H\$	15*E15)	=F15-J15	5 =K15^2	
16 1	5	15	Fort Ross Elementary	1	15.882	35283 678.40002	44				=\$H\$18+(\$H\$	15*E16)	=F16-J16	6 =K16^2	
17 1	5	16	Raisin City Elementary	1	16.228	57094 627.09997	56	Intercept			=\$H\$18+(\$H\$	15*E17)	=F17-J17	7 =K17^2	
18 1	7	17	Reed Union Elementary	1	16.262	28523 693.95001	22	=(AVERAGI	(F2:F421) -(H15*AVERAGE(E2:E421)))	=\$H\$18+(\$H\$	15*E18)	=F18-J18	8 =K18^2	
19 1	3	18	Two Rock Union Elementary	1	16.293	10226 673.04998	78				=\$H\$18+(\$H\$	15*E19)	=F19-J19	9 =K19^2	
20 1	9	19	West Park Elementary	1	16.311	68747 635.75					=\$H\$18+(\$H\$	15*E20)	=F20-J20	0 =K20^2	

- The sum of squared residuals here is 144,778, while in model 1 it is 144,315. These numbers are very close, but the method of semi-averages produces 463 more values of the residual than the original linear model. This number is expected to be slightly larger than in our OLS model, as OLS is designed to minimize SSR, so any other predictive line (such as the one generated by our method of semi-averages) will have a larger SSR