SERIES 3000 BIPOLAR MICROPROCESSOR

INTRODUCTION

Since its introduction, the Series 3000 family of computing elements has found acceptance in a wide range of high performance applications from disk controllers to airborne central processors. The Series 3000 offers the flexibility, performance, and system integration necessary for an effective system solution for both high speed controllers and central processors.

The entire 3000 family is available in commercial and military temperature range versions. In addition to the components, Intel has also developed a comprehensive support system to assist the user in writing microprograms, debugging hardware and microcode, and programming PROMs for both prototype and production systems.

TABLE OF CONTENTS

OFFICE COPY

ontrol Unit
3001 Microprogram Control Unit
entral Processing Element
3002 Central Processing Element
ook-Ahead Carry Generator
3003 Look-Ahead Carry Generator
atch Buffer
3212 Multi-Mode Latch Buffer. .2 M3212 Multi-Mode Latch Buffer, Mil Temp .2
sterrupt Control Unit
3214 Interrupt Control Unit
arallel Bidirectional Bus Driver
3216/3226 Parallel Bidirectional Bus Driver

© INTEL CORPORATION, 1978 9800659A

3001

MICROPROGRAM CONTROL UNIT

The INTEL® 3001 Microprogram Control Unit (MCU) controls the sequence in which microinstructions are fetched from the microprogram memory. Its functions include the following:

Maintenance of the microprogram address register.

Selection of the next microinstruction based on the contents of the microprogram address register.

Decoding and testing of data supplied via several input busses to determine the microinstruction execution sequence.

Saving and testing of carry output data from the central processor (CP) array.

Control of carry/shift input data to the CP array.

Control of microprogram interrupts.

High Performance — 85 ns Cycle Time

TTL and DTL Compatible

Fully Buffered Three-State and Open Collector Outputs

Direct Addressing of Standard Bipolar PROM or ROM

512 Microinstruction Addressability

Advanced Organization

9-Bit Microprogram Address Register and Bus

4-Bit Program Latch

Two Flag Registers

Eleven Address Control Functions

Three Jump and Test Latch

Functions

16-way Jump and Test Instruction

Bus Function

Eight Flag Control Functions

Four Flag Input Functions

Four Flag Output Functions

40 Pin DIP

PACKAGE CONFIGURATION

Figure 1. Block Diagram of a Typical System

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE (1)
1-4	PX ₄ -PX ₇	Primary Instruction Bus Inputs Data on the primary instruction bus is tested by the JPX function to determine the next microprogram address.	active LOW
5, 6, 8, 10	SX ₀ -SX ₃	Secondary Instruction Bus Inputs Data on the secondary instruction bus is synchronously loaded into the PR-latch while the data on the PX-bus is being tested (JPX). During a subsequent cycle, the contents of the PR-latch may be tested by the JPR, JLL, or JRL functions to determine the next microprogram address.	active LOW
7, 9, 11	PR ₀ -PR ₂	PR-Latch Outputs The PR-latch outputs are asynchronously enabled by the JCE function. They can be used to modify microinstructions at the outputs of the microprogram memory or to provide additional control lines.	open collector
12, 13, 15, 16	FC ₀ -FC ₃	Flag Logic Control Inputs The flag logic control inputs are used to cross-switch the flags (C and Z) with the flag logic input (FI) and the flag logic output (FO).	
14	FO	Flag Logic Output The outputs of the flags (C and Z) are multiplexed internally to form the common flag logic output. The output may also be forced to a logical 0 or logical 1.	active LOW three-state
17	FI	Flag Logic Input The flag logic input is demultiplexed internally and applied to the inputs of the flags (C and Z). Note: the flag input data is saved in the F-latch when the clock input (CLK) is low.	active LOW
18	ISE	Interrupt Strobe Enable Output The interrupt strobe enable output goes to logical 1 when one of the JZR functions are selected (see Functional Description, page 6). It can be used to provide the strobe signal required by the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits.	
19	CLK	Clock Input	
20	GND	Ground	
21-24 37-39	AC ₀ -AC ₆	Next Address Control Function Inputs All jump functions are selected by these control lines.	·
25	EN	Enable Input When in the HIGH state, the enable input enables the microprogram address, PR-latch and flag outputs.	
26-29	MA_0 - MA_3	Microprogram Column Address Outputs	three-state
30-34	MA ₄ -MA ₈	Microprogram Row Address Outputs	three-state
35	ERA	Enable Row Address Input	
		When in the LOW state, the enable row address input independently disables the microprogram row address outputs. It can be used with the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits to facilitate the implementation of priority interrupt systems.	
36	LD	Microprogram Address Load Input When in the active HIGH state, the microprogram address load input inhibits all jump functions and synchronously loads the data on the instruction busses into the microprogram register. However, it does not inhibit the operation of the PR-latch or the generation of the interrupt strobe enable.	
40	VCC	+5 Volt Supply	

NOTE:
(1) Active HIGH unless otherwise specified.

LOGICAL DESCRIPTION

The MCU performs two major control functions. First, it controls the sequence in which microinstructions are fetched from the microprogram memory. For this purpose, the MCU contains a microprogram address register and the associated logic for selecting the next microinstruction address. The second function of the MCU is the control of the two flag flip-flops that are included for interaction with the carry input and carry output logic of the CP array. The logical organization of the MCU is shown in Figure 2.

NEXT ADDRESS LOGIC

The next address logic of the MCU provides a set of conditional and unconditional address control functions. These address control functions are used to implement a jump or jump/test operation as part of every microinstruction. That is to say, each microinstruction typically contains a jump operation field that specifies the address control function, and hence, the next microprogram address.

In order to minimize the pin count of the MCU, and reduce the complexity of the next address logic, the microprogram address space is organized as a two dimensional array or matrix. Each microprogram address corresponds to a unit of the matrix at a particular row and column location. Thus, the 9bit microprogram address is treated as specifying not one, but two addresses the row address in the upper five bits and the column address in the lower four bits. The address matrix can therefore contain, at most, 32 row addresses and 16 column addresses for a total of 512 microinstructions.

The next address logic of the MCU makes extensive use of this two component addressing scheme. For example, from a particular row or column address, it is possible to jump unconditionally in one operation anywhere in that row or column. It is not possible, however, to jump anywhere in the address matrix. In fact, for a given location in the matrix, there is a fixed subset of microprogram addresses that may be selected as the next address. These

possible jump target addresses are referred to as a jump set. Each type of MCU address control (jump) function has a jump set associated with it. Appendix C illustrates the jump set for each function.

FLAG LOGIC

The flag logic of the MCU provides a set of functions for saving the current value of the carry output of the CP array and for controlling the value of the carry input to the CP array. These two distinct flag control functions are called flag input functions and flag output functions.

The flag logic is comprised of two flip-flops, designated the C-flag and the Z-flag, along with a simple latch, called the F-latch, that indicates the current state of the carry output line of the CP array. The flag logic is used in conjunction with the carry and shift logic of the CP array to implement a variety of shift/rotate and arithmetic functions.

Figure 2. 3001 Block Diagram

FUNCTIONAL DESCRIPTION

ADDRESS CONTROL FUNCTIONS

The address control functions of the MCU are selected by the seven input lines designated AC₀-AC₆. On the rising edge of the clock, the 9-bit microprogram address generated by the next address logic is loaded into the microprogram address register. The next microprogram address is delivered to the microprogram memory via the nine output lines designated MA₀-MA₈. The microprogram address outputs are organized into row and column addresses as:

MA₈ MA₇ MA₆ MA₅ MA₄
row address

MA₃ MA₂ MA₁ MA₀

Each address control function is specified by a unique encoding of the data on the function input lines. From three to five bits of the data specify the particular function while the remaining bits are used to select part of either the row or column address desired. Function code formats are given in Appendix A, "Address Control Function Summary."

The following is a detailed description of each of the eleven address control functions. The symbols shown below are used throughout the description to specify row and column addresses.

Symbol Meaning

rown 5-bit next row address where n is the decimal row address.

coln 4-bit next column address

4-bit next column address where n is the decimal column address.

UNCONDITIONAL ADDRESS CONTROL (JUMP) FUNCTIONS

The jump functions use the current microprogram address (i.e., the contents of the microprogram address register prior to the rising edge of the clock) and several bits from the address control inputs to generate the next microprogram address.

Mnemonic Function Description

JCC Jump in current column

Jump in current column. AC₀-AC₄ are used to select 1 of 32 row addresses in the current column, specified by

JCF

MA₀-MA₃, as the next address

JZR Jump to zero row.

AC₀-AC₃ are used to select 1 of 16 column addresses in row₀, as the

JCR

JCE

next address.

Jump in current row.

AC₀-AC₃ are used to select 1 of 16 addresses in the current row, specified by MA₄-MA₈, as

the next address.

Jump in current column/ row group and enable PR-latch outputs. AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA₇-MA₈, as the next row address. The current column is specified by MA₀-MA₃. The PR-latch outputs are

asynchronously enabled.

FLAG CONDITIONAL ADDRESS CONTROL (JUMP/TEST) FUNCTIONS

The jump/test flag functions use the current microprogram address, the contents of the selected flag or latch, and several bits from the address control function to generate the next microprogram address.

Mnemonic Function Description

JFL Jump/test F-Latch.

AC₀-AC₃ are used to select 1 of 16 row addresses in the current row group, specified by MA₈, as the next row address. If the current column group, specified by MA₃, is col₀-col₇, the F-latch is used to select col₂ or col₃ as the

MA₃ specifies column group col₈-col₁₅, the F-latch is used to select col₁₀ or col₁₁ as the next column address.

next column address. If

Jump/test C-flag. AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. If the current column group specified by MA₃ is col₀-col₇, the C-flag is used to select col₂ or col₃ as the next column address. If MA₃ specifies column group col₈-col₁₅, the C-flag is used to select col₁₀ or col₁₁ as the next column address.

JZF Jump/test Z-flag. Identical to the JCF function described above, except that the Z-flag, rather than the C-flag, is used to

select the next column

address.

PX-BUS AND PR-LATCH CONDITIONAL ADDRESS CONTROL (JUMP/TEST) FUNCTIONS

The PX-bus jump/test function uses the data on the primary instruction bus (PX₄-PX₇), the current mircoprogram address, and several selection bits from the address control function to generate the next microprogram address. The PR-latch jump/test functions use the data held in the PR-latch, the current microprogram address, and several selection bits from the address control function to generate the next microprogram address.

Mnemonic Function Description

JPR Jump/test PR-latch.
ACo-ACo are used to

AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. The four PR-latch bits are used to select 1 of 16 possible column addresses as the next column address.

Mnemonic Function Description

JLL Jump/test leftmost PRlatch bits. AC₀-AC₂ are

latch bits. AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. PR₂ and PR₃ are used to

FUNCTIONAL DESCRIPTION (con't)

select 1 of 4 possible column addresses in col₄ through col₇ as the next column address.

JRL

Jump/test rightmost PR-latch bits. AC₀ and AC₁ are used to select 1 of 4 high-order row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. PR₀ and PR₁ are used to select 1 of 4 possible column addresses in col₁₂ through col₁₅ as the next column address.

JPX

Jump/test PX-bus and load PR-latch. AC₀ and AC₁ are used to select 1 of 4 row addresses in the current row group, specified by MA₆-MA₈, as the next row address. PX₄-PX₇ are used to select 1 of 16 possible column addresses as the next column address. SX₀-SX₃ data is locked in the PR-latch at the rising edge of the clock.

FLAG CONTROL FUNCTIONS

The flag control functions of the MCU are selected by the four input lines designated FC_0-FC_3 . Function code formats are given in Appendix B, "Flag Control Function Summary."

The following is a detailed description of each of the eight flag control functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select which flag or flags will be set to the current value of the flag input (FI) line. Data on FI is stored in the F-latch when the clock is low. The content of the F-latch is loaded into the C and/or Z flag on the rising edge of the clock.

Mnemonic	Function Description
SCZ	Set C-flag and Z-flag to FI. The C-flag and the Z-flag are both set to the value of FI.
STZ	Set Z-flag to FI. The Z-flag is set to the value of FI. The C-flag is unaffected.
STC	Set C-flag to FI. The C- flag is set to the value of FI. The Z flag is unaffected.
HCZ	Hold C-flag and Z-flag. The values in the C-flag

and Z-flag are unaffected.

FLAG OUTPUT CONTROL FUNCTIONS

The flag output control functions select the value to which the flag output (FO) line will be forced.

Mnemonic	Function Description
FFO	Force FO to 0. FO is forced to the value of logical 0.
FFC	Force FO to C. FO is forced to the value of the C-flag.
FFZ	Force FO to Z. FO is forced to the value of the Z-flag.
FF1	Force FO to 1. FO is forced to the value of logical 1.

LOAD AND INTERRUPT STROBE FUNCTIONS

The load function of the MCU is controlled by the input line designated LD. If the LD line is active HIGH at the rising edge of the clock, the data on the primary and secondary instruction busses, PX₄-PX₇ and SX₀-SX₃, is loaded into the microprogram address register. PX₄-PX₇ are loaded into MA_0 - MA_3 and SX_0 - SX_3 are loaded into MA₄-MA₇. The high-order bit of the microprogram address register MA₈ is set to a logical O. The bits from the primary instruction bus select 1 of 16 possible column addresses. Likewise. the bits from the secondary instruction bus select 1 of the first 16 row addresses.

The interrupt strobe enable of the MCU is available on the output line designated ISE. The line is placed in the active high state whenever a JZR to col₁₅ is selected as the address control function. Customarily, the start of a macroinstruction fetch sequence is situated at rown and col₁₅ so that the INTEL 3214 Priority Interrupt Control Unit may be enabled at the beginning of the fetch/execute cycle. The priority interrupt control unit may respond to the interrupt by pulling the enable row address (ERA) input line down to override the selected next row address from the MCU. Then by gating an alternative next row address on to the row address lines of the microprogram memory, the microprogram may be forced to enter an interrupt handling routine. The alternative row address placed on the microprogram memory address lines does not alter the contents of the microprogram address register. Therefore, subsequent jump functions will utilize the row address in the register, and not the alternative row address, to determine the next microprogram address.

Note, the load function always overrides the address control function on AC0- AC6. It does not, however, override the latch enable or load sub-functions of the JCE or JPX instruction, respectively. In addition, it does not inhibit the interrupt strobe enable or any of the flag control functions.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°C to 70°C Storage Temperature -65°C to +160°C All Output and Supply Voltages. -0.5V to +7V All Input Voltages -1.0V to +5.5V

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = 0^{\circ}C \text{ to } 70^{\circ}C \quad V_{CC} = 5.0V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	I _C = -5 mA
I _F	Input Load Current: CLK Input EN Input All Other Inputs		-0.075 -0.05 -0.025	-0.75 -0.50 -0.25	mA mA mA	V _F = 0.45V
I _R	Input Leakage Current: CLK EN Input All Other Inputs			120 80 40	μΑ μΑ μΑ	V _R = 5.25V
VIL	Input Low Voltage			8.0	V	$V_{CC} = 5.0V$
V_{IH}	Input High Voltage	2.0			V	
Icc	Power Supply Current (2)		170	240	mA	
V_{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	I _{OL} = 10 mA
V _{OH}	Output High Voltage (MA ₀ -MA ₈ , ISE, FO)	2.4	3.0		V	I _{OH} = -1 mA
los	Output Short Circuit Current (MA ₀ -MA ₈ , ISE, FO)	-15	-28	60	mA	V _{CC} = 5.0V
I _{O (off)}	Off-State Output Current: MA ₀ -MA ₈ , FO MA ₀ MA ₈ , FO, PR ₀ PR ₂			-100 100	μΑ μΑ	V _O = 0.45V V _O = 5.25V

NOTES:

 ⁽¹⁾ Typical values are for T_A = 25°C and nominal supply voltage.
 (2) EN input grounded, all other inputs and outputs open.

A.C. CHARACTERISTICS AND WAVEFORMS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{CY}	Cycle Time (2)	85	60		ns
t _{WP}	Clock Pulse Width	30	20		ns
	Control and Data Input Set-Up Times:				
tsF	LD, AC_0 - AC_6	10	0		ns
^t sĸ	FC ₀ , FC ₁	0			ns
t _{SX}	SX_0-SX_3 , PX_4-PX_7	35	25		ns
t_{SI}	FI	15	5		ns
	Control and Data Input Hold Times:				
t _{HF}	LD, AC_0 - AC_6	5	0		ns
t _{HK}	FC_0 , FC_1	0			ns
t _{HX}	SX_0 - SX_3 , PX_4 - PX_7	20	5		ns
tHI	FI	20	8		ns
t _{CO}	Propagation Delay from Clock Input (CLK) to Outputs (MA_0-MA_8, FO)	10	30	45	ns
^t ĸo	Propagation Delay from Control Inputs FC_2 and FC_3 to Flag Out (FO)		16	30	ns
t _{FO}	Propagation Delay from Control Inputs AC_0-AC_6 to Latch Outputs (PR_0-PR_2)		26	40	ns
t _{EO}	Propagation Delay from Enable Inputs EN and ERA to Outputs (MA_0 - MA_8 , FO, PR_0 - PR_2)		21	32	ns
t _{FI}	Propagation Delay from Control Inputs AC_0 - AC_6 to Interrupt Strobe Enable Output (ISE)		24	40	ns

NOTE

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

(2) $t_{CY} = t_{WP} + t_{SF} + t_{CO}$

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.

Input rise and fall times of 5 ns between 1 volt and 2 volts.

Output load of 10 mA and 50 pF.

Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT:

CAPACITANCE(2) TA = 25°C

SYMBOL		PARAMETER	MIN	TYP	MAX	UNIT
CIN	Input Capacitance:					
	CLK, EN			11	16	рF
	All Other Inputs			5	10	рF
C _{OUT}	Output Capacitance			6	12	pF

NOTE:

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{BIAS} = 2.5V, V_{CC} = 5V and T_A = 25°C.

MILITARY TEMP.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias
Storage Temperature
All Input and Supply Voltages0.5V to +7V
All Input Voltages1.0V to +5.5V
Output Currents

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = -55^{\circ}C \text{ to } +125^{\circ}C, V_{CC} = 5.0V \pm 10\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	V	$I_C = -5 \text{ mA}$
l _F	Input Load Current: CLK Input EN Input All Other Inputs		-75 -50 -25	-750 -500 -250	μΑ μΑ μΑ	V _F = 0.45V
I _R	Input Leakage Current: CLK EN Input All Other Inputs			120 80 40	μΑ μΑ μΑ	V _R = 5.5V
VIL	Input Low Voltage			0.8	V	$V_{CC} = 5.0V$
V_{IH}	Input High Voltage	2.0			V	
Icc	Power Supply Current (2)		170	250	mA	
V _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	I _{OL} = 10 mA
V _{OH}	Output High Voltage (MA _O -MA ₈ , ISE, FO)	2.4	3.0		V	I _{OH} = -1 mA
los	Output Short Circuit Current (MA ₀ -MA ₈ , ISE, FO)	-15	-28	-60	mA	$V_{CC} = 5.0V$
lo (off)	Off-State Output Current: MA ₀ -MA ₈ , FO MA ₀ -MA ₈ , FO, PR ₀ -PR ₂			-100 100	μΑ μΑ	V _O = 0.45V V _O = 5.5V

NOTES

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽²⁾ EN input grounded, all other inputs and outputs open.

A.C. CHARACTERISTICS AND WAVEFORMS $T_A = -55^{\circ}C$ to +125°C, $V_{CC} = 5.0V \pm 10\%$

	M3001		MI	LIZA					
A.C. CHA	M3001 A.C. CHARACTERISTICS AND WAVEFORMS T _A = -55°C to +125°C, V _{CC} = 5.0V ±10%								
SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT				
tcy	Cycle Time ⁽²⁾	95	60		ns				
t _{WP}	Clock Pulse Width	40	20		ns				
t _{SF}	Control and Data Input Set-Up Times: LD, AC ₀ -AC ₆	10	0		ns				
t _{SK}	FC ₀ , FC ₁	0	05		ns				
t _{SX} t _{SI}	SX ₀ -SX ₃ , PX ₄ -PX ₇ FI	35 15	25 5		ns ns				
t _{HF} t _{HK} t _{HX} t _{HI}	Control and Data Input Hold Times: LD, AC_0 - AC_6 FC0, FC1 SX0-SX3, PX_4 - PX_7 FI	5 0 25 22	0 [.] 5 8		ns ns ns ns				
t _{CO}	Propagation Delay from Clock Input (CLK) to Outputs (MA $_0$ -MA $_8$, FO)	10	30	45	ns				
t _{KO}	Propagation Delay from Control Inputs FC_2 and FC_3 to Flag Out (FO)		16	50	ns				
t _{FO}	Propagation Delay from Control Inputs AC_0-AC_6 to Latch Outputs (PR_0-PR_2)		26	50	ns				
t _{EO}	Propagation Delay from Enable Inputs EN and ERA to Outputs $(MA_0-MA_8, FO, PR_0-PR_2)$		21	35	ns				
t _{FI}	Propagation Delay from Control Inputs AC_0 - AC_6 to Interrupt Strobe Enable Output (ISE)		24	40	ns				

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

(2) $t_{CY} = t_{WP} + t_{SF} + t_{CO}$

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.

Input rise and fall times of 5 ns between 1 volt and 2 volts.

Output load of 10 mA and 50 pF.

Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT:

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance:				
	CLK, EN		11	16	рF
	All Other Inputs		5	10	pF
C _{OUT}	Output Capacitance		6	12	pF

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{BIAS} = 2.5V$, $V_{CC} = 5V$ and $T_A = 25^{\circ}C.$

3001 WAVEFORMS

3002

CENTRAL PROCESSING ELEMENT

The INTEL® 3002 Central Processing Element contains all of the circuits that represent a 2-bit wide slice through the data processing section of a digital computer. To construct a complete central processor for a given word width N, it is simply necessary to connect an array of N/2 CPE's together. When wired together in such an array, a set of CPE's provide the following capabilities:

2's complement arithmetic
Logical AND, OR, NOT and
exclusive-OR
Incrementing and decrementing
Shifting left or right
Bit testing and zero detection
Carry look-ahead generation
Multiple data and address busses

High Performance - 100 ns Cycle Time

TTL and DTL Compatible

N-Bit Word Expandable Multi-Bus Organization

3 Input Data Busses

2 Three-State Fully Buffered Output Data Busses

11 General Purpose Registers

Full Function Accumulator

Independent Memory Address Register

Cascade Outputs for Full Carry Look-Ahead

Versatile Functional Capability 8 Function Groups

Over 40 Useful Functions Zero Detect and Bit Test

Single Clock

28 Pin DIP

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE(1)
1, 2	10-11	External Bus Inputs The external bus inputs provide a separate input port for external input devices.	Active LOW
3, 4	K ₀ -K ₁	Mask Bus Inputs The mask bus inputs provide a separate input port for the microprogram memory, to allow mask or constant entry.	Active LOW
5, 6	Х, Ү	Standard Carry Look-Ahead Cascade Outputs The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003 Look-Ahead Carry Generator.	
7	СО	Ripple Carry Output The ripple carry output is only disabled during shift right operations.	Active LOW Three-state
8	RO	Shift Right Output The shift right output is only enabled during shift right operations.	Active LOW Three-state
9	LI	Shift Right Input	Active LOW
10	CI	Carry Input	Active LOW
11	EA	Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (A_0-A_1) .	Active LOW
12-13	A ₀ -A ₁	Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR).	Active LOW Three-state
14	GND	Ground	
15-17, 24-27,	F ₀ -F ₆	Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection.	
18	CLK	Clock Input	
19-20	D ₀ -D ₁	Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC).	Active LOW Three-state
21-22	M_0-M_1	Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data.	Active LOW
23	ED	Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D_0 – D_1)	Active LOW
28	V _{CC}	+5 Volt Supply	

NOTE:
1. Active HIGH, unless otherwise specified.

LOGICAL DESCRIPTION

The CPE provides the arithmetic, logic and register functions of a 2-bit wide slice through a microprogrammed central processor. Data from external sources such as main memory, is brought into the CPE on one of the three separate input busses. Data being sent out of the CPE to external devices is carried on either of the two output busses. Within the CPE, data is stored in one of eleven scratchpad registers or in the accumulator. Data from the input busses, the registers, or the accumulator is available to the arithmetic/logic section (ALS) under the control of two internal multiplexers. Additional inputs and outputs are included for carry propagation, shifting, and micro-function selection. The complete logical organization of the CPE is shown below.

MICRO-FUNCTION BUS AND DECODER

The seven micro-function bus input lines of the CPE, designated F_0 - F_6 , are decoded internally to select the ALS function, generate the scratchpad address, and control the A and B multiplexers.

M-BUS AND I-BUS INPUTS

The M-bus inputs are arranged to bring data from an external main memory into the CPE. Data on the M-bus is multiplexed internally for input to the ALS.

The I-bus inputs are arranged to bring data from an external I/O system into the CPE. Data on the I-bus is also multiplexed internally, although independently of the M-bus, for input to the ALS Separation of the two busses permits a relatively lightly loaded memory bus even though a large number of I/O devices are connected to the I-bus. Alternatively, the I-bus may be wired to perform a multiple bit shift (e.g., a byte exchange) by connecting it to one of the output busses. In this case, I/O device data is gated externally onto the M-bus.

SCRATCHPAD

The scratchpad contains eleven registers designated R_0 through R_9 and T. The output of the scratchpad is multiplexed internally for input to ALS. The ALS output is returned for input into the scratchpad.

ACCUMULATOR AND D-BUS

An independent register called the accumulator (AC) is available for storing the result of an ALS operation. The output of the accumulator is multiplexed internally for input back to the

ALS and is also available via a threestate output buffer on the D-bus outputs. Conventional usage of the D-bus is for data being sent to the external main memory or to external I/O devices.

A AND B MULTIPLEXERS

The A and B multiplexers select the two inputs to the ALS specified on the micro-function bus. Inputs to the A-multiplexer include the M-bus, the scratchpad, and the accumulator. The B-multiplexer selects either the I-bus, the accumulator, or the K-bus. The selected B-multiplexer input is always logically ANDed with the data on the K-bus (see below) to provide a flexible masking and bit testing capability.

ALS AND K-BUS

The ALS is capable of a variety of arithmetic and logic operations, including 2's complement addition, incrementing, and decrementing, plus logical AND, inclusive-OR, exclusive-NOR, and logical complement. The result of an ALS operation may be stored in the accumulator or one of the scratchpad registers. Separate left input and right output lines, designated LI and RO, are available for use in right shift operations. Carry input and carry output lines, designated CI and CO are provided for normal ripple carry propaga-

tion. CO and RO data are brought out via two alternately enabled tri-state buffers. In addition, standard look ahead carry outputs, designated X and Y, are available for full carry look ahead across any word length.

The ability of the K-bus to mask inputs to the ALS greatly increases the versatility of the CPE. During non-arithmetic operations in which carry propagation has no meaning, the carry circuits are used to perform a word-wise inclusive-OR of the bits, masked by the K-bus, from the register or bus selected by the function decoder. Thus, the CPE provides a flexible bit testing capability. The K-bus is also used during arithmetic operations to mask portions of the field being operated upon. An additional function of the K-bus is that of supplying constants to the CPE from the microprogram.

MEMORY ADDRESS REGISTER AND A-BUS

A separate ALS output is also available to the memory address register (MAR) and to the A-bus via a three-state output buffer. Conventional usage of the MAR and A-bus is for sending addresses to an external main memory. The MAR and A-bus may also be used to select an external device when executing I/O operations.

Figure 2. 3002 Block Diagram

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	65°C to +160°C
All Output and Supply Voltages	0.5V to +7V
All Input Voltages	1.0V to +5.5V
Output Currents	100 mA

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C, V_{CC} = 5.0V \pm 5\%$

SYMBOL	PARAMETER	MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	I _C = -5 mA
lF	Input Load Current: F_0 – F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI		-0.05 -0.85 -2.3	0.25 1.5 4.0	mA mA mA	V _F = 0.45V
I _R	Input Leakage Current: F_0 - F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI			40 60 180	μΑ μΑ μΑ	V _R = 5.25V
V_{IL}	Input Low Voltage	•		8.0	V	$V_{CC} = 5.0V$
V_{IH}	Input High Voltage	2.0			V	
Icc	Power Supply Current ⁽²⁾		145	190	mA	
V _{OL}	Output Low Voltage (All Output Pins)		0.3	0.45	V	I _{OL.} = 10 mA
V _{OH}	Output High Voltage (All Output Pins)	2.4	3.0		V	$I_{OH} = -1 \text{ mA}$
I _{OS}	Short Circuit Output Current (All Output Pins)	-15	-2 5	-60	mA	V _{CC} = 5.0V
I _{O (off)}	Off State Output Current A_0 , A_1 , D_0 , D_1 , CO and RO			-100 100	μΑ μΑ	$V_{O} = 0.45V$ $V_{O} = 5.25V$

NOTES:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage

⁽²⁾ CLK input grounded, other inputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
tcy	Clock Cycle Time (2)	100	70	_	ns
t _{WP}	Clock Pulse Width	33	20		ns
t _{FS}	Function Input Set-Up Time (F ₀ through F ₆)	60	40		ns
	Data Set-Up Time:				
t_{DS}	I_0 , I_1 , M_0 , M_1 , K_0 , K_1	50	30		ns
t_{SS}	LI, CI	27	13		ns
	Data and Function Hold Time:				
t _{FH}	F ₀ through F ₆	5	-2		ns
t _{DH}	I_0 , I_1 , M_0 , M_1 , K_0 , K_1	5	-4		ns
t _{SH}	LI, CI	15	2		ns
	Propagation Delay to X, Y, RO from:				
txF	Any Function Input		37	52	ns
t _{XD}	Any Data Input		29	42	ns
tXT	Trailing Edge of CLK		40	60	ns
t _{XL}	Leading Edge of CLK	20			ns
	Propagation Delay to CO from:				
t _{CL}	Leading Edge of CLK	20			ns
tCT	Trailing Edge of CLK		48	70	ns
tCF	Any Function Input		43	65	ns
tCD	Any Data Input		30	55	ns
t _{CC}	CI (Ripple Carry)		14	25	ns
	Propagation Delay to A_0 , A_1 , D_0 , D_1 from:				
t_{DL}	Leading Edge of CLK	5	32	50	ns
tDE	Enable Input ED, EA		12	25	ns

NOTE:

TEST CONDITIONS:

Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 10 mA and 30 pF.

Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance		5	10	pF
C_{OUT}	Output Capacitance		6	12	pF

NOTE

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽²⁾ $t_{CY} = t_{DS} + t_{DL}$

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{BIAS} = 2.5V, V_{CC} = 5.0V and T_A = 25°C.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	55°C to +125°C
Storage Temperature	–65°C to +160°C
All Input and Supply Voltages	0.5V to +7V
All Input Voltages	–1.0V to +5.5V
Output Currents	100 mA

MILITARY TEMP *COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = -55^{\circ}C$ to +125°C, $V_{CC} = 5.0V \pm 10\%$.

			LIMITS			
SYMBOL	PARAMETER	MiN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	V	$I_C = -5 \text{ mA}$
I _F	Input Load Current: F_0-F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI		-0.05 -0.85 -2.3	-0.25 -1.5 -4.0	mA mA mA	V _F = 0.45V
I _R	Input Leakage Current: F_0 - F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI			40 100 250	μΑ μΑ μΑ	V _R = 5.5V
V_{IL}	Input Low Voltage			8.0	V	$V_{CC} = 5.0V$
V_{IH}	Input High Voltage	2.0			V	
Icc	Power Supply Current		145	210	mA	
V _{OL}	Output Low Voltage (All Output Pins)		0.3	0.45	V	I_{OL} = 10 mA
V _{OH}	Output High Voltage (All Output Pins)	2.4	3.0		V	$I_{OH} = -1 \text{ mA}$
los	Short Circuit Output Current (All Output Pins)	-15	-2 5	-60	mA	$V_{CC} = 5.0V$
I _{O (off)}	Off State Output Current A_0 , A_1 , D_0 , D_1 , CO and RO			-100 100	μ Α μ Α	$V_O = 0.45V$ $V_O = 5.5V$

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage

⁽²⁾ CLK input grounded, other inputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

	M3002		14		
A.C. CHA	RACTERISTICS AND WAVEFORMS			1/14	AL.
T _A = -55°C	to +125°C, V _{CC} = 5.0V ±10%.				UNIT
SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{CY}	Clock Cycle Time ^[2]	120	70		ns
t _{WP}	Clock Pulse Width	42	20		ns
t _{FS}	Function Input Set-Up Time (F ₀ through F ₆)	70	40		ns
t _{DS}	Data Set-Up Time: I_0 , I_1 , M_0 , M_1 , K_0 , K_1 LI, CI	60 30	30 13		ns ns
t _{FH} t _{DH} t _{SH}	Data and Function Hold Time: F_0 through F_6 I_0 , I_1 , M_0 , M_1 , K_0 , K_1 LI , CI	5 5 15	-2 -4 2		ns ns ns
txf txD txT txL	Propagation Delay to X, Y, RO from: Any Function Input Any Data Input Trailing Edge of CLK Leading Edge of CLK	. 22	37 29 40	65 55 75	ns ns ns ns
t _{CL} t _{CT} t _{CF} t _{CD} t _{CC}	Propagation Delay to CO from: Leading Edge of C!_K Trailing Edge of CLK Any Function Input Any Data Input CI (Ripple Carry)	22	48 43 30 14	85 75 65 30	ns ns ns ns
t _{DL}	Propagation Delay to A_0 , A_1 , D_0 , D_1 from: Leading Edge of CLK Enable Input ED, EA	5	32 12	60 35	ns ns

NOTE:

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

(2) $t_{CY} = t_{DS} + t_{DL}$

TEST CONDITIONS:

Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 10 mA and 30 pF.

Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
CIN	Input Capacitance	- · · · -	5	10	pF
C_{OUT}	Output Capacitance		6	12	pF

NOTE:

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{BIAS} = 2.5V, V_{CC} = 5.0V and $T_A = 25^{\circ}C$.

3002 WAVEFORMS

3003 LOOK-AHEAD CARRY GENERATOR

The INTEL® 3003 Look-Ahead Carry Generator (LCG) is a high speed circuit capable of anticipating a carry across a full 16-bit 3002 Central Processing Element (CPE) array. When used with a larger 3002 CP array multiple 3003 carry generators provide high speed carry lookahead capability for any word length.

The LCG accepts eight pairs of active high cascade inputs (X,Y) and an active low carry input and generates active low carries for up to eight groups of binary adders.

High Performance — 10 ns typical propagation delay

Compatible with INTEL 3001 MCU and 3002 CPE

DTL and TTL compatible

Full look-ahead across 8 adders

Low voltage diode input clamp

Expandable

28-pin DIP

PACKAGE CONFIGURATION

Diagram of a Typical System

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1,7,8,11 18,21,23 27	Y ₀ -Y ₇	Standard carry look-ahead inputs	Active HIGH
2,5,6,10 19,20,24 26	X ₀ -X ₇	Standard carry look-ahead inputs	Active HIGH
17	· C _n	Carry input	Active LOW
4,9,12 13,15,16	C _{n+1} - C _{n+8}	Carry outputs	Active LOW
3	EC _{n+8}	C _{n+8} carry output enable	Active HIGH
28	V _{CC}	+5 volt supply	
14	GND	Ground	

3003 LOGIC EQUATIONS

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE. Logic equations for the 3003 are:

$$\overline{C_n + 1} = Y_0 X_0 + Y_0 \overline{C}_n$$

$$\frac{\overline{C_0 + 2} = Y_1 X_1 + Y_1 Y_0 X_0 + Y_1 Y_0 \overline{C_0}}{C_0}$$

$$\overline{C_n + 3} = Y_2 X_2 + Y_2 Y_1 X_1 + Y_2 Y_1 Y_0 X_0 + Y_2 Y_1 Y_0 \overline{C}_n$$

$$\overline{c_n + 4} = Y_3 X_3 + Y_3 Y_2 X_2 + Y_3 Y_2 Y_1 X_1 + Y_3 Y_2 Y_1 Y_0 X_0 + Y_3 Y_2 Y_1 Y_0 \overline{c_n}$$

$$\overline{C_{0} + 5} = Y_{4}X_{4} + Y_{4}Y_{3}X_{3} + Y_{4}Y_{3}Y_{2}X_{2} + Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{0}$$

$$\overline{c_{n} + 6} = Y_{5}X_{5} + Y_{5}Y_{4}X_{4} + Y_{5}Y_{4}Y_{3}X_{3} + Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{c_{n}}$$

$$\overline{C_{n}^{+,7}} = Y_{6}X_{6}^{+} + Y_{6}Y_{5}X_{5}^{+} + Y_{6}Y_{5}Y_{4}X_{4}^{+} + Y_{6}Y_{5}Y_{4}Y_{3}X_{3}^{+} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2}^{+} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1}^{+} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0}^{-} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{n}$$

 $\overline{C_n + 8}$ = High Impedance State when EC_n + 8 Low

$$\overline{C_n + 8} = Y_7 X_7 + Y_7 Y_6 X_6 + Y_7 Y_6 Y_5 X_5 + Y_7 Y_6 Y_5 Y_4 X_4 + Y_7 Y_6 Y_5 Y_4 Y_3 X_3 + Y_7 Y_6 Y_5 Y_4 Y_3 Y_2 X_2 + Y_7 Y_6 Y_5 Y_4 Y_3 Y_2 Y_1 X_1 + Y_7 Y_6 Y_5 Y_4 Y_3 Y_2 Y_1 Y_0 \overline{C}_n \text{ when EC}_n + 8 \text{ high}$$

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent-damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = -55^{\circ} C \text{ to } +125^{\circ} C, V_{CC} = 5.0 V \pm 10\%.$

SYMBOL	PARAMETER	MIN.	TYP. (1)	MAX.	UNIT	CONDITIONS
v _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	V	I _C = -5 mA
1 _F	Input Load Current: X6,X7,Cn,EC _{n+8} Y ₇ ,X ₀ -X ₅ , Y ₀ -Y ₆		-0.07 -0.200 -0.6	-0.25 - 0.500 - 1.5	mA mA mA	V _F = 0.45V
^I R	Input Leakage Current: C _n and EC _n + 8 All Other Inputs			40 100	μΑ μΑ	V _{CC} = 5.25V, V _R = 5.5V
V_{IL}	. Input Low Voltage			0.8	V	V _{CC} = 5.0V
v_{IH}	Input High Voltage	2.1			V	V _{CC} = 5.0V
lcc	Power Supply Current		80	130	mA	All Y and EC _n + 8 high, All X and C _n low
V _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	- V	I _{OL} = 4 mA
V_{OH}	Output High Voltage (All Output Pins)	2.4	3		V	$I_{OH} = -1 \text{ mA}$
los	Short Circuit Output Current (All Output Pins)	-15	-40	-65	mA	V _{CC} = 5V
^I O(off)	Off-State Output Current (C _n + 8)			-100 -100	μΑ μΑ	V _O = 0.45V V _O = 5.5V

NOTE:

A.C. CHARACTERISTICS

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = +5.0V \pm 10\%$

SYMBOL	PARAMETER	MIN.	TYP. (1)	MAX.	UNIT
tXC	X, Y to Outputs	3	10	25	ns
^t CC	Carry In to Outputs		13	40	ns
^t EN	Enable Time, C _n + 8		20	50	ns

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0 $^{\circ}$ C to 70 $^{\circ}$ C
Storage Temperature65°C to +160°C
All Output and Supply Voltages $-0.5V$ to +7V
All Input Voltages1.0V to +5.5V
Output Currents

MILITARY TEMP. *COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_{\Delta} = 0^{\circ} \text{C to } +70^{\circ} \text{C}$ $V_{CC} = 5.0 \text{V } \pm 5\%$

- A						
SYMBOL	PARAMETER	MIN.	TYP. (1)	MAX.	UNIT	CONDITIONS
v _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	$I_C = -5 \text{ mA}$
I _F	Input Load Current: X ₆ ,X ₇ Cn,EC _n +8 Y ₇ ,X ₀ -X ₅ , Y ₀ -Y ₆		-0.07 -0.200 -0.6	-0.25 -0.500 -1.5	mA mA mA	V _F = 0.45V
^I R	Input Leakage Current: C _n and EC _n + 8 All Other Inputs			40 100	μ Α μ Α	V _R = 5.25V
VIL	Input Low Voltage			0.8	V	V _{CC} = 5.0V
V _{IH}	Input High Voltage	2.0			٧	$V_{CC} = 5.0V$
lcc	Power Supply Current		80	130	mA	All Y and $EC_n + 8$ high, All X and C_n low
V _{OL}	Output Low Voltage (All Output Pins)	,	0.35	0.45	٧	I _{OL} = 4 mA
V _{OH}	Output High Voltage (All Output Pins)	2.4	3		٧	I _{OH} = -1 mA
Ios	Short Circuit Output Current (All Output Pins)	15	-40	-65	mA	V _{CC} = 5V
I _{O(off)}	Off-State Output Current (C _n + 8)			-100 +100	μÀ μA	$V_{O} = 0.45V$ $V_{O} = 5.25V$

NOTE:

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

SYMBOL	PARAMETER	MIN.	TYP. ⁽¹⁾	MAX.	UNIT
tXC	X, Y to Outputs	3	10	20	ns
^t CC	Carry In to Outputs		13	30	ns
tEN	Enable Time, C _n + 8		20	40	ns

(1) Typical values are for $T_A = 25^{\circ} C$ and nominal supply voltage.

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

WAVEFORMS

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

SYMBOL		PARAMETER	MIN	TYP	MAX	UNIT
C_{IN}	Input Capacitance	All inputs		12	20	pF
C _{OUT}	Output Capacitance	C _n + 8		7	12	pF

NOTE:

TEST CONDITIONS:

Input pulse amplitude of 2.5V.
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 30 pF.
Speed measurements are made at 1.5 volt levels.

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{BIAS} = 5.0 \text{V}$, $V_{CC} = 5.0 \text{V}$ and $T_A = 25^{\circ} \text{C}$.

3214 INTERRUPT CONTROL UNIT

The Intel®3214 Interrupt Control Unit (ICU) implements multi-level interrupt capability for systems designed with Series 3000 computing elements.

The ICU accepts an asynchronous interrupt strobe from the 3001 Microprogram Control Unit or a bit in microprogram memory and generates a synchronous interrupt acknowledge and an interrupt vector which may be directed to the MCU or CP Array to uniquely identify the interrupt source.

The ICU is fully expandable in 8-level increments and provides the following system capabilities:

Eight unique priority levels per ICU

Automatic Priority Determination

Programmable Status

N-level expansion capability

Automatic interrupt vector generation

High Performance - 80 ns Cycle Time

Compatible with Intel 3001 MCU and 3002 CPE

8-Bit Priority Interrupt Request Latch

4-Bit Priority Status Latch

3-Bit Priority Encoder with Open Collector Outputs

DTL and TTL Compatible

8-Level Priority Comparator

Fully Expandable

24-Pin DIP

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE ⁽¹⁾
1–3	B ₀ -B ₂	Current Status Inputs	Active LOW
		The Current Status inputs carry the binary value modulo 8 of the current priority level to the current status latch.	
4	SGS	Status Group Select Input	Active LOW
		The Status Group Select input informs the ICU that the current priority level does belong to the group level assigned to the ICU.	
5	IA	Interrupt Acknowledge	Active LOW
		The Interrupt Acknowledge Output will only be active from the ICU (multi-ICU system) which has received a priority request at a level superior to the current status. It signals the controlled device (usually the processor) and the other ICUs OR-tied on the Interrupt Acknowledge line that an interrupt request has been recognized.	Open-Collector Output
		The IA signal also sets the Interrupt Disable flip-flop (it overrides the clear function of the ECS input).	
6	CLK	Clock Input	
		The Clock input is used to synchronize the interrupt acknowledge with the operation of the device which it controls.	
7	ISE	Interrupt Strobe Enable Input	
		The Interrupt Strobe Enable input informs the ICU that it is authorized to enter the interrupt mode.	
8-10	A_0-A_2	Request Level Outputs	Active LOW
		When valid, the Request Level outputs carry the binary value (modulo 8) of the highest priority request present at the priority request inputs or stored in the priority request latch. The request level outputs can become active only with the ICU which has received the highest priority request with a level superior to the current status.	Open-Collector
11	ELR	Enable Level Read Input	Active LOW
		When active, the Enable Level Read input enables the Request Level output buffers (A_0-A_2) .	
12	GND .	Ground	
13	ETLG	Enable This Level Group Input	
		The Enable This Level Group input allows a higher priority ICU in multi-ICU systems to inhibit interrupts within the next lower priority ICU (and all the following ICUs).	
14	ENLG	Enable Next Level Group Output	
		The Enable Next Level Group output allows the ICU to inhibit interrupts within the lower priority ICU in a multi-ICU system.	
15-22	R_0-R_7	Priority Interrupt Request Inputs	Active LOW
		The Priority Interrupt Request inputs are the inputs of the priority Interrupt Request Latch. The lowest priority level interrupt request signal is attached to R_0 and the highest is attached to R_7 .	
23	ECS	Enable Current Status Input	Active LOW
		The Enable Current Status input controls the current status latch and the clear function of the Interrupt Inhibit flip-flop.	
24	V _{CC}	+5 Volt Supply	

NOTE:

⁽¹⁾ Active HIGH, unless otherwise noted.

FUNCTIONAL AND LOGICAL DESCRIPTION

The ICU adds interrupt capability to suitably microprogrammed processors or controllers. One or more of these units allows external signals called interrupt requests to cause the processor/controller to suspend execution of the active process, save its status, and initiate execution of a new task as requested by the interrupt signal.

It is customary to strobe the ICU at the end of each instruction execution. At that time, if an interrupt request is acknowledged by the ICU, the MCU is forced to follow the interrupt microprogram sequence.

Figure 1 shows the block diagram of the ICU. Interrupt requests pass through the interrupt request latch and priority encoder to the magnitude comparator. The output of the priority encoder is the binary equivalent of the highest active priority request. At the comparator, this value is compared with the Current Status (currently active priority level) contained in the current status latch. A request, if acknowledged at interrupt strobe time, will cause the interrupt flip-flop to enter the "interrupt active" state for one microinstruction cycle. This action causes the interrupt acknowledge (IA) signal to go low and sets the interrupt disable flip-flop.

The IA signal constitutes the interrupt command to the processor. It can directly force entry into the interrupt service routine as demonstrated in the appendix. As part of this routine, the microprogram normally reads the requesting level via the request level output bus. This information which is saved in the request latch can be enabled onto one of the processor input data buses using the enable level read input. Once the interrupt handler has determined the requesting level, it normally writes this level back into the current status register of the ICU. This action resets the interrupt disable flipflop and acts to block any further request at this level or lower levels.

Entry into a macro level interrupt service routine may be vectored using the request level information to generate a subroutine address which corresponds to the level. Exit from such a macroprogram should normally restore the prior status in the current status latch.

The Enable This Level Group (ETLG) input and the Enable Next Level Group (ENLG) output can be used in a daisy chain fashion, as each ICU is capable of inhibiting interrupts from all of the following ICUs in a multiple ICU configuration.

The interrupt acknowledge flip-flop is set to the active LOW state on the rising edge of the clock when the following conditions are met:

An active request level (R $_0$ -R $_7$) is greater than the current status B $_0$ -B $_2$

The interrupt mode (ISE) is active ETLG is enabled

The interrupt disable flip-flop is reset

When active, the IA signal asynchronously sets the disable flip-flop and holds the requests in the request latch until new current status information (B_0-B_2 , SGS) is enabled (ECS) into the current status latch. The disable flip-flop is reset at the completion of this load operation.

During this process, ENLG will be enabled only if the following conditions are met:

ETLG is enabled

The current status (SGS) does not belong to this level group

There is no active request at this level

The request level outputs A_0-A_2 and the IA output are open-collector to permit bussing of these lines in multi-ICU configuration.

Figure 1. 3214 Block Diagram.

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = 0^{\circ}C$ to +75°C, $V_{CC} = 5.0V \pm 5\%$

SYMBOL	PARAMETER		MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
v_{c}	Input Clamp Voltage (all	inputs)			-1.0	V	I _C = -5 mA
1 _F	Input Forward Current:	ETLG input all other inputs		15 08	-0.5 -0.25	mA mA	V _F = 0.45V
I _R	Input Reverse Current:	ETLG input all other inputs			80 40	μA μA	V _R = 5.25V
VIL	Input LOW Voltage:	all inputs			0.8	V	V _{CC} = 5.0V
V _{IH}	Input HIGH Voltage:	all inputs	2.0			V	$V_{CC} = 5.0V$
^I cc	Power Supply Current (2)			90	130	mA	
√oL	Output LOW Voltage:	all outputs		.3	.45	· V	I _{OL} = 15 mA
V _{OH}	Output HIGH Voltage:	ENLG output	2.4	3.0		V	$I_{OH} = -1 \text{ mA}$
los	Short Circuit Output Curr	rent: ENLG output	-20	-35	-55	mA	V _{CC} = 5.0V
CEX	Output Leakage Current:	IA and $A_0 - A_2$ outputs			100	μΑ	V _{CEX} = 5.25V

NOTES:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

 $^{^{(2)}}$ B $_{\emptyset}$ -B $_{2}$, SGS, CLK, R $_{\emptyset}$ -R $_{4}$ grounded, all other inputs and all outputs open.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C \text{ to } +75^{\circ}C, V_{CC} = +5V \pm 5\%$

SYMBOL	PARAMETER	MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT
tCY	CLK Cycle Time	80			ns
t _{PW}	CLK, ECS, IA Pulse Width	25	15		ns
	Interrupt Flip-Flop Next State Determination:				
^t ISS	ISE Set-Up Time to CLK	16	12		ns
tish	ISE Hold Time After CLK	20	10		ns
tetcs ²	ETLG Set-Up Time to CLK	25	12		ns
tetch ²	ETLG Hold Time After CLK	20	10		ns
teccs ³	ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK)	80	25		ns
tECCH ³	ECS Hold Time After CLK (to hold interrupt inhibit)	0			ns
tecrs ³	ECS Set-Up Time to CLK (to enable new requests through the request latch)	110	70		ns
t _{ECRH} 3	ECS Hold Time After CLK (to hold requests in request latch)	0			
tecss ²	ECS Set-Up Time to CLK (to enable new status through the status latch)	75	70		ns
tecsH ²	ECS Hold Time After CLK (to hold status in status latch)	0			ns
t _{DCS} ²	SGS and B_0-B_2 Set-Up Time to CLK (current status latch enabled)	70	50		ns
t _{DCH} 2	SGS and B _Ø -B ₂ Hold Time After CLK (current status latch enabled)	0			ns
t _{RCS} 3	R _Ø -R ₇ Set-Up Time to CLK (request latch enabled)	90	55		ns
t _{RCH} 3	Rø-R7 Hold Time After CLK (request latch enabled)	0			ns
tics	IA Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK)	55	35		ns
^t CI	CLK to IA Propagation Delay		15	25	ns
	Contents of Request Latch and Request Level Output Status Determination:				
tRIS ⁴	Rg-R7 Set-Up Time to IA	10	0		ns
t _{RIH} 4	R _Ø -R ₇ Hold Time After IA	35	20		ns
^t RA	R _Ø -R ₇ to A _Ø -A ₂ Propagation Delay (request latch enabled)		80	100	ns
^t ELA	ELR to A _Ø -A ₂ Propagation Delay		40	55	ns
^t ECA	ECS to A ₀ -A ₂ Propagation Delay (to enable new requests through request la	tch)	100	120	ns
^t ETA	ETLG to A _Ø -A ₂ Propagation Delay		35	70	ns

A.C. CHARACTERISTICS (CON'T)

SYMBOL	PARAMETER	MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT
	Contents of Current Priority Status Latch Determination:	_			
tDECS4	SGS and B ₀ -B ₂ Set-Up Time to ECS	15	10		ns
tDECH4	SGS and B ₀ -B ₂ Hold Time After ECS	15	10		ns
	Enable Next Level Group Determination:				
^t REN	R _Ø -R ₇ to ENLG Propagation Delay		45	70	ns
^t ETEN	ETLG to ENLG Propagation Delay		20	25	ns
^t ECRN	ECS to ENLG Propagation Delay (enabling new request through the request latch)		85	90	ns
^t ECSN	ECS to ENLG Propagation Delay (enabling new SGS through status latch)		35	55	ns

NOTES:

TEST CONDITIONS:

Input pulse amplitude: 2.5 volts.

Input rise and fall times: 5 ns between 1 and 2 volts.

Output loading of 15 mA and 30 pf.

Speed measurements taken at the 1.5V levels.

CAPACITANCE (5)

 $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT
c _{IN}	Input Capacitance		5	10	pf
C _{OUT}	Output Capacitance		7	12	pf

TEST CONDITIONS:

 V_{BIAS} = 2.5V, V_{CC} = 5V, T_A = 25°C, f = 1 MHz

NOTE:

⁽¹⁾ Typical values are for T_A = 25°C and nominal supply voltage.

⁽²⁾ Required for proper operation if ISE is enabled during next clock pulse.

⁽³⁾ These times are not required for proper operation but for desired change in interrupt flip-flop.

⁽⁴⁾ Required for new request or status to be properly loaded.

⁽⁵⁾ $t_{CY} = t_{ICS} + t_{CI}$

⁽⁵⁾ This parameter is periodically sampled and not 100% tested.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias
CerDip55°C to +125°C
Storage Temperature65°C to +160°C
All Output and Supply Voltages0.5V to +7V
All Input Voltages
Output Currents

MILITARY TEMP. *COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$; $V_{CC} = 5.0V \pm 10\%$

SYMBOL	PARAMETER		MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
v _C	Input Clamp Voltage (all i	nputs)			-1.2	٧	$I_C = -5 \text{ mA}$
۱۴	Input Forward Current:	ETLG input all other inputs		15 08	-0.5 -0.25	mA mA	V _F = 0.45V
^I R	Input Reverse Current:	ETLG input all other inputs			80 40	μA μA	V _R = 5.5V
V _{IL}	Input LOW Voltage:	all inputs			8.0	٧	V _{CC} = 5.0V
V _{IH}	Input HIGH Voltage:	all inputs	2.0			٧	$V_{CC} = 5.0V$
Icc	Power Supply Current ⁽²⁾			90	130	mA	
VOL	Output LOW Voltage:	all outputs		.3	.45	V	I _{OL} = 10 mA
V _{OH}	Output HIGH Voltage:	ENLG output	2.4	3.0		٧	$I_{OH} = -1 \text{ mA}$
Ios	Short Circuit Output Cur	rent: ENLG output	-15	-35	-55	mA	$V_{CC} = 5.0V$
ICEX	Output Leakage Current:	IA and A _Ø -A ₃ outputs			100	μΑ	V _{CEX} = 5.5V

NOTES:

⁽¹⁾Typical values are for $T_A = 25^{\circ}$ C and nominal supply voltage.

⁽²⁾ B_0 - B_2 , SGS, CLK, R_0 - R_4 grounded, all other inputs and all outputs open.

A.C. CHARACTERISTICS

 $T_A = -55^{\circ}C$ to +125°C; $V_{CC} = 5.0V \pm 10\%$

	M3214	4	411					
A.C. CHA	RACTERISTICS		-1/2	1AL	•			
M3214 A.C. CHARACTERISTICS $T_A = -55^{\circ}C \text{ to } +125^{\circ}C; \ V_{CC} = 5.0V \pm 10\%$ SYMBOL PARAMETER MIN TYP ⁽¹⁾ MAX UNIT								
SYMBOL	PARAMETER	MIN	LIMITS TYP(1)	MAX	UNIT			
t _{CY}	CLK Cycle Time (5)	85			ns			
tpW	CLK, ECS, IA Pulse Width	25	15		ns			
	Interrupt Flip-Flop Next State Determination:							
^t ISS	ISE Set-Up Time to CLK	16	12	•	ns ns			
^t ISH	ISE Hold Time After CLK	20	10		ns			
t _{ETCS} ²	ETLG Set-Up Time to CLK	25	12		ns			
t _{ETCH} 2	ETLG Hold Time After CLK	20	10		ns			
teccs ³	ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK)	85 .	25		ns			
t _{ECCH} 3	ECS Hold Time After CLK (to hold interrupt inhibit)	0			ns			
tecrs ³	ECS Set-Up Time to CLK (to enable new requests through the request latch)	110	70		ns			
tecrh ³	ECS Hold Time After CLK (to hold requests in request latch)	0						
tecss ²	ECS Set-Up Time to CLK (to enable new status through the status latch)	85	70		ns			
t _{ECSH} 2	ECS Hold Time After CLK (to hold status in status latch)	0			ns			
t _{DCS} ²	SGS and B ₀ -B ₂ Set-Up Time to CLK (current status latch enabled)	90	50		ns			
t _{DCH} 2.	SGS and B ₀ -B ₂ Hold Time After CLK (current status latch enabled)	0			ns			
t _{RCS} 3	Rg-R ₇ Set-Up Time to CLK (request latch enabled)	100	55		ns			
tRCH ³	R _Ø -R ₇ Hold Time After CLK (request latch enabled)	0			ns			
tICS	IA Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK)	55	35		ns			
^t CI	CLK to IA Propagation Delay		15	30	ns			
	Contents of Request Latch and Request Level Output Status Determination:							
tRIS ⁴	Rø-R7 Set-Up Time to IA	10	0		ns			
t _{RIH} 4	R _Ø -R ₇ Hold Time After IA	35	20		ns			
t _{RA}	R_0-R_7 to A_0-A_2 Propagation Delay (request latch enabled)		80	100	ns			
^t ELA	ELR to A _Ø -A ₂ Propagation Delay		40	55	ns			
^t ECA	ECS to A_0 - A_2 Propagation Delay (to enable new requests through request lat	tch)	100	130	ns			
^t ETA	ETLG to A ₀ -A ₂ Propagation Delay		35	70	ns			
	· · · · · · · · · · · · · · · · · · ·							

A.C. CHARACTERISTICS (CON'T)

	M3214		11/17	L	
A.C. CHA	RACTERISTICS (CON'T)		•	ARY	*
SYMBOL	PARAMETER	MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT
	Contents of Current Priority Status Latch Determination:				
t _{DECS} 4	SGS and B _Ø -B ₂ Set-Up Time to ECS	20	10		ns
tDECH4	SGS and B _Ø -B ₂ Hold Time After ECS	20	10		ns
	Enable Next Level Group Determination:				
^t REN	R _Ø -R ₇ to ENLG Propagation Delay		45	70	ns
^t ETEN	ETLG to ENLG Propagation Delay		20	30	ns
^t ECRN	ECS to ENLG Propagation Delay (enabling new request through the request latch)		85	110	ns
^t ECSN	ECS to ENLG Propagation Delay (enabling new SGS through status latch)		35	55	ns

TEST CONDITIONS:

Input pulse amplitude: 2.5 volts.

Input rise and fall times: 5 ns between 1 and 2 volts.

Output loading of 15 mA and 30 pf.

Speed measurements taken at the 1.5V levels.

CAPACITANCE (5)

 $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT
c _{IN}	Input Capacitance		5	10	pf
c _{out}	Output Capacitance		7	12	pf

TEST CONDITIONS:

 $V_{BIAS} = 2.5V$, $V_{CC} = 5V$, $T_{A} = 25^{\circ}C$, f = 1 MHz

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽²⁾ Required for proper operation if ISE is enabled during next clock pulse.

⁽³⁾ These times are not required for proper operation but for desired change in interrupt flip-flop.

⁽⁴⁾ Required for new request or status to be properly loaded.

⁽⁵⁾ tcy = tics + tci

⁽⁵⁾ This parameter is periodically sampled and not 100% tested.

WAVEFORMS

