Recitation 2/25

Sungwoo Jeong Tuesday 10AM, 11AM ${\it March~12,~2020}$

Intuition for some matrix multiplications

 $- \\ Black board$

Matrix	Decom	${f positions}$

LU decomposition : A square matrix $A = LU$ where L is a matrix.	matrix	and	U	is a
QR decomposition : A m -by- n matrix $A = QR$ where Q is a matrix.	matrix	and	R	is a
Singular Value Decomposition : A m-by-n matrix $A = U\Sigma V^T$, where U and V are matrices and Σ is non-zero only on diagonals.(there can be zeros on the diagonal of				

Dimensions of SVD - Blackboard

- 1. Rank r
- 2. Partial
- 3. Full

Problems

1. Find a LU decomposition of $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$

2. We have learned four fundamental vector spaces, col(A), null(A), row(A), $null(A^T)$. Let A be a n-by-n matrix. If $null(A) = \mathbb{R}^n$, what can we say about A?

3. (a) Find a QR decomposition of
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

- (b) Describe col(A). Is $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ in it?
- (c) Find a vector x that minimizes ||Ax b||

$$\text{4. Full SVD of 4-by-3 matrix A is given as } A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{5} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

(a) Write Rank-r and partial SVD of A.

- (b) What is the rank of A?
- (c) Compute the rank-1 approximation of A.
- (d) Describe col(A) and row(A).

Answers

1.
$$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

1. $L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ 2. A is a zero matrix since any linear combination of columns of A becomes zero vector.

3(a)
$$Q = \begin{pmatrix} 1/\sqrt{2} & 0\\ 0 & 1\\ 1/\sqrt{2} & 0 \end{pmatrix}, R = \begin{pmatrix} \sqrt{2} & \sqrt{2}\\ 0 & 1 \end{pmatrix}$$

- 3(b) Column space is consisting of vectors of form $\begin{pmatrix} x \\ y \end{pmatrix}$. b is not in it.
- 3(c) From lectures, we know that $x = R^{-1}Q^Tb$. First multiplying Q^T to b we have a vector $c = \begin{pmatrix} 2\sqrt{2} \\ 2 \end{pmatrix}$.

Then solving
$$Rx = c$$
 we obtain $x = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$
4(a) Rank-r version $A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{5} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

partial version
$$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & 1\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{5} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

$$4(c) \sqrt{5} \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

- 4(d) Column space of A is column space of U_1 , which is a U of reduced(rank-r) SVD(see lecture slide 10 page 8). So column space of A is vectors of form $\begin{pmatrix} x \\ 0 \\ y \\ 0 \end{pmatrix}$. Similarly rowspace of A is columnspace of V1,
- which has the form $\begin{pmatrix} x \\ 0 \\ y \end{pmatrix}$ (Look at 4(a), there are U_1 and V_1 .