Práctica 8: Algebra de Boole

Nombre: Colín Ramiro Joel No. de lista: 3

a)
$$Y = AB + A\overline{B}$$

Circuito lógico

• Simplificación

$$A(B+(A\overline{B})) = (3) \times (y+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) \cdot (B+B) = (3) \times (y+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) \cdot 1 = (3) \times (y+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

$$A(B+A) = (3) \times (x+z) = (x \cdot y) + (x \cdot z)$$

a)A	B	+4	B			004		KI	18	TA S	A	8	4	50
	A	B	B	AB	AB	A8+	B			19	A			
				0		0				(0			
	0	1	0	8	0	B					1			
1610	1	0	1	3	1	1								
	1	1	0	1	0	1								
			-						13	6				

b)
$$Y = (A + B)(A + \overline{B})$$

• Simplificación

c)
$$Y = ABC + A\overline{C} + AB\overline{C}$$

• Simplificación

d)
$$Y = CA + C\overline{A}B$$

• Simplificación

e)
$$F = Y(W\overline{Z} + WZ) + XY$$

Simplificación

f) $Y = A\overline{B}D + A\overline{B}\overline{D}$

• Circuito lógico

• Simplificación

g) $Y = ABC + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + AB\overline{C}$

Circuito lógico

• Simplificación

h)
$$Y = BC + A\overline{C} + AB + BCD$$

Simplificación

i)
$$Y = \overline{A + \overline{B}}$$

• Simplificación

$$\mathbf{j)} \quad Y = A\overline{B} + A\overline{B}C$$

• Simplificación

$$k) Z = ABC + AB\overline{C} + A\overline{B}C$$

Simplificación

M)
$$ABC + ABC + ABC = AB + AC$$

$$A(BC + BE + BG) = factorizar "A"$$

$$A(B + BC) = B \times (y + (x \cdot y) = x$$

$$A(B + C) = B \times (y + z) = (x \cdot y) + (x \cdot z)$$

$$AB + AC = B \times (y + z) = (x \cdot y) + (x \cdot z)$$

I)
$$Y = (\overline{A} + B)(A + B + D)\overline{D}$$

Simplificación

$$\begin{array}{c}
(A + B)(A + B + D)\overline{D} = \overline{A}B\overline{O} \\
A + (B)(A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B)(A + B + D)\overline{O} \\
A \cdot (B)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\begin{array}{c}
(A + B + D)\overline{O} \\
A \cdot (A + B + D)\overline{O}
\end{array}$$

$$\mathbf{m)} Y = A(AB + C)$$

• Simplificación

$$(A(AB) + AC)$$

$$(AA) B + AC$$

$$AB + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$AB + AC$$

$$AB + AC$$

$$B + AC$$

$$AB + AC$$

$$AB$$

$$\mathbf{n)} \ \ Y = A + A\overline{B} + \overline{A}B$$

• Simplificación

n)
$$A + AB + AB = A + B$$

($A + BB + AB$

($A + AB + AB$

(A

• Circuito lógico de la ecuación reducida

o)
$$Z = \overline{A} \, \overline{B} C + \overline{A} B \overline{C} + A \overline{B}$$

• Circuito lógico

Simplificación

Tablas de verdad

p)
$$Z = AB + A(B + C) + B(B + C)$$

• Circuito lógico

• Simplificación

• Circuito lógico de la ecuación reducida

q)
$$F = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

Simplificación

