"ALGORITMI I (6 cfu)"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

Seconda sessione di esami (II appello) - 6 luglio 2015

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 1 (Equazione di ricorrenza)

Si enuncino il Teorema Master ed il suo Corollorio, quindi si risolvano le seguenti equazioni di ricorrenza:

(a)
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n^2 \log n$$

(b)
$$T(n) = 8 \cdot T(\frac{n}{2}) + n^2 \log n$$
,

(a)
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n^2 \log n$$
, (b) $T(n) = 8 \cdot T\left(\frac{n}{2}\right) + n^2 \log n$, (c) $T(n) = 3 \cdot T\left(\frac{n}{2}\right) + n^2 \log n$.

ESERCIZIO 2 (Ordinamento)

Si descrivano la struttura dati MAX-HEAP e le procedure MAX-HEAPIFY, BUILD-MAX-HEAP e HEAPSORT, determinandone le complessità computazionali.

ESERCIZIO 3 (Algoritmi su grafi)

Dopo aver definito la nozione di componente fortemente connessa (cfc) di un grafo orientato, si descriva un algoritmo per calcolare le cfc di un grafo orientato e se ne indichi la complessità computazionale.

Quindi si applichi l'algoritmo descritto per trovare le componenti fortemente connesse del grafo orientato $\mathcal G$ rappresentato dalle seguenti liste di adiacenza:

$$\begin{array}{ll} A \rightarrow D & D \rightarrow F \\ B \rightarrow C,\, D,\, E & E \rightarrow B,\, F \end{array}$$

$$\mathrm{D} \to \mathrm{F}$$

$$F \to A, C$$

$$B \to C, D, E$$

$$E \rightarrow B$$
. F