E. Square Root of Permutation

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

A *permutation* of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is $p = q^2 = [2, 3, 4, 5, 1]$.

This problem is about the inverse operation: given the permutation p you task is to find such permutation q that $q^2 = p$. If there are several such q find any of them.

Input

The first line contains integer n ($1 \le n \le 10^6$) — the number of elements in permutation p.

The second line contains n distinct integers $p_1, p_2, ..., p_n$ ($1 \le p_i \le n$) — the elements of permutation p.

Output

If there is no permutation q such that $q^2 = p$ print the number "-1".

If the answer exists print it. The only line should contain n different integers q_i ($1 \le q_i \le n$) — the elements of the permutation q. If there are several solutions print any of them.

Examples

```
input
4
2 1 4 3

output
3 4 2 1
```

```
input
4
2 1 3 4

output
-1
```

```
input
5
2 3 4 5 1
output
4 5 1 2 3
```