

COE-C2004 - Materials Science and Engineering

Prof. Junhe Lian Wenqi Liu (Primary Teaching Assistant) Rongfei Juan and Sayoojya Prasad (Teaching Assistants)

Chapter 1: Introduction to Materials Science & Engineering

ISSUES TO ADDRESS...

- What is materials science and engineering?
- Why are materials important?
- Why is it important for engineers to understand materials?
- Typical material types.
- Typical material properties.
- The structure-property correlation.

What is Materials Science & Engineering?

www.menti.com and use code "1708 0257" to describe

https://msestudent.com/13-reasons-why-you-should-study-materials-science-and-engineering/

What is Materials Science & Engineering?

Materials science

- Investigate relationships between structures and properties of materials
- Design/develop new materials

Materials engineering

- Create products from existing materials
- Develop materials processing techniques

http://www.stemclopedia.com/Matsci.html

Why Are Materials Important?

- Materials drive advancements in our society
 - Stone Age
 - Bronze Age
 - Iron Age
- What is today's material age?
 - Silicon (Electronic Materials) Age?
 - Nanomaterials Age?
 - Polymer Age?

Why is it Important for Engineers to Understand Materials?

https://msestudent.com/13-reasons-why-you-should-study-materials-science-and-engineering/

Why is it Important for Engineers to Understand Materials? (cont.)

- Products/devices/components that engineers design are all made of materials
- To select appropriate materials and processing techniques for specific applications engineers must
 - have knowledge of material properties and
 - understand the structure-property relationships

Relationships Among Processing, Structure, & Properties

- Processing (e.g., cooling rate of steel from high temperature) affects structure (microstructure)
- Structure in turn effects hardness

Types of Materials

- Metals:
 - Strong, ductile
 - High thermal & electrical conductivities
 - Opaque, reflective
- Polymers/plastics: compounds of non-metallic elements
 - Soft, ductile, low strengths, low densities
 - Low thermal & electrical conductivities
 - Opaque, translucent or transparent
- Ceramics: compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides)
 - Hard, Brittle
 - Low thermal & electrical conductivities
 - Opaque, translucent, or transparent

Material Property Types

Properties of materials fall into six categories as follows:

- Mechanical
- Electrical
- Thermal
- Magnetic
- Optical
- Deteriorative

Mechanical Properties

Affect of carbon content on the hardness of a common steel:

Fig. 10.31, Callister & Rethwisch 10e. [Data taken from Metals Handbook: Heat Treating, Vol. 4, 9th edition, V. Masseria (Managing Editor), 1981. Reproduced by permission of ASM International, Materials Park, OH.]

Increasing carbon content increases hardness of steel.

Electrical Properties

Factors that affect electrical resistivity – for copper:

Fig. 18.8, Callister & Rethwisch 9e. [Adapted from: J.O. Linde, Ann Physik 5, 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd edition, McGraw-Hill Company, New York, 1970.]

- Increasing temperature increases resistivity.
- Increasing impurity content (e.g., Ni) increases resistivity.
- Deformation increases resistivity.

Summary so far

- Appropriate materials and processing decisions require engineers to understand materials and their properties.
- Materials' properties depend on their structures; structures are determined by how materials are processed.
- In terms of chemistry the three classifications of materials are metals, ceramics, and polymers
- Most properties of materials fall into the following six categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative.

Outlook of the course

Chapter 2: Atomic Structure & Interatomic Bonding

ISSUES TO ADDRESS...

- What is the structure of atoms?
- What characteristics of atoms/molecules promote interatomic/intermolecular bonding?
- What types of interatomic/intermolecular bonds exist?
- What properties of materials depend on the magnitude of interatomic/intermolecular bonds?

Atomic Structure – Basics

- Atomic number = # of protons in nucleus of atom = # of electrons in neutral species
- Atomic mass unit = amu = 1/12 mass of ¹²C

Atomic wt = A = wt of 6.022 x 10²³ molecules or atoms 1 amu/atom = 1 g/mol

□ Avogadro constant = N_A = 6.022 x 10²³ mol⁻¹

Electronic Structure

- Electrons have wave-like and particle-like characteristics.
- Two wave-like characteristics are
 - Electron position in terms of probability density
 - Shape, size, orientation of probability density determined by quantum numbers

Quantum

```
n = \text{principal (shell)}
\ell = \text{azimuthal (subshell)}
m_{\ell} = \text{magnetic (no. of orbitals)}
m_{s} = \text{spin}
```

Designation/Values

```
K, L, M, N, O (1, 2, 3, 4, etc.) s, p, d, f (0, 1, 2, 3,..., n-1) 1, 3, 5, 7 (-\ell to +\ell) \frac{1}{2}, -\frac{1}{2}
```

Electron Energy States

- have discrete energy values
- tend to occupy lowest available energy sta

N-shell
$$n=4$$

$$- M$$
-shell $n=3$

L-shell
$$n=2$$

K-shell
$$n=1$$

Survey of Elements

• Most elements: Electron configurations not stable.

<u>Element</u>	Atomic #	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1 <i>s</i> ² 2 <i>s</i> ²
Boron	5	$1s^22s^22p^1$
Carbon	6	$1s^22s^22p^2$
•••		
Neon	10	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ (stable)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	$1s^22s^22p^63s^2$
Aluminum	13	$1s^22s^22p^63s^23p^1$
•••		
Argon	18	$1s^2 2s^2 2p^6 3s^2 3p^6$ (stable)
•••	•••	•••
Krypton	36	$1s^22s^22p^63s^23p^63d^{10}4s^24p^6$ (stable)

• Why not stable? Valence (outer) shell usually not completely filled.

Electron Configurations

- Valence electrons those in outer unfilled shells
- Filled shells are more stable require more energy to gain or lose electrons
- Valence electrons available for bonding and tend to determine an atom's chemical properties
 - example: C (atomic number = 6)

The Periodic Table

Elements in each column: Similar valence electron structure

Electropositive elements: Readily give up electrons to become + ions.

Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.7 to 4.0
- Large values: tendency to acquire electrons.

Smaller electronegativity

Larger electronegativity

Ionization Process

Dissimilar electronegativities

ex: MgO Mg
$$1s^2 2s^2 2p^6 3s^2$$
 O $1s^2 2s^2 2p^4$ [Ne] $3s^2$ Mg²⁺ $1s^2 2s^2 2p^6$ O²⁻ $1s^2 2s^2 2p^6$ [Ne] [Ne]

Ionic Bonding

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

Ionic Bonding (cont.)

- Energy minimum energy most stable
 - Net energy = sum of attractive and repulsive energies
 - Equilibrium separation when net energy is a minimum

Ionic Bonding (cont.)

$$E_N = E_A + E_R = -\frac{A}{r} + \frac{B}{r^n}$$

In this expressions, A, B, and n are constants whose values depend on the particular ionic system. The value of n is approximately 8, and the B is the fitting constant

A represents lattice energy

$$A = \frac{1}{4\pi\epsilon_0} (|Z_1 e|)(|Z_2 e|)$$

where ϵ_0 is the permittivity of a vacuum (8.85 × 10^{-12} F/m), Z_1 and Z_2 are the valences of the two ion types, and e is the electronic charge (1.602 × 10^{-19} C)

Mathematically, energy (E) and force (F) are related as $E = \int F dr$

Ionic Bonding (cont.)

Predominant bonding in Ceramics

Covalent Bonding

- Similar electronegativities : share electrons
- Bonds involve valence electrons normally s and p orbitals are involved
- Example: H₂

Each H: has 1 valence e⁻, needs 1 more

Electronegativities are the same.

- shared 1s electron from 1st hydrogen atom
- shared 1s electron from 2nd hydrogen atom

Mixed Bonding

Most common mixed bonding type is Covalent-Ionic mixed bonding

% ionic character =
$$\left(1 - e^{-\frac{(X_A - X_B)^2}{4}}\right) x (100 \%)$$

where X_A & X_B are electronegativities of the two elements participating in the bond

Ex: MgO
$$X_{Mg} = 1.2$$

 $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5-1.2)^2}{4}}\right) x (100\%) = 73.3\%$$

Metallic Bonding

Electrons delocalized to form an "electron cloud"

Fig. 2.19b, Callister & Rethwisch 10e.

Secondary Bonding

Arises from attractive forces between dipoles

Fluctuating dipoles

Permanent dipoles

Secondary Bonding

Types of Bonding

Primary bonds

Electrostatic forces which keep the atoms of a solid together are known as primary bonds. These are also called interatomic bonds

lonic bonds

- Atoms of different elements transfer electrons from one to the other so that both have stable outer shells and at the same time become lons
 - one positively charged and the other negatively charged.
- The binding force is strictly electrostatic.
- No. of +Ve charges = No. of negative charges.
- The attractive bonding forces are coulombic; that is, positive and negative ions, by virtue of their net electrical charge, attract one another.
- Example : Sodium Chloride (NaCl)

Covalent bonds

- Bond resulting from sharing of pairs of valence electrons by two or more atoms is known as a covalent bond.
- Elements forming molecules with covalent bonding must have four or more valence electrons that is the Carbon, Phosphorus, Sulphur, and Chlorine etc.
- Hydrogen is an exceptional case. It also enters into covalent bond with the above mentioned elements.
- In covalent bonding, stable electron configurations are assumed by the sharing of electrons between adjacent atoms.
- Example: Methane (CH₄)

Metallic bonds

 Atoms of the same or different elements give up their valence electrons to form an 'electron gas' / 'electron cloud' / a 'sea of electron' throughout the space occupied by the atoms.

- These ions are held together by forces that are similar to those of ionic bond, but here between the ions and the electrons, the bonds formed is metallic bonds.
- This type of bond is seen in the elements having low number of valence electron say one, two or at most three.

Secondary bonds / Molecular bonds / Van der walls bonds

- These Bonds are very weak in comparison to primary bonds.
- Secondary bonds -
 - Are formed in most materials but their effects often overseen due to strength of primary bonds.
 - These bonds are not formed due to sharing or donating of electrons.
 - Rather these bonds occur usually when uneven charge distribution occurs creating a dipole.

- Once a random dipole is formed in an atom, an induced dipole forms in adjacent atoms. This bonding is called Van der walls Bonding
- · Example: Nitrogen Molecules

https://www.youtube.com/watch?v=eVdL-ipUa1Y

Atomic Structure (cont.)

- Some of the following properties are determined by an atom's electronic structure:
 - 1) Chemical
 - 2) Electrical
 - 3) Thermal
 - 4) Optical

Properties Related to Bonding I: Melting Temperature (T_m)

• Bond length, *r*

Bond energy, E_o

• Melting Temperature, T_m

The larger E_{o} , the higher T_{m}

Properties Related to Bonding II: Coefficient of Thermal Expansion (α_l)

• Coefficient of thermal expansion, α_I

$$\frac{\Delta L}{L_0} = \alpha_l (T_2 - T_1)$$

The smaller E_0 , the larger α_l .

- Increase in bond length is due to asymmetry of the E vs. r curve. This results in an increase in α_l .
- As E_0 increases this asymmetry decreases.

Summary: Properties Related to Bonding Type and Bonding Energy

Ceramics

(lonic & covalent bonding):

Large bond energy

high T_m large E small α_l

Metals

(Metallic bonding):

Variable bond energy

moderate T_m moderate Emoderate α_l

Polymers

(Covalent & Secondary):

Weak bond energy (between chains)

Secondary bonding responsible for most physical properties

```
low T_m small E large \alpha_l
```

Summary

- Valence electrons occupy the outermost unfilled electron shell.
- Primary bonding types include covalent, ionic, and metallic bonding.
- The percent ionic character of a covalent-ionic mixed bond between two elements depends on their electronegativities.
- Secondary or van der Waals bonds are weaker than the primary bonding types.
- A material's chemical, electrical, thermal, and optical properties are determined by electronic configuration.

Announcements

Reading: Textbook Ch. 1-2

Assignment: Open today; DL: 18:00 Sunday

Problem for next Lecture:
How to best stack oranges?

https://plus.maths.org/content/sites/plus.maths.org/files/abs/tractpics/%5Buid%5D/%5Bsite-date%5D/oranges_icon.ipg

Questions?