Package 'triangle'

December 13, 2022
Title Distribution Functions and Parameter Estimates for the Triangle Distribution
Version 1.0
Description Provides the ``r, q, p, and d" distribution functions for the triangle distribution. Also includes maximum likelihood estimation of parameters.
License GPL (>= 2)
<pre>URL https://bertcarnell.github.io/triangle/</pre>
BugReports https://github.com/bertcarnell/triangle/issues
Encoding UTF-8
RoxygenNote 7.2.2
Depends R (>= 2.14.1)
Collate 'cdfe.R' 'dtriangle.R' 'fit-plots.R' 'ltriangle.r' 'mle-utils.R' 'mle.R' 'mom.R' 'ptriangle.r' 'qtriangle.R' 'rtriangle.r'
Imports assertthat, stats4, methods
Suggests testthat, knitr, rmarkdown, MASS
VignetteBuilder knitr
NeedsCompilation no
Author Rob Carnell [aut, cre]
Maintainer Rob Carnell <pre></pre>
Repository CRAN
Date/Publication 2022-12-13 03:50:02 UTC
R topics documented:
compare_triangle_fit ltriangle

2 compare_triangle_fit

```
      summary.triangle_mle
      6

      triangle
      7

      triangle_cdfe
      9

      triangle_mle
      10

      triangle_mom
      10

Index
```

compare_triangle_fit Compare multiple triangle distributions fits

Description

Compare multiple triangle distributions fits

Usage

```
compare_triangle_fit(
   y,
   cols = c("red", "blue", "green"),
   main = "Triangle Fit Comparison",
   ...
)
```

Arguments

```
y the triangle distributed sample

cols the colors of the CDF-based estimates, the maximum likelihood estimates, and the method of moments estimates

main the plot title

... other parameters passed to plot.ecdf
```

```
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
compare_triangle_fit(xtest)</pre>
```

ltriangle 3

ltriangle

The Log-Triangle Distribution

Description

These functions provide information about the triangle distribution on the logarithmic interval from a to b with a maximum at c. dltriangle gives the density, pltriangle gives the distribution function, qltriangle gives the quantile function, and rltriangle generates n random deviates.

Usage

```
rltriangle(
    n = 1,
    a = 1,
    b = 100,
    c = 10^((log10(a) + log10(b))/2),
    logbase = 10
)

dltriangle(x, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)

pltriangle(q, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)

qltriangle(p, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10)
```

Arguments

n	number of observations. If $length(n) > 1$, the length is taken to be the number required.
а	lower limit of the distribution.
b	upper limit of the distribution.
С	mode of the distribution.
logbase	the base of the logarithmic scale to use (default to 10)
x, q	vector of quantiles.
p	vector of probabilities.

Details

All probabilities are lower tailed probabilties. a, b, and c may be appropriate length vectors except in the case of rtriangle.

Value

dltriangle gives the density, pltriangle gives the distribution function, qltriangle gives the quantile function, and rltraingle generates random deviates. Invalid arguments will result in return value NaN or NA.

4 qqtriangle

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) *The New S Language*. Wadsworth & Brooks/Cole.

See Also

.Random. seed about random number generation, runif, etc for other distributions.

Examples

```
tri <- rltriangle(100000, 1, 100, 10)
hist(log10(tri), breaks=100, main="Triangle Distribution", xlab="x")
dltriangle(10, 1, 100, 10) # 2/(log10(b)-log10(a)) = 1
qltriangle(pltriangle(10)) # 10</pre>
```

qqtriangle

Quantile-Quantile Plot for Triangle Distributed Data

Description

Quantile-Quantile Plot for Triangle Distributed Data

Usage

```
qqtriangle(
   y,
   a,
   b,
   c,
   main = "Triangle Q-Q Plot",
   xlab = "Theoretical Quantiles",
   ylab = "Sample Quantiles",
   ...
)
```

Arguments

```
y the triangle distributed sample
a the theoretical distribution triangle minimum parameter
b the theoretical distribution triangle maximum parameter
c the theoretical distribution triangle mode parameter
main the plot title
xlab the x-axis label
ylab the y-axis label
... other parameters passed to qqplot
```

standard_triangle_mle 5

Value

```
a list of x-y coordinates on the plot
```

Examples

```
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
theta <- coef(triangle_mle(xtest))
qqtriangle(xtest, theta[1], theta[2], theta[3])</pre>
```

 ${\tt standard_triangle_mle} \begin{tabular}{ll} \textit{Maximum likelihood estimate of the standard triangle distribution}\\ \textit{mode} \end{tabular}$

Description

Maximum likelihood estimate of the standard triangle distribution mode

Usage

```
standard_triangle_mle(x, debug = FALSE)
```

Arguments

x sample from a triangle distributiondebug if TRUE then the function will check the input parameters

Value

an object of S3 class triangle_mle containing a list with the call, coefficients, variance co-variance matrix, minimum negative log likelihood, number of observations, and the sample

References

Samuel Kotz and Johan Rene van Dorp. Beyond Beta doi:10.1142/5720

```
xtest <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8) standard_triangle_mle(xtest)
```

Description

Utility Methods for S3 class triangle_mle

Usage

```
## S3 method for class 'triangle_mle'
summary(object, ...)
## S3 method for class 'triangle_mle'
print(x, ...)
## S3 method for class 'triangle_mle'
coef(object, ...)
## S3 method for class 'triangle_mle'
logLik(object, ...)
## S3 method for class 'triangle_mle'
AIC(object, ..., k = 2)
## S3 method for class 'triangle_mle'
BIC(object, ...)
## S3 method for class 'triangle_mle'
vcov(object, ...)
## S3 method for class 'triangle_mle'
profile(fitted, ...)
## S3 method for class 'triangle_mle'
confint(object, parm, level = 0.95, ...)
```

Arguments

object	<pre>class triangle_mle from a call to triangle_mle()</pre>		
	not used except for print (other arguments passed to printCoefmat)		
X	the triangle_mle object		
k	the penalty per parameter to be used; the default $k = 2$		
fitted	an object of class triangle_mle		
parm	parameters		
level	confidence interval level		

triangle 7

Value

```
an object of class summary.mle x invisibly a vector of coefficients an object of class logLik the AIC the BIC the variance co-variance matrix an object of class profile.mle an object of class profile.mle
```

Examples

```
set.seed(1234)
x <- rtriangle(100, 0, 1, 0.5)
mle1 <- triangle_mle(x)
summary(mle1)
print(mle1)
coef(mle1)
logLik(mle1)
AIC(mle1)
BIC(mle1)
vcov(mle1)
## Not run:
   prof <- profile(mle1)
   stats4::plot(prof)
   confint(mle1, 1:3, level = 0.95)</pre>
## End(Not run)
```

triangle

The Triangle Distribution

Description

These functions provide information about the triangle distribution on the interval from a to b with a maximum at c. dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quantile function, and rtriangle generates n random deviates.

Usage

```
dtriangle(x, a = 0, b = 1, c = (a + b)/2)
ptriangle(q, a = 0, b = 1, c = (a + b)/2)
```

8 triangle

qtriangle(p,
$$a = 0$$
, $b = 1$, $c = (a + b)/2$)
rtriangle(n = 1, $a = 0$, $b = 1$, $c = (a + b)/2$)

Arguments

x, q vector of quantiles.

a lower limit of the distribution.

b upper limit of the distribution.

c mode of the distribution.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number required.

Details

All probabilities are lower tailed probabilities. a, b, and c may be appropriate length vectors except in the case of rtriangle. rtriangle is derived from a draw from runif. The triangle distribution has density:

$$f(x) = \frac{2(x-a)}{(b-a)(c-a)}$$

for $a \le x < c$.

$$f(x) = \frac{2(b-x)}{(b-a)(b-c)}$$

for $c \le x \le b$. f(x) = 0 elsewhere. The mean and variance are:

$$E(x) = \frac{(a+b+c)}{3}$$

$$V(x) = \frac{1}{18}(a^2 + b^2 + c^2 - ab - ac - bc)$$

Value

dtriangle gives the density, ptriangle gives the distribution function, qtriangle gives the quantile function, and rtriangle generates random deviates. Invalid arguments will result in return value NaN or NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) *The New S Language*. Wadsworth & Brooks/Cole.

See Also

.Random. seed about random number generation, runif, etc for other distributions.

triangle_cdfe 9

Examples

```
## view the distribution
tri <- rtriangle(100000, 1, 5, 3)
hist(tri, breaks=100, main="Triangle Distribution", xlab="x")
mean(tri) # 1/3*(1 + 5 + 3) = 3
var(tri) # 1/18*(1^2 + 3^2 + 5^2 - 1*5 - 1*3 - 5*3) = 0.666667
dtriangle(0.5, 0, 1, 0.5) # 2/(b-a) = 2
qtriangle(ptriangle(0.7)) # 0.7</pre>
```

triangle_cdfe

Triangle parameter estimates using a non-linear fit of the empirical CDF

Description

Triangle parameter estimates using a non-linear fit of the empirical CDF

Usage

```
triangle_cdfe(x, control = stats::nls.control(maxiter = 100, warnOnly = TRUE))
```

Arguments

```
x the triangle distributed sample
control an object created by stats::nls.control
```

Value

```
an object of class nls
```

```
set.seed(10304)
xtest <- rtriangle(100, 1, 5, 2)
cdfe <- triangle_cdfe(xtest)
print(cdfe)
summary(cdfe)
coef(cdfe)
## Not run:
    confint(cdfe)
## End(Not run)</pre>
```

10 triangle_mom

		-	_
tr	ion	രിച	mle
LI	Tan	STG.	IIITE

Maximum likelihood estimate of the triangle distribution parameters

Description

Maximum likelihood estimate of the triangle distribution parameters

Usage

```
triangle_mle(x, debug = FALSE, maxiter = 100)
```

Arguments

x sample from a triangle distribution

debug if TRUE then the function will check the input parameters

maxiter the maximum number of cycles of optimization between maximizing a and b

given c and maximizing c given a an b

Value

an object of S3 class triangle_mle containing a list with the call, coefficients, variance co-variance matrix, minimum negative log likelihood, details of the optimization number of observations, and the sample

References

Samuel Kotz and Johan Rene van Dorp. Beyond Beta doi:10.1142/5720

Examples

```
xtest <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8)
triangle_mle(xtest)
```

triangle_mom

Triangle distribution method of moments estimate

Description

Triangle distribution method of moments estimate

Usage

```
triangle_mom(x)
```

triangle_mom 11

Arguments

x triangle distribution sample

Value

a vector of the parameter estimates

```
set.seed(1204)
x <- rtriangle(20, 0, 2, 1.5)
triangle_mom(x)</pre>
```

Index

```
* distribution
    ltriangle, 3
    triangle, 7
.Random.seed, 4, 8
AIC.triangle_mle
        (summary.triangle_mle), 6
BIC.triangle_mle
        (summary.triangle_mle), 6
coef.triangle_mle
        (summary.triangle_mle), 6
compare_triangle_fit, 2
confint.triangle_mle
        (summary.triangle_mle), 6
dltriangle (ltriangle), 3
dtriangle (triangle), 7
logLik.triangle_mle
        (summary.triangle_mle), 6
ltriangle, 3
pltriangle (ltriangle), 3
print.triangle_mle
        (summary.triangle_mle), 6
profile.triangle_mle
        (summary.triangle_mle), 6
ptriangle (triangle), 7
qltriangle (ltriangle), 3
qqtriangle, 4
qtriangle (triangle), 7
rltriangle (ltriangle), 3
rtriangle (triangle), 7
runif, 4, 8
standard_triangle_mle, 5
summary.triangle_mle, 6
```