Intelligence Artificielle - Anthony Quere

January 21, 2022

This is a Jupyter notebook builded is a python project with the code available on GitHub. (https://github.com/Anthony-Jhoiro/projet_ia_s1). Only the main functions will be presented in this file. If you want to see the implementation of those functions, I recommand checking directly the repository.

0.1 Préparation des données

Erratum

Scikit ne supporte que les valeurs continuent pour les différents algorithmes utilisés. Par conséquent les champ sde catégories ont été passés en champs booléens puis les champs booléens sont passé en 0 et 1. C'est pourquoi nos retrouvons dans nos centre des valeurs continues pour des champs booléens.

```
[1]: from dataset_utils import add_score_g3_classes_columns, add_ratio_g1pg2_column
     import csv_parser
     import pandas as pd
     import student_dataset as sd
     # Define float output
     pd.options.display.float_format = '{:,.4f}'.format
     # Load DataFrame
     mat_original = csv_parser.parse_student_csv("student-mat.csv", separator=";",
                                                 cast_types=sd.dataset_types)
     por_original = csv_parser.parse_student_csv("student-por.csv", separator=";",
                                                 cast_types=sd.dataset_types)
     # Create missing columns
     add score g3 classes columns(mat original)
     add_score_g3_classes_columns(por_original)
     add_ratio_g1pg2_column(mat_original)
     add_ratio_g1pg2_column(por_original)
     mat_formatted = csv_parser.format_dataset(mat_original, sd.target_columns, sd.
      string_fields, sd.boolean_fields)
```

0.2 Partie 1 - Analyse des données

0.2.1 Les écoles

Les élèves de mathématique

Les élèves de portugais

L'attribut "school" nous informe l'école des élèves. Nous pouvons constater que la grande majorité des élèves viennent de l'école Gabriel Pereira. Les analyse seront donc bien plus influencées par les élèves de cette école et ne pourrait donc pas correspondre aux élèves de l'autre école.

0.2.2 L'adresse

Les élèves de mathématique

Les élèves de portugais

L'attribut "address" nous renseigne sur le milieu dans lequel les élèves vivent. Ici, nous pouvons constatez que la majorité des élèves vivent en milieu Urbain, que ce soit pour les cous de portugais ou les cours de mathématique.

0.2.3 La situation des parents

Les élèves de mathématique

Les élèves de portugais

L'attribut "Pstatus" prend pour valeur T si les parents de l'élève vivent ensemble et A dans les autres cas. La majorité des parents des élèves vivent ensemble.

0.2.4 Le sexe des élèves

Les élèves de mathématique

Les élèves de portugais

L'attribut "sex" nous renseigne sur le sexe de l'élève. Ici, nous avons une majorité de fille parmi les élève ce qui est conforme à la répartition en France cette année d'après cette publication de l'INSEE (https://www.insee.fr/en/statistiques/2382597?sommaire=2382613).

0.2.5 La note G3 (avec les classes)

Les élèves de mathématique

Les élèves de portugais

Les notes sont globalement faibles dans les deux matières même si les notes des élèves de potugais sont généralement plus élevées que celles des élèves de mathématique. (moins de F mais plus de D et de C).

0.3 Partie 2 - Segmentation des étudiants

0.3.1 Préparation du jeu de données

On retire les colonnes ciblées car nous souhaitons par la suite caractériser nos clusters par rapport à ces attributs. Les attributs G1 et G2 sont également supprimés car l'attribut ratio_G1+G2 est obtenu par ces colonnes, ce qui fausse donc le résultat.

```
[2]: excluded_columns = [
    "G1",
    "G2",
    "G3",
    "ratio_G1+G2",
    "score_G3_classes_A",
    "score_G3_classes_B",
    "score_G3_classes_C",
    "score_G3_classes_D",
    "score_G3_classes_F",
    ]
```

0.3.2 Pour les élèves de mathématique

```
[3]: dataset_for_predictions = mat_formatted.copy()
dataset_for_predictions = csv_parser.drop_columns(dataset_for_predictions,__
excluded_columns)

# Nous souhaitons travailler avec 2 clusters à chaque fois.
cluster_count = 3
```

Algorithme du Kmean En utilisant l'algorithme du knn sur notre jeu de donnée, nous optenons 3 clusters C0, C1 et C2 dont voici les centres :

```
[4]: from sklearn.cluster import KMeans

knn_predictions = KMeans(n_clusters=cluster_count, random_state=1)
knn_predictions.fit(dataset_for_predictions)

pd.DataFrame({
    "field": knn_predictions.feature_names_in_,
    "Centre de CO": knn_predictions.cluster_centers_[0],
    "Centre de C1": knn_predictions.cluster_centers_[1],
    "Centre de C2": knn_predictions.cluster_centers_[2],
})
```

[4]:	field	Centre de CO	Centre de C1	Centre de C2
0	age	16.5566	17.1605	17.8000
1	Medu	2.6731	3.0247	3.0000
2	Fedu	2.5081	2.5432	3.0000
3	failures	0.2977	0.4691	0.4000
4	schoolsup	0.1327	0.1111	0.2000
5	famsup	0.6052	0.6420	0.6000
6	paid	0.4563	0.4691	0.4000
7	activities	0.5178	0.4815	0.4000
8	nursery	0.7864	0.8272	0.8000
9	higher	0.9482	0.9630	0.8000
10	internet	0.8123	0.9012	1.0000
11	romantic	0.2977	0.4444	0.8000
12	famrel	3.9806	3.7901	4.2000
13	freetime	3.2201	3.3580	2.2000
14	goout	3.0680	3.2963	2.6000
15	Dalc	1.4207	1.7160	1.4000
16	Walc	2.1877	2.7037	2.0000
17	health	3.5728	3.4815	3.6000
18	absences	2.6052	14.6543	52.6000
19	school_GP	0.8706	0.9259	1.0000
20	school_MS	0.1294	0.0741	-0.0000

21	$address_R$	0.2330	0.1728	0.4000
22	address_U	0.7670	0.8272	0.6000
23	famsize_GT3	0.7282	0.6420	0.8000
24	famsize_LE3	0.2718	0.3580	0.2000
25	Pstatus_A	0.0841	0.1728	0.2000
26	Pstatus_T	0.9159	0.8272	0.8000
27	Mjob_at_home	0.1586	0.1235	0.0000
28	Mjob_health	0.0906	0.0741	0.0000
29	Mjob_other	0.3592	0.3210	0.8000
30	Mjob_services	0.2460	0.3333	0.0000
31	Mjob_teacher	0.1456	0.1481	0.2000
32	Fjob_at_home	0.0518	0.0494	-0.0000
33	Fjob_health	0.0421	0.0617	0.0000
34	Fjob_other	0.5340	0.6173	0.4000
35	Fjob_services	0.2945	0.2099	0.6000
36	Fjob_teacher	0.0777	0.0617	0.0000
37	reason_course	0.3981	0.2716	0.0000
38	reason_home	0.2621	0.3210	0.4000
39	reason_other	0.0841	0.1235	0.0000
40	reason_reputation	0.2557	0.2840	0.6000
41	${\tt guardian_father}$	0.2460	0.1728	0.0000
42	guardian_mother	0.6926	0.6914	0.6000
43	guardian_other	0.0615	0.1358	0.4000
44	${\tt traveltime_1}$	0.6343	0.7160	0.6000
45	traveltime_2	0.2783	0.2346	0.4000
46	traveltime_3	0.0647	0.0370	-0.0000
47	${\tt traveltime_4}$	0.0227	0.0123	-0.0000
48	studytime_1	0.2718	0.2469	0.2000
49	studytime_2	0.4693	0.6173	0.6000
50	studytime_3	0.1812	0.0988	0.2000
51	studytime_4	0.0777	0.0370	-0.0000
52	sex_F	0.5178	0.5432	0.8000
53	sex_M	0.4822	0.4568	0.2000

LE tableau ci dessus nous présente les différents attributs utilisés ainsi que leurs valeurs pour les centres de nos 3 clusters.

Interessons nous maintenant à la répartition des données au sein de ces clusters.

```
[5]: mat_original['knn_cluster'] = knn_predictions.labels_
knn_c0 = dataset_for_predictions[mat_original['knn_cluster'] == 0]
knn_c1 = dataset_for_predictions[mat_original['knn_cluster'] == 1]
knn_c2 = dataset_for_predictions[mat_original['knn_cluster'] == 2]

pd.DataFrame({
    "Cluster": ["CO", "C1", "C2"],
```

```
"Nombre d'éléments": [len(knn_c0), len(knn_c1), len(knn_c2)],
})
```

```
[5]: Cluster Nombre d'éléments
0 C0 309
1 C1 81
2 C2 5
```

Le tableau ci dessus nous présente la quantité de donnée correspondant à chaque cluster. Nous pouvons constater, que le cluster C0 est nettement plus imposant que les deux autres (il contient 98% de données). Les prédictions résultantes en seront impacté.

Clustering hierarchique Une autre méthode pour clusteriser nos données est le clustering hierarchique.

```
[6]:
                         Centre de CO
                                        Centre de C1
                                                       Centre de C2
                                                             17.8000
                               16.5596
                                              17.3175
     age
     Medu
                                2.7095
                                               2.9365
                                                              3.0000
                                               2.5238
                                                              3.0000
     Fedu
                                2.5138
     failures
                                0.2844
                                               0.5873
                                                              0.4000
     schoolsup
                                0.1315
                                               0.1111
                                                              0.2000
                                0.6055
                                               0.6508
                                                              0.6000
     famsup
                                0.4587
                                               0.4603
                                                              0.4000
     paid
     activities
                                0.5168
                                               0.4762
                                                              0.4000
     nursery
                                0.7890
                                               0.8254
                                                              0.8000
     higher
                                0.9511
                                               0.9524
                                                              0.8000
```

internet	0.8165	0.9048	1.0000
romantic	0.3058	0.4444	0.8000
famrel	3.9755	3.7619	4.2000
freetime	3.2232	3.3810	2.2000
goout	3.0642	3.3810	2.6000
Dalc	1.4251	1.7778	1.4000
Walc	2.1804	2.8889	2.0000
health	3.5688	3.4762	3.6000
absences	3.0153	15.9683	52.6000
school_GP	0.8746	0.9206	1.0000
school_MS	0.1254	0.0794	0.0000
address_R	0.2294	0.1746	0.4000
address_U	0.7706	0.8254	0.6000
famsize_GT3	0.7248	0.6349	0.8000
famsize_LE3	0.2752	0.3651	0.2000
Pstatus_A	0.0887	0.1746	0.2000
Pstatus_T	0.9113	0.8254	0.8000
Mjob_at_home	0.1560	0.1270	0.0000
Mjob_health	0.0856	0.0952	0.0000
Mjob_other	0.3639	0.2857	0.8000
Mjob_services	0.2416	0.3810	0.0000
Mjob_teacher	0.1529	0.1111	0.2000
Fjob_at_home	0.0489	0.0635	0.0000
Fjob_health	0.0428	0.0635	0.0000
Fjob_other	0.5443	0.5873	0.4000
Fjob_services	0.2844	0.2381	0.6000
Fjob_teacher	0.0795	0.0476	0.0000
reason_course	0.4006	0.2222	0.0000
reason_home	0.2508	0.3968	0.4000
reason_other	0.0887	0.1111	0.0000
reason_reputation	0.2599	0.2698	0.6000
guardian_father	0.2385	0.1905	0.0000
guardian_mother	0.7003	0.6508	0.6000
guardian_other	0.0612	0.1587	0.4000
traveltime_1	0.6422	0.6984	0.6000
traveltime_2	0.2752	0.2381	0.4000
traveltime_3	0.0612	0.0476	0.0000
traveltime_4	0.0214	0.0159	0.0000
studytime_1	0.2661	0.2698	0.2000
studytime_2	0.4709	0.6508	0.6000
studytime_3	0.1835	0.0635	0.2000
studytime_4	0.0795	0.0159	0.0000
sex_F	0.5229	0.5238	0.8000
sex_M	0.4771	0.4762	0.2000

De la même manière, interessons nous à la répartition des données parmi nos clusters.

```
[7]: Cluster Nombre d'éléments

0 C0 327

1 C1 63

2 C2 5
```

Là encore, le cluster C0 est aussi très imposant. Une mauvaise répartition des données peut lourdement affecter

Evaluation de nos clusters Nous allons maintenant analyser la qualité de nos clusters.

Il est peu pertinant de comparer les données des clusters car leur nombre d'éléments diffère trop.

0.3.3 Pour les élèves de portugais

Algorithme du Kmean En utilisant l'algorithme du knn sur notre jeu de donnée, nous optenons 3 clusters C0, C1 et C2 dont voici les centres :

```
[9]: from sklearn.cluster import KMeans

knn_predictions = KMeans(n_clusters=cluster_count, random_state=1)
knn_predictions.fit(dataset_for_predictions)

pd.DataFrame({
    "field": knn_predictions.feature_names_in_,
    "Centre de CO": knn_predictions.cluster_centers_[0],
    "Centre de C1": knn_predictions.cluster_centers_[1],
    "Centre de C2": knn_predictions.cluster_centers_[2],
})
```

```
[9]:
                      field Centre de CO Centre de C1 Centre de C2
     0
                                  16.8414
                                                 17.1837
                                                                16.6273
                        age
     1
                      Medu
                                   2.5991
                                                  2.3061
                                                                 2.4906
     2
                                   2.3304
                                                  2.4082
                      Fedu
                                                                 2.2788
     3
                  failures
                                   0.2291
                                                  0.4694
                                                                 0.1850
```

4	schoolsup	0.0881	0.0816	0.1180
	-			
5	famsup	0.6167	0.6327	0.6086
6	paid	0.0705	0.0204	0.0590
7	activities	0.5066	0.3878	0.4853
8	nursery	0.7665	0.7959	0.8257
9	higher	0.8987	0.7143	0.9142
10	internet	0.7577	0.8776	0.7587
11	romantic	0.3833	0.4490	0.3485
12	famrel	3.7974	3.8367	4.0241
13	freetime	3.1674	3.1429	3.1930
14	goout	3.2467	3.4082	3.1180
15	Dalc	1.4934	2.1224	1.4263
16	Walc	2.3789	2.8163	2.1501
17	health	3.4273	3.6939	3.5818
18	absences	5.9736	15.6327	0.6783
19	${\tt school_GP}$	0.6740	0.8571	0.6113
20	school_MS	0.3260	0.1429	0.3887
21	address_R	0.2863	0.2245	0.3244
22	address_U	0.7137	0.7755	0.6756
23	famsize_GT3	0.7269	0.6939	0.6917
24	famsize_LE3	0.2731	0.3061	0.3083
25	Pstatus_A	0.1322	0.2449	0.1019
26	Pstatus_T	0.8678	0.7551	0.1013
27	-	0.2115	0.2041	0.2064
	Mjob_at_home			
28	Mjob_health	0.0573	0.0000	0.0938
29	Mjob_other	0.3833	0.4694	0.3968
30	Mjob_services	0.2291	0.2653	0.1903
31	Mjob_teacher	0.1189	0.0612	0.1126
32	Fjob_at_home	0.0881	0.0612	0.0509
33	Fjob_health	0.0352	0.0000	0.0402
34	Fjob_other	0.5903	0.5714	0.5496
35	Fjob_services	0.2291	0.3265	0.3029
36	Fjob_teacher	0.0573	0.0408	0.0563
37	reason_course	0.4141	0.4082	0.4584
38	reason_home	0.2467	0.3265	0.2064
39	reason_other	0.0925	0.0816	0.1260
40	reason_reputation	0.2467	0.1837	0.2091
41	${\tt guardian_father}$	0.1762	0.2041	0.2761
42	${\tt guardian_mother}$	0.7489	0.6122	0.6836
43	<pre>guardian_other</pre>	0.0749	0.1837	0.0402
44	traveltime_1	0.5595	0.5714	0.5657
45	traveltime_2	0.3348	0.3265	0.3244
46	traveltime_3	0.0881	0.0816	0.0804
47	traveltime_4	0.0176	0.0204	0.0295
48	studytime_1	0.3789	0.4490	0.2788
49	studytime_2	0.4273	0.4898	0.4933
50	studytime_3	0.1322	0.0612	0.1716
- •	= - = J - = = 0			- , - , - 0

51	${ t studytime_4}$	0.0617	-0.0000	0.0563
52	sex_F	0.5595	0.5714	0.6113
53	$\mathtt{sex}_{\mathtt{M}}$	0.4405	0.4286	0.3887

Le tableau ci dessus nous montre les centres de nos clusters pour les élèves de portugais avec l'algorithme du Knn. Nous pouvons constater qu'il y a peu de différences marquantes entre les différents centres ce qui peut être du à des données trop proches entre elles.

```
[10]: por_original['knn_cluster'] = knn_predictions.labels_
knn_c0 = dataset_for_predictions[por_original['knn_cluster'] == 0]
knn_c1 = dataset_for_predictions[por_original['knn_cluster'] == 1]
knn_c2 = dataset_for_predictions[por_original['knn_cluster'] == 2]

pd.DataFrame({
    "Cluster": ["CO", "C1", "C2"],
    "Nombre d'éléments": [len(knn_c0), len(knn_c1), len(knn_c2)],
})
```

```
[10]: Cluster Nombre d'éléments

0 C0 227

1 C1 49

2 C2 373
```

Les données sont bien mieux réparties dans les clusters par rapport à la méthode du Knn. Cependant, il y a toujours un grand écart entre le plus petit cluster (C1) et le plus grand (C2).

Clustering hierarchique Une autre méthode pour clusteriser nos données est le clustering hierarchique.

```
from sklearn import cluster

aglo_clusters = cluster.AgglomerativeClustering(cluster_count).
    dfit(dataset_for_predictions)

por_original['aglo_cluster'] = aglo_clusters.labels_

aglo_c0 = dataset_for_predictions[por_original['aglo_cluster'] == 0]
aglo_c1 = dataset_for_predictions[por_original['aglo_cluster'] == 1]
aglo_c2 = dataset_for_predictions[por_original['aglo_cluster'] == 2]

aglo_c0_center = aglo_c0.mean(axis=0)
aglo_c1_center = aglo_c1.mean(axis=0)
aglo_c2_center = aglo_c2.mean(axis=0)

pd.DataFrame({
    "Centre de CO": aglo_c0_center,
```

```
"Centre de C1": aglo_c1_center,
    "Centre de C2": aglo_c2_center,
})
```

[11]:		Centre de CO	Centre de C1	Centre de C2
	age	16.6401	17.2414	17.1132
	Medu	2.5331	2.6552	2.3868
	Fedu	2.3035	2.6207	2.2358
	failures	0.1926	0.4138	0.3113
	schoolsup	0.1148	0.0345	0.0755
	famsup	0.6051	0.6207	0.6509
	paid	0.0661	0.0345	0.0377
	activities	0.4883	0.2759	0.5283
	nursery	0.8016	0.7931	0.8113
	higher	0.9125	0.7586	0.8396
	internet	0.7490	0.9310	0.8113
	romantic	0.3502	0.4828	0.4245
	famrel	4.0000	3.7586	3.6415
	freetime	3.2140	3.0345	3.0566
	goout	3.1284	3.1034	3.4811
	Dalc	1.4163	2.1724	1.7358
	Walc	2.1537	2.8276	2.7453
	health	3.5389	3.4828	3.5377
	absences	1.7607	18.1034	8.9151
	school_GP	0.6226	1.0000	0.6981
	school_MS	0.3774	0.0000	0.3019
	address_R	0.3268	0.2069	0.2170
	address_U	0.6732	0.7931	0.7830
	famsize_GT3	0.7043	0.6207	0.7264
	famsize_LE3	0.2957	0.3793	0.2736
	Pstatus_A	0.1051	0.2759	0.1698
	Pstatus_T	0.8949	0.7241	0.8302
	Mjob_at_home	0.2140	0.2414	0.1698
	Mjob_health	0.0837	0.0000	0.0472
	Mjob_other	0.3852	0.4138	0.4528
	Mjob_services	0.2004	0.2414	0.2453
	Mjob_teacher	0.1167	0.1034	0.0849
	Fjob_at_home	0.0623	0.0690	0.0755
	Fjob_health	0.0370	0.0000	0.0377
	Fjob_other	0.5584	0.5172	0.6132
	Fjob_services	0.2802	0.3448	0.2547
	Fjob_teacher	0.0623	0.0690	0.0189
	reason_course	0.4553	0.2759	0.4057
	reason_home	0.2140	0.4828	0.2358
	reason_other	0.1148	0.0345	0.1132
	reason_reputation	0.2160	0.2069	0.2453
	<pre>guardian_father</pre>	0.2529	0.1379	0.1792

guardian_mother	0.7004	0.6897	0.7075
guardian_other	0.0467	0.1724	0.1132
traveltime_1	0.5642	0.6207	0.5472
traveltime_2	0.3288	0.3448	0.3208
traveltime_3	0.0817	0.0345	0.1038
traveltime_4	0.0253	0.0000	0.0283
studytime_1	0.3132	0.4138	0.3679
studytime_2	0.4611	0.5517	0.4906
studytime_3	0.1654	0.0345	0.1038
studytime_4	0.0603	0.0000	0.0377
sex_F	0.5992	0.5862	0.5472
sex_M	0.4008	0.4138	0.4528

De la même manière, interessons nous à la répartition des données parmi nos clusters.

```
[12]: pd.DataFrame({
        "Cluster": ["CO", "C1", "C2"],
        "Nombre d'éléments": [len(aglo_c0), len(aglo_c1), len(aglo_c2)],
})
```

```
[12]: Cluster Nombre d'éléments
0 C0 514
1 C1 29
2 C2 106
```

Les données sont ici très mal réparties entre les clusters, le cluster C0 contenant 79% des données. Les analyses résultantes seront lourdement impactés et une donnée aura bien plus de chance d'être associée à ce cluster plutôt qu'aux autres.

0.4 Evaluation de nos clusters

Nous allons maintenant analyser la qualité de nos clusters.

```
pd.DataFrame({
    "Metric": ["G3 : Homogeneity Coefficient", "G3 : Silhouette Coefficient",
    "G1+G2 : Homogeneity Coefficient"],
    "Valeur avec méthode Knn": [
    metrics.homogeneity_score(por_original['knn_cluster'],
    por_original['G3']),
    metrics.silhouette_score(dataset_for_predictions, por_original['G3']),
    metrics.homogeneity_score(por_original['knn_cluster'],
    por_original['ratio_G1+G2']),
    metrics.silhouette_score(dataset_for_predictions,
    por_original['ratio_G1+G2'])
    ],
```

```
"Valeur avec méthode hierarchique": [
    metrics.homogeneity_score(por_original['aglo_cluster'],
por_original['G3']),
    metrics.silhouette_score(dataset_for_predictions, por_original['G3']),
    metrics.homogeneity_score(por_original['aglo_cluster'],
por_original['ratio_G1+G2']),
    metrics.silhouette_score(dataset_for_predictions,
por_original['ratio_G1+G2'])
],
})
```

```
「13]:
                                  Metric Valeur avec méthode Knn \
            G3 : Homogeneity Coefficient
                                                            0.0654
             G3 : Silhouette Coefficient
                                                           -0.1470
      1
      2 G1+G2: Homogeneity Coefficient
                                                            0.0667
          G1+G2 : Silhouette Coefficient
                                                           -0.2302
         Valeur avec méthode hierarchique
      0
                                   0.0652
      1
                                   -0.1470
      2
                                   0.0680
      3
                                   -0.2302
```

Les résultats sont très similaires avec nos deux méthodes.

Le score d'homogénéité est très mauvais (trop proche de zéro) avec nos deux méthodes de clustering. Nous pouvons donc en déduire que : - Il est possible qu'il y ai eu une erreur dans la manipulation des données - Les élèves sont trop différents dans les jeux de données et que les clusters ne reflètent donc pas la réalité

La silhouette est très mauvaise aussi (inférieur à zéro) ce qui indique que les éléves ne sont pas bien placés dans les différents clusters.

0.5 Partie 3 - Prédiction

```
[14]: import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
```

0.5.1 Pour G3

Pour les élèves de math

```
[15]: train_data, test_data = train_test_split(mat_formatted, test_size=0.3)

train_data_g3= train_data["G3"]

train_data_for_g3 = train_data.drop(labels=["G3"], axis=1)

test_data_g3 = test_data["G3"]

test_data_for_g3 = test_data.drop(labels=["G3"], axis=1)
```

Méthode Kmean

```
[16]: knn = KNeighborsClassifier()
   knn.fit(train_data_for_g3, train_data_g3)
   predictions = knn.predict(test_data_for_g3)

   knn_absolute_errors = np.abs(np.subtract(predictions, test_data_g3))
   knn_square_errors = np.square(knn_absolute_errors)

   knn_mse = np.average(knn_square_errors)
   knn_rmse = np.sqrt(knn_mse)
   knn_mae = np.average(knn_absolute_errors)
```

Linear regression

```
[17]: from sklearn.linear_model import LinearRegression

lr_reg = LinearRegression().fit(train_data_for_g3, train_data_g3)

lr_results = lr_reg.predict(test_data_for_g3)

lr_absolute_errors = np.abs(np.subtract(lr_results, test_data_g3))

lr_square_errors = np.square(lr_absolute_errors)

lr_mse = np.average(lr_square_errors)

lr_rmse = np.sqrt(lr_mse)

lr_mae = np.average(lr_absolute_errors)
```

Resultats

```
[18]: pd.DataFrame({
    "Metriques": ["MAE", "MSE", "RMSE"],
    "Valeurs pour Knn": [knn_mae, knn_mse, knn_rmse],
    "Valeurs pour Regression linéaire": [lr_mae, lr_mse, lr_rmse],
})
```

```
[18]: Metriques Valeurs pour Knn Valeurs pour Regression linéaire

0 MAE 1.1345 1.2297

1 MSE 3.9748 3.2915

2 RMSE 1.9937 1.8143
```

Le tableau ci dessous présentent les valuers des metriques MSE, RMSE et MAE pour les prédictions des algorithmes de regression linéaire. Ces différentes métriques se basent sur les erreurs des différents modes de prédiction. Plus une erreur est proche de zéro, plus la prédictionest juste. A l'inverse, plus l'erreur est grande, plus les erreurs de prédiction sont grandes.

Nous pouvons donc constater que l'algorithme de regression linéaire est bien meilleur que celui du kmean pour calculer les notes des élèves sur notre jeu de données.

Pour les élèves de portugais

```
[19]: train_data, test_data = train_test_split(por_formatted, test_size=0.3)

train_data_g3 = train_data["G3"]

train_data_for_g3 = train_data.drop(labels=["G3"], axis=1)

test_data_g3 = test_data["G3"]

test_data_for_g3 = test_data.drop(labels=["G3"], axis=1)
```

Méthode Kmean

```
[20]: knn = KNeighborsClassifier()
knn.fit(train_data_for_g3, train_data_g3)
predictions = knn.predict(test_data_for_g3)

knn_absolute_errors = np.abs(np.subtract(predictions, test_data_g3))
knn_square_errors = np.square(knn_absolute_errors)

knn_mse = np.average(knn_square_errors)
knn_rmse = np.sqrt(knn_mse)
knn_mae = np.average(knn_absolute_errors)
```

Linear regression

```
[21]: from sklearn.linear_model import LinearRegression

lr_reg = LinearRegression().fit(train_data_for_g3, train_data_g3)
lr_results = lr_reg.predict(test_data_for_g3)

lr_absolute_errors = np.abs(np.subtract(lr_results, test_data_g3))
lr_square_errors = np.square(lr_absolute_errors)

lr_mse = np.average(lr_square_errors)
lr_rmse = np.sqrt(lr_mse)
lr_mae = np.average(lr_absolute_errors)
```

Resultats

```
[22]: pd.DataFrame({
    "Metriques": ["MAE", "MSE", "RMSE"],
    "Valeurs pour Knn": [knn_mae, knn_mse, knn_rmse],
    "Valeurs pour Regression linéaire": [lr_mae, lr_mse, lr_rmse],
})
```

```
[22]: Metriques Valeurs pour Knn Valeurs pour Regression linéaire
0 MAE 0.8462 0.5823
1 MSE 1.8821 0.8581
2 RMSE 1.3719 0.9263
```

Nous pouvons constater une nouvelle fois que l'algorithme de regression linéaire est bien meilleur que celui du kmean pour calculer les notes des élèves sur notre jeu de données.

0.5.2 Pour ratio_G1+G2

Pour les élèves de math

```
[23]: train_data, test_data = train_test_split(mat_formatted, test_size=0.3)

train_data_g3 = train_data["ratio_G1+G2"]
train_data_for_g3 = train_data.drop(labels=["ratio_G1+G2", "G1", "G2"], axis=1)
test_data_g3 = test_data["ratio_G1+G2"]
test_data_for_g3 = test_data.drop(labels=["ratio_G1+G2", "G1", "G2"], axis=1)
```

Méthode Kmean

```
[24]: knn = KNeighborsClassifier()
knn.fit(train_data_for_g3, train_data_g3)
predictions = knn.predict(test_data_for_g3)

knn_absolute_errors = np.abs(np.subtract(predictions, test_data_g3))
knn_square_errors = np.square(knn_absolute_errors)

knn_mse = np.average(knn_square_errors)
knn_rmse = np.sqrt(knn_mse)
knn_mae = np.average(knn_absolute_errors)
```

Linear regression

```
[25]: from sklearn.linear_model import LinearRegression

lr_reg = LinearRegression().fit(train_data_for_g3, train_data_g3)

lr_results = lr_reg.predict(test_data_for_g3)

lr_absolute_errors = np.abs(np.subtract(lr_results, test_data_g3))

lr_square_errors = np.square(lr_absolute_errors)

lr_mse = np.average(lr_square_errors)

lr_rmse = np.sqrt(lr_mse)

lr_mae = np.average(lr_absolute_errors)
```

Resultats

```
[26]: pd.DataFrame({
    "Metriques": ["MAE", "MSE", "RMSE"],
    "Valeurs pour Knn": [knn_mae, knn_mse, knn_rmse],
    "Valeurs pour Regression linéaire": [lr_mae, lr_mse, lr_rmse],
})
```

```
[26]: Metriques Valeurs pour Knn Valeurs pour Regression linéaire
0 MAE 3.9832 1.8363
1 MSE 26.4202 5.1763
2 RMSE 5.1401 2.2751
```

Le tableau ci dessous présentent les valuers des metriques MSE, RMSE et MAE pour les prédictions des algorithmes de regression linéaire. Ces différentes métriques se basent sur les erreurs des différents modes de prédiction. Plus une erreur est proche de zéro, plus la prédictionest juste. A l'inverse, plus l'erreur est grande, plus les erreurs de prédiction sont grandes.

Nous pouvons donc constater que l'algorithme de regression linéaire est bien meilleur que celui du kmean pour calculer les notes des élèves sur notre jeu de données.

Pour les élèves de portugais

```
[27]: train_data, test_data = train_test_split(por_formatted, test_size=0.3)

train_data_g3 = train_data["ratio_G1+G2"]

train_data_for_g3 = train_data.drop(labels=["ratio_G1+G2", "G1", "G2"], axis=1)

test_data_g3 = test_data["ratio_G1+G2"]

test_data_for_g3 = test_data.drop(labels=["ratio_G1+G2", "G1", "G2"], axis=1)
```

Méthode Kmean

```
[28]: knn = KNeighborsClassifier()
knn.fit(train_data_for_g3, train_data_g3)
predictions = knn.predict(test_data_for_g3)

knn_absolute_errors = np.abs(np.subtract(predictions, test_data_g3))
knn_square_errors = np.square(knn_absolute_errors)

knn_mse = np.average(knn_square_errors)
knn_rmse = np.sqrt(knn_mse)
knn_mae = np.average(knn_absolute_errors)
```

Linear regression

```
[29]: from sklearn.linear_model import LinearRegression

lr_reg = LinearRegression().fit(train_data_for_g3, train_data_g3)

lr_results = lr_reg.predict(test_data_for_g3)

lr_absolute_errors = np.abs(np.subtract(lr_results, test_data_g3))

lr_square_errors = np.square(lr_absolute_errors)

lr_mse = np.average(lr_square_errors)

lr_rmse = np.sqrt(lr_mse)

lr_mae = np.average(lr_absolute_errors)
```

Resultats

```
[30]: pd.DataFrame({
    "Metriques": ["MAE", "MSE", "RMSE"],
    "Valeurs pour Knn": [knn_mae, knn_mse, knn_rmse],
```

```
"Valeurs pour Regression linéaire": [lr_mae, lr_mse, lr_rmse],
})
```

[30]: Metriques Valeurs pour Knn Valeurs pour Regression linéaire 0 MAE2.6821 1.7138 13.4000 5.7285 1 MSE 2 RMSE 3.6606 2.3934

Nous pouvons constater une nouvelle fois que l'algorithme de regression linéaire est bien meilleur que celui du kmean pour calculer les notes des élèves sur notre jeu de données.

0.6 Conclusion

Pour chacune de nos situations, la méthode de regression linéaire donne des erreurs plus faibles que l'alagithme du Knn. Cette méthode est donc à privilégier.