### Infomation Criterion

#### Thomas Bayes



May 6, 2018

#### Introduction

In this slides, we are going to introduce the following concept.

- ► Laplace approximation
- ► BIC
- ► AIC

# Laplace Approximation I

The idea of Laplace Approximation is use a Gaussian distribution to approximate a distribution.

$$p(z) = \frac{f(z)}{\int_{z} f(z)dz}$$

First we find the mode  $z_0$  of the distribution

$$\left. \frac{df(z)}{dz} \right|_{z=z_0} = 0$$

Then we evaluate the Hessian matrix A at  $z=z_0$ ,

$$A = -\nabla^2 \ln f(z) \Big|_{z=z_0}$$

Then we approximate the function as

$$\ln f(z) \approx \ln f(z_0) - \frac{1}{2}(z - z_0)^{\top} A(z - z_0)$$

# Laplace Approximation II

Remark of Laplace's approximation

### BIC

In context of model comparison, we are given a data set  $\mathcal{D}$ , and a set of models  $\mathcal{M}_i$  We are interested in computing the model evidence,

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\theta, \mathcal{M}_i) p(\theta|\mathcal{M}_i) d\theta$$