CHAPTER 2

DEMOLITION OF A BRIDGE

SECTION 3

<u>CALCULATION FOR RESERVE DEMOLITION OF A BRIDGE</u>

- 0301. **Introduction.** Reserve Demolition of a bridge can be planned by destroying the abutment, pier and roadway of a bridge.
- 0302. Calculation for Abutment (Masonry/Concrete). Abutment can be demolition by mined charge or borehole charge.

a. Mined Charge Calculation (Masonry)

Ser	Type of	Type of	Formula	Explanation of Formula	Data	Calculation	Fig	Auth
	Target	Expl						
1.	Masonry Abutment	PE	$C = \frac{D^3}{50}$	C = Weight of Charge (lb) D = Dia of cráter (feet)	D= 30'	$C = \frac{30^3}{50} = 540 \text{ lb}$	See Figure	GSTP- 1603,
2.	Roads/Medium and Hard soil	PE	$C = \frac{D^3}{100}$	C = Weight of Charge (lb) D = Dia of cráter (feet)	D= 20'	$C = \frac{20^3}{100} = 80$ lb	2(a), 2(b) of	Chapter-5, Section-
3.	Soft soil	PE	$C = \frac{D^3}{200}$	C = Weight of Charge (lb) D = Dia of cráter (feet)	D= 20'	$C = \frac{20^3}{200} = 40$ lb	auth.	31, Page 80~82.

Number of Charges	n= 1	n = 2	n = 3	n = 4	n = 5						
	30	$\frac{1}{2}(30+\frac{30}{3})=20$	$\frac{1}{3}x40$ = 13.33	$\frac{1}{4}x40 = 10$	$\frac{1}{5}x40 = 8$						
C (Weight of charge in lb)= $\frac{D^3}{50}$ (Each Charge)	540	160	47	20	10						
Total Explosive (lb) = C x n (Number of charge)	540	320 (160^2)	141 (47^3)	80 (20^4)	50 (10^5)						
Distance from Face = $\frac{D}{4}$ - $\frac{D}{2}$ (feet)	7.5-15	5-10	3.5-6.5	2.5-5	2-4						
Depth of Charge = $\frac{3}{2} (D/4^{-D}/2)$ (feet)	11-22.5	7.5-15	5-10	4-7.5	3-6						
Spacing of Charge = $\frac{2D}{3}$ (feet)	-	13	9	7	5						
For minimum of Explosive, I will go for 5 crate	ers. Total cl	harge reqr= 50 lb	For minimum of Explosive, I will go for 5 craters. Total charge reqr= 50 lb.								

b. <u>Borehole Charge Calculation (Masonry/Concrete Abutment)</u>.

Ser	Type of Target	Type of Expl	Formula	Explanatio n of	Data	Calculation	Fig	Auth
		Expi		Formula				
1. 2. 3. 4.	Masonry Abutment up to 6' thickness (For 2 row) Masonry Abutment up to 6'- 9' (For 3 row) Concrete Abutment up to 6' thickness (For 3 row) Concrete Abutment up to 9'-12' thickness (For 3 row) (both side)	PE PE PE	No of holes reqr in one row = $\frac{B}{3}$ Depth of hole = $\frac{2T}{3}$ ft Expl will be filled = $\frac{1}{2}$ x Depth of hole (inch) Expl reqr = Expl will be filled x 2.5 oz (1 lb = 16 oz) * Holes will be 3 feet apart. Dia of each hole = $2\tilde{N}$ \tilde{N} (Using auger).	B = width of Abutment (feet) T = Thickness of abutment (feet)	feet T = 6 feet	No of holes require in one row = $\frac{25}{3}$ = 8, 3 rows require. Total no of holes = 8+7+8 = 23 nos (The holes will be placed staggered) Depth of hole = $\frac{2x6}{3}$ feet = 4 feet = 48 inch Expl will be filled = $\frac{1}{2}$ x 48Ñ Ñ = 24Ñ Ñ Expl reqr = 24x2.5 oz = 60 oz Amount of charge = 23x60 oz = 1380 oz = 1380/16 lb = 86.25 lb (1 lb = 16 oz)	See Figure 2(a), 2(b) of auth.	Auth: GSTP- 0003, Table 19, page 52-53

0303. <u>Calculation for Pier (Masonry/Concrete/RCC/Steel)</u>. charge or shaped charge.

Pier can be demolished by mined charge or borehole

a. Borehole Charge Calculation (Masonry/Concrete)

Ser	Type of Target	Type of Expl	Formula	Explanation of Formula	Data	Calculation	Fig	Auth
1.	Masonary pier up to 6' thickness (For 2 row)	PE	No of holes reqr in one $row = \frac{B}{3}$	B = width of Pier (ft) T =	B = 25 ft T =	No of holes reqr in one row $=\frac{25}{3} = 8$, 3 rows reqr.	See Figure 3(a), 3(b) of	Auth: GSTP- 0003,
2.	Masonary pier up to 6'- 9' (For 3 row)	PE	Depth of hole $=\frac{2T}{3}$ ft Expl will be	Thickness of Pier (ft)	6 ft	Total no of holes = 8+7+8 = 23 nos (The holes will be placed staggered)	auth.	Table 19, page 52-53
3.	Concrete pier up to 6' thickness (For 3 row)	PE	filled = $\frac{1}{2}$ x Depth of hole (inch)			Depth of hole = $\frac{2x6}{3}$ ft = 4 ft = 48 inch		
4.	Concrete pier up to 9'-12' thickness (For 3 row (both side)	PE	Expl require = Expl will be filled x 2.5 oz (1 lb = 16 oz) * Holes will be 3 ft apart. Dia of each hole = 2Ñ Ñ (Using auger).			Expl will be filled = $\frac{1}{2}$ x 48Ñ Ñ = 24Ñ Ñ Expl reqr= 24x2.5 oz = 60 oz In one pier, amount of charge = 23x60 oz = 1380/16 lb = 86.25 lb (1 lb = 16 oz)		

b. <u>Shaped Charge (RCC/Steel Pier-Hayrick)</u>.

Ser	Type of	Type of	Formula	Explanation	Data	Calculation	Fig	Auth
	Target	Expl		of Formula				
1	RCC/Steel	Shaped	Hayrick can cut 2Ñ of the	One	3 ft	The	See	Auth:
	Pier	Charge	thickness of a pier. If the	hayrick can		circumference	Figure	GSTP
		(Hayrick)	thickness is $>4\tilde{N}$,	cut 6 inch		of the said	3(a),	0003,
			borehole/pier footing charge	width of		pier is	3(c) of	Sec-
			should be planned instead of	pier		Approximate	auth.	21,
			hayrick.If the thickness of the			9 ft=108 inch.		Para
			pier is $<4\tilde{N}$, then the no of			So, Hayrick		7
			hayrick			require $=\frac{108}{6}$		
			$=$ $\frac{\text{circumference of the pier (inch)}}{}$					
			6 (inch)			nos		
						= 18 Nos.		

c. <u>Pier Footing Charge (Masonry/Concrete Pier)</u>.

Ser	Type of Target	Type of	Formula	Explanation of	Data	Calculation	Fig	Auth
	71	Expl		Formula			C	
1.	Masonry/Concrete	PE	C = 10 T	C= wt of	T =	$C = 10^{5}$	See	GSTP-1603,
	Piers up to 0'-6'		No of charge	Charge	5'	= 50 lb	Figure	Chapter-5,
			= B/T	(lb)	B = 15'	No of	3(a), 3(d)	Sec-30,
				T= Thickness		charge =	of auth.	Page-78.
				of pier (ft)		B/T =		
				B = Width of		$(15^5) = 3$		<u>Note</u>
				pier (ft)		Nos		a. The
						Total Expl		charges are
						reqr (50 [^] 3)		spaced at
						= 150 lb		the
								thickness of
2.	Masonry/Concrete	PE	C = 20 T		T =	$C = 20^8$		the pier
	Piers up to 6'-9'		No of		8'	= 160 lb		apart.
			charge =		B = 24'	No of		
			B/T			charge =		b. The
						(24`8)= 3		level of
						Nos		ground on
						Total Expl		the downhill
						reqr (160^		side of the
						3) = 480 lb		pier must be
								at least 18
								inch below
								that on the
								uphill side.

0304. <u>Calculation for Span, Beam/Girder and Roadway (RCC/Concrete)</u>. Beam/girder, span and Roadway can be dml by pressure charge.

Ser	Type of Target		Formula	•	Data	Calculation	Figure	Auth
		Expl		Formula				
1.	Span, Beam/Girder and Roadway (RCC/Concrete)	Expl PE	$C = 4H^2T$	Formula C= Wt of Charge (lb) H= Total Height of roadway T= Thickness (ft)	H = 6' T= 2'	$= 288 \times \frac{1}{3} = 96 \text{ lb}$ Amount of expl reqr=96 x $\frac{1}{3}$ = 32 lb Cal of sand bag For 20 lb expl sandbag reqr = 16 nos \therefore "32 lb" "	See Figure 4(a), 4(b) of auth.	GSTP-1603, Chapter-5, Sec-28, page- 75 Note: Addl effect can be obtained by air cone in the centre of the charge. So charge can be
						$" = \frac{16}{20} \times 32 = 26 \text{ Nos}$		reduced by $\frac{1}{3}$.

0305-0400 Reserve.