Seokwon Cho

Mississippi State University 501 Hardy Road, 321 Walker Hall, Drawer A, MS 39762, USA

mailto:scho@msstate.edu

M: +1-612-512-5520

Executive Summary

- Status: Permanent resident of United States
- Combustion research scientist with 10+ years of experience in combustion experiments, 0D/1D chemical kinetics and heat transfer simulations, data analysis, with strong lab testing and troubleshooting skills
- Solid technical background in thermal sciences, thermodynamics, combustion, and heat transfer
- Highly motivated and collaborative with strong leadership qualities, enjoy an atmosphere of hands-on thriving in ambiguity with persistency
- 22 international publications, with 219 number of citations, Google scholar site: https://bit.ly/3bpP3Da

Experience

Sandia National Laboratories

Applied Combustion Research II **Sandia National Laboratories** Livermore, CA, USA

Nov. 2020 - Present

Postdoctoral Appointee

- Development and application of MEMS-based dynamic heat flux sensor, 1D heat transfer modeling and design/structure optimization
- Multi-dimensional (0-3D) modeling: fuel spray/engine simulations and numerical studies using chemical kinetics
- Development of new high-speed optical combustion diagnostics: CH₂O extinction
- · Combustion and fuel optimization study for catalyst-heating operation
- · Medium-duty/off-road diesel engine experiment and data analysis
- Publications: 4 published, 4 under review, 5 in preparation

UNIVERSITY
OF MINNESOTA
University of Minnesota
Minneapolis, MN, USA

Jul. 2019 - Oct. 2020

Post-Doctoral Associate

- Cooperative Fuel Research engine testing bench setup and test, establishing in-house combustion analyzing system and data logger
- · Computation modeling in multi-processing environment: laminar flame speed and ignition delay
- · Developing 0D/1D simulation models for CFR engine coupled with OCM reactor
- · Research mentoring, paper advising for multiple graduate students
- Publications: 1 published, 1 under review, 1 in preparation

AARC

Seoul National University Seoul, South Korea

Mar. 2012 - Jul. 2019

Graduate Research Assistant / Postdoctoral Research Associate

- · Single/multi-cylinder engine test (metal/optical)
- · 1D simulation: DoE, model development
- 0D model development of a virtual knock sensor
- · Design, fabrication and implementation of ion-probe flame detection device
- · Engine test cell/facility management
- · Research mentoring for graduate students
- · Publications: 17 published, 1 in preparation

Education

Mar. 2012 – Jun. 2018

Ph.D., Seoul National University, Seoul, Korea

Mechanical and Aerospace Engineering (GPA: 3.64/4.30)

Dissertation: Study on the Effect of Cylinder Wall Temperatures on Knock Characteristics in Spark-Ignited Engine

Mar. 2006 - Feb. 2012

B.S., Seoul National University, Seoul, Korea

Mechanical and Aerospace Engineering (GPA: 3.43/4.30)

Research interests

- Fast-response heat flux sensor development, modeling, and application
- Optical and combustion/flow diagnostics
- Sustainability in various propulsion systems, low carbon intensity fuels, future mobility
- Multi-dimensional fuel spray modeling and chemical kinetics, 0D single/two-zone combustion analysis
- Auto-ignition modeling and experiment in propulsion and powertrain system, advanced combustion control
- 1D simulation: combustion profile matching, heat transfer estimation and model development

Teaching and mentoring experience

University of Minnesota

May. 2020 - Aug. 2020

Jul. 2019 - Oct. 2020

Lecturer (Job code: 9753I): Thermodynamics - ME3331 25+ students, Student Rating of Teaching: 4.73/6, ratemyprofessor: 5/5

Research mentoring for three graduate students

Seoul National University

Mar. 2012 – Aug. 2018

Mar. 2013 - Feb. 2018 Spring, 2014

Technical advisor of Seoul National University (SNU) Society of Automotive Engineers (SAE) Baja team

Thesis assistant for three SNU undergraduate students

Teaching assistant, heat transfer

Technical Skills

Experiment and lab testing setup

DAQ/control

Post-processing/programming

Chemical kinetics

1D simulation 3D CAD 3D simulation

Report automation

Single/multi-cylinder engine experiment, optical/laser diagnostics

LabVIEW, RTOS/FPGA, ETAS, Drivven, AVL Indi-series, Visio

MATLAB, Python

Cantera, CHEMKIN, Converge

GT-Power (analysis, optimization, DoE) Solidworks, Pro/ENGINEER, CREO ANSYS, Recurdyn, COMSOL, Converge

DIAdem

Other computer skills MS Office, OriginLab, Illustrator, Photoshop, Davinci resolve

Service

Paper reviewer Applied Energy

Energy

SAE Technical Paper

International Journal of Engine Research ASME Journal of Gas Turbines and Power ASME journal of Energy Resources Technology

Oil & Gas Science and Technology

Energies

Sandia National Laboratories (internal)

Government program reviewer

U.S. Department of Energy SBIR/STTR program reviewer (2021)

Patents

- Min, K., Song, C., Cho, S., Lee, Y., Park, J., "METHOD FOR PREDICTING KNOCKING OCCURRENCE OF ENGINE", Apr. 2021, Korea, 10-2020-0046297.
- Min, K., Song, C., Cho, S., Lee, Y., Park, J., "METHOD FOR PREDICTING OCCURRENCE OF ENGINE 2. KNOCKING", Jun. 2021, United States, 17/348, 168.

Research projects

Department of Energy

Sandia National Lab. Nov. 2020 – Present Currently involved in four tasks:

- · Investigating fuel effects and injection optimization under cold-operating condition
- · Developing optical, time-resolved transient measurement technique for formaldehyde using mid-IR laser
- Developing a MEMS-based heat flux sensor, including fabrication, testing, calibration and hardware modification
- · Optimization of piston geometry to enhance thermal efficiency and reduce emission

LDRD Program

Sandia National Lab. Nov. 2020 – Sep. 2021 Building Foundational Capabilities for Sustained Thermal Barrier Coating R&D for Internal Combustion Engine Applications

- · Modeling and development of MEMS-based heat flux sensor
- Engine 3D design and collaboration for developments of telemetry system and sensor

Department of Energy

University of Minnesota Jul. 2019 – Oct. 2020 On-Demand Reactivity Enhancement to Enable Advanced Low Temperature Natural Gas Internal Combustion Engines (DE-FOA-0001813 Budget Period 2)

- Project lead, created quarterly reports, developed presentations, and maintained budget Comissioned CFR engine and developed and performed experiments
- · Developed and performed 0D/1D modeling for engine-reactor combined system

Hyundai Motor Company

Seoul National University Apr. 2018 – Jul. 2019 Optimization of Combustion Chamber Design Parameters to Increase Thermal Efficiency in a Gasoline Engine

- · Lead researcher
- · Set up single-cylinder engine, performed experiments and autoignition testing
- · Collaborated with CFD researchers to analyze the intake port insulation effect

Hyundai Motor Company

Seoul National University Aug. 2016 – Dec. 2018 Investigation on the Effect of Stroke-to-Bore Ratio of Gasoline Engines with Simulation and Experiment

- · Laboratory/engine testing system setup and experiment, autoignition testing
- 0D-based combustion analysis
- · Perform 1D simulations: profile matching, 0D RGF model development, DoE
- · Collaborated with CFD researchers to study effects on combustion speed

Tenergy

Seoul National University Mar. 2015 – Sep. 2015 Development of Report Automation System for Vehicle Fuel Economy and Emission Test

- · Big data analysis on driving habit of Seoul intra-city buses
- · Program development: NI DIAdem, VBS Script, MATLAB

Hyundai Motor Company

Seoul National University Nov. 2013 – Oct. 2014 Analysis of EMS (?) data for Fuel Economy and Development of Reporting Automation System

- · EMS data analysis of vehicle cycle test
- · Program development: NI DIAdem, VBS Script, MATLAB

Ministry of Knowledge Economy of Korea

Seoul National University Nov. 2013 – Oct. 2014 Technology for Gasoline Engine Downsizing (Spray and flame visualization) – \$400,000

- · Single cylinder optical engine test
- · Spray visualization, measurement of spray impingement
- · Fast FID, PM testing of split injection during cold start

Scholarships

Mar. 2012 – Dec. 2017 Mar. 2006 – Feb. 2012 Brain Korea 21+ Governmental Research scholarship – \$31,000

Korean Student Aid Foundation – \$20,000

Others

Other language skills Service Chinese (CEFR C1), Korean (fluent)

Two years in military (riot police) in South Korea

Refereed journal publications

Published

- Cho, S., Song, C., Lee, Y., Kim, N., Oh, S. and Min, K., "Prediction of Knock Propensity Using Stochastic Modeling in a Spark-Ignition Engine", *International Journal of Engine Research*, 2022, https://doi.org/10.1177/14680874221074993.
- 2. Kim, N., Chung, J., Kim, J., **Cho, S.**, and Min, K., "Effect of Injection Parameters on Combustion and Emission Characteristics under Catalyst Heating Operation in a Direct-Injection Spark-Ignition Engine", *Energy Conversion and Management*, 2022, https://doi.org/10.1016/j.enconman.2021.115059.
- 3. López-Pintor, D. and **Cho, S.**, "Effects of the stability of 2-methyl furan and 2, 5 dimethyl furan on the autoignition and combustion characteristics of a gasoline-like fuel", *Fuel*, 2022, https://doi.org/10.1016/j.fuel.2021.122990.
- 4. Kim, J., Chung, J., Kim, N., **Cho, S.**, Lee, J., Oh, S., Song, C. and Min, K., "Numerical Investigation of Soot Emission Sources in a Direct-Injection Spark-Ignition Engine Based on Comprehensive Breakup Model Validation", *International Journal of Engine Research*, 2021, https://doi.org/10.1177/14680874211047524.
- Cho, S., Song, C., Kim, N., Oh, S., Dong Han and Min, K., "Influence of the Wall Temperatures of the Combustion Chamber and Intake Ports on the Charge Temperature and Knock Characteristics in a Spark-ignited Engine", *Applied Thermal Engineering*, 182, 116000, 2021, https://doi.org/10.1016/j.applthermaleng.2020.116000.
- Kim, Y., Kim, M., Oh, S., Shin, W., Cho, S., Song, HH., "A New Physics-based Modeling Approach for a 0D Turbulence Model to Reflect the Intake Port and Chamber Geometries and the Corresponding Flow Structures in High-Tumble Spark-Ignition Engines", *Energies*, 12(10):1898, May. 2019, https://doi.org/10.3390/en12101898.
- Cho, S., Park, J., Song, C., Oh, S., Lee, S., Kim, M. and Min, K., "Prediction Modeling and Analysis of Knocking Combustion with an Improved 0D RGF Model and Supervised Deep Learning", *Energies*, 12(5):844, Mar. 2019, https://doi.org/10.3390/en12050844.
- 8. Oh, S., Cho, S., Seol, E., Song, C., Shin, W., Min, K. and Song, HH., "An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing", *SAE Int. J. Engines*, 11(6), pp 1183-1193, 2018, https://doi.org/10.4271/2018-01-1419.
- 9. Lee, K., Cho, S., Kim, N. and Min, K., "A study on combustion control and operating range expansion of gasoline HCCI", *Energy*, Vol. 91, pp 1038-1048, Nov. 2015, https://doi.org/10.1016/j.energy.2015.08.031.
- 10. Kim, N., **Cho, S.** and Min, K., "A study on the combustion and emission characteristics of an SI engine under full load conditions with ethanol port injection and gasoline direct injection", *Fuel*, Vol. 158, pp 725-732, Oct. 2015, https://doi.org/10.1016/j.fuel.2015.06.025.

Under review

- 1. **Cho, S.**, Lee, H, Lin, Y., Singh, S., and Northrop, W., "Products of Catalytic Oxidative Coupling of Methane to Improve Thermal Efficiency in Natural Gas Engines", *Energy Conversion and Management*.
- 2. **Cho, S.**, López-Pintor, D., and Goldsborough, S., "Chemical Kinetic Interactions and Sensitivity Analyses for 2-Ethylhexyl Nitrate-doped PRF91 using a Reduced Mechanism", *Fuel*.
- 3. Wu, A., Cho, S., López-Pintor, D., Busch, S., Perini, F., and Reitz, R., "Effects of a CFD-improved Dimple Stepped-lip Piston on Thermal Efficiency and Emissions in a Medium-duty Diesel Engine", *International Journal of Engine Research*.
- 4. López-Pintor, D., Mehl., M., Cho, S., and Dec, J., "A Methodology to Replicate LTGC Engine Conditions in a Single-zone Model and Validation of a Surrogate Fuel for an AKI 88.5 E10 Research-grade Gasoline Versus Experimental Measurements", *Energy & Fuels*.
- 5. **Cho, S.,** López-Pintor, D., "Understanding the Effects of Doping a Regular E10 Gasoline with EHN in an HCCI Engine: Experimental and Numerical Study", *Fuel*.
- 6. **Cho, S.**, López-Pintor, D., Sofianopolos, A., and Mamalis, S., "A Skeletal Mechanism for Gasoline Surrogates: Development, Validation and CFD Application", *Fuel*.

In Preparation (tentatively to be submitted in fall 2022)

- 1. López-Pintor, D., Cho, S., and Dec, J., "Understanding the performance of OI in LTGC engines from beyond MON to beyond RON".
- 2. **Cho, S.***, Busch, S., López-Pintor, D., and Wu, A., "Impact and sensitivity analysis of design parameters in MEMS-based fast-response heat flux sensor using 1D numerical simulation".
- 3. **Cho, S.,** Wu, A., Busch, S., and López-Pintor, D., "Effect of Distillation Temperature of Fuel on Catalyst-Heating Operating in an Off-Road Diesel Engine".
- 4. **Cho, S.**, Wu, A., Kim, N., Busch, S. and López-Pintor, D., "Fast-Response Measurement of Formaldehyde using Mid-IR Exhaust Runner Extinction Diagnostics".
- 5. Lee, H, **Cho, S.***, and Northrop, W., "Thermal Efficiency Enhancement using Integrated OCM Reactor in Natural Gas Engine", Energy and Fuels.
 - Seokwon Cho || ± 1 -612-512-5520 || scho@sandia.gov || MS9053, 7011 East Ave, Livermore, CA 94550, USA

6. Oh, S., Cho, S., Shin, W., Song, C., Min, K., and Song, HH., "The Effects of Bore-to-Stroke Ratio on Thermal Efficiency in Spark-Ignited Engine".

Refereed conference publications

- Cho, S.*, Busch, S., Angela Wu, and López-Pintor, D., "Effect of Fuel Cetane Number on the Performance of Catalyst-Heating Operation in a Medium-duty Diesel Engine", SAE Technical Paper 2022-01-0483, Apr. 2022, https://doi.org/10.4271/2022-01-0483.
- 2. Wu, A., Busch, S., Perini, F., **Cho, S.**, López-Pintor, D. and Reitz, R., "Numerical studies of a novel dimpled stepped-lip piston design on turbulent flow development in a medium-duty diesel engine", *SAE Technical Paper* 2022-01-0400, Apr. 2022, https://doi.org/10.4271/2022-01-0400.
- 3. Busch, S., Wu, A. and **Cho, S.**, "Catalyst heating operation in a medium-duty diesel engine: operating strategy calibration, fuel reactivity, and fuel oxygen effects", *SAE Technical paper* 2021-01-1182, Sep. 2021, https://doi.org/10.4271/2021-01-1182.
- 4. Park, J., Lee, S., Cho, S., Shin, S., Kim, M., Song, C. and Min, K., "Improvement of Knock Onset Determination Based on Supervised Deep Learning Using Data Filtering", *SAE Technical paper* 2021-01-0383, Apr. 2021, https://doi.org/10.4271/2021-01-0383.
- 5. **Cho, S.**, Song, C., Lee, Y., Park, J., Song, HH. and Min, K., "Development of Knock Prediction Model for On-board Control in a Spark-Ignited Engine", *SIA 2019 Paris Powertrain & Electronics*, Port-Marly, France, Jun. 2019.
- 6. **Cho, S.**, Oh, S., Song, C., Shin, W., Song, S., Song, HH., Lee, B., Jung, D., Woo, SH. and Min, K., "Effects of Bore-to-Stroke Ratio on Efficiency and Knock Characteristics in a Single-cylinder GDI Engine", *SAE Technical paper* 2019-01-1138, 2019, Apr. 2019, https://doi.org/10.4271/2019-01-1138.
- 7. Oh, S., Cho, S., Shin, W., Min, K. and Song, HH., "Experimental Study on the Knock Phenomena in the Individual Cycle of Direct-Injected Spark-Ignition Engine with Various Stroke-to-Bore Ratios", *Proceedings of the European Combustion Meeting*, Lisboa, Portugal, Apr. 2019
- 8. **Cho, S.**, Song, C., Oh, S. and Min, K., "An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines", *SAE Technical paper* 2018-01-0213, Apr. 2018, https://doi.org/10.4271/2018-01-0213.
- 9. Min, K., Song, C. and **Cho, S.**, "A Study on the Effect of Wall Temperature on Knock Phenomena using a Single Cylinder Spark-Ignited Engine", *FISITA 2018*, Chennai, India, Oct. 2018.
- 10. **Cho, S.**, Song, C., Kim, M., Ha., K., Kim, B., Suh, I. and Min, K., "The Effect of Thermal Boundary Conditions on Knock Characteristics in a Single Cylinder Spark Ignited Engine", *SIA Powertrain Conference 2017*, Versailles, France, Jun. 2017.
- 11. **Cho, S.**, Kim, N., Chung, J. and Min, K., "The Effect of Ethanol Injection Strategy on Knock Suppression of the Gasoline/Ethanol Dual Fuel Combustion in a Spark-Ignited Engine", *SAE Technical paper* 2015-01-0764, Apr. 2015, https://doi.org/10.4271/2015-01-0764.
- 12. Kim, N., **Cho, S.**, Choi, H., Song, HH. and Min, K., "The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine", *SAE Technical paper* 2014-01-1208, Apr. 2014, https://doi.org/10.4271/2014-01-1208.

Presentations

- 1. **Cho, S.**, Wu, A., Busch, S., Lopez-Pintor, D., "Efforts to Reveal Unburned Hydrocarbon and Formaldehyde Formation in Diesel Catalyst-Heating Operation by High-Speed FID and Mid-IR Extinction Diagnostics", SAE Fuel and Lubricants Meeting, Krakow, Poland, Sep. 2022. (*accepted*)
- 2. **Cho, S.**, Wu, A., Busch, S., Lopez-Pintor, D., "Efforts to Reveal Formaldehyde Formation in Catalyst-Heating Operation: Fuel CN Effect and Mid-IR Laser Diagnostics", Advanced Engine Combustion Meeting, Online, Feb. 2022.
- 3. Wu, A., Cho, S., Lopez-Pintor, D., Busch, S., "Engine Experiments Using a CFD-Improved Dimple Stepped-Lip Piston in a Diesel Engine", Advanced Engine Combustion Meeting, Online, Feb. 2022.
- 4. Northrop, W., Cho, S., Lee, H., Lin, Y., Singh, S., Steele, A., "Controlling NG Autoignition in Engines using C2 Molecules from Catalytic Oxidative Coupling of Methane", Combustion TCP, IEA, Sep. 2021.
- 5. Busch, S., Wu, A., Cho, S., "Study of Catalyst Heating Operation in Sandia's Medium-Duty Diesel Engine", Advanced Engine Combustion meeting, Online, Feb. 2021.
- 6. Northrop, W., Lee, H., Lin, Y., Cho, S., Singh, S., Steele, A., "Controlling NG Autoignition in Engines using C2 Molecules from Catalytic Oxidative Coupling of Methane", Natural Gas TLM, IEA meeting, Aug. 2020.
- 7. Song, C., Cho, S., Park, J., Lee, Y. and Min, K., "Development of Virtual Knock Sensor in Spark-Ignited Engines",

- AARC International Symposium, Seoul, Korea, Dec. 2018.
- 8. **Cho, S.**, Song, C. and Min, K., "Effect of Cylinder Wall Temperatures on Knock Phenomena in Spark-Ignited Engines", Hyundai Research Fellow Technical Forum, Ui-wang, Korea, Jul. 2018.
- 9. **Cho, S.**, Song, C. and Min, K., "Effect of Thermal Boundary Conditions on the Knock Mitigation in SI Engines", 10th Engine Researchers Forum, Dali, China, Jan. 2018.
- 10. **Cho, S.**, Song, C. and Min, K., "Effect of Thermal Boundary Conditions on Knock Mitigation in SI Engines", AARC International Symposium, Seoul, Korea, Nov. 2017.
- 11. **Cho, S.**, Oh, H., Park, M., Bang, J., and Min, K., "Development of Report Automation System for Fuel Economy Analysis using DIAdem", NI Days, Seoul, Korea, Apr. 2015.

References

Paul Miles, PhD

Manager

Applied Combustion Research II Sandia National Laboratories

PO Box 969 MS9053 7011 East Ave, Livermore, CA 94550

+1-925-294-1512

pcmiles@sandia.gov

Stephen Busch, Dr.-Ing.

System Performance Engineer Former Technical Staff at Sandia

Cummins

4601 E Wembley Ln, Columbus, IN 47201

+1-925-922-7881

sbbusch@gmail.com

Dario López-Pintor, PhD

Senior Member of the Technical Staff

Applied Combustion Research II Sandia National Laboratories

PO Box 969 MS9053 7011 East Ave, Livermore, CA 94550

+1-925-294-3577

dlopezp@sandia.gov