教材习题解答

第四章

电磁感应

第1节 划时代的发现

第2节 探究感应电流的产生条件

【教材答疑】教材 P7"做一做"

地球本身就是一个大磁体,地理的南极是地磁的北极,地理的北极是地磁的南极,所以磁感线由地理的南极出发进入北极,这就满足磁场的存在了,我们由电磁感应产生的条件不难判断摇动电线可以发电,只要能使通过闭合电路的磁通量改变就可以,所以这两位同学应东西站立。

教材课后习题解答

第1节:

- 奥斯特实验。通电螺线管有磁性等说明电现象与磁现象之间是有联系的。
- 2.(1)闭合电路;(2)部分导体做切割磁感线运动。

第2节

- 1. (1) 甲图中,线框在磁场中上下运动的过程中,穿过线框的磁通量没有发生变化,所以无感应电流产生。
 - (2)乙图中,线框在磁场中左右运动的过程中,尽管切割磁感线,但是穿过线框的磁通量也没有变化,所以无感应电流产生。
 - (3) 丙图中,线框绕 AB 转动,会使穿过线框的磁通量发生改变,有感应电流产生。
- 2. 有感应电流产生。因为环的面积减小,穿过闭合环的磁通量减少,所以有感应电流产生。
- 3. 线圈进入磁场和离开磁场两个阶段有感应电流,因为此时穿过线圈的磁通量发生了变化;线圈全部进入磁场后无感应电流,因为磁通量没有变化。
- 4. 都有感应电流。因为在线圈远离的时候,通过线圈的磁通量在不断减小,故有感应电流;若增大(或减小)导线中的电流,导线的磁场变强(或减弱),所以穿过线圈的磁通量也增加(或减小),故也有感应电流。
- 5. 在匀强磁场中不会产生感应电流,因为此时穿过铜环的磁通量没有发生变化;如果磁场不均匀,就会产生感应电流,因为这时穿过铜环的磁通量发生了变化。
- 6. 乙、丙、丁三种情况均可以观察到感应电流,因为线圈 A 中在这三种情况下是变化的电流,使线圈 B 中的磁通量发生变化。
- 7. 要使 MN 棒中不产生感应电流,则闭合回路 MNED 中的磁通量 Φ 必须保持不变,否则 Φ 一旦变化,MN 中就会产生感应电流。 Φ = BS,而整个过程中磁通量 Φ 保持不变,则 Φ =

$$B_0 l^2 = B_t \cdot (l^2 + lvt)$$
, $\# \mathcal{H}: B_t = \frac{B_0 l}{l + vt}$

第3节 楞次定律

【教材答疑】教材 P11"思考与讨论"

手持磁铁靠近线圈时,线圈中磁通量增大,感应电流的磁场与原磁场反向,阻碍磁铁的相对运动,线圈受到一个安培力作用,磁铁受到安培力的一个反作用力,我们克服安培力做了功,机械能转化成电能。

【教材答疑】教材 P12"思考与讨论"

- 1. 研究的闭合电路为 ABEF。
- 2. 磁通量增大。
- 3. 由楞次定律可判定感应电流的磁场方向垂直纸面向外。
- 4. 由右手定则可知感应电流方向由 A 到 B。

教材课后习题解答

1. 从左侧看,感应电流沿顺时针方向。

在条形磁铁移入线圈的过程中,有向左的磁感线穿过线圈, 而且线圈的磁通量增大,根据楞次定律可知,线圈中感应电 流的磁场方向应该向右,再根据右手螺旋定则可判断出,从 左侧看,感应电流沿顺时针方向。如答图1所示。

- 2. 当闭合开关时,导线 AB 中电流由左向右,它在上面的闭合线框中引起垂直于纸面向外的磁通量增加。根据楞次定律,闭合线框中产生的感应电流的磁场要阻碍它的增加,所以这时感应电流的方向是由 D 向 C。当断开开关时,垂直于纸面向外的磁通量减少,根据楞次定律,感应电流的磁场要阻碍它的减少,所以这时感应电流的方向是由 C 向 D。
- 3. 当导体 AB 向右移动时,线框 ABCD 中垂直于纸面向内的磁通量减少,根据楞次定律,它产生的感应电流的磁场要阻碍磁通量的减少,即感应电流的方向是 $A \to B \to C \to D$ 。此时,线框 ABFE 中垂直于纸面向内的磁通量增加,根据楞次定律,它产生的磁场要阻碍磁通量的增加,即感应电流的磁场与原磁场方向相反,垂直于纸面向外,所以,感应电流的方向是 $A \to B \to F \to E$ 。
- 4. 如答图 2 所示,A→B 的过程中,穿过线框向上的磁通量在减少,根据楞次定律可知感应电流的磁场方向与原磁场方向相同,由线框的下方向上穿过线框,根据右手螺旋定则可知感应电流方向(从上向下看)是逆时针方向;线框在 B 位置时,磁通量为零;B→C 的过程中,穿过线框向下的磁通量在增加,根据楞次定律可知感应电流的磁场方向与原磁场方向相反,由线框下方向上穿过线框,根据右手螺旋定则可知感应

169

电流方向(从上向下看)是逆时针方向。

- 5. (1)有感应电流;(2)没有感应电流;(3)有感应电流;(4)当合上开关S的一瞬间,线圈P中感应电流沿逆时针方向流过电流表;当打开开关S的一瞬间,线圈P中感应电流沿顺时针方向流过电流表。
- 6. 方法一:用磁铁任意一极去接近 A 环,则因磁通量增加而产生感应电流,阻碍相对运动,故环 A 远离磁铁,把磁铁移开时,磁通量减少,产生阻碍相对运动的感应电流,A 环与磁铁同方向运动;对 B 环,由于不闭合,虽产生感应电动势却没有受到磁场力作用,则不运动。

方法二:用楞次定律的广义描述,当磁铁移近 A 环时, A 环远离磁铁(来拒),当磁铁远离 A 环时, A 环靠近磁铁(去留);对于 B 环,由于环不闭合,不会产生感应电流,不受磁场力,不运动。

7. (1) 如答图 3 所示,圆盘中任意一半径 *CD* 都在切割磁感线,能够产生感应电流,在 *CD* 之间接上用电器,转动的圆盘就可以为用电器供电。(2) 根据右手定则判断,流过电阻 *R* 的电流方向自下而上。

第4节 法拉第电磁感应定律

【教材答疑】教材 P16"思考与讨论"

根据右手定则知此时线圈中产生的感应电动势的方向与 电流方向相反,故感应电动势削弱了电源产生的电流,对线圈 的转动有阻碍作用。

【教材答疑】教材 P17"做一做"

电动机启动过程中,刚开始电动机转动较慢产生的反电动势小,电流表读数较大,随着电动机转速变快,反电动势变大, 电流表读数变小。

在电动机上加一定的负载时,电动机转速变小,反电动势变小,电流表读数变大,电动机消耗功率变大。

电动机启动时的电流与正常工作时的电流不同,有负载时与空载时的电流不同,这在技术上会引起因电流过大而烧坏电动机线圈,应该想办法限制电流,启动或有负载时减小电源电动势。

教材课后习题解答

1. D 【解析】感应电动势的大小与磁通量的变化率有关。

2.
$$E = n \ \frac{\Delta \Phi}{\Delta t} = 1 \ 000 \times \frac{0.09 - 0.02}{0.4} \ \mathrm{V} = 175 \ \mathrm{V}, \ \overrightarrow{\mathrm{mi}} \ I = \frac{E}{R + r} =$$

$$\frac{175}{10 + 990}$$
 A = 0. 175 A_o

- 3. $E = BLv = 4.6 \times 10^{-5} \times 20.5 \times 10^{3} \times 7.6 \times 10^{3} \text{ V} = 7.166.8 \text{ V}_{\odot}$
- 4. 能。声波使锥形纸盆振动时,连接在纸盆上的线圈随着一起振动,线圈在永久磁体的磁场里振动,其中就有感应电流产生,感应电流的大小和方向都变化,振幅和频率的变化均由声波决定,这个信号电流经扩音放大后传给扬声器,扬声器中就发出放大的声音。
- 5. 因为线圈绕 00′轴转动时,线圈长为 L₂ 的边切割磁感线的速度变化,感应电动势因而变化。

根据公式 $E = Blv\sin\theta$ 和 $v = \omega r$ 有 $E = BL_1L_2\omega\sin\theta$ 。 因为在图示位置 $S = L_1L_2$, $\theta = 90^\circ$, 所以 $E = BS\omega$ 。

6. (1)因为 $S = \pi r^2$,所以 $\frac{S_A}{S_B} = 4$,由法拉第电磁感应定律

$$E = n \frac{\Delta \Phi}{\Delta t} = n \cdot S \frac{\Delta B}{\Delta t}, \text{ fight } \frac{E_A}{E_B} = \frac{S_A}{S_B} = 4_\circ$$

(2) 由 $R = \rho \frac{L}{S}$, 可知 $\frac{R_A}{R_B} = \frac{l_A}{l_B}$, $l = n \cdot 2\pi r$, 所以 $\frac{l_A}{l_B} = 2$, 故

$$\frac{R_A}{R_B} = 2_\circ \text{ th } I = \frac{E}{R}, \text{ for } \frac{I_A}{I_B} = \frac{E_A}{E_B} \times \frac{R_B}{R_A} = 4 \times \frac{1}{2} = 2_\circ$$

7. $q = \frac{\pi dU}{4B}$ 。 【解析】当导电液体流过磁场时,相当于长度为d的导体垂直切割磁感线,产生的感应电动势 U = B d v,而流量q(单位时间内流过管道横截面的液体体积)为 $q = \frac{1}{4} \pi d^2 v$ 。

$$U = Bdv$$
, ①

由
$$q = \frac{\pi}{4} d^2 v$$
,得 $v = \frac{4q}{\pi d^2}$,②

把②代入①得: $U = Bd \frac{4q}{\pi d^2} = \frac{4Bq}{\pi d}$,则 $q = \frac{\pi dU}{4B}$ 。

第5节 电磁感应现象的两类情况

【教材答疑】教材 P20"思考与讨论"

- 1. 自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体棒中自由电荷一方面随棒向右运动,另一方面受由 *D* 到 *C* 的洛伦兹力而沿 *DC* 方向运动,故相对纸面斜向右上方运动。
- 2. 导体棒一直运动下去,两端聚集异种电荷形成电场,电场力 与洛伦兹力反向;故自由电荷不会一直沿导体棒运动。
- 3. 导体棒 C 端电势比较高。
- 4. 导体棒中的电流由 *D* 到 *C*。

教材课后习题解答

1. 根据导线切割磁感线产生感应电动势的公式 E = Blv,该机两翼尖间的电势差为 $E = 4.7 \times 10^{-5} \times 12.7 \times 0.7 \times 340 \text{ V} \approx 0.142 \text{ V}$ 。 本根据右手定则可知,从驾驶员角度来说,左侧机 翼电势高。

【注意】该题的难点之一在于学生的空间想象

力往往比较弱,对此,可用简单图形(如答图 4 所示)帮助理解。另外,该题可补充一问,即当飞机从西向东飞行时,哪侧机翼电势高?经分析可得,仍为左侧机翼电势高。

- 2. (1)根据法拉第电磁感应定律,线圈中感应电动势为 $E=n\frac{\Delta\Phi}{\Delta t}$ 。根据 $\Phi-t$ 图像可知, $\frac{\Delta\Phi}{\Delta t}=0.5$ Wb/s。电压表的读数 为 $E=n\frac{\Delta\Phi}{\Delta t}=100\times0.5$ V =50 V。
 - (2)感应电场的方向为逆时针方向,如答图5所示。

- (3)A 端的电势比B 端高,所以A 端应该与电压表标 + 号的接线柱连接。
- 3. (1)等效电路图如答图 6 所示。

(2) 通过 R 的电流方向为从上到下。

根据导线切割磁感线产生感应电动势的公式 E=Blv,PQ 的电动势为 $E=1\times1\times1V=1$ V。根据闭合电路欧姆定律,通过 R 的电流 $I=\frac{E}{R}=\frac{1}{1}$ A = 1 A。

- 4. (1)线圈以速度 v 匀速进入磁场, 当 CD 边在磁场中时, 线圈中感应电动势 $E_1 = Bl_1v$, 其中 l_1 为 CD 边的长度。此时线圈中的感应电流为 $I = \frac{E_1}{R} = \frac{Bl_1v}{R}$, 其中 R 为线圈的总电阻。同理, 线圈以速度 2v 匀速进入磁场时, 线圈中感应电流的最大值为 $I_2 = \frac{E_2}{R} = \frac{2Bl_1v}{R}$ 。第二次与第一次线圈中的最大电流之比为 2:1。
 - (2)线圈以速度 v 匀速进入磁场,当 CD 边在磁场中时,CD 边受到的安培力最大,最大值为 $F_1 = BI_1l_1 = \frac{B^2l_1^2v}{R}$ 。由于线圈做匀速运动,所以此时外力也最大,且外力大小等于安培力大小,此时外力的功率为 $P_1 = F_1v = \frac{B^2l_1^2v^2}{R}$ 。同理,线圈以速度 2v 进入磁场时,外力的最大功率为 $P_2 = \frac{4B^2l_1^2v^2}{R}$ 。第二次与第一次外力做功的最大功率之比为 4:1。

(3)线圈以速度 v 匀速进入磁场,线圈中的感应电流为 $I_1 = \frac{E_1}{R} = \frac{Bl_1 v}{R}$ 。设 AD 边长为 l_2 ,则线圈经过时间 $t = \frac{l_2}{v}$ 完全进入磁场,此后线圈中不再有感应电流。所以第一次线圈中产生的热量 $Q_1 = I_1^2 R t = \frac{B^2 l_1^2 v^2}{R^2} \cdot R \frac{l_2}{v} = \frac{B^2 l_1^2 l_2 v}{R}$ 。同理,线圈以 2v 匀速进入磁场时,线圈中产生的热量为 $Q_2 = \frac{2B^2 l_1^2 l_2 v}{R}$ 。第二

次与第一次线圈中产生的热量之比为2:1。

第6节 互感和自感

【教材答疑】教材 P23"思考与讨论"

- 1. 感应电动势的作用是使线圈 L 中的电流减小得更慢些。
- 2. 开关断开后,线圈提供的感应电流将沿 L 中原来的流动方向流动。
- 3. 开关断开后,通过灯泡的感应电流与原来通过它的电流方向相反。
- 4. 开关断开后,通过灯泡的感应电流有可能比原来的电流更大,只要线圈 *L* 中电阻远小于灯泡 *A* 的电阻可得到这样的效果。

教材课后习题解答

- 1. (1) 当断开 S 使线圈 A 中电流变小并消失时,铁芯中的磁通量发生了变化(减小),从而在线圈 B 中激起感应电流,根据楞次定律,感应电流的磁场要阻碍原磁场的减小,这样就使铁芯中的磁场减弱得慢些,因此,弹簧 K 不能立即将衔铁拉起。
 - (2)如果线圈 B 不闭合,电磁铁就不会有延时效果,因为在线圈 B 中不会有感应电流产生,电磁铁会立即失去磁性。
- 2. 由于产生断电自感电动势,并且电动势比较大,故刘伟有被 电击的感觉,一旦放电完毕,电动势瞬间消失,李辉无任何感 觉也就不足为怪了。
- 3. (1) 当 S 由断开变为闭合时, A、B 两灯同时亮, 因为 S 闭合时, L 与灯 A 不在同一支路, 因此有电流通过灯 A 和 B 而构成回路, 所以同时亮; S 闭合之后, 电路达到稳定状态, 由于 L 的电阻不计, 故灯 B 被短接, 逐渐熄灭, 电路总电阻减小, 所以灯 A 比开关刚闭合时更亮。
 - (2)当S由闭合变为断开时,灯A立刻熄灭,而在L中产生自感电动势,L与灯B形成闭合电路,所以灯B先变亮后逐渐熄灭。

第7节 涡流、电磁阻尼和电磁驱动

【教材答疑】教材 P27"思考与讨论"

当单匝线圈落入磁场时,由楞次定律可知电流方向沿逆时针方向,安培力向上阻碍其向下运动。

当指针向右转动时,铝框中感应电流的方向是右边向里, 左边向外,铝框受的安培力的方向是右边向上,左边向下,安培 力对铝框的转动有阻碍作用,使用铝框做线圈的骨架能使偏转 的指针尽快静止。

教材课后习题解答

- 铜盘可看作由沿半径方向的无数导线组成,在磁场中转动时产生感应电流(涡流),因此受安培力阻碍作用而在较短时间内停止。
- 2. 磁铁上下振动过程中,引起穿过下端固定闭合线圈中磁通量变化,产生感应电流,感应电流阻碍磁铁运动,使其很快停下来。在该过程中机械能转化为电能,电能又通过电阻做功转化为内能。
- 3. 磁性很强的小圆柱使闭合铝管中产生涡流,涡流阻碍磁性小

圆柱下落,当换用有裂缝的铝管时,涡流在水平方向流动受到影响,故阻碍作用明显减小,因此下落得快多了。

- 4. 机械能向电能转化。因为感应电流的存在使卫星受阻力作用,速度减小,导致卫星做向心运动,造成卫星高度下降。
- 5. 当磁铁向水平方向移动时,穿过圆环的磁通量减少,产生感应电流的磁场应与原磁场方向相同,即向下,故感应电流从上向下看沿顺时针方向,则因磁场作用圆环各部分受水平方向的安培力作用方向向右,且靠近磁铁一侧受力较大,故环将沿磁铁运动的方向运动。

第五章

交变电流

第1节 交变电流

【教材答疑】教材 P31"做一做"

当转速较慢时,可看到两个发光二极管交替闪烁,这说明 了电流的方向在发生变化。

教材课后习题解答

- 1. 磁铁靠近白炽灯,发现灯丝颤动,因为电流通过灯丝时,在磁场中,灯丝受到的磁场力的大小、方向都随时间做周期性变化,因而灯丝颤动。
- 2. 这种说法不对。根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率 $\frac{\Delta \Phi}{\Delta t}$ 成正比,而与磁通量 Φ 没有必然的联系。假定线圈的面积为 S,所在匀强磁场的磁感应强度为 B,线圈以角速度 ω 绕垂直于磁感线的轴匀速转动,线圈在中性面时开始计时,则磁通量 Φ 随时间变化的关系为: $\Phi=BS\cos \omega t$,其图像如答图 7 所示。线圈平面转到中性面的瞬间(t=0,t=T),穿过线圈的磁通量 Φ 虽然最大,但是,曲线的斜率为 0,即磁通量的变化率 $\frac{\Delta \Phi}{\Delta t}=0$,感应电动势为 0;而线圈平面转到跟中性面垂直时($t=\frac{T}{4}$, $t=\frac{3}{4}T$),穿过线圈的磁通量 Φ 为 0,但是曲线的斜率最大,即磁通量的变化率 $\frac{\Delta \Phi}{\Delta t}$ 最大,感应电动势最大。

- 3. 单匝线圈转到线圈平面与磁场平行位置时,即课本图 5. 1 3 乙或丁所示位置,感应电动势最大,即 $E_m = 2BL_{AB}v = 2BL_{AB}\omega \frac{L_{AD}}{2} = BL_{AD}L_{AB}\omega = 0.01 \times 0.20 \times 0.10 \times 2\pi \times 50 \text{ V} \approx 6.3 \times 10^{-2} \text{ V}$ 。
- 4. 假定发电机线圈平面位于中性面开始计时,电动势瞬时值表达式为 : $e=E_{\rm m}\sin\omega t=400\sin{(314t)}{\rm V}_{\odot}$

不计发电机线圈的内阻,电路中电流的峰值为:

$$I_{\rm m} = \frac{E_{\rm m}}{R} = \frac{400}{2000} \text{ A} = 0.2 \text{ A}_{\odot}$$

电流的瞬时值表达式为:

 $i = I_{\text{m}} \sin \omega t = 0.2 \sin (314t) \,\text{A}_{\odot}$

5.
$$\frac{\sqrt{3}}{2}BS\omega_{\circ}$$
 方向为 $N \rightarrow M \rightarrow L \rightarrow K \rightarrow N_{\circ}$

【解析】从线框处于中性面开始计时,电动势瞬时值表达式 $e = BS\omega\sin\omega t_{\circ}$

在 MN 边与磁场方向到达 30°角的时刻,线圈已转过 120°。 (在中性面时 ML 在外, NK 在里面)

所以
$$e = BS\omega \sin 120^\circ = \frac{\sqrt{3}}{2}BS\omega$$
,

电流方向为 $N \rightarrow M \rightarrow L \rightarrow K \rightarrow N$ 。

第2节 描述交变电流的物理量

【教材答疑】教材 P35"思考与讨论"

1. 分段进行计算。

由题图知,在 1 s 内,前、后 0.2 s 电流大小为 1 A,中间 0.6 s 电流大小为 2 A,由电流有效值的含义知 1 s 内产生的 热量为: $Q_1 = I_1^2 R t_1 + I_2^2 R t_2 = 1^2 \times 1 \times (0.2 + 0.2)$ J + $2^2 \times 1 \times 0.6$ J = 2.8 J。

2. 根据电流有效值的定义,有 $Q_1 = Q_2 = I^2 Rt = I^2 \times 1 \Omega \times 1 s =$ 2. 8 J,所以 $I = \sqrt{2.8} A \approx 1.7 A_o$

教材课后习题解答

- 1. 100 次。 【解析】T = 0.02 s, 1 s 内有 $n = \frac{1}{0.02} = 50$ 个周期,每个周期内电流方向改变 2 次,所以1 s内电流方向发生 100 次改变。
- 2. 不能。 【解析】因为 10 V 交变电流电压的最大值为 $10 \sqrt{2} \text{ V}$ > 10 V,超过了电容器的耐压值,电容器会被击穿。
- 3. 0. 26 A。 【解析】据 P = UI 得 $I = \frac{P}{U} = \frac{40}{220}$ A,峰值 $I_m = \sqrt{2}I \approx 0.26$ A。
- 4. 由图像看出,交变电流的最大值为 $I_{\rm m}=10$ A,周期为 T=0.2 s,则交变电流的频率和电流的有效值分别为 $f=\frac{1}{T}=5$ Hz, $I=\frac{10}{5}$ A = $5\sqrt{2}$ A。

5. 该电热器消耗的功率:
$$P = \frac{U^2}{R}$$
,其中 U 为电压的有效值, $U =$

$$\frac{U_{\text{m}}}{\sqrt{2}}$$
, Fig. 13, $P = \frac{\left(\frac{U_{\text{m}}}{\sqrt{2}}\right)^2}{R} = \frac{U_{\text{m}}^2}{2R} = \frac{311^2}{2 \times 50} \text{ W} = 967.21 \text{ W}_{\odot}$

6. A = B 峰值相同: B = C 相位相同: 它们的周期相同。

第3节 电感和电容对交变电流的影响

【教材答疑】教材 P39"说一说"

电路图如答图 8 所示,由于电容器具有"隔直流、通交流"的作用,将电容器 C 与电阻 R_2 并联,交流成分经过电阻 R_2 "旁边"的电容器 C,而直流成分不能通过电容器而通过电阻 R_2 ,这样负载电阻 R_2 上的交流成分就更少了。为了尽量减少 R_2 上的交流成分,应该选用自感系数 L 较大的线圈和电容 C 较大的

电容器。

教材课后习题解答

1. A, 读数增大, A, 读数减小, A, 读数不变。原因见解析。

【解析】A₁、A₂、A₃ 三个电流表所在支路分别为:纯电容电路、纯电感电路、纯电阻电路。改换电源后,交流电压的峰值没有变化,而频率增加了。

- ①对于纯电容电路,交流电压峰值不变,则电路两端电压的有效值不变。电容大小C未变,交流频率增大,则容抗变小,电流有效值增大,即A,读数增大。
- ②对于纯电感电路,交流电压峰值不变,则电路两端电压的有效值不变。电感大小L未变,交流频率增大,则感抗变大,电流有效值减小,即A。读数减小。
- ③对于纯电阻电路,交流电压峰值不变,则电路两端电压的有效值不变。虽然交流频率增大,但是对电阻大小没有影响,电阻大小未变,则电流有效值不变,即 A, 读数不变。
- 2. 由于电容器串联在前级和后级之间,前级输出的直流成分不能通过电容器,而交流成分可以通过电容器被输送到后级装置中,输入后级的成分中不含有前级的直流成分,所以两级的直流工作状态不相互影响。
- 3. 电容器对高频成分的容抗小,对低频成分的容抗大,按照教材 P40 图 5.3-8 的连接,高频成分就通过"旁边"的电容器,而低频成分输送到下一级装置。

第4节 变压器

【教材答疑】教材 P40"思考与讨论"

小灯泡会亮,原因是当左侧线圈连到交变电源的两端时, 线圈中就有交变电流,闭合铁芯中产生变化的磁通量,在两线 圈中都要引起感应电动势,右侧线圈是闭合的电路,产生感应 电流,所以小灯泡会亮。

教材课后习题解答

- 1. 直流电流的大小和方向都不随时间改变,产生的磁通量不发生变化,不会在副线圈中产生感应电动势,因此变压器不能改变恒定电流的电压。
- 2. 108 匝。 【解析】由 $\frac{U_1}{U_2} = \frac{n_1}{n_2}$ 得 $n_2 = \frac{U_2}{U_1} n_1 = \frac{36}{380} \times 1$ 140 = 108(匝)。
- 3.1 600 匝。 【解析】由 $\frac{U_1}{U_2} = \frac{n_1}{n_2}$ 得 $n_1 = \frac{U_1}{U_2} n_2 = \frac{220}{55} \times 400 = 1600(厄)$ 。
- 4. 降压变压器的副线圈应当用较粗的导线。根据理想变压器的输出功率等于输入功率,即 $I_1U_1 = I_2U_2$,降压变压器的 $U_2 < U_1$,因而它的 $I_2 > I_1$,即副线圈的电流大于原线圈的电流,所以相比之下,副线圈应用较粗的导线。

5. $V_1 \setminus V_2$ 的读数不变, V_3 的读数减小, $A_1 \setminus A_2$ 的读数增大。

【解析】假定理想变压器原线圈输入的电压 U_1 一定, V_1 示数不变;当用户的用电器增加时,相当于 R 减小,副线圈电压 $U_2 = \frac{n_2}{n_1} U_1$ 不变, V_2 示数不变, V_3 示数增大,输电线上的电压 $U_0 = I_2 R_0$ 增大, U_2 不变,则用户路端电压 $U_3 = U_2 - U_0$ 减小, V_3 示数减小;因为理想变压器的输入功率等于输出功率,有: $P_1 = I_1 U_1 = P_2 = I_2 U_2$, U_1 , U_2 的值不变, I_2 增大,则 I_1 增大, I_3 示数增大。

第5节 电能的输送

【教材答疑】教材 P45"思考与讨论"

- 1. 输电线路损失的功率 $P_{\sharp} = I^2 r_o$
- 2. 电阻减半则 P_{4} 减半;电流减半则 P_{4} 减为原来的 $\frac{1}{4}$ 。
- 3. 提高电压,减小输电电流。
- 5. 在保证用户的电功率的前提下,提高输电电压能减小输电 电流。

教材课后习题解答

1. 电功率 P = UI,所以 $I = \frac{P}{U}$,其中 $P = 4800 \text{ kW} = 4800 \times 10^3 \text{ W}$,当 $U = 110 \text{ kV} = 110 \times 10^3 \text{ V}$ 时,导线中电流 $I = \frac{4800 \times 10^3}{110 \times 10^3} \text{ A} \approx$ 43. 6 A。当 U = 110 V 时,导线中电流 $I = \frac{4800 \times 10^3}{110} \text{ A} =$

4.36×10⁴ A,可见,大功率输电是不可能用低电压的。

公式 U = IR 中的 U、I、R 是对应于同一段电路,同理,公式 P = UI 中的 P、U、I 也是对应于同一段电路的物理量。在此题中的功率 P 并不是输电线上的消耗功率,而是发电机(电源)、输电线以及用户构成的闭合电路的总功率,U 是此电路的总电压,而 I 是回路中的总电流(也是流经输电线的电流),如果输电线的电阻为 R,则 $U \neq IR$,原因是 U 并非输电线上的电压降,而 P = IU,原因是这三个量是对应于同一段电路,即:回路总电压 U、总电流 I、总功率 P。

- 2. 输电过程中,在输电线上由电阻造成损失的功率 P 跟输电线中的电流 I 和输电线上的电压损失 ΔU 成正比,即 $P_{\mathbb{H}} = I\Delta U$, 其中 $\Delta U = IR$,R 为输电导线的电阻,题中把电压损失 $\Delta U = U U'$ 同输电电压 U 混淆了,因而得出了错误的结论。
- 3.90 V。 0.9 V。 【解析】用 110 V 电压输电,输电线上电流为 $I_1 = \frac{P}{U_1} = \frac{200 \times 10^3}{110}$ A≈1.8 × 10³ A,输电线上由电阻造成的电压损失为 $U_1 = I_1 R = 1.8 \times 10^3 \times 0.05$ V = 90 V。

用 11 kV 电压输电,输电线上电流 $I_2 = \frac{P}{U} = \frac{200 \times 10^3}{11 \times 10^3}$ A \approx 18 A,输电线上电阻造成的电压损失为: $U_2 = I_2 R = 18 \times 10^3$

18 A,输电线上电阻造成的电压损失为: $U_2 = I_2R = 18 \times 0.05 \text{ V} = 0.9 \text{ V}_{\circ}$

两者比较,可以看出,用高压输电可使输电线上的电压损失减小许多。

 $4.2.5 \times 10^3$ 。 【解析】设输送的电功率 P、输电电压为 U、输电

线上的功率损失为 ΔP 、导线的长度为 L、导线的电阻率为 ρ ,导线的横截面积为 S,则有 : $\Delta P = I^2 R = \left(\frac{P}{U}\right)^2 \rho \frac{L}{S}$,因为 P、 ΔP 、L、 ρ 各量都是相同的,所以横截面积 S 与输电电压 U 的 二次方成反比,所以有 : $\frac{S_1}{S_2} = \frac{{U_2}^2}{{U_1}^2} = \frac{(11 \times 10^3)^2}{220^2} = 2.5 \times 10^3$ 。

- 5. (1)4. 32×10^2 A;25 A_o (2)200 V;4 × 10^3 V_o
 - $(3)\frac{1}{16}; \frac{432}{25}$ 。 【解析】如答图 9 所示为输送电路图。

(1)降压变压器输出电流 I_4 , 也就是用户得到的电流 $I_4 = \frac{P_4}{U_*} = \frac{P_4}{U_*}$

$$\frac{95\times10^3}{220}$$
 A≈4. 32×10^2 A,输电线上通过的电流为 I_2 。

则 $I_2^2 R_{44} = 5 \text{ kW}, I_2 = 25 \text{ A}_{\odot}$

(2)
$$U_{\rm \#} = I_2 R_{\rm \#} = 200 \text{ V}$$
,由题意, $I_1 = \frac{100 \text{ kW}}{250 \text{ V}} = 400 \text{ A}$,

 $\frac{U_2}{U_1} = \frac{I_1}{I_2}$,则 $U_2 = \frac{I_1}{I_2}U_1 = 4 \times 10^3 \text{ V}$,即升压变压器输出电压为 $4 \times 10^3 \text{ V}$ 。

$$(3)\frac{n_1}{n_2} = \frac{I_2}{I_1} = \frac{1}{16}, \frac{n_3}{n_4} = \frac{I_4}{I_3} = \frac{I_4}{I_2} = \frac{432}{25}$$

第六章

传感器

第1节 传感器及其工作原理

【教材答疑】教材 P54"说一说"

给电容器带上一定的电荷,然后用静电计来检测两极间电 势差的变化,可判断电容的变化。电容式传感器是把位移这个 力学量转换成为电容这个电学量。

【教材答疑】教材 P55"做一做"

将永磁体的一个磁极逐渐靠近霍尔元件的工作面,会出现 霍尔电压,电压将变大;若换用另一个磁极,电压将反向;改变 夹角,电压会减小。

教材课后习题解答

1. 甲图中,随着物体1向上平移,软铁芯2与3之间的空气间隙 逐渐减小,线圈4的自感系数就逐渐增大。乙图中,物体1 向左移动使软铁芯2逐渐插入线圈中,线圈3的自感系数就 逐渐增大。这两种装置都把位移这个力学量转换成了自感 系数这个电学量。

2. 这是一个开放性的题目,同一名称的传感器可能有不同的结构和工作原理,下面仅列出一种答案供参考。

传感器 名称	输入的 物理量	输出的 物理量	可能的工作原理
光敏电阻	光照强度	电压(电阻)	半导体受光照,电阻变化
热敏电阻	温度	电压(电阻)	半导体受热,电阻变化
金属热电阻	温度	电压(电阻)	金属受热,电阻变化
电容式位 移传感器	位移	电压(电容)	电容极板(或介质)间位 置变化导致电容变化
霍尔元件	磁感应强度	电压	磁感应强度(大小或方向) 变化导致霍尔电压变化

第2节 传感器的应用

【教材答疑】教材 P58"思考与讨论"

常温下,上、下触点应当接触。当温度过高时,双金属片膨胀系数不同,上层金属的膨胀系数大于下层金属的膨胀系数, 上层金属向下弯曲得厉害,从而使上、下触点分离。通过调温 旋钮来调节升降螺钉的升降来实现不同温度的设定。如需设 定的温度较高,则应使升降螺钉下降;反之,升高。

【教材答疑】教材 P59"思考与讨论"

- 1. 煮饭时压下开关按钮,感温铁氧体与永磁体相吸结合在一起,触点相接,电路接通,开始加热。手松开后,由于锅内的温度低,感温铁氧体与磁体相互吸引而不能使按钮恢复到图示的状态。
- 2. 煮饭时水沸腾后锅内的温度基本保持在水的沸点。
- 3. 饭熟后,水分被吸收,锅底的温度会升高,当温度上升到"居里温度"(约103℃)时,感温铁氧体失去磁性,磁铁与之分离,开关自动断开,目不能自动复位。
- 4. 如果用电饭锅烧水,水沸腾后水温保持 100 ℃,不会再升高, 故不能自动断电。

教材课后习题解答

1. 该同学是依据牛顿第二定律设计的,电路在原理上可行,当滑动片P在滑动变阻器中央时,P、Q等势,电压表指针指中央零点。

这个装置可以同时测出加速度的大小和方向,大小可以通过电压表示数大小表示,方向可通过偏转方向判定。

当物体具有图示方向的加速度 a 时,滑块将向左移,带动变

阻器的滑片4移向中点左方;变阻器右端电阻大,故电流流 过滑动变阻器时电势降落大;Q点电势高于P点,则指针应 向零点左侧偏转。

半定量分析:设滑块向左偏离 α,

由牛顿第二定律有 2kx = ma。

在电流大小不变时, $U_{op} \propto x$ 。

则 $U_{op} \propto a$,加速度越大,指针偏转越大。

- 2. (1)应将加热器接在 A、B 端。(2)由甲图查出热敏电阻在 100 ℃时,电阻值为 50 Ω ,设 R, 为继电器线圈的电阻,则继 电器电路中电流在 t = 100 °C 时, $I = \frac{E}{R + R' + R_1}$, 代入数据解 得可变电阻 R'的阻值应调节为 100Ω 。
- 3. (1)接入了两种传感器:光传感器(通常用的是光敏电阻); 声传感器(通常用的是微型驻极体话筒)。
 - (2)因为点亮楼道灯需要同时具备两个条件,即足够暗的光 照和足够大的声音,所以要使用"与"门电路。
- 4. (1)设计方案如答图 11 所示,在 C 形软铁芯 1 上绕制线圈 2, 霍尔传感器 3 置入铁芯的间隙中,并与数字毫伏表 4 相连, 线圈中通入的待测电流 I 越强,铁芯间隙中的磁感应强度就 越大,则传感器输出的电压也越大。

(2)设计方案如答图 12 所示。转动物体 1 的边缘上嵌入一 个小永磁体2,霍尔传感器3固定在近旁,并与计数电路和显 示屏4相连。物体每转动一周,传感器就输出一个电压脉 冲,计数器显示的数字就增加1。配合秒表测出物体在时间t内转动的周数n,就可以计算出转速。

第3节 实验:传感器的应用

教材课后习题解答

- 1. 门关闭时,干簧管内两个簧片被磁化而吸合,使触发器(非 门)的输入端为低电平,则其输出端为高电平,与电源的电压 很接近,于是蜂鸣器两端的电压很小,不会发声。若盗贼将 门打开,永磁体就远离干簧管,因而两个簧片分离,使触发器 (非门)的输入端跳变为高电平,则其输出端变为低电平。于 是蜂鸣器两端达到了工作电压,就发出报警声。
- 2. 可以有不同的设计方案,答图 13 是其中一种,图中 A 为双金 属片,一端固定在金属杆上,另一自由端与金属杆的b点构 成一对触点,将它密封在玻璃罩B内,成为温度传感器,浸入 热水器 C 的水中。J 为电磁继电器的线圈,a 为该继电器的 常开触点。R 为大功率电热元件。常温下,双金属片 A 与触 点 b 接触,继电器把触点 a 吸合,电热元件通电发热。当水 烧开时,双金属片 A 因温度升高,弯曲程度加大而与触点 b 分离,则继电器的触点 a 断开,就停止对水加热了。水温下 降到某个值(例如低于沸点约10 $^{\circ}$) 时,A 与 b 又接通,再度 给水加热。在任何温度(例如水温只比沸点低2℃)时,只要 接通开关S,就能使继电器触点a 吸合,立即对水加热。利用 日光灯启动器中的双金属片,可以做模拟实验。但它是温度 升高时触点接通,因此需将上图改为用继电器的常闭触点控 制电热元件,并且将手动开关S改为与传感器串联,还需要 用小钳子调整双金属片的形状,使它在水烧开时恰好与触点 b 接触。

3. 调查研究是一个开放性的活动,也是本章的总结。对学生的 要求是,在列举和说明传感器的具体应用的同时,注重突出 科学技术与社会的联系。