a conventit into atib form

- b convent it into polar even dinate form
- c. Find its argument of principle argument.

a,
$$7 = \frac{(1+i)^2}{1-i}$$

= $\frac{(1+i)^3}{(1-i)(1+i)} = \frac{1+i^3+3i+3i^2}{1-i^2} = \frac{1-i+3i-3}{2} = \frac{-2+2i}{2} = -1+i$

b.
$$n=\sqrt{2}$$
, $\theta=\tan^{1}\left(\frac{1}{-1}\right)=-\tan^{1}\left(1\right)=-\frac{\pi}{4}+\pi=\frac{3\pi}{4}$

$$\frac{3\pi}{4}$$

$$\sqrt{2}e^{\frac{3\pi}{4}}$$

c. ang
$$z = \frac{3\pi}{4}$$
; principle angument = $\frac{3\pi}{4}$

chapters - 5

Analytic Function: differentiable everywhere at a particular domain.

Singular point: where f(z) does not exist.

Necessary Condition for f(z) to be analytic:

If z = x + iy and f(z) = u(x,y) + iv(x,y)satisfies Cauchy-Riemann (C-R) equations. $u_x = v_y$ and $u_y = -v_x$ (Rectangular form) $\frac{\partial v}{\partial x}$ then, $f(z) = u_x + iv_x$

If $z = ne^{i\theta}$ then $f(z) = u(n, \theta) + iv(n, \theta)$ $u_n = \frac{1}{n}v_0 \quad \text{and} \quad v_n = -\frac{1}{n}u_0 \quad (\text{Polan form})$ then, $f'(z) = e^{i\theta}(u_n + iv_n)$

f(2)= In= Z=0 singular point

 $\sin\theta = \frac{e^{0} - e^{0}}{2\pi}$ $\cos\theta = \frac{e^{0} + e^{0}}{2\pi}$ $\sinh(2) = \frac{e^{2} - e^{2}}{2\pi}$ $\cosh(2\pi) = \frac{e^{2} - e^{2}}{2\pi}$

$$f(z) = e^{2z}$$
.

i. Find v(x,y) and v(x,y)

ii. Prore that f(z) satisfies C-R equations

il. Hence find f'(2)

 $e^{i\theta} = \cos\theta + i\sin\theta$

i.
$$f(z) = e^{2(x+iy)}$$

$$= e^{2x} \cdot e^{iy}$$

= e (coszy+isinzy)

$$= \frac{e^{2x} \cos 2y + i \frac{e^{2x} \sin 2y}{e^{2x} \cos 2y}, \quad v(x,y) = \frac{2x}{e^{2x} \sin 2y}$$

$$u(x,y) = \frac{e^{2x} \cos 2y}{e^{2x} \cos 2y}, \quad v(x,y) = \frac{2x}{e^{2x} \sin 2y}$$

ii.
$$u_{x} = \frac{2\cos xy}{e}$$
, $v_{y} = \frac{2e^{3x}\cos y}{e^{-x}\cos y} = 0$ $u_{x} = v_{y}$
 $u_{y} = -\frac{2e}{2} \sin xy$, $v_{x} = \frac{2\sin xy}{e^{-x}} = 0$ $u_{y} = -v_{x}$
So, satisfies C-R equations.

iii.
$$f'(z) = \frac{U_{x} + i v_{x}}{2 + i 2 \sin 2y} e^{2x}$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i 2 \sin 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \sin 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \sin 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \sin 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \sin 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$= 2 e^{2x} \left(\frac{\cos 2y}{2} + i \cos 2y \right)$$

$$\int (z) = z^9$$

= $(ne^{i\theta})^9$

= $n^9(\cos \theta + i \sin \theta)$

= $n^9(\cos \theta + i \sin \theta)$

= $n^9\cos \theta + i n^2\sin \theta$
 $u(n, \theta) = n^9\cos \theta + i n^2\sin \theta$
 $u(n, \theta) = n^9\cos \theta + i n^2\sin \theta$
 $u_0 = 9\cos \theta + i n^2\sin \theta$
 $u_0 = 9n^9\sin \theta$
 $v_0 = 2n^9\cos \theta - i n^2\sin \theta$
 $v_0 = 2n^9\cos \theta - i \sin \theta$
 $v_0 = 2n^9\cos$

$$\frac{2}{2} \left(\frac{1}{n} e^{i\theta} \right)^{9} \qquad \frac{2}{2} \left(\frac{1}{n} e^{i\theta} \right)^{9} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} e^{i\theta} \qquad \frac{2}{n} e^{i\theta} e^{i\theta}$$

 $\int_{\mathcal{E}} -i \theta = \cos \theta - i \sin \theta$