1 Introduction

A compact quantum group is a unital C*-algebra A together with a coassociative map $\Delta: A \to A \otimes A$ such that $\Delta(A)(A \otimes 1)$ and $\Delta(A)(1 \otimes A)$ are linearly dense in $A \otimes A$. We get the Haar measure φ which is the unique state on A with $(\varphi \otimes \iota)\Delta(a) = (\iota \otimes \varphi)\Delta(a) = \varphi(a)1$ for all $a \in A$.

As argued in my PAMS paper, we can find a maximal family of irreducible unitary corepresentations $\{v^{\alpha} = (v_{ij}^{\alpha})_{i,j=1}^{n_{\alpha}} : \alpha \in \mathbb{A}\}$ such that the associated "F-matrices" are all diagonal.

Firstly, if \mathcal{A} is the linear span of $\{v_{ij}^{\alpha}\}$, then \mathcal{A} is a Hopf-*-algebra and is dense in A. We have that

$$\Delta(v_{ij}^{\alpha}) = \sum_{k} v_{ik}^{\alpha} \otimes v_{kj}^{\alpha}, \quad S(v_{ij}^{\alpha}) = (v_{ji}^{\alpha})^*, \quad \epsilon(v_{ij}^{\alpha}) = \delta_{ij}, \quad \varphi(v_{ij}^{\alpha}) = \delta_{\alpha,\alpha_0},$$

where α_0 is the unique member of \mathbb{A} with $v_0^{\alpha} = 1$.

Then we have positive numbers $(\lambda_i^{\alpha})_{i=1}^{n_{\alpha}}$ such that $\sum_i \lambda_i^{\alpha} = \sum_i (\lambda_i^{\alpha})^{-1} = \Lambda_{\alpha}$ say. We have that

$$\varphi((v_{ij}^{\alpha})^* v_{kl}^{\beta}) = \delta_{\alpha,\beta} \delta_{i,k} \delta_{j,l} \frac{1}{\Lambda_{\alpha} \lambda_i^{\alpha}}, \quad \varphi(v_{ij}^{\alpha} (v_{kl}^{\beta})^*) = \delta_{\alpha,\beta} \delta_{i,k} \delta_{j,l} \frac{\lambda_j^{\alpha}}{\Lambda_{\alpha}}.$$

We define characters f_z , for $z \in \mathbb{C}$, on \mathcal{A} by

$$f_z(v_{ij}^\alpha) = \delta_{i,j}(\lambda_i^\alpha)^z,$$

where of course $t^z = \exp(z \log t)$ for t > 0. Then the modular automorphism group for φ , restricted to \mathcal{A} , is given by

$$\sigma_z: v_{ij}^{\alpha} \mapsto \sum_{k,l} f_{iz}(v_{ik}^{\alpha}) v_{kl}^{\alpha} f_{iz}(v_{lj}^{\alpha}) = (\lambda_i^{\alpha})^{iz} (\lambda_j^{\alpha})^{iz} v_{ij}^{\alpha}.$$

For example, we can show that $\varphi(ba) = \varphi(a\sigma_{-i}(b))$ for all $a, b \in \mathcal{A}$. Also, as $J\Lambda(a) = \Lambda(\sigma_{i/2}(a)^*)$ for $a \in \mathcal{A}$, we see that

$$J\Lambda(v_{ij}^{\alpha}) = (\lambda_i^{\alpha} \lambda_j^{\alpha})^{-1/2} \Lambda((v_{ij}^{\alpha})^*).$$

Similarly, the scaling group on A is given by

$$\tau_z: v_{ij}^{\alpha} \mapsto (\lambda_i^{\alpha})^{iz} (\lambda_j^{\alpha})^{-iz} v_{ij}^{\alpha}.$$

Thus in particular,

$$S(v_{ij}^{\alpha}) = (v_{ji}^{\alpha})^* = R\tau_{-i/2}(v_{ij}^{\alpha}) = (\lambda_i^{\alpha})^{1/2}(\lambda_j^{\alpha})^{-1/2}R(v_{ij}^{\alpha}) \implies R(v_{ij}^{\alpha}) = \sqrt{\frac{\lambda_j^{\alpha}}{\lambda_i^{\alpha}}(v_{ji}^{\alpha})^*}.$$

However, also $R(x) = \hat{J}x^*\hat{J}$, and so

$$\hat{J}v_{ij}^{\alpha}\hat{J} = \sqrt{\frac{\lambda_j^{\alpha}}{\lambda_i^{\alpha}}}v_{ji}^{\alpha}.$$

2 Reduced case and duality

Now suppose that φ is faithful. Let (H, Λ) be the GNS construction for φ .

For each $\alpha \in \mathbb{A}$, let H_{α} be the finite-dimensional subspace of H spanned by $\{\Lambda((v_{ij}^{\alpha})^*): 1 \leq i, j \leq n_{\alpha}\}$. Notice that H_{α} is orthogonal to H_{β} for $\alpha \neq \beta$. As \mathcal{A} is dense in H, it follows that