

Como Armazenar e Acessar o Vocabulário

O vocabulário de um arquivo invertido armazena os termos que serão usados para buscar na coleção e informações auxiliares para permitir que consultas sejam processadas.

Método	Armazenamento
Fixed Length Strings	28 Mbytes
Terminated Strings	20 Mbytes
Four-entry blocking	18 Mbytes
Front coding	15,5 Mbytes
Hashing perfeito	13 Mbytes

Para um vocabulário de 1.000.000 de termos

Fixed Length Strings

- Para um vocabulário de 1.000.000 de palavras:
 - 20 bytes: palavra (assumindo que palavras ocupam no máximo 20 bytes).
 - 4 bytes: endereço do arquivo invertido.
 - 4 bytes: f_t (número de docs que contêm o termo t).
 - Vocabulário requer 28 Megabytes.
- Esta alternativa é cara. Uma redução pode ser conseguida se todas as palavras forem concatenadas como uma palavra longa.

$Fixed\ Length\ Strings$

jezebel	20	_	-
jezer	3	_	
jezerit	1	_	
jeziah	1	_	
jeziel	1	_	
jezliah	1	_	
jezoar	1	_	
jezrahiah	1	_	
jezreel	39	_	

Termo t f_t Endereco em disco

$Terminated\ Strings$

- Cada termo ocupa exatamente o seu tamanho.
- Para um vocabulário de 1.000.000 de palavras:
 - O vocabulário requer 20 Megabytes.
- O espaço requerido pode ainda ser reduzido eliminando muitos dos ponteiros de strings.

$Terminated\ Strings$

Four-entry Blocking

• 1 byte antes de cada palavra para indicar o seu tamanho.

• Para cada grupo de 4 palavras, 12 bytes são ganhos.

- Ganho de 2 Megabytes. O espaço total necessário é de 18 Megabytes.
- ullet Para blocos de 8 palavras, o ganho é de + 0.5 Megabytes.
- ullet Para blocos de 16 palavras, o ganho é de + 0.25 Megabytes.

Four-entry Blocking

Front Coding

O ganho depende do vocabulário. Na média, 3 a 5 caracteres casam com custo adicional de 1 byte.

- Ganho médio é de 2.5 bytes por palavra.
- Regra do dedão:
 - Front coding salva aproximadamente 40% do espaço para vocabulário da lingua inglesa.
- Uma estratégia 3-em-4 *front-coding*: salva 4 bytes em cada 3 palavras com custo extra de 2 bytes.

• Total de espaço necessário: 15.5 Megabytes.

Front Coding

Palavra	Front coding	Front coding	
	completo	"3-in-4" parcial	
7, jezebel	3, 4, ebel	, 7, jezebel	
5, jezer	4, 1, r	4, 1, r	
7, jezerit	5, 2, it	5, 2, it	
6, jeziah	3, 3, iah	3, , iah	
6, jeziel	4, 2, el	, 6, jeziel	
7, jezliah	3, 4, liah	3, 4, liah	
6, jezoar	3, 3, oar	3, 3, oar	
9, jezrahiah	3, 6, rahiah	3, , rahiah	
7, jezreel	4, 3, eel	, 7, jezreel	
11, jezreelites	7, 4, ites	7, 4, ites	
6, jibsam	1, 5, ibsam	1, 5, ibsam	
7, jidlaph	2, 5, dlaph	2, , dlaph	

A palavra antes de jezebel era jezaniah.

Front Coding

Cada entrada do vocabulário pode ser mais reduzida ainda:

 $f_t \Rightarrow \lceil \log N \rceil$ bits, no exemplo anterior.

 $\downarrow \downarrow$

 $f_t + d \approx 28$ bits cada.

 $\downarrow \downarrow$

- Ganho de mais 1 Megabyte.
- É possível fazer melhor?

Resp.: Sim, não armazenando o vocabulário!

Referências

[WMB99] Witten I., Moffat A., Bell C. Managing Gigabytes Compressing and Indexing Documents and Images. 2nd Ed., 1999, pag. 161-169.