

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra II Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2025

Asignatura Álgebra II.

Curso Académico 2018-19.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Descripción Parcial I.

Fecha Octubre de 2018.

Ejercicio 1.

- 1. Sea $f: S_4 \to S_6$ la aplicación dada por $f(\sigma) = \tau$ donde τ actúa igual que σ sobre los elementos $\{1, 2, 3, 4\}$ y los elementos $\{5, 6\}$ los fija si σ es par o bien los intercambia si σ es impar. Demuestra que f es un homomorfismo inyectivo de grupos y que su imagen está contenida en A_6 .
- 2. Considera los grupos $Q_2 = \langle x, y \mid x^4 = 1, y^2 = x^2, yx = x^{-1}y \rangle$ y S_4 . Demuestra que la asignación

$$x \mapsto (12)(34),$$

$$y \mapsto (34)$$

determina un homomorfismo de grupos. Calcula su imagen y su núcleo, dando todos sus elementos.

Ejercicio 2. Razona cuál es la respuesta correcta en cada una de las siguientes cuestiones:

- 1. Sean C_8 y C_{12} los grupos cíclicos de órdenes 8 y 12 respectivamente. El número de homomorfismos de grupos de C_8 en C_{12} es:
 - a) Dos.
 - b) Tres.
 - c) Cuatro.
- 2. Si $\sigma = (2\ 5\ 8\ 4\ 1\ 3)(4\ 6\ 7\ 8\ 5)(8\ 10\ 11)$ en S_{11} , entonces la permutación σ^{1000} :
 - a) Es impar.
 - b) Tiene orden 3.
 - c) Es un 6-ciclo.
- 3. La ecuación $x(1\ 2\ 3)x^{-1} = (1\ 3)(5\ 7\ 8)$ en S_8 :
 - a) No tiene solución.
 - b) Tiene una única solución.
 - c) Tiene solución pero no es única.
- 4. La ecuación $x(1\ 2)(3\ 4)x^{-1} = (5\ 6)(1\ 3)$ en S_6 :
 - a) No tiene solución.
 - b) Tiene una única solución.
 - c) Tiene solución pero no es única.
- 5. Si $G \neq 1$ es un grupo cíclico que tiene un solo generador entonces:
 - a) G es infinito.
 - b) No existe G en esas condiciones.
 - c) G tiene como mucho 2 elementos.

- 6. Sea $G \neq 1$ un grupo. Entonces:
 - a) G puede tener un subgrupo propio isomorfo a G.
 - b) Si todos los subgrupos propios de G son abelianos entonces G es abeliano.
 - c) Si todos los subgrupos propios de G son cíclicos entonces G es cíclico.
- 7. El grupo simétrico S_4 :
 - a) Es cíclico.
 - b) No es cíclico pero se puede generar por dos elementos.
 - c) No tiene subgrupos de orden 6.
- 8. Si se consideran los grupos aditivos Z de los enteros, Q de los racionales y Z_n de los enteros módulo n = 2, 5, 10, se tiene que:
 - a) Los grupos $Z \times Z_2$ y Z son isomorfos.
 - b) Los grupos $Q \times Z_{10}$ y $Z_2 \times Q \times Z_5$ son isomorfos.
 - c) Los grupos $Z \times Z_2$ y $Q \times Z_2$ son isomorfos.
- 9. El subgrupo $GL_3(Z_2) < GL_3(Z_2)$ de las matrices invertibles 3×3 con entradas en Z_2 y de determinante 1:
 - a) Es un subgrupo impropio.
 - b) Es un grupo abeliano de orden 168.
 - c) Es un grupo no abeliano de orden 84.