3. Limits and continuity of functions

3.1. Limit of a function

Analysis 1 for Engineers V. Grushkovska

Limit of a function

Content:

- Notion of a limit
- Arithmetic properties of a limit
- Comparison properties of a limit
- Limits involving infinities
- Infinitesimal and infinitely large functions
- Cauchy criterium for existence of a limit
- One-sided limits
- Limits of monotonic functions
- Special limits

Notion of a limit

Definition (Cauchy or $(\varepsilon - \delta)$ -definition of a limit)

Let $f: D \to \mathbb{R}$ be a function, $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$, $a \in \mathbb{R}$. We say that a is the **limit of** f(x) **at** x_0 , $a = \lim_{x \to x_0} f(x)$ (or that f(x) **tends to** a **as** x **tends to** x_0 , $f(x) \to a$ as $x \to x_0$), if for any $\varepsilon > 0$ there is a $\delta > 0$ such that, for all $x \in D$

$$0<|x-x_0|<\delta\Rightarrow |f(x)-a|<\varepsilon.$$

Symbolically:
$$a = \lim_{x \to x_0} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 : \forall x \in D$$

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon.$$

Example: how does the function $f(x) = \frac{x^2 - 1}{x - 1}$ behave near x = 1?

For any $x \neq 1$, f(x) = x + 1. Even though f(1) is not defined, $\lim_{x \to 1} f(x) = 2$: $\forall \varepsilon > 0$, take $\delta = \varepsilon$. Then $\forall x \in \mathbb{R} : 0 < |x - 1| < \delta = \varepsilon$, $|f(x) - 2| = |x + 1 - 2| = |x - 1| < \varepsilon$.

Remarks

- Informal definition: suppose f(x) is defined on an open interval about x_0 , except possibly at x_0 itself. If f(x) can be made as close to a as we like by making x close enough, but not equal, to x_0 .
- Denote a **deleted** (or **punctured**) r-**neighborhood** of $x_0 \in \mathbb{R}$, r > 0, as $\dot{U}(x_0, r) = \{x \in \mathbb{R} : 0 < |x x_0| < r\}$. Then the above definition can be formulated as follows: $a = \lim_{x \to x_0} f(x) \iff \forall \varepsilon > 0$

$$0\exists \delta > 0 : \forall x \in D \cap U(x_0, \delta), f(x) \in U(a, \varepsilon).$$

• The limit value of a function does not depend on how the function is defined at the point being approached.

has the same function value as its limit at x = 1

- (a) $f(x) = \frac{x^2 1}{x 1}$ (b) $g(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \end{cases}$
- (b) $g(x) = \begin{cases} x & 1 \\ 1, & x = \end{cases}$
- (c) h(x) = x + 1

The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x)

Notion of a limit

Definition (Heine definition of a limit in terms od sequences)

Let $f: D \to \mathbb{R}$ be a function, $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$, $\Delta \in (0, +\infty]$, $a \in \mathbb{R}$. We say that a is the **limit of** f(x) **at** x_0 , if for any sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x_n \in D \ \forall n \in \mathbb{N}$ and

$$\lim_{n\to\infty}x_n=x_0\Rightarrow\lim_{n\to\infty}f(x_n)=a.$$

Symbolically:
$$a = \lim_{x \to x_0} f(x) \iff \forall \{x_n\}_{n \in \mathbb{N}} : x_n \in \mathbb{R} \setminus \{a\} \forall n \in ,$$
$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = a.$$

Example:
$$\lim_{x\to 0} x^2 = 0$$

For any
$$\{x_n\}_{n\in\mathbb{N}}\to 0$$
, $\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}x_n^2=(\lim_{n\to\infty}x_n)^2=0$.

Notion of a limit

Remarks

- If f is the identity function f(x) = x, then for any $x_0 \in \mathbb{R}$, $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0$.
- If f is the constant function f(x) = k, then for any $x_0 \in \mathbb{R}$, $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k$.
- A function may not have a limit at a particular point

None of these functions has a limit as x approaches 0

Non-existence of a limit

From the Cauchy definition, the limit $\lim_{x\to x_0} f(x) \neq a$, if there exists an $\varepsilon>0$ such that, for any $\delta>0$ there is an $x\in D$: $0<|x-x_0|<\delta$ and $|f(x)-a|>\varepsilon$.

From the Heine definition, the limit $\lim_{x\to x_0} f(x)$ does not exist, if we can find two sequences $\{x_n\}_{n\in\mathbb{N}}$, $\{x_n'\}_{n\in\mathbb{N}}$, such that $x_n, x_n' \in D(f) \setminus \{x_0\} \forall n \in \mathbb{N}$, $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n'$, while $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(x_n')$.

Example:
$$f(x) = \sin \frac{1}{x}$$
, $x_0 = 0$.
Let us take $x_n = \frac{1}{\pi n}$, $x_n' = \frac{1}{\pi/2 + 2\pi n}$, $\forall n \in \mathbb{N}$. $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_n' = 0$, $x_n \neq 0, x_n'/ne0$, but $\lim_{n \to \infty} f(x_n) = 0 \neq \lim_{n \to \infty} f(x_n') = 1$.

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M, \text{ then}$$

1. Sum Rule:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

2. Difference Rule:
$$\lim_{x \to c} (f(x) - g(x)) = L - M$$

3. Constant Multiple Rule:
$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

4. Product Rule:
$$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$$

5. Quotient Rule:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

6. Power Rule:
$$\lim_{x \to c} [f(x)]^n = L^n, n \text{ a positive integer}$$

7. Root Rule:
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, n \text{ a positive integer}$$

(If *n* is even, we assume that
$$\lim_{x \to c} f(x) = L > 0$$
.)

(from Thomas' Calculus)

THEOREM 2—Limits of Polynomials

If
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
, then
$$\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$$

(from Thomas' Calculus)

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

Examples:

Use the observations $\lim_{x\to c} k = k$ and $\lim_{x\to c} x = c$ and the fundamental rules of limits to find the following limits.

- (a) $\lim_{x \to c} (x^3 + 4x^2 3)$
- **(b)** $\lim_{x \to c} \frac{x^4 + x^2 1}{x^2 + 5}$
- (c) $\lim_{x \to -2} \sqrt{4x^2 3}$

Examples:

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} 3$$

= $c^3 + 4c^2 - 3$

(b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{\lim_{x \to c} (x^4 + x^2 - 1)}{\lim_{x \to c} (x^2 + 5)}$$

Ouotient Rule

$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$

$$=\frac{c^4+c^2-1}{c^2+5}$$

 $=\sqrt{16-3}=\sqrt{13}$

Root Rule with n = 2

(c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

= $\sqrt{\lim_{x \to -2} 4x^2 - \lim_{x \to -2} 3}$
= $\sqrt{4(-2)^2 - 3}$

Examples:

The following calculation illustrates Theorems 2 and 3:

$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5} = \frac{0}{6} = 0$$

(from facebook.com)

Examples:

Evaluate
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}.$$

Solution We cannot substitute x = 1 because it makes the denominator zero. We test the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x - 1) in common with the denominator. Canceling this common factor gives a simpler fraction with the same values as the original for $x \ne 1$:

$$\frac{x^2 + x - 2}{x^2 - x} = \frac{(x - 1)(x + 2)}{x(x - 1)} = \frac{x + 2}{x}, \quad \text{if } x \neq 1.$$

Using the simpler fraction, we find the limit of these values as $x \to 1$ by Theorem 3:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x} = \frac{1 + 2}{1} = 3.$$

Comparison properties

Sandwich (or squeeze) theorem

Let $f,g,h:D\to\mathbb{R}$ be such that $g(x)\leq f(x)\leq h(x)$ for all x in some open interval containing x_0 , except possibly at $x=x_0$ itself. Suppose also that $\lim_{x\to x_0}g(x)=\lim_{x\to x_0}h(x)=a$. Then $\lim_{x\to x_0}f(x)=a$.

Limit passage in inequalities

Let $f, g, h : D \to \mathbb{R}$ be such that $f(x) \le h(x)$ for all x in some open interval containing x_0 , except possibly at $x = x_0$ itself. Then $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} h(x)$, provided that both limits exist.

Comparison properties

Examples:

The Sandwich Theorem helps us establish several important limit rules:

(a) $\lim_{\theta \to 0} \sin \theta = 0$

- **(b)** $\lim_{\theta \to 0} \cos \theta = 1$
- (c) For any function f, $\lim_{x \to c} |f(x)| = 0$ implies $\lim_{x \to c} f(x) = 0$.

Solution

(a) $-|\theta| \le \sin \theta \le |\theta|$ for all θ Since $\lim_{\theta \to 0} (-|\theta|) = \lim_{\theta \to 0} |\theta| = 0$, we have

$$\lim_{\theta \to 0} \sin \theta = 0.$$

(b) $0 \le 1 - \cos \theta \le |\theta|$ for all θ , and we have $\lim_{\theta \to 0} (1 - \cos \theta) = 0$ or

$$\lim_{\theta \to 0} \cos \theta = 1.$$

(c) Since $-|f(x)| \le f(x) \le |f(x)|$ and -|f(x)| and |f(x)| have limit 0 as $x \to c$, it follows that $\lim_{x \to c} f(x) = 0$.

Definition

Let $f: D \to \mathbb{R}$ be a function, $D = (\Delta, +\infty)$, $\Delta \in \overline{\mathbb{R}}$, $a \in \mathbb{R}$. We say that a is the **limit of** f(x) **as** x **tends to plus infinity**, $a = \lim_{x \to +\infty} f(x)$ if, for every $\varepsilon > 0$, there exists an $M \in \mathbb{R}$ such that $x > M \Rightarrow |f(x) - a| < \varepsilon$.

Definition

Let $f: D \to \mathbb{R}$ be a function, $D = (-\infty, \Delta)$, $\Delta \in \overline{\mathbb{R}}$, $a \in \mathbb{R}$. We say that a is the **limit of** f(x) **as** x **tends to minus infinity**, $a = \lim_{x \to -\infty} f(x)$ if, for every $\varepsilon > 0$, there exists an $m \in \mathbb{R}$ such that $x < m \Rightarrow |f(x) - a| < \varepsilon$.

Remarks

- Intuitively, $a = \lim_{x \to +\infty} f(x)$ (resp., $a = \lim_{x \to -\infty} f(x)$) if, as x moves increasingly far from the origin in the positive (resp., negative) direction, f(x) gets arbitrarily close to a.
- $\forall k \in \mathbb{R}, \lim_{x \to \pm \infty} k = k; \lim_{x \to \pm \infty} \frac{1}{x} = 0.$
- Limits at infinity have arithmetic and comparison properties similar to those of finite limits.

Examples:

(a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

(b)
$$\lim_{x \to -\infty} \frac{1}{x} = 0.$$

Solution

(a) Let $\epsilon > 0$ be given. We must find a number M such that for all x

$$x > M$$
 \Rightarrow $\left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \epsilon.$

The implication will hold if $M = 1/\epsilon$ or any larger positive number This proves $\lim_{x\to\infty} (1/x) = 0$.

(b) Let $\epsilon > 0$ be given. We must find a number N such that for all x

$$x < N$$
 \Rightarrow $\left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \epsilon$.

The implication will hold if $N=-1/\epsilon$ or any number less than $-1/\epsilon$. This proves $\lim_{x\to -\infty} (1/x)=0$.

Examples:

(a)
$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x}$$
 Sum Rule
= $5 + 0 = 5$ Known limits

(b)
$$\lim_{x \to -\infty} \frac{\pi \sqrt{3}}{x^2} = \lim_{x \to -\infty} \pi \sqrt{3} \cdot \frac{1}{x} \cdot \frac{1}{x}$$

$$= \lim_{x \to -\infty} \pi \sqrt{3} \cdot \lim_{x \to -\infty} \frac{1}{x} \cdot \lim_{x \to -\infty} \frac{1}{x} \quad \text{Product Rule}$$

$$= \pi \sqrt{3} \cdot 0 \cdot 0 = 0 \quad \text{Known limits}$$
(from Thomas' Calculus)

Examples:

(a)
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + (8/x) - (3/x^2)}{3 + (2/x^2)}$$

= $\frac{5 + 0 - 0}{3 + 0} = \frac{5}{3}$

(b)
$$\lim_{x \to -\infty} \frac{11x + 2}{2x^3 - 1} = \lim_{x \to -\infty} \frac{(11/x^2) + (2/x^3)}{2 - (1/x^3)}$$
$$= \frac{0 + 0}{2 - 0} = 0$$

Divide numerator and denominator by x^2 .

Divide numerator and denominator by x^3 .

(from Thomas' Calculus)

Remark

To determine the limit of a rational function as $x \to \pm \infty$, we first divide the numerator and denominator by the highest power of x in the denominator. The result then depends on the degrees of the polynomials involved.

Examples:

$$\lim_{\substack{x\to +\infty\\ x\to +\infty}}\frac{x^2+x+1}{x^2-1}=?.$$
 Calculate using the Heine definition of a limit.

Let us take any sequence $\{x_n\}_{n\to N}$ such that $x_n\in\mathbb{R}\setminus\{\pm 2\}$ and $x_n\to+\infty$. Then

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{x_n^2 + x_n + 1}{x_n^2 - 1} = \frac{1 + \lim_{n \to \infty} \frac{1}{x_n} + \lim_{n \to \infty} \frac{1}{x_n^2}}{1 - \lim_{n \to \infty} \frac{1}{x_n^2}} = 1.$$

Examples:

Find
$$\lim_{x \to \infty} (x - \sqrt{x^2 + 16})$$
.

Solution Both of the terms x and $\sqrt{x^2 + 16}$ approach infinity as $x \to \infty$, so what happens to the difference in the limit is unclear (we cannot subtract ∞ from ∞ because the symbol does not represent a real number). In this situation we can multiply the numerator and the denominator by the conjugate radical expression to obtain an equivalent algebraic result:

$$\lim_{x \to \infty} (x - \sqrt{x^2 + 16}) = \lim_{x \to \infty} (x - \sqrt{x^2 + 16}) \frac{x + \sqrt{x^2 + 16}}{x + \sqrt{x^2 + 16}}$$
$$= \lim_{x \to \infty} \frac{x^2 - (x^2 + 16)}{x + \sqrt{x^2 + 16}} = \lim_{x \to \infty} \frac{-16}{x + \sqrt{x^2 + 16}}.$$

As $x \to \infty$, the denominator in this last expression becomes arbitrarily large, so we see that the limit is 0. We can also obtain this result by a direct calculation using the Limit Laws:

$$\lim_{x \to \infty} \frac{-16}{x + \sqrt{x^2 + 16}} = \lim_{x \to \infty} \frac{-\frac{16}{x}}{1 + \sqrt{\frac{x^2}{x^2} + \frac{16}{x^2}}} = \frac{0}{1 + \sqrt{1 + 0}} = 0.$$

Examples:

Find
$$\lim_{x \to -\infty} \frac{2x^5 - 6x^4 + 1}{3x^2 + x - 7}$$
.

Solution We are asked to find the limit of a rational function as $x \to -\infty$, so we divide the numerator and denominator by x^2 , the highest power of x in the denominator:

$$\lim_{x \to -\infty} \frac{2x^5 - 6x^4 + 1}{3x^2 + x - 7} = \lim_{x \to -\infty} \frac{2x^3 - 6x^2 + x^{-2}}{3 + x^{-1} - 7x^{-2}}$$

$$= \lim_{x \to -\infty} \frac{2x^2(x - 3) + x^{-2}}{3 + x^{-1} - 7x^{-2}}$$

$$= -\infty, \qquad x^{-n} \to 0, x - 3 \to -\infty$$

because the numerator tends to $-\infty$ while the denominator approaches 3 as $x \to -\infty$.

Statement (limits of rational functions)

Let
$$f(x) = \frac{P(x)}{Q(x)}$$
, where $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $Q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$, $a_i, b_j \in \mathbb{R} \forall i \in \{1, 2, \dots, n\}, j \in \{1, 2, \dots, m\}, a_n \neq 0, b_m \neq 0$. Then
$$\lim_{x \to +\infty} f(x) = \begin{cases} 0 & \text{if } n < m, \\ +\infty & \text{if } n < m \text{ and } a_n b_m > 0, \\ -\infty & \text{if } n < m \text{ and } a_n b_m < 0, \\ \frac{a_n}{b_m} & \text{if } n = m; \end{cases}$$

$$\lim_{x \to -\infty} f(x) = \begin{cases} 0 & \text{if } n < m, \\ +\infty & \text{if } n < m \text{ and } (-1)^{n+m} a_n b_m > 0, \\ -\infty & \text{if } n < m \text{ and } (-1)^{n+m} a_n b_m < 0, \\ \frac{a_n}{b_m} & \text{if } n = m. \end{cases}$$

$$\lim_{x \to +\infty} f(x) = \lim_{t \to 0^+} f\left(\frac{1}{t}\right), \lim_{x \to -\infty} f(x) = \lim_{t \to 0^-} f\left(\frac{1}{t}\right).$$

Infinite limits

Definition

Let $f: D \to \mathbb{R}$ be a function, $x_0 \in \mathbb{R}$. We say that f tends to (or approaches) plus infinity (resp., minus infinity) as x tends to x_0 , $\lim_{x \to x_0} f(x) = +\infty$, if for any K > 0 there exists a $\delta > 0$ such that, for all x, $0 < |x - x_0| < \delta \Rightarrow f(x) > K$ (resp., f(x) < -K).

For $c - \delta < x < c + \delta$, the graph of f(x) lies above the line y = B.

the graph of f(x) lies below the line y = -B.

Infinite limits

Examples:

Prove that
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$
.

Solution Given B > 0, we want to find $\delta > 0$ such that

$$0 < |x - 0| < \delta \quad \text{implies} \quad \frac{1}{x^2} > B.$$

Now,

$$\frac{1}{x^2} > B$$
 if and only if $x^2 < \frac{1}{B}$

or, equivalently,

$$|x|<\frac{1}{\sqrt{B}}.$$

Thus, choosing $\delta = 1/\sqrt{B}$ (or any smaller positive number), we see that

$$|x| < \delta$$
 implies $\frac{1}{x^2} > \frac{1}{\delta^2} \ge B$.

Therefore, by definition,

$$\lim_{x \to 0} \frac{1}{x^2} = \infty.$$

Infinitesimal and infinitely large functions

Definitions

- A function $\alpha: D \to \mathbb{R}$ is called to be **infinitesimal** as $x \to x_0 \in D$, if $\lim_{x \to x_0} \alpha(x) = 0$.
- A function $f: D \to \mathbb{R}$ is called to be **infinitely large** as $x \to x_0 \in D$, if $\lim_{x \to x_0} f(x) = \infty$.

Infinitesimal and infinitely large functions

Lemma

A function $f: D \to \mathbb{R}$ has a limit $a \in \mathbb{R}$ if and only if $f(x) = a + \alpha(x)$ for all $x \in D$, where $\alpha(x)$ is infinitesimal as $x \to x_0$.

Theorem

A sum and a product of a finite number of infinitesimal as $x \to x_0 \in D$ functions is an infinitesimal as $x \to x_0 \in D$ function. A product of an infinitesimal as $x \to x_0 \in D$ function with a bounded in D function is an infinitesimal as $x \to x_0 \in D$ function.

Lemma

Let $f: D \to \mathbb{R}$ be infinitely large as $x \to x_0 \in D$. Then $\frac{1}{f}$ is infinitesimal as $x \to x_0$.

Cauchy criterium

Theorem (Cauchy criterium for existence of a finite limit)

A function $f: D \to \mathbb{R}$ has a finite limit at x_0 if and only if for any $\varepsilon > 0$ there exists a $\delta > 0$ such that, for any $x', x'' \in U(x_0, \delta) \cap D$, $|f(x'') - f(x')| < \varepsilon$.

Remark

- If $x_0 \in \mathbb{R}$, the Cauchy condition can be formulated as follows: for any $\varepsilon > 0$ there exists a $\delta > 0$ such that, for any $x', x'' \in D$, if $|x' x_0| < \delta$ and $|x'' x_0| < \delta$ then $|f(x'') f(x')| < \varepsilon$.
- If $x_0 = \infty$, the Cauchy condition can be formulated as follows: for any $\varepsilon > 0$ there exists a $\delta > 0$ such that, for any $x', x'' \in D$, if $|x'| > \delta$ and $|x''| > \delta$ then $|f(x'') f(x')| < \varepsilon$.

Definition

Suppose $x_0 \in \mathbb{R}$, $\Delta \in (x_0, +\infty]$, $a \in \mathbb{R}$.

- The function $f:(x_0,\Delta)\to\mathbb{R}$ has a **right-hand** (or **right-sided**) **limit** a at x_0 , $\lim_{x\to x_0^+} f(x)=a$ (or $\lim_{x\searrow x_0} f(x)=a$), if $\forall \varepsilon>0 \; \exists \delta>0: \; \forall x\in (x_0,x_0+\delta), \; |f(x)-a|<\varepsilon$.
- The function $f(-\Delta, x_0) \to \mathbb{R}$ has a **left-hand** (or **left-sided**) **limit** a **at** x_0 , $\lim_{x \to x_0^-} f(x) = a$ (or $\lim_{x \nearrow x_0} f(x) = a$), if $\forall \varepsilon > 0$ $\exists \delta > 0 : \forall x \in (x_0 \delta, x_0), |f(x) a| < \varepsilon$.

(a) Right-hand limit as x approaches c. (b) Left-hand limit as x approaches c. (from Thomas' Calculus)

Different right-hand and left-hand limits at the origin.

Remarks

- Notions of one-sided limits extend the notion of an ordinary limits to functions that may be undefined on one side of x_0 . If f fails to have a two-sided limit at x_0 , it may still have a one-sided limit.
- One-sided limits have all the properties of ordinary limits, e.g. arithmetic and comparison properties.
- Similarly to ordinary limits, one can introduce notions of one-sided infinite limits.

Theorem (Existence of a limit)

A function f(x) has a limit as x approaches x_0 if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = a.$$

Examples:

The domain of
$$f(x) = \sqrt{4 - x^2}$$
 is $[-2, 2]$; its graph is the semicircle. We have $\lim_{x \to x} \sqrt{4 - x^2} = 0$ and $\lim_{x \to x} \sqrt{4 - x^2} = 0$.

The function does not have a left-hand limit at x = -2 or a right-hand limit at x = 2. It does not have a two-sided limit at either -2 or 2 because each point does not belong to an open interval over which f is defined.

For the function graphed in Figure

At
$$x = 0$$
: $\lim_{x \to 0^+} f(x) = 1$,

 $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0} f(x)$ do not exist. The function is not defined to the left of x = 0.

At
$$x = 1$$
: $\lim_{x \to 1^-} f(x) = 0$ even though $f(1) = 1$,

$$\lim_{x\to 1^+} f(x) = 1,$$

 $\lim_{x\to 1} f(x)$ does not exist. The right- and left-hand limits are not equal.

At
$$x = 2$$
: $\lim_{x \to 2^{-}} f(x) = 1$, $\lim_{x \to 2^{+}} f(x) = 1$,

$$\lim_{x\to 2} f(x) = 1$$
 even though $f(2) = 2$.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} f(x) = f(3) = 2.$$

At
$$x = 3$$
: $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(x) = \lim_{x \to 3} f(x) = f(3) = 2$.
At $x = 4$: $\lim_{x \to 4^+} f(x) = 1$ even though $f(4) \ne 1$.

At
$$x = 4$$
: $\lim_{x \to 4^-} f(x) = 1$ even though $f(4) \neq 1$, $\lim_{x \to 4^+} f(x)$ and $\lim_{x \to 4} f(x)$ do not exist. The function is not

defined to the right of x = 4.

At every other point c in [0, 4], f(x) has limit f(c). (from Thomas' Calculus)

Examples:

Prove that $\lim_{x \to 0^+} \sqrt{x} = 0$.

Solution Let $\epsilon > 0$ be given. Here c = 0 and L = 0, so we want to find a $\delta > 0$ such that for all x

$$0 < x < \delta \implies |\sqrt{x} - 0| < \epsilon$$

or

$$0 < x < \delta \implies \sqrt{x} < \epsilon$$

Squaring both sides of this last inequality gives

$$x < \epsilon^2$$
 if $0 < x < \delta$.

If we choose $\delta = \epsilon^2$ we have

thave
$$0 < x < \delta = \epsilon^2 \implies \sqrt{x} < \epsilon$$
,

or

$$0 < x < \epsilon^2 \quad \Rightarrow \quad |\sqrt{x} - 0| < \epsilon.$$

According to the definition, this shows that $\lim_{x\to 0^+} \sqrt{x} = 0$

Examples:

Show that $y = \sin(1/x)$ has no limit as x approaches zero from either side

Solution As x approaches zero, its reciprocal, 1/x, grows without bound and the values of $\sin(1/x)$ cycle repeatedly from -1 to 1. There is no single number L that the function's values stay increasingly close to as x approaches zero. This is true even if we restrict x to positive values or to negative values. The function has neither a right-hand limit nor a left-hand limit at x = 0.

Examples:

These examples illustrate that rational functions can behave in various ways near zeros of the denominator.

(a)
$$\lim_{x \to 2} \frac{(x-2)^2}{x^2 - 4} = \lim_{x \to 2} \frac{(x-2)^2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{x-2}{x+2} = 0$$

(b)
$$\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4}$$

(c)
$$\lim_{x \to 2^+} \frac{x-3}{x^2-4} = \lim_{x \to 2^+} \frac{x-3}{(x-2)(x+2)} = -\infty$$

(d)
$$\lim_{x \to 2^-} \frac{x-3}{x^2-4} = \lim_{x \to 2^-} \frac{x-3}{(x-2)(x+2)} = \infty$$

(e)
$$\lim_{x \to 2} \frac{x-3}{x^2-4} = \lim_{x \to 2} \frac{x-3}{(x-2)(x+2)}$$
 does not exist.

(f)
$$\lim_{x \to 2} \frac{2 - x}{(x - 2)^3} = \lim_{x \to 2} \frac{-(x - 2)}{(x - 2)^3} = \lim_{x \to 2} \frac{-1}{(x - 2)^2} = -\infty$$

(from Thomas' Calculus)

The values are negative for x > 2, x near 2.

The values are positive for x < 2, x near 2.

See parts (c) and (d).

Monotonic functions

Definition

Let $f: D \to \mathbb{R}$ be a function, $D \subseteq \mathbb{R}$, x_1 and x_2 be any two points in D. The function f is

- increasing on D if $f(x_2) \ge f(x_1)$ whenever $x_1 < x_2$;
- decreasing on D if $f(x_2) \le f(x_1)$ whenever $x_1 < x_2$.

If the inequality is strict, then f is strictly increasing on D or strictly decreasing on D

Theorem

Let function $f:D\to\mathbb{R}$ increases on D, $\alpha=\inf D$, $\beta=\sup D$, $\alpha\notin D$, $\beta\notin D$. Then the function f has a right-hand limit at α and a left-hand limit at β , and

$$\lim_{x \to \alpha^+} f(x) = \inf_{x \in D} f(x), \lim_{x \to \beta^-} f(x) = \sup_{x \in D} f(x).$$

Special limits

Special limits

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e;$$

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Some other useful limits

•
$$\lim_{x \to +\infty} \frac{1}{x} = 0^{+} = 0$$
, $\lim_{x \to +\infty} \frac{1}{x} = 0^{-} = 0$, $\lim_{x \to 0^{+}} \frac{1}{x} = +\infty$, $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$;

$$\bullet \lim_{x \to +\infty} a^{-x} = \begin{cases}
0, & a > 1 \\
1, & a = 1 \\
\infty, & 0 < a < 1
\end{cases}$$

$$\lim_{x \to +\infty} \sqrt[x]{x} = \lim_{x \to \infty} x^{1/x} = 1.$$

Special limits

Examples:

$$1) \lim_{x \to 0} \frac{\cos x - 1}{x} = 0.$$

Solution:
$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{1 - 2\sin^2 \frac{x}{2} - 1}{x} = -\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x} = \begin{cases} \theta := \frac{x}{2} \\ -\lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta} = -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \sin \theta = -1 \cdot 0 = 0. \end{cases}$$

2)
$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \frac{2}{5}$$
.

Solution:
$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \lim_{x \to 0} \frac{(2/5)\sin 2x}{(2/5)5x} = \frac{2}{5} \lim_{x \to 0} \frac{\sin 2x}{2x} = \{\theta := 2x\} = \frac{2}{5} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{2}{5} \cdot 1 = \frac{2}{5}.$$
3) $\lim_{x \to 0} \frac{\tan x \sec 2x}{3x} = \frac{1}{3}.$

$$\frac{2}{5} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{2}{5} \cdot 1 = \frac{2}{5}$$

3)
$$\lim_{x \to 0} \frac{\tan x \sec 2x}{3x} = \frac{1}{3}$$

Solution:
$$\lim_{x \to 0} \frac{\tan x \sec 2x}{3x} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{1}{x} \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos 2x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos 2x} = \frac{1}{3} \cdot 1 \cdot 1 \cdot 1 = \frac{1}{3}.$$