FINAL REPORT

Customer Journey Map

A Customer Journey Map (CJM) helps visualize how users interact with the Global Food Production Trends and Analysis project. It tracks the experience from discovering the dashboard to making insights-driven decisions.

Data Flow Diagram (DFD)

A Data Flow Diagram (DFD) illustrates how data moves through the system, from raw data collection to visual representation in Power BI.

Solution Requirement

This section defines the requirements needed for the project, including data, functionality, and outputs.

Key Requirements

- ♥ Data Requirements
- Global food production dataset (1961-2023)
- Country-wise & category-wise data
- ✓ Functional Requirements
- Pata visualization in Power BI
- Filters & slicers for interactive analysis
- Export & report generation
- ✓ Performance Requirements
- Quick loading of large datasets
- Real-time interactivity without lags
- ✓ Security Requirements

Read-only access for users

Data integrity maintained

Technology Stack:

A Technology Stack defines the tools & technologies used in the project.

Component	Technology Used		
Data Storage	Excel / CSV Dataset		
Data Processing	Power BI (Data Model,		
	DAX, Queries)		
Visualization	Power BI (Bar Chart,		
	Line Graphs, Maps)		
Deployment	GitHub (for sharing		
	project)		

Problem Solution Fit

Problem-Solution Fit refers to how well the proposed solution addresses the identified problem.

Problem Statement

- Food production data is scattered and difficult to analyze.
- Researchers, policymakers, and analysts lack a centralized, interactive tool for analysis.
- No visual insights to identify trends, top food-producing countries, or food security challenges.

Solution Fit

- ✓ Centralized Power BI Dashboard for easy data visualization.
- ✓ Interactive charts & filters to explore trends over time.
- ✓ Data-driven insights for decision-making in agriculture and food policies.
 Problem-Solution Fit Diagram:

Proposed Solution

This section explains the approach to solving the problem using Power BI. Proposed Steps

- 1. Data Collection: Gather global food production data from FAO & government sources.
- 2. Data Cleaning: Remove errors, duplicates & format the dataset.
- 3. Data Processing: Load into Power BI and apply DAX formulas & transformations.
- 4. Dashboard Creation: Build interactive visualizations (bar charts, line graphs, maps).
- 5. Interactivity: Add filters (year, country, food type) for dynamic insights.

- 6. Deployment: Share reports via GitHub, Google Drive, or Power BI service. Proposed Solution Benefits
- ✓ Real-time insights for users.
- ✓ Easy-to-use, no coding needed for analysis.
- ✓ Scalable solution for different datasets & time ranges.

Solution Architecture

Solution Architecture defines the technical structure of the project, from data input to user interaction.

Solution Architecture Components

- ♦ Data Source: Excel / CSV file with food production records (1961-2023).
- ♦ Processing Layer: Power BI's Power Query, DAX, and Data Model for transformation.
- ♦ Visualization Layer: Power BI reports with charts, maps, slicers.
- ♦ User Interaction: Filters & drill-through to explore trends dynamically.
- ♦ Deployment: GitHub repository for file sharing & project submission.

Solution Architecture Diagram

Solution Architecture Diagram Raw Data (Excel/CSV

Power BI Processing

Data Model

Visualizations

User Interaction

Project Planning Template:

"Global Food Production Trends and Analysis"

A **Project Planning Template** helps in organizing tasks, timelines, and resources effectively. It ensures that the project follows a structured approach from start to completion.

Project Planning Template Structure:

Phase	Tasks	Deliverables	Timeline	Responsible Person
Ideation Phase	Define problem, research trends, create empathy map	Problem Statement, Brainstorming Notes	Week 1	Research Team
Requirement Analysis	Define data sources, create data flow & customer journey map	DFD, Technology Stack, CJM	Week 2	Data Analysts
Project Design	Define architecture, finalize visualizations	Solution Architecture, Dashboard Layout	Week 3	BI Developer
Development Phase	Clean & process data, build Power BI dashboard	Power BI Dashboard	Week 4- 5	BI Developer
Testing & Validation	Performance testing, fixing issues	Test Reports	Week 6	QA Team
Deployment & Documentation	Publish on GitHub, create user documentation	GitHub Repository, Reports	Week 7	DevOps, Tech Writer

Key Highlights of Planning:

- ✓ Clear Timeline & Deliverables Ensures step-by-step execution.
- **⊘ Defined Responsibilities** Assigns tasks to specific teams.
- **Structured Execution** − Avoids last-minute issues by following a planned approach.

Project file:

Dataset:

https://www.kaggle.com/datasets/rafsunahmad/world-foodproduction

Output screenshots:

