Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

OLS #19 (ruptures & discontinuités)

Maths of Causal Inference

n individuals are either treated $(t_i = 1)$ or not $(t_i = 0)$. We observe outcome y_i for covariates \mathbf{x}_i . We want to study potential outcomes $y_i(1)$ and $y_i(0)$

	turr	nout			
	$y_i(1)$	$y_i(0)$	ti	$x_{1,i}$	$x_{2,i}$
1	<i>y</i> ₁	?	1	<i>X</i> _{1,1}	X _{2,1}
2	?	<i>y</i> ₂	0	<i>x</i> _{1,2}	<i>x</i> _{2,2}
÷	:	•	÷	:	÷
n	y_n	?	1	$X_{1,n}$	$x_{2,n}$

The causal effect is $y_i(1) - y_i(0)$

Maths of Causal Inference

- ▶ Average Treatment Effect $\mathbb{E}[Y(1) Y(0)]$
- Sample Average Treatment Effect $\frac{1}{n} \sum_{i=1}^{n} \left[y_i(1) y_i(0) \right]$

Assumption : $(Y(1), Y(0)) \perp T$

Crude estimator (difference in means), $\widehat{\tau} = \frac{1}{n_1} \sum_{i:t_i=1} y_i - \frac{1}{n_0} \sum_{i:t_i=0} y_i$, or

$$\widehat{\tau} = \sum_{i=1}^{n} \frac{t_i y_i}{n_1} - \frac{(1-t_i)y_i}{n_0}$$

Then $\mathbb{E}\big[\widehat{\tau}\big] = \mathbb{E}\big[\,Y(1) - Y(0)\big]$

Maths of Causal Inference

▶ Local Average Treatment Effect $\mathbb{E}[Y(1) - Y(0)|\mathbf{X} = \mathbf{x}]$

The Propensity Score is the probability to receive the treatment

$$\pi(\mathsf{x}) = \mathbb{P}[T = 1 | \mathsf{X} = \mathsf{x}]$$

Assumption: Balancing property $T \perp X \mid \pi(X)$

Assumption: Exogeneity $(Y(1), Y(0)) \perp T \mid \pi(x), \forall x$

Consider here

$$\widehat{\tau} = \sum_{i=1}^{n} \frac{t_i y_i}{n \widehat{\pi}(\mathbf{x}_i)} - \frac{(1-t_i) y_i}{n(1-\widehat{\pi}(\mathbf{x}_i))}$$

Introduced in Regression-discontinuity analysis: An alternative to the ex post facto experiment , to quantify the effects of college scholarships on later students' achievements

- ▶ X is SAT score
- Binary treatment T, receipt of scholarship,

$$T_i = \mathbf{1}(X_i \ge c) = \begin{cases} 1 \text{ if } X_i \ge c \\ 1 \text{ if } X_i < c \end{cases}$$

Outcome Y (e.g. subsequent earnings)

Discontinuity

Discontinuity

 D_i and Y_i against X_i , and two regressions,

$$Y_i = \begin{cases} \alpha^+ + \beta^+ X_i & \text{if } X_i \ge c \text{ (i.e. } D_i = 1) \\ \alpha^- + \beta^- X_i & \text{if } X_i < c \text{ (i.e. } D_i = 0) \end{cases}$$

Here the Local Average Treatment Effect is

$$\mathbb{E}\big[Y(1)-Y(0)|X=c\big]=(\alpha^+-\alpha^-)+(\beta^+-\beta^-)\cdot c$$

Why only linear regression? See Regression Discontinuity Designs

TV shows

- > download.file("https://github.com/nazareno/imdbseries/raw/master/data/series_from_imdb.csv",
- 2 > destfile="series_from_imdb.csv")
- > base = read.csv("series_from_imdb.csv")

TV shows

TV shows

