Advanced Machine Learning

Likhit Nayak

Markov Network - Global Independencies

We say that a set of nodes Z separates X and Y in H, denoted $sep_{\mathcal{H}}(X; Y \mid Z)$, if there is no active path between any node $X \in X$ and $Y \in Y$ given Z. We define the global independencies associated with H to be:

$$\mathcal{I}(\mathcal{H}) = \{ (\boldsymbol{X} \perp \boldsymbol{Y} \mid \boldsymbol{Z}) : \operatorname{sep}_{\mathcal{H}}(\boldsymbol{X}; \boldsymbol{Y} \mid \boldsymbol{Z}) \}.$$

Let \mathcal{H} be a Markov network structure, and let $X_1 - \ldots - X_k$ be a path in \mathcal{H} . Let $\mathbf{Z} \subseteq \mathcal{X}$ be a set of observed variables. The path $X_1 - \ldots - X_k$ is active given \mathbf{Z} if none of the X_i 's, $i = 1, \ldots, k$, is in \mathbf{Z} .

Markov Network - Global Independencies

Markov Network - Global Independencies

Let X, Y, Z be three disjoint subsets of variables such that $\mathcal{X} = X \cup Y \cup Z$.

$$P(\mathcal{X}) = \phi_1(\boldsymbol{X}, \boldsymbol{Z})\phi_2(\boldsymbol{Y}, \boldsymbol{Z})$$

$$m{X} \perp m{Y} \mid m{Z}$$
 ?

Markov Network - Local Independencies

Pairwise Independency:

Let H be a Markov network. We define the pairwise independencies associated with H to be:

$$\mathcal{I}_p(\mathcal{H}) = \{ (X \perp Y \mid \mathcal{X} - \{X, Y\}) : X - Y \notin \mathcal{H} \}.$$

Markov Network - Local Independencies

Markov Blanket:

For a given graph \mathcal{H} , we define the Markov blanket of X in \mathcal{H} , denoted $MB_{\mathcal{H}}(X)$, to be the neighbors of X in \mathcal{H} . We define the local independencies associated with \mathcal{H} to be:

$$\mathcal{I}_{\ell}(\mathcal{H}) = \{ (X \perp \mathcal{X} - \{X\} - MB_{\mathcal{H}}(X) \mid MB_{\mathcal{H}}(X)) : X \in \mathcal{X} \}.$$

Factor Graphs

Factor Graphs

