Assignment 9

- 1. Consider the language ALL_{DFA} consisting of the string representations of all DFAs D such that $L(D) = \Sigma^*$ is the language of all strings in the alphabet (the alphabet defined by that D). Show that this is a decidable language.
- **2.** Consider the language $L = \{ \langle M, N \rangle \mid M, N \text{ are TMs and } L(M) \cup L(N) = \emptyset \}.$
 - a. Show that L is not decidable.
 - b. Show that L is co-Turing-recognizable.
 - c. Show that *L* is not Turing-recognizable.
- 3. Consider the language $L = \{ \langle M, w \rangle \mid M \text{ is TM and does not halt on } w \}$. Determine which of the following classifications is the correct one for L:
 - decidable
 - Turing-recognizable but not decidable
 - co-Turing-recognizable but not decidable
 - neither Turing-recognizable nor co-Turing-recognizable.
- 4. True or False (provide proof or counter-example as appropriate):
 - a. If $A \subset B$ are two languages, then if A is decidable then B is also decidable.
 - b. If $A \subset B$ are two languages, then if B is decidable then A is also decidable.
- 5. Suppose A is a decidable language, and consider the language $L_A = \{\langle M,w\rangle \mid M \text{ is a TM and it accepts } w \text{ and what is left on the tape at that point is an element of the following determine if it is true or false. Provide proof or counterexample as appropriate.$
 - a. For every decidable language A, we have L_A is Turing-recognizable.
 - b. For every decidable language A, we have L_A is decidable.
 - c. There is a decidable language A for which L_A is decidable.