

Ekspresi Binomial

Ekspresi binomial: penjumlahan dari dua buah term.

Contoh dari ekspresi binomial : x + y

$$(x + y)^3 = (x + y) (x + y) (x + y)$$

= $1.x^3 + 3.x^2y + 3.xy^2 + 1.y^3$

(x + y)³ merupakan pangkat 3 dari ekspresi binomial x + y.

Ekspansi (penjabaran) $(x + y)^3$ menghasilkan 4 term berbeda: x^3 , x^2y , xy^2 , dan y^3 .

Koefisien dari term x³ adalah 1, koefisien dari term x²y adalah 3, dst.

Tentukan ekspansi (penjabaran) dari $(x + y)^4$! Jika $(x + y)^4$ dijabarkan, maka akan muncul term x^4 , x^3y , x^2y^2 , xy^3 , y^4 . Berapa koefisien dari masing-masing term ini?

Anggap $(x + y)^4$ merupakan perkalian dari 4 buah term (x + y) yang berasal dari 4 kotak berbeda.

$$(x + y)^4 = (x + y) (x + y) (x + y)$$

Term x⁴:

Term x^4 dapat dibentuk dengan cara mengambil 4 buah x dari 4 kotak berbeda. Ada $\binom{4}{4}$ cara. Jadi, koefisien dari term x^4 adalah $\binom{4}{4}$ = 1.

atau dengan cara mengambil 0 buah y dari 4 kotak berbeda. Ada $\binom{4}{0}$ = 1 cara.

Term x^3y :

Term x^3y dapat dibentuk dengan cara mengambil 3 buah x dari 4 kotak berbeda. Ada $\binom{4}{3}$ cara, maka koefisien dari term x^3y adalah $\binom{4}{3} = 4$.

atau...

dapat dibentuk dengan cara mengambil 1 buah y dari 4 kotak berbeda. Ada $\binom{4}{1}$ = 4 cara.

Term x^2y^2 :

Term x^2y dapat dibentuk dengan cara mengambil 2 buah x dari 4 kotak berbeda (atau 2 buah y dari 4 kotak). Ada $\binom{4}{2}$ cara, maka koefisien dari term x^2y^2 adalah $\binom{4}{2} = 6$.

Term xy³:

Term xy^3 dapat dibentuk dengan cara mengambil 1 buah x dari 4 kotak berbeda (atau 3 buah y dari 4 kotak). Ada $\binom{4}{1} = \binom{4}{3}$ cara. Oleh karena itu, koefisien dari term xy^3 adalah $\binom{4}{1} = 4$.

Term y⁴:

Term y^4 dapat dibentuk dengan cara mengambil 0 buah x dari 4 kotak berbeda (atau 4 buah y dari 4 kotak). Ada $\binom{4}{0} = \binom{4}{4}$ cara. Oleh karena itu, koefisien dari term y^4 adalah $\binom{4}{0} = 1$.

Ekspresi Binomial

$$(x + y)^4 = xxxx + xxxy + xxyx + xxyy + xyxx + xyxy + xyyx + xyyy + xyxx + yxxy + yxyx + yxyy + yyxx + yyxy + yyyx + yyyy$$

$$(x + y)^{4} =$$

$$\binom{4}{0} x^{4} + \binom{4}{1} x^{3}y + \binom{4}{2} x^{2}y^{2} + \binom{4}{3} xy^{3} + \binom{4}{4} y^{4}$$

$$\binom{4}{4} x^{4} + \binom{4}{3} x^{3}y + \binom{4}{2} x^{2}y^{2} + \binom{4}{1} xy^{3} + \binom{4}{0} y^{4}$$

$$1.x^{4} + 4.x^{3}y + 6.x^{2}y^{2} + 4.xy^{3} + 1.y^{4}$$

Teorema Binomial

$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

$$= \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}$$

Kita gunakan **bukti kombinatorial**. Term hasil penjabaran atau ekspansi berbentuk $x^{n-j}y^j$ dengan j = 0, 1, 2, ..., n. Menghitung banyaknya term $x^{n-j}y^j$ sama saja dengan menghitung banyaknya cara memilih (n - j) buah x dari n "kotak" term (x + y).

Oleh karena itu, koefisien dari $\mathbf{x}^{\mathbf{n}-\mathbf{j}}\mathbf{y}^{\mathbf{j}}$ adalah $\binom{n}{n-j}$, yang juga sama dengan $\binom{n}{j}$. Teorema binomial terbukti. **Q.E.D**

Latihan (1)

Tentukan koefisien dari $x^{12}.y^{13}$ dari ekspansi $(x + y)^{25}$?

Solusi:

Berdasarkan Teorema Binomial, koefisien x¹².y¹³ adalah

$$\binom{25}{13} = \frac{25!}{13! \ 12!}$$

Latihan (2)

Tentukan koefisien dari x¹².y¹³ dari ekspansi (2x - 3y)²⁵?

Solusi:

Berdasarkan teorema binomial, kita dapat nyatakan:

$$((2x) + (-3y))^{25} = \sum_{j=0}^{25} {25 \choose j} (2x)^{25-j} (-3y)^j$$

Jadi, koefisien dari $\mathbf{x}^{12}.\mathbf{y}^{13}$ didapatkan ketika $\mathbf{j} = 13$, yaitu:

$$\binom{25}{13} 2^{12} (-3)^{13} = -\frac{25!}{13! \, 12!} 2^{12} 3^{13}$$

Latihan (3)

Tentukan koefisien dari x^{18} dari ekspansi $(x + (1/x))^{30}$?

Solusi:

Berdasarkan teorema binomial, kita dapat nyatakan:

$$((x) + (x^{-1}))^{30} = \sum_{j=0}^{30} {30 \choose j} (x)^{30-j} (x^{-1})^j = \sum_{j=0}^{30} {30 \choose j} (x)^{30-2j}$$

Jadi, koefisien dari \mathbf{x}^{18} didapatkan ketika $\mathbf{j} = \mathbf{6}$, yaitu:

$$\binom{30}{6} = \frac{30!}{6! \ 24!}$$

Corrolary

$$2^n = \sum_{k=0}^n \binom{n}{k} \qquad \dots \text{ Corrolary I}$$

Bukti aljabar

Ganti x = 1 & y = 1 pada teorema binomial.

Bukti kombinatorial

Kita tahu bahwa himpunan dengan **n elemen** mempunyai **2**ⁿ subset yang berbeda.

Setiap subset ada yang terdiri dari **0 elemen** (ada $\binom{n}{0}$), **1 elemen** (ada $\binom{n}{1}$), **2 elemen** (ada $\binom{n}{2}$), ..., **k elemen** (ada ada $\binom{n}{k}$). Berarti total ada $\sum_{k=0}^{n} \binom{n}{k}$ subset.

2 formula dihubungkan dengan operator '=' dan terbuktilah corrolary I

Corrolary

$$0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$$
 ... Corrolary II

Bukti aljabar untuk corrolary II

Ganti x = 1 & y = -1 pada teorema binomial Corrolary II ini mengakibatkan:

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

$$3^n = \sum_{k=0}^n (2)^k \binom{n}{k} \qquad \dots \text{ Corrolary III}$$

Bukti aljabar untuk corrolary III

Ganti x = 1 & y = 2 pada teorema binomial.

Identitas Pascal

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Bukti kombinatorik

- Misal, himpunan T mengandung (n + 1) elemen, dan a merupakan sebuah elemen di T, a ∈ T.
- Misal, ada juga sebuah himpunan S = T {a}. Artinya, S mengandung n elemen.
- Perhatikan bahwa ada $\binom{n+1}{k}$ himpunan bagian T yang mengandung k elemen.
- Himpunan bagian T yang mengandung k elemen dibagi menjadi 2 group:
 - Ada elemen a dan (k 1) elemen di S
 - Tidak ada elemen a dan k elemen di S

Identitas Pascal

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Bukti kombinatorik (lanjutan)

- Karena ada $\binom{n}{k-1}$ himpunan bagian dari **S** yang terdiri dari **(k 1) elemen**, maka ada $\binom{n}{k-1}$ himpunan bagian dari **T** yang terdiri dari **k elemen** dan mengandung **a**.
- Karena ada $\binom{n}{k}$ himpunan bagian dari **S** yang terdiri dari **k elemen**, maka ada $\binom{n}{k}$ himpunan bagian dari **T** yang terdiri dari **k elemen** dan tidak mengandung **a**.
- Penggabungan menggunakan operator '=' membuktikan bahwa $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

Segitiga Pascal

 Basisnya adalah Identitas Pascal: "Ketika 2 koefisien binomial yang bersebelahan dijumlahkan, hasilnya adalah koefisien binomial yang terletak pada baris berikutnya & di antara 2 koefisien tersebut."

Apa yang sudah dipelajari

Koefisien Binomial Identitas Pascal

Referensi

- Kenneth H. Rosen (2012) "Discrete Mathematics and Its Applications 7th Edition"
- Alfan Farizki Wicaksono (2013) "Slide MD1-13-koefisien-binomial", Fasilkom UI