SOLITARY-WAVE FAMILIES OF THE MICRO-STRUCTURE PDE

S. ROY CHOUDHURY, JONATHAN LETO

ABSTRACT. The Microstructure PDE is a model for ETC. Directions for future work are also described.

1. Introduction

The nonlinear dispersive equation [2]

(1.1)
$$v_{tt} - bv_{xx} - \frac{\mu}{2} (v^2)_{xx} - \delta (\beta v_{tt} - \gamma v_{xx})_{xx} = 0$$

is known as the Micro-Structure PDE.

2. Solitary waves; local bifurcations

Solitary waves of (1.1) of the form $u(x,t) = \phi(x-ct) = \phi(z)$ satisfy the fourth-order travelling wave ODE

(2.1)
$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}[\phi]$$

where the notation $\mathcal{N}[\phi]$ means that the operator \mathcal{N} operates on ϕ and all of it's derivatives, and

$$\mathcal{N}\left[\phi\right] = -\Delta_1 \phi_z^2 - b\Delta_1 \phi \phi_{zz}$$

where

(2.3a)
$$\Delta_1 = \frac{\mu}{\delta (\beta c^2 - \gamma)}$$

$$(2.3b) p = 0$$

The linearized system corresponding to (2.1)

$$\phi_{zzzz} - q\phi_{zz} + p\phi = 0$$

has a fixed point $\phi = \phi_z = \phi_{zz} = \phi_{zzz} = 0$.

Solutions $\phi = ke^{\lambda x}$ satisfy the characteristic equation $\lambda^4 - q\lambda^2 + p = 0$ from which one may deduce that the structure of the eigenvalues is distinct in two regions of (p,q)-space. Since p=0 we have only two possible regions of eigenvalues. We denote C_0 as the positive q axis and C_1 the negative q-axis. On C_0 the eigenvalues have the structure $\lambda_{1-4}=0,0,\pm\lambda,\ (\lambda\in\mathbb{R})$ while on C_1 we have $\lambda_{1-4}=0,0,\pm i\omega,\ (\omega\in\mathbb{R})$.

2.1. Near C_0 . Near C_0 the dynamics reduce to a 2-D Center Manifold

$$(2.5) Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$$

with

$$\frac{dA}{dz} = E$$

(2.6a)
$$\frac{dA}{dz} = B$$
(2.6b)
$$\frac{dB}{dz} = b\epsilon A + \tilde{c}A^2$$

and the eigenvectors are $\zeta_0 = \langle 1, 0, -q/3, 0 \rangle^T$, $\zeta_1 = \langle 0, 1, 0, -2q/3 \rangle^T$, ϵ determines the distance from C_0 . A simple dominant balance argument on the linearized equation yields $b = -\frac{1}{q}$. To determine \tilde{c} we calculate $\frac{dY}{dz}$ in two ways and match the $\mathcal{O}(A^2)$ terms. Expanding $\Psi(\epsilon,A,B)$ in series

$$(2.7) \Psi(\epsilon, A, B) = \epsilon A \Psi_{10}^1 + \epsilon B \Psi_{01}^1 + A^2 \Psi_{20}^0 + A B \Psi_{11}^0 + B^2 \Psi_{02}^0 + \cdots$$

we find

$$\tilde{c}\zeta_1 = L_{0q}\Psi_{20}^0 - F_2(\zeta_0, \zeta_0)$$

We find that $F_2(\zeta_0, \zeta_0) = \left\langle 0, 0, 0, -\frac{b\Delta_1}{3}q \right\rangle^T$ which implies $\tilde{c} = -\frac{b\Delta_1}{3}$ Therefore, the normal form for (1.1) near C_0 is

$$\frac{dA}{dz} = B$$

(2.9b)
$$\frac{dB}{dz} = -\frac{\epsilon}{q}A - \frac{b\Delta_1}{3}A^2$$

3. Calculations

We now proceed to calculate the normal forms of (1.1)

We now use the theory of Iooss and Adelmeyer [1] to write the Microstructure PDE in reversible form: Let $Y = \langle y_1, y_2, y_3, y_4 \rangle^T$ where $\langle y_1, y_2, y_3, y_4 \rangle^T = \langle \phi_z, \phi_{zz}, \phi_{zzz}, \phi_{zzzz} \rangle^T$ We may now write (2.1) as a reversible first-order system

$$\frac{dY}{dz} = L_{pq}Y - F_2(Y,Y)$$

where $F_2(Y,Y) = \langle 0,0,0,-\mathcal{N}(Y) \rangle^T$ and

(3.2)
$$L_{pq} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ q/3 & 0 & 1 & 0 \\ 0 & q/3 & 0 & 1 \\ q^2 - p & 0 & q/3 & 0 \end{pmatrix}$$

Since p = 0 for the Microstructure PDE, we have

(3.3)
$$\frac{dY}{dz} = L_{0q}Y - F_2(Y,Y)$$

where

$$(3.4) F_2(Y,Y) = \langle 0, 0, 0, \Delta_1 y_2^2 + b\Delta_1 y_1 y_3 \rangle^T$$

4. Normal form near C_1 : possible solitary-wave solutions

Near C_1 the dynamics reduce to a 4-D Center Manifold

$$(4.1) Y = A\zeta_0 + B\zeta_0 + C\zeta_+ + \bar{C}\zeta_- + \Psi(\epsilon, A, B, C, \bar{C})$$

with

$$\frac{dA}{dz} = B$$

$$\frac{dB}{dz} = \bar{\nu}A + b_*A^2 + c_*|C|^2$$

(4.2a)
$$\frac{dA}{dz} = B$$
(4.2b)
$$\frac{dB}{dz} = \bar{\nu}A + b_*A^2 + c_*|C|^2$$
(4.2c)
$$\frac{dC}{dz} = id_0C + i\bar{\nu}d_1C + id_2AC$$

where $\zeta_{\pm} = \left\langle 1, \lambda_{\pm}, 2q/3, \frac{\lambda_{\pm}}{3}q \right\rangle^{T}$ where

 $\bar{\nu} = -\frac{\epsilon}{q}$, $b_* = -\frac{b\Delta 1}{3}$ and $\lambda_{\pm} = \pm i\sqrt{-q}$. Comparing to the linearized equations gives $d_0 = \sqrt{-q}$.

If we do a dominant balance argument after the change of variable $\tilde{\epsilon}=\sqrt{-3\mu}$ on the characteristic equation as $\lambda\to 0$ then we find $d_1=\frac{\sqrt{-3\mu}}{18\mu^2}$. Using $\mu=q/3$ we find $d_1=\frac{\sqrt{-q}}{2q^2}$

To determine b_*, c_* and d_2 we expand

$$(4.3) \qquad \Psi(\epsilon,A,B,C,\bar{C}) = \epsilon A \Psi^{1}_{1000} + \epsilon B \Psi^{1}_{0100} + A^{2} \Psi^{0}_{2000} + A B \Psi^{0}_{1100} + A C \Psi^{0}_{1010} + \epsilon C \Psi^{1}_{0010} + \cdots$$

Now we use (4.2b), (4.2c), (4.2c) in (4.3) when we calculate $\frac{dY}{dz}$. Matching coefficients yields

$$(4.4a) \qquad \mathcal{O}(A^{2}): \qquad b_{*}\zeta_{1} \qquad = L_{0q}\Psi_{2000}^{0} - F_{2}(\zeta_{0}, \zeta_{0})$$

$$(4.4b) \qquad \mathcal{O}(|C|^{2}): \qquad c_{*}\zeta_{1} \qquad = L_{0q}\Psi_{0011}^{0} - 2F_{2}(\zeta_{+}, \zeta_{-})$$

$$(4.4c) \qquad \mathcal{O}(\epsilon C): \qquad -\frac{i}{q}\left(d_{1}\zeta_{+} + d_{0}\Psi_{0010}^{1}\right) \qquad = L_{0q}\Psi_{0010}^{1} - F_{2}(\Psi_{0010}^{1}, \Psi_{0010}^{1})$$

 $\mathcal{O}(AC): id_2\zeta_+ + id_0\Psi^0_{1010} = L_{0a}\Psi^0_{1010} - 2F_2(\zeta_0, \zeta_+)$ (4.4d)

(4.4e)

where we have used the fact that F_2 is a symmetric bilinear form. Equation (4.4b) is decoupled and yields $c_* = 2\Delta_1\left(\frac{1}{q} + \frac{2b}{3}\right)$ The only coefficient left to determine is d_2 which we shall compute now.

Put $\Psi_{1010}^{0} = \langle x_1, x_2, x_3, x_4 \rangle^T$ into (4.4e) implies

$$(4.5a) id_2 + id_0x_1 = x_2$$

$$-d_0 d_2 + i d_0 x_2 = \frac{q}{3} x_1 + x_3$$

$$(4.5c) \frac{2iq}{3}d_2 + id_0x_3 = \frac{q}{3}x_2 + x_4$$

(4.5d)
$$-\frac{q}{3}d_0d_2 + id_0x_4 = \frac{q}{3}\left(\frac{q}{3}x_1 + x_3\right) - \frac{2bq\Delta_1}{3}$$

Using (4.5a) in (4.5b), (4.5b) in (4.5d) and using these in (4.5c) yields $d_2 = \frac{b\Delta_1}{3\sqrt{-a}}$ Therefore the normal form for the MS PDE near C_1 is

$$\frac{dA}{dz} = B$$

(4.6b)
$$\frac{dB}{dz} = -\frac{\epsilon}{q}A - \frac{b\Delta_1}{3}A^2 + 2\Delta_1\left(\frac{1}{q} + \frac{2b}{3}\right)|C|^2$$

$$\frac{dC}{dz} = i\sqrt{-q}C - i\frac{\epsilon\sqrt{-q}}{q^3}C + i\frac{b\Delta_1}{3\sqrt{-q}}AC$$

REFERENCES

- [1] IOOSS G., ADELMEYER, M., Topics in Bifurcation Theory and Applications, World Scientific, Singapore, 1998.
- [2] S. ROY CHOUDHURY, Solitary-wave families of the Ostrovsky equation: An approach via reversible systems theory and normal forms, Elsevier, (2007), pp. 1468-1479.