Statistics 101C - Support Vector Machine

Shirong Xu

University of California, Los Angeles shirong@stat.ucla.edu

December 1, 2024

Review of vector algebra

• We have two hyperplanes:

•
$$L_1: \mathbf{w}^T \mathbf{x} + b_0 = 0$$

•
$$L_2: \mathbf{w}^T \mathbf{x} + b_1 = 0$$

Review of vector algebra

- We have two hyperplanes:
 - $L_1 : \mathbf{w}^T \mathbf{x} + b_0 = 0$ • $L_2 : \mathbf{w}^T \mathbf{x} + b_1 = 0$
- What is the distance between these two hyperplanes?

Review of vector algebra

• We have two hyperplanes:

• $L_1 : \mathbf{w}^T \mathbf{x} + b_0 = 0$ • $L_2 : \mathbf{w}^T \mathbf{x} + b_1 = 0$

• What is the distance between these two hyperplanes?

$$D(L_1, L_2) = \frac{|b_0 - b_1|}{\sqrt{\sum_{i=1}^{p} w_i^2}}$$

An illustrative plot: Binary Classification

- Points with different labels are **separable**.
- We can find **infinite** hyperplanes to separate two classes.
- Question: How can we choose the most appropriate one?

ullet Training data: (\mathbf{x}_i, y_i) ; $i = 1, \ldots, n$ with $\mathbf{x}_i \in \mathcal{R}^p$ and $y_i \in \{-1, 1\}$

- lacksquare Training data: (\mathbf{x}_i, y_i) ; $i=1,\ldots,n$ with $\mathbf{x}_i \in \mathcal{R}^p$ and $y_i \in \{-1,1\}$
- Define a separating hyperplane

$$\{\mathbf{x}: f(\mathbf{x}) = w^T \mathbf{x} + b = 0\}$$

- lacksquare Training data: (\mathbf{x}_i, y_i) ; $i=1,\ldots,n$ with $\mathbf{x}_i \in \mathcal{R}^p$ and $y_i \in \{-1,1\}$
- Define a separating hyperplane

$$\{\mathbf{x}: f(\mathbf{x}) = w^T \mathbf{x} + b = 0\}$$

A classification decision function is: Classifier

$$G(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$$

- ullet Training data: (\mathbf{x}_i, y_i) ; $i = 1, \dots, n$ with $\mathbf{x}_i \in \mathcal{R}^p$ and $y_i \in \{-1, 1\}$
- Define a separating hyperplane

$$\{\mathbf{x}: f(\mathbf{x}) = w^T \mathbf{x} + b = 0\}$$

A classification decision function is: Classifier

$$G(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$$

• A misclassified point $(\mathbf{x}, y) \Leftrightarrow yf(\mathbf{x}) < 0$, and vice versa, where $yf(\mathbf{x})$ is called functional margin. For example, the functional margin of sample (\mathbf{x}_i, y_i) is $y_i f(\mathbf{x}_i)$.

- Training data: (\mathbf{x}_i, y_i) ; i = 1, ..., n with $\mathbf{x}_i \in \mathcal{R}^p$ and $y_i \in \{-1, 1\}$
- Define a separating hyperplane

$$\{\mathbf{x}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0\}$$

A classification decision function is: Classifier

$$G(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$$

- A misclassified point $(\mathbf{x}, y) \Leftrightarrow yf(\mathbf{x}) < 0$, and vice versa, where $yf(\mathbf{x})$ is called functional margin. For example, the functional margin of sample (\mathbf{x}_i, y_i) is $y_i f(\mathbf{x}_i)$.
- Example: If the hyperplane is f(x) = 3x + 1 = 0. Then the functional margin of (x, y) = (2, 1) is 1 * (3 * 2 + 1) = 7.

Example

• The following hyperplane separates two points (0,1) and (1,0): Ax + Ay = 0, A > 0.

The distance from (0,1) to Ax + Ay = 0 is $1/\sqrt{2}$. If we set two lines as Ax + Ay = 1 and Ax + Ay = -1, then A = 1.

Illustrative plot: separable

A natural result is to find a hyperplane in the middle. Find the closest points on the following two hyperplanes:

$$\boldsymbol{v} \boldsymbol{w}^T \boldsymbol{x} + b = 1 \text{ and } \boldsymbol{w}^T \boldsymbol{x} + b = -1$$

Separable case

The optimization problem can be rephrased as

$$\begin{aligned} & \min_{w,b} & & \|w\| \text{ or } \frac{1}{2}\|w\|^2 \\ & \text{subject to} & & y_i(w^T\mathbf{x}_i+b) \geq 1; \ i=1,\ldots,n \end{aligned}$$

- The two dashed hyperplanes are set as $w^T \mathbf{x} + b = \pm 1$
- Idea: Finding the hyperplane maximizing the closet distances to two classes.

Separable case

The optimization problem can be rephrased as

$$\begin{aligned} & \min_{w,b} & & \|w\| \text{ or } \frac{1}{2}\|w\|^2 \\ & \text{subject to} & & y_i(w^T\mathbf{x}_i+b) \geq 1; \ i=1,\ldots,n \end{aligned}$$

- The two dashed hyperplanes are set as $w^T \mathbf{x} + b = \pm 1$
- **Idea**: Finding the hyperplane maximizing the closet distances to two classes.
- Question: What if the classes are non-separable?

Illustrative plot: nonseparable

SVM formulation

- When the data are not separable, the constraints need to be relaxed by introducing some slack variables ξ_i
- A standard SVM formulation:

$$egin{array}{ll} \min_{w,b} & rac{1}{2}\|w\|^2 \ ext{subject to} & y_i(w^T\mathbf{x}_i+b)\geq 1-\xi_i; \ i=1,\ldots,n, \ & \xi_i\geq 0, \ \sum_{i=1}^n \xi_i\leq C \end{array}$$

• *C* controls the size of slack variables, or the severity of the misclassified observations

Some remarks

- The value of ξ_i tells if the *i*-th observation is on the wrong side of the separation hyperplane
- Different values of C lead to different hyperplanes
 - If C = 0, all ξ_i must be 0, and thus all observations have to be correctly classified
 - As C increases, it is more tolerant of misclassification, and so the margin will widen
- Optimal C can be determined by cross validation

Example with linear SVM

Let $D = \{x_i, y_i\}_{i=1}^n$ be the dataset, and we use Hinge loss as surrogate loss

$$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - (\mathbf{w}^{T} \mathbf{x}_{i} + b) y_{i}, 0 \right\} + \lambda \|\mathbf{w}\|_{2}^{2}$$
 (1)

Let $D = \{x_i, y_i\}_{i=1}^n$ be the dataset, and we use Hinge loss as surrogate loss

$$\min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - (\boldsymbol{w}^{T} \boldsymbol{x}_{i} + b) y_{i}, 0 \right\} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
 (1)

We notice that $\max \left\{1 - (\boldsymbol{w}^T \boldsymbol{x}_i + b) y_i, 0\right\}$ is positive, so we denote $\xi_i = \max \left\{1 - (\boldsymbol{w}^T \boldsymbol{x}_i + b) y_i, 0\right\} \ge 0$. Then (1) can be **equivalently** written as

Let $D = \{x_i, y_i\}_{i=1}^n$ be the dataset, and we use Hinge loss as surrogate loss

$$\min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - (\boldsymbol{w}^{T} \boldsymbol{x}_{i} + b) y_{i}, 0 \right\} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
 (1)

We notice that $\max \{1 - (\mathbf{w}^T \mathbf{x}_i + b)y_i, 0\}$ is positive, so we denote $\xi_i = \max \{1 - (\mathbf{w}^T \mathbf{x}_i + b)y_i, 0\} \ge 0$. Then (1) can be **equivalently** written as

$$\begin{aligned} \min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^{n} \xi_i + \lambda \|\boldsymbol{w}\|_2^2 \\ \text{subject to } 1 - (\boldsymbol{w}^T \boldsymbol{x}_i + b) y_i \leq \xi_i, \\ \xi_i \geq 0, i = 1, \dots, n \end{aligned}$$

$$\begin{aligned} \min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^{n} \xi_i + \lambda \|\boldsymbol{w}\|_2^2 \\ \text{subject to } 1 - (\boldsymbol{w}^T \boldsymbol{x}_i + b) y_i \leq \xi_i, \quad \xi_i \geq 0, i = 1, \dots, n \end{aligned}$$

We know there exists a constant C_1 such that the above optimization problem is equivalent to

$$\begin{aligned} \min_{\pmb{w},b} & & \|\pmb{w}\|_2^2 \\ \text{subject to } & (\pmb{w}^T\pmb{x}_i+b)y_i \geq 1-\xi_i, \\ & \xi_i \geq 0, i=1,\dots,n, \quad \frac{1}{n\lambda}\sum_{i=1}^n \xi_i \leq C_1 \end{aligned}$$

13 / 36

$$\begin{split} \min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^n \xi_i + \lambda \|\boldsymbol{w}\|_2^2 \\ \text{subject to } 1 - (\boldsymbol{w}^T \boldsymbol{x}_i + b) y_i \leq \xi_i, \quad \xi_i \geq 0, i = 1, \dots, n \end{split}$$

We know there exists a constant \mathcal{C}_1 such that the above optimization problem is equivalent to

$$egin{aligned} \min_{oldsymbol{w},b} & \|oldsymbol{w}\|_2^2 \ & ext{subject to } (oldsymbol{w}^Toldsymbol{x}_i+b)y_i \geq 1-\xi_i, \ & \xi_i \geq 0, i=1,\ldots,n, \quad rac{1}{n\lambda} \sum_{i=1}^n \xi_i \leq C_1 \end{aligned}$$

Conclusion: Linear SVM is using **hinge loss** as surrogate loss function with L-2 penalty term with linear function.

How can we solve linear SVM?

Primal - Dual Optimization problem

• For a minimization problem (Primal Optimization Problem):

$$\min_{m{x}} \quad f(m{x})$$
 subject to $h_i(m{x}) \leq 0, i=1,\ldots,m$ $l_j(m{x}) = 0, j=1,\ldots,r$

The Lagrangian is defined as

$$L(\boldsymbol{x},\boldsymbol{u},\boldsymbol{v})=f(\boldsymbol{x})+\sum_{i=1}^m u_i h_i(\boldsymbol{x})+\sum_{j=1}^r v_j l_j(\boldsymbol{x}).$$

• L(x, u, v) is a lower bound f(x).

Primal - Dual Optimization problem

ullet The Lagrange dual function is (Fining $oldsymbol{x}$ minimizing the Lagrangian)

$$g(\boldsymbol{u},\boldsymbol{v}) = \min_{\boldsymbol{x}} L(\boldsymbol{x},\boldsymbol{u},\boldsymbol{v})$$

The dual problem is defined as

$$\max_{\boldsymbol{u},\boldsymbol{v}} g(\boldsymbol{u},\boldsymbol{v})$$
 subject to $\boldsymbol{u} \geq 0$

• The Lagrange dual function can be viewd as a pointwise maximization of some affine functions so it is always concave. The dual problem is always convex even if the primal problem is not convex.

Primal - Dual Optimization problem

 For any primal problem and dual problem, the weak duality always holds

$$g^* \leq f^*$$

where g^* and f^* are optimal values for **dual** and **primal** problems, respectively.

- strong duality: $f^* = g^*$.
- The dual problem sometime can be easier to solve compared with the primal problem and the primal solution can be constructed from the dual solution.

KKT condition

Stationarity:
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$

Complementary: $u_i h_i(x) = 0$ for all i

Primal feasibility: $h_i(x) \leq 0$, $\ell_j(x) = 0$ for all i, j

Dual feasibility: $u_i \geq 0$ for all i

• If you have found a point that satisfies the KKT conditions, then it is an optimal solution. It will be the unique optimal solution when f is convex.

Karush-Kuhn-Tucker (KKT) conditions form the backbone of linear and nonlinear programming as they are

- Necessary and sufficient for optimality in linear programming.
- Necessary and sufficient for optimality in convex optimization, such as least square minimization in linear regression.
- Necessary for optimality in non-convex optimization problem, such as deep learning model training.

Example

Primal Problem

$$\min_{\mathbf{x}} \quad x^2$$
 subject to $x - 1 \le 0$

The Lagrangian is given as

$$L(x, u) = x^2 + u(x - 1).$$

The Lagrangian dual is given as

$$g(u) = L(-u/2, u) = -u^2/4 - u$$

The maximum of g(u) is equal to the minimum of f(x): $f^* = g^* = 0$

Optimization in SVM

First the SVM formulation is equivalent to

$$\begin{aligned} & \min_{w,b} & & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to} & & y_i(w^T \mathbf{x}_i + b) \geq 1 - \xi_i; \ \xi_i \geq 0; \ i = 1, \dots, n \end{aligned}$$

Lagrange (primal) function is

$$L_{P} = \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
$$- \sum_{i=1}^{n} \alpha_{i} (y_{i}(w^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i}) - \sum_{i=1}^{n} \beta_{i} \xi_{i},$$

which we minimize w.r.t. w, b and ξ_i , subject to ξ_i , α_i , $\beta_i \geq 0$

Dual form

Setting the derivatives to zero,

$$w = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i, \ 0 = \sum_{i=1}^{n} \alpha_i y_i, \ C = \alpha_i + \beta_i,$$

as well as $\xi_i, \alpha_i, \beta_i \geq 0$

 Substituting them back to the primal function yields the Wolfe dual function.

$$\max_{\alpha} \qquad L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i'=1}^n \alpha_i \alpha_{i'} y_i y_{i'} \langle \mathbf{x}_i, \mathbf{x}_{i'} \rangle$$
 subject to
$$\sum_{i=1}^n \alpha_i y_i = 0; \ 0 \leq \alpha_i \leq C$$

KKT conditions

The solutions to the primal and the dual forms are equivalent,

$$\hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \mathbf{x}_i$$

• The solutions to the primal and the dual forms must satisfy the Karush-Kuhn-Tucker conditions:

$$\alpha_i(y_i(w^T \mathbf{x}_i + b) - 1 + \xi_i) = 0,$$

$$\beta_i \xi_i = 0,$$

$$y_i(w^T \mathbf{x}_i + b) \geq 1 - \xi_i$$

More on KKT conditions

 $\hat{\alpha}_i > 0$ only when $y_i(\hat{w}^T \mathbf{x}_i + \hat{b}) = 1 - \hat{\xi}_i$, or equivalently,

$$y_i(\hat{w}^T\mathbf{x}_i+\hat{b})\leq 1.$$

These points are called support vectors

- Among support vectors, some have $\hat{\xi}_i > 0$ and $\hat{\alpha}_i = C$; and others lie on the margin $\hat{\xi}_i = 0$, and thus $0 < \hat{\alpha}_i \le C$
- b cannot be obtained from the dual form, but can be solved by using any point with $0 < \hat{\alpha}_i < C$, where

$$y_i(\hat{w}^T\mathbf{x}_i+b)=1$$

• If no point with $0 < \hat{\alpha}_i < C$, plugging \hat{w} back into the primal form and solve for \hat{b}

A toy example

When the classes have nonlinear boundary, linear SVM can perform very poorly

Nonlinear Decision Boundary

If we fit a SVM on this example, the accuracy will be bad!

Nonlinear SVM with kernels

The key idea of extending linear SVM, and many other linear procedures, to nonlinear is to:

- Enlarge the predictor space using basis expansion functions $h_1(\mathbf{x}), \ldots, h_M(\mathbf{x})$
- Construct a linear separating hyperplane $f(x) = \mathbf{w}^T h(\mathbf{x}) + b$ in the enlarged space for better training performance
- The linear separating hyperplane in the enlarged space can be translated into a nonlinear separating hyperplane in the original space

In the enlarged space, the dual form becomes

$$\max_{\alpha} \qquad L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i'=1}^n \alpha_i \alpha_{i'} y_i y_{i'} \langle h(\mathbf{x}_i), h(\mathbf{x}_{i'}) \rangle$$
 subject to
$$\sum_{i=1}^n \alpha_i y_i = 0; \ 0 \leq \alpha_i \leq C$$

• The solution is $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i h(\mathbf{x}_i)$, and

$$\hat{f}(\mathbf{x}) = \hat{\mathbf{w}}^T h(\mathbf{x}) + \hat{b} = \sum_{i=1}^n \hat{\alpha}_i y_i \langle h(\mathbf{x}_i), h(\mathbf{x}) \rangle + \hat{b}$$

• The interesting part is the formulation relies on h(x) only through their inner products

Kernels

Define

$$K(\mathbf{x}, \mathbf{x}') = \langle h(\mathbf{x}), h(\mathbf{x}') \rangle,$$

and thus we need not specify $h(\cdot)$ at all, but only $K(\cdot,\cdot)$

- Popular choice of $K(\cdot, \cdot)$:
 - Linear: $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
 - Degree-d polynomial: $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^d$
 - Radial (Gaussian): $K(\mathbf{x}, \mathbf{x}') = \exp(-\frac{\|\mathbf{x} \mathbf{x}'\|^2}{\sigma^2})$

Why a Kernel is associated with a mapping

Consider a polynomial-2 kernel

$$K(x,y) = (1 + xy)^2 = (1 + 2xy + x^2y^2)$$

= $(1, \sqrt{2}x, x^2) \cdot (1, \sqrt{2}y, y^2)$
= $\langle h(x), h(y) \rangle$.

- ullet Using Kernel function $K(\cdot,\cdot)$ in SVM is equivalent to
- Finding a non-linear transformation h(x) on x
- Fit a linear SVM with respect to h(x)

Example with nonlinear SVM

Left: SVM with a polynomial kernel of degree 3; Right: SVM with a radial kernel

Radial kernel

- It is also known as the Gaussian kernel
- When x_i is far away from x, $K(x_i, x)$ will be very tiny and thus x_i has little effect on $\hat{f}(x)$
- The radial kernel has very local behavior, and only nearby training observations have effects on the prediction of test observations
- The corresponding feature space of the radial kernel is implicit and infinite-dimensional

Heart example

Multiclass SVM

When the response $y \in \{1, ..., K\}$ with K > 2,

- One-versus-one approach
 - \circ Construct $\mathcal{C}^2_{\mathcal{K}}$ binary SVM classifiers, each compares one pair of classes
 - * Assign the test observation to the class to which it was most frequently assigned in these C_K^2 pairwise classification
- One-versus-rest approach
 - ullet Construct K binary SVM classifiers, each compares one class to the rest K-1 classes
 - Assign the test observation to the class for which the predicted function value is the largest
- Unified approach is also available, but with more sophisticated loss functions

SVM in a regularization form

A generic regularization form

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) + \lambda J(f)$$

The SVM formulation can be rephrased as

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (1 - y_i f(\mathbf{x}_i))_+ + \frac{\lambda}{2} ||f||_{\mathcal{F}}^2,$$

where $\mathcal F$ is the candidate functional space, and $\|\cdot\|_{\mathcal F}$ is the norm associated with $\mathcal F$

• $L(z) = (1 - z)_+$ is the hinge loss, where z = yf(x) is the functional margin

Large margin loss

Hinge loss:

$$L(z) = (1-z)_{+} = \max(1-z,0)$$

O Generalized hinge loss:

$$L(z) = (1-z)_+^q$$

 $\bigcirc \psi$ -loss:

$$L(z) = \psi(z) = \min(1, (1-z)_+)$$

D Binomial NLL:

$$L(z) = \log(1 + e^{-z})$$

Sigmoid loss:

$$L(z) = 1 - \tanh(\lambda z)$$