Department of Physics, IIT Kanpur

Semester-1, 2016-17

PHY103 Problem Set # 13 Date: Nov. 05, 2016 [RCB/Krishnacharya]

- 1. The index of refraction of diamond is 2.42. Construct a graph showing the ration of E_{oT}/E_{ol} and E_{oR}/E_{ol} as a function of angle if incidence for the air/diamond interface. (Assume $\mu_1 = \mu_2 = \mu_0$). In particular calculate (a) the amplitude at normal incidence, (b) Brewester's angle, and "crossover angle, at which the reflected and transmitted amplitudes are equal.
- 2. (a) Show that the skin depth in poor conductor $(\sigma << \omega \epsilon)$ is $(2/\sigma)(\epsilon/\mu)^{1/2}$ (independent of frequency). Find the skin depth (in meters) for pure water. (for water ϵ_r =80.1, χ_m = -9.0x10⁻⁶, and ρ = 2.5 x 10⁵ Ω m)
 - (b) Show that the skin depth in a good conductor $(\sigma >> \omega \epsilon)$ is $\lambda/2\pi$ (where λ is the wavelength in the conductor). Find the skin depth (in nanometers) for a typical metal $(\sigma \sim 10^7 \ (\Omega m)^{-1})$ in the visible range $(\omega \sim 10^{15}/s)$, assuming $\epsilon \sim \epsilon_0$ and $\mu \sim \mu_0$.
 - (c) Show that in a good conductor the magnetic field lags the electric field by 45°, and find the ration of their amplitudes. Foe a numerical example, use the typical metal of part (b) above.
- 3. Calculate the time averaged energy density of an electromagnetic plane wave in a conducting medium. Show that the magnetic contributions always dominates.

Why are metals opaque?