Epreuve écrite

Examen	de	fin	d'études	secondaires	2006

Section: D

Branche: Mathématiques I

Nom	et préne	om du candidat

I. La fonction f de la variable complexe z est définie par

$$f(z) = z^3 + (3i - 1)z^2 + (4 + i)z - 20$$

- 1) Montrer que l'équation f(z) = 0 admet une solution imaginaire pure.
- 2) Résoudre l'équation f(z) = 0.

II. On donne les nombres complexes

$$z_1 = \frac{18i - 26}{2i + 11}$$
 et $z_2 = \frac{4 - 4\sqrt{3}i}{i}$

- Calculer z₁ et z₂ sous forme algébrique et sous forme trigonométrique.
- 2) Calculer $\frac{z_1}{z_2}$ sous forme algébrique et sous forme trigonométrique.
- 3) En déduire les valeurs exactes de $\sin \frac{-5\pi}{12}$ et de $\cos \frac{-5\pi}{12}$.

III. Soit m un paramètre réel. On définit la matrice $A_m = \begin{pmatrix} 3 & 0 & -1 - m \\ 0 & 3 - m & 0 \\ 1 - m & 0 & 1 \end{pmatrix}$.

- Déterminer les valeurs de m pour lesquelles A_m n'est pas inversible.
- 2) Déterminer les matrices A_1 et A_2 , puis calculer $(A_1 3 \cdot A_2)^{-1}$.

IV. 1) Résoudre et interpréter géométriquement le système $\begin{cases} 2x + 4y + 3z = 1 \\ 4x - 2y + z = 7 \\ -3x + y - z = -5 \end{cases}$

2) On donne le système $\begin{cases} m^2x + y = m \\ x + m^2y = 1 \end{cases}$ (m paramètre réel).

Déterminer les valeurs de m pour lesquelles le système admet

a) une solution unique,
b) aucune solution,
c) plus d'une solution.
On ne demande ni la résolution ni l'interprétation géométrique du système.

Répartition des points: 15 + 15 + (8 + 7) + (8 + 7)