

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

organizowany przez Łódzkiego Kuratora Oświaty dla uczniów szkół podstawowych w roku szkolnym 2021/2022

TEST - FTAP WOJEWÓDZKI

- Na wypełnienie testu masz 120 min.
- Arkusz liczy 16 stron i zawiera 10 zadań, w tym brudnopis oraz zestaw tablic fizykochemicznych.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania czytaj uważnie i ze zrozumieniem.
- Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- W zadaniach zamkniętych zaznacz prawidłową odpowiedź, wstawiając znak X we właściwym miejscu.
- Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Przy każdym zadaniu podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.
- Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.
- Nie używaj korektora. Jeśli pomylisz się w zadaniach otwartych, przekreśl błędną odpowiedź i wpisz poprawną.
- Korzystaj tylko z przyborów i materiałów określonych w regulaminie konkursu.

Powodzenia

Maksymalna liczba punktów - 100	
Liczba uzyskanych punktów	
lmię i nazwisko ucznia:wypełnia Komisja Konk	ursowa po zakończeniu sprawdzenia prac
Podpisy członków komisji sprawdzających	prace:
1(imię i nazwisko)	(podpis)
2. (imię i nazwisko)	(podpis)

Zadanie 1. Wybierz i zaznacz poprawne dokończenie każdego zdania. Odpowiedzi przenieś do tabeli poniżej.

- 1. Do naturalnych źródeł zanieczyszczeń powietrza należą
 - A. rolnictwo.
 - B. pożary lasów.
 - C. środki transportu.
 - D. procesy spalania w przemyśle.
- 2. Produktem destylacji ropy naftowej nie jest
 - A. asfalt.
 - B. benzyna.
 - C. gaz ziemny.
 - D. olej napędowy.
- 3. Przykładem mieszaniny niejednorodnej jest
 - A. ocet.
 - B. mleko.
 - C. atrament.
 - D. powietrze.
- 4. Pierwiastek leżący w 2 okresie i 13 grupie układu okresowego ma
 - A. 3 elektrony walencyjne.
 - B. 13 protonów.
 - C. 13 elektronów.
 - D. 13 elektronów walencyjnych.
- 5. Zjawisku powstawania szronu odpowiada
 - A. skraplanie.
 - B. sublimacja.
 - C. krzepnięcie.
 - D. resublimacja.
- 6. Azot
 - A. jest palny.
 - B. jest bezwonny.
 - C. podtrzymuje palenie.
 - D. dobrze rozpuszcza się w wodzie.

	3. SO ₂ .									
	C. N ₂ O.									
L). MgO.									
8. B	Barwę nie	wę niebieską w roztworach zasad przyjmuje								
A. fenoloftaleina.										
	B. oranż metylowy. C. esencja herbaciana.									
). esenc). uniwe	-		k weka	źnikowy	,				
L	7. UITIVVC	isality p	Japicici	N WSNA	ZHROW	y -				
9. A	by otrzy	mać wo	odorotle	nek m	iedzi(II)	należy	•			
	A. do wo	•			. :/!>					
	3. do wa C. do wa	•			` '					
). do we	•			` ,	I) doda	ć roztw	ór wod	orotlenk	ku sodu.
				` ,	,	,				
	λ. 32,5 g		00 8	, .op.		.ogo .c	2	01110111	a 0000	ootrzeba
	32,5 g		u sodu.							
	212,5	•								
). 217,5	g soli k	uchenn	ej.						
				1.7						
	Miejso 1	ce na od	3	dž: 4	5	6	7	8	9	10
	'		3	7	J			-	3	10
Α										
В										
В										
С										
С										
С		/10	pkt							
С	(liczba	/10	•	któw /ma	aksymaln	a liczba	punktów)		

7. Do tlenków kwasowych zaliczymy substancję o wzorze

A. CO.

Zastosuj wzory sumaryczne reagentów.
a. Metan + tlen → tlenek węgla(IV) +
b. $C_2H_6 + \dots \rightarrow tlenek węgla(II) + \dots$
c. Propan + tlen → węgiel +
Odpowiedź
Równanie a.:
Równanie b.:
Równanie c.:
/6 pkt (liczba uzyskanych punktów /maksymalna liczba punktów)
2b. Napisz nazwę systematyczną związku organicznego będącego substratem reakcji b .
Nazwa:
/1 pkt (liczba uzyskanych punktów /maksymalna liczba punktów)

Zadanie 2a. Napisz równania reakcji spalania według poniższych schematów.

W tym celu przedstaw schematyczny rysunek, napisz nazwy potrzebnych odczynników. Następnie napisz obserwacje i równanie reakcji, która zaszła podczas zaprojektowanego doświadczenia i była przyczyną obserwowanych zmian.						
Miejsce na odpowiedź						
Obserwacje:						
Równanie reakcji:						
/5 pkt						
(liczba uzyskanych punktów /maksymalna liczba punktów)						
2d. Rozstrzygnij czy temperatura wrzenia propanu jest wyższa od temperatury wrzenia butanu. Odpowiedź uzasadnij. Odwołaj się do budowy cząsteczek obu alkanów.						
butariu. Odpowiedz dzasadrij. Odwołaj się do budowy cząsteczek obu alkariow.						
Odpowiedź:						
/2 mls						

2c. Zaprojektuj doświadczenie w wyniku, którego zidentyfikujesz produkt reakcji **a** –

tlenek węgla(IV).

Zadanie 3. Próbka zawiera 4 mole cząsteczek siarkowodoru.
Oblicz masę tej próbki oraz objętość jaką zajmie ta próbka w warunkach normalnych.
Miejsce na obliczenia
Odnovije dći
Odpowiedź:/5 pkt
(liczba uzyskanych punktów /maksymalna liczba punktów)

wzrastającą liczbą cząsteczek.						
⁄liejsce na odpowiedź						

...../8 pkt

(liczba uzyskanych punktów /maksymalna liczba punktów)

Zadanie 4. Przygotowano trzy próbki tlenku węgla(IV): 30 g CO₂, 1,5 mola CO₂ i 30 dm³ CO₂ (w przeliczeniu na warunki normalne). Oblicz liczbę cząsteczek tlenku

Zadanie 5. Pewien nieorganiczny kwas A reaguje z pewną zasadą B. W wyniku tej reakcji powstaje trudno rozpuszczalna w wodzie sól C. Wzór sumaryczny związku C zawiera cztery atomy tlenu, jeden atom metalu z II grupy układu okresowego pierwiastków oraz atom niemetalu. Niemetal ten w warunkach pokojowych jest ciałem stałym o charakterystycznej żółtej barwie. Masa molowa związku C wynosi 233 g/mol.

5a. Napisz nazwy systematyczne substancji A, B i C. Odpowiedź: A - B - C -/3 pkt (liczba uzyskanych punktów /maksymalna liczba punktów) 5b. Napisz w formie cząsteczkowej równanie reakcji kwasu A i zasady B. Równanie reakcji:/2 pkt (liczba uzyskanych punktów /maksymalna liczba punktów) 5c. Przeprowadzono doświadczanie, w którym w pierwszej probówce przygotowano roztwór wodny substancji A, w drugiej substancji B, a w trzeciej nasycony roztwór substancji C. Do wszystkich probówek zanurzono żółty uniwersalny papierek wskaźnikowy. Napisz barwy jakie przyjmie żółty uniwersalny papierek wskaźnikowy w roztworach wodnych substancji A - C. Odpowiedź: A - B - C -/3 pkt (liczba uzyskanych punktów /maksymalna liczba punktów)

Zadanie 6. Przeprowadzono doświadczenie chemiczne (w temperaturze pokojowej i pod ciśnieniem normalnym), którego schemat przedstawiono poniżej.

6a. Uzupełnij opis doświadczenia oraz informacje dotyczące butanu i butenu. Podkreśl poprawne określenie w każdym nawiasie.

Podczas tego doświadczenia do probówek wprowadzono substancje (gazowe / ciekłe / stałe). Przed wprowadzeniem tych substancji zawartość probówek miała barwę (brunatną / fioletową / czarną).

W probówkach znajdował się wodny roztwór bromu. W wyniku wprowadzenia nadmiaru butanu do probówki 1. jej zawartość (pozostała brunatna / pozostała fioletowa / odbarwiła się). Po wprowadzeniu butenu do probówki 2. jej zawartość (pozostaje fioletowa / pozostaje brunatna / odbarwia się).

Butan należy do szeregu homologicznego (alkanów / alkenów / alkinów), czyli węglowodorów (nasyconych / nienasyconych). Buten należy do szeregu homologicznego (alkanów/ alkenów / alkinów), czyli węglowodorów (nasyconych / nienasyconych). Wzór sumaryczny butanu to (C_4H_{10} / C_4H_8 / C_4H_6), a butenu to (C_4H_{10} / C_4H_8 / C_4H_6).

/10 pkt	
(liczba uzyskanych punktów /maksymalna liczba j	punktów)

6b. Napisz równanie reakcji, która zaszła podczas opisanego doświadczenia i była
przyczyną obserwowanych zmian. Zastosuj wzory sumaryczne reagentów.
Odpowiedź:

....../2 pkt
(liczba uzyskanych punktów /maksymalna liczba punktów)

Zadanie 7.

Odpowiedź

W wyniki przyłączenia jednego mola cząsteczek wodoru do jednego mola cząsteczek węglowodoru A powstaje jeden mol cząsteczek węglowodoru B (reakcja 1). Działając wodą na węglowodór B powstaje związek C (reakcja 2). Związek C ulega fermentacji octowej, w wyniku, której powstaje związek D (reakcja 3). Związek D w odpowiednich warunkach reaguje z alkoholem metylowym tworząc związek E, którego nazwa zwyczajowa to octan metylu (reakcja 4). Związek E pod wpływem stężonego kwasu siarkowego(VI) ulega reakcji hydrolizy, która prowadzi do odtworzenia związku D i alkoholu F (reakcja 5).

$$A \xrightarrow{1} B \xrightarrow{2} C \xrightarrow{3} D \xrightarrow{4} E \xrightarrow{5} D + F$$

7a. Napisz równania reakcji oznaczone na schemacie cyframi: 1 - 4. Zastosuj wzory półstrukturalne organicznych reagentów.

Równanie 1.:

Równanie 2.:

Równanie 3.:

Równanie 4.:

...../8 pkt

(liczba uzyskanych punktów /maksymalna liczba punktów)

7b Napisz nazwy systematyczne związków A – E oraz nazwy grup związków organicznych, do których one należą.

Odpowiedź:		
·	Nazwa systematyczna	Nazwa grupy
A		
В		
С		
D		
E		
7c. Zaprojektuj przedstaw sch	ematyczny rysunek, napisz nazwy	esz odczyn związku D. W tym celu y potrzebnych odczynników.
• • • • • •	isz obserwacje i wnioski. Napisz r e odczyn substancji D lub zaznacz	
Miejsce na odp	oowiedź	
Wnioski:		
Nownanie lear	kcji:	
	/6 pkt	

(liczba uzyskanych punktów /maksymalna liczba punktów)

Zadanie 8. Pewien związek organiczny przedstawiany jest wzorem:

$$\begin{array}{c} \text{CH}_2 - \text{O} - \text{C} & \overset{\text{O}}{-} \text{C}_{17} \text{H}_{33} \\ \text{CH} & - \text{O} - \text{C} & \overset{\text{O}}{-} \text{C}_{17} \text{H}_{33} \\ \text{CH}_2 - \text{O} - \text{C} & \overset{\text{O}}{-} \text{C}_{17} \text{H}_{33} \end{array}$$

8a. Uzupełnij luki w tekście dotyczącego związku, którego wzór przedstawiono powyżej.

Przedstawiony związek powstaje w wyniku reakcji dwóch substancji. Alkoholu o nazwie oraz tłuszczowego o wzorze sumarycznym

...../3 pkt (liczba uzyskanych punktów /maksymalna liczba punktów)

8b. Dokończ poniższe zdanie. Wybierz i zaznacz odpowiedź (A. lub B.) oraz jej uzasadnienie (1. lub 2.).

Związek, którego wzór przedstawiono powyżej jest

A.	ciekły	ponieważ, należy do	1.	nasyconych
B.	stały	tłuszczów	2.	nienasyconych

...../2 pkt

(liczba uzyskanych punktów /maksymalna liczba punktów)

Zadanie 9. Przeprowadzono doświadczenie chemiczne, które polegało na zbadaniu zachowania się białka jaja kurzego pod wpływem różnych substancji i ogrzewania. Do ośmiu ponumerowanych probówek dodano białko jaja kurzego i oddzielnie do każdej z nich dodano szereg odczynników chemicznych lub ich roztworów wodnych. Probówkę nr 8 jedynie podgrzano. Schemat doświadczenia przedstawiono na poniższym rysunku.

	•	numery loświadcz	•	W	których	nastąpiła	denaturacja	białka	podczas
Od	powiedź:								
			/ 6 pkt zyskanych pur	ıktó	w /maksym	ialna liczba p	ounktów)		
	•		akcji, która z probówki w		•		nr 5. Napisz j	akie zal	barwienie
Od	powiedź:								

(liczba uzyskanych punktów /maksymalna liczba punktów)

...../2 pkt

Zadanie 10. Oceń poprawność zdań. Zaznacz literę P, jeśli stwierdzenie jest prawdziwe lub literę F, jeśli jest fałszywe.

Α	Fruktoza należy do cukrów prostych.	□Р	□F
В	W jednej cząsteczce glukozy liczba atomów wodoru jest dwa razy większa niż liczba atomów tlenu.	□P	□F
O	W celu identyfikacji glukozy wykorzystuje się tzw. próbę Trommera.	□Р	□F
D	Sacharoza nie rozpuszcza się w wodzie.	□Р	□F
Е	Skrobia jest białą substancją stałą bez smaku i zapachu.	□Р	□F
IL.	Dodatek roztworu jodu do roztworu skrobi powoduje zmianę zabarwienia mieszaniny na żółto.	□Р	□F

....../6 pkt (liczba uzyskanych punktów /maksymalna liczba punktów)

Brudnopis

1	_														18		
1H		UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH															₂ He
wodór		2 42 44 45 46 4															hel
1,008	2						13	14	15	16	17	4,003					
3Li	₄ Be															₁₀ Ne	
lit	beryl	masa atomowa żelazo bor węgiel azot tlen													fluor	neon	
6,941	9,012	[u] 55,845 10,811 12,011														18,998	20,18
11Na	₁₂ Mg						13Al	₁₄ Si	15P	₁₆ S	17Cl	₁₈ Ar					
sód	magnez	_		_		_		_				glin	krzem	fosfor	siarka	chlor	argon
22,99	24,305	3	4	5	6		8	9	10	11	12	26,981	28,086	30,974	32,066	35,453	39,948
19K	₂₀ Ca	21Sc	₂₂ Ti	23V	24Cr	₂₅ Mn	₂₆ Fe	27Co	28Ni	29Cu	30Zn	31Ga	32Ge	33As	34Se	35 Br	36Kr
potas	wapń	skand	tytan	wanad	chrom	mangan	żelazo	kobalt	nikiel	miedź	cynk	gal	german	arsen	selen	brom	krypton
39,098	40,078	44,956	47,867	50,942	51,996	54,938	55,845	58,933	58,693	63,546	65,341	69,723	72,64	74,922	78,96	79,904	83,80
37Rb	38Sr	39Y	40Zr	41Nb	₄₂ Mo	43Tc	44Ru	45Rh	46Pd	47Ag	48Cd	49ln	50Sn	51Sb	52Te	₅₃ l	54Xe
rubid	stront	itr	cyrkon	niob	molibden	technet	ruten	rod	pallad	srebro	kadm	ind	cyna	antymon	tellur	jod	ksenon
85,468	87,62	88,906	91,224	92,906	95,94	(98)	101,07	102.906	106,42	107,868	112,411	114,818	118,710	121,760	127,60	126,904	131,293
55Cs	56Ba	57 La *	72Hf	73 Ta	74W	75Re	76Os	77lr	78Pt	79Au	80Hg	81TI	82Pb	83Bi	84Po	85At	86Rn
cez	bar	lantan	hafn	tantal	wolfram	ren	osm	iryd	platyna	złoto	rtęć	tal	ołów	bizmut	polon	astat	radon
132,906	137,327	139,91	178,5	180,948	183,84	186,207	190,23	192,217	195,084	196,967	200,59	204,383	207,2	208,980	(209)	(210)	(222)
87Fr	88Ra	89Ac**	104Rf	105Db	₁₀₆ Sg	₁₀₇ Bh	108Hs	109Mt	110Ds	111Rg	112Cn	113Uut	114FI	115Uup	116Lv	117Uus	118Uuo
frans	rad	aktyn	rutherford	dubn	seaborg	bohr	has		darmstadt		kopernik	ununtri	flerow	ununpent	liwermor	ununsept	ununokt
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)	(285)	(284)	(289)	(289)	(292)	(294)	(294)
				Co	59Pr	- Nd	₆₁ Pm	₆₂ Sm	63Eu	64Gd	65Tb	Dv	67Ho	68Er	₆₉ Tm	70 Yb	Lu
			*)	58 Ce cer	prazeodym	60Nd neodym	promet	samar	europ	gadolin	terb	66Dy dysproz	holm	68⊑1 erb	tul	iterb	71Lu lutet
			,	140,116	140,908	144,24	(145)	150,36	151,964	157,25	158,926	162,50	164,930	167,259	168,934	173,04	174,967
				,	D ₂	,		,		,	,	-	,	_	,	,	
			**)	₉₀ Th	₉₁ Pa	₉₂ U	₉₃ Np	94Pu	₉₅ Am	₉₆ Cm	97Bk	98Cf	99 Es	₁₀₀ Fm	101Md mendelew	₁₀₂ No	₁₀₃ Lr
				tor 232,038	protaktyn 231,036	uran 238,029	neptun (237)	pluton (244)	ameryk (243)	kiur (247)	berkel (247)	kaliforn (248)	einstein (252)	ferm (257)	(258)	nobel (259)	(262)
				232,038	231,036	230,029	(237)	(244)	(245)	(247)	(24/)	(240)	(232)	(237)	1230/	(259)	(202)

Żródło: W. Mizerski, Tablice Chemiczne, Adamantan, Warszawa 2004

TABELA ROZPUSZCZALNOŚCI SOLI I WODOROTLENKÓW

W WODZIE W TEMPERATURZE 25°C

	NH ₄ +	Na+	K+	Mg ²⁺	Ca ²⁺	Ba ²⁺	Sr2+	Ag+	Hg2+	Pb2+	Cu ²⁺	Sn2+	Zn ²⁺	Fe ²⁺	Fe ³⁺	Al³+	Cr3+
OH-	R	R	R	N	T	R	R	_	N	N	N	N	N	N	N	N	N
Cl-	R	R	R	R	R	R	R	N	R	T	R	R	R	R	R	R	R
F-	R	R	R	N	N	N	N	R	R	N	T	R	T	T	T	N	N
Br ⁻	R	R	R	R	R	R	R	N	T	T	R	R	R	R	R	R	R
I ⁻	R	R	R	R	R	R	R	N	N	T	*	R	R	R	*	R	R
S ²⁻	R	R	R	R	T	R	R	N	N	N	N	N	N	N	N	-	N
SO ₃ ²⁻	R	R	R	R	T	N	N	T	N	N	*	-	T	T	*	-	R
SO ₄ ²⁻	R	R	R	R	T	N	N	T	R	N	R	R	R	R	R	R	R
NO ₃	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CO ₃ ²⁻	R	R	R	N	N	N	N	N	N	N	N	-	N	N	-	-	R
PO ₄ ³⁻	R	R	R	N	N	N	N	N	N	N	N	N	N	N	N	N	T
SiO ₃ ²⁻	R	R	R	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MnO ₄	R	R	R	R	R	R	R	R	-	R	R	*	R	*	R	R	R
CrO ₄ ²⁻	R	R	R	R	R	N	T	N	T	N	N	N	T	*	N	N	N
CH ₃ COO	R	R	R	R	R	R	R	T	R	R	R	R	R	R	R	R	R
R - subs	Т	- sub-	N	N - substancja praktycznie				zachodzą złożone reakcje chemiczne									

(osad strąca się nierozpuszczalna - substancja rozkłada się albo ze stężonych roztworów) nie została otrzymana

Żródło: W. Mizerski, Tablice Chemiczne, Adamantan, Warszawa 2004