Wavelet Transform for Image Processing

Haar Compression Augmented

Zhang Jinrui¹ He Jiashun Meng Jingyuan Jiang Zishen Mo 7ian

August 6, 2025

¹alternative email:zhangjr1022@mails.jlu.edu.cn

1. Image Loading and Grayscale Conversion

Step Explanation

The image is loaded using a Python imaging library and converted to grayscale.

This reduces data complexity and focuses analysis on structural content.

Wavelet Transform for Image Processing

2. Rescaling and 3. Centered Cropping

Rescaling with Aspect Ratio Preservation

The image is resized using high-fidelity interpolation to ensure one side reaches the target length (2^N) , without distortion.

The resized image is cropped to $2^N \times 2^N$, ensuring input uniformity without compromising important visual features.

Pre-Processing

Step Explanation

The final image is converted into a matrix format suitable for:

- · Mathematical operations (e.g., wavelet transforms)
- Storage and machine learning integration

128	135	142
130	138	145
125	132	139

Haar Compression Augmented

Example of 3x3 image matrix (simplified)

5. Convert Matrix Information into an Image

Concept

Each matrix element represents the gray value of a pixel. Using this matrix, we can reconstruct the grayscale image.

Haar Compression Augmented

```
[[162 161 162 ... 117 165 167]
 [160 160 160 ... 127 130 101]
 [157 156 157 ... 105 53 40]
 <sup>54</sup>
     56 58 ... 57 52
                          611
 [ 50 53 52 ... 57 70
                          881
     53 49 ... 67 93 103]]
矩阵形状: (128, 128)
图像尺寸: (128, 128)
```


Haar Compression Augmented

Standard Haar Decomposition

- sdlfkj
- sDF
- sdf

Haar Compression

- sdlfkj
- sDF
- sdf

Haar Compression

sadsgkjh

- sdlfkj
- sDF
- sdf

- sdlfkj
- sDF
- sdf

sadsgkjh

- sdlfkj
- sDF
- sdf

•

$$\sum_{k=1}^{n} \hat{l}_{k}^{4} \ge \left(\sum_{k=1}^{n} \hat{l}_{k}^{2}\right)^{2} = \left(\sum_{k=1}^{n} l_{k}^{2}\right)^{2}$$

Haar Compression Augmented

$$\min_{\hat{l}_k \in l^2 \text{st.} \sum_{k=1}^{n} \hat{l}_k^2 = \sum_{k=1}^{n} l_k^2} \left(- \sum_{k=1}^{n} \hat{l}_k^4 \right)$$

Figure: Cascading

$$\min_{\Phi}(-\sum_{k=1}^{n}\hat{l}_{k}^{4})$$

• Condense the energy to as less coefficients as possible.

Results

Figure: Haar 2x2 filter bank random input. Compression Rate 0.2568

Figure: Haar 2x2 filter bank random input. Total average energy loss 0.0009

Results

Figure: Haar 2x2 filter bank sin input frequency. Compression Rate 0.9287

Figure: Haar 2x2 filter bank sin input reconstruction. Total average energy loss 0.0104

Figure: Haar 3x3 filter bank random input. Compression Rate 0.1906

Figure: Haar 3x3 filter bank random input. Total average energy loss 0.0008

Figure: Haar 3x3 filter bank sin input frequency. Compression Rate 0.7750

Figure: Haar 3x3 filter bank sin input reconstruction. Total average energy loss 0.0007

Main Theorem – Four Equivalent Statements

The following are equivalent:

- **1** The filter bank $(\{\tilde{u}_{\ell}\}, \{u_{\ell}\})$ has PR.
- $2 \frac{1}{2} \sum_{i=1}^{3} S_{u_{\ell}} T_{\tilde{u}_{\ell}} v = v \text{ for all } v \in \ell(\mathbb{Z}).$
- **3** The identity holds for $v = \delta$ and $v = \delta(\cdot 1)$.
- Frequency-domain identities for all $\omega \in \mathbb{R}$:

$$\sum_{\ell=0}^{s} \overline{\hat{u}_{\ell}(\omega)} \hat{u}_{\ell}(\omega) = 1,$$

$$\sum_{\ell=0}^{s} \overline{\hat{ ilde{u}}_{\ell}(\omega)} \hat{u}_{\ell}(\omega+\pi) = 0.$$

$$(i) \Rightarrow (ii) \Rightarrow (iii)$$

Trivial inclusions:

$$\ell_0(\mathbb{Z}) \subseteq \ell(\mathbb{Z})$$
 and $\delta, \delta(\cdot - 1) \in \ell_0(\mathbb{Z})$.

Proof Sketch-Implications

Pre-Processing

$(iii) \Rightarrow (iv)$

1 Frequency Domain Conversion: Using Fourier transforms of $T_{\tilde{\mu}_{\ell}}$ and $S_{\mu_{\ell}}$:

$$\widehat{T_{ ilde{u}_\ell} v}(\omega) = \hat{v}(\omega/2) \overline{\hat{ ilde{u}}_\ell(\omega/2)} + \hat{v}(\omega/2 + \pi) \overline{\hat{ ilde{u}}_\ell(\omega/2 + \pi)}, \ \widehat{S_{u_\ell} w}(\omega) = \hat{w}(2\omega) \hat{u}_\ell(\omega).$$

2 Substitute Basis Signals: Plugging $v = \delta$ ($\hat{v} = 1$) and $v = \delta(\cdot - 1)$ ($\hat{v} = e^{-i\omega}$) into the PR condition yields the system:

$$\begin{split} &\sum_{\ell=0}^{s} \overline{\hat{u}_{\ell}(\omega)} \hat{u}_{\ell}(\omega) + \sum_{\ell=0}^{s} \overline{\hat{u}_{\ell}(\omega + \pi)} \hat{u}_{\ell}(\omega + \pi) = 2, \\ &\sum_{\ell=0}^{s} \overline{\hat{u}_{\ell}(\omega)} \hat{u}_{\ell}(\omega) - \sum_{\ell=0}^{s} \overline{\hat{u}_{\ell}(\omega + \pi)} \hat{u}_{\ell}(\omega + \pi) = 0. \end{split}$$

Solve System: Adding and subtracting these equations gives

19 / 20

Proof Sketch-Implications

Pre-Processing

(iv)
$$\Rightarrow$$
 (ii) and (ii) \Rightarrow (i)

- (iv) \Rightarrow (ii): Condition (iv) implies the frequency identity holds for all $v \in \ell_0(\mathbb{Z})$ by linearity of Fourier transform.
- (ii) \Rightarrow (i): Localization Argument: For any $v \in \ell(\mathbb{Z})$, truncate to local signal $v_n \in \ell_0(\mathbb{Z})$ using finite support of filters. Apply (ii) to show:

$$v(n) = \frac{1}{2} \sum_{\ell=0}^{s} [S_{u_{\ell}} T_{\widetilde{u}_{\ell}} v](n).$$