Social Networks

This project is a programming assignment in C which aims to find influencer peacople in a social graph. Your program will read a data file containing a list of people names and the friendness they have. You will build a graph from the given data file. The vertices of the graph will be the people and there will be an edge between each person who have a friendness relationship.

You will process the graph and make the necessary calculations. The output of your program will be

- a) a representation of the graph you generated (can be viewed like adjacency matrix) and
- **b)** the centrality degrees.

The input will be in the following format:

Cem; Ayşe, Ferit, Dundar

Ayşe; Cem, Ferit, Dundar, Belma

Belma; Ayşe, Dundar, Edip Edip; Belma, Dundar, Gamze

Dundar; Ayse, Belma, Cem, Ferit, Gamze, Edip

Gamze; Dundar, Edip, Ferit, Halit

Ferit; Ayşe, Cem, Dundar, Gamze, Halit

Halit; Ferit, Gamze, Ilke

Ilke; Halit, Jale

Jale; Ilke

a) (25 points) The output of your program must be in the following form:

As the output, the resulting graph can be displayed using either of the following formats:

As an adjacency matrix:

The first 2 rows have been done for you:

	Cem	Ayşe	Belma	Edip	Dundar	Gamze	Ferit	Halit	Ilke	Jale
Cem	0	1	0	0	1	0	1	0	0	0
Ayşe	1	0	1	0	1	0	1	0	0	0
Belma										
Edip										
Dundar										
Gamze										
Ferit										
Halit										
Ilke										
Jale										

b) Build your graph and calculate the following values, Degree centrality(20 points), Closeness centrality(20 points), Betweenness centrality(20 points).

Example:

Degree centrality: Degree centrality of a node refers to the number of edges attached to the node. In order to know the standardized score, you need to divide each score by n-1 (n = the number of nodes). Since the graph has 7 nodes, 6 (7-1) is the denominator for this question.

Node	Score	Standardize d Score
1	1	1/6
2	1	1/6
3	3	3/6 = 1/2
4	2	2/6 = 1/3
5	3	3/6 = 1/2
6	2	2/6 = 1/3
7	2	2/6 = 1/3

Closeness centrality: You need to calculate the inverted score after you count the total number of steps to a node. In order to know the standardized score, you need to divide a score by (n-1), then take inverse. Note that the most central node is node 4 while the most central node for degree centrality is node 3 and 5.

Node Score		Standardize d Score	
1	1/16	6/16 = 3/8	
2	1/16	6/16 = 3/8	
3	1/11	6/11	
4	1/10	6/10 = 3/5	
5	1/11	6/11	
6	1/15	6/15 = 2/5	
7	1/15	6/15 = 2/5	

Betweenness centrality: To calculate betweenness centrality, you take every pair of the network and count how many times a node can interrupt the shortest paths (geodesic distance) between the two nodes of the pair. For standardization, I note that the denominator is (n-1)(n-2)/2. For this network, (7-1)(7-2)/2 = 15. Note that node 5 has a little smaller centrality score that node 3 and 4 because the connection between node 6 and 7 reduces the controllability of node 5.

Betwennes Centrality:

$$C \qquad (v) = \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Where, $C_{Betwenne}$ (v) is the betwenness centarlity of node V, σ_{st} is the number of shortest paths between all source and target pairs, $\sigma_{st}(v)$ is the number of shortests paths between all source and target pairs those pass through from node V.

Source	Target	Intermedia Nodes	Path
1	2	3	1-3-2
1	3	-	1-3
1	4	3	1-3-4
1	5	3,4	1-3-4-5
1	6	3,4,5	1-3-4-5-6
1	7	3,4,5	1-3-4-5-7
2	3	-	2-3
2	4	3	2-3-4
2	5	3,4	2-3-4-5
2	6	3,4,5	2-3-4-5-6
2	7	3,4,5	2-3-4-5-7
3	4	-	3-4
3	5	4	3-4-5
3	6	4,5	3-4-5-6
3	7	4,5	3-4-5-7
4	5	-	4-5
4	6	5	4-5-6
4	7	5	5-6-7
5	6	-	5-6
5	7	-	5-7
6	7	-	5-7

 $C_{Betwenne}$ 1 = 0

 $C_{Betwennes}$ 2 = 0

 $C_{Betwennes} 3 = 9/15$

 $C_{Betwenne}$ 4 = 9/15

 $C_{Betwenne}$ 5 = 8/15

 $C_{Betwennes}$ 6 = 0

 $C_{Betwennes}$ 7 = 0

After making standardization (n-1)(n-2)/2=15

 $C_{Betwenne}$ 1 = 0

 $C_{Betwennes}$ 2 = 0

$$C_{Betwenne} \ 3 = \frac{9}{225} = 0.04$$

$$C_{Betwenne} \ 4 = \frac{9}{225} = 0.04$$

 $C_{Betwennes} 5 = 8/225 = 0.035$

 $C_{Betwennes}$ 6 = 0

 $C_{Betwennes}$ 7 = 0

c)(15 points) What do you think about the information flow on this graph? What do you think the most powerful/critical node of this graph?,nk that this is a centralized graph? Why, why not?Do you think that

For PROJECT SUBMISSON:

1 page report + Code (by email also with hard copy to department secretary)

(name_surname.docx) both by email (cse225.marmara.2018 at gmail dot com) with the code by the deadline and 1 page report submission to department

secretary. with the following contents

REPORT:

a)Adjacency

Matrix b)

Source	Degree	Closeness	Betwenness
	Centrality	Centrality	Centrality

1		
2		
3		
4		
5		
6		
7		

Betwennes Centrality

Source	Target	Intermedia Nodes	Path
1	2		
1	3		
1	4		
1	5		
1	6		

c)Comments

CODE:

Code (name_surname.c)

When I run the code, the output format will be the same as in the report.

I will review and run your code and compare the results of the output with the results in the report.

If I get different results, you will fail the course and have dicisplinary penalty.

Ref: http://www.sscnet.ucla.edu/soc/faculty/mcfarland/soc112/cent-ans.htm

The main goal of this project is to be familiar with Graphs. So, you need to use Graph data structure.