Index

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c} {\rm Adjoint Operators} & vol.1:pp.43 - 44,87,103 \\ vol.3:pp.134 - 135 \\ vol.2:pp.120 - 121 \\ {\rm Affine Spaces} & vol.1:p.93 \\ {\rm Algebraic Lyapumov Equation} & vol.4:pp.80 - 82 \\ {\rm Arrow Matrix} & vol.4:pp.150 - 154 \\ {\rm Asymptotically Stable} & vol.2:p.76 \\ vol.3:pp.82 - 84 \\ vol.4:pp.7,61 - 62,67 - 69,75 \\ {\rm Attracting Fixed Point} & vol.2:p.76 \\ vol.3:pp.83 - 84 \\ {\rm Attractiveness} & vol.3:p.83 \\ vol.4:pp.61,99 \\ {\rm Autonomous Systems} & vol.1:p.7 \\ \\ Basin Boundary & vol.2:p.89 \\ Basis io Attraction & vol.2:p.89 \\ Basis io Attraction & vol.2:p.89 \\ Basis io States vol.3:p.83 \\ vol.4:pp.61,99 \\ {\rm Autonomous Systems} & vol.2:p.125 - 127 \\ {\rm Bendixson's Theorem} & vol.4:pp.25 - 29 \\ Bifurcation & vol.4:pp.12 - 1.3 \\ {\rm Bifurcation (Fold)} & vol.4:pp.12 - 1.3 \\ {\rm Bifurcation (Fold)} & vol.4:pp.12 - 1.5 \\ {\rm Bifurcation (Fold)} & vol.4:pp.12 - 1.5 \\ {\rm Bifurcation (Diagram vol.4:pp.35 - 20)} \\ {\rm Body Velocity} & vol.4:p.38 \\ {\rm Carrying Capacity} & vol.4:p.38 \\ {\rm Carrying Capacity} & vol.4:p.39 \\ {\rm Causal Systems} & vol.2:p.152 \\ {\rm Causal Systems} & vol.2:p.152 \\ {\rm Center Manifold Theory} & vol.4:p.39 - 45 \\ {\rm Center Manifold Theory} & vol.4:pp.39 - 45 \\ {\rm Center Characteristic Equation} & vol.2:pp.77,138 - 139 \\ vol.3:p.37 \\ vol.4:pp.39 - 97,102 - 112 \\ {\rm Class K (Comparison Functions)} & vol.4:pp.39 - 97,102 - 112 \\ {\rm Class K (Comparison Functions)} & vol.4:pp.39 - 97,02 - 112 \\ {\rm Class K (Comparison Functions)} & vol.4:pp.39 - 97,02 - 112 \\ {\rm Class K (Comparison Functions)} & vol.4:pp.39 - 96,05 \\ {\rm colum Space} & vol.2:pp.133 - 134 \\ {\rm comparison Function} & vol.4:pp.93 - 96,0102 - 103 \\ \end{array}$		
Adjugate Matrix $vol.3: pp.134 - 135$ Adjugate Matrix $vol.2: pp.120 - 121$ Affine Spaces $vol.1: p.93$ Algebraic Lyapunov Equation $vol.4: pp.80 - 82$ Arrow Matrix $vol.4: pp.150 - 154$ Asymptotically Stable $vol.2: p.76$ Attracting Fixed Point $vol.2: p.76$ Attracting Fixed Point $vol.3: pp.82 - 84$ $vol.4: pp.7, 61 - 62, 67 - 69, 75$ Attractiveness $vol.3: pp.83 - 84$ Attractiveness $vol.3: pp.83 - 84$ Attractiveness $vol.3: pp.83 - 84$ Autonomous Systems $vol.2: p.89$ Basin Boundary $vol.2: p.89$ Basin of Attraction $vol.2: p.89$ Basis $vol.2: pp.89$ Basis $vol.2: pp.125 - 127$ Bendixson's Theorem $vol.4: pp.12 - 13$ Bifurcation (Fold) $vol.4: pp.12 - 13$ Bifurcation (Fold) $vol.4: pp.12 - 13$ Bifurcation (Transcritical) $vol.4: pp.12 - 15$ Bifurcation Diagram $vol.4: pp.12 - 15$ Bifurcation Diagram $vol.4: pp.12 - 15$ Carrying Capacity $vol.4: pp.9$ Causal Systems $vol.3: pp.12 - 12$ Center Manifold Theory $vol.4: pp.9$ Centers (Equilibrium Point) $vol.4: pp.39 - 45$ Centroid of Area $vol.4: pp.39 - 45$ Centroid of Area $vol.4: pp.39 - 45$ Centroid of Area $vol.4: pp.39 - 97, 102 - 112$ Class $vol.4: pp.39 - 97, 102 - 112$ Column Space $vol.4: pp.39 - 96, 105$ Column Space $vol.4: pp.39 - 96, 105$ Comparison Functions $vol.4: pp.39 - 96, 105$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Adjoint Operators	
Affine Spaces Algebraic Lyapunov Equation Algebraic Lyapunov Equation Algebraic Lyapunov Equation Arrow Matrix Asymptotically Stable vol. 2: p.76 vol. 3: pp.82 − 84 vol. 4: pp.7; 61 − 62, 67 − 69, 75 Attracting Fixed Point vol. 2: p.76 Attracting Fixed Point vol. 3: pp.83 − 84 Attractiveness vol. 3: pp.83 − 84 Attractiveness vol. 4: pp.61, 99 Autonomous Systems Vol. 2: p.89 Basin Boundary Basis of Attraction Basis vol. 2: pp.125 − 127 Bendixson's Theorem vol. 4: pp.12 − 12, 63 − 64 vol. 4: pp.12 − 13 Bifurcation (Fold) Bifurcation (Fold) Bifurcation (Transcritical) Bifurcation (Transcritical) Bifurcation Transcritical) vol. 4: pp.12 − 15 Bifurcation Diagram Body Velocity vol. 1: p.38 C Carrying Capacity Causal Systems vol. 2: p.152 vol. 3: pp.3 − 4 Cayley Hamilton Theorem vol. 2: pp.139 − 140 vol. 3: pp.121 − 122 Center Manifold Theory vol. 4: pp.22 − 26 Centroid of Area Characteristic Equation vol. 4: pp.39 − 97, 102 − 112 Class K (Comparison Functions) Class K \(\) (Comparison Functions) vol. 4: pp.33 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.39 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Class K \(\) (Comparison Functions) vol. 4: pp.93 − 97, 102 − 112 Vol. 4: pp.93 − 97, 102 − 112		
$ \begin{array}{c} \text{Algebraic Lyapunov Equation} & vol.4: pp.80 - 82 \\ \text{Arrow Matrix} & vol.4: pp.150 - 154 \\ \text{Asymptotically Stable} & vol.2: p.76 \\ & vol.3: pp.82 - 84 \\ & vol.4: pp.7, 61 - 62, 67 - 69, 75 \\ \text{Attracting Fixed Point} & vol.2: p.76 \\ & vol.3: pp.83 - 84 \\ \text{Attractiveness} & vol.3: pp.83 - 84 \\ \text{Attractiveness} & vol.3: p.83 \\ \text{Autonomous Systems} & vol.4: pp.61, 99 \\ \text{Autonomous Systems} & vol.2: p.89 \\ \text{Basin Boundary} & vol.2: p.89 \\ \text{Basin of Attraction} & vol.2: p.89 \\ \text{Basis of Attraction} & vol.2: pp.89 \\ Basis of Inference of Matrice of Mat$	Adjugate Matrix	vol.2: pp.120 - 121
	Affine Spaces	vol.1:p.93
$\begin{array}{c} \text{Asymptotically Stable} & vol.2: p.76 \\ vol.3: pp.82 - 84 \\ vol.4: pp.7, 61 - 62, 67 - 69, 75 \\ \text{Attracting Fixed Point} & vol.2: p.76 \\ vol.3: pp.83 - 84 \\ \text{Attractiveness} & vol.3: pp.83 - 84 \\ \text{Attractiveness} & vol.3: pp.83 - 84 \\ \text{Attractiveness} & vol.4: pp.61, 99 \\ \text{Autonomous Systems} & vol.1: p.7 \\ \\ B \\ \text{Basin Boundary} & vol.2: p.89 \\ \text{Basin of Attraction} & vol.2: p.89 \\ \text{Basin of Attraction} & vol.2: pp.125 - 127 \\ \text{Bendixson's Theorem} & vol.4: pp.12 - 127 \\ \text{Bendixson's Theorem} & vol.4: pp.12 - 13 \\ \text{Bifurcation} & vol.4: pp.12 - 13 \\ \text{Bifurcation} & \text{(Fold)} & vol.4: pp.12 - 13 \\ \text{Bifurcation Diagram} & vol.4: pp.12 - 15 \\ \text{Bifurcation Diagram} & vol.4: pp.12 - 15 \\ \text{Body Velocity} & vol.4: pp.38 \\ \\ C \\ \text{Carrying Capacity} & vol.4: pp.39 - 4 \\ \text{Cayley Hamilton Theorem} & vol.2: p.152 \\ vol.3: pp.3 - 4 \\ \text{Cayley Hamilton Theorem} & vol.2: pp.130 - 140 \\ vol.3: pp.12 - 1 - 122 \\ \text{Center Manifold Theory} & vol.4: pp.39 - 45 \\ \text{Centroid of Area} & vol.4: pp.39 - 45 \\ \text{Centroid of Area} & vol.4: pp.39 - 95 \\ \text{Centroid of Area} & vol.4: pp.39 - 97, 102 - 112 \\ \text{Class K (Comparison Functions)} & vol.4: pp.33 - 97, 102 - 112 \\ \text{Class K}_{\infty} & \text{(Comparison Functions)} & vol.4: pp.39 - 97, 102 - 112 \\ \text{Class K}_{\infty} & \text{(Comparison Functions)} & vol.4: pp.39 - 96, 105 \\ \text{Column Space} & vol.2: pp.133 - 134 \\ \text{Comparison Function} & vol.4: pp.93 - 96, 102 - 103 \\ \end{array}$	Algebraic Lyapunov Equation	vol.4: pp.80 - 82
$ vol.3: pp.82 = 84 \\ vol.4: pp.7, 61 = 62, 67 = 69, 75 \\ vol.2: p.76 \\ vol.2: p.76 \\ vol.3: pp.83 = 84 \\ vol.3: pp.83 = 84 \\ vol.4: pp.61, 99 \\ Autonomous Systems vol.1: p.7 \\ Basin Boundary vol.2: p.89 \\ Basin of Attraction vol.2: p.89 \\ Basis of Attraction vol.2: p.89 \\ Basis of Attraction vol.2: p.89 \\ Basis vol.2: pp.125 = 127 \\ Bendixson's Theorem vol.4: pp.25 = 29 \\ Bifurcation vol.4: pp.12 = 13, 57 \\ Bifurcation (Fold) vol.4: pp.12 = 13, 57 \\ Bifurcation (Transcritical) vol.4: pp.12 = 15 \\ Bifurcation Diagram vol.4: pp.12, 15 = 17 \\ Body Velocity vol.4: pp.38 \\ C \\ Carrying Capacity vol.4: pp.3 = 4 \\ Cayley Hamilton Theorem vol.2: pp.139 = 140 \\ vol.3: pp.3 = 4 \\ Cayley Hamilton Theorem vol.4: pp.22, 26 \\ Center Manifold Theory vol.4: pp.39 = 45 \\ Centers (Equilibrium Point) vol.4: pp.3 = 04, 129 \\ Centers (Equilibrium Point) vol.4: pp.3 = 07, 102 = 112 \\ Class K (Comparison Functions) vol.4: pp.93 = 97, 102 = 112 \\ Class K (Comparison Functions) vol.4: pp.93 = 97, 102 = 112 \\ Class K (Comparison Functions) vol.4: pp.93 = 97, 102 = 112 \\ Class K (Comparison Functions) vol.4: pp.93 = 97, 102 = 112 \\ Class K (Comparison Functions) vol.4: pp.93 = 97, 102 = 112 \\ Class K (Comparison Functions) vol.4: pp.93 = 96, 105 = 103 \\ vol.2: pp.133 = 134 \\ Comparison Function$	Arrow Matrix	vol.4: pp.150 - 154
	Asymptotically Stable	vol.2:p.76
$ \begin{array}{c} \text{Attracting Fixed Point} & vol.2: p.76 \\ vol.3: pp.83 - 84 \\ vol.4: pp.61, 99 \\ \text{Autonomous Systems} & vol.4: pp.61, 99 \\ \text{Autonomous Systems} & vol.2: p.89 \\ \text{Basin Boundary} & vol.2: p.89 \\ \text{Basin of Attraction} & vol.2: pp.89 \\ \text{Basis Solition of Attraction} & vol.4: pp.25 - 29 \\ \text{Bendixson's Theorem} & vol.4: pp.25 - 29 \\ \text{Bifurcation} & vol.4: pp.12 - 13 \\ \text{Bifurcation (Fold)} & vol.4: pp.12 - 13 \\ \text{Bifurcation (Transcritical)} & vol.4: pp.12 - 15 \\ \text{Bifurcation Diagram} & vol.4: pp.12 - 15 \\ \text{Body Velocity} & vol.4: pp.12, 15 - 17 \\ \text{Body Velocity} & vol.4: pp.9 \\ \text{Carrying Capacity} & vol.2: p.152 \\ \text{Carlying Capacity} & vol.2: p.152 \\ \text{Cally Hamilton Theorem} & vol.2: pp.139 - 140 \\ vol.3: pp.3 - 4 \\ \text{Cayley Hamilton Theorem} & vol.4: pp.22, 26 \\ \text{Center Manifold Theory} & vol.4: pp.22, 26 \\ \text{Centroid of Area} & vol.1: pp.4 - 6 \\ \text{Characteristic Equation} & vol.4: pp.34 - 97, 102 - 112 \\ \text{Class K (Comparison Functions)} & vol.4: pp.93 - 97, 102 - 112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.93 - 97, 102 - 112 \\ \text{Class K L} (\text{Comparison Functions}) & vol.4: pp.93 - 96, 105 - 103 \\ \text{Column Space} & vol.2: pp.133 - 134 \\ \text{Comparison Function} & vol.4: pp.93 - 96, 105 - 103 \\ \text{Vol.4: pp.93 - 96, 105 - 103} \\ \text{Vol.4: pp.93 - 96, 105 - 103}$		vol.3: pp.82 - 84
$ \begin{array}{c} vol.3 : pp.83 - 84 \\ \text{Attractiveness} & vol.3 : p.83 \\ vol.4 : pp.61, 99 \\ \text{Autonomous Systems} & vol.1 : p.7 \\ \hline \\ Basin Boundary & vol.2 : p.89 \\ Basin of Attraction & vol.2 : p.89 \\ Basin of Attraction & vol.2 : pp.125 - 127 \\ Bendixson's Theorem & vol.4 : pp.25 - 29 \\ Bifurcation & vol.1 : pp.11 - 12, 63 - 64 \\ vol.4 : pp.12 - 13 \\ Bifurcation & vol.4 : pp.12 - 13 \\ Bifurcation (Fold) & vol.4 : pp.12 - 13, 57 \\ Bifurcation (Transcritical) & vol.4 : pp.12 - 15 \\ Bifurcation Diagram & vol.4 : pp.12 - 15 \\ Body Velocity & vol.1 : p.38 \\ \hline \\ C \\ Carrying Capacity & vol.4 : p.9 \\ Causal Systems & vol.2 : p.152 \\ vol.3 : pp.3 - 4 \\ Cayley Hamilton Theorem & vol.2 : pp.139 - 140 \\ vol.3 : pp.121 - 122 \\ Center Manifold Theory & vol.4 : pp.39 - 45 \\ Centers (Equilibrium Point) & vol.4 : pp.22, 26 \\ Centroid of Area & vol.1 : pp.4 - 6 \\ Characteristic Equation & vol.2 : pp.77, 138 - 139 \\ vol.3 : p.37 \\ vol.4 : p.34 \\ Class K (Comparison Functions) & vol.4 : pp.93 - 97, 102 - 112 \\ Class K L (Comparison Functions) & vol.4 : pp.93 - 97, 102 - 112 \\ Class K L (Comparison Functions) & vol.4 : pp.93 - 96, 105 \\ Column Space & vol.2 : pp.133 - 134 \\ Comparison Function & vol.4 : pp.93 - 96, 105 - 103 \\ \end{array}$		vol.4: pp.7, 61-62, 67-69, 75
$ \begin{array}{c} \text{Attractiveness} & vol.3: p.83 \\ vol.4: pp.61, 99 \\ \text{Autonomous Systems} & vol.1: p.7 \\ \hline \\ B \\ \text{Basin Boundary} & vol.2: p.89 \\ \text{Basin of Attraction} & vol.2: p.89 \\ \text{Basis of Attraction} & vol.2: p.89 \\ \text{Basis} & vol.2: pp.125 - 127 \\ \text{Bendixson's Theorem} & vol.4: pp.25 - 29 \\ \text{Bifurcation} & vol.4: pp.12 - 13 \\ \text{Bifurcation} & vol.4: pp.12 - 13 \\ \text{Bifurcation (Fold)} & vol.4: pp.12 - 13, 57 \\ \text{Bifurcation (Transcritical)} & vol.4: pp.12 - 15 \\ \text{Bifurcation Diagram} & vol.4: pp.12, 15 - 17 \\ \text{Body Velocity} & vol.4: pp.38 \\ \hline \\ C \\ \text{Carrying Capacity} & vol.4: p.9 \\ \text{Causal Systems} & vol.2: p.152 \\ vol.3: pp.3 - 4 \\ \text{Cayley Hamilton Theorem} & vol.2: pp.139 - 140 \\ vol.3: pp.121 - 122 \\ \text{Center Manifold Theory} & vol.4: pp.39 - 45 \\ \text{Centroid of Area} & vol.1: pp.4 - 6 \\ \text{Characteristic Equation} & vol.2: pp.77, 138 - 139 \\ vol.3: p.37 \\ vol.4: p.34 \\ \text{Class K (Comparison Functions)} & vol.4: pp.39 - 97, 102 - 112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.39 - 97, 102 - 112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.39 - 97, 102 - 112 \\ \text{Class K L} (Comparison Functions)} & vol.4: pp.93 - 96, 105 \\ \text{Column Space} & vol.2: pp.133 - 134 \\ \text{Comparison Function} & vol.4: pp.93 - 96, 102 - 103 \\ \end{array}$	Attracting Fixed Point	vol.2:p.76
		vol.3: pp.83 - 84
Autonomous Systems $vol.1: p.7$ B Basin Boundary $vol.2: p.89$ Basis $vol.2: pp.125 − 127$ Bendixson's Theorem $vol.4: pp.25 − 29$ Bifurcation $vol.1: pp.11 − 12, 63 − 64$ $vol.4: pp.12 − 13$ $vol.4: pp.12 − 13, 57$ Bifurcation (Fold) $vol.4: pp.12 − 15$ Bifurcation Diagram $vol.4: pp.12, 15 − 17$ Body Velocity $vol.4: pp.38$ C Carrying Capacity Causal Systems $vol.4: p.9$ Causal Systems $vol.2: p.152$ Cayley Hamilton Theorem $vol.3: pp.3 − 4$ Cayley Hamilton Theorem $vol.3: pp.121 − 122$ Center Manifold Theory $vol.4: pp.39 − 45$ Centers (Equilibrium Point) $vol.4: pp.39 − 45$ Centers (Equilibrium Point) $vol.4: pp.34 − 6$ Characteristic Equation $vol.3: pp.77$ $vol.4: pp.34 − 6$ $vol.4: pp.34 − 6$ Class K (Comparison Functions) $vol.4: pp.93 − 97, 102 − 112$ Class K (Comparison Functions) $vol.4: pp.93 − 97, 102 − 112$ Class K (Comparison Functions) $vol.4: pp.93 − 96, 105$ <td>Attractiveness</td> <td>vol.3:p.83</td>	Attractiveness	vol.3:p.83
B Basin Boundary $vol.2: p.89$ Basin of Attraction $vol.2: p.89$ Basis $vol.2: pp.125 - 127$ Bendixson's Theorem $vol.4: pp.25 - 29$ Bifurcation $vol.4: pp.12 - 13$ Bifurcation (Fold) $vol.4: pp.12 - 13$, 57 Bifurcation Diagram $vol.4: pp.12 - 15$ Bifurcation Diagram $vol.4: pp.12, 15 - 17$ Body Velocity $vol.4: pp.38$ C Carrying Capacity Causal Systems $vol.2: p.152$ Cayley Hamilton Theorem $vol.3: pp.3 - 4$ Cayley Hamilton Theorem $vol.3: pp.30 - 4$ Center Manifold Theory $vol.4: pp.39 - 45$ Centers (Equilibrium Point) $vol.4: pp.39 - 45$ Centers (Equilibrium Point) $vol.4: pp.39 - 46$ Characteristic Equation $vol.4: pp.34 - 6$ Characteristic Equation $vol.3: pp.77$ $vol.4: pp.34 - 6$ $vol.4: pp.34 - 97, 102 - 112$ Class K (Comparison Functions) $vol.4: pp.33 - 97, 102 - 112$ Class K L (Comparison Functions) $vol.4: pp.33 - 97, 102 - 112$ Class K (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class		vol.4:pp.61,99
$\begin{array}{c} \text{Basin Boundary} & vol.2: p.89 \\ \text{Basin of Attraction} & vol.2: p.89 \\ \text{Basis} & vol.2: pp.125 - 127 \\ \text{Bendixson's Theorem} & vol.4: pp.25 - 29 \\ \text{Bifurcation} & vol.1: pp.11 - 12, 63 - 64 \\ & vol.4: pp.12 - 13 \\ \text{Bifurcation (Fold)} & vol.4: pp.12 - 13 \\ \text{Bifurcation Diagram} & vol.4: pp.12 - 15 \\ \text{Bifurcation Diagram} & vol.4: pp.12, 15 - 17 \\ \text{Body Velocity} & vol.4: pp.38 \\ \hline \\ C & & & & & & & & & & & & & & & & & &$	Autonomous Systems	vol.1:p.7
$\begin{array}{c} \text{Basin of Attraction} & vol.2: p.89 \\ \text{Basis} & vol.2: pp.125 - 127 \\ \text{Bendixson's Theorem} & vol.4: pp.25 - 29 \\ \text{Bifurcation} & vol.1: pp.11 - 12, 63 - 64 \\ & vol.4: pp.12 - 13 \\ \text{Bifurcation (Fold)} & vol.4: pp.12 - 13 \\ \text{Bifurcation (Transcritical)} & vol.4: pp.12 - 15 \\ \text{Bifurcation Diagram} & vol.4: pp.12 - 15 \\ \text{Body Velocity} & vol.4: pp.38 \\ \hline \\ C \\ Carrying Capacity & vol.4: p.9 \\ Causal Systems & vol.2: p.152 \\ & vol.3: pp.3 - 4 \\ Cayley Hamilton Theorem & vol.2: pp.139 - 140 \\ & vol.3: pp.121 - 122 \\ Center Manifold Theory & vol.4: pp.39 - 45 \\ Centers (Equilibrium Point) & vol.4: pp.22, 26 \\ Centroid of Area & vol.1: pp.4 - 6 \\ Characteristic Equation & vol.2: pp.77, 138 - 139 \\ & vol.4: p.34 \\ Class K (Comparison Functions) & vol.4: pp.93 - 97, 102 - 112 \\ Class K_{\infty} (Comparison Functions) & vol.4: pp.93 - 96, 105 \\ Column Space & vol.2: pp.133 - 134 \\ Comparison Function & vol.4: pp.93 - 96, 102 - 103 \\ \hline \end{array}$	B	
Basis $vol.2: pp.125 - 127$ Bendixson's Theorem $vol.4: pp.25 - 29$ Bifurcation $vol.1: pp.11 - 12, 63 - 64$ $vol.4: pp.12 - 13$ Bifurcation (Fold) $vol.4: pp.12 - 13$, 57 Bifurcation (Transcritical) $vol.4: pp.12 - 15$ Bifurcation Diagram $vol.4: pp.12 - 15$ Body Velocity $vol.4: pp.12, 15 - 17$ Body Velocity $vol.4: pp.38$ C Carrying Capacity $vol.4: pp.38$ C Carrying Capacity $vol.4: pp.38$ Causal Systems $vol.2: p.152$ $vol.3: pp.3 - 4$ Cayley Hamilton Theorem $vol.2: pp.139 - 140$ $vol.3: pp.139 - 140$ $vol.3: pp.121 - 122$ Center Manifold Theory $vol.4: pp.39 - 45$ Centers (Equilibrium Point) $vol.4: pp.39 - 45$ Centroid of Area $vol.1: pp.4 - 6$ Characteristic Equation $vol.2: pp.77, 138 - 139$ $vol.3: p.37$ $vol.4: p.34$ Class K (Comparison Functions) $vol.4: pp.3 - 97, 102 - 112$ Class K L (Comparison Functions) $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$ Class K $vol.4: pp.3 - 97, 102 - 112$	Basin Boundary	vol.2:p.89
$ \begin{array}{c} \text{Bendixson's Theorem} & vol.4: pp.25-29 \\ \text{Bifurcation} & vol.1: pp.11-12, 63-64 \\ vol.4: pp.12-13 \\ \text{Bifurcation (Fold)} & vol.4: pp.12-13, 57 \\ \text{Bifurcation (Transcritical)} & vol.4: pp.12-15 \\ \text{Bifurcation Diagram} & vol.4: pp.12, 15-17 \\ \text{Body Velocity} & vol.1: p.38 \\ \hline \\ C \\ \text{Carrying Capacity} & vol.4: p.9 \\ \text{Causal Systems} & vol.2: p.152 \\ vol.3: pp.3-4 \\ \text{Cayley Hamilton Theorem} & vol.2: p.139-140 \\ vol.3: pp.139-140 \\ vol.3: pp.121-122 \\ \text{Center Manifold Theory} & vol.4: pp.93-945 \\ \text{Centroid of Area} & vol.1: pp.4-6 \\ \text{Characteristic Equation} & vol.2: pp.77, 138-139 \\ vol.3: p.37 \\ vol.4: p.34 \\ \hline \\ \text{Class K (Comparison Functions)} & vol.4: pp.93-97, 102-112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.93-97, 102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4: pp.93-96, 105-103 \\ \hline \\ \text{Column Space} & vol.2: pp.133-134 \\ \hline \\ \text{Comparison Function} & vol.4: pp.93-96, 102-103 \\ \hline \end{array}$	Basin of Attraction	vol.2:p.89
$ \begin{array}{c} \text{Bendixson's Theorem} & vol.4: pp.25-29 \\ \text{Bifurcation} & vol.1: pp.11-12, 63-64 \\ vol.4: pp.12-13 \\ \text{Bifurcation (Fold)} & vol.4: pp.12-13, 57 \\ \text{Bifurcation (Transcritical)} & vol.4: pp.12-15 \\ \text{Bifurcation Diagram} & vol.4: pp.12, 15-17 \\ \text{Body Velocity} & vol.1: p.38 \\ \hline \\ C \\ \text{Carrying Capacity} & vol.4: p.9 \\ \text{Causal Systems} & vol.2: p.152 \\ vol.3: pp.3-4 \\ \text{Cayley Hamilton Theorem} & vol.2: p.139-140 \\ vol.3: pp.139-140 \\ vol.3: pp.121-122 \\ \text{Center Manifold Theory} & vol.4: pp.93-945 \\ \text{Centroid of Area} & vol.1: pp.4-6 \\ \text{Characteristic Equation} & vol.2: pp.77, 138-139 \\ vol.3: p.37 \\ vol.4: p.34 \\ \hline \\ \text{Class K (Comparison Functions)} & vol.4: pp.93-97, 102-112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.93-97, 102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4: pp.93-96, 105-103 \\ \hline \\ \text{Column Space} & vol.2: pp.133-134 \\ \hline \\ \text{Comparison Function} & vol.4: pp.93-96, 102-103 \\ \hline \end{array}$	Basis	vol.2: pp.125 - 127
Bifurcation $vol.1: pp.11 - 12, 63 - 64$ $vol.4: pp.12 - 13$ Bifurcation (Fold) $vol.4: pp.12 - 13, 57$ Bifurcation (Transcritical) $vol.4: pp.12 - 15$ Bifurcation Diagram $vol.4: pp.12, 15 - 17$ Body Velocity $vol.1: p.38$ Carrying Capacity Causal Systems $vol.4: p.9$ Causal Systems $vol.2: p.152$ $vol.3: pp.3 - 4$ $vol.2: pp.139 - 140$ Cayley Hamilton Theorem $vol.2: pp.139 - 140$ $vol.3: pp.121 - 122$ $vol.4: pp.39 - 45$ Center Sequilibrium Point) $vol.4: pp.39 - 45$ Centers (Equilibrium Point) $vol.4: pp.22, 26$ Centroid of Area $vol.1: pp.4 - 6$ Characteristic Equation $vol.2: pp.77, 138 - 139$ $vol.3: p.37$ $vol.4: p.34$ Class K (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class K $_{\infty}$ (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class K $_{\infty}$ (Comparison Functions) $vol.4: pp.93 - 96, 105$ Column Space $vol.4: pp.93 - 96, 102 - 103$	Bendixson's Theorem	
	Bifurcation	
$\begin{array}{c} \text{Bifurcation (Fold)} & vol.4: pp.12 - 13, 57 \\ \text{Bifurcation (Transcritical)} & vol.4: pp.12 - 15 \\ \text{Bifurcation Diagram} & vol.4: pp.12, 15 - 17 \\ \text{Body Velocity} & vol.4: pp.12, 15 - 17 \\ \text{Body Velocity} & vol.4: p.9. \\ \text{Carrying Capacity} & vol.4: p.9 \\ \text{Causal Systems} & vol.2: p.152 \\ vol.3: pp.3 - 4 \\ \text{Cayley Hamilton Theorem} & vol.2: pp.139 - 140 \\ vol.3: pp.139 - 140 \\ vol.4: pp.39 - 45 \\ \text{Center Manifold Theory} & vol.4: pp.39 - 45 \\ \text{Centers (Equilibrium Point)} & vol.4: pp.22, 26 \\ \text{Centroid of Area} & vol.1: pp.4 - 6 \\ \text{Characteristic Equation} & vol.2: pp.77, 138 - 139 \\ vol.3: p.37 \\ vol.4: p.34 \\ \text{Class K (Comparison Functions)} & vol.4: pp.93 - 97, 102 - 112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.93 - 97, 102 - 112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4: pp.93 - 96, 105 \\ \text{Column Space} & vol.2: pp.133 - 134 \\ \text{Comparison Function} & vol.4: pp.93 - 96, 102 - 103 \\ \end{array}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bifurcation (Fold)	
$\begin{array}{c} \mbox{Bifurcation Diagram} & vol.4:pp.12,15-17 \\ \mbox{Body Velocity} & vol.1:p.38 \\ \hline C \\ \mbox{Carrying Capacity} & vol.4:p.9 \\ \mbox{Causal Systems} & vol.2:p.152 \\ \mbox{vol.3:pp.3}-4 \\ \mbox{Cayley Hamilton Theorem} & vol.2:pp.139-140 \\ \mbox{vol.3:pp.121}-122 \\ \mbox{Center Manifold Theory} & vol.4:pp.39-45 \\ \mbox{Centers (Equilibrium Point)} & vol.4:pp.22,26 \\ \mbox{Centroid of Area} & vol.1:pp.4-6 \\ \mbox{Characteristic Equation} & vol.2:pp.77,138-139 \\ \mbox{vol.3:p.37} \\ \mbox{vol.4:pp.39}-97,102-112 \\ \mbox{Class K (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \mbox{Class K L (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \mbox{Class K }_{\infty} & (\text{Comparison Functions)} & vol.4:pp.93-96,105 \\ \mbox{Column Space} & vol.2:pp.133-134 \\ \mbox{Comparison Function} & vol.4:pp.93-96,102-103 \\ \end{array}$	· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{lll} C \\ \text{Carrying Capacity} & vol.4: p.9 \\ \text{Causal Systems} & vol.2: p.152 \\ & vol.3: pp.3 - 4 \\ \text{Cayley Hamilton Theorem} & vol.2: pp.139 - 140 \\ & vol.3: pp.121 - 122 \\ \text{Center Manifold Theory} & vol.4: pp.39 - 45 \\ \text{Centers (Equilibrium Point)} & vol.4: pp.22, 26 \\ \text{Centroid of Area} & vol.1: pp.4 - 6 \\ \text{Characteristic Equation} & vol.2: pp.77, 138 - 139 \\ & vol.3: p.37 \\ & vol.4: pp.34 - 97, 102 - 112 \\ \text{Class K (Comparison Functions)} & vol.4: pp.93 - 97, 102 - 112 \\ \text{Class K L (Comparison Functions)} & vol.4: pp.93 - 96, 105 \\ \text{Column Space} & vol.2: pp.133 - 134 \\ \text{Comparison Function} & vol.4: pp.93 - 96, 102 - 103 \\ \end{array}$	<u> </u>	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	· · · · · · · · · · · · · · · · · · ·	001.1 · p.30
$\begin{array}{c} \text{Causal Systems} & vol.2:p.152 \\ vol.3:pp.3-4 \\ \text{Cayley Hamilton Theorem} & vol.2:pp.139-140 \\ vol.3:pp.121-122 \\ \text{Center Manifold Theory} & vol.4:pp.39-45 \\ \text{Centers (Equilibrium Point)} & vol.4:pp.22,26 \\ \text{Centroid of Area} & vol.1:pp.4-6 \\ \text{Characteristic Equation} & vol.2:pp.77,138-139 \\ vol.3:p.37 \\ vol.4:pp.39-97,102-112 \\ \text{Class K (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K L (Comparison Functions)} & vol.4:pp.93-96,102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4:pp.93-96,105 \\ \text{Column Space} & vol.2:pp.133-134 \\ \text{Comparison Function} & vol.4:pp.93-96,102-103 \\ \end{array}$		$vol A \cdot n Q$
$vol.3:pp.3-4$ Cayley Hamilton Theorem $vol.2:pp.139-140$ $vol.3:pp.121-122$ Center Manifold Theory $vol.4:pp.39-45$ Centers (Equilibrium Point) $vol.4:pp.22,26$ Centroid of Area $vol.1:pp.4-6$ Characteristic Equation $vol.2:pp.77,138-139$ $vol.3:p.37$ $vol.4:p.34$ Class K (Comparison Functions) $vol.4:pp.93-97,102-112$ Class K L (Comparison Functions) $vol.4:pp.93-97,102-112$ Class K_\infty (Comparison Functions) $vol.4:pp.93-96,102-112$ Class K_\infty (Comparison Functions) $vol.4:pp.93-96,105$ Column Space $vol.2:pp.133-134$ Comparison Function $vol.4:pp.93-96,102-103$	v S I v	-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Causai Systems	
$vol.3:pp.121-122$ Center Manifold Theory $vol.4:pp.39-45$ Centers (Equilibrium Point) $vol.4:pp.22,26$ Centroid of Area $vol.1:pp.4-6$ Characteristic Equation $vol.2:pp.77,138-139$ $vol.3:p.37$ $vol.4:p.34$ Class K (Comparison Functions) $vol.4:pp.93-97,102-112$ Class K L (Comparison Functions) $vol.4:pp.93-97,102-112$ Class K $_{\infty}$ (Comparison Functions) $vol.4:pp.93-96,102-112$ Class K $_{\infty}$ (Comparison Functions) $vol.4:pp.93-96,105$ Column Space $vol.2:pp.133-134$ Comparison Function $vol.4:pp.93-96,102-103$	Caylay Hamilton Theorem	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cayley Hamilton Theorem	
$\begin{array}{lll} \text{Centers (Equilibrium Point)} & vol.4:pp.22,26 \\ \text{Centroid of Area} & vol.1:pp.4-6 \\ \text{Characteristic Equation} & vol.2:pp.77,138-139 \\ & vol.3:p.37 \\ & vol.4:p.34 \\ \text{Class K (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K L (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4:pp.93-96,105 \\ \text{Column Space} & vol.2:pp.133-134 \\ \text{Comparison Function} & vol.4:pp.93-96,102-103 \\ \end{array}$	Center Manifold Theory	
$\begin{array}{lll} \text{Centroid of Area} & vol.1:pp.4-6 \\ \text{Characteristic Equation} & vol.2:pp.77,138-139 \\ & vol.3:p.37 \\ & vol.4:p.34 \\ \text{Class K (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K L (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4:pp.93-96,102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4:pp.93-96,105 \\ \text{Column Space} & vol.2:pp.133-134 \\ \text{Comparison Function} & vol.4:pp.93-96,102-103 \\ \end{array}$	· ·	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	· - /	
$vol.3: p.37$ $vol.4: p.34$ Class K (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class K L (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class K $_{\infty}$ (Comparison Functions) $vol.4: pp.93 - 96, 105$ Column Space $vol.2: pp.133 - 134$ Comparison Function $vol.4: pp.93 - 96, 102 - 103$		
$vol.4: p.34$ Class K (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class K L (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ Class K_{∞} (Comparison Functions) $vol.4: pp.93 - 96, 105$ Column Space $vol.2: pp.133 - 134$ Comparison Function $vol.4: pp.93 - 96, 102 - 103$	Characteristic Equation	
$\begin{array}{ll} \text{Class K (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K L (Comparison Functions)} & vol.4:pp.93-97,102-112 \\ \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4:pp.93-96,102-112 \\ \text{Column Space} & vol.2:pp.133-134 \\ \text{Comparison Function} & vol.4:pp.93-96,102-103 \\ \end{array}$		
Class K L (Comparison Functions) $vol.4: pp.93 - 97, 102 - 112$ $Class K_{\infty} \text{ (Comparison Functions)} \qquad vol.4: pp.93 - 96, 105$ $Column Space \qquad vol.2: pp.133 - 134$ $Comparison Function \qquad vol.4: pp.93 - 96, 102 - 103$		
$\begin{array}{ll} \text{Class K}_{\infty} \text{ (Comparison Functions)} & vol.4: pp.93-96, 105 \\ \text{Column Space} & vol.2: pp.133-134 \\ \text{Comparison Function} & vol.4: pp.93-96, 102-103 \end{array}$,	· · · · · · · · · · · · · · · · · ·
	, –	
Comparison Function $vol.4: pp.93 - 96, 102 - 103$, –	
		
Complex Conjugate Transpose $vol.3: pp.40-44$	_	
	Complex Conjugate Transpose	vol.3: pp.40 - 44

Condition Number (Of a Matrix)	vol.3: pp.61 - 62
Connection Vector Field	vol.1: pp.118 - 119
Conservative System	vol.2: pp.89 - 91,103
Conservative Vector Fields	vol.1: pp.145 - 146
Conserved Quantity	vol.2: p.90
Constraint, Holonomic	vol.1: pp.76 - 77
Constraint, Nonholonomic	vol.1: pp.110 - 117, 135 - 136
Continuity w.r.t. Initial Conditions	vol.4: pp.53 - 55
Continuity w.r.t. Parameters	vol.4: pp.54 - 55
Continuously Differentiable	vol.4: pp.48 - 52
Contour	vol.2: pp.91 - 92
Control Lyapunov Function	vol.4: pp.167, 179 - 180
Controllability	vol.3: p.132
Controllability Gramian	vol.3: p.135
	vol.4: p.80
Convolution	vol.3: pp.2 - 4
Convolution (Discrete)	vol.3: pp.14, 17
Coordinate Transformation Matrix	vol.2: pp.128 - 129
	vol.4: pp.18, 20-41
Coordinate Vector	vol.2: pp.126 - 127
Corange Corank	vol.2: pp.51 - 54
	vol.2: pp.51 - 54
Cotangent Space	vol.1: p.126
Cotangent Vector	vol.1: p.126
Cotangent Vector Cramer's Rule	vol.1: pp.127 - 130 vol.2: p.121
Cross Product	vol.1: pp.1-2
Curl (Vector)	vol.1: pp.1 - 2 vol.1: p.145
Curvature (Constraint)	vol.1: p.145 vol.1: pp.144 - 145
D	voi.1: pp.144 - 145
Dead Zone Nonlinearity	vol.2:p.151
Deficient Matrix	vol.2: pp.140 - 141
Degenerate Matrix	vol.2: pp.140 141 $vol.2: p.139$
Degrees of Freedom	vol.1: p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal Coordinate Form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
Diagonalization	vol.3: p.46
	vol.4: p.79
Diffeomorphic	vol.1: p.70 vol.1: p.20
Differentiable	vol.4: pp.51 - 52
Differential Algebraic Equations	vol.2: pp.41 - 44,47 - 48
Differential Algebraic Equations, Differentiation Index	vol.2: pp.47 - 48 vol.2: pp.47 - 48
Differential Algebraic Equations, Model Consistency	vol.2: pp.44 $vol.2: p.44$
Differential Algebraic Equations, Regularity	vol.2: p.44 vol.2: p.45
Differential Algebraic Equations, Solution	vol.2: p.16 vol.2: p.44
O	F:

Dif	fferential Lyapunov Equation	vol.4: pp.121 - 122, 128
Dir	mension (Of a Vector Space)	vol.2: pp.125 - 126
Dir	rect Product of Two Sets	vol.1:p.20
Dir	rect Sum	vol.1:p.20
Dir	rect Sum of Two Sets	vol.1:p.125
Dir	rectional Linearity	vol.1:p.106
	stribution (Allowable Velocities)	vol.1: pp.112, 148 - 150
	vergence	vol.4: pp.25 - 29
	t Product	vol.2: pp.134 - 135
		vol.3: p.41
E		como i pili
	genspace	vol.2:p.140
_	genvalue	vol.2: pp.77, 138 - 145
23.6	Sonvariae	vol.3: pp.36 - 45, 56 - 59
Eio	genvector	vol.2: pp.76 - 77, 138 - 145
nig	genvector	vol.3: pp.36 - 45
Fie	representation (Left)	vol.3: pp.50 - 45 vol.3: pp.50 - 51
_	genvector (Left)	
	ementary Row Operators	vol.2: p.107
	nbedding	vol.1: p.96
Eq	uilibrium Point	vol.3: pp.1, 5-10, 79-84
_		vol.4: pp.3-4
-	uivalent Vectors w.r.t. Functions	vol.1: pp.100 - 101
	timation of Constant Parameters	vol.4: pp.130 - 149
	ler Lagrange Equation	vol.1:p.136
Exi	istence And Uniqueness Theorem	vol.1:pp.11,13
		vol.2:p.82
		vol.4: pp.46 - 52, 91
$\mathbf{E}\mathbf{x}_{\mathbf{j}}$	ponential Map	vol.1: pp.48 - 51, 103 - 104
$\mathbf{E}\mathbf{x}_{\mathbf{j}}$	ponential Stability	vol.4: pp.103 - 104, 107, 116 - 123, 168
Ex	ternal Forces	vol.1:p.1
F		
Fin	nite Escape Time	vol.4: pp.9-10
Foo	cus Node	vol.4:pp.22,33
Fol	ld Bifurcation	vol.4: pp.12 - 13,57
For	rce Couple	vol.1:p.2
For	rce Couple System	vol.1:p.3
For	rward Euler Integration	vol.2:p.148
For	rward Kinematics	vol.1: pp.78, 83 - 84
Fre	equency Response	vol.3:pp.98,105
Fre	obenius Norm	vol.3: pp.62, 102 - 117
Fui	ndamental Vector Field (Infinitesimal Generator	s) $vol.1: pp.99 - 100$
G	`	,
	it Generation	vol.1:p.124
	aussian Elimination	vol.2:p.104
	eneralized Coordinates	vol.1:p.78
	eodesics	vol.1: pp.44 - 46, 51, 96 - 99
	cometric Series	vol.4: p.92
2.0		r

Globally Asymptotically Stable	vol.3:p.93
	vol.4:pp.62,67
Gradient Vector Field	vol.1: pp.129 - 130
Gram Schmidt Orthogonality Procedure	vol.2:p.137
Green's Theorem	vol.4: pp.25-27
Group	vol.1: pp.21, 94 - 95
Group Invariant Vectors	vol.1:p.100
Group, Left/right Action	vol.1: pp.24 - 29, 33, 80, 96, 137
Group, Symmetry	vol.1: pp.108 - 109, 137
H	100,101
$_{ m H_{\infty}}$ Norm	vol.3: pp.108 - 119
Hartman Grobman Theorem	vol.4: pp.23 - 24
Hermitian Matrix	vol.3: p.107
Heteroclinic Trajectory	vol.2: p.94
Holonomic Constraint	vol.1:pp.76-77
Homeomorphic	vol.1:p.19
	vol.2:p.88
	vol.4:p.23
Homogeneity	vol.3:p.1
Homogeneous Equations	vol.2:p.105
Hopf Bifurcation	vol.4: pp.35 - 38
Huber Function	vol.4:p.71
Hurwitz Matrix	vol.3: pp.94 - 96
	vol.4: pp.81 - 82
Hyperbolic Equilibrium Point	vol.4: pp.22 - 24
Hyperbolic Fixed Point	vol.2: pp.87 - 88
Hysteresis	vol.1: pp.66, 70 - 71
Hybrocosis	vol.2: p.42
I	$006.2 \cdot p.42$
	vol.2:p.37
Idempotent Image (Algebra)	-
	vol.1: p.124
Impulse Response	vol.3: pp.19 - 20, 29 - 30, 36
Index Theory	vol.2: pp.98 - 101
	vol.4:p.35
Induced Norm	vol.3: pp.103 - 104
Infinity Norm	vol.3: pp.100 - 101
	vol.4:p.61
Inner Product	vol.2: pp.134 - 135
	vol.3:p.41
Integrator Backstepping	vol.4: pp.165 - 178
Internal Forces	vol.1:p.1
Intersection (Spaces)	vol.2: pp.130 - 131
Invariance	vol.1: p.139
Invariant Manifold	vol.4: pp.42 - 45
Invariant Set	vol.4: pp.74 - 77
Isocline	vol.2: pp.74, 84
Isomorphic	vol.1: p.22
nomorphic .	000.1 · p.22

J	
Jacobi Liouville Formula	vol.3:p.27
Jacobian	vol.1:pp.84-86
	vol.2:p.85
	vol.4:pp.56-58
Jordan Blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K	
K Step Observability Matrix	vol.3: pp.138 - 139
Kalman Rank Test	vol.3:p.136
Kernel	vol.1: pp.124 - 125
Kinematic Locomotion	vol.1: pp.105 - 107
L	10 100
L1 Norm	vol.3: pp.100 - 101
	vol.4: p.61
L2 Induced Gain of a System	vol.3 : p.108
L2 Norm	vol.3: pp.100 - 101
I Chile Divis	vol.4: p.61
La Salle's Invariance Principle	vol.4: pp.74 - 77,85 - 87
Lagrangian	vol.2 : p.45
Lagrangian Multipliers	vol.2: pp.45 - 46
	vol.3: p.126
Laplace Transform	vol.2 : p.147
1 10 4	vol.3: pp.29 - 33
Level Sets	vol.4: pp.66 - 69
Liapunov Fixed Point	vol.2: p.76
Lie Algebra Lie Bracket	vol.1: pp.41, 98 - 100, 103, 151 - 152
Lie Bracket	vol.1: pp.148 - 150
Lie Derivative	vol.2: p.1
	vol.4: pp.179 - 184
Lie Groups Lifted Actions	vol.1: pp.21, 96 - 99 vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Limit Cycle	vol.3: pp.31 - 42, 32 - 34, 83, 137 - 138
Limit Cycle	vol.4: pp.10 - 12, 33 - 38
Linear Combination	vol.2: p.124
Linear Equations	vol.2: p.124 vol.2: p.104
Linear Independence	vol.2: p.104 vol.2: pp.124 - 125
Linear Time Invariance	vol.2: pp.124 125 vol.2: p.152
Ellicai Tillic liivarianee	vol.3: p.162 vol.3: pp.8 - 9, 17
Linear Transformation	vol.2: pp.131 - 133
Linearity	vol.3: p.15
Linearity (Mapping)	vol.1: pp.106 - 107
Linearity (Systems)	vol.2: p.152
Efficiency (Systems)	vol.3: p.102
Linearization at a Fixed Point	vol.1: pp.10 - 11
Zarowinawion w w I fact I only	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
	vol.4: pp.5 - 8, 23 - 24, 88
	550.1. pp. 5 5, 25 21, 55

Lipschitz Continuous Function	vol.4: pp.49 - 55, 91
Local Connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locally Asymptotically Stable	vol.4: pp.61-62, 67-69
Locomotion	vol.1:p.104
Logistic Equation	vol.4:p.9
Lorenz Attractor	vol.4:p.12
Lotka Volterra Model of Competition	vol.2:p.88
Lyapunov Functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
	vol.4:pp.65-87
Lyapunov Stability	vol.4: pp.59 - 69, 106 - 121
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, Accessible	vol.1: pp.76 - 78
Manifolds, C^k Differentiable	vol.1:p.20
Manifolds, & Billerentiable	vol.4: pp.48 - 52
Manifolds, Curvature	vol.1: p.93
Manifolds, Stable	vol.2: p.89
Manifolds, Topology	vol.1 : p.93
Marginally Stable	
C v	vol.3: pp.53, 56
Markov Parameters	vol.3: p.20
Matrix Cofactor	vol.2: pp.111, 118 - 120
Matrix Determinant	vol.2: pp.115 - 119
Matrix Exponentiation	vol.3: pp.26 - 27, 36
Matrix Inverse	vol.2: pp.110 - 115
Matrix Minor	vol.2:p.111
Matrix Operations	vol.2:p.106
Matthew Equation	vol.3:p.27
Memoryless Systems	vol.2:p.152
	vol.3:p.4
Metzler Matrix	vol.4:p.31
Minimum Energy Input	vol.3: pp.127 - 129, 133 - 136
Modal Contributions of Initial Conditions	vol.3: pp.41 - 45, 51
Modal Decomposition	vol.3: pp.35 - 45, 51
Model Consistency	vol.2:p.44
Model Reference Adaptive Control	vol.4:pp.154-165
Model Uncertainty	vol.3: pp.109 - 115
Modular Addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic Function	vol.1:p.13
Multiplicative Calculus	vol.1: pp.34 - 38, 46 - 47
N	
Negative Semidefinite Function	vol.4: pp.67, 74-162
Negative Semidefinite Matrix	vol.3:p.93
Nesterov Acceleration	vol.4:p.98
Neumann Series	vol.3:p.22
Neutrally Stable	vol.2:p.76
Nilpotent Matrix	vol.3:p.35
•	1

Node	
	vol.4: pp.21, 33
Noether's Theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147
Nonholonomic Constraint	vol.1: pp.110 - 117, 135 - 136
Normal Matrix	vol.3: pp.36 - 46
Nullcline	vol.2: p.84
Nullity	vol.2 : p.134
·	-
Nullspace	vol.2: pp.132 - 134
0	
Observability	vol.3: pp.136 - 139
	vol.4: pp.86 - 87, 127, 130, 138 - 141
Observability Gramian	vol.4: pp.80, 129
Observer Based Controller	vol.3: pp.148 - 149
	vol.4: pp.135 - 136
One Form	vol.1: pp.125, 127 - 129
Optimal Frame	vol.1: p.83
Orthogonal Compliment	vol.2: pp.137 - 138
Orthogonal Set	vol.2: p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal Basis	vol.2: p.136
Outer Product	vol.2: p.136
Output Feedback Design	vol.3: p.147
Overdetermined System	vol.2: pp.19, 41
P	
P Norm	vol.3: pp.100 - 102
	vol.4:p.61
Parallel Linkage Mechanisms	vol.3: pp.59 - 60
Pbh Test	vol.3: p.136
Pendulum	vol.4: pp.7 - 8,63 - 64,72 - 77
	vol.4: pp.25 - 34
Periodic Orbits	
Periodic Orbits Pfaffian Constraint	
Pfaffian Constraint	vol.1: pp.111 - 117
Pfaffian Constraint Phase (Angle)	$vol.1: pp.111 - 117 \ vol.2: p.61$
Pfaffian Constraint Phase (Angle) Phase Coordinate Form	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock Phase Portrait	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35 vol.4: pp.5, 17 - 19
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock Phase Portrait Pitchfork Bifurcation Poincare Bendixson Criterion	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35 vol.4: pp.5, 17 - 19 vol.4: pp.12, 15 - 17 vol.4: pp.32 - 34
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock Phase Portrait Pitchfork Bifurcation	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35 vol.4: pp.5, 17 - 19 vol.4: pp.12, 15 - 17 vol.4: pp.32 - 34 vol.2: p.147
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock Phase Portrait Pitchfork Bifurcation Poincare Bendixson Criterion Poles (Transfer Function)	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35 vol.4: pp.5, 17 - 19 vol.4: pp.12, 15 - 17 vol.4: pp.32 - 34 vol.2: p.147 vol.3: pp.58 - 59
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock Phase Portrait Pitchfork Bifurcation Poincare Bendixson Criterion Poles (Transfer Function) Position Trajectory	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35 vol.4: pp.5, 17 - 19 vol.4: pp.12, 15 - 17 vol.4: pp.32 - 34 vol.2: p.147 vol.3: pp.58 - 59 vol.1: p.105
Pfaffian Constraint Phase (Angle) Phase Coordinate Form Phase Drift Phase Lock Phase Portrait Pitchfork Bifurcation Poincare Bendixson Criterion Poles (Transfer Function)	vol.1: pp.111 - 117 vol.2: p.61 vol.3: p.6 vol.2: p.68 vol.2: p.67 vol.1: pp.7 - 9 vol.2: pp.74, 83 vol.3: p.35 vol.4: pp.5, 17 - 19 vol.4: pp.12, 15 - 17 vol.4: pp.32 - 34 vol.2: p.147 vol.3: pp.58 - 59

		vol.4: pp.78 - 79
	Positive Invariant Set	
	Positive Semidefinite Matrix	vol.4: pp.21, 29 - 34, 69
		vol.3: p.125
	Positive System Potentials	vol.4: p.31
		vol.1: p.17
	Power Spectral Density	vol.3: pp.116 – 119
	Predator/prey Model	vol.4: pp.30 - 31
	Preimage (Algebra)	vol.1: p.124
	Principally Kinematic System	vol.1: p.139
	Principle Minors	vol.3 : p.88
	Principle of Least Action	vol.1: pp.131 - 133
	Projection Operator	vol.2: p.37
Q		
	Quadratic Programming	vol.3: pp.125 - 126
R		
	Radially Unbounded	vol.3: p.89
		vol.4: pp.67 - 68, 105 - 107
	Range (Matrix)	vol.2: pp.132 - 133
	Range of Entrainment	vol.2: pp.68 - 69
	Rank	vol.2: pp.51, 53 - 54, 132 - 134
	Reachability	vol.3: pp.120 - 126, 130, 132
	Reachability Gramian	vol.3: pp.124 - 129, 133 - 135
	Reaction Force	vol.1: p.4
	Realization Theory	vol.2: p.149
	Reconstruction Equation	vol.1: pp.114 - 123, 138
	Reference Signal Tracking	vol.4: pp.177 - 178, 183
	Region of Attraction	vol.4: pp.15, 92 - 93
	Regular Control Problem	vol.2: p.45
	Relative Degree	vol.4: pp.181 - 184
	Resolvent	vol.3: pp.17 - 18, 30, 36
	Resonance	vol.3: p.50
	Reversible System	vol.2: pp.92 - 95
	Rigid Body	vol.1: p.23
	Rigid Body, Left Lifted Action	vol.1: pp.38 - 41
	Rigid Body, Right Lifted Action	vol.1: pp.41 - 43
	Routh Hurwitz Criterion	vol.3: pp.77 - 80
		vol.4: pp.34, 83
	Row Echelon Form	vol.2: p.107
	Row Space	vol.2: p.134
	Runge Kutta Method	vol.2: p.83
S	200000 11200100	. Pres
	Saddle Connection	vol.2: p.94
	Saddle Node	vol.4: pp.19 - 21
	Sector Bounded Nonlinearities	vol.4: p.72
	Semidirect Product of Two Sets	vol.4: p.12 vol.1: p.24
	Sensitivity Function	vol.4: pp.55 - 58
	Separatrix	vol.4 : pp.55 - 58
	Берагантх	υσι.2 . μ.σσ

	7.1 105
Shape Trajectory	vol.1: p.105
Shift Operator	vol.3: pp.1 - 2
Signal Norms	vol.3: pp.96 - 104
Similar Matrices	vol.2: p.142
Singular Matrix	vol.2: pp.41 - 42, 51, 110, 122
Singular Value Decomposition	vol.3: pp.104 - 110, 128 - 129
Singular Vectors	vol.3: p.106
Sink Node	vol.4: pp.19, 21
Small Gain Theorem	vol.3: pp.109 - 114
Solution, Differential Algebraic Equations	vol.2: p.44
Sontag's Formula	vol.4: p.180
Source Node	vol.4:pp.19,21
Span	vol.2: pp.124 - 125
Spatial Velocity	vol.1:pp.43,85
Special Euclidean Group	vol.1:p.23
	vol.2: pp.1-2
Special Orthogonal Group, $so(N)$	vol.1:p.22
	vol.2: pp.1-2
Stability	vol.3: pp.80 - 84
	vol.4: pp.5, 98-103
Stability Via Linearization	vol.4: pp.88 - 90
Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2:p.76
	vol.3: pp.53 - 59, 91 - 94
	vol.4:p.5
State Estimator Controller	vol.3: pp.144 - 147
State Feedback Controller	vol.3: pp.140 - 144
State Space Model	vol.2: pp.147 - 150
•	vol.3:p.5
State Transition Matrix	vol.3: pp.11 - 13
	vol.4: pp.105 - 106, 121 - 123
State Vector	vol.2: pp.147 - 149
	vol.3: p.5
Strain Energy	vol.2: pp.5-7
Structural Stability	vol.2: p.88
Subcritical Hopf Bifurcation	vol.4: pp.37 - 38
Subcritical Pitchfork Bifurcation	vol.4: p.17
Subspace	vol.2: pp.129 - 130
Sum (Spaces)	vol.2: pp.129 - 130 vol.2: pp.130 - 131
Supercritical Hopf Bifurcation	vol.4: pp.35 - 37
Supercritical Pitchfork Bifurcation	vol.4: pp.15 - 16
Superposition	vol.3: pp.1, 13
Supremum	vol.3: pp.1, 13 vol.3: p.98
Symmetric Matrix	vol.2: p.144
Symmetric Matrix	vol.2: p.144 vol.3: pp.86 - 96
	vol.3: pp.80 - 90 vol.4: p.78
Symmetry	-
Symmetry	vol.1: pp.108 - 109, 131

System Norms	vol.3: pp.99 - 120
T	
Tangent Spaces	vol.1: pp.29 - 30
Taylor Series Expansion	vol.3: pp.7 - 8
	vol.4: pp.6, 39-40, 44-45
Tensor Product	vol.1:p.20
Time Invariance	vol.2:p.152
	vol.3: pp.1-4
Time Reversal Symmetry	vol.2: pp.92 - 93
Toeplitx Matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3: pp.60 - 61
Transcritical Bifurcation	vol.4:pp.12-15
Transfer Function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated Robotic Mechanisms	vol.3: pp.59 - 77
Underactuated System	vol.1: p.104
Underdetermined System	vol.2:pp.19,41
Uniform Observability	vol.4: pp.129 - 130, 138 - 143
Uniformly Asymptotically Stable	vol.4: pp.100 - 104, 107 - 116
Uniformly Exponentially Stable	vol.4: pp.103 - 104, 107, 116 - 123
Uniformly Stable	vol.4: pp.100 - 102, 104, 107 - 114
Unitary Diagonal Coordinate Transformation	vol.3: pp.38 - 43, 50
, c	vol.4:p.79
Unstable	vol.2:p.76
V	•
Van Der Pol Oscillator	vol.4:pp.11-12
Variance Amplication	vol.3: p.117
Variations of Constants Formula	vol.3:pp.24,54
Varignon's Theorem	vol.1:p.1
Vector Field	vol.1: pp.30 - 31
	vol.2:p.74
Vector Mapping	vol.2:p.127
Vector Space	vol.2: pp.122 - 123
Vertical Space	vol.1: p.125
Virtual Work	vol.3: pp.63 - 64
W	COMO V PPIOCO O I
White in Time Gaussian Processes	vol.3: pp.115 - 119
Work (Mechanical)	vol.1: p.145
Z	000.1 . p.110
Z Transform	vol.3: pp.14 - 22
Zero Dynamics	vol.4: pp.181 - 182
Zero Set	vol.1: pp.76, 110 - 111
Zeros (Transfer Function)	vol.1: pp.70, 110 - 111 vol.2: p.147
Zoros (Transier Function)	001.2 · p.141