Mathematical Specialists

Lachlan Takumi Ikeguchi

February 14, 2023

Contents

0.1	Important symbols													
0.2	2 Addition principle													
0.3	0.3 Multiplication principle													
0.4	Factorials	2												
	0.4.1 Dividing factorials	2												
	0.4.2 Special cases	2												
0.5	Permutations	ç												
	0.5.1 Permutations in a circle	•												
	0.5.2 Like objects repetitions	9												
	0.5.3 Restrictions	4												
	0.5.4 Grouped items	4												
	0.5.5 Special cases	4												
0.6	Combinations	4												
0.7	7 Pascal's triangle													

0.1 Important symbols

Symbol	Mathematical definition	Simple definition
U	Union	A and B, or think as in 'add'.
\cap	Intersection	A or B, or think as in 'multiply'.
n!	$n \times (n-1) \times (n-2) \times (n-3) \dots \times 3 \times 2 \times 1$	The product of integers between the
		given value and 1.
$^{n}P_{r}$	$\frac{n!}{(n-1)!}$	The number of combinations there are
		of length r from a group of length n
		where the order matters.
nC_r	$\frac{\frac{n!}{(n-1)!}}{r!}$	The number of combinations there are
		of length r from a group of length n
		where the order does not matter.

0.2 Addition principle

If there are n ways of performing operation A, and m ways of performing operation B, there are n+m ways of performing operation $A \cap B$.

As in, let there be 2 ways to perform task A, and 3 ways to perform task B. If there is an option to perform A or B, there is a total of 2+3=5 ways to perform an operation.

0.3 Multiplication principle

If there are n ways of performing operation A, and m ways of performing operation B, there are $n \times m$ ways of performing operation $A \cup B$.

As in, let there be 4 ways to perform task A, and 5 ways to perform task B. With considering 1 way to perform A, there are 5 ways to perform B, repeat the process through the number of ways to perform A.

	B, 1	B, 2	B, 3	B, 4	B, 5
A, 1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
A, 2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
A, 3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
A, 4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

Where there are $4 \times 5 = 20$ ways to perform the operations.

0.4 Factorials

Factorials is the result of multiplying all of the integers between the given integer and 1. This is given the notation and formula:

$$n! = n \times (n-1) \times (n-2) \times (n-3) \dots \times 3 \times 2 \times 1$$

Example:

$$5! = 5 \times 4 \times 3 \times 2 \times 1$$
$$= 120$$

0.4.1 Dividing factorials

When given some factorial over another factorial in such cases as:

$$\frac{4!}{2!}$$

$$\frac{4 \times 3 \times 2 \times 1}{2 \times 1}$$

$$\frac{4 \times 3 \times 2 \times 1}{2 \times 1}$$

$$\frac{4 \times 3}{4 \times 3}$$

$$12$$

0.4.2 Special cases

$$0! = 1$$

0.5 Permutations

Permutations is the number of ways of choosing r things from n distinct things where *order matters*. This is given the notation and formula:

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

Example:

$${}^{6}P_{4} = \frac{6!}{(6-4)!}$$

$$= \frac{6!}{2!}$$

$$= \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}$$

$$= \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}$$

$$= 6 \times 5 \times 4 \times 3$$

$$= 360$$

0.5.1 Permutations in a circle

In cases where the positions being concerned is a circle such as the permutations of a circular seating arrangement, if the standard permutations formula is applied, there are several over-counting of the like arrangement in a different perspective. In these cases apply the formula:

$$\frac{{}^{n}P_{r}}{r} = \frac{\frac{n!}{(n-r)!}}{r}$$

0.5.2 Like objects repetitions

The number of ways of arranging n objects made up of indistinguishable objects, n_1 in the first group, n_2 in the second group and so on, is:

$$\frac{n!}{n_1!n_2!n_3!...n_r!}$$

Example:

Find the number of permutations of the letters in the world WOOLLOOMOOLOO.

There are 8 'O's and 3 'L's

Permutations:

$$\frac{13!}{8!3!}$$

$$13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

$$(8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1) \times (3 \times 2 \times 1)$$

$$13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

$$(8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1) \times (3 \times 2 \times 1)$$

$$\frac{(8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1) \times (3 \times 2 \times 1)}{3 \times 12 \times 11 \times 10 \times 9}$$

$$\frac{13 \times 12 \times 11 \times 10 \times 9}{3 \times 2}$$

$$\frac{13 \times 12 \times 11 \times 10 \times 9}{3 \times 2}$$

$$13 \times 6 \times 11 \times 10 \times 3$$

25,740

0.5.3 Restrictions

When considering restrictions, deal with the restrictions first. Example:

Find the number of arrangements of the letters of the word DARWIN beginning and ending with a vowel.

Number of letters = 6

Number of positions = 6

Beginning and end must be a vowel, so the available positions are decreased by 2: number of positions - 2 = 4Since 2 vowels must be used: number of letters - 2 = 4

Permutations:

 4P_4

4!

 $4 \times 3 \times 2 \times 1$

24

0.5.4 Grouped items

When items are grouped together, treat each group as a single object. Find the number of arrangements of the groups, then multiply by the number of arrangement within each group. Example:

Find the number of arrangement of the letters of the word EQUALS if the vowels are kept together.

Number of vowels = 3

Number of letters = 6

Number of positions = 6

As the 3 vowels are grouped together, the number of positions decreases:

number of positions - $3_{\text{for the members of the group}} + 1_{\text{for the group}} = 4$

Permutations within vowel group:

$$^{3}P_{3} = 3! = 3 \times 2 = 6$$

Permutations of all positions:

$$^{4}P_{4} = 4! = 4 \times 3 \times 2 = 24$$

Multiply together:

$$6 \times 24 = 144$$

0.5.5 Special cases

$$^{n}P_{n}=n!$$

$$^{n}P_{0} = 1$$

0.6 Combinations

Combinations is the number of ways of choosing or selecting r objects from n distinct objects where order does not matter. This is given the notation and formula:

$${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$$

$${}^{n}C_{r} = \frac{\frac{n!}{(n-r)!}}{r!}$$

Example:

$${}^{4}C_{2} = \frac{{}^{4}P_{2}}{2!}$$

$$= \frac{{}^{4!}}{(4-2)!}$$

$$= \frac{{}^{4!}}{2!}$$

$$= \frac{{}^{4!}}{2!}$$

$$= \frac{{}^{4 \times 3 \times 2}}{2}$$

$$= \frac{{}^{4 \times 3 \times 2}}{2}$$

$$= \frac{{}^{4 \times 3}}{2}$$

$$= \frac{{}^{4} \times 3}{2}$$

$$= \frac{12}{2}$$

$$= 6$$

0.7 Pascal's triangle

The Pascal's triangle is a pattern formed by adding the top 2 numbers and a 1 is placed on either side of the bottom row and will resemble a triangle:

n=0:											1										
n = 1:										1		1									
n=2:									1		2		1								
n = 3:								1		3		3		1							
n=4:							1		4		6		4		1						
n = 5:						1		5		10		10		5		1					
n = 6:					1		6		15		20		15		6		1				
n = 7:				1		7		21		35		35		21		7		1			
n = 8:			1		8		28		56		70		56		28		8		1		
n = 9:		1		9		36		84		126		126		84		36		9		1	
n = 10:	1		10		45		120		210		252		210		120		45		10		1