Think Python 2e, Chapter 7 Notes

Geoffrey Matthews

September 15, 2022

Reassignment

```
1 >>> x = 5
2 >>> x
3 5
4 >>> x = 7
5 >>> x
6 7
```


State diagram

Updating variables

```
1 >>> x = x + 1
2 NameError: name 'x' is not defined
```

Must be initialized first:

```
1 >>> x = 0
2 >>> x = x + 1
```

The while statement

```
def countdown(n):
    while n > 0:
    print(n)
    n = n - 1
    print('Blastoff!')
```

The while statement

```
def countdown(n):
    while n > 0:
    print(n)
    n = n - 1
print('Blastoff!')
```

```
def countdown(n):
    if n > 0:
        print(n)
        n = n - 1
    print('Blastoff!')
```

The Collatz Sequence

```
def sequence(n):
     print('Collatz: ', end='')
2
     while n != 1:
3
        print(n, end=', ')
         if n % 2 == 0:
                                # n is even
5
6
           n = n // 2
7
         else:
                                # n is odd
8
            n = n*3 + 1
     print(n)
9
```

```
Collatz: 3, 10, 5, 16, 8, 4, 2, 1

Collatz: 512, 256, 128, 64, 32, 16, 8, 4, 2, 1

Collatz: 513, 1540, 770, 385, 1156, 578, 289, 868, 434, 217, 652, 326, 163, 490, 245, 736, 368, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
```

break

```
while True:
    line = input('> ')
    if line == 'done':
        break
    print(line)

print('Done!')
```

Newton's Method

Find the square root of a number by iteration.

n	X	x^2	n/x	$\frac{x+n/x}{2}$	$\left(\frac{x+n/x}{2}\right)^2$
	10				`27.56
5	5.25	27.56	0.95	3.1	9.62
5	3.1	9.62	1.61	2.36	5.55
5	2.36	5.55	2.12	2.24	5.01
5	2.24	5.01	2.23	2.24	5.0

Final answer:

$$2.23607010853285^2 = 5.000009530274112$$

Newton's Method

n	X	x^2	n/x	$\frac{x+n/x}{2}$	$\left(\frac{x+n/x}{2}\right)^2$
5000	10	100			65025.0
5000	255.0	65025.0	19.61	137.3	18852.37
5000	137.3	18852.37	36.42	86.86	7544.62
5000	86.86	7544.62	57.56	72.21	5214.56
5000	72.21	5214.56	69.24	70.73	5002.21

Final answer:

$$70.72628275743688^2 = 5002.207072684913$$

Newton's Method

```
def newton(n):
    x = 10
    while abs(x**2/n - 1) > 1e-5:
        x = (x + n/x)/2
    return x
```

Algorithms

- Newton's method is an **algorithm** for finding square roots.
- An algorithm is a method for solving a class of problems.
- There are other ways of finding square roots, using different algorithms.
 - long division
 - binary search
- Which algorithm is best for which problem is real computer science.

Debugging by bisection

- Divide the program roughly in half.
- Find an intermediate result there.
- Test to see if this result is correct.
 - If no, the problem is in the first half
 - If yes, the problem is in the second half
- Now divide the subset of the program in half, and repeat.

Vocabulary

reassignment: Assigning a new value to a variable that already exists.

update: An assignment where the new value of the variable depends on the old.

initialization: An assignment that gives an initial value to a variable that will be updated.

increment: An update that increases the value of a variable (often by one).

decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using either a recursive function call or a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

algorithm: A general process for solving a category of problems.

