To find following the Machine Learning Regression method using in r² value

1.Multiple Linear Regression

 R^2 value = 0.935868097

2.Support Vector Machine

SL. No	Hyper Parameter	Linear	RBF (non- linear)-r value	POLY (r value)	SIGMOID (r value)
1	C=.1	-0.057306	-0.057479	-0.057448	-0.0574585
2	C=10	-0.039644	-0.056807	-0.0536672	-0.0547195
3	C=100	0.10646819	-0.05072	-0.0198021	-0.0304535
4	C=500	0.5928977	-0.024323	0.1146848	0.0705721
5	C=1000	0.7802839	0.006768	0.2661637	0.185068
6	C=2000	0.8767721	0.0675155	0.4810028	0.397065
7	C=3000	0.895674	0.1232275	0.637006	0.591363
8	C=5000	0.9003762	0.212428	0.79365554	0.730656

The SVM use R^2 value (Linear) and hyper parameter (C5000)) = 0. 9003762

3.Decision Tree

SL. NO	CRITERION	MAX FEATURES	SPLITTER	R Value
1	squared_error	None	auto	0.924210237
2	squared_error	None	best	0.8980083
3	squared_error	None	random	0.9295193
4	squared_error	sqrt	auto	-0.0111012
5	squared_error	sqrt	best	0.77265172
6	squared_error	sqrt	random	-0.4907530
7	squared_error	Log2	auto	0.409848
8	squared_error	Log2	best	0.841686
9	squared_error	Log2	random	0.594036
10	friedman_mse	None	auto	0.922863755
11	friedman_mse	None	best	0.9422698
12	friedman_mse	None	random	0.9025651
13	friedman_mse	sqrt	auto	0.730420
14	friedman_mse	sqrt	best	0.551438223
15	friedman_mse	sqrt	random	0.575289829
13	friedman_mse	Log2	auto	0.44118166
14	friedman_mse	Log2	best	0.75228770
15	friedman_mse	Log2	random	-0.2203162
16	absolute_error	None	auto	0.9218634
17	absolute_error	None	best	0.96780
18	absolute_error	None	random	0.9196897
19	absolute_error	sqrt	auto	0.7338707
20	absolute_error	sqrt	best	0.63656
21	absolute_error	sqrt	random	-0.376543
22	absolute_error	Log2	auto	0.903078
23	absolute_error	Log2	best	0.668032
24	absolute_error	Log2	random	-0.623756
25	poisson	None	auto	0.937988

26	poisson	None	best	0.916947
27	poisson	None	random	0.8741552
28	poisson	sqrt	auto	0.4867574
29	poisson	sqrt	best	0.7618281
30	poisson	sqrt	random	0.6464782
31	poisson	Log2	auto	0.6809524
32	poisson	Log2	Best	0.658725
3	poisson	Log2	Random	0.143063

The Decision Tree Regression use R² value(absolute_error, best)= 0.96780