Code for KTI and KTL quadrature formulas

G. Cappellazzo¹, W. Erb¹, F. Marchetti¹, and D. Poggiali²

We want to present a brief pseudo-code for the calculation of the KTL and KTI quadrature weights using the Kosloff Tal-Ezer map summarized in Algorithm 1 and Algorithm 2.

Algorithm 1: KTL quadrature formula

Input:

- $\mathcal{X} = \{x_i, i = 0, ..., m\} \subseteq \mathbb{R}$: quadrature nodes;
- $n \leq m$: polynomial degree for the approximation space;
- $\mu = (\sqrt{\mu_0}, ..., \sqrt{\mu_m})^{\top}$: weights for least squares problem;
- $\mathbf{f} = (f(x_0), ..., f(x_m))^{\top}$: sample vector of f on \mathcal{X} ;
- $M_{\alpha}: [-1,1] \longrightarrow [-1,1]$: Kosloff-Tal-Ezer map with parameter α .

1 begin

- 2 Compute moments $\tau^{\alpha} \in \mathbb{R}^{n+1}$ through discrete cosine transform of g_{α} ;
- 3 Build diagonal matrix with the weights for the least-squares problem:

 $\mathbf{W} = \operatorname{diag}(\sqrt{\mu_0}, ..., \sqrt{\mu_m}) \in \mathbb{R}^{m+1} \times \mathbb{R}^{m+1};$

- Construct matrix: $\mathbf{A}^{\alpha} \in \mathbb{R}^{m+1} \times \mathbb{R}^{n+1}$, $\mathbf{A}_{ij}^{\alpha} = T_{j-1}(M_{\alpha}(x_{i-1}))$, for $i = 1, \dots, m+1$, and $j = 1, \dots, n+1$;
- Find coefficient vector γ as the solution of the least-squares problem $\mathbf{W}\mathbf{A}^{\alpha}\gamma = \mathbf{W}f$;
- Compute the quadrature value $\mathcal{I}_{n,\mathcal{X}}^{\alpha}(f,I) = \boldsymbol{\gamma}^{\top} \boldsymbol{\tau}^{\alpha}$.

7 end

Output: The value of the KTL quadrature $\mathcal{I}_{n,\mathcal{X}}^{\alpha}(f,I)$.

Algorithm 2: KTI quadrature formula

Input:

- $\mathcal{X} = \{x_i, i = 0, ..., m\} \subseteq \mathbb{R} : \text{ quadrature nodes, } m = n = \dim(\mathbb{P}_n^{\alpha}) 1;$
- $\mathbf{f} = (f(x_0), ..., f(x_m))^{\top}$: vector of function samples on \mathcal{X} ;
- $M_{\alpha}: [-1,1] \longrightarrow [-1,1]$: Kosloff-Tal-Ezer map with parameter α .

1 begin

- **2** Compute moments $\boldsymbol{\tau}^{\alpha} \in \mathbb{R}^{m+1}$ through discrete cosine transform of g_{α} ;
- 3 Construct interpolation matrix: $\mathbf{A}^{\alpha} \in \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}$, $\mathbf{A}_{ij}^{\alpha} = T_{j-1}(M_{\alpha}(x_{i-1}))$;
- 4 | Find the quadrature weights \boldsymbol{w}^{α} as the solution of the linear system $(\mathbf{A}^{\alpha})^{\top}\boldsymbol{w}^{\alpha} = \boldsymbol{\tau}^{\alpha}$.;
- 5 Compute the quadrature value $\mathcal{I}_{m,\mathcal{X}}^{\alpha}(f,I) = (\boldsymbol{w}^{\alpha})^{\top} \boldsymbol{f}$.
- 6 end

Output: The value of the KTI quadrature $\mathcal{I}_{m,\mathcal{X}}^{\alpha}(f,I)$.

For clarity we introduce the following definitions:

• Auxiliary function for the computation of the moments:

$$g_{\alpha}(t) = \frac{\sin(t)}{\sqrt{\frac{1}{\sin^2(\alpha\pi/2)} - \cos^2(t)}} \frac{1}{\alpha}, \quad t \in [0, \pi];$$

• Chebyshev polynomials: $\{T_i(x) = \cos(i\arccos(x)), i = 0, \dots, n\}.$

¹Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Italy ¹PNC - Padova Neuroscience Center, Università di Padova, Italy