Lecture 19: Regularization

CS109A Introduction to Data Science Pavlos Protopapas and Kevin Rader

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

Regularization

Regularization is any modification we make to a learning algorithm that is intended to **reduce its generalization** error but not its training error.

Overfitting

Fitting a deep neural network with 5 layers and 100 neurons per layer can lead to a very good prediction on the training set but poor prediction on validations set.

Norm Penalties

We used to optimize:

Change to ...

$$J_R(W;X,y) = J(W;X,y) + \alpha\Omega(W)$$

*L*₂ regularization:

- Weights decay
- MAP estimation with Gaussian prior

*L*₁ regularization:

- encourages sparsity
- MAP estimation with Laplacian prior

$$\Omega(W) = \frac{1}{2} \parallel W \parallel_2^2$$

$$\Omega(W) = \frac{1}{2} \parallel W \parallel_1$$

Norm Penalties

We used to optimize:

Change to ...

$$W^{(i+1)} = W^{(i)} - \lambda \frac{\partial J}{\partial W}$$

$$J_R(W; X, y) = J(W; X, y) + \frac{1}{2} \alpha W^2$$

$$W^{(i+1)} = W^{(i)} - \lambda \frac{\partial J}{\partial W} - \lambda \alpha W$$

weights decay in proportion to its size.

Biases not penalized

L₂ regularization:

- Decay of weights
- MAP estimation with Gaussian prior

*L*₁ regularization:

- encourages sparsity
- MAP estimation with Laplacian prior

$$\Omega(W) = \frac{1}{2} \parallel W \parallel_2^2$$

$$\Omega(W) = \frac{1}{2} \parallel W \parallel_1$$

Norm Penalties

$$\Omega(W) = \frac{1}{2} \parallel W \parallel_2^2$$

$$\Omega(W) = \frac{1}{2} \parallel W \parallel_1$$

Norm Penalties as Constraints

$$\min_{\Omega(W) \le K} J(W; X, y)$$

Useful if K is known in advance

Optimization:

- Construct Lagrangian and apply gradient descent
- Projected gradient descent

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

Early Stopping

Early stopping: terminate while validation set performance is better

Training time can be treated as a hyperparameter

Early Stopping

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

Data Augmentation

Data Augmentation

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

$$J(\theta; X, y)$$

$$[4.34] = [3.2 \quad 2.0 \quad 1.8] \begin{bmatrix} 2 \\ -2.2 \\ 1.3 \end{bmatrix}$$

$$W_7$$

$$J_R(W; X, y) = J(\theta; X, y) + \alpha\Omega(W)$$

$$[0.69] = \begin{bmatrix} 0.5 & .2 & 0.1 \end{bmatrix} \begin{bmatrix} 2 \\ -2.2 \\ 1.3 \end{bmatrix}$$

$$W_7$$

$$J(\theta; X, y)$$

$$[4.34] = [3.2 \quad 2 \quad 1] \begin{bmatrix} 2 \\ -2.2 \\ 1.3 \end{bmatrix}$$
 h_{31}, h_{32}, h_{33}

$$J_R(W; X, y) = J(\theta; X, y) + \alpha \Omega(h)$$

$$[1.3] = [3.2 \quad 2 \quad 1] \begin{bmatrix} 0 \\ -0.2 \\ .9 \end{bmatrix}$$
 h_{31}, h_{32}, h_{33}

Output of hidden layer

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

Original dataset First ensemble member First resampled dataset Second resampled dataset Second ensemble member

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

Noise Robustness

Random perturbation of network weights

- Gaussian noise: Equivalent to minimizing loss with regularization term
- Encourages smooth function: small perturbation in weights leads to small changes in output

Injecting noise in output labels

• Better convergence: prevents pursuit of hard probabilities

Dropout

Train all sub-networks obtained by removing nonoutput units from base network

Ensemble of subnetworks

Dropout: Stochastic GD

For each new example/mini-batch:

- Randomly sample a binary mask μ independently, where μ_i indicates if input/hidden node i is included
- Multiply output of node i with μ_i , and perform gradient update

Typically, an input node is **included** with **prob=0.8**, hidden node with **prob=0.5**.

Dropout: Weight Scaling

During prediction time use all units, but scale weights with probability of inclusion

Adversarial Examples

Adversarial Examples

Training on adversarial examples is mostly intended to improve security, but can sometimes provide generic regularization.

Recap

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Bagging
- Dropout

