Markov Chain Monte Carlo Methods

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Limitations of Likelihood Weighting
- Gibbs Sampling Algorithm
- Markov Chains
- Gibbs Sampling Revisited
- A broader class of Markov chains
- Using a Markov chain
- MCMC in Practice

Limitation of Likelihood weighting

- In likelihood weighting: evidence node affects sampling only for nodes that are descendants
- Effect on non-descendant nodes is accounted for only by the weights
- When the evidence is near the leaf nodes we are essentially sampling from the prior, which is often very far from the desired posterior
- We present an alternative sampling approach that generates a sequence of samples

Sequential sampling

- Sequence is constructed so that
 - although first sample is generated from the prior,
 - successive samples are generated from distributions that get closer to the desired posterior
- Applies equally well to directed and undirected models
- Algorithm is easier to present in terms of factors

Gibbs Sampling Algorithm

- "Fix" the sample by resampling some of the variables we generated early in the process
- Simplest method for doing this is Gibbs sampling presented next
- Start by generating a sample of unobserved variables using some initial distribution
 - use mutilated network and forward sampling
- The iterate over each unobserved variable, sampling a new value for each variable given our current sample for other variables
 - Allows information to flow over the network

Gibbs Sampling Algorithm

- Procedure Gibbs-Sample (
 - X // Set of variables to be sampled
 - Φ // Set of factors defining P_{Φ}
 - $P^{(0)}(\mathbf{X})$, //Initial state distribution
 - T //Number of time steps)

Sample $\boldsymbol{x}^{(0)}$ from $P^{(0)}(\boldsymbol{X})$

- for t=1,...,T
 - $x^{(t)} \leftarrow x^{(t-1)}$

for each $X_i \in X$

- Sample $x_i^{(t)}$ from $P_{\Phi}(X_i|\boldsymbol{x_{i-1}})$
- $//\mathrm{Change}X_i \text{ in } \boldsymbol{x}^{(t)}$
- return $x^{(0)},...,x^{(T)}$

Gibbs applied to evidence

- To apply to a network with evidence
- We first reduce all of the factors by the observations ${\bf e}$ so that the distribution P_Φ used in the algorithm corresponds to $P({\bf X}|{\bf e})$

Probabilistic Graphical Modles

Ex: Same as one with LW

2. Algorithm begins by generating one sample by forward sampling Assume this sample is $d^{(0)}=d^1$

$$i^{(0)} = i^0$$

 $q^{(0)} = q^2$

Evidence: l^0, s^1

1. Algorithm will generate samples over D,I,GSet of reduced factors Φ is therefore:

$$P(I), P(D), P(G|I,D), P(s^{1}|I), P(l^{0}|G)$$

3. We sample unobserved variables D,I,G

We sample $g^{(1)}$ from $P_{\phi}(G|d^1,i^0)$

This computation is efficient (since we are computing the distribution over a single variable given the others)

Having sampled $g^{(1)} = g^3$ we now continue Resampling $i^{(1)}$ from $P_{\phi}(I|d^1,g^3)$ to get i^1 Result of first iteration of sampling is:

$$d^{(0)} = d^1$$

$$i^{(0)} = i^1$$

$$g^{(0)}=g^3$$

MCMC

 A general method for generating samples from the posterior distribution

Markov Chain

- Graph is different from PGM
 - It is a graph whose nodes are possible assignments to our variables X
- A Markov chain is defined via a state-space
 Val(X) and a model that defines for every state
 xε Val(X) a next state distribution over
 Val(X).
- Transition model \mathcal{T} defines for each pair of states x,x' the probability $\mathcal{T}(x \rightarrow x')$

Ex: Grasshopper Markov Chain

State consists of nine integers -4,..,+4
arranged as points on a line. State
changes states with probabilities shown

Random Sampling Process

- Defines random state sequence $\boldsymbol{x}^{(0)}, \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots$
 - State of the process at time t is a r.v. $\boldsymbol{X}^{(t)}$
 - We assume that the initial state $\mathbf{X}^{(t)}$ is distributed according to some initial state distribution $P^{(0)}(\mathbf{X}^{(0)})$
 - We can define distributions over subsequent states $P^{(1)}(\mathbf{X}^{(1)}), P^{(2)}(\mathbf{X}^{(2)}), \dots$ using

$$P^{(t+1)}(\mathbf{X}^{(t+1)} = \mathbf{x}') = \sum_{\mathbf{x} \in Val(\mathbf{X})} P^{(t)}(\mathbf{X}^{(t)} = \mathbf{x}) T(\mathbf{x} \to \mathbf{x}')$$

- Probability of being in state x' at time t+1 is the sum over all possible states x that the chain could have been at time t of the probability being in state x times the probability of transition from x to x'