Stochastic-alpha-beta-rho (SABR) Model Applied Stochastic Processes (FIN 514)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2018-19 Module 1 (Fall 2018)

The project overview

SABR Model

- One of the most popular stochastic volatility (SV) model
- Heavily used in trading options for interest rate and FX
- Explains volatility skew/smile with minimal and intuitive parameters

Project Goal

- Implement the approximation formula by Hagan (provided)
- Implement option pricing with Euler method and MC
- Implement the probabilistic method by Kennedy et al (2012)
- Implement a smile calibration routine based on the method of Kennedy et al (2012)

Background: volatility skew/smile

- Black Monday crash in 1987:
 DJIA -22.6% in one day!
- Overall 'short gamma' due to the portfolio insurance (put on equity index)
- Market values (down-side) tail event higher than before.
- Market sees volatility skew/smile

(From Wikipedia)

Why need model for smile? challanges in risk management

- Option trading desk (market-making/sell-side) usually accumulates option positions with different strikes.
- Under BSM model,
 - Vol σ fixed under spot change $S_0 \to S_0 + \Delta$.
 - Risk-management is easy: delta and vega clearly defined
 - One can hedge delta (with underlying stock) and vega (with ATM option)
 - However, the OTM option prices/risks are not correct!
- BSM model with different σ to each option K?
 - How do we fix the volatilities?
 - Sticky strike rule $\sigma = \sigma(K)$ vs sticky delta rule $\sigma = \sigma(S_0 K)$.
 - Need to characterize the smile with a few minimal parameters.
- For better risk management, we need models which can capture the volatility smile.

How to model smile? Local volatility (LV)

• Volatility depending on the 'current location' of S_t :

BSM:
$$\frac{dS_t}{S_t} = \sigma f(S_t) \ dW_t$$
 Normal: $dS_t = \sigma_n f_n(S_t) \ dW_t$

- BSM model: a trivial case with f(x) = 1. However, it is a local vol model under normal volatility $(f_n(x) = x)$.
- Normal model: a trivial case with $f_n(x) = 1$. However, it is a local vol model under BSM volatility (f(x) = 1/x).
- What is the implied normal volatility of the Black-Scholes price on varying K? What is the relation between the implied volatility and the local vol?
- The implied volatility is the volatility average of the in-the-money paths
- Exercise 1: Chart the normal implied voly of the prices under BSM model for typical parameter sets. Measure the slope, $\partial \sigma(K)/\partial K$, at the money.

Case: $S_0 = 100, \sigma = 20\% (\sigma_n = 20), r = q = 0$:

• Implied normal vol for constant BSM vol ($\sigma = 20\%$):

• Implied normal vol for constant normal vol ($\sigma_n = 20$):

Displaced GBM (shifted BSM) model

- A quick local vol model
- 'Displaced asset price' $S_t + L$ follows GBM:

$$dS_t = \sigma_L(S_t + L) \ dW_t$$

- ullet Somewhere between normal $(L o \infty)$ and log-normal model (L=0).
- Can reuse BS formula with $S_0 + L \rightarrow S_0$ and $K + L \rightarrow K$.
- Calibration of σ_L (ATM option price on target):

$$\sigma_n \approx \sigma_L(S_0 + L) \approx \sigma S_0$$

But, needs an exact calibration of σ_L for a given σ_{BS} .

• Exercise 2: Chart the BSM implied vol of the prices under displaced GBM model. Using the implemented implied vol function, exactly calibrate σ_L to the ATM price.

Case: $S_0 = 100, L = 50, \sigma = 20\%, r = q = 0$:

• $\sigma_L = \sigma S_0/(S_0 + L) = 13.33\%$

• Implied normal vol: (red line: $\sigma_L(K+L)$)

• Implied BSM vol: (red line: $\sigma_L(K+L)/K$)

How to model smile? Stochastic volatility (SV)

Volatility changing over time:

BSM:
$$\frac{dS_t}{S_t} = \sigma_t \ dW_t$$
 Normal: $dS_t = \sigma_t \ dW_t$

- Many models proposed (mostly for BSM). For $dW_t dZ_t = \rho dt$,
 - Hull-While (SABR):

$$\frac{d\sigma_t}{\sigma_t} = \frac{\alpha}{\alpha} \, dZ_t$$

• Heston: $V_t = \sigma_t^2$ follows Cox-Ingersoll-Ross (CIR) process,

$$dV_t = \kappa (V_{\infty} - V_t)dt + \frac{\alpha}{\alpha} \sqrt{V_t} dZ_t$$

 \bullet SV model correctly captures the smile, α for curvature and ρ for skewness.

SABR model: LV + SV

Stochastic– α, β, ρ model SDE:

$$dS_t = \sigma_t S_t^{\beta} dW_t$$
$$d\sigma_t = \alpha \sigma_t dZ_t$$
$$dW_t dZ_t = \rho dt$$

- Parameters: σ_0 , α , β , ρ .
- σ_0 : ovarall volatility, calibrated to ATM implied vol
- β : elasticity or 'backbone'. (Normal: $\beta = 0$, BSM: $\beta = 1$)
- α : volatility of volatility, σ following a GBM
- ullet ho: correlation between asset price and volatility

The impact of parameters

Backbone β

- Fixed or infrequently changed
- BSM moel: $\beta = 1$ (Equity, FX)
- Normal model: $\beta = 0$ (Interest Rate)

Implied vol formula (Hagan et al, 2002)

The first few terms of the 'Taylor expansion' near $\alpha\sqrt{T}\approx 0$.

$$\sigma_{\beta}(K,f) = \frac{\alpha}{(fK)^{(1-\beta)/2} \left\{ 1 + \frac{(1-\beta)^2}{24} \log^2 f/K + \frac{(1-\beta)^4}{1920} \log^4 f/K + \cdots \right\}} \cdot \left(\frac{z}{x(z)} \right) \cdot \left\{ 1 + \left[\frac{(1-\beta)^2}{24} \frac{\alpha^2}{(fK)^{1-\beta}} + \frac{1}{4} \frac{\rho \beta \nu \alpha}{(fK)^{(1-\beta)/2}} + \frac{2-3\rho^2}{24} \nu^2 \right] t_{ex} + \cdots \right\}$$
(2.17a)

Here

$$z = -\frac{\nu}{\alpha} (fK)^{(1-\beta)/2} \log f/K, \tag{2.17b}$$

and x(z) is defined by

$$x(z) = \log \left\{ \frac{\sqrt{1 - 2\rho z + z^2} + z - \rho}{1 - \rho} \right\}.$$
 (2.17c)

Success of SABR model

- Volatility smile information encoded into three parameters σ_0, α, ρ !!
- Vega (volatility) risk managed by the three parameters rather than each individual vol.
- Three implied vols (or option prices) on the smile can calibrate the parameters. → An effective interpolation method for implied volatility (or option price)

Limitation of Hagan's formula

- Arbitrage is equivalent to some event happening with negative probability. The price of a derivative paying \$1 on that event is negative (should be free at most)!
- Digital (Call/Put) option from call spread

$$Prob(S_T > K) = D(K) = \frac{C_{BSM}(K) - C_{BSM}(K + \Delta K)}{\Delta K} = -\frac{\partial C_{BSM}(K)}{\partial K}$$

• When $\alpha \sqrt{T} \gg 1$, Hagan's formula sometimes implies ${\rm P}(S_T > K) < 0$ from

$$C_{\text{BSM}}(K, \sigma(K)) < C_{\text{BSM}}(K + \Delta K, \sigma(K + \Delta K)).$$

The volatility effect $\sigma(K+\Delta K)$ overcomes (should NOT!) the moneyness effect $K+\Delta K$.

MC Simulation (Euler method)

- Unlike normal or BSM model (as in spread/basket option project), we can not jump directly from t=0 to T.
- Divide the interval [0,T] into N small steps, $t_k=(k/N)T$ and $\Delta t_k=T/N$ and simulate each time step,

$$S_{t}: \begin{cases} \beta = 0: \ S_{t_{k+1}} = S_{t_{k}} + \sigma_{t_{k}} Z_{1} \sqrt{\Delta t_{k}} \\ \beta = 1: \ \log S_{t_{k+1}} = \log S_{t_{k}} + \sigma_{t_{k}} \sqrt{\Delta t_{k}} \ Z_{1} - \frac{1}{2} \sigma_{t_{k}}^{2} \Delta t_{k}, \end{cases}$$
$$\sigma_{t}: \sigma_{t_{k+1}} = \sigma_{t_{k}} \exp \left(\alpha \sqrt{\Delta t_{k}} \ Z_{2} - \frac{1}{2} \alpha^{2} \Delta t_{k} \right),$$

where $Z_1, Z_2 \sim N(0,1)$ with correlation ρ .

- Typically, $\Delta t_k \approx 0.25$. For T=30, N=120, quite time-consuming.
- Any good control variate?

$$C(K) = \frac{1}{N} \sum_{i=1}^{N} (S_T^{(i)} - K)^+$$

Stochastic integral of σ_t

From Itô's lemma,

$$d\sigma_t = \alpha \sigma_t dZ_t \quad \to \quad d\log \sigma_t = -\frac{1}{2}\alpha^2 dt + \alpha dZ_t$$

and we know the final distribution,

$$\sigma_T = \sigma_0 \exp\left(-\frac{1}{2}\alpha^2 T + \alpha Z_T\right).$$

We also know

$$\alpha \int_0^T \sigma_t dZ_t = \sigma_T - \sigma_0 = \sigma_0 \exp\left(-\frac{1}{2}\alpha^2 T + \alpha Z_T\right) - \sigma_0,$$

which will be useful for the integration of S_t .

Stochastic integral of S_t (normal: $\beta = 0$)

Writing the SDE in a de-correlated form,

$$dS_t = \sigma_t \left(\rho dZ_t + \sqrt{1 - \rho^2} dW_t \right)$$
 for $dW_t dZ_t = 0$.

Integrating S_t , we get so far as

$$S_T - S_0 = \rho \int_0^T \sigma_t dZ_t + \sqrt{1 - \rho^2} \int_0^T \sigma_t dW_t$$
$$= \frac{\rho}{\alpha} (\sigma_T - \sigma_0) + \sqrt{1 - \rho^2} \int_0^T \sigma_t dW_t$$

From Itô's Isometry, the integrated variance is $I_T := \int_0^T \sigma_t^2 dt$. With some more work, the box can be expressed as

$$\int_0^I \sigma_t dW_t = W \sqrt{I_T}, \text{ where } W \sim N(0,1) \text{ interpendent from } I_T \text{ and } \sigma_T$$

17/24

Conditional MC method (normal $\beta = 0$)

Given (σ_T, I_T) , the distribution of S_T is

$$S_T = S_0 + \frac{\rho}{\alpha} (\sigma_T - \sigma_0) + \sqrt{(1 - \rho^2)I_T} W$$

and the option price is from the normal model:

$$C_{\rm N}\left(K, S_0 := S_0 + \frac{\rho}{\alpha}(\sigma_T - \sigma_0), \ \sigma_{\rm N} := \sqrt{(1 - \rho^2)I_T/T}\right)$$

Then, the price is obtained as an expectation over MC simulation of I_T :

$$C_{eta=0} = E\left(C_{ ext{N}}(\sigma_T, I_T)
ight), \quad ext{where} \quad I_T = \sum_k \sigma_{t_k}^2 \Delta t_k$$

In this way, no need for simulating S_t . Given (σ_T, I_T) the price is exact, therefore MC variance is much smaller than that of brute-force MC.

Conditional MC method (BSM $\beta = 1$)

Given (σ_T, I_T) , the distribution of S_T is

$$\log(S_T/S_0) = \frac{\rho}{\alpha} (\sigma_T - \sigma_0) - \frac{1}{2} I_T + \sqrt{1 - \rho^2} W \sqrt{I_T}$$

and the option price is from the BSM model:

$$C_{\text{BSM}}\left(K, S_0 e^{\frac{\rho}{\alpha}\left(\sigma_T - \sigma_0\right) - \frac{\rho^2}{2}I_T}, \sqrt{(1 - \rho^2)I_T/T}\right)$$

Then, the price is obtained as an expectation over MC simulation of I_T :

$$C_{\beta=1} = E\left(C_{\mathrm{BSM}}(\sigma_T, I_T)\right), \quad \text{where} \quad I_T = \sum_k \sigma_{t_k}^2 \Delta t_k$$

In this way, no need for simulating S_t . Given (σ_T, I_T) the price is exact, therefore MC variance is much smaller than that of brute-force MC.

The conditional distribution of I_T on σ_T (Kennedy et al)

The conditional mean of I_T on σ_T is known as

$$E(I_T|\sigma_T) = \frac{\sigma_0^2 \sqrt{T}}{2\alpha} \frac{N(d_\alpha + \alpha \sqrt{T}) - N(d_\alpha - \alpha \sqrt{T})}{n(d_\alpha + \alpha \sqrt{T})}$$
 for $d_\alpha = \log(\sigma_T/\sigma_0)/(\alpha \sqrt{T})$.

The distribution of S_T is approximated

$$S_T = S_0 + \frac{\rho}{\alpha} (\sigma_T - \sigma_0) + \sqrt{1 - \rho^2} \, \eta(\sigma_T) W \sqrt{T}$$

for $\eta(\sigma_T)=E(I_T|\sigma_T)/\sqrt{T}$. For a given σ_T , S_T follows a normal distribution, so we now the option

$$C_{ ext{N}}(\sigma_T) = C_{ ext{N}}\left(S_0 := S_0 + rac{
ho}{lpha}ig(\sigma_T - \sigma_0ig), \; \sigma_{ ext{N}} := \sqrt{1-
ho^2}\,\eta(\sigma_T)ig)$$

Option price as an integration (Kennedy et al)

$$\begin{split} C_{\beta=0} &= E\Big((S_T - K)^+\Big) = E\Big((S_T - K)^+|\sigma_T\Big) = E\Big(C_{\rm N}(\sigma_T)\Big) \\ &= \int_{-\infty}^{\infty} C_{\rm N} \left(S_0 + \frac{\rho}{\alpha} \big(\sigma_T(z) - \sigma_0\big), \sqrt{1 - \rho^2} \, \eta(\sigma_T(z))\right) \, n(z) \; dz \\ &\text{where} \quad \sigma_T(z) = \sigma_0 \exp\left(-\frac{1}{2}\alpha^2 T + \alpha\sqrt{T} \, z\right) \end{split}$$

Using Gauss-Hermite quadrature (GHQ), [Py Demo]

$$C_{\beta=0} = \sum_{m} C_{N} \left(S_{0} + \frac{\rho}{\alpha} (\sigma_{T}(z_{m}) - \sigma_{0}), \sqrt{1 - \rho^{2}} \eta(z_{m}) \right) w_{m}$$

for some points $\{z_m\}$ and weights $\{w_m\}$, and $\eta(z_m):=\eta(\sigma_T(z_m))$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か 9 で

BSM: $\beta = 1$

The results are similar:

$$\log(S_T/S_0) = \frac{\rho}{\alpha} (\sigma_T - \sigma_0) - \frac{1}{2} I_T + \sqrt{1 - \rho^2} W \sqrt{I_T}$$

$$C_{\beta=1} = \sum_{m} C_{BS} \left(S_0 e^{\frac{\rho}{\alpha} (\sigma_T(z_m) - \sigma_0) - \frac{\rho^2}{2} \eta(z_m)}, \sqrt{1 - \rho^2} \eta(z_m) \right) w_m$$

for some points $\{z_m\}$ and weights $\{w_m\}$.

• Implement the method of Kennedy et al and compare it against the Monte Carlo result for both normal ($\beta=0$) and BSM backbone ($\beta=1$).

Smile Calibration

• When β is given (0 or 1), three parameters, σ_0 , ρ and α , can be calibrated to three option prices (or implied volatilities), typically at $K = S_0$ (ATM), $S_0 - \Delta$ and $S_0 + \Delta$.

$$\mathsf{SABR}(\sigma_0, \rho, \alpha) \to \sigma(S_0), \sigma(S_0 - \Delta), \sigma(S_0 + \Delta)$$

• Write a calibration routine in R to solve σ_0 , ρ and α .

Projects

Validation

- ullet $C_{eta=0}$ should converge to the normal model price when lpha is very small.
- Test against the result from Korn & Tang (Wilmott)

Homework

- First focus on the normal backbone $\beta = 0$.
- Make sure to use antithetic method (create Z, then add -Z).
- Short (1 page) write-up briefly explaining the code.
- Reproduce the graphs in 'The impact of parameters'. Fix your normal implied vol at ATM.
- Your script should be self-complete and should run without error.