Field~Effect Transistor (FET) Amplifier

Introduction to FET – Key Points

The concept: Julius Edgar Lilienfeld, 1925

Theoretical development: William Shockley, 1952

Working model: George Dacey and Ian Ross, 1953

Three-terminal solid-state device.

More compact and less power than a BJT

More downsizing and miniaturizing.

Voltage control concept

Two Main Types of FETs

Junction Gate FET

• JUGFET / JFET

Insulated Gate FET or Metal Oxide Semiconductor FET

• IGFET / MOSFET

Gate Implementation

JFET has a reverse biased p-n junction at the gate for controlling.

IGFET has a small capacitance at the gate for controlling.

Channel Resistance

- · Measured between the Drain and Source terminals
- Relatively low (a few hundred ohms at most) when the gate-bias voltage is zero.
- Resistance from source to drain is same value as from drain to source.

Transistor Action

- When the reverse bias of p-n junctior is increased,
 - Depletion layer widens,
 - Electric field repels electrons,
 - Effective channel width is reduced
 - Channel current is reduced.

..and vice versa.

Switching Mode Lamp is ON OFF Normally ON Normally ON

'Normally-ON' Device

- JFETs are normally-on devices.
- A reverse-biasing voltage between G &S expands
 Depletion layer
- Pinching-off the channel between source and drain

no way to flow out for stored chagers in deplition layer

Stored Charge

- * Stored charge built up across the junction's natural capacitance when the controlling voltage is removed.
- * Attach a "bleed-off" resistor between gate and source to discharge
- * Otherwise, JFET remains cutoff

25

Method of Removing Stored Charge

But when switch is on current flow through resistor R decepated more power that s darwback to less the power decepation R should be high—but discharge fast R should be less. so there is a delima

Static Mutual Characteristics

- Mutual = Between input & output
- Controlled Variable = Drain current (I_D)
- Controlling variable = $\frac{\text{Gate Voltage (V}_{GS})}{\text{Controlling variable}}$
- Plot of Controlled Vs. Controlling

Mathematical Model

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Non-Linear Behavior: Square Law

Compare with BJT

$$JFET \qquad BJT$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2 \iff I_C = \beta I_B$$

$$I_D = I_S \qquad \Leftrightarrow \qquad I_C \cong I_E$$

$$I_G \cong 0 \text{ A} \qquad \Leftrightarrow \qquad V_{BE} \cong 0.7 \text{ V}$$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

SYMBOL	PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS			
BVgss	Gate-Source Breakdown Voltage		-25		V	IG = -10xA, VDS = 0			
1000	Gate Reverse Current			-1.0	^	Vgs = -15V, Vps = 0			
IGSS	Gate Reverse Current			-200	nA	Vgs = -15V, Vps = 0, Ta = 100°C			
	Gate-Source Cutoff Voltage	2N5457	-0.5	-6.0	V	V _{DS} = 15V, I _D = 10nA			
VGS(off)		2N5458	-1.0	-7.0		· ·			
		2N5459	-2.0	-8.0					
Vgs	Gate-Source Voltage	2N5457	2.5		v	V _{DS} = 15V, I _D = 100xA, Typical			
		2N5458	3.5			Vps = 15V, lp = 200xA, Typical			
		2N5459	4.5			V _{DS} = 15V, I _D = 400xA, Typical			
IDSS	Zero-Gate-Voltage Drain Current (Note 1)	2N5457	1.0	5.0	mA	V _{DS} = 15V, V _{GS} = 0			
		2N5458	2.0	9.0					
	(Note 1)	2N5459	4.0	16					
	Forward Transfer Admittance	2N5457	1000	5000	αS	V _{DS} = 15V, V _{GS} = 0 , f = 1kHz			
Yfs		2N5458	1500	5500					
		2N5459	2000	6000					
Yos	Output Admittance		50	αS	V _{DS} = 15V, V _{GS} = 0, f = 1kHz				
Ciss	Input Capacitance (Note 2)			7.0	pF	V _{DS} = 15V, V _{GS} = 0, f = 1MHz			
Crss	Reverse Transfer Capacitance (No	ote 2)		3.0	pF	V _{DS} = 15V, V _{GS} = 0, f = 1MHz			
NF	Noise Figure (Note 2)			3.0	dB	V _{DS} = 15V, V _{GS} = 0, R _G = 1MHz, BW = 1Hz, f = 1kHz			

NOTES: 1. Pulse test required. PW ≤630ms, duty cycle ≤10%.
2. For design reference only, not 100% tested.

41

Preferred Device

JFET VHF/UHF Amplifiers

N-Channel — Depletion

Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Forward Gate Current	I _{GF}	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	PD	350 2.8	mW mW/°C
Junction Temperature Range	TJ	-65 to +125	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur.

Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

J309 JFET	' Dat	a			_	1
ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted) Characteristic	Symbol	Min	Тур	Max	Unit	
DFF CHARACTERISTICS						7
Gate – Source Breakdown Voltage (I _G = −1.0 μAdc, V _{DS} = 0)	V _{(BR)GSS}	-25	-	* - *	Vdc	1
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 25^{\circ}\text{C})$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = +125^{\circ}\text{C})$	I _{GSS}	-	=	-1.0 -1.0	nAdc μAdc	32
Gate Source Cutoff Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 1.0 \text{ nAdc})$ J309 J310	V _{GS(off)}	-1.0 -2.0	-	-4.0 -6.5	Vdc	1
ON CHARACTERISTICS					· · · · ·	
Zero - Gate - Voltage Drain Current ⁽¹⁾ $(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0)$ J309 J310	I _{DSS}	12 24	5	30 60	mAdc	
Gate-Source Forward Voltage (V _{DS} = 0, I _G = 1.0 mAdc)	V _{GS(f)}	-		1.0	Vdc	工

