

CLAIMS

1. A compound of formula (I):

5

where A is an *ortho*-substituted ring selected from formulae (A1) to (A22);

10

15

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

5

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

10

(A22)

Q is a single or a double bond; X is O, N(R¹⁸), S or CR¹⁹R²⁰)(CR²¹R²²)_m(CR²³R²⁴)_n; R¹ is halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy or optionally substituted C₂₋₄ alkenyl, 5 optionally substituted C₂₋₄ alkynyl or optionally substituted SO₂(C₁₋₄)alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C₁₋₄ alkoxy); R² is C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl or C₁₋₄ alkylthio(C₁₋₄)alkyl or [optionally substituted aryl](C₁₋₄)alkyl- or [optionally substituted aryl]oxy(C₁₋₄)alkyl- (where the optionally substituted aryl moieties may each have up to 3 substituents, each independently selected from halogen and C₁₋₄ alkoxy); R³ is hydrogen, 10 CH₂C=CR⁴, CH₂CR⁴=C(H)R⁴, CH=C=CH₂ or COR⁵ or optionally substituted C₁₋₄ alkyl, optionally substituted C₁₋₄ alkoxy or optionally substituted (C₁₋₄)alkylC(=O)O (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C₁₋₄ alkoxy, C₁₋₄ alkyl, 15 C₁₋₂ haloalkoxy, hydroxy, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, methylsulfonyl and ethylsulfonyl); each R⁴ is, independently, hydrogen, halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy or C₁₋₄ alkoxy(C₁₋₄)alkyl; R⁵ is hydrogen or 20 optionally substituted C₁₋₆ alkyl, optionally substituted C₁₋₄ alkoxy, optionally substituted C₁₋₄ alkoxy(C₁₋₄)alkyl, optionally substituted C₁₋₄ alkylthio(C₁₋₄)alkyl or optionally substituted aryl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C₁₋₆ alkoxy, 25 C₁₋₆ haloalkoxy, cyano, hydroxy, methoxycarbonyl and ethoxycarbonyl); R⁶ is phenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ haloalkylthio, C(H)=N-OH, C(H)=N-O(C₁₋₆ alkyl), C(C₁₋₆ alkyl)=N-OH, 30 C(C₁₋₆ alkyl)=N-O-(C₁₋₆ alkyl), (Z)_pC≡CR²⁵ and (Z)_pCR²⁸=CR²⁶R²⁷], a 5-6 membered heterocyclic ring [in which the ring contains 1 to 3 heteroatoms (each independently chosen from oxygen, sulphur and nitrogen) and the ring is 35 optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C(H)=N-O-(C₁₋₆ alkyl) and C(C₁₋₆ alkyl)=N-O-(C₁₋₆ alkyl)], C₃₋₁₂ alkyl [optionally substituted by up to 6 substituents, each independently selected from halogen,

cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)],

5 C₂₋₁₂ alkenyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-(C₁₋₄ alkyl), =N-OH, =N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)],

10 C₂₋₁₂ alkynyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)],

15 C₂₋₁₂ alkynyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)], Si(CH₃)₃ and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)], C₃₋₈ cycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl, C₃₋₆ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms)],

20 C₄₋₈ cycloalkenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl, C₃₋₆ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms)], C₆₋₁₂ bicycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl and C₁₋₄ haloalkyl] or an aliphatic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and,

25

30

optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms]; R⁷, R⁸, R⁹, R¹⁰, R¹¹ and R¹² are each, independently, hydrogen, halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl,
5 C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl or C₁₋₄ thiohaloalkyl; R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ are each, independently, hydrogen, halogen, C₁₋₄ alkyl, C(O)CH₃, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl, C₁₋₄ thiohaloalkyl, hydroxymethyl or C₁₋₄ alkoxy(methyl); R¹⁸ is hydrogen, C₁₋₄ alkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl, formyl, C(=O)C₁₋₄ alkyl (optionally substituted by halogen or C₁₋₄ alkoxy) or C(=O)O-C₁₋₆ alkyl (optionally substituted by halogen, C₁₋₄ alkoxy or CN); R¹⁹, R²⁰, R²¹, R²², R²³ and R²⁴ are each, independently, C₁₋₆ alkyl, C₁₋₆ alkenyl [both optionally substituted by halogen, hydroxy, =O, C₁₋₄ alkoxy, O-C(O)-C₁₋₄ alkyl, aryl or a 3-7 membered carbocyclic ring (itself optionally substituted by up to three methyl groups)], a 3-7 membered carbocyclic ring
10 (optionally substituted by up to three methyl groups and optionally containing one heteroatom selected from nitrogen and oxygen), hydrogen, halogen, hydroxy or C₁₋₄ alkoxy; or R¹⁹R²⁰ together with the carbon atom to which they are attached form a carbonyl-group, a 3-5 membered carbocyclic ring (optionally substituted by up to three methyl groups), C₁₋₆ alkylidene (optionally substituted by up to three methyl groups) or C₃₋₆ cycloalkylidene (optionally substituted by up to three methyl groups); R²⁵ is hydrogen, halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl, C₁₋₄ haloalkoxy(C₁₋₄)alkyl or Si(C₁₋₄ alkyl)₃; R²⁶ and R²⁷ are each, independently, hydrogen, halogen, C₁₋₄ alkyl or C₁₋₄ haloalkyl; R²⁸ is hydrogen, C₁₋₄ alkyl or C₁₋₄ haloalkyl; m is 0 or 1; n is 0 or 1; p is 0 or 1; and Z is C₁₋₄ alkylene.
15
20
25

2. A compound of formula (I) as claimed in claim 1 where A is selected from formulae (A1), (A2), (A3), (A16), (A17), (A18), (A19), (A20) and (A22).
- 30 3. A compound of formula (I) as claimed in claim 1 or 2 where R¹ is C₁₋₄ alkyl, C₁₋₄ haloalkyl, NO₂, CN or OCF₃.

4. A compound of formula (I) as claimed in claim 1, 2 or 3 where R² is C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl or C₁₋₄ alkylthio(C₁₋₄)alkyl.

5. A compound of formula (I) as claimed in claim 1, 2, 3 or 4 where R³ is hydrogen, CH₂C≡R⁴, CH₂CR⁴=C(H)R⁴, CH=C=CH₂ or COR⁵.

6. A compound of formula (II):

10

where R¹ and R² are as defined in claim 1 and Y is halogen, hydroxy or C₁₋₅ alkoxy; provided that when R¹ is chloro and R² is 4-CH₃O-C₆H₄-CH₂-, Y is not C₂H₅O; when R¹ is CH₃O and R² is CH₃, Y is not C₂H₅O; when R¹ is bromo and R² is CH₃OCH₂, Y is not CH₃O; and when R¹ is CH₃ and R² is C₂H₅, Y is not OH.

15

7. A compound of formula (IIIa)

20

where R¹³, R¹⁴, R¹⁵, R¹⁶, X and Q are as defined in claim 1; provided that when R¹³, R¹⁴, R¹⁵ and R¹⁶ are each H then X is not CH₂ when Q is a double bond and X is not CH₂CH₂ when Q is a single bond or a double bond; and when R¹³ is CH₃, R¹⁴ is OCH₃ and R¹⁵ and R¹⁶ are both H then X is not CH₂CH₂ when Q is a single bond.

25

8. A composition for controlling microorganisms and preventing attack and infestation of plants therewith, wherein the active ingredient is a compound of formula (I) as claimed in claim 1 together with a suitable carrier.

- 5 9. A method of controlling or preventing infestation of cultivated plants by phytopathogenic microorganisms by application of a compound of formula (I) as claimed in claim 1 to plants, to parts thereof or the locus thereof.