TRIGONOMETRY TOMO VII

Feedback

Reduzca:
$$E = \frac{\text{sen65}^{\circ} + \text{sen55}^{\circ}}{\cos 65^{\circ} + \cos 55^{\circ}}$$

Resolución:

Recordar:

$$senA + senB = 2sen\left(\frac{A+B}{2}\right).cos\left(\frac{A-B}{2}\right)$$
 $cosA + cosB = 2cos\left(\frac{A+B}{2}\right).cos\left(\frac{A-B}{2}\right)$

Zsen60°cos5°

$$\frac{senA + senB}{senA + senB} = 2sen\left(\frac{A + B}{2}\right).cos\left(\frac{A - B}{2}\right)$$

$$\frac{cosA + cosB}{2} = 2cos\left(\frac{A + B}{2}\right).cos\left(\frac{A - B}{2}\right)$$

$$\frac{2}{2} = \frac{1}{2} \frac{sen65^{\circ} + sen55^{\circ}}{cos65^{\circ} + cos55^{\circ}}$$

$$\frac{2}{2} = \frac{2cos60^{\circ} cos55^{\circ}}{cos60^{\circ} cos55^{\circ}}$$

$$E = \frac{sen60^{\circ}}{cos60^{\circ}}$$

$$\therefore E = \sqrt{3}$$

HELICO | PRACTICE

HELICO-PRACTICE 2

Una barra metálica descansa sobre una pared lisa, tal como se muestra en la figura. Calcule el valor de θ .

 $\cos 70^{\circ} + 2\cos 50^{\circ}$

Resolución:

Recordar:

$$cosA + cosB = 2cos\left(\frac{A+B}{2}\right).cos\left(\frac{A-B}{2}\right)$$

Recordar:
$$cosA + cosB = 2cos(\frac{A+B}{2}).cos(\frac{A-B}{2}) = cot\theta = \frac{cos70^{\circ} + 2cos50^{\circ}}{cos20^{\circ}} = \frac{cos20^{\circ}}{cos20^{\circ}} = \frac{cos70^{\circ} + 2cos50^{\circ}}{cos20^{\circ}} = \frac{cos70^{\circ}}{cos20^{\circ}} = \frac{co$$

$$\cot \theta = \frac{2\left(\frac{1}{2}\right)\cos 10^{\circ} + \cos 50^{\circ}}{\cos 20^{\circ}}$$

$$\cot\theta = 2\left(\frac{\sqrt{3}}{2}\right) \Rightarrow \cot\theta = \sqrt{3}$$

$$\theta = 30^{\circ}$$

Halle el valor de m, si:

$$\frac{\cos 20^{\circ}.\cos 10^{\circ}}{\sin 30^{\circ}} = m + \sin 80^{\circ}$$

Resolución:

Recordar

 $2\cos x \cos y = \cos(x+y) + \cos(x-y)$

$$\frac{2\cos 20^{\circ}\cos 10^{\circ}}{2\sin 30^{\circ}} = m + \sin 80^{\circ}$$

$$\frac{\cos 30^{\circ} + \cos 10^{\circ}}{2\left(\frac{1}{2}\right)} = m + \sin 80^{\circ}$$

$$\frac{\sqrt{3}}{2} + sen80^{\circ} = m + sen80^{\circ}$$

Determine el rango de la función: f(x) = 4senx + 5

Resolución:

Se sabe que: $-1 \le senx \le 1$ Ahora le damos la forma de la función f:

$$-1 \le senx \le 1$$
 (x4)
 $-4 \le 4 senx \le 4$ (+5)
 $1 \le 4 senx + 5 \le 9$

$$\therefore Ranf = [1; 9]$$

01

Del gráfico, calcule a.b

Resolución:

Sea:
$$f(x) = y = 2senx$$

$$P(\frac{2\pi}{3}; a) \in f$$

$$\frac{a}{a} = 2 \operatorname{sen}(\frac{2\pi}{3})$$

$$a = 2(\frac{\sqrt{3}}{2}) \Rightarrow a = \sqrt{3}$$

$$Q(\frac{5\pi}{3}; b) \epsilon f$$

$$b = 2sen(\frac{5\pi}{3})$$

$$a = 2(\frac{\sqrt{3}}{2}) \Rightarrow a = \sqrt{3}$$
 $b = 2(-\frac{\sqrt{3}}{2}) \Rightarrow b = -\sqrt{3}$ $\therefore ab = -3$

Piden:

a.b=
$$(\sqrt{3})$$
. $(-\sqrt{3})$

$$∴$$
 ab = -3

Del gráfico, determine el área de la región sombreada.

Resolución:

Sea la función: f(x) = y = 4 sen 3x

Periodo de la función:

$$T = \frac{2\pi}{B}$$

$$T = \frac{2\pi}{3}$$

Amplitud: A = 4

Calculando el área:

$$S = \frac{\text{b.h}}{2} \implies S = \frac{\left(\frac{\pi}{2}\right).(4)}{2}$$

$$\therefore S = \pi u^2$$

Determine el rango de la función: $f(x) = 3\cos x - 2$

Resolución:

Se sabe que:
$$-1 \le Cosx \le 1$$

Ahora le damos la forma de la función f :
 $-1 \le Cosx \le 1 \dots (x3)$
 $-3 \le 3Cosx \le 3 \dots (-2)$
 $-5 \le 3Cosx - 2 \le 1$

 $\therefore Ranf = [-5; 1]$

Del gráfico, calcule a·b

Resolución:

Sea:
$$f(x) = y = 4\cos x$$

$$Q\left(\frac{7\pi}{6};b\right) \in f$$

$$\Rightarrow$$
 b = $4\cos\left(\frac{7\pi}{6}\right)$

$$\Rightarrow$$
 b = $-4\cos\left(\frac{\pi}{6}\right)$

$$\Rightarrow$$
 b = $-4\left(\frac{\sqrt{3}}{2}\right)$

$$\Rightarrow$$
 b = $-2\sqrt{3}$

$$P\left(\frac{\pi}{4};a\right) \in f$$

$$\Rightarrow$$
 a = 4 cos $\left(\frac{\pi}{4}\right)$

$$\Rightarrow$$
 a = 4 $\left(\frac{\sqrt{2}}{2}\right)$

$$\Rightarrow$$
 a = $2\sqrt{2}$

Nos piden:

a.b =
$$(2\sqrt{2})(-2\sqrt{3})$$

$$\therefore ab = -4\sqrt{6}$$

Del gráfico, determine el área de la región sombreada.

Resolución:

Sea la función: $f(x) = y = 3\cos 2x$

Periodo de la función:

$$T = \frac{2\pi}{B}$$

$$T = \frac{2\pi}{2} = \pi$$

Amplitud: A = 3

Calculando el área:
$$S = \frac{\left(\frac{\pi}{2}\right).(3)}{2}$$

$$\therefore S = \frac{3\pi}{4} u^2$$

HELICO | PRACTICE

Sean A, B, C constantes y $f: \mathbb{R} \to \mathbb{R}$ dada por

f(x) = A sen(x) + B cos(x) + C sen(x) cos(x)cuya gráfica parcial se muestra a continuación:

Calcule A+B+C

Resolución:

El punto P $\in f(x)$

$$f(0) = Asen(0) + Bcos(0) + Csen(0)cos(0)$$

$$2 = A(0) + B(1) + C(0)(1) \longrightarrow \mathbf{2} = \mathbf{B}$$

El punto R \in f(x)

$$f\left(\frac{\pi}{2}\right) = Asen\left(\frac{\pi}{2}\right) + Bcos\left(\frac{\pi}{2}\right) + Csen\left(\frac{\pi}{2}\right)cos\left(\frac{\pi}{2}\right)$$

$$-1 = A(1) + 2(0) + C(1)(0) \longrightarrow -1 = A$$

El punto Q $\in f(x)$

$$f\left(\frac{\pi}{4}\right) = Asen\left(\frac{\pi}{4}\right) + Bcos\left(\frac{\pi}{4}\right) + Csen\left(\frac{\pi}{4}\right)cos\left(\frac{\pi}{4}\right)$$

$$\frac{1}{2} + \frac{\sqrt{2}}{2} = -1\left(\frac{\sqrt{2}}{2}\right) + 2\left(\frac{\sqrt{2}}{2}\right) + C\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)$$

$$\frac{1}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} + C\left(\frac{1}{2}\right) \longrightarrow \mathbf{1} = \mathbf{C}$$

$$\therefore A + B + C = 2$$