Affine Gap Penalties

Sushmita Roy
BMI/CS 576
www.biostat.wisc.edu/bmi576/
Sushmita Roy
sroy@biostat.wisc.edu
Sep 25th, 2012

More on gap penalty functions

- a gap of length k is more probable than k gaps of length 1
 - a gap may be due to a single mutational event that inserted/deleted a stretch of characters
 - separated gaps are probably due to distinct mutational events
- a linear gap penalty function treats these cases the same
- it is more common to use gap penalty functions involving two terms
 - a penalty d associated with opening a gap
 - a smaller penalty e for extending the gap

Global Alignment with general gap penalty function

why the general case has time complexity $O(n^3)$

Gap penalty functions

linear

$$w(g) = -g \times d$$

affine

$$w(g) = \begin{cases} -d - (g-1)e, & g \ge 1 \\ 0, & g = 0 \end{cases}$$

Dynamic programming for the affine gap penalty case

• to do in $O(n^2)$ time, need 3 matrices instead of 1

$$M(i,j)$$
 best score given that x_i is aligned to y_j

$$I_{x}(i,j)$$
 best score given that x_{i} is aligned to a gap (move in vertical direction)

$$I_y(i,j)$$
 best score given that y_j is aligned to a gap (move in horizontal direction)

Global alignment DP for the affine gap penalty case

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_i, y_j) \\ I_x(i-1, j-1) + s(x_i, y_j) \\ I_y(i-1, j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_{y}(i,j-1) - e \end{cases}$$

Global alignment DP for the affine gap penalty case

initialization

$$M(0,0)=0$$

$$I_x(i,\ 0)=-d-(i-1)e \qquad \text{for } i>0$$

$$I_y(0,j)=-d-(j-1)e \qquad \text{for } j>0$$
 other cells in top row and leftmost column
$$=-\infty$$

- traceback
 - start at largest of $M(m,n), I_x(m,n), I_y(m,n)$
 - stop at M(0,0)
 - note that pointers may traverse all three matrices

d = 4, e = 1		Α	С	Α	С	Т
	$M \searrow 0$	-in	-in	-in	-in	-in
	I_x in	-in	-in	-in	-in	-in
	$I_y \longrightarrow -in$	1-4	− -5 ←	— -6 ←	7 <u>←</u>	8
	-in	1	-5	-4	-7	-8
Α	-4	-in	-in	-in	-in	-in
	-in)	-in	-3	— -4 ←	-5	- -6
X	-in/	-3	0	-2	-5	-6
Α	-5	-3	-9	-8	-11	-12
	-in	-in	-7	-4	-5 ←	6
	-in /	-6	-4	-1	-3	-4
Т	-6	-4	-4	-6	-9 /	-10 /
	-in	-in	-10	-8	-5	6

Local alignment DP for the affine gap penalty case

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_i, y_j) \\ I_x(i-1, j-1) + s(x_i, y_j) \\ I_y(i-1, j-1) + s(x_i, y_j) \\ 0 \end{cases}$$

$$I_{x}(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_{x}(i-1,j) - e \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_{y}(i,j-1) - e \end{cases}$$

Local alignment DP for the affine gap penalty case

initialization

$$M(0,0) = 0$$

 $M(i,0) = 0$
 $M(0, j) = 0$

cells in top row and leftmost column of I_x , $I_y = -\infty$

- traceback
 - start at largest M(i, j)
 - stop at M(i, j) = 0

Gap penalty functions

• linear: $w(g) = -g \times d$

affine:

$$w(g) = \begin{cases} -d - (g-1)e, & g \ge 1 \\ 0, & g = 0 \end{cases}$$

 convex: as gap length increases, magnitude of penalty for each additional character decreases

e.g.
$$w(g) = -d - \log(g) \times e$$

Computational complexity and gap penalty functions

linear: $O(n^2)$

affine: $O(n^2)$

general: $O(n^3)$

Pairwise alignment summary

- the number of possible alignments is exponential in the length of sequences being aligned
- dynamic programming can find optimal-scoring alignments in polynomial time
- the specifics of the DP depend on
 - local vs. global alignment
 - gap penalty function
- · affine penalty functions are most commonly used