

ANALOG 6通道、低噪声、低功耗24/16位Σ-Δ型 DEVICES ADC,内置片内仪表放大器和基准电压源

AD7794/AD7795

特性

最高23位有效分辨率

均方根(RMS)噪声: 40 nV(4.17 Hz时), 85 nV(16.7 Hz时)

电流: 400 µA(典型值) 省电模式: 最大1 µA

低噪声可编程增益仪表放大器

带隙基准电压源,典型温漂值为4 ppm/°C

更新速率: 4.17 Hz至470 Hz

6路差分模拟输入 内部时钟振荡器 50 Hz/60 Hz同时抑制

基准电压检测

可编程电流源

片内偏置电压发生器

熔断电流控制 低端电源开关

电源电压: 2.7 V至5.25 V

温度范围:

B级: -40°C至+105°C C级: -40°C至+125°C

独立接口电源 24引脚TSSOP封装 三线式串行接口

SPI®、QSPI™、MICROWIRE™、DSP兼容

SCLK上为施密特触发器

应用

温度测量 压力测量 由子秤

应变栅传感器

气体分析

工业过程控制

仪器仪表

血液分析

智能发射机

液相/气相色谱仪

6位DVM

概述

AD7794/AD7795均为适合高精度测量应用的低功耗、低噪 声、完整模拟前端,内置一个低噪声24位/16位的6路差分 输入的 Σ - Δ ADC, 还集成了片内低噪声仪表放大器, 因而 可直接输入小信号到ADC。

每款器件均内置一个精密低噪声、低温漂内部带隙基准电 压源, 也可采用最多两个外部差分基准电压。其它片内特 性包括可编程激励电流源、熔断电流控制和偏置电压产生 器,利用偏置电压产生器可将某一通道的共模电压设置为 AVDD/2。低端电源开关可用来在两次转换之间关断桥式传 感器,从而使系统功耗降至最低。AD7794/AD7795可以采 用内部时钟或外部时钟工作,输出数据速率可在4.17 Hz至 470 Hz的范围内变化。

两款器件均采用2.7 V至5.25 V电源供电。B级器件(AD7794 和AD7795)的额定温度范围为-40°C至+105°C, 而C级器件 (AD7794)的额定温度范围为-40°C至+125°C。这些器件的 典型功耗为 400 μA, 采用24引脚TSSOP封装。

功能框图 AV_{DD} AIN4(+)/REFIN2(+) REFIN1(+) AIN4(-)/REFIN2(-) REFIN1(-) GND REFERENCE DETECT VBIAS BAND GAP GND 8 AIN1(+) DOUT/RDY AIN1(-) DIN AIN2(+) AIN2(-) AIN3(+) 8 cs AIN3(-) AIN5(+)/IOUT2 AIN5(-)/IOUT1 AIN6(+)/P1 AIN6(-)/P2 AD7794/AD7795 PSW تص AD7794: 24-BIT ADC AD7795: 16-BIT ADC 图1

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No ense is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trade marks and registered trade marks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com

Fax: 781.461.3113 ©2004–2007 Analog Devices, Inc. All rights reserved.

目录

特性
应用
概述
功能框图
修订历史
技术规格
时序特性
时序图
绝对最大额定值 10
ESD警告10
引脚配置和功能描述1
均方根噪声与分辨率特性1
新波使能1
新波禁用 1 ₁
典型工作特性10
片内寄存器 1'
通信寄存器 1'
状态寄存器1
模式寄存器19
配置寄存器2
数据寄存器2
ID寄存器2
IO寄存器2
失调寄存器2
修订历史
2007年3月—修订版C至修订版D
更改技术规格尾注1
更改状态寄存器部分1
更改订购指南30
2006年10月—修订版B至修订版C
格式更新
增加AD7794 C级器件通用
更改技术规格
更改订购指南30
2006年6月—修订版A至修订版B
增加AD7795
更改特性
更改表1
更改均方根噪声与分辨率特性部分1
更改表192
更改ADC电路信息部分2
更改订购指南 3

满量程寄存器25
ADC电路信息
概述26
数字接口28
电路描述
模拟输入通道 31
仪表放大器31
双极性/单极性配置31
数据输出编码 32
熔断电流 32
激励电流
偏置电压发生器 32
基准电压
基准电压检测
复位33
AV _{DD} 监控器33
校准
接地和布局34
应用信息
流量计
外形尺寸
订购指南36
005年4月—修订版0至修订版A
E改绝对最大额定值9
巨改图21
- >

2004年10月—修订版0: 初始版	
更改订购指南	33
更改校准部分	30
更改数据输出编码部分	28
更改图21	25
更改绝对最大额定值	9

技术规格

除非另有说明, AV_{DD} = 2.7 V至5.25 V, DV_{DD} = 2.7 V至5.25 V,GND = 0 V,所有规格均相对于 T_{MIN} 至 T_{MAX} 而言。

表1

参数1	AD7794/AD7795	单位	测试条件/注释
斩波使能			
输出更新速率	4.17 至 470	Hz, 标称值	建立时间 = 2/输出更新速率
无失码 ²			
AD7794	24	位,最小值	f _{ADC} ≤ 242 Hz
AD7795	16	位,最小值	
分辨率			 参见均方根噪声与分辨率特性部分
均方根噪声与更新速率			参见均方根噪声与分辨率特性部分
积分非线性	±15	满量程范围的百万	274 W W 777 17 17 12 HF74
7/7 II ALE		分率(ppm),最大值	
失调误差 ³³	±1	μV,典型值	
失调误差漂移与温度的关系4	±10	nV/℃,典型值	
满量程误差3,5	±10	μV,典型值	
增益漂移与温度的关系4	±1	*	增益 = 1至16,外部基准电压
	±3	ppm/℃,典型值	
电源抑制	100	dB,最小值	AIN = 1 V/增益,增益 ≥ 4,外部基准电压
模拟输入	100	35,取行值	7 1 4776 m. 1 71 m. 2 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.
差分输入电压范围	±VREF/增益	V,标称值	 V _{ref} = REFIN(+) – REFIN(–), ,或内部基准电压,
左刀 机八七压亿国	- VI(LI/7月皿	v, 1/1/1/1E	增益 = 1至128
AIN电压绝对限值 ²			
无缓冲模式	GND – 30 mV	V,最小值	增益 = 1或2
70-32.11 13.24	$AV_{DD} + 30 \text{ mV}$	V,最大值	
缓冲模式	GND + 100 mV	V,最小值	增益 = 1或2
级叶俣八	AV _{DD} – 100 mV	V,最大值	有血 - 1次2
仪表放大器有效	GND + 300 mV	V,最八值	 增益 = 4至128
区状况八证有从	AV _{DD} – 1.1	V,最为值	相画 = 4至120
共模电压V _{CM}	0.5	V,最八值	 VCM = (AIN(+) + AIN(-))/2, 增益=4至128
类似输入电流 模拟输入电流	0.5	V,取//III	VCIVI = (AIIV(干) + AIIV(=))/2, 宥益=+主120
缓冲模式或仪表放大器有效 缓冲模式或仪表放大器有效			
发件候式以仅衣放入奋有效 Active			
平均输入电流 ²			
AD7794B/AD7795B	±1	nA,最大值	 增益=1或2,更新速率 < 100 Hz
187751871877538	±250	pA,最大值	增益= 4至128,更新速率 < 100 Hz
	±1	nA,最大值	AIN6(+)/AIN6(-)
AD7794C	±3	nA,最大值	增益= 1或2,更新速率 < 100 Hz
AD7794C	±2	nA,最大值	增益= 4至128,更新速率 < 100 Hz
	±3	nA,最大值	AIN6(+)/AIN6(-)
亚拓松 由 法沮洒	±2		Alivo(+)/Alivo(-)
平均输入电流温漂 无缓冲模式	±Ζ	pA/℃,典型值	 增益 = 1或2
	±400	2011 世刊法	增益
平均输入电流		nA/V,典型值	
平均输入电流温漂	±50	pA/V/℃,典型值	
常模抑制 ^{2,6}			
内部时钟	65	an elle	
@ 50 Hz, 60 Hz	65	dB, 最小值	典型值80 dB,50±1 Hz,60±1 Hz,FS[3:0]=1010
@ 50 Hz	80	dB, 最小值	典型值90 dB,50±1 Hz,FS[3:0] = 1001
@ 60 Hz	90	dB, 最小值	典型值100 dB,60 ± 1 Hz,FS[3:0] = 1000
外部时钟		10 H 1 M	# TILET OO ID FO. 4 II
@ 50 Hz, 60 Hz	80	dB, 最小值	典型值90 dB,50±1 Hz,60±1 Hz,FS[3:0]=1010
@ 50 Hz	94	dB,最小值	典型值100 dB, 50 ± 1 Hz, FS[3:0] = 1001
@ 60 Hz	90	dB,最小值	典型值100 dB,60 ± 1 Hz,FS[3:0] = 1000

参数1	AD7794/AD7795	单位	测试条件/注释
共模抑制			
AD7794B/AD7795B			
@ DC	100	dB,最小值	AIN=1V/增益,增益≥4
@ 50 Hz, 60 Hz ²	100	dB, 最小值	50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010
@ 50 Hz, 60 Hz ²	100	dB, 最小值	50 ± 1 Hz, FS[3:0] = 1001; 60 ± 1 Hz, FS[3:0] = 1000
AD7794C		, , ,	, , , , , , , , , , , , , , , , , , , ,
@ DC	97	dB,最小值	 AIN = 1 V/增益,增益 ≥ 4
@ 50 Hz, 60 Hz ²	97	dB, 最小值	50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010
@ 50 Hz, 60 Hz ²	97	dB,最小值	50 ± 1 Hz, FS[3:0] = 1001; 60 ± 1 Hz, FS[3:0] = 1000
新波禁用		7 774 4 111	The Property of Property of the Property of th
输出更新速率	4.17 至 470	Hz, 标称值	建立时间 = 1/输出更新速率
无失码2		, , , , , , , , , , , , , , , , , , , ,	ZEMIN WINDER
AD7794	24	位,最小值	f _{ADC} ≤ 123 Hz
AD7795	16	位,最小值	ADC = 123 112
分辨率	10	应,致力值	 参见均方根噪声与分辨率特性部分
均方根噪声与更新速率			参见均方根噪声与分辨率特性部分
积分非线性	±15	 满量程范围的百万	多光均分似味声与力·开平行压印力
你刀干发 庄	113	分率(ppm),最大值	
失调误差 ³	±100/增益	μV,典型值	 无校准
失调误差漂移与温度的关系4	±100/增益	nV/℃,典型值	增益 = 1至16
人。可以上15个人	10	nV/℃,典型值	增益 = 32至128
满量程误差 ^{3,5 3,5}	±10	μV,典型值	月
增益漂移与温度的关系4	±10	ppm/℃,典型值	 增益 = 1至16,外部基准电压
眉血保侈可值及的大系	±3	ppm/℃,典型值 ppm/℃,典型值	
中源 地名	100	1	
电源抑制 模拟输入	100	dB, 典型值	AIN = 1 V/增益,增益 ≥ 4,外部基准电压
差分输入电压范围	±V _{REF} /增益	V,标称值	│ │ V _{REF} = REFIN(+) - REFIN(-), 或内部基准电压,
			增益 = 1至128
AIN电压绝对限值 ²			
无缓冲模式	GND – 30 mV	V,最小值	增益=1或2
	$AV_{DD} + 30 \text{ mV}$	V, 最大值	
缓冲模式	GND + 100 mV	V,最小值	增益 = 1或2
	AV _{DD} – 100 mV	V,最大值	
仪表放大器有效	GND + 300 mV	V,最小值	增益 = 4至128
	AV _{DD} – 1.1	V, 最大值	
共模电压V _{CM}	0.2 + (增益/2 × (AIN(+) -	V,最小值	AMP - CM = 1, VCM = (AIN(+) + AIN(-))/2,
	AIN(-)))	.,	增益 = 4 至 128
	AV _{DD} - 0.2 - (增益/2× (AIN(+) - AIN(-)))	V,最大值	
模拟输入电流	(AIIV(T) - AIIV(-)))		
缓冲模式或仪表放大器有效			
平均输入电流 ²			
AD7794B/AD7795B	±1	nA,最大值	增益 = 1或2
AU// 07/10/10/10/930	±250	pA,最大值	增益 = 4至128
		-	
AD7794C	±1	nA,最大值	AIN6(+)/AIN6(-) 地
AU//94C	±3	nA,最大值	增益 = 1或2
	±2	nA,最大值	增益 = 4至128
TELLAR I I NAME	±3	nA,最大值	AIN6(+)/AIN6(-)
平均输入电流漂移	±2	pA/℃,典型值	IV.V. 1 B2
无缓冲模式			增益 = 1或2
平均输入电流	±400	nA/V,典型值	输入电流随输入电压而变化
平均输入电流漂移	±50	pA/V/℃,典型值	

参数 ¹	AD7794/AD7795	单位	测试条件/注释
常模抑制 ^{2,6}			
内部时钟			
@ 50 Hz, 60 Hz	60	dB,最小值	典型值70 dB,50±1 Hz,60±1 Hz,FS[3:0]=1010
@ 50 Hz	78	dB, 最小值	典型值90 dB,50 ± 1 Hz,FS[3:0] = 1001
@ 60 Hz	86	dB,最小值	典型值100 dB,60±1 Hz,FS[3:0] = 1000
外部时钟			
@ 50 Hz, 60 Hz	60	dB,最小值	典型值70 dB,50±1 Hz,60±1 Hz,FS[3:0]=1010
@ 50 Hz	94	dB, 最小值	典型值100 dB,50±1 Hz,FS[3:0] = 1001
@ 60 Hz	90	dB,最小值	典型值100 dB,60 ± 1 Hz,FS[3:0] = 1000
共模抑制			
AD7794B/AD7795B			
@ DC	100	dB,最小值	AIN=1V/增益,增益=4,AMP-CM Bit=1
@ 50 Hz, 60 Hz ²	100	dB, 最小值	50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010
@ 50 Hz, 60 Hz ²	100	dB, 最小值	$50 \pm 1 \text{ Hz}$, FS[3:0] = 1001; $60 \pm 1 \text{ Hz}$, FS[3:0] = 1000
AD7794C			
@ DC	97	dB,最小值	AIN=1V/增益,增益=4,AMP-CM Bit=1
@ 50 Hz, 60 Hz ²	97	dB, 最小值	50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010
@ 50 Hz, 60 Hz ²	97	dB, 最小值	$50 \pm 1 \text{ Hz}$, FS[3:0] = 1001; $60 \pm 1 \text{ Hz}$, FS[3:0] = 1000
所波使能或禁用			
基准电压输入			
内部基准电压			
内部基准电压初始精度	1.17 ± 0.01%	V,最小值 /最大值	$AV_{DD} = 4 \text{ V}, T_A = 25^{\circ}\text{C}$
内部基准电压漂移2	4	ppm/℃,典型值	
	15	ppm/℃,最大值	
电源抑制	85	dB, 典型值	
外部基准电压			
外部REFIN电压	2.5	V, 标称值	REFIN = REFIN(+) - REFIN(-)
基准电压范围 ²	0.1	V,最小值	
	AV _{DD}	V,最大值	当V _{REF} = AV _{DD} 时,如果仪表放大器有效, 则差分输入必须限制在0.9×VREF/增益以内
REFIN电压绝对限值 ²	GND – 30 mV	V,最小值	242774 III 2 429 22114414 Ex
	AV _{DD} + 30 mV		
平均基准输入电流	400	nA/V,典型值	
平均基准输入电流漂移	±0.03	nA/V/°C,典型值	
党措抑制2			 与横扣绘 \ 相同
	100	dB 曲刑值	一 7 (天) 5 (相) 八 (日 回)
圣世七五位例七			│ │ V < 0 3 V时NOXRFF位有效
数励电流源	0.00	· , 4x/\L	REF 100 TRAINOVALE IZ A X
	10/210/1000	 uA.标称值	
			 IEXC1与IEXC2的匹配. V= 0 V
			OUT O
			$AV_{DD} = 5 V \pm 5\%$
			 电流源设置为10 uA或210 uA
	GND – 30 mV	V,最小值	
平均基准输入电流	AV _{DD} + 30 mV 400 ±0.03 100 0.3 0.65 10/210/1000 ±5 200 ±0.5 50 2 0.2 AV _{DD} - 0.65 AV _{DD} - 1.1	V,最大值 nA/V,典型值 nA/V/℃,典型值 nA/V/℃,典型值 V,最小值 V,最大值 μA,标称值 %,典型值 ppm/°C,典型值 ppm/°C,典型值 %/V,典型值 V,最大值 V,最大值	与模拟输入相同 V _{REF} < 0.3 V时NOXREF位有效 IEXC1与IEXC2的匹配,V _{OUT} = 0 V AV _{DD} = 5 V ± 5% 电流源设置为10 μA或210 μA 电流源设置为1 mA

参数1	AD7794/AD7795	单位	测试条件/注释
偏置电压发生器			
V_{BIAS}	AV _{DD} /2	V, 标称值	
V _{BIAS} 发生器启动时间		ms/nF,典型值	取决于AIN所连的电容;参见图11
温度传感器			
精度	±2	℃,典型值	针对用户校准温度传感器的情况
灵敏度	0.81	mV/℃,典型值	
低端电源开关			
Ron	7	Ω,最大值	$AV_{DD} = 5 V$
	9	Ω,最大值	$AV_{DD} = 3 V$
容许电流 ²	30	mA,最大值	连续电流
数字输出(P1和P2)			
Vон, 输出高电压 ²	AV _{DD} – 0.6	V,最小值	$AV_{DD} = 3 \text{ V, I}_{SOURCE} = 100 \mu\text{A}$
Vol, 输出低电压 ²	0.4	V,最大值	$AV_{DD} = 3 \text{ V, } I_{SINK} = 100 \mu\text{A}$
Vон, 输出高电压 ²	4	V,最小值	$AV_{DD} = 5 \text{ V, I}_{SOURCE} = 200 \mu\text{A}$
Vol, 输出低电压 ²	0.4	V,最大值	$AV_{DD} = 5 \text{ V, } I_{SINK} = 800 \mu\text{A}$
内部/外部时钟			
内部时钟			
频率 ²	64 ± 3%	kHz,最小值/最大值 min/max	
占空比	50:50	%,典型值	
外部时钟			
频率	64	kHz,标称值	使用2分频功能时(位CLK1 = CLK0 = 1),可以 采用128 kHz外部时钟
占空比	45:55 to 55:45	%,典型值	适用于64 kHz外部时钟;如果是128 kHz时钟, 占空比要求可以稍低
逻辑输入			7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
CS ²			
VINL, 输入低电压	0.8	V,最大值	$DV_{DD} = 5 V$
· •••	0.4	V,最大值	$DV_{DD} = 3 V$
V _{INH} , 输入高电压	2.0	V,最小值	DV _{DD} = 3 V 或 5 V
SCLK(施密特触发器输入)、			
CLK和DIN ²			
AD7794B/AD7795B			
$V_T(+)$	1.4/2	V,最小值/最大值	
V _T ()	0.8/1.7	V,最小值/最大值	$DV_{DD} = 5 V$
V _T (+) 至 V _T (−)	0.1/0.17	V,最小值/最大值	$DV_{DD} = 5 V$
V _T (+)	0.9/2	V, 最小值/最大值	$DV_{DD} = 3 V$
V _T (–)	0.4/1.35	V,最小值/最大值	$DV_{DD} = 3 V$
V₁(+) 至 V₁(−)	0.06/0.13	V,最小值/最大值	$DV_{DD} = 3 V$
AD7794C			
V _T (+)	1.35/2.05	V,最小值/最大值	$DV_{DD} = 5 V$
V _⊤ (−)	0.8/1.9	V,最小值/最大值	$DV_{DD} = 5 V$
$V_T(+)$ to $V_T(-)$	0.1/0.19	V,最小值/最大值	$DV_{DD} = 5 V$
V _T (+)	0.9/2	V, 最小值/最大值	$DV_{DD} = 3 V$
V _T (–)	0.4/1.35	V,最小值/最大值	$DV_{DD} = 3 V$
V _T (+) 至 V _T (−)	0.06/0.15	V, 最小值/最大值	$DV_{DD} = 3 V$
输入电流	±10	μA,最大值	V _{IN} = DV _{DD} 或 GND
输入电容	10	pF,典型值	所有数字输入

	AD7794/AD7795	单位	测试条件/注释
逻辑输出(包括CLK)			
Vон, 输出高电压2	DV _{DD} – 0.6	V,最小值	$DV_{DD} = 3 \text{ V, } I_{SOURCE} = 100 \mu\text{A}$
Vol,输出低电压2	0.4	V,最大值	$DV_{DD} = 3 V$, $I_{SINK} = 100 \mu A$
Vон, 输出高电压2	4	V,最小值	$DV_{DD} = 5 \text{ V}$, $I_{SOURCE} = 200 \mu\text{A}$
Vol,输出低电压2	0.4	V,最大值	$DV_{DD} = 5 \text{ V}$, $I_{SINK} = 1.6 \text{ mA (DOUT/}\overline{RDY})$, 800 $\mu\text{A (CLK)}$
浮空态泄漏电流	±10	μA,最大值	
浮空态输出电容	10	pF, 典型值	
数据输出编码	偏移二进制		
系统校准2			
满量程校准限值	1.05 × FS	V,最大值	
零电平校准限值	−1.05 × FS	V,最小值	
输入范围	0.8 × FS	V,最小值	
	2.1 × FS	V,最大值	
电源要求7			
电源电压			
AV _{DD} 至 GND	2.7/5.25	V,最小值	
		/最大值	
DV _{DD} 至 GND	2.7/5.25	V,最小值	
		/最大值	
电源电流			
loo电流	140	μA,最大值	典型值110 μ A (AV _{DD} = 3 V),典型值125 μ A (AV _{DD} = 5 V), 无缓冲模式,外部基准电压
	185	μA,最大值	典型值130 μ A (AV _{DD} = 3 V), 典型值165 μ A (AV _{DD} = 5 V), 缓冲模式,增益 = 1或2, 外部基准电压
	400	μA,最大值	典型值300 μ A (AV _{DD} = 3 V),典型值350 μ A (AV _{DD} = 5 V),增益 = 4至128,外部基准电压
	500	μA,最大值	典型值400 μ A (AV _{DD} = 3 V),典型值450 μ A (AV _{DD} = 5 V),增益 = 4至128,内部基准电压
I _{DD} (省电模式)	1	μA,最大值	AD7794B, AD7795B
	2	μA,最大值	AD7794C

¹ 温度范围: −40°C至+105°C(B级), −40°C至+125°C(C级)。更新速率为19.6 Hz和39.2 Hz时,如果AIN(+)或AIN(−)引脚上的电压典型值超过AV_{DD} − 1.6 V,则 INL、电源抑制(PSR)、共模抑制(CMR)和常模抑制(NMR)不符合数据手册技术规格。此外,斩波禁用时,这些更新速率下的失调误差和失调误差漂移性能会 下降。举例而言,超过此电压时,INL典型值降至满量程的18 ppm,PSR典型值降至69 dB。因此,为保证这些更新速率下的性能,模拟输入引脚上的绝对 电压必须低于AV_{DD} − 1.6 V。

- 2 技术规格未经生产测试,但受产品初始发布时的特性数据支持。
- 3 校准之后,此误差与选定的编程增益和更新速率所对应的噪声相当。
- 4 在任意温度下重新校准将消除这些误差。
- 5 满量程误差适用于正负两种满量程,并在工厂校准条件下适用($AV_{DD}=4\,V$,增益 = 1, $T_A=25^{\circ}$ C)。
- ⁶ FS[3:0]为模式寄存器中用来选择输出字速率的四位。
- ⁷ 禁用激励电流和偏置电压发生器时,数字输入等于DV_{DD}或GND。

时序特性

除非另有说明, $AV_{DD} = 2.7 \text{ V}$ 至5.25 V, $DV_{DD} = 2.7 \text{ V}$ 至5.25 V,GND = 0 V,输入逻辑0 = 0 V,输入逻辑 $1 = DV_{DD}$ 。

表2

参数1,2	TMIN、TMAX时的限值(B级)	单位	条件/注释
t ₃	100	ns(最小值)	SCLK高电平脉冲宽度
t ₄	100	ns(最小值)	SCLK低电平脉冲宽度
读取操作			
t_1	0	ns(最小值)	CS下降沿到DOUT/RDY有效时间
	60	ns(最大值)	DV _{DD} = 4.75 V 至 5.25 V
	80	ns(最大值)	DV _{DD} = 2.7 V 至 3.6 V
t_2^3	0	ns(最小值)	SCLK有效沿到数据有效延迟 ⁴
	60	ns(最大值)	DV _{DD} = 4.75 V 至 5.25 V
	80	ns(最大值)	DV _{DD} = 2.7 V 至 3.6 V
t ₅ ^{5, 6}	10	ns(最小值)	CS无效沿后的总线释放时间
	80	ns(最大值)	
t ₆	0	ns(最小值)	SCLK无效沿到 CS无效沿
t_7	10	ns(最小值)	SCLK无效沿到DOUT/ RDY 高电平
写入操作			
t ₈	0	ns(最小值)	CS下降沿到SCLK有效沿设置时间 ⁴
t ₉	30	ns(最小值)	数据有效到SCLK沿设置时间
t ₁₀	25	ns(最小值)	数据有效到SCLK沿保持时间
t ₁₁	0	ns(最小值)	CS上升沿到SCLK沿保持时间

- ' 样片在初次发布期间均经过测试,以确保符合标准要求。所有输入信号均指定t_R = t_F = 5 ns(10%到90%的DV_{DD}),并从1.6 V电平起开始计时。
- 2 参见图3和图4。
- 3 这些数值是采用图2所示负载电路的测量结果,定义为输出跨越 $V_{
 m OL}$ 或 $V_{
 m OH}$ 限值所需的时间。
- ⁴ SCLK有效沿为SCLK的下降沿。
- ⁵ 这些数值来源于测量时间,该时间为采用图2所示负载电路时数据输出改变0.5 V所需的时间。然后将测得的数值反向外推,以消除50 pF电容的充电或放电效应。这意味着,时序特性所给出的时间是该器件真正的总线释放时间,因而与外部总线负载电容无关。
- ⁶ RDY在读取ADC之后返回高电平。在单次转换模式和连续转换模式下,当RDY为高电平时,如果需要,可以再次读取同一数据,但应确保后续读取操作的发生时间 不能接近下一次输出更新时间。连续读取模式下,数字字只能被读取一次。

图 2. 时序特性的负载电路

时序图

绝对最大额定值

除非另有说明, $T_A = 25$ °C。

表3

表う	
参数	额定值
AV _{DD} 至GND	-0.3 V 至+7 V
DV _{DD} 至GND	-0.3 V 至+7 V
模拟输入电压至GND	-0.3 V 至AV _{DD} + 0.3 V
基准输入电压至GND	-0.3 V 至AV _{DD} + 0.3 V
数字输入电压至GND	-0.3 V 至DV _{DD} + 0.3 V
数字输出电压至GND	-0.3 V 至DV _{DD} + 0.3 V
AIN/ 数字输入电流	10 mA
工作温度范围	
B级	-40℃至+105℃
C级	-40°C至+125°C
存储温度范围	-65℃至+150℃
最高结温	150°C
TSSOP	
θμΑ热阻抗	97.9°C/W
θ _{JC} 热阻抗	14°C/W
引脚温度,焊接	
气相(60秒)	215°C
红外 (15秒)	220°C

注意,超出上述绝对最大额定值可能会导致器件永久性损坏。这只是额定应力值,不意味着器件在这些或者任何其它超出本技术规格书的功能性操作章节里标明的条件下的功能性操作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高能 量ESD时,器件可能会损坏。因此,应当采取适当的 ESD防范措施,以避免器件性能下降或功能丧失。

引脚配置和功能描述

表4. 引脚功能描述

	初形畑处	
引脚编号	引脚名称	描述
1	SCLK	串行时钟输入。用于来往ADC的数据传输。SCLK具有施密特触发式输入,因而该接口适合光隔离应用。该串行时钟可以是连续式时钟,所有数据均在连续的脉冲串中传输。或者,它也可以是非连续式时钟,来往ADC的信息以较小的数据包形式传输。
2	CLK	时钟输入/时钟输出。通过此引脚可提供内部时钟。或者,可禁用内部时钟,并采用外部时钟驱动该 ADC。这样,多个ADC可以采用同一时钟驱动,从而执行同步转换。
3	CS	片选输入。这是一个低电平有效逻辑输入,用于选择ADC。CS可以用来在串行总线上具有多个器件的系统中选择ADC,或者用作帧同步信号与器件通信。CS可以用硬连线方式置为低电平,使得ADC能以3线式模式工作,使用SCLK、DIN和DOUT与器件接口。
4	NC	不连接。
5	AIN6(+)/P1	模拟输入/数字输出引脚。AIN6(+)是差分模拟输入对AIN6(+)/AIN6(-)的正端。此引脚也可以用作通用输出位,以AV _{pp} 与GND之间的电压为基准。
6	AIN6(-)/P2	模拟输入/数字输出引脚。AIN6(-)是差分模拟输入对AIN6(+)/AIN6(-)的负端。此引脚也可以用作通用输出位,以AV _{DD} 与GND之间的电压为基准。
7	AIN1(+)	模拟输入。AIN1(+)是差分模拟输入对AIN1(+)/AIN1(-)的正端。
8	AIN1(-)	模拟输入。AIN1(-)是差分模拟输入对AIN1(+)/AIN1(-)的负端。
9	AIN2(+)	模拟输入。AIN2(+)是差分模拟输入对AIN2(+)/AIN2(-)的正端。
10	AIN2(–)	模拟输入。AIN2(-)是差分模拟输入对AIN2(+)/AIN2(-)的负端。
11	AIN3(+)	模拟输入。AIN3(+)是差分模拟输入对AIN3(+)/AIN3(-)的正端。
12	AIN3(–)	模拟输入。AIN3(-)是差分模拟输入对AIN3(+)/AIN3(-)的负端。
13	REFIN1(+)	正基准电压输入。可以在REFIN1(+)与REFIN1(-)之间施加一个外部基准电压。REFIN1(+)可以是AV _{DD} 与GND + 0.1 V之间的任意值。标称基准电压(REFIN1(+) – REFIN1(-))为2.5 V,但该器件可以采用0.1 V至AV _{DD} 范围内的基准电压工作。
14	REFIN1(-)	负基准电压输入。此基准电压输入可以是GND与AVDD - 0.1 V之间的任意值。
15	AIN5(+)/IOUT2	内部激励电流源的模拟输入/输出。AIN5(+)是差分模拟输入对AIN5(+)/AIN5(-)的正端。或者,内部激励电流源可以通过此引脚提供,并且是可编程的,以便提供10 μA、210 μA或1 mA电流。可以将IEXC1或IEXC2切换至此输出。
16	AIN5(–)/IOUT1	内部激励电流源的模拟输入/输出。AIN5(-)是差分模拟输入对AIN5(+)/AIN5(-)的负端。或者,内部激励电流源可以通过此引脚提供,并且是可编程的,以便提供10 μA、210 μA或1 mA电流。可以将IEXC1或IEXC2切换至此输出。
17	AIN4(+)/REFIN2(+)	模拟输入/正基准电压输入。AIN4(+)是差分模拟输入对AIN4(+)/AIN4(-)的正端。此引脚也可以用作REFIN2的正基准电压输入。REFIN2(+)可以是AVDD与GND + 0.1 V之间的任意值。标称基准电压(REFIN2(+)至REFIN2(-))为2.5 V,但该器件可以采用0.1 V至AV _{DD} 范围内的基准电压工作。

引脚编号	引脚名称	描述
18	AIN4(-)/REFIN2(-)	模拟输入/负基准电压输入。AIN4(-)是差分模拟输入对AIN4(+)/AIN4(-)的负端。此引脚也可以用作REFIN2的负基准电压输入。此基准电压输入可以是GND与AV _{DD} - 0.1 V之间的任意值。
19	PSW	低端电源开关,接GND。
20	GND	接地基准点。
21	AV_{DD}	电源电压, 2.7 V至5.25 V。
22	DV_{DD}	串行接口电源电压, 2.7 V至5.25 V。DV _{DD} 独立于AV _{DD} 。因此, 串行接口工作在3 V, 而AVDD为5 V, 或者相反。
23	DOUT/RDY	串行数据输出/数据就绪输出。DOUT/RDY具有双重作用。它可以用作串行数据输出引脚,以访问ADC的输出移位寄存器。输出移位寄存器可以含有来自任一片内数据寄存器或控制寄存器的数据。此外,DOUT/RDY可以用作数据就绪引脚,变为低电平时表示转换已完成。转换完成后,如果数据未被读取,该引脚将在下一次更新发生之前变为高电平。DOUT/RDY下降沿也可以用作处理器的中断,表示存在可用的有效数据。采用外部串行时钟时,可以利用DOUT/RDY引脚读取数据。CS为低电平时,数据/控制字信息在SCLK下降沿置于DOUT/RDY引脚上,在SCLK上升沿有效。
24	DIN	ADC输入移位寄存器的串行数据输入。该移位寄存器中的数据传输至ADC内的控制寄存器,通信寄存器的寄存器选择位确定适当的寄存器。

均方根噪声与分辨率特性

AD7794/AD7795可以工作在斩波使能或斩波禁用模式下,从而实现最佳切换时间或漂移性能。斩波使能时,建立时间为转换时间的两倍。但是,ADC会持续消除失调,使得失调和失调漂移很低。斩波禁用时,容许的更新速率与斩波使能模式相同。但是,此时建立时间与转换时间相等。斩波禁用时,ADC不会消除失调,因此可能需要定期执行失调校准,以消除漂移引起的失调。

斩波使能

外部基准电压

表5给出了一些更新速率和增益设置下的AD7794/AD7795 均方根噪声。所提供的数据是针对双极性输入范围以及采用2.5 V外部基准电压源而言。这些数据为典型值,是在差分输入电压为0 V的时候得到的。

表6和表7给出了有效分辨率,输出峰峰值(p-p)分辨率则列于括号中。必须注意,有效分辨率是利用均方根噪声计算得出,而峰峰值分辨率则是根据峰峰值噪声计算得出。峰峰值分辨率表示无码闪烁情况下的分辨率。这些数据为典型值,已四舍五入到最接近的LSB。

表5. 均方根噪声(µV)与增益和输出更新速率的关系(采用2.5 V外部基准电压源,斩波使能)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	0.64	0.6	0.29	0.22	0.1	0.065	0.039	0.041
8.33	1.04	0.96	0.38	0.26	0.13	0.078	0.057	0.055
16.7	1.55	1.45	0.54	0.36	0.18	0.11	0.087	0.086
33.2	2.3	2.13	0.74	0.5	0.23	0.17	0.124	0.118
62	2.95	2.85	0.92	0.58	0.29	0.2	0.153	0.144
123	4.89	4.74	1.49	1	0.48	0.32	0.265	0.283
242	11.76	9.5	4.02	1.96	0.88	0.45	0.379	0.397
470	11.33	9.44	3.07	1.79	0.99	0.63	0.568	0.593

表6. AD7794有效分辨率(位)与增益和输出更新速率的关系(采用2.5 V外部基准电压源、斩波使能)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	23 (20.5)	22 (19.5)	22 (19.5)	21.5 (19)	21.5 (19)	21 (18.5)	21 (18.5)	20 (17.5)
8.33	22 (19.5)	21.5 (19)	21.5 (19)	21 (18.5)	21 (18.5)	21 (18.5)	20.5 (18)	19.5 (17)
16.7	21.5 (19)	20.5 (18)	21 (18.5)	20.5 (18)	20.5 (18)	20.5 (18)	20 (17.5)	19 (16.5)
33.2	21 (18.5)	20 (17.5)	20.5 (18)	20 (17.5)	20.5 (18)	20 (17.5)	19 (16.5)	18.5 (16)
62	20.5 (18)	19.5 (17)	20.5 (18)	20 (17.5)	20 (17.5)	19.5 (17)	19 (16.5)	18 (15.5)
123	20 (17.5)	19 (16.5)	19.5 (17)	19 (16.5)	19.5 (17)	19 (16.5)	18 (15.5)	17 (14.5)
242	18.5 (16)	18 (15.5)	18 (15.5)	18 (15.5)	18.5 (16)	18.5 (16)	17.5 (15)	16.5 (14)
470	18.5 (16)	18 (15.5)	18.5 (16)	18.5 (16)	18 (15.5)	18 (15.5)	17 (14.5)	16 (13.5)

表7. AD7795有效分辨率(位)与增益和输出更新速率的关系(采用2.5 V外部基准电压源,斩波使能)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
8.33	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
16.7	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
33.2	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
62	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)
123	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)	16 (14.5)
242	16 (16)	16 (15.5)	16 (15.5)	16 (15.5)	16 (16)	16 (16)	16 (15)	16 (14)
470	16 (16)	16 (15.5)	16 (16)	16 (16)	16 (15.5)	16 (15.5)	16 (14.5)	16 (13.5)

内部基准电压

表8给出了一些更新速率和增益设置下的AD7794/AD7795 均方根噪声。所提供的数据是针对双极性输入范围以及采用1.17 V内部基准电压源而言。这些数据为典型值,是在差分输入电压为0 V的时候得到的。表9和表10给出了有效分辨率,输出峰峰值(p-p)分辨率则列于括号中。

必须注意,有效分辨率是利用均方根噪声计算得出,而峰峰值分辨率则是根据峰峰值噪声计算得出。峰峰值分辨率表示无码闪烁情况下的分辨率。这些数据为典型值,已四舍五入到最接近的LSB。

表8. 均方根噪声(µV)与增益和输出更新速率的关系(采用1.17 V内部基准电压源,斩波使能)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	0.81	0.67	0.32	0.2	0.13	0.065	0.04	0.039
8.33	1.18	1.11	0.41	0.25	0.16	0.078	0.058	0.059
16.7	1.96	1.72	0.55	0.36	0.25	0.11	0.088	0.088
33.2	2.99	2.48	0.83	0.48	0.33	0.17	0.13	0.12
62	3.6	3.25	1.03	0.65	0.46	0.2	0.15	0.15
123	5.83	5.01	1.69	0.96	0.67	0.32	0.25	0.26
242	11.22	8.64	2.69	1.9	1.04	0.45	0.35	0.34
470	12.46	10.58	4.58	2	1.27	0.63	0.50	0.49

表9. AD7794有效分辨率(位)与增益和输出更新速率的关系(采用1.17 V内部基准电压源、斩波使能)

次····································										
G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128			
21.5 (19)	20.5 (18)	21 (18.5)	20.5 (18)	20 (17.5)	20 (17.5)	20 (17.5)	19 (16.5)			
21 (18.5)	20 (17.5)	20.5 (18)	20 (17.5)	20 (17.5)	20 (17.5)	19 (16.5)	18 (15.5)			
20 (17.5)	19.5 (17)	20 (17.5)	19.5 (17)	19 (16.5)	19.5 (17)	18.5 (16)	17.5 (15)			
19.5 (17)	19 (16.5)	19.5 (17)	19 (16.5)	19 (16.5)	18.5 (16)	18 (15.5)	17 (14.5)			
19.5 (17)	18.5 (16)	19 (16.5)	19 (16.5)	18.5 (16)	18.5 (16)	18 (15.5)	17 (14.5)			
18.5 (16)	18 (15.5)	18.5 (16)	18 (15.5)	17.5 (15)	18 (15.5)	17 (14.5)	16 (13.5)			
17.5 (15)	17 (14.5)	17.5 (15)	17 (14.5)	17 (14.5)	17.5 (15)	16.5 (14)	15.5 (13)			
17.5 (15)	17 (14.5)	17 (14.5)	17 (14.5)	17 (14.5)	17 (14.5)	16 (13.5)	15 (12.5)			
	G = 1 21.5 (19) 21 (18.5) 20 (17.5) 19.5 (17) 19.5 (17) 18.5 (16) 17.5 (15)	G = 1 G = 2 21.5 (19) 20.5 (18) 21 (18.5) 20 (17.5) 20 (17.5) 19.5 (17) 19.5 (17) 19 (16.5) 19.5 (17) 18.5 (16) 18.5 (16) 18 (15.5) 17.5 (15) 17 (14.5)	G = 1 G = 2 G = 4 21.5 (19) 20.5 (18) 21 (18.5) 21 (18.5) 20 (17.5) 20.5 (18) 20 (17.5) 19.5 (17) 20 (17.5) 19.5 (17) 19 (16.5) 19.5 (17) 19.5 (17) 18.5 (16) 19 (16.5) 18.5 (16) 18 (15.5) 18.5 (16) 17.5 (15) 17 (14.5) 17.5 (15)	G = 1 G = 2 G = 4 G = 8 21.5 (19) 20.5 (18) 21 (18.5) 20.5 (18) 21 (18.5) 20 (17.5) 20.5 (18) 20 (17.5) 20 (17.5) 19.5 (17) 20 (17.5) 19.5 (17) 19.5 (17) 19 (16.5) 19.5 (17) 19 (16.5) 19.5 (17) 18.5 (16) 19 (16.5) 19 (16.5) 18.5 (16) 18 (15.5) 18.5 (16) 18 (15.5) 17.5 (15) 17 (14.5) 17.5 (15) 17 (14.5)	G=1 G=2 G=4 G=8 G=16 21.5 (19) 20.5 (18) 21 (18.5) 20.5 (18) 20 (17.5) 21 (18.5) 20 (17.5) 20.5 (18) 20 (17.5) 20 (17.5) 20 (17.5) 19.5 (17) 20 (17.5) 19.5 (17) 19 (16.5) 19.5 (17) 19 (16.5) 19 (16.5) 19 (16.5) 19 (16.5) 19.5 (17) 18.5 (16) 19 (16.5) 19 (16.5) 18.5 (16) 18.5 (16) 18 (15.5) 18.5 (16) 18 (15.5) 17.5 (15) 17.5 (15) 17 (14.5) 17 (14.5) 17 (14.5)	G=1 G=2 G=4 G=8 G=16 G=32 21.5 (19) 20.5 (18) 21 (18.5) 20.5 (18) 20 (17.5) 20 (17.5) 21 (18.5) 20 (17.5) 20.5 (18) 20 (17.5) 20 (17.5) 20 (17.5) 20 (17.5) 19.5 (17) 20 (17.5) 19 (16.5) 19.5 (17) 19.5 (17) 19 (16.5) 19 (16.5) 19 (16.5) 18.5 (16) 19.5 (17) 18.5 (16) 19 (16.5) 18.5 (16) 18.5 (16) 18.5 (16) 18 (15.5) 17.5 (15) 17.5 (15) 17 (14.5) 17.5 (15)	G=1 G=2 G=4 G=8 G=16 G=32 G=64 21.5 (19) 20.5 (18) 21 (18.5) 20.5 (18) 20 (17.5) 20 (17.5) 20 (17.5) 20 (17.5) 20 (17.5) 19 (16.5) 19 (16.5) 19 (16.5) 19 (16.5) 19 (16.5) 19.5 (17) 18.5 (16) 18 (15.5) 18.5 (16) 18 (15.5) 18.5 (16) 18 (15.5) 18 (15.5) 17 (14.5) 17.5 (15) 17 (14.5) 17.5 (15) 17.5 (15) 17.5 (15) 17.5 (15) 16.5 (14)			

表10. AD7795有效分辨率(位)与增益和输出更新速率的关系(采用1.17 V内部基准电压源, 斩波使能)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
8.33	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)
16.7	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15)
33.2	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)	16 (14.5)
62	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)	16 (14.5)
123	16 (16)	16 (15.5)	16 (16)	16 (15.5)	16 (15)	16 (15.5)	16 (14.5)	16 (13.5)
242	16 (15)	16 (14.5)	16 (15)	16 (14.5)	16 (14.5)	16 (15)	16 (14)	15.5 (13)
470	16 (15)	16 (14.5)	16 (14.5)	16 (14.5)	16 (14.5)	16 (14.5)	16 (13.5)	15 (12.5)

斩波禁用

斩波禁用时,切换时间或建立时间缩短2倍。但是,此时可能需要定期执行失调校准,以消除失调和失调漂移。斩波禁用时,模式寄存器中的AMP-CM位应置1,这会限制可用的容许共模电压。如果此位不置1,共模抑制性能会下降。

表11给出了斩波禁用时一些更新速率和增益设置下的AD7794/AD7795均方根噪声。

所提供的数据是针对双极性输入范围以及采用1.17 V内部 基准电压源而言。这些数据为典型值,是在差分输入电压 为0 V的时候得到的。

表12和表13给出了有效分辨率,输出峰峰值(p-p)分辨率则列于括号中。必须注意,有效分辨率是利用均方根噪声计算得出,而峰峰值分辨率则是根据峰峰值噪声计算得出。峰峰值分辨率表示无码闪烁情况下的分辨率。这些数据为典型值,已四舍五入到最接近的LSB。

表11. 均方根噪声(µV)与增益和输出更新速率的关系(采用1.17 V内部基准电压源,斩波禁用)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	0.64	0.6	0.29	0.22	0.1	0.065	0.039	0.041
8.33	1.04	0.96	0.38	0.26	0.13	0.078	0.057	0.055
16.7	1.55	1.45	0.54	0.36	0.18	0.11	0.087	0.086
33.2	2.3	2.13	0.74	0.5	0.23	0.17	0.124	0.118
62	2.95	2.85	0.92	0.58	0.29	0.2	0.153	0.144
123	4.89	4.74	1.49	1	0.48	0.32	0.265	0.283
242	11.76	9.5	4.02	1.96	0.88	0.45	0.379	0.397
470	11.33	9.44	3.07	1.79	0.99	0.63	0.568	0.593

表12. AD7794有效分辨率(位)与增益和输出更新速率的关系(采用1.17 V内部基准电压源,斩波禁用)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	23 (20.5)	22 (19.5)	22 (19.5)	21.5 (19)	21.5 (19)	21 (18.5)	21 (18.5)	20 (17.5)
8.33	22 (19.5)	21.5 (19)	21.5 (19)	21 (18.5)	21 (18.5)	21 (18.5)	20.5 (18)	19.5 (17)
16.7	21.5 (19)	20.5 (18)	21 (18.5)	20.5 (18)	20.5 (18)	20.5 (18)	20 (17.5)	19 (16.5)
33.2	21 (18.5)	20 (17.5)	20.5 (18)	20 (17.5)	20.5 (18)	20 (17.5)	19 (16.5)	18.5 (16)
62	20.5 (18)	19.5 (17)	20.5 (18)	20 (17.5)	20 (17.5)	19.5 (17)	19 (16.5)	18 (15.5)
123	20 (17.5)	19 (16.5)	19.5 (17)	19 (16.5)	19.5 (17)	19 (16.5)	18 (15.5)	17 (14.5)
242	18.5 (16)	18 (15.5)	18 (15.5)	18 (15.5)	18.5 (16)	18.5 (16)	17.5 (15)	16.5 (14)
470	18.5 (16)	18 (15.5)	18.5 (16)	18.5 (16)	18 (15.5)	18 (15.5)	17 (14.5)	16 (13.5)

表13. AD7795有效分辨率(位)与增益和输出更新速率的关系(采用1.17 V内部基准电压源,斩波禁用)

更新速率(Hz)	G = 1	G = 2	G = 4	G = 8	G = 16	G = 32	G = 64	G = 128
4.17	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
8.33	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
16.7	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
33.2	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
62	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)
123	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (15.5)	16 (14.5)
242	16 (16)	16 (15.5)	16 (15.5)	16 (15.5)	16 (16)	16 (16)	16 (15)	16 (14)
470	16 (16)	16 (15.5)	16 (16)	16 (16)	16 (15.5)	16 (15.5)	16 (14.5)	16 (13.5)

典型工作特性

图6. AD7794典型噪声图 (内部基准电压,增益=64,更新速率=16.7 Hz,斩波使能)

图7. AD7794噪声分布直方图 (内部基准电压,增益=64,更新速率=16.7 Hz,新波使能)

图8. AD7794典型噪声图(内部基准电压, 增益=64, 更新速率=16.7 Hz, AMP-CM=1, 新波禁用)

图9. AD7794噪声分布直方图(内部基准电压, 增益 = 64,更新速率 = 16.7 Hz,斩波禁用,AMP-CM = 1)

图10. 环境温度时激励电流匹配(210 µA)

图11. 偏置电压发生器上电时间与负载电容的关系

片内寄存器

ADC通过片内寄存器进行控制和配置,下面的章节将说明 这些寄存器。在下面的描述中,"置1"表示逻辑1状态,"清 0"表示逻辑0状态,除非另有说明。

通信寄存器

RS2, RS1, RS0 = 0, 0, 0

通信寄存器是一个8位只写寄存器。与ADC器件的所有通信均必须以对通信寄存器的写操作开始。写入通信寄存器的数据决定下一个操作是读操作还是写操作,以及此操作发

生在哪一个寄存器。对于读或写操作,当对选定寄存器的读或写操作完成后,接口返回到对通信寄存器执行写操作的状态。这是接口的默认状态,而且在上电或复位后,ADC处于此默认状态,等待对通信寄存器的写操作。如果接口时序迷失,执行一个占用至少32个串行时钟周期的写操作,并使DIN处于高电平状态,将可以复位整个器件,使ADC返回此默认状态。表14列出了通信寄存器各位的名称和意义。CR0至CR7表示位的位置,CR说明这些位属于通信寄存器。CR7表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
WEN(0)	R/W(0)	RS2(0)	RS1(0)	RS0(0)	CREAD(0)	0(0)	0(0)

表14. 通信寄存器各位的名称和意义

位号	名称	描述
CR7	WEN	写入使能位。必须将0写入此位,才能使对通信寄存器写操作实际发生。如果第一位写入1,则器件不会将随后的位载入寄存器,它将停留在此位的位置,直到此位写入0。一旦将0写入 WEN 位,器件便会将后续7位载入通信寄存器。
CR6	R/W	如果此位为0,则表示下一个操作是对指定寄存器执行写操作。如果此位为1,则表示下一个操作是对指定寄存器执行读操作。
CR5 至 CR3	RS2 至 RS0	寄存器地址位。这些地址位决定串行接口通信期间选择ADC的哪些寄存器。参见表15。
CR2	CREAD	连续读取数据寄存器。当此位为1(并且已选择数据寄存器)时,串行接口可以连续读取数据寄存器;即在RDY引脚变为低电平(表示转换已完成)后施加SCLK脉冲时,数据寄存器的内容将自动置于DOUT引脚上。对于后续数据读取,不必对通信寄存器执行写操作。要使能连续读取模式,必须将指令01011100写入通信寄存器。若要退出连续读取模式,必须在RDY引脚为低电平时将指令01011000写入通信寄存器。在连续读取模式下,ADC会监控DIN线路上的活动,以便能接收指令以退出连续读取模式。此外,如果DIN上出现32个连续1,ADC将复位。因此,在连续读取模式下,DIN应保持低电平,直到有指令写入该器件。
CR1 至 CR0	0	必须将这些位编程为逻辑0才能正常工作。

表15. 寄存器选择

RS2	RS1	RS0	寄存器	寄存器大小
0	0	0	写操作期间为通信寄存器	8位
0	0	0	读操作期间为状态寄存器	8位
0	0	1	模式寄存器	16位
0	1	0	配置寄存器	16位
0	1	1	数据寄存器	24位(AD7794)/16位(AD7795)
1	0	0	ID寄存器	8位
1	0	1	IO寄存器	8位
1	1	0	失调寄存器	24位(AD7794)/16位(AD7795)
1	1	1	满量程寄存器	24位(AD7794)/16位(AD7795)

状态寄存器

RS2, RS1, RS0 = 0, 0, 0; 上电/复位 = 0x80 (AD7795) / 0x88 (AD7794)

状态寄存器是一个8位只读寄存器。要访问ADC状态寄存器,用户必须写入通信寄存器,选择下一个操作为读操作,并将0载入位RS2、位RS1和位RS0。

表16列出了状态寄存器各位的名称和意义。SR0至SR7表示位的位置,SR说明这些位属于状态寄存器。SR7表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
RDY(1)	ERR(0)	NOXREF(0)	0(0)	0/1	CH2(0)	CH1(0)	CH0(0)

表14. 通信寄存器各位的名称和意义

表16. 状态寄存器各位的名称和意义

位号	名称	描述
SR7	RDY	ADC就绪位。数据写入ADC数据寄存器后清0。读取ADC数据寄存器之后,或者在用新转换结果更新数据寄存
		器之前的一定时间内,RDY位自动置1,以告知用户不应读取转换数据。器件在省电模式下,它也会置1。
		DOUT/RDY引脚也会指示转换何时结束。该引脚可以代替状态寄存器来监视ADC有无转换数据。
SR6	ERR	ADC错误位。此位与RDY位同时写入。置1时说明写入ADC数据寄存器的结果箝位为全0或全1。错误原因包括
		超量程、欠量程或缺少基准电压。由启动转换的写操作清0。
SR5	NOXREF	无外部基准电压位。置1时说明选定的基准电压(REFIN1或REFIN2)低于规定的阈值。置1后,转换结果箝位为
		全1。清0则说明对选定的基准电压引脚施加了有效基准电压。将配置寄存器中的REF_DET位置1可使能
		NOXREF位。如果施加于选定基准电压输入的电压无效,则ERR位也置1。
SR4	0	此位自动清0。
SR3	0/1	对于AD7795,此位自动清0,对于AD7794,此位自动置1。
SR2 to SR0	CH2 to CH0	这些位表示ADC正在转换哪一通道。

模式寄存器

RS2, RS1, RS0 = 0, 0, 1; 上电/复位 = 0x000A

模式寄存器是一个16位读写寄存器,用来选择工作模式、 更新速率和时钟源。

表17列出了模式寄存器各位的名称和意义。MR0至MR15

表示位的位置, MR说明这些位属于模式寄存器。MR15是数据流的第一位。括号中的数值表示该位的上电/复位默认状态。只要对设置寄存器执行写操作, 就会复位调制器和滤波器, 并使 位置1。

MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
MD2(0)	MD1(0)	MD0(0)	PSW(0)	0(0)	0(0)	AMP-CM(0)	0(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MRO
CLK1(0)	CLK0(0)	0(0)	CHOP-DIS(0)	FS3(1)	FS2(0)	FS1(1)	FS0(0)

表17. 模式寄存器各位的名称和意义

位号	名称	描述							
MR15 至 MR13	MD2至MD0								
MR12	PSW		电源开关控制位。置1时,电源开关PSW闭合至GND。电源开关可提供30 mA的吸电流。清0时,电源开关断开。当ADC处于省电模式时,电源开关断开。						
MR11 至 MR10	0	必须将过	这些位编程	是为逻辑0才能正常工作。					
MR9	AMP-CM	的共模电	仪表放大器共模位。此位与CHOP-DIS位一同使用。斩波禁用且AMP-CM清0时,用户可以获得更宽的共模电压范围。但是,直流共模抑制性能会下降。AMP-CM置1时,共模电压范围缩小(参见技术规格部分)。但是,直流共模抑制性能显著提高。						
MR8	0	必须将此	上位编程为	7逻辑0才能正常工作。					
MR7 至 MR6	CLK1 至 CLK0	这些位用 多个AD7	必须将此位编程为逻辑0才能正常工作。 这些位用来选择AD7794/AD7795的时钟源。可以使用片内64 kHz时钟或外部时钟。使用外部时钟时, 多个AD7794/AD7795器件可以同步。此外,当采用精确的外部时钟驱动AD7794/AD7795时,可以改 善50 Hz/60 Hz抑制性能。						
		CLK1	CLK0	ADC时钟源					
		0	0	64 kHz内部时钟。CLK引脚不提供内部时钟。					
		0	1	64 kHz内部时钟。CLK引脚提供此内部时钟。					
		1	0	64 kHz外部时钟。外部时钟可以具有45:55的占空比(参见技术规格外部时钟部分)。					
		1	1	外部时钟。外部时钟在AD7794/AD7795内2分频。					
MR5	0	必须将此	比位编程为	7逻辑0才能正常工作。					
MR4	CHOP-DIS	此位与A	此位用来使能或禁用斩波。上电时或复位之后,CHOP-DIS清0,斩波使能。CHOP-DIS置1时,斩波禁用。此位与AMP-CM位一同使用。斩波禁用时,AMP-CM位应置1。这会限制ADC可以使用的共模电压,但直流共模抑制性能不会下降。						
MR3 至 MR0	FS3 至 FS0	滤波器更	新速率选	择位(参见表19)。					

表18.工作模式

MD2	MD1	MD0	模式
0	0	0	连续转换模式(默认)。 在连续转换模式下,ADC连续执行转换,并将结果置于数据寄存器中。RDY在完成转换时变为低电平。用户可以将器件置于连续读取模式下,以读取这些转换结果,当施加SCLK脉冲时,转换结果自动置于DOUT线路上。另一方面,用户可以写入通信寄存器,指示ADC输出转换结果。上电之后,经过2/f _{ADC} (斩波使能时)或1/f _{ADC} (斩波禁用时)的时间提供第一个转换结果。后续转换结果以f _{ADC} 的频率提供,无论斩波使能与否。
0	0	1	单次转换模式 选择单次转换模式时,ADC上电并执行单次转换。振荡器上电和建立需要1 ms。然后,ADC执行转换,需要 2/f _{ADC} (斩波使能时)或1/f _{ADC} (斩波禁用时)的时间。转换结果置于数据寄存器中,RDY变为低电平,然后ADC返回 省电模式。在数据被读取或执行另一次转换之前,转换结果将一直被保存在数据寄存器中,并且RDY保持有 效(低电平)。
0	1	0	空闲模式。 在空闲模式下,ADC滤波器和调制器保持复位状态,但仍然提供调制器时钟。
0	1	1	省电模式。 在省电模式下,AD7794/AD7795所有电路都关断,包括电流源、电源开关、熔断电流、偏置电压发生器和时钟电路。
1	0	0	内部零电平校准。 内部短路自动连接到使能的通道。完成校准需要两个转换周期(斩波使能时)或一个转换周期(斩波禁用时)。 RDY在校准启动时变为高电平,在校准完成时恢复低电平。校准之后,ADC处于空闲模式。测得的失调系数置于选定通道的失调寄存器中。
1	0	1	内部满量程校准。 对于该校准,满量程输入电压会自动连接到选定的模拟输入。 当增益为1时,完成校准需要两个转换周期(斩波使能时)或一个转换周期(斩波禁用时)。
			对于更高增益,执行满量程校准需要四个转换周期(斩波使能时)或两个转换周期(斩波禁用时)。
			RDY在校准启动时变为高电平,在校准完成时恢复低电平。校准之后,ADC处于空闲模式。测得的满量程系数置于选定通道的满量程寄存器中。
			当增益为128时,无法执行内部满量程校准。对于该增益设置,可以执行系统满量程校准。每次更改一个通道的增益时,都需要执行满量程校准,以使满量程误差最小。
1	1	0	系统零电平校准。 用户应将系统零电平输入连接到CH2位、CH1位和CH0位所选择的通道输入引脚。完成系统失调校准需要两个转换周期(斩波使能时)或一个转换周期(斩波禁用时)。RDY在校准启动时变为高电平,在校准完成时恢复低电平。校准之后,ADC处于空闲模式。测得的失调系数置于选定通道的失调寄存器中。
1	1	1	系统满量程校准。 用户应将系统满量程输入连接到CH2位、CH1位和CH0位所选择的通道输入引脚。
			完成校准需要两个转换周期(斩波使能时)或一个转换周期(斩波禁用时)。在校准启动时变为高电平,RDY在校准完成时恢复低电平。校准之后,ADC处于空闲模式。测得的满量程系数置于选定通道的满量程寄存器中。

表19. 可用更新速率(斩波使能)1

FS3	FS2	FS1	FS0	f _{ADC} (Hz)	T _{SETTLE} (ms)	50 Hz/60 Hz抑制(内部时钟)
0	0	0	0	х	х	
0	0	0	1	470	4	
0	0	1	0	242	8	
0	0	1	1	123	16	
0	1	0	0	62	32	
0	1	0	1	50	40	
0	1	1	0	39	48	
0	1	1	1	33.2	60	
1	0	0	0	19.6	101	90 dB (仅60 Hz)
1	0	0	1	16.7	120	80 dB (仅60 Hz)
1	0	1	0	16.7	120	65 dB (50 Hz 和 60 Hz)
1	0	1	1	12.5	160	66 dB (50 Hz 和 60 Hz)
1	1	0	0	10	200	69 dB (50 Hz 和 60 Hz)
1	1	0	1	8.33	240	70 dB (50 Hz 和 60 Hz)
1	1	1	0	6.25	320	72 dB (50 Hz 和 60 Hz)
1	1	1	1	4.17	480	74 dB (50 Hz 和 60 Hz)

¹ 斩波禁用时,更新速率保持不变,但每个更新速率的建立时间缩短2倍。16.7 Hz更新速率时50 Hz/60 Hz抑制下降为65 dB。

配置寄存器

RS2, RS1, RS0 = 0, 1, 0; 上电/复位 = 0x0710

配置寄存器是一个16位读写寄存器,用来配置ADC的单极 性或双极性模式,使能或禁用缓冲器,使能或禁用熔断电 流,选择增益,以及选择模拟输入通道。 表20列出了配置寄存器各位的名称和意义。CON0至CON15表示位的位置,CON说明这些位属于配置寄存器。CON15是数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
VBIAS1(0)	VBIASO(0)	BO(0)	U/B(0)	BOOST(0)	G2(1)	G1(1)	G0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
REFSEL1(0)	REFSELO(0)	REF_DET(0)	BUF(1)	CH3(0)	CH2(0)	CH1(0)	CH0(0)

表20. 配置寄存器各位的名称和意义

位号	名称	描述						
CON15 至 CON14	VBIAS1 至 VBIAS0	偏置电	压发生器使能	。模拟	输入的负端可偏置到A\	V _{DD} /2。这些位与BOOST位一同使用。		
		VBIAS	1	VBIA	S0	偏置电压		
		0		0		偏置电压发生器禁用		
		0		1		偏置电压发生器连接到AIN1(-)		
		1		0		偏置电压发生器连接到AIN2(-)		
		1		1		偏置电压发生器连接到AIN3(-)		
CON13	ВО					常工作。此位置1将使能信号路径中的100 nA电流 大器为有效状态时,才能使能熔断电流。		
CON12	U/B	0xFFFF	双极性/单极性位。置1将使能单极性编码,即零差分输入产生0x000000输出,满量程差分输入产生0xFFFFFF输出。清0将使能双极性编码。负满量程差分输入产生0x000000输出码,零差分输入产生0x800000输出码,正满量程差分输入产生0xFFFFF输出码。					
CON11	BOOST	此位与	此位与VBIAS1和VBIAS0位一同使用。置1时,偏置电压发生器的功耗提高,上电时间缩短。					
CON10至 CON8	G2 至 G0	增益选 由用户		下列AD	C输入范围之一:			
		G2	G1	G0	増益	ADC输入范围(2.5 V基准电压)		
		0	0	0	1(仪表放大器不用)	2.5 V		
		0	0	1	2(仪表放大器不用)	1.25 V		
		0	1	0	4	625 mV		
		0	1	1	8	312.5 mV		
		1	0	0	16	156.2 mV		
		1	0	1	32	78.125 mV		
		1	1	0	64	39.06 mV		
		1	1	1	128	19.53 mV		
CON7 至 CON6	REFSEL1/REFSEL0		压选择位。 用来选择ADC	的基准區	电压源。			
		REFSEI	REFSEL1 REFSEL0		基准电压源			
		0	0		在REFIN1(+)与REFIN1(-	-)之间施加的外部基准电压源		
		0	1			-)之间施加的外部基准电压源		
		1	0		1.17 V内部基准电压源			
		1	1		保留			

位号	名称	描述							
CON5	REF_DET		使能基准电压检测功能。置1时,如果ADC所用的外部基准电压源开路或小于0.5 V,状态寄存器中的NOXREF位将给出提示。清0时,基准电压检测功能禁用。						
CON4	BUF	ADC以 可以使 可以为	配置ADC为缓冲或无缓冲工作模式。清0时,ADC以无缓冲模式工作,可降低器件的功耗。置1时,ADC以缓冲模式工作,用户可以将源阻抗置于前端,而不会给系统带来增益误差。对于增益1和2,可以使能或禁用缓冲器。对于更高增益,缓冲器自动使能。缓冲器禁用时,模拟输入引脚上的电压可以为GND以下30 mV至AV _{DD} 以上30 mV。缓冲器使能时,它需要一些裕量,因此,任何输入引脚上的电压必须在电源轨的100 mV范围内。						
CON3 至 CON0	CH3 至 CH0	1 - 1 - 1	选择位。 3写人,	以选择	ADC的有	效模拟输入通道:			
		CH3	CH2	CH1	СНО	通道	校准对		
		0	0	0	0	AIN1(+)/AIN1(-)	0		
		0	0	0	1	AIN2(+)/AIN2(-)	1		
		0	0	1	0	AIN3(+)/AIN3(-)	2		
		0	0	1	1	AIN4(+)/AIN4(-)	3		
		0	1	0	0	AIN5(+)/AIN5(-)	3		
		0	1	0	1	AIN6(+)/AIN6(-)	3		
		0	1	1	0	温度传感器	自动选择1.17 V内部基准电压,并将增益设为1		
		0	1	1	1	AV _{DD} 监控器	自动选择1.17 V内部基准电压,并将增益设为1/6		
		1	0	0	0	AIN1(-)/AIN1(-)	0		
		1	0	0	1	保留			
		1	0	1	1	保留			
		1	1	0	0	保留			
		1	1	0	1	保留			
		1	1	1	0	保留			
		1	1	1	1	保留			

数据寄存器

RS2, RS1, RS0 = 0, 1, 1;

上电/复位 = 0x0000(AD7795), 0x000000 (AD7794)

此数据寄存器存储ADC的转换结果。它是一个只读寄存器。完成对此寄存器的读操作后,RDY位/引脚置1。

ID寄存器

RS2, RS1, RS0 = 1, 0, 0; 上电/复位 = 0xXF

ID寄存器存储AD7794/AD7795的识别号。它是一个只读寄存器。

IO寄存器

RS2, RS1, RS0 = 1, 0, 1; 上电/复位 = 0x00

IO寄存器是一个8位读写寄存器,用来使能激励电流并选择激励电流的值。

表21列出了IO寄存器各位的名称和意义。IO0至IO7表示位的位置,IO说明这些位属于IO寄存器。IO7表示数据流的第一位。括号中的数值表示该位的上电/复位默认状态。

107	106	IO5	104	103	IO2	IO1	100
0(0)	IOEN(0)	IO2DAT(0)	IO1DAT(0)	IEXCDIR1(0)	IEXCDIR0(0)	IEXCEN1(0)	IEXCEN0(0)

表21.IO客存器各位的名称和音义

次21.10司	计码台 位的石协和总义								
位号	名称	描述	描述						
IO7	0	必须将此位	必须将此位编程为逻辑0才能正常工作。						
106	IOEN	将引脚AINe	将引脚AIN6(+)/P1和引脚AIN6(-)/P2配置为模拟输入引脚或数字输出引脚。此位置1时,这些引脚						
		配置为数字输出引脚P1和数字输出引脚P2。此位清0时,这些引脚配置为模拟输入引脚AIN6(+)和							
	1000.47 (10.40.47		模拟输入引脚AIN6(-)。						
IO5 至 IO4	IO2DAT/IO1DAT	P2/P1数据。	。IOEN置1时,	数字输出引脚P1和数字输出引脚P2的数据写入位IO2DAT和位IO1DAT。					
IO3 至 IO2	IEXCDIR1 至 IEXCDIR0	电流源方向选择位。							
		IEXCDIR1	IEXCDIR0	电流源方向					
		0	0	电流源IEXC1连接到引脚IOUT1。电流源IEXC2连接到引脚IOUT2。					
		0	1	电流源IEXC1连接到引脚IOUT2。电流源IEXC2连接到引脚IOUT1。					
		1	0	 两个电流源均连接到引脚IOUT1。仅当电流源设为10 μA或210 μA时,					
		'	0	两个电流原均连接到引牌IDOTT。仅当电流原设为TO PA 0.2 TO PA PI 1 ,					
		1	1	两个电流源均连接到引脚IOUT2。仅当电流源设为10 μA或210 μA时,					
				才允许这样设置。					
IO3 至 IO2	IEXCEN1 至 IEXCEN0	这些位用来	医使能和禁用电	流源。它们还可以选择激励电流的值。					
		IEXCEN1	IEXCEN0	电流源值					
		0	0	激励电流禁用					
		0	1	10 μΑ					
		1	0	210 μΑ					
		1	1	1 mA					

失调寄存器

RS2, RS1, RS0 = 1, 1, 0; 上电/复位 = 0x8000 (AD7795), 0x800000 (AD7794))

失调寄存器是一个16位(AD7795)或24位(AD7794)寄存器。 失调寄存器保存ADC的失调校准系数,AD7794/AD7795的 上电复位值分别为0x8000/0x800000。AD7794/AD7795各有 四个失调寄存器。通道AIN1至通道AIN3具有专用失调寄 存器,而通道AIN4、AIN5和AIN6则共用一个失调寄存 器。各寄存器均为读写寄存器。此寄存器与相关的满量程 寄存器一同使用,以构成寄存器对。如果用户启动内部或 系统零电平校准,上电复位值将被自动覆盖。写入失调寄 存器时,AD7794/AD7795必须处于省电模式或空闲模式。

满量程寄存器

RS2, RS1, RS0 = 1, 1, 1; 上电/复位 = 0x5XXX (AD7795), 0x5XXX00 (AD7794)

满量程寄存器是一个16位(AD7795)或24位(AD7794)寄存器。满量程寄存器保存ADC的满量程校准系数。AD7794/AD7795各有四个满量程寄存器。通道AIN1、AIN2和AIN3具有专用满量程寄存器,而通道AIN4、AIN5和AIN6则共用一个寄存器。满量程寄存器为读写寄存器。不过,写入满量程寄存器时,ADC必须处于省电模式或空闲模式。这些寄存器在上电时使用工厂校准的满量程校准系数配置(执行校准时的增益为1);因此,各器件具有不同的默认系数。选择内部基准电压时的系数与选择外部基准电压时的系数不相同。如果用户启动内部或系统满量程校准,或者写入满量程寄存器,该默认值将被自动覆盖。

ADC电路信息

概述

AD7794/AD7795为低功耗ADC,内置Σ-Δ调制器、缓冲器、基准电压源、仪表放大器和片内数字滤波,主要用于测量宽动态范围、低频信号,例如压力传感器、电子秤和温度测量应用中的信号。

每个器件都有6路差分输入,可以被配置为缓冲或无缓冲模式。这些器件利用1.17 V内部基准电压源或外部基准电压源工作。图12显示了器件工作所需的基本连接。

AD7794/AD7795的输出速率(f_{ADC})是用户可编程的。表19列出了斩波使能时容许的更新速率以及对应的建立时间。斩波禁用时,容许的更新速率保持不变,但建立时间等于1/f_{ADC}。常模抑制是数字滤波器的主要功能。当更新速率为16.7 Hz或更低时,50 Hz/60 Hz同时抑制效果最佳,因为在

这些更新速率下,陷波频率同时位于50 Hz和60 Hz(见图 14)。

根据输出更新速率,AD7794/AD7795会使用略有不同的滤波器,以便优化对量化噪声和器件噪声的抑制。当更新速率为4.17 Hz至12.5 Hz时,使用Sinc3滤波器和均值滤波器。当更新速率为16.7 Hz至39 Hz时,使用修正Sinc3滤波器。当更新速率等于16.7 Hz时,此滤波器提供50 Hz/60 Hz同时抑制。当更新速率为50 Hz至242 Hz时,使用Sinc4滤波器。最后,当更新速率等于470 Hz时,使用仅有积分功能的滤波器。图13至图16分别显示了斩波使能模式下针对一些更新速率的不同类型滤波器的频率响应特性。此模式下,建立时间为更新速率的2倍。图17至图20显示了斩波禁用模式下的滤波器响应特性。

图12.基本连接图

图13. 滤波器响应(4.17 Hz更新速率, 斩波使能)

图14. 滤波器响应(16.7 Hz更新速率, 斩波使能)

图15. 滤波器响应(242 Hz更新速率, 斩波使能)

图16. 滤波器响应(470 Hz更新速率, 新波使能)

图17. 滤波器响应(4.17 Hz更新速率, 斩波禁用)

图18. 滤波器响应(16.7 Hz更新速率, 斩波禁用)

图19. 滤波器响应(242 Hz更新速率, 斩波禁用)

图20. 滤波器响应(470 Hz更新速率, 新波禁用)

数字接口

如前文的片内寄存器部分所述,AD7794/AD7795的可编程功能由一系列片内寄存器控制。数据通过串行接口写入这些寄存器。此接口还提供对这些片内寄存器的读取访问。与器件的所有通信均必须以对通信寄存器的写操作开始。上电或复位之后,器件期待对其通信寄存器执行写操作。写入此寄存器的数据决定下一个操作是读操作还是写操作,以及此读操作或写操作发生在哪一个寄存器上。因此,对其它寄存器的写入访问是以对通信寄存器的写操作开始,然后是对选定的寄存器执行写操作。对其它寄存器的误操作(选择连续读取模式除外)是以对通信寄存器的写操作开始,然后是对选定的寄存器执行读操作。

AD7794/AD7795的串行接口包含四个信号: CS、DIN、SCLK、DOUT/RDY。DIN线路用于将数据传输至片内寄存

器中,DOUT/RDY则用于从片内寄存器中获取数据。SCLK是器件的串行时钟输入,所有数据传输(无论是DIN上还是DOUT/RDY上)均相对于SCLK信号进行。DOUT/RDY引脚也可用作数据就绪信号;当输出寄存器中有新数据字可用时,该线路变为低电平。对数据寄存器的该操作完成时,该线路复位为高电平。数据寄存器更新之前,该线路也会变为高电平,以提示此时不应读取器件,确保寄存器正在更新时不会发生数据读取操作。用于选择器件。在多个器件与串行总线相连的系统中,可以用CS对AD7794/AD7795进行解码。

图3和图4显示了与AD7794/AD7795进行接口的时序图,其中CS用于解码器件。图3显示对AD7794/AD7795的输出移位寄存器执行读操作的时序,图4显示对输入移位寄存器执行写操作的时序。即使在第一次读操作之后DOUT/RDY线路返回到高电平,也可以多次从数据寄存器中读取出相同的字。不过,必须确保在下一输出更新发生之前,这些读操作已完成。连续读取模式下,只能从数据寄存器读取一次。

将CS与低电平相连时,串行接口可以在三线式模式下工作。此时,SCLK、DIN和DOUT/RDY线路用来与AD7794/AD7795通信。可以用状态寄存器中的RDY位监视转换是否结束。这种方案适合与微控制器进行接口。如果CS需要用作解码信号,可以用口线产生该信号。对于微控制器接口,建议SCLK在数据传输中的空闲时高电平状态。

AD7794/AD7795可以在CS用作帧同步信号的情况下工作。这种方案适用于DSP接口。此时,由于在DSP中,CS一般出现在SCLK的下降沿之后,因此第一位(MSB)会被CS有效地送出。只要遵守时序数要求,SCLK便可在数据转换之间连续运行。

对DIN输入写入一连串1,可以使该串行接口复位。如果将逻辑1写入AD7794/AD7795线路并持续至少32个串行时钟周期,该串行接口便会复位。如果软件错误或系统故障导致接口时序错误,这种方法将可确保接口复位到已知状态。复位使接口返回到等待对通信寄存器执行写操作的状态。该操作会将所有寄存器的内容复位到其上电值。复位之后,用户应等待500 µs才能访问串行接口。

AD7794/AD7795可以配置为连续转换模式或单次转换模式 (参见图21至图23)。

单次转换模式

单次转换模式下,AD7794/AD7795在两次转换之间处于关断模式。将模式寄存器中的MD2、MD1和MD0分别设置为0、0、1,便可启动单次转换,此时AD7794/AD7795将上电,执行单次转换,然后返回关断模式。片内振荡器上电需要1 ms。转换需要2×tADC的时间。完成转换后,DOUT/RDY变为低电平来作为指示。从数据寄存器中读取数据字后,DOUT/RDY变为高电平。如果CS为低电平,DOUT/RDY将保持高电平,直到又启动并完成一次转换为止。如果需要,即使DOUT/RDY已变为高电平,也可以多次读取数据寄存器。

连续转换模式

这是上电默认模式。AD7794/AD7795连续转换,每次转换完成时,状态寄存器中的RDY位变为低。如果CS为低电平,则当一次转换完成时,DOUT/RDY线路也会变为低电平。若要读取转换结果,用户需要写入通信寄存器,指示下一操作为读取数据寄存器。一旦将SCLK脉冲施加于ADC,数字转换就立即出现在DOUT/RDY引脚上。读取转换结果后,DOUT/RDY回到高电平。如需要,用户可以多次读取该寄存器。但是,用户必须确保在下一转换完成时,不要对数据寄存器进行访问,否则,新的转换结果将丢失。

连续读取

可以对AD7794/AD7795进行配置,使得每次转换完成时,转换结果会自动置于DOUT/DRY线路上,而无需每次写入通信寄存器以访问数据。将01011100写入通信寄存器后,用户只需为ADC提供适当的SCLK周期数,这样当转换完成时,24位字便会自动置于DOUT/DRY线路上。ADC应配置为连续转换模式。

当DOUT/DRY变为低电平,提示转换已结束时,必须为ADC提供足够的SCLK周期数。然后,数据转换结果便会置于DOUT/DRY线路上。读取转换结果后,DOUT/DRY返回到高电平,直到下一转换结果可用为止。

这种模式下,数据只能被读取一次,而且用户必须确保数据字的读取早于下一转换完成。如果在下一转换完成之前,用户尚未读取转换结果,或者为AD7794/AD7795提供的串行时钟数不足以读取转换字,则当下一转换完成时,串行输出寄存器将复位,新转换结果将置于输出串行寄存器中。

若要退出连续读取模式,必须在DRY引脚为低电平时将指令01011000写入通信寄存器。在连续读取模式下,ADC会监控DIN线路上的活动,以便能接收指令以退出连续读取模式。此外,如果DIN上出现32个连续1,ADC将复位。因此,在连续读取模式下,DIN应保持低电平,直到有指令将要写入器件。

电路描述

模拟输入通道

AD7794/AD7795有6个差分模拟输入通道。当器件以缓冲模式工作时,这些通道连接到片内缓冲放大器。在无缓冲模式下,这些通道直接连到调制器。在缓冲模式下(配置寄存器中的BUF位设置为1),输入通道馈入缓冲放大器的高阻抗输入级。因此,输入端能够耐受较大的源阻抗,适合与外部阻性传感器直接相连,例如应变计或电阻式温度检测器(RTD)等。

当BUF=0时,器件以无缓冲模式工作。这将导致较高的模拟输入电流。请注意,该无缓冲输入路径对驱动源呈现出动态的负载。因此,输入引脚上的电阻与电容组合可能会引起增益误差,具体取决于驱动ADC输入的信号源的输出阻抗。表22显示了为在20位分辨率水平时不致引入增益误差,无缓冲模式下外部电阻/电容的容许值。

表22.20位时无增益误差的外部R-C组合

电容(pF)	电阻(Ω)
50	9 k
100	6 k
500	1.5 k
1000	900
5000	200

仅当增益为1或2时,AD7794/AD7795才能以无缓冲模式工作。当增益更高时,缓冲器自动使能。缓冲模式下,绝对输入电压范围限于GND+ $100\,\mathrm{mV}$ 至 AV_DD - $100\,\mathrm{mV}$ 之间。当增益设为4或更高时,仪表放大器使能。当仪表放大器有效时,绝对输入电压范围限于GND+ $300\,\mathrm{mV}$ 至 AV_DD - $1.1\,\mathrm{V}$ 之间。设置共模电压时必须小心,确保不要超过这些限值。否则,线性度和噪声性能会下降。

无缓冲模式下,绝对输入电压包含GND - 30 mV至AV_{DD} + 30 mV之间的电压。负绝对输入电压限值为监控相对于GND的真双极性小信号提供了条件。

仪表放大器

模拟输入信号放大1倍或2倍,是在AD7794/AD7795内通过数字方式实现。但是,当增益为4或更高时,缓冲器输出将施加于片内仪表放大器的输入端。该低噪声仪表放大器的存在意味着小幅值信号可以在AD7794/AD7795内放大,同时仍然保持出色的噪声性能。例如,当增益设置为64时,均方根噪声典型值为40 nV,这相当于21位有效分辨率或18.5位峰峰值分辨率。

利用配置寄存器中的G2位至G0位,可以将AD7794/AD7795的增益设置为1、2、4、8、16、32、64或128。因此,采用2.5 V外部基准电压源时,单极性范围为0mV-20mV至0V-2.5V,双极性范围则为 \pm 20 mV至 \pm 2.5 V。当仪表放大器有效时(增益 \geq 4),在斩波使能的情况下,共模电压((AIN (+) + AIN(-))/2)必须大于或等于0.5 V。如果斩波禁用,并且AMP-CM位置1以防止共模抑制性能下降,则容许的共模电压限于以下两个值之间:

$$0.2 + (Gain/2 \times (AIN(+) - AIN(-)))$$

和

$$AV_{DD} - 0.2 - (Gain/2 \times (AIN(+) - AIN(-)))$$

如果AD7794/AD7795采用值与A V_{DD} 相等的外部基准电压源,则在仪表放大器有效的情况下,为了正常工作,模拟输入信号必须不超过 V_{REF} /增益的90%。

双极性/单极性配置

AD7794/AD7795的模拟输入端可以接受单极性或双极性输入电压范围。双极性输入范围并不表示器件可以耐受相对于系统GND的负电压。AIN(+)输入端的双极性和单极性信号以AIN(-)输入端的电压为基准。例如,如果AIN(-)为2.5 V,ADC配置为单极性模式,并且增益为1,则AIN(+)引脚的输入电压范围为2.5 V至5 V。

如果ADC配置为双极性模式,则AIN(+)输入端的模拟输入范围为0V至5V。双极性/单极性选项可通过对配置寄存器中的U/B位进行编程来选择。

数据输出编码

当ADC配置为单极性工作模式时,输出码为二进制原码,零差分输入电压对应的码为00...00,中间电平电压对应的码为100...000,满量程输入电压对应的码为111...111。任意模拟输入电压的输出码可以表示为:

$$Code = (2^N \times AIN \times GAIN)/V_{REF}$$

当ADC配置为双极性工作模式时,输出码为二进制偏移码,负满量程电压对应的码为000...000,零差分输入电压对应的码为100...000,正满量程输入电压对应的码为111...111。任意模拟输入电压的输出码可以表示为:

$$Code = 2^{N-1} \times [(AIN \times GAIN/V_{REE}) + 1]$$

其中:

AIN为模拟输入电压。 GAIN为仪表放大器增益设置(1至128)。 N = 24.

熔断电流

AD7794/AD7795內置两个100 nA恒流发生器,一个提供从 AV_{DD}到AIN(+)的源电流,一个提供从AIN(-)到GND的吸电流。这些电流切换至选定的模拟输入对。这两个电流或 开或关,取决于配置寄存器中的熔断电流使能(BO)位。尝试在模拟输入通道上执行测量之前,可以使用这些电流来 确认外部传感器是否正常工作。接通熔断电流后,电流流 入外部传感器电路,然后便可在模拟输入通道上测量输入 电压。如果测得的电压为满量程,用户需要确认为何如此。满量程读数可能意味着前端传感器开路,也可能是前端传感器过载,通过满量程输出表现出来,或者缺少基准电压,并且NOXREF位已置1,导致数据钳位在全1。

当输出为全1时,用户需要检查这三种情况,然后做出判断。如果测得的电压为0 V,则可能是传感器短路。正常工作时,应将0写入配置寄存器中的BO位,以关闭这些熔断电流。电流源工作在一般绝对输入电压范围内,缓冲器开启。

激励电流

AD7794/AD7795还内置两个匹配的软件可配置恒流源,其输出电流可通过编程设为10 μA、210 μA或1 mA。来自AV_{DD}的这两个源电流直接送到器件的IOUT1或IOUT2引脚。这些电流源通过IO寄存器中的配置位进行控制。利用配置位可以使能电流源,将电流源导向IOUT1或IOUT2,以及选择电流值。这些电流源可以用来激励外部阻性电桥或RTD传感器。

偏置电压发生器

AD7794/AD7795內置一个偏置电压发生器。它将选定输入通道的负端偏置到AVDD/2。此功能在输入AIN1(-)至AIN3(-)上可用。它在热电偶应用中很有用,因为当增益大于2时,热电偶所产生的电压必须相对于某个直流电压偏置。偏置之所以有必要,是因为仪表放大器需要一定的裕量。如果没有裕量,接近GND或AV_{DD}的信号将不能精确转换。

偏置电压发生器由配置寄存器中的VBIAS1位、VBIAS0位和BOOST位共同控制。偏置电压发生器的上电时间取决于负载电容。为了适应较高的负载电容,AD7794/AD7795配有BOOST位。当此位置1时,偏置电压发生器的功耗提高,上电时间将大幅缩短。图11显示了BOOST等于0和BOOST等于1时,不同负载电容下的上电时间。当偏置电压发生器使能且BOOST等于0时,AD7794/AD7795的功耗提高40 μA。当BOOST功能启用时,器件功耗提高250 μA。

基准电压

AD7794/AD7795具有嵌入式1.17 V基准电压源,可以用来为ADC提供基准电压,当然也可以施加外部基准电压。该嵌入式基准电压源具有低噪声、低温漂特性,温漂典型值为4ppm/°C。对于外部基准电压通道,ADC具有完全差分输入能力。此外,用户可以从两种外部基准电压选项中选择其一(REFIN1或REFIN2)。使用配置寄存器中的REFSEL1和REFSEL0位可以选择AD7794/AD7795的基准电压源。当选择内部基准电压源时,它与调制器内部相连(不在REFIN引脚上提供)。

这些差分输入的共模范围为GND至AV_{DD}。基准电压输入 是无缓冲式,因此,过大的R-C源阻抗会引入增益误差。 标称基准电压REFIN(REFIN(+) - REFIN(-))为2.5 V,但 AD7794/AD7795可以采用0.1 V至AV_{DD}范围内的基准电压工作。如果应用中模拟输入端的传感器的激励(电压或电流)也驱动器件的基准电压,则激励源中低频噪声的影响将得以消除,因为应用是比率式的。如果在非比率式应用中使用AD7794/AD7795,应使用低噪声基准电压源。

对于AD7794/AD7795,建议使用的2.5 V基准电压源包括ADR381和ADR391,二者均为低噪声、低功耗基准电压源。还应注意,基准电压输入提供高阻抗、动态负载。由于各基准电压输入的输入阻抗是动态的,因此这些输入上的电阻与电容组合可能会引起直流增益误差,具体取决于驱动基准电压输入的信号源的输出阻抗。

基准电压源(例如ADR391)通常具有低输出阻抗,因而REFIN(+)上可以有去耦电容,而不会给系统带来增益误差。如果在外部电阻上获取基准输入电压,则意味着基准电压输入端具有很大的外部源阻抗。对于此类电路配置,不推荐在REFIN引脚上进行外部去耦。

基准电压检测

AD7794/AD7795含有片内基准电压检测电路, 当用户选择 外部基准电压为基准电压源时,该电路可以检测器件是否 有用于转换或校准的有效基准电压。将配置寄存器中的 REF_DET位设置为1,可以使能此特性。如果选定的 REFIN(+)与REFIN(-)引脚之间的电压降至0.3 V以下,或者 REFIN(+)或REFIN(-)输入开路,则AD7794/AD7795判断它 不再具有有效的基准电压。此时,状态寄存器中的 NOXREF位置1。如果AD7794/AD7795正在执行正常转 换, 而NOXREF位变为有效,则转换结果变为全1。因此, 并无必要在执行转换时持续监视NOXREF位的状态、只需 在从ADC数据寄存器读取的转换结果为全1时验证其状 态。如果AD7794/AD7795正在执行失调或满量程校准,而 NOXREF位变为有效,则将禁止相应校准寄存器更新,以 免这些寄存器载入错误的系数,同时状态寄存器的ERR位 会置1。如果用户不愿意每次执行校准时都要验证是否存 在有效的基准电压源,则应在校准周期结束时检查ERR位 的状态。

复位

对AD7794/AD7795连续写入32个1,可以使器件的电路和串行接口复位。这将复位逻辑、数字滤波器和模拟调制器,从而所有片内寄存器复位为默认值。上电时会自动执行复位。启动复位之后,用户必须等待500 μs才能访问片内

寄存器。如果SCLK线路上的噪声导致串行接口丧失同步,则可执行复位以恢复同步。

AVpp监控器

除了转换外部电压外,也可以利用ADC监控AV_{DD}引脚上的电压。当CH2至CH0位等于1时,AV_{DD}引脚上的电压在内部衰减6倍,所获得的电压施加于 Σ - Δ 调制器,它采用 1.17 V内部基准电压进行模数转换。此特性的用处在于可以监控电源电压的波动。

校准

AD7794/AD7795提供四种校准模式:内部零电平校准、内部满量程校准、系统零电平校准和系统满量程校准,通过模式寄存器中的模式位可以设置校准模式。这些校准可以将失调误差和满量程误差有效地降至与噪声相当。每次转换完成后,ADC转换结果需利用ADC校准寄存器进行调整,然后写入数据寄存器。转换结果先减去失调校准系数,然后乘以满量程系数。

为启动校准,必须将适当的值写入模式寄存器中的MD2至MD0位。校准完成后,相应校准寄存器的内容会被更新,状态寄存器中的DRY位置1,DOUT/DRY引脚变为低电平(如果CS为低电平),并且AD7794/AD7795返回空闲模式。

内部零电平或满量程校准期间,各零输入和满量程输入自动与ADC输入引脚内部相连。然而,系统校准则要求在启动校准模式之前,将系统零电平电压和系统满量程电压施加于ADC。这样可消除ADC的外部误差。

从操作上来看,校准就像另一次ADC转换。如需要,零电平校准应当总是在满量程校准之前执行。系统软件应监视状态寄存器中的DRY位或DOUT/DRY引脚,通过一个轮询序列或中断驱动程序确定校准何时结束。

斩波使能时,内部失调校准和系统失调校准均需要两个转换周期。此时无需执行内部失调校准,因为ADC本身会持续消除失调。斩波禁用时,完成内部失调校准或系统失调校准需要一个转换周期。此时需要执行内部失调校准,而且应在满量程校准之前执行。

为执行内部满量程校准,满量程输入电压会自动与此校准 选定的模拟输入端相连。当增益为1时,完成校准需要两 个转换周期(斩波使能时)或一个转换周期(斩波禁用时)。对 于更高增益,执行满量程校准需要四个转换周期(斩波使能

时)或两个转换周期(斩波禁用时)。DOUT/DRY 在校准启动时变为高电平,在校准完成时恢复低电平。校准之后,ADC处于空闲模式。测得的满量程系数置于选定通道的满量程寄存器中。当增益为128时,无法执行内部满量程校准。对于该增益设置,可以执行系统满量程校准。每次更改一个通道的增益时,都需要执行满量程校准,以使满量程误差最小。

内部满量程校准只能在特定更新速率时执行。当增益为1、2和4时,可以在任意更新速率时执行内部满量程校准。但是,对于更高增益,则只能在更新速率小于或等于16.7 Hz、33.3 Hz和50 Hz时执行。不过,满量程误差不因更新速率而改变,因此在某一更新速率时执行的校准对所有更新速率均有效(假设增益或基准电压源保持不变)。

完成系统满量程校准需要两个转换周期(斩波使能时)或一个转换周期(斩波禁用时),与增益设置无关。系统满量程校准可以在所有增益和所有更新速率时执行。斩波禁用时,失调校准(内部或系统失调)应在系统满量程校准启动之前执行。

接地和布局

由于ADC的模拟输入和基准输入均为差分输入,因此模拟调制器中的多数电压均为共模电压。器件的出色共模抑制性能可消除这些输入的共模噪声。数字滤波器可抑制电源上的宽带噪声,对那些在调制器采样频率的整数倍频率的噪声除外。数字滤波器也可以消除来自模拟和基准输入端的噪声,条件是这些噪声源没有使模拟调制器饱和。因此,AD7794/AD7795的抗噪能力比传统高分辨率转换器更强。不过,鉴于AD7794/AD7795的分辨率是如此之高,而其噪声电平是如此之低,因此必须谨慎对待接地和布局。

AD7794/AD7795所在的印刷电路板应采用模拟部分与数字部分分离设计,并限制在电路板的一定区域内。为实现最佳屏蔽,接地层一般应尽量少采用蚀刻技术。

建议将AD7794/AD7795的GND引脚连到系统的AGND层。 无论采取何种布局,用户均必须注意规划系统中电流的回 流路径,确保所有电流的回流路径均尽可能靠近电流到达 目的地所经过的路径。切勿强制数字电流流过布局的 AGND部分。

将AD7794/AD7795的接地层放在其下方可以防止噪声耦合。AD7794/AD7795的电源线路应采用尽可能宽的走线,以提供低阻抗路径,并减小电源线路上的毛刺噪声效应。时钟等快速开关信号应利用数字地屏蔽起来,以免向电路板的其它部分辐射噪声。此外,绝不应将时钟信号走线布设在模拟输入附近。避免数字信号与模拟信号交叠。电路板相反两侧上的走线应彼此垂直,这样有助于减小电路板的馈通效应。微带线技术是最佳选择,但这种技术对于双面电路板未必总是可行。采用这种技术时,电路板的元件侧专用于接地层,信号走线则布设在焊接侧。

使用高分辨率ADC时,良好的去耦十分重要。应将 10μ F钽电容与 0.1μ F陶瓷电容并联,对AV_{DD}去耦到GND。同时应将 10μ F钽电容与 0.1μ F陶瓷电容并联,对DV_{DD}去耦到系统的 DGND层; 系统 AGND到 DGND的 连接 应靠 近 AD7794/AD7795。为使这些去耦元件实现最佳效果,应使 其尽可能靠近器件,最好是紧贴器件。应使用 0.1μ F陶瓷电容对所有逻辑芯片去耦到DGND。

应用信息

AD7794/AD7795均为低成本、高分辨率模数转换器。模数转换功能由Σ-Δ结构提供,因此器件的抗噪能力很强,非常适合传感器测量、工业和过程控制应用。

流量计

图24显示AD7794/AD7795在流量计中的应用,该流量计由两个压力传感器组成,流量等于压力差。所示压力传感器为Sensym公司的BP01。压力传感器位于电桥网络中,在其OUT+与OUT-引脚之间提供差分输出电压。对于传感器的额定满量程压力(本例中为300 mmHg),差分输出电压为输入电压(即IN(+)端与IN(-)端之间的电压)的3 mV/V。

假设激励电压为5 V,则传感器的满量程输出电压为15 mV。 电桥的激励电压可以直接用来提供ADC的基准电压,因为 基准电压输入范围包括电源电压。 在基于传感器的应用中使用AD7794/AD7795的第二个好处,是低功耗应用可以充分利用低端电源开关。低端电源开关与电桥的冷端串联。正常工作时,该开关闭合,以便执行测量。在要求低功耗的应用中,AD7794/AD7795可以处于待机模式,从而显著降低应用的功耗。此外,在待机模式下,低端电源开关可以断开,以免前端传感器不必要地耗费功率。当器件离开待机模式且低端电源开关闭合时,用户应确保前端电路完全建立,然后才能尝试读取AD7794/AD7795。

图中,温度补偿是通过热敏电阻来执行。片内激励电流为该热敏电阻提供激励。此外,温度测量的基准电压是从一个与该热敏电阻串联的精密电阻获得。由此可实现比率式测量,激励电流的波动对测量没有影响(测量结果是精密参考电阻与热敏电阻的比值)。

图24. 典型应用(流量计)

外形尺寸

COMPLIANT TO JEDEC STANDARDS MO-153-AD

图25. 24引脚超薄紧缩小型封装[TSSOP] (RU-24) 尺寸(单位:毫米)

订购指南

型号	温度范围	封装描述	封装选项
AD7794BRU	-40°C 至 +105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7794BRU-REEL	-40°C 至 +105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7794BRUZ ¹	-40°C 至 +105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7794BRUZ-REEL ¹	-40°C 至 +105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7794CRUZ ¹	-40°C 至 +125°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7794CRUZ-REEL ¹	-40°C 至 +125°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7795BRUZ ¹	-40°C 至 +105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7795BRUZ-REEL ¹	-40°C 至 +105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
EVAL-AD7794EB		评估板	
EVAL-AD7795EB		评估板	

¹Z=符合RoHS标准的兼容器件。

