

580 Pleasant St. Watertown, MA 02172 PH: (617) 926-0404 FAX: (617) 924-1235

2N3251A

Features

- Meets MIL-S-19500/323
- Collector-Base Voltage 60V
- Collector Current: 200 mA
- Fast Switching 370 nS

60 Volts 200 mAmps

PNP BIPOLAR TRANSISTOR

Maximum Ratings

RATING	SYMBOL	MAX.	UNIT
Collector-Emitter Voltage	$V_{\sf CEO}$	-60	Vdc
Collector-Base Voltage	V _{CBO}	-60	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current	Ic	-200	mAdc
Total Device Dissipation	P _D		
$@T_A = 25^{\circ}C$		0.36	Watts
Derate above 25°C		2.4	mW/°C
Total Device Dissipation	P _D		
$@T_{C} = 25^{\circ}C$		1.2	Watts
Derate above 25°C		8	mW/°C
Operating Temperature Range	TJ	-65 to	°C
		+175	
Storage Temperature Range	Ts	-65 to	°C
		+175	
Thermal Resistance, Junction to Ambient	$R_{ hetaJA}$	417	°C/W
Thermal Resistance, Junction to Case	R _{eJC}	146	°C/W

Mechanical Outline

2N3251A

Electrical Parameters (T_A @ 25°C unless otherwise specified)

•	•	•			
CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Off Characteristics					
Collector-Emitter Breakdown Voltage(1) (I _C = -10 mAdc)	BV _{CEO}	-60			Vdc
Collector-Base Breakdown Voltage (I _C = -10 μAdc)	BV _{CBO}	-60			Vdc
Emitter-Base Breakdown Voltage (I _E = -10 µAdc)	BV _{EBO}	-5.0			Vdc
Collector Cutoff Current (V _{CE} = -40 Vdc, V _{EB} = -3.0 Vdc)	_			-20	nA
(at 150 C)	I _{CEX}			-20	uA
Base Cutoff Current (V _{CE} = -40 Vdc, V _{EB} = -3.0 Vdc)	I _{BEX}			-50	nAdc
D.C. Current Gain	h _{FE}			- 00	
$(I_C = -0.1 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$	IIFE				
$(I_C = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$ $(I_C = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		80			
$(I_C = -1.0 \text{ MAdc}, V_{CE} = -1.0 \text{ Vdc})$ $(I_C = -1.0 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}) @ -55C$		90			
$(I_C = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc}) \otimes -330$		40			
		100		300	
$(I_C = -50 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})(1)$		30			
Collector-Emitter Saturation Voltage(1)	V _{CE(Sat)}			0.05	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$				-0.25	
$(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$				-0.5	
Base-Emitter Saturation Voltage(1)	$V_{BE(Sat)}$				Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$		-0.6		-0.9	
$(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$				-1.2	
Magnitude of common emitter small-signal short-circuit forward current					
transfer ratio	/h _{fe} /	3.0		9.0	
$(I_C = -10 \text{ mAdc}, V_{CE} = -20 \text{ Vdc}, f = 100\text{MHz})$					
Output Capacitance	C _{OBO}				pf
$(V_{CB} = -10 \text{ Vdc}, I_{E} = 0, 100\text{kHz} \le f \le 1\text{MHz})$				6.0	
Input Capacitance	C _{IBO}				pf
$(V_{EB} = -10 \text{ Vdc}, I_C = 0, 100 \text{kHz} \le f \le 1 \text{MHz})$				8.0	
Input Impedance	h _{je}				kohms
$(I_C = -1.0 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz})$		2.0		12	
Voltage Feedback Ratio	h _{re}				x 10 ⁻⁴
$(I_C = -1.0 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz})$				20	
Small—Signal Current Gain	h _{fe}				
$(I_C = -1.0 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz})$		100		400	
Output Admittance	h _{oe}				μmhos
$(I_C = -1.0 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz})$		10		60	•
Collector Base Time Constant	rb'C _C				ps
$(I_C = -10 \text{ mA}, V_{CE} = -20 \text{ V}, f = 31.8 \text{ MHz})$		5		250	•
Noise Figure	NF				dB
$(I_C = -100 \mu A, V_{CE} = -5.0 V, R_S = 1.0 kΩ, f = 100 Hz)$				6.0	
Switching Speeds			1		
$(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = +0.5 \text{ Vdc})$	ton			70	ns
$I_{C} = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mA})$				1	
$(V_{CC} = -10 \text{ mAdc}, I_{B1} = I_{B1} = -1.0 \text{ mAdc})$			†		
$(V_{CC} = -10 \text{ finale}, T_{B1} = T_{B1} = -1.0 \text{ finale})$ $(V_{CC} = -3.0 \text{ V})$.			300	ns
(v c c - 0.0 v)	t _{off}				

⁽¹⁾ Pulse Test: PW = 300 $\,\mu$ s, Duty Cycle = 2.0%