# 수학 영역

# 정답

| 1  | 5   | 2  | 4  | 3  | 2  | 4  | 3   | 5  | 3   |
|----|-----|----|----|----|----|----|-----|----|-----|
| 6  | 4   | 7  | 4  | 8  | 2  | 9  | 3   | 10 | (5) |
| 11 | 4   | 12 | 1  | 13 | 1  | 14 | (5) | 15 | 2   |
| 16 | 5   | 17 | 17 | 18 | 13 | 19 | 24  | 20 | 27  |
| 21 | 117 | 22 | 64 |    |    |    |     |    |     |

# 해설

# 1. [출제의도] 지수와 로그 계산하기

$$4^{\frac{1}{2}} + \log_2 8 = 2 + 3 = 5$$

## 2. [출제의도] 정적분 계산하기

$$\int_{0}^{1} (2x+3)dx = \left[x^{2}+3x\right]_{0}^{1} = 1+3=4$$

#### 3. [출제의도] 미분계수 계산하기

$$f'(x) = 2x - a$$
  
 $f'(1) = 2 - a = 0$   
따라서  $a = 2$ 

## 4. [출제의도] 함수의 극한 이해하기

$$\lim_{x \to -1-} f(x) = 2, \lim_{x \to 1+} f(x) = -1$$
  
따라서 
$$\lim_{x \to -1-} f(x) + \lim_{x \to 1+} f(x) = 1$$

#### 5. [출제의도] 지수함수의 성질 이해하기

양변의 밑을 5로 같게 하면  $5^{2x-7} \le 5^{-x+2}$   $2x-7 \le -x+2$  에서  $x \le 3$  주어진 부등식을 만족시키는 자연수 x는 1, 2, 3 따라서 자연수 x의 개수는 3

# 6. [출제의도] 삼각함수 사이의 관계 이해하기

$$\cos(-\theta) + \sin(\pi + \theta) = \cos\theta - \sin\theta = \frac{3}{5}$$
$$(\cos\theta - \sin\theta)^2 = \cos^2\theta - 2\cos\theta\sin\theta + \sin^2\theta$$
$$= 1 - 2\sin\theta\cos\theta$$
$$1 - 2\sin\theta\cos\theta = \frac{9}{25}$$

따라서 
$$\sin\theta\cos\theta = \frac{8}{25}$$

# 7. [출제의도] 수열의 귀납적 정의 이해하기

$$\begin{split} a_2 &= 5 - \frac{10}{10} = 4 \\ a_3 &= 5 - \frac{10}{4} = \frac{5}{2} \\ a_4 &= -2 \times \frac{5}{2} + 3 = -2 \\ a_5 &= 5 - \frac{10}{-2} = 5 + 5 = 10 \\ &\vdots \\ a_9 &= a_5 = a_1 = 10 \;, \; a_{12} = a_8 = a_4 = -2 \\ \text{WFA} &= 8 \end{split}$$

#### 8. [출제의도] 등비수열의 일반항 이해하기

등비수열 
$$\left\{a_{n}\right\}$$
의 일반항은  $a_{n}=ar^{n-1}$   $2a=S_{2}+S_{3}$ 이므로  $2a=(a+ar)+\left(a+ar+ar^{2}\right)$   $ar(2+r)=0$   $r^{2}=64a^{2}$   $(a>0)$ 에 의하여  $r\neq 0$ 이므로  $r=-2$  ,  $a=\frac{1}{4}$  따라서  $a_{5}=\frac{1}{4}\times(-2)^{4}=4$ 

## 9. [출제의도] 거듭제곱근과 지수법칙 이해하기

$$\left(\sqrt[n]{a}\right)^3 = a^{\frac{3}{n}}$$
(i)  $a = 4$ 일 때  $4^{\frac{3}{n}} = 2^{\frac{6}{n}}$ 
 $n (n \ge 2)$ 가 6의 양의 약수이어야 하므로  $n = 2$ , 3, 6
그러므로  $f(4) = 6$ 

(ii) 
$$a=27$$
일 때  $27^{\frac{3}{n}}=3^{\frac{9}{n}}$   $n\ (n\geq 2)$ 가 9의 양의 약수이어야 하므로  $n=3$ , 9 그러므로  $f(27)=9$  따라서  $f(4)+f(27)=6+9=15$ 

#### 10. [출제의도] 삼각함수를 활용하여 문제해결하기

$$\cos^2 x = 1 - \sin^2 x$$
 이 므로  
 $3(1 - \sin^2 x) + 5\sin x - 1 = 0$   
 $3\sin^2 x - 5\sin x - 2 = 0$   
 $(3\sin x + 1)(\sin x - 2) = 0$   
 $-1 \le \sin x \le 1$  이므로  $\sin x = -\frac{1}{3}$  ...  $\bigcirc$ 



①을 만족시키는 x의 값을  $x=\alpha$ ,  $\beta$   $(\alpha<\beta)$ 라 하면  $\frac{\alpha+\beta}{2}=\frac{3}{2}\pi$  이므로  $\alpha+\beta=3\pi$  따라서 모든 해의 합은  $3\pi$ 

#### 11. [출제의도] 로그함수의 그래프의 성질을 활용하여 문제해결하기

직선 y=-2와 함수 y=f(x)의 그래프가 만나는 점이 A 이므로  $-2=\frac{1}{2}\log_a(x-1)-2$ 에서 x=2A(2, -2) B $\left(10,\,\frac{1}{2}\log_a9-2\right)$ , C $\left(10,\,-\log_a8+1\right)$ 이고, 점 A 와 직선 x=10 사이의 거리는 8이므로 삼각형 ACB의 넓이는  $\frac{1}{2}\times8\times\left\{\left(\frac{1}{2}\log_a9-2\right)-\left(-\log_a8+1\right)\right\}$  $=4\times\left(\log_a24-3\right)=28$  $\log_a24=10$ 따라서  $a^{10}=24$ 

#### 12. [출제의도] 연속함수의 성질을 활용하여 문제해결하기

$$\lim_{x \to \infty} \frac{f(x)}{x^2 - 3x - 5} = 2$$
이므로
$$f(x) = 2x^2 + ax + b$$

(분모) $\rightarrow 0$  이고 극한값이 존재하므로 (분자) $\rightarrow 0$   $\lim_{x\to 3} (2x^2+ax+b)=0$  이므로 18+3a+b=0

 $\lim f(x) g(x) = f(3) g(3)$ 

함수 f(x)g(x)는 실수 전체의 집합에서

연속이므로 x=3에서 연속이다.

 $\lim_{x \to 3} \frac{2x^2 + ax + b}{x - 3} = 18 + 3a + b \text{ old}$ 

$$\lim_{x \to 3} \frac{2x^2 + ax + b}{x - 3} = 0$$

$$b = -3a - 18 \circ | \Box \exists f(x) = (x - 3)(2x + a + 6)$$

$$\lim_{x \to 3} \frac{2x^2 + ax + b}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(2x + a + 6)}{x - 3}$$

$$= \lim_{x \to 3} (2x + a + 6) = 0$$

이므로 a=-12, b=18  $f(x)=2x^2-12x+18$  따라서 f(1)=8

# 13. [출제의도] 수열의 합을 활용하여 추론하기

주어진 식 (\*)에 의하여 n-1

$$nS_n = \log_2(n+1) + \sum_{k=1}^{n-1} S_k \quad (n \geq 2) \quad \cdots$$
 이다.  $(*)$ 에서 ①을 빼서 정리하면  $(n+1)S_{n+1} - nS_n$  
$$= \log_2(n+2) - \log_2(n+1)$$
 
$$+ \sum_{k=1}^n S_k - \sum_{k=1}^{n-1} S_k \quad (n \geq 2)$$

$$(\underbrace{n+1}) \times a_{n+1} = \log_2 \frac{n+2}{n+1} \quad (n \ge 2)$$

 $a_1=1=\log_22$ 이고,  $2S_2=\log_23+S_1=\log_23+a_1$ 이므로  $2a_2=\log_2\frac{3}{2}$ 모든 자연수 n에 대하여

모든 자연수 
$$n$$
 에 대하여 
$$na_n = \log_2 \frac{n+1}{n}$$
이다 따라서

$$\sum_{k=1}^{n} k a_k = \sum_{k=1}^{n} \log_2 \frac{k+1}{k}$$

$$= \log_2 \frac{2}{1} + \log_2 \frac{3}{2} + \dots + \log_2 \frac{n+1}{n}$$

$$= \log_2 \left(\frac{2}{1} \times \frac{3}{2} \times \dots \times \frac{n+1}{n}\right)$$

$$= \left[\log_2 (n+1)\right]$$

이다.  $f(n)=n+1\;,\;g(n)=\log_2\frac{n+1}{n}\;,$   $h(n)=\log_2(n+1)$  따라서

# $f(8) - g(8) + h(8) = 9 - \log_2 \frac{9}{8} + \log_2 9 = 12$

$$x(2) = 0 + \int_0^2 (3t^2 - 6t)dt = [t^3 - 3t^2]_0^2 = -4$$
 (참)

ㄷ. 시각 t에서의 점 P의 가속도를 a(t)라 하면 a(t) = 6t - 6

6t-6=12, t=3

t=0에서 t=3까지 움직인 거리를 s라 하면

$$s = \int_{0}^{3} |3t^{2} - 6t| dt$$

$$= -\int_{0}^{2} (3t^{2} - 6t)dt + \int_{2}^{3} (3t^{2} - 6t)dt$$

 $=4+\left[t^{3}-3t^{2}\right]_{2}^{3}=8$  (참) 따라서 옳은 것은 기, ㄴ, ㄷ

#### 15. [출제의도] 정적분을 활용하여 문제해결하기

방정식 f'(x)=0의 서로 다른 세 실근

 $\alpha$ , 0,  $\beta$  ( $\alpha$  < 0 <  $\beta$ )가 이 순서대로 등차수열을 이루므로  $\beta = -\alpha$ 

 $f'(x) = 4x(x-\alpha)(x+\alpha)$ 

 $f(x) = x^4 - 2\alpha^2 x^2 + C$  (단, C는 적분상수이다.) f(-x)=f(x)이므로 함수 y=f(x)의 그래프는 y 축에 대하여 대칭이고, 조건 (가)에 의하여 f(0) = 9, C = 9

조건 (나)에 의하여  $f(\alpha) = \alpha^4 - 2\alpha^4 + 9 = -16$  $\alpha = -\sqrt{5}$ 

함수  $f'(x) = 4x(x - \sqrt{5})(x + \sqrt{5})$ 의 그래프의 개형은 다음과 같다.



함수 g(x) = |f'(x)| - f'(x)이므로 함수

$$g(x) = \begin{cases} 0 & (f'(x) \ge 0) \\ -2f'(x) & (f'(x) < 0) \end{cases}$$

이고, 함수 y = g(x)의 그래프의 개형은 다음과 같다.



$$\int_{0}^{10} g(x)dx = -2 \int_{0}^{\sqrt{5}} f'(x)dx$$
$$= -2 [f(x)]_{0}^{\sqrt{5}} = -2 \{f(\sqrt{5}) - f(0)\}$$
$$= -2 \times (-16 - 9) = 50$$

# 16. [출제의도] 함수의 극한값 계산하기

$$\lim_{x \to -1} \frac{x^2 + 4x + a}{x + 1} = b \text{ 에서}$$
 (분모) $\to 0$  이고 극한값이 존재하므로 (분자) $\to 0$   $\lim_{x \to -1} (x^2 + 4x + a) = 0$  이므로  $1 - 4 + a = 0$ ,  $a = 3$ 

$$\lim_{x \to -1} \frac{x^2 + 4x + 3}{x + 1} = \lim_{x \to -1} \frac{(x+1)(x+3)}{x+1}$$
$$= \lim_{x \to -1} (x+3) = 2 = b$$

따라서 a+b=5

## 17. [출제의도] 부정적분 이해하기

$$f(x) = \int (3x^2 + 6x - 4)dx$$
  
 $= x^3 + 3x^2 - 4x + C$   
(단, C는 적분상수이다.)  
 $f(1) = 1 + 3 - 4 + C = 5$ ,  $C = 5$   
 $f(x) = x^3 + 3x^2 - 4x + 5$   
따라서  $f(2) = 8 + 12 - 8 + 5 = 17$ 

#### 18. [출제의도] 미분계수 이해하기

 $f'(x) = 3x^2 + a$ 

x의 값이 1에서 3까지 변할 때의 함수 f(x)의 평균변화율이 f'(a)의 값과 같으므로

$$\frac{f(3) - f(1)}{3 - 1} = f'(a)$$
$$\frac{3^3 + 3a - (1^3 + a)}{2} = 3a^2 + a$$

따라서  $3a^2 = 13$ 

#### 19. [출제의도] 곱의 미분법을 활용하여 문제해결하기

$$\lim_{x \to 2} \frac{f(x) - 4}{x^2 - 4} = 2 \text{ only}$$

(분모)→0 이고 극한값이 존재하므로 (분자)→0  $\lim \{f(x)-4\}=0$  이므로 f(2)=4

$$\lim_{x \to 2} \frac{f(x) - 4}{x^2 - 4} = \lim_{x \to 2} \left\{ \frac{1}{x + 2} \times \frac{f(x) - f(2)}{x - 2} \right\}$$
$$= \frac{1}{4} f'(2) = 2$$

f'(2) = 8

$$\lim_{x \to 2} \frac{g(x) + 1}{x - 2} = 8 \text{ M/A}$$

(분모)→0이고 극한값이 존재하므로 (분자)→0 $\lim \{g(x)+1\}=0$  이므로 g(2)=-1

$$\lim_{x \to 2} \frac{g(x)+1}{x-2} = \lim_{x \to 2} \frac{g(x)-g(2)}{x-2} = g'(2) = 8$$

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

따라서 h'(2)=f'(2)g(2)+f(2)g'(2)=24

#### 20. [출제의도] 삼각함수를 활용하여 문제해결하기

선분 AB는 삼각형 ABC의 외접원의 지름이므로 삼각형 ABC 는 직각삼각형이다.

$$\angle BCA = \frac{\pi}{2}$$
,  $\angle CAB = \alpha$ 라 하면

$$\cos \alpha = \frac{1}{3}$$
 이코,  $\sin^2 \alpha = 1 - \cos^2 \alpha = \frac{8}{9}$  이므로

$$\sin\alpha = \frac{2\sqrt{2}}{3}$$

 $\overline{BC} = \overline{AB} \times \sin \alpha$  이므로  $\overline{AB} = 18$  이고,  $\overline{AC} = 6$ 점 D는 선분 AB를 5:4로 내분하는 점이므로  $\overline{AD} = 10$ 

삼각형 CAD 에서 코사인법칙에 의하여

$$\overline{DC}^2 = 6^2 + 10^2 - 2 \times 6 \times 10 \times_{COS} \alpha = 96$$

$$\overline{DC} = \sqrt{96} = 4\sqrt{6}$$

삼각형 CAD 의 외접원의 반지름의 길이를 R라 하면, 사인법칙에 의하여

$$\frac{\overline{DC}}{\sin \alpha} = 2R \, \text{old} \, R = 3\sqrt{3}$$

삼각형 CAD 의 외접원의 넓이  $S=27\pi$ 따라서  $\frac{S}{\pi} = 27$ 

#### 21. [출제의도] 등차수열과 등비수열의 성질을 활용하여 문제해결하기

 $a_1 = a$ 라 하면

조건 (나)에 의하여

 $\{a + (k-1)d\}^2 = (a+d)\{a + (3k-2)d\}$ 

 $d(k^2 - 5k + 3) = a(k+1) \cdots \bigcirc$ 

모든 항이 자연수이므로

조건  $(\gamma)$ 에서  $0 < a \le d$ 

 $a(k+1) \le d(k+1)$ 

 $k^2 - 5k + 3 \le k + 1$ 

 $k^2 - 6k + 2 \le 0$ 

 $3 - \sqrt{7} \le k \le 3 + \sqrt{7}$ 

 $k \geq 3$ 이므로 자연수 k = 3, 4, 5

 $\cap$ 에서  $k^2-5k+3>0$ 이므로 k=5, d=2a

 $90 \le a_{16} \le 100$ ,  $a_{16} = a + 15d = 31a$ 

이므로 a=3, d=6

따라서  $a_{20} = a + 19d = 117$ 

### 22. [출제의도] 도함수를 활용하여 문제해결하기

$$f(x) = \frac{2\sqrt{3}}{3}x(x-3)(x+3)$$

 $f'(x) = 2\sqrt{3}(x-\sqrt{3})(x+\sqrt{3})$ 이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

| x     |   | $-\sqrt{3}$ |    | $\sqrt{3}$  |   |
|-------|---|-------------|----|-------------|---|
| f'(x) | + | 0           |    | 0           | + |
| f(x)  | 1 | 12<br>(극대)  | `\ | -12<br>(극소) | 1 |

함수 y = g(x)의 그래프의 개형은 다음과 같다.



자연수 k에 대하여  $6k-3 \le x < 6k+3$  일 때

함수 
$$g(x) = \frac{1}{k+1} f(x-6k)$$

k+1이 12의 양의 약수가 될 때 함수 g(x)의 극댓값이 자연수이므로

k=1, 2, 3, 5, 11일 때 함수 g(x)의 극댓값은

각각 6, 4, 3, 2, 1이다

 $a_1 = 2 \times 11 + 1 = 23$ 

 $a_2 = 2 \times 5 + 1 = 11$ 

 $a_3 = 2 \times 3 + 1 = 7$ 

 $a_4 = 2 \times 2 + 1 = 5$  $a_5 = 2 \times 2 = 4$ 

 $a_6 = 2 \times 1 + 1 = 3$ 

 $7 \le n \le 11$ 일 때  $a_n = 2 \times 1 = 2$ 

$$\sum_{n=1}^{12} a_n = 23 + 11 + 7 + 5 + 4 + 3 + 2 \times 5 + 1 = 64$$

# 기하 정답

| 23 | 4 | 24 | 2  | 25 | 5   | 26 | 1 | 27 | 5 |
|----|---|----|----|----|-----|----|---|----|---|
| 28 | 3 | 29 | 25 | 30 | 108 |    |   |    |   |

# 기하 해설

## 23. [출제의도] 벡터의 평행 계산하기

두 벡터  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ 가 서로 평행하면

(2, 4) = t(-1, k)를 만족시키는 실수  $t(t \neq 0)$ 가 존재한다.

그러므로 2=-t, 4=kt

따라서 k=-2

# 24. [출제의도] 쌍곡선의 접선의 방정식 이해하기

쌍곡선 위의 점 P(a, b)에서의 접선의 방정식은 ax-by=1

기울기가 2이므로  $\frac{a}{b} = 2$ , a = 2b

점 P(a, b)가 쌍곡선  $x^2 - y^2 = 1$  위의 점이므로  $4b^2 - b^2 = 1$ 

 $3b^2 = 1$  이고 b가 양수이므로  $b = \frac{\sqrt{3}}{3}$ 

$$a = 2b = \frac{2\sqrt{3}}{3}$$

따라서  $ab = \frac{2}{3}$ 

# 25. [출제의도] 벡터를 이용한 직선의 방정식 이해하기

점 P 의 좌표를 (a, b)라 하면

$$\frac{a-5}{2} = b-5 \cdots \bigcirc$$

 $\overrightarrow{AP} = (a-2, b-6)$ 

직선 l의 방향벡터는 u=(2, 1)

두 벡터  $\overrightarrow{AP}$  와  $\overrightarrow{u}$  는 서로 수직이므로

 $\overrightarrow{AP} \cdot \overrightarrow{u} = 0$ 

2(a-2) + (b-6) = 0

 $b = -2a + 10 \cdots \bigcirc$ 

①,  $\bigcirc$ 에 의하여 a=3, b=4

따라서  $|\overrightarrow{OP}| = \sqrt{3^2 + 4^2} = 5$ 

#### 26. [출제의도] 타원의 성질 이해하기

직선 F'Q 와 직선 FP 가 만나는 점을 R 라 하자. 직선 F'Q 가 선분 FP를 수직이등분하므로

 $\overline{PR} = \overline{FR} = \sqrt{3}$ 

삼각형 FRF'에서

 $\overline{FF'}=2\sqrt{7}$  ,  $\overline{FR}=\sqrt{3}$  이므로  $\overline{F'R}=5$  장축의 길이가 8 이므로

 $\overline{F'Q} + \overline{QF} = \overline{F'R} + \overline{RQ} + \overline{QF} = 8$ 

 $\overline{FQ} = a$ 라 하면  $\overline{RQ} = 3 - a$ 

삼각형 FQR 에서

 $a^2 = (3-a)^2 + (\sqrt{3})^2$ , a = 2

따라서 선분 FQ 의 길이는 2

### 27. [출제의도] 정사영의 성질을 활용하여 추론하기



정사각형 ABCD의 넓이는 36 정사각형 ABCD의 평면  $\alpha$  위로의 정사영의 넓이가 18이므로 두 평면 ABCD와  $\alpha$ 가 이루는 예각의 크기를  $\theta_1$ 이라 하면

$$36 \times \cos \theta_1 = 18$$
 이므로  $\theta_1 = \frac{\pi}{3}$ 

점 F의 평면  $\alpha$  위로의 정사영이 H이므로 두 평면 ABEF와  $\alpha$ 가 이루는 예각의 크기를  $\theta_2$ 라 하면

$$\cos heta_2 = rac{\overline{AH}}{\overline{AF}} = rac{6\sqrt{3}}{12} = rac{\sqrt{3}}{2}$$
 이므로  $\theta_2 = rac{\pi}{6}$ 

두 평면 ABCD와 ABEF가 이루는 예각의 크기를  $\theta$ 라 하면

$$\theta = \theta_1 - \theta_2 = \frac{\pi}{6}$$

따라서 정사각형 ABCD의 평면 ABEF 위로의 정사영의 넓이를 S'이라 하면

$$S' = 36 \times \cos \frac{\pi}{6} = 18\sqrt{3}$$

#### 28. [출제의도] 포물선의 성질 이해하기



 $\angle$  AFC =  $\angle$  DFB 이고  $\overline{FA} = \overline{FB}$  이다. 삼각형 FCA 의 넓이가 삼각형 FDB 의 넓이의 5 배이므로

$$\frac{1}{2} \times \overline{FA} \times \overline{FC} \times \sin(\angle AFC)$$

$$= 5 \times \frac{1}{2} \times \overline{\text{FB}} \times \overline{\text{FD}} \times \sin\left(\angle \text{DFB}\right)$$

 $\overline{FC} = 5\overline{FD}$ 

두 점 C, D 에서 이 포물선의 준선에 내린 수선의 발을 각각 P, Q 라 하고, 점 C 를 지나고 x 축에 수직인 직선과 직선 QD 가 만나는 점을 R 라 하자.

 $\overline{FD} = s$ 라 하면  $\overline{QD} = \overline{FD} = s$ 

 $\overline{PC} = \overline{FC} = 5s$ 

 $\overline{DR} = \overline{QR} - \overline{QD} = 4s$ ,  $\overline{CD} = 6s$  에서

 $\overline{CR} = 2\sqrt{5}s$ 

따라서 
$$m = \frac{\overline{CR}}{\overline{DR}} = \frac{2\sqrt{5}s}{4s} = \frac{\sqrt{5}}{2}$$

# 29. [출제의도] 공간도형을 활용하여 문제해결하기

$$\angle BMD = \frac{\pi}{2}$$
 이므로  $\overline{BM} = 8$ 

$$\angle BAM = \frac{\pi}{2}$$
이므로  $\overline{AM} = 4\sqrt{3}$ 



점 P에서 직선 BM에 내린 수선의 발을 H라 하면

 $\overline{PH} \perp \overline{BM} \cdots \bigcirc$ 

직선 AB와 평면 ACD가 서로 수직이므로

 $\overline{AB} \perp \overline{CD}$ 

직선 CD는 두 직선 AB, BM과 서로 수직이므로

 $\overline{\mathrm{CD}}$   $\bot$  (평면 AMB)

직선 PH는 평면 AMB에 포함되므로

 $\overline{PH} \perp \overline{CD} \cdots \bigcirc$ 

①, ⓒ에 의하여  $\overline{PH}$   $\bot$  (평면 CDB)

PH \_ (평면 CDB )이고 PN \_ BD 이므로

삼수선의 정리에 의하여  $\overline{\mathrm{HN}} \perp \overline{\mathrm{BD}}$ 

두 삼각형 DBM 과 HBN은 서로 닮은

도형이므로  $\overline{BM}$ :  $\overline{MD}$ =  $\overline{BN}$ :  $\overline{NH}$  에서

$$\overline{NH} = \frac{\overline{MD} \times \overline{BN}}{\overline{BM}} = \sqrt{5}$$

$$\angle BNH = \frac{\pi}{2}$$
 이므로  $\overline{BH}^2 = \overline{BN}^2 + \overline{NH}^2 = 25$ 

 $\overline{BH} = 5$ ,  $\overline{MH} = 3$ 

$$tan(\angle AMB) = \frac{\sqrt{3}}{3}$$
 이므로  $\overline{PH} = \sqrt{3}$ 

$$\overline{PN}^2 = \overline{PH}^2 + \overline{HN}^2 = 8$$

 $\overline{PN} = 2\sqrt{2}$ 

두 평면 PDB, CDB의 교선은 직선 DB이고 평면 PDB 위의 점 P의 평면 CDB 위로의 정사영이 H이므로

$$\cos\theta = \frac{\overline{HN}}{\overline{PN}} = \frac{\sqrt{5}}{2\sqrt{2}} = \frac{\sqrt{10}}{4}$$

따라서  $40\cos^2\theta = 25$ 

# 30. [출제의도] 평면벡터의 내적의 성질을 활용하여 문제해결하기

선분 AB를 지름으로 하는 원의 중심을 E라 하자.

$$\overrightarrow{OC} \cdot \overrightarrow{OP} = \overrightarrow{OC} \cdot (\overrightarrow{OE} + \overrightarrow{EP})$$

$$= \overrightarrow{OC} \cdot \overrightarrow{OE} + \overrightarrow{OC} \cdot \overrightarrow{ED}$$

OC · OE 의 값은 일정하므로

OC·EP의 값이 최대일 때

 $\overrightarrow{OC} \cdot \overrightarrow{OP}$ 의 값이 최대이다.

두 벡터  $\overrightarrow{OC}$ ,  $\overrightarrow{EP}$ 의 방향이 같을 때,

OC · EP 의 값이 최대이다.

두 벡터  $\overrightarrow{OC}$ ,  $\overrightarrow{EP}$ 의 방향이 같을 때의 점 P가 Q이다.



직선 QE가 선분 OA와 만나는 점을 F라 하자.

$$\angle EFA = \frac{\pi}{3}$$
,  $\overline{AE} = 2$ 이므로

$$\overline{\text{FE}} = \frac{4\sqrt{3}}{3}$$
,  $\overline{\text{FA}} = \frac{2\sqrt{3}}{3}$ 

$$\overline{OF} = \overline{OA} - \overline{FA} = 2 + \frac{4\sqrt{3}}{3}$$

$$\overline{FQ} = \overline{FE} + \overline{EQ} = 2 + \frac{4\sqrt{3}}{3}$$

$$\overline{\mathrm{OF}} = \overline{\mathrm{FQ}}$$
 이므로  $\angle \mathrm{OQF} = \frac{\pi}{6}$ 

그러므로  $\overline{DQ} = 2\sqrt{3}$ 

$$\overrightarrow{DQ} \cdot \overrightarrow{AR} = \overrightarrow{DQ} \cdot (\overrightarrow{AE} + \overrightarrow{ER})$$

$$= \overrightarrow{DQ} \cdot \overrightarrow{AE} + \overrightarrow{DQ} \cdot \overrightarrow{ER} \cdots \bigcirc$$

두 벡터  $\overrightarrow{\mathrm{DQ}}$ ,  $\overrightarrow{\mathrm{AE}}$ 가 이루는 각의 크기는  $\frac{\pi}{3}$ 

$$\overrightarrow{DQ} \cdot \overrightarrow{AE} = 2\sqrt{3} \times 2 \times \cos \frac{\pi}{3} = 2\sqrt{3}$$

두 벡터  $\overrightarrow{DQ}$ ,  $\overrightarrow{ER}$ 의 방향이 같을 때,

 $\overrightarrow{DQ} \cdot \overrightarrow{ER}$  의 값이 최대이므로

$$\overrightarrow{DQ} \cdot \overrightarrow{ER} \le 2\sqrt{3} \times 2 = 4\sqrt{3}$$

∋에 의하여

$$\overrightarrow{DQ} \cdot \overrightarrow{AR} = \overrightarrow{DQ} \cdot \overrightarrow{AE} + \overrightarrow{DQ} \cdot \overrightarrow{ER}$$

$$\leq 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$$

따라서  $M=6\sqrt{3}$  이므로  $M^2=108$