Devoir surveillé n°12

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 Posons A = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $(a, b, c, d) \in \mathbb{R}^4$. Alors

$$\chi_{A} = \begin{vmatrix} X - a & -b \\ -c & X - d \end{vmatrix} = (X - a)(X - d) - bc = X^{2} - (a + d)X + ad - bc = X^{2} - tr(A)X + (ad - bc)$$

Comme $\chi_A(A) = 0$ d'après le théorème de Cayley-Hamilton,

$$A^2 - tr(A)A + det(A)I_2 = 0$$

2 2.a $\mathbb{A} = \text{vect}(I_2, A)$ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. De plus, on a clairement, $I_2 \in \mathbb{A}$ et pour $(a, b, c, d) \in \mathbb{R}^4$,

$$(aI_2 + bA)(cI_2 + dA) = acI_2 + (bc + ad)A + bdA^2$$

D'après la question précédente, $A^2 \in \text{vect}(I_2, A) = \mathbb{A}$ donc $(aI_2 + bA)(cI_2 + dA) \in \mathbb{A}$. Ainsi \mathbb{A} est également stable par multiplication : c'est une sous-algèbre de $\mathcal{M}_2(\mathbb{R})$.

- **2.b** Si A est une matrice scalaire, $A \in \text{vect}(I_2)$ donc $A = \text{vect}(I_2)$ et dim A = 1. Si A n'est pas une matrice scalaire, alors (I_2, A) est libre. C'est donc une base de $A = \text{vect}(I_2, A)$ et dim A = 2.
- 3 Supposons que (tr A)² < 4 det(A). Alors le discriminant de χ_A est strictement négatif. Comme χ_A est à coefficients réels, χ_A admet deux racines complexes non réelles conjuguées λ et $\overline{\lambda}$. En particulier, χ_A est scindé à racines simples sur $\mathbb C$.

Ainsi A est semblable dans
$$\mathcal{M}_2(\mathbb{C})$$
 à $\begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix}$. Alors pour $(a,b) \in \mathbb{R}^2$, $a\mathrm{I}_2 + b\mathrm{A}$ est semblable à $\begin{pmatrix} a+b\lambda & 0 \\ 0 & a+b\overline{\lambda} \end{pmatrix}$.

On cherche donc $(a,b) \in \mathbb{R}^2$ tel que $\begin{cases} a + \lambda b = i \\ a + \overline{\lambda}b = -i \end{cases}$. Il suffit de prendre $\begin{cases} a = -\frac{\operatorname{Re}\lambda}{\operatorname{Im}\lambda} \\ b = \frac{1}{\operatorname{Im}\lambda} \end{cases}$. Ceci est possible puisque λ n'est

pas réel de sorte que $\operatorname{Im} \lambda \neq 0$. En posant $B = aI_2 + bA \in \mathbb{A}$ avec ces valeurs de a et b (qui sont bien réelles), B est alors semblable à $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ puis B^2 est semblable à $-I_2$ et enfin $B^2 = -I_2$.

Inversement, supposons qu'il existe $B \in A$ telle que $B^2 = -I_2$. Comme $B \in A$, il existe $(a,b) \in \mathbb{R}^2$ tel que $B = aI_2 + bA$. Soit λ une valeur propre de A. Alors $a + b\lambda$ est une valeur propre de B. Or $X^2 + 1$ annule B donc les seules valeurs propres possibles de B sont $\pm i$. Ainsi $a + b\lambda = \pm i$. Comme a et b sont réels, λ ne l'est pas. Ainsi A n'admet pas de valeur propre réelle. χ_A n'admet donc que des racines complexes non réelles : son discriminant $(\operatorname{tr} A)^2 - 4 \operatorname{det} A$ est donc strictement négatif.

4 Soit $(a, b) \in \mathbb{R}^2$ tel que $aI_2 + bB = 0$. En multipliant par B, on obtient $aB + bB^2 = 0$ ou encore $aB - bI_2 = 0$. Ainsi

$$a(aI_2 + bB) - b(aB - bI_2) = 0$$

et donc

$$(a^2 + b^2)I_2 = 0$$

et enfin $a^2 + b^2 = 0$. Comme a et b sont réels a = b = 0 de sorte que (I_2, B) est une famille libre de A. Comme dim $A = rg(I_2, A) \le 2$, c'est une base de A.

1

Considérons l'unique application linéaire $f \in \mathcal{L}_{\mathbb{R}}(\mathbb{A}, \mathbb{C})$ telle que $f(I_2) = 1$ et f(B) = i. Comme f envoie une base de \mathbb{A} sur une base du \mathbb{R} -espace vectoriel \mathbb{C} , f est bijective. Montrons que f est également un morphisme d'algèbres. Soit $(M, N) \in \mathbb{A}^2$. Il existe $(a, b, c, d) \in \mathbb{R}^4$ tel que $M = aI_2 + bB$ et $N = cI_2 + dD$. Par linéarité de f,

$$f(M) = f(aI_2 + bB) = af(I_2) + bf(B) = a + ib$$

$$f(N) = f(cI_2 + dB) = cf(I_2) + df(B) = c + id$$

$$f(MN) = f(acI_2 + (ad + bc)B + bdB^2) = f((ac - bd)I_2 + (ad + bc)B)$$

$$= (ac - db)f(I_2) + (ad + bc)f(B) = ac - bd + i(ad + bc)$$

Ainsi

$$f(M)f(N) = (a+ib)(c+id) = ac - bd + i(ad + bc) = f(MN)$$

f est bien un morphisme d'algèbres : \mathbb{A} et \mathbb{C} sont isomorphes.

5 Comme $(\operatorname{tr} A)^2 = 4 \det A$, χ_A admet une unique racine et donc A admet pour unique valeur propre $\lambda = \frac{\operatorname{tr} A}{2}$. A est trigonalisable et donc semblable à $\begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ avec $\mu \neq 0$ sinon A serait scalaire. Soit $M \in \mathbb{A}$. Il existe donc $(a,b) \in \mathbb{R}^2$ tel

que $M = aI_2 + bA$. Alors M est semblable à $\begin{pmatrix} a + b\lambda & b\mu \\ 0 & a + b\lambda \end{pmatrix}$ et $M^2 = 0$ si et seulement si $a + b\lambda = 0$. L'ensemble

des matrices $M \in \mathbb{A}$ vérifiant $M^2 = 0$ est donc la droite $\text{vect}(A - \lambda I_2) = \text{vect}\left(A - \frac{\text{tr }A}{2}I_2\right)$.

Notamment $N = A - \lambda I_2$ vérifie $N^2 = 0$ et $N \neq 0$ car A n'est pas scalaire. L'anneau A n'est donc pas intègre : ce ne peut être un corps.

- 6 Comme A et B sont semblables, il existe P ∈ $GL_2(\mathbb{R})$ telle que B = $P^{-1}AP$. Soit alors $f: M \in \mathbb{A} \mapsto P^{-1}MP$. f est clairement linéaire et à valeurs dans \mathbb{B} . On vérifie aisément qu'en posant $g: M \in \mathbb{B} \mapsto PMP^{-1}$, g est linéaire à valeurs dans \mathbb{B} , $g \circ f = Id_{\mathbb{A}}$ et $f \circ g = Id_{\mathbb{B}}$. Ainsi f est bijective. Enfin, on vérifie aisément que $f(I_2) = I_2$ et que pour $(M, N) \in \mathbb{A}^2$, f(MN) = f(M)f(N) donc f est un isomorphisme d'algèbres : \mathbb{A} et \mathbb{B} sont des algèbres isomorphes.
- 7 Le discriminant de χ_A est strictement positif : χ_A est scindé à racines simples. Par conséquent, A est diagonalisable et admet deux valeurs propres distinctes λ et μ . A est donc semblable à $D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$. D'après la question précédente, A est isomorphe à vect (I_2, D) , qui est clairement inclus dans l'algèbre $\mathcal{D}_2(\mathbb{R})$ des matrices diagonales de $\mathcal{M}_2(\mathbb{R})$. Or D n'est pas scalaire puisque $\lambda \neq \mu$. Ainsi dim vect $(I_2, D) = 2 = \dim \mathcal{D}_2(\mathbb{R})$, puis vect $(I_2, D) = \mathcal{D}_2(\mathbb{R})$: A est isomorphe à $\mathcal{D}_2(\mathbb{R})$.

Comme \mathbb{A} est isomorphe en tant qu'anneau à $\mathcal{D}_2(\mathbb{R})$, il suffit de vérifier que $\mathcal{D}_2(\mathbb{R})$ n'est pas un corps en constatant par exemple que $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{D}_2(\mathbb{R})$ n'est pas inversible. \mathbb{A} n'est donc pas un corps.

- 8 Facile.
- 9 D'après le cours, l'application $\Phi: \begin{cases} \mathcal{L}(\mathbb{D}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ u & \longmapsto & \mathrm{mat}_{\mathcal{B}}(u) \end{cases}$ est un isomorphisme d'algèbres (donc injectif). On vérifie alors que l'application $\Xi: \mathbb{D}\mathcal{L}(\mathbb{D})a\varphi_a$ est un morphisme injectif d'algèbres. Par composition, $\Phi = \Psi \circ \Xi$ est également un morphisme injectif d'algèbres.

On vérifie sans difficulté que $\Psi(\mathbb{D})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

Comme Ψ est injectif, Ψ induit un isomorphisme d'algèbres de \mathbb{D} sur $\Psi(\mathbb{D})$ donc \mathbb{D} est isomorphe à une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

10 On a clairement $\phi_z(1) = a + ib$ et $\phi_z(i) = -b + ia$ donc

$$\Psi(z) = \operatorname{mat}_{\mathcal{B}}(\phi_z) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

- 11 11.a Comme \mathbb{A} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$, $I_n \in \mathbb{A}$ puis $A \lambda I_n \in \mathbb{A}$. Comme λ est valeur propre de A, $A \lambda I_n$ n'est pas inversible. Comme A n'est pas scalaire, $A \lambda I_n$ n'est pas nulle. Ainsi \mathbb{A} possède un élément non nul et non inversible : \mathbb{A} n'est pas un corps.
 - **11.b** Une matrice diagonalisable ou trigonalisable possède une valeur propre réelle. D'après la question précédente, si A contient une telle matrice, ce n'est pas un corps.

11.c Soit A une matrice non nulle de \mathbb{A} . L'application Φ_A est clairement un endomorphisme de \mathbb{A} . De plus, l'intégrité de \mathbb{A} montre que le noyau de Φ_A est nul. Enfin, \mathbb{A} est de dimension finie. On peut alors affirmer que Φ_A est un automorphisme de \mathbb{A} . Il est notamment surjectif : en particulier, il existe $B \in \mathbb{A}$ tel que $\Phi_A(B) = I_n$ i.e. $AB = I_n$. On en déduit que A est inversible. Ainsi \mathbb{A} est un corps.

- 12 Par exemple, $\det(A^2) = \det(-I_n)$ et donc $(-1)^n = \det(A)^2 \ge 0$ donc n est pair.
- 13 Par bilinéarité du produit matriciel, il suffit de remarquer que les produits deux à deux des éléments de $\{I_n, A, B, AB\}$ restent dans \mathbb{H} .

$$\begin{split} & I_n^2 = I_n \in \mathbb{H} & I_n A = A \in \mathbb{H} & I_n B = B \in \mathbb{H} & I_n A B = A B \in \mathbb{H} \\ & A I_n = A \in \mathbb{H} & A^2 = -I_n \in \mathbb{H} & A B \in \mathbb{H} & A A B = A^2 B = -B \in \mathbb{H} \\ & B I_n = B \in \mathbb{H} & B A = -A B \in \mathbb{H} & B^2 = -I_n \in \mathbb{H} & B A B = -A B^2 = A \in \mathbb{H} \\ & A B I_n = A B \in \mathbb{H} & A B A = -A^2 B = B \in \mathbb{H} & A B^2 = -A \in \mathbb{H} & (A B)^2 = -A B^2 A = A^2 = -I_n \in \mathbb{H} \end{split}$$

14 Les calculs de la question précédente montre que :

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = (t^2 + x^2 + y^2 + z^2)I_n$$

- 15 15.a Soit $(t, x, y, z) \in \mathbb{R}^4$ tel que $tI_n + xA + yB + zAB = 0$. D'après la question précédente, $t^2 + x^2 + y^2 + z^2 = 0$. On en déduit que t = x = y = z = 0 (somme de termes positifs). Ainsi (I_n, A, B, AB) est libre. Cette famille est donc une base de \mathbb{H} et dim $\mathbb{H} = 4$.
 - **15.b** Soit $M \in \mathbb{H}$ non nulle. Comme (I_n, A, B, AB) est une base de \mathbb{H} , il existe $(t, x, y, z) \in \mathbb{R}^4$ non nul tel que $M = tI_n + xA + yB + zAB$. Alors $t^2 + x^2 + y^2 + z^2 \neq 0$ et la question précédente montre que M est inversible d'inverse $\frac{1}{t^2 + x^2 + y^2 + z^2}(tI_n xA yB zAB)$. \mathbb{H} est donc bien un corps.
- **16 16.a** On vérifie immédiatement que $J^2 = I_2$. Des calculs par blocs montrent alors que A et B vérifient la condition (\star) .
 - 16.b A et B sont clairement antisymétriques. De plus,

$$C^{\mathsf{T}} = (AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}} = (-B)(-A) = BA = -AB = -C$$

donc C est également antisymétrique. Soit $M \in \mathbb{H}$. Il existe $(t, x, y, z) \in \mathbb{R}^4$ tel que $M = tI_4 + xA + yB + zC$. Alors $M^T = tI_n - xA - yB - zC \in \mathbb{H}$. De plus, $MM^T = (t^2 + x^2 + y^2 + z^2)I_4$. Si M n'est pas nulle, $t^2 + x^2 + y^2 + z^2 \neq 0$ et donc

$$M^{-1} = \frac{1}{t^2 + x^2 + v^2 + z^2} M^{T}$$

De plus, on peut préciser que

$$\det(\mathbf{M})^2 = \det(\mathbf{M}\mathbf{M}^\top) = (t^2 + x^2 + y^2 + z^2)^4$$

Ainsi

$$t^2 + x^2 + y^2 + z^2 = \sqrt{|\det M|}$$

de sorte que

$$M^{-1} = \frac{1}{\sqrt{|\det M|}} M^{\top}$$

- 17 On a déjà vu que A, B et C étaient antisymétriques, ce sont donc des quaternions purs. De plus, si on se donne $M = tI_4 + xA + yB + zC$, $M^T = -M \iff t = 0$. Ainsi $\mathbb{L} = \text{vect}(A, B, C)$. La famille (A, B, C) est libre en tant que sous famille de la famille libre (I_4, A, B, C) : c'est donc une base de \mathbb{L} . \mathbb{L} n'est pas une sous-algèbre de \mathbb{H} puisqu'elle ne contient pas I_4 .
- **18** Soit $(M, N) \in \mathbb{L}^2$. Il existe donc $(x, y, z, x', y', z') \in \mathbb{R}^6$ tel que M = xA + yB + zC et N = x'A + y'B + z'C. Les calculs effectués à la question **13** montre que

$$MN + NM = -2(xx' + yy' + zz')I_4$$

Comme la base (A, B, C) est orthonormé par hypothèse

$$(M \mid N) = xx' + yy' + zz'$$

Ainsi

$$\frac{1}{2}(MN + NM) = -(M \mid N)I_4$$

19 Supposons que M soit un quaternion pur i.e. $M \in \mathbb{L}$. D'après la question précédente avec N = M, $M^2 = -\|M\|^2 I_4$ i.e. $M = \lambda I_4$ avec $\lambda = -\|M\|^2 \le 0$.

Réciproquement, soit $M \in \mathbb{H}$ tel que que $M^2 = \lambda I_4$ avec $\lambda \leq 0$. On sait qu'il existe $(t, x, y, z) \in \mathbb{R}^4$ tel que $M = tI_4 + xA + yB + zC$. Les calculs effectués à la question 13 montre que

$$M^2 = (t^2 - x^2 - y^2 - z^2)I_4 + 2txA + 2tyB + 2tzC$$

Comme (I_4, A, B, C) est libre,

$$t^2 - x^2 - y^2 - z^2 = \lambda$$
 et $tx = ty = tz = 0$

Si $t \neq 0$, alors x = y = z0 et donc $\lambda = t^2 > 0$, ce qui est contradictoire. Ainsi t = 0 puis $M = xA + yB + zC \in \mathbb{L}$.

20 Soit M ∈ L. Comme φ est un morphisme d'algèbre. Alors φ(M)² = M². D'après la question précédente, M² = λI₄ avec λ ≤ 0. Donc φ(M)² = -λI₄ donc φ(M) ∈ L toujours d'après la question précédente. Ainsi L est stable par φ. D'après la question 18,

$$M^2 = -\|M\|^2 I_4$$
 et $\phi(M)^2 = -\|\phi(M)\|^2 I_4$

Comme $M^2 = \phi(M)^2$, $\|\phi(M)\| = \|M\|$. On en déduit que ϕ induit un automorphisme orthogonal de \mathbb{L} .

- **21 21.a** Supposons M et N colinéaires. Comme M et N ont même norme, M = N ou M = -N. Si M = N, alors $M = P^{-1}NP$ avec $P = I_4 \in \mathbb{H}$. Supposons maintenant M = -N. Soit P non nulle dans l'orthogonal de vect(M) dans L. D'après la question **18**, MP + PM = 0. Comme \mathbb{H} est un corps, P est inversible et donc $P^{-1}MP = -M = N$.
 - **21.b** Supposons que M et N aient même norme. D'après la question **18**, $M^2 = -\|M\|^2 I_4$ et $N^2 = -\|N\|^2 I_4 = -\|M\|^2 I_4$. Ainsi

$$M(MN) - (MN)N = -\|M\|^2N + \|M\|^2M = \|M\|^2(M - N)$$

Ceci s'écrit également MP = PN avec P = MN $- \|M\|^2 I_4 \in \mathbb{H}$. Supposons que P = 0. Alors MP = $- \|M\|^2 N - \|M\|^2 M = 0$. Comme M et N ne sont pas colinéaires, M \neq 0 puis $\|M\| \neq 0$ ce qui donne M + N = 0. Ceci est absurde car M et N ne sont pas colinéaires. Ainsi P \neq 0.

Comme \mathbb{H} est un corps, P est inversible et l'égalité MP = PN donne $N = P^{-1}MP$.

22 On vérifie que ϕ_P est à valeurs dans \mathbb{H} , ϕ_P est linéaire, $\phi_P(I_4) = I_4$ et pour tout $(M,N) \in \mathbb{H}^2$, $\phi_P(MN) = \phi_P(M)\phi_P(N)$. Ainsi ϕ_P est un endomorphisme de l'algèbre \mathbb{H} .

De plus, on vérifie aisément que $\phi_P \circ \phi_{P^{-1}} = \phi_{P^{-1}} \circ \phi_P = Id_{\mathbb{H}}$ donc ϕ_P est un automorphisme de l'algèbre \mathbb{H} .

23 ϕ est entièrement déterminé par $\phi(A)$ et $\phi(B)$. En effet, (I_4, A, B, AB) est une base de \mathbb{H} et on sait que $\phi(I_4) = I_4$ et $\phi(AB) = \phi(A)\phi(B)$.

Il est donc suffisant de trouver une matrice P non nulle de H telle que

$$\begin{cases} P^{-1}AP = \phi(A) \\ P^{-1}BP = \phi(B) \end{cases}$$

ce qui équivaut à

$$\begin{cases} AP = P\phi(A) \\ BP = P\phi(B) \end{cases}$$

23.a On sait que A et B sont orthogonaux donc $\phi(B)$ est orthogonal à $\phi(A) = A$ car la restriction de ϕ à $\mathbb L$ conserve le produit scalaire et donc l'orthogonalité. Ainsi $\phi(B) \in \text{vect}(A)^{\perp} = \text{vect}(B,C)$. Cette même restriction conserve la norme donc $\|\phi(B)\| = \|B\| = 1$. Il existe donc $\theta \in \mathbb R$ tel que $\phi(B) = \cos(\theta)B + \sin(\theta)C$. Posons $P = \alpha I_4 + \beta A$ comme indiqué dans l'énoncé. On a alors clairement $AP = PA = P\phi(A)$. De plus la condition

$$BP = P\phi(B) = P(\cos(\theta)B + \sin(\theta)C)$$

équivaut à

$$\alpha B + \beta BA = \alpha \cos(\theta)B + \beta \cos(\theta)AB + \alpha \sin(\theta)C + \beta \sin(\theta)AC$$

ou encore

$$\alpha B - \beta C = \alpha \cos(\theta)B + \beta \cos(\theta)C + \alpha \sin(\theta)C - \beta \sin(\theta)B$$

ou enfin, comme (B, C) est libre

$$\begin{cases} \alpha = \alpha \cos(\theta) - \beta \sin(\theta) \\ -\beta = \beta \cos(\theta) + \alpha \sin(\theta) \end{cases}$$

Ceci équivaut à

$$\left\{\alpha\sin^2\frac{\theta}{2} = -\beta\sin\frac{\theta}{2}\cos\frac{\theta}{2}\alpha\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right. = -\beta\cos^2\frac{\theta}{2}$$

On peut par exemple choisir $(\alpha, \beta) = \left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\right)$. Alors $(\alpha, \beta) \neq (0, 0)$ et donc $P \neq 0$ car (B, C) est libre. Ce qui précède montre donc que $\phi = \phi_P$.

23.b Comme A et $\phi(A)$ sont de même norme, il existe $Q \in \mathbb{H}$ non nul tel que $\phi(A) = Q^{-1}AQ$ d'après la question **21**. Posons $\psi = \phi \circ \phi_{Q^{-1}} = \phi \circ \phi_Q^{-1}$ de sorte que $\psi(A) = A$. D'après la question précédente, il existe $R \in \mathbb{H}$ non nul tel que $\psi = \phi_R$. Alors $\phi = \phi_R \circ \phi_Q = \phi_{QR}$.