publish, distribute, si SOFTWARE IS PRO COPYRIGHT HOLD This Ju	ght (c) 2021 Gabriel Borrageiro Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE OVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR DERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Lipyter notebook contains a tutorial that demonstrates how a recurrent reinforcement learning agent can target a financial risk position directly. The agent is aware of the various sources of profit and loss, including risk holding and execution cost. We will feed in some synthetic
Let's st	tors and a synthetic target, training the model offline initially, then online as well. Finally, we will review the test set information ratio, which is a risk-adjusted return. You need to have Python 3 installed and the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the polation of the polar packages in the following packages pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the polar packages in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the polar packages in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the polar packages in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the polar packages in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolation in the following packages: pandas, numpy, matplotlib, seaborn, joblib and tqdm. Interpolati
impor impor impor impor from	ort pandas as pd ort numpy as np ort matplotlib.pyplot as plt ort seaborn as sns ort joblib import Parallel, delayed ort tqdm
sns.s eps = prec pd.op	options.display.float_format = ('{:.%df}' % prec).format
pd.se pd.se pd.se pd.se	set_printoptions(precision=prec) set_option('display.precision', prec) set_option('display.max_rows', 5000) set_option('display.max_columns', 5000) set_option('display.width', 10000) set_option('display.width', 10000) set_option('max_colwidth', 100)
In [2]: def	et's generate predictors from a specified correlation matrix. Our target is a random linear combination of the predictors plus a drift term. We'll also generate an execution cost vector. generate_data(n=1000, p=10, drift=0.1, cost=1e-2):
	Gram-Schmidt orthogonalisation of a random basis Args: n: number of observations p: number of predictors drift: a drift term for the target/response
	cost: the execution cost of trading the target as a price taker Returns: data: a dictionary containing the training and test data """ C = np.array([[]])
	<pre>for j in range(100): A = np.random.randint(-10, 1000, (p, p)) / 1e3 _, Q = np.linalg.eigh(A) d = np.sort(np.random.randn(p,) ** 2)[::-1] D = np.diag(d) C = np.corrcoef(A.T @ D @ A)</pre>
1	<pre>if np.all(np.linalg.eigvals(C) > 0): break # generate draws from a multivariate-normal with specified correlations rng = np.random.default_rng() _X_train = rng.multivariate_normal(np.zeros(p,), C, (n,))</pre> <pre>b = np.random.vniferm(disperse)</pre>
-	<pre>b = np.random.uniform(size=(p,)) b /= b.sum() _y_train = (_X_train * b).sum(axis=1) + np.random.uniform(high=drift, size=(n,)) _cost_train = np.random.uniform(size=(n,)) * cost _X_test = rng.multivariate_normal(np.zeros(p,), C, (n,)) _y_test = (_X_test * b).sum(axis=1) + np.random.uniform(high=drift, size=(n,)) _cost_test = np.random.uniform(size=(n,)) * cost</pre>
-	cost_test = first and only in (312e=(n, y)
	definit(self, gamma=1e-5, nu=0.9, eta=1e-3, tau=0.99, min_epochs=10,
	Args: gamma: quadratic utility function risk appetite. nu: Nesterov momentum gradient decay eta: gradient ascent learning rate. tau: utility function exponential decay factor. min_epochs: minimum number of gradient ascent training epochs.
	max_epochs: maximum number of gradient ascent training epochs. tol: stopping criteria for gradient ascent (weight norm). kappa: gradient ascent learning rate annealing weight. verbose: logging verbosity plot_me: show plots
	self.gamma = gamma self.nu = nu self.eta = eta self.tau = tau self.min_epochs = min_epochs
	<pre>self.max_epochs = max_epochs self.tol = tol self.kappa = kappa self.verbose = verbose self.plot_me = plot_me self.w = np.array([]) # the position function weight vector that we must learn</pre>
	self.f = 0. # current position self.mu = 0. # expected net reward self.sigma2 = 1. # variance of net reward self.u = self.mu - 0.5 * self.sigma2 # utility function self.ir = self.mu * np.sqrt(252 / (self.sigma2 + eps)) # information ratio
	<pre>@staticmethod def add_bias(X): n = len(X) if np.ndim(X) == 2 and n > 1: bias = np.ones(n,) X = np.column_stack([bias, X])</pre>
	<pre>else: X = np.append(1, X) return X @staticmethod def dtanh(x):</pre>
	Args: x: Returns: the derivative of the tanh() with respect to x
	return 1 - np.tanh(x) ** 2 def fit(self, X, y, cost): Offline fitting procedure for the direct reinforcement learner.
	Args: X: predictors. y: target returns. cost: target cost.
	<pre>Returns: None """ X = self.add_bias(X) n, p = X.shape p += 1 nonline = nonlin</pre>
	<pre>self.w = np.zeros(p,) epoch_str_len = len(str(self.max_epochs)) u, w = [], [] f_prev = 0 for epoch in range(self.max_epochs): x = np.append(X[0, :], f_prev)</pre>
	<pre>w_prev = self.w.copy() df_dw, df_prev_dw_prev, v = np.zeros(p,), np.zeros(p,) for i in range(n): # update utility function variables x_prev = x.copy() f_prev = self.f x = np.append(X[i, :], f_prev)</pre>
	<pre>x = np.append(X[i, :], f_prev) self.f = np.tanh(self.w @ x) r = f_prev * y[i] - cost[i] * abs(f_prev - self.f) self.mu = self.tau * self.mu + (1 - self.tau) * r self.sigma2 = self.tau * self.sigma2 + (1 - self.tau) * (r - self.mu) ** 2 self.u = self.mu - 0.5 * self.gamma * self.sigma2 self.ir = self.mu / (self.sigma2 + eps) ** 0.5</pre>
	<pre># compute the gradient of the utility function w.r.t. model params du_dr = (1 - self.eta) * (1 - self.gamma * (r - self.mu)) dr_df = -cost[i] * np.sign(self.f - f_prev) df_prev2_dw_prev2 = df_prev_dw_prev df_prev2_dw_prev = df_dw</pre>
	<pre>df_df_prev = self.w[-1] * self.dtanh(self.w @ x) df_dw = x * self.dtanh(self.w @ x) + df_df_prev * df_prev_dw_prev dr_dw = dr_df * df_dw dr_df_prev = y[i] + cost[i] * np.sign(self.f - f_prev) df_prev_df_prev2 = w_prev[-1] * self.dtanh(self.w @ x_prev) dr_dw_prev = (dr_df_prev * df_prev_df_pr</pre>
	<pre>(df_prev_dw_prev + df_prev_df_prev2 * df_prev2_dw_prev2)) grad = du_dr * (dr_dw + dr_dw_prev) # weight update using Nesterov momentum (and learning rate annealing) w_prev = self.w.copy() v_prev = v eta = self.eta * self.kappa ** epoch</pre>
	<pre>v = self.nu * v - eta * grad self.w += self.nu * v_prev - (1 + self.nu) * v if self.verbose > 0: my_str = '\roo*d/%d utility: %.1e mean: %.3f var: %.3f ir: %.3f' my_data = (epoch_str_len, epoch, self.max_epochs, self.u, self.mu,</pre>
	<pre>self.sigma2, self.ir) sys.stderr.write(my_str % my_data) sys.stderr.flush() u.append(self.u) w.append(self.w.copy()) dw = np.linalg.norm(w_prev - self.w)</pre>
	<pre>if epoch > self.min_epochs and dw / np.linalg.norm(self.w) < self.tol: break if self.plot_me is True: fig, (ax0, ax1) = plt.subplots(nrows=2, ncols=1, figsize=(8, 6), sharex='all') ax0.plot(u, label='utility') ax0.plot(u, label='utility')</pre>
	<pre>ax1.plot(w, label=['w%d' % j for j in range(p)]) for ax in [ax0, ax1]: ax.legend(loc='best') ax.set_xlabel('training epoch') ax0.set_title('direct recurrent RL trading agent training') fig.tight_layout()</pre>
	<pre>def partial_fit_predict(self, X, y, cost): """ Online fitting and prediction procedures for the direct reinforcement learner. Args: X: a matrix of predictors</pre>
	y: the target returns vector cost: execution cost vector Returns: df: a dataframe containing the agent's positions and rewards. gb: a profit and loss performance summary.
	<pre>X = self.add_bias(X) n, p = X.shape p += 1 position, reward = np.zeros(n,), np.zeros(n,) f_prev = self.f</pre>
	<pre>x = np.append(X[0, :], f_prev) w_prev = self.w.copy() df_dw, df_prev_dw_prev, v = np.zeros(p,), np.zeros(p,) weights = [] for i in range(n): # update utility function variables</pre>
	<pre>x_prev = x.copy() f_prev = self.f x = np.append(X[i, :], f_prev) self.f = np.tanh(self.w @ x) r = f_prev * y[i] - cost[i] * abs(f_prev - self.f) reward[i] = r</pre>
	<pre>position[i] = f_prev self.mu = self.tau * self.mu + (1 - self.tau) * r self.sigma2 = self.tau * self.sigma2 + (1 - self.tau) * (r - self.mu) ** 2 self.u = self.mu - 0.5 * self.gamma * self.sigma2 self.ir = self.mu / (self.sigma2 + eps) ** 0.5</pre>
	# compute the gradient of the utility function w.r.t. model params du_dr = (1 - self.eta) * (1 - self.gamma * (r - self.mu)) dr_df = -cost[i] * np.sign(self.f - f_prev) df_prev2_dw_prev2 = df_prev_dw_prev df_prev_dw_prev = df_dw df_df_prev = self.w[-1] * self.dtanh(self.w @ x) df_df_prev = self.dtanh(self.w @ x)
	<pre>df_dw = x * self.dtanh(self.w @ x) + df_df_prev * df_prev_dw_prev dr_dw = dr_df * df_dw dr_df_prev = y[i] + cost[i] * np.sign(self.f - f_prev) df_prev_df_prev2 = w_prev[-1] * self.dtanh(self.w @ x_prev) dr_dw_prev = (dr_df_prev *</pre>
	<pre># weight update using Nesterov momentum (and learning rate annealing) w_prev = self.w.copy() v_prev = v v = self.nu * v - self.eta * grad self.w += self.nu * v_prev - (1 + self.nu) * v</pre>
	<pre>weights.append(self.w.copy()) df = pd.DataFrame({'position': position, 'reward': reward}) gb = df.describe() gb.loc['sum', 'reward'] = reward.sum() gb.loc['ir', 'reward'] = gb.loc['mean', 'reward'] / gb.loc['std', 'reward'] if self.verbose > 0:</pre>
	<pre>print('\ndirect recurrent RL trading test results:\n%s' % gb) if self.plot_me is True: fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, ncols=1, figsize=(8, 6),</pre>
	ax2.plot(reward.cumsum(), label='cumulative agent return', color='tab:red') for ax in [ax0, ax1, ax2]: ax.legend(loc='best') ax0.set_title('direct recurrent RL trading agent test') fig.tight_layout()
deducte	return df, gb st's instantiate a DirectReinforcementLearner object and fit it offline initially. We will then continue to train it online during the test set and collect the resulting profit and loss. Just like with real trading, there's no guarantee that the model will achieve a profit after transaction costs are ted. However, because we've added a positive tiny drift in the training and test data, it should be the case that the model learns to target a long position on average. We should also see that on average, our optimisation procedure will show an increasing utility function with each gepoch.
agen agen p_ =	<pre>a = generate_data() at = DirectReinforcementLearner() at.fit(data['X_train'], data['y_train'], data['cost_train']) at.data['X_train'].shape[1] + 2 at.dat</pre>
prindf_, w_ = prindering	<pre>pt('\nfinal training weights:\n%s' % wT) gb_ = agent.partial_fit_predict(data['X_test'], data['cost_test']) pd.DataFrame(agent.w, index=['w%d' % j for j in range(p_)]) pt('\nfinal test weights:\n%s' % wT) show()</pre>
final 0 1.8	250 utility: 9.2e-02 mean: 0.092 var: 0.703 ir: 0.109 L training weights: w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 33679 -0.01846 0.06757 -0.15158 -0.09628 0.16593 -0.23228 0.16548 0.16785 0.04027 -0.04400 1.08242 ct recurrent RL trading test results:
count mean std min 25%	position reward 1000.00000 1000.00000 0.99182 0.06363 0.00911 0.80722 0.87224 -2.13657 0.99026 -0.48450
50% 75% max sum ir	0.99429
	L test weights: w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 33657 -0.01215 0.06042 -0.16549 -0.10006 0.18062 -0.23969 0.16797 0.18123 0.04236 -0.03970 1.08222 direct recurrent RL trading agent training
0.08 0.07 0.06	
0.05	training epoch - w0 - w1 - w2
1.0 0.5 0.0	— w3 — w5 — w6 — w7 — w7
60	0 10 20 30 40 — w10 training epoch — w11 direct recurrent RL trading agent test — cumulative target return
40 20 0	
1.00 0.75 0.50 0.25	position
0.00 60 40	— cumulative agent return
	0 200 400 600 800 1000 erform a small scale Monte Carlo simulation where we run the previous experiment 250 times and look at the distribution of profits and losses achieved by our agent. We should see on average that it learns a long position as the target's returns are biased toward a marginal positive
-	<pre>par_wrapper(): plt.switch_backend('agg') _data = generate_data() _agent = DirectReinforcementLearner(max_epochs=50, verbose=0, plot_me=False)</pre>
n_tr	_agent.fit(_data['X_train'], _data['y_train'], _data['cost_train']) _df, _gb = _agent.partial_fit_predict(_data['X_test'], _data['y_test'], _data['cost_test']) return _gb rials = 250
_rewards	<pre>alt = Parallel(n_jobs=-1)(delayed(par_wrapper)()</pre>
_pos: prin _rewa	<pre>sition = pd.concat(_position, axis=1).T.reset_index(drop=True) sition.rename({'mean': 'average position'}, axis=1, inplace=True) sit('\nMonte Carlo simulation positions:\n%s' % _position.describe()['average position']) structure = pd.concat(_reward, axis=1).T.reset_index(drop=True) structure = pd.concat(_reward, axis=1).T.reset_index(drop=True) structure = pd.concat(_reward, axis=1).T.reset_index(drop=True) structure = pd.concat(_reward, axis=1).T.reset_index(drop=True)</pre>
gb_ : prin g = : g.ax	<pre>axis=1, inplace=True) = _reward.describe()[['average return', 'risk', 'total return', 'ir']] ut('\nMonte Carlo simulation returns:\n%s' % gb_) sns.jointplot(data=_reward, x='risk', y='average return', kind='reg') s_joint.figure.tight_layout()</pre>
100% Monte count mean	show() 250/250 [01:05<00:00, 3.84it/s] Carlo simulation positions: 250.00000 0.55826
std min 25% 50% 75% max	0.41318 -0.46984 0.19954 0.63303 0.98770 0.99936
Name: Monte count mean	average position, dtype: float64 Carlo simulation returns: average return
std min 25% 50% 75% max	0.03282
	1125
0.	.075 .050
o.	.000