Deep Learning and Convolutional Neural Network (42028)

Inception, GoogleNet and ResNet

100	100	100	0	0	0
100	100	100	0	0	0
100	100	100	0	0	0
100	100	100	0	0	0
100	100	100	0	0	0
100	100	100	0	0	0

300	300	300	0	0	0
300	300	300	0	0	0
300	300	300	0	0	0
300	300	300	0	0	0
300	300	300	0	0	0
300	300	300	0	0	0

6 X 6 X 1 dimension image

6 X 6 X 1 dimension volume

So, $(6 \times 6 \times 64) \rightarrow (6 \times 6 \times 32)$... reduced!

Inception - Motivation

- Large variation in object size
- How to choose the right filter size?

- Large filter preferred for large objects
- Small filters for small objects

Inception - Motivation

Designing CNN requires:

- Deciding filter size and number
- Number and type of layers etc.

Inception suggests:

- Use filters with different size together!
- Use different types of layers (CONV, POOL etc.) together

Result → Complicated Architecture! & better performance

Inception - Motivation

Computation cost

Computation Cost:

28 X 28 X 32 X 5 X 5 X 192 \approx 120M multiplications!

Quite expensive!

Reduce Computation cost using 1X1 CONV

Computation Cost:

1X1: 28 X 28 X 16 X 192 \approx 2.4M multiplications!

5X5: 28 X 28 X 32 X 5 X 5 X 16 \approx 10M multiplications!

Total : 12.4M multiplications! ← Reduced by 10 times!

Bottleneck Layer

Inception Module V1

Inception Network

GoogleNet(2014): 9 Inception modules stacked together

Convolution
Pooling
Softmax
Other

Inception Network

Total Loss/cost = Real_Loss + 0.3 X Aux_Loss1 + 0.3 X Aux_Loss1

Inception V3 Modules

Authors suggested 3 different modules
-Factorizing Convolutions:
Reducing the number of parameters

1 layer of 5×5 filter, #parameters = 5×5=25

2 layers of 3×3 filters, #parameters = 3×3+3×3=18

Number of parameters is reduced by 28%

Inception V3 Modules

Inception V3 Modules

Inception V3 Architecture

Image Source and reference: https://www.jeremyjordan.me/convnet-architectures/
For More details: https://cloud.google.com/tpu/docs/inception-v3-advanced

- Deep Residual networks (ResNet) → Skip connections
- Enabled the development of the much deeper networks (100s of layers!)
- ResNet is composed of Residual Blocks were introduced!
- Degradation problem: Adding more layers eventually have negative effect on the final performance.

What wrong with this curves? Overfitting?

- 56 layer model is not better than the 20 layers!
- What happens when we keep add more layers to a plain CNN to make it deeper?

In principle deeper model should perform better than shallow CNNs

ResNet 34 residual block

ResNet 50 residual block

Summary

