Knowledge Graph Aware Recommender System

ZENG YUAN Dec. 24th, 2020

Recommender System

• RS intend to address the information explosion by finding a small set of items for users to meet their personalized interests.

- Two categories
 - Rating prediction explicit feedback
 - Click-through rate prediction implicit feedback

Collaborative Filtering

• Suppose similar users have similar preferences

Similarity with user 4

0.7

0.1

? = 0.7*2 + 0.1*3 + 0.2*2 = 2.1

0.2

Side Information

- A KG usually consists of triples (head, relation, tail)
- Items in recommender systems are also nodes in KGs

1. DKN: Deep Knowledge-Aware Network for News Recommendation

[Hongwei Wang et al, WWW 2018]

2. Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems

[Hongwei Wang et al, KDD 2019]

Task

DKN is a content-based model for click-through rate(CTR) prediction, which takes one piece of candidate news and one user's click history as input, and outputs the probability of the user clicking the news.

Knowledge Distillation

Context Embedding

Context Embedding

$$\bar{\mathbf{e}} = \frac{1}{|context(e)|} \sum_{e_i \in context(e)} \mathbf{e}_i,$$

$$context(e) = \{e_i \mid (e, r, e_i) \in G \text{ or } (e_i, r, e) \in G\},\$$

Knowledge-aware CNN

 $w_{1:n} = [Donald\ Trump\ praises\ Las\ Vegas\ medical\ team]$

 $\mathbf{w}_{1:n} = [\mathbf{w}_1 \ \mathbf{w}_2 \ ... \ \mathbf{w}_n] \in \mathbb{R}^{d \times n}$ denote the word embedding matrix of the title

Knowledge-aware CNN

KCNN

Max-over-time pooling

CNN layer

d × n transformed context embeddings

 $d \times n$ transformed entity embeddings

 $d \times n$ word embeddings

$$g(\mathbf{e}) = \mathbf{M}\mathbf{e}$$

Linear or non-linear

$$g(\mathbf{e}) = \tanh(\mathbf{M}\mathbf{e} + \mathbf{b}),$$

d × n transformed
context embeddings

 $d \times n$ transformed entity embeddings

 $d \times n$ word embeddings

$$w_1 \ w_2 \ w_3 \ w_4 \ w_5 \ w_6 \ w_7$$

$$g(\overline{\mathbf{e}}_{1:n}) = [g(\overline{\mathbf{e}}_1) \ g(\overline{\mathbf{e}}_2) \ \dots \ g(\overline{\mathbf{e}}_n)]$$

$$g(\mathbf{e}_{1:n}) = [g(\mathbf{e}_1) \ g(\mathbf{e}_2) \ ... \ g(\mathbf{e}_n)]$$

$$\mathbf{w}_{1:n} = [\mathbf{w}_1 \ \mathbf{w}_2 \ ... \ \mathbf{w}_n]$$

$$W = \left[[w_1 g(\mathbf{e}_1) g(\bar{e}_1)] [w_2 g(e_2) g(\bar{e}_2)] \dots [e_n g(e_n) g(\bar{e}_n)] \right] \in \mathbb{R}^{d \times n \times 3}$$

Kim CNN

 $w_{1:n} = [Donald\ Trump\ praises\ Las\ Vegas\ medical\ team]$

Sentence representation

Max-over-time pooling

$$c_i^h = f(\mathbf{h} * \mathbf{W}_{i:i+l-1} + b),$$

Feature maps

$$\tilde{c}^h = \max\{c_1^h, c_2^h, ..., c_{n-l+1}^h\}.$$

Convolution

d × n word embedding matrix

$$\mathbf{e}(t) = [\tilde{c}^{h_1} \; \tilde{c}^{h_2} \; ... \; \tilde{c}^{h_m}],$$

Knowledge-aware CNN

KCNN

Max-over-time pooling

CNN layer

d × n transformed context embeddings

 $d \times n$ transformed entity embeddings

 $d \times n$ word embeddings

Case Study

	No.	Date	News title	Entities	Label	Category
	1	12/25/2016	Elon Musk teases huge upgrades for Tesla's supercharger network	Elon Musk; Tesla Inc.	1	Cars
	2	03/25/2017	Elon Musk offers Tesla Model 3 sneak peek	Elon Musk; Tesla Model 3	1	Cars
	3	12/14/2016	Google fumbles while Tesla sprints toward a driverless future	Google Inc.; Tesla Inc.	1	Cars
training	4	12/15/2016	Trump pledges aid to Silicon Valley during tech meeting	Donald Trump; Silicon Valley	1	Politics
aini	5	03/26/2017	Donald Trump is a big reason why the GOP kept the Montana House seat	Donald Trump; GOP; Montana	1	Politics
tra	6	05/03/2017	North Korea threat: Kim could use nuclear weapons as "blackmail"	North Korea; Kim Jong-un	1	Politics
	7	12/22/2016	Microsoft sells out of unlocked Lumia 950 and Lumia 950 XL in the US	Microsoft; Lumia; United States	1	Other
	8	12/08/2017	6.5 magnitude earthquake recorded off the coast of California	earthquake; California	1	Other
			•••••			
0	1	07/08/2017	Tesla makes its first Model 3	Tesla Inc; Tesla Model 3	1	Cars
test	2	08/13/2017	General Motors is ramping up its self-driving car: Ford should be nervous	General Motors; Ford Inc.	1	Cars
te	3	06/21/2017	Jeh Johnson testifies on Russian interference in 2016 election	Jeh Johnson; Russian	1	Politics
	4	07/16/2017	"Game of Thrones" season 7 premiere: how you can watch	Game of Thrones	0	Other

(a) without knowledge graph

(b) with knowledge graph

Task

Given user-item interaction matrix Y, knowledge graph G, our task is to predict whether User u has potential interest in item v with which he/she has not engaged before.

Relation Scoring Function

$$S_u(r) = g(u, r)$$

- u: a user, r:a type of relation.
- g is a differentiable function. E.g.: $S_u(r) = \mathbf{u}^T \mathbf{r}$

Relation Scoring Function

$$S_u(r) = g(u, r)$$

- u: a user, r:a type of relation.
- g is a differentiable function. E.g.: $S_u(r) = \mathbf{u}^T \mathbf{r}$

 $A_{\mathrm{u}}^{ij} = s_{u}(r_{e_{i},e_{j}})$

Knowledge-aware Graph Neural Networks

• Layer-wise forward propagation:

Diagonal degree matrix of Au

Adjacency matrix of the KG for particular user u

Knowledge-aware Graph Neural Networks

• Layer-wise forward propagation:

$$H_{l+1} = \sigma \left(D_u^{-1/2} A_u D_u^{-1/2} H_l W_l \right)$$
, $l = 0, 1, \dots, L-1$

Predicting Engagement Probability

$$\hat{y}_{uv} = f(\boldsymbol{u}, \boldsymbol{v}_u)$$

- **u**: user embedding
- Vu: entity(item) embedding from the last KGNN layer

Traditional GNN

Fixed
$$H_{l+1} = \sigma \left(D_u^{-1/2} A_u D_u^{-1/2} H_l W_l \right), l = 0, 1, \dots, L-1$$

User Engagement Labels

- Positive items: 1
- Negative items: 2
- Non-item entities: unlabeled

Label Smoothness Assumption

$$L = \frac{1}{2} \sum_{i,j \in \varepsilon} A_u[i,j] (\bar{y}_{ui} - \bar{y}_{uj})^2$$

• For a given node, take the weighted average of its neighborhood labels as its own label

Label Smoothness Regularization

weights: $R(\mathbf{A}_u)$ (label propagation)

• Predict the label of v by label propagation algorithm

$$\bar{y}_{uv} \longleftrightarrow y_{uv}$$

Cross-entropy loss

$$J(y_{uv}, \overline{y}_{uv})$$

$$R(A) = \sum_{\mathbf{u}} R(A_{\mathbf{u}}) = \sum_{\mathbf{u}} \sum_{\mathbf{v}} J(y_{\mathbf{u}\mathbf{v}}, \bar{y}_{\mathbf{u}\mathbf{v}})$$

 $\mathcal{L} = J(\hat{y}_{uv}, y_{uv}) + \lambda R(\mathbf{A}_u) -$

Experience

Model	MovieLens-20M			Book-Crossing			Last.FM			Dianping-Food						
Model	R@2	R@10	R@50	R@100	R@2	R@10	R@50	R@100	R@2	R@10	R@50	R@100	R@2	R@10	R@50	R@100
SVD	0.036	0.124	0.277	0.401	0.027	0.046	0.077	0.109	0.029	0.098	0.240	0.332	0.039	0.152	0.329	0.451
LibFM	0.039	0.121	0.271	0.388	0.033	0.062	0.092	0.124	0.030	0.103	0.263	0.330	0.043	0.156	0.332	0.448
LibFM + TransE	0.041	0.125	0.280	0.396	0.037	0.064	0.097	0.130	0.032	0.102	0.259	0.326	0.044	0.161	0.343	0.455
PER	0.022	0.077	0.160	0.243	0.022	0.041	0.064	0.070	0.014	0.052	0.116	0.176	0.023	0.102	0.256	0.354
CKE	0.034	0.107	0.244	0.322	0.028	0.051	0.079	0.112	0.023	0.070	0.180	0.296	0.034	0.138	0.305	0.437
RippleNet	0.045	0.130	0.278	0.447	0.036	0.074	0.107	0.127	0.032	0.101	0.242	0.336	0.040	0.155	0.328	0.440
KGNN-LS	0.043	0.155	0.321	0.458	0.045	0.082	0.117	0.149	0.044	0.122	0.277	0.370	0.047	0.170	0.340	0.487

Table 3: The results of Recall@K in top-K recommendation.

Model	Movie	Book	Music	Restaurant
SVD	0.963	0.672	0.769	0.838
LibFM	0.959	0.691	0.778	0.837
LibFM + TransE	0.966	0.698	0.777	0.839
PER	0.832	0.617	0.633	0.746
CKE	0.924	0.677	0.744	0.802
RippleNet	0.960	0.727	0.770	0.833
KGNN-LS	0.979	0.744	0.803	0.850

Table 4: The results of AUC in CTR prediction.

Experience

r	20%	40%	60%	80%	100%
SVD	0.882	0.913	0.938	0.955	0.963
LibFM	0.902	0.923	0.938	0.950	0.959
LibFM+TransE	0.914	0.935	0.949	0.960	0.966
PER	0.802	0.814	0.821	0.828	0.832
CKE	0.898	0.910	0.916	0.921	0.924
RippleNet	0.921	0.937	0.947	0.955	0.960
KGNN-LS	0.961	0.970	0.974	0.977	0.979

Table 5: AUC of all methods w.r.t. the ratio of training set r.