## Smart Control Algorithm for 2-DOF Helicopter

Glenn Janiak Kenneth Vonckx Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Saturday, May 4, 2019





- Introduction
- Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- Subsystem Level Functional Requirements
  - Block Diagram
- Simulation
  - LQR Simulation
  - LQG Simulation
- **Implementation** 
  - USB
  - Android
  - Demonstration
- **Future Directions**





#### Introduction

- Helicopter are important for short-distance travel
  - air-sea rescue
  - fire fighting
  - traffic control
  - tourism
- Purpose of control system
  - resistance to turbulence
  - enable use of mobile device
- Which is better?
  - Fundamental (LQR)
  - Noise Filtering (LQG)
  - Machine Learning (ADP)

#### Introduction



Figure 1: General High-Level System Architecture

#### Introduction

- This project will:
  - use a pair of 2-DOF (2-degrees-of-freedom) testing platforms
  - implement control algorithms on embedded system
  - use mobile device for user control
  - encourage research
  - serve as an educational tool

- Introduction
- 2 Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- 3 Subsystem Level Functional Requirements
  - Block Diagram
- 4 Simulation
  - LQR Simulation
  - LQG Simulation
- Implementation
  - USB
  - Android
  - Demonstration
- 6 Future Directions





#### Control Techniques

Various control techniques have been proposed for 2-DOF helicopters such as:

- Sliding mode control [?]
- Fuzzy Logic control [?] [?] [?]
- Data-driven Adaptive Optimal Output-feedback control [?]
- Decentralized discrete-time neural control [?]

These control techniques employ advanced mathematics that are difficult to implement on embedded systems.

- Introduction
- Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- 3 Subsystem Level Functional Requirements
  - Block Diagram
- Simulation
  - LQR Simulation
  - LQG Simulation
- Implementation
  - USB
  - Android
  - Demonstration
- 6 Future Directions



BRADLEY

#### Modeling a 2-DOF Helicopter



Figure 2: Model of a 2-DOF Helicopter



Modeling a 2-DOF Helicopter

- Characterized by fixed base
  - Can change 2 of 3 possible orientations...
    - Pitch  $(\theta)$
    - Yaw  $(\psi)$
    - Not Roll
  - and cannot change position
    - x direction
    - y direction
    - z direction

Modeling a 2-DOF Helicopter

- Motors are attached to the propellers to create thrust due to air resistance
  - Main changes pitch angle
  - Tail changes yaw angle
- Torque due to rotation also creates a force on opposite axes

Modeling a 2-DOF Helicopter

Due to the efficiency of the Quanser Aero, we can create a linearized system model:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \text{ such that}$$
 (1)

$$\begin{bmatrix} \dot{\theta} \\ \dot{\psi} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -K_{sp}/J_p & -D_p/J_p & 0 \\ 0 & 0 & 1 & -D_y/J_y \end{bmatrix} \begin{bmatrix} \theta \\ \psi \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
 
$$+ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ K_{pp}/J_p & K_{py}/J_p \\ K_{yp}/J_y & K_{yy}/J_y \end{bmatrix} \begin{bmatrix} V_p \\ V_y \end{bmatrix}$$

#### Modeling a 2-DOF Helicopter

- $K_{sp}$  being the stiffness of the axes
- $K_{pp}$  pitch motor thrust constant
- $\bullet$   $K_{py}$  thrust constant acting on the pitch angle from the yaw motor
- ullet  $K_{yp}$  thrust constant acting on the yaw angle from the pitch motor
- $\bullet$   $K_{yy}$  yaw motor thrust constant
- $J_p$  moment of inertia about pitch axis
- $J_v$  moment of inertia about yaw axis
- ullet  $D_p$  viscous damping of the pitch axis
- $\bullet$   $D_y$  viscous damping of the yaw axis

- Introduction
- Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- 3 Subsystem Level Functional Requirements
  - Block Diagram
- Simulation
  - LQR Simulation
  - LQG Simulation
- Implementation
  - USB
  - Android
  - Demonstration
- 6 Future Directions



Prior Work

- extensive modeling & simulations
- implementation of two motion control algorithms (LQR & ADP)
- one helicopter

15/35

- Introduction
- Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- 3 Subsystem Level Functional Requirements
  - Block Diagram
- Simulation
  - LQR Simulation
  - LQG Simulation
- Implementation
  - USB
  - Android
  - Demonstration
- 6 Future Directions





# Subsystem Level Functional Requirements

Block Diagram



Figure 4: Communication Model

# Subsystem Level Functional Requirements

Block Diagram



Figure 5: Low Level Smart Control Diagram

- - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- - Block Diagram
- Simulation
  - LQR Simulation
  - LQG Simulation
- - USB
  - Android
  - Demonstration



#### LQR Simulation (P Controller)



Figure 6: LQR Simulation (a) Position and (b) Voltage w/ Step Input

#### LQR Simulation (P Controller)



Figure 7: LQR Simulation Error w/ Constant Signal



#### LQR Simulation (PI Controller)



Figure 8: LQR Simulation (PI Controller) (a) Pitch Position and (b) Yaw Position w/ Step Input

#### LQR Simulation (PI Controller)



Figure 9: LQR Simulation (PI Controller) (a) Pitch Voltage and (b) Yaw Voltage w/ Step Input

- - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- - Block Diagram
- Simulation
  - LQR Simulation
  - LQG Simulation
- - USB
  - Android
  - Demonstration



#### LQG Simulation (PI Controller)



Figure 10: LQG Simulation (PI Controller) (a) Pitch Position and (b) Yaw Position w/ Step Input

#### LQG Simulation (PI Controller)



Figure 11: LQR Simulation (PI Controller) (a) Pitch Voltage and (b) Yaw Voltage w/ Step Input

- Introduction
- Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- 3 Subsystem Level Functional Requirements
  - Block Diagram
- 4 Simulation
  - LQR Simulation
  - LQG Simulation
- Implementation
  - USB
  - Android
  - Demonstration
- 6 Future Directions



## Implementation

ADP and LQR (P Controller) USB



Figure 12: USB Implementation comparison between ADP and LQR (P) for (a) Pitch and (b) Yaw orientations w/ Step Input

- Introduction
- Background Study
  - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- 3 Subsystem Level Functional Requirements
  - Block Diagram
- 4 Simulation
  - LQR Simulation
  - LQG Simulation
- Implementation
  - USB
  - Android
  - Demonstration
- 6 Future Directions





# Implementation

Android

- - Control Techniques
  - Modeling a 2-DOF Helicopter
  - Prior Work
- - Block Diagram
- - LQR Simulation
  - LQG Simulation
- **Implementation** 
  - USB
  - Android
  - Demonstration



## Demonstration





#### **Future Directions**

- Discretization of System
- Digital Compass
- **Enhanced Smart Control**



Figure 13: Enhanced Smart Control

2-DOF Helicopter

Implmentation on 6-DOF Helicopter



# Summary

- Embedded implementation of control algorithms
- Mobile interface
- PI control improves steady-state error
- ADP is best when system parameters are unknown or time-varient
- Add table for RMSE?

# For Further Reading I