Conditional Generative Adversarial Network for Music

Alex Rusnak

What is a GAN?

- Simply: it is a way to learn the characteristics of a dataset, and then generate fake samples that mimic these characteristics.
- Complicated: Stay tuned!

Why should I care?

- Synthetic data is useful in many contexts in Data Science / STEM (and music is cool!)
 - Creating more samples of challenging outliers in a dataset
 - Changing distributions of datasets for ethical or functional reasons
 - Useful anonymous data

Building Blocks

- GANs are an architecture of neural network
 - Utilizing convolutional layers for up / downscaling

Autoencoder

Variational Autoencoder

GAN

Simple generator is basically just the distribution and the decoder of the VAE

Training

- Black dotted line is the real data distribution.
- Green line is the generated distribution.
- Blue dotted line is the discriminator success relative to that part of the distribution.
- Z is the latent space, mapping to x (the generated sample)

Conditional?

- Generator receives prior series along with Z as input
- Discriminator receives either real prior and real series or real prior and fake series
- -Allows sequential (autoregressive generation)

```
R = Real, F = Fake, Z = Latent Noise, n = total sample size

R[0 ... n/2] Z[dimZ] \rightarrow Generator \rightarrow F[n/2 ... n]

R[0 ... n/2] R[n/2 ... n] \rightarrow Discriminator \rightarrow Classification

R[0 ... n/2] F[n/2 ... n] \rightarrow Discriminator \rightarrow Classification

Sequence:

R[0 ... n/2] <- F[n/2 ... n] <- F[n/2 ... n] <- F[n/2 ... n] .... etc
```

Let's dig into some code!

