Development of a Python Package for Matching Observational Data

Master's Thesis Presentation

Jack Potrykus

University of Chicago Department of Statistics

May 4, 2022

Contents

Introduction

Literature Review

Measuring Distance

matching: a Python Package for Matching Observational Data

Experiments

Caliper vs. Imbalance

Caliper vs. Correlation

Conclusion

Introduction

Introduction

Problem Setting

- Observational studies frequent in econometrics, psychology, and medical research
- This presentation: binary treatment/control variable, z.
- ▶ Goal is to estimate ATE: $\mathbb{E}[y_{i1} y_{i0}]$
- ➤ Solve this problem via *matching* treatment observations to control observations
- We break this down into two orthogonal problems:
 - ► How is distance measured?
 - ► How are matches assigned?
- matching: Python package for matching observational data.

Introduction

Notation

Now, we will introduce some notation, so we can precisely talk about construction of different matching methods.

- $X \in \mathbb{R}^{(n+m)\times p}$ of features; $X_T \in \mathbb{R}^{n\times p}$, $X_C \in \mathbb{R}^{m\times p}$
- ▶ $\mathbf{z} \in \{0, 1\}^{n+m}$ of binary treatment assignments;
- ▶ $d: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}^+$ is a distance measure between feature vectors, e.g. $d(\mathbf{x}_{T_i}, \mathbf{x}_{C_i})$;
- ▶ \mathcal{D}_d : $\mathbb{R}^{n \times p} \times \mathbb{R}^{m \times p} \to \mathbb{R}^{n \times m}$ produces biadjacency matrix;
- Some procedures use a preprocessing function f (usually: dimension reduction or coarsening of the data).

Our framework is similar to that of lacus, King, and Porro (2011):

$$\mathcal{D}_d(f(X)_T, f(X)_C). \tag{1}$$

Literature Review

Definition (balancing score, Rosenbaum and Rubin (1983))

A function $b(X): \mathbb{R}^{(n+m)\times p} \mapsto \mathbb{R}^{n+m}$ is a balancing score iff

$$X \perp \mathbf{z}|b(X). \tag{2}$$

- ▶ Idea: balancing score makes observational studies more like randomized studies
- ▶ If \mathbf{y}_0 , $\mathbf{y}_1 \perp \mathbf{z} | X$, then \mathbf{y}_0 , $\mathbf{y}_1 \perp \mathbf{z} | b(X)$

These methods use L^1 distance by convention:

$$\mathcal{D}_{L^1}(b(X)_T, b(X)_C). \tag{3}$$

The Propensity Score

Definition (propensity score, Rosenbaum and Rubin (1983))

The propensity score is the balancing score $b(X) = \mathbb{E}[\mathbf{z}|X]$.

- Even if not used for matching, a useful diagnostic (Dehejia and Wahba 1999).
- ▶ Implicitly "weights" features by heterogeneity wrt **z**.
- ► Continuous scores: Imai and Dyk (2004).
- Often prune potential matches with a caliper c.

The Prognostic Score

Definition (prognostic score, Hansen (2008))

The *prognostic score* is the function $b(X) = \mathbb{E}_{C}[\mathbf{y}|X]$.

- ▶ Note that the expectation is with respect to control data *C*.
 - Previous attempts to match on outcomes failed, such as Miettinen (1976).
- Implicitly "weights" features by heterogeneity wrt y.
- "conditionality principle" suggests usefulness Hansen (2008).
- ▶ Joint use of propensity and prognostic scores Leacy and Stuart (2014).

(Almost) Exact Matching

Most notable criticism of balance scores comes from King and Nielsen (2019).

- "Lower standard".
- "Paradox of Propensity Score Matching".

What do they suggest instead?

- Coarsened Exact Matching (CEM) (lacus, King, and Porro 2012). No balance checks required!
- Observation weights:

$$w_i = \begin{cases} 1, & i \in \text{treatment group} \\ \frac{m_C}{m_T} \frac{m_T^s}{m_C^s}, & i \in \text{control group} \end{cases}$$
 (4)

► ML extensions (Gupta et al. 2021): DAME (Liu et al. 2019), FLAME (Wang et al. 2021)

L^P norms and Mahalanobis distance

Norm-based measurements are rarely used without some preprocessing function f. Why? Scaling.

However, Mahalanobis is often used as a second step.

- Initial filter: balancing score with a caliper. Then, match on Mahalanobis distance.
- "Iterative" approach performs well in practice (Baltar, Sousa, and Westphal 2014).
- ▶ MatchIt has limited support (Ho et al. 2011).

Bipartite Matching Algorithms

Define a matching \mathcal{M} as a set of tuples (i,j) indicating a matching between observations T_i and C_j . "Optimal" matching via the Hungarian algorithm (Munkres 1957).

$$\min_{\mathcal{M}} \sum_{(i,j)\in\mathcal{M}} d\left(\mathbf{x}_{T_i}, \mathbf{x}_{C_j}\right), \text{ s.t. } \forall (i,j), (k,l) \in \mathcal{M}, i = k \iff j = l.$$
(5)

- Extendable to 1 : k matching via b-matching.
- ▶ Slow: $O((n+m)^3)$; approximation: *b*-SUITOR (Khan et al. 2016).

Greedy matching: sort edges by distance, pop matches off the top.

- ▶ No optimality assured.
- Problems when matching 1:k (Rosenbaum 1989).

matching: a Python Package for Matching Observational Data

matching Design Goals

- The main data structure used is a bipartite graph.
- It supports iterative distance measures of arbitrary length/complexity.
- ► It supports filtering by individual matches (edge), observation (node), and match-group/strata (subgraphs)
- ► Includes a preprocessing module for coarsening data and a balance assessment module.

matching Drawing Graphs

Example graphs after conducting 1:3 optimal matching.

Overview

▶ Hyperparameters n, m, p, θ_0 , θ_1 , and ρ .

$$\mu_0 \sim \mathcal{N}(\theta_0, 0.25), \, \mu_1 \sim \mathcal{N}(\theta_1, 0.25)$$
 (6)

$$\{\mathbf{x}_{\mathcal{C}}\}_{j=1}^{m} \sim \mathcal{N}(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}), \{\mathbf{x}_{\mathcal{T}}\}_{i=1}^{n} \sim \mathcal{N}(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}) \tag{7}$$

where
$$\Sigma_{ab} = \begin{cases} 1 & \text{if } a = b \\ \rho & \text{otherwise.} \end{cases}$$
 (8)

- Balance metrics: mean ASMD¹, maximum ASMD, proportion of treatment observations matched.
 - ▶ In practice: use more robust metrics (Basu, Polsky, and Manning 2008; Zhu, Savage, and Ghosh 2018).
- ▶ Vary calipers $c \in \{0.05, 0.10, 0.15, \dots, 0.50\}$.

¹Absolute Standardized Mean Difference

Caliper vs. Imbalance

This will consider the effects of increased heterogeneity between $\,T\,$ and $\,C\,$.

- m = 750
- n = 250
- p = 5
- $\rho = 0$
- $\theta_0 = 0$

We vary $\theta_1 \in \{0, 0.1, 0.2, \dots, 1\}$.

Caliper vs. Imbalance: Mean Absolute Standardized Mean Difference

Caliper vs. Imbalance: Maximum Absolute Standardized Mean Difference

Caliper vs. Imbalance: Proportion of Treatment Observations Matched

Caliper vs. Correlation

This will consider the effects of increased correlation between the features of X

- m = 750
- n = 250
- p = 5
- $ightharpoonup heta_0 = 0$
- $ightharpoonup heta_1 = 1$

We vary $\rho \in \{0, 0.1, 0.2, \dots, 0.8\}$.

Caliper vs. Correlation: Mean Absolute Standardized Mean Difference

Caliper vs. Correlation: Maximum Absolute Standardized Mean Difference

Calinar

Caliper vs. Correlation: Proportion of Treatment Observations Matched

0.0	0.33	0.34	0.37	0.39	0.41	0.43	0.46	0.48	0.50	0.53
0.1	0.34	0.36	0.38	0.40	0.43	0.45	0.47	0.50	0.52	0.54
0.2	0.41	0.43	0.45	0.47	0.49	0.52	0.54		0.59	0.62
0.3	0.45	0.47	0.50	0.52	0.54		0.59	0.62	0.64	0.67
Rho 0.4	0.44	0.46	0.48	0.51	0.53		0.58	0.60	0.63	0.65
0.5	0.39	0.41	0.43	0.45	0.48	0.50	0.52		0.58	0.60
9.0	0.42	0.45	0.47	0.49	0.51	0.54		0.58	0.61	0.63
0.7	0.36	0.38	0.40	0.42	0.44	0.47	0.49	0.51	0.54	0.56
8.0	0.25	0.27	0.29	0.31	0.32	0.34	0.37	0.39	0.41	0.43
	0.05	0.1	0.15	0.2	0.25 Cali	0.3	0.35	0.4	0.45	0.5

Conclusion

Conclusion

- Common theme of numerical studies: data-dependence.
- Emphasizes the importance of
 - quality of balance metrics;
 - inspectability of matching.
- matching offers extreme flexibility in design of matching process.
 - ▶ The current state of the graph is always inspectable.
 - Can easily tune matches.

matching Example Code

```
from matplotlib import pyplot as plt
1
    from matching.distance import Exact, L1Norm
    from matching.graph import MatchingGraph
3
    from matching.preprocessing import propensity_score
4
5
    # Take `caliper_width` as given
6
7
    # `X` has columns "score" and "is_nice", `z` is treatment assignments
8
    mg = MatchingGraph(X, z)
9
10
    # NOTE: there is also a keyword argument "exclude"
    mg.set_edges(distance=L1Norm(max_distance=caliper_width), include=["score"])
11
12
    mg.filter_edges(distance=Exact(), include=["is_nice"])
13
14
    # Conduct optimal matching
    mg.match(n_match=3, min_match=3, method="optimal")
15
16
    # Get the matched data as a `pandas.DataFrame`
17
    match_df = mg.match_data.frame
18
19
    # Draw the graph of matches
20
    mg.draw()
21
    plt.show()
22
```