A Book of Abstract Algebra (2nd Edition)

Chapter 16,	Problem 2EI
-------------	-------------

Bookmark

Show all steps: ON

Problem

Let H and K be normal subgroups of a group G, with $H \subseteq k$ Define ϕ : $G/H \to G/K$ by $\phi(Ha) = Ka$. Prove part:

 ϕ is a homomorphism.

Step-by-step solution

Step 1 of 3

Suppose that G is any group and let H, K are normal subgroups of G with $H \subseteq K$.

Consider a mapping $\phi: G/H \to G/K$ defined by

$$\phi(Ha) = Ka$$
, for all $a \in G$.

Objective is to prove that function ϕ is homomorphism.

If G and H are two groups, a homomorphism from G to H is a function $f: G \to H$ such that for any two elements a, b in G,

$$f(ab) = f(a)f(b)$$

Comment

Step 2 of 3

Assume that $Ha, Hb \in G/H$, for some $a, b \in G$. Then use the definition of mapping in the following manner:

$$\phi(Ha \cdot Hb) = \phi(Hab)$$

$$= Kab$$

$$= (Ka) \cdot (Kb)$$

$$= \phi(Ha) \cdot \phi(Hb).$$

Since the condition $\phi(Ha \cdot Hb) = \phi(Ha) \cdot \phi(Hb)$ holds, therefore ϕ is homomorphism map