

Fundamentos de Bases de Datos

Facultad de Ciencias UNAM

M.I. Gerardo Avilés Rosas gar@ciencias.unam.mx

EJEMPLOS DE NORMALIZACIÓN DE BASES DE DATOS

TERCERA FORMA NORMAL

1. Considere la siguiente relación R (A, B, C, D), con las siguientes dependencias funcionales:

$$F = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$$

Normalice bajo la 3NF

- ☐ Lo primero que debemos hacer es encontrar el conjunto mínimo equivalente:
 - ✓ No hay lados izquierdos en común, se comienza por determinar atributos superfluos.
 - ✓ Verificamos el lado izquierdo y vemos si C es superfluo:

$$AC \rightarrow D \implies A \rightarrow D$$

$$A+ = \{ABCD\}$$
 :: C es atributo superfluo y queda:

$$F = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\} \implies Unimos lados izquierdos en común$$

$$F = \{A \rightarrow BD, B \rightarrow C\}$$

✓ Verificamos nuevamente atributos superfluos, ahora del lado derecho:

$$\mathsf{A}\to\mathsf{B}\mathsf{D}\ \Longrightarrow\ \mathsf{A}\to\mathsf{D}$$

¿B es superfluo? F' =
$$\{A \rightarrow D, B \rightarrow C\}$$
 $\{A\}$ + = $\{AD\}$ \therefore B no es atributo superfluo Ahora, $A \rightarrow BD \implies A \rightarrow B$

¿D es superfluo?
$$F' = \{A \rightarrow B, B \rightarrow C\}$$
 $\{A\} + = \{ABC\}$.: D no es atributo superfluo Por lo tanto: $F = \{A \rightarrow BD, B \rightarrow C\}$ es un conjunto mínimo

☐ Como segundo paso, creamos una relación que contiene sólo los atributos de cada DF

- ⇒ No hay esquema que sea subconjunto de otro
- ☐ Calculamos la llave: {A}+ = {ABCD}
- □ La normalización queda: R1 (A, B, D) y R2 (B, C}, esto debido a que la relación R1 tiene una llave.

2. Considere la siguiente relación **R (A, B, C, D, E)**, con las siguientes dependencias funcionales:

$$F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow B, D \rightarrow E\}$$

Normalice bajo la 3NF

- ☐ Lo primero que debemos hacer es encontrar el conjunto mínimo equivalente:
 - ✓ En este caso si existen atributo en común del lado izquierdo:

$$F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow BE\}$$

✓ Verificamos atributos superfluos del lado izquierdo:

$$D \rightarrow BE \implies D \rightarrow E$$

¿B es superfluo?
$$F' = \{AB \rightarrow C, C \rightarrow D, D \rightarrow E\} \{D\} + = \{DE\} \therefore B \text{ no es superfluo}$$
 Ahora, $D \rightarrow BE \implies D \rightarrow B$

¿E es superfluo?
$$F' = \{AB \rightarrow C, C \rightarrow D, D \rightarrow B\}$$
 {D}+ = {DB} : E no es superfluo

Por lo tanto: $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow BE\}$ es un conjunto mínimo

✓ Verificamos nuevamente atributos superfluos, pero ahora del lado derecho:

$$AB \rightarrow C \implies B \rightarrow C$$

¿A es superfluo?
$$\{B\}+=\{B\}$$
 : A no es superfluo

Ahora,
$$AB \rightarrow C \implies A \rightarrow C$$

¿B es superfluo?
$$\{A\}$$
+ = $\{A\}$: B no es superfluo

Por lo tanto: $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow BE\}$ es un conjunto mínimo

☐ Como segundo paso, creamos una relación que contiene sólo los atributos de cada DF

- ⇒ No hay esquema que sea subconjunto de otro
- ☐ Verificamos si hay alguna llave candidata, de las DF probamos:

$$\{A\}+=\{\}$$
 no hay DF con A

$$\{B\}+=\{\}$$
 no hay DF con B

$$\{C\}+=\{CD\}$$

$$\{D\}+=\{DBE\}$$

{AB}+ = {ABCDE} se trata de una llave y ya está contenida

☐ Como AB ya está contenida en la relación R1, por lo tanto, la normalización en 3NF es:

Bases de Datos **2** G€®

FORMA NORMAL DE BOYCE-CODD

- 3. Para la relación R(A, B, C, D, E) con F = {AB \rightarrow C, DE \rightarrow C, B \rightarrow D}
 - ☐ ¿Cuáles son las DF no triviales que se pueden derivar de las dependencias dadas?

 Para obtener las DF no triviales vamos a obtener las cerraduras para los atributos:
 - ✓ Para los atributos unitarios tenemos:

$$\{A\}+=\{A\}, \{B\}+=\{BD\}, \{C\}+=\{C\}, \{D\}+=\{D\}, \{E\}+=\{E\}$$

✓ Para los pares de atributos tenemos:

$$\{AB\}$$
+ = $\{ABCD\}$, de donde se deduce: $AB \rightarrow D$
 $\{AC\}$ + = $\{AC\}$
 $\{AD\}$ + = $\{AD\}$
 $\{AE\}$ + = $\{AE\}$
 $\{BC\}$ + = $\{BCD\}$, de donde se deduce: $BC \rightarrow D$
 $\{BE\}$ + = $\{BED\}$, de donde se deduce: $BE \rightarrow D$
 $\{CD\}$ + = $\{CD\}$, $\{CE\}$ + = $\{CE\}$, $\{DE\}$ + = $\{DEC\}$

✓ Para los tríos de atributos tenemos:

```
{ABC}+ = {ABCD}, de donde se deduce: ABC \rightarrow D {ABD}+ = {ABDC}, de donde se deduce: ABD \rightarrow C {ABE}+ = {ABE}, {BCD}+ = {BCD} {BCE}+ = {CDE}
```

✓ Para los cuartetos de atributos tenemos:

```
{ABCD}+ = {ABCD}
{ABCE}+ = {ABCED}, de donde se deduce: ABCE \rightarrow D
{BCDE}+ = {BCDE}
```

✓ Para los quintetos de atributos, tenemos:

Por lo tanto, las DF no triviales que se pueden derivar de las dependencias dadas son:

$$\{AB \rightarrow D, BC \rightarrow D, BE \rightarrow D, ABC \rightarrow D, ABD \rightarrow C, BCE \rightarrow D, ABCE \rightarrow D\}$$

☐ Indica todas las violaciones a la BCNF

La relación no está normalizada de acuerdo a la BCNF porque ninguno de los atributos es llave, de manera que las DF que violan la forma normal de Boyce-Codd son:

$$\{AB \to C, DE \to C, B \to D, AB \to D, BC \to D, BE \to D, ABC \to D, ABD \to C, BCE \to D, ABCE \to D\}$$

La afirmación anterior es fácil de comprobarse, pues al obtener la cerradura de los atributos de las DF no determinan funcionalmente a todos los atributos de la relación:

$$\{AB\}+ = \{ABCD\}, \{DE\}+ = \{DEC\}, \{B\}+ = \{BD\}$$

- □ Normaliza de acuerdo a BCNF.
 - De las cerraduras anteriores, vamos a tomar la cerradura {AB}+ y fraccionamos de la siguiente forma:
 - ✓ R1 (A, B, C, D), donde se cumplen $\{AB \rightarrow C, B \rightarrow D\}$
 - √ R2 (A, E) en este caso no se cumple ninguna de las DF dadas, sin embargo, la relación ya está normalizada porque cualquier relación de dos atributos está en la BCNF, además {AE} es la única llave.
 - En **R1**, B \rightarrow D, viola la BCNF; obtenemos su cerradura {B}+ = {BD}
 - ✓ Fraccionamos nuevamente, ocupando la cerradura de {B}+
 - **R3 (B, D)** se cumple $B \to D$, la cual ya no viola la BCNF, pues B ya es llave y es una DF no trivial.
 - **R4 (A, B, C)** se cumple $AB \rightarrow C$, que tampoco viola la BCNF pues {AB} es llave y es una DF no trivial.
 - ✓ Finalmente el esquema normalizado bajo la BCNF es:

R2 (A, E), R3 (B, D) y R4 (A, B, C)

Bases de Datos **4** G€®

CUARTA FORMA NORMAL

- **4.** Para cada uno de los esquemas, con su respectivo conjunto de dependencias, resuelve los siguientes puntos:
 - Encuentra todas las violaciones a la 4NF.
 - Normaliza de acuerdo a 4NF.
 - a) R(A, B, C, D) con $AB \rightarrow Cy B \rightarrow D$
 - →La llave para esta relación es: ABD
 - → Violaciones a la 4NF: AB → C
 - →Normalizamos:
 - (1) Tomamos la DMV: AB -> C
 - (2) Dividimos:
 - ✓ R1 (A, B, C), donde se cumple AB → C
 - ✓ **R2 (A, B, D)**, donde se cumple $B \rightarrow D$

En **R1** nos encontramos con que la relación ya está normalizada pues sólo se cumple una DMV no trivial, pues ningún lado derecho está contenido en el izquierdo.

En **R2** no existe una DMV que viole la 4NF, sin embargo en esta relación se cumple una DF, pero sabemos que toda DF es una DMV, de manera que $B \to D$ viola a la 4FN, así que volvemos a aplicar el algoritmo para obtener la siguiente división:

(3) Dividimos:

- \checkmark R3 (B, D), donde se cumple B \rightarrow D (B \rightarrow D)
- √ R4 (A, B), donde ya no existe DMV que viole la 4FN, de manera que el esquema es:

- b) R (A, B, C, D, E) con A \Rightarrow B, AB \rightarrow C, A \rightarrow D y AB \rightarrow E
 - → La llave para la relación es: AB
 - → Violaciones a la 4NF: A → B
 - (1) Tomamos la DMV: A → B
 - (2) Dividimos:
 - ✓ R1 (A, B), donde se cumple A → B
 - \checkmark R2 (A, C, D, E), donde se cumplen: A \rightarrow D

En **R1** nos encontramos con que la relación ya está normalizada pues sólo se cumple una DMV no trivial, pues ningún lado derecho está contenido en el izquierdo.

En **R2** no existe una DMV que viole la 4NF, sin embargo en esta relación se cumple una DF, pero sabemos que toda DF es una DMV, de manera que A→D

Bases de Datos 5 G€®

viola a la 4FN, de manera que volvemos a aplicar el algoritmo para obtener la siguiente división:

(3) Dividimos:

- \checkmark R3 (A, D), donde se cumple A \rightarrow D (A \rightarrow D)
- ✓ **R4 (A, C, E)**, ya no hay DMV que viole la 4NF, por lo tanto el esquema queda:

R1 (A, B), R3 (A, D) \vee R4 (A, C, E)

Bases de Datos 6 G€®