Patrick Emami

516 Weil Hall Phone: +1 (904) 962 8293 1949 Stadium Rd Email: pemami@ufl.edu

Gainesville, FL 32603 Home: https://pemami4911.github.io

Research Statement

I am a machine learning researcher working on scene representation learning, reinforcement learning, and AI for social good. My research has spanned topics including object-centric deep generative modeling, low-resource multi-object tracking, and traffic signal control. Mostly, I am curious about developing agents capable of learning challenging behaviors by reasoning about the world at the level of objects, like humans do.

Education

$2016-2021^{\dagger}$	University of Florida, Gainesville, FL	Advisor: Dr. Sanjay Ranka
	Ph.D., Computer Science (Machine Learning)	
	Thesis: Neural algorithms for object-centric scene understanding	
Summer 2019	University College London, London, UK	Marc Deisenroth &
	Machine Learning Summer School (MLSS)	Arthur Gretton
2012–2016	University of Florida, Gainesville, FL	
	B.Sc., Computer Engineering	Cum Laude, GPA: 3.74/4.0

Research Experience

National Renewable Energy Lab (NREL), Research intern. May 2021–August 2021

• Regional Mobility.

Developed deep reinforcement learning algorithms for NEMA-compliant traffic control using a "digital twin" of the Chattanooga, Tennessee road network.

MALT Lab, Graduate Research Assistant. 2016-present

• EfficientMORL. ICML'21 [Github].

We re-interpret iterative assignment of pixels to object-centric slots as bottom-up inference in a hierarchical variational autoencoder. EfficientMORL has three key components: bottom-up inference with transformer-like attention to estimate an initial posterior over slots, a top-down prior to regularize and disentangle the slots, and lightweight iterative refinement to stabilize training. It is the first object-centric generative model to learn symmetric and disentangled representations while being computationally efficient.

• Stochastic object-centric world models. NeurIPS '20 ORLR Workshop Spotlight. [Github]

Proposed a latent state space model based on variational autoencoders for jointly learning object-centric representations and dynamics for stochastic real-world video. Formulated the integration of a stochastic latent dynamics model with segmentation-based object discovery and a novel sampling-based variational objective to fit environment stochasticity. Demonstrated superior object decomposition and stochastic future prediction on a robotic manipulation benchmark compared to prior work.

UF Transportation Institute (UFTI), Graduate Research Assistant. 2017–present.

• Sensible. NSF Grant 1446813, 2017–present. [Open source release forthcoming]

Software engineering lead for Sensible, a distributed Python framework for real-time multi-sensor multi-object tracking at traffic intersections. Supports V2X communication and intersections with multiple roads each equipped with multiple sensors such as Econolite cameras and Smartmicro radars. Achieves GPU-less video tracking with a novel deep convolutional network running on PyTorch. Integrates with a real-time traffic signal optimizer for advanced adaptive signal control.

Publications

Peer-Reviewed Journals

- [1] He, P., & **Emami, P.**, & Ranka, S., & Rangarajan, A. Learning Scene Dynamics From Point Cloud Sequences. IJCV. 2021. *Under review*.
- [2] **Emami, P.**, & Elefteriadou, L., & Ranka, S. Long-range Multi-Object Tracking at Traffic Intersections on Low-Power Devices. IEEE Transactions on Intelligent Transportation Systems. 2021. [UFTI article]
- [3] **Emami, P.**, & Pardalos, P. M., & Elefteriadou, L., & Ranka, S. Machine Learning Methods for Data Association in Multi-Object Tracking. ACM Computing Surveys, 53, 4, Article 69. 2020.
- [4] Pourmehrab, M., Emami, P., Martin-Gasulla, M., Wilson, J., Elefteriadou, L., Ranka, S. Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study. Journal of Transportation Engineering, Part A: Systems 146.9. 2020.

Peer-Reviewed Conferences and Workshops

- [1] **Emami, P.**, He, P., Ranka, S, Rangarajan, A. Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations. International Conference on Machine Learning (ICML'21). 2021. **21.5% acceptance rate**.
- [2] **Emami, P.**, He, P., Rangarajan, A., Ranka, S. A Symmetric and Object-Centric World Model for Stochastic Environments. 34th Conference on Neural Information Processing Systems Workshop on Object Representations for Learning and Reasoning (NeurIPS '20). 2020. **Spotlight**.
- [3] **Emami, P.***, Vargas, L.*, Traynor, P. On the Detection of Disinformation Campaign Activity with Network Analysis. CCSW 2020: The ACM Cloud Computing Security Workshop. 2020. *Equal contribution
- [4] **Emami, P.**, Pourmehrab, M., Martin-Gasulla, M., Ranka, S., Elefteriadou, L. A Comparison of Intelligent Signalized Intersection Controllers Under Mixed Traffic. IEEE Intelligent Transportation Systems Conference, 2018.
- [5] Omidvar, A., Pourmehrab, M., **Emami, P.**, Kiriazes, R., Esposito, J., Letter, C., Elefteriadou, L., Ranka, S., Crane, C. Deployment and Testing of Optimized Autonomous and Connected Vehicle Trajectories at a Closed-Course Signalized Intersection. Transportation Research Board's 97th, 2018.
- [6] **Emami, P.**, & Pourmehrab, M., & Elefteriadou, L., & Ranka, S., & Crane, C. A Demonstration of Fusing DSRC and Radar for Optimizing Intersection Performance. Automated Vehicles Symposium (AVS'17), 2017.
- [7] **Emami, P.**, Elefteriadou, L., Ranka, S. Tracking Vehicles Equipped with Dedicated Short-Range Communication at Traffic Intersections. 7th ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (DIVANet'17), 2017.
- [8] Hamlet, A., **Emami, P.**, Crane, C. The Cognitive Driving Framework: Joint Inference for Collision Prediction and Avoidance in Autonomous Vehicles. In the 15th International Conference on Control, Automation and Systems (ICCAS), pp. 1714-1719. IEEE, 2015.
- [9] Hamlet, A., Emami, P., Crane, C. A Gesture Recognition System for Mobile Robots That Learns Online. In the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'14), pp. 2114-2119. IEEE, 2014.

Preprints

[1] **Emami, P.**, & Ranka, S. Learning Permutations with Sinkhorn Policy Gradient. arXiv:1805.07010 [cs.LG], 2018.

[2] **Emami, P.**, & Panos M. P., & Elefteriadou, L., & Ranka, S. Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking. Under review at ACM Computing Surveys. arXiv:1802.06897 [cs.CV], 2018.

Blog Posts

[1] **Emami, P.** Deep Deterministic Policy Gradients in Tensorflow. http://pemami4911.github.io/blog/2016/08/21/ddpg-rl.html. 2016. > 100K unique views (Google Analytics). [Github]

Professional Activities

2022	International Conference on Learning Representations (ICLR), Reviewer
2021	Computer Vision and Image Understanding (CVIU), Reviewer
2021	International Conference on Computer Vision (ICCV), Reviewer
2021	Neural Information Processing Systems (NeurIPS), Reviewer
2021	International Conference on Machine Learning (ICML), Reviewer
2021	IEEE Intelligent Transportation Systems Conference (ITSC), Reviewer
2021	Transportation Research Record (TRR), Reviewer
2020	NeurIPS Workshop on Interp. Inductive Biases and Phys., Reviewer
2020	Transportation Research Board Annual Meeting (TRBAM), Reviewer
2020	Optimization Letters, Reviewer
2019	UF Informatics Institute Student Data Analysis Seminar, Co-Organizer
2018	UF Informatics Institute Student Data Analysis Seminar, Co-Organizer
2018	International Conference on Machine Learning and Data Science , Reviewer
2018	IEEE Intelligent Transportation Systems Conference , Special Session Chair
2018	IEEE Intelligent Transportation Systems Conference (ITSC), Reviewer
2017	International Conference on Machine Learning and Data Science , Reviewer
2017	UF Informatics Institute Student Data Analysis Seminar, Co-Organizer
2016–2018	UF Machine Learning Reading Group, Organizer

Professional Societies

Alpha Epsilon Lambda Graduate Honor Society, member
ACM, student member
IEEE, student member
IEEE Eta Kappa Knu Honor Society, member

Selected Honors and Awards

Top 10% Reviewer at ICML'21

2020 Student of the Year USDOT STRIDE Center (10 universities) (\$1,000)

2016–present McKnight Doctoral Fellowship (\$65,000)

2016–present CISE Department Graduate Research Fellowship (\$150,000)

2016 President's Honor Roll

2015–2016 Northrop Grumman Engineering Scholarship (\$1,000) 2014–2015 University Scholars Program Research Grant (\$1,750)

2014 IROS'14 Best Entertainment Robots and Systems Paper Finalist

Mentoring

Fall 2019–present	Yury Lebedev (Ph.D.)	Univ. of Florida
Fall 2018–present	Kevin Chow (B.Sc., now Ph.D. at Tsinghua Univ.)	Univ. of Florida
Fall-Summer 2018	Anuran Rouchowdhury (M.Sc)	Univ. of Florida
Summer 2018	Ian Pelakh (B.Sc.)	Univ. of Florida
Fall 2017	Shalaka Naik (M.Sc), Individual Study	Univ. of Florida
Fall 2017	Vivek Gade (M.Sc), Individual Study	Univ. of Florida
Summer 2017	Jabari Wilson (SURF Fellow, now Ph.D. at Univ. of Florida)	Univ. of Alabama

Teaching & Volunteering

Summer 2018	Student Science Training Program, Instructor	
	Designed & taught a 6-week short course on machine learning basics	
2017–2018	Teaching Youth Programming Essentials, Curriculum Lead	
	Responsible for designing and improving the UF TYPE programming curriculum	
2016–2017	Teaching Youth Programming Essentials, Instructor	
	Teach an after school Intro to Programming course at local high schools	
2014–2015	Association of Computer Engineers, Co-Founder and Project Manager	
	Organized and presented at technical and professional development	
	workshops for undergraduate computer engineering students	