Recurrence Relation Solving: Substitution Method

Substitution Method: Substitute the given function repeatedly until the given function is removed.

Problem 1: T(n) = 1 if n=1T(n-1)+n if n>1 T(n) = T(n-1) + n1st time 2nd time =T(n-2)+n-1+n =T(n-3)+n-2+n-1+n 3rdtime K times=n-1 n-k=1 n-1=k =T(n-k)+(n-k+1)+(n-k+2)+....+n-2+n-1+n k times =T(n-(n-1))+(n-(n-1)+1)+(n-(n-1)+2)+....+n-2+n-1+n =T(n-n+1)+(n-n+1+1)+(n-n+1+2)+....+n-2+n-1+n =T(1)+(2)+(3)+....+n-2+n-1+n => sum of n natural numbers =n(n+1)/2 $=(n^2+n)/2$ $=O(n^2)$

Problem 2:

$$T(n) = 1$$
 if $n=1$

T(n-1).n if n>1

$$T(n) = T(n-1).n$$
 1st time
= $T(n-2)(n-1).n$ 2nd time
= $T(n-3)(n-2)(n-1).n$ 3rdtime

K times=n-1

n-k=1

n-1=k

nⁿ>n!

=O(nⁿ)

Problem 3:

$$T(n) = 1 \text{ if } n=0$$

$T(n-2)+n^2 \text{ if } n>0$

$$T(n) = T(n-2)+n^2$$
 1st time
= $T(n-4)+(n-2)^2+n^2$ 2nd time
= $T(n-6)+(n-4)^2+(n-2)^2+n^2$ 3rd time

K times=n-2K

$$=T(n-2k)+(n-2k+2)^2+ (n-2)^2+n^2 k times$$

$$=T(n-2(n/2))+(n-2(n/2)+2)^2+ (n-2)^2+n^2$$

$$=T(n-2(n/2))+(n-2(n/2)+2)^2+ (n-2)^2+n^2$$

$$=T(0)+2^2+4^2+6^2.... (n-2)^2+n^2$$

$$=1+2^2(1^2+2^2+....+(n/2)^2)$$

$$=O(n^3)$$