Class Test No. 05	Thursday 29 th A	August 2019 Duratio	on: 10 Minutes	Closed notes
Name:		Roll No		
Choose only one optio	on which is the r	nost appropriate for	questions 1 - 5.	
l. Transfer function of	a general n th or	der system is its		
(a) unit impulse	response			
(b) unit step resp	ponse			
(c) unit harmoni	ic response			
(d) unit initial v	elocity response			
2. System type is the hi	ghest degree of	s in		
(a) numerator po	olynomial			
(b) denominator	polynomial			
(c) factored repr	resentation of nu	merator		
	resentation of de			
3. In the partial fractio	on expansion of	$1/(s+1)^2$, the coeffici	ent of 1/(s + 1) fac	etor is
(a) 1	1	. , , , , , , , , , , , , , , , , , , ,	0 (
(b) 0				
(c) -1				
(d) 2				
4. Output of a system to	o sinusoidal inp	ut is also sinusoidal w	vith	
1 0	_	nase as that of input		
		t phase from that of in	nput	
` '		e phase as that of inpu		
* *	_	erent phase from that of		
5. If a transfer function	n is multiplied b	y -1, its bode plot will	show	
(a) no change in		•		
(b) 180° change	in phase			
(c) 90° change is	n phase			
(d) 360° change				
~				
Give short (1 - 2 lines)	answer to the	questions 6-10.		
6. Give the definition o	f the transfer fu	nction.		
	on is the ratio of zero initial cond	Laplace transform of itions.	output and the Lap	olace transform of

..... 2 (PTO)

7. What are the zeros of a transfer function?

Zeros of the transfer functions are the roots of the numerator polynomial of the transfer function.

8. Give the partial fraction expansion of the Y(s) for a unit step input for the following transfer function.

$$G(s) = \frac{1}{s+1}$$

$$Y(s) = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$$

9. In what way is the bode plot better in comparison to the analytical expressions for magnitude and phase for higher order transfer functions?

Bode plot is able to show the effects of individual factors of the transfer function which is not possible with analytical expressions

10. Give the low and high frequency slopes of the magnitude part of bode plot of the following transfer function in dB/decade units.

$$G(s) = \frac{s}{(s+1)(s+2)}$$

$$\omega = 0 \rightarrow \text{Slope} = 20 \text{ dB/decade}; \qquad \omega = \infty \rightarrow \text{Slope} = -20 \text{ dB/decade}$$