Homework #1 Nathan Esau Acma 490 301197568

1. Fit an AR(1) model to the data by implementing the least square method presented on page 10 of the lecture notes.

Solution:

The time series data is plotted in Figure 1.

Figure 1: Data for Homework 1

The least squares method is implemented below in R and the parameter estimates are calculated for the provided time series.

```
> fit.ar1 <- function(x) {
+
+ N <- length(x)
+
+ # based on (3.17) and (3.18)
+ phi1 = sum(x[2:N] * x[1:(N-1)]) / sum(x[1:(N-1)]^2)
+ sigma2 = sum((x[2:N] - phi1 * x[1:(N-1)])^2) / (N - 1)
+
+ names(phi1) <- "ar1"
+</pre>
```

```
+ list(coef = phi1, sigma2 = sigma2)
+ }
> y <- tsdata$Series
> x <- tsdata$Series - mean(y)
> model1 <- fit.ar1(x)
This gives \hat{\phi}_1 = 0.83453413 and \hat{\sigma}_a^2 = 0.00037948.
```

2. Fit an AR(1) model to the data using a package.

```
> model2 \leftarrow arima(x, c(1,0,0), include.mean = FALSE, method = 'CSS')
> model3 \leftarrow arima(x, c(1,0,0), include.mean = FALSE, method = 'CSS-ML')
```

- (i) If method CSS is used, we get $\hat{\phi}_1 = 0.83453412$ and $\hat{\sigma}_a^2 = 0.00037948$.
- (ii) If method CSS-ML is used (i.e. the default method), we get $\hat{\phi}_1=0.83576532$ and $\hat{\sigma}_a^2=0.00038004$.
- 3. Compare the fitted models.

Solution:

The fitted models are compared in Table 1.

Model	$\hat{\phi}_1$	$\hat{\sigma}_a^2$	Call
model1	0.83453413	0.00037948	fit.ar1
model2	0.83453412	0.00037948	arima(method = 'CSS')
model3	0.83576532	0.00038004	<pre>arima(method = 'CSS-ML')</pre>

Table 1: Comparison of fitted models