

BIOS 6612 Lecture 8

Multiple Logistic Regression Deviance

Review (Lecture 7)/ Current (Lecture 8)/ Preview (Lecture 9)

- Lecture 7: Logistic Regression VI
 - o Goodness of fit
 - Deviance Chi- Square
 - Compares the model of interest to the "saturated model"
 - Homer-Lemshow statistic (not preferred)
 - o Predictive Power
 - Generalized R², Max-rescaled R² (based on log-likelihood)
 - Somer's D, Gamma, Tau-a, c-index (based on predicted probabilities)
- Lecture 8: Logistic Regression VII
 - o Multiple logistic regression
 - o Grouped data in multiple logistic regression
 - o Deviance
 - Models and submodels
- Lecture 9: Categorical Outcome
 - o Horseshoe crab data

Multiple Logistic Regression

- Assume $\pi_i = Pr[Y_i = 1]$ and $X_i \beta = \beta_0 + \beta_1 X_{1i} + \dots + \beta_p X_{pi}$
 - o Log-odds form:

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = X_i \boldsymbol{\beta}$$

o Odds form:

$$\frac{\pi_i}{1-\pi_i} = exp(X_i \boldsymbol{\beta})$$

 $\circ Pr[Y=1]$

$$\pi_i = Pr[Y_i = 1] = \frac{exp(X_i \beta)}{1 + exp(X_i \beta)}$$

- Interpretation, as before:
 - o A unit increase in X_j multiplies the odds by $exp(\beta_j)$ for j=1,...,p
 - o A unit increase in X_i increases the log-odds by β_i for j=1,...,p

Multiple Logistic Regression: Grouped and Ungrouped Data

- To group individuals in multiple logistic regression, the individuals must have the same values for all the covariates
 - o i.e. dose=2, gender=female
- Each distinct set of covariates is called a covariate pattern
- If there are m distinct covariate patterns, we record for each pattern the number of individuals having that pattern (n_j) and the number of "successes" (s_j) for j=1,...,m
- For ungrouped data, the log-likelihood where $z_i = X_i \beta = \beta_0 + \beta_1 X_{1i} + \dots + \beta_p X_{pi}$

$$l = \sum_{i=1}^{n} \left[Y_i \log \left(\frac{e^{z_i}}{1 + e^{z_i}} \right) + (1 - Y_i) \log \left(1 - \frac{e^{z_i}}{1 + e^{z_i}} \right) \right] = \sum_{i=1}^{n} \left[Y_i \log \left(\frac{e^{z_i}}{1 + e^{z_i}} \right) + (1 - Y_i) \log \left(\frac{1}{1 + e^{z_i}} \right) \right]$$

$$= \sum_{i=1}^{n} \left[Y_i \log \left(e^{z_i} \right) - Y_i \log \left(1 + e^{z_i} \right) + (1 - Y_i) \log \left(1 \right) - (1 - Y_i) \log \left(1 + e^{z_i} \right) \right] = \sum_{i=1}^{n} \left[Y_i z_i - \log \left(1 + e^{z_i} \right) \right]$$

• For grouped data, the log-likelihood=

$$l = \sum_{j=1}^{m} \left[s_j z_j - n_j \log \left(1 + e^{z_j} \right) \right]$$

o The jth covariate pattern is $(X_{1j},...,X_{pj})$ for z_j

Likelihood for Grouped Data

- For m distinct covariate patterns, assuming the success $s_i \sim Binomial(n_i, \pi_i)$
- The likelihood L is a function of each covariate pattern is

$$L(\pi_1, ..., \pi_m) = \prod_{j=1}^m \binom{n_j}{s_j} \pi_j^{s_j} (1 - \pi_j)^{n_j - s_j} \propto \prod_{j=1}^m \pi_j^{s_j} (1 - \pi_j)^{n_j - s_j}$$

• Ignoring the sections no depending on π_j , the log-likelihood is

$$l(\pi_{1},...,\pi_{m}) = \sum_{j=1}^{m} \left[s_{j} \log(\pi_{j}) - (n_{j} - s_{j}) \log(1 - \pi_{j}) \right]$$

- The maximum value of the log-likelihood occurs when $\hat{\pi}_j = \frac{s_j}{n_j}$ • Most software use 0 for the log L if $s_j = n_j$ or 0
- This is the log-likelihood for the saturated model

Deviance

- Compares the model of interest to the "saturated" model
 - 2* [log L(saturated model) log L(model of interest)] ~ χ^2
 - Number of degrees of freedom depends on the difference between the number of parameters
- Intuitively, the better the logistic model of interest
 - The closer log L(saturated model) is to log L(model of interest)
 - o Then, the smaller the deviance should be
- How small is small?
 - o If m (# distinct covariate patterns) is small and the n_i 's are large
 - o Then when the logistic model is true
 - \circ The deviance has approximately a chi-squared distribution with m k 1 degrees of freedom where
 - m: number of covariate patterns
 - k: number of covariates in the model of interest
 - o Thus, if the deviance is less than the upper 95% percentage point of the appropriate chisquare distribution, the logistic model fits well
 - In this sense, the deviance is the analogue of R²

Deviance

- ONLY applies to grouped data
 - When m (# distinct covariate patterns) is small
 - And the n_i (the number of individuals having that pattern) are large
- Other names for deviance: model deviance, residual deviance
- At the other extreme, the most restrictive model is one where all the probabilities π_i are the same
 - o i.e. they don't depend on the covariates
 - o Intercept only model
 - o The deviance for this model is called the null deviance
- Intuitively
 - o If none of the covariates is related to the binary response
 - o Then, the model deviance won't be much greater than the null deviance

Deviance: Graphical Interpretation

- Log L_{null} refers to the log-likelihood for the intercept only model
- Log L_{mod} refers to the log-likelihood for the model of interest
- Log L_{max} refers to the log-likelihood for the saturated model

Example: Budworm Data

- The data come from an experiment on the toxicity to the tobacco budworm Heliothis virescens of doses of the pyrethoid trans-cypermethrin to which the moths were beginning to show resistance
- Batches of 20 moths of each sex were exposed for three days to the pyrethroid and the number in each batch that were dead or knocked down was recorded
 - o Collette, D. (1991) Modelling Binary Data. Chapman and Hall, London. p 75
- Batches of 20 moths subjected to increasing doses of a poison
 - o "event" or "success" = death
- Data is grouped: for each of 6 doses (1.0, 2.0, 4.0, 8.0, 16.0, 32.0 mg) and sex
 - o m=12 covariate patterns, 20 moths in each covariate pattern
- Dataset is in the R330 package in R
- R commands denoted by >
 - > install.packages("R330") #only need to install the package once
 - > library(R330) #load the library
 - > data(budworm.df) #dataset for budworm

BIOS 6612: Lecture 8 p. 10

Example: Budworm Data

- R commands denoted by >
- > budworm.df

```
sex dose s n
1  0  1  1  20
2  0  2  4  20
3  0  4  9  20
4  0  8  13  20
5  0  16  18  20
6  0  32  20  20
7  1  1  0  20
8  1  2  2  20
9  1  4  6  20
10  1  8  10  20
11  1  16  12  20
12  1  32  16  20
```

sex= the sex of the budworm dose= amount of cypermethrin exposed to s= number of budworms affected n= total number of budworms

Example: Budworm Data

- # number of events over total number in each group
- > max.mod.probs<-budworm.df\$s/budworm.df\$n
- # model of interest
- > budworm.glm<-glm(cbind(s, n-s) \sim sex + dose, family=binomial, data = budworm.df)
- # fitted probabilities for model of interest
- > logist.mod.probs<-predict(budworm.glm, type="response")</pre>
- # intercept only model
- > null.mod.probs<-sum(budworm.df\$s)/sum(budworm.df\$n)</pre>
- > cbind(max.mod.probs,logist.mod.probs,null.mod.probs)

max.mod.probs logist.mod.probs null.mod.probs

1	0.05	0.2677414	0.4625	
2	0.20	0.3002398	0.4625	
3	0.45	0.3713931	0.4625	
4	0.65	0.5283639	0.4625	
5	0.90	0.8011063	0.4625	
6	1.00	0.9811556	0.4625	
7	0.00	0.1218892	0.4625	
8	0.10	0.1400705	0.4625	
9	0.30	0.1832034	0.4625	
10	0.50	0.2983912	0.4625	
11	0.60	0.6046013	0.4625	
12	0.80	0.9518445	0.4625	

BIOS 6612: Lecture 8 p. 12

Example: Log-Odds for Model of Interest and Saturated Model

- $> \text{max.logit} = \log((\text{budworm.df}\$s+0.5)/(\text{budworm.df}\$n \text{budworm.df}\$s+0.5))$
- > model.logit = predict(budworm.glm)
- > cbind(max.logit,model.logit)

max.logit model.logit

- 1 -2.5649494 -1.0061121
- 2 -1.2992830 -0.8461564
- 3 -0.1910552 -0.5262451
- 4 0.5877867 0.1135776
- 5 2.0014800 1.3932230
- 6 3.7135721 3.9525137
- 7 -3.7135721 -1.9746604
- 8 -2.0014800 -1.8147047
- 9 -0.8023465 -1.4947934
- 10 0.0000000 -0.8549707
- 11 0.3856625 0.4246747
- 12 1.2992830 2.9839654

• Poor fit: maximal logits are not linear

Calculating the likelihoods

Likelihood is

$$L(\pi_1,\ldots,\pi_M)=\prod_{i=1}^M\left(egin{array}{c} n_i \ r_i \end{array}
ight)\pi_i^{r_i}(1-\pi_i)^{n_i-r_i}$$

$$L_{Max}=2.8947\times 10^{-7}$$
, $2\log L_{Max}=-30.1104$ $L_{Mod}=2.4459\times 10^{-13}$, $2\log L_{Mod}=-58.0783$ $L_{Null}=2.2142\times 10^{-34}$, $2\log L_{Null}=-154.9860$

- \circ Where $r_i=s_i$ is the number of events of success
- o Calculating the log-likelihoods via R
 - o Fit the intercept only model
 - o Fit the saturated model
 - o Fit the model of interest
 - o Deviance by hand or via R

Null Model: Intercept Only

budwormN.glm<-glm(cbind(s, n-s $) \sim 1$, family=binomial, data = budworm.df) summary(budwormN.glm)

Estimate Std. Error z value Pr(>|z|)(Intercept) -0.1503 0.1295 -1.161 0.246

Null deviance: 124.88 on 11 degrees of freedom

Residual deviance: 124.88 on 11 degrees of freedom

AIC: 156.99

- AIC= -2 log L+2*p
- Then
 - \circ 2*log L=(AIC-2*p)/(-1)=(156.99-2)/(-1)=-154.99
 - o Then $\log L = -77.495$
 - Same as previous slide for 2*log L

BIOS 6612: Lecture 8 p. 15

Example: Saturated Model

budwormF.glm<-glm(cbind(s, n-s) \sim sex + as.factor(dose)+sex* as.factor(dose), family=binomial, data = budworm.df)

summary(budwormF.glm)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.944	1.026	-2.870	0.00411 **
sex	-22.807	52998.328	0.000	0.99966
as.factor(dose)2	1.558	1.168	1.334	0.18234
as.factor(dose)4	2.744	1.120	2.450	0.01430 *
as.factor(dose)8	3.563	1.128	3.159	0.00158 **
as.factor(dose)16	5.142	1.268	4.054	5.02e-05 ***
as.factor(dose)32	28.696	52998.283	0.001	0.99957
sex:as.factor(dose)2	21.996	52998.328	0.000	0.99967
sex:as.factor(dose)4	22.161	52998.328	0.000	0.99967
sex:as.factor(dose)8	22.188	52998.328	0.000	0.99967
sex:as.factor(dose)16	21.016	52998.328	0.000	0.99968
sex:as.factor(dose)32	-1.558	74950.923	0.000	0.99998

Null deviance: 1.2488e+02 on 11 degrees of freedom

Residual deviance: 5.2391e-10 on 0 degrees of freedom

AIC: 54.11 then $2*\log L=(AIC-2*p)/(-1)=(54.11-2*12)/(-1)=-30.11$ the $\log L=-15.055$

Null Deviance for Saturated Model

• Compare null model to the saturated model using a LRT

library(lmtest)

lrtest(budwormN.glm,budwormF.glm) #LRT

Likelihood ratio test

```
Model 1: cbind(s, n - s) \sim 1
Model 2: cbind(s, n - s) \sim sex + as.factor(dose) + sex * as.factor(dose)
#Df LogLik Df Chisq Pr(>Chisq)
1 1-77.493
2 12-15.055 11 124.88 < 2.2e-16 ***
> 1-pchisq(124.88,11)
0
```

Note: -2(-77.493--15.055)= 124.88 and DF=12-1=11

BIOS 6612: Lecture 8 p. 17

Model of Interest

> summary(budworm.glm)

```
Residual deviance = -30.1104 - (-58.0783) = 27.9679
Null deviance = -30.1104 - (-154.9860) = 124.8756
```

Coefficients:

Null deviance: 124.876 on 11 degrees of freedom Residual deviance: 27.968 on 9 degrees of freedom

AIC: 64.078

Deviance: Goodness of Fit

- Grouped data
 - \circ n_i's reasonably large (20), m small (12)
- Can interpret residual deviance as a measure of fit
 - > 1-pchisq(27.968,9) [1] 0.0009656815
- Not a good fit!! As suspected from the plot
- log(dose) works better
- $> \log \log g \ln (\cosh (s, n s) \sim s + \log (dose), family = binomial, data = budworm.df)$
- > summary(logdose.glm)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.3724	0.3855	-6.154	7.56e-10 ***
sex	-1.1007	0.3558	-3.093	0.00198 **
log(dose)	1.5353	0.1891	8.119	4.70e-16 ***

Null deviance: 124.8756 on 11 degrees of freedom

Residual deviance: 6.7571 on 9 degrees of freedom

AIC: 42.867

> 1-pchisq(6.7571,9)

[1] 0.662392

p. 19

Deviance: ONLY for group level data

```
sex<-c(rep(0,120),rep(1,120))
dose<-c(rep(1,20),rep(2,20),rep(4,20),rep(8,20),rep(16,20),rep(32,20))
dose<-c(dose,dose)
```

y<-c(rep(1,1),rep(0,20-1),rep(1,4),rep(0,20-4),rep(1,9),rep(0,20-9),rep(1,13),rep(0,20-13),rep(1,18),rep(0,20-18),rep(1,20),rep(0,20),rep(1,2),rep(0,20-2),rep(1,6),rep(0,20-6),rep(1,10),rep(0,20-10),rep(1,12),rep(0,20-12),rep(1,16),rep(0,20-16))

summary(glm(y~sex+dose,family=binomial()))

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.16607	0.26155	-4.458	8.26e-06 ***
sex	-0.96855	0.32954	-2.939	0.00329 **
dose	0.15996	0.02341	6.832	8.39e-12 ***

Null deviance: 331.36 on 239 degrees of freedom

Residual deviance: 234.45 on 237 degrees of freedom

AIC: 240.45

p. 20

LAYOUT #1

PROC LOGISTIC: SAS Example

```
DATA smoke;
INPUT smoke passive cancer n;
DATALINES;
0 1 1 120
0 1 0 80
0 0 1 111
0 0 0 155
1 1 1 161
1 1 0 130
1 0 1 117
1 0 0 124
;
PROC LOGISTIC DESCENDING;
MODEL cancer = passive;
FREQ n;
RUN;
```

LAYOUT #2

```
DATA smoke2;
  INPUT smoke passive cancer_n tot_n;
  DATALINES;
  0 1 120 200
  0 0 111 266
  1 1 161 291
  1 0 117 241
;
  PROC LOGISTIC;
  MODEL cancer_n/tot_n = passive;
  RUN;
```

Smokers (1)

	Cancer		
Passive Smoke	Case	Control	
	(1)	(0)	
Yes (1)	161	130	291
No (0)	117	124	241
	278	254	532

Non-Smokers (0)

	Cancer		
Passive Smoke	Case	Control	
	(1)	(0)	
Yes (1)	120	80	200
No (0)	111	155	266
	231	235	466

LAYOUT #1 The LOGISTIC Procedure

Model Information

Data Set WORK.SMOKE
Response Variable cancer
Number of Response Levels 2
Frequency Variable n
Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 8
Number of Observations Used 8
Sum of Frequencies Read 998
Sum of Frequencies Used 998

PROC LOGISTIC DESCENDING;
MODEL cancer = passive;
FREQ n;
RUN;

Passive	Cancer		
Smoke	Case	Control	
Yes	281	210	491
No	228	279	507
	509	489	998

Response Profile

Ordered Total
Value cancer Frequency
1 1 509
2 0 489

Probability modeled is cancer=1.

Model Fit Statistics

Intercept and Criterion Only Covariates AIC 1385.121 1372.080 SC 1390.027 1381.892 -2 Log L 1383.121 1368.080

AIC: -2LL+2p=1383.121+ 2×1=1385.121

SC: -2LL+p*log(n)= 1383.121+ 1* LN(998)=1390.027

-2LL = -2[509*log(509/998)+489*log(489/998)]=1383.121

SAS counts the intercept for p!!!!!

AIC: -2LL+2p=1368.080 + 2×2

SC: -2LL+p*log(n)=1368.080 + 2LN(998)

-2LL = -2[228*log(228/507)+279*log(279/507) +281*log(281/491)+210*log(210/491)]=1368.080

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	15.0409	1	0.0001
Score	15.0022	1	0.0001
Wald	14.9262	1	0.0001

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	<mark>-0.2019</mark>	0.0893	5.1128	0.0238
passive	1	<mark>0.4931</mark>	0.1276	14.9262	0.0001
$\log\left(\frac{p}{1-p}\right) =$	$+\beta_0 + \beta_p$	_{assive} passive			

$$\log\left(\frac{\hat{p}_{\text{cancer}|\text{passive}=0}}{1-\hat{p}_{\text{cancer}|\text{passive}=0}}\right) = \hat{\beta}_0 \Rightarrow \hat{\beta}_0 = \log\left(\frac{\frac{228}{507}}{1-\frac{228}{507}}\right) = -0.2019$$

$$\log\left(\frac{\hat{p}_{\text{cancer}|\text{passive}=1}}{1-\hat{p}_{\text{cancer}|\text{passive}=1}}\right) = \hat{\beta}_0 + \hat{\beta}_{\text{passive}} \Rightarrow \log\left(\frac{\frac{281}{491}}{1-\frac{281}{491}}\right) = \hat{\beta}_0 + \hat{\beta}_{\text{passive}} \Rightarrow \hat{\beta}_{\text{passive}} \Rightarrow \hat{\beta}_{\text{passive}} = \log\left(\frac{\frac{281}{491}}{1-\frac{281}{491}}\right) - \log\left(\frac{\frac{228}{507}}{1-\frac{228}{507}}\right) = 0.4931$$

BIOS 6612: Lecture 8 p. 23

LAYOUT #2

The LOGISTIC Procedure

Model Information

Data Set	WORK.SMOKE2
Response Variable (Events)	cancer_n
Response Variable (Trials)	tot_n
Model	binary logit
Optimization Technique	Fisher's scoring
Number of Observations Read	4
Number of Observations Used	4
Sum of Frequencies Read	998
Sum of Frequencies Used	998

Ordered	Binary	Total
Value	Outcome	Frequency
1	Event	509
2	Nonevent	489

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	1385.121	1372.080
SC	1390.027	1381.892
-2 Log L	1383.121	1368.080

PROC LOGISTIC;
MODEL cancer_n/tot_n = passive;
RUN;

Results/Output are identical to Layout #1 other than the number of observations read.

Testing Global Null Hypothesis: BETA=0

Test Likelihood Ratio	∫ Chi-Square 15.0409	DF 1	Pr > ChiSq 0.0001	Same as layout #1
Score	15.0022	1	0.0001	
Wald	14.9262	1	0.0001	
Analys	is of Maximum L: Star	ikelihood ndard	Estimates Wald	
Parameter DF	Estimate E	Error (Chi-Square	Pr > ChiSq
Intercept { 1	-0.2019 0	.0893	5.1128	0.0238
passive 1	0.4931 0.	.1276	14.9262	0.0001

PROC GENMOD

• You can also perform logistic regression using the PROC GENMOD.

• Note that the calculation of the Goodness of Fit statistics differ for layout #1 (A or B) and

layout #2.

LAYOUT #1A

D : G 1	Ca		
Passive Smoke	Case	Control	
Yes	161	130	291
No	117	124	241
	278	254	532

Non-Smokers

Smokers:

Dagging Smoka	Ca	ancer	
Passive Smoke	Case	Control	
Yes	120	80	200
No	111	155	266
	231	235	466

Request Likelihood Ratio Tests (Optional)

PROC GENMOD DESCENDING DATA=smoke; MODEL cancer = passive /DIST=BINOMIAL TYPE3; RUN;

Request Binomial Distribution (Required to fit Logistic Model)

LAYOUT #1B

```
DATA smoke;
INPUT smoke passive cancer n;
DATALINES;
0 1 1 120
0 1 0 80
0 0 1 111
0 0 0 155
1 1 1 161
1 1 0 130
1 0 1 117
1 0 0 124
;

PROC GENMOD DESCENDING DATA=smoke;
MODEL cancer = passive /DIST=BINOMIAL TYPE3;
FREQ n;
RUN;
```

LAYOUT #2

You do not use DESCENDING option with layout #2.

```
DATA smoke2;
INPUT smoke passive cancer_n tot_n;
DATALINES;
0 1 120 200
0 0 111 266
1 1 161 291
1 0 117 241
;
PROC GENMOD DATA=smoke2;
MODEL cancer_n/tot_n = passive /DIST=BINOMIAL TYPE3;
RUN;
```

BIOS 6612: Lecture 8
The GENMOD Procedure

Model Information

Data Set	WORK.SMOKE
Distribution	Binomial
Link Function	Logit
Dependent Variable	cancer
Frequency Weight Variable	n

PROC GENMOD DESCENDING DATA=smoke2;
MODEL cancer=passive DIST= B TYPE3;
FREQ n;
RUN;

Number of Observations Read 8
Number of Observations Used 8
Sum of Frequencies Read 998
Sum of Frequencies Used 998
Number of Events 4
Number of Trials 8

Response Profile

Ordered		Total
Value	cancer	Frequency
1	1	509
2	0	489

PROC GENMOD is modeling the probability that cancer='1'

Deviance compared to model with a parameter fit for each individual.

Not distributed as a chi-square.

But is the -2LL

Criteria	For	Assessing	Goodness	0f	Fit
----------	-----	-----------	----------	----	-----

Criterion	DF	Value	// Value/DF
Deviance	996	1368.0800	1.3736
Scaled Deviance	996	1368.0800	1.3736
Pearson Chi-Square	996	998.0000	1.0020
Scaled Pearson X2	996	998.0000	1.0020
Log Likelihood		-684.0400	

GENMOD provides the Log Likelihood (not -2LL)

Analysis Of Parameter Estimates

GENMOD provides the Log Likelihood (not -2LL)

Layout #2

PROC GENMOD DESCENDING DATA=smoke2;
MODEL cancer_n/tot_n =passive /DIST=BINOMIAL TYPE3;
RUN;

The GENMOD Procedure

Model Information

Data Set	W	ORK.SMOKE2	
Distribution		Binomial	
Link Function		Logit	
Response Variable (Eve	ents)	cancer_n	
Response Variable (Tr	ials)	tot_n	
Number of Observations		4	
Number of Observations	SUsed	4	
Number of Events		509	
Number of Trials		998	
Criteria Fo	or Assessi	ng Goodness Of Fi	t /
Onitonion	DE		//a.la /DE
Criterion	DF	Value	Value/DF
Deviance	2	<mark>3.4362</mark>	1.7181
Scaled Deviance	2	3.4362	1.7181
Pearson Chi-Square	2	3.4331	1.7165
Scaled Pearson X2	2	3.4331	1.7165
Log Likelihood		-684.0400	

Differs from Output for Layout #1!

Deviance compared to saturated model with a parameter fit for each group defined by passive×smoke.

<u>IS</u> distributed as a chisquare.

The deviance is only appropriate for group-level data!!!!

BE CAREFUL of the layout of the data when using deviance.

Analysis Of Parameter Estimates

	Standard	Wald 95%	Chi-	
Parameter DF Estimate	Error	Confidence Limits	Square Pr	> ChiSq
Intercept 1 ∫-0.2019	0.0893	-0.3768 -0.0269	5.11	0.0238
passive 1 0.4931	0.1276	0.2430 0.7433	14.93 ⁾	0.0001
Scale 0 1.0000	0.0000	1.0000 1.0000	\	
			_	
NOTE: The scale paramete	er was held f	ixed.	J	Same as layout #1, #2, #1B
LR Statistics For T	vpe 3 Analvs	sis		
	31			
	Chi-			
Source DF	Square Pr	· > ChiSq		
passive 1				