Семинар 4. (12 сентября 2024 г.)

Приведение к каноническому виду уравнений в частных производных второго порядка с постоянными коэффициентами при n>2

1. Полезные сведения из курса линейной алгебры Квадратичная форма с матрицей *A* имеет вид

$$(A\xi, \xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \xi_i \xi_j.$$
 (1)

Невырожденное $(\det T \neq 0)$) линейное преобразование $\xi = T\eta$ (или $\xi_i = \sum_{l=1}^n t_{il}\eta_l$) переводит квадратичную форму (1) в квадратичную форму (2)

$$(\tilde{A}\eta, \eta) = \sum_{l=1}^{n} \sum_{k=1}^{n} \tilde{a}_{kl} \eta_k \eta_l$$
 (2)

$$(A\xi, \xi) = (AT\eta, T\eta) = (T^T AT\eta, \eta)$$

$$(A\xi,\xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \xi_{i} \xi_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \sum_{l=1}^{n} t_{il} \eta_{l} \sum_{k=1}^{n} t_{jk} \eta_{k} =$$

$$= \sum_{l=1}^{n} \sum_{k=1}^{n} (\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} t_{il} t_{jk}) \eta_{k} \eta_{l} = \sum_{l=1}^{n} \sum_{k=1}^{n} \tilde{a}_{kl} \eta_{k} \eta_{l} = (\tilde{A}\eta, \eta),$$

где коэффициенты новой квадратичной формы вычисляются по формуле

$$\tilde{a}_{kl} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} t_{il} t_{jk}.$$
(3)

Пусть

 n_{+} — количество положительных собственных значений матрицы A;

 n_{-} — количество отрицательных собственных значений матрицы A;

 n_0 — количество нулевых собственных значений матрицы A.

Квадратичная форма (2) имеет (нормальный) канонический вид, если

$$\tilde{A} = \begin{pmatrix} B & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & D \end{pmatrix},$$

где B, C и D — диагональные матрицы размера $(n_+ \times n_+), (n_- \times n_-)$ и $(n_0 \times n_0)$ соответственно

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 0 \end{pmatrix},$$

или

$$(\tilde{A}\eta, \eta) = \sum_{i=1}^{n_+} \eta_i^2 - \sum_{j=n_++1}^{n_++n_-} \eta_j^2.$$

Привести квадратичную форму (1) к нормальному каноническому виду можно методом Лагранжа. Выделяя полные квадраты, мы найдем замену переменных $\eta = S\xi$, далее, чтобы получить матрицу перехода T, необходимо выразить все ξ_1, \ldots, ξ_n через η_1, \ldots, η_n . В итоге получим невырожденное линейное преобразование $\xi = T\eta$ (или $\xi_i = \sum_{l=1}^n t_{il}\eta_l$).

2. Определение и классификация УЧП 2 порядка

Уравнение

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{k=1}^{n} a_k u_{x_k} + au = f(x), \tag{4}$$

где $A = (a_{ij})$ — симметрическая матрица размера $(n \times n)$. Пусть

 n_{+} — количество положительных собственных значений матрицы A;

 n_{-} — количество отрицательных собственных значений матрицы A;

 n_0 — количество нулевых собственных значений матрицы A.

Переформулируем классификацию уравнений для случая постоянных коэффициентов:

$$\begin{cases} n_- = 1, \ n_+ = n - 1 \text{ или } n_+ = 1, \ n_- = n - 1; \\ n_+ = n \text{ или } n_- = n; \\ n_0 > 0. \end{cases}$$

В данном случае тип уравнения сохраняется во всей области, поскольку коэффициенты постоянные. В данном случае привести уравнение (4) к каноническому виду — значит с помощью невырожденной линейной замены $y = \varphi(x)$ перейти к уравнению

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{a}_{ij} u_{y_i y_j} + \tilde{F}(y, u, \nabla u) = 0,$$
 (5)

в котором матрица старшей части имеет вид

$$\tilde{A} = \begin{pmatrix} B & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & D \end{pmatrix},$$

где $B, \ C$ и D — диагональные матрицы размера $(n_+ \times n_+), \ (n_- \times n_-)$ и $(n_0 \times n_0)$ соответственно

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

3. Приведение к каноническому виду УЧП 2 порядка с постоянными коэффициентами при n>2

Идея: пока что не знаем, какую замену нам нужно сделать, мы найдем ее после того, как пересчитаем коэффициенты уравнения и приведем к каноническому виду квадратичную форму с той же матрицей A.

Сделаем замену $y=\varphi(x)$ и пересчитаем производные:

$$u_{x_i} = \sum_{l=1}^n u_{y_l} \cdot (y_l)_{x_i};$$

$$u_{x_i x_j} = (u_{x_i})_{x_j} = (\sum_{l=1}^n u_{y_l} \cdot (y_l)_{x_i})_{x_j} = \sum_{k=1}^n \sum_{l=1}^n u_{y_l y_k} \cdot (y_l)_{x_i} \cdot (y_k)_{x_j} + \sum_{l=1}^n u_{y_l} \cdot (y_l)_{x_i x_j}$$

Подставим эти выражения в уравнение (4):

$$\sum_{k=1}^{n} \sum_{l=1}^{n} u_{y_{l}y_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot (y_{l})_{x_{i}} \cdot (y_{k})_{x_{j}} + \sum_{l=1}^{n} u_{y_{l}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot (y_{l})_{x_{i}x_{j}} + \Phi(y, u, \nabla u) = 0.$$

Обозначим

$$\tilde{a}_{kl} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot (y_l)_{x_i} \cdot (y_k)_{x_j}, \tag{6}$$

Здесь $(y_l)_{x_i}, (y_k)_{x_j}$ постоянные в силу того, что матрица A постоянная. Эти коэффициенты пока не известны. Пусть $J=\left(\frac{\partial y_i}{\partial x_j}\right)$ — матрица, состоящая из частных производных $\frac{\partial y_i}{\partial x_j}$.

В итоге получим уравнение в каноническом виде (5)

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \tilde{a}_{kl} u_{y_l y_k} + \tilde{F}(y, u, \nabla u) = 0,$$

где \tilde{a}_{kl} — элементы матрицы

$$\tilde{A} = \begin{pmatrix} B & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & D \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

Как найти такую замену $y=\varphi(x)$, чтобы получить в старшей части диагональную матрицу \tilde{A} ?

Рассмотрим квадратичную форму вида (1) с той же матрицей A, что и у старшей части уравнения (4). Приведем ее к (нормальному) каноническому виду (2) с помощью метода Лагранжа и найдем линейную замену $\xi = T\eta$ с матрицей перехода T, где ξ и η старые и новые переменные квадратичной формы соответственно.

Посмотрим внимательно на выражение для вычисления коэффициентов квадратичной формы (3) и увидим, что это почти то же самое, что и формула для коэффициентов уравнения (6) с матрицей \tilde{A} в старшей части. Этот факт лежит в основе метода приведения к каноническому виду и дает нам возможность связать уравнение и квадратичную форму с матрицей старшей части.

Действительно,

$$\tilde{a}_{kl} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} t_{il} t_{jk} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot (y_l)_{x_i} \cdot (y_k)_{x_j}$$

Здесь $t_{il},\ t_{jk}$ — элементы известной нам матрицы T. (Элементы матрицы u истиных производных u по-прежнему не известны, сейчас мы их найдем u помощью матрицы u!). Получается, u0, u1, u2, u3, u4, u4, u5, u5, u6, При этом в левой части суммирование идет по столбцам матрицы u7, u7, u7, u8, u8, u9, u

Итак, зная замену $y = T^T x$, пересчитаем производные по формулам, приведенным выше, и подставим их в уравнение. Коэффициенты старшей части нового уравнения — это элементы диагональной матрицы \tilde{A} и равны \tilde{a}_{kl} .

4. Алгоритм приведения УЧП к каноническому виду

Чтобы привести уравнение (4) к каноническому виду (5), нужно:

- 1) записать квадратичную форму с какими-нибудь произвольными коэффициентами ξ (они нам понадобятся только в процессе приведения квадратичной формы к каноническому виду) и той матрицей A, которая содержится в старшей части уравнения (4);
- 2) методом выделения полных квадратов привести квадратичную форму $(A\xi,\xi)$ к виду

$$(\tilde{A}\eta, \eta) = \sum_{i=1}^{n_+} \eta_i^2 - \sum_{j=n_++1}^{n_++n_-} \eta_j^2.$$

- 3) найти линейную замену $\xi = T\eta$ (на этом этапе мы закончили работать c квадратичной формой, теперь мы знаем матрицу старшей части уравнения \tilde{A} и матрицу замены T);
- 4) найти линейную замену для переменных уравнения $y = T^T x$;
- 5) выразить первые производные u_{x_i} через производные u_{y_j} , если они были в исходном уравнении (4);
- 6) записать полученное уравнение (5) с коэффициентами \tilde{a}_{kl} в старшей части (не равны нулю только коэффциенты при повторных производных) и подставить в младшую часть выражение для первых производных u_{x_i} через производные u_{y_j} .

Готово! Мы привели уравнение (4) к каноническому виду (5), ура!