Algorithm Design and Analysis

Computational Geometry (Incremental Algorithms)

Goals for today

- Apply randomized incremental algorithms to geometry
- Give randomized incremental algorithms for two key problems:
 - The closest pair problem
 - The smallest enclosing circle problem

Model and assumptions

- Points are real-valued pairs (x, y)
- Arithmetic on reals is O(1) again
- We can take the floor function of a real in O(1) time
- Hashing is O(1) time in expectation (see universal hashing)

Closest Pair

The closest pair problem

Problem (closest pair): Given n points P, define CP(P) to be the closest distance, i.e.

$$CP(P) = \min_{p,q \in P} ||p - q||$$

Goal is to compute CP(P)

Brute force:

A grid data structure

Let's define a grid with size r

How does this help?

- If the grid size is sufficiently large, closest pair will be in same cell, or in neighboring cells
- If the grid size is too large, there will be too many points per cell...

Goal: Choose the right grid size.

- Want few points per cell, so that looking in a cell is fast
- Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Claim (the right grid size): Given a grid with points P and grid size r = CP(P), no cell contains more than four points

Proof:

An incremental approach

Key idea (incremental): Add the points one at a time

- Check neighboring cells to see if there's a new closest pair
- If so, rebuild the grid with the new size
- Otherwise keep going

A grid data structure

Invariant (grid size): Given a grid containing a set of points P, we want the grid size r to always equal CP(P)

- MakeGrid(p,q): Make a grid containing p and q, with $r=\|p-q\|$
- Lookup(G, p): Given a grid G and point p (not currently in the grid), we want to know whether p is part of a new closest pair
- Insert(G, p): Given a grid G and point p, inserts p and returns the grid size (which may have changed because of p)

Issue: The number of grid cells could be unbounded...

Implement MakeGrid(p, q):

Implement Lookup(G, q):

Implement Insert(G, q):

Runtime

Claim (runtime): The worst-case runtime of the incremental grid algorithm is $O(n^2)$

Proof:

Randomization to the rescue!!!

Randomized runtime

Claim (randomized incremental is fast): Randomly shuffle the points, then run the incremental algorithm, it takes O(n) time in expectation

Proof:

Randomized runtime (continued)

We need to bound $\Pr[X_i = 1]$... (i.e., $\Pr[CP(P_i) \neq CP(P_{i-1})]$)

Smallest enclosing circle

The smallest enclosing circle

Problem (Smallest enclosing circle): Given $n \ge 2$ points in two dimensions, find the smallest circle that contains all of them

Base cases

Base case (two points):

20

Base cases

Base case (three points):

Case 1: Obtuse angle Case 2: Acute angle

Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique circle that goes through them

The general case

Given n > 3 points, how many circles do we need to consider?

Theorem (three points is always enough): For any set of points, the smallest enclosing circle either touches two points p_i , p_j at a diameter, or touches three points p_i , p_j , p_j forming an **acute** triangle

In other words: For any set of points, there exists i, j, k, such that $SEC(p_1, ..., p_n) = SEC(p_i, p_j, p_k)$

Case 1 (no points):

Case 2 (one point):

Case 3 (two points, not on a diameter):

Case 4 (three points, no acute angle):

We just proved

Theorem: For any set of points, there exists i, j, k, such that

$$SEC(p_1, ..., p_n) = SEC(p_i, p_j, p_k)$$

- Either two points at a diameter, or
- Three points forming an acute triangle

Brute force algorithms

Algorithm 1 (brute force): Try all triples of points and find their smallest enclosing circle. Check whether this circle contains every point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their smallest enclosing circle. Return the largest such circle.

Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the smallest enclosing circle

When inserting p_i :

- Case 1: p_i is inside the current circle. Great, do nothing!
- Case 2: p_i is outside the current circle. Need to find the new one

Making incremental fast

Observation: When we add p_i , if it is not in the current circle, then it is on the boundary of the new circle

Incremental algorithm

```
SEC([p_1, p_2, ..., p_n]) = \{
  Let C be the smallest circle enclosing p_1 and p_2
  for i = 3 to n do {
     if p_i is not inside C then C =
  return C
```

Incremental algorithm continued

```
SEC1([p_1, p_2, ..., p_k], q) = {
  Let C be the smallest circle enclosing p_1 and q
  for i = 2 to k do {
     if p_i is not inside C then C =
  return C
```

Incremental algorithm deeper again

```
SEC2([p_1, p_2, ..., p_k], q_1, q_2) = {
  Let C be the smallest circle enclosing q_1 and q_2
  for i = 1 to k do {
     if p_i is not inside C then C =
  return C
```

Runtime

Runtime (SEC2): SEC2 runs in O(k) time

Runtime (SEC1): In the worst case, SEC1 runs in $O(k^2)$ time

Runtime (SEC): In the worst case, SEC runs in $O(n^3)$ time

Randomization to the rescue!!!

Claim (randomized SEC is fast): If we randomly shuffle the points in SEC and SEC1, then SEC1 runs in O(k) expected time and SEC runs in O(n) expected time

Summary

- Randomized incremental algorithms are pretty great. We can turn slow brute force algorithms into expected linear-time algorithms!
- We got O(n) time for closest pair and smallest enclosing circle