3App - Durée : 90 mn

Examen CE317

Partie VHDL

NOM:

1er Session année 2019 – 2020 Un seul document autorisé : « VHDL résumé de syntaxe » Calculatrice interdite

PRENOM:

1 Les points donnés dans l'énoncé entre crochets [X] après chaque question représentent le barème et indiquent le temps à passer en minutes sur chaque question

2 Rendre une copie séparée pour chaque partie de l'examen

1 VHDL pour la simulation [12]

- 1.1 Complétez dans le chronogramme ci-dessous l'évolution de b et s obtenu par simulation du code [5].
- 1.2 Si on fait la synthèse de ce code un warning apparait et une netlist est quand même produite. Pourquoi ce warning apparait-il? [2] Complétez ci-dessous le résultat de la simulation de la netlist produite par la synthèse [5].

entity exemple_proc is a port (a : in bit ; b : out bit); end exemple_proc ; b architecture simple of exemple_proc is signal s : bit ; 1.1 begin process (a) begin s <= a ; b <= s; end process : end simple : 1.2

Toute copie, modification, diffusion publique ou reproduction du contenu de ce document sans l'autorisation de l'auteur est interdite

2 VHDL pour la synthèse : registre à décalage n bits [84]

Le registre à décalage *shifter* que l'on veut concevoir peut être soit chargé avec un vecteur *din* (entrée) soit sa valeur *dout* (sortie) être décalée à gauche ou à droite (d'un seul bit à la fois par front montant de l'horloge). La nouvelle valeur entrante (à gauche ou à droite) est toujours '0'.

Les valeurs binaires manipulées sont tous de type std_logic ou std_logic_vector.

Les signaux d'entrée/sortie du registre à décalage sont les suivants :

- din : vecteur d'entrée de n bits de large utilisé pour le chargement
- clk : le registre est sensible au front montant de l'horloge clk
- left_right : entrée indiquant un décalage à gauche (si '1') ou à droite (si '0')
- load : entrée indiquant le chargement de l'entrée din
- dout : vecteur de sortie n bits de large
- 2.1 Décrire en VHDL l'entité générique de ce composant appelé shifter [5]
- 2.2 Décrire en VHDL l'architecture de ce composant au niveau RTL [20]
- 2.3 Combien de bascules produira la synthèse de votre code précédent ? Justifiez [2].
- 2.4 Faire un schéma composé de bascules D Flip-Flop et de Mux « 4 vers 1 » de ce registre [10]. Vérifiez que le nombre de bascules correspond bien au nombre produit par la synthèse précédente [2].

2.5 Décrire en VHDL l'architecture de ce composant **au niveau structurel** en instanciant les composants cidessous [20]

4000040 [20]									
component bascule is					component mux is				
Port(d	:	in	std_logic;	Port(e0,e1,e2,e3	:	in	std_logic;
	clk	:	in	std_logic;		sel1	:	in	std_logic;
	q	:	out	std_logic);		sel2	:	in	std_logic;
end co	end component;					q	:	out	std_logic);
						end component;			
Bas	Bascule D Flip-Flop active sur front				Mux « 4 vers 1 »				

Conseil 1 : utilisez l'instruction for...generate vue en cours

Conseil 2 : pour laisser un port non utilisé non connecté dans le port map utilisez le mot clef open.

2.6 On suppose que l'horloge *clk* a une période de 10 ns et présente un premier front montant à 5 ns (puis à 15 ns. 25 ns...), complétez le tableau suivant pour un composant shifter avec n=4 : [10]

Temps	load	left_right	Din	dout
0 ns	'U'	'U'	« UUUU »	
10 ns	'1'	'0'	« 1010 »	
15 ns	'1'	'0'	« 1010 »	
20 ns	'0'	'0'	« 1010 »	
25 ns	'0'	'0'	« 1010 »	
35 ns	'0'	'0'	« 1010 »	
40 ns	'0'	'1'	« 1111 »	
45 ns	'0'	'1'	« 1111 »	
55 ns	'0'	'1'	« 1111 »	

2.7 Ecrire en VHDL un testbench permettant de réaliser la simulation de l'architecture RTL et **permettant de retrouver exactement les résultats contenus dans le tableau précédent** [15].

Toute copie, modification, diffusion publique ou reproduction du contenu de ce document sans l'autorisation de l'auteur est interdite