

					Pri	inted	l Pa	ge: 1	of 2	
				Subject Code: KAS103				3103	,	
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a)	Find the e	igen value of A^3 where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.		1
		the system of vectors $X_1 = (1, -1, 1), X_2 = (2, 1, 0, 2)$ are linearly dependent or linearly independent.	1), and	1
Q1(c)	If $y = A s$	$\sin nx + B\cos nx$, prove that $y_2 + n^2y = 0$.		2
Q1(d)	Find the a	symptotes parallel to y-axis of the curve $\frac{a^2}{x} + \frac{b^2}{y} = 1$		2
Q1(e)	If $x = rcc$	$ os\theta, y = rsin\theta, find \frac{\partial(r,\theta)}{\partial(x,y)}. $		3
		of 2% is made in measuring length and breadth then e area of the rectangle.	find the percentage	3
Q1(g)	Evaluate	$\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dy dx.$		4
Q1(h)	Find the v	folume common to the cylinders $x^2 + y^2 = a^2$ and	$x^2 + z^2 = a^2.$	4
Q1(i)	Find p suc solenoidal	th that $\vec{A} = (px + 4y^2z)i + (x^3sinz - 3y)j - (e^x + 1)$.	$-4\cos x^2y)k$ is	5
Q1(j)	State Gree	en's theorem for a plane region.		5

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	Find the eig	gen values and corresponding eigen vectors of $A = \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2 & -3 \\ 1 & -6 \\ -2 & 0 \end{bmatrix}$.	1
Q2(b)	Verify Roll	le's theorem for the function $f(x) = \sqrt{4 - x^2}$ in $[-2, 2]$].	2
Q2(c)		est six terms of the expansions of the function $e^x \log(1 + e^x)$ eneighborhood of the point $(0,0)$.	y) in a Taylor	3
Q2(d)	Change the same.	e order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence e	valuate the	4
Q2(e)		field is given by $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$ Is th? If so, find its scalar potential.	is field	5

SECT	ION-C	Attempt AN	Y ONE following	Question		Marks (1X10=10)	CO
Q3(a)	Find for w	vhat values o	of λ and μ the sys	tem of lin	ear inequation	on: x + y + z = 6,	1
	x + 2y +	5z = 10,2	$x + 3y + \lambda z = \mu$	has(i) a u	nique solutio	n, (ii) no solution,	
	(iii) infini	te solution.	Also find the solu	ution for	$\lambda = 2$ and μ	= 8.	
Q3(b)	Find the r	ank of matri	x reducing it to no				1
			$A = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 6 \end{bmatrix}$	3 4 -1 3 -5 2 -3 8	2 2 2 6		

	Printed Page: 2 of												2 of 2	,
								Sub	ject	Co	de: l	KAS	5103	į
Roll No:														

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	If $y = (sin^{-1}x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate y_n		2
	$(1-x^2)y$, $x = -(2n+1)xy$, $y = 0$ and calculate y	(0)	
	$(1 x y_{n+2} (2n 1)xy_{n+1} n y_n = 0 \text{ and calculate } y_n$	(0).	
Q4(b)	Verify mean value theorem for the function $f(x) = x(x - 1)$	$(x-2)$ in $[0, \frac{1}{2}]$.	2
	1) construction and the function of the second seco	-, [°, 2].	

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO				
	A rectangular box which is open at the top having capacity 32		3				
	of the box such that the least material is required for its constructions.						
	If u, v and w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 \frac{\partial (u,v,w)}{\partial (x,y,z)}$.	$=0$, cubic in λ , find	3				

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
		ouble integration the area enclosed by the pair of curves		4
	y=2-x	$x ext{ and } y^2 = 2(2-x).$		X
Q6(b)	Find C.G.	of the area in the positive quadrant of the curve $x^{\frac{2}{3}} + y$	$\frac{2}{3} = a^{\frac{2}{3}}$.	4

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO				
Q7(a)	Find the o	directional derivative of $f(x, y, z) = xyz$ at the point	P(1, -1, 2) in the	5				
	direction	of the vector $(2i - 2j + 2k)$.						
Q7(b)	Verify Sto	oke's Theorem for $\vec{F} = (y - z + 2)i + (yz + 4)j - (yz + 4)j$	(xz)k over the surface	5				
	of cube <i>x</i>	y = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the XO	OY plane.					
		OA-AP1-2022.08i.3						

					Pri	nted	Pag	ge: 1	of 2	,
				Printed Page: 1 of 2 Subject Code: KAS103T						
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO					
Q1(a)	If the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$, then find the eigen value of $A^3 + 5A + 8I$.	1					
Q1(b)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank.	1					
Q1(c)	Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, where m is a parameter.	2					
Q1(d)	Can mean value theorem be applied to $f(x) = \tan x$ in $[0, \pi]$.						
Q1(e)	State Euler's Theorem on homogeneous function.	3					
Q1(f)	Find the critical points of the function $f(x, y) = x^3 + y^3 - 3axy$.	3					
Q1(g)	Find the area bounded by curve $y^2 = x$ and $x^2 = y$.	4					
	Find the value of $\int_0^1 \int_0^x \int_0^{x+y} dx dy dz$.	4					
Q1(i)	Find a unit normal vector to the surface $z^2 = x^2 + y^2$ at the point $(1, 0, -1)$.	5					
Q1(j)	State Stoke's Theorem.	5					

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO			
Q2(a)	Find the c	characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, composition	ate A^{-1} and	1			
		$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}, A^{3} = A^{3} + A^{4} - 5A^{3} + 8A^{2} - 2A + I = A^{3} + A^{4} - A^{5} + A^{5$	ro 5 51				
Q2(b)		e's theorem and verify Rolle's theorem for the function		2			
	,	$\frac{\ln x}{e^x}$ in $[0,\pi]$.					
Q2(c)	$\frac{\partial (u,v,w)}{\partial (x,y,z)}.$	If we are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, cubic in λ , find	3			
Q2(d)	Find the y $z = 0$.	volume bounded by the cylinder $x^2 + y^2 = 4$ and the plan	e y + z = 4 and	4			
Q2(e)		een's theorem to evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)]$ of the area enclosed by the x-axis and the upper half of the $x^2 + y^2 = a^2$.		5			

S	ECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	CO	
Q		Find the value of k for which the system of equations $(3k - 8)x + 3y + 3z = 0$,		
		3x + (3k - 8)y + 3z = 0, $3x + 3y + (3k - 8)z = 0$ has a non-trivial solution.		
Q	(3(b)	[2 1 1]	1	
		Find the eigen values and eigen vectors of matrix A= 2 3 2.		
		[3 3 4]		

Printed Page: 2 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	If $f(x) = \frac{x}{1+e^{\frac{1}{x}}}$; $x \neq 0$ and $f(0) = 0$, then show that the function is continuous		2
	but not differentiable at $x = 0$.		
Q4(b)	If $y = (x + \sqrt{1 + x^2})^m$, find $y_n(0)$.		2

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	
	Expand x^y in powers of $(x-1)$ and $(y-1)$ up to the third-degree terms and hence evaluate $(1.1)^{1.02}$.			3
		ular box which is open at the top having capacity 32 of the box such that the least material is required for		3

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10) CO	
Q6(a) Change same.	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.		
	e position of the C.G. of a semicircular lamina of radius the square of the distance from the diameter.	s, a if its density	

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
			100	
Q7(a) Find the directional derivative of $\nabla(\nabla f)$ at the point $(1, -2, 1)$ in the direction of			5	
	the normal to the surface $xy^2z = 3x + z^2$ where $f = 2x^3y^2z^4$.			
07(b)	Eind the	ponetants a h a so that		5
Q/(b)		constants a, b, c so that		3
	F = (x +	$(2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is	irrotational and hence	
	find funct	tion \emptyset such that $\vec{F} = \nabla \emptyset$.	02	
find function \emptyset such that $\vec{F} = \nabla \emptyset$.				
		OA		