Вопросы по выбору

Предложенные задачи заметно различаются по сложности. Для каждой задачи указан максимальный балл, который можно получить за идеальное решение.

Задачи на 10 баллов.

1. Вычислить плотность энергии идеального ферми-газа в как функцию температуры в d измерениях.

Указание Под плотностью энергии будем понимать отношение /N, где N это число частиц. В безразмерных единицах вычислять нужно отношение $E/N\epsilon_F$, где ϵ_F обозначена энергия Ферми. Аналогично, обезразмеренная температура это отношение T/ϵ_F . Результатом решения задачи будет вычисленный график зависимости $E/N\epsilon_F$ от T/ϵ_F . Требуется также сравнить численные результаты с поведением в предельных случаях $T\ll\epsilon_F$ (вырожденный газ) и $T\gg\epsilon_F$ (классический газ + вириальная поправка).

Литература: Ландау-Лифшиц 5 том ; Fetter-Valecka, Quantum manybody theory, главы 1-2.

- (a) Для d = 3
- (b) Для d = 2
- (c) Для d = 1
- 2. Вычислить плотность энергии и теплоемкость идеального Бозе-газа в зависмости от температуры в d измерениях.
 - (a) Для d=3. Особое внимание обратить на окрестность температуры бозе-конденсации.
 - (b) Для d = 2
 - (c) Для d = 1
- 3. Построить солитонное решение стационарного уравнения Кортевегаде-Вриза. Написать программу, моделирующую динамику начальнограничной задачи с несколькими солитонами при t=0.

Задачи на 9 баллов.

4. Рассмотрим изотермы реального на плоскости p-V. При температурах ниже критической на изотермах появляется область сосуществования жидкость-газ, и зависимость p(V) становится немонотонной. Фактически же давление остается постоянным во всей области сосуществования, причем положение горизонтального участка изотермы определяется правилом Максвелла и геометрически находится из равенства

площадей участков изотермы. Построить изотермы газа с учетом конструкции Максвелла. Указание: Первым действием найти критические параметры и переписать уравнение состояния в безразмерных единицах.

(а) Уравнение состояния ван-дер-Ваальса

$$p = \frac{RT}{V - b} - \frac{a}{V^2} \ .$$

(b) Уравнение состояния Бертло

$$p = \frac{RT}{V - b} - \frac{a}{TV^2} \ .$$

(с) І уравнение Дитеричи

$$p = \frac{RT}{V - b} \exp\left(-\frac{a}{RTV}\right) \,.$$

(d) II уравнение Дитеричи

$$p = \frac{RT}{V-b} - \frac{a}{V^{5/3}} \; . \label{eq:power_power}$$

(e) Уравнение состояния газа в виде вириального разложения до третьего порядка

$$p = \frac{RT}{V} \left(1 + \frac{B_2}{V} + \frac{B_3}{V^2} \right) .$$

- 5. Найти уровни энергии и волновые функции частицы в трехмерной прямоугольной яме конечной глубины с угловым моментом l.
- 6. Рассмотрим частицу в одномерной прямоугольной яме ширины a. Добавим потенциал вида $V_0x(x-a)$. Найти уровни энергии и волновые функции, используя в качестве невозмущенного базиса состояния частицы в прямоугольной яме при $V_0=0$. Сравнить с результатами теории возмущений.