

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 📮 : 6932327283 - 6955058444

ΔΙΑΓΩΝΙΣΜΑΤΑ - 11 Ιουλίου 2019

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ/ΤΡΙΑ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β' Λυκείου

ΔΙΑΓΩΝΙΣΜΑ - ΔΙΑΝΥΣΜΑΤΑ

ΘΕΜΑ Α

Α.1 Να αποδείξετε ότι αν δύο διανύσματα \vec{a} , $\vec{\beta}$ είναι μεταξύ τους κάθετα τότε θα ισχύει $\lambda_{\vec{a}} \cdot \lambda_{\vec{\beta}} = -1$.

Μονάδες 1

Α.2 Να γράψετε τον τύπο από τον οποίο δίνεται

- i. το εσωτερικό γινόμενο δύο διανυσμάτων \vec{a} , $\vec{\beta}$ (2 τύποι),
- ii. το μέτρο ενός διανύσματος $\vec{a} = (x, y)$,
- iii. το διάνυσμα \overrightarrow{AB} με άκρα $A(x_1, y_1), B(x_2, y_2)$,
- iv. οι συντεταγμένες του μέσου M του διανύσματος \overrightarrow{AB} με άκρα $A(x_1,y_1), B(x_2,y_2)$,
- ν. η συνθήκη για να είναι δύο διανύσματα \vec{a} , $\vec{\beta}$ μεταξύ τους παράλληλα (3 συνθήκες).

Μονάδες 1,5

- Α.3 Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ).
 - i. Τα διανύσματα $\vec{a}=(2,5)$ και $\vec{\beta}=(-4,-10)$ είναι παράλληλα.
 - ii. Ο συντελεστής διεύθυνσης του διανύσματος $\vec{a}=(8,12)$ είναι $\lambda=\frac{3}{4}$.
 - iii. Αν δύο διανύσματα \vec{a} , $\vec{\beta}$ είναι ομόρροπα τότε $\vec{a} \cdot \vec{\beta} = |\vec{a}| \cdot |\vec{\beta}|$.
 - iv. Αν για δύο διανύσματα \overrightarrow{AB} , \overrightarrow{BI} ισχύει $\overrightarrow{AB}=2\overrightarrow{BI}$ τότε τα σημεία A, B, Γ είναι συνευθειακά.
 - ν. Αν $\vec{a}\cdot\vec{\beta}=0$ τότε τα διανύσματα \vec{a} , $\vec{\beta}$ είναι υποχρεωτικά κάθετα.

Μονάδες 1,5

- Α.4 Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις παρακάτω προτάσεις.
 - i. Αν \overrightarrow{AB} είναι ένα μη μηδενικό διάνυσμα και ένα τυχαίο σημείο τότε

•
$$\overrightarrow{AB} = \overrightarrow{OA} - \overrightarrow{OB}$$
 • $\overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{OB}$ • $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ • $\overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OA}$

ii. Το μέσο του διανύσματος \overrightarrow{AB} με άκρα A(-3,2), B(1,4) είναι

•
$$M(-1,3)$$
 • $M(4,6)$ • $M(2,6)$

iii. Το διάνυσμα \overrightarrow{AB} με άκρα A(-2,4), B(7,-5) είναι

•
$$\overrightarrow{AB} = (5, -1)$$
 • $\overrightarrow{AB} = (9, -9)$ • $\overrightarrow{AB} = (-9, 9)$

iv. Ο συντελεστής διεύθυνσης του διανύσματος \overrightarrow{AB} με άκρα A(0,-5), B(3,-2) είναι

•
$$\lambda_{\overrightarrow{AB}} = -1$$
 • $\lambda_{\overrightarrow{AB}} = 1$ • $\lambda_{\overrightarrow{AB}} = -\frac{7}{3}$ • $\lambda_{\overrightarrow{AB}} = -\frac{3}{7}$

Μονάδες 1

ΘΕΜΑ Β

Β.1 Δίνονται τα σημεία A, B, Γ, Δ για τα οποία ισχύει η σχέση

$$\overrightarrow{AB} + 2\overrightarrow{A\Delta} = 3\overrightarrow{AT}$$

Να αποδείξετε ότι τα σημεία B, Γ , Δ είναι συνευθειακά.

Μονάδες 1

B.2 Aν A(2,0), B(3,-1) και M(x-2,3x-8) να βρεθεί η τιμή του x για την οποία

i.
$$\overrightarrow{AB} \perp \overrightarrow{AM}$$
.

ii. $\overrightarrow{AB} \parallel \overrightarrow{AM}$.

Moνάδες 1

Moνάδες 1

Β.3 Αν x=3 τότε να υπολογίσετε τα παρακάτω εσωτερικά γινόμενα

i.
$$\overrightarrow{AB} \cdot \overrightarrow{BM}$$

ii. $\overrightarrow{AM} \cdot \overrightarrow{BM}$

Μονάδες 2

ΘΕΜΑ Γ

Δίνονται διανύσματα \vec{a} , $\vec{\beta}$ για τα οποία έχουμε $|\vec{a}|=1$, $|\vec{\beta}|=2$ και $(\vec{a},\vec{\beta})=\frac{\pi}{3}$. Έστω τα διανύσματα $\vec{u}=2\vec{a}+3\vec{\beta}$ και $\vec{v}=\vec{a}-2\vec{\beta}$. Να υπολογίσετε

 Γ .1 Το εσωτερικό γινόμενο $\vec{a} \cdot \vec{\beta}$. Μονάδες 1

 Γ .2 Τα μέτρα $|\vec{u}|, |\vec{v}|$ των διανυσμάτων \vec{u}, \vec{v} . Μονάδες 2

 Γ .3 Το εσωτερικό γινόμενο $\vec{u}\cdot\vec{v}$. Μονάδες 1

 Γ .4 Το συνημίτονο της γωνίας $(\widehat{\vec{u}}, \widehat{\vec{v}})$. Μονάδες 1

ΘΕΜΑ Δ

Δίνονται τα σημεία A(7,0), B(1,-2) και $\Gamma(-3,2)$.

 $\Delta.2$ Να βρείτε το μήκος της διαμέσου \overrightarrow{AM} . Μονάδες 1

 Δ .3 Να βρείτε το εσωτερικό γινόμενο $\overrightarrow{AB} \cdot \overrightarrow{A\Gamma}$.

 $\Delta . 4$ Να βρείτε το συνημίτονο της γωνίας $\hat{\Gamma}$. Μονάδες 2

Καλή Επιτυχία!