

Stochastic Dual Coordinate Ascent with Adaptive Probabilities [1]

Dominik Csiba University of Edinburgh

 $\lambda > 0$ ("regulariza-

Zheng Qu University of Edinburgh

Peter Richtárik University of Edinburgh

Problem

We are solving the **E**mpirical \mathbf{R} isk \mathbf{M} inimization problem

g the Empirical Risk Minimization problem

$$P \text{ is a strongly convex function ("regularized empirical risk")} \qquad \min_{w \in \mathbb{R}^d} \left[P(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \phi_i(A_i^\top w) + \lambda g(w) \right] \qquad \text{("regularizer")}$$

tion parameter")
$$\frac{g}{(r)} \text{ is a 1-strongly convex function ("regularizer")}$$

Inefficiency

addressed by

AdaSDCA+

 $\phi_1, \ldots, \phi_n : \mathbb{R} \to \mathbb{R}$

are $1/\gamma$ -smooth con-

vex functions ("risk")

using the corresponding dual problem

$$\max_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^*(-\alpha_i) \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n A_i \alpha_i \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n A_i \alpha_i \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n A_i \alpha_i \right]$$

$$\sum_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \sum_{\alpha \in \mathbb{R}^n} \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{\alpha \in \mathbb{R}^n} \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) \right]$$

Why ERM?

Setup: Object-label pairs $(A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ appear naturally in the world with unknown distribution \mathcal{D} .

Goal: Find (train) a vector $w \in \mathbb{R}^d$ (linear predic**tor**), such that, in some sense, for $(A_i, y_i) \sim \mathcal{D}$ we get

$$A_i^{\top} w \approx y_i$$
.

This allows us to **predict** the **label** y_i by observing the **example** A_i . More precisely, we wish to find w solving

$$\min_{w} \mathbf{E}_{(A_i, y_i) \sim \mathcal{D}} \left[loss(A_i^T w, y_i)
ight],$$

where loss is an appropriately chosen loss function.

ERM paradigm: Collect i.i.d. samples $(A_i, y_i) \sim \mathcal{D}$, $i = 1, 2, \dots, n$, and replace the expectation with the sample average:

$$\min_{w \in \mathbb{R}^d} \left[\frac{1}{n} \sum_{i=1}^n \phi_i(A_i^\top w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n loss(A_i^\top w, y_i) \right].$$

Specific risk functions ϕ_i lead to: **least squares**, **logis**tic regression, SVM, ...

Main contributions

- Two new algorithms
- -AdaSDCA theoretical (with convergence analysis)
- -AdaSDCA+ efficient variant of AdaSDCA
- Adaptivity

Our algorithms are **SDCA-like** [2] - they iteratively update a single randomly chosen dual variable. The probability distribution over the dual coordinates adaptively changes on each iteration. Our method is the first method with a theoretical guarantee with an adaptive probability law.

• Convergence rate

We prove that AdaSDCA enjoys better rate than the best known rate for SDCA with fixed sampling [3], [4].

Key concept: Dual residue

It is well known that the optimal primal-dual pair $(w^*, \alpha^*) \in$ $\mathbb{R}^d \times \mathbb{R}^n$ satisfies the following **optimality conditions**:

$$\mathbf{OPT1}: w^* = \nabla g^* \left(\frac{1}{\lambda n} A \alpha^* \right) \stackrel{\text{def}}{=} \nabla g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i^* \right)$$

$$\mathbf{OPT2}: \alpha_i^* = -\nabla \phi_i (A_i^\top w^*), \quad \forall i \in [n] \stackrel{\text{def}}{=} \{1 \dots n\}.$$

A key concept of this paper is the dual residue

$$\kappa_i = \nabla \phi_i (A_i^{\top} w) + \alpha_i,$$

which is a **measure of optimality** of the current pair of variables (w, α) based on **OPT2**.

AdaSDCA [1]

Init: $v_i = A_i^{\top} A_i$ for $i \in [n]$; $\alpha^0 \in \mathbb{R}^n$; $\bar{\alpha}^0 = \frac{1}{\lambda_n} A \alpha^0$ for $t \geq 0$ do

Primal update: $w^t = \nabla g^*(\bar{\alpha}^t)$ Maintaining **OPT1** Set: $\alpha^{t+1} = \alpha^t$

Compute residue κ^t :

$$\kappa_i^t = \nabla \phi_i (A_i^\top w^t) + \alpha_i^t, \quad \forall i \in [n]$$

Compute probability distribution $p^t \in \mathbb{R}^n_+$ coherent with κ^t Pick $i \in [n]$ with probability p_i^t

Compute: $\Delta = \arg\max_{i} \left\{ -\phi_i^*(-(\alpha_i^t + h)) \right\}$

 $-A_i^{\top}w^th - \frac{v_i}{2\lambda n}|h|^2$ Dual update: $\alpha_i^{t+1} = \alpha_i^t + \Delta$ Average update: $\bar{\alpha}^t = \bar{\alpha}^t + \frac{\Delta}{\Delta n} A_i$

end for

Output: w^t, α^t

Maintaining $\bar{\alpha}^t = \frac{1}{\lambda n} A \alpha^0$

Definition: p is coherent with κ if $\kappa_i \neq 0 \Rightarrow p_i > 0, \ \forall i$

Convergence results

Theorem Consider AdaSDCA. If at each iteration $t \geq 0$, p^t is coherent with κ^t and

$$\theta(\kappa, p) \stackrel{\text{def}}{=} \frac{n\lambda\gamma \sum_{i:\kappa_i \neq 0} |\kappa_i|^2}{\sum_{i:\kappa_i \neq 0} p_i^{-1} |\kappa_i|^2 (v_i + n\lambda\gamma)} \leq \min_{i:\kappa_i \neq 0} p_i,$$

then

$$\mathbb{E}[P(w^t) - D(\alpha^t)] \le \frac{1}{\tilde{\theta}_t} \left(\prod_{k=0}^t (1 - \tilde{\theta}_k) \right) \left(D(\alpha^*) - D(\alpha^0) \right),$$

for all $t \geq 0$ where

$$\tilde{\theta}_t \stackrel{\text{def}}{=} \frac{\mathbb{E}[\theta(\kappa^t, p^t)(P(w^t) - D(\alpha^t))]}{\mathbb{E}[P(w^t) - D(\alpha^t)]}$$

The Importance Sampling [3] satisfies the assumptions of the theorem (but is **suboptimal** and hence **AdaSDCA** does better!!):

$$p_i^* \stackrel{\text{def}}{=} \frac{v_i + n\lambda\gamma}{\sum_{j=1}^n (v_j + n\lambda\gamma)}, \ \forall i \in [n].$$

Corollary Consider AdaSDCA with importance sampling: $p^t = p^*$ for all $t \ge 0$. Then

$$\mathbb{E}[P(w^t) - D(\alpha^t)] \le \frac{1}{\theta_*} (1 - \theta_*)^t \left(D(\alpha^*) - D(\alpha^0) \right),$$

where $\theta_* = n\lambda\gamma/\sum_{i=1}^n (v_i + \lambda\gamma n)$. This means that

$$T \ge \left(n + \frac{\frac{1}{n} \sum_{i=1}^{n} v_i}{\lambda \gamma}\right) \log\left(\frac{c}{\epsilon}\right) \Rightarrow \mathbb{E}[P(w^T) - D(\alpha^T)] \le \epsilon,$$

where c > 0 is some constant.

AdaSDCA+ [1]

We introduce an efficient variant of AdaSDCA, which has the same computational costs as SDCA with importance sampling, while still maintaining the advantages of adaptivity.

ALGORITHM	COST OF AN EPOCH
SDCA & QUARTZ	$O(\operatorname{nnz}(A))$
IPROX-SDCA	$O(\operatorname{nnz}(A) + n\log(n))$
AdaSDCA	$O(n \cdot \operatorname{nnz}(A))$
ADASDCA+	$O(\operatorname{nnz}(A) + n\log(n))$

Instead of updating the whole probability distribution p^t at each iteration, we divide the algorithm into **epochs**. At the beginning of each epoch we calculate the optimal adaptive probability and during the epoch we **update only one** entry of p^t per iteration. This can be efficiently done using random counters [5].

Computational experiments

All of the experiments were done on a laptop.

ijcnn1 dataset: d = 22, n = 49,990quadratic loss with L_2 regularizer, $\lambda = 1/n, \gamma = 1$

cov1 dataset: d = 54, n = 581,012Smooth Hinge loss with L_2 regularizer, $\lambda = 1/n, \gamma = 1$

synthetic dataset: $d = 100, n = 10^7$, sparsity = 0.1 Smooth Hinge loss with L_2 regularizer, $\lambda = 1/n, \gamma = 1$

References

- [1] Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent with adaptive probabilities. ICML 2015.
- [2] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss. Journal of Machine Learning Research, 14(1):567–599, 2013.
- [3] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. arXiv:1401.2753,
- [4] Zheng Qu, Peter Richtárik, and Tong Zhang. Randomized Dual Coordinate Ascent with Arbitrary Sampling. arXiv:1411.5873, 2014.
- [5] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22(2):341–362, 2012.