A Context-Aware Click Model for Web Search

先看看模型整体架构

Figure 1: Framework of the proposed CACM. CACM consists of a relevance estimator and an examination predictor. The relevance estimator encodes both the inter-session contexts (i.e., the query context and the click context) and the current document to estimate the context-aware relevance \mathcal{R} . The examination predictor utilizes the intra-session context to predict the examination probability \mathcal{E} . Then through a combination layer, CACM integrates the \mathcal{R} and \mathcal{E} into the click prediction.

Definition

DEFINITION 1. For the n-th document in the l-th query $(d_{l,n})$, given the user's query history $Q = \langle q_1, q_2, ..., q_l \rangle$ and the previous interactions $I = \{I_{i,j} | i \leq l, j < n\}$ within the session, we would like to estimate the context-aware relevance of $d_{l,n}$ as well as to predict whether it will be clicked by the user.

Framework

主要包括Relevance Estimator、Examination Probability Predictor以及Click Predictor

Relevance Estimator

Query context encoder

采用query-query、url-url、qury-url图模型, node2vec获得embedding, GRU+attention编码

其中, 变得权重定义

- query-query, paper中给的固定值2.0
- query-url

$$\mathcal{W}_{q-u} = egin{cases} 1, & C_{i,j} = 1, \ -1, & C_{i,j} = 0, j < max(\mathcal{P}_{C_i}), \ 0, & C_{i,j} = 0, j > max(\mathcal{P}_{C_i}); \end{cases}$$

 $C_{i,i}$ 表示 $query_i$ 和 url_i 的状态(点击or不点击)。 $max(P_{C_i})$ 表示 $query_i$ 下点击的query中最大位置

url-url

$$\mathcal{W}_{u-u} = \frac{1}{\log_2(j+1)};$$

Click context encoder

Session level GRU编码用户多个session的点击行为

$$\mathbf{v}_{I_{i,j}} = [\mathbf{v}_u \oplus \mathbf{v}_p \oplus \mathbf{v}_v \oplus \mathbf{v}_c],$$

$$S_c = GRU(\mathbf{v}_{I_{1,1}}, ... \mathbf{v}_{I_{t,n-1}}),$$

其中, V_u 表示url的embedding, V_p 表示文档的position(最大取10), V_v 表示文档的垂直内容形式(类似百科、图集这种,总共19种), V_c 表示是否点击。

最后, gru的输出向量过一遍attention layer

$$\mathcal{S}_{c,\,at\,t} = \sum_{i=1,\,j=1}^{t,\,n-1} \alpha_c^{i,\,j} h_{i,\,j}, \; \alpha_c^{i,\,j} = \frac{exp(h_{t,\,n-1}^T h_{i,\,j})}{\sum_{p=1,\,q=1}^{t,\,n-1} exp(h_{t,\,n-1}^T h_{p,\,q})},$$

Document encoder

对当前用户看到的doc编码,做法跟Click context encoder类似

$$\mathbf{v}'_{d_{t,n}} = [\mathbf{v}_u \oplus \mathbf{v}_p \oplus \mathbf{v}_v \oplus \mathbf{v}_t],$$

$$\mathbf{v}_{d_{t,n}} = Tanh(\mathcal{F}_d(\mathbf{v}'_{d_{t,n}})),$$

这里

的T指的是query的query iteration_id

最后,结合query context encoder、click context encoder、document encoder的输出,经过MLP输出 relevance score

$$\mathbf{v}_{\mathcal{R}_{t,n}} = [S_{q,att} \oplus S_{c,att} \oplus \mathbf{v}_{d_{t,n}}],$$

$$\mathcal{R}_{t,n} = MLP(\mathbf{v}_{\mathcal{R}_{t,n}}),$$

Examination Estimator

假设exam取决于用户行为,和文档内容无关,GRU编码当前session中之前的用户行为,其他的跟上述 encoder没有区别

$$\mathbf{v}_{I_{t,j}} = [\mathbf{v}_p \oplus \mathbf{v}_v \oplus \mathbf{v}_c], \quad j < n,$$

$$\mathcal{E}'_{t,n} = GRU(\mathbf{v}_{I_{t,1}}, ..., \mathbf{v}_{I_{t,n-1}}),$$

Click Prediction

基于一个假设,只有当用户exam到一个doc,并且对doc感兴趣,才会点击这个doc,因此将exam score和 relevance score结合起来预估ctr。

Table 1: Five combination function for the relevance score and the examination probability (E.H is short for examination hypothesis, C-Click, \mathcal{R} -Relevance, \mathcal{E} -Examination, σ -sigmoid function, λ , μ , α , β are learnable hyperparameters).

function	Formula	Support E.H?	
mul	$C = \mathcal{R} \cdot \mathcal{E}$	√	
exp_mul	$C = \mathcal{R}^{\lambda} \cdot \mathcal{E}^{\mu}$	√	
linear	$C = \alpha \cdot \mathcal{R} + \beta \cdot \mathcal{E}$	×	
nonlinear	$C = MLP(\mathcal{R}, \mathcal{E})$	×	
sigmoid_log	$C = 4\sigma(\log(\mathcal{R})) \cdot \sigma(\log(\mathcal{E}))$ $= 4\mathcal{R}\mathcal{E}/((\mathcal{R}+1)(\mathcal{E}+1))$	√	

Experiment Results

对比业界其他click model的效果,这里不做列举,一些基于结构和参数的分析,有参考意义,分享一下:

• 引入图模型embedding、attention机制以及query频次都有正向帮助

Model	NDCG@1	NDCG@3	NDCG@5	NDCG@10
0 CACM	0.7542	0.7257	0.7484	0.8707
I w/o IterID	0.7476	0.7240	0.7442	0.8681
II w/o Attn	0.7303	0.7201	0.7427	0.8675
III w/o Embed	0.7292	0.7135	0.7400	0.8648
NCM	0.7141	0.6993	0.7278	0.8562

• session长度越长,效果更明显

 越接近当前query的用户行为,重要性越大;利用了context信息,比如d(1,3)没有点,在d(4,3)上就给了 更低的相关性得分

Table 8: Case study of a session with four queries. $I_{i,j}$ denotes the j-th interaction round in the i-th query, $\sqrt{}$ represents a user click. Here we illustrate the query and interaction attention for $d_{4,3}$ in the left subtable. Relevance estimation by each model for documents in Q4 are given on the right.

CACM Attention			Relevance Estimation			
Q1	Q2	Q3	Q4	Label	CACM	NCM
$\sqrt{I_{1,1}}$	$I_{2, 1}$	$I_{3,1}$	$I_{4, 1}$	4	0.8541	0.4031
$I_{1,2}$	$\sqrt{I_{2,2}}$	$\sqrt{I_{3,2}}$	$I_{4,2}$	3	0.4844	0.3368
$I_{1,3}$	$I_{2,3}$	$I_{3,3}$	$I_{4,3}^*$	0	0.0302	0.4519
$I_{1,4}$	$I_{2,4}$	$I_{3,4}$	$I_{4,4}$	0	0.0124	0.2048
$I_{1,5}$	$I_{2,5}$	$I_{3,5}$	$I_{4,5}$	2	0.0516	0.0421
$I_{1,6}$	$I_{2,6}$	$I_{3,6}$	$I_{4,6}$	2	0.1415	0.0483
$I_{1,7}$	$I_{2,7}$	$I_{3,7}$	$I_{4,7}$	1	0.0638	0.0166
$I_{1,8}$	$I_{2,8}$	$I_{3,8}$	$I_{4,8}$	0	0.0655	0.0173
$I_{1,9}$	$I_{2,9}$	$I_{3,9}$	$I_{4,9}$	2	0.0544	0.0130
$I_{1,10}$	$I_{2, 10}$	$I_{3, 10}$	$I_{4, 10}$	2	0.0355	0.0160

^{*} $\{d_{1,3}, d_{4,3}\}, \{d_{2,*}, d_{3,*}\}, \{d_{2,1}, d_{4,1}\}$ are the sets of same documents.

^{*} On the left, the color depth of red and blue represent the weight of query and interaction attention, respectively. On the right, top 6 relevant documents estimated by each model for Q4 are highlighted in red.