Nr albumu: 409963, Geoinformatyka

Ćwiczenie nr. 9

TESTOWANIE WYDAJNOŚCI ZŁĄCZEŃ I ZAGNIEŻDŻEŃ DLA SCHEMATÓW ZNORMALIZOWANYCH I ZDENORMALIZOWANYCH

1. Wstęp

Celem ćwiczenia nr. 9 jest szybkości działania dwóch serwerów SQL: PostgreSQL oraz MySQL. Czerpiąc z badania dotyczącego relacyjnych baz danych pt.: "Wydajność złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych" zrealizowanego przez Łukasza Jajeśnicę oraz Adama Piórkowskiego wykonano te same przedstawione tam kroki, aby samodzielnie zbadać wydajność złączeń oraz zapytań na własnym sprzęcie.

2. Stworzenie tabeli geochronologicznej

W języku SQL stworzono nową bazę danych, a w niej skonstruowano skróconą tabelę geochronologiczną (Tabela 1) aby zaprezentować:

a) Schemat znormalizowany (schemat płatka śniegu)
 Stworzono go w następujący sposób:
 Utworzono 5 znormalizowanych tabel: GeoEon, GeoEra, GeoOkres, GeoEpoka, GeoPietro oraz przedstawiono na schemacie (Rysunek 1). Tabele wypełniono nazwami oraz indeksami eonu, er, okresów, epok i pięter oraz ustawiono klucze obce.

Rysunek 1

 Schemat zdenormalizowany (schemat gwiazdy)
 Utworzono tabelę GeoTabela, która jest złączeniem naturalnym wszystkich powyższych tabel za pomocą zapytania: CREATE TABLE GeoTabela AS (SELECT * FROM GeoPietro NATURAL JOIN GeoEpoka NATURAL JOIN GeoOkres NATURAL JOIN GeoEra NATURAL JOIN GeoEon);

GeoTabela							
id_pietro	Integer	M PI					
nazwa_pietro	Varchar(50)	M					
id_epoka	Integer	M					
nazwa_epoka	Varchar(50)	M					
id okres	Integer	M					
nazwa_okres	Varchar(50)	M					
id era	Integer	M					
nazwa_era	Varchar(50)	M					
id eon	Integer	M					
attribute_10	Integer	M					

Rysunek 2

EON	ERA	OKRES (opis barwy)			EPOKA / ODDZ	Wiek granic (mln lat)		
	INA	CZWARTORZĘD Q		Holocen Plejstocen	Q _h	- 0,01 - 2,6		
	CZ	NEOGEN No) Tr)	Pliocen	PI	5,3	
	Z0 K2	(żółta)			Miocen	M	23	
	KENOZOICZNA Kz		Pg rańczróżowa)	TRZECIORZĘD Tr	Oligocen	OI	- 34	
		PALEOGEN		RZE	Eocen	Е	- 56	
		(pomarańczróż		E)	Paleocen	Pc	66	
	MEZOZOICZNA Mz	KREDA	Cr		późna / górna	Cr ₃	00	
		(zielona)			wczesna / dolna	Cr,	145	
FANEROZOIK					późna / górna	J_3	145	
		JURA	J		środkowa / środk.	J ₂	1	
		(niebieska)			wczesna / dolna	J,	201	
		TRIAS (fioletowa)	Т	późny / górny	T ₃	201		
				środkowy / środk.	T ₂			
					wczesny / dolny	Τ,	252	
	KARBON	PERM	Р		późny / górny	P ₃	[202	
		(czerwono-brązowa)			wczesny / dolny	P ₁	299	
		KARBON C (szaro-niebieska)			późny / górny	C ₃	299	
					wczesny / dolny	C,	359	
					późny / górny	D_3	000	
			D		środkowy / środk.	D_2		
		(brążowa)			wczesny / dolny	D,	419	

Tabela 1

3. Testy wydajności

W zapytaniach łączono dane razem z danymi o rozkładzie jednostajnym z Tabeli milion(Rysunek 3), która została stworzona na podstawie złączenia Tabeli dziesięć(Rysunek 3) w następujący sposób:

```
create table Dziesiec(cyfra int,bit int);
create table Milion(liczba int,cyfra int, bit int);
```

CREATE TABLE Milion(liczba int,cyfra int, bit int); INSERT INTO Milion SELECT a1.cyfra +10* a2.cyfra +100*a3.cyfra + 1000*a4.cyfra + 10000*a5.cyfra + 10000*a6.cyfra AS liczba , a1.cyfra AS cyfra, a1.bit AS bit FROM Dziesiec a1, Dziesiec a2, Dziesiec a3, Dziesiec a4, Dziesiec a5, Dziesiec a6;

Rysunek 3 Schemat tabel

- 3.1. Parametry sprzętu i oprogramowania na którym zostały wykonane poniższe zapytania
- a) CPU: Intel Core i5-8265U 1.6GHz with Turbo Boost up to 3.9 GHz
- b) RAM: 8GB DDR4 Memory
- c) SSD: 512GB PCIe NVMe
- d) S.O.: Windows 11
- e) Systemy zarządzania bazami danych: MySQL wersja 8.0.33 oraz PostgreSQL wersja
- 3.2. Zapytania

1:

```
SELECT COUNT(*) FROM Milion INNER JOIN GeoTabela ON
(mod(Milion.liczba,68)=(GeoTabela.id_pietro));
```

2:

SELECT COUNT(*) FROM Milion INNER JOIN GeoPietro ON
(mod(Milion.liczba,68)=GeoPietro.id_pietro) NATURAL JOIN GeoEpoka NATURAL
JOIN GeoOkres NATURAL JOIN GeoEra NATURAL JOIN GeoEon;

3:

SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,68)= (SELECT id_pietro
FROM GeoTabela WHERE mod(Milion.liczba,68)=(id_pietro));

4:

SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,68)= (SELECT GeoPietro.id_pietro FROM GeoPietro NATURAL JOIN GeoEpoka NATURAL JOIN GeoEora NATURAL JOIN GeoEor;

Testy wykonano w dwóch częściach:

1) Z indeksami tylko na kluczach głównych tabel

```
CREATE INDEX IndEon ON GeoEon(id_eon);
CREATE INDEX IndEpoka ON GeoEpoka(id_epoka);
CREATE INDEX IndEra ON GeoEra(id_era);
CREATE INDEX IndOkres ON GeoOkres(id_okres);
```

```
CREATE INDEX IndPietro ON GeoPietro(id_pietro);
CREATE INDEX IndTabGeo ON GeoTabela(id_pietro);
```

2) Z indeksami na wszystkich kolumnach tabel, które brały udział w złączeniu CREATE INDEX IndTab ON GeoTabela(id_eon, id_era, id_okres, id_epoka); CREATE INDEX IndMilion ON Milion(Liczba);

4. Wyniki testów

Powtarzając kilkukrotnie zapytania otrzymano następujące wyniki i zestawiono je w tabeli (Tabela 2):

	1 ZL		2 ZL		3 ZG		4 ZG	
	MIN[s]	SR[s]	MIN[s]	SR[s]	MIN[s]	SR[s]	MIN[s]	SR[s]
BEZ INDEKSÓW								
MySQL	1,562	1,582	2,547	2,711	1,609	1,687	2,578	2,652
PostgreSQL	0,195	0,230	0,327	0,346	9,392	10,162	0,192	0,262
Z INDEKSAMI								
MySQL	0,875	0,965	1,407	1,473	0,953	1,039	1,437	1,480
PostgreSQL	0,166	0,193	0,280	0,320	9,398	9,763	0,196	0,224

Tabela 2

5. Wnioski

Podsumowując, czas wykonania zapytań w PostgreSQL jest mniejszy w przypadku wykonywania wszystkich zapytań, nie licząc 3, gdzie jest zdecydowanie dłuższy. Po dodaniu indeksowania czas jest krótszy i w MySQL jak i PostgreSQL.