Mudança de Base: decimal, binária, octal, hexadecimal

Universidade Estadual de Mato Grosso do Sul - UEMS
Ciência da Computação
Linguagem de Montagem
Prf Dr Osvaldo Vargas Jaques
ojacques@comp.uems.br

- Para representar um número com n bits com sinal
 - O bit mais significativo ou primeiro bit será multiplicado por -2ⁿ⁻¹. No arquivo 2.1.Complemento2.pdf, ele chama o número de bits de w. E usa a seguinte fórmula:

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

X	1	0	0	1	1	0	0	1
w-1	7	6	5	4	3	2	1	0

- Se temos w=8, ou seja, 8 bits, isso significa que o valor da sequência acima (1001 1001) seria em decimal:
- 1.2⁷ + 0.2⁶ + 0.2⁵ + 1.2⁴ + 1.2³ + 0.2² + 0.2¹ + 1.2⁰ = -128 + 16 + 8 + 1 = -103

Idéia central:

$$(2^n + x) \mod 2^n$$

Se x>= 0 rep₂(x) = x
Se x<0 então rep₂(x) =
$$2^n + x$$

Exemplos:

$$rep_2(-2) = 2^4 + (-2) = 14 = [1110]$$

 $rep_2(-8) = 2^4 + (-8) = 8 = [1000]$
 $rep_2(-1) = 2^4 + (-1) = 15 = [1111]$

[1111] =
$$15 = 2^4 + x \rightarrow x = 15 - 16 = -1$$

[1000] = $8 = 2^4 + x \rightarrow x = 8 - 16 = -8$

binário	Compl-2	binário	Compl-2
0000	0	1111	-1
0001	1	1110	-2
0010	2	1101	-3
		1001	-7
0111	7	1000	-8

Encontrando x

Idéia central:

$$(2^n + x) \mod 2^n$$

Se x>= 0 rep₂(x) = x
Se x<0 então rep₂(x) =
$$2^n + x$$

Exemplos:

$$rep_2(-2) = 2^4 + (-2) = 14 = [1110]$$

 $rep_2(-8) = 2^4 + (-8) = 8 = [1000]$
 $rep_2(-1) = 2^4 + (-1) = 15 = [1111]$

$$[1111] = 15 = 2^4 + x \rightarrow x = 15 - 16 = -1$$

 $[1000] = 8 = 2^4 + x \rightarrow x = 8 - 16 = -8$

Se x é número positivo, x terá valor máximo $2^{n-1}-1$.

Para n = 4, digamos que $x = 7 = 2^n - 1$. Então

$$resto(\frac{2^4+7}{2^4}) = resto(\frac{23}{16}) = 7$$

Ou seja, o resto é x.

Se x é número negativo, $2^n + x$ será menor 2^n . Para n = 4, digamos que x = -2. Então

$$resto(\frac{2^4 + (-2)}{2^4}) = resto(\frac{14}{16}) = 14$$

Ou seja, nesse caso o resto é $2^n + x$

Por que funciona (para x < 0)?

Complemento de 0000 0101

Mudança de base

- Para que possamos fazer mudança de base, levemos em conta que computacionalmente trabalhamos com bases binárias, octais e hexadecimais. Todas essas bases são múltiplas de 2. Se desejar fazer as conversões de decimais para cada base, esteja à vontade, embora não seja recomendável.
- Basta transformar uma base decimal para uma das bases, geralmente a binária e as demais seguem desta.
- Observe que para um dígito octal são necessários 3 dígitos binários, pois temos 23 dígitos octais.
- Para um dígito hexadecimal, são necessários 4 dígitos binários, pois temos 24 dígitos hexadecimais.
- Passando 1010 1110 para octal, basta separar de 3 em 3 a sequência, fazendo 10.101.110 e substituímos cada sequência de 3 ou menos dígitos pelo equivalente em octal.
 - Logo, temos que $1010\ 1110_b = 256_o$.
- Para hexadecimal basta ver a sequência de 4 em 4 dígitos, ou seja, 1010.1110.
- Logo, temos que 1010 1110_b = AE_b
- Dica: Se estamos tratando de números com sinal, veja que todos os hexadecimais negativos começam com os dígitos de A a E.

d	b	0	h
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Exercícios

•

1) Converta para o sistema decimal os números binários abaixo. Veja que estão em diferentes quantidades de bits, todos com sinal. Lembre que quando o bit mais significativo é 1 o valor será negativo.

a) 100110₂

e) 11000101₂

b) 0111110₂

f) 11010110,

c) 111011₂

g) 011001100110101,

d) 1010000₂

- 2) Converta os valores decimais apurados para 16 bits binários
- 3) Converta para octal e hexadecimal o que foi resolvido em 2)

Exercícios

Os números abaixo devem ser transformados em binários (b), octal(o), decimal (d) e hexadecimal

- (x). Todos para 16 bits com sinal
- a) 123_d
- b) 277_o
- c) 10111111_b
- d) $AFAD_x$