

A Remark on a Theorem by Kodama and Shimizu^{*†}

A. V. Isaev

We prove a characterization theorem for the unit polydisc $\Delta^n \subset \mathbb{C}^n$ in the spirit of a recent result due to Kodama and Shimizu. We show that if M is a connected n -dimensional complex manifold such that (i) the group $\text{Aut}(M)$ of holomorphic automorphisms of M acts on M with compact isotropy subgroups, and (ii) $\text{Aut}(M)$ and $\text{Aut}(\Delta^n)$ are isomorphic as topological groups equipped with the compact-open topology, then M is holomorphically equivalent to Δ^n .

1 Introduction

For a connected complex manifold M , let $\text{Aut}(M)$ denote the group of holomorphic automorphisms of M . Endowed with the compact-open topology, $\text{Aut}(M)$ is a topological group. We are interested in characterizing complex manifolds by their automorphism groups.

In general, two complex manifolds M_1 and M_2 need not be holomorphically equivalent if the topological groups $\text{Aut}(M_1)$ and $\text{Aut}(M_2)$ are isomorphic. A simple example of this kind with non-trivial automorphism groups is given by spherical shells

$$S_r := \{z \in \mathbb{C}^n : r < \|z\| < 1\}, \quad 0 \leq r < 1.$$

It is straightforward to see that for $n \geq 2$ the group $\text{Aut}(S_r)$ coincides with the unitary group U_n for all r . Next, every S_r is a Kobayashi-hyperbolic Reinhardt domain. It is shown in [Kr], [S] that two such domains are holomorphically equivalent if and only if they are equivalent by means of an elementary algebraic map, i.e. a map of the form

$$z_j \mapsto \lambda_j z_1^{a_{j1}} \cdot \dots \cdot z_n^{a_{jn}}, \quad j = 1, \dots, n,$$

where $\lambda_j \in \mathbb{C}^*$ and a_{jk} are integers satisfying $\det(a_{jk}) \neq 0$. An elementary algebraic map is holomorphic and one-to-one on S_r only if it is linear (i.e.

^{*}**Mathematics Subject Classification:** 32M05

[†]**Keywords and Phrases:** complex manifolds, automorphism groups

reduces to dilations and a permutation of coordinates). However, S_{r_1} and S_{r_2} are not equivalent by means of such a linear map for $r_1 \neq r_2$.

If the group $\text{Aut}(M)$ is sufficiently large, one can hope to obtain positive characterization results. For example, it was shown in [IK] that the space \mathbb{C}^n is completely characterized by its holomorphic automorphism group as follows: if M is a connected complex manifold of dimension n and the groups $\text{Aut}(M)$ and $\text{Aut}(\mathbb{C}^n)$ are isomorphic as topological groups, then M is holomorphically equivalent to \mathbb{C}^n . A similar characterization was obtained for the unit ball $B^n \subset \mathbb{C}^n$ in [I] (see also the erratum) and, under certain additional assumptions (that will be discussed below), for direct products $B^k \times \mathbb{C}^{n-k}$ in [BKS] as well as for the space \mathbb{C}^n without some coordinate hyperplanes in [KS1], [KS2].

Recently, in [KS3] Kodama and Shimizu obtained the following characterization of another classical domain, the unit polydisc $\Delta^n \subset \mathbb{C}^n$ (the direct product of n copies of the unit disc $\Delta \subset \mathbb{C}$).

THEOREM 1.1 [KS3] *Let M be a connected complex manifold of dimension n that is holomorphically separable and admits a smooth envelope of holomorphy. If $\text{Aut}(M)$ and $\text{Aut}(\Delta^n)$ are isomorphic as topological groups, then M is holomorphically equivalent to Δ^n .*

In particular, Theorem 1.1 holds for Stein manifolds and for all domains in \mathbb{C}^n .

The connected component of the identity $\text{Aut}(\Delta^n)^0$ of the group $\text{Aut}(\Delta^n)$ is isomorphic to the direct product of n copies of the group $\text{Aut}(\Delta) \simeq SU_{1,1}/\mathbb{Z}_2$, and therefore contains a subgroup (which is a maximal compact subgroup) isomorphic to the n -torus \mathbb{T}^n . A topological group isomorphism between $\text{Aut}(M)$ and $\text{Aut}(\Delta^n)$ yields a smooth action by holomorphic transformations of \mathbb{T}^n on M . The assumptions of holomorphic separability and smoothness of the envelope of holomorphy in Theorem 1.1 are used by the authors to linearize this action thus representing the manifold M as a Reinhardt domain in \mathbb{C}^n . This is possible due to a theorem by Barrett, Bedford and Dadok (see [BBD]). We note that similar assumptions were imposed on manifolds in [BKS], [KS1], [KS2] to guarantee the applicability of the result of [BBD].

It is anticipated that the assertion of Theorem 1.1 remains true if the assumptions of holomorphic separability and smoothness of the envelope of holomorphy are dropped. In this note we offer a version of Theorem 1.1 in

this direction. In particular, we do not refer to the linearization result of [BBD] in our proofs. Instead, we require that for every $p \in M$ the isotropy subgroup

$$\text{Aut}_p(M) := \{g \in \text{Aut}(M) : g(p) = p\}$$

is compact in $\text{Aut}(M)$ and linearize the action of $\text{Aut}_p(M)$ near p , which is possible due to the results of Bochner in [B] (see also [Ka]). We note that the linearizability of actions of compact groups on complex manifolds with fixed points goes back to H. Cartan (see [M] for an account of Cartan's results of this kind). In fact, we will only use the faithfulness of the isotropy representation (defined below); this statement is known as Cartan's uniqueness theorem (see [C]). The local linearizability (as opposed to the global linearizability of the \mathbb{T}^n -action) is sufficient to characterize Δ^n . It is not clear at this time how one could avoid using linearization arguments altogether. One difficulty here is the low-dimensionality of the maximal compact subgroup of $\text{Aut}(\Delta^n)^0$. For comparison, the maximal compact subgroup of $\text{Aut}(B^n)$ is isomorphic to U_n and thus has dimension n^2 . This fact was of great help in [I] (see also [IK]).

Our result is the following theorem.

THEOREM 1.2 *Let M be a connected complex manifold of dimension n such that for every $p \in M$ the isotropy subgroup $\text{Aut}_p(M)$ is compact in $\text{Aut}(M)$. If $\text{Aut}(M)$ and $\text{Aut}(\Delta^n)$ are isomorphic as topological groups, then M is holomorphically equivalent to Δ^n .*

We remark that the assumption of compactness of the isotropy subgroups holds for large classes of manifolds a priori not covered by Theorem 1.1. For example, it holds whenever the action of the group $\text{Aut}(M)$ on the manifold M is proper, i.e. the map

$$\text{Aut}(M) \times M \rightarrow M \times M, \quad (g, p) \mapsto (g(p), p)$$

is proper. It is shown in [Ka] that $\text{Aut}(M)$ acts on M properly if and only if one can find a continuous $\text{Aut}(M)$ -invariant distance on M . In particular, the action of $\text{Aut}(M)$ is proper for all Kobayashi-hyperbolic manifolds (see also [Ko]). Hence the following holds (cf. Remark 2.1).

Corollary 1.3 *Let M be a connected Kobayashi-hyperbolic manifold of dimension n . If $\text{Aut}(M)$ and $\text{Aut}(\Delta^n)$ are isomorphic as topological groups, then M is holomorphically equivalent to Δ^n .*

2 Proof of Theorem 1.2

Let $\text{Aut}(M)^0$ be the connected component of the identity of $\text{Aut}(M)$. Since $\text{Aut}(\Delta^n)^0$ is a Lie group of dimension $3n$ in the compact-open topology, so is $\text{Aut}(M)^0$. Furthermore, every maximal compact subgroup of $\text{Aut}(M)^0$ is n -dimensional and isomorphic to \mathbb{T}^n . For every $p \in M$ the subgroup $\text{Aut}_p(M)^c := \text{Aut}_p(M) \cap \text{Aut}(M)^0$ is compact and therefore is contained in some maximal compact subgroup of $\text{Aut}(M)^0$. Since the dimension of the $\text{Aut}(M)^0$ -orbit of p cannot exceed $2n$, it follows that $\dim \text{Aut}_p(M)^c = n$. Hence $\text{Aut}_p(M)^c$ is a maximal compact subgroup of $\text{Aut}(M)^0$ (thus $\text{Aut}_p(M)^c = \text{Aut}_p(M)^0$), and the action of $\text{Aut}(M)^0$ on M is transitive.

Let

$$\alpha_p : \text{Aut}_p(M)^0 \rightarrow GL(\mathbb{R}, T_p(M)), \quad g \mapsto dg(p)$$

be the isotropy representation of $\text{Aut}_p(M)^0$, where $T_p(M)$ is the tangent space to M at p and $dg(p)$ is the differential of a map g at p . Let further

$$L_p := \alpha_p(\text{Aut}_p(M)^0)$$

be the corresponding linear isotropy subgroup. By the results of [C], [B], [Ka] the isotropy representation is continuous and faithful. In particular, L_p is a compact subgroup of $GL(\mathbb{R}, T_p(M))$ isomorphic to $\text{Aut}_p(M)^0$. In some coordinates in $T_p(M)$ the group L_p becomes a subgroup of the unitary group U_n . Since L_p is isomorphic to \mathbb{T}^n , it is conjugate in U_n to the subgroup of all diagonal unitary matrices. In particular, for every $p \in M$ the group L_p contains the element $-\text{id}$.

Let \mathcal{G} be an $\text{Aut}(M)^0$ -invariant Hermitian metric on M . Since $\text{Aut}(M)^0$ acts on M transitively, such a metric can be constructed by choosing an L_{p_0} -invariant positive-definite Hermitian form on $T_{p_0}(M)$ for some $p_0 \in M$, and by extending it to a Hermitian metric on all of M using the $\text{Aut}(M)^0$ -action (see [P] for the existence of invariant metrics for not necessarily transitive proper actions). The manifold M equipped with the metric \mathcal{G} is a Hermitian symmetric space.

The theorem now follows from the general theory of Hermitian symmetric spaces (see [H]). Indeed, since the group $\text{Aut}(M)^0$ acts on M with compact isotropy subgroups, contains a symmetry at every point of M , is semi-simple and is isomorphic to the direct product of n copies of the simple group $SU_{1,1}/\mathbb{Z}_2$, the manifold M is holomorphically isometric to the product of n one-dimensional irreducible Hermitian symmetric spaces (see Theorem 3.3 in

Chapter IV, Theorems 1.1 and 4.1 in Chapter V, Propositions 4.4, 5.5 and Theorem 6.1 in Chapter VIII of [H]). Clearly, each of the one-dimensional irreducible Hermitian symmetric spaces must be equivalent to the unit disc Δ , and the proof is complete. \square

Remark 2.1 One can obtain Corollary 1.3 without referring to the theory of Hermitian symmetric spaces. Indeed, as in the proof of Theorem 1.2, we see that M is homogeneous. Hence, by the (non-trivial) result of [N], the manifold M is holomorphically equivalent to a bounded domain in \mathbb{C}^n . Corollary 1.3 now follows from Theorem 1.1.

References

- [BBD] Barrett, D. E., Bedford, E. and Dadok, J., T^n -actions on holomorphically separable complex manifolds, *Math. Z.* 202(1989), 65–82.
- [BKS] Byun, J., Kodama, A. and Shimizu, S., A group-theoretic characterization of the direct product of a ball and a Euclidean space, *Forum Math.* 18(2006), 983–1009.
- [B] Bochner, S., Compact groups of differentiable transformations, *Ann. of Math.* 46(1945), 372–381.
- [C] Cartan, H., Les fonctions de deux variables complexes et le problème de la représentation analytique, *J. Math. Pures Appl.* (9) 10(1931), 1–114.
- [H] Helgason, S., *Differential Geometry and Symmetric Spaces*, Academic Press, 1962.
- [I] Isaev, A. V., Characterization of the unit ball in \mathbb{C}^n among complex manifolds of dimension n , *J. Geom. Analysis* 14(2004), 697–700.
- [IK] Isaev, A. V. and Kruzhilin, N. G., Effective actions of the unitary group on complex manifolds, *Canad. J. Math.* 54 (2002), 1254–1279.
- [Ka] Kaup, W., Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, *Invent. Math.* 3(1967), 43–70.

- [Ko] Kobayashi, S., *Hyperbolic Manifolds and Holomorphic Mappings*, Marcel Dekker, New York, 1970.
- [KS1] Kodama, A. and Shimizu, S., A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, *Osaka J. Math.* 41(2004), 85–95.
- [KS2] Kodama, A. and Shimizu, S., A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, II, *J. Math. Soc. Japan* 58(2006), 643–663.
- [KS3] Kodama, A. and Shimizu, S., An intrinsic characterization of the unit polydisc, to appear in *Michigan Math. J.*
- [Kr] Kruzhilin, N. G., Holomorphic automorphisms of hyperbolic Reinhardt domains (translated from Russian), *Math. USSR-Izv.* 32(1989), 15–38.
- [M] Martin, W. T., Mappings by means of systems of analytic functions of several complex variables, *Bull. Amer. Math. Soc.* 50(1944), 5–19.
- [N] Nakajima, K., Homogeneous hyperbolic manifolds and homogeneous Siegel domains, *J. Math. Kyoto Univ.* 25(1985), 269–291.
- [P] Palais, R. S., On the existence of slices for actions of non-compact Lie groups, *Ann. of Math.* 73(1961), 295–323.
- [S] Shimizu, S., Automorphisms of bounded Reinhardt domains, *Japan. J. Math.* 15(1989), 385–414.

Department of Mathematics
 The Australian National University
 Canberra, ACT 0200
 AUSTRALIA
 E-mail: alexander.isaev@maths.anu.edu.au