Implémentez un modèle de scoring

Sommaire

CONTEXTE ET OBJECTIFS

Crédits à la consommation

• Personnes ayant un historique de prêt

Modèle de scoring

• Probabilité de défaut de paiement du client

Dashboard interactif

Impact marché

Exploration des données

Home Credit Default Risk | Kaggle

https://www.kaggle.com/competitions/home-credit-default-risk/data

Description des données

```
application_train - rows: 307511 columns: 122

application_test - rows: 48744 columns: 121

bureau - rows: 1716428 columns: 17

bureau_balance - rows: 27299925 columns: 3

credit_card_balance - rows: 3840312 columns: 22

installments_payments - rows: 13605401 columns: 7

previous_application - rows: 1670214 columns: 37

POS_CASH_balance - rows: 10001358 columns: 7

sample_submission - rows: 48744 columns: 2
```

Prétraitements

Opération de fusion

Echantillon de travail principal initial :

356255, 123

Combinaison des 7 jeux de données :

Merging et agrégations de données

- PREVIOUS_LOANS_COUNT
- MONTHS_BALANCE_MEAN
- PREVIOUS_APPLICATION_COUNT

Features engineering:

Ratios explicatifs

- CREDIT_INCOME_PERCENT : montant du crédit / revenu du client
- ANNUITY_INCOME_PERCENT : la rente du crédit / revenu du client
- DAYS_EMPLOYED_PERCENT : jours d'emploi / l'âge du client
- CREDIT_TERM : la rente du crédit / montant du prêt

Echantillon de travail final:

356255, 192

Distribution de TARGET

Déséquilibre de classe nécessitant un rééchantillonnage (Resampling)

Modélisation

Baseline model fixé par Logistic Regression

AUC: 0.69

Sans resampling

AUC: 0.72

Avec Oversampling SMOTE

Elaboration d'un modèle à base d'un algorithme de **Gradient Boosting**

LightGBM

Rééchantillonnage des données d'entrainement

Imblearn

Undersampling

Oversampling

SMOTE

"Bayesian optimization" sur

https://www.kaggle.com/tilii7/olivier-lightgbm-parameters-by-bayesian-opt/code

Evaluation & Scores

Optimisation du modèle Fonction Coût

Limiter les risques de perte financière en pénalisant les Faux Négatifs et les Faux Positifs

Ind_bank:

Fonction personnalisée qui permet d'évaluer les pertes financières potentielles Découlant de nos décisions de classification

Seuil de solvabilité optimal

qui minimise l'indice bancaire

Optimisation du modele avec seuil métier (fn_value = 10 * fp_value)

Scores après l'optimisation

Interprétation des features

Dashboard

Versioning GitHub:

https://github.com/babi7777/scoring-model-credit-risk

Application: http://35.181.54.91:8501

Application Web (Streamlit Dashboard)

Modèle de Scoring (Machine Learning)

AWS

(Hébergement et Services Cloud)

Mode d'Emploi de l'Application

Infrastructure de Déploiement du Modèle de Scoring :

Mise en Œuvre d'une Solution Évolutive pour la Prédiction de Crédit

Conclusion

- Utilisation et modification d'un Kernel Kaggle.
- Entrainement d'un modèle de scoring.
- Fonction coût, optimisation et évaluation.
- Interprétabilité du modèle LightGBM avec Shapley
- Dashboard interactif.

MERCI