Introduction to Schemes

Lecturer: Maria Iakerson

February 20, 2025

Contents

T	Why Schemes?	1
	1.1 Summary of affine varieties	1
	1.2 Why varieties are not good enough?	2
2	The prime spectrum	3

1 Why Schemes?

1.1 Summary of affine varieties

Let k be an algebraic closed field. The main idea of classical algebraic geometry is that we have a correspondence

{subsets of k^n cutout by polynomials} \leftrightarrow {finitely generated reduced k- algebras } Geometry \leftrightarrow Algebra

In particular, the above correspondence can be given as follows:

• $I \subset k[x_1, \ldots, x_n]$ ideal: Then we define

$$X := Z(I) = \{ a \in k^n | f(a) = 0 \quad \forall f \in I \}$$

sometimes we use the notation V(I) instead of Z(I). This kind of set is an affine variety.

- \mathbb{A}^n : n- dimensional affine space. As a set, it is just k^n , but we equip this set with Zariski topology where the closed subsets are generated by Z(I).
- $I(X) := \{ f \in k[x_1, \dots, x_n] | f(x) = 0 \quad \forall x \in X \}$. Then the quotient replacing $k[X] := \frac{k[x_1, \dots, x_n]}{I(X)}$ is called *coordinate ring* of X.
- k[X] parametrizes functions on X:

$$x \in X \leadsto \mathfrak{m}_x := \ker(ev_x : k[X] \to k)$$

and $\forall f \in k[x]$ gives

$$f: X \to \mathbb{A}^1 = k$$

 $x \mapsto f(x) = \overline{f} \in k[x]/\mathfrak{m}_x$

• Hilbert's weak Nullstellensatz:

$$\{ \text{ points of } X \} \leftrightarrow \{ \text{ maximal ideals of } k[X] \}$$

- Hilbert Nullstellensatz: $I(Z(I)) = \sqrt{I} := \{f : f^n \in I \text{ for some } n\}.$
- Morphisms: given X and $Y \in \mathbb{A}^n$ a morphism between two affine varieties is given by $\varphi = (f_1, \ldots, f_n)$. This morphism induces a k- algebra homomorphism

$$\varphi^* : k[Y] \to k[X], \quad \varphi^*(\psi) = \psi \circ \varphi, \qquad X \xrightarrow{\varphi} Y$$

$$\downarrow^f \qquad \downarrow^f \qquad \downarrow^f$$

$$\wedge^1$$

so Hom(X,Y) = Hom(k[Y],k[X]) - which gives the equivalence of categories as stated in the beginning.

1.2 Why varieties are not good enough?

Some possible reasons are:

- 1. embedding into \mathbb{A}^n shouldn't be part of the data. It would be nice to have an intrinsic definition, since you can embed the same variety in different spaces.
- 2. for non-algebraic closed field, the Nullstellensatz doesn't work: $I = (x^2 + y^2 + 1)$ is a prime ideal in $\mathbb{R}[x,y]$, hence is a radical ideal. But $Z(I) = \emptyset$, so $I(Z(I)) = \mathbb{R}[x,y]$.
- 3. We can ask, on which topological space is $\mathbb{R}[x,y]/(x^2+y^2+1)$ naturally a functions space? Or $\mathbb{Z}[x]$? Or \mathbb{Z} ? This leads to the idea of considering all possible rings.
- 4. Nilpotent arises naturally when deforming varieties, so ignoring them is not a good option.

2 The prime spectrum

In the last sections, we have an equivalence between categories

affine varieties over $k = \overline{k} \cong_{op}$ reduced finitely generated k- algebras

Now we want to extend this equivalent relation as follows:

affine schemes \cong_{op} commutative ring with unit

This generalization allows to study arithmetic phenomena by geometric methods, by taking rings to be \mathbb{Z}, \mathbb{Z}_p , etc.

Definition 1. Given a ring R, its spectrum is defined to be

$$\operatorname{Spec} R := \{ \mathfrak{p} | \mathfrak{p} \subset R \text{ is a prime ideal} \}$$

This way $x \in \operatorname{Spec} R \iff \mathfrak{p}_x \in R$.

NB: in general, we cannot think about $f \in R$ as functions with values in a fixed field k. However, there is a more general notion.

Definition 2. Let $x \in \operatorname{Spec} R$ correspond to $\mathfrak{p} \subset R$. The **residue field** of x (or \mathfrak{p}) is

$$\kappa(x) = \kappa(\mathfrak{p}) := R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$$

Every $f \in R$ has a "value"

$$f(x) := f \mod \mathfrak{p}_x \in \kappa(x), \quad \forall x \in \operatorname{Spec} R$$

and the codomain depends on the choice of x. By definition, f(x) = 0 if $f \in \mathfrak{p}_x$. The moral of the story is that Spec R will be the space on which R is the ring of functions: the affine scheme corresponding to R.