24-4-2021

BILKENT UNIVERSITY Department of Electrical and Electronics Engineering EEE313 Electronic Circuit Design MidTerm Exam #2 3 questions 120 minutes

Part-1 One question 40 minutes

- Instructions:
- Calculators without extensive memory are allowed
- Clearly explain all your answers in order to receive credit
- Put a box around your final answer
- Cheat sheets are not allowed
- Indicate the units for your final answers
- Write your name and student ID on the bottom of every page
- Mail your pdf solutions to <u>eee313exam@bilkent.edu.tr</u> with your student ID number as subject
- Also upload your pdf solutions to Moodle

Q1. (35 points)

The parameters of the shown amplifier are V_{CC} = 9V, R_L =4k Ω , R_C =6k Ω , R_E =3k Ω , R_1 =150k Ω , R_2 =50k Ω , C_{C1} =1 μ F, and C_{C2} =1 μ F. The transistor parameters are β =125, V_{BE} (ON)=0.7V, V_{CE} (SAT)=0.2V, V_A = ∞ , and V_T =0.026V. The input signal is a small-signal ac current source.

- a) Derive and numerically determine the Q-point values of I_C and V_{CE} . Verify the state of the transistor.
- b) Derive and numerically determine the small-signal ac midband transresistance function $R_m = v_o/i_s$.
- c) Derive and numerically determine the small-signal ac midband voltage gain $A_v = v_o / v_s$
- d) Derive and numerically determine the small-signal ac midband input impedance R_{in} of the amplifier. Note that R_s is part of the source.
- e) Derive and numerically determine the -3dB lower cut-off frequency f_L .