RISC-Vで 高レイヤ?自作CPUのすすめ

•••

2023-12-03

第2回 自作CPUを語る会

自己紹介

- 井田 健太
- 元FPGA屋 (Vivadoぽちぽちマン)
- ゆるふわCPU自作勢
- RISC-V CPU自作本の共著者の一人→
 - (私の作業はおまけみたいな感じだけど)
- X: @ciniml

CPU自作とは

- CPUを自作すること...なのはいいとして
- どこからどこまでを作るか?
- 命令セットの設計
 - o 自作命令セット
 - 既存命令セット
- 命令セットを実行するものの実装
 - o シミュレ<u>ータ</u>
 - o FPGA
 - o ロジックIC
 - o ASIC

CPU自作とは

- CPUを自作すること…なのはいいとして
- どこからどこまでを作るか?
- 命令セットの設計
 - o 自作命令セット
 - 既存命令セット
- 命令セットを実行するものの実装
 - 0 シミュレータ
 - o FPGA
 - o ロジックIC・リレー
 - o ASIC

第1回 自作CPUを語る会の内容

CPU自作とは

● CPUを自作すること...なのはいいとして

本資料の内容

- どこからどこまでを作るか?
- 命令セットの設計
 - 自作命令セット
 - o 既存命令セット
- 命令セットを実行するものの実装
 - o シミュレータ
 - o FPGA
 - o ロジックIC・リレー
 - ASIC

命令セットの設計

- 自作するか、既存のものを使うか。
- 自作する場合
 - 自分が考えた最強の命令セットを実現できる。楽しい!
 - o アセンブラ・コンパイラも作っちゃう!
 - (いつかやってみたいと思ってます)
- 既存のものを使う場合
 - o 現時点で動いている命令セットを実装できる
 - アセンブラ・コンパイラは既存のちゃんと動くものがある
 - gccとか、LLVMとか。

実装手段

- ・シミュレータ
 - o PCさえあれば動く。コスト低くて開発も比較的楽
- FPGA
 - o HDLとかいうプログラミング言語的なもので書けば動く。
 - といってもちょっとCPUのプログラムと考え方が違うのが難点
 - o 最近は比較的安くて楽
- ロジックIC・リレー
 - o 複雑な回路は大変そうだが、動くととても楽しそう
- ASIC
 - FPGAと同じ感じでHDLで論理回路を書くが、ほかにもいろいろやることがある
 - 0 いつか作ってみたい

高レイヤ?自作CPUのすすめ

- 命令セットの設計・アセンブラ・コンパイラ自作のハードルが高い?
- 実装手段 ロジックIC・リレー・ASIC 大変そう?
- ゆるふわ高レイヤCPU自作をはじめよう!!

- 既存命令セット RISC-V (RV32I)
- 実装手段 シミュレータ -> FPGA

高レイヤ?自作CPUのすすめ

- 命令セットの設計・アセンブラ・コンパイラ自作のハードルが高い?
- 実装手段 ロジックIC・リレー・ASIC 大変そう?
- ゆるふわ高レイヤCPU自作をはじめよう!!

- 既存命令セット RISC-V (RV32I)
- 実装手段 シミュレータ -> FPGA
- そんなあなたにRISC-VとChiselで学ぶはじめてのCPU自作!

「はじめてのCPU自作」で扱う内容

- RISC-V CPU (RV32I) のChiselでの実装とシミュレーション
- ディジタル回路の基礎
 - o FETからDFFまで
- Chiselの基礎
- 環境構築(dockerつかいます)
- シミュレータの使い方
- RISC-V (RV32I) CPUコア実装
 - o 命令フェッチ等のCPU動作を順に
 - riscv-testsでのテスト
 - o パイプライン化(5ステージ)
 - 拡張命令の実装
- コンパイラはgccを使用

はじめてのCPU自作で扱わない内容

- 実機動作なし。シミュレーションのみ!
 - 実機は簡単に罠にはまる! 高レイヤ!

- PCさえあればお手軽に試せる。
- これを機にCPU自作をはじめてみよう

でも…実機でうごかしたい?

- そんなあなたにセキュリティ・キャンプ RISC-V CPU自作ゼミ資料
 - o https://github.com/ciniml/seccamp_riscv_cpu
- RISC-V CPU自作ゼミ
 - 「はじめてのCPU自作」のCPUをFPGAに実装して実世界にアクセス
 - FPGA実装のためのCPUの修正
 - 命令バス・データバスのストール対応
 - 足りない命令(LB/SB等)の実装
 - 周辺回路 (GPIO等) の接続
 - 割り込みの実装

でも…実機でうごかしたい?

- 実装対象のFPGAボード Sipeed Tang Nano 9K
 - 中国GOWINのFPGA GW1NR-LV9QN88PC6/I5 を使用
 - o LUT4 8640, DFF 6480
 - とても安い。秋月電子通商で3000円ほど
 - 開発環境は無償で使用可能

でも…実機でうごかしたい?

● 実装対象のFPGAボード - Sipeed Tang Nano 9K

Tang Nano 9Kの課題

- DIP形状のモジュールでオンボード機能は多くない
 - LED6個とスイッチ2個くらい
 - フラッシュROMやFPGA内蔵PSRAM
 - o FPGA直でDVIを出すことはできる
- いろいろつなぎたいがもじゃもじゃする

Tang Nano 9K Pmodベースボード

- Pmod
 - Digilentが策定しているモジュール規格
- Tang Nano 9KにPmodを3個させるボードを用意
 - o 今年夏のセキュリティ・キャンプでも使用

実装例 - ステッピングモーター

● 物理会場展示ブースでターンテーブル回してるので見に来てください

まとめ

- CPU自作を始めるか迷っている人は まずは既存の命令セットのCPUを作ってみよう
 - o コンパイラとか気にしなくて良くなる
- PC上のシミュレーションでも動くと楽しい
- 実機でうごかしたい場合はFPGAにも載せられます

今日からあなたもCPU自作!