## Analyse der Google Geospatial API: Möglicher Anwendungsfall am Beispiel einer Augmented-Reality-Kunstausstellungs-App

Muhammed Yavuz



01

## Relevanz

### Relevanz



#### **Aufstieg von AR**

Marktanteil von AR-Software und Hardware steigt jährlich und neue Produkte werden veröffentlicht wie die Apple Vision Pro.



#### **Angebotene Software**

Unternehmen wie 3DQR bieten die Entwicklung einer digitalen AR-Ausstellung der Modelle des Kunden, weitere Ausstellungen nutzen eigene Software



#### ARCore erlaubt die Entwicklung einer eigenen App

ARCore erlaubt die Entwicklung eigener Android AR-Apps und bietet jährlich neue Werkzeuge, darunter die Geospatial API.

02

## Forschungsansa tz

### Forschungsansatz

#### **AR-Kunst-App**

Plattform zur Füllung der aktuellen Marktlücke mit einer einheitlichen Kunstausstellungsplattform.



## Methodik

### **Angewandte Methodiken**



# Ergebnisse

## **Ergebnis Prototyp**



Darstellung der Modelle in der realen Welt

Positioniert und rendert 3D-Modelle dank OpenGL. Backend Datenbank.
Aufbewahrung der Modelle
und Daten

## **Ergebnisse**

Entwicklung des Prototyps

Geospatial API nutzt GPS und Visual Positioning System (VPS)

VPS nutzt Daten der Google Street View um die Position des Nutzers zu bestimmen

Nutzt nur verankerte Merkmale

Wird in weiteren APIs genutzt, wie der Streetscape Geometry API

## Keine gute Implementierung ohne Google Street View Daten





#### Entwicklung des Prototyps

- Prototyp erstellt eine Replikation der realen Welt und verbindet sie mit Ankern
- Anker bestimmen die Position eines 3D-Modells durch Angabe der Koordinaten und eine Quaternion
- Quaternion stellen die Ausrichtung und Rotation des Modells dar.



Maximal 100 Geländenker können dargestellt werden.







### **Weitere APIs**

#### **Streetscape Geometry API**

- Erkennung von planarem, verfolgbaren Oberflächen, um Anker an diese zu verbinden.
- Genauere Position von Ankern an Fassaden.
- Benötigt VPS-Signal zur Ausführung



### **Weitere APIs**

#### **Depth API**

- Ermöglicht die Tiefenberechnung.
- Weiterentwickelte Flächenerkennung der Streetscape Geometry
- Modelle können überdeckt werden.





[ [5

## Nicht alle ARCore Geräte unterstützen Depth API

6]

## **Ergebnis Datenbank**



Firebase Cloud Firestore ist eine NoSQL Datenbank, die die Datensätze in Dokumenten speichert.

**Firebase Cloud Storage** ist ein Objektspeicherdienst, welcher in der Lage ist 3D-Modelle zu speichern.

Datensätze aus spezifischen Dokumenten werden geladen



## **Ergebnis Umfrage**









Würden die App monatlich nutzen



#### Ängste der Probanden

- Rechtliche Rahmenbedingungen
- Keine sozialen Funktionen / Implementierung
- Schwierige Implementierung der Kunstwerke ohne Programmierkenntnisse



## **Ergebnis Umfrage**









### Ängste der Probanden

- Rechtliche Rahmenbedingungen
- Zu wenig soziale Funktionen
- Schwierige Implementierung der Kunstwerke ohne Programmierkenntnisse

05

## Analyse

## **Analyse**



#### **Umsetzung**

Google Geospatial API erlaubt die Entwicklung der App. Allerdings nur mit Limitierungen.

- Nur 100 Gelände- und Dachanker möglich
- Nicht alle Geräte können die Depth API nutzen



#### **Ergebnis der Umfrage**

Umfrage zeigt das Interesse der Probanden und möglichen Erfolg. Dennoch Ängste beachten

- Wie "social" wird die App sein f
  ür K
  ünstler
- Wie werden Kunstwerke hochgeladen

06

# Weitere Forschungen

## Weitere Forschungen



#### Recht

Können wir die Stadt als Leinwand nutzen? Planwidrige Gesetzeslücke



#### **Kunstupload**

Wie laden Künstler ihre Kunstwerke hoch? Implementierung von Geospatial Creator



## Technische Herausforderungen

Wie wird die Ankerlimitierung umgangen? Keine Abhängigkeit der Depth API



#### **Datenbank**

Was sind die weiteren Funktionen der Datenbank? Entwicklung möglicher Strukturen

## Abbildungsverzeichnis

- (1) <a href="https://www.geospatialworld.net/prime/business-and-industry-trends/what-is-visual-positioning-system-vps/">https://www.geospatialworld.net/prime/business-and-industry-trends/what-is-visual-positioning-system-vps/</a>
- (2) Screenshot des Prototyps
- (3) Screenshots von <a href="https://github.com/google-ar/arcore-android-sdk/tree/master/samples/geospatial\_java">https://github.com/google-ar/arcore-android-sdk/tree/master/samples/geospatial\_java</a>
- (4) Screenshots von https://github.com/google-ar/arcore-android-sdk/tree/master/samples/geospatial\_java
- (5) <a href="https://developers.google.com/ar/develop/depth">https://developers.google.com/ar/develop/depth</a>
- (6) Screenshot des Prototyps

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**