

Analog 2.0 documentation

Vol. 10

Production of MInI Board II

Version: 1.2

Created: December 25, 2008

Analog 2.0 documentation Production of Vol.10 MInI Board II

table of contents

1. About this document	3 3
2. MINI BOARD II	44
2.1. Production flow	4 2.2.
Outline of the module to be manufactured	Four
function	Four
Positioning in the system	Five
circuit	6
2.3. Obtaining parts	8
Precautions when obtaining parts	Ten
2.4. Substrate manufacturing	12.
2.5. Checking the wiring on the board	
13 2.6. Operation check	14
Checking the Gate signal	14
Checking the CV signal	14
Checking the reference sound generator	14
2.7. Adjustment	14
Offset adjustment	14

1. About this document

This document is a tool for calibrating the analog synthesizer system Analog 2.0 .

I will explain how to make MInI Board II .

Before reading this document, read the Starter Kit manual to get the basics of Analog 2.0 . Please understand the general structure.

This document also includes the panel, power supply module, and lie included in the starter kit. It is written on the assumption that the fly has already been assembled.

Change log

Version date		Changes
1.0 1.0	2009/11/21 Ana	log2.0 Document Version 2.0
		-Review the circuit design.
		-Revised the document accordingly.
1.1 1.1	2009/12/06 -Fix	ed a mistake in the parts list and R9.
		(Error) Resistor (Correct) Semi-fixed resistance
		-Fixed a mistake in the parts list, R12.
		(Error) Resistor (Correct) Semi-fixed resistance
1.2 1.2	2009/12/25 -Fix	ed the caption error in the figure.
		(Error) Noise generator (Correct) MinI Board II

2. Manufacture of Mini Board II 2.1.

Production flow - Obtaining parts -

Installing parts on the board - Installing

panel parts- Checking the wiring of the

board-Checking the operation -

Adjustment

2.2. Outline of the module to be manufactured

Function

In this article, I will explain how to make MInI Board II , which is used for proofreading everywhere, throughout the production of Analog 2.0.

Figure 2-1 shows the appearance of MInI Board II .

II FigureE2tetrMathviBovaon6tMInIBovard

MInI Board II has the following functions. -Connect to a lifeline cable to generate CV and Gate signals. CV and Gate _

Output to the lifeline bus.

- --CV and Gate are generated by keyboard or MIDI signals. -The keyboard
- generates CV in the octave specified by the octave switch. For example, if you specify "4" on the octave switch and press the A key, a CV equivalent to A4 will be generated.
- -Press and hold the ${f function\ switch\ for\ 1\ second\ to\ get\ a\ 440\ Hz\ reference\ sound\ from\ the\ speaker.}$

It is a force. To stop the reference tone, press and hold the function switch again for 1 second.

The function of MInI Board II can be changed by updating the firmware. The above specifications are for firmware version 1.0.

Positioning within the

system Figure 2-2 shows the positioning of the MInI Board in the configuration of the Analog 2.0 production system .

II Figu Reo & i 2i d Ahinnig Boofa Mid ri I Board

circuit

The circuit diagram of the power supply circuit to be manufactured is shown in Figure 2-3 .

Board ICFriguited2agnMinldBoldird II

2.3. Obtaining parts

The parts required for production are as follows. When making, first get these parts please.

Board Il Plantoser @qui Melon It 68 covar du facture Mini

parts	Device name	Value / model number	remarks
number			
C1 Mu	Itilayer Ceramic Capacitor	0.1 ÿF	
C2 ele	ectrolytic capacitor	100 ÿF	
C3 ele	ectrolytic capacitor	100 ÿF	
C4 Mu	Itilayer Ceramic Capacitor	0.1 ÿF	
C5 Mu	Itilayer Ceramic Capacitor	0.1 ÿF	
C6 Mu	Itilayer Ceramic Capacitor	0.1 ÿF	
C7 ele	ectrolytic capacitor	100 ÿF	
C8 ce i	ramic capacitor	27pF	
C9 ce i	ramic capacitor	27pF	
C10 M	ultilayer Ceramic Capacitor	0.1 ÿF	
C11 M	ultilayer Ceramic Capacitor	0.47ÿF	
C12 M	ultilayer Ceramic Capacitor	0.47ÿF	
C13 M	ultilayer Ceramic Capacitor	0.47ÿF	
C14 M	ultilayer Ceramic Capacitor	0.001 ÿF	
C15 M	ultilayer Ceramic Capacitor	0.022ÿF	
C16 M	ultilayer Ceramic Capacitor	0.022ÿF	
C17 M	ultilayer Ceramic Capacitor	0.022ÿF	
D1 dic	de	1N4148	
D2 dic	de	1N4148	
D3 dic	de	1N4148	
D4 dic	de	1N4148	
D5 dic	de	1N4148	
D6 dic	de	1N4148	
D7 dic	de	1N4148	
D8 dic	de	1N4148	
D9 dic	de	1N4148	
D10 d i	ode	1N4148	
D11 d i	ode	1N4148	

Analog 2.0 documentation Production of Vol.10 MInI Board II

D12 diode	1N4148	
D13 diode	1N4148	
D14 diode	1N4148	
D15 diode	1N4148	
D16 diode	1N4148	
D17 diode	1N4148	
D18 diode	1N4148	
D19 diode	1N4148	
D20 diode	1N4148	
D21 diode	1N4148	
D22 diode	1N4148	
D23 diode	1N4148	
D24 diode	1N4148	
D25 diode	1N4148	
D26 diode	1N4148	
IC1 3-terminal regulator	LM78L05	
IC2 operational amplifier	TL064	
IC3 microprocessor	ATTiny2313	
J1 connector	DIN 5P 180 °	MIDI input
JP1 box pin header	2x5 L -shaped	Lifeline
JP2 pin header	2x3	ISP writing port
Q1 Crystal oscillator	20MHz	
R1 resistor	22kÿ	
R2 resistor	470kÿ	
R3 resistor	10kÿ	
R4 resistor	10kÿ	
R5 resistor	10kÿ	
R6 resistor	1Mÿ	
R8 resistor	56kÿ	
R9 semi-fixed resistance	20kÿ	
R10 resistor	47kÿ	
R11 resistor	820kÿ	
R12 semi-fixed resistance	500kÿ	
R13 resistor	47kÿ	
a l	1kÿ	

	T.	
R15 resistor	220ÿ	
R16 resistor	10kÿ	
R17 resistor	10kÿ	
R18 resistor	10kÿ	
R19 resistor	470kÿ	
R20 resistor	47kÿ	
R21 resistor	1kÿ	
S1 tact switch		Keyboard C #
S2 tact switch		Keyboard D#
S3 tact switch		Keyboard F #
S4 tact switch		Keyboard G #
S5 tact switch		Keyboard A#
S6 tact switch		Keyboard A
S7 tact switch		Keyboard lowC
S8 tact switch		Keyboard D
S9 tact switch		Keyboard E
S10 tact switch		Keyboard F
S11 tact switch		Keyboard G
S12 tact switch		Keyboard B
S13 tact switch		Keyboard highC
S14 tact switch		Function Switch
SP1 piezo speaker		
SW1 rotary DIP switch		Octave / MIDI Ch
U1 photocoupler	TLP552	

Precautions when obtaining parts

As much as possible, the parts are made up of those available at Akihabara stores. There are restrictions on the shape of parts In some cases, the item number of Sengoku Densho is listed in the parts list. please refer.

Please be careful when obtaining the following parts.

DIN 5P connector Used as an Analog 2.0 MIDI connector. Board mounting tie

DIN connectors may be difficult to obtain at Akihabara stores .

plug. For example, you can get it from RS Online.

Rotary DIP switches There are various types of rotary DIP switch pinouts.

Yes, you need to be careful. Akizuki Denshi's 0-F Rotary Dip / Positive

The logic is that the pin is of the 2x3 type.

Analog 2.0 documentation

Production of Vol.10 MInI Board II

ATTiny2313 ATTiny2313

Atmel microprocessor. You need to write the firmware to the processor. The firmware is pre-written in AT Tiny2313 included in the kit, but the processor

If you prepare a separate firmware or update the firmware

If so, writing work is required. The MInI Board II board uses a write

port to allow writing by the AVR ISP

I am willing to.

2.4. Substrate manufacturing

Figure 2-4 is the wiring diagram of the printed circuit board to be manufactured this time. The line connecting the square lands is Ja It is a damper line.

Figure 2-4 Minl Board Minl Board board wiring diagram

Unlike other functional modules, MInI Board II is premised on being used as a single board.

However, it is recommended to put it in a simple case for safety. Install spacers at least at the four corners.

2.5. Checking the wiring on the board

At this point, the assembly of the MInI Board circuit is complete. I'd like to move it right away, but don't turn it on yet. Be sure to check the wiring before turning on the power. In the unlikely event that there is a wiring error, not only will it not operate normally, but in some cases parts will be damaged. vinegar. Check the checklist below to see if the wiring is correct.

[] Is the resistor installed in the correct place and with the correct value? [] Is the capacitor installed in the correct place, with the correct type and with the correct value? [] Is the electrolytic capacitor installed in the correct orientation? [] Is the diode installed in the correct place and in the correct orientation? [] Is the transistor installed in the correct place and in the correct orientation?
[] Are IC1 and IC2 installed in the correct place and in the correct orientation? [] Is the jack pin header installed in the correct place? []

Turn the board over and check the soldering points. The adjacent copper foil pattern is Han Is there a solder bridge that is short-circuited in the da?

[] Is there any place where the soldering is immo soldering? If the body of the part is shaken and the lead at the soldering point moves, it is almost certainly immo solder. The potato solder will peel off over time, so if you find it, re-solder it.

Figure 2-5 Correct solder and immo solder

2.6. Operation check

Now, let's check the operation. To check the operation, use a tester and a device that outputs MIDI signals such as a MIDI keyboard.

Checking the Gate

signal Connect the negative side of the tester to ground. Connect the positive side to pin 1 or 2 (Gate terminal) of JP1 (lifeline connector). Don't accidentally touch the pin next to it be careful.

When nothing is done, 0V is output to the Gate terminal.

Press the keys on the keyboard one by one and check that about 5V is output to the Gate output only while you press any key. Next, when you input an arbitrary note signal from a MIDI device (such as playing a keyboard), 5V will be output to the Gate output.

Please check that it comes out.

Checking the CV

signal Connect the positive side of the tester to pin 3 or 4 (CV terminal) of JP1 (lifeline connector). increase. Be careful not to accidentally touch the pin next to it.

Set the octave switch to 0 and press the Low C key on the keyboard. Make a note of the CV voltage, then press the High C key on the keyboard. If the CV is roughly 1V larger, it is operating normally. It doesn't have to be exactly 1V because it hasn't been adjusted yet.

Then set the octave switch to 1 and press the High C key on your keyboard again. If the CV increases by about 1V, it is normal operation. Confirmation of reference sound generator

Press and hold the function switch for 1 second. It is normal if the 440Hz reference sound comes out of the speaker. To stop the reference tone, press and hold the function switch again for 1 second.

2.7.

Adjustment Offset

adjustment Connect the negative side of the tester to pin 3 or 4 (CV terminal) of JP1 (lifeline connector).

To do. Be careful not to accidentally touch the pin next to it.

Set the octave switch to 0 and press Low C on the keyboard . Turn the semi-fixed resistor R9 And adjust so that CV becomes 0V .

Then press High C on the keyboard. Turn the semi-fixed resistor R12 to adjust the CV to 1V.

Repeat this procedure several times.