Filtro de Kalman en Modelos DSGE

Juan Andrés Rincón Galvis

4 de julio de 2025

CAEP 2025, Banco de la República

Motivación

- Los modelos DSGE generan predicciones sobre variables no observables: productividad, shocks, expectativas...
- Necesitamos estimar estas variables a partir de datos observados (inflación, PIB, tipo de interés).
- Aquí entra el Filtro de Kalman, una herramienta para inferir variables ocultas a partir de series temporales ruidosas.

El problema: estados no observables

- Modelo DSGE: sistema dinámico con variables de estado x_t y variables observadas y_t
- El estado x_t no es directamente observable
- Queremos estimar x_t en cada periodo usando solo los datos observados hasta ese momento

El problema: estados no observables

- Modelo DSGE: sistema dinámico con variables de estado x_t y variables observadas y_t
- El estado x_t no es directamente observable
- Queremos estimar x_t en cada periodo usando solo los datos observados hasta ese momento

Ejemplo

¿Čuál fue el shock de política monetaria en 2008? No lo observamos directamente, pero podemos inferirlo usando datos macro.

Intuición: el Filtro como GPS

- Imaginate un GPS:
 - Tiene una predicción basada en tu velocidad anterior.
 - · Recibe una nueva medición (con ruido).
 - · Actualiza su estimación: ni solo la predicción, ni solo la medición.
- El Filtro de Kalman hace exactamente esto con variables económicas.

Intuición: el Filtro como GPS

- Imaginate un GPS:
 - Tiene una predicción basada en tu velocidad anterior.
 - · Recibe una nueva medición (con ruido).
 - · Actualiza su estimación: ni solo la predicción, ni solo la medición.
- El Filtro de Kalman hace exactamente esto con variables económicas.

Balance Predicción del modelo + datos observados \rightarrow estimación óptima del estado no observado

Estructura del Filtro de Kalman

Modelo en espacio de estados:

$$x_{t+1} = Ax_t + B\varepsilon_t$$
 (Evolución del estado)
 $y_t = Cx_t + D\eta_t$ (Ecuación de observación)

Estructura del Filtro de Kalman

Modelo en espacio de estados:

$$x_{t+1} = Ax_t + B\varepsilon_t$$
 (Evolución del estado)
 $y_t = Cx_t + D\eta_t$ (Ecuación de observación)

- *x_t*: variables de estado (no observables)
- *y_t*: variables observadas
- ε_t, η_t : ruido blanco, con varianzas conocidas

Uso en DSGE

- En modelos linealizados, podemos reescribir el modelo como un sistema lineal:
 - $x_{t+1} = Ax_t + B\varepsilon_t$
 - $y_t = Cx_t$
- Dynare y otros softwares convierten automáticamente el modelo en esta forma
- El filtro de Kalman se usa para:
 - Calcular la verosimilitud del modelo (MLE o Bayes)
 - Estimar estados no observables (shocks, productividad, expectativas...)

¿Qué nos da el Filtro de Kalman?

- Estimaciones **en tiempo real** (filtrado): $x_t|y_{1:t}$
- Estimaciones **a posteriori** (suavizamiento): $x_t|y_{1:T}$
- · Verosimilitud del modelo para estimación

¿Qué nos da el Filtro de Kalman?

- Estimaciones **en tiempo real** (filtrado): $x_t|y_{1:t}$
- Estimaciones a **posteriori** (suavizamiento): $x_t|y_{1:T}$
- · Verosimilitud del modelo para estimación

Ejemplo en Dynare

- $\bullet \ oo_. \, SmoothedShocks \to suavizamiento$
- $\bullet \ oo_. \\ Filtered Variables \rightarrow filtrado$

Ventajas y limitaciones

Ventajas:

- Algoritmo eficiente y recursivo
- Ideal para modelos lineales con errores gaussianos
- Permite estimar modelos complejos con múltiples shocks

Limitaciones:

- Supone linealidad y gaussianidad
- Puede fallar con modelos no lineales o con cambios de régimen
- Requiere una correcta especificación del modelo

Conclusiones

- El Filtro de Kalman permite conectar teoría y datos en modelos DSGE
- Estima estados ocultos y shocks estructurales
- Es la base para la estimación Bayesiana en DSGE modernos

Una herramienta indispensable en la macroeconometría estructural.

