Given a density forest with T trees trained with axis-aligned weak learners and an input value $x=x^*$:

- (1) Sample uniformly $t \in \{1, \dots, T\}$ to select a tree in the forest.
- (2) Starting at the root node descend the tree by:
 - at x-nodes applying the split function and following the corresponding branch.
 - at a y-node j random sample one of the two children according to their respective probabilities: $P_{2j+1} = \frac{|S_{2j+1}|}{|S_j|}$, $P_{2j+2} = \frac{|S_{2j+2}|}{|S_j|}$.
- (3) Repeat step 2 until a (single) leaf is reached.
- (4) At the leaf sample a value y from the domain bounded 1D conditional $p(y|x=x^*)$ of the 2D Gaussian stored at that leaf.

Algorithm 5.3: Sampling from conditionals via a forest.

Fig. 5.16: Results on conditional point sampling. Tens of thousands of random samples of y are drawn for five fixed positions in x following algorithm 5.3. In (b) the multimodal nature of the underlying conditional becomes apparent from the empirical distribution of the samples.

the estimated density $(p(\mathbf{v}))$ and the ground-truth one $(p_{\mathsf{gt}}(\mathbf{v}))$ can be carried out. The density reconstruction error is computed here as a