

FCC RADIO TEST REPORT-WIFI FCC ID: 2AF9Q-ST3007

Product: sensor mirror ST3007

Trade Name: Simplehuman

Model No.: ST3007

Serial Model: N/A

Report No.: NTEK-2016NT01254076F1

Issue Date: 10 Mar. 2016

Prepared for

simplehuman

19850 Magellan Drive, Torrance, California 90502, United States

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China

Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website:www.ntek.org.cn

TABLE OF CONTENTS

1 T	EST RESULT CERTIFICATION	3
	UMMARY OF TEST RESULTS	
	ACILITIES AND ACCREDITATIONS	
3.1	FACILITIES	
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
3.3	MEASUREMENT UNCERTAINTY	
4 G	SENERAL DESCRIPTION OF EUT	6
5 D	DESCRIPTION OF TEST MODES	8
6 S	ETUP OF EQUIPMENT UNDER TEST	10
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.2	SUPPORT EQUIPMENTEQUIPMENTS LIST FOR ALL TEST ITEMS	11
6.3		
7 T	EST REQUIREMENTS	13
7.1	CONDUCTED EMISSIONS TEST	13
7.2	RADIATED SPURIOUS EMISSION	
7.3	6DB BANDWIDTH	
7.4	20DB BANDWIDTH	
7.5	DUTY CYCLE	
7.6	MAXIMUM OUTPUT POWER	
7.7 7.8	POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT	
7.8 7.9	ANTENNA APPLICATION	

Page 3 of 63 Report No.: NTEK-2016NT01254076F1

1 **TEST RESULT CERTIFICATION**

Applicant's name:	simplehuman
Address:	19850 Magellan Drive, Torrance, California 90502, United States
Manufacture's Name:	simplehuman
Address	19850 Magellan Drive, Torrance, California 90502, United States
Product description	
Product name:	sensor mirror ST3007
Model and/or type reference:	ST3007
Serial Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J:2015		
FCC 47 CFR Part 15, Subpart C:2015		
KDB 174176 D01 Line Conducted FAQ v01r01 Complied		
ANSI C63.10-2013		
FCC KDB 558074 D01 DTS Meas Guidance v03r04		

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test 25 Jan. 2016 ~ 10 Mar. 2016

Testing Engineer

Jason Chen) **Technical Manager**

Authorized Signatory

(Sam Chen)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Maximum Output Power	PASS	
15.247 (c)	Radiated Spurious Emission	PASS	
15.247 (d)	Power Spectral Density	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2014.09.04

The certificate is valid until 2017.09.03

The Laboratory has been assessed and proved to be in compliance with

Report No.: NTEK-2016NT01254076F1

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.

Approximately Industry Canada, August 20, 2012

Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.

Name of Firm : NTEK Testing Technology Co., Ltd

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	sensor mirror ST3007		
Trade Name	Simplehuman		
Model No.	ST3007		
Serial Model	N/A		
Model Difference	N/A		
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20);		
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;		
Number of Channels	11 channels for 802.11b/g/11n(HT20);		
Antenna Type	Ceramic Chip Antenna		
Antenna Gain	1.0 dBi		
	☑DC supply: DC 3.7/7200mAh from Li-ion Battery or DC 5V from USB Port.		
Power supply	⊠Adapter supply: Model:KSA29B0500200D5 Input:100-240~,50/60Hz,0.5A Output: 5.0V==-, 2.0A		
HW Version	N/A		
SW Version	N/A		

Page 6 of 63

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Page 7 of 63

Report No.: NTEK-2016NT01254076F1

Revision History

Report No.	Version	Description	Issued Date
NTEK-2016NT01254076F1	Rev.01	Initial issue of report	Mar 10, 2016

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+k \times 5MHz k=0 to 10

The following summary table is showing all test modes to demonstrate in compliance with the standard.		
For AC Conducted Emission		
Final Test Mode	Description	
Mode 4	Link Mode	

Note: AC power line Conducted Emission was tested under maximum output power.

	For Radiated Test Cases
Final Test Mode	Description
Mode 1	802.11b CH1/ CH6/ CH11
Mode 2	802.11g CH1/ CH6/ CH11
Mode 3	802.11n HT20 CH1/ CH6/ CH11

Note: For radiated test cases, the worst mode data rate was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 1	802.11b CH1/ CH6/ CH11	
Mode 2	802.11g CH1/ CH6/ CH11	
Mode 3	802.11n HT20 CH1/ CH6/ CH11	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST STSTEM	
For AC Conducted Emission Mode	
EUT C1 Adapter	
For Radiated Test Cases	
i oi ivadiated 163t Od363	
EUT	
For Conducted Test Cases	
Measurement Attenuator EUT	
Instrument Attenuator EUI	

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: NTEK-2016NT01254076F1

icolo.					
Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
1	sensor mirror ST3007	Simplehuman	ST3007	2AF9Q-ST3007	EUT
2	Adapter	N/A	KSA29B0500200D5	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C1	USB Cable	NO	NO	1.2m
C2	RF Cable	NO	NO	0.3m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.06.07	2016.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.07.06	2016.07.05	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2015.07.06	2016.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2015.07.06	2016.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2015.07.06	2016.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2015.07.06	2016.07.05	1 year
14	Test Receiver	R&S	ESCI	101160	2015.06.06	2016.06.05	1 year
15	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year
16	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year
17	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.07	2016.06.06	1 year
18	Passive Voltage Probe	R&S	ESH2-Z3	100196	2015.06.07	2016.06.06	1 year
19	Absorbing clamp	R&S	MOS-21	100423	2015.06.08	2016.06.07	1 year
20	Test Cable	N/A	C01	N/A	2015.06.08	2016.06.07	1 year
21	Test Cable	N/A	C02	N/A	2015.06.08	2016.06.07	1 year
22	Test Cable	N/A	C03	N/A	2015.06.08	2016.06.07	1 year
23	Attenuation	MCE	24-10-34	BN9258	2015.06.08	2016.06.07	1 year

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanov(MHz)	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Humidity:

56 %

7.1.6 **Test Results**

AC 120V/60Hz

Page 14 of 63

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Mode: WIFI Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.1740	38.63	10.12	48.75	64.76	-16.01	QP	
2		0.1740	26.56	10.12	36.68	54.76	-18.08	AVG	
3		0.2060	34.68	10.13	44.81	63.36	-18.55	QP	
4		0.2060	21.56	10.13	31.69	53.36	-21.67	AVG	
5		0.5899	30.04	9.79	39.83	56.00	-16.17	QP	
6	*	0.5899	21.87	9.79	31.66	46.00	-14.34	AVG	
7		1.1460	30.30	9.83	40.13	56.00	-15.87	QP	
8		1.1460	19.53	9.83	29.36	46.00	-16.64	AVG	
9		2.4219	28.51	9.73	38.24	56.00	-17.76	QP	
10		2.4219	16.38	9.73	26.11	46.00	-19.89	AVG	
11		3.6900	26.68	9.75	36.43	56.00	-19.57	QP	
12		3.6900	15.37	9.75	25.12	46.00	-20.88	AVG	

Power:

Page 15 of 63

Report No.: NTEK-2016NT01254076F1

Humidity:

Power:

AC 120V/60Hz

Site NTEK 9*6*6 Chamber #1

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

M/N: ST3007 Mode: WIFI Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.1740	37.04	10.05	47.09	64.76	-17.67	QP	
2		0.1740	22.33	10.05	32.38	54.76	-22.38	AVG	
3		0.2060	34.05	10.03	44.08	63.36	-19.28	QP	
4		0.2060	20.02	10.03	30.05	53.36	-23.31	AVG	
5		0.5580	29.50	9.82	39.32	56.00	-16.68	QP	
6		0.5580	18.13	9.82	27.95	46.00	-18.05	AVG	
7	*	1.0700	30.50	9.86	40.36	56.00	-15.64	QP	
8		1.0700	18.68	9.86	28.54	46.00	-17.46	AVG	
9		2.4620	28.93	9.74	38.67	56.00	-17.33	QP	
10		2.4620	16.21	9.74	25.95	46.00	-20.05	AVG	
11		3.8220	26.77	9.72	36.49	56.00	-19.51	QP	
12		3.8220	14.69	9.72	24.41	46.00	-21.59	AVG	

Page 16 of 63

Report No.: NTEK-2016NT01254076F1 Limit: AVG:

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

AC 230V/50Hz Power:

Humidity:

56 %

Mode: WIFI Note:

No. N	Иk. I	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1	0.	1500	18.52	10.12	28.64	55.99	-27.35	AVG	
2	0.	1660	34.35	10.12	44.47	65.15	-20.68	QP	
3	0.	1660	20.70	10.12	30.82	55.15	-24.33	AVG	
4	0.	1940	31.08	10.13	41.21	63.86	-22.65	QP	
5	0.	1940	18.60	10.13	28.73	53.86	-25.13	AVG	
6	0.	5180	30.28	9.80	40.08	56.00	-15.92	QP	
7 *	* 0.	5180	22.73	9.80	32.53	46.00	-13.47	AVG	
8	1.	1500	30.77	9.83	40.60	56.00	-15.40	QP	
9	2.	4219	28.10	9.73	37.83	56.00	-18.17	QP	
10	2.	4219	16.16	9.73	25.89	46.00	-20.11	AVG	
11	3.	8820	27.49	9.75	37.24	56.00	-18.76	QP	
12	3.	8820	15.66	9.75	25.41	46.00	-20.59	AVG	

Page 17 of 63

Report No.: NTEK-2016NT01254076F1

56 %

Site NTEK 9*6*6 Chamber #1

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Mode: WIFI

AC 230V/50Hz Humidity: Power: Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1	0.1740	35.07	10.05	45.12	64.76	-19.64	QP	
2	0.1740	20.69	10.05	30.74	54.76	-24.02	AVG	
3	0.2060	32.32	10.03	42.35	63.36	-21.01	QP	
4	0.2060	18.20	10.03	28.23	53.36	-25.13	AVG	
5 *	0.5660	30.17	9.82	39.99	56.00	-16.01	QP	
6	0.5660	18.78	9.82	28.60	46.00	-17.40	AVG	
7	1.1580	29.99	9.85	39.84	56.00	-16.16	QP	
8	1.1580	18.47	9.85	28.32	46.00	-17.68	AVG	
9	2.4980	27.85	9.74	37.59	56.00	-18.41	QP	
10	2.4980	16.02	9.74	25.76	46.00	-20.24	AVG	
11	3.7940	26.62	9.72	36.34	56.00	-19.66	QP	
12	3.7940	14.17	9.72	23.89	46.00	-22.11	AVG	

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

, 1000 and 100	o, receired barrae		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

restricted baria specified off	13.203(a), then the 13.200	naj ilitili ili ilic iabic below i	ias to be followed.
Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	(m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer setting	ng spectrum analyzer settir	nas:
---	-----------------------------	------

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	sensor mirror ST3007	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Report No.: NTEK-2016NT01254076F1

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

Page 22 of 63

Site NTEK 9*6*6 Chamber #1 Limit: FCC_PART15_B_03m_QP Polarization: Vertical
Power: AC 120V/60Hz

Humidity: 50 %

Temperature:

Reading Correct Measure-Antenna Table No. Mk. Freq. Limit Over Height Level Factor ment Degree MHz dBuV dB dBuV/m dBuV/m Detector degree Comment 44.4307 22.20 12.22 34.42 40.00 -5.58 QP 2 61.9951 28.74 5.83 34.57 40.00 -5.43 QP -7.72 3 69.3568 23.63 8.65 32.28 40.00 QP 10.72 43.50 QP 4 126.3286 26.02 36.74 -6.76165.4866 22.52 11.83 34.35 43.50 -9.15 QP 5 6 189.0742 22.46 11.38 33.84 43.50 -9.66 QP

Page 23 of 63

MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 33.2111 9.52 18.05 27.57 40.00 -12.43 QP 2 44.1200 16.08 12.54 28.62 40.00 -11.38 QP 3 60.9176 21.02 6.01 27.03 40.00 -12.97 QP 4 123.2655 21.94 10.61 32.55 43.50 -10.95 QP 5 * 199.2855 23.76 11.47 35.23 43.50 -8.27 QP 6 280.0237 12.66 11.95 24.61 46.00 -21.39 QP	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
2 44.1200 16.08 12.54 28.62 40.00 -11.38 QP 3 60.9176 21.02 6.01 27.03 40.00 -12.97 QP 4 123.2655 21.94 10.61 32.55 43.50 -10.95 QP 5 * 199.2855 23.76 11.47 35.23 43.50 -8.27 QP			MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
3 60.9176 21.02 6.01 27.03 40.00 -12.97 QP 4 123.2655 21.94 10.61 32.55 43.50 -10.95 QP 5 * 199.2855 23.76 11.47 35.23 43.50 -8.27 QP	1		33.2111	9.52	18.05	27.57	40.00	-12.43	QP			
4 123.2655 21.94 10.61 32.55 43.50 -10.95 QP 5 * 199.2855 23.76 11.47 35.23 43.50 -8.27 QP	2		44.1200	16.08	12.54	28.62	40.00	-11.38	QP			
5 * 199.2855 23.76 11.47 35.23 43.50 -8.27 QP	3		60.9176	21.02	6.01	27.03	40.00	-12.97	QP			
- 100,200 200 100 100 202	4		123.2655	21.94	10.61	32.55	43.50	-10.95	QP			
6 280.0237 12.66 11.95 24.61 46.00 -21.39 QP	5	*	199.2855	23.76	11.47	35.23	43.50	-8.27	QP			
	6		280.0237	12.66	11.95	24.61	46.00	-21.39	QP			

Page 24 of 63 Report No.: NTEK-2016NT01254076F1

■ Spurious Emission Above 1GHz (1GHz to 27GHz)							
EUT:	sensor mirror ST3007	Model No.:	ST3007				
Temperature:	20 ℃	Relative Humidity:	48%				
Test Mode:	Mode1/Mode2/Mode3	Test Bv:	Eileen Liu				

Test Mode: | Mode1/Mode2/Mode3 | Test By: | Eileen Liu All the modulation modes have been tested, and the worst result was report as below:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
		Low Char	nnel (241	2 MHz)-Abov	e 1G		
Vertical	4824.246	53.26	10.44	63.70	74.00	-10.30	Pk
Vertical	4824.246	32.41	10.44	42.85	54.00	-11.15	Av
Vertical	7236.121	50.28	12.39	62.67	74.00	-11.33	Pk
Vertical	7236.121	32.46	12.39	44.85	54.00	-9.15	Av
Horizontal	4824.329	52.47	10.44	62.91	74.00	-11.09	Pk
Horizontal	4824.329	32.65	10.44	43.09	54.00	-10.91	Av
Horizontal	7236.114	45.98	12.39	58.37	74.00	-15.63	Pk
Horizontal	7236.114	31.24	12.39	43.63	54.00	-10.37	Av
		Mid Char	nel (243)	7 MHz)-Above	9 1G		
Vertical	4874.187	52.24	10.40	62.64	74.00	-11.36	Pk
Vertical	4874.187	33.66	10.40	44.06	54.00	-9.94	Av
Vertical	7311.285	48.91	12.75	61.66	74.00	-12.34	Pk
Vertical	7311.285	32.15	12.75	44.90	54.00	-9.10	Av
Horizontal	4874.103	55.82	10.40	66.22	74.00	-7.78	Pk
Horizontal	4874.103	30.21	10.40	40.61	54.00	-13.39	Av
Horizontal	7311.108	48.96	12.75	61.71	74.00	-12.29	Pk
Horizontal	7311.108	30.67	12.75	43.42	54.00	-10.58	Av
		High Chai	nnel (246	2 MHz)- Abov	e 1G		
Vertical	4924.237	49.84	10.39	60.23	74.00	-13.77	Pk
Vertical	4924.237	29.86	10.39	40.25	54.00	-13.75	Av
Vertical	7386.133	47.41	12.68	60.09	74.00	-13.91	Pk
Vertical	7386.133	29.65	12.68	42.33	54.00	-11.67	Av
Horizontal	4924.198	51.2	10.39	61.59	74.00	-12.41	Pk
Horizontal	4924.198	31.29	10.39	41.68	54.00	-12.32	Av
Horizontal	7386.324	47.85	12.68	60.53	74.00	-13.47	Pk
Horizontal	7386.324	29.57	12.68	42.25	54.00	-11.75	Av

Page 25 of 63

Report No.: NTEK-2016NT01254076F1

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz							
EUT: sensor mirror ST3007 Model No.: ST3007							
Temperature:	20 ℃	Relative Humidity:	48%				
Test Mode:	Mode1/Mode2/Mode3/Mode4	Test By:	Eileen Liu				

All the modulation modes were tested, the data of the worst mode are described in the following table

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			802.11	b			
2390	60.23	-13.06	47.17	74	-26.83	peak	Vertical
2390	60.14	-13.06	47.08	74	-26.92	peak	Horizontal
2483.5	59.97	-12.78	47.19	74	-26.81	peak	Vertical
2483.5	60.39	-12.78	47.61	74	-26.39	peak	Horizontal
			802.11	g			
2390	59.52	-13.06	46.46	74	-27.54	peak	Vertical
2390	60.34	-13.06	47.28	74	-26.72	peak	Horizontal
2483.5	60.22	-12.78	47.44	74	-26.56	peak	Vertical
2483.5	60.47	-12.78	47.69	74	-26.31	peak	Horizontal
			802.11n(20)			
2390	60.21	-13.06	47.15	74	-26.85	peak	Vertical
2390	60.21	-13.06	47.15	74	-26.85	peak	Horizontal
2483.5	59.56	-12.78	46.78	74	-27.22	peak	Vertical
2483.5	59.68	-12.78	46.9	74	-27.10	peak	Horizontal

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \geq 3^*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	sensor mirror ST3007	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/Mode4	Test By:	Eileen Liu

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result					
		802.11b							
1	2412	9.556	500	Pass					
6	2437	9.634	500	Pass					
11	2462	10.125	500	Pass					
		802.11g							
1	2412	16.388	500	Pass					
6	2437	16.390	500	Pass					
11	2462	16.438	500	Pass					
	802.11n HT20								
1	2412	17.610	500	Pass					
6	2437	17.620	500	Pass					
11	2462	17.606	500	Pass					

View

Blank

7.4 20DB BANDWIDTH

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \geq 3^*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	PCB-i316
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Channel	Frequency (MHz)	20dB bandwidth (kHz)	Limit (kHz)	Result		
802.11b						
1	2412	15612.000	N/A	Pass		
6	2437	15179.000	N/A	Pass		
11	2462	15174.000	N/A	Pass		
802.11g						
1	2412	17463.000	N/A	Pass		
6	2437	17833.000	N/A	Pass		
11	2462	17630.000	N/A	Pass		
802.11n HT20						
1	2412	18407.000	N/A	Pass		
6	2437	18480.000	N/A	Pass		
11	2462	18601.000	N/A	Pass		

7.5 DUTY CYCLE

7.5.1 Applicable Standard

According to KDB 558074)6)b), issued 06/09/2015

7.5.2 Conformance Limit

No limit requirement.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/09/2015)

The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Zero Span

RBW = 8MHz(the largest available value)

VBW = 8MHz (≥ RBW)

Number of points in Sweep >100

Detector function = peak

Trace = Clear write

Measure T_{total} and T_{on}

Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

7.5.6 Test Results

EUT: sensor mirror ST3007 Model No.: ST3007

Temperature: 20 °C Relative Humidity: 48%

Test Mode: Mode1/Mode2/Mode3 Test By: Eileen Liu

Mode	Data rate	Channel	T_{on}	T_{total}	Duty Cycle	Duty Cycle Factor (dB)
802.11b	1Mbps	6	1.283	1.353	0.9483	0.023
802.11g	6Mbps	6	1.387	1.437	0.9652	0.015
802.11n HT20	MCS0	6	1.290	1.347	0.9577	0.019

Note: All the modulation modes were tested, the data of the worst mode are described in the following table.

7.6 MAXIMUM OUTPUT POWER

7.6.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.6.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04 section 9.2.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1-5% of the OBW, not to exceed 1MHz.
- d) Set VBW ≥3 x RBW.
- e) Number of points in sweep ≥ 2x span / RBW.

(This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)

- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

7.6.6 Test Results

EUT:	sensor mirror ST3007	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Setting	Average Output Power (dBm)	LIMIT (dBm)	Verdict	
			802.11b			
1	2412	default	12.62	30	PASS	
6	2437	default	12.65	30	PASS	
11	2462	default	12.98	30	PASS	
	802.11g					
1	2412	default	11.78	30	PASS	
6	2437	default	11.93	30	PASS	
11	2462	default	12.03	30	PASS	
802.11n HT20						
1	2412	default	10.64	30	PASS	
6	2437	default	10.58	30	PASS	
11	2462	default	10.72	30	PASS	

7.7 POWER SPECTRAL DENSITY

7.7.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.7.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set VBW ≥3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducin

7.7.6 Test Results

EUT:	sensor mirror ST3007	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Verdict	
		802.11b			
1	2412	-17.62	8	PASS	
6	2437	-17.53	8	PASS	
11	2462	-16.70	8	PASS	
		802.11g			
1	2412	-21.10	8	PASS	
6	2437	-20.80	8	PASS	
11	2462	-21.21	8	PASS	
802.11n HT20					
1	2412	-22.84	8	PASS	
6	2437	-22.95	8	PASS	
11	2462	-23.23	8	PASS	

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	sensor mirror ST3007	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Frequency Band	Delta Peak to band emission(dBc)	>Limit(dBc)	Verdict				
	802.11b						
2400	58.54	20	Pass				
2483.5	61.28	20	Pass				
	802.11g						
2400	43.68	20	Pass				
2483.5	53.15	20	Pass				
802.11n HT20							
2400	48.73	20	Pass				
2483.5	51.53	20	Pass				

Page 63 of 63

Report No.: NTEK-2016NT01254076F1

7.9 ANTENNA APPLICATION

Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END OF REPORT