Experimental and theoretical approaches to study plant reproductive diversity

University of Campinas, São Paulo, Brazil. 20-22 March, 2017

Mario Vallejo-Marín

Summary

The goal of this course is to provide students with a general overview and basic understanding of some of the methods and approaches available to study plant reproductive diversity. I will focus on some of the less studied and most challenging aspects of studying reproductive diversity. In the first day we will focus on experimental studies on **buzz-pollination**, a widespread but little known pollination system in which bees use high frequency vibrations to extract pollen. In the second day, we will talk about **plants that combine sexual and asexual reproductive modes**. We will discuss the challenges of measuring fitness in perennial, clonal plants, and provide some theoretical and statistical tools developed for studying clonal populations. Finally, in the third day we will focus on **estimating male reproductive success via male function**. Although most flowering plants are hermaphrodites, male components of fitness are rarely considered, in part because they are hard to measure. Here we will explain some of the approaches (experimental and theoretical) available to study male fitness.

The course will be delivered through a mix of lectures, discussion groups, data collection in the field, and computer exercises.

- 1) Experimental approaches: A case study with buzz-pollination¹⁻³
 - a. Floral adaptations to buzz-pollination
 - b. Pollinator behaviour and learning
 - c. Analysis of vibrations
- 2) Sexual vs. asexual strategies⁴⁻⁶
 - a. Reproductive allocation trade-offs
 - b. Asexual strategies: What is fitness and how to measure it?
 - c. Challenges to measure fitness in perennial, clonal plants
 - d. Life-table response experiments
- 3) Estimating reproductive success via male function^{7,8}
 - a. Indirect approaches: pollen dyes, flower number
 - b. Genetic approaches: phenotypic markers,
 - c. Genetic approaches: paternity analysis

Seminar

Hybridisation and speciation under global change

Schedule

Monday 20 th N	March Buzz-pollinatio	You need:		
9:00am	Lecture: Buzz-pollination	Introduction		
		Methods (theory)		
10:00am	Computer practical	Using Audacity	Computer with Audacity installed	
		Machine Learning	Practical Handouts	
11:00am	Field exercise	Collect bee buzzes	Audio recorder; plastic vials, entomological net, field notes	
		Analyse buzzes using Audacity	Computer	
2:00pm	Lunch break			
4:00pm	Paper discussion	Bee learning. Morgan et al. (2016)	Read paper in advance	
5:00pm	Round table discussion	What is learning? How to experimentally study pollinator learning?	Background reading on insect learning would recommended.	

Tuesday 21 th	March Fitness in clonal p	You need:	
9:00am	Lecture: Clonal reproduction	Introduction	
		Effect of clonality on sexual	
		strategies	
10:00am	Paper discussion	Fitness in clonal organisms. Pan	Read paper in advance
		and Price (2001)	
11:00am	Lecture: Demographic	Measuring fitness in clonal plants	
	approaches to fitness	using population matrices	
1:00pm	Practical: Estimating clonal	Case study using clonal	Computer with: R, RStudio, popbio
	fitness	monkeyflowers	
		Using the program popbio	
2:00pm	Lunch break		
4:00pm	Group miniproject	Analysis of demography using	Computer with R, internet access.
		COMPADRE	

		Literature review of measuring fitness in clonal plants	
5:00pm	(Optional) Using R, RStudio	Using RStudio to organise statistical analyses in R	Computer, RStudio

Wednesday 22 th March Estimating male fitness			You need:
9:00am	Lecture: Fitness in hermaphrodites, mating system	Introduction	
		Estimating outcrossing rates	
10:00am	Lecture: Estimating paternity	Parentage analysis	
		Maximum likelihood and Bayesian approaches	
11:00am	Field exercise: Pollen flow using dyes	Use dyes to distinguish self- vs. cross- pollen	Fluorescent dyes (provided), UV lamp (provided), entomological net, dissecting microscope, plastic vials, ice, ice-container. Flowers, bees, flies.
		Use dyes to detect safe-sites on pollinators bodies	
2:00pm	Lunch break		
3:00pm	Paper discussion	Parentage analysis. Jones et al. (2009)	Read paper in advance
4:00pm	Round table: Future challenges to measure plant paternity		Computer, internet access
5:00pm	(Optional) Reproducible research: Primer on using RMarkdown	Using the program <i>RStudio</i> to generate <i>RMarkdown</i> documents	Computer, RStudio

Bibliography

- De Luca, P. A. & Vallejo-Marín, M. What's the 'buzz'about? The ecology and evolutionary significance of buzz-pollination. *Current opinion in plant biology* **16**, 429-435 (2013).
- Buchmann, S. L. in *Handbook of Experimental Pollination Biology* (eds C. E. Jones & R. J. Little) 73-113 (Scientific and Academic Editions, 1983).
- Harder, L. D. & Barclay, R. M. R. The functional significance of poricidal anthers and buzz pollination: Controlled pollen removal from Dodecatheon. *Functional Ecology* **8**, 509-517 (1994).
- Vallejo-Marin, M., Dorken, M. E. & Barrett, S. C. H. The Ecological and Evolutionary Consequences of Clonality for Plant Mating. *Annual Review of Ecology Evolution and Systematics* **41**, 193-213, doi:10.1146/annurev.ecolsys.110308.120258 (2010).
- Pan, J. J. & Price, J. S. Fitness and evolution in clonal plants: the impact of clonal growth. *Evolutionary Ecology* **15**, 583-600 (2001).
- Peterson, M. L., Kay, K. M. & Angert, A. L. The scale of local adaptation in Mimulus guttatus: comparing life history races, ecotypes, and populations. *New Phytol* **211**, 345-356, doi:10.1111/nph.13971 (2016).
- Jones, A. G., Small, C. M., Paczolt, K. A. & Ratterman, N. L. A practical guide to methods of parentage analysis. *Mol Ecol Resour* **10**, 6-30, doi:10.1111/j.1755-0998.2009.02778.x (2010).
- Jones, A. G. & Ardren, W. R. Methods of parentage analysis in natural populations. *Mol Ecol* **12**, 2511-2523 (2003).