Universidade Federal do Rio de Janeiro Departamento de Engenharia Eletrônica e de Computação EEL535 - Teoria Eletromagnética II Prova 1 - Dia 25/04/2017 - Duração: 180 minutos

Questão 1 (30 pontos)

Equações de Maxwell

- (a) (10 pontos) Suponha uma carga pontual Q, está localizada na origem. Assim sendo, mostre que div D = 0 para todos os pontos exceto para a origem. Substitua a carga pontual Q por uma densidade volumétrica de carga uniforme ρ_v (distribuída entre $0 < r \le r_1$), relacione ρ_v com Q e r_1 de modo que a carga total seja a mesma e determine div D para todos os pontos.
- (b) (10 pontos) Quatro cargas pontuais de 0,8 nC são posicionadas no **espaço livre** nos vértices de um quadrado de 4 cm de lado. Determine a energia potencial total armazenada e, se uma quinta carga, também de 0,8 nC, fosse posicionada no centro do quadrado, qual seria a energia potencial total armazenada, nessa nova configuração?
- (c) (10 pontos) Suponha um filamento quadrado **perfeitamente** condutor contendo um pequeno resistor de 500 Ω com 0,5 m de lado posicionado sobre o plano xy (com z=0). Determine a corrente no filamento (i(t)) se o campo magnético (B) for $B_1=0,3cos(120\pi t-30^o)\hat{z}$ T, $B_2=0,4cos(\pi(ct-y))\hat{z}$ μT , onde $c=3\cdot 10^8$ m/s

Questão 2 (40 pontos)

Propagação de Ondas Planas

- (a) (10 pontos) Seja $\mu = 3, 0 \cdot 10^5 \ H/m$, $\epsilon = 1, 2 \cdot 10^{10} \ F/m$ e $\sigma = 0$. Se $H = 2\cos(10^{10}t \beta x)\hat{z} \ A/m$, determine **B**, **D**, **E** e β
- (b) (15 pontos) No **espaço livre**, com $\sigma = 0$, $\rho_v = 0$ e J = 0. Considere o sistema de **coordenadas cartesianas**, no qual E e H são ambos funções apenas de z e t. Assim sendo, se $E = E_y \hat{y}$ e $H = H_x \hat{x}$, determine a EDO que E_y deve satisfazer. Além disso, mostre que $E_y = 5(300t + bz)^2$ é uma solução para a EDO para um valor particular de b e determine esse valor
- (c) (15 pontos) Dois condutores cilíndricos perfeitos com raios de 8 mm e 20 mm, respectivamente, são coaxiais. A região entre os cilindros é preenchida por um dielétrico perfeito, com $\epsilon = \frac{1}{4\pi} \cdot 10^{-9} \ F/m$ e $\mu_R = 1$. Se $E = (500/\rho)cos(\omega t 4z)\hat{\rho} \ V/m$, determine: ω , $H(\rho, z, t)$ e $\mathcal{P}(\rho, z, t)$

Questão 3 (30 pontos)

Reflexão de Ondas Planas

(a) (10 pontos) Uma onda plana uniforme se propaga no espaço livre ($\eta_0 \simeq 376, 7288\Omega$) incide normalmente em uma região com cobre ($\mu = 4\pi \cdot 10^7 \ H/m \ e \ \sigma = 5, 8 \cdot 10^7 \ S/m$) para z = 0. A onda incidente tem $E_1^+ = E_{10}^+ cos(10^{10}t - \beta t) \ V/m$, assim sendo, qual

- a porcentagem da densidade de potência incidente é transmitida para dentro do cobre?
- (b) (10 pontos) Uma onda plana uniforme na região 1 é normalmente incidente na fronteira planar que separa as regiões 1 e 2. Se $\epsilon_1'' = \epsilon_2'' = 0$ enquanto $\epsilon_1' = \mu_1$ e $\epsilon_2' = \mu_2$. Calcule a taxa ϵ_2'/ϵ_1' se 20% da energia da onda incidente são **refletidos** na fronteira. E quantas respostas são possíveis?
- (c) (10 pontos) A região z < 0 tem os seguintes parâmetros: $\epsilon'_R = \mu_R = 1$ e $\epsilon''_R = 0$. O campo total E, nessa região é dado pelo somatório de duas ondas planas uniformes, tal como: $E_S = 150e^{-j10z}\hat{x} + (50\angle 20^o)e^{j10z}\hat{x} \ V/m$. Nessas condições, qual a frequência de operação? E qual a impedência intrínseca da região para z > 0 que fornece a onda refletica apropriada?

Questão Bônus 4 (10 pontos)

Prove o teorema do divergente pela Lei de Gauss.