MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2010 SOLUTION KEY

Team Round - continued

- B) Raising *A* and *B* to the 2008*2009 power gives us 2008!²⁰⁰⁹ and 2009!²⁰⁰⁸ respectively. Dividing by $2008!^{2008}$, we have 2008! and 2009^{2008} .

 Observe that $2008! = 2008 \cdot 2007 \cdot ... \cdot 2 \cdot 1$ (2008 factors), but $2009^{2008} = 2009 \cdot 2009 \cdot ... \cdot 2009$ Thus, $B = \frac{2009}{2009!}$ is larger. Similarly C > B and we have C is the largest.
- C) Let $\alpha = Arc \cos\left(-\frac{3}{5}\right)$ and $\beta = Arc \sin\left(-\frac{7}{25}\right)$. As indicated in the diagram below, $90 < \alpha < 180$ (quadrant 2) and $-90 < \beta < 0$ (quadrant 4).

$$\cos\left(2Arc\cos\left(-\frac{3}{5}\right) + Arc\sin\left(-\frac{7}{25}\right)\right) = \cos(2\alpha + \beta) = \cos 2\alpha \cos \beta - \sin 2\alpha \sin \beta$$

$$= \left(1 - 2\sin^2 \beta\right)\cos \beta - \left(2\sin \alpha \cos \beta\right)\sin \beta = \left(1 - 2\left(\frac{4}{5}\right)^2\right) \cdot \frac{24}{25} - 2 \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot -\frac{7}{25}$$

$$= \left(1 - \frac{32}{25}\right) \cdot \frac{24}{25} - \frac{24 \cdot 7}{25^2} = -\frac{2 \cdot 24 \cdot 7}{25^2} = -\frac{336}{625} \quad \text{(or } \underline{-0.5376}\text{)}$$