0#进程和盘交换区

同济大学计算机系 操作系统作业 学号 2154312 2023-11-22

姓名 郑博远

例题: 假设某UNIX 系统中只存在4 个进程,分别是: 睡眠中的0#进程,正在CPU 上执行的pa 进程,内存中就绪状态的pb 进程(CPU bound,不会IO),盘交换区上低优先级睡眠的pc 进程。已知,当前时刻T=1000.5 s,内存空间已满。请尽量详细地分析以下时刻系统中与进程调度和中断相关的行为,并修改下表中的相关字段。

(1) 1000.5 s, 现运行进程pa 执行read (读文件) 系统调用

(2) 1001.5 s, pc等待的IO操作完成

序号	占用空间	优先数	状态	位置	p_time
0#	-	-100	高睡 (RunOut)	SLOAD	-
ра	100K	103	执行	SLOAD	2
pb	10K	101	就绪	SLOAD	2
рс	60K	90	低睡	~SLOAD	3

解:

(1) 1000.5 s, 现运行进程pa 执行read (读文件) 系统调用

1000.5s, 现运行进程pa执行read (读文件)系统调用,高优先权入睡 (p_stat = SSLEEP, p_pri = -50),放弃CPU。随后,系统选中pb进程,因为它是内存中就绪的唯一进程。表格修改如下:

序号	占用空间	优先数	状态	位置	p_time
0#	-	-100	高睡 (RunOut)	SLOAD	-
ра	100K	-50	高睡 SSLEEP	SLOAD	2

pb	10K	101	执行	SLOAD	2	
рс	60K	90	低睡	~SLOAD	3	

1001.0s, 现运行进程 pb 执行整数秒时钟中断处理程序, 会++所有进程的 p_time。修正用户态进程的优先数, pb此轮执行了 0.5s, p_cpu增加30, 整数 秒时减20。总的效果: p_cpu加了10。整除16后, p_pri可能是102, 也可能是 101。表格修改如下:

序号	占用空间	优先数	状态	位置	p_time
0#	-	-100	高睡 (RunOut)	SLOAD	-
ра	100K	-50	高睡 SSLEEP	SLOAD	3
pb	10K	101/102	执行	SLOAD	3
рс	60K	90	低睡	~SLOAD	4

(2) 1001.5 s, pc等待的IO操作完成

1001.5 s_o

- 现运行进程pb执行中断处理程序,唤醒pc,同时唤醒 0#进程。
- 中断处理程序执行完毕后,pb将CPU让给0#进程执行sched ()。0#进程为盘交换区上的pc进程分配内存空间。首先找内存中低睡(SWAIT)或SSTOP(暂停)的进程,未果。pc的p_time达到4s,值得为它换出内存中高优先级或就绪的进程。pa的p_time达到3s,入选。0#进程首先换出pa,之后换入盘交换区上的pc(放在pa原先占据的内存区域)*。
- 完成对换操作后,0#进程 sleep(&Runout,-100)入睡,执行swtch () 将 CPU让给内存中就绪的pc进程。pc执行系统调用后半部。完成后,
- pc和pb时间片轮转,轮流执行应用程序。

表格修改如下:

*处的细节,不要求掌握。 就是换入、换出过程中,0#进程会睡眠等待IO结束的,此时pb使用CPU,是现运行进程。一旦IO完成,pb立即将CPU让给0#进程,因为它优先级最高。

序号	占用空间	优先数	状态	<u>位置</u>	p_time
<u>0#</u>	<u>-</u>	<u>-100</u>	高睡 (RunOut)	SLOAD	<u>-</u>
<u>pa</u>	<u>100K</u>	<u>-50</u>	高睡 SSLEEP	~SLOAD	<u>0</u>
<u>pb</u>	<u>10K</u>	101/102	就绪 SRUN	SLOAD	<u>3</u>
pc	<u>60K</u>	<u>90</u>	<u>执行 SRUN</u>	SLOAD	<u>0</u>

完成后, pc与pb时间片流转, 执行应用程序:

序号	占用空间	优先数	状态	位置	p_time
0#	-	-100	高睡 (RunOut)	SLOAD	-
ра	100K	-50	高睡 SSLEEP	~SLOAD	0
pb	10K	101/102	执行 SRUN	SLOAD	3
рс	60K	100+	就绪 SRUN	SLOAD	0

习题: T0 时刻,某 UNIX V6++系统进程状态如下表所示。内存空间已满,除图示空间外,其余空间不可用。请尽量详细地分析以下时刻系统中与进程调度和对换操作(swap in,swap out)相关的行为,并修改下表中的相关字段。本题不考虑时钟中断。1 小题,2 小题相关。

序号	占用空间	状态	位置	内存起始地址
0#	-	高睡(RunOut)	SLOAD	***
p1	40K	低睡	SLOAD	0x00408000
p2	30K	执行	SLOAD	0x00430000
р3	30K	低睡	~SLOAD	0x00450000

(1) T0 时刻,现运行进程 p2 执行 read 系统调用读磁盘文件(磁盘高速缓存中没有 p2 需要的文件数据)

答: T0 时刻,现运行进程 p2 执行 read (读文件) 系统调用,高优先权入睡 (p_stat = SSLEEP, p_pri = -50),放弃 CPU。随后,CPU 空闲,因为内存中没有就绪进程,所有进程均在睡眠状态。0#进程成为现运行进程,idle 期间负责中断处理事务,主要是两件事: 1. 调整时钟; 2. 唤醒 I/O 操作结束或闹钟到期的进程。表格修改如下:

序号	占用空间	状态	位置	内存起始地址
0#	-	高睡(RunOut)	SLOAD	***
p1	40K	低睡	SLOAD	0x00408000
p2	30K	高睡	SLOAD	0x00430000
рЗ	30K	低睡	~SLOAD	0x00450000

(2)T1 时刻, 已完成 read 系统调用的 p2 进程运行在用户态。p3 等待的 I/O 操作完成。

答: 在 T1 时刻, 现运行进程 p2 执行中断处理程序, 唤醒 p3, 同时唤醒 0#进程。

中断处理程序执行完毕后, p2 将 CPU 让给 0#进程执行 sched ()。0#进程为盘交换区上的 p3 进程分配内存空间。首先找内存中低睡(SWAIT)或暂停(SSTOP)的进程, p1 为内存中的低睡进程, 入选。0#进程首先换出 p1, 之后换入盘交换区上的 p3 (放在 p1 原先占据的内存区域)。

序号	占用空间	状态	位置	内存起始地址
0#	_	高睡(RunOut)	SLOAD	***
p1	40K	低睡	~SLOAD	0x00408000
p2	30K	<u>执行</u>	SLOAD	0x00430000
рЗ	30K	就绪	SLOAD	<u>0x00408000</u>

完成对换操作后,0#进程 sleep(&Runout,-100)入睡,执行 swtch()将 CPU 让 给内存中就绪的 p3 进程。p3 执行系统调用后半部。完成后,p2 和 p3 时间片轮转,轮流执行应用程序。

序号	占用空间	<u>状态</u>	位置	内存起始地址
0#	Ξ	高睡 (RunOut)	SLOAD	***
<u>p1</u>	<u>40K</u>	低睡	~SLOAD	<u>0x00408000</u>
<u>p2</u>	<u>30K</u>	就绪	SLOAD	<u>0x00430000</u>
<u>p3</u>	<u>30K</u>	执行	SLOAD	<u>0x00408000</u>