(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-26698 (P2000-26698A)

(43)公開日 平成12年1月25日(2000.1.25)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

C08L 53/02 C08F 297/04 C08L 53/02

4 J O O 2

C08F 297/04

4 J O 2 6

審査請求 未請求 請求項の数5 OL (全 11 頁)

(21)出願番号

特願平10-197017

(71)出願人 000003296

電気化学工業株式会社

(22)出願日 平成10年7月13日(1998.7.13)

東京都千代田区有楽町1丁目4番1号

(72)発明者 松井 正光

千葉県市原市五井南海岸6番地 電気化学

工業株式会社千葉工場内

(72)発明者 後藤 陽介

千葉県市原市五井南海岸6番地 電気化学

工業株式会社千葉工場内

(72)発明者 渡部 秀樹

千葉県市原市五井南海岸6番地 電気化学

工業株式会社千葉工場内

最終頁に続く

(54) 【発明の名称】 プロック共重合体組成物、及びその製造方法

(57)【要約】

【課題】 透明性、耐衝撃性、およびフィルム製膜性に 優れたブロック共重合体組成物、及びその製造方法を提 供する。

【解決手段】分子量分布曲線のピーク部の分子量(Mp)が50、000~600、000であるビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(I)を50~95重量%、Mpが5、000~300、000であってブロック共重合体(I)のMp以下であるビニル芳香族炭化水素重合体あるいはビニル芳香族炭化水素と共役ジエンのブロック共重合体から選ばれた1種以上の重合体(II)を5~50重量%含むブロック共重合体組成物であって、含まれる共役ジエン単位が該ブロック共重合体組成物に対して10~50重量%、かつ該共重合体組成物中に含まれるビニル芳香族炭化水素のブロック率が70~95%であることを特徴とするブロック共重合体組成物、及びその製造方法。

Best Available Copy

1

【特許請求の範囲】

(a)ビニル芳香族炭化水素と共役ジエ 【請求項1】 ンとからなるブロック共重合体であって、分子量分布曲 線のピーク部の分子量が50,000~600,000 であるブロック共重合体(I)を50~95重量%、お よび(b)ビニル芳香族炭化水素重合体またはビニル芳 香族炭化水素と共役ジエンとからなるブロック共重合体 から選ばれた少なくとも1種以上の重合体であって、分 子量分布曲線のピーク部の分子量が5,000~30 O, OOOでかつ前記ブロック共重合体(I)の分子量 10 分布曲線のピーク部の分子量以下である重合体(II) を5~50重量%含有してなるブロック共重合体組成物 であって、(c) 該ブロック共重合体組成物中の共役ジ エン単位の割合が10~50重量%であり、かつ(d) 該ブロック共重合体組成物中のブロック状ビニル芳香族 炭化水素量の割合が、全ビニル芳香族炭化水素量に対し て70~95%であることを特徴とするブロック共重合 体組成物。

【請求項2】 ブロック共重合体(Ⅰ)の重量平均分子 量(Mw)の数平均分子量(Mn)対する比Mw/Mn が1.0~1.3であり、かつその化学構造が以下に示 す一般式 (ロ) ~ (ホ) から選ばれた少なくとも1つで あり、また重合体(II)の化学構造が以下に示す一般 式 (イ) ~ (ホ) から選ばれた少なくとも1つであるこ とを特徴とする請求項1記載のブロック共重合体組成 物。

(A) A, (D) (A-B) m, (A) A-(B-A) $_{m}$ 、(二) $A-(C-B)_{m}$ 、(ホ) $A-(C-B)_{m}$ - A。但し、Aはビニル芳香族炭化水素の重合鎖、Bは ビニル芳香族炭化水素と共役ジエンの共重合鎖、Cは共 30 役ジエンの重合鎖を示す。また、mはそれぞれ独立した 1以上の整数を示す。

(i)ビニル芳香族炭化水素または(i 【請求項3】 i) ビニル芳香族炭化水素と共役ジエンとをリビングア ニオン重合法により(共)重合させつつある重合反応系 中に、水、アルコール、無機酸、有機酸およびフェノー ル系化合物のうちから選ばれた少なくとも1種のプロト ン供与性の物質を重合活性末端数より少ない化学量論数 の量を一括添加して、または分割添加して、重合活性末 端の一部を失活させることにより重合体(II)を生成 40 させておき、この後(i)ビニル芳香族炭化水素の該重 合反応系中にさらに共役ジエンまたは共役ジエンとビニ ル芳香族炭化水素を追加添加し、あるいは(ii)ビニ ル芳香族炭化水素と共役ジエンとの該重合反応系中に共 役ジエンおよび/またはビニル芳香族炭化水素を追加添 加し、または追加添加せずに、重合反応を続けることに よりブロック共重合体 (1) を生成させて請求項1記載 のブロック共重合体組成物となすことを特徴とするブロ ック共重合体組成物の製造方法。

ビングアニオン重合法により共重合させてブロック共重 合体 (I) を生成しつつある重合反応系中に有機リチウ ム化合物を主成分とする重合開始剤を一括または分割添 加して追加し、さらにビニル芳香族炭化水素および/ま たは共役ジエンを追加添加し、または追加添加せずに、 重合反応を続けることにより重合体(II)を生成させ て請求項1記載のブロック共重合体組成物となすことを 特徴とするブロック共重合体組成物の製造方法。

【請求項5】 ブロック共重合体(I)と重合体(I I) と、それぞれ別の重合反応系で生成して得た後にこ れを混合して請求項1記載のブロック共重合体組成物と なすことを特徴とするブロック共重合体組成物の製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は透明性、耐衝撃性が良好 で、さらにシート、フィルムへの製膜性に優れたビニル 芳香族炭化水素と共役ジエンとからなるブロック共重合 体組成物に関する。

[0002] 20

【従来の技術】無極性有機溶剤中で、アルキルリチウム を重合開始剤としたリビングアニオン重合反応では、重 合開始剤の添加量、モノマーの仕込み重量とそれらの仕 込み時期、モノマー反応性比調整剤(以後「ランダム化 剤」という) の濃度など、各種重合条件を操作すること により、化学構造が異なる様々な特性をもつ共重合体を 得ることができる。リビングアニオン重合は、ラジカル 重合に比べて一般に重合途中で連鎖移動反応による反応 活性末端の失活や新規生成を伴わない反応であり、リビ ングアニオン重合により得られた重合体の分子量分布は ラジカル重合による重合体の分子量分布に比べて著しく 狭くなる(以後「単分散性」という)ことが特徴として 知られている。そして、これらの特性を生かす種々の製 造方法が、特公昭36-19286号公報、特公昭48 -4106号公報などに示されている。これらの方法に より製造されるビニル芳香族炭化水素と共役ジエンとか らなるブロック共重合体は、高度な透明性を持ち、特公 昭63-49702号公報で開示されているように、こ の樹脂を原材料として、室温では原形を保持しながらも 一定温度以上では短時間に収縮する特性を持つシートや フィルムを得ることができる。

[0003]

【発明が解決しようとする課題】シートやフィルムの外 観の良し悪しは、一般的に製膜時の樹脂の流動性に左右 され、例えば分子量を全般的に下げることにより樹脂の 流動性を増し、製膜性を改善することが期待できる。し かしながら、単分散性の分子量分布を有するブロック共 重合体においては、そのような流動性改善処方による製 膜性への改善効果は少なく、また一方では、分子量を下 【請求項4】 ビニル芳香族炭化水素と共役ジエンをリ 50 げたことにより、耐衝撃性の低下を伴うという結果が得

られていた。即ち、耐衝撃性を保ちながら、良好な製膜 性を有するブロック共重合体の開発が望まれていた。

[0004]

【課題を解決するための手段】このような状況におい て、本発明者らは異なる分子量分布域を持つブロック共 重合体同士あるいはブロック共重合体と他の重合体との 樹脂組成物が物性や製膜性に対して及ぼす影響を鋭意検 討した結果、分子量が異なる特定のブロック共重合体同 士またはブロック共重合体と他の重合体とを、特定の比 率で混合させることによって、従来の技術により製造さ 10 れたブロック共重合体に比べ製膜性が良好で、なおかつ 透明性、耐衝撃性にも優れるブロック共重合体組成物が 得られることを見出し、本発明を完成させるに至った。

【0005】即ち、本発明は、(a)ビニル芳香族炭化 水素と共役ジエンとからなるブロック共重合体であっ て、分子量分布曲線のピーク部の分子量が50,000 ~600,000であるブロック共重合体(I)を50 ~95重量%、および(b)ビニル芳香族炭化水素重合 体またはビニル芳香族炭化水素と共役ジエンとからなる ブロック共重合体から選ばれた少なくとも1種以上の重 20 合体であって、分子量分布曲線のピーク部の分子量が 5,000~300,000でかつ前記ブロック共重合 体 (I) の分子量分布曲線のピーク部の分子量以下であ る重合体(11)を5~50重量%含有してなるブロッ ク共重合体組成物であって、(c)該ブロック共重合体 組成物中の共役ジエン単位の割合が10~50重量%で あり、かつ(d)該ブロック共重合体組成物中のブロッ ク状ビニル芳香族炭化水素量の割合が、全ビニル芳香族 炭化水素量に対して70~95%であることを特徴とす るブロック共重合体組成物、及びその製造方法に関す る。

【0006】以下、本発明を詳細に説明する。本発明に おいて使用されるビニル芳香族炭化水素としては、スチ レン、oーメチルスチレン、pーメチルスチレン、pー tertーブチルスチレン、2, 4ージメチルスチレ ン、2、5-ジメチルスチレン、α-メチルスチレン、 ビニルナフタレン、ビニルアントラセンなどがあるが、 特に一般的なものとしてはスチレンが挙げられる。

【0007】また、共役ジエンとしては1、3-ブタジ エン、2-メチル-1、3-ブタジエン(イソプレ ン)、2、3ージメチルー1、3ーブタジエン、1、3 ーペンタジエン、1.3-ヘキサジエンなどであるが、 特に一般的なものとしては1、3-ブタジエン、イソプ レンが挙げられる。

【0008】ここで本発明におけるブロック共重合体 (1) および重合体(11) の分子量分布曲線のピーク 部の分子量について説明する。ブロック共重合体 (1)、および重合体(11)の分子量分布曲線ののピ ーク部の分子量とは、ゲルバーミエーションクロマトグ ラフィー (以下、GPCと記す) により測定された分子 50

量分布曲線のピーク部の分子量(以下、Mpと記す)を 示すものである。Mpは、分子量既知の標準ポリスチレ ンのGPCを測定し、そのピーク位置の保持容量

(VR) を求めて分子量とVR との相関曲線を作図した 検量線から求められる。

【0009】本発明におけるブロック共重合体(I)の Mpは50,000~600,000であり、より好ま しくは100,000~500,000である。Mpが 50,000未満では共重合体組成物の剛性や耐衝撃性 が低下してしまい、また600,000を越えると成形 加工性が低下してしまうため好ましくない。

【0010】ブロック共重合体(1)は、その分子量分 布幅の目安となる重量平均分子量Mwの数平均分子量M n に対する比の値、即ちMw / Mn は1. 0から1. 3 の範囲内にあることが望ましい。1.3を越えたものを 用いてフィルムを製膜すると、透明性が若干低下するこ とがある。

【0011】また、ブロック共重合体(I)は、前記M w /Mn の範囲にあり、かつその化学構造が以下に示す 一般式(ロ)~(ホ)から選ばれた少なくとも1つであ ることが組成物の耐衝撃性、製膜性の点でより好まし

(\Box) $(A-B)_{m}$, (\land) $A-(B-A)_{m}$, (=)A- (C-B) m 、 (ホ) A- (C-B) m - A。但 し、Aはビニル芳香族炭化水素の重合鎖、Bはビニル芳 香族炭化水素と共役ジエンの共重合鎖、Cは共役ジエン の重合鎖を示す。また、mはそれぞれ独立した1以上の 整数を示す。また、一般式中にA、B、あるいはCが複 数存在しても、その分子量、共重合鎖にあってはビニル 芳香族炭化水素と共役ジエンの分布状態などそれぞれ独 立していて、同一である必要はない。

30

【0012】本発明における重合体(II)は、ビニル 芳香族炭化水素重合体またはビニル芳香族炭化水素と共 役ジエンとからなるブロック共重合体から選ばれた少な くとも1種以上の重合体である。

【0013】 重合体 (II) は、Mpが5、000~3 00,000であり、より好ましくは10,000~1 50、000の範囲内である。Mpが5、000よりも 小さいと共重合体組成物の剛性や耐衝撃性が低下してし 40 まい、反対に300,000を越えると成形加工性が低 下し、本発明の効果が得られない。また、重合体(1 I) のMpは前記ブロック共重合体(I)のMp以下で あることが製膜性の点から必要である。なお重合体(1 I) のMpが複数個存在する場合には、それらの中で最 も大きな値のMpが前記ブロック共重合体(I)のMp 以下であることが必要である。

【0014】重合体(11)の化学構造は以下に示すー 般式 (イ) ~ (ホ) から選ばれた少なくとも1 つである ことがより好ましい。

(A) A、(D) (A-B) m、(A) A-(B-A)

 $_{m}$ 、(二) A-(C-B) $_{m}$ 、(木) A-(C-B) $_{m}$ -A。但し、記号A、B、C、mの意味はそれぞれ前記 説明のとおりである。一般式中にA、B、あるいはCが 複数存在しても、分子量、共重合鎖にあってはビニル芳 香族炭化水素と共役ジエンの分布状態などそれぞれ独立 していて、同一である必要はない。

【0015】本発明のブロック共重合体組成物は、ビニ ル芳香族炭化水素と共役ジエンとからなるブロック共重 合体(I)50~95重量%と、ビニル芳香族炭化水素 重合体またはビニル芳香族炭化水素と共役ジエンとから 10 なる重合体(II)50~5重量%からなる。より好ま しくはブロック共重合体(I)60~90重量%と重合 体 (II) 40~10重量%である。重合体 (II) の 割合が5重量%未満であると発明の効果が発現されず製 膜性に支障が生じ、逆に50重量%を越えるとフィルム の強度が不十分となる。

【0016】本発明のブロック共重合体組成物中全体に 占める共役ジエンの割合は10~50重量%であり、よ り好ましくは15~40重量%である。共役ジエンが5 0 重量%を越えて占めると樹脂組成物の製膜性が低下 し、また10重量%未満では耐衝撃性が低下してしまい 好ましくない。

20

【0017】本発明のブロック共重合体組成物は下記式 で定義されるブロック率が70~95%、より好ましく は75~92%である。ブロック率が70%未満である と透明性が低下してしまい、95%より大きいと成形加 工性に難が生じる。

ブロック率 (%) = (W/W o) ×100 ここで、Wはブロック状ビニル芳香族炭化水素量、即ち のビニル芳香族炭化水素量、Wo は全ビニル芳香族炭化 水素量を示す。W、Wo は核磁気共鳴吸収法(1H-N MR法)により測定される。

【0018】重合体(II)がビニル芳香族炭化水素重 合体である場合、ビニル芳香族炭化水素重合体自体のブ ロック率は100%としてカウントされる。

【0019】次に、本発明を構成するブロック共重合体 (1) 、および重合体 (11) のブロック共重合体の製 造方法について説明する。ブロック共重合体(I)、お よび重合体(II)のブロック共重合体は、有機溶媒中 40 ることができる。 で有機リチウム化合物を重合開始剤とし、前記に説明し たビニル芳香族炭化水素及び共役ジエンの中から、それ ぞれ1種または2種以上を選びリビングアニオン重合さ せることにより製造できる。

【0020】このリビングアニオン重合では、重合活性 末端が存在する限り原料モノマーとしたビニル芳香族炭 化水素、及び共役ジエンは通常全量が重合し、該モノマ ーが残留することはほとんどない。また連鎖移動反応に よる重合途中での反応活性末端の失活や新規生成を伴わ ないという重合反応上の特徴を持つ。そのため本発明に 50 おけるブロック共重合体の分子量や分子構造、及び組成 物となす場合のその構成割合は、モノマー、重合開始 剤、ランダム化剤、活性末端の失活のために用いるプロ トン供与性の物質(以下、重合停止剤という)の仕込 量、及びその添加時期、添加回数を適宜変えることによ り目的に応じて制御することが可能である。

【0021】有機溶媒としてはブタン、ペンタン、ヘキ サン、イソペンタン、ヘプタン、オクタン、イソオクタ ンなどの脂肪族炭化水素、シクロペンタン、メチルシク ロペンタン、シクロヘキサン、メチルシクロヘキサン、 エチルシクロヘキサンなどの脂環式炭化水素、或いはベ ンゼン、トルエン、エチルベンゼン、キシレンなどの芳 香族炭化水素などが使用できる。

【0022】重合開始剤である有機リチウム化合物は、 分子中に1個以上のリチウム原子が結合した化合物であ り、本発明では例えば、エチルリチウム、nープロピル リチウム、イソプロピルリチウム、nーブチルリチウ ム、secーブチルリチウム、tertーブチルリチウ ムなどの単官能性重合開始剤、ヘキサメチレンジリチウ ム、ブタジエニルジリチウム、イソプレニルジリチウム などの多官能性重合開始剤が使用できる。

【0023】そして、ブロック共重合体のブロック率 は、ビニル芳香族炭化水素と共役ジエンの共重合時の反 応性比を変化させるランダム化剤の添加濃度を変えるこ とにより制御することができる。そのランダム化剤は極 性を持つ分子であり、アミン類やエーテル類、チオエー テル類、及びホスホルアミド、アルキルベンゼンスルホ ン酸塩、その他にカリウムまたはナトリウムのアルコキ シドなどが使用可能である。適当なアミン類としては第 ビニル芳香族炭化水素が連続して5個以上結合した状態 30 三級アミン、例えばトリメチルアミン、トリエチルアミ ン、テトラメチルエチレンジアミンの他、環状第三級ア ミンなども使用できる。エーテル類としてはジメチルエ ーテル、ジエチルエーテル、ジフェニルエーテル、ジエ チレングリコールジメチルエーテル、ジエチレングリコ ールジエチルエーテル、ジエチレングリコールジブチル エーテル、テトラヒドロフランなどが挙げられる。その 他にトリフェニルフォスフィン、ヘキサメチルホスホル アミド、アルキルベンゼンスルホン酸カリウムまたはナ トリウム、カリウム、ナトリウムブトキシドなどを挙げ

> 【0024】ランダム化剤は1種、または複数の種類を 使用することができ、その添加濃度としては、原料とす るモノマー100重量部あたり合計0.001~10重 量部とすることが適当である。

> 【0025】リビングアニオン重合における重合停止剤 として、本発明では水、アルコール、無機酸、有機酸、 およびフェノール系化合物から選ばれる少なくとも1種 以上が反応系中に添加されて重合が停止する。重合停止 剤として水はとくに賞用できる。

> 【0026】重合停止剤としてのアルコールとしてはメ

タノール、エタノール、ブタノールなどが、無機酸としては塩酸、硫酸、硝酸、ホウ酸、リン酸、炭酸などが、有機酸としてオクチル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレフィン酸、リノール酸、リノレン酸、リシノール酸、ベヘン酸などのカルボン酸、その他スルホン酸、スルフィン酸などが、フェノール系化合物として2-[1-(2-ヒドロキシー3,5-ジーtert-ペンチルフェニル)エチル]-4,6-ジーtert-ブチルフェニルアクリレート、2-tert-ブチルー6-(3-tert 10-ブチルー2-ヒドロキシー5-メチルベンジル)-4-メチルフェニルアクリレート、オクタデシルー3-(3,5-ジーtert-ブチルー4-ヒドロキシフェニル)プロピオネートなどが挙げられる。

【0027】なお、重合活性末端の失活数は加えた重合停止剤の化学量論数に比例するので、重合停止剤は活性末端数より少ない化学量論数の量を数回に分けて添加することとして、重合中の活性末端の一部のみを失活させ、残った活性末端による重合をさらに継続させながら所定の重合率に達したところで残りの活性末端を失活させても良いし、また一度に全ての活性末端を失活させても良い。但し、重合の完了時にはその時点における活性末端数に対して充分な量の重合停止剤を添加して活性末端を全て失活させることが必要である。

【0028】本発明において示すところの複数の成分からなるブロック共重合体組成物を得る製造方法としては、例えば以下に示す方法が好ましい製造方法として挙げられる。但し、製造方法はここに挙げる方法に限られるものではない。

【0029】第1の方法として、リビングアニオン重合 30 反応系中に、重合活性末端数より少ない化学的量論数の 重合停止剤を加えて低い分子量の重合体、即ち重合体

(II) に相当する重合体を生成させ、その後さらに重合反応を継続することにより、先の時点で失活せずに重合反応の終了時まで反応に関与した分子量の高い共重合体、即ちブロック共重合体(I) に相当する重合体を生成させる製造方法が挙げられる。

【0030】即ち、(i)ビニル芳香族炭化水素または(ii)ビニル芳香族炭化水素と共役ジエンとをリビングアニオン重合法により(共)重合させつつある重合反 40 応系中に、重合活性末端数より少ない化学量論数の水、アルコール、無機酸、有機酸およびフェノール系化合物のうちから選ばれた少なくとも1種のプロトン供与性の物質を一括添加して、または分割添加してその失活作用を利用して重合活性末端の一部を失活作用を利用して重合活性末端の一部を失活作用を利用して重合活性末端の一部を失活により重合体(II)を生成させておき、この後さらに(i)ビニル芳香族炭化水素の該重合反応系中においては共役ジエンまたは共役ジエンとビニル芳香族炭化水素を追加添加し、あるいは(ii)ビニル芳香族炭化水素と共役ジエンとの 50

共重合反応系にあっては該重合反応系中に共役ジエンおよび/またはビニル芳香族炭化水素を追加添加し、または追加添加せずに、重合反応を続けることによりブロック共重合体(I)を生成させることによって本発明のブロック共重合体組成物を得ることができる。

【0031】第2の方法として、反応完結前の分子量の 高い共重合体、即ちブロック共重合体(I)に相当する 重合体の生成段階の後に、重合開始剤を追加添加して新 たな反応開始点を生じさせ、低い分子量の重合体、即ち 重合体(II)に相当する重合体を並行して生成させて ブロック共重合体(I)および重合体(II)を同一の 反応系内に生成させる製造方法が挙げられる。

【0032】即ち、ビニル芳香族炭化水素と共役ジエンをリビングアニオン重合法で共重合させてブロック共重合体(I)を生成しつつある重合反応系中に、有機リチウム化合物を主成分とする重合開始剤を一括または分割添加して追加し、さらにビニル芳香族炭化水素および/または共役ジエンを追加添加し、または追加添加せずに、重合反応を続けることにより重合体(II)を生成させることによって本発明のブロック共重合体組成物を得ることができる。

【0033】前記第1、あるいは第2の製造方法において、重合体の原料となるモノマー、及び重合停止剤の添加量や添加時期、及びその回数は得られる重合体(II)あるいはブロック共重合体(I)が先に記載した所定の分子量や分子量分布、構造、組成などに合致するように選ばれる。また重合停止剤の添加量は一般に反応系の総量に対して極めて微量となるため、その添加量の精度を増す目的で、原料とするモノマーや溶剤など活性末端に影響を与えない他の物質に混ぜて添加することもできる。

【0034】そして第3の方法として、別々の重合反応系にて重合して得られたブロック共重合体(I)と重合体(II)を所定の割合で混合する方法が挙げられる。ブロック共重合体(I)、および重合体(II)のブロック共重合体は前記の説明のとおり、リビングアニオン重合で得ることができる。なお、全ての製造方法に共通して、重合反応の完了時にはその時点における活性末端数に対して充分な量の重合停止剤を添加して活性末端を全て失活させる。

【0035】失活処理の終わった共重合体溶液を溶剤から分離するための方法としては、(1)メタノールなどの質溶媒中に析出させる方法、(2)加熱ロールなどに共重合体溶液を供給し、溶剤のみを蒸発させて共重合体を分離する方法(ドラムドライヤー法)、(3)加熱したブロック共重合体(組成物)溶液を、そこに含まれる有機溶媒の該温度における平衡蒸気圧よりも低い圧力に保った缶中に連続的、或いは間欠的に供給して脱揮する方法(フラッシュ蒸発法)、(4)ベント式押出機に通して脱揮させる方法、(5)温水中に撹拌しながら、共

重合体溶液を吹き込んで溶剤を蒸発させる方法(スチー ムストリッピング法)などや、これらを組み合わせた方 法が挙げられる。

【0036】本発明で得られるブロック共重合体組成物 は単独でも、さらに別種の重合体、例えばビニル芳香族 炭化水素重合体、ビニル芳香族炭化水素重合体と共役ジ エンとのグラフト共重合体、ビニル芳香族炭化水素と (メタ) アクリル酸エステルとの共重合体などと混ぜて 使用に供することもできる。

【0037】本発明で得られるブロック共重合体組成物 10 には、必要に応じてさらに各種の添加剤を配合すること ができる。ブロック共重合体組成物が各種の加熱処理を 受ける場合や、その成形品などが酸化性雰囲気や紫外線 などの照射下にて使用され物性が劣化することに対処す るため、また使用目的に適した物性をさらに付与するた め、たとえば安定剤、滑剤、加工助剤、ブロッキング防 止剤、帯電防止剤、防曇剤、耐候性向上剤、軟化剤、可 塑剤、顔料などの添加剤を添加できる。

【0038】安定剤としては、例えば2-[1-(2-ヒドロキシー3, 5-ジーtert-ペンチルフェニ μ) エチル] -4, 6-ジ-tert-ペンチルフェニルアクリレート、2-tert-ブチルー6-(3-t ertーブチルー2ーヒドロキシー5ーメチルベンジ ル) -4-メチルフェニルアクリレートや、オクタデシ ルー3- (3, 5-ジ-tert-ブチル-4-ヒドロ キシフェニル) プロピオネート、2,6-ジーtert ーブチルー4ーメチルフェノールなどのフェノール系酸 化防止剤、2, 2ーメチレンビス(4, 6ージーter t-ブチルフェニル) オクチルフォスファイト、トリス ノニルフェニルフォスファイト、ビス(2,6-ジーt 30 ertーブチルー4ーメチルフェニル) ペンタエリスリ トールージーフォスファイトなどのリン系酸化防止剤が 挙げられる。

【0039】また、滑剤、加工助剤、ブロッキング防止 剤、帯電防止剤、防曇剤としては、パルミチン酸、ステ アリン酸、ベヘニン酸などの飽和脂肪酸、パルミチン酸 オクチル、ステアリン酸オクチルなどの脂肪酸エステル やペンタエリスリトール脂肪酸エステル、さらにエルカ 酸アマイド、オレイン酸アマイド、ステアリン酸アマイ ドなどの脂肪酸アマイドや、エチレンビスステアリン酸 40 アマイド、またグリセリンーモノー脂肪酸エステル、グ リセリンージー脂肪酸エステル、その他にソルビタンー モノーパルミチン酸エステル、ソルビタンーモノーステ アリン酸エステルなどのソルビタン脂肪酸エステル、ミ リスチルアルコール、セチルアルコール、ステアリルア ルコールなどに代表される高級アルコールなどが挙げら れる。

【0040】さらに耐候性向上剤としては2-(2´-ヒドロキシー3´ーtertーブチルー5´ーメチルフ ェニル) -5-クロロベンゾトリアゾールなどのベンゾ 50

トリアゾール系や2, 4ージーtertーブチルフェニ ルー3´、5´ージーtertーブチルー4´ーヒドロ キシベンゾエートなどのサリシエート系、2-ヒドロキ シー4-n-オクトキシベンゾフェノンなどのベンゾフ ェノン系紫外線吸収剤、また、テトラキス(2,2, 6, 6ーテトラメチルー4ーピペリジル) -1, 2, 3、4-ブタンテトラカルボキシレートなどのヒンダー ドアミン型耐候性向上剤が例として挙げられる。さらに ホワイトオイルや、シリコーンオイルなども加えること ができる。

【0041】これらの添加剤はブロック共重合体組成物 100重量部に対し5重量部以下の範囲で使用すること が望ましい。

【0042】本発明の組成物を、それぞれ別の反応系で 作られた2種以上の重合体を混合することにより製造す る場合において、その混合方法は公知のいかなる方法を も採用することができる。例えば、ヘンシェルミキサ ー、リボンブレンダー、スーパーミキサー、及びVブレ ンダーなどでドライブレンドしても良く、さらに押出機 で溶融してペレット化しても良い。

[0043]

20

【実施例】以下、本発明を実施例により詳細に説明す る。但し、本発明は以下の実施例によって請求項の制限 を受けるものではない。

【0044】実施例1

- (1)容量1200Lの反応器中に150ppmのTH Fを含むシクロヘキサン689L、37.5kgのスチ レンモノマーを仕込み、n-ブチルリチウム(10%シ クロヘキサン溶液)1650mLを重合開始剤として加 えて、攪拌しながら30℃から昇温させ45℃で20分 間反応させて単分散性ポリスチレンを生成させた。
- (2) 次いで添加した触媒の化学量論数から計算される 重合活性末端数に対して20%に相当する化学量論数の 水分 (6.1g) を含むシクロヘキサンを添加して活性 末端の一部を失活させた。
- (3) 引き続き系内に3.8 kgのブタジエンを添加し て温度60℃で15分間反応させた。
- (4) さらに15.3kgのブタジエンと74.7kg のスチレンモノマーを追加添加して重合を継続させた。
- (5) このあと初期の重合活性末端数に対して30%に 相当する化学量論数の水分(9.2g)を含むシクロへ キサンを添加して残りの活性末端の一部を失活させた。
- (6) 前記(3)、(4)の操作を繰り返した後、最後 に全ての活性末端を失活させて目的のブロック共重合体 組成物を得た。なお、各モノマーの添加操作はとくに断 りのない限り一括添加である。

【0045】実施例2

前記実施例1での、(1)でn-ブチルリチウム(10 %シクロヘキサン溶液) 1400mLとしたこと、

(2) の操作がないこと、を除いて実施例1と同様の操

11

作を行い目的のブロック共重合体組成物を得た。

【0046】実施例3

前記実施例1での、(1)でn-ブチルリチウム(10 %シクロヘキサン溶液)を1780mLとしたこと、

- (2) で添加した触媒の化学量論数から計算される重合 活性末端数に対して50%に相当する化学量論数の水分
- (16.9g)を含むシクロヘキサンを添加して活性末 端の一部を失活させたこと、(5)で初期の重合活性末 端数に対して37%に相当する化学量論数の水分(1
- 2. 5 g) を含むシクロヘキサンを添加して残りの活性 10 末端の一部を失活させたこと、を除いて実施例1と同様 の操作を行い目的のブロック共重合体組成物を得た。

【0047】実施例4

前記実施例1で、(3)以降の操作をつぎのように変更 した以外は実施例1と同様に操作し目的のブロック共重 合体組成物を得た。

- (3) 引き続き系内に19. 1 K g のブタジエンと7 4. 7 Kgのスチレンモノマーを追加添加して重合を継 続させた。
- (4) このあと初期の重合活性末端数に対して30%に 20 相当する化学量論数の水分(9.2g)を含むシクロへ キサンを添加して残りの活性末端の一部を失活させた。
- (5) 前記(3) の操作を繰り返した後、最後に全ての 活性末端を失活させて目的のブロック共重合体組成物を 得た。

【0048】実施例5

- (1)容量1200Lの反応器中に150ppmのTH Fを含むシクロヘキサン689L、21.3kgのスチ レンモノマーを仕込み、n-ブチルリチウム (10%シ えて、攪拌しながら30℃から昇温させ45℃で20分 間反応させて単分散性ポリスチレンを生成させた。
- (2) 引き続き系内に1. 9 k g のブタジエンを添加し て温度60℃で15分間反応させた。
- (3) さらに17.2kgのブタジエンと66.2kg のスチレンモノマーを追加添加して重合を継続させた。
- (4) 前記(2)、(3)の操作を繰り返した後、重合 開始剤をさらに1660mL添加した。
- (5) ここでスチレンモノマーを33.2 kg添加して 反応させ、最後に全ての活性末端を失活させて目的のブ 40 ロック共重合体組成物を得た。

【0049】実施例6

- (1)容量1200Lの反応器中に150ppmのTH Fを含むシクロヘキサン689Lに、51.6kgのス チレンモノマーを仕込み、n-ブチルリチウム(10% シクロヘキサン溶液) 2500mLを重合開始剤として 加えて、攪拌しながら30℃から昇温させ45℃で20 分間反応させて単分散性ポリスチレンを生成させた。
- (2) 次いで添加した触媒の化学量論数から計算される 重合活性末端数に対して35%に相当する化学量論数の 50

水分(16.2g)を含むシクロヘキサンを添加して活 性末端の一部を失活させた。

(3) 引き続き系内に56.3 kgのブタジエンと11 7. 2 k g のスチレンモノマーを追加添加して重合を継 続させた後、全ての活性末端を失活させて目的のブロッ ク共重合体組成物を得た。

【0050】実施例7

- (1)容量100Lの反応器中に150ppmのTHF を含むシクロヘキサン58Lに、18.8kgのスチレ ンモノマーを仕込み、n-ブチルリチウム(10%シク ロヘキサン溶液)890mLを重合開始剤として加え て、攪拌しながら30℃から昇温させ45℃で20分間 反応させてから全活性末端を失活し、単味の単分散性ポ リスチレンを得た。
- (2)(2-1)容量1200Lの反応器中に150ppm のTHFを含むシクロヘキサン402 Lと、37.5 k gのスチレンモノマーを仕込み、n-ブチルリチウム
- (10%シクロヘキサン溶液) 1450mLを重合開始 剤として加えて、攪拌しながら30℃から昇温させ45 ℃で20分間反応させポリスチレンを生成させた。さら に、(2-2) 3.8kgのブタジエンを添加して温度60 ℃で15分間反応させた。引き続いて、(2-3) 15. 3 kgのブタジエンと74.7kgのスチレンモノマーを 追加添加して重合を継続させた。(2-4) 反応終了後、全 活性末端を失活させ、単分散性のブロック共重合体を得 た。
- (3) 前記(2) の操作と同様に重合を進めるが、n-ブチルリチウム (10%シクロヘキサン溶液) の添加量 を1110mLとしたこと、および(2-2)~(2-3)の操 クロヘキサン溶液) 1020mLを重合開始剤として加 30 作を2回繰り返してから全活性末端を失活させ、単分散 性のブロック共重合体を得た。
 - (4) 前記(1)~(3)の操作で得た3種の重合体を それぞれ重量比で5%、20%、および75%となるよ うに混合して、目的のブロック共重合体組成物を得た。 【0051】実施例8
 - (1)(1-1) 容量1200Lの反応器中にTHFを含ま ないシクロヘキサン402Lと、37.5kgのスチレ ンモノマーを仕込み、n-ブチルリチウム(10%シク ロヘキサン溶液) 1180mLを重合開始剤として加え て、攪拌しながら30℃から昇温させ45℃で20分間 反応させポリスチレンを生成させた。さらに、(1-2)
 - 3.8kgのブタジエンを5分間かけて連続的に添加し て温度60℃で15分間反応させた。引き続いて、(1-3) 15. 3 k g の ブタジエンと 74. 7 k g の スチレ ンモノマーを5分間かけて連続的に追加添加して重合を 継続させた。(1-4) 前記(1-2) ~ (1-3)の操作をもう一 度繰り返して重合を継続させた。(1-5) 反応終了後、全 活性末端を失活させ、単分散性のブロック共重合体を得
 - (2) 前記(1) とこれに前記実施例6の(1)

・ (2) で得られた計3種の重合体をそれぞれ重量比で5%、20%、および75%となるように混合して、目的のブロック共重合体組成物を得た。

【0052】比較例1~比較例10

THF濃度、スチレンモノマー、ブタジエンの仕込量、 及び触媒や水の添加量や添加時期を適宜変更したことを 除き、全て前記実施例1~7のいずれかに示される手順 に従って比較例1~比較例10に示すブロック共重合体 組成物を得た。

【0053】なお、得られた各共重合体組成物のうち、溶液状態にあるものは、溶媒(シクロヘキサン)を予備 濃縮させた後、ベント式押出機にて脱揮処理してペレット状とするか、またはスチームストリッピング法で脱揮 した後で、さらに押出機にかけてペレット状として、後 述する試験に供した。

【0054】本発明に係わる試験方法等についてつぎに詳しく説明する。

[あ] 分子量、分子量分布および組成の測定

(1) 別々の重合反応系で生成後混合して製造したブロック共重合体組成物の場合

該ブロック共重合体組成物に含まれるブロック共重合体 (I) と重合体 (II) の含有割合は、予めGPC測定 されてピーク部の分子量や分子量分布が既知となった、 ブロック共重合体(I)、及びと重合体(II)に属す る各成分を混合する際の重量比率をもってその値とし た。GPC測定条件はつぎのとおりである。下記の装置 ①によりカラム温度40℃、送液圧力39 Kgf/cm ²、試料濃度2.0mg/mL、送液流量1.0mL/ minの条件で分子量分布曲線を測定した。標準ポリス チレンとしてポリマーラボラトリー社製(単分散ポリス 30 チレン分子量1020万、390万、146万、48. 8万、21.5万、6.60万、3.30万、968 0、1300および162)の標準ポリスチレンを用い て検量線を作成した。測定された分子量分布曲線と検量 線から、ブロック共重合体(I)あるいは重合体(I I)のMp、分子量分布を求めた。

·【0055】(2)前記(1)以外の方法で製造された プロック共重合体組成物の場合

各サンプルペレット15mgをテトラヒドロフラン(T HF)30mLに溶解して被検サンプルとし、前記

(1) に記載のGPC条件により分子量分布曲線を測定した。測定された分子量分布曲線と検量線から、ブロック共重合体 (I) 及び重合体 (II) のMp、及び各重量分率 (各々の分布曲線とベースラインに囲まれた部分の面積比率)を計算して求めた。さらにブロック共重合体 (I) については数平均分子量 (Mn)、重量平均分子量 (Mn)を分割定法に従い計算し、さらにその比率 (Mn/Mn)を計算した。計算には下記の装置②を用いた。

【0056】装置① ゲルパーミエーション クロマト 50 さ50μmのものであり、その表面外観(鮫肌状の模様

グラフ(GPC);昭和電工社製「SYSTEM-2 1」

14

カラム;ポリマーラボラトリー社製「PL gel M IXIED-B」、7. $5mm\phi-30cm\cdot\cdot3$ 本検出器;示差屈折計

装置② データ処理装置;東洋曹達社製「SC-802 01

【0057】なお、GPCによる分子量分布曲線のピークの裾野部分が重なり合う場合や、ピークが明確なピークの裾野部分が重なり合う場合や、ピークが明確なピークの形として現れずにショルダーの形になる場合など、ブロック共重合体組成物を構成する各々の構成部分の分子量分布が明確に分離した形で現れず含有割合を直接読み取ることが困難である場合には、保持時間に対する信号強度として得られるGPC曲線の全形を、その曲線がもつピークならびにショルダーを合計した数の正規分布曲線を組合せて近似させた後、各々の正規分布に関して、改めて保持時間を分子量に換算することにより、これらの分布曲線毎に割当てられる各々のピーク部の分子量、重量分率、及びブロック共重合体(I)に相当するの分のMn、Mw、Mw/Mnを求めた。これらの計算には前記の装置②の自動演算機能を利用した。

【0058】 [い] ブロック共重合体組成物中に含まれるブタジエンの重量分率の測定

0.1gの該ペレットをクロロホルム約50mLに溶解し、<math>25mLの一塩化ヨウ素四塩化炭素溶液を加えて暗所に1時間放置後、さらに<math>2.5%のヨウ化カリウム溶液75mLを加えた。このとき、過剰の一塩化ヨウ素を20%のアルコール性N/10 チオ硫酸ナトリウム溶液で滴定して、ポリブタジエンの二重結合への付加反応で消費されたヨウ素量を逆算し、ブタジエン濃度を求めた。

【0059】[う] ブロック率の測定

装置③を用いて、ポリスチレンの芳香族プロトンの7. 0ppmのパラ位と2個のメタプロトンに帰属されるピーク強度と、6.5ppmの2個のオルトプロトンに帰属されるピーク強度を測定し、そのときのピーク強度の積分曲線からブロック状スチレンのプロトン数、及び全スチレンのプロトン数に対応する値を求め、この値を各々ブロック状スチレン量W、及び全スチレン量Woの対 応値として下記定義式に代入して算出した。なお、装置の感度上の理由から、本法により測定されるのは5個以上のモノマー単位からなる連鎖を持つブロック状スチレンである。

ブロック率 (%) = (W/W o) ×100

装置③:日本分光社製、「FX-90Q」(100MH z)

【0060】 [え] インフレーションフィルムの評価

(株) 長田製作所製の40mm φ 単軸押出機によりダイ 温度175℃の条件で製膜した。得られたフィルムは厚 350μmのものであり、その表面外観(鮫肌状の模様

の有無など)を目視観察し、また後述するフィルムイン パクト試験の用に供した。フィルムインパクト強度は装 置心にて、フィルムの打ち抜きに要したエネルギー値を 測り、さらに各値毎に破壊箇所のフィルム厚みで除する ことにより求めた。数値が高いほど耐衝撃強度が優れて いることを示す。

装置④: テスター産業(株)製、「フィルムインパクト テスター」(打ち抜きヘッド:25R)

【0061】 [お] 得られた組成物の透明性の評価 日精樹脂工業 (株) 社製、「FS-55」(202射出 10 な製膜性を持ちつつ、かつ耐衝撃性と高度な透明性を合 成形機)を用いて温度200℃で縦×横が40mm×1 20mm、厚さ2mmのプレートを成形し、ASTM D1003に準拠して、装置⑤で測定されるプレートの*

*曇り度の大小で表した。数値が小さいほど透明性が良好 であることを示す。

装置⑤:日本電色工業(株)製、「NDH-1001D

【0062】実施例、比較例で得られたブロック共重合 体組成物の分子構造、分子量、重量割合などの測定値を 表1~表3に、それらのフィルム(プレート)の評価結 果を表4~表5に記した。表4~表5に示された結果か ら、本発明に関わるブロック共重合体樹脂組成物は良好 わせ持つことが判る。

[0063]

【表1】

	プロック共重合体(Ⅰ)				重合体(Ⅱ)				全	体
	分子構造	分子量Mp	M~ /M.	重量割合	分子構造	分子量Np	重量割合		Bd 分率	7077率
実施例1	A-(C-B) ₂	206, 000	1. 07	74 %	A-(C-B) ₁	90, 000 22, 000	23 % 3	26 [%]	17.7 %	80%
実施例 2	A-(C-B):	198, 000	1.06	77	A-(C-B),	91,000	23	23	17. 2	81
etz + /c /24 0	A (C D)	400,000	1 14	F0	A-(C-B),	120,000	43	48	17. 0	80
実施例3	A-(C-B) :	492, 000	1. 14	52	A	20, 000	5	40		80
実施例4	A-B	202, 000	1. 06	76	A-B	91, 000	21	24	17. 4	78
×/00014	A-D	202. 000	1.00	70	A	22. 000	3			
実施例 5	A-(C-B)2-A	194. 000	1.09	91	A	12, 000	9	9	17. 2	85
実施例 6	A-B	123, 000	1. 11	92	A	20, 000	8	8	24. 7	83
ctr+4-104-7	4 (0 D)	104 000		25	A-(C-B),	88. 000	20	05	45.4	P.0
実施例7	A-(C-B) ₂	194, 000	1. 07	75	A	22. 000	5	25	17. 4	76
実施例8	A_(C_P)	100 000	1.34	75	A-(C-B) ₁	88, 000	20	25	17.0	85
→ 7018101 5 0	A-(C-B) ₂	188, 000	1.04	/ i	A	22, 000	5	20	17. 0	65

[&]quot;Bd分率"は組成物中に含まれるブタジエンの重量分率を示す。

[0064]

【表2】

(10)5開2	0	00-	- 2	6	6	9	8	(P2

	ブロック共重合体(I)				重合体 (II)			全	体	
	分子構造	分子量Mp	M- /M.	重量割合	分子構造	分子量Mp	重量割合	合計	Bd 分率	プロック率
比較例」	A-(C-B) z	189. 000	1. 08	43	A-(C-B),	87. 000 21. 000	50 % 7	57 57	% 17. 3	% 79
比較例 2	A-(C-B) ₂	197, 000	1. 09	97	A	20, 000	3	3	16.5	80
比較例3	A-(C-B),	113. 000	1.05	90	A	18.000	10	10	57. 6	86
比較例 4	A-(C-B) 2-A	189, 000	1.08	86	A	15, 000	14	14	8. 3	88
比較例 5	A-(C-B) ₂	200, 000	1. 10	75	A-(C-B),	90. 000 20. 000	21 4	25	27. I	65

※"Bd分率"は組成物中に含まれるブタジエンの重量分率を示す。

[0065]

* *【表3】

	ブロック共重合体(Ⅰ)				重合体 (Ⅱ)				全	体
}	分子構造	分子量Mp	M- /M.	重量割合	分子構造	分子量Mp	重盘割合	合計	Bd 分率	プロック率
比較例 6	A-C-A	110.000	1. 15	93	A	21.000	% 7	% 7	23.1 %	100
比較例 7	A-(C-B),	39. 000	1.08	90	A	18. 000	10	10	24. 4	80
比較例8	A-(C-B) ₂	630, 000	1. 11	53	A-(C-B) ₁	128. 000 22, 000	42 5	47	17. 2	82
比較例 9	A-(C-B),	115, 000	1.10	91	A	4. 000	9	9	25. 2	80
比較例10	A-(C-B) ₂	482. 000	1.13	53	A-(C-B) ₁	320, 000 23, 000	41 6	47	17. 1	79

※"Bd分率"は組成物中に含まれるブタジエンの重量分率を示す。

[0066]

【表4】

19

	評 価 結 果							
	表面外観	インパント5金度 (kg・cm/cm)	Haze					
実施例 1	良好	149	2					
実施例2	良好	166	2					
実施例3	良好	231	2					
実施例4	良好	132	2					
実施例5	良好	155	3					
実施例 6	良好	138	2					
実施例7	良好	162	2					
実施例8	良好	167	8					

【0067】 【表5】

	評価結果							
	表而外観	イングト 強度 (kg · cm/cm)	Haze (%)					
比較例 1	良好	58	2					
比較例2	鮫肌状	177	3					
比較例3	製膜不可	_	プレート 得られず					
比較例 4	良好	89	2					
比較例 5	良好	155	28					
比較例 6	切れ易く 製験困難		3					
比較例7	良好	37	3					
比較例 8	製膜不可		プレート 得られず					
比較例 9	良好	56	2					
比較例 1 0	製膜不可		プレート 得られず					

[0068]

10

20

30 【発明の効果】本発明によるブロック共重合体組成物は特に良好なフィルム製膜性を有し、かつ透明性、耐衝撃性にも優れるため、その製造方法も含めて特徴あるブロック共重合体組成物として産業上有用である。

フロントページの続き

F ターム(参考) 4J002 BP011 BP012 FD030 FD070 FD080 FD100 FD170 FD200 4J026 HA05 HA06 HA26 HA32 HA39 HA48 HA49 HA50 HB05 HB06 HB14 HB15 HB16 HB26 HB39 HB49 HC05 HC06 HC14 HC15 HC16 HC26 HC39 HC47 HC48 HE01 HE02 HE04 HE06

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.