	3		J	В-	1 B	√.	1 K	2 Z i	+ /						
			/ z ·	1/0	, <u> </u>	1, 5	1/-	2 = 7		(<i>T</i> ·					
	1 .	<i>L</i> 1	l l		.7 I	12 /	۱۰ ۱	,)	ı Z	<i>(</i> .			, `	1 f 0	
nam	cher	of he	ot di	90 =	Po 1	17,6	ticl	kef)	1/2	LWC	(XZM)	un t	temp,	, , , ,	ハロン
											r /		,		
<u>-</u>)	χ_{i}	=) l	/aria	ble					, >		<i>'</i>				
			Vario					B	7	Coe	f-i	ciew	Ç		
					(e .				'z >						
	フ				1		ſ		,		<i>(</i> ·	1.		۱ ر ۱	
=)	D							y U							1
		7	Po	زد	exp.	eifei	tion	. w	lour	ල - (ull_{γ}	/ W	her	L	
		b	oth -	Κįc	uď	Ζį	eque	u(4	0 Z	exo	. /	Sime	e'm		
Veel	if							e he							
tick	lef!	tho	VP /-	or f		, d	MCAL	u)ze	γ,		,	/ /			
	,	1000		<i>,</i> (.	<i>γ</i> υ τ		70040	- (, (
	B	,	\$												
	 .7					,			(,	,	l -) [ſ		
=7	21	cles	crih	96	the	Ì	Leco	r ve thou	lati	on s	17	heth	:We	UV.	
				rcke	t 50	$\mathcal{U}_{\underline{}}$	u)ıt	th of	re	UWY		ell	w	the	,
h	rt	deg													

					_,					•					
习	mec	BUYE	e th	e e	Hec	t of	60	ich	pred	icto	07 (xfte	? r	taki	ng
CECE	OUN	ϵ o	f tl	ne	all	/ O	thes	٦٦ /	redi	icto	ri	1 1	the	male	eY.
								l							
7	B2.	do	gred	2											
			\Im												
		the	Lli	NEWY	~ 70	leet:	wns	vip k	eff i	NEGI	1, fi	10,	(gue	W.D	so .
deci			the												
	,		do					***************************************	7						
7000		,			-0										
3,) :	B	را)	1051	ive										
			by .		خ	f.h.	9 ,	MPlx	Λα	vero	ui e	f	he	of cla)C)
Sell.	ughi	M	tick												
			ver												
ио	fic	ket	çel(10		מאופס	o i	11.	flag	Dars	h t	hore	fo >	
NO	haf	dos	; sel	<i>[</i> .								, ,			
,	100				f 12	γ, χ	f P	,又;	f	U z	,				
									. y						
				7 / 1					nego			()			
				, <u> </u>	Bo	> 6			Ü						
					[′0	- <i>></i> (

		H,	: <i>70</i>	xitu	Q.										
						(, tl	he n	WYQ	. ticl	kef	ડ્રમી	(, th	wer	જોર્ધ	
he v	nore	, peo							hey						
									d'o			J			
		· <i>v</i>								J					
	3	2:	pos	itiv	l Ox	U	N SC	W.					,		
									ill						
							. /		rang						<u></u>
									ent						
									5 P				îm!	ræt	
оч	hot	clay	ક્શી	!!	uret	me,	it s	houl	l bo	l) (MSU	le .			
Ŋ)	7		C 0			[]	/'.		reli	۲۲	ن اه			1 6	
<i>y /</i>	Ţ				l I.		_						. Yei	ul V	je.
									LOL I				<u>,</u>	7.	
			(<u>3</u>)						dov					reld.	
			W	vecc	X (9Y 0	WCY	euse	e h	ot c		sev	·		

	и						
	7 Zi= (1 :	-U					
		1 1 2 2					
		u //	/ - 3 x)	Z .			
	- <u>n</u> Z	1 1	l' '	=0.			
	win.	$\frac{1}{N} \cdot \bar{z}$	n i= () -	- (3, x1) 2	= O '		
)// a./	FcC					
	Min = ?	i= -7	(7-3,	K1) =0		
	u			() - /3	.()		
W	(m Z i=)	· N		, ,	1 (1) =	0.	
	,	· 1/2/	/1=2 x1=	1			
		2. C2-					
		Bois	= 2.				

#2-c eq = function(b){b^2} x <- seq(-100,100, by=0.01)
y <- eq(x) df <- data.frame(x,y) ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline(yintercept =
0)+geom_vline(xintercept = 0) + stat_function(fun = eq)
##saving the graph pdf("pics/TieMa_homework1_Q2_2.pdf", height = 9, width = 12) ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline(yintercept = 0)+geom_vline(xintercept = 0) + stat_function(fun = eq)
dev.off()
rm(list = ls())
10000-
7500-
> 5000-
2500-

Q2-e.			
rm(list = ls())			
eq = function(b){(2 ans <- optimize(ed	-b)^2 + b^2} , interval = c(-10,10))		
x_min = ans\$minir y_min = ans\$object			
print(y_min)			
#[1] 2 print(x_min) #[1] 1			
(2-	B) 2 + B2		
⇒ 4 -	-4B +B2+B2 = 0		
24	-4B +2 32		
шім	D^2		
B	24 - 218 +282 =0.		
	-4 +4B=0.		
	Bridge = 1		
	Priorge = 1		

x <- seq(-5,5 y <- eq(x) df <- data.fra ggplot(df, ae	n(b){0.5*(b^2)} 5, by=0.001)	m_line(col='#0 - stat_function	03b6f') + geom_ (fun = eq)	hline(yintercep	rt =	
##saving the pdf("pics/Tie ggplot(df, ae 0)+geom_vlir dev.off()	graph Ma_homework1_Ces(x=x, y=y)) + geor he(xintercept = 0) +	02_f.pdf", heig m_line(col='#0 - stat_function	ht = 9, width = 12 03b6f) + geom_ (fun = eq)	2) hline(yintercep	t =	
6-						
2-						
-5.0	-2.5	0.0 X		2.5	5.0	

#find the value of lambda beta hat $m(list = ls0)$ eq = function(b)(0.5°(b^2)) ans <- optimize(eq., interval = c(-10,10)) x_min = ans\$minimum y_min = ans\$objective print(x_min) #[1] 0 print(x_min) #[1] 0 $\mathfrak{P}(l)$											
rm(list = ls()) eq = function(b){0.5*(b^2)} ans <- optimize(eq, interval = c(-10,10)) x_min = ans\$minimum y_min = ans\$objective print(y_min) #[1] 0 print(x_min) #[1] 0											
eq = function(b){0.5*(b^2)} ans <- optimize(eq, interval = c(-10,10)) x_min = ans\$minimum y_min = ans\$objective print(y_min) #[1] 0 print(x_min) #[1] 0				ambda	beta	hat					
x_min = ans\$minimum y_min = ans\$objective print(y_min) #[1] 0 print(x_min) #[1] 0	eq = f	unctio	n(b){0.	5*(b^2))}	(1 0 1 6					
print(y_min) #[1] 0 print(x_min) #[1] 0	x_min	= ans	\$minin	num	al = c	(-10,10)))				
print(x_min)	print(y	= ans _min)	\$objec	tive							
	print(x	(_min)									
$\Rightarrow c \int B^{2}$ win $o.5 B^{2} = 0$ $\Rightarrow b = 0$ $\Rightarrow b = 0$ $\Rightarrow b = 0$	#[1] 0										
$\lim_{B \to \infty} B = 0$			را	r.T.	2,						
B B B C B C C C C C C C C C			2.4		,						
Briolge = 0.		- V	B	0,2	β -	: 0					
Briolge = 0.				· b	= 0						
				1 Biz	(do	= D.					
				7710	Je						

	#2-f-2 repeat the (d) and find the value of lambda beta hat
	#first, let's plot the graphy #(2-b)^2 + 0.5*b^2
	eq = function(b){(2-b)^2 + 0.5*(b^2)} x <- seq(-10,10, by=0.001) y <- eq(x) df <- data.frame(x,y)
	ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline(yintercept = 0)+geom_vline(xintercept = 0) + stat_function(fun = eq)
	##saving the graph pdf("pics/TieMa_homework1_Q2_f_repeat_question_d_plot_the graphy.pdf", height = 9, width = 12) ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline(yintercept = 0)+geom_v line(xintercept = 0) + stat_function(fun = eq) dev.off()
200 -	
150-	
ı	
→ 100-	
50-	
0-	-10 -5 0 5 10

#find the value of lambda beta hat	
rm(list = Is())	
eq = function(b) $\{(2-b)^2 + 0.5*(b^2)\}$ ans <- optimize(eq, interval = c(-10,10))	
x_min = ans\$minimum	
y_min = ans\$objective print(y_min)	
#[1] 1.333333	
print(x_min) #[1] 1.333333	
(2-B)2 + (OSB)2.	
llin (2-13)2 + (053)2.=0	#
llin (2-13)2 + (0:5)2 = 0	
Foc .	
-2CZ-B7 + 2.05.13 = 0.	
-21+213 +13 = 0.	
-4 + 3 3 = 0.	
B= 2 = (.38	
$\frac{1}{12}$	
3, i dgo = 3	

#2-g-1 lambda ridge = 4 and repeat question c		
rm(list = ls())		
eq = function(b) $\{4^*(b^2)\}$		
x <- seq(-5,5, by=0.001) y <- eq(x)		
df <- data.frame(x,y) plot(df)		
##saving the graph pdf("pics/TieMa_homework1_Q2_g_1.pdf", height = 9, width = 12)		
ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline 0)+geom_vline(xintercept = 0) + stat_function(fun = eq)	(yintercept =	
dev.off()		
100 -		
75-		
× 50-		
25-		
-5.0 -2.5 0.0 2.5	5.0	

#find the value of lambda beta hat					
rm(list = ls())					
eq = function(b) $\{4*(b^2)\}$ ans <- optimize(eq, interval = c(-10,10))					
x_min = ans\$minimum					
y_min = ans\$objective					
print(y_min)					
#[1] 0					
print(x_min)					
#[1] 0					
Pridge = 0					
1 mge - 0					
$\Rightarrow 48^{2}$ $min 48^{2} = 0$					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
, , , , , 2					
mm 43 = 0					
8 /3 = U					
Bridge = 0					
1 /acfc = 0					

#find the value of lambda beta hat	
rm(list = s())	
eq = function(b) $\{(2-b)^2 + 4*(b^2)\}$ ans <- optimize(eq, interval = c(-10,10))	
x_min = ans\$minimum	
y_min = ans\$objective print(y_min)	
#[1] 3.2	
$\begin{array}{c c} & \text{print}(x_min) \\ & \#[1] \ 0.4 \\ & \left(\begin{array}{c} 2 - \beta \end{array} \right)^2 + 2 \beta^2 \end{array}$	
min $(2-13)^2 + 48^2 = 0$	
3	
FOC	
-2(2-b)+8B=0	
-2++2B+8B=0	
10B= 4	
10b= 4	
β-1 (0 · 0.4	
Fractique = 0 T	

#3-a	
eq = function(b){(2-b)^2} x <- seq(-10,10, by=0.001)	
y <- eq(x)	
df <- data.frame(x,y)	
ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline(yintercept =	
0)+geom_vline(xintercept = 0) + stat_function(fun = eq)	
##saving the graph	
pdf("pics/TieMa_homework1_Q3_a.pdf", height = 9, width = 12)	
ggplot(df, aes(x=x, y=y)) + geom_line(col='#003b6f') + geom_hline(yintercept =	
0)+geom_vline(xintercept = 0) + stat_function(fun = eq)	
dev.off()	
rm(list = ls())	
eq = function(b){(2-b)^2}	
ans $<$ optimize(eq, interval = c(+10,10))	
x_min = ans\$minimum	
y_min = ans\$objective	
print(y_min)	
#[1] 0 print(x_min)	
print(x_min) => \(\frac{7}{2} \frac{1}{1} \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \f	
$\mathcal{K} = \mathcal{K} = \mathcal{K} = \mathcal{K} = \mathcal{K}$	
· N	
$= \frac{1}{\sqrt{\lambda}} \left(\frac{1}{\lambda} - \frac{1}{\lambda} \right) = 0.$	
$min = \frac{1}{2} - n $	
B, N = 2 = () - 3, K1) = 0.	
FoC	
$\lim_{\beta} \frac{1}{2i!} \cdot \pi \cdot \lambda \cdot \kappa_{1} \left(\frac{1}{2} \cdot \beta_{1}, \kappa_{1} \right) = 0$	
$\beta_1 \geq i \cdot \vec{\eta} \cdot \lambda \cdot \kappa_1 (\vec{\gamma} - \vec{\beta}, \kappa_1) = 0$	
$m_{1} = \frac{1}{2} \cdot \frac{1}{N} \cdot 2 \cdot \kappa_{1} \left(\frac{1}{N} - \frac{1}{N} \cdot \frac{1}{N} \right) = 0$	
$m_{1} = \frac{1}{2} \cdot \frac{1}{n} \cdot 2 \cdot \kappa_{1} \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa_{1} \right) = 0$	9.
$ \mathcal{F}_{1} = $	
2. (2-1/1)	
3 = 2.	
1005	

	3c eq = functio x <- seq(-10								
	y <- eq(x) df <- data.fr ggplot(df, ae 0)+geom_vli	es(x=x, y=y)) + geom_lir pt = 0) + sta	ne(col='#0 t_function	003b6f') + g n(fun = eq)	geom_hline(<u>)</u>	rintercept	=	
	##saving the pdf("pics/Tie ggplot(df, ae	eMa_home es(x=x, y=y)) + geom_lir	ne(col='#0	103b6f') + g	dth = 12) geom_hline()	rintercept	=	
	0)+geom_vli dev.off()	ne(xinterce	pt = 0) + sta	t_function	n(run = eq)				
10.0 -									
7.5-									
5.0 -									
2.5-									
0.0	-10	, -5				5		10	
				V					

#3-e	
$rm(list = ls())$ $eq = function(b)\{(2-b)^2 + abs(b)\}$	
ans <- optimize(eq, interval = c(-10,10))	
x_min = ans\$minimum y_min = ans\$objective	
print(y_min) #[1] 1.75	
print(x_min)	
(2-13) 1.5	
W(101)	
min (2-3)2+1/3/=0.	
3 6 7 11 1	
FOC	
-2(2-13)+13=0	
13	
2 1 7	
-2++2B++=0	
if 13 7 0.	
-2+23+1=0, -2+23-1=0	
-4+23+1=0, $-4+23+1=0$	
213=3 213 213=5	
B= = 15 B= = 2.5	
smaller.	
B (cesso = 1,J	

rm(list = ls())		
eq = function(b){0.5*abs(b)}		
ans <- optimize(eq, interval = c(-10,10)) x_min = ans\$minimum		
y_min = ans\$objective		
print(y_min)		
#[1] 6.661338e-16		
#[1] 1 332268e-15		
03 - 45 (15)		
05. abs (3) = 0		
10/21/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
WWC 0 J 0(1) = 0		
[2]		
TOC 3 = 0.		
0.5.		
13 = m.		
7 = 0		
[5,		
(3 £asso = 0.		

rm(list = ls())	
eq = function(b){ $(2-b)^2 + 0.5*abs(b)$ }	
ans <- optimize(eq, interval = c(-10,10)) x_min = ans\$minimum	
y_min = ans\$objective	
print(y_min) #[1] 0.9375	
print(x_min) #[1] 1.75	
(2-B)2+0.5 (B)	
W.M	
$\lim_{\beta \to \infty} (2-\beta)^2 + 0.5 \beta = 0.$	
7-0C B	
-2(2-87 + 05.13] =0"	
- 4 + 2 p + 0 5 p = 0.	2.7
	24.5
if B > 0 It B > 0	4. 5
-4-2/3-0.5/3=	12:
-21+23+05=0.	
$-4 - 2.5 \beta$	0.
	4
$\beta = -1$	· Ø.
P= (-75	
1 Cusso = 1-75	

voc(list Is())										
rm(list = ls()) eq = function(b){	4 * abs(b)}	/ / 2	1.6))							
ans <- optimize(ex_min = ans\$min	imum	c(-10,	10))							
y_min = ans\$obj print(y_min)				- (/	0.1	1	
#[1] 5.329071e-1 print(x_min)	5		No Ze	ide	ce u	I W	NOC	egu	l	
#[1] 1.332268e-1	5		Z01	70.	٠٠.	,				
	B									
	Bluss	o >	O							

#d	b){(2-b)^2 + 4*abs(b	yr I			
x <- seq(-10,10		1))}			
y <- eq(x)					
df <- data.fram	ne(x,y)	l' / 1 1//0001 0	51)		
ggplot(dt, aes()	x=x, y=y)) + geom_ (xintercept = 0) + st	line(col="#UU3bb tat_function(fun :	T) + geom_nline()	yintercept =	
3/193311_11113	(XIII (3133)		- 59/		
##saving the g	rapn a_homework1_Q3_	a 2 pdf" height	= 9 width $= 12$)		
ggplot(df, aes(x=x, y=y)) + geom_	line(col='#003b6	f') + geom_hline(yintercept =	
0)+geom_vline	(xintercept = 0) + st	tat_function(fun	eq)		
dev.off()					
150-					
	A				
100-					
50-					
			/		
0					
-10	-5	Ö	5	10	

rm(list = ls())					
eq = function(b){(2-b ans <- optimize(eq, i	nterval = c(-10,10)				
x_min = ans\$minimu y_min = ans\$objecti print(y_min)					
#[1] 4 print(x_min)					
#[1] 2.88658e-15 스	= almost zer	∕з			
	2				
(2-	3)2+4.1	3			
min c	2-13)2+24	. 131			
-2((2-13) + 2	f (B) =	0		
	1+2p+4	X - 0			
		[岁]			
if 870			7+ 13 20.		
-2 +2 p +	4 = 0.				
1 1 1		-24-	2B -4B=	9	
2 (2550	= O'		-2 - 3/3=0		
			NA	/ ,	


```
#generate the simulated data (again, in order to avoid this section been polluted)
set.seed(1234)
n.obs <- 100
x1 <- rnorm(n.obs)
x2 <- x1^2
x3 <- x1^3
x4 <- x1^4
y < -x1 - 2*x1^2 + rnorm(n.obs)
Q4_data_set <- data.frame(y, x1, x2, x3, x4)
model one <- lm(y ~ x1, data=Q4_data_set)
##########
model two <- Im(y \sim x1+x2, data=Q4 data set)
#########
model three <- Im(v \sim x1+x2+x3, data=Q4 data set)
##########
model_four <- Im(y ~ x1+x2+x3+x4, data=Q4_data_set)
evil <- rbind(CV(model one), CV(model two), CV(model three), CV(model four))
rownames(evil) <- c('Model1', 'Model2', 'Model3', 'Model4')
evil
            CV
                   AIC
                            AICc
#.
                                    BIC
                                          AdiR2
#Model1 9.217431 218.96020 219.21020 226.77571 0.009513121
#Model2 1.094918 11.79099 12.21204 22.21167 0.876435778
#Model3 1.101478 13.45234 14.09064 26.47819 0.875570749
#Model4 1.115254 15.42932 16.33255 31.06034 0.874289903
#by compare AIC and BIC we can concluded following
#model 2 > model 3 > model 4 > model 1
#the smaller both AIC and BIC the better the model describe the relationship.] therefore, the
model 2 have lowest AIC and BIC, it is relative better model to use and the one I perfer
```

```
# Q4 - v Compute the k-fold cross-validation errors that result from fitting the four models. Use
#k = 5. Which model would you prefer? Is this what you expected? Explain your answer.
#clean the environment and generate everything again....
rm(list = ls())
#create the chart that carry the number od the cross-vaidation error
cv.error <- rep(NA,4)
#simulate data and enviorment.
set.seed(1234)
n.obs <- 100
x1 <- rnorm(n.obs)
x2 <- x1^2
x3 < -x1^3
x4 < -x1^4
y < -x_1 - 2*x_1^2 + rnorm(n.obs)
Q4 data set 2 <- data.frame(v, x1, x2, x3, x4)
head(Q4 data set 2, 2) #check it!!
model one with data set.cv <- glm(y \sim x1)
cv.error[1] <-cv.glm(Q4 data set 2, model one with data set.cv, K=5)$delta[1]
print(cv.error)
.....
#model 2 data set
model_two_with_data_set.cv <- glm(y ~ x1 + x2)
cv.error[2] <-cv.glm(Q4 data set 2, model two with data set.cv, K=5)$delta[1]
print(cv.error)
#model 3
model three with data set.cv <- glm(y ~ x1 + x2 + x3)
cv.error[3] <-cv.qlm(Q4 data set 2, model three with data set.cv, K=5)$delta[1]
print(cv.error)
#model 4
model_four_with_data_set.cv <- glm(y ~ x1 + x2 +x3 +x4)
cv.error[4] <-cv.glm(Q4 data set 2, model four with data set.cv, K=5)$delta[1]
print(cv.error)
```

The 5- fold corss-validation errors #8.865048 1.078610 1.157496 1.115773 The 5-fold cross-validation error suggests model 2 is the one with the better approach to the data set. AIC/BIC tests are working to find the best-fit model with the smallest number of parameter possible. AIC/BIC prefer the model with fewer parameters because it gives heavy punishment for size of parameters. Considering the size of the observation and all available model numbers, the size parameters are relatively small. Therefore, it is unsurprising that both AIC, BIC, and k-fold cross-validation errors choose the same outcome: model two a4 + e summary(model one) #Coefficients: Estimate Std. Error t value Pr(>|t|) 0.4095 0.2932 1.397 0.166 # x1 summary(model two) Estimate Std. Error t value Pr(>|t|) #(Intercept) 0.13954 0.13506 1.033 0.304 1.00098 0.10597 9.446 2.11e-15 ** #x1 #x2 -2.09591 0.07987 -26.241 < 2e-16 * summary(model three) #Coefficients: Estimate Std. Error t value Pr(>|t|) #(Intercept) 0.13247 0.13610 0.973 0.333 0.91259 0.18789 4.857 4.63e-06 *** #x1 #x2 -2.10637 0.08222 -25.618 < 2e-16 *** # x3 0.03231 0.05661 0.571 0.570 summary(model_four) # Estimate Std. Error t value Pr(>|t|) #(Intercept) 0.118715 | 0.165425 | 0.718 | 0.475 0.910799 0.189241 4.813 5.60e-06 ** #x1 #x2 #x3 0.034229 0.058369 0.586 0.559 -0.006444 0.043575 -0.148 0.883 #x4

	ou														
q4	1-e cor	ntinue													
Th	ne sum	mary o	of mod	el_two	, mode	el_thre	e, and	model	_four s	sugges	ts that	X1 an	d X2 h	ave	
si	gnifica	nce. T	statist nerefor	e, mod	del 2, v	vhich d	nly ha	s x1 aı	nd x2,	X4, are is relat	not st	atistica ne bes	ally t. It is l	neld	
CC	nsiste	nt with	the co	onclusi	on in c	questic	ns 4-c	and 4	-d.						

#Exercise 5-a
#Create a matrix X (545 × 9) with the 7 explanatory variables described above plus experience and schooling squared.
#Scale the matrix X such that all variables have the same variance. Create a vector y (545 \times 1)
with log wage.
library("leaps")
#lode the data
X_df <-read.csv("data/males1987.csv", header = TRUE)
#check the data!
class(X_df) str(X_df)
head(X_df, 4)
#move the logwage in the first col
X_relocated <- relocate(X_df, LOGWAGE, before =)
#AFTER SPEND 3 HOURS FINALLY DOWN
#check the data!
str(X_relocated)
head(X_relocated, 4) #It look good
WILLIOUR GOOD
#now square experience and school
X_relocated_final<- X_relocated %>% select(LOGWAGE, BLACK, EXPER, HISP, MAR, SCHOOL,
UNION, EXPER2) %>% mutate(SCHOOL2 = SCHOOL^2)
#check the data
head(X relocated final, 4)
#its look good!
X_Scale <- X_relocated_final%>%
select(LOGWAGE, BLACK, EXPER, HISP, MAR, SCHOOL, UNION, SCHOOL2, EXPER2) %>%
transmute(LOGWAGE_scale =scale(LOGWAGE) , BLACK, EXPER_scale = scale(EXPER), HISP, MAR, SCHOOL_scale = scale(SCHOOL), UNION, EXPER2_scale = scale(EXPER2),
SCHOOL2_scale = scale(SCHOOL2))
#sorry for this line of code is way too long
#I did not really sure how to shrink it down #It select the all the variable
#and using the scale function to scale the non-dummy variable

#check the data!

#check the data!	
head(X_Scale, 4)	
#it look good!	
#check what the data is	
class(X_Scale)	
# its data frame!	
" its data frame.	
#transfer to matrix	
X <- data.matrix(X_Scale)	
#######################################	
#Create a vector y with log wage	
#recall we have the matrix X that include all the data	
x<- X_Scale%>%	
dplyr::select(
BLACK, EXPER_scale, HISP, MAR, SCHOOL_scale, UNION, EXPER2_scale,	
SCHOOL2_scale	
)%>%	
data.matrix()	
#check the data!	
head(x,5)	
y_THE_LOGWAGE <- X_Scale\$LOGWAGE_scale	
data_question5 <- data.frame(y_THE_LOGWAGE, x)	
Uala Uuesiiuii S- uala,iiaiiiely TTIL LOGWAGL, XI	
data_questions <- data.irame(y_min_loov/AGL, x)	
#check the data	
#check the data head(data_question5, 5)	
#check the data head(data_question5, 5) #the final matrix #the final matrix	
#check the data head(data_question5, 5)	

######################################
create a table parameters_of_Q5<- matrix(rep(NA),9,1)
coef1 <- coef(lm(y_THE_LOGWAGE ~ x, data= data_question5))
#fill it with data parameters_of_Q5[,1] <- coef1
#put the row name rownames(parameters_of_Q5) <- colnames(data_question5) colnames(parameters_of_Q5)[1] <- 'OLS'
#summon the table! print(parameters_of_Q5)
######################################
#yes, its just same things #I realize I was over thigns again
something <- Im(y_THE_LOGWAGE ~ x, data= data_question5) something_summary <- summary(something) print(something_summary)
#Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) -0.16299 0.07359 -2.215 0.02718 *
xBLACK -0.40050 0.12984 -3.085 0.00214 **
xEXPER_scale -0.33403
xHISP 0.08331 0.11300 0.737 0.46126 xMAR 0.19264 0.08260 2.332 0.02006 *
xSCHOOL_scale -0.39173
xUNION 0.29683 0.09228 3.217 0.00138 **
xEXPER2 scale 0.29545 0.40474 0.730 0.46572
xSCHOOL2_scale 0.71771 0.34767 2.064 0.03947 *
Black, MAR, Union and xSCHOOL2_scale plus intercept are statistically significant at the 10% level.

```
#Q5-D Based on the BIC and BIC, which variables are included in the best model?

regfit.all <- regsubsets(y_THE_LOGWAGE~., data_question5, nvmax = 10)

something_summary_1<- summary(regfit.all)

par(mfrow=c(1,2))

plot(something_summary_1$cp, xlab = "Number of Variables", ylab = "Cp", type = "I")

m.cp <- which.min(something_summary_1$cp)

plot(regfit.all, scale = "bic")

layout(1)

pdf("pics/TieMa_homework1_Q5_d.pdf", height = 9, width = 12)

par(mfrow=c(1,2))

plot(something_summary_1$cp, xlab = "Number of Variables", ylab = "Cp", type = "I")

m.cp <- which.min(something_summary_1$cp, xlab = "Number of Variables", ylab = "Cp", type = "I")

plot(regfit.all, scale = "bic")

layout(1)

dev.off()
```


According to AIC(CP), the best k = 5 (5 variable)			
According the BIC, also the best k at 5 and those 5 variable are BLACK, MR.			
school2_scaled plus intercept. It hold consistent with the conclution at quest	tion 5-b.		
Q5 - e			
lasso.cv <- cv.glmnet(x, y_THE_LOGWAGE, alpha = 1, nfolds = 5)			
model3 <- glmnet(x, y_THE_LOGWAGE, alpha = 1, lambda = lasso.cv\$lambda.	min)		
coef3 <- coef(model3)			
print (coef3)			
print (coeis)			
so so			
BLACK -0.373701647			
EXPER_scale -0.005662817			
HISP 0.045290208			
MAR 0.163475106			
SCHOOL_scale .			
UNION 0.226330843			
EXPER2_scale .			
SCHOOL2_scale 0.327358681			
 The variable that been force to be zero. are the school _scale and the exper2 			
 compare with OLS, we could find out such variabes with high statistically sig 		will get	
higher number in the lasso coefficients. Same as the the 5 variables that AIC	/BIC		
suggested: BLACK, MR, Union, school2_scaled plus intercep			

#Q5 - f
split the sample into train/test sets train <- sample(nrow(data_question5), round(nrow(data_question5)/2))
cv.error <- rep(NA,3)
least squares
ols.cv <- Im(y_THE_LOGWAGE ~ x, data = data_question5, subset = train) cv.error[1] <- mean((y_THE_LOGWAGE - predict(ols.cv, data_question5))[-train]^2)
ov.enor[1] < mean((y_min_zeodvv/tal_predict(ois.cv, data_questiono))[indini] 2)
ridge
ridge.cv <- cv.glmnet(x[train,], y_THE_LOGWAGE[train], alpha = 0, nfolds = 10)
ridge.lam <- ridge.cv\$lambda.min cv.error[2] <- mean((y_THE_LOGWAGE - predict(ridge.cv, s = ridge.lam, newx = x))[-
train]
lasso
lasso.cv <- cv.glmnet(x[train,], y_THE_LOGWAGE[train], alpha = 1, nfolds = 10) lasso.lam <- lasso.cv\$lambda.min
cv.error[3] <- mean((y_THE_LOGWAGE - predict(lasso.cv, s = lasso.lam, newx = x))[-
train]^2)
cv.error <- data.frame(cv.error) rownames(cv.error) <- c("ols","ridge","lasso")
cv.error
cv.error
ols 0.7658656
ridge 0.7677745
lasso 0.7686222
The test sample error of ols, ridge and lasso are extremely close, which provides a
similar result on which variable is better on fit within data. Such results match the
outcome of questions c, d and e.

