Introduction to Algorithms

Stable Matching

Summary

Stable matching problem: Given n men and n women, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm: Guarantees to find a stable matching for any problem instance.
- Q: How to implement GS algorithm efficiently?
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?

Propose-And-Reject Algorithm [Gale-Shapley'62]

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
   W = 1st woman on m's list to whom m has not yet proposed
   if (W is free)
        assign m and w to be engaged
   else if (W prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
   else
        w rejects m
}
```

Implementation of GS Algorithm

Problem size

 $N=2n^2$ words

2n people each with a preference list of length n

Brute force algorithm

Try all n! possible matchings Do any of them work?

Gale-Shapley Algorithm

 n^2 iterations, each costing constant time as follows:

Efficient Implementation

We describe $O(n^2)$ time implementation.

Representing men and women:

Assume men are named 1, ..., n.
Assume women are named n+1, ..., 2n.

Engagements.

Maintain a list of free men, e.g., in a queue. Maintain two arrays wife[m], and husband[w].

- set entry to 0 if unmatched
- if m matched to w then wife[m]=w and husband[w]=m

Men proposing:

For each man, maintain a list of women, ordered by preference.

Maintain an array count[m] that counts the number of proposals made by man m.

Efficient Implementation

Women rejecting/accepting.

Does woman w prefer man m to man m'?

For each woman, create inverse of preference list of men.

Constant time access for each query after O(n) preprocessing per woman. $O(n^2)$ total reprocessing cost.

w_i	1st	2nd	3rd	4th	5th	6th	7th	8th
Pref	8	3	7	1	4	5	6	2


```
for i = 1 to n

for j = 1 to n

inverse[i][pref[i][j]] = j Since inverse[i][3]=2 < 7=inverse[i][6]
```

Summary

- Stable matching problem: Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm guarantees to find a stable matching for any problem instance.
- GS algorithm finds a stable matching in $O(n^2)$ time.
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings:

- $(m_1, w_1), (m_2, w_2).$
- $(m_1, w_2), (m_2, w_1).$

	1st	2 _{nd}
m_{1}	w_1	w_2
m_2	W_2	w_1

	1st	2 _{nd}
w_1	m_2	m_1
W_2	m_1	m_2

Man Optimal Assignments

Definition: Man *m* is a valid partner of woman *w* if there exists some stable matching in which they are matched.

Man-optimal matching: Each man receives the best valid partner (according to his preferences).

Not that each man receives his most favorite woman.

Example

Here

Valid-partner $(m_1) = \{w_1, w_2\}$ Valid-partner $(m_2) = \{w_1, w_2\}$ Valid-partner $(m_3) = \{w_3\}.$

Man-optimal matching $\{m_1, w_1\}$, $\{m_2, w_2\}$, $\{m_3, w_3\}$

	favorite ↓		least favorite
	1st	2nd	3rd
m_1	w_1	w_2	W_3
m_2	w_2	w_1	W_3
m_3	w_1	W_2	W_3

	tavorite ↓		least favorite
	1 st	2nd	3rd
w_1	m_2	m_1	m_3
W_2	m_1	m_2	m_3
w_3	m_1	m_2	m_3

£ -...-:+-

Innak favorika

Man Optimal Assignments

Definition: Man m is a valid partner of woman w if there exists some stable matching in which they are matched.

Man-optimal matching: Each man receives the best valid partner (according to his preferences).

Not that each man receives his most favorite woman.

Claim: All executions of GS yield a man-optimal matching, which is a stable matching!

So, output of GS is unique!!

Man Optimality

S w)

(m, w) (m', w')

Claim: GS matching S* is man-optimal.

Proof: (by contradiction)

Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference ⇒ some man is rejected by a valid partner.

Let *m* be the man who is the first such rejection, and let *w* be the women who is first valid partner that rejects him.

Let S be a stable matching where m and w are matched. In building S^* , when m is rejected, w forms (or reaffirms) engagement with a man, say m whom she prefers to m.

Let w' be m' partner in S.

In building S^* , m' is not rejected by any valid partner at the point when m is rejected by w. Thus, m' prefers w to w'.

But w prefers m' to m.

Thus (m', w) is unstable in **S**.

since this is the first rejection by a valid partner

Man Optimality Summary

Man-optimality: In version of GS where men propose, each man receives the best valid partner.

w is a valid partner of m if there exist some stable matching where m and w are paired

Q: Does man-optimality come at the expense of the women?

Woman Pessimality

Woman-pessimal assignment: Each woman receives the worst valid partner.

Claim. GS finds woman-pessimal stable matching 5*.

Proof.

```
Suppose (m, w) matched in S^*, but m is not worst valid partner for w. There exists stable matching S in which w is paired with a man, say m, whom she likes less than m.
```

```
Let w' be m partner in S.

m prefers w to w'. \longleftarrow man-optimality of S^*

Thus, (m, w) is an unstable in S.
```

Summary

- Stable matching problem: Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm guarantees to find a stable matching for any problem instance.
- GS algorithm finds a stable matching in $O(n^2)$ time.
- GS algorithm finds man-optimal woman pessimal matching

Extensions: Matching Residents to Hospitals

Men ≈ hospitals, Women ≈ med school residents.

- Variant 1: Some participants declare others as unacceptable.
- Variant 2: Unequal number of men and women.

e.g. A resident not interested in Cleveland

Variant 3: Limited polygamy.

e.g. A hospital wants to hire 3 residents

Def: Matching S is unstable if there is hospital h and resident r s.t.

- h and r are acceptable to each other; and
- either r is unmatched, or r prefers h to her assigned hospital; and
- either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

Four Representative Problems

- 1. Interval Scheduling
- 2. Weighted Interval Scheduling
- 3. Bipartite Matching
- 4. Independent Set Problem

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum cardinality subset of jobs that can be run on a single machine.

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum weight subset of jobs that can be run on a single machine.

Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching

Independent Set

Input: A graph

Goal: Find the maximum independent set

(https://zhuanlan.zhihu.com/p/55932619)

Subset of nodes that no two joined by an edge

Four Representative Problems

Variation of a theme: Independent set Problem

- 1. Interval Scheduling *n log n* greedy algorithm
- 2. Weighted Interval Scheduling *n log n* dynamic programming algorithm
- 3. Bipartite Matching n^k maximum flow based algorithm
- 4. Independent Set Problem: NP-complete