

Practice set 4

Problem 4.1

Another approximation to $I(f) = \int_a^b f(x) dx$ is obtained if we replace f(x) by the constant $f\left(\frac{a+b}{2}\right)$ on the entire interval [a,b]. Show that this leads to the numerical integration formula, called **midpoint rule**:

$$M_1(f) = (b-a) f\left(\frac{a+b}{2}\right)$$

In analogy to the derivation of the composite trapesoidal and Simpson's rules, generalize to the numerical integration formula

$$M_n(f) = h[f(x_1) + f(x_2) + \ldots + f(x_{n-1}) + f(x_n)]$$

where $h = \frac{b-a}{2}$ and $x_j = a + (j-\frac{1}{2})h$. This rule is called **composite midpoint rule**.

Problem 4.2

As another approximation to $I(f) = \int_a^b f(x) dx$ replace f(x) by the degree 4 interpolation polynomial at five evenly spaced points $x_j = a + j h, j = 0, 1, 2, 3, 4$. Show that this leads to the approximation formula

$$B_4(f) = \frac{2h}{45} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right]$$

This formula is called the **Boole's rule**.

Problem 4.3

Consider the numerical integration of

$$I = \int_0^1 \frac{e^x + e^{-x}}{2} \, dx$$

using the trapezoidal rule $T_n(f)$ and Simpson's rule $S_n(f)$. Give an exact error formulas $E_n^T(f)$ and $E_n^S(f)$. Using the formulas for E_n^T and E_n^S , determine how large n should be chosen in order to have $|I - T_n| \le 10^{-8}$ and $|I - S_n| \le 10^{-8}$.

Problem 4.4

Repeat previuos problem for

$$I = \int_{-1}^{2} e^{3x-1} \, dx.$$

Problem 4.5

Consider using the trapezoidal rule T_n to approximate

$$I = \int_0^\pi \frac{dx}{2 + \cos(x)}$$

Then $I - T_n \approx Ch^2$. Answer True or False. Give appropriate explanations for your answer.

Problem 4.6

Using error formula for trapezoidal rule estimate the number n of subdivisions to evaluate the following integral

$$I = \int_{1}^{3} \ln x \, dx$$

to the accuracy of 10^{-5} .

Problem 4.7

Following is a table of numerical integrals I_n approximating an integral I, where and also are given the successive differencies $I_n - I_{\frac{1}{2}n}$. Show that the table values seem to be consistent with an error of the form

$$I - I_n \approx \frac{c}{n^p}$$

for some constant c and some p. Estimate p and c. Then estimate $I - I_{512}$. How large n should be chosen if the error is to be less than 10^{-10} ?

\overline{n}	I_n	$I_n - I_{\frac{1}{2}n}$	Ratio
2	0.402368927062		
4	0.400431916045	-1.937E - 3	
8	0.400077249447	-3.547E - 4	
16	0.400013713469	-6.354E - 5	
32	0.400002427846	-1.129E - 5	
64	0.400000429413	-1.998E - 6	
128	0.400000075924	-3.535E - 7	
256	0.400000013423	-6.250E - 8	
512	0.400000002373	-1.105E - 8	

Problem 4.8

Following is a table of numerical integrals I_n approximating an integral $I = \int_0^1 f(x) dx$ with Simpson's rule. Show that the table values seem to be consistent with an error of the form

$$I - I_n \approx \frac{c}{n^p}$$
.

Find value of p and comment on anything unusual in the above numerical results.

\overline{n}	Error	Ratio
2	2.860E - 2	
4	1.012E - 2	
8	3.587E - 3	
16	1.268E - 3	
32	4.485E - 4	

Problem 4.9

Let

$$I_h(f) = \frac{3}{4}h f(0) + 3f(2h).$$

Find the degree of precission of the approximation

$$I_h(f) \approx \int_0^{2h} f(x)dx$$

Problem 4.10

For the formula

$$\int_{0}^{2} f(x)dx \approx w_{1}f(x_{1}) + w_{2}f(2)$$

determine the weights w_1, w_2 and x_2 such that the quadrature formula is exact for all polynomials of as large degree as possible.

Problem 4.11

Using the table below estimate the value of f'(0.5) using forward, backward and centered difference formulas. What is the best estimate and argue your answer. Also, estimate f''(0.5).

x	f(x)
0.3	7.3891
0.4	7.4633
0.5	7.5383
0.6	7.6141
0.7	7.6906