

UIDAI Hackathon

Team Name : SigmaMewSquared

Team Reference ID: iDcaDjNa8m

Team Member Details

SI No	Name	E Mail ID
1.	S Ashwin	ashwins1211@gmail.com
2.	Akash Ambashankar	akashambashankar@gmail.com
3.	Ganesh Chandrasekar	cb.ganesh666@gmail.com
4.	Monica Benjamin	monicabenjamin473@gmail.com
5.	Praveen Kumar	sign24massth@gmail.com

About the Problem Statement / Solution

• Theme: Authentication Reimagined

Problem Statement :

- PS-1: Airport/Stadium/Railway check-in Application
- PS-2 : Aadhaar backed Video KYC for availing resident facing services
- PS-3 : Use of Aadhaar as additional factor in 3rd party transaction
- PS-4 : Achieving 100% auth success in Rural Areas

Solution :

To provide a more secure and robust architecture to authenticate legitimate aadhaar users.

Abstract of Initial Idea:

- Multimodal authentication (Resident & Verifier)
 - Face ID
 - Fingerprint
 - Session Token (Blockchain)
 - QR Code Generation and Scanning
 - Single Sign on
 - Live assistant for Customer service

- Reason:
 - Concept Generation from Literature Survey

Workflow - 1

- •An application for authentication that uses face recognition and finger prints to authenticate using the registered mobile.
- It will be a multi-factor authentication and upon login you'll be redirected to a QR code scanner.
- •The vendors associated with aadhaar authentication will have a QR code which can be scanned by our app.
- We classify verifiers into two types:
 - Type 1: The ones that need all your bio data.
 - Type 2: The ones that need minimal amount of data.

Workflow - 2

- Upon scanning the vendor will get a token of confirmation (based on authentication standards) or the required information based on the type of verifier.
- •We prevent data leaks by only sending a token of confirmation instead of the user data (for type 2).
- This could be used as a Single Sign On (SSO) over multiple application platforms.

Workflow - 3

- We implement a live assistant hosted over the web to blacklist the registered device from getting the data after passing through multiple layers of security like security questions.
- In case the mobile is stolen with the intention of breaking into the system, and the unauthorized person has a way to break into the system, the live assistant may be used to block access to the device.

Architectural Diagram

Weekly Cronjob to Authenticate Resident

Architectural Diagram

Offline Method to Verify Resident

Architectural Diagram

Online Method to Verify Resident

Implementation Process

Frontend - Development

• Steps:

(Code Available in Github Repo: https://github.com/Akashamba/SigmaMewSquared-Submission)

- Captcha Generation
- OTP Generation
- VID Generation
- Future Work:
 - Smoothening the workflow
 - Better authentication
 - Little to no screen touch required

eKYC Parsed Into Json

```
+ Code + Text
                                                                                                                                                                                                                                  Editing
≡
              SLAROH STACK OVERT LOVE
                                                                                                                                                                                                                      ↑ ↓ ⊖ 目 ‡ 🖟 📋 :
                     ort xml.etree.ElementTree as ET
                 def parseEkyc(ekyc: str):
                     tree = ET.fromstring(ekyc)
UidData = tree.find("UidData")
                     ekycDict = {"UidData": UidData.attrib}
                    for child in UidData:
                        ekycDict = {**ekycDict, child.tag: child.attrib}
                    return ekycDict
            11 parseEkyc("<?xml version=\"1.0\" encoding=\"UTF-8\"?><KycRes code=\"7968431adda14493bbbe475152ca7f93\" ret=\"Y\" ts=\"2021-10-30T18:18:33.797+05:30\" tt1=\"2022-10-30T18:18:33\" txn=\"UKC:mAadhaar:f06e7971-51fa-48d1-ade3-292b4e1
                 0puWg0tTR07T2vZRniJfvNWrcXKNItpbD5F44ooqVohdSxIvltGvaqcaebdyHH06iiq6k3NNYdi9Kbs55oopghWiB6gYqrKIEznGfaiikxooSsMnbVOeUxozN26UUVI0UosyxIzjJxn9af5JkuBkdF/wAaKKlDZehjC8CrkaEyAYooqkJmiP15BwaaLwbWil400D2ooqxHP37iV329ByKpQjcRmiioZSG3U;
            {'LData': {},
             'Poa': {'co': 'S/O: Amba Shankar',
              'country': 'India',
              'dist': 'Kancheepuram',
              'house': 'A3,505,FIFTH FLOOR,ADORA APTS,AKSHAYA HOMES',
              'pc': '603103',
              'state': 'Tamil Nadu',
              'street': 'O M R KAZHIPATTUR',
              'vtc': 'Kazhipattur'},
             'Poi': {'dob': '23-09-2000',
              'gender': 'M',
              'name': 'Akash Amba Shankar',
              'phone': '7299412893'},
             'UidData': {'tkn': '01000068poUF4LgrvZoK7T0RMQzbyHNC1eoXyUE7ZXMFkztnHjqwjsw0YtaYhf65+vo8cQeY',
              'uid': '999902855649'}}
>_
                                                                                                        Os completed at 9:08 PM
```

Frontend - Partial Working

Backend - Development

Programming Language: Python

Framework: Flask

Database: PostgreSQL

Endpoints:

- /generateOtp
- /register
- /verifyUser
- /getResidentData
- /offlineDecode

Backend - Coding

API Usage

- Auth
- •OTP
- Face
- Offline eKYC
- VID Wrapper
- Aadhaar eKYC
- •UIDAuthVidServiceboundSms

Security Goals - 1

- Multi-modal or multi-layered biometric authentication which is known to be better than traditional password based authentication mechanisms.
- QR code scanning ensures the data of the verifier doesn't leak to devices other than the intended resident.
- Data session management ensures that you can't use the data on the application after a certain period of time (session becomes stale and stale data is not valid).

Security Goals - 2

- The verifier can not be spoofed because the data of the resident comes from a backend server which validates the verifier signature. So, unless the verifier is a valid one, the resident data is not exposed.
- Even if the resident app is cracked and someone tries to steal data, the sensitive data is not available at the resident application but at the backend server.

Thank You