

Data Science Program

Statistics Sessions -9

Session - 9 Content

Content

- Independent Samples T Test
- Dependent T test
- One Way ANOVA
- Categorical Data Analysis

Bağımsız t testi (Unpaired t testi)

Independent Samples T test

Bağımsız t testi

- aynı continous, dependent değişken üzerinde iki independent grup arasındaki ortalamaları karşılaştırır
- İki farklı grup üzerinden tek değişkenini analizi için Independent t test kullanılabilir

Independent Samples T test

Assumptions

- 2 grup için quantitativenicel bir değişken
- Rasgele örneklemden bağımsız rasgele değişkenler
- Her grup için Normal dağılım

Hypothesis

- Null Hipotez:
 - H_0 : $\mu_1 = \mu_2$

(İki grubun ortalamaları arasında fark yok)

- Alternative Hipotez:
 - H_a : $\mu_1 \neq \mu_2$ (Significant difference between the means of the two groups)

Independent Samples T test

Test Statistics

• Equal Variances not assumed (2 grubun varyanslarının esit olmadığı varsayılırsa)

$$t = \frac{(\bar{x_1} - \bar{x_2})}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{\dot{s}_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{\dot{s}_2^2}{n_2}\right)^2}$$

$$df = rac{\left(rac{s_1^2}{n_1} + rac{s_2^2}{n_2}
ight)^2}{rac{1}{n_1 - 1}\left(rac{\dot{s}_1^2}{n_1}
ight)^2 + rac{1}{n_2 - 1}\left(rac{s_2^2}{n_2}
ight)^2}$$

• Equal Variances assumed (2 grubun varyanslarının eşit varsayılırsa)

$$t=rac{ar{(ar{x_1}-ar{x_2})}}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$$

$$t=rac{ar{(ar{s_1}-ar{s_2})}}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}} \hspace{0.5cm} s_p=\sqrt{rac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}} \ d ext{d} f=n_1+n_2-2$$

$$df = n_1 + n_2 - 2$$

Independent Samples T test - Example

Örnek

- Bir kimyasal prosesin ortalama verimini nasıl etkilediklerini belirlemek icin iki katalizör analiz edilecektir.
- Halen kullanımdaki 1.katalizör yerine verimi düşürmemek kaydıyla daha ekonomik 2.katalizör araştırılmaktadır.
- 2.katalizör için bir pilot uygulama alanında test edilip tablodaki değerler elde edilmiştir.
- 0,05 için, eşit varyans olduğu varsayılarak, ortalama verimler arasında anlamlı bir fark var mı?

Test No	1.Katalizör	2.Katalizör
1	91,50	89,19
2	94,18	90,95
3	92,18	90,46
4	95,39	93,21
5	91,79	97,19
6	89,07	97,04
7	94,72	91,07
8	89,21	92,75
Xort	92,225	92,733
S	2,39	2,98

Independent Samples T test - Example P - Value = 0,7315Step 4 Step 5 P-değeri önceden belirlenen a $\alpha = 0.05$ değerinden büyük P - Value Conclusion olduğu için (P- Değeri) (Sonuç) **Null hipotezi** P-Value > α = 0.05 In [1]: import scipy.stats as stats fail to reject olur In [2]: 2*stats.t.cdf(-0.35, 14) Out[2]: 0.7315482686624126 P-value = 2*t_{0.35, 14} = .7315 2.Katalizörün birinciden farklı olduğuna dair elimizde yeterli güçlü bir kanıt yoktur.

Independent Samples Z test - Example 2

Örnek - σ 'nın bilinmesi durumuna örnek

- Özel bir ürün geliştiricisinin ürettiği bir boya için, 2 boya formülasyonu test ediliyor. 1. ürün standart bir üründür ve 2.ürün ise yeni bir üründür.
- Önceki tecrübelere göre 1.ürünün kullanım süresi için σ=8 dakikadır. Yeni üründe bu süre değişmemelidir.
- 10 kişiye ilk ürün verilmiş, 10 kişiye de de 2.ürün verilmiş ve bu randomly yapıldı
- Grupların ortalaması x1=121 ve x2=112 dakikadır.
- α=0,05 için buradan nasıl bir sonuç çıkar

 σ = 8 Sample Sizes • n_1 = 10 • n_2 = 10 Sample Means

 $\overline{x}_1 = 121$ $\overline{x}_2 = 112$

a = 0.05

Independent Samples T test - Example

P - Value = 0,0059

 $\alpha = 0.05$

P-Value $< \alpha = 0.05$

P-değeri önceden belirlenen a değerinden küçük olduğu için Null hipotezi reject olur

2. Ürüne uygulanan proses olumlu bir katkı sağlamıştır

Large Sample, σ bilinmiyor – Example 3

Örnek - σ 'nın bilinmediği durumuna örnek

- Egzersiz yapmanın kan basıncı üzerindeki etkileri inceleniyor.
- n1=500 hasta nın yüksek kan basınınca sahip olduğu görülüp bunlara bir egzersiz programı ıugulanıyor
- n2= 400 olan diğer bir yüksek kan basıncı olan hastaya da egzersiz önerilmiyor.
- 1 yıl sonra alınan ortalamalar şöyle oluyor.

• X1ort: 10,67 x2ort: 7,83 • S1: 3,895 s2: 4,224

$$\overline{x} = \frac{\sum_{i=1}^{n_1} x_i}{n_1} = 10.67 \quad \overline{y} = \frac{\sum_{i=1}^{n_2} y_i}{n_2} = 7.83$$

$$s_1 = \sqrt{\frac{\sum_{i=1}^{n_1} (x_i - \overline{x})^2}{n_1 - 1}} = 3.895$$

$$s_2 = \sqrt{\frac{\sum_{i=1}^{n_2} (y_i - \overline{y})^2}{n_2 - 1}} = 4.224$$

Large Sample, σ bilinmiyor – Example

P - Value = 0,0000

 $\alpha = 0.05$

P-Value $< \alpha = 0.05$

P-değeri önceden belirlenen a değerinden küçük olduğu için Null hipotezi reject olur

Yapılan egzersizlerin kan basıncını düşürme üzerinde önemli bir etkisi vardır

https://www.youtube.com/wat ch?v=NkGvw18zIGQ Two-sample t test for difference of means

DEPENDENT T TEST

Bağımlı t testi (Paired t test)

Dependent t test

Bağımlı t testi

- paired sample t test de denir
- Aynı continous, dependent değişken üzerinde ilgili iki grup arasındaki ortalamaları karşılaştırır

Örnek: 2 aylık sigara bırakma tedavisi alan kişilerin önceki ve sonraki günlük sigara tüketimleri örneği

ID	Öncesi	Sonrası	Fark
1	12	10	2
2	18	7	11
3	23	22	1
4	10	12	-2
5	8	4	4

Dependent t test

Assumptions

- Bağımlı değişken süreklidir ve aynı denek örneğinde iki kez ölçülür.
- Bağımsız değişken iki kategorik, "ilgili grup" veya "eşleşen çiftlerden" (paired) oluşan 2 kategorik gruptur
- Değişkenlerin skorları arasındaki fark normal dağılmıştır.

Hypothesis

- Null Hipotez:
 - H_0 : μ_1 μ_2 = 0 veya μ_D = 0

(Eşleşmiş paired popülasyonların ortalamaları arası fark 0'dır)

- Alternative Hipotez:
 - $H_0: \mu_D \neq 0$ (eşleştirilmiş popülasyon ortalamaları arasındaki fark 0 değildir)

Dependent t test

Test Statistics

$$t = \frac{\bar{x}_{diff}}{s_{\bar{x}}} \qquad s_{\bar{x}} = \frac{s_{diff}}{\sqrt{n}}$$

 $ar{x}_{ ext{diff}}$ = Sample mean of the differences

n =Sample size (i.e., number of observations)

 $s_{\rm diff}$ = Sample standard deviation of the differences

 $s_{\bar{x}}$ = Estimated standard error of the mean (s/sqrt(n))

Independent and Dependent Samples

Independent Samples

Sample 2

Dependent Samples

Math 117 -- Eddie Laanaos

Dependent t test - Example

Örnek

- Bir yayında verilen çelik kirişlerin shear strength değerlerin tahmini verilmiştir.
- Buradaki 9 kirişe 2 metot(Karlsruhe-Lehigh) uygulanmıştır.
- a=0,05 için ortalamalar açısından bu 2 metot arasında fark olup olmadığını inceleyelim.
- (Girder: Kiriş)

Girder	Karlsruhe Method	Lehigh Method	Difference d _j
S1/1	1.186	1.061	0.125
S2/1	1.151	0.992	0.159
53/1	1.322	1.063	0.259
S4/1	1.339	1.062	0.277
S5/1	1.2	1.065	0.135
S2/1	1.402	1.178	0.224
S2/2	1.365	1.037	0.328
S2/3	1.537	1.086	0.451
52/4	1.559	1.052	0.507

Dependent t test - (Paired t Test)

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

$$t_0 = \frac{\overline{d}}{s_d/\sqrt{n}} = \frac{0.2769}{0.1350/\sqrt{9}} = 6.15$$

In [1]: import scipy.stats as stats

In [2]: 2*(1-stats.t.cdf(6.15, 8))

Out[2]: 0.00027399606897193785

P-value = 0.0003

Dependent T test - (Paired T Test)

P - Value = 0,0003

 $\alpha = 0.025$

P-Value < α = 0,025

P-değeri önceden belirlenen α değerinden küçük olduğu için Null hipotezi reject olur

Karslruhe metodu ortalamalar üzerinden Lehigh e göre daha yüksek bir dayanım tahmini yaptığı görülmüştür.

One-way ANOVA

Tek yönlü ANOVA

One-way ANOVA test

Tek Yönlü ANOVA testi

- analysis of variance kısaltması olarak ANOVA, birkaç grubun ortalamalarını karşılaştırmak için inferential bir yöntem
- Tek Yönlü ANOVA, üç veya daha fazla grubun ortalamaları arasında karşılaştırabilir.

Periyot	İçme durumu
5,1	0
7,8	2
7,1	1
8,6	2
4,9	0
7,7	1

One-way ANOVA test

Assumptions

- Continous olan Dependent variable
- Categoric olan Independent variable
- Independent gözlemler
- Her grup için dependent variable'ın normal dağılımı
- Gruplar arası yaklaşık eşit varyanslar

Hypothesis

- Null Hipotez:
- H_0 : $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$ (Tüm k adet popülasyon ortalamaları eşit)
- Alternative Hipotez:
 - H_a: µ_i diğerlerinden farklı (k adet popülasyondan en az birinin ortalaması diğerlerine eşit değil)

of freedom

error

of freedom

One-way ANOVA test

Test Statistics - ANOVA Table

	ANOVA	A Tablosu		
Değişkenlik Kaynağı	Kareler Toplamı	Serbestlik Derecesi	Kareler Ortalaması	Test İstatistiği
Gruplar arası	$SS_{B} = \sum_{i=1}^{k} \frac{T_{i}^{2}}{n_{i}} - \frac{T^{2}}{N}$	v ₁ =k-1	$MS_B = S_B^2 = \frac{KT_B}{v_1}$	$F_h = \frac{S_B^2}{S_W^2}$
Gruplar içi	$SS_{W} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{2} - \sum_{i=1}^{k} \frac{T_{i}^{2}}{n_{i}}$	v ₂ =N-k	$MS_W = S_W^2 = \frac{KT_W}{v_2}$	
Toplam	$SS_T = KT_B + KT_W$	<u>v</u> =N-1		

One-way ANOVA test

ANOVA Senaryo Örnekleri

- Eğitim metotlarının öğrenci üzerindeki etkisinin incelenmesi
- 3 farklı tedavi yönteminin hastayı iyileştirme sürecindeki değişim
- 4 farklı MP3 oluşturma metotlarının aynı kalitede olup olmadığı
- 3 yeni ilacın plasebo ya göre ne kadar farklı olduğu

One-way ANOVA test - Example

Örnek

- Statsmodal ile sunulan diğer bir Cushing data seti (Mass paketi içinde) vardır. (csv dosya) (Cushing diye bir hastalık)
- Bu hastalıkla ilgili 4 farklı grup var.
 Adenoma (a), biliteral hyperplasia (b), carcinoma (c), unknown (u).
- Bu 4 çeşit hastalıkla ilgili olarak bir kortizonun (Tetrahydrocortisone) etki derecesi açısından bir fark olup olmadığını görmek için değerlendirme yapılacaktır.

Toplam gözlem sayısı, n = 27

Her gruptaki gözlem sayısı, n1=6, n2=10, n3=5 ve n4=6

Grupların üstteki sırayla ortalamaları: 3, 8.2, 19.7 ve 14

Degree of freedoms: df1= 4-1= 3, df2= 27 - 4 = 23

 $SS_B = 893.5 \text{ ve } SS_W = 2123.6$

One-way ANOVA test - Example

P - Value = 0, 041

 $\alpha = 0.05$

P-Value $< \alpha = 0.05$

P-değeri önceden belirlenen a değerinden küçük olduğu için Null hipotezi reject olur

Gruplar arasındaki farkın istatistik olarak anlamlı olduğu söylenir.

 A One-Way ANOVA Example

https://www.youtube.com/wat ch?v=WUoVftXvjiQ An Example of One–Way Analysis of Variance (ANOVA)

CATEGORICAL DATA ANALYSIS

Kategorik Data Analizi

Categorical Data Hypothesis Test

Kategorik Dataların Hipotez Testleri

- Chi-Square (Ki-kare) test kullanılabilmektedir
- Categoric data var ise population proportion testler kullanılmalıdır
- Sayısal olmayan değişkenler arasındaki herhangi bir ilişkinin var olup olmadığını ileri sürerek (H0 hipotezi) bu hipotezi red edilip edilip edilmeyeceğinin incelenmesinde uygulanacak test kikare testidir.

Categorical Data Hypothesis Test

Kategorik Dataların Hipotez Testleri

Karşılaştırılacak 2 Kategori Örneği:

- 1. Sigara içme durumu (İçer İçmez)
 - Akciğer kanseri (Kanserdir Değildir)
- 2.
 - Irk grubu Şeker hastalığı meyli
- Testte sorumuz şu:
 - Bir faktörün (değişkenin) varlığı/yokluğu, diğer faktörün (değişken) varlığını/yokluğunu etkiler mi?

Vaka

Üretim sektöründe faaliyet göstermekte olan bir firmada **ürün kalitesi** ile **çalışanların eğitim durumları** arasında bir ilişki olduğu düşünülmektedir. Bu tezin incelenmesi için ki-kare testi kullanılır.

Categorical Data Hypothesis Test

Oranlar arasındaki karşılaştırma

Tedavi	İyileşme var	İyileşme yok	Toplam
Yeni İlaç	18	6	24
Plasebo	9	11	20
Toplam	27	17	64

Tabloya göre ilaç ile iyileşme oranı: 18/24 = %75

Tabloya göre plasebo ile iyileşme oranı: 9/20 = %45

Categorical Data Hypothesis Test

Oranlar arasındaki karşılaştırma

Tedavi	İyileşme var	İyileşme yok	Toplam
Yeni İlaç	18(a)	6 (b)	24
Plasebo	9 (c)	11 (d)	20
Toplam	27	17	44

$$\chi^2 = \sum \frac{(obs - \exp)^2}{\exp}$$

Seçilen kişinin yeni ilaç almış gruptan olma ihtimali: 24/44

Seçilen kişinin yeni iyileşmiş gruptan olma ihtimali: 27/44

Seçilen kişinin iyileşmiş olup yeni ilaç almış gruptan olma ihtimalinde a hücresi için beklenen değer (expected value): 24*27/44 =14,73

Categorical Data Hypothesis Test

Oranlar arasındaki karşılaştırma

		3 3	
Tedavi	İyileşme var	İyileşme yok	Toplam
Yeni İlaç	18 (14,73)	6 (9,27)	24
Plasebo	9 (12,27)	11 (7,73)	20
Toplam	27	17	44

$$\chi^2 = \sum \frac{(obs - \exp)^2}{\exp}$$

$$\sum \frac{(obs - exp)^2}{exp} = \frac{(18 - 14.73)^2}{14.73} + \frac{(6 - 9.27)^2}{9.27} + \frac{(9 - 12.27)^2}{12.27} + \frac{(11 - 7.73)^2}{7.73} \quad X^2 = 4, 14$$

• Df = (Tablodaki satır sayısı -1)*(tablodaki Sütun sayısı -1)= 1

Categorical Data Hypothesis Test

		χ² table					D L . L . T. C		
(Critical values in t for differe	he distributions on t degrees of free			df	.05	Probability .02	.01	.001
df	.05	Probability .02	.01	.001	1	3.841	5.412	6.635	10.827
1	3.841	5.412	6.635	10.827					
2	5.991	7.824	9.210	13.815					
3	7.815	9.837	11.345	16.26					
4	9.488	11.668	13.277	18.467		_	_		
5	11.070	13.388	15.086	20.515					
6	12.592	15.033	16.812	22.457		12: 1			0
7	14.067	16.622	18.475	24.322		Ki-kare değel	rımız olan 4,4	H degeri bu	2
8	15,507	18.168	20.090	26.125	/				
9	16.919	19.679	21.666	27,877	/	değerin arası	ina dusmekto	edir. Yanı 0.0	15
10	18.307	21.161	23.209	29.588					
11	19.675	22.618	24.725	31.264		probability (%	951 ile 0.02 r	orobaility (%9	281
12	21.026	24.054	26.217	32.909		p. 5 5 5 5 5 1 1 1 7 (75			-1
13	22.362	25.372	27.688	34.528			arasındadır.		
14	23.585	26.873	29.141	36.123			G., G.G., . G. G. G.,		
15	24.996	28.259	30.578	37.697					
16	26.296	29.633	32.000	39.252					
17	27.587	30.995	33.409	40.790					
18	28.869	32.346	34.805	42.312					
19	30.144	33.687	36.191	43.820			•		
20	31.410	35.020	37.566	35.315					
21	32.671	36.343	38.932	46.797	/	Rusonuca	nore %95 sev	riyesinde Nul	
22	33.924	37.659	40.289	48.268					
23	35.172	38.968	41.638	49.728		hipotez redd	adilir 900 ca	ula obnizoviva	dl .
24	36.415	40.270	42.980	51.179		Tilbolez ledd	Cuiii, /070 SE	Minde M	ווע
25	37.652	41.566	44.314	52.620		hin	totoz kabul a	dilir	
26	38.885	42.856	45.642	54.052		nipi	totez kabul e	alli.	
27	40.113	44.140	46.963	55.476					
28	41.337	45.419	48.278	56.893					
29	42.557	46.693	49.588	58.302					
30	43.773	47.962	50.892	59.703					

Statistical Tests:

- T-Test:
 - Compare the Means between two groups
 - Small Sample Size
- Z-Test:
 - Compare the Means between two groups
 - Large Sample Size
- · ANOVA:
 - Compare the Means between two+ groups
- Chi-Square:
 - Compares Proportions between two groups

Examples

- 1. Her iki günde de aynı 20 istasyonu kontrol ederek, Çarşamba ve Cumartesi benzin fiyatları ortalamaları (mean) arasında önemli bir fark var mı?
- 2. Önümüzdeki tatil döneminde uçakla seyahat edenlerin yüzdesi (percentage), araba ile seyahat edenlerin yüzdesinden (percentage) daha fazla olacak mı?
- 3. İstanbuldaki ortalama (average) mazot fiyatı ile Karstaki ortalama (average) mazot fiyatı arasındaki anlamlı bir fark var mı?
- 4. Dört farklı araç tipinin ortalama olarak yaptıkları kilometreler arası fark
- 5. İki havayolu şirketinin seyahatinde yaşanan ortalama gecikmeler arasında fark far mıdır

Examples

Örnek-2

- Bir trafik memuru bir otoyoldaki güvenlik için sürücülerle alakalı bazı testler yapmak istemektedir. Hangi durum için hangi testi uygulamalıdır?
- 1. Yoldaki hız limiti 90 km/h ama memur sürücülerin daha hızlı gittiğini düşünüyor. Bu şüphe doğru mu?
- Kadın ve erkeklere hızlarını sorup, aralarında bir fark olup olmadığına bakmak istiyor
- 3. İnsanların Hafta içi ve hafta sonu hızları arasında fark var mıdır ?
- 4. Sürücülerin 2 yıl önce %60 ının sürüş esnasında telefon kullandığı biliniypr. Memur bunun şimdi daha fazla olduğunu düşünüyor. İspatı ?
 - 5. Genç-orta yaş ve yaşlı grupları arasında genç sürücülerin daha hızlı gittiğini düşünüyor. İspatı

Solution

 $arsenic_data.ipynb$

 chi-square yi anlatan bir notebook

chi-square.ipynb

Do you have any questions?

Send it to us! We hope you learned something new.