1 point

1 point

1 point

1 point

1 point

- 1. Which of the following represents the derivative of a function f(x) (check all that apply)?
 - □ F(x)
 - f'(x)
 - ☐ f'(x²)
 - df(x)
 - $\Box \frac{f(x)}{df(x)}$
 - 2. Consider the graph of the following function f(x).

Regarding **its derivative**, f'(x), where $\ x \in [0,5]$: (check all that apply)

- $\Box f'(x)$ is always positive.
- lacksquare f'(x) has three zeros, i.e., f'(x)=0 three times.
- f'(1) < 0.
- f'(4) > 0.
- 3. What is the derivative of $3x^3 2x + 1$?
 - $\bigcirc 3x^2-2$
 - $\bigcirc 9x^2-2+1$

 - \bigcirc $9x^3-1$
- $\textbf{4.} \quad \text{Suppose you have a game where you toss a coin } 20 \text{ times and win if you get, in this exact order, } \textbf{16} \text{ heads and } 4 \text{ tails. However, in this game, you can choose any coin and toss it } 20 \text{ times.}$

Which of the following functions you need to maximize in order to find the best coin for this game? Consider p being the probability of a given coin being heads.

- $\bigcirc \ 16\log(p) + 4\log(p)$
- $\bigcirc \ 4\log(p) + 16\log(1-p)$
- $\bigcirc \ 4\log(1-p) + 16\log(1-p)$
- 5. Let f(x) be a real valued function. How many zeros has its derivative f'(x) in the domain plotted in the graph below?

6. If f(x) and g(x) are differentiable functions, then the derivative of f(x)g(x) is given by: 1 point $\bigcirc \ f'(x) \cdot g'(x) + f(x) \cdot g(x)$ $\bigcirc \ f'(x) \cdot g(x) – f(x) \cdot g'(x)$ $\bigcap f'(x) \cdot g'(x)$ 7. The rate of change of $f(x)=x^2+3$ at x=6 is: 1 point 8. Let f(x) be a **positive** real function and $g(x) = \log f(x)$. 1 point Check all that apply. $\Box \frac{df(x)}{dx} = \frac{dg(x)}{dx}$ lacksquare If x_{max} is a point where $f(x_{max})$ is a local maximum, then $g(x_{max})$ is also a local **maximum**. ightharpoons f(x) is differentiable, then so is g(x). 9. Using the **chain rule**,the derivative of e^{-x} is: 1 point $\bigcirc \ e^{-x}$ $\bigcirc -e^x$ \bigcirc $-e^{-x}$ $\bigcirc e^x$