Pracovní úkoly

- 1. Nalezněte standardní rtg. práškový difraktogram v databázi PDF-2 na CD-ROM.
- 2. Určete vhodný úhlový obor měření.
- 3. Připravte vzorek pro měření a proveďte měření na komerčním práškovém difraktometru.
- 4. V průběhu měření zpracujte data dodaná z měření na stejném (obdobném) vzorku provedená většinou předcházející skupinou nalezněte polohy difrakčních maxim 2*θ*
- 5. Z Braggovy rovnice vypočtěte mezirovinné vzdálenosti a mřížové parametry pro jednotlivé difraktující roviny.
- 6. Proveďte korekci na instrumentální efekty a určete mřížový parametr zadané kubické látky s maximální přesností.
- 7. Diskutujte odchylky mezi určeným parametrem konkrétního vzorku a tabelovaným mřížovým parametrem.

Teoretická část

Dopadá-li na krystal záření s vlnovou délkou λ , které svírá s rovinou (hkl) s mezirovinnou vzdáleností d_{hkl} úhel θ_{hkl} , bude difraktovat právě tehdy, když splní Braggovu rovnici [1]:

$$d_{hkl} = \frac{\lambda}{2 \cdot \sin \theta_{hkl}} \tag{1}$$

V našem experimentu jsme použili difraktometr v Bragg-Bertranově uspořádání. Při tomto uspořádání měříme intensitu difraktovaného záření v závislosti na úhlu dopadajícího záření. Pro určení Millerových indexů nejprve určíme parametr Q_i , pro každý pík i. Parametr jsme zavedli jako v [1]:

$$Q_{i} = \frac{h_{i}^{2} + k_{i}^{2} + l_{i}^{2}}{h_{1}^{2} + k_{1}^{2} + l_{1}^{2}} = \frac{d_{h_{1}k_{1}l_{1}}^{2}}{d_{h_{i}k_{i}l_{i}}^{2}}$$
(2)

Podle tabulky 3 v [1] můžeme určit typ krystalové mříže, protože pro určité typy mříží se podle vyhasínacích podmínek některá maxima v difrakčním záznamu nevyskytují. Dále z vyhasínacích podmínek v tabulce 4 v [1] můžeme určit Millerovy indexy (hkl). Pro každou rovinu (hkl) můžeme spočítat mřížový parametr a_{hkl} , pro který platí podle [1]:

$$a_{hkl} = \sqrt{h^2 + k^2 + l^2} \cdot d_{hkl} \tag{3}$$

Protože naše experimentální metoda obsahuje nezanedbatelnou systematickou chybu, která závisí na difrakčním úhlu, je potřeba provést korekci. Tu provedeme tak, že předpokládáme, že naše systematická chyba je úměrná $\sim \cot\theta\cos\theta$. Naše hodnoty $a_{hkl}(\theta)$ proložíme funkcí: $a_{hkl}(\theta) = a_e + b \cdot \cot\theta\cos\theta$, kde parametr a_e odpovídá skutečnému mřížovému parametru.

Výsledky měření

V našem difraktometru jsme použili měděnou rentgenku. Pro měření jsme tedy využili dvojici vlnových délek $K_{\alpha 1}$ a $K_{\alpha 2}$. Po naměření jsme data zpracovali pomocí programu WinPlotr, který umí odstranit slabší vlnovou délku $K_{\alpha 2}$, v dalších výpočtech jsme tedy použili vlnovou délku: $\lambda = 1.54050$ Å, viz tabulka 1 [1].

V tabulce 1 jsou uvedeny hodnoty naměřených difrakčních úhlů 2θ , jejich chyby a veličiny z těchto úhlů spočtené: mezirovinné vzdálenosti d_{hkl} spočtené z (1), parametry Q_i spočtené pomocí (2), Millerovy indexy (hkl) spočtené pomocí vyhasínacích podmínek a mřížové parametry a_{hkl} spočtené z (3). Všechny uvedené chyby odvozených veličin jsme spočetli metodou přenosu chyby pro nepřímé měření.

2 <i>Θ</i> [°]	Δ2 <i>Θ</i> [°]	d [Å]	∆d [Å]	Q	h	k	1	a [Å]	Δa [Å]
27.8812	0.0003	3.197176	0.000031	1	1	1	1	5.53767	0.00005
46.7602	0.0002	1.941010	0.000009	2.71	2	2	0	5.49001	0.00002
55.6004	0.0003	1.651516	0.000008	3.75	3	1	1	5.47746	0.00003
68.6391	0.0006	1.366157	0.000011	5.48	4	0	0	5.46463	0.00004
75.9045	0.0004	1.252429	0.000006	6.52	3	3	1	5.45921	0.00003
87.5918	0.0003	1.112930	0.000003	8.25	4	2	2	5.45222	0.00002
94.5311	0.0004	1.048663	0.000004	9.30	3	3	3	5.44901	0.00002
106.3248	0.0006	0.962406	0.000004	11.04	4	4	0	5.44419	0.00002
113.7297	0.0004	0.919829	0.000002	12.08	5	3	1	5.44178	0.00001
127.2277	0.0005	0.859828	0.000002	13.83	6	2	0	5.43803	0.00001

Tabulka 1: Hodnoty difrakčních úhlů pro jednotlivé roviny

Z posloupnosti parametrů Q_i a tabulky 3 v [1] jsme určili, že zkoumaná látka má mřížku typu diamantu. Hodnoty a_{hkl} jsme proložili lineárním fitem. Graf 1 zachycuje závislost hodnot a_{hkl} na $\cos\theta\cot\theta$. Tabulka č. 2 poté obsahuje hodnoty lineárního fitu: hodnotu skutečného mřížového parametru a_e , jeho chybu, určenou jako chybu lineární regrese a koeficient věrohodnosti R^2 .

Tabulka 2: Parametry lineární regrese

a _e [Å]	Δa_e [Å]	R^2
5.43203	0.00011	0.99995

Z hodnot parametru a_e , faktu, že se jedná o mřížku typu diamantu a posloupnosti úhlů difrakčních maxim jsme dospěli k závěru, že jedná o křemík. Hodnota mřížového parametru křemíku podle [2] je: $a_{Si} = 5.4308$ Å.

Graf 1: Závislost spočtených mřížových parametrů na $\cos \theta \cot \theta$.

Diskuse

Jednotlivé úhly difrakčních maxim 2θ byly určeny s velmi malou chybou. Přesto pro první dvě maxima nebyl fit píku v programu WinPlotr úplně ideální, píky byly oproti pseudo-Voigtově funkci, kterou jsme používali k fitování, nesymetrické. To mohlo do měření zavést nepřesnosti. Nicméně je možné, že dané nepřesnosti byly způsobeny nečistotou vzorku.

Vzorek jsme určili jako křemík. S tabulkovou hodnotou se námi změřená hodnota mřížového parametru neshoduje ani v rámci chyby měření. To může být způsobeno tím, že se nejedná o čistý křemík. Jak známo, polovodiče mohou obsahovat různé příměsi, které mohou změnit hodnotu mřížového parametru.

Přesnost našeho měření je podložena zejména velmi věrohodným fitem hodnot a_{hkl} (viz graf 1 nebo tabulka 2). To vylučuje nějakou další systematickou chybu závislou na θ . Proto podle [1] je možné, že krystalická struktura vzorku vykazuje poruchy, což by mohlo být způsobeno např. příměsemi. Nebo se ve vzorku vyskytuje zbytkové napětí, což nejspíše nebude náš případ, poněvadž vzorek byl nadrcený na prášek.

Závěr

Zpracováním naměřených dat jsme došli k závěru, že zkoumaným vzorkem byl křemík, jehož mřížový parametr jsme určili jako: $a = (5.43203 \pm 0.00011)$ Å. Tato hodnota se shoduje s tabulkovou pouze na 2 desetinná místa.

Literatura

- [1] Rentgenografické difrakční určení mřížového parametru známé kubické látky. *Fyzikální praktikum* [online].
 [cit. 26. 11. 2017]. Dostupné z: http://www.xray.cz/kfes/vyuka/lp/A19.pdf
- [2] Selected Powder Diffraction Data for Education & Training, *JCPDS International Centre for Diffraction Data*, 1988