Local-Access Generators

Amartya Shankha Biswas, Ronitt Rubinfeld, Anak Yodpinyanee CSAIL, MIT

Partial Sampling from a Distribution

Full Sampling $R \sim \mathsf{D}$ in $\mathcal{O}(T)$ time

N steps of Partial Sampling

Each partial step should take $\tilde{\mathcal{O}}(T/N)$ time.

Problem Statement

A local-access generator of a random object $R \sim D$, provides indirect access to R' with a query oracle s.t.

- ► All query responses (partial samples) are consistent
- ▶ The **distribution** of R' is ϵ -close to D in L_1 distance

Trivial Example - Sampling G(n, p)

Model: Undirected graph on N vertices (numbered $(1, 2, 3, \dots, N)$), where each edge exists with prob. p.

Query Model: Given vertices u, v, is $(u, v) \in E$?

▶ Just a collection of $\frac{n(n-1)}{2}$ Bernoulli RVs with bias p.

Find Next-Neighbor (skip-sampling)

Adjacency List query: Return neighbors of v in order. $\mathbb{P}[k \text{ non-neighbors before next-neighbor}] = p(1-p)^k$

- ► Can sample from this distribution in $\tilde{\mathcal{O}}(1)$ time [ELMR17]
- ► Avoid sampling each 0 separately

Issue: Adjacency matrix is symmetric So, each zero must also appear in the corresponding column of \boldsymbol{v}

If the sampled neighbor is a 0, discard and resample.

Cannot afford too many re-samplings.

Bucketing-Generator & Random-Neighbor Queries

- ▶ Divide each row of the adjacency matrix into contiguous buckets
- \triangleright Expected number of neighbors in a bucket is $\Theta(\log n)$
- ► Each vertex v is associated with buckets $\langle B_1^v, B_2^v, B_3^v, \cdots \rangle$
- ► An **unfilled** bucket may contain some indirectly exposed neighbors
- ► A **filled** bucket will contain every possible sampled neighbor

Filling the i^{th} bucket B_i^v of vertex v

- lacksquare Use skip-sampling to produce a **potential** next-neighbor u of v in B_i^v
- ► Check if (u, v) was set to 0, by looking at bucket \mathcal{B} of u containing v
- If so, re-sample. Otherwise, mark u as a neighbor of v, and update \mathcal{B}
- ▶ W.h.p, only $\mathcal{O}(\log^2 n)$ **potential** neighbors are generated in B_i^v

Degree Sampling: Sampling the degree of v seems to be much harder

- lacksquare Sampling deg(v) conditions the remaining RVs in very non-trivial ways
- ► However, we can stil sample a random neighbor (with prob. 1/deg(v))

Random-Neighbor(v)

- ► Choose a random bucket \mathcal{B} of v. If the \mathcal{B} is **unfilled**, fill it.
- ▶ If k neighbors found in \mathcal{B} , start over (reject) with probability 1 k/M.
- ▶ If accepted, return an uniformly random neighbor found in \mathcal{B} .

For $M = \mathcal{O}(\log^2 N)$, the max number of neighbors in any bucket is < M. So, the number of rejection sampling rounds is $\mathcal{O}(\log^2 N)$ in expectation.

Stochastic Block Model

Communities $\{C_i\}_{i\in[r]}$ partition V: If $u\in C_i, v\in C_j$, then $\mathbb{P}_{(u,v)\in E}=p_{ij}$.

Given sizes of each comunity C_i and a range of length ℓ

- ► Count number of occurrences of each community in any contiguous range
- ► Sample from Multivariate Hypergeometric Distribution

$$\Pr[\mathbf{S}_{\ell}^{\mathbf{C}} = \langle s_1, \dots, s_r \rangle] = \frac{\binom{C_1}{s_1} \cdot \binom{C_2}{s_2} \cdots \binom{C_r}{s_r}}{\binom{B}{\ell}} \quad \text{where } \ell = \sum_{i=1}^r s_i \text{ and } B = \sum_{i=1}^r C_i$$

Multivariate Hypergeometric Distribution

[GGN10] solves the special case of r=2 and $B=2\ell$.

COUNTING-GENERATOR

- ► Extending to $B \neq 2\ell$: Divide ℓ into $\mathcal{O}(\log n)$ dyadic segments.
- Extending to r > 2: Make a tree with r leaves (one for each C_i). Every branch down the tree is equivalent to a r = 2 splitting.

The complete generator is implemented by using Counting-Generator to sample the number of community members in a range, and then running the Bucketing-Generator as before.

Work in Progress

Domino Tiling

A $2 \times n$ grid tiled with dominoes: F_n tilings possible.

Query: Domino at position i: vertical OR horizontal?

Sufficent to approximate F_c/F_{c-1} : Use ϕ if $c = \Omega(\log(n))$ **Open:** $k \times n$ grid for $k = \omega(1)$ and Dimer model.

Graph Coloring: Glauber Dynamics

Find random k-coloring for graph with max degree Δ

Global Algorithm (for $k > 2\Delta$)

- Sample $\mathcal{O}(n \log n)$ (vertex, color) pairs: $\{(v_1, c_1), (v_2, c_2), (v_3, c_3), \cdots, (v_r, c_r)\}$
- For steps $i \in [1 \cdots r]$
- If no neighbor of v_i has color c_i set v_i 's color to c_i .
- Else, do nothing

Local Algorithm (for $k = \Theta(\Delta \log n)$)

- ► Given v, what is color(v) (in some random coloring)?
- ► Locally sample occurrences of (v, \star) using the Count $Splitting\ Generator$
- Sample (w, \star) if necessary, where w is neighbor of v
- ▶ Query tree is bounded for $k = \Theta(\Delta \log n)$

Dyck Paths