Insights into Marathon Performance: Impact of Weather on Age and Gender

William Qian

October 2024

Abstract

Introduction

Data Preprocessing

[1] 11564 14

First, we will check for missing values and patterns in the data. We can easily find that there are some weather data missing in the dataset.

Table 1: Missing Percentage of Weather Data in Each Marathon by Year

Year	Boston	Chicago	Grandma	NYC	Twin Cities
1993	0	0	NA	0	0
1994	0	0	NA	0	0
1995	0	0	NA	0	0
1996	0	0	NA	0	0
1997	0	0	NA	0	0
1998	0	0	NA	0	0
1999	0	0	NA	0	0
2000	0	0	0	0	0
2001	0	0	0	0	0
2002	0	0	0	0	0
2003	0	0	0	0	0
2004	0	0	0	0	0
2005	0	0	0	0	0

Year	Boston	Chicago	Grandma	NYC	Twin Cities
2006	0	0	0	0	0
2007	0	0	0	0	0
2008	0	0	0	0	0
2009	0	0	0	0	0
2010	0	0	0	0	0
2011	0	1	0	1	1
2012	0	0	1	0	0
2013	0	0	0	0	0
2014	0	0	0	0	0
2015	0	0	0	0	0
2016	0	0	0	0	0

Data Analysis

Effect of Age on Marathon Performance by Race

Table 2: RH Model Coefficients

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-30.2005520	0.9708892	-31.1060755	0.0000000
RH	-0.0003344	0.0094546	-0.0353719	0.9717838
SexMale	-4.7812957	0.6080433	-7.8634129	0.0000000
Age	1.7545477	0.0169002	103.8183237	0.0000000

Table 3: SR Model Coefficients

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-29.4795524	1.2291307	-23.9840664	0.000000
SR	-0.0013813	0.0016146	-0.8555289	0.392277
SexMale	-4.7762996	0.6080477	-7.8551397	0.000000
Age	1.7539441	0.0169126	103.7061018	0.000000

Table 4: DP Model Coefficients

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-32.017656	0.9181339	-34.872534	0
DP	0.287388	0.0435305	6.601993	0
SexMale	-4.801950	0.6068550	-7.912845	0
Age	1.759805	0.0168836	104.231898	0

Table 5: Wind Model Coefficients

-	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-28.5448183	1.1331262	-25.191208	0.0000000
Wind	-0.1734134	0.0743508	-2.332367	0.0196993
SexMale	-4.7828490	0.6078915	-7.867932	0.0000000
Age	1.7557419	0.0169015	103.880900	0.0000000

Table 6: Flag Model Coefficients

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-30.666331	0.9422152	-32.547057	0.0000000
FlagRed	7.648126	1.3839258	5.526399	0.0000000
FlagWhite	-2.412088	0.6945525	-3.472866	0.0005169
FlagYellow	3.342042	0.8438010	3.960699	0.0000752
SexMale	-4.803419	0.6059713	-7.926810	0.0000000
Age	1.760180	0.0168528	104.444531	0.0000000

Table 7: WBGT Model Coefficients

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-36.2759369	1.1404774	-31.807677	0
WBGT	0.4479189	0.0540060	8.293866	0
SexMale	-4.8069510	0.6061679	-7.930066	0
Age	1.7607921	0.0168625	104.420531	0

Table 8: Model with WBGT Coefficients

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-35.8052408	2.1503858	-16.6506129	0.0000000
RH	-0.0100714	0.0117823	-0.8547937	0.3926839
SR	-0.0117774	0.0021134	-5.5728350	0.0000000
DP	-0.4666199	0.1192422	-3.9132102	0.0000916
Wind	0.0271575	0.0796785	0.3408382	0.7332318
WBGT	1.1062063	0.1550168	7.1360393	0.0000000
SexMale	-4.7708114	0.6053342	-7.8812856	0.0000000
Age	1.7557319	0.0168654	104.1026354	0.0000000

Table 9: Model with Flag Coefficients

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-24.6502924	1.8792540	-13.1170628	0.0000000
RH	-0.0188363	0.0123629	-1.5236100	0.1276347
SR	-0.0089529	0.0019871	-4.5053890	0.0000067
DP	-0.1388574	0.0876138	-1.5848799	0.1130222
Wind	0.0582882	0.0842701	0.6916829	0.4891510
FlagRed	10.7582209	1.7404614	6.1812466	0.0000000
FlagWhite	-4.2883521	1.0310038	-4.1593950	0.0000322
FlagYellow	4.5640988	1.0933738	4.1743263	0.0000301
SexMale	-4.7755005	0.6055284	-7.8865016	0.0000000
Age	1.7556996	0.0168721	104.0591925	0.0000000

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE)
knitr::opts_chunk$set(message = FALSE)
knitr::opts_chunk$set(warning = FALSE)
library(mice, warn.conflicts = FALSE)
library(naniar)
library(ggplot2)
library(dplyr)
library(readr)
library(tidyr)
library(readxl)
library(ggpubr)
library(gtsummary)
library(GGally)
```

```
library(ggcorrplot)
library(knitr)
library(kableExtra)
library(lubridate)
library(patchwork)
library(introdataviz)
# Load data
marathon_data <- read.csv("../Data/project1.csv")</pre>
course_record <- read.csv("../Data/course_record.csv")</pre>
marathon_dates <- read.csv("../Data/marathon_dates.csv")</pre>
# rename the column names that are too long to follow.
colnames(marathon_data)[1] <- "Race"</pre>
colnames(marathon_data)[3] <- "Sex"</pre>
colnames(marathon_data)[5] <- "Age"</pre>
colnames(marathon_data)[6] <- "CR_PERCENTAGE"</pre>
colnames(marathon_data)[7] <- "TD"</pre>
colnames(marathon_data)[8] <- "TW"</pre>
colnames(marathon_data)[9] <- "RH"</pre>
colnames(marathon_data)[10] <- "TG"</pre>
colnames(marathon_data)[11] <- "SR"</pre>
# data type conversion
marathon data$Year <- as.factor(marathon data$Year)</pre>
marathon_data$Race <- as.factor(marathon_data$Race)</pre>
marathon data$Sex <- as.factor(marathon data$Sex)</pre>
marathon_data$Flag <- as.factor(marathon_data$Flag)</pre>
marathon_data$Flag[marathon_data$Flag == ""] <- NA
# Check the dimension of the data
dim(marathon_data)
# replace marathon name with code name in marathon_dates
marathon_dates$marathon[marathon_dates$marathon == "Boston"] <- 0
marathon_dates$marathon[marathon_dates$marathon == "Chicago"] <- 1</pre>
marathon_dates$marathon[marathon_dates$marathon == "NYC"] <- 2</pre>
marathon_dates$marathon[marathon_dates$marathon == "Twin Cities"] <- 3</pre>
marathon_dates$marathon[marathon_dates$marathon == "Grandmas"] <- 4
marathon_dates$marathon <- as.factor(marathon_dates$marathon)</pre>
colnames(marathon_dates)[1] <- "Race"</pre>
# rename date and year columns in marathon_dates
colnames(marathon_dates)[2] <- "Date"</pre>
colnames(marathon_dates)[3] <- "Year"</pre>
# replace marathon name with code name in course_record
course_record$Race[course_record$Race == "B"] <- 0</pre>
course_record$Race[course_record$Race == "C"] <- 1</pre>
course_record$Race[course_record$Race == "NY"] <- 2</pre>
course_record$Race[course_record$Race == "TC"] <- 3</pre>
course_record$Race[course_record$Race == "D"] <- 4</pre>
```

```
course_record$Race <- as.factor(course_record$Race)</pre>
# replace gender in course_record
course_record$Gender[course_record$Gender == "M"] <- 1</pre>
course_record$Gender[course_record$Gender == "F"] <- 0</pre>
course_record$Gender <- as.factor(course_record$Gender)</pre>
colnames(course_record)[4] <- "Sex"</pre>
# Transform records in course record into seconds
course_record$CR <- period_to_seconds(hms(course_record$CR))</pre>
# Join course_record and marathon_data
marathon_data <- merge(marathon_data, course_record, by = c("Race", "Year", "Sex"))
# Join marathon_data and marathon_dates
marathon_data <- merge(marathon_data, marathon_dates, by = c("Race", "Year"))</pre>
# calculate the record of each runner
marathon_data$CR <- (1 + marathon_data$CR_PERCENTAGE * 0.01) * marathon_data$CR
marathon_data <- marathon_data %>%
  mutate(Race = case_when(
    Race == 0 ~ "Boston",
    Race == 1 ~ "Chicago",
    Race == 2 \sim "NYC",
    Race == 3 ~ "Twin Cities",
   Race == 4 ~ "Grandma"
  ),
  Sex = case_when(
   Sex == 1 ~ "Male",
    Sex == 0 ~ "Female"
  )) %>%
  mutate(Age_group = cut(Age, breaks = seq(0, 100, by = 10), right = FALSE,
                         labels = c("0-9", "10-19", "20-29", "30-39", "40-49",
                                     "50-59", "60-69", "70-79", "80-89", "90-99")))
# Check for missing values and patterns
vis_miss(marathon_data)
# Check the missing percentage of weather data in each marathon by year
marathon_data %>%
  group_by(Race, Year) %>%
  summarise(missing_percentage = sum(is.na(Flag)) / n()) %>%
 pivot_wider(names_from="Race", values_from = missing_percentage) %>%
  arrange(Year) %>%
 replace_na(list(Boston = 0, Chicago = 0, NYC = 0, `Twin Cities` = 0, Grandmas = 0)) %>%
  kable(caption = "Missing Percentage of Weather Data in Each Marathon by Year")
# remove missing data
marathon_data <- marathon_data %>% filter(!is.na(Flag))
ggplot(marathon_data, aes(x = Age_group, fill = Age_group)) +
 geom_bar() +
```

```
facet_wrap(~ Race) +
  scale_fill_viridis_d() +
  labs(title = "Number of Participants by Age Group for Each Race",
       x = "Age Group",
       y = "Number of Participants",
       fill = "Age Group") +
 theme_minimal() +
  theme(axis.text.x = element text(angle = 45, hjust = 1))
marathon data <- marathon data %>%
  mutate(Age_group = if_else(Age_group == "90-99", "80-99", Age_group)) %>%
  mutate(Age_group = if_else(Age_group == "80-89", "80-99", Age_group))
ggplot(marathon_data, aes(x = Sex, fill = Sex)) +
  geom_bar(position = "dodge", alpha = 0.7) +
  facet_wrap(~ Race, scales = "free_y") +
 labs(title = "Sex Distribution by Race",
       x = "Sex",
       y = "Count",
       fill = "Sex") +
  theme_minimal() +
  theme(
    axis.text.x = element_text(face = "italic"),
   legend.position = "none"
  )
ggplot(marathon_data, aes(x=Race, y = CR_PERCENTAGE, fill=Sex)) +
  geom_split_violin() +
  labs(title = "Distribution of Completion Time Percentage",
      y = "CR Percentage") +
 theme_minimal() +
  theme(
   axis.text.x = element_text(angle = 45, hjust = 1)
ggpairs(marathon_data %>% select(TD, TW, RH, TG, SR, DP, Wind, WBGT))
ggplot(marathon_data, aes(x = Age, y = CR, color = Sex)) +
  geom_point(alpha = 0.1) +
  geom_smooth(method = "loess", se = TRUE) +
 facet_wrap(~ Race, scales = "free_y") +
  labs(title = "Effect of Age on Marathon Performance by Race",
       x = "Age (yrs)",
       y = "Best Time (CR)",
       color = "Sex") +
  theme minimal() +
  theme(
   axis.text.x = element_text(angle = 90, hjust = 1),
   legend.position = "top"
 )
# WGBT effects
flag_colors <- c("Green" = "darkgreen",</pre>
                 "Yellow" = "orange",
                 "Red" = "darkred",
                 "White" = "darkgrey")
```

```
marathon_data %>%
  ggplot(aes(x = Age, y = CR_PERCENTAGE, color = Flag)) +
  facet_wrap(~ Sex, scales = "fixed") +
  geom point(alpha = 0.1) +
  geom_smooth(aes(group = Flag, color = Flag), se = T, size=0.5) +
  geom_hline(yintercept = 50, linetype = "dashed", color = "blue") +
  geom_hline(yintercept = 100, linetype = "dashed", color = "blue") +
  geom hline(yintercept = 150, linetype = "dashed", color = "blue") +
  geom hline(yintercept = 200, linetype = "dashed", color = "blue") +
  scale_color_manual(values = flag_colors) +
  labs(title = "WGBT Effect on Completion Time by Age and Sex",
      x = "Age",
       y = "Percenatge of Completion Time",
       color = "Flag") +
  theme_minimal() +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1)
age_group_colors <- c("0-9" = "#1b9e77",
                      "10-19" = "#d95f02",
                      "20-29" = "#7570b3",
                      "30-39" = "#e7298a",
                      "40-49" = "#98c61e",
                      "50-59" = "#e6ab02",
                      "60-69" = "#a6761d",
                      "70-79" = "#666666"
                      "80-99" = "#1f78b4")
# RH Effects
RH_sex <- marathon_data %>%
      ggplot(aes(x = as.factor(round(RH, 2)), y = CR_PERCENTAGE, color = Sex)) +
      geom_boxplot(alpha = 0.7) +
      geom_smooth(aes(group = Sex), se = FALSE) +
     labs(title = "RH Effect on Marathon Performance by Sex",
           x = "RH",
           y = "Completion Time") +
      theme minimal() +
      theme(
        axis.text.x = element_text(angle = 90)
RH_age <- marathon_data %>%
      ggplot(aes(x = as.factor(round(RH, 2)), y = CR_PERCENTAGE, fill = Age_group, color = Age_group))
      geom_boxplot(alpha = 0.6, position = position_dodge(width = 1)) +
      geom_smooth(aes(group = Age_group, color = Age_group), method = "lm", se = FALSE) +
      scale_fill_manual(values = age_group_colors) +
      scale_color_manual(values = age_group_colors) +
      labs(title = "RH Effect on Marathon Performance by Age",
           x = "RH",
           y = "Percentage of Completion Time",
           fill = "Age Group",
           color = "Age Group") +
```

```
theme_minimal() +
      theme(
        axis.text.x = element_text(angle = 90)
      )
# Wind Effects
Wind_sex <- marathon_data %>%
      ggplot(aes(x = as.factor(round(Wind, 2)), y = CR PERCENTAGE, color = Sex)) +
      geom boxplot(alpha = 0.7) +
      geom_smooth(aes(group = Sex), se = FALSE) +
      labs(title = "Wind Effect on Marathon Performance by Sex",
           x = "Wind",
           y = "Completion Time") +
      theme minimal() +
      theme(
        axis.text.x = element_text(angle = 90)
Wind_age <- marathon_data %>%
      ggplot(aes(x = as.factor(round(Wind, 2)), y = CR_PERCENTAGE, fill = Age_group, color = Age_group)
      geom_boxplot(alpha = 0.6, position = position_dodge(width = 1)) +
      geom_smooth(aes(group = Age_group, color = Age_group), method = "lm", se = FALSE) +
      scale_fill_manual(values = age_group_colors) +
      scale_color_manual(values = age_group_colors) +
      labs(title = "Wind Effect on Marathon Performance by Age",
           x = "Wind",
           y = "Percentage of Completion Time",
           fill = "Age Group",
           color = "Age Group") +
      theme_minimal() +
      theme(
        axis.text.x = element_text(angle = 90)
# SR Effects
SR_sex <- marathon_data %>%
      ggplot(aes(x = as.factor(round(SR, 2)), y = CR_PERCENTAGE, color = Sex)) +
      geom_boxplot(alpha = 0.7) +
      geom_smooth(aes(group = Sex), se = FALSE) +
      labs(title = "SR Effect on Marathon Performance by Sex",
           x = "SR",
           y = "Completion Time") +
      theme minimal() +
      theme(
        axis.text.x = element_text(angle = 90)
SR_age <- marathon_data %>%
      ggplot(aes(x = as.factor(round(SR, 2)), y = CR_PERCENTAGE, fill = Age_group, color = Age_group))
     geom_boxplot(alpha = 0.6, position = position_dodge(width = 1)) +
     geom_smooth(aes(group = Age_group, color = Age_group), method = "lm", se = FALSE) +
      scale_fill_manual(values = age_group_colors) +
      scale_color_manual(values = age_group_colors) +
```

```
labs(title = "SR Effect on Marathon Performance by Age",
           x = "SR",
           y = "Percentage of Completion Time",
           fill = "Age Group",
           color = "Age Group") +
      theme minimal() +
      theme(
       axis.text.x = element text(angle = 90)
      )
(RH_sex | RH_age) / (Wind_sex | Wind_age) / (SR_sex | SR_age) +
  plot_layout(guides = "collect", axis_titles = "collect") &
 theme(legend.position = 'bottom')
# RH model
RH_model <- glm(CR_PERCENTAGE ~ RH + Sex + Age, data = marathon_data)</pre>
kable(summary(RH_model)$coefficients, caption = "RH Model Coefficients")
# SR model
SR_model <- glm(CR_PERCENTAGE ~ SR + Sex + Age, data = marathon_data)</pre>
kable(summary(SR_model)$coefficients, caption = "SR Model Coefficients")
# DP model
DP_model <- glm(CR_PERCENTAGE ~ DP + Sex + Age, data = marathon_data)</pre>
kable(summary(DP model)$coefficients, caption = "DP Model Coefficients")
# Wind model
Wind_model <- glm(CR_PERCENTAGE ~ Wind + Sex + Age, data = marathon_data)
kable(summary(Wind_model)$coefficients, caption = "Wind Model Coefficients")
# Flag model
Flag_model <- glm(CR_PERCENTAGE ~ Flag + Sex + Age, data = marathon_data)
kable(summary(Flag_model)$coefficients, caption = "Flag Model Coefficients")
# WBGT model
WBGT_model <- glm(CR_PERCENTAGE ~ WBGT + Sex + Age, data = marathon_data)
kable(summary(WBGT_model)$coefficients, caption = "WBGT Model Coefficients")
# linear model
lm_model_1 <- glm(CR_PERCENTAGE ~ RH + SR + DP + Wind + WBGT + Sex + Age, data = marathon_data)</pre>
kable(summary(lm_model_1)$coefficients, caption = "Model with WBGT Coefficients")
lm mode 2 <- glm(CR PERCENTAGE ~ RH + SR + DP + Wind + Flag + Sex + Age, data = marathon data)</pre>
kable(summary(lm_mode_2)$coefficients, caption = "Model with Flag Coefficients")
```