

PRÁCTICA 1: MANUAL TÉCNICO

28/08/2021

GRUPO # 3

Juan Jose Ramos Campos	201801262
Jessica Elizabeth Botón Pérez	201800535
Luis Fernando Velasquez Zacarias	201807266
Stefany Samantha Abigail Coromac Huezo	201801182

TOPOLOGÍA 1

Componentes:

- 5 Hosts. Departamentos: estudiante, auxiliar, profesor y registro (2)
- 3 Servidores. Departamentos: estudiante, registro y administración
- 4 Switches
- 2 Routers
- 1 Peer

Configuraciones a realizar: VTP, Inter Vlan, ruteo estatico y dinamico.

^{*} Para mayor detalle vea el manual de configuraciones

DISPOSITIVO	INTERFAZ	DIRECCIÓN IP	MÁSCARA DE SUBRED
RO	F1/0	192.168.11.1	255.255.255.224
	S2/0	10.0.0.1	255.0.0.0
R1	S2/0	10.0.0.2	255.0.0.0
	F0/0	192.168.44.1	255.255.255.224
	G6/0	192.168.10.1	255.255.255.0
Servidor Web Estudiantes	-	192.168.11.2	255.255.255.24
Server Web Administración	-	192.168.44.2	255.255.255,224
Profesor	-	192.168.3.10	255.255.255.224
Estudiante	-	192.168.1.2	255.255.255.224
Auxiliar	-	192.168.2.10	255.255.255.224
Server Correo Registro	-	192.168.7.4	255.255.255.0
Registro	-	192.168.7.2	255.255.255.0
Registro 2	-	192.168.7.3	255.255.255.0

VTP

Es un protocolo de nivel 2 usado para configurar y administrar VLANs, se utiliza este protocolo para poder crear las VLANs y replicarlas de una manera más rápida a los demás switches en los que se necesitan.

SWITCH 1

VTP Domain: Grupo3

^{*} Para mayor detalle vea el manual de configuraciones

VTP Password: Grupo3

VTP Mode: Server

En este switch por estar en modo servidor, se crearon las siguientes VLANs.

TABLA DE VLANS

#	NOMBRE	COLOR
13	Estudiantes	
23	Auxiliares	
33	Profesores	
43	Administración	

SWITCH 0

VTP Domain: Grupo3

VTP Password: Grupo3

VTP Mode: Client

SWITCH 2

VTP Domain: Grupo3

VTP Password: Grupo3

VTP Mode: Client

SWITCH 3

VTP Domain: Grupo3

VTP Password: Grupo3

VTP Mode: Transparent

^{*} Para mayor detalle vea el manual de configuraciones

El switch 3 fue configurado en modo transparente, en este switch se procede a crear la VLAN 103 con nombre Registro para poder administrar de forma local, esta VLAN solo existe en este switch.

#	NOMBRE	COLOR
13	Estudiantes	
23	Auxiliares	
33	Profesores	
43	Administración	
103	Registro	

INTERVLAN

El enrutamiento entre Vlans o inter vlan, resulta necesario una vez que se posee una infraestructura de red con vlan implementadas, debido a que los usuarios necesitarán intercambiar información de una red a otra.

Es importante recordar que cada VLAN es un dominio de broadcast único. Por lo tanto, de manera predeterminada, las computadoras en VLAN separadas no pueden comunicarse.

IMPLEMENTACIÓN

En este caso, se configurará con el método de Router on a stick.

En el **ROUTER 0** se deben configurar las interfaces, con sus encapsulados y las direcciones IP correspondientes.

EI:

interface fa0/0.13 <- El decimal es el ID de la subinterfaz encapsulation dot 1 q 1 3 <- El número es la vlan

encapsulation dot1q 13 <- El número es la vlan ip address 192.168.1.1 255.255.255.224 <- IP de la subinterfaz

interface fa0/0.23

...

^{*} Para mayor detalle vea el manual de configuraciones

exit interface fa0/0 no shutdown

En el SWITCH 1 debemos asegurarnos que la interfaz esté en modo trunk y habilitado el paso de las vlans que se desean comunicar.

ENRUTAMIENTO

Proceso de mover un paquete desde un host en una red a otro host en un red diferente

Los routers se encargan de determinar la mejor hacia cada red de destino. Los routers pueden enviar paquetes hacia su destino, en la medida en que tienen información de las redes existentes en la inter red. Una red sin routers no tiene enrutamiento.

IMPORTANTE

Para que un router pueda enrutar paquetes debe conocer al menos lo siguiente:

- La dirección de red destino
- Routers vecinos desde los cuales puede aprender redes remotas
- Posibles rutas hacia cada red remota
- La mejor ruta hacia cada red remota
- Cómo mantener y verificar información de enrutamiento

Procederemos a configurar el ruteo estático entre los routers 0 y 1. Así como ruteo dinámico entre el router 1 y el dispositivo multi user.

Ruteo Estático

Las rutas estáticas son definidas manualmente por el administrador para que el router aprenda sobre una red remota. Las redes estáticas necesitan pocos recursos del sistema.

IMPLEMENTACIÓN

Primero se deben configurar las interfaces que se están utilizando en los routers, es decir, que se le debe asignar la dirección IP correspondiente y levantarlas.

Luego procedemos a ejecutar el comando correspondiente para enrutar:

ip route [redDestino] [mascaraDestino] [ipProximoSalto]

^{*} Para mayor detalle vea el manual de configuraciones

Donde:

- redDestino: es la IP de la ruta hacia donde queremos llegar.
- mascaraDestino: es la máscara de la red de destino.
- ipProximoSalto: es la IP del próximo salto, es decir, la IP de la interfaz del router 1 por la que podemos alcanzar la red de destino.

Ruteo Dinamico

El enrutamiento dinámico permite a los routers ajustar, en tiempo real, los caminos utilizados para transmitir paquetes IP. El enrutamiento dinámico hace uso de una única ruta predeterminada que se usa para representar una ruta hacia cualquier red.

IMPLEMENTACIÓN

No se nos especifica un protocolo de enrutamiento específico, por lo que convenientemente se configura OSPF.

Ya configuradas las interfaces que se están utilizando en los routers, procedemos a ejecutar los siguientes comandos:

route ospf 1

network [lpRed] [Wildcard] area ID

Donde:

- IpRed: es la ip de la red a la que queremos acceder
- Wildcard: es el complemento de la máscara de la red destino.
- ID: es el identificador del área, puede ser 1.

^{*} Para mayor detalle vea el manual de configuraciones

TOPOLOGÍA 2

Componentes:

- 1 Hosts. Departamentos: Administración
- 2 Servidores. Departamentos: Auxiliar y Profesor
- 1 Switches
- 3 Routers
- 1 Peer

Configuraciones a realizar: Ruteo Dinámico RIP, OSPF, EIGRP y Redistribución.

DISPOSITIVO	INTERFAZ	DIRECCIÓN IP	MÁSCARA DE SUBRED
R1	S0/1/0	192.16.1.1	255.255.255.0
	S0/1/1	192.16.2.1	255.255.255.0
R0	S0/1/0	192.16.1.2	255.255.255.0

^{*} Para mayor detalle vea el manual de configuraciones

	S0/1/1	192.16.4.2	255.255.255.0
R3	S0/1/1	192.16.2.2	255.255.255.0
	S0/1/0	192.16.3.2	255.255.255.0
Server Web Auxiliar	-	192.168.3.2	255.255.255.224
Server Web Profesor	-	192.168.2.2	255.255.255.224
Administración	-	192.168.4.36	255.255.255.224

RUTEO RIP

Es un protocolo que utiliza el recuento de saltos como métrica de enrutamiento para poder encontrar la mejor ruta entre la red de origen y destino.

IMPLEMENTACIÓN

• IP DE RED: Es la ip de la red a la que queremos acceder

router rip
version 2
network [IP DE RED]
no auto-summary

exit

RUTEO OSPF

Este protocolo utiliza el algoritmo LSR, se utiliza mucho en grandes redes empresariales.

IMPLEMENTACIÓN

- IP DE RED: Es la ip de la red a la que queremos acceder
- WILDCARD: Es el complemento de la máscara de la red destino.

^{*} Para mayor detalle vea el manual de configuraciones

route ospf 1
network [IP DE RED] [WILDCARD] area ID

RUTEO EIGRP

Este es un protocolo de Cisco y solo está disponible para router Cisco. Solo envía actualizaciones incrementales, lo que reduce la carga de trabajo en el router.

IMPLEMENTACIÓN

- IP DE RED: Es la ip de la red a la que queremos acceder
- WILDCARD: Es el complemento de la máscara de la red destino.

router eigrp 1 <- El 1 es el id de proceso network [IP DE RED] [WILDCARD] no auto-summary exit

^{*} Para mayor detalle vea el manual de configuraciones