

TMA4115 Calculus 3 Spring 2018

Norwegian University of Science and Technology Department of Mathematical Sciences Work Sheet Week 3

Remark: Hand in C.1, C.2 and C.3. Optionally, hand in also C.4.

A - Reading

SS = Saff-Snider (the part of the textbook that deals with complex numbers)

SS 1.4 The Complex Exponential

SS 1.5 Powers and Roots

B - Finger Exercises

The form a + ib will always assume a and b real, and the form re^{it} will always assume r real, non-negative and t real.

B.1

Write the following complex numbers in the form a + ib:

$$z = \frac{e^{1+3\pi i}}{e^{-1+i\frac{\pi}{2}}}, \qquad z = \frac{e^{3i} - e^{-3i}}{2i}.$$

B.2

Compute

$$(\sqrt{3} - i)^7$$
 and $(1 + i)^{95}$,

and express the result in the form a + ib

B.3

Find all the values of

$$1^{\frac{1}{5}}$$
 and $\left(\frac{2i}{1+i}\right)^{\frac{1}{6}}$,

C - Exam Preparation

The form a + ib will always assume a and b real.

C.1 Use the complex exponential to prove that

$$\sin^2\theta + \cos^2\theta = 1.$$

C.2 Determine which of the following properties of the complex exponential are true (give a proof in case they are true or a counterexample in case they are false):

- 1. $e^{z+\pi i} = -e^z$.
- $2. \ \overline{e^z} = e^{\overline{z}}.$
- 3. e^z is never zero.
- 4. e^z is a one-to-one function.
- 5. $e^{-z} = \frac{1}{e^z}$

C.3 Compute the sum and the product of the fifth roots of unity.

C.4 (Optional)

Let $n \in \mathbb{N}$. Assume that $a_0, \ldots, a_{n-1} \in \mathbb{R}$. Use the properties of the conjugate to show that if $z_0 \in \mathbb{C}$ a solution of

$$z^{n} + a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0} = 0$$

then \overline{z} is also a solution.