Accurate forecasting of demand can help the manufacturers to maintain appropriate stock which results in reduction in loss due to product not being sold and also reduces the opportunity cost (i.e. higher demand but less availability => opportunity lost)

Data fields

- date Date of the sale data. There are no holiday effects or store closures.
- store Store ID
- item Item ID
- sales Number of items sold at a particular store on a particular date.

In this project, the goal is to forecast 3-month sales for 50 different products in 10 different stores when given 5 years of store item sales data.

```
#import libraries
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn import metrics
import matplotlib.pyplot as plt
%matplotlib inline
from time import time
import warnings
warnings.filterwarnings("ignore")
# Read the dataset
dataset = pd.read_csv("item.csv")
dataset
```

	date	store	item	sales
0	2013-01-01	1	1	13
1	2013-01-02	1	1	11
2	2013-01-03	1	1	14
3	2013-01-04	1	1	13
4	2013-01-05	1	1	10
912995	2017-12-27	10	50	63
912996	2017-12-28	10	50	59
912997	2017-12-29	10	50	74
912998	2017-12-30	10	50	62
912999	2017-12-31	10	50	82

913000 rows × 4 columns

```
dataset.info()
```

▼ DATA CLEANING

DATA HAS NO MISSING AND ZERO NULL VALUES FOR ALL COLUMNS SO NO NEED OF IMPUTE AND DROP THE DATA

```
Data columns (total 4 columns):

# Column Non-Null Count Dtype

--- ---- 0 date 913000 non-null datetime64[ns]

1 store 913000 non-null int64

2 item 913000 non-null int64

3 sales 913000 non-null int64

dtypes: datetime64[ns](1), int64(3)

memory usage: 27.9 MB
```

```
Understanding Dataset
dataset.isnull().sum() # no null values and no duplicate rows
    date
    store
             0
    item
             0
             0
    sales
    dtype: int64
dataset['store'].unique()
#dataset.store.unique()
    array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
dataset.store.nunique()
    10
dataset.groupby(["store"]).agg({"sales": ["count", "sum", "mean", "median", "std", "min", "max"]})
            sales
            count sum
                            mean
                                      median std
                                                        min max
     store
            91300 4315603 47.268379
                                        44.0 24.006252
       1
                                                          1 155
       2
            91300 6120128 67.033165
                                        62.0 33.595810
                                                          3 231
       3
            91300 5435144 59.530602
                                        55.0 29.974102
                                                          3 196
            91300 5012639 54.902946
                                        51.0 27.733097
                                                          4 186
       5
            91300 3631016 39.770164
                                        37.0 20.365757
                                                          2 130
       6
            91300 3627670 39.733516
                                        37.0 20.310451
                                                          0 134
       7
            91300 3320009 36.363735
                                        34.0 18.684825
                                                          1 122
            91300 5856169 64.142048
                                        60.0 32.231751
                                                          4 204
            91300 5025976 55.049025
                                        51.0 27.832186
                                                          4 195
       10
            91300 5360158 58.709288
                                        54.0 29.554994
                                                          3 187
dataset.item.unique()
    array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
           18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
           35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
dataset.item.nunique()
    50
{\tt dataset.groupby(["item"]).agg(\{"sales": ["count","sum", "mean", "median", "std", "min", "max"]\})}
```

sales

	Jaics									
	count	sum	mean	median	std	min	max			
item										
1	18260	401384	21.981599	21.0	8.468922	1	59			
2	18260	1069564	58.574151	56.0	20.093015	9	150			
3	18260	669087	36.642223	35.0	13.179441	7	104			
4	18260	401907	22.010241	21.0	8.403898	0	66			
5	18260	335230	18.358708	18.0	7.265167	1	50			
6	18260	1068281	58.503888	56.0	20.174898	11	148			
7	18260	1068777	58.531051	56.0	20.146002	11	141			
8	18260	1405108	76.950055	74.0	26.130697	15	181			
9	18260	938379	51.389869	49.5	17.790158	6	134			
10	18260	1337133	73.227437	70.0	24.823725	14	175			
11	18260	1271925	69.656353	67.0	23.744732	11	170			
12	18260	1271534	69.634940	67.0	23.738663	12	170			
13	18260	1539621	84.316594	81.0	28.311031	20	210			
14	18260	1071531	58.681873	56.0	20.079860	12	152			
15	18260	1607442	88.030778	85.0	29.522852	17	231			
16	18260	468480	25.656079	25.0	9.603270	2	70			
17	18260	602486	32.994852	32.0	11.967610	4	83			
18	18260	1538876	84.275794	81.0	28.430621	18	208			
Outliers										
20	18260	867641	A7 515036	46 N	16 400487	a	197			
dataset.des	cribe()	dataset.describe()								

		store	item		sales	
count	91300	0.000000	913000.000000	913	000.00000	
mean		5.500000	25.500000		52.250287	
std		2.872283	14.430878		28.801144	
min		1.000000	1.000000		0.000000	
25%		3.000000	13.000000		30.000000	
50%		5.500000	25.500000		47.000000	
75%		8.000000	38.000000		70.000000	
max	1	0.000000	50.000000		231.000000	
31	18260	1070845	58.644304	5/.0	20.104705	

```
iqr = dataset['store'].quantile(0.75) - dataset['store'].quantile(0.25)
upper_threshold = dataset['store'].quantile(0.75) + (1.5 * iqr)
lower_threshold = dataset['store'].quantile(0.25) - (1.5 * iqr)
upper_threshold, lower_threshold
```

```
(15.5, -4.5)
```

```
import plotly.express as px
from matplotlib.pyplot import figure

#sns.boxplot(dataset['store'])
fig = px.box(dataset["store"])
fig.show()
```


AS WE OBSERVED THE GRAPH THEIR IS NO OUTLIERS IN THE STORE

AS WE OBSERVED THE GRAPH THEIR IS NO OUTLIERS IN THE ITEM

AS WE OBSERVED THE GRAPH THEIR IS OUTLIERS IN THE SALES NEED TO CLIP

```
dataset['sales'] = dataset['sales'].clip(upper_threshold,lower_threshold)
dataset.sales
fig = px.box(dataset["sales"])
fig.show()
```


AFTER CLIPPING NO OUTLIERS FOUND

dataset.describe()

	store	item	sales
count	913000.000000	913000.000000	913000.000000
mean	5.500000	25.500000	52.067088
std	2.872283	14.430878	28.223040
min	1.000000	1.000000	0.000000
25%	3.000000	13.000000	30.000000
50%	5.500000	25.500000	47.000000
75%	8.000000	38.000000	70.000000
max	10.000000	50.000000	130.000000

```
plt.subplots(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.distplot(dataset['sales'])
plt.subplot(1, 2, 2)
sns.boxplot(dataset['sales'])
plt.show()
```


▼ TASK JAR

```
dataset.plot(x='item', y='sales', style='o')
plt.title('item vs sales')
plt.xlabel('item')
plt.ylabel('sales')
plt.show()
```



```
dataset.plot(x='store', y='sales', style='o')
plt.title('store vs sales')
plt.xlabel('store')
plt.ylabel('sales')
plt.show()
```



```
dataset.plot(x='date', y='sales', style='o')
plt.title('date vs sales')
plt.xlabel('date')
plt.ylabel('sales')
plt.show()
```


#Sales Data Per Item
sales_by_item = dataset.groupby('item')['sales'].sum().reset_index()
sales_by_item

```
item
             sales
          401384.0
0
1
         1069418.0
2
           669087.0
3
          401907.0
4
      5
          335230.0
       6 1068156.0
5
       7 1068743.0
6
7
       8 1397852.0
          938375.0
8
      9
      10 1333472.0
9
      11 1269894.0
10
      12 1269457.0
11
      13 1521259.0
12
      14 1071387.0
13
      15 1580269.0
14
15
      16
          468480.0
16
     17
          602486.0
17
     18 1520397.0
          736892.0
18
     19
19
     20
          867641.0
     21
          736190.0
20
     22 1458608.0
21
22
     23
          534979.0
     24 1205215.0
23
     25 1461296.0
24
25
     26
          869981.0
     27
          402628.0
26
     28 1577341.0
27
28
     29 1269435.0
29
     30
          736554.0
30
     31 1070640.0
31
     32
          803107.0
32
     33 1268063.0
33
     34
          469935.0
34
     35 1200760.0
     36 1399638.0
35
          534258.0
36
     37
      38 1458952.0
37
           801311.0
38
     39
      40
          534094.0
39
40
          401759.0
41
     42
           669925.0
42
     43
           936635.0
43
     44
           536811.0
44
     45 1459378.0
     46 1070688.0
45
```

```
fig, ax = plt.subplots(figsize=(20,8))
sns.barplot(sales_by_item.item, sales_by_item.sales, order=sales_by_item.sort_values('sales', ascending = False).item)
#ax.set(xlabel = "Item Id", ylabel = "Sum of Sales", title = "Total Sales Per Item")
```

401781 0

46

```
<AxesSubplot:xlabel='item', ylabel='sales'>
```



```
#Sales Data Per Store
sales_by_store = dataset.groupby('store')['sales'].sum().reset_index()
```

```
fig, ax = plt.subplots(figsize=(10,6))
sns.barplot(sales_by_store.store, sales_by_store.sales, order=sales_by_store.sort_values('sales',ascending = False).store)
#ax.set(xlabel = "Store Id", ylabel = "Sum of Sales", title = "Total Sales Per Store")
```



```
figure(figsize=(18, 4), dpi=80)
item_daily = dataset.groupby(["date","store"],as_index=False).agg({"sales":"sum"})
item_daily['date'] = pd.to_datetime(item_daily.date, format='%Y/%m/%d')
item_1 = item_daily[item_daily['store']==1]
ax_2 = sns.scatterplot(data=item_1,x='date',y='sales')
```

Text(0, 0.5, 'Sales/store')

ax_2.set_ylabel("Sales/store")


```
figure(figsize=(18, 4), dpi=80)
item_daily = dataset.groupby(["date","item"],as_index=False).agg({"sales":"sum"})
```

```
item_daily['date'] = pd.to_datetime(item_daily.date, format='%Y/%m/%d')
item_1 = item_daily[item_daily['item']==1]
ax_2 = sns.scatterplot(data=item_1,x='date',y='sales')
ax_2.set_ylabel("Sales/Item_1")
```

```
Text(0, 0.5, 'Sales/Item_1')

400

350

500

150

100

2013

2014

2015

2016

2017

2018
```

Feature Engineering

```
# Convert the date column to a datetime object
dataset['date'] = pd.to_datetime(dataset['date'])
# Create new columns for year, month, and day
dataset['year'] = dataset['date'].dt.year
dataset['month'] = dataset['date'].dt.month
dataset['day'] = dataset['date'].dt.day
from datetime import datetime
import calendar
def weekend_or_weekday(year,month,day):
   d = datetime(year,month,day)
   if d.weekday()>4:
        return 1
   else:
        return 0
dataset['weekend'] = dataset.apply(lambda x:weekend_or_weekday(x['year'], x['month'], x['day']), axis=1)
dataset.head()
```

	date	store	item	sales	year	month	day	weekend
0	2013-01-01	1	1	13.0	2013	1	1	0
1	2013-01-02	1	1	11.0	2013	1	2	0
2	2013-01-03	1	1	14.0	2013	1	3	0
3	2013-01-04	1	1	13.0	2013	1	4	0
4	2013-01-05	1	1	10.0	2013	1	5	1

```
def which_day(year, month, day):
```

```
d = datetime(year,month,day)
return d.weekday()
```

	date	store	item	sales	year	month	day	weekend	weekday
0	2013-01-01	1	1	13.0	2013	1	1	0	1
1	2013-01-02	1	1	11.0	2013	1	2	0	2
2	2013-01-03	1	1	14.0	2013	1	3	0	3
3	2013-01-04	1	1	13.0	2013	1	4	0	4
4	2013-01-05	1	1	10.0	2013	1	5	1	5

```
from datetime import date
import holidays
def is_holiday(x):
    india_holidays = holidays.country_holidays('IN')
    if india_holidays.get(x):
        return 1
    else:
        return 0
dataset['holidays'] = dataset['date'].apply(is_holiday)
dataset.head()
```


item_i = dataset[dataset['item']==3]
item_i

18260 rows × 10 columns

a = date_list.index(r)

c =item_1.loc[i:a, 'sales'].sum()

	date	store	item	sales	year	month	day	weekend	weekday	holidays
36520	2013-01-01	1	3	15.0	2013	1	1	0	1	0
36521	2013-01-02	1	3	30.0	2013	1	2	0	2	0
36522	2013-01-03	1	3	14.0	2013	1	3	0	3	0
36523	2013-01-04	1	3	10.0	2013	1	4	0	4	0
36524	2013-01-05	1	3	23.0	2013	1	5	1	5	0
54775	2017-12-27	10	3	32.0	2017	12	27	0	2	0
54776	2017-12-28	10	3	33.0	2017	12	28	0	3	0
54777	2017-12-29	10	3	39.0	2017	12	29	0	4	0
54778	2017-12-30	10	3	34.0	2017	12	30	1	5	0
54779	2017-12-31	10	3	39.0	2017	12	31	1	6	0

k = item_i.groupby(['date','item'])
item_1 = k.agg(sum)
item_1=item_1.reset_index()
j=[]
for i in range(89, len(item_1)):
 b = item_1['date'][0+i] # 0 is the starting date and 0+i is the end date
 j.append(b)
item = item_1.head(1737) # doubt
item['end']=j # doubt
date_list = dataset['date'].to_list()
d =[]
for i in range(1737):
 r = item.loc[i, 'end']

```
d.append(c)
item['total'] = d
item['date'] = pd.to_datetime(item['date'])
item['year'] = item['date'].dt.year
item['month'] = item['date'].dt.month
item['day'] = item['date'].dt.day
```

item

	date	item	store	sales	year	month	day	weekend	weekday	holidays	end	total
0	2013-01-01	3	55	172.0	2013	1	1	0	10	0	2013-03-31	21420.0
1	2013-01-02	3	55	213.0	2013	1	2	0	20	0	2013-04-01	21472.0
2	2013-01-03	3	55	193.0	2013	1	3	0	30	0	2013-04-02	21580.0
3	2013-01-04	3	55	218.0	2013	1	4	0	40	0	2013-04-03	21664.0
4	2013-01-05	3	55	217.0	2013	1	5	10	50	0	2013-04-04	21783.0
1732	2017-09-29	3	55	423.0	2017	9	29	0	40	0	2017-12-27	35038.0
1733	2017-09-30	3	55	482.0	2017	9	30	10	50	10	2017-12-28	34913.0
1734	2017-10-01	3	55	457.0	2017	10	1	10	60	0	2017-12-29	34763.0
1735	2017-10-02	3	55	332.0	2017	10	2	0	0	10	2017-12-30	34648.0
1736	2017-10-03	3	55	342.0	2017	10	3	0	10	0	2017-12-31	34718.0

1737 rows × 12 columns

Split the Data

```
x = item.loc[:,['year','month','day']].values
y = item.loc[:,'total'].values
```

Train and Test the Data

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size =0.25)
```

Scale the Data

```
from sklearn.preprocessing import StandardScaler ## standrard scalig
scaler = StandardScaler() #initialise to a variable
scaler.fit(x_train) # we are finding the values of mean and sd from the td
x_train = scaler.transform(x_train) # fit (mean, sd) and then transform the training data
x_test= scaler.transform(x_test) # transform the test data
```

→ MODEL

Linear Regression

```
linear =LinearRegression()
linear.fit(x_train,y_train)
print('score for Linear Regression:',linear.score(x_test,y_test))
score for Linear Regression: 0.44510958153315994
```

Decision Tree Regressor

```
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import r2_score

for depth in [1,2,3,4,5,6,7,8,9,10,20,40,60]:
    dt = DecisionTreeRegressor(max_depth=depth)
    dt.fit(x_train,y_train)
    trainAccuracy = r2_score(y_train,dt.predict(x_train))
    dt = DecisionTreeRegressor(max_depth = depth)
    valAccuracy = cross_val_score(dt, x_train, y_train, cv=10, scoring = make_scorer(r2_score))
    print("Depth:",depth,'Train R2:',trainAccuracy,'Val Score:',np.mean(valAccuracy))
dt = DecisionTreeRegressor(max_depth = int(input('max_depth_value')))
```

```
dt.fit(x train,y train)
#print('score for Decision Treeregressor:',dt.score(x_test,y_test))
    Depth: 1 Train R2: 0.35087341198894495 Val Score: 0.33381460440911626
    Depth: 2 Train R2: 0.5655852496160495 Val Score: 0.5518352189862905
    Depth: 3 Train R2: 0.7572635091542361 Val Score: 0.7486419366195585
    Depth: 4 Train R2: 0.8696316259916675 Val Score: 0.8639621714011867
    Depth: 5 Train R2: 0.9352874962083143 Val Score: 0.9295265858645527
    Depth: 6 Train R2: 0.9656008040289864 Val Score: 0.9605280485872081
    Depth: 7 Train R2: 0.985761055284366 Val Score: 0.9819599024081139
    Depth: 8 Train R2: 0.9939897995249319 Val Score: 0.9913427511074309
    Depth: 9 Train R2: 0.9975325212898226 Val Score: 0.9953882233716881
    Depth: 10 Train R2: 0.999293975286992 Val Score: 0.9974006217360276
    Depth: 20 Train R2: 1.0 Val Score: 0.9982747652291255
    Depth: 40 Train R2: 1.0 Val Score: 0.9982747652291255
    Depth: 60 Train R2: 1.0 Val Score: 0.9982747652291255
     max depth value7
            DecisionTreeRegressor
     DecisionTreeRegressor(max_depth=7)
```

KNeighborsRegressor

```
#from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
for i in [1,2,3,4,5,6,7,8,9,10,20,50]:
   knn = KNeighborsRegressor(i)
   knn.fit(x_train,y_train)
   print('k value:',i ,'train score:',knn.score(x_train,y_train),'cv score:',np.mean(cross_val_score(knn, x_train, y_train, cv=10, scoring = make_sco
knn =KNeighborsRegressor(int(input('enter k values:')))
knn.fit(x_train,y_train)
#print('score for knn regression :',knn.score(x_test,y_test))
         k value: 1 train score: 1.0 cv score: 0.9944978503833447
         k value: 2 train score: 0.9993762103272856 cv score: 0.9906783263898694
         k value: 3 train score: 0.9976417334112342 cv score: 0.9850208260723383
         k value: 4 train score: 0.9944996094928108 cv score: 0.9806985541092474
         k value: 5 train score: 0.9900037407566529 cv score: 0.9769560347394963
         k value: 6 train score: 0.986057912803713 cv score: 0.9754990989573373
         k value: 7 train score: 0.9840212674773232 cv score: 0.9747118439229763
         k value: 8 train score: 0.9832716856582698 cv score: 0.9728998563932496
         k value: 9 train score: 0.9817098441466363 cv score: 0.9701353052315124
         k value: 10 train score: 0.9796293804897782 cv score: 0.9684069130034093
         k value: 20 train score: 0.9609551607853506 cv score: 0.9496938223879425
         k value: 50 train score: 0.9317028171722405 cv score: 0.9179396031781899
         enter k values:9
                          KNeighborsRegressor
          KNeighborsRegressor(n_neighbors=9)
!pip install -U scikit-learn
         Looking in indexes: <a href="https://pypi.org/simple">https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="
         Requirement already satisfied: scikit-learn in /usr/local/lib/python3.8/dist-packages (1.2.1)
         Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (3.1.0)
         Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (1.2.0)
         Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (1.22.4)
         Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (1.10.1)
```

XGBRegressor

```
from xgboost import XGBRegressor
import xgboost as xgb
for lr in [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12,0.13,0.14,0.15,0.2,0.5,0.7,1]:
  model = xgb.XGBRegressor(learning_rate = lr,n_estimators =100,verbosity =0)#initialise the model
  model.fit(x_train,y_train)
  model.score(x_test,y_test)
  print('Learning rate:',lr,"Train score",model.score(x train,y train),'Cross-Val score:',np.mean(cross val score(model,x train,y train,cv=10)))
model = xgb.XGBRegressor(learning rate = float(input('LR value')),n_estimators =100)
model.fit(x_train,y_train)
print('score for the XGBRegressor:',model.score(x_test,y_test))
     Learning rate: 0.01 Train score -3.543000307732897 Cross-Val score: -3.661468404912412
    Learning rate: 0.02 Train score 0.3707805574018431 Cross-Val score: 0.3513795595029888
    Learning rate: 0.03 Train score 0.909057023905384 Cross-Val score: 0.9042564981695304
    Learning rate: 0.04 Train score 0.985658851935628 Cross-Val score: 0.9835801055361204
    Learning rate: 0.05 Train score 0.9969948251879686 Cross-Val score: 0.9955654530949556
    Learning rate: 0.06 Train score 0.9990276828917134 Cross-Val score: 0.9979306746090411
    Learning rate: 0.07 Train score 0.9995081366041055 Cross-Val score: 0.9985166531733516
    Learning rate: 0.08 Train score 0.9996570369472374 Cross-Val score: 0.9988872717525119
    Learning rate: 0.09 Train score 0.9997110494646698 Cross-Val score: 0.9990153891017117
    Learning rate: 0.1 Train score 0.9998008554352767 Cross-Val score: 0.9991960272757888
    Learning rate: 0.11 Train score 0.9998351944062677 Cross-Val score: 0.999294055610536
     Learning rate: 0.12 Train score 0.9998683883238616 Cross-Val score: 0.9993689517412582
    Learning rate: 0.13 Train score 0.9998724883198012 Cross-Val score: 0.9993575369433663
```

```
Learning rate: 0.14 Train score 0.9998845218067909 Cross-Val score: 0.9993956949207004 Learning rate: 0.15 Train score 0.9998961275652046 Cross-Val score: 0.9994560313721266 Learning rate: 0.2 Train score 0.9999169030164518 Cross-Val score: 0.9994547278384832 Learning rate: 0.5 Train score 0.9999770263823476 Cross-Val score: 0.999320163883489 Learning rate: 0.7 Train score 0.9999858021737482 Cross-Val score: 0.9989570921819642 Learning rate: 1 Train score 0.999985539418875 Cross-Val score: 0.998211953105257 LR value1 score for the XGBRegressor: 0.9988394789713089
```

Accuracy

```
print('Score for the Linear Regressor
                                           :',linear.score(x_test,y_test))
print('Score for the Decision TreeRegressor :',dt.score(x_test,y_test))
                                          :',knn.score(x_test,y_test))
print('Score for the KNN Regressor
                                          :',model.score(x_test,y_test))
print('Score for the XGBRegressor
#print('score for the Random Forest:',RF.score(x_test,y_test))
    Score for the Linear Regressor
                                       : 0.44510958153315994
    Score for the Decision TreeRegressor : 0.9845198675189734
    Score for the KNN Regressor : 0.9738434304408886
    Score for the XGBRegressor
                                        : 0.9988394789713089
linear_pred = linear.predict(x_test)
dt_pred= dt.predict(x_test)
knn_pred=knn.predict(x_test)
```

pd.DataFrame({"Actual":y_test, "linear_pred":linear_pred,"dt_pred":dt_pred, "knn_pred":knn_pred,"xgb_pred":xgb_pred })

	Actual	linear_pred	dt_pred	knn_pred	xgb_pred
0	32281.0	32473.388222	31799.000000	32516.111111	32184.464844
1	39803.0	34761.651582	39272.289855	38356.222222	39735.714844
2	36955.0	32084.808817	37521.315068	36426.444444	37109.875000
3	31006.0	38582.314248	32230.285714	33459.444444	31131.289062
4	36103.0	37602.916900	34777.227273	37270.111111	36433.335938
430	35935.0	38167.832525	35476.500000	36273.000000	36162.148438
431	33059.0	28562.398395	32697.173913	32769.777778	32895.082031
432	22106.0	25901.163841	22196.333333	22716.333333	22181.900391
433	42849.0	36642.115766	43175.279412	42095.000000	42877.011719
434	21580.0	30734.432277	21678.200000	24058.111111	21313.500000

435 rows × 5 columns

xgb_pred=model.predict(x_test)