

Polynômes à coefficients dans

IK

1. Définitions

1.1. Définitions

Un polynôme à coefficients dans K est une expression de la forme

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_2 X^2 + a_1 X + a_0$$

avec $n \in \mathbb{N}$ et a0,a1,...,an $\in \mathbb{K}$.

L'ensemble des polynômes est noté K[X].

- Les a_i sont appelés les coefficients du polynôme.
- Si tous les coefficients a_i sont nuls, P est appelé le polynôme nul, il est noté 0.
- On appelle le degré de P le plus grand entier i tel que $a_i \neq 0$; on le note degP. Pour le degré du polynôme nul on pose par convention deg(0) = $-\infty$.
- Un polynôme de la forme P = a_0 avec a_0 ∈ K est appelé un polynôme constant. Si $a_0 \neq 0$, son degré est 0.

1.2. Opérations sur les polynômes

Égalité :

Soient $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ et $Q = b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0$ deux polynômes à coefficients dans **K**.

$$P = Q$$
 ssi $a_i = b_i$ pour tout i

et on dit que P et Q sont égaux.

Addition:

Soient
$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$
 et $Q = b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0$.

On définit :

$$P + Q = (a_n + b_n)X^n + (a_{n-1} + b_{n-1})X^{n-1} + \dots + (a_1 + b_1)X + (a_0 + b_0)$$

Multiplication:

Soient
$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$
 et $Q = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0$.

On définit
$$P \times Q = c_r X^r + c_{r-1} X^{r-1} + \dots + c_1 X + c_0$$
 avec $r = n + m$ et $c_k = \sum_{i+j=k} a_i b_i$ pour $k \in \{0, \dots, r\}$.

Multiplication par un scalaire :

Si $\lambda \in \mathbf{K}$ alors $\lambda \cdot P$ est le polynôme dont le *i*-ème coefficient est λa_i .

Proposition 1:

Pour P,Q,R \in K[X] alors

$$0+P=P$$
, $P+Q=Q+P$, $(P+Q)+R=P+(Q+R)$;

$$1 \cdot P = P$$
, $P \times Q = Q \times P$, $(P \times Q) \times R = P \times (Q \times R)$;

$$P \times (Q + R) = P \times Q + P \times R.$$

Proposition 2:

Soient P et Q deux polynômes à coefficients dans K.

$$deg(P \times Q) = degP + degQ$$

$$deg(P + Q) \ge max(degP, degQ)$$

On note $Rn[X] = \{ P \in IR[X] / degP \le n \}$. Si $P,Q \in IRn[X]$ alors $P + Q \in IRn[X]$

2. Arithmétique des polynômes

2.1. Division euclidienne

Soient $A,B \in \mathbf{K}[X]$, on dit que B divise A s'il existe $Q \in \mathbf{K}[X]$ tel que A = BQ. On note alors B|A. On dit aussi que A est multiple de B ou que A est divisible par B.

Outre les propriétés évidentes comme A|A, 1|A et A|0 nous avons :

Proposition:

Soient A,B,C \in K[X].

- 1. Si A|B et B|A, alors il existe $\lambda \in K^*$ tel que A = λ B.
- 2. Si A|B et B|C alors A|C.
- 3. Si C|A et C|B alors C|(AU +BV), pour tout $U,V \in K[X]$.

Théorème: Division euclidienne des polynômes

Soient A,B \in K[X], avec B \neq 0, alors il existe un unique polynôme Q et il existe un unique polynôme R tels que :

$$A = BQ + R$$
 et degR < degB.

Q est appelé le quotient et R le reste et cette écriture est la division euclidienne de A par B. Notez que la condition degR < degB signifie R = 0 ou bien 0 É degR < degB. Enfin R = 0 si et seulement si B|A.

Exemple

 $A = 2X^4 - X^3 - 2X^2 + 3X - 1$ et $B = X^2 - X + 1$. Alors on trouve $Q = 2X^2 + X - 3$ et R = -X + 2. On n'oublie pas de vérifier qu'effectivement A = BQ + R.

2.2. PGCD

Soient A,B \in K[X], avec A \neq 0 ou B \neq 0. Il existe un unique polynôme unitaire de plus grand degré qui divise à la fois A et B.

Cet unique polynôme est appelé le pgcd (plus grand commun diviseur) de A et B que l'on note pgcd(A,B)

Remarque

pgcd(A,B) est un polynôme unitaire.

Si A|B et A $\neq 0$, pgcd(A,B) = $\frac{1}{\lambda}$ A, où λ est le coefficient dominant de A.

Pour tout $\lambda \in K^*$, pgcd($\lambda A, B$) = pgcd(A, B).

Comme pour les entiers : si A = BQ+R alors pgcd(A,B) = pgcd(B,R). C'est ce qui justifie l'algorithme d'Euclide.

Algorithme d'Euclide

Soient A et B des polynômes, $B \neq 0$.

On calcule les divisions euclidiennes successives,

$$A = BQ_1 + R_1 \qquad \text{deg}R_1 < \text{deg}B$$

MA

$$B = R_1 Q_2 + R_2 \qquad \text{deg} R_2 < \text{deg} R_1$$

$$R_1 = R_2 Q_3 + R_3 \qquad \text{deg} R_3 < \text{deg} R_2$$

...

$$R_{k-2} = R_{k-1}Q_k + R_k \qquad \deg R_k < \deg R_{k-1}$$

$$R_{k-1} = R_k Q_{k+1}$$

Le degré du reste diminue à chaque division. On arrête l'algorithme lorsque le reste est nul. Le pgcd est le dernier reste non nul R_k (rendu unitaire).

Exemple:

Calculons le pgcd de $A = X^4 - 1$ et $B = X^3 - 1$. On applique l'algorithme d'Euclide :

$$X^4 - 1 = (X^3 - 1) \times X + X - 1$$

$$X^{3} - 1 = (X - 1) \times (X^{2} + X + 1) + 0$$

Le pgcd est le dernier reste non nul, donc $pgcd(X^4 - 1, X^3 - 1) = X - 1$.

Définition

Soient A,B \in K[X]. On dit que A et B sont premiers entre eux si pgcd(A,B) = 1.

si pgcd(A,B) = D alors A et B s'écrivent :

$$A = D A'$$
, $B = D B'$ avec pgcd(A' , B') = 1.

2.3. Théorème de Bézout

Soient A,B \in K[X] des polynômes avec A \neq 0 ou B \neq 0. On note D = pgcd(A,B). Il existe deux polynômes U,V \in K[X] tels que AU +BV = D.

Ce théorème découle de l'algorithme d'Euclide et plus spécialement de sa remontée comme on le voit sur l'exemple suivant.

Nous avons calculé $\operatorname{pgcd}(X^4-1,X^3-1)=X-1$. Nous remontons l'algorithme d'Euclide, ici il n'y avait qu'une ligne : $X^4-1=(X^3-1)\times X+X-1$, pour en déduire $X-1=(X^4-1)\times 1+(X^3-1)\times (-X)$. Donc U=1 et V=-X conviennent.

Corollaire 1

Soient A et B deux polynômes. A et B sont premiers entre eux si et seulement s'il existe deux polynômes U et V tels que AU + BV = 1

Corollaire 2

Soient A,B,C \in K[X] avec A \neq 0 ou B \neq 0. Si C|A et C|B alors C|pgcd(A,B)

Corollaire 3. Lemme de Gauss

Soient A,B,C \in K[X]. Si A|BC et pgcd(A,B) = 1 alors A|C.

2.4. PPCM

MA

Soient A,B \in K[X] des polynômes non nuls, alors il existe un unique polynôme unitaire M de plus petit degré tel que A|M et B|M.

Cet unique polynôme est appelé le ppcm (plus petit commun multiple) de A et B qu'on note ppcm(A,B).

Proposition

Soient A,B \in K[X] des polynômes non nuls et M = ppcm(A,B). Si C \in K[X] est un polynôme tel que A|C et B|C, alors M|C.

3. Racine d'un polynôme, factorisation

3.1. Racines d'un polynôme

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbf{K}[X]$. Pour un élément $x \in \mathbf{K}$, on note

 $P(x) = a_n x^n + \dots + a_1 x + a_0$. On associe ainsi au polynôme P une **fonction polynôme** (que l'on note encore P)

$$P: \mathbf{K} \rightarrow \mathbf{K}, \ x \rightarrow P(x) = anxn + \dots + a1x + a0.$$

Soit $P \in \mathbf{K}[X]$ et $\alpha \in \mathbf{K}$. On dit que α est une racine (ou un zéro) de P si $P(\alpha) = 0$

Proposition

 $P(\alpha) = 0 \iff X - \alpha \text{ divise } P$

Soit $k \in N^*$ On dit que α est une *racine de multiplicité* k de P si $(X - \alpha)^k$ divise P alors que $(X - \alpha)^{k+1}$ ne divise pas P. Lorsque k = 1 on parle d'une *racine simple*, lorsque k = 2 d'une *racine double*, etc.

3.2. Théorème de d'Alembert-Gauss

Tout polynôme à coefficients complexes de degré $n \ge 1$ a au moins une racine dans C. Il admet exactement n racines si on compte chaque racine avec multiplicité.

Exemple

Soit P(X) = aX2 + bX + c un polynôme de degré 2 à coefficients réels : a,b, $c \in R$ et $a \ne 0$.

-Si
$$\Delta = b^2$$
 -4ac > 0 alors P admet 2 racines réelles distinctes $\frac{-b+\sqrt{\Delta}}{2a}$ et $\frac{-b-\sqrt{\Delta}}{2a}$.

-Si
$$\Delta$$
 < 0 alors P admet 2 racines complexes distinctes $\frac{-b+i\sqrt{|\Delta|}}{2a}$ et $\frac{-b-i\sqrt{|\Delta|}}{2a}$.

-Si Δ = 0 alors P admet une racine réelle double $\frac{-b}{2a}$.

En tenant compte des multiplicités on a donc toujours exactement 2 racines.

Soit $P \in K[X]$ de degré $n \ge 1$. Alors P admet au plus n racines dans K.

3.3. Polynômes irréductibles

Soit $P \in K[X]$ un polynôme de degré ≥ 1 , on dit que P est irréductible si pour tout $Q \in K[X]$ divisant P, alors, soit $Q \in K^*$, soit il existe $\lambda \in K^*$ tel que $Q = \lambda P$.

M

Remarque

Un polynôme irréductible P est donc un polynôme non constant dont les seuls diviseurs de P sont les constantes ou P lui-même (à une constante multiplicative près).

La notion de polynôme irréductible pour l'arithmétique de K[X] correspond à la notion de nombre premier pour l'arithmétique de Z.

Dans le cas contraire, on dit que P est réductible ; il existe alors des polynômes A,B de K[X] tels que P = AB, avec deg A \geq 1 et degB \geq 1.

Exemple

Tous les polynômes de degré 1 sont irréductibles. Par conséquent il y a une infinité de polynômes irréductibles.

$$X^2 - 1 = (X - 1)(X + 1) \in R[X]$$
 est réductible.

$$X^2 + 1 = (X - i)(X + i)$$
 est réductible dans C[X] mais est irréductible dans R[X].

$$X^2 - 2 = (X - \sqrt{2})(X + \sqrt{2})$$
 est réductible dans R[X] mais est irréductible dans Q[X].

Lemme d'Euclide

Soit $P \in K[X]$ un polynôme irréductible et soient A,B $\in K[X]$. Si P|AB alors P|A ou P|B

3.4. Théorème de factorisation

Tout polynôme non constant $A \in K[X]$ s'écrit comme un produit de polynômes irréductibles unitaires :

$$A = \lambda P_1^{k_1} P_2^{k_2} \cdots P_r^{k_r}$$

où $\lambda \in K^*$, $r \in N^*$, $k_i \in N^*$ et les P_i sont des polynômes irréductibles distincts. De plus cette décomposition est unique à l'ordre près des facteurs.

3.5. Factorisation dans C[X] et R[X]

Les polynômes irréductibles de C[X] sont les polynômes de degré 1.

Donc pour P
$$\in$$
 C[X] de degré n \geq 1 la factorisation s'écrit P = $\lambda(X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots$

$$(X-\alpha_r)^{k_r}$$
, où $\alpha_1,...,\alpha_r$ sont les racines distinctes de P et $k_1,...,k_r$ sont leurs multiplicités.

Les polynômes irréductibles de R[X] sont les polynômes de degré 1 ainsi que les polynômes de degré 2 ayant un discriminant Δ < 0.

Soit P
$$\in$$
 R[X] de degré n \geq 1. Alors la factorisation s'écrit P = $\lambda(X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots$

$$(X-\alpha_r)^{k_r}Q_1^{\ l1}\cdots Q_s^{\ ls}$$
 , où les α_i sont exactement les racines réelles distinctes de multiplicité

 k_i et les Q_i sont des polynômes irréductibles de degré 2 : Q_i = X^2 + $\beta_i X$ + γ_i avec $\Delta = \beta_i^2$ -4 γ_i < 0.

M

4. Fractions rationnelles

Une fraction rationnelle à coefficients dans IK est une expression de la forme $F = \frac{P}{Q}$ où P,Q $\in K[X]$ sont deux polynômes et Q $\neq 0$.

Toute fraction rationnelle se décompose comme une somme de fractions rationnelles élémentaires que l'on appelle des « éléments simples ». Mais les éléments simples sont différents sur C ou sur R.

4.1. Décomposition en éléments simples sur C

Soit P/Q une fraction rationnelle avec P,Q \in C[X], pgcd(P,Q) = 1 et Q = $(X - \alpha_1)^{k_1}$

 $(X - \alpha_r)^{k_r}$. Alors il existe une et une seule écriture :

$$\frac{P}{Q} = E + \frac{\alpha_{1,1}}{(X-\alpha_1)^{k_1}} + \frac{\alpha_{1,2}}{(X-\alpha_1)^{k_2-1}} + \cdots + \frac{\alpha_{1,k_1}}{(X-\alpha_1)} + \frac{\alpha_{2,1}}{(X-\alpha_2)^{k_2}} + \cdots + \frac{\alpha_{2,k_2}}{(X-\alpha_2)} + \cdots$$

Le polynôme E s'appelle la partie polynomiale (ou partie entière). Les termes $\frac{a}{(X-a)^i}$ sont les éléments simples sur C.

4.2. Décomposition en éléments simples sur R

Soit P/Q une fraction rationnelle avec P,Q \in R[X], pgcd(P,Q) = 1. Alors P/Q s'écrit de manière unique comme somme :

- d'une partie polynomiale E(X),
- d'éléments simples du type $\frac{a}{(X-a)^i}$
- d'éléments simples du type $\frac{aX+b}{(X^2 + \alpha X + \beta)^i}$.

Où les X – α et X^2 + α X + β sont les facteurs irréductibles de Q(X) et les exposants i sont inférieurs ou égaux à la puissance correspondante dans cette factorisation