Multilingual Distributional Semantics

Benno Kruit Sara Veldhoen

January 13, 2015

Multilingual Distributional Semantics

Kruit, Veldhoen

related work

Our first idea (and why it wouldn't work)

Our new idea

Evaluation and

Introduction - related work

Our first idea (and why it wouldn't work)

Our new idea

Figure: Bilingual distributed memory. The same architecture is trained with English context and word prediction replaced by the other language(s).

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Our first idea (and why it wouldn't work)

Our new idea

Evaluation and

Figure: Bilingual dbow

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

why it wouldn't work)

Our new idea

- ► Training a single embedding for parallel sentences
- Word embeddings are not trained
- ► Can be extended to more than two languages

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Our first idea (and why it wouldn't work)

Our new idea

Our new idea

Evaluation and results

Use the sentence embeddings to obtain word vector:

$$emb(w) = \frac{1}{freq(w, D)} \sum_{s \in D} freq(w, s) emb(s)$$

Quite good performance (as we will see later)

Our new idea

Evaluation and

▶ Recall the model by Hermann and Blunsom:

Our new idea

Evaluation and results

- We could have a similar training procedure
- Only: we are not training the sentences, but assume fixed 'gold standard' sentence embeddings

▶ So, we could plug in any compositional model

500k sentences)

- Monolingual (English) evaluation: analogy task
- ► Crosslingual evaluation: document classification

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Our first idea (and why it wouldn't work)

ur new idea

Evaluation and results

Crosslingual Doccument classification:

 Given word embeddings, obtain document representation for train and test documents in all languages

$$emb(doc) = \sum_{w \in doc} idf(w) * emb(w)$$

- ► Train a classifier (averaged perceptron) on the training document representations for one language
- ► Test classifier performance on the test document representations for another language

Evaluation and results

RCV (Reuters) data:

- English-German
- Multiclass classification: each document is assigned a single class (topic)
- Performance measure: accuracy
- Baseline: majority class

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Our first idea (and why it wouldn't work)

Our new idea

Our new idea

Evaluation and results

TED data:

- Many languages
- Binary classification: each class (topic) has positive and negative examples
- ▶ Performance measure: F1 score
- ▶ Baseline: ??

Kruit, Veldhoen

Introduction related work

Our first idea (and why it wouldn't work)

ur new idea

Evaluation and results

Monolingual evaluation on English:

		RCV (1000)	TED
Setting	Length	accuracy	F1
Baseline		.468	.118
I-Matrix	40	.861	.154
Paragraph mono	256		
Paragraph bi	256		
Paraword mono	256		
Paraword bi	256	.898	.216
Paraword multi	256	.903	.245
Google News	300	.951	.486

- Word vectors as average of the dbow-trained sentences they occur in.
- Sentences trained on 50k Europarl data in specified languages.
- Mono- and bilingual evaluation on TED data (F1 scores):

Sentences	Classification train-test					
trained on:	EN-EN	DE-DE	EN-DE	DE-EN		
EN						
DE						
DE-EN	.216	.189	.201	.220		
multi	.404	.368	.387	.339		

Our first idea (and

- Word vectors as average of the dbow-trained sentences they occur in.
- Sentences trained on 50k Europarl data in all languages.
- multilingual evaluation on TED data (F1 scores):

F1	Tested on								
Trained on	de	en	es	fr	it	nl	pb		
de	0,36753	0,33879	0,4028	0,368	0,28221	0,37315	0,31928		
en	0,38686	0,40439	0,38929	0,32149	0,35167	0,37379	0,35102		
es	0,39853	0,30125	0,42759	0,38709	0,3536	0,36173	0,35515		
fr	0,39842	0,41654	0,54487	0,40679	0,38499	0,33246	0,40565		
it	0,40612	0,40535	0,37698	0,43608	0,37289	0,40004	0,35872		
nl	0,4265	0,39681	0,41736	0,39255	0,41243	0,42775	0,32053		
pb	0,40317	0,33343	0,36931	0,35449	0,37403	0,40549	0,31451		