MA2101: Analysis I Lecture Notes

Instructor: Rajib Dutta

Sabarno Saha 22MS037 Debayan Sarkar 22MS002

August 13, 2023

1 Algebra of the Real Number System

1.1 Properties of Addition

The properties of addition(+) in the real number system are:

(A1)
$$x + y = y + x \ \forall \ x, y \in \mathbb{R}$$

(A2)
$$(x + y) + z = x + (y + z) \forall x, y, z \in \mathbb{R}$$

(A3)
$$\exists !0 \in \mathbb{R} \ s.t. \ x + 0 = 0 + x = x \ \forall \ x \in \mathbb{R}$$

(A4)
$$\forall x \in \mathbb{R} \exists ! y \in \mathbb{R} \text{ s.t. } x + y = y + x = 0$$

1.2 Properties of Multiplication

The properties of $\operatorname{multiplication}(\cdot)$ in the real number system are:

(M1)
$$x \cdot y = y \cdot x \forall x, y \in \mathbb{R}$$

(M2)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z) \forall x, y, z \in \mathbb{R}$$

(M3)
$$\exists ! 1 \in \mathbb{R} \text{ s.t. } x \cdot 1 = x \forall x \in \mathbb{R}$$

(M4)
$$\forall x \in \mathbb{R} \setminus \{0\} \exists ! y \in \mathbb{R} \text{ s.t. } x \cdot y = y \cdot x = 0$$

1.3 Distributive Property

The multiplication operator distributes over addition inn real numbers.

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

Since addition and multiplication have these properties in real numbers, $(\mathbb{R},+,\cdot)$ is a Field.

1.4 Order in Reals

1.4.1 Law of Trichotomy

Given two $x, y \in \mathbb{R}$, exact one of the following statements is true :

- (i) x = y
- (ii) x > y
- (iii) x < y

1.4.2 Properties of "<"

- (i) If x < y and y < z then x < z
- (ii) If x > 0, y > 0 then, xy > 0
- (iii) If x < y then, $x + z < y + z \ \forall z \in \mathbb{R}$
- (iv) $x < y \Rightarrow -x > -y$
- (v) If x < y and z > 0 then xz < yz
- (vi) If 0 < x < y, then $0 < \frac{1}{y} < \frac{1}{x}$
- (vii) $x^2 \ge 0 \forall x \in \mathbb{R}$

Remark. Let $x, y \in \mathbb{R}$ such that, $x \leq y$ and $y \leq x$. Then, x = y.

Proof. Let's assume to teh contrary that $x \neq y$. Then, by the law of trichotomy, either x < y or y < x. Let y < x. From $x \leq y$ we have either x < y or x = y. By the law of trichotomy, neither of them can be true. Hence, $y \not< x$ Now, let x < y. From $y \leq x$ we have either y < x or y = x. Again, by the law of trichotomy, neither of them can be true. Hence, $x \not< y$ This is a contradiction. Hence, x = y

Example 1.1. For x < y, we have, $x < \frac{x+y}{2} < y$. The point $\frac{x+y}{2}$ is called the midpoint between x and y.

Proof. Since x < y, we have $\frac{x}{2} < \frac{y}{2}$. Then, we have $\frac{x}{2} + \frac{x}{2} < \frac{y}{2} + \frac{x}{2} \Rightarrow x < \frac{x+y}{2}$ Similarly, we have $\frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2} \Rightarrow \frac{x+y}{2} < y$ Hence, $x < \frac{x+y}{2} < y$

Example 1.2. If $x \le y + z$ for all z > 0, then $x \le y$.

Proof. Let $x,y\in\mathbb{R}$ such that $x\leq y+z$ for all z>0. We claim that, $x\leq y$. Let us assume to the contrary that, x>y. Then, we have x-y>0. Let $\epsilon:=x-y$. Also observe that, $x-y\leq z$ for all z>0. Let us set $z=\frac{\epsilon}{2}$. Then, $x-y\leq z\Rightarrow \epsilon\leq \frac{\epsilon}{2}\Rightarrow 1\leq \frac{1}{2}$. This is a contradiction. Hence, $x\leq y$. This proves our claim.

Example 1.3. For 0 < x < y, we have $0 < x^2 < y^2$ and $0 < \sqrt{2} < \sqrt{y}$, assuming te existence of \sqrt{x} and \sqrt{y} . More generally, if x and y are positive, then x < y iff $x^n < y^n$ for all $n \in \mathbb{N}$.

Proof. will type up later \Box

Example 1.4. For 0 < x < y, we have $\sqrt{xy} < \frac{x+y}{2}$.

Proof. We claim that the statment is true. Let us assume to the contrary that, $\frac{x+y}{2} < \sqrt{xy}$. Then, we have,

$$\frac{x+y}{2} < \sqrt{xy}$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^2 < xy$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^2 - xy < 0$$

$$\Rightarrow \left(\frac{x-y}{2}\right)^2 < 0$$
(Example 1)

This is a contradiction since we know that $\alpha^2 \geq 0 \ \forall \alpha \in \mathbb{R}$. This proves our claim. \square

2 Upper and Lower Bounds

Definition 2.1 (Upper Bound). Let $A \subset \mathbb{R}$ be nonempty. A number $\alpha \in \mathbb{R}$ is said to be the upper bound of A if $\forall x \in A$, we have $x \leq \alpha$

Geometrically, this means that on the real number line, all the elements of A are to the left of α . If $\alpha \in \mathbb{R}$ is not an upper bound of A, then $\exists x \in A \text{ s.t. } x > \alpha$

Definition 2.2 (Lower Bound). Let $A \subset \mathbb{R}$ be nonempty. A number $\alpha \in \mathbb{R}$ is said to be the lower bound of A if $\forall x \in A$, we have $x \geq \alpha$

Geometrically, this means that on the real number line, all the elements of A are to the right of α . If $\alpha \in \mathbb{R}$ is not an lower bound of A, then $\exists x \in A \text{ s.t. } x < \alpha$

Example 2.1. Consider the set $A := \{1, 2, 3, 4, 5\}$ Then the upper bounds of this A are 5, 6, 1729... etc. And the lower bound of A are 1, 0, -1... etc. Hence, lower and upper bounds of a set are not unique.

Definition 2.3 (Bounded above set). Let $\phi \neq A \subset \mathbb{R}$. Then, A is said to be bounded above, if $\exists \alpha \in \mathbb{R}$ such that α is an upper bound of A.

Definition 2.4 (Bounded below set). Let $\phi \neq A \subset \mathbb{R}$. Then, A is said to be bounded below, if $\exists \alpha \in \mathbb{R}$ such that α is an lower bound of A.

Theorem 2.1. Let A be a bounded above set. Let $\alpha \in \mathbb{R}$ be an upper bound. Let $\beta \in \mathbb{R}$ such that $\beta \geq \alpha$. Then β is an upperbound of A.

Proof. Since α is an upper bound, we have $x \leq \alpha \ \forall x \in A$ But, $\alpha \leq \beta$. Then we have, $x \leq \beta \ \forall x \in A$. Hence β is an upper bound of A.

A similar theorem can be stated and proved analogously for bounded below sets and lower bounds.

Definition 2.5 (Maximum). Let $\phi \neq A \subset \mathbb{R}$. $\alpha \in \mathbb{R}$ is said to be the maximum of A if

- (i) $\alpha \in \mathbb{R}$
- (ii) α is an upper bound of A

The maximum of a set A is denoted by $\max\{A\}$

Theorem 2.2. The maximum of a set is unique.

Proof. Let α and β be two maxima of A s.t. $\alpha \neq \beta$. Then, by the law of trichotomy, either $\alpha > \beta$ or $\beta > \alpha$. If $\alpha > \beta$, then α cannot be an upper bound since, $\beta \in A$. And, if $\beta > \alpha$, then β cannot be an upper bound since, $\alpha \in A$. This is a contradiction. Hence, $\alpha = \beta$.