幾何数理工学演習 (ホモロジー)

2020/12/14 (月) 数理 7 研 特任助教 坂上 晋作 sakaue@mist.i.u-tokyo.ac.jp

定義と要項

■単体複体

• n(次元) 単体 (n-simplex): $p_0, p_1, \ldots, p_n \in \mathbb{R}^N$ を頂点とする n 次元単体を $\Delta^n = |p_0 p_1 \cdots p_n|$ と書く.

- 面 (face): n 次元単体 $\Delta^n = |p_0p_2\cdots p_n|$ の頂点 p_0, p_2, \ldots, p_n の任意の m+1 個の点から成る m 次元単体 $\Delta^m = |p_{i_0}p_{i_1}\cdots p_{i_m}|$ を Δ^n の m (次元) 面という.
- 単体 (的) 複体 (simplicial complex): 以下の条件を満す単体の有限集合 K.
 - $-\Delta \in K$ であれば、 Δ のすべての面も K に含まれる.
 - $-\Delta_1, \Delta_2 \in K$ であれば、 $\Delta_1 \cap \Delta_2$ は空集合か Δ_1, Δ_2 の共通の面単体である.

■単体写像

- K と L を複体とし,それぞれに属する 0 次元単体(すなわち頂点)の集合を \widehat{K} および \widehat{L} とする.f を \widehat{K} から \widehat{L} への写像とし,任意の単体 $|a_0a_1\cdots a_r|\in K$ に対して, $|f(a_0)f(a_1)\cdots f(a_r)|\in L$ が満たされるとき,f を単体写像 (simplicial map) という.
- 単体写像 $f: \widehat{K} \to \widehat{L}$ は頂点を頂点に移す写像だが、単体を単体に移す写像として自然に拡張できる。 すなわち、 $\Delta^r = |a_0a_1\cdots a_r| \in K$ に対し、 $f(\Delta^r) = |f(a_0)f(a_1)\cdots f(a_r)| \in L$ とみなす。こうして 定義される単体写像 $f: K \to L$ が全単射のとき、K と L は単体同型という。
- 複体 K に対して $|K| = \{x \mid x \in \Delta^r \in K\}$ と定義する(|K| は K に属する単体に含まれるすべての点の集合). 二つの複体 K と L が単体同型なら |K| と |L| は位相同型.

■輪体群,境界輪体群,ホモロジー群

• 向きづけられた単体 (oriented simplex): n 単体 $|a_0 \dots a_n|$ に対して、その頂点の符号つき列 $\langle a_{i_0} \cdots a_{i_n} \rangle$ を以下のような交代関係で同一視したもの: $\langle \cdots a_{i_k} \cdots a_{i_l} \cdots \rangle = -\langle \cdots a_{i_l} \cdots a_{i_k} \cdots \rangle$ (2 つの頂点を交換すると符号が反転する)

• n-鎖 (chain): 複体 K に含まれる、向き付けられた n 単体全体の集合を K(n) とするとき、形式和

$$c^n = \sum_{\sigma \in K(n)} c_{\sigma} \sigma \qquad (c_{\sigma} \in \mathbb{Z})$$

を n-鎖と呼ぶ. n-鎖全体がなす集合 $C_n(K)$ は, K の n 単体を基底とする, 自由加群となる. これを**鎖 群** (chain group) と呼ぶ.

• 境界作用素 (boundary operator) ∂_r : 向き付けられた r 単体に対して

$$\partial_r \langle a_0 a_1 \dots a_r \rangle = \sum_{i=0}^r (-1)^i \langle a_0 a_1 \dots a_{i-1} a_{i+1} \dots a_r \rangle.$$

ただし $\partial_0 \langle a_0 \rangle = 0$. r-鎖については

$$\partial_r \left(\sum_{\sigma} c_{\sigma} \sigma \right) = \sum_{\sigma} c_{\sigma} (\partial_r \sigma).$$

- **輪体群 (cycle group)** $Z_r(K)$: Ker(∂_r). つまり, K の r-鎖で, 境界作用素によって 0 になるものがなす集合. 輪体群の要素を**サイクル (cycle)** という.
- **輪体境界群 (boundary group)** $B_r(K)$: $\operatorname{Im}(\partial_{r+1})$. つまり、 $K \circ (r+1)$ -鎖を境界作用素で写したものがなす集合.
- r 次元**ホモロジー群 (homology group)** $H_r(K)$: $H_r(K) = Z_r(K)/B_r(K)$. 境界以外の輪体 (サイクル), つまり r 次元の穴を表す. $H_r(K)$ の要素をホモロジー類という.
- $c_1, c_2 \in Z_r(K)$ が**ホモローグ (homologue)** $\Leftrightarrow c_1 c_2 \in B_r(K)$ (同じホモロジー類に属する).
- 有限生成加群の構造定理により $H_r(K)$ は一般に次の形に書ける(各 α_i^r は α_{i+1}^r の約数):

$$H_r(K) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}_{\alpha_1^r} \oplus \cdots \oplus \mathbb{Z}_{\alpha_m^r}$$

右辺の無限巡回群 \mathbb{Z} の個数を K の r 次元**ベッチ数** (Betti number) といい R_r で表す.

• r 単体の個数を q_r とおき,r 次元単体に適当に $\sigma^r_{(1)},\ldots,\sigma^r_{(q_r)}$ と添え字をつけると, $B_r(K)$ はすべて の成分が -1,0,1 のある行列 $D_r \in \mathbb{Z}^{q_{r-1} \times q_r}$ を用いて

$$\partial_r \left(\sum_{s=1}^{q_r} c_s \sigma_{(s)}^r \right) = \sum_{s=1}^{q_r} c_s (\partial_r \sigma_{(s)}^r) = (\sigma_{(1)}^{r-1}, \dots, \sigma_{(q_{r-1})}^{r-1}) D_r c_{(q_r)} \qquad (c_{(q_r)} := (c_1, \dots, c_{q_r})^{\mathrm{T}})$$

と表せる. D_r は線形写像 ∂_r の表現行列.

• r 単体の個数を q_r , 境界作用素 ∂_r の表現行列 D_r とすると, ベッチ数 R_r は

$$R_r = \operatorname{Rank}(Z_r(K)) - \operatorname{Rank}(B_r(K)) = q_r - \operatorname{Rank}(D_r) - \operatorname{Rank}(D_{r+1})$$

の右辺から計算することもできる(一つ目の等号は有限生成加群の構造定理から得られ,二つ目の等号は境界作用素の定義と次元定理 $q_r={
m Rank}({
m Im}\partial_r)+{
m Rank}({
m Ker}\partial_r)$ から得られる).

• オイラー数 $(\xi(K))$: $\xi(K) = \sum_{i=0}^{n} (-1)^{i} R_{i}$.

演習問題

■問題 1 平面上に描いた以下の図形は複体であるか?

- 1. $K_1 = \{|a_1a_3a_4|, |a_1a_2|, |a_2a_3|, |a_3a_1|, |a_3a_4|, |a_4a_1|, |a_3a_5|, |a_1|, |a_2|, |a_3|, |a_4|, |a_5|\}$
- 2. $K_2 = \{|b_1b_2b_3|, |b_2b_3|, |b_3b_1|, |b_4b_5|, |b_1|, |b_2|, |b_3|, |b_4|, |b_5|\}$
- 3. $K_3 = \{|c_1c_2|, |c_2c_3|, |c_3c_1|, |c_4c_5|, |c_1|, |c_2|, |c_3|, |c_4|, |c_5|\}$

- ■問題 2 以下の 2 つの図形に対して,互いに単体同型となるような複体へ分割せよ(答えが分かるような図を書けばよい).
 - 1. (a) 三角形と (b) 中身の詰まってない四面体から面を一つ取り除いたもの.
 - 2. (a) 四角錐と (b) 三角錐
- **国問題** 3 $\partial_r(\partial_{r+1}C_{r+1}(K))=0$, および $B_r(K)\subset Z_r(K)$ を示せ.
- **■問題 4** 図のような複体 *K* について,
 - 1. 1-鎖

$$c_1 = \langle 01 \rangle + \langle 12 \rangle + \langle 24 \rangle + \langle 43 \rangle + \langle 30 \rangle, \ c_2 = \langle 32 \rangle + \langle 24 \rangle + \langle 45 \rangle + \langle 53 \rangle$$

はそれぞれ 1-サイクルであることを示せ.

 $2. c_1$ と c_2 はホモローグであることを示せ.

■問題 5 複体 K の任意の 2 つの頂点 a,b に対し必ず 1 次元単体の列 $|a_0a_1|, |a_1a_2|, \dots |a_{s-1}a_s|$ で $a=a_0,b=a_s$ を満たすものが存在するとき(要するに任意の 2 頂点がつながっているとき), $H_0(K)\cong \mathbb{Z}$ となることを示せ.

■問題 6

- 1. 複体 K が 2 つの複体 K_1, K_2 $(K_1 \cap K_2 = \emptyset)$ を用いて, $K = K_1 \cup K_2$ と表されるとき, $H_r(K) \cong H_r(K_1) \oplus H_r(K_2)$ $(r = 0, 1, \dots)$ を示せ.
- 2. 一般に複体 K の 0 次元ベッチ数 R_0 は K の連結成分の数に一致することを示せ、ここでの連結の意味 は任意の 2 頂点をつなぐ道があること(つまり弧状連結性)である.