PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-299467

(43) Date of publication of application: 14.11.1995

(51)Int.Cl.

C₀₂F 1/461 C₀₂F 1/46 C25B 11/04 C25B 11/14

// G03C 5/00

(21)Application number: 06-320357

(71)Applicant: EASTMAN KODAK CO

(22)Date of filing:

22.12.1994

(72)Inventor: CAREY JAMES J

CHRIST JR CHARLES S LOWERY STEPHEN N

(30)Priority

Priority number: 93 172514

Priority date: 22.12.1993

Priority country: US

(54) TREATMENT OF WASTE WATER SOLUTE BY ELECTROLYSIS

(57)Abstract:

PURPOSE: To provide a treatment method which is a method for subjecting the solute in a waste liquid to an elecrolytic oxidation treatment, prevents a used anode from releasing a toxic non-recoverable metal resource material into a soln. and is good in energy efficiency. CONSTITUTION: The soln. is electrolyzed by using the anode contg. electrically conductive crystalline doped diamond, by which the solute is oxidized in the treatment method of the substrate in the soln. for treating the solute to such a soln. which may be further permitted to be discharged into the environment.

LEGAL STATUS

[Date of request for examination]

20.11.2001

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration]

3442888 20.06.2003

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-299467

(43)公開日 平成7年(1995)11月14日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
C 0 2 F	1/461						
	1/46	ZAB					
C 2 5 B	11/04	ZAB Z					
	11/14	ZAB					
				C02F 1/	46	101 Z	
			審查請求	未請求 請求項の数	k1 OL	(全 20 頁)	最終頁に続く

(21)出顧番号 特願平6-320357

(22) 出願日 平成 6年(1994) 12月22日

(31)**優先権主張番号** 172514 (32)**優**先日 1993年12月22日

(33)優先権主張国 米国(US)

(71)出願人 590000846

イーストマン コダック カンパニー アメリカ合衆国, ニューヨーク14650, ロ チェスター, ステイト ストリート343

(72)発明者 ジェームス ジョン カリー

アメリカ合衆国, ニューヨーク 14586, ウエスト ヘンリエッタ, マーティン ロ

ード 1329

(74)代理人 弁理士 石田 敬 (外3名)

最終頁に続く

(54) 【発明の名称】 電気分解による廃水溶質の処理方法

(57) 【要約】

【目的】 廃液中の溶質を電気分解酸化処理するための 方法に関し、用いられる陽極が有毒の非回収性金属資源 材料を溶液中に放出せず、エネルギー効率が良好な処理 方法を提供することを目的とする。

【構成】 その環境中への排出がさらに許容可能なものになるように、溶液をするための、溶液中溶質の処理方法であって、前記溶液を、電導性結晶性ドーピング化ダイヤモンドを含む陽極を用いて電気分解して、それにより前記溶質を酸化することを含んでなる処理方法である。

【特許請求の範囲】

【請求項1】 その環境中への排出がさらに許容可能なものに溶液をするための、溶液中溶質の処理方法であって、前記溶液を、電導性結晶性ドーピング化ダイヤモンドを含む陽極を用いて電気分解して、それにより前記溶質を酸化することを含んでなる処理方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、その環境中への排出が さらに許容可能なものに溶液をするための、溶液中溶質 10 の処理に関する。さらに詳細には、本発明は各種利点が 得られるある種のタイプの陽極を用いて溶液を電気分解 することにより溶質を酸化することに関する。

[0002]

【従来の技術】工業廃液流は、それらの地方公共団体の処理施設への廃液流の排出が制限又は防止される特性を有するものが多い。廃液中の汚染物は、その性質が有機性又は無機性であり、互いに組合わさった状態であることが多い。規定されているパラメーターのいくつかは、溶液の化学的酸素要求量(COD)、全有機炭素(TOC)及び溶解有機炭素(DOC)である。法律で規定されている多くの特定の化合物及び数群の化合物もある。これらの例は、有毒性イオン、例えば、シアニド及び数群の有毒性有機物質、例えば、フェノール類である。

【0003】電気化学的酸化は、所定溶液中の望ましくない有機化合物及び他の被酸化性種の量を、処理施設への排出が許容されるレベルまで低減するための都合のよい技法である。環境条令は、全世界的により厳しくなっている。かつては下水に排水可能であった廃液も今や収集しそして廃棄のために運搬しなければならず、製造者に余分の経済的圧力をかけている。したがって、廃液を直接下水に廃棄できるような方法で廃液を処理する簡単かつ効率よい方法を提供することが望ましい。

【0004】廃水の電気分解処理は、ここ数年間、多くの特許、雑誌の論文及び技術上の提示の主題であった。例えば、米国特許第4,014,766号;米国特許第4,399,020号;米国特許第4,308,122号;米国特許第4,839,007号;及び米国特許第5,160,417号及びGattrell.M及びKirk,D.W., The Electrochemical Oxidation of Aqueous Phenol at a Glassy Carbon Electrode', Can. J. of Chem. Eng...68巻(1990年12月)、997~1001頁を参照されたい。廃液の電解酸化が、化学的処理又は熱処理より有利な点は、操作が容易であること、デザインの簡潔性及び比較的小さい装置スペースを必要とすることである。電気分解は、強力な化学オキシダントの扱いを必要とする酸化処理法と比較すると、操作するのが比較的安全であるとも考えられている。

【0005】しかしながら、多くの既知の、廃水中溶質 の電気分解酸化法に伴う多くの課題及び欠点がある。こ 2

のような課題及び欠点は、一部は、このような電気分解 法に用いられる陽極を構成する特定材料からおこるよう である。大部分の陽極材料は、電気分解酸化において、 特に厳しい化学的環境において使用する間に徐々に腐蝕 される。典型的陽極、例えば、白金、二酸化ルテニウ ム、二酸化鉛及び二酸化スズの腐蝕により、有毒性材料 が環境へ流出することになる。第二に、非回収性金属資 源が消費される。白金陽極は、伝統的電極の中では最も 許容可能なものであった。実際には、電極からの白金の 損失速度は極めて早いので、イオン交換のような金属回 収方式が、法規制の理由及び経済的理由の両者の理由に より、溶液から白金を除去するのに必要とされるであろ う。このような方式は、さらに複雑となって全コストが より高くなるので電気分解酸化処理法の有用性が著しく 制限されるであろう。

【0006】電導性基板上の二酸化スズは、陽極として有望である;しかしながら、スズ/基板界面でおこるこの電極の不動態化は、失敗例として引用されている。例えば、Koetz他、Journal of Applied Electrochemistry、21 (1991)、14~20頁を参照されたい。また、多くの既知の陽極材料(例えば、白金)は、陽極の作用面上への吸着残渣層の形成により、各種の溶質(例えば、フェノール類)の電気分解酸化の際、汚染される傾向があり、そのため陽極の効率が低下し、その有効寿命が短縮し、その結果、処理時間が長びき、手待ち時間が増加し、そして電気分解法の全体の費用が高くなる。

【0007】さらに、大部分の既知陽極材料は、電気分解酸化に用いた場合、望ましいエネルギー効率より低い効率を示し、典型的に用いられる電流密度で望ましい結果を達成するためには、比較的長い時間と比較的大量のエネルギー消費を必要とする。また、多くの典型的陽極の作用面で電流密度を高めることにより電気分解酸化速度を高める試みがなされた場合、陽極のエネルギー効率が相当量低下することが多く、このことは、電流密度を高めることにより酸化速度を改良するための努力を少くとも部分的に相殺し、そして必要とされるエネルギー消費量が増加する。

【0008】工業廃液中に存在する広範囲の各種溶質を処理する試みに関し、従来の電気分解酸化法の別の欠点は、このような試みに普通用いられる陽極、例えば、白金陽極は、ある種の溶質を処理する場合エネルギー効率が悪いので、これらの陽極は、このような溶質、例えば、各種の写真溶液中に含まれることが多いキレート形成性リガンド、例えば、ホスホネート類又はヒドロキシカルボン酸類を酸化する際実際には効果的でないと考えられることがあるということが本願発明者等により判明していることである。

【0009】また、いくつかの典型的な陽極を用いる電気分解法は、あるタイプの溶質に対してはある程度の効 50 果を有するが、それは望ましい効果ではない。例えば、

溶解フェノール及びハロゲン化物イオンの混合物を含有する溶液を電気分解により処理するために典型的白金陽極を用いる試みは、フェノールの完全酸化という結果にはならないことが本願発明者等により判明している。むしろ、望ましくない副反応がおこり、そのため溶液から析出するハロゲン化炭化水素の生成の原因となり、したがって、電気分解酸化の試みの他にある別の手段を用いて取扱わなければならない。

[0010]

【発明が解決しようとする課題】したがって、溶液中の溶質の電気分解酸化法であって、前記の課題及び欠点を回避又は最少化するであろう方法に対するニーズが引続き存在する。すなわち、以下のような方法が必要とされている:用いられる陽極それ自身が、有毒の又は非回収性金属資源材料を溶液中に放出しない;陽極が汚染し、そしてその有効性及び有効寿命を低下させる傾向がない;その陽極によれば、従来から典型的に用いられる電流密度及び典型的に用いられる電流密度より有意に高い電流密度の両者において、比較的高エネルギー効率が良好で、しかも溶質の完全酸化を妨げるよりな広範な望ましくない副反応を引き起こすことなく、前記方法を広範囲の各種溶質に効果的に適応することが可能となる。

[0011]

【課題を解決するための手段】本発明は、環境中への排出がさらに許容可能なものに溶液をするための、溶液中溶質の処理方法であって、前記溶液を、電導性結晶性ドーピング化ダイヤモンドを含む陽極を用いて電気分解して、それにより溶質を酸化することを含んでなる方法を提供することにより前記のニーズに合致する。

【0012】本明細書で用いられるものとして、用語 "電導性 (electrically conductive)"とは1 MΩcm未満の電気抵抗率を有することを意味するものとする。本発明方法に電導性結晶性ドーピング化ダイヤモンド陽極を用いると多くの利点が得られることが、予期又は予測せざることであったが判明した。前記陽極によれば、前記方法の使用中に汚染される傾向はない。前記陽極によれば、従来から典型的に用いられた電気密度及び典型的に用いられた電気密度及び典型的に用いられた電気密度の両者において、比較的高いエネルギー効率で前記方法が実施可能である。前記陽極によれば、エネルギー効率が良好でしかも溶質の完全酸化を妨げるような広範な望ましくない副反応を引き起こすことなく、前記方法を広範囲の各種溶質に効果的に適応することが可能となる。

【0013】さらに、ダイヤモンド陽極は、本発明方法 により処理された溶液中に有毒又は非回収性金属資源材 料を排出しない。

[0014]

【実施態様】環境中への排出がさらに許容可能なものに

溶液をするための、溶液中溶質を電気分解酸化する既知方法と、本発明方法の唯一の本質的差異は、本発明方法に用いる陽極の性質にある。実質的にすべての他の点では、本発明は、既知方法と同一又は類似であることができる。本発明方法が既知の従来法と共通であることができる特徴及びパラメーターのリストの一部としては、例えば、以下が挙げられる:電極以外の全体的電解槽のデザイン;対電極、すなわち、陰極;電源及び電源への接

続;電圧及び/又は電流制御装置;溶液撹拌装置及び溶

液吸入排出装置;溶液流量(流速);及び処理温度。

【0015】本発明方法に用いる陽極は、電源と直接接続した電導性結晶性ドーピング化ダイヤモンドの自立層もしくはフィルム(例えば、取りはずし可能な基板上にダイヤモンドを析出させ、続いて基板からそのダイヤモンドを分離することにより調製する)のみを含むことができるが、本発明陽極は、電導性基板上のドーピング化ダイヤモンドの層もしくはフィルムを含み、前記基板が電源と電気接続していることが好ましい。

【0016】ダイヤモンドフィルムの化学蒸着(CVD)は、各種レベルの精巧さで多くの様々な既知方法により行うことができる。大気条件下で、ダイヤモンドは従来の酸素ーアセチレントーチから蒸着させることができる。この技法は、簡単でしかも比較的広い表面積の付着を可能とし、蒸着速度が速くそしてフィルム結晶形を良好に制御することができる。例えば、Okada等、J.Chem. Vap. Dep. 1 (1992) 157~180 を参照されたい。最近は、ダイヤモンドは、タングステン基板上でこれらの液状前駆体のレーザー誘起反応性急冷により、シクロヘキサン及びデカリンから合成されている。Sharma等、Mat. Lett. 17 (1993) 42~48を参照されたい。

【0017】本発明方法において有用なダイヤモンド電 極は、それらに十分な電導性を付与するためドーピング を必要とするので、プラズマ増強CVD (PECVD) ダイヤモンド蒸着法を利用することが好ましい。例え ば、Ramesham, Thin Solid Films 229 (1993) 44~50を 参照されたい。このようなフィルムの電気的特徴は、こ れらがミクロ電子工学の用途に用いられているので十分 に解明されている。例えば、J. A. von Windheim等、J. El ec. Mat. 22 (4) (1993) 391~398 を参照されたい。本発 明方法のいくつかの実施態様において電極として用いた PECVDダイヤモンドフィルムは、マイクロ波プラズ マにより活性化したメタン及び水素ガスの混合物から製 造したホウ素ドーピング化多結晶質ダイヤモンドであ る。この方法によるダイヤモンドフィルムの蒸着は当業 者によく理解されている。例えば、Klages, Appl. Phys. A56 (1993) 513~526 を参照されたい。

【0018】主に商業上の利用可能性の理由の故に、ダイヤモンドフィルム蒸着の好ましい方法は、既知の熱フィラメントCVD(HFCVD)法である。例えば、Klages, Appl. Phys. A56 (1993) $513 \sim 526$ を参照された

い。本発明方法のいくつかの実施態様において電極として用いる、前記方法により製造したダイヤモンドフィルムは、 Advanced Technology Materials. Inc., 7 Comme rce Drive, Danbury, CT 06810から市販されている。

【0019】合成ダイヤモンドフィルムの結晶形態は、 広く変動することが示されており、多くのファクター ·(その二・三を述べれば、蒸着のために用いた技法、蒸 着条件、フィルムを成長させた基板のタイプをはじめと するファクター)に影響される。広くいえば、X線回 折、ラマン分光分析法、電子エネルギー損失分光分析法 又はダイヤモンドの特性決定を行いやすい、他の分析技 法のいずれかにより特徴づけられ、そして性質は主にダ イヤモンドであるが、十分な電導性を付与するためにド ーピング剤を含有することが示されるフィルムは、本発 明のために意図された能力内で機能することが期待され る。多くの各種結晶形態の電導性ダイヤモンドフィルム は、溶質の電気酸化処理に利用できるであろう。好まし い有用フィルムは、結晶形態が多結晶性であり、サブミ クロン (極微少の、submicron)の範囲から大きい単結晶 までの結晶サイズを有するものである。性質及び電気化 20 学的応用を有効に調整するファクターは以下に述べる。

【0020】有用なダイヤモンド電極材料の最も重要な 性質の1つは電気伝導性である。十分な電導性がなけれ ば、電気化学槽を駆動するのに必要な電圧が過渡とな り、ある点で電気化学槽の操業は、厳しい電力消費及び 高抵抗率の電極に伴う他の技術的困難さの故に全く経済 的に実行不可能になるであろう。ドーピングを施さない ダイヤモンドは、ドーピング剤不純物が存在しない大き なバンドギャップ (5.5eV) の、透明な、絶縁体であ る。ドーピング剤不純物、例えば、ホウ素を適切なレベ ルで取り込むことにより、合成ダイヤモンド粒子及びフ ィルムの電導性を調整することができることが知られて いる。例えば、米国特許第5,216,249号(その 開示は引用することにより本明細書中に包含する)を参 照されたい。ダイヤモンドに電導性を付与するために用 いられるドーピング剤のタイプは、ホウ素に限らず、例 えば、米国特許第5、162、886号(その開示は引 用することにより本明細書中に包含する)に記載されて いるような多くの他の元素、例えば、リチウム、ベリリ ウム、窒素、リン、イオウ、塩素、ヒ素及びセレンを含 むことができる。しかしながら、ホウ素は、さらに電導 形のダイヤモンド(例えば、米国特許第5,086,0 14号を参照されたい。この特許の開示は引用すること により本明細書中に包含する)及び20mΩcm未満の抵 抗率をつくり出すための、よく知られたそして普通に用 いられるドーピング剤である。ドーピング化ダイヤモン ドにおける、一般に有用な範囲のホウ素/炭素重量比 は、約0.02~約10-6である。

【0021】電極アセンブリの総抵抗 (resistance) は、その成分 (電気的接触、基板、基板とダイヤモンド

フィルム間の界面) の電導性のみならず、またその成分 の各々の厚さにも依存する。その結果、ダイヤモンドフ ィルムに伴う電極抵抗の一部は、ダイヤモンドの電導性 の変化と同時にダイヤモンドフィルムの厚さの変化によ り調整することができる。所定目的の抵抗を得るため に、ダイヤモンドフィルム用の多くの組成物を配合する ことができる。抵抗は、フィルム厚さと比例して、そし て電導率と逆比例して増加するであろうから、同様の抵 抗を生じそして電気破壊の用途において有効利用するた めの望ましい性質を与えるであろう一連のフィルムを考 案することができる。好ましい配合物は、3μm~1mm の範囲の厚さのフィルムであり、最も好ましい配合物 は、 $10\sim100\mu$ mの範囲の厚さのフィルムであり、 同時に"電力についての考察"についての以下の節で概 説する電力についての要件に一致する抵抗率を有するも のである。フィルムが薄すぎると、基板面を十分に覆う ことができず、電極の有効表面積が有意に低減するかも しれない。対照的に、フィルムが厚すぎると、フィルム の抵抗率は、電極の厚さ方向の電力低下を引き起こし、 そしてエネルギーは、電極の抵抗加熱の故に失われるで あろう。極端な場合は、有意の抵抗を有する厚いフィル ムは使用中に加熱しそしてフィルムと基板の間の結合を 損い、その結果フィルムが基板からはがれる。

【0022】基板の機能は、電極アセンブリ中を電流が 流れやすくするための通路を提供し、そして薄いダイヤ モンドフィルムのための機械的支持体を提供することで ある。多くの各種電導性基板を、電気化学変換にとって 有用な電極アセンブリの形成に用いることができる。し かしながら、以下に述べる、基板の3つの特性が最も重 要である。第一に、有用な電極の構成には基板の電導性 が必須であり、ダイヤモンドフィルムについて先に述べ たと同じファクターの多くが、基板の選択に適用され る。基板材料の抵抗率及び適切な厚さを検討して、各種 の電気化学方式に応用するのに適当な抵抗が得られるよ うにするであろう。例えば、10,000~1000オ ームの範囲の基板厚さ方向の抵抗は、電極アセンブリ全 体の抵抗もまた10.000~1000オームならば、 低電流用途に用いることができるであろう。しかしなが ら、電極アセンブリの抵抗がこのように高いことは望ま しくなく、電極アセンブリの抵抗についてのさらに好ま しい範囲は、1000~10オームである。電極アセン ブリの抵抗について特に好ましい値は10オーム未満で あり、最も好ましくは1オーム未満であろう。基板の厚 さ及び抵抗率の最適状況は、基板材料の機械的強度に依 存するであろうが、基板の抵抗率が20Ωcm未満~0. 1Ωcm未満の範囲内である場合には、厚さは0.5mm~ 10cmの範囲内であろう。

【0023】基板の第二の特性及び第三の特性は密接に 関連しており、ドーピング化ダイヤモンドを基板上に付 着させるプロセスの結果としての界面形成が含まれる。

ある最近の報告によれば、高分解能電子顕微鏡により、 熱フィラメント蒸着ダイヤモンド薄フィルムとシリコン 基板の間の界面を調べ、そのような界面が複雑であるこ とを具体的に示している (Jiang, N等、Appl. Phys. Let t. 1993, 63 (3), 328)。非晶質炭素層又は結晶性Si C層がダイヤモンドの核形成のために必要だという示唆 は、 Jiang等が、その両者がダイヤモンドとシリコンの 間の界面中に存在することを明らかに示すまでは立証さ れていなかった。電気化学的用途のためには、この界面 がダイヤモンドフィルムの基板への接着を促進し、そし て基板とダイヤモンドフィルムの電気的接触を良好なも のとすることができる。界面は一般に基板とフィルムを 区別する物質であり、界面により基板とフィルムの接着 が良好なものとなる。さらに、界面は電導性であるか又 は極めて薄いので良好な電気的接触が達成され、界面形 成の結果かなりの抵抗が生じることはない。電導性の安 定な炭化物類を形成する金属は、ダイヤモンドの蒸着に とって良好な基板材料として広く認められている。この 界面は、前記の接着及び電気的接触についての指針に一 致する炭化物であることが一般に認められている。例え 20 ば、Mo, W, Ti, Cu, Co, Cr, Ni及びTi の次酸化物 (suboxide, 例えば、米国特許第4, 91 2,286号に記載されているもの)は、いくつかの例 であるが、本発明に有用な基板はこれらの金属にのみ限 られない。事実、通常用いられる基板はp-タイプの、 縮重的に (degenerately) ドーピング化されたSiであ る。このようなSi基板は、 $0.1\sim0.01\Omega$ cmのオ ーダーの抵抗率を有し、したがって最も望ましい基板材 料ではない。さらに好ましい基板は、安定な電導性界面*

等式1は、電力消費が抵抗の二乗と共に増加し、通過電流に直接関連することを明らかに示している。ダイヤモンドフィルム電極での電圧降下は、ダイヤモンドフィルムの抵抗率及び厚さ、並びに基板の抵抗率及び厚さ、及び電極への接続における抵抗に依存する。以下の検討では、基板の電導率及び接触の性質は、電極アセンブリでの全体的な電圧降下に対しては無視できる程度の寄与しかしていないと仮定する。

電力=(I)(R)²

【0026】電極での電圧降下は、 10 mA/cm^2 の電流密度では $10\sim100\text{ V}$ の範囲の値まで増加するので、電力消費は極めて大きく、相当のエネルギーが失われて抵抗加熱となる。原理的には、 $1\text{ M}\Omega\text{ cm未満の抵抗率を有するダイヤモンドフィルムは、そのフィルムが存在する基板が十分に高い電導率を有し、フィルム厚さが低い(<math>5\mu\text{ m未満)限り、溶質の電気化学処理用の電極としての用途がある。$

【0027】さらに好ましい形の電極は、 100Ω cm未満の抵抗率、及び100mA/cm 2 の電流密度で1V未満の電極での電圧降下を示す厚さを有するダイヤモンドフィルムを使用する。このような電極は、適当な電流密度

*を介してダイヤモンドへの良好な接着性、高電導率を有し、最適の場合には、非一電気化学的活性であるか、又は処理溶液と接触する基板の任意の部分を保護する不動態性フィルムを形成するであろう。このような金属の例は、Ti, Ta, Zr 又はNbである。Tiのような金属は、電解質溶液との接触が金属基板を有意に腐蝕することがなく、そして電気化学処理の際の電解質の基板と

の接触から生じる基板不良についての問題を軽減するで あろうから理想的である。

【0024】本発明にとって、電源から基板への電気的接続が良好なことは、電極アセンブリを流れる電流を適度に制御するために必要である。概して、電導性基板の裏側への電気接触を容易にし、そして電流を、電流もしくは電圧制御ユニット、例えば、電位可変器セル又は他の形の電源から、基板及びダイヤモンドを介して通過させるのに役立つであろう手段が望ましい。好ましい形の接触としては、電導性エポキシ、例えば、銀エポキシ

(銀エポキシによれば電線又は他の電流運搬材料を基板にしっかり固定することができる)によるか、又は電極アセンブリと電流運搬材料間に圧力を加えることにより電流運搬材料への直接の物理的接触によるものであってもよい。理想的には、特に露出された材料が、電解質溶液による腐蝕効果の影響を受けない場合には、基板が電源との接触及びダイヤモンドフィルムへの接着により電流運搬材料として作用する1片のアセンブリが、最も強いかつ有用な形の電極アセンブリを提供するであろう。

【0025】電力消費は、以下のように抵抗(R)と電流(I)を含む簡単な等式を用いて算出することができる:

(等式1)

で、抵抗加熱から生じる電力損が僅かな状態で機能する であろう。最も好ましい形の電極は、0.1Ωcm未満の 抵抗率を有し、電流密度1A/cm²で、電極での電圧降 下が0.1V未満となるような厚さを有するであろう。 【0028】本発明において有用なものとして述べた電 極アセンブリは、各種の電気化学槽で、そして多くの形 態で用いることができる。広い意味では、望ましい電気 化学反応を達成するために用いられる基本的要素は、前 記のようなダイヤモンド陽極及び陰極であり、陰極は、 ステンレススチール、各種の炭素の同素体、貴金属、例 えば、PtもしくはAu, Ni, Ta及びTi、又はチ タンの次酸化物をはじめとする(しかし、これらに限定 されない)、対電極として普通に用いられる任意の多く の材料から構成されてよい。また必要なものは、電極電 圧もしくは電流又はその両者の制御を可能とする電源へ の接続、及び望ましい電気化学反応を達成するのに必要 な電圧又は電流を供給する電源である。有用であるが必 須ではない別の成分は、陽極及び陰極を通過する溶液を 流して、電気化学反応を受ける目標の溶質又はその分解 生成物の一定濃度を保持するような手段である。このよ

うな装置は、溶質の望ましい流れを電極の方へ向けるこ とが可能でそして最適速度での望ましい反応を容易にす る、任意の数の各種構成のポンプであることができる。 【0029】概して、本発明は、各種構成で用いること ができる。本発明の電気化学セルは、単一室セルとし て、又は陽極と陰極が膜で仕切られた分割セルとして作 動してもよい。最も簡単な実施態様は、単一室セルであ る。例えば、炭素、水素及び酸素からなる有機化合物の 電気焼却炉を考えられたい。単一室セルでは、陽極と陰 極を隔てるバリヤーがなく、したがって溶質は陽極と陰 極間を移動するのに制限を受けない。このような単一室 方式は1つの重大な欠点を有する。望ましい電気分解反 応において陽極で酸化された溶質がその後陰極で還元さ れて逆反応をおこすかもしれない。混合物中の成分(複 数であってもよい)を再循環させる結果となる可逆性酸 化/還元反応は望ましくない。このような循環は、不活 性なそして十分に酸化された生成物の正味の酸化の到達 点への進行を遅延させる寄生的(parasitic) 電流を生じ させる。しかしながら、大部分の電気酸化分解反応は、 C-H及びC-C結合の破壊並びにC-O及びO-H結 20 合の形成を含み、生成物中の酸素量が増加する結果とな る。酸化反応もしくは還元反応を伴う大分子の転位は容 易でなく、大きい過剰電圧を必要とすることが多い。こ のような酸化反応は、一般に、陰極での単純な還元によ り可逆性とはならない。したがって、いくぶんの寄生的 電流が期待されるかもしれないが、電気分解反応の性質 は、このような可逆反応が非効率性に有意に寄与しない であろうことを意味する。溶質の酸化生成物の再循環に よる大きい寄生的電流を妨げる助けとなる別の因子は、 還元電圧での水溶液の減極効果である。水が減極剤とし て作用し、いく分かの酸化生成物がさらに有意の速度で 還元されている陰極が極度に低い電圧に到達するのを防 いでいる。

【0030】2室セルにおいては、隔離体を陽極と陰極 の間に挿入し、この隔離体はあるタイプのイオン種のみ を陽極液から陰極液へ又はその逆方向へ通過させること ができる。膜の機能は、陽極液と陰極液がバルク(bul k) 混合することなく電気的中性を保持することであ る。2室セルの利点は、陽極液及び陰極液に含まれる溶 質を空間的に制御する能力から生じるものである。適切 に選ばれた膜を備えた2室セルは、再循環反応がおこる のを妨げ、それにより寄生的電流量を制限する。さら に、2室セルは、追加のプロセスの制御を可能にする。 例えば、水以外の減極剤を、陰極液中へ導入してもよ く、陽極室中の減極剤の酸化の問題が生じることはな い。また、適当な膜を用いれば、その膜を通過して移動 するイオンの性質を制御することができる。陽極液中に 金属カチオンがあり、陽極上への沈澱が望ましくない場 合を想像されたい。アニオン交換膜を用いて、膜を介す る金属カチオンの交換を制限し、そして単一室セルなら 10

ばおこったであろうメッキ反応を妨げることができる。 【0031】しかしながら、2室セルもまたある種の欠点を有する。主な欠点は、用いられる膜により引起される制限と関連する。膜の耐久性が主な問題である。膜不良の主な形態は、汚染(foul)によるものである。電気分解中、ポリマー材料をはじめとする各種の有機化合物が生成する。これらの生成物は、これらの前駆体より解性が劣ることが多く、膜表面上に析出することが多い。膜表面上の有機材料の堆積は、膜を通ってイオンが流れる孔をブロックする傾向があり、したがって抵抗増加がおこる。汚染した膜を長期間使用すると、最終的には故障がおこり、膜は正しく機能しなくなる。したがって、膜は寄生的電流を減じるのに役立つ一方、汚染の結果として、新たな問題がおきる。

【0032】単一室セル及び2室セルの使用についての 先の記載が与えられた場合、簡易という立場からは、単 一室セルの使用が好ましい。しかしながら、任意の所定 条件でもし溶質の再循環による寄生的電流を最低まで低 減させるべきであり、プロセスに対する制御をより良好 なものとすべきだとのさらなる問題があるならば、より 好ましい形態は2室セルであるかもしれない。

【0033】セルの基本的構成に加えて、他の因子が、 セルが用いられる形態を決定するであろう。溶液が電極 を1回のみ通過するように構成してもよく、溶質が電極 を通過する時間内に望ましい程度の分解がおこるように 設定されるであろう。他の構成は、処理溶液の一部はセ ルを介して再循環し、他の部分はある他のゾーンに取り 除かれるような部分循環方式を有するものである。好ま しい形態は、電気分解の目的に直接依存するであろう。 溶質の完全な分解のためには、バッチ方式又は再循環方 式が最も都合がよく、溶質を1回以上セル内を通過させ ると、溶質がさらに完全に分解する確率度が増し、処理 溶液を流すことにより、電極近傍の消耗ゾーン(すなわ ち、溶質濃度が、バルク濃度より有意に低い領域)が最 少化され、そのため電気分解中最高効率を保持すること ができるためである。各通過ごとにさらなる酸化反応が おこり、溶質及び分解生成物がさらに酸化されるであろ う。もし電極が十分に大きく、そして十分な時間を用い れば、溶質を適切に最終的に除去することができる。

【0034】任意の溶液中の望ましくない化学品を分解するのに、電気化学的焼却を実際に適用するには、、多くの必須要件を必要とする。例えば、1つの絶対的に必須の成分は、酸化還元に効果的であり、したがって溶液から望ましくない化学品を除去するのに効果的である電極である。電気化学的酸化又は還元(反応次第で)についての電極活性という基本的性質なしには、電気分解法は不可能である。活性に加えて、電極は、ある一定時間内に溶質の分解を可能にする電流密度で、ある相当部分の活性を保持しなければならない。化学品が溶液から除去される速度は、ある一定時間内に通過する電流量及び

電極のサイズに関連するので、電流密度は、所望反応が おこる速度を決定することが多い。電流密度は、以下の* 電流密度=電流/電極面積

実用的であるためには、電気化学焼却技法は、溶質が発生する速度より早いか又は等しい速度で溶質を分解する能力を有しなければならない。実際の実施速度は、各プロセスについて別々に決定され、そしてバッチ、インライン又はそれらの組合せとして設計することができる。あるプロセスは連続的でないので、処理速度は溶質が発生する、時間平均速度により決定することができる。

【0035】電流密度について、等式2より分かるよう に、溶質が発生する時間に亘るタイムスケールで溶質を 処理する問題に関して用いられる2つの制御パラメータ 一が本質的に存在する。他のパラメーター、例えば、温 度、流速及び問題の反応の動力学は、溶質を処理するこ。 とができる速度に影響する。流速及び温度を調整する。 と、反応速度を制御することができ、そして反応の動力 学は、所定の電極表面及び溶液マトリックスで固定化さ れ、一般的に影響を与えるのは困難である。しかしなが ら、電流密度については、印加電流又は電圧及び電極面 積は、最も考慮すべき重要な事柄である。制御するため の最も単純なパラメーターは、印加電流又は電圧であ る。印加電流又は印加電圧を増すことにより、溶質が分 解される速度に直接影響することができ、したがって、 問題の方式を十分に活かす分解速度を達成することがで きる。しかしながら、電流パラメーターは、いくつかの 実際上の欠点及び限度(制限)を有する。1つの限度 は、電流密度の相関としてのエネルギー効率の変動に関 する。比較の目的のため、エネルギー効率とは、溶液中 の溶質の所定量において所定の変化を与えるのに必要な クーロン数として本明細書では広く定義する。最良の条 件下でさえも、溶質を分解できる速度についての実際上 の限度、及び電流密度の増加に伴う分解速度の増加に対 する、相当する限度が存在する。実際上の限度はいくつ かのパラメーターに依存するが、しかし最重要の因子は 溶質を電極に配送する速度(物質移動)、及び溶質が電 極表面で分解することができる最高速度(動力学上の限 度)である。物質移動は、例えば、電気化学フローセル における流速を制御することにより調整することができ る。しかしながら、電極表面での反応速度が、物質移動 40 限度と比較して遅いならば、この反応は"動力学的に制 御されている"といわれ、物質移動速度を増加させるこ とにより有意には影響されないであろう。多くの電気分 解反応では、化学結合が破壊され、大分子の転位反応が おこる。このような転位は、単純な、単一電子移動反応 (single-electron-transfer reactions) よりはるかに 遅いことが多い。ダイヤモンドフィルム電極についての 多くの我々の研究によれば、流速の変化(物質移動を変 化させるための) は、溶質が分解される速度に有意の影 響を与えない。分解効率が流速に依存しないということ 50 12

*単純な等式により、電流と関連づけられる:

(等式2)

は、これらの反応については、電気分解する際 "動力学的に制御された"条件下で操作していることを示している。その結果として、各種の分解反応がおこる速度は、電流密度及び電極電圧に強く影響される。一方、いくつかの理由により、物質移動は、制限工程となり、電流密度の増加に伴う分解速度の増加は、臨海電流密度に達した後に、有意に低下するであろう。

【0036】制御できる第二のパラメーターは、電極表 面積である。蒸着法及びパラメーターを変更することに より、結晶サイズを、したがってダイヤモンドフィルム 電極の粗さ (roughness) を制御することが可能である。 電極面積の測定は直接的のようであるが、顕微鏡を用い て測定した表面積が、実際の電極表面積と等しいものと することができると仮定するならば、電極の表面特性は 間違った結果を与えるかもしれない。もし、電極が完全 に平面であるならば、顕微鏡を用いて測定した幾何学的 面積は、電極表面積について明確な値を与えるであろう し、電流密度は電極表面の本体を通して均一になるであ ろう。しかしながら、電極表面が滑らかでなく、かなり の粗さが表面に存在するならば、測定された顕微鏡によ る幾何学的面積は、真の電極表面積より低い評価とな り、算出される電流密度は高く評価されるであろう。粗 い電極表面は電極全体を通じて非均一の電流密度を生じ るであろうから、状況は実際さらに複雑である。粗い電 極はピークと谷を表面中に有するであろうし、電流密度 はピーク域近辺で最高で、谷で最低になるであろう。鋭 角の末端表面点は最高の電流密度を有するであろう。そ の結果、電極表面上のある部分は、算出電流密度より高 い電流密度下で作用し、そしてある領域は算出電流より 低い電流密度で作用するであろう。

【0037】高表面積電極は、反応がおこることができ る電極表面をより多く提供できるので、粗い電極表面を 有することは有利である。多結晶性ダイヤモンドフィル ムは、本来その表面が粗く、その結果、電気化学方式に 用いるためには優れた表面積特性を与える。電極表面積 に加えて、電気化学セルのデザインにより生じる電流密 度の変動についても考慮しなければならない。電流は、 陽極と陰極の間に流れるので、最も均一な電流密度分布 を得るために電極の位置は、重要である。ダイヤモンド フィルム電極を含有する電気化学セルは、陰極を、任意 の数の斜めの位置においた状態で機能するであろうが、 好ましい配置は、陰極表面を、ダイヤモンドフィルムの 面と平行にした状態である。さらに、最高の操作形態の ためには、陽極と陰極の直接接続、もしくはショートさ せるような通路を生じさせることなく、電極間間隙をで きるだけ小さく保つ。概して、数センチメートルを超え る大きい電極間距離は許容される。さらに好ましい電極

間間隙は、10㎜~0.1㎜の範囲内であり、最も好ま しい状態は電極間間隙が0.1㎜~5㎜の範囲内にある ことである。動力学、電流密度及び電極面積についての 検討を考慮すると、本発明は、電流密度が約10A/cm 2 ~ 1 mA/cm² 、流速/セル体積比が約0.001~1 00であり、電極表面積が顕微鏡により測定した幾何学 的電極表面と等しいか、又はそれより大きい状態で有用 となるであろう。しかしながら、さらに好ましい状態 は、電流密度が1A/cm²~20mA/cm²の範囲であ り、流速/セル体積比が10~0.01であり、電極表 面積が顕微鏡により測定した幾何学的電極表面より大き い場合であろう。本発明の最良形態は、電流密度が50 $mA/cm^2 \sim 600 mA/cm^2$ であり、流速/セル体積比が 10~1の範囲であり、電極表面積が、顕微鏡で測定し た幾何学的電極面積を十分に超えて(少くとも2倍)い る場合である。

【0038】本発明方法は、環境への廃棄についての溶液の許容性を改良するための電気分解酸化を受けやすい溶質を含有する任意の溶液に有利に適用することが可能である。多くの各種工業廃液(例えば、紙パルプ工業、染料製造業、写真仕上げ業等)は、本発明方法による処理で利益を受けることができる。これらの多くが、又はこれらの大部分が水溶液である。

【0039】このような溶液中の、多くの異なる溶質 (有機と無機の両者) は、本発明方法による有利な処理 を受けやすい。本発明による処理から特に利益を受ける ことができる多くのものの中で、あるタイプの化合物と しては、例えば、フェノール類;ハイドロキノン類;クリコール類;フェニレンジアミン類;フェニドン類;アミノアルコール類;シアニド類;ヒドロキシメチルベンゼン類;カルボン酸類;キレート形成剤、例えば、ホスホネート類、アミノカルボン酸類、ヒドロキシカルボン酸類;アルデヒドー放出剤、例えば、ヘキサメチレンテトラアミン及びグルタルアルデヒドビスービサルファイト;及びこれらの混合物が挙げられる。

【0040】本発明方法を用いると特に利益を受けることができる特定の工業は写真仕上げ業である。ハロゲン化銀写真要素の処理に用いる数多くの異なる溶液、例えば、現像液、定着液、漂白液、漂白一定着液、安定剤及び水洗浄溶液、並びにこれらの混合物は、本発明方法により有利に処理することができる。このような写真処理溶液は、1ppm~数千ppmの範囲の濃度の広範囲の化学品を含有する。これらの構成物の多くは電気化学酸化を受けやすい。本発明方法は、これらの溶液中に存在する、広範囲の有機溶質及び無機溶質の両者の酸化に対して高効率を示す。

【0041】デザイン及び操作の簡略化のために、プロセスにいずれの化学品も添加することなく写真処理溶液の電気分解を行うのが好ましい。写真処理溶液は、典型的に支援電解質を導入することなく電気分解を行うのに

14

十分なイオン強度を有する。他のタイプの溶液では、そ のような場合と、そうでない場合があり、処理されるべ き溶液を電導性にするために、さらに電解質を添加する のが望ましいか又は必要であるかもしれない。電解質は 強力であること(すなわち、溶解の際、実質的に完全に イオン化する)が好ましい。強力な電解質としては、H NO_3 , $HC1O_4$, H_2 SO_4 , HC1, HI, HBr, HClOg, HBrOg、アルカリ水酸化物、アル カリ土類水酸化物(例えば、水酸化カルシウム)及び大 部分の塩(例えば、塩化カルシウム及び塩化ナトリウ ム)が挙げられるが、これらに限定されない。さらに好 ましくは、電解質は、水酸化ナトリウム、硫酸ナトリウ ム、塩化カルシウム、塩化ナトリウム、水酸化カルシウ ム及びこれらの混合物から選ばれる。電解質は任意の適 切な形態で添加してよい。例えば、電解質が固体なら ば、電解槽に侵入する前に、又は実際に電解槽中で、処 理されるべき溶液に溶解してもよい。または、電解質 は、別の容器中に溶液として溶解して貯蔵してもよい。 電解質溶液を次に必要に応じて電解槽に添加する。もし 電解質が液状であるならば、必要に応じて、そのまま又 は希釈溶液の形で電解槽に添加してもよい。

【0042】写真処理溶液を電気分解する最適形態は、処理排液を直接、環境へ廃棄できることである。このことを達成するために、pHを、下水管コードに合致した範囲に調整することが必要であるかもしれない。現像液は、典型的に10.5より上のpHを示すので、このことは、廃棄するための許容値までpHを低下させるように酸を導入することを意味する。pH調整は、望まれる結果に依り、電解後又は電解中に行うことができるであろう。ある場合は、最適形態操作は、多くの異なるプロセスからの廃液を合せそして混合廃液について電気分解を行うことであろう。

【0043】本発明方法により有利に処理されているある特定の写真処理溶液の例は、Eastman Kodak Company、USAから市販され、KODAK(登録商標)Process として知られている溶液、すなわち、E6第1現像液;E6カラー現像液;RA4カラー現像液;RA100カラー現像液;C41カラー現像液;RP X一OMAT現像液;R3第1現像液;R3カラー現像液;61FN定着液;C41漂白剤;C41プロセスの漂白工程に続く洗浄工程;C41プロセスの定着工程に続く洗浄工程;及び黒白写真現像工程の定着工程に続く洗浄工程;及び黒白写真現像工程の定着工程に続く洗浄工程がらの洗浄水であってシーズニングされた(すなわち、写真処理において幾分使用されている)溶液である。

【0044】以下の例は、本発明方法のいくつかの具体的実施態様をさらに説明するためのものである。ある場合には、本発明方法が、本発明の範囲外の方法と比べ有利であることを説明するための比較例もある。実施例において、電気化学フローセルを用いると述べている場合は、特に断らない限り、そのセルは、ダイヤモンド電極

用ポリ塩化ビニル(PVC)ホルダーを備えた、市販の 単一室電気化フローセル (ElectroCell AB Micro Flow Cell, Box 7007, S-183 07, Taby Sweden, Electrosynth esis Co., Inc., Lancaster, NYより市販) であった。縮 重的な(degenerately) ホウ素ドーピング 化、(100)単結晶シリコンウェーハ(0.76m厚 さ)上に蒸着した、ホウ素ドーピング化多結晶質ダイヤ モンドフィルム(約2~5μm厚さ)を陽極として用い た。これは、Advanced Technology Materials, Inc., 7 Commerce Drive. Dauburv. CT 06810より市販されてい る。このダイヤモンドフィルムの抵抗率は、1000~ 10,000ppm の範囲のホウ素濃度で、100mΩcm 未満であった。シリコンウェーハの抵抗率は20mΩcm 未満であった。ダイヤモンドフィルムは、シリコン上に 約800℃で熱フィラメント化学蒸着により付着させ た。クーロンメーターを備えた高電流電位可変器への電 気的接触は、電極アセンプリの裏側を介して、多重スト ランド銅電線をシリコン基板へ、市販の銀エポキシ(Ep o-Tek H20E, Epoxy Technology Inc.) を用いて固定する ことにより行った。溶液の、電極の裏側へのリークを、 RTVシリコーンを用いて最少にして、ダイヤモンド電 極とPVCホルダー間の臨界面を密封した。見かけの表 面積が約 $3 cm^2$ の陽極を、 $1 2 cm^2$ のステンレススチー ル陰極と並行面となるように固定した。ナイロンスクリ ーン乱流プロモータを陽極と陰極の間に置き、電極間間 隙を約5㎜とした。チタン基板上の、みかけ作用面積1 2 cm² の白金層からなる陽極を用いた以外は、同一タイ プのセルを比較例において用いた。この陽極は、Electr osynthesis Co., Inc., Lancaster, NY から市販されて いる。

【0045】例において、電気化学ビーカーセルを用いたと述べた場合、このセルは標準の50 配 Pyrexビーカーを含むものであった。#9 ゴムストッパーをビーカーの頂部に挿入したが、そのストッパー中に孔をあけて電極と適合させた。陽極は、縮退のホウ素ドーピング化(100)単結晶シリコンウェーハ上に蒸着させた、厚さ約 $2\sim5$ μ mの、ホウ素ドーピング化多結晶質ダイヤモンドフィルムであった。このダイヤモンド面の見かけの表面積は約0.5 cm 2 であった。ダイヤモンド

16

フィルムの抵抗率は、1000~10,000ppm のホ ウ素濃度で、100mΩcm未満であった。シリコンウェ 一八の抵抗率は20mΩcm未満であった。このダイヤモ ンドフィルムは、マイクロ波プラズマエンハンスト化学 蒸着法によりシリコン上に蒸着させた。電極アセンブリ への電気接触は、銅ワニロクリップを、電極アセンブリ の一端に結合し、その後そのワニロクリップを市販のホ ワイトエポキシ (Dexter Corporation, Epoxi-Patch. IC White) を用いて被覆することにより電気化学的又は化 学的浸蝕を受けないように保護することにより行った。 陰極は、1 mm直径のステンレススチールの電線であっ た。電極間間隙は5~10mmの範囲内であった。例は、 セパレーターを用いず一定電流で実施した。磁気撹拌に より撹拌を行った。電極の性能を、化学的酸素要求量 (COD) 及び溶解有機炭素 (DOC) の減少量を、通 過した電荷の相関として測定することにより決定した。 【0046】Kodak (登録商標) process E6シ ーズニング化第一現像液タンク流出液30 皿を、ぜん動 ポンプを用い1分間200 皿の速度で電気化学フローセ ル内を循環させた。この混合物を310mAの一定電流で 電気分解した。ダイヤモンド陽極の見かけ表面積は3. 1 cm^2 であり、その結果電流密度は 1 0 0 mA/cm^2 とな った。この電流密度でのセル電圧は約4.9 Vであっ た。6.25時間の間に、通過した総クーロン数は8, 140であった。電極の性能は、通過電荷の相関として の化学的酸素要求量 (COD) 及び溶解有機炭素 (DO C) の減少量を測定することにより決定した。COD及 びDOCの初期値は、それぞれ32,500及び8,4 65ppm であった。電気分解完了時点では、CODは7 3%だけ、DOCは56%だけ減少した。

【0047】対照的に、比較のPt-on-Ti 陽極を用いた場合は、有意に大量のクーロンにより、有意に少量の、COD及びDOC減少を生じ、したがって、典型的な電流密度において本発明方法のエネルギー効率が改良されたことを示している。結果を以下の第I表に示す

【0048】 【表1】

第Ⅰ表

	ダイヤモ	ンドー例1	白金-比較例A					
クーロン	ppm COD	ppm DOC	ppm COD	ppm DOC				
0	32. 500	8, 465	32, 500	8, 465				
3, 100	20, 150	6, 685						
8. 140	9. 038	3, 770						
9, 730			14, 200	5. 470				
25, 960			7. 525	3, 432				

【0049】Kodak (登録商標) process E6シーズニング化カラー現像液タンク流出液30 mlを、ぜん動ポンプを用い1分間200mlの速度で電気化学フローセル内を循環させた。この混合物を310mlの一定電流で電気分解した。ダイヤモンド陽極の見かけ表面積は3.1cm²であり、その結果電流密度は100ml/cm²となった。この電流密度でのセル電圧は約5.0 Vであった。4.75時間の間に、通過した総クーロン数は5,800であった。電極の性能は、通過電荷の相関としての化学的酸素要求量(COD)及び溶解有機炭素(DOC)の減少量を測定することにより決定した。C*

* OD及びDOCの初期値は、それぞれ19,050及び 4,541ppm であり、電気分解中に、それぞれ80% 及び70%だけ減少した。

18

【0050】対照的に、比較のPt-on-Ti陽極を用いた場合は、有意に大量のクーロンにより、有意に少量の、COD及びDOC減少を生じ、したがって、典型的な電流密度において本発明方法のエネルギー効率が改良されたことを示している。結果を以下の第II表に示す。

10 【0051】 : 【表2】

第11表

	ダイヤモ	シドー例1	白金一比較例B		
クーロン	ppm COD	ppm DOC	ppm COD	ppm DOC	
0	19. 050	4. 541	19, 050	4, 541	
5, 800	3. 800	1. 433			
18, 560			7. 350	2. 466	

【0052】Kodak (登録商標)process RA4シーズニング化現像液タンク流出液10 LLを、ビーカーセル中で電流密度200 mA/cm²で電気分解した。23時間の間に、7,760クーロンの電荷が溶液中を通過した。COD及びDOCの初期値は、それぞれ55,550及び16,915ppmであった。電気分解完了時点では、COD及びDOC値は、それぞれ99%及び98%だけ減少した。溶液の外観は、処理後、清澄で無色であった。したがって、典型的な電流密度より高い電流密度で、本発明方法は有効でありそしてエネルギー効率が高いことを示している。

【0053】 Kodak (登録商標) process RA4シーズニング化現像液タンク流出液 10 叫を、ビーカーセル中で電流密度 200 mA/cm² で電気分解した。 23時間の間に、7, 860 クーロンの電荷が溶液中を通過した。 COD及びDOCの初期値は、それぞれ 36, 150 及び 10, 345 ppm であった。電気分解完了時点では、COD及びDOC値は、それぞれ 99 %及び 96 %だけ減少した。したがって、典型的な電流密度より高い電流密度で、本発明方法は有効でありそしてエネルギー効率が高いことを示している。

【0054】Kodak (登録商標) process R3シーズニング化現像液タンク流出液 10 mLを、ビーカーセル中で電流密度 200 mA/cm² で電気分解した。 24 時間の間に、8,080 クーロンの電荷が溶液中を通過した。 COD及びDOCの初期値は、それぞれ 32,180 及び 10,500 ppm であった。電気分解完了時点では、COD及びDOC値は、それぞれ 99% 及び 96% だけ減少した。したがって、典型的な電流密度より高い電流密度で、本発明方法は有効でありそしてエネルギー効率が高いことを示している。

【0055】 Kodak (登録商標) process RP X-OMAT現像被タンク流出被10 mlを、ビーカーセル中で電流密度800 mA/cm² で電気分解した。約3.5時間の間に、10,210クーロンの電荷が溶液中を通過した。溶液温度は、ビーカーセル上を外部水冷却することにより約60℃以下に保持した。溶液体積は、蒸発損失を補充するために必要に応じて支援電解質を添加することにより適当に一定値を保持した。COD及びDOCの初期値は、それぞれ86,000及び22,400ppm であった。電気分解完了時点では、COD及びDOC値は、それぞれ99%及び98%だけ減少した。したがって、典型的な電流密度より高い電流密度で、本発明方法は有効でありそしてエネルギー効率が高いことを示している。

【0056】Kodak (登録商標) process 61F Nシーズニング化定着液タンク流出液10 LLを、ビーカーセル中で電流密度30 MA/cm² で電気分解した。24時間の間に、3,610クーロンの電荷が溶液中を通過した。COD及びDOCの初期値は、それぞれ35,560及び1,900pmであった。電気分解完了時点では、COD及びDOC値は、それぞれ94%及び21%だけ減少した。定着液中のDOCの減少が比較的低いことは、大部分の電荷が、炭素種の濃度が有意に低下する前に、定着剤、チオサルフェートイオンを酸化するのに消費されたためと理解される。

【0057】濃度の高い写真処理溶液に加えて、さらに希釈された水洗溶液もまたホウ素ドーピング化ダイヤモンド陽極を用いて処理した。Kodakae Process: C-41漂白洗浄液、C-41定着洗浄液、及びGraphics Fix洗浄液の溶液100皿に、十分な Na_2SO_4 固体を添加して0.5M硫酸ナトリ

ウム濃度とした。これらの溶液をポンプを用いて電気化学フローセル内を流速200 ml/分で循環させた。100m/cm²の電流密度を選んだ。印加電流は300ml、陽極と陰極間で測定した電圧は5~7ボルトの範囲内であり、通常約6ボルトであった。電流をセルに印加する前に、試料1 mlを貯蔵溶液から採取し、DOC測定の初期点として用いた。さらに、試料をCOD測定のためにも採取した。電流を印加しそして反応の進行を、電解中、各種の時間間隔をおいてさらに3回試料を、そして動力学的分析のために時間濃度の概要を調べるため実験の最後に1試料を採取することにより、モニターした。*

*【0058】同様の実験を、Pt-Ti陽極を用いて行ったが、各場合に、Pt-Ti陽極と比較して本発明のダイヤモンド陽極については、DOC及びCODの除去効率は有意に良好であった。希釈溶液は、電気分解処理を受けにくいことが多いが、ダイヤモンド陽極により効率が高くなったので、希釈溶液の処理が許容されうるようになった。

【0059】結果を以下の第III 表に示す。 【0060】 【表3】

第川表

例	溶液	陽極	電流密度 (mA/cm²)	時間(秒)	クーロン	DOC (ppm)	COD (ppm)	Pt (ng/ni)
8 8 8	C-41定着洗净液 C-41定着洗净液 C-41定着洗净液 C-41定着洗净液	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100	0 4800 7200 10800	0 1440 2160 3240	9. 7 10 9. 9 10. 7	190 145 130 110	1
9 9 9 9 9	C-41定着洗净液 C-41定着洗净液 C-41定着洗净液 C-41定着洗净液 C-41定着洗净液 C-41定着洗净液	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	3600 7200 10800 14400	0 1080 2970 3240 4320	14 10. 4 8. 8 9. 2 6. 6	240 102 47 53 51	2
比較例 C 比較例 C 比較例 C 比較例 C 比較例 C	C-41定着洗净液 C-41定着洗净液 C-41定着洗净液 C-41定着洗净液 C-41定着洗净液	Pt Pt Pt Pt	100 100 100 100 100	0 3600 10800 18000 21780	0 4320 12960 21600 26136	16 13 11 11 12	255 103 64 51 51	160
比較例D 比較例D 比較例D 比較例D 比較例D	C-41定 营 洗净液 C-41定 营 洗净液 C-41定 营 洗净液 C-41定 营 洗净液 C-41定 营 洗净液	Pt Pt Pt Pt	100 100 100 100 100	0 3600 7200 10800 14400	0 4320 8640 12960 17280	12 11 11 11	258 72 65 61 53	150
10 10 10 10 10	C-41漂白洗净液 C-41漂白洗净液 C-41漂白洗净液 C-41漂白洗净液 C-41漂白洗净液	グイヤモンド グイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	0 2700 7200 10800 14400	0 810 2160 3240 4320	100 72 47 38 29	440 345 257 150 133	1
11 11 11 11	C-41漂白洗浄液 C-41漂白洗浄液 C-41漂白洗浄液 C-41漂白洗浄液 C-41漂白洗净液	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	0 3600 7200 10800 14400	0 1080 2160 3240 4320	93 63 49 40 28	396 333 215 180 172	< 1

[0061]

【表4】

第111表(続き)

例	溶液	陽極	電流密度 (mA/cm²)	時間 (秒)	クーロン	DOC (ppm)	COD (ppm)	Pt (ng/ml)
比較例E 比較例E 比較例E 比較例E 比較例E	C-41聚白洗净液 C-41聚白洗净液 C-41聚白洗净液 C-41聚白洗净液 C-41聚白洗净液	Pt Pt Pt Pt Pt	100 100 100 100 100	0 3600 7200 10800 14400	0 4320 8640 12960 17280	118 110 103 97 92	582 453 426 409 381	66
比較例F 比較例F 比較例F 比較例F	C-41	Pt Pt Pt Pt	100 100 100 100 100	0 3600 7200 10800 14400	0 4320 8640 12960 17280	119 100 91 87 88	489 375 342 357 361	110
12 12 12 12 12	写真定着洗净液 写真定着洗净液 写真定着洗净液 写真定着洗净液 写真定着洗净液	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	0 3000 7800 10200 14400	900 2340 3060 4320	86 70 54 44 34	936 761 664 631 535	1
13 13 13 13 13	写真定 窘 洗净液 写真定 着 洗净液 写真定着洗净液 写真定着洗净液 写真定着洗净液 写真定着洗净液	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	0 3600 7200 10800 14400	0 1080 2160 3240 4320	86 71 56 43 31	898 866 714 707 661	2
比較例G 比較例G 比較例G 比較例G 比較例G	写真定着洗净液 写真定着洗净液 写真定着洗净液 写真定着洗净液 写真定着洗净液	Pt Pt Pt Pt Pt	100 100 100 100 100	0 1200 8100 10800 14400	0 1440 9720 12960 17280	98 87 84 80 77	893 841 821 797 730	180

100

100

100

100

3600

7200

10800

14400

4320

8640

12960

17280

91

85

83

【0062】・0.5モル濃度の硫酸ナトリウム中に約 1500ppm のフェノールを含む水溶液60mlを、ぜん 動ポンプを用いて、1分間200皿の速度で電気化学フ ローセル内を循環させた。この混合物を310mAの一定 電流で電気分解した。ダイヤモンド陽極の見かけ表面積 は3. 1 cm^2 であり、その結果電流密度は100 mA/cm2 となった。この電流密度でのセル電圧は約3.2 Vで あった。18時間の間に、17,800クーロンが溶液 中を通過した。電極の性能は、通過電荷の相関としての 化学的酸素要求量(COD)及び溶解有機炭素(DO C)の減少量を測定することにより決定した。COD及 びDOCの初期値は、それぞれ3572及び941ppm であった。電気分解完了時点では、CODは94%だ け、DOCは93%だけ減少した。・0.5モル濃度の 硫酸ナトリウム中に約1500ppm のフェノールを含む 水溶液120 mLを、ぜん動ポンプを用いて、1分間10 0 皿の速度で電気化学フローセル内を循環させた。この 混合物を155mの一定電流で電気分解した。ダイヤモ ンド陽極の見かけ表面積は 3.1 cm^2 であり、その結果 電流密度は $50\,\text{mA/cm}^2$ となった。この電流密度でのセ ル電圧は約4.5 Vであった。20時間の間に、10, 730クーロンが溶液中を通過した。電極の性能は、通 過電荷の相関としての化学的酸素要求量(COD)及び 50

比較例H

比較例H

比較例H

七較例日

比較例H

写真定着洗浄液

写真定着洗浄液

写真定着洗浄液

写真定着洗浄液

写真定着洗浄液

Pt

Ρt

Ρt

Ρt

P t

溶解有機炭素(DOC)の減少量を測定することにより 決定した。COD及びDOCの初期値は、それぞれ38 12及び850ppm であった。電気分解完了時点では、 COD及びDOCの両者は92%だけ減少した。電気分 解中、少量の固体残渣を液体からろ別し、質量分析(M S) により分析した。MSによるこの固体の分析によ り、ナトリウムイオンを含有する無機材料の存在のみが 示され;電子衝撃法、フィールドデイソープション法及 び高速原子衝撃法をはじめとする3種類のMS技法を用 いても有機残渣は検出されなかった。・0.5モル濃度 の硫酸ナトリウム中の約14, 250ppm のハイドロキ ノン60��を、ぜん動ポンプを用いて、1分間100�� の速度で電気化学フローセル内を循環させた。この混合 物を150mAの一定電流で電気分解した。ダイヤモンド 陽極の見かけ表面積は3.0cm²であり、その結果電流 密度は50mA/cm²となった。この電流密度でのセル電 圧は約4.5 Vであった。38時間の間に、20,05 0クーロンが溶液中を通過した。電極の性能は、通過電 荷の相関としての化学的酸素要求量(COD)の減少量 を測定することにより決定した。CODの初期値は、2 3, 531 ppm であり、電気分解中97%だけ減少し た。

936

854

711

728

651

【0063】前記の電気化学フローセルを一定電流で用

22

いて、エチレンジアミン四酢酸の四ナトリウム塩(Na 4 EDTA)、ジエチレントリアミン五酢酸の五ナトリ ウム塩(antical 8)、1,3-プロピレンジ アミン四酢酸の四ナトリウム塩(1,3-PDTA)、 2-ヒドロキシ-1、3-プロピレンジアミン四酢酸の 四ナトリウム塩(antical 3)、及びニトリロ* *三酢酸の三ナトリウム塩(NTA)(すべて0.5M Na2 SO4 中の水溶液)の溶液を電気分解した。これ らのキレートの構造は以下のとおりである:

24

[0064] 【化1】

$$\begin{bmatrix} -0_{2}C - CH_{2} & CH_{2} - CO_{2}^{-} \\ -0_{2}C - CH_{2} & CH_{2} - CH_{2} - N \end{bmatrix} = CH_{2} - CO_{2}^{-}$$

$$CH_{2} - CO_{2}^{-} = CH_{2} - CO_{2}^{-}$$

$$CH_{2} - CO_{2}^{-} = CH_{2} - CO_{2}^{-} = CH_{2}^{-} - CO_{2}^{-}$$

$$\begin{bmatrix} -0_2 C - CH_2 \\ N - CH_2 - CH_2 - CH_2 - N \\ -0_2 C - CH_2 \end{bmatrix} ANa^+$$

$$CH_2 - CO_2^-$$

$$CH_2 - CO_2^-$$

$$\begin{bmatrix} -0_{2}C - CH_{2} & CH_{2} - CH_{2}$$

$$\begin{bmatrix} -0_{2}C - CH_{2} & OH & CH_{2} - CO_{2}^{-} \\ N - CH_{2} - CH - CH_{2} - N & CH_{2} - CO_{2}^{-} \end{bmatrix} 4Na^{+}$$

$$\begin{bmatrix} CO_{2}^{-} \\ CH_{2} \\ -O_{2}C - CH_{2} - N - CH_{2} - CO_{2}^{-} \end{bmatrix}$$
 3Na⁺

(NTA)

【0065】試験溶液の出発濃度は、300~600pp m の範囲の溶解有機炭素(DOC)として測定された (Dohrmann (UV/過硫酸塩) DC-180 Carbon Analyzerで測定した炭素とし て)。溶液の40 皿部分を、200 皿/分の流速でフロ ーセル内を再循環させた。100mA/cm2 の電流密度 は、他の電極材料と比較するための標準として選んだ。 印加電流は300mA、陽極と陰極間で測定した電圧は5

~7ポルトの範囲内であり、通常約6ポルトであった。 電流をセルに印加する前に、試料1 皿を貯蔵溶液から採 取し、DOC測定の初期点として用いた。電流を印加し そして反応の進行を、電解中、各種の時間間隔をおいて さらに3回試料を、そして動力学的分析のために時間濃 度の概要を調べるため実験の最後に1試料を採取するこ とにより、モニターした。時間の相関としてのDOCデ 50 ータの動力学的分析は、DOCの低下について一次挙動

を示した。その結果、処理すべき溶液の濃度を任意の所 *ルギー効率は、ドーピング化ダイヤモンド陽極について 定時間に適当な操作パラメータを用いて予測することが

は有意に良好であった。結果を以下の第IV表に示す。 [0067]

【表 5 】

【0066】同様の実験を、比較の目的のためにPt-Ti陽極を用いて行った。各場合に、DOCの除去エネ*

第IV表

<i>9</i> 1	溶質	陽極	電流密度 (mA/cm²)	時間 (秒)	クー ロン	DOC (ppm)	Pt (ng/ml)
17	Na . EDTA	ダイヤモンド	100	0	0	484	
17	Na . EDTA	ダイヤモンド	100	900	220	408	
17	Na EDTA	ダイヤモンド	100	2700	810	295	
17	Na.EDTA	ダイヤモンド	100	4500	1350	210	
17	ATCS & SM	ダイヤモンド	100	7200	2160	129	23
18	Na 4 EDTA	ダイヤモンド	100	0	0	449	
18	Na∢BDTA	ダイヤモンド	100	900	220	394	
18	Na de EDTA	ダイヤモンド	100	2700	810	281	
18	Na « EDTA	ダイヤモンド	100	4500	1350	176	
18	Na.EDTA	ダイヤモンド	100	7200	2160	96	31
比較例J	Na . EDTA	Рt	100	0	0	476	
七較例J	Na de Edta	Ρt	100	900	1080	372	
七較例 J	Na 4 BDTA	Рt	100	2700	3240	230	
七較例 J	Na a BDTA	Рt	100	4500	5400	152	
七較例 J	Na 4 EDTA	Рt	100	7200	8640	74	
比較例K	Na . EDTA	Рt	100	0	0	475	
t較例K	Na a BOTA	Рt	100	900	1080	355	
七較例K	Na EDTA	Рt	100	2700	3240	208	
比較例K	Na 4 EDTA	Pt	100	4500	5400	124	
比較例K	Na 4 BDTA	Рt	100	7200	8640	60	
19	1. 3PDTA	ダイヤモンド	100	٥	0	418	
19	1. SPDTA	ダイヤモンド	100	900	270	347	
19	1, 3PDTA	ダイヤモンド	100	2700	810	243	
19	1. 3PDTA	ダイヤモント	100	4500	1350	159	
19	1, 3PDTA	ダイヤモンド	100	7200	2160	55	18
七較例 L	1. 3PDTA	Рt	100	. 0	0	453	
七較例 L	1. 3PDTA	Ρŧ	100	900	1080	353	
t較例L	1. 3PDTA	Ρt	100	2700	3240	237	
七較例上	1. 3PDTA	Ρt	100	4500	6480	159	
比較例L	1. 3PDTA	Рt	001	7200	8640	84	1750
20	Antical #3	ダイヤモンド	100	0	0	381	
20	Antical #3	ダイヤモンド	100	1800	5 4 0	236	
20	Antical #3	ダイヤモンド	100	3600	1080	147	
20	Antical #3	ダイヤモンド	100	5100	1530	98	

[0068]

【表6】

第17表(続き)

例	溶質	陽極	電流密度 (mA/cm²)	時間 (秒)	クー ロン	DOC (ppm)	Pt (ng/ml)
21 21 21 21 21	Antical #3 Antical #3 Antical #3 Antical #3 Antical #3	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	900 2700 4500 7200	0 270 810 1350 2160	374 303 203 143 54	3
比較例M 比較例M 比較例M 比較例M 比較例M 比較例M	Antical #3 Antical #3 Antical #3 Antical #3 Antical #3	P t P t P t P t	100 100 100 100 100	0 900 2700 4500 7200	0 1080 3240 5400 8640	385 261 141 74 27	790
22 22 22 22 22 22	Antical #8 Antical #8 Antical #8 Antical #8	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	0 900 2700 4500 7200	0 270 810 1350 2160	340 225 225 119 38	14
比較例N 比較例N 比較例N 比較例N 比較例N 比較例N	Antical #8 Antical #8 Antical #8 Antical #8 Antical #8	P t P t P t P t	100 100 100 100 100	900 2700 4500 7200	0 1080 3240 6480 8640	417 322 185 101 50	1730
23 23 23 23 23	NTA NTA NTA NTA	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	100 100 100 100 100	900 2700 4500 7200	0 270 810 1350 2160	519 448 330 220 147	. 4
比較例O 比較例O 比較例O 比較例O 比較例O 比較例O	NTA NTA NTA NTA NTA	Pt Pt Pt Pt Pt	100 100 100 100 100	900 2700 4500 7200	0 1080 3240 5400 8640	501 376 210 119 73	435

【0069】アミノカルボキシレート溶質の電気分解に 及ぼす物質移動の効果に関する情報を得るために、流速 の相関としての電流効率の測定を含む研究を行った。例 17及び例18で用いたNa₄EDTA溶液と同一タイ プの溶液40皿を、1つの試験では溶液流速を50皿/ 分とし、他の試験では100 ml/分(例17及び例18 の200 11/分の流速ではなく)とした以外は、例17 及び例18と同様にして、ドーピング化ダイヤモンド陽 極電気化学フローセルで処理した。異なる流速での動力 学的データは、電流効率についての変動はほとんどな く、物質移動からの影響は最少の、動力学的に制御され た一連の酸化反応であることを示した。物質移動制御プ ロセスについては、流速及び乱流の相関として有意の効 率変動が期待される。我々の研究によれば、電流効率は 流速には極めてわずかしか依存しないことが示され、ア ミノカルボキシレート溶質の電気分解は動力学的に制御 されたプロセスであるという主張を支持するものであ

【0070】電流密度が、アミノカルボン酸キレートの電気分解酸化の進行に与える影響を測定するために、一

定の電流条件下で他の変数は一定に保持しつつ、電流密度を変動させた一連の試験を行った。例17及び例18 で用いたNa4 EDTA溶液と同一タイプの溶液40 m を、ドーピング化ダイヤモンド陽極電気化学フローセルで、及び比較のPt-on-Ti陽極フローセルで、100 m A/cm²の電流密度を用いる代りに、50,200,400及び800 m A/cm²の電流密度で試験を行った以外は、例17及び例18並びに比較例I及びKとそれぞれ同様にして処理した。

【0071】各場合、本発明方法は、異なる電流密度においてエネルギー効率の変動はほとんどなく、典型的な電流密度より高い電流密度において本発明方法にはエネルギー上の不利な点は認められなかった。対照的に、50及び200mA/cm²における比較試験は、再びエネルギー効率がはるかに低かった。400及び800mA/cm²において、Pt-on-Ti陽極は、極端な量の気体が発生するので効率はさらに有意に減少するであろう。【0072】結果を、以下の第V表に示す。

[0073]

【表7】

28

第V表

30

例	溶質	陽極	電流密度 (mA/cm³)	時間 (秒)	クーロン	DOC (ppm)	Pt (ng/ml)
25 25 25 25 25 25	Na4EDTA Na4EDTA Na4EDTA Na4EDTA Na4EDTA	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	50 50 50 50 50	3600 10800 18000 21600	0 540 1620 2700 3240	502 348 137 123 64	
26 26 26 26 26 26	Na.BDTA Na.BDTA Na.BDTA Na.BDTA	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	50 50 50 50 50	0 900 2700 4500 7200	0 135 405 675 1080	483 448 359 271 144	
比較例 P 比較例 P 比較例 P 比較例 P 比較例 P	Na.EDTA Na.EDTA Na.EDTA Na.EDTA Na.EDTA	Pt Pt Pt Pt	50 50 50 50 50	0 1500 3300 7200 10800	900 1980 4320 6480	420 331 263 160 85	
27 27 27 27 27	Na.edta Na.edta Na.edta Na.edta	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	200 200 200 200	900 2200 4500	0 540 1620 2700	476 337 122 39	16
28 28 28	Na 4 BDTA Na 4 BDTA Na 4 BDTA	ダイヤモンド ダイヤモンド ダイヤモンド	200 200 200	0 1200 3600	0 720 2160	322 111 48	
比較例Q 比較例Q 比較例Q 比較例Q 比較例Q	Na.EDTA Na.EDTA Na.EDTA Na.EDTA Na.EDTA	Pt Pt Pt Pt Pt	200 200 200 200 200 200	0 600 1800 2700 3600	0 1440 4320 6480 8640	361 252 119 72 47	1010
29 29 29 29 29 29	Na BDTA	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	400 400 400 400 400 400	900 1800 3600 5400 7200	0 1080 2160 4320 6480 8640	470 352 270 137 76 52	21
30 30 30 30	Na.EDTA Na.EDTA Na.EDTA Na.EDTA	ダイヤモンド ダイヤモンド ダイヤモンド ダイヤモンド	800 800 800 800	900 1800 3600	0 2160 4320 8640	421 264 163 39	. 14

【0074】本発明の電気化学フローセルを用いて、2種類のホスフェートー担持キレートの溶液を電気分解した。これらのキレートはantical 4及びantical 5と称し、これらの構造は以下のとおりである:

[0075] [化2]

(antical 4)

【0076】antical 4及びantical 5の溶液を0.5M Na2 SO4で希釈して、400~900pm のDOC含有量の使用溶液を調製した。これらの溶液の40配を、約200配/分の流速で電気化 学フローセル内を流動させ、そして2時間電気分解し

た。ダイヤモンド電極での電流密度は、電極面積を3cm 2 と仮定して100mA/cm²であった。100mA/cm²の電流密度を得るために、印加電流は300mAであった。溶液温度を実験中モニターし、実験の間中ほぼ24℃に保持した。DOC分析用の試料を採取することにより、キレートの損量をモニターした。第1試料は、貯蔵溶液から採取し、溶液中の有機炭素の出発濃度を得た。電気分解実験中、さらに試料を採取し、最終試料は、実験完了後に採取した。

【0077】これらのデータを分析して、キレートの酸 10 化から生じるDOCの正味の変化量を測定したが、動力*

* 学的分析は、DOC損失について一次挙動を示した。ホスホネート含有キレートは、酸化処理が特にしにくい。 事実、白金ーチタン陽極を用いる、対照実験では、antical4又はantical5のいずれの電解によっても、DOCの減少は実質的に全く認められなかったが、一方、ダイヤモンド電極では、試験溶液のDOCを十分に低減した。

32

【0078】結果を、以下の第VI表に示す。 【0079】

【表8】

第11表

例	溶質	陽極	電流密度 (mA/cm³)	時間(秒)	クーロン	DOC (ppm)	Pt (ng/ml)
31	Antical #4	ダイヤモンド	100	0	0	435	
31	Antical #4	ダイヤモンド	100	900	270	398	
31	Antical #4	ダイヤモンド	100	2700	810	309	
31	Antical #4	ダイヤモンド	100	4500	1350	222	
31	Antical #4	ダイヤモンド	100	T200	2160	84	
32	Antical #4	ダイヤモンド	100	0	0	446	
32	Antical #4	ダイヤモンド	100	900	270	399	
32	Antical #4	ダイヤモンド	100	2700	810	311	
32	Antical #4	ダイヤモンド	100	4500	1350	241	
32	Antical #4	ダイヤモンド	100	7200	2160	154	4
比較例R	Antical #4	Рt	100	0	0	445	
比較例R	Antical #4	Рt	100	900	1080	432	
比較例R	Antical #4	Рt	100	2700	3240	414	
比較例R	Antical #4	Рt	100	4500	6480	433	
比較例R	Antical #4	Рt	100	9000	10800	447	640
33	Antical #5	ダイヤモンド	100	0	0	842	
33	Antical #5	ダイヤモンド	100	900	270	779	
33	Antical #5	ダイヤモンド	100	2700	810	646	
33	Antical #5	ダイヤモンド	100	4500	1350	507	
33	Antical #5	ダイヤモンド	100	7200	2160	318	5
34	Antical #5	ダイヤモンド	100	0	0	828	
34	Antical #5	ダイヤモンド	100	900	270	766	
34	Antical #5	ダイヤモンド	100	2700	810	609	
比較例S	Antical #5	Ρt	100	0	O	837	
比較例S	Antical #5	Ρť	100	900	1080	835	
比較例S	Antical #5	Ρt	100	2700	3240	838	
比較例S	Antical #5	Ρŧ	100	4500	5400	847	
比較例S	Antical #5	Ρť	100	9300	11160	870	265
			100	2000	11100	010	203

40

【0080】多くの他のキレート類及び関連化合物を電気分解酸化して、ホウ素ードーピング化ダイヤモンドフィルム陽極を用いる処理が、標準の白金ーチタン陽極と比べて、電流効率が一般的に有利であることをさらに示した。これらの化合物、グリコール酸及びクエン酸ナトリウムは以下の構造を有する:

[0081] [化3]

(グリコール酸)

HO
$$CH_2-CO_2^ CH-CH$$
 $CH_2-CO_2^ CH_2-CO_2^ C$

【0082】適量の固体状グリコール酸及びクエン酸ナトリウムを0.5M Na₂ SO₄中に溶解して、40 $0\sim600$ ppm のDOC含有量の使用溶液を調製した。

これらの溶液の40 皿を、約200 皿/分の流速で電気 化学フローセル内を流動させ、そして2時間電気分解し た。ダイヤモンド電極での電流密度は、電極面積を3cm 2 と仮定して100 mA/cm^2 であった。100 mA/cm^2 の電流密度を得るために、印加電流は300mであっ た。溶液温度を実験中モニターし、実験の間中ほぼ24 ℃に保持した。DOC分析用の試料を採取することによ り、キレートの損量をモニターした。第1試料は、貯蔵 溶液から採取し、溶液中の有機炭素の出発濃度を得た。 電気分解実験中、さらに試料を採取し、最終試料は、実 10 験完了後に採取した。これらのデータを分析して、キレ ートの酸化から生じるDOCの正味の変化量を測定した が、動力学的分析は、DOC損失について一次挙動を示 した。

*【0083】両キレートは、DOCの損失により測定さ れるように、電気分解処理により分解された。グリコー ル酸及びクエン酸ナトリウムは、antical 4及 びantical 5と同様に、標準のPt-Ti陽極 を用いる電気分解処理がしにくいが、ホウ素ードーピン グ化ダイヤモンドフィルム電極を用いると効率よく分解 された。このような結果は、他の標準電極材料を用いた 場合は電気的に酸化されないある種の化合物の電気分解 処理に、ダイヤモンドフィルム電極を用いることの利点

34

【0084】結果を、以下の第VII表に示す。 [0085] 【表9】

をさらに示すものである。

策UI表

P AI	溶質	陽極	電流密度 (mA/cm²)	時間(秒)	クー ロン	DOC (ppm)	Pt (ng/m2)
35	クエン酸ナトリウム	ダイヤモンド	100	0	0	506	
35	クエン酸ナトリウム	ダイヤモンド	100	900	270	440	
35	クエン酸ナトリウム	ダイヤモンド	100	2700	810	297	
35	クエン酸ナトリウム	ダイヤモンド	100	4500	1350	190	
35	クエン酸ナトリウム	ダイヤモンド	100	7200	S160	51	4
比較例工	クエン酸ナトリウム	Рt	100	0	0	492	
比較例丁	クエン酸ナトリウム	Ρt	100	900	1080	480	
比較例丁	クエン酸ナトリウム	Ρt	100	2700	3240	454	
比較例工	クエン酸ナトリウム	Рt	100	4500	5400	464	
比較例工	クエン酸ナトリウム	Рt	100	7200	8640	436	260
36	グリコール酸	ダイヤモンド	100	0	0	527	
36	グリコール酸	ダイヤモンド	100	900	270	425	
36	グリコール酸	ダイヤモンド		2700	810	241	
36	グリコール酸	ダイヤモンド		4500	1350	130	
3B	グリコール酸	ダイヤモンド	100	7200	2160	63	4
比較例U	グリコール酸	Рt	100	0	0	490	
比較例U	グリコール酸	Ρt	100	900	1080	455	
比較例U	グリコール酸	Рt	100	2700	3240	391	
比較例U	グリコール酸	Рt	100	4500	5400	337	
比較例U	グリコール酸	Ρt	100	7200	8640	284	320

【0086】いくつかの他のカルポキシレート化合物を 電気分解酸化して、ホウ素-ドーピング化ダイヤモンド フィルム陽極を用いる電気分解処理は、標準の白金ーチ タン陽極と比べて、電流効率が一般的に有利であること を示した。これらの化合物、ギ酸、シュウ酸及びマロン 酸を、先の例に述べた電気分解と同様の方法で電気分解 した。再び、新たにデザインしたフローセル中に、平面 状のホウ素ードーピング化多結晶質ダイヤモンド陽極 を、平面状ステンレススチール陰極と組合せて用いて、 いくつかのカルボキシレート類の溶液を電気分解した。 新しいセルは、実験後電極をセルから容易に取りはずせ 40 るようにデザインした。新しいセルは、陽極が載置され ているステンレススチールバッキングプレート及び溶液 流を陽極と陰極の間を流動可能にするステンレススチー ルカバープレート以外は、Swedish ABマイク ロフローセルと同じであった。ガスケットシールを用い て電極の裏側を試験溶液から隔離し、電極の接続を、ダ イヤモンド電極アセンブリがはめ込まれているステンレ ススチールバッキングプレート上に圧力をかけることに より行った。陽極の裏側とステンレススチールバッキン グプレート間もまた接触させた。ステンレススチールバ 50

ッキングプレートへ及び電位可変器への電線接続も行っ た。陽極ガスケットにより、試験溶液へ露らされるダイ ヤモンドフィルムの面積を2.25 cm^2 とした。試験溶 液が、処理中電極アセンブリの裏側と接触するようにな る場合は、Si基板の酸化を防止するために、電極の裏 側を、電子線蒸着金を用いて被覆した。新しいセルの陽 極と陰極間の距離は約7.0cmであった。

【0087】一定電流で、本発明電極を用いて、ギ酸、 シュウ酸及びマロン酸の溶液を電気分解した。適量の固 体状ギ酸、シュウ酸及びマロン酸を 0.5M Na2S O4中に溶解して、5~12g/LのDOC含有量の使 用溶液を調製した。これらの溶液の100 止を、約20 0 皿/分の流速でフローセル内を再循環させ、そして約 8時間電気分解した。ダイヤモンド電極での電流密度 は、電極面積を2.25cm² と仮定して100mA/cm² であった。 100 mA/cm² の電流密度を得るために、印 加電流は225mAであった。溶液温度を実験中モニター し、実験の間中ほぼ24℃に保持した。COD及びDO C分析用の試料を分析することにより、カルボキシレー ト類の損量をモニターした。

【0088】第1COD試料は、貯蔵溶液から採取し、

溶液中の出発時点の化学的酸素要求量を得た。電気分解 実験中、さらに試料を採取し、最終試料は、実験完了後 に採取した。これらのデータを分析して、カルボキシレ ート類の酸化から生じるCOD及びDOCの正味の変化 量を測定したが、動力学的分析は、COD損失について 一次挙動を示した。DOC値を、実験の出発時点及び完 了時点で測定した。

【0089】3種類の化合物、ギ酸、シュウ酸及びマロ ン酸のすべてが、COD損失により測定されるように、 本発明の電気分解処理により効率よく分解された。陽極 10 として白金ーチタンを用いた以外は同様にして実施した 比較試験では、ギ酸、シュウ酸ははるかに低い効率で酸*

*化された。マロン酸は、グリコール酸、クエン酸ナトリ ウム、antical 4及び5と同様に、標準のPt -Ti陽極での電気分解処理は受けにくかったが、ホウ 素ードーピング化ダイヤモンドフィルム電極を用いると 効率よく分解された。このような結果は、他の標準電極 材料を用いた場合は有意な程度まで電気酸化されない、 ある種の化合物の電気分解処理であっても、本発明のダ イヤモンドフィルム電極を用いると有利であることをさ らに示すものである。

36

【0090】結果を、以下の第VIII表に示す。 [0091] 【表10】

例	裕質	隣極	電流密度 (mA/cm²)	時間 (秒)	クーロン	DOC (ppm)	COD (ppm)	Pt (ng/ml)
37	半酸	ダイヤモンド	100	0	0	2400	3237	
37	半酸	ダイヤモンド	100	360	81		1816	
37	丰酸	ダイヤモンド	100	10800	2430		1656	
37	ギ酸	ダイヤモンド	100	18000	4050		870	
37	半酸	ダイヤモンド	100	25200	5670	230	309	
比較例V	ギ酸	Ρt	100	0	0	2400	3402	
比較例V	半酸	Рt	100	1800	2160		2964	
比較例V	干酸	Рt	100	3600	4320		2700	
比較例V	半酸	Рt	100	7200	B640		2385	
比較例V	丰酸	Рt	100	14400	17280		1617	
比較例V	丰酸	Pt	100	21600	25920		993	
比較例V	丰酸	Pt	100	28800	34560	330	420	115
38	シュウ酸	ダイヤモンド	100	0	0	1300	857	
38		ダイヤモンド	100	7200	1620	,	465	
38		ダイヤモンド	100	14400	3240		322	
38	シュウ酸	ダイヤモンド	100	21600	4860		196	
38	シュウ酸	ダイヤモンド	100	28800	6480	46	183	
比較例W	シュウ酸	Рt	100	D	0	1300	916	
	シュウ酸	Pt	100	7200	8640	2000	697	
比較例W		Ρt	100	14400	17280		488	
比較例W		Ρt	100	21600	25920		354	
比較例W		Ρt	100	28800	34560	310	215	380
39	マロン酸	ダイヤモンド	100	0	0	2400	4002	
39		ダイヤモンド	100	7200	1620	2400	2898	
39		ダイヤモンド	100	14400	3240		2001	
39	マロン酸	ダイヤモンド		21600	4860		1526	
39		ダイヤモンド	100	28800	6480	550	853	
比較例X	マロン酸	Рt	100	٥	D	2100	3783	
比較例X	マロン酸		100	5400	6480	2100	4080	
比較例X	マロン酸	Pt	100	12600	15120		4155	
比較例X	マロン酸	Ρt	100	19800	23760		4293	
比較例X	マロン酸	Pt	100	27000	22500	2300		
		日すべきで			カナル			廼淮 白/

【0092】さらなる結果に、さらに注目すべきであ る。先に指摘したように、標準陽極材料、例えば、Pt は、有毒な、非回収性金属資源材料を溶液中に放出する ことがあるが、一方、本発明方法に用いるドーピング化 ダイヤモンド陰極はそのようなことはない。このこと 中、"Pt (ng/LL)"のタイトルがつけられた欄に は、本発明の電気分解後又は本発明以外の電気分解後の 溶液中のP t 濃度の測定結果が示されている。このよう な測定はすべての場合になされた訳ではないが、測定を 行った場合には、それらのデータは、本発明方法により 処理された溶液には低バックグラウンド量のPtが検出

されたにすぎないが、標準白金-チタン陽極を用いた方 法では、有意量のPtが処理された溶液中に放出され た。

[0093]

【発明の効果】本発明は、溶液を、その環境中への排出 は、先の例(第III表~第VIII表)に示されており、表 40 がさらに許容可能なものにするための、溶液溶質の処理 方法であって、前記溶液を、電導性結晶性ドーピング化 ダイヤモンドを含む陽極を用いて電気分解して、それに より前記溶質を酸化することを含んでなる処理方法を提 供することにより、前記のニーズに合致するものであ る。

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

Α

FΙ

(20)

技術表示箇所

// G03C 5/00

イ 40

(72) 発明者 チャールズ ステュワート クリスト,ジュニア アメリカ合衆国,ニューヨーク 14450, フェアポート,キングス レイシー ウェ

(72) 発明者 スティーブン ネルソン ロウリー アメリカ合衆国, ニューヨーク 14450, フェアポート, フォーリング ブロック ロード 40