Recommendation System using Graph Neural Networks (GNNs)

Mughees Asif

MSc. Artificial Intelligence

m.asif@se18.qmul.ac.uk

Queen Mary, University of London (QMUL)

August 15, 2022

- Aims and objectives
 - Introduction
 - Graph Neural Networks (GNNs)
 - Recommendation Systems
- 2 Methodology
 - Problem definition
 - User modelling
 - Item modelling
 - Datasets
 - Training and testing
 - Results
 - Future work
- Conclusion
- 4 Acknowledgements

Introduction

- Recommendation systems are a vital tool to:
 - Streamline the UX.
 - Mitigate information overload by pinpointing areas of interest.
 - Enhance customer satisfaction.
 - Increase business profitability.
- Graph Neural Networks (GNNs) leverage deep learning methodologies on non-Euclidean data structures:
 - Preserve structural information.
 - Node classification.
 - Link estimation.
- Aim of the project was the development, exploration, and testing of a GNN framework for recommendation tasks.

Graph Neural Networks (GNNs)

Figure 1: GNN operations

- Graphs are all around us; real world objects are often defined in terms of their connections to other things.
- Two main operations within a GNN¹:
 - Aggregation: Enables the equal treatment of each neighbouring node with a mean-pooling operation or via an attention mechanism.
 - **Update**: The aggregated neighbourhood is integrated into an updated representation of the current node.

¹Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C. and Sun, M., 2020. Graph Neural Networks: A review of methods and applications. *Al Open*, 1, pp.57-81.

Recommendation System

Figure 2: Overview of a recommendation system

- A subclass of information filtering systems that provide suggestions for items that are most pertinent to a particular user.
- Capable of integrating multiple sources of attributes to increase precision of the recommendation such as user-to-user social network information and user-to-item interactions.

- Aims and objectives
 - Introduction
 - Graph Neural Networks (GNNs)
 - Recommendation Systems
- 2 Methodology
 - Problem definition
 - User modelling
 - Item modelling
 - Datasets
 - Training and testing
 - Results
 - Future work
- Conclusion
- 4 Acknowledgements

Problem definition

Figure 3: Goal of the GNN system is to find the rating

Consider a system comprised of sets of users and items, both of which are mapped onto separate graphs. If an item is rated by a certain user and another rating is passed by another user, the underlying social connection influence can be used to develop a prediction rating. The aim of the project is to predict the rating likely to be given by a user².

²Marsden, P.V. and Friedkin, N.E., 1993. Network studies of social influence. *Sociological Methods & Research*, 22(1), pp.127-151.

User modelling

Figure 4: User modelling operations

• Item space operation \mathbf{h}_{i}^{I} : Utilises the interactions between the users and items C(i), and also the users preferences \mathbf{x}_{ia} regarding an item:

$$\mathbf{h}_{i}^{I} = \sigma \left(\mathbf{W} \cdot A_{\text{item}} \left(\mathbf{x}_{ia}, \forall a \in C(i) \right) + \boldsymbol{b} \right) \tag{1}$$

• **Social space operation** h_i^S : To encode heterogeneous strengths of social relations N(i), an attention mechanism is introduced:

$$\mathbf{h}_{i}^{S} = \sigma \left(\mathbf{W} \cdot A_{\text{neighbours}} \left(\mathbf{h}_{o}^{I}, \forall o \in N(i) \right) + \boldsymbol{b} \right)$$
 (2)

Item modellling

Figure 5: Item modelling operation

• For each item, the user's preferences are aggregated i.e., the mean of the ratings for all items ($R=r\in 1,2,3,4,5$), and using a Multi-Layer Perceptron (MLP), the two vectors holding information regarding plain user embedding and opinion embedding are concatenated:

$$\mathbf{z}_{j} = \sigma \left(\mathbf{W} \cdot A_{\text{users}} \left(\mathbf{f}_{jt}, \forall t \in B(j) \right) + \mathbf{b} \right) \tag{3}$$

(4)

Datasets

- Two datasets from prominent product review websites were used:
 Epinions and Caio.
- The contents of the datasets contained several data points including user and item ID and the rating given to a specific item by a user.
- Multiple users had given ratings for a specific item, thereby establishing the social relationship aspect that could be modelled.

Training and testing

Training:

- The model was built using the PyTorch library in the Python programming language ecosystem, as per the industry standard.
- Dropout was added.
- The system contained multiple decoupled modules.

Testing:

- The original framework was split into three variants:
 - Model X_a: Original
 - Model X_b : Item space operation disabled
 - Model X_c: Social space operation disabled
- The variants were also benchmarked against published recommendation systems from academic literature.
- Evaluation metrics:
 - Mean Squared Error (MAE)
 - Root Mean Squared Error (RMSE)

Results

Algorithm	Dataset	
	Ciao	Epinions
SoRec	0.925	1.115
SoReg	0.950	1.120
DeepSoR	0.940	0.990
GC-MC	0.945	1.040
X_a	0.985	1.000
X_b	0.885	1.000
X_c	0.945	0.945

Figure 6: Final averaged results

Figure 7: Weighted averages of MAE and RMSE

Future work

- Ensure all the frameworks are implemented from the first principles to establish constancy with regard to architectural designs and operating system idiosyncrasies.
- Unit and integration testing.
- Use different types of datasets that contain more than social network information.
- Use multiple architectures together i.e., GNNs with recurrent neural networks.

- Aims and objectives
 - Introduction
 - Graph Neural Networks (GNNs)
 - Recommendation Systems
- 2 Methodology
 - Problem definition
 - User modelling
 - Item modelling
 - Datasets
 - Training and testing
 - Results
 - Future work
- Conclusion
- 4 Acknowledgements

Conclusion

- Evaluation metrics shows a favourable framework with fluid mapping abilities.
- Incorporation of more features leading to increased accuracy.
- The architectural choice of GNNs in recommendation systems depends on several parameters.
- Results have been analysed and further suggested work has been highlighed.

- Aims and objectives
 - Introduction
 - Graph Neural Networks (GNNs)
 - Recommendation Systems
- 2 Methodology
 - Problem definition
 - User modelling
 - Item modelling
 - Datasets
 - Training and testing
 - Results
 - Future work
- 3 Conclusion
- Acknowledgements

Acknowledgements

- I would like to thank my supervisor, Dr Angadh Nanjangud, for the amazing support, and mentorship, and for the facilitation of my request to research this domain.
- I would also like to extend a big thank you to the School of Electronic Engineering and Computer Science for delivering a brilliant Artificial Intelligence postgraduate programme.
- Lastly, I would like to thank QuantumBlack/Office of AI for enabling my research interests by providing me with the financial resources needed to complete the degree programme.

Thank You!

- End -