МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Организация ЭВМ и систем»

Тема: Обработка вещественных чисел. Программирование математического сопроцессора.

Студентка гр. 1303	 Андреева Е.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Получить навыки программирования на языке Ассемблера. Изучить работу с вещественными числами на языке Ассемблера.

Задание.

Разработать подпрограмму на языке Ассемблера, обеспечивающую вычисление заданной математической функции использованием математического сопроцессора. Подпрограмма должна вызываться головной программы, разработанной на языке С. При этом должны быть обеспечены заданный способ вызова и обмен параметрами. Альтернативный вариант реализации: разработать на языке Ассемблера фрагмент программы, обеспечивающий вычисление заданной математической функции использованием математического сопроцессора, который включается по принципу in-line в программу, разработанную на языке С.

Выполнить трансляцию программы с подготовкой ее ассемблерной версии и отладочной информации. Для выбранного контрольного набора исходных данных прогнать программу под управлением отладчика. При этом для каждой команды сопроцессора следует фиксировать содержимое используемых ячеек памяти, регистров ЦП и численных регистров сопроцессора до и после выполнения этой команды. Проверить корректность выполнения вычислений для нескольких наборов исходных данных.

Вариант 1:

* function

Name poly - generates a polynomial from arguments

Usage double poly(double x, int n, double c []);

Prototype in math.h

Description poly generates a polynomial in x, of degree n, with coefficients c[0], c[1], ..., c[n].

For example, if n=4 the generated polynomial is

$$c[4].x^4 + c[3].x^3 + c[2].x^2] + c[1].x + c[0]$$

The polynomial is calculated using Horner's method:

$$polynom = (..((x.c[n] + c[n-1]).x + c[n-2])..).x + c[0]$$

Return value poly returns the value of the polynomial as evaluated for the given x.

Выполнение работы.

На языке Си была разработана программа, в которой сначала происходит считывание необходимых данных от пользователя (значения х, значения массива констант constants[]). Далее на языке Ассемблера был разработан фрагмент программы, обеспечивающий вычисление заданной математической функции с использованием математического сопроцессора, который включается по принципу in-line в программу.

Сначала на вершину математического стека кладем значение х. Далее в цикле по количеству констант по методу Горнера вычисляем значение полинома: значение вершины математического стека (st(0)) умножается на следующий за ним элемент в стеке (st(1)) с помощью инструкции fmul. С помощью инструкции fadd складываем значение вершины математического стека с текущей константой (это значение присваивается вершине математического стека). Далее из верхушки стека записываем значение в переменную result с помощью инструкции fst.

Входные данные: x = 1.1 n = 3 constants = 1.1, 1.2, 1.3

Таблица 1 – результат прогона ассемблерного модуля в отладчике

Символический	Содержимое регистров и ячеек памяти		
код команды	До выполнения	После выполнения	
fld qword ptr x	EIP = 005126C0	EIP = 005126C3	
	ST0 = +0.000000000000000000000000000000000	ST0 = +1.1000000000000000e+0000	
	STAT = 0000	STAT = 3800	
	TAGS = FFFF	TAGS = 3FFF	
fldz	EIP = 005126C3	EIP = 005126C5	
	ST0 = +1.100000000000000000000000000000000000	ST0 = +0.00000000000000000e+0000	
	ST0 = +0.000000000000000000000000000000000	ST1 = +1.1000000000000000000e+00000	

	STAT = 3800	STAT = 3000
	TAGS = 3FFF	TAGS = 1FFF
mov edi, n	EDI = 00B6F5E0	EDI = 00000003
	EIP = 005126C3	EIP = 005126C8
mov esi, constants	ESI = 00B6F5F8	ESI = 00EB1280
	EIP = 005126C8	EIP = 005126CB
test edi, edi	EIP = 005126CB	EIP = 005126CD
je skip	EIP = 005126CD	EIP = 005126CF
mov ecx, edi	ECX = 00000000	ECX = 00000003
fmul st(0), st(1)	EIP = 005126D1	EIP = 005126D3
<pre>fadd qword ptr[esi +</pre>	EIP = 005126D3	EIP = 005126D7
ecx * 8 - 8]	TAGS = 1FFF	TAGS = ØFFF
	ST0 = +0.000000000000000000000000000000000	ST0 = +1.300000000000000000e+00
loop poly_proc	EIP = 005126D7	EIP = 005126D1
	ECX = 00000003	ECX = 00000002
fmul st(0), st(1)	EIP = 005126D1	EIP = 005126D3
	ST0 = +1.3000000000000000000000000000000000000	ST0 = +1.43000000000000001e+00
	STAT = 3000	STAT = 3020
fadd qword ptr[esi +	EIP = 005126D3	EIP = 005126D7
ecx * 8 - 8]	ST0 = +1.4300000000000001e+0000	ST0 = +2.629999999999998e+00
loop poly_proc	EIP = 005126D7	EIP = 005126D1
	ECX = 00000002	ECX = 00000001
fmul st(0), st(1)	EIP = 005126D1	EIP = 005126D3
	ST0 = +2.629999999999998e+0000	ST0 = +2.89300000000000002e+00
	STAT = 3020	STAT = 3220
fadd qword ptr[esi +	EIP = 005126D3	EIP = 005126D7
ecx * 8 - 8]	ST0 = +2.8930000000000002e+0000	ST0 = +3.9930000000000003e+00
	STAT = 3220	STAT = 3020
loop poly_proc	EIP = 005126D7	EIP = 005126D9
	ECX = 00000002	ECX = 00000000
	1	1

Исходный код программы см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

	Габлица 2 — Результаты тестирования				
№	Входные данные	Выходные данные	Комментарии		
Π/Π					
1.	1.1	7.513			
	3				
	1.1				
	2.2				
	3.3				
2.	2	3			
	2				
	1				
	1				
3.	2.1	42.895			
	4				
	1				
	2.1				
	4.3				
	2				
1	i		I		

Выводы.

В ходе выполнения лабораторной работы были получены навыки программирования на языке Ассемблера.

приложение А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab8.cpp

```
#include <iostream>
#include <stdlib.h>
int main() {
double x;
std::cout << "Enter x:\n";</pre>
std::cin >> x;
std::cout << "Enter number of constants:\n";</pre>
std::cin >> n;
double *constants = new double[n];
std::cout << "Enter constants:\n";</pre>
for (int i = 0; i < n; ++i) {
     std::cout << "[" << i << "]: ";
     std::cin >> constants[i];
}
double result = 0;
__asm {
     fld qword ptr x
     fldz
     mov edi, n
     mov esi, constants
     test edi, edi
     je skip
     mov ecx, edi
     poly_proc :
     fmul st(0), st(1)
           fadd qword ptr[esi + ecx * 8 - 8]
           loop poly_proc
           skip :
     fst qword ptr result
};
std::cout << "Result = " << result;</pre>
delete[] constants;
return 0;
}
```