Vektorok I.

DEFINÍCIÓ: (Vektor)

Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: \vec{v} ; v; \overrightarrow{AB} (ahol A a vektor kezdőpontja, B a végpontja).

Megjegyzés:

- A vektor másképpen iránnyal rendelkező mennyiség.
- A vektort a reprezentánsával ábrázoljuk.

DEFINÍCIÓ: (Vektor hossza)

A vektort meghatározó irányított szakasz hossza a vektor abszolútértéke. Jele: $|\vec{v}|$; $||\vec{v}||$.

DEFINÍCIÓ: (Egyállású vektorok)

Két vektort egyállásúnak (párhuzamosnak) nevezünk, ha a rájuk illeszkedő egyenesek párhuzamosak, vagy egybeesnek.

DEFINÍCIÓ: (Vektor iránya)

A vektort tartalmazó és a vektorral közös kezdőpontú félegyenes irányát a vektor irányának nevezzük.

DEFINÍCIÓ: (Egyirányú vektorok)

Két vektort egyirányúnak tekintünk, ha párhuzamosak és ugyanabba az irányba mutatnak.

Megjegyzés:

Ha a két vektor párhuzamos, de nem egyirányúak, akkor ellentétes irányúak.

DEFINÍCIÓ: (Ellentett vektor)

Ellentett vektornak nevezzük azt a vektort, amelynek nagysága megegyezik az eredeti vektor nagyságával, iránya pedig ellentétes. Jele: $-\vec{v}$.

DEFINÍCIÓ: (Egyenlő vektorok)

Két vektort egyenlőnek tekintünk, ha van közös reprezentánsuk, vagyis egyirányúak és egyenlő nagyságúak.

DEFINÍCIÓ: (Zérusvektor)

Zérusvektornak (nullvektornak) nevezzük azt a vektort, amelynek kezdő és végpontja megegyezik. Jele: $\vec{0}$.

Megjegyzés:

A zérus vektor nagysága 0, iránya pedig tetszőleges.

Vektorok összegének meghatározása:

• Paralelogramma szabály:

Ez a módszer két (egymással nem párhuzamos) vektor összeadása esetén használható. A két vektort közös kezdőpontba toljuk, majd megrajzoljuk az általuk kifeszített paralelogrammát. Az összegvektor a közös kezdőpontból induló átlóvektor.

• Összefűzési (háromszög) szabály:

Ez a módszer több (akár párhuzamos) vektor összeadása esetén alkalmazható. A vektorokat összefűzzük úgy, hogy az egyik vektor végpontja legyen a következő vektor kezdőpontja. Az összegvektor (eredővektor) a szabad kezdőpontból mutat a szabad végpontba.

Vektorok különbségének meghatározása:

A két vektort közös kezdőpontba toljuk. A különbségvektor a kivonandó vektor végpontjából mutat a kisebbítendő vektor végpontjába.

Megjegyzés:

A kivonást elvégezhetjük az ellentett vektor hozzáadásával is. Jelöléssel: $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

Vektor skalárral való szorzása:

Az \vec{a} vektornak egy λ valós számmal, skalárral való szorzatán, azt a $\lambda \cdot \vec{a}$ vektort értjük, amelynek hossza az \vec{a} hosszának λ – szorosa, iránya pedig:

- \vec{a} irányával megegyezik, ha $\lambda > 0$
- \vec{a} irányával ellentétes, ha $\lambda < 0$
- tetszőleges, ha $\lambda = 0$ (mert ekkor zérus vektor).

Megjegyzés:

Egy vektornak számmal történő szorzása nyújtást jelent, ha $|\lambda| > 1$ és zsugorítást, ha $|\lambda| < 1$.

Vektor műveletek tulajdonságai:

•
$$\vec{a} + \vec{0} = \vec{a}$$

•
$$\vec{a} + (-\vec{a}) = \vec{0}$$

$$\bullet \quad \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

•
$$\vec{a} + \vec{b} + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

•
$$\lambda \cdot (\vec{a} + \vec{b}) = \lambda \cdot \vec{a} + \lambda \cdot \vec{b}$$

•
$$(\lambda + \mu) \cdot \vec{a} = \lambda \cdot \vec{a} + \mu \cdot \vec{a}$$

•
$$\lambda \cdot \mu \cdot \vec{a} = (\lambda \cdot \mu) \cdot \vec{a} = \lambda \cdot (\mu \cdot \vec{a})$$

Megjegyzés:

- A vektorok kivonása nem kommutatív művelet: $(\vec{a} \vec{b})$ és $(\vec{b} \vec{a})$ ellentettvektorok.
- $Ha |\vec{a}| = |\vec{b}|$, $akkor(\vec{a} + \vec{b})$ merőleges $az(\vec{a} \vec{b})$ re (és fordítva), mert a két vektor által kifeszített paralelogramma rombusz, melynek átlói merőlegesen felezi kegymást.
- Ha \vec{a} merőleges a \vec{b} re, akkor $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ (és fordítva), mert a vektorok által kifeszített paralelogramma téglalap, melynek átlói egyenlő hosszúak.

Vektorok felbontása:

DEFINÍCIÓ: (Lineáris kombináció)

Ha $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}$ tetszőleges vektorok és $\lambda_1, \lambda_2, ..., \lambda_k$ pedig valós számok, akkor az $\overrightarrow{c} = \lambda_1 \cdot \overrightarrow{v_1} + \cdots + \lambda_k \cdot \overrightarrow{v_k}$ vektort a $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}$ vektorok lineáris kombinációjának nevezzük.

TÉTEL: (Vektor felbonthatóság tétele)

Legyen az \vec{a} és \vec{b} két egymással nem párhuzamos és nem nullvektor a síkban. Ekkor a velük egysíkú tetszőleges \vec{c} vektor (sorrendtől eltekintve) egyértelműen előállítható az \vec{a} és \vec{b} lineáris kombinációjaként, vagyis felbontható az \vec{a} és \vec{b} vektorokkal párhuzamos összetevőkre. Jelöléssel: $\vec{c} = \lambda \cdot \vec{a} + \mu \cdot \vec{b}$ ($\lambda, \mu \in \mathbb{R}$).

DEFINÍCIÓ: (Bázis vektor)

Egysíkú vektorok halmazában megadva egy nem párhuzamos vektorok alkotta \vec{a} és \vec{b} vektorpárt, azt mondjuk, hogy egy bázist adtunk meg. Ha $\vec{c} = \lambda \cdot \vec{a} + \mu \cdot \vec{b}$, akkor a $(\lambda; \mu)$ rendezett valós számpár tagjait a \vec{c} vektornak, az \vec{a} és \vec{b} bázisvektorokra (alapvektorokra) vonatkozó koordinátáinak nevezzük. Jelöléssel: $\vec{c}_{(a;b)}(\lambda; \mu)$.

Megjegyzés:

- A továbbiakban speciális alapvektorokból álló (ortonormált) bázist használunk: bázisvektorok $\vec{\imath}$ és $\vec{\jmath}$; $|\vec{\imath}| = |\vec{\jmath}| = 1$ (egységvektorok) és $\vec{\jmath}$ az $\vec{\imath}$ nek (+ 90°) os elforgatottja.
- A sík egy adott pontjával (az origóval) együtt az ī és j vektorpár Descartes féle (derékszögű) koordináta rendszert alkot.
- Ha $\vec{c} = \lambda \cdot \vec{\iota} + \mu \cdot \vec{\jmath}$, akkor a λ és μ együtthatókat a \vec{c} derékszögű koordinátáinak nevezzük. Jele: \vec{c} (λ ; μ).
- Ha egy vektort elosztjuk a hosszával, akkor a vele egyállású, azonos irányú egységvektort kapjuk. Jelöléssel: $\overrightarrow{v_e} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$

TÉTEL:

Adott bázis esetén az egysíkú vektorok és a λ , μ koordinátákból álló rendezett számpárok halmaza között kölcsönösen egyértelmű megfeleltetés létesíthető úgy, hogy minden vektorhoz az adott bázisra vonatkozó koordinátái alkotta számpárt rendeljük hozzá.

DEFINÍCIÓ: (Helyvektor)

Amennyiben a sík pontját egy rögzített (vonatkoztatási) pontból kiinduló vektorral jelöljük ki, akkor ezt a ponthoz tartozó vektort, a pont helyvektorának nevezzük.

Megjegyzés:

- A derékszögű koordináta rendszerben egy pont helyvektora az origóból a pontba mutató vektor
- A derékszögű koordináta rendszerben megadott helyvektor jellemezhető egy rendezett számpárral, amely megegyezik a vektor végpontjának koordinátáival.
- A koordináta rendszerben bármely vektorhoz egyértelműen létezik egy vele egyenlő nagyságú helyvektor.
- Ha a vektor kezdőpontja nem az origó, akkor szabad vektornak nevezzük.
- $Az\vec{i}$ vektor az(1;0) pontnak, $a\vec{j}$ vektor a(0;1) pontnak a helyvektora.

Számolás koordinátákkal adott vektorokkal:

• Vektorok összegének és különbségének koordinátái:

TÉTEL:

Két vektor összegének, illetve különbségének koordinátáit megkaphatjuk, ha a megfelelő koordinátákat összeadjuk, illetve kivonjuk.

Jelöléssel:

$$\vec{b}(a_1; a_2) \} \rightarrow \vec{a} + \vec{b}(a_1 + b_1; a_2 + b_2) \qquad \vec{a} - \vec{b}(a_1 - b_1; a_2 - b_2)$$

• Kezdő és végponttal adott vektor koordinátái:

TÉTEL:

A kezdő és végponttal adott vektor koordinátáit megkaphatjuk, ha a végpont koordinátáiból kivonjuk a kezdőpont megfelelő koordinátáit.

Jelöléssel:

$$\begin{array}{ccc}
A\left(a_{1};a_{2}\right) \\
B\left(b_{1};b_{2}\right)
\end{array} \longrightarrow \overline{AB}\left(b_{1}-a_{1};b_{2}-a_{2}\right) & \overline{BA}\left(a_{1}-b_{1};a_{2}-b_{2}\right)$$

• Vektor számszorosának koordinátái:

TÉTEL:

Egy vektor számszorosának koordinátáit megkaphatjuk, ha a vektor mindkét koordinátáját megszorozzuk az adott számmal.

Jelöléssel:
$$\vec{a}$$
 (a_1 ; a_2) $\rightarrow \lambda \cdot \vec{a}$ ($\lambda \cdot a_1$; $\lambda \cdot a_2$)

• Vektorok hossza:

TÉTEL:

Egy koordinátákkal adott vektor hossza egyenlő a koordináták négyzetösszegének négyzetgyökével.

Jelöléssel:
$$\vec{a}(a_1; a_2)$$
 \rightarrow $|\vec{a}| = \sqrt{{a_1}^2 + {a_2}^2}$

Megjegyzés:

Ha A
$$(a_1; a_2)$$
 és B $(b_1; b_2)$, akkor $|\overrightarrow{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$.

• Vektor 90° - os elforgatottjának (merőleges vektorok) koordinátái:

TÉTEL:

Egy vektorra merőleges vektor koordinátáit megkaphatjuk, ha az adott vektor két koordinátáját felcseréljük és az egyik előjelét megváltoztatjuk.

Jelöléssel:
$$\vec{a}(a_1; a_2) \rightarrow \text{pozitív irányba}$$
: $\vec{a}'(-a_2; a_1) \rightarrow \text{negatív irányba}$: $\vec{a}'(a_2; -a_1)$

Vektorok térben:

TÉTEL:

Legyen \vec{a}, \vec{b} és \vec{c} olyan nullvektortól különböző, páronként nem párhuzamos vektorok, amelyekre teljesül, hogy egyik sem illeszkedik a másik kettő által meghatározott síkra. Ekkor a tér tetszőleges \vec{v} vektora (sorrendtől eltekintve) egyértelműen előállítható az \vec{a}, \vec{b} és \vec{c} lineáris kombinációjaként, vagyis felbontható az \vec{a}, \vec{b} és \vec{c} vektorokkal párhuzamos összetevőkre. Jelöléssel: $\vec{v} = \lambda \cdot \vec{a} + \mu \cdot \vec{b} + \tau \cdot \vec{c}$ ($\lambda, \mu, \tau \in \mathbb{R}$).

DEFINÍCIÓ:

A nem egysíkú vektorok halmazában megadva az \vec{a} , \vec{b} és \vec{c} vektorhármast, azt mondjuk, hogy egy bázist adtunk meg. Ha $\vec{v} = \lambda \cdot \vec{a} + \mu \cdot \vec{b} + \tau \cdot \vec{c}$, akkor a $(\lambda; \mu; \tau)$ rendezett valós számhármas tagjait a \vec{v} vektornak az \vec{a} , \vec{b} és \vec{c} bázisvektorokra (alapvektorokra) vonatkozó koordinátáinak nevezzük. Jelöléssel: $\vec{c}_{(a;b;c)}(\lambda; \mu; \tau)$.

Megjegyzés:

- Az egysíkú vektorokkal kapcsolatos korábbi észrevételek a térben ugyanúgy alkalmazhatóak.
- A számításokban speciális \vec{i} , \vec{j} és \vec{k} alapvektorokat használunk a következő feltételekkel:
 - $1. \quad |\vec{\imath}| = |\vec{\jmath}| = |\vec{k}|$
 - 2. Az egységvektorok egymásra páronként merőlegesek: $\vec{i} \perp \vec{j}$, $\vec{j} \perp \vec{k}$, $\vec{i} \perp \vec{k}$.
 - 3. Az \vec{i} , \vec{j} és \vec{k} ebben a sorrendben jobbsodrású rendszert alkotnak, vagyis a \vec{k} végpontja irányából nézve az \vec{i} (+90°) os elforgatottja a \vec{j} .
- A jobbsodrású rendszer elnevezés onnan származik, hogy a jobb kezünk hüvelyk -, mutató és középső ujja ebben a sorrendben jobbrendszert alkot.
- Térben az egymásra páronként merőleges, jobbrendszert alkotó $\vec{\imath}$, \vec{j} és \vec{k} egységvektorok segítségével, a tér bármely \vec{v} vektora egyértelműen felbontható e vektorokkal párhuzamos összetevőkre. Jelöléssel: $\vec{v} = \lambda \cdot \vec{\imath} + \mu \cdot \vec{\jmath} + \tau \cdot \vec{k}$ (λ , μ , $\tau \in \mathbb{R}$).

Gyakorló feladatok

K: középszintű feladat

E: emelt szintű feladat

1. (K) Tekintsük az alábbi szabályos hatszögben a következő vektorokat: $\vec{a} = \overrightarrow{AB}$ és $\vec{b} = \overrightarrow{AF}$. Add meg az \overrightarrow{FO} , \overrightarrow{DC} , \overrightarrow{AO} , \overrightarrow{AC} , \overrightarrow{BE} , \overrightarrow{FB} , \overrightarrow{CE} , \overrightarrow{DF} vektorok koordinátáit az $(\vec{a}; \vec{b})$ koordinátarendszerben!

2. (K) Tekintsük az alábbi kockában a következő vektorokat: $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AE}$ és $\vec{c} = \overrightarrow{AD}$. Fejezd ki az \overrightarrow{AC} , \overrightarrow{AH} , \overrightarrow{DB} , \overrightarrow{ED} , \overrightarrow{AG} , \overrightarrow{FH} , \overrightarrow{GD} vektorokat az \vec{a} és \vec{b} vektorok segítségével!

- 3. (K) Írd fel az A(-2;5) és B(3;-4) pontokba mutató \vec{a} és \vec{b} helyvektorokat az \vec{i} és \vec{j} bázisvektorok segítségével!
- 4. (K) Írd fel az \overrightarrow{AB} és \overrightarrow{BA} vektorokat az \overrightarrow{i} és \overrightarrow{j} bázisvektorok segítségével, ha adott az A(7;-1) és B(-5;9) pont!

8

- 5. (K) Adott az \vec{a} (7; -1) és \vec{b} (-13; 9) helyvektor. Határozd meg a $2\vec{a}$; $-3\vec{b}$; $5\vec{a} + \vec{b}$ és $4\vec{b} \vec{a}$ vektorok koordinátáit az \vec{i} és \vec{j} bázisvektorok segítségével!
- 6. (K) Adott az \vec{a} (-4; 11) és \vec{b} (8; -7) helyvektor. Határozd meg a $3\vec{a}$; $-5\vec{b}$; $6\vec{a} + \vec{b}$ és $9\vec{b} 2\vec{a}$ vektorok koordinátáit!
- 7. (K) Ábrázold a \vec{v} (-6; 4) helyvektort, számítsd ki a hosszát és bontsd fel az alábbi vektorokkal párhuzamos összetevőkre:
 - a) \vec{i} (1; 0) és \vec{j} (0; 1)
 - b) \vec{a} (-4; 2) és \vec{b} (1; -8)
- 8. (E) Ábrázold a \vec{v} (3; -4; 5) t, számítsd ki a hosszát és bontsd fel az alábbi vektorokkal párhuzamos összetevőkre:
 - a) $\vec{i}(1;0;0), \vec{j}(0;1;0)$ és $\vec{k}(0;0;1)$
 - b) \vec{a} (1; -2; 2), \vec{b} (3; -4; 1) és \vec{c} (1; -3; 2)
- 9. (E) Adott az \vec{a} (1; -3; 2) és a \vec{b} (6; 4; -9) vektor. Határozd meg a $2\vec{a} + \vec{b}$ és az $\frac{1}{3}\vec{b} \vec{a}$ vektorok koordinátáit!
- 10. (K) Határozd meg a B és C pont koordinátáját, ha adott az A (2; $\overline{7}$) pont, illetve az \overrightarrow{AB} (-1; 3) és a \overrightarrow{CA} (5; -4) vektor!
- 11. (K) Számítsd ki az \vec{a} (-3; 4) helyvektor hosszát!
- 12. (K) Számítsd ki annak az \vec{a} vektornak a hosszát, amelynek kezdőpontja A (5; 7) és végpontja B (-1; -2)!
- 13. (K) Számítsd ki az $ABC\Delta$ kerületét, melynek csúcspontjai: A(1;3), B(2;-5), C(-4;7)!
- 14. (K) Adj meg három olyan vektort, amely merőleges az \vec{a} (-7; 6) vektorra!
- 15. (K) Adott egy paralelogramma három csúcsa: (-3; 4), (5; -2) és (6; 8). Határozd meg a paralelogramma negyedik csúcsának koordinátáit!

- 16. (K) Adott egy négyzet két szomszédos csúcsa: (-1;3) és (5;-4). Határozd meg a négyzet hiányzó csúcsainak koordinátáit!
- 17. (K) Egy négyzet egyik csúcsa A(-1;3), középpontja K(1;4). Határozd meg a többi csúcs koordinátáit!
- 18. (K) Egy rombusz két átellenes csúcsa A(-10; 4), C(6; -8). Határozd meg a hiányzó két csúcs koordinátáit, ha a BD átló hossza fele az AC átlóénak!
- 19. (K) Egy téglalap két csúcsa az A(-2;4) és B(7;16) pontok. Határozd meg a C,D csúcsok koordinátáit, ha tudjuk, hogy az AB oldal hossza háromszorosa a BC oldal hosszának!
- 20. (K) Legyenek A, B, C, D, E a sík tetszőleges pontjai. Határozd meg az α valós szám értékét, ha $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \alpha \cdot (\overrightarrow{DE} + \overrightarrow{EA})!$
- 21. (E) Az ABC háromszög AB oldalának A hoz közelebbi negyedelőpontja N, B hez közelebbi negyedelőpontja M. Fejezd ki a \overrightarrow{CM} et és \overrightarrow{CN} et \overrightarrow{CA} és \overrightarrow{CB} segítségével (a két vektor lineáris kombinációjaként)!
- 22. (E) Az \overrightarrow{ABC} háromszögben $\overrightarrow{AB} = 4$, $\overrightarrow{BC} = 5$, $\overrightarrow{CA} = 6$. Az \overrightarrow{A} csúcsból induló belső szögfelező metsze a \overrightarrow{BC} oldalt \overrightarrow{P} ben. Határozd meg az α és β értékét, ha $\overrightarrow{AP} = \alpha \cdot \overrightarrow{AB} + \beta \cdot \overrightarrow{AC}$!
- 23. (E) Az \overrightarrow{ABC} háromszög \overrightarrow{BC} oldalának C-n túli meghosszabbításán úgy vettük fel a P pontot, hogy $\overrightarrow{BP}: CP = 9: 5$. Bontsd fel az $\overrightarrow{AP} t \overrightarrow{AB} ral$ és $\overrightarrow{AC} ral$ párhuzamos összetevőkre!
- 24. (E) Határozd meg a következő vektorokkal egyirányú egységvektorok koordinátáit!
 - a) \vec{a} (4; -3)
 - b) \vec{b} (1; 4; 5)
- 25. (K) Határozd meg az $\alpha=120^\circ$, $\beta=225^\circ$ és $\gamma=330^\circ$ irányszögű egységvektorok koordinátáit!
- 26. (K) Számítsd ki az \vec{a} (-5,-2) és \vec{b} (1;4) vektorok által bezárt szöget!

- 27. (E) Legyen O az $\overrightarrow{ABC} \triangle$ köré írt kör középpontja, M a háromszög magasságpontja. Bizonyítsd be, hogy $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM}$!
- 28. (E) Bizonyítsd be, hogy az $ABC \Delta$, S súlypontjából a csúcsokba vezető vektorok összege 0!
- 29. (E) Legyen az $\overrightarrow{ABC} \triangle$ súlypontja S, az $\overrightarrow{XYZ} \triangle$ súlypontja pedig Q. Bizonyítsd be, hogy $\overrightarrow{AX} + \overrightarrow{BY} + \overrightarrow{CZ} = 3 \cdot \overrightarrow{SQ}$!
- 30. (E) Bizonyítsd be, hogy egy tetszőleges O pontból az ABC Δ csúcsaiba vezető vektorok összege egyenlő az O pontból az oldalfelező pontokba vezető vektorok összegével!
- 31. (E) Bizonyítsd be, hogy ha F_1 , F_2 , F_3 , F_4 , F_5 , F_6 egy hatszög egymás utáni oldalfelező pontjai, akkor $\overline{F_1F_2} + \overline{F_3F_4} + \overline{F_5F_6} = 0$.
- 32. (E) Bizonyítsd be, hogy $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3 \cdot \overrightarrow{AD}$, ha A, B, C, D, E, F egy szabályos hatszög csúcsai!
- 33. (E) Az O középpontú kör AB és CD húrja merőlegesek egymásra, egyeneseik metszéspontja M. Bizonvítsd be, hogy $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 2 \cdot \overrightarrow{OM}$!
- 34. (E) Bizonyítsd be, hogy egy tetszőleges *ABCD* négyszög középvonalainak *M* metszéspontjából a négyszög csúcsaiba mutató vektorok összege 0!
- 35. (E) Legyen az \overrightarrow{ABCD} paralelogramma síkjában egy tetszőleges pont O. Bizonyítsd be, hogy $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OD}$!
- 36. (E) Az \overrightarrow{ABCD} négyszög \overrightarrow{AB} és \overrightarrow{CD} oldalának felezőpontja \overrightarrow{E} és \overrightarrow{F} . Bizonyítsd be, hogy $\overrightarrow{EF} = \frac{1}{2} \cdot (\overrightarrow{AD} + \overrightarrow{BC})!$

Felhasznált irodalom

- (1) Hajdu Sándor; 2003.; Matematika 10.; Műszaki Könyvkiadó; Budapest
- (2) Urbán János; 2009.; Sokszínű matematika 10; Mozaik Kiadó; Szeged
- (3) Ábrahám Gábor; 2010.; Matematika 10; Maxim Könyvkiadó; Szeged
- (4) Urbán János; 2014.; Sokszínű matematika feladatgyűjtemény 10; Mozaik Kiadó; Szeged
- (5) Czapáry Endre; 2006.; Matematika gyakorló és érettségire felkészítő feladatgyűjtemény III.; Nemzeti Tankönyvkiadó; Budapest
- (6) Czapáry Endre; 2009.; Geometriai feladatok gyűjteménye I.; Nemzeti Tankönyvkiadó; Budapest
- (7) Korányi Erzsébet; 1998.; Összefoglaló feladatgyűjtemény matematikából; Nemzeti Tankönyvkiadó; Budapest
- (8) Vancsó Ödön; 2005.; Egységes Érettségi Feladatgyűjtemény Matematika I.; Konsept H Könyvkiadó; Piliscsaba
- (9) Fuksz Éva; 2011.; Érettségi feladatgyűjtemény matematikából 9 10. évfolyam; Maxim Kiadó; Szeged
- (10) Fröhlich Lajos; 2006.; Alapösszefüggések matematikából emelt szint; Maxim Kiadó; Szeged
- (11) https://users.itk.ppke.hu/itk_dekani/files/matematika/list.html
- (12) Saját anyagok