### Emil Barnik 132190 Michał Rajczak 132120

#### **Opis projektu:**

Projekt polegał na zaimplementowaniu aplikacji przeprowadzającej symulację działania tomografu komputerowego. Aplikacja na podstawie zdjęcia w skali szarości symuluje projekcje promieni rentgenowskich i tworzy sinogram następnie na jego podstawie odtwarza pierwotny obraz.

Zdecydowaliśmy się na stożkowy model tomografu (tz. jeden emiter i wiele detektorów ułożonych po przeciwnych stronach obrazu)

#### Działanie:

Program zaczyna działanie od wczytania zdjęcia, następnie pozwala wybrać parametry symulacji (tj alf - kąt kroku emitera i detektorów, I - kąt na jakim rozpięte są detektory, n - ilość detektorów). Kolejnym etapem jest utworzenie sinogramu. W każdym kroku korzystając z równania parametrycznego okręgu wyznaczamy pozycje emitera i detektorów na okręgu opisanym na zdjęciu wejściowym przesuniętych o odpowiedni kąt, następnie korzystając z algorytmu Bresenhama rzutujemy na obraz proste łączące emiter z detektorami. Wykorzystując transformatę Radona, dane z poszczególych prostych zamieniamy na sinogram. Na osi pionowej sinogramu zaznaczone są kolejne kąty o które zostały przesunięte emiter wraz z detektorami a na osi poziomej uśrednione wartości pikseli na odcinku między emiterem a kolejnymi detektorami.

Na sinogram nakładamy filtr splotowy ram laka. Podczas tej operacji iterujemy po wszystkich pikselach obrazu i dla każdego piksela sumujemy wartość iloczyn sąsiednich pikseli z odpowiadającym elementem jądra. Za wartości pikseli poza zakresem obrazka przyjmujemy wartość 0

$$h[0] = 1$$
 $h[k] = 0$  for even values of  $k$ 
 $h[k] = \frac{-4/\pi^2}{k^2}$  for odd values of  $k$ 

gdzie 0 to środek jądra a k to odległość od jądra

Drugim krokiem jest odtworzenie pierwotnego obrazu z sinogramu, korzystając z odwrotnej transformaty Radona. Zaczynamy od czarnego obrazka o wymiarach obrazu początkowego. Odczytujemy kolejne wartości z sinogramu i dla odpowiadających im detektorom i kątom przesunięcia wyznaczamy prostą przechodzącą przez dany detektor i emiter przesunięte o odpowiedni kąt. Następnie odczytaną wartość dodajemy do wszystkich pikseli czarnego obrazka leżących na wcześniej wyznaczonej prostej. Potem wartość każdego piksela normalizujemy na podstawie ilości promieni które przez niego przechodziły.

## Wyniki działania:



obraz wejściowy



singoram bez filtrem n = 300, l = 240, alfa = 1



obraz wynikowy bez filtrem



singoram z filtrem n = 300, I = 240, alfa = 1



obraz wynikowy z filtrem



po lewej obraz wejściowy po prawej wynikowy

# Analiza Błędu Średniokwadratowego:

Analiza błędu dla wyników bez filtra nie miała praktycznie sensu, ponieważ obrazki wychodził na tyle ciemny że różnice w błędach i tak była za mała, przykład:



jedno z tych zdjęć zostało wygenerowane przy parametrach n=300 i alfa = 1 stopień drugie natomiast n = 120 i alfa = 5. Pomimo tak dużych różnic w parametrach błąd średniokwadratowy różni się minimalnie i dzieje się tak praktycznie niezależnie od doboru parametrów.

Natomiast dla obrazów z filtrem które są dużo bardziej rozświetlone i pokazują o wiele więcej szczegółów przez co wartość błędu średniokwadratowego praktycznie w ogóle nie odzwierciedla wyniku ponieważ miejsca w których na pierwotnym zdjęciu nic nie ma i są zupełnie czarne w obrazie wynikowym są szare(te miejsca stanowią około 40% obrazka) co za tym idzie np. obrazek zupełnie czarny nie wypada gorzej niż obraz wynikowy właśnie ze względu na te miejsca przykład:



Obraz po lewej ma mniejszy błąd średniokwadratowy ponieważ jego obrzeża mają więcej czarnego .

Dlatego też jeśli chodzi o porównanie obrazów z filtrem i bez to obrazy z filtrem mają o wiele więcej szczegółów ale są dużo jaśniejsze co za tym idzie ich błąd jest dużo mniejszy(problem opisany wyżej).

Kilka przykładów potwierdzających tą tezę:



zmiana błędu w zależności od ilości detektorów(alfa = 1, I = 240)



zmiana błędu w zależności od alfy (I = 240, n = 300)

Jedynym wariantem w którym udało się nam zauważyć jakieś zależności był dobór kąta rozwarcia, jednak różnice widać było tylko w dość mocno zawężonym obszarze dla którego obrazy wynikowe były dość podobne ponieważ w większej skali obrazy na których nic nie było widać i tak miały mniejszy błąd.



W całej skali (od 30 - 360 stopni) obrazy z małym kątem rozwarcia i tak miały mały błąd mimo że nic na nich nie było widać.



W mniejszej skali można zauważyć pewną tendencję, obrazu dla kąta rozwarcia ok. 240 stopni rzeczywiście wizualnie wyglądały lepiej.