計算機基礎期末レポート

61908697 佐々木良輔 2020 年 7 月 31 日

1. 課題1

以下の論理関数 F,G,H について真理値表を作成せよ.

- $F = (A + B) \cdot \overline{C}$
- $G = A + B \cdot \overline{C}$
- $\bullet \ H = \overline{(A+B)} \cdot C$

以下にF, G, Hの真理値表を示す.

表 1 F の真理値表

\overline{A}	В	C	A + B	\overline{C}	\overline{F}
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
_1	1	1	1	0	0

表 2 G の真理値表

A	B	C	\overline{C}	$B \cdot \overline{C}$	G
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
_1	1	1	0	0	1

表 3 Hの真理値表

A	B	C	A + B	$\overline{A+B}$	H
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	0	0
_1	1	0	1	0	0

2. 課題2

以下の論理関数 F, G, H を NAND ゲートだけの式に変換せよ. NOT ゲートは NAND ゲートに書き換えなくてよい.

- $F = \overline{A} \cdot B + \overline{C} \cdot (A + B)$
- $G = \overline{A} \cdot B + C \cdot (A + \overline{B})$
- $\bullet \ H = A \cdot \overline{B} + C \cdot (\overline{A} + B)$

2.1 F について

$$F = \overline{A} \cdot B + \overline{C} \cdot (A + B)$$
$$= \overline{A} \cdot B + \overline{C} \cdot A + \overline{C} \cdot B$$

両辺を 2 重否定し

$$\overline{\overline{F}} = \overline{\overline{\overline{A} \cdot B} + \overline{C} \cdot A + \overline{C} \cdot B}$$

ド・モルガンの定理から

$$\overline{\overline{F}} = \overline{\overline{\overline{A} \cdot B} \cdot \overline{\overline{C} \cdot A} \cdot \overline{\overline{C} \cdot B}}$$

2.2 *G* について

$$G = \overline{A} \cdot B + C \cdot (A + \overline{B})$$
$$= \overline{A} \cdot B + C \cdot A + C \cdot \overline{B}$$

両辺を 2 重否定し

$$\overline{\overline{G}} = \overline{\overline{\overline{A} \cdot B + C \cdot A + C \cdot \overline{B}}}$$

ド・モルガンの定理から

$$\overline{\overline{G}} = \overline{\overline{\overline{A} \cdot B} \cdot \overline{C \cdot A} \cdot \overline{C \cdot \overline{B}}}$$

2.3 *H* について

$$H = A \cdot \overline{B} + C \cdot (\overline{A} + B)$$
$$= A \cdot \overline{B} + C \cdot \overline{A} + C \cdot B$$

両辺を 2 重否定し

$$\overline{\overline{H}} = \overline{\overline{A \cdot \overline{B} + C \cdot \overline{A} + C \cdot B}}$$

ド・モルガンの定理から

$$\overline{\overline{H}} = \overline{\overline{A \cdot \overline{B}} \cdot \overline{C \cdot \overline{A}} \cdot \overline{C \cdot B}}$$

3. 課題3

以下の論理関数 F,G,H をカルノー図を用いて論理圧縮せよ.

- $F(x_1, x_0) = \sum (0, 2, 3)$
- $G(x_2, x_1, x_0) = \sum (0, 2, 4, 5, 6, 7)$

3.1 F について

カルノー図を図 1 に示す. ここで赤いループは $\overline{x_0}$, 青いループは x_1 なので

$$F(x_1, x_0) = \overline{x_0} + x_1$$

となる.

図 1 F のカルノー図

3.2 *G* について

カルノー図を図 2 に示す. ここで赤いループは $\overline{x_0}$, 青いループは x_2 なので

$$G(x_2, x_1, x_0) = \overline{x_0} + x_2$$

となる.

X1X0 X2	00	01	11	10
0	1	0	0	1
1	1	1	1	1

図 2 G のカルノー図

3.3 *H* について

カルノー図を図 3 に示す. ここで赤いループは $\overline{x_0}$, 青いループは $\overline{x_2}$ なので

$$H(x_3, x_2, x_1, x_0) = \overline{x_0} + \overline{x_2}$$

となる.

X1X0 X3X2	00	01	11	10
00	1	1	1	1
01	1	0	0	1
11	1	0	0	1
10	1	1	1	1

図 3 *H* のカルノー図

4. 課題4

以下の機能を持つ論理関数 F,G の論理式を示せ.

論理関数 F

4 本の信号線 $x_3,\,x_2,\,x_1,\,x_0$ を用いて 0 から 15 の 2 進数を表し, 10 以上なら F=1, それ以外で F=0 とする.

論理関数 G

上の 2 進数が 6 以下なら G=1, それ以外で G=0 とする.

4.1 F について

F の真理値表を表 4 に示す. したがってカルノー図は図 4 のようになる. ここで赤いループは x_3x_1 , 青いループは x_3x_2 なので

$$F(x_3, x_2, x_1, x_0) = x_3 x_1 + x_3 x_2$$

となる.

表 4 F の真理値表

x_3	x_2	x_1	x_0	表す整数	F
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	2	0
0	0	1	1	3	0
0	1	0	0	4	0
0	1	0	1	5	0
0	1	1	0	6	0
0	1	1	1	7	0
1	0	0	0	8	0
1	0	0	1	9	0
1	0	1	0	10	1
1	0	1	1	11	1
1	1	0	0	12	1
1	1	0	1	13	1
1	1	1	0	14	1
_1	1	1	1	15	1

X1X0 X3X2	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	1

図 4 F のカルノー図

4.2 *G* について

F の真理値表を表 5 に示す. したがってカルノー図は図 4 のようになる. ここで赤いループは $\overline{x_3x_1}$, 青いループは $\overline{x_3x_2}$, 緑のループは $\overline{x_3}x_1\overline{x_0}$ なので

$$G(x_3, x_2, x_1, x_0) = \overline{x_3} \overline{x_1} + \overline{x_3} \overline{x_2} + \overline{x_3} \overline{x_1} \overline{x_0}$$

となる.

表 5 G の真理値表

x_3	x_2	x_1	x_0	表す整数	G	
0	0	0	0	0	1	
0	0	0	1	1	1	
0	0	1	0	2	1	
0	0	1	1	3	1	
0	1	0	0	4	1	
0	1	0	1	5	1	
0	1	1	0	6	1	
0	1	1	1	7	0	
1	0	0	0	8	0	
1	0	0	1	9	0	
1	0	1	0	10	0	
1	0	1	1	11	0	
1	1	0	0	12	0	
1	1	0	1	13	0	
1	1	1	0	14	0	
_1	1	1	1	15	0	

X1X0 X3X2	00	01	11	10
00	1	1	1	1
01	1	1	0	1
11	0	0	0	0
10	0	0	0	

図 5 G のカルノー図

5. 課題5

図 6 のように NOR ゲートに A, B と, その入力に Y, Y', X, X' と名前をつける. Y と X は ACTIVE HIGH とする.

まず Y を 1 にすることを考える. Y が 1 になると A の出力 Q は 0 になり, X' も 0 になる. このとき X が 0 であるので B の出力 \overline{Q} は 1 になる. したがって Y' は 1 になり, 出力 Q は 0 のままである. 以上から入力 Y は RESET 信号に相当する.

次に X を 1 にすることを考える. X が 1 になると B の出力 \overline{Q} は 0 になり, Y' も 0 になる. このとき Y が 0 であるので A の出力 Q は 1 になる. したがって X' は 1 になり, 出力 \overline{Q} は 0 のままである. 以上から入力 X は SET 信号に相当する.

また Y と X は ACTIVE HIGH なので両方が LOW のとき状態は変化しない. そして Y と X が両方 HIGH のとき、出力 Q と \overline{Q} は同時に 0 になるのでこれは禁止状態である. 以上からこの回路の動作は表 6 のようになる. また図 7 に X, Y の入力に対する出力 Q の波形を示す.

図 6 回路図

	表	6 E	回路の	動作
_	X	Y	Q	$\overline{\mathrm{Q}}$
_	L	Н	IJŧ	zット
	Η	L	セ	ット
	Η	Η	禁止	状態
	L	L	前の状態	

図7 入力波形と出力波形