```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams["figure.figsize"] = (20,10)

df1 = pd.read_csv("/content/realestate.csv")
df1.head()
```

	area_type	availability	location	size	society	total_sqft	bath	balco
0	Super built-up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1
1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3
2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3

```
df2 = df1.drop(['area_type','society','balcony','availability'],axis='columns')
df2.shape
```

(13320, 5)

```
df3 = df2.dropna()
df3.isnull().sum()
```

location 0 size 0 total_sqft 0 bath 0 price 0 dtype: int64

df3['bhk'] = df3['size'].apply(lambda x: int(x.split(' ')[0]))
df3.bhk.unique()

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

```
array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12, 13, 18])
```

```
def is_float(x):
    try:
        float(x)
    except:
        return False
    return True
```

def convert_sqft_to_num(x):

df3[~df3['total_sqft'].apply(is_float)].head(10)

	location	size	total_sqft	bath	price	bhk
30	Yelahanka	4 BHK	2100 - 2850	4.0	186.000	4
122	Hebbal	4 BHK	3067 - 8156	4.0	477.000	4
137	8th Phase JP Nagar	2 BHK	1042 - 1105	2.0	54.005	2
165	Sarjapur	2 BHK	1145 - 1340	2.0	43.490	2
188	KR Puram	2 BHK	1015 - 1540	2.0	56.800	2
410	Kengeri	1 BHK	34.46Sq. Meter	1.0	18.500	1
549	Hennur Road	2 BHK	1195 - 1440	2.0	63.770	2
648	Arekere	9 Bedroom	4125Perch	9.0	265.000	9
661	Yelahanka	2 BHK	1120 - 1145	2.0	48.130	2
672	Bettahalsoor	4 Bedroom	3090 - 5002	4.0	445.000	4

```
tokens = x.split('-')
if len(tokens) == 2:
    return (float(tokens[0])+float(tokens[1]))/2
try:
    return float(x)
except:
    return None

df4 = df3.copy()
df4.total_sqft = df4.total_sqft.apply(convert_sqft_to_num)
df4 = df4[df4.total_sqft.notnull()]
df4.head(2)
```

	location	size	total_sqft	bath	price	bhk
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4

df4.loc[30]

```
location
                   Yelahanka
     size
                       4 BHK
                         2475
     total_sqft
     bath
                            4
     price
                          186
     bhk
     Name: 30, dtype: object
df5 = df4.copy()
df5['price_per_sqft'] = df5['price']*100000/df5['total_sqft']
len(df5.location.unique())
     1298
df5['location']=df5['location'].apply(lambda x : x.strip())
locationstats = df5.groupby('location')['location'].agg('count').sort_values(ascending=False)
locationstats
     location
     Whitefield
                              533
     Sarjapur Road
                              392
     Electronic City
                              304
     Kanakpura Road
                              264
     Thanisandra
                              235
                             . . .
     Kumbhena Agrahara
                                1
     Kudlu Village,
                                1
     Konappana Agrahara
                                1
     Kodanda Reddy Layout
     1 Annasandrapalya
     Name: location, Length: 1287, dtype: int64
len(locationstats[locationstats<=10])</pre>
     1047
locationstatslessthanten=locationstats[locationstats<=10]</pre>
locationstatslessthanten
     location
     Dodsworth Layout
                              10
     BTM 1st Stage
                              10
     Sadashiva Nagar
                              10
     Thyagaraja Nagar
                              10
     Kalkere
                              10
     Kumbhena Agrahara
                               1
     Kudlu Village,
                               1
```

1

Konappana Agrahara

Kodanda Reddy Layout 1
1 Annasandrapalya 1

Name: location, Length: 1047, dtype: int64

df5.location = df5.location.apply(lambda x : 'other' if x in locationstatsless than ten else x) len(df5['location'].unique())

241

#Detecting outliers
df5.head()

	location	size	total_sqft	bath	price	bhk	<pre>price_per_sqft</pre>
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000

df5[df5['total_sqft']/df5['bhk']<300].head()</pre>

	location	size	total_sqft	bath	price	bhk	<pre>price_per_sqft</pre>
9	other	6 Bedroom	1020.0	6.0	370.0	6	36274.509804
45	HSR Layout	8 Bedroom	600.0	9.0	200.0	8	33333.333333
58	Murugeshpalya	6 Bedroom	1407.0	4.0	150.0	6	10660.980810
68	Devarachikkanahalli	8 Bedroom	1350.0	7.0	85.0	8	6296.296296
70	other	3 Bedroom	500.0	3.0	100.0	3	20000.000000

df6 = df5[~(df5.total_sqft/df5.bhk<300)]</pre>

df6.shape

(12456, 7)

df6.price_per_sqft.describe()

count 12456.000000 mean 6308.502826 std 4168.127339

```
min
                 267.829813
     25%
                4210.526316
     50%
                5294.117647
     75%
                6916.666667
              176470.588235
     max
     Name: price_per_sqft, dtype: float64
import numpy as np
def removeoutliers(df):
  dfout = pd.DataFrame()
  for key,subdf in df.groupby('location'):
    m = np.mean(subdf.price per sqft)
    st = np.std(subdf.price per sqft)
    reduceddf = subdf[(subdf.price_per_sqft>(m-st))&(subdf.price_per_sqft<=(m+st))]</pre>
    dfout = pd.concat([dfout,reduceddf],ignore_index=True)
  return dfout
df7 = removeoutliers(df6)
df7.shape
     (10242, 7)
import matplotlib.pyplot as plt
def plotscatterplot(df,location):
  bhk2 = df[(df.location==location) & (df.bhk==2)]
  bhk3 = df[(df.location==location) & (df.bhk==3)]
 matplotlib.rcParams['figure.figsize']=(15,10)
  plt.scatter(bhk2.total sqft,bhk2.price,color='blue',label='BHK2')
  plt.scatter(bhk3.total_sqft,bhk3.price,color='green',label='BHK3',marker='+')
  plt.xlabel("total sqft")
  plt.ylabel("price per sqft")
  plt.legend()
  plt.title(location)
plotscatterplot(df7, "Rajaji Nagar")
```



```
def remove bhk outliers(df):
   exclude_indices = np.array([])
   for location, location_df in df.groupby('location'):
        bhk stats = {}
        for bhk, bhk_df in location_df.groupby('bhk'):
            bhk stats[bhk] = {
                'mean': np.mean(bhk_df.price_per_sqft),
                'std': np.std(bhk_df.price_per_sqft),
                'count': bhk_df.shape[0]
       for bhk, bhk df in location df.groupby('bhk'):
            stats = bhk_stats.get(bhk-1)
            if stats and stats['count']>5:
                exclude_indices = np.append(exclude_indices, bhk_df[bhk_df.price_per_sqft<(st
   return df.drop(exclude indices,axis='index')
df8 = remove_bhk_outliers(df7)
df8.shape
     (7317, 7)
plotscatterplot(df8, "Rajaji Nagar")
```



```
matplotlib.rcParams['figure.figsize'] = (20,10)
plt.hist(df8.price_per_sqft,rwidth=0.8)
plt.xlabel("price")
plt.ylabel("frequency")
```

Text(0, 0.5, 'frequency')

df8.bath.unique()

df8[df8.bath>4]

	location	size	total_sqft	bath	price	bhk	price_per_sqft
9	1st Phase JP Nagar	5 Bedroom	1500.0	5.0	85.0	5	5666.666667
36	2nd Stage Nagarbhavi	6 Bedroom	3000.0	8.0	451.0	6	15033.333333
37	2nd Stage Nagarbhavi	6 Bedroom	2400.0	8.0	450.0	6	18750.000000
45	5th Block Hbr Layout	5 Bedroom	3600.0	5.0	130.0	5	3611.111111
46	5th Block Hbr Layout	6 BHK	5100.0	5.0	300.0	6	5882.352941
10146	other	4 Bedroom	3100.0	5.0	425.0	4	13709.677419
10203	other	4 BHK	6652.0	6.0	660.0	4	9921.828022
10210	other	4 Bedroom	6688.0	6.0	700.0	4	10466.507177
10222	other	6 Bedroom	1800.0	5.0	140.0	6	7777.777778
10241	other	4 BHK	3600.0	5.0	400.0	4	11111.111111

297 rows × 7 columns

```
import matplotlib.pyplot as plt
plt.hist(df8.bath,rwidth=0.8)
plt.xlabel("no of bath rooms")
plt.ylabel("frequency")
```

Text(0, 0.5, 'frequency')


```
df9 = df8[df8.bath<df8.bhk+2]
df10 = df9.drop(['size','price_per_sqft'],axis = 'columns')
df10</pre>
```

		location	total_sqft	bath	price	bhk
	0	1st Block Jayanagar	2850.0	4.0	428.0	4
	1	1st Block Jayanagar	1630.0	3.0	194.0	3
	2	1st Block Jayanagar	1875.0	2.0	235.0	3
	3	1st Block Jayanagar	1200.0	2.0	130.0	3
dummi	les = po	d.get_dummies(df10.	location)			

dummies

	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	6th Phase JP Nagar	7th Phase JP Nagar	8th Phase JP Nagar	9th Phase Ji Nagar
0	1	0	0	0	0	0	0	0	0	(
1	1	0	0	0	0	0	0	0	0	(
2	1	0	0	0	0	0	0	0	0	(
3	1	0	0	0	0	0	0	0	0	(
4	1	0	0	0	0	0	0	0	0	(
10233	0	0	0	0	0	0	0	0	0	(
10234	0	0	0	0	0	0	0	0	0	(
10237	0	0	0	0	0	0	0	0	0	(
10238	0	0	0	0	0	0	0	0	0	(
10241	0	0	0	0	0	0	0	0	0	(

7239 rows × 241 columns

df11 = pd.concat([df10,dummies.drop('other',axis='columns')],axis='columns')

df11

	location	total_sqft	bath	price	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi
0	1st Block Jayanagar	2850.0	4.0	428.0	4	1	0	0	0
1	1st Block Jayanagar	1630.0	3.0	194.0	3	1	0	0	0
2	1st Block Jayanagar	1875.0	2.0	235.0	3	1	0	0	0
3	1st Block Jayanagar	1200.0	2.0	130.0	3	1	0	0	0
4	1st Block Jayanagar	1235.0	2.0	148.0	2	1	0	0	0
10233	other	1200.0	2.0	70.0	2	0	0	0	0
10234	other	1800.0	1.0	200.0	1	0	0	0	0

df12 = df11.drop('location',axis=1)
df12

	total_sqft	bath	price	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	Pha Nag
0	2850.0	4.0	428.0	4	1	0	0	0	0	
1	1630.0	3.0	194.0	3	1	0	0	0	0	
2	1875.0	2.0	235.0	3	1	0	0	0	0	
3	1200.0	2.0	130.0	3	1	0	0	0	0	
4	1235.0	2.0	148.0	2	1	0	0	0	0	
10233	1200.0	2.0	70.0	2	0	0	0	0	0	
10234	1800.0	1.0	200.0	1	0	0	0	0	0	
10237	1353.0	2.0	110.0	2	0	0	0	0	0	
10238	812.0	1.0	26.0	1	0	0	0	0	0	
10241	3600.0	5.0	400.0	4	0	0	0	0	0	

7239 rows × 244 columns

```
X - \alpha_1 \pi_2 \cdot \alpha_1 \circ \beta_1  by \alpha_1 \circ \beta_2 = 1
```

	total_sqft	bath	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	e Pha Nag
0	2850.0	4.0	4	1	0	0	0	0	0	
1	1630.0	3.0	3	1	0	0	0	0	0	
2	1875.0	2.0	3	1	0	0	0	0	0	
3	1200.0	2.0	3	1	0	0	0	0	0	
4	1235.0	2.0	2	1	0	0	0	0	0	
10233	1200.0	2.0	2	0	0	0	0	0	0	
10234	1800.0	1.0	1	0	0	0	0	0	0	
10237	1353.0	2.0	2	0	0	0	0	0	0	
10238	812.0	1.0	1	0	0	0	0	0	0	
10241	3600.0	5.0	4	0	0	0	0	0	0	

7239 rows × 243 columns

```
y = df12.price
У
     0
              428.0
     1
              194.0
     2
              235.0
     3
              130.0
     4
              148.0
     10233
              70.0
     10234
              200.0
     10237
              110.0
     10238
               26.0
     10241
              400.0
     Name: price, Length: 7239, dtype: float64
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(X,y,test_size=0.2,random_state=10)
```

from sklearn.linear_model import LinearRegression

lr_clf = LinearRegression()
lr_clf.fit(xtrain,ytrain)
lr_clf.score(xtest,ytest)

0.8629132245229443

```
from sklearn.model selection import ShuffleSplit
from sklearn.model selection import cross val score
cv = ShuffleSplit(n_splits=5,test_size=0.2,random_state=0)
cross val score(LinearRegression(),X,y,cv=cv)
     array([0.82702546, 0.86027005, 0.85322178, 0.8436466, 0.85481502])
from sklearn.model selection import GridSearchCV
from sklearn.linear model import Lasso
from sklearn.tree import DecisionTreeRegressor
def find_best_model_using_gridsearchcv(X,y):
    algos = {
        'linear regression' : {
            'model': LinearRegression(),
            'params': {
                'normalize': [True, False]
        },
        'lasso': {
            'model': Lasso(),
            'params': {
                'alpha': [1,2],
                'selection': ['random', 'cyclic']
            }
        },
        'decision tree': {
            'model': DecisionTreeRegressor(),
            'params': {
                'criterion' : ['mse','friedman_mse'],
                'splitter': ['best','random']
            }
        }
    }
    scores = []
    cv = ShuffleSplit(n splits=5, test size=0.2, random state=0)
    for algo_name, config in algos.items():
        gs = GridSearchCV(config['model'], config['params'], cv=cv, return_train_score=False
        gs.fit(X,y)
        scores.append({
            'model': algo name,
            'best_score': gs.best_score_,
            'best params': gs.best params
        })
    return pd.DataFrame(scores,columns=['model','best score','best params'])
```

find_best_model_using_gridsearchcv(X,y)

```
model best_score
                                                       best params
         linear_regression
                             0.847796
                                                  {'normalize': False}
      1
                    lasso
                             0.726751
                                        {'alpha': 2, 'selection': 'random'}
      2
             decision tree
                             0.715751 {'criterion': 'mse', 'splitter': 'best'}
def predict price(location,sqft,bath,bhk):
    loc_index = np.where(X.columns==location)[0][0]
    x = np.zeros(len(X.columns))
    x[0] = sqft
    x[1] = bath
    x[2] = bhk
    if loc_index >= 0:
        x[loc\_index] = 1
    return lr clf.predict([x])[0]
predict price('2nd Phase Judicial Layout',1000,2,2)
     28.47722993537434
import pickle
with open('banglore_home_prices_model.pickle','wb') as f:
    pickle.dump(lr_clf,f)
import json
columns = {
    'data columns' : [col.lower() for col in X.columns]
with open("columns.json", "w") as f:
    f.write(json.dumps(columns))
```