CS 228 : Logic in Computer Science

Krishna, S

▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- ▶ So far, no proof rule that can do this.

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- So far, no proof rule that can do this.
- ▶ Given $p \rightarrow q$, let us assume $\neg q$. Can we then prove $\neg p$?

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- So far, no proof rule that can do this.
- ▶ Given $p \rightarrow q$, let us assume $\neg q$. Can we then prove $\neg p$?
- ► Yes, using MT.

The implies introduction rule $\rightarrow i$

۱.	extstyle p ightarrow q	premise
2.	$\neg q$	assumption

3.
$$\neg p$$
 assumption $\neg p$ MT 1,2

$$\neg q
ightarrow \neg p
ightarrow i 2-3$$

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

true

2.

premise

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

- 1. true premise
- 2. $q \rightarrow r$ assumption 3.

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.	$ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \ \ \ \neg \neg q$	MT 3,5
7.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \neg \neg \rho$	¬¬ <i>i</i> 4
6.		MT 3,5
7.	q	¬¬e 6
8.		

1 truo

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

١.	uue	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.		¬¬ <i>i</i> 4
6.		MT 3,5
7.	q	¬¬ <i>e</i> 6
8.	$ \cdot $ r	MP 2.7

nramica

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.		¬¬ <i>i</i> 4
6.	$ \neg \neg q$	MT 3,5
7.	q	¬¬ <i>e</i> 6
8.	r	MP 2,7
9.	$n \rightarrow r$	→ <i>i</i> 4-8

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.	$ \cdot \cdot \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \cdot \cdot \neg \neg q$	MT 3,5
7.		¬¬ <i>e</i> 6
8.	r	MP 2,7
9.	ho ightarrow r	→ <i>i</i> 4-8
10.	$(\neg q ightarrow eg p) ightarrow (p ightarrow r)$	→ <i>i</i> 3-9

4/23

11.

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q ightarrow eg p	assumption
4.	P	assumption
5.	$ \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \cdot \cdot \neg \neg q$	MT 3,5
7.		¬¬ <i>e</i> 6
8.	r	MP 2,7
9.	$p \rightarrow r$	→ <i>i</i> 4-8
10.	$(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)$	→ <i>i</i> 3-9
11.	$(q ightarrow r) ightarrow [(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)]$	→ <i>i</i> 2-10

Transforming Proofs

- $ightharpoonup (q
 ightarrow r), (\neg q
 ightarrow \neg p), p \vdash r$
- ► Transform any proof $\varphi_1, \ldots, \varphi_n \vdash \psi$ to $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow \ldots (\varphi_n \rightarrow \psi) \ldots))$ by adding n lines of the rule $\rightarrow i$

$$\begin{array}{ccc} \blacktriangleright & p \to (q \to r) \vdash (p \land q) \to r \\ & 1. & p \to (q \to r) & \mathsf{premise} \\ & 2. & \end{array}$$

$$\begin{array}{c|cccc} \blacktriangleright & p \rightarrow (q \rightarrow r) \vdash (p \land q) \rightarrow r \\ \hline & 1. & p \rightarrow (q \rightarrow r) & \text{premise} \\ \hline & 2. & p \land q & \text{assumption} \\ \hline & 3. & p & \land e_1 \ 2 \\ \hline & 4. & q & \land e_2 \ 2 \\ \hline & 5. & q \rightarrow r & \text{MP 1,3} \\ \hline & 6. & \end{array}$$

$$\begin{array}{c|cccc} \blacktriangleright & p \rightarrow (q \rightarrow r) \vdash (p \land q) \rightarrow r \\ & 1. & p \rightarrow (q \rightarrow r) & \text{premise} \\ & 2. & p \land q & \text{assumption} \\ & 3. & p & \land e_1 \ 2 \\ & 4. & q & \land e_2 \ 2 \\ & 5. & q \rightarrow r & \text{MP 1,3} \\ & 6. & r & \text{MP 4,5} \\ & 7. & \end{array}$$

The or introduction rule $\vee i_1$

$$\frac{\varphi}{\varphi\vee\psi}$$

The or introduction rule $\vee i_2$

$$\frac{\psi}{\varphi \vee \psi}$$

The or elimination rule $\vee e$

$$\frac{\varphi \vee \psi \qquad \varphi \vdash \chi \qquad \psi \vdash \chi}{\chi}$$

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

- 1. $q \rightarrow r$
- 2

premise

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
^		

3.

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.	p∨r	∨ <i>i</i> ₁ 3
5.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

	q o r	premise
2.	$p \lor q$	assumption
3.	p	assumption
ŀ.	p∨r	∨ <i>i</i> ₁ 3
5.	q	assumption
3 .		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	p∨r	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	<i>p</i> ∨r	∨ <i>i</i> ₂ 6

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	p∨q	assumption
3.	р	assumption
4.	p∨r	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7

Or Elimination Example

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	$p \lor r$	∨ <i>i</i> ₂ 6
8.	$p \lor r$	∨ <i>e</i> 2, 3-4, 5-7
9.		

Or Elimination Example

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	<i>p</i> ∨ <i>r</i>	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7
9	$(p \lor q) \to (p \lor r)$	→ <i>i</i> 2-8

►
$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

1. $(p \lor q) \lor r$ premise

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

- 1. $(p \lor q) \lor r$ premise
- 2. $p \lor q$ assumption 3.

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

- 1. $(p \lor q) \lor r$ premise
- 2. $p \lor q$ assumption assumption
 - B. p assumption
 B.

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor (q \lor r)$	√ <i>i</i> ₁ 3
5.	q	assumption
6.	$q \vee r$	∨ <i>i</i> ₁ 5
7.		

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

 $\blacktriangleright (p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.	$p \lor (q \lor r)$	√ <i>i</i> ₁ 3
5.	q	assumption
6.	$ q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	assumption
3.	p	assumption
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	$q \vee r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	assumption
١0.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	$q \vee r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	assumption
0.	$q \vee r$	√ <i>i</i> ₂ 9
1.		

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	$ q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	assumption
10.	$q \lor r$	√ <i>i</i> ₂ 9
11.	$p \lor (q \lor r)$	√ <i>i</i> ₂ 10

$$(p \lor q) \lor r \vdash p \lor (q \lor r)$$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	assumption
3.	р	assumption
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	assumption
6.	$ q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	assumption
0.	$q \vee r$	√ <i>i</i> ₂ 9
1.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 10
2.	$p \lor (q \lor r)$	∨ <i>e</i> 1, 2-8, 9-11

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

1. true

premise

2.

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.		

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.	q	assumption

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

	true	premise
2.	р	assumption
3.	q	assumption
ŀ.	p	copy 2

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.	q	assumption
4.	p	copy 2
5.	$oldsymbol{q} ightarrow oldsymbol{p}$	<i>→ i</i> 3-4

6.

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.	q	assumption
4.	р	copy 2
5.	q o p	<i>→ i</i> 3-4
6.	$a \rightarrow (a \rightarrow b)$	→ <i>i</i> 2-5

▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.

- ▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.
- ▶ How about introducing and eliminating single negations?

- We have seen ¬¬e and ¬¬i, the elimination and introduction of double negation.
- How about introducing and eliminating single negations?
- ▶ We use the notion of contradictions, an expression of the form $\varphi \land \neg \varphi$, where φ is any propositional logic formula.

- ▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.
- How about introducing and eliminating single negations?
- ▶ We use the notion of contradictions, an expression of the form $\varphi \land \neg \varphi$, where φ is any propositional logic formula.
- ▶ Any two contradictions are equivalent : $p \land \neg p$ is equivalent to $\neg r \land r$.

- ▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.
- How about introducing and eliminating single negations?
- ▶ We use the notion of contradictions, an expression of the form $\varphi \land \neg \varphi$, where φ is any propositional logic formula.
- ▶ Any two contradictions are equivalent : $p \land \neg p$ is equivalent to $\neg r \land r$.
- $ightharpoonup \perp \to \varphi$ for any formula φ .

Rules with \bot

The \perp elimination rule $\perp e$

$$\frac{\perp}{\psi}$$

The \perp introduction rule $\perp i$

$$\frac{\varphi \qquad \neg \varphi}{\bot}$$

- 1. $\neg p \lor q$ premise
- 2.

- 1. $\neg p \lor q$ premise
- 2. $\neg p$ premise
- 3.

2. $\neg p$ premise

3. 4. p assumption

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

1.	$\neg p \lor q$	premise
2.	$\neg p$	premise
3.	р	assumption
4.		<i>⊥i</i> 2,3
5.	q	⊥ <i>e</i> 4
6.	p o q	→ <i>i</i> 3-5
7.	q	premise
8.	р	assumption
9.	q	copy 7
0.	p o q	<i>→ i</i> 8-9
1.	$oldsymbol{ ho} ightarrow oldsymbol{q}$	∨ <i>e</i> 1, 2-6, 7-10

Introducing Negations

- In the course of a proof, if you assume φ (by opening a box) and obtain \bot in the box, then we conclude $\neg \varphi$
- ▶ This rule is denoted $\neg i$ and is read as \neg introduction.

- 1. $p \rightarrow \neg p$ premise
- 2.

An Example

1.	p ightarrow eg p	premise
----	--------------------	---------

2. p assumption

3.

An Example

1.	p ightarrow eg p	premise
2.	р	assumption
3.	eg p	MP 1,2
4.		

An Example

1.	$oldsymbol{ ho} ightarrow eg eta$	premise
2.	р	assumption
3.	$\neg p$	MP 1,2
4.		<i>⊥i</i> 2,3
5.	$\neg p$	¬i 2-4

Natural Deduction: Summary

▶ Given a sequent $\varphi \vdash \psi$, start writing all the premises on the top (think of φ as a conjunction of several formulae)

Natural Deduction : Summary

- ▶ Given a sequent $\varphi \vdash \psi$, start writing all the premises on the top (think of φ as a conjunction of several formulae)
- ▶ If ψ has no \rightarrow in it, then use the premises, and the rules of natural deduction and arrive at ψ , or

Natural Deduction : Summary

- ▶ Given a sequent $\varphi \vdash \psi$, start writing all the premises on the top (think of φ as a conjunction of several formulae)
- ▶ If ψ has no \rightarrow in it, then use the premises, and the rules of natural deduction and arrive at ψ , or
- ▶ Assume (opening a box) $\neg \psi$, then obtain using the premises \bot . Infer henceforth that ψ holds.

Natural Deduction : Summary

- ▶ Given a sequent $\varphi \vdash \psi$, start writing all the premises on the top (think of φ as a conjunction of several formulae)
- ▶ If ψ has no \rightarrow in it, then use the premises, and the rules of natural deduction and arrive at ψ , or
- ▶ Assume (opening a box) $\neg \psi$, then obtain using the premises \bot . Infer henceforth that ψ holds.
- ▶ If ψ is of the form $\eta \to \kappa$, then open a box assuming η , use the proof rules, as well as the premises and obtain κ .

Natural Deduction: Summary

- ▶ Given a sequent $\varphi \vdash \psi$, start writing all the premises on the top (think of φ as a conjunction of several formulae)
- ▶ If ψ has no \rightarrow in it, then use the premises, and the rules of natural deduction and arrive at ψ , or
- ▶ Assume (opening a box) $\neg \psi$, then obtain using the premises \bot . Infer henceforth that ψ holds.
- ▶ If ψ is of the form $\eta \to \kappa$, then open a box assuming η , use the proof rules, as well as the premises and obtain κ .
- ▶ If φ is a disjunction of the form $\psi_1 \vee \psi_2$, then show that $\psi_1 \vdash \psi$ and $\psi_2 \vdash \psi$

The Proofs So Far

➤ So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached

The Proofs So Far

- So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached
- ▶ Intuitively, $p \rightarrow q \vdash \neg p \lor q$ makes sense because you think semantically. However, we never used any semantics so far.

The Proofs So Far

- ➤ So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached
- ▶ Intuitively, $p \rightarrow q \vdash \neg p \lor q$ makes sense because you think semantically. However, we never used any semantics so far.
- Now we show that whatever can be proved makes sense semantically too.

▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators $\lor, \land, \neg, \rightarrow$ to determine truth values of complex formulae.

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
- ▶ Two formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
- ▶ Two formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$
- ▶ Two formulae φ and ψ are semantically equivalent iff $\varphi \models \psi$ and $\psi \models \varphi$

Soundness of Propositional Logic

$$\varphi_1, \ldots, \varphi_n \vdash \psi \Rightarrow \varphi_1, \ldots, \varphi_n \models \psi$$

Whenever ψ can be proved from $\varphi_1, \dots, \varphi_n$, then ψ evaluates to true whenever $\varphi_1, \dots, \varphi_n$ evaluate to true

▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.
- ► Consider now a proof with *k* lines.

▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ▶ ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$
- ▶ By inductive hypothesis, we have $\varphi_1, \dots, \varphi_n \models \psi_1$ and $\varphi_1, \dots, \varphi_n \models \psi_2$. By semantics, we have $\varphi_1, \dots, \varphi_n \models \psi_1 \land \psi_2$.

▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. By semantics, this is same as $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. By semantics, this is same as $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$
- ▶ The equivalence of $\varphi_1, \ldots, \varphi_n \vdash \psi_1 \rightarrow \psi_2$ and $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$ gives the proof.