

Power Core® M800-50A Elektroband NO / NGO electrical Steel

Anwendungsgebiete Application range

Die nicht kornorientierte Elektrobandsorte M800-50A der ThyssenKrupp Steel AG ist Ideal geeignet für hocheffiziente und energiesparende Anwendungen in Maschinen mittlerer Größe, Kleinmaschinen, Vorschaltgeräten, Elektrogroßmagneten und magnetische Abschirmungen.

The non grain oriented electrical steel grade M800-50A of the ThyssenKrupp Steel AG is suitable for highly energy efficient utilisations and economical applications as in medium sized electrical machines, small motors, ballasts, large electromagnets and electromagnetic shielding.

Magnetische Eigenschaften Magnetic properties

	Garantiewerte nach DIN EN 10106 Guaranteed values according to DIN EN 10106	Sortentypische Mittelwerte ThyssenKrupp Steel AG Typical mean values ThyssenKrupp Steel AG
Ummagnetisierungsverlus Core loss at 50Hz	st bei 50Hz	
1,0* T	3,60 W/kg	2,55 W/kg
1,5 T	8,00 W/kg	5,41 W/kg
Magnetische Polarisation Magnetic polarization at	bei	
2500 A/m	1,60 T	1,64 T
5000 A/m	1,70 T	1,72 T
10000 A/m	1,78 T	1,83 T

^{*}Die Größe des Ummagnetisierungsverlustes bei 1,0 T ist ein Anhaltswert und dient zur Information

^{*}The core loss value at 1.0 T is a reference value and is for information purposes only

Liefermöglichkeiten *Product range*

Die Sorte M800-50A kann in Bandbreiten von 20 mm bis 1250 mm geliefert werden. Die Lieferung erfolgt im schlussgeglühten Zustand nach DIN EN 10106.

Für diese Sorte sind folgende Isolationsarten verfügbar:

The grade M800-50A is available from 20 mm up to 1250 mm width. The material is fully finished according DIN EN 10106.

For this grade the following insulations are available:

Isolationsarten Insulation types						
IEC 60404-1-1/04	ThyssenKrupp Steel AG					
EC - 3	Stabolit 10					
	Stabolit 20					
EC - 5	Stabolit 30					
	Stabolit 60					
EC - 6	Stabolit 40					
Backlack *	Stabolit 70					
200.11401	Kombi-Isolierung Combined-Insulation					

^{*} nicht im IEC geführt

Genauere Angaben zu den Isolationen entnehmen Sie bitte dem Isolationsdatenblatt oder unserem Produktkatalog.

Additional information can be found in the insulating data sheets or our product brochure.

^{*} not conducted in IEC

Mechanische und technologische Eigenschaften Mechanical and technological properties

Festigkeit in Walzrichtung Strength in rolling direction	Sortentypische Mittelwerte* Typical mean values*
Streckgrenze Re Yield strength	315 N/mm²
Zugfestigkeit Rm Tensile strength	428 N/mm²
Bruchdehnung in WR in % Elongation in %	33
Mikrohärte HV5 Hardness HV5	138

^{*} nur zur Information

Dickentoleranzen Thickness tolerances

Dickentoleranzen Thickness tolerances	
Max. Abweichung von der Nenndicke Max. deviation from nominal thickness	± 6 %
Max. Dickenunterschied parallel zur Walzrichtung auf einer Messlänge von 2 m Max. thickness variation parallel to rolling direction within one sheet or strip with a length of 2 m	4 %
Max. Dickenunterschied senkrecht zur Walzrichtung gemessen mindestens 30 mm vom Rand für Breiten > 150 mm* Max. variation of thickness transverse to rolling direction measured at least 30 mm from the edge with a width > 150 mm*	0,02 mm

^{*} Für Schmalband (< 150 mm) dürfen bei der Anfrage und Bestellung andere Vereinbarungen getroffen werden * For narrow strip (< 150 mm), other agreements may be made at the time of enquiry and order

Status: Februar 2009

^{*}only for your information

PS vs. J Spezifischer Ummagnetisierungsverlust über magnetische Polarisation Specific core loss vs. magnetic polarisation

J vs. H
Magnetische Polarisation über magnetische Feldstärke
Magnetic polarisation vs. magnetic field strength

ThyssenKrupp Steel Europe

Frequenzabhängige Kennwerte bei mittleren Frequenzen Frequency dependent properties at middle frequencies

				f = 50Hz				
J T		<i>H</i> A/m		μ_a		<i>P_s</i> W/kg		\mathcal{S}_{s} VA/kg
	0°	90°	0°/90°	0°/90°	0°	90°	0°/90°	0°/90°
0,5	98	165	130	3058	0,79	0,92	0,86	1,38
0,6	103	183	141	3381	1,07	1,22	1,16	1,79
0,7	108	203	153	3637	1,37	1,56	1,47	2,23
0,8	113	224	166	3835	1,69	1,92	1,82	2,73
0,9	118	249	181	3967	2,05	2,31	2,20	3,30
1,0	124	278	198	4016	2,45	2,73	2,60	3,93
1,1	132	314	221	3967	2,89	3,20	3,06	4,68
1,2	144	362	252	3791	3,39	3,70	3,57	5,59
1,3	177	434	304	3406	3,96	4,26	4,14	6,82
1,4	255	572	409	2726	4,60	4,90	4,79	8,73
1,5	465	921	680	1757	5,33	5,61	5,52	12,99
1,6	1139	2028	1540	828	6,12	6,47	6,37	27,08
1,7	3032	4471	3789	358	6,91	7,15	7,08	70,17
1,8	6612	8858	7752	186	7,50	7,67	7,65	159,81
1,9	12195	15032	13730	111	8,33		8,12	311,07

		f = 100Hz			f = 200Hz				
J	Н	μ_a	Ps	Ss	J	Н	μ_a	Ps	Ss
Т	A/m 0°/90°	0°/90°	W/kg 0°/90°	VA/kg 0°/90°	T	A/m 0°/90°	0°/90°	W/kg 0°/90°	VA/kg 0°/90°
0,5	135	2942	1,93	2,90	0,5	148	2688	4,63	6,38
0,6	148	3232	2,62	3,79	0,6	164	2906	6,37	8,48
0,7	161	3463	3,38	4,80	0,7	182	3063	8,35	10,87
0,8	175	3632	4,22	5,91	0,8	201	3166	10,59	13,63
0,9	191	3747	5,15	7,17	0,9	223	3219	13,20	16,89
1,0	209	3803	6,19	8,62	1,0	246	3239	16,15	20,65
1,1	230	3808	7,34	10,30	1,1	271	3236	19,41	24,90
1,2	257	3720	8,65	12,32	1,2	298	3211	23,08	29,83
1,3	306	3381	10,11	14,97	1,3	337	3072	27,24	35,78
1,4	410	2718	11,74	18,96	1,4	415	2684	32,42	45,22
1,5	686	1742	13,56	27,52	1,5	695	1717	37,56	62,64
1,6					1,6				
1,7					1,7				
1,8					1,8				
1,9					1,9				

ThyssenKrupp Steel Europe

Frequenzabhängige Kennwerte bei hohen Frequenzen Frequency dependent properties at high frequencies

f = 400Hz					f = 500Hz				
J T	H A/m 0°/90°	μ _a 0°/90°	<i>P_s</i> W/kg 0°/90°	S _s VA/kg 0°/90°	J T	H A/m 0°/90°	μ _a 0°/90°	<i>P_s</i> W/kg 0°/90°	S _s VA/kg 0°/90°
0,2	111	1440	2,20	3,72	0,2	113	1410	2,95	4,74
0,3	135	1772	4,82	6,92	0,3	139	1719	6,42	8,89
0,4	156	2040	8,07	10,69	0,4	163	1954	10,80	13,89
0,5	179	2219	12,03	15,22	0,5	190	2096	16,19	20,00
0,6	205	2326	16,77	20,66	0,6	221	2165	22,75	27,47
0,7	235	2374	22,44	27,22	0,7	256	2179	30,77	36,68
0,8	269	2369	29,29	35,26	0,8	296	2148	40,37	47,87
0,9	306	2341	37,08	44,47	0,9	341	2100	51,64	61,09
1,0	346	2302	46,04	55,19	1,0	389	2048	64,44	76,23
1,1	388	2255	56,39	67,73	1,1	440	1989	79,57	94,24
1,2	434	2200	68,10	82,15	1,2	495	1930	96,41	114,69
1,3	484	2140	81,30	98,96	1,3	554	1867	115,93	139,03
1,4	554	2012	96,61	120,38	1,4	621	1795	138,23	168,88
1,5	675	1769	112,71	158,07	1,5	691	1730	161,62	218,40
1,6					1,6				

	1	= 1000Hz	Z			1	f = 2000H	Z	
J	H A/m 0°/90°	μ _a 0°/90°	<i>P_s</i> W/kg 0°/90°	<i>S_s</i> VA/kg 0°/90°	J T	H A/m 0°/90°	μ _a 0°/90°	<i>P_s</i> W/kg 0°/90°	<i>S_s</i> VA/kg 0°/90°
0,2	133	1197	8,19	11,17	0,2	166	481	23,02	28,12
0,3	166	1435	17,09	21,24	0,3	218	731	47,59	55,35
0,4	205	1555	29,04	34,54	0,4	286	834	82,30	93,93
0,5	251	1583	44,44	51,84	0,5				
0,6	306	1560	63,82	73,80	0,6				
0,7	370	1506	88,59	102,10	0,7				
0,8	443	1439	119,12	137,01	0,8				
0,9	523	1371	155,69	179,25	0,9				
1,0					1,0				
1,1					1,1				
1,2					1,2				
1,3					1,3				
1,4					1,4				
1,5					1,5				
1,6					1,6				

Erläuterungen zu den Datenblättern

Comments on Data Sheets / Commentaires pour les fiches techniques / Aclaraciónes a las hojas de datos

f	=	Frequenz / Frequency / Fréquence / Frecuencia
J	=	Magnetische Polarisation (Scheitelwert) / Magnetic Polarization (Peak Value)/ Polarisation magnétique (valeur de crête) / Polarización magnética (valor de cresta)
Н	=	Magnetische Feldstärke (Scheitelwert) / Magnetic Field Strength (Peak Value) / Champ magnétique (valeur de crête) / Intensidad de campo magnético (valor de cresta)
P_s	=	Spezifischer Ummagnetisierungsverlust / Specific Total Loss /Pertes totales spécifiques/ Pérdidas totales específicas
\mathcal{S}_{s}	=	Spezifische Scheinleistung / Specific Apparent Power / Puissance apparente spécifique/ Potencia aparente especifica
T	=	Anisotropiefaktor / Anisotropy Factor / Facteur d' anisotropie / Factor anisotrópico
P_h	=	Hystereseverlust / Hysteresis Loss / Pertes par hystérésis / Pérdidas por histéresis
P_e	=	Wirbelstromverlust / Eddy Current Loss / Pertes par courants de Foucault / Pérdidas por corrientes parásitas
H_c	=	Koerzitivfeldstärke / Coercive Field Strength / Champ coercitif / Intensidad de campo coercitivo
B_r	=	Remanente magnetische Polarisation / Remanent Magnetic Polarisation / Polarisation magnétique rémanente / Polarización magnética remanente
μ_a	=	Amplitudenpermeabilität / Amplitude Permeability / Perméabilité d'amplitude / Permeabilidad de amplitud
0°, 90° 0°/90°	=	Winkel zur Walzrichtung / Angle to Rolling Direction / Angle par rapport au sens du laminage / Ángulo relativo al sentido de laminación

Status: Februar 2009

Ihre Ansprechpartner Contact

Christine Stange

Tel.: +49 (0)203 52-24891 Fax: +49 (0)203 52-25459

E-Mail: christine.stange@thyssenkrupp.com

Taner Keser

Tel.: +49 (0)203 52-25539 Fax: +49 (0)203 52-25459

E-Mail: taner.keser@thyssenkrupp.com

ThyssenKrupp Steel AG

Kaiser-Wilhelm-Straße 100, 47166 Duisburg Postal address: 47161 Duisburg, Germany

Phone: +49 (0) 203 52-0, Fax: +49 (0) 203 52-25102

E-Mail: info.steel@thyssenkrupp.com

www.thyssenkrupp-steel.com

Allgemeiner Hinweis:

Angaben über die Beschaffenheit oder Verwendbarkeit von Materialien bzw. Erzeugnissen dienen der Beschreibung. Zusagen in Bezug auf das Vorhandensein bestimmter Eigenschaften oder einen bestimmten Verwendungszweck bedürfen stets besonderer schriftlicher Vereinbarung

Technische Änderungen vorbehalten. Nachdruck, auch auszugsweise, nur mit Genehmigung der ThyssenKrupp Steel AG.

General note:

Indications on the condition or use of materials or products shall only be of a descriptive nature. Any warranties with regard to the certain characteristics or a certain purpose of use shall always be subject to special written agreement. Subject to technical modifications. Any reproduction, even in extracts, shall be subject to the permission of ThyssenKrupp Steel AG.

NO Elektroband/NGO Electrical Steel Status: Februar 2009 9 / 9