CS 6068 Parallel Computing Fall 2014 Lecture 2 – Sept 8 Communication Patterns

Prof. Fred Annexstein @proffreda fred.annexstein@uc.edu

Office Hours: 11-12pm MW or by appointment

Tel: 513-556-1807

Meeting: Mondays 6:00-8:50PM Baldwin 645

Lecture 2: Plan

- Review Programming Model
- Very Common Communication Patterns
 Map, Scatter, Gather, Stencil
- Work and Step Complexity Analysis
 Watch for falling trees and logs....
- Basic Parallel Operations and Algorithms
 Reduce, Scan, Histogram
- Expressive Language Descriptions of Algorithm

PRAM and Recursion

Review Programming Model

GPU/CUDA Model:

- Arrays of lightweight parallel thread deployed by invoking a kernel function
- kernel calls specify size blockDim and gridDim
- threadIdx and blockIdx are used for indexing of threads
- Memory management, Global memory, device and host arrays and faster shared memory

The Map Operator

- A basic function on arrays that takes another function as argument
- map applies function arg as operation on each array element
- Built natively into python and other functional PLs
 >> map(add1, [1, 2, 3])

[2, 3, 4]

 In CUDA a map is code that assigns each thread in an array the same task on its own local memory

Scatter and Gather Communication Operations

 Scatter is an data communication operation that moves or permutes data based on an array of location addresses

 Gather is a operation that specifies that each thread does a computation using data from multiple locations

Stencil Communication Operation

- Given a fixed sized stencil window to cover and centered on every array element
- Applications often use small 2-D stencil applied to large 2D image array.
- Common class of applications related to convolution filtering

HW#2 Gaussian Blurring as Map Application

Gaussian blurring is defined as exponentially weighted averaging, typically using square stencil at every pixel.

In HW#2 you will write a kernel that applies a Gaussian filter that provides a weighted averaging of each color channel. One kernel call per color. Also allocate memory and write a kernel to separate colors. Set appropriate grid and block sizes.

Work and Step Complexity

 Work complexity is defined as the total number of operations executed by a computation (can assume only one processor).

• Step (or depth) complexity is defined as the longest chain of sequential dependencies in the computation (can assume infinite number of parallel processors).

Complexity Example

- Consider, for example, summing 16 numbers using a balanced binary tree.
- The work required by this computation is 15 operations (the 15 additions).
- The steps required is 4 operations since the longest chain of dependencies is the depth of the summation tree--the sums need to be calculated starting at the leaves and going down one level at a time.
- In general summing n numbers using a balanced tree pattern requires n-1 work and log n steps.

A Recursive Language Description using Python **def** qsort(list): **if** list == []: return [] else: pivot = list[0] lesser = [x for x in list[1:] if x < pivot])greater = [x for x in list[1:] if x >= pivot])return qsort(lesser) + [pivot] + qsort(greater)

[Exercise: write a python function for summing.]

Quicksort

- Quicksort written in this manner is not hard to parallelize.
- We can execute the two recursive calls in parallel
- And, all the pivot comparisons can be done in parallel.
- Complete analysis is done by considering the recursion tree using recurrence relations.
 (Come back to this later.)

The Reduce Operation

- sum_reduce(x) is a function that takes a list and returns the sum of the elements.
- Described as a simple recursive function and related to the binary tree reduction seen above.

```
def sum_reduce(x):
    if len(x)== 1:
        return
    else:
        sumleft = sum_reduce (x[0:len(x)/2] )
        sumright = sum_reduce (x[len(x)/2 +1:])
    return       sumleft + sumright
```

Work and Step Complexity of Reduce using Recurrence Relations

•
$$W(n) = 2 * W(n/2) + 1; W(1) = 0$$

•
$$S(n) = S(n/2) + 1$$
; $S(1) = 0$

Next: CUDA Coding Reduce

```
__global__ void global_reduce_kernel(float * d_out, float * d_in)
    int myId = threadIdx.x + blockDim.x * blockIdx.x;
   int tid = threadIdx.x;
   // do reduction in global mem
    for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1)
       if (tid < s)
           d_{in}[myId] += d_{in}[myId + s];
       __syncthreads(); // make sure all adds at one stage are done!
   // only thread 0 writes result for this block back to global mem
    if (tid == 0)
       d_out[blockIdx.x] = d_in[myId];
```

```
__global__ void shmem_reduce_kernel(float * d_out, const float * d_in)
   // sdata is allocated in the kernel call: 3rd arg to <<<b, t, shmem>>>
   extern __shared__ float sdata[];
   int myId = threadIdx.x + blockDim.x * blockIdx.x;
   int tid = threadIdx.x;
   // load shared mem from global mem
   sdata[tid] = d_in[myId];
   __syncthreads();
                            // make sure entire block is loaded!
   // do reduction in shared mem
   for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) ne stage are done
       if (tid < s)
   // o{ly thread 0 writes result for this block back labol mem
   if (tid sdata[tid] += sdata[tid + s];
       __syncthreads(); = sdd // make sure all adds at one stage are done!
```

The Scan Operation

- One of most important data parallel primitives
- Inclusive and Exclusive versions of running sum

1 2 3 4 5 6 7 8

Coding the Scan:

Iterative and Recursive versions

PRAM Algorithms of Hillis-Steele and Blelloch

Coding the Scan Operation: Recursive

```
def scan(add,x):
   if len(x)==1:
      return x
   else:
      firsthalf = scan(add, x[0:len(x)/2])
      secondhalf = scan(add, x[len(x)/2:])
      s = map(add(firsthalf[-1]), secondhalf)
      res = firsthalf + s
      return res
```

Hillis and Steele PRAM version

(PRAM is like CUDA Block with unlimited threads)

Hillis and Steele PRAM version

```
For i= 0 to log n steps:

thread x adds its current held value

// sum of 2^i previous //

to

value held by thread x - (2^i)

// thus doubling the length of sum//
```

Review the work and step complexity of this.....

Blelloch PRAM version


```
procedure down-sweep(A)
   a[n-1] \leftarrow 0
                                            % Set the identity
   for d from (\lg n) - 1 downto 0
     in parallel for i from 0 to n-1 by 2^{d+1}
       t \leftarrow a[i+2^d-1]
                                         % Save in temporary
       a[i+2^d-1] \leftarrow a[i+2^{d+1}-1] % Set left child
       a[i+2^{d+1}-1] \leftarrow t+a[i+2^{d+1}-1] % Set right child
        Step
                                 Vector in Memory
                                                                3 ]
                 3
                             7
                                                        6
up
                                                               25
                                 11
                                                         6
                                                                0 ]
                [ 3
                                    11
                                                  5
                                                         6
clear
down
                 3
                 0
                                                        16
```

Comparing PRAM Scan Algorithms

Hillis-SteeleWork = O(n log n) Steps = log n

BlellochWork = O(n)Steps = 2 log n

Work efficient versus step efficient – when to choose?

Histograms / Data Binning

Sequential algorithm

Loop through all data items

compute appropriate bin for each item increment bin value +1

Parallel algorithm

Each Parallel Design must deal with race conditions and performance bottlenecks.

Use atomics?

Use reduce or scan?

Local bins for each thread

Looking Ahead HW#3 Tone Mapping

Use of reduce, scan, and histogram
 To map pixel intensities via tone mapping.

Start with array of brightness values

Compute minimum and maximum (reduce)

Compute a histogram based on these values