PDU-5

Macierze

Wszystkie zadania rozwiązujemy bez używania pętli.

Zadanie 5.1 (MG).

Niech t będzie wektorem o n elementach będących liczbami całkowitymi ze zbioru $\{1,\ldots,k\}$. Napisz funkcję, która dokona kodowania elementów t_i (one-hot-encode). Funkcja powinna zwracać macierz zero-jedynkową R wymiaru $n \times k$ taką, że $r_{i,j} = 1$ wtedy i tylko wtedy gdy $t_i = j$. Taka reprezentacja jest przydatna np. w problemie klasyfikacji wieloetykietowej przy użyciu k klasyfikatorów.

Let t be vector of n integers in $\{1,\ldots,k\}$. Write a function to one-hot-encode each t_i . Return a 0-1 matrix R of size $n \times k$ such that $r_{i,j} = 1$ if and only if $t_i = j$. By the way, such a representation is useful when solving, e.g., a multiclass classification problem by means of k binary classifiers.

Zadanie 5.2 (MG).

Dokonaj przekształcenia softmax każdego wiersza macierzy $\mathbf{X} \in \mathbb{R}^{n \times k}$, tzn. przekształcenia postaci:

$$x_{i,j} \mapsto \frac{\exp(x_{i,j})}{\sum_{l=1}^k \exp(x_{i,l})}.$$

Następnie dokonaj odkodowania każdego wiersza (one-hot decode), tj. dla każdego wiersza należy znaleźć numer kolumny o wartości najbardziej zbliżonej do 1. Zwróć wektor n-elementowy.

Given an $n \times k$ matrix with elements in \mathbb{R} , apply the softmax function to each row, i.e., $x_{i,j} \mapsto$ $\frac{\exp(x_{i,j})}{\sum_{l=1}^k \exp(x_{i,l})}$. Then one-hot decode the values in each row, i.e., find the column number with the value most close to 1. Return a vector of size n.

Zadanie 5.3 (MG).

Niech dana będzie macierz $\mathbf{X} \in \mathbb{R}^{n \times d}$. Wyznacz przedział wielowymiarowy ograniczający wartości n punktów reprezentowanych jako X. Dokładniej, wyznacz i zwróć macierz $\mathbf{B} \in$ $\mathbb{R}^{2\times d}$ taką, że $b_{1,j} = \min_i x_{i,j}$ oraz $b_{2,j} = \max_i x_{i,j}$.

For a given $\mathbf{X} \in \mathbb{R}^{n \times d}$, determine the bounding hyperrectangle of the n points. Return a matrix $\mathbf{B} \in \mathbb{R}^{2 \times d}$ with $b_{1,j} = \min_i x_{i,j}$ and $b_{2,j} = \max_i x_{i,j}$.

Zadanie 5.4 (MG).

Niech macierz **X** wymiaru $n \times d$ reprezentuje n punktów w \mathbb{R}^d . Napisz funkcję, która wyznaczy i zwróci odległości miedzy punktami z X oraz (danym jako drugi argument funkcji) punktem $\mathbf{y} \in \mathbb{R}^d$. Funkcja powinna zwrócić wektor $\mathbf{d} \in \mathbb{R}^n$ taki, że $d_i = \|\mathbf{x}_{i,\cdot} - \mathbf{y}\|_2$.

Assume that an $n \times d$ matrix **X** represents n points in \mathbb{R}^d . Write a function that determines the pairwise distances between all the points in **X** and a given $\mathbf{y} \in \mathbb{R}^d$. Return a vector $\mathbf{d} \in \mathbb{R}^n$ with $d_i = \|\mathbf{x}_{i,\cdot} - \mathbf{y}\|_2.$

Zadanie 5.5 (MG; Dyskretna dwuwymiarowa zmienna losowa).

Dana jest macierz $P \geqslant 0$ rozmiaru $n \times m$ taka, że $\sum_{i=1}^n \sum_{j=1}^m p_{i,j} = 1$ oraz posortowane rosnąco wektory liczbowe x (n-elementowy) i y (m-elementowy). Trójka (x, y, P) opisuje rozkład prawdopodobieństwa pewnej dwuwymiarowej zmiennej losowej dyskretnej (X,Y), tak jak w poniższym podzadaniu.

W pewnej szkole rozkład prawdopodobieństwa uzyskania ocen z Filozofii Bytu i Wychowania Fizycznego przez tego samego studenta przedstawia się następująco.

Autor: Marek Gagolewski www.gagolewski.com Ostatnia aktualizacja: 23 marca 2020 r.

Aktualizacje: Anna Cena

PDU-5

		WF			
		2	3	4	5
FB	2	0	0,01	0,1	0,2
	3	0,01	0,05	0,03	0,1
	4	0,1	0,03	0,05	0,01
	5	0,2	0, 1	0,01	0

a) Zmienne losowe X i Y są niezależne wtedy i tylko wtedy, gdy dla każdego i, j zachodzi $p_{i,j} = (\sum_{k=1}^n p_{k,j})(\sum_{l=1}^m p_{i,l})$. Napisz funkcję **niezaleznosc()**, która sprawdza, czy zachodzi ta własność dla danych (x, y, P) (zwracamy wartość logiczną).

- b) Ponadto napisz funkcję podststat (), która dla (x, y, P) zwróci wektor liczbowy (z ustawionym atrybutem names – dowolne, lecz czytelne dla użytkownika etykiety) zawierający wartości podstawowych charakterystyk (X,Y):

 - Wartości oczekiwane: $\mathbb{E} X = \sum_{i=1}^n x_i \sum_{j=1}^m p_{i,j}, \mathbb{E} Y = \sum_{j=1}^m y_j \sum_{i=1}^n p_{i,j},$ Wariancje: Var $X = \mathbb{E} X^2 (\mathbb{E} X)^2$, gdzie $\mathbb{E} X^2 = \sum_{i=1}^n x_i^2 \sum_{j=1}^m p_{i,j}$ oraz Var $Y = \mathbb{E} Y^2 (\mathbb{E} Y)^2$, gdzie $\mathbb{E} X^2 = \sum_{j=1}^m y_j^2 \sum_{i=1}^n p_{i,j},$ Kowariancje: $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) \mathbb{E} X \mathbb{E} Y \operatorname{dla} \mathbb{E}(XY) = \sum_{i=1}^n \sum_{j=1}^m x_i y_j p_{i,j},$

 - Współczynnik korelacji: $\varrho(X,Y) = \text{Cov}(X,Y)/\sqrt{\text{Var }X\text{ Var }Y}$.

Zadanie 5.6 (MG; Średnia ruchoma).

Napisz funkcje movingavg(), która dla danego szeregu czasowego x o n elementach oraz nieparzystej liczby naturalnej k wyznaczy k-średnią ruchomą, k < n, tj. szereg czasowy (w_1,\ldots,w_{n-k+1}) , dla którego $w_i=\sum_{j=1}^k x_{i+j-1}/k$. Jednostki czasu dla wynikowego szeregu dobierz wedle uznania.

Wbudowany szereg czasowy UKgas zawiera dane na temat kwartalnej konsumpcji gazu w Zjednoczonym Królestwie. Użyj go do przetestowania zaimplementowanego algorytmu. Szereg możesz narysować, wywołując plot (UKgas).

Autor: Marek Gagolewski www.gagolewski.com Aktualizacje: Anna Cena