SEQUENCE LISTING

<110>	Agrinomics, LLC										
<120>	Generation of Plants with Improved Pathogen Resistance and Drought Tolerance										
<130>	AG03-071C										
<150> <151>	US 60/375,333 2002-04-24										
	PCT/US03/12981 2003-04-24										
<160>	18										
<170>	PatentIn version 3.2										
<210><211><212><212><213>	1 381 DNA Arabidopsis thaliana										
<400> atggcgt	1 tcaa actcaagaag ttcaatctca ccatggacgt ttagtcaaaa caagatgttc	60									
gagaggg	gcct tggcagttta cgacaaggac acacccgacc gatggcacaa tgtggcaaaa	120									
gctgtcg	ggag ggaaaactgt agaagaagtg aagcgccact atgacattct cgtcgaggat	180									
ctcatca	aaca togagactgg togtgtooot ttgoocaatt acaagacott ogaatotaac 2	240									
tcaagaa	agca tcaatgactt tgacacaagg tatataacta aatatctata tatgatgctc	300									
tcgatat	tatt ttgataatca ttctagtgat tttgagaaat tctctcaaaa agttcttgta	360									
agttata	attt ctttggttta a	381									
<210> <211> <212> <213>	2 126 PRT Arabidopsis thaliana										
<400>	2										
Met Ala 1	a Ser Asn Ser Arg Ser Ser Ile Ser Pro Trp Thr Phe Ser Gln 5 10 15										
Asn Lys	s Met Phe Glu Arg Ala Leu Ala Val Tyr Asp Lys Asp Thr Pro 20 25 30										

Asp Arg Trp His Asn Val Ala Lys Ala Val Gly Gly Lys Thr Val Glu 35 40 45

Glu Val Lys Arg His Tyr Asp Ile Leu Val Glu Asp Leu Ile Asn Ile 50 55 60

Glu Thr Gly Arg Val Pro Leu Pro Asn Tyr Lys Thr Phe Glu Ser Asn 65 70 75 80

Ser Arg Ser Ile Asn Asp Phe Asp Thr Arg Tyr Ile Thr Lys Tyr Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Tyr Met Met Leu Ser Ile Tyr Phe Asp Asn His Ser Ser Asp Phe Glu 100 105 110

Lys Phe Ser Gln Lys Val Leu Val Ser Tyr Ile Ser Leu Val 115 120 125

<210> 3

<211> 98

<212> PRT

<213> Brassica rapa

<400> 3

Met Ala Ser Ser Ser Met Ser Ser Ser Trp Thr Ser Lys Gln Asn Lys 1 5 10 15

Ile Phe Glu Arg Ala Leu Ala Val Tyr Asp Lys Asp Thr Pro Asp Arg 20 25 30

Trp Gln Asn Val Ala Lys Ala Val Gly Asn Lys Ser Ala Glu Glu Val
35 40 45

Lys Arg His Tyr Asp Ile Leu Val Glu Asp Leu Met Asn Ile Glu Gln 50 55 60

Asp Leu Val Pro Leu Pro Lys Tyr Lys Thr Val Asp Val Gly Asn Lys 65 70 75 80

Ser Arg Gly Ile Asn Gly Tyr Gly Leu Arg Leu Met Lys Asn Ile Glu 85 90 95

Val Gln

```
<210> 4
```

<211> 75

<212> PRT

<213> Vitis vinifera

<400> 4

Met Ala Ser Thr Ser Leu Lys Ser Ser Gly Ser Trp Thr Pro Lys Gln 10

Asn Lys Leu Phe Glu Lys Ala Leu Ala Leu Tyr Asp Arg Asp Thr Pro 25

Asp Arg Trp Gln Asn Val Ala Asn Ala Val Gly Gly Lys Ser Ala Glu 35

Glu Val Lys Gln His Tyr Glu Ile Leu Ile Arg Asp Leu Lys His Ile 50 55 60

Glu Ser Gly Arg Val Pro Ile Pro Asn Tyr Lys 70

<210> 5

<211> 97 <212> PRT

<213> Glycine max

<400> 5

Met Glu Ser Cys Ser Ile Ser Ala Ser Gly Ser Trp Ser Val Lys Asp 5 10 15

Asn Lys Ala Phe Glu Lys Ala Leu Ala Val Tyr Asp Lys Asp Thr Pro

Asp Arg Trp Tyr Asn Val Ala His Ala Val Gly Gly Lys Thr Pro Glu 40

Glu Val Lys Arg His Tyr Glu Leu Leu Val Gln Asp Val Lys His Ile 50 55

Glu Ser Gly Arg Val Pro Phe Pro Asn Tyr Lys Lys Thr Thr Ser Glu 65 70 75

Ser Thr Asp Gln Glu Glu Lys Arg Leu Arg Asn Leu Asn Leu 85 90

Gln

<210> 6 <211> 88 <212> PRT <213> Solanum tuberosum <400> 6 Met Ala Ser Ser Leu Gln Ser Ser Ser Trp Thr Pro Gln Gln Asn Lys Leu Phe Glu Arg Ala Leu Ala Gln Phe Asp Lys Asp Thr Pro Asp 20 25 Arg Trp Gln Asn Val Ala Arg Ala Val Gly Gly Lys Ser Ala Asp 40 Glu Val Lys Arg His Tyr Glu Ile Leu Ile Glu Asp Leu Lys Arg Ile 50 55 Glu Ser Gly Arg Val Pro Leu Pro Thr Tyr Thr His Glu Gln Gln Arg 65 70 75 Leu Leu Arg Tyr Met Asn Leu His 85 <210> 7 <211> 71 <212> PRT <213> Populus tremula <400> 7 Met Ser Ser Ser His Gln Thr Pro Arg Asn Ser Ser Ser Ser Trp Thr 5 10 15 Pro Arg Glu Asn Lys Leu Phe Glu Lys Ala Leu Ala Leu Phe Asp Lys 20 25 Asp Thr Pro Asp Arg Trp Lys Asn Val Ala Lys Ala Val Gly Gly Val

40

Lys Ser Ala Glu Glu Val Lys Arg His Tyr Glu Ile Leu Ile Glu Asp

Leu Lys His Ile Glu Pro Ala 65 70

<210> 8

<211> 88

<212> PRT

<213> Lycopersicon esculentum

<400> 8

Met Ser Ser Met Ser Ser Gln His Gly Ser Ser Gly Ser Trp Thr Ala 1 5 10 15

Lys Gln Asn Lys Ala Phe Glu Lys Ala Leu Ala Val Tyr Asp Lys Glu 20 25 30

Thr Arg Asp Arg Trp Ser Asn Val Ala Lys Ala Val Gly Gly Lys Thr 35 40 45

Ala Glu Glu Val Lys Arg His Tyr Glu Ile Leu Leu Arg Asp Val Phe 50 55 60

Phe Ile Asp Asn Gly Met Val Pro Phe Pro Lys Tyr Lys Thr Thr Gly 65 70 75 80

Gly Ser His Asn Ser Thr Ser Asp 85

<210> 9

<211> 126

<212> PRT

<213> Oryza sativa

<400> 9

Met Ala Ser Ala Ala Gly Ser Lys Gln Gln Gln Ala Met Met Ser Leu 1 5 10 15

Pro Ser Ser Arg Gly Gly Gly Gly Gly Trp Thr Gln Arg Gln Asn 20 25 30

Lys Gln Phe Glu Cys Ala Leu Ala Val Tyr Asp Lys Glu Thr Pro Asp 35 40 45

Arg Trp His Asn Ile Ala Arg Tyr Met Gly Gly Ala Lys Ser Ala Asp

50 55 60

Glu Val Arg Arg His Phe Asp His Leu Val Glu Asp Val Ser Arg Ile 65 70 75 80

Arg Gly Ala Asp Asp Gly Asn Arg Leu Leu Thr Val Phe His Leu Ser 100 105 110

Ser Val Pro Arg Thr Arg Asn Ala Asn His Lys Phe Asn Thr 115 120 125

<210> 10

<211> 236

<212> PRT

<213> Oryza sativa

<400> 10

Met Ala Gln Gln Ala Arg Ala Gln Trp Pro Gln Lys Gln Asn Lys Leu 1 5 10 15

Phe Glu Gln Ala Leu Ala Val Tyr Asp Lys Glu Thr Pro Asp Arg Trp
20 25 30

His Asn Ile Ala Arg Ala Val Gly Gly Gly Lys Ser Ala Glu Asp Val 35 40 45

Lys Arg Tyr Tyr Glu Met Leu Glu Glu Asp Ile Lys His Ile Glu Ser 50 55 60

Gly Lys Val Pro Phe Pro Ala Tyr Arg Cys Pro Ala Ala Ala Gly Tyr 65 70 75 80

Gln Ala Glu Ser Arg Pro Ser Thr Ala Ala Glu Pro Ser Arg Leu Pro 85 90 95

Leu Ser Asp Ser Gly Leu Ser Gly Ile Arg Pro Thr Gln Tyr Pro Pro 100 105 110

Asp Gly Glu Leu Ser Pro Pro Arg His Arg Leu Arg Arg Arg Gly Asn 115 120 125

Gln Pro Ile Pro Ser Tyr Lys Pro Ser Pro Ser Arg Glu Gly Ile Phe 130 135 140

Tyr Trp Glu Val Val Val Ala Ala Leu Lys Ser Arg Gly Thr Gly Ala 145 150 155 160

Thr Ser Thr Pro Trp Ile Arg Leu Leu Pro Gly Leu Thr Val Cys 165 170 175

Arg Leu Leu Gly Ser Ser Gly Cys Phe Asp Ala Trp Met Leu Ser Thr 180 185 190

Ala Arg Leu Met Val Val Asn Thr Tyr Trp Met Ser Tyr Leu Thr Arg 195 200 205

Ser Pro Glu Phe His Leu Asn Phe Pro His Ile Asn Leu Arg Lys Tyr 210 215 220

Glu Val Val Cys Val Gln Pro Gly Phe Met Gln Glu 225 230 235

<210> 11

<211> 92

<212> PRT

<213> Arabidopsis thaliana

<400> 11

Met Ala Ser Ser Ser Met Ser Ser Ser Ser Ser Trp Thr Ser Lys Gln
1 5 10 15

Asn Lys Met Phe Glu Arg Ala Leu Ala Val Tyr Asp Lys Asp Thr Pro 20 25 30

Asp Arg Trp Gln Asn Val Ala Lys Ala Val Gly Ser Lys Ser Ala Glu 35 40 45

Glu Val Lys Arg His Tyr Asp Ile Leu Val Glu Asp Leu Met Asn Ile 50 55 60

Glu Gln Asp Leu Val Pro Leu Pro Lys Tyr Lys Thr Val Asp Val Gly 65 70 75 80

Ser Lys Ser Arg Gly Ile Asp Asp Phe Asp Leu Arg

85 90

<210> 12

<211> 101

<212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Ala Ser Gly Ser Met Ser Ser Tyr Gly Ser Gly Ser Trp Thr Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Gln Asn Lys Ala Phe Glu Arg Ala Leu Ala Val Tyr Asp Gln Asp 20 25 30

Thr Pro Asp Arg Trp His Asn Val Ala Arg Ala Val Gly Gly Lys Thr 35 40 45

Pro Glu Glu Ala Lys Arg Gln Tyr Asp Leu Leu Val Arg Asp Ile Glu 50 60

Ser Ile Glu Asn Gly His Val Pro Phe Pro Asp Tyr Lys Thr Thr Thr 65 70 75 80

Gly Asn Ser Asn Arg Gly Arg Leu Arg Asp Glu Glu Lys Arg Met Arg 85 90 95

Ser Met Lys Leu Gln 100

<210> 13

<211> 97

<212> PRT

<213> Arabidopsis thaliana

<400> 13

Met Ala Ser Ser Ser Met Ser Ser Gln Ser Ser Gly Ser Trp Thr Ala 1 5 10 15

Lys Gln Asn Lys Ala Phe Glu Gln Ala Leu Ala Thr Tyr Asp Gln Asp
20 25 30

Thr Pro Asn Arg Trp Gln Asn Val Ala Lys Val Val Gly Gly Lys Thr 35 40 45

Thr Glu Glu Val Lys Arg His Tyr Glu Leu Leu Val Gln Asp Ile Asn 50 55 60

Ser Ile Glu Asn Gly His Val Pro Phe Pro Asn Tyr Arg Thr Ser Gly 65 70 75 80

Gly Cys Thr Asn Gly Arg Leu Ser Gln Glu Glu Lys Arg Tyr Val Leu 85 90 95

Ser

<210> 14

<211> 639

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Ala Ser Ser Ser Met Ser Ser Ser Ser Ser Trp Thr Ser Lys Gln 1 5 10 15

Asn Lys Met Phe Glu Arg Ala Leu Ala Val Tyr Asp Lys Asp Thr Pro 20 25 30

Asp Arg Trp Gln Asn Val Ala Lys Ala Val Gly Ser Lys Ser Ala Glu
35 40 45

Glu Val Lys Arg His Tyr Asp Ile Leu Val Glu Asp Leu Met Asn Ile 50 55 60

Glu Gln Asp Leu Val Asn Glu Glu Tyr Glu Asn Pro Val Lys Leu Leu 65 70 75 80

His Asp Val Lys Ile Ala Ile Cys Leu Arg Ile Gln Arg Asp Met Met 85 90 95

Ala Lys Ile Ser Val Ala Val Leu Leu Ser Val Met Leu Leu Val Ser 100 105 110

Ile Asn Ser Val Asp Ile Leu Ala Glu Glu Glu Pro Thr Val Gly Gln
115 120 125

Arg Val Asp Ser Ala Met Thr Ser Val Thr Asp Ala Phe Asn Glu His 130 135 140

Gly 145	Gly	Pro	Gln	Ala	Val 150	Asp	Thr	Val	Ser	Ser 155	Thr	Phe	Lys	Ser	Val 160
Tyr	Gly	Trp	Phe	Gly 165	Asp	Lys	Ala	Lys	Туг 170	Leu	Glu	Pro	Ile	Ser 175	Ser
Ser	Cys	Cys	Ser 180	Ser	Ser	Ser	Ser	Ser 185	Ser	Gly	Glu	Glu	Asn 190	Thr	Ala
Ala	Ala	Asn 195	Met	Thr	Glu	Met	Glu 200	Ala	Ala	Glu	Ala	Leu 205	Ala	Asp	Leu
Ala	Gln 210	Leu	Ala	Ile	Met	Arg 215	Glu	Gln	Val	Phe	Glu 220	Ser	Ala	Ala	Ser
Trp 225	Gly	Ser	Lys	Gly	Lys 230	Arg	Val	Arg	Lys	Arg 235	Val	Lys	Thr	Glu	Ser 240
Pro	Pro	Ser	Asp	Ser 245	Leu	Leu	Lys	Pro	Pro 250	Asp	Ser	Asp	Thr	Leu 255	Pro
Thr	Pro	Asp	Leu 260	Ala	Glu	Glu	Arg	Leu 265	Val	Lys	Glu	Glu	Glu 270	Glu	Glu
Glu	Glu	Val 275	Glu	Pro	Ile	Thr	Lys 280	Glu	Leu	Thr	Lys	Ala 285	Pro	Val	Lys
Ser	Glu 290	Ile	Asn	Gly	Glu	Thr 295	Pro	Lys	Pro	Ile	Leu 300	Ala	Ser	Thr	Leu
Ile 305	Arg	Cys	Ser	Arg	Ser 310	Asn	Gly	Cys	Gly	Arg 315	Ser	Arg	Gln	Asn	Leu 320
Ser	Glu	Ala	Glu	Arg 325	Glu	Glu	Arg	Arg	Ile 330	Arg	Arg	Ile	Leu	Ala 335	Asn
Arg	Glu	Ser	Ala 340	Arg	Gln	Thr	Ile	Arg 345	Arg	Arg	Gln	Ala	Met 350	Суз	Glu
Glu	Leu	Ser 355	Lys	Lys	Ala	Ala	Asp 360	Leu	Thr	Tyr	Glu	Asn 365	Glu	Asn	Leu

Arg Arg Glu 370	Lys Asp Tr	Ala Leu 375	Lys Glu	Phe Gln 380	Ser Leu	Glu Thr
Ile Asn Lys 385	His Leu Ly 39		Val Leu	Lys Ser 395	Val Lys	Pro Asp 400
Thr Lys Glu	Pro Glu Gl 405	ı Ser Pro	Lys Pro 410	Ser Gln	Val Glu	Met Ser 415
Thr Ser Ser	Thr Pro Ph 420	e Tyr Phe	Tyr Asn 425	Gln Asn	Pro Tyr 430	Gln Leu
Phe Cys Trp 435	Pro His Va	l Thr Gln 440		Asn Pro	Met Ile 445	Ser Pro
Leu Glu Phe 450	Pro Thr Se	r Gly Gly 455	Ala Ser	Ala Lys 460	Thr Ile	Thr Thr
Gln Glu His 465	Glu Asn Al 47	-	Asp Asn	Gly Gln 475	Lys Thr	His Phe 480
Tyr Val Val	Pro Cys Pr 485	o Trp Phe	Leu Pro 490	Pro Pro	Asp His	Ser Asn 495
Gly Val Pro	Phe Gly Le 500	ı Gln Asp	Thr Gln 505	Arg Gly	Thr Phe 510	Ser Asn
Gly His His 515	Ile Asp As	Ser Ser 520	_	Pro Met	Asp Val 525	Thr Glu
Thr Pro Arg 530	Ser His Le	Pro Thr 535	Arg Ile	Lys Glu 540	Glu Asp	Ser Gly
Ser Pro Glu 545	Thr Arg Pr 55	_	Asp Leu	Asn Glu 555	Ser Ala	Thr Glu 560
Val Leu Ser	Glu Gly Gl 565	y Asp Gly	Phe Pro 570	Val Thr	Gln Gln	Ala Tyr 575
Ser Leu Lys	His Glu As 580	o Val Ser	Glu Thr 585	Thr Asn	Gly Val 590	Thr Leu

Met Pro Pro Gly His His Val Leu Ile Ser Leu Pro Glu Lys Lys His 595 600 605

Gly Ser Leu Ala Ala Ala Glu Ala Arg Lys Arg Arg Lys Glu Leu Thr 610 620

Arg Leu Lys Asn Leu His Gly Arg Gln Cys Arg Met Gln Val Gly 625 635

<210> 15

<211> 90

<212> PRT

<213> Oryza sativa

<400> 15

Met Ala Ser Met Ser Val Ser Ser Ser Arg Ala Pro Gln Trp Thr Ala 1 5 10 15

Arg Gln Asn Glu Gln Phe Glu Arg Ala Leu Ala Val Tyr Asp Arg Asp
20 25 30

Thr Pro Glu Arg Trp His Asn Ile Ala Arg Ala Val Ala Gly Lys Ser 35 40 45

Ala Asp Glu Val Lys Leu Tyr Tyr Asp Leu Leu Val Glu Asp Val Lys 50 55 60

Arg Ile Glu Thr Gly Lys Val Pro Phe Pro Ala Tyr Arg Cys Pro Gln 65 70 75 80

Pro Ala Ile Ala Glu Asn Ser Gly Ile Trp 85 90

<210> 16

<211> 101

<212> PRT

<213> Oryza sativa

<400> 16

Met Ser Ser Ser Trp Thr Thr Lys Gln Asn Lys Val Phe Glu Arg Ala 1 5 10 15

Leu Ala Ile Tyr Asp Arg Asp Thr Pro Asp Arg Trp Gln Asn Val Ala 20 25 30

Arg Ala Val Gly Gly Lys Ser Val Asp Asp Val Lys Arg His Tyr 35 40 45

Glu Lys Leu Ile Lys Asp Val Asp Arg Ile Asp Ser Thr Gly Gly His 50 55 60

Gln Gly Ser His Tyr Asn Ser Ser Asn Ala Ser Ser Ser Ser Ser Ser 65 70 75 80

Ser Ser Ser Asn Ser Arg Gly Ser Ala Asn Glu Asp Gln Arg Arg Arg 85 90 95

Tyr His Asn Phe Gln 100

<210> 17

<211> 97

<212> PRT

<213> Lycopersicon esculentum

<220>

<221> misc_feature

<222> (93)..(93)

<223> Xaa can be any naturally occurring amino acid

<400> 17

Gln Lys Ile Ile Met Ser Ser Met Ser Ser Gln His Gly Ser Ser Gly 1 5 10 15

Ser Trp Thr Ala Lys Gln Asn Lys Ala Phe Glu Lys Ala Leu Ala Val $20 \\ 25 \\ 30$

Tyr Asp Lys Glu Thr Arg Asp Arg Trp Ser Asn Val Ala Lys Ala Val 35 40 45

Gly Gly Lys Thr Ala Glu Glu Val Lys Arg His Tyr Glu Ile Leu Leu 50 55 60

Arg Asp Val Phe Phe Ile Asp Asn Gly Met Val Pro Phe Pro Lys Tyr 65 70 75 80

Lys Thr Thr Gly Gly Ser His Asn Ser Thr Ser Asp Xaa His Tyr Phe 85 90 95

Tyr

<210> <211>	18 732						
<212>	DNA						
<213>	Sola	anum tuberos	sum				
<400>	18						
agtaato	ggca	tcaagctcac	ttcaatcttc	atcatggaca	ccgcagcaaa	acaagttatt	60
tgaaagg	ggca	ctagctcaat	tcgataagga	cacacctgac	cggtggcaga	atgtggcgcg	120
ggcggtt	gga	ggtggaaaat	ccgccgatga	agtaaagaga	cactatgaaa	tacttattga	180
ggatcto	cagg	cgcattgaat	ctggacgtgt	tcctcttcct	acttacaccc	atgaacaaca	240
aaggtat	tct	taatcattct	ctttaagtct	tttgtccgtt	attatttaaa	attacaacat	300
tcaaaag	gttc	tttcaaattc	aattggatgg	agtgaataaa	tatgatattt	tttgtttcaa	360
aggaata	agca	aagtatatat	actttgatct	tgaacatttt	gaaatgtgaa	atgagacggt	420
tccatac	ctta	aaccctactt	tactagtcta	tacttttgaa	tgagacagtt	acatatttct	480
aactttt	gtc	tatttgtaaa	acataagaaa	tattcttatc	ttttttagaa	ttcagttaat	540
attttct	ttt	caaccttttg	ttgtatttta	gtcgattcga	gtcatgcaaa	cagttcggat	600
atgaatg	gaaa	tttagaaatc	ttaaatttca	taaattaaca	aaacagacat	ggtgcggtgt	660
ttgaaag	gtta	ttgcatgtaa	ccctataccc	tattctaatt	aagagtcctt	aaatctttat	720
tagtato	cttt	tt					732