Feature Compensation Techniques for ASR on Band-Limited Speech

Author : Nicolás Morales, Doroteo Torre Toledano, John H. L. Hansen, Javier Garrido

Professor: 陳嘉平

Reporter: 吳國豪

Outline

Introduction

 Mathematical model of the effect of band-limiting distortions on MFCC features

Feature Compensation

Experiments

Introduction

- Band-limited speech: speech for which parts of the spectrum are completely lost
- Band-limited speech is a major cause for accuracy degradation of automatic speech recognition (ASR) systems particularly when acoustic models have been trained with data with a different spectral range.

Introduction

 In this paper, we present an extensive study of the problem of ASR of band-limited speech with full-bandwidth acoustic models.

Our focus is mainly on band-limited feature compensation.

 The effect of a convolutional distortion may be expressed for the power spectrum as

$$\left|Y_{t}(f)\right|^{2} = \left|H_{t}(f)\right|^{2} \cdot \left|X_{t}(f)\right|^{2}$$

where $Y_t(f)$ and $X_t(f)$ represent the spectra for the distorted and original signals, respectively, for a time frame, and $H_t(f)$ is the frequency response of the distortion.

• When the front-end employed is derived from a bank of filters, the following approximation is typically assumed for each filter. (j is the order of the filter, and f_j the center frequency of the filter)

$$\left|Y_{t}(f_{j})\right|^{2} \approx \left|H_{t}(f_{j})\right|^{2} \cdot \left|X_{t}(f_{j})\right|^{2} \Longrightarrow \left|Y_{t}(f_{j})\right|^{2} \approx h_{j,t} \cdot \left|X_{t}(f_{j})\right|^{2}$$

$$|Y_{t}(f_{j})|^{2} = h_{j,t} \cdot |X_{t}(f_{j})|^{2} + e_{j,t}, \text{ where } \begin{cases} h_{j,t} = 0, & if \ j \in F \\ h_{j,t} = 1, & if \ j \notin F \end{cases}$$

F represents the channels in the filterbank removed by the bandwidth-limitation

The general definition of MFCCs is

$$x_{i,t} = \sqrt{\frac{2}{N}} \sum_{j=1}^{N} \log(|X_{j,t}|^2) \cos\left(\frac{\pi i}{N}(j-0.5)\right)$$

where subindex *i* is the order of the MFCC coefficient, *t* represents a time frame, and *N* is the number of channels in the filterbank.

$$x_{i} = \sum_{j=1}^{N} C_{ij} \cdot \log(|X_{j}|^{2})$$

$$C_{ij} = \sqrt{\frac{2}{N}} \cdot \cos\left(\frac{\pi i}{N}(j - 0.5)\right)$$

MFCC features of band-limited speech are

$$y_i = \sum_{j=1}^{N} C_{ij} \cdot \left(\log(h_j \cdot |X_j|^2 + e_j) \right)$$

 The difference between full-bandwidth and band-limited MFCC vectors for a particular frame

$$x_i - y_i = \sum_{j=1}^{N} C_{ij} \cdot \left[\log(|X_j|^2) - \log(h_j \cdot |X_j|^2 + e_j \right]$$

 Now we decompose the sum over all filters in the filterbank into 2 terms corresponding to channels affected by the bandwidth restriction and intact channels, respectively

$$x_{i} - y_{i} = \sum_{j=1, j \notin F}^{N} C_{ij} \cdot \left[\log(|X_{j}|^{2}) - \log(h_{j} \cdot |X_{j}|^{2} + e_{j} \right] + \sum_{j=1, j \in F}^{N} C_{ij} \cdot \left[\log(|X_{j}|^{2}) - \log(h_{j} \cdot |X_{j}|^{2} + e_{j} \right]$$

We may then approximate full-bandwidth MFCCs as

$$x_i \approx y_i + \sum_{j=1, j \in F}^{N} C_{ij} \cdot \left[\log(\left|X_j\right|^2) - \log(e_j) \right]$$

• In practice, values of e_j are random and significantly smaller than the values of the original signal

$$x_i \approx y_i + \sum_{j=1, j \in F}^{N} C_{ij} \cdot \left[\log(|X_j|^2) \right]$$

- First, training data is divided into clusters.
- **Second**, for each cluster a set of corrector functions is trained.
- Third, full-bandwidth features are estimated from bandlimited data.

- **Partitioning** is initialized with a single cluster defined as a Gaussian distribution with mean $\mu_{0,0}$ and covariance $\Sigma_{0,0}$, computed for all training data.
- This initial cluster is divided into two by perturbing the mean vector by $\pm \eta$ times the vector of standard deviations, where η is a perturbation factor.
- Training data are reassigned to either cluster, and means and covariances are recalculated.

- Two methodologies are proposed depending on whether stereo data are available for training, or not.
- Training of Corrector Functions With Stereo Data:

When stereo data are available, it is possible to learn a mapping from limited-bandwidth to full-bandwidth data using linear least squares curve fitting techniques.

- Training of Corrector Functions With Nonstereo Data:
- In the most general case, the vector of means and matrix of covariance of a cluster in the full-bandwidth feature space are related to their limited-bandwidth counterparts as

$$\mu_{x,k} = \mu_{y,k} + r_k$$

$$\sum_{x,k} = \sum_{y,k} + R_k$$

 The probability of observation of a feature vector in the fullbandwidth space is

$$p(x) = \sum_{k=1}^{K} N(x; \mu_{x,k}, \sum_{x,k}) \cdot p(k)$$

Using an expectation-maximization (EM) strategy:

$$r_{k} = \frac{\sum_{t=1}^{T} p(k \mid x_{t}, \phi) \cdot x_{t}}{\sum_{t=1}^{T} p(k \mid x_{t}, \phi)} - \mu_{y,k} \qquad R_{k} = 0$$

Feature Compensation

 Thus, for the limited-bandwidth space the probability of observing a feature vector is

$$p(y) = \sum_{k=1}^{K} p(y | k) \cdot p(k) = \sum_{k=1}^{K} N(y; \mu_k, \sum_{k}) \cdot p(k)$$

 Assuming x and y jointly Gaussian within a cluster of data pairs k the conditional expectation of clean feature vectors given the distorted vectors and the cluster is

$$E\{x \mid y, k\} = \mu_{x,k} + \sum_{xy,k} (\sum_{y,k})^{-1} (y - \mu_{y,k})$$
$$= B_k y + b_k$$

We call B_k and b_k the compensation matrix and offset vector, respectively.

19/23

Feature Compensation

Estimation of undistorted features:

Using for example the minimum mean squared error (MMSE) criterion:

$$x^{MMSE} = E\{x \mid y\} = \sum_{k=1}^{K} p(k \mid y) \cdot E\{x \mid y, k\}$$
$$= \sum_{k=1}^{K} p(k \mid y) \cdot (B_k y + b_k)$$

further simplification, such as assuming $B_k = I$

Experiments

TIMIT Corpus

Four mode:

- No Compensation: Acoustic models trained with full-bandwidth data and tested with band-limited data.
- Model Adaptation: Full-bandwidth acoustic models adapted with data from the band-limited condition.
- Matched Models: Acoustic models trained and tested with bandlimited data.
- CMN: Models trained with CMN full-bandwidth data and tested with CMN limited-bandwidth data.

Mode	DISTORTION	%Corr	%Acc	DISTORTION	%Corr	%Acc
No Compensation	Full-Bandwidth	75.40	71.18			
CMN		75.71	71.61	1		3
No Compensation		64.32	58.30		41.13	32.67
Model Adaptation	LP6kHz	75.46	70.85	BP300-3400 Hz	70.63	64.90
Matched Models		75.45	71.03	DI 300-3400 IIZ	71.86	65.73
CMN		74.30	69.95		60.91	54.71
No Compensation	LP4kHz	55.93	44.67		30.98	21.23
Model Adaptation		73.57	68.64	STC-TIMIT	62.63	58.26
Matched Models		74.73	69.33		69.10	61.80
CMN		68.00	62.28		51.59	46.98
No Compensation		30.45	26.10	1	36.15	26.27
Model Adaptation	LP2kHz	63.48	57.96	NTIMIT	55.96	50.71
Matched Models		68.67	61.57		62.45	53.76
CMN		51.70	45.63		39.62	34.05

Mode	DISTORTION	%Corr	%Acc
No Compensation	Full-	75.40	71.18
CMN	Bandwidth	75.71	71.61
No Compensation		41.13	32.67
Model Adapt		70.63	64.90
Matched Models		71.86	65.73
CMN	BP300-	60.91	54.71
Feature Compensation	3400 Hz	70.62	64.79
CMN + Feature Comp.		70.12	64.31
M. Adapt + Feature Comp.		70.66	65.14
Matched M. + Feature Comp.		73.05	66.87
No Compensation		30.98	21.23
Model Adapt		62.63	58.26
Matched Models		69.10	61.80
CMN	STC-	51.59	46.98
Feature Compensation	TIMIT	64.67	58.79
CMN + Feature Comp.		64.80	58.66
M. Adapt + Feature Comp.		66.25	60.12
Matched M. + Feature Comp.		71.32	63.96