Tema 11 Práctica de SDD I

Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

Introducción

- 2 Representaciones gráficas de dinámica real
 - Órbitas
 - Diagrama de Verhulst
 - Diagrama de bifurcación

1

Introducción

Introducción

Sistemas dinámicos discretos reales

- $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$
- $x_{k+1} = f(x_k)$, con $x_k = x(t_k)$

Dinámica de SDD reales

- Órbitas
- Puntos fijos
- Dinámica de los puntos fijos: atractores, repulsores, neutros
- Puntos periódicos
- Diagrama de Verhulst
- Familias de funciones:
 - Puntos de bifurcación
 - Diagrama de bifurcación

Introducción

Sistemas dinámicos discretos reales

- $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$
- $x_{k+1} = f(x_k)$, con $x_k = x(t_k)$

Dinámica de SDD reales

- Órbitas
- Puntos fijos
- Dinámica de los puntos fijos: atractores, repulsores, neutros
- Puntos periódicos
- Diagrama de Verhulst
- Familias de funciones:
 - Puntos de bifurcación
 - Diagrama de bifurcación

2

Representaciones gráficas de dinámica real

Contenidos

- Introducción
- 2 Representaciones gráficas de dinámica real
 - Órbitas
 - Diagrama de Verhulst
 - Diagrama de bifurcación

Representaciones gráficas de dinámica real >> Órbitas

Orbita de una semilla x_0

$$\mathcal{O}(x_0) = \{x_0, f(x_0), f^2(x_0), \dots, f^n(x_0), \dots\}$$

¿Cuándo parar de calcular nuevos puntos?

Criterios de parada

- $d_{k+1} = |x_{k+1} x_k|$
- Tolerancia (t)
- Máximo número de iteraciones (maxiter)

Representaciones gráficas de dinámica real >> Órbitas

Figura: Diagrama de flujo de generación de órbitas

Código de la función

```
function y=f(x)
  y=x.^2;
end
```

Órbitas

```
function [iter, d, x] = orbita(f, x0, t, maxiter)
    iter=1;
    d=1;
   x=x0;
    while iter<maxiter && d(end)>t
     xk=feval(f,x(end));
      d=[d abs(xk-x(end))];
     x=[x xk];
      iter=iter+1;
    end
    plot(1:iter,x,'o-','Linewidth',1.5), grid on
end
```

Representaciones gráficas de dinámica real >> Órbitas

Ejemplo 1. Determinar la órbita del sistema dado por $f(x)=x^2$ para las semillas $x_0=\{0.1,0.25,0.33,0.5,0.87,1,2\}$. Se considerará que el método ha convergido cuando la diferencia entre iterados sea de 10^{-6} . El máximo número de iteraciones permitido es de 50. Representar, en cada caso, el número de iteración en el eje de abscisas y el valor del sistema en el de ordenadas.

- t=1e-6
- maxiter=50
- Para x₀ = 0.1:
 [iter,d,x]=orbita(f,.1,1e-6,50);
 plot(1:iter,x);

<i>x</i> ₀	0.1	0.25	0.33	0.5	0.87	1	2
x_n	o	О	О	О	О	1	∞
n	5	6	6	7	9	2	12

Contenidos

- Introducción
- 2 Representaciones gráficas de dinámica real
 - Órbitas
 - Diagrama de Verhulst
 - Diagrama de bifurcación

Diagramas de Verhulst

```
function [iter, xk]=Verhulst(f, x0, t, maxiter, rangox)
    % Representación y1=x, y2=f(x)
    y1=rangox; y2=feval(f,rangox);
    plot(rangox, y1, 'k', rangox, y2, 'b', 'Linewidth', 1.5);
    grid on
    % Generación órbita
    [iter,d,xk]=orbita(f,x0,t,maxiter);
    % Representación órbita
    xplot=repmat(xk,2,1); xplot=xplot(:);
    yplot=xplot(2:end); xplot(end)=[];
    hold on, plot(xplot, yplot, 'r', 'Linewidth', 1.5);
    axis([min(rangox) max(rangox) min(rangox) max(rangox)])
```

Representaciones gráficas de dinámica real >> Diagrama de Verhulst

Ejemplo 2. Representación del diagrama de Verhulst para el sistema determinado por $f(x)=x^2$ con semillas $x_0=\{-0.5,0.5,1.5\}$. Se considerará que el método ha convergido cuando la diferencia entre iterados sea de 10^{-6} . El máximo número de iteraciones permitido es de 50.

- t=1e-6, maxiter=50
- Para $x_0 = -0.5$: [iter,xk]=Verhulst(f,-.5,1e-6,50,linspace(-2,2));

Contenidos

- Introducción
- 2 Representaciones gráficas de dinámica real
 - Órbitas
 - Diagrama de Verhulst
 - Diagrama de bifurcación

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad 0 < x < 1, \quad \lambda > 0$$

- Puntos fijos: $x_1^* = 0$, $x_2^* = \frac{\lambda 1}{\lambda}$
- Puntos 2-periódicos:

$$x_1^*, \quad x_2^*, \quad x_1^P = \frac{\lambda + 1 + \lambda^2 \sqrt{(\lambda + 1)(\lambda + 3)}}{2\lambda}, \quad x_2^P = \frac{\lambda + 1 - \lambda^2 \sqrt{(\lambda + 1)(\lambda + 3)}}{2\lambda}$$

Estabilidad de los puntos fijos:

$$f'_{\lambda}(x) = \lambda(1 - 2x) \Rightarrow \begin{cases} f'_{\lambda}(x_1^*) = \lambda \\ f'_{\lambda}(x_2^*) = 2 - \lambda \end{cases}$$

- x_1^* es atractor si $\lambda \in (-1,1)$ y repulsor si $\lambda \in (-\infty,-1) \cup (1,+\infty)$
- x_2^* es atractor si $\lambda \in (1,3)$ y repulsor si $\lambda \in (-\infty,1) \cup (3,+\infty)$
- Puntos de bifurcación:
 - \mathbf{x}_1^* cuando $\lambda = 1$
 - x_2^* cuando $\lambda = \{1, 3\}$

Diagrama de bifurcación de la familia logística

```
function X=bifurcacion(x0, lambda)
    [X,L]=meshgrid(x0,lambda);
    iter=1;
    while iter<500
      X=L.*X.*(1-X);
      iter=iter+1;
    end
    plot(lambda, X, 'b.');
    grid on
    xlabel('\lambda')
    vlabel('x_k')
end
```

Diagrama de bifurcación de la familia logística

X=bifurcacion(linspace(0,1,501),linspace(1,4,501));

Para finalizar...

- A fondo: Web diagram: http://mathworld.wolfram.com/
- Actividades: Laboratorio 2: Sistemas Dinámicos Discretos
 - 👺 Sesión de laboratorio: jueves 3, 16:00-18:00 (hora ESP)

...Y por supuesto:

TEST DE APRENDIZAJE!!

