Материалы для обязательной контрольной работы по учебной дисциплине «Физика»

1. Общие требования.

Обязательная контрольная работа проводится с целью тематического оценки результатов учебной деятельности учащихся дневной формы обучения.

Содержание и объём учебного материала, по которому осуществляется тематический контроль знаний и умений учащихся (обязательная контрольная работа, далее ОКР), определяется соответствующей программой дисциплины.

Каждый из вариантов содержит задания пяти уровней:

Первое задание соответствует уровню представления. При его выполнении учащиеся должны выбрать верный ответ из предложенных.

Второе задание соответствует уровню понимания. При его выполнении учащиеся должны записать закон или формулу, используемые в дальнейшем для решения задач.

Третье задание соответствует уровню применения. При его выполнении учащиеся должны произвести расчеты, используя знания формул и законов из данного раздела одной темы.

Четвертое задание также соответствует уровню применения. При его выполнении учащиеся должны использовать графический способ для решения задач.

Пятое задание соответствует уровню применения с творческим подходом. При его выполнении учащиеся должны произвести расчеты, используя знания формул и законов из разных разделов дисциплины, а также использовать творческое и логическое мышление.

В варианты включены задания, которые позволяют проверить знания, умения и навыки учащихся по физике, предусмотренных программой и позволяющие проверить полноту и системность знаний, умение действовать в знакомой ситуации и находить вариативные способы применения знаний в незнакомой ситуации.

До проведения контрольной работы учащиеся знакомятся с критериями оценок, что позволяет им выбрать необходимую стратегию выполнения ОКР.

2. Критерии оценки.

Каждое задание определённого уровня оценивается баллами в соответствии с показателями оценки теоретической и практической подготовленности учащихся (с учётом характера допущенных ошибок). Интервал оценивания одного задания для каждого уровня приведён в таблице 1.

Таблица 1:

№ задания	Уровень задания	Интервал оценивания
		одного задания
1	I	0-2
2	II	0-4
3	III	0-6
4	IV	0-8
5	V	0-10

Верхняя граница интервала оценивания представляет собой максимальную «цену» задания.

Задание считается выполненным, если оно удовлетворяет следующим требованиям:

- правильный выбор способа решения задачи,
- правильное использование физической терминологии,
- правильное изображение чертежей, графиков или рисунков,
- последовательное и аккуратное оформление решения,
- правильное получение рабочей формулы и её проверка размерностью искомой величины,
 - -получение правильного ответа.

3. Оценка обязательной контрольной работы.

Для оценивания ОКР используется следующая рейтинговая шкала (суммируются баллы, фактически набранные учащимися за каждое из заданий, входящих в вариант). Отметка выставляется на основании общей суммы баллов в соответствии с таблицей 2.

Таблица 2:

Общая сумма баллов	Отметка
0	0
1	1
2	2
3-5	3
6-8	4
9-11	5
12-14	6
15-17	7
18-20	8
21-26	9
27-30	10

Вариант 1

1. Выберите правильный ответ:

Как записывается основное уравнение МКТ газов?

A)
$$p = \frac{F}{S}$$
; Б) $p = \frac{1}{3}nm_0\langle v_{\kappa s}^2\rangle$; В) $p = nmkT$; Г) $Q = cm\Delta T$. **2.**Запишите закон Бойля-Мариотта в словесной и

- **2.**Запишите закон Бойля-Мариотта в словесной и математической формулировках.
- **3.**Идеальный газ совершает цикл Карно. Температура холодильника 300К. Полезная работа, совершенная за цикл равна 900кДж. Холодильник получил количество теплоты равное 1,8кДж. Определите температуру нагревателя.
- **4.** С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;V).

5. Резиновый шар содержит 2π воздуха, находящегося при температуре 20° С и атмосферном давлении $1\cdot 10^{5}\Pi$ а. Какой объем займет воздух, если шар будет опущен в воду на глубину 10м? Температура воды 4° С. Давлением, обусловленным кривизной поверхности, пренебречь.

Вариант 2

1. Выберите правильный ответ:

В какой форме записывается закон Дальтона?

A)
$$p = p_1 + p_2 + p_3 + \dots + p_n$$
; B) $p = \frac{1}{3} n m_0 \langle v_{\text{KB}}^2 \rangle$; B) $p = n m k T$; Γ) $Q = c m \Delta T$.

- 2. Запишите закон Шарля в словесной и математической формулировках.
- **3.** В двух закрытых баллонах находится по одному молю идеального одноатомного газа. Внутренняя энергия газа в первом баллоне равна 8кДж, во втором 12кДж. Во сколько раз абсолютная температура газа во втором баллоне больше, чем в первом?
- **4.** С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;T).

5. Резиновый шар содержит 5л воздуха, находящегося при температуре 25° С и атмосферном давлении $1 \cdot 10^{5}$ Па. Шар был опущен в воду на глубину 30м, после чего воздух занял объём 0,1 л? Какова температура воды? Давлением, обусловленным кривизной поверхности, пренебречь

Вариант 3

1. Выберите правильный ответ:

В какой форме записывается первый закон термодинамики?

A)
$$p = \frac{1}{3}nm_0\langle v_{\text{\tiny KB}}^2\rangle$$
; B) $Q = cm\Delta T$; B) $\Delta U = A + Q$; Γ) $pV = \frac{m}{M}RT$.

- 2. Запишите закон Гей-Люссака в словесной и математической формулировках.
- **3.** Тепловой двигатель работает по циклу Карно. Температура нагревателя 500К, холодильника 400К. Во сколько раз надо увеличить температуру нагревателя, чтобы КПД двигателя увеличился в 3 раза?
- **4.** С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;V).

5. Вертикальный цилиндр с тяжелым поршнем наполнен азотом, масса которого m_1 =0,1кг. После увеличения температуры азота на ΔT =100К поршень поднялся на высоту h=0,1м. Над поршнем все время сохраняется нормальное атмосферное давление p_0 =1·10⁵Па. Площадь поршня S=0,02м². Определить массу поршня. Универсальная газовая постоянная R=8,31 $\frac{Дж}{моль \cdot K}$. Молярная масса азота M=28·10⁻³ $\frac{K\Gamma}{моль}$.

Вариант 4

1. Выберите правильный ответ:

Как математически записывается уравнение Менделеева-Клапейрона (уравнение состояния идеального газа)?

A)
$$p = nm_0 \langle v_{KB}^2 \rangle$$
; B) $Q = cm\Delta T$; B) $\Delta U = A + Q$; Γ) $pV = \frac{m}{M}RT$.

- 2. Запишите закон Дальтона в словесной и математической формулировках.
- **3.** Тепловой двигатель работает по циклу Карно. Температура нагревателя 473К. Определите температуру холодильника, если за 1кДж теплоты, полученной от нагревателя, двигатель выполняет работу 0,32кДж.
- **4.** С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;V).

5. В вертикальном цилиндре вместимостью 2л под тяжелым поршнем находится газ при температуре T=300K. Масса поршня 50кг, его площадь S=0,5м². Температуру газа повысили на $\Delta T=100$ K. Найти изменение внутренней энергии газа, если его теплоемкость $C=5\frac{\mathcal{J}_{\text{ж}}}{K}$. Атмосферное давление $p_0=1\cdot 10^5$ Па. Трение поршня о стенки не учитывать. Принять $g=10\frac{M}{c^2}$.