

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Brief overview of project goals: Predict Falcon 9 first stage landing success.
- Summary of methodologies: Data collection, wrangling, EDA, visualization, predictive modeling.
- Summary of results: Key insights from EDA, geospatial analysis, interactive dashboards, model performance.

Introduction

- SpaceX reduces launch costs by reusing Falcon 9 first stage.
- Launch cost comparison: \$62M vs.
 \$165M+ for competitors.
- Importance of predicting landing success for cost and competitive bidding.
- Problem: Can we predict if Falcon 9 first stage will land successfully?
- Objectives: Analyze launch data, identify key factors, build classification models.
- Questions: Impact of payload, launch site, orbit, flight number on landing success?

Methodology

Executive Summary

- Data collection methodology:
 - Data Collection
 - Data Wrangling
 - Exploratory Data Analysis (EDA)
 - Interactive Visual Analytics
 - Predictive Analysis (Classification)

Data Collection

- Data sources: SpaceX REST API and Wikipedia web scraping.
- Tools: Python requests, BeautifulSoup, Pandas.
- Flowchart illustrating data retrieval and dataset creation.
- GitHub URL for API calls notebook.

Data Collection – SpaceX API

- Steps: GET requests, JSON to DataFrame conversion, filtering Falcon 9 launches, handling missing values.
- Key variables collected: flight number, payload mass, launch site, orbit, landing outcome.
- Flowchart of API data extraction process

Data Collection - Scraping

- Scraped Falcon 9 launch records from Wikipedia.
- Steps: Request HTML, parse tables with BeautifulSoup, convert to DataFrame.
- Flowchart of scraping and parsing process.
- GitHub URL for scraping notebook.

Place your flowchart of web scraping here

Data Wrangling

- Cleaning: Handling missing values with fillna(), removing duplicates.
- Feature engineering: Creating binary landing outcome label (0 = fail, 1 = success).
- Encoding categorical variables for modeling.

EDA with Data Visualization

- Tools: Pandas, Matplotlib, Seaborn, SQL queries.
- Goals: Understand variable distributions, relationships, and patterns.
- Scatter plot shows launch frequency across sites over time.
- Insight: Some sites have more launches, indicating operational preference.
- Scatter plot of payload mass by orbit type.
- Insight: Payload mass varies significantly with orbit destination.
- Line chart showing average landing success rate per year.
- Insight: Success rate improves over time, indicating technological progress.

EDA with SQL

- Query: List all unique launch sites.
- Result: Names of sites (e.g., CCAFS SLC-40, VAFB SLC-4E).
- Query: Find launch sites starting with 'CCA'.
- Result: Five records matching criteria.
- Query: Sum of payload mass for NASA missions.
- Result: Total payload mass value.
- Query: Average payload for booster version F9 v1.1.
- Result: Average value.
- Query: Date of first successful ground pad landing.
- Result: Specific date.
- Query: Boosters with successful drone ship landings and payload between 4000-6000 kg.
- Result: List of booster names.
- Query: Count of successful vs. failed missions.
- Result: Numbers for each category.
- Query: Boosters that carried maximum payload mass.
- Result: Booster names and payload values.
- Query: Failed drone ship landings in 2015 with booster and site info.
- Result: List of records.
- Query: Count and rank of landing outcomes in date range.
- Result: Ranked list of outcomes.

Build an Interactive Map with Folium

- Map showing all launch site locations globally.
- Map with color-coded markers for successful and failed landings.
- Map showing distances from launch site to nearby infrastructure: railway, highway, coastline.

Build a Dashboard with Plotly Dash

- Pie chart showing success counts for all launch sites.
- Pie chart focusing on site with highest success ratio.
- Scatter plot with interactive payload range slider.

Predictive Analysis (Classification)

- Models used: Logistic Regression, Decision Trees, SVM, KNN.
- Data preprocessing: Standardization, train-test split.
- Hyperparameter tuning with GridSearchCV.
- Bar chart comparing accuracy of all models.
- Highlight best performing model.
- Confusion matrix visualization.
- Explanation of true positives, false positives, etc.
- Interpretation of model performance.
- Key features influencing landing success (e.g., payload, orbit).
- Model strengths and limitations.
- Potential for improvement with more data.
- Recap: Data collection and wrangling enabled robust analysis.
- EDA revealed important patterns influencing landing success.
- Interactive maps and dashboards enhanced data exploration.
- Predictive models achieved good accuracy for classification.

Results

- Predicting landing success aids cost estimation and competitive bidding.
- Insights can guide launch planning and risk management.

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

All Launch Site Names

Launch Site Names Begin with 'CCA'

Total Payload Mass

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

<Folium Map Screenshot 1>

Replace <Folium map screenshot 1> title with an appropriate title

 Explore the generated folium map and make a proper screenshot to include all launch sites' location markers on a global map

<Folium Map Screenshot 2>

Replace <Folium map screenshot 2> title with an appropriate title

 Explore the folium map and make a proper screenshot to show the color-labeled launch outcomes on the map

<Folium Map Screenshot 3>

Replace <Folium map screenshot 3> title with an appropriate title

 Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

< Dashboard Screenshot 1>

Replace < Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

< Dashboard Screenshot 2>

Replace < Dashboard screenshot 2> title with an appropriate title

 Show the screenshot of the piechart for the launch site with highest launch success ratio

<Dashboard Screenshot 3>

Replace < Dashboard screenshot 3> title with an appropriate title

 Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

 Visualize the built model accuracy for all built classification models, in a bar chart

 Find which model has the highest classification accuracy

Confusion Matrix

Show the confusion matrix of the best performing model with an explanation

Conclusions

- Point 1
- Point 2
- Point 3
- Point 4

• ...

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

