

## **Probability and Statistics**

# Statistical Inference (Hypothesis Testing)



## **Learning Outcome**

By the end of this lecture you should be able to:

- Perform a hypothesis test with one sample
- Understand the concept of Null and Alternative Hypotheses
- Reviewing the decision outcomes and finding whether there are Type I or Type II errors on the test



## What is Statistical Hypotheses?

In making an inference, rather than presenting a data based decision, we may produce a conclusion about some specific system.

"A **statistical hypothesis** is an assertion or conjecture concerning one or more populations"

A statistical hypothesis can be tested by using procedures which includes acceptances or rejections

## Null and Alternative Hypotheses



The null hypothesis:

Assumes that **there is no meaningful** relationship between two variables

The alternate hypothesis:

Assumes that **there is** a relationship between two variables

## NULL HYPOTHESIS EXAMPLES

THE NULL HYPOTHESIS ASSUMES THERE IS NO RELATIONSHIP BETWEEN TWO VARIABLES AND THAT CONTROLLING ONE VARIABLE HAS NO EFFECT ON THE OTHER.







## Null Hypothesis Example

| Question                                                                  | Null Hypothesis                                                                          |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Are teens better at math than adults?                                     | Age has no effect on mathematical ability.                                               |  |
| Does taking aspirin every day reduce the chance of having a heart attack? | Taking aspirin daily does not affect heart attack risk.                                  |  |
| Do teens use cell phones to access the internet more than adults?         | Age has no effect on how cell phones are used for internet access.                       |  |
| Do cats care about the color of their food?                               | Cats express no food preference based on color.                                          |  |
| Does chewing willow bark relieve pain?                                    | There is no difference in pain relief after chewing willow bark versus taking a placebo. |  |



## Null and Alternative Hypotheses (Con't)

 $H_0$  and  $H_1$  are contradictory

One of good illustration of null and alternative hypotheses is in a Jury Trial:

 $H_0$ : defendant is innocent

 $H_1$ : defendant is guilty



#### **Test Statistics**

In many common situations the test statistic is stated as in the following:

$$z = \frac{estimate - hypothesized\ value}{standard\ deviation\ of\ the\ estimate}$$

Let's put this into a mathematical form:

$$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$



## P-Value Concept - One-tailed Test

P-value is the probability assuming  $H_0$  is true





## P-Value Concept - Two-tailed Test





## **Testing a Statistical Hypothesis**

#### Table. Relations between correctness of the null hypothesis

|                     | H₀True            | H₀ False          |
|---------------------|-------------------|-------------------|
| Do Not Reject $H_0$ | Correct Inference | Type II Error     |
| Reject $H_0$        | Type I Error      | Correct Inference |

 $\alpha$  = probability of a Type I error

 $\beta$  = probability of a Type II error

**Probabilities of errors**  $\alpha$  and  $\beta$  should be as small as possible

The Power of the Test is  $1 - \beta$ .

## Example 2.2



The current cold vaccine is known to be only 25% effective (or less) after 2 years. A study is conducted to determine the effectiveness of a new cold vaccine for a longer period of time. 20 people are chosen at random, If more than 8 of those receiving the new vaccine surpass the 2-year period without contracting the virus, the new vaccine will be considered superior to the one presently in use.

 $H_0$ : The new vaccine is equally or less effective after a period of 2 years (p  $\leq$  0.25)

 $H_1$ : The new vaccine is in fact superior than the current vaccine (p > 0.25)

## Example 2.2 - continued



However, there are two common errors when making a conclusion from the hypothesis above:

## Type I Error:

**More than** 8 people surpass the 2-year period but the new vaccine **MAY NOT** be better than the old vaccine

## Type II Error:

**Less than** 8 People surpass the 2-year old period, but we are **UNABLE TO CONCLUDE** that the vaccine is better



## Example 2.3

A medical device manufacturer has developed a new blood pressure meter, that the company claims has a mean time before failures (MTBF) of 15 years with a standard deviation of 0.5 year. To test if the claim is true, a random sample of 50 items will be tested. The critical region is defined to be  $\bar{x} < 14.9$ .

- a. State the null and alternative hypotheses
- b. Find the probability of committing a type I error when  ${\cal H}_0$  is true
- c. Evaluate  $\beta$  for the alternatives  $\mu = 14.8$  and  $\mu = 14.9$  years

## Solution 2.3



a.) 
$$H_0$$
:  $\mu < 15$   
 $H_1$ :  $\mu >= 15$ 

$$\sigma = 0.5 \qquad n = 50$$

$$z = \frac{14.9 - 15}{0.5/\sqrt{50}} = -1.41$$

$$\alpha = P(Z < -1.41) = 0.0793$$

c.) If 
$$\mu = 14.8$$
,  $z = \frac{14.9 - 14.8}{0.5/\sqrt{50}} = 1.41$ .  
So  $\beta = P(Z > 1.41) = 0.0793$   
If  $\mu = 14.9$ ,  $z = \frac{14.9 - 14.9}{0.5/\sqrt{50}} = 0$ .  
So  $\beta = P(Z > 0) = 0.5$ 

## Example 2.4



Consider the null hypothesis that the average weight of male students in a certain college is 68 kilograms against the alternative hypothesis that it is unequal to 68. A critical region for the test statistic is chosen to be  $67 < \bar{x} < 69$ . Assume that the standard deviation of the population weight to be 3.6 kilograms, based on a random sample of size 36 male students.

- a. State the null and alternative hypotheses
- b. Find the probability of committing a type I error when  ${\cal H}_0$  is true
- c. Evaluate  $\beta$  for the alternatives  $\mu = 70$  or  $\mu = 66$  kg

## Solution 2.4



a.) 
$$H_0$$
:  $\mu = 68$ 

*H*<sub>1</sub>: 
$$\mu$$
 ≠ 68



b.) 
$$\sigma = 3.6$$
  $n = 36$ 

$$z_1 = \frac{67 - 68}{3.6/\sqrt{36}} = -1.67$$

$$z_2 = \frac{69 - 68}{3.6/\sqrt{36}} = 1.67$$

$$\alpha = P(Z < -1.67) + P(Z > 1.67) = 0.095$$

### Solution 2.4



c.)

• 
$$\beta = P(67 \le Z \le 69 \text{ when } \mu = 70)$$

$$z_1 = \frac{67 - 70}{3.6/\sqrt{36}} = -5,$$
  $z_2 = \frac{69 - 70}{3.6/\sqrt{36}} = -1.67$   
 $\beta = P(-5 < Z < -1.67)$   
 $= P(Z < -1.67) - P(Z < -5)$ 

$$= 0.0485 - 0 = 0.0475$$





$$z_1 = \frac{67 - 66}{3.6/\sqrt{36}} = 1.67, \qquad z_2 = \frac{69 - 66}{3.6/\sqrt{36}} = 5$$

$$\beta = P(1.67 < Z < 5)$$

$$= P(Z < 5) - P(Z > 1.67)$$

$$= 1 - 0.9525 = 0.0475$$





## References

- "Probability & Statistics for Engineers & Scientists", by Ronald E. Walpole, Raymond Myers, Sharon Myers, Keying Ye
- "Introduction to the Practice of Statistics", Sixth Edition, by David S.Moore, George P. McCabe, and Bruce A. Craig
- "Probability and Statistics for Engineering and The Sciences" by Devore, Jay L.