Chapitre 14. Produit scalaire, groupe orthogonal

Proposition 0.1. Soit *K* un corps de caractéristique différent de 2

Si
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in K^n$ et $A = (a_{ij})_{1 \le i, j \le n}$ alors

$$X^T A Y = \sum_{1 \le i, j \le n} a_{ij} x_i y_j$$

$$e_i^T A e_j = a_{ij}$$

En particulier, si pour tout $X, Y \in K^n$, $X^T A Y = X^T B Y$ alors A = B

1 Forme bilinéaire symétrique

1.1 Généralités

Définition 1.1. Soit E un K-ev et $\varphi: E \times E \to K$ une fbs (forme bilinéaire symétrique) La forme quadratique associée à φ est

$$q: \begin{cases} E \to K \\ x \mapsto q(x) = \varphi(x, x) \end{cases}$$

 φ est la forme polaire de q

Proposition 1.2 (Identité de polarisation). Avec ces notations

$$\varphi(x,y) = \frac{1}{2} (q(x+y) - q(x) - q(y))$$

$$= \frac{1}{2} (q(x) + q(y) - q(x-y))$$

$$= \frac{1}{4} (q(x+y) - q(x-y))$$

À une forme quadratique ne correspond qu'une unique forme polaire.

1.2 Expression matricielle

Définition 1.3. Soit E un K-ev de dimension finie, $\mathcal{B} = (e_1, ..., e_n)$ une base de E et $\varphi : E \times E \to K$ fbs et q sa forme quadratique.

On pose
$$\operatorname{Mat}_{\mathcal{B}}(\varphi) = \operatorname{Mat}_{\mathcal{B}}(q) = (\varphi(e_i, e_j))_{1 \leq i, j \leq n} \in S_n(K)$$

Proposition 1.4. Avec ces notations, si $x, y \in E$ de colonnes X et Y dans la base \mathcal{B} et $A = \underset{\mathcal{B}}{\mathsf{Mat}}(\varphi)$ on a

$$\varphi(x,y) = X^T A Y = Y^T A X$$

1

Définition 1.5. Soit $A \in S_n(K) = \{M \in M_n(K) \mid M^T = M\}$ $\varphi_A : (X, Y) \in K \times K \mapsto X^T A Y$ est une fbs sur K^n appelée fbs canoniquement associée à A **Proposition 1.6.** Soit *E K*-ev, φ une fbs sur *E* de dim. finie.

Soit
$$\mathcal{B}$$
, \mathcal{C} deux bases et $A = \underset{\mathcal{C}}{\operatorname{Mat}}(\varphi)$, $B = \underset{\mathcal{C}}{\operatorname{Mat}}(\varphi)$, $P = \operatorname{Mat}(\mathcal{B}, \mathcal{C})$

Alors

$$B = P^T A P$$

Définition 1.7. Soit $A, B \in S_n(K)$

On dit que A et B sont congruentes s'il existe $P \in GL_n(K)$ avec $B = P^TAP$

Définition 1.8. Soit φ une fbs sur E de dim. finie.

Le rang de φ (ou de q sa forme quadratique) est rg $\varphi = \operatorname{rg} A$ où $A = \operatorname{Mat}(\varphi)$ avec $\mathcal B$ une base de E

1.3 Orthogonalité selon un fbs

Définition 1.9. Soit φ une fbs sur E K-ev

 $x,y \in E$ sont dits orthogonaux pour φ si $\varphi(x,y)=0$. On écrit $x\perp y$ ou $x\perp^{\varphi} y$

On dit que $x \in E$ est isotrope si $x \perp x$ ie. $\varphi(x, x) = 0$

$$A^{\perp} = A^{\perp(\varphi)} = \{ x \in E \mid \forall a \in A, \ \varphi(x, a) = 0 \}$$

Le noyau de φ est

Si $A \subset E$

$$E^{\perp} = \{ x \in E \mid \forall y \in E, \ \varphi(x, y) = 0 \}$$

On dit que φ est non dégénérée si $E^{\perp}=\{0\}$

Proposition 1.10. Soit φ une fbs sur E de dim. finie et $A = \underset{\mathcal{B}}{\mathsf{Mat}}(\varphi)$ avec \mathcal{B} une base de E Alors

$$\varphi$$
 non dégénérée \iff A inversible

Proposition 1.11. Soit E un K-ev de dim. finie et φ une fbs sur E non dégénérée.

Alors

$$H: \begin{cases} E \to E^* \\ x \mapsto \varphi(x,\cdot) \end{cases} \quad \text{avec} \quad \varphi(x,\cdot): \begin{cases} E \to K \\ y \mapsto \varphi(x,y) \end{cases}$$

est un isomorphisme : $\forall l \in E^*$, $\exists ! x \in E$, $\forall y : l(y) = \varphi(x, y)$

1.4 Bases orthogonales

Définition 1.12. Soit φ une fbs sur E de dim. finie.

 $(e_1,...,e_n) = \mathcal{B}$ base de E est dite orthogonale si $\forall i \neq j, \ \varphi(e_i,e_j) = 0$

 \mathcal{B} est une base orthogonale \iff $\operatorname{Mat}(\varphi) \in D_n(K)$

Dans ces conditions $rg(\varphi)$ est le nombre de coefficients différents de 0 sur la diagonale.

Théorème 1.13. Soit φ une fbs sur E de dimension finie.

Alors φ possède une base orthogonale.

Lemme 1.14. Si $x \in E$ est non isotrope, alors $E = Kx \oplus (Kx)^{\perp}$

Corollaire 1.15.

1. Soit E un K-ev de dim. finie n, φ une fbs sur E Il existe une base $(e_1, ..., e_n)$ orthogonale de E telle que

$$\varphi(x,y) = \lambda_1 x_1 y_1 + ... + \lambda_r x_r y_r$$
 où $x = \sum_{i=1}^n x_i e_i, y = \sum_{i=1}^n y_i e_i$

$$q(x) = \lambda_1 x_1^2 + \dots + \lambda_r x_r^2$$

avec $\lambda_1, ..., \lambda_r \in K^*$ et $r = \operatorname{rg} \varphi$

2. Si $A \in S_n(K)$ alors il existe $P \in GL_n(K)$ tel que

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & & & \\ & \lambda_2 & & & & (0) \\ & & \ddots & & & & \\ & & & \lambda_r & & & \\ & & & 0 & & \\ & (0) & & & \ddots & \\ & & & & 0 \end{pmatrix} \in D_n(K)$$

avec $\lambda_i \in K^*$ et $r = \operatorname{rg} A$

2 Formes positives, produit scalaire

2.1 Matrices positives

Ici E est \mathbb{R} -ev

Définition 2.1. Soit $A \in S_n(\mathbb{R})$

On dit que A est positive si φ_A est une fbs positive : $\forall x \in \mathbb{R}^n$, $X^T A X \ge 0$ On note

$$S_n^+(\mathbb{R}) = \{ A \in S_n(\mathbb{R}) \mid A \text{ positive } \}$$

On dit que A est définie positive si φ_A est un produit scalaire : $\forall X \in \mathbb{R}^n \setminus \{0\}$, $X^TAX > 0$ On note

$$S_n^{++}(\mathbb{R}) = \{ A \in S_n(\mathbb{R}) \mid A \text{ définie positive } \}$$

2.2 Exemples d'espaces préhilbertiens réels

2.2.1 Espaces préhilbertiens fonctionnels

 $E = \mathcal{C}([a,b],\mathbb{R})$ muni de

$$\langle f, g \rangle = \int_{a}^{b} fg$$

2.2.2 Espace de Legendre

 $E = \mathcal{C}([-1,1],\mathbb{R})$ muni de

$$\langle f, g \rangle = \int_{-1}^{1} fg$$

3

2.2.3 Espace d'Hermite

 $E = \left\{ f: \mathbb{R} \to \mathbb{R} \mid f \text{ continue et } x \mapsto f(x)^2 e^{-x^2} \text{ intégrable } \right\}$ muni de

$$\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x)e^{-x^2} dx$$

E contient en particulier les fonctions polynomiales.

Lemme 2.2. Si $f, g \in L^2(I, \mathbb{K})$ alors $fg \in L^1(I, \mathbb{K})$

2.2.4 Espace de Laguerre

 $E = \{f : \mathbb{R}_+ \to \mathbb{R} \mid f \text{ continue et } x \mapsto f(x)^2 e^{-x} \text{ intégrable sur } \mathbb{R}_+ \}$ muni de

$$\langle f, g \rangle = \int_{\mathbb{R}_+} f(x)g(x)e^{-x} dx$$

2.3 Théorème de représentation des formes linéaires

Corollaire 2.3. Soit *E* un espace euclidien.

Tout $l \in E^*$ s'écrit de manière unique

$$l: \begin{cases} x \mapsto \langle e, x \rangle \\ E \to \mathbb{R} \end{cases}$$

avec $e \in E$

2.4 Orthogonalité dans les espaces préhilbertiens

Proposition 2.4 (Pythagore). Soit $x, y \in E$

Alors

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

Proposition 2.5.

- 1. $A \subset B \subset C \implies B^{\perp} \subset A^{\perp}$
- 2. $A \subset A^{\perp \perp}$
- 3. Si $F = \text{Vect } A \text{ alors } A^{\perp} = F^{\perp}$

Proposition 2.6. Si $(E_i)_{i\in I}$ famille de sev de E 2 à 2 \perp alors $\sum_{i\in I} E_i$ est directe, on la note

$$\bigoplus_{i\in I}^{\perp} E_i$$

Théorème 2.7. Soit *E* un espace préhilbertien et *F* un sev de dimension finie.

Alors:

- 1. $F \oplus F^{\perp} = E$
- 2. $F^{\perp \perp} = F$

On définit la projection orthogonale sur F par $p_F = p_{F,F^{\perp}}$

Si $(e_1, ..., e_p)$ est une BON de F alors

$$p_F(x) = \sum_{i=1}^p \langle e_i, x \rangle e_i$$

4

Proposition 2.8. Si *E* est préhilbertien, *F* sev de dim. finie, on peut considérer :

 $p_F = p_{F,F^{\perp}}$ = projection orthogonale sur F

 $s_F = s_{F,F^{\perp}} : x = x_F + x_{F^{\perp}} \mapsto x_F - x_{F^{\perp}} = \text{symétrie orthogonale par rapport à } F$

$$s_F = 2p_F - \text{Id}$$

Proposition 2.9. Soit *E* un espace euclidien et $(e_1, ..., e_v)$ un système orthonormé (SON).

On peut compléter $(e_1, ..., e_p)$ en une BON $(e_1, ..., e_n)$ de E

Théorème 2.10 (Orthonormalisation au sens de Gram-Schmidt).

Soit N = [1, n] ou \mathbb{N}^* et $(a_i)_{i \in \mathbb{N}}$ un système libre de E, espace préhilbertien réel.

Alors il existe un unique système $(e_i)_{i \in N}$ tel que :

- 1. $(e_i)_{i \in N}$ est un système orthonormé.
- 2. $\forall k \in N$, $Vect(e_1, ..., e_k) = Vect(a_1, ..., a_k)$
- 3. $\forall k \in N, \langle e_k, a_k \rangle > 0$

 $(e_i)_{i \in N}$ est appelé orthonormalisé au sens de Gram-Schmidt des a_i

2.5 Distance à un sous-espace de dimension finie

Théorème 2.11 (Inégalité de Bessel). Soit *E* un espace préhilbertien réel et *F* un sev de dimension finie de *E* Soit $(e_1, ..., e_p)$ une BON de F, $p = \dim F$ est $x \in F$

Alors d(x, F) est atteinte en un unique point, le projeté orthogonal de x sur F, $p_F(x)$ De plus

$$p_F(x) = \langle e_1, x \rangle e_1 + ... + \langle e_p, x \rangle e_p$$

$$d(x, F) = \sqrt{\|x\|^2 - \sum_{i=1}^{p} \langle e_i, x \rangle^2}$$

Et en particulier

$$\sum_{i=1}^{p} \langle e_i, x \rangle^2 \leqslant ||x||^2$$

Adaptation aux espaces préhilbertiens complexes

Définition 2.12. Un produit scalaire hermitien sur *E* un C-ev est :

- 1. linéaire à droite : $\forall x, y \mapsto \langle x, y \rangle$ linéaire.
- 2. semi-linéaire à gauche : $\forall y, \langle x + \lambda x', y \rangle = \langle x, y \rangle + \overline{\lambda} \langle x', y \rangle$ et $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 3. $\forall x \neq 0, \langle x, x \rangle > 0$

Définition 2.13. $M \in M_n(\mathbb{C})$ est dite hermitienne si $M^* = M$, ce qui signifie $\forall k, l : \overline{M_{k,l}} = M_{l,k}$

Proposition 2.14. On garde les résultats suivants :

- 1. Existence du BON dans *E* hermitien.
- 2. *F* sev de dim. finie de *E* préhilbertien complexe :

 - $F \oplus F^{\perp} = E$ et $F^{\perp \perp} = F$ $p_F(x) = \sum_{k=1}^{n} \langle e_k, x \rangle e_k$ si $(e_1, ..., e_n)$ BON de F
 - $||p_F(x)||^2 = \sum_{k=1}^n |\langle e_k, x \rangle|^2 \le ||x||^2$
- 3. ON au sens de GS toujours valable.
- 4. $\langle \lambda x, \lambda x \rangle = \lambda \overline{\lambda} \langle x, x \rangle = |\lambda|^2 \langle x, x \rangle$

3 Isométries vectorielles et matrices orthogonales

3.1 Isométries vectorielles d'un espace euclidien

Définition 3.1. Soit *E* un espace euclidien et $u \in \mathcal{L}(E)$

On dit que u est un isomorphisme orthogonal ou encore isométrie vectorielle si u conserve le produit scalaire :

$$\forall x, y \in E \quad \langle u(x), u(y) \rangle = \langle x, y \rangle$$

(ie. u conserve la norme)

$$||u(x)|| = ||x||$$

On note O(E) l'ensemble des isométries vectorielles de E

Proposition 3.2. $O(E) \subset GL(E)$

C'est un sous-groupe de GL(E) appelé groupe orthogonal de E

Proposition 3.3.

$$u \in O(E) \implies \operatorname{Sp} u \subset \{-1,1\}$$

De plus

$$ker(u - Id) \perp ker(u + Id)$$

Proposition 3.4. Soit *E* euclidien, $u \in O(E)$

Si F est un sev stable par u alors F^{\perp} est stable par u

Proposition 3.5. Soit *E* un espace euclidien, $(e_1, ..., e_n)$ une BON et $u \in \mathcal{L}(E)$

Alors

$$u \in O(E) \iff (u(e_1), ..., u(e_n)) \text{ BON}$$

3.2 Matrices orthogonales

Définition 3.6. Soit $A \in M_n(\mathbb{R})$

ON dit que A est orthogonale si les colonnes de A forment une BON de \mathbb{R}^n pour le produit scalaire canonique. On note O(n) l'ensemble des matrices orthogonales de $M_n(\mathbb{R})$

Proposition 3.7. Si $A \in M_n(\mathbb{R})$

$$A \in O(n) \iff A^T A = I_n$$

$$\iff AA^T = I_n$$

$$\iff \text{les lignes de } A \text{ forment une BON de } \mathbb{R}^n$$

$$\iff A \in GL_n(\mathbb{R}) \text{ et } A^{-1} = A^T$$

O(n) est un sous-groupe de $GL_n(\mathbb{R})$ appelé groupe orthogonal d'ordre n

Proposition 3.8. Soit $u \in \mathcal{L}(E)$, E espace euclidien, \mathcal{B} une BON de E et $A = \underset{\mathcal{B}}{\operatorname{Mat}}(u)$ Alors

$$u \in O(E) \iff A \in O(n)$$

Proposition 3.9. Si \mathcal{B} BON de E et $P = \text{Mat}(\mathcal{B}, \mathcal{B}')$ alors

$$P \in O(n) \iff \mathcal{B}' \text{ BON}$$

Proposition 3.10. Si $A \in O(n)$, $u_A \in O(\mathbb{R}^n)$ alors

$$\boxed{\operatorname{Sp} A = \operatorname{Sp} u_A \subset \{-1, 1\}}$$

et

$$\ker(A-I_n) \perp \ker(A+I_n)$$

3.3 Groupe spécial orthogonal

Proposition 3.11. Si *E* euclidien, $u \in O(E)$ alors $det(u) = \pm 1$

Définition 3.12. Soit *E* euclidien et $n \in \mathbb{N}^*$

On note $SO(n) = SL_n(\mathbb{R}) \cap O(n) = \{A \in O(n) \mid \det A = 1\}$ le groupe spécial orthogonal d'ordre n $SO(E) = SL_n(E) \cap O(E)$ est le groupe orthogonal de E

Définition 3.13. Si $n \in SO(E)$ on dit que n est une rotation de E

Si $A \in SO(n)$ on dit que A est une matrice orthogonale positive.

Si $u \in O(E) \backslash SO(E)$, u est une "antirotation".

Définition 3.14. Soit $E \mathbb{R}$ -ev de dim. finie.

Choisir une orientation de E c'est décréter une base \mathcal{B}_0 directe.

Si \mathcal{B} est une autre base, \mathcal{B} directe \iff det Mat(\mathcal{B}_0 , \mathcal{B}) > 0

Définition 3.15. Soit E un espace euclidien orienté et \mathcal{B} une base orthonormé directe, $n = \dim E$ On appelle produit mixte de $(x_1, ..., x_n) \in E^n$ le déterminant $[x_1, ..., x_n] = \det_{\mathcal{B}}(x_1, ..., x_n)$

Il est indépendant de la base $\mathcal B$ orthonormée directe.

3.4 Groupe orthogonal d'un plan euclidien orienté

Définition 3.16. Si $\theta \in \mathbb{R}$ on va noter

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Si $\theta, \theta' \in \mathbb{R}$, $R_{\theta}R_{\theta'} = R_{\theta+\theta'} = R_{\theta'}R_{\theta}$

Théorème 3.17. Soit
$$f: \begin{cases} (\mathbb{R},+) \to (SO(2),\times) \\ \theta \mapsto R_{\theta} \end{cases}$$

f est un morphisme surjectif de groupes de noyau ker $f=2\pi\mathbb{Z}$

En particulier $SO(2) \approx \mathbb{R}/2\pi\mathbb{Z}$

Définition 3.18. Soit (\vec{i}, \vec{j}) une BON directe de P et $\theta \in \mathbb{R}$

On rappelle rotation d'angle θ de P l'endomorphisme $r_{\theta} \in \mathcal{L}(P)$ tel que $\operatorname{Mat}_{(\vec{l},\vec{l})} r_{\theta} = R_{\theta}$

 r_{θ} est indépendant de la base orthonormée directe choisie.

Proposition 3.19. Soit *P* un plan euclidien orienté et $u \in SO(P)$

Alors il existe $\theta \in \mathbb{R}$ tel que $u = r_{\theta}$

En particulier SO(P) est un groupe abélien et $SO(P) \approx SO(2) \approx \mathbb{R}/2\pi\mathbb{Z}$

Proposition 3.20. Soit *P* un plan euclidien, $u \in O(P) \setminus SO(P)$ ("antirotation").

Alors u est une réflexion ie. une symétrie orthogonale par rapport à une droite $\Delta: u = s_{\Delta}$

Proposition 3.21.

$$O(P) = \{ \text{ rotation d'angle } \theta \in \mathbb{R}, \text{ symétrie orthogonale } s_{\Delta} \}$$

4 Réduction des matrices orthogonales

4.1 Cas général

Théorème 4.1. Soit *E* un espace euclidien et $u \in O(E)$

Si $\theta \in \mathbb{R}$, $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ alors il existe une base orthonormée de E telle que

$$\mathbf{Mat}(u) = egin{pmatrix} R_{ heta_1} & \ddots & & & & & \\ & \ddots & & & & & \\ & & -1 & & & & \\ & & & \ddots & & & \\ & & & & -1 & & \\ & & & & & 1 \end{pmatrix} ext{avec } heta_i
otin 2 [\pi]$$

Corollaire 4.2. Soit $A \in O(n)$

Il existe $P \in O(n)$ telle que

$$P^{-1}AP = P^{T}AP = \begin{pmatrix} R_{\theta_{1}} & & & & & & & \\ & \ddots & & & & & & & \\ & & R_{\theta_{p}} & & & & & \\ & & -1 & & & & \\ & & & \ddots & & & \\ & & & & -1 & & \\ & & & & & 1 \end{pmatrix} \text{ avec } \theta_{i} \neq 0[\pi]$$

Proposition 4.3. Les réflexion engendrent O(E)

4.2 Rotation en dimension 3

Théorème 4.4. Soit $M \in SO(3)$

M est orthogonalement semblable à une matrice

$$A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix} \text{ avec } \theta \in \mathbb{R}$$

$$\exists P \in O(n) \quad P^{-1}MP = P^TMP = A_{\theta}$$

Définition 4.5. Soit *E* un espace euclidien de dim. 3

Soit \vec{k} un vecteur unitaire, $\Delta = \mathbb{R}\vec{k}$, $p = \vec{k^{\perp}}$ orienté par (\vec{i}, \vec{j}) base de P avec $\vec{i}n\vec{j}$, \vec{k} directe orthonormée. La rotation d'axe Δ orienté par \vec{k} et d'angle θ est l'endomorphisme $r_{\theta \vec{k}}$ tel que

$$\operatorname{Mat}_{(\vec{i},\vec{j},\vec{k})}(r_{\theta,\vec{k}}) = A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Théorème 4.6. Soit $u \in SO(E)$, E euclidien orienté de dimension 3.

Il existe $\theta \in \mathbb{R}$ et \vec{k} unitaire tel que

$$u = r_{\theta,\vec{k}}$$

5 Exercices classiques

5.1 Projecteur p tel que ||p|| = 1

Soit *E* un espace euclidien, *p* un projecteur. On suppose que $\forall x \in E$, $||p(x)|| \le ||x||$ Montrer que *p* est un projecteur orthogonal.

5.2 **Décomposition** QR

Soit $A \in GL_n(\mathbb{R})$

Montrer que il existe un unique couple (Q, R) avec :

$$\begin{cases} A = QR \\ Q \in O(n) \end{cases}$$

R est une matrice triangulaire à coefficients diagonaux > 0

5.3 Décomposition de Cholevski - Inégalité d'Hadamard

1. Soit $A \in S_n^{++}(\mathbb{R})$

Montrer qu'il existe une unique $B \in M_n(\mathbb{R})$ triangulaire supérieure à coefficients diagonaux > 0 tel que $A = B^T B$ (Cholevski)

2. Montrer que si $A \in S_n^{++}(\mathbb{R})$, $A = (a_{ij})_{1 \le i,j \le n}$ alors $0 \le \det A \le a_{11}a_{22}...a_{nn}$ (Hadamard)

5.4 Matrices de Gram - Inégalité d'Hadamard

Soit E un espace préhilbertien, $x_1, ..., x_n \in E$

La matrice de Gram de $x_1, ..., x_n$ est $A = (\langle x_i, x_j \rangle)_{1 \le i,j \le n} = G(x_1, ..., x_n) \in S_n(\mathbb{R})$

- 1. Monter que $A \in S_n^+(\mathbb{R})$ et même $(x_1, ..., x_n)$ libre $\implies A \in S_n^{++}(\mathbb{R})$ Soit $F = \text{Vect}(x_1, ..., x_n)$, $(e_1, ..., e_r)$ une base orthonormée de F et $P = \underset{(e_1, ..., e_r)}{\text{Mat}}(x_1, ..., x_n)$
- 2. Montrer que $A = G(x_1, ..., x_n) = P^T P$ et en déduire que rg $A = \operatorname{rg}(x_1, ..., x_n)$ On suppose que $(x_1, ..., x_n)$ libre (r = n) et $(e_1, ..., e_n) = \mathcal{B}_0$ est l'ON au sens de Gram-Schmidt de $(x_1, ..., x_n)$
- 3. Montrer que $|\det_{\mathcal{B}_0}(x_1, ..., x_n)| = \sqrt{\det G(x_1, ..., x_n)}$
- 4. Montrer que $\det(G(x_1,...,x_n)) \leq ||x_1||^2...||x_n||^2$ et préciser le cas d'égalité.
- 5. Soit $M \in M_n(\mathbb{R})$ $M = (C_1 \mid ... \mid C_n)$ Montrer que $|\det M| \leq ||C_1|| \times ... \times ||C_n||$ (norme euclidienne canonique) et le cas d'égalité quand M est inversible.

6. Soit $x \in E$. Montrer que $d(x, F)^2 = \frac{\det G(x_1, ..., x_n, x)}{\det G(x_1, ..., x_n)}$

5.5 Racines de polynômes orthogonaux

Soit
$$\mu : [a, b] \to \mathbb{R}_+^*$$
 avec $a < b$. Sur $\mathbb{R}[X]$ on pose $\langle P, Q \rangle = \int_a^b PQ\mu$

- 1. Monter qu'il existe une unique suite $(P_n)_{n\geqslant 0}$ de $\mathbb{R}[X]$ orthonormés telle que deg $P_n=n$ Que dire de la suite (Q_n) avec deg $Q_n=n$ et les Q_n 2 à 2 \perp ?
- 2. Monter que les P_n sont scindés à racines simples toutes dans]a,b[
- 3. Il existe (a_n) , (b_n) , (c_n) trois suites réelles avec $\forall n \ge 0$: $XP_{n+1} = a_nP_{n+2} + b_nP_{n+1} + c_nP_n$