Caminos y ciclos

Clase 25

IIC 1253

Prof. Cristian Riveros

Outline

Caminos

Ciclos

Outline

Caminos

Ciclos

Caminos en un grafo

Definición

Un camino en un grafo G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, \dots, n-1\}$.

¿cuál es un camino en G?

b, a, d, e, f, d, c

Caminos en un grafo

Definición

Un camino en un grafo G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, ..., n-1\}$.

Un camino v_0, v_1, \ldots, v_n en G se dice **simple** si todos los vértices de la secuencia son distintos $(v_i \neq v_i)$.

¿cuál es un camino simple en G?

Caminos en un grafo

Definición

Un camino en un grafo G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, ..., n-1\}$.

Un camino $v_0, v_1, ..., v_n$ en G se dice **simple** si todos los vértices de la secuencia son distintos $(v_i \neq v_j)$.

Lema

Si existe un camino entre dos nodos u y v de largo k, entonces existe un camino simple entre u y v de largo menor o igual que k.

Demostración (ejercicio).

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Un grafo se dice conexo si cualquier par de vértices están conectados.

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Un grafo se dice conexo si cualquier par de vértices están conectados.

Para un grafo G = (V, E) se define la relación $R_G \subseteq V \times V$ tal que $(u, v) \in R_G$ si, y solo si, u esta conectado a v en G.

¿qué propiedades cumple la relación R_G ?

- 1. Refleja.
- 2. Simétrica.
- 3. Transitiva.

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Un grafo se dice conexo si cualquier par de vértices están conectados.

Para un grafo G = (V, E) se define la relación $R_G \subseteq V \times V$ tal que $(u, v) \in R_G$ si, y solo si, u esta conectado a v en G.

Para un grafo G = (V, E) se define las componentes conexas de G como el conjunto las clases de equivalencia de R_G .

¿cuáles son las componentes conexas de cada grafo?

Un grafo G es conexo si, y solo si, G tiene una sola componente conexa.

Teorema

Todo grafo G = (V, E) tiene al menos |V| - |E| componentes conexas.

Demostración

Por inducción fuerte:

$$P(n)$$
 := todo grafo $G = (V, E)$ con n aristas tiene al menos $|V| - |E|$ componentes conexas.

(Ejercicio: termine la demostración.)

Corolario

Todo grafo G = (V, E) conexo tiene al menos |V| - 1 aristas.

Outline

Caminos

Ciclos

Los siete puentes de Köningsberg (Siglo XVIII)

Los siete puentes de Köningsberg (Siglo XVIII)

¿existe una caminata por la ciudad que recorra cada puente exactamente una vez?

Caminos cerrados y ciclos

Definición

Un camino cerrado en G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, ..., n-1\}$ y $v_0 = v_n$.

Un camino cerrado v_0, v_1, \ldots, v_n en G es un ciclo si todos los vértices son distintos exceptuando v_0 y v_n .

¿cuál es un ciclo en G?

Caminos y tours Eulerianos

Definición

Un camino v_0, v_1, \ldots, v_n en G = (V, E) es **Euleriano** si el camino **recorre todas las aristas** exactamente una vez, formalmente:

para todo
$$e \in E$$
 existe un único $i < n$ tal que $e = \{v_i, v_{i+1}\}$

Un tour Euleriano es un camino Euleriano cerrado.

¿cuál grafo tiene un tour Euleriano?

¿cómo verificamos si un grafo tiene un tour Euleriano?

¿cómo verificamos si un grafo tiene un tour Euleriano?

Teorema

Sea G = (V, E) un grafo conexo.

Entonces G tiene un tour Euleriano si, y solo si, todo $v \in V$ tiene grado par.

Demostración (⇒)

Si G = (V, E) tiene un tour Euleriano, entonces sea $\pi = v_0, \dots, v_n$ el tour.

Como π es Euleriano, entonces para todo vértice $v \in V$, se tiene que:

$$deg(v) = 2 \cdot |\{ i \in \{0, ..., n-1\} \mid v = v_i \}|$$
 (¿por qué?)

Por lo tanto, todos vértice en G tiene grado par.

¿cómo verificamos si un grafo tiene un tour Euleriano?

Teorema

Sea G = (V, E) un grafo conexo.

Entonces G tiene un tour Euleriano si, y solo si, todo $v \in V$ tiene grado par.

Demostración (←)

Considere $\pi = v_0, \ldots, v_n$ como

el camino más largo que recorre cada arista a lo más una vez.

- π recorre todas las aristas incidentes a v_0 y v_n (¿por qué?).
- $v_0 = v_n$ (¿por qué?) y, por lo tanto, π es un camino cerrado.

Demostraremos que π es un tour Euleriano.

Por **contradicción**, suponga que existe $\{u, v_i\} \in E$ con $i \le n$ (¿por qué existe $\{u, v_i\} \in E$?) tal que $\{u, v_i\}$ NO es visitada por π .

Entonces sea $\pi' = u, v_i, v_{i+1}, \dots, v_n, v_1, \dots, v_i$ un nuevo camino.

Como π' recorre cada arista a lo más una vez, **contradicción**! (¿por qué?)

Juegos de Hamilton

Inventados por William Hamilton (1857)

Juegos de Hamilton

¿existe una caminata por el tablero que recorra cada nodo exactamente una vez?

Caminos y tours Hamiltoneanos

Definición

Un camino v_0, v_1, \dots, v_n en G = (V, E) es **Hamiltoneano** si el camino **recorre todos los vértices** exactamente una vez, formalmente:

para todo
$$v \in V$$
 existe un único $i < n$ tal que $v = v_i$

Un tour Hamiltoneano es un camino Hamiltoneano cerrado.

¿cuál grafo tiene un tour Hamiltoneano?

¿cómo verificamos si un grafo tiene un tour Hamiltoneano?

(NP-completo)