An Exploration of Foundational Graph Theory

CH V S M Sriram 212305021

May 13, 2025

Introduction

Graph G = (V, E)

V(G) or V: Vertex Set

E(G) or E: Edge Set

Tree

Matching

Collection of independent edges in a graph G=(V,E) is called a matching.

$$M = \{e_1, e_3, e_5, e_6, e_7\}$$

 $M \subseteq E$ is a matching of G if-

 $\forall v \in V, \, |\{e \in M | v \text{ is incident on } e \in E\}| \leq 1.$

Alternating Path

Alternating Path

Augmenting Path

Maximum Matching

Maximum Matching: A matching M of G is said to be maximum if $\forall M'$ matching of G with $|M| \geq |M'|$.

Maximum Matching

Maximum Matching: A matching M of G is said to be maximum if $\forall M'$ matching of G with $|M| \ge |M'|$.

Vertex Cover

 $S \subseteq V(G)$ is a vertex cover of G(of the edges of the G) if every edge of G is incident with a vertex in S.

Maximum Matching

Maximum Matching: A matching M of G is said to be maximum if $\forall M'$ matching of G with $|M| \ge |M'|$.

Vertex Cover

 $S \subseteq V(G)$ is a vertex cover of G(of the edges of the G) if every edge of G is incident with a vertex in S.

Goal

To establish a relation between Maximum matching and Minimum Vertex Cover in a bipartite graph.

König Theorem

For a bipartite graph G, the maximum cardinality of a matching is equal to the minimum cardinality of its vertex cover.

König Theorem

For a bipartite graph G, the maximum cardinality of a matching is equal to the minimum cardinality of its vertex cover.

• Cardinality of a vertex cover cannot be less than maximum matching.

König Theorem

For a bipartite graph G, the maximum cardinality of a matching is equal to the minimum cardinality of its vertex cover.

- Cardinality of a vertex cover cannot be less than maximum matching.
- We will prove that \exists a vertex cover S with $|S| = \alpha'(G)$ (Cardinality of maximum matching)

König Theorem

For a bipartite graph G, the maximum cardinality of a matching is equal to the minimum cardinality of its vertex cover.

- Cardinality of a vertex cover cannot be less than maximum matching.
- We will prove that \exists a vertex cover S with $|S| = \alpha'(G)$ (Cardinality of maximum matching)
- For each $e \in M$ if there exists an alternating path that ends in B then take that last vertex ends in B into the vertex cover U else take the vertex in A into vertex cover U.

Matching in General Graph

Tutte

A graph has a 1-factor iff $o_c(G - S) \leq |S| \ \forall S \subseteq V(G)$. $o_c(G)$ denote the number of its odd component i.e. those with odd order.

Packing/ Covering

H-packing

H-packing in G is a collection $V_1, V_2 \dots V_l$ of vertex-disjoint subgraphs of G, each V_i is isomorphic to H.

H-packing number p_H is the maximum number of such disjoint subgraphs.

Packing/ Covering

H-packing

H-packing in G is a collection $V_1, V_2 \dots V_l$ of vertex-disjoint subgraphs of G, each V_i is isomorphic to H.

H-packing number p_H is the maximum number of such disjoint subgraphs.

H-covering

H-Covering in G is a set $S \subseteq V(G)$ such that G - S do not have any copy of H.

H-Covering number c_H is the minimum cardinality of S possible.

Packing/ Covering

H-packing

H-packing in G is a collection $V_1, V_2 \dots V_l$ of vertex-disjoint subgraphs of G, each V_i is isomorphic to H.

H-packing number p_H is the maximum number of such disjoint subgraphs.

H-covering

H-Covering in G is a set $S \subseteq V(G)$ such that G - S do not have any copy of H.

H-Covering number c_H is the minimum cardinality of S possible.

Lower Bound on c_H

$$p_H \le c_H$$

Can we have an upper bound on c_H as a function of packing number?

Erdős-Pósa Theorem

Erdős-Pósa Property

 \mathcal{F} be Family of Graphs. Then \mathcal{F} has "Erdős-Pósa property" if \exists a function $f: \mathbb{N} \to \mathbb{N}$ such that for given $k \in \mathbb{N}$ and each G, either G has k-vertex disjoint subgraphs; each containing a copy of graph in \mathcal{F} or there exists a set $U \subseteq V$ of cardinality at-most f(k) such that there is no graph of \mathcal{F} in G - U.

Connectivity

Connectivity

Connected Graph

A non-empty graph is said to be connected if there exists a path between any two vertices of the graph.

Connected Graph

Disconnected Graph

k-Connected Graph

k-Connected Graph

A graph G = (V, E) is said to be k-connected if $|G| \ge k$ $(k \in \mathbb{N} \cup \{0\})$ and G - X is connected for all $X \subseteq V$ with |X| < k.

2-Connected Graph Construction

Ear Decomposition

A graph is 2-connected iff it can be constructed starting from a cycle by successively adding *H*-paths to the existing graph.

3-connected Graph Construction

3-Connectivity-Preserving Operations

G - e: Removing the edge e from the graph and suppressing any vertex that has a degree 2.

G/e: Contracting both endpoints of an edge e into a new vertex

3-connected Graph Construction (contd.)

Method 1

A graph G is 3-connected iff there exists a sequence

$$G_0,\ldots,G_n$$

of graphs such that G_{i+1} has an edge e such that $G_i = G_{i+1}e$ $\forall i < n$ with $G_0 = K^4$ and $G_n = G$. Every graph G_0, \ldots, G_n in such a sequence is 3-connected.

3-connected Graph Construction(Contd.)

Method 2

A graph G is 3-connected iff there exists a sequence

$$G_0,\ldots,G_n$$

of graphs such that G_{i+1} has an edge e = xy such that $d(x), d(y) \ge 3$ and $G_i = G_{i+1}/e \ \forall i < n \ \text{with} \ G_0 = K^4 \ \text{and} \ G_n = G$.

Every graph G_0, \ldots, G_n in such a sequence is 3-connected.

Menger's Theorem

Menger's Theorem

G be a graph and $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of internally disjoint A - B paths in G.

• Proof by induction of number of edges (= m).

Menger's Theorem

Menger's Theorem

G be a graph and $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of internally disjoint A - B paths in G.

- Proof by induction of number of edges (= m).
- Let a minimum u v separating set has k > 1 vertices. Then G has at-most k internally disjoint u v paths.
- It remain to show it contains exactly k such paths. For k = 1 result is immediate.

Menger's Theorem(Cont.)

- Now we assume the cardinality of mimnimum u-v separating set is k > 2.
- Based on the adjacency of vertices in u-v separating set with u and v, different cases arise and in each case we apply induction hypothesis and get require k internally disjoint paths.

Planarity

Planar Graphs

Planar Graph

If a connected graph can be drawn without any edges crossing , it is called as planar.

Planar Graph (W_6)

Non-Planar Graph (K^7)

Kuratowski's Theorem

Kuratowski's Theorem

The following are equivalent:

- (i) G is planar
- (ii) G contains neither K^5 nor $K_{3,3}$ as a minor.
- (iii) G contains neither K^5 nor $K_{3,3}$ as a topological minor.

Graphs: K^5 , $K_{3,3}$

3-connected planar graph

Lemma

Every 3-connected graph without a K^5 or $K_{3,3}$ minor is planar.

- Applying induction on number of vertices.
- Base case $G = K^4$ is planar.
- Contract an edge xy such that G/xy is is 3-connected. By induction hypothesis G/xy is planar.
- Recover G from G/xy by embedding x and y into a face of G/xy.

Maximal Planar Graph

Lemma

If |G| > 4 and G is edge-maximal with TK^5 , $TK_{3,3} \not\subseteq G$, then G is 3-connected.

References

 \bullet Diestel, Reinhard. Graph Theory. 5th ed. Berlin: Springer, 2018.

Thank You