Faster R-CNN

Towards Real-Time Object Detection with Region Proposal Networks

boat : 0.992

person : 0.691 person : 0.716

person : 0 person : 0.854 person : 0.9 person : 0.665

Faster R-CNN(NIPS 2015)

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

Abstract—State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a *Region Proposal Network* (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with "attention" mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (*including all steps*) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

Index Terms—Object Detection, Region Proposal, Convolutional Neural Network.

History(?) of R-CNN

- Rich feature hierarchies for accurate object detection and semantic segmentation(2013)
- Fast R-CNN(2015)
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(2015)
- Mask R-CNN(2017)

Faster R-CNN(RPN + Fast R-CNN)

 Insert a Region Proposal Network (RPN) after the last convolutional layer → using GPU!

 RPN trained to produce region proposals directly; no need for external region proposals

 After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Training Goal: Share Features classifier Rolpooling RPN proposals proposals Region Proposal Network from any algorithm feature map feature map Goal: share so CNN A CNN B CNN A == CNN B CNN A + RPN CNN B + detector

RPN

- Slide a small window on the feature map
- Build a small network for
 - Classifying object or not-object
 - Regressing bbox locations
- Position of the sliding window provides localization information with reference to the image
- Box regression provides finer localization information with reference to this sliding window

RPN

- Use k anchor boxes at each location
- Anchors are translation invariant: use the same ones at every location

Objectness scores

- Regression gives offsets from anchor boxes
- Classification gives the probability that each (regressed) anchor shows an object

Bounding Box Regression k anchor boxes 2k scores 4k coordinates cls layer reg layer 256-d intermediate layer sliding window conv feature map

RPN(Fully Convolutional Network)

- Intermediate Layer 256(or 512) 3x3 filter, stride 1, padding 1
- Cls layer 18(9x2) 1x1 filter, stride $_{1 \times 1 \text{ conv}}$ 1, padding 0
- Reg layer 36(9x4) 1x1 filter, stride
 1, padding 0

Anchors as references

- Anchors: pre-defined reference boxes
- Multi-scale/size anchors:
 - Multiple anchors are used at each position:
 - ➤ 3 scale(128x128, 256x256, 512x512) and 3 aspect rations(2:1, 1:1, 1:2) yield 9 anchors
 - Each anchor has its own prediction function
 - Single-scale features, multi-scale predictions

Positive/Negative Samples

- An anchor is labeled as positive if
 - The anchor is the one with highest IoU overlap with a ground-truth box
 - The anchor has an IoU overlap with a ground-truth box higher than 0.7
- Negative labels are assigned to anchors with IoU lower than 0.3 for all ground-truth boxes
- 50%/50% ratio of positive/negative anchors in a minibatch

RPN Loss Function

 N_{cls} = Number of anchors in minibatch (~ 256) N_{reg} = Number of anchor locations (~ 2400) In practice λ = 10, so that both terms are roughly equally balanced

4-Step Alternating Training


```
# Let M0 be an ImageNet pre-trained network
```

- train_rpn(M0) → M1 # Train an RPN initialized from M0, get M1
 generate_proposals(M1) → P1 # Generate training proposals P1 using RPN M1
 train_fast_rcnn(M0, P1) → M2 # Train Fast R-CNN M2 on P1 initialized from M0
- 4. train_rpn_frozen_conv(M2) → M3 # Train RPN M3 from M2 without changing conv layers
- 5. generate_proposals(M3) → P2
- 6. train_fast_rcnn_frozen_conv(M3, P2) → M4 # Conv layers are shared with RPN M3
- 7. return add_rpn_layers(M4, M3.RPN) # Add M3's RPN layers to Fast R-CNN M4

Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	69.9

Table 5: **Timing** (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. "Region-wise" includes NMS, pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

_	model	system	conv	proposal	region-wise	total	rate
-	VGG	SS + Fast R-CNN	146	1510	174	1830	0.5 fps
	VGG	RPN + Fast R-CNN	141	10	47	198	5 fps
_	ZF	RPN + Fast R-CNN	31	3	25	59	17 fps

Experiments

Table 1: the learned average proposal size for each anchor using the ZF net (numbers for s = 600).

anchor	128^2 , 2:1	128^2 , 1:1	128^2 , 1:2	256^2 , 2:1	256^2 , 1:1	256^2 , 1:2	512^2 , 2:1	512^2 , 1:1	512^2 , 1:2
proposal	188×111	113×114	70×92	416×229	261×284	174×332	768×437	499×501	355×715

Table 8: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different settings of anchors**. The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using 3 scales and 3 aspect ratios (69.9%) is the same as that in Table 3.

settings	anchor scales	aspect ratios	mAP (%)
1 scale, 1 ratio	128^{2}	1:1	65.8
1 Scale, 1 Tatio	256^{2}	1:1	66.7
1 scale, 3 ratios	128^{2}	{2:1, 1:1, 1:2}	68.8
1 scale, 5 fatios	256^{2}	{2:1, 1:1, 1:2}	67.9
3 scales, 1 ratio	$\{128^2, 256^2, 512^2\}$	1:1	69.8
3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

Table 9: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different values of** λ in Equation (1). The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using $\lambda = 10$ (69.9%) is the same as that in Table 3.

λ	0.1	1	10	100
mAP (%)	67.2	68.9	69.9	69.1

Experiments

Table 2: Detection results on **PASCAL VOC 2007 test set** (trained on VOC 2007 trainval). The detectors are Fast R-CNN with ZF, but using various proposals test-time region proposals.

	train-time region p	train-time region proposals		test-time region proposals	
	method	# boxes	method	# proposals	mAP (%)
	SS	2000	SS	2000	58.7
	EB	2000	EB	2000	58.6
	RPN+ZF, shared	2000	RPN+ZF, shared	300	59.9
	ablation experiments fo	ollow below			
	RPN+ZF, unshared	2000	RPN+ZF, unshared	300	58.7
	SS	2000	RPN+ZF	100	55.1
	SS	2000	RPN+ZF	300	56.8
	SS	2000	RPN+ZF	1000	56.3
	SS	2000	RPN+ZF (no NMS)	6000	55.2
	SS	2000	RPN+ZF (no cls)	100	44.6
	SS	2000	RPN+ZF (no cls)	300	51.4
Γ	SS	2000	RPN+ZF (no cls)	1000	55.8
	SS	2000	RPN+ZF (no reg)	300	52.1
	SS	2000	RPN+ZF (no reg)	1000	51.3
	SS	2000	RPN+VGG	300	59.2

Experiments

Table 3: Detection results on **PASCAL VOC 2007 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07+12": union set of VOC 2007 trainval and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository provided by this paper, this result is higher (68.1).

method	# proposals	data	mAP (%)
SS	2000	07	66.9 [†]
SS	2000	07+12	70.0
RPN+VGG, unshared	300	07	68.5
RPN+VGG, shared	300	07	69.9
RPN+VGG, shared	300	07+12	73.2
RPN+VGG, shared	300	COCO+07+12	78.8

Table 4: Detection results on **PASCAL VOC 2012 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07++12": union set of VOC 2007 trainval+test and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. †: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. ‡: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method	# proposals	data	mAP (%)
SS	2000	12	65.7
SS	2000	07++12	68.4
RPN+VGG, shared [†]	300	12	67.0
RPN+VGG, shared [‡]	300	07++12	70.4
RPN+VGG, shared§	300	COCO+07++12	75.9

Is It Enough?

- Rol Pooling has some quantization operations
- These quantizations introduce misalignments between the Rol and the extracted features
- While this may not impact classification, it can make a negative effect on predicting bbox

Thank You

boat: 0.992

