Josh Park MAUSU HW I Shkiedov

(.1)
$$\chi^3 - 3\chi + 1 = 0$$

 $\chi^3 - 3\chi = -1$ (1)

Let
$$\kappa = 2\cos\theta$$
. Then $8\cos^3\theta - 6\cos\theta = -1$

$$\Rightarrow 2\cos 3\theta = -1$$

$$3\theta = \frac{2}{3}\pi + 2k\pi, \frac{4}{3}\pi + 2k\pi$$
 (KEZ)

$$\Rightarrow 0_1 = \frac{2}{9}\pi \quad 0_2 = \frac{4}{9}\pi \quad 0_3 = \frac{8}{9}\pi$$

$$\Rightarrow \chi_1 = 2\cos\frac{2\pi}{9} \quad \chi_2 = 2\cos\frac{4\pi}{9} \quad \chi_3 = 2\cos\frac{8\pi}{9} \quad \mathbb{E}$$

$$A^{3}+B^{3}=3$$
 \Rightarrow $A^{3}=2$ \Rightarrow $A=3\sqrt{2}$ \Rightarrow $AB=3\sqrt{2}$ \Rightarrow $AB=3\sqrt{2}$

$$\kappa^{3} = ((+3)^{2})^{3} = A^{3} + B^{3} + 3AB(A+B) = 3+3\cdot 3/2 + 33/2^{2}$$

$$= > f(\kappa) = \kappa^{3} - 3\kappa^{3}/2 - 3 = [3+3\cdot 3/2 + 33/2] - 3^{3}/2 (1+3/2) - 3$$

$$= 3 + 3 \cdot 3/2 + 3^{3}/2^{2} - 3^{3}/2 - 3^{3}/2^{2} - 3^{3}/$$

2)
$$f(x) = x^{3} + ax^{2} + bx + C = 0$$

Want $x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{1}^{2} + x_{3}^{-1} + x_{3}^{-1}$
By Viete, (i) $x_{1} + x_{2} + x_{3} = -a$
(ii) $x_{1} x_{2} + x_{2} x_{3} + x_{1} x_{3} = b$
(iii) $x_{1} x_{2} + x_{3} = -C$
 $(x + \beta + \gamma)^{2} = x^{2} + \beta^{2} + \gamma^{2} + 2(x\beta + \beta \gamma + \alpha \gamma)$
 $\Rightarrow x^{2} + \beta^{2} + \gamma^{2} = (x + \beta + \gamma)^{2} - 2(x\beta + \beta \gamma + \alpha \gamma)$
 $\Rightarrow x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = (-a)^{2} - 2b$
 $= a^{2} - 2b$
 $x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = \frac{x_{1}x_{1} + x_{2}x_{3} + x_{1}x_{3}}{x_{1}x_{3}x_{3}} = \frac{b}{-C}$

 $\Rightarrow x_1^2 + x_2^2 + x_3^2 + x_1^2 + x_2^2 + x_3^2 = a^2 - 2b - \frac{b}{c}$

3)
$$f = f(x_1, x_2, x_3, x_4, x_5) = x_1 x_2 + x_2 x_2 + x_3 x_4 + x_4 x_5 + x_5 x_1$$

WTS stab(f) = $D_5 = \langle r, s | r^5 = s^2 = e, srs = r^{-1} \rangle$
Notice that

$$\Gamma = (12345): f \rightarrow \chi_{2}\chi_{3} + \chi_{3}\chi_{4} + \chi_{4}\chi_{5} + \chi_{5}\chi_{1} + \chi_{1}\chi_{2} = f$$

$$S = (23)(14): f \rightarrow \chi_{4}\chi_{3} + \chi_{3}\chi_{2} + \chi_{2}\chi_{1} + \chi_{1}\chi_{5} + \chi_{5}\chi_{4} = f$$

So r, sestab(f) and trivially |r|=5 and |s|=2.

By def group action, r(sf)=(rs)f.

Then
$$sestab(f) = r(sf) = rf = f = rsestab(f)$$
.

Also
$$S \cap S' = S \cap S = (23)(14)(12345)(23)(14) = (23451) = r^{-1}$$

Assume $\tau \in \text{Stab}(f)$.

$$\chi_1 \chi_2 \rightarrow \chi_2 \chi_3 \rightarrow \chi_3 \chi_4 \rightarrow \chi_4 \chi_5 \rightarrow \chi_5 \chi_5$$

The monomials of f form a 5-cycle in which a rotation preserves direction and reflection reverses it.

=> or must be not arref. to preserve the 5-cyclestructure of f.

$$\Rightarrow \sigma \in D_5 \Rightarrow \operatorname{Stab}(f) \leq D_5$$

$$=>$$
 Stab(f)=D₅

4.1) By def, $F = \sum_{h \in H} h \cdot f$.

Pick some heH.

$$\Rightarrow \hat{h} \cdot F = \hat{h} \cdot \sum_{h \in H} (h \cdot f) = \sum_{h \in H} (\hat{h} \cdot (h \cdot f)).$$

Det apaction => h. (h.f) = (h.h).f.

ByclosureofH, h.heH. Thus

$$\sum_{h \in H} ((h \cdot h) \cdot f) = \sum_{k \in \sigma H} k \cdot f = F$$

4.2) (=>) Followsfrom part 1. (=) Suppose we have some perm $\sigma \in S_n$. Assume oF=F. By part 1, $\sigma \cdot F = \sigma \cdot \sum_{h \in H} h \cdot f = \sum_{k \in \pi H} k \cdot f$ Note that since every exponent is unique, the monomial P.f is unique for each PESn. That is, given another perm MESn, $\sigma \cdot f = \mu \cdot f \iff \sigma = \mu$. So the sums 2 k.f and 2 h.f are equal (=) $\sigma H = H$. It is a basic property of cosets that TH=H (=) JeH. Thus OF=F=> JeH. @

5.1) Supp. $f(x_1, x_1)$ and $g(x_1, x_2)$ are skew-symmetric. WLOG, let $f(x_1,...,x_n) := \frac{f(-)}{g(-)}$. Then for any perm $\sigma \in S_n$, $\nabla \Psi = \frac{f(\chi_{\sigma(i)}, \dots, \chi_{\sigma(n)})}{g(\chi_{\sigma(i)}, \dots, \chi_{\sigma(n)})} = \frac{-f}{-g} = \Psi$ => 4 is symm by def symm. 5.2) Consider some transposition $\tau = (ij)$. Notice the only difference between \triangle and $\tau \triangle$ is the term $(x_i - x_j)$ in \triangle and $(x_j - x_i) = -(x_i - x_j)$ in $\tau \triangle$.

Thus transposing \triangle changes it by a factor of -1, exactly the def. of skew symm.

Mus Disskewsymm. D

5.3) Assuming the problem should say

3) Prove that any symmetric polynomial f is a product of Δ and another symmetric polynomial g.

Notice for some skew polynomial + (x,,..., xn), transposing x, and x, multiplies it by -1. If $x_i = x_i$, transposing by some τ does nothing = $f=\tau f$, but def skew = $f=-f \Rightarrow f=0$. I has bythe factor theorem, (xi-xi) divides f tor icj. Thus for skew f, $\triangle = TI(x_i - x_i)$ divides f. By the division algorithm $f = \Delta g + h$ for some polynom g, hbut we know q=0. Thus $f=\Delta g$. Now, for some perm J, we know Jf = -f and $\nabla f = \nabla(\Delta g) = (\nabla \Delta)(\nabla g) = -\Delta(\nabla g)$ so $-f = -\Delta(\sigma g) \Rightarrow f = \Delta(\sigma g)$. Thus $\triangle g = f = \triangle (\sigma g) = g = \sigma g$. Thus gis symmetric by det symmetric. 10