Mathematics in the Modern World

Emilio Aguinaldo College (slides)

Contents

Prelim	2
L-2 - Patterns	
Logic Patterns	
Geometric Patterns	
Word Patterns	2
Number Patterns	2
L-2-A Fibonacci Sequence	3
Leonardo of Pisa	3
Fibonacci Sequence	3
Fibonacci Rule	4
L-2-B Lucas Number	5

Prelim

L-2 - Patterns

• Visible regularity in world or man-made design.

G. H. Hardy

- British mathematician.
- Characterized mathematics as the study of patterns.

Logic Patterns

- Deals with characteristics of similar attribute with the following various:
 - objects (eg: shapes)
 - order (eg: placement)
 - sequence (eg: array)

Geometric Patterns

- Deals with a motif or design typically repeating like a wallpaper that depicts the following:
 - shapes,
 - lines,
 - polygons,
 - * circles.

Word Patterns

- Deals with metrical patterns of poems and syntatic patterns of how we make:
 - noun plurality,
 - past tense of verbs,
 - also supports mathematics,
 - also supports natural language understanding.
- Examples:
 - Letter jumbling (cryptography)
 - * Encryption: making the message not readable but keeps the meaning.
 - * Decryption: process of finding the meaning of the encrypted message.
 - Word associations

Number Patterns

- Deals with predition of the next term in a sequence.
- Leads directly to the concept of functions in mathematics.
 - Functions are formal descriptions of the relationships among different quantities

L-2-A Fibonacci Sequence

Leonardo of Pisa

- Also known as:
 - Leonardo Bigollo Pisano (Leonardo, traveller of Pisa),
 - Leonardo Bonacci,
 - Leonardo Fibonacci.
- European Mathematician.
 - Italian, from the Republic of Pisa.
- **Date** lived: 1175-1250
- Discovered the Fibonacci Sequence from:
 - how fast **rabbits breed** under ideal circumstances.

Fibonacci Sequence

• Series of numbers where the next term is found by adding the two previous terms

1 st -	2^{nd} -	3^{rd} -	$4^{ m th}$ -	$5^{ m th}$ -	$6^{ m th}$ -	$7^{ m th}$ -	8 th -	9 th -	10 th -
term									
1	1	2	3	5	8	13	21	34	55
11 st -	12 nd -	13 rd -	14 th -	15 th -	16 th -	17 th -	18 th -	19 th -	20 th -
term									
89	144	233	377	610	987	1,597	2,584	4,181	6,765
21 st -	22 nd -	23 rd -	24 th -	25 th -	26 th -	27 th -	28 th -	29 th -	30 th -
term	$_{ m term}$								
10,946	17,711	28,657	46,368	75,025	121,393	196,418	317,811	514,229	832,040

31 st term	32 nd term	$33^{\rm rd}$ term	$34^{\rm th}$ term	$35^{\rm th}~{\rm term}$
1,346,269	1,346,269	3,524,578	5,702,887	9,227,465

36 th term	$37^{\rm th}~{\rm term}$	38^{th} term	39^{th} term	$40^{\rm th}~{\rm term}$
14,930,352	24,157,817	39,088,169	63,245,986	102,334,155

41 st term	42 nd term	$43^{\rm rd}$ term	44 th term	45 th term
165,580,141	267,914,296	433,494,437	701,408,733	1,134,903,170

46 th term 47 th term		48 th term	49 th term	50 th term
1,836,311,903	2,971,215,073	4,807,526,976	7,778,742,049	12,586,269,025

Fibonacci Rule

 $x_{n} = x_{n\text{-}1} + x_{n\text{-}2}$

Where:

 \boldsymbol{x}_n is the term number "n"

 $\mathbf{x}_{\mathbf{n}\text{-}\mathbf{1}}$ is the previous term "n-1"

 $\mathbf{x}_{\text{n-2}}$ is the previous 2 terms "n-2"

L-2-B Lucas Number

1 st - term	2 nd - term	$3^{ m rd}$ - ${ m term}$	4 th - term	5 th - term	6 th - term	7 th - term	8 th - term	9 th - term	10 th - term
2	1	3	4	7	11	18	29	76	123
11 st -	12 nd -	13 rd -	14 th -	15 th -	16 th -	17 th -	18 th -	19 th -	20 th -
term									
199	322	521	843	1,364	2,207	3,571	5,778	9,349	15,127
21 st -	22 nd -	23 rd -	24 th -	25 th -	26 th -	27 th -	28 th -	29 th -	30 th -
term									
24,476	39,603	64,079	103,682	167,761	271,443	439,204	710,647	1,149,851	1,860,498

$\overline{31^{\rm st} \ {\rm term}}$	32 nd term	$33^{\rm rd}$ term	34 th term	35 th term
3,010,349	4,870,847	7,881,196	12,752,043	20,633,239

36 th term	$37^{\rm th}~{\rm term}$	$38^{\rm th}$ term	$39^{\rm th}$ term	$40^{\rm th}~{\rm term}$
33,385,282	54,018,521	87,403,803	141,422,324	228,826,127

41 st term	$42^{\rm nd}$ term	$43^{\rm rd}$ term	$44^{\rm th}~{\rm term}$	45 th term
370,248,451	599,074,578	969,323,029	1,568,397,607	2,537,720,636

46 th term 47 th term		$48^{\rm th}$ term	$49^{\rm th}~{\rm term}$	50^{th} term
4,106,118,243	6,643,838,879	10,749,957,122	17,393,796,001	28,143,753,123

8-22 ...

a. ...

There are three parts to this solution.

- 1. write the equations to solve the problem in R-readable strings.
- 2. loop over the list and eval(parse()) the equation strings
- 3. wrap strings in \$\$ \$\$ with cat(paste0())

Chunks should be set to echo=FALSE and results="asis. You may need to suppress some function output with invisible().