Application of Information Theory, Lecture 6 Counting

Handout Mode

Iftach Haitner

Tel Aviv University.

April 26, 2018

Graph Homomorphisms

Counting # of graph homomorphisms

- $ightharpoonup T = (V_T, E_T)$ directed graph (no self loops)
- $ightharpoonup G = (V_G, E_G)$

 $\blacktriangleright H = (V_H, E_H)$

- ▶ (x_1, x_2, x_3) is an homomorphism of G in T, if $x_1, x_2, x_3 \in V_T$ and $(i, j) \in E_G \implies (x_i, x_j) \in E_T$ (might be $x_1 = x_2$)
- Example: see board
- \blacktriangleright Hom(X, T): all homomorphisms of X in T
- ► Claim: $|\text{Hom}(H, T)| \le |\text{Hom}(G, T)|$
- Trivial if G would be a subgraph of H
- Special case of a more general theorem

Proving the claim

- $(X_{1}, X_{2}, X_{3}) \leftarrow \operatorname{Hom}(H, T)$ $\log |\operatorname{Hom}(H, T)| = H(X_{1}, X_{2}, X_{3})$ $= H(X_{1}) + H(X_{2}|X_{1}) + H(X_{3}|X_{1}, X_{2})$ $\leq H(X_{1}) + H(X_{2}|X_{1}) + H(X_{3}|X_{2})$ $= H(X_{1}) + 2 \cdot H(X_{2}|X_{1})$ (by symmetry of H)
- Let $D_2(x)$ be the distribution of $X_2|X_1=x$, and let $X_2'\sim D_2(X_1)$

$$H(X_1, X_2, X_2') = H(X_1) + H(X_2|X_1) + H(X_2'|X_1, X_2)$$

$$= H(X_1) + H(X_2|X_1) + H(X_2'|X_1)$$

$$= H(X_1) + 2 \cdot H(X_2|X_1)$$

- ► $(X_1, X_2) \in E_T$ and $(X_1, X_2') \in E_T$
- $\implies (X_1, X_2, X_2') \in \operatorname{Hom}(G, T)$
- $\implies H(X_1, X_2, X_2') \leq \log |\text{Hom}(G, T)|$
- \implies $\log |\text{Hom}(H, T)| \leq \log |\text{Hom}(G, T)|$. \square

Perfect Matchings. Skipped

Bregman's theorem

For bipartite graph G = (A, B, E), let $d(v) = |N(v)| = \{u \in B : (v, u) \in E\}|$

Theorem 1

Let G = (A, B, E) be bi-partite graph with |A| = |B|, and let \mathcal{M} be the perfect matchings in G. Then $|\mathcal{M}| \leq \prod_{v \in A} (d(v)!)^{1/d(v)}$.

- Let $A = B = [n] = \{1, ..., n\}$, and for $m \in \mathcal{M}$ let m(i) be the node in B matched with i by m.
- ▶ It is clear that $|\mathcal{M}| \leq \prod_{i \in [n]} d(i)$:

 $i \in [n]$

▶ Let $M \leftarrow \mathcal{M}$. Hence,

$$\begin{split} \log |\mathcal{M}| &= H(M) = H(M(1)) + H(M(2)|M(1)) + \ldots + H(M(n)|M(1), \ldots, M(n-1)) \\ &\leq H(M(1)) + H(M(2)) + \ldots + H(M(n)) \\ &\leq \log d(1) + \log d(2) + \ldots + \log d(n) \\ &= \log \prod d(i) \end{split}$$

Proving Bregman's theorem

Key observations:

$$H(M(i)|M(1),...,M(i-1)) \le \log |N(i) \setminus \{M(1),...,M(i-1)\}|$$

- ▶ Let \mathcal{P} be the set of all permutation over [n]. For $p \in \mathcal{P}$: $H(M) = H(M(p(1))) + \ldots + H(M(p(n))|M(p(1)), \ldots, M(p(n-1)))$
- ▶ $S_p(i) = \{j \in [n]: p^{-1}(j) < p^{-1}(i)\}$ matchings proceeding i w.r.t. p
- $\blacktriangleright \ H(M) = \sum_{i=1}^n H(M(i)|M(\mathcal{S}_p(i)))$
- ▶ For $m \in \mathcal{M}$ and $P \leftarrow \mathcal{P}$: $|N(i) \setminus m(\mathcal{S}_P(i))|$ is uniform over $\{1, \ldots, d(i)\}$
- $\implies E_P[H(M(i) \mid M(S_P(i)))] \le \frac{1}{d(i)} \sum_{k=1}^{d(i)} \log k = \log ((d(i)!)^{1/d(i)})$

$$\Longrightarrow$$

$$H(M) = \mathop{\mathbb{E}}_{P} \left[\sum_{i=1}^{n} H(M(i)|M(\mathcal{S}_{P}(i))) \right] = \sum_{i=1}^{n} \mathop{\mathbb{E}}_{P} \left[H(M(i)|\mathcal{S}_{P}(i)) \right]$$

$$\leq \log \prod_{i \in [n]} \left((d(i)!)^{1/d(i)} \right).$$

Shearer's Lemma

$$H(X_1, X_2, X_3)$$
 Vs. $H(X_1, X_2) + H(X_2, X_3) + H(X_3, X_1)$

- ► How does $H(X_1, X_2, X_3)$ compares to $H(X_1, X_2) + H(X_2, X_3) + H(X_3, X_1)$?
- ▶ If X_1, X_2, X_3 are independent, then $H(X_1, X_2, X_3) = \frac{1}{2} (H(X_1, X_2) + H(X_2, X_3) + H(X_3, X_1))$
- ► In general: $H(X_1, X_2, X_3) \le \frac{1}{2} (H(X_1, X_2) + H(X_2, X_3) + H(X_3, X_1))$
- ► A tighter bound than $H(X_1) + H(X_2) + H(X_3)$
- Proof:

$$2H(X_1, X_2, X_3) = 2H(X_1) +2H(X_2|X_1) +2H(X_3|X_1, X_2)$$

$$H(X_1, X_2) = H(X_1) +H(X_2|X_1)$$

$$H(X_2, X_3) = +H(X_2) +H(X_3|X_2)$$

$$H(X_1, X_3) = H(X_1) +H(X_3|X_1)$$

but

$$H(X_2|X_1) \le H(X_2)$$

 $H(X_3|X_1, X_2) \le H(X_3|X_1)$
 $H(X_3|X_1, X_2) \le H(X_3|X_2)$

Shearer's lemma

- \blacktriangleright Let $X = (X_1, \ldots, X_n)$
- ▶ For $S = \{i_1, \ldots, i_k\} \subset [n]$, let $X_S = (X_{i_1}, \ldots, X_{i_k})$
- Example: $X_{1,3} = (X_1, X_3)$

Lemma 2 (Shearer's lemma)

Let $X = (X_1, \dots, X_n)$ be a rv and let \mathcal{F} be a family of subset of [n] s.t. each $i \in [n]$ appears in at least m subset of \mathcal{F} . Then $H(X) \leq \frac{1}{m} \sum_{F \in \mathcal{F}} H(X_F)$.

Proof:

- ► $H(X) = \sum_{i=1}^{n} H(X_i | \{X_{\ell} : \ell < i\})$
- $\blacktriangleright H(X_F) = \sum_{i \in F} H(X_i | \{X_\ell : \ell < i \land \ell \in F\})$
- Let $F_{i,j}$ be the j'th family that contains X_i . Hence,

$$\sum_{F \in \mathcal{F}} H(X_F) \geq \sum_{i=1}^n \sum_{j=1}^m H(X_i | \{X_\ell \colon \ell < i \land \ell \in F_{i,j}\})$$

$$0 \geq m \cdot \sum_{i=1}^{n} H(X_i | \{X_\ell \colon \ell < i\}) = m \cdot H(X)$$

Corollary

Corollary 3

Let
$$\mathcal{F} = \{F \subseteq [n] \colon |F| = k\}$$
. Then $H(X) \leq \frac{n}{k} \cdot \frac{1}{\binom{n}{k}} \cdot \sum_{F \in \mathcal{F}} H(X_F) = \frac{n}{k} \cdot \mathsf{E}_{F \leftarrow \mathcal{F}} [H(X_F)].$

Proof: $\frac{k}{n} \cdot \binom{n}{k}$ is the # of times *i* appears in \mathcal{F} .

Implications:

- ▶ Let $Q \subseteq \{0,1\}^n$ and $X = (X_1, ..., X_n) \leftarrow Q$
- $|Q| \leq 2^{\frac{n}{k} \cdot \mathsf{E}_{F \leftarrow \mathcal{F}}[H(X_F)]}$
- ▶ $E_F[H(X_F)]$ is small $\implies Q$ is small
- ▶ Q is large \implies $E_F[H(X_F)]$ is large

Example

- ▶ $Q \subseteq \{0,1\}^n$ with $|Q| = 2^n/2 = 2^{n-1}$; $X \leftarrow Q$.
- $\blacktriangleright \ \mathcal{F} = \{ F \subseteq [n] \colon |F| = k \}$
- ▶ By Corollary 3, $\log |Q| = n 1 \le \frac{n}{k} \cdot E_{F \leftarrow \mathcal{F}} [H(X_F)]$
- \implies $\mathsf{E}_F[H(X_F)] \ge k(1-\frac{1}{n}) = k-\frac{k}{n}$
- $\implies \exists F \in \mathcal{F} \text{ s.t. } H(X_F) \geq k \frac{k}{n}$
 - ► Assume n = 1000 and k = 5, hence $H(X_F) \ge 5 \frac{1}{200}$
 - ► X_F takes at least $2^{5-\frac{1}{200}} = 2^{-\frac{1}{200}} \cdot 2^5 > 31$ (and hence 32) values
 - ▶ Stronger conclusion: X_F is close to the uniform distribution.

More generally

- $|Q| \geq \frac{1}{2^d} \cdot 2^n; X \leftarrow Q$
- $F = \{ F \subseteq [n] \colon |F| = k \}$
- ▶ $n-d \le H(X) \le \frac{n}{k} \cdot \frac{1}{|\mathcal{F}|} \cdot \sum_{F \in \mathcal{F}} H(X_F)$
- $\implies \frac{1}{|\mathcal{F}|} \cdot \sum_{F \in \mathcal{F}} H(X_F) \ge k \frac{dk}{n}$
- $\implies \mathsf{E}_{F \leftarrow \mathcal{F}} [H(X_F)] \geq k \frac{dk}{n}$
 - ▶ If dk << n, then $\exists F \in \mathcal{F}$ s.t. X_F is close to the uniform distribution (over k bits)

Gold Coins

of gold coins in a cube

- ightharpoonup Q (finite) set of points in \mathbb{R}^3
 - $|Q_{x,y}| = 6$ (i.e., # of projection points of Q on xy)
 - $|Q_{x,z}|=8$
 - ► $|Q_{v,z}| = 12$
- ► Can we bound |Q|?
- ► The real story
- $\blacktriangleright \ \ X = (X_1, X_2, X_3) \leftarrow Q$

$$\begin{aligned} \log |Q| &= H(X) \le \frac{1}{2} (H(X_1, X_2) + H(X_1, X_3) + H(X_2, X_3)) \\ &\le \frac{1}{2} (\log 6 + \log 8 + \log 12) \\ &= \frac{1}{2} (\log 6 \cdot 8 \cdot 12). \end{aligned}$$

- ► Hence, $|Q| \le \sqrt{6 \cdot 8 \cdot 12} = 24$
- Can it be 24? What is the minimal number?

of gold coins, the hyperspace case

- \triangleright Q (finite) set of points in \mathbb{R}^n
- $ightharpoonup m_i$ —# of coins in projection on $(1, \ldots, i-1, i+1, \ldots, n)$
- ► Claim: $|Q| \le (\prod_{i \in [n]} m_i)^{1/(n-1)}$
- ▶ Proof: $X = (X_1, ..., X_n) \leftarrow Q, X_{-i} = (X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$
- ▶ $\log |Q| = H(X) \le \frac{1}{n-1} \sum_{i} H(X_{-i}) \le \frac{1}{n-1} \sum_{i} \log m_{i}$

Independent Sets

of independent sets in bipartite graphs

Theorem 4

Let G = (A, B, E) be an n-regular bipartite graph with |A| = |B| = m. Then the number of independent sets in G is at most $2^{m(1+1/n)}$.

Proof: \mathcal{I} — set of independent sets in G.

▶ Let
$$I \leftarrow \mathcal{I}$$
, let $X_v = 1$ iff $v \in I$, and $X_S = \{X_v : v \in S\}$.

$$H(I) = H(X_A|X_B) + H(X_B)$$

$$\leq \sum_{v \in A} H(X_v|X_B) + \frac{1}{n} \sum_{v \in A} H(X_{N(v)}) \qquad \text{(rhs by Sherer's Lemma)}$$

$$\leq \sum_{v \in A} \left(H(X_v|X_{N(v)}) + \frac{1}{n} H(X_{N(v)}) \right)$$

- Fix $v \in A$. Let $\chi_v = \begin{cases} 0, & X_{N(v)} = 0^{|N(v)|} \\ 1, & \text{otherwise.} \end{cases}$, and $p = p(v) = \Pr\left[\chi_v = 0\right]$
- $H(X_{\nu}|X_{N(\nu)}) \leq H(X_{\nu}|\chi_{\nu}) \leq p$
- $\qquad \qquad \vdash H(X_{N(v)}) = H(\chi_v, X_{N(v)}) = H(\chi_v) + H(X_{N(v)}|\chi_v) \leq h(p) + (1-p)\log(2^n 1)$
- ► Hence $H(I) \le \sum_{v \in A} p(v) + \frac{1}{n} (h(p(v)) + (1 p(v)) \log(2^n 1))$

of independent sets in bipartite graphs, cont.

- ▶ $\log |\mathcal{I}| = H(I) \le \sum_{v \in A} p(v) + \frac{1}{n} (h(p(v)) + (1 p(v)) \log(2^n 1))$
- ► Let $f(t) := t + \frac{1}{n} (h(t) + (1-t) \log(2^n 1))$
- ▶ By calculus, $\max_{t \in [0,1]} f(t) = \frac{1}{n} \log(2^{n+1} 1)$
- ▶ Hence, $\log |\mathcal{I}| \leq \frac{m}{n} \log(2^{n+1} 1)$. \square

Intersecting Graphs, Skipped

Another corollary of Shearer's lemma

Corollary 5

Let \mathcal{A} and \mathcal{F} be collections of subsets of [n], and for $F \in \mathcal{F}$ let \mathcal{A}_F be the collection $\{A \cap F \colon A \in \mathcal{A}\}$. Assume that each element of [n] appears in at least m subsets of \mathcal{F} , then $|\mathcal{A}|^m \leq \prod_{F \in \mathcal{F}} |\mathcal{A}_F|$.

Proof:

- ▶ Let $X = (X_1, ..., X_n) \leftarrow A$.
- ▶ $\log |A_F| \ge H(X_F)$ (Supp $(X_F) \subseteq A_F$)
- ▶ By Shearer's lemma, $\log |\mathcal{A}| = H(X) \leq \frac{1}{m} \sum_{F \in \mathcal{F}} H(X_F)$. \Box

of intersecting graphs

Theorem 6

Let $\mathcal G$ be a family of graphs over [n], s.t. $G \cap G'$ contains a triangle for each $G, G' \in \mathcal G$. Then $|\mathcal G| \le 2^{\binom{n}{2}-2}$.

This improves over $|\mathcal{G}| \leq 2^{\binom{n}{2}-1}$, which follows from $G \cap G' \neq \emptyset$. (wlg. all graph shares the same edge)

Proof:

- ▶ We focus on even n, and view graphs over [n] as subsets $[\binom{n}{2}]$
- ▶ For $\frac{n}{2}$ -size set $S \subset [n]$, let F = F(S) be union of the cliques S and $[n] \setminus S$
- ▶ $F \cap G \cap G' \neq \emptyset$, for any $G, G' \in G$ and S as above
- ▶ Hence $|\mathcal{G}_F := G \cap F : G \in \mathcal{G}| \le 2^{|F|-1}$
- ▶ Let $m = \binom{n}{2}$ and $m' = |F| = n(\frac{n}{2} 1)$
- ► Each edge over $[n] \times [n]$, appears in $\frac{m'}{m}$ of graphs $\{F(S)\}_{S \subset [n]: |S| = \frac{n}{2}}$.
- ▶ By Corollary 5, $|\mathcal{G}|^{\frac{m'}{m} \cdot \binom{n}{n/2}} \le (2^{m'-1})^{\binom{n}{n/2}}$
- ► Hence, $|\mathcal{G}| \le 2^{m \frac{m}{m'}} \le 2^{\binom{n}{2} 2}$