ALGEBRA II ALGEBRA UND ZAHLENTHEORIE PROSEMINAR WS 2014/15

- 1. Let $n \geq 2$. Determine the unit group and the set of zero-divisors of $\mathbb{Z}/n\mathbb{Z}$ an.
- 2. Let R be a Euclidean domain. Show that R is a principal ideal domain.
- **3.** Let R be a ring and $I \triangleleft R$ an ideal. Desribe the ideals in the factor ring R/I.
- 4. Every noetherian domain is atomic.
- 5. Every principal ideal domain is factorial (use Lemma 1.5!).
- **6.** A finite monoid is an abelian group, and a finite domain is a field.
- 7. Let H be a GCD-monoid. Then every $x \in \mathsf{q}(H)$ has a unique representation in the form $x = a^{-1}b$ where $a, b \in H$ and $\mathrm{GCD}(a, b) = H^{\times}$. Moreover, the classes $[a]_{\simeq}$ and $[b]_{\simeq}$ are uniquely determined by x.
 - **8.** Let $R = \mathbb{Z}[\sqrt{-5}]$, a = 6 and $b = 2(1 + \sqrt{-5})$. Then $GGT(a, b) = \emptyset$.
- **9.** Let R be a domain and $a \in R^{\bullet}$. Then a is a prime element if and only if aR is a prime ideal.

Let R be a commutative ring.

- 10. Find all simple abelian groups.
- **11.** Let M be an R-module, $\operatorname{End}_R(M)$ its endomorphism ring and $R_M = \{\lambda \cdot \operatorname{id}_M \mid \lambda \in R\} \subset \operatorname{End}_R(M)$ the ring of homotheties of M. Then $R_M \cong R/\operatorname{Ann}_R(M)$.
 - 12. Let M be an R-module.
 - (a) M is simple if and only if M = Rx for all $0 \neq x \in M$.
 - (b) Give an example of a cyclic module which is not simple.
 - (c) If M simple, then $\operatorname{End}_R(M)$ is a division ring.
 - **13.** Let $n \in \mathbb{N}$.
 - (a) End $_R(R^n) \cong M_n(R)$.
 - (b) For every prime $p \in \mathbb{N}$ we have $\operatorname{End}_{\mathbb{Z}}((\mathbb{Z}/p\mathbb{Z})^n) \cong M_n(\mathbb{Z}/p\mathbb{Z})$.
 - (c) For every R-module M we have $\operatorname{End}_R(M^n) \cong M_n(\operatorname{End}_R(M))$.

 $\underline{\text{Hint:}}\ f \mapsto (p_i \circ f \circ \epsilon_j)_{1,i,j \leq n}$

- **14.** Let $I_1, \ldots, I_n \triangleleft R$ be ideals of R and let M be an R-module. Then the following statements are equivalent:
 - (a) $M \cong R/I_1 \oplus \cdots \oplus R/I_n$.
 - (b) There exist cyclic submodules $C_1, \ldots, C_n \subset M$ with $\operatorname{ann}_R(C_j) = I_j$ for all $j \in [1, n]$, such that $M = \bigoplus_{i=1}^n C_i$.
 - 15. Give a proof of Lemma 2.8.

- **16.** Let M be a free R-module of rank n and N a free R-module of rank m.
- 1. If $\mathbf{u} = (u_1, \dots, u_n)$ is a basis of $M, \mathbf{v} = (v_1, \dots, v_m)$ a basis of N and $\varphi \in \operatorname{Hom}_R(M, N)$, then there exists a unique matrix $\mathcal{M}_{\mathbf{u}, \mathbf{v}}(\varphi) \in M_{m,n}(R)$ with $(\varphi(u_1), \dots, \varphi(u_n)) = (v_1, \dots, v_m) \mathcal{M}_{\mathbf{u}, \mathbf{v}}(\varphi)$.
- 2. For every $A \in M_{m,n}(R)$, the map $\theta_A \colon R^n \to R^m$ with $\theta_A(x) = Ax$ is an R-module homomorphism.
- 3. The map $\kappa_{\boldsymbol{u}} \colon R^n \to M$ with $\kappa_{\boldsymbol{u}}(\boldsymbol{\lambda}) = \sum_{i=1}^n \lambda_i u_i$ is an R-module isomorphism ($\kappa_{\boldsymbol{u}}$ ist die Koordinatenabbildung!).
- 4. The map

$$\mathcal{M}_{\boldsymbol{u},\boldsymbol{v}} : \begin{cases} \operatorname{Hom}_{R}(M,N) & \to & M_{m,n}(R) \\ \varphi & \mapsto & \mathcal{M}_{\boldsymbol{u},\boldsymbol{v}}(\varphi) \end{cases}$$

is an R-module isomorphism.

- 17. Let R be a domain with quotient field K, and let $M \subset K$ be an R-submodule. Then M is free if and only if M is cyclic.
 - 18. Let $R = \mathbb{Z}[\sqrt{-5}]$ and $M = \langle 2, 1+\sqrt{-5} \rangle$ the R-module generated by 2 and $1+\sqrt{-5}$.
 - 1. M is not a free R-module.
 - 2. $M \times M$ is a free R-module of rank two. Hint: Show that $M \times M = \langle (2, 1 + \sqrt{-5}), (1 - \sqrt{-5}, 2) \rangle$.
 - 19. Let M be an R-module.
 - 1. If $\pi: M \to F$ is an R-module epimorphism onto a free module F and $(x_i)_{i \in I}$ a family in M whose image $(\pi(x_i)_{i \in I})$ is a basis of F, then

$$M = \operatorname{Ker}(\pi) \oplus \left(\bigoplus_{i \in I} Rx_i \right).$$

Do we always have such a family $(x_i)_{i \in I}$?

- 2. (Basis Extension Theorem) If $N \subset M$ is a free submodule such that M/N is free, then each basis of N can be extended to a basis of M (give a precise formal formulation; the proof follows immediately from 1.).
- **20.** Let M be a finitely generated free R-module, $N \subset M$ an R-submodule and $\varphi \in \operatorname{End}_R(M)$. If R is a field, then the following statements hold true:
 - 1. N is free.
 - 2. N is a direct summand of M.
 - 3. If φ is a monomorphism, then φ is an epimorphism.
 - 4. $\operatorname{rk}(M) = \operatorname{rk}(\operatorname{Ker}(\varphi)) + \operatorname{rk}(\operatorname{Im}(\varphi))$.
 - Do 1. 4. hold true for general rings?

21. Let M be a noetherian R-module. Then $R/\operatorname{Ann}_R(M)$ is a noetherian ring.

Hint: Set $M =_R \langle x_1, \dots, x_n \rangle$; then $\operatorname{Ann}_R(M) = \bigcap_{i=1}^n \operatorname{Ann}_R(x_i)$; proceed by induction on n; use Theorem 2.34 to do the induction step.

- **22.** Let R be a domain and M an R-module.
- 1. Then $M_{\text{tor}} = \{x \in M \mid \text{Ann}_R(x) \neq 0\} \subset M$ is an R-submodule (M_{tor} is called the torsion module of M. M is called R-torsion free if $M_{\text{tor}} = 0$, and M is called a R-torsion module if $M_{\text{tor}} = M$).
- 2. If M is a finitely generated R-torsion module, then $\operatorname{Ann}_R(M) \neq 0$.
- 3. If M is R-free, then M is R-torsion free. Give an example showing that the reverse implication does not hold.

Let S be a commutative ring with $R \subset S$.

- **23.** The set $\mathfrak{f}_{S/R} = \{a \in S \mid aS \subset R\} = \operatorname{ann}_R(S/R)$ is the largest ideal of S, which is also an ideal of R ($\mathfrak{f}_{S/R}$ is called the *conductor* of R in S).
- **24.** If R is a domain and S a finitely generated R-module with $S \subset q(R)$, then $\mathfrak{f}_{S/R} \neq \{0\}$.
 - **25.** If R is a noetherian domain and $\mathfrak{f}_{S/R} \neq \{0\}$, then S is a finitely generated R-module.
- **26.** Suppose that S is a finitely generated R-module and R is a noetherian ring. Then S is a noetherian ring.

Note: the Theorem of Eakin-Nagata provides a converse: if S is a finitely generated R-module and S a noetherian ring, then R is a noetherian ring.

- **27.** Let M be a non-zero R-module. Then the following statements are equivalent:
- (a) M is indecomposable.
- (b) 0 and 1 are the only idempotents of $\operatorname{End}_R(M)$.

Hint: If $f \in \operatorname{End}_R(M) \setminus \{0,1\}$ is idempotent, then $M = f(M) \oplus \operatorname{Ker}(f)$.

28. Let I, J be non-principal ideals of R such that I+J=R. Then $I\oplus J\cong R\oplus (I\cap J)$. Compare the statement with Theorem 2.50.

Hint: Let $a \in I$ and $b \in J$ with a+b=1. Show that $\varphi \colon I \oplus J \to R \oplus (I \cap J)$, defined by $(x,y) \mapsto (x+y,bx-ay)$ and $\psi \colon R \oplus (I \cap J) \to I \oplus J$, defined by $(r,s) \mapsto (ar+s,br-s)$ are inverse to each other.

29. Let
$$R = \mathbb{Z}$$
, $n \in \mathbb{N}_{\geq 2}$ and $n = p_1 \cdot \ldots \cdot p_r$ with $r \in \mathbb{N}$ and $p_1, \ldots, p_r \in \mathbb{P}$. Then $\mathbb{Z}/n\mathbb{Z} \supset p_1\mathbb{Z}/n\mathbb{Z} \supset p_1p_2\mathbb{Z}/n\mathbb{Z} \supset \ldots \supset p_1 \cdot \ldots \cdot p_{r-1}\mathbb{Z}/n\mathbb{Z} \supset 0$

is a composition series with composition factors $(\mathbb{Z}/p_1\mathbb{Z}, \ldots, \mathbb{Z}/p_r\mathbb{Z})$, and this give a further proof of the Fundamental Theorem of Arithmetic in \mathbb{Z} .

- **30.** Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/20\mathbb{Z} \oplus \mathbb{Z}/27\mathbb{Z}$. Find a composition series of M.
- **31.** If M is a finitely generated R-module and N a noetherian R-module, then the R-module $\operatorname{Hom}_R(M,N)$ is noetherian. Give an example that even for vector spaces the assumption that M is finitely generated cannot be dropped.
- **32.** (Example 16, continued). Let M be a free R-module of rank n, $\mathbf{u} = (u_1, \ldots, u_n)$ a basis of M, N a free R-module of rank m, $\mathbf{v} = (v_1, \ldots, v_m)$ a basis of N, and let $\varphi \in \operatorname{Hom}_R(M, N)$.
 - (a) If \boldsymbol{u}' is a further basis of M and \boldsymbol{v}' a further basis of N, then there exist matrices $S \in \operatorname{GL}_n(R)$ and $T \in \operatorname{GL}_m(R)$ such that $\boldsymbol{u}' = \boldsymbol{u}S$, $\boldsymbol{v}' = \boldsymbol{v}T$, and we have $\mathcal{M}_{\boldsymbol{u}',\boldsymbol{v}'}(\varphi) = T^{-1}\mathcal{M}_{\boldsymbol{u},\boldsymbol{v}}(\varphi)S$.
 - (b) Two matrices $A, B \in M_{m,n}(R)$ are called *equivalent* (Notation, $A \sim B$) if there exist matrices $U \in GL_m(R)$ and $V \in GL_n(R)$ such that B = UAV. Then \sim is an equivalence relation on $M_{m,n}(R)$, and the equivalence class of $\mathcal{M}_{u,v}(\varphi)$ is uniquely determined by φ .
 - (c) If P is a free R-module with basis $\boldsymbol{w} = (w_1, \dots, w_q)$ and $\psi \in \operatorname{Hom}_R(N, P)$, then $\mathcal{M}_{\boldsymbol{u}, \boldsymbol{w}}(\psi \circ \varphi) = \mathcal{M}_{\boldsymbol{v}, \boldsymbol{w}}(\psi) \mathcal{M}_{\boldsymbol{u}, \boldsymbol{v}}(\varphi)$.

Links:

Osterreichische Mathematische Gesellschaft: http://www.oemg.ac.at

Deutsche Mathematiker Vereinigung: https://dmv.mathematik.de/

European Mathematical Society: http://www.euro-math-soc.eu/

American Mathematical Society: http://www.ams.org/home/page

MathSciNet: http://www.ams.org/mathscinet

https://zbmath.org/: Zentralblatt

Number Theory Web: http://www.numbertheory.org/ Commutative Algebra Web: http://www.commalg.org/

- **33.** Let M be an R-module, F a free R-module, and $g: M \to F$ be an R-epimorphism. Then there exists an R-monomorphism $\psi \colon F \to M$ such that $g \circ \psi = \mathrm{id}_F$, and for every such ψ we have $M = \text{Ker}(g) \oplus \text{Im}(\psi)$.
- **34.** Let M be a free R-module with basis $(u_i)_{i\in I}$. For $i\in I$, let $u_i^*\in \operatorname{Hom}_R(M,R)$ denote the unique R-homomorphism satisfying $u_i^*(u_j) = \delta_{i,j}$ for all $j \in I$.
 - 1. Then $(u_i^*)_{i \in I}$ is R-linear independent.
 - 2. If I is finite, then $(u_i^*)_{i\in I}$ is an R-basis of $\operatorname{Hom}_R(M,R)$. In this case $(u_i^*)_{i\in I}$ is called the dual basis with respect to $(u_i)_{i \in I}$.

35.

- 1. If M is a finitely generated R-module and $N \subseteq M$ a submodule, then there exists a maximal submodule $N' \subseteq M$ with $N \subset N'$.
- 2. The \mathbb{Z} -module \mathbb{Q} has no maximal submodules.
- **36.** Let S be a commutative ring, $f: R \to S$ a ring homomorphism, and $Q \subset S$ a prime ideal.
 - 1. $f^{-1}(Q) \subset R$ is a prime ideal.
 - 2. If f is surjective and Q a maximal ideal, then $f^{-1}(Q) \subset R$ is maximal. Give an example that the conclusion does not hold without the assumption that f is surjective.
 - **37.** The following statements are equivalent:
 - (a) $|\max(R)| = 1$.
 - (b) $R \setminus R^{\times} \subset R$ is an ideal.
 - **38.** Let $p \in \mathbb{P}$ and $\mathbb{Z}_{(p)} = \{x \in \mathbb{Q} \mid x = \frac{a}{s} \text{ mit } a \in \mathbb{Z}, s \in \mathbb{N} \text{ and } p \not | s \}$.
 - 1. $\mathbb{Z}_{(p)}$ is a principal ideal domain.
 - 2. $p\mathbb{Z}_{(p)}$ is the only nonzero prime ideal of $\mathbb{Z}_{(p)}$, $\mathbb{Z}_{(p)}^{\times} = \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ and $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \cong \mathbb{F}_p$.
 - 3. Every $u \in \mathbb{Z}_{(p)} \setminus \{0\}$ has a unique representation $u = p^n \epsilon$ with $n \in \mathbb{N}$ and $\epsilon \in \mathbb{Z}_{(p)}^{\times} .$ 4. $\mathbb{Z} = \bigcap_{q \in \mathbb{P}} \mathbb{Z}_{(q)}.$
- **39.** Let $I \triangleleft R$ be an ideal with $I = {}_{R}\langle a_1, \ldots, a_k \rangle$. Then $I^{nk} \subset {}_{R}\langle a_1^n, \ldots, a_k^n \rangle$ for all $n \in \mathbb{N}$.

- **40.** Let M be an R-module and $I \subset \mathcal{J}(R)$ an ideal $(\mathcal{J}(R))$ is the Jacobson radical).
 - 1. If M is finitely generated and IM = M, then M = 0.
 - 2. If $N \subset M$ is a submodule such that M/N is finitely generated and M = N + IM, then M = N.
- **41.** If R is a commutative ring and $\Sigma \subset \operatorname{spec}(R)$ is a chain, then

$$\mathfrak{a} = \bigcup_{\mathfrak{p} \in \Sigma} \mathfrak{p} \quad \text{und} \quad \mathfrak{b} = \bigcap_{\mathfrak{p} \in \Sigma} \mathfrak{p}$$

prime ideals of R.

- **42.** Let $R = \mathbb{Z}$ and $I \subset R$ an ideal. Determine $\mathcal{V}(I)$.
- **43.** Let K be a field and $0 \neq I \triangleleft K[X]$. By Theorem 3.18 there are $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \in \mathcal{P}(I)$ with $\mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_n \subset I$. Give an interpretation of these deals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$?
- **44.** Let R be a commutative ring with $R \neq 0$. Then the following statements are equivalent:
 - (a) R has precisely one prime ideal.
 - (b) Every element is either a unit or nilpotent.

Give an example of such a ring!

- **45.** Let R be an artinian commutative ring.
 - 1. $\mathcal{J}(R)$ equals the set of all nilpotent elements.
- 2. R has only finitely many maximal ideals. Hint: $\Omega = \{\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n \mid n \in \mathbb{N}, \mathfrak{m}_i \in \max(R)\}$ has a minimal element.
- **46.** Let R_1 and R_2 be commutative rings, $R = R_1 \times R_2$, and $I \subset R$ a subset.
- 1. I is an ideal of R if and only if $I = I_1 \times I_2$ with $I_j \subset R_j$ is an ideal for $j \in [1, 2]$.
- 2. Suppose that $I = I_1 \times I_2 \triangleleft R$.
 - (a) $R/I \cong R_1/I_1 \times R_2/I_2$.
 - (b) $I \in \operatorname{spec}(R)$ if and only if $\left(I_1 = R_1 \text{ and } I_2 \in \operatorname{spec}(R_2)\right)$ or $\left(I_2 = R_2 \text{ and } I_1 \in \operatorname{spec}(R_1)\right)$.
- **47.** For $p \in \mathbb{P}$ let

$$\mathbb{Z}(p^{\infty}) = \left\{ \frac{m}{p^k} + \mathbb{Z} \mid m \in \mathbb{Z}, k \in \mathbb{N} \right\} \subset \mathbb{Q}/\mathbb{Z}.$$

- 1. $\mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}(p^{\infty}).$
- 2. $\mathbb{Z}(p^{\infty})$ is an artinian but not a noetherian \mathbb{Z} -module. Hint: Show that every proper subgroup is finite.

- **48.** Let R be a commutative ring and A an R-algebra (e.g, a polynomial ring over R, a matrix ring over R, or a semigroup algebra).
 - 1. If $I \subset A$ is a left ideal, then I is an R-submodule.
 - 2. If R is noetherian (artinian) and A a finitely generated R-module, then A is left noetherian (left artinian). In particular, every finite dimensional K-algebra over a field K is an artinian ring.
- **49.** A commutative ring R is called reduced if 0 is the only nilpotent element. Give an example of a reduced ring.
 - 1. If $I \triangleleft R$ is a radical ideal, then R/I is reduced.
 - 2. Let L/K be a field extension, $n \in \mathbb{N}$ and $V \subset L^n$ a K-variety. The K-algebra $K[V] := K[X]/\mathcal{J}(V)$ is called the coordinate ring of the variety V. Show that the ring K[V] is reduced.
 - **50.** Let R be a commutative ring and $I \triangleleft R$ an ideal.
 - 1. If R is noetherian and I a radical ideal, then I is the intersection of finitely many minimal prime ideals lying over I.
 - 2. If $I = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_r = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_s$ with prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{q}_s, \mathfrak{p}_i \not\subset \mathfrak{p}_j$ and $\mathfrak{q}_k \not\subset \mathfrak{q}_l$ for all $i \neq j \in [1, r]$ and all $k \neq l \in [1, s]$, then $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\} = \{\mathfrak{q}_1, \ldots, \mathfrak{q}_s\}$.
- **51.** Let L/K be a field extension, $n \in \mathbb{N}$ and $V \subset L^n$ a K-variety. Then the following statements are equivalent:
 - (a) V is irreducible (this means, if $V = V_1 \cup V_2$ with K-varieties V_1 and V_2 , then $V = V_1$ or $V = V_2$).
 - (b) The vanishing ideal $\mathcal{J}(V) \subset K[X]$ is a prime ideal.
- **52.** Let L/K be a field extension, L algebraically closed, $n \in \mathbb{N}$ and $V = \mathcal{V}_L(\mathfrak{a}) \subset L^n$ a K-variety with $\mathfrak{a} \triangleleft K[X]$.
 - 1. V is the union of finitely many irreducible K-varieties, which do not contain each other: $V = V_1 \cup \ldots \cup V_s$
 - 2. If $\mathcal{J}(V) = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_r$ with pairwise distinct minimal prime ideals lying over \mathfrak{a} , then r = s and (after renumbering if necessary) $V_i = \mathcal{V}_L(\mathfrak{p}_i)$ for all $i \in [1, r]$.

53. Every factorial domain is integrally closed.

Hint: Consider an element $x = c^{-1}b \in q(R) = K$ and an integral equation of x.

- **54.** Let R be an integrally closed domain and $f, g \in R[X]$ relatively prime (i.e., there is no $h \in R[X] \setminus R$ such that $h \mid f$ and $h \mid g$). Then there are $p, q \in R[X]$ with $pf + qg \in R^{\bullet}$. Hint: Consider the ideal $\langle f, g \rangle \triangleleft K[X]$ with K = q(R), and use Corollary 4.8.
- **55.** Let K be a field and $\overline{K} \supset K$ an algebraic closure. A subset $C \subset \overline{K}^2$ is called an affine curve (defined over K) if there is an $f \in K[X,Y] \setminus K$ with $C = \mathcal{V}_{\overline{K}}(f)$.

If $f, g \in K[X, Y] \setminus K$ are relatively prime, then $|\mathcal{V}_{\overline{K}}(f) \cap \mathcal{V}_{\overline{K}}(g)| < \infty$ (i.e., the affine curves intersect in only finitely many points).

Hint: Consider $f, g \in R_1[Y]$ where $R_1 = K[X]$ and use 55; then consider $f, g \in R_2[X]$ and use 55. Take $(\alpha, \beta) \in \mathcal{V}_{\overline{K}}(f) \cap \mathcal{V}_{\overline{K}}(g)$.

- **56.** Let $R \subset S$ be an integral ring extension and $Q \triangleleft S$ an ideal. Then $R/(Q \cap R) \subset S/Q$ is an integral ring extension.
 - **57.** Let K be an algebraic number field, R its ring of integers, and $P \in \max(R)$.
 - 1. There is precisely one prime $p \in \mathbb{P}$ with $p \in P$.
 - 2. For a prime $p \in \mathbb{P}$ the following statements are equivalent:
 - (a) $p \in P$.
 - (b) $P \cap \mathbb{Z} = p\mathbb{Z}$.
 - (c) N(P) is a power of p.
- **58.** Let K be an algebraic number field with $[K:\mathbb{Q}]=n$ and R its ring of integers. Let $p\in\mathbb{P}$ and $pR=P_1^{e_1}\cdot\ldots\cdot P_g^{e_g}$ where $g,e_1,\ldots,e_g\in\mathbb{N}$ and $P_1,\ldots,P_g\in\max(R)$ are pairwise distinct. Then $\sum_{i=1}^g e_i f_i=n$ where $f_i=[R/P_i:\mathbb{Z}/p\mathbb{Z}]=f_i$ for all $i\in[1,g]$.