Математический анализ-2

Лектор: проф. Подольский Владимир Евгеньевич $21~{\rm мартa}~2025~{\rm r}.$

Конспект: Кирилл Яковлев, Егор Соколов, 108 группа

Telegram: @fourkenz GitHub: yakovlevki

Содержание

1	Hec	определенный интеграл	3
	1.1	Первообразная и неопреленный интеграл	3
	1.2	Свойства неопределённого интеграла	3
	1.3	Таблица неопределенных интегралов	4
	1.4	Интегрирование рациональных функций	5
	1.5	Метод Остроградского	7
2	Интеграл Римана		
	2.1	Интегрируемость по Риману	7
	2.2	Суммы Дарбу. Критерий Дарбу интегрируемости по Риману	S
	2.3	Классы интегрируемых функций	11
	2.4	Критерий Лебега интегрируемости по Риману	12
	2.5	Свойства интеграла Римана	12
	2.6	Первая теорема о среднем	16
	2.7	Интеграл с переменным верхним пределом	17
	2.8	Формула Ньютона-Лейбница	18
	2.9	Замена переменной и интегрирование по частям	19
3	Спрямляемые кривые и квадрируемые фигуры		20
	3.1	K ривая в \mathbb{R}^n	20
	3.2	Спрямляемость гладкой кривой и формула ее длины	21
	3.3	Квадрируемые фигуры	22
	3.4	Первый и второй критерии квадрируемости	24
	3.5	Квадрируемость простой спрямляемой кривой и криволинейной	
		трапении	25

1 Неопределенный интеграл

1.1 Первообразная и неопреленный интеграл

Определение. Пусть f(x) определена на (a,b). Если существует F(x) определенная на (a,b) такая, что $F(x) \in \mathcal{D}(a,b)$ и F'(x) = f(x), то F(x) называется первообразной функцией для f(x).

Определение. Пусть f(x) определена на (a,b). Совокупность всех первообразных функций для f(x) называется неопределённым интегралом f(x) и обозначается

$$\int f(x)dx$$

Теорема. Пусть F(x) является первообразной для f(x) на (a,b). Тогда

$$\int f(x)dx = \{F(x) + C\}, \ C = const, \ C \in \mathbb{R}$$

Доказательство.

$$(F(x) + C)' = f(x) + 0 = f(x)$$

Пусть $\varphi(x)$ - первообразная f(x). Тогда:

$$(\varphi(x) - F(x))' = f(x) - f(x) = 0$$

т.е. по следствию из теоремы Лагранжа $\varphi(x) - F(x) = const$, ч.т.д.

1.2 Свойства неопределённого интеграла

1. $\forall c \in \mathbb{R}$:

$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

(При c=0 множества получаются разными: первое - произвольная константа, а второе - ноль; в рассуждениях этот случай будет опускаться)

2.

$$\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$$

3. (Замена переменной)

Пусть F(x) - первообразная для f(x) на (a,b).

Пусть $\varphi(t) \in \mathcal{D}(\alpha, \beta)$ и $\varphi((\alpha, \beta)) \subset (a, b)$ Тогда $F(\varphi(t))$ является первообразной для $F'(\varphi(t)) \cdot \varphi'(t)$ на (α, β) .

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt,$$
где $x = \varphi(t)$

4. (Интегрирование по частям) Пусть $u, v \in \mathcal{D}(a, b)$.

$$(u \cdot v)' = u \cdot v' + u' \cdot v$$

$$\int (uv)' dx = \int uv' dx + \int u' v dx$$

$$\int uv' dx = uv - \int u' v dx$$

$$\int u dv = uv - \int v du$$

Замечание. Неопределённый интеграл - операция на дифференциалах:

$$\int dF(x) = F(x) + C$$

1.3 Таблица неопределенных интегралов

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + \begin{cases} C_1, \ x > 0 \\ C_2, \ x < 0 \end{cases}$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int e^x \, dx = e^x + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int -\frac{1}{\sin^2 x} \, dx = \cot x + C$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$\int \frac{dx}{1+x^2} = \arctan x + C$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

Замечание. Все равенства верны только на промежутках.

1.4 Интегрирование рациональных функций

Хотим научиться находить интеграл

$$\int \frac{P(x)}{Q(x)} \, dx$$

где $P(x),\ Q(x)$ - многочлены. Разложим Q(x) на неприводимые многочлены:

$$Q(x) = (x - a_1)^{\alpha_1} \dots (x - a_n)^{\alpha_n} (x^2 + p_1 x + q_1)^{\beta_1} \dots (x^2 + p_k x + q_k)^{\beta_k}$$

Теперь разложим дробь в сумму простейших:

$$\int \frac{P(x)}{Q(x)} dx = \int (\tilde{P} + \sum_{i=1}^{\alpha_1} \frac{\aleph_{1i}}{(x - a_1)^{\alpha_{1i}}} + \dots + \sum_{i=1}^{\alpha_n} \frac{\aleph_{ni}}{(x - a_n)^{\alpha_{ni}}} + \dots + \sum_{j=1}^{\beta_1} \frac{\rho_{1j}x + \omega_{1j}}{(x^2 + p_1x + q_1)^{\beta_{1i}}} + \dots + \sum_{j=1}^{\beta_k} \frac{\rho_{kj}x + \omega_{kj}}{(x^2 + p_1x + q_1)^{\beta_{kj}}}) dx$$

Осталось понять как интегрировать слагаемые вида

$$\int \frac{dx}{(x-a)^n} \quad \text{M} \quad \int \frac{\alpha x + \beta}{(x^2 + px + q)^k} \ dx$$

1.

$$\int \frac{dx}{(x-a)^n} = \begin{cases} \ln|x-a|, & n=1\\ \frac{(x-a)^{1-n}}{1-n}, & n>1 \end{cases}$$

2. Сначала преобразуем знаменатель:

$$x^{2} + px + q = (x + \frac{p}{2})^{2} + (q - \frac{p^{2}}{4})$$

причем $q-\frac{p^2}{4}>0$, поскольку у x^2+px+q нет вещественных корней. Сделаем замену

$$t = x + \frac{p}{2} \Rightarrow x = t - \frac{p}{2}, \ q_1^2 = q - \frac{p^2}{4}$$

$$\int \frac{\alpha x + \beta}{(x^2 + px + q)^k} dx = \int \frac{\alpha t - \frac{\alpha p}{2} + \beta}{(t^2 + q_1^2)^k} d(t - \frac{p}{2}) = \int \frac{\alpha_1 t + \beta_1}{(t^2 + q_1^2)^k} dt$$

где $\alpha_1 = \alpha, \ \beta_1 = \beta - \frac{\alpha p}{2}$. Далее осталось рассмотреть два интеграла:

$$\int rac{t}{(t^2+q_1^2)^k} \; dt$$
 и $I_k = \int rac{dt}{(t^2+q_1^2)^k}$

(i)

$$\int \frac{t}{(t^2 + q_1^2)^k} dt = \frac{1}{2} \int \frac{dt^2}{(t^2 + q_1^2)^k} =$$

$$= \frac{1}{2} \int \frac{d(t^2 + q_1^2)}{(t^2 + q_1^2)^k} = \begin{cases} \frac{1}{2} \ln(t^2 + q_1^2), & k = 1\\ \frac{1}{2} \ln(t^2 + q_1^2), & k = 1\\ \frac{(t^2 + q_1^2)^{1-k}}{2(1 - k)}, & k > 1 \end{cases}$$

(ii)

$$I_{k} = \int \frac{dt}{(t^{2} + q^{2})^{k}} = \frac{t}{(t^{2} + q^{2})^{k}} - \int td(\frac{1}{t^{2} + q^{2}})^{k} =$$

$$= \frac{t}{(t^{2} + q^{2})^{k}} + 2k \int \left(\frac{t^{2} + q^{2} - q^{2}}{(t^{2} + q^{2})^{k+1}}\right) dt =$$

$$= \frac{t}{(t^{2} + q^{2})^{k}} + 2kI_{K} - 2kq^{2}I_{k+1}$$

$$I_{k+1} = \frac{1}{2kq^{2}} \cdot \frac{t}{(t^{2} + q^{2})^{k}} + \frac{2k - 1}{2kq^{2}}I_{k}$$

Замечание.

$$tg^{2}z + 1 = \frac{\sin^{2}z + \cos^{2}z}{\cos^{2}z} = \frac{1}{\cos^{2}z}$$

$$\int \frac{dt}{(t^{2} + q^{2})^{k}} = \begin{vmatrix} t = q \operatorname{tg}z \\ dt = \frac{q}{\cos^{2}z} dz \end{vmatrix} = \int \frac{qdz}{\cos^{2}z(q^{2}\operatorname{tg}^{2}z + q^{2})^{k}} = \int \frac{\cos^{2k-2}z}{q^{2k-1}} dz$$

1.5 Метод Остроградского

$$\int \frac{P(x)}{Q(x)} dx = \int \frac{P(x)}{\prod_{i=1}^{n} (x - a_i)^{\alpha_i} \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)^{\beta_j}} dx = \frac{P_1(x)}{\prod_{i=1}^{n} (x - a_i)^{\alpha_i - 1} \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)^{\beta_j - 1}} + \int \frac{P_2(x)}{\prod_{i=1}^{n} (x - a_i) \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)} dx$$

2 Интеграл Римана

2.1 Интегрируемость по Риману

Определение. $\{x_i\}_{i=0}^n\subset [a,b]$ называется разбиением отрезка, если $a=x_0<\cdots< x_n=b$. Обозначается $T_{[a,b]}^+$. Если $b=x_0>\cdots> x_n=a$, то обозначают $T_{[a,b]}^-$.

Отрезки $[x_{i-1}, x_i]$ или $[x_i, x_{i-1}]$ называются отрезками разбиения, их обычно обозначают Δ_i .

Длина отрезка Δ_i обозначается $\Delta x_i := x_i - x_{i-1}$.

Длина наибольшего из отрезков называется диаметром разбиения $d(T) = \max |x_i - x_{i-1}| = \max \Delta x_i$.

Определение. Пусть $T_{[a,b]}$ - разбиение отрезка [a,b]. Разметкой для $T_{[a,b]}$ называется множество точек $\{\xi_i\}_{i=1}^n$ такое, что $\forall i:\xi_i\in\Delta_i$.

Если $\{\xi_i\}_{i=1}^n$ является разметкой для $\{x_i\}_{i=0}^n$, то пара $(\{x_i\}_{i=0}^n, \{\xi_i\}_{i=1}^n)$ называется размеченым разбиением и обозначается $T(\xi)$.

Определение. Сумма

$$\sigma_{[a,b]} = \sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1})$$

называется интегральной суммой. Иногда ее обозначают $\sigma_T(\xi)$ или $\sigma(T_{[a,b]}(\xi))$

Определение. Пусть f(x) определена на [a,b]. Рассмотрим $T_{[a,b]}(\xi)$. Если

$$\exists I \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \ \delta > 0, \ \forall \ T(\xi) \subset \{T : d(T) < \delta\} : \left| \sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1}) - I \right| < \varepsilon$$

то говорят, что f(x) интегрируема по Риману на [a,b], а число I называют интегралом Римана на размеченных разбиениях на отрезке [a,b]. Интеграл Римана обозначают

$$I = \int\limits_a^b f(x) \; dx$$
 или $I = \int\limits_b^a f(x) \; dx$

для T^+ и T^- соответственно.

Замечание. Можно считать определение интеграла определением предела интегральных сумм и писать

$$\lim_{d \to 0} \left(\sum_{i=1}^{N} f(\xi_i) (x_i - x_{i-1}) \right) = I$$

где d - диаметр разбиения.

Утверждение.

Если
$$\exists \int\limits_a^b f(x) \ dx$$
, то $\exists \int\limits_b^a f(x) \ dx$ и $\int\limits_a^b f(x) \ dx = -\int\limits_b^a f(x) \ dx$

Определение. Класс функций, интегрируемых на [a,b] по Риману, обозначается $\mathcal{R}[a,b]$.

Теорема. Если $f(x) \in \mathcal{R}[a,b]$, то f(x) - ограничена на [a,b].

Доказательство. Предположим, что $\exists \{x_n\}_{n=1}^{\infty} \subset [a,b], \ \exists \lim_{n \to \infty} x_n = \widetilde{x}, \ \text{что} \ |f(x_n)| > n \ \text{и пусть}$

$$\exists \lim_{d \to 0} \left(\sum_{i=0}^{N} f(\xi_i) (x_i - x_{i-1}) \right) = I$$

Возьмем $\varepsilon = 1$. Тогда

$$\left| \sum_{i=0}^{N} f(\xi_i)(x_i - x_{i-1}) - I \right| < 1$$

Возмем Δ_k такой, что $\widetilde{x} \in \Delta_k \Rightarrow f(x)$ - неограничена на Δ_k . Тогда, зафиксировав точки в остальных отрезках разбиения, получим

$$I - \sum_{i=1, i \neq k}^{N} f(\xi_i)(x_i - x_{i-1}) - 1 < f(\xi_k)(x_k - x_{k-1}) < I - \sum_{i=1, i \neq k}^{N} f(\xi_i)(x_i - x_{i-1}) + 1$$

противоречие с тем, что f(x) принимает сколь угодно большие на Δ_k .

2.2 Суммы Дарбу. Критерий Дарбу интегрируемости по Риману

Далее рассматриваем разбиения T^+

Определение. Пусть T_1 и T_2 - разбиения отрезка [a,b] такие, что $T_1\subset T_2$. Тогда T_2 называется измельчением T_1 .

Определение. Пусть f(x) ограничена на $[a,b],\ \{x_i\}_{i=0}^n=T$ - разбиение [a,b]

$$m_i = \inf_{[x_i, x_{i+1}]} f(x), \ M_i = \sup_{[x_i, x_{i+1}]} f(x)$$

$$\overline{\overline{S}}_f(T) = \sum_{i=0}^{n-1} m_i(x_{i+1} - x_i), \ \underline{\underline{S}}_f(T) = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

Тогда $\overline{\overline{S}}_f(T)$ называется нижней суммой Дарбу, а $\underline{\underline{S}}_f(T)$ верхней суммой Дарбу.

Лемма 1. Пусть T_1 - измельчение T. Тогда

$$\overline{\overline{S}}(T) \leq \overline{\overline{S}}(T_1)$$
 и $\underline{\underline{S}}(T) \geq \underline{\underline{S}}(T_1)$

Доказательство. Докажем для нижней суммы. Рассмотрим случай, когда $T_1 = T \cup \{x_j'\}, \ x_j' \in [x_j, x_{j+1}].$ Тогда сократятся все отрезки кроме $[x_j, x_{j+1}]$:

$$\overline{\overline{S}}(T_1) - \overline{\overline{S}}(T) = m_{1j}(x'_j - x_j) + m_{2j}(x_{j+1} - x'_j) - m_j(x_{j+1} - x_j) =$$

$$= m_{1j}(x'_j - x_j) + m_{2j}(x_{j+1} - x'_j) - m_j(x'_j - x_j) - m_j(x_{j+1} - x'_j) \ge 0$$

значит, по индукции, это верно для любого измельчения.

Лемма 2.

$$\forall T_1, T_2 : \overline{\overline{S}}(T_1) \leq \underline{\underline{S}}(T_2)$$

 \mathcal{A} оказательство. Рассмотрим объединение любых двух разбиений T_1 и T_2 : $T=T_1\cup T_2$. Тогда T является измельчением и T_1 и T_2 . Тогда по лемме 1 получаем:

$$\overline{\overline{S}}(T_1) \leq \overline{\overline{S}}(T)$$
 if $\underline{\underline{S}}(T) \leq \underline{\underline{S}}(T_2) \Rightarrow \overline{\overline{S}}(T_1) \leq \underline{\underline{S}}(T_2)$

П

Лемма 3. $\forall T_{[a,b]}$:

$$\overline{\overline{S}}(T) = \inf_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

$$\underline{\underline{S}}(T) = \sup_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

Доказательство. Докажем для верхней суммы, для нижней аналогично. Докажем более общее утверждение - рассмотрим некоторое семейство множеств $\{X_i: X_i \subset \mathbb{R}\}_{i=1}^n$ и множество $\{a_i\}_{i=1}^n$ такие, что $\forall i \ X_i$ ограничено и $a_i \geq 0$. Каждое X_i из принципа полноты Вейерштрасса имеет супремум, и при этом

$$\forall \varepsilon > 0, \ \forall i = \{1, \dots, n\} \ \exists \ x_i \in X_i : x_i > \sup X_i - \varepsilon$$

Домножив каждое из неравенств на число (i-е нер-во на a_i) и сложив, получим

$$\sum_{i=1}^{n} a_i x_i > \sum_{i=1}^{n} a_i \sup X_i - \varepsilon \cdot \sum_{i=1}^{n} a_i$$

Отсюда в силу свойства супремума

$$\sup_{\{x_i\}} \sum_{i=1}^n a_i x_i \ge \sum_{i=1}^n a_i \sup X_i$$

но при этом

$$\sum_{i=1}^{n} a_i x_i \le \sum_{i=1}^{n} a_i \sup X_i$$

Значит,

$$\sup_{\{x_i\}} \sum_{i=1}^n a_i x_i = \sum_{i=1}^n a_i \sup X_i$$

При $X_i = f([x_{i-1}, x_i])$ (ограничены в силу интегрируемости f) и $a_i = x_i - x_{i-1}$ получим

$$\sup_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) = \sum_{i=1}^n \sup_{\{\xi_i\}} f(\xi_i)(x_i - x_{i-1}) = \underline{\underline{S}}(T)$$

П

Теорема. (Критерий Дарбу интегрируемости по Риману) $f(x) \in \mathcal{R}[a,b] \Leftrightarrow f$ - ограничена и

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall \; T_{[a,b]} : d(T) < \delta_{\varepsilon} : \underline{S_f}(T) - \overline{\overline{S}_f}(T) < \varepsilon$$

Доказательство.

 (\Rightarrow) :

$$\exists I = \int_{a}^{b} f(x) \ dx \Rightarrow \forall \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0, \ \forall T(\xi) : d(T) < \delta_{\varepsilon} :$$

$$I - \frac{\varepsilon}{3} < \sigma_{f}(T(\xi)) < I + \frac{\varepsilon}{3}$$

$$\left| \overline{\overline{S_{f}}}(T) - I \right| \leq \frac{\varepsilon}{3}, \ \left| \underline{\underline{S_{f}}}(T) - I \right| \leq \frac{\varepsilon}{3}$$

$$\Rightarrow \underline{S}(T) - \overline{\overline{S}}(T) < \varepsilon.$$

 (\Leftarrow) :

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall T : d(T) < \delta_{\varepsilon} : \underline{\underline{S}}(T) - \overline{\overline{\underline{S}}}(T) < \varepsilon$$
 (1)

из леммы 2 по аксиоме полноты:

$$\exists I \in \mathbb{R}, \ \forall \ T : \overline{\overline{S}}(T) \le I \le \underline{S}(T) \tag{2}$$

из (1) следует, что I - единственно, а также известно, что

$$\forall T(\xi) : \overline{\overline{S}}(T) \le \sigma_f(T(\xi)) \le \underline{\underline{S}}(T)$$
 (3)

значит из (2) и (3) получаем:

$$|\sigma_f(T(\xi)) - I| < \varepsilon$$

2.3 Классы интегрируемых функций

Теорема. Если $f(x) \in \mathcal{C}[a,b]$, то $f(x) \in \mathcal{R}[a,b]$

 \mathcal{A} оказательство. $f(x) \in \mathcal{C}[a,b] \Rightarrow f(x)$ - равномерно непрерывна на [a,b], т.е

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \forall x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta_{\varepsilon} : |f(x_1) - f(x_2)| < \varepsilon$$

Пусть $T:d(T)<\delta$. Тогда:

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) =$$

$$= \sum_{i=1}^{n} (f(x_{i_{max}}) - f(x_{i_{min}}))(x_i - x_{i-1}) < \varepsilon(b - a)$$

 $(x_{i_{min}}$ и $x_{i_{max}}$ существуют по второй теореме Вейерштрасса)

Теорема. Пусть f(x) - монотонна на [a,b]. Тогда $f(x) \in \mathcal{R}[a,b]$

Доказательство. Докажем для неубывающей. Если f(x)=const, то очевидно. Пусть $d(T)<\frac{\varepsilon}{f(b)-f(a)}$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))(x_i - x_{i-1}) <$$

$$< \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \cdot \frac{\varepsilon}{f(b) - f(a)} =$$

$$= \frac{\varepsilon}{f(b) - f(a)} \cdot (f(b) - f(a)) = \varepsilon$$

Поскольку f(x) неубывает на [a,b], то минимум на этом отрезке достигается в f(a), а максимум в f(b). Значит, при выносе $\frac{\varepsilon}{f(b)-f(a)}$ за скобку, сумма слагаемых вида $f(x_i) - f(x_{i-1})$ схлопнется в f(b) - f(a).

2.4 Критерий Лебега интегрируемости по Риману

Определение. Пусть $A \subset \mathbb{R}$, и если $\forall \varepsilon > 0 \exists \{(a_i, b_i)\}_{i=1}^{\infty}$ (или конечное) таких, что

$$A \subset \bigcup_{i} (a_i, b_i), \sup_{n} \sum_{i=1}^{N} |b_i - a_i| < \varepsilon$$

Тогда A называется множеством меры 0 по Лебегу. Обозначается $\mu(A) = 0$.

Теорема. (Свойства множеств с мерой 0 по Лебегу)

1.
$$B \subset A$$
, $\mu(A) = 0 \Rightarrow \mu(B) = 0$

2.
$$\{A_i\}_{i=1}^{\infty}, \ \mu(A_i) = 0 \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i) = 0$$

Доказательство.

- 1. Очевидно
- 2. $\forall i \; \exists \; \{(a_{i_l}, b_{i_l})\}_{i=1}^{\infty} :$

$$A_{i} \subset \bigcup_{l=1}^{\infty} (a_{i_{l}}, b_{i_{l}}), \sum_{l=1}^{\infty} |b_{i_{l}} - a_{i_{l}}| < \frac{\varepsilon}{2^{i}}$$

$$\bigcup_{i=1}^{\infty} A_{i} \subset \bigcup_{i=1}^{\infty} \left(\bigcup_{l=1}^{\infty} (a_{i_{l}}, b_{i_{l}})\right), \sum_{i=1}^{\infty} \left(\sum_{l=1}^{\infty} |b_{i_{l}} - a_{i_{l}}|\right) < \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i}} = \varepsilon$$

Теорема. (Критерий Лебега интегрируемости по Риману)

 $f(x) \in \mathcal{R}[a,b] \Leftrightarrow f(x)$ ограничена и для множества P точек разрыва функции f(x) выполнено $\mu(P)=0$.

Доказательство. Без доказательства.

2.5 Свойства интеграла Римана

Теорема 1. (Интегрируемость на подотрезках)

Если $f(x) \in \mathcal{R}[a,b], [c,d] \subset [a,b],$ то $f(x) \in \mathcal{R}[c,d].$

Доказательство. Так как $f(x) \in \mathcal{R}[a,b]$, то $\forall T_{[a,b]}(\xi) : \sigma_f(T_{[a,b]}(\xi)) \to I$. Значит если $\{c,d\} \in T_{[a,b]}$, то $\sigma_f(T_{[a,b] \cup \{c,d\}}(\xi))$:

$$\varepsilon > \underline{\underline{S}}_{[a,b]\cup\{c,d\}} - \overline{\overline{S}}_{[a,b]\cup\{c,d\}} = \sum_{k=1}^{i} (M_k - m_k)(x_k - x_{k-1}) + \sum_{k=i+1}^{j} (M_k - m_k)(x_k - x_{k-1}) + \sum_{k=j+1}^{N} (M_k - m_k)(x_k - x_{k-1}) \ge \sum_{k=i+1}^{j} (M_k - m_k)(x_k - x_{k-1}) = \underline{\underline{S}}_{[c,d]} - \overline{\overline{S}}_{[c,d]}$$

Теорема 2. (Аддитивность)

Если $f(x) \in \mathcal{R}[a,b], c \in [a,b]$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

 \mathcal{A} оказательство. Пусть $c \in T_{[a,b]}(\xi)$. Тогда

$$\sigma_f(T_{[a,b]}) = \sigma_f(T_{[a,c]}) + \sigma_f(T_{[c,b]})$$

$$\sigma_f(T_{[a,c]}) \to \int_a^c f(x) \ dx, \ \sigma_f(T_{[c,b]}) \to \int_a^b f(x) \ dx$$

а также

$$\sigma_f(T_{[a,b]}) \to \int_a^b f(x) \ dx$$

Теперь пусть $c \not\in T_{[a,b]}$. Рассмотрим $T'_{[a,b]\cup c} = T_{[a,b]} \cup \{c\}$

$$\sigma_f(T_{[a,b]}) - \sigma_f(T'_{[a,b] \cup c}) = f(\xi_j)(x_j - x_{j-1}) - f(\xi'_j)(c - x_{j-1}) - f(\xi''_j)(x_j - c) \to 0$$

Замечание. Если $f(x) \in \mathcal{R}[a,c], \ b < c$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Теорема 3. (Линейность)

Пусть $f(x), g(x) \in \mathcal{R}[a, b]$. Тогда $\forall \alpha, \beta \in \mathbb{R} : \alpha f(x) + \beta g(x) \in \mathcal{R}[a, b]$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) \ dx = \alpha \cdot \int_{a}^{b} f(x) \ dx + \beta \cdot \int_{a}^{b} g(x) \ dx$$

Доказательство.

$$\sigma_{\alpha f(x) + \beta g(x)}(T) = \alpha \sigma_f(T) + \beta \sigma_g(T)$$

Теорема 4. Пусть $f(x) \in \mathcal{R}[a,b], f(x) \geq 0$. Тогда

$$\int_{a}^{b} f(x) \ dx \ge 0$$

Доказательство.

$$f(x) \ge 0 \Rightarrow \sigma_f(T) \ge 0 \Rightarrow \int_a^b f(x) \ dx \ge 0$$

Следствие. Если $f(x),g(x)\in\mathcal{R}[a,b]$ и $f(x)\geq g(x)$ на [a,b], то

$$\int_{a}^{b} f(x) \ dx \ge \int_{a}^{b} g(x) \ dx$$

Теорема 5. Пусть $f(x) \in \mathcal{R}[a,b], \ f(x) \ge 0, \ \exists \ c \in [a,b], \$ что f(x) непрерывна в точке c и f(c) > 0. Тогда

$$\int_{a}^{b} f(x) \ dx > 0$$

Доказательство. По теореме об отделимости

 $\exists \ \delta > 0 : f(x) > \frac{f(c)}{2} \text{ B } (c - \delta, c + \delta) :$

$$\int_{a}^{b} f(x) \ dx \ge \int_{c-\delta}^{c+\delta} f(x) \ dx > \int_{c-\delta}^{c+\delta} \frac{f(c)}{2} \ dx = \frac{f(c)}{2} \cdot 2\delta = \delta f(c) > 0$$

Теорема 6. $f(x), g(x) \in \mathcal{R}[a,b]$. Тогда $f(x) \cdot g(x) \in \mathcal{R}[a,b]$

Доказательство. Пусть

$$M_1 = \sup_{[a,b]} |f(x)|, \ M_2 = \sup_{[a,b]} |g(x)|$$

Ограничим значение $\underline{\underline{S}}_{f \cdot g} - \overline{\overline{S}}_{f \cdot g}$, ограничив разность точных граней на одном отрезке разбиения: (далее супремум рассматривается по всем $x', x'' \in [x_i, x_{i-1}]$)

$$M_{i}(f(x)g(x)) - m_{i}(f(x)g(x)) = \sup(f(x')g(x') - f(x'')g(x'')) =$$

$$= \sup(f(x')g(x') - f(x')g(x'') + f(x')g(x'') - f(x'')g(x'')) =$$

$$= \sup(f(x')(g(x') - g(x'')) + g(x'')(f(x') - f(x''))) \le$$

$$\leq \sup|f(x)| \cdot \sup(g(x') - g(x'')) + \sup|g(x)| \cdot \sup(f(x') - f(x'')) \le$$

$$\leq M_{1}(M_{iq} - m_{iq}) + M_{2}(M_{if} - m_{if})$$

Отсюда, домножив неравенства на длины соответствующих отрезков и сложив, получим

$$\underline{\underline{S}}_{f \cdot g} - \overline{\overline{S}}_{f \cdot g} \le M_1(\underline{\underline{S}}_g - \overline{\overline{S}}_g) + M_2(\underline{\underline{S}}_f - \overline{\overline{S}}_f)$$

Отсюда из интегрируемости f и g и критерия Дарбу $f(x)g(x) \in \mathcal{R}[a,b].$

Теорема 7. $f(x) \in \mathcal{R}[a,b]$ и $f(x) \geq \delta > 0$. Тогда $\frac{1}{f(x)} \in \mathcal{R}[a,b]$

Доказательство. $\forall x', x'' \in [a, b]$:

$$\left| \frac{1}{f(x')} - \frac{1}{f(x'')} \right| = \left| \frac{f(x'') - f(x')}{f(x')f(x'')} \right| \le \frac{1}{\delta^2} \cdot \left| f(x'') - f(x') \right|$$

Дальнейшее доказательство аналогично предыдущему (на всякий случай приведём аналогичную выкладку, необходимую для доказательства)

$$M_{i}(\frac{1}{f(x)}) - m_{i}(\frac{1}{f(x)}) = \sup(\frac{1}{f(x')} - \frac{1}{f(x'')}) \le$$

$$\le \frac{1}{\delta^{2}} \sup|f(x'') - f(x')| = \frac{1}{\delta^{2}} (M_{if} - m_{if})$$

Следствие. Из пунктов 6 и 7 следует интегрируемость дроби $\frac{f(x)}{g(x)}$.

Теорема 8. $f(x) \in \mathcal{R}[a,b]$. Тогда $|f(x)| \in \mathcal{R}[a,b]$

Доказательство. $\forall x', x'' \in [a, b]$:

$$||f(x')| - |f(x'')|| \le |f(x') - f(x'')|$$

Далее совпадает с предыдущим доказательством.

Замечание. Обратное утверждение неверно:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \subset [0, 1] \\ -1, & x \notin \mathbb{Q} \end{cases}$$

 $\Rightarrow |f(x)| \equiv 1$ на отрезке [0,1].

Теорема 9. $f(x) \in \mathcal{R}[a,b]$. Тогда

$$\left| \int_{a}^{b} f(x) \ dx \right| \leq \int_{a}^{b} |f(x)| \ dx$$

Доказательство.

$$|\sigma_f| \le \sigma_{|f|}$$

Замечание.

$$\int_{a}^{b} |f(x)| dx \le \sup_{[a,b]} |f(x)| \cdot \int_{a}^{b} 1 dx$$

2.6 Первая теорема о среднем

Теорема. (Первая теорема о среднем)

Пусть $f(x), g(x) \in \mathcal{R}[a,b], \ g(x) \ge 0, \ M = \sup f(x), \ m = \inf f(x)$. Тогда $\exists \ \mu \in [m,M]$:

$$\int_{a}^{b} f(x) \cdot g(x) \ dx = \mu \cdot \int_{a}^{b} g(x) \ dx$$

Доказательство.

$$m \cdot \sigma_g(T) \le \sigma_{f \cdot g}(T) \le M \cdot \sigma_g(T)$$

Тогда

$$m \cdot \int_{a}^{b} g(x) \ dx \le \int_{a}^{b} f(x) \cdot g(x) \ dx \le M \cdot \int_{a}^{b} g(x) \ dx$$

Рассмотрим случаи:

1.

$$\int_{a}^{b} g(x) \ dx = 0 \Rightarrow \int_{a}^{b} f(x) \cdot g(x) \ dx = 0$$

В этом случае равенство верно для любого μ .

2.

$$\int_{a}^{b} g(x) \ dx \neq 0 \Rightarrow m \leq \frac{\int_{a}^{b} f(x) \cdot g(x) \ dx}{\int_{a}^{b} g(x) \ dx} \leq M$$

Значит, подойдет μ , равное значению этой дроби

2.7 Интеграл с переменным верхним пределом

Определение. Интегралом с переменным верхним пределом называется интеграл вида:

$$\int_{a}^{x} f(t) dt$$

Теорема. Пусть $f(t) \in \mathcal{R}[a,b]$. Тогда функция

$$\varphi(x) = \int_{a}^{x} f(t) \ dt$$

непрерывна на [a, b].

Доказательство. $\forall x_0 \in [a,b]$ и $\Delta x \to 0$:

$$|\varphi(x_0 + \Delta x) - \varphi(x_0)| = \left| \int_{x_0}^{x_0 + \Delta x} f(t) dt \right| \le M_{f([a,b])} \cdot |\Delta x| \to 0$$

Теорема. Пусть $f(x) \in \mathcal{R}[a,b]$ и f непрерывна в $x_0 \in [a,b]$. Тогда функция

$$\varphi(x) = \int_{a}^{x} f(t) \ dt$$

имеет производную в x_0 и $\varphi'(x_0) = f(x_0)$.

Доказательство.

$$\left| \frac{\varphi(x_0 + \Delta x) - \varphi(x_0)}{\Delta x} - f(x_0) \right| =$$

$$= \left| \frac{1}{\Delta x} \cdot \int_{x_0}^{x_0 + \Delta x} f(x) \, dx - \frac{f(x_0)}{\Delta x} \cdot \int_{x_0}^{x_0 + \Delta x} 1 \, dx \right| =$$

$$= \left| \frac{1}{\Delta x} \cdot \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) \, dx \right| \le \sup_{[a,b]} |f(x) - f(x_0)| \cdot 1 \longrightarrow 0.$$

Следствие. Пусть $f(x) \in \mathcal{C}(a,b)$. Тогда $\forall c \in (a,b)$:

$$\exists \left(\int\limits_{c}^{x}f(t)dt
ight)'=f(x),$$
 то есть $\int\limits_{c}^{x}f(t)dt$ - первообразная $f(x)$

Замечание. Интервал в формулировке следствия взят для применимости теоремы к неограниченным на интервале функциям (например tg(x) на $[0,\pi]$), для которых тем не менее применима предыдущая теорема по аналогичным рассуждениям.

2.8 Формула Ньютона-Лейбница

Теорема. (Формула Ньютона-Лейбница)

Пусть $f(x) \in \mathcal{R}[a,b], f(x) \in \mathcal{C}([a,b] \setminus \{x_i\}_{i=1}^n).$

$$\exists F(x): F(x) \in \mathcal{D}([a,b] \setminus \{x_i\}_{i=1}^n), F'(x) = f(x), F(x) \in \mathcal{C}[a,b]$$

Тогда:

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Доказательство. Пусть сначала $f(x) \in \mathcal{C}(a,b), \ F'(x) = f(x)$ на (a,b). Но интеграл

$$\int_{a}^{x} f(t) dt$$

тоже первообразная f(x) на $(a,b) \Rightarrow \exists C$:

$$F(x) + C = \int_{a}^{x} f(t) dt$$

 $\Rightarrow F(a) + C = 0$. Тогда

$$F(b) - F(a) = \int_{a}^{b} f(t) dt$$

Общий случай:

$$F(b) - F(a) = \sum_{i=1}^{n-1} (F(x_{i+1}) - F(x_i)) = \sum_{i=1}^{n-1} \int_{x_{i+1}}^{x_i} f(t) dt = \int_a^b f(t) dt$$

2.9 Замена переменной и интегрирование по частям

Теорема. Пусть $f(x) \in \mathcal{C}(a,b), \ \varphi(t) \in \mathcal{C}^1(\alpha,\beta), \ \varphi((\alpha,\beta)) \subset (a,b).$ $\forall \alpha_0, \beta_0 \in (\alpha,\beta) \ \text{и} \ a_0 = \varphi(\alpha_0), \ b_0 = \varphi(\beta_0).$ Тогда

$$\int_{a_0}^{b_0} f(x) \ dx = \int_{\alpha_0}^{\beta_0} f(\varphi(t)) \cdot \varphi'(t) \ dt$$

Доказательство. $f \in \mathcal{C}(a,b) \Rightarrow \exists \ F'(x) = f(x)$

$$\int_{a_0}^{b_0} f(x) \ dx = F(b_0) - F(a_0)$$

Но $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t)$, а значит

$$\int_{\alpha_0}^{\beta_0} f(\varphi(t)) \cdot \varphi'(t) \ dt = F(\varphi(\beta_0)) - F(\varphi(\alpha_0))$$

Теорема. (Интегрирование по частям)

Пусть f(x), $g(x) \in \mathcal{C}^1[a,b]$

$$\int_{a}^{b} f(x) \cdot g'(x) \, dx = f(x) \cdot g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

Доказательство.

$$f(x) \cdot g(x)|_a^b = \int_a^b (f(x) \cdot g(x))' \, dx = \int_a^b f'(x)g(x) \, dx + \int_a^b f(x) \cdot g'(x) \, dx$$

3 Спрямляемые кривые и квадрируемые фигуры

3.1 Кривая в \mathbb{R}^n

Определение. Кривой в \mathbb{R}^n называется непрерывное отображение:

$$\bar{\gamma}:[a,b]\to\mathbb{R}^n$$

Замечание.

$$\bar{\gamma} = \begin{pmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{pmatrix}$$

Определение. Рассмотрим $\bar{\gamma}:[a,b]\to\mathbb{R}^n$. Если $\exists t_1\neq t_2:\bar{\gamma}(t_1)=\bar{\gamma}(t_2)$, то $\bar{\gamma}(t_1)$ называется точкой самопересечения. Мощность подмножеста [a,b], точки которого переходят в $\bar{\gamma}(t_1)$ называются кратностью точки самопересечения. Если кривая не имеет точек пересечения, то она называется простой.

Определение. Если $\bar{\gamma}(t)$ имеет единственную точку самопересечения $\bar{\gamma}(a) = \bar{\gamma}(b)$, то кривая называется простой замкнутой.

Определение. Множество точек $\{\bar{\gamma}(t_i)\}_{i=0}^n$ называется разбиением кривой, если $\{t_i\}_{i=0}^n$ является разбиением отрезка [a,b]. Обозначается T_γ .

Определение. $L(T_{\bar{\gamma}})$ - множество отрезков $\{[\bar{\gamma}(t_{i-1}), \bar{\gamma}(t_i)]\}_{i=1}^n$ называется вписанной в $\bar{\gamma}(t)$ ломаной, а число $|L(T_{\bar{\gamma}})|$ - длиной ломаной.

Утверждение. Если $T'_{\bar{\gamma}}$ - измельчение $T_{\bar{\gamma}}$, то

$$|L(T_{\bar{\gamma}})| \leq |L(T'_{\bar{\gamma}})|$$

Доказательство. Очевидно.

Определение. Если множество $\{|L(T_{\bar{\gamma}})|\}_{T_{\bar{\gamma}}}$ ограничено, то кривая $\bar{\gamma}(t)$ называется спрямляемой, а

$$\sup_{T_{\bar{\gamma}}}\{|L(T_{\bar{\gamma}})|\}=|\bar{\gamma}|$$

называется длиной кривой.

3.2 Спрямляемость гладкой кривой и формула ее длины

Теорема. Пусть

$$\bar{\gamma}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix} \in C^1[a, b]$$

Тогда $\bar{\gamma}(t)$ спрямляема и

$$|\bar{\gamma}| = \int_{a}^{b} \sqrt{\sum_{j=1}^{n} x_j^{2}(t)} dt$$

Доказательство.

$$|L(T_{\bar{\gamma}})| = \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} (x_j(t_i) - x_j(t_{i-1}))^2} = (1)$$

$$= \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_j'^2(\xi_{ij}) \cdot (t_i - t_{i-1})^2} =$$

$$= \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_j'^2(\xi_{ij})(t_i - t_{i-1})} \leqslant M \cdot \sqrt{n} \cdot (b - a)$$

Переход (1) по формуле Лагранжа. $\Rightarrow \bar{\gamma}$ спрямляема.

$$\left| |L(T_{\bar{\gamma}})| - \sigma_{\sqrt{\sum_{j=1}^{n} x_{j}^{\prime 2}}} \right| =$$

$$\left| \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_{j}^{\prime 2}(\xi_{ij})} (t_{i} - t_{i-1}) - \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{n} x_{j}^{\prime 2}(\nu_{i})} (t_{i} - t_{i-1}) \right| =$$

$$\left| \sum_{i=1}^{N} \left(\left(\sqrt{\sum_{j=1}^{n} x_{i}^{\prime 2}(\xi_{ij})} - \sqrt{\sum_{j=1}^{n} x_{i}^{\prime 2}(\nu_{i})} \right) (t_{i} - t_{i-1}) \right) \right| \leq$$

$$\sum_{i=1}^{N} \sum_{j=1}^{n} |x_{j}^{\prime}(\xi_{ij}) - x_{j}^{\prime}(\nu_{i})| \cdot (t_{i} - t_{i-1}) < \varepsilon \cdot n \cdot (b - a)$$

Последняя оценка сделана с применением леммы, которая доказана чуть ниже

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; d(T) < \delta_{\varepsilon}$$

$$\Rightarrow \left| |L(T_{\bar{\gamma}})| - \int_{a}^{b} \sqrt{\sum_{j=1}^{n} x_{j}^{2}(t)} dt \right| < 2\varepsilon n(b-a)$$

 $\forall \varepsilon>0\ \exists\ L(T^*_{\bar{\gamma}}),\$ что $|L(T^*_{\bar{\gamma}})|>|\bar{\gamma}|-\varepsilon$ (свойство точной верхней грани). Измельчаем $T^*_{\bar{\gamma}}$ до тех пор, пока $d(T^{**}_{\bar{\gamma}})<\delta_{\varepsilon}.$

Лемма.

$$\left| \sqrt{\sum_{i=1}^{k} a_i^2} - \sqrt{\sum_{i=1}^{k} b_i^2} \right| \le \sum_{i=1}^{k} |a_i - b_i|$$

Доказательство.

$$\left| \sqrt{\sum_{i=1}^{k} a_i^2} - \sqrt{\sum_{i=1}^{k} b_i^2} \right| = \left| \frac{\sum_{i=1}^{k} ((a_i - b_i)(a_i + b_i))}{\sqrt{\sum_{i=1}^{k} a_i^2} + \sqrt{\sum_{i=1}^{k} b_i^2}} \right| =$$

$$= \left| \sum_{i=1}^{k} \left((a_i - b_i) \cdot \frac{(a_i + b_i)}{\sqrt{\sum_{i=1}^{k} a_i^2} + \sqrt{\sum_{i=1}^{k} b_i^2}} \right) \right| \le (*)$$

$$\leq \left| \sum_{i=1}^{n} 1 \cdot (a_i - b_i) \right| \le \sum_{i=1}^{k} |a_i - b_i|$$

$$(*): \quad a_i \le \sqrt{\sum_{i=1}^{k} a_i^2}, \ b_i \le \sqrt{\sum_{i=1}^{k} b_i^2} \Rightarrow \frac{(a_i + b_i)}{\sqrt{\sum_{i=1}^{k} a_i^2} + \sqrt{\sum_{i=1}^{k} b_i^2}} \le 1$$

3.3 Квадрируемые фигуры

Далее работаем в \mathbb{R}^2 .

Определение. Множество $\{(x,y): (x-x_0)^2+(y-y_0)^2<\varepsilon^2\}\subset \mathbb{R}^2$ называется ε -окрестностью точки (x_0,y_0) .

Определение. Множество $A \in \mathbb{R}^2$ называется ограниченым, если $\exists R > 0: A \subset \{(x,y): x^2 + y^2 \leq R^2\}.$

Определение. Ограниченое множество $A \subset \mathbb{R}^2$ называется фигурой.

Определение. Пусть $A = \{A_{\alpha}\}_{\alpha}$. Функция $\mu : A \to \mathbb{R}$ называется площадью, если

- 1. $\mu(A) \ge 0$
- 2. Если $\exists \mu(A_1), \ \mu(A_2)$ и $A_1 \cap A_2 = \emptyset$, то $\exists \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$.
- 3. Если $\exists \mu(A_1)$ и A_2 конгруэнтна A_1 , то $\exists \mu(A_2) = \mu(A_1)$.
- 4. Если $\exists \mu(A_1), \mu(A_2)$ и $A_1 \subset A_2$, то $\mu(A_1) \leq \mu(A_2)$.
- 5. Площадь прямоугольника со сторонами a и b равна ab.

Замечание. Существует площадь отрезка и площадь точки и они равны нулю. По определению считаем, что $\mu(\varnothing)=0$

Утверждение. Существует площадь треугольника равная половине произведения основания на высоту.

Доказательство. Рассмотрим произвольный треугольник. Проведем в нем высоту, тогда он разобьется на два прямоугольных треугольника, которые можно достроить до прямоугольников. Тогда площадь искомого треугольника равна сумме половин площадей достроеных прямоугольников.

Определение. Фигура, полученная конечным объединением непересекающихся треугольников называется многоугольником.

Теорема. Площадь многоугольной фигуры не зависит от разбиения на треугольники.

Доказательство. Без доказательства.

Определение. Для любой фигуры A, замкнутая многоугольная фигура $P\supset A$ называется описанной. Открытая многоугольная фигура $Q\subset A$ называется вписанной.

Замечание. Далее, если фигура обозначена P, то считаем ее замкнутой описанной, а если Q то открытой вписанной.

Замечание. Для любой фигуры существует описаная (поскольку любая фигура ограничена) и вписаная (пустое множество).

Определение. Число $\mu^*(A) = \inf_{A \subset P} \mu(P)$ называется верхней площадью A. Число $\mu_*(A) = \sup_{Q \subset A} \mu(Q)$ называется нижней площадью A.

Определение. Если $\mu^*(A) = \mu_*(A)$, то $\exists \ \mu(A) = \mu^*(A) = \mu_*(A)$. Такая фигура A называется квадрируемой.

3.4 Первый и второй критерии квадрируемости

Теорема. (Первый критерий квадрируемости) Фигура A квадрируема $\Leftrightarrow \forall \varepsilon > 0 \; \exists \; P_{\varepsilon}, \; Q_{\varepsilon}, \; \mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon$ Доказательство.

$$(\Rightarrow): A$$
 - квадрируема $\Rightarrow \mu^*(A) = \mu_*(A)$, но
$$\forall \varepsilon > 0 \; \exists \; P_\varepsilon : \mu(P_\varepsilon) - \mu^*(A) < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \; \exists \; Q_\varepsilon : \mu_*(A) - \mu(Q_\varepsilon) < \frac{\varepsilon}{2}$$
 $\Rightarrow \mu(P_\varepsilon) - \mu(Q_\varepsilon) < \varepsilon$

 (\Leftarrow) :

$$\forall \varepsilon > 0 \; \exists \; P_{\varepsilon}, \; Q_{\varepsilon}, \; \mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon \Rightarrow \mu^*(A) - \mu_*(A) < \varepsilon \Rightarrow \mu^*(A) = \mu_*(A)$$

Теорема. (Второй критерий квадрируемости) Фигура A квадрируема $\Leftrightarrow \mu(\partial A) = 0$.

Доказательство.

 $(\Rightarrow): A$ - квадрируема \Rightarrow по первому критерию квадрируемости:

$$\forall \varepsilon > 0 \; \exists \; P_{\varepsilon}, \; Q_{\varepsilon} : \mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon$$

 $\partial A\subset P\setminus Q,\ Q$ - внутренние точки $A,\ \mathbb{R}^2\setminus P$ - внешние точки A. В частности, $\partial A\subset P_\varepsilon\setminus Q_\varepsilon\Rightarrow \mu^*(\partial A)<\varepsilon\Rightarrow \mu(\partial A)=0.$

$$(\Leftarrow): \mu(\partial A) = 0 \Rightarrow \forall \varepsilon > 0 \; \exists \; P_{\varepsilon} \supset \partial A, \; \mu(P_{\varepsilon}) < \varepsilon \Rightarrow \exists \; h > 0,$$
 $\partial A \subset \cup ($ кв. сетка с шагом $h) = A_2: \mu(A_2) < 72\varepsilon \; ($ по лемме ниже $)$. $A_1 = \cup ($ квадраты сетки, целиком состоящие из внутренних точек A) $\Rightarrow A \subset A_1 \cup A_2 \Rightarrow A_1 \cup A_2 = P, \; A_1 = Q, \; \mu(P) - \mu(Q) = \mu(A_2) < 72\varepsilon$

Лемма. Если B покрывается P с $\mu(P)<\varepsilon$, то существует h>0 такое, что $B\subset \cup ($ кв. сетка с шагом h $),\ \mu(\cup ($ кв. сетка с шагом h $))<72\varepsilon.$

Доказательство. P - фигура $\Rightarrow P$ - это объединение треугольников $\Rightarrow P$ - объединение прямоугольных треугольников с $\mu < \varepsilon \Rightarrow P$ лежит в объединении прямоугольников с $\mu < 2\varepsilon \Rightarrow P$ лежит в объединении квадратов с $\mu < 4\varepsilon \Rightarrow P$ лежит в объединении квадратов со сторонами, параллельными осям координат с $\mu < 8\varepsilon \Rightarrow$ возьмем h, равное стороне наименьшего квадрата, и построим сетку с шагом $h \Rightarrow \mu(\cup (\text{кв. сетка с шагом h})) < 72\varepsilon$.

3.5 Квадрируемость простой спрямляемой кривой и криволинейной трапеции

Теорема. Если $\bar{\gamma}(t)$ - простая спрямляемая фигура, то $\mu(\bar{\gamma}(t))=0.$

Доказательство. Делим $\bar{\gamma}(t)$ на n одинаковых по длине кусков. $\{\bar{\gamma}(t_k)\}_{k=1}^{n+1}$. $\bar{\gamma}(t) \subset \cup ($ квадратов с центрами в $\bar{\gamma}(t_k)$ и стороной $|\frac{2\bar{\gamma}(t)|}{n}|)$.

$$\mu(\cup(\text{kb...})) < \frac{4|\bar{\gamma}(t)|^2}{n^2} \cdot (n+1) \to 0$$

Теорема. Пусть $f(x) \in \mathcal{R}[a,b], \ f(x) \geq 0$, тогда фигура A:

$$A = \{(x, y) : x \in [a, b], \ 0 \le y \le f(x)\}$$

квадрируема и

$$\mu(A) = \int_{a}^{b} f(x) \ dx$$

Доказательство.

$$f(x) \in \mathcal{R}[a,b] \Rightarrow \forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall T : d(T) < \delta : \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon$$

Значит выполнено: $\mu(P_{\varepsilon}) - \mu(Q_{\varepsilon}) < \varepsilon$ и A - квадрируема по первому критерию квадрируемости. При этом

$$\mu^*(A) = \mu_*(a) = \mu(A) \to \int_a^b f(x) \ dx$$