1 Addition Law

1.1 Definitions and Notation

Definition 1: Let K be a field with $\operatorname{char}(K) \neq 2,3$ and \overline{K} its algebraic closure. Define the hyperelliptic curve of genus two $H_0(K)$ as the set of solutions in K^2 to the equation $y^2 = C(x)$ where $C(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$ is a polynomial over K. Similarly, the set of solutions in the closure would be denoted $H_0(\overline{K})$. Define H(K) as $H_0(K) \cup \{\infty\}$.

Note that we could obtain a more reduced form of C(x), eliminating a by shifting x to x - a/5. However, since this would rob us of the possibility of char(K) = 5 without simplifying our coming calculations in any significant manner, we shall be reluctant towards using this trick.

For the purpose of clarity, let points on the hyperelliptic curve — in the sense of solutions to $y^2 = C(x)$ — be designated by the calligraphic letter $\Omega = (x, y) \in H_0(\overline{K})$. The point opposite to Ω will be written $\overline{\Omega} = (x, -y)$ and by symmetry of the curve in y also belongs to $H_0(\overline{K})$. In the case where $\Omega = \infty$, define $\overline{\Omega} = \infty$. We allow ourselves to write $\pm \Omega$ whenever we mean in fact 'either Ω or $\overline{\Omega}$ '.

We want to consider the set of all pairs (Q_1, Q_2) and tame it with an equivalence relation with the goal of obtaining an additive group:

Definition 2: Define **J** to be the set ∂/\sim where $\partial = H(\overline{K}) \times H(\overline{K})$. **J** is called the 'Jacobian' and the equivalence relation fullfills

$$\begin{split} (\mathfrak{Q}_1,\mathfrak{Q}_2) &\sim (\mathfrak{Q}_2,\mathfrak{Q}_1) \\ \text{and} \quad (\mathfrak{Q},\overline{\mathfrak{Q}}) &\sim (\infty,\infty). \end{split}$$

Write $\{Q_1, Q_2\}$ from now on and let bold letters denote points on the curve in the sense of classes of unordered pairs $\mathbf{P} = \{Q_1, Q_2\} \in \mathbf{J}$. The point $\{\overline{Q}_1, \overline{Q}_2\}$ will be called $\overline{\mathbf{P}}$ for now but can already tentatively be thought of as $-\mathbf{P}$. Call $\{\infty, \infty\}$ the zero of our set. We will also permit ourselves the notation $\{Q, \overline{Q}\} = 0$ and we refrain from explicitly stating that \mathbf{P} is in fact an equivalence class.

A point $\Omega = (x_0, y_0)$ is called singular if it fulfills both $y_0 = 0$ and $C'(x_0) = 0$. A curve is called singular if and only if it has a singular point. We consider only non-singular hyperelliptics from here on.

1.2 The General Case

Let $\mathbf{P}_1 = \{Q_1, Q_2\}$, $\mathbf{P}_2 = \{Q_3, Q_4\}$ with $Q_i = (x_i, y_i) \in H_0(K)$ or $Q_i = \infty$. To define $\mathbf{P}_3 = \mathbf{P}_1 + \mathbf{P}_2$ we distinguish between one general case and a number of special cases and first derive the results of the former before enumerating the latter ones.

CASE 1, FOUR DISTINCT COMPONENT-POINTS: Let first $Q_i \in H_0(K)$ and \mathbf{P}_i be defined as above with $x_i \neq x_j$ whenever $i \neq j$.

The overarching idea is to obtain a fifth and sixth x-coordinate and the corresponding y-coordinates by passing a polynomial of degree three through the four points Q_i . Ideally this should give us two additional intersections with the curve which we then use as the components of our point $\mathbf{P}_1 + \mathbf{P}_2$.

Step 1: It is known that the Vandermonde matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}$$

has determinant $\prod_{i < j} (x_i - x_j)$ which is conveniently non-zero if and only if the x_i are pairwise distinct. Let $p(x) = p_3 x^3 + p_2 x^2 + p_1 x + p_0 \in \overline{K}[x]$ be the polynomial in unknown coefficients that we are looking for. With $\mathbf{y} = (y_1 \ y_2 \ y_3 \ y_4)^t$ and $\mathbf{p} = (p_0 \ p_1 \ p_2 \ p_3)^t$, the problem of determining p(x) can be rewritten as

$$V \cdot \mathbf{p} = \mathbf{y}$$

which by invertibility of V has a unique solution for \mathbf{p} with $p_i \in K$.

Note that the leading coefficient of p(x) is

$$p_3 = \frac{1}{\det(V)} \begin{vmatrix} 1 & x_1 & x_1^2 & y_1 \\ 1 & x_2 & x_2^2 & y_2 \\ 1 & x_3 & x_3^2 & y_3 \\ 1 & x_4 & x_4^2 & y_4 \end{vmatrix}$$

and the next step will depend on whether p(x) is truly of degree 3 or not.

STEP 2A: Knowing the coefficients p_i of p(x) we first assume that $p_3 \neq 0$, so can proceed to look for the two additional solutions of the sextic equation

$$C(x) - (p(x))^2 = 0.$$
 (*)

Observe that this vanishes at x_1, x_2, x_3 and x_4 , so write the lefthand side as $-p_3^2(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)(x-x_6)$ for x_5 and x_6 in \overline{K} .

Comparing the coefficients of both expressions at x^4 and x^5 yields

$$\sum_{\substack{i,j=1\\i< j}}^{6} x_i x_j = T_4 \tag{4}$$

and
$$\sum_{i=1}^{6} x_i = T_5$$
 (5)

where $T_5 = \frac{1-2p_2p_3}{p_3^2}$ and $T_4 = \frac{p_2^2+2p_1p_3-a}{p_3^2}$. The first expression gives

$$x_6 \sum_{i=1}^{5} x_i + \sum_{\substack{i,j=1\\i < j}}^{5} x_i x_j = T_4.$$

Doing this twice and replacing x_6 with the information from (5) gives the tidy quadratic equation

$$x^{2} - \left(T_{5} - \sum_{i=1}^{4} x_{i}\right) \cdot x + \left(T_{4} - T_{5} \sum_{i=1}^{4} x_{i} + \sum_{\substack{i,j=1\\i \leq j}}^{4} x_{i} x_{j}\right) = 0 \qquad (\dagger)$$

of which x_5 is one solution and — by symmetry of the above steps — x_6 the other one. Compute $y_i = p(x_i)$, i = 5, 6 to obtain $\Omega_5 = \{x_5, -y_5\}$ and $\Omega_6 = \{x_6, -y_6\}$, at which point it becomes clear that the worst-case scenario for our field extension to accommodate the new coordinates is to be quadratic. Finally we define $\mathbf{P}_1 + \mathbf{P}_2$ to be equal to $\mathbf{P}_3 = \{\Omega_5, \Omega_6\}$.

STEP 2B: If p_3 were zero, the equation (*) would be quintic instead. We may therefore write the lefthand side as $(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$, again for x_5 somewhere in \overline{K} . Defining $T_{4\infty} = p_2^2 - a$ and comparing the coefficients at x^4 gives

$$x_5 = T_{4\infty} - \sum_{i=1}^4 x_i \tag{\ddagger}$$

and we may rejoice in the implication of x_5 staying in K.

Compute $y_5 = p(x_5)$ and define $\mathbf{P}_1 + \mathbf{P}_2$ to be the point $\mathbf{P}_3 = \{(x_5, y_5), \infty\}$.

STEP 1': To extend our construction from $H_0(K)$ to H(K) we now consider $\Omega_4 = \infty$ with the other $\Omega_i = (x_i, y_i)$ as before. We will later reason about why this is sufficient to cover the general case.

There is no coordinate x_4 this time, so we pass a quadratic polynomial p(x) through the remaining three points (x_i, y_i) . This means that we solve the linear system $\widetilde{V} \cdot \mathbf{p} = \widetilde{\mathbf{y}}$ where \widetilde{V} is the Vandermonde matrix for x_i , i = 1, ..., 3 which incidentally is the upper-left 3×3 sub-matrix of V. Here $\mathbf{p} = (p_0 \ p_1 \ p_2)^t$ and $\widetilde{\mathbf{y}} = (y_1 \ y_2 \ y_3)^t$ are defined as expected.

As before, the leading coefficient of p(x) might or might not be zero, but (*) will be quintic in either case, so we only have to worry about one step two.

STEP 2': Doing a coefficient comparison at x^3 and at x^4 in (*) gives

$$\sum_{\substack{i,j=1\\i< j}}^{3} x_i x_j + x_5 \sum_{i=1}^{3} x_i + x_5 x_6 = b - 2p_1 p_2 \tag{3'}$$

and
$$\sum_{i=1}^{3} x_i + x_5 + x_6 = p_2^2 - a. \tag{4'}$$

Call the righthand terms $T_{3\infty}$ and $T_{4\infty}$, combine both equations and obtain

$$x^{2} - T_{4\infty} \cdot x + \left(T_{3\infty} - \sum_{\substack{i,j=1\\i < j}}^{3} x_{i} x_{j}\right) = 0.$$
 (†')

Solve, call the two solutions x_5 and x_6 , compute y_5 and y_6 through $p(x_5)$ and $p(x_6)$ and define $\mathbf{P}_1 + \mathbf{P}_2$ to be $\mathbf{P}_3 = \{(x_5, -y_5), (x_6, -y_6)\} = \{Q_5, Q_6\}$.

Remark 1: Note that an interesting consequence is — if the above does truly complete the general case — that at most one of the Ω_i for i = 1, ..., 6 can be the point at infinity, provided that the Ω_i for i = 1, ..., 4 are all pairwise distinct.

 \sim

Before we begin listing the special cases, we impose the following property on the addition of any two points:

The sum of any $\{Q_1, Q_2\}$ and $\{Q_3, Q_4\}$ in **J** fulfills the following equality:

$$\{Q_1, Q_2\} + \{Q_3, Q_4\} = \{Q_1, Q_3\} + \{Q_2, Q_4\}.$$
 (\$\delta\)

FIGURE 1A: The general case for the addition law in \mathbb{R}^2 where $p_3 \neq 0$.

Figures 1B and 1c: If $p_3 = 0$ we have at most five intersections.

Remark 2: We will use this property extensively from now on and it will be worth the additional trouble of having to check well-definedness because

- (i) Since (\diamondsuit) implies that we can interchange *any* two point-components in a given sum, we may now impose conditions on the Q_i without mentioning whether they belong to \mathbf{P}_1 or \mathbf{P}_2 .
- (ii) As a result, the list of special cases can be written in a significantly more concise manner.
- (iii) It is immediately clear now that if we have a well-defined addition, then $-\mathbf{P} = \overline{\mathbf{P}}$ because $\{Q_1, Q_2\} + \{\overline{Q}_1, \overline{Q}_2\} = \{Q_1, \overline{Q}_1\} + \{Q_2, \overline{Q}_2\} = 0$.
- (iv) The property even gives us commutativity for free.

1.3 List of Special Cases

Let's first list all configurations that can be taken by the $(x_i, y_i) \in H_0(K)$:

- A. All x_i are pairwise distinct.
- B. Exactly two of the x_i are equal, for instance $x_1 = x_2$ and
 - a. $y_1 = y_2 \neq 0$.

b.
$$y_1 = -y_2 \neq 0$$
.

c.
$$y_1 = y_2 = 0$$
.

- C. Exactly three of the x_i are equal, e.g. $x_1 = x_2 = x_3$ and
 - a. All three y-coordinates are equal: $y_1 = y_2 = y_3 \neq 0$.
 - b. Only two y-coordinates are equal: $y_1 = y_2 \neq 0$ so $y_3 = -y_1$.
 - c. All three $y_1 = y_2 = y_3 = 0$.
- D. All four x_i are equal and
 - a. All four y_i are equal but different from zero.
 - b. The y_i are equal two by two, e.g. $y_1 = y_2 \neq 0$ and $y_3 = y_4 = -y_1$. \star
 - c. Exactly three of the y_i are equal, e.g. $y_1 = y_2 = y_3 = -y_4 \neq 0$.
 - d. All four $y_i = 0$.
- E. The x_i are equal two-by-two: $x_1 = x_2$ and $x_3 = x_4$ but $x_1 \neq x_3$ and
 - a. $y_1 = y_2 \neq 0$ and $y_3 = y_4 \neq 0$.
 - b. $y_1 = -y_2$ and $y_3 = y_4 \neq 0$.
 - c. $y_1 = -y_2$ and $y_3 = -y_4$.

Due to (\diamondsuit) and the property that $\{Q_i, Q_j\} \sim 0$ whenever $x_i = x_j$ and $y_i = -y_j$, every case marked with \star comes down to the addition with 0. Considering the possibility of $Q_i = \infty$ and reordering the above thus leads to the following condensed and complete list of cases for the addition law:

- 0. The addition with zero, i.e. $\mathbf{P} + \{\infty, \infty\}$ or in short $\mathbf{P} + 0$, $\mathbf{P} \in \mathbf{J}$.
- 1. The general case where all Q_i in H(K) are pairwise distinct from $\pm Q_j$.
- 2. The single tangential case where $Q_1 = Q_2 \in H_0(K)$ with $y_1 \neq 0$ and the remaining Q_3 , $Q_4 \in H(K)$ are both distinct from each other as well as from $\pm Q_1$, \overline{Q}_3 and \overline{Q}_4 .
- 3. The double tangential case where $\Omega_1 = \Omega_2 \in H_0(K)$ with $y_1 \neq 0$ and $\Omega_3 = \Omega_4 \in H_0(K)$ with $y_3 \neq 0$ and $\Omega_1 \neq \pm \Omega_3$.
- 4. The triple-point tangential case wherein $Q_1 = Q_2 = Q_3 \in H_0(K)$ with $y_1 \neq 0$ and $Q_4 \in H(K)$ differs from both $\pm Q_1$.
- 5. The quadruple case where all $Q_i \in H_0(K)$ are equal with $y_i \neq 0$.

Remark 3:

- (i) In both lists, the cases do not overlap.
- (ii) For the list to be complete, we must allow for $\Omega_i = \infty$ for some i. Note that one is sufficient, since if two or more Ω_i were to be ∞ , we would be back at the zero case by virtue of (\diamondsuit) , bringing the two infinities together in one point. As for the first case, we consider $\Omega_i \in H_0(K)$ and $\Omega_i \in H(K)$ in two separate cases and postpone handling the latter.
- (iii) As for the first case, the constructions will a priori only be made on \mathcal{J} . It remains to check that this makes indeed for a well-defined addition on \mathbf{J} by being invariant under the permutations $\Omega_1 \rightleftharpoons \Omega_2$ and $\Omega_3 \rightleftharpoons \Omega_4$.

1.4 Addition Law for the Special Cases

CASE 0, ADDITION WITH ZERO: As one might have anticipated, if $\mathbf{P}_2 = 0$ we define $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_1$ for every $\mathbf{P}_1 \in \mathbf{J}$.

CASE 2, TANGENTIAL: Let $Q_i \in H_0(K)$, $Q_1 = Q_2$, $y_1 \neq 0$ but x_1 , x_3 and x_4 are pairwise distinct. We cannot use the Vandermonde matrix in this case because it won't possess maximal rank, consequently being non-invertible. We can however obtain an additional equation by demanding that our polynomial p(x) be tangential to the curve at Q_1 . This gives

$$2y\frac{dy}{dx} = 5x^4 + 4ax^3 + 3bx^2 + 2cx + d$$
 and
$$\frac{dy}{dx} = 3p_3x^2 + 2p_2x + p_1$$

meaning that the system to solve for \mathbf{p} is now $V_1 \cdot \mathbf{p} = \mathbf{y}_1$ with

$$V_1 = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}.$$

The subscript indicates at which points the intersections have higher order. Here \mathbf{y}_1 is defined as \mathbf{y} with y_2 replaced by $y_2' = \frac{C'(x_1)}{2y_1}$ where C'(x) is the derivative of C and $2y_1 \neq 0$ because $\operatorname{char}(K) \neq 2$ and $y_1 \neq 0$. Since $\det(V_1) = (x_4 - x_1)^2 (x_3 - x_1)^2 (x_4 - x_3)$ this fits neatly into our constraints by being non-zero exactly in the case where x_1, x_3 and x_4 are pairwise distinct.

Once p(x) is determined, step two will be entirely identical to the general case and we can again solve (\ddagger) or (\dagger) for x_5 or x_5 and x_6 .

CASE 3, DOUBLE TANGENTIAL: Let $Q_i \in H_0(K)$, $Q_1 = Q_2$ and $Q_3 = Q_4$ but $x_1 \neq x_3$ and $Q_i \neq \pm Q_i$ meaning that neither y_1 nor y_3 will be zero. As

before, we lack equations for our linear system, requiring the use of a second tangential constraint. Replace the fourth row of V_1 and \mathbf{y}_1 exactly like we did for the second one: $y_4' = \frac{C'(x_3)}{2y_3}$ and

$$V_{13} = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 0 & 1 & 2x_3 & 3x_3^2 \end{pmatrix}.$$

Now $\det(V_{13}) = (x_3 - x_1)^4$ and this is again different from zero precisely whenever $x_3 \neq x_1$, so as before solve $V_{13} \cdot \mathbf{p} = \mathbf{y}_{13}$ for \mathbf{p} , then (\dagger) or (\ddagger) .

CASE 4, SECOND ORDER TANGENTIAL: Let $Q_i \in H_0(K)$, $Q_1 = Q_2 = Q_3$ but $x_1 \neq x_4$ and $y_1 \neq 0$. We can thus see this as a third-order intersection and demand that the curve and the polynomial share a second-order derivative at Q_1 :

$$V_{11} = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 0 & 2 & 6x_1 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}.$$

Here $\det(V_{11}) = 2(x_4 - x_1)^3$ and with this, define \mathbf{y}_{11} by taking \mathbf{y}_1 and replacing the third coordinate by $y_3'' = \frac{C''(x_1)}{2y_1} - \frac{(C'(x_1))^2}{4y_1^3}$ where C''(x) is the second-order derivative of C. Again, apply the same procedure of the second steps of case 1 to find \mathbf{P}_3 .

CASE 5, THIRD ORDER TANGENTIAL: Given the quadruple situation where $Q_i = Q_1 \in H_0(K)$ for every i with $y_1 \neq 0$, we use

$$V_{111} = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 0 & 2 & 6x_1 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

which is invertible in all fields but those of characteristic 2 and 3.

Here \mathbf{y}_{111} is the same as \mathbf{y}_{11} except for the last coordinate which should read

$$y_4''' = \frac{C'''(x_1)}{2y_1} - \frac{3C'(x_1)C''(x_1)}{4y_1^3} + \frac{3(C'(x_1))^3}{8y_1^5}$$

where C'''(x) is the third-order derivative of C. Once more, we solve the linear system $V_{111} \cdot \mathbf{p} = \mathbf{y}_{111}$ and subsequently (\dagger) or (\ddagger) and we're done.

 \sim

Finally, as noted in Remark 3, (ii) we have yet to extend our definition from $H_0(K)$ to H(K). Observe that this is only relevant for cases number two and four where we now consider $\Omega_4 = \infty$ as we did in STEP 1' of the general case. As an analogue to this, the relevant matrices \widetilde{V}_1 and \widetilde{V}_{11} will be the upper-left 3×3 sub-matrices of their $H_0(K)$ -counterparts V_1 and V_{11} .

In both cases we obtain a linear system of the form $\widetilde{V}_* \cdot \mathbf{p} = \widetilde{\mathbf{y}}_*$ for a three-element vector \mathbf{p} and the vectors $\widetilde{\mathbf{y}}_1$ and $\widetilde{\mathbf{y}}_{11}$ are defined like their 4-element counterparts \mathbf{y}_1 and \mathbf{y}_{11} with the last coordinate omitted.

Both matrices \widetilde{V}_* are invertible and we therefore get a unique polynomial p(x) wich we use to solve (\dagger') , obtaining x_5 , x_6 , $y_5 = p(x_5)$ and $y_6 = p(x_6)$ in \overline{K} and we define $\{\Omega_1, \Omega_2\} + \{\Omega_3, \infty\} = \{\Omega_5, \Omega_6\} = \{(x_5, -y_5), (x_6, -y_6)\}$.

1.5 Well-Definedness of the Addition Law

To check whether our addition is well defined on **J** in each of the cases, we have to consider the permutation of point-components Q_i under the equivalence relation from Definition 2. Furthermore, to claim that all possible cases are all covered, it is necessary to check the permutations under (\diamondsuit) . Both cases can be combined into a single one by the following statement:

Lemma: In each given definition of '+', the result is invariant under the permutation $Q_i \rightleftharpoons Q_j$.

Proof. Simultaneously interchanging $x_i \rightleftharpoons x_j$ and $y_i \rightleftharpoons y_j$ in our linear systems $V_* \cdot \mathbf{p} = \mathbf{y}_*$ has the effect of permuting the rows of V_* and \mathbf{y}_* and relabeling (x_k, y_k) whenever Q_k was equal to Q_i or Q_j .

Consequently the resulting p(x) doesn't change, so neither do any of the terms T_* . The three dagger equations remain unchanged as well, as can easily be checked at (\dagger) , (\dagger) and (\dagger') which are invariant under $x_i \rightleftharpoons x_j$.

Finally, the version of Step 2 we fall into remains the same, since it is only imposed by the distinction of p_3 being zero or not.

2 Rational Functions on Hyperelliptics

2.1 Function Field and Order of Rational Functions

Definition 3: Define the ring of rational functions on the curve as

$$\mathcal{F} = K(x)[y] / (y^2 - C(x)).$$

As $y^2 - C(x)$ is irreducible in K(x)[y], this is a field and $\mathcal{F} = K(x) + K(x)y$, so write elements $f \in \mathcal{F}$ as f = g + hy where $g, h \in K(x)$. Define $\overline{f} = g - hy$.

We will occasionally write things like $K[x,y] \subset \mathcal{F}$ but xxx we always implicitly mean this in conjunction with $y^2 = C(x)$.

 \sim

We now wish to define the order of a function f in a point Ω , $\operatorname{ord}_{\Omega}(f) \in \mathbb{Z}$ for $f \in \mathcal{F}^*$ and $\Omega \in H(\overline{K})$. To this end we first construct a K-homomorphism

$$\lambda_{\mathbb{Q}}: \mathfrak{F} \to \overline{K}((t))$$

with the intent of defining $\operatorname{ord}_{\mathbb{Q}}(f) = \operatorname{ord} \lambda_{\mathbb{Q}}(f)$.

Reminder: If τ is a formal Laurent series of the form $\tau = 1 + \sum_{i=1}^{\infty} a_i t^i$ then it has a unique squareroot of the form $\sigma = 1 + \sum_{i=1}^{\infty} b_i t^i$ meaning $\sigma^2 = \tau$. Write $\sigma = \sqrt{\tau} = 1 + \dots$

From now on we will use an ellipsis to denote terms of ascending order everywhere where we are not interested in the specifics.

Definition 4: Because $C(\lambda_{\Omega}(x)) = (\lambda_{\Omega}(y))^2$ has to be fulfilled, we first decide on $\lambda_{\Omega}(x)$ and deduce $\lambda_{\Omega}(y)$. For this, we distinguish between three cases for $\Omega \in H(\overline{K})$:

1. Let $\Omega = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 \neq 0$ and consequently $C(x_0) \neq 0$.

Define $\lambda_{\mathbb{Q}}(x) = x_0 + t$. Now

$$C(\lambda_{\mathbb{Q}}(x)) = C(x_0 + t)$$

= $C(x_0) + \dots + t^5$
= $C(x_0)(1 + \dots)$
= $y_0^2 \tau_1$ with $\tau_1 \in K((t))$.

Define $\lambda_{\mathbb{Q}}(y) = y_0 \sigma_1$ where $\sigma_1 = \sqrt{\tau_1}$.

2. Let $\Omega = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 = 0$. Note that $C(x_0) = 0$ and write $C(x) = \prod_{i=1}^5 (x - \alpha_i)$ for $\alpha_i \in \overline{K}$ and for instance $\alpha_1 = x_0$.

Define $\lambda_{\mathcal{Q}}(x) = x_0 + t^2$. Now

$$C(\lambda_{\Omega}(x)) = t^2 \prod_{i=2}^{5} (x_0 - \alpha_i + t^2)$$

= $\mu t^2 (1 + \dots)$

with $\mu \in \overline{K}$ being $\prod_{i=2}^{5} (x_0 - \alpha_i) = C'(x_0)$ which is non-zero because our curve is non-singular. Write therefore $C(\lambda_{\mathfrak{Q}}(x)) = \mu t^2 \tau_2$ with $\tau_2 = 1 + \dots$ and define $\lambda_{\mathfrak{Q}}(y) = \nu t \sigma_2$ with $\sigma_2 = \sqrt{\tau_2}$ and $\nu^2 = \mu$.

3. Let $\Omega = \infty$. Define $\lambda_{\Omega}(x) = \frac{1}{t^2}$. It follows that

$$C(\frac{1}{t^2}) = \frac{1}{t^{10}} + \frac{a}{t^8} + \frac{b}{t^6} + \frac{c}{t^4} + \frac{d}{t^2} + e$$
$$= \frac{1}{t^{10}}(1 + \dots)$$

So define $\lambda_{\mathbb{Q}}(y) = \frac{1}{t^5}\sigma_3$ with the notation $\sigma_3 = \sqrt{\tau_3}$ as before.

Definition 5: For $\Omega \in H(\overline{K})$ and $f \in \mathcal{F}^*$ define $\operatorname{ord}_{\Omega}(f) = \operatorname{ord} \lambda_{\Omega}(f)$.

 \sim

Lemma 1: Let f $inK[x,y] \subset \mathcal{F}$, $f \neq 0$ and $Q \in H_0(\overline{K})$, $Q = (x_0,y_0)$. Then

- (a) $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ and
- (b) if $f(\Omega) = 0$ then $\operatorname{ord}_{\Omega} f \geq 1$.

Proof.

- (a) Because $\Omega \in H_0(\overline{K})$ we have $\lambda_{\Omega}(x)$, $\lambda_{\Omega}(y) \in \overline{K}[[t]]$ and with $f \in K[x,y]$ we have $\operatorname{ord}_{\Omega}(f) \geq 0$.
- (b) Write $f = A(x, y), A(X, Y) \in K[X, Y]$. First, let $y_0 \neq 0$.

$$\operatorname{ord}_{\Omega} f = \operatorname{ord} A(\lambda_{\Omega}(x), \lambda_{\Omega}(y))$$
$$= \operatorname{ord} A(x_0 + t, y_0 \sigma_1).$$

But $A(x_0 + t, y_0 \sigma_1) = \sum_{i=0}^{\infty} a_i t^i$ so with t = 0 we get $A(x_0, y_0) = a_0$ but the former is f(Q) which is 0, so $a_0 = 0$ and the claim follows.

If $y_0 = 0$ we would have $\operatorname{ord}_{\mathbb{Q}} f = \operatorname{ord} A(x_0 + t^2, \sqrt{\mu}t\sigma_2)$ instead. But like before, this means $0 = f(\mathbb{Q}) = A(x_0, 0) = a_0$ so again $\operatorname{ord}_{\mathbb{Q}}(f) \geq 1$.

Lemma 2: Let $f \in K(x), f \neq 0, Q \in H(\overline{K})$. Then

(a) $\operatorname{ord}_{\mathfrak{Q}}(f) = \operatorname{ord}_{x_0} f(x)$ if $\mathfrak{Q} = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 \neq 0$.

- (b) $\operatorname{ord}_{\mathfrak{Q}}(f) = 2\operatorname{ord}_{x_0} f(x)$ if $\mathfrak{Q} = (x_0, 0) \in H_0(\overline{K})$.
- (c) $\operatorname{ord}_{\infty}(f) = 2\operatorname{ord}_{0} f(\frac{1}{x}).$

Note that the righthand side of the equalities refer to the usual definition of the order of a rational function in a point $x_0 \in \overline{K}$.

Proof. First take $f \in K[x]$ and define $e = \operatorname{ord}_{x_0} f \in \mathbb{N}$ so $f = (x - x_0)^e g(x)$ with $g \in \overline{K}[x]$ and $g(x_0) \neq 0$.

- (a) If $Q = (x_0, y_0)$, $y_0 \neq 0$ then $\lambda_Q(f) = f(x_0 + t) = t^e g(x_0 + t)$ and so $\operatorname{ord} \lambda_Q(f) = e$ because $g(x_0 + t) = g(x_0) + \dots$ with $g(x_0) \neq 0$.
- (b) Here $\lambda_{\mathbb{Q}}(f) = f(x_0 + t^2) = t^{2e}g(x_0 + t^2)$ and again $g(x_0 + t^2) = g(x_0) + \dots$ so ord $\lambda_{\mathbb{Q}}(f) = 2e$.
- (c) For $\Omega = \infty$ we have $\lambda_{\Omega}(f) = f(\frac{1}{t^2}) = \frac{\alpha}{t^{2d}} + \dots$ with $\alpha \neq 0$ if $d = \deg f$. Obviously, $\operatorname{ord}_0 f(\frac{1}{x}) = \operatorname{ord}_0 \frac{\alpha + \dots}{x^d} = -d$ so $\operatorname{ord} \lambda_{\Omega}(f) = 2\operatorname{ord}_0 f(\frac{1}{x})$.

Generally, if $f \in K(x)$ we can write $f = \frac{p}{q}$ for $p, q \in K[x]$ and we apply the above to p and q, subtracting $\operatorname{ord}_{\Omega} q$ from $\operatorname{ord}_{\Omega} p$.

Lemma 3: For $f \in \mathcal{F}^*$ and $\Omega \in H(\overline{K})$ the order satisfies $\operatorname{ord}_{\Omega}(\overline{f}) = \operatorname{ord}_{\overline{\Omega}}(f)$

Proof.

1. For $\Omega \in H_0(\overline{K})$ with $y_0 \neq 0$ we've got $\lambda_{\Omega}(x) = x_0 + t$ and $\lambda_{\Omega}(y) = y_0 \sqrt{\tau}$. Therefore $\lambda_{\overline{\Omega}}(x) = x_0 + t = \lambda_{\Omega}(\overline{x})$ and $\lambda_{\overline{\Omega}}(y) = -y_0 \sqrt{\tau} = \lambda_{\Omega}(\overline{y})$ so

$$\lambda_{\overline{\mathbb{Q}}}(f(x,y)) = f(\lambda_{\overline{\mathbb{Q}}}(x), \lambda_{\overline{\mathbb{Q}}}(y))$$
$$= \lambda_{\mathbb{Q}}(f(\overline{x}, \overline{y}))$$
$$= \lambda_{\mathbb{Q}}(\overline{f}(x,y)).$$

2. If $Q \in H_0(\overline{K})$ with $y_0 = 0$ then $\overline{Q} = Q$. Write f = g(x) + h(x)y so

$$\lambda_{\Omega}(\overline{f}) = g(x_0 + t^2) - h(x_0 + t^2)\nu t \sqrt{\tau}.$$

Calling this $l(t) = \lambda_{\mathbb{Q}}(\overline{f})$ and looking at the construction of $\lambda_{\mathbb{Q}}$ we see that τ sports only even powers of t so we see above that $l(-t) = \lambda_{\mathbb{Q}}(f)$. As interchanging t with -t doesn't change the order, we're done.

3. For $\Omega = \infty$, $\tau = 1 + at^2 + bt^4 + ct^6 + dt^8 + ct^{10}$ features only even powers as well, so again $l(-t) = \lambda_{\Omega}(f)$ for $l(t) = \lambda_{\Omega}(\overline{f}) = g(\frac{1}{t^2}) - h(\frac{1}{t^2})\frac{1}{t^5}\sqrt{\tau}$. Finally, $\lambda_{\Omega}(f)$ is equal to $\lambda_{\overline{\Omega}}(f)$ since $\infty = \overline{\infty}$. Again ord $l(t) = \operatorname{ord} l(-t)$.

Lemma 4: If $f \in \mathcal{F}^*$ then the set $\{Q \in H(\overline{K}) \mid \operatorname{ord}_{Q} f \neq 0\}$ is finite and

$$\sum_{\mathfrak{Q}\in H(\overline{K})}\mathrm{ord}_{\mathfrak{Q}}f=0.$$

Proof. First take $f \in K[x,y]$, $f \neq 0$ and let $\Omega = (x_0,y_0) \in H_0(\overline{K})$ with $\operatorname{ord}_{\Omega}f \neq 0$. By Lemma 1 (a) we know that $\operatorname{ord}_{\Omega}f \geq 1$. It follows that $\operatorname{ord}_{\Omega}(f\overline{f}) = \operatorname{ord}_{\Omega}f + \operatorname{ord}_{\Omega}\overline{f} \geq 1$. Now since f = g + hy, $f\overline{f} = g^2 - h^2C(x)$ which lies in K[x], so by Lemma 2 we have $\operatorname{ord}_{x_0}(f\overline{f}) > 0$. But there are only finitely many such x_0 and so only finitely many $y_0 = \pm \sqrt{C(x_0)}$.

For $f \in K(x,y)$, $f = \frac{f_1}{f_2}$, $f_1, f_2 \in K[x,y]$ we have $\operatorname{ord}_{x_0} f = \operatorname{ord}_{x_0} f_1 - \operatorname{ord}_{x_0} f_2$ so there are also only finitely many x_0 for which this differs from zero.

Give a name to our sum

$$s(f) = \sum_{Q \in H(\overline{K})} \operatorname{ord}_{Q} f$$

and note that $s(f) = s(\overline{f})$ due to Lemma 3 and the fact that we take the sum over all Ω . Because $\operatorname{ord}_{\Omega}(f\overline{f}) = \operatorname{ord}_{\Omega}(f) + \operatorname{ord}_{\Omega}(\overline{f})$ we can see that

$$s(f\overline{f}) = s(f) + s(\overline{f}) = 2s(f).$$

But because $f\overline{f} \in K(x)$ we can use Lemma 2 to write this out as

$$\begin{split} 2s(f) &= \sum_{\substack{\Omega \in H(\overline{K}) \\ = 2}} \operatorname{ord}_{\Omega} f \overline{f} \\ &= 2 \sum_{\substack{x_0 \neq \infty \\ x_0 \neq \alpha_i}} \operatorname{ord}_{x_0} f \overline{f} + 2 \sum_{x_0 = \alpha_i} \operatorname{ord}_{x_0} f \overline{f} + 2 \sum_{x_0 = \infty} \operatorname{ord}_{x_0} f \overline{f} \\ &= 2 \sum_{\substack{x_0 \in \overline{K} \cup \{\infty\} \\ }} \operatorname{ord}_{x_0} f \overline{f}. \end{split}$$

Here α_i are the points on which C(x) vanishes and since

$$\sum_{x_0 \in \overline{K} \cup \{\infty\}} \operatorname{ord}_{x_0} g = 0$$

for any $g \in K(x)$ we have 2s(f) = 0 meaning s(f) = 0 in \mathbb{Z} .

2.2 Divisors and Lemmas

Before we continue with the next row of Lemmas, we introduce

Definition 6: The divisor of a function $f \in \mathcal{F}$ is the formal sum

$$(f) = \sum_{Q \in H(\overline{K})} \operatorname{ord}_{Q} f \cdot Q$$

Lemma 5: If f has no poles, f is a constant.

Lemma 6: If f has at most one pole at ∞ , f is a constant.

Lemma 7: If f has at most two poles at ∞ , f is of the form $f = \alpha + \beta x$ with $\alpha, \beta \in K$.

Lemma 8: If f has at most three poles at ∞ , f is of the form $f = \alpha + \beta x$ with $\alpha, \beta \in K$.

Lemma 9: If f has at most four poles at ∞ , f is of the form $f = \alpha + \beta x + \gamma x^2$ with $\alpha, \beta, \gamma \in K$.

Proof.
$$\Box$$

Minilemma 1: If f is such that $\lambda_{\infty}(f) = \gamma t^e + \ldots$ then $\lambda_{\infty}(\overline{f}) = -\gamma t^e + \ldots$

Proof. Let $\lambda_{\infty}(\overline{f}) = \widetilde{\gamma}t^e + \dots$ Since $f + \overline{f} = 2p$ and $\operatorname{ord}_{\infty}(p)$ is always even for $p \in K(x)$, we must have $(\gamma + \widetilde{\gamma})t^{-3} + \dots = \sigma t^{-2} + \dots$ so $\gamma = -\widetilde{\gamma}$.

Lemma 2: Let $f \in \mathcal{F}^*$ with $(f) = \frac{***}{3\infty}$. Then $f = \alpha + \beta x$.

Proof. Let f = p + qy with $p, q \in K(t)$. We have $\lambda_{\infty}(f + \overline{f}) = \sigma t^{-2} + \dots$ so $p = \frac{1}{2}(f + \overline{f}) = \alpha + \beta x$.

Now, consider $f - \overline{f} = 2qy$. We get $\lambda_{\infty}(f - \overline{f}) = 2\lambda_{\infty}(q)t^{-5}\sqrt{\tau} = 2\gamma t^{-3} + \dots$ and since $\sqrt{\tau}$ is a series of the form $1 + \dots$ we must have $\lambda_{\infty}(q) = \gamma t^2 + \dots$

Suppose $q \neq 0$, this implies $\frac{1}{q} = \widetilde{\delta} + \widetilde{\epsilon}x$. Rewriting to accommodate for q = 0 gives $q = \frac{\epsilon}{x - \delta}$ with $\delta, \epsilon \in K$ as well so

$$f = \alpha + \beta x + \frac{\epsilon}{x - \delta} y$$

However, now $\lambda_{\Omega}(f) = \alpha + \beta(t^2 + \delta) + \epsilon \sqrt{\mu} \frac{t\sqrt{\tau}}{t^2}$ for $\Omega = (\delta, 0)$ which is equal to $\epsilon \sqrt{\mu} t^{-1} + \dots$ If $\epsilon \neq 0$ (μ is non zero anyway) this means that Ω is a new (true) pole for f which contradicts $(f) = \frac{***}{3\infty}$, so q must be 0.

Lemma 3: Let $f \in \mathcal{F}^*$ with $(f) = \frac{****}{4\infty}$. Then $f = \alpha + \beta x + \gamma x^2$.

Proof. (different function f): With $\lambda_{\infty}(f) = \gamma t^{-4} + \dots$ so $\lambda_{\infty}(f - \gamma x^2)$ being of the form $\sigma t^{-3} + \dots$ we fall into the case above and the claim follows. \square