Titanic
Survival
Prediction:
Enhancing
Cruise
Ship Safety

- Industry: Tourism & Hospitality | Domain: Maritime Safety & Risk Management
- By: Sai Prakhya

Use Case Summary

Our AI-powered
'Safety
Companion'
system for
modern cruise
ships aims to:

1. Identify highrisk passengers

2. Optimize evacuation procedures

3. Personalize safety briefings

Objective

 Develop and compare machine learning models to predict passenger survival probability, forming the foundation of the 'Safety Companion' system.

Exploratory Data Analysis (Gender & Age Distributions)

- We analyzed the gender and age distributions to understand the demographics of passengers:
- 64.8% male, 35.2% female.
- Majority of passengers between the ages of 20-40.

EDA Image: Gender & Age Distribution

Exploratory Data Analysis (Passenger Class & **Embarkation** Points)

- Passenger class and embarkation point distribution reveal socio-economic status:
- Majority in 3rd class, embarked at Southampton.

EDA Image: Passenger Class & Embarkation Point Distribution

Model: Logistic Regression

 Logistic Regression was used as a baseline model with 79.80% accuracy on training data.
 Feature normalization was applied to improve performance.

Logistic Regression Training Curve

epochs

Model: Deep **Artificial** Neural Network (ANN)

• The Deep ANN model captured non-linear relationships, achieving 82.49% accuracy. The architecture had [128, 64, 32] hidden layers with a 'np.tanh' activation function.

Deep ANN Training Curve

Feature Importance Explanation

 Feature importance analysis shows that Passenger Class and Sex are the strongest predictors, followed by Age and Family Size.

Feature Importance

Feature	Importance
Pclass_3	1.064671
Sex	0.984643
Pclass_2	0.417891
Age	0.226299
Pclass_1	0.224947
FamilySize	0.110296

Conclusion & Future Steps

Deep ANN
 outperformed Logistic
 Regression. Future
 steps include
 improving risk
 assessment, collecting
 more real-time data,
 and implementing
 simulation tests.