1강

요즘의 컴퓨터? 이런거 다 운영체제다 이 말이야

운영체제란 무엇인가?

하드웨어를 손쉽게 그리고 효율적으로 사용할 수 있는 abstraction을 제공한다.

- CPU process (하드웨어 그 하드웨어를 효율적으로 사용하기 위한 abstration) CPU를 사용하기 위해서는 process라는 abstraction이 필요하다.
 - Memory address space

주로 process, address space를 이번 수업에서 다룬다.

- · Disk file
- · Network port

자원 공유 및 분배를 위한 policy를 결정한다.

윈도우 창을 하나 띄우는 것에 대해서 자원이 할당되는 것이다.

- Policy의 예 : FIFO First IN First Out, LRU Least Recently Use
- 설계설정 (design decisions)이 필요
 - 대형컴퓨터, 휴대전화에 사용되는 policy가 다르다
 - 이 자원의 운용은 design decisions에 의해서 결정되는 경우가 많다.

최소한 수업시간에 다 이해하고 가라

운영체제 공부는

Abstraction을 이해하는 것이다

- 코드에 대한 이해가 필수적
- 외우는 것이 큰 도움이 안된다.
- "연관"을 지어 사고하는 것이 매우 중요
 - abstraction과 abstraction을 연관된 것으로 보라
 - process와 memory address과 떨어져있는 것이 아니다.

운영체제를 왜 공부해야 하는가? 이게 왜 필수적인가? 왜 실제적으로 도움이 되는가? 검색엔진이 3초가 걸리더라 이것 결국 3ms로 1000배를 개선시켰다. 그런데 어떻게 줄였는가?

메모리 시스템과 네트워킹 시스템을 개선했더니 이렇게 되더라. 운영체제 짱이다.

Abstraction: process

Program

- 컴퓨터를 실행 시키기 위한 일련의 순차적으로 작성된 명령어의 모음
- 컴퓨터 시스템의 disk와 같은 secondary storage에 바이너리 형태로 저장되어 있다.

Abstraction: Process

- 실행되고 있는 프로그램의 추상화(abstraction)
- 프로그램이 실행되고 있는 상태
- 프로그램에 대해서 프로세스는 여러 개일 수 있다.
- Program counter, stack, data section등을 포함하고 있다.
- 프로세스는 물리적이지 않지만, 그 동작을 볼 수 있다.

Abstraction: address space

프로세스에게 할당된 메모리 공간

프로세스는 다른 프로세스의 메모리 공간을 할당할 수 없다. → Protection Domain 내 프로세스에서 다른 프로세스의 메모리 공간을 읽거나 쓸 수 없다. 이 원칙을 깨는 것이 해킹이다.

- Proces가 차지하는 메모리 공간
- 왜 필요할까:
 - Protection Domain 서로의 주소 공간을 침범 할 수 없음

Protection Domain은 일단은 모든 OS에 적용되는 경우이다. 다만 수업이 진행되면서 예외가 있을 수 있다.

Abstraction: File

파일의 property는 Persistent storage이다.

프로세스와 address space는 전원을 끄면 사라진다.

그러나 파일은 전원과 관계없이 늘 남아있다.

File은 실제로는 여러군대에 나뉘어 존재하나 하나로 묶어서 우리가 생각하곤한다.

Abstraction: Port

컴퓨터 간에 메시지를 주고 받는 communication endpoint

3

카카오톡으로 통신할때 친구가 어디에 있는지 알 필요가 없다. 그 역할을 포트가 다 해준다.

- 포트가 데이터를 잘 받고 잘 수신해서 전달하는 것이다.
- 그리고 프로세스간의 목적지를 헷갈리지 않는다.

Process 간에 주고 받는 메시지도 port를 사용한다. Loopback이라는 특수한 포트를 말이다!

Software의 구분

System Software

- 목적 : 컴퓨터 시스템을 구동시키는 SW
 - OS 이외의 system software는?
 - Compiler/Assembler

Application Software

- 목적 : 특정 용도로 사용됨
 - AI 인식기, 빅데이터 처리기, Word, Internet Explorer
 - 매우 매우 다양한 응용프로그램이 존재

운영 체제의 특징 (Application과 비교)

• OS는 항상 동작 한다.

멈추면 컴퓨터가 멈추는 것이다.

• 제어 기능으로서 항상 자원에 대한 감시 활동을 한다.

Supervisor mode라는 별도의 측별한 모드에서 활동한다. 그리고 이 모드에서만 하드웨어에 접근 가능하다.

superviser mode \leftrightarrow User mode

• 하드웨어에 대한 제어 기능

Device driver이다.

마우스 키보드 스피커 다 제어한다.

OS and Kernel

OS와 kernel에 대한 두가지 관점

- 1. os = kernel
- 2. os = kernel + windows system(GUI) + library

Kernel

운영제게의 핵심 부분으로, 자원할당, 하드웨어 인터페이스, 보안등을 담당 슈퍼바이져 모드에서 작동

Windows system

윈도우 형태의 그래픽 사용자 인터페이스 예) OpenGL

Library

서브루틴과 자주 사용되는 함수들의 집합

Relation of Hardware, O/S and Application

Application이 Hardware에 접근하기 위해서는 OS를 반드시 거쳐야 한다. 그리고 그러한 경우에는 많은 경우에 라이브러리를 거쳐야 한다.

1강 6