Ex. Find a power series centered at 0 of

$$\frac{1}{(1-x)^2} = (-1)(1-x^2) = \frac{1}{(1-x)^2}$$

10.7 Taylor Scries

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$$

\$1 mg 11 12-6

Differentiate D

$$f(1x) = a \cdot + 2a \cdot (x - c)' + 3a \cdot 3(x - c)^2 + 4a \cdot (x - c)' + ...$$

If x = C,

Diff (2)

Control of the state of the sta

CONTRACTOR ASSESSMENT ASSESSMENT

zfx=(;

Taylor Series Expassion >
If fix) is represented by a power series control of x=c
in 1x-c/ck the that pure-sever is the Taylor sever
$T(x) = \sum_{n=1}^{\infty} f(n)(x)$
h=0 h' h'
TF (= (1 that T(x) is called Maclaumin Senes
$T(x) = f(0) + f'(0) \times 1 + \frac{2!}{2!} \times 2 + \frac{f''(0)}{3!} \times 3 + \frac{10}{4!} \times 4 + \dots$
Ex. Find the Maclaum Sono f(x)=11x and jaternal of conv.
$f(x) = s \cap \alpha = f'''(x) + f''(x)$
1'(x) (wx = f(s) (x)
f''(x) = -sim = f'(s)(x)
f'''(x) = f''(x) = f''(x)
ftos=1110 = 0 = f4K)(K), KETC
+1(0) = (050 - 1 = f(atin) (x), text
$f'''(0) = -\sin 0 = x = f(4k+2)(x), f \in \mathbb{Z}^4$
$T(x) = 0 + \frac{1}{1!} x + \frac{0}{2!} x^2 + \frac{1}{3!} x^3$
X=± x3+± n5
= x-3, x'+ 1, x'- 1, x'
\sim $(-1)^{\frac{1}{2}}$ and
$= \sum_{i=1}^{\infty} \frac{(-i)^{i}}{(2^{i+1})!} \chi^{2nH}$
Fried Interval of conveyance with vative test.
1 Qet 1 0. 1-11" x" Datt 1 - 1 in 7
12 (n+1)+1) (-1)" x(m) (2hn)(2hd)
To Simp P= 0 < 1, Rato Test
My (spilling)
says tu saws convers for any x.
Ineral (-20,00).
l = Do

Taylor sens 7(x) = f(c) + = f(c) (x-c) = f"(c)(x-c) + f"(c)(x-c) = -Ex. expross fo sin (x) da as an Inhose sour $-f'(x) = (cs(4^2) ... e^{x-1+x} + \frac{x^2}{2!} + \frac{x^3}{3!} ... \frac{x^4}{4!} + ...$ In (1+x) = x-x2-x4-[517 (x2) dx $=\int_{0}^{\infty} \sum_{n=1}^{\infty} (-1)^{n} (x^{2})^{2n+1} dx$ heu (2m1)! $= \int_{0}^{\infty} \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \frac{1}{x^{2n+2}} \frac{1}{x^{2n+2}} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \frac{1}{x^{2n+2}} \frac{1}{x^{2n+2$ マューシャナシー ニーニー ※ Tex. Find volue of 1+2:+3:+4:+3:+6:--A = e-T. Tex 71-713 +125 709