

Forward and Inverse Kinematics

Dr. Divya Udayan J, Ph.D.(Konkuk University, S.Korea)

Assistant Professor(Selection Grade)

Department of CSE

Amrita School of Engineering, Amritapuri Campus,

Amrita Vishwa Vidyapeetham

Email: divyaudayanj@am.amrita.edu

Mobile: 9550797705

Link

 A link is considered as a rigid body which defines the relationship between two neighboring joint axes of a manipulator.

The Kinematics Function of a Link

- The kinematics function of a link is to maintain a fixed relationship between the two joint axes it supports.
- This relationship can be described with two parameters: the link length a, the link twist

Link Length

Is measured along a line which is <u>mutually</u> <u>perpendicular</u> to both axes.

The mutually perpendicular <u>always exists and</u> <u>is unique</u> except when both axes are parallel.

Link twist

Project both axes i-1 and i onto <u>the plane</u> whose normal is the mutually perpendicular line, and measure the angle between them

Right-hand sense

Link Length and Twișt

Joint Parameters

A joint axis is established at the connection of two links. This joint will have two normals connected to it one for each of the links.

- The relative position of two links is called <u>link offset</u> d_n whish is the distance between the links (the displacement, along the joint axes between the links).
- The <u>joint angle</u> θ_n between the normals is measured in a plane normal to the joint axis.

Link and Joint Parameters

Link and Joint Parameters

4 parameters are associated with each link. You can align the two axis using these parameters.

Link parameters:

 a_n the length of the link.

 α_n the twist angle between the joint axes.

Joint parameters:

 θ_n the angle between the links.

d_n the distance between the links

Link Connection Description:

For Revolute Joints: a, α , and d. are all fixed, then " θ_i " is the. Joint Variable.

For Prismatic Joints: a, α , and θ . all fixed, then " d_i " is the.

Joint Variable.

These four parameters: (Link-Length a_{i-1}), (Link-Twist α_{i-1}), (Link-Offset d_i), (Joint-Angle θ_i) are known as the <u>Denavit-Hartenberg Link Parameters</u>.

Links Numbering Convention

Base of the arm: Link-0 1st moving link: Link-1

•

Last moving link Link-n

A 3-DOF Manipulator Arm

First and Last Links in the Chain

•
$$a_{0=} \alpha_{n=0.0}$$

•
$$\alpha_{0=} \alpha_{n=0.0}$$

• If joint 1 is revolute: $d_{0=} \theta$ and θ_1 is arbitrary

• If joint 1 is prismatic: $d_{0=}$ arbitrary and $\theta_{1=}$ θ

We are interested in two kinematics topics

Forward Kinematics (angles to position)

What you are given: The length of each link

The angle of each joint

What you can find:

The position of any point position of end (i.e. it's (x, y, z) coordinates

Inverse Kinematics (position to angles)

What you are given:

The length of each link

The position of some point on the robot

Airco

The angles of each joint needed to obtain What you can find:

that position

Animation of Forward and Inverse Kinematics

https://www.youtube.com/watch?v=rlurtdGVQCk