# Part 9: Local Average Treatment Effects Application: Demand Curves

Chris Conlon

April 4, 2021

Applied Econometrics

#### A Classic Example

- What is the effect of prices on quantity demanded?
- But a regression of  $\log(q_t) = \beta_0 + \beta_1 \log(p_t) + u_t$  is going to be flawed.
- For one thing, how do we know that relationship represents supply or demand?
- ullet Imagine an instrument  $z_t \in \{0,1\}$  that reduces supply but does not effect demand.
- What about?
  - Monotonicity?
  - Heterogeneity in treatemnt effects?
  - Exclusion Restriction?

# LATE at the Fulton Fish Market (Graddy 1995)

 ${\it Table~2}$  Ordinary Least Squares and Instrumental Variable Estimates of Demand Functions with Stormy Weather as an Instrument

| Variable         | Ordinary least squares<br>(dependent variable:<br>log quantity) |        | Instrumental<br>variable |        |
|------------------|-----------------------------------------------------------------|--------|--------------------------|--------|
|                  | (1)                                                             | (2)    | (3)                      | (4)    |
| Log price        | -0.54                                                           | -0.54  | -1.08                    | -1.22  |
|                  | (0.18)                                                          | (0.18) | (0.48)                   | (0.55) |
| Monday           |                                                                 | 0.03   |                          | -0.03  |
|                  |                                                                 | (0.21) |                          | (0.17) |
| Tuesday          |                                                                 | -0.49  |                          | -0.53  |
|                  |                                                                 | (0.20) |                          | (0.18) |
| Wednesday        |                                                                 | -0.54  |                          | 0.58   |
|                  |                                                                 | (0.21) |                          | (0.20) |
| Thursday         |                                                                 | 0.09   |                          | 0.12   |
|                  |                                                                 | (0.20) |                          | (0.18) |
| Weather on shore |                                                                 | -0.06  |                          | 0.07   |
|                  |                                                                 | (0.13) |                          | (0.16) |
| Rain on shore    |                                                                 | 0.07   |                          | 0.07   |
|                  |                                                                 | (0.18) |                          | (0.16) |
| $R^2$            | 0.08                                                            | 0.23   |                          |        |
| No. of Obs.      | 111                                                             | 111    | 111                      | 111    |

Source: The data used in these regressions are available by contacting the author. Note: Standard errors are reported in parentheses.

#### Wald Estimator

#### Focus on the simple case:

- $z_t \in \{0,1\}$  where 1 denotes "stormy at sea" and 0 denotes "calm at sea"
- Idea is that offshore weather makes fishing more difficult but doesn't change onshore demand.
- Ignore x (for now at least) or assume we condition on each value of x.

$$\hat{\alpha}_{1,0} \to^p \frac{\mathbb{E}[q_t | z_t = 1] - \mathbb{E}[q_t | z_t = 0]}{\mathbb{E}[p_t | z_t = 1] - \mathbb{E}[p_t | z_t = 0]} \equiv \alpha_{1,0}$$

- If we have homogenous  $\alpha$  then any IV gives us a consistent estimate of  $\alpha_1$
- If we are in complicated (nonlinear, heterogeneous) then  $\alpha_{1,0}$  the object we recover, is not an estimator of a structural parameter.
- Moreover, this is at best a LATE, and thus it differs depending on which instrument we use!

#### **AIG: Assumptions**

- 1. Regularity conditions on  $q_t^d, q_t^s, p_t, z_t, w_t$  first and second moment and is stationary, etc.
  - $q_t^d(p,z,x)$  ,  $q_t^s(p,z,x)$  are continuously differentiable in p.
- 2.  $z_t \in \{0,1\}$  is a valid instrument in  $q_t^d$ 
  - ullet Exclusion: for all p,t

$$q_t^d(p, z = 1, x_t) = q_t^d(p, z = 0, x_t) \equiv q_t^d(p, x_t)$$

ie: conditioning on  $p_t$  means no dependence on  $z_t$ 

- Relevance: for some period t:  $q_t^s(p_t, 1, x_t) \neq q_t^s(p_t, 0, x_t)$ . ie:  $z_t$  actually shifts supply somewhere!
- Independence:  $\epsilon_t, \eta_t, z_t$  are mutually independent conditional on  $x_t.$

#### **AGI: Structural Interpretation**

In order to interpret the Wald estimator  $\alpha_{1,0}$  we make some additional economic assumptions on the structure of the problem:

- 1. Observed price is market clearing price  $q_t^d(p_t) = q_t^s(p_t, z_t)$  for all t. (This means no frictions!).
- 2. "Potential prices": for each value of z there is a unique market clearing price

$$\forall z,t: \tilde{p}(z,t) \text{ s.t. } q_t^d(\tilde{p}(z,t)) = q_t^s(\tilde{p}(z,t),z).$$

 $\tilde{p}(z,t)$  is the potential price under any counterfactual (z,t)

#### **AGI: Structural Interpretation**

- Just like in IV we need denominator to be nonzero so that  $E[p_t|z_t=1] \neq E[p_t|z_t=0].$
- Other key assumption is the familiar monotonicity assumption
  - $\tilde{p}(z,t)$  is weakly increasing in z.
  - Just like in program evaluation this is the key assumption. There it rules out "defiers" here it allows us to interpret the average slope as  $\alpha_{1,0}$ .
  - Assumption is untestable because you do not observe both potential outcomes  $\tilde{p}(0,t)$  and  $\tilde{p}(1,t)$  (same as in program evaluation).
  - Any story about IV is just a story! (Always the case!) unless we have repeated observations on the same individual.
- Monotonicity makes extending to multiple product case difficult/impossible.

Conlon Mortimer RJE (2021)

#### Wald Estimator: Redux

Consider the following Wald estimator:

$$\begin{aligned} \operatorname{Wald}\left(p_{j},p_{j}',x\right) &= \frac{q_{k}\left(p_{j}',x\right) - q_{k}\left(p_{j},x\right)}{-\left(q_{j}\left(p_{j}',x\right) - q_{j}\left(p_{j},x\right)\right)} \\ \lim_{p_{j}' \to p_{j}} \operatorname{Wald}\left(p_{j},p_{j}',x\right) &\to \frac{\frac{\partial q_{k}}{\partial P_{j}}\left(p_{j},x\right)}{-\frac{\partial q_{j}}{\partial P_{j}}\left(p_{j},x\right)} \equiv D_{jk}\left(p_{j},x\right) \end{aligned}$$

We call  $D_{jk}(p_j, x)$  the Diversion Ratio.

As we increase  $P_j$  and people leave what fraction switch to k?

#### Wald Estimator: Relation to IV Case

To solidify the connection with the quasi-experimental LATE framework, recognize that our hypothetical price change experiment can be interpreted using the following definitions:

- Outcome  $Y_i \in \{0,1\}$  denotes the event that consumer i purchases product k:  $d_{ik}(P_j) = 1$ .
- Treatment  $T_i \in \{0, 1\}$  denotes the event that consumer i does not purchase product j. In other words  $T_i = 0$  implies  $d_{ij}(P_j) = 1$  and  $T_i = 1$  implies  $d_{ij}(P_j) = 0$ .
- **Instrument**  $Z_i = P_j$  the price of j induces consumers into not purchasing j.

# Diversion: Why do we care?

• Related to cross price elasticity 
$$D_{jk} = \frac{\frac{\partial q_k}{\partial P_j}(p_j, x)}{-\frac{\partial q_j}{\partial P_j}(p_j, x)} = -\frac{\epsilon_{jk}}{\epsilon_{jj}} \times \frac{q_k}{q_j}$$

• Related to multi-product differentiated Bertrand FOC (MR = MC):

$$p_j(\mathbf{p})\left[1 + \frac{1}{\epsilon_{jj}(\mathbf{p})}\right] = mc_j + \sum_k (p_k - mc_k) \cdot D_{jk}$$

•  $D_{jk} \in [0,1]$  and  $\sum_k D_{jk} = 1$  and high-diversion ratios indicate close substitutes.

## **Diversion: Assumptions**

Like in multiple discrete choice lectures assume that:

- 1. Consumers make mutually exclusive and exhaustive discrete choice.
- 2. Can be guaranteed by presence of an outside option.
- 3. Utility  $u_{ij}(x)$  can be deterministic or stochastic.
- 4. x contains all covariates that don't change (other prices and characteristics).
- 5. Could be mixed logit but doesn't need to be...

$$d_{ij}(p_j,x) = \begin{cases} 1 & u_{ij}(p_j,x) > u_{ij'}(p_j,x) \text{ for all } j' \in \mathcal{J} \text{ and } j' \neq j. \\ 0 & o.w. \end{cases}$$

6.  $s_{ij}(x) = \int d_{ij}(x) dF_i$  (share of individuals choosing j) and  $q_j(x) = s_j(x) \cdot M$ .

#### Diversion as LATE

# Analogue to LATE Theorem (Imbens Angrist (1994))

Under the following conditions:

- (a) Mutually Exclusive and Exhaustive Discrete Choice:  $d_{ij} \in \{0,1\}$  and  $\sum_{i \in \mathcal{I}} d_{ij} = 1$ .
- (b) Exclusion:  $u_{ik}(p_j, x) = u_{ik}(p'_i, x)$  for all  $k \neq j$  and any  $(p_i, p'_i)$ ;
- (c) Monotonicity:  $u_{ij}(p'_i, x) \leq u_{ij}(p_j, x)$  for all i and any  $(p'_i > p_j)$ ; and
- (d) Existence of a first-stage:  $d_{ij}(p_j, x) = 1$  and  $d_{ij}(p'_i, x) = 0$  for  $(p'_i > p_j)$  for some i;
- (e) Random Assignment:  $(u_{ij}(P_j, x), u_{ik}(P_j, x)) \perp P_j$ . then the Wald estimator

$$\frac{q_k(p'_j, x) - q_k(p_j, x)}{-\left(q_j(p'_j, x) - q_j(p_j, x)\right)} = \mathbb{E}[D_{jk,i}(x)|d_{ij}(p_j, x) > d_{ij}(p'_j, x)]$$

Proof in Conlon Mortimer (2021).

# **Compliance Types**

| Compliance Type                    | $(d_{ij}(p_j,x),d_{ij}(p'_j,x))$ | Description                                                     |  |
|------------------------------------|----------------------------------|-----------------------------------------------------------------|--|
| Always Takers                      | (0,0)                            | Don't buy $j$ at either price.                                  |  |
| Never Takers                       | (1, 1)                           | Buy $j$ at either price                                         |  |
| Compliers                          | (1, 0)                           | Only buy $j$ at lower price $p_j < p_j^\prime$                  |  |
| Defiers                            | (0, 1)                           | Only buy $j$ at higher prices $p_j^\prime > p_j$                |  |
| Treatment Effects Parameter        | Abbreviation                     | Expression                                                      |  |
| Average Treatment Effect           | ATE                              | $\mathbb{E}[D_{jk,i}(x)]$                                       |  |
| Average Treatment on the Treated   | ATT                              | $\mathbb{E}[D_{jk,i}(x) d_{ij}(p_j,x)=0]$                       |  |
| Average Treatment on the Untreated | ATUT                             | $\mathbb{E}[D_{jk,i}(x) d_{ij}(p_j,x)=1]$                       |  |
| Local Average Treatment Effect     | LATE                             | $\mathbb{E}[D_{jk,i}(x) d_{ij}(p_j,x) = 1, d_{ij}(p'_j,x) = 0]$ |  |

#### Diversion as LATE

#### What is the point?

- 1. Ceteris paribus price change  $p_j \to p_j'$  gives the average diversion ratio among the compliers.
- 2. Compliers buy j at  $p_j$  but not at  $p'_j$ .
- 3. Choice of  $P_j$  is arbitrary could have been any  $z_j$  or  $-z_j$  satisfying monotonicity:

$$u_{ij}(z'_j, x) \le u_{ij}(z_j, x)$$
 for all  $i$  and any  $(z'_j > z_j)$ .

4. Under pretty weak assumptions  $ATT = \mathbb{E}[D_{jk,i}(x)|d_{ij}(p_j,x)=0] = \frac{s_{ik}(x)}{1-s_{ij}(x)}$ 

### Diversion under RC Logit

We can always write any treatment effect parameter (LATE, ATE, ATUT, etc.) as weighted average over individual diversion ratios:

$$\mathbb{E}[D_{jk,i}(x)|?] = \int D_{jk,i}(x)w_{ij}(x)dF_i$$

The weights  $w_{ij}(x)$  depend on the intervention:

- Price change
- Quality change
- Second-choice/Product Removal

# Weighting for Mixed Logit

For mixed logit:  $D_{jk,i}(x) = \frac{s_{ik}(x)}{1 - s_{ij}(x)}$ 

|                                                             | $w_{ij}(x) \propto$                                | $\widetilde{w}_{ij}(x) \propto$                                                                                                 |
|-------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| second choice data                                          | $s_{ij}(x)$                                        | $\frac{s_{ij}(x)}{1 - s_{ij}(x)}$                                                                                               |
| price change $rac{\partial}{\partial p_j}$                 | $s_{ij}(x) \cdot (1 - s_{ij}(x)) \cdot  \alpha_i $ | $s_{ij}(x)\cdot  lpha_i $                                                                                                       |
| characteristic change $rac{\partial^2}{\partial x_j}$      | $s_{ij}(x) \cdot (1 - s_{ij}(x)) \cdot  \beta_i $  | $s_{ij}(x) \cdot  \beta_i $                                                                                                     |
| small quality change $rac{\partial^2}{\partial ar{\xi}_i}$ | $s_{ij}(x)\cdot (1-s_{ij}(x))$                     | $s_{ij}(x)$                                                                                                                     |
| finite price change $w_i(p_j,p_j^\prime,x)$                 | $ s_{ij}(p_j',x)-s_{ij}(p_j,x) $                   | $\frac{ s_{ij}(p'_{j},x) - s_{ij}(p_{j},x) }{1 - s_{ij}(x)}$                                                                    |
| finite quality change $w_i(\xi_j,\xi_j',x)$                 | $ s_{ij}(\xi_j',x) - s_{ij}(\xi_j,x) $             | $\frac{ s_{ij}(\xi'_{j},x) - s_{ij}(\xi_{j},x) }{1 - s_{ij}(x)}$                                                                |
| willingness to pay (WTP)                                    | $= \frac{s_{ij}(x)}{ \alpha_i  \cdot s_{i0}(x)}$   | $\frac{1 - s_{ij}(x)}{s_{ij}(x)}$ $\frac{ \alpha_i  \cdot s_{i0}(x)(1 - s_{ij}(x))}{ \alpha_i  \cdot s_{i0}(x)(1 - s_{ij}(x))}$ |

Allows us to calculate any average diversion ratio we want!

# Decomposition

