

> A - Contar enteros distintos

En una secuencia de N enteros positivos $a=(a_1,a_2,\ldots,a_N)$, ¿cuántos enteros diferentes hay?

* Input:

La primera línea consiste de un entero n ($1 \le n \le 1000$), luego le sigue una segunda línea que contiene n enteros separados por un espacio ($1 \le a_i \le 10^9 (1 \le i \le N)$).

* Output:

La salida es un único número entero que sea la cantidad de números enteros distintos

* Ejemplo

Input:

6			
1 4 1 2 2 1			

Output:

3

Input:

1 1

Output:

1

> B - ¿Números distintos?

En una secuencia de N enteros positivos $a=(a_1,a_2,\ldots,a_N)$, ¿Todos los números son distintos?

* Input:

La primera línea consiste de un entero n ($1 \le n \le 1000$), luego le sigue una segunda línea que contiene n enteros separados por un espacio ($1 \le a_i \le 10^9 (1 \le i \le N)$).

* Output:

La respuesta es "YES" si todos los números son distintos, en caso contrario se deberá imprimir "NO"

* Ejemplo

Input:

5 2 6 1 4 5

Output:

YES

Input:

6 4 1 3 1 6 2

Output:

NO

> C - Daniel y la resta

Se te proporciona un arreglo a. Debes repetir la siguiente operación k veces:

Encontrar el elemento distinto de 0 más pequeño en el arreglo, imprimirlo, después, restar ese numero a todos los elementos distintos de 0 del arreglo. Si todos los elementos son 0, simplemente imprime 0.

* Input:

La primera línea contiene los enteros n y k $(1 \le n, k \le 10^5)$, la longitud del arreglo y el número de operaciones que debes realizar.

La segunda línea contiene n enteros separados por espacios $a_1,a_2,\ldots,a_n\ (1\leq a_i\leq 10^9)$, los elementos del arreglo.

* Output:

Imprime el elemento mínimo distinto de cero antes de cada operación en una nueva línea.

* Ejemplo

Input:

3 5		
1 2 3		

Output:

1		
1		
1		
0		
0		

Input:

```
4 2
10 3 5 3
```

Output:

> D - Libretita

Un día, el pequeño Joaquín encontró la libretita de su madre. La libretita tenía n nombres de sus amigos y, sorprendentemente, cada nombre tenía exactamente m letras. Numeremos los nombres del 1 al n en el orden en que están escritos.

Como su madre no estaba en casa, Joaquín decidió jugar con los nombres: eligió tres enteros i,j,k $(1 \le i < j \le n, 1 \le k \le m)$, luego tomó los nombres número i y j y cambió sus prefijos de longitud k. Por ejemplo, si tomamos los nombres "CBDAD" y "AABRD" y cambiamos sus prefijos de longitud 3, el resultado serán los nombres "AABAD" y "CBDRD".

Te preguntas cuántos nombres diferentes puede escribir Joaquín en lugar del nombre número 1, si se permite a Joaquín realizar cualquier cantidad de las acciones descritas. A medida que Joaquín realiza cada acción, elige los números i,j,k de forma independiente de los movimientos anteriores y su elección se basa completamente en su voluntad. El número buscado puede ser muy grande, por lo que solo debes encontrarlo módulo 10000000007 (10^9+7) .

* Input:

La primera línea de entrada contiene dos enteros n y m $(1 \le n, m \le 100)$ - el número de nombres y la longitud de cada nombre, respectivamente. Luego, las n líneas siguientes contienen los nombres, cada uno de ellos consiste exactamente en m letras mayúsculas.

* Output:

Imprime un solo número: la cantidad de nombres diferentes que podrían terminar en la posición número 1 en la libretita después de aplicar los procedimientos descritos anteriormente. Imprime el número modulo $1000000007 \ (10^9 + 7)$.

* Ejemplo

Input: 2 3 AAB BAA Output: 4

Input:

4 5
ABABA
BCGDG
AAAAA
YABSA

Output:

216