การจัดกลุ่มข้อมูลที่ไม่มีความสมดุลกันโดยใช้การเรียนรู้เชิง ลึกแบบผสม

Hybrid Deep Learning for Class Imbalance on Classification

ธนวัฒน์ หลอดแก้ว Thanawat Lodkaew 59070071

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ภาคเรียนที่ 1 ปีการศึกษา 2562

การจัดกลุ่มข้อมูลที่ไม่มีความสมดุลกันโดยใช้การเรียนรู้เชิง ลึกแบบผสม

Hybrid Deep Learning for Class Imbalance on Classification

โดย

ธนวัฒน์ หลอดแก้ว รหัสประจำตัว 59070071

อาจารย์ที่ปรึกษา รองศาสตราจารย์ ดร. กิติ์สุชาต พสุภา

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ภาคเรียนที่ 1 ปีการศึกษา 2562

Hybrid Deep Learning for Class Imbalance on Classification

Thanawat Lodkaew

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENT FOR THE DEGREE OF
BACHELOR OF SCIENCE PROGRAM IN INFORMATION TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY
KING MONGKUT'S INSTITUTE OF TECHNOLOGY LADKRABANG
1/2019

COPYRIGHT 2019
FACULTY OF INFORMATION TECHNOLOGY
KING MONGKUT'S INSTITUTE OF TECHNOLOGY LADKRABANG

ใบรับรองปริญญานิพนธ์ ประจำปีการศึกษา 2562 คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

เรื่อง การจัดกลุ่มข้อมูลที่ไม่มีความสมดุลกันโดยใช้การเรียนรู้เชิงลึก แบบผสม HYBRID DEEP LEARNING FOR CLASS IMBALANCE ON CLASSIFICATION

ผู้จัดทำ

1. ธนวัฒน์ หลอดแก้ว รหัสประจำตัว 59070071

รองศาสตราจารย์ ดร.	กิติ์สุชาต	พสุภา	อาจารย์ที่ปรึกษา
()	

ใบรับรองโครงงาน (PROJECT)

เรื่อง

การจัดกลุ่มข้อมูลที่ไม่มีความสมดุลกันโดยใช้การเรียนรู้เชิงลึกแบบผสม Hybrid Deep Learning for Class Imbalance on Classification

ธนวัฒน์ หลอดแก้ว รหัสประจำตัว 59070071

ขอรับรองว่ารายงานฉบับนี้ ข้าพเจ้าไม่ได้คัดลอกมาจากที่ใด รายงานฉบับนี้ได้รับการตรวจสอบและอนุมัติให้เป็นส่วนหนึ่งของ การศึกษาวิชาโครงงาน หลักสูตรวิทยาศาสตรบัณฑิต (เทคโนโลยีสารสนเทศ) ภาคเรียนที่ 1 ปีการศึกษา 2562

> ธนวัฒน์ หลอดแก้ว

ชื่อรายงาน การจัดกลุ่มข้อมูลที่ไม่มีความสมดุลกันโดยใช้การเรียนรู้เชิงลึกแบบผสม

ชื่อนักศึกษา ธนวัฒน์ หลอดแก้ว

รหัสนักศึกษา 59070071

สาขาวิชา เทคโนโลยีสารสนเทศ

อาจารย์ที่ปรึกษา รองศาสตราจารย์ ดร. กิติ์สุชาต พสุภา

ปีการศึกษา 2562

บทคัดย่อ

บทคัดย่อ

Project Title Hybrid Deep Learning for Class Imbalance on Classification

Name Thanawat Lodkaew

Student ID 59070071

Department Information Technology

Advisor Assoc. Prof. Dr. Kitsucart Pasupa

Year 2019

Abstract

Abstract eng

กิตติกรรมประกาศ

แก้ไขกิตติกรรมประกาศในไฟล์ acknowledgement.tex

ธนวัฒน์ หลอดแก้ว ผู้จัดทำรายงาน วันที่ 10 พฤศจิกายน พ.ศ. 2561

สารบัญ

	หน้า	
บทคัดย่อ	i	
บทคัดย่อ ภาษาอังกฤษ	ii	
กิตติกรรมประกาศ	iii	
สารบัญ	iv	
สารบัญตาราง	v	
สารบัญภาพ	vi	
บทที่ 1 บทนำ	1	
1.1 ที่มาและความสำคัญ	1	
1.2 ความมุ่งหมายและวัตถุประสงค์ของการศึกษา	2	
1.3 ขอบเขตการพัฒนาโครงงาน	2	
1.4 ขั้นตอนการดำเนินงาน	2	
1.5 ประโยชน์ที่คาดว่าจะได้รับ	2	
บทที่ 2 การทบทวนวรรณกรรมที่เกี่ยวข้อง	3	
2.1 ทฤษฎีที่เกี่ยวข้อง	3	
บทที่ 3 วิธีการดำเนินการวิจัย	5	
3.1 ข้อสมมติฐาาน	5	
3.2 การทำการทดลอง	5	
บทที่ 4 ผลการทดลองเบื้องต้นหรือระบบต้นแบบ	8	
บทที่ 5 บทสรุป	9	
บรรณานุกรม	10	
ภาคผนวก ก เรื่องที่หนึ่ง		

สารบัญตาราง

หน้า

สารบัญภาพ

				หน้า
รูปที่	3.1	ภาพตัวอย่างของชุดข้อมูล	CelebA	5
รูปที่	3.2	ภาพตัวอย่างของชุดข้อมูล	Cow	6
รูปที่	3.3	ภาพตัวอย่างของชุดข้อมูล	CIFAR-10	7

บทที่ 1 บทน้ำ

1.1 ที่มาและความสำคัญ

ในด้านการเรียนรู้ของเครื่องจักร (Machine Learning) ความไม่สมดุลกันของข้อมูล หมายถึง การที่จำนวนตัวอย่างของแต่ละกลุ่มข้อมูลมีจำนวนไม่เท่ากัน ซึ่งความไม่สมดุลกันของข้อมูลนี้ถูก นิยามให้เป็นปัญหาในการจัดกลุ่มข้อมูล (Classification) สาเหตุที่ความไม่สมดุลกันของข้อมูลเป็น ปัญหา คือ อัลกอริทึมการจัดกลุ่ม (Classification Algorithm) จะทำงานได้อย่างมีประสิทธิภาพก็ ต่อเมื่อจำนวนตัวอย่างของแต่ละกลุ่มข้อมูลมีจำนวนที่เท่าหรือใกล้เคียงกัน เมื่อมีความไม่สมดุล กันของข้อมูลจะทำให้การทำงานของอัลกอริทึมมีประสิทธิภาพด้อยลง ซึ่งอาจจะด้อยลงจนไม่ สามารถจัดกลุ่มข้อมูลได้เลย

การจัดกลุ่มข้อมูลที่มีจำนวนตัวอย่างของแต่ละกลุ่มไม่สมดุลกันเป็นเรื่องธรรมดาอย่างมากใน ทางปฏิบัติ เนื่องจากข้อมูลที่เกิดขึ้นล้วนแต่ไม่สามารถคาดเดาได้อย่างแน่นอนว่าจำนวนตัวอย่าง ของแต่ละกลุ่มจะสมดุลกัน อีกทั้งข้อมูลส่วนใหญ่ยังมีลักษณะที่มีจำนวนตัวอย่างของแต่ละกลุ่มไม่ สมดุลกัน เช่น ในระหว่างวัวอยู่ในช่วงเป็นสัด ช่วงเวลาที่วัวแสดงพฤติกรรมเป็นสัดจะมีจำนวน น้อยกว่าช่วงเวลาที่วัวไม่แสดงพฤติกรรมเป็นสัด เป็นต้น ในด้านการเรียนรู้ของเครื่องจักร มีความ เป็นไปได้ว่าตัวจัดกลุ่มข้อมูลที่ถูกสร้างขึ้นจากชุดข้อมูลที่มีจำนวนตัวอย่างของแต่ละกลุ่มไม่สมดุล กันจะมีความลำเอียงในการจัดกลุ่ม กล่าวคือ มีโอกาสสูงที่ตัวจัดกลุ่มจะระบุว่าข้อมูลเป็นกลุ่ม ส่วนมาก (Majority Class) มากกว่าเป็นกลุ่มส่วนน้อย (Minority Class) ซึ่งเป็นผลทำให้การระบุ ข้อมูลเป็นกลุ่มส่วนน้อยมีความแม่นยำที่ต่ำกว่ามาตรฐาน ซึ่งความแม่นยำในการระบุข้อมูลเป็น แต่ละกลุ่มควรจะเท่าหรือใกล้เคียงกัน

ที่ผ่านมาได้มีการศึกษาเกี่ยวกับปัญหาการจัดกลุ่มข้อมูลในลักษณะนี้อย่างกว้างขวาง และได้ แสดงให้เห็นถึงความสำคัญของปัญหาของการจัดกลุ่มข้อมูลที่มีจำนวนตัวอย่างของแต่ละกลุ่มไม่ สมดุลกัน ซึ่งทำให้ประสิทธิภาพการจัดกลุ่มข้อมูลมีความแม่นยำที่ต่ำ ดังนั้นปัญหานี้จำเป็นต้อง ถูกจัดการ [1] เพื่อที่จะแก้ปัญหาการจัดกลุ่มข้อมูลที่มีจำนวนตัวอย่างของแต่ละกลุ่มไม่สมดุล กัน ได้มีเทคนิคเกิดขึ้นมากมาย โดยสามารถแบ่งเทคนิคการแก้ปัญหาได้ 2 ระดับ คือ (1) ระดับ ข้อมูล (Data-Level) ที่ซึ่งเป็นการแก้ปัญหาโดยการจัดการข้อมูลก่อนที่จะถูกนำไปประมวลใน กระบวนการจัดกลุ่มข้อมูล โดยการสุ่มเพิ่มจำนวนตัวอย่างข้อมูล (Over-Sampling) และการสุ่มลด จำนวนตัวอย่างข้อมูล (Under-Sampling) เป็นเทคนิคในการแก้ปัญหาในระดับข้อมูล เทคนิคการ แก้ปัญหาในระดับนี้เป็นการแก้ปัญหาแบบเบื้องต้นที่สามารถดำเนินการได้ง่าย อย่างไรก็ตามการ สุ่มเพิ่มจำนวนตัวอย่างข้อมูลสามารถทำให้เกิดปัญหา Overfitting ตามมาได้อย่างง่ายดาย ในทาง เดียวกันการสุ่มลดจำนวนตัวอย่างข้อมูลอาจจะเป็นการกำจัดสารสนเทศที่เป็นประโยชน์ต่อการจัด กลุ่มข้อมูลออกไป (2) ระดับตัวจัดกลุ่ม (Classifier-Level) ที่ซึ่งเป็นการแก้ปัญหาโดยการจัดกา รอัลกอริทึมการจัดกลุ่ม โดยการทำเทรสโช (Thresholding) การเรียนรู้แบบความเสียหายที่รู้สึก ได้ง่าย (Cost-Sensitive Learning) การจัดกลุ่มข้อมูลแบบหนึ่งกลุ่ม (One-Class Classification) และการผนวกกันของหลายเทคนิค อย่างไรก็ตามเทคนิคเหล่านี้มียังไม่สามารถแก้ปัญหาได้อย่าง ้มีประสิทธิภาพในทุก ๆ ชุดข้อมูล กล่าวคือ เทคนิคสามารถให้ความแม่นยำในการจัดกลุ่มข้อมูล แต่ละกลุ่มได้อย่างน่าพอใจสำหรับชุดข้อมูล A แต่ไม่สามารถทำได้อย่างมีประสิทธิภาพสำหรับชุด

ข้อมูล B เป็นต้น ดังนั้นเทคนิคใหม่ที่จะสามารถการแก้ปัญหาการจัดกลุ่มข้อมูลที่ไม่สมดุลกันได้ อย่างมีประสิทธิภาพ และปรับเข้าได้กับทุกชุดข้อมูลจำเป็นต้องถูกคิดค้นขึ้น

1.2 ความมุ่งหมายและวัตถุประสงค์ของการศึกษา

- 1. เพื่อศึกษาการจัดการปัญหาความไม่สมดุลกันของข้อมูลด้วยเทคนิคต่าง ๆ
- 2. เพื่อศึกษาและเข้าในการทำงานของการเรียนรู้เชิงลึก (Deep Learning) อย่างท่องแท้
- 3. เพื่อที่จะดัดแปลงแบบจำลองให้สามารถแก้ปัญหาความไม่สมดุลกันของข้อมูลได้
- 4. เพื่อคิดค้นเทคนิคการเรียนรู้เชิงลึกแบบผสมที่สามารถจัดกลุ่มของข้อมูลได้อย่างมีประสิทธิภาพ
- 5. เพื่อศึกษาความเป็นไปได้ในการประยุกต์ใช้เทคนิคที่คิดค้นกับชุดข้อมูลที่แตกต่างกัน

1.3 ขอบเขตการพัฒนาโครงงาน

- 1. ดัดแปลงแบบจำลองการเรียนรู้เชิงลึกให้สามารถจัดกลุ่มข้อมูลโดยไม่มีความลำเอียงกับ กลุ่มส่วนมาก
- 2. เปรียบเทียบประสิทธิภาพเชิงความแม่นยำของแบบจำลองที่ดัดแปลงกับเทคนิคอื่น ๆ ที่ใช้ ในการแก้ปัญหาความไม่สมดุลกันของข้อมูล

1.4 ขั้นตอนการดำเนินงาน

- 1. ศึกษารูปแบบการแก้ปัญหาการจัดกลุ่มข้อมูลที่ไม่มีความสมดุล
- 2. ศึกษาการทำงานของแบบจำลองการเรียนรู้เชิงลึก
- 3. ศึกษางานวิจัยที่เกี่ยวข้อง
- 4. ตั้งข้อสมมติฐาน
- 5. ออกแบบแนวทางการสร้างแบบจำลองการเรียนรู้เชิงลึกแบบผสม
- 6. สร้างแบบจำลองการเรียนรู้เชิงลึกแบบผสมตามที่ออกแบบ
- 7. กำหนดจุดประสงค์การทดลองแต่ละแบบ
- 8. ดำเนินการทำการทดลอง
- 9. สรุปผลการทดลอง

1.5 ประโยชน์ที่คาดว่าจะได้รับ

1. แบบจำลองการจัดกลุ่มข้อมูลสามารถให้ความแม่นยำที่สูงในการระบุข้อมูลแต่กลุ่ม แม้ว่าจะ มีความไม่สมคุลกันของข้อมูล

บทที่ 2 การทบทวนวรรณกรรมที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 การเรียนรู้เชิงลึก (Deep Learning)

2.1.2 การเรียนรู้เชิงลึกแบบผสม (Hybrid Deep Learning)

้ไม่มีนิยามที่แน่นอนสำหรับแบบจำลองการเรียนรู้เชิงลึกแบบผสมว่าเป็นแบบจำลองที่มีลักษณะ อย่างไร จากการศึกษาพบว่า แบบจำลองที่เกิดจากการผสมผสานกันของแบบจำลองการเรียนรู้เชิง ลึกหลายสถาปัตยกรรม หรือแม้กระทั่งแบบจำลองที่มีการการคิดค้น หรือดัดแปลงฟังก์ชันสูญเสีย (Loss Function) เพื่อใช้ในการเรียนรู้ ก็สามารถเรียกได้ว่าเป็นแบบจำลองการเรียนรู้เชิงลึกแบบ ผสม เมื่อไม่นานมานี้ได้มีงานวิจัยพยายามคิดค้นแบบจำลองการเรียนรู้เชิงลึกแบบผสมมาเพื่อ แก้ไขปัญหาต่าง ๆ และได้แสดงให้เห็นว่าแบบจำลองการเรียนรู้เชิงลึกแบบผสมนั้นมีลักษณะที่ หลากหลาย Haixia Long et al. [2] ได้นำเสนอสถาปัตยกรรมการเรียนรู้เชิงลึกแบบผสมสำหรับ การระบุไฮดรอกซีโพรลีน (Hydroxyproline) และไฮดรอกซีไลซีน (Hydroxylysine) ในโปรตีน โดย การนำโครงข่ายประสาทแบบคอนโวลูชั้น (Convolutional Neural Network: CNN) มาผนวกกับ โครงข่ายประสาทแบบลองชอร์ตเทอมเมมอรี (Long Short-Term Memory: LSTM) ที่ซึ่ง CNN ถูกใช้ในการสกัดคุณลักษณะของปฏิกิริยาของกรดอะมิโน และ LSTM ถูกใช้ในการสกัดการคงอยู่ ของความสัมพันธ์กันระหว่างกรดอะมิโน ผลการทดลองแสดงให้เห็นว่าสถาปัตยกรรมการเรียนรู้ เชิงลึกแบบผสมนี้สามารถปรับปรุงประสิทธิภาพของแบบจำลองใด้ Y. Sun et al. [3] ได้ใช้แบบ จำลอง CNN หลายตัวในการสกัดคุณลักษณะสำหรับการยืนยันตัวตนด้วยใบหน้า ซึ่งคุณลักษณะ ของแต่ละพื้นที่ของใบหน้าจะถูกสกัดด้วยแบบจำลอง CNN ที่ต่างกัน และคุณลักษณะของแต่ละ พื้นที่จถูกนำมารวมกันเพื่อจัดกลุ่ม และยืนยันตัวตนด้วยเครื่องจักรโบลทซ์มันท์แบบจำกัด (Restricted Boltzmann Machine: RBM) Jin-Young Kim et al. [4] ได้คิดค้นการผสมผสานกัน ระหว่างโครงข่ายการสร้างข้อมูลแบบควบคุมความจริงที่แอบแฝง (Latent Semantic Controlling Generative Adversarial Network: LSC-GAN) กับตัวเข้ารหัสอัตโนมัติแบบแวริเอชัน (Variational Autoencoder: VAE) ที่ซึ่ง LSC-GAN ถูกใช้ในการสร้างข้อมูลมัลแวร์โดยอ้างอิงการ แจกแจงปกติ (Gaussian Distribution) ของข้อมูลมัลแวร์จริง โดยข้อมูลจริงจะถูกนำไปแปลงให้ อยู่ในรูปแบบแอบแฝง (Latent Space) ด้วย VAE เพื่อการสกัดคุณลักษณะและถูกนำไปใช้ต่อโดย LSC-GAN

งานวิจัยดังกล่าวข้างต้นแสดงให้เห็นว่าแบบจำลองการเรียนรู้เชิงลึกแบบผสมนั้นมีความหลาก หลาย และมีประสิทธิภาพที่ดีกว่าแบบจำลองธรรมดา ดังนั้น ผู้จัดทำจึงเกิดความคิดที่จะคิดค้น แบบจำลองการเรียนรู้เชิงลึกแบบผสมมาเพื่อแก้ปัญหาการจัดกลุ่มข้อมูลที่ไม่มีความสมดุล

2.1.3 งานวิจัยที่เกี่ยวข้อง

เมื่อ เทคนิคการ จัด กลุ่มข้อมูล ที่ประกอบด้วยโครงข่ายประสาท แบบคอนโวลูชันถูกใช้กับชุด ข้อมูล ที่มีความ ไม่สมดุลกัน อัตราการพยากรณ์ผิดพลาด จะมีค่าสูง เมื่อ เทียบกับการ เพิ่มขึ้นของ จำนวนรอบของการ เรียนรู้ของ แบบจำลอง กล่าวคือ ยิ่งจำนวนรอบของการ เรียนรู้สูงขึ้น จะทำให้ อัตราการพยากรณ์ผิดพลาดสูงขึ้นด้วย [5] เบื้องหลังของสาเหตุที่ทำให้ เป็นเช่นนั้น คือ ในเสตจ ของการเรียนรู้ของแบบจำลองการเรียนรู้เชิงลึก ข้อมูลจะถูกแบ่งออกเป็นกลุ่ม ๆ ซึ่งทำให้แต่ละ กลุ่มมีความไม่เท่าเทียมกันเมื่อข้อมูลไม่สมดุลกัน อีกทั้งบางกลุ่มอาจจะมีแค่ตัวอย่างของกลุ่ม ข้อมูลที่เป็นส่วนมาก หรือกลุ่มข้อมูลที่เป็นส่วนน้อยเท่านั้น เมื่อแบบจำลองได้เรียนรู้ข้อมูลจาก กลุ่มเหล่านั้นในทุก ๆ รอบ จึงทำให้เกิดอัตราการพยากรณ์ผิดพลาดที่สูง

เมื่อไม่นานมานี้ได้มีงานวิจัยที่พยายามจัดการกับปัญหาการเรียนรู้ของแบบจำลองการเรียนรู้ เชิงลึกเมื่อต้องเรียนรู้ข้อมูลที่มีความไม่สมดุลกัน ดังต่อไปนี้

• S. Wang et al. [6] ได้ทำการดัดแปลงฟังก์ชันสูญ เสียอย่าง ค่าเฉลี่ยของกำลังสองของ ความคลาดเคลื่อน (Mean Square Error: MSE) เพื่อทำให้การเรียนรู้ของแบบจำลองกา เรียนรู้เชิงลึกไม่มีความลำเอียงในการจดจำข้อมูลที่เป็นกลุ่มส่วนมากเกินไป โดยฟังก์ชัน สูญ เสียใหม่นี้มีชื่อว่า ค่าเฉลี่ยของความคลาดเคลื่อนของความผิดพลาด (Mean False Error: MFE) แต่ประสิทธิภาพของฟังก์ชันสูญ เสียนี้ยังไม่เป็นที่น่าพอใจ ผู้จึงได้นำเสนอ ค่า เฉลี่ยของกำลังสองของความคลาดเคลื่อนของความผิดพลาด (Mean Square False Error: MSFE) ที่ซึ่งเนการปรับปรุงความสามารถของ MFE อย่างไรก็ตามฟังก์ชันสูญ เสียดังกล่าว ยังไม่สามารถประยุกต์ใช้ได้กับ โครงข่าวความเชื่อแบบลึก (Deep Belief Network) และ โครงข่ายประสาทแบบคอนโวลูชัน

บทที่ 3 วิธีการดำเนินการวิจัย

3.1 ข้อสมมติฐาาน

สมมติฐานของงานวิจัยนี้ คือ แบบจำลองการเรียนรู้เชิงลึกที่นำเสนอจะสามารถจัดการปัญหา ความไม่สมดุลกันของข้อมูลได้อย่างมีประสิทธิภาพ

3.2 การทำการทดลอง

3.2.1 ชุดข้อมูล

เพื่อที่จะได้ผลการทดลองที่สามารถเปรียบประสิทธิภาพของเทคนิคการแก้ปัญหา จำเป็นจะ ต้องใช้ชุดข้อมูลที่หลากหลาย โดยแบ่งออกเป็นชุดข้อมูลที่มีความสมคุลและไม่สมคุลกันของ ข้อมูล ดังนี้

• CelebFaces Attributes Dataset (CelebA) [7] ชุดข้อมูลนี้มีความไม่สมคุลกันของข้อมูล ที่ ซึ่งเป็นชุดข้อมูลขนาดใหญ่ที่ประกอบไปด้วยภาพหน้าของคนมีชื่อเสียงกว่า 1 หมื่นคน และ มีจำนวนภาพมากกว่า 2 แสนภาพ โดยภาพจะมีลักษณะเป็นท่าทางของหน้าและพื้นหลังที่ หลากหลายดังรูปที่ 3.1 CelebA นั้นมีคำอธิบายประกอบ (Annotation) ที่หลากหลายมาก เช่น คำอธิบายประกอบที่บอกว่าคนในภาพคือใคร และกำลังยิ้มอยู่หรือไม่ เป็นต้น

รูปที่ 3.1: ภาพตัวอย่างของชุดข้อมูล CelebA

• Cow [8] ชุดข้อมูลนี้มีความไม่สมดุลกันของข้อมูล ที่ซึ่งเป็นชุดข้อมูลประเภทวิดีโอ ที่ซึ่ง แสดงการเป็นอยู่ของวัวในคอก โดยชุดข้อมูลถูกเก็บจากคอกวัวภายในฟาร์มโชคชัยด้วย กล้องวิดีโอ วิดีโอได้ถูกนำมาแปลงเป็นภาพเฟรม โดยภาพจะมีลักษณะเป็นภาพที่ถ่ายจาก

มุมบนดังรูปที่ 3.2 คำอธิบายประกอบสำหรับชุดข้อมูลนี้ คือ การแสดงพฤติกรรมเป็นสัด ของวัวแต่ละตัวในแต่ละเฟรม เช่น ในเฟรมที่ 5 วัว A แสดงพฤติกรรมเป็นสัด วัว B ไม่ แสดงพฤติกรรมเป็นสัด และวัว C แสดงพฤติกรรมเป็นสัด เป็นต้น โดยจำนวนเฟรมที่วัว แต่ละตัวไม่แสดงพฤติกรรมเป็นสัดมีจำนวนมากกว่าที่แสดงพฤติกรรมเป็นสัด

รูปที่ 3.2: ภาพตัวอย่างของชุดข้อมูล Cow

• CIFAR-10 [9] ชุดข้อมูลนี้มีความสมดุลกันของข้อมูล ที่ซึ่งเป็นชุดข้อมูลที่ประกอบไปด้วย ภาพของสัตว์และยานพาหนะดังรูปที่ 3.3 โดยแบ่งออกเป็นยานพาหนะ 4 ประเภท คือ เครื่องบิน รถยนต์ เรือ และรถบรรทุก และสัตว์ 6 ประเภท คือ นก แมว กวาง หมา กบ และม้า ซึ่งแต่ละประเภทมีจำนวน 6,000 ภาพเท่ากัน รวมทั้งหมดเป็น 6 หมื่นภาพ คำ อธิบายประกอบของชุดข้อมูลนี้ คือ ประเภทของภาพ

รูปที่ 3.3: ภาพตัวอย่างของชุดข้อมูล CIFAR-10

บทที่ 4 ผลการทดลองเบื้องต้นหรือระบบต้นแบบ

บทที่สี่

บทที่ 5 บทสรุป

บทที่ห้า

บรรณานุกรม

- [1] M. Buda, A. Maki, and M. A. Mazurowski, "A systematic study of the class imbalance problem in convolutional neural networks," *CoRR*, vol. abs/1710.05381, 2017. [Online]. Available: http://arxiv.org/abs/1710.05381
- [2] H. Long, B. Liao, X. Xu, and J. Yang, "A hybrid deep learning model for predicting protein hydroxylation sites," *International Journal of Molecular Sciences*, vol. 19, p. 2817, 09 2018.
- [3] Y. Sun, X. Wang, and X. Tang, "Hybrid deep learning for face verification," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 38, no. 10, pp. 1997—2009, Oct 2016.
- [4] J.-Y. Kim and S.-B. Cho, Detecting Intrusive Malware with a Hybrid Generative Deep Learning Model: 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part I, 11 2018, pp. 499–507.
- [5] Y. Yan, M. Chen, M. Shyu, and S. Chen, "Deep learning for imbalanced multimedia data classification," in 2015 IEEE International Symposium on Multimedia (ISM), Dec 2015, pp. 483–488.
- [6] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy, "Training deep neural networks on imbalanced data sets," in 2016 International Joint Conference on Neural Networks (IJCNN), July 2016, pp. 4368–4374.
- [7] Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," *CoRR*, vol. abs/1411.7766, 2014. [Online]. Available: http://arxiv.org/abs/1411.7766
- [8] K. Pasupa, N. Pantuwong, and S. Nopparit, "A comparative study of automatic dairy cow detection using image processing techniques," *Artificial Life and Robotics*, vol. 20, no. 4, pp. 320–326, 2015.
- [9] A. Krizhevsky, V. Nair, and G. Hinton, "Cifar-10 (canadian institute for advanced research)." [Online]. Available: http://www.cs.toronto.edu/ kriz/cifar.html

ภาคผนวก ก เรื่องที่หนึ่ง