Dies ist der Titel der Abschlussarbeit der sich auch über mehrere Zeilen erstrecken kann

Abschlussarbeit

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

an der

Hochschule für Technik und Wirtschaft Berlin Fachbereich Wirtschaftswissenschaften II Studiengang Angewandte Informatik

Prüfer: Max Mustermann
 Prüfer: Max Mustermann

Eingereicht von: Max Mustermann

Matrikelnummer: s0000000 Datum der Abgabe: 25.04.2017

Inhaltsverzeichnis

1	Einleitung	1
2	Finite Differenzen der stationären Gleichung	2
\mathbf{A}	bbildungsverzeichnis	A
Та	abellenverzeichnis	В

1 Einleitung

In dieser Hausarbeit sollen die Grundlagen einer Simulation der Dynamik in neuartigen Perowskit-Solarzellen gelegt werden. Diese Art der Dünnschicht Solarzellen erreicht hohe Wirkungsgeradde von über 20% und ist somit für die Forschung von großer Interesse[Pro].

2 Finite Differenzen der stationären Gleichung

Die allgemeine DGL ist gegeben durch:

$$\frac{\partial u}{\partial t} = D \cdot \frac{\partial^2 u}{\partial z^2} - (k1 + k2 \cdot N_D) \cdot u - k2u^2 + s(t, z)$$
(2.1)

Zu erst wird die stationäre DGL ohne zeitliche Abhängigkeit betrachtet:

$$D \cdot \frac{du}{dt} - (k_1 + k_2 N_D) \cdot u - k_2 \cdot u^2 = -s(z)$$
 (2.2)

Abbildungsverzeichnis

Tabellenverzeichnis

Tabellenverzeichnis ${\cal C}$

Tabellenverzeichnis D