

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Определение C_p/C_v по скорости звука в газе

Работа №2.1.3; дата: 22.04.22

Семестр: 2

1. Аннотация

Цель работы:

- 1) Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу;
- 2) Определение показателя адиабаты с помощью уравнения состояния идеального газа.

Схема установки:

Рис. 1: Схема установки

Установка содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

В работе используются:

Звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

2. Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты. Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \implies \gamma = \frac{\mu}{RT} c^2 \tag{1}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = \frac{n\lambda}{2} \tag{2}$$

Если условие (2) выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения (узел смещения). Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения (пучности).

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1) При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина аздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \qquad L_{n+1} = (n+1)\frac{\lambda}{2}, \qquad \dots, \qquad L_{n+k} = (n+k)\frac{\lambda}{2},$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (3).

2) При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_k}{2}(n+k)$$

3. Проведение эксперимента

Опыт с переменной длиной трубы для воздуха

Будем записывать величину вылета трубы для каждого из положений резонанса в таблице для нескольких разных частот звукового генератора.

f, Гц	2700 ± 1	2998 ± 1	3502 ± 1	4042 ± 1	4476 ± 1
і, номер	$((l-l_0)\pm 1), { m MM}$				
0	0	0	0	0	0
1	63	58	50	43	38
2	127	115	99	86	76
3	192	173	149	128	115
4			199	171	153
5					192

Табл. 1: Первый опыт

Рис. 2: График зависимостей l(i)

По построенным графикам определим длины волн и рассчитаем скорости звука.

f, Гц	λ , mm	с, м/с
2700 ± 1	128.0 ± 0.6	345.6 ± 1.6
2998 ± 1	115.2 ± 0.3	345.4 ± 0.9
3502 ± 1	99.4 ± 0.2	348.1 ± 0.7
4042 ± 1	85.4 ± 0.2	345.2 ± 0.8
4476 ± 1	76.8 ± 0.2	343.8 ± 0.9

Табл. 2: Определение скорости звука

Таким образом, усреднением получаем:

$$c = 345.6 \pm 1.0 \text{ m/c}$$

Вычисляем показатель адиабаты по формуле (1):

$$\gamma_{\text{возд}} = 1.389 \pm 0.008$$

Опыт с переменной длиной трубы для углекислого газа

Будем записывать величину вылета трубы для каждого из положений резонанса в таблице для нескольких разных частот звукового генератора на этот раз при подаче углекислого газа в трубу.

f, Гц	2204 ± 1	2402 ± 1	2600 ± 1	2802 ± 1	3095 ± 1
і, номер	$((l-l_0)\pm 1),~{ m MM}$				
0	0	0	0	0	0
1	62	55	52	49	43
2	122	111	102	97	87
3	183	167	155	145	130
4				193	174

Табл. 3: Второй опыт

Рис. 3: График зависимостей l(i)

По построенным графикам определим длины волн и рассчитаем скорости звука.

f, Гц	λ , mm	с, м/с	
2204 ± 1	121.8 ± 0.5	268.4 ± 1.1	
2402 ± 1	111.4 ± 0.3	267.6 ± 0.5	
2600 ± 1	103.0 ± 0.8	267.8 ± 2.1	
2802 ± 1	96.4 ± 0.2	270.1 ± 0.6	
3095 ± 1	87.0 ± 0.2	269.3 ± 0.6	

Табл. 4: Определение скорости звука

Таким образом, усреднением получаем:

$$c = 268.6 \pm 1.0 \text{ m/c}$$

Вычисляем показатель адиабаты по формуле (1):

$$\gamma_{\rm CO_2} = 1.273 \pm 0.009$$

4. Выводы

1) В результате работы определен показатель адиабаты воздуха:

$$\gamma_{\text{возл}} = 1.389 \pm 0.008$$

Что совпадает с табличным значением $\gamma_{\text{возд}0} = 1.4$ в пределах двух стандартных отклонений.

2) Получено значение показателя адиабаты и для углекислого газа:

$$\gamma_{\rm CO_2} = 1.273 \pm 0.009$$

Что также совпадает с табличным значением $\gamma_{\mathrm{CO}_2}0=1.3$ в пределах двух стандартных отклонений.

Таким образом, в целом, работа проведена успешно. Худшее совпадение для углекислого газа можно объяснить наличием примесей (в основном, азот и кислород) в атмосфере трубы, так как труба была не до конца герметична.