G1 de Álgebra Linear I-2013.2

Gabarito

1) Considere o sistema de equaçãos lineares

(*)
$$\begin{cases} 2x + y - z &= -2, \\ x + y + \alpha z &= -4, \\ 3x + y - 2z &= \beta, \end{cases} \quad \alpha, \beta \in \mathbb{R},$$

e as retas de equações paramétricas

$$r_1: (2t-1, -5, -t), t \in \mathbb{R},$$

 $r_2: (t-1, -2t-1, 5-3t), t \in \mathbb{R}.$

- a) Determine α e β de modo que a solução do sistema linear em (\star) seja uma reta r. Determine uma equação paramétrica da reta r.
- b) Determine, se possível, o ponto P de interseção das retas r_1 e r_2 .
- c) Considere o ponto Q = (0, -3, 2) da reta r_2 e o ponto P de interseção das retas r_1 e r_2 .
 - Determine um ponto R da reta r_1 tal que P, Q e R sejam os vértices de um triângulo de área $\sqrt{45}$.
 - Determine um ponto T tal que P, Q, R e T sejam os vértices de um paralelogramo de área $2\sqrt{45}$.
- d) Determine, se possível, todos os valores de α e β de modo que o sistema linear em (\star) tenha solução única.

Resposta:

a) Escalonando o sistema com as operações elementares, permutar L_2 com L_1 , $L_3 - 3L_1$ e $L_2 - 2L_1$ obtemos o sistema equivalente:

$$\begin{cases} x + y + \alpha z &= -4, \\ -y + (-1 - 2\alpha)z &= 6, \\ -2y + (-2 - 3\alpha)z &= \beta + 12, \end{cases}$$

Fazendo $L_3 - 2L_2$ temos:

$$\begin{cases} x + y + \alpha z &= -4, \\ -y + (-1 - 2\alpha)z &= 6, \\ \alpha z &= \beta. \end{cases}$$

Para que o sistema tenha como solução uma reta precisamos que o sistema sistema seja possível e indeterminado (observe que os planos não são paralelos). Portanto,

$$\alpha = 0, \quad \beta = 0.$$

Nesse caso obtemos o sistema

$$\begin{cases} x+y &= -4, \\ -y-z &= 6. \end{cases}$$

Assim a reta tem uma equação paramétrica:

$$x=2+t$$
, $y=-6-t$, $z=t$, $t \in \mathbb{R}$.

b) Para encontrar a interseção entre as retas resolveremos o sistema a seguir (observamos que os parmetros das retas so diferentes, e os denominaremos t e s)

$$\begin{cases} 2t - 1 = s - 1, \\ -5 = -2s - 1, \\ -t = 5 - 3s. \end{cases}$$

Da segunda equação obtemos s=2 e da terceira t=1. O resultado é compatível com a primeira equação. Logo o ponto de interseção é o ponto P=(1,-5,-1).

c) Observe que como R pertence a r_1 é da forma R = (2t - 1, -5, -t). Com os pontos R, P = (1, -5, -1) e Q = (0, -3, 2) formamos os vetores

$$\overline{PR} = (2t - 2, 0, -t + 1)$$
 e $\overline{PQ} = (-1, 2, 3)$.

A área do triângulo \triangle de vértices P,Q,R será o módulo do produto vetorial (é a área do paralelogramo determinado pelos vetores \overline{PR} e \overline{PQ}) dividido por dois:

$$\triangle = \frac{||PR \times RQ||}{2}.$$

Logo:

$$(2t-2,0,-t+1)\times(-1,2,3) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2t-2 & 0 & -t+1 \\ -1 & 2 & 3 \end{vmatrix} = (2t-2,-5t+5,4t-4).$$

Assim temos:

$$\triangle = \frac{||(2t - 2, -5t + 5, 4t - 4)||}{2} = \sqrt{45} \Leftrightarrow \sqrt{45t^2 - 90t + 45} = 2\sqrt{45}.$$

Resolvendo a equação:

$$t^2 - 2t + 1 = 4.$$

encontramos t=3 ou t=-1. Assim os pontos possíveis são R=(5,-5,-3) (t=3) e R=(-3,-5,1) (t=-1).

Para a segunda parte observe que o paralelogramo pedido tem lados formados pelos vetores \overline{PR} e \overline{PQ} achados no ítem anterior. Temos então que

$$\overline{PR} + \overline{PQ} = \overline{PT} \Leftrightarrow R - P + Q - P = T - P \Leftrightarrow T = R - P + Q.$$

Então existem duas possibilidades para T

$$T = (5, -5, -3) - (1, -5, -1) + (0, -3, 2) = (4, -3, 0)$$
 e
 $T = (-3, -5, 1) - (1, -5, -1) + (0, -3, 2) = (-4, -3, 4)$.

d) Como já escalonamos o sistema:

$$\begin{cases} x + y + \alpha z &= -4, \\ -y + (-1 - 2\alpha)z &= 6, \\ \alpha z &= \beta, \end{cases}$$

temos que para o sistema ter solução única $\alpha \neq 0$ e $\beta \in \mathbb{R}$. Não esquecendo de observar que os planos não são paralelos.

2) Considere a reta r_1 de equação cartesiana

$$r_1: \begin{cases} x+y-z &= 1, \\ x-y+2z &= 0, \end{cases}$$

a reta r_2 de equação paramétrica

$$r_2: (t+1, 2t-1, -t), t \in \mathbb{R},$$

e o plano π de equações paramétricas

$$\pi: (0, t, s), \quad t, s \in \mathbb{R}.$$

Determine:

- a) As coordenadas do ponto de interseção da reta r_1 e o plano π .
- **b)** Uma equação paramétrica da reta r_1 .
- c) A posição relativa das retas r_1 e r_2 .
- d) Uma equação cartesiana do plano π .
- e) Seja ρ o plano paralelo à reta r_1 que contém a reta r_2 . Determine uma equação cartesiana do plano ρ .

Resposta:

a) Substituindo x = 0, y = t e z = s obtemos o sistema abaixo que determina a intersção entre o plano e a reta:

$$\begin{cases} 0+t-s &= 1, \\ 0-t+2s &= 0, \end{cases} \qquad \begin{cases} t &= 1+s, \\ t &= 2s, \end{cases} \qquad 2s = 1+s.$$

Obtemos como solução s=1 e t=2. Portanto, o ponto de interseção é

$$D = (0, 2, 1).$$

b) A equação cartesiana da reta e definida por dois planos não paralelos. Resolvendo o sistema encontramos equação uma paramétrica da reta. Fazendo a operação elementar L_2-L_1 temos:

$$\begin{cases} x+y-z &= 1, \\ -2y+3z &= -1, \end{cases}$$

Escolhendo z=t como parâmetro obtemos uma equação paramétrica da reta r_1 :

$$x = \frac{1-t}{2}$$
, $y = \frac{1+3t}{2}$, $z = t$, $t \in \mathbb{R}$;

c) As retas

$$r_1: \left(\frac{1-t}{2}, \frac{1+3t}{2}, t\right), \quad t \in \mathbb{R}, \qquad r_2: (s+1, 2s-1, -s), \quad s \in \mathbb{R}.$$

têm vetores diretores $\vec{v}_1 = (-1, 3, 2)$ e $\vec{v}_2 = (1, 2, -1)$, respectivamente. Estes vetores não são paralelos, assim as retas não são paralelas. Podem ser reversas ou concorrentes. Resolvendo o sistema:

$$\begin{cases} \frac{1-t}{2} = s+1, \\ \frac{1+3t}{2} = 2s-1, \\ t = -s. \end{cases}$$

Usando a primeira equação e a terceira encontramos s = -1 e t = 1. Substituindo na segunda encontramos: 4 = -6, o que é falso. Assim o sistema não tem solução (impossível). Portanto, as retas são reversas.

d) Considere os vetores diretores $\vec{u} = (0, 1, 0)$ e $\vec{v} = (0, 0, 1)$ e o ponto H = (0, 1, 1) do plano π . Fazendo o produto vetorial dos vetores \vec{u} e \vec{v} encontramos o vetor normal do plano.

$$\vec{n}_{\pi} = (0, 1, 0) \times (0, 0, 1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (1, 0, 0).$$

Portanto, uma equação cartesiana do plano é:

$$\pi: x = d$$
.

Substituindo o ponto H = (0, 1, 1) do plano na equação temos:

$$\pi : x = 0.$$

e) Temos que o plano ρ é paralelo aos vetores diretores das retas r_1 e r_2 , os vetores $\vec{v}_1=(-1,3,2)$ e $\vec{v}_2=(1,2,-1)$. O ponto M=(1,-1,0) da reta r_2 pertence ao plano. Um vetor normal do plano é

$$\vec{n} = (-1, 3, 2) \times (1, 2, -1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 2 \\ 1 & 2 & -1 \end{vmatrix} = (-7, 1, -5).$$

Portanto, uma equação cartesiana de ρ é:

$$\rho: -7x + y - 5z = d.$$

Substituindo o ponto H=(1,-1,0) na equação temos:

$$\rho: 7x - y + 5z = 8.$$

3)

- a) Decida se as afirmações a seguir são verdadeiras ou falsas.
 - i) Suponha que $||u_1|| = ||u_2|| = 1$ e que $(u_1 + u_2)$ e $(u_1 u_2)$ são vetores não nulos. Então os vetores $(u_1 + u_2)$ e $(u_1 u_2)$ são ortogonais.
 - ii) Considere vetores unitários w_1 e w_2 de \mathbb{R}^3 . Se $w_1 \cdot w_2 = \frac{\sqrt{2}}{2}$ então $||w_1 \times w_2|| = \frac{\sqrt{2}}{2}$.
- b) Determine se possível vetores v_1 e v_2 de \mathbb{R}^3 tais que

$$v_1 \cdot v_2 = 5$$
 e $||v_1 \times v_2|| = 1$.

Se tais vetores não existem explique o porquê.

Resposta:

a.i) Para que os vetores sejam ortogonais seu produto escalar tem que ser igual a zero,

$$(u_1 + u_2) \cdot (u_1 - u_2) = 0 \Leftrightarrow u_1 \cdot u_1 - u_1 \cdot u_2 + u_2 \cdot u_1 - u_2 \cdot u_2 \Leftrightarrow u_1 \cdot u_1 - u_2 \cdot u_2.$$

Temos que os vetores são unitários

$$1 = ||u_1||^2 = u_1 \cdot u_1, \qquad 1 = ||u_2||^2 = u_2 \cdot u_2.$$

Logo

$$u_1 \cdot u_1 - u_2 \cdot u_2 = 0.$$

Assim os vetores são ortogonais.

a.ii) Seja θ o ângulo formado pelos vetores w_1 e w_2 Se o produto escalar é $w_1 \cdot w_2 = \frac{\sqrt{2}}{2}$ e os vetores são unitários temos:

$$w_1 \cdot w_2 = ||w_1|| \, ||w_2|| \cos \theta \Leftrightarrow \cos \theta = \frac{\sqrt{2}}{2} \Leftrightarrow \theta = \pi/4.$$

Logo:

$$||w_1 \times w_2|| = ||w_1|| \, ||w_2|| \, \sin \pi/4 = \frac{\sqrt{2}}{2}.$$

b) Escolha por exemplo exemplo os vetores : $v_1 = (1,0,0)$ e faça $v_2 = (a,b,c)$. Como

$$v_1 \cdot v_2 = (1, 0, 0) \cdot (a, b, c) = 5, \qquad a = 5.$$

Temos

$$v_1 \times v_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 5 & b & c \end{vmatrix} = (0, -c, b).$$

Assim podemos esolher $(5,0,\pm 1)$ ou $(5,\pm 1,0)$, por exemplo. Obviamente existem muitas outras possibilidades.