三角形の五心

September 22, 2025

三角形の五心

- 1 重心
- 2 外心
- ③ 内心
- 4 垂心
- ⑤ 傍心

対辺

対辺の定義

頂点に向かい合う辺を対辺という.

例, 頂点 A の対辺は辺 BC

中線

中線の定義

頂点とその対辺の中点を結ぶ線分を中線という.

$$BL = LC$$

重心

重心の定義

三角形の3本の中線は1点で交わり、その点を重心と呼ぶ.

 \longrightarrow 3つの中線が1点で交わるということは、明らかではない.

重心の存在

定理3

三角形の 3 本の中線は 1 点で交わる. さらに,その交点 (重心) は各中線を 2:1 に内分する.

NC と BM の交点を G とする.

平行線と線分の比の性質より,

AB:AN=AC:AM=2:1なので、NM//BC

平行線の錯角が等しいことから, \triangle BGC \backsim \triangle MGN BC: NM = 2:1 だから,BG: GM = 2:1.

AL と BM の交点を H とする.

G の場合と同様にして,

AB: ML = 2: 1 だから,BH: HM = 2: 1. がわかる。 G = H = 1 は G = 1 に G = 1

外心の定義

外心の定義

三角形の垂直二等分線は1点で交わり,外心と呼ぶ.

定理4

三角形の3辺の垂直二等分線は1点で交わる.

準備

P が線分 AB の垂直二等分線上にある \iff PA=PB

AB, BC の垂直二等分線の交点を O とする.

AO, BO, CO を引くと

準備より,O は垂直二等分線上にあるので AO = BO = CO AO = CO から O が AC の垂直二等分線上にあることがわかる.

外接円

外接円

頂点 A, B, C を通る円を外接円という.

証明から AO = BO = CO がわかったので,O を中心として A, B, C を通る円が存在する.

内心の定義

内心

三角形の3つの内角の二等分線が交わる点.

内心

定理4

三角形の3つの内角の二等分線は1点で交わる.

準備

P が $\angle XOY$ の二等分線上にある.

 \iff P \lor OX の距離と P \lor OY の距離が等しい.

1から、各辺に垂線をおろす.

準備の (\Longrightarrow) より,IN = IL = IM.

*I*から *C*に線分を引く.

IM = IL なので,準備の (\iff) より,IC は $\angle MCL$ の二等分線になっている. \blacksquare

内接円

内接円の定義を求めよ.

IM = IN = IL で各辺と垂直に交わるので,I を中心として 3 辺に接する円が存在し,これを**内接円**と呼ぶ.

垂心

垂心の定義

三角形の各頂点から対辺,もしくはその延長に下ろした垂線の 交点 H.

傍心

傍心の定義

 \triangle ABC の 1 つの内角の二等分線と,他の 2 つの外角の二等分線の交点.

問題

問題

重心と内心が一致する三角形は,正三角形であることを証明せよ.

Example

Derived Category Example

The functor $\operatorname{Ext}^i(-,-)$ gives a cohomological δ -functor.

Summary

- Main result
- Key ideas
- Future directions

Summary

- Main result
- Key ideas
- Future directions

Questions

Questions?