Supervised Learning

Ch.2:

Learning a Class from Examples

- Class C of a "family car"
 - \square Prediction: Is car *x* a family car?
 - □Knowledge extraction: What do people expect from a family car?
- Output:
 - Positive (+) and negative (-) examples
- Input representation:
 - x_1 : price, x_2 : engine power

Training set X

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Class C

Family Car Decision Tree

Hypothesis class \mathcal{H}

S, G, and the Version Space

VC Dimension

Vapnik-Chervonenkis

- $\blacksquare N$ points can be labeled in 2^N ways as +/-
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: rectangles here $VC(\mathcal{H}) = N$
- Does not work for 5 points!

An axis-aligned rectangle shatters 4 points only!

Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with probability at least 1δ , h has error at most ε? (Blumer et al., 1989)
- Each strip is at most ε/4
- Pr that we miss a strip 1 ε/4
- Pr that N instances miss a strip $(1 \varepsilon/4)^N$
- Pr that *N* instances miss 4 strips $4(1 \varepsilon/4)^N$
- $4(1 \epsilon/4)^N \le \delta$ and $(1 x) \le \exp(-x)$
- = 4exp(-εN/4) ≤ δ and N ≥ (4/ε)log(4/δ)

Noise and Model Complexity

Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

Multiple Classes, C_i i=1,...,K

Regression

Eva

Finding Regression Coefficients

$$\mathcal{X} = \left\{x^{t}, r^{t}\right\}_{t=1}^{N}$$

$$r^{t} \in \Re$$

$$r^{t} = f\left(x^{t}\right) + \varepsilon$$

How to find w_1 and w_0 ? Solve: $dE/dw_1=0$ and $dE/dw_0=0$ And solve the two obtained equation Ungraded Homework!

Eva

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- \blacksquare The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Eva

Underfitting and Overfitting

Complexity of the classification function

Underfitting: when model is too simple, both training and test errors are large fitting: when model is too complex and test errors are large although training errors are small.

Cross-Validation

Error on new examples; actually the testing error is used as an estimation of the generalization error!

- Two errors: training error, and testing error usually called generalization error. Typically, the training error is smaller than the generalization error.
- To estimate generalization error, we need data unseen during training. We could split the data as
 - ☐Training set (50%)
 - □Validation set (25%)→optional, for selecting ML algorithm parameters (e.g. model complexity)
 - ☐ Test (publication) set (25%)
- Resampling when there is few data

Triple Trade-Off

overfitting

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , $c(\mathcal{H})$,
 - 2. Training set size, N,
 - 3. Generalization error, E on new data
- \square As $c(\mathcal{H})\uparrow$ first $E\downarrow$ and then $E\uparrow$
- \square As $c(\mathcal{H})$ the training error decreases for some time and then stays constant (frequently at 0)

Dimensions of a Supervised Learner

- 1. Model : $\mathcal{G} \times \Theta$
- 2. Loss function:

3. Optimization procedure:

Remark This procedure is typical for Parametric approaches to supervised learning; Non-parametric approaches work differently!