Solution in Stata: Exercises Day 2

PSY8003

Matthias Mittner

spring 2022

Exercise 1: Hierarchical regression

The second block of predictors improves the model significantly, the third does not. The coefficients are not much changed by including the additional predictors.

```
use "../data/workout.dta"
ssc install hireg
hireg whours (gender age) (educ marital) (health)
```

checking hireg consistency and verifying not already installed... all files already exist and are up to date.

Model 1:

Variables in Model:

Adding : gender age

Source	SS	df	MS	Number of obs F(2, 207)	=	210 8.81
Model	857.314971	2	428.657485	Prob > F	=	0.0002
Residual	10070.6088	207	48.6502842	R-squared	=	0.0785
+-				Adj R-squared	=	0.0695
Total	10927.9238	209	52.2867168	Root MSE	=	6.975

whours	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
 gender	2.217302	.9925996	2.23	0.027	.2604016	4.174203

age	1339799	.0400453	-3.35	0.001	2129287	055031
_cons	17.23131	1.731741	9.95	0.000	13.8172	20.64542

Model 2:

Variables in Model: gender age Adding : educ marital

Source	SS	df	MS	Numbe	er of obs	=	210
+				- F(4,	205)	=	6.60
Model	1247.17003	4	311.79250	7 Prob	> F	=	0.0001
Residual	9680.75378	205	47.223189	2 R-squ	ared	=	0.1141
+				- Adj R	-squared	=	0.0968
Total	10927.9238	209	52.286716	8 Root	MSE	=	6.8719
	Coefficient				[95% co	nf.	interval]
gender		.9849872	2.08	0.039	.108899	 8	3.992908
age	1050521	.0471794	-2.23	0.027	198071	2	012033
educ	-1.642637	.577278	-2.85	0.005	-2.780	8	5044732

R-Square Diff. Model 2 - Model 1 = 0.036 F(2,205) = 4.128 p = 0.017

Model 3:

Variables in Model: gender age educ marital

Adding : health

Source	SS	df 	MS	Number of obs	=	210 5.41
Model	1278.89155	5	255.77831		=	0.0001
Residual	9649.03226	204	47.2991777	1	=	0.1170
+ Total	10927.9238		52.2867168	naj n bquarea	=	0.0954 6.8774
•	Coefficient			P> t [95% c	onf.	interval]

m	arital	.0194244	1.152063	0.02	0.987	-2.252053	2.290902
	health	.3653454	.4461218	0.82	0.414	5142554	1.244946
	_cons	17.84223	3.216314	5.55	0.000	11.50075	24.18371
R-Squa	re Diff.	Model 3 - Mo	del 2 = 0.003	F(1,	,204) =	0.671 p = 0.4	414
	D O	T(16)		7.0	,	T(16) 1	
Model	R2	F(df)	р	R2	change	F(df) change	р
1:	0.078	8.811(2,207)	0.000				
2:	0.114	6.603(4,205)	0.000	0.0	36	4.128(2,205)	0.017
3:	0.117	5.408(5,204)	0.000	0.0	003	0.671(1,204)	0.414

Exercise 2: Power analysis

a)

In G*Power:

- Test family=F-Test
- Statistical-Test = Linear multiple Regression: Fixed model, \mathbb{R}^2 deviation from 0
- Type: A priori
- Input parameters: "Determine" -> From correlation coefficient: Squared multiple correlation=0.1 α err prob=0.05 Power=0.95 Number of predictors=9

Total sample size=221.

b)

The critical f^2 for an $R^2 = 0.2$ is

$$f^2 = \frac{R^2}{1 - R^2} = 0.25$$

The graph "cuts" the $f^2 = 0.25$ line at about N = 103 (click on "Table" to get exact values).

c)

N=150 corresponds to about $f^2=0.17$ which is

$$R^2 = \frac{f^2}{f^2 + 1} \approx 0.15$$

d)

In G*Power:

- Test family=F-Test
- Statistical-Test = Linear multiple Regression: Fixed model, R^2 increase
- Type: A priori
- Input parameters: f^2 =0.02 α err prob=0.05 Power=0.8 Number of tested predictors=1 Number of predictors=9 Calculate -> N = 395

Exercise 3: Regression diagnostics

Two cases have large residuals >3; all of them occur for very high values of the dependent variables -> indicative of a problem with specification?

Leverage/Cooks-d pick up a few cases, but it does not look too severe (no Cooks'd close to 1).

No problem with multicollinearity.

There may be a slight misspecification (deviation from linearity), but its not severe.

Heteroscedasticity is present, variance seems to grow with the predicted value.

The residuals are definitely not normal, not surprising considering that this is a count-variable.

```
use "../data/workout.dta"
regress whours gender age educ marital health
* any residuals larger/smaller than expected?
predict resid, rstudent
list if abs(resid)>2.5 & resid !=.
* leverate, dfit and cooksd
* listing according to threshold for leverage (k=2, n=95)
predict lev, leverage
predict dfit, dfit
predict cooksd, cooksd
list if abs(lev)>(2*5+2)/210 \& lev!=.
* normality of residuals
histogram resid
qnorm resid
swilk resid
kdensity resid, normal
```

* heteroscedasticity rvfplot, yline(0) estat imtest estat hettest

* statistical regression checks in Stata ssc install regcheck regcheck

	Source	SS		df	MS		er of obs		210	
	+		 				204)			
	Model				255.7783		> F			
R	esidual				47.299177		uared			
	+					•	R-squared			
	Total	10927.92	38	209	52.2867168	3 Root	MSE	= 6.8	774	
	whours	Coefficie	nt St	d. err.	t	P> t	 [95% con	of. interv	 al]	
	gender	2.11800	1 .9	 9891784	2.14	0.033	.167677	4.068	 326	
	age	113364	6 .0	0482961	-2.35	0.020	2085881	0181	411	
	educ	-1.58764			-2.73					
1	marital	.019424	4 1.	152063	0.02	0.987	-2.252053	2.290	902	
	health	.365345	4 .4	1461218	0.82	0.414	5142554	1.244	946	
	_cons	17.8422	3 3.	216314	5.55	0.000	11.50075	24.18	371	
	+ whours	gender	age		educ	marital		health	+ resid	-
3.	l 48	men	20	second	lary/high	single		4	4.716255	
7.	1 40	men	20		lary/high	•			3.328911	
35.		men	21		lary/high	_			2.716904	
85.		women	27		lary/high	married		4	2.610004	
175.	l 32	men	38	ur	niversity	married	6=Very i	mportant	2.586674	
	+								+	
	whours	gender	age			educ m	arital		health	
37.	12	women	37	more t	han univer	sity m	arried		2	.3

44.		4 women	28	more than university	single	1=Not important at all	9
87.	-	4 men	47	secondary/high	single	3	-1.
93.	1	6 men	76	more than university	${\tt married}$	4	1.1
125.	1 2	4 men	16	secondary/high	single	1=Not important at all	1.0
129.		 8 women	43	university	married	1=Not important at all	3
129. 141.	 		43 17	university secondary/high	married single	1=Not important at all 1=Not important at all	3: 4:
		2 women		J		•	

(bin=14, start=-2.2836428, width=.49999268)

Shapiro-Wilk ${\tt W}$ test for normal data

Variable	Obs	W	V	Z	Prob>z
resid	210	0.95996	6.233	4.221	0.00001

Cameron & Trivedi's decomposition of IM-test

Source		chi2	df	p
Heteroskedasticity Skewness Kurtosis	 	31.05 13.43 1.82	18 5 1	0.0284 0.0197 0.1768
Total		46.31	24	0.0041

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity

Assumption: Normal error terms
Variable: Fitted values of whours

HO: Constant variance

chi2(1) = 30.51

Prob > chi2 = 0.0000

checking regcheck consistency and verifying not already installed... all files already exist and are up to date.

Regression assumptions:	Test:
1) heterokedasticity problem	Breusch-Pagan hettest Chi2(1): 30.507 p-value: 0.000
2) no multicollinearity problem	Variance inflation factor age : 1.51 marital : 1.45 educ : 1.10 health : 1.07 gender : 1.03
3) residuals are not normally distributed	Shapiro-Wilk W normality test z: 3.964 p-value: 0.000
4) specification problem	Linktest t: 3.502 p-value: 0.001
5) functional form problem	Test for appropriate functional form F(3,201):4.140 p-value: 0.007
6) no influential observations	Cook's distance no distance is above the cutoff