

Instituto Tecnológico de Aeronáutica

CMC-12 – Exame Final

Prof. Marcos Ricardo Omena de Albuquerque Maximo

Controlador Não Linear de Barra Articulada

Julho de 2025

Danilo Miranda Oliveira Geison Vasconcelos Lira Filho José Alberto Feijão Tizon

1. Introdução

Este relatório apresenta o projeto final desenvolvido na disciplina CMC-12, cujo objetivo é implementar e analisar um controlador não linear para o sistema que consiste em uma barra articulada sobre a qual uma argola pode deslizar livremente, sem atrito. O controle atua sobre o torque aplicado à barra, visando posicionar a argola em uma posição desejada x_r ao longo da barra, utilizando como única força externa a gravidade.

A solução implementada para projetar o controlador desse sistema permite que o projetista determine o tipo de controlador – entre P, PI, PD, DI e PID – e escolha três tipos de combinação de requisitos no domínio do tempo, sobressinal + tempo de subida, sobressinal + tempo de acomodação e sobressinal + tempo de pico, para posicionar a argola numa barra infinita. Desse modo, é possível determinar o controlador mais eficaz para a barra do tamanho que se deseja projetar e verificar se os requisitos podem ser obedecidos para todas as posições da barra que se deseja projetar.

2. Descrição do Sistema

2.1. Modelagem Física

O sistema físico analisado consiste em uma barra rígida, com momento de inércia J, articulada na posição x=0 e assumida como infinitamente longa. Solidária a essa barra, uma argola de massa m desliza livremente, sem atrito. O controle do sistema é realizado por meio da aplicação de um torque $\tau(t)$ na base da barra, o qual altera seu ângulo $\theta(t)$ em relação à vertical. A única força externa considerada na modelagem é a força gravitacional atuando sobre a argola.

2.2. Equações Dinâmicas Não Lineares

No referencial solidário à barra, as forças atuantes sobre a argola ao longo do eixo x são a componente da força gravitacional, expressa como $-mg\sin(\theta)$, e a força centrífuga decorrente da rotação da barra, dada por $m\dot{\theta}^2x$. Como se desprezam os atritos e forças perpendiculares à barra, como as forças de Coriolis e de Euler, que não influenciam a movimentação ao longo do eixo x, a equação de movimento da argola no referencial rotativo é representada por:

$$m\ddot{x} = -mg\sin(\theta) + m\dot{\theta}^2x\tag{1}$$

A dinâmica de rotação da barra é modelada por:

$$\tau(t) = J\ddot{\theta} \tag{2}$$

2.3. Linearização via Espaço de Estados

Para fins de análise e projeto de controladores lineares, é conveniente representar a dinâmica do sistema em espaço de estados. A partir do modelo não linear previamente obtido, consideram-se as seguintes equações que descrevem a dinâmica da argola e da barra:

$$m\ddot{x} = -mg\sin(\theta) + m\dot{\theta}^2x\tag{3}$$

$$J\ddot{\theta} = \tau \tag{4}$$

Definimos o vetor de estados como $\mathbf{x} = \begin{bmatrix} x & \dot{x} & \theta & \dot{\theta} \end{bmatrix}^{\mathsf{T}}$, a entrada como $u = \tau$, e consideramos como saída a posição da argola y = x.

A equação (3), dividida por m, fornece:

$$\ddot{x} = -g\sin(\theta) + \dot{\theta}^2 x \tag{5}$$

De forma semelhante, da equação (4), temos:

$$\ddot{\theta} = \frac{1}{J}\tau\tag{6}$$

Substituindo as variáveis de estado, o sistema dinâmico pode ser reescrito como:

$$\dot{x}_1 = x_2 \tag{7}$$

$$\dot{x}_2 = -g\sin(x_3) + x_4^2 x_1 \tag{8}$$

$$\dot{x}_3 = x_4 \tag{9}$$

$$\dot{x}_4 = \frac{1}{J}u\tag{10}$$

Com isso, obtém-se o modelo de espaço de estados não linear na forma compacta:

$$\dot{\mathbf{x}} = f(\mathbf{x}, u), \quad y = h(\mathbf{x}) \tag{11}$$

Para linearizar o sistema, realiza-se uma expansão em série de Taylor de primeira ordem das funções $f(\mathbf{x}, u)$ e $h(\mathbf{x})$ em torno do ponto de equilíbrio $\mathbf{x}_e = \mathbf{0}, u_e = 0$. As matrizes do modelo linearizado são dadas por:

$$A = \frac{\partial f}{\partial \mathbf{x}} \bigg|_{\mathbf{x}_e, u_e} \qquad B = \frac{\partial f}{\partial u} \bigg|_{\mathbf{x}_e, u_e} \tag{12}$$

$$A = \frac{\partial f}{\partial \mathbf{x}}\Big|_{\mathbf{x}_e, u_e} \qquad B = \frac{\partial f}{\partial u}\Big|_{\mathbf{x}_e, u_e}$$

$$C = \frac{\partial h}{\partial \mathbf{x}}\Big|_{\mathbf{x}_e} \qquad D = \frac{\partial h}{\partial u}\Big|_{u_e}$$

$$(12)$$

Calculando essas derivadas parciais, obtêm-se as seguintes matrizes:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -g & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{I} \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

Esse modelo linearizado descreve a dinâmica do sistema nas proximidades do ponto de equilíbrio. Ele será utilizado para o projeto dos controladores lineares na malha externa, uma vez que fornece uma aproximação acurada do comportamento local do sistema não linear original. A partir da modelagem em espaço de estados e da posterior aplicação de uma expansão em série de Taylor de primeira ordem em torno do ponto de equilíbrio $(\theta, \theta, x, \dot{x}) = (0, 0, 0, 0)$, obtêm-se as equações linearizadas que descrevem a dinâmica local do sistema. Considerando pequenas oscilações e desprezando termos não lineares de ordem superior, a dinâmica reduz-se às seguintes equações diferenciais lineares:

$$\ddot{x} = -g \cdot \theta \tag{14}$$

$$\ddot{\theta} = \frac{1}{J} \cdot \tau \tag{15}$$

Essas expressões representam, respectivamente, a aceleração da argola em função da inclinação da barra e a aceleração angular da barra em função do torque aplicado. Tal forma linearizada é essencial para a síntese de controladores clássicos baseados em modelos lineares, como controladores PID ou estratégias de realimentação de estados.

3. Projeto do Controlador

3.1. Estrutura em Malha Interna e Externa

Devido à natureza hierárquica do sistema, em que a posição x depende do ângulo θ , que por sua vez depende do torque τ , adota-se uma abordagem com duas malhas de controle. A malha interna, mais rápida, é responsável por controlar o ângulo da barra a partir do torque aplicado. Para isso, utiliza-se um controlador proporcional com compensação de velocidade (P+V). Já a malha externa, mais lenta, controla a posição da argola ao longo da barra. São testados diferentes controladores (P, PI, PD, DI e PID), todos com pré-filtro na referência para eliminação dos zeros, de forma que seja possível estabelecer uma dinâmica de segunda ordem padrão aproximada para esses controladores.

3.2. Controladores Utilizados nas Malhas

A arquitetura de controle adotada é composta por uma estrutura hierárquica com duas malhas principais. A malha externa é responsável pelo controle da posição da argola e utiliza um controlador PID clássico, atuando sobre o erro de posição para gerar uma referência angular. Já a malha interna é dedicada ao controle da orientação da barra e implementa uma estratégia do tipo P+V. Essa estratégia consiste em duas realimentações aninhadas: uma proporcional sobre o ângulo da barra e outra proporcional sobre sua velocidade angular, funcionando respectivamente como ações de posição e velocidade.

Para o cálculo dos ganhos dos controladores, considera-se o modelo linearizado do sistema, no qual as não linearidades e forças centrífugas são desprezadas. Os parâmetros são calculados de forma analítica, a partir dos requisitos de desempenho definidos para o sistema. Posteriormente, o projeto é validado no ambiente Simulink, onde o modelo exato do sistema é simulado, incluindo as não linearidades e a força centrífuga que foram omitidas na linearização. Dessa forma, verifica-se se o controlador projetado atende adequadamente ao desempenho esperado quando aplicado ao sistema real.

3.3. Compensador PID e pré-filtro

No ambiente do simulink, foram configurados dois blocos referentes à malha externa de posição, um dos blocos consiste em um pré-filtro para a eliminação dos zeros das funções de transferência e outro referentes ao controlador PID geral. A função de transferência da posição x em relação ao referencial x_r é mostrada na equação abaixo.

$$(x_r \cdot F(s) - x) \cdot C(s) \cdot \frac{g}{s^2} = x$$

Em que x_r é a referência de posição, g é gravidade, C(s) é o compensador PID e F(s) é o pré-filtro. As estruturas do pré-filtro e do compensador respectivamente, são apresentas nas equações abaixo. Se deseja-se um controlador PID, calcula-se

$$F(s) = \frac{fK_p s + K_i}{K_d s^2 + K_p s + K_i}$$
$$C(s) = \frac{K_d s^2 + K_p s + K_i}{s}$$

Em que K_d , K_p e K_i são os ganhos do controlador PID e f é um fator de correção do pré-filtro para que ele sempre elimine os zeros independente do tipo de controlador utilizado.

3.4. Obtenção analítica de ganhos e definição do controlador

Os ganhos foram projetados considerando-se sempre uma dinâmica de segunda ordem padrão baseado na combinação de requisitos e no tipo de compensador escolhidos. O valor de M_p é o mesmo para as três combinações.

$$\xi = \frac{-ln(M_p)}{\sqrt{\pi^2 + ln^2(M_p)}}$$

Caso escolha-se o tempo de subida, ω_n é dado pela equação abaixo.

$$\omega_n = \frac{\pi - \arccos(\xi)}{t_r \sqrt{1 - \xi^2}}$$

Caso escolha-se o tempo de pico, temos a equação abaixo.

$$\omega_n = \frac{\pi}{t_p \sqrt{1 - \xi^2}}$$

Por fim, caso seja feita a escolha do tempo de acomodação, obtemos omega pela expressão abaixo.

$$\omega_n = \frac{3}{\xi t_s}$$

Com os termos da equação de segunda ordem padrão definidos, é possível determinar os ganhos com base neles. Para um compensador P, fazemos $K_i = 0$ e $K_d = 0$ e escolhemos o fator f = 1, assim o pré filtro, o compensador e a equação final do controlador em malha fechada são dados respectivamente pelas equações abaixo.

$$F(s) = 1$$

$$C(s) = K_p$$

$$G(s) = \frac{K_p}{\frac{1}{q}s^2 + K_p}$$

Assim, considerando uma dinâmica de segunda ordem, obtemos que o ganho K_p é dado pela equação abaixo.

$$K_p = \frac{\omega_n^2}{g}$$

Esse sistema é marginalmente estável, devido a seus polos no eixo imaginário, ele não diverge para infinito mas oscila infinitamente, não atingindo estabilidade e não sendo adequado para uso como controlador, mas ainda assim ele foi incluído no projeto para evidenciar sua inadequação e sua diferença em relação a outros controladores. Para um compensador PD, fazemos $K_i = 0$

e escolhemos o fator f = 1, assim o pré filtro, o compensador e a equação final do controlador em malha fechada são dados respectivamente pelas equações abaixo.

$$F(s) = \frac{K_p}{K_d s + K_p}$$

$$C(s) = K_d s + K_p$$

$$G(s) = \frac{K_p}{\frac{1}{q} s^2 + K_d s + K_p}$$

Assim, considerando uma dinâmica de segunda ordem, obtemos que os ganhos K_p e K_d são dados pela equação abaixo.

$$K_d = \frac{2\xi\omega_n}{g}$$
$$K_p = \frac{\omega_n^2}{g}$$

Esse sistema, por apresentar zeros somente no semiplano esquerdo, é estável e atinge o equilíbrio em regime na referencia. Para um compensador PI, fazemos $K_d = 0$ e escolhemos o fator f = 0, assim o pré filtro, o compensador e a equação final do controlador em malha fechada são dados respectivamente pelas equações abaixo.

$$F(s) = \frac{K_i}{K_p s + K_i}$$

$$C(s) = \frac{K_p s + K_i}{s}$$

$$G(s) = \frac{K_i}{\frac{1}{q} s^3 + K_p s + K_i}$$

Esse sistema tem três polos, porém o polo real não é distante o suficiente da origem para que os polos complexos sejam dominantes, de forma que esse sistema está sujeito a instabilidades de terceira ordem impossíveis de serem resolvidas. Além disso, os polos complexos conjugados estão no semiplano real positivo, de forma que o sistema é instável e não é adequado para ser usado como controlador, mas ainda assim ele foi incluído no projeto para evidenciar sua inadequação e sua diferença em relação a outros controladores. Mesmo assim, considerando uma dinâmica de segunda ordem, obtemos que os ganhos K_p e K_i são dados pelas equaçõess abaixo.

$$K_p = \frac{\omega_n^2 - 4\xi^2 \omega_n^2}{g}$$
$$K_i = \frac{2\xi \omega_n^3}{g}$$

Para o compensador DI, fazemos $K_p = 0$ e escolhemos o fator f = 0, assim o pré filtro, o compensador e a equação final do controlador em malha fechada são dados respectivamente pelas equações abaixo.

$$F(s) = \frac{K_i}{K_d s^2 + K_i}$$
$$C(s) = \frac{K_d s^2 + K_i}{s}$$

$$G(s) = \frac{K_i}{\frac{1}{q}s^3 + K_d s^2 + K_i}$$

Esse sistema apresenta a mesma estrutura de polos do compensador PI, o polo real é próximo da origem de forma que os polos complexos não são dominantes, e os polos complexos estão no semiplano real positivo, de forma que esse controlador é instável e não é adequado para uso, mas ainda assim ele foi incluído no projeto para evidenciar sua inadequação e sua diferença em relação a outros controladores. De qualquer modo, os ganhos K_d e K_i são dados pelas equações abaixo.

$$K_d = \frac{\omega_n - 4\xi^2 \omega_n}{2\xi g}$$
$$K_i = \frac{\omega_n^3}{2\xi g}$$

Por fim, para o compensador PID, escolhemos o fator f = 0, assim o pré filtro, o compensador e a equação final do controlador em malha fechada são dados respectivamente pelas equações abaixo.

$$F(s) = \frac{K_i}{K_d s^2 + K_p s + K_i}$$

$$C(s) = \frac{K_d s^2 + K_p s + K_i}{s}$$

$$G(s) = \frac{K_i}{\frac{1}{g} s^3 + K_d s^2 + K_p s + K_i}$$

Com três ganhos, o polo real não fica determinado com base nos outros polos, de forma que podemos escolhê-lo de forma que os polos complexos sejam dominantes, além disso, os polos complexos estão no semiplano real negativo, o que indica que esse sistema é adequado para ser utilizado como controlador. Os ganhos K_d , K_p e K_i respectivamente são dados pelas equações abaixo.

$$K_d = \frac{7\xi\omega_n}{g}$$

$$K_p = \frac{10\xi^2\omega_n^2 + \omega_n^2}{g}$$

$$K_i = \frac{5\xi\omega_n^3}{g}$$

As equações dos ganhos com base nos requisitos foram implementadas no matlab para serem usadas no modelo geral do controlador.

4. Resultados e Discussão

4.1. Comparação entre simuladores

Inicialmente, foi realizada uma comparação entre os tipos de controladores disponíveis para analisar qual deles é capaz de estabilizar. Nesse teste, foi realizada a simulação do sistema para referência fixa $x_r = 0,9$ e com requisitos fixos, de modo que a resposta dos diferentes tipos de compensador podem ser observadas na figura 1.

Figura 1: Análise do comportamento do sistema para os diferentes tipos de controladores

Observa-se, na resposta de posição, que os controladores PD e PID são os únicos capazes de rastrear corretamente a referência, promovendo estabilização e erro de regime próximo de zero. Entre eles, o controlador PD apresentou o *melhor desempenho global*, com rápida convergência, menor sobrelevação e uso mais eficiente do esforço de controle.

O controlador P resultou em um sistema *marginalmente estável*, caracterizado por oscilações sustentadas e ausência de amortecimento. Apesar de não divergir, o sistema não converge para a referência, evidenciando a limitação dessa estrutura em sistemas com dinâmicas acopladas.

Os controladores PI e DI mostraram-se totalmente instáveis, apresentando crescimento exponencial da posição e do ângulo, com comportamento divergente e torques irrealisticamente elevados. Tal comportamento inviabiliza sua aplicação em qualquer cenário realista.

Na resposta angular, o PD se destaca novamente, controlando o ângulo da barra de forma suave e eficiente. O PID, embora estável, apresentou resposta mais lenta e esforço de controle mais elevado que o PD, além de apresentar mais oscilação para estabilizar na posição de referência.

4.2. Avaliação de diferentes referências

4.3. Avaliação de diferentes tipos de requisitos

5. Conclusão

O desenvolvimento deste projeto permitiu compreender os principais desafios envolvidos no controle de sistemas não lineares, especialmente na presença de malhas hierárquicas e interdependentes. A estratégia de controle adotada, com malhas interna e externa, mostrou-se efetiva para garantir o rastreamento da posição desejada pela argola, mesmo em condições adversas. Como possíveis extensões do trabalho, sugere-se a análise do sistema com perturbações externas, como atrito ou impa