https://studfile.net/preview/4258111/

ЗАДАНИЕ

Коровник на 100 голов с привязным содержанием питается от воздушной ЛЭП напряжением 0,38 кВ в точке С (рисунок 1).

Рисунок 1 Схема нагрузок сети 0,38 кВ: в точке C - активная нагрузка и коэффициент мощности коровника

Требуется: Определить потерю напряжения на участке АС, %.

Исходные данные: Номинальное напряжение сети $U_{\text{ном}} = 380 \ B$, погонное активное сопротивление провода $r_o = 1,96 \ Om/\ \kappa m$, реактивное $x_o = 0,358 \ Om/\ \kappa m$, если длины участков указаны в (m), нагрузка в (κBA).

Такой же пример

Центральная ремонтная мастерская питается от воздушной ЛЭП напряжением 0,38 кВ (рисунок 1).

Рисунок 1 Схема нагрузок сети 0,38 кВ:

в точке C - активная нагрузка и коэффициент мощности ремонтной мастерской *Требуется:* определить потерю напряжения в (%) до ремонтной мастерской *Исходные данные*: номинальное напряжение сети $U_{\text{ном}} = 380~B$, погонное активное сопротивление провода $r_o = 1,96~Om/\ \kappa m$, $x_o = 0,358~Om/\ \kappa m$, если длины участков указаны в (m), нагрузка в (κBA).

Решение:

Определяем активные и реактивные составляющие нагрузок

$$S_{B}^{1} = 0,3 \cdot 100 = 30 \atop \kappa Bm$$

 $S_{C} = P + jtg \cdot P = 21 + j0,619 \cdot 21 = 21 + j13,01 \atop \kappa Bm$
 $S_{D} = 21 \cdot 1 = 21 \atop \kappa Bm$

Найдём потерю напряжения до точки С по формуле

$$\Delta U = \frac{1}{U_{\text{HOM}}} \left[\sum_{j=1}^{n} p_{ja} R_j + \sum_{j=1}^{n} g_{jr} x_j \right]$$

где P_{j} , g_{j} - активные и реактивные составляющие нагрузок

Потеря напряжения до точки С

$$\Delta U_{AC} = \frac{72 \cdot 1,96 \cdot 40 + 42 \cdot 1,96 \cdot 35 + 13,01 \cdot 40 \cdot 0,358 + 13,01 \cdot 0,358 \cdot 35}{380} = 23,36$$

$$\Delta U_{AC} = \frac{23,36}{380} \cdot 100\% = 6,21\%$$
 . Omsem: $\Delta U_{AC} = 6,21\%$

ЗАДАНИЕ

Кормоцех фермы КРС питается от передвижной электростанции.

Рисунок 1 Схема осветительной сети кормоцеха

Требуется: Определить полное сопротивление соединительной линии.

Исходные данные: Установленная мощность передвижной электростанции S = 105 кВ·А; длина соединительной линии, выполненной проводом АС -25, l = 0,4 км.

Погонное сопротивление провода постоянному току при 20 °C:

- активное $r_0 = 1,146 \text{ Om/km}$;
- реактивное $x_0 = 0.355 \text{ Ом/км}.$

Решение

Каталожные (справочные) данные провода АС25:

- удельное активное сопротивление постоянному току при T= 20 °C Ro= 1,146 Ом/км;
- удельное реактивное сопротивление Хо = 0,355 Ом/км;

Расчетные формулы:

Полное сопротивление соединительной линии

$$Z_0 = \sqrt{(R^2\pi + X^2\pi)};$$

Активное сопротивление линии $R_{\pi} = Ro \cdot 1$;

Реактивное сопротивление линии $X_{J} = X_{O} \cdot 1$.

Подставляем значения в уравнения и определяем полное сопротивление.

ЗАДАНИЕ

Кормоцех фермы КРС получает питание по линии электропередачи $\Pi 1$ от трансформаторной подстанции КТП 10/0,4 кВ с понижающим трансформатором T2 (рисунок 1).

Рисунок 1 Схема системы электроснабжения кормоцеха фермы КРС: Т1- трансформаторная подстанция 110/10 кВ, Л1- воздушная линия 10 кВ, Т2- трансформаторная подстанция 10/0,4 кВ

Требуется: Определить показатели надежности системы электроснабжения: параметр потока отказов (интенсивность отказов) системы λ , 1/200; среднюю вероятность отказа системы g; среднее время её восстановления T_{g} , u.

Исходные данные: Система электропередачи состоит из повышающего трансформатора T1, линии электропередачи $\mathcal{I}1$, понижающего трансформатора T2. Отказы элементов независимы (таблица 1).

 Таблица Т Показатели надежности системы

 Показатели надежности
 Элемент сети

 надежности
 TI JI T2

 λ , 1/год
 0,04 0,17 0,03

 T_{e} , Ч
 521 7 321

Таблица 1 Показатели надежности системы

Решение:

Параметр потока отказов $^{\lambda_C}$ системы с параллельно соединёнными элементами равен сумме параметров потока отказов элементов, образующих систему

$$\lambda_C = \lambda_{T_1} + \lambda_{T_1} + \lambda_{T_2} = 0.44 + 0.17 + 0.03 = 0.24$$
 1/200.

Средняя вероятность отказа $g_{\mathcal{C}}$ системы с последовательно соединёнными элементами

$$g_{c} = g_{T1} + g_{T1} + g_{T2} = \lambda_{T1} T_{BT1} + \lambda_{T1} T_{BT1} + \lambda_{T2} T_{BT2} = (0.04.521 + 0.17.7 + 0.030.321) \cdot \frac{1}{8760} = 3.614.10^{-6}$$

Среднее время восстановления $T_{{\scriptscriptstyle BC}}$ системы

$$T_{BC} = \frac{g_C}{\lambda_C} = \frac{3,614 \cdot 10^{-3}}{0,24} = 15,06 \cdot 10^{-3}$$
 год, $T_{BC} = 131,924$ ч.

Omsem:
$$\lambda_{\rm C} = 0.24$$
 1/200 , $g_{\rm C} = 3.614 \cdot 10^{-6}$, $T_{\rm BC} = 15.06 \cdot 10^{-3}$ 200 = 131,924 y.

ЗАДАНИЕ

Электроснабжение насосной станции осуществляется от понижающей двухтрансформаторной подстанции КТП 10/0,4 кВ с трансформаторами ТМ-100/10.

Требуется: Определить параметры схемы замещения трансформатора ТМ-100/10. *Исходные данные*: Трехфазный двухобмоточный трансформатор типа ТМ-100/10 имеет следующие паспортные данные:

$$S_{\text{HOM}} = 100 \text{ kBA}, U_{\text{BH}} = 10 \text{ kB}, U_{\text{HH}} = 0.4 \text{ kB},$$

 $\Delta P_{\text{K}} = 1.97 \text{ kBT}, \Delta P_{\text{X}} = 0.36 \text{ kBT}, u_{\text{K}} = 4.5 \text{ %}, I_{\text{X}} = 2.6 \text{ %}.$

Решение.

1. Паспортные данные для трансформатора ТМ-100/10:

- номинальная мощность S_{ном}=100 кВА;
- номинальное высокое напряжение U_{вн}=10 кВ;
- номинальное низкое напряжение U_{нн}=0,4 кВ;
- потери короткого замыкания ΔР_к =1,97 кВт;
- потери холостого хода ∆Р_х=0,36 кВт;
- напряжение короткого замыкания u_к= 4,5 %;
- ток холостого хода $I_x = 2.6\%$.
- 2. Активное сопротивление трансформатора, приведенное к высокому напряжению (напряжение высшей обмотки)

$$R = \frac{\Delta P_{\kappa} U_{H}^{2}}{S_{HOM}^{2}} \cdot 10^{-3} = \frac{1,97 \cdot 10^{2}}{100^{2}} \cdot 10^{3} = 19,7$$
OM.

2. Полное сопротивление

$$Z = \frac{u_{\kappa} \cdot U_{\mu}^{2} \cdot 10^{3}}{100 \cdot S_{HOM}} = \frac{4,5 \cdot 10^{2}}{100 \cdot 100} \cdot 10^{3} = 45,0$$

Ответ: Z=45 Ом.

ЗАДАНИЕ

Зернохранилище на 1000 m питается от трансформаторной подстанции $10/0.4 \kappa B$ номинальной мощностью $S_{m,HOM} = 100 \kappa BA$.

Требуется: Выбрать предохранитель на 10 кВ трансформаторной подстанции по двум условиям: а) при отстройке от рабочего максимального тока на трансформаторной подстанции; б) при отстройке от броска тока намагничивания трансформатора при его включении под

напряжение.

Исходные данные: Рабочий максимальный ток, приведенный к высшей стороне трансформа- $I_{p.max} = 147 A$. Рекомендуемая марка ΠKT , ряд номинальных токов плавких вставок: 2; 3; 5; 10; 15; 20; 30; 50; 75; 100 A. Значение коэффициента K_{M} при отстройке от рабочего максимального тока принять равным 1,25.

Решение:

1. Максимальный рабочий ток, приведенный к низшей стороне трансформатора

$$I_{\it paботахHH}=\frac{147}{25}$$
 =5,88 $_{\it A}$, где 25 –коэффициент трансформации трансформатора, ${\rm KT}=10/0,4=25.$

2. Условие выбора тока плавкой вставки предохранителя при отстройке от рабочего максимального тока

$$I_{\Pi \text{BHOM}} \geq K_M \cdot I_{P \max}$$

$$I_{{\it \Pi}{\it B}{\it H}{\it OM}} \ge$$
1,25 \cdot 5,88 =7,35 $_{\it A,~\it C}$ де ${\it K}{\it M}$ =1,25 $-$ справочная величина.

3. Условие выбора тока плавкой вставки предохранителя при отстройке от броска тока намагничивания трансформатора при его включении под напряжение

$$I_{{\it \Pi BHOM}} \geq 1,5...2,0 \cdot I_{{\it THOM}}$$
 .

$$I_{\text{IIBHOM}} \ge 2 \cdot \frac{S_{\text{THOM}}}{\sqrt{3}U_{\text{HOM}}} = 2 \cdot \frac{100}{\sqrt{3} \cdot 10} = 2 \cdot 5,78 = 11,56$$

4. Принимаем номинальный ток плавкой вставки

 $I_{\text{пвном}} = 15$ A, при которой оба условия выполняются.

Ombem: $I_{\Pi BHOM} = 15$ A.

ЗАДАНИЕ

Ремонтное предприятие питается от КТП 10/0,4 кВ. Защита воздушной линии $10 \ \kappa B$ от токов короткого замыкания осуществляется максимальной токовой защитой (МТЗ) на реле РТВ.

Рисунок 1 Схема осветительной сети механического участка

Требуется: Определить ток уставки I_{ν} на реле тока РТВ МТЗ и коэффициент чувствительности МТЗ - $K_{u,pacu}$.

Исходные данные: Максимальный рабочий ток линии 10 кВ $I_{p,max} = 29,3$ A; МТЗ выполнена по схеме неполная звезда $K_{cx} = 1$; коэффициент трансформации трансформатора тока $K_m = 10$; минимальный ток короткого замыкания $I_{\kappa min} = 595 A$; коэффициент надежности $K_{H} = 1,3$; коэффициент самозапуска $K_{c3} = 1,1$; коэффициент возврата реле равен 0,65.

Решение:

1. Расчетный ток срабатывания защиты

I. Расчетный ток сраоатывания защиты
$$I_{c.3.pacч.} = \frac{K_{\scriptscriptstyle H}}{K_{\scriptscriptstyle B}} \cdot K_{\scriptscriptstyle cns} \cdot I_{\scriptscriptstyle pmax} = \frac{1,3 \cdot 1,1}{0,65} \cdot 29,3 = 64,46$$
A,

где $K_H - \kappa$ оэффициент надежности, $K_H = 1,3$;

Ксзп – коэффициент самозапуска, учитывающий увеличение тока нормального режима от nусковых токов, после отключения короткого замыкания другими защитами, Kсзn = 1, 1 для коммунально-бытовой нагрузки;

 K_{8} – коэффициент возврата реле, K_{8} =0,65;

2. Ток уставки

$$I_p = \frac{K_{cx}}{K_T} \cdot I_{3.c.pacq.} = \frac{1}{10} \cdot 64,46 = 6,46$$

$$k_T = \frac{50}{5} = 10$$

 $_{\it 2de} \; k_{\scriptscriptstyle T} = \!\! \frac{50}{5} = \!\! 10 \;$ - коэффициент трансформации трансформатора тока;

Kcx - коэффициент схемы, <math>Kcx = 1

- Выбираем ток уставки на реле РТВ равным I_{ycm} =5,6 A:
- 3. Коэффициент чувствительности расчетный

$$K_{u.pacu.} = \frac{I_{Kmin}}{I_{c.s.q}} = \frac{595}{5,6 \cdot 10} = 10,625$$

- 4. Коэффициент чувствительности допустимый $K_{u.\partial on} = 1,5$;
- 5. Проверка чувствительности защиты $K_{u.pacu.} > K_{u.don.} = 1,5$ Защита чувствительна.

$$Omsem$$
: $I_{ycm} = 5.6$ A на реле тока PTB; $K_{u.pacu.} = 10.625$

Ферма КРС по выращиванию молодняка питается от системы электроснабжения (рисунок 1).

Рисунок 1 Схема системы электроснабжения фермы КРС: К1, К2 — точки короткого замыкания, ТО- токовая отсечка, МТ3 - максимальная токовая защита

Требуется: Определить, почему за ток согласования на карте селективности принимается $I_{K2}^{(3)}$ - ток короткого замыкания в месте установки предохранителя, селективны ли защиты? *Исходные данные:* Карта селективности защит системы электроснабжения фермы КРС приведена на рисунке 2.

Рисунок 2 Карта селективности защит

Решение:

Ответ: 1. Защиты селективны, т.к. выдержаны ступени селективности по *току* и по времени.

2. $I_{cozn.} = I_{\kappa z}^{(3)}$, т.к. согласуются зависимая и ограничено зависимая характеристики предохранителя и PT соответственно.

ЗАЛАНИЕ

Тепличное хозяйство совхоза « Алексеевский» питается от КТП 10/0,4 кВ с номинальной мощностью трансформатора $S_{m.но.m} = 100$ кВА.

Требуется: Определить потери энергии в трансформаторе.

Исходные данные: Каталожные данные *КТП* $S_{Thom} = 100 \ \kappa BA$; $\Delta P_x = 0.36 \ \kappa Bm$; $\Delta P_\kappa = 1.97 \ \kappa Bm$; расчетная полная мощность $S_{pacy} = 96 \kappa BA$; $\tau = 1200 \ v$ – время максимальных потерь.

Решение:

$$\Delta W_{t} = \Delta P_{x} \cdot 8760 + \Delta P_{K} \left\| \frac{S_{pacu.}}{S_{T.HOM}} \right\|^{2} \cdot t$$

$$\vdots$$

$$\Delta W_{t1} = 0,36 \cdot 8760 + 1,97 \cdot \left\| \frac{96}{100} \right\|^{2} \cdot 1200 = 5332,26$$

$$\kappa Bm \cdot u/200,$$

$$Omsem: \Delta W_{t1} = 5332,26$$

$$\kappa Bm \cdot u/200,$$

ЗАДАНИЕ

Электроснабжение авторемонтного предприятия осуществляется от КТП 10/0,4 кВ.

Требуется: Определить электроэнергию, потребленную за сутки, значение средней нагрузки и показатели плотности, неравномерности электропотребления.

Исходные данные: Суточный режим электропотребления на участке покраски авторемонтного предпрятия характеризуется графиком нагрузки, приведенным на рисунке 1.

$$P(t) = \begin{cases} 0.25t^{2}, & npu & t = \overline{0.4} \\ 4.0, & npu & t = \overline{4.20} \\ 4.0 - t, & npu & t = \overline{20.24} \end{cases}$$

$$4.0 - t, & npu & t = \overline{20.24}$$

$$4.0 - t, & npu & t = \overline{20.24}$$

Рисунок 1 Суточный график нагрузки

Решение

Электроэнергия, потребленная электроустановкой, соответствует в масштабе площади фигуры, ограниченной графиком нагрузки и координатными осями. С учетом аналитического описания графика в результате непосредственного интегрирования мощностей получим

$$W = \int_{0}^{24.0} P(t)dt = 0.25 \cdot \int_{0}^{4.0} t^{2}dt + 4.0 \int_{0}^{16.0} dt + \int_{0}^{4.0} (4.0 - t)dt =$$

$$= 0.25 \frac{t^{3}}{3} \begin{vmatrix} 4.0 \\ 0 \end{vmatrix} + 4.0 \cdot t \begin{vmatrix} 16.0 \\ 0 \end{vmatrix} + 4.0 \cdot t \begin{vmatrix} 4.0 \\ 0 \end{vmatrix} - \frac{t^{2}}{2} \begin{vmatrix} 4.0 \\ 0 \end{vmatrix} = 77.3$$

$$\text{KBT 9.}$$

Для сопоставления выразим значение электроэнергии в джоулях:

$$W = 77.3$$
к $Bm \cdot u = 77.3 \cdot 10^3 \cdot 3,6 \cdot 10^3 Bm \cdot c = 278 \cdot 10^3$ кДж

и калориях

$$W = 278 \cdot 10^3$$
қДж $= 0.239 \cdot 278 \cdot 10^3 = 66.4 \cdot 10^3$ _{ККал.}

Средняя за сутки электрическая нагрузка (4,10)

$$P_{cp} = \frac{1}{T} \int_{0}^{T} P(t)dt = \frac{W}{T} = \frac{77.3}{24.0} = 3.22$$

ЗАДАНИЕ

Птицефабрика п. Авдон питается от районной понижающей подстанции.

Требуется: Построить суточный график электрической нагрузки с.х. предприятия. Определить характеристики неравномерности электропотребления.

Исходные данные: На вводе установлен трехфазный счетчик электроэнергии.

Пересчетный коэффициент счетчика равен 40. Показания счетчика приведены в таблице 1.

Таблица 1 Показания счетчика электроэнергии

Tuomina Titokasamin e tet mka shekiposhepimi							
Время замеров, ч	0	4	8	12	16	20	24
Показания счетчика, кВт·ч	2013,0	2016,7	2021,5	2031,7	2037,1	2051,2	2062,5

Решение

- 1. Принимаем 6 часовых интервалов осреднения, $\Delta t = 4$ час.
- 2. Средняя мощность на каждом j-м интервале с учетом пересчетного коэффициента K_{Π} счетчика опрделяется по формуле

$$P_{j} = \frac{W_{j+1} - W_{j}}{\Delta t} k_{\Pi}, j = 0.6$$

Пересчетный коэффициент равен Кп =40.

- 3. Средние мощности на 6 интервалах осреднения:
- $P_1 = 37 \text{ kBt}, P_2 = 48 \text{ kBt}, P_3 = 102 \text{ kBt}, P_4 = 54 \text{ kBt}, P_5 = 141 \text{ kBt}, P_6 = 113 \text{ kBt}.$
 - 4. Суточный график нагрузки сельскохозяйственного предприятия по данным расчётов представлен на рисунке 1

Рисунок 1 Суточный график нагрузки