Problem 2: CART-RF-ANN

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. 2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network 2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model 2.4 Final Model: Compare all the model and write an inference which model is best/optimized. 2.5 Inference: Based on the whole Analysis, what are the business insights and recommendations

Dataset for Problem 2: insurance_part2_data-1.csv

Attribute Information:

- 1. Target: Claim Status (Claimed)
- 2. Code of tour firm (Agency_Code)
- 3. Type of tour insurance firms (Type)
- 4. Distribution channel of tour insurance agencies (Channel)
- 5. Name of the tour insurance products (Product)
- 6. Duration of the tour (Duration)
- 7. Destination of the tour (Destination)
- 8. Amount of sales of tour insurance policies (Sales)
- 9. The commission received for tour insurance firm (Commission)
- 10. Age of insured (Age)

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it.

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score,roc_curve,classification_report,confusion_matri
x
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
```

Loading the data

In [2]:

Out[3]:

```
dfi = pd.read_csv("insurance_part2_data.csv")
In [3]:
dfi.head()
```

```
Agency_Code
                            AirTixee Claimed
                                            Commission Channel Duration Sales Cultiplication
                                                                                                  Destination.
O Age
1
    36
                EPX Travel Agency
                                         No
                                                   0.00
                                                          Online
                                                                       34 20.00 Customised Plan
                                                                                                        ASIA
                                                   5.94
                                                                           9.90 Customised Plan
2
    39
                CWT Travel Agency
                                         No
                                                          Online
                                                                                                    Americas
                EPX Travel Agency
                                                   0.00
                                                          Online
                                                                        4 26.00 Cancellation Plan
                                                                                                        ASIA
3
    36
                                         No
                 JZI
                            Airlines
                                                   6.30
                                                                       53 18.00
                                                                                                        ASIA
    33
                                         No
                                                          Online
                                                                                      Bronze Plan
In [4]:
dfi.shape
```

Out[4]:

(3000, 10)

In [5]:

```
dfi.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Age	3000 non-null	int64
1	Agency_Code	3000 non-null	object
2	Type	3000 non-null	object
3	Claimed	3000 non-null	object
4	Commision	3000 non-null	float64
5	Channel	3000 non-null	object
6	Duration	3000 non-null	int64
7	Sales	3000 non-null	float64
8	Product Name	3000 non-null	object
9	Destination	3000 non-null	object
dtyp	es: float64(2)	, int64(2), obje	ct(6)
		_	

memory usage: 234.5+ KB

In [6]:

dfi.describe()

Out[6]:

	Age	Commision	Duration	Sales
count	3000.000000	3000.000000	3000.000000	3000.000000
mean	38.091000	14.529203	70.001333	60.249913
std	10.463518	25.481455	134.053313	70.733954
min	8.000000	0.000000	-1.000000	0.000000
25%	32.000000	0.000000	11.000000	20.000000
50%	36.000000	4.630000	26.500000	33.000000
75%	42.000000	17.235000	63.000000	69.000000
max	84.000000	210.210000	4580.000000	539.000000

In [7]:

dfi.isnull().sum()

Out[7]:

Age	0
Agency_Code	0
Type	0
Claimed	0
Commision	0
Channel	0

```
Sales     0
Product Name     0
Destination     0
dtype: int64

In [8]:

dfi.describe(include="all")
```

Out[8]:

Duration

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destinati
count	3000.000000	3000	3000	3000	3000.000000	3000	3000.000000	3000.000000	3000	30
unique	NaN	4	2	2	NaN	2	NaN	NaN	5	
top	NaN	EPX	Travel Agency	No	NaN	Online	NaN	NaN	Customised Plan	AS
freq	NaN	1365	1837	2076	NaN	2954	NaN	NaN	1136	24
mean	38.091000	NaN	NaN	NaN	14.529203	NaN	70.001333	60.249913	NaN	Ni
std	10.463518	NaN	NaN	NaN	25.481455	NaN	134.053313	70.733954	NaN	Ni
min	8.000000	NaN	NaN	NaN	0.000000	NaN	-1.000000	0.000000	NaN	Na
25%	32.000000	NaN	NaN	NaN	0.000000	NaN	11.000000	20.000000	NaN	Ni
50%	36.000000	NaN	NaN	NaN	4.630000	NaN	26.500000	33.000000	NaN	Na
75%	42.000000	NaN	NaN	NaN	17.235000	NaN	63.000000	69.000000	NaN	Ni
max	84.000000	NaN	NaN	NaN	210.210000	NaN	4580.000000	539.000000	NaN	Na
4										→

Getting unique counts of all nominal variables

CLAIMED : 2 Yes 924

```
In [9]:
dfi.columns
Out[9]:
Index(['Age', 'Agency_Code', 'Type', 'Claimed', 'Commission', 'Channel',
       'Duration', 'Sales', 'Product Name', 'Destination'],
      dtype='object')
In [10]:
for column in dfi[['Agency_Code', 'Type', 'Claimed', 'Channel',
       'Product Name', 'Destination']]:
    print(column.upper(),': ',dfi[column].nunique())
    print(dfi[column].value_counts().sort_values())
    print('\n')
AGENCY_CODE : 4
JZI
        239
CWT
        472
       924
C2B
EPX
      1365
Name: Agency_Code, dtype: int64
TYPE: 2
Airlines
                 1163
Travel Agency
                1837
Name: Type, dtype: int64
```

```
No
       2076
Name: Claimed, dtype: int64
CHANNEL: 2
Offline
           46
           2954
Online
Name: Channel, dtype: int64
PRODUCT NAME: 5
Gold Plan
                      109
Silver Plan
                      427
Bronze Plan
                      650
Cancellation Plan
                     678
Customised Plan
                     1136
Name: Product Name, dtype: int64
DESTINATION: 3
EUROPE
Americas
             320
            2465
ASIA
Name: Destination, dtype: int64
In [11]:
dups=dfi.duplicated()
dups
dups.sum()
Out[11]:
139
In [12]:
dfi.drop duplicates(inplace=True)
In [13]:
dups=dfi.duplicated()
dups
dups.sum()
Out[13]:
0
In [14]:
dfi.shape
Out[14]:
(2861, 10)
In [15]:
plt.figure(figsize=(8,8))
dfi[['Age', 'Commision', 'Duration', 'Sales']].boxplot(vert=0)
Out[15]:
<AxesSubplot:>
    Sales
```


In [16]:

sns.pairplot(dfi)

Out[16]:

<seaborn.axisgrid.PairGrid at 0x1b041442c40>

Age Commision Duration Sales

In [17]:

```
plt.figure(figsize=(6,4))
sns.set(font_scale=1.5)
sns.heatmap((dfi).corr(), annot=True)
```

Out[17]:

<AxesSubplot:>

In [18]:

[2 1 0 4 3]

```
for feature in dfi.columns:
    if dfi[feature].dtype == 'object':
        print('\n')
        print('feature:', feature)
        print(pd.Categorical(dfi[feature].unique()))
        print(pd.Categorical(dfi[feature].unique()).codes)
        dfi[feature] = pd.Categorical(dfi[feature]).codes
```

```
feature: Agency_Code
['C2B', 'EPX', 'CWT', 'JZI']
Categories (4, object): ['C2B', 'CWT', 'EPX', 'JZI']
[0 2 1 3]
feature: Type
['Airlines', 'Travel Agency']
Categories (2, object): ['Airlines', 'Travel Agency']
[0 1]
feature: Claimed
['No', 'Yes']
Categories (2, object): ['No', 'Yes']
[0 1]
feature: Channel
['Online', 'Offline']
Categories (2, object): ['Offline', 'Online']
[1 0]
feature: Product Name
['Customised Plan', 'Cancellation Plan', 'Bronze Plan', 'Silver Plan', 'Gold Plan']
Categories (5, object): ['Bronze Plan', 'Cancellation Plan', 'Customised Plan', 'Gold Pla
n', 'Silver Plan']
```

```
feature: Destination
['ASIA', 'Americas', 'EUROPE']
Categories (3, object): ['ASIA', 'Americas', 'EUROPE']
[0 1 2]
In [19]:
dfi.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2861 entries, 0 to 2999
Data columns (total 10 columns):
               Non-Null Count Dtype
  Column
                 -----
   Age
0
                2861 non-null
                              int64
  Agency_Code 2861 non-null
1
                               int8
   Type
 2
                2861 non-null
                               int8
   Claimed
 3
                 2861 non-null
                               int8
   Commision
                               float64
                 2861 non-null
                              int8
 5
    Channel
                 2861 non-null
                              int64
 6
   Duration
                2861 non-null
7
    Sales
                 2861 non-null float64
8
   Product Name 2861 non-null
                              int8
9 Destination 2861 non-null int8
dtypes: float64(2), int64(2), int8(6)
memory usage: 128.5 KB
In [20]:
dfi.head()
```

Out[20]:

[_ _ _ _ _ _ _ _ _

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
(0 48	0	0	0	0.70	1	7	2.51	2	0
	1 36	2	1	0	0.00	1	34	20.00	2	0
:	2 39	1	1	0	5.94	1	3	9.90	2	1
;	3 36	2	1	0	0.00	1	4	26.00	1	0
	4 33	3	0	0	6.30	1	53	18.00	0	0

proportion of 1s and 0s

```
In [21]:
```

```
dfi.Claimed.value_counts(normalize=True)
```

Out[21]:

0 0.680531 1 0.319469

Name: Claimed, dtype: float64

2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network

Extracting the target column into separate vectors for training set and test set

```
In [22]:
```

```
X=dfi.drop("Claimed", axis=1)
Y=dfi.pop("Claimed")
X.head()
```

Out[22]:

	Age	Agency_Code	Туре	Commision	Channel	Duration	Sales	Product Name	Destination
0	48	0	0	0.70	1	7	2.51	2	0
1	36	2	1	0.00	1	34	20.00	2	0
2	39	1	1	5.94	1	3	9.90	2	1
3	36	2	1	0.00	1	4	26.00	1	0
4	33	3	0	6.30	1	53	18.00	0	0

Splitting data into test and train

```
In [23]:
```

```
from sklearn.model_selection import train_test_split

X_train, X_test, train_labels, test_labels = train_test_split(X, Y, test_size=.30, rando
m_state=1)
```

Checking the dimensions of the test and train data

```
In [24]:
```

```
print('X_test', X_test.shape)
print('X_train', X_train.shape)
print('test_labels', test_labels.shape)
print('train_labels', train_labels.shape)

X_test (859, 9)
X_train (2002, 9)
test labels (859,)
```

Building a Decision Tree Classifier

```
In [25]:
```

train_labels (2002,)

```
param_grid = {
    'criterion': ['gini'],
    'max_depth': [5,6,7,8,9,10],
    'min_samples_leaf': [25,50,75,100,125,150],
    'min_samples_split': [75,150,225,300,375,450],
}
dtcl = DecisionTreeClassifier(random_state=1)
grid_search = GridSearchCV(estimator = dtcl, param_grid = param_grid, cv = 10)
```

In [26]:

```
grid_search.fit(X_train, train_labels)
print(grid_search.best_params_)
best_grid = grid_search.best_estimator_
best_grid
#{'criterion': 'gini', 'max_depth': 10, 'min_samples_leaf': 50, 'min_samples_split': 450}
{'criterion': 'gini', 'max_depth': 5, 'min_samples_leaf': 50, 'min_samples_split': 300}
Out[26]:
DecisionTreeClassifier(max_depth=5, min_samples_leaf=50, min_samples_split=300, random state=1)
```

Generating Tree

```
In [27]:

train_char_label = ['no', 'yes']
tree_regularized = open('tree_regularized.dot','w')
dot_data = tree.export_graphviz(best_grid, out_file= tree_regularized , feature_names = l
ist(X_train), class_names = list(train_char_label))

tree_regularized.close()
dot_data
```

http://webgraphviz.com/

Variable Importance

```
In [28]:
```

```
print (pd.DataFrame(best_grid.feature_importances_, columns = ["Imp"], index = X_train.c
olumns).sort_values('Imp',ascending=False))
```

Predicting on Training and Test dataset

```
In [29]:
```

```
ytrain_predict = best_grid.predict(X_train)
ytest_predict = best_grid.predict(X_test)
```

Getting the Predicted Classes and Probs

```
In [30]:
```

```
ytest_predict
ytest_predict_prob=best_grid.predict_proba(X_test)
ytest_predict_prob
pd.DataFrame(ytest_predict_prob).head()
```

Out[30]:

```
0 1
0 0.573171 0.426829
1 0.971223 0.028777
2 0.232975 0.767025
3 0.837500 0.162500
4 0.837500 0.162500
```

Model Evaluation

AUC and ROC for the training data

```
In [31]:
```

```
# predict probabilities
probs = best_grid.predict_proba(X_train)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
cart_train_auc = roc_auc_score(train_labels, probs)
print('AUC: %.3f' % cart_train_auc)
# calculate roc curve
cart_train_fpr, cart_train_tpr, cart_train_thresholds = roc_curve(train_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(cart_train_fpr, cart_train_tpr)
```

AUC: 0.809

Out[31]:

[<matplotlib.lines.Line2D at 0x1b0438bfeb0>]

AUC and ROC for the test data

In [32]:

```
# predict probabilities
probs = best_grid.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
cart_test_auc = roc_auc_score(test_labels, probs)
print('AUC: %.3f' % cart_test_auc)
# calculate roc curve
cart_test_fpr, cart_test_tpr, cart_testthresholds = roc_curve(test_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(cart_test_fpr, cart_test_tpr)
```

AUC: 0.796

Out[32]:

[<matplotlib.lines.Line2D at 0x1b043a2d610>]

U.U 0.0 0.2 0.4 0.6 8.0 1.0

cart_test_acc=best_grid.score(X_test, test_labels)

cart test acc

Confusion Matrix for the training data

```
In [33]:
confusion matrix(train labels, ytrain predict)
Out[33]:
array([[1157, 202],
       [ 270, 373]], dtype=int64)
In [34]:
#Train Data Accuracy
cart train acc=best grid.score(X train, train labels)
cart train acc
Out[34]:
0.7642357642357642
In [35]:
print(classification report(train labels, ytrain predict))
              precision recall f1-score
                                              support
           0
                   0.81
                             0.85
                                       0.83
                                                 1359
                             0.58
                   0.65
                                       0.61
                                                  643
                                       0.76
                                                 2002
   accuracy
                   0.73
                             0.72
   macro avg
                                       0.72
                                                 2002
weighted avg
                   0.76
                             0.76
                                       0.76
                                                 2002
In [36]:
cart metrics=classification report(train labels, ytrain predict,output dict=True)
df=pd.DataFrame(cart metrics).transpose()
cart_train_f1=round(df.loc["1"][2],2)
cart train recall=round(df.loc["1"][1],2)
cart train precision=round(df.loc["1"][0],2)
print ('cart train precision ', cart train precision)
print ('cart train recall ', cart train recall)
print ('cart_train_f1 ',cart_train_f1)
cart_train_precision 0.65
cart_train_recall 0.58
cart train f1 0.61
Confusion Matrix for test data
In [37]:
confusion matrix(test_labels, ytest_predict)
Out[37]:
array([[510, 78],
       [109, 162]], dtype=int64)
In [38]:
#Test Data Accuracy
```

```
Out[38]:
0.7823050058207218
```

In [39]:

```
print(classification_report(test_labels, ytest_predict))
```

	precision	recall	f1-score	support
0 1	0.82 0.68	0.87	0.85 0.63	588 271
accuracy macro avg weighted avg	0.75 0.78	0.73 0.78	0.78 0.74 0.78	859 859 859

In [40]:

```
cart_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(cart_metrics).transpose()
cart_test_precision=round(df.loc["1"][0],2)
cart_test_recall=round(df.loc["1"][1],2)
cart_test_fl=round(df.loc["1"][2],2)
print ('cart_test_precision ',cart_test_precision)
print ('cart_test_recall ',cart_test_recall)
print ('cart_test_fl ',cart_test_fl)

cart_test_precision 0.68
```

Cart Conclusion

cart_test_recall 0.6
cart test f1 0.63

CART CONCLUSION Train Data: AUC: 81% Accuracy: 76% Precision: 65% f1-Score: 61% recall: 58%

Test Data: AUC: 79.6% Accuracy: 78.2% Precision: 68% f1-Score: 63% recall: 60%

Training and Test set results somewhat closer, and with the overall measures high, the model is a good model.

Agency Code is the most important variable for Claimed.

Building a Random Forest Classifier

Grid Search for finding out the optimal values for the hyper parameters

In [41]:

```
param_grid = {
    'max_depth': [10], ## 20,30,40
    'max_features': [6], ## 7,8,9
    'min_samples_leaf': [10], ## 50,100
    'min_samples_split': [50], ## 60,70
    'n_estimators': [300] ## 100,200
}

rfcl = RandomForestClassifier(random_state=1)

grid_search = GridSearchCV(estimator = rfcl, param_grid = param_grid, cv = 5)
```

In [42]:

```
grid_search.fit(X_train, train_labels)
```

```
GridSearchCV(cv=5, estimator=RandomForestClassifier(random_state=1),
            'n estimators': [300]})
In [43]:
grid search.best params
Out[43]:
{ 'max depth': 10,
 'max features': 6,
 'min_samples_leaf': 10,
 'min samples split': 50,
 'n estimators': 300}
In [44]:
best_grid = grid_search.best_estimator_
In [45]:
best grid
Out[45]:
RandomForestClassifier(max_depth=10, max_features=6, min_samples_leaf=10,
                     min samples split=50, n estimators=300, random state=1)
Predicting the Training and Testing data
In [46]:
ytrain predict = best grid.predict(X train)
ytest predict = best grid.predict(X test)
RF Model Performance Evaluation on Training data
In [47]:
confusion matrix(train labels,ytrain predict)
Out[47]:
array([[1228, 131],
      [ 258, 385]], dtype=int64)
In [48]:
rf_train_acc=best_grid.score(X_train,train_labels)
rf train acc
Out[48]:
0.8056943056943057
In [49]:
print(classification report(train labels,ytrain predict))
             precision
                         recall f1-score
                                           support
```

0

1

accuracy

macro avg
weighted avg

0.83

0.75

0.79

0.80

0.90

0.60

0.75

0.81

0.86

0.66

0.81

0.76

0.80

1359

2002

2002

2002

643

```
In [50]:
```

```
rf metrics=classification report(train labels, ytrain predict,output dict=True)
df=pd.DataFrame(rf metrics).transpose()
rf_train_precision=round(df.loc["1"][0],2)
rf_train_recall=round(df.loc["1"][1],2)
rf_train_f1=round(df.loc["1"][2],2)
print ('rf_train_precision ',rf_train_precision)
print ('rf_train_recall ',rf train recall)
print ('rf_train_f1 ',rf_train_f1)
```

```
rf train precision 0.75
rf_train_recall
                0.6
rf train fl 0.66
```

In [51]:

```
rf_train_fpr, rf_train_tpr,_=roc_curve(train_labels,best_grid.predict_proba(X_train)[:,1
plt.plot(rf train fpr,rf train tpr,color='green')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
rf_train_auc=roc_auc_score(train_labels,best_grid.predict_proba(X_train)[:,1])
print('Area under Curve is', rf_train_auc)
```

Area under Curve is 0.8639002468423744

RF Model Performance Evaluation on Test data

```
In [52]:
```

```
confusion matrix(test labels, ytest predict)
Out[52]:
array([[522, 66],
       [118, 153]], dtype=int64)
In [53]:
rf_test_acc=best_grid.score(X_test, test_labels)
rf test acc
Out [53]:
```

0.7857974388824214

```
In [54]:
```

print(classification_report(test_labels,ytest_predict)) precision recall f1-score support 0 0.82 0.89 0.85 588 1 0.70 0.56 0.62 271 0.79 859 accuracy 0.73 859 0.76 0.74 macro avg weighted avg 0.78 0.79 0.78 859

In [55]:

```
rf_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(rf_metrics).transpose()
rf_test_precision=round(df.loc["1"][0],2)
rf_test_recall=round(df.loc["1"][1],2)
rf_test_fl=round(df.loc["1"][2],2)
print ('rf_test_precision ',rf_test_precision)
print ('rf_test_recall ',rf_test_recall)
print ('rf_test_fl ',rf_test_fl)

rf_test_precision 0.7
rf_test_recall 0.56
rf_test_fl 0.62
```

In [56]:

```
rf_test_fpr, rf_test_tpr,_=roc_curve(test_labels,best_grid.predict_proba(X_test)[:,1])
plt.plot(rf_test_fpr,rf_test_tpr,color='green')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
rf_test_auc=roc_auc_score(test_labels,best_grid.predict_proba(X_test)[:,1])
print('Area under Curve is', rf_test_auc)
```

Area under Curve is 0.8136186208800863

Imp

In [57]:

```
# Variable Importance
print (pd.DataFrame(best_grid.feature_importances_, columns = ["Imp"], index = X_train.c
olumns).sort_values('Imp',ascending=False))
```

Agency Code	0.325075
Sales	0.207197
Product Name	0.169962
Duration	0.101869
Commision	0.095711
Age	0.069549
Tvne	0.015744

```
Destination 0.013474
Channel 0.001419
```

In [58]:

Random Forest Conclusion

RF conclusion Train Data: AUC: 86.3% Accuracy: 80.6% Precision: 75% f1-Score: 66% Recall: 60%

Test Data: AUC: 81.3% Accuracy: 78.6% Precision: 70% f1-Score: 62% Recall: 56% Training and Test set results are almost similar, and with the overall measures high, the model is a good model. Agency_Code is again the most important variable for predicting claimed

Building a Neural Network Classifier

```
from sklearn.preprocessing import StandardScaler
In [59]:
#Initialize an object for StandardScaler
sc = StandardScaler()
In [60]:
#Scale the training data
X train = sc.fit transform(X train)
In [61]:
X train
Out[61]:
array([[ 2.88764239, -1.2626112 , -1.19813318, ..., -0.65375471,
        -1.31338076, -0.44775345],
       [-0.21666128, 0.71683095, 0.83463176, ..., -0.37032806,
         0.24339146, -0.44775345],
       [ 2.04101412, -0.27289013, 0.83463176, ..., 0.11574864, 0.24339146, 1.24676906],
       . . . ,
       [-0.21666128, 0.71683095, 0.83463176, ..., -0.68209737,
        -0.53499465, -0.44775345],
       [-0.21666128, 0.71683095, 0.83463176, ..., 0.72086453,
         0.24339146, -0.44775345],
       [-0.21666128, 0.71683095, 0.83463176, ..., 0.72086453,
         0.24339146, 1.24676906]])
In [62]:
# Apply the transformation on the test data
X test = sc.transform(X test)
In [63]:
X test
Out[63]:
array([[-0.68701032, -0.27289013,
                                    0.83463176, ..., 0.50829455,
         0.24339146, -0.44775345],
       [ 2.79357258, 0.71683095,
                                  0.83463176, ..., -0.45535606,
        -0.53499465, -0.44775345],
       [ 0.34775757, -1.2626112, -1.19813318, ..., 0.32406723, ]
         1.80016368, -0.44775345],
       [1.19438584, -1.2626112, -1.19813318, ..., -0.63958338,
        -1.31338076, -0.44775345],
```

```
[1.38252546, 0.71683095, 0.83463176, ..., -0.56872671,
         0.24339146, -0.44775345],
       [-0.21666128, 0.71683095, 0.83463176, ..., -0.56872671,
         0.24339146, -0.44775345]
In [64]:
param grid = {
    'hidden layer sizes': [100], # 50, 200
    'max_iter': [2500], #5000,2500
    'solver': ['adam'], #sqd
    'tol': [0.01],
nncl = MLPClassifier(random state=1)
grid_search = GridSearchCV(estimator = nncl, param_grid = param_grid, cv = 10)
In [65]:
grid search.fit(X train, train labels)
grid search.best params
#{'hidden layer sizes': 100, 'max iter': 2500, 'solver': 'adam', 'tol': 0.01}
Out[65]:
{'hidden layer sizes': 100, 'max iter': 2500, 'solver': 'adam', 'tol': 0.01}
In [66]:
best grid = grid search.best estimator
best grid
Out[66]:
MLPClassifier(hidden layer sizes=100, max iter=2500, random state=1, tol=0.01)
Predicting the Training and Testing data
In [67]:
ytrain predict = best grid.predict(X train)
ytest predict = best grid.predict(X test)
NN Model Performance Evaluation on Training data
In [68]:
confusion matrix(train labels,ytrain predict)
Out[68]:
array([[1159, 200],
       [ 285, 358]], dtype=int64)
In [69]:
nn train acc=best grid.score(X train, train labels)
nn_train_acc
Out[69]:
0.7577422577422578
In [70]:
print(classification report(train labels,ytrain predict))
             precision recall f1-score support
```

```
0.80
                                0.85
                                            0.83
                                                       1359
            1
                     0.64
                                0.56
                                            0.60
                                                         643
                                            0.76
                                                       2002
    accuracy
                     0.72
                                0.70
                                            0.71
   macro avq
                                                       2002
                     0.75
                                0.76
                                            0.75
                                                       2002
weighted avg
```

In [71]:

```
nn_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(nn_metrics).transpose()
nn_train_precision=round(df.loc["1"][0],2)
nn_train_recall=round(df.loc["1"][1],2)
nn_train_fl=round(df.loc["1"][2],2)
print ('nn_train_precision ',nn_train_precision)
print ('nn_train_recall ',nn_train_recall)
print ('nn_train_fl ',nn_train_fl)
```

nn_train_precision 0.64
nn_train_recall 0.56
nn train f1 0.6

In [72]:

```
nn_train_fpr, nn_train_tpr,_=roc_curve(train_labels,best_grid.predict_proba(X_train)[:,1])
plt.plot(nn_train_fpr,nn_train_tpr,color='black')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
nn_train_auc=roc_auc_score(train_labels,best_grid.predict_proba(X_train)[:,1])
print('Area under Curve is', nn_train_auc)
```

Area under Curve is 0.7921265636497425

NN Model Performance Evaluation on Test data

```
In [73]:
```

LII [/-I]

nn_test_acc=best_grid.score(X_test,test_labels)

```
nn_test_acc
```

Out[74]:

0.7683352735739232

In [75]:

```
print(classification_report(test_labels,ytest_predict))
```

	precision	recall	f1-score	support
0	0.81	0.87	0.84	588
1	0.66	0.55	0.60	271
accuracy			0.77	859
macro avg	0.73	0.71	0.72	859
weighted avg	0.76	0.77	0.76	859

In [76]:

```
nn_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(nn_metrics).transpose()
nn_test_precision=round(df.loc["1"][0],2)
nn_test_recall=round(df.loc["1"][1],2)
nn_test_fl=round(df.loc["1"][2],2)
print ('nn_test_precision ',nn_test_precision)
print ('nn_test_recall ',nn_test_recall)
print ('nn_test_fl ',nn_test_fl)
```

```
nn_test_precision 0.66
nn_test_recall 0.55
nn_test_f1 0.6
```

In [77]:

```
nn_test_fpr, nn_test_tpr,_=roc_curve(test_labels,best_grid.predict_proba(X_test)[:,1])
plt.plot(nn_test_fpr,nn_test_tpr,color='black')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
nn_test_auc=roc_auc_score(test_labels,best_grid.predict_proba(X_test)[:,1])
print('Area under Curve is', nn_test_auc)
```

Area under Curve is 0.7977947636619223

In [78]:

```
best_grid.score
```

Out[78]:

```
<pound method ClassifierMixin.score of MLPClassifier(nidden_layer_sizes=100, max_iter=250
0, random_state=1, tol=0.01)>
In [ ]:
```

Neural Network Conclusion

Train Data:

AUC: 79.15% Accuracy: 75.77% Precision: 64% f1-Score: 60% Recall : 56%

Test Data: AUC: 79.8% Accuracy: 76.8% Precision: 66% f1-Score: 60% Recall: 55% Training and Test set results are almost similar, and with the overall measures high, the model is a good model

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

Final Conclusion

Comparison of the performance metrics from the 3 models

```
In [79]:
```

Out[79]:

CART Train CART Test Random Forest Train Random Forest Test Neural Network Train Neural Network Test

Accuracy	0.76	0.78	0.81	0.79	0.76	0.77
AUC	0.81	0.80	0.86	0.81	0.79	0.80
Recall	0.58	0.60	0.60	0.56	0.56	0.55
Precision	0.65	0.68	0.75	0.70	0.64	0.66
F1 Score	0.61	0.63	0.66	0.62	0.60	0.60

ROC Curve for the 3 models on the Training data

```
In [80]:
```

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(cart_train_fpr, cart_train_tpr,color='red',label="CART")
plt.plot(rf_train_fpr,rf_train_tpr,color='green',label="RF")
plt.plot(nn_train_fpr,nn_train_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower right')
```

Out[80]:

<matplotlib.legend.Legend at 0x1b04395ab50>

ROC Curve for the 3 models on the Test data

In [81]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(cart_test_fpr, cart_test_tpr,color='red',label="CART")
plt.plot(rf_test_fpr,rf_test_tpr,color='green',label="RF")
plt.plot(nn_test_fpr,nn_test_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower right')
```

Out[81]:

<matplotlib.legend.Legend at 0x1b04399dd00>

2.5 Inference: Based on the whole Analysis, what are the business insights and recommendations

Out of the 3 models, CART has slightly better performance than the RF and Neural network model based on

code is found to be the most useful feature amongst all other features for predicting the target claimed .
In []:
In []:

recall. Based on precision, we prefer RF over CART and ANN. Overall all the 3 models are reasonaly stable enough to be used for making any future predictions. From Cart and Random Forest Model, the variable Agency