Greedy

Greedy Algorithms

- Algorithm design technique
 - Usually more efficient than divide and conquer
 - But not always applicable
 - Constructs optimal solution incrementally by repeatedly choosing what looks promising right now
- Problem must satisfy the greedy choice property
 - A locally optimal choice is guaranteed to lead to some globally optimal solution

NCoins

- For coin values 1, 5, 10, 25
 - Give highest value coin you can at each step
 - This is a Greedy solution
 - Works for US coins
- When a 12 was added
 - The Greedy choice property no longer holds
 - We developed DAC/DP algorithms to solve
 - Choice was not "local," but we "looked ahead"

END

Activity Selection

Activity Selection

• Input: set $A = \{a_1, ..., a_n\}$ of n activities requesting exclusive access to a common resource

Starts at
$$a_i = [s_i, f_i]$$
 Finishes at

- Output: the largest cardinality set A of nonoverlapping activities
 - Example: schedule use of a room to maximize the number of events that use it

Assume *S* sorted by finish time: $f_1 < f_2 < ... < f_n$

Optimal Substructure

- Let $S_{ij} = \{a_k \in S : f_i \le s_k \le f_k \le s_j\}$, and let A_{ij} denote an optimal solution for S_{ij} .
- Activities in S_{ij} are compatible with:
 - Activities that finish no later than f_i
 - Activities that start no earlier than s_i
- $a_k \in A_{ij}$ generates two subproblems: S_{ik} and S_{kj} .
- Then, $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$ (cut-and-paste argument).
- For convenience add sentinels $a_0 = (-\infty, -\infty)$ and $a_{n+1} = (\infty, \infty)$. Then $A = A_{0,n+1}$.

DAC

- Since optimal solution A_{ij} must contain optimal solutions to subproblems S_{ik} and $S_{kj} \Rightarrow$ can consider DAC (and DP)
 - c[i, j] = size of optimal solution to S_{ij}
 - c[i, j] = c[i, k] + c[k, j] + 1, but what k?

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ 1 + \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j]\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

Can develop memoized DAC or bottom-up DP

Overlapping Subproblems

 Will generate many repeated problems when evaluating

$$c[i,j] = 1 + \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j]\}$$

$$i \qquad j$$

The blue intervals become the left subproblem
 of any of the purple intervals

Activity Selection

Greedy

Hallmark of Greedy Algorithms

- Greedy choice property: a locally optimal choice leads to a globally optimal solution
 - Identify a simple heuristic to make the local choice.
 - Prove that the choices made are part of some optimal solution.
- In Activity Selection, choose an activity a_k to add to $A = A_{0,n+1}$ before solving the ensuing subproblems
- Some greedy choices: shortest activity, activity that ends first, activity that ends last, activity that overlaps the fewest number of other activities, and so on

The Greedy Choice

- Among all activities in subproblem S_{ij} choose the one (a') that ends first
- No activity of S_{ij} ends before a' starts
 - \Rightarrow Choosing a' eliminates subproblem S_{ik} and leaves S_{ki} only
 - <u>i</u> <u>a'</u> <u>j</u> <u>j</u>
- Making the greedy choice a_1 initially reduces the problem $S = S_{0,n+1}$ to problem $S_{1,n+1}$

The Greedy Choice

- Since we only have one subproblem, we can simplify the notation: let $S_k = \{a_i : s_i \ge f_k\}$
- Greedy choice $a_1 \Rightarrow S_1$ is the only subproblem left
- By optimal substructure: If a₁ is in A, then A consists of a₁ plus all activities in an optimal solution to S₁

Need to prove that a₁ is part of some optimal solution

• **Theorem:** If S_k is nonempty and a_m ends earliest in S_k , then a_m is part of *some* optimal solution to S_k .

Proof

- Let A_k be an optimal solution to S_k and a_r have the earliest finish time of all activities in A_k .
- If $a_r = a_m$, we are done. A_k is the desired solution.
- Otherwise, let $B_k = A_k \{a_r\} \cup \{a_m\}$.
- The activities in B_k are disjoint.
- Since $|B_k| = |A_k|$, then B_k is optimal also and includes a_m .

i	0	1	2	3	4	5	6	7	8	9
s		1	2	4	1	5	8	9	11	13
f	0 -	3	5	7	1	9	10	11	14	16

Greedy Activity Selection

```
def activitySelect(activities):
      assert type(activities) == list and
len (activities) >0
      actSorted = sorted(activities, key=finish)
      result = [actSorted[0]]
      last = 0
      for a in range(1,len(activities)):
            if actSorted[a].getStartTime() >= \
      actSorted[last].getFinishTime():
                  result.append(actSorted[a])
                  last = a
      return result
Time?
```

Which Method to Use?

- Dynamic programming
 - Make a choice at each step.
 - Choice depends on solution to subproblems.
 - Solve subproblems first.
 - Solve bottom-up.
- Greedy
 - Make a choice at each step.
 - Make the choice before solving the subproblems (and then solve the remaining subproblems).
 - Solve top-down.

END

Minimal Spanning Tree

Minimum Spanning Tree

- A tree connecting all nodes of an undirected graph with minimal cost
- Many applications
 - Approximate solution of NP-hard problems
 - Basis of AT&T original billing system
 - Construction of LDPC codes
 - Image registration with Renyi entropy
 - Learning for real-time face verification
 - Reducing data storage for sequencing amino acids in proteins
 - Optimal clustering
 - Particle interactions in turbulent fluid flows
 - Autoconfig protocol to avoid cycles in a network

Minimum Spanning Trees

- Input: undirected connected graph G(V,E) with weights w: E → R⁺
- Output: a tree T of minimum weight that spans V

$$w(T) = \sum_{e \in T} w(e)$$

A Spanning Tree

But is this minimum?

A Better Spanning Tree

Minimal Spanning Trees

Properties

Optimal Substructure

- Remove e
- Get subtrees T_1 and T_2 with vertex sets V_1 and V_2

Optimal Substructure

- V_i = vertices in T_i and E_i = { $(u,v) \in E, u,v \in V_i$ }
- T_1 and T_2 are MSTs of $G(V_1,E_1)$ and $G(V_2,E_2)$, the subgraphs of G induced by V_1 and V_2

Hallmark of Greedy Algorithms

- Greedy choice property: A locally optimal choice leads to a globally optimal solution.
 - Identify a simple to implement heuristic to make the local choices.
 - Prove that the choices made are part of some optimal solution.
- Theorem (minimum cut): Let T be an MST of G(V, E) and $A \subset V$. If $e = (u,v) \in E$ is the minimum weight edge connecting A to V A, then $e \in T$.

Prim's MST Algorithm

Prim's Algorithm

- Start with A containing a single arbitrary vertex and grow one vertex at a time. The cut is (A, V A).
- Keep a single growing tree of edges committed so far
- Keep V − A in a priority queue Q.
 - Vertices in A have already been reached by the partial T.
- The priority of each vertex q in Q is the minimum cost required to connect q to a vertex in A.
- Repeatedly remove the minimum vertex u from Q (using ExtractMin) and add it to A.
- Update Q by (possibly) updating the priorities of u's neighbors (using DecreaseKey).

Prim's Algorithm

```
PRIM-MST(V, E, w, s)
      foreach v \in V
              do key[v] \leftarrow \infty
 3
                   P[v] \leftarrow \text{NIL}
    key|s| \leftarrow 0
 5 \quad Q \leftarrow V
      while Q \neq \emptyset
              \mathbf{do}\ u \leftarrow \text{Extract-Min}(Q)
                   foreach v \in Adj[u]
                          do if v \in Q and w(u, v) < key[v]
 9
                                  then key[v] \leftarrow w(u,v)
10
                                          P[v] \leftarrow u
      return P
```


Analysis

Frequency count

- 1–3 *n* times
- 4–5: once
- 6–7: *n* times
- 8–11: 2*m* times
- 12: once

```
PRIM-MST(V, E, w, s)
      foreach v \in V
              do key[v] \leftarrow \infty
                   P[v] \leftarrow \text{NIL}
 4 \quad key[s] \leftarrow 0
 5 \quad Q \leftarrow V
    while Q \neq \emptyset
              \mathbf{do}\ u \leftarrow \text{Extract-Min}(Q)
                   foreach v \in Adj[u]
 8
                          do if v \in Q and w(u, v) < key[v]
 9
                                   then key[v] \leftarrow w(u,v)
10
                                           P[v] \leftarrow u
11
```

$$T(n,m) = T_{\text{build}} + nT_{\text{extract}} + mT_{\text{decrease}}$$

return P

12

Analysis

Actual time depends on implementation of Q.

$$T(n,m) = T_{\text{build}} + nT_{\text{extract}} + mT_{\text{decrease}}$$

Q	Build	Extract	DecreaseKey	Total
Python list	$\Theta(n)$	$\Theta(n)$	Θ(1)	$\Theta(n^2)$
Heap	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta((n+m)\log n)$
Fibonacci heap	$\Theta(n)$	$\Theta(\log n)$	Θ(1)	$\Theta(m + n \log n)$

Known results

- Best deterministic: $O(m \alpha(m,n))$ (Chazelle, 2000)
- Best randomized: O(n + m) expected (Karger et al., 1995)
- Holy grail: O(n + m) worst case, open

END

Acknowledgements

Introduction to Algorithms, 3rd edition, by T.H. Cormen,
 C.E. Leiserson, R.L. Rivest, C. Stein; MIT Press, 2009