

5.

15

20

25

BEST AVAILABLE COPY

Derivatives of 2-arylimino-2,3-dihydrothiazoles, their preparation processes and their therapeutic use

A subject of the present Application is new derivatives of 2-arylimino-2,3-dihydrothiazoles and their preparation processes. These products have a good affinity with certain sub-types of somatostatin receptors and therefore have useful pharmacological properties. The invention also relates to these same products as medicaments, the pharmaceutical compositions containing them and their use for the preparation of a medicament intended to treat pathological states or diseases in which one (or more) somatostatin receptors are involved.

Somatostatin (SST) is a cyclic tetradecapeptide which was isolated for the first time from the hypothalamus as a substance which inhibits the growth hormone (Brazeau P. et al., Science 1973, 179, 77-79). It also operates as a neurotransmitter in the brain (Reisine T. et al., Neuroscience 1995, 67, 777-790; Reisine T. et al., Endocrinology 1995, 16, 427-442). Molecular cloning has allowed it to be shown that the bicactivity of somatostatin depends directly on a family of five receptors linked to the membrane.

The heterogeneity of the biological functions of somatostatin has lead to studies which try to identify the structure-activity relationships of peptide analogues on somatostatin receptors, which has led to the discovery of 5 sub-types of receptors (Yamada et al., *Proc. Natl. Acad. Sci. U.S.A.* 89, 251-255, 1992; Raynor, K. et al, *Mol. Pharmacol.*, 44, 385-392, 1993). The functional roles of these receptors are currently being actively studied. The affinities with different sub-types of somatostatin receptors have been associated with the treatment of the following disorders/diseases. Activation of sub-types 2 and 5 has been associated with suppression of the growth hormone (GH) and more particularly with that of adenomas secreting GH (acromegalia) and those secreting hormone TSH. Activation of sub-type 2 but not sub-type 5 has been associated with the treatment of adenomas secreting prolactin. Other indications associated with the activation of sub-types of somatostatin receptors are the recurrence of stenosis, inhibition of the secretion of insulin and/or of glucagon and in particular diabetes mellitus, hyperlipidemia, insensibility to insulin, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon and nephropathy; inhibition of the secretion of gastric

acid and in particular peptic ulcers, enterocutaneous and pancreaticocutaneous fistulae, irritable colon syndrome, dumping syndrome, aqueous diarrhoea syndrome, diarrhoea associated with AIDS, diarrhoea induced by chemotherapy, acute or chronic pancreatitis and secretory gastrointestinal tumours; the treatment of cancer such as hepatomas; the inhibition of angiogenesis, the treatment of inflammatory disorders such as arthritis; chronic rejection of allografts; angioplasty; the prevention of bleeding of grafted vessels and gastrointestinal bleeding. The agonists of somatostatin can also be used to reduce the weight of a patient.

5

10

15

20

25

Among the pathological disorders associated with somatostatin (Moreau J.P. et al., Life Sciences 1987, 40, 419; Harris A.G. et al., The European Journal of Medicine, 1993, 2, 97-105), there can be mentioned for example: acromegalia, hypophyseal adenomas, Cushing's disease, gonadotrophinomas and prolactinomas, catabolic side-effects of glucocorticoids, insulin dependent diabetes, diabetic retinopathy, diabetic nephropathy, hyperthyroidism, gigantism, endocrinic gastroenteropancreatic tumours including carcinoid syndrome, VIPoma, insulinoma, nesidioblastoma, hyperinsulinemia, glucagonoma, gastrinoma and Zollinger-Ellison's syndrome, GRFoma as well as acute bleeding of oesophageal veins, gastroesophageal reflux, gastroduodenal reflux, pancreatitis, enterocutaneous and pancreatic fistulae but also diarrhoea, refractory diarrhoea of acquired immune deficiency syndrome, chronic secretary diarrhoea, diarrhoea associated with irritable bowel syndrome, disorders linked with gastrin releasing peptide, secondary pathologies with intestinal grafts, portal hypertension as well as haemorrhages of the veins in patients with cirrhosis, gastro-intestinal haemorrhage, haemorrhage of the gastroduodenal ulcer, Crohn's disease, systemic scleroses, dumping syndrome, small intestine syndrome, hypotension, scleroderma and medullar thyroid carcinoma, illnesses linked with cell hyperproliferation such as cancers and more particularly breast cancer, prostate cancer, thyroid cancer as well as pancreatic cancer and colorectal cancer, fibroses and more particularly fibrosis of the kidney, fibrosis of the liver, fibrosis of the lung, fibrosis of the skin, also fibrosis of the central nervous system as well as that of the nose and fibrosis induced by chemotherapy, and other therapeutic fields such as, for example, cephaleas including cephalea associated with hypophyseal tumours, pain, panic attacks, chemotherapy, cicatrization of wounds, renal insufficiency resulting from delayed development, obesity and delayed development linked with obesity, delayed uterine development, dysplasia of the skeleton, Noonan's syndrome, sleep apnea syndrome, Graves' disease, polycystic disease of the ovaries, pancreatic pseudocysts and ascites, leukemia, meningioma, cancerous cachexia, inhibition of H pylori, psoriasis, as well as

The Applicant found that the compounds of general formula (I) described hereafter have an affinity and a selectivity for the somatostatin receptors. As somatostatin and its peptide analogues often have a poor bioavailability by oral route and a low selectivity (Robinson, C., Drugs of the Future, 1994, 19, 992; Reubi, J.C. et al., TIPS, 1995; 16, 110), said compounds, non-peptide agonists or antagonists of somatostatin, can be advantageously used to treat pathological states or illnesses as presented above and in which one (or more) somatostatin receptors are involved. Preferably, said compounds can be used for the treatment of acromegalia, hypophyseal adenomas or endocrine gastroenteropancreatic tumours including carcinoid syndrome.

10 The compounds of the present invention correspond to general formula (I)

5

15

20

(I)

in racemic, enantiomeric form or all combinations of these forms, in which:

R1 represents an amino (C_2-C_7) alkyl, amino alkylarylalkyl, amino alkylcyclo alkylalkyl, (C_1-C_6) alkyl (C_3-C_6) cycloalkyl, (C₃-(C3-C7)cycloalkyl, (C_1-C_{15}) alkyl, C6)cycloalkylalkyl, cyclohexenylalkyl, alkenyl, alkynyl, carbocyclic aryl radical containing at least two rings of which at least one is not aromatic, carbocyclic or heterocyclic aralkyl radical optionally substituted on the aryl group, bis-arylalkyl, tetrahydrofurannylalkyl, dialkylaminoalkyl, alkoxyalkyl, furannylalkyl or alkylthioalkyl, arylhydroxyalkyl, aralkoxyalkyl, acetoamidoalkyl, cyanoalkyl, piperidinoalkyl, N-alkylpyrrolidinoalkyl, morpholinoalkyl, pyrrolidinoalkyl, alkylpiperazinylalkyl or oxypyrrolidinoalkyl radical,

or R1 represents one of the radicals represented below:

$$\overline{H}-N$$

or also R1 represents a -C(R11)(R12)-CO-R10 radical;

R2 represents an optionally substituted carbocyclic or heterocyclic aryl radical,

or R2 represents one of the radicals represented below:

R3 represents an alkyl, adamantyl, optionally substituted carbocyclic or heterocyclic aryl radical, carbocyclic or heterocyclic aralkyl optionally substituted on the aryl group,

or R3 represents one of the radicals represented below:

or also R3 represents a -CO-R5 radical;

15

20

35

R4 represents H, alkyl, carbocyclic or heterocyclic aralkyl optionally situated on the aryl radical;

in which i represents an integer from 1 to 3;

R5 represents the N(R6)(R7) radical;

R6 represents a (C₁-C₁₆)alkyl, cycloalkylalkyl, hydroxyalkyl, aryloxyalkyl radical, carbocyclic or heterocyclic aralkyl radical optionally substituted on the aryl group, aralkoxyalkyl, arylhydroxyalkyl, alkoxyalkyl, alkylthioalkyl, alkenyl, alkynyl, cyclohexenyl, cyclohexenylalkyl, alkylthiohydroxyalkyl, cyanoalkyl, N-acetamidoalkyl radical, bis-arylalkyl radical optionally substituted on the aryl groups, di-arylalkyl radical optionally substituted on the aryl groups, morpholinoalkyl, pyrrolidinoalkyl, piperidinoalkyl, N-alkylpyrrolidinoalkyl, oxopyrrolidinoalkyl, tetrahydrofurannylalkyl, N-benzylpyrrolidinoalkyl, N-alkylpiperazinylalkyl, N-benzylpiperidinylalkyl or N-alkoxycarbonylpiperidinyl radical, or R6 represents a (C₃-C₈)cycloalkyl radical optionally substituted by a radical chosen from the group comprising the hydroxy radical and an alkyl radical.

or R6 represents one of the radicals represented below:

R7 represents H or an alkyl, hydroxyalkyl, mono- or di-aminoalkyl or aralkyl radical;

or the -N(R6)(R7) radical represents the radical of the following general formula:

in which:

5

R8 represents H, alkyl, hydroxyalkyl, optionally substituted carbocyclic or heterocyclic aryl, aralkyl optionally substituted on the aryl group, alkenyl, alkoxyalkyl, cycloalkyl, cycloalkyl, bis-arylalkyl, piperidinyl, pyrrolidinyl, hydroxy, arylalkenyl,

or R8 represents -X-(CH₂)_b-R9;

R9 represents H or an alkyl, alkoxy, aryloxy, optionally substituted carbocyclic or heterocyclic aryl, morpholinyl, pyrrolidinyl, alkylamino or N,N'-(alkyl)(aryl)amino radical;

X represents CO, CO-NH or SO2;

Y represents CH or N;

a represents 1 or 2;

b represents an integer from 0 to 6;

or the N(R6)(R7) radical represents a radical of general formula

in which:

10 Z represents CH, O or S;

c represents an integer from 0 to 4;

or the N(R6)(R7) radical represents one of the radicals represented below:

R10 represents an amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, piperazinyl, homopiperazinyl radical, or R10 represents the radical represented below:

$$\frac{H_2}{N}$$

R11 represents H;

5

10

15

20

R12 represents H or an alkyl, (C₃-C₇)cycloalkyl, optionally substituted carbocyclic or heterocyclic aralkyl, propargyl, allyl, hydroxyalkyl, alkylthioalkyl, arylalkylalkoxyalkyl, arylalkylthioalkoxyalkyl radical;

or the compounds of the invention are salts of the compounds of general formula (I).

When the compounds of general formula (I) contain the R1, R2, R3, R4, R6, R8, R9 or R12 radicals including a substituted aryl radical or an aralkyl substituted on the aryl group, said aryl or aralkyl radicals are preferably such that:

- For R1, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule) by radicals chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryl, aralkoxy or SO₂NH₂ radical. Two substituents can, if appropriate, be linked together and form a ring, for example by representing together a methylenedioxy or propylene radical.
 - For R2, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The aryl radical can be

substituted by radicals chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, alkylthio, haloalkyl, alkenyl, haloalkoxy, nitro, cyano, azido, SO₂N, mono- or di-alkylamino, aminoalkyl, aralkoxy, or aryl radical. Two substituents can, if appropriate, be linked together and form a ring, for example by representing together a methylenedioxy, ethylenedioxy or propylene radical.

5

10 ·

15

20

30

- For R3, when the aryl group or groups (originating from an aryl or aralkyl radical) are substituted, they can be, according to the case, from 1 to 5 times (other than the bond which links them with the remainder of the molecule). The carbocyclic aryl or aralkyl radicals can be substituted from 1 to 5 times on the aryl ring by radicals chosen independently from the group comprising a halogen atom and an alkyl, hydroxy, alkoxy, haloalkyl, haloalkoxy, nitro, cyano, azido, mono- or di-alkylamino, pyrrolidinyl, morpholinyl, aralkoxy or aryl radical. Two substituents can, if appropriate, be linked together and form a ring, for example by representing together an alkylenedioxy radical containing 1 to 3 carbon atoms. The heterocyclic aryl or aralkyl radicals of R3 can be substituted 1 to 2 times on the ring by radicals chosen independently from the group comprising a halogen atom and an alkyl radical.
- For R4, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The aryl radical can be substituted by the radicals chosen independently from the group comprising a halogen atom and an alkyl or alkoxy radical.
- For R6, when the aryl group or groups are substituted, they can be from 1 to 5 times (other than the bond which links them with the remainder of the molecule). The optional substituents on the aryl groups are chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryl, aryloxy or SO₂NH₂ radical.
- For R8, when the aryl group or groups are substituted, they can be from 1 to 5 times (other than the bond which links them with the remainder of the molecule). The optional substituents on the aryl groups are chosen independently from the group comprising a halogen atom and an alkyl, haloalkyl, alkoxy, hydroxy, cyano, nitro or alkylthio radical.
- For R9, when the carbocyclic or heterocyclic aryl radical is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The optional substituents on the aryl group are chosen independently from the group comprising a halogen atom and an alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, carbocyclic aryl, hydroxy, cyano or nitro radical.

- For R12, when the carbocyclic or heterocyclic aryl radical is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The optional substituents on the aryl group are chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, carbocyclic aryl, aralkoxy, hydroxy, cyano or nitro radical.

5

10

15

20

30

By alkyl, unless specified otherwise, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms. By cycloalkyl, unless specified otherwise, is meant a monocyclic carbon system containing 3 to 7 carbon atoms. By alkenyl, unless specified otherwise, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms and having at least one unsaturation (double bond). By alkynyl, unless specified otherwise, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms and having at least one double unsaturation (triple bond). By carbocyclic or heterocyclic aryl, is meant a carbocyclic or heterocyclic system containing at least one aromatic ring, a system being referred to as heterocyclic when at least one of the rings which comprise it contains a heteroatom (O, N or S). By haloalkyl, is meant an alkyl radical of which at least one of the hydrogen atoms (and optionally all) is replaced by a halogen atom.

By alkylthio, alkoxy, haloalkyl, haloalkoxy, aminoalkyl, alkenyl, alkynyl and aralkyl radicals, is meant respectively the alkylthio, alkoxy, haloalkyl, haloalkoxy, aminoalkyl, alkenyl, alkynyl and aralkyl radicals the alkyl radical of which has the meaning indicated previously.

By linear or branched alkyl having 1 to 6 carbon atoms, is meant in particular the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, pentyl, neopentyl, isopentyl, hexyl, isohexyl radicals. By cycloalkyl, is meant in particular the cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexyl and cycloheptanyl radicals. By carbocyclic or heterocyclic aryl, is meant in particular the phenyl, naphthyl, pyridinyl, furannyl, thiophenyl, indanyl, indolyl, imidazolyl, benzofurannyl, benzothiophenyl, phthalimidyl radicals. By carbocyclic or heterocyclic aralkyl, is meant in particular the benzyl, phenylethyl, phenylpropyl, phenylbutyl, indolylalkyl, phthalimidoalkyl, naphthylalkyl, furannylalkyl, thiophenylalkyl, benzothiophenylalkyl, pyridinylalkyl and imidazolylalkyl radicals.

When an arrow emanates from a chemical structure, said arrow indicates the point of attachment. For exemple:

represents the benzyl radical.

Preferably, the compounds of general formula (I) are such that:

R1 represents -C(R11)(R12), CO-R10 or one of the following radicals:

$$\frac{\text{H2}N}{\text{p}} = 0.15$$

$$q = 0.4$$

[Me, tBu]

[H, Br, Cl, F, OMe, Me]

10

20

25

OMe

OMe

ÓМе

30

.35

- 25

[Me, Et]

R2 represents one of the following radicals:

[H, Cl, Br, F, I, OMe, SMe, OEt, CF₃, OCF₃, NO₂, CN, Me, Et, iPr, Ph]

30_

20

25

[CI, Br, F, Me, OMe, NO_2 , iPr, CF_3]

ОМе 5 MeO 10 MeO [0, s] [H, NO₂] 15 [Et, Me] [H, CI] 20 [H, F] [H, F] [H, CI] [Me, OMe] 25 [Me, Cl, OMe] [CI, Me, OMe] 30

R3 represents CO-R5 or one of the following radicals:

[Br, Cl, F, OMe, Ph, Me, NO₂, N₃, OCF₃, CN, CF₃, NEt₂, nC_4H_9 , nC_5H_{11} , OCH₂Ph]

OMe [H, Cl] S [H, Et]

$$\bigcap_{O} \bigcap_{N} \bigcap_{CF_3} \bigcap_{CI} \bigcap_{CI}$$

10

15

20

25

30⁺

R4 represents H, alkyl, carbocyclic or heterocyclic aralkyl optionally substituted on the aryl radical;

in which i represents an integer from 1 to 3;

represents one of the following radicals:

R5

 $\bigcup_{N}\bigvee_{\frac{H}{2}}$

[OMe, Me, CI]

 $\frac{H}{N} = \frac{1}{N} = \frac{1}$

[OMe, Br, Me, SO₂NH₂, OEt, Et, OPh, F, Ph, Br, Cl]

10

15

20

15
$$\frac{H}{N}$$
 $\frac{H}{N}$ \frac

$$r = 0-6$$

$$I = 0-6$$

$$N-\overline{H}$$

.

$$N-1$$
 HO $N-1$ $N-1$

[Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph] N [Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph]

$$N-N-$$

$$\frac{H_2}{n} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{H_2}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{H_2}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longrightarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longleftarrow} \stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow$$

30 _

$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \\ & & \\ \\ \end{array}$$

R10 represents one of the following radicals:

10
$$\underline{H_2}$$
-N $\underline{H_2}$ NH2 $\underline{H_2}$ -N $\underline{H_2}$ N- \underline{H}

R11 represents H;

5

25

30

35

R12 represents one of the following radicals:

it being understood that for R4, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule) by radicals chosen independently from the group comprising a halogen atom and an alkyl or alkoxy radical.

The compounds of the invention are preferably such that R4 represents H.

More preferentially, the compounds according to the invention correspond to general formula (II)

35

30

5

10

15

20

25.

in which:

5

10

15

20

_ 25

30

35

• either R1 represents one of the radicals below

$$NH_2$$

R2 represents one of the radicals below

R3 represents one of the radicals below

and R4 represents H;

or also R1 represents one of the radicals below

$$N_{H2}$$

R2 represents one of the radicals below

R3 represents COR5,

R4 represents H,

and R5 represents one of the radicals below

or finally R1 represents the -C(R11)(R12)-CO-R10 radical in which

R10 represents the radical

R11 represents H

and R12 represents the radical

$$\underline{\underline{H}}$$

R2 represents the radical

R3 represents the radical

10

15

20

25

and R4 represents H.

The invention also relates to a compound characterized in that it corresponds:

to formula

5

$$R2^{N}$$
 N
 N
 H
 $R5$
 $R5$

10 .

in which:

radical,

15

20

- R2 represents the

radical and R5 represents the

- R2 represents the

radical and R5 represents the

radical,

- R2 represents the

radical and R5 represents the

radical,

30

25

- R2 represents the radical,

radical and R5 represents the

35

-R2 represents the

- R2 represents the radical, 5 - R2 represents the radical, 10

radical and R5 represents the

radical and R5 represents the

- R2 represents the radical and R5 represents the 15 radical,

- R2 represents the 20 radical,

radical and R5 represents the

radical and R5 represents the

- R2 represents the radical,

30 - R2 represents the radical,

radical and R5 represents the

			• .
			_
	and the second s		F
		;	F NI
·			
		•	.)
•	- R2 represents the rad	ical and R5 represents the	F F
		lear and ies jepresents the	
•	radical,		
5	A_{ij}		
			<u></u>
- .·			N-1
•_		•	1
	- R2 represents the radi	ical and R5 represents the	
10		our and res represents the	
	radical,		
•	\\\		人 "
15			N -H
			<u>†</u>
•	- R2 represents the radical	and R5 represents the	radical,
		•	,
	•		
20	•		
			L _H N-H
	D2 represents the		r ·
		cal and R5 represents the	
	radical,		
25			·
÷			γ γ
		•	
		•	
		*	
	· · ·		
_30			N-E
		~,	
	- R2 represents the radic	al and R5 represents the	•
		to represents the	•
	radical,	(x,y) = (x,y) + (y,y) + (y,y	
	•		

- R2 represents the radical and R5 represents the radical, 5 - R2 represents the radical and R5 represents the 10 radical, - R2 represents the radical and R5 represents the radical, 15 - R2 represents the radical and R5 represents the 20 radical, - R2 represents the radical and R5 represents the radical, - R2 represents the radical and R5 represents the radical, 30

radical and R5 represents the

radical,

35

- R2 represents the

radical and R5 represents the - R2 represents the radical, 5 - R2 represents the ràdical and R5 represents the radical, 10 - R2 represents the radical and R5 represents the radical, 15 radical and R5 represents the - R2 represents the radical, 20 - R2 represents the radical and R5 represents the 25 radical, radical and R5 represents the - R2 represents the 30 radical, - R2 represents the radical and R5 represents the

radical,

-10

15

20

- R2 represents the radical,

- R2 represents the

radical,

radical,

radical and R5 represents the

ão

radical and R5 represents the

N-H

.10

radical and R5 represents the

15

20

radical and R5 represents the

- R2 represents the radical;

- R2 represents the

- R2 represents the

radical, or finally

radical,

• to formula

(ii)

25

$$H_2N$$
 $N - H$
 $R2$ represents

- R10 represents , R2 represents

10

15

25

- R10 represents

-R10 represents 20

and R3 represents

and R3 represents

and R3 represents

- R10 represents

		H ₂ N	<u> </u>		•	
	- R10 represents		, R2 repr	esents	and R3	represents
5			4.			erin erin erin erin erin erin erin erin
- -		NH ₂	- - -		•	
10	- R10 represents		, R2 repr	resents	and R3	represents
	,	ŃH⁵				
15		1	H I N			
	- R10 represents		, R2 repr	esents	and R3	represents
20			·	. •		
		NH ₂	<u>H</u> <i>T</i> N.		•	
25	-R10 represents		, R2 repr	esents	and R3	represents
- 30	FFO	,	î,			
٠,٠	•	1				

R2 represents

R10 represents

H-N- R10 represents R2 represents and R3 represents 5 H- N 10 R2 represents -R10 represents and R3 represents 15 Hand R3 represents , R2 represents - R10 represents 20 and R3 represents - R10 represents , R2 represents H- 1 25 R2 represents -R10 represents and R3 represents For finally 30 H-1 R2 represents -R10 represents represents R3 and 35

to formula

(iii)

in which:

10

5

- R10 represents

, R2 represents

and R3 represents

15

- R10 represents 20

and R3 represents

- R10 represents

, R2 represents

and R3 represents

_30

25

$$H_2N$$
 $N-\underline{H}$

- R10 represents

(v)

- R10 represents

И-Н

, R2 represents

, or finally

$$H_2N$$
 $\frac{H}{1}$

- R10 represents

and R3 represents

$$O_zN$$

H₂N
$$\underline{\underline{H}}$$

- R10 represents

and R3 represents

15

10

5

H₂N
$$\frac{H}{\lambda}$$

- R10 represents

, R2 represents and R3 represents

$$H_2N$$
 $\frac{H}{4}$

- R10 represents

, R2 represents

and R3 represents

30

25

H₂N
$$\frac{H}{1}$$

- R10 represents

, R2 represents

$$H_2N$$
 $\frac{H}{I}$

, R2 represents

and R3 represents

- R10 represents

10

15

20

5

- R10 represents

, R2 represents

and R3 represents

to formula

(viii)

25

in which R10 represents

, R2 represents

and R3

to formula

(x)

$$H_2N$$
 $N-\underline{H}$

$$H_2N$$
 $N - \underline{H}$

$$H_2N$$
 $N-H$

• to formula

and R3

and R3 represents

in which:

5

20 represents

25

-R10 represents , R2 represents and R3 represents

35 CF₃

			•	- 69 -	· .		٠.	
5	-R10 represents	N NH	R2	represents		and	R3	represents
10 15	-R10 represents	· NOTE .	R2	represents		and	 R3	represents
20	-R10 represents	· NONH,	R2	represents		and	R3	represents
25 30	-R10 represents CF ₃	· NET,	R2	represents		and	R3	represents

in formula

(xii)

10

5.

in which:

$$H^{2}N$$
 $N - \overline{H}$

, R2 represents

and R3 represents

15

20

$$H_2N$$
 $N - \underline{H}$

- R10 represents

- R10 represents

, R2 represents

and R3 represents

- R10 represents 30

, R2 represents

	- R10 represents	N NH, R2	represents		and	R3	represents
5					· .		
		N				· .	
10	- R10 represents	, R2	represents	~	and	R3	represents
. ,	CF ₃	·					
15		, _ _N	·•				
•	-R10 represents	NH, R2	represents		and	R3	represents
20	NC ,						
25	- R10 represents	N NH, R2	represents		and	R3	represents
				<u></u>	.		
30		•	· V				
	-R10 represents	N NH R2	represents		and	R3	represents
35							
			, ·				

- R10 represents R2 represents and R3 represents 10 - R10 represents R2 represents and R3 represents 15 , or finally 20. -R10 represents and R3 represents R2 represents 25 to formula 30

35

- R10 represents , R2 represents and R3 represents 10 - R10 represents R2 represents and R3 represents - R10 represents R2 represents and R3 represents 25 -R10 represents R2 represents and R3

and R3 represents represents - R10 represents 5 . 10 represents and R3 represents - R10 represents 15 20 and R3 represents - R10 represents R2 represents 25 R2 represents and R3 - R10 represents represents 30 , or finally

35

-R10 represents R2 represents and R3 represents -5 10 to formula 15 (xiv) 20 in which: - R10 represents , R2 represents and R3 represents 25 30 -H- 1 - R10 represents , R2 represents and R3 represents 35

		H ₂ N	N-H			
	- R10 represents		, R2 represe	ents	and R3	represents
5				ŕ	6.5	
10		,			. •	
	-R10 represent	s NH,	R2 represents		and R3	represents
15			•			
20	- R10 represents	5 NH,	R2 represents		and R3	represents
25	ĊF ₃	, N				
	- R10 represents	s NH,	R2 represents		and R3	represents
30	NC .		i,			

-R10 represents R2 represents and R3 represents io -R10 represents R2 represents and R3 represents 15 20 -R10 represents R2 represents and R3 represents 25 -R10 represents R2 represents and R3 represents 30 , or finally

- R10 represents and R3 represents R2 represents 5 10 or finally to formula 15 (xv) in which: 20 - R1 represents , R2 represents and R5 represents 25 - R1 represents , R2 represents and R5 represents 30

H₂N² - R1 represents , R2 represents and R5 represents 5 10 -R1 represents and R5 represents , R2 represents 15 - R1 represents , R2 represents and R5 represents 20 25 , R2 represents - R1 represents and R5 represents 30

- R1 represents , R2 represents and R5 represents-5 10 H₂N and R5 represents - R1 represents , R2 represents 15 20 - R1 represents , R2 represents and R5 represents , or finally 25 H₂N² - R1 represents , R2 represents and R5 represents 30 35

or a salt of one of these compounds.

Even more preferentially, the invention relates to a compound characterized in that it corresponds to the formula

in which:

10

5

$$H_2N$$
 , R2 represents

and R5 represents

15

- R1 represents

, R2 represents

and R5 represents

25

20

- R1 represents

, R2 represents

and R5 represents

30

-R1 represents , R2 represents and R5 represents 5 .. 10 - R1 represents , R2 represents and R5 represents 15 , R2 represents - R1 represents and R5 represents 20 25 - R1 represents and R5 represents , R2 represents 30 .

or salt of one of these compounds.

In other words, the compounds described in Examples 1642 to 1654, 1656 to 1680, 2468 to 2502, 2525 to 2550, 2556 to 2582, 2605 to 2611, 2614, 2623 to 2630, 2632 to 2646, 2670 to 2678, 2680 to 2694, 2702 to 2710, 2712 to 2726 and 2827 to 2836 or a salt of one of these compounds will be preferred. The compounds of Examples 2827 to 2836 or their salts will be even more particularly preferred.

Moreover, the invention relates to preparation processes on a solid support for the compounds of general formula (I) described previously (also applicable to the corresponding compounds of general formula (II)).

According to the invention, the compounds of general formula (I)a

in which:

R1 represents a -CH₂-A1-NH₂ radical, in which A1 represents a -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylene or cycloalkylalkylene radical, n and p represent integers from 1 to 6;

R2 and R4 represent the same radicals as in general formula (I);

and R3 represents the same radicals as in general formula (I), with the exception of the - CO-R5 radicals;

can be prepared for example according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a p-nitrophenylcarbonate Wang resin with a large excess of R1-NH₂ symmetrical diamine;
- 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after stage 1) with an aromatic isothiocyanate of general formula R2-N=C=S in which the R2 radical has the same meaning as in general formula (I)a;
 - 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the compound of general formula (III)

in which the R3 and R4 radicals have the same meaning as in general formula (I)a;

- 4) cleavage of the resin under acid conditions;
- 5) treatment under basic conditions of the product obtained after Stage 4).

The preparation of the p-nitrophenylcarbonate Wang resin is described further on in the part entitled "PREPARATION OF THE COMPOUNDS OF THE INVENTION".

Preferably, for the above process, in order to have the large excess in Stage 1), of the order of 10 to 20 equivalents of diamine R1-NH₂ will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of the order of 2 to 5 equivalents of the compound of general formula (III). In Stage 4), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 5), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to a variant of the invention, the compounds of general formula (I)b

in which:

10

15

20

R1 represents the same radicals as in general formula (I), with the exception of the - CH_2 -A1-NH₂ type radicals, in which A1 represents a - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylene or cycloalkylalkylene radical, n and p representing integers from 1 to 6, and also with the exception of the -C(R11)(R12)-CO-R10 radicals;

R2 represents an aminoalkylphenyl radical;

R3 represents the same radicals as in general formula (I), with the exception of the -CO-R5 radicals;

can be prepared for example according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with an excess of aminoalkylaniline of general formula R2-NH₂ in which the R2 radical has the same meaning as in general formula (I)b;
- 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after Stage 1) with an isothiocyanate of general formula R1-N=C=S in which the R1 radical has the same meaning as in general formula (I)b;
- 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the compound of general formula (III)

in which the R3 and R4 radicals have the same meaning as in general formula (I)b;

- 4) cleavage of the resin under acid conditions;
- 5) treatment under basic conditions of the product obtained after Stage 4).
- Preferably, for the above process, in order to have the excess in Stage 1), of the order of 5 to 10 equivalents of aminoalkylaniline will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of the order of 2 to 5 equivalents of the compound of general formula (III). In Stage 4), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 5), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.
- 25 According to another variant of the invention, the compounds of general formula (I)c

in which:

15

R1 represents a -CH₂-A1-NH₂ radical, in which A1 represents a -(CH₂)_n-, -(CH₂)_n-O- (CH₂)_p-, aralkylene or cycloalkylalkylene radical, n and p representing integers from 1 to 6;

R2 represents the same radicals as in general formula (I);

R3 represents a -CO-R5 radical;

and R4 and R5 represent the same radicals as in general formula (I);

can be prepared according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with a large excess of symmetrical diamine of general formula R1-NH₂ in which the R1 radical has the same meaning as in general formula (I)c;
 - 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after Stage 1) with an aromatic isothiocyanate of general formula R2-N=C=S in which the R2 radical has the same meaning as in general formula (I)c;
 - 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the acid of general formula (IV)

in which the R4 radical has the same meaning as in general formula (I)c;

4) peptide coupling;

10

15

20

- 5) cleavage of the resin under acid conditions;
- 6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the large excess in Stage 1) of the order of 10 to 20 equivalents of symmetrical diamine will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of the order of 2 to 5 equivalents of the acid of general formula (TV). The peptide coupling of Stage 4) is carried out for example in DMF with coupling agents such as for example dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), DIC/N-hydroxybenzotriazole (HOBt) mixture, benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1.1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1.1,3,3-tetramethyluronium tetrafluoroborate (TBTU) aminated compounds. Preferably, the coupling agents are used in proportions of 4 to 5 equivalents, as with the aminated compounds, and the reaction will take place at a temperature of the order of ambient temperature for a duration of the order of 1 to 24 In Stage 5), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to yet another variant, the compounds of general formula (I)d

in which:

R1 represents the same radicals as in general formula (I), with the exception of the - CH_2 -A1-NH₂ type radicals, in which A1 represents a -(CH_2)_n-, -(CH_2)_n-O-(CH_2)_p-,

aralkylene or cycloalkylalkylene radical, n and p represent integers from 1 to 6, and also with the exception of the -C(R11)(R12)-CO-R10 radicals;

R2 represents an aminoalkylphenyl radical;

R3 represents a -CO-R5 radical;

and R4 and R5 represent the same radicals as in general formula (I);

can be prepared according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with an excess of aminoalkylaniline of general formula R2-NH₂ in which the R2 radical has the same meaning as in general formula (I)d;
- 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after Stage 1) with an isothiocyanate of general formula R1-N=C=S in which the R1 radical has the same meaning as in general formula (I)d;
- 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the acid of general formula (TV)

in which the R4 radical has the same meaning as in general formula (I)d;

4) peptide coupling;

10

- 5) cleavage of the resin under acid conditions;
- 20 6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the excess in Stage 1), of the order of 5 to 10 equivalents of aminoalkylaniline will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of

the order of 2 to 5 equivalents of the acid of general formula (IV). The peptide coupling of Stage 4) is carried out for example in DMF with coupling agents such as for example dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/Nhydroxybenzotriazole (HOBt) benzotriazolyloxytris(dimethylamino) mixture, 2-(1H-benzotriazol-1-yl)-1,1,3,3phosphonium hexafluorophosphate (PyBOP), tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium tetrafluoroborate (TBTU) and aminated compounds. Preferably, the coupling agents are used in proportions of 4 to 5 equivalents, as with the aminated compounds, and the reaction will take place at a temperature of the order of ambient temperature for a duration of the order of 1 to 24 hours. In Stage 5), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to another variant, the compounds of general formula (I)e

in which:

5

10

15

20

R1 represents the same radicals as in general formula (I), with the exception of the -CH₂-A1-NH₂ type radicals, in which A1 represents a -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylene or cycloalkylalkylene radical, n and p representing integers from 1 to 6, and also with the exception of the -C(R11)(R12) CO-R10 radicals;

R2 represents the same radicals as in general formula (I);

R3 represents a -CO-R5 radical;

R4 represents H;

25 R5 represents an - NH-CH₂-A1-NH₂ radical, in which A1 represents a linear or branched alkylene radical containing 1 to 6 carbon atoms, $-(CH_2)_n$ -O- $-(CH_2)_n$

aralkylene or cycloalkylalkylene, n and p representing integers from 1 to 6, or also R5 represents the N(R6)(R7) radical corresponding to the following general formula:

in which:

R8 represents H;

5 Y represents N;

a represents 1 or 2;

can be prepared by a process characterized in that it comprises the following successive stages:

- treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a
 Wang resin p-nitrophenylcarbonate with a large excess of symmetrical diamine of general formula R5-H;
 - 2) peptide coupling with the acid of general formula (IV) on the resin obtained in Stage 1)

in which the R4 radical has the same meaning as in general formula (I)e;

- 3) reaction of the primary amine of general formula R1-NH, with the isothiocyanate of general formula R2-NCS in a solvent such as dimethylformamide or dioxane, R1 and R2 having the same meanings as in general formula (I)e;
 - 4) addition of the thiourea obtained in Stage 3) to the resin obtained in Stage 2) and heating the mixture;
- 20 5) cleavage of the resin under acid conditions:

6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the large excess in Stage 1), of the order of 10 to 20 equivalents of diamine R5-H will be used. Stage 1) is preferably carried out at ambient temperature. The peptide coupling of Stage 2) is carried out in agent DMF with coupling such DIC/Nhydroxybenzotriazole (HOBt) mixture. Preferably, the reaction of Stage 3) is carried out in a solvent such as dimethylformamide or dioxane. During the addition of Stage 4), 2 to 5 equivalents of thiourea will preferably be used per equivalent of resin; preferably also, heating will be carried out at a temperature greater than ambient temperature, for example at a temperature from 40 to 100°C (in particular at a temperature of approximately 80°C) and for a duration of 2 to 24 hours. In Stage 5), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to yet another variant, the compounds of general formula (I)f

in which:

10

15

R1 represents a -C(R11)(R12)-CO-R10 radical;

20 R2, R3 and R4 represent the same radicals as in general formula (I);

R10 represents an amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, piperazinyl, homopiperazinyl radical,

or R10 represents the radical represented below:

$$\frac{H_2}{N}$$
 N O N

R11 represents H;

15

20

25

30

R12 represents H or an alkyl, (C₃-C₇)cycloalkyl, optionally substituted carbocyclic or heterocyclic aralkyl, propargyl, allyl, hydroxyalkyl, alkylthioalkyl, arylalkylalkoxyalkyl, arylalkylthioalkoxyalkyl radical;

- can be prepared by a process characterized in that it comprises the following successive stages:
 - 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with a large excess of symmetrical diamine of general formula R10-H in which R10 has the same meaning as in general formula (I)f;
- 2) peptide coupling of the resin obtained in Stage 1) with an amino acid of general formula HOOC-C(R11)(R12)-NH-Fmoc in which R11 and R12 have the same meaning as in general formula (I)f;
 - 3) cleavage of the Fmoc group from the resin obtained in Stage 2);
 - 4) reaction of the resin obtained in Stage 3) with an isothiocyanate of general formula R2-NCS in which R2 has the same meaning as in general formula (I)f;
 - 5) cleavage of the resin under acid conditions;
 - 6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the large excess in Stage 1), of the order of 10 to 20 equivalents of diamine R10-H will be used. Stage 1) is preferably carried out at ambient temperature. The peptide coupling of Stage 2) is carried out for example in DMF with coupling agents such as for example dicyclohexylcarbodiimide diisopropylcarbodiimide (DIC), a DIC/N-hydroxybenzotriazole (HOBt) (DCC),mixture, benzotriazolyloxytris(dimethylamino) phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU). Preferably, the reaction of Stage 2) is carried out at ambient temperature and for a duration of 1 to 24 hours. The deprotection of Stage 3) can be carried out, for example, by a mixture of DMF containing 20% piperidine. Stage 4) will preferably be carried out in a solvent such as dimethylformamide or dichloromethane, the isothiccyanate preferably being added in a proportion of 5 to 10 equivalents per equivalent of the resin obtained in Stage 3). In Stage 5), the acid conditions can for example be created by using a dichloromerhane / Influorometic acid mixture at 50 %

said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution of a basic alumina cartridge.

A subject of the invention is also, as medicaments, the compounds of general formulae (I) and (II) described previously or their pharmaceutically acceptable salts. It also relates to pharmaceutical compositions containing said compounds or their pharmaceutically acceptable salts, and their use for the preparation of a medicament intended to treat pathological states or diseases in which one (or more) of the somatostatin receptors are involved.

In particular, the compounds of general formulae (I) and (II) described previously or their pharmaceutically acceptable salts can be used for the preparation of a medicament intended to treat pathological states or diseases chosen from the group comprising the following pathological states or diseases: acromegalia, hypophyseal adenomas, Cushing's disease, gonadotrophinomas and prolactinomas, catabolic side-effects of glucocorticoids, insulin dependent diabetes, diabetic retinopathy, diabetic nephropathy, syndrome X, dawn phenomenon, angiopathy, angioplasty, hyperthyroidism, gigantism, endocrinic gastroenteropancreatic tumours including carcinoid syndrome, VIPorna, insulinoma, nesidioblastoma, hyperinsulinemia, glucagonoma, gastrinoma Zollinger-Ellison's syndrome, GRFoma as well as acute bleeding of the esophageal gastroesophageal reflux, gastroduodenal reflux, pancreatitis, enterocutaneous and pancreatic fistulae but also diarrhoea, refractory diarrhoea's of acquired immunodeficiency syndrome, chronic secretary diamhoea, diamhoea associated with irritable bowel syndrome, diarrhoea's induced by chemotherapy, disorders linked with gastrin releasing peptide, secondary pathologies with intestinal grafts, portal hypertension as well as haemorrhages of the veins in patients with cirrhosis, gastrointestinal haemorrhage, haemorrhage of the gastroduodenal ulcer, bleeding of grafted vessels, Crohn's disease, systemic scleroses, dumping syndrome, small intestine syndrome, hypotension, scleroderma and medullar thyroid carcinoma, illnesses linked with cell hyperproliferation such as cancers and more particularly breast cancer, prostate cancer, thyroid cancer as well as pancreatic cancer and colorectal cancer, fibroses and more particularly fibrosis of the kidney, fibrosis of the liver, fibrosis of the lung, fibrosis of the skin, also fibrosis of the central nervous system as well as that of the nose and fibrosis induced by chemotherapy, and in other therapeutic fields such as, for example, cephaleas including cephalea associated with hypophyseal tumours, pain, inflammatory disorders such as arthritis, panic attacks, chemotherapy, cicatrization of wounds, renal insufficiency resulting from delayed development, hyperlipidemia, obesity and delayed development linked with obesity, delayed uterine development,

20

25

30

dysplasia of the skeleton, Noonan's syndrome, sleep apnea syndrome, Graves' disease, polycystic disease of the ovaries, pancreatic pseudocysts and ascites, leukemia, meningioma, cancerous cachexia, inhibition of H pylon, psonasis, chronic rejection of allografts as well as Alzheimer's disease and finally osteoporisis.

Preferably, the compounds of general formulae (I) and (II) described previously or their pharmaceutically acceptable salts can be used for the preparation of a medicament intended to treat the pathological states or diseases chosen from the group comprising the following pathological states or diseases: acromegalia, hypophyseal adenomas or endocrinic gastroenteropancreatic tumors including carcinoid syndrome, and gastrointestinal bleeding.

By pharmaceutically acceptable salt is meant in particular addition salts of inorganic acids such as hydrochloride, sulphate, phosphate, diphosphate, hydrobromide and nitrate, or of organic acids, such as acetate, maleate, fumarate, tartrate, succinate, citrate, lactate, methanesulphonate, p-toluenesulphonate, pamoate, oxalate and stearate. The salts formed from bases such as sodium or potassium hydroxide also fall within the scope of the present invention, when they can be used. For other examples of pharmaceutically acceptable salts, reference can be made to "Pharmaceutical salts", J. Pharm. Sci. 66:1 (1977).

15

20

30

The pharmaceutical composition can be in the form of a solid, for example powders, granules, tablets, capsules, liposomes or suppositories. Appropriate solid supports can be for example calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine and wax. The suspensions contain in particular suspensions of sustained release microparticles loaded with active ingredient (in particular microparticles of polylactide-co-glycolide or PLGA - cf. for example the Patents US 3,773,919, EP 52 510 or EP 58 481 or the Patent Application PCT WO 98/47489), which allow the administration of a determined daily dose over a period of several days to several weeks.

The pharmaceutical compositions containing a compound of the invention can also be presented in the form of a liquid, for example, solutions, emulsions, suspensions or syrups. Appropriate liquid supports can be, for example, water, organic solvents such as glycerol or glycols, as well as their mixtures, in varying proportions, in water.

The administration of a medicament according to the invention can be carried out by topical, oral, parenteral route, by intramuscular injection, etc.

The administration dose envisaged for a medicament according to the invention is comprised between 0.1 mg and 10 g according to the type of active compound used.

These compounds can be prepared according to the methods described below.

PREPARATION OF THE COMPOUNDS OF THE INVENTION

I) Preparation of α-bromoketones

FIRST METHOD

This method is inspired by the protocols described in the following publications: Macholan, L.; Skursky, L. Chem. Listy 1955, 49, 1385-1388; Bestman, H.J.; Seng, F. Chem. Ber. 1963, 96, 465-469; Jones, R.G.; Kornfeld, E.C.; McLaughlin, K.C. J. Am. Chem. Soc. 1950, 72, 4526-4529; Nimgirawath, S.; Ritchie, E.; Taylor, W.C. Aust. J. Chem. 1973, 26, 183-193).

A carboxylic acid is firstly converted to an acid by using oxalyl or thionyl chloride, or by activating it in the form of an anhydride using an alkyl chloroformate (for example isobutyl chloroformate, cf. Krantz, A.; Copp, L.J. *Biochemistry* 1991, 30, 4678-4687; or ethyl chloroformate, cf. Podlech, J.; Seebach, D. *Liebigs Ann.* 1995, 1217-1228) in the presence of a base (triethylamine or N-methylmorpholine).

The activated carboxyl group is then converted to diazoketone using diazomethane in an ethereal solution or a commercial solution of trimethylsilyldiazomethane (Aoyama, T.; Shiori, T. Chem. Pharm. Bull. 1981, 29, 3249-3255) in an aprotic solvent such as diethyl ether, tetrahydrofuran (THF) or acetonitrile.

The bromination is then carried out using a bromination agent such as hydrobromic acid in acetic acid, aqueous hydrobromic acid in diethyl ether or dichloromethane.

Preparation 1

2-(4-bromo-3-oxobutyl)-1H-isoindole-1,3(2H)-dione ($C_{12}H_{10}BrNO_3$, MM = 296.12):

10

15

Oxalyl chloride (5.8 ml; 66.7 mmol) is added to Pht- β -Ala-OH (9.96g; 44.5 mmol) dissolved in dichloromethane (120ml) and 3 drops of dimethylformamide (DMF). The mixture is agitated for 3 hours at ambient temperature. After elimination of the solvent, the white solid is taken up in a 1:1 mixture of anhydrous tetrahydrofuran and acetonitrile (200 ml) then 49 ml of a 2M solution of (trimethylsilyl) diazomethane in hexane (97.9 mmol) is added dropwise at 0 °C. The solvents are eliminated after agitation overnight at 0 °C. The pale yellow solid is then dissolved in dichloromethane (60 ml) and 12 ml of aqueous hydrobromic acid (48%) is added dropwise at 0 °C. The mixture is agitated until the temperature reaches 15 °C and 50 ml of a saturated solution of sodium bicarbonate is added. The organic phase is washed with salt water then dried over sodium sulphate. Crystallization from diethyl ether allows a white solid to be obtained (11.39 g; yield = 86%).

5

10

15

NMR ¹H (DMSO D6, 100 MHz, δ): 7.83 (s, 4H); 4.36 (s, 2H, CH₂Br); 3.8 (t, 2H, J = 7.1 Hz, NCH₂); 2.98 (t, 2H, J = 6.9 Hz, CH₂CO).

Preparations 2-11

The following compounds were prepared in a similar fashion to the procedure described in Preparation 1:

Prep.	R3	Yield (%)	Prep.	R3	Yield (%)
2*		78	7		67
3*		60	8	CF ₃	51

4*	10	- 9	38 -
5*	69	10	22
6*	41	11	67

* Compounds already described in the literature.

SECOND METHOD

The starting product is an arylmethylketone or a heteroarylmethylketone.

The starting arylmethylketone or heteroarylmethylketone is converted to the corresponding α-bromoketone by using different brominating agents:

- CuBr₂ (King, L.C.; Ostrum, G.K. J. Org. Chem. 1964, 29, 3459-3461) heated in ethyl acetate or dioxane;
- N-bromosuccinimide in CCl₄ or aqueous acetonitrile (Morton, H.E.; Leanna, M.R. Tetrahedron Lett. 1993, 34, 4481-4484);
- bromine in glacial acetic acid or sulphuric acid;
- phenyltrimethylammonium tribromide (Sanchez, J. P.; Parcell, R. P. J. Heterocyclic Chem, 1988, 25, 469-474) at 20-80 °C in an aprotic solvent such as THF or tetrabutylammonium tribromide (Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull Chem. Soc. Jpn. 1987, 60, 1159-1160) in a dichloromethane/methanol mixture at ambient temperature;
- brominating agent on a polymer support such as perbromide on an Amberlyst A-26 resin, poly(perbromide of vinylpyndinium hydrobromide) (Frechet, J. M. J.; Farrall, M. J. Macromol. Sci. Chem. 1977, 507-514) in a protic solvent such as methanol at approximately 20-35 °C for approximately 2-10 hours.

Preparation 12

1-(1-benzofuran-2-yl)-2-bromo-1-ethanone (C₁₀H₇BrO₂, MM = 239.06):

A polymer of perbromide of pyridine hydrobromide (8.75 g; 17.5 mmol; 1.4 equivalent) is added to a solution of (benzofuran-2-yl)methylketone (2 g; 12.5 mmol) in methanol (40 ml). The resulting mixture is agitated at ambient temperature for 7 hours and the reaction is stopped by filtration. The methanol is eliminated under reduced pressure and an additional addition of diethyl ether allows crystallization of the expected product (3.6 g; yield = 60%).

NMR 1 H (DMSO D6, 100 MHz, δ): 8.09 (s, 1H); 7.98 (d, 1H, J = 6.6 Hz); 7.75 (d, 1H, J = 8.4 Hz); 7.58 (t, 1H, J = 8.4 Hz); 7.4 (t, 1H, J = 7 Hz); 4.83 (s, 2H, CH₂Br).

Preparations 8-12

The following compounds were prepared in a similar fashion to the procedure described in Preparation 12:

Ртер.	R3	Duration	Yield (%)
		of reaction (hrs)	
13*		8	78
14*		2	62
15*	Br S	10	56
16*	MeO OMe	2	53

17*		, 3	95
18	F	8	27

^{*} Compound already described in the literature.

II) Synthesis of 2-arylimino-2,3-dihydrothiazoles via synthesis on solid phase

Preparation of Wang resin p-nitrophenylcarbonate

This resin was prepared from Wang resin, acquired from Bachem or Novabiochem with a load greater than 0.89 mmol/g, by a well described general procedure (cf. Bunin, B.A. The Combinatorial Index, Academic Press, 1998, p. 62-63; Dressman, B.A.; Spangle, L.A.; Kaldor, S.W. Tetrahedron Lett. 1996, 37, 937-940; Hauske, J.R.; Dorff, P. Tetrahedron Lett. 1995, 36, 1589-1592; Cao, J.; Cuny, G.D.; Hauske, J.R. Molecular Diversity 1998, 3, 173-179): N-methylmorpholine or pyridine as base and 4-nitrophenylchloroformate are successively added to a Wang resin pre-swollen in dichloromethane (DCM) or tetrahydrofuran (THF) at ambient temperature. The mixture is agitated overnight. The resin is then washed successively with THF, diethyl ether and DCM then dried overnight under reduced pressure at 50 °C.

METHOD A

Preparation of monoprotected symmetrical diamines

General procedure: as already described in the literature (Dixit, D.M.; Leznoff, C.C. J. C. S. Chem. Comm. 1977, 798-799; Dixit, D.M.; Leznoff, C.C. Israel J. Chem. 1978, 17, 248-252; Kaljuste K.; Unden, A. Tetrahedron Lett. 1995, 36, 9211-9214; Munson, M.C.; Cook, A.W.; Josey, J.A.; Rao, C. Tetrahedron Lett. 1998, 39, 7223-7226), a Wang resin p-nitrophenylcarbonate is treated with a large excess of symmetrical diamine (10-20 equivalents), in an aprotic solvent such as DCM or DMF, in order to produce a monoprotected diamine resin after agitation overnight.

Preparation of thiourea resins

10

General procedure: aromatic and heteroaromatic isothiocyanates (5-10 equivalents) are added (Smith, J.; Liras, J.L.; Schneider, S.E.; Anslyn, E.V. J. Org. Chem. 1996, 61, 8811-8818) to monoprotected symmetrical diamines in a solvent such as DCM or DMF agitated overnight at ambient temperature. Washed successively with DMF and DCM, the thiourea resin is isolated then dried overnight under reduced pressure at 50 °C.

Preparation 19

(phenylaminothioyl)ethyl Wang resin carbamate

Phenylisothiocyanate (1 ml; 8.5 mmol; 5 eq.) is added to an ethylene diamine Wang resin N-carbamate (2 g; 1.72 mmol; 0.86 mmol/g) swollen in DCM (50 ml). After agitation overnight at ambient temperature, the resin is washed successively with DMF (5 x 20 ml) and DCM (5 x 20 ml). The success of the coupling is monitored using the

Kaiser ninhydrin test (Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Anal Biochem. 1970, 34, 595-598). A pale yellow resin (17.79 g) is obtained with a load of 0.648 mmol/g calculated from the elemental analysis of sulphur.

Synthesis of 2-arylimino-2,3-dihydrothiazoles

10

15

General procedure: regioselective cyclization stage (Korohoda, M.J.; Bojarska, A.B. Polish J. Chem. 1984, 58, 447-453; Ragab, F.A.; Hussein, M.M.; Hanna, M.M.; Hassan, G.S.; Kenawy, S.A. Egypt. J. Pharm. Sci. 1993, 34, 387-400; Hassan, H.Y.; El-Koussi, N.A.; Farghaly, Z.S. Chem. Pharm. Bull. 1998, 46, 863-866) takes place in solvents such as dioxane or . DMF 80 °C 2-3 hours between the thiourea resin and the a-bromoketone (2-5 equivalents). The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The 2-arylimino-2,3-dihydrothiazole resin is cleaved under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base is isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate), extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 1

N-[3-(2-aminoethyl)-4-(4-chlorophenyl)-1,3-thiazol-2(3H)-ylidene]aniline (C₁₇H₁₆ClN₃S, MM = 329.86):

2-bromo-4'-chloroacetophenone (30.2 mg; 129 μmol; 2 eq.) dissolved in DMF (1 ml) is added to a thiourea resin prepared above (100 mg; 64.8 μmol; load of 0.648 mmol/g). The mixture is agitated for 2 hours at 80 °C. The resin is then successively washed with DMF (3 x 2 ml), methanol (3 x 2 ml) and DCM (3 x 2 ml). The release stage, carried out in 1 ml of a mixture of DCM/trifluoroacetic acid at 50%, produces an oil after one hour 30 minutes of agitation which is eluted with methanol in a basic alumina cartridge (500 mg, Interchim). The free base is isolated in a quantitative fashion (21.3 mg) in the form of a yellow oil having a purity measured by UV spectrophotometry of 98% at 220 nm.

NMR ¹H (DMSO D6, 100 MHz) δ : 7.55 (s, 5H); 7.3 (d, 2H, J = 7.1 Hz); 6.99 (d, 2H, J = 7.1 Hz); 6.21 (s, 1H, H azole); 3.74 (t, 2H, J = 6.2 Hz, NCH₂); 3.32 (broad s, 2H, NH₂); 2.72 (t, 2H, J = 6.2 Hz, NCH₂). SM/LC: m/z = 330 (M+H)*.

A series of 2-arylimino-2,3-dihydrothiazoles was synthesized according to method A using our robotic system (ACT MOS 496):

R1 groups:

15

$$n = 1-6$$

R2 groups:

(Cl, Br, F, Me, OMe, NO₂, iPr, CF₃)

35

30 R3 groups:

15

[Br, Cl, F, OMe, Ph, Me, NO₂, N₃, OCF₃, CN, CF₃, NEt₂, nC_4H_9 , nC_5H_1 , OCH₂Ph]

$$\rightarrow - \cdot \stackrel{\checkmark}{\rightarrow} - \cdot \stackrel{\checkmark}{\sim}$$

R4 represents H, alkyl, carbocyclic or heterocyclic aralkyl optionally situated on the aryl radical;

in which i represents an integer from 1 to 3;

it being understood that for R4, when the aryl group is substituted, it can be 1 to 5 times (other than the bond which links it to the remainder of the molecule) by radicals chosen independently from the group composed of a halogen atom and an alkyl or alkoxy radical.

METHOD B

Preparation of Wang resin carbamates from aminoalkylanilines

General procedure: as already described (Hulme, C.; Peng, J.; Morton, G.; Salvino, J.M.; Herpin, T.; Labaudiniere, R. Tetrahedron Len. 1998, 39, 7227-7230), a pnitrophenylcarbonate Wang resin is treated with an excess of aminoalkylaniline (5-10 eq.) in DCM or DMF and agitated at ambient temperature overnight. The resin is washed successively with DMF, methanol and DCM then dried overnight under reduced pressure at 50 °C.

Preparation 20

4-aminophenylethyl Wang resin carbamate

10

15

A solution of 2-(4-aminophenyl)ethylamine (2.48 g; 17.3 mmol; 5 eq.) in 30 ml of anhydrous DMF is added to a Wang resin p-mitrophenylcarbonate (4.05 g; 3.47 mmol; load of 0.857 mmol/g) pre-swollen in 50 ml of anhydrous DMF. The mixture is agitated at ambient temperature overnight and filtered. The resin is washed successively with DMF (10 x 30 ml), methanol (5 x 30 ml) and DCM (5 x 30 ml). 3.7 g of yellow resin (load of 0.8 mmol/g calculated from the elemental analysis of the nitrogen), giving a positive Kaiser ninhydrin test, is isolated after drying overnight under reduced pressure at 50 °C.

Preparation of thiourea resins with aliphatic isothiocyanates

General procedure: aliphatic isothiocyanates (5-10 equivalents) are added to an aminoalkylaniline resin in a solvent such as DCM or DMF and agitation is carried out overnight at ambient temperature. After washing successively with DMF and DCM, the thiourea resin is isolated and dried overnight under reduced pressure at 50 °C.

Preparation 21

4-{[(phenylethylamino)carbothioyl]amino}-phenylethyl Wang resin carbamate

10 ml of anhydrous DMF and phenylethylisothiocyanate (624 µl, 4 mmol, 10 eq.) are added under an argon atmosphere to the resin described previously (0.5 g; 0.4 mmol; load of 0.8 mmol/g). The reaction medium is agitated overnight at ambient temperature and produces a negative Kaiser ninhydrin test. The resin is then washed successively with DMF (5 x 20 ml) and DCM (5 x 20 ml). Drying under reduced pressure at 50 °C produces 488 mg of resin with a load of 0.629 mmol/g calculated from elemental analysis of the sulphur.

15 Synthesis of 2-arylimino-2,3-dihydrothiazoles

General procedure: the cyclization stage takes place in aprotic solvents such as dioxane or DMF at 80 °C for 2 hours between the thiourea resin and the α -bromoketone (2-5 equivalents). The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The iminothiazole resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base isolated after extraction under basic conditions (saturated solution of sodium hydrogen carbonate), extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 2

4-(2-aminoethyl)-N-[4-(4-chlorophenyl)-3-phenethyl-1,3-thiazol-2(3H)-ylidene]aniline $(C_{25}H_{24}ClN_3S, MM = 434.01)$:

$$\frac{1}{2}^{N}$$

100 mg (62.9 µmol, load of 0.629 mmol/g) of thiourea resin and 2-bromo-4'-chloroacetophenone (30 mg; 125.8 µmol; 2 eq.) are dissolved in 1 ml of DMF and heated to 80 °C for 2 hours. The resin is then washed successively with DMF (5 x 1 ml), methanol (5 x 1 ml) and DCM (5 x 1 ml). The resin is agitated in 1 ml of a DCM/trifluoroacetic acid mixture at 50% for one hour and 30 minutes at ambient temperature. The resin is rinsed with DCM (5 x 1 ml) and the filtrate evaporated under reduced pressure. The residue, dissolved in methanol, is eluted in a basic alumina cartridge (500 mg, Interchim) in order to quantitatively produce (27.3 mg) the expected product in the form of a solid (UV purity: 97% at 220 nm).

NMR ¹H (DMSO D6, 100 MHz) δ : 7.9 (broad s, 2H, NH₂); 7.53 (d, 2H, J = 8.5 Hz); 7.32-7.15 (m, 7H); 7.08-6.9 (m, 4H); 6.37 (s, 1H, H azole); 4.07 (m, 2H, NCH₂); 3.03 (m, 2H, NCH₂); 2.88 (m, 4H). MS/LC: m/z = 435 (M+H)^{*}.

A series of 2-arylimino-2,3-dihydrothiazoles was synthesized according to method B with our robotic system (ACT MOS 496):

- R1 groups

$$p = 0-15$$

$$q = 0-4$$

- R2 groups

$$\frac{\text{H2}}{\text{N}}$$
 $\frac{\text{NH2}}{\text{H2}}$ $\frac{\text{H2}}{\text{N}}$

- R3 and R4 groups like those of method A

10

METHOD C

5

10

15

Synthesis of 2-arylimino-1,3-thiazole-4(3H)-carboxamides

General procedure: a regioselective cyclization stage using a-bromopyruvic acid (2-5 eq.) is carried out starting from the thiourea resin prepared in the method A in aprotic solvents such as dioxane or DMF at 80 °C for 2-3 hours. The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The peptide coupling (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 989, 30, 1927-1930) takes place in DMF at ambient temperature for 1-24 hours with different standard coupling agents (4-5 eq.) such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/N-hydroxybenzotriazole (HOBt) benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and aminated compounds (4-5 eq.). The 2-arylimino-1,3-thiazole-4(3H)carboxamide resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base is isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate), extraction is carried out with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 3

3-(4-aminobutyl)-N-benzhydryl-2-[(4-bromophenyl)imino]-1,3-thiazole-4(3H)-carboxamide ($C_{27}H_{27}BrN_4OS$, MM = 535.51):

50 mg (27.5 µmol, load of 0.55 mmol/g) of carboxylic acid resin is activated for 15 minutes with 14.8 mg (0.11 mmol, 4 eq.) of N-hydroxybenzotriazole and 35.3 mg (0.11 mmol, 4 eq.) of TBTU in 800 µl of anhydrous DMF. 20.7 mg (0.11 mmol, 4 eq.) of aminodiphenylmethane dissolved in 200µl of anhydrous DMF is then added and the resin is filtered after agitation overnight at ambient temperature. A sequential washing with DMF (5 x 1 ml), methanol (5 x 1 ml) and DCM (5 x 1 ml) produces a resin which is treated for one hour and 30 minutes under acid conditions (DCM/trifluoroacetic acid at 50 %). The resin is rinsed with DCM (5 x 1 ml) and the filtrate evaporated under reduced pressure. The residue, taken up in methanol, is eluted in a basic alumina cartridge (500 mg, Interchim) in order to produce a pale yellow solid (8.2 mg; yield of 55.7 %; UV purity of 94 % at 220 nm).

NMR ¹H (DMSO D6, 100 MHz, δ): 9.6 (d; 1H; J = 8.6Hz; NH); 7.49 (d; 2H; J = 8.6 Hz); 7.35 (s; 10H); 6.92 (s; 1H; H azole); 6.91 (d; 2H; J = 8.5 Hz); 6.27 (d; 1H; J = 8.5 Hz; NHCH); 4.02 (m; 2H; NCH₂); 3.45 (broad m; 2H+2H; NH₂ and NCH₂); 1.55–1.24 (broad m; 4H). MS/LC: m/z = 535 (M+H).

A series of 2-arylimino-1,3-thiazole-4(3H)-carboxamides was synthesized according to method C using our robotic system (ACT MOS 496):

- R1 and R2 groups already described in method A;
- -R3 = -CO-R5;

-R4 = H;

10

15

- R5 groups

$$N-\overline{H}$$
 $N-\overline{H}$
 $N-\overline{H}$
 $N-\overline{H}$
 $N-\overline{H}$

$$\frac{\underline{H}}{N} \quad [Me, Et] \qquad [Me, Et] \qquad N-\underline{\underline{H}}$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

.

5

$$\frac{H}{N}$$

OH

 $N = H$

OH

 $N = H$
 $N = H$

__

MeO
$$\frac{1}{N}$$
 $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{N}$

$$\sum_{n=1}^{N} n - \sum_{n=1}^{N} n - \sum_{n=1}^{N}$$

5 [Me, CH₂Ph, COMè, CHO]

10 [Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph] [Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph]

$$N-N-$$

[CI, OMe] [Me, OMe, F] [Me, OMe, F] [Me, OMe, F]

20

25

35

METHOD D

10

15

Synthesis of 2-arylimino-1,3-thiazole-4(3H)-carboxamides

General procedure: a regioselective cyclization stage using a-bromopyruvic acid (2-5 eq.) is carried out starting from the thiourea resin prepared in method B in aprotic solvents such as dioxane or DMF at 80 °C for 2-3 hours. The resin is then successively washed with DMF, methanol and DCM then dried under reduced pressure. The peptide coupling (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30, 1927-1930) takes place in DMF at ambient temperature for 1-24 hours with different standard coupling agents (4-5 eq.) such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/N-hydroxybenzotriazole (HOBt) mixture, benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate aminated compounds (4-5 eq.). The 2-arylimino-1,3-thiazole-4(3H)-carboxamide resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base is isolatedafter treatment under basic conditions (saturated solution of sodium hydrogen carbonate) followed by an extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 4

(2Z)-2-{[4-(2-aminoethyl)phenyl]imino}-N-(4-chlorobenzyl)-3-(2-phenylethyl)-2,3-dihydro-1,3-thiazole-4-carboxamide ($C_{77}H_{27}CIN_4OS$, MM = 491.05):

Phenylethylisothiocyanate (310 mg; 1.9 mmol; 10 eq.) in 3 ml of dimethylformamide is added to 200 mg (190 µmol, load of 0.946 mmol/g) of aminated resin (see Preparation 20). Agitation overnight at ambient temperature produces a negative Kaiser ninhydrin test. The resin is then successively washed with DMF (5 x 3 ml) and DCM (5 x 3 ml) then dried under vacuum for one hour before adding bromopyruvic acid (63.4 mg; 380 µmol; 2 eq.) diluted beforehand in 3 ml of dimethylformamide. The mixture is agitated for 2.5 hours at 80°C. The resin is filtered and washed with DMF (5 x 3 ml), methanol (3 x 3 ml) then DCM (5 x 3 ml). The carboxylic acid resin is preactivated for 1 hour with 244 mg (0.76 mmol; 4 eq.) of TBTU diluted in 2 ml of anhydrous DMF. 110 mg (0.76 mmol; 4 eq.) of 4-chlorobenzylamine dissolved in 1 ml of anhydrous DMF is then added and the resin is filtered after agitation overnight at ambient temperature. Sequential washing with DMF (5 x 3 ml), methanol (3 x 3 ml) and DCM (3 x 3 ml) produces a resin which is treated for one hour and 30 minutes under acid conditions (DCM/trifluoroacetic acid at 50 %). The resin is rinsed with DCM (5 x 1 ml) and the filtrate evaporated under reduced pressure. The residue, taken up in DCM, is neutralized with a saturated solution of sodium hydrogen carbonate in order to produce after evaporation a solid (38.2 mg; yield of 41%; UV purity of 90% at 210 nm). NMR ¹H (DMSO D6, 400 MHz, δ): 9.1 (m, 1H); 7.39 (d, 2H, J = 8.4 Hz); 7.33 (d, 2H, J = 8.4 Hz; 7.25 (q, 2H, J = 6.8 Hz); 7.19 (q, 1H, J = 7.2 Hz); 7.11 (m, 4H); 6.8 (d, 2H, J = 8 Hz); 6.75 (s, 1H, H azole); 4.34 (d, 2H, J = 6 Hz); 4.27 (t, 2H, J = 6.8 Hz); 3.14 (m, 1H); 2.89 (t, 2H, J = 6.8 Hz); 2.73 (t, 1H, J = 7.2 Hz); 2.62 (m, 2H). MS/LC: m/z =491.24 (M+H)*.

5

10

A series of 2-arylimino-1,3-thiazole-4(3H)-carboxamides was synthesized according to method D using our robotic system (ACT MOS 496):

- R1 and R2 groups already described in method B
- R3 = -CO-R5
- R4 = H

5

15

20

- R5 groups already described in method C.

- METHOD E

Preparation of monoprotected diamine resin functionalized with α-bromopyruvic acid

General procedure: the monoprotected symmetrical primary or secondary diamine resin (the preparation of which is already described in method A) is functionalized by peptide coupling with α -bromopyruvic acid (10 eq.), DIC (10 eq.) and HOBt (10 eq.) in a solvent such as DMF at ambient temperature. The resin is washed successively with DMF then with DCM after 2 to 24 hours of agitation before being dried under vacuum. The negative Kaiser ninhydrin test indicates a complete functionalization.

Preparation 22

N-carbamate of 2-[(3-bromo-2-oxopropanoyl)amino]ethyl Wang resin

HOBt (0.93 g, 6.88 mmol) and α-bromopyruvic acid (1.18 g, 6.88 mmol) are dissolved in 28 ml of DMF (0.5 M). DIC (1.07 ml; 6.88 mmol) is then added by syringe to activate the acid. The mixture is agitated for approximately 15 minutes at ambient temperature before adding it to the ethylene diamine Wang resin N-carbamate (0.8 g; 0.688 mmol; load rate 0.86 mmol/g). After agitation for 3 hours at ambient

temperature, the Kaiser ninhydrin test being negative, the resin is filtered and washed successively with DMF (5 x 20 ml) then with DCM (5 x 20 ml) before being dried under vacuum. An ochre resin (0.812 g) is obtained with a load rate of 0.525 mmol/g-calculated from elemental analysis of the bromine.

Synthesis of 2-arylimino-1,3-thiazole-4(3H)-carboxamides

5

10

15

General procedure: formation of the thiourea is carried out in a solvent such as DMF or dioxane by mixing an equimolar quantity of primary amine and aromatic or heteroaromatic isothiocyanate. After agitation for 2 to 24 hours at ambient temperature, the thiourea (2 to 5 eq.) is added to the functionalized resin then heated at 80°C for 2 to 4 hours. The 2-arylimino-1,3-thiazole-4(3H)-carboxamide resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsing with DCM. The solvent is evaporated off and the free base isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate), extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 5

(2Z)-N-(2-aminoethyl)-3-[2-(3,4-dimethoxyphenyl)ethyl]-2-(phenylimino)-2,3-dihydro-1,3-thiazole-4-carboxamide , $(C_{22}H_{26}N_4O_3S, MM = 426.54)$:

18 μ l (105 μ mol; 2 eq.) of β -(3,4-dimethoxyphenyl)ethylamine and 12.6 μ l (105 μ mol; 2 eq.) of phenylisothiocyanate are agitated in 1 ml of DMF for 18 hours. The thiourea is added to 100 mg (52.5 μ mol; load rate of 0.525 mmol/g) of resin (Preparation 22) and the mixture heated at 80°C for 3 hours. The resin is then filtered then washed successively with DMF (5 x 1 ml), methanol (5 x 1 ml) then DCM (5 x 1 ml). The resin is dried under vacuum before adding 1 ml of a 50% DCM/TFA mixture. Agitation is carried out for 1.5 hours at ambient temperature, the resin is filtered and rinsed with DCM. The residue recovered after evaporation is then eluted with methanol in a basic alumina cartridge in order to isolate 22.2 mg (quantitative yield; UV purity of 93.4 % at 230 nm) of a brown solid corresponding to the free amine.

NMR ¹H (DMSO D6, 100 MHz, δ): 8.42 (m, 1H, NH); 7.32 (t, 2H, J = 7.1 Hz); 7.08-6.63 (m, 6H); 5.76 (s, 1H, H azole); 4.31 (t, 2H, J = 6.6 Hz); 3.72 (s, 6H, OCH₃); 3.32 (broad s, 2H); 3.17 (m, 2H); 2.89 (m, 2H); 2.62 (m, 2H). MS/LC: m/z = 427.17 (M+H)⁺.

A series of 2-arylimino-1,3-thiazole-4(3H)-carboxamides was synthesized according to method E using our robotic system (ACT MOS 496):

- R1 groups:

>

10

$$\sqrt{\sum_{n}}$$

n = 1-6

[Me, tBu]

· p = 0-13

15

20

[H, Br, Cl, F, OMe, Me]

25

[H, F, Br, Cl, OMe, SMe, OEt, CF₃, OCF₃, Ph, Me]

_ 30

[H, OMe]

15

20

[Me, Et] [Me, Et]

25

C mi

- R2 groups already described in method A

 $_{30}$ - R3 = -CO-R5

- R4 = H

- R5 groups:

$$\frac{H_2}{n} = 1-6$$

$$\frac{H_2}{N} = 1-6$$

$$\frac{H_2}{N} = \frac{H_2}{N} =$$

METHOD F

5

10

15

Preparation of monoprotected diamine resins functionalized with N-protected amino acids (Fmoc)

$$\begin{array}{c|c}
O & O & \underline{H} \\
\hline
N & \text{fmoc}
\end{array}$$
R11 R12

General procedure: the peptide coupling of the monoprotected diamine resins with N-Fmoc amino acids (4 to 10 eq.) which are commercially available (Bunin, B.A. The Combinatorial Index, Academic Press, 1998, p. 77-82) is carried out in DMF at ambient temperature for 1 to 24 hours with different standard coupling agents (4 to 10 eq.) such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/Nmixture, benzotriazolyloxytris(dimethylamino) hydroxybenzotriazole (HOBt) 2-(1H-benzotriazol-1-yl)-1,1,3,3hexafluorophosphate (PyBOP), phosphonium. tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium tetrafluoroborate (TBTU). The resin is then washed successively with DMF and DCM. The coupling sequence can be repeated (once or twice) until the Kaiser ninhydrin test is negative.

Preparation 23

4-[([[(9H-fluoren-9-ylmethoxy)carbonyl]amino|acetyl]amino]butyl Wang resin - N-carbamate

Fmoc-Gly-OH acid (2.36 g, 7.94 mmol) is activated with HOBt (1.07 g, 7.94 mmol) and DIC (1.25 ml, 7.94 mmol) in 22 ml of DMF for 5 minutes before adding the mixture to butylamine Wang resin N-carbamate (1 g, load rate of 0.794 mmol/g) preswollen in 10 ml of DMF. After agitation for 18 hours at ambient temperature, the resin is washed successively with DMF (5 x 20 ml) then with DCM (5 x 20 ml) before being dried under vacuum. 1.27 g of pale yellow resin is thus obtained presenting a negative Kaiser ninhydrin test.

Preparation of the thiourea resins

5

10

15

General procedure: a resin described above is deprotected with a 20% DMF/piperidine mixture. After agitation for one hour at ambient temperature, the resin is filtered and washed successively with DMF then with DCM. The deprotection/washing sequence is repeated a second time and the resin is dried under vacuum. The latter is preswollen in a solvent such as DMF or DCM then an aromatic or heteroaromatic isothiocyanate (5 to 10 eq.) is added. The mixture is agitated for 2 to 24 hours at ambient temperature before the resin is filtered and washed successively with DMF then with DCM. The resin is then dried under vacuum and a negative Kaiser ninhydrin test confirms that the substitution reaction is complete.

Preparation 24

4-[([[(1-naphthylamino)carbothioyl]amino]acetyl)amino]butyl Wang resin N-carbamate

1.27 g of the above resin (see Preparation 23) is deprotected with 14 ml of DMF/piperidine at 20%. The mixture is agitated for one hour at ambient temperature. The resin is then filtered then washed with DMF (5 x 30 ml) then with DCM (5 x 30 ml). The deprotection/washing sequence is repeated once before the resin is dried under vacuum. 0.781 g of pale yellow resin was thus obtained with a load rate of 0.758 mmol/g calculated after elemental analysis of the sulphur. 416 mg (2.2 mmol, 10 eq.) of 1-naphthylisothiocyanate diluted in 6 ml of DMF is added to 0.3 g (0.22 mmol) of this thiourea resin. The mixture is agitated for 18 hours at ambient temperature. The resin is filtered then washed successively with DMF (5 x 20 ml) then with DCM (5 x 20 ml). 310 mg of a pale yellow resin is isolated after drying under vacuum with a load rate of 0.66 mmol/g calculated after elemental analysis of the nitrogen.

Synthesis of 2-arylimino-2,3-dihydrothiazoles

10

15

General procedure: the regioselective cyclization stage is carried out in aprotic solvents such as dioxane, DMF or N-methylpyrrolidinone at 80 °C for 2 to 3 hours between the thiourea resin and the α-bromoketone (2 to 5 eq.). The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The 2-arylimino-2,3-dihydrothiazole resin is cleaved under acid conditions (DCM/trifluoroacetic acid at 50%) for 1 to 2 hours then ninsed with DCM. The solvent

is evaporated off and the free base isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate) followed by an extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 6

N-(4-aminobutyl)-2-((2Z)-4-(4-chlorophenyl)-2-(1-naphthylimino)-1,3-thiazol-3(2H)-yl)acetamide $(C_{25}H_{25}ClN_4OS,MM=465.02):$

$$\begin{array}{c|c}
N_{\underline{H}} & N_{\underline{H}2} \\
N_{\underline{N}} & N_{\underline{N}}
\end{array}$$

80 mg (52.8 µmol, load rate of 0.66 mmol/g) of thiourea resin (Preparation 24) and 25.1 mg (105.6 mmol, 2 eq.) of 2-bromo-4'-chloroacetophenone are diluted in 1 ml of DMF. The mixture is heated at 80°C for 2 hours. The resin is filtered then washed with DMF (5 x 1 ml), methanol (5 x 1 ml) then DCM (5 x 1 ml) before being dried under vacuum. 1 ml of a 50% DCM/TFA mixture is added followed by agitation for 1 hour 30 minutes. The resin is filtered and rinsed with DCM. The filtrate is evaporated then rediluted in methanol for elution on basic alumina. 20.6 mg (yield of 84%; UV purity of 94.2 % at 220 nm) of yellow solid is thus isolated after evaporation corresponding to the free base.

NMR ¹H (DMSO D6, 100 MHz, δ): 8.36 (t, 1H, J = 4.7 Hz, NH); 8.12 (dd, 1H, J = 2.1 and 7.3 Hz); 7.87 (dd, 1H, J = 2.7 and 6.3 Hz); 7.63-7.34 (m, 8H); 7.13 (dd, 1H, J = 1.6 and 6.7 Hz); 6.33 (s, 1H, H azole); 4.44 (broad s, 2H); 3.14 (m, 2H); 2.7 (m, 2H); 1.5 (m, 4H). MS/LC: m/z = 465.21 (M+H).

A series of 2-arylimino-2,3-dihydrothiazoles was synthesized according to method F using our robotic system (ACT MOS 496):

- 25 R1 = -C(R11R12)-CO-R10
 - R2, R3 and R4 groups already described in method A
 - R10 groups:

$$\frac{H_2}{n} \xrightarrow{N-\underline{H}} N \xrightarrow{H_2} N \xrightarrow{H_2} N \xrightarrow{N-\underline{H}} N$$

20

25

10
$$\frac{\underline{H}_2}{N}$$
 $\frac{\underline{H}_2}{N}$ $\frac{\underline{H}_2}{N}$ $\frac{\underline{H}_2}{N}$

- R11 = H

15 - R12 groups:

EXAMPLES.

10

Examples obtained according to methods A, B, C, D, E and F described above are shown below in the tables. These examples are shown to illustrate the above processes and must not in any circumstances be considered as limiting the scope of the invention.

The compounds obtained have been characterized by their retention times (rt) and by mass spectrometry (M+H).

The chromatograms are obtained from a high performance liquid chromatography device (Hewlett-Packard 1100) equipped with a scanning UV detector. The following conditions were used to measure the retention times by high performance liquid chromatography, it being understood that the extraction wavelength of each of the chromatograms is 220 nm:

t (min.)	A (%)	B (%)
0	90	10
6	15	85
. 8	15	85

Eluent A: water + 0.02% trifluoroacetic acid; eluent B: acetonitrile.

Flow rate: 1 ml/min; volume injected: 5 μ l; temperature: 40 °C. Column: Uptisphere 3 μ m ODS, 50 x 4.6 mm i.d. (Interchim)

The mass spectra are obtained from a single quadrupole mass spectrometer equipped with an electrospray source (Micromass, Platform II).

RЗ rt (min.) Purity (%) R2 [M+H]+ Ex. 3.09 304.2 7 91.2 338.2 93.1 3.38 8 352.2 3.56 94 9 93.3 3.42 338.2 10 3.25 342.2 96.6 11 365.2 3.46 96.4 12 393.2 3.86 91.9 13 358.2 96.4 3.44 14 382.2 95.6 3.34 15 94.5 3.7 408 16 Br 54.43 2.9 305.2 17 50.4 3.14 339.2 18

5

10

15

20

25

30

. 35

- 14<u>9</u> -NH, R2 Purity (%) R3 rt (min.) $[M+H]^{\uparrow}$ Ex. 48.9 3.38 535.2 19 339.2 39.3 3.26 20 343.2 49.5 3.06 21 42.3 3.29 366.2 22 " 43.4 394.3 3.7 23 56.7 3.16 359.2 24 383.2 25 45.3 3.09 45.7 3.3 409 26 96.8 332.3 3.41 27 366.3 28 92.8 3.7 90.6 3.84 380.3 29 93.7 3.76 366.3 30

5

10

15

20

25

3**0**

NH2 Ex. R2 RЗ Purity (%) rt (min.) [M+H]* 94.4 31 3.63 370.2 32 89.1 3.82 393.2 33 90.1 4.12 410.2 34 96.7 3.83 386.2 410.2 35 95.8 3.67 36 93.4 4.17 436.1 37 88.4 3.64 329.25 38 91.8 4.03 363.2 39 88.6 4.15 377.2 40 94.1 4.22 363.2 41 95.2 4.1 376.2 In 42 92.8 4.35 390.2

5

1,0

15

20

25

30

			- 151 -			
			NH,	,		
_		R2-N	—R3			
5	Ex	. R2	1 R3	Durit (8()	1	
	43			Purity (%) 94.1	rt (min.)	[M+H] 418.2
10	44		cı	95	4.34	383.1
	45			95.1	4.06	407.2
15	46		Br S	93	4.7	433.1
20	47		>-	96.4	3.32	332.3
	48			92.9	3.62	366.3
25	49			95.6	3.76	380.3
	50			95.6	3.64	366.33
30	51		-	96	3.51	370.2
	52		NJ .	87	3.69	390.2
35	53			80.9	4.04	421.3
•	54		CI	97.1	3.7	436.1

<u>- 152 -</u> Ex. R2 R3 Purity (%) rt (min.) [M+H] 55 94.6 3.59 410.2 56 95.6 3.92 436.1 57 82.1 3.66 368.2 58 90.7 402.2 3.94 59 85.5 4.06 416.2 60 94.4 4.09 402.2 61 95.1 3.99 406.2 62 93.6 4.21 429.2 63 93.6 457.2 4.39 64 422.1 96 4.22 65 91.6 3.96 446.2 66 94.5 4.65 472

- 5

10

15

20

25

30

Ex. R2 R3 Purity (%) rt (min.) [M+H]* 67 97 3.07 348.2 68 93.6 3.36 382.2 69 93.4 3.54 396.2 70. 94.7 3.41 382.1 71 96.3 3.24 386.2 72 94.5 3.44 409.1 73 93.4 3.83 437.2 74 95.4 3.41 402.1 75 95.7 3.32 426.2 76 92.4 3.64 452.2 77 98.1 3.66 324.2 78 91.2 3.98 388.2

5

10

15

20

25

30

		- 154 -			
l l		NH ₂			
	·				
	R2-N	—R3			
<u> </u>	\$	3.	·	÷	
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
79			81.9	4.09	402.2
08			96.1	4.12	388.2
81		F	96.1	4.03	392.2
82		N ₃	94.2	4.24	415.2
83			93.3	4.39	443.3
84		CI	96.3	4.28	408.1
85			94.2	4,0	432.2
86		Br S	95.6	4.7	458.1

NH₂ Ex. R2 R3 Purity (%) rt (min.) [M+H]* 87 97 -3.35 338.2 88 94 3.51 352.3 89 94 3.58 352.3 90 97 3.42 356.2 91 86 4.01 422.2 92 3.99 96 407.3 93 7 391.3 3.65 94 92 4.11 378.2 95 95 3.43 435.2 96 97 3.91 422.1 97 43 3.19 339.2 98 32 3.33 353.2

5

10

15

20

25

30 .

R3 Purity (%) rt (min.) $[M+H]^*$ R2 Ex. 39 3.45 353.2 99 357.2 39 3.28 100 3.8 423.2 42 101 41 3.89 408.2 102 14. 392.2 3.43 103 39 3.62 379.2 104 436.2 105 28 3.2 35 3.56 423.1 106 4.65 464.1 95 107 478.2 **89** 4.64 108 82 4.88 478,1 109 92 4.76 482.1 110

5

10

15

20

25

30

<u>- 157 -</u> NH₂ Ex. RЗ Purity (%) Ŗ2 rt (min.) [M+H]* 111 90 5.41 548.1 112 86 5.13 533.2 113 9 517.1 4.5 114 95 5.49 504.1 115 80. 4.4 561.1 116 89 5.4 548,0 117 96 4.85 422.2 118 91 4.86 436.2 119 88 5.08 436.2 120 95 4.96 440.2 121 81 5.56 506.2 122 83 5.34 491.2

5

10.

15

20

25

30

<u>- 158 -</u> NH₂ Ex. R2 ŔЗ Purity (%) rt (min.) [M+H]* 123 475.3 3 4.7 124 91 5.59 462.2 125 92 4.61 519.2 125 92 5.52 506.1 127 98 3.63 366.3 128 97 3.76 380.3 129 98 3.82 380.3 130 98 3.67 384.2 131 97 4.16 450.2 132 96 435.3 4.2 133 21 3.9 419.3 134 88 4.28 406.2

5

10

15

20

25

30

NH2 Ex. R2 RЗ Purity (%) rt (min.) [M+H]* 135 97 3.68 463.3 136 82 4.09 450.1 137 93 3.44 417.2 138 94 3.5 431.2 139 95 · 3.71 431.2 140 95 3.58 435.2 141 94 501.2 4.27 142 93 4.05 486.6 143 94 4.28 457.2 144 92 3.39 514.2 145 85 4.16 501.1 146 97 3.36 382.2

5

10

15.

20

25

30

<u>- 160</u> NH₂ Ex. R2 RЗ Purity (%) rt (min.) [M+H]* 147 94 3.53 396.2 148 97 3.6 396.2 149 97 3.43 400.2 150 97 3.95 466.2 151 95 4.01 451.3 152 15 3.57 435.2 153 94 4.0 422.2 154 95 3.45 479.3 155 95 3.84 466.1 156 96 4.11 388.2 157 90 4.14 402.2

96

4.31

402.2

5

10

15

20

25

30

35

10

15

- 162 -

			<u>- 162 - </u>	4	<i>:</i> .	
		:	-	NH ₂		
,		· ·		-		
	-	· N.		,		
5		R2	R3			
•	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
- 1.	165		>-	93	3.52	332.3
L O -	166			99	3.76	370.3
. 5	167		N ₃	97	3.9	393.3
	168			98	4.25	436.2
20	169		ci Zo.	98	4.14	431.2
	170			99	4.79	488.2
25	171		CO CO	98	3.74	410.2
· . ·	172			98	4.28	410.3
30	173			98	4.38	392.2
	174		CI.	98	4.73	456.2
35	175		>-	98	4.06	374.3
	176		·	98	4.37	412.3
,						

- 163 -

NH2 ¹ R3 Ex. R2 Purity (%) rt (min.) [M+H]* 177 97 - --- ... 4.46 435.3 178 98 4.8 478.3 179 99 4.78 473.3 180 94 5.43 530.3 181 97 4.27 452.3 182 85 4.73 452.4 183 98 5.07 434.3 184 93 5.33 498.3 185 4.61 98 458.2 186 97 5.23 496.1 187 96 5.34 519.1 188 97 5.72 562.1

5

10

15

20

25

30

- 164 -

		<u>- 164 - </u>			
	·	,-	NH2		
	en e			,	
	R2 N	R3	•		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
 189		CI NO.	98	5.57	557.1
 190			96	6.16	614.1
191			96	4.97	536.1
192			85 	5.67	536.2
193			96	5.86	518.1
194		ci s	97	6.32	582.1
195	NC .	>-	96	4.16	357.3
196	NC .		98	4.74	395.2
197	NC .	N,	97	4.86	418.2
198	NC ,		98	5.26	461.2
199	NC .	CI NO.	98	5.12	456.2
200	NC .		97	5.72	513.2

<u></u>		- 165 -			
			NH ₂		. ,
			•		
	R2 N	P3	,		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
201	NC		96	4.51	435.2
. 202	NC		98	5.18	435.3
203	NC		95	5.37	417.2
204	NC	CI	95	5.84	481.2
205	F		96	3.63	350.3
206	F.		98	3.95	388.2
207	F.	N,	95	4.07	411.2
208		F. C.	98	4.44	454.2
209	F	0.	97	4.38	449.2
210	F.		89	5.03	506.2
211	F		96	3.87	428.2
212	F		. 97	4.4	428.3

- 166 -NH2 Ex. R2 R3 Purity (%) rt (min.) [M+H] 213 96 4.63 410.2 214 96 4.96 474.2 215 94 5.38 411.2 216 .98 5.63 449.2 217 96 5.77 472.2 218 98 6.04 515.2 219 98-5.74 510.1 220 ... 91 6.29 567.2 221 98 5.53 489.2 222 96 6.38 489.3 To. 223 97 6,0 471.2 224 98 6.49 535.1

5

10

15

20

25

30

	·	<u>- 167 - </u>		•	
			NH ₂		<u>'</u> ,
				· ·	
	A2 N	R3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
225	CI		98 -	3.99	426.3
226	CI		98	4.34	464.2
227	CI	N ₃	96	4.43	487.3
228	c ₁	F CO	97	4.78	530.2
229	c.	C1 NO.	98	4.76	525.2
230	c: o		96	5.36	582.2
231	c ₁		95	4.23	504.3
232	c.		97	4.7	504.3
233	61		98	4.99	486.2
234		ci S.	97	5.3	550.2
235	H,N -50		. 96	3.44	411.2
236	M,N S		95	3.94	449.2

-10

15

10

- 169 -

		100			<u> </u>
	•	N	H ₂		
	R2 N	-N	•		
	\$ ~	R3	•		
Ex.	R2	¹ R3	Purity (%)	rt (min.)	[M+H]
 245			98.1	3.2	290.2
246			96.9	3.78	324.2
247		NO ₂	69.3	3.88	355.2
248		NC .	99.3	3.79	335.2
249			99.4	3.86	324.2
250		N ₃ .	98	3.97	351.2
251		Br	98.7	4.14	388.1
252			93.5	4.24	379.3
253			82.4	5.16	446.2
254			98.8	3.7	368.2
255		>-	98.5	3.9	332.3
256			92.3	4.4	366.3

· 5

10 .

- 170 - NH₂

R2 N N R3

35_.

	3 3				
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
257		NO.	82.3	- 4.55 <u>(</u>	397.2
258		NC	98.4	4.48	377.3
259			97.3	4.49	366.3
260		N,	95.4	4.59	393.3
261		Br .	98.7	4.77	430.2
262			90.9	4.76	421.3
263			98.7	5.72	488.2
264			97.7	4.33	410.3
265	H. N. S.		98.5	3.42	369.2
266	H,N S		94.9	3.91	403.2
267	H, N 50	NO _z	98.1	3.81	434.2
268	M, N - 5	NC	97.9	3.78	414.1

- 171 *-*

			<u>-171 -</u>			
			NI	H ₂		
		R2 N	-N		· •	·
		\$ _	R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	269	H,N S		98.1	4.06	403.2
	270	H ₂ N - S 0	N ₃	96.2	4.14	430.2
	271	H ₂ N S	Br	98.3	4.28	467.1
	272	H, N S		96.8	4.5	458.2
	273	N, N, S		98.3	4.92	525.2
	274	H,N,S,O		97.1	3.84	447.2
	275	CI	>- ·	96.5	4.28	354.2
	276	CI		93.3	5.02	388.2
	277	CI	No.	68.7	4.96	419.2
	278	'cı Cı	NC .	97.8	4.86	399.2
	279	CI O		96	5.13	388.2
	280	CI	N, .	96.9	5.18	415.2
•						

1	7	2	
	•	_	

			- 172 -		•	
		·	N	IH ₂		
-	1.					
		N		•		
		R2	_N_	,		
		 S	H3			
	ļ		1			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	281	CI	Br	98.6	5.31	452.1
	282	CI		89.5	5.54	443.2
	283	CI		65.5	5.89	510.2
·	284	CI		97.8	4.89	432.2
	285	ci , , ,	>-	93.2	5.08	369.2
	286	C: NO.		94.6	5.31	403.1
	287	CI NO.	NO _z	97.6	5.07	434.1
	288	ci No. : .	NC .	99.1	5.05	414.1
	289	CI		99.1	5.39	403.1
	290	C1 ,	N,	98.3	5.44	430.2
	291	c1 , o,	В	99.4	5.47	467.1
	292	ci Zo.		97.4	5.86	458.2
-						

_ 30

		- 173 -			<u> </u>
	. ·	N	H ₂		
	Do N	- N			
		R3			
Ex.	R2	1 R3	Purity (%)	rt (min.)	[M+H]*
293	cı No.		99.5	5.87	525.1
294	61 70.		98.5	5.21	447.2
295			95.7	4.41	396.3
296			92.9	5.06	430.3
297		200	 54	5.19	461.2
298		NC	91.8	5.07	441.2
299			95.8	5.18	430.3
300		N,	96	5.28	457.3
301		Br	96.9	5.45	494.2
302			. 87	5.49	485.3
303		g	35.6	6.18	552.2
304			96.7	4.97	474.3
	293 294 295 296 297 298 299 300 301 302	293	Ex. R2 R3 293 c R3 294 c C C C C C C C C C C C C C C C C C C	Ex. R2 R3 Purity (%) 293	Ex. R2 R3 Purity (%) rt (min.) 293 c.

• 5

. 30

	Γ	·	- 174 -	<u>.</u>		
		NH ₂				
:		5 - N.		1		
		R2	_N R3	,		
5		\$ ~				
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	305	15		83.9.	5.24	380.2
10	306	F - F		92.8	5.39	414.2
	307		NO.	92	5.14	445.2
15	308	F F	NC	97.4	5.11	425.1
	309			98.1	5.47	414.2
. 20	310	F	N	97.2	5.47	441.1
	311	F F	Br	97	5.52	478.1
25	312			93.3	5.99	469.2
20	313			98.3	5.91	536.1
30	314			96.5	5.31	458.2
35	315		>-	98.7	4.12	340.3
	316			93.4	4.66	374.2
				<u> </u>	L	

		-1/5- /N	H ₂		
			•		
	R2 N	-N	1,		
	S ~	R3	1,		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
317		NO ₂	98.9	4.78	405.2
318		NC .	97.8	4.71	385.2
319			98.1	4.78	374.2
320		N3 .	97.2	4.9	401.2
321		Br	98.8	5.09	438.1
322			95.8	5.07	429.3
323			98.5	5.82	496.2
324			97.5	4.59	418.2
			-		

	4	7	\sim	
-		/	0	

	NH ₂					
	N. N.				:	
	R2	R3	: .			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]	
325		>-	93	3.71	358.2	
326			68 + 30	4.0 + 4.1	396.2	
327		F C	69 + 31	4.5 + 4.6	462.2	
328		0.0	66 + 27	4.7 + 4.8	484.3	
329		ci vo,	67 + 31	4.4 + 4.6	457.2	
330			67 + 30	4.3 + 4.5	541.2	
331			62 + 33	3.9 + 4.0	436.2	
332			64 + 30	3.5 + 3.6	447.3	
333			65 + 30	4.7 + 4.9	418.2	
334		>-	68 + 29	3.8 + 3.9	372.3	
335			69 + 29	4.2 + 4.3	410.2	
336		, L	. 68 + 30	4.6 + 4.8	476.2	

NH2 5 Ex. R2 R3 Purity (%) rt (min.) [M+H] 337 61 + 324.8 + 4.89498.3 10 338 66 + 304.55 + 4.71 471.2 339 68 + 294.46 + 4.58 555.2 .. 15 340 22 + 115.13 + 5.22520.4 341 67 + 244.09 + 4.14450.3 20 342 71 + 233.7 + 3.74461.3 343 67 + 314.82 + 5.02432.2 25 344 66 + 314.14 + 4.39404.3 345 65 + 314.74 + 4.94 442.2 30 346 65 + 315.25 + 5.47 508.2 347 5.28 + 5.5 62 + 29530.3 35 348 5.21 + 5.3865 + 30503.2

•			- 178 -		·	
			N	IH ₂		
		R2-N	N S			
		\$	R3	•		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	349	5-		63 + 30	5.03 + 5.24	
	350	s-	HO	64 + 30	5.59 + 5.84	552.3
	351	2		58 + 28	4.49 + 4.66	482.3
•	352	· s-	o N	64 + 26	4.01 + 4.11	493.3
	353	· s		65 + 31	5.54 + 5.71	464.2
::	354	N ₃	7	57 + 24	4.08 + 4.19	399.3
	355	N3 .		62 + 28	4.52 + 4.7	437.2
· · · · · · ·	356	N ₃		62 + 28 -	5 + 5.2	503.2
	357	N ₃		58 + 26	5.08 + 5.25	525.3
	358	N3	c1	62 + 29	4.98 + 5.19	498.2
	359	N ₃		62 + 29	4.82 + 4.99	582.2
	360	N	***	62 + 28	5.39 + 5.58	547.3

-	70	
- 1	, ,	

			<u>- 179 - </u>			
				NH ₂		
		R2-N	N R3	1,		
1	Ex.	R2	J/ R3		 	
	361	N.		Purity (%) 56 + 26	rt (min.)	
	362	N ₃		64 + 32	5.32 + 5.5	5 459.2
	363	B, F F	>-	94	6.36	505.2
	364	B, F		98	6.39	542.1
	365	Br F		25 + 72	6.74 + 6.77	608.1
	366	Br F	0.0	92	7.07	630.2
	367	Br FF	0.	23 + 73	6.38 + 6.42	603.1
-	368	B, F		26 + 69	-6.73 + 6.76	687.1
	369	B, F F	***	60	7.55	652.3 ⁻
	370	F		82	6.39	582.1
	371		· N	94	5.74	593.2
	372	F		22 + 73	6.63 + 6.74	564.1
		*		_		

<u>- 180 -</u> -NH₂ R2 Ex. R3 Pucity (%) rt (min.) $[M+H]^{\dagger}$ 373 59 + 274.88 + 5.13403.3 374 67 + 305.35 + 5.44441.2 375 64 + 345.84 + 5.92507.2 376 62 + 286 + 6.13529.3 377 97 5.58 502.2 0,N 378 65 + 325.71 + 5.8586.2 O,N 379 49 + 236.45 + 6.58551.3 380 61 + 265.18 + 5.3481.2 381 45 + 214.57 + 4.68492.3 382 84 5.9 463.2 383 56 + 264.65 + 4.89 410.2 384 64 + 305.29 + 5.47 448.2

5

10

15

20

25

3**0**

- 4	\mathbf{c}	-	
1	$\boldsymbol{\varkappa}$	- 1	

			- 181 -				
				NH ₂			_
		H2-N	R3	4			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]	_ T
	385	F	F F O	65 + 30	5.78 + 5.9		
•	386	F	0.0	63 + 27	5.8 + 6.02	2 536.2	<u>-</u>
	387	F	cı No,	65 + 31	5.71 + 5.8	1 509.1	_
	388	F		62 + 32	5.59 + 5.79	593.1	
	389	F		30 + 14	6.22 + 6.45	558.3	
	390	F Ci		57 + 26	5.01 + 5.2	488.2	
	391	F	ON	54 + 26	4.46 + 4.61	499.2	
	392			27 + 11	6.09 + 6.18	470.2	
ļ	393			63 + 29	4.53 + 4.6	464.3	
	394			65 + 30	4.78 + 4.93	502.3	
·	395		£ 0	61 + 28	5.16 + 5.35	568.2	
	396		0.0	59 + 25	5.3 + 5.42	590.3	
		-			i		

10

1	23	_

			- 183 -	. ·		
				NH ₂		; ;
5		F2 N	R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	402			88.5	4.52	442.1
10	403		F	94.6	4.72	432.15
	404		N ₃	95	4.78	455.16
15	405		cı No.	98.6	5.19	493.12
20	406			95.8	4.99	577.11
20	407			95.1	4.44	472.19
25	408		o N	96.3	4,0	483.21
	409		Br S	94.5	5.35	498.04
30	410			94.1	5.61	454.15
	411			83	5.43	526.03
35	412			94.9	5.4	515.97
	413		N, .	93.4	5.52	539.00

•			- 184	<u>-</u>	•	•
				NH ₂	1	
5		F2 N S	P3	5 Y		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	414		c. No,	97.1	-5.48	576.95
10	415			92.7	5.69	660.99
15	416			92.2	5.27	555.98
15	417			92	4.7	567.00
20	418		Br. S	89.7	5.73	581.87
	419			87.8	5.77	538.00
25	420	· s		84.4	4.74	446.14
	421	S-	F .	92.6	4.9	436.08
30	422	S-		9.1.2	5,0	459.10
-	423	S-		72.4	5,0	487.16
35	424	S.	200,	94.9	5.19	497.07
	425			91.7	5.18	581.05

			185	; ·		•
				NH ₂		·
5		F2 N	-N R3			
	Ex.	R2	R3	Punty (%)	rt (min.) [M+H]
	426	s		91.5	4.67	476.12
10	427	s		89.6	4.16	487.13
	428	S	Br	. 91.7	5.38	501.96
15	429	S-		. 89.9	5.48	458.10
20	430	F. To		87.1	5.26	484.14
	431	F F O	F	95.7	5.41	474.10
25	432	£	N,	94.6	5.51	497.12
, <u>:</u>	433	F	cı No,	97.4	5.64	535.01
30	434			96.2 \	5.69	619.04
	435			94.4	5.21	514.10
35	436		o CN	94.7	4.67	525.11
·	437		Br S	92.7	5.84	539.94
	*					

			- 186			
·				NH ₂		. :
5		F2 N S	R3			
	Ex.	R2	FI3	Purity (%)	rt (min.)	[M+H]
	438			91	5.93	496.09
10	439			82.4	4.82	492.18
	440	0.0		92.2	5.03	482.14
15	441	0.0	N,	·. 90.4	5.08	505.15
20	442	0.0		33.4	5.14	533.18
20	443	0.0	c	97.6	5.45	543.07
25	444	0.0		93.9	5.26	627.10
· .	445			93.6	4.78	522.14
30	446	0.0		94	4.34	533.15
	447		Br S	91.6	5.6	547.98
35	448	0.0		92.6	5.82	504.14
. *	449	C ₁		84.9	5.76	468.08

1	8.	7	_

•			- 187 -	·		
÷				NH ₂		•
. •		R2-N				
5		s	R3	,		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	450	C ₁	f · ·	95.4	5.54	458.03
10	451	C,	N ₃	93.3	5.74	481.03
3.5	452	C ₁		85.3	6.21	509.06
15	453	C.	ci No.	97.4	5.62	518.97
20	454	C ₁		92	5.91	602.90
::	455	C, ci		91.4	5.54	498.06
25	456	C ₁		91.4	4.98	509.06
	457	C.	Br s	88.7	5.9	523.88
30	458	C ₁		88.5	5.88	480.05
	459			88.2	4.69	506.18
35	460		F	93.1	4.87	496.15
	461		N,	91.2	4.92	519.15

- 188 -

			- 188 -			
				H ₂		
		F2 N N				
5.	. · ·	s_J	├ ── F 3	,		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	462			26.9	- 5.01	547.17
10	463		0,	93.9	5.26	557.08
	464			93.2	5.08	641.13
15	465	5		95.7	4.64	536.15
20	466		o N	95.3	4.24	547.15
20	467		Br s	92.3	5.39	562.00
- 25	468			92	5.6	518.14
	469	c, T		75.3	4.59	494.13
30	470	c ₁	F .	\ 97.1	4.73	484.11
·	471	c ₁	N ₃	95.4	4.81	507.11
35	472	c.		10.7	4.9	535.14
	473	c ₁	ci No.	96.4	5.07	545.02
			- · · - · · · · · · · · · · · · · · · ·			

			- 189 -			:
		F2 N N		NH ₂		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	474	c. P		96.5	4.98	629.05
10	475	c _i o		95.2	4.5	524.08
15	476		0 0	96	4.06	535.09
15	477		Br S	95.3	5.22	549.95
20	478			94.1	5.36	506.08
-			·.			

- 190 NH, R2 rt (min.) R3 Purity (%) [M+H]* Ex. 45.6 4.95 377.14 479 431.07 79 5.17 480 4.84 442.08 56.8 481 79.2 5.04 415.07 482 438.11 78.4 5.25 483 481.10 82.6 5.47 484 503.17 72.6 5.81 485 79 5.36 560.04 486 5.34 480.98 72.1 487 5,0 441.09 76.9 488 386.09 4.6 94.5 489 95.4 5.34 440.04 490

5

10

15

20

25

30

		<u></u>	<u>- 191 - </u>		<u> </u>	
			NH ₂		7	
		· /		1		
		F2 N)— яз			. •
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	491		NO,	- 95.3	5.05	451.06
	492			95.2	5.23	424.07
	493		N.,	93.4 .	5.35	447.07
	494			96.1	5.67	490 ₋ 07
	495		0.0	88.5	5.84	512.12
	496			92.9	5.55	569.00
	497		Br S.	92.8	5.64	489.95
	498			92	5.03	450.08
	499	0,		- 96.5	4.87	397.11
.•	500		ci	96.1	5.26	451.06
	501	NO.	NO ₂	96.1	4.95	462.07
·	502	, o.		96.3	5.15	435.08

1
.) [M+H] ⁺
458.11
501.08
523.15
580.03
500.96
461.08
408.18
462.13
473.19
446.17
469.19
512.17

- 193 -R3 Purity (%) rt (min.) R2 Ex. [M+H]* 90.6 515 5.33 534.20 591.13 96.3 5.15 516 517 5.47 512.04 93.5 4.65 472.19 518 95 519 95.5 5.14 420.13 5.63 474.07 520 95.6 521 93.8 5.35 485.10 522 95.1 5.53 458.09 _ 94.2 5.67 523 481.10 94.6 524.09 524 5.9 6.15 546.11 525 88.4 526 92.6 5.83 603.07

5

10

15

20

25

30

- 194.--NH2 R3 Purity (%) rt (min.) Ex. R2 [M+H]* 89.8 523.97 5.87 527 92.3 5.41 484.11 528 380.18 98.2 3.75 529 4.35 434.11 96.4 530 96.5 4.19 445.13 531 4.25 418.14 95.7 532 94.4 4.33 441.13 533 95.5 4.69 484.14 534 - -- ::-89.5 4.81 506.18 535 95.5 4.54 563.08 536 4.79 484.03 92.2 537 93.7 4.07 444.14 538

5

10

15

20

25

30

NH, R3 Purity (%) rt (min.) Ex. , R2 [M+H] 95.4 4.25 416.10 539 5.05 95.7 470.07 540 481.05 95.6 4.81 541 454:07 542 95.4 4.96 5.05 477.10 94.4 543 520.04 95.9 5.4 544 5.51 542.11 89.5 545 5.26 599.02 94 546 5.4 519.93 92.9 547 480.08 4.72 548 92.3 585.84 92 6.01 549 96.7 639.79 550 6.18

5

10

15

20

25.

30

		- 196 -			
	F2 N N	→ R3			
Ex.	R2.	R3	Purity (%)	rt (min.)	[M+H]*
551	Br Br	NO ₂	95.8	5.84	650.83
552	Br Br		96	6.04	623.81
553	Br Br		94.7	6.22	646.85
554	Br Br		95	6.39	689.82
555	Br Br		88.8	6.7	711.88
556	B, B,		94.9	6.4	768.76
557	Br Br	Br S	95	6.35	689.71
558			93.7	6.01	649.83

·			4 · · · · · · · · · · · · · · · · · · ·	- 197			
	,	?			H ₂		
			,			1	
		1					ľ
5			R2 N	N R3			
		Ex.	R2	R3	_ Purity (%)	rt (min.)	[M+H]*
;		559			· - 87.5	4.07	408.18
10	A	560		Br	89.6	4.15	458.09
15		561		N ₅	89.5	4.04	421.17
		562			54.6	4.37	449.23
20	÷	563			92.7	4.85	516.14
		564		0.	92.5	4.27	459.14
25		565			94.2	3.87	438.18
		566			92.6	-4.41	444.2
30		567		· CIN	92.2	3.5	449.21
		568			92.4	4.53	420.17
35	e.	569			86.7	4.23	422.21
		570		Br	93.7	4.38	472.12

		·	- 198 -			· · · · · · · · · · · · · · · · · · ·
			NH	<u>2</u>		
				1		
		R2 N	N R 3	,		
ŀ	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	571		N, .	88.7 ⁻	4 . 27	435.19
	572			64.2	4.53	463.25
	573			93.8	5.15	530.18
	574		ci Zo,	93.6	4.55	473.17
	575			86.8	4.07	452.21
	576			93.4	4.65	458.24
	577		o CNC	91.8	3.71	463.23
	578			91.6	4.85	434.20
	579		O ! N	83.1	4.38	436.23
	580		Br	92.7	4.56	486.14
	581		N ₃	88.9	4.43	449.24
	582			£0.4	4.65	477.25

- 199 -

				<u>- 199 - </u>			
		٠.			H ₂		
	·		ere e				
5			A 2 N	N P3	′,		
		Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
10		583			_93	5.34	544.19
		584		0,	94.3	4.75	487.20
15		585			93.2	4.23	466.23
		586			94	4.82	472.28
20		587		o IN .	92.1	3.88	477.28
		588		<u> </u>	91.7	5.06	448.23
25		589			83.1	4.62	419.20
		590	\(\frac{1}{2}\)	Br .	93 -	5.06	469.09
30		591	22	N ₃	88	4.89	432.18
		592	2		88.5	5.02	460.23
35		593	2		93.2	5.69	527.16
		594	2	0.	91.6	5.11	470.15

			- 200 -			
				4.		
		FI 2 N	N R3	,		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	595	2		90.2	4.53	449.19
	596	2		91.9	5.4	455.19
-	597	2	° L	90.2	3.99	460.20
	598			93	5.41	431.16
	599			86.1	4.05	424.22
	600		Br	91.8	4.17	474.12
	601		N ₅ .	90.2	4.04	437.19
	602			86. <u>4</u>	4.34	465.24
	603			93.5	4.91	532.19
	604		CI NO.	93.4	4.3	475.16
	605			87.9	3.86	454.20
	606			91.8	4.47	460.25

- 201 -Purity (%) rt (min.) R2 RЗ [M+H]* Ex. 465.21 90.7 3.48 607 436.19 4.55 92 608 5.19 541.25 85.9 609 5.6 591.13 92.4 610 554.23 89.7 5.45 611 582.28 5.58 88.7 612 649.24 6.06 93.2 613 5.55 592.18 94.1 --614 571.23 90 5.09 615 577.26 93.3 5.91 616 4.53 582.24 91.4 617 5.84 553.22 92.1 618

5

10

15

20

25

30

10,

			- 202 -		·	<u>.</u>
		; ; ;	N	<u>H2</u>		
		N.	N R3			
		R2		·		
	Ex.	- R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	619	F Br		76.6	5.06	490.15
	620	F Br	B	91.2	5.56	539.99
	621	F Br	N	86.7	5.39	503.12
	622	F Sr		81	5.47	531.15
	623	F Br		92.2	6.13	598.06
	624	F Br	C1 , NO.	84.8	- 5.59	541.03
-	625	F Br		88	5.04	520.11
	626	F Br		91.6	5.91	526.14
	627	F Br	ON NOTE OF THE PROPERTY OF THE	89.4	4.49	531.11
	628	F Br	<u></u>	90.3	5.89	502.10
	629	CI		83.3	4.41	458.20
	630	CI	Br	91.5	4.72	508.08

	· -	· ·	- 203 -			
*	3		N	H ₂		
		÷ .		11		
5		R2 N	E A			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	631	c i	N	87.8	4.57	471.18
10	632	c l		57.7	4.71	499.23
	633	61		92.8	5.54	566.12
15	634	c i	0.	93.5	4.93	509.13
20	635	CI		89.3	4.29	488.19
	636	CI		93.6	4.99	494.21
25	637	CI	o CN	91.7	3.88	499.21

638

91.9

5.22

470.18

2	1	1	_

	- 204 -						
	R2 N R3				,		
5	Ex.	, R2	R3	Purity (%)	rt (min.)	[M+H] ⁺	
	639	Br		95	7.28	374.10	
10	640	CF,		87 .	7.62	364.24	
	641	-s .		84	6.75	342.23	
15	642	NC .		79	6.6	321.24	
	643	_N		81	4.96	339.29	
20	644			82	6.44	324.28	
	645			83	7.16	338.30	
25	646	MeO OMe		59	6:6	356.25	
	647			,, 86	7.28	402.23	
30	648			84	7.29	346.26	
	649	Br		85	7.66	388.1	
35	650	CF3		84	7.96	378.21	

- 205 -

	_		<u>- 205 - </u>		·	
٠.		1	V H ₂		;	:
		R2 N N	R3	11		
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	651	·s		85	7.14	356.23
10	652	NC .		73	7.02	335.26
	653			76	5.37	353.29
15	654			83	6.84	338.30
	655			81	7.51	352.29
20	656	меО		75	6.99	370.27
	657			77	7:6	416.26
25	658			80	7.65	360.25
	659	Br .	F	, 87	7.37	392.10
30	660	CF3	F .	71	7.7	382.16
	661	-s .	F	63	6.9	360.21
35	662	NC .	F	59	6.7	339.23

- 206 -

		1	\H <u>2</u>			
		R2 N N	R3		•	:
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁻
	663		F	80	5.06	357.26
10	664			63	6.61	342.26
	665		F	82	7.28	356.25
15	666	M•0 — M•	F	39	6.74	374.22
	667		F.	85	7.42	420.24
20	668		F	81	7.39	364.26
	669	Br		93	8.28	443.2
25	670	CF ₃		88	8.64	433.2
	671	_s\		" 88	7.7	411.2
30	672	20		08	7.76	390.26
	673			85	6.08	408.3
35	674			89	7.36	393.3

			<u>- 207 - </u>			
		^	H ₂		•	
		R2 N S	R3	11		
5	Ex.	R2	R3	Purity (%)	rt (min .)	[M+H] ⁺
·	675			84	8.03	407.3
10	676	ме0		81	7.59	425.3
	677	Q.O-		83	8.03	471.3
15	678			91	8.24	415.2

. .

1.1

_			- 208 -			
		R2 N N	NH2 N R3	•	<i>f</i>	
5	Ex.	S — '	R3	Purity (%)	rt (min.)	[M+H] ⁺
	679	Br	0,0	78 -	-7.41 -	419.09
10	680		02N	75	6.98	369.23
	681		0,N	81	7.51	383.23
76	682		0,N	85	7.46	391.20
15	683	200	M e O	74	6.79	351.21
	684	\	M e O	81	5.18	369.26
20	685		MeO	76	6.73	354.26
	686		MeO .	87	7.39	368.27
25	687		M 0 O .	80	7.48	376.22
	688	B, .		" 83	8.14	424.11
30	689	CF,		¹⁾ 83	8.37	414.14
	690	NC .		78	7.48	371.21
35	691	_N		85	5.88	389.24
	692			79	7.53	374.24

		·	<u>- 209 -</u>			<u> </u>
			NH2			
		R2 N N	R3	11		
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
·	693			83	8.1	388.23
10	694			77	8.18	452.23
	695			81	8.14	396.20
• •	696		, , , , , , , , , , , , , , , , , , ,	76	7.94	413.16

- 210 -

	h	<u>- 210 -</u> H2			
	R2 N N	R3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
697			86 -	7.41	402.01
698	OCF ₃	•	93	7.57	360.16
699		<u></u>	74	6.32	361.23
700	CF3	· • •	88	7.75	344.19
701	N.3	· • •	83	6.88	317.22
702	Br Br		93	8.33	509.9
703	CICICI		90	8.69	411.99
704	Оме		72	8.16	382.21
705	0.0	*	81	7.27	382.2
706			82	7.7	436.05
707	OCF ₃		91	7.85	394.16
708			80	6.59	395.19

_	21	1	_
-	- 1	- 1	-

_			<u>- 211 - </u>			
			H ₂			
		R2 N N	R3	11		
-	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	709	CF,		_87 	7.99	378.16
	710	N3 .		83	7.3	351.2
	711	Br Br		89	8.58	543.85
	712			89	8.9	446.01
	713	OME		72	8.35	416.19
	714	J., O		82	7.62	416.19
	715			85	7.84	436.05
- .	716	OCF,		88	7.97	394.14
	717			75 -	6.82	395.21
	718	CF,		88	8.13	378.13
	719	N ₃		78	7.5	351.2
	720	Br Br		91	8.65	543.86

_		- 212 -		<u> </u>	
	N	VH ₂ ✓ R3		,	
	R2 S		,,		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
721	<u>0</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		89 -	8.97	446,0
722	O Me		75	8.55	416.19
723	0.0		83	7.84	416.19
724		CF,0 .	90	8.24	506.01
725	OCF,	CF,0	88	8.37	464.1
726		CF,0	76	7.43	465.17
727	CF ₃	CF,0 .	86	8.52	448.1
728	N ₃ .	CF,0	84	8.11	421.11
729	Br Br	CF,0	89	8.97	613.8
730	CI CI	CF,0	90	9.24	515.94
731	ОМе	CF30	74	8.94	486.17
732	0.0	CF,0	81	8.51	486.16

5.

			- 213 -			`
	•	1) <u>H2</u>	•		•
		R2 N S	R3		·	·
-	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	733		0 N	82	8.15	584.93
	734	OCF3	0 N	81	8.26	543.05
	735		0 N	69	7.31	544.1
	736	CF, .	0 N	80	8.43	527.07
	737	N ₂ .	0 N	82	7.99	500.1
	738	Br	0 N	88 .	8.92	692.79
	739	CI CI	0 181	85	9.23	594.87
	740	ом.	0 N	71	8.84	565.1
	741	0.0	0 N	79	8.36	565.08
	742			82	7.77	475.06
	743	OCF3		81	7.91	433.13
	744			86	6.72	434.21

- 214 -

745 CF ₃ 746	[M+H]* 417.15
Ex. R2 R3 Purity (%) r1 (min.) [1] 745 CF ₃ 82 8.03 4 746 N ₃ 84 7.59	417.15
745 CF ₃ 746	417.15
745 746 747 87 747 86 86 8.03 47 747 748 748 749 749 749 750 750 750 760 840 759	
747 Br Br 747 Br Br 748 CI CI CI N 76 8.94 4 749 750 N 84 7.59	}
747 Br Br R 748 CI CI CI CI N 76 8.94 4 749 750 84 7.59	390.17
748 CI CI N 76 8.94 4 749 OME N 73 8.33 4 750 OME N 84 7.59	582.85
750 OME N 84 7.59	485.01
	455.19
	455.2
131	525.96
752 OCF ₃ CI 75 8.93	484.08
753 CI S 68 8.08	485.14
754 CF, CI S 75 9.08	, 468.06
755 N ₃ CI 78 8.77	441.06
756 Br CI S 81 9.56	633.79

.

.

	•	- 216 -			
	R2-N S	N <u>H2</u>			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
760		CF,0	92.9 <u>.</u>	5.03	436.23
761			90.4	5.56	422.33
762	+	CF ₃	94.36	4.94	420.26
763			88.08	5.09	428.30
764			77.6	4.42	423.34
765	J	H	92.4	5.52	480.38
766			84.6	4.8	402.25
767	J		89.8	5.79	462.37
768		CF ₃	91.9 -	5.12	460.20
769	OMe .	CF,	91.4	5.14	476.21
770	ÇF3	CF,	94.2	5.67	514.18
771	-	CF, CF,	93,0	5.37	464.18

_

N H₂ R2-N Ex. R2 Purity (%) R3 rt (min.) [M+H]* 772 94.5 5.64 572.07 · CF, 773 87.9 5.76 522.21 774 5.12 474.23 91.2 775 5.82 530.27 78.1 CF,O 776 88.8 4.55 408.22 777 90.7 5.13 394.34 778 392.23 92.6 4.45 CFs 779 400.30 8.88 4.65 780 76.5 3.94 395.33 781 452.38 90.8 5.11 782 87.7 4.33 374.29

5.35

91.5

434.38

5

10

15

20

25

30

35

,		·	- 218 -		· · · · · · · · · · · · · · · · · · ·	
			$N_{\underline{\text{H2}}}$			·
		R2-N S		•		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	784	OMe .	CF,0	92.1	4.61	424.25
	785	OMe .	~~~	89.3	5.28	410.33
	786	e N	CF,	95	4.49	408.22
	787	o M e		82.4	4.74	416.27
	788	0 M		73.8	3.95	411.30
	789	e O	H H	92.9	5.27	468.36
	790	e O M e		84.9	4.39	390.28
	791	O M e		91.5	5.53	450.37
	792	CF,	CF,0	90	5.5	462.19
	793	C. L.	·~~	93.9	6.25	448.31
	794	CF3	CF ₃	94.9	5.41	446.22
	795	C.F.3		93.5	5.76	454.26

<u>;</u>0

•	_			- 219 -			
				N_{H_2}			
		·	R2-N S	/ R3			
5		Ex.	R2	. R3	Punty (%)	rt (min.)	[M+H] ⁺
		796	CF ₃		89.8	4.95	449.30
10	·	797	ÇF,	HO	92.4	6.22	506.34
	·	798	CF,		93	5.52	428.245
15		799	CF3		92.8	6.39	488.34
		800	"- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CF,0	87.6 	5.11	412.20
20		801	m	~~	92.5	5.9	398.30
		802	u	CF ₃	93.5	5	396.20
25		803	r		92.2	5.35	404.26
 		804	h——		90.7	4.41	399.28
30		805	- ·	HO HO	94.2	5.87	456.34
•		806	i i		89.3	5.05	378.23
35		807	L .		90.9	6.07	438.33

		- 220 -			
	•	$\sqrt{-N} \frac{H_2}{M_2}$			
	R2-N S	— −R3	1		
Ex.	R2	R3	/ Purity (%)	rt (min.)	[M+H] ⁺
808		CF,0	88.8	5.43	520.09
809			94	6.19	506.19
810		CF	95.9	5.33	504.12
B11			92.9	5.68	512.15
812			88.9	4.8	507.18
813		HO	92.3	6.17	564.20
814			93.9	5.41	486.14
815			93.5	6.35	546.18
816		CF,0	91.9	5.41	470.25
817		~~~	93	5.98	456.34
818		CF,	91.4	5.29	454.24
819			90.4	5.49	462.29

	**	•	- 221 -		·	
			N_{12}		i i i i i i i i i i i i i i i i i i i	1
		R2-N	/			
		N N		1	•	
·	,	s //	-R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	820			86.5	4.75	457.34
· • ·· .	821		T P	90.5	5.94	514.34
	822			90.1	5.21	436.26
	823			89.7	6.18	496.37
,	824		CF,0	79.4	4.56	422.22
	825		~~	92.5	5.08	408.32
	826		CF, .	93	4.45	406.23
	827			90.2	4.63	414.26
	828			76.3	4.01	409.31
	829		HO	94	5.08	466.36
	830			90.7	4.34	388.25
	831			92.9	5.29	448.36
					•	

20

5

10.

<u>- 223 -</u> ŅН₂ 4. Ex. R2 R3 Purity (%) rt (min.) [M+H]* 70. 3.68 + 3.78 423.2 35 + 64840 438.3 3.7 98 841 dm. 446.2 35 + 634.3 + 4.4842 3.71 436.3 97 843 3.28 + 3.34447.3 32 + 65844 3.84 392.3 96 845 447.3 96 4.18 846 3.62 + 3.6430 + 64475.3 847 4.46 + 4.61418.3 36 + 61 848 70, 5.89 569.1 96 849 6.09 5.4.2 94 850 9 ~ • 6.55 + 6.6851 57 + 39592.1

5

10

15

20.

25

30

- 224 -

		N H2	<i>f</i>	•	
	A2 N N	—R3	•		
Ex.	R2	¹ R3	Purity (%)	rt (min.)	[M+H] [†]
852	Br		96 -	6.16	582.2
853	B .		28 + 59	5.53 + 5.61	593.2
854	Br.		95	6.35	538.2
855	B		54 + 41	6.8 + 6.88	593.3
856	Br		94	5.96	621.2
857	B r	<u> </u>	56 + 39	6.46 + 6.55	564.2
858		0,	34 + 63	4.09 + 4.2	451.3
859		0 M •	96	4.03	466.4
860		- j	33 + 64	4.69 + 4.76	474.3
861	5,		27 + 70	4.04 + 4.07	464.4
862	5-		33 + 63	3.63 + 3.71	475.4
863	-		95	4.18	420.4

. 5

. .

225 -

1			- 223 -			
		• •	\sim $^{N_{\rm H_2}}$			
	٠.					
	-					
		R2 N N		1		
		1 >	—R3			
		\$ <i>_</i> //		·*	•	
	Ex.	R2	, R3	Purity (%)	rt (min.)	[M+H] ⁺
			, H3	, , , , ,		2000.03
	2004			80	4.46	475.4
	864		N	89	· ".", " -	4/3.4
			<i>"</i>			
				00 00	204 200	500.4
	865			22 + 68	3.94 + 3.98	503.4
	866)— .	35 + 62	4.9 + 5.01	446.4
			702	<u>-</u>		
		200				
	867			35 + 61	4.39 + 4.52	487.3
·		٥,	0 M •			
		9.4.				
	868			33 + 63	4.22 + 4.29	502.3
		٩.	9.W+			
		9000			<u> </u>	
	869		cı Cı	35 + 62	5.08 + 5.2	510.2
		<u>d,</u>	Ċı	·		
		9.4.	~°~~			
	870			31 + 63	4.26 + 4.34	500.3
		۲,	0			
		9.4			,	
	871			33 + 62	3.82 + 3.91	511.3
		الح الح			<u> </u>	
		9 M •				
	872			31 + 62	4.42 + 4.51	456.3
		Į,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
		940				
	873			29 + 64	4.66 + 4.72	511.4
	1					
		QMe ,	Î			•
	874			33 + 57	4.11 + 4.2	539.3
			8 ./	,		
		9 M e				
	075			25 : 62	5.26 + 5.39	1822
	875			35 + 62	J.20 + J.38	402.3
•	<u></u>	۲،			<u> </u>	

20 .

- 226 -

		•	- 226 -			
		N _	NH ₂			
5		R2 N		,		<i>.</i>
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	876.		NO 21	32 + 65	3.63 + 3.7	467.3
10	877		9M*	97	3.69	482.4
	878		c ₁ C ₁	35 + 62	4.2 + 4.28	490.3
15	879			94	3.69	480.3
	880			28 + 68	3.3 + 3.33	491.3
20	881			96	3.8	436.3
	882			96	4.18	491.4
25 - '	883			94	3.63	519.3
	884			36 + 61	4.28 + 4.42	462.3
30 -	885	CI OM.	NO.	36 + 62	4.24 + 4.36	517.3
35	886	OM.	9 M • .	28 + 69	4.15 + 4.21	532.3
37	887	OM.	CI CI	35 ÷ 62	4.84 + 4.96	540.2
				_		

				- 227 -			·
			.N	N _{H2}			•
		. -	R2 N	—яз	•		
		Ex.	Ř2	1 R3	Purity (%)	rt (min.)	[M+H] ⁺
)		888	CI OM.		33 + 64	4.15 + 4.22	530.3
•		889	O M ·		32 + 63	3.76 + 3.84	541.3
5		890	GI M.		32 + 63	4.28 + 4.36	486.3
		891	GI M.		24 + 73	4.56 + 4.6	541.3
0		892	GI M.		31 + 59	4.05 + 4.11	569.3
		893	0 % 0		35 + 61	4.99 + 5.14	512.3
25		894	°,**\	20,000	33 + 64	5.59 + 5.7	576.3
		895	°,N	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	35 + 61	5.29 + 5.39	591.3
30	•	896	°,M	c:	26 + 71	6.32 + 6.35	599.2
	. i	897	O,M S		34 + 63	5.41 + 5.5	589.3
35		898	0,II		35 + 61	4.88 + 4.99	600.3
		899	0,N		35 + 62	5.63 + 5.72	545.3

3:

- 228 <u>-</u>

		R2 N N	—R3	,	•	·
5	Ex.	R2	R3	Purity (%)	rt (mir)	[M+H] ⁺
 	900	المارة		34 + 61	5.76 + 5.86	600.3
10	901	0,N		34 + 68	5.16 + 5.28	628.3
	902	N,O		98	6.45	571.3
15	903		2	35 + 60	3.84 + 3.93	502.3
	904	, , , , , , , , , , , , , , , , , , ,	o Me	32 + 62	3.72 + 3.79	517.3
20	905	× × × × × × × × × × × × × × × × × × ×	c ₁	32 + 62	4.59 + 4.68	525.2
	906	N N N N N N N N N N N N N N N N N N N		33 + 61	3.75 + 3.82	515.3
25	907	N N N N N N N N N N N N N N N N N N N		29 + 64	3.18 + 3.26	526.3
	908	N S S S		32 + 59	4 + 4.09	471.3
30	909	N_3500		32 + 60	4.28 + 4.38	526.3
35	910	N S S		34 + 56	3.62 + 3.71	554.3
	911	N S NO		31 + 63	4.58 + 4.66	497.3

-	_	_	
ッ	ッ	ч	٠.

		- 229 -						
	^	R1						
•			R3					
H ₂ N S /								
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*			
912			6.8 + 91.2	3.6 + 3.76	332.22			
913			88.1	3.94	352.19			
914	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		89.6	4.22	380.22			
915	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		61.6	3.95	382.17			
916	·		83.5	3.8	377.19			
917	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Br	84.2	4.41	430.10			
918	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z, .	70.9 ⁻	4.24	393.18			
 919	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O,N .	84.1	4.1	397.16			
920		Br s.	82.2	4.55	436.05			
921			82.8	4.66	392.17			
922			98	4.25	380.22			
923			91.1	4.26	400.17			
		· .						

25 .

- 230 -H2=N Purity (%) ВI R3 rt (min.) [M+H]* Ex. 428.21 92.4 4.46 924 4.23 430.20 925 93.8 425.17 4.14 86.4 926 4.7 478.11 92.3 927 82 4.56 441.18 928 445.18 90.9 4.44 929 4.9 484.07 89.8 930 86.4 5,0 440.17 931 4.38 394.22 97.2 932 414.18 86.3 4.48 933 4.68 442.22 92.6 934 4.44 444.22 91 935

5.

10

15

20

25

30

- 231 -

		- 231 -		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		R1			·
Цо		J S	R3	•	
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
936	O .	2	85.9	4.34	439.18
937		Br	88.2	4.86	492.12
.938		N ₃	83.6	4.71	455.2
939		0,1	87.8	4.59	459.19
940		Br s	89.8	5,0	498.09
941			83.9	5.14	454.20
942	F.		87.7	4.26	384.17
943	F.		94.7	4.5	404.15
944	F		18.6 + 76.4	4.2 + 4.64	432.18
945	F.		95.2	4.32	434.16
946	()		92	4.46	429.15
947	F.	Br	94.4	5.08	482.06

		<u>.</u>	- 232 -			· · ·
			P1 N N	R3 /		
	Н2	N			· · · · · · · · · · · · · · · · · · ·	
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
	948	F .	N	93	4.86	445.16
	949	F.	0,N	94.2	4.82	449.13
	950	F.	Br S	93.1	5.34	488.03
	951	F		93.7	5.47	444.16
	952		>-	91.5	4.43	400.13
	953	·		95	4.82	420.12
	954			14.8 + 81.2	4.38 + 4.88	448.15
•	955			95.8	4.64	450.13
	956	Ci		95	4.79	445.11
	957		Br . 1	95.4	5.4	498.06
	958	.,	N,	93.9	5.14	461.12
	959	C ₁	0,N	94.5	5.12	465.10

- 233 -

			- 233 -			
	Н ₂	N	N N N N	R3,	· · · · · · · · · · · · · · · · · · ·	
Ì	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
٠.	960	CI	Br	94.6	5.62	504.00
	961			96.4	5.74	460.13
·	962		\	6.5 + 87.5	4.2 + 4.54	416.19
	963			92.9	4.76	436.17
	964			17.3 + 6.2	4.5 + 4.9	464.21
	965		0-	92.6	4.64	466.17
	966			89	4.76	461.16
	967		Br	94.1	5.32	514.09
	968			92.1	5.09	477.19
	969		0,10	90.5	5.1	481.16
:	970		Br s	92	5.56	520.02
	971			93	5.72	476.17
			,			

			- 234 -			
			R1 N N	R3 /		
	H ₂	N	s_//	/ ·	-	.*
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
	972			91.6	4	410.16
	973:			89.7	4.28	430.15
	974			83.4	4.46	458.19
	975			96.9	4.19	460.16
	976			58.2	4.29	455.12 ·
	977		Br	81.4	4.84	508.06
	978		N, .	85.8	4.64	471.15
	979		O ₂ N	46.8	4.62	475.14
	980		Br s	77.4	5.06	514.02
	981			61.7	5.24	470.16
<u></u>	982			4.8	3.54	356.15
-	983	C		71.4	4.1	376.14

.

		- 235			
		R1			;
Нэ	N	J S	R3		
EX.	R1	R3	Purity (%)	rt (min.)	[M+H]*
984			79	4.3	404.17
985			- 88.3	4,0	406.13
: 986			12.2	5.32	401.11
987		B	46.5	4.72	454.04
988			56.3	4.49	417.15
989		02N	13.8	5.52	421.12
990		Br S	35.3	4.95	460.02
991	(°)		9.1	5.71	416.11
	984 985 986 987 988 989	984	H ₂ N S S S S S S S S S S S S S S S S S S	EX. R1 R3 Purity (%) 984	R1 N N N N N N N N N N N N N N N N N N N

10 :

			236			· · · · · ·
	H ₂	N	R1 N N R3			
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
-	992	•	NO,	95.3	3.33	367.12
	993			91.9	3.97	400.03
	994	•		92.5	3.64	336.17
	995	•	2,	83.7	3.75	363.13
	996	•		94.7	4.88	458.11
	997	•		93.1	4.03	372.14
	998			92.6	3.37	380.14
	999	- 		92.1	4.36	362.12
•	1000			91	3.32	405.11
	1001	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NO,	87.8	3.9	397.14
	1002	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		64.2	4.46	430.09
	1003			61.6	4.18	366.23

٦.

<u>- 237 -</u> R1 H_2 N Purity (%) R3 rt (min.) R1 Ex. [M+H]* 4.26 393.16 1004 45.6 72.4 5.28 488.17 1005 67 4.47 402.17 1006 3.86 410.16 1007 51.1 4.86 392.16 1008 57.6 435.16 75.1 3.92 1009 3.24 399.13 1010 90.7 3.79 432.06 79.6 1011 74.5 3.55 368.16 1012 3.62 395.15 1013 58.8 490.15 81 4.65 1014 3.88 404.17 86.8 1015

5

10

15

20

25

30

- 238 *-*Ŗ1 R3 Purity (%) rt (min.) Ex. R1 $[M+H]^{+}$ 71.4 3.3 1016 412.13 394.15 73.7 4.13 1017 80.5 3.3 437.15 1018 1019 94.6 4.19 417.10 4.76 450.07 1020 94.8 1021 92.9 4.42 386.13 8.88 4.56 413.11 1022 94.1 5.48 508.13 1023 1024 4.79 422.13 93.8 4.04 430.15 92.3 1025 5.08 412.10 90 1026 93.2 3.95 455.13 1027

5

10

15

20

25

30

			- 239 -		·	
	<u>н</u> 2	N	R1 N N R3	•		
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1028	F.	NO ₂	92.6	4.3	435.1
	1029	F.	-	92.8	4.9	470.1 -
	1030	F.		89.2	4.6	404.1
	1031	, .		89.2	4.76	431.1
	1032	F.		94.3	5.6	526.1
	1033			93.5	5	440.2
	1034	F.		92.4	4.2	448.1
	1035	F.		87.9	5.2	430.1
	1036	. F		93.6	4.1	473.2
•	1037		NO,	80.4	4.16	447.14
	1038	0		72.7	4.72	480.08
	1039			77	4.39	416.14
						

. 25

H ₂	N	R3		;	
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
1040		N ₃	59.2	4.5	443.16
1041			16.8	5.98	538.12
1042			59.5	4.74	452.16
1043			74	4.02	460.16
1044			26.3	5.52	442.13
1045			91.	3.82	485.17
1046		, NO.2	89.8	5.09	507.19
1047			84.5	5.52	540.09
1048			86	5.06	476.21
1049		2,	75.6	5.22	503.21
1050			90.3	6.14	598.15
1051			85.9	5.38	512.22

<u>- 241 -</u>

	: .		- <u>- 241 -</u> R1		•	÷
	<u>H2</u>	N	N N N R3	•		,
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
	1052			81.3	4.68	520.19
	1053		C	83.3	5.66	502.20
	1054			82	4.92	545.17
7	1055		NO.	93.1	4.34	445.16
	1056			81.5	4.77	478.10
	1057			79.9	4.46	414.17
	1058		N ₃	70.2	4.56	441.15
	1059			85.8	5.56	536.11
	1060			84.1	4.73	450.19
	1061			78.4	4.12	458.20
	1062		-·	83.3	5.13	440.16
	1063		~ .	83.1	4.22	
						•

_	2	1	2	_

		<u> </u>	- 242 -			
			R1 N N R3	3		
	H ₂	N	s_//	•		
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1064	· .		86.6	3.52	338.12
	1065	^ .	NO.	90.4	3.44	383.09
	1066	~~ .		87.3	4.25	422.10
	1067	/ .	B,	85.9	4.04	416.04
	1068	/		70.5	4.4	444.18
	1069	^ .		80.1	4.83	474.13
	1070	✓ ✓.		80.6	4.34	402.16
	1071	/	- ·	80.8	4.37	378.14
	1072	/	ci,	86.5	4.77	442.06
	1073	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		83.4	4.72	405.12
	1074	/ ⁰ ∕ ∕ . :		90.5	3.02	340.15
·	1075	∕° √ .	NO2	93.5	2.98	385.10
						

		- 243 -			·
H.	N	N R1 R3	•		
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
1076	/ ⁰ √ .		91.7	3.9	424.12
1077	\\ \frac{1}{2} \cdot \cd	Br	90.8	3.62	418.04
1078	/º~~.		80.8	4.09	446.18
1079	/°~~.		88.1	4.6	476.12
1080	/°~~.		91.5	3.98	404.16
1081	/°~~.		89.2	3.87	380.13
1082	/°~~.	ci	87.3	4.36	444.10
1083	/°~~.		90.6	4.24	407.13
1084			86.4	4.24	414.15
1085		NO.	91.8	4.21	459.17
1086			88.2	4.89	498.19
1087		Br	85.8	4.71	492.12

		- 244			· · · · · · · · · · · · · · · · · · ·
H ₂	N.	R1 N N R3			•
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
1088		0.0	76.1	4.9	520.21
1089			83.3	5.45	550.17
1090			84.9	4.9	478.24
1091			86.1	5.08	454.19
1092		ci ,	78	5.38	518.14
1093			84.5	5.38	481.21
1094			37.5	3.36	386.14
1095		, NO2	57.1	3.35	431.14
1096			44	3.78	470.17
1097		Br S	42	3.62	464.09
1098		0.0	38.8	4.14	492.21
1099			45.2	3.98	522.14

<u>- 245 -</u>

•			R1			
	H ₂	N		Ng Agr ₩		
5	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1100			33.4	3.99	450.20
10	1101			44.7	3.68	426.14
	1102		Ci	33.4	4.08	490.12
15	1103			42.4	3.67	453.17
	1104	F.		92.6	4.23	390.14
20	1105	F.	, NO.	91.9	4.1	439.1
	1106	F.		92.1	5	474.13
25	1107	F.	Br ·	93	4.85	468.04
·	1108	F.		86.5	5.04	496.18
30	1109	· ·		92.8	5.5	526.13
• • • • • • • • • • • • • • • • • • •	1110	, ·		92.8	5.1	454.17
35	1111	F .		92	5.1	430.10
		-		•		

		<u>- 246 - </u>	<u> </u>		
H ₂	N	N N R3	3		
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
1112		ci	92.8	5.48	494.08
1113	F.		92.8	5.1	457.18
1114			93.8	4.6	406.10
1115		NO ₂	93.6	4.5	451.03
1116			93.1	5.2	490.10
1117		8,	94.5	5.1	483.99
1118	CI	0.0	89.54	5.29	512.13
1119	C ₁		95.2	5.6	542.1
1120			92.8	5.38	470.15
1121			93.4	5.3	445.94
1122	.,	CI S	94.7	5.7	510.05
1123	, , , , , , , , , , , , , , , , , , ,		94.3	5.3	473.04

24	7	-

ſ		·	<u>- 247 -</u> R1			
			N_ N		٠	
	H ₂	N	R3		· ,·	
-	Ex.	R1	R3	Puńty (%)	rt (min.)	[M+H] ⁺
	1124			89.5	4.06	400.12
	1125		NO ₂	92.1	4.13	445.13
	1126			88.9	4.81	484.15
	1127		Br	88.8	4.56	478.09
	1128			82.4	4.76	506.20
	1129			88.6	5.36	536.12
•	1130			85.7	4.78	464.18
	1131			84	4.94	440.15
-	1132		CI	64.3	5.38	504.10
	1133			88.4	5.16	467.17
	1134			82.7	3.76	446.16
	1.135		NO ₂	89	3.77	491.14
		<u> </u>	NO ₂			

		- 248 -			
H ₂	N	R1 N N R3			
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
1136	8		87.1	4.4	530.13
1137		Br	84.6	4.21	524.08
1138			76	4.52	552.19
1139			85.6	4.98	582.12
1140			83.1 <u>.</u>	4.44	510.21
1141			88.3	4.6	486.19
1142		CI	1.5	5.07	550.12
1143			84	4.75	513.16

Ex. R1 R3 Purify (%) r1 (min.) [M+ 1144 75 4.48 300 1145 82 4.89 348 1146 86.7 4.72 354 1147 89 4.96 398 1148 7 87 4.37 345 1149 90 5.4 396 1150 89 5.9 448 1150 89 5.9 448			- 249 -			
Ex. R1 R3 Punity (%) rt (min.) [M+ 1144 75 4.48 300 1145 82 4.89 348 1146 86.7 4.72 354 1147 89 4.96 398 1148 7 90 5.4 396 1150 89 5.9 448 1151 85 5 40 1152 7 85 4.96 360 1153 7 91 4.39 417	H ₂	N				•
1144 75 4.48 300 1145 82 4.89 348 1146 86.7 4.72 354 1147 89 4.96 398 1148 87 4.37 345 1149 90 5.4 396 1150 89 5.9 446 1151 85 5 40 1152 85 4.96 360 1153 4.39 417		N S	N R3	•		
1145	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
1146	1144	•		75	4.48	300.16
1147	1145			82	4.89	348.16
1147	1146	•	C ₁	86.7	4.72	354.09
1149 90 5.4 396 1150 89 5.9 448 1151 85 5 40 1152 7 85 4.96 360	1147	•	Br	89	4.96	398.01
1150	1148	Ť	NC .		4.37	345.18
1150	1149	· ·		90		396.1
1152	1150	*	HO HO	89		448.2
1152 - 85 4.96 360 1153 91 4.39 417	1151		Br s.	85	5	404
1153 91 4.39 417	1152	-		·85······		360.10
	1153	→ 1	_ //	91	. ⁴ .39	417.14
95 5.14 366	1154			95	5.14	366.21
1155 92 5.52 414	1155			92	5.52	414.17

Ex. R1 R3 Purity (%) rt (min.) [M+ 1156				- 250 -			
Ex. R1 R3 Purity (%) rt (min.) [M+ 1156		H ₂	N	R1	1		
1156		-	S.		Purity (%)	rt (min)	tM+H1+
1156		EX.	nı .		Fully (78)	10 (111111.)	[141+11]
1157 93 5.6 464 1158 NC 94 5 411 1159 91 6.04 462 1160 91.5 6.4 514 1161 8 92.6 5.7 470 1162 93.8 5.6 426 1163 91.4 5.02 483 1164 61 78.2 5.81 468 1165 61 78.2 5.81 468 1166 96.7 5.6 474					95	5.37	420.13
91 6.04 462 1160 91.5 6.4 514 1161 8 92.6 5.7 470 1162 93.8 5.6 426 1163 91.4 5.02 483 1164 CI CI CI 78.2 5.81 468 1165 CI CI 78.2 5.81 468				Br	93	5.6	464.08
1160 91.5 6.4 514 1161 8 92.6 5.7 470 1162 93.8 5.6 426 1163 91.4 5.02 483 1164 CI CI 78.2 5.81 468 1166 96.7 5.6 474		1158		NC .	94	5	411.2
1161 8 92.6 5.7 470 1162 93.8 5.6 426 1163 91.4 5.02 483 1164 CI 78.2 5.81 468 1165 CI 78.2 5.81 468		1159			91	6.04	462.19
1162 93.8 5.6 426 1163 91.4 5.02 483 1164 96.3 5.55 420 1165 CI 78.2 5.81 468 1166 96.7 5.6 474	,	1160		·	91.5	6.4	514.2
1163 91.4 5.02 483 1164 CI 96.3 5.55 420 1165 CI 78.2 5.81 468 1166 96.7 5.6 474		1161		8 S.	92.6	5.7	470.1
1163 91.4 5.02 483 1164 CI 96.3 5.55 420 1165 CI 78.2 5.81 468 1166 96.7 5.6 474		1162			93.8	5.6	426.14
1164 96.3 5.55 420 1165 CI 78.2 5.81 468 1166 96.7 5.6 474		1163			91.4	5.02	483.21
1165 78.2 5.81 468 1166 96.7 5.6 474		1164		\	96.3	5.55	420.10
1166 96.7 5.6 474		1165			78.2	5.81	468.10
		1166		CI	96.7	5.6	474.06
1167 cı Br 96.9 5.8 517		1167		Br ·	96.9	5.8	517.97

	9	_	4	
•	~	~	7	

. [Н2	N. S.	- 251 - R1			
		N	_N R3	•		
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
:	1168	5	NC .	94.2	5.18	465.06
	1169	G - C		94	6.25	516.10
	1170	<u>c</u>	H	96.4	6.52	568.2
	1171	<u>ū</u>	Br s	94.6	5.9	524,0
	1172	<u>-</u>		94.9	5.81	480.07
:	1173	0-		91.9	5.25	537.09
	1174	MeO MeO		77.4	5.24	486.16
	1175			96.8	5.36	402.15
	1176			92.4	5.66	450.19
	1177		· cī	93.3	5.48	456.12
,	1178		Br ·	93.3	5.7	500.08
:	1179		NC .	90.7	5.12	447.15

10-

.

- 252 -

		·	- 252 -			·
	H ₂	N	R1		;	
		S	R3	,		
	Ex.	R1	¹ R3	Purity (%)	rt (min.)	[M+H]*
	1180			91.9	6.12	498.21
	1181		J. P.	95.1	6.5	550.3
• .	1182		Br s	92.8	5.7	506,0
	1183			94.9	5.74	462.15
	1184			91.4	5.13	519.17
·	1185	° .		73.6	3.52	346.19
	1186	°		71.5	4.5	394.17
	1187	°>.	· c	82.2	4.58	400,10
	1188	°>.	Br .	78.6	4.86	444.09
	1189	· · · · · · · · · · · · · · · · · · ·		70.5	5.3	442.17
	1190	°>	<u></u>	76.8	5	406.13
· ·.	1191	° .	2	80.5	4.1	463.19

10 .

- 253 -

		- 253 - / ^N H ₂		·	
	· · .				.
	-N		•		1
	R2	>(°	,		
	s	R5	· · · · · · · · · · · · · · · · · · ·		
Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H]*
1192		H .	28.3	3.61	373.15
1193		H H	64.3	2.55	396.15
1194		°	66.8	3.58	425.13
1195		× H	51.9	3.47	387.07
1196		H.	75.8	4.43	471.21
1197		Ĭ,	66.4	2.38	399.15
1198		N H	42.6	3.11	474.14
1199		H H	45.3	4.39	457.18
1200			64	4.62	485.21
1201		CIN.H.	55.1	4.09	429.12
1202		F F N I	75	4.22	449.13
1203		NH.	67.9	3.64	417.11

	<u> </u>	- 254 -		· · · · · · · · · · · · · · · · · · ·	
; ; ;				·	
÷	H2 N	Ps	,		
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
 1204		→ H ,	31.7 + 17.3	4.65 + 4.8	429.24
1205			41.8	3.86	407.14
1206		The state of the s	67.8	4.58	487.20
1207	- .	$\overline{\overline{H}}$	33.2	4.31	415.20
1208		H H	60.9	3.29	438.21
1209			58	4.29	467.18
1210		s H	51.9	4.21	429.15
1211		#1	70	5.03	513.24
1212		T T	22.9	3.17	441.19
1213		M H	71.8	3.81	516.16
1214			35.4	5.03	499.23
1215			64	5.18	527.25

		·	- 255 -	<u> </u>		
			M ₂			
		R2 N	O R5	,		
ŀ	Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H]*
	1216		CI H	68.2	4.71	471.19
	1217		H H	76.5	4.84	491.18
	1218		F 2 1	67.6	4.35	459.16
	1219		X F.	28.7 + 14.2	5.27 + 5.4	471.30
	1220		○○○──	66.9	4.52	449.21
	1221		H.	64.1	5.17	529.21
	1222		H.	49.7	4.55	423.19
	1223		H z + . H	78.8	3.41	446.17
	1224			76.2	4.48	475.15
	1225		S H	68.3	4.42	437.12
	1226		H :	79.6	5.24	521.17
••	1227		H H	49.1	3.29	449.20
				<u> </u>		

- 256 -

			1230			• ,
	•	-N.				
		F2	O R5	•		
-	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1228		N S N H	72.2	4	524.15
	1229		H.	69.7	5.22	507.20
	1230		H H	75	5.42	535.20
	1231		ci in H	78	4.93	479.13
	1232		F	79.1	5.04	499.16
	1233		里.	82.6	4.56	467.13
	1234		X ST.	45 + 24.6	5.53 + 5.7	479.26
	1235		H H	77	4.75	457.18
·	1236			70.4	5.41	537.18
	1237	CI ,	Jū, .	47.7	4.38	407.12
	1238	cı .	H H	71.3	3.27	430.12
,	1239	CI		70.2	4.35	459.10

- 257 -NH2 Purity (%) rt (min.) R2 R5 [M+H]Ex. 68.1 4.27 421.06 1240 5.13 505.13 78.8 1241 CI 3.17 433.11 24 1242 Ċŀ 3.86 508.08 74.2 1243 491.08 5.16 43 1244 71.8 5.38 519.12 1245 463.05 1246 69.9 4.85 483.10 79.2 4.96 1247 4.45 451.07 77.9 1248 5.42 + 5.6 | 463.20 42.6 + 23.51249 70 4.65 441.11 1250 CIT 72 5.36 521.12 1251

5

າດ

15

20

25

30

- 258 NH₂ **R**5 R2 Purity (%) rt (min.) [M+H]Ex. 441.14 4.96 1252 -28.2 -H 3.69 464.14 65.8 1253 4.86 493.14 51 1254 64.5 4.79 455.08 1255 72.2 5.55 539.16 1256 467.16 3.59 27.2 1257 4.38 542.12 38.6 1258 H 5.53 525.16 49.4 1259 <u>H</u>, 553.20 60.6 5.73 1260 497.13 5.27 67.7 1261 5.34 517.12 8.08 1262 485.13 78 4.92 1263

5

-10

15

20

25

30

15

<u>- 260 -</u> ¹R5 rt (min.) Purity (%) R2 [M+H] Ex. 439.18 ···--60 ··· -3.86 . 1267 OMe H 478.24 2.89 88.1 1268 3.83 389.20 89.1 1269 396.14 2.41 94.3 1270 2.33 418.20 94 1271 4.05 533.17 80.3 1272 93 485.23 4.33 1273 4.27 471.22 90.5 1274 423.20 3.94 82.4 1275 487.10 92.8 4.07 1276 4.09 463.16 92.3 1277 <u>H</u> 90.6 430.20 2.9 1278

5

- 10

15

20

25

30

νH2 Purity (%) rt (min.) R5 [M+H] R2 Ex. 94.7 3.69 431.14 1279 Н 471.21 4.37 90.6 1280 501.20 4.51 86.4 1281 4.16 463.09 93.1 1282 541.11 5.58 63.6 1283 4.23 580.17 82.4 1284 87.6 5.63 491.16 1285 4.03 498.13 91.5 1286 520.13 89.5 3.91 1287 635.14 82.2 5.61 1288 . . . 587.14 5.9 92.3 1289 573.11 5.86 1290 89.9

5

0-

15

20

25

30

- 262 _NH₂ rt (min.) R2 3. R5 Purity (%) [M+H]* Ex. 90 5.66 · 525.14 1291 589.02 5.73 90.9 1292 5.69 565.07 91.2 1293 4.72 532.13 89.4 1294 5.44 533.08 93.3 1295 CIT 5.95 573.11 93.1 1296 CI-6.06 603.16 90.1 1297 5.79 565.00 90.3 1298 4.65 515.20 63.6 1299 3.63 554.24 82.9 1300 4.67 465.23 85.9 1301 85.4 3.41 472.20 1302

5

. 10

15

20

25

30

- 263 -NH2 Purity (%) rt (min.) $[M+H]^+$ R5 R2 Ex. νH 3.31 494.23 83.7 1303 609.20 4.79 84.2 1304 561.20 5,11 86.5 1305 5.11 547.19 84.2 1306 499.23 84.8 4.75 1307 H. 539.15 4.89 89 1308 Η 506.23 3.76 85.9 1309 507.17 4.59 88.5 1310 547.20 87.8 5.16 1311 1.5 5.6 577.22 1312 539.10 4.99 89.7 1313 H . 4.81 545.20 65.3 1314

5

10

15

20

25

30

- 264 -Ŕ5 rt (min.) [M+H]* R2 Purity (%) Ex. 86.7 -3.82 584.25 1315 495.24 87.6 4.81 1316 3.63 502.20 91 1317 90.2 3.54 524.24 1318 639.22 85.4 4.91 1319 H 591.23 5.21 85.7 1320 577.22 5.19 90 1321 4.87 529.22 87.9 1322 593.12 5 , 86.4 1323 569.16 5.01 87.5 1324 536.23 89.7 4 1325 537.18 89.6 4.73 1326

5

10

15

20

25

30

νH2 Purity (%) rt (min.) R2 R5 [M+H]* Ex. 89.6 5.24 577.24 1327 607.24 5.33 86.7 1328 5.1 569.10 90.6 1329 4.17 467.23 62.1 1330 506.28 3.23 92.8 1331 4.14 417.24 81.3 1332 μ H 424.19 2.95 91.9 1333 2.87 446.24 91.8 1334 561.19 78.7 4.31 1335 89.5 4.58 513.25 1336 4.54 499.24 91.3 1337 4.24 451.23 1338 80.3

5

10

15

20

25

30

	·	- 266 -			
		NH ₂			
	H2 N	O R5	,		
Ex.	R2 .	R5	Purity (%)	rt (min.)	[M+H] ⁺
1339		Br N.₩.	77.6	4.37	515.12
1340		2H.	85.7	4.37	491.18
1341		° H	92.3	3.34	458.25
1342		H.	90.8	4.05	459.19
1343			79.9	4.63	499.25
1344		O D H	76.6	4.75	529.24
1345		CI H	91.9	4.45	491.13

- 267 -NH2 Purity (%) rt (min.) $[M+H]^+$ R5 Ex. R2 4.07 + 4.2 417.23 56.9 + 24.51346 4.98 + 5.1526.30 64.6 + 24.41347 430.25 3.96 + 4.162.4 + 25.11348 490.37 80.5 3.44 1349 503.31 4.9 + 5.065.4 + 27.81350 536.35 5.6 + 5.7 $64.5 \div 25.5$ 1351 509.30 86.8 3.3 1352 537.26 5.02 + 5.164.1 + 29.81353 <u>H</u> 543.32 5.37 + 5.560.8 + 32.21354 545.30 5.24 + 5.3 59.6 + 31.51355 4.69 + 4.8 | 527.31 61.6 + 24.81356 3.8 536.36 88.7 1357

. 5

> . 10

15

20

25

30

- 268 -

		- 268 -			
		<u> </u>	e i		
		Z			
	H2 N	_7, 10			
·	S	A5			
Ex.	R2	¹. R5	Purity (%)	rt (min.)	[M+H]*
1358			87.5.	3.8	528.38
1359	L	Z H.	58 + 25.2	4.12 + 4.3	417.27
1360	m		68.1 + 24.5	5.22 + 5.3	529.31
1361	u		64.8 + 23.1	5.12 ÷ 5.2	535.19
1362		~ ·	61.9 + 21.6	5.46 + 5.5	535.23
1363		F	90.4	6.06	644.33
1364		N	89.7	5.31	548.24
1365			84.3	4.5	608.34
1366			95.2	6.06	621.27
1367			90.9	6.6	654.4
1368		N_N_N_+	84.2	4.41	627.29
1369		Z +	92.8	6.12	655.27

- 269 -

	- 269 -							
			<u> </u>					
1								
			\rightarrow					
		FI2 N	-N	•				
			P 5					
	Ex.	R2	. R5	Purity (%)	rt (min.)	[M+H] ⁺		
	1370		O, H	91.9	6.4	661.33		
	1371		O.	93.2	6.3	663.32		
	1372		MeO H	87.3	5.9	645.32		
	1373			87.5	4.7	654.4		
	1374			- 84.8	4.7	646.38		
	1375		Ä.	71.8	5.53	535.23		
	1376		i.	94.2	6.28	647.32		
	1377			91.6	6.25	653.22		
	1378	7	N	63 + 26.1	3.98 + 4.2	441.30		
	1379		F	64.5 + 28	4.8 + 5.0	550.36		
	1380	10	<u></u>	65.1 + 26.9	3.93 + 4.1	454.30		
	1381	10	, v TĪ	56.6 + 30.1	3.54 + 3.6	514.40		
			J	····				

- 270 -~H2 1R5 Purity (%) rt (min.) R2 [M+H]* Ex. 4.64 + 4.9527.34 64.8 + 30.31382 64.3 + 28.35.33 + 5.6560.39 1383 533.35 64.5 + 24.83.5 + 3.61384 4.77 + 5.0 561.29 62.9 + 27.51385 5.08 + 5.3567.36 48.5 + 20.81386 4.98 + 5.2 | 569.33 61.2 + 27.51387 551.36 4.5 + 4.758.4 + 22.71388 3.92 + 4.0560.38 65.1 + 26.41389 552.43 3.92 + 4.163.6 + 26.11390 4.01 + 4.2 | 441.30 64 + 27.31391 4.96 + 5.2 | 553.35 66.2 + 28.91392 <u>7 H</u> 559.23 62.8 + 26.64.84 + 5.01393

5

10

15

20

25

30

- 271 -

			~H ₂			
		R2 N S.	N O As	, , , , , , , , , , , , , , , , , , ,		
	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1	394	\$.		59.4 + 26.3	3.95 + 4.1	445.26
1	395	\$	FN-N+	63.7 + 28.7	4.89 + 5.1	554.28
1	1396	\$.	N N H	62 + 27.9	3.9 + 4.1	458.27
1	1397	\$	THE THE STATE OF T	58.9 + 28.7	3.48 + 3.5	518.35
	1398			62.9 + 29.3	4.75 + 5.0	531.28
	1399			63.2 + 28.4	5.46 + 5.7	564.32
	1400	\$.	N N N N N N N N N N N N N N N N N N N	58.3 + 30.4	3.39 + 3.5	537.30
	1401	· ·	ŢĦ.	61.8 + 28.3	4.88 + 5.0	565.23
	1402	· ·	O H	61.5 + 27.9	5.2 + 5.4	571.28
	1403	s ,	Q.C	62.2 + 29.5	5.09 + 5.3	573.28
	1404	15 1	MeO H	60.6 + 26.7	4.54 + 4.7	555.30
	1405	s ·		59.2 + 31.8	3.86 + 4.0	564.32

. 20

30 -

R2 R5 Purity (%) rt (min.) $[M+H]^{+}$ Ex. 59.3 + 31.23.86 + 4.0556.37 1406 4 + 4.2445.26 49.3 + 21.71407 5.07 + 5.3 | 557.28 64.4 + 29.71408 ÷H 4.96 + 5:1563.20 1409 61.7 + 27.9552.27 5.24 + 5.462.4 + 25.41410 661.33 5.91 + 6.0 63.6 + 28.11411 60.5 + 30.25.14 + 5.2 565.25 1412 625.36 4.43 1413 87.2 5.88 + 6.0 | 638.30 1414 60.9 + 31.961.1 + 31.26.47 + 6.6 671.37 1415 89.3 4.34 644.35 1416 5.96 + 6.0 | 672.28 66.6 + 25.71417

- 272 -

5

10

15

20

25

30

Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
 1418	0,4,0		65.1 + 25.4 	6.25 + 6.3	678.35
1419	0,4,0	O. O. H.	63 + 27.5	6.13 + 6.2	680.32
1420	٠,٠	MeO H	54.7 + 29.8	5.75 + 5.8	662.33
1421	2,4,0		91.7	4.71	671.38
1422	0,N		89.3	4.72	663.41
1423	°.*.	$\overline{\overline{H}}$	49 + 23.9	5.34 + 5.4	552.26
1424	°, ~ C , C '	H H	64.1 + 27.2	6.18 + 6.2	664.34
 1425	°. O., O	61	62.3 + 27.3	6.13 + 6.2	670.25

LO

274 .

r			-2/4-			
		∠ <u>H2</u>	•			
		R2 N	>			
		5	A S			
	Ex.	R2 .	R5	Purity (%)	rt (min.)	[M+H]*
	1426		<u>H</u> ~ .	78.4 ⁻	4.58	463.27
	1427		<u>H</u>	53.4	4.48	471.23
	1428			86.2	3.67	526.29
	1429		OM•	86	4.58	542.25
	1430		C1 N N + .	84.9	4.98	546.21
	1431		Z-H	42.9	3.26	494.27
	1432			84.4	4.14	522.26
	1433			83.2 	4.72	570.25
	1434			87.1	4.04	530.22
	1435		~~ <u>~</u> #	45.6	3.16	464.25
	1436		H 2	85.6	4.4	475.20
	1437		, in the second	84.2	4.96	541.18

			<u>- 275 - </u>		* <u></u>	
		∠NH2			•	
				.		
	. •	R2 N) >—(° R5			
	Ex.	R2	¹ R5	Purity (%)	rt (min.)	[M+H] ⁺
	1438			- 87.2	3.88	554.28
	1439		Z H	. 84.5	4.39	437.23
	1440		i, H	33.8	5.34	593.17
	1441			9.5	4.7	463.24
	1442	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) \ \	78.8	5.11	499.20
::	1443	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	46.9	4.98	507.17
	1444	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		87.9	3.88	562.19
	1445	\$ 0	OM •	85.6 	4.95	578.19
	1446	9.4	CI N +	84.9	5.3	582.14
	1447	,		49	3.45	530.19
	1448	Ž.	, , , , , , , , , , , , , , , , , , ,	81.4	4.62	558.18
	1449	9~•		83	5.06	606.20

3 0

		<u>- 276 - </u>			
	\(\text{\text{H2}}{\text{2}}	:			
		•	1		
	R2 N	· · ·			
	s J) A5			
Ex.	R2	R5	Purity (%)	rt (min.)	04.10*
	9M• _	1,2	1 ditty (70)	10 (111111.)	[M+H]*
1450			84.9	4.42	566.15
1451	*	THE	40.7	3.5	500.19
1452	2 0 - 0	# H	85.1	4.87	511.13
1453		i Control	87.4	5.33	577.13
1454		~~~·	85.6	4.08	590.24
1455		· H	54.9	4.92	473.21
1456	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H _H	43	5.66	629.13
1457	 2 0 0 0	ŽH,	17.2	5.2	499.20
1458		H 7 7	77.6	4.3	479.20
1459		, <u>į</u>	55.3	4. <u>2</u>	487.18
1460			85.2	3.32	542.22
1461		ONe N +	87	4.22	558.19

		<u>- 277</u>			·
	∠ H ₂				
				e.	
		· ·		•	
	R2 N	>(°	•		
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1	•		, any (70)		[W+C]
1462		C1 N -	85.9	4.64	562.14
1463		N H	82.9	2.74	510.23
1464		J. H.	81.6	3.84	538.20
1465			84.1	4.41	586.21
1466			85.5	3.66	546.16
1467		The Hard Hard	49.3	2.8	480.20
1468		L H	81.7	4.11	491.15
1469		, NH	83.7	4.71	557.14
1470		W	82.2	3.59	570.24
1471			66.1	4.11	453.19
1472		, L, H	29.5	5.12	609.14
1473		H	9.9	4.44	479.20

- 278 R2 R5 Purity (%) rt (min.) [M+H]* Ex. 5.36 1474 82.8 491.28 5.29 1475 58.2 499.26 554.27 1476 86.5 4.37 5.33 570.26 1477 86.6 84.1 5.67 574.20 1478 522.29 70.3 3.89 1479 550.28 1480 84.2 4.94 598.26 1481 84.5 5.44 1482 558.24 86 4.84 3.93 50.1 492.29 1483 82.5 5.23 503.25 1484 79.3 5.68 569.19 1485

. 5

,ìo

15

20

25

30

279 -

			- 279 -			
		NH2			•	•
		R2 N) N _{R5}	<i>*</i>		·
	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H]*
)	1486			87.3	4.51	582.31
	1487			79.7	5.22	465.25
	1488			26.1	6.06	621.20
	1489			16.1	5.51	491.28
	1490	F	1 2-	77	5.02	453.22
	1491		Ī.	48.4	4.88	461.16
	1492	E		83.3	3.74	516.22
	1493		OM e	84.6	4.85	532.2
	1494		C1 N -	84.4	5.23	536.15
	1495		N H	69.9	3.29	484.23
	1496	F	$\text{local} \cdot \text{local} \cdot \cdot$	79.5	4.51	512.22
· ·	1497	F .		81.9	4.96	560.17

_					
	NH2	>			
	\$) _{R5}			
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1498			85.5	4.29	520.16
1499	-	<u>H</u>	67.7	3.32	454.19
1500		H 2 + .	82.7	4.78	465.14
1501	F .	F I	82.1 	5.26	531.13
1502	F		84.8	3.95	544.22
1503		z H	77.5	4.83	427.16
1504	F	H	24	5.6	583.11

17.7

5.12

453.21

25

1505

20

15

<u>- 281 -</u>

	NH2	
	R2 N N	O \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Ex.	R2	

Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H] ⁺
1506		. – – – – – – – – – – – – – – – – – – –	89.7	5.52	596.26
1507	Q., O.	· C1	87.2	5.37	562.23
1508		H\$-0-	77	4.62	583.26
1509			89.1	3.7	579.25
1510		⊘ -·	88.6	5.32	535.23
1511		-000	87.6	4	570.27
1512	F		88	5.12	474.19
1513	F	0 2 N — () - ·	90.5	5.09	519.14
1514	F	CI-(91.2	5.7	505.1
1515	F		88	3.74	475.17
1516	F		86.7	5.58	487.20
1517	F—CI	-000	88.3	3.88	532.18

15

. 10

:

į.

	<u>.</u>		÷283 -	·		
÷.		NH ₂	· · · · · · · · · · · · · · · · · · ·	•	÷	
5		R2 N N	O R5			
	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
10	1521			90.4	5.2	478.28
	1522			79.8	5.37	488.26
15	1523	+	0 2 M — N — .	90.3	5.13	523.27
	1524	+	c	81.2	5.7	509.2
20	1525	+	□ -·	91	3.88	479.26
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1526	+		91.5	5.62	491.29
25	1527	+		91.1	4.1	536.28
; ;	1528	+0	. – – – – – – – – – – – – – – – – – – –	91.9	5.68 _	546.25
30	1529	+	. — , , , ,	92	5.54	512.24
-	1530	+->,-:	○~ ~.	91.4	3.7	529.3
35	1531	+->	<u></u>	92.4	5.49	485.23
	1532	+		89.4	4.2	520.28

--

		•		- 284 -	·		
,			H ₂ N				
٠ .			R2 N N		•		
5			\$	R5			·
	<u> </u>	Ex.	R2_	¹ R5	Purity (%)	rt (min.)	[M+H] ⁺
- y		1533	MeO		90.1	4.56	452.20
10		1534	MeO .		76.8	4.76	462.18
7.5		1535	MeO .	0,14—()-1,0	92.5	4.58	497.22
15		1536	MeO .	<u> </u>	93.4	3.21	453.21
20	.:	1537	MeO .		91.2	5.04	465.22
20		1538	MeO .	-000	92:7	3.44	510.22
25	:	1539	MeO .		89.6	5.14	520.18
	. 	1540	MeO		90.2	4.93	486.17
30		1541	MeO .	○- ~_,	89.4	2.98	503.26
		1542	Me O L	<u></u>	90.9	4.84	459.18
35		1543	Me O .		89.1	3.55	494.26
	,		<u></u>	 	<u></u>	·	•

- 285 -

				<u>- 285 - </u>			
	ſ		;	N H ₂		,	·
		·		:	•		
				J	,		, .
5			R2 N	/9			
			\$_/	R5		,	
		Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H] ⁺
		1544		, M	83.5	4.19	425.25
			•				- .
٠	÷	1545		H, N	78.8	5.1	535.25
15	. ·	1546			79.7	4.67	484.23 . ·
		1547		├	88	5.46	537.27
20		1548			87.4	4.72	480.22
		1549		H _z -	82	4.94	494.23
25		1550	·	L Z H	89.6	4.92	522.18
		1551			86.9	5.03	599.27
30	÷	1552	o_N-	H H	84.3	4.7	486.20
•		1553		N H	82.7	3.36	455.18
35		1554	°	\$	82	3.68	543.20
			· · · · · · · · · · · · · · · · · · ·			······································	

- 286 -Ņ H₂ R2-Ex. R5 Purity (%) rt (min.) [M+H]* 1555 86.7 3.91 557.20 1556 80.9 5.06 496.26 1557 83.1 420.21 4.35 1558 ^{..}87.5 530.22 5.2 1559 76.7 4.62 495.27 1560 531.25 80.9 4.44 1561 85.7 5.16 584.30 1562 85.4 4.51 527.25 1563 541.25 82.1 4.66 1564 87.4 4.66 569.19 1565 646.34 82.9 5.03

5

10

15

20

25

30

- 287 -и Н2 `RŞ R2 R5 Purity (%) rt (min.) [M+H]* Ex. 4.44 533.23 82.7 1566 м <u>Н</u> 3.46 502.24 85 1567 590.27 3.82 81.8 1568 4.03 604.26 84.5 1569 H H 543.27 81.9 4.74 1570 4.13 467.25 84.3 1571 577.2 4.9 77.4 1572 H _5.15 550.3 77.7 1573 586.24 4.9 80.7 1574 639.34 5.6 1575 86.4 4.94 582.25 86.2 1576

5

10

15

20

25

30

- 288 -ŅH₂ R2 **R5** Ex. Purity (%) rt (min.) [M+H]* 5.17 596.28 82 1577 5.14 524.22 1578 89.7 1579 86.1 5.22 701.35 4.92 588.23 1580 85.1 1581 81.7 3.67 557.23 645.32 81 3.9 1582 1583 659,31 85.2 4.12 82.4 5.26 598.26 1584 Ħ'n. 522.25 1585 83.6 4.62

 \overline{H}_{J}^{N}

85.3

82.8

HM

5.39

4.94

632.29

481.16

35

1586

1587

30

5

10

- 289 -NH₂ R5 R5 R2 Purity (%) rt (min.) Ex. [M+H]1588 84.3 4.71 517.16 5.54 570.16 1589 89.6 513.13 4.78 1590 87.8 527.15 85.2 4.99 1591 4.98 555.07 1592 90.9 5.21 632.22 88.1 1593 Br-Ĥ 4.72 519.10 86.9 1594 87.4 3.47 488.12 1595 82.5 3.82 576.16 1596 590.12 86.1 4.06 1597

529.16

5.08

85.1

_

10

15

20

25

30

35

- 290 -N H2 Purity (%) R2 R5 rt (min.) [M+H]* Ex. 1599 84.8 4.34 453.13 H 74.9 1600 5.26 563.13

15

				<u> - 291 - </u>			·
				NH ₂			
5			R2-N N	(. *
	·	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H]*
10		1601		į. Ψ	88.1	3.87	409.24
. •		1602		₾.	90.1	4.0	423.26
15		1603		F. H	60.2	4.1	443.21
		1604		L Z H	91	3.9	427.24
20		1605		H H	57.6	4.4	493.23
	• ;	1606		· ·	48.1	4.12	423.27
25		1607		CI H	45.1	4.2	443.22
		1608			60.8	4.49	493.24
30		1609		O'N H	54.5	3.98	454.26
~		1610		CI NH	84	4.19	443.23
35	.*	1611		F F	92.8	4.49	493.25
		1612		C NH	86.2	4.51	477.21

			- 292 -			
			NH ₂	<i>:</i> .		
		_				
	÷ .:	R2 N N		•		
,		s	R5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	Ex.	R2	√R5	Purity (%)	rt (min.)	[M+H] ⁺
	1613		F	84.1	4.84	545.22
* 4	1614		· H	77.7	4.34	459.30
	1615		N H	90.6	3.95	423.29
· · · · · · · · · · · · · · · · · · ·	1616		H	91.8	4.6	499.35
	1617			91.9	4.86	519.27
	1618			62	4.6	545.3
	1619		NH.	91.7	4.28	449.32
.* .	1620		H.	63.1	4.62	483.29
)	1621		, NH	83.8	4.41	431.26
	1622	1	M.	64.2	4.55	445.26
5	1623		, H	48.9	4.66	465.21
	1624	-	, NH	89	4.46	449.27

			202			•
	,	· ·	- 293 - N H ₂ / —			··
				<i>f</i>	· .*	
		P2 N N	O (R5		·	
E	K .	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
162	25		THE STATE OF THE S	56.7	4.94	515.24
162	26		i i	78.4	4.65	445.25
162	27		CI NH	44.5	4.72	465.21
162	28			84.7	5.01	515.24
162	29		N.F.	73.9	4.5	476.27
163	30		cr Zi	76.8	4.74	465.21
163	31			88.6	5.02	515.24
163				90.6	5.05	499.19
163	33			89.4	5.35	567.21
163	34		, I	80.6	4.88	481.28
163	35		NH −	90.6	4.49	445.26
163	36		<u>H</u>	91.1	5.14	521.28

	· .	294			
	R2 N N	N H ₂ O R5	•		
Ex.	R2-	R5.	Purity (%)	rt (min.)	[M+H] ⁺
1637			91.2	5.38	541.23
1638			90	5.1	567.3
1639		H_	92.9	4.84	471.28
1640		Ĭ.	88.3	5.13	505.28

10.

- 295 · R5 -R5 R2 Purity (%) rt (min.) Ex. [M+H]⁺ 83.5 3.86 423.29 1641 81.9 4 437.30 1642 81.1 4.07 457.25 1643 89.9 3.89 441.27 1644 4.35 507.27 1645 91.5 437.31 .70.6 4.08 1646 457.26 73.2 4.14 1647 91.7 4.42 507.27 1648 61.9 3.96 468.26 1649 νН 457.25 82.6 4.16 1650 507.26 78.5 4.46 1651 08 4.46 491.21 1652

5

10

15

20

25

30

	2	a	8	_
•	_	.7	\mathbf{n}	•

_		·	<u>- 296 - </u>			
			NH ₂			
		R2-N N	4			
	Ex.	. S <i>~</i> √⁄ R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1653		H H	80.7	4.78	559.24
	1654		Z.+·	90.3	4.28	473.33
	1655			91.4	3.93	437.30
·	1656			93.5	4.55	513.33
	1657		Z+1	92.8	4.82	533.27
	1658		H.	58	4.5	559.3
	1659			92.1	4.24	463.32
	1660			92.2	4.53	497.29
	1661		, KH	36.9	4.42	445.25
	1662	<u></u>	<u>H</u> .	31	4.56	459.28
	1663		Z H	38.9	4.67	479.24
	1664			43.4	4.47	463.27

10.

- 297 -R5 Purity (%) R2 R5 rt (min.) [M+H]* Ex. 529.2 47.9 4.98 1665 459.28 32.1 4.66 1666 479.23 23 4.74 1667 5.02 529.25 1668 38.1 4.51 490.27 1669 35.5 479.23 47.1 4.74 1670 529.25 5.04 37.1 1671 5.07 513.19 60.9 1672 5.34 581.23 1673 82.8 4.91 495.27 1674 20.5 <u>, H</u> 72 · 4.52 459.28 1675 535.30 5.14 1676 91.1

5

10

15

20 .

25

30

71.7

5.14

519.29

15

1680

<u>.</u> 5

2	9	9	-

			- 299 -			
			$N_{\underline{H}_{\underline{2}}}$			
5		R2 N N	O (R5			
	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1681		HN	72.7	4.26	471.34
10	1682		Hz	76.3	4.36	485.34
·	1683		HN	51.6	4.47	485.33
15	1684		, r	33.6	4.39	501.32
	1685		L Z	79 . 9	4.7	539.29
20	1686			76	4.77	555.28
25	1687		. HR	53.2	4.34	489.30
25	1688		. Hr	59.2	4.51	505.27
30	1689		HN	74.7	4.57	549.21
-	1690		7112	82	4.84	547.34
-35	1691		HN	68.8	4.49	485.32
	1692		HN	73.4	4.25	501.37

·			- 300 -			
	٠.		$\int N \frac{H_2}{2}$	1		
5		R2-N N	O 			
	Ex.	- R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1693		. HN O	75.0	4.83	555.27
10	1694		. HN F	44.5	4.39	489.30
	1695		HN	42.7	4.57	505.25
15	1696		HN	79.8	4.97	547.32
	1697		HN	78.9	4.56	499.39
20	1698) T Z Z	70.8	4.27	531.36
25	1699		HN	77.5	4.35	507.33
25	1700		T Z Z	78.9	4.34	507.33
30	1701		HN	75.8	4.27	507.32
	1702		HN	74.9	4.41	507.32
35	1703		HN	75.3	4.49	507.29
	1704		HN CI	73.5	4.75	539.22

. 10

- 302 -R 1 $H_2 N$ R5 Purity (%) rt (min.) R1 [M+H]* Ex. 3.8 87.3 448.31 1706 10 482.24 86.0 4.3 1707 370.24 2.4 90.0 1708 III. 15 387.26 76.6 3.88 1709 **∀** H 3,0 394.2 53.2 1710 20 91.2 2.3 449.29 1711 87.7 4.13 443.29 1712 25 88.3 3.7 419.28 1713 3.5 437.25 70.8 1714 30 469.30 4.4 87.0 1715 485.20 1716 82.5 4.12 35 2.59 428.29 1717 88.1 <u>, H</u>

<u>- 303 - </u> R1 : H₂N 5 Purity (%) rt (min.) R5 $[M+H]^{+}$ R1 Ex. 2.8 490.35 88.7 1718 10 ; <u>H</u>. 4.68 529.23 79.0 1719 3.94 399.29 78.0 1720 15 3.7 480.32 87.4 1721 514.28 4.14 83.1 1722 20 2.44 402.24 89.1 1723 M H ŅH → 419.3 81.5 3.73 1724 25 3,0 416.2 56.1 1725 2.3 481.33 90.1 1726 ï 30 475.31 87.3 3.96 1727 2.9 448.3 75.2 1728 35 3.61 451.29 85.7 1729

<u>- 304 -</u> $_{\text{H}_2}$ N 5 R1 Purity (%) rt (min.) [M+H]* R5 Ex. 3.37 469.28 74.5 1730 10 83.7 4.22 501.32 1731 3.95 517.20 86.7 1732 15 2.61 460.32 8.08 1733 80.8 2.8 522.35 1734 20 74.0 4.48 561.23 1735 ΝH 431.31 81.2 3.8 1736 25 546.27 87.1 4.76 1737 √ 85.5 580.24 5.16 1738 30 3.72 468.24 1739 85.5 111 485.29 82.1 4.74 1740 35 Ņ<u>H</u> † 80.7 3.04 492.24 1741

- 305 -

			<u>- 305 - </u>			
	Н2	N	N S N	R1 0 R5		
5	Ex.	R1	R5 -1.	Purity (%)	rt (min.)	[M+H] ⁺
- · ·	1742	ci	- N - N -	87.7	_ 3.4	547.28
10	1743	cı	<u>H</u> .	81.9	4.96	541.23
÷	1744	ci		55.2	2.9	514.27
15	1745	ci		87.2	4.7	517.25
·.	1746	c		 73.7	4.39	535.21
20	1747	c ·		84.3	5.22	567.25
	1748		N H	74.7	4.9	583.16
25	1749		ů H	76.8	3.53	526.28
;	1750			84.3	3.7	588.34
30 -	1751	ci	; ; ; <u>H</u>	74.4	5.41	627.20
25	1752	ci ·	¥ H M	80.9	4.88	497.31
35	1753	-	_N_	83.4	4.53	516.2

- 306 -**那2** N 5 R5 Purity (%) rt (min.) [M+H]* R1 Ex. 83.2 550.24 4.96 1754 ĺ 3.39 438.25 1755 84.1 III H 4.71 455.28 84.7 1756 15 462.24 56.6 2.8 1757 85.0 3,0 517.30 1758 20 1759 84.6 4.9 511.26 484.3 82.1 2.8 1760 25 487.27 84.4 4.44 1761 505.23 52.0 4.3 1762 30 537.28 5.12 84.5 1763 553.17 1764 81.5 4.93 35 80.2 496.29 3.34 1765 <u>, H</u>

- 307.-R1 <u>H2</u> N 5 Purity (%) rt (min.) R1 **R**5 [M+H]* Ex. 85.9 3.5 558.31 1766 H 10 597.22 53.4 5.39 1767 Ņ <u>H</u> 4.81 467.29 81.6 1768 15 540.32 3.5 83.5 1769 5.01 574.27 82.4 1770 20 462.30 , ż H 3.72 1771 80.9 ĬΪ **7** H 4.78 479.36 77.9 1772 25 486.32 79.3 3.11 1773 541.35 1774 85.0 3.4 30 4.9 535.31 1775 85.3 508.34 3,0 74.9 1776 35 4.58 511.33 83.9 1777

		· · · .	- 308 -		·	<u> </u>	
-	H_2 N						
	Ex.	R1	R5 ³	Purity (%)	rt (min.)	[M+H]*	
	1778			69.1	4.4	529.3	
	1779			83.1	5.1	561.3	
	1780		$= \underbrace{\underline{\underline{H}}_{N}}_{B_{1}}$	81.8	4.9	577.23	
	1781		, H	83.6	3.64	520.34	
	1782		Q.P	80.9	3.7	582.4	
	1783		H H	68.0	5.34	621.28	
	1784		· ·	76.3	4.85	491.36	

H₂ N R5 R5 Purity (%) 1 R1 rt (min.) [M+H]* Ex. H \ 77.9 4.44 435.25 1785 4.83 437.30 78.8 1786 79.5 3.13 464.27 1787 80.3 3.28 526.38 1788 4.67 543.32 86.6 1789 H 74.8 2.9 458.32 1790 81.7 3.99 508.34 1791 86.9 5.41 526.38 1792 511.27 86.4 4.85 1793 Ή 82.2 533.35 5.07 1794 83.1 3.55 536.28 1795

4.66

82.3

471.3

5

10

15

20

25

30

35

	,	<u>.</u> ;	- 310 -	·	<u> </u>	
	<u>H2</u>	N	-N N O	5		
5	Ex.	. R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
:	1797		ř H	86.3	4.41	461.31
10	1798			85.1	4.95	505.33
	1799		(s)	76.0	3.5	532.3
15	1800		H	81.1	4.87	483.34
	1801		五一	68.62 ···	3.96	387.33
20	1802		* H	73.4	4.39	389.33
	1803	1	» ·	81.2	2.57	416.32
25	1804	<u> </u>	H.	79.2	2.9	478.3
:	1805		-1, I-V, OF	83.2	4.26	495.34
30	1806	<u> </u>	, i-	70.2	2.5	410.3
٠	1807		, H	73.3	3.6	460.37
35	1808			75.0	5.01	478.39

::

-	1810	•		83.9	4.73	485.37
	1811	· ·	M. S.	76.5	3.14	488.31
	1812		NH − ·	79.1	4.28	423.35
	1813		F ZH	79.2	3.99	413.29
	1814			75.5	4.55	457.33
	1815		<u></u>	67.7	3.1	484.3
	1816	<u> </u>	H N	62.7	4.44	435.33
	1817.		H.	85.7	5.02_	471.33
	1818		H H	`70.2	5.31	473.37
	1819		N	86.6	3.59	500.35
	1820		$\underbrace{\underline{\underline{H}}}_{\underline{H}}$	83.8	3.7	562.4

H2N **R**5 R5 rt (min.) R1 Purity (%) [M+H]* Ex. 5 88.5 5.04 579.32 1821 494.3 39.8 3.3 1822 10 4.55 544.33 85.8 1823 86.4 5.78 562.36 1824 15 ₹ <u>H</u> 547.25 84.3 5.27 1825 <u>H</u> 569.32 69.7 5.58 1826 20 $\underline{\mathbf{H}}$ 4.17 572.27 70.3 1827 5.17 507.34 85.4 25 1828 ŅΗ † 82.3 4.91 497.28 1829 5.41 541.29 82.4 30 1830 3.8 568.3 79.4 1831 35 519.33 86.9 5.31 1832

			•			•	
				- 313 -			
				R1 N N C)		
·	·	H ₂	N J	S P	15		
	5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	· 	1833	CI	$\overline{\mu}'$.	86.3	4.99	455.27
· . •	10	1834	ci .	, H	84.5	5.3	457.30
- -		1835	cı	$N \rightarrow N \rightarrow N$	88.3	3.42	484.27
	15	1836	cı .	$\bigcup \bigcup_{\mu} \overline{\underline{H}}.$	83.6	3.65	546.29
		1837	cı	0*N-{\big }-M\big N -+ .	88.8	4.91	563.24
	20	1838	cı	TH.	65.2	3.3	478.24
• • • • • • • • • • • • • • • • • • •		1839	ci .	₩ H H	87.6	4.5	528.30
	25	1840	cr .		90.4	5.68	546.30
		1841	cı .	H H	82.8	5.31	531.23
	30	1842	CI	H	. 68.2	5.57	553.28
	-	1843	CI .	H H	72.4	4.11	556.21
	35	1844	cı .	, vH	83.9	5.15	491.29

			- 314			
	H ₂	N	N N N O	•	· .	
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1845	ci	F MH ∴	86.4	4.93	481.27
10.	1846	CI .		86.3	5.29	525.25
	1847			82.6	3.7	552.3
15	1848	CI .	H-, z,,	88.1	5.3	503.29
	1849	ом•	<u>H</u> .	82.9	4.25	451.32
20	1850	OMe .	, H	82.1	4.64	453.35
	1851	OM•	N	85.6	2.72	480.33
25	1852	OM•		82.9	3.16	542.35
·	1853	o M•	N → N → N → N	87.7	4.28	559.29
30	1854	OM•	, H	75.3	2.82	474.33
-	1855	OMe .	H.	84.4	3.83	524.32
35	1856	OMe .		87.0	5,0	542.36

	<u> </u>		- 315 -		·	
5	H ₂	N	R1 S P) (5		
	Ex.	R1	R5 ·	Purity (%)	rt (min.)	[M+H] ⁺
	1857	O Me		82.6	4.73	527.28
10	1858	D .		65.8	5.01	549.31
	1859	o de la companya de l	M. S. S. O. H.	76.4	3.49	552.26
15	1860	O Me	Z.	80.4	4.54	487.35
	1861	O Me	된.	81.3	4.28	477.30
20	1862	S S		79.9	4.59	521.29
	1863	OMe .		77.5	3.2	548.3
25	1864	OMe .	H V	86.5	4.65	499.32

3	1	8	_

			<u>- 316 -</u>	·	· · · · · · · · · · · · · · · · · · ·	
	H <u>2</u>	N	N N N	O /		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1865	<u> </u>	<u>H</u> .	84.7	4.94	435.29
10	1866		$\overline{\overline{H}}_{\mu}$	- 85.0	4.66	443.26
<i>:</i>	1867		CTN -	26.2	4.82	494.26
15	1868		;—————————————————————————————————————	. 88.4	4.8	502.28
	1869			83.6	5.48	519.28
20	1870			63.17	5.3	451.33
·	1871			91.1 ·	3.4	542.3
25	1872		s H	35.7	4.48	435.20
	1873			, 88.8	3.8	502.26
30	1874		, H.	87.1	5.41	533.29
-	1875		;H	89.5	√5.14	513.22
35	1876		The H	. 47.8	4.82	455.24

<u>- 317 -</u> H2 R5 R1 R5 Purity (%) rt (min.) Ex. [M+H]* 77.1 5.32 521.24 1877 81.8 505.26 5.31 1878 4.37 395.24 19.7 1879 511.22 61.4 5.14 1880 82.7 4.95 463.31 1881 471.27 82.2 4.71 1882 4.84 522.26 1883 67.2 4.9 530.28 87.7 1884 547.28 79.4 5.54 1885 80.8 5.3 479.34 1886 1887 88.9 3.6 570.24 1888 30.2 4.53 463.23

35

5

10

15

20

25

3	1	Д	_

٠.	·		<u>- 318 -</u>			
			R1			
			N	,		·
	H	2 N	S F	15		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	1889			88.9	3.98	530.26
10	1890		Ŭ <u>H</u>	84.2	5.42	561.30
	1891		, The state of the	75.8	5.17	541.22
15	1892		The H	85.8	4.86	483.28
	1893			71.7	5.33	549.26
20	1894			86.6	5.34	533.29
	1895		$\frac{\underline{\underline{H}}}{\underline{\underline{N}}}$.	54.1	4.43	423.28
25	1896		, Y	47.7	5.16	539.26
• .	1897	MeO MeO	The second secon	. 74.6	4.44	509.30
30	1898	MeO MeO	The state of the s	\ 77.6	4.2	517.27
-	1899	MeO MeO		38.8	4.53	568.26
35	1900	MeO MeO	F	80.1	4.5	576.3

•			- 319 -			
,			R1			
	Н2	N	N N S) 85		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
•	1901	MeO .		72.3	5.17	593.30
10	1902	MeO .		77.0 -	4.88	525.34
•	1903	MeO .		80.5	3.3	616.3
15	1904	MeO .	»H V—	34.6	4.03	509.21
	1905	M e O		81.3	3.6	576.2
20	1906	M e O	<u>H</u>	77.1	5.04	607.31
	1907	MeO .		79.6	4.76	587.24
25	1908	MeO .	H.	77.8	4.38	529.28
	1909	MeO		78.0	4.95 	595.28
30	1910	MeO MeO	H.	¥ 81.1	4.88	579.29
-	1911	MeO .	H.	32.4	3.89	469.29
35	1912	MeO MeO	H.	49.3	4.7	585.26
	L					

			- 320 -			<u>.</u>
	Н2	N	N N C) /		·
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
- 1	1913	G C	$\frac{\overline{H}}{N}$	87.0	5.59	503.20
10	1914	<u>.</u>	$\overline{\overline{H}}$	- 88.5	5.3	511.15
	1915	ci ·		69.5	5.28	562.16
15	1916	cī .	F	89.4	5.3	570.1
	1917			79.1	5.98	587.17
20	1918	ü.		82.4	5.84	519.23
	1919	ci .		89.5	3.9	610.1
25	1920	CI	s NH	27.2	5.12	503.11
	1921	CI CI		· 88.6	4.41	570.13
30	1922	CI CI	, PH	86.4	5.91	601.19
	1923	cı .	T. H	84.9	5.66	581.11
35	1924	CI .	<u>H</u> '.	86.4	5.44	523.13

- 32	21 -
R1	
N	//

			, R1			•
	H	2 N	S. N.	, R5		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1925	G C		61.9	5.81	589.16
10	1926	G G	÷ H	84.7	5.85	573.15
	1927	CI .	H.	36.8	5.1	463.16
15	1928	G.	H.	76.4	5.68	579.13
	1929		强一	79.4	4.65	415.30
20	1930		H.	84.5	4.41	423.29
	1931	\	~~~	44.0	4.62	474.29
25	1932	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	86.1	4.65	482.3
	1933	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		78.5	5.33 ·	499.31
30	1934			79.6	5.06	431.33
•	1935			84.6	3.4	522.30
35	1936		× H	54.6	4.2	415.21

	- 322 -						
	H ₂	N	R1 N N	5		·	
5	Ex.	R1	R5	Purity (%)	rt (min.)	(M+H] ⁺	
	1937	• • •		85.4	3.7	482.29	
10	1938		<u>H</u>	83.5	5.21	513.32	
	1939		H.	85.7	4.92	493.24	
15	1940		<u>H</u> ".	83.0	4.58	435.29	
	1941			75.1	5.1	501.31	
20	1942		H H	88.2	5.1	485.31	
	1943		M N	76.1	4.08	375.28	
25	1944		Ϋ́Ψ,	81.1	4.9	491.28	

,

		<u> </u>	- 323 -			
			R1		.*	
			Y N N	_//		
	Н2	N	s /	R5 .		
5	Ex.	R1	R5	Purity (%),	rt (min.)	[M+H] ⁺
	1945			84.3	4.24	512.26
10	1946		N N N N N N N N N N N N N N N N N N N	85.4	3.63	514.25
• .	1947			86.8	3.1	526.27
15	1948		F-\(\)-\(\)\(\)\(\)\(\)	87.7	4.32	530.23
	1949		0.4H————————————————————————————————————	87.5	4.24	557.23
20	1950		N N N N N N N N N N N N N N N N N N N	88.8	2.9	513.26
	1951			84.5	4.92	540.28
25	1952			87.7	4.49	526.27
	1953			62.5	3.66	567.26
30	1954		0	89	4.08	542.26
-	1955		-N-N-	87.7	4.38	530.24
35	1956		N_N_N	82.4	2.7	513.28

- 324 0 R5 H₂ N R5 Purity (%) rt (min.) [M+H]* R1 Ex. 5 4.31 557.23 1957 87.7 556.27 91.0 4.44 1958 10 514.25 3.44 80.7 1959 535.24 4,67 1960 68.6 15 526.27 4.32 85.3 1961 3.75 528.25 83.0 1962 20 540.28 3.28 1963 88.7 86.8 4.37 544.25 1964 25 89.4 4.29 571.24 1965 3.1 527.25 86.9 30 1966 4.94 554.29 1967 86.1 35 4.54 540.27 1968 87.6

_		_	
2	つ	· -	

		·	<u>- 325 -</u>			
			N N N	_//		
	H2	2N	" s//	R5		
. 5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	1969			65.4	3.76	581.27
10	1970		0-(_)-4(_)-4	86.3	4.16	556.28
,	1971		F N N	86.0	4.43	544.25
15	1972		N—N—	83.2	2.8	527.3
	1973		NO.	84.8	4.38	571.24
20	1974		\$\frac{1}{2} \cdot \frac{1}{2}	87. 8	4.5	570.28
,	1975		N N N N N N N N N N N N N N N N N N N	80.9	3.55	528.26
25	1976		\(\int_{x}\)	62.7	4.71	549.27
	1977		N+.	85.7	4.41	526.29
30	1978		$\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle N $	84.2	3.82	528.27
-	1979			87.4	3.28	540.28
35	1980		FN-N-'	86.6	4.47	544.24
						-

		- 326 -						
H ₂	H ₂ N R ₅							
Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺			
1981		0,N-(NN	86.4	4.38	571.24			
1982		~ N -	85.9	3.1	527.27			
1983		~~~~·	85.3	5.06	554.28			
1984			85.3	4.66	540.28			
1985			60.8	3.8	581.28			
1986		0-{}-H_H-'	86.1	4.25	556.28			
1987		F N N + .	86.4	4.54	544.25			
1988		N N + '	75.9	2.86	527.28			
1989		NO. N-	86.5	4.46	571.24			
1990		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88.4	4.6	570.29			
1991		N N N +	79.8	3.62	528.27			
	T							

4.82

63.2

549.26

٠.		<u> </u>	- 327 -		:	
	Н2	N	N N N N	O R5		:: ::
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1993	om.	N-N-N-	81.8	4.15	572.25
10	1994	9M•	$\sqrt{\sum_{N}^{N}}$ $N \rightarrow N$	81.0	3.58	574.25
	1995	OM.	~~·	83.5	3.08	586.3
15	1996	M.	F—NN-	84.3	4.2	590.27
 ,	1997	¥ •	0 - M - M - M - M - M - M - M - M - M -	85.3	4.12	617.26
20	1998	, M.	N-N-'	86.1	2.91	573.28
5	1999	,	<u>~~~</u> .	85.5	4.74	600.31
25	2000	o M.		87.3	4.37	586.28
·	2001	, M.		68.4	3.6	627.28
30	2002	OM•	0-{	¹ 85.4	3.98	602.28
-	2003	OM•	F N N- '	83.1	4.26	590.27
35	2004	OMe OMe	N_N-1	84.5	2.7	573.26

		·	- 328 -		·	· · ·
			N N N	√° ′		
	H	2 N) s_//	R5		
5	Ex.	R1	R5).	Purity (%)	rt (min.)	[M+H] ⁺
	2005	OM.	NO 2 N +	85.9	4.2	617.27
10	2006	OM.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	86.9	4.32	616.31
	2007	OM.	N N + .	81.2	3.4	574.24
15	2008	OM.	S	69.0	4.54	595,29
	2009			82.1	4.72	574.25
20	2010		$\left \left\langle \right\rangle \right\rangle N + \left \left\langle \right\rangle \right\rangle$	80.1	4.15	576.27
	2011			83.9	3.53	588.27
25	2012		F	80.8	4.78	592.26
	2013		024	83.0	4.68	619.26
30	2014		N+ N-	85.6	3.35	575.25
	2015			82.9	5.41	602.30
35	2016		<u></u>	81.9	4.96	588.26

79.5

64.2

3.9

5.15

576.27

597.27

25

2023

2024

20

5

10

,	·		- 330 -	<u> </u>		
			R1	- (
			Y'N N	/		
	<u> </u>	N	s_//	R5		
5 .	Ex.	R1	¹ R5	Purity (%)	rt (min.)	[M+H]*
	2025		N-N-	88.8	- 4.94	574.23
10	2026		E	88.4	4.96	592.25
	2027		o¹n- ⟨ _}-и_v- ,	87.7	4.86	619.24
15	2028			89.7	3.61	575.2
	2029		N- '	70.4	5.13	571.25
20	2030		~~~~	88.0	5.58	602. <u>2</u> 8
	2031		N	87.8	5.15	588.26
25	2032			76.5	4.24	629.28
	2033		0-()-1	88.8	4.7	604.27
30	2034	Q,	F N N-	88.3	5.04	592.25
	2035		NO, N-	89.5	4,96	619.24
35	2036		F - N N - 1	87.5	5.41	642.26

,			- 331 -	·		· · · · · · · · · · · · · · · · · · ·
. 1			R1	`,o		
	L		$\uparrow \uparrow \uparrow \downarrow$	4		
	H ₂	2N	/ s_//	R5		
5	Ex.	R1	R5 :	Purity (%)	rt (min.)	[M+H] ⁺
-	2037		F	88.9	5.12	610.24
10	2038			89.4	5.07	618.27
•	2039		$F \xrightarrow{F} NO, N+$	88.7	5.42	687.24
15	2040			87.7	3.68	580.30
	2041		N-N-N-	85.2	4.89	574.23
20	2042 ::		FN-N-	84.4	4.9	592.25
	2043		N-N-N-0,N-	84.7	4.78	619.23
25	2044			89.0	3.58	575.25
	2045		N -	61.5	5.16	571.22
30	2046		~~~~	83.2	5.57	602.28
	2047		<u>√</u> N-N-	84.4	5.1	588.25
35	2048			73.2	4.25	629.27
			- 			

1:

			- 332 -	·		
			R1	0		
				4		
	H2	N	" s_//	R5 '	•	
5	Ex.	R1	Ą5	Purity (%)	rt (min.)	[M+H] ⁺
	2049		0	85.5	4.64	604.26
10	2050		F .	85.6	4.99	592.2
	2051		NO ³	85.7	4.93	619.24
15	2052		F → H N → '	86.2	5.34	642.25
	2053		FN-N	85.1	5.06	610.23
20	2054			84.6	5.06	618.27
	2055		F NO 1	85.4	5.37	687.23
25	2056		N	85.8	3.68	580.30
	2057			68.0	4.37	528.26
30	2058		FN-N-	86.3	4.41	546.22
	2059	O .	0 ⁵ H-\(\big \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	88.1	4.32	573.19
35	2060	O .	N - '	86.1	3	529.25

		·	<u>- 333 -</u>			
			R1	,0		
				A5 ,		
5 [*]	H2 Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
)	2061	· · ·	\(\frac{1}{2}\)	67.2	4.56	525.25
10	2062	O .		91.2	4.98	556.26
	2063		∑ -v -v	87.8	4.56	542.26
15	2064			75.6	3.73	583.23
	2065	O .	O	88.7	4.16	558.23
20	2066	~~~·	F N N +	88.4	4.46	546.22
	2067	~~~·	NO3 N	87.4	4.4	573.20
25	2068	° .	F	87.7	4.88	596.21
	2069	○ · · ·	F-NNN-	87.9	4.56	564.21
30	2070	0.		87.5	4.51	572.26
~	2071	O .	$F \xrightarrow{F} NO_2$	88.8	4.91	641.20
35	2072	0		86.2	3.08	534.27
						

		· · · · · · · · · · · · · · · · · · ·	- 334 -			
			N N N	4 1		
	<u>H</u> 2	2N	ال غ (أ	R5		
5	Ex.	R1	R6	Purity (%)	rt (min.)	[M+H] ⁺
<u></u>	2073		N-N-	71.7	4.78	562.25
10	2074		F	82.1	4.8	580.23
	2075		02N-_N-_N	82.6	4.68	607.23
15	2076			79.5	3.4	563.21
·	2077		N-	67.5	4.92	559.23
20	2078		~~~·	83.0	5.39	590.27
·	2079			82.5	4.98	576.26
25	2080			42.5	4.1	617.23
	2081		, O-()-N-N-,	86.9	4.58	592.26
30	2082	05	F N N	82.5	4.88	580.23
	2083	5	NO1	81.4	4.77	607.23
35	2084	5	E H N H ,	82.3	5.24	630.26

			- 335 -			
:	,		N N N			
	<u> </u>	<u>12</u> N	الراق ا	R5 /		·
5.	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
:	2085		F	83.5	4.97	598.20
10	2086		- °-/	81.6	4.93	606.28
	2087		F F NO 1	82.7	5.25	675.23
15	2088		N	84.4	3.4	568.26
	2089		N-N-	67.0	4.64	562.24
20	2090		F—————————————————————————————————————	83.0	4.66	580.23
;	2091		O ² H — N — N — .	83.6	4.54	607.22
25	2092		N N N + '	82.5	3.3	563.25
· · · ·	2093		N- '	84.2	4.8	559.22
30	2094			86.2	5.21	590.29
-	2095			83.2	4.82	576.28
35	2096		H-1,	62.8	3.99	617.26
			·			

7			- 336 -			
-			N N N	O ,		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	2097		0-()-1	86.0	4.44	592.2
10	2098		F	85.8	4.72	580.25
	2099		NO1 N-	84.0	4.62	607.23
15	2100		£	83.4	5.09	630.26
	2101		F————————————————————————————————————	84 .8 °	4.8	598.21
20	2102			83.7	4.78	606.29
,	2103		$\downarrow \frac{k_0}{k_0} = \frac{k_0}{k_0} $	83.6	5.1	675.24
25	2104		N	5.6	3.05	568.28

				- 33	7 - '			
			R2 N N	R1 O R5	· · · · · · · · · · · · · · · · · · ·	•		
5		Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
)		2105	, N NH ²	GI -		81.5	4.9	468.27
10	-	2106	, NH, NH,	٠		81.4	5.01	465.28
		2107	, M V NH ³	<u><u><u>o</u></u></u>		77.3	5.34	505.31
		2108	\overline{H}_{N}	ĢĪ.		73.5	4.7	447.29
15		2109	$\overline{H}_{N} \sim \sim_{NH^{3}}$	Ģ-	J.D.	70.5	5.28	499.26
•••		2110	$\overline{H}_{M} \sim \sim \sim MH^{2}$			73.9	5.38	491.30
20		2111	\overline{H} N \longrightarrow NH2	· .	om.	72.0	4.5	489.31
		2112	\overline{H}_{N} N NH ²	-		73.0	5.5	521.29
25	•	2113	$\overline{H}_{N} \sim \sim$	٠	<u></u>	90.0	4.23	381.29
-		2114	$\overline{H}_{N} \sim \sim_{NH^{2}}$			76.1	5.02	443.30
30		2115	$\overline{H}_{N} \sim \sim_{NH^2}$			56.9	4.2	434.32
-	-	2116	$\overline{H}_{N} \sim \sim_{NH^2}$			79.8	4.29	431.31
35		2117	H N NH2			79.1	4.45	471.35
	·	2118	\overline{H}_{N}			70.2	3.56	413.29

- 338 -

			33	8 -			
		R2 N N	O R5		•		,
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
	2119	$\overline{H}_{N} \sim \sim_{NH^{1}}$		FLOCI	72.4	4.68	465.27
10	2120	\overline{H}_{N}		OO	78.3	4.66	457.33
	2121	\overline{H} N NH2		OM.	90.1	3.41	455.33
	2122	$\overline{H}_{N} \sim \sim_{NH^{3}}$			82.2	4.38	487.36
15	2123	\overline{H}_{N}			68.8	2.99	347.34
	2124	$\overline{H}_{N} \sim \sim_{NH^{3}}$			 75.2	4.13	409.33
20	2125	$\overline{H}_{N} \sim \sim NH^{2}$	0/3%0		56.9	4.01	513.30
	2126	$\overline{H}_{N} \sim \sim NH^{2}$			70.1	3.88	510.29
25	2127	$\overline{\overline{H}}$ N \longrightarrow NH 2	H2 No		77.8	4.16	550.29
	2128	$\overline{H}_{N} \sim \sim_{NH^{3}}$	H2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		67.7	3.49	492.28
30	2129	\overline{H} N \longrightarrow NH,	£1 ≥ 0°		71	4.27	536.28
-	2130.	$\overline{H}_{N} \sim \sim_{NH^{3}}$	H2	M. N.	71.4	3.38	534.30
35	2131	$\overline{H}_{N} \sim \sim_{NH^2}$	H2 z		67.7	4.29	566.30
	2132	\overline{H} N NH,	H2 N		54.5	2.98	426.29

			33!	9 -			
		R2 N N	0 R5	f			
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
	2133	\overline{H} N \longrightarrow NH ²	2,750		70.1	3.85	488.31
10	2134	\overline{H} N NH^{1}			57.1	4.5	462.36
	2135	\overline{H} N \sim NH,			83.2	4.61	459.35
	2136	\overline{H} N NH2			91.6	4.72	499.40
15	2137	\overline{H} N \longrightarrow NH.			80.7	3.94	441.32
	2138	$\overline{H}_{N} \sim \sim_{NH^{2}}$			73.9	4.99	493.32
20	2139	\overline{H} N \longrightarrow NH 2			77.5	4.95	485.37
	2140	H N NHz		* * * * * * * * * * * * * * * * * * *	77.4	3.79	483.36
25	2141	H N NH2			66.1	4.62	515.38
	2142	H N NH2			70.1	3.49	375.33
30	2143	H N NH ₂			74.1	4.46	437.35
~	2144	H N NH,	ō		93.8	5.14	516.28
35	2145	H N NH,	ō		90.0	5.27	513.28
	2146	H N NH,	ū		81.4	5.58	553.30

	- 340 -							
		R2 N N	0 >{					
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	R5		•			
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*	
)	2147	H N NH,	ō-{}	L .	78.6	5.02	495 <i>.</i> 27	
- . ·	2148	\overline{H}			81.4	5.51	547.21	
10	2149	\overline{H} N \longrightarrow NH 3			85.5	5.62	539.29	
	2150	\overline{H}	ç ₁	0 M •	78.9	4.86	537.28	
15	2151	\overline{H} , white \overline{H}	٠		83.2	5.76	569.28	
	2152	\overline{H} N NH,	, i	1	90.5	4.62	429.28	
20	2153	\overline{H} N NH,	٠	P .	91.8	5.31	491.31	
	2154	\overline{H} N \longrightarrow NH 4			60.4	4.47	462.33	
25 [.]	2155	H NH,			83.6	4.62	479.31	
•	2156	\overline{H} N NH ₁		9	79.1	4.72	519.34	
30	2157	$\overline{\mathbb{H}}$ N NH ²			72.6	3.96	461.31	
	2158	$\overline{\overline{H}}$ N \longrightarrow NH ¹			75.7	5,0	513.27	
35	2159	H NH,			79.3	4.99	505.34	
	2160	H N NH,		QMe Ome	89.6	3.72	503.34	

		·	34	1 -			
		R2 N N		•		· .·	
_	Ex.	R5	R2	R1 4	Purity (%)	rt (min.)	[M+H] ⁺
5	2161	H NH,			89.6	4.7	535.32
10	2162	H WHI		<u></u>	73.5	3.38	395.32
. 10	2163	\overline{H}			80.1	4.5.	457.32
	2164	\overline{H}_{MM^2}	2770	₩, .	58.8	4.24	561.29
15	2165	$\underline{\underline{H}}$	Z		77.9	4.16	558.27
	2166	\overline{H}	270		85.5	4.42	598.29
20	2167	\overline{H}	z 200		82.8	3.87	540.27
	2168	\overline{H}	Z	FF	1.54	4.52	592.25
25	2169	\overline{H} N \longrightarrow NH,			56.0	4.54	584.25
	2170	\overline{H}		N. N	82.5	3.76	582.30
30	2171	\overline{H}			71.8	4.58	614.31
-	2172	H N NH2		1	71.9	3.43	474.30
35	2173	H̄ M → NH²			80.9	4.16	536.28
•	2174	H NHz			61.9	4.76	510.36

			34	2 -			
	,		0				
		R2 N N	\				,
			R5	<u> </u>			
5	Ex.	. R5	R2	· R1	Purity (%)	rt (min.)	[M+H]*
	2175	\overline{H}			83.1	4.93	507.35
-	2176	\overline{H}_{M}			92.0	4.99	547.36
10	2177	HM NH,			88.3	4.27	489.35
	2178	\overline{H}_{N}			86.3	5.41	541.29
15	2179	\overline{H}			79.7	5.36	533.36
	2180	\overline{H}		2 2 2	82.5	4.13	531.35
20	2181	\overline{H}_{N}			74.0	4.99	563.34
•	2182	$\overline{H}_{N \longrightarrow NH^1}$			76	3.89	423.35
25	2183	H NH,			79.8	4.89	485.38

		· · · · · · · · · · · · · · · · · · ·	- 34	13 -			•
		R2 N N	~~		•		•
	Ex.	R5	R5	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2184	\overline{H} N \longrightarrow NH,	Q.O.		80.8	4.43	501.32
, , , , , , , ,	2185	\overline{H} N \longrightarrow NH,	20	QMe	66.2	4.18	545.31
10	2186	Н — М — МН,			64.6	5.18	569.27
	2187	$\overline{\mathrm{H}}$ M $\sim\sim$			57.2	4.78	589.30
15	2188	$\overline{\mathrm{H}}$ M $\sim\sim$ MH i			65.7	4.41	529.36
	2189	$\overline{\overline{H}}$ M $\sim \sim$ MH 4		CI	65 <u>.</u> 4	4.52	549.28
20	2190	$\overline{\overline{H}}$ M \sim MH 3		(5).	65.8	4.24	521.29
	2,191	\overline{H} N MH^{4}			71.4	4.19	481.37
25	2192	$\overline{H}_{N} \sim \sim MH^{2}$	20		83.9	4.8	577.32
	2193	\overline{H}_{M}			76.5	4.54	583.24
30	2194	\overline{H} N \longrightarrow NH 2	Br		67.2	4.76	473.22
-	2195	\overline{H} M	B'	, M.	66.6	4.69	517.20
35	2196	\overline{H} N \overline{M}^{3}	8#	-	71	5.2	541.18
	2197	\overline{H} N $\overline{}$ NH 3		0,N	69	4.73	561.15
_							

- 344 -

			- 34	4		·	
		R2 N N N	O (R5	,			
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2198	\overline{H} N \longrightarrow NH 1	Br		74.8	5.04	501.24
	2199	\overline{H}_{J}^{M}	B.	cı .	69.5	5.18	521.16
10	2200	$\overline{\overline{H}}^{N}$		\[\sigma_s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	79.3	4.8	493.18
	2201	$\overline{\mathrm{H}}$ N \sim NH,	-	<u></u>	74.9	4.79	453.24
15	2202	$\overline{\mathrm{H}}$ N \sim NH 3			68.9	5,41	549.20
-	2203	\overline{H} M \longrightarrow MH 3	Br -	61	68	5.2	555.11
20	2204	\overline{H}^{N}			66	5.02	463.27
	2205	$\overline{\Pi}$ N $\sim\sim$ NH 1		Q Me	62.2	4.83	507.28
25	2206	\overline{H} N \longrightarrow NH,		-	65.2	5.48	531.24
	2207	\overline{H} N \longrightarrow NH,		0,1	66.3	4.99	551.22
30	2208	\overline{H} N \sim NH.			72.9	5.22	491.31
~ -	2209	\overline{H} " M		cı .	77.2	5.31	511.24
25	2210	\overline{H}_{N}		(s).	62.8	4.98	483.24
35	2211	\overline{H} N \longrightarrow NH $^{\prime}$			62.4	4.98	443.31

			- 3-	15 -			
		R1	i. • 0				•
		R2 S	(R5		•		
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2212	HH WHI,			69.6	5.55	539.29
	2213	\overline{H} $N \longrightarrow NH^1$		Ci.	63.5	5,41	545.19
10	2214	\overline{H} N \longrightarrow NH,			41.2	4.09	455.28
	2215	\overline{H} N \longrightarrow NH'		× ·	58.5	3.73	499.35
15	2216	\overline{H} и $\sim\sim$ ин,			68.8	4.78	523.28
	2217	\overline{H} M \sim NH 3		O,NO	36.2	4.37	543.28
20	2218	\overline{H} и \sim	-0		42.9	4.1	483.36
	2219	\overline{H} N \longrightarrow NH 2		cı Ci	46.1	4.24	503.30
25	2220	\overline{H}	· _ ·	(s) ·	48.4	3.87	475.28
	2221	\overline{H}^{H}	-0		39	3.8	435.34
30	2222	\overline{H} N \sim NH 3			48.3	4.55	531.30
÷	2223	\overline{H} N \overline{H}		C1 .	47	4.33	537.20
35	2224	<u>Э</u> м,			57.4	4.64	541.34
	2225	\overline{H}_{N}		9Me	69.1	4.34	585.37

			34	.0 -			
		R2 N N N	O ——(R5	•			
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2226	\overline{H}_{N}	Po	-	64.6	5.36	609.35
-	2227	\overline{H}_{N}		0,N	40.2	4.94	629.34
10.	2228	\overline{H} N \longrightarrow NH 1		0	62.6	4.57	569.3
	2229	· H w wh'		cr.	68	4.72	589.31
15	2230	₩ NH'		(s).	61.2	4.44	561.31
., -	2231	\overline{H} N \longrightarrow NH $^{\prime}$			61.2	4.37	521.36
20	2232	\overrightarrow{H} N NH'			80.7	5.02	617.37
•	2233	\overline{H} N NH ³		C1 .	74.2	4.77	623.28
25	2234	$\overline{\overline{H}}$ N NH			68.1	4.99	513.23
	2235	$\overline{\overline{H}}$ N \longrightarrow NH ²	B.	PM.	66.1	4.98	557.22
30	2236	$\overline{\mathbb{H}}$ N \longrightarrow NH.	Pr -	-	68.8	5.38	581.20
-	2237	· Hu NH ¹	/Br	O,N	69.7	4.9	601.19
25	2238	\overline{H}_{M}	Pr ·		67.1	5.27	541.23
35	2239	$\overline{\overline{H}}^{N} \underbrace{\longrightarrow}^{NH^{I}}$		cı .	72.6	5.45	561.16

- 347 -

			- 24				
		R2 N N N	O (R5				
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2240	\overline{H}^{N}	Br	(s).	75.6	5.09	533.17
- ·	2241	$\overline{\underline{H}}$ $\overline{\underline{M}}$ $\overline{\underline{M}}$ $\overline{\underline{M}}$	-	<u></u>	. 74.6	5.08	493.26
10	2242	$\underline{\underline{H}}$ N \longrightarrow NH,			74.2	5.6	589.22
	2243	\overline{H} N \longrightarrow NH,	-	C1 .	70	5.48	595.14
15	2244	$\underline{\underline{H}}$ N NH,			63.2	5.24	503.32
	2245	· Hu wh		o Me	61.1	5.1	547.30
20	2246	HM NH1			63.3	5.65	571.25
	2247	\overline{H}_{M}		O,N	63.7	5.15	591.28
2 <u>5</u>	2248	\overline{H}_{M}			67.2	5.46	531.31
	2249	· <u>H</u> N NH ₂		cr :	76	5.58	551.24
30	2250	. <u>Н</u> и		(s) .	60.2	5.25	523.26
·	2251	<u>Н</u> и		<u></u>	58.8	5.24	483.3
35	2252	\overline{H}_{M}			72.1	5.76	579.31
١	2253	HM MH ³		C1 .	65.2	5.66	585.20

÷		R2 N N N	O R5				
_	Ex.	R5	R2	R1	Purity (%)	rt (min.)	(M+H)*
5	2254	\overrightarrow{H} N \longrightarrow NH 2			36	4.36	495.33
	2255	· II N NH.	0	QMe	- 58.6	3.97	539.36
10	2256	$\overline{\underline{H}}$ $\underline{\underline{M}}$ $\underline{\underline{M}}$	-0		70	5,0	563.28
: :	2257	\overline{H}_{N}	00	0,N,O	50.2	4.55	583.28
15	2258	\overline{H}		O~~.	43.2	4.34	523.35
-	2259	\overline{H}	-0 -0	ci.	52	4.53	543.29
20	2260	$\overline{\overline{H}}$ MM 3	0	\[\sqrt{\sq}}}}}}}\signtifien\sintitita}\sintititit{\sqrt{\sint}}}}}\signtiftita}\sintitititititit{\sintititit{\sqrt{\sintititit{\sintititit{\sintititit{\sintii}}}}}}}\signtifien\sintitititititititititititititititititit	52.1	4.16	515.30
	2261	$\overrightarrow{\overline{H}}$ N \longrightarrow NH ²	0-	<u></u>	46.2	4.07	475.38
25	2262	<u>Н</u> и мн²			55.2	4.82	571.33
	2263	\overline{H} \dot{M}		C: .	51.5	4.63	577.22

- 349 -								
	N. N	31	•					
	R2	\						
	5~//	R5	<i>i</i>	r 	,			
Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*		
2264	$\frac{H}{N}$	<u></u>		81.1	4.49	465.35		
2265	H,~~~H	-		84.1	4.7	481.36		
2266	$\frac{1}{N}$	<u> </u>	≯ √~.	65.7	4.78	445.36		
2267	H H	<u> </u>		63.0	4.51	399.29		
2268	H H			77.B	5.39	555.37		
2269	H		\bar{c}	78.5 	5.21	485.32		
2270	H H			74.0	5.02	557.37		
2271	H H	$\left(\begin{array}{c} + \\ - \end{array}\right)$	3 3 0 0 0 2	78.1	4.38	525.37		
2272	H H	H		89.2	5.42	527.38		
2273	H H			83.0	5.75	537.30		
2274	H_	0		67.8	5.87	525.21		
2275	, <u>H</u>	CI	· .	83.2	5.75	541.16		
2276	<u>H</u>	CI	>	71.9	6.11	505.25		
2277	- - - - - - - - - - - - - - - - - - -	CI		70.5	5.14	459.15		

3	50	-

::

•	- 350 -								
		H2 N N	R1 0						
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*		
5	2278	H H	CI CIN		74.6	6.44	615.23		
- :	2279	H H	CI CI	Ģ.	71.5	5.88	545.10		
10	2280	H H	CI CI	8	80.2	6.43	617.19		
	2281	H	Ci Ci	O O O	93.4	5.82	585.18		
15	2282	H H	C1 C1		74.9	6.28	587.19		
	2283	H, H	c c		68.3	6.24	597.14		
20	2284	H _h ~~~~			65.8	4.02	463.35		
ē	2285	H _n ~~~~			75.8	4.22	479.33		
25	2286	H _N H _M		> .	69.0	4.21	443.37		
	2287	$H_{N} \longrightarrow H$			4.2	4.36	397.33		
30	2288	H _N ~~~~N			82.7	4.74	553.37		
-	2289	H ~ ~ ~ H		Ğ' .	89.8	4.62	483.29		
25	2290				77.2	4.52	555.33		
35	2291	ŢŢ		MeO Me	69.3	3.98	523.35		

351	-		

			• 35				
,		R2 N N	R1				
	Ex.	R5	R 5	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2292	м Н			73.3	4.98	525.34
<u>.</u> .	2293	+ H			73.1	5.44	535.29
10	2294	H + ZH Z			59.4	5.14	482.30
	2295	H H			76.0	5.09	498.28
15	2296	H 사 H	0.	> .	62.3	5.47	462.32
	2297	H - - - - - - - - - - - - - - - - - - -	0.		58.6	4.55	416.22
20	2298	H H	0.		79.5	5.84	572.32
	2299	H H H		٠	74.9	5.3 ·	502.25
25	2300	H M	2-0		72.7	5.71	574.28
<u>-</u>	2301	H H	-2	Me O	71.1	5.06	542.32
30	2302	₩ ₩ ₩	$0 - \left(\begin{array}{c} 2 \\ 0 \\ \end{array} \right)$		73.0	5.66	544.29
-	2303	H H	-2-0-0-0		64.6	5.62	554.24
35	2304	<u>n</u>			92.2	4.62	435.30
	2305	v		O .	90.1	4.67	451.29

		٠	٠	
		٠	•	
3	5	2	,	_

			- 35	2			· · · · · · · · · · · · · · · · · · ·
	·	R2 N N	R1 O R5		:	;	
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2500	$\frac{1}{H}$		> .	84.3	4.76	415.32
, -	2307	х <u>н</u>		•	43.7	4.34 ;;	369.27
10	2500	$\frac{N}{H}$	H .		83.7	5.44	525.34
:	2309	$\frac{1}{H}$.	+	-	80.3	4.96	455.25
15	2310	$\frac{1}{H}$.			83.7	5.26	527.32
	2311	<u>H</u>		Me O O O	82.8	4.64	495.34
20	2312		H		94.1	5.44	497.32
	2313		+		90.1	5.55	507.29
25	2314	<u></u>	CI CI		64.7	5.62	495.16
	2315	<u></u>	CI		50.7	5.54	511.15
30	2316	<u></u>	CICI	> .	78.0	5.8	475.22
	2317	<u></u>	CI CI		20.9	4.86	429.14
35	2318		CI CI		79.2	6.27	585.15
ر ن :	2319	, — ·	CI CI	٠	46.3	5.58	515.12

	<u>.</u>			3			
		R2 N N	R 1			•	
. •		s_/	R5	;	· .		
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2320	<u>H</u> .	CI CI		84.1	6.23	587.20
- -	2321	N - ·	Çı Cı	MeO Me	91.1	5.64	555.18
10	2322	<u>n</u>	CI	00	67.8	6.07	557.22
	2323	<u>n</u>	CI		23.9	5.96	567.17
15	2324	<u> </u>			68.1	4.02	433.40
,	2325	<u>z</u> - ·			65.6	4.2	449.38
20	2326	# · ·		· .	83.5	4.14	413.39
	2327	<u> </u>			. 36.4	3.94	367.35
25	2328	<u>z</u>			87.5	4.82	523.39
	2329	х <u>н</u>			65.1	4.42	453.33
30	2330				91.7	4.59	525.37
- .	2331	H V ·		MeO	81.5	4.01	493.40
35	2332	м — ·		0.	73.9	4.96	495.39
· · · · · · · · · · · · · · · · · · ·	2333	<u>N</u> :			72.7	5.3	505.33
					. —	*	

				4 -		·	
		R2 N N	R1 0 R5			,	'
	Ex.	R5	R2	. R1	Purity (%)	rt (min.)	[M+H]*
5	2334	$\frac{1}{H}$			79.9	4.93	452.35
- .	2335	H Z			81.8	4.88	468.33
10 .	2336	<u>n</u>		٠.	85.9	5.17	432.36
	2337	<u></u>	0.		36.2	4.25	386.28
15	2338	<u>x</u> .			93.3	5.62	542.36
	2339.	<u>N</u>			76.5	4.96	472.3
20	2340	$\frac{1}{H}$			84.9	5.53	544.34
	2341	<u>n</u>	$-\left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \stackrel{\circ}{z}$	MeO Me	80.6	4.96	512.34
25	2342	<u></u>			79.6	5.42	514.35
	2343	<u></u>			64.9	5.34	524.27

7	5	5	

		R1	• •			
	R2-N-N					
	\$	R5				
5 Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
2344	· · · · · · · · · · · · · · · · · · ·		<i>^</i> √√.	76.9	4.54	431.32
2345	HN H2		.~~.	80.7	5.47	457.38
2346	HN P12		Meo	82.2	5.19	507.34
2347	· 性 社			82.1	5.38	491.35
2348	HN			76.7	5.2	495.30
2349	HN H2			83.1	5.42	531.30
20 2350	HN H2			78.5	5.4	547.27
2351	HN H2		40	86.8	5.58	539.33
25 2352	HN H2		<u> </u>	79.3	5.37	469.38
2353	HN 12		F .	83.1	5.18	499.31
30 2354	Hv N2	NO.	\ \ \	82.3	4.32	422.33
2355	H _N N ₂	No.	^	78.2	5.26	448.39
2356	HV N12	NO.2	MeO .	79.7	4.98	498.37
2357	H N H2	No		80.0	5.2	482.38

- 356 -

NO ₂ · F	nin.) [M+H] [*] ,0 486.34
NO, 1	
	,0 486.34
2358 H N H2 1 15.3 5	
H ^N H2	26 522.30
$\begin{pmatrix} N \\ H \end{pmatrix}$	25 538.29
$\begin{bmatrix} 2361 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$.4 530.35
	16 460.38
2363 <u>H</u>	03 490.31
20 2364 H B B B B B B B B B B B B B B B B B B	01 441.22
2365 HN N B 80.6 4.	98 467.28
25 2366 H B B MeO 82.7 4.	72 517.25
2367 H2 B 83.6 5	,0 501.26
30 2368 H 84.3 4	.9 505.23
- 2369 N N B S S S S S S S S S S S S S S S S S	48 541.19
	.5 557.19
	53 549.24

	2	_	7	_
۰	J	J		-

1		· · · · · · · · · · · · · · · · · · ·					
	·	N N					
		R2	//				
	,	\$ ~ /		:			
		• •	A 5	,			į
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
	2372	H Z + .		·	82.3	4.9	479.30
	2373	H _N HZ	B .		81.5	5.26	509.21
10	2374	Z H		^ \.	83.4	4.23	469.37
	2375	ZH		~~ .	82.3	4.94	495.40
15	2376	N N H2		MeO .	88.1	4.73	545.36
	2377	N H H2			90.4	4.99	529.39
20	2378	N N H			90.6	4.92	533.35
	2379	H _N N _{H2}		F	· 85 <i>.2</i>	5.62	569.33
25	2380	H N H2			84.2	5.6	585.33
•	2381				85.0	5.54	577.38
30	2382	H N N			80.6	4.87	507.41
-	2383	N H2			. 85.9	5.42	537.34
35	2384			~~~.	74.2	5.32	455.34
	2385	H Z Z	"	MeO	92.3	5.1	505.32

_	-	_	
- 4	-	×	_

			35	8 -			
		R2 N N	R1 A5	1			
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
,	2386	H N		·	78.4	5.23	489.33
10	2387	H N			71.3	5.12	493.32
	2388	H .			74.4	5.32	529.27
	2389	H N			68.8	5.29	545.25
15	2390	H.			77.7	5.44	537.33
	2391	H N		<u> </u>	80.7	5.24	467.36
20	2392	H		F .	63.3	5.04	497.30
	2393	H.	NO.	<i>^</i> 0 <i>√ ·</i> .	87.4	4.16	420.33
25	2394		NO.	~~~.	82.7	5.12	446.38
	2395		NO.	MeO	82.4	4.88	496.35
30	2396	HZ .	NO.	0~~.	78.0	5.04	480.37
-	2397	H Z Z	NO.		75.9	4.9	484.33
35	2398	THE N	202	F	71.5	5.16	520.29
	2399	H Z	NO2 .		65.4	5.12	536.30

3	5	٥	_
_	J	J	

•			35	9 -		·	
		R2NN	R 1				
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
	2400	ĦŢŢŢ.	NO2		76.0	5.28	528.33
10	2401	H Z .	20,		93.8	5.03	458.38
•	2402	H Z	20,		69.2	4.88	488.30
25	2403	H N	B .	^ 0 √ · .	68.3	3.88	439.23
15	2404	H Z .	в	~~ .	70.8	4.89	465.28
· · · · · · · · · · · · · · · · · · ·	2405	H		MeO	76.2	4.72	515.23
20	2406	H T	B .	0	76.5	4.88	499 <i>.</i> 27
	2407	H N	в.		90.1	4.88	503.26
25	2408	H .	B .		78.8	5.36	539.19
-	2409	H .	в		76.1	5.31	555.17
30	2410		8		80.5	5.29	547.22
	2411	H N .	B .		68.2	4.86	477.30
35	2412	H N	8	F	55.7	5.1	507.20
	2413	H N		<i>^</i> 0 <i>√ ·</i> .	69.2	4.12	467.36

	- 360 -						
		R2 N N	P.1		•	٠	
_	Ex.	R5	. R2	RI	Purity (%)	rt (min.)	(M+H)*
5	2414	YH Z		~~ .	73.6	4.85	493.41
	2415		0.0	MeO	73.9	4.72	543.36
10	2415		0.0	0.	73.4	4.87	527.39
	2417	H N N	00		90.6	4.92	531.36
15	2413	Z .			71.6	5.5	567.32
	2419	H	00		60.5	5.4	583.32
20	2420	H z .	00		50.8	5.29	575.36
	2421	T Z Z	0.0	<u> </u>	58.8	4.82	505.39
25	2422		O.C.		54.7	5.29	535.31

:

					361 <i>-</i>			
				Chiral				
5		R 2		R10	4.			
	Ex.	Ι.	R10 .	R2	R3	Purity (%)	rt (min.)	(M+H]+
-	2423	H ₂ N	H !		>-	79.8	3.66	476.30
10	2424	H ₂ N	<u>H</u> !			59.3	3.68	496.26
	2425	H ₂ N	<u>H</u> :		; <u>i</u> , 0	60.5	4.2	580.22
15	2426	H _z N	<u>H</u> :			52.7	3.68	554.24
	2427	н.и/	<u> </u>		>	72.3	3.87	490.30
20	2428	H ₂ N	<u>H</u> :			\$3.B	3.85	510.26
	2429	H,N	<u>H</u> +		£ , D	63.0	4.34	594.23
25	2430	H _z N	H;			54.1	3.82	568.25
	2431	H ² N	<u>H</u> :		>-	76.9	3.72	490.30
30	2432	H'M^	<u>H</u> !			70.7_	3.73	510.26
	2433	H2H~	$\overline{\overline{H}}$		F. 50	69.1	4.23	594.24
35	2434	н,и	<u>H</u> :			52.7	3.72	568.24
	2435	H1N	<u>H</u> ;			76.6	3.92	504.32
								•

- 362 -

			- 362	2 - ·			
		N	C hiral	1			
			R10				
5		R2 N S	_R3		•		
	Ex.	R10	_ R2 \	· R3	Purity (%)	rt (min.)	[M+H]+
	2436	$\frac{1}{H} \prod_{N}$			64.8	3.9	524.28
10	2437	<u>H</u> ;		F F O	66.2	4.37	608.24
·	2438	H ;			59.3	3.86	582.27
.15	2439	<u>H</u>		>-	74.3	3.9	544.32
. •	2440	<u>H</u>			65.4	3.91	564.29
20	2441	<u>H</u>		F O	63.8	4.41	648.30
	2442	H .		CO	57.6	3.92	622.31
25	2443	<u>н</u>		>-	77.8	4.09	558.34
	2444	H H			65.5	4.08	578.30
30	2445	H H		F F O	64.3	4.5	662.31
-	2446	<u>H</u> ~		C.D.	47.6	4.04	636.36
35	2447	H,N H		\\—	78.6	3.88	538.28
	2448	H,N H			61.2	3.9	558.24
	L	J					

- 363 -

			36	3 -			
		N	Chiral	••			
			R10				
5		R2 N	_R3		•		
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
10	2449	H,N H		F O	59.8	4.38.	642.27
10	2450	H,N <u>H</u> ,			48.4	3.88	616.30
	2451	H,N <u>H</u> :			79.9	4.06	552.28
15	2452	H ₂ N H ;	·		59.4	4.04	572.25
	2453	H ₂ N <u>H</u> ;		F To	61.4	4.52	656.29
20	2454	H ₂ N H !			50.0	4.02	630.31
•	2455	· · · · · · · · · · · · · · · · · · ·			76.1	3.74	488.29
25	2456	$\begin{pmatrix} \ddots \\ \ddots \\ \ddots \\ z \end{pmatrix}$			88.3	3.72	508.25
·	2457	$\begin{pmatrix} z \\ z \end{pmatrix}$		F O	84.2	4.21	592.22
30	2458	, , ,			82.1	3.71	566.24
*	2459	\(\bigcirc \)		7	72.4	3.96	502.32
35	2460	2			88.5	3.89	522.27
	2461	2	-	F To	86.6	4.37	606.25
			•				

- 364 -

			36	4 -		:	
		O,	Chiral	•			
5		R2 N N	R10		.		
	Ex.	R10	R2	• 83	Purity (%)	rt (min.)	[M+H]+
10	2462	H			77.2	3.8	·580.26
10			Chiral			·	
15		R2 N N	R10				
	Ex.	R10	R2	. R3	Purity (%)	rt (min.)	(M+H)+
	2463	H ₂ N $\overline{\underline{H}}$		>-	86.6	3.96	487.31
20	2464	H ^z N			58.7	4	507.27
	2465	H ₂ N N		F F O	64.9	4.48	591.22
25	2466	H _z N H ;			40.3	4	565.25
	2467	H ^z N H ;		>-	91.3	4.12	501.31
30	2468	H ₂ N $\overline{\underline{H}}$,			61.2	4.14	521.25
-	2469	H ₂ N N		F Lo	62.4	4.62	605.25
35	2470	H ₂ N N			33.1	4.13	579.27
	2471	H ₂ N H		\\	87.3	4.01	501.31

- 365 -

				-			<u>-</u>
			Chiral O				
5		R2 N N	R10	,	•		
	Ex.	R10	R2 1	R3	Purity (%)	rt (min.)	[M+H]+
	2472	H +			54.0	4.05	521.25
10	2473	H ₂ N N		F To	69.1	4.51	605.26
	2474	H ₂ N N			35.4	4.04	579.27
15	2475	\overline{H}		>-	88.4	4.18	515.31
	2476	\overline{H}			68.0	4.19	535.28
20	2477	H ³ N N		F.J.O	72.9	4.64	619.25
	2478	<u>H</u> ;			32.6	4.17	593.28
25	2479	™, <u>H</u>		<u>\</u>	92.7	4.18	555.33
<u>-</u>	2480	<u>H</u> .			59.4	4.24	575.29
30	2481	<u>H</u>		F, O	71.8	4.72	659.33
	2482	<u>H</u>			36.4	4.2	633.44
35	2483	мн, <u>Н</u>			92.4	4.36	569.34
رر :	2484	М. <u>Н</u>			62.9	4.38	589.32
		<u> </u>			٠.	÷	

			. Chiral				<u> </u>
			0			•	
		\bigvee_{N}	R10		,		
5		R2 S	R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2485	<u>H</u>		F F	71.9	4.82	673.33
10.	2486	H z			32.2	4.36	647.19
;	2487	H_2N $\underline{\underline{H}}$		\	90.2	4.14	549.28
15	2488	H ₂ N <u>H</u>			59.7	4.22	569.24
	2489	H.M.			66.6	4.7	653.25
20	2490	H,IM H			34.5	4.22	627.27
	2491	H ₁ N <u>H</u>		>-	91.3	4.32	563.30
25	2492	H ₂ N <u>H</u> i			60.8	4.35	583.26
	2493	H, M		F L	73.3	4.8	667.27
30	2494	H ² N \overrightarrow{H}_N			32.9	4.34	641.29
·	2495	· · · · · · · · · · · · · · · · · · ·		>-	60.4	3.94	499.30
25	2496	Z—H			87.0	3.92	519.24
35	2497	Z-H		[\$\tau_0^{\tau}\)	84.4	4.41	603.24

			- 50				
			Chiral				
) N	N10	<i>;</i>			
		R2 N S	→ R3		/	·	
İ	Ex.	R10	R2 \	R3	Purity (%)	rt (min.)	[M+H]+
	2498				81.4 	3.94	577.26
	2499			<u></u>	73.9	4.12	513.31
	2500				91.5 ,	4.09	533.26
	2501	, , , , ,		F F O	89.6	4.54	617.26
	2502				85.4	4.09	591.27

- 36<u>8 -</u>

I			- 369 Chiral				•
			•	·			
5		R2 N S	`R10 _R3	•			
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	(M+H]+
	2503	H,N NH		\	77.7	3.8	471.39
10	2504	H,N N			37.7	3.82	491.34
	2505	H [*] N H		c.	79.7	4.09	525.28
15	2506	H,N H			58.5	4.23	541.33
	2507	#W H		>-	84.6	4,0	485.38
20	2508	H.™ H.			73.2	4,0	505.34
	2509	Z.H.		c. O	. 82.3	4.25	539.29
25	2510	H-W H			74.2	4.37	555.34
	2511	H ² N N		>-	57.5	3.56	417.32
30	2512	H ₂ N H H			66.9	3.56	437.27
	2513	H ₂ N N		cr ·	69.0	3.85	471.26
2-	2514	H ₂ N N			71.1	4,0	487.33
35	2515	H ⁱ N H			76.4	3.76	431.34

	3	69	-
•		υJ	_

			<u>- 36</u>	9 -			
		1	Chiral	•			
		<u> </u>					ļ
			70.00		•		
		Ĭ	R10	1			
_		R2 N	_R3				
5		s			.		
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
		H ₂ N N	3	<u> </u>			
-	2516	<u>'H</u>			67.8	3.75	451.30
		H ₂ N N					
10	2517				75.2	4.02	485.27
•]	Ή	1.	c C			
•		H ² N N					
	2518	<u>H</u>			70.4	4.16	501.32
٠	}		Chiral				
15		\ <u></u>		•			
	·	Ţij					
			R10				
		R2 N N	R3				-
	L	s		·			·
20	Ex.	R10	F2	. R3	Purity (%)	rt (min.)	[M+H]+
	0510	H ^z N H		-	76.4	3.73	471.38
	2519	\ :-				J J	
		H ^a N N					
	2520	<u> </u>			67.9	3.76	491.33
25	<u></u>	~~~			-	· · · · · · · · · · · · · · · · · · ·	
	2521	H,N IH			75.0	4.04	525.28
		•		cr			
		$H^{2}M \longrightarrow H$			74.0		544.04
	2522				71.2	4.17	541.34
30		u v					
, O.	2523	H ₂ N N <u>H</u>			87.9	3.94	485.39
			·				
-	1	H,N N	,		70.0	204	505 24
	2524	·			72.2	3.94	505.34
	.					<u> </u>	<u> </u>
35	2525	H'N NH			82.1	4.2	539.30
		•	—	Cr			
		H'N H	-				
	2526				80.9	4.33	555.34
	1	1	•	1	1	1	T

370 -

		·	370	<u> </u>			
			Chiral				
		\checkmark 0					
	,	l., , , , , ,	R10	.*	1		
		N N	R3		•		I
5 .		R2 S	ns ',				
	Ex.	R10	· R2	۸. R3	Purity (%)	rt (min.)	[M+H]+
	2527	H²N TH	·		70.7	3.51	417.32
	2321	•				0.01	711.52
10	2528	μ ^z μ M			50.3	3.52	437.28
-	2326	•				5.52	
• •	2529	H ^z _M			72.4	3.8	471.26
				cr Cr			
15	2530	H ⁵ W W			74.5	3.96	487.32
	2531	H. H.			84.4	3.72	431.32
· .		H _z N NII			•		
20	2532	\\ \ \ \ <u> </u>			68	3.71	451.29
20		H ₂ N NH					
	2533	ļ 		cr	89.6	3.98	485.26
		H ₂ N NH				4.40	504.00
25	2534	 			77.9	4.12	501.32
2)			Chiral				
			<u></u>				
		l	R10 -	•			
		22 N N N	-R3	**************************************			
30		R2 S					
	Ex.	R10	/R2	R3	Purity (%)	rt (min.)	[M+H]+
	2535	H ³ N H		>	84.7	3.83	505.34
						ļ	
35	2536	H ² N H H H H H H H H H H H H H H H H H H H			75.2	3.89	525.30
		•					

- 371 *-*

-		·	37	<u>1 • </u>			
			Chiral				
		I. ji	R10				
5		R2 N N	-R3		•		
•	Ex.	R10	R2	R3	Purity (%)	rt (min.)	(M+H]+
	2537	H ₂ N NH			75.9	4.17	559.25
10	2538	H-IN H			70.4	4.29	575.30
	2539	į.μ MH		>-	90.9	4.03	519.35
15	2540	i. H™			71.5	4.04	539.31
,	2541	×±1.			7.9.2	4.31	573.25
20	2542	HTY ZH			80.6	4.43	589.33
	2543	H ₂ N		>-	77.2	3.62	451.30
25	2544	표.~			69.9	3.65	471.27
٠.	2545	五, 五,		c	74.8	3.92	505.22
30	2546	H.z. 人			66.7	4.06	521.26
	2547	н, м			83.5	3.82	465.31
•	2548	H ₂ N NH			72.9	3.82	485.28
35	2549	H, N N H		cr	33.1	4.1	519.23
•		÷					

- 372 -Chiral R10 5 Purity (%) rt (min.) [M+H]+ R3 R2 R10 Ex. H,N. 51.2 4.22 535.28 2550 10 Chiral 15 (M+H)+ Purity (%) rt (min.) R2 RЗ R10 Ex. 79.8 3.45 521.33 2551 541.29 72.6 4.14 20 2552 3.79 575.24 63.7 2553 Cr 3.93 591,31 73.8 2554 25 91.2 3.65 535.35 2555 νH 3.66 555.29 75.6 2556 30 589.26 78.3 3.94 2557 605.35 4.06 69.7 2558 35 H 3.22 467.29 69.1 2559

-		<u></u>	37	3 -			
		он 1					
			Chiral				
•							
			R10	•			
5		R2 N	R3	·.			
	Ex.	R10	R2	. R3	Purity (%)	rt (min.)	[M+H]+
	2560	H ₂ N NH			73.7	3.26	487.27
10	2561	H ₂ N NH		c C	79.6	3.56	521.20
	2562	H ₂ N			73.5	3.72	537.27
15	2563	H ₂ H ₂ H ₂ H ₂ H ₂ H ₃ H ₄ H ₂ H ₃ H ₄		\\ \frac{1}{2}	86.1	3.42	481.31
	2564	H ^z u			77.1	3.43	501.29
20	2565	H ^z _H		cr	83.0	3.73	535.22
	2566	H ¹ _M			71.9	3.86	551.28
25			Chiral		· · · · · · · · · · · · · · · · · · ·		•
`			R10_	•			
30		R2 N S	-R3	`\			
	Ex.	R10,	, R2	R3	Purity (%)	rt (min.)	[M+H]+
~	2567	H'M H		\ <u></u>	82.0	3.99	535.3
35	2568	H²N NH			40.6	4.04	555.31
	2569	H ⁱ n H		cr ·	47.5	4.31	589.26
				and the second s			

. . . 5

			- 374	<u> </u>			
						•	
			Chiral			•	
,			R10				
5		<u>. 1</u>	R3	4.			
	Ex.	S—"/	R2	· R3	Purity (%)	rt (min.)	[M+H]+
10	 -	H ₂ N H			37.4	4.43	605.33
•	2571	H-IN H		\rightarrow	79.3	4.18	549.35
15	2572	H'N H			38.8	4.19	569.30
	2573	H,K	P	cr ·	51.6	4.46	603.28
• • •	2574	H ₂ N H			36	4.55	619.35
20	2575	H ₁ H ₂ H ₂ H ₁ H ₁ H ₂ H ₁ H ₂			61.4	3.77	481.30
	2576	†H			37.9	3.81	501.28
25	2577	H ^z n h ^z H		c. C.	45.6	4.08	535.21
	2578	H ² N NH			34.9	4.2	551.27
30	2579	H ⁵ N NH		>-	66.2	3.95	495.31
*	2580	H ₂ N N			44.8	3.96	515.25
35	2581	H ₂ N NH		cr ·	54.4	4.23	549.24
	2582	H ₂ NN			36.5	4.34	565.28

7	75	_

•			- 31	<u> </u>			
			Chiral				
		N	R10		·	•	
5		R2 N S	_R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2583	H˙ν H˙ν μ˙ν			52.2	3.91	465.24
10	2584	H'N H'		Br	55.9	4	529.14
	2585	H-M H-M			51.3	3.9	445.29
15	2586	H ₂ N H +		02N	57.4	3.9	510.24
	2587	$\frac{1}{H^2N}\sqrt{\frac{H}{N}}$			54.3	4.04	479.28
20	2588	H ₂ N H .		Br	61.7	4.12	543.15
	2589	H ₁ N H .			80.0	3.82	465.25
25	2590	H_1N H .		051	61.6	3.85	530.20
-	2591	H,N H			61.1	3.97	499.25
30	2592	H,N H		Br ·	61.3	4.06	563.1
در	2593	H,N H.			84.2	3.96	479.29
-	2594	H,N H.		0,1	58.8	3.98	544.20
35		·					

					•		
			- 37	· . 6 -		·	·
			Chiral	•			
1.			R10				
_		R2 N N	_R3		•		
5		S ¹		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
-	2595	H,N H	F		61.5	4.1	513.26
10 .	2596	H_2N $\frac{H}{N}$.		Br	65.5	4.19	577.1
			. Chiral				·
			•				
15		N	R10				·
1)		R2 N S	_R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2597	H'YY H'YY		O ₂ N	28.6	3.7	514.16
20	2598	HŽY YŽY			39.0	3.83	483.24
	2599	H ₂ N \ \ \frac{\overline{H}}{N} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Br	39.9	3.92	547.1
25	2600	H, N H ·		7	53.5	3.8	463.26
	2601	H ₂ N H +		0,1	28.8	3.83	528.19
30 -	2602	H-1/N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			31.0	3.96	497.24
	2603	H,N H,		Br ·	34.0	4.05	561.1
35	2604	H_1N $\frac{H}{N}$.		>-	64.5	3.72	483.24

			Chiral				
,		S O	J.,			•	}
			-				
		\bigvee_{N}	`R10		f	•	1
		R2 N	_R3				
5		s —		 	<u> </u>		
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2605	H,W H		, O2N	25.4	3.78	548.12
10	2606	H,N H			36.8	3.9	517.20
	2607	H,N H		Br	31.2	4	581.1
15	2608	H ₂ M H .		>-	72.8	3.86	497.24
	2509	H_M H_M .		024	31.7	3.9	562.17
20	2610	H_1N $\frac{H}{N}$.			40.1	4.02	531.21
	2611	H,N H.		Br	38.2	4.12	595.1
			Chiral				
25		он <u>о</u>	R10				
- 		R2 N S	_R3 				
,	Ex.	R10	- R2	R3	Purity (%)	rt (min.)	[M+H]+
30	2612	H ³ N H ³ N		>-	45.2	3.49	419.24
- 444	2613	H_{i}^{N} $\frac{H}{N}$.		>-	56.6	3.39	439.21
35	2614	H,N H.		>-	58.6	3.56	453.23
	L			1	L		L

				- 371	B -			
				Chiral			r	
•				R ₁₀				
5		R2	N = N	A3				
•	Ex.	- -	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
- 	2615	H ₂ N	\overline{H}_{N}			65.5	3.96	479.28
10	2616	HZN	Mi.		O ₂ N .	50.5	4	544.19
	2617	HŢN	<u>H</u> ;			55.7	4.11	513.26
15	2618	H ₂ N	<u>H</u> :		Br	55.5	4.2	577.13
	2519	H ₂ N	<u>H</u> .		>-	67.1	4.09	493.30
20	2620	H ₁ N	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		O2N	53.7	4.11	558.20
	2621	H ₂ N	\overline{H}			55.5	4.22	527.27
25	2622	H ₂ N	H i		Br	72.1	4.3	591.13
	2623	н,и	<u>H</u>		>-	81.1	4.02	513.26
30	2624	н,н	$\frac{H}{N}$.		0,4	51.0	4.08	578.18
	2625	н,н	$\frac{H}{N}$.			54.1	4.17	547.21
35	2626	н,н	T.		Br	65.2	4.26	611.11
))	2627	H ₂ N	<u>H</u>		>-	83.9	4.16	527.27
						•		

,				79			
			Chiral	,			•
		,,,,,	O R10		<i>,</i>		
		R2 N S	R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2628	H,M H		0,N	60.2	4.18	592.21
	2629	H_{N}			63	4.3	561.21
	2630	H		Br .	74.0	4.36	625.11
		R2 N N	Chiral R 10 R 3				-
	Ex.	``` `s <i></i>					
-	- X	040	<u> </u>				
-1		R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2631	H,N <u>H</u> ,	R2	R3	Purity (%) 83.1	rt (min.) 4.06	[M+H]+ 515.26
		H-M~~~N	R2	P3			
	2631	H ² N H ³ N H ³ N	RZ	>-	83.1	4.06	515.26
	2631 2632	H, N H + .	RZ	>-	83.1 57.8	4.06 4.13	515.26 580.20
	2632 2633 2634	H ₂ N	RZ	0.10	83.1 57.8 37.4	4.06 4.13 4.22	515.26 580.20 549.23
	2632 2633 2634 2635	H ₂ N		0.10	83.1 57.8 37.4 43.3	4.06 4.13 4.22 4.31	515.26 580.20 549.23 613.12

37.0

4.32

563.25

			38	0 -			
•			Chiral				
		l	R10				
5		R2 N S	P3				
	Ex.	R10	– R2	R3	Purity (%)	rt (min.)	[M+H]+
	2638	H ¹ N H ¹ N		Br	44.3	4.4	627.15
10	2639	H ₁ N H		\\ \tag{\}	86.9	4.14	549.23
	2640	H_rN H_r		0,1	53.4	4.23	614.17
15	2641	$H_{r,N} \longrightarrow \frac{H}{N}$.			37	4.3	583.21
	2542	$H_{r}V$ $\frac{H}{N}$.		Br	45.7	4.4	647.11
20	2643	$H_{T}N$ $\frac{H}{N}$.			88.9	4.24	563.25
	2644	H_2N $\frac{H}{N}$.		O _z N	57.3	4.3	628.19
25	2645	$H_{\lambda}N$ $\frac{H}{N}$.			39.4	4.39	597.22
	2646	H_xM $\frac{H}{n}$		Br	44.1	4.48	661.15
				1		-	

- 381--

		· · · · · · · · · · · · · · · · · · ·	- 38	1.•			·
		он (Chiral				. •
٠		\longrightarrow	R10	:		· .	
		R2 N N	R3	1			
5		s_//		•			
)·	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2647	HN NH2		-	25.6	3.18	495.23
10	2648	, _HN		CF.	33.1	3.59	533.15
	2649	, ми Дин,		NC .	27.0	3	490.2
15	2650	ни Ни			33.6	3.14	562.16
	2651	HN NH,		0	27.2	3.36	509.21
20	2652	HN NH,		F,	32.5	3.76	547.16
	2653	, MN NH ⁴		NC .	29.7	3.2	504.2
	2654	HN NH ₂			34.8	3.32	576.21
25	2655	, / Z / T			73.7	2.93	439.15
·	2656			F,	60.6	3.37	477.14
30	2657	,		20	65.1	2.7	434.1
	2658	,			69.3	2.92	506.14
35	2659	, _ Z _ I			72.5	3.14	453.17
	2660			CF3	77.2	3.55	491.14

			- 38	2 -	·		
		OH C	Chiral			•	
			R10	•			
j		R2 N N	R3		. 🖊		
. 5	<u> </u>	s —	R2	R3	Purity (%)	rt (min.)	[M+H]+
	Ex.	R10	F/2	ho ho	Pully (%)	r (min.)	[[V]+[]+
	.2661	Z Z		NC.	66.4	2.9	448.1
10	2662				65.9	3.14	520.15
	, .		Chiral `R10			:	
15		R2 N N	-R3	. •			·
	Ex.	R10	R2	F3	Purity (%)	rt (min.)	[M+H]+
	2663	, НИ МН ³		0	63.3	3.82	555.21
20	2564	HN NH1		CF,	. 85.8	4.24	593.19
	2665	, HN NH		NC .	87.5	3.8	550.2
25	2666	HN NH ₁			75.1	3.78	622.22
	2667	HN			66.1	3.98	569.21
_ 30	2668	. HN , HH		CF,	87.2	4.35	607.21
	2669	HH NH		NC .	82.9	3.9	564.2
35	2670	ни мн			79.1	3.94	636.25
	2671	,			82.0	3.55	499.18

•		<u></u>	- 38	3 -			<u> </u>
			Chiral		f		
5	·	R2 N S	-A3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2672	$\left\langle \begin{array}{c} z \\ z \\ \end{array} \right\rangle$		ĊF,	82.2	3.93	537.14
10	2673			NC .	86.4	3.4	494.2
	2674				90.4	3.52	566.15
15	2675			0	88.0	3.72	513,19
	2676			CF.	88.8	4.08	551.15
20	2677			NC .	88.9	3.6	508.2
	2678				93.6	3.7	580.17
25) Chiral				
		R2 N S	R10	• •			<u> </u>
30	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
- -	2679	HN NH _z		9	59.5	4	569.20
35	2680	. MH NH ²		CF,	82.6	4.37	607.21
J)	2681	HN NH ₂		NC .	74.9	3.9	564.2

			- 30	<u> </u>			
			Chiral H10		•		
5		R2 N S	_R3	1	•	·	
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2718	нн Мн,			76.9	3.92	675.26
10	2719				75.5	3.63	538.18
	2720	,		CF,	79.4	3.96	576.13
15	2721			NC .	73	3.5	533.2
	2722				- 87.0	3.56	605.17
20	2723	$\begin{pmatrix} z \\ z \end{pmatrix}$			81.8	3.8	552.18
	2724			, C.	80.1	4.11	590.15
25	2725			NC C	79.4	3.6	547.2
	2726	, , , , , , , , , , , , , , , , , , ,			86.3	3.73	619.18

			- 388			
		HN	C hir	al		
			NH	į	,	
5		R2 N N	_R3			
	Ex.	R2	_ R3 '	Purity (%)	rt (min.)	[M+H]+
-	2727		>	- 73.7	4.7	488.3
10	2728			87.1	4.2	508.2
٠	2729			90.3	4.3	522.3
.15	2730		8.	78.2	4.5	586.1
	2731		2 2	. 73	4.1	533.2
20	2732		cı .	86.4	4.5	542.2
	2733		FF	77.7	4.6	576.2
25	2734		F F O	80	4.7	592.2
	2735			, 76.4	4.9	644.2
30	2736			81.4	4.6	558.2
	2737		>	79.8	4.4	502.3

2738 87.5 4.4 5	M+H]+ 522.3 536.3
5 R2 R3 Purity (%) rt (min.) [N 2738 87.5 4.4 5	522.3
5 R2 R3 Purity (%) rt (min.) [N 2738 87.5 4.4 5	522.3
Ex. R2 R3 Purity (%) rt (min.) [N	522.3
2738 87.5 4.4 5	522.3
2739 91.4 4.5	
2739 91.4 4.5	536.3
2740 83.3 4.6	600.1
15 2741 82 4.3 5	547.2
2742 61 83.9 4.6	556.2
20 2743	590.2
2744 F 85.2 4.8	606.2
25 2745 82 4.3	658.2
2746 86.7 4.7	572.2
30 2747 31.6 4.3	506.3
2748 71.1 4.3	526.2

•	- 390 -						
			Chi	iral	,		
			Д м мн		•		
5		R2 N S	R3	· · · · · · · · · · · · · · · · · · ·			
	Ex.	R2	_ R3	Purity (%)	rt (min.)	(M+H)+	
10	2749			- 89.5 	4.4	540.2	
	2750			59.6	· 4.5	604.1	
15	2751		Z -0	51.3	4.2	551.2	
	2752		c _i .	62.2	4.5	560.2	
	2753		FF	59.6	4.7	594.2	
20	2754	·	F. C.	63	4.7	610.2	
	2755			52.5	4.9	662.2	
25	2756			67.8	4.6	576.1	
	2757		→ .	81.1	4.6	516.3	
30	2758			85.8	4.5	536.3	
- ,	2759		·	85.4	4.7	550.3	

•	· · · · · · · · · · · · · · · · · · ·	- 39	1		
		Chi	ral		
		NH		1	_
	R2 N N	R3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]+
2760		, B	76.6	4.7	614.1
		Chi	ira!		
		ин М			
	R2 N S				
Ex.	Fl2	R3	Purity (%)	rt (min.)	[M+H]+
2761			77.2	4.4	561.2
2762		cı ·	85.4	4.7	570.2
2763		F F	79.7	4.8	604.2
2764		F To D	81.1	4.9	620.2
2765			79.2 、	5.1	672.2
2766	0		82	4.8	586.3

				392				
	:	T Z		C h ir:	al 🐔			
	; ;		R10	•	•			
5	. :	R2 N N	R3	i.				
	Ex.	R2	- R10	`	R3	Purity (%)	rt (min.)	[M+H]+
·	2767		-	ı H		64.3	3.91	530.20
10	2768		•	Н		58.3	3.57	521.22
	2769		 	ł H	F _ F	66.7	4.03	564.20
15	2770		•	н	· · · · · · · · · · · · · · · · · · ·	- 65.1	3.71	541.19
	2771		H ₂ N N	1 H	NC .	56.1	3.58	521.21
20	2772			H H		42.1	3.93	544.19
	2773		H ₂ N	H H		34.6	3.59	535.22
25	2774		H 2N	7 H	F F	46.9	4.05	578.21
	2775		H ² N	7 + 7 I	20.	33.3	3.73	555.19
30	2776		, H ² N	7 H	NC .	33.4	3.6	535.22
	2777		H ₂ N	+ Hu,		39.6	3.97	558.22

Chiral		
		·
R10	,	
$ \begin{array}{c c} & & \\$		
Ex. R2 R10 R3 Purity (%) rt (min.)	[M+H]+
2778 - H,N NH 47.5		549.23
2779 H ₂ N NH 50.3	4.09	592.23
H . Chiral		1
		·
15 R10	·	
R2 N R3	·····	
Ex. R2 R10 R3 Purity	(%) rt (min.)	(M+H)+
20 2780 H,N NH 1 1 40.6	3.76	569.19
2781 H,N NH 1 NC 42.7	3.63	549.25
25 2782 H,N NH 35.5	5 4,0	572.17
2783 H,N NH 1	2 3.69	563.26
ĠN		1
30 2784 H ₁ N NH 45	4.1	606.27

			- 35				
			Chi	ral			
5		R2 N N	R10 R3	,			
	Ex.	S — // R2	N10 ,	R3	Pureté (%)	tr (min)	[M+H]+
	2786		H,N NH	NC .	27.1	3.7	563.26
-10	2787		H ₂ N NH		73.6	3.98	530.19
	2788		H ₂ N NH	2	62.5	3.64	521.21
15	2789		+ 1 N N H	E F	74.8	4.09	564.2
	2790		H ₂ N NH		67.7	3.77	541.20
20	2791		+ + + NH	NC .	71.3	3.65	521.21
	2792		H ₂ N NH		52.4	4,0	544.18
25		T .	Chi	ral			
		R2 N N	R10	•			
30	Ex.	'R2	R10	R3	Purity (%)	rt (min.)	(M+H.]+
	2793		H ₂ N NH	- C 2	47.0	3.65	535.22
	L	<u> </u>		 	1		·

. [H	- 3s: Chir			·	· ·
	Į.		R10		ç		
5		R2 N S	_R3				
	Ex.	R2	R10	R3	Purity (%)	rt (min.)	(M+H]+
-	2794		H ₂ N_ +		54.7	4.11	578.22
10	2795		H ₂ N N H		43.7	3.79	555.20
	2796		H ² N	NC .	44.6	3.67	535.22
15	2797		н ₁ и		53.7	4.03	558.20
	2798		H ₂ N NH		·· 51.0	3.69	549.23
20	2799		H ₂ N NH		56.5	4.15	592.23
•	2800		, h	70,	48.9	3.83	569.20
25	2801		, H 3 M H	NC .	46.0	3.7	549.24
	2802		H ₂ N NH		41.2	- 4.1	572.21
30	2803		H ₂ N NH	Z Z	36.7	3.76	563.26
-	2804		H ² N NH		47.4	4.2	606.26

	<u>.</u>	- 39				
	HZ N N	R10	ral ,			
 Ex.	R2	_ R10 `	R3	Purity (%)	rt (min.)	[M+H]+
2805		H ₂ N NH		37.0	3.89	583.22
2806		H ₂ M H ₄ H	20	37.3	3.76	563.26

			C	hiral		
5		N N	NH NH		,	
		R2 S	1			
	Ex.	R3	R2	Purity (%)	rt (min.)	[M+H]+
;; . 10	2807	2		52.1	3.65	547.22
	2808	, z	9	61.7	3.61	563.24
15	2809	2 2		54.1	3.91	561.26
15	2810	, z		56.7	3.69	563.23
	2811	, z		54.7	3.65	547.23
20	2812	, z		63.6	3.96	561.25
•	2813	Z Z		66.1	4.13	575.26
25	2814	, z	10	34.9	4.29	589.29
	2815			69.3	3.66	563.24
30	2816	20		47.6	3.66	547.23
-	2817	NC .	· P	41.4	3.61	563.23

		H	С	hiral	<i>f</i>	
5		N N	NH NH			
·		R2 S	/			
.	Ex.	R3	R2	Purity (%)	rt (min.)	(M+H]+
10	2818	20		28.5	3.97	561.24
10	2819	20		56.4	3.71	563.23
	2820	20		45.6	3.65	547.22
15	2821	20		62.6	3.99	561.24
	2822	NC .		42.0	4.17	575.26
20	2823	NC .		45.7	4.32	589.28
	2824	20	F .	23.5	3.65	551.21
25	2825	NC .		70.9	3.67	563.22

Some compounds according to the invention can be obtained according to method G described hereafter.

METHOD G

5

10

15

Synthesis in solution of 2-iminothiazole-4-carboxamide derivatives from monoprotected symmetrical diamines (Boc)

General procedure:

The monoprotected symmetrical diamine (Boc) (1 equiv) is agitated overnight with an aromatic isothiocyanate (1 equiv) at ambient temperature in an anhydrous solvent such as dioxane, dimethylformamide or chloroform., 1 equivalent of an inorganic base such as sodium or potassium hydrogen carbonate and 1 equivalent of ethyl bromopyruvate dissolved beforehand in an anhydrous solvent such as dioxane or dimethylformamide is successively added to the crude isothiourea intermediate. The mixture is then heated at 80 °C for 1 to 3 hours and the inorganic salts are eliminated by filtration. The solvents are evaporated off under vacuum and the residue is purified by flash chromatography on silica gel using an ethyl acetate / heptane gradient. Saponification of the ester intermediate is carried out in a solvent such as tetrahydrofuran using a 1N solution of KOH, LiOH or NaOH. The mixture is agitated vigorously for 6 to 20 hours at ambient temperature then acidified with a 1N aqueous solution of hydrochloric acid to pH 2.5.

The organic phase is extracted several times with dichloromethane then the organic phase is washed with water until neutral pH and dried over sodium sulphate.

A primary or secondary amine (1.1 to 2 equiv.) pre-dissolved in a anhydrous solvent such as dimethylformamide is added under argon to a solution of carboxylic acid intermediate (1 equiv.) and a peptide coupling agent such as DIC, DIC/HOBt, HATU or TBTU (1.1 to 2 equiv.), dissolved beforehand in an anhydrous solvent such as dimethylformamide,. The mixture is agitated overnight at ambient temperature. The solvent is evaporated off under vacuum and the residue purified by flash chromatography on silica gel using an ethyl acetate / heptane gradient. The carboxamide intermediate is diluted in a solvent such as dichloromethane or ethyl acetate and deprotected after passage through the solution of a current of dry hydrogen chloride for 1 to 6 hours at ambient temperature. The corresponding dihydrochloride is isolated either by filtration of the precipitate or, after evaporation under vacuum of the solvent, by adding diethylether for better crystallisation.

5

10

15

20

25

Preparation 25

ethyl (2Z)-3- $\{5-[(tert-butoxycarbonyl)amino]pentyl\}-2-[(3,5-dimethylphenyl)imino]-2,3-dihydro-1,3-thiazole-4-carboxylate (C₁₄H₁₅N₃O₄S; MM = 461.63)$

N-Boc-1,5-diaminopentane (1.04 g; 5 mmol) is agitated with 3,5-dimethylisothiocyanate (824 mg; 5 mmol) in 10 ml anhydrous dioxane. 420 mg (5 mmol) of sodium hydrogen carbonate and 1.08 g (5 mmol) of ethyl bromopyruvate dissolved beforehand in 2 ml of anhydrous dioxane are successively added to the crude isothiourea intermediate. The mixture is then heated at 80 °C for one hour and the inorganic salts are eliminated by filtration. The dioxane is evaporated off under vacuum and the yellow residue is purified by flash chromatography on silica gel (eluent: ethyl acetate / heptane 2:8 then 3:7). A yellow oil (1.8 g; yield of 77.9%) corresponding to the expected compound is then isolated.

NMR ¹H (DMSO- d_6 , 400 MHz) δ : 7.23 (s, 1H); 6.71 (broad s, 1H); 6.65 (s, 1H); 6.54 (s, 2H); 4.26 (q, 2H, J = 6.4 Hz); 4.13 (t, 2H, J = 6.4 Hz); 2.9 (q, 2H, J = 6 Hz); 2.22 (s, 6H); 1.63 (m, 2H); 1.4 (m, 2H); 1.36 (s, 9H); 1,29-1.23 (m, 2H + 3H). MS/LC: m/z = 462.3 (M+H)⁺.

Preparation 26

5

10

15

(2Z)-3-{5-[(tert-butoxycarbonyl)amino]pentyl}-2-[(3,5-dimethylphenyl)imino]-2,3-dihydro-1,3-thiazole-4-carboxylic acid ($C_{n}H_{n}N_{3}O_{s}$; MM = 433.57)

The compound of Preparation 25 (1.77 g; 3.83 mmol) is dissolved in 20 ml of tetrahydrofuran and treated with 15 ml of a 1N aqueous solution of NaOH. The mixture is agitated vigorously for 6 hours at ambient temperature. The carboxylate is then acidified with a 1N aqueous solution of hydrochloric acid to pH 2.5. The aqueous phase is extracted with dichloromethane (4 x 50 ml) and the organic phases are washed with water until neutral pH and dried over sodium sulphate. A pale yellow solid is isolated (1.51 g; yield of 90.9%) after evaporation under vacuum of the solvents.

NMR ¹H (DMSO- d_6 , 400 MHz) δ : 13.28 (broad s, 1H); 7.16 (s, 1H); 6.69 (broad s, 1H); 6.65 (s, 1H); 6.54 (s, 2H); 4.17 (t, 2H, J = 7.2 Hz); 2.89 (q, 2H, J = 6.4 Hz); 2.22 (s, 6H); 1.63 (q, 2H, J = 6.8 Hz); 1.41 (m, 2H); 1.36 (s, 9H); 1.25 (m, 2H). MS/LC: m/z = 434.27 (M+H)⁺

Preparation 24

tert-butyl 5- $[(2Z)-2-[(3,5-dimethylphenyl)imino]-4-{[(1-phenylpropyl)amino]carbonyl} -1,3-thiazol-3(2H)-yl]pentylcarbamate (C₁,H₂,N₂O₃S; MM = 550.76)$

5 600 mg (1.38 mmol) of carboxylic acid of Preparation 26 are activated beforehand with 888 mg (2.76 mmol; 2 equiv.) of TBTU in 10 ml of anhydrous dimethylformamide for one hour. 410 ul (2.76 mmol; 2 equiv.) of α-ethylbenzylamine is then added and the mixture is agitated at ambient temperature overnight. After evaporation of the dimethylformamide, the crude residue is purified by flash chromatography on silica gel (eluent: ethyl acetate / heptane 4:6) in order to produce a white solid (498 mg; yield of 65.5%).

NMR ¹H (DMSO- d_6 , 400 MHz) •: 9.00 (d, 1H, J = 8.4 Hz); 7.36-7.30 (m, 4H); 7,25-7.21 (m, 1H); 6.72 (t, 1H, J = 5.4 Hz); 6.67 (s, 1H); 6.63 (s, 1H); 6.53 (s, 2H); 4.77 (q, 1H, J = 8.8 Hz); 3.95 (m, 2H); 2.84 (q, 2H, J = 6 Hz); 2.21 (s, 6H); 1.74 (m, 2H); 1.51 (m, 2H); 1.36 (s, 9H); 1.31 (q, 2H, J = 7.2 Hz); 1.13 (m, 2H); 0.89 (t, 3H, J = 7.2 Hz). MS/LC: m/z = 551.44° (M+H).

15

Example 2826

(2Z)-3-(5-aminopentyl)-2-[(3,5-dimethylphenyl)imin σ]-N-(1-phenylpropyl)-2,3-dihydro-1,3-thiazole-4-carboxamide dihydrochloride (C₁₆H₂N₁OS.2HCl; MM = 523.57)

5 300 mg (0.54 mmol) of ten-butyl 5-[(2Z)-2-[(3,5-dimethylphenyl)imino]-4-{[(1-phenylpropyl)amino]carbonyl}-1,3-thiazol-3(2H)-yl]pentylcarbamate is dissolved in 15 ml of ethyl acetate. After bubbling anhydrous hydrogen chloride through the reaction medium for one hour at ambient temperature, the corresponding dihydrochloride salt precipitates. It is recovered by filtration and washed with diethyl ether in order to produce a white solid (268 mg; yield of 94.8%).

NMR 'H (DMSO- d_6 , 400 MHz) •: 9.48 (broad s, 1H); 8.03 (broad s, 3H); 7.39-7.32 (m, 5H); 7.25 (t, 1H, J = 7.2 Hz); 7.00 (m, 3H); 4.80 (q, 1H, J = 8.4 Hz); 4.33 (broad s, 2H); 2.70 (q, 2H, J = 6.8 Hz); 2.29 (s, 6H); 1.77 (m, 2H); 1.65 (m, 2H); 1.52 (m, 2H); 1.27 (m, 2H); 0.89 (t, 3H, J = 7.2 Hz).

15 MS/LC: $m/z = 451.35 (M+H)^{+}$.

According to method G, a series of compounds can be synthesized which include:

- the R1 and R2 groups already described for method A; and
- the R5 groups already described for method C.
- In particular, the compounds shown in the table below have been synthesised using method G.

	R		-			·
	R2-N N	O R 5	,			-
Ex.	R1 :	R2	R5	Purity (%)	rt (min)	[M+H]*
2827	H ₂ N -		HN	69 + 27	4.57 + 4.73	477.33
2828	H ₂ N .		HN HM	98	4.36	437.29
2829	H ₂ N~~~.		, MA	98	4.37	437.33
2830	H ₂ N .		, z z	98	3.72	423.37
2831	H ₂ N.		, MH	. 99	3.73	423.37
2832	H ₂ N~~.		HN	99	4.07	455.32
2833	H ₂ N .		HN	99	4.29	471.32
2834	H ₂ N		HN	98	4.33	515.24
2835	H ₂ N		H N	99	3.87	451.34
2836	H ₂ N .		HN	99	3.88	451.34

PHARMACOLOGICAL PROPERTIES OF THE PRODUCTS OF THE INVENTION

The compounds of the present invention can and have been tested as regards their affinity for different sub-types of somatostatin receptors according to the procedures described below.

Study of the affinity for the sub-types of human somatostatin receptors:

10

15

25

The affinity of a compound of the invention on sub-types of human somatostatin receptors 1 to 5 (sst₁, sst₂, sst₃, sst₄ and sst₅, respectively) is determined by measurement of the inhibition of the bond of ["I-Tyr"]SRIF-14 to transfected CHO-K1 cells.

The gene of the sst₁ receptor of human somatostatin was cloned in the form of a genomic fragment. A segment *Pst*I-XmnI of 1.5 Kb containing 100 bp of the non transcribed 5' region, 1.17 Kb of the coding region in totality, and 230 bp of the non transcribed 3' region is modified by the addition of the linker Bg1II. The resulting DNA fragment is subcloned in the *BamH*I site of a pCMV-81 in order to produce the expression plasmid in mammals (provided by Dr. Graeme Bell, Univ. Chicago). A cloned cell line expressing in a stable fashion the sst₁ receptor is obtained by transfection in CHO-K1 cells (ATCC) using the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

The gene of the sst₂ receptor of human somatostatin, isolated in the form of a genomic fragment of DNA of 1.7 Kb BamHI-HindIII and subcloned in a plasmid vector pGEM3Z (Promega), was provided by Dr. G. Bell (Univ. of Chicago). The expression vector of the mammalian cells is constructed by inserting the BamH1-HindII fragment of 1.7 Kb in endonuclease restriction sites compatible with the plasmid pCMV5. A cloned cell line is obtained by transfection in CHO-K1 cells using the calcium phosphate co-precipitation method. The plasmid pRSV-neo is included as selection marker.

The sst₃ receptor is isolated as a genomic fragment, and the complete coding sequence is contained in a *BamHI/HindIII* fragment of 2.4 Kb. The expression plasmid in

mammals, pCMV-h3, is constructed by insertion of the NcoI-HindIII fragment of 2.0 Kb in the EcoR1 site of the vector pCMV after modification of the terminations and addition of EcoR1 linkers. A cloned cell line expressing in a stable fashion the sst3 receptor is obtained by transfection in CHO-K1 cells (ATCC) by the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1646 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

The expression plasmid of the human sst₄ receptor, pCMV-HX, was provided by Dr. Graeme Bell (Univ. Chicago). This vector contains the genomic fragment coding for the human sst₄ receptor of 1.4 Kb Nhel-Nhel, 456 bp of the non transcribed 5' region, and 200 bp of the non transcribed 3' region, cloned in the Xbal/EcoR1 sites of PCMV-HX. A cloned cell line expressing in a stable fashion the sst₄ receptor is obtained by transfection in CHO-K1 (ATCC) cells by the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

10

15

20

25

30

35

The gene corresponding to the human sst₅ receptor, obtained by the PCR method using a genomic λ clone as probe, was provided by Dr. Graeme Bell (Univ. Chicago). The resulting PCR fragment of 1.2 Kb contains 21 base pairs of the non transcribed 5' region, the coding region in totality, and 55 bp of the non transcribed 3' region. The clone is inserted in an EcoR1 site of the plasmid pBSSK(+). The insert is recovered in the form of a HindIII-Xbal fragment of 1.2 Kb for subcloning in an expression vector in mammals, pCVM5. A cloned cell line expressing in a stable fashion the sst₅ receptor is obtained by transfection in CHO-K1 cells (ATCC) by the calcium phosphate coprecipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

The CHO-K1 cells which express in a stable fashion the human sst receptors are cultured in an RPMI 1640 medium containing 10% of foetal calf serum and 0.4 mg/ml of geneticin. The cells are collected with EDTA at 0.5 mM and centrifuged at 500 g for approximately 5 minutes at approximately 4°C. The pellet is resuspended in a Tris 50 mM buffer at pH 7.4 and centrifuged twice at 500 g for approximately 5 minutes at approximately 4°C. The cells are lysed by sonication then centrifuged at 39000 g for approximately 10 minutes at 4°C. The pellet is resuspended in the same buffer and centrifuged at 50000 g for approximately 10 minutes at approximately 4°C and the membranes in the pellet obtained are stored at -80°C.

The competitive inhibition experiments of the bond with [125I-Tyr11]SRIF-14 are carried out in duplicate in 96-well polypropylene plates. The cell membranes (10 µg protein/well) are incubated with [125I-Tyr11]SRIF-14 (0.05 nM) for approximately 60 min. at approximately 37 °C in a HEPES 50 mM buffer (pH 7.4) containing BSA 0.2 %, MgCl₂ 5 mM, Trasylol 200 KIU/ml, bacitricin 0.02 mg/ml and phenylmethylsulphonyl fluoride 0.02 mg/ml.

The bound [125I-Tyr¹¹]SRIF-14 is separated from the free [125I-Tyr¹¹]SRIF-14 by immediate filtration through GF/C glass fibre filter plates (Unifilter, Packard) pre-impregnated with 0.1 % of polyethylenimine (P.E.I.), using a Filtermate 196 (Packard). The filters are washed with 50 mM HEPES buffer at approximately 0-4 °C for approximately 4 seconds and their radioactivity is determined using a counter (Packard Top Count).

The specific bond is obtained by subtracting the non-specific bond (determined in the presence of 0.1 μ M of SRIF-14) from the total bond. The data relative to the bond is analyzed by computer-aided non-linear regression analysis (MDL) and the values of the inhibition constants (Ki) are determined.

15

Determination of the agonist or antagonist character of a compound of the present invention is carried out using the test described below.

Functional test: Inhibition of production of intracellular cAMP:

CHO-K1 cells expressing the sub-types of human somatostatin receptors (SRIF-14) are cultured in 24-well plates in an RPMI 1640 medium with 10% of foetal calf serum and 0.4 mg/ml of geneticin. The medium is changed the day preceding the experiment.

5 ····		of 10 ⁵ cells/well are washed twice with 0.5 ml of new RPMI medium. BSA completed by 0.5 mM of 3-isobutyl-1-methylxanthine (IBMX)
•••	and incubated for	pproximately 5 minutes at approximately 37 °C.
	-	he production of cyclic AMP is stimulated by the addition of 1 mM for 15-30 minutes at approximately 37 °C.
10	measured by the s	he inhibitory effect of the somatostatin of an agonist compound is multaneous addition of FSK (1 μ M), SRIF-14 (10 ⁻¹² M to 10 ⁻⁶ M) and to be tested (10 ⁻¹⁰ M to 10 ⁻⁵ M).
15		he antagonist effect of a compound is measured by the simultaneous μM), SRIF-14 (1 to 10 nM) and of the compound to be tested (10 ⁻¹⁰
		om is eliminated and 200 ml of 0.1 N HCl is added. The quantity of d by a radioimmunological test (FlashPlate SMP001A kit, New

Results:

The tests carried out according to the protocols described above have demonstrated that the products of general formula (I) defined in the present Application have a good affinity for at least one of the sub-types of somatostatin receptors, the inhibition constant K_i being lower than micromolar for certain exemplified compounds, and in particular for the products shown in the table below.

	Formula of compound	K _i (nM)
	N _{H2}	< 200
	CF ₃	
5		
•		
	CF ₃	
	H2N CI	< 200
10	N N CI	- •
	NO ₂	
	CI	
15		< 200
- 2	H2 N	
•	N N N	
	$s = \frac{N}{H}$	·
20		
	<u>H2</u> N	< 200
	N. M. J. N.	·
25	S H	
رے -		
. <u>.</u>	H2 N	
	H2 N 9	< 200
30		
-	S— H	
	F F	
	<u> </u>	
35		

_		 1
	Formula of compound	K _i (nM)
	NH2	< 200
5	S H	
	<u>H2</u> N	< 200
10	N	
	S H	
15	Cl	
i.	H2 N	< 200
20	S H	
	F F	·
25	N <u>H2</u>	
-	S H N N N N N N N N	1
30		

In addition to the compounds in the above tables, each of the compounds of Examples 2827 to 2836 also has a K_i constant lower than 200 nM.

5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.