MATH 307: Individual Homework 2

John Mays

02/09/21, Dr. Guo

Problem 1

 $(\mathbb{Q}(x), \times, +)$ is a ring, because it satisfies all the conditions of a ring:

For the sake of simplicity, let there be three polynomials, $a(x), b(x), c(x) \in \mathbb{Q}(x)$, which can be represented respectively as:

$$a_0 + a_1 x + \dots + a_n x^n$$

 $b_0 + b_1 x + \dots + b_m x^m$
 $c_0 + c_1 x + \dots + c_l x^l$

1. $(\mathbb{Q}(x), +)$ is an Abelian group:

- 1. Closure: $a(x) + b(x) = a_0 + b_0 + a_1x + b_1x + \cdots + a_nx^n + b_mx^m$, which is also a polynomial with rational coefficients.
- 2. Associativity: No matter the order in which the elements of polynomials are added, their sums are still equal. a(x) + (b(x) + c(x)) = (a(x) + b(x)) + c(x).
- 3. Identity: \exists an identity element, $0 \in \mathbb{Q}(x)$ s.t. $\forall a(x) \in \mathbb{Q}(x), a(x) + 0 = 0 + a(x) = a(x)$.
- 4. Inverse: $\forall a(x) \in \mathbb{Q}(x), \exists b(x) \in \mathbb{Q}(x) \text{ s.t. } a(x) + b(x) = b(x) + a(x) = 0,$ the identity element. The inverse of a(x) would simply be -a(x), which also belongs to $\mathbb{Q}(x)$.
- 5. Commutativity: $\forall a(x), b(x) \in \mathbb{Q}(x), a(x) + b(x) = b(x) + a(x)$. Order of addition is irrelevant.

2. $(\mathbb{Q}(x), \times)$ is a monoid:

- 1. Closure: $a(x) \times b(x) = a_0b_0 + a_0b_1x + a_1b_0x + a_1b_1x^2 + \cdots + a_nb_mx^{mn}$, which is also a polynomial with rational coefficients.
- 2. Associativity: $\forall a(x), b(x), c(x) \in \mathbb{Q}(x), a(x) \times (b(x) \times c(x)) = (a(x) \times b(x)) \times c(x)$.

3. Identity: \exists an identity element, $1 \in \mathbb{Q}(x)$ s.t. $\forall a(x) \in \mathbb{Q}(x), a(x) \times 1 = 1 \times a(x) = a(x)$.

3. The operation \times is distributive over + s.t:

$$\forall a(x), b(x), c(x) \in \mathbb{Q}(x), a(x) \times (b(x) + c(x)) = a(x) \times b(x) + a(x) \times c(x) = a_0b_0 + a_0b_1x + a_1b_0x + a_1b_1x^2 + a_0c_0 + a_0c_1x + a_1c_0x + a_1c_1x^2 + \dots + a_nb_mx^{mn} + a_nc_lx^{ln}.$$

Problem 2

 $(\mathbb{Z},+,\times)$ is a not a field, because it fails the inverse property of fields. $(\mathbb{Z},+,0)$, is an Abelian group and $(\mathbb{Z},\times,1)$ is a commutative monoid; however, in order for this to be a field, the set of $\mathbb{Z}\setminus\{0\}$ —the set of integers excluding the additive inverse—would have to have multiplicative inverses for all of its elements: $\forall a \in \mathbb{Z}\setminus\{0\}, \exists b \in \mathbb{Z}\setminus\{0\}$ s.t. $a\times b=b\times a=1$, with 1 being the multiplicative identity w.r.t. \mathbb{Z} . As a proof by counterexample, take the integer 3. The inverse of 3 would have to be 1/3 in order to satisfy the equation, but 1/3 does not belong to the integers.