Convolutional Networks 1

CS 287

Review: NGram Issues

In training we might see,

the arizona corporations commission authorized

But at test we see,

the colorado businesses organization ___

- ▶ Does this training example help here?
 - ▶ Not really. No count overlap
- Does backoff help here?
 - Maybe, if we have seen organization.
 - Mostly get nothing from the earlier words.

Review: NGram Issues

In training we might see,

the arizona corporations commission authorized

But at test we see,

the colorado businesses organization ___

- Does this training example help here?
 - Not really. No count overlap.
- Does backoff help here?
 - Maybe, if we have seen organization
 - Mostly get nothing from the earlier words.

Review: NGram Issues

In training we might see,

the arizona corporations commission authorized

But at test we see,

the colorado businesses organization ____

- Does this training example help here?
 - Not really. No count overlap.
- Does backoff help here?
 - Maybe, if we have seen organization.
 - Mostly get nothing from the earlier words.

Review: A Neural Probabilistic Language Model

Optional, direct connection layers,

$$\mathit{NN}_{\mathit{DMLP1}}(\mathbf{x}) = [\mathsf{tanh}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1), \mathbf{x}] \mathit{W}^2 + \mathbf{b}^2$$

- ullet $\mathbf{W}^1 \in \mathbb{R}^{d_{\mathrm{in}} \times d_{\mathrm{hid}}}$, $\mathbf{b}^1 \in \mathbb{R}^{1 \times d_{\mathrm{hid}}}$; first affine transformation
- ullet $\mathbf{W}^2 \in \mathbb{R}^{(d_{ ext{hid}}+d_{ ext{in}}) imes d_{ ext{out}}}$, $\mathbf{b}^2 \in \mathbb{R}^{1 imes d_{ ext{out}}}$; second affine transformation

Review: A Neural Probabilistic Language Model (Bengio, 2003)

Dashed-lines show the optional direct connections, C = v.

Review: Comparison

Both count-based models and feed-forward NNLMs are Markovian language models,

Comparison:

- Training Speed: ngrams are much faster (more coming)
- ▶ Usage Speed: ngrams very fast, NN can be fast with some tricks.
- Memory: NN models can be much smaller (but there are big ones)
- ► Accuracy: Comparable for small data, NN does better with more.

Advantages of NN model

- Can be trained end-to-end.
- Does not require smoothing methods.

Quiz

Neural language models can be poor at assigning very high probability to high confidence decisions, for instance major league baseball or united states of america.

- Give a high-level explanation of why this might occur compared to an n-gram model.
- Describe a variant of the Bengio model that is able to incorporate extra parameters to allow for rare cases that should have high probability.

Contents

Text Classification Review

Convolutions

Applications

Vision

Sentiment

Good Sentences

- A thoughtful, provocative, insistently humanizing film.
- Occasionally melodramatic, it's also extremely effective.
- Guaranteed to move anyone who ever shook, rattled, or rolled.

Bad Sentences

- ▶ A sentimental mess that never rings true.
- ► This 100-minute movie only has about 25 minutes of decent material.
- Here, common sense flies out the window, along with the hail of bullets, none of which ever seem to hit Sascha.

Review Linear Models for Classification

Linear model,

$$\hat{\mathbf{y}} = f(\mathbf{xW} + \mathbf{b})$$

- ullet $\mathbf{W} \in \mathbb{R}^{d_{\mathrm{in}} \times d_{\mathrm{out}}}, \mathbf{b} \in \mathbb{R}^{1 \times d_{\mathrm{out}}};$ model parameters
- $f: \mathbb{R}^{d_{\mathrm{out}}} \mapsto \mathbb{R}^{d_{\mathrm{out}}}$; activation function
- ▶ Sometimes $\mathbf{z} = \mathbf{x}\mathbf{W} + \mathbf{b}$ informally "score" vector.
- ► Note **z** and **ŷ** are not one-hot.

Class prediction,

$$\hat{c} = \argmax_{i \in \mathcal{C}} \hat{y}_i = \argmax_{i \in \mathcal{C}} (\mathbf{xW} + \mathbf{b})_i$$

Features 1: Sparse Bag-of-Words Features

Representation is counts of input words,

- $\triangleright \mathcal{F}$; the vocabulary of the language.
- $\mathbf{x} = \sum_{i} \delta(f_i)$

Example: Movie review input,

A sentimental mess

$$\begin{array}{lll} \mathbf{x} & = & \delta(\mathtt{word} \!:\! \mathtt{A}) + \delta(\mathtt{word} \!:\! \mathtt{sentimental}) \\ \\ & + & \delta(\mathtt{word} \!:\! \mathtt{mess}) \end{array}$$

$$\mathbf{x}^{ op} = egin{bmatrix} 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} + egin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} + egin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} = egin{bmatrix} 1 & \texttt{word:A} \\ \vdots & \vdots \\ 1 & \texttt{word:mess} \\ 1 & \texttt{word:mess} \end{bmatrix}$$

Features 2: Sparse Bag-of-Bigrams Features

Representation is counts of input bigrams,

- $ightharpoonup \mathcal{F}$; the vocabulary of the bigram language.
- $\mathbf{x} = \sum_{i} \delta(f_i)$

Example: Movie review input,

A sentimental mess

$$\begin{array}{lll} \mathbf{x} & = & \delta(\texttt{word}:\texttt{A}) + \delta(\texttt{bigram}:\texttt{A}:\texttt{sentimental}) \\ \\ & + & \delta(\texttt{word}:\texttt{sentimental}) + \delta(\texttt{bigram}:\texttt{sentimental}:\texttt{mess}) \\ \\ & + & \delta(\texttt{word}:\texttt{mess}) \end{array}$$

Features 3: Continuous Bag-of-Words Features

$$\mathbf{x} = \sum_{i=1}^k v(f_i; \theta) = \sum_{i=1}^k \delta(f_i) \mathbf{W}^0$$

- \triangleright \mathcal{F} ; the vocabulary of the language.
- $\mathbf{x} = \sum_{i} \delta(f_i)$

Example: Movie review input,

$$\mathbf{x} = v(\mathtt{word} : \mathtt{A}) + v(\mathtt{word} : \mathtt{sentimental}) + v(\mathtt{word} : \mathtt{mess})$$

$$\mathbf{x}^{\top} = \begin{bmatrix} 0.2 \\ \vdots \\ 1.2 \\ -0.5 \end{bmatrix} + \begin{bmatrix} 0.8 \\ \vdots \\ 1.0 \\ -1.0 \end{bmatrix} + \begin{bmatrix} 0.1 \\ \vdots \\ 9.2 \\ -2.0 \end{bmatrix} = \begin{bmatrix} 1.1 \\ \vdots \\ 11.4 \\ -3.5 \end{bmatrix}$$

Features 4: Continuous Bag-of-Bigrams Features?

Representation is counts of input bigrams,

- $ightharpoonup \mathcal{F}$; the vocabulary of the bigram language.
- ightharpoonup $\mathbf{x} = \sum_i \delta(f_i)$

Example: Movie review input,

A sentimental mess

$$\begin{array}{lll} \mathbf{x} & = & v(\mathtt{word}:\mathtt{A}) + v_2(\mathtt{bigram}:\mathtt{A}:\mathtt{sentimental}) \\ \\ & + & v(\mathtt{word}:\mathtt{sentimental}) + v_2(\mathtt{bigram}:\mathtt{sentimental}:\mathtt{mess}) \\ \\ & + & v(\mathtt{word}:\mathtt{mess}) \end{array}$$

Neural Network

One-layer multi-layer perceptron architecture,

$$NN_{MLP1}(\mathbf{x}) = g(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)W^2 + \mathbf{b}^2$$

- **xW** + **b**; perceptron
- **x** is the dense representation in $\mathbb{R}^{1 \times d_{\mathrm{in}}}$
- ullet $\mathbf{W}^1 \in \mathbb{R}^{d_{
 m in} imes d_{
 m hid}}$, $\mathbf{b}^1 \in \mathbb{R}^{1 imes d_{
 m hid}}$; first affine transformation
- $m{W}^2 \in \mathbb{R}^{d_{ ext{hid}} imes d_{ ext{out}}}$, $m{b}^2 \in \mathbb{R}^{1 imes d_{ ext{out}}}$; second affine transformation
- $ightharpoonup g: \mathbb{R}^{d_{ ext{hid}} imes d_{ ext{hid}}}$ is an activation non-linearity (often pointwise)
- $g(\mathbf{xW}^1 + \mathbf{b}^1)$ is the hidden layer

Contents

Text Classification Review

Convolutions

Applications

Vision

Windowed Classification

Alternative method, windows into MLP.

Goal: predict t_5 .

Windowed word model.

```
w_1 \ w_2 \ [w_3 \ w_4 \ w_5 \ w_6 \ w_7] \ w_8
```

- ▶ w₃, w₄; left context
- ▶ *w*₅; Word of interest
- \triangleright w_6 , w_7 ; right context
- d_{win} ; size of window ($d_{\text{win}} = 5$)

All Window for Classification

Idea: Use window at each location.

```
\begin{bmatrix} w_1 & w_2 & w_3 & w_4 & w_5 \end{bmatrix} w_6 w_7 w_8

w_1 \begin{bmatrix} w_2 & w_3 & w_4 & w_5 & w_6 \end{bmatrix} w_7 w_8

w_1 & w_2 \begin{bmatrix} w_3 & w_4 & w_5 & w_6 & w_7 \end{bmatrix} w_8

\vdots
```

Each maps from window of embeddings to $d_{
m hid}$

Convolution Formally

Let our input be the embeddings of the full sentence, $\mathbf{X} \in \mathbb{R}^{n \times d^0}$

$$\mathbf{X} = [v(w_1), v(w_2), v(w_3), \dots, v(w_n)]$$

Define a window model as $\mathit{NN}_{window}: \mathbb{R}^{1 imes (d_{\min} d^0)} \mapsto \mathbb{R}^{1 imes d_{\mathrm{hid}}}$,

$$NN_{window}(\mathbf{x}_{win}) = \mathbf{x}_{win}\mathbf{W}^1 + \mathbf{b}^1$$

The convolution is defined as $\mathit{NN}_{conv}: \mathbb{R}^{n \times d^0} \mapsto \mathbb{R}^{(n-d_{\min}+1) \times d_{\mathrm{hid}}}$,

$$extit{NN}_{conv}(\mathbf{X}) = anh egin{bmatrix} NN_{window}(\mathbf{X}_{1:d_{\mathrm{win}}}) \ NN_{window}(\mathbf{X}_{2:d_{\mathrm{win}}+1}) \ dots \ NN_{window}(\mathbf{X}_{n-d_{\mathrm{win}}:n}) \end{bmatrix}$$

Pooling

- $lackbox{ Unfortunately } \mathit{NN}_{conv}: \mathbb{R}^{n imes d^0} \mapsto \mathbb{R}^{(n-d_{\min}+1) imes d_{\mathrm{hid}}}.$
- ▶ Need to map down to d_{out} for different n
- Recall pooling operations.
- ▶ Pooling "over-time" operations $f: \mathbb{R}^{n \times m} \mapsto \mathbb{R}^{1 \times m}$
 - 1. $f_{max}(\mathbf{X})_{1,j} = \max_{i} X_{i,j}$
 - 2. $f_{min}(\mathbf{X})_{1,j} = \min_{i} X_{i,j}$
 - 3. $f_{mean}(\mathbf{X})_{1,j} = \sum_{i} X_{i,j} / n$

$$f(\mathbf{X}) = \begin{vmatrix} \psi & \psi & \dots \\ \psi & \psi & \dots \\ \vdots & \vdots \\ \psi & \psi & \dots \end{vmatrix} = \begin{bmatrix} \dots \end{bmatrix}$$

Putting it together

$$\hat{y} = \operatorname{softmax}(f_{max}(NN_{conv}(\mathbf{X}))\mathbf{W}^2 + \mathbf{b}^2)$$

- $lackbox{W}^2 \in \mathbb{R}^{d_{
 m hid} imes d_{
 m out}}$, $lackbox{b}^2 \in \mathbb{R}^{1 imes d_{
 m out}}$
- ► Final linear layer **W**² uses learned window features

Multiple Convolutions

$$\hat{y} = \mathsf{softmax}([f(\mathit{NN}^1_\mathit{conv}(\mathbf{X})), f(\mathit{NN}^2_\mathit{conv}(\mathbf{X})), \ldots, f(\mathit{NN}^f_\mathit{conv}(\mathbf{X}))]\mathbf{W}^2 + \mathbf{b}^2)$$

- Concat several convolutions together.
- ▶ Each NN^1 , NN^2 , etc uses a different d_{win}
- ► Allows for different window-sizes (similar to multiple n-grams)

Convolution Diagram (Kim, 2014)

- $ightharpoonup n = 9, d_{\text{hid}} = 4, d_{\text{out}} = 2$
- ightharpoonup red- $d_{\rm win}=2$, blue- $d_{\rm win}=3$, (ignore back channel)

Classification Results

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_

Convolutional Vocabulary

- **kernel size** or **filter width** ; window size d_{\min}
- filter; column of matrix \mathbf{W}^1 in $\mathbb{R}^{(d^0 \times d_{\text{win}}) \times 1}$
- **Fig. 1. feature map**; column of NN_{conv} , d_{hid} of these
- ▶ **fully-connected layer**; affine or linear + activation
- random, static, non-static; embedding layer setup
- temporal convolution, time-delay convolution; names for one-dimensional convolutions

Why is it called a convolution?

Let x and **y** be in \mathbb{R}^n and \mathbb{R}^m

$$[\mathbf{x} * \mathbf{y}]_i = \sum_{i=1}^m x_{i-j} y_j$$

- ightharpoonup Circular, i k wraps around.
- ► For NN, include padding

Contents

Text Classification Review

Convolutions

Applications

Vision

Language Applications: Semantic Role Labeling

He would n't accept anything of value from those he was writing about

[A0 He] [AM-MOD would] [AM-NEG n't] [V accept] [A1 anything of value] from [A2 those he was writing about]

- V: verb
- ► A0: acceptor
- ▶ A1: thing accepted
- ► A2: accepted-from
- ► A3:attribute
- AM-MOD: modal
- ► AM-NEG: negation

Other Language Applications (Collobert et al. 2011)

C&W SRL

- First given a verb w_i e.g. accept.
- ▶ Then consider a word w_j e.g. n't
- \triangleright For a word w_k features are

$$v(w_k)$$
, $v_2(cap(w_k))$, $v_3(i-k)$, $v_4(j-k)$

- ► Convolution over sentence is used to predict role.
- $ightharpoonup O(n \times |verbs|)$ convolutions per sentence

Feed-forward NLM (Bengio, Ducharme, and Vincent 2003)

NLM Issue

Issue: The fundamental unit of information is still the word

Separate embeddings for "trading", "trade", "trades", etc.

Character-level CNN (CharCNN)

a b s u r d i t y

Character-level CNN (CharCNN)

 $\mathbf{C} \in \mathbb{R}^{d \times l}$: Representation of *absurdity*

Character-level CNN (CharCNN)

 $\mathbf{H} \in \mathbb{R}^{d \times w}$: Convolutional filter matrix of width w = 3

$$\textbf{f}[1] = \langle \textbf{C}[*,1:3], \textbf{H} \rangle$$

Each filter picks out a character *n*-gram

Learned Word Representations (In Vocab)

(Based on cosine similarity)

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

Learned Word Representations (In Vocab)

(Based on cosine similarity)

	In Vocabulary				
	while	his	you	richard	trading
	although	your	conservatives	jonathan	advertised
Word	letting	her	we	robert	advertising
Embedding	though	my	guys	neil	turnover
	minute	their	i	nancy	turnover
	chile	this	your	hard	heading
Characters	whole	hhs	young	rich	training
(before highway)	meanwhile	is	four	richer	reading
, ,	white	has	youth	richter	leading
	meanwhile	hhs	we	eduard	trade
Characters	whole	this	your	gerard	training
(after highway)	though	their	doug	edward	traded
	nevertheless	your	i	carl	trader

Learned Word Representations (OOV)

	Out-of-Vocabulary		
	computer-aided	misinformed	looooook
	computer-guided	informed	look
Characters	computerized	performed	cook
(before highway)	disk-drive	transformed	looks
	computer	inform	shook
	computer-guided	informed	look
Characters	computer-driven	performed	looks
(after highway)	computerized	outperformed	looked
	computer	transformed	looking

Learned Word Representations (OOV)

	Out-of-Vocabulary		
	computer-aided	misinformed	looooook
	computer-guided	informed	look
Characters	computerized	performed	cook
(before highway)	disk-drive	transformed	looks
	computer	inform	shook
	computer-guided	informed	look
Characters	computer-driven	performed	looks
(after highway)	computerized	outperformed	looked
	computer	transformed	looking

Convolutional Filters

For each filter, visualize 100 substrings with the highest filter response

Convolutional Filters

For each filter, visualize 100 substrings with the highest filter response

Character *N*-gram Representations

Prefixes, Suffixes, Hyphenated, Others

Prefixes: character n-grams that start with 'start-of-word' character, such as $\{un, \{mis. \text{ Suffixes defined similarly.}\}$

Contents

Text Classification Review

Convolutions

Applications

Vision

Visual Classification

Speech Convolutions

softmax
fully connected, 4096
fully connected, 4096
max pooling, 2×
convolution, 3×3, 384
convolution, 3×3 , 384
convolution, 3×3 , 384
max pooling, 2×2
convolution, 3×3 , 192
convolution, 3×3 , 192
convolution, 3×3 , 192
max pooling, 2×2
convolution, 3×3, 96
convolution, 3×3, 96
input (31x41)

Visualization (Zeiler and Fergus, 2013)

Visualization (Zeiler and Fergus, 2013)

