#### Objective

### Single population growth models

We are given a table with the population census at different time intervals between a date a and a date b, and want to get an expression for the population. This allows us to:

- compute a value for the population at any time between the date a and the date b (interpolation),
- predict a value for the population at a date before a or after b (extrapolation).

p. 1 Objectives

PROCEEDINGS OF THE

# NATIONAL ACADEMY OF SCIENCES

Volume 6

JUNE 15, 1920

Number 6

ON THE RATE OF GROWTH OF THE POPULATION OF THE UNITED STATES SINCE 1790 AND ITS MATHEMATICAL REPRESENTATION

By RAYMOND PEARL AND LOWELL J. REED

Department of Biometry and Vital Statistics, Johns Hopkins University

Read before the Academy, April 26, 1920

Showing the Dates of the Taking of the Census and the Recorded Populations from  $1790\ {
m To}\ 1910$ 

p. 2

|      | RECORDED POPULATION    |                          |
|------|------------------------|--------------------------|
| Year | Month and Day          | STATISTICAL ABST., 1918; |
| 1790 | First Monday in August | 3,929,214                |
| 1800 | First Monday in August | 5,308,483                |
| 1810 | First Monday in August | 7,239,881                |
| 1820 | First Monday in August | 9,638,453                |
| 1830 | June 1                 | 12,866,020               |
| 1840 | June 1                 | 17,069,453               |
| 1850 | June 1                 | 23,191,876               |
| 1860 | June 1                 | 31,443,321               |
| 1870 | June 1                 | 38,558,371               |
| 1880 | June 1                 | 50,155,783               |
| 1890 | June 1                 | 62,947,714               |
| 1900 | June 1                 | 75,994,575               |
| 1910 | April 15               | 91.972.266               |

### The US population from 1790 to 1910

| Year | Population (millions) | Year | Population<br>(millions) |
|------|-----------------------|------|--------------------------|
| 1790 | 3.929                 | 1860 | 31.443                   |
| 1800 | 5.308                 |      |                          |
| 1810 | 7.240                 | 1870 | 38.558                   |
|      |                       | 1880 | 50.156                   |
| 1820 | 9.638                 | 1890 | 62.948                   |
| 1830 | 12.866                |      |                          |
| 1840 | 17.069                | 1900 | 75.995                   |
|      |                       | 1910 | 91.972                   |
| 1850 | 23.192                |      |                          |

#### The data: IIS census

Then plot using plot(t,P);



### PLOT THE DATA !!! (here, to 1910)

Using MatLab (or Octave), create two vectors using commands such as

t=1790:10:1910: Format is

Vector=Initial value:Step:Final value

(semicolumn hides result of the command.)

P=[3929214,5308483,7239881,9638453,12866020,... 17069453,23191876,31443321,38558371,50155783,... 62947714.75994575.919722661:

Here, elements were just listed ( . . . indicates that the line continues below).

#### The data: IIS census

To get points instead of a line plot(t,P,'\*');



The data: US census

# First idea

the form

 $P(t) = a + bt + ct^2$ 

To do this, we want to minimize

The curve looks like a piece of a parabola. So let us fit a curve of

 $S = \sum_{k=0}^{\infty} (P(t_k) - P_k)^2,$ where  $t_k$  are the known dates,  $P_k$  are the known populations, and

A quadratic curve? So we want

 $2\sum_{k=0}^{2}(a+bt_{k}+ct_{k}^{2}-P_{k})=0$ 

 $P(t_k) = a + bt_k + ct_k^2.$ 

 $2\sum_{k=0}^{\infty}(a+bt_{k}+ct_{k}^{2}-P_{k})t_{k}=0$  $2\sum_{k=0}^{15}(a+bt_{k}+ct_{k}^{2}-P_{k})t_{k}^{2}=0,$ 

that is

A quadratic curve?

 $\sum_{k=0}^{\infty} (a+bt_k+ct_k^2-P_k)t_k=0$ 

 $\sum_{k=0}^{15} (a + bt_k + ct_k^2 - P_k) = 0$ 

 $\sum (a+bt_k+ct_k^2-P_k)t_k^2=0.$ 

we get

reversed):

with

A quadratic curve?

Rearranging the system

 $\sum_{k=1}^{15} (a+bt_k+ct_k^2) = \sum_{k=1}^{15} P_k$  $\sum_{k=1}^{13} (at_k + bt_k^2 + ct_k^3) = \sum_{k=1}^{13} P_k t_k$ 

 $\sum_{k=1}^{13} (at_k^2 + bt_k^3 + ct_k^4) = \sum_{k=1}^{13} P_k t_k^2.$ 

We proceed as in the notes (but note that the role of a, b, c is

 $S = S(a, b, c) = \sum_{k=0}^{L} (a + bt_k + ct_k^2 - P_k)^2$ 

is maximal if (necessary condition)  $\partial S/\partial a = \partial S/\partial b = \partial S/\partial c = 0$ ,

 $\frac{\partial S}{\partial a} = 2 \sum_{k=0}^{15} (a + bt_k + ct_k^2 - P_k)$ 

 $\frac{\partial S}{\partial b} = 2\sum_{k=0}^{15} (a + bt_k + ct_k^2 - P_k)t_k$ 

 $\frac{\partial S}{\partial c} = 2 \sum_{k=0}^{15} (a + bt_k + ct_k^2 - P_k) t_k^2$ 

 $\sum_{k=0}^{\infty} (a+bt_k+ct_k^2-P_k)=0$ 

 $\sum_{k=0}^{\infty} (a + bt_k + ct_k^2 - P_k)t_k^2 = 0,$ 

 $\sum_{k=0}^{\infty} (a+bt_k+ct_k^2-P_k)t_k=0$ 

p. 10

p. 12

A quadratic curve?

$$\begin{split} \sum_{k=1}^{13} (a+bt_k+ct_k^2) &= \sum_{k=1}^{13} P_k \\ \sum_{k=1}^{13} (at_k+bt_k^2+ct_k^3) &= \sum_{k=1}^{13} P_k t_k \\ \sum_{k=1}^{13} (at_k^2+bt_k^3+ct_k^4) &= \sum_{k=1}^{13} P_k t_k^2, \end{split}$$

after a bit of tidying up, takes the form

$$\begin{split} &\left(\sum_{k=1}^{13} 1\right) a + \left(\sum_{k=1}^{13} t_k\right) b + \left(\sum_{k=1}^{13} t_k^2\right) c = \sum_{k=1}^{13} P_k \\ &\left(\sum_{k=1}^{13} t_k\right) a + \left(\sum_{k=1}^{13} t_k^2\right) b + \left(\sum_{k=1}^{13} t_k^3\right) c = \sum_{k=1}^{13} P_k t_k \\ &\left(\sum_{k=1}^{13} t_k^2\right) a + \left(\sum_{k=1}^{13} t_k^3\right) b + \left(\sum_{k=1}^{13} t_k^4\right) c = \sum_{k=1}^{13} P_k t_k^2. \end{split}$$

So the aim is to solve the linear system

$$\begin{pmatrix} 13 & \sum\limits_{k=1}^{13} t_k & \sum\limits_{k=1}^{13} t_k^2 \\ \sum\limits_{k=1}^{13} t_k & \sum\limits_{k=1}^{13} t_k^2 & \sum\limits_{k=1}^{13} t_k^3 \\ \sum\limits_{k=1}^{13} t_k & \sum\limits_{k=1}^{13} t_k^3 & \sum\limits_{k=1}^{13} t_k^4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \sum\limits_{k=1}^{13} P_k \\ \sum\limits_{k=1}^{13} P_k t_k \\ \sum\limits_{k=1}^{13} P_k t_k \\ \sum\limits_{k=1}^{13} P_k t_k \end{pmatrix}$$

n 13 A quadratic curve?

p. 14

With MatLab (or Octave), getting the values is easy.

- To apply an operation to every element in a vector or matrix, prefix the operation with a dot, hence
  - t.^2;

gives, for example, the vector with every element  $t_k$  squared.

- Also, the function sum gives the sum of the entries of a vector or matrix.
- ► When entering a matrix or vector, separate entries on the same row by , and create a new row by using ;.

Thus, to set up the problem in the form of solving Ax = b, we need to do the following:

format long g;
A=[13,sum(t),sum(t,^2);sum(t),sum(t,^2),sum(t,^3);...
sum(t,^2),sum(t,^3),sum(t,^4)];
b=[sum(P);sum(P.\*t);sum(P.\*t(t,^2))];

The format long g command is used to force the display of digits (normally, what is shown is in "scientific" notation, not very informative here).

A quadratic curve? p. 15 A quadratic curve? p. 1

Then, solve the system using

A\b

We get the following output:

>> A\b

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.118391e-020.

ans =

A quadratic curve?

Checking our results for the quadratic

22233186177 8195 -24720291 325476

6872 99686313725

(note that here. Octave gives a solution that is not as good as this one, provided by MatLab).

#### Thus

 $P(t) = 22233186177.8195 - 24720291.325476t + 6872.99686313725t^{2}$ 

To see what this looks like.

```
plot(t,22233186177.8195-24720291.325476.*t...
+6872.99686313725.*t.^2):
```

(note the dots before multiplication and power, since we apply this function to every entry of t). In fact, to compare with original data:

```
plot(t,22233186177.8195-24720291.325476.*t...
+6872.99686313725.*t.^2,t,P,'*');
```

Our first guess, in pictures



Checking our results for the quadratic

proceed directly:

Now we want to generate the table of values, to compare with the true values and thus compute the error. To do this, we can

```
computedP=22233186177.8195-24720291.325476.*t...
+6872.99686313725.*t.^2;
```

We get

computedP = Columns 1 through 4

5633954 39552689 5171628 52739334 6083902 03188709 8370774.90901184 Columns 5 through 8: 12022247 1507601 17060310 7011366 22470000 7761202 21264260 1427700

Columns 9 through 12: 40424129 884037 Column 13:

50958598.9969215

76151335.3405762

90909602 6712462

Checking our results for the quadratic

We can also create an inline function

f=inline('22233186177.8195-24720291.325476.\*t+6872.99686313725.\*t.^2') f =

Inline function:

f(t) = 22233186177.8195-24720291.325476.\*t+6872.99686313725.\*t.^2

This function can then easily be used for a single value

octave: 24> f(1880)

50958598 9969215 ans =

as well as for vectors

(Recall that t has the dates: t in the definition of the function is a dummy variable, we could have used another letter-.)

octave: 25> f(t)

Columns 1 through 4: 5633954 39552689

5171628 52739334 6083902 03188705 8370774 90901184

Columns 5 through 8:

23478989 7761383

12032247 1587601 Columns 9 through 12: 17068318.7811356 31264260.1437798

40424129.884037 12186176863781 4

50958598.9969215 62867667.4824371 76151335.3405762

90809602 5713463

Checking our results for the quadratic

p. 21 Checking our results for the quadratic

Form the vector of errors, and compute sum of errors squared:

octave:26> E=f(t)-P; octave: 27> sum(E.^2)

12186176863781.4 ans =

Quite a large error (12,186,176,863,781.4), which is normal since we have used actual numbers, not thousands or millions of individuals, and we are taking the square of the error.

To present things legibly, one way is to put everything in a matrix..

$$M=[P;f(t);E;E./P];$$

This matrix will have each type of information as a row, so to display it in the form of a table, show its transpose, which is achieved using the function transpose or the operator '.

#### Now for the big question...

| M'       |                  |                   |                   |
|----------|------------------|-------------------|-------------------|
| ans =    |                  |                   |                   |
| 3929214  | 5633954.39552689 | 1704740.39552689  | 0.433862954658    |
| 5308483  | 5171628.52739334 | -136854.472606659 | -0.0257803354756  |
| 7239881  | 6083902.03188705 | -1155978.96811295 | -0.159668227711   |
| 9638453  | 8370774.90901184 | -1267678.09098816 | -0.131522983095   |
| 12866020 | 12032247.1587601 | -833772.841239929 | -0.0648042550252  |
| 17069453 | 17068318.7811356 | -1134.21886444092 | -6.644728828e-05  |
| 23191876 | 23478989.7761383 | 287113.776138306  | 0.0123799289086   |
| 31443321 | 31264260.1437798 | -179060.856220245 | -0.00569471832254 |
| 38558371 | 40424129.884037  | 1865758.88403702  | 0.0483879073635   |
| 50155783 | 50958598.9969215 | 802815.996921539  | 0.0160064492846   |
| 62947714 | 62867667.4824371 | -80046.5175628662 | -0.00127163502018 |
| 75994575 | 76151335.3405762 | 156760.340576172  | 0.00206278330494  |
| 91972266 | 90809602.5713463 | -1162663.42865372 | -0.012641456813   |
|          |                  |                   |                   |

How does our formula do for present times?

f(2006)

301468584.066013 ans =

Actually, quite well: 301,468,584, compared to the 298,444,215 July 2006 estimate, overestimates the population by 3,024,369, a relative error of approximately 1%.

Checking our results for the quadratic

Checking our results for the quadratic

#### The US population from 1790 to 2000 (revised numbers) Other similar approaches

| Year | Population (millions) | Year | Population (millions) |  |
|------|-----------------------|------|-----------------------|--|
| 1790 | 3.929                 | 1900 | 76.212                |  |
| 1800 | 5.308                 | 1910 | 92.228                |  |
| 1810 | 7.240                 | 1920 | 106.021               |  |
| 1820 | 9.638                 | 1930 | 123.202               |  |
| 1830 | 12.866                | 1940 | 132.164               |  |
| 1840 | 17.069                | 1950 | 151.325               |  |
| 1850 | 23.192                | 1960 | 179.323               |  |
| 1860 | 31.443                | 1970 | 203.302               |  |
| 1870 | 38.558                | 1980 | 226.542               |  |
| 1880 | 50.156                | 1990 | 248.709               |  |
| 1890 | 62.948                | 2000 | 281.421               |  |
|      |                       |      |                       |  |

Pritchett. 1891:

$$P = a + bt + ct^2 + dt^3.$$

(we have done this one, and found it to be quite good too). Pearl. 1907:

$$P(t) = a + bt + ct^2 + d \ln t.$$

Finds

$$P(t) = 9,064,900 - 6,281,430t + 842,377t^2 + 19,829,500 \ln t.$$

p. 26

SHOWING (a) THE ACTUAL POPULATION ON CENSUS DATES, (b) ESTIMATED POPULATION FROM PRITCHETT'S THIRD-ORDER PARABOLA, (c) ESTIMATED POPULATION FROM Logarithmic Parabola, and (d) (e) Root-Mean Souare Errors OF BOTH METHODS

| CENSUS | (a)<br>OBSERVED<br>POPULATION | (b).<br>PRIYCHEYY<br>ESYIMATE | (c)<br>LOGARITHMIC<br>PARABOLA ES-<br>TIMATE | (d)<br>Error of<br>(b) | (e)<br>ERROR OF |
|--------|-------------------------------|-------------------------------|----------------------------------------------|------------------------|-----------------|
| 1790   | 3,929,000                     | 4,012,000                     | 3,693,000                                    | + 83,000               | - 236,00        |
| 1800   | 5,308,000                     | 5,267,000                     | 5,865,000                                    | - 41,000               | + 557,00        |
| 1810   | 7,240,000                     | 7,059,000                     | 7,293,000                                    | - 181,000              | + 53,00         |
| 1820   | 9,638,000                     | 9,571,000                     | 9,404,000                                    | - 67,000               | - 234,00        |
| 1830   | 12,866,000                    | 12,985,000                    | 12,577,000                                   | + 119,000              | - 289,00        |
| 1840   | 17,069,000                    | 17,484,000                    | 17,132,000                                   | + 415,000              | + 63,00         |
| 1850   | 23,192,000                    | 23,250,000                    | 23,129,000                                   | + 58,000               | - 63,00         |
| 1860   | 31,443,000                    | 30,465,000                    | 30,633,000                                   | - 978,000              | - 810,00        |
| 1870   | 38,558,000                    | 39,313,000                    | 39,687,000                                   | + 755,000              | +1,129,00       |
| 1880   | 50,156,000                    | 49,975,000                    | 50,318,000                                   | - 181,000              | + 162,00        |
| 1890   | 62,948,000                    | 62,634,000                    | 62,547,000                                   | - 314,000              | - 401,00        |
| 1900   | 75,995,000                    | 77,472,000                    | 76,389,000                                   | +1,477,000             | + 394,00        |
| 1910   | 91,972,000                    | 94,673,000                    | 91,647,000                                   | +2,701,000             | - 325,00        |
|        |                               |                               |                                              | 935,0002               | 472,000         |
| 1920   | 1                             | 114,416,000                   | 108,214,000                                  |                        |                 |

1 To the nearest thousand 2 Root-mean square error.

Some similar curves

#### The logistic equation

The logistic curve is the solution to the ordinary differential equation

$$N' = rN\left(1 - \frac{N}{K}\right)$$

which is called the logistic equation. r is the intrinsic growth rate, K is the carrying capacity.

This equation was introduced by Pierre-François Verhulst (1804-1849), in 1844,

#### The logistic curve

p. 32

p. 30

## Pearl and Reed try

$$P(t) = \frac{be^{at}}{1 + ce^{at}}$$

or

$$P(t) = \frac{b}{e^{-at} + c}.$$

p. 29 Population curves - Logistic curve

# Deriving the logistic equation

The idea is to represent a population with the following components:

- birth, at the per capita rate b.
- death, at the per capita rate d.
- competition of individuals with other individuals reduces their ability to survive, resulting in death.

This gives

p. 31 Population growth - Logistic equation

$$N' = bN - dN -$$
competition.

Population growth - Logistic equation

### Accounting for competition

Competition describes the mortality that occurs when two individuals meet.

- ▶ In chemistry, if there is a concentration X of one product and Y of another product, then XY, called mass action, describes the number of interactions of molecules of the two products.
- Here, we assume that X and Y are of the same type (individuals). So there are N<sup>2</sup> contacts.
- These N<sup>2</sup> contacts lead to death of one of the individuals at the rate c.

Therefore, the logistic equation is

$$N' = bN - dN - cN^2$$
.

Population growth - Logistic equation

## Another (..) interpretation of the logistic equation

We have

$$N' = (b - d)N - cN^2.$$

Factor out an N:

$$N' = ((b-d)-cN)N$$

This gives us another interpretation of the logistic equation.

Writing

$$\frac{N'}{N} = (b - d) - cN,$$

we have N'/N, the per capita growth rate of N, given by a constant, b-d, minus a density dependent inhibition factor, cN.

### Reinterpreting the logistic equation

The equation

$$N' = bN - dN - cN^2$$

is rewritten as

$$N' = (b - d)N - cN^2.$$

- b d represents the rate at which the population increases (or decreases) in the absence of competition. It is called the intrinsic growth rate of the population.
   c is the rate of intraspecific competition. The prefix intra
  - c is the rate of intraspectic competition. The prefix intra refers to the fact that the competition is occurring between members of the same species, that is, within the species. [We will see later examples of interspecific competition, that is, between different species.]

n 34

Population growth - Logistic equation

## Equivalent equations

$$\begin{split} N' &= (b-d)N - cN^2 \\ &= ((b-d) - cN)N \\ &= \left(r - \frac{r}{r}cN\right)N, \quad \text{with } r = b - d \\ &= rN\left(1 - \frac{c}{r}N\right) \\ &= rN\left(1 - \frac{N}{K}\right), \end{split}$$

with

$$\frac{c}{r} = \frac{1}{K},$$

that is, K = r/c.

p. 35 Population growth - Logistic equation

Population growth - Logistic equation

#### 3 ways to tackle this equation

- 1. The equation is separable. [explicit method]
- 2. The equation is a Bernoulli equation. [explicit method]
- 3. Use qualitative analysis.

Population growth - Logistic equation

Equilibria of (ODE1) are points such that f(N) = 0 (so that N' = f(N) = 0, meaning N does not vary). So we solve f(N) = 0 for N. We find two points:

- N = 0
- N = K.

By uniqueness of solutions to (IVP1), solutions cannot cross the lines N(t)=0 and N(t)=K.

### Studying the logistic equation qualitatively

We study

$$N' = rN\left(1 - \frac{N}{K}\right).$$
 (ODE1)

For this, write

$$f(N) = rN\left(1 - \frac{N}{K}\right).$$

Consider the initial value problem (IVP)

$$N' = f(N), \quad N(0) = N_0 > 0.$$
 (IVP1)

• f is  $C^1$  (differentiable with continuous derivative) so solutions to (IVP1) exist and are unique.

Qualitative analysis of the logistic equation

- There are several cases. N = 0 for some t, then N(t) = 0 for all t > 0, by uniqueness
- of solutions.  $N \in (0, K)$ , then rN > 0 and N/K < 1 so 1 - N/K > 0.
- ▶  $N \in (0, K)$ , then rN > 0 and N/K < 1 so 1 N/K > 0, which implies that f(N) > 0. As a consequence, N(t) increases if  $N \in (0, K)$ .
- ▶ N = K, then rN > 0 but N/K = 1 so 1 N/K = 0, which implies that f(N) = 0. As a consequence, N(t) = K for all t > 0, by uniqueness of solutions.
- ▶ N > K, the rN > 0 and N/K > 1, implying that 1 N/K < 0 and in turn, f(N) < 0. As a consequence, N(t) decreases if  $N \in (K, +\infty)$ .

#### Therefore.

Theorem

Suppose that  $N_0 > 0$ . Then the solution N(t) of (IVP1) is such that

$$\lim_{t\to\infty}N(t)=K,$$

so that K is the number of individuals that the environment can support, the carrying capacity of the environment. If  $N_0=0$ , then N(t)=0 for all  $t\geq 0$ .

Qualitative analysis of the logistic equation

#### The delay logistic equation

In the of a time  $\tau$  between inhibiting event and inhibition, the equation would be written as

$$\frac{N'}{N} = (b - d) - cN(t - \tau).$$

Using the change of variables introduced earlier, this is written

$$N'(t) = rN(t)\left(1 - \frac{N(t-\tau)}{K}\right).$$
 (DDE1)

Such an equation is called a *delay* differential equation. It is much more complicated to study than (ODE1). In fact, some things remain unknown about (DDE1).

### The delayed logistic equation

Consider the equation as

$$\frac{N'}{N}=(b-d)-cN,$$

that is, the per capita rate of growth of the population depends on the net growth rate b-d, and some density dependent inhibition cN (resulting of competition).

Suppose that instead of instantaneous inhibition, there is some delay r between the time the inhibiting event takes place and the moment where it affects the growth rate. (For example, two individuals fight for food, and one later dies of the injuries sustained when fighting).

11 The delayed logistic equation

### Delayed initial value problem

The IVP takes the form

$$N'(t) = rN(t) \left( 1 - \frac{N(t - \tau)}{K} \right),$$

$$N(t) = \phi(t) \text{ for } t \in [-\tau, 0].$$
(IVP2)

where  $\phi(t)$  is some continuous function. Hence, initial conditions (called initial data in this case) must be specific on an interval, instead of being specified at a point, to guarantee existence and uniqueness of solutions.

We will not learn how to study this type of equation (this is graduate level mathematics). I will give a few results.

The delayed logistic equation p. 43 The delayed logistic equation p. 4

To find equilibria, remark that delay should not play a role, since N should be constant. Thus, equilibria are found by considering the equation with no delay, which is (ODE1).

#### Theorem

Suppose that  $r\tau < 22/7$ . Then all solutions of (IVP2) with positive initial data  $\phi(t)$  tend to K. If  $r\tau > \pi/2$ , then K is an unstable equilibrium and all solutions of (IVP2) with positive initial data  $\phi(t)$  on  $[-\tau, 0]$  are oscillatory.

Note that there is a gray zone between 22/7 and  $\pi/2$ . The first part of the theorem was proved in 1945 by Wright. Although there is very strong numerical evidence that this is in fact true up to  $\pi/2$ , nobody has yet managed to prove it.

### Discrete-time systems

So far, we have seen continuous-time models, where  $t\in\mathbb{R}_+$ . Another way to model natural phenomena is by using a discrete-time formalism, that is, to consider equations of the form

$$x_{t+1}=f(x_t), \\$$

where  $t \in \mathbb{N}$  or  $\mathbb{Z}$ , that is, t takes values in a discrete valued (countable) set.

Time could for example be days, years, etc.

The delayed logistic equation

### The logistic map

The logistic map is, for t > 0,

$$N_{t+1} = rN_t \left(1 - \frac{N_t}{K}\right).$$
 (DT1)

To transform this into an initial value problem, we need to provide an initial condition  $N_0 > 0$  for t = 0.

# The logistic map Some mathematical analysis

Suppose we have a system in the form

$$x_{t+1} = f(x_t),$$

with initial condition given for t = 0 by  $x_0$ . Then,

$$x_1 = f(x_0)$$
  
 $x_2 = f(x_1) = f(f(x_0)) \stackrel{\triangle}{=} f^2(x_0)$   
 $\vdots$   
 $x_k = f^k(x_0)$ 

The  $f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}}$  are called the *iterates* of f.

### Fixed points

#### Definition (Fixed point)

Let f be a function. A point p such that f(p) = p is called a fixed point of f.

#### Theorem

Consider the closed interval I = [a, b]. If  $f : I \rightarrow I$  is continuous, then f has a fixed point in I.

#### Theorem

Let I be a closed interval and  $f: I \to \mathbb{R}$  be a continuous function. If  $f(I) \supset I$ , then f has a fixed point in I.

Definition (Periodic point)

Periodic points

Let f be a function. If there exists a point p and an integer n such that  $f^n(p) = p$ , but  $f^k(p) \neq p$  for k < n.

then p is a periodic point of f with (least) period n (or a n-periodic point of f).

Thus, p is a n-periodic point of f iff p is a 1-periodic point of  $f^n$ .

The logistic map

The logistic map

n 50

Parametrized families of functions

Theorem

Let f be a continuously differentiable function (that is, differentiable with continuous derivative, or C1), and p be a fixed point of f.

Stability of fixed points, of periodic points

- 1. If |f'(p)| < 1, then there is an open interval  $\mathcal{I} \ni p$  such that  $\lim_{k \to \infty} f^k(x) = p \text{ for all } x \in \mathcal{I}.$
- 2. If |f'(p)| > 1, then there is an open interval  $\mathcal{I} \ni p$  such that if  $x \in \mathcal{I}$ ,  $x \neq p$ , then there exists k such that  $f^k(x) \notin \mathcal{I}$ .

#### Definition

Suppose that p is a n-periodic point of f, with  $f \in C^1$ .

- If | (f<sup>n</sup>)'(p)| < 1, then p is an attracting periodic point of f.</p>
- ▶ If  $|(f^n)'(p)| > 1$ , then p is an repelling periodic point of f.

Consider the equation (DT1), which for convenience we rewrite as  $x_{t+1} = rx_t(1 - x_t)$ . (DT2)

where 
$$r$$
 is a parameter in  $\mathbb{R}_+$ , and  $x$  will typically be taken in

[0, 1]. Let

$$f_r(x) = rx(1-x).$$

The function f, is called a parametrized family of functions.

#### **Bifurcations**

#### Definition (Bifurcation)

Let  $f_{ij}$  be a parametrized family of functions. Then there is a bifurcation at  $\mu = \mu_0$  (or  $\mu_0$  is a bifurcation point) if there exists  $\varepsilon > 0$  such that, if  $\mu_0 - \varepsilon < a < \mu_0$  and  $\mu_0 < b < \mu_0 + \varepsilon$ , then the dynamics of  $f_a(x)$  are "different" from the dynamics of  $f_b(x)$ .

An example of "different" would be that  $f_a$  has a fixed point (that is, a 1-periodic point) and  $f_h$  has a 2-periodic point.

The logistic map

Note that if  $x_0 = 0$ , then  $x_t = 0$  for all t > 1.

▶ Similarly, if  $x_0 = 1$ , then  $x_1 = 0$ , and thus  $x_t = 0$  for all t > 1. ▶ This is true for all t: if there exists t<sub>k</sub> such that x<sub>tk</sub> = 1, then

 $x_t = 0$  for all  $t > t_k$ . This last case might occur if r = 4, as we have seen.

Also, if r = 0 then  $x_t = 0$  for all t. For these reasons, we generally consider

and

 $r \in (0,4)$ .

 $x \in (0, 1)$ 

Back to the logistic map

Consider the simplified version (DT2),

$$x_{t+1} = rx_t(1-x_t) \stackrel{\Delta}{=} f_r(x_t).$$

Are solutions well defined? Suppose  $x_0 \in [0, 1]$ , do we stay in [0,1]?  $f_r$  is continuous on [0,1], so it has a extrema on [0,1]. We have

$$f_r'(x) = r - 2rx = r(1 - 2x),$$

which implies that  $f_r$  increases for x < 1/2 and decreases for x > 1/2, reaching a maximum at x = 1/2.

 $f_r(0) = f_r(1) = 0$  are the minimum values, and f(1/2) = r/4 is the maximum. Thus, if we want  $x_{t+1} \in [0,1]$  for  $x_t \in [0,1]$ , we need to consider r < 4.

n 54

The logistic map

Fixed points: existence

Fixed points of (DT2) satisfy x = rx(1-x), giving: x = 0:

- ▶ 1 = r(1 x), that is,  $p \stackrel{\triangle}{=} \frac{r 1}{r}$ .

Note that  $\lim_{r\to 0^+} p = 1 - \lim_{r\to 0^+} 1/r = -\infty$ ,  $\frac{\partial}{\partial r} p = 1/r^2 > 0$ (so p is an increasing function of r),  $p = 0 \Leftrightarrow r = 1$  and  $\lim_{r\to\infty} p=1$ . So we come to this first conclusion:

- 0 always is a fixed point of f<sub>r</sub>.
- If 0 < r < 1, then p tales negative values so is not relevant.</p>
- If 1 < r < 4, then p exists.</p>

 $f'_r$  at these fixed points. We have

$$|f_r'(0)|=r,$$

and

$$|f'_r(p)| = \left| r - 2r \frac{r-1}{r} \right|$$
$$= |r - 2(r-1)|$$
$$= |2-r|$$

Therefore, we have

• if 
$$0 < r < 1$$
, then the fixed point  $x = p$  does not exist and  $x = 0$  is attracting,

▶ if 
$$1 < r < 3$$
, then  $x = 0$  is repelling, and  $x = p$  is attracting,  
▶ if  $r > 3$ , then  $x = 0$  and  $x = p$  are repelling.

The logistic map

### Another bifurcation

#### Thus the points r=1 and r=3 are bifurcation points. To see what happens when r > 3, we need to look for period 2 points.

$$f_r^2(x) = f_r(f_r(x))$$
  
=  $rf_r(x)(1 - f_r(x))$   
=  $r^2x(1 - x)(1 - rx(1 - x))$ , (1)

0 and p are points of period 2, since a fixed point  $x^*$  of f satisfies  $f(x^*) = x^*$ , and so,  $f^2(x^*) = f(f(x^*)) = f(x^*) = x^*$ .

This helps localizing the other periodic points. Writing the fixed point equation as

$$Q(x) \stackrel{\Delta}{=} f_r^2(x) - x = 0,$$

we see that, since 0 and p are fixed points of  $f_{\mu}^2$ , they are roots of Q(x). Therefore, Q can be factorized as

 $Q(x) = x(x-p)(-r^3x^2 + Bx + C).$ 

Bifurcation diagram for the discrete logistic map 0.9 0.8 0.7 0.6 ± 0.5 0.4 0.3 0.1 0.5 1.5 2 2.5

The logistic map

n 57

Substitute the value (r-1)/r for p in Q, develop Q and (1) and equate coefficients of like powers gives

$$Q(x) = x \left( x - \frac{r-1}{r} \right) \left( -r^3 x^2 + r^2 (r+1) x - r(r+1) \right). \tag{2}$$

n 58

We already know that x = 0 and x = p are roots of (2). So we search for roots of

$$R(x) := -r^3x^2 + r^2(r+1)x - r(r+1).$$

Discriminant is

$$\Delta = r^4(r+1)^2 - 4r^4(r+1)$$

$$= r^4(r+1)(r+1-4)$$

$$= r^4(r+1)(r-3).$$

Therefore, R has distinct real roots if r > 3. Remark that for r=3, the (double) root is p=2/3. For r>3 but very close to 3, it follows from the continuity of R that the roots are close to 2/3.

### Descartes' rule of signs

#### Theorem (Descartes' rule of signs)

Let  $p(x) = \sum_{i=0}^{m} a_i x^i$  be a polynomial with real coefficients such that  $a_m \neq 0$ . Define v to be the number of variations in sign of the sequence of coefficients  $a_m, \ldots, a_0$ . By 'variations in sign' we mean the number of values of n such that the sign of an differs from the sign of  $a_{n-1}$ , as n ranges from m down to 1. Then

- ▶ the number of positive real roots of p(x) is v 2N for some integer N satisfying  $0 \le N \le \frac{v}{2}$ ,
- the number of negative roots of p(x) may be obtained by the same method by applying the rule of signs to p(-x).

The logistic map

Back to the logistic map and the polynomial R..

We use Descartes' rule of signs.

- ▶ R has signed coefficients + -, so 2 sign changes imlying 0 or 2 positive real roots.
- ► R(-x) has signed coefficients - -, so no negative real roots
- Since Δ > 0, the roots are real, and thus it follows that both roots are positive.

To show that the roots are also smaller than 1, consider the change of variables z = x - 1. The polynomial R is transformed into

$$R_2(z) = -r^3(z+1)^2 + r^2(r+1)(z+1) - r(r+1)$$
  
=  $-r^3z^2 + r^2(1-r)z - r$ .

For r > 1, the signed coefficients are - - -, so  $R_2$  has no root z > 0, implying in turn that R has no root x > 1.

#### Example of use of Descartes' rule

Example

Let

$$p(x) = x^3 + 3x^2 - x - 3.$$

Coefficients have signs ++--, i.e., 1 sign change. Thus v=1. Since  $0 \le N \le 1/2$ , we must have N = 0. Thus v - 2N = 1 and there is exactly one positive real root of p(x).

To find the negative roots, we examine

 $p(-x) = -x^3 + 3x^2 + x - 3$ . Coefficients have signs -++-, i.e.,

2 sign changes. Thus v = 2 and  $0 \le N \le 2/2 = 1$ . Thus, there are two possible solutions, N=0 and N=1, and two possible

values of v - 2N. Therefore, there are either two or no negative

real roots. Furthermore, note that  $p(-1) = (-1)^3 + 3 \cdot (-1)^2 - (-1) - 3 = 0$ , hence there is at least

one negative root. Therefore there must be exactly two.

### Summing up

The logistic map

- ▶ If 0 < r < 1, then x = 0 is attracting, p does not exist and there are no period 2 points.
- At r = 1, there is a bifurcation (called a transcritical bifurcation).
- ▶ If 1 < r < 3, then x = 0 is repelling, p is attracting, and there are no period 2 points.
- At r = 3, there is another bifurcation (called a period-doubling bifurcation).
- For r > 3, both x = 0 and x = p are repelling, and there is a period 2 point.



The logistic map

### This process continues



Bifurcation diagram for the discrete logistic map



The logistic map

The period-doubling cascade to chaos

The logistic map undergoes a sequence of period doubling bifurcations, called the *period-doubling cascade*, as r increases from 3 to 4

- ▶ Every successive bifurcation leads to a doubling of the period.
- ► The bifurcation points form a sequence, {r<sub>n</sub>}, that has the property that

$$\lim n \to \infty \frac{r_n - r_{n-1}}{r_{n+1} - r_n}$$

exists and is a constant, called the Feigenbaum constant, equal to 4.669202...

 This constant has been shown to exist in many of the maps that undergo the same type of cascade of period doubling bifurcations.

The logistic map p. 67 The logistic map p.

#### Chaos

The logistic map



By a theorem (called the Sarkovskii theorem), the presence of period 3 points implies the presence of points of all periods.

At this point, the system is said to be in a *chaotic regime*, or *chaotic*.



The logistic map

#### A word of caution

We have used three different modelling paradigms to describe the growth of a population in a *logistic* framework:

- The ODE version has monotone solutions converging to the carrying capacity K.
- The DDE version has oscillatory solutions, either converging to K or, if the delay is too large, periodic about K.
- The discrete time version has all sorts of behaviors, and can be chaotic.

It is important to be aware that the **choice of modelling method** is almost **as important** in the outcome of the model as the precise formulation/hypotheses of the **model**.

Conclusion p. 71