Теория вероятностей. Вопросы к РК2

Этот файл — вырезка из лекций, которая составляется для удобства подготовки к РК. Можно сказать, что составляется она один раз: всякие ошибки, будь они типографическими или смысловыми, будут, скорее всего, исправлены только в конспекте лекций.

1 Теоретические вопросы, оцениваемые в 3 балла

1.1 Сформулировать определение несовместных событий. Как связаны свойства несовместности и независимости событий?

Определение. Говорят, что в результате случайного эксперимента наступило событие A, если в результате данного эксперимента был реализован один из входящих в A элементарных исходов.

Определение. События A и B называются несовместными, если их произведение пусто ($AB = \emptyset$). B противном случае события A и B называются совместными.

Пусть A и B — два события, связанные с некоторым случайным экспериментом.

Определение. События A и B называются независимыми, если P(AB) = P(A) P(B).

Связь несовместности и независимости: если $A \neq \emptyset$ и $B \neq \emptyset$, то из несовместности следует зависимость (если одно событие произойдёт, то мы определённо знаем, что другое событие произойти уже не может). Частный случай: если $A = \emptyset$ или $B = \emptyset$, то A и B независимы.

1.2 Сформулировать геометрическое определение вероятности.

Геометрическое определение вероятности является обобщением классического определения на случай, когда $|\Omega|=\infty$.

Пусть

- 1. $\Omega \subseteq \mathbb{R}^n$;
- 2. $\mu(\Omega) < \infty$, где μ некая мера.

Если n=1, то μ — это длина; если n=2, то μ — площадь; если n=3 — объём. Можно определить меры и при больших n;

3. Возможность принадлежности некоторого элементарного исхода случайного эксперимента событию $A\subseteq Q$ пропорциональна мере этого события и не зависит от формы события A и его расположения внутри Ω .

1.3 Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.

Тогда

Определение. Вероятностью случайного события $A \subseteq \Omega$ называют число

$$P\{A\} = \frac{\mu(A)}{\mu(\Omega)}$$

1.3 Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.

Для строгого аксиоматического определения вероятности необходимо уточнить понятие события:

- 1. Данное выше определение события как произвольного подмножества множества Ω в случае бесконечного множества Ω приводит к противоречивой теории (см. парадокс Рассела);
- 2. Таким образом, необходимо в качестве события рассматривать не все возможные подмножества множества Ω , а лишь некоторые из них;
- 3. Набор подмножеств множества Ω , выбранных в качестве событий, должен обладать рядом свойств. Понятно, что если A и B связанные со случайным экспериментом события и известно, что в результате эксперимента они произошли (или не произошли), то естественно знать, произошли ли события A+B, $A\cdot B$, \overline{A} , . . .

Эти соображения приводят к следующему определению. Пусть

- 1. Ω пространство элементарных исходов, связанных с некоторым случайным экспериментом;
- 2. $\beta \neq \emptyset$ система (набор) подмножеств в множестве Ω .

Определение. β называется сигма-алгеброй событий, если выполнены условия:

- 1. Ecau $A \in \beta$, mo $\overline{A} \in \beta$; ²
- 2. Ecau $A_1, \ldots, A_n, \ldots \in \beta$, mo $A_1 + \ldots + A_n + \ldots \in \beta$.

Простейшие следствия:

1. $\Omega \in \beta$;

 $^{^{1}}$ При ведении лекций слово «сигма» иногда заменялось на букву δ (дельта — \delta в I⁴ТЕХ). Буква «сигма» выглядит как σ . Лектор говорит, что корректнее всего словосочетание «сигма-алгебра» вообще не сокращать и писать полностью, не используя греческие буквы. — Прим. ред.

²Обратите внимание, что $A \subseteq \Omega$, но $A \in \beta$, т. к. элементы множества β — подмножества из Ω . — Прим. лект.

1.4 Сформулировать аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.

- $2. \emptyset \in \beta;$
- 3. Если $A_1, \ldots, A_n, \ldots \in \beta$, то $A_1 \cdot \ldots \cdot A_n \cdot \ldots \in \beta$;
- 4. Если $A, B \in \beta$; то $A \setminus B \in \beta$.

1.4 Сформулировать аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.

Пусть

- 1. Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2. β сигма-алгебра, заданная на Ω .

Определение. Вероятностью (вероятностной мерой) называется функция

$$P \colon \beta \to \mathbb{R}$$

обладающая следующими свойствами:

- 1. $\forall A \in \beta \implies P(A) \geqslant 0$ (аксиома неотрицательности);
- 2. $P(\Omega) = 1$ (аксиома нормированности);
- 3. Если $A_1, \ldots, A_n, \ldots -$ попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$ (расширенная аксиома сложения).

Замечание 1. Аксиомы 1-3 называются аксиомами вероятности.

Основные свойства (из аксиоматического определения):

- 1. $P(\overline{A}) = 1 P(A);$
- 2. $P(\emptyset) = 0;$
- 3. Если $A \subseteq B$, то $P(A) \leqslant P(B)$;
- 4. $\forall A \in \beta : 0 \leqslant P(A) \leqslant 1$;
- 5. P(A+B) = P(A) + P(B) P(AB), где $A, B \in \beta$;

3

1.5 Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и аксиому непрерывности вероятности. Как они связаны между собой?

6. Для любого конечного набора событий A_1, \ldots, A_n верно

$$P(A_1 + ... + A_n) =$$

$$+ \sum_{1 \leq i_1 \leq n} P(A_{i_1})$$

$$- \sum_{1 \leq i_1 < i_2 \leq n} P(A_{i_1}, A_{i_2})$$

$$+ \sum_{1 \leq i_1 < i_2 < i_3 \leq n} P(A_{i_1}, A_{i_2}, A_{i_3}) - ... + ...$$

Свойства вероятности в соответствии с классическим определением фактически отражаются в аксиомах аксиоматического определения вероятности.

1.5 Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и аксиому непрерывности вероятности. Как они связаны между собой?

Если A_1, \ldots, A_n, \ldots — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$ (расширенная аксиома сложения).

Замечание. Иногда вместо расширенной аксиомы сложения (акс. вер. M^2 3) рассматривают следующие две аксиомы:

3': Для любого конечного набора попарно несовместных событий A_1, \ldots, A_n вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности.

(аксиома сложения («обычная»); в расширенной набор является счётным, а не конечным)

3": Для любой неубывающей последовательности событий

$$A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq \ldots$$

u события $A = \bigcup_i A_i$ верно

$$P(A) = \lim_{i \to \infty} P(A_i)$$

(аксиома непрерывности)

Можно доказать, что аксиома 3 эквивалентна совокупности 3' и 3''.

1.6 Сформулировать определение условной вероятности и ее основные свойства.

Определение. Условной вероятностью осуществления события A при условии, что произошло B, называется число

$$P(A \mid B)^3 = \frac{P(AB)}{P(B)}, \ P(B) \neq 0$$

Если зафиксировать событие B и рассматривать $P(A \mid B)$ как функцию события A, то оказывается, что условная вероятность обладает всеми свойствами безусловной.

1.7 Сформулировать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема. Φ ормула умножения вероятностей для двух событий $\Pi ycmb$

- 1. A, B coбытия;
- 2. P(A) > 0.

Tог ∂a

$$P(AB) = P(A) P(B \mid A)$$

Теорема. Формула умножения вероятностей для n событий $\Pi ycmb$

- 1. A_1, \ldots, A_n события;
- 2. $P(A_1 \cdot \ldots \cdot A_{n-1}) > 0$.

Tог ∂a

$$P(A_1 \cdot A_2 \cdot \ldots \cdot A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cdot \ldots \cdot A_{n-1})$$

1.8 Сформулировать определение пары независимых событий. Как независимость двух событий связана с условными вероятностями их осуществления?

Пусть A и B — два события, связанные с некоторым случайным экспериментом.

Определение. События A и B называются независимыми, если P(AB) = P(A) P(B).

 $^{^{3}}$ В разговорной речи читается как P от A при B. — Прим. лект.

Теорема. . . .

- 1. Пусть P(B) > 0. Утверждение «А и B — независимы» равносильно $P(A \mid B) = P(A)$;
- 2. Пусть P(A) > 0. Утверждение «A и B — независимы» равносильно $P(B \mid A) = P(B)$.

Замечание. Разумеется, в качестве определения независимых событий логично было бы использовать условия

$$P(A \mid B) = P(A) \text{ unu } P(B \mid A) = P(B)$$

$$\tag{1}$$

Однако эти условия имеют смысл лишь тогда, когда P(A) или P(B) отлично от нуля. Условие же P(AB) = P(A)P(B) «работает» всегда без ограничений и, как мы показали выше, при выполнении соответствующих требований эквивалентно 3.

1.9 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Как эти свойства связаны между собой?

Определение. События A_1, \ldots, A_n называется попарно независимыми, если ⁴

$$\forall \forall i \neq j; i, j \in \{1, ..., n\} \ P\{A_i A_j\} = P\{A_i\} P\{A_j\}$$

Определение. События A_1, \ldots, A_n называются независимыми в совокупности, если

$$\forall k \in \{2, \ldots, n\} \, \forall \forall i_1 < i_2 < \ldots < i_k \, P\{A_{i_1}, \ldots, A_{i_k}\} = P\{A_{i_1}\} \cdot \ldots \cdot P\{A_{i_k}\}$$

Замечание 1. Условие из последнего определения означает, что должны выполняться следующие равенства

$$k = 2$$
: $P\{A_{i_1}, A_{i_2}\} = P\{A_{i_1}\} P\{A_{i_2}\}$
 $k = 3$: $P\{A_{i_1}, A_{i_2}, A_{i_3}\} = P\{A_{i_1}\} P\{A_{i_2}\} P\{A_{i_3}\}$
...
 $k = n$: ...

Замечание 2. Очевидно, что если события A_1, \ldots, A_n независимы в совокупности, то они и попарно независимы. Обратное неверно.

⁴Обозначение ∀∀ является математическим сленгом и технически некорректно. Тем не менее, это удобный способ обозначения того, что в выражении должно стоять несколько ∀ подряд. — Прим. лект.

Пример. (Бернштейна)

Paccмотрим правильный тетраэ ∂p^5 , на одной грани которого «написано» 1, второй -2, третьей -3, четвёртой -1, 2, 3.

Этот тетраэдр один раз подбрасывают.

Событие A_1 заключается в том, что на нижней грани «написано» 1; также введём A_2 для 2, A_3 для 3. Давайте покажем, что события A_1 , A_2 , A_3 попарно независимы, но не являются независимыми в совокупности.

1. Докажем, что они независимы попарно. Т. к. $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, то

$$P(A_1A_2) = P(A_1) P(A_2) = \frac{1}{4}$$

Событие A_1A_2 означает, что на нижней грани присутствуют и 1, и 2.

 $Bc\ddot{e}$ аналогично для $P(A_1A_3) = P(A_1)P(A_3)$ и $P(A_2A_3) = P(A_2)P(A_3)$.

2. Проверим равенство $P(A_1A_2A_3)=P(A_1)\,P(A_2)\,P(A_3)$, которое, казалось бы, должно равняться $\frac{1}{8}$. Но произведение событий $A_1,\ A_2,\ A_3$ означает, что на нижней грани присутствуют и 1, и 2, и 3, вероятность чего равна $\frac{1}{4}$.

II выходит, что $\frac{1}{4} \neq \frac{1}{8}$.

Следовательно, события A_1 , A_2 , A_3 не являются независимыми в совокупности.

1.10 Сформулировать определение полной группы событий. Верно ли, что некоторые события из полной группы могут быть независимыми?

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, β, P) — вероятностное пространство этого случайного эксперимента.

Определение. Говорят. что события $H_1, \ldots, H_n \in \beta$ образуют полную группу событий, если

- 1. $P(H_i) > 0, i = \overline{1, n};$
- 2. $H_iH_i = \emptyset \ npu \ i \neq j;$
- 3. $H_1 + \ldots + H_n = \Omega$.

Замечание. События H_1, \ldots, H_n , образующие полную группу, часто называют гипотезами.

 $^{^{5}{}m T}$ рёхмерная фигура, состоящая из четырёх треугольников. — Прим. ред.

Верно ли, что некоторые события из полной группы могут быть независимыми? Нет. События не пустые и несовместные, следовательно, они зависимые: наступление одного полностью исключает наступление другого. Формально, $P(AB) \neq P(A)P(B)$. См. вопрос 1.

1.11 Сформулировать теорему о формуле полной вероятности.

Теорема. Формула полной вероятности.

 $\Pi ycmb$

- 1. H_1, \ldots, H_n полная группа событий;
- 2. $A \in \beta$ cobumue.

Тогда (это выражение называется формулой полной вероятности):

$$P(A) = P(A | H_1)P(H_1) + ... + P(A | H_n)P(H_n)$$

1.12 Сформулировать теорему о формуле Байеса.

Теорема. Пусть

- 1. H_1, \ldots, H_n полная группа событий;
- 2. P(A) > 0.

Tог ∂a

$$P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A \mid H_1)P(H_1) + \ldots + P(A \mid H_n)P(H_n)}, \ i = \overline{1, n}$$

1.13 Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний.

Давайте рассмотрим случайный эксперимент, в результате которого возможна реализация одного из двух элементарных исходов, т. е. пространство элементарных исходов у нас будет состоять из двух элементов ($|\Omega|=2$).

Один из элементарных исходов условно будем называть успехом, второй — неудачей. Пусть p — вероятность осуществления успеха в случайном эксперименте, а q (q=1-p) — вероятность неудачи.

Определение. Схемой испытаний Бернулли называется серия из однотипных экспериментов указанного вида, в которой отдельные испытания независимы, т. е. вероятность реализации успеха в i-ом испытании не зависит от исходов первого, второго, . . . , i-1-ого испытаний.

8

1.14 Записать формулы для вычисления вероятности осуществления в серии из п испытаний а) ровно к успехов, б) хотя бы одного успеха, в) от к 1 до к 2 успехов.

Теорема. Пусть проводится серия из п испытаний по схеме Бернулли с вероятностью успеха р. Тогда $P_n(k)$ есть вероятность того, что в серии из п испытаний произойдёт ровно k успехов:

 $P_n(k) = C_n^k p^k q^{n-k}$

1.14 Записать формулы для вычисления вероятности осуществления в серии из п испытаний а) ровно к успехов, б) хотя бы одного успеха, в) от к 1 до к 2 успехов.

Теорема. Пусть проводится серия из n испытаний по схеме Бернулли c вероятностью успеха p. Тогда $P_n(k)$ есть вероятность того, что в серии из n испытаний произойдёт ровно k успехов:

 $P_n(k) = C_n^k p^k q^{n-k}$

Следствие. Вероятность того, что в серии испытаний Бернулли с вероятностью успеха p (и неудачи q = 1 - p) произойдёт хотя бы один успех: $P_n(k \ge 1) = 1 - q^n$.

Следствие. Вероятность того, что кол-во успехов в серии из n испытаний по схеме Бернулли c вероятностью успеха p будет заключено между k_1 и k_2 :

$$P_n(k_1 \leqslant k \leqslant k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$$

- 2 Теоретические вопросы, оцениваемые в 5 баллов
- 2.1 Сформулировать определение элементарного исхода случайного эксперимента и пространства элементарных исходов. Сформулировать классическое определение вероятности. Привести пример.

Определение. Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Элементарный ucxod - ?

Замечание. Всюду в дальнейшем будем предполагать, что

- 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Сформулировать классическое определение вероятности. Опираясь на него, доказать основные свойства вероятности.

Определение. Множество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов.

Пусть

- 1. Ω пространство исходов некоторого случайного эксперимента ($|\Omega| = N < \infty$) 6 ;
- 2. По условиям эксперимента нет оснований предпочесть тот или иной элементарный исход остальным (в таком случае говорят, что все элементарные исходы равновозможны);
- 3. Существует событие $A\subseteq \Omega$, мощность $|A|\stackrel{(\text{обозначим})}{=} N_A$ Тогда

Определение. Вероятностью осуществления события A называют число

$$P\{A\} = \frac{N_A}{N}$$

Задача-пример. Два раза бросают игральную кость. Задано событие

 $A = \{ \text{ сумма выпавших очков больше или равна одиннадцати } \}$

 $Ha
mu\ P(A)$.

Решение. Определим исход: $(x_1, x_2) - y$ порядоченная пара, где $x_i - \kappa$ ол-во очков, выпавших при i-ом броске, $i = \overline{1,2}$ ($N = |\Omega| = 36$).

В событии A можно выделить следующие исходы:

$$A = \{(5, 6), (6, 5), (6, 6)\}$$

Тогда $N_A = |A| = 3$, u, в соответствии с определением, получается

$$P(A) = \frac{N_A}{N} = \frac{3}{36} = \frac{1}{12}$$

Сформулировать классическое определение вероятности. 2.2Опираясь на него, доказать основные свойства вероятности.

Пусть

1. Ω — пространство исходов некоторого случайного эксперимента ($|\Omega| = N < \infty$)⁷;

 $^{^6}$ Запись $x<\infty$ означает, что x конечно. Напротив, запись $x\leqslant\infty$ означает, что x либо конечно, либо бесконечно.

 $^{^7}$ Запись $x<\infty$ означает, что x конечно. Напротив, запись $x\leqslant\infty$ означает, что x либо конечно, либо бесконечно.

[—] Прим. ред.

- 2.2 Сформулировать классическое определение вероятности. Опираясь на него, доказать основные свойства вероятности.
 - 2. По условиям эксперимента нет оснований предпочесть тот или иной элементарный исход остальным (в таком случае говорят, что все элементарные исходы равновозможны);
 - 3. Существует событие $A\subseteq \Omega$, мощность $|A|\stackrel{(\text{обозначим})}{=} N_A$ Тогда

Определение. Вероятностью осуществления события А называют число

$$P\{A\} = \frac{N_A}{N}$$

Свойства:

- 1. Вероятность $P(A) \ge 0$ (неотрицательна).
- 2. $P(\Omega) = 1$.
- 3. Если A, B несовместные события, то P(A + B) = P(A) + P(B).

Доказательства этих свойств:

- 1. Т. к. $N_A \geqslant 0, \ N > 0$, то следует $P(A) = \frac{N_A}{N} \geqslant 0$.
- 2. Принимая во внимание, что $N_{\Omega} = |\Omega| = N$, получается

$$P(\Omega) = \frac{N_{\Omega}}{N} = \frac{N}{N} = 1$$

3. Т. к. Ω — конечно, $A,B\subseteq \Omega$, то получается, что A,B конечны. Существует формула⁸

$$|A + B| = |A| + |B| - |AB|$$

Т. к. A и B — несовместные, то $AB = \emptyset$, из чего следует, что $N_{a+b} = N_a + B_b$. Таким образом,

$$P(A+B) = \frac{N_{a+b}}{N} = \frac{N_a + N_b}{N} = \frac{N_a}{N} + \frac{N_b}{N} = P(A) + P(B)$$

 $^{^{8}{}m E}$ ё называют формулой включений и исключений. — Прим. лект.

2.3 Сформулировать статистическое определение вероятности. Указать его основные недостатки.

Пусть

- 1. Некоторый случайный эксперимент произведён n раз;
- 2. При этом некоторое наблюдаемое в этом эксперименте событие A произошло n_A раз.

Определение. Вероятностью осуществления события A называют эмпирический (m. e. найденный экспериментальным путём) предел:

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

Замечание. Можсно показать, что для статистического определения останутся в силе доказанные выше свойства вероятностей.

Замечание. У статистического определения полным-полно недостатков:

- 1. Никакой эксперимент не может быть произведён бесконечное много раз;
- 2. С точки зрения современной математики статистическое определение является архаизмом, т. к. не даёт достаточно базы для дальнейшего построения теории.

2.4 Сформулировать определение сигма-алгебры событий. Доказать ее основные свойства.

Пусть

- 1. Ω пространство элементарных исходов, связанных с некоторым случайным экспериментом;
- 2. $\beta \neq \emptyset$ система (набор) подмножеств в множестве Ω .

Определение. β называется сигма-алгеброй событий, если выполнены условия:

- 1. Ecnu $A \in \beta$, mo $\overline{A} \in \beta$; 10
- 2. Ecau $A_1, \ldots, A_n, \ldots \in \beta$, mo $A_1 + \ldots + A_n + \ldots \in \beta$.

Основные следствия (свойства?):

 $^{^9\}Pi$ ри ведении лекций слово «сигма» иногда заменялось на букву δ (дельта — \delta в \mbox{IAT}_{EX}). Буква «сигма» выглядит как σ . Лектор говорит, что корректнее всего словосочетание «сигма-алгебра» вообще не сокращать и писать полностью, не используя греческие буквы. — Прим. ред.

 $^{^{10}}$ Обратите внимание, что $A\subseteq\Omega$, но $A\in\beta$, т. к. элементы множества β — подмножества из Ω . — Прим. лект.

2.5 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

- 1. $\Omega \in \beta$;
- 2. $\emptyset \in \beta$;
- 3. Если $A_1, \ldots, A_n, \ldots \in \beta$, то $A_1 \cdot \ldots \cdot A_n \cdot \ldots \in \beta$;
- 4. Если $A, B \in \beta$; то $A \setminus B \in \beta$.

Доказательства этих следствий:

- 1. По определению $\beta \neq \emptyset \implies \exists A \subseteq Q \colon A \in \beta$; из определения сигма-алгебры (аксиома 1) $\exists A \in \beta \implies \overline{A} \in \beta$; тогда из второй аксиомы следует, что $\exists (A + \overline{A}) \in \beta$; т. к. $A + \overline{A} = \Omega$, то $\Omega \in \beta$.
- 2. Т. к. $\Omega \in \beta$ (по следствию 1), то, по аксиоме 1, $\overline{\Omega} \in \beta$, а $\overline{\Omega} = \emptyset$. Следовательно, $\emptyset \in \beta$.
- 3. Из существования событий $A_1, \ldots, A_n, \ldots \in \beta$ по аксиоме 1 следует, что существуют дополнения этих событий $\overline{A_1}, \ldots, \overline{A_n}, \ldots \in \beta$. По аксиоме 2 следует существование объединения $\overline{A_1} + \ldots + \overline{A_n} + \ldots \in \beta$, и из аксиомы 1 существование дополнения этого объединения: $\overline{\overline{A_1}} + \ldots + \overline{A_n} + \ldots \in \beta$. Из этого, по законам де Моргана, получается $\overline{\overline{A_1}} \cdot \ldots \cdot \overline{\overline{A_n}} \cdot \ldots \in \beta$, что тривиально преобразуется в $A_1 \cdot \ldots \cdot A_n \cdot \ldots \in \beta$.
- 4. Из свойств операций над множествами можно заключить, что $A \setminus B = A \cdot \overline{B}$. По аксиоме 1, из $B \in \beta \implies \overline{B} \in \beta$. По следствию 3, $A, \overline{B} \in \beta \implies A \cdot \overline{B} \in \beta$, что, собственно, является утверждением $A \setminus B \in \beta$.
- 2.5 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

Пусть

- 1. Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2. β сигма-алгебра, заданная на Ω .

Определение. Вероятностью (вероятностной мерой) называется функция

$$P \colon \beta \to \mathbb{R}$$

обладающая следующими свойствами:

1. $\forall A \in \beta \implies P(A) \geqslant 0$ (аксиома неотрицательности);

2.5 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

- 2. $P(\Omega) = 1$ (аксиома нормированности);
- 3. Если $A_1, \ldots, A_n, \ldots -$ попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$ (расширенная аксиома сложения).

Замечание 1. Аксиомы 1-3 называются аксиомами вероятности.

Свойства вопроса:

- 1. $P(\overline{A}) = 1 P(A)$;
- 2. $P(\emptyset) = 0$;
- 3. Если $A \subseteq B$, то $P(A) \leqslant P(B)$;

Доказательства этих свойств:

- 1. По акс. 2? сигма-алгебры $\exists A + \overline{A} = \Omega$; по аксиоме вероятности №2 $P(\Omega) = 1 = P(A + \overline{A})$; по аксиоме вероятности №3 (A и \overline{A} несовместны), $P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \implies P(\overline{A}) = 1 P(A)$.
- 2. $P(\emptyset)=P(\overline{\Omega})$; по свойству $N^{\underline{0}}1$ $P(\emptyset)=1-\overset{=1\pmod{2}}{P(\Omega)}=0$
- 3. $A \subseteq B \stackrel{\text{(по рисунку)}}{\Longrightarrow} B = A + (B \setminus A)$

(см. рисунок 15)

Тогда

$$P(B) = P(A + (B \setminus A)) =$$
 $A, B \setminus A$ несовместны, используем аксиому 3

$$=P(A)+\stackrel{\geqslant 0}{P}(B\smallsetminus A)\stackrel{1}{\geqslant}P(A) \ \Longrightarrow P(B)\geqslant P(A)$$

- 2.6 Сформулировать аксиоматическое определение вероятности. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа событий. Доказать первое из этих свойств.
- 2.6 Сформулировать аксиоматическое определение вероятности. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа событий. Доказать первое из этих свойств.

Пусть

- 1. Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2. β сигма-алгебра, заданная на Ω .

Определение. Вероятностью (вероятностной мерой) называется функция

$$P \colon \beta \to \mathbb{R}$$

обладающая следующими свойствами:

- 1. $\forall A \in \beta \implies P(A) \geqslant 0$ (аксиома неотрицательности);
- 2. $P(\Omega) = 1$ (аксиома нормированности);
- 3. Если $A_1, \ldots, A_n, \ldots -$ попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$ (расширенная аксиома сложения).

Замечание 1. Аксиомы 1-3 называются аксиомами вероятности.

Свойства вопроса:

- 1. P(A+B) = P(A) + P(B) P(AB), где $A, B \in \beta$;
- 2. Для любого *конечного* набора событий A_1, \ldots, A_n верно

$$P(A_1 + ... + A_n) =$$
+ $\sum_{1 \le i_1 \le n} P(A_{i_1})$
- $\sum_{1 \le i_1 < i_2 \le n} P(A_{i_1}, A_{i_2})$
+ $\sum_{1 \le i_1 < i_2 < i_3 \le n} P(A_{i_1}, A_{i_2}, A_{i_3}) - ... + ...$

Доказательство первого свойства:

Для любых A, B:

2.7 Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трём основным свойствам безусловной вероятности.

1.
$$A + B = A + (B \setminus A)$$
,

(см. рисунок 16)

при этом $A \cdot (B \setminus A) = \emptyset$.

В соответствии с аксиомой 3,

$$P(A+B) = P(A) + P(B \setminus A) \tag{2}$$

 $2. B = AB + (B \setminus A),$

(см. рисунок 17)

причём $(AB)(B \setminus A) = \emptyset$.

По аксиоме 3, имеем $P(B) = P(AB) + P(B \setminus A) \implies P(B \setminus A) = P(B) - P(AB)$. Подставим результат в 2 и получим

$$P(A+B) = P(A) + P(B) - P(AB)$$

2.7 Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трём основным свойствам безусловной вероятности.

Определение. Условной вероятностью осуществления события A при условии, что произошло B, называется число

$$P(A \mid B)^{11} = \frac{P(AB)}{P(B)}, \ P(B) \neq 0$$

Замечание. Иногда, чтобы подчеркнуть разницу, «обычную» вероятность P(A) называют «безусловной».

Если зафиксировать событие B и рассматривать $P(A \mid B)$ как функцию события A, то оказывается, что условная вероятность обладает всеми свойствами безусловной.

Теорема. Пусть

 $^{^{11}{}m B}$ разговорной речи читается как P от A при B. — Прим. лект.

- 2.8 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.
 - 1. Зафиксировано событие $B, P(B) \neq 0$;
 - 2. $P(A \mid B)$ рассматривается как функция события A.

Tогда $P(A \mid B)$ обладает всеми свойствами безусловной вероятности.

Доказательство. Докажем, что условная вероятность $P(A \mid B)$ удовлетворяет трём аксиомам вероятности:

1.
$$P(A \mid B) = \underbrace{\frac{P(AB)}{P(AB)}}_{>0} \implies P(A \mid B) \geqslant 0.$$

2.
$$P(\Omega \mid B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

3.

$$P(A_1 + ... + A_n + ... | B) = \frac{P((A_1 + ... + A_n + ...)B)}{P(B)} =$$

$$= \frac{1}{P(B)} \cdot P(A_1B + A_2B + ... + A_nB + ...) =$$

 $\begin{array}{lll} A_i, A_j \ \textit{несовместны}, \ i \neq j; \ A_i B \subseteq A_i, A_j B \subseteq A_j \Longrightarrow (A_i B) \cap (A_j B) = \emptyset, \ u \ \textit{morda no аксиоме вероятности №3} \\ = \end{array}$

$$= \frac{1}{P(B)} \cdot [P(A_1B) + \dots + P(A_nB) + \dots] =$$

$$= (p \circ \partial) \frac{P(A_1B)}{P(B)} + \dots + \frac{P(A_nB)}{P(B)} + \dots =$$

$$= P(A_1 | B) + \dots + P(A_n | B) + \dots$$

2.8 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема. Φ ормула умножения вероятностей для двух событий $\Pi ycmb$

- 1. A, B coбытия;
- 2. P(A) > 0.

Tог ∂a

$$P(AB) = P(A) P(B \mid A)$$

4**.**

2.8 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Доказательство. Т. к. P(A) > 0, то определена условная вероятность

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

из чего напрямую следует

$$P(AB) = P(A) P(B \mid A)$$

Теорема. Формула умножения вероятностей для n событий $\Pi ycmb$

- 1. A_1, \ldots, A_n coбытия;
- 2. $P(A_1 \cdot \ldots \cdot A_{n-1}) > 0$.

Tог ∂a

$$P(A_1 \cdot A_2 \cdot \ldots \cdot A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cdot \ldots \cdot A_{n-1})$$

Доказательство. . . .

1. Обозначив $k = \overline{1, n-1}$, имеем $A_1 \cdot \ldots \cdot A_k \supseteq A_1 \cdot \ldots \cdot A_{n-1}$.

По свойству 3 вероятности $P(A_1 \cdot \ldots \cdot A_k) \geqslant P(A_1 \cdot \ldots \cdot A_{n-1}) > 0$.

Следовательно, все условные вероятности, входящие в правую часть доказываемой формулы, определены, и можно задавать условные вероятности по типу $P(A_n \mid A_1 A_2 \ldots A_{n-1})$, и, следовательно, можно пользоваться формулой умножения вероятностей для двух событий.

2. Последовательно применим формулу умножения вероятностей для двух событий $(P(A_{mf}B_{mf}) = P(A_{mf})P(B_{mf} \mid A_{mf}))$:

$$P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-1}}_{A_{mf1}} \cdot \underbrace{A_{n}}_{B_{mf1}}) = \underbrace{P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-2}}_{A_{mf2}} \cdot \underbrace{A_{n-1}}_{B_{mf2}}) \cdot P(\underbrace{A_{n}}_{A_{n}} \mid \underbrace{A_{1} \cdot \ldots \cdot A_{n-1}}_{A_{n-1}})}_{A_{mf2}} = \underbrace{P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-2}}_{A_{mf3}} \cdot \underbrace{A_{n-2}}_{B_{mf3}}) \cdot P(\underbrace{A_{n-1}}_{A_{n-1}} \mid \underbrace{A_{1} \cdot \ldots \cdot A_{n-2}}_{A_{n-2}}) \cdot P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1})}_{= \ldots = = P(A_{1}) P(A_{2} \mid A_{1}) P(A_{3} \mid A_{1} \cdot A_{2}) \cdot \ldots \cdot P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1})}$$

 $^{^{12}}$ Т. к. обозначения A, B накладываются на уже используемые, то при иллюстрации применения этой формулы будем использовать индекс $_{mf}$ (multiplication formula). — Прим. ред.

- 2.9 Сформулировать определение пары независимых событий. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.
- 2.9 Сформулировать определение пары независимых событий. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.

Пусть A и B — два события, связанные с некоторым случайным экспериментом.

Определение. События A и B называются независимыми, если P(AB) = P(A) P(B). **Теорема.** . . .

- 1. Пусть P(B) > 0.

 Утверждение «А и B независимы» равносильно $P(A \mid B) = P(A)$;
- 2. Пусть P(A) > 0. Утверждение «A и B — независимы» равносильно $P(B \mid A) = P(B)$.

Доказательство. . . .

1. Сначала докажем, что если A и B — независимые, то $P(A \mid B) = P(A)$. По определению независимых событий, P(AB) = P(A)P(B). По определению условной вероятности,

$$P(A | B) = \frac{P(AB)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

Теперь докажем обратное.

Пусть $P(A \mid B) = P(A)$. Докажем, что P(AB) = P(A)P(B).

$$P(AB) \stackrel{\textit{no } \phi\text{-}\textit{ле умножения вероятностей}}{=} P(B) \cdot \stackrel{=P(A)}{P(A \mid B)} = P(B)P(A)$$

2. Доказательство второго пункта теоремы аналогично.

Замечание. Разумеется, в качестве определения независимых событий логично было бы использовать условия

$$P(A \mid B) = P(A) \text{ unu } P(B \mid A) = P(B)$$

$$\tag{3}$$

Однако эти условия имеют смысл лишь тогда, когда P(A) или P(B) отлично от нуля. Условие же P(AB) = P(A)P(B) «работает» всегда без ограничений и, как мы показали выше, при выполнении соответствующих требований эквивалентно 3.

2.10 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Показать на примере, что из первого не следует второе.

Определение. События A_1, \ldots, A_n называется попарно независимыми, если 13

$$\forall \forall i \neq j; i, j \in \{1, ..., n\} P\{A_i A_j\} = P\{A_i\} P\{A_j\}$$

Определение. События A_1, \ldots, A_n называются независимыми в совокупности, если

$$\forall k \in \{2, \ldots, n\} \ \forall \forall i_1 < i_2 < \ldots < i_k \ P\{A_{i_1}, \ldots, A_{i_k}\} = P\{A_{i_1}\} \cdot \ldots \cdot P\{A_{i_k}\}$$

Замечание 1. Условие из последнего определения означает, что должны выполняться следующие равенства

$$k = 2 \colon P\{A_{i_1}, A_{i_2}\} = P\{A_{i_1}\} P\{A_{i_2}\}$$

$$k = 3 \colon P\{A_{i_1}, A_{i_2}, A_{i_3}\} = P\{A_{i_1}\} P\{A_{i_2}\} P\{A_{i_3}\}$$

$$\dots$$

$$k = n \colon \dots$$

Замечание 2. Очевидно, что если события A_1, \ldots, A_n независимы в совокупности, то они и попарно независимы. Обратное неверно.

Пример. (Бернштейна)

Paccмотрим правильный тетраэд p^{14} , на одной грани которого «написано» 1, второй -2, третьей -3, четвёртой -1, 2, 3.

Этот тетраэдр один раз подбрасывают.

Событие A_1 заключается в том, что на нижней грани «написано» 1; также введём A_2 для 2, A_3 для 3. Давайте покажем, что события A_1 , A_2 , A_3 попарно независимы, но не являются независимыми в совокупности.

1. Докажем, что они независимы попарно. Т. к. $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, то

$$P(A_1A_2) = P(A_1) P(A_2) = \frac{1}{4}$$

Событие A_1A_2 означает, что на нижней грани присутствуют и 1, и 2.

$$Bc\ddot{e}$$
 аналогично для $P(A_1A_3) = P(A_1)P(A_3)$ и $P(A_2A_3) = P(A_2)P(A_3)$.

¹³Обозначение ∀∀ является математическим сленгом и технически некорректно. Тем не менее, это удобный способ обозначения того, что в выражении должно стоять несколько ∀ подряд. — Прим. лект.

 $^{^{14}{\}rm T}$ рёхмерная фигура, состоящая из четырёх треугольников. — Прим. ред.

2. Проверим равенство $P(A_1A_2A_3) = P(A_1) P(A_2) P(A_3)$, которое, казалось бы, должно равняться $\frac{1}{8}$. Но произведение событий A_1 , A_2 , A_3 означает, что на нижней грани присутствуют и 1, и 2, и 3, вероятность чего равна $\frac{1}{4}$.

U выходит, что $\frac{1}{4} \neq \frac{1}{8}$.

Cледовательно, события A_1 , A_2 , A_3 не являются независимыми в совокупности.

2.11 Доказать теорему о формуле полной вероятности.

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, β, P) — вероятностное пространство этого случайного эксперимента.

Определение. Говорят. что события $H_1, \ldots, H_n \in \beta$ образуют полную группу событий, если

- 1. $P(H_i) > 0, i = \overline{1, n};$
- 2. $H_iH_j = \emptyset \ npu \ i \neq j;$
- 3. $H_1 + \ldots + H_n = \Omega$.

Теорема. Формула полной вероятности.

 $\Pi ycmb$

- 1. H_1, \ldots, H_n полная группа событий;
- 2. $A \in \beta$ cobumue.

Тогда (это выражение называется формулой полной вероятности):

$$P(A) = P(A | H_1)P(H_1) + ... + P(A | H_n)P(H_n)$$

Доказательство. . . .

(см. рисунок 19)

1. $A = A\Omega^{\Omega = H_1 + \dots + H_n} A \cdot (H_1 + \dots + H_n) = AH_1 + \dots + AH_n$.

Принимая $i \neq j : H_i \neq \emptyset$, $H_j \neq \emptyset$, но $(AH_i) \subseteq H_i$, $(AH_j) \subseteq H_j \implies (AH_i)(AH_j) = \emptyset$, m. e. AH_i nonapho не пересекаются.

2. Тогда

$$P(A) = P(AH_1 + ... + AH_n) =$$
 AH_i попарно не пересекаются
$$= P(AH_1) + ... + P(AH_n) =$$
 $m. \ \kappa. \ P(H_i) > 0, \ mo \ P(AH_i) = P(H_i)P(A|H_i)$

$$= P(A|H_1)P(H_1) + ... + P(A|H_n)P(H_n)$$

2.12 Доказать теорему о формуле Байеса.

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, β, P) — вероятностное пространство этого случайного эксперимента.

Определение. Говорят. что события $H_1, \ldots, H_n \in \beta$ образуют полную группу событий, если

- 1. $P(H_i) > 0, i = \overline{1, n};$
- 2. $H_iH_j = \emptyset \ npu \ i \neq j;$
- 3. $H_1 + \ldots + H_n = \Omega$.

Теорема. Пусть

- 1. H_1, \ldots, H_n полная группа событий;
- 2. P(A) > 0.

Tог ∂a

$$P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A \mid H_1)P(H_1) + \dots + P(A \mid H_n)P(H_n)}, \ i = \overline{1, n}$$

Доказательство.

$$P(H_i \mid A) \overset{\textit{no onp. условной вероятности}}{=} = \frac{P(AH_i)}{P(A)} \overset{\textit{no ϕ-ле умножения в числителе, полной вероятности в знаменателе}}{=} = P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A \mid H_1)P(H_1) + \ldots + P(A \mid H_n)P(H_n)}, \ i = \overline{1,n}$$

2.13 Доказать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний по схеме Бернулли.

Давайте рассмотрим случайный эксперимент, в результате которого возможна реализация одного из двух элементарных исходов, т. е. пространство элементарных исходов у нас будет состоять из двух элементов ($|\Omega| = 2$).

Один из элементарных исходов условно будем называть успехом, второй — неудачей. Пусть p — вероятность осуществления успеха в случайном эксперименте, а q (q=1-p) — вероятность неудачи.

Определение. Схемой испытаний Бернулли называется серия из однотипных экспериментов указанного вида, в которой отдельные испытания независимы, т. е. вероятность реализации успеха в i-ом испытании не зависит от исходов первого, второго, . . . , i-1-ого испытаний.

Теорема. Пусть проводится серия из п испытаний по схеме Бернулли с вероятностью успеха р. Тогда $P_n(k)$ есть вероятность того, что в серии из п испытаний произойдёт ровно k успехов:

$$P_n(k) = C_n^k p^k q^{n-k}$$

Доказательство. . . .

1. Результат проведения серии из n экспериментов запишем c использованием кортежа (x_1, \ldots, x_n) , c d e

$$x_i = \begin{cases} 1, \ ecлu \ b \ ucnыmaнuu \ uмел \ место \ ycnex; \ 0, \ ecлu \ b \ ucnыmahuu \ uмела \ место \ неудача. \end{cases}$$

 $2. \Pi ycm$

$$A = \{$$
в серии из n испытаний произошло ровно k успехов $\}$

Tогда A состоит из кортежей, в которых будет ровно k единиц и n-k нулей.

В событии А будет столько элементарных исходов, сколькими способами можно расставить k единиц по п позициям. Каждая такая расстановка однозначно определяется номерами позиций, в которых будут записаны единички. В остальные позиции будут записаны нули.

Выбрать k позиций из имеющихся n можно C_n^k способами. Вероятность каждого отдельного исхода равна произведению вероятностей каждого отдельного x_i , и тогда общая вероятность исхода будет равна p^kq^{n-k} .

Все испытания независимы; следовательно, все кортежи из A равновероятны, и их C_n^k штук, что означает

$$P_n(k) = C_n^k p^k q^{n-k}$$

А Комбинаторика

Пусть X — некое множество. Для примеров определим $X = \{1, 2, 3, 4, 5, 6\}$.

А.1 Сочетания без повторений

Определение. Сочетанием без повторений из n (n = |X|) элементов по m называется любое неупорядоченное подмножество множества X, содержащее m различных элементов.

Кол-во таких подмножеств обозначается как C_n^m и равно

$$C_n^m = \frac{n!}{m!(n-m)!}$$

А.2 Размещения без повторений

Определение. Размещением без повторений из n элементов (исходного множества, n = |X|) по m (длина кортежа) называется кортеж, состоящий из m различных элементов множества X.

Примеры. (1, 2, 4), но не (5, 5, 4).

Кол-во возможных размещений без повторений:

$$A_n^m = \frac{n!}{(n-m)!}$$

А.3 Перестановки без повторений

Перестановки без повторений — крайний случай размещений без повторений.

Определение. Перестановкой без повторений называют называют кортеж, состоящий из n = |X| различных элементов множества X.

Кол-во возможных перестановок без повторений:

$$P_n = A_n^n = n!$$

Замечание. Три предыдущих понятия связаны как

$$A_n^m = P_m C_n^m$$

А.4 Размещения с повторениями

Определение. Размещением с повторениями из n (n = |X|) по m элементов называется любой элемент из $X^m = X \times X \times ... \times X$.

Примеры. (1, 2, 3, 4, 5), (1, 4, 4, 4, 2).

Кол-во возможных размещений с повторениями:

$$\widetilde{A}_n^m = n^m$$

А.5 Перестановки с повторениями

Определение. Перестановкой с повторениями называют кортеж длины n из элементов множества X, в котором каждый элемент $x_i \in X$ повторяется n_i , $i = \overline{1,k}$ раз $(\sum_i^k n_i = n)$.

Кол-во возможных перестановок с повторениями:

$$P_n(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}, \ n = n_1 + n_2 + \dots + n_k$$