Thomas Bayes

 Rev. Thomas Bayes (1702 –1761) was a British mathematician and Presbyterian minister

- He looked remarkably similar to Charlie Sheen
 - But that's not important right now...

But First!

Background Observation

Say E and F are events in S

$$E = EF \cup EF^{c}$$

Note: EF \cap EF^c = \emptyset

So,
$$P(E) = P(EF) + P(EF^c)$$

Law of Total Probability

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

Law of Total Probability

$$P(E) = \sum_{i} P(B_i \cap E)$$
$$= \sum_{i} P(E|B_i)P(B_i)$$

Moment of Silence...

Bayes Theorem

I want to calculate $P(\text{State of the world } F \mid \text{Observation } E)$ It seems so tricky!...

The other way around is easy P(Observation $E \mid$ State of the world F) What options to I have, chief?

P(F|E)

Bayes Theorem

Want $P(F \mid E)$. Know $P(E \mid F)$

$$P(F|E) = \frac{P(EF)}{P(E)}$$
 Def. of Conditional Prob.

A little while later...

$$= \frac{P(E|F)P(F)}{P(E)}$$
 Chain Rule

Bayes Theorem

Most common form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Expanded form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$$

H1N1 Testing

- A test is 98% effective at detecting H1N1
 - However, test has a "false positive" rate of 1%
 - 0.5% of US population has H1N1
 - Let E = you test positive for H1N1 with this test
 - Let F = you actually have H1N1
 - What is P(F | E)?
- Solution:

$$P(F \mid E) = \frac{P(E \mid F) P(F)}{P(E \mid F) P(F) + P(E \mid F^{c}) P(F^{c})}$$

$$P(F \mid E) = \frac{(0.98)(0.005)}{(0.98)(0.005) + (0.01)(1 - 0.005)} \approx 0.330$$

Intuition Time

People who test positive

People who test positive

People with H1N1

Conditioning on a positive result changes the sample space to this:

Conditioning on a positive result changes the sample space to this:

 ≈ 0.330

People with positive

People with H1N1

Say we have 1000 people:

5 have H1N1 and test positive, 985 **do not** have H1N1 and test negative. 10 **do not** have H1N1 and test positive. ≈ 0.333

Why It's Still Good to get Tested

	H1N1 +	H1N1 –
Test +	0.98 = P(E F)	$0.01 = P(E F^{c})$
Test –	$0.02 = P(E^c F)$	$0.99 = P(E^c F^c)$

- Let E^c = you test <u>negative</u> for H1N1 with this test
- Let F = you actually have H1N1
- What is P(F | E^c)?

$$P(F \mid E^{c}) = \frac{P(E^{c} \mid F) P(F)}{P(E^{c} \mid F) P(F) + P(E^{c} \mid F^{c}) P(F^{c})}$$

$$P(F \mid E^{c}) = \frac{(0.02)(0.005)}{(0.02)(0.005) + (0.99)(1 - 0.005)} \approx 0.0001$$

Slicing Up Spam

In 2010 88% of email was spam

Piech, CS106A, Stanford University

Simple Spam Detection

- Say 60% of all email is spam
 - 90% of spam has a forged header
 - 20% of non-spam has a forged header
 - Let *E* = message contains a forged header
 - Let F = message is spam
 - What is $P(F \mid E)$?

• Solution:
$$P(F \mid E) = \frac{P(E \mid F) P(F)}{P(E \mid F) P(F) + P(E \mid F^c) P(F^c)}$$

$$P(F \mid E) = \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.2)(0.4)} \approx 0.871$$

Before Observation

Know: $P(O|L_i)$

Before Observation

After Observation

Know: $P(O|L_i)$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{P(O)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Monty Hall

Piech, CS106A, Stanford University

Let's Make a Deal

Game show with 3 doors: A, B, and C

- Behind one door is prize (equally likely to be any door)
- Behind other two doors is nothing
- We choose a door
- Then host opens 1 of other 2 doors, revealing nothing
- We are given option to change to other door
- Should we?
 - Note: If we don't switch, P(win) = 1/3 (random)

Let's Make a Deal

- Without loss of generality, say we pick A
 - P(A is winner) = 1/3
 - Host opens either B or C, we <u>always lose</u> by switching
 - P(win | A is winner, picked A, switched) = 0
 - P(B is winner) = 1/3
 - Host <u>must</u> open C (can't open A and can't reveal prize in B)
 - So, by switching, we switch to B and <u>always win</u>
 - P(win | B is winner, picked A, switched) = 1
 - P(C is winner) = 1/3
 - Host <u>must</u> open B (can't open A and can't reveal prize in C)
 - So, by switching, we switch to C and <u>always win</u>
 - P(win | C is winner, picked A, switched) = 1
 - Should always switch!
 - \circ P(win | picked A, switched) = (1/3*0) + (1/3*1) + (1/3*1) = 2/3

Slight Variant to Clarify

- Start with 1,000 envelopes, of which 1 is winner
 - You get to choose 1 envelope
 - Probability of choosing winner = 1/1000
 - Consider remaining 999 envelopes
 - Probability one of them is the winner = 999/1000
 - I open 998 of remaining 999 (showing they are empty)
 - Probability the last remaining envelope being winner = 999/1000
 - Should you switch?
 - Probability winning without switch = original # envelopes
 - Probability winning with switch = original # envelopes 1
 original # envelopes

