$10_{164} \ (K10n_{38})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b+u, \ -138u^{11} + 105u^{10} + \dots + 142a - 155, \ u^{12} + u^9 + 6u^8 + u^7 - u^6 + 2u^5 + 5u^4 - 2u^3 + 2u + 1 \rangle \\ I_2^u &= \langle 22976741298u^{15} - 77906464811u^{14} + \dots + 11233228513b + 21004036137, \\ &- 2983129u^{15} + 13995185u^{14} + \dots + 26682253a - 65290273, \ u^{16} - 3u^{15} + \dots + 4u + 1 \rangle \\ I_3^u &= \langle b+u, \ 3u^5 + u^4 + 2u^3 - 3u^2 + 2a + 6u + 1, \ u^6 + u^4 - u^3 + 3u^2 - u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b+u, \; -138u^{11}+105u^{10}+\cdots+142a-155, \; u^{12}+u^9+\cdots+2u+1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.971831u^{11} - 0.739437u^{10} + \dots + 3.60563u + 1.09155 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.44718u^{11} - 0.0739437u^{10} + \dots + 1.01056u + 3.60915 \\ -0.464789u^{11} + 0.0492958u^{10} + \dots + 0.492958u - 0.739437 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.978873u^{11} + 0.0704225u^{10} + \dots + 0.204225u + 2.94366 \\ -0.0669014u^{11} - 0.193662u^{10} + \dots + 0.313380u - 0.595070 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.971831u^{11} - 0.739437u^{10} + \dots + 2.60563u + 1.09155 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.517606u^{11} + 0.0246479u^{10} + \dots - 0.00352113u + 2.13028 \\ -0.464789u^{11} + 0.0492958u^{10} + \dots + 0.492958u - 0.739437 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0422535u^{11} + 0.359155u^{10} + \dots - 0.408451u - 0.387324 \\ 0.468310u^{11} - 0.144366u^{10} + \dots + 0.806338u + 0.665493 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.507042u^{11} - 0.690141u^{10} + \dots + 3.09859u + 0.352113 \\ -0.169014u^{11} + 0.0633803u^{10} + \dots - 1.36620u + 0.0492958 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{72}{71}u^{11} + \frac{169}{71}u^{10} - \frac{19}{71}u^9 - \frac{56}{71}u^8 - \frac{340}{71}u^7 + \frac{943}{71}u^6 + \frac{100}{71}u^5 - \frac{288}{71}u^4 - \frac{394}{71}u^3 + \frac{984}{71}u^2 - \frac{369}{71}u - \frac{192}{71}u^8 - \frac{192}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{12} + 8u^{11} + \dots + 96u + 16$
c_2, c_8	$u^{12} - u^{11} + \dots - 2u + 1$
c_3, c_{10}	$u^{12} - u^9 + 6u^8 - u^7 - u^6 - 2u^5 + 5u^4 + 2u^3 - 2u + 1$
c_4, c_9	$u^{12} - u^{11} + \dots + 4u^2 + 2$
<i>C</i> 5	$u^{12} - 9u^{11} + \dots - 20u + 16$
c_7	$u^{12} + 8u^{11} + \dots + 22u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{12} + 6y^{11} + \dots - 640y + 256$
c_2, c_8	$y^{12} + 17y^{11} + \dots + 6y + 1$
c_3, c_{10}	$y^{12} + 12y^{10} + \dots - 4y + 1$
c_4, c_9	$y^{12} + 5y^{11} + \dots + 16y + 4$
<i>C</i> ₅	$y^{12} - 11y^{11} + \dots + 80y + 256$
C ₇	$y^{12} + 2y^{11} + \dots + 84y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.433167 + 0.820343I		
a = 1.77573 - 0.27759I	-2.63922 - 4.58392I	1.89423 + 6.22117I
b = -0.433167 - 0.820343I		
u = 0.433167 - 0.820343I		
a = 1.77573 + 0.27759I	-2.63922 + 4.58392I	1.89423 - 6.22117I
b = -0.433167 + 0.820343I		
u = -0.894529 + 0.606911I		
a = -0.948486 - 0.965514I	-7.98844 + 5.04592I	-3.50212 - 4.93530I
b = 0.894529 - 0.606911I		
u = -0.894529 - 0.606911I		
a = -0.948486 + 0.965514I	-7.98844 - 5.04592I	-3.50212 + 4.93530I
b = 0.894529 + 0.606911I		
u = 0.727666 + 0.459131I		
a = 0.686537 - 0.236758I	-1.29616 - 0.86105I	-4.70470 + 1.78151I
b = -0.727666 - 0.459131I		
u = 0.727666 - 0.459131I		
a = 0.686537 + 0.236758I	-1.29616 + 0.86105I	-4.70470 - 1.78151I
b = -0.727666 + 0.459131I		
u = -0.925706 + 1.050550I		
a = -0.840738 + 0.491457I	3.38867 + 4.08003I	-1.46265 - 0.78652I
b = 0.925706 - 1.050550I		
u = -0.925706 - 1.050550I		
a = -0.840738 - 0.491457I	3.38867 - 4.08003I	-1.46265 + 0.78652I
b = 0.925706 + 1.050550I		
u = -0.444254 + 0.260304I		
a = -1.11367 + 2.11911I	1.58084 + 1.46904I	1.29817 - 5.01402I
b = 0.444254 - 0.260304I		
u = -0.444254 - 0.260304I		
a = -1.11367 - 2.11911I	1.58084 - 1.46904I	1.29817 + 5.01402I
b = 0.444254 + 0.260304I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.10366 + 1.16882I		
a = 0.940626 + 0.241992I	-4.56023 - 12.50670I	-0.52291 + 6.78913I
b = -1.10366 - 1.16882I		
u = 1.10366 - 1.16882I		
a = 0.940626 - 0.241992I	-4.56023 + 12.50670I	-0.52291 - 6.78913I
b = -1.10366 + 1.16882I		

$$II. \\ I_2^u = \langle 2.30 \times 10^{10} u^{15} - 7.79 \times 10^{10} u^{14} + \dots + 1.12 \times 10^{10} b + 2.10 \times 10^{10}, \ -2.98 \times 10^6 u^{15} + 1.40 \times 10^7 u^{14} + \dots + 2.67 \times 10^7 a - 6.53 \times 10^7, \ u^{16} - 3 u^{15} + \dots + 4 u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.111802u^{15} - 0.524513u^{14} + \cdots - 0.695051u + 2.44696 \\ -2.04543u^{15} + 6.93536u^{14} + \cdots - 10.9045u - 1.86981 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.888198u^{15} - 2.47549u^{14} + \cdots + 12.6951u + 1.55304 \\ 1.45142u^{15} - 4.13944u^{14} + \cdots + 13.6179u + 4.66725 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2.23464u^{15} - 6.47872u^{14} + \cdots + 24.6683u + 6.03118 \\ 1.68993u^{15} - 4.95565u^{14} + \cdots + 15.1088u + 4.70335 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.93362u^{15} + 6.41085u^{14} + \cdots - 11.5996u + 0.577142 \\ -2.04543u^{15} + 6.93536u^{14} + \cdots - 10.9045u - 1.86981 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.50110u^{15} - 6.52849u^{14} + \cdots + 28.7759u + 8.29535 \\ 0.161484u^{15} + 0.0864436u^{14} + \cdots + 4.46296u + 2.07506 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.888198u^{15} + 2.47549u^{14} + \cdots - 12.6951u - 1.55304 \\ -1.34644u^{15} + 4.00323u^{14} + \cdots - 11.9733u - 4.47814 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0729519u^{15} - 0.441341u^{14} + \cdots - 0.188785u + 3.05693 \\ -2.21877u^{15} + 7.30458u^{14} + \cdots - 12.2278u - 2.70227 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{62712632292}{11233228513}u^{15} + \frac{222551627880}{11233228513}u^{14} + \dots - \frac{386527091664}{11233228513}u - \frac{36877222054}{11233228513}u^{14} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$(u^2 - u + 1)^8$
c_2, c_8	$u^{16} + u^{15} + \dots - 48u + 19$
c_3, c_{10}	$u^{16} + 3u^{15} + \dots - 4u + 1$
c_4, c_9	$u^{16} + u^{15} + \dots - 6u + 1$
c_5	$(u^4 + 3u^3 + u^2 - 2u + 1)^4$
	$(u^4 - u^3 + u^2 + 1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^2 + y + 1)^8$
c_2, c_8	$y^{16} + 15y^{15} + \dots + 2332y + 361$
c_3, c_{10}	$y^{16} + 3y^{15} + \dots + 8y + 1$
c_4, c_9	$y^{16} + 7y^{15} + \dots + 134y + 1$
<i>C</i> ₅	$(y^4 - 7y^3 + 15y^2 - 2y + 1)^4$
<i>C</i> ₇	$(y^4 + y^3 + 3y^2 + 2y + 1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.051690 + 0.235939I		
a = -0.276759 + 0.885546I	-5.14581 + 0.61478I	-3.82674 + 1.44464I
b = 0.44895 - 1.60911I		
u = 1.051690 - 0.235939I		
a = -0.276759 - 0.885546I	-5.14581 - 0.61478I	-3.82674 - 1.44464I
b = 0.44895 + 1.60911I		
u = -0.804589 + 0.808792I		
a = 0.847270 - 0.224662I	1.85594 + 5.19385I	-0.17326 - 6.02890I
b = -0.88699 + 1.31736I		
u = -0.804589 - 0.808792I		
a = 0.847270 + 0.224662I	1.85594 - 5.19385I	-0.17326 + 6.02890I
b = -0.88699 - 1.31736I		
u = -0.321200 + 0.647019I		
a = -0.766065 + 1.153070I	1.85594 + 1.13408I	-0.173262 + 0.899303I
b = 0.160429 + 0.464095I		
u = -0.321200 - 0.647019I		
a = -0.766065 - 1.153070I	1.85594 - 1.13408I	-0.173262 - 0.899303I
b = 0.160429 - 0.464095I		
u = -0.160429 + 0.464095I		
a = 1.99954 + 0.38616I	1.85594 - 1.13408I	-0.173262 - 0.899303I
b = 0.321200 + 0.647019I		
u = -0.160429 - 0.464095I		
a = 1.99954 - 0.38616I	1.85594 + 1.13408I	-0.173262 + 0.899303I
b = 0.321200 - 0.647019I		
u = -0.311042 + 0.310121I		
a = 2.19827 - 0.59252I	-5.14581 + 3.44499I	-3.82674 - 8.37284I
b = -1.60753 - 1.13440I		
u = -0.311042 - 0.310121I		
a = 2.19827 + 0.59252I	-5.14581 - 3.44499I	-3.82674 + 8.37284I
b = -1.60753 + 1.13440I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.88699 + 1.31736I		
a = -0.628172 - 0.043405I	1.85594 - 5.19385I	-0.17326 + 6.02890I
b = 0.804589 + 0.808792I		
u = 0.88699 - 1.31736I		
a = -0.628172 + 0.043405I	1.85594 + 5.19385I	-0.17326 - 6.02890I
b = 0.804589 - 0.808792I		
u = -0.44895 + 1.60911I		
a = 0.579766 + 0.148974I	-5.14581 + 0.61478I	-3.82674 + 1.44464I
b = -1.051690 - 0.235939I		
u = -0.44895 - 1.60911I		
a = 0.579766 - 0.148974I	-5.14581 - 0.61478I	-3.82674 - 1.44464I
b = -1.051690 + 0.235939I		
u = 1.60753 + 1.13440I		
a = 0.046151 + 0.506163I	-5.14581 + 3.44499I	-3.82674 - 8.37284I
b = 0.311042 - 0.310121I		
u = 1.60753 - 1.13440I		
a = 0.046151 - 0.506163I	-5.14581 - 3.44499I	-3.82674 + 8.37284I
b = 0.311042 + 0.310121I		

$$III. \\ I_3^u = \langle b+u, \ 3u^5+u^4+2u^3-3u^2+2a+6u+1, \ u^6+u^4-u^3+3u^2-u+1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{3}{2}u^{5} - \frac{1}{2}u^{4} + \dots - 3u - \frac{1}{2} \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - u^{2} + u - 3 \\ -\frac{1}{2}u^{5} - \frac{1}{2}u^{4} - u^{3} + \frac{1}{2}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{5} - \frac{3}{2}u^{4} - u^{3} - \frac{1}{2}u^{2} - \frac{5}{2} \\ -u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{5} - \frac{1}{2}u^{4} + \dots - 4u - \frac{1}{2} \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} - 2u^{4} - u^{3} - u - 4 \\ -\frac{1}{2}u^{5} - \frac{1}{2}u^{4} + \frac{1}{2}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{5} - \frac{3}{2}u^{4} - \frac{3}{2}u^{2} + 3u - \frac{7}{2} \\ \frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \dots + u - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{5} - u^{4} - u^{3} + 2u^{2} - 4u - 1 \\ -\frac{1}{2}u^{5} - \frac{1}{2}u^{4} + \dots - u - \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7u^5 + 5u^4 + 6u^3 3u^2 + 11u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^6 - u^5 + 3u^4 - u^3 + 3u^2 + 2$
c_2, c_8	$u^6 - u^5 + 2u^4 - 2u^2 + u + 1$
c_3,c_{10}	$u^6 + u^4 - u^3 + 3u^2 - u + 1$
c_4, c_9	$u^6 - u^5 + 2u^4 + 2u^3 - u^2 + 2u + 2$
<i>C</i> ₅	$u^6 + 4u^5 + 6u^4 + 8u^3 + 10u^2 + 4u + 1$
<i>c</i> ₆	$u^6 + u^5 + 3u^4 + u^3 + 3u^2 + 2$
c ₇	$u^6 + 3u^5 + 5u^4 + 3u^3 + u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^6 + 5y^5 + 13y^4 + 21y^3 + 21y^2 + 12y + 4$
c_2, c_8	$y^6 + 3y^5 - 4y^3 + 8y^2 - 5y + 1$
c_3, c_{10}	$y^6 + 2y^5 + 7y^4 + 7y^3 + 9y^2 + 5y + 1$
c_4, c_9	$y^6 + 3y^5 + 6y^4 + y^2 - 8y + 4$
c_5	$y^6 - 4y^5 - 8y^4 + 26y^3 + 48y^2 + 4y + 1$
<i>C</i> ₇	$y^6 + y^5 + 9y^4 + 3y^3 + 11y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.747107 + 0.813589I		
a = 0.239424 + 0.758194I	-4.92982 + 2.38212I	-1.44137 - 0.69060I
b = -0.747107 - 0.813589I		
u = 0.747107 - 0.813589I		
a = 0.239424 - 0.758194I	-4.92982 - 2.38212I	-1.44137 + 0.69060I
b = -0.747107 + 0.813589I		
u = 0.125253 + 0.619808I		
a = -1.46927 - 1.44270I	2.50509 - 1.44331I	12.78155 + 4.91052I
b = -0.125253 - 0.619808I		
u = 0.125253 - 0.619808I		
a = -1.46927 + 1.44270I	2.50509 + 1.44331I	12.78155 - 4.91052I
b = -0.125253 + 0.619808I		
u = -0.87236 + 1.13524I		
a = -0.770152 + 0.391132I	4.06966 + 4.74338I	5.65982 - 6.07362I
b = 0.87236 - 1.13524I		
u = -0.87236 - 1.13524I		
a = -0.770152 - 0.391132I	4.06966 - 4.74338I	5.65982 + 6.07362I
b = 0.87236 + 1.13524I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} - u + 1)^{8})(u^{6} - u^{5} + \dots + 3u^{2} + 2)(u^{12} + 8u^{11} + \dots + 96u + 16)$
c_2, c_8	$(u^{6} - u^{5} + 2u^{4} - 2u^{2} + u + 1)(u^{12} - u^{11} + \dots - 2u + 1)$ $\cdot (u^{16} + u^{15} + \dots - 48u + 19)$
c_3,c_{10}	$(u^{6} + u^{4} - u^{3} + 3u^{2} - u + 1)$ $\cdot (u^{12} - u^{9} + 6u^{8} - u^{7} - u^{6} - 2u^{5} + 5u^{4} + 2u^{3} - 2u + 1)$ $\cdot (u^{16} + 3u^{15} + \dots - 4u + 1)$
c_4, c_9	$(u^{6} - u^{5} + 2u^{4} + 2u^{3} - u^{2} + 2u + 2)(u^{12} - u^{11} + \dots + 4u^{2} + 2)$ $\cdot (u^{16} + u^{15} + \dots - 6u + 1)$
c_5	$(u^4 + 3u^3 + u^2 - 2u + 1)^4 (u^6 + 4u^5 + 6u^4 + 8u^3 + 10u^2 + 4u + 1)$ $\cdot (u^{12} - 9u^{11} + \dots - 20u + 16)$
c_6	$((u^2 - u + 1)^8)(u^6 + u^5 + \dots + 3u^2 + 2)(u^{12} + 8u^{11} + \dots + 96u + 16)$
c_7	$(u^4 - u^3 + u^2 + 1)^4 (u^6 + 3u^5 + 5u^4 + 3u^3 + u^2 + 1)$ $\cdot (u^{12} + 8u^{11} + \dots + 22u + 4)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^{2} + y + 1)^{8}(y^{6} + 5y^{5} + 13y^{4} + 21y^{3} + 21y^{2} + 12y + 4)$ $\cdot (y^{12} + 6y^{11} + \dots - 640y + 256)$
c_2, c_8	$(y^{6} + 3y^{5} - 4y^{3} + 8y^{2} - 5y + 1)(y^{12} + 17y^{11} + \dots + 6y + 1)$ $\cdot (y^{16} + 15y^{15} + \dots + 2332y + 361)$
c_3, c_{10}	$(y^{6} + 2y^{5} + \dots + 5y + 1)(y^{12} + 12y^{10} + \dots - 4y + 1)$ $\cdot (y^{16} + 3y^{15} + \dots + 8y + 1)$
c_4, c_9	$(y^{6} + 3y^{5} + 6y^{4} + y^{2} - 8y + 4)(y^{12} + 5y^{11} + \dots + 16y + 4)$ $\cdot (y^{16} + 7y^{15} + \dots + 134y + 1)$
c_5	$((y^4 - 7y^3 + 15y^2 - 2y + 1)^4)(y^6 - 4y^5 + \dots + 4y + 1)$ $\cdot (y^{12} - 11y^{11} + \dots + 80y + 256)$
c_7	$(y^4 + y^3 + 3y^2 + 2y + 1)^4 (y^6 + y^5 + 9y^4 + 3y^3 + 11y^2 + 2y + 1)$ $\cdot (y^{12} + 2y^{11} + \dots + 84y + 16)$