(a)
$$1^{9}(Y=1)=1(Y=1|X=0)P(X=0)$$

+ $1^{9}(Y=1|X=1)P(Y=1)$
= $\frac{1}{3}p+\frac{1}{2}(1-p)$
= $\frac{1}{2}-\frac{1}{6}p$

$$P(Y=0) = P(Y=0|X=1)P(X=1) + P(Y=0|X=0)P(X=0)$$

$$= \frac{1}{2}(1-p) + \frac{3}{3}(p)$$

$$= \frac{1}{2} - \frac{1}{2}p + \frac{2}{3}p$$

$$= \frac{1}{2} + \frac{1}{6}p$$

2.
$$P_{X}(x) = \sum_{y} P(X=x, Y=y)$$

$$P_{X}(1) = P(X=1, Y=1)$$

$$P_{X}(0) = P_{X}(X = 0, Y = 1) + P_{X}(X = 0, Y = 0)$$

$$P_{x}(x) = \begin{cases} \frac{3}{3}, & x = 1 \\ \frac{2}{3}, & x = 0 \end{cases}$$
 $P_{Y}(y) = \begin{cases} \frac{3}{3}, & y = 1 \\ \frac{3}{3}, & y = 0 \end{cases}$

b)
$$P_{\lambda,Y} = \frac{Cov(X,Y)}{\sigma_{X}\sigma_{Y}} = \frac{E(X) = (1)\frac{1}{3} + (0)\frac{2}{3}}{E(Y) = (1)\frac{2}{3} + (0)\frac{2}{3}} \qquad V(X) = \frac{1}{3}^{2} + \frac{1}{3}^{2}$$

$$= \frac{2}{3}$$

$$= -\frac{5}{36}$$

$$Cov(X,Y) = F((\frac{1}{3} - \frac{2}{4})(\frac{1}{3} - \frac{8}{4}))$$

$$= \frac{5}{81}$$

3. $RV \times exp(1) \times exp(2)$ $P(X>Y) = 1 - e^{-2x}$ $= 1 - e^{-2(e^{-x})}$

o)
$$P(Y=y) = P(1-X^2 \le y)$$

 $= P(1-y \le x^2)$
 $= P(0|-y \le x)$
 $= 1 - P(x \le 0|-y)$
 $= 1 - 0$
 $= 1 - 0$

c)
$$\frac{d}{dy} f(Y=y) = \frac{1}{\sqrt{1-y}}$$