PRINCIPLES OF ANALYSIS SOLUTIONS TO ROSS §11

PAUL L. BAILEY

Exercise 1 (11.7). Let (r_n) be an enumeration of the set \mathbb{Q} . Show that there exists a subsequence (r_{n_k}) such that $\lim_{k\to\infty} r_{n_k} = +\infty$.

Proof. Set

$$E_m = \{ n \in \mathbb{N} \mid n > m \};$$

$$A_k = \{ n \in \mathbb{N} \mid r_n > k \}.$$

Suppose that $E_m \cap A_k = \emptyset$ for some $k, m \in \mathbb{N}$. Then $r_n > k \Rightarrow n \leq m$; but there are only finitely many such n, and there are infinitely many rationals greater than k; this contradicts that (r_n) is an enumeration of the rationals. Thus for every $k, m \in \mathbb{N}$, we have $E_m \cap A_k \neq \emptyset$.

The Well-Ordering Principle states that every nonempty set of natural numbers has a minimum. Set $n_1=0$ and let $n_{k+1}=\min E_{n_k}\cap A_k$. Then n_k is an increasing sequence of natural numbers, so (r_{n_k}) is a subsequence of (r_n) . Also $r_{n_k}>k$ for every $k\in\mathbb{N}$, so $r_{n_k}\to\infty$ as $k\to\infty$.

Date: November 17, 2005.

1

Exercise 2 (11.8.(a)). Let (s_n) be a sequence of real numbers. Show that $\liminf s_n = -\lim \sup(-s_n)$.

Proof. For each $m \in \mathbb{N}$, let $T_m = \{s_n \mid n \geq m\}$; this is the " n^{th} tail". For any set $A \subset \mathbb{R}$, let $-A = \{-a \mid a \in A\}$. Clearly A = -(-A). Then we have seen that inf $A = -\sup(-A)$ in Exercise 4.9.

Note that $\limsup(-s_n) = \lim_{m\to\infty}(\sup(-T_m))$. Then

$$\begin{aligned} \lim\inf s_n &= \lim_{m\to\infty} (\inf T_m) \\ &= \lim_{m\to\infty} (\inf (-(-T_m))) \\ &= \lim_{m\to\infty} (-\sup (-T_m)) \\ &= -\lim_{m\to\infty} (\sup (-T_m)) \\ &= -\lim\inf -s_n. \end{aligned}$$

Exercise 3 (11.8.(b)). Let (t_k) be a monotonic subsequence of $(-s_n)$ converging to $\limsup(-s_n)$. Show that $(-t_k)$ is a monotonic subsequence of (s_n) converging to $\liminf s_n$.

Proof. Since t_k is a subsequence of $(-s_n)$, there exists an increasing sequence (n_k) in \mathbb{N} such that $t_k = -s_{n_k}$ for all $k \in \mathbb{N}$. Then $-t_k = s_{n_k}$, so $(-t_k)$ is a subsequence of (s_n) .

Since t_k is monotone, we have either $t_{k+1} \leq t_k$ for all $k \in \mathbb{N}$, or $t_{k+1} \geq t_k$ for all $k \in \mathbb{N}$. Thus either $-t_{k+1} \geq -t_k$ for all $k \in \mathbb{N}$, or $-t_{k+1} \leq -t_k$ for all $k \in \mathbb{N}$. Thus $(-t_k)$ is monotone.

By part (a),
$$\liminf (s_n) = -\limsup (-s_n)$$
. Thus $\lim (-t_k) = -\lim t_k = -\lim \sup (-s_n) = \lim \inf s_n$.

Problem 1. Let (s_n) be a sequence of real numbers which converges to $s \in \mathbb{R}$. Let $\sigma_n = \frac{1}{n} \sum_{i=1}^n s_i$. Show that (σ_n) converges to s.

Proof. Let $\tau_n = \sigma_n - s$. It suffices to show that (τ_n) converges to zero. Note that

$$\tau_n = \frac{1}{n} \sum_{i=1}^n s_i - \frac{ns}{n} = \frac{1}{n} \sum_{i=1}^n (s_i - s).$$

Let $N_0 \in \mathbb{N}$ be so large that $|s_n - s| < \frac{\epsilon}{2}$ for all $n > N_0$. Let $M = \sum_{i=1}^N |s_i - s|$. Then for $n > N_0$, we have

$$|\tau_n| \leq \frac{M}{n} + \frac{1}{n} \sum_{i=N_0+1}^n |s_n - s|$$
 by Δ -inequality
$$< \frac{M}{n} + \frac{1}{n} (n - N_0) \frac{\epsilon}{2}$$
 summing $n - N_0$ small numbers
$$< \frac{M}{n} + \frac{\epsilon}{2}$$
 since $\frac{n - N_0}{n} \leq 1$.

Now select $N \in \mathbb{N}$ with $N > N_0$ which is so large that $\frac{M}{n} < \frac{\epsilon}{2}$. Then for n > N, we have $|\tau_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. This shows that $|\tau_n| \to 0$ as $n \to \infty$. Thus $\lim \tau_n = 0$.

Problem 2. Let (a_n) and (b_n) be a sequences of real numbers we converge to a and b respectively. Let

$$\mu_n = \frac{a_1b_n + a_2b_{n-1} + \dots + a_{n-1}b_2 + a_nb_1}{n}.$$

Show that (μ_n) converges to ab.

Proof. Let $\nu_n = \mu_n - ab$. It suffices to show that (ν_n) converges to zero.

Since (a_i) is a convergent sequence, is bounded; select M > 0 such that $|a_i| \leq M$. Also note that for any sequence (s_i) , we have $\sum_{i=1}^n s_{n-i+1} = \sum_{i=1}^n s_i$; this follows from inductive use of commutativity.

Now

$$\begin{split} |\nu_n| &= \frac{1}{n} |\sum_{i=1}^n a_i b_{n-i+1} - \frac{nab}{n}| \\ &= \frac{1}{n} |\sum_{i=1}^n (a_i b_{n-i+1} - ab)| \\ &\leq \frac{1}{n} \sum_{i=1}^n |a_i b_{n-i+1} - ab| \\ &= \frac{1}{n} \sum_{i=1}^n |a_i b_{n-i+1} - a_i b + a_i b - ab| \\ &\leq \frac{\sum_{i=1}^n |a_i b_{n-i+1} - a_i b|}{n} + \frac{\sum_{i=1}^n |a_i b - ab|}{n} \\ &\leq M \frac{\sum_{i=1}^n |b_{n-i+1} - b|}{n} + b \frac{\sum_{i=1}^n |a_i - a|}{n} \\ &= M \frac{\sum_{i=1}^n |b_i - b|}{n} + b \frac{\sum_{i=1}^n |a_i - a|}{n}. \end{split}$$

Let $\tau_n = M \frac{\sum_{i=1}^n |b_i - b|}{n} + b \frac{\sum_{i=1}^n |a_i - a|}{n}$. By the previous problem,

$$\lim_{n \to \infty} \tau_n = M \lim_{n \to \infty} \frac{\sum_{i=1}^n |b_i - b|}{n} + b \lim_{n \to \infty} \frac{\sum_{i=1}^n |a_i - a|}{n}$$

$$= M \cdot 0 + b \cdot 0$$

$$= 0.$$

Since $0 \le |\nu_n| \le \tau_n$ and $\lim \tau_n = 0$, we have $|\nu_n| \to 0$ so $\lim \nu_n = 0$.

Department of Mathematics & CSci, Southern Arkansas University $E\text{-}mail\ address$: plbailey@saumag.edu