Skript zur Vorlesung Analysis II bei Prof. Dr. Dirk Hundertmark

Karlsruher Institut für Technologie ${\bf Sommersemester}~2024$

Dieses Skript ist inoffiziell. Es besteht kein Anspruch auf Vollständigkeit oder Korrektheit.

Inhaltsverzeichnis

Änderungen.

1	[*] Das eindimensionale Riemann-Integral	3
	1.1 Der Integralbegriff nach Riemann	3
	1.2 [*] Integrabilitätskriterien	6
	1.3 [*] Mittelwertsätze der Integralrechnung	20
2	[*] Das orientierte Riemann-Integral	22
	2.2 Riemann-Integral für vektorraumwertige Funktionen	24
3	[*] Der Hauptsatz der Integral- und Differentialrechnung	25
	3.1 Hauptsatz der Integralrechnung	25
	3.2 Integrationstechniken	27
4	[*] Uneigentliche Integrale	33
	4.1 Uneigentliche Integrale: Fall I	33
	4.2 Uneigentliche Integrale: Fall II	36
	4.3 Uneigentliche Integrale Fall III	36
	4.4 Uneigentliche Integrale Fall IV	37
5	[*] Integrale und gleichmäßige Konvergenz	40
6	[*] Taylors Theorem	45
7	[*] Die Gamma-Funktion	55
8	[*] Metrische Räume, topologische Räume und normierte Vektorräume	59
	8.1 Metrische Räume	59
	8.2 Normierte Vektorräume	60
	8.3 [*] Umgebungen und offene Mengen	61
	8.4 Grundzüge der Topologie	64
	8.5 [*] Berührpunkt, Häufungspunkt und Randpunkt	65
9	[*] Konvergenz und Stetigkeit in metrischen Räumen	68
10	[*] Kompakte Mengen und metrische Räume	7 3
11	$[*]$ Differential rechnung im \mathbb{R}^d	78
	11.1 Die Ableitung	78
	11.2 [*] Richtungsableitung und partielle Ableitung	80
	11.3 Kettenregel	82
	11.4 Existenz von Ableitungen	84
	11.5 [*] Symmetrie der zweiten partiellen Ableitung - Der Satz von Schwartz	85
	11.6 Extrema und lokale Minima/Maxima	88
12	[*] Inverse Funktionen und implizite Funktionen	92

Alle mit [*] markierten Kapitel sind noch nicht Korrektur gelesen und bedürfen eventuell noch

1 [*] Das eindimensionale Riemann-Integral

[16. Apr] Frage: Was ist die Fläche unter einem Graphen?

1.1 Der Integralbegriff nach Riemann

Definition 1.1.1 (Zerlegung). Eine Zerlegung Z eines kompakten Intervalls I = [a, b] in Teilintervalle I_j (j = 1, ..., k) der Längen $|I_j|$ ist eine Menge von Punkten $x_0, x_1, ..., x_k \in I$ (Teilpunkte von Z) mit

$$a = x_0 < x_1 < x_2 < \dots < x_k = b$$

und $I_j = [x_{j-1}, x_j]$. Wir setzen $\Delta x_j := x_j - x_{j-1} =: |I_j|$.

Definition 1.1.2 (Feinheit einer Zerlegung). Die Feinheit der Zerlegung Z ist definiert als die Länge des längsten Teilintervalls von Z:

$$\Delta(Z) := \max(|I_1|, |I_2|, \dots, |I_k|) = \max(\Delta x_1, \Delta x_2, \dots, \Delta x_k)$$

Notation 1.1.3. Wir setzen

$$\mathcal{B}(I) = \left\{ f: I \to \mathbb{R} \;\middle|\; \sup_{x \in I} |f(x)| < \infty \right\}$$

als die Menge aller beschränkten reellwertigen Funktionen auf I.

Definition 1.1.4 (Riemannsche Zwischensumme). In jedem I_j wählen wir ein $\xi_j \in I_j$ als Stützstelle und setzen $\xi = (\xi_1, \xi_2, \dots, \xi_k)$. Für eine Funktion $f \in \mathcal{B}(I)$ setzen wir die Riemannsche Zwischensumme

$$S_Z(f) = S_Z(f, \xi) := \sum_{j=1}^k f(\xi_j) \cdot \Delta x_j = \sum_{j=1}^k f(\xi_j) \cdot |I_j|$$

Definition 1.1.5 (Ober- und Untersumme). Für $f \in \mathcal{B}(I)$ setzen wir außerdem

$$\underline{m}_{j} \coloneqq \inf_{I_{j}} f = \inf \{ f(x) : x \in I_{j} \}$$

$$\overline{m}_{j} \coloneqq \sup_{I_{j}} f = \sup \{ f(x) : x \in I_{j} \}$$

$$\overline{S}_{Z}(f) \coloneqq \sum_{j=1}^{k} \overline{m}_{j} \cdot \Delta x_{j}$$
(Obersumme)
$$\underline{S}_{Z}(f) \coloneqq \sum_{i=1}^{k} \underline{m}_{j} \cdot \Delta x_{j}$$
(Untersumme)

Damit gilt für $x \in I_j$

$$\underline{m}_{j} \leq f(x) \leq \overline{m}_{j}
\Rightarrow \underline{m}_{j} \leq f(\xi_{j}) \leq \overline{m}_{j}
\Rightarrow \underline{S}_{Z}(f) \leq S_{Z}(f, \xi) \leq \overline{S}_{Z}(f)$$
(1.1.1)

Wir wollen die Zerlegung Z nun systematisch verfeinern.

Definition 1.1.6 (Verfeinerung einer Zerlegung).

- (a) Eine Zerlegung Z^* von I ist eine Verfeinerung der Zerlegung Z von I, falls alle Teilpunkte von Z auch Teilpunkte von Z^* sind.
- (b) Die gemeinsame Verfeinerung $Z_1 \vee Z_2$ zweier Zerlegungen Z_1, Z_2 von I ist die Zerlegung von I, deren Teilpunkte gerade die Teilpunkte von Z_1 und Z_2 sind.

Lemma 1.1.7. Ist Z^* eine Verfeinerung der Zerlegung Z von I und $f \in \mathcal{B}(I)$. Dann gilt

$$\underline{S}_{Z}(f) \leq \underline{S}_{Z^{*}}(f) \leq \overline{S}_{Z^{*}}(f) \leq \overline{S}_{Z}(f)$$

Beweis. Z^* enthält alle Teilpunkte von Z, nur mehr.

SCHRITT 1: Wir nehmen an Z^* enthielte genau einen Teilpunkt (y_{l+1}) mehr als Z. Das heißt

$$y_j = x_j \qquad \forall 0 \le j \le l$$

$$x_l < y_{l+1} < x_{l+1}$$

$$y_{j+1} = x_j \qquad \forall l+1 \le j \le k$$

Dann gilt

$$\underline{S}_{Z}(f) = \sum_{j=1}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=1}^{l} \underline{m}_{j} \Delta x_{j} + \underline{m}_{l+1} \Delta x_{l+1} + \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j}^{*}} f = \underline{m}_{j}^{*} \quad \forall 1 \leq j \leq l$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j+1}^{*}} f = \underline{m}_{j+1}^{*} \quad \forall j \geq l+2$$

$$I_{j} = [x_{j}, x_{j-1}] = [y_{j+1}, y_{j}] = I_{j+1}^{*} \quad \forall j \geq l+2$$

$$\Rightarrow \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=l+2}^{k} \underline{m}_{j+1}^{*} \Delta y_{j+1} = \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j}$$

$$\underline{m}_{l+1} \Delta x_{l+1} = \underline{m}_{l+1} (x_{l+1} - x_{l}) = \underline{m}_{l+1} (y_{l+2} - y_{l})$$

$$= \underline{m}_{l+1} (y_{l+2} - y_{l+1} + y_{l+1} - y_{l})$$

$$= \underline{m}_{l+1} \Delta y_{l+2} + \underline{m}_{l+1} \Delta y_{l+1}$$

$$\leq \underline{m}_{l+2}^{*} \Delta y_{l+2} + \underline{m}_{l+1}^{*} \Delta y_{l+1}$$

Insgesamt ergibt sich

$$\underline{S}_{Z}(f) \leq \sum_{j=1}^{l} \underline{m}_{j}^{*} \Delta y_{j} + \underline{m}_{l+1}^{*} \Delta y_{l+1} + \underline{m}_{l+2}^{*} \Delta y_{l+2} + \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j} = \underline{S}_{Z^{*}}(f)$$

ähnlich zeigt man $\overline{S}_Z(f) \geq \overline{S}_{Z^*}(f)$.

SCHRITT 2: Sei Z^* eine beliebige Verfeinerung von Z. Wir nehmen eine endliche Folge von Einpunkt-Verfeinerungen $Z=Z_0,Z_1,Z_2,\ldots,Z_r=Z^*$. Dabei hat Z_{s+1} genau einen Punkt mehr als Z_s . Dann gilt nach SCHRITT 1, dass $\underline{S}_Z(f) \leq \underline{S}_{Z_1}(f) \leq \cdots \leq \underline{S}_{Z^*}(f)$ und $\overline{S}_Z(f) \geq \overline{S}_{Z_1}(f) \geq \cdots \geq \overline{S}_{Z^*}(f)$.

SCHRITT 3: Sei $\xi^* = (\xi_1^*, \xi_2^*, \dots, \xi_l^*)$ der Zwischenpunkt zur Zerlegung Z^* . Dann gilt nach (1.1.1)

$$\underline{S}_{Z^*}(f) \le S_{Z^*}(f, \xi^*) \le \overline{S}_{Z^*}(f)$$

Lemma 1.1.8. Seien Z_1 , Z_2 Zerlegungen von I. Dann gilt

$$\underline{S}_{Z_1}(f) \le \overline{S}_{Z_2}(f) \qquad \forall f \in \mathcal{B}(I)$$

Beweis. Es gilt nach Lemma 1.1.7, dass

$$\underline{S}_{Z_1}(f) \le \underline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_2}(f)$$

Bemerkung 1.1.9. Für I = [a, b] und $f \in \mathcal{B}(I)$ gilt immer

$$|I| \cdot \inf_{I} f \le \underline{S}_{Z}(f) \le \overline{S}_{Z}(f) \le |I| \cdot \sup_{I} f$$

für alle Zerlegungen Z von I. Somit sind

$$\left\{ \overline{S}_{Z}(f):Z\text{ ist eine Zerlegung von }I\right\}$$

und

$$\{\underline{S}_{Z}(f): Z \text{ ist eine Zerlegung von } I\}$$

beschränkte, nicht-leere Teilmengen von \mathbb{R} . Das erlaubt uns die folgende Definition, mit der wir nun mithilfe der bereits definierten Summen einem tatsächlichen Integralbegriff nähern wollen.

Definition 1.1.10 (Ober- und Unterintegral). Es sei I = [a, b] und $f \in \mathcal{B}(I)$. Wir definieren

$$\overline{J}(f) \coloneqq \inf \left\{ \overline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Oberintegral)
$$\underline{J}(f) \coloneqq \sup \left\{ \underline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Unterintegral)

Lemma 1.1.11. Es sei Z eine Zerlegung von I. Dann gilt

$$S_Z(f) < J(f) < \overline{J}(f) < \overline{S}_Z(f)$$

Beweis. Nach Lemma 1.1.8 gilt für zwei beliebige Zerlegungen $\mathbb{Z}_1,\,\mathbb{Z}_2$

$$\underline{S}_{Z_1}(f) \leq \overline{S}_{Z_2}(f)$$

Wir fixieren Z_2 und erhalten

$$\Rightarrow \sup \left\{ \underline{S}_{Z_1}(f) : Z_1 \text{ Zerlegung von } I \right\} \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \inf \left\{ \overline{S}_{Z_2}(f) : Z_2 \text{ Zerlegung von } I \right\}$$

$$\Rightarrow \underline{J}(f) \leq \overline{J}(f)$$

$$\Rightarrow \underline{S}_{Z}(f) \leq \underline{J}(f) \leq \overline{J}(f) \leq \overline{S}_{Z}(f)$$

Definition 1.1.12 (Integral). Es sei I = [a, b]. $f \in \mathcal{B}(I)$ heißt (Riemann-)integrierbar, falls

$$J(f) = \overline{J}(f)$$

In diese Fall nennen wir $J(f)\coloneqq \underline{J}(f)=\overline{J}(f)$ das (bestimmte) Integral von f über [a,b] und schreiben

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f \, dx = \int_{I} f(x) \, dx = \int_{I} f \, dx =: J(f)$$

Die Klasse der Riemann-integrierbaren Funktionen $f \in \mathcal{B}(I)$ nennen wir $\mathcal{R}(I)$.

[18. Apr] Beispiel 1.1.13 (Konstante Funktion). f(x) := c auf [a, b] für eine Konstante $c \in \mathbb{R}$. Dann gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = c \cdot (b - a)$$

Beispiel 1.1.14 (Dirichlet-Funktion). Die Funktion $f:[0,1]\to\mathbb{R}$

$$f(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{sonst} \end{cases}$$

ist nicht Riemann-integrierbar, weil $\overline{J}(f) = 1$ und $\underline{J}(f) = 0$.

Übung 1.1.15. Beweisen Sie die Aussagen aus Beispiel 1.1.13 und 1.1.14 mittels der formalen Definition von $\underline{J}(f)$ und $\overline{J}(f)$.

1.2 [*] Integrabilitätskriterien

Satz 1.2.1 (1. Kriterium). Es sei $f \in \mathcal{B}(I)$. Dann gilt $f \in \mathcal{R}(I)$ genau dann, wenn

$$\forall \varepsilon > 0 \; \exists \text{Zerlegung} \; Z \; \text{von} \; I \; \text{mit} \; \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

Beweis. "←" Nach Lemma 1.1.11 gilt

$$\underline{S}_Z(f) \le \underline{J}(f) \le \overline{J}(f) \le \overline{S}_Z(f)$$

Sei $\varepsilon > 0$, dann gilt

$$0 \le \overline{J}(f) - \underline{J}(f) \le \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

$$\Rightarrow 0 \le \overline{J}(f) - \underline{J}(f) \le 0$$

$$\Rightarrow f \in \mathcal{R}(I)$$

" \Rightarrow "Angenommen $f \in \mathcal{R}(I)$, das heißt

$$\overline{J}(f) = \underline{J}(f)$$

$$\overline{J}(f) = \inf \left\{ \overline{S}_Z(f) : Z \text{ Zerlegung von } I \right\}$$

$$\underline{J}(f) = \sup \left\{ \underline{S}_Z(f) : Z \text{ Zerlegung von } I \right\}$$

Das heißt zu $\varepsilon > 0$ existieren Zerlegungen Z_1, Z_2 von I mit

$$\overline{J}(f) + \frac{\varepsilon}{2} > \overline{S}_{Z_1}(f)$$

$$\underline{J}(f) - \frac{\varepsilon}{2} < \underline{S}_{Z_2}(f)$$

Da $f \in \mathcal{R}(I)$ gilt $\underline{J}(f) = \overline{J}(f)$. Wir definieren die gemeinsame Verfeinerung $Z \coloneqq Z_1 \vee Z_2$. Dann gilt nach Lemma 1.1.7

$$\overline{S}_{Z}(f) - \underline{S}_{Z}(f) < \overline{J}(f) + \frac{\varepsilon}{2} - \left(\underline{J}(f) - \frac{\varepsilon}{2}\right)$$

$$= \underline{\overline{J}(f) - \underline{J}(f)}_{=0} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Satz 1.2.2 (2. Kriterium). Sei $f \in \mathcal{B}(I)$. Dann gilt $f \in \mathcal{R}(I)$ genau dann, wenn

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \text{Zerlegungen } Z \text{ von } I \text{ mit Feinheit } \Delta(Z) < \delta \colon \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

Beweis. "←" wird von Satz 1.2.1 bereits impliziert.

" \Rightarrow " Sei $f \in \mathcal{R}(I)$ und $\varepsilon > 0$. Dann gilt nach Satz 1.2.1, dass eine Zerlegung $Z' = (x'_0, x'_1, \dots, x'_l = b)$ von I mit

$$\overline{S}_Z(f) - \underline{S}_Z(f) < \frac{\varepsilon}{2}$$

existiert. Wähle eine andere Zerlegung Z von I mit $\Delta(Z) < \delta$, wobei $\delta > 0$ noch später gewählt wird. Setze $Z^* = Z' \vee Z$. Nach Lemma 1.1.7 und Satz 1.2.1 gilt

$$\overline{S}_{Z^*}(f) - \underline{S}_{Z^*}(f) < \frac{\varepsilon}{2}$$

Wir wollen die Ober- und Untersumme von Z^* mit denen in Z vergleichen.

$$\overline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t} \cdot |I_{t}|$$

wobei $I_j = [x_{j-1}, x_j]$. Da Z^* eine Verfeinerung von Z ist, sind alle Teilpunkte von Z auch Teilpunkte von Z^* . Das heißt die Intervalle I_j (zu Z) unterscheiden sich von den Intervallen I_j^* (zu Z^*) sofern Punkte x'_{ν} (Teilpunkte von Z^*) im Inneren von I_j liegen. Also gilt

$$I_Z^* \cap I_j \neq \varnothing \Rightarrow I_Z^* \subseteq I_j$$

Frage: Wie viele Intervalle I_j existieren maximal, für die I_j eine Verfeinerung von Z oder ? hinter reellen I_j^* ist? Dann muss mindestens ein Punkt von der Zerlegung Z' unterhalb von I_j liegen. Wir haben l Punkte in Zerlegung Z'. Das heißt die Anzahl solcher Intervalle I_j ist maximal l.

$$\overline{S}_{Z}(f) - \overline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t}^{*} \cdot |I_{j}^{*}|
= \sum_{j} \left(\overline{m}_{j} \cdot |I_{j}| - \sum_{t:I_{Z}^{*} \subseteq I_{j}} \overline{m}_{t}^{*} \cdot |I_{t}^{*}| \right)
= \sum_{j} \sum_{t:I_{t}^{*}} \left(\overline{m}_{j} - \overline{m}_{t}^{*} \right) \cdot |I_{t}^{*}|
\overline{S}_{Z}(f) - \overline{S}_{Z}(f) = \sum_{j} \sum_{t:I_{t}^{*}} \left(\underbrace{\overline{m}_{j} - \overline{m}_{t}^{*}}_{=0 \text{ falls } I_{t}^{*} = I_{j}} \right) \cdot |I_{t}^{*}|
= \sum_{j} \sum_{t:I_{t}^{*}} \left(\overline{m}_{j} - \overline{m}_{t}^{*} \right) \cdot |I_{Z}^{*}|
f(x) = f(y) + f(x) - f(y)
\leq f(y) + \sup_{s_{1}, s_{2} \in I} \{f(s_{1}) - f(s_{2})\}
f(x) \leq f(y) + 2 ||f||_{\infty}$$

genauso

$$f(x) = f(y) + f(x) - f(y)$$

$$\geq f(y) + \inf_{s_1, s_2 \in I} \{ f(s_1) - f(s_2) \}$$

$$\geq f(y) - 2 \| f \|_{\infty}$$

$$\Rightarrow \overline{m}_j = \sup_{s \in I_j} f(x) \le 2 \|f\|_{\infty} + f(y) \quad \forall y \in I_t^*$$

$$\Rightarrow \overline{m}_j \le 2 \|f\|_{\infty} + \sup_{?} f = 2 \|f\|_{\infty} + \overline{m}_z^*$$

$$\vdots \quad ????$$

Genauso zeigt man

$$\underline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) \geq -2 \|f\|_{\infty} l \cdot \delta$$

$$\Rightarrow \overline{S}_{Z}(f) \leq \overline{S}_{Z^{*}} + 2 \|f\|_{\infty} l \cdot \delta$$

$$\underline{S}_{Z}(f) \geq \underline{S}_{Z^{*}} - 2 \|f\|_{\infty} l \cdot \delta$$

$$\Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) \leq \overline{S}_{Z^{*}}(f) + 2 \|f\|_{\infty} l \delta - (\underline{S}_{Z^{*}}(f) - 2 \|f\|_{\infty} l \cdot \delta)$$

$$=?$$

$$< \frac{\varepsilon}{2} + 4 \|f\|_{\infty} l \cdot \delta$$

Jetzt wähle $\delta = \frac{\varepsilon}{\delta \left(\|f\|_{\infty} + 1 \right) \cdot l}$

$$\Rightarrow \ \leq \frac{\varepsilon}{2} + 4 \, \|f\|_{\infty} \cdot \frac{\varepsilon}{\delta \, (\|f\| + 1) \cdot l} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

sofern um $\Delta(z) < \delta$ ist.

Anwendung 1.2.3. Es sei $(Z_n)_n$ eine Folge von Zerlegungen von I mit Feinheit $\Delta(Z_n) \to 0$ für $n \to \infty$. ξ_n seien die Zwischenpunkt von Zerlegung $Z_n = \left(x_0^n, x_1^n, \dots, x_{k_n}^n\right)$. Die Riemannnsumme

$$S_{Z_n}(f,\xi_n) = \sum_{j=1}^{k_n} f(\xi_j^n) \cdot \left| I_j^n \right|$$

konvergiert nach Satz 1.2.2 gegen J(f) falls $f \in \mathcal{R}(I)$.

[19. Apr] **Bemerkung 1.2.4** (Linearität der Riemannschen Zwischensumme). Seien $Z=(x_0,x_1,\ldots,x_k)$ Zerlegung von I=[a,b] und $\xi=(\xi_1,\xi_2,\ldots,\xi_k)$ Zwischenpunkt zur Zerlegung Z, sodass

$$x_{j-1} \le \xi_j \le x_j \quad \forall j = 1, \dots, k$$

Dann ist die Riemannsche Zwischensumme

$$S_Z(f) = S_Z(f, \xi) := \sum_{j=1}^k f(\xi_j) \cdot |I_j|$$
 $(I_j = [x_j - 1, x_j])$

linear in Bezug zu f. Wir werden diese Aussage und weitere interessante Vektorraumeigenschaften des $\mathcal{R}(I)$ später in Satz 1.2.6 noch beweisen.

Korollar 1.2.5. Sei $f \in \mathcal{B}(I)$. Dann gilt $f \in \mathcal{R}(I)$ genau dann, wenn für jede Folge $(Z_n)_n$ von Zerlegungen Z_n von I mit Feinheit $\Delta(Z_n) \to 0$ für $n \to \infty$ und jede Folge $(\xi_n)_n$ von Zwischenpunkten ξ_n zugehörig zu Z_n der Grenzwert $\lim_{n \to \infty} S_{Z_n}(f, \xi_n)$ existiert.

Darüber hinaus ist in diesem Fall obiger Grenzwert unabhängig von der Wahl der Zerlegung Z_n und der Zwischenpunkten ξ_n und es gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_{Z_n}(f, \xi_n)$$
 (I = [a, b])

Beweis. " \Rightarrow " Sei $f \in \mathcal{R}(I)$. Dann gilt nach Satz 1.2.1

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon \quad \forall \text{Zerlegungen } Z \; \text{mit } \Delta(Z) < \delta$$

Da $\Delta(Z_n) \to 0$ für $n \to \infty$ gilt außerdem

$$\Rightarrow \exists N \in \mathbb{N} : \Delta(Z_n) < \delta \quad \forall n \geq N$$

und für alle $n \in \mathbb{N}$ gilt

$$\underline{S}_{Z_n}(f) \leq \underline{J}(f) = \overline{J}(f) \leq \overline{S}_{Z_n}(f)$$

$$\underline{S}_{Z_n}(f) \leq S_{Z_n}(f, \xi_n) \leq \overline{S}_{Z_n}(f)$$

$$\Rightarrow |J(f) - S_{Z_n}(f, \xi_n)| < \varepsilon \quad \forall n \geq N$$

das heißt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = J(f) = \int_a^b f \, \mathrm{d}x$$

" \Leftarrow " SCHRITT 1: Angenommen $\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$ existiert für jede Folge $(Z_n)_n$ von Zerlegungen von I mit $\Delta(Z_n)\to 0$ und jede Wahl von Zwischenpunkten $(\xi_n)_n$ zu Z_n .

Seien $(Z_n^1)_n$, $(Z_n^2)_n$ zwei solche Folgen von Zerlegungen mit $(\xi_n^1)_n$, $(\xi_n^2)_n$ zugehörigen Folgen von Zwischenpunkten. Sei $(Z_n)_n$ eine neue Folge von Zerlegungen von I, wobei $Z_{2k} = Z_k^2$ und $Z_{2k-1} = Z_k^1$, außerdem sei $\xi_{2k} = \xi_k^2$ und $\xi_{2k-1} = \xi_k^1$. Dann wissen wir, dass

$$\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$$

existiert und gilt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = \lim_{n \to \infty} S_{Z_{2n}}(f, \xi_{2n})$$

$$= \lim_{n \to \infty} S_{Z_{2n-1}}(f, \xi_{2n-1})$$

$$= \lim_{n \to \infty} S_{Z_n^2}(f, \xi_n^2)$$

$$= \lim_{n \to \infty} S_{Z_n^1}(f, \xi_n^1)$$

Schritt 2: (Später)

Satz 1.2.6 ($\mathcal{R}(I)$ als Vektorraum). Der Raum $\mathcal{R}(I)$ auf einem kompakten Intervall I = [a, b] ist ein Vektorraum und $J : \mathcal{R}(I) \to \mathbb{R}$ $f \mapsto J(f) = \int_a^b f \, \mathrm{d}x$ ist eine lineare Abbildung. Für $f, g \in \mathcal{R}(I)$ und $\alpha, \beta \in \mathbb{R}$ folgt also $\alpha f + \beta g \in \mathcal{R}(I)$ und $J(\alpha f + \beta g) = \alpha J(f) + \beta J(g)$.

Beweis. Teil 1: Sei $h: I \to \mathbb{R}$ eine zusätzliche Funktion auf dem Intervall und Z eine Zerlegung von I mit zugehörigen Intervallen Ij. Dann gilt

$$\overline{m}_{j} = \sup_{x \in I_{j}} h(x) \quad \underline{m}_{j} = \inf_{y \in I_{j}} h(y)$$

$$\Rightarrow \overline{m}_{j} - \underline{m}_{j} = \sup_{x \in I_{j}} h(x) - \inf_{y \in I_{j}} h(y)$$

$$= \sup_{x \in I_{j}} h(x) + \sup_{y \in I_{j}} (-h(y))$$

$$= \sup_{x, y \in I_{j}} (h(x) - h(y))$$

$$= \sup_{x, y \in I_{j}} (h(y) - h(x)) \qquad \text{(Vertauschen von } x, y)$$

$$= \sup_{x, y \in I_{j}} (|h(x) - h(y)|)$$

$$\Rightarrow \overline{m}_{j}(h) - \underline{m}_{j}(h) = \sup_{x, y \in I_{j}} (|h(x) - h(y)|)$$
(1)

Wir wählen $h = \alpha f + \beta g$, wobei $f, g \in \mathcal{R}(I)$ und $\alpha, \beta \in \mathbb{R}$

$$h(x) - h(y) = \alpha \cdot (f(x) - f(y)) + \beta \cdot (g(x) - g(y))$$

$$\Rightarrow |h(x) - h(y)| \leq |\alpha| \cdot |f(x) - f(y)| + |\beta| \cdot |g(x) - g(y)| \qquad (2)$$

$$\overline{m}_{j}(h) - \underline{m}_{j}(h) = \sup_{x \in I_{j}} h(x) - \inf_{y \in I_{j}} h(y)$$

$$\stackrel{(1)}{=} \sup_{x, y \in I_{j}} (|h(x) - h(y)|)$$

$$\stackrel{(2)}{\leq} |\alpha| \cdot \sup_{x, y \in I_{j}} |f(x) - f(y)| + |\beta| \cdot \sup_{x, y \in I_{j}} |g(x) - g(y)|$$

$$= |\alpha| \cdot \left(\overline{m}_{j}(f) - \underline{m}_{j}(f)\right) + |\beta| \cdot \left(\overline{m}_{j}(g) - \underline{m}_{j}(g)\right)$$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) = \sum_{j=1}^{k} \left(\overline{m}_{j}(h) - \underline{m}_{j}(h)\right) \cdot |I_{j}|$$

$$\leq |\alpha| \cdot \sum_{j=1}^{k} \left(\overline{m}_{j}(f) - \underline{m}_{j}(f)\right) \cdot |I_{j}| + |\beta| \cdot \sum_{j=1}^{k} \left(\overline{m}_{j}(g) - \underline{m}_{j}(g)\right) \cdot |I_{j}|$$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) \leq |\alpha| \cdot \left(\overline{S}_{Z}(f) - \underline{S}_{Z}(f)\right) + |\beta| \cdot \left(\overline{S}_{Z}(g) - \underline{S}_{Z}(g)\right) \qquad (3)$$

Nach Satz 1.2.1 und der Riemann-Integrierbarkeit von f und g gilt

$$\Rightarrow \forall \varepsilon > 0 \; \exists Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)}$$
$$\forall \varepsilon > 0 \; \exists Z_2 \colon \overline{S}_{Z_2}(g) - \underline{S}_{Z_2}(g) < \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)}$$

Wähle $Z = Z_1 \vee Z_2$ und verwende (3)

$$\Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) < |\alpha| \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)}$$

1 [*] Das eindimensionale Riemann-Integral

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Nach Satz 1.2.1 ist $h = \alpha f + \beta g$ damit Riemann-integrierbar.

Teil 2: Für Zwischensummen

$$S_Z(h,\xi) = \sum_{j=1}^k h(\xi_j) \cdot |I_j| = \alpha \cdot S_Z(f,\xi) + \beta \cdot S_Z(g,\xi)$$

haben wir bereits Linearität. Für $h,f,g\in\mathcal{R}(I)$ gilt nach Korollar 1.2.5

$$J(h) = \lim_{n \to \infty} S_{Z_n}(h, \xi_n) \qquad (\Delta(Z_n) \to 0)$$

$$= \lim_{n \to \infty} (\alpha \cdot S_{Z_n}(f, \xi_n) + \beta \cdot S_{Z_n}(g, \xi_n))$$

$$= \alpha \cdot \lim_{n \to \infty} S_{Z_n}(f, \xi_n) + \beta \cdot \lim_{n \to \infty} S_{Z_n}(g, \xi_n)$$

$$= \alpha \cdot J(f) + \beta \cdot J(g)$$

Satz 1.2.7 (Kompositionen von integrierbaren Funktionen). Seien $f, g \in \mathcal{R}(I)$. Dann gilt

- (i) $f \cdot g \in \mathcal{R}(I)$
- (ii) $|f| \in \mathcal{R}(I)$
- (iii) Ist außerdem $|g| \ge c > 0$ auf I für ein konstantes c > 0, so ist auch $\frac{f}{g} \in \mathcal{R}(I)$.

Beweis.

(i) Es sei $h(x) = f(x) \cdot g(x)$ für $x \in I$. Dann gilt

$$|h(x) - h(y)| = |f(x) \cdot g(x) - f(y) \cdot g(y)|$$

$$= |g(x) \cdot (f(x) - f(y)) + f(y) \cdot (g(x) - g(y))|$$

$$\leq ||g||_{\infty} \cdot |f(x) - f(y)| + ||f||_{\infty} \cdot |g(x) - g(y)|$$
(1)

Sei Z Zerlegung von I und I_j die entsprechenden Teilintervalle. Dann gilt

$$\overline{S}_{Z}(h) - \underline{S}_{Z}(h) = \sum_{j=1}^{k} \left(\overline{m}_{j}(h) - \underline{m}_{j}(h) \right) \cdot |I_{j}|$$

$$\overline{m}_{j}(h) - \underline{m}_{j}(h) = \sup_{I_{j}} h - \inf_{I_{j}} h = \sup_{x,y \in I_{j}} |h(x) - h(y)|$$

$$\stackrel{(1)}{\leq} \|g\|_{\infty} \cdot \left(\overline{m}_{j}(f) - \underline{m}_{j}(f) \right) + \|f\|_{\infty} \cdot \left(\overline{m}_{j}(g) - \underline{m}_{j}(g) \right)$$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) \leq \|g\|_{\infty} \cdot \left(\overline{S}_{Z}(f) - \underline{S}_{Z}(f) \right) + \|f\|_{\infty} \cdot \left(\overline{S}_{Z}(g) - \underline{S}_{Z}(g) \right)$$

Für ein $\varepsilon > 0$ gilt nach Satz 1.2.1

$$\exists Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2 \cdot (1 + \|g\|_{\infty})}$$
$$\exists Z_2 \colon \overline{S}_{Z_2}(g) - \underline{S}_{Z_2}(g) < \frac{\varepsilon}{2 \cdot (1 + \|f\|_{\infty})}$$

Es sei $Z := Z_1 \vee Z_2$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) \leq \|g\|_{\infty} \cdot \frac{\varepsilon}{2 \cdot (1 + \|g\|_{\infty})} + \|f\|_{\infty} \cdot \frac{\varepsilon}{2 \cdot (1 + \|f\|_{\infty})}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Damit gilt $h = f \cdot g \in \mathcal{R}(I)$ nach Satz 1.2.1.

(ii) Für |f| verwenden wir $||f(x)| - |f(y)|| \le |f(x) - f(y)|$ $\Rightarrow \overline{m}_j(|f|) - \underline{m}_j(|f|) = \sup_{x,y \in I_j} (||f(x)| - |f(y)||)$ $\le \sup_{x,y \in I_j} (|f(x) - f(y)|)$ $= \overline{m}_j(f) - \underline{m}_j(f)$

wie vorher folgt also $|f| \in \mathcal{R}(I)$.

(iii) Für $\frac{f}{g}$ muss nur $\frac{1}{g}$ betrachtet und die Multiplikationsregel angewendet werden. Es gilt

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \frac{|g(x) - g(y)|}{|g(x)| \cdot |g(y)|} \le \frac{1}{c^2} \cdot |g(x) - g(y)|$$

$$\Rightarrow \overline{m}_j \left(\frac{1}{y} \right) - \underline{m}_j \left(\frac{1}{y} \right) \le \frac{1}{c^2} \cdot \left(\overline{m}_j(y) - \underline{m}_j(y) \right)$$

Damit gilt analog zu (ii) die Behauptung.

[23. Apr] Beispiel 1.2.8 (Exponential funktion). Sei $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto e^{\alpha x}$, $n \in \mathbb{N}$, I = [a, b] und $\alpha \in \mathbb{R}$ mit $\alpha > 0$. Wir betrachten eine äquidistante Zerlegung $Z_n = (x_0^n, x_1^n, \dots, x_k^n)$ mit $x_j^n = a + j \cdot h_n$, wobei $h_n = \frac{b-a}{n} = h = |I_j|$. Da f streng monoton wachsend ist gilt

$$\overline{m}_{j} = \sup_{I_{j}} f = f(x_{j}) = f\left(x_{j}^{n}\right) = e^{\alpha x_{j}}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = f(x_{j-1}) = f\left(x_{j-1}^{n}\right) = e^{\alpha x_{j-1}}$$

$$\Rightarrow \overline{S}_{Z}(f) = \overline{S}_{Z_{n}}(f) = \sum_{j=1}^{n} \overline{m}_{j} \cdot |I_{j}| = \sum_{j=1}^{n} e^{\alpha x_{j}} \cdot h$$

$$= h \cdot \sum_{j=1}^{n} e^{\alpha(a+jh)} = h \cdot \sum_{j=1}^{n} e^{\alpha a} \cdot e^{\alpha jh}$$

$$= h \cdot e^{\alpha a} \cdot e^{\alpha h} \cdot \sum_{j=1}^{n} \left(e^{\alpha h}\right)^{j-1}$$

$$= h \cdot e^{\alpha a} \cdot e^{\alpha h} \cdot \frac{\left(e^{\alpha h}\right)^{n} - 1}{e^{\alpha h} - 1}$$

$$= \frac{h}{e^{\alpha h} - 1} \cdot e^{\alpha h} \cdot e^{\alpha a} \cdot \left(e^{\alpha h \cdot n} - 1\right)$$

$$= \frac{h_{n}}{e^{\alpha h_{n}} - 1} \cdot e^{\alpha h_{n}} \cdot \left(e^{\alpha b} - e^{\alpha a}\right)$$
(Geometr. Summe)

Es gilt $\lim_{n\to\infty} \frac{e^{\alpha h_n}-1}{h_n} = \lim_{h\to0} \frac{e^{\alpha h}-1}{h} = \alpha$ sowie $\lim_{n\to\infty} e^{\alpha h_n} = 1$. Damit folgt

$$\lim_{n \to \infty} \overline{S}_{Z_n}(f) = \frac{1}{\alpha} \cdot \left(e^{\alpha b} - e^{\alpha a} \right)$$

Wir betrachten die Untersumme

$$\underline{S}_{Z} = \underline{S}_{Z_{n}} = \sum_{j=1}^{n} \underline{m}_{j} \cdot |I_{j}| = h \cdot \sum_{j=1}^{n} \left(e^{\alpha x_{j-1}}\right)$$

1 [*] Das eindimensionale Riemann-Integral

$$= h \cdot e^{\alpha a} \cdot \sum_{j=1}^{n} \left(e^{\alpha h} \right)^{j-1} = h \cdot e^{\alpha a} \sum_{j=0}^{n-1} \left(e^{\alpha h} \right)^{j}$$

$$= h \cdot e^{\alpha a} \frac{\left(e^{\alpha h} \right)^{n} - 1}{e^{\alpha h} - 1}$$

$$= \frac{h}{e^{\alpha h} - 1} \cdot e^{\alpha a} \cdot \left(e^{\alpha (b-a)} - 1 \right) \to \frac{1}{\alpha} \cdot \left(e^{\alpha b} - e^{\alpha a} \right)$$

Also gilt $f \in \mathcal{R}(I)$ sowie

$$\int_{a}^{b} e^{\alpha x} \, \mathrm{d}x = \frac{1}{\alpha} \cdot \left(e^{\alpha b} - e^{\alpha a} \right)$$

Beispiel 1.2.9 (Polynome). Es sei $f:[0,\infty)\to[0,\infty),\,x\mapsto x^\alpha\ (\alpha\neq -1).$ Dann $f\in\mathcal{R}(I)$ und

$$\int_{a}^{b} x^{\alpha} dx = \frac{1}{\alpha + 1} \left(b^{\alpha + 1} - a^{\alpha + 1} \right)$$

Beweisansatz. Wir wählen eine geometrische Zerlegung. Sei $q=q_n=\sqrt[n]{\frac{b}{a}}, Z=Z_n=(x_0^n,x_1^n,\ldots,x_n^n),$ $I_j=[x_{j-1},x_j], x_j=x_j^n=a\cdot q^j$

$$\begin{aligned} |I_j| &= \Delta x_j = x_j - x_{j-1} = a \cdot q^j - a \cdot q^{j-1} \\ &= a \cdot q^{j-1} \cdot (q-1) \le b \cdot (q_n - 1) \to 0 \text{ für } n \to \infty \end{aligned}$$

Beobachtung: Ober- und Untersumme lassen sich "leicht" mittels geometrischer Summen ausrechnen

$$\overline{m}_{j} = \sup_{I_{j}} f = (x_{j})^{\alpha} = \left(a \cdot q^{j}\right)^{\alpha}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = (x_{j-1})^{\alpha} = \left(a \cdot q^{j-1}\right)^{\alpha}$$

$$\underline{S}_{Z}(f) = \underline{S}_{Z_{n}}(f) = \sum_{j=1}^{n} \underline{m}_{j} \cdot |I_{j}| = \sum_{j=1}^{n} \left(a \cdot q^{j-1}\right)^{\alpha} \cdot a \cdot q^{j-1} \cdot (q-1)$$

$$= (q-1) \cdot a^{\alpha+1} \cdot \sum_{j=1}^{n} q^{(\alpha+1) \cdot (j-1)}$$
(Nach Monotonie)

Damit erhalten wir eine geometrische Summe, dessen Grenzwert sich gut ermitteln lässt. \Box

Übung 1.2.10. Bestimmen Sie den Grenzwert der Ober- und Untersummen aus Beispiel 1.2.9, um die Riemann-Integrierbarkeit der Polynome nachzuweisen.

Satz 1.2.11 (Monotonie des Integrals). Seien $f, g \in \mathcal{R}(I)$, I = [a, b]. Dann erfüllt das Integral Monotonieeigenschaften. Das heißt konkret

(i) Wenn $\forall x \in \mathbb{R} : f(x) \leq g(x)$, dann folgt

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x \tag{1.2.1}$$

(ii) Insbesondere gilt für $f \in \mathcal{R}(I)$ beliebig

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x \tag{1.2.2}$$

(iii) Sowie

$$\left| \int_{a}^{b} f \cdot g \, \mathrm{d}x \right| \le \sup_{I} |f| \cdot \int_{a}^{b} |g| \, \mathrm{d}x$$

Beweis.

(i) Sei $h=g-f\geq 0$. Dann gilt nach Satz 1.2.6 $h\in \mathcal{R}(I)$ und $\int_a^b h\,\mathrm{d}x\geq 0$

$$\Rightarrow 0 \le \int_a^b h \, dx = \int_a^b g \, dx + \int_a^b (-f) \, dx = \int_a^b g \, dx - \int_a^b f \, dx$$
$$\Rightarrow \int_a^b f \, dx \le \int_a^b g \, dx$$

(ii) Es gilt $\pm f \leq |f|$. Damit folgt aus (1.2.1)

$$\int_{a}^{b} (\pm f) \, \mathrm{d}x \le \int_{a}^{b} |f| \, \mathrm{d}x$$

$$\Rightarrow \left| \int_{a}^{b} f \, \mathrm{d}x \right| = \max \left(\int_{a}^{b} f \, \mathrm{d}x, -\int_{a}^{b} f \, \mathrm{d}x \right) \le \int_{a}^{b} |f| \, \mathrm{d}x$$

(iii) Nach (1.2.2) gilt

$$\left| \int_a^b fg \, \mathrm{d}x \right| \le \int_a^b |fg| \, \mathrm{d}x \le \int_a^b \left(\sup_I |f| \right) |g| \, \mathrm{d}x = \sup_I (|f|) \cdot \int_a^b |g| \, \mathrm{d}x \qquad \Box$$

Satz 1.2.12 (Cauchy-Schwarz). Seien $f, g \in \mathcal{R}(I)$ und I = [a, b]. Dann gilt

$$\left| \int_a^b fg \, \mathrm{d}x \right|^2 \le \left(\int_a^b |fg| \, \mathrm{d}x \right)^2$$
$$\le \int_a^b |f|^2 \, \mathrm{d}x \cdot \int_a^b |g|^2 \, \mathrm{d}x$$

mit

$$||f|| = \sqrt{\int_a^b |f|^2 dx}$$

$$\Rightarrow \left| \int fg dx \right| \le ||f|| \cdot g$$

Beweis.

$$0 \le (a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$\Rightarrow \mp ab \le \frac{a^2 + b^2}{2}$$

$$\Rightarrow |ab| \le \frac{1}{2} (a^2 + b^2)$$

t > 0

$$|\alpha\beta| = \left|t\alpha - \frac{\beta}{t}\right| \le \frac{1}{2} \left(t\alpha^2 + \frac{1}{t}\beta^2\right)$$

$$\left|\int_a^b fg \, \mathrm{d}x\right| \le \int_a^b |f(x)| |g(x)| \, \mathrm{d}x$$

$$\le \frac{1}{2} \left(t \cdot \underbrace{\int_a^b |f(x)|^2 \, \mathrm{d}x}_A + \frac{1}{t} \underbrace{\int_a^b |g|^2 \, \mathrm{d}x}_B\right)$$

$$\le \frac{1}{2} \left(t \cdot |f(x)|^2 + \frac{1}{t} |g(x)|^2\right) = \frac{1}{2} \left(tA + \frac{1}{t}B\right)$$

Frage: Welches t > 0 maximiert h?

$$A = 0 \Rightarrow h(t) = \frac{1}{2t}B \to 0 \text{ für } n \to \infty$$

$$B = 0 \Rightarrow h(t) = \frac{1}{2}A \to 0 \text{ für } n \to \infty$$

$$\Rightarrow \lim_{t \to 0} h(t) = \infty, \lim_{t \to 0} h(t) = \infty$$

Minimum existiert für ein $t_0 > 0$ und es gilt $0 = h'(t_0)$

$$\Rightarrow 0 = \frac{1}{2} \left(A - \frac{1}{t_0} B \right)$$

$$\Rightarrow (t_0)^2 = \frac{B}{A} \quad t_0 = \sqrt{\frac{b}{A}}$$

$$\Rightarrow \inf_{(0,\infty)} h(t) = \frac{1}{2} t_0 \left(A + \frac{1}{t_0^2} B \right)$$

$$= \frac{1}{2} \sqrt{\frac{b}{A}} \left(A + \frac{A}{B} B \right) = \sqrt{AB}$$

Bemerkung 1.2.13.

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, \mathrm{d}x$$

$$\|f\| \coloneqq \sqrt{\int_a^b |f|^2 \, \mathrm{d}x} \text{ ist eine Norm}$$

$$\Rightarrow |\langle f, g \rangle| \le \|f\| \, \|g\|$$

Satz 1.2.14. Sei $\mathcal{C}(I) = \mathcal{C}([a,b])$ der Raum der stetigen reellen Funktionen auf einem I = [a,b]. Es gilt $\mathcal{C}(I) \subseteq \mathcal{R}(I)$.

Beweis. I = [a, b] ist kompakt und $f : [a, b] \to \mathbb{R}$ ist stetig und damit auch gleichmäßig stetig. Das heißt

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon |f(x) - f(y)| < \delta \quad \forall x, y \in I \ \text{mit} \ |x - y| < \delta$$

Sei Z eine Zerlegung von I mit $\Delta(Z) < \delta$. $I_j = [x_{j-1}, x_j]$ und $Z = (x_0, x_1, \dots, x_k)$. Dann gilt

$$\overline{m}_j - \underline{m}_j = \sup_{x \in I_j} f(x) - \inf_{y \in I_j} f(y)$$
$$= \sup_{x, y \in I_j} |f(x) - f(y)| = \sup_{x, y \in I_j} (f(x) - f(y))$$

Da $|x-y| \le |I_j| < \delta$ gilt

$$\overline{m}_{j} - \underline{m}_{j} \leq \varepsilon$$

$$\Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) = \sum_{j=1}^{n} \left(\overline{m}_{j} - \underline{m}_{j} \right) \cdot |I_{j}|$$

$$\leq \varepsilon \sum_{j=1}^{n} |I_{j}| = \varepsilon \cdot |I| = \varepsilon \cdot (b - a)$$

$$\Rightarrow 0 \leq \overline{J}(f) - \underline{J}(f) \leq \overline{S}_{Z}(f) - \underline{S}_{Z}(f)$$

$$\leq \varepsilon (b - a) \quad \forall \varepsilon > 0$$

$$\Rightarrow \overline{J}(f) = \underline{J}(f) \Rightarrow f \in \mathcal{R}(I)$$

Definition 1.2.15. Eine Funktion $f: I \to \mathbb{R}$ auf I = [a, b] heißt stückweise stetig, falls es eine Zerlegung $Z = (x_0, x_1, \dots, x_k)$ von I gibt so, dass f auf jedem der offenen Intervalle (x_{j-1}, x_j) stetig ist und die einseitigen Grenzwerte

$$f(a+) = \lim_{x \to a+} f(x), f(b-) = \lim_{x \to b-} f(x)$$
$$f(x_j-) = \lim_{x \to x_j-} f(x), f(x_j+) = \lim_{x \to x_j+} f(x)$$

für $j = 1, \dots, k - 1$ existieren.

 $f((x_{j-1}, x_j))$ können zu stetigen Funktionen auf $I_j = [x_{j-1}, x_j]$ fortgesetzt werden. Wir nennen diese Klasse von Funktionen $\mathcal{PC}(I)^1$.

 $^{^{1}}$ Piecewise continuos function in I

Satz 1.2.16. Es gilt $PC(I) \subseteq \mathcal{R}(I)$. I = [a, b]. Ist $Z = (x_0, \dots, x_k)$ eine Zerlegung von $f \in \mathcal{PC}(I)$ und f stetig auf $(x_{j-1}, x_j) \ \forall j$ und f_j eine stetige Fortsetzung von $f|_{(x_{j-1}, x_j)}$ auf $I_j = [x_{j-1}, x_j]$. So gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{l=1}^{k} \int_{x_{l-1}}^{x_{l}} f_{l}(x) \, \mathrm{d}x$$

Beweis. Arbeite auf $I_l = [x_{l-1}, x_l]$ dann ist f_l stetig nach Satz 1.2.14 und summiere zusammen. (Details selber machen).

Bemerkung 1.2.17 (Treppenfunktion). Ist f stückweise konstant auf I. Das heißt es existiert eine Zerlegung $Z = (x_0, \dots, x_{\nu})$ von I mit f ist konstant auf $(x_{k-1}, x_k) \quad \forall k = 1, \dots, \nu$. So heißt f Treppenfunktion. Schreiben $\mathcal{J}(I)$ für die Klasse der Treppenfunktionen.

[26. Apr] Satz 1.2.18. Sei $I = [a, b], f : I \to \mathbb{R}$ mit den folgenden Eigenschaften

- (a) In jedem Punkt $x \in (a, b)$ existieren die rechts- und linksseitigen Grenzwerte.
- (b) In a existiert der rechtsseitige und in b der linksseitige Grenzwert.

Dann gilt $f \in \mathcal{R}(I)$.

Zum Beweis dieses Satzes benötigen wir zunächst das folgende Approximationslemma 1.2.20.

Bemerkung 1.2.19. Insbesondere erfüllt PC(I) die Bedingungen a) und b) aus Satz 1.2.18.

Lemma 1.2.20. Sei $f: I \to \mathbb{R}$ eine Funktion, die die Bedingungen aus Satz 1.2.18 erfüllt. Dann gibt es eine Folge $(\varphi_n)_n$ von Treppenfunktionen $\varphi_n: I \to \mathbb{R}$, die gleichmäßig gegen f konvergiert. Das heißt

$$\lim_{n \to \infty} \|f - \varphi_n\|_{\infty} = \lim_{n \to \infty} \sup_{x \in [a,b]} |f(x) - \varphi_n(x)| = 0$$

Also

$$\forall \varepsilon > 0 \; \exists \text{Treppenfunktion} \; \varphi : I \to \mathbb{R} \; \text{mit} \; \|f - \varphi\|_{\infty} = \sup_{x \in I} |f(x) - \varphi(x)| < \varepsilon$$

Beweis. (Später)
$$\Box$$

Mithilfe dieses Lemmas können wir nun Satz 1.2.18 beweisen.

Beweis. Sei $f:[a,b] \to \mathbb{R}$ wie in Satz 1.2.18 verlangt und $\varepsilon > 0$, sowie $\varphi: I \to \mathbb{R}$ Treppenfunktion mit $||f - \varphi||_{\infty} < \frac{\varepsilon}{2}$. Wir definieren $\Psi_1 := \varphi - \frac{\varepsilon}{2}$, $\Psi_2 = \varphi + \frac{\varepsilon}{2}$ auch als Treppenfunktionen. Dann gilt $\Psi_1 = \varphi - \frac{\varepsilon}{2} \le f$ und $\Psi_2 \ge f$. Für alle Zerlegungen Z von I mit

$$\begin{split} &\underline{S}_Z(\Psi_1) \leq \underline{S}_Z(f) \\ \Rightarrow &\underline{S}_Z(f) \geq \underline{S}_Z\left(\varphi - \frac{\varepsilon}{2}\right) = \underline{S}_Z(\varphi) - \frac{\varepsilon}{2} \cdot |I| = \underline{S}_Z(\varphi) - \frac{\varepsilon}{2} \left(b - a\right) \end{split}$$

Analog gilt

$$\overline{S}_Z(\varphi) + \frac{\varepsilon}{2}(b-a) \ge \overline{S}_Z(f)$$

Damit folgt insgesamt

$$\underline{S}_{Z}(\varphi) - \frac{\varepsilon}{2} (b - a) \le \underline{S}_{Z}(f) \le \underline{J}(f)$$

$$\overline{S}_Z(\varphi) + \frac{\varepsilon}{2} (b-a) \ge \overline{S}_Z(f) \le \overline{J}(f)$$

Da φ eine Treppenfunktion ist, ist $\varphi \in PC(I) \subseteq \mathcal{R}(I)$. Also existiert eine Folge $(z_n)_n$ von Zerlegungen von I mit

$$\lim_{n \to \infty} \overline{S}_{Z_n}(\varphi) = \lim_{n \to \infty} \underline{S}_{Z_n}(\varphi) = \int_a^b \varphi(x) \, \mathrm{d}x$$

(sofern $\Delta(Z_n) \to 0$ für $n \to \infty$)

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq \overline{S}_{Z_n}(\varphi) + \frac{\varepsilon}{2} (b - a) - \left(\underline{S}_{Z_n}(\varphi) - \frac{\varepsilon}{2} (b - a)\right)$$

$$= \overline{S}_{Z_n}(\varphi) - \underline{S}_{Z_n}(\varphi) + \varepsilon (b - a)$$

$$\Rightarrow n \to \infty \int_a^b \varphi(x) \, \mathrm{d}x - \int_a^b \varphi(x) \, \mathrm{d}x + \varepsilon (b - a)$$

$$= \varepsilon (b - a)$$

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq \varepsilon (b - a) \quad \forall \varepsilon > 0$$

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq 0$$

$$\Rightarrow \overline{J}(f) = \underline{J}(f)$$

$$\Rightarrow f \in \mathcal{R}(I)$$

Bemerkung 1.2.21. Welche $f \in \mathcal{B}(I)$ sind genau Riemann-integrierbar?

Definition 1.2.22 (Nullmenge). Eine Menge $N \subseteq \mathbb{R}$ heißt Nullmenge, falls zu jedem $\varepsilon > 0$ höchstens abzählbar viele Intervalle I_1, I_2, \ldots existieren mit

$$N \subseteq \bigcup_{j} I_{j}$$
 $(I_{j} \text{ überdecken } N)$

und

$$\sum_{j} |I_{j}| < \varepsilon$$

Beispiel 1.2.23. \mathbb{Q} ist eine Nullmenge.

$$\mathbb{Q}\subseteq\bigcup_{j\in\mathbb{N}}I_j$$

Nehme $\varepsilon > 0$

$$\mathcal{Q} = \{q_i | j \in \mathbb{N}\}$$

Zu q_j nehme $I_J = \left[q_j - \frac{\varepsilon}{2}, q_j + \frac{\varepsilon}{2}\right]$

$$q_j \in I_j \quad |I_j| = \varepsilon 2^{-j}$$

$$\sum_{j \in \mathbb{N}} |I_j| = \varepsilon \sum_{j=1}^{\infty} 2^{-j}$$

$$= \varepsilon \cdot \frac{1}{2-1} = \varepsilon$$

Definition 1.2.24. Eine Funktion $f: I \to \mathbb{R}$ heißt fast überall stetig auf I, falls die Menge der Unstetigkeitsstellen von f eine Nullmenge ist.

1.2.25 (Lebesgue'sches Integrabilitätskriterium). $\mathcal{R}(I) = \{ f \in \mathcal{B}(I) : f \text{ ist fast überall stetig auf } I \}$

Bemerkung 1.2.26. Sei f wie in Satz 1.2.18. Dann ist die Menge der Unstetigkeitsstelle von f höchstens abzählbar, also eine Nullmenge.

Ist $f \in PC(I)$ so ist die Menge der Unstetigkeitsstellen endlich.

Beweis von Lemma 1.2.20. Wir führen einen Widerspruchsbeweis. Angenommen die Aussage stimmt nicht, dann existiert ein $\varepsilon_0 > 0$ sowie ein $f: I \to \mathbb{R}$ wie in Satz 1.2.18, sodass

$$\forall \text{Treppenfunktionen } \varphi: I \to \mathbb{R} \colon \|f - \varphi\|_{\infty} = \sup_{x \in [a,b]} |f(x) - \varphi(x)| \ge \varepsilon_0 > 0$$

SCHRITT 1: $I_1 = [a, b], a_1 = a, b_1 = b$. Dann weiter mit Divide & Conquer:

$$\sup_{I_1} |f - \varphi| \ge \varepsilon_0$$

Behauptung: Es existiert eine Folge $(I_n)_n$ von Intervallschachtelungen $I_{n+1} \subseteq I_n$ mit $|I_n| = b - a \to 0$ für $n \to \infty$ mit

$$\sup_{x \in I_n} |f(x) - \varphi(x)| \ge \varepsilon_0 \quad \forall n \in \mathbb{N} \text{ und alle Treppen funktionen } \varphi \text{ (auf } I_n)$$
 (*)

Beweis: Angenommen $I_n = [a_n, b_n]$ ist gegeben und erfüllt die obige Bedingung

$$M_N = \frac{b_n + a_n}{2}$$

$$\Rightarrow \sup_{x \in [a_n, M_n]} |f(x) - \varphi(x)| \ge \varepsilon_0 \text{ oder } \sup_{x \in [M_n, b_n]} |f(x) - \varphi(x)| \ge \varepsilon_0$$
(Für alle Treppenfunktionen φ)

Im ersten Fall wählen wir die linke Hälfte des Intervalls, also $a_{n+1} = a_n$, $b_{n+1} = M_n$. Im zweiten Fall die rechte Hälfte, also $a_{n+1} = M_n$, $b_{n+1} = b_n$. Damit gilt im Sinne der Intervallhalbierung

$$\Rightarrow I_{n+1} \subseteq I_n$$

sowie

$$b_n - a_n = \frac{1}{2} (b_{n-1} - a_{n-1}) \le \frac{1}{2^n} (b - a) \to 0$$

Nehme $c_n \subseteq I_n$

$$a = a_1 \le a_2 \le \dots \le a_n \le b_n \le b_{n-1} \le \dots \le b_1 = b$$

 $\lim_{n\to\infty}a_n$ existiert und $\lim_{n\to\infty}b_n$ texistiert aufgrund der monotonen Konvergenz

und

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n =: \xi$$

$$\Rightarrow \forall n \in \mathbb{N} : a_n \le \xi \le b_n$$

$$\Rightarrow a_n \le \xi \quad \forall n \in \mathbb{N}$$
(da $b_n - a_n \to 0$)

Analog ergibt sich

$$b_n \ge \xi \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \xi \in I_n = [a_n, b_n] \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} I_n = \{\xi\}$$

Schritt 2: Angenommen $a < \xi < b$. Dann ist

$$c_l = f(\xi -) = \lim_{x \to \xi -} f(x)$$
$$c_r = f(\xi +) = \lim_{x \to \xi +} f(x)$$

Nehmen $\delta > 0$

$$|f(x) - c_l| < \varepsilon_0 \quad \xi - \delta \le x \le \xi$$
$$|f(x) - c_r| < \varepsilon_0 \quad \xi < x \le \xi + \delta$$

Wir definieren $\varphi : [\xi - \delta, \xi + \delta]$ durch

$$\varphi(x) := \begin{cases} c_r & \xi < x < \xi + \delta \\ f(x) & x = \xi \\ c_l & \xi - \delta < x < \xi + \delta \end{cases}$$

und

$$\sup_{\xi - \delta < x \le \xi + \delta} |f(x) - \varphi(x)| < \varepsilon_0 \tag{**}$$

Aber $I_n \subseteq [\xi - \delta, \xi + \delta]$ für fast alle $n \in \mathbb{N}$. Für n groß genug ist (**) im Widerspruch zu (*). Damit folgt die Aussage des Lemmas.

Satz 1.2.27. Seien $f, g \in \mathcal{R}(I)$???.

Lemma 1.2.28. Seien $f, g \in \mathcal{R}(I)$ und gebe es eine Menge $G \subseteq I$ welche in I dicht liegt und für die $f(x) = g(x) \ \forall x \in G$ gilt. Dann folgt $\int_a^b f(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x$

1.3 [*] Mittelwertsätze der Integralrechnung

Definition 1.3.1. Sei $f \in \mathcal{R}(I)$, I = [a, b]. Dann ist

$$\oint_I f(x) dx = \oint_a^b f(x) dx := \frac{1}{b-a} \int_a^b f(x) dx$$

definiert als der Mittelwert von f über I. Wir schreiben auch

$$\overline{f}_I = \int_a^b f(x) \, \mathrm{d}x$$

Satz 1.3.2. Es sei $I = [a, b], f \in \mathcal{C}(I)$. Dann gilt

$$\exists \xi \colon a < \xi < b \text{ mit } f(\xi) = \int_a^b f(x) \, \mathrm{d}x$$

Beweis.

$$\overline{m} = \sup_{I} f = \max_{I} f$$

$$\underline{m} = \inf_{I} f = \min_{I} f$$

1 [*] Das eindimensionale Riemann-Integral

Nach Satz 1.2.11 gilt

$$\underline{m} \le f(x) \le \overline{m} \quad \forall x \in I$$

$$\Rightarrow \underline{m} (b - a) = \int_{a}^{b} \underline{m} \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} \overline{m} \, dx = \overline{m} (b - a)$$

$$\Rightarrow \underline{m} \le \int_{a}^{b} f(x) \, dx \le \overline{m}$$

Ist $\underline{m} = \overline{m} \Rightarrow f$ ist konstant auf [a, b]

$$\Rightarrow \underline{m} = \overline{m} = \int_a^b f(x) \, \mathrm{d}x$$

und $\forall a < \xi < b$ ist $f(x) = \underline{m}$. Damit gilt die Behauptung. Sei also $\underline{m} < \overline{m}$. Dann folgt aus der Stetigkeit von f, dass x_1 und x_2 in I existieren, sodass $f(x_1) = \underline{m}$ und $f(x_2) = \overline{m}$ mit $x_1 \neq x_2$. Außerdem folgt aus $\underline{m} < \overline{m}$, $f \in \mathcal{C}(I)$ auch

$$\underline{m} \le \int_a^b f(x) \, \mathrm{d}x < \overline{m}$$

Nach dem Zwischenwertsatz für stetige Funktionen folgt

$$\Rightarrow \exists \xi \text{ zwischen } x_1, x_2 \text{ mit } f(x) = \int_a^b f(x) dx$$

[30. Apr] Satz 1.3.3 (Verallgemeinerung des vorherigen Satzes). Es sei $I = [a, b], f \in \mathcal{C}(I), p \in \mathcal{R}(I)$. Falls $p \geq 0$ folgt $\exists \xi$ mit $a < \xi < b$ und

$$\int_{a}^{b} f(x)p(x) dx = f(\xi) \cdot \int_{a}^{b} p(x) dx$$

$$(1.3.1)$$

Beweis. Angenommen $\int_a^b p(x) dx = 0$

$$\Rightarrow \left| \int_{a}^{b} f(x)p(x) \, \mathrm{d}x \right| \le \sup_{x \in I} \int_{a}^{b} |p(x)| \, \mathrm{d}x = 0$$

Damit gilt (1.3.1) für alle $a < \xi < b$.

Ist $\int_a^b p(x) dx > 0$, dann definieren wir ein neues Mittel:

$$Mittel(f) := \frac{1}{\int_a^b p(x) dx} \cdot \int_a^b f(x)p(x) dx$$

Durch scharfes Hinschauen folgt dann die Aussage aus dem Beweis des vorherigen Satzes. \Box

2 [*] Das orientierte Riemann-Integral

Sei I = [a, b] und $a', b' \in I$ mit a' < b' und I' = [a', b']. Wenn $f \in \mathcal{R}(I)$, ist dann auch $f \in \mathcal{R}(I')$? Ist also die Einschränkung $\varphi \coloneqq f|_{I'} : I' \to \mathbb{R}$ $x \mapsto f(x)$ Riemann-integrierbar?

Satz 2.1.1. Ist $f \in \mathcal{R}(I)$ und $I' = [a', b'] \subseteq I = [a, b]$, so ist $f|_{I} \in \mathcal{R}(I)$:

Beweis. SCHRITT 1: Angenomen I' = [a, b'] (also a' = a). Dann folgt aus der Riemann-Integrierbarkeit von f und Satz 1.2.18, dass

$$\forall \varepsilon > 0 \; \exists \text{Zerlegung } Z \text{ von } I \colon \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$
 (1)

Sei $Z_0 := (a,b',b')$ eine Zerlegung und $Z_1 = Z_0 \vee Z$ die gemeinsame Verfeinerung mit $Z_1 = (x_0,x_1,\ldots,x_k)$. Dann gilt $x_0 = a,\ x_k = b$ und $\exists l \in \{1,\ldots,k-1\}: x_l = b'$. Dann ist $Z' = (x_0,x_1,\ldots,x_l)$ eine Zerlegung von I' mit zugehörigen Intervallen $I_j = [x_{j-1},x_j]$ für $(j=1,\ldots,l)$. Wir definieren $\varphi = f|_{I'}$. Dann folgt

$$\begin{split} \overline{m}_{j}(f) &= \sup_{I} f = \sup_{I_{j}} \varphi \quad \forall 1 \leq j \leq l \\ \underline{m}_{j}(f) &= \inf_{I} f = \inf_{I_{j}} \varphi \quad \forall 1 \leq j \leq l \\ \overline{S}_{Z}(\varphi) &= \underline{S}_{Z}(\varphi) = \sum_{j=1}^{l} \left(\overline{m}_{j}(\varphi) - \underline{m}_{j}(\varphi) \right) \cdot |I_{j}| \\ &\leq \sum_{j=1}^{k} \left(\overline{m}_{j}(f) - \underline{m}_{j}(f) \right) \cdot |I_{j}| = \overline{S}_{Z}(f) - \underline{S}_{Z}(f) < \varepsilon \end{split}$$

Damit gilt die Aussage für I' = [a, b'].

Schritt 2: Sei b' = b, a < a' < b. Dann kopiere den Beweis von Schritt 1.

SCHRITT 3: Sei $a < a' < b' < b : f \in \mathcal{R}([a,b])$. Dann folgt aus SCHRITT 1, dass $\varphi_1 \coloneqq f|_{[a,b']} \in \mathcal{R}([a,b'])$. Außerdem gilt nach SCHRITT 2, dass $\varphi_2 \coloneqq \varphi_1|_{[a',b']} \in \mathcal{R}([a',b'])$. Damit gilt $f|_{I'} \in \mathcal{R}(I)$.

Bemerkung 2.1.2. Sei $f \in \mathcal{R}(I)$ mit I = [a, b] und $I' = [a', b'] \subseteq I$. Dann folgt $f|_{I'} \in \mathcal{R}(I)$. Und wir definieren

$$\int_{a}^{b'} f(x) \, \mathrm{d}x \coloneqq \int_{a'}^{b'} \varphi(x) \, \mathrm{d}x$$

 $mit \varphi := f|_{[a',b']}.$

Satz 2.1.3. Sei I = [a, b] zerlegt in endlich viele Intervalle I_j j = 1, ..., m, die höchstens die Randpunkt gemeinsam haben. Also

$$I = \bigcup_{j=1}^{m} I_j \quad I_j = [a_j, b_j]$$

also $\operatorname{Int}(I_j) \cap \operatorname{Int}(I_k) = (a_j, b_j) \cap (a_k, b_k) = \emptyset$ für $j \neq k$. Dann gilt

$$\int_{I} f(x) dx = \sum_{j=1}^{m} \int_{I_{j}} f(x) dx$$

Beweis. Sei $(Z'_n)_n$ eine Folge von Zerlegungen von I mit $\Delta(Z'_n) \to 0$ für $n \to \infty$ sowie $Z_0 = \bigcup_j [a_j, b_j]$. Wir betrachten die Verfeinerung $Z_n := Z'_n \vee Z_n$ mit $\Delta(Z_n) \to 0$. Wir haben Zwischenpunkte ξ_n zu Z_n .

 Z_n lässt sich in Zerlegung Z_n^j von I_j aufteilen. Dann gilt auch, dass $\Delta(Z_n^j) \to 0 \ \forall j = 1, \dots, m$. Die Zwischenpunkte ξ_n lassen sich aufteilen in ξ_n von Z_n^j .

$$\Rightarrow S_{Z_n}(f,\xi_n) = \sum_{j=1}^k f(\xi_n^j) \cdot \left| I_j^n \right|$$

$$= \sum_{j=1}^m S_{Z_n}(f,\xi_j)$$

Definition 2.1.4 (Orientiertes Riemann-Integral). Sei $\alpha, \beta \in I = [a, b], f \in \mathcal{R}(I)$. Dann definieren wir

$$\int_{\alpha}^{\beta} f(x) dx := \int_{\alpha}^{\beta} \varphi(x) dx \qquad \varphi := f|_{[\alpha,\beta]}$$

$$\int_{\alpha}^{\beta} f(x) dx := -\int_{\beta}^{\alpha} f(x) dx \quad \text{falls } \alpha \neq \beta$$

$$\int_{\alpha}^{\beta} f(x) dx := 0 \quad \text{falls } \alpha = \beta$$

Satz 2.1.5. Sei $f \in \mathcal{R}(I)$ und $\alpha, \beta, \gamma \in I = [a, b]$. Dann gilt

$$\int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{\gamma} f(x) dx = \int_{\alpha}^{\gamma} f(x) dx$$
 (2.1.1)

Beweis. Sind mindestens 2 Punkte α, β, γ gleich, so stimmt die Aussage. Also seien o.B.d.A. α, β, γ paarweise verschieden. Dann ist (2.1.1) äquivalent zu

$$\int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{\gamma} f(x) dx + \int_{\gamma}^{\alpha} f(x) dx = 0$$

Diese Gleichung ist invariant unter zyklischem Vertauschen von α, β, γ . (Also zum Beispiel γ, α, β oder β, γ, α).

FALL 1: Sei $\alpha < \beta < \gamma$. Dann folgt die Aussage aus Satz 2.1.3.

FALL 2: Sei $\beta < \alpha < \gamma$. Dann folgt aus Fall 1, dass

$$\int_{\beta}^{\alpha} f(x) dx + \int_{\alpha}^{\gamma} f(x) dx = \int_{\beta}^{\gamma} f(x) dx$$
$$= -\int_{\alpha}^{\beta} f(x) dx + \int_{\alpha}^{\gamma} f(x) dx$$

Die restlichen Fälle ergeben sich durch zyklisches Vertauschen von Fall 1 oder zyklischem Vertauschen von Fall 2. Damit gilt die Gleichung für alle Fälle. \Box

2.2 Riemann-Integral für vektorraumwertige Funktionen

Sei $I = [a, b], f : I \to \mathbb{R}^d$.

$$x \mapsto f(x) = (f_1(x), f_2(x), \dots, f_d(x))$$

$$= \begin{pmatrix} f_1(x) \\ \vdots \\ f_j(x) \end{pmatrix}$$
(Komponentenfunktionen)

Definition 2.2.1.

(a) Sei $f: I \to \mathbb{C}$ $x \mapsto f(x) = \text{Re}(f(x)) + \text{Im}(f(x))$. Dann definieren wir

$$f \in \mathcal{B}(I, \mathbb{C}) := \{ f : I \to \mathbb{C} \mid \text{Re}(f), \text{Im}(f) \in \mathcal{B}(I) \}$$

$$\mathcal{R}(I, \mathbb{C}) := \{ f \in \mathcal{B}(I, \mathbb{C}) : \text{Re}(f), \text{Im}(f) \in R(I) \}$$

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \int_{a}^{b} \text{Re}(f(x)) \, \mathrm{d}x + i \cdot \int_{a}^{b} \text{Im}(f(x]) \, \mathrm{d}x$$

(b) Sei $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $\mathbb{K}^d = \mathbb{R}^d$ oder C^d . Dann ist eine Funktion $f \in \mathcal{B}(I, \mathbb{K}^d)$ Riemann-integrierbar, falls alle Komponentenfunktionen f_1, f_2, \dots, f_d R-integrierbar auf I sind.

$$\int_{a}^{b} f(x) dx := \begin{pmatrix} \int_{a}^{b} f_{1}(x) dx \\ \int_{a}^{b} f_{2}(x) dx \\ \vdots \\ \int_{a}^{b} f_{d}(x) dx \end{pmatrix}$$

Bemerkung 2.2.2. Das Konzept lässt sich auch auf Matrizen übertragen. Eine Funktion $f:I\to\mathbb{K}^{n\times m}$ ist R-integrierbar, falls jede Komponentenfunktoin R-integrierbar ist. Das Integral wird analog zu Vektoren definiert.

Bemerkung 2.2.3. Außerdem ist auch $\mathcal{R}(I,\mathbb{R}^d)$ ein reeller Vektorraum und $\mathcal{R}(I,\mathbb{C}^d)$ ein komplexer Vektorraum und

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

alle Rechenregeln und Sätze gelten entsprechend!

3 [*] Der Hauptsatz der Integral- und Differentialrechnung

3.1 Hauptsatz der Integralrechnung

Sei $I = [a, b], f \in \mathcal{C}(I)$. Wie rechnet man das Integral dann praktisch aus? Erinnerung: F ist eine Stammfunkton von f, falls F differenzierbar ist und F' = f.

Satz 3.1.1 (Hauptsatz der Differential und Integralrechnung). Sei $f \in \mathcal{C}(I)$. Dann ist für jedes $c \in [a, b]$ die Funktion

$$F(x) := \int_{0}^{x} f(t) dt \qquad (x \in I)$$

stetig differenzierbar und F' = f. Das heißt $F'(x) = f(x) \ \forall x \in I$.

Beweis. (Später)
$$\Box$$

Korollar 3.1.2. Sei $G \in \mathcal{C}^1(I)$ (stetig differenzierbaren Funktionen auf I) eine Stammfunktion von $f \in \mathcal{C}(I)$. Dann gilt

$$\int_{a}^{b} f(x) dx = G(b) - G(a) =: G|_{a}^{b} := [G]_{a}^{b} = [G(x)]_{x=a}^{x=b}$$

Beweis. Wir nehmen c=a aus Satz 3.1.1 und $F:I\to\mathbb{R}$ $x\mapsto F(x)=\int_a^x f(t)\,\mathrm{d}t$ erfüllt F'=f auf I nach Satz 3.1.1.

$$F(b) = \int_{a}^{b} f(t) dt$$
$$h(t) := F(t) - G(t)$$
$$h' = F' - G' = f - f = 0 \text{ auf } I$$

Damit ist h konstant, d.h. h(x) = k für alle $x \in I$

$$\Rightarrow F(x) - G(x) = k$$

$$k = F(a) - G(a) = -G(a)$$

$$F(x) - G(x) = -G(a)$$

$$F(x) = G(x) - G(a)$$

$$\Rightarrow F(b) = G(b) - G(a)$$

3. Mai] Beweis von Satz 3.1.1. Sei $F(x) = \int_c^x f(t) dt$ und $h \neq 0$. Wir wollen über den Differenzenquotient zeigen, dass F' = f. Wir berechnen zuerst den Zähler

$$F(x+h) - F(x) = \int_{0}^{x+h} f(t) dt - \int_{0}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt$$

Das können wir in den Differenzenquotienten einsetzen

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \cdot \int_{x}^{x+h} f(t) dt$$

$$\Rightarrow \frac{F(x+h) - F(x)}{h} - f(x) = \frac{1}{h} \cdot \int_{x}^{x+h} f(t) dt - f(x)$$

$$= \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt$$

$$= \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt$$

$$\Rightarrow \left| \frac{F(x+h) - F(x)}{h} - f(x) \right| \le \begin{cases} \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt & h > 0 \\ \frac{1}{-h} \int_{x}^{x+h} (f(t) - f(x)) dt & h < 0 \end{cases}$$

$$\le \frac{1}{|h|} \cdot \sup_{x < t < x+h} |f(t) - f(x)| \cdot |h|$$

Wir definieren $I_h(x) = [x, x+h]$, falls h > 0 und ansonsten $I_h(x) = [x+h, x]$

$$\leq \sup_{t \in I_h(x)} |f(t) - f(x)|$$

Da f stetig in x ist, folgt

$$\sup_{t \in I_h(x)} |f(x) - f(x)| \to 0 \text{ für } h \to 0$$

$$\Rightarrow \lim_{h \to 0} \left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = 0$$

$$\Leftrightarrow \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

Beispiel 3.1.3. Sei $p \in \mathbb{N}$ und $f(x) = x^p$, $x \in \mathbb{R}$. Dann hat f die Stammfunktion $F(x) = \frac{1}{p+1} \cdot x^{p+1}$. Damit folgt

$$\int_{a}^{b} x^{p} dx = \frac{1}{p+1} \cdot \left[b^{p+1} - a^{p+1} \right] \quad \forall a, b \in \mathbb{R}$$

Beispiel 3.1.4. Sei $p \in \mathbb{N}$, $p \ge 2$ und $f(x) = x^{-p}$, $x \ne 0$. Dann ist die Stammfunktion $F(x) = \frac{1}{1-p} \cdot x^{1-p}$. Damit folgt

$$\int_{a}^{b} x^{-p} dx = \frac{1}{1-p} \cdot \left[b^{1-p} - a^{1-p} \right] \quad \forall a, b < 0 \text{ oder } a, b > 0$$

Beispiel 3.1.5. Sei $\alpha \in \mathbb{R} \setminus \{-1\}$, $f(x) = x^{\alpha} = e^{\alpha \cdot \ln(x)}$, x > 0. Dann ist die Stammfunktion $F(x) = \frac{1}{\alpha+1} \cdot x^{\alpha+1}$. Damit gilt

$$\int_{a}^{b} x^{\alpha} dx = \frac{1}{\alpha + 1} \cdot \left[b^{\alpha + 1} - a^{\alpha + 1} \right] \quad \forall a, b > 0$$

Beispiel 3.1.6. Sei $f(x) = \frac{1}{x}$, $x \neq 0$. Dann ist die Stammfunktion $F(x) = \ln |x|$.

Beweis. Falls
$$x > 0$$
. Dann ist $F(x) = \ln x$ und $F'(x) = \frac{1}{x}$.
Falls $x < 0$. Dann ist $F(x) = \ln -x$ und $F'(x) = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$.

Damit gilt

$$\int_{a}^{b} \frac{1}{x} dx = \ln|b| - \ln|a| = \ln\left|\frac{b}{a}\right| \quad \forall a, b < 0 \text{ oder } a, b > 0$$

3 [*] Der Hauptsatz der Integral- und Differentialrechnung

Beispiel 3.1.7. Es gilt $(\sin x)' = \cos x$ und $(\cos x)' = -\sin x$. Damit gilt

$$\int_{a}^{b} \cos x \, dx = \sin b - \sin a$$
$$\int_{a}^{b} \sin x \, dx = [-\cos x]_{a}^{b} - \cos b + \cos a$$

Beispiel 3.1.8. Es gilt $\tan x = \frac{\sin x}{\cos x}$. $(|x| < \frac{\pi}{2})$. Damit folgt $(\tan x)' = \frac{1}{\cos^2 x}$. Das heißt

$$\int_0^{\varphi} \frac{1}{\cos^2 x} \, \mathrm{d}x = [\tan x]_0^{\varphi} = \tan(\varphi) \quad \forall |\varphi| < \frac{\pi}{2}$$

Beispiel 3.1.9. Wir wollen das Integral $\int_a^b \sqrt{1-x^2} \, dx$ berechnen. $\sqrt{1-x^2}$ hat die Stammfunktion $\phi(x) = \frac{1}{2} \left(\arcsin x + x \cdot \sqrt{1-x^2} \right)$, weil

$$\phi'(x) = \frac{1}{2} \left(\frac{1}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} + x \cdot \frac{1}{2\sqrt{1 - x^2}} (-2x) \right) \quad ((\arcsin(x))' = \frac{1}{\sqrt{1 - x^2}})$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} \right)$$

$$= \frac{1}{2} \left(\frac{1 - x^2}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} \right) = \frac{1}{2} \left(\sqrt{1 - x^2} + \sqrt{1 - x^2} \right) = \sqrt{1 - x^2}$$

$$\Rightarrow \int_a^b \sqrt{1 - x^2} \, \mathrm{d}x = \left[\frac{1}{2} \left(\arcsin x + x \cdot \sqrt{1 - x^2} \right) \right]_a^b - 1 \le a, b \le 1$$

Geometrisch gesehen können wir damit auch die Fläche der oberen Hälfte des Einheitskreises berechnen

$$\int_{-1}^{1} \sqrt{1 - x^2} \, \mathrm{d}x = \frac{1}{2} \cdot (\arcsin 1 + 0 - \arcsin -1 - 0) = \arcsin 1 = \frac{\pi}{2}$$

Bemerkung 3.1.10. Satz 3.1.1 gilt auch für Funktionen in $\mathbb C$ oder $\mathbb R^d$ bwz. $\mathbb C^d$. Wir nennen

$$\int f(x) \, \mathrm{d}x$$

die Gesamtheit aller Stammfunktionen zu f oder das unbestimmte Integral. Genauer gilt, wenn Φ eine Stammfunktion von f ist

$$\int f(x) \, \mathrm{d}x = \{ \Phi + k : k \text{ Konstante} \}$$

3.2 Integrationstechniken

Satz 3.2.1 (Partielle Integration). Seien $f, g \in C^1(I)$ (oder $C^1(I, \mathbb{C})$). Dann gilt

$$\int_{a}^{b} f'(x)g(x) dx = [f(x) \cdot g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$
$$= f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x) dx$$

Beweis. Wir wenden die Produktregel der Ableitung an. Es gilt (fg)' = f'g + fg'.

$$\int_{a}^{b} (fg)' \, \mathrm{d}x = \int_{a}^{b} f'g \, \mathrm{d}x + \int_{a}^{b} fg' \, \mathrm{d}x \tag{1}$$

Außerdem gilt

$$\int_{a}^{b} (fg)' dx = [fg]_{a}^{b} = [f(x)g(x)]_{a}^{b} = f(b)g(b) - f(a)g(a)$$
 (2)

Wir setzen (1) und (2) gleich

$$\int_{a}^{b} f'g \, \mathrm{d}x + \int_{a}^{b} fg' \, \mathrm{d}x = f(b)g(b) - f(a)g(a)$$

Beispiel 3.2.2 (Anwendung von partieller Integration).

$$\int \ln x \, dx = \int 1 \cdot \ln x \, dx = x \cdot \ln x - \int x \cdot \frac{1}{x} \, dx$$

$$= x \cdot \ln x - x$$

$$\int \sqrt{1 - x^2} \, dx = \int 1 \cdot \sqrt{1 - x^2} \, dx$$

$$= x \cdot \sqrt{1 - x^2} - \int x \cdot \frac{1}{\sqrt{1 - x^2}} \cdot (-2x) \, dx$$

$$= x \cdot \sqrt{1 - x^2} + \int \frac{x^2}{\sqrt{1 - x^2}} \, dx$$

$$= x \cdot \sqrt{1 - x^2} + \int \frac{1}{\sqrt{1 - x^2}} \, dx - \int \frac{1 - x^2}{\sqrt{1 - x^2}} \, dx$$

$$\Rightarrow 2 \int \sqrt{1 - x^2} \, dx = x \cdot \sqrt{1 - x^2} + \int \frac{1}{\sqrt{1 - x^2}} \, dx$$

$$= x \cdot \sqrt{1 - x^2} + \arcsin x$$

$$\Rightarrow \int \sqrt{1 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{1 - x^2} + \arcsin x \right)$$

Übung 3.2.3. Beweisen Sie analog zum vorherigen Beispiel mittels partieller Integration, dass $\int \sqrt{1+x^2} \, dx = \frac{1}{2} \left(x\sqrt{1+x^2} + \operatorname{arcsinh} x \right)$ und $\int \sqrt{x^2-1} \, dx = \frac{1}{2} \left(x\sqrt{1+x^2} + \operatorname{arccosh} x \right)$

Beispiel 3.2.4.

$$\int e^{ax} \cdot \sin(bx) \, dx = e^{ax} \cdot \left(-\frac{1}{b} \cos(bx) \right) - \int \frac{a}{b} e^{ax} \cos(bx) \, dx$$

Wir wenden nochmal partielle Integration an und erahlten

$$\begin{split} &= -\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}\left\{\int e^{4x}\cos(bx)\,\mathrm{d}x\right\} \\ &= -\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}\left\{\frac{1}{b}e^{ax}\sin(bx) - \frac{a}{b}\int e^{ax}\sin(bx)\,\mathrm{d}x\right\} \\ &\Rightarrow \left(1 + \frac{a^2}{b^2}\right)\int e^{ax}\sin(bx)\,\mathrm{d}x = -\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}e^{ax}\sin(bx) \\ &\Rightarrow \int e^{ax}\sin(bx)\,\mathrm{d}x = \frac{1}{a^2 + b^2}\left(e^{ax}\left(a\sin(bx) - b\cos(bx)\right)\right) + const. \end{split}$$

[07. Mai] **Beispiel 3.2.5.**

$$\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx = \frac{\pi}{4}$$

$$\int_0^{\frac{\pi}{2}} \sin^2(x) \, dx = \int_0^{\frac{\pi}{2}} \sin(x) \sin(x) \, dx$$

$$= \left[-\cos(x) \sin(x) \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) \cos(x) \, dx$$

$$= 0 - 0 + \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

Mit dem trigonometrischen Pythagoras wissen wir außerdem, dass

$$\frac{\pi}{2} = \int_0^{\frac{\pi}{2}} dx = \int_0^{\frac{\pi}{2}} 1 dx = \int_0^{\frac{\pi}{2}} \left(\cos^2(x) + \sin^2(x)\right) dx$$

$$= \int_0^{\frac{\pi}{2}} \cos^2(x) dx + \int_0^{\frac{\pi}{2}} \sin^2(x) dx$$

$$= 2 \int_0^{\frac{\pi}{2}} \cos^2(x) dx$$

$$\Rightarrow \int_0^{\frac{\pi}{2}} \cos^2(x) dx = \frac{\pi}{4}$$

Beispiel 3.2.6. Sei $n \in \mathbb{N}$ mit $n \geq 2$

$$\int \cos^{n}(x) dx = \int \cos(x) \cos^{n-1}(x) dx$$

$$= \sin(x) \cos^{n-1}(x) + \int \sin(x) (n-1) \cos^{n-2}(x) \sin(x) dx$$

$$= \sin(x) \cos^{n-1}(x) + (n-1) \int \underbrace{\sin^{2}(x)}_{=1-\cos^{2}(x)} \cos^{n-2} x dx$$

$$= \sin(x) \cos^{n-1}(x) + (n-1) \int \cos^{n-2} x dx - (n-1) \int \cos^{n}(x) dx$$

$$\int \cos^{n} x dx = \frac{1}{n} \sin(x) \cos^{n-1}(x) + \frac{n-1}{n} \int \cos^{n-2}(x) dx \qquad \text{(Rekursions formel)}$$

Analog lässt sich zeigen, dass $\int \sin^n(x)x \, dx = \frac{1}{n}\cos(x)\sin^{n-1}(x) + \frac{n-1}{n}\int \sin^{n-2}(x) \, dx$. Wir nutzen nun die Rekursionsformel, um einen Wert für alle n zu ermitteln

$$c_n := \int_0^{\frac{\pi}{2}} \cos^n(x) \, \mathrm{d}x$$

$$= \left[\frac{1}{n} \sin(x) \cos^{n-1}(x) \right]_0^{\frac{\pi}{2}} + \frac{n-1}{n} \int_0^{\frac{\pi}{2}} \cos^{n-2}(x) \, \mathrm{d}x$$

$$= \frac{n-1}{n} \underbrace{\int_0^{\frac{\pi}{2}} \cos^{n-2}(x) \, \mathrm{d}x}_{=c_{n-2}}$$

$$\Rightarrow c_n = \frac{n-1}{n} c_{n-2} \quad \forall n \ge 2$$

$$c_0 = \frac{\pi}{2}$$

$$c_{1} = \int_{0}^{\frac{\pi}{2}} \cos(x) \, dx = [\sin(x)]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1$$

$$c_{n} = \frac{n-1}{n} \cdot c_{n-2} = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot c_{n-4}$$

$$= \frac{n-1}{n} \cdot \dots \cdot \frac{n-j-1}{n-j} \cdot c_{n-2j-2} \quad \forall j : n-2j-2 \ge 1$$

Damit folgt für $k \in \mathbb{N}$

$$c_{2k} = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{3}{4} \cdot \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

$$= \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$c_{2k+1} = \frac{2k}{2k+1} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{2\cdot 2}{5} \cdot \int_0^{\frac{\pi}{2}} \cos^3(x) \, dx$$

$$= \frac{2k}{2k+1} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{2\cdot 2}{5} \cdot \frac{2}{3}$$

Satz 3.2.7 (Wallisches Produkt). Sei $n \in \mathbb{N}$ und

$$W_n := \frac{2 \cdot 2}{1 \cdot 3} \cdot \frac{4 \cdot 4}{3 \cdot 5} \cdot \ldots \cdot \frac{2n \cdot 2n}{(2n-1) \cdot (2n+1)}$$

Dann gilt

$$\lim_{n \to \infty} W_n = \frac{\pi}{2}$$

Beweis. Aus der Definition von c_n aus dem vorherigen Beispiel ergibt sich

$$W_n = \frac{\pi}{2} \cdot \frac{c_{2n+1}}{c_{2n}}$$

Für $x \in \left[0, \frac{\pi}{2}\right]$ ist $0 \le \cos(x) \le 1$. Damit folgt $\cos^{2n}(x) \le \cos^{2n-1}(x) \le \cos^{2n-1}(x)$. Also gilt

$$c_{2n} = \int_0^{\frac{\pi}{2}} \cos^{2n}(x) \, \mathrm{d}x \le \int_0^{\frac{\pi}{2}} \cos^{2n-1}(x) \, \mathrm{d}x \le \int_0^{\frac{\pi}{2}} \cos^{2n-2} \, \mathrm{d}x$$

$$\Rightarrow c_{2n} \le c_{2n-1} \le c_{2n-2} \qquad \forall n \in \mathbb{N}$$

Nach Def. gilt

$$c_{2n} = \frac{\pi}{2} \cdot \prod_{j=1}^{k} \frac{2j-1}{2j}$$

$$\Rightarrow \frac{c_{2n+2}}{c_{2n}} = \frac{\frac{\pi}{2} \cdot \prod_{j=1}^{n+1} \frac{2j-1}{2j}}{\frac{\pi}{2} \cdot \prod_{j=1}^{n} \frac{2j-1}{2j}} = \frac{2(n+1)-1}{2(n+1)} = \frac{2n+1}{2n+2} \to 1 \text{ für } n \to \infty$$

Auch

$$1 = \frac{c_{2n}}{c_{2n}} \ge \left| \frac{c_{2n+1}}{c_{2n}} \right| \ge \frac{c_{2n+2}}{c_{2n}} = \frac{2n+1}{2n+2}$$

$$\Rightarrow \lim_{n \to \infty} \frac{c_{2n+1}}{c_{2n}} = 1$$

Außerdem

$$W_{n} = \frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \dots \cdot (2n-2)^{2}}{3^{2} \cdot 5^{2} \cdot 7^{2} \cdot \dots \cdot (2n-1)^{2}} \cdot 2n \cdot \frac{2n}{2n+1}$$

$$\Rightarrow \sqrt{W_{n}} = \frac{2 \cdot 4 \cdot \dots \cdot (2n-2)}{3 \cdot 5 \cdot \dots \cdot (2n-1)} \cdot \sqrt{2n} \cdot \sqrt{\frac{2n}{2n+1}}$$

$$\Rightarrow \sqrt{\frac{\pi}{2}} = \lim_{n \to \infty} \frac{2 \cdot 4 \cdot \dots \cdot (2n-2)}{3 \cdot 5 \cdot \dots \cdot (2n-1)} \cdot \sqrt{2n}$$

$$= \lim_{n \to \infty} \frac{2^{2} \cdot 4^{2} \cdot \dots \cdot (2n-2)^{2}}{2 \cdot 3 \cdot \dots \cdot (2n-2) \cdot (2n-1)} \cdot \sqrt{2n}$$

$$= \frac{2^{2} \cdot 4^{2} \cdot \dots \cdot (2n-2)^{2} \cdot (2n)^{2}}{(2n-1)! \cdot 2n \cdot \sqrt{2n}}$$

$$= \frac{2^{2n} \cdot (n!)^{2}}{(2n)! \cdot \sqrt{2n}} = \frac{2^{2n}}{\binom{2n}{n} \sqrt{n}} \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n}}{\binom{2n}{n} \sqrt{n}}$$

Satz 3.2.8 (Substitutionsregel). Seien I = [a, b] und I^* kompakte Intervalle und $f \in \mathcal{C}(I, \mathbb{C})$, $\varphi \in \mathcal{C}^1(I^*, \mathbb{R})$ sowie $\varphi(I^*) \subseteq I$. Dann gilt für $\alpha, \beta \in I^*$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, \mathrm{d}x = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) \, \mathrm{d}t$$

Beweis. Sei F die Stammfunktion von f ($F'(x) = f(x) \, \forall x \in I$). Wir definieren $h(t) := F(\varphi(t)) \Rightarrow h \in \mathcal{C}^1(I^*, \mathbb{C})$ (Kettenregel).

$$h'(t) = \frac{\mathrm{d}}{\mathrm{d}t}h(t) = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t)$$

$$\int_{\alpha}^{\beta} h'(t) \, \mathrm{d}t = [h(t)]_{\alpha}^{\beta} = h(\beta) - h(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} F'(x) \, \mathrm{d}x = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, \mathrm{d}x \qquad \Box$$

ERSTE LESART: $\int_{\alpha}^{\beta} g(t) dt$ ausrechnen. Annahme: Es existiert eine Substitution $x = \varphi(t)$ und f(x), sodass $g(t) = f(\varphi(t)) \cdot \varphi'(t)$ ist.

$$\Rightarrow \int_{\alpha}^{\beta} g(t) dt = \int_{a}^{b} f(x) dx \qquad (b = \varphi(\beta), a = \varphi(\alpha))$$

Beispiel 3.2.9. Wir betrachten des Integral $\int_{\alpha}^{\beta} g(t+c) dt$. Wir definieren $\varphi(t) = t+c$ und f(x) = g(x). Dann gilt $\varphi'(t) = 1$

$$\Rightarrow \int_{\alpha}^{\beta} g(t+c) dt = \int_{\alpha}^{\beta} g(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} g(x) dx$$

$$= \int_{a+c}^{b+c} g(x) dx \qquad (Translation)$$

Beispiel 3.2.10. Wir betrachten $\int_a^b g(t) \frac{dt}{t}$ mit a, b > 0 und definieren $\varphi(t) = \ln(t), \ \varphi'(t) = \frac{1}{t}$.

$$g(t) \cdot \frac{1}{t} = g(t) \cdot \varphi'(t)$$

$$= g(e^{\varphi(t)}) \cdot \varphi'(t)$$

$$f'(x) = g(e^{x})$$

$$\Rightarrow \int_{a}^{b} g(t) \frac{dt}{t} = \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{\varphi(\alpha)}^{\varphi(beta)} f(x) dx = \int_{\ln a}^{\ln b} f(x) dx$$

$$= \int_{\ln a}^{\ln b} g(e^{x}) dx$$

Beispiel 3.2.11. Wir betrachten $\int_0^1 (1+t^2)^n \cdot (t \, dx. \, t = \frac{1}{2} \frac{d}{dt} (1+t^2). (1+t^2)^n = \frac{1}{2} (1+t^2)^n \frac{d}{dt} (1+t^2).$ $\varphi(t) = 1+t^2, \, f(x) = \frac{1}{2} x^n.$ Dann gilt $(1+t^2)^n = \frac{1}{2} f(\varphi(t)) \cdot \varphi'(t).$

[10. Mai] **3.2.12.** Ziel: Berechne $\int_a^b f(x) dx$. Wir führen eine Variablentransformation durch: $x = \varphi(t)$, $\alpha \le t \le \beta$.

Dazu benötigt man $\varphi: [\alpha, \beta] \to [a, b]$ ist invertierbar. (Also zum Beispiel $\varphi' > 0$ oder $\varphi' < 0$ auf ganz $[\alpha, \beta]$)

Notation 3.2.13 (Leibnitz'sche Schreibweise). $x = \varphi(t)$ $\frac{dx}{dt} = \varphi'(t)$ (informell). dx "=" $\varphi'(t) dt$

$$\Rightarrow \int f(x) dx, = \int f(\varphi(t)) \cdot \varphi'(t) dt$$

$$\int_0^1 \sqrt{r^2 - x^2} dx = \int_0^{\frac{\pi}{2}} \sqrt{r^2 - r^2 \sin^2(t)} \cdot \cos(t) dt \qquad (\frac{dx}{dt} = r \cdot \cos t)$$

$$= r^2 \cdot \frac{\pi}{4}$$

4 [*] Uneigentliche Integrale

Bisher haben wir immer nur Integrale auf kompakten Intervalle I berechnet und dabei waren alle Funktionen $f \in \mathcal{R}(I)$ insbesondere beschränkt.

Frage: Was ist $\int_0^1 \frac{1}{\sqrt{x}} dx$? Was ist $\int_0^\infty e^{-t} dt$?

$$\int_{a}^{b} e^{-t} dt = \left[-e^{-t} \right]_{a}^{b} = e^{-0} - e^{-b} = 1 - e^{-b} = 1 - \frac{1}{e^{b}} \to 1 \text{ für } b \to \infty$$

4.1 Uneigentliche Integrale: Fall I

Es sei $I = [a, \infty), f : I \to \mathbb{R}$ und $f \in \mathcal{R}([a, b]) \ \forall a < b < \infty$ sowie $F(b) = \int_a^b f(x) \, \mathrm{d}x$.

Definition 4.1.1 (Fall). Wir definieren

$$\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} F(b) = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

sofern der Grenzwert existiert nennen wir das das uneigentliche Integral von f über $[a, \infty)$. Wenn der Grenzwert existiert, sagen wir das Integral konvergiert.

Divergiert das Integral und gilt $F(b) \to \infty$ für $b \to \infty$ (oder $F(b) \to -\infty$ für $b \to \infty$), so nennen wir das Integral bestimmt divergent und schreiben

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = +\infty$$

oder

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = -\infty$$

Satz 4.1.2. Das Integral $\int_a^\infty f(x) \, \mathrm{d}x$ existiert genau dann, wenn

$$\forall \varepsilon > 0 \ \exists R \ge a \colon |F(b_2) - F(b_1)| = \left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right| < \varepsilon \quad \forall b_1, b_2 \ge R$$

Beweis. Wir wollen die Existenz von $\lim_{b\to\infty} F(b)$ für $F(b)=\int_a^b f(x)\,\mathrm{d}x$. Dann folgt der Satz aus dem Cauchy-Kriterium für Grenzwerte.

Definition 4.1.3 (Absolut konvergente uneigentliche Integrale). Das Integral

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

heißt absolut konvergent, falls

$$\int_{a}^{\infty} |f(x)| \, \mathrm{d}x$$

konvergiert.

Satz 4.1.4. Ist das Integral $\int_a^\infty f(x) \, \mathrm{d}x$ absolut konvergent, so ist es auch konvergent. Das heißt ist $\int_a^\infty |f(x)| \, \mathrm{d}x < \infty$, so konvergiert auch $\int_a^\infty f(x) \, \mathrm{d}x$.

Beweis. Wir setzen $G(b) = \int_a^b |f(x)| dx$ und $F(b) = \int_a^b f(x) dx$. Wir nehmen an, dass $\lim_{b \to \infty} G(b)$ existiert, das heißt

$$\forall \varepsilon > 0 \; \exists R \ge a \colon |G(b_2) - G(b_1)| < \varepsilon \quad \forall b_1, b_2 \ge R$$

$$\Rightarrow |F(b_2) - F(b_1)| = \left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right|$$

$$\leq \int_{b_1}^{b_2} |f(x)| \, \mathrm{d}x = G(b_2) - G(b_1)$$

Damit folgt die Behauptung aus Satz 4.1.2.

Satz 4.1.5. Sei $\varphi:[a,\infty)\to[0,\infty)$ mit

$$\int_{a}^{\infty} \varphi(x) \, \mathrm{d}x < \infty$$

une es existiert ein $R_0 \ge 0$, sodass

$$|f(x)| \le \varphi(x) \quad \forall x \ge R_0$$

Dann ist

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

absolut konvergent.

Beweis. Für $b_2 \ge b_1 \ge R_0$ gilt

$$|F(b_2) - F(b_1)| = \left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right|$$

$$\leq \int_{b_1}^{b_2} |f(x)| \, \mathrm{d}x < \int_{b_1}^{b_2} \varphi(x) \, \mathrm{d}x$$

$$\leq \int_{b_1}^{b_2} \varphi(x) \, \mathrm{d}x \to 0 \text{ für } b_1 \to \infty$$

Beispiel 4.1.6. Das Integral

$$\int_{a}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

ist konvergent, aber nicht absolut konvergent. Wir definieren

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

Damit ist f stetig auf $(-\infty, \infty)$ und damit folgt $f \in \mathcal{R}([a, b]) \ \forall a, b \in \mathbb{R}$. Insbesondere existiert

$$\int_0^1 \frac{\sin x}{x} \, \mathrm{d}x$$

4 [*] Uneigentliche Integrale

$$\int_a^b \frac{\sin x}{x} dx = \int_a^1 \frac{\sin x}{x} dx + \int_1^b \frac{\sin x}{x} dx$$
$$\int_1^b \frac{\sin x}{x} dx = \left[-\cos + \frac{1}{x} \right]_1^b - \int_1^b \frac{\cos x}{x^2} dx$$
$$= \cos 1 - \frac{\cos b}{b} - \int_1^b \frac{\cos x}{x^2} dx$$

Wir definieren $\varphi(x) = \frac{1}{x^2}$ mit

$$\int_{1}^{b} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{b} = 1 - \frac{1}{b} \to 1$$

Außerdem gilt

$$\left| \frac{\cos x}{x^2} \right| \le \frac{1}{x^2}$$

Damit ist das Integral nach dem Majorantenkriterium konvergent. Um einzusehen, dass es nicht absolut konvergent ist, betrachten wir für $N \in \mathbb{N}$

$$\int_{N\pi}^{(N+1)\pi} \left| \frac{\sin x}{\pi} \right| dx = \int_{N\pi}^{(N+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \frac{1}{\pi (N+1)} \cdot \int_{N\pi}^{(N+1)\pi} |\sin x| dx$$

$$\Rightarrow \int_{0}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx = \sum_{n=0}^{k} \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{n=0}^{k} \frac{2}{\pi (n+1)} = \frac{2}{\pi} \sum_{n=0}^{k} \frac{1}{n+1} \to \infty$$

Bemerkung 4.1.7. Analog zu $[a, \infty)$ wollen wir auch die Integrale in $(-\infty, b]$ betrachten. Wir setzen

$$F(a) = \int_{a}^{b} f(x) dx$$
$$\int_{-\infty}^{b} f(x) dx := \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

sofern der Grenzwert existiert. Alle Aussagen für $[a, \infty)$ gelten analog auch für $(-\infty, b]$.

Definition 4.1.8. Sei $f:(-\infty,\infty)\to\mathbb{R}$ und $f\in\mathcal{R}([a,b])$ $\forall a,b\in\mathbb{R}$. Dann nehmen wir $c\in\mathbb{R}$ beliebig und definieren, dass

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

konvergiert, falls

$$\int_{-\infty}^{c} f(x) d \text{ und } \int_{c}^{\infty} f(x) dx$$

beide konvergieren. Und setzen

$$\int_{-\infty}^{\infty} f(x) dx := \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

Übung 4.1.9. Weisen Sie nach, dass sowohl die Konvergenz, als auch der Wert des Integrals in der vorherigen Definition unabhängig von der Wahl von c ist.

Bemerkung 4.1.10. Es ist allerdings zu beachten, dass

$$\lim_{a \to \infty} \int_{a}^{c} f(x) dx + \lim_{b \to \infty} \int_{c}^{b} dx \neq \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

Das heißt die Integrale müssen tatsächlich getrennt betrachtet werden. Zum Beispiel bei der Funktion f(x) = x geht $\int_{-R}^{R} x \, dx \to 0$, aber ist eigentlich nicht auf $(-\infty, \infty)$ integrierbar, da sich bei der Trennung in zwei Integrale kein Grenzwert ergibt.

4.2 Uneigentliche Integrale: Fall II

Es sei I = [a, b) (oder I = (a, b]) und $f : I \to \mathbb{R}$ unbeschränkt bei x = a (oder x = b). Außerdem $f \in \mathcal{R}([a, c]) \ \forall a < c < b$ (oder $f \in \mathcal{R}([c, b]) \ \forall a < c < b$)

Definition 4.2.1. Existiert

$$\lim_{c \to b^{-}} \int_{a}^{c} f(x) dx \quad \left(\text{oder } \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx \right)$$

so setzen wir

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx \quad \left(\text{oder } \int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx \right)$$

und sagen

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

konvergiert.

Satz 4.2.2. Ist $|f(x)| \le \varphi(x) \ \forall x \in [a,b)$ (oder $\forall x \in (a,b]$) und konvergiert $\int_a^b \varphi(x) \, \mathrm{d}x$, so konvergiert auch $\int_a^b f(x) \, \mathrm{d}x$

Beispiel 4.2.3. Sei $f:(0,1]\to\mathbb{R},\ x\mapsto \frac{1}{\sqrt{x}}$. Dann gilt $F(x)=2\sqrt{x}$

$$\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = \left[2\sqrt{x} \right]_c^1 = 2 - 2\sqrt{c} \to 2$$

4.3 Uneigentliche Integrale Fall III

[14. Mai] f hat eine Singularität in ξ im Inneren von [a, b].

Beispiel 4.3.1.
$$f(x) = \frac{1}{|\sqrt{x}|}$$
 auf $[-1,0) \cup (0,1]$.

Definition 4.3.2. Wir sagen, dass

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

existiert/konvergiert, falls die uneigentlichen Integrale

$$\int_{\xi}^{b} f(x) dx \text{ und } \int_{a}^{\xi} f(x) dx$$

konvergieren. Wir setzen

$$\int_{a}^{b} f(x) dx := \int_{a}^{\xi} f(x) dx + \int_{\xi}^{b} f(x) dx$$
 (4.3.1)

Bemerkung 4.3.3. (4.3.1) ist stärker als die Existenz von

$$\lim_{\varepsilon \searrow} \int_{I_{\varepsilon}} f(x) \, \mathrm{d}x$$

mit I = [a, b] und $I_{\varepsilon} := I \setminus (\xi - \varepsilon, \xi + \varepsilon) = [a, \xi - \varepsilon] \cup [\xi + \varepsilon, b]$. (Cauchyscher Hauptwert).

Beispiel 4.3.4. Sei $f(x) = \frac{1}{x^2}$, I = [-1, 1]. Dann existiert der Cauchysche Hauptwert, aber nicht (4.3.1).

4.4 Uneigentliche Integrale Fall IV

Definition 4.4.1. Man hat Singularitäten in \mathbb{R} für f oder/und $b=+\infty$, $a=-\infty$. Dann zerlege $[a,\infty)$ oder $(-\infty,b]$ oder $(-\infty,\infty)$ in endlich viele Intervalle, wobei die Singularitäten die Randpunkte sind (oder $-\infty,\infty$). Dann existiert das Integral, falls die endlich vielen uneigentlichen Integrale existieren. Dann nehme Summe aller dieser uneigentlichen Integrale

Satz 4.4.2 (Integralvergleichskriterium). Sei $f:[1,\infty)\to\mathbb{R}$ monoton fallend. Dann gilt

$$\sum_{n=1}^{\infty} f(n) \text{ konvergiert } \Leftrightarrow \int_{1}^{\infty} f(x) \, \mathrm{d}x \text{ existiert}$$

Beweis. Siehe Saalübung.

Beispiel 4.4.3. Es sei $f(x) = x^{-p}$ mit $p \neq 1$. Dann ist $F(x) = \frac{1}{1-p}x^{1-p}$ für F' = f.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \left[\frac{1}{1-p} x^{1-p} \right]_{1}^{R}$$

existiert nach Satz 4.4.2 für p > 1.

Beispiel 4.4.4. $f(x) = \log_2(x) = \log(\log(x)), x > 1$

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_2(x) = \frac{1}{\log(x)} \cdot \frac{1}{x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\log_2(x)\right)^{1-s} = \frac{1-s}{(\log x)^s} \cdot \frac{1}{x}$$

$$\Rightarrow \sum_{r=2}^{\infty} \frac{1}{n\left(\log^s n\right)^s} \text{ konvergient } \Leftrightarrow s > 1$$

Beispiel 4.4.5 (Gamma-Funktion).

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t \tag{x > 0}$$

(a)

$$t^{x-1}e^{-t} \le t^{x-1} \quad \forall t > 0$$

(b)

$$t^{x-1}e^{-t} = t^{x-1}e^{-\frac{t}{2}}e^{-\frac{t}{2}}$$

$$\leq c_x e^{-\frac{t}{2}} \quad \forall t \geq 1 \qquad (c_x := \sup_{t \geq 1} t^{x-1}e^{-\frac{t}{2}})$$

 $t^{x-1}e^{-\frac{t}{2}}$ ist beschränkt auf $[1,\infty)$

$$\int_{0}^{1} t^{x-1} e^{-t} dt \leq \int_{0}^{1} t^{x-1} dt$$

$$= \lim_{c \to \infty} \left[\frac{1}{x} t^{x} \right]_{c}^{1}$$

$$= \lim_{c \to 0^{+}} \frac{1}{x} (1 - e^{x})$$

$$0 \leq \int_{1}^{\infty} t^{x-1} e^{-t} dt$$

$$= \lim_{b \to \infty} \int_{a}^{b} t^{x-1} e^{-t} dt$$

$$\leq c_{x} e^{-\frac{t}{2}}$$

$$\leq \lim_{b \to \infty} c_{x} \int_{a}^{b} e^{-\frac{t}{2}} dt < \infty$$

$$\int_{a}^{b} e^{-\frac{t}{2}} = \left[-2e^{-\frac{t}{2}} \right]_{1}^{b} = 2 \left(e^{-\frac{1}{2}} - e^{-\frac{b}{2}} \right) \to 2e^{-\frac{1}{2}}$$

Satz 4.4.6 (Funktionalgleichung der Γ -Funktion). Es gilt $\Gamma(n+1)=n!$ und $x\Gamma(x)=\Gamma(x+1)$ für alle x>0.

Beweis.

$$\Gamma(x+1) = \int_0^\infty t^{(x+1)-1} e^{-t} dt$$
$$= \int_0^\infty t^x e^{-t} dt$$

Wir integrieren partiell. Sei $0 < a < b < \infty$

$$\int_{a}^{b} t^{x}e^{-t} dt = \left[-t^{x}e^{-t}\right]_{a}^{b} + \int_{a}^{b} xt^{x-1}e^{-t} dt$$

$$= a^{x}e^{-b} - b^{x}e^{-b} + x \int_{a}^{b} t^{x-1}e^{-t} dt$$

$$\Rightarrow \int_{a}^{\infty} t^{x}e^{-t} dt = \lim_{b \to \infty} \int_{a}^{b} t^{x}e^{-t} dt$$

$$= a^{x}e^{-a} + x \int_{a}^{\infty} t^{x-1}e^{-t} dt$$

$$\Rightarrow \Gamma(x+1) = \int_{0}^{\infty} t^{x}e^{-t} dx = x\Gamma(x)$$

Damit folgt die zweite Behauptung. Wir betrachten außerdem

$$\Gamma(n+1) = n\Gamma(n) = n\Gamma(n-1+1)$$

$$= n(n-1)\Gamma(n-1) = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1 \cdot \Gamma(1)$$

$$= n!$$

Anwendung 4.4.7. Nach Substitution mit $t^2 = x$ gilt $\frac{dt}{dx} = \frac{1}{2\sqrt{x}}$

$$\int_a^{\xi} e^{-t^2} dt = \int e^{-x} \frac{1}{2} \sqrt{x} dx$$

$4\ [*]\ Uneigentliche\ Integrale$

$$= \frac{1}{2} \int_0^\infty \frac{1}{\sqrt{x}} e^{-x} dx$$
$$= \frac{1}{2} \int_0^b s^{-\frac{1}{2}} e^{-s} ds$$

für $b \to \infty$ und $a \searrow 0$

$$\Rightarrow 2 \int_0^\infty e^{-t^2} dx = \int_0^\infty s^{-\frac{1}{2}} e^{-s} ds$$
$$= \Gamma\left(\frac{1}{2}\right)$$

Berechnung von $\Gamma\!\left(\frac{1}{2}\right)$ später.

5 [*] Integrale und gleichmäßige Konvergenz

Sei I = [a, b] und $f : I \to \mathbb{R}$, $f_n : I \to \mathbb{R}$. Wenn die Funktionenfolge $(f_n)_n$ "irgendwie" gegen f konvergiert. Wann gilt dann

$$\int_a^b f_n(x) dx \to \int_a^b f(x) dx \text{ für } n \to \infty ?$$

Wir werden in diesem Kapitel einsehen, dass punktweise Konvergenz dafür nicht ausreichend ist, sondern wir gleichmäßige Konvergenz fordern müssen.

Beispiel 5.1.1 (Punktweise Konvergenz). Sei $f_n:[0,1]\to\mathbb{R}$ mit

$$f_n(x) := \begin{cases} n & 0 < x < \frac{1}{n} \\ 0 & \text{sonst} \end{cases}$$

 $(f_n)_n$ konvergiert punktweise gegen die Nullfunktion $(f_n(x) \to 0$ für $n \to \infty \ \forall x \in [0,1])$. Außerdem gilt für ein $n \in \mathbb{N}$

$$\int_0^1 f_n(x) \, \mathrm{d}x = \int_0^{\frac{1}{n}} n \, \mathrm{d}x = \frac{n}{n} = 1$$

Das Integral über die Nullfunktion ist aber 0. Das heißt punktweise Konvergenz ist kein ausreichendes Kriterium, damit die Integrale gleich sind.

Satz 5.1.2. Seien $f, f_n : [a, b] \to \mathbb{R}$ (oder \mathbb{C}, \dots) und $n \in \mathbb{N}$. Außerdem konvergiere $(f_n)_n$ gleichmäßig gegen f auf [a, b] und $f_n \in \mathcal{R}([a, b])$. Dann gilt $f \in \mathcal{R}(I)$ und

$$\lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x = \int_a^b \lim_{n \to \infty} f_n(x) \, \mathrm{d}x$$

Beweis. Sei $\varepsilon > 0$ und $N \in \mathbb{N}$ groß genug. Dann gilt

$$||f - f_n||_{\infty} = \sup_{a \le x \le b} |f(x) - f_n(x)| < \frac{\varepsilon}{4 \cdot (b - a)}$$

$$\Rightarrow f_n(x) - \frac{\varepsilon}{4 \cdot (b - a)} \le f(x) \le f_n(x) + \frac{\varepsilon}{4 \cdot (b - a)} \quad \forall n \ge N$$
(1)

Halte N fest und nehme Zerlegung Z von I=[a,b] mit $\overline{S}_Z(f_N)-\underline{S}_Z(f_N)<\frac{\varepsilon}{2}$. Dann gilt jeweils nach (1)

$$\begin{split} \overline{S}_{Z}(f) &\leq \overline{S}_{Z}\bigg(f_{N} + \frac{\varepsilon}{4\cdot(b-a)}\bigg) = \overline{S}_{Z}(f_{N}) + \overline{S}_{Z}\bigg(\frac{\varepsilon}{4\cdot(b-a)}\bigg) = \overline{S}_{Z}(f_{N}) + \frac{\varepsilon}{4} \\ \underline{S}_{Z}(f) &\geq \underline{S}_{Z}\bigg(f_{N} - \frac{\varepsilon}{4\cdot(b-a)}\bigg) = \underline{S}_{Z}(f_{N}) - \underline{S}_{Z}\bigg(\frac{\varepsilon}{4\cdot(b-a)}\bigg) = \underline{S}_{Z}(f_{N}) - \frac{\varepsilon}{4} \\ \Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) &\leq \overline{S}_{Z}(f_{N}) + \frac{\varepsilon}{4} - \bigg(\underline{S}_{Z}(f_{N}) - \frac{\varepsilon}{4}\bigg) \\ &= \overline{S}_{Z}(f_{N}) - \underline{S}_{Z}(f_{N}) + \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Damit folgt $f \in \mathcal{R}(I)$. Wir beweisen die Gleichheit der Integrale.

5 [*] Integrale und gleichmäßige Konvergenz

$$\begin{split} \int_a^b f_n(x) \, \mathrm{d}x - \frac{\varepsilon}{4} &= \int_a^b \left(f_n(x) - \frac{\varepsilon}{4 \cdot (b-a)} \right) \mathrm{d}x \\ &\leq \int_a^b f(x) \, \mathrm{d}x \leq \int_a^b \left(f_n(x) + \frac{\varepsilon}{4 \cdot (b-a)} \right) \mathrm{d}x \\ &= \int_a^b f_n(x) \, \mathrm{d}x + \frac{\varepsilon}{4} \quad \forall n \geq N \\ \Rightarrow \limsup_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x - \frac{\varepsilon}{4} \leq \int_a^b f(x) \, \mathrm{d}x \leq \liminf_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x + \frac{\varepsilon}{4} \quad \forall \varepsilon > 0 \\ \Rightarrow \limsup_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x \leq \int_a^b f(x) \, \mathrm{d}x \leq \lim\inf_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x \end{split}$$

[17. Mai] Beispiel 5.1.3 (Integral von Potenzreihen). Wir betrachten die Potenzreihe

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

mit Konvergenzradius R > 0 und

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}}$$

Wir erhalten also eine Funktion $f:(x_0-R,x_0+R)\to\mathbb{R}$ (oder \mathbb{C}). Die Stammfunktion zu $a_n\,(x-x_0)^n$ ist $\frac{a_n}{n+1}\,(x-x_0)^{n+1}$. Wir definieren also eine Funktion F analog

$$F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1} = \sum_{n=1}^{\infty} c_n (x - x_0)^n$$

$$\lim \sup_{n \to \infty} (|c_n|)^{\frac{1}{n}} = \lim \sup_{n \to \infty} \left| \frac{a_{n-1}}{n} \right|^{\frac{1}{n}}$$

$$(c_n := \frac{a_{n-1}}{n})$$

Es gilt

$$\left(\frac{|a_{n-1}|}{n}\right)^{\frac{1}{n}} = \frac{1}{n^{\frac{1}{n}}} \left(|a_{n-1}|^{\frac{1}{n-1}}\right)^{\frac{n-1}{n}}$$

$$\Rightarrow \limsup_{n \to \infty} |c_n|^{\frac{1}{n}} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$$

Das heißt F hat denselben Konvergenzradius wie f. Unsere Hoffnung ist also, dass F eine Stammfunktion von f ist oder

$$\int_{x_0}^x f(t) \, \mathrm{d}t = F(x)$$

Das gilt tatsächlich und lässt sich folgendermaßen zeigen. Wir definieren eine Funktionenfolge

$$f_n(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$$

Wir wissen $\forall \delta > 0$ klein genug (konkret heißt das $\delta < R$) konvergiert f_n gleichmäßig gegen f auf dem Intervall $[x_0 - R + \delta, x_0 + R - \delta]$. Dann gilt nach Satz 5.1.2 für $x \in [x_0 - R + \delta, x_0 + R - \delta]$ fest

$$\int_{x_0}^x f(t) dt = \lim_{n \to \infty} \int_{x_0}^x f_n(t) dt$$

$$= \lim_{n \to \infty} \int_{x_0}^{x} \sum_{k=0}^{n} \frac{a_k}{k+1} (x - x_0)^{k+1} dx = F(x)$$

$$\int_{x_0}^{x} f_n(t) dt = \int_{x_0}^{x} \sum_{k=0}^{n} a_k (x - x_0)^k dt = \sum_{k=0}^{n} a_k \int_{x_0}^{x} (t - x_0)^k dt$$

$$= \left[\frac{1}{k+1} (t - x_0)^{k-1} \right]_{x_0}^{x} = \frac{1}{k+1} xk + 1$$

Satz 5.1.4. Sei I = [a, b] sowie $f_n : I \to \mathbb{R}$ (oder \mathbb{C}) und die folgenden Voraussetzungen gelten

- (i) $\exists x_0 \in I : f_n(x_0)$ konvergiert gegen $f(x_0)$
- (ii) $(f_n')_n$ konvergiert gleichmäßig gegen eine Funktion g
- (iii) f'_n ist stetig für alle $n \in \mathbb{N}$

Dann gilt $f(x) := \lim_{n \to \infty} f_n(x) \ \forall x \in I \text{ und } f \text{ ist stetig differenzierbar mit Ableitung } f' = g.$

Beweis. Sei $x \in I.$ Da alle Ableitungen von f_n stetig sind, können wir den Hauptsatz verwenden und es gilt

$$f_n(x) - f_n(x_0) = \int_{x_0}^x f'_n(t) dt$$

$$\Rightarrow f_n(x) = \underbrace{f_n(x_0)}_{\to f(x_0)} + \underbrace{\int_{x_0}^x f'_n(t) dt}_{\to \int_{x_0}^x g(t) dt}$$

$$\Rightarrow f(x) \coloneqq \lim_{n \to \infty} f_n(x) \text{ existient } \forall x \in I \text{ und}$$

$$f(x) = f(x_0) + \int_{x_0}^x g(t) dt$$

Nach dem Hauptsatz gilt, dass f stetig differenzierbar ist mit f' = g.

Anwendung 5.1.5.

$$f(x) = \sum_{n=0}^{\infty} a_N (x - x_0)^n$$

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}} > 0$$

$$f_n(x) = \sum_{k=0}^n a_k (x - x_0)^k$$

$$\Rightarrow f(x) = \lim_{n \to \infty} f_n(x)$$

$$f'_n(x) = \sum_{k=1}^{\infty} k \cdot a_k (x - x_0)^{k-1}$$

Es gilt

$$\limsup_{n \to \infty} |(n+1) \, a_{n+1}|^{\frac{1}{n}} = \limsup_{n \to \infty} |a_{n+1}|^{\frac{1}{n+1}}$$

Nach dem vorherigen Satz gilt damit

$$f'_n(x) = \sum_{k=1}^n k \cdot a_k (x - x_0)^{k-1}$$

konvergiert auch auf $(x_0 - R, x_0 + R)$ und gleichmäßig auf $[x_0 - R + \delta, x_0 + R - \delta]$. Also konvergiert

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = (x)$$

und ihre Ableitung ist gegeben durch

$$\sum_{n=1}^{\infty} n \cdot a_n \left(x - x_0 \right)^{n-1}$$

Also ist jede Potenzreihe differenzierbar auf ihrem Konvergenzintervall.

Korollar 5.1.6. Jede Potenzreihe $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ ist unendlich oft differenzierbar auf ihrem Konvergenzintervall.

Beweis. Nach Anwendung 5.1.5 ist eine Potenzreihe einmal differenzierbar mit einer Potenzreihe als Ableitung. Damit folgt induktiv die Behauptung. Insbesondere gilt

$$f'(x) = \sum_{n=1}^{\infty} n a_n \cdot (x - x_0)^{n-1}$$

$$f''(x) = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot (x - x_0)^{n-2}$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-k+1) \cdot a_n \cdot (x - x_0)^{n-k}$$

$$\Rightarrow f^{(k)}(x_0) = k! \cdot a_k$$

$$\Leftrightarrow a_k = \frac{f^{(k)}(x_0)}{k!}$$

Beispiel 5.1.7. Wir wissen

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

$$\Rightarrow \sum_{n=1}^{\infty} n \cdot x^n = x \cdot \sum_{n=1}^{\infty} n \cdot x^{n-1}$$

$$= x \cdot \frac{\mathrm{d}}{\mathrm{d}x} \cdot \frac{1}{1-x}$$

$$= x \cdot \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} x^n = x \cdot \frac{-1}{(1-x)^2} (-1) = \frac{x}{(1-x)^2}$$

Bemerkung 5.1.8 (Taylorrreihe).

$$f(x) - f(x_0) = \int_{x_0}^x f'(t) dt$$

5.1 Gleichmäßige Konvergenz

$$\Rightarrow f(x) = f(x_0) + \int_{x_0}^x f'(t) dt$$

$$= f(x_0) + \int_{x_0}^x (f'(t) - f'(x_0) + f'(x_0)) dx$$

$$= f(x_0) + \int_{x_0}^x (f'(t) - f'(x_0)) dt + f'(x_0) \cdot \int_{x_0}^x 1 dt$$

$$= f(x_0) + f'(x_0) \cdot (x - x_0) + \underbrace{\int_{x_0}^x (f'(t) - f'(x_0)) dt}_{=:R_{x_0}(x)}$$

Wir können den Fehler abschätzen und erhalten für ein $\varepsilon(x) \coloneqq \sup_{t \in (x_0,x)} |f'(t) - f'(x_0)|$

$$|R_{x_0}(x)| \le \int_{x_0}^x |f'(t) - f'(x_0)| dt \le \varepsilon(x) \cdot |x - x_0|$$

$$\frac{|R_{x_0}(x)|}{|x - x_0|} = \varepsilon(x) \to 0 \text{ für } x \to x_0$$

6 [*] Taylors Theorem

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(t) dt$$
 (6.1.1)

[28. Mai] Satz 6.1.1. Sei $f \in C^{(n+1)}((a,b))$ (n+1) mal stetig differenzierbar auf (a,b)). Dann gilt für alle $x, x_0 \in (a,b)$

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(f, x_0, x)$$

mit

$$R_n(f, x_0, x) = \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt$$

Beweis. Wir verwenden Induktion. Der Induktionsanfang für n=1 ist gerade der Hauptsatz.

Induktionsschritt: Angenommen $f \in \mathcal{C}^{(n+2)}$. Dann gilt nach Induktionsannahme

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(f, x_0, x)$$

$$R_n(f, x_0, x) = \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt$$
(1)

Wir integrieren partiell

$$= \frac{1}{n!} \left(\left[-\frac{1}{n+1} (x-t)^{n+1} f^{(n+1)}(t) \right]_{x_0}^x - \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} f^{(n+2)}(t) dt \right)$$

$$= -\frac{1}{n+1} \cdot \frac{d}{dt} (x-t)^{n+1}$$

Nach (1) folgt

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \underbrace{\frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} \cdot f^{(n+2)}(t) dt}_{=R_{n+1}(f, x_0, x)}$$

Korollar 6.1.2. Sei $f \in C^n((a,b))$. Dann gilt $\forall x, x_0 \in (a,b)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \overline{R}_n(f, x_0, x)$$

 $_{
m mit}$

$$\overline{R}_n(f, x_0, x) = \frac{1}{(n-1)!} \int_{x_0}^x (x-t)^{n-1} \cdot \left[f^{(n)}(t) - f^{(n)}(x) \right] dt$$

Beweis. Nach Satz 6.1.1 gilt

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(n)}(x_0)}{k!} \cdot (x - x_0)^k + \overline{R}_{n-1}(f, x_0, x)$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n-1}(f, x_0, x) - \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$(n-1)! \cdot R_{n-1}(f, x_0, x) = \int_{x_0}^{x} (x - t)^{n-1} f(n)(t) dt - \frac{1}{n} f^{(n)}(x_0) (x - x_0)^n$$

$$= \int_{x_0}^{x} (x - t)^{n-1} \cdot \left[f^{(n)}(t) - f^{(n)}(x_0) \right] dt$$

Bemerkung 6.1.3.

$$n! \cdot \left| \frac{R_n(f, x_0, x)}{(x - x_0)^n} \right| = \left| \int_{x_0}^x \frac{(x - t)^n}{(x - x_0)^n} f^{(n+1)}(t) \, dt \right|$$

$$\leq \int_{x_0}^x \left| \frac{x - t}{x - x_0} \right|^n \cdot \left| f^{(n+1)}(t) \right| \, dt$$

$$\leq \int_{x_0}^x \left| f^{(n+1)}(t) \right| \, dt \to 0$$

Definition 6.1.4. Sei $f \in \mathcal{C}((a,b))$ und $x_0 \in (a,b)$. Wir definieren

$$T_n(f, x_0)(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (n-tes Taylorpolynom)

Ist f unendlich oft differenzierbar, so nennen wir

$$T(f, x_0, x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Taylorreihe (von f im Entwicklungspunkt x_0).

Bemerkung 6.1.5.

- (i) Die Taylorreihe kann Konvergenzradius R > 0 haben
- (ii) Ist eine Taylorreihe konvergent, so muss sie nicht unbedingt gegen f konvergieren

Beispiel 6.1.6. Wir betrachten $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) \coloneqq \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Dann ist f unendlich oft differenzierbar und es gilt $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$.

Beweis. Schritt 1: Sei $x \neq 0$. Dann existiert $\forall n \in \mathbb{N}_0$ ein Polynom p_n , sodass

$$f^{(n)}(x) = p_n\left(\frac{1}{n}\right) \cdot e^{-\frac{1}{x^2}}$$

Wir beweisen diese Behauptung mittels Induktion.

I-Anfang Es ist n = 0. Wir wählen $p_0(x) = 1$.

I-Schritt

$$f^{(n+1)}(x) = \frac{d}{dx} \left(f^{(n)}(x) \right)$$

$$= \frac{d}{dx} \left(p_n \left(\frac{1}{x} \right) \cdot e^{-\frac{1}{x^2}} \right)$$

$$= p'_n \left(\frac{1}{x} \right) \cdot \left(-\frac{1}{x^2} \right) \cdot e^{-\frac{1}{x^2}} + p_n \left(\frac{1}{x} \right) \cdot e^{-\frac{1}{x^2}} \cdot \frac{2}{x^3}$$

$$= \underbrace{\left(-p'_n \left(\frac{1}{x} \right) \cdot \frac{1}{x^2} + 2p_n \left(\frac{1}{x} \right) \cdot \frac{1}{x^3} \right) \cdot e^{-\frac{1}{x^2}}}_{=:p_{n+1} \left(\frac{1}{x} \right)}$$

$$= p_{n+1}(t) := -p'_n(t) \cdot t^2 + 2t^3 \cdot p_n(t)$$

SCHRITT 2: $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$. Wir nutzen wieder Induktion. Der Induktionsanfang ist klar. I-Schritt Angenommen $f^{(n)}(0) = 0$. Dann gilt

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x}$$

$$= \lim_{x \to 0} \frac{f^{(n)}(x)}{x}$$

$$= \lim_{x \to 0} \left(\frac{1}{x} \cdot p_n \left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x^2}}\right)$$

$$= \lim_{|R| \to \infty} \left(R \cdot p_n(R) \cdot e^{-R^2}\right) = 0$$

Satz 6.1.7. Ist $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, so ist die Taylorreihe von f gleich dieser Potenzreihe.

Beweis. Folgt aus Korollar 5.1.6 und Gleichung ??.

Beispiel 6.1.8.

$$\sum_{n==}^{\infty} \frac{(cx)^n}{n!} = \sum_{n=0}^{\infty} \frac{c^n}{n!} \cdot x^n$$

$$\exp(cx) = \exp(cx_0 + c(x - x_0))$$

$$= \exp(cx_0) \cdot \exp(c(x - x_0))$$

$$= \exp(cx_0) \cdot \sum_{n=0}^{\infty} \frac{c^n}{n!} (x - x_0)^n$$

$$= \sum_{n=0}^{\infty} \frac{\exp(cx_0)c^n}{n!} (x - x_0)^n$$

Satz 6.1.9 (Restglieddarstellung von Schlömilch). Sei $f \in \mathcal{C}^{n+1}((a,b))$ und $x_0 \in (a,b)$. Dann gilt

$$f(x) = T_n(f, x_0, x) + R_n(f, x_0, x)$$

mit

$$R_n(f, x_0, x) = \frac{1}{p \cdot n!} \cdot f^{(n+1)}(\xi) \cdot (x - \xi)^{n+1-p} (x - x_0)^p \qquad (8)$$

 $\forall 1 \leq p \leq n+1 \text{ und } \xi \text{ zwischen } x_0 \text{ und } x$

Bemerkung 6.1.10. Ist p = n + 1, dann haben wir die Lagrangsche Darstellung

$$R_n(f, x_0, x) = \frac{1}{(n+1)!} \cdot f^{(n+1)}(\xi) \cdot (x - x_0)^{n+1}(\xi)$$

und wenn p = 1, dann haben wir die Cauchysche Darstellung

$$R_n(f, x_0, x) = \frac{1}{n!} \cdot f^{(n+1)}(\xi) \cdot (x - \xi)^n \cdot (x - x_0)$$

für das Restglied.

Satz 6.1.11 (Logarithmus). Für die Logarithmusreihe $f_n: -1 \le x \le 1$ gilt

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^2}{3} \pm \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{x^n}{n}$$

Beweis.

$$f(x) = \log(1+x)$$

$$f'(x) = (1+x)^{-1}$$

$$f''(x) = -1 \cdot (1+x)^{-2}$$

$$\vdots$$

$$f^{(n)}(x) = (-1)^{n+1} \cdot (n-1)! \cdot (1+x)^{-n}$$

$$T_n(f,0)(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k} \cdot x^k = \sum_{k=0}^n (-1)^{n+1} \cdot \frac{(k-1)}{k!} x^k$$

$$= \sum_{k=0}^n (-1)^{k+1} \cdot \frac{x^k}{k}$$

SCHRITT 1: Aus Satz 6.1.9 folgt

$$f(x) = \sum_{k=1}^{n} (-1)^{k+1} \cdot \frac{x^k}{k} + R_n(f, 0, x)$$

$$R_n(f, 0, x) = \frac{1}{pn!} \cdot f^{(n+1)}(x) \cdot (x - \xi)^{n+1-p} \cdot (x - x_0)^p$$

$$= n! \cdot (-1)^{n+1} \cdot (1 + \xi)^{-(n+1)}$$

$$\Rightarrow |R_n(f, 0, x)| = \frac{1}{pn!} \cdot n! \cdot (1 + \xi)^{-n-1} \cdot |x - \xi|^{n+1-p} \cdot |x|^p$$

Angenommen $0 \le x \le 1$. $0 < \xi < x$, wir wählen p = n + 1

[31. Mai]
$$\Rightarrow |R_n(f, 0, x)| \le \frac{1}{p} = \frac{1}{n+1} \to 0$$

Angenommen $-1 \le x \le 0$. Dann gibt es ein ξ zwischen 0 und x, das heißt $\xi = \Theta x$ mit $0 < \Theta < 1$. Dann gilt

$$R_n(f,0,x) = \frac{1}{p} \cdot (-1)^n \cdot (1 + \Theta x)^{-(n+1)} \cdot (x - \Theta x)^{n+1-p} \cdot x^p$$

$$\Rightarrow |R_n(f,0,x)| = \frac{1}{p} \cdot (1 + \Theta x)^{-(n+1)} \cdot |x|^{n+1-p} \cdot (1 - \Theta)^{n+1-p} \cdot |x|^p$$

$$= \frac{1}{p} \cdot (1 + \Theta x)^{-(n+1)} \cdot (1 - \Theta)^{n+1-p} \cdot |x|^{n+1}$$

 $\mathrm{Da}\, -1 \le x \le 0$

$$\Rightarrow 1 + \Theta x = 1 - \Theta \cdot |x| \ge 1 - \Theta > 0$$

$$\Rightarrow (1 + \Theta x)^{-n} \le (1 - \Theta)^{-n}$$

$$\Rightarrow |R_n(f, 0, x)| \le \frac{1}{p} \cdot (1 - \Theta)^{-n} \cdot (1 - |x|)^{-1} \cdot (1 - \Theta)^{n+1-p} \cdot |x|^{n+1}$$

Wähle p = 1

$$\Rightarrow |R_n(f,0,x)| \le (1-\Theta)^{-n} \cdot (1-\Theta)^n \cdot \frac{|x|^{n+1}}{1-|x|} = \frac{|x|^{n+1}}{1-|x|} \to 0$$

SCHRITT 2: Wir wollen zeigen, dass die Taylorreihe $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^n$ für alle $-1 \le x \le 1$ konvergiert. Für $-1 \le x \le 0$ gilt

$$\left| \frac{(-1)^{n+1}}{n} \cdot x^n \right| \le \frac{1}{n} \cdot |x|^n \le |x|^n$$

Damit folgt die Konvergenz aus dem Vergleich mit der geometrischen Reihe. Das gleiche Prinzip lässt sich für $0 \le x < 1$ anwenden. Für x = 1 ist $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ eine alternierende monotone Reihe, die damit nach Leibniz konvergiert.

Aus Schritt 1 und Schritt 2 folgt damit die Behauptung.

Korollar 6.1.12. Für a > 0 und $0 < x \le 2a$ folgt

$$\log x = \log a + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot a^n} (x - a)^n$$

Beweis.

$$\log x = \log(a + (x - a)) = \log\left(a \cdot \left(1 + \frac{x}{a}\right)\right)$$
$$= \log a + \log\left(1 + \frac{x}{a}\right)$$

Bemerkung 6.1.13. Es gilt

$$\log 2 = \log(1+1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 (konvergiert langsam)
$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^{n}$$

$$\log(1-x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot (-1)^{n} \cdot x^{n} = -\sum_{n=1}^{\infty} \frac{x^{n}}{n}$$

$$\Rightarrow \log(1+x) - \log(1-x) = \sum_{n \text{ ungerade}} \left(\frac{x^{n}}{n} + \frac{x^{n}}{n}\right) = 2 \cdot \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1} = \log\left(\frac{1+x}{1-x}\right)$$

Für ein y > 1 mit $y = \frac{1+x}{1-x}$ gilt

$$(1-x) \cdot y = 1+x$$

$$\Leftrightarrow y - 1 = x \cdot (y + 1)$$
$$\Leftrightarrow x = \frac{y - 1}{y + 1}$$

Für y=2 gilt also $x=\frac{1}{3}$. Das heißt

$$\log y = 2 \cdot \sum_{k=0}^{\infty} \frac{1}{2k+1} \cdot \left(\frac{y-1}{y+1}\right)^{2k+1}$$

$$\Rightarrow \log 2 = 2 \cdot \sum_{k=0}^{\infty} \frac{1}{2k+1} \cdot \left(\frac{1}{3}\right)^{2k+1}$$
 (konvergiert schneller)

Satz 6.1.14 (Abelscher Grenzwertsatz). Angenommen $\sum_{n=0}^{\infty} a_n$ konvergiert. Dann ist die Potenz-

reihe
$$f(x) := \sum_{n=0}^{\infty} a_n \cdot x^n$$

- (i) konvergent für alle $-1 < x \le 1$
- (ii) stetig in x = 1 und
- (iii) Die Potenzreihe konvergiert gleichmäßig auf allen Intervallen [a,1] mit -1 < a < 1. (Das heißt sie konvergiert lokal gleichmäßig auf [-1,1]). Insbesondere in jeder ε -Umgebung um x=1.

Beweis. Schritt 1: Wir zeigen zunächst (ii) und setzen dafür

$$A_n := \sum_{k=n+1}^{\infty} a_k \to 0 \text{ für } n \to \infty$$

Insbesondere ist

$$\sup_{n\geq 0} |A_n| < \infty$$

$$\Rightarrow \sup_{n\geq k+1} |A_n| \to 0 \text{ für } k \to \infty$$

$$a_n = A_{n-1} - A_n \qquad (\text{Wir setzen } A_{-1} = \sum_{n=0}^{\infty} a_n)$$

Für ein $L \in \mathbb{N}$ gilt

$$\sum_{n=0}^{L} a_n \cdot x^n = \sum_{n=0}^{L} (A_{n-1} - A_n) \cdot x^n$$

$$= \sum_{n=0}^{L} A_{n-1} \cdot x^n - \sum_{n=0}^{L} A_n \cdot x^n$$

$$= \sum_{j=-1}^{L-1} A_j \cdot x^{j+1} - \sum_{j=0}^{L} A_j \cdot x^j$$

$$= A_{-1} \cdot x^0 - A_L \cdot x^L + \sum_{n=0}^{L} A_n \cdot \left(x^{n+1} - x^n\right)$$

$$= f(1) - A_L \cdot x^L + (x-1) \cdot \sum_{n=0}^{L-1} A_n \cdot x^n$$

Es gilt $|A_L \cdot x^L| \le |A_L|$ und $|A_n| \le C$ für eine Konstante C. Das heißt für |x| < 1

$$\Rightarrow \sum_{n=0}^{\infty} A_n \cdot x^n \text{ hat Limes für } L \to \infty$$

$$\Rightarrow f(x) = \lim_{L \to \infty} \sum_{n=0}^{L} a_n \cdot x^n = f(1) + (x-1) \cdot \sum_{n=0}^{\infty} A_n \cdot x^n$$

$$\Rightarrow |f(1) - f(x)| = (1-x) \cdot \left| \sum_{n=0}^{\infty} A_n \cdot x^n \right| \le (1-x) \cdot \sum_{n=0}^{\infty} |A_n| \cdot x^n$$

Sei $K \in \mathbb{N}$. Dann gilt

$$\Rightarrow |f(1) - f(x)| \le (1 - x) \cdot \sum_{n=0}^{K} |A_n| \cdot x^n + (1 - x) \cdot \sum_{n=K+1}^{\infty} |A_n| \cdot x^n$$

$$\le \underbrace{(1 - x) \cdot \sup_{n \ge 0} (|A_n|) \cdot \sum_{n=0}^{K} x^n}_{=:I_K(x)} + \underbrace{(1 - x) \cdot \sup_{n \ge K+1} (|A_n|) \cdot \sum_{n=K+1}^{\infty} x^n}_{=:J_K(x)}$$

Für ein festes $K\in\mathbb{N}$ geht $I_K\to 0$ für $x\to 1-$ und es gilt

$$J_K(x) = \sup_{n \ge K+1} (|A_n|) \cdot (1-x) \cdot \sum_{n=K+1}^{\infty} x^n$$

Nach der geometrischen Summenformel gilt

$$=\sup_{n\geq K+1}(|A_n|)\cdot(1-x)\cdot\frac{x^{K+1}}{1-x}$$

$$\leq\sup_{n\geq K+1}(|A_n|)\to 0 \text{ für } L\to\infty \qquad \text{(gleichmäßig in } 0\leq x<1)$$

$$\Rightarrow \limsup_{x\to 1^-}|f(1)-f(x)|\leq 0+\limsup_{x\to 1^-}J_K(x)$$

$$\leq\sup_{n\geq K+1}(|A_n|)\to 0 \text{ für } K\to\infty \quad \forall K\in\mathbb{N}$$

$$\Rightarrow \limsup_{x\to 1^-}|f(1)-f(x)|=0$$

$$\Rightarrow\lim_{x\to 1^-}f(x)=f(1)$$

Schritt 2: $f_n(x) = \sum_{k=0}^n a_k \cdot x^k$

$$\Rightarrow f(x) - f_n(x) = (x - 1) \cdot \sum_{k=n+1}^{\infty} A_k \cdot x^k - A_n \cdot x^n$$

$$\Rightarrow |f(x) - f_n(x)| \le (1 - x) \cdot \sum_{k=n+1}^{\infty} |A_k| \cdot x^k + |A_n| \cdot x^n$$

$$\le (1 - x) \cdot \sup_{k \ge n+1} (|A_k|) \cdot \sum_{k=n+1}^{\infty} x^k + |A_n|$$

$$\le \sup_{k \ge n+1} (|A_k|) \cdot (1 - x) \cdot x^{n+1} \cdot \sum_{k=0}^{\infty} x^k + |A_n|$$

$$\leq 2 \cdot \sup_{k > n} (|A_k|)$$

Mit (ii) folgt $\forall 0 \le x \le 1$

$$|f(x) - f_n(x)| \le 2 \cdot \sup_{k \ge n} (|A_k|)$$

$$\Rightarrow \sup_{0 \le x \le 1} (|f(x) - f_n(x)|) \le 2 \cdot \sup_{k > n} (|A_k|)$$

Das heißt $(A_n)_n$ ist eine Nullfolge. Damit gilt gleichmäßige Konvergenz auf [0,1]. f(x) konvergiert gleichmäßig auf kompakten Teilintervallen innerhalb des Konvergenzradius und $\sum a_n$ konvergiert mit Konvergenzradius $R \geq 1$. Das heißt f(x) konvergiert gleichmäßig auf allen $[-\delta, \delta]$ für $0 < \delta < 1$.

Satz 6.1.15 (Arctan Reihe). Für $|x| \le 1$ gilt

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} \pm \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1}$$

Beweis. Es sei $f(x) = \arctan x$. Dann gilt

$$f'(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x)^2}$$
$$= \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot x^{2n}$$

Nach dem Hauptsatz gilt

$$f(x) = f(0) + \int_0^x f'(t) dt$$

$$= 0 + \int_0^x \frac{1}{1+t^2} dt$$

$$= \int_0^x \sum_{n=0}^\infty (-1)^n \cdot t^{2n} dt$$

$$= \sum_{n=0}^\infty (-1)^{2n} \cdot \int_0^x t^{2n} dt$$

$$= \sum_{n=0}^\infty (-1)^n \cdot \frac{x^{2n+1}}{2n+1} \text{ falls } |x| < 1$$

Für x = 1 gilt

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1}$$

$$f(1) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{1^{2n+1}}{2n+1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \text{ konvergiert nach Leibniz}$$

Das heißt aus Satz 6.1.14 folgt die gleichmäßige Konvergenz von dieser Reihe für alle $|x| \le 1$. Das heißt aus der Stetigkeit von arctan bei ± 1 und dem Satz folgt

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1} \quad \forall |x| \le 1$$

[04. Jun] **Bemerkung 6.1.16** (Reihendarstellung von π). Es gilt $\tan x = \frac{\sin x}{\cos x}$ und damit $1 = \tan \frac{\pi}{4}$, arctan $1 = \frac{\pi}{4}$. So ergibt sich mit dem Arctan eine Reihendarstellung von π

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Diese Reihe konvergiert für die tatsächliche Anwendung allerdings zu langsam. Viel schneller ist die Berechnung über die Machinsche Formel

$$\frac{\pi}{4} = 4 \cdot \arctan \frac{1}{5} - \arctan \frac{1}{239}$$

Satz 6.1.17 (Binomische Reihe). Sei $\alpha \in \mathbb{R}$. Dann gilt für |x| < 1

$$(1+x)^{\alpha} = \sum_{n=0}^{\alpha} {\alpha \choose n} x^n \tag{2}$$

wobei wir den verallgemeinerten Binomialkoeffizient verwenden

$$\begin{pmatrix} \alpha \\ n \end{pmatrix} \coloneqq \prod_{k=1}^{n} \frac{\alpha - k + 1}{k} = \frac{\alpha \cdot (\alpha - 1) \cdot \dots \cdot (\alpha - k + 1)}{k!}$$
$$\begin{pmatrix} \alpha \\ n \end{pmatrix} \coloneqq 0 \text{ für } n \ge \alpha + 1$$

Daraus folgt der speziellere Binomische Lehrsatz für $m \in \mathbb{N}$

$$\Rightarrow (1+x)^m = \sum_{n=0}^m \binom{m}{n} \cdot x^n$$

Beweis. Schritt 1: Sei $f(x) = (1+x)^{\alpha}$ für x > -1. Dann gilt

$$f'(x) = \alpha \cdot (1+x)^{\alpha-1}$$

$$f''(x) = \alpha \cdot (\alpha-1) \cdot (1+x)^{\alpha-2}$$

$$\vdots$$

$$f^{(n)}(x) = \alpha \cdot (\alpha-1) \cdot \dots \cdot (\alpha-n+1) \cdot (1-x)^{\alpha-n}$$

Das heißt die Taylorreihe für f in 0 ist

$$T(f,0)(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n$$
$$= \sum_{n=0}^{\infty} \frac{\alpha \cdot (\alpha - 1) \cdot \dots \cdot (\alpha - n + 1)}{n!} \cdot x^n = \sum_{n=0}^{\infty} {\alpha \choose n} \cdot x^n$$

²Gefunden von Newton 1665

SCHRITT 2: Wir wollen zeigen, dass die obige Taylorreihe konvergiert

$$a_n := \binom{a}{n} x^n \quad |x| < 1$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\binom{\alpha}{n+1} \cdot x^{n+1}}{\binom{\alpha}{n} \cdot x^n} \right|$$

$$= |x| \cdot \left| \frac{\alpha - n}{n+1} \right| \underset{n \to \infty}{\to} |x| < 1$$

$$\Rightarrow \exists x < 1, N_0 \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \le x < 1 \quad \forall n \ge N_0$$

$$\Rightarrow \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n \text{ ist absolut konvergent}$$

Schritt 3: Der Restterm soll verschwinden. Sei $0 < \Theta < 1$ und $\xi = \Theta x$, sowie $1 \le p \le n+1$

$$R_n(f,0,x) = \frac{1}{p \cdot n!} \cdot f^{(n+1)} \cdot (\Theta x) \cdot (x - \Theta x)^{n+1-p} \cdot x^p$$
 (Schlömilch)

Für p = 1 ergibt sich die Restglieddarstellung von Cauchy

$$R_{n}(f,0,x) = \frac{1}{n!} \cdot \alpha \cdot (\alpha - 1) \cdot \dots \cdot (\alpha - n + 1) \cdot (\alpha - n) \cdot (1 + \Theta x)^{-n-1} \cdot (x - \Theta x)^{n} \cdot x$$

$$= \binom{\alpha}{n+1} \cdot x^{n+1} \cdot (1 - \Theta)^{n} \cdot (1 + \Theta x)^{-(n+1)}$$

$$\Rightarrow |R_{n}(f,0,x)| = \underbrace{\left| \binom{\alpha}{n+1} \cdot x^{n+1} \right|}_{\rightarrow 0 \text{ nach SCHRITT 2}} \cdot (1 - \Theta)^{n} \cdot (1 + \Theta x)^{-n-1}$$

$$(1 + \Theta x)^{-(n+1)} = \frac{1}{(1 + \Theta x)^{-n+1}}$$

$$= \frac{1}{1 + \Theta x} \cdot \frac{1}{(1 + \Theta x)^{n}}$$

$$\leq \frac{1}{1 - |x|} \cdot \frac{1}{(1 - \Theta)^{n}}$$

$$\Rightarrow |R_{n}(f,0,x)| \leq \left| \binom{\alpha}{n+1} \cdot x^{n+1} \right| \cdot \frac{1 - \Theta^{n}}{1 - \Theta} \cdot \frac{1}{1 - |x|}$$

$$= \left| \binom{\alpha}{n+1} \cdot x^{n+1} \right| \cdot \frac{1}{1 - |x|} \xrightarrow{n \to \infty}$$

Das heißt nach dem Satz von Taylor gilt

$$f(x) = \sum_{n=0}^{\infty} {\alpha \choose n} \cdot x^n$$

7 [*] Die Gamma-Funktion

Erinnerung: Die Γ -Funktion ist für x > 0 definiert als

$$\Gamma(x) := \int_0^\infty t^{x-1} \cdot e^{-t} \, \mathrm{d}t$$

Das funktioniert bei 0, da -x-1>-1 und es funktioniert bei ∞ , da

$$t^{x-1} \cdot e^{-t} = t^{x-1} \cdot e^{-\frac{t}{2}} \cdot e^{-\frac{t}{2}}$$

$$= C_x \cdot e^{-\frac{t}{2}} \qquad (C_x := \sup_{t \ge 1} t^{x-1} \cdot e^{-\frac{t}{2}} < \infty)$$

$$\Rightarrow \Gamma(x) = \lim_{a \searrow 0} \lim_{b \to \infty} \int_a^b t^{x-1} \cdot e^{-t} \, \mathrm{d}t \text{ existient } \forall x > 0$$

Wir hatten außerdem

$$\Gamma(x+1) = x \cdot \Gamma(x) \quad \forall x > 0$$

Definition 7.1.1 (Konvexität³). Eine Funktion $F: I \to \mathbb{R}$ – wobei I ein Intervall ist $(I = [0, \infty)$ ist dabei erlaubt) – heißt konvex, falls $\forall x, y \in I$ und für alle $0 \le \Theta \le 1$ gilt

$$F(\Theta x + (1 - \Theta)y) \le \Theta F(x) + (1 - \Theta)F(y)$$

Skizze 7.1.2 (Konvexe Funktion). Wähle ein $\Theta \in (0,1)$ und formuliere die Interpolation $\Theta x + (1-\Theta) \cdot y$.

Abbildung 1: Konvexe Funktion mit eingezeichneter Sekante

Beispiel 7.1.3. Die Funktionen $F(t) = e^t$ und $F(t) = e^{-t}$ sind konvex auf \mathbb{R} . (Übung)

Definition 7.1.4. Eine Funktion F heißt konkav, falls -F konvex ist. Das heißt

$$F(\Theta x + (1 - \Theta)y) \ge \Theta F(x) + (1 - \Theta)F(y) \quad \forall 0 \le \Theta < 1 \ \forall x, y \in I$$

Definition 7.1.5 (Logarithmische Konvexität). Eine Funktion F heißt logarithmisch konvex, falls $\log \circ F = \log(F)$ konvex ist. Das heißt

$$\log F(\Theta x + (1 - \Theta) y) \le \Theta \log F(x) + (1 - \Theta) \cdot \log F(y)$$
$$= \log \left(F(x)^{\Theta} \right) + \log \left(F(y)^{1 - \Theta} \right)$$

³Siehe auch Skript Ana I, Kapitel 19

$$= \log \left(F(x)^{\Theta} \cdot F(y)^{1-\Theta} \right)$$

 $\Leftrightarrow F(\Theta x + (1-\Theta) y) \le F(x)^{\Theta} \cdot F(y)^{1-\Theta} \quad \forall x, y \in I \ \forall 0 \le \Theta \le 1$

dann ist F logarithmisch konvex.

Satz 7.1.6. Die Γ -Funktion $\Gamma:(0,\infty)\to(0,\infty)$, $x\mapsto F(x)$ ist logarithmisch konvex.

Beweis. (Übung)
$$\Box$$

Satz 7.1.7 (Bohr, Mollerup). Ist $F:(0,\infty)\to(0,\infty)$ eine Funktion mit

- (a) F(1) = 1
- (b) $F(x+1) = x \cdot F(x)$ und
- (c) F ist logarithmisch konvex

Dann gilt $F = \Gamma$, das heißt $F(x) = \Gamma(x) \ \forall x > 0$.

Beweis. Es reicht zu zeigen, dass die obigen Eigenschaften die Funktion F eindeutig bestimmen, da wir bereits wissen, dass Γ die Eigenschaften erfüllt.

SCHRITT 1:

$$F(x+n) \stackrel{\text{(b)}}{=} (x+n-1) \cdot F(x+n-1)$$
$$= (x+n-1) \cdot (x-n-2) \cdot \dots \cdot (x-1) \cdot x \cdot F(x) \quad \forall x > 0$$

Für $n \in \mathbb{N}$ gilt

$$F(n+1) = n! \cdot F(1) = n!$$

 $\Rightarrow F(n) = \Gamma(n) \quad \forall n \in \mathbb{N}$

Das heißt es reicht zu zeigen, dass F(x) bei 0 < x < 1 eindeutig bestimmt ist. Schritt 2: Sei 0 < x < 1

$$s + n = (1 - x) \cdot n + x \cdot (n + 1) \qquad (\Theta = 1 - x)$$

$$\stackrel{\text{(c)}}{\Rightarrow} F(x + n) = F((1 - x)\cot n + x \cdot (n + 1))$$

$$\leq F(n)^{1 - x} \cdot F(n - 1)^{x} = F(n)^{1 - x} \cdot (n \cdot F(n))^{x}$$

$$= F(n) \cdot n^{x} = (n - 1)! \cdot n^{x} \quad \forall n \in \mathbb{N} \ \forall 0 < x < 1$$

$$n + 1 = x \cdot (n + x) + (1 - x) \cdot (n + 1 + x)$$

$$\Rightarrow F(n + x) \leq F(n + x)^{x} \cdot F(n + 1 + x)^{1 - x}$$

$$(1)$$

Durch die Kombination von (1) und (2) folgt

$$\Rightarrow n! \cdot (n+x)^{x-1} \le F(n+x) \le (n-1)! \cdot x^n$$

$$F(n+x) = x \cdot (x+1) \cdot \dots \cdot (x+n-1) \cdot F(x)$$

$$\Rightarrow \frac{n! \cdot (n+x)^{x-1}}{x \cdot (x+1) \cdot \dots \cdot (x+n-1)} \le F(x) \le \frac{(n-1)! \cdot n^x}{x \cdot (x+1) \cdot \dots \cdot (x+n-1)}$$

$$a_n(x) := \frac{n! \cdot (x+n)^{x-1}}{x \cdot (x+1) \cdot \dots \cdot (x+n-1)}$$

 $= F(n+x) \cdot (n+x)^{1-x}$

(2)

$$b_{n}(x) := \frac{(n-1)! \cdot n^{x}}{x \cdot (x+1) \cdot \dots \cdot (x-n-1)}$$

$$\Rightarrow a_{n}(x) \leq F(x) \leq b_{n}(x) \quad \forall x \in \mathbb{N} \ \forall 0 < x < 1$$

$$\Rightarrow \frac{a_{n}(x)}{b_{n}(x)} \leq \frac{F(x)}{b_{n}(x)} \leq 1$$

$$\frac{b_{n}(x)}{a_{n}(x)} = \frac{n^{x}}{n \cdot (n+x)^{x-1}} = \frac{(n+x) \cdot n^{x}}{n \cdot (n+x)^{x}}$$

$$= \frac{n+x}{n} \cdot \left(\frac{n}{n+x}\right)^{x} \xrightarrow[n \to \infty]{} 1$$

$$\Rightarrow F(x) = \lim_{n \to \infty} b_{n}(x)$$

$$= \lim_{n \to \infty} \frac{(n-1)! \cdot n^{x}}{x \cdot (1+x) \cdot \dots \cdot (x+n-1)}$$

$$(7.1.1)$$

also ist F(x) eindeutig bestimmt.

Korollar 7.1.8 (Gaußsche Darstellung von Γ).

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! \cdot x^n}{x \cdot (x+1) \cdot \dots \cdot (x+n)}$$
 (7.1.2)

Beweis. Da $\frac{n}{n+1} \to 1$ für $n \to \infty$ folgt die Behauptung for 0 < x < 1 direkt aus (7.1.1). Für x = 1 rechnet sich die Formel leicht nach. Also ist noch zu zeigen: Gilt (7.1.2) für ein x, so gilt die Aussage auch für y = x + 1.

$$\Gamma(y) = \Gamma(x+1) = x \cdot \Gamma(x)$$

$$= x \cdot \lim_{n \to \infty} \frac{n! \cdot n^x}{x \cdot (x+1) \cdot \dots \cdot (x+n)}$$

$$= \lim_{n \to \infty} \frac{n! \cdot n^{y-1}}{y \cdot (y+1) \cdot \dots \cdot (y+n-1)}$$

Multiplikation im Zähler mit n und im Nenner mit y+n (was sich für $n\to\infty$ entspricht) liefert

$$= \lim_{n \to \infty} \frac{n! \cdot n^y}{y \cdot (y+1) \cdot \dots \cdot (y+n-1) \cdot (y+n)}$$

Satz 7.1.9.

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Beweis.

$$\Gamma\left(\frac{1}{2}\right) = \lim_{n \to \infty} \frac{n! \cdot n^{\frac{1}{2}}}{\frac{1}{2} \cdot \left(1 + \frac{1}{2}\right) \cdot \dots \cdot \left(n + \frac{1}{2}\right)}$$

$$= \lim_{n \to \infty} \frac{n! \cdot n^{\frac{1}{2}}}{\left(1 - \frac{1}{2}\right) \cdot \left(2 - \frac{1}{2}\right) \cdot \dots \cdot \left(n + 1 - \frac{1}{2}\right)}$$

$$\Rightarrow \Gamma\left(\frac{1}{2}\right)^{2} = \lim_{n \to \infty} \frac{2n \cdot (n!)^{2}}{\left(1 + \frac{1}{2}\right) \cdot \left(1 - \frac{1}{2}\right) \cdot \left(2 + \frac{1}{2}\right) \cdot \left(2 - \frac{1}{2}\right) \cdot \dots \cdot \left(n + \frac{1}{2}\right) \cdot \left(n - \frac{1}{2}\right)}$$

7.1 $Die \Gamma$ -Funktion

$$= \lim_{n \to \infty} \frac{2n \cdot (n!)^2}{\left(-\frac{1}{4}\right) \cdot \left(4 - \frac{1}{4}\right) \cdot \dots \cdot \left(n^2 - \frac{1}{4}\right)}$$

$$= 2 \lim_{n \to \infty} \prod_{k=1}^{n} \frac{k^2}{k^2 - \frac{1}{2}} = \pi$$
(Wallisches Produkt)

8 [*] Metrische Räume, topologische Räume und normierte Vektorräume

8.1 Metrische Räume

[07. Jun] Frage: Wie definiert man Abstand auf allgemeinen Mengen?

Beispiel 8.1.1 (Abstände zweier reeller Zahlen). Seien $x,y \in \mathbb{R}$. Wir definieren den Abstand über den Betrag. Das heißt d(x,y) := |x-y|. Der Abstand hat in diesem Fall die Eigenschaften

(i)
$$|x-y| \ge 0$$
 und $|x-y| = 0 \Leftrightarrow x = y$

(ii)
$$|x - y| = |y - x|$$

(iii)
$$|x-y| \leq |x-z| + |z-y|$$
 für ein beliebiges $z \in \mathbb{R}$

Definition 8.1.2 (Metrik). Sei X eine Menge und $d:X\times X\to\mathbb{R}$ eine Abbildung mit den Eigenschaften

(i)
$$d(x,y) \ge 0 \ \forall x,y \in X \ \text{und} \ d(x,y) = 0 \Leftrightarrow x = y$$

(ii)
$$d(x,y) = d(y,x) \ \forall x, y \in X$$

(iii)
$$d(x,y) \le d(x,z) + d(z,y) \ \forall x,y,z \in X$$

In diesem Fall nennen wir d eine Metrik auf X und das Paar (X, d) einen metrischen Raum.

Beispiel 8.1.3.

- 1. Auf \mathbb{R} oder \mathbb{C} definieren wir d(x,y) := |x-y|
- 2. Für $x, y \in \mathbb{R}^2$ definieren wir zum Beispiel die euklidische Metrik $d(x, y) := \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
- 3. Sei (X,d) ein metrischer Raum und sei $A\subseteq X$. Dann definieren wir die induzierte Metrik $d_A:A\times A\to \mathbb{R},\ (x,y)\mapsto d(x,y)$
- 4. Die diskrete Metrik ist definiert durch $d(x,y) := \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$
- 5. Die französische Eisenbahnmetrik im \mathbb{R}^2 ist definiert durch $d(x,y) \coloneqq \sqrt{x_1^2 + x_2^2} + \sqrt{y_1^2 + y_2^2}$ falls x und y nicht auf einer Geraden durch (0,0) liegen und sonst $d(x,y) \coloneqq \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$.
- 6. Sei (X,d) ein metrischer Raum. Dann können wir eine Metrik d_1 definieren durch

$$d_1(x,y) := \frac{d(x,y)}{1 + d(x,y)}$$

Dass d_1 die Eigenschaften (i) und (ii) im Sinne der Definition erfüllt, rechnet sich leicht nach. Für (iii) gilt für ein $z \in X$

$$d(x,y) \le d(x,z) + d(z,y)$$

Außerdem gilt für $t \in \mathbb{R}$

$$\frac{t}{1+t} = 1 - \frac{1}{t+1} \tag{monoton steigend}$$

$$\Rightarrow d_1(x,y) = \frac{d(x,y)}{1+d(x,y)} \le \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)}$$

$$= \frac{d(x,z)}{1+d(x,z)+d(z,y)} + \frac{d(z,y)}{1+d(x,z)+d(z,y)}$$

$$\le \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} = d_1(x,z) + d_1(z,y)$$

8.2 Normierte Vektorräume

Definition 8.2.1 (Vektorraum). Ein Vektorraum V über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ ist eine Menge auf der es eine Vektoraddition

$$+: V \times V \to V$$

 $(x,y) \mapsto x + y$

und eine (skalare) Multiplikation

$$\cdot : \mathbb{K} \times V \to V$$

 $(\alpha, x) \mapsto \alpha \cdot x$

gibt, welche den üblichen Axiomen aus der Algebra⁴ genügen.

Definition 8.2.2 (Norm). Eine Norm auf einem VR V ist eine Abbildung $\|\cdot\|: V \to \mathbb{R}, \ x \mapsto \|x\|$ mit den Eigenschaften

- (i) $||x|| \ge 0$ und $||x|| = 0 \Leftrightarrow x = 0 \ \forall x \in V$
- (ii) $\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{K}, x \in V$
- (iii) $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in V$

Definition 8.2.3 (Normierter Vektorraum). Ein normierter Vektorraum ist ein Paar $(V, \|\cdot\|)$ aus einem VR V und einer Norm $\|\cdot\|$ auf V.

Satz 8.2.4. Ist $(V, \|\cdot\|)$ ein normierter VR, so wird durch $d(x, y) := \|x - y\|$ eine Metrik auf V definiert.

Beweis. Die Axiome der Metrik folgen unmittelbar aus den Axiomen der Norm.

Bemerkung 8.2.5 (Halbnorm). Gelten für eine Abbildung die Norm-Eigenschaften (ii) und (ii), aber statt (i) nur $||x|| \ge 0 \ \forall x \in V$. Dann heißt $||\cdot||$ eine Halbnorm. Ein Beispiel dafür im \mathbb{R}^2 wäre die Abbildung $(x_1 \ x_2) \mapsto x_1$.

Beispiel 8.2.6.

- 1. Sei V ein euklidischer reeller VR mit symmetrischem, positiv-definitem Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann ist $||x|| \coloneqq \sqrt{\langle x, x \rangle}$ eine Norm.
- 2. Analog funktioniert der Fall, dass V ein komplexer VR mit positiv-definiter sesquilinearer Bilinearformen $\langle \cdot, \cdot \rangle$ ist. Das heißt $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ hat die Eigenschaften

(i)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
 und $\langle x, x \rangle \ge 0 \ \forall x, y \in V$ (5)

⁴Zum Beispiel x+y=y+x, $\alpha(x+y)=\alpha x+\alpha y$, etc. Für eine genaue Aufzählung siehe LINEARE ALGEBRA I ⁵Die Forderung $\langle x,x\rangle\geq 0$ ist wohldefiniert, weil durch die anderen Eigenschaften folgt, dass $\forall x\in V: \langle x,x\rangle\in\mathbb{R}$

8 [*] Metrische Räume, topologische Räume und normierte Vektorräume

(ii)
$$\langle x, u + w \rangle = \langle x, u \rangle + \langle x, w \rangle$$
 sowie $\langle u + w, y \rangle = \langle u, y \rangle + \langle w, y \rangle$

(iii)
$$\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$$
 sowie $\langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$ (6)

Dann definieren wir eine Norm durch $||x|| := \sqrt{\langle x, x \rangle}$.

3. Im \mathbb{R}^d definieren wir für zwei Vektoren $x = (x_1, \dots, x_d)$ und $y = (y_1, \dots, y_d)$ ein Skalarprodukt durch

$$\langle x, y \rangle \coloneqq \sum_{j=1}^{d} x_j \cdot y_j$$

Und eine Norm durch

$$\|x\| \coloneqq \|x\|_2 \coloneqq \sqrt{\langle x, x \rangle} = \sqrt{\sum_{j=1}^d |x_j|^2}$$

- 4. Wir definieren die Maximums-Norm auf \mathbb{R}^d durch $\|x\|_{\infty} := \max_{1 \leq j \leq d} |x_j|$. Daraus folgt auch $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{d} \cdot \|x\|_{\infty}$.
- 5. Wir definieren die Manhattan-Norm auf \mathbb{R}^d durch

$$||x||_1 := \sum_{j=1}^d |x_j|$$

und es gilt $||x||_{\infty} \le ||x||_1 \le d \cdot ||x||_{\infty}$.

6. Sei X eine beliebige Menge und $\mathcal{B}(X)$ der Vektorraum der reellwertigen beschränkten Funktionen $f: X \to \mathbb{R}$. Dann definieren wir

$$||f||_{L^{\infty}(x)} \coloneqq \sup \left\{ |f(x)| : x \in X \right\} = \sup_{x \in X} |f(x)|$$

als eine Norm auf $\mathcal{B}(X)$. Das ist eine Verallgemeinerung der Maximumsnorm.

8.3 [*] Umgebungen und offene Mengen

Definition 8.3.1 (Umgebung). Sei (X, d) ein metrischer Raum

- (a) Für $a \in X$, r > 0 heißt $B_r(a) := \{x \in X \mid d(a, x) < r\}$ die (offene) Kugel um a mit dem Radius r und dem Mittelpunkt a.
- (b) Eine Teilmenge $U \subseteq X$ heißt Umgebung von $x \in X$, falls $\exists \varepsilon > 0$, sodass $B_{\varepsilon}(x) \subseteq U$. Insbesondere ist $B_{\varepsilon}(x)$ eine Umgebung von x. Wir nennen $B_{\varepsilon}(x)$ die ε -Umgebung von x.

Satz 8.3.2 (Hausdorffsches Trennungsaxiom in metrischen Räumen). Sei (X, d) ein metrischer Raum. Dann existieren zu $x, y \in X$ mit $x \neq y$ ε -Umgebungen mit $B_{\varepsilon}(x) \cap B_{\varepsilon}(y) = \emptyset$.

Beweis. Wir wählen $\varepsilon = \frac{1}{2} \cdot d(x,y) > 0$. Angenommen $\exists z \in B_{\varepsilon}(x) \cap B_{\varepsilon}(y)$. Dann gilt

$$2\varepsilon = d(x,y) \le d(x,z) + d(z,y)$$
$$< \varepsilon + \varepsilon = 2\varepsilon$$

 $^{^6}$ Physiker-Konvention, anders herum als in der Vorlesung Lineare Algebra I/II

[11. Jun] **Definition 8.3.3** (Offene Menge). Sei (X, d) ein metrischer Raum. Eine Teilmenge $U \subseteq X$ heißt offen, wenn $\forall x \in U \exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subseteq U$.

Beispiel 8.3.4. Seien $a, b \in \mathbb{R}$ und a < b

- 1. Dann sind (a,b), (a,∞) und $(-\infty,a)$ offen
- 2. Die Mengen [a,b), [a,b], $[a,\infty)$ sind nicht offen, weil für den ersten Fall $(a-\varepsilon,a+\varepsilon) \nsubseteq [a,b)$.
- 3. In jedem metrischen Raum (X, d) ist für beliebige $a \in X$, r > 0 die Menge $B_r(a)$ offen. Deshalb heißt $B_r(a)$ die offene Kugel um a mit Radius r.
- 4. In \mathbb{R}^d gilt $U \subseteq \mathbb{R}^d$ ist offen bezüglich $\|\cdot\|_{\infty} \Leftrightarrow U$ ist offen bezüglich $\|\cdot\|_2$

Beweis für 3. Sei $x \in B_r(a)$ und $\varepsilon := r - d(a, x) > 0$. Sei $z \in B_{\varepsilon}(x)$. Dann gilt

$$d(a,z) \le d(a,x) + d(x,z) < d(a,x) + r - d(a,x) = r$$

$$\Rightarrow d(a,z) < r$$

$$\Rightarrow z \in B_r(a)$$

 $\begin{aligned} &\textit{Beweis für 4. Sei } \ B_{\varepsilon}^{\infty}(x) \ \coloneqq \ \Big\{ y \in \mathbb{R}^d : \|x-y\|_{\infty} < \varepsilon \Big\} \ \text{und} \ B_{\varepsilon}^{(2)}(x) \ \coloneqq \ \Big\{ y \in \mathbb{R}^d : \|x-y\|_2 < \varepsilon \Big\}. \\ &\text{Für ein } \ y \in B_{\frac{\varepsilon}{\sqrt{d}}}^{(2)}(x) \ \text{gilt} \end{aligned}$

$$\sqrt{\sum_{i=1}^{d} (y_i - x_i)^2} < \frac{\varepsilon}{\sqrt{d}}$$

$$\Rightarrow \sum_{i=1}^{d} (y_i - x_i)^2 < \frac{\varepsilon^2}{d}$$

$$\Rightarrow \max_{1 \le i \le d} |x_i - y_i| < \varepsilon$$

$$\Rightarrow y \in B_{\varepsilon}^{\infty}(x)$$

Außerdem lässt sich zeigen, dass daraus auch folgt, dass $y \in B_{\varepsilon}^{(2)}(x)$. Das heißt

$$B_{\frac{\varepsilon}{\sqrt{d}}}^{(2)}(x) \subseteq B_{\varepsilon}^{\infty}(x) \subseteq B_{\varepsilon}^{(2)}(x) \qquad \Box$$

Satz 8.3.5. Für die offenen Mengen eines metrischen Raums (X, d) gilt

- (i) \varnothing und X sind offen
- (ii) Sind U und V offen, so ist auch $U \cap V$ offen
- (iii) Ist I eine beliebige Indexmenge und $(U_j)_{j\in I}$ eine Familie offener Teilmengen von X. So ist $\bigcup_{j\in I} U_j$ offen.

Beweis von (ii). Sei $x \in U \cap V$. Da U und V offen sind, gibt es $\varepsilon_1 > 0$ und $\varepsilon_2 > 0$ mit $B_{\varepsilon_1}(x) \subseteq U$, $B_{\varepsilon_2}(x) \subseteq V$. Sei $\varepsilon := \min \{\varepsilon_1, \varepsilon_2\} \Rightarrow B_{\varepsilon}(x) \subseteq U \land B_{\varepsilon}(x) \subseteq V$. Damit gilt $B_{\varepsilon}(x) \subseteq U \cap V$.

Beweis von (iii). Sei $x \in \bigcup_{j \in I} U_j \Rightarrow \exists i \colon x \in U_i$. Außerdem ist U_i offen. Das heißt es existiert ein $\varepsilon > 0$, sodass $B_{\varepsilon}(x) \subseteq U_i \Rightarrow B_{\varepsilon}(x) \subseteq \bigcup_{j \in I} U_j$.

Bemerkung 8.3.6. Seien U_1, \ldots, U_k offen. Dann folgt aus Satz 8.3.5, dass $U_1 \cap U_2 \cap \cdots \cap U_k$ offen ist. Das gilt allerdings nur für $k < \infty$.

Wir betrachten für einen Schnitt über unendlich viele Mengen das folgende Beispiel:

Beispiel 8.3.7 (Schnitt über unendlich viele offene Mengen). Sei $U_n = \left(-\frac{1}{n}, 1 + \frac{1}{n}\right)$. Dann ist U_n offen $\forall n \in \mathbb{N}$. Allerdings ist $\bigcap_{n=1}^{\infty} U_n = [0, 1]$ nicht offen.

Definition 8.3.8 (Abgeschlossene Menge). In einem metrischen Raum (X, d) nennen wir eine Menge $A \subseteq X$ abgeschlossen, wenn ihr Komplement $A^{\mathbb{C}} := X \setminus A = \{y \in X : y \notin A\}$ offen ist.

Bemerkung 8.3.9. Eine andere (aber äquivalente) Definition von Abgeschlossenheit wurde 1884 von Cantor gegeben. Diese Definition basiert auf Folgen.

Definition 8.3.10 (Konvergenz in metrischen Räumen). Sei (X, d) ein metrischer Raum. Eine Folge $(x_n)_n \subseteq X$ konvergiert gegen den Punkt $a \in X$, wenn

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \colon d(a, x_n) < \varepsilon \quad \forall n > N$$

das heißt

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon x_n \in B_{\varepsilon}(a) \quad \forall n > N$$

 $\Leftrightarrow \forall \varepsilon > 0 \ \text{ist} \ x_n \in B_{\varepsilon}(a) \ \text{für fast alle } n$

Wir schreiben dann $\lim_{n\to\infty} x_n = a$.

Definition 8.3.11 (Folgenabgeschlossenheit). Sei (X, d) ein metrischer Raum. Eine Menge $A \subseteq X$ ist folgenabgeschlossen, falls für jede Folge $(x_n)_n \subseteq A$, die gegen einen Punkt $a \in X$ konvergiert, auch gilt $a \in A$.

Beispiel 8.3.12. Wir betrachten die Menge A=(0,1] und die Folge $x_n=\frac{1}{n}$. Dann liegt $\lim_{n\to\infty}x_n$ nicht in A. Das heißt A ist nicht folgenabgeschlossen. Die Menge [0,1] hingegen schon.

Satz 8.3.13. Sei (X, d) ein metrischer Raum. Für $A \subseteq X$ gilt, A ist genau dann abgeschlossen, wenn A folgenabgeschlossen ist.

Um diesen Satz zu beweisen, benötigen wir zunächst noch folgende Lemmata

Lemma 8.3.14. Sei (X, d) ein metrischer Raum. Ist $U \subseteq X$ offen, so ist $U^{\mathbb{C}}$ folgenabgeschlossen.

Beweis. Angenommen es gibt eine Folge $(x_n)_n \subseteq U^{\mathbb{C}}$ mit $x_n \to a$, aber $a \notin U^{\mathbb{C}}$. Das heißt $a \in U$. Da U offen ist, existiert eine Kugel $B_{\varepsilon}(a) \subseteq U$ (für ein $\varepsilon > 0$). Da $x_n \to a$ für $n \to \infty$ gilt

$$\exists N \in \mathbb{N} \colon d(a, x_n) < \varepsilon \quad \forall n > N$$

$$\Leftrightarrow \exists N \in \mathbb{N} \colon x_n \in B_{\varepsilon}(a) \quad \forall n > N$$

$$\Rightarrow x_n \notin U^{\mathbf{C}} \quad \forall n > N$$
 (Widerspruch) \square

Lemma 8.3.15. Sei (X,d) ein metrischer Raum und $A\subseteq X$ folgenabgeschlossen. Dann ist $A^{\mathbf{C}}$ offen.

Beweis. Angenommen $A^{\mathbb{C}}$ ist nicht offen. Das heißt $\exists x_0 \in A^{\mathbb{C}}$, sodass für jedes $\varepsilon > 0$ die Kugel $B_{\varepsilon}(x_0)$ nicht ganz in $A^{\mathbb{C}}$ enthalten ist. Das heißt

$$\forall \varepsilon > 0 \colon B_{\varepsilon}(x_0) \cap A \neq \emptyset$$

Wir wählen eine Folge $(x_n)_n \subseteq A$ mit $x_n \in B_{\frac{1}{n}}(x_0)$. Also gilt $x_n \to x_0 \in A^{\mathbb{C}}$. Das heißt A ist nicht folgenabgeschlossen. Widerspruch.

Beweis von Satz 8.3.13.

"⇒ " Wenn A abgeschlossen ist, dann gilt nach Definition, dass $A^{\rm C}$ offen ist. Mit Lemma 8.3.14 folgt dann, dass A folgenabgeschlossen ist.

" \Leftarrow " Sei A folgenabgeschlossen. Dann folgt direkt aus Lemma 8.3.15, dass A abgeschlossen. \square

[14. Jun] **Beispiel 8.3.16.** Seien $A_1 \subseteq \mathbb{R}^k$, $A_2 \subseteq \mathbb{R}^m$ abgeschlossen. Dann ist auch $A_1 \times A_2 \subseteq \mathbb{R}^k \times \mathbb{R}^m$ abgeschlossen.

Beweis. Sei $(x,y) \in (A_1 \times A_2)^{\mathbb{C}} \supseteq A_1^{\mathbb{C}} \times \mathbb{R}^m \cup \mathbb{R}^k \times A_2^{\mathbb{C}}$.

FALL 1: $x \in A_1^C$. Dann gilt wegen der Abgeschlossenheit von A_1

$$\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subseteq A_1^C$$

$$\Rightarrow B_{\varepsilon}(x, y) \subseteq A_1^C \times \mathbb{R}^m$$

Aber $B_{\varepsilon}(x,y)$ ist eine offene Menge mit

$$B_{\varepsilon}(x,y) \subseteq A_1^{\mathcal{C}} \times \mathbb{R}^m \subseteq (A_1 \times A_2)^{\mathcal{C}}$$

FALL 2: $y \in A_2^{\rm C}.$ Dann gilt analog zu FALL 1

$$\Rightarrow \exists \varepsilon > 0 \colon B_{\varepsilon}(x,y) \subseteq (A_1 \times A_2)^{\mathcal{C}}$$

Das heißt $(A_1 \times A_2)^{\mathbb{C}}$ ist offen und damit ist $(A_1 \times A_2)$ abgeschlossen.

Bemerkung 8.3.17.

- (i) In jedem metrischen Raum (X,d) sind die Mengen \varnothing und X sowohl offen als auch abgeschlossen
- (ii) Das Intervall $[a,b) \subseteq \mathbb{R}$ ist nicht offen und nicht abgeschlossen

8.4 Grundzüge der Topologie

Definition 8.4.1 (Topologie). Sei X eine Menge. Dann heißt ein Mengensystem $\mathcal{T} \subseteq \mathcal{P}(X)$ eine Topologie auf X, falls

- (i) $\varnothing, X \in \mathcal{T}$
- (ii) $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$ und
- (iii) Für eine beliebige Indexmenge I mit $\forall j \in I \colon V_j \in \mathcal{T}$ folgt $\bigcup_{j \in I} V_j \in \mathcal{T}$

Ein topologischer Raum ist ein Paar (X, \mathcal{T}) . $V \subseteq X$ heißt offen, falls $V \in \mathcal{T}$ und $A \subseteq X$ heißt abgeschlossen, falls $A^{\mathcal{C}} \in \mathcal{T}$.

Beispiel 8.4.2.

- 1. Das System von offenen Mengen eines metrischen Raums X ist eine Topologie
- 2. \mathbb{R}^d ist ein topologischer Raum (mit dem System der offenen Mengen als implizierte Topologie)
- 3. Auf jeder Menge X gibt es mindestens 2 Topologien: $\mathcal{T}_0 := \{\emptyset, X\}$ und die feinste Topologie $\mathcal{T}_1 = \mathcal{P}(X)$. Ist $|X| \geq 2$, so ist $\mathcal{T}_0 \neq \mathcal{T}_1$
- 4. Sei (X, \mathcal{T}) ein topologischer Raum und $Y \subseteq X$ eine Teilmenge von X. Wir definieren ähnlich zur induzierten Metrik eine *induzierte Topologie* (Relativ-Topologie)

$$\mathcal{T}_Y := \mathcal{T} \cap Y := \{U \cap Y \colon U \in \mathcal{T}\}$$

Dann ist (Y, \mathcal{T}_Y) ein topologischer Raum.

Bemerkung 8.4.3. Ist Y nicht offen in X, so ist $V \in \mathcal{T}_Y$ nicht notwendigerweise offen in X.

Definition 8.4.4 (Umgebung). Sei (X, \mathcal{T}) ein topologischer Raum und $x \in X$ (Punkt in X). Eine Teilmenge $V \subseteq X$ heißt Umgebung von x, falls es eine Menge $U \in \mathcal{T}$ gibt mit $x \in U \subseteq V$.

Satz 8.4.5. Sei (X, \mathcal{T}) ein topologischer Raum. Eine Menge $V \subseteq X$ ist genau dann offen, wenn V eine Umgebung für jeden Punkt $x \in V$ ist.

Beweis. " \Rightarrow "Sei V offen. Dann existiert für jedes $x \in V$ eine offene Menge $U \in \mathcal{T}$ mit $x \in U \subseteq V$. Also ist V eine Umgebung jedes Punktes $x \in V$.

"

"Ei" Sei V eine Umgebung für alle Punkte $x \in V$. Dann gilt $\forall x \in V \ \exists U_x \in \mathcal{T} : x \in U_x \subseteq V$. Dann ist $V = \bigcup_{x \in V} U_x$. Das heißt V ist als Vereinigung offener Mengen offen.

Definition 8.4.6 (Hausdorff-Raum). Ein topologischer Raum heißt Hausdorff-Raum, falls das Hausdorffsche Trennungsaxiom gilt. Das heißt zu zwei Punkten $x,y\in X$ mit $x\neq y$ existieren offene Mengen $U,V\in\mathcal{T}$ mit $x\in U,\,y\in V$ und $U\cap V=\varnothing$.

Beispiel 8.4.7.

- 1. Nach Satz 8.3.2 ist jeder metrische Raum ein Hausdorff-Raum.
- 2. Sei $X = \{0, 1\}$ und $\mathcal{T} := \{\emptyset, \{0\}, \{0, 1\}\}$ eine Topologie. Dann ist (X, \mathcal{T}) kein Hausdorff-Raum. Um das einzusehen, betrachten wir x = 0 und y = 1. Für diese zwei Elemente finden wir keine entsprechenden Mengen.

8.5 [*] Berührpunkt, Häufungspunkt und Randpunkt

Für die folgenden Definitionen sei (X, \mathcal{T}) ein topologischer Raum und $A \subseteq X$.

Definition 8.5.1 (Berührpunkt). Ein Punkt $x \in X$ heißt Berührpunkt von A, wenn in jeder offenen Umgebung U von x mindestens ein Punkt aus A liegt. Das heißt $U \cap A \neq \emptyset$ für alle offenen Mengen U mit $x \in U$.

Definition 8.5.2 (Häufungspunkt). Ein Punkt $x \in X$ heißt Häufungspunkt von A, wenn für jede offene Umgebung U von x ein von x verschiedener Punkt in A liegt. Das heißt $A \cap (U \setminus \{x\}) \neq \emptyset$ für alle offenen Mengen U mit $x \in U$.

Definition 8.5.3 (Randpunkt). Ein Punkt $x \in X$ heißt Randpunkt von A, falls es in jeder offenen Umgebung U von x mindestens einen Punkt aus A und einen Punkt aus A^{C} gibt. Das heißt für alle offenen Mengen U mit $x \in U$ ist $U \cap A \neq \emptyset$ und $U \cap A^{C} \neq \emptyset$. Wir schreiben ∂A für die Menge aller Randpunkte von A.

- [18. Jun] Satz 8.5.4. Ist (X, \mathcal{T}) ein topologischer Raum und $A \subseteq X$. Dann gilt
 - (i) $A \setminus \partial A$ ist offen
 - (ii) $A \cup \partial A$ ist abgeschlossen
 - (iii) ∂A ist abgeschlossen

Beweis.

(i) Sei $x \in A \setminus \partial A$ beliebig. Dann folgt es existiert eine offene Umgebung V von x mit

$$V \cap A^{\mathcal{C}} = V \cap (X \setminus A) = \emptyset \tag{(1)}$$

denn ansonsten wäre $x \in \partial A$

$$\Rightarrow V \cap \partial A = \emptyset \tag{(2)}$$

Denn wäre $V \cap \partial A \neq \emptyset$. Dann würde folgen

$$\Rightarrow \exists y \in V \cap \partial A$$

$$\Rightarrow V \text{ offene Umgebung von } y \in \partial A$$

$$\Rightarrow V \cap A^{\mathbf{C}} \neq \varnothing \qquad \qquad \text{(Widerspruch zu (1))}$$

Mit (1) und (2) folgt

$$V \cap \left(\partial A \cup A^{\mathcal{C}}\right) = \varnothing$$

$$\Leftrightarrow V \subseteq A \setminus \partial A$$

$$\Rightarrow A \setminus \partial A \text{ ist offen}$$

(ii) $A^{\rm C}=X\setminus A$. Aus der Definition des Randes folgt $\partial A=\partial A^{\rm C}$. Nach (i) gilt dann

$$\begin{split} A^{\mathbf{C}} \setminus \partial A &= A^{\mathbf{C}} \setminus \partial A^{\mathbf{C}} \text{ ist offen} \\ \Leftrightarrow \left(A^{\mathbf{C}} \setminus \partial A\right)^{\mathbf{C}} \text{ ist abgeschlossen} \\ \Leftrightarrow \left(A^{\mathbf{C}} \setminus \partial A\right)^{\mathbf{C}} &= X \setminus \left(A^{\mathbf{C}} \setminus \partial A\right) \\ &= X \setminus A^{\mathbf{C}} \cup \partial A = A \cup \partial A \text{ ist abgeschlossen} \end{split}$$

(iii)

$$\begin{split} \partial A &= (A \cup \partial A) \cap \left(A^C \cup \partial A\right) \\ &= (A \cup \partial A) \cap \left(A^C \cup \partial A^C\right) \text{ ist abgeschlossen} \end{split}$$

Definition 8.5.5 (Inneres und Abschluss, abgeschlossene Hülle). Sei (X, \mathcal{T}) ein topologischer Raum und $A \subseteq X$.

- (i) $U(A) \coloneqq \{U \in \mathcal{T} : U \subseteq A\} =$ alle offenen Teilmengen von A. Das Innere von $A = A^{\circ} \coloneqq \bigcup_{\sigma \in U(A)} \sigma =$ Vereinigung aller offenen Teilmengen von A
- (ii) $B(A) \coloneqq \{B \subseteq X \text{ abgeschlossen} : A \subseteq B\} \neq \emptyset \text{ (da } X \in B(A))$ Der Abschluss von B sei $\overline{B} = \text{abgeschlossene}$ Hülle von $B \coloneqq \bigcap_{B \in B(A)} B$ abgeschlossen

Damit gilt $A \subseteq \overline{A}$.

Bemerkung 8.5.6. $A^{\circ} =$ größte offene Teilmenge von A und $\overline{A} =$ kleinste abgeschlossene Menge, die A enthält.

Satz 8.5.7. $A^{\circ} = A \setminus \partial A$ und $\overline{A} = A \cup \partial A$.

Beweis. Teil 1: Nach Satz 8.5.4 ist $A \setminus \partial A$ offen und $A \setminus \partial A \subseteq A$. Damit folgt $A \setminus \partial A \subseteq A^{\circ}$. Damit ist noch zu zeigen, dass $A^{\circ} \subseteq A \setminus \partial A$. Ist $U \subseteq A$ offen

$$\Rightarrow U \cap A^{\mathcal{C}} = \varnothing$$
$$\Rightarrow U \cap \partial A = \varnothing$$

Falls nicht $\exists y \in U \cap \partial A$, dann folgt $U \cap A^{\mathbb{C}} \neq \emptyset$. Das ergibt einen Widerspruch. Das heißt für jede offene Teilmenge $U \subseteq A$ gilt $U \subseteq A \setminus \partial A$.

$$A = \bigcup_{U \in U(A)} U \subseteq A \setminus \partial A$$
$$\Rightarrow A^{\circ} \subseteq A \setminus \partial A$$
$$\Rightarrow A \setminus \partial A = A^{\circ}$$

Teil 2: Behauptung: Aus $B \subseteq X$ ist abgeschlossen und $A \subseteq B$ folgt $\partial A \subseteq B$. Angenommen die Behauptung ist falsch. Dann würde gelten $B^{\mathbb{C}} \cap \partial A \neq \emptyset$.

 $x \in \partial A \cap B^{\mathbb{C}}$. $B^{\mathbb{C}}$ ist offene Umgebung von x. Nach Definition von ∂A ist $A \cap B^{\mathbb{C}} \neq \emptyset$. Das heißt $A \subseteq B$. (Widerspruch).

Aus der Behauptung folgt jetzt also $B \supseteq A \cup \partial A \ \forall B \supseteq A$ und B ist abgeschlossen

$$\Rightarrow A \cup \partial A \subseteq \bigcap_{B \in B(A)} B = \overline{A}$$

Andererseits ist nach Satz 8.5.4 $A \cup \partial A$ abgeschlossen und sicherlich $A \subseteq A \cup \partial A$. Daraus folgt $\overline{A} \subseteq A \cup \partial A$. Damit folgt $\overline{A} = A \cup \partial A$.

9 [*] Konvergenz und Stetigkeit in metrischen Räumen

Definition 9.1.1 (Konvergenz in metrischen Räumen). Sei (M, d) ein metrischer Raum. Eine Folge $(x_n)_n \subseteq M$ konvergiert gegen $a \in M$, falls

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \colon d(x_n, a) < \varepsilon \quad \forall n \ge N$$

$$(\Leftrightarrow \forall \varepsilon > 0 \colon x_n \in B_{\varepsilon}(a) \text{ für fast alle } n)$$

Wir schreiben $a = \lim_{n \to \infty} x_n$ oder $x_n \to a$ für $n \to \infty$. $(x_n)_n$ heißt Cauchy-Folge, falls

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \colon d(x_n, x_m) < \varepsilon \quad \forall n, m \ge N$$

Definition 9.1.2 (Durchmesser). Sei (M, d) ein metrischer Raum. Wir definieren den Durchmesser von einer Menge A mit

$$diam(A) := \sup \{ d(x, y) : x, y \in A \}$$

A ist beschränkt, falls $\operatorname{diam}(A) < \infty$.

Bemerkung 9.1.3. Eine Menge $A \subseteq M$ ist genau dann beschränkt, wenn

$$\exists x \in M, r > 0 \colon A \subseteq B_r(x)$$

In diesem Fall ist $diam(A) \leq 2r$.

Satz 9.1.4.

- (i) Konvergiert die Folge $(x_n)_n$, so ist sie eine Cauchy-Folge
- (ii) Jede Cauchy-Folge ist beschränkt.

Beweis.

(i) Sei $a = \lim_{n \to \infty} x_n$ und $\varepsilon > 0$

$$\Rightarrow \exists N \in \mathbb{N} \colon d(x_n, a) < \frac{\varepsilon}{2}$$

$$\Rightarrow d(x_n, x_m) \le d(x_n, a) + d(a, x_m) < \varepsilon \quad \forall n, m \ge N$$

$$\Rightarrow (x_n)_n \text{ ist eine Cauchy-Folge}$$

(ii) Sei $(x_n)_n$ eine Cauchy-Folge. Wir wählen $\varepsilon = 1$

$$\Rightarrow \exists N \in \mathbb{N} : d(x_n, x_m) < 1 \quad \forall n, m \ge N$$

Wir definieren $a := x_N$

$$\Rightarrow d(x_n, a) < 1 \quad \forall n \ge N$$

 $r := \max(d(x_1, a), d(x_2, a), \dots, d(x_{N-1}, a)) + 1$

$$\Rightarrow \forall n \in \mathbb{N} \colon d(x_n, a) < r$$
$$\Rightarrow x_n \in B_r(a) \quad \forall n \in \mathbb{N}$$

Das heißt

$$\bigcup_{n\in\mathbb{N}} \{x_n\} \subseteq B_r(A) \text{ ist eine beschränkte Menge}$$

Definition 9.1.5 (Banachräume). Ein metrischer Raum (M, d) heißt vollständig, falls jede Cauchy-Folge in M konvergiert. Ein vollständiger, normierter Vektorraum heißt Banachraum.

Beispiel 9.1.6. $\left(\mathbb{R}^d, \|\cdot\|_2\right)$, $\left(\mathbb{R}^d, \|\cdot\|_\infty\right)$ oder $\left(\mathbb{R}^d, \|\cdot\|_1\right)$ sind vollständige, normierte Vektorräume. Genauso $\left(\mathbb{C}^d, \|\cdot\|_2\right)$ etc.

Satz 9.1.7 (Schachtelungsprinzip). Sei (M,d) ein vollständiger metrischer Raum und $(A_n)_n$ eine absteigende Folge abgeschlossener Mengen $(A_0 \supseteq A_1 \supseteq A_2 \supseteq ...)$ mit diam $(A_n) \to 0$ für $n \to \infty$ und $A_n \neq \emptyset \ \forall n \in \mathbb{N}$. Dann existiert genau ein $x \in M$ sodass $x \in \bigcap_{n \in \mathbb{N}} A_n$. Das heißt $x \in A_n \ \forall n \in \mathbb{N}$.

Beweis. EINDEUTIGKEIT: Angenommen $x,y\in A_n \ \forall n\in\mathbb{N}$. Dann gilt $d(x,y)\leq \operatorname{diam}(A_n)\to 0$ für $n\to\infty$. Das heißt $d(x,y)=0\Leftrightarrow x=y$.

EXISTENZ: $\forall n \in \mathbb{N} \ \exists x_n \in A_n$. Behauptung: $(x_n)_n$ ist eine Cauchy-Folge. Sei $n \geq m$

$$x_n \in A_n \subseteq A_{n-1} \subseteq A_{n-2} \subseteq \cdots \subseteq A_m$$

Das heißt

$$\begin{aligned} x_n \in A_m & \forall n \geq m \\ \Rightarrow x_n, x_m \in A_m & \forall n \geq m \\ d(x_n, x_m) \leq \operatorname{diam}(A_m) \to 0 \text{ für } m \to \infty \end{aligned}$$

Das heißt $(x_n)_n$ ist eine Cauchy-Folge. Nach der Vollständigkeit von M existiert ein $x := \lim_{n \to \infty} x_n$. Behauptung: $x \in A_m \ \forall m \in \mathbb{N}$

$$x_n \in A_m \quad \forall n \ge m$$

$$\Rightarrow \lim_{n \to \infty} x_n \in A_m \text{ da } A_m \text{ abgeschlossen ist}$$

$$\Rightarrow x \in A_m \quad \forall m \in \mathbb{N}$$

[21. Jun] **Definition 9.1.8** (Stetigkeit in metrischen Räumen). Seien (M, d_M) , (N, d_N) metrische Räume.

(a) ε - δ -Definition von Stetigkeit: Eine Funktion $f: M \to N$ ist stetig im Punkt $a \in M$ falls

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon d_N(f(x), f(a)) < \varepsilon \quad \forall x \in M \ \text{mit} \ d_M(x, a) < \delta$$

(b) Folgenstetigkeit: Eine Funktion $f: M \to N$ ist folgenstetig in $a \in M$, falls für jede Folge $(x_n)_n \subseteq M$ mit $\lim_{n \to \infty} x_n = a$ auch $\lim_{n \to \infty} f(x_n) = f(a)$ folgt.

Bemerkung 9.1.9. Definition 9.1.8 (a) ist dabei äquivalent zu

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon f(B_{\delta}^{M}(a)) \subseteq B_{\varepsilon}^{N}(f(a))$$

Satz 9.1.10. Für eine Funktion $f: M \to N$ und $a \in M$ sind äquivalent

- (i) f ist ε - δ -stetig in a
- (ii) f ist folgenstetig in a
- (iii) Für jede Umgebung U von f(a) ist $V = f^{-1}(U)$ eine Umgebung von a

Dabei ist (iii) die topologische Definition von Stetigkeit.

Beweis. (i) \Rightarrow (ii): Sei $(x_n)_n \subseteq M$ mit $x_n \to a$. Für $\varepsilon > 0$ wähle $\delta > 0$, sodass

$$d_N(f(x), f(a)) < \varepsilon \quad \forall x \in M \text{ mit } d_M(x, a) < \delta$$

Da $a = \lim_{n \to \infty} x_n$ existiert ein $N \in \mathbb{N}$, sodass $\forall n > N : d_M(x_n, a) < \delta$

$$\Rightarrow \forall n > N : d_N(f(x_n), f(a)) < \varepsilon$$
$$\Rightarrow f(x_n) \to f(a)$$

(ii) \Rightarrow (i): Kontraposition. Angenommen (i) gilt nicht. Dann $\exists \varepsilon_0$, sodass

$$\forall \delta > 0 \; \exists x \in M : d_M(x, a) < \delta \text{ und } d_N(f(x), f(a)) > \varepsilon_0$$

Wir wählen $\delta_n = \frac{1}{n}$. Dann gilt $x_n \to a$, da $d(x_n, a) < \frac{1}{n}$. Aber

$$\exists x_1 \colon d_N(f(x_1), f(a)) > \varepsilon_0$$

$$\exists x_2 \colon d_N(f(x_2), f(a)) > \varepsilon_0$$

$$\vdots$$

$$\exists x_n \colon d_N(f(x_n), f(a)) > \varepsilon_0$$

$$\Rightarrow d_N(f(x_n), f(a)) \quad \forall n \in \mathbb{N} > \varepsilon_0$$

$$\Rightarrow f(x_n) \not\to f(a)$$

(i) \Rightarrow (iii): Sei $U \subseteq N$ eine Umgebung von f(a). Dann gilt

$$\exists \varepsilon > 0 \colon B_{\varepsilon}^{N}(f(a)) \subseteq N$$

$$\stackrel{\text{(i)}}{\Rightarrow} \exists \delta > 0 \colon f(B_{\delta}(a)) \subseteq B_{\varepsilon}(f(a))$$

$$\Rightarrow \exists \delta > 0 \colon B_{\delta}(a) \subseteq f^{-1}(U)$$

$$\Rightarrow f^{-1}(U) \coloneqq V \text{ ist eine Umgebung}$$

(iii) \Rightarrow (i): Sei $\varepsilon > 0$. Dann ist $B_{\varepsilon}^N(f(a))$ eine Umgebung von f(a). Nach (iii) ist $V := f^{-1}(B_{\varepsilon}^N(f(a)))$ eine Umgebung von a. Das heißt

$$\exists \delta > 0 \colon B_{\delta}^{M}(a) \subseteq V$$

$$\Leftrightarrow d_{N}(f(x), f(a)) < \varepsilon \quad \forall x \in B_{\delta}(a)$$

$$\Leftrightarrow d_{N}(f(x), f(a)) < \varepsilon \quad \forall x \in M \text{ mit } d_{M}(x, a) < \delta$$

Definition 9.1.11. Seien (M, d_M) und (N, d_N) metrische Räume und $f: M \to N$ eine Funktion.

(a) ε - δ -Version: f heißt stetig auf M, falls

$$\forall x_0 \in M \ \forall \varepsilon > 0 \ \exists \delta > 0 : d_N(f(x), f(x_0)) < \varepsilon \quad \forall x \in M \ \text{mit} \ d_M(x, x_0) < \delta$$

- (b) Folgenversion: f heißt stetig auf M, falls $\forall x_0 \in M$ und jede Folge $(x_n)_n$ mit $x_n \to x_0$ gilt $f(x_n) \to f(x_0)$.
- (c) Topologische Version: f heißt stetig auf M, falls für jede offene Menge $U \subseteq N$ das Urbild $f^{-1}(U)$ offen in M ist.

Satz 9.1.12. Für metrische Räume (M, d_M) und (N, d_N) und eine Funktion $f: M \to N$ sind die Versionen (a), (b) und (c) von Definition 9.1.11 äquivalent.

Beweis. Der Beweis von (a) \Leftrightarrow (b) folgt direkt aus Satz 9.1.10.

(c) \Rightarrow (a): Sei U offen in N. Dann ist $f^{-1}(U)$ offen in M. Sei $x_0 \in M$ beliebig und $\varepsilon > 0$. Dann ist

$$B_{\varepsilon}^{N} := B_{\varepsilon}^{N}(f(x_{0})) = \{ y \in N : d_{N}(y, f(x_{0})) < \varepsilon \}$$

offen in N

$$\Rightarrow V = f^{-1} \Big(B_{\varepsilon}^{N} \Big)$$
 offen in M

Außerdem ist $x_0 \in V$

$$\Rightarrow \exists \delta > 0 \colon B_{\delta}^{M} \subseteq V$$

$$\Rightarrow d_{N}(f(x), f(x_{0})) < \varepsilon \quad \forall x \in B_{\delta}^{M}(x_{0})$$

$$\Rightarrow \forall d_{M}(x, x_{0}) < \delta \colon d_{N}(f(x), f(x_{0})) < \varepsilon$$

(a) \Rightarrow (c): Kontraposition. Angenommen es existiert eine Menge $U \subseteq N$, sodass $V := f^{-1}(U)$ nicht offen ist. Dann existiert ein $x_0 \in V$, sodass

$$\forall \delta > 0 \colon B_{\delta}(x_0) \not\subseteq V$$

Da $x_0 \in V$ ist $f(x_0) \in U$. Da U offen ist, gilt

$$\exists \varepsilon_0 \colon B_{\varepsilon_0}^N(f(x_0)) \subseteq U$$

Sei $\delta_n = \frac{1}{n}$. Da $B_{\delta}(x_0)$ keine Teilmenge von V ist, folgt

$$\exists x_n \in B_{\frac{1}{n}}(x_0)$$

$$\Rightarrow x_n \notin V$$

$$\Rightarrow x_n \notin f^{-1}(B_{\varepsilon_0}^N(f(x_0)))$$

$$\Rightarrow d_N(f(x_n), f(x_0)) > \varepsilon_0$$

$$\Rightarrow d_M(x_n, x_0) < \frac{1}{n} \text{ aber } d_N(f(x_N), f(x_0)) > \varepsilon_0$$

Damit ergibt sich ein Widerspruch zu (a).

Bemerkung 9.1.13. Für $N = \mathbb{R}^d$ und $M \subseteq \mathbb{R}$ ist die Stetigkeit von $f: M \to \mathbb{R}^d$, $x \mapsto (f_1(x), f_2(x), \dots, f_n(x))$ äquivalent dazu, dass jedes f_j stetig ist.

[25. Jun] **Bemerkung 9.1.14.** Sei (M,d) ein metrischer Raum. Wenn $g, f: M \to \mathbb{R}$ stetig sind, dann sind auch $f+g: M \to \mathbb{R}, x \mapsto f(x) + g(x)$ sowie $f \cdot g: M \to \mathbb{R}, x \mapsto f(x) \cdot g(x)$ stetig. Außerdem ist die Menge $D_{g\neq 0} := \{x \in M: g(x) \neq 0\}$ für ein stetiges g offen. Das heißt wenn $g(x_0) \neq 0$, dann ist $D_{g\neq 0}$ eine Umgebung und wir können eine Funktion $\frac{f}{g}: D_{g\neq 0} \to \mathbb{R}$ definieren, die stetig in x_0 ist.

Beweis. (Übung)
$$\Box$$

Definition 9.1.15 (Homöomorphismus). Seien (M, d_M) und (N, d_N) metrische Räume. Dann heißt eine Funktion $f: M \to N$ Homöomorphismus, wenn sie bijektiv und stetig ist und $f^{-1}: N \to M$ auch stetig ist.

Beispiel 9.1.16.

1. Die Funktion

$$f: \mathbb{R} \to (-1,1)$$
$$x \mapsto \frac{x}{1+|x|}$$

ist ein Homöomorphismus.

2. Die Funktion

$$f: \mathbb{R}^d \to B_1(0) = \left\{ x \in \mathbb{R}^d : ||x|| < 1 \right\}$$

 $x \mapsto f(x) = \frac{x}{1 + ||x||}$

ist ein Homöomorphismus mit der Umkehrabbildung

$$f^{-1}(y) = \frac{y}{1 - \|y\|}$$

Definition 9.1.17. Seien (M, d_M) und (N, d_N) metrische Räume. Eine Funktionenfolge $(f_n)_n$ mit $f_n : M \to N$ konvergiert gleichmäßig gegen $f : M \to N$, falls

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : d_N(f(x), f_n(x)) < \varepsilon \quad \forall x \in M \ \forall n \geq N$$

Das heißt

$$\limsup_{n \to \infty} \sup_{x \in M} d_N(f(x), f_n(x)) = 0$$

Satz 9.1.18. Seien $f_n: M \to N$ stetig für alle $n \in \mathbb{N}$ und konvergiere $(f_n)_n$ gleichmäßig gegen $f: M \to N$. Dann ist f stetig.

Beweis. Wir verwenden den $\frac{\varepsilon}{3}$ -Trick. Angenommen $\varepsilon>0$ und $x_0\in M$ beliebig. Wegen der gleichmäßigen Konvergenz gilt

$$\exists N \in \mathbb{N} : d_N(f(x), f_n(x)) < \frac{\varepsilon}{3} \quad \forall n \ge N$$

 f_N ist stetig in x_0 . Das heißt

$$\exists \delta > 0 \colon d_N(f_N(x), f_N(x_0)) < \frac{\varepsilon}{3} \quad \forall x \in M, d_M(x, x_0) < \delta$$

Sei nun $x \in B_{\delta}(x_0) = \{y \in M : d_M(y, x_0) < \delta\}$. Dann folgt durch das Verwenden der Dreiecksungleichung

$$d_N(f(x), f(x_0)) \le d_N(f(x), f_N(x)) + d_N(f_N(x), f(x_0))$$

$$\le d_N(f(x), f_N(x)) + d_N(f_N(x), f_N(x_0)) + d_N(f_N(x_0), f(x_0))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

10 [*] Kompakte Mengen und metrische Räume

Definition 10.1.1 (Kompaktheit). Sei (M, d) ein metrischer Raum. Eine Teilmenge $A \subseteq M$ ist kompakt, falls jede Folge in A eine konvergente Teilfolge besitzt, deren Grenzwert wieder in A liegt. Das heißt

$$\forall \text{Folge } (x_n)_n \subseteq A \ \exists \text{Teilfolge } (x_{n_k})_k \colon x \coloneqq \lim_{k \to \infty} x_{n_k} \text{ existiert und } x \in A$$

Bemerkung 10.1.2 (Topologische Kompaktheit). Es gibt auch eine topologische Definition, die nicht über Folgen argumentiert und im metrischen Fall äquivalent zur Folgenkompaktheit ist: $A \subseteq M$ ist topologisch kompakt, falls jede offene Überdeckung eine endliche Teilüberdeckung hat.

Das heißt für eine beliebige Indexmenge I und U_j offen $\forall j \in I$ mit $A \subseteq \bigcup_{j \in I} U_j$ muss ein $N \in \mathbb{N}$ und $j_1, j_2, \ldots, j_N \in I$ existieren, sodass $A \subseteq U_{j_1} \cup U_{j_2} \cup \cdots \cup U_{j_N}$.

Definition 10.1.3. Ein metrischer Raum (M, d) ist kompakt, falls M kompakt ist.

Bemerkung 10.1.4. Jeder kompakte metrische Raum ist vollständig.

Beweis. Wir haben gezeigt, dass eine Cauchy-Folge genau dann konvergiert, wenn sie eine konvergente Teilfolge hat. Damit konvergiert jede Cauchy-Folge in einem kompakten Raum. \Box

Satz 10.1.5. Wir betrachten $(\mathbb{R}^d, \|\cdot\|_{\infty})$ mit Maximumsnorm. Dann gilt $A \subseteq \mathbb{R}^d$ ist genau dann kompakt, wenn A abgeschlossen und beschränkt ist.

Beweis. " \Rightarrow " Sei $A \subseteq \mathbb{R}^d$ kompakt. Sei $(x_n)_n \subseteq A$ eine Folge in A, welche gegen $x \in \mathbb{R}^d$ konvergiert. Dann existiert eine Teilfolge $(x_{n_k})_k$ mit $y := \lim_{n \to \infty} x_{n_k} \in A$. Da $(x_n)_n$ konvergiert, ist $x = y \in A$.

Angenommen A ist nicht beschränkt. Das heißt

$$\forall n \in \mathbb{N} \ \exists x_n \in A \colon \|x_n\|_{\infty} \ge n$$

Dann gilt für jede Teilfolge $(x_{n_k})_k$ auch $||x_{n_k}|| \ge n_k \ge k$. Das heißt jede Teilfoge von $(x_n)_n$ ist unbeschränkt und kann somit nicht konvergieren.

" \Leftarrow " Sei A abgeschlossen und beschränkt. Dann wählen wir eine Folge $(x_n)_n \subseteq A$. Dann besteht x_n aus mehreren Koordinaten. Das heißt $x_n = \left(x_n^1 \ x_n^2 \ \dots \ x_n^d\right)$ Wir definieren $(x_n^j)_n$ als Folge in \mathbb{R} . Da A beschränkt ist, muss auch $(x_n^j)_n$ beschränkt sein. Das heißt für j=1 gibt es eine Teilfolge $(x_{n_k}^1)_k$ von $(x_n^1)_n$, die konvergiert. Es gibt also eine Ausdünnung $\sigma_1: \mathbb{N} \to \mathbb{N}$ mit $\sigma_1(n+1) > \sigma_1(n) \ \forall n \in \mathbb{N}$, sodass $x^1 \coloneqq \lim_{k \to \infty} x_{\sigma_1(k)}^1$ existiert. Dann konvergiert die erste Koordinate von $\left(x_{\sigma_1(n)}^1 \ x_{\sigma_1(n)}^2 \ \dots \ x_{\sigma_1(n)}^d\right)$.

Wir führen das Prinzip iterativ fort. Das heißt $(x_{\sigma(n)}^2)_n$ ist beschränkt in \mathbb{R} . Damit hat es eine konvergente Teilfolge. Wir wählen eine neue Ausdünnung $\sigma_2 : \mathbb{N} \to \mathbb{N}$ analog zu σ_1 und setzen $\kappa_2 := \sigma_2 \circ \sigma_1$. Dann hat $x_{\kappa_2(n)}^2$ einen Grenzwert $x^2 := \lim_{n \to \infty} x_{\kappa_2(n)}^2$. Dabei konvergiert $x_{\kappa_2(n)}^1$ immer noch.

Dieses Prinzip wenden wir für jede Koordinate an. Das heißt wir definieren $\sigma_j: \mathbb{N} \to \mathbb{N}$ und $\kappa_{j+1} \coloneqq \sigma_{j+1} \circ \kappa_j$. Damit hören wir bei j=d auf. Dann haben wir $x^j_{\kappa_d(n)}$ konvergiert gegen ein x^j für alle $j \in \{1,\ldots,d\}$. Das heißt wir haben einen Grenzwert $x=\left(x^1\ x^2\ \ldots\ x^d\right)$ von $(x_{\kappa_d(n)})_n$. Da A abgeschlossen ist und $x_{\kappa(n)} \to x$ ist auch $x \in A$. Damit ist A kompakt.

Satz 10.1.6. Sei (M,d) ein metrischer Raum und $A \subseteq M$ kompakt. Sei außerdem $f: A \to \mathbb{R}$ stetig. Dann nimmt f sein Maximum und Minimum an. Das heißt

$$\exists \underline{x} \in A \colon f(\underline{x}) = \inf \{ f(x) : x \in A \} \text{ und}$$
$$\exists \overline{x} \in A \colon f(\overline{x}) = \sup \{ f(x) : x \in A \}$$

Beweis. Schritt 1: Sei $a := \inf \{ f(x) : x \in A \}$. Angenommen $a = -\infty$. Dann würde gelten

$$\forall n \in \mathbb{N} \ \exists x_0 \in A \colon f(x_n) \le -n$$

Das heißt es existiert eine konvergente Teilfolge $(x_{n_k})_k$, da A kompakt ist. Wir definieren $x := \lim_{k \to \infty} x_{n_k} \in A$. Wegen der Stetigkeit von f gilt dann

$$\mathbb{R} \ni f(x) = f\left(\lim_{k \to \infty} x_{n_k}\right) = \lim_{k \to \infty} f(x_{n_k}) = -\infty$$

SCHRITT 2: Sei $a := \inf \{ f(x) : x \in A \}$. Das heißt

$$\forall n \in \mathbb{N} \ \exists x_n \in A \colon f(x_n) < a + \frac{1}{n}$$

 $\Rightarrow a \le f(x_n) < a + \frac{1}{n}$

Da A kompakt ist, existiert eine konvergente Teilfolge $(x_{n_k})_k$ von $(x_n)_n$. Wir definieren

$$\underline{x} := \lim_{k \to \infty} x_{n_k} \le a + \frac{1}{n}$$

$$\Rightarrow a \le f(\underline{x}) = f\left(\lim_{k \to \infty} x_{n_k}\right) = \lim_{k \to \infty} x_{n_k} = a$$

$$\Rightarrow f(\underline{x}) = a$$

Schritt 3: Für das Maximum betrachte -f und wende Schritt 1 und Schritt 2 an.

28. Jun] Satz 10.1.7. Auf endliche-dimensionalen Vektorräumen sind alle Normen äquivalent. Das heißt für einen endlich-dimensionalen Vektorraum X mit zwei Normen $\|\cdot\|_a$, $\|\cdot\|_b$ gibt es $0 < c_1 \le c_2 < \infty$, sodass

$$|c_1 \cdot ||h||_a \le ||h||_b \le |c_2 \cdot ||h||_a \quad \forall h \in X$$

Beweis. Schritt 1: Sei $d := \dim(X) < \infty$. Wir wählen eine geordnete Basis (e_1, e_2, \dots, e_d) von X. Dann können wir einen beliebigen Vektor $h \in X$ schreiben als

$$h = \sum_{j=1}^{d} t_j \cdot e_j$$

Für eindeutige $t_j \in \mathbb{R}$. Damit erhalten wir eine Bijektion

$$h: \mathbb{R}^d \to X$$

$$\mathbb{R}^d \ni t \mapsto h(t) = \sum_{j=1}^d t_j \cdot e_j \in X$$

Also reicht es, zu zeigen, dass für beliebige Normen $\|\cdot\|$ auf X und gewählte $0 < c_1 \le c_2 < \infty$ gilt

$$c_1 \cdot ||t||_{\infty} \le ||h(t)|| \le c_2 \cdot ||t||_{\infty} \quad \forall t \in \mathbb{R}^d$$
 (1)

Setzen wir nämlich voraus, dass (1) gilt, dann gilt für zwei beliebige Normen $\|\cdot\|_a$, $\|\cdot\|_b$ auf X

$$c_1 \cdot ||t||_{\infty} \le ||h(t)||_a \le c_2 \cdot ||t||_{\infty}$$

 $d_1 \cdot ||t||_{\infty} \le ||h(t)||_b \le d_2 \cdot ||t||_{\infty}$

Sei h := h(t)

$$\begin{split} \Rightarrow \|h\|_{a} & \leq c_{2} \cdot \|t\|_{\infty} \leq \frac{c_{2}}{d_{1}} \cdot \|h\|_{b} \\ & \leq \frac{c_{2}}{d_{1}} \cdot d_{2} \cdot \|t\|_{\infty} \\ & \leq \frac{c_{2} \cdot d_{2}}{c_{1} \cdot d_{1}} \cdot \|h\|_{a} \\ \Rightarrow \frac{d_{1}}{c_{2}} \cdot \|h\|_{a} \leq \|h\|_{b} \leq \frac{d_{2}}{c_{1}} \cdot \|h\|_{a} \end{split}$$

Damit wäre die Behauptung gezeigt. Das heißt wir müssen nur noch (1) zeigen. Schritt 2: Sei $\|\cdot\|$ eine beliebige Norm auf X. Wir definieren

$$f: \mathbb{R}^d \to \mathbb{R}$$

 $h \mapsto f(h(t)) = ||h(t)||$

Dann existiert ein $0 < C < \infty$, sodass

$$|f(t)| = f(t) \le C \cdot ||t||_{\infty} \quad \forall t \in \mathbb{R}^d$$
 (2)

und

$$|f(t_1) - f(t)| \le C \cdot ||t_1 - t_2||_{\infty} \quad \forall t_1, t_2 \in \mathbb{R}^d$$
 (3)

Dabei folgt aus (3) gerade, dass f Lipschitz-stetig ist. Um (2) zu beweisen, betrachten wir

$$|f(t)| = ||h(t)|| = \left\| \sum_{j=1}^{d} t_j \cdot e_j \right\|$$

$$\leq \sum_{j=1}^{d} ||t_j \cdot e_j||$$

$$\leq \max_{1 \leq j \leq d} |t_j| \cdot \sum_{j=1}^{d} ||e_j|| = C \cdot ||t||_{\infty}$$

Außerdem zeigen wir (3):

$$|f(t_1) - f(t_2)| = |||h(t_1)|| - ||h(t_2)|||$$

$$= |||h_1|| - ||h_2||| \le ||h_1 - h_2||$$

$$\Rightarrow |f(t_1) - f(t_2)| \le ||h(t_1) - h(t_2)||$$

$$= ||h(t_1 - t_2)|| \le C \cdot ||t_1 - t_2||_{\infty}$$

Damit haben wir (3) gezeigt. SCHRITT 3: Nach (3) gilt $||h(t)|| \le C \cdot ||t||_{\infty}$. Also reicht es zu zeigen, dass

$$\exists c_1 > 0 : c_1 \cdot ||t||_{\infty} \le ||h(t)||$$

Sei $t \neq 0$. Dann ist auch $||t||_{\infty} > 0$

$$f\left(\frac{t}{\|t\|_{\infty}}\right) = \left\|h\left(\frac{t}{\|t\|_{\infty}}\right)\right\|$$

$$h\left(\frac{t}{\|t\|_{\infty}}\right) = \sum_{j=1}^{d} \frac{t_{j}}{\|t\|_{\infty}} \cdot e_{j}$$

$$= \frac{1}{\|t\|_{\infty}} \sum_{j=1}^{d} t_{j} \cdot e_{j}$$

$$= \frac{1}{\|t\|_{\infty}} \cdot f(t)$$

$$\Rightarrow \|t\|_{\infty} \cdot f\left(\frac{t}{\|t\|_{\infty}}\right) = f(t) \quad \forall t \in \mathbb{R}^{d} \setminus \{\mathbf{0}\}$$

$$(4)$$

Wir definieren

$$S \coloneqq \left\{ t \in \mathbb{R}^d : \left\| t \right\|_{\infty} = 1 \right\}$$

Damit ist S beschränkt und abgeschlossen. Wir wählen eine Folge $(t_n)_n \subseteq S$ mit $t_n \to t$

$$\Rightarrow ||t||_{\infty} = \left\| \lim_{n \to \infty} t_n \right\|_{\infty} = \lim_{n \to \infty} ||t_n||_{\infty} = 1$$
$$\Rightarrow t \in S$$

Wir definieren außerdem

$$c_1 := \inf \{ f(t) : t \in S \}$$

$$\stackrel{(4)}{\Rightarrow} f(t) = ||t||_{\infty} \cdot f\left(\frac{t}{||t||_{\infty}}\right) \ge c_1 \cdot ||t||_{\infty} \quad \forall t \in \mathbb{R}^d$$

Frage: Was ist ein guter Grund, dass $c_1 > 0$? Schritt 4: S ist kompakt, da \mathbb{R}^d endlich-dimensional ist und S beschränkt und abgeschlossen ist. Außerdem ist $f: S \to \mathbb{R}$ stetig und $f(t) > 0 \ \forall t \in S$. Nach Satz 10.1.6 nimmt f auf S sein Minimum ein. Das heißt es existiert ein $\underline{t} \in S$, sodass

$$c_1 = \inf \{ f(t) : t \in S \} = f(t) > 0$$

Bemerkung 10.1.8. Sei $d = \dim(X)$ und (e_1, e_2, \dots, e_d) eine Basis von X. Dann ist

$$F: \mathbb{R}^d \to X$$

$$t \mapsto F(t) = \sum_{j=1}^d t_j \cdot e_j$$

eine lineare Bijektion. Wir haben im vorherigen Beweis gesehen, dass

$$||F(t)|| \le C \cdot ||t||_{\infty} \text{ für } C \coloneqq \sum_{j=1}^{d} ||e_j||$$

Damit ist F sogar stetig. Frage: Ist $F^{-1}: X \to \mathbb{R}^d$ auch stetig?

$$c_1 \cdot ||t||_{\infty} \le ||F(t)||$$

10 [*] Kompakte Mengen und metrische Räume

$$t = F^{-1}(h)$$

$$\Rightarrow c_1 \cdot \left\| F^{-1}(h) \right\| \le \|h\|$$

$$\Rightarrow \left\| F^{-1}(h) \right\| \le \frac{1}{c_1} \cdot \|h\|$$

Das heißt $F^{-1}: X \to \mathbb{R}^d$ ist auch stetig.

Satz 10.1.9. Seien (M, d_M) und (N, d_N) metrische Räume, M kompakt und $f: M \to N$. Dann gilt f ist genau dann stetig, wenn f gleichmäßig stetig ist. Das heißt

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x, y \in M : d_M(x, y) < \delta \Rightarrow d_N(f(x), f(y)) < \varepsilon$$

Beweis. "←" Ist klar.

" \Rightarrow "Angenommen f ist stetig, aber nicht gleichmäßig stetig. Das heißt

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in M : d_M(x, y) < \delta \text{ aber } d_N(f(x), f(y)) \ge \varepsilon$$

Wähle $\delta = \frac{1}{n}$. Das heißt es existieren zwei Folgen $(x_n)_n, (y_n)_n \subseteq M$, sodass

$$d_N(x_n, y_n) < \frac{1}{n} \text{ aber } d_N(f(x_n), f(y_n)) \ge \varepsilon \quad \forall n \in \mathbb{N}$$

Da M kompakt ist, existiert eine Teilfolge $(y_{n_k})_k$ von $(y_n)_n$, die konvergiert. Sei

$$y \coloneqq \lim_{k \to \infty} y_{n_k} \in M$$

Behauptung: $x_{n_K} \to y$, da

$$d_M(x_{n_k}, y) \le d_M(x_{n_k}, y_{n_k}) + d_M(y_{n_k}, y) \to 0$$

Da f stetig ist folgt

$$\Rightarrow d_N(f(x_{n_k}),f(y))\to 0 \text{ für } k\to\infty$$

$$0<\varepsilon\leq d_N(f(x_{n_k}),f(y_{n_k}))\leq d_N(f(x_{n_k}),f(y))+d_N(f(y),f(y_{n_k}))\to 0$$

Damit ergibt sich ein Widerspruch, da ε fest gewählt war.

11 [*] Differential rechnung im \mathbb{R}^d

11.1 Die Ableitung

Bisher haben wir die Ableitung in \mathbb{R} definiert. Die Idee dahinter war, eine Funktion f(x) an einer Stelle durch eine affine Funktion zu approximieren. Das heißt

$$f(x+h) = f(x) + f'(x) \cdot h + \text{Fehler}_x(h)$$

= $b + a \cdot h + \text{Fehler}_x(h)$

Dabei galt

$$\frac{|\mathrm{Fehler}_x(h)|}{h} \to 0 \text{ für } h \to 0$$

$$\Leftrightarrow \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ existient}$$

Wir wollen dieses Prinzip auf den \mathbb{R}^d übertragen und fragen uns: Gibt es eine affine Funktion

$$g: \mathbb{R}^n \to \mathbb{R}^m$$

 $h \mapsto g(h) = b + A \cdot [h] = b + A \cdot h$

sodass

$$f(x+h) = g(h) + \text{Fehler}_x(h) \in \mathbb{R}^m$$

mit

$$\frac{\|\operatorname{Fehler}_{x}(h)\|_{\mathbb{R}^{m}}}{\|h\|_{\mathbb{R}^{n}}} \to 0 \text{ für } h \to 0$$

Angenommen wir finden eine solche Funktion $f: D \to Y := \mathbb{R}^m$ mit $D \subseteq X := \mathbb{R}^u$, sodass

$$\begin{split} f(x+h) &= b + A \cdot [h] + \mathrm{Fehler}_x(h) \\ \frac{\|\mathrm{Fehler}_x(h)\|_Y}{\|h\|_X} &= \frac{\|\varepsilon_x(h) \cdot \|h\|_X\|}{\|h\|_X} = \|\varepsilon_x(h)\|_Y \to 0 \\ \varepsilon_x(h) &\coloneqq \frac{\mathrm{Fehler}_x(h)}{\|h\|_X} \\ f(x+h) &= g(h) + \varepsilon_x(h) \cdot \|h\|_X \end{split} \tag{*}$$

Behauptung: Angenommen (*) und $\varepsilon_x(h) \to 0$ gilt. Dann folgt, dass g eindeutig bestimmt ist.

Beweis. Angenommen es existieren g_1,g_2 affine Abbildungen, sodass

$$f(x+h) = g_1(h) + \varepsilon_x^1(h) \cdot ||h||_X$$

= $g_2(h) + \varepsilon_x^2(h) \cdot ||h||_X$

Dann ist zu zeigen, dass $g_1 = g_2$. Wir definieren

$$g(h) = g_1(h) - g_2(h) = -\varepsilon_x^1(h) \cdot ||h||_X + \varepsilon_x^2(h) \cdot ||h||_X$$
$$=: \varepsilon_x(h) \cdot ||h||_X \to 0 \text{ für } h \to 0$$
$$\Rightarrow g(0) = 0 = b_1 - b_2$$

$$\Rightarrow b1 = b_2$$

Damit sind bereits die b gleich. Also gilt

$$\Rightarrow g(h) = A_2[h] - A_1[h] = (A_2 - A_1)[h]$$

Außerdem gilt $x + h \in U$. Wir ersetzen h durch th. Dann ist $x + th \in U$

$$A[h] \Longrightarrow g(th) = (\varepsilon_1(th) - \varepsilon_2(th)) \cdot ||th||_{Y}$$

Das heißt $|t| < \delta = \frac{r}{\|h\|_X}$

$$\Rightarrow A = A_2 - A_1$$

$$\Rightarrow t \cdot A[h] = A[th] = (\varepsilon_1(th) - \varepsilon_2(th)) \cdot ||h||_X \cdot |t|$$

$$\Rightarrow ||tA[h]||_Y = |t| \cdot ||h||_X \cdot ||\varepsilon_1(th) + \varepsilon_2(th)||_Y$$

$$\Rightarrow ||A[h]||_Y = ||h||_X \cdot ||\varepsilon_1(th) - \varepsilon_2(th)||_Y \to 0$$

$$\Rightarrow ||A[h]||_Y = 0 \quad \forall h \in X$$

$$\Rightarrow 0 = A = A_2 - A_1$$

$$\Rightarrow A_1 = A_1$$

[02. Jul] **Definition 11.1.1.** Sei $U \subseteq \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$, $x \in U$. f ist differenzierbar in x, falls eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^m$ existiert mit

$$f(x+h) = f(x) + A[h] + \varepsilon_x(h) \cdot ||h||$$

= $f(x) + A[h] + \text{Fehler}_x(h)$

 $\varepsilon_x(h) \to 0$ (in \mathbb{R}^m) für $h \to 0$ ($\in \mathbb{R}^n$). Wir schreiben $\mathrm{D}f(x) \coloneqq A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ (lineare Abbildungen von \mathbb{R}^n nach \mathbb{R}^m).

Definition 11.1.2. Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ beliebige normierte Vektorräume und $U \subseteq X$ offen. Dann ist $f: U \to Y$ differenzierbar in X, falls $A \in \mathcal{L}(X, Y)$ eine <u>stetige</u> lineare Abbildung von X nach Y ist, sodass

$$\begin{split} f(x+h) &= f(x) + A \left[h \right] + \mathrm{Fehler}_x(h) \\ &= f(x) + A \left[h \right] + \varepsilon_x(h) \cdot \|h\|_X \,, \\ \|\varepsilon_x(h)\|_Y &\to 0 \text{ für } h \to 0. \end{split}$$

Bemerkung 11.1.3. Wir müssen im Allgemeinen verlangen, dass A eine stetige lineare Abbildung $\Leftrightarrow A$ ist beschränkte lineare Abbildung.

$$= \sup_{h \in X, \|h\|_X \le 1} \|A[h]\|_Y = \sup_{h \in X, \|h\|_X = 1} \|A[h]\|_Y$$

$$= \sup_{h \in X \setminus \{0\}} \frac{\|A[h]\|_Y}{\|h\|_X} = \left\|A\left[\frac{h}{\|h\|_X}\right]\right\|_Y$$

$$\|A\|_{X \to Y} \coloneqq \sup_{h \in X \setminus \{0\}} \frac{\|A[h]\|_Y}{\|h\|_X} \qquad \text{(Operatornorm von } A: X \to Y\text{)}$$

 $\mathcal{L}(X,Y)$ mit $\|\cdot\|_{X\to Y}$ ist ein normierter Vektorraum. Dieser ist vollständig, falls Y vollständig ist.

Definition 11.1.4. Eine Funktion $f:U\to Y$ mit $U\subseteq X$ offen ist differenzierbar, falls es in jedem Punkt $x\in U$ differenzierbar ist. Wir definieren also eine Abbildung

$$Df: U \to \mathcal{L}(X,Y)$$

 $x \to Df(x)$

Satz 11.1.5. Für eine lineare Funktion $A: X \to Y$ sind äquivalent

- (i) A ist Lipschitz-stetig
- (ii) A ist gleichmäßig stetig
- (iii) A ist stetig
- (iv) A ist stetig in $0 \in X$
- (v) A ist beschränkt, das heißt $||A||_{X\to Y} < \infty$

Satz 11.1.6. Die Ableitung ist linear. Das heißt für X, Y normierte Vektorräume und $U \subseteq X$ offen sowie $f, g: U \to Y$ differenzierbar in $x \in U$ gilt

$$D(\lambda f)(x) = \lambda Df(x)$$
$$D(f+g)(x) = Df(x) + Dg(x)$$

Beweis. Folgt direkt aus der Definition der Ableitung.

Beispiel 11.1.7. Sei X ein normierter Vektorraum und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf X. Außerdem definieren wir $f(x) := \langle x, x \rangle$.

$$f(x+h) = \langle x+h, x+h \rangle$$

$$= \langle x, x+h \rangle + \langle h, x+h \rangle$$

$$= \langle x, x \rangle + \langle x, h \rangle + \langle h, x \rangle + \langle h, h \rangle$$

$$= f(x) + \underbrace{2 \langle x, h \rangle}_{\text{linear in } h} + \underbrace{\|h\|^2}_{\text{Fehler}}$$

$$\frac{\text{Fehler}(h)}{\|h\|} = \frac{\|h\|^2}{\|h\|} = \|h\| \to 0$$

11.2 [*] Richtungsableitung und partielle Ableitung

Definition 11.2.1 (Richtungsableitung). Sei $U \subseteq X$ offen und $f: U \to Y$ sowie $h \in X$ beliebig. Die Richtungsableitung von f (in x) in Richtung h ist gegeben durch

$$\lim_{t \to 0} \frac{f(x+th) - f(x)}{t} =: D_h f(x)$$

Also ist

$$D_h f(x) = \frac{\mathrm{d}}{\mathrm{d}t} f(x + th)$$

Satz 11.2.2. Ist $f: U \to Y$ in x differenzierbar, so folgt

$$\mathrm{D}f(x)[h] = \mathrm{D}_h f(x) \quad \forall h \in X$$

Beweis. Sei A = Df(x)

$$f(x+h) = f(x) - A[h] = \varepsilon(h) \|h\|_{X}$$

$$f(x+th) - f(x) - A[th] = \varepsilon(th) \cdot \|th\|_{X}$$

$$= \varepsilon(th) \cdot |t| \cdot \|h\|_{X}$$

$$\frac{f(x+th) - f(x)}{t} - A(h) = \frac{|t|}{t} \cdot \varepsilon(th) \cdot \|h\|_{X} \to 0 \text{ für } t \to 0$$

$$\Rightarrow D_{h}f(x) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t} = A[h] = Df(x)[h]$$

Im Folgenden sei $X = \mathbb{R}^n$ und (e_1, e_2, \dots, e_n) die Standardbasis.

Definition 11.2.3 (Partielle Ableitung). Sei $f: U \to Y$ mit $U \subseteq \mathbb{R}^n$ und f differenzierbar in $x \in U$. Außerdem sei $A := \mathrm{D} f(x)$. Dann definieren wir die partielle Ableitung $\partial_{x_j} f(x) = \partial_j f(x)$ bezüglich der Standardbasen durch

$$\partial_{x_j} f(x) = \partial_j f(x) = D_{e_j} f(x)$$

$$= \lim_{t \to 0} \frac{f(x + t \cdot e_j) - f(x)}{t}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} f(x + t \cdot e_j)|_{t=0}$$

[05. Jul] **Bemerkung 11.2.4.** Sei $f: U \to Y$ in $x \in U$ differenzierbar. $Df(x) \in \mathcal{L}(\mathbb{R}^n, Y)$. Dann gilt

$$Df(x)[h] = Df(x) \cdot h = Df\begin{pmatrix}h_1\\ \vdots\\ h_n\end{pmatrix} = \begin{pmatrix}\partial_1 f_1 & \cdots & \partial_n f_1\\ \vdots & \ddots & \vdots\\ \partial_1 f_m & \cdots & \partial_n f_m\end{pmatrix}\begin{pmatrix}h_1\\ \vdots\\ h_n\end{pmatrix}$$

Warnung: Die Existenz der partiellen Ableitungen und sogar aller Richtungsableitungen impliziert nicht die Existenz der Ableitung!

Beispiel 11.2.5. Für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x) = \begin{cases} \frac{x_1 x_2}{\sqrt{x_1^2 + x_2^2}} & x \neq (0, 0) \\ 0 & x = (0, 0) \end{cases}$$

existiert $\frac{\partial f}{\partial x_2}$ für $x_1 \neq 0 \Rightarrow \sqrt{x_1^2 + x_2^2} \neq 0$. Außerdem gilt für $x_1 = 0$

$$\frac{\partial f}{\partial x_2} = 0$$

Damit existieren die partiellen Ableitungen. Außerdem gilt

$$f(th) = \frac{t^2 h_1 h_2}{\sqrt{t^2 h_1^2 + t^2 h_2^2}}$$

$$= \frac{t^2 h_1 h_2}{t \sqrt{h_1^2 + h_2^2}} = t \cdot f(h)$$

$$\Rightarrow D_n f(0) = \lim_{t \to 0} \frac{f(th) - f(0)}{t} = \lim_{t \to 0} \frac{t f(h) - 0}{t} = f(h) = \frac{h_1 h_2}{\sqrt{h_1^2 + h_2^2}}$$

f(x) ist nicht stetig in (0,0).

Satz 11.2.6. Sei $f: U \to Y, U$ offen, $x \in U$ und f sei differenzierbar in x. Dann ist f stetig in x.

Beweis. Sei h klein genug, dass $x + h \in U$. Dann gilt

$$f(x+h) = f(x) + \underbrace{A[h]}_{\to 0 \text{ für } ||h|| \to 0} + \underbrace{\varepsilon(h)}_{\to 0 \text{ für } ||h|| \to 0} \cdot ||h||_X \to f(x)$$

Damit ist f in x stetig.

11.3 Kettenregel

Satz 11.3.1 (Kettenregel). Seien X,Y,Z normierte Vektorräume mit $V\subseteq X,\,U\subseteq Y$ offen und $f:V\to U,\,g:U\to Z$. Sei außerdem f diffenzierbar in $x\in V,\,g$ differenzierbar in y=f(x). Dann gilt $g\circ f:V\to Z$ ist differenzierbar in x und $D_{g\circ f}(x)=D_g(f(x))\circ Df(x)$. Das heißt

$$D_{f \circ g}(x) [h] = D_g(f(x)) [Df(x) [h]]$$

Beweis. Sei $A = \mathrm{D} f(x), B = \mathrm{D} g(y), y = f(x).$ Nach Definition gilt

$$\begin{split} f(x+h) &= f(x) + A\left[h\right] + \varepsilon_1(h) \cdot \|h\|_X \quad \forall \left(x+h\right) \in V \\ g(y+k) &= g(y) + B\left[k\right] + \varepsilon_2(k) \cdot \|k\|_X \quad \forall \left(y+k\right) \in U \\ \Rightarrow \left(g \circ f\right)(x+h) &= g(f(x+h)) = g\left(f(x) + \underbrace{A\left[h\right] + \varepsilon_1(h) \cdot \|h\|_X}_{\equiv:k}\right) \\ &= g(y+k) = g(f(x)) + B\left[k\right] + \varepsilon_2(k) \cdot \|k\|_Y \\ &= g(f(x)) + B\left[A\left[h\right]\right] + \|h\|_X \cdot B\left[\varepsilon_1(h)\right] \\ &+ \varepsilon_2(A\left[h\right] + \varepsilon_1(h) \cdot \|h\|_X) \cdot \|A\left[h\right] + \varepsilon_1(h) \cdot \|h\|_X \| \end{split}$$

Durch Analyse der Grenzwerte der einzelnen Summanden, ergibt sich, dass

$$(g \circ f)(x+h) - (g \circ f)(x) = B[A[h]] + \varepsilon(h) \cdot ||h||_X$$

Damit sit $g \circ f$ in x differenzierbar und

$$D_{a \circ f}[h] = B[A[h]] \qquad \Box$$

09. Jul] **Bemerkung 11.3.2** (Richtungsableitung aus Ableitung). Sei $I = [a, b], f : I \to Y$ und existiere

$$f'(x) = \lim_{s \to 0} \frac{F(x+s) - F(x)}{s}$$

Dann gilt

$$D_h f(x) = \frac{\mathrm{d}f}{\mathrm{d}t} f(x+th) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t \cdot h} \cdot h = \lim_{s \to 0} \frac{f(x+s) - f(x)}{s} \cdot h = f'(x) \cdot h$$

Bemerkung 11.3.3. Sei $f:(a,b)\to Y$ differenzierbar. Dann gilt für alle $x\in(a,b)$

$$\|Df(x)\|_{\mathbb{R}\to Y} \coloneqq \sup_{h\neq 0} \frac{\|Df(x)[h]\|_Y}{|h|} = \frac{\|f'(x)\cdot h\|}{|h|} = \frac{|h|\cdot \|f'(x)\|_Y}{|h|} = \|f'(x)\|_Y$$

Satz 11.3.4 (Mittelwertsatz oder Schrankensatz). Sei $(Y, \|\cdot\|_Y)$ ein vollständiger Vektorraum, $I = [a, b] \subseteq \mathbb{R}$ und $f : I \to Y$ stetig auf [a, b] und differenzierbar auf $(a, b) =: I^{\circ}$. Sei außerdem $\|\mathrm{D}f(s)\|_{\mathbb{R}\to Y} = \|f'(s)\|_Y \le M$ für alle a < s < b. Dann gilt

$$||f(b) - f(a)||_{Y} \le M \cdot (b - a)$$

Beweis. Sei $\eta>0$ fixiert. Wir definieren

$$A := \{ \xi \in [a, b] : \forall s, a \le s < \xi \text{ gilt } \| f(s) - f(a) \|_{\mathcal{V}} \le (M + \eta) \cdot (s - a) \}$$

Dann ist $a \in A \Rightarrow A \neq \emptyset$. Sei $c := \sup A \leq b$. Da f stetig ist, gilt $c \in A \Rightarrow [a, c] \subseteq A$. Zu zeigen ist, dass c = b. Angenommen c < b. Dann gilt

$$\exists \delta > 0, c + \delta \le b, c \le t < c + \delta$$
: $f(t) - f(c) - Df(c)[t - c] = f(t) - f(c) - f'(c) \cdot (t - c) = \varepsilon(t \cdot c)$

$$||f(t) - f(c)||_{Y} \le ||f'(c)||_{Y} \cdot (t - c) + ||\varepsilon(t - c)||_{Y} \le M \cdot (t - c) + ||\varepsilon(t - c)||_{Y} \cdot (t - c)$$

$$||f(t) - f(a)||_{Y} \le ||f(c) - f(a)||_{Y} + ||f(t) - f(c)||_{Y}$$

$$\le (M + \eta) \cdot (-a + c) + \left(M + \frac{\eta}{2}\right)(t - c) < (M + \eta)(t - a)$$

$$\Rightarrow t \in A$$

$$\Rightarrow c = b$$

Bemerkung 11.3.5. Eine Menge $A \subseteq X$ heißt konvex, falls $\forall x, y \in A \colon [x, y] \subseteq A$.

Anwendung 11.3.6. Sei $U \subseteq X$ offen und $x, y \in U$ mit $[x, y] \subseteq U$. Dann ist $[x, y] := \{x + s \cdot (y - x) : 0 \le s \le 1\}$. Das heißt wir definieren $X(s) = x + s \cdot (y - x)$ und können für eine Funktion f, die auf U definiert ist schreiben

$$F(s) := f \circ X(s)$$

Damit haben wir nach Kettenregel für $h \in \mathbb{R}$

$$DF(s) [h] = Df(X(s)) [DX(s) [h]]$$

$$\frac{d}{ds} = \lim_{t \to 0} \frac{F(s+t) - F(s)}{t} = D_1 F(s) = DF(s) [1] = Df(X(s)) [y-x]$$

$$||F'(s)||_Y = ||Df(X(s)) [y-x]||_Y \le ||Df(X(s))||_{X \to Y} \cdot ||y-x||_X$$

Dann definieren wir

$$M \coloneqq \sup_{0 \le s \le 1} \|F'(x)\|_{Y} \le \sup_{0 \le s \le 1} \|\mathrm{D}f(X(s))\|_{X \to Y} \cdot \|y - x\|_{X} = \|\mathrm{D}f(\xi)\|_{X \to Y} \cdot \|Y - x\|_{X}$$
$$(\xi = (1 - s) \cdot x + sy)$$

$$\Rightarrow ||f(y) - f(x)||_{V} = ||F(1) - F(0)||_{V}$$

Nach Satz 11.3.4 können wir abschätzen

$$\leq \sup_{0 \leq s \leq 1} \|F'(s)\|_{Y} \cdot 1$$

Satz 11.3.7 (Schrankensatz II). Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ normierte Vektorräume und $U \subseteq X$ offen, $x, y \in U$, $[x, y] \subseteq U$. Ferner sei $f : U \to Y$ differenzierbar auf ganz U. Dann gilt

$$||f(y) - f(x)||_Y \le \sup_{\xi \in [x,y]} ||Df(\xi)||_{X \to Y} \cdot ||y - x||_X = \sup_{0 \le s \le 1} ||Df((1-s) \cdot x + sy)||_{X \to Y} \cdot ||y - x||_X$$

Außerdem $\forall A \in \mathcal{L}(X,Y)$

$$||f(y) - f(x) - A[y - x]||_Y \le \sup_{\xi \in [x,y]} ||Df(\xi) - A||_{X \to Y} \cdot ||y - x||_X$$
 (11.3.1)

Beweis von (11.3.1). Seien $x, y \in U$, $[x, y] \subseteq U$, $A \in \mathcal{L}(X, Y)$. Sei $f : U \to Y$, $x \mapsto F(x) := f(x) - A[X]$.

$$\begin{split} \operatorname{D} F(x)\left[h\right] &= \operatorname{D} f(x)\left[h\right] - A\left[h\right] \\ \Rightarrow & \left\|f(x) - f(y) - A\left[x - y\right]\right\|_{Y} = \left\|F(y) - F(x)\right\|_{Y} \\ &\leq \sup_{\xi \in [x,y]} \left\|\operatorname{D} F(\xi)\right\|_{X \to Y} \cdot \left\|y - x\right\|_{X} \end{split} \quad \Box$$

Satz 11.3.8. Sei $U \subseteq X$, $x, y \in U$, $[x, y] \subseteq U$ und $f: U \to \mathbb{R}$ differenzierbar. Dann gibt es ein $\xi \in [x, y]$ mit

$$f(x) - f(y) = Df(\xi) [y - x]$$

Beweis. Setze $F:[0,1]\to\mathbb{R},\ s\mapsto f((1-s)\cdot x+sy)$

$$\exists t \in (0,1) : F(1) - F(0) = F'(t) \cdot (1-0) = F'(t)$$

$$F'(s) = \frac{d}{ds} f((1-s) \cdot x + sy) = \frac{d}{ds} f(x + s \cdot (y - x)) = Df(x + s \cdot (y - x)) [y - x]$$

Dann setze $\xi := (1 - t) \cdot x + ty$.

11.4 Existenz von Ableitungen

Das Ziel dieses Teilkapitels ist es, ein Differenzierbarkeitskriterium zu finden und in diesem Sinne den folgenden Satz zu beweisen.

[11. Jul] **Satz 11.4.1.** Eine Funktion $f: U \to Y$ für einen Banachraum Y und eine offene Menge $U \subseteq \mathbb{R}^n$ ist genau dann stetig differenzierbar, wenn alle partiellen Ableitungen $\partial_j f: U \to Y$ $(j \in \{1, \ldots, n\})$ stetig sind.

Definition 11.4.2 (Verallgemeinerte partielle Ableitung). Wir können den \mathbb{R}^n zerlegen, indem wir $\mathbb{R}^{n_1}, \mathbb{R}^{n_2}, \dots, \mathbb{R}^{n_k}$ für $k \in \mathbb{N}$ und $n_j \in \mathbb{N}$ finden, sodass $\sum n_j = n$. Dann schreiben wir eine Zerlegung als $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \cdots \times \mathbb{R}^{n_k}$. Außerdem können wir einen Vektor $x \in \mathbb{R}^n$ schreiben als $x = (x_1, \dots, x_k)$, wobei $x_j \in \mathbb{R}^{n_j}$.

Wir betrachten eine Funktion $f: U \to Y$ mit U offen und $a = (a_1, \ldots, a_k) \in U$. Die Ableitung von $f(a_1, \ldots, a_j + x_j, a_{j+1}, \ldots, a_k)$ nach x_j an der Stelle $x_j = 0$ heißt verallgemeinerte partielle Ableitung von f nach j an der Stelle a.

Lemma 11.4.3. Sei $f: U \to Y$ eine Abbildung mit $U \subseteq \mathbb{R}^n$ und haben wir eine Zerlegung von \mathbb{R}^n mit $\sum n_j = n$. Dann gilt für die verallgemeinerte partielle Ableitung $D_j f(a)$ mit $h = (h_1, \ldots, h_k) \in \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k}$

$$Df(a) = \sum_{j=1}^{k} D_j f(a) [h_j]$$

Beweis. Sei $I_j: \mathbb{R}^{n_j} \to \mathbb{R}^n$, $I_j(x_j) = (0, \dots, 0, x_j, 0, \dots, 0)$. Dann gilt

$$DI_{j} [h_{j}] = I_{j}(h_{j}) = (0, \dots, 0, h_{j}, 0, \dots, 0)$$

$$D_{j} f(a) = Df(a) \circ I_{j}$$

$$\Rightarrow \sum_{j=1}^{k} D_{j} f(a) [h_{j}] = \sum_{j=1}^{k} Df(a) \cdot I(h_{j}) = \sum_{j=1}^{k} Df(a) [I_{j} [h_{j}]]$$

$$= Df(a) \cdot \sum_{j=1}^{k} I_{j} [h_{j}] = Df(a) [h]$$

Satz 11.4.4. Eine Funktion $f: U \to Y$ für einen Banachraum Y und eine offene Menge $U \subseteq \mathbb{R}^n$ ist genau dann stetig differenzierbar, wenn die verallgemeinerten partiellen Ableitungen $D_j f$ für alle Zerlegungen von \mathbb{R}^n auf U stetig differenzierbar sind.

84

Beweis.,
⇒ " Sei f differenzierbar. Dann gilt nach Lemma 11.4.3, dass

$$D_j f(x) [h_j] = Df(x) [I_j h]$$

Da die rechte Seite in x stetig differenzierbar ist, muss auch die linke Seite stetig differenzierbar sein.

"

"
SCHRITT 1: Wir betrachten zunächst den Fall $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ und definieren dafür $||h|| := \max(||h_1||_1, ||h_2||_2)$. Dann gilt

$$f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) - D_1 f(x_1, x_2) [h_1] - D_2(x_1, x_2) [h_2]_Y$$

$$= f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - D_2 f(x_1 + h_1, x_2) [h_2] + D_2 f(x_1 + h_1, x_2) [h_2]$$

$$- D_2 f(x_1, x_2) [h_2] + f(x_1 + h_1, x_2) - f(x_1, x_2) - D_1 f(x_1, x_2) [h_1] - D_2 f(x_1, x_2) [h_2]$$

Wir wollen die Normen der Terme nacheinander nach oben abschätzen

(1)
$$||f(x_1 + h_1, x_2) - f(x_1, x_2) - D_1 f(x_1, x_2) [h_1]||_Y \le \frac{\varepsilon(h_1)}{4} \cdot ||h_1||_1$$

(2)
$$\|D_{2}f(x_{1}+h_{1},x_{2})-D_{2}f(x_{1},x_{2})\|_{\mathbb{R}^{n_{2}}\to Y}<\frac{\varepsilon}{4} \qquad (Stetigkeit)$$

$$\Rightarrow \|D_{2}f(x_{1}+h_{1},x_{2})[h_{2}]-D_{2}f(x_{1},x_{2})[h_{2}]\|_{Y}<\frac{\varepsilon}{4}\cdot\|h_{2}\|$$

(3)
$$||f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - D_2 f(x_1 + h_1, x_2) [h_2]||_y \stackrel{11.3.7}{\leq}$$

 $||h_2|| \cdot \sup_{0 \leq s \leq 1} ||D_2 f(x_1 + h_1, x_2 + sh_2) - D_2 f(x_1 + h_1, x_2)|| < ||h_2|| \cdot \frac{\varepsilon}{4}$

Das heißt insgesamt folgt

$$||f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) - D_1 f(x_1, x_2) [h_1] - D_2(x_1, x_2) [h_2]||_{\mathcal{V}} \le \varepsilon(||h||) \cdot ||h||$$

Damit folgt die Behauptung für diesen speziellen Fall.

SCHRITT 2: Im allgemeinen Fall haben wir $\mathbb{R}^n = \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k}$. Dann gilt nach SCHRITT 1, dass wir mit D_1f , D_2f auch $D_{12}f$ erhalten. Wir nehmen eine neue Zerlegung $\mathbb{R}^n = (\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) \times \mathbb{R}^{n_3} \times \cdots \times \mathbb{R}^{n_k}$. Dann erhalten wir aus $D_{12}f$ und D_3f auch $D_{123}f$. Dieses Vorgehen setzen wir induktiv fort. So ergibt sich nach k Schritten unsere Behauptung.

Beweis von Satz 11.4.1. Der Satz folgt dann aus Satz 11.4.4, indem wir als initiale Zerlegung die Zerlegung $\mathbb{R}^n = \mathbb{R}^1 \times \cdots \times \mathbb{R}^1$ wählen.

11.5 [*] Symmetrie der zweiten partiellen Ableitung - Der Satz von Schwartz

Für dieses Teilkapitel sei Y ein Banach-Raum und $U\subseteq\mathbb{R}^n$ eine offene Menge.

[12. Jul] **Bemerkung 11.5.1.** Wir betrachten eine Abbildung $f: U \to Y$. Dann gilt $Df: U \to \mathcal{L}(\mathbb{R}^n, Y)$ und $D(Df) = D^2 f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, Y))$. Außerdem haben wir

$$Df(x) [h] = \sum_{j=1}^{n} \partial_{j} f(x) [h]$$

$$= (\partial_{1} f(x), \partial_{2} f(x), \dots, \partial_{n} f(x)) \cdot \begin{pmatrix} h_{1} \\ \vdots \\ h_{n} \end{pmatrix}$$

11.5 [*] Symmetrie der zweiten partiellen Ableitung - Der Satz von Schwartz

$$=\langle \nabla f, h \rangle$$

Dabei ist $\partial_i f(x): U \to Y^n$

$$D_{v} Df(x) = \frac{d}{dt} Df(x+tv)|_{t=0}$$

$$= \left(\frac{d}{dt} \partial_{1} f(x+v), \frac{d}{dt} \partial_{2} f(x+tv), \dots, \frac{d}{dt} \partial_{n} f(x+v)\right)|_{t=0}$$

$$= \sum_{k=1}^{n} v_{k} \cdot (\partial_{k} \partial_{1} f(x), \dots, \partial_{k} \partial_{n} f(x))$$

 $v = (v_1, \dots, v_n)$

$$D_v Df(x) [h] = \frac{d}{dt} \left(\partial_1 f(x+tv), \dots, \frac{d}{dt} \left(\partial_n f(x+tv) \right) \right) |_{t=0}$$

$$= \sum_{k=1}^n v_k \left(\sum_{j=1}^n \partial_k \partial_j f(x) \cdot h_j \right) = \sum_{k=1}^n \sum_{j=1}^n v_k \partial_k \partial_j f(x) h_j$$

$$= \langle v, H_e h \rangle$$

wobei

$$H_{e}(x) = \begin{pmatrix} \partial_{1}\partial_{1}f(x) & \partial_{1}\partial_{2}f(x) & \dots & \partial_{1}\partial_{n}f(x) \\ \partial_{2}\partial_{1}f(x) & \partial_{2}\partial_{2}f(x) & \dots & \partial_{2}\partial_{n}f(x) \\ \vdots & \ddots & \ddots & \vdots \\ \partial_{n}\partial_{1}f(x) & \dots & \dots & \partial_{n}\partial_{n}f(x) \end{pmatrix}$$
(Hesse-Matrix)

Definition 11.5.2. Sei $f:U\to Y$ eine Abbildung. Dann gilt $\mathrm{D} f:U\to \underbrace{\mathcal{L}(\mathbb{R}^n,Y)}_{\mathrm{Banachraum}}.$

Ist Df stetig differenzierbar, so heißt f zweimal differenzierbar auf U. Wir nennen D $^2f(x)$ dann die zweite Ableitung von f. Dabei ist

(i) $\mathrm{D} f: U \to \mathcal{L}(\mathbb{R}^n, Y)$

(ii)
$$D^2 f: U \to \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, Y))$$

Sei $L \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, Y)), B : \mathbb{R}^n \times \mathbb{R}^n, (v, h) \mapsto \langle v, Bh \rangle = \sum_{k=1}^n v_k \cdot \sum_{j=1}^n B_{k_j} h_j$. Definiere B(v, h) := (L[h])[h]. Sei (e_1, \dots, e_n) die Standardbasis in \mathbb{R}^n

$$v = \sum v_k \cdot e_k$$

$$h = \sum h_k \cdot e_k$$

$$(L[v])[h] = \left(L\left[\sum_{k=1}^n v_k \cdot e_k\right]\right) \left[\sum_{j=1}^n h_j e_j\right]$$

$$= \sum_{k=1}^n \sum_{j=1}^n \underbrace{(L[e_k][e_j])}_{B_{k_j} = B(e_k, e_j)} \cdot v_k h_j$$

$$= \sum_{k=1}^n \sum_{j=1}^n B_{k_j} v_k h_j = \langle v, Bh \rangle$$

$$\left(D^{2}f(x)\left[v\right]\right)\left[h\right] = \sum_{k=1}^{n} \sum_{j=1}^{n} v_{k} \left(D^{2}f(x)\left[e_{k}\right]\right)\left[e_{j}\right] h_{j}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} v_{k} \partial_{k} \partial_{j} f(x) h_{j}$$

$$= \langle v, H_{e}h \rangle$$

Satz 11.5.3. Die folgenden Aussagen sind äquivalent

- (i) Die 2. Ableitung existiert und ist stetig
- (ii) Alle gemischten partiellen Ableitungen $\partial_k \partial_j f(x)$, $1 \le k, j \le n$ existieren und sind stetig
- (iii) Die Hesse-Matrix $H_e(x)$ existiert und ist stetig

Beweis. Folgt direkt aus Satz 11.4.1 und Satz 11.4.4.

Satz 11.5.4. Sei $f: U \to Y$ zwei mal differenzierbar und $x \in U$. Dann ist die bilineare Abbildung $D^2 f(x): \mathbb{R}^n \times \mathbb{R}^n \to Y$ symmetrisch. Das heißt für alle $v, h \in \mathbb{R}^n$ gilt

$$D^2 f(x) [v, h] = D^2 f(x) [h, v]$$

oder

$$D_v D_h f(x) = D_h D_v f(x)$$

oder

$$\partial_k \partial_j f(x) = \partial_j \partial_k f(x)$$

Beweis. Wir wollen zeigen, dass $D_v D_h f(x) = D_h D_v f(x)$. Wir betrachten den Fall $Y = \mathbb{R}$, $U \subseteq \mathbb{R}^n$. Definieren den Differenz-Operator

$$\Delta_h f(x) := f(x+h) - f(x)$$

SCHRITT 1: Für $f,h\in\mathbb{R}^n$ mit $x+h,x+v\in U$ gilt

$$\Delta_v \Delta_h f(x) = \Delta_v (f(x+h) - f(x)) = \Delta_v f(x+h) - \Delta_v f(x)$$

$$= f(x+h+v) - f(x+h) - f(x+v) + f(x)$$

$$= f(x+h+v) - f(x+v) - f(x+h) + f(x) = \Delta_h \Delta_v f(x)$$

SCHRITT 2: Sei $h, v \in \mathbb{R}^n$ beliebig und $x \in U, U$ offen. Dann $\exists \delta > 0 \colon B_{2\delta}(x) \subseteq U$

$$|s| < \frac{\delta}{\min(1,|v|)}$$
$$|t| < \frac{\delta}{\min(1,|h|)}$$

Wir wollen zeigen, dass $\frac{1}{st}\Delta_{sv}\Delta_{th} = D_hD_vf(x+s,v+t_1h)$ für $s_1 \in (0,s), t_1 \in (0,t)$

$$\Delta_{sv}\Delta_{th}f(x) = g(x+sv) - g(x) = k'(s_1) \cdot (s-0) = k'(s_1) \cdot s = \frac{d}{ds}g(x+sv)|_{s=s_1} \cdot s$$

$$= D_v g(x+s_1v) \cdot s = D_v (\Delta_{th}f)(x+s_1v) \cdot s$$

$$= D_v (f(x+s_1v+th) - f(x+s_1v) \cdot s)$$

$$= D_v f(x + s_1 v + th) \cdot s - D_v f(x + s_1 v) \cdot s$$
$$D_h D_v f(x + s_1 v + t_1 h) \cdot s \cdot t$$
$$\Rightarrow \frac{1}{st} \Delta_{sv} \Delta_{th} f(x) = D_h D_v f(x + s_1 v + t_1 h)$$

SCHRITT 3: Nach SCHRITT 1 haben wir $\Delta_{sv}\Delta_{th}f(x) = \Delta_{th}\Delta_{sv}f(x)$

$$\Rightarrow \frac{1}{st} \Delta_{th} \Delta_{sv} f(x) = D_v D_h f(x + s_1 v + t_1 h) = D_h D_v f(x + s_1 v + t_1 h)$$

Für $s \to 0$ und $t \to 0$ haben wir so die Behauptung.

11.6 Extrema und lokale Minima/Maxima

[16. Jul] **Definition 11.6.1** (Lokales Minimum und Maximum). Sei $f: U \to \mathbb{R}$ eine Funktion. Dann hat f in x_0 ein lokales Minimum (oder Maximum), falls ein Ball $B_{\varepsilon}(x_0)$ existiert, sodass

$$\forall x \in B_{\varepsilon}(x_0) \colon f(x) \underset{(\leq)}{\geq} f(x_0)$$

Gilt sogar

$$\forall x \in B_{\varepsilon}(x_0) \setminus \{x_0\} \colon f(x) < f(x_0)$$

so heißt x_0 striktes (isoliertes) Minimum (oder Maximum).

Satz 11.6.2. Hat $f: U \to \mathbb{R}$ in x_0 ein lokales Minimum (oder Maximum) und ist f differenzierbar in x_0 , so ist $\nabla f(x_0) = 0$.

Beweis. Sei x_0 ein lokales Minimum. Dann gilt $f(x) \ge f(x_0) \ \forall x \in B_{\varepsilon}(x_0) \subseteq U$. Sei $h \in \mathbb{R}^n$ Dann gilt für $x_0 + th \in B_{\varepsilon}(x_0)$ für |t| klein genug. Damit folgt

$$0 \le \frac{f(x_0 + th) - f(x_0)}{t} \to D_h f(x_0) = Df(x_0) [h] = \nabla f(x) \cdot h$$

$$\Rightarrow 0 \le \nabla f(x_0) \cdot h \quad \forall h \in \mathbb{R}^n$$

$$\Rightarrow 0 \le \nabla f(x_0) \cdot (-h) = -\nabla f(x_0) \cdot h \le 0$$

$$\Rightarrow \nabla f(x_0) \cdot h = 0 \quad \forall h \in \mathbb{R}^n$$

$$\Rightarrow \nabla f(x_0) = 0$$

Der Beweis für ein lokales Maximum funktioniert analog.

Notation 11.6.3. Wir schreiben $f \in \mathcal{C}^2(U) = \mathcal{C}^2(U, \mathbb{R})$, falls alle partiellen Ableitungen von f bis Ordnung 2 stetig auf U sind. Das heißt f, $\partial_j f$ und $\partial_k \partial_j f$ stetig $\forall 1 \leq k, j \leq n$.

Satz 11.6.4. Sei $f: U \to \mathbb{R}$ mit $f \in C^2(U)$. Dann ist die Hesse-Matrix $H_l(x)$ stetig bezüglich der Operatornorm. (Das heißt jeder Eintrag $\partial_k \partial_j f$ ist stetig).

Beweis. Sei g(t) = f(x + tv). Dann gilt

$$g'(t) = \frac{\mathrm{d}}{\mathrm{d}t} f(x+tv) = \mathrm{D}f(x+tv) [v]$$
$$= \nabla f(x+tv) \cdot v = \sum_{j=1}^{n} \partial_j f(x+tv) \cdot v_j$$

11 [*] Differential rechnung im \mathbb{R}^d

$$\Rightarrow f(x+v) = f(x) + \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} f(x+tv) \, \mathrm{d}t$$

$$= f(x) + \int_0^1 \sum_{j=1}^n \partial_j f(x+tv) \cdot v_j \, \mathrm{d}t$$

$$\int_0^1 \partial_j f(x+tv) \cdot v_j \, \mathrm{d}x = \int_0^1 \left(-\frac{\mathrm{d}}{\mathrm{d}t} (1-t) \right) \cdot \partial_j f(x+tv) \cdot v_j \, \mathrm{d}t$$

$$= [-(1-t) \, \partial_j f(x+tv) \cdot v_j]_0^1 + \int_0^1 (1-t) \, \frac{\partial}{\mathrm{d}t} \partial_j f(x+tv) \cdot v_j \, \mathrm{d}t$$

$$= \partial_j f(x) \cdot v_j + \int_0^1 (1-t) \cdot \sum_{k=1}^n \partial_k \partial_j f(x+tv) \cdot v_k \cdot v_j \, \mathrm{d}t$$

$$\Rightarrow f(x+tv) = f(x) + \nabla f(x) \cdot v + \int_0^1 (1-t) \cdot \sum_{k=1}^n \sum_{j=1}^n \partial_k f(x+tv) \cdot v_k \cdot v_j \, \mathrm{d}t$$

$$= f(x) + \nabla f(x) \cdot v + \int_0^1 (1-t) \langle v, H_l(x+tv) \cdot v \rangle \, \mathrm{d}t$$

Nach dem verallgemeinerten Mittelwertsatz der Integrale

$$= f(x) + \nabla f(x) \cdot v + k(\Theta) \cdot \int_{0}^{1} (1 - t) dx \qquad (\Theta \in (0, 1))$$

$$= f(x) + \nabla f(x) \cdot v + \frac{1}{2} \underbrace{\langle v, H_{l}(x + \Theta v) \rangle}_{\text{symmetrische } n \times n \text{-Matrix}} \qquad (11.6.1)$$

Definition 11.6.5. Sei $A \in \mathcal{M}(n,\mathbb{R})$ (Menge aller $n \times n$ -Matrizen) symmetrisch. Dann heißt A

- (i) positiv-definit (A > 0), falls $\langle v, Av \rangle > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- (ii) positiv-semi-definit $(A \ge 0)$, falls $\langle v, Av \rangle \ge 0 \ \forall v \in \mathbb{R}^n$
- (iii) negativ-definit (A < 0), falls -A > 0
- (iv) negativ-semi-definit $(A \leq 0)$, falls $-A \geq 0$

Bemerkung 11.6.6. ??

Lemma 11.6.7. Sei $A \in \mathcal{M}(n,\mathbb{R})$ symmetrisch. Dann ist A genau dann positiv definit, wenn

$$\exists \lambda > 0 \colon \langle v, Av \rangle \ge \lambda |v|^2 \quad \forall v \in \mathbb{R}^n$$

Beweis. A hat die Eigenwerte $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ mit normierten Eigenvektoren e_1, \ldots, e_n . Dann gilt nach der Definition von EV $Ae_j = \lambda_j e_j$

$$v = \sum_{j=1}^{n} \mu_j \cdot e_j$$

$$\Rightarrow \langle v, Av \rangle = \left\langle v, A \cdot \sum_{j=1}^{n} \mu_j \cdot e_j \right\rangle$$

$$= \sum_{j=1}^{n} \mu_j \langle v, A \cdot e_j \rangle$$

$$= \sum_{j=1}^{n} \mu_j \lambda_j \langle v, e_j \rangle$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} \lambda_j \mu_j e_j \delta_{k_j}$$

$$= \sum_{k=1}^{n} \lambda_j e_j^2 \ge \lambda_1 \sum_{j=1}^{n} \mu_j^2 = \lambda_1 \cdot |v|^2$$

Damit folgt

$$\begin{split} A > 0 &\Leftrightarrow \lambda_1 > 0 \\ A \ge 0 &\Leftrightarrow \lambda_1 \ge 0 \\ A < 0 &\Leftrightarrow \lambda_n < 0 \\ A \le 0 &\Leftrightarrow \lambda_n \le 0 \\ A &\text{ nicht-definit } &\Leftrightarrow \lambda_1 < 0, \lambda_n > 0 \end{split}$$

Lemma 11.6.8. Sei $A: U \to \mathcal{M}(n, \mathbb{R}) \cap \{B \in \mathbb{R}^{n \times n} \mid B \text{ symmetrisch}\}$ stetig bezüglich Operatornorm. Ist $A(x_0) > 0$ (oder $A(x_0) < 0$) so existiert ein $B_{\varepsilon}(x_0) \subseteq U$, sodass A(x) > 0 (oder A(x) < 0) $\forall x \in B_{\varepsilon}(x_0)$.

Beweis. Sei $A(x_0) > 0$. Das heißt

$$\exists \lambda > 0 \colon \langle v, A(x_0)v \rangle \ge \lambda |v|^2 \quad \forall v \in \mathbb{R}^n$$
$$\langle v, A(x)v \rangle = \langle v, A(x_0)v \rangle + \left\langle v, \underbrace{(A(x) - A(x_0)) v}_{=B(x)} \right\rangle$$

??

Satz 11.6.9. Sei $f: U \to \mathbb{R}$, $f \in C^2(U)$. Ist $x_0 \in U$ ein lokales Minimum (oder Maximum), so ist $H_l(x_0) \geq 0$ (oder $H_l(x_0) \leq 0$).

Beweis. Wir haben $\nabla f(x_0) = 0$. Sei x_0 ein lokales Minimum. Das heißt

$$f(x) \ge f(x_0) \quad \forall x \in B_{\varepsilon}(x_0)$$

Sei $v \in \mathbb{R}^n$ mit $|v| < \varepsilon$

$$\Rightarrow x_0 + v \in B_{\varepsilon}(x_0)$$

Nach (11.6.1) gilt für ein $\Theta \in (0,1)$

$$\Rightarrow f(x_0 + v) = f(x_0) + \nabla f(x_0) \cdot v + \frac{1}{2} \langle v, H_l(x_0 + \Theta v)v \rangle$$
$$0 leq f(x_0 + v) - f(x_0) = \frac{1}{2} \underbrace{\langle v, H_l(x_0 + \Theta v)v \rangle}_{=t^2 \langle h, H_l(x_0 + th)h \rangle}$$

Wir setzen v = th

$$\Rightarrow \langle h, H_l(x_0 + \Theta t h)h \rangle \geq 0 \quad \forall |t| \text{ klein genug}$$

Wir lassen t gegen 0 gehen und erhalten

$$\Rightarrow \langle h, H_l(x_0)h \rangle \ge 0 \quad \forall h$$
$$\Rightarrow H_l(x_0) \ge 0$$

Satz 11.6.10. Ist $x_0 \in U$ ein kritischer Punkt für $f: U \to \mathbb{R}, f \in \mathcal{C}^2(U)$ und gilt

$$H_l(x) \ge 0 \quad \forall x \in B_{\varepsilon}(x_0)$$
 (1)

So ist x_0 ein lokales Minimum. Gilt sogar

$$H_l(x) > 0 \quad \forall x \in B_{\varepsilon}(x_0)$$
 (2)

dann ist x_0 ein isoliertes Minimum von f.

Beweis. Es gilt $\nabla f(x_0) = 0$. Wir haben für $h \in \mathbb{R}^n$ und $|h| < \varepsilon$

$$f(x_0 + h) - f(x_0) = \frac{1}{2} \langle h, H_l(x_0 + \Theta h)h \rangle \ge 0$$

Gilt sogar (2), dann gilt

$$f(x_0 + h) - f(x_0) = \frac{1}{2} \langle h, H_l(x_0 + \Theta h)h \rangle > 0$$

Damit ist x_0 ein isoliertes Minimum.

Bemerkung 11.6.11. Die Aussage aus Satz 11.6.10 gilt auch für lokale Maxima.

12 [*] Inverse Funktionen und implizite Funktionen

- [18. Jul] Sei $D \subseteq \mathbb{R}^k \times \mathbb{R}^n$, $x \in \mathbb{R}^k$, $y \in \mathbb{R}^n$ und $F : D \to \mathbb{R}^n$, $(x, y) \mapsto F(x, y)$. Seien $(x_0, y_0) \in D$ und $c = F(x_0, y_0)$. Gilt dann F(x, y) = c für (x, y) nahe (x_0, y_0) ?
 - Satz 12.1.1 (Inverse Funktion). Sei $D \subseteq \mathbb{R}^n$ offen, $x_0 \in D$ und $f: D \to \mathbb{R}^n$ stetig differenzierbar (schreiben $f \in \mathcal{C}^1(D, \mathbb{R}^n)$). Außerdem sei $Df(x_0): \mathbb{R}^n \to \mathbb{R}^n$ eine invertierbare lineare Abbildung. Wir nennen x_0 einen regulären Punkt von f (weil die Ableitung an dieser Stelle invertierbar ist). Dann gilt es existieren offene Umgebungen $U \subseteq D$ von x_0 und $V \subseteq \mathbb{R}^n$ von $y_0 = f(x_0)$, sodass
 - (i) $f: U \to V$ ist bijektiv
 - (ii) $g = f^{-1}: V \to U$ ist in $\mathcal{C}(U, V)$ (stetig differenzierbar)
 - (iii) $\forall x \in U \colon \mathrm{D}f(x)$ ist invertierbar

$$Dg(y) = (Df(x))^{-1} = (Df(g(y)))^{-1}$$
$$x = f^{-1}(y) = g(y)$$

Satz 12.1.2 (Implizite Funktion). Sei $D \subseteq \mathbb{R}^k \times \mathbb{R}^n$, $F: D \to \mathbb{R}^n$, $F \in \mathcal{C}(D, \mathbb{R}^n)$, $(x_0, y_0) \in D$. Wir definieren $c := F(x_0, y_0) \in \mathbb{R}^n$ und schreiben $DF = (D_x F, D_y F) : \mathbb{R}^k \times \mathbb{R}^n \to \mathbb{R}^n$, wobei $D_x F : \mathbb{R}^k \to \mathbb{R}^n$, $D_y F : \mathbb{R}^n \to \mathbb{R}^n$. Ferner sei $D_y F(x_0, y_0)$ invertierbar. Dann existieren offene Umgebungen U von x_0 und V von y_0 mit $U \times V \subseteq D$ und eine \mathcal{C}^1 Funktion $g: U \to V$, sodass

$$c = F(x, g(x)) \quad \forall x \in U$$

Außerdem gilt: Ist c = F(x, y) für $x \in U$ und ein $y \in V$, dann folgt y = g(x). Und g ist C^1 . $Dg(x) = -(D_y F(x, g(x)))^{-1} \circ D_x F(x, g(x))$.

Beispiel 12.1.3. $z^3 + 2z^2 - 3xyz + x^3 - y^3 = 0$ in einer Umgebung von (0, 0, -2). Wir lösen nach z auf. $F : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$, $(x, y, z) \mapsto F(x, y, z)$ mit $(x, y) \in \mathbb{R}^2$ und $z \in \mathbb{R}$.

$$\partial_z F(x, y, z) = 3z^2 + 4z - 3xy$$

 $\partial_z F(0, 0, -2) = 3 \cdot 4 - 4 \cdot 2 - 0 = 4 \neq 0$

Ist invertierbar. Somit greift Satz 12.1.2.

Satz 12.1.4. Satz 12.1.1 und Satz 12.1.2 sind äquivalent.

Beweis. " \Rightarrow " Vertauschen Variablen x, y in Satz 12.1.1. Gegeben $f: D \to \mathbb{R}^n$, $D \subseteq \mathbb{R}^n$ offen, $f \in \mathcal{C}^1$. Wir definieren F(x, y) := f(y) - x. $F: \mathbb{R}^n \times D \to \mathbb{R}^n$ (k = n). Dann gilt $D_x F = -\operatorname{Id}_n$ und $D_y F(x, y) = Df(y)$.

 $D_y F(x_0, y_0) = Df(y_0) : \mathbb{R}^n \to \mathbb{R}^n$ ist invertierbar nach Voraussetzung. Damit gilt nach Satz12.1.2, dass es Umgebungen V von y_0 und U von x_0 gibt. Sowie $g: U \to V$ in \mathcal{C}^1 , sodass

$$f(y) - x = F(x, g(x)) = F(x_0, y_0) = f(y_0) - x_0 \stackrel{!}{=} 0$$
$$f(y) = x \Leftrightarrow y(x) = g(x)$$
$$\Rightarrow f^{-1}(x) = g(x)$$
$$f(g(x)) = x \quad \forall x \in U$$

" \Leftarrow " Gegeben $F: D \to \mathbb{R}^n$ mit $D \subseteq \mathbb{R}^k \times \mathbb{R}^n$ offen. $(x_0, y_0) \in D$. $D_y F(x_0, y_0)$ sei invertierbar und $c := F(x_0, y_0)$. Wir konstruieren eine Funktion

$$f: D \to \mathbb{R}^{k+n}$$

12 [*] Inverse Funktionen und implizite Funktionen

$$(x,y) \mapsto \begin{pmatrix} x \\ F(x,y) \end{pmatrix}$$

Angenommen $f:U\to V$ ist invertierbar. $\begin{pmatrix} x\\F(x,y) \end{pmatrix}=f(x,y)=\begin{pmatrix} W\\u \end{pmatrix}$ hat eindeutige Lösung. Außerdem haben wir damit x=w und F(x,y)=u.

$$\begin{pmatrix} x \\ y \end{pmatrix} = y(w, u) = \begin{pmatrix} g_1(w, u) \\ g_2(w, u) \end{pmatrix}$$
$$\Rightarrow y = g_2(x, u)$$

setzen wir $c := F(x_0, y_0)$

$$\Rightarrow F(x, g_2(x, c)) = c.$$

Frage: Was ist Df(x, y)?

$$Df(x,y) = (D_x f(x,y), D_y f(x,y))$$

$$= \left(D_x \begin{pmatrix} x \\ F(x,y) \end{pmatrix}, D_y \begin{pmatrix} x \\ F(x,y) \end{pmatrix}\right) = \begin{pmatrix} Id_n & 0 \\ D_x F(x,y) & D_y F(x,y) \end{pmatrix}$$

$$\begin{pmatrix} Id & 0 \\ B & A \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \Rightarrow \begin{pmatrix} Id \cdot u + 0 \\ Bu + Av \end{pmatrix}$$

$$= \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$(\alpha \in \mathbb{R}^k, \beta \in \mathbb{R}^n)$$

$$\Rightarrow u = \alpha \quad Bu + Av = \beta$$
$$Av = \beta - Bu = \beta - B\alpha$$

[19. Jul] **Lemma 12.1.5.** Seien X, Y normierte Vektorräume, wobei Y vollständig ist. Dann ist $\mathcal{L}(X, Y)$ mit Operatornorm

$$||A||_{\text{op}} := \sup_{x \in X, ||x||_X = 1} ||Ax||_Y$$

ein vollständiger Vektorraum.

Beweis. Wir müssen nur noch die Vollständigkeit zeigen. Sei $(T_n)_n \subseteq \mathcal{L}(X,Y)$ eine Cauchyfolge. Das heißt

$$\lim_{n \to \infty} \sup_{m \ge n} \|T_m - T_n\|_{\text{op}} = 0$$

Wir definieren für ein festes $x \in X$

$$y_n := T_n \cdot x$$

$$\|y_m - y_n\|_Y = \|T_m x - T_n x\|_Y = \|(T_m - T_n) \cdot x\|_Y$$

$$\leq \underbrace{\|T_m - T_n\|_{\text{op}}}_{\to 0 \text{ für } m, n \to \infty} \cdot \|x\|_X$$

Damit ist $(y_n)_n$ eine Cauchy-Folge in Y. Damit existiert ein Grenzwert und wir definieren

$$y := \lim_{n \to \infty} y_n = \lim_{n \to \infty} T_n x =: Tx$$

$$T(x_1 + x_2) = \lim_{n \to \infty} T_n (x_1 + x_2)$$

$$= \lim_{n \to \infty} T_n x_1 + \lim_{n \to \infty} T_n x_2 = Tx_1 + Tx_2$$

Analog lässt sich zeigen, dass $T(\alpha x) = \alpha Tx$. Also ist die Abbildung $T: X \to Y$ linear

$$Tx - T_n x = \lim_{m \to \infty} T_m x - T_n x$$

$$\Rightarrow ||Tx - T_n x||_Y = \lim_{m \to \infty} ||T_m x - T_n x||_Y$$

$$= ||(T_m - T_n) x||_Y$$

$$\leq ||T_m - T_n||_{\text{op}} \cdot ||x||_X$$

$$\Rightarrow ||(T - T_n) x||_Y \leq \sup_{m \ge n} \underbrace{||T_m - T_n||_{\text{op}}}_{\to 0} \cdot ||x||_X$$

$$\Rightarrow ||T - T_n||_{\text{op}} = \sup_{||x||_X = 1} ||(T - T_n) x||_Y$$

$$\leq \sup_{m \ge n} ||T_m - T_n||_{\text{op}} \to 0 \text{ für } n \to \infty$$

Wir haben also $T \in \mathcal{L}(X,Y)$ und wollen noch zeigen, dass $||T||_{op} < \infty$

$$||Tx||_{Y} = ||Tx - T_{n}x + T_{n}x||_{Y}$$

$$\leq ||Tx - T_{n}x||_{Y} + ||T_{n}x||_{Y}$$

$$\leq (||T - T_{n}||_{\text{op}} + ||T_{n}||_{\text{op}}) \cdot ||x||_{X}$$

$$\Rightarrow ||T||_{\text{op}} = \sup_{||x||_{X} = 1} ||Tx||_{Y}$$

$$\leq ||T - T_{n}||_{\text{op}} + ||T_{n}||_{\text{op}}$$

$$\Rightarrow ||T||_{\text{op}} \leq \liminf_{n \to \infty} (||T - T_{n}||_{\text{op}} + ||T_{n}||_{\text{op}})$$

$$= \lim_{n \to \infty} \inf_{n \to \infty} ||T_{n}||_{\text{op}} < \infty$$

Lemma 12.1.6. Sei $\mathcal{L}(X) \coloneqq \mathcal{L}(X,X)$ ein vollständiger normierter Vektorraum. Dann ist die Menge der invertierbaren Abbildungen $A \in \mathcal{L}(X)$ offen. Genauer: Ist $A: X \to X$ invertierbar mit $\|A\|_{\text{op}} < \infty$ und $B \in \mathcal{L}(X)$ mit

$$\underbrace{\|A^{-1}(A-B)\|_{\text{op}}}_{=\|\mathbf{1}-A^{-1}B\|_{\text{op}}} < 1$$

dann ist B invertierbar und

$$\|B^{-1}\|_{\text{op}} \le \frac{1}{1 - \|\mathbf{1} - A^{-1}B\|_{\text{op}}}$$

Beweis. SCHRITT 1: Sei $A \in \mathcal{L}(X)$ und $||A||_{\text{op}} < 1$. Wir wollen zeigen, dass $\mathbf{1} - A$ invertierbar ist. Wir wollen dieses Inverse über die geometrische Reihe herleiten, weil wir wissen, dass die geometrische Reihe mit |q| < 1 gerade gegen $\frac{1}{1-q}$ konvergiert und wir damit ein Inverses zu 1-q gefunden haben. Dieses Konzept wollen wir auf Matrizen übertragen⁷. Dafür definieren wir

$$A^0 = \mathrm{Id}_X = \mathbf{1}$$

 $[\]overline{^7}$ Entwicklung nach John von Neumann, für konkrete Anwendung siehe auch Musterlösung zu LINEARE ALGEBRA II, Übungsblatt 1, Aufgabe 4e

12 [*] Inverse Funktionen und implizite Funktionen

Wir definieren außerdem induktiv

$$A^{n+1} = A \circ A^n \quad \forall n \in \mathbb{N}$$

Seien $A, B \in \mathcal{L}(X)$. Dann gilt

$$||AB||_{op} \le ||A||_{op} \cdot ||B||_{op}$$

weil

$$\begin{split} \|ABx\|_X &\leq \|A\|_{\operatorname{op}} \cdot \|Bx\|_X \leq \|A\|_{\operatorname{op}} \cdot \|B\|_{\operatorname{op}} \cdot \|x\|_Y \\ &\Rightarrow \|A^n\|_{\operatorname{op}} = \left\|AA^{n-1}\right\|_{\operatorname{op}} \leq \|A\|_{\operatorname{op}} \cdot \left\|A^{n-1}\right\|_{\operatorname{op}} \\ &\leq \|A\|_{\operatorname{op}}^2 \cdot \left\|A^{n-2}\right\|_{\operatorname{op}} \leq \dots \leq \|A\|_{\operatorname{op}}^n \quad \forall n \in \mathbb{N} \end{split}$$

Wir definieren

$$s_{n} := \sum_{k=0}^{\infty} A^{k}$$

$$S_{m} - s_{n} = \sum_{k=n+1}^{m} A^{k} \qquad (m \ge n)$$

$$\|S_{m} - S_{n}\|_{op} \le \sum_{k=n+1}^{m} \|A^{k}\|_{op}$$

$$\le \sum_{k=n+1}^{m} \|A\|_{op}^{k} \le \sum_{k=n+1}^{\infty} \|A\|_{op}^{k}$$

$$= \|A\|_{op}^{n+1} \cdot \sum_{j=0}^{\infty} \|A\|_{op}^{j}$$

$$= \frac{\|A\|_{op}^{n+1}}{1 - \|A\|_{op}}$$

$$\Rightarrow \sup_{m \ge n} \|S_{m} - S_{n}\|_{op} \le \frac{\|A\|_{op}^{n+1}}{1 - \|A\|_{op}} \to 0 \text{ für } n \to \infty$$

Das heißt $(S_n)_n$ ist eine Cauchy-Folge in $\mathcal{L}(X)$

$$\Rightarrow S = \lim_{n \to \infty} S_n \text{ existiert}$$

$$(\mathbf{1} - A) \cdot S_n = S_n - AS_n = \sum_{k=0}^n A^k - \sum_{k=0}^n A^{k+1}$$

$$= \mathbf{1} - A^{n+1}$$

Genauso lässt sich für Linksinverse auch zeigen, dass $S_n \cdot (\mathbf{1} - A) = \mathbf{1} - A^{n+1}$. Für $x \in X$ gilt

$$(\mathbf{1} - A) \cdot S_n x = x - A^{n+1} x \to x \text{ für } n \to \infty$$

$$\Rightarrow (\mathbf{1} - A) \cdot S x = x \quad \forall x \in X$$

$$\Rightarrow \begin{cases} (\mathbf{1} - A) S = \mathbf{1} \\ S (\mathbf{1} - A) = \mathbf{1} \end{cases}$$

Das heißt S ist die Inverse zu 1 - A und es gilt

$$\|(\mathbf{1} - A)^{-1}\|_{\text{op}} = \|S\|_{\text{op}} = \left\|\sum_{k=0}^{\infty} A^{k}\right\|_{\text{op}}$$
$$\leq \sum_{k=0}^{\infty} \|A\|_{\text{op}}^{k} = \frac{1}{1 - \|A\|_{\text{op}}}$$

SCHRITT 2: Sei $A \in \mathcal{L}(X)$ invertierbar. Dann gilt

$$B = A - (A - B) = A \cdot (\mathbf{1} - A^{-1} \cdot (A - B))$$

ist invertierbar nach Schritt 1, falls $\|A^{-1} \cdot (A - B)\|_{\text{op}} < 1$

?

Satz 12.1.7 (Banachscher Fixpunktsatz). Sei (M,d) ein vollständiger metrischer Raum und $T:M\to M$ eine Kontraktion - das heißt $\exists k\in(0,1):d(T(x),T(y))\leq k\cdot d(x,y)\ \forall x,y\in M$ - dann hat T einen eindeutigen Fixpunkt. Das heißt es existiert genau ein $x^*\in M$, sodass $T(x^*)=x^*$.

Beweis. Eindeutigkeit. Seien x^*, y^* Fixpunkte. Dann gilt

$$d(x^*, y^*) = d(T(x^*), T(y^*)) \le k \cdot d(x^*, y^*)$$

$$\Rightarrow \underbrace{(1 - k)}_{>0} \cdot d(x^*, y^*) \le 0$$

$$\Rightarrow d(x^*, y^*) = 0$$

$$\Rightarrow x^* = y^*$$

Existenz. Schritt 1: Sei $x_0 \in M$ beliebig. Wir definieren

$$x_1 = T(x - 0)$$

$$x_2 = T(T(x_0)) = T^2(x_0)$$

$$x_{n+1} = T(T^n(x_0)) = T^{n+1}(x_0) = T(x_n)$$
 (induktiv, $n \in \mathbb{N}_0$)

Wir betrachten den Abstand zwischen x_{n+1} und x_n

$$d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1}))$$

$$\leq k \cdot d(x_n, x_{n-1})$$

$$\leq k^2 d(x_{n-1}, x_{n-2})$$

$$< \dots < k^n \cdot d(x_1, x_0)$$

Schritt 2:

$$d(x_{n+l}, x_n) \le d(x_{n+l}, x_{n+l-1}) + d(x_{n+l-1}, x_n)$$

$$\le d(x_{n+l-1}, x_{n+l-2}) + d(x_{n+l-2}, x_n)$$

$$\le \dots \le \sum_{j=0}^{l-1} d(x_{n+j+1}, x_{n+j})$$

12 [*] Inverse Funktionen und implizite Funktionen

$$\leq d(x_1, x_0) \cdot \sum_{j=0}^{l-1} k^{n+j}$$

Nach der geometrischen Summenformel

$$\leq d(x_1, x_0) \cdot \frac{k^n}{1 - k}$$

$$\Rightarrow \sup_{m \geq n} d(x_m, x_n) \leq \frac{k^n}{1 - k} \cdot d(x_1, x_0) \to 0 \text{ für } n \to \infty$$

Damit ist $(x_n)_n$ eine Cauchy-Folge und ein Grenzwert existiert. Wir definieren

$$x^* \coloneqq \lim_{n \to \infty} x_n$$

Schritt 3: Wir zeigen, dass dann x^* ein Fixpunkt sein muss

$$d(T(x^*), x^*) \le d(T(x^*), x_{n+1}) + d(x_{n+1}, x^*)$$

$$\le \underbrace{k \cdot d(x^*, x_n)}_{\to 0} + \underbrace{d(x_{n+1}, x^*)}_{\to 0} \to 0 \text{ für } n \to \infty$$

$$\Rightarrow d(T(x^*), x^*) = 0$$