Examen parcial de Física - Corrent Continu i Corrent Altern Model A 4 de novembre de 2020

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Un circuit RLC amb una autoinducció $L=25\,\mathrm{mH}$ i una capacitat $C=10\mu F$ està connectat a una font de corrent alterna de tensió efectiva $V_{eff}=220V$. Si la pulsació (o freqüència angular) de la font es igual a la de ressonància, el circuit dissipa una potència P=50W. Quin es el valor de la resistència R del circuit?
 - a) 968Ω
- b) 4000Ω
- c) 2968Ω
- d) 2000Ω
- **T2)** La resistència en un circuit RL sèrie és $100\,\Omega$. Si a la freqüència $f=50\,\mathrm{Hz}$ el defasament entre tensió i corrent es de $17^{\circ}44$, quin defasament hi haurà al doble de freqüència?
 - a) $36^{\circ}72$.
- b) 32°14.
- c) 30°16.
- d) 34°88.
- T3) Al circuit de la figura, totes les resistències tenen el mateix valor $R=75\,\Omega$, tots el condensadors la mateixa capacitat $C=50\,\mu\mathrm{F}$, i la font de tensió és de $\epsilon=3\,\mathrm{V}$. El corrent elèctric que travessa la fem pren per valor

a) 0 A

b) 0.01 A

c) 0.16 A

- d) 0.04 A
- T4) Amb un voltímetre es mesura la tensió a les plaques d'un condensador, inicialment carregat, que es descarrega amb una resistència de $10 \text{ k}\Omega$. Si la tensió a les plaques del condensador s'ha reduït a la meitat en mig minut, la capacitat del condensador és:
 - a) 30 pF
- b) 4.33 mF
- c) 2 nF
- d) $6 \mu F$

T5) El coeficient d'autoinducció i la capacitat del condensador dels dos filtres de la figura valen respectivament 9 mH i $10~\mu\text{F}$. Per quin valor de la resistència els dos circuits filtren de la mateixa manera per qualsevol freqüència?

- a) $R = 20 \Omega$
- b) $R = 30 \Omega$

c) $R = 5 \Omega$

d) $R = 100 \Omega$

Examen parcial de Física - Corrent Continu i Corrent Altern 4 de novembre de 2020

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Al circuit de la figura, totes les resistències tenen el mateix valor $R=75\,\Omega$, tots el condensadors la mateixa capacitat $C=50\,\mu\mathrm{F}$, i la font de tensió és de $\epsilon=3\,\mathrm{V}$. El corrent elèctric que travessa la fem pren per valor

a) 0.01 A

b) 0 A

c) 0.16 A

- d) 0.04 A
- T2) Un circuit RLC amb una autoinducció $L=25\,\mathrm{mH}$ i una capacitat $C=10\mu F$ està connectat a una font de corrent alterna de tensió efectiva $V_{eff}=220V$. Si la pulsació (o freqüència angular) de la font es igual a la de ressonància, el circuit dissipa una potència P=50W. Quin es el valor de la resistència R del circuit?
 - a) 2968Ω
- b) 968 Ω
- c) 2000Ω
- d) 4000Ω
- T3) Amb un voltímetre es mesura la tensió a les plaques d'un condensador, inicialment carregat, que es descarrega amb una resistència de 10 k Ω . Si la tensió a les plaques del condensador s'ha reduït a la meitat en mig minut, la capacitat del condensador és:
 - a) 2 nF
- b) $6 \mu F$
- c) 4.33 mF
- d) 30 pF

T4) El coeficient d'autoinducció i la capacitat del condensador dels dos filtres de la figura valen respectivament 9 mH i $10~\mu\text{F}$. Per quin valor de la resistència els dos circuits filtren de la mateixa manera per qualsevol freqüència?

- a) $R = 100 \ \Omega$
- b) $R = 20 \Omega$
- c) $R = 30 \Omega$
- d) $R = 5 \Omega$
- **T5)** La resistència en un circuit RL sèrie és 100Ω . Si a la freqüència $f = 50 \,\text{Hz}$ el defasament entre tensió i corrent es de $17^{\circ}44$, quin defasament hi haurà al doble de freqüència?
 - a) $34^{\circ}88$.
- b) 32°14.
- c) 30°16.
- d) $36^{\circ}72$.

Examen de Física - Corrent Continu i Corrent Altern 4 de novembre de 2020

Problema: 50% de l'examen

En el circuit mostrat a la figura, sabem que si $R_c=125\,\Omega\Rightarrow V_A-V_B=2\,\mathrm{V}$, i que si $R_c=450\,\Omega\Rightarrow V_A-V_B=4\,\mathrm{V}$. Els valors de les resistències del circuit son $R_1=100\,\Omega,\,R_2=200\,\Omega,\,R_3=250\,\Omega,\,R_4=375\,\Omega,\,R_5=625\,\Omega$, i $\varepsilon_2=7.5\,\mathrm{V}$. Determineu:

- a) Quin es el circuit equivalent de Thévenin, entre els punts A i B, que veurà la resistència R_c ? Verifiqueu que amb els valors (V_{Th}, R_{Th}) trobats se satisfan les dades proporcionades a l'enunciat referents a $V_A V_B$ per a $R_c = 450\,\Omega$ i $R_c = 125\,\Omega$.
- b) Quant valdrà $V_A V_B$ en circuit obert? Determineu en aquest cas els valors de I_1, I_2, I_3 , i trobeu el valor de ε_1 .
- c) Canviem la font de tensió contínua ε_1 per un generador de tensió alterna $V_g(t) = 10V \sin(4000\,t)$, i la segona font de tensió ε_2 per un condensador amb C = 200 nF. Substituim la resistència R_c per un element de impedància $\bar{Z}=j\,X'$. Trobeu quin ha de ser aquest element i el seu valor per tal que la intensitat $I_g(t)$ del generador estigui en fase amb la tensió $V_g(t)$. Raoneu la resposta.
- d) Determineu la potència mitjana subministrada pel generador al circuit.

COMENCEU LA RESOLUCIÓ DEL PROBLEMA EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	a	d
T2)	b	b
T3)	d	c
T4)	b	c
T5)	b	b

Resolució del Model A

- T1) Si el circuit opera en resonància, la part imaginària de la impedància es zero, i llavors $\bar{Z}=R$. La potència dissipada en aquest cas es $P=V_{eff}^2R/Z^2=V_{eff}^2R/R^2=V_{eff}^2/R$. Així tenim que $R=V_{eff}^2/P=220^2/50=968\Omega$.
- T2) Al circuit RL sèrie l'angle de desfasament entre tensió i corrent ve donat per la relació $\tan \alpha = L\omega/R$. Amb les dades inicials podem trobar el valor de L d'aquesta expressió: $L = R \tan \alpha/\omega = 100 \tan(17^{\circ}44)/(2\pi50) = 0.1 \,\mathrm{mH}$. Un cop sabem aquest valor, el desfasament al doblar la freqüència ve donat per $\tan \tilde{\alpha} = 0.1 \, 2\pi 100/100$ i d'aquí resulta $\tilde{\alpha} = 32^{\circ}14$.
- **T3**) Sabem que a les branques on hi ha condensadors no circula cap corrent. Aixì doncs, la ùnica malla tancada on $I \neq 0$ es la que passa per la branca on hi es la fem i per la branca d'adalt de tot. El corrent que circula és doncs $I = \epsilon/R = 3/75 = 0.04$ A.
- T4) La tensió a les plaques del condensador, quan està totalment carregat, és $V_0 = q_0/C$. A mesura que passa el temps la tensió és $V = q/C = \frac{q_0}{C}e^{-t/\tau_C}$. Quan la tensió es redueix a la meitat, tenim: $V = V_0/2 = V_0e^{-t/\tau_C}$. Per tant, $\tau_C = -t/ln(0.5)$. Finalment, la capacitat és: $C = -\frac{t}{Rln(0.5)} = 4.33$ mF.
- T5 Es tracta de dos filtres passa baixes. La funció de transferència del circuit amb el condensador és $H(\omega) = \frac{X_C}{\sqrt{R^2 + X_C^2}}$ i la del circuit amb la bobina és $H(\omega) = \frac{R}{\sqrt{R^2 + X_L^2}}$. Igualant ambdues expressions i elevant al quadrat, tenim $\frac{X_C^2}{R^2 + X_C^2} = \frac{R^2}{R^2 + X_L^2}$. Per tant, $X_C^2 R^2 + X_C^2 X_L^2 = R^4 + X_C^2 R^2$. Simplificant, tenim $X_L^2 X_C^2 = R^4$. Per tant, $R = \sqrt{X_L X_C}$. Com $X_C = \frac{1}{\omega C}$ i $X_L = \omega L$, finalment tenim que $R = \sqrt{L/C} = \sqrt{9 \times 10^{-3}/10 \times 10^{-6}} = 30 \ \Omega$.

Resolució del Problema

a) Trobarem la resistència equivalent de Thévenin considerant l'esquema de connexions entre A i B. El conjunt de resistències (R_1, R_2, R_3) configura un sistema on R_1 i R_2 estan en sèrie, en paral.lel amb R_3 , proporcionant $R_{123} = 136.364 \,\Omega$. Aquest conjunt està en sèrie amb $R_4 = 375 \,\Omega$, fent $R_{1234} = 511.364 \,\Omega$, que està en paral.lel amb $R_5 = 625 \,\Omega$, proporcionant finalment $R_{Th} = 281.25 \,\Omega$.

Sabem que quan $R_c = 450\,\Omega$, $V_A - V_B = 4\,V$, per tant considerant el circuit equivalent Thévenin tenim $I = (V_A - V_B)/R_c = 4/450 = 8.888\,\text{mA}$. Substituint en l'equació $V_A - V_B = V_{Th} - IR_{Th}$ tenim $4 = V_{Th} - 281.25 \times 0.00888 \Rightarrow V_{Th} = 6.5\,V$.

Igualment, sabem que quan $R_c=125\,\Omega$, $V_A-V_B=2\,V$, per tant en el circuit equivalent Thévenin tenim ara $I=2/125=16\,\mathrm{mA}$. Substituint de nou en l'equació $V_A-V_B=V_{Th}-IR_{Th}$ tenim $2=V_{Th}-281.25\times0.016\Rightarrow V_{Th}=6.5\,V$, confirmant que el circuit equivalent de Thévenin correspòn a $V_{Th}=6.5\,V$, $R_{Th}=281.25\,\Omega$.

- b) En circuit obert, $V_A V_B = V_{Th} = 6.5 \,\mathrm{V}$. En aquest cas, deduim immediatament que $I_4 = 0$, $I_3 = (7.5 6.5)V/625\Omega$, és a dir $I_3 = 1.6 \,\mathrm{mA}$. També tenim que $V_A V_B = 6.5 = I_2 R_3 + I_3 R_4$, d'on obtenim directament $I_2 = 23.6 \,\mathrm{mA}$. De l'eqüació de nusos (en circuit obert) $I_1 + I_3 = I_2$ obtenim $I_1 = 22.0 \,\mathrm{mA}$. Finalment, de l'equació de malla $\varepsilon_1 I_1(R_1 + R_2) I_2 R_3 = 0$ obtenim $\varepsilon_1 = 12.5 \,\mathrm{V}$.
- c) La branca amb els elements (R_5, \mathbb{C}) en sèrie té una impedància complexa $Z=R_5-j/(C\,w)=625-j\,1250$, mentre que la que tenim en substitució de R_c té una impedància desconeguda $\bar{Z}=j\,X'$. La condició que $I_g(t)$ i $V_g(t)$ estiguin en fase implica que la impedància del circuit sigui real, amb part imaginària nul.la. Donat que tots els elements a l'esquerra dels punts A i B ténen impedància real, caldrà que la combinació de les dues branques sigui també real. Sabem que l'element X' que cal situar en paral.lel a una impedància complexa $\bar{Z}=R+j\,X=625-j\,1250$ té per valor $X'=-(R^2+X^2)/X=+1562.5\,\Omega$, és a dir que es tracta d'una bobina amb autoinducció $L\,w=X'\Rightarrow L=1562.5/4000=0.391H$. El conjunt de les dues branques té una impedància real $\bar{Z}=(R^2+X^2)/R=3125\,\Omega$.
- d) El conjunt de resistències $(R_3, R_4, \bar{Z} = 3125\,\Omega)$ configura un sistema on R_4 i $\bar{Z} = 3125\,\Omega$ estan en sèrie, en paral·lel amb R_3 , proporcionant $R_{34Z} = 233.333\,\Omega$. Aquest conjunt està en sèrie amb R_1 i R_2 , proporcionant finalment $R_{eq} = 533.3\,\Omega$. Així doncs la intensitat màxima val $I_0 = V_0/R_{eq} = 0.01875\,$ A, el factor de potència és 1, i la potència subministrada pel generador és $P = \frac{1}{2}V_0I_0 = 0.09375\,W = 93.75\,\mathrm{mW}$