$$B(\varphi) = \frac{\sin\left(\frac{N}{2}\varphi\right)}{N\sin(\frac{\varphi}{2})} \qquad \varphi = 2\pi \frac{d}{\lambda} u$$

(i)
$$N=8$$
, $d=\frac{5}{8}\lambda$ $\varphi=\frac{5}{4}\pi u$ $B_8(u)=\frac{5in(5\pi u)}{8sin(\frac{5}{8}\pi u)}$
(ii) $N=10$, $d=\frac{1}{2}\lambda$ $\varphi=\pi u$ $B_{10}(u)=\frac{sin(5\pi u)}{10 sin(\frac{1}{2}\pi u)}$

The beampattern (really frequency wavenumber response) is plotted for $u \in [-3,3]$. The two beampatterns are nearly identical near the maintobe and first sidelobes, but the N=8 beampattern has a period of $\frac{\lambda}{d} = \frac{8}{5} = 1.6$ in u-space, while the N=10 beampattern has a period of 2 in u-space.

