REMARKS

The office action of January 23, 2008, has been reviewed and its contents carefully noted. Reconsideration of this case, as amended, is requested. Claims 1-4, 12-38 and 47 remain in this case.

Preliminary Comments

- a. Claim 1 was amended to address the problem raised in the objection.
- b. Claims 1 and 15 were further amended to better define the invention and distinguish from the prior art, and dependent claims 2-4 and 34, 37 and 38 were amended accordingly.

Specifically:

- the types of metadata in claim elements 1(a)(iv) (and corresponding element 15(a)(iv)(a)(4)) have been moved from the first part of element 1(a) (15(a)(iv)(a)) to the individual element to which they apply
- a new element 1(a)(v) (and 15(a)(iv)(a)(5)) has been added to more clearly, positively and explicitly claim the novel "metadata on the metadata" of Applicants' invention.
- dependent claims 2-4 (and their equivalents 34 and 37-38) were amended to change their dependency to further refine the metadata on metadata of the newlyadded element 1(a)(v) or 15(a)(iv)(a)(5)

This now positively claims the "metadata on metadata", which was previously claimed as a relationship in the first "wherein clause" ("wherein the metadata in the metadata database define the instances in the metadata database..."). The "wherein" in that clause was changed to –such that.-, since the relationship is now positively claimed. This is consistent with the application as filed (Table 1, for example) and all of Applicants' arguments in the office action responses and interviews to date. No new matter is added by this amendment.

- c. The tables attached to the previously filed Section 131 affidavit have been re-annotated in accordance with these amended claims and are attached hereto as "Appendix A".
- d. The numbered paragraphs below correspond to the numbered paragraphs in the Office Action.

Claim Objection

18. Claim 1 was objected to because it recited "encoded computer-readable medium", the Examiner stating that the Specification fails to provide support for this term.

The claim has been amended to change "encoded computer-readable medium" to
"computer-readable data repository". While exactly this phrase is not used in exactly that form,
the person having ordinary skill in the art would find support for this throughout the specification
and drawings as filed. For example, the repository (26) is shown in figure 26 by the flowchart
symbol for computer disk storage. The entire application recites how computer software and
encoding methods (i.e. XML) are used with the World Wide Web (i.e. computer network) to
access (i.e. read) the data stored in the repository, which must therefore by definition be
computer-readable.

The field of the invention states,

The present invention relates generally to databases and *the electronic* storage and retrieval of information related to materials and their properties.

The summary of the invention states,

The system of the invention provides a method, preferably implemented in computer software, for the delivery, storage, maintenance and controlled access to data on materials, stored in a centrally administered data repository.

Applicant believes that this amendment overcomes the objection to claim 1.

Reconsideration and withdrawal of the objection is respectfully requested.

Section 131 Declaration

3. Applicants submitted a Declaration of the Inventors under Section 131 with the last Office Action Response, filed on October 30, 2007. The Examiner declared that this affidavit was considered ineffective to overcome the Rappold reference.

Applicants respectfully disagree.

In order to overcome the Rappold reference, the Section 131 declaration needs to establish that the Applicants had invented the subject invention prior to the effective date of the Rappold reference. That is, that the Applicants had both conceived and reduced the claimed invention to practice prior to that date.

The Examiner has stated that the Section 131 declaration is sufficient to support the date of conception. This leaves only the date of reduction to practice. Applicants believe that they have sufficiently supported a date of reduction to practice in the declaration which is before the effective date of the Rappold reference.

Claim 1, claims a data repository storing specific data in a specific way. Exhibit D to the declaration provided a printout of a data repository meeting every limitation of the claim, and the declaration stated that the data repository was implemented as a Microsoft Access database at least as early as September 19, 2002. These are facts which support the fact that the invention was reduced to practice – that is, that the tables provided in the exhibit are a repository, and that a working model existed. Therefore, the invention was reduced to practice – it is not necessary that a commercial product be on the market or that every bug be worked out to reduce the invention to practice. This is especially true in this case where the claimed invention is a depository storing data in a certain way and the declaration provided facts that there was indisputably a depository in existence which stored the claimed data in the claimed way.

Similarly, the facts provided in the declaration – both the supporting exhibits and the statements of the Applicants made under penalty of perjury in the declaration show implementation of the method claimed in claim 15.

Applicants' statement in the declaration that the repository existed and that a working system was produced and entered into testing, being statements made under oath with supporting exhibits, are *facts*, and should be accepted as such.

Applicants believe that the Section 131 declaration has sufficiently proven a date of invention early enough to remove the Rappold reference from consideration as prior art.

Reconsideration and withdrawal of the rejection is respectfully requested.

However, even if the Examiner still believes the Section 131 declaration to be insufficient, the Applicants believe the Rappold reference (and all the other cited references) do not show the Applicants invention as claimed in the claims as amended, and the invention is patentable over the art for the reasons explained below.

Rejection(s) under 35 U.S.C. §103

- 23. The prior art rejections of all of the remaining claims under 35 U.S.C. 103(a) were maintained from the previous office actions. Specifically, claims 1-4 and 12-14 were rejected under 35 U.S.C. 103(a) as being unpatentable over Rappold, III (US PGPub 2004/0117397) in view of Arritt et al. (US PGPub 2005/0131861) and further in view of the dissertation titled "Pulsed DC Reactive Magnetron Sputtering of Aluminum Nitride Thin Films" by Jung Won Cho.
- Claims 15-19, 21-26, 28-30, 34-38, and 47 were rejected under 35 U.S.C. 103(a) as being unpatentable over the above references in further view of Boyd et al.(US PGP 2003/0069795).
- Claim 20 was rejected under 35 U.S.C. 103(a) as being unpatentable over the all of the above in further view of Markki et al. (US PGPub 2004/0243580).
- Lastly, claims 27, and 31-33 were rejected under 35 U.S.C. 103(a) as being unpatentable over the references cited above in the rejection of claim 15 in further view of O'Hare et al. (US 6.484.173).

Applicant believes that the previously-submitted Declaration under 37 C.F.R. §1.131 and Exhibits A-F provided sufficient evidence to show that the date of invention was prior to the filing date of Rappold (December 16, 2002), and also Markki (May 27, 2003), for the reasons stated above. For these reasons, as stated above, Applicants believe that Rappold, the base reference for all of the obviousness rejections, should not be available as a reference due to Applicants' prior invention and the rejection of the application over Rappold and Markki should be overcome.

With those references removed from consideration, Applicant believes that the present invention is not rendered obvious over the remaining references (Arritt and Cho, as well as Boyd), for the reasons expressed in the prior Office Action responses and the interviews with the Examiner on October 26, 2006, November 6, 2006 and October 22, 2007.

However, Applicants' also believe that even if Rappold were available as a reference, the invention claimed in independent claims 1 and 15, as amended, is patentable over the references cited.

Claims 1 and 15 have been amended to more clearly define the novel "metadata on metadata" feature of the invention, which Applicant believes is not shown or taught by any of the prior art, alone or in combination. Specifically, claim 1(a) (and corresponding claim 15(a)(iv)(a)) now recites:

- a) a metadata database in the form of instances with associated metadata giving information about the instances, the metadata comprising at least one data element selected from a list comprising name, description, and identifying information, the metadata database comprising:
 - i) metadata on the material:
 - ii) metadata on the sample;
 - iii) metadata on the test:

- iv) metadata on data value elements in a test result database further comprising at least one data element selected from a list comprising data type, units, acceptable values or ranges, and default value; and
- v) metadata on the metadata, comprising at least one data element describing the metadata on the material, sample, test and data value elements in the metadata database:

Neither Rappold's application nor the other cited references discloses or teaches the novel "metadata on metadata" feature of the invention claimed in independent claims 1 and 15 of the present application, as amended.

The data table (50) in Rappold's system corresponds to the test result database in Applicants' invention (claim 1(b), or claim 15(a)(iv)(b)), in that each of the instances in the data table is information about a user (analogous to one of a material, sample or test) comprising a data element identifying the user (material, sample or test) and a data value element, which in all cases in Rappold is a single data point.

The Examiner identified elements corresponding to claim I(a)(i) through (iv) – "First" corresponding to metadata on the material (I(a)(i)), "Username" corresponding to metadata on the sample (I(a)(ii)) and "Extension" corresponding to metadata on the test (I(a)(iii)), and "string" as "metadata on data value elements in a test result database" as claimed in claim I(a)(iv).

Since Rappold's database isn't a repository of materials property data, the assignment of parts of a list of users and their phone numbers in Rappold to the claimed metadata on materials, samples and tests in a materials property database in the Applicants' invention is arbitrary at best. However, one can allow for arguments' sake that Rappold shows metadata on different kinds of data elements within the contexts of his system and has at least one value of predefined metadata on data value elements ("string").

What is missing from Rappold (and Arritt, Cho, Boyd, Markki, O'Hare and all other references cited or known to Applicants) is the "metadata on metadata" feature, claimed in the newly added parts of claim 1 and 15 - that is, Claim1(a)(v) and Claim 15(a)(iv)(a)(5) - "metadata"

on the metadata, comprising at least one data element describing the metadata on the material, sample, test and data value elements in the metadata database" ... "such that the metadata in the metadata database define the instances in the metadata database".

The Examiner identified paragraph [0029] in Rappold as showing the "wherein the metadata in the metadata database define the instances in the metadata database..." Applicants respectfully disagree with this statement, and suggest that only hindsight based on Applicants' invention would lead anyone to read this into the description in Rappold. Paragraph [0029] of Rappold says:

[0029] The other component of the extensible database system shown in FIG. 1 is metadata table 11. Metadata table 11 is comprised of metadata table rows 101a-101d and columns 111, 113, and 115. Each row 101 of Metadata table 11 provides parameters and formatting information for one attribute type stored in data table 10. Column 111 holds numbers representing the attribute type whose parameters and formatting information is provided on that particular row 101 of metadata table 11. These correspond to the entries in column 114 of data table 10, as illustrated by the connections between entry 111a in metadata table 11 and entries 114a and 114e in data table 10. Both data table rows 100a and 100e hold first names, which are of attribute type "1". As shown by entry 111a, metadata table row 101a provides formatting information for this attribute type, attribute type "1", or first names. Likewise, the other metadata table rows, rows 101b-101d, also provide parameters and formatting information for other data table rows 100. [emphasis added]

As can be clearly seen from this paragraph and from the data in Figure 4, Rappold teaches a metadata table 11 providing "parameters and formatting information for one attribute type stored in data table 10". There is no mention in this paragraph, or anywhere else in Rappold, that the metadata in the metadata table could provide any information about the other metadata in the metadata table.

This distinction between metadata on the elements in the data table (as done by Rappold) and "metadata on metadata" of Applicants' invention is clearly shown in the database tables provided as exhibit "D" to the Section 131 declaration filed on October 30, 2007:

Pages D7-D9 and D11 show the test result database (pages D7-D9 corresponding to claim 1(b)(i) and page D11 corresponding to claim 1(b)(ii)).

Pages D1-D6 and D10 show the metadata table, with pages D4-6 and D10 showing the metadata on the data table analogous to Rappold's system:

- Page D4 shows a table of "metadata on the material" (claim 1(a)(i)) for
 example, see line 2 of the table, giving metadata on sample EXP23569,
 corresponding to the instance of line 2 of the test result database sample table on
 page D10
- Page D10 shows a table of "metadata on the sample" (claim I(a)(ii)) for
 example, see line 2, giving metadata on sample ID 5233, which corresponds to
 line 1 of the test result database property measurement table on page D7-D8.
- Page D5 shows a table of "metadata on the test" (claim 1(a)(iii)) for example, see the line starting "Speed" (ID 8), which corresponds to the "parameter ID" entry on lines 1, 3, 5, 7 and 9 of the test result database property measurement table on page D9.
- Page D6 shows a table of "metadata on the data value element" (claim 1(a)(iv)) –
 for example, see the line for ID 201 "Compressive Modulus", which corresponds
 to the "property result ID" on lines 3, 6 and 9 of the test result database property
 measurement result table on page D11.

As can be seen, each of the metadata database tables detailed above give metadata about the data in the test results database. In contrast, pages D1 to D3 show tables of "metadata on metadata in the metadata database" according to the present invention (claims 1(a)(v) and 15(a)(iv)(a)(5)):

- Page D1 shows a table giving metadata on metadata about suppliers –
 specifically, see the second line of the table, which says that supplier "Dow
 Chemicals" is ID number 2, and has a website URL of www.dow.com. This gives
 metadata on the metadata "Dow Chemicals" which appears in the metadata
 database table of "metadata on material" shown on page D4, lines 2-4. Similarly,
 line 1 of the table on D1 gives metadata on the metadata "Owens Corning" on line
 1 of the table on D4.
- Page D2 shows a table giving metadata on metadata about materials subclasses.
 Looking at the fourth line of the table, one can see metadata on subclass "PP" (it is in class "plastic", and has ASTM name "PP"). This is metadata on the metadata "PP" which appears in the metadata database table on page D4, lines 2-4.
- Page D3 shows a table giving metadata on metadata about material properties. This is metadata on the metadata appearing on the "metadata on tests" table on page D5. For example, the metadata "Coefficient of Friction", appearing on lines 2-3 of the table on page D5, has metadata on metadata on line 3 of the table on page D3. Metadata on the other metadata in column 4 of the table on page D5 can similarly be found in the table on page D3.

Neither Rappold, nor Arritt, nor Cho, nor Makki, nor O'Hare teach, show or suggest the Applicants' metadata on metadata feature as used in a data repository for material property data. Therefore, the combination of the references cannot supply which every one of them lacks.

Reconsideration and withdrawal of the obviousness rejection of claims 1-4, 11-38, 41-42, and 47 are therefore respectfully requested.

Conclusion

Applicant believes the claims, as amended, are patentable over the prior art, and that this case is now in condition for allowance of all claims therein. Such action is thus respectfully requested. If the Examiner disagrees, or believes for any other reason that direct contact with Applicants' attorney would advance the prosecution of the case to finality, she is invited to telephone the undersigned at the number given below.

Respectfully Submitted: Hubert Lobo and Kurien Jacob

By: /mfb #29619/

Michael F. Brown, Reg. No. 29,619 Attorney for Applicant BROWN & MICHAELS, P.C., 400 M&T Bank Building, 118 N. Tioga St.

Ithaca, NY 14850 (607) 256-2000 • (607) 256-3628 (fax) • e-mail: docket@bpmlegal.com

Dated: July 8, 2008

Appendix A

"Exhibit D" from Section 131 Declaration Annotated to Correspond to Claims as Amended in this Response

Appendix is on Pages D1-D11 following this cover sheet

SupplierID	SupplierID SupplierName	Material Supplierur
1	Owens Corning	
2	2 Dow Chemicals www.dow.com	www.dow.com
3	3BASF	
4	4ALCOA	

⋜
a
æ
Ĭ.
ω
Ų,
H
ŏ
0)

ISO Name	ASTM Name	Class	Group
PE-HD	HDPE	Plastic	
PE-LD	LDPE	Plastic	
PC	PC	Plastic	
PР	PP	Plastic	

Material Property

Name	Category	Description
Capillary Viscosity	Flow	Viscous behavi
Charpy Impact	Mechanical	None
Coefficient of Friction	Mechanical	None
Coefficient of Linear Thermal Expansion	Thermal	None
Compressive Creep	Mechanical	None
Compressive Properties	Mechanical	None
Dynamic Mechanical Properties in Torsion	Mechanical	None
Flexural Creep	Mechanical	None
Flexural Fatigue	Mechanical	None
Flexural Properties	Mechanical	None
Heat Deflection Temperature	Thermal	None
Instrumented Dart Impact	Mechanical	None
zod impact	Mechanical	None
Melt Rheology by Dynamic Mechanical Analysis	Flow	None
Planar Tension	Mechanical	None
Shear Strength	Mechanical	None
Specific Heat	Thermal	None
Stress Relaxation	Mechanical	None
Tensile Creep	Mechanical	None
Tensile Properties	Mechanical	None
Thermal Analysis	Thermal	None
Thermal Conductivity	Thermal	None
Thermal Diffusivity	Thermal	None
Vicat Softening Temperature	Thermal	None

Exhibit D - page D3

Name	Class	Subclasses	Specifications	Manufacturer	Terms	Notes	Formula	Applications
E-Glass	Glass			Owens Corning		E type Glass us		
EXP 23569	Plastic	PP		Dow Chemicals			Polypropylene	
ProFax 6323	Plastic	PP		Dow Chemicals			Polypropylene	
Test1	Thermoplastic	PP		Dow Chemicals				

															,,,		P	ayı		,,													
Other Specime	Specimen Con	Specimen Test	Extensometry	Crosshead Spe	Laboratory Hu	Test Temperat	Other Specime	Specimen Con	Specimen Test	Extensometry	Crosshead Spe	Laboratory Hu	Test Temperat	Specimen Orie	Other Specime	Specimen Con	Specimen Test	***START	Specimen Con	Specimen Orie	Specimen Type	Temperature	Precycling	Surface	Speed	Conditioning	Conditioning	Speed	Substrate	Speed	Substrate	Temperature	Name
303	302	301	208	207	206	205	203	202	201	108	107	106	105	104	103	102	101	50	14	13	12		10	9	(8	7	6	5	4	3	2	_	ē
																			14 M-210A	13M-210A	12M-210A	11 M-210A	10 M-210A	9M-210A	8M-210A	M-060I	6M-060A	5M-060I	4 M-060I	3M-060A	2M-060A	R-011A	i ecillida
Flexural Properties	Flexural Properties	Flexural Properties	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Tensile Properties	Tensile Properties	Tensile Properties	Tensile Properties	Tensile Properties	Tensile Properties	Tensile Properties	Tensile Properties	Capillary Viscosity	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Compressive Properti	Coefficient of Friction	Coefficient of Friction	Coefficient of Friction	Tensile Creep	Coefficient of Friction	Coefficient of Friction	Capillary Viscosity	Fioperty Name
Specimen Detai String	Specimen Detai String	Specimen Detai String	Test Parameter String	Test Parameter Numeric	Test Parameter Numeric	Test Parameter Numeric	Specimen Detai String	Specimen Detai String	Specimen Detai String	Test Parameter String	Test Parameter Numeric	Test Parameter Numeric	Test Parameter Numeric	Specimen Detai String	Specimen Detai String	Specimen Detai String	Specimen Detai String	Test Parameter	Specimen Detai String	Specimen Detai String	Specimen Detai String	Test Parameter Numeric	Test Parameter	Test Parameter String	Test Parameter Numeric	Specimen Detai String	Specimen Detai String	Test Parameter Numeric	Test Parameter	Test Parameter Numeric	Test Parameter	Test Parameter Numeric	Category
String	String	String	String	Numeric	Numeric	Numeric	String	String	String	String	Numeric	Numeric	Numeric	String	String	String	String	String	String	String	String	Numeric	String	String	Numeric	String	String	Numeric	String	Numeric	String	Numeric	1900
				mm/mi	%	റ്					mm/mi	%	റ്									C		-	mm/mi			mm/mi		mm/mi		C	GIIIO
				1.3		23					G		23									23			O1			100		50			Mulliell
																						-70	0	0	_	0	0	5	0	5		23	Ollics Mullieridinghierid harrier
											ယ								0	0	0	2500	00	00	5000	00	00	5000	00	5002		4005	AUTHORITO II
					0.0	0.0					ω	0.0	0.0						٦	٦	٦			٦	٦	٦				2		01	Auma

	K	The ratio of the stress to the strain at a give		×	Tensile Modulus - Secant		30
	<	The slope of the initial, linear portion of the		×	Flexural Modulus - Young's	302 Flexural Properties	30
	<	The slope of the stress-strain curve over a		×	Flexural Modulus	301 Flexural Properties	30
	K	Reduced set of points from the true stress-		XY	True Compressive Stress-Stra XY		21
Γ	<	Reduced set of points from the engineering		×	Engineering Compressive Str	213 Compressive Properties	24
Line	-	True stress (engineering stress adjusted fo	Г	×	212 Compressive Properties True Compressive Stress-Stra XY	2 Compressive Properties	21
Line		Stress (load / initial cross-sectional area) vs		¥	Engineering Compressive Str XY	Compressive Properties	211
	K	The strain at which the stress reaches a loc		×	207 Compressive Properties Compressive Strain at Yield	7 Compressive Properties	20
	<	The stress at a local maxima on the stress-	2.7	×	206 Compressive Properties Compressive Strength at Yield X	6 Compressive Properties	20
Γ	K	The strain at the intercept of the stress-stra		×	Offset Yield Strain in Compres X	205 Compressive Properties	20
	<	The stress at the intercept of the stress-str		×	Offset Yield Stress in Compre X	204 Compressive Properties	20
	3	The ratio of the stress to the strain at a give		×	Compressive Modulus - Seca	203 Compressive Properties	20
	3	The slope of the initial, linear portion of the	-	×	Compressive Modulus - Youn	Compressive Properties	g
	1	The slope of the stress-strain curve over a		×	Compressive Modulus	201 Compressive Properties	20
	<	Reduced set of points from the true stress-		Ϋ́	True Tensile Stress-Strain Dat XY	114 Tensile Properties	1
	<	Reduced set of points from the engineering		×	Engineering Tensile Stress-St XY	113 Tensile Properties	<u> </u>
Line		True stress (engineering stress adjusted fo	-	×	True Tensile Stress-Strain Cur XY	112 Tensile Properties	1
Line	С	Stress (load / initial cross-sectional area) vs		ΧY	Engineering Tensile Stress-St XY	111 Tensile Properties	1
	<	The ratio of the transverse (contraction) str		×	Poisson's Ratio		11
	<	The strain at which the specimen broke.		×	Tensile Strain at Break	109 Tensile Properties	10
	K	The stress at which the specimen broke.		×	Tensile Strength at Break	108 Tensile Properties	10
	S	The strain at which the stress reaches a loc		×	Tensile Strain at Yield	Tensile Properties	107
	S	The stress at a local maxima on the stress-		×	Tensile Strength at Yield	106 Tensile Properties	10
	K	The strain at the intercept of the stress-stra		×	Offset Yield Strain in Tension	105 Tensile Properties	10
	3	The stress at the intercept of the stress-str		×	Offset Yield Stress in Tension	104 Tensile Properties	10
	-	The ratio of the stress to the strain at a give		×	Tensile Modulus - Secant	103 Tensile Properties	10
	<	The slope of the initial, linear portion of the		×	Tensile Modulus - Young's	102 Tensile Properties	10
	<	The slope of the stress-strain curve over a		×	Tensile Modulus	101 Tensile Properties	10
Line	С	4 coeff viscosity model	<	XYZ Eqn	Cross Model	5 Capillary Viscosity	
Symb	l_			XYMatri	Tan Delta Plot		
Symb	K	Visco-elastic proerpties representing the lo		XYYMatr	G'G" Plot	3 Dynamic Mechanical Pr	
	K	This is the maxima		Numeric	Compressive Strength	2 Compressive Properties	
Γ	3	Compressive modulus is the slope of the st	1	Numeric	Compressive Modulus	1 Compressive Properties	
7101	anie	y	Result I Summary	Kesuit	Name	Property Name	ē

Goettfert Rheograph	3DatapointLabs G	3443	Visco R-011A	5774 Capillary Visco		2001
Goettfert Capillary R	3DatapointLabs	344	M-210A	5233 Capillary Visco		1003
Rheometrics ARES	3 DatapointLabs	344	M-210A	5233 Dynamic Mech		1002
ntLabs Perkin Elmer	Datapo	3443	T-015A	5233 Specific Heat		(1001
ProviderRefID Data Provider Measurement Instru	Data Provider	ProviderRefID	Measurement Technique ID	ID Property Name	Sample	ID

Claim 1(b)(i) - Test Result Database data elements on material, sample and test (half of table - see page D8 for additional columns)

Exhibit D - page D8 Page D7 adjoins above

				7
8/15/2002 JA	3/15/2002 JA	2/3/2002 HL	3/15/2002 CM	Measurement Date MeasuredBy
	JA	Ŧ	CM	MeasuredBy
ТВ	ТВ	ТВ	TB	CertifiedBy
<	<	<	<	Accredited
				Notes

ō	Parameter ID	Measurement ID	Value	Parameter Tuple ID
1000	8	1001		(354)
1001	11	1001 23	2 3	(354
1002	8	1001 5	5	355
1003	11	1001 60	60	355
1004	8	1001 5	5	356
1005	11	1001 100	100	356
1006	8	1001 50	50	357
1007	11	1001 23	23	357
1008	8	1001 500	500	358
1009	11	1001 23	23	358
2001	2110	2001 220	220	101
2002	2110	2001 240	240	101
2003	2110	2001 260	260	101

5774 Test1	5554 E	(5233)	5224 E	SampleID N
est1	٩	XP 23569)	XP 23569	MaterialNameA
	ProFax 6323	ProFax 6323	ProFax 6323	AliasName
	Injection Molde	Lot# 2356	Lot# 2356	Sample Identifi Sample Source
	njection Molde Black&Decker pellets	Dow Chemical	Dow Chemical	Sample Source
pellets	pellets	ASTM Typ1 Te	ASTMD790 flex	Form
	na	Dow Chemical ASTM Typ1 Te 12.5 mm wide, 3.16 mm thick	Dow Chemical ASTMD790 flex 5" long, 12.5 mm wide, 3.16 mm thi	Geometry

	Value	2111 0.32309,,2.258E+04,Pa,6 Value	2111	2001	104
	Value	2101 52.49668912,174.482432 Value	2101	2001	103
	Value	2101 53.01389209,207.336220 Value	2101	2001	102
	Value	2101 52.88126307,277.141640 Value	2101	2001	101
Modulus	Representative Modulus	128	7 201 128	1001	9
True ss	Representative True ss	212 10,20.3, 100,11.5	/ 212	1001	8
Eng ss	Representative Eng ss	211 10,25.1, 100, 12.2	211	1001	7
Modulus	Value	201 125	201	1001	o
True ss	Value	212 10,20.3, 100,11.5	212	1001	ر ن
Eng ss	Value	211 10,25.1, 100, 12.2	211	/ 1001	4
Modulus	Value	201 123	201	/ 1001	ω
Truess	Value	212 10,20.3, 100,11.5	212	/ 1001	2
Eng ss	Value	211 10,25.1, 100, 12.2	211	/1001	_
Result Notes	Result Type	Result Value	Property Result ID	Property Measurement ID Property Result ID	ō