Date 05/09/2020

Assignment - 1

Mathematical Methods

Name: Raushan Sharma

Roll: 18MA 20058

1) Given: y=2x, $y_1=x$ and $y_2=x^2$.

we can write: 2x = (2) *x + (0) *x

=> y=2,y,+0,y2 -> Hence, y is a linear combination of y, and y2.

2) Given: $y_1 = \sin x$, $y_2 = \cos x$ and $y_3 = \sin(x+1)$ ghen, $sin(x+1) = sinx \cdot cos1 + cosx sin 1$

= (cos1). singe + (sin1).cosx

 $\Rightarrow y_3 = (\cos 1) \cdot y_1 + (\sin 1) \cdot y_2 \qquad \left[\cos 1 \text{ and sin 1 are constants } \right]$

-> Hence, y3 is a linear combination of y, and y2.

3) (i) by using definition of linear dependence / independence of functions, we need to identify if f(x), g(x) in each subpart are linearly dependent or independent.

(a) $f(x) = 9\cos 2x$ $g(x) = 2\cos^2 x - 2\sin^2 x$ $=2\left(\cos^2 x-\sin^2 x\right) =2\cos 2x$

Now, consider:

[i.e. identically]
[equal to 0] e, f + c29 = 0 + x & R

* X E R $\Rightarrow c_{1}*(9 \cos 2x) + c_{2}*(2 \cos 2x) = 0$

=> (9c, + 2c2) cos2x = 0 YxER

we can see that $c_2=9$ and $c_2=9$ are satisfying this eqn. [and there are even more such solutions], and here, $c_1 \neq 0$, $c_2 \neq 0$.

So, since the equation: c,f+c2g=0 has nontrivial solution, so I and gare L.D.

(b)
$$f(t) = 2t^2$$
, $g(t) = t^4$

Consider the equation: c,f+c2g=0

 $\Rightarrow c, *2t^2 + c_2 * t^4 = 0 \quad \forall t \in \mathbb{R} \quad [i.e. identically]$

 $\Rightarrow c_2 t^4 + 2c_1 t^2 = 0 \qquad \forall t \in \mathbb{R}$

Since it is identically equal to 0, we equate the corresponding coefficients of t^4 and t^2 on both sides:

So, $2c_1 = 0 \Rightarrow c_1 = 0$ and $c_2 = 0$

So, c,f+c29=0 has only the trivial solution c,=c2=0 here. Hence, f(t) and g(t) are L.I.

(ii) Now, for the same two examples in part is, we vorify the result by using wronskian.

(a) $f(x) = 9\cos 2x$, $(a) g(x) = 2\cos 2x$

=> $f'(x) = -18 \sin 2x$, $g'(x) = -4 \sin 2x$

2 cos 2x -4 sin2x So, $W(f,g) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = \begin{vmatrix} g\cos 2x \\ -18\sin 2x \end{vmatrix}$

 $\Rightarrow \omega(f,g) = -36\cos(2\pi)\sin(2\pi) + 36\cos(2\pi).\sin(2\pi)$

And by the definition of L.D., we had already seen that flx) and g(x) wie L.D.

So, f and g are $l.D \Rightarrow W(f,g) = 0$ [verified]

[Note that, we can't guarantee the other way round that if W(f,g) = 0 then f,g were L.D.]

(b)
$$f(t) = 2t^2$$
, $g(t) = t^4$
 $\Rightarrow f'(t) = 4t$, $g'(t) = 4t^3$

Then, $\omega(f,g) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = \begin{vmatrix} 2t^2 & t^4 \\ 4t & 4t^3 \end{vmatrix}$
 $\Rightarrow \omega(f,g) = 8t^5 - 4t^5 = 4t^5$

As $\omega(f,g) \neq 0$, [i.e. we are having at least one point t

So f and g are $L.T$.

And, by using definition of $L.T$ also, we had earlier found the f and g are indeed LT .

Hence, $\omega(f,g) \neq 0 \Rightarrow f(t)$ and $g(t)$ are $L.T$. [verified.]

4) $f(x) = 6^x$, $g(x) = 6^{x+2}$. In G

Then, $\omega(f,g) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = \begin{vmatrix} 6^x & 6^{x+2} \\ 6^x & 166 \end{vmatrix}$
 $= 6^{x+2} \ln 6 - 6^{2x+2} \ln 6 = 0$

However, $\omega(f,g) = 0$ doesn't guarantee whether f,g are $L.D$ or $L.T$. [A Handon'd example to show this is for $f = x^2$, $f = x|x|$; $x \in \mathbb{R}$]

Justification:

(onsider $f(x) = g \cos 2x$, $g(x) = 2 \cos 2x$

and we found that $f(x) = g \cos 2x$, $g(x) = 2 \cos 2x$

and we found that $f(x) = g \cos 2x$, $g(x) = 2 \cos 2x$

and we found that $f(x) = g \cos 2x$, $g(x) = 2 \cos 2x$

and $f(x) = x^2$, $f(x) = x|x| = \begin{cases} x^2, x > 0 \\ -x^2, x < 0 \end{cases}$

Then, by $x \geq 0$, $\omega(f,g) = \begin{vmatrix} x^2 & x^2 \\ 2x & 2x \end{vmatrix} = 0$

And for
$$x < 0$$
, $\omega(f,g) = \begin{vmatrix} x^2 - x^2 \\ 2x - 2x \end{vmatrix} = 0$

So, $\omega(f,g) = 0 \quad \forall x \in \mathbb{R}$

However, in this case $f(x) = x^2$ and g(x) = x|x| are L.T. This shows that from W(f,g)=0 , we can't guarantee whether f(x) and g(x) are L.D or L.I.

So, in such a case, for being sure whether flat = 6 x and g(x)=6x+2 are L.D on L.I, we will use the basic definition of L.D and L.I.

Consider the equation:

let the equation:

$$C_1 f + c_2 g = 0$$
 $\forall x \in \mathbb{R}$ [i.e. identically equal
 $\Rightarrow c_1 \times 6^{x} + c_2 \times 6^{x+2} = 0$ $\forall x \in \mathbb{R}$ to 0]

$$\Rightarrow 6^{\times} \times (c_1 + 36c_2) = 0$$

$$\Rightarrow c_1 + 36c_2 = 0 \qquad [\because 6^{\times} \text{ can never be equal to 0}]$$

$$\Rightarrow c_1 + 36c_2 = 0 \qquad [\because 6^{\times} \times 0]$$

[when x=1,]

$$\rightarrow$$
 This eqn. has non-trivial soln., one of them being $c_1 = -36$, $c_2 = 1$.

Hence, f(x) and g(x) are L.D.

5) Given
$$1VP: \frac{dy}{dx} = \frac{4x^2 - 7x}{3y^2 + 2}$$
; $y(1) = 1$

Then, $(3y^2+2) dy = (4x^2-7x) dx$

Integrating both sides:

$$\int_{1}^{3} (3y^{2}+2) dy = \int_{1}^{3} (4x^{2}-7x) dx$$

$$\Rightarrow \left[y^{3}+2y \right]_{1}^{3} = \left[\frac{4x^{3}}{3} \right]_{1}^{3} - \left[\frac{7x^{2}}{2} \right]_{1}^{3}$$

$$\Rightarrow y^3 + 2y - 3 = \frac{4x^3}{3} - \frac{4}{3} - \frac{7x^2}{2} + \frac{7}{2}$$

$$\Rightarrow$$
 6y3 + 12y - 18 = 8x3 - 8 - 21x2 + 21

$$\Rightarrow$$
 6y³ + 12y = 8x³ - 21x² + 31 [Ans.]

```
Given INP: y"=2; y'(0)=6, y(0)=0
       corones ponding homogenous ODE: y"=0
          - characteristic eqn: 2=0 =) 2=0,0 [Two equal roots]
                      So, y_1 = e^{0.x} = 1 is a soln. of this homogenous ODE
                         y_2 = x \cdot e^{0 \cdot x} = x is also a soln. of this
                                                            homogenous ODE.
          So, complementary function, ye = c,y,+c2y2
                    \Rightarrow y_c = c_1 + c_2 \times \dots \quad \bigcirc
          Now, Particular Integral:
             By using Method of undetermined coefficients.
               let the particular integral be: y_p = ax^2 + bx + c
              Then, y'_p = 2ax + b, y''_p = 2a
            Substituting in the original ODE,
                                                          [b,c can be anything . fore simplicity, take b=c=0
                     g_p'' = 2 = 2a = 2 = 2a = 1
              So, y_p = x^2 \cdots
      Hence, from @ and @, general soln. of the ODE is:
              y = y_c + y_p = y = c_1 + c_2 x + x^2
                                          \begin{cases} 2 : y = x^2 + 6x \\ --- \end{cases} [Ams.]
       N_{\sigma W}, y(0) = 0 \Rightarrow c_1 = 0
            And, y'(0) = 6 \Rightarrow c_2 = 6
7> Given BVP: y"+4y=0
            → characteristic eqn.: \lambda^2 + 4 = 0 = \lambda = 0 + 2i, 0-2i
                So, y= eo. x. sin(2x) = sin2x is a soln. of this ODE.
                     y2 = e° x x cos(2x) = cos2x is also a soln. of this
           So, general solution of the ODE:
                       y = c_1 y_1 + c_2 y_2 = c_1 \sin(2x) + c_2 \cos(2x)
```

(i)
$$y(0) = -2$$
 => $c_2 = -2$ [: $y = c, \sin(2x) + c_2 \cos(2x)$]
$$y(\frac{\pi}{4}) = 10 \Rightarrow c_1 \times \sin(\frac{\pi}{2}) + c_2 \times \cos(\frac{\pi}{2}) = 10$$

$$\Rightarrow c_1 = 10$$

So in this case, we have a unique solu. to the BVP: $y = 10 \sin(2x) - 2\cos(2x)$ [Ans.]

(ii)
$$y(0) = -2 \implies c_2 = -2$$

 $y(2\pi) = -2 \implies c_1 * 0 + c_2 * 1 = -2 \implies c_2 = -2$.
and c_1 can take any value
So in this case, we have infinitely many solutions to the BVP, where the general soln, is given by:
 $y = c_1 * \sin(2x) - 2\cos(2x)$ [Ans.]

(iii)
$$y(0) = -2 \implies c_2 = -2$$

 $y(2x) = 3 \implies c_1 * 0 + c_2 * 1 = 3 \implies c_2 = 3$
But $c_2 = -2$ and $c_2 = 3$ are both conflicting and both

com't happen simultaneously. Hence, this case has no solution to the BVP. [Ans.]