

Розростання платіжної мережі

Обмеження: 10 сек., 512 МіБ

Платіжний оркестратор **Solidgate** розбудовує свою мережу провайдерів. Мережу можна уявити як дерево, де вершини — це платіжні провайдери, а ребра — з'єднання між ними. Спочатку мережа складається лише з одного головного провайдера з номером 1. Мережа може з часом збільшуватись, і можуть підключатись нові провайдери. Коли підключається новий провайдер, він встановлює єдине з'єднання до вже наявного провайдера в мережі. Усі з'єднання в мережі мають одиничну затримку.

Потрібно в деякі моменти визначати затримку передачі даних між провайдерами.

Треба опрацювати q запитів одного з двох типів.

- 1 v. Підключаємо до мережі новий провайдер, який з'єднується з провайдером v. Новий провайдер отримує номер (n+1), де n кількість провайдерів у мережі перед його додаванням.
- \bullet 2 u v. Потрібно знайти затримку між провайдерами u та v.

Тут вам потрібно відповідати на ці запити в онлайні. Тобто потрібно знайти відповідь на поточний запит, перш ніж опрацьовувати наступний.

Тому замість самих запитів ми задаємо закодовані параметри. Для запиту першого типу ми задаємо один параметр u', а для запиту другого типу два параметри u' та v'.

Нехай на момент запиту, x — це відповідь на останній запит другого типу, або x=0, якщо запитів другого типу ще не було.

Тоді відновити оригінальний запит можна так.

- Для запиту першого типу u = u' XOR x.
- Для запиту другого типу u = u' XOR x, v = v' XOR x.

Вхідні дані

У першому рядку задано ціле число q — кількість запитів.

У наступних q рядках задано запити.

Вихідні дані

Для кожного запиту другого типу виведіть ціле число — затримку між провайдерами.

Обмеження

$$2 \le q \le 10^6$$

 $0 \le u, v \le 10^9$,
 $u \ne v$,

останній запит є другого типу.

Приклади

Вхідні дані (stdin)	Вихідні дані (stdout)
9	2
1 1	1
1 1	2
2 2 3	4
1 0	
2 0 6	
1 3	
1 2	
2 5 4	
2 4 7	

Примітки

Пояснення до прикладу.

- Спочатку мережа складається лише з одного провайдера з номером 1, а значення x дорівнює нулеві.
- Підключаємо до мережі новий провайдер з номером 2 та з'єднуємо його з провайдером 1 XOR x=1 XOR 0=1.
- Підключаємо до мережі новий провайдер з номером 3 та з'єднуємо його з провайдером 1 XOR x=1 XOR 0=1.
- Затримка між провайдерами 2 XOR x=2 XOR 0=2 та 3 XOR x=3 XOR 0=3 дорівнює 2, бо між ними є два з'єднання: 2-1-3. Значення x стає рівним 2.
- Підключаємо до мережі новий провайдер з номером 4 та з'єднуємо його з провайдером 0 XOR 2=2.
- Потрібно знайти затримку між провайдерами 0 XOR 2 = 2 та 6 XOR 2 = 4. Затримка становить 1, бо провайдери 2 й 4 з'єднані напряму. x тепер дорівнює 1.
- Підключаємо до мережі новий провайдер з номером 5 та з'єднуємо його з провайдером 3 XOR 1 = 2.
- Підключаємо до мережі новий провайдер з номером 6 та з'єднуємо його з провайдером 2 XOR 1 = 3.
- Потрібно знайти затримку між провайдерами 5 XOR 1 = 4 та 4 XOR 1 = 5. Затримка становить 2, бо між провайдерами 4 i 5 є два з'єднання. Тепер x = 2.
- Потрібно знайти затримку між провайдерами 4 XOR 1 = 5 та 7 XOR 1 = 6. Затримка становить 4, бо між провайдерами 5 i 6 є чотири 3'єднання.