CHAPTER ELEVEN

Basic Emitter-Coupled Logic [FCL]

Digital flectronics.

Introduction

Emitter-Coupled Logic (ECL)

Analogous to the analog difference amplifier

The BJTs in ECL circuits do not operate in saturation mode, but either in cut-off or forward-active modes

The ECL circuits are the fastest switching time of commercially digital circuits.

Typical propagation delay times are on the order of 1ns, allowing for clock frequencies up to 1GHz.

However, ECL circuits have the highest power dissipation of all logic families, typically 25mW per gate.

BJT Current Switch

This figure shows an ideal BJT current \P whether \P and \P is a constant reference voltage

The coupled emitters are ideally connected to a constant current source I_{FF} .

 $V_I < V_{BB} \Longrightarrow Q_I \text{ is OFF} \Longrightarrow V_{INV} \text{ is High}$ $Q_R \text{ is FA} \Longrightarrow V_{NINV} \text{ is Low}$

 $V_I > V_{BB} \Longrightarrow Q_I \text{ is FA} \Longrightarrow V_{INV} \text{ is Low}$

 Q_R is OFF $\Longrightarrow V_{NINV}$ is High

BJT Current Switch

This figure shows an ECL early implementation

$$I_{RE} = \frac{V_E - V_{EE}}{R_E}$$

Outputs are taken at the collectors of Q_{l} and Q_{R} .

$$V_{O,1} = V_{INV} = V_{C,I} = V_{CC} - I_{C,I}R_{CI}$$

and

$$V_{O,2} = V_{NINV} = V_{C,R} = V_{CC} - I_{C,R} R_{CR}$$

$$V_I < V_{BB} \Longrightarrow Q_I \text{ is OFF} \Longrightarrow V_{INV} = V_{CC}$$

$$V_{NINV} = V_{CC} - I_{C,R} R_{CR}$$

 $V_I > V_{BB} \Longrightarrow Q_I \text{ is FA} \Longrightarrow V_{INV} = V_{CC} - I_{C.I} R_{CI}$

$$V_{NINV} = V_{CC}$$

 $I_{C,I}=0$

 $V_{BE}(ECL) = 0.75V$

 $V_{INV} = V_{OH} = V_{CC}$

Threshold Voltage

 $\frac{V_{TH}}{\text{For } V_{I} = V_{BB}}$, both Q_{I} and Q_{R} are in the forward-active mode $(V_{BE,I} = V_{BE,R})$

$$I_{C,I} = I_{C,R} = rac{I_{RE}}{2}$$
 (assuming) and $(eta_F >> 1)$

$$V_{INV} = V_{CC} - \frac{I_{RE}}{2} R_{CI}$$
$$V_{TH} = V_{RR}$$

Input high and low Voltages

 $V_{I\!H}$ $V_{I\!L}$

For V_1 is slightly less than V_{BB} , Q_I is forward-active mode BUT not conducting as heavily as Q_R .

For V_1 is slightly greater than V_{BB} , Q_{R} is forward-active mode BUT not conducting as heavily as Q₁. Experimentally, transition width is found

to be about $V_{TW}=0.1V$

and centered around

 $V_I = V_{BB}$

 $V_{IL} = V_{BB} - 0.05$ & $V_{IH} = V_{BB} + 0.05$

Output low Voltage

For $V_I > V_{BB}$, Q_I begins to conduct.

$$V_E = V_I - V_{BE,I}(ECL)$$

 $V_{INV} = V_{CC} - I_{C,I} R_{CI}$

As V_{l} increases, V_{E} also increases, while $V_{B,R} = V_{BB}$ (fixed) Thus, raising V_{l} by 0.05V beyond V_{BB} , $V_{BE,R}$ sufficiently decreases to The off Out voltage which

turns Q_R off is $V_I = V_{IH}$

resulting in $V_O = V_{OL}$.

$$I_{C,I} \approx I_{RE} = \frac{V_E - V_{EE}}{R_E} = \frac{V_I - V_{BE,I}(ECL) - V_{EE}}{R_E}$$

Output low Voltage

$$V_{OL}$$

$$V_{INV} = V_{CC} - I_{C,I} R_{CI}$$

VTC beyond V_{IH}

As V₁ increases beyond V_{IH}

$$I_{C,I} = \frac{V_I - V_{BE,I}(ECL) - V_{EE}}{R_E}$$

^{l1}∏he output voltage <mark>V</mark>o

decreases linearly with V₁

$$V_{INV} = V_{CC} - R_{CI} \left(\frac{V_I - V_{BE,I}(ECL) - V_{EE}}{R_E} \right)$$
Or will eventually saturate a

 Q_1 will eventually saturate with further increase of V₁

if:

 $V_{INV} = V_I - V_{BC}(sat)$ $V_S = V_I =$ Saturation voltage

Resistor ECL current switch

$$= \frac{\left(V_{CC} + V_{BC,I}(sat) + \left(V_{BE,I}(sat) + V_{EE}\right) \frac{R_{C,I}}{R_{E}}\right)}{1 + \frac{R_{C,I}}{R_{E}}}$$

This region of saturation is avoided

F. Anas

Example

Calculate the critical values of the VTC of VI for ECL current switch shown previously assuming:

$$V_{EE} = 0V$$
, $V_{BB} = 2.6V$, $V_{BE}(ECL) = 0.75V$, $V_{BC}(sat) = 0.6V$
 $V_{CC} = 5V$, $R_{CI} = R_{CR} = R_{E} = 1k\Omega$,

Solution

$$V_{OH} = V_{CC} = 5V$$
 $V_{IL} = V_{BB} - 0.05 = 2.55V$

$$V_{IH} = V_{BB} + 0.05 = 2.65V$$

$$V_{OL} = V_{CC} - R_{CI} \left(\frac{V_{IH} - V_{BE,I}(ECL) - V_{EE}}{R_E} \right) = 3.10V$$

$$V_{S} = \left(\frac{V_{CC} + V_{BC,I}(sat) + (V_{BE,I}(ECL) + V_{EE})\frac{R_{C,I}}{R_{E}}}{1 + \frac{R_{C,I}}{R_{E}}}\right) = 3.2V$$

$$= 3.2V V_{INV}(V_I = V_S) = V_S - V_{BC,I}(sat) = 2.6V$$

11

Basic ECL NOR/OR Gate

Adding additional input transistors with <u>coupled collectors</u> and <u>coupled emitters</u> to the ECL current switch:

V_{INV} becomes NOR output

V_{NINV} becomes OR output.

For any high-state input, the corresponding transistor is forward-active and then the corresponding collector current flows through R_{CI} and

$$V_{NOR} = V_{INV} = V_{CC} - I_{C,I} R_{CI} \left(Low \right)$$

$$V_{OR} = V_{NINV} = V_{CC} \left(High \right)$$

If all inputs are low, then all the corresponding transistors are cut-off and then

$$V_{NOR} = V_{INV} = V_{CC} \left(High \right) V_{OR} = V_{NINV} = V_{CC} - I_{C,R} R_{CR} \left(Low \right)$$

MECL I NOR/OR Gate with Output Buffer

swing

Gate with Output Buffer

Gate with Output Buffer

Input Low and High Voltages

$$\frac{V_{IL}}{I}$$
 $\frac{V_{IH}}{I}$

$$V_{IL} = V_{BB} - 0.05$$

$$V_{IH} = V_{BB} + 0.05$$

VTC of MECL I NOR/OR Gate

with Output Buffer

Gate with Output Buffer

Gate with Output Ruffer

Example

Calculate the critical values of the VTC of V₁ for MECL I circuit shown previously assuming:

$$\begin{split} &V_{EE}\!=\!-5.2\text{V, }V_{BB}\!=\!-1.175\text{ V, }V_{CC}\!=\!0\text{V, }\beta_F\!=\!49\\ &V_{BC}(sat)\!=\!0.6\text{V, }\underline{V_{BE}(FA)}\!=\!0.75\text{V, }V_{BE}(sat)\!=\!0.8\text{V}\\ &R_{CI}\!=\!0.27k\Omega,\ R_{CR}\!=\!0.3k\Omega\ ,\ R_{E}\!=\!1.24k\Omega\ ,\ \text{and}\ R_{D,O}\!=\!R_{D,N}\!=\!2k\Omega \end{split}$$

$$V_{OH} = V_{CC} - R_{CI} \left(\frac{V_{CC} - V_{EE} - V_{BE,BN}(FA)}{R_{CI} + (1 + \beta_F)R_{D,N}} \right) - V_{BE,BN}(FA)$$

$$V_{OH} = 0 - 0.27 \left(\frac{0 + 5.2 - 0.75}{0.27 + 50 \times 2} \right) - 0.75 = -0.762V$$

$$V_{OH} = 0 - 0.27 \left(\frac{0 + 5.2 - 0.75}{0.27 + 50 \times 2} \right) - 0.75 = -0.762V$$

$$V_{IL} = V_{BB} - 0.05$$

$$V_{IL} = V_{BB} - 0.05$$
 $V_{IL} = -1.175 - 0.05 = -1.225V$

$$V_{IH} = V_{BB} + 0.05$$

$$V_{IH} = V_{BB} + 0.05$$
 $V_{IH} = -1.175 + 0.05 = -1.125V$

Gate with Output Buffer

Example

Calculate the critical values of the VTC of V₁ for MECL I circuit shown previously assuming:

$$\begin{split} &V_{EE}\!=\!-5.2\text{V, }V_{BB}\!=\!-1.175\text{ V, }V_{CC}\!=\!0\text{V, }\beta_F\!=\!49\\ &V_{BC}(sat)\!=\!0.6\text{V, }\underline{V_{BE}(FA)}\!=\!0.75\text{V, }V_{BE}(sat)\!=\!0.8\text{V}\\ &R_{CI}\!=\!0.27k\Omega,\ R_{CR}\!=\!0.3k\Omega\ ,\ R_{E}\!=\!1.24k\Omega\ ,\ \text{and}\ R_{D,O}\!=\!R_{D,N}\!=\!2k\Omega \end{split}$$

$$V_{OL} = V_{CC} - R_{CI} \left(\frac{V_{IH} - V_{BE,I}(ECL) - V_{EE}}{R_E} \right) - V_{BE,BN}(FA)$$

$$V_{OL} = V_{CC} - R_{CI} \left(\frac{V_{IH} - V_{BE,I}(ECL) - V_{EE}}{R_E} \right) - V_{BE,BN}(FA) \qquad V_{OL} = 0 - 0.27 \left(\frac{-1.125 - 0.75 + 5.2}{1.24} \right) - 0.75 = -1.474V$$

$$V_{S} = V_{I} = \left(\frac{V_{CC} + V_{BC,I}(sat) + (V_{BE,I}(sat) + V_{EE})\frac{R_{C,I}}{R_{E}}}{1 + \frac{R_{C,I}}{R_{E}}}\right) V_{S} = \left(\frac{0.6 + (0.8 - 5.2)\frac{0.27}{1.24}}{1 + \frac{0.27}{1.24}}\right) = -0.29V$$

$$V_{S} = \left(\frac{0.6 + (0.8 - 5.2)\frac{0.27}{1.24}}{1 + \frac{0.27}{1.24}}\right) = -0.29V$$

Gate with Output Buffer

Example

Calculate the critical values of the VTC of V_I for MECL I circuit shown previously assuming:

$$V_{FF} = -5.2V$$
, $V_{BB} = -1.175 V$, $V_{CC} = 0V$, $\beta_F = 49$

 $V_{BC}(sat) = 0.6V$, $V_{BF}(FA) = 0.75V$, $V_{BF}(sat) = 0.8V$

 $R_{CI} = 0.27 k\Omega$, $R_{CR} = 0.3 k\Omega$, $R_{E} = 1.24 k\Omega$, and $R_{D,O} = R_{D,N} = 2 k\Omega$

$$V_{OH} = -0.762V$$

$$V_{OL} = -1.474V$$

$$V_{IL} = -1.225V$$

$$V_{IH} = -1.125V$$

$$V_S = -0.29V$$

Fan-Out of MECL I NOR/OR

Gate with Output Buffer

is

22

Fan-Out of MECL I NOR/OR

Gate with Output Buffer

Fan-Out of MECL I NOR/OR

Gate with Output Buffer

္) Dr. Anas

Power-Dissipation in MECL I

Output high current supplied $(I_{CC}(H)) + (I_{EE}(H)) + (I_{BB}(H))$ For High output, Input is <u>low</u>

$$I_{CC}(OH) = I_{C,BN} + I_{RCI} + I_{RCR} + I_{C,BO}$$

$$I_{CC}(OH) = \frac{V_{CC} - V_{BE,BN}(FA) - V_{OH}}{R_{CI}} (1 + \beta_F) + \frac{V_{CC} - V_{BE,BO}(FA) - V_{OL}}{R_{CR}} + \frac{V_{OL} - V_{EE}}{R_{D,O}} \left(\frac{\beta_F}{1 + \beta_F}\right)$$

$$I_{EE}(OH) = \frac{V_{OH} - V_{EE}}{R_{D,N}} + \frac{V_{OL} - V_{EE}}{R_{D,O}} + \frac{V_{BB} - V_{BE,R}(ECL) - V_{EE}}{R_{E}}$$

$$I_{BB}(OH) = \frac{V_{BB} - V_{BE,R}(ECL) - V_{EE}}{(1 + \beta_F)R_E}$$

Very small compared to I_{FF}(OH)

ITL Power-Dissipation in

Output low current supplied $(I_{CC}(L)) + (I_{FF}(L))$ For Low output, Input is high

$$I_{CC}(OL) = I_{C,BN} + I_{RCI} + I_{RCR} + I_{C,BO}$$

$$I_{CC}(OL) = \frac{V_{CC} - V_{BE,BN}(FA) - V_{OL}}{R_{CI}} + \frac{V_{OL} - V_{EE}}{R_{D,N}} \left(\frac{\beta_F}{1 + \beta_F}\right) + \frac{V_{CC} - V_{BE,BO}(FA) - V_{OH}}{R_{CR}} (1 + \beta_F)$$

$$\frac{R_{CR}}{R_{CR}} (1 + \beta_F)$$

$$I_{EE}(OL) = \frac{V_{OL} - V_{EE}}{R_{D,N}} + \frac{V_{OH} - V_{EE}}{R_{D,O}} + \frac{V_{IH} - V_{BE,I}(ECL) - V_{EE}}{R_{E}}$$

$$P_{EE}(avg) + P_{CC}(avg) = V_{EE}\left(\frac{I_{EE}(OL) + I_{EE}(OH)}{2}\right)$$

$$+V_{cc}\left(\frac{I_{cc}(OL)+I_{cc}(OH)}{2}\right)$$

Example ■ Example

Calculate the dissipated power in the driver gate for the last example

circuite

$$I_{EE}(OH) = \frac{V_{OH} - V_{EE}}{R_{D,N}} + \frac{V_{OL} - V_{EE}}{R_{D,O}} + \frac{V_{BB} - V_{BE,R}(ECL) - V_{EE}}{R_{E}}$$

$$I_{EE}(OH) = \frac{-0.762 + 5.2}{2} + \frac{-1.474 + 5.2}{2} + \frac{-1.175 - 0.75 + 5.2}{1.24}$$
$$= 6.723 mA$$

$$I_{EE}(OL) = \frac{V_{OL} - V_{EE}}{R_{D,N}} + \frac{V_{OH} - V_{EE}}{R_{D,O}} + \frac{V_{IH} - V_{BE,I}(ECL) - V_{EE}}{R_{E}}$$

$$I_{EE}(OL) = \frac{-1.474 + 5.2}{2} + \frac{-0.762 + 5.2}{2} + \frac{-1.125 - 0.75 + 5.2}{1.24}$$
$$= 6.76mA$$

$$P_{EE}(avg) = 5.2 \left(\frac{6.76 + 1.523}{2}\right) = 35.06mW$$

 HW #9:Solve Problems: 11.1-3, 11.08-10, and 11.13-19