Abastecimento de Água Disjunto

By Jesus Alejandro Peña Mesias III Peru

Timelimit: 3

Nlogônia é um reino que consiste em várias cidades localizadas em uma grande montanha. A capital é Logville, localizada no pico da montanha. Logville tem um enorme lago com uma forma perfeitamente redonda, apropriadamente chamado "The Big O". Este é o único lago com água potável em todo o reino, por isso é usado para abastecer todas as cidades. Algumas cidades em Nlogônia estão conectados com tubos de água que permitem a distribuição da água. Como não há bombas, cada tubo leva a água de uma cidade para outra cidade em uma altitude mais baixa, usando a gravidade. O sistema de água da Nlogônia tem sido uma fonte de preocupações para a Rainha, já que as cidades dependem de outras cidades para o seu abastecimento de água, por isso ocorrem discussões sobre a quantidade de água que uma cidade pode utilizar. Um caminho de abastecimento de água é uma seguência de cidades em ordem decrescente de altitude, a partir de Logville e de tal forma que existe um tubo de ligação entre cada par de cidades consecutivas na sequência. Duas cidades têm abastecimento de água disjunto se e somente se existem dois caminhos de abastecimento de água, um caminho que termina em cada uma das cidades, de modo que Logville é a única cidade que está presente em ambos os caminhos. Observe que Logville tem abastecimento de água disjunto de todas as outras cidades. A rainha considera o abastecimento de água disjunto como uma boa propriedade, já que isso reduz problemas de dependência e também evita que a falta de água se espalhe tão rapidamente através Nlogônia. Portanto, ela ordenou que fosse realizada uma pesquisa para avaliar o estado atual da disjunção do abastecimento de água em todo o reino. Sendo o mais inteligente dos conselheiros na corte da rainha, você foi convocado para ajudar a calcular o número de pares de cidades distintas que têm abastecimento de água separados.

Entrada

A entrada é composta por diversos casos de teste e termina em EOF. A primeira linha de cada caso de teste contém dois inteiros \mathbf{C} ($2 \le \mathbf{C} \le 1000$) e \mathbf{P} ($1 \le \mathbf{P} \le 10^5$),que representam respectivamente, o número de cidades e o número de tubos de água em Nlogônia. Cidades são identificadas com diferentes números inteiros de 1 a \mathbf{C} , em ordem decrescente de altitude (duas cidades não têm a mesma altitude); Logville é a cidade 1. Cada uma das \mathbf{P} linhas seguintes descreve uma tubulação com dois números inteiros \mathbf{U} e \mathbf{V} ($1 \le \mathbf{U}$ < $\mathbf{V} \le \mathbf{C}$), indicando que o tubo conecta a cidade \mathbf{U} com a cidade \mathbf{V} . Você pode assumir que não há dois tubos iguais entre um mesmo par de cidades e que, para cada cidade de Nlogônia há pelo menos um caminho de abastecimento de água que termina nela.

Saída

Para cada caso de teste imprima uma linha com um inteiro que representa o número de pares de cidades distintas que tem abastecimento de água disjunto.

Exemplo de Entrad	a Exemplo de Saída
6 6	14
1 2	26
1 3	
1 4	
2 5	
2 6	
3 6	

8 11	Exemplo de Entrada	Exemplo de Saída
1 2		
1 3		
1 4		
2 5		
3 4		
6 7		
3 6		
3 7		
4 8		
2 6		
5 6		

ACM/ICPC South America Contest 2013.