```
In [2]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from datetime import datetime
```

In [3]: user = pd.read_csv("/Users/fennyw/Desktop/tianchi_fresh_comp_train_user.csv",dtype=str)
#把数据转换成字符串类型

In [4]: user.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15463110 entries, 0 to 15463109

Data columns (total 6 columns):

		· · · ,
#	Column	Dtype
0	user_id	object
1	item_id	object
2	behavior_type	object
3	user_geohash	object
4	item_category	object
5	time	object
dtype	es: object(6)	

dtypes: object(6)
memory usage: 707.8+ MB

In [6]: user.tail()

Out[6]:

	user_id	item_id	behavior_type	user_geohash	item_category	time
15463105	65341491	259008790	1	NaN	13164	2014-12-03 12
15463106	65341491	336404938	1	NaN	13164	2014-12-03 12
15463107	65341491	52142024	1	95qhbsu	5201	2014-12-10 22
15463108	65341491	250557965	1	NaN	13164	2014-12-03 12
15463109	65341491	300315408	1	NaN	1838	2014-11-29 08

```
In [160]: user.isnull().sum()
Out[160]: user id
                                  0
          item id
                                  0
          behavior_type
                                  0
                            8207386
          user geohash
          item category
                                  0
          time
                                  0
          dtype: int64
In [161]: | user["date"] = user["time"].str[:10]#日期
          user["hour"] = user["time"].str[11:]#时间
In [162]: user.dtypes
Out[162]: user id
                            object
          item id
                           object
          behavior_type
                           object
          user geohash
                           object
          item_category
                           object
          time
                            object
          date
                            object
          hour
                            object
          dtype: object
In [163]: #转换日期类型
          user["time"] = pd.to datetime(user["time"])
          user["date"] = pd.to_datetime(user["date"])
          user["hour"] = user["hour"].astype(int)
In [164]: user.dtypes
Out[164]: user id
                                    object
                                    object
          item id
          behavior_type
                                    object
          user geohash
                                    object
          item_category
                                    object
          time
                            datetime64[ns]
          date
                            datetime64[ns]
                                     int64
          hour
          dtype: object
          #查看异常值情况
In [165]:
          user.sort_values(by="time",ascending=True,inplace=True)
```

```
In [166]: user.head()
```

Out[166]:

	user_id	item_id	behavior_type	user_geohash	item_category	time	date
6001596	111623089	19437313	1	NaN	5232	2014- 11-18	2014 11-1
15041208	58156776	389968914	1	NaN	5399	2014- 11-18	2014 11-1
15041205	58156776	269275438	1	NaN	5399	2014- 11-18	2014 11-1
13178633	24236959	140503813	4	NaN	1810	2014- 11-18	2014 11-1
13178631	24236959	227677489	1	NaN	2551	2014- 11-18	2014 11-1

```
In [167]: #重置索引,并删除原来索引
user.reset_index(drop=True,inplace=True)
```

构建模型

```
In [168]: #日访问量
pv_daily = user.groupby("date").count()["user_id"]
#日访客量
uv_daily = user.groupby("date")["user_id"].apply(lambda x:x.drop_du plicates().count())

In [169]: #按列合并日访问量和日访客量
pv_uv_daily = pd.concat([pv_daily,uv_daily],axis=1)
pv_uv_daily.columns = ["pv","uv"]

In [170]: pv_uv_daily.head()

Out[170]:

pv uv
```

date

2014-11-18 434005 12534

2014-11-19 442531 12597

2014-11-20 429380 12525

2014-11-21 408187 12298

2014-11-22 426698 12175

```
In [171]: #查看日访问量和日访客量的相关系数
pv_uv_daily.corr(method="pearson")
```

Out[171]:

```
pv 1.000000 0.961899
uv 0.961899 1.000000
```

In [172]: pv_uv_daily.corr(method="spearman")

Out[172]:

```
pv 1.000000 0.921371
uv 0.921371 1.000000
```

```
In [173]: plt.figure(figsize=(18,9))
    plt.subplot(211)
    plt.plot(pv_daily,color="red",label="pv")
    plt.ylabel("pv")
    plt.title("pv_daily")
    plt.legend()

plt.subplot(212)
    plt.plot(uv_daily,color="green",label="uv")
    plt.ylabel("uv")
    plt.title("uv_daily")
    plt.legend()
```


由图可知,在双十二期间访问量和访客量达到峰值

```
#每小时访问量、每小时访客量
In [174]:
          pv_hour = user.groupby("hour").count()["user_id"]
          uv_hour = user.groupby("hour")["user_id"].apply(lambda x:x.drop_dup
          licates().count())
          pv uv hour = pd.concat([pv_hour,uv_hour],axis=1)
          pv_uv_hour.columns = ["pv","uv"]
In [175]: pv_uv_hour.head()
Out[175]:
                   pν
                        uv
           hour
             o 482658 11317
             1 244723
                      7272
             2 141102
                      4828
                91814
                       3725
                      3314
                72813
          #查看每小时访问量和每小时访客量的相关系数
In [176]:
          pv uv hour.corr("pearson")
Out[176]:
                  pν
                         uv
           pv 1.00000 0.85726
           uv 0.85726 1.00000
In [177]: pv uv hour.corr("spearman")
Out[177]:
                   pν
                          uν
           pv 1.000000 0.896522
           uv 0.896522 1.000000
```

```
In [178]: plt.figure(figsize = (18,9))

plt.subplot(211)
plt.plot(pv_hour,color="red",label="pv_hour")
plt.ylabel("pv_hour")
plt.title("pv_hour")
plt.xticks(range(0,24),pv_uv_hour.index)
plt.legend()

plt.subplot(212)
plt.plot(uv_hour,color="g",label="uv_hour")
plt.ylabel("uv_hour")
plt.title("uv_hour")
plt.title("uv_hour")
plt.xticks(range(0,24),pv_uv_hour.index)
plt.legend()
```


由图可以看出,

0:00-5:00:pv与uv的波动情况比较相似,呈下降趋势,访问量比较小;

5:00-10:00:pv与uv呈上升趋势;

18:00-:pv与uv呈上升趋势,用户高度活跃;

```
In [179]: #用户在一天不同时间段的访问量及不同行为类型统计 #beheviour_type:1,2,3,4---点击,收藏,加购物车,支付 pv_detail = pd.pivot_table(columns = "behavior_type",index="hour",d ata = user,aggfunc = np.size , values = "user_id")
```

In [180]: print(pv_detail)

	_	_	_	_
behavior_type	1	2	3	4
hour				
0	430156	19372	24400	8730
1	219200	10876	11695	2952
2	126490	6346	6778	1488
3	82767	3747	4386	914
4	65308	3014	3783	708
5	72672	3464	4144	744
6	144520	6481	7511	1779
7	333666	10883	12943	3194
8	465465	15152	18476	6140
9	555753	18331	24150	9505
10	649628	20843	30228	13147
11	619783	20229	28930	12383
12	645664	20287	28729	12253
13	714528	22631	32487	13462
14	699006	22090	31770	12999
15	704532	21813	33049	13350
16	690304	21577	31593	12382
17	613898	19596	26655	10014
18	670934	19462	28190	9325
19	908145	26444	37670	11877
20	1123477	32935	47110	13838
21	1335962	37541	58135	16486
22	1308043		58094	14950
23	973540	32365	49229	11435
4.5	913340	32303	ユ フムムフ	11422

In [181]: #剔除了点击量的可视化显示 plt.figure(figsize=(16,9)) sns.lineplot(data = pv_detail.iloc[:,1:]) plt.show()

用户行为转化漏斗计算

```
In [182]: #查看不同用户行为类型的次数

user_type_count = user.groupby("behavior_type").size()
print(user_type_count)

behavior_type
1 14153441
2 455479
3 640135
4 214055
```

```
In [183]: #1.点击量到收藏的流失率 (user_type_count[0] - user_type_count[1])/user_type_count[0]
```

Out[183]: 0.9678184972827456

dtype: int64

```
In [184]: #2.点击量到加购的流失率
(user_type_count[0] - user_type_count[2])/user_type_count[0]
Out[184]: 0.9547717759942618
```

从以上分析可以看出,浏览到确定购买意向的流失率太大,说明在点击-收藏-收购的这一行为过程中,用户可能需要花大量时间才能寻找到适合的产品。可以针对性的优化平台的筛选功能,让用户能够更容易地寻找到适合的产品,并将流程指标再细化后进行分析,找到影响用户流失的关键问题点。

```
In [185]: #3.点击量到支付的流失率
          (user_type_count[0] - user_type_count[3])/user_type_count[0]
Out[185]: 0.9848761159918638
In [186]: #4.加购到支付的流失率
          (user type count[2]-user type count[3])/user type count[2]
Out[186]: 0.6656095979754271
In [187]: #统计每位用户的消费次数
          per buy = user[user.behavior type =="4"].groupby("user id").size()
          per buy.head()
Out[187]: user id
          100002985
                       3
          10001025
                       9
          10001082
                       4
          100027096
                       1
          100029775
                       5
          dtype: int64
In [188]: per buy.describe()
Out[188]: count
                   17654.000000
          mean
                      12.125014
                      14.460703
          std
          min
                       1.000000
          25%
                       4.000000
          50%
                       8.000000
          75%
                      15.000000
          max
                     342.000000
          dtype: float64
```

发现用户消费次数普遍在4次以下,需要重点关注消费在4次以内的群体

In [189]: #每位付费用户日消费次数

```
day_buy = user[user["behavior_type"] == "4"].groupby(["date","user_
id"]).count()["behavior_type"]
day buy = day buy.reset index().rename(columns={"behavior type":"to
tal"})
day_buy.head()
```

Out[189]:

	date	user_id	total
0	2014-11-18	100051753	5
1	2014-11-18	100121281	1
2	2014-11-18	100212013	2
3	2014-11-18	100226515	1
4	2014-11-18	100234519	3

```
In [190]: #每日消费次数
```

```
tt=day_buy.groupby("date")["total"].sum()
pp=day_buy.groupby("date").count()["user_id"]
#每日人均消费次数
per_buy = tt/pp
print(per buy)
```

```
date
2014-11-18
               2.124739
2014-11-19
               2.005133
2014-11-20
               2.022013
2014-11-21
               2.050719
2014-11-22
               2.085414
2014-11-23
               2.077774
2014-11-24
               2.041559
2014-11-25
               2.108361
2014-11-26
               2.112566
2014-11-27
               2.140062
2014-11-28
               1.967115
2014-11-29
               2.126937
2014-11-30
               2.114645
2014-12-01
               2.098128
2014-12-02
               2.101234
2014-12-03
               2.205610
2014-12-04
               2.092599
2014-12-05
               1.992511
2014-12-06
               2.117193
2014-12-07
               2.109871
2014-12-08
               2.078814
2014-12-09
               2.121331
2014-12-10
               2.149181
2014-12-11
               2.155670
2014-12-12
               3.713046
2014-12-13
               2.066881
2014-12-14
               2.132567
2014-12-15
               2.066382
2014-12-16
               2.108527
2014-12-17
               2.141686
2014-12-18
               2.091058
dtype: float64
```

```
In [191]: per_buy.describe()
```

```
Out[191]: count
                     31.000000
           mean
                      2.145785
           std
                      0.295204
           min
                      1.967115
           25%
                      2.072327
           50%
                      2.108361
           75%
                      2.125838
           max
                      3.713046
           dtype: float64
```

可以看出,每日人均消费次数为2.14

```
In [192]: plt.figure(figsize=(20,9))
    sns.lineplot(data=per_buy,label="Daily average consumption")
    plt.show()
```



```
In [193]: #用户的活跃统计
```

user_count = user.groupby(["date", "user_id", "behavior_type"]).count
()["item_id"].reset_index().rename(columns={"item_id":"total"})
user_count.head()

Out[193]:

	date	user_id	behavior_type	total
0	2014-11-18	10001025	1	65
1	2014-11-18	10001025	2	1
2	2014-11-18	100029775	1	3
3	2014-11-18	100045402	1	11
4	2014-11-18	100051753	1	37

```
In [200]: #每日用户活跃总次数
hh=user_count.groupby("date")["total"].sum()
#每日用户付费次数

bb = user_count[user_count["behavior_type"] == "4"].groupby("date")
["total"].sum()

#一日內的付费用户占比
qq=bb/hh

qq.plot()
plt.show()
```



```
In [201]: #回购率

rebuy=user[user["behavior_type"]=="4"].groupby("user_id")["date"].c
ount()
rebuy[rebuy>=2].count()/rebuy.count()
```

Out[201]: 0.9156565084400136

用户价值分层(RFM模型)

由于数据缺少M(消费金额)列,暂且通过R(最近一次购买时间)和F(消费频率)的数据对客户价值进行打分。

```
In [207]: recent buy time = user[user["behavior type"]=="4"].groupby("user id")
           ")["date"].apply(lambda x:datetime(2014,12,20)-x.sort values().iloc
           [-1]
           recent_buy_time
Out[207]: user id
           100002985
                        3 days
           10001025
                        8 days
           10001082
                        6 days
           100027096
                       12 days
           100029775
                        7 days
           65332965
                         6 days
           65341491
                         4 days
           6534626
                         3 days
           65353086
                        3 days
           6536165
                       24 days
           Name: date, Length: 17654, dtype: timedelta64[ns]
In [209]: recent buy time = recent buy time.reset index().rename(columns={"da
           te": "recent" })
           recent buy time['recent'] = recent buy time['recent'].map(lambda x:
           x.days)
           recent_buy_time.head()
Out[209]:
              index
                     user id recent
                 0 100002985
           0
                                3
                    10001025
                 2
                   10001082
                                6
           3
                 3 100027096
                               12
                 4 100029775
                                7
          buy_freq = user[user["behavior_type"]=="4"].groupby("user_id")["dat
In [211]:
           e"].count().reset index().rename(columns={"date":"freq"})
           buy freq.head()
Out[211]:
                user_id freq
           o 100002985
                         3
              10001025
              10001082
           3 100027096
                         1
           4 100029775
```

Out[212]:

	index	user_id	recent	freq
0	0	100002985	3	3
1	1	10001025	8	9
2	2	10001082	6	4
3	3	100027096	12	1
4	4	100029775	7	5

```
In [213]: RFM['recent_value'] = pd.qcut(RFM.recent,2,labels=['1','0'])
    RFM['freq_value'] = pd.qcut(RFM.freq,2,labels=['0','1'])
    RFM.head()
```

Out[213]:

	index	user_id	recent	freq	recent_value	freq_value
0	0	100002985	3	3	1	0
1	1	10001025	8	9	0	1
2	2	10001082	6	4	1	0
3	3	100027096	12	1	0	0
4	4	100029775	7	5	0	0

Out[214]:

	index	user_id	recent	freq	recent_value	freq_value	RFM
0	0	100002985	3	3	1	0	10
1	1	10001025	8	9	0	1	01
2	2	10001082	6	4	1	0	10
3	3	100027096	12	1	0	0	00
4	4	100029775	7	5	0	0	00

```
In [215]: #查看用户等级数量的分布
          RFM["RFM"].value_counts()
Out[215]: 11
                5981
          00
                5918
          10
                3572
          01
                2183
          Name: RFM, dtype: int64
In [220]: def trans_value(x):
              if x=="11":
                  return "Key customers"
              elif x=="10":
                  return "Developing customers"
              elif x=="01":
                  return "Retention customers"
              elif x=="00":
                  return "Common customers"
In [221]: RFM["classification"] = RFM["RFM"].map(trans_value)
In [222]: | RFM.head()
Out[222]:
```

	index	user_id	recent	treq	recent_value	freq_value	KFM	classification
0	0	100002985	3	3	1	0	10	Developing customers
1	1	10001025	8	9	0	1	01	Retention customers
2	2	10001082	6	4	1	0	10	Developing customers
3	3	100027096	12	1	0	0	00	Common customers
4	4	100029775	7	5	0	0	00	Common customers

In [225]: #对客户等级做可视化处理 plt.figure(figsize=(16,9)) RFM["classification"].value_counts().plot(kind="barh") plt.xlabel("Number") plt.show()

对于重要价值用户,他们是最优质的用户,需要重点关注并保持,应该提高满意度,增加留存;

对于重要保持用户,他们最近有购买,但购买频率不高,可以通过活动等提高其购买频率;

对于重要发展用户, 他们虽然最近没有购买, 但以往购买频率高, 可以做触达, 以防止流失;

对于一般价值用户,他们最近没有购买,以往购买频率也不高,特别容易流失,所以应该赠送优惠券或推 送活动信息,唤醒购买意愿.

结论与建议

1.激活用户:

用户流失率高、针对这个问题:

- (1)优化电商平台的搜索匹配度和推荐策略,根据用户喜好推荐相关的商品;
- (2)给客户提供同类产品比较的功能;
- (3)随机筛选用户进行调查问卷,采纳客户建议。
- 2.提高收入:
- (1)一天时间内,18点以后客户浏览量处于上升阶段,此时可以多推出一些营销活动,提高店铺收入。
- (2)回购率在69%左右,应将经营重点转化为培养用户的忠诚度上,鼓励用户更高频次的消费。
- 3.通过RFM模型找出最具价值的核心付费用户群,对这部分用户的行为进行分析:
- (1)等级是11的用户是体系中的最有价值用户,需要重点关注。并且活动投放时需谨慎对待,不要引起用户 反感。
- (2)对于价值评分是10的用户,消费时间间隔较短,运营活动可以重点针对这部分用户,提高用户的产品使用频率。

In []:	
---------	--