Vehicle Identification and Classification System

Institute of Engineering and Technology, Lucknow

Information Technology Program (A self-financed course)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vishal Polley (1505213053)

Supervised By -Ms. Shipra Gautam

Problem Statement

- Implementation of an efficient method for recognizing vehicles.
- Classification of objects e.g. as cars, trucks, pedestrians, etc. in the traffic dataset.

Solution

- 1. Bag of Features Classifier
 - Implementation of feature extraction module using bag of features (combination of Harris-corner detector and SIFT features)
 - Classification is performed using Support vector machines (SVM)
- 2. Deep Learning Classifier
 - Convolutional Neural Network

Image Dataset

1. Indian Vehicle Database

Properties	Description
Name	Indian Vehicle database
Sources	Static vehicle pictures captured using camera on Indian roads, Pictures collected from Internet resources like Goggle images etc. and Pictures cropped from a traffic videos
Constraints	Pose, lightning and view
Number of classes	4
vehicle types	Truck, Auto, Bus and Car
Number of images per class	450
Total Images	1800

Image Dataset Cont.

2. MIO-TCD Classification Challenge Dataset

Category	Training	Testing	
Articulated Truck	10,346	2,587	
Bicycle	2,284	571	
Bus	10,316	2,579	
Car	260,518	65,131	
Motorcycle	1,982	495	
Non-Motorized Vehicle	1,751	438	
Pedestrian	6,262	1,565	
Pickup Truck	50,906	12,727	
Single-Unit Truck	5,120	1,280	
Work Van	9,679	2,422	
Background	160,000	40,000	
Total	519,164	129,795	

Feature Extraction

- 1. Keypoints Detection
- 2. Computing Descriptors
- 3. Clustering
- 4. Bag of Visual Words Model
- 5. Generating Vocabulary

Keypoint Detection

Harris Corner Detection

- This algorithm was developed to identify the internal corners of an image.
- The corners of an image are basically identified as the regions in which there are variations in large intensity of the gradient in all possible dimensions and directions.

Harris Corners Detection

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Computing Descriptors

SIFT (Scale Invariant Feature Transform)

- It is a technique for detecting salient, stable feature points in an image.
- For every such point, it also provides a set of "features" that "characterize/describe" a small image region around the point.
- These features are invariant to rotation and scale.

Bag of Visual Words

- Supervised Learning model.
- Every object can be represented by its parts.
- A label can be defined as a key/value for identifying to what class/category does the object belongs.
- The final step is codebook generation. A codebook can be thought of as a dictionary that registers corresponding mappings between features and their definition in the object.

Bag of Visual Words

Generating Vocabulary

Classification

Support Vector Machines (SVM)

- It is a discriminative classifier formally defined by a separating hyper-plane.
- It is a multiclass classifier to distinguish between similar images and to define classes for the same.

Convolutional Neural Networks

Architecture of the Deep

Learning Model

Modular Architecture of a Convolution Block

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0			5.				
0							
0							

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Activation Functions

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid

[Krizhevsky et al., 2012]

Batch Normalization

"you want unit gaussian activations? just make them so."

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

[loffe and Szegedy, 2015]

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

References

- R.S Vaddi, L.N.P Boggavarapu, K.R Anne, "Computer Vision based Vehicle Recognition on Indian Roads" International Journal of Computer Vision and Signal Processing, 5(1), 8-13(2015)
- Chris Harris, Mike Stephens, "A combined corner and edge detector" (1988)
- D. G. Lowe, "Distinctive image features from scale-invariant keypoints", Int. J. Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.
- R.S Vaddi, L.N.P Boggavarapu, K.R Anne, "Indian Vehicle Database", includes four classes of testing and training images (Truck, Auto, Bus and Car resp.)
- L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. IEEE. CVPR 2004
- Z. Luo et al., "MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization," in IEEE Transactions on Image Processing, vol. 27, no. 10, pp. 5129-5141, Oct. 2018.