Interpretable ML

Variable Importance

Introduction

Algorithm 1: Grow a Random Forest

```
1 Set number of trees B:
2 Set predictor subset size m;
3 Define stopping criteria;
4 for b = 1 to B do
      draw a bootstrap sample from the training data;
 5
      assign sampled data to root node;
 6
      if stopping criterion is reached then
          end splitting;
 8
      else
 9
          draw a random sample m from the p predictors;
10
          find the optimal split point among m;
11
          split node into two subnodes at this split point;
12
          for each node of the current tree do
13
              continue tree growing process;
14
          end
15
16
      end
17 end
```

Interpretable ML

Interpreting Random Forests

- Inspect each tree of the forest
 - Inefficient for 500+ trees
- Variable importance
 - Summary of "effect size"
- Partial dependence plots
 - Graphical representation of "effect structure"
- ...

Variable Importance

Variable importance with CART

$$\mathcal{I}_{\ell}^{2}(T) = \sum_{t=1}^{J-1} \hat{\imath}_{t}^{2} I(v(t) = \ell)$$

- Sum of squared improvements $\hat{\imath}^2$ over all internal nodes with predictor X_ℓ
 - ullet Regression: Overall reduction in RSS caused by X_ℓ
 - ullet Classification: Overall reduction of impurity caused by X_ℓ

Importance with Random Forests

$$\mathcal{I}_\ell^2 = \frac{1}{M} \sum_{m=1}^M \mathcal{I}_\ell^2(\mathcal{T}_m)$$

ullet Average improvement caused by predictor X_ℓ over all trees

Variable Importance

Permutation feature importance (Fisher et al. 2018)

- ① Estimate the original model error $e_{orig}(\hat{f}) = L(Y, \hat{f}(X))$
- ② For each feature $j \in 1, \ldots, p$
 - **1** Generate feature matrix X_{permj} by permuting the values of feature X_j in X
 - ② Estimate error $e_{perm} = L(Y, \hat{f}(X_{perm j}))$ based on the predictions of the permuted data
 - ① Calculate permutation feature importance $FI_j = \frac{e_{perm}(\hat{f})}{e_{orig}(\hat{f})}$ or via $FI_j = e_{perm}(\hat{f}) e_{orig}(\hat{f})$
- Output FI for all variables