73 Solution d'équation ★

Déterminer le nombre réel strictement positif, x ou t, qui est solution de l'équation suivante.

Donner la valeur exacte puis la valeur approchée arrondie à 10^{-4} de la solution.

a)
$$(0.8)^x = 0.5$$
;

b)
$$(1,05)^t = \frac{100}{67}$$
;

c)
$$3\ 000\ (0.913)^x = 1\ 500$$
;

d)
$$0.4 \times 10^t + 90 = 102$$
.

73 Inéquations de la forme $a^x ≤ b$ ★

Résoudre les inéquations suivantes.

a)
$$(0,5)^x \le 0.8$$
;

b)
$$10^{-1} \times (1,1)^t \le 1000$$
;

c)
$$2000(0,732)^{x} \le 500.$$

(1) Inéquations de la forme $x^a < b \star$

Résoudre les inéquations suivantes.

a)
$$x^3 < 3$$
;

b)
$$x^{1,3} < 2$$
:

c)
$$x^4 < 2.5$$
.

🔟 Taux d'évolution, résolution d'une inéquation 🛨 🖈

Le 1^{er} janvier 2019, la population d'un pays s'élevait à 30 millions d'habitants.

On estime que l'augmentation de la population pour les 15 ans à venir sera de 2 % par an.

- **1.** Calculer la population au 1^{er} janvier 2020, puis au 1^{er} janvier 2026. Les résultats seront donnés en millions et arrondis à 10^{-3} .
- **2.** Quelle est l'augmentation en pourcentage, entre la population au 1^{er} janvier 2019 et la population au 1^{er} janvier 2026 ? Le résultat sera arrondi à 0,1 %.
- **3.** Résoudre dans l'ensemble \mathbb{R} des nombres réels, l'inéquation : 1,02 $^{\times} \ge$ 1,2.
- **4.** Déterminer l'année à partir de laquelle la population dépassera 36 millions d'habitants.

Solution d'équation ★

Déterminer le nombre réel strictement positif, *x* ou *t*, qui est solution de l'équation suivante.

Donner la valeur exacte puis la valeur approchée arrondie à 10^{-4} de la solution.

a)
$$(0.8)^x = 0.5$$
;

b)
$$(1,05)^t = \frac{100}{67}$$
;

c)
$$3\ 000\ (0.913)^x = 1\ 500$$
;

d)
$$0.4 \times 10^t + 90 = 102$$
.

79 Inéquations de la forme $a^x \le b$ ★

Résoudre les inéquations suivantes.

a)
$$(0,5)^x \le 0.8$$
;

b)
$$10^{-1} \times (1.1)^t \le 1000$$
:

c)
$$2000(0,732)^x \le 500.$$

Résoudre les inéquations suivantes.

a)
$$x^3 < 3$$
;

b)
$$x^{1,3} < 2$$
:

c)
$$x^4 < 2.5$$
.

🔞 Taux d'évolution, résolution d'une inéquation 🖈 🖈

Le 1^{er} janvier 2019, la population d'un pays s'élevait à 30 millions d'habitants.

On estime que l'augmentation de la population pour les 15 ans à venir sera de 2 % par an.

- **1.** Calculer la population au 1^{er} janvier 2020, puis au 1^{er} janvier 2026. Les résultats seront donnés en millions et arrondis à 10^{-3} .
- **2.** Quelle est l'augmentation en pourcentage, entre la population au 1^{er} janvier 2019 et la population au 1^{er} janvier 2026 ? Le résultat sera arrondi à 0,1 %.
- **3.** Résoudre dans l'ensemble \mathbb{R} des nombres réels, l'inéquation : 1,02 $^{\times} \ge 1,2$.
- **4.** Déterminer l'année à partir de laquelle la population dépassera 36 millions d'habitants.