Matemática Discreta I - MATA42 - Ila Unidade

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 11/04/2019

Exercícios: Verifique as relações binárias nos itens abaixo e classifique-as em *reflexivas*, *irreflexivas*, *simétricas*, *assimétricas*, *anti-simétricas*, *transitivas*, *conectadas*, *equivalências*.

- **①** Sejam $A = \mathbb{N}$ e $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x + y \text{ \'e par } \}.$
- ② Sejam $A = \mathbb{N}^*$ e $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N}^* \times \mathbb{N}^* \mid x \text{ divide } y\}.$
- **3** Sejam $A = \mathbb{N}$ e $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x = y^2\}.$

Relações - Propriedades - Exercícios(Respostas)

- (1) $\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x + y \text{ \'e par } \} \Rightarrow x + y = 2k; k \in \mathbb{N}$
 - Reflexiva: \mathcal{R} é reflexiva; pois $\forall x \in \mathbb{N} \Rightarrow x + x = 2x \Rightarrow \langle x, x \rangle \in \mathcal{R}$. Portanto, \mathcal{R} não é irreflexiva.
 - Simétrica: \mathcal{R} é simétrica e, consequentemente não é assimétrica. $x+y=2k; k\in\mathbb{N} \Rightarrow y+x=2k$ (pela propriedade comutativa da soma no conjunto dos naturais); assim, $\forall x,y\in\mathbb{N}, \langle x,y\rangle\in\mathcal{R} \Rightarrow \langle y,x\rangle\in\mathcal{R}$.
 - Anti-simétrica: \mathcal{R} não é anti-simétrica; pois, $\exists x, y \in \mathbb{N}$ tais que $\langle x, y \rangle \in \mathcal{R}$ e $\langle y, x \rangle \in \mathcal{R}$ e $x \neq y$.
 - Transitiva: \mathcal{R} é transitiva. $\forall x, y, z \in \mathbb{N}$; $\langle x, y \rangle \in \mathcal{R} \Rightarrow x + y = 2k$; $k \in \mathbb{N} \Rightarrow x = 2k y$; (1) e $\langle y, z \rangle \in \mathcal{R} \Rightarrow y + z = 2m$; $m \in \mathbb{N} \Rightarrow z = 2m y$; (2), Efetuando x + z, utilizando (1) e (2);

$$x+z=2k-y+2m-y=2k+2m-2y=2(k+m-y);$$
 fazendo: $n=(k+m-y)\in\mathbb{N}\Rightarrow x+z=2n; n\in\mathbb{N}\Rightarrow \langle x,z\rangle\in\mathcal{R}.$

- Conectada: \mathcal{R} não é conectada; pois, para x=2a e y=2b+1; $a,b\in\mathbb{N}\Rightarrow x+y=2a+2b+1=2(a+b)+1$; $(a+b)\in\mathbb{N}\Rightarrow x+y$ é ímpar.
 - Portanto, $\exists x, y \in \mathbb{N}$ tais que $\langle x, y \rangle \notin \mathcal{R}$ e $\langle y, x \rangle \notin \mathcal{R}$.
- Equivalência: \mathcal{R} é reflexiva, simétrica e transitiva. Logo, \mathcal{R} é uma relação de equivalência.

Relações - Propriedades - Exercícios (Respostas)

- (2) Sejam $A = \mathbb{N}^*$ e
- $\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{N}^* \times \mathbb{N}^* \mid x \text{ divide } y \} \Rightarrow x \mid y \Rightarrow y = kx; k \in \mathbb{N}^*$
 - Reflexiva: \mathcal{R} é reflexiva; pois $\forall x \in \mathbb{N}^* \Rightarrow x = 1.x; 1 \in \mathbb{N}^* \Rightarrow \langle x, x \rangle \in \mathcal{R}$. Portanto, \mathcal{R} não é irreflexiva.
 - Simétrica: \mathcal{R} não é simétrica e, consequentemente é assimétrica. y = kx; $k \in \mathbb{N}^* \Rightarrow x = y/k \Rightarrow y \ /\!\!/ x \Rightarrow \langle y, x \rangle \notin \mathcal{R}$; assim, $\exists x, y \in \mathbb{N}^*$ tais que $\langle x, y \rangle \in \mathcal{R}$ e $\langle y, x \rangle \notin \mathcal{R}$.
 - Anti-simétrica: \mathcal{R} é anti-simétrica; pois, $\forall x,y \in \mathbb{N}^*$ tais que $\langle x,y \rangle \in \mathcal{R}$ e $\langle y,x \rangle \in \mathcal{R} \Rightarrow x=y$; ou seja, $y=kx; k \in \mathbb{N}^*$ para $x=y\Rightarrow x=kx; k=1\Rightarrow x\mid x$.
 - Transitiva: \mathcal{R} é transitiva. $\forall x, y, z \in \mathbb{N}^*$ tais que $\langle x, y \rangle \in \mathcal{R} \Rightarrow y = kx; k \in \mathbb{N}^*$; (1) e $\langle y, z \rangle \in \mathcal{R} \Rightarrow z = my; m \in \mathbb{N}^*$; (2), substituindo (1) em (2); $z = m(kx) \Rightarrow z = (mk)x; (mk) \in \mathbb{N}^* \Rightarrow x \mid z \Rightarrow \langle x, z \rangle \in \mathcal{R}$.
 - Conectada: R não é conectada; pois,
 ∃x, y ∈ N* tais que ⟨x, y⟩ ∉ R e ⟨y, x⟩ ∉ R.
 Tomemos como contra-exemplo um número natural primo que, por definição, possui apenas os divisores "1" e ele próprio.
 - Equivalência: $\mathcal R$ é reflexiva, simétrica e transitiva. Logo, $\mathcal R$ é uma relação de equivalência.

Relações - Propriedades - Exercícios (Respostas)

- (3) Sejam $A = \mathbb{N}$ e $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x = y^2\} \Rightarrow x = y^2 \Rightarrow y = \pm \sqrt{x};$
 - Reflexiva: \mathcal{R} não é reflexiva; pois $\forall x > 1; x \neq x^2$; assim, $\exists x \in \mathbb{N}$ tal que $\langle x, x \rangle \notin \mathcal{R}$. Contudo, \mathcal{R} também não é irreflexiva; $\exists x \in \mathbb{N}; \langle x, x \rangle \in \mathcal{R}$.
 - Simétrica: \mathcal{R} não é simétrica e, consequentemente é assimétrica. $x=y^2\Rightarrow y=\pm\sqrt{x}\Rightarrow y\neq x^2\Rightarrow \langle y,x\rangle\notin\mathcal{R};$ assim, $\exists x,y\in\mathbb{N}$ tais que $\langle x,y\rangle\in\mathcal{R}$ e $\langle y,x\rangle\notin\mathcal{R}.$
 - Anti-simétrica: \mathcal{R} é anti-simétrica; pois, $\forall x,y \in \mathbb{N}$ tais que $\langle x,y \rangle \in \mathcal{R}$ e $\langle y,x \rangle \in \mathcal{R} \Rightarrow x=y$.
 - Transitiva: \mathcal{R} não é transitiva. $\forall x,y,z\in\mathbb{N}$ tais que $\langle x,y\rangle\in\mathcal{R}\Rightarrow x=y^2\Rightarrow y=\pm\sqrt{x};$ (1) e $\langle y,z\rangle\in\mathcal{R}\Rightarrow y=z^2;$ (2). Substituindo (1) em (2); $\pm\sqrt{x}=z^2\Rightarrow (\pm\sqrt{x})^2=(z^2)^2\Rightarrow x=z^4\Rightarrow \langle x,z\rangle\notin\mathcal{R}.$
 - Conectada: \mathcal{R} não é conectada; pois, $\exists x,y \in \mathbb{N}$ tais que, $\langle x,y \rangle \notin \mathcal{R}$ e $\langle y,x \rangle \notin \mathcal{R}$. Nestes casos, podemos tomar como contra-exemplo o número natural primo que por propriedade não é o quadrado de nenhum outro número natural.
 - Equivalência: $\mathcal R$ não é reflexiva, não é simétrica e nem transitiva; logo, $\mathcal R$ não é uma relação de equivalência.

Exercícios: Seja $A = \{1, 2\}$. Verifique as relações binárias abaixo definidas em A, e justifique cada classificação.

(1)
$$\mathcal{R} = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle\}$$

- ▶ reflexiva: $\forall x \in A, \langle x, x \rangle \in \mathcal{R}$,
- simétrica: $\langle 1, 1 \rangle \in \mathcal{R} \Rightarrow \langle 1, 1 \rangle \in \mathcal{R}$; $\langle 2, 2 \rangle \in \mathcal{R} \Rightarrow \langle 2, 2 \rangle \in \mathcal{R}$;
- ▶ anti-simétrica: $\langle 1,1\rangle \in \mathcal{R}e \, \langle 1,1\rangle \in \mathcal{R} \Rightarrow 1=1$, $\langle 2,2\rangle \in \mathcal{R}e \, \langle 2,2\rangle \in \mathcal{R} \Rightarrow 2=2$,
- ▶ transitiva:

$$\langle 1,1\rangle \in \mathcal{R}e \, \langle 1,1\rangle \in \mathcal{R} \Rightarrow \langle 1,1\rangle \in \mathcal{R}; \langle 2,2\rangle \in \mathcal{R}e \, \langle 2,2\rangle \in \mathcal{R} \Rightarrow \langle 2,2\rangle \in \mathcal{R},$$

- ▶ não é conectada: $\langle 1,2 \rangle \notin \mathcal{R}e \langle 2,1 \rangle \notin \mathcal{R}$;
- lacktriangle é de equivalência: ${\cal R}$ é reflexiva, simétrica e transitiva.

- (2) $S = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 2 \rangle\}$
 - ▶ reflexiva: $\forall x \in A, \langle x, x \rangle \in S$,
 - ▶ assimétrica: pois não é simétrica $(\langle 1,2\rangle \in \mathcal{S} \text{ mas, } \langle 2,1\rangle \notin \mathcal{S})$,
 - ▶ anti-simétrica: por definição, temos que verificar o antecedente na condicional $\langle 1,2\rangle \in \mathcal{S}$ e $\langle 2,1\rangle \in \mathcal{S}$ mas, $\langle 2,1\rangle \notin \mathcal{S}$; logo, satisfaz à definição ;
 - ▶ transitiva: $\langle 1,1 \rangle \in \mathcal{S}$ e $\langle 1,2 \rangle \in \mathcal{S} \Rightarrow \langle 1,2 \rangle \in \mathcal{S}$ e $\langle 1,2 \rangle \in \mathcal{S}$ e $\langle 2,2 \rangle \in \mathcal{S} \Rightarrow \langle 1,2 \rangle \in \mathcal{S}$,
 - ▶ conectada: pois $\forall x, y \in A$; $\langle x, y \rangle \in S$ ou $\langle y, x \rangle \in S$.
 - S não é de equivalência porque não é simétrica.

- (3) $\mathcal{T} = \{\langle 2, 1 \rangle, \langle 1, 2 \rangle\}$
 - ▶ irreflexiva: $\forall x \in A$; $\langle x, x \rangle \notin \mathcal{T}$,
 - ▶ simétrica: $\langle 1, 2 \rangle \in \mathcal{T} \Rightarrow \langle 2, 1 \rangle \in \mathcal{T}$,
 - ▶ não é anti-simétrica: pois, $\langle 1,2\rangle \in \mathcal{T}$ e $\langle 2,1\rangle \in \mathcal{T}$ porém $1 \neq 2$,
 - ▶ não é transitiva: pois, $\langle 1,2 \rangle \in \mathcal{T}$ e $\langle 2,1 \rangle \in \mathcal{T}$, mas $\langle 1,1 \rangle \notin \mathcal{T}$ e $\langle 2,1 \rangle \in \mathcal{T}$ e $\langle 1,2 \rangle \in \mathcal{T}$, mas $\langle 2,2 \rangle \notin \mathcal{T}$
 - ▶ não é conectada: pois $\exists x, y \in A$; $\langle x, y \rangle \notin \mathcal{T}$ e $\langle y, x \rangle \notin \mathcal{T}$.
 - $ightharpoonup \mathcal{T}$ não é de equivalência pois não é reflexiva e nem transitiva.

- (4) $\mathcal{L} = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 2 \rangle\}$
 - reflexiva: $\forall x \in A$; $\langle x, x \rangle \in \mathcal{L}$,
 - ▶ simétrica: $\langle 1, 2 \rangle \in \mathcal{L} \Rightarrow \langle 2, 1 \rangle \in \mathcal{L}$,
 - ▶ não é anti-simétrica: pois, $\langle 1,2 \rangle \in \mathcal{L}$ e $\langle 2,1 \rangle \in \mathcal{L}$ porém $1 \neq 2$,
 - ▶ transitiva: $\langle 1,2 \rangle \in \mathcal{L}$ e $\langle 2,1 \rangle \in \mathcal{L} \Rightarrow \langle 1,1 \rangle \in \mathcal{L}$ e $\langle 2,1 \rangle \in \mathcal{L}$ e $\langle 1,2 \rangle \in \mathcal{L} \Rightarrow \langle 2,2 \rangle \in \mathcal{L}$
 - ▶ conectada: $\forall x, y \in A$; $\langle x, y \rangle \in \mathcal{L}$ ou $\langle y, x \rangle \in \mathcal{L}$.
 - $ightharpoonup \mathcal{L}$ é de equivalência pois é reflexiva, simétrica e transitiva.

- (5) $\mathcal{O} = \{\langle 2, 1 \rangle\}$
 - ▶ irreflexiva: $\forall x \in A$; $\langle x, x \rangle \notin \mathcal{O}$,
 - ▶ assimétrica: pois $\langle 2, 1 \rangle \in \mathcal{O}$ mas, $\langle 1, 2 \rangle \notin \mathcal{O}$,
 - ▶ anti-simétrica: pois, $\langle 2,1\rangle \in \mathcal{O}$ e $\langle 1,2\rangle \notin \mathcal{O}$ então não precisamos ter a tese: 1=2,
 - ▶ transitiva: $\langle 2,1\rangle \in \mathcal{O}$ e $\langle 1,2\rangle \notin \mathcal{O}$ logo, não precisamos ter : $\langle 2,2\rangle \in \mathcal{O}$,
 - ▶ não é conectada: pois os pares $(1,1) \notin \mathcal{O}$ e $(2,2) \notin \mathcal{O}$.
 - $ightharpoonup \mathcal{O}$ não é de equivalência pois não é reflexiva e nem simétrica.

Exercícios: Verifique as relações binárias nos itens abaixo e classifique-as em *reflexivas*, *irreflexivas*, *simétricas*, *assimétricas*, *anti-simétricas*, *transitivas*, *conectadas*, *equivalências*.

- Sejam A = Conjunto dos Alunos de MATA42 sentados na sala 207 do PAFI; e
- $\mathcal{R} = \{\langle x, y \rangle \in A \times A \mid x \text{ senta na mesma fila de } y\}.$ 2 Sejam A = Conjunto dos Moradores do bairro Ondina; e
 - $\mathcal{T} = \{\langle x, y \rangle \in A \times A \mid x \text{ mora ao lado de } y\}.$
- **3** Sejam A =Conjunto dos funcionários da empresa XYZ; e $S = \{\langle x, y \rangle \in A \times A \mid x \text{ trabalha mais horas que } y\}.$

Relações - Propriedades - Exercícios (Respostas)

- Sejam A = Conjunto dos Alunos de MATA42 sentados na sala 207 do PAFI;
 e R = {⟨x, y⟩ ∈ A × A | x senta na mesma fila de y}.
 R é reflexiva, simétrica, transitiva, equivalência.
 R não é : irreflexiva, assimétrica, anti-simétrica, conectada.
- ② Sejam A =Conjunto dos Moradores do bairro Ondina; e $\mathcal{T} = \{\langle x,y \rangle \in A \times A \mid x \text{ mora ao lado de } y\}.$ \mathcal{T} é irreflexiva, simétrica. \mathcal{T} não é: reflexiva, assimétrica, anti-simétrica, conectada, transitiva,
 - equivalência.
- Sejam A = Conjunto dos funcionários da empresa XYZ; e S = {⟨x, y⟩ ∈ A × A | x trabalha mais horas que y}. S é irreflexiva, assimétrica, anti-simétrica, transitiva. S não é reflexiva, simétrica, conectada, equivalência.

Observação: R é uma relação assimétrica em A se, e somente se, $(\exists x,y\in A)(\langle x,y\rangle\in\mathcal{R}\land\langle y,x\rangle\notin\mathcal{R})$, ou seja, se existir pelo menos um par ordenado $\langle x,y\rangle\in\mathcal{R}$ e o seu inverso $\langle y,x\rangle\notin\mathcal{R}$. Enquanto que, R é uma relação anti-simétrica em A se, e somente se, $(\forall x,y\in A)((\langle x,y\rangle\in\mathcal{R})\land(\langle y,x\rangle\in\mathcal{R}))\Rightarrow x=y$ $\Leftrightarrow (\forall x,y\in A)(x\neq y)\Rightarrow ((\langle x,y\rangle\notin\mathcal{R})\lor(\langle y,x\rangle\notin\mathcal{R}))$. Portanto, Se R é uma

relação assimétrica em A não podemos concluir que R é anti-simétrica.

Relações - Inversa

DEFINIÇÃO: (Relação Inversa ou Relação Dual ou Relação Oposta)

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$, e \mathcal{R} uma RELAÇÃO de A para B. Então, a RELAÇÃO INVERSA \mathcal{R}^{-1} de \mathcal{R} é uma RELAÇÃO de B para A tal que $y\mathcal{R}^{-1}x$ se, e somente se, $x\mathcal{R}y$, ou seja, $\mathcal{R}^{-1} := \{\langle y, x \rangle \mid \langle x, y \rangle \in \mathcal{R}\} \subseteq B \times A$.

Notação: \mathcal{R}^{-1} ou $\widetilde{\mathcal{R}}$

Exemplo:

- Seja $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x \text{ divide } y\}$ então, $\mathcal{R}^{-1} = \{\langle y, x \rangle \in \mathbb{N} \times \mathbb{N} \mid y \text{ é múltiplo de } x\}$.
- ② Sejam $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $\mathcal{R} = \{\langle x, y \rangle \in A \times A \mid x = y + 1\} = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle \langle 4, 3 \rangle \langle 5, 4 \rangle \langle 6, 5 \rangle \langle 7, 6 \rangle\}$ então, $\mathcal{R}^{-1} = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle \langle 3, 4 \rangle \langle 4, 5 \rangle \langle 5, 6 \rangle \langle 6, 7 \rangle\}$ $\mathcal{R}^{-1} = \{\langle y, x \rangle \in A \times A \mid y = x 1\}.$

Relações - Inversa

LEMA:

Sejam \mathcal{R} e \mathcal{S} RELAÇÕES em A. Então,

$$\ \, \overset{\sim}{\widetilde{\mathcal{R}}} = \mathcal{R}$$

$$\widetilde{\mathcal{R} \cup \mathcal{S}} = \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}$$

D]:

$$\mathbf{0} \ \ \widetilde{\widetilde{\mathcal{R}}} = \mathcal{R}$$

Por definição, temos que $y\mathcal{R}^{-1}x$ se, e somente se, $x\mathcal{R}y$; do mesmo modo, se quisermos a inversa da inversa; $x(\mathcal{R}^{-1})^{-1}y$ se, e somente se, $y\mathcal{R}^{-1}x$; logo, $x(\mathcal{R}^{-1})^{-1}y = x\mathcal{R}y$.

② $\widetilde{\mathcal{R} \cup \mathcal{S}} = \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}$ Neste caso, temos que provar: $\widetilde{\mathcal{R} \cup \mathcal{S}} \subseteq \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}$, e $\widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \subseteq \widetilde{\mathcal{R} \cup \mathcal{S}}$.

Relações - Inversa

$$\mathsf{D}] \colon \widetilde{\mathcal{R} \cup \mathcal{S}} = \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}$$

 $\text{Vamos mostrar que:} \ \, \text{(i)} \ \, \widetilde{\mathcal{R} \cup \mathcal{S}} \subseteq \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \text{, e}$

- (ii) $\widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \subseteq \widetilde{\mathcal{R} \cup \mathcal{S}}$.
- (i) $\widetilde{\mathcal{R} \cup \mathcal{S}} \subseteq \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}$.

 $\langle y, x \rangle \in \mathcal{R} \cup \mathcal{S} \Rightarrow \langle x, y \rangle \in \mathcal{R} \cup \mathcal{S}$ então $\langle x, y \rangle \in \mathcal{R}$ ou $\langle x, y \rangle \in \mathcal{S}$.

 $\langle x,y\rangle \underbrace{\in \mathcal{R}}_{\sim} \Rightarrow \langle y,x\rangle \in \widetilde{\mathcal{R}} \text{ ou } \langle x,y\rangle \in \mathcal{S} \Rightarrow \langle y,x\rangle \in \widetilde{\mathcal{S}} \Rightarrow \langle y,x\rangle \in \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}.$

Logo, $\widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \subseteq \widetilde{\widetilde{\mathcal{R}}} \cup \widetilde{\mathcal{S}}$.

(ii) $\widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \subseteq \widetilde{\mathcal{R}} \cup \mathcal{S}$.

 $\langle y, x \rangle \in \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \Rightarrow \langle y, x \rangle \in \widetilde{\mathcal{R}} \text{ ou } \langle y, x \rangle \in \widetilde{\mathcal{S}}.$

 $\langle y, x \rangle \in \widetilde{\mathcal{R}} \Rightarrow \langle x, y \rangle \in \mathcal{R} \text{ ou } \langle y, x \rangle \in \widetilde{\mathcal{S}} \Rightarrow \langle x, y \rangle \in \mathcal{S} \Rightarrow \langle x, y \rangle \in \mathcal{R} \cup \mathcal{S}$

 $\Rightarrow \langle y, x \rangle \in \widetilde{\mathcal{R}} \cup \mathcal{S}$. Logo, $\widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} \subseteq \widetilde{\mathcal{R}} \cup \mathcal{S}$.

Assim, por (i) e (ii) temos que $\widetilde{\mathcal{R} \cup \mathcal{S}} = \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}}$.

Relações - Inversa - Exercícios

Exercícios:

- Seja $\mathcal{R} = \{\langle x,y \rangle \in \mathbb{N} \times \mathbb{N} \mid x \text{ divide } y\}$. Determine a relação inversa \mathcal{R}^{-1} . então, $\mathcal{R}^{-1} = \{\langle y,x \rangle \in \mathbb{N} \times \mathbb{N} \mid y \text{ é múltiplo de } x\}$.
- ② Sejam $A = \{1, 2, 3\}$ e $\mathcal{R} = \{\langle x, y \rangle \in A \times A \mid x \leq y\}$. Determine a relação \mathcal{R} e a sua inversa \mathcal{R}^{-1} .

Resposta:

$$\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x \leq y \} =$$

$$\{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle \}$$

$$\mathcal{R}^{-1} = \{ \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle \}$$

$$\mathcal{R}^{-1} = \{ \langle x, y \rangle \in A \times A \mid x \geq y \}.$$

Relação Complementar

DEFINIÇÃO: (Relação Complementar)

Seja $\mathcal R$ uma RELAÇÃO em A. Denotamos por $\overline{\mathcal R}$ e denominamos RELAÇÃO COMPLEMENTAR de $\mathcal R$ a seguinte relação em A:

$$\overline{\mathcal{R}} := \{ \langle x, y \rangle \ \underline{\ } \ \langle x, y \rangle \notin \mathcal{R} \}.$$

Observação: $\overline{\mathcal{R}} = \mathcal{R}$

Exemplo:

- Seja $\mathcal{R} = \{\langle x, y \rangle \mid x < y \}$ em \mathbb{N} então, $\overline{\mathcal{R}} = \{\langle x, y \rangle \mid x \ge y \}$
- $\begin{array}{c|cccc} \textbf{2} & \mathcal{R} = \{\langle x,y \rangle & | & x \text{ divide } y\} \text{ em } \mathbb{N} \text{ então,} \\ \overline{\mathcal{R}} = \{\langle x,y \rangle & | & x \text{ não divide } y\} \end{array}$

Relações - Composição

DEFINIÇÃO: (Relação Composta)

Seja $A \in \mathcal{P}(\mathcal{U})$, e sejam \mathcal{R} e \mathcal{S} RELAÇÕES em A. Indicamos por \mathcal{SoR} e denominamos COMPOSIÇÃO DA RELAÇÃO \mathcal{R} e \mathcal{S} a seguinte relação: $\mathcal{SoR} := \{\langle x,z \rangle \mid x,z \in A \land \exists y \in A \ (\langle x,y \rangle \in \mathcal{R} \land \langle y,z \rangle \in \mathcal{S})\}.$

Exemplo:

```
• Sejam as relações \mathcal{R} = \{\langle 1,2 \rangle, \langle 3,4 \rangle, \langle 2,2 \rangle\} e \mathcal{S} = \{\langle 4,2 \rangle, \langle 2,5 \rangle, \langle 3,1 \rangle, \langle 1,3 \rangle\} então, \mathcal{S}o\mathcal{R} := \{\langle 1,5 \rangle, \langle 3,2 \rangle, \langle 2,5 \rangle\}; \mathcal{R}o\mathcal{S} := \{\langle 4,2 \rangle, \langle 3,2 \rangle, \langle 1,4 \rangle\}; \mathcal{R}o\mathcal{R} := \{\langle 1,2 \rangle, \langle 2,2 \rangle\}; \mathcal{S}o\mathcal{S} := \{\langle 4,5 \rangle, \langle 3,3 \rangle, \langle 1,1 \rangle\}.
```

Relações - Potência

DEFINIÇÃO: (Relação - Potência)

Seja $A \in \mathcal{P}(\mathcal{U})$, e seja \mathcal{R} uma RELAÇÃO em A. Indicamos por \mathcal{R}^m ; $m \in \mathbb{N}^*$ e denominamos m -ésima POTÊNCIA DA RELAÇÃO \mathcal{R} a seguinte relação: $\mathcal{R}^m := \mathcal{R} \circ \mathcal{R}^{m-1}$; m > 1 e $\mathcal{R}^1 := \mathcal{R}$.

Exemplo: Sejam $A := \{x, y, z\}$ e as relações em A;

- **1** $\mathcal{R} = \{\langle x, y \rangle, \langle x, z \rangle, \langle z, y \rangle\}; \text{ então, } \mathcal{R}^2 = \mathcal{R}o\mathcal{R} = \{\langle x, y \rangle\}; \mathcal{R}^3 = \mathcal{R}o\mathcal{R}^2 = \emptyset; \text{ assim, } \forall m > 3, \mathcal{R}^m = \emptyset.$

Observação: Neste caso, notemos que as potências da relação S repetem-se em um ciclo para $m \geq 5$.