In this homework, we regard μ -integrable as $\int |f| d\mu = \int f^+ d\mu + f^- d\mu < \infty$.

Problem 1.

Proof. Since f is μ -integrable, then |f| is μ -integrable as well by definition.

Consider set $A_n = \{x \in X : f(x) > n\}$ and define $f_n = |f|\mathbbm{1}_{A_n}$. Then $f_n \leqslant |f|$. Moreover, since |f| is μ -integrable, then $f_n \to 0$ almost everywhere as $n \to \infty$. By dominated convergence theorem, we have:

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X \lim_{n \to \infty} f_n d\mu = 0.$$

That is, for every $\varepsilon > 0$, there exists an N > 0 such that $\int_X f_n d\mu \leqslant \frac{\varepsilon}{2}$ for any $n \geqslant N$. Take n = N, $\delta = \frac{\varepsilon}{2N}$ and any measurable set E with $\mu(E) \leqslant \delta$, we have:

$$0 < \int_{E} |f| d\mu = \int_{E \cap A_{N}} |f| d\mu + \int_{E \setminus A_{N}} |f| d\mu$$

$$\leq \int_{E} f_{N} d\mu + \int_{E \setminus A_{N}} N d\mu$$

$$\leq \frac{\varepsilon}{2} + N\mu(E)$$

$$\leq \frac{\varepsilon}{2} + N\frac{\varepsilon}{2N} = \varepsilon.$$

Problem 2. L^1 convergence does not imply pointwise convergence.

Proof. Let's define A_n as following measurable subsets of [0,1]:

$$[0,1], [0,\frac{1}{2}], [\frac{1}{2},1], [0,\frac{1}{3}], [\frac{1}{3},\frac{2}{3}], [\frac{2}{3},1], \cdots$$

Then we have

$$\|1_{A_n} - 0\|_1 = \mathcal{L}(A_n) \to 0.$$

However, for any $x \in [0, 1]$, x belongs infinitely many sets in $\{A_n\}$, which implies that $\mathbb{1}_{A_n} \neq 0$ for every $x \in [0, 1]$.

Problem 3.

Proof.

1. Let $\varepsilon > 0$ and M be such that $|g| \leqslant M$. Since $C_c^0(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, that is, there exists a sequence $\{f_n\}$ in $C_c^0(\mathbb{R})$ such that $\int_{\mathbb{R}} |f_n - f| \mathrm{d}x \to 0$ as $n \to \infty$. Assume for n = N, $\int_{\mathbb{R}} |f_N - f| \mathrm{d}x \leqslant \frac{\varepsilon}{3M}$. Furthermore, since f_N is continous and compactly supported, then f_N is uniformly continuous on $\sup(f)$. That is, there exists $\delta > 0$ such that for every $|x - y| \leqslant \delta$, $|f_N(x) - f_N(y)| \leqslant \frac{\varepsilon}{3M\mathscr{L}(\sup(f))}$.

$$\begin{aligned} &|(f*g)(x) - (f*g)(y)| \\ &= |(f*g)(x) - (f_N*g)(x) + (f_N*g)(x) - (f_N*g)(y) + (f_N*g)(y) - (f*g)(y)| \\ &\leqslant \underbrace{|(f*g)(x) - (f_N*g)(x)|}_{\text{II}} + \underbrace{|(f_N*g)(x) - (f_N*g)(y)|}_{\text{II}} + \underbrace{|(f_N*g)(y) - (f*g)(y)|}_{\text{III}} \end{aligned}$$

$$I = \left| \int_{\mathbb{R}} (f(x-y) - f_N(x-y))g(y)dy \right| \leqslant M \int_{\mathbb{R}} |f(x-y) - f_N(x-y)|dy \leqslant M \frac{\varepsilon}{3M} = \frac{\varepsilon}{3};$$

Based on the same reason, III $\leq \frac{\varepsilon}{3}$.

$$\begin{split} & \mathrm{II} = |\int_{\mathbb{R}} (f_N(x-z) - f_N(y-z))g(z)\mathrm{d}z| \leqslant M \int_{\mathbb{R}} |f_N(x-z) - f_N(y-z)|\mathrm{d}z \\ & \leqslant M \frac{\varepsilon}{3M\mathscr{L}(\mathrm{supp}(f))} \mathscr{L}(\mathrm{supp}(f)) = \frac{\varepsilon}{3}. \end{split}$$

Combine the above estimations, we get the result.

2. Recall Problem 1 in Homework 2, if f is uniformly continuous and integrable, then $f(x) \to 0$ as $x \to \infty$. In part 1, we prove (f*g)(x) is uniformly continuous, once we prove (f*g)(x) is integrable, then we complete the result. By Tonelli's theroem,

$$\begin{split} \int_{\mathbb{R}} &|(f*g)(x)| \mathrm{d}x = \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)| \mathrm{d}y \mathrm{d}x \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)| \mathrm{d}x \mathrm{d}y \\ &= \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x-y)| \mathrm{d}x \right) \mathrm{d}y \\ &= \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x)| \mathrm{d}x \right) \mathrm{d}y \\ &= \|g\|_1 \|f\|_1 < \infty. \end{split}$$

Problem 4.

Proof. Since $|f_n| \leq g$ and f_n converges to f pointwise, then $|f| \leq g$. By definition, f_n and f belong to $L^p(X)$. Furthermore,

$$|f_n - f|^p \le |g - (-g)|^p = (2g)^p$$
.

Apply the dominated convergence theorem on the sequence $h_n(x) = |f_n - f|^p$ and its upper bound $(2g)^p$, we have

$$\lim_{n \to \infty} \|f_n - f\|_p = \lim_{n \to \infty} \left(\int_X |f_n - f|^p d\mu \right)^{1/p} = \left(\lim_{n \to \infty} \int_X |f_n - f|^p d\mu \right)^{1/p}$$
$$= \left(\int_X \lim_{n \to \infty} |f_n - f|^p d\mu \right)^{1/p} = \left(\int_X \left(\lim_{n \to \infty} |f_n - f| \right)^p d\mu \right)^{1/p} = 0.$$

Problem 5.

Proof. Given any L^p function f, we may find a sequence of simple function f_n such that $f_n \to f$ a.e. and $|f_n| \le |f|$. By definition, $f_n \in L^p(X,\mu)$. Apply problem 4 for g = |f|, we have $f_n \to f$ in $L^p(X,\mu)$.