

Сортировки

Корепанов Дмитрий

Алгоритмы и структуры данных

План лекции

Сортировки сравнением:

- SelectionSort сортировка выбором
- InsertionSort сортировка вставками
- HeapSort сортировка кучей
- MergeSort сортировка слиянием
- QuickSort быстрая сортировка
- TimSort сортировка Тима Петерса

К-я порядковая статистика

Поразрядные сортировки:

- CountingSort сортировка подсчётом
- LSD поразрядная от младших разрядов
- MSD поразряднаяот старших разрядов

Сортировка – процесс упорядочивания элементов массива.

Пример. Сортировка трех:

```
void Sort3( int* a ) {
    if( a[0] < a[1] ) {</pre>
        if( a[1] < a[2] ) {</pre>
            // 0 1 2
        } else {
            if(a[0] < a[2])
                 // 0 2 1
             else
                 // 2 0 1
    } else {
        if( a[1] < a[2] ) {</pre>
            if(a[0] < a[2])
                 // 1 0 2
             else
                 // 1 2 0
        } else {
            // 2 1 0
```


Типы сортировок

<u>Определение</u>. **Стабильная** сортировка – та, которая сохраняет порядок следования равных элементов.

Пример. Сортировка чисел по старшему разряду.

Типы сортировок

<u>Определение</u>. **Локальная** сортировка – та, которая не требует дополнительной памяти.

Примеры:

HeapSort – локальная.

MergeSort – нелокальная.

Типы сортировок

Квадратичные сортировки:

- Сортировка выбором,
- Сортировка вставками,
- Пузырьковая сортировка (не рассматриваем ©).

Сортировки за N*logN:

- Сортировка кучей
- Сортировка слиянием
- прочие

Сортировка выбором

Во время работы алгоритма:

Массив разделен на 2 части: левая – отсортированная, правая – нет.

На одном шаге:

- 1) ищем минимум в правой части,
- 2) меняем его с первым элементом правой части,
- 3) сдвигаем границу разделения на 1 вправо.

Свойства:

- Локальная.
- Нестабильная.

Сортировка выбором

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3l&t=0s

Сортировка выбором

 $\frac{n(n-1)}{2}$ сравнений, 3(n-1) перемещений. $T(n) = \Theta(n^2)$.

Сортировка вставками

Простой алгоритм, часто применяемый на малых объемах.

Массив разделен на 2 части: левая – упорядочена, правая – нет.

На одном шаге:

- 1) берем первый элемент правой части,
- 2) вставляем его на подходящее место в левой части.

Свойства:

- Локальная.
- Стабильная.

Сортировка вставками

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3l&t=10s

Сортировка вставками

```
void InsertionSort( int* a, int n ) {
    for( int i = 1; i < n; ++i ) {</pre>
        int tmp = a[i];
        int j = i - 1;
        for( ; j >= 0 && tmp < a[j]; --j ) {</pre>
            a[j + 1] = a[j];
        a[j + 1] = tmp;
```

Сортировка вставками. Анализ времени работы.

о Лучший случай:

- O(n)
- Массив упорядочен по возрастанию.
- $2 \cdot (n-1)$ копирований,
- (n-1) сравнений.
- о Худший случай:

$$O(n^2)$$

- Массив упорядочен по убыванию.
- $2 \cdot (n-1) + \frac{n(n-1)}{2}$ копирований,
- $\frac{n(n-1)}{2}$ сравнений.
- \circ В среднем: $O(n^2)$

$$O(n^2)$$

Сортировка вставками. Оптимизации.

- Используем бинарный поиск места вставки в левой части,
- Используем memmove, чтобы эффективно сдвинуть часть элементов левой части вправо на 1 позицию.

 $O(n \log n)$ сравнений,

 $O(n^2)$ для копирования элементов (с маленькой константой).

Оценка сложности снизу

В процессе работы алгоритма сравниваются элементы исходного массива.

Ветвление = дерево.

Окончание работы алгоритма – лист.

Лист = перестановка.

Оценка сложности снизу

<u>Утверждение</u>. Время работы любого алгоритма сортировки, использующего сравнение, $\Omega(N \log N)$.

Доказательство.

Всего листьев в дереве решения не меньше N!

Высота дерева не меньше $log(N!) \cong CN log N$.

Следовательно, существует перестановка, на которой алгоритм делает не менее $CN \log N$ сравнений.

Сортировки за N*logN

- Пирамидальная сортировка Heap Sort.
- Сортировка слиянием Merge Sort.
- Быстрая сортировка (сортировка Хоара) Quick Sort.
- Сортировка Тима Петерса TimSort.

Пирамидальная сортировка

Аналогия с сортировкой выбором:

Берем максимум из левой части, кладем в конец левой части.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3I&t=89s

Пирамидальная сортировка

```
void HeapSort( int* a, int n ) {
   int heapSize = n;
   BuildHeap( a, heapSize );
   while( heapSize > 1 ) {
        // Немного переписанный ExtractMax.
        swap( a[0], a[heapSize - 1] );
        --heapSize;
        SiftDown( a, heapSize, 0 );
   }
}
```

```
T(n) = O(n \log n).
```

Сортировка слиянием

Алгоритм:

- 1. Разбить массив на два.
- 2. Отсортировать каждый (рекурсивно).
- 3. Слить отсортированные в один.

Вариант без рекурсии:

- 1. Разбить на 2^k подмассива, $2^k < n$.
- 2. Отсортировать каждый.
- 3. Слить 1 и 2, 3 и 4, 5 и 6,..., $2^k 1$ и 2^k , Слить 12 и 34, 56 и 78,...,

. . .

– Слить 123 ... 2^{k-1} и $2^{k-1} + 1 ... 2^k$.

Сортировка слиянием

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3l&t=66s

Слияние двух отсортированных массивов

Слияние двух отсортированных массивов:

- Выберем массив, крайний элемент которого меньше,
- Извлечем этот элемент в массив-результат,
- Продолжим, пока один из массивов не опустеет,
- Копируем остаток второго массива в конец массива-результата.

Слияние двух отсортированных массивов

Сложность: T(n, m) = O(n+m).

Количество сравнений:

- В лучшем случае min(n,m).
- В худшем случае *n*+*m*-1.

Сортировка слиянием

```
void MergeSort( int* a, int aLen ) {
   if( aLen <= 1 ) {
      return;
   }
   int firstLen = aLen / 2;
   int secondLen = aLen - firstLen;
   MergeSort( a, firstLen );
   MergeSort( a + firstLen, secondLen );
   int* c = new int[aLen];
   Merge( a, firstLen, a + firstLen, secondLen, c );
   memcpy( a, c, sizeof( int ) * aLen );
   delete[] c;
}</pre>
```

Свойства:

- Нелокальная.
- Стабильная.

Сортировка слиянием

- <u>Утверждение.</u> Время работы сортировки слиянием = $O(n \log n)$.
- Доказательство.
- Рекуррентное соотношение
- $T(n) \leq 2T\left(\frac{n}{2}\right) + c \cdot n$,
- разложим дальше
- $T(n) \le 2T\left(\frac{n}{2}\right) + c \cdot n \le 4T\left(\frac{n}{4}\right) + 2c \cdot n \le \cdots \le 2^k T(1) + k \cdot c \cdot n$.
- $k = \log n$, следовательно,
- $T(n) = O(n \log n)$.
- Используется доп. память M(n) = O(n).

Быстрая сортировка = coртировка Xoapa = QuickSort

1. Разделим массив на 2 части, ${\exists \text{лементы} \atop \text{в левой}} < {\scriptsize \text{опорный} \atop \text{элемент}} \le {\scriptsize \text{в правой} \atop \text{в правой}},$

2. Применим эту процедуру рекурсивно к левой части и к правой части.

Быстрая сортировка. Partition.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3l&t=39s

Быстрая сортировка. Partition.

Разделим массив А. Выберем опорный элемент – pivot. Пусть опорный элемент лежит в конце массива.

- 1. Установим 2 указателя: і в начало массива, ј в конце перед опорным элементом.
- 2. Двигаем і вправо, пока не встретим элемент больше (или =) опорного элемента.
- 3. Двигаем ј влево, пока не встретим элемент меньше опорного элемента.
- 4. Меняем A[i] и A[j], если i < j.
- 5. Повторяем 2, 3, 4, пока i < j.
- 6. Меняем А[i] и А[n-1] (опорный элемент).

Левая часть – левее опорного элемента, правая – правее. Опорный элемент не входит в них.

Быстрая сортировка

```
// Возвращает индекс, на который встанет пивот после разделения.
int Partition( int* a, int n ) {
   if( n <= 1 ) {
        return 0;
    const int& pivot = a[n - 1];
    int i = 0; j = n - 2;
    while( i <= j ) {</pre>
        // Не проверяем, что i < n - 1, т.к. a[n - 1] == pivot.
        for( ; a[i] < pivot; ++i ) {}</pre>
        for( ; j >= 0 && !(a[j] < pivot ); --j ) {}</pre>
        if( i < j ) {
            swap( a[i++], a[j--] );
    swap( a[i], a[n - 1] );
    return i;
void QuickSort( int* a, int n ) {
    int part = Partition(a, n);
    if( part > 0 ) QuickSort( a, part );
    if( part + 1 < n ) QuickSort( a + part + 1, n - ( part + 1 ) );</pre>
```

Быстрая сортировка. Анализ.

- Если Partition всегда пополам, то $T(n) \leq 2T\left(\frac{n}{2}\right) + cn$, следовательно, $T(n) = O(n\log n)$.
- Утверждение. (без док.) В среднем $T(n) = O(n \log n)$.
- Если массив упорядочен, pivot = A[n-1], то массив делится в соотношении n-1:0. $T(n) \le T(n-1) + cn \le$ $\le T(n-2) + c(n+n-1)$, $T(n) = O(n^2)$.

A B C D E F G H I J

Быстрая сортировка. Выбор опорного элемента.

- Последний,
- Первый,
- Серединный,
- Случайный,
- Медиана из первого, последнего и серединного,
- Медиана случайных трех,
- Медиана, вычисленная за O(n),
- •

Быстрая сортировка. Killer sequence.

Killer-последовательность – последовательность, приводящая к времени $T(n) = O(n^2)$.

Для многих предопределенных порядков выбора пивота существует killer-последовательность.

- Последний, первый. 1, 2, 3, 4, 5, 6, 7.
- Серединный. x, x, x, 1, x, x, x.
- Медиана трех (первого, последнего и серединного). Массив будем делить в отношении 1:n-2.

Быстрая сортировка

Свойства:

- Локальная.
- Нестабильная. Partition может менять местами равные элементы.

TimSort

Гибридная сортировка Тима Петерса – TimSort (2002г) Реальные данные часто бывают частично отсортированы. Используется в Java 7, Python как стандартный алгоритм.

- 1. Вычисление minRun.
- 2. Сортировка вставками каждого run.
- 3. Слияние соседних run (отсортированных).

TimSort. Вычисление minRun

```
• // Вычисление длины стандартного (минимального) run'a.
• // Это число от 32 до 64, которым хорошо укладывается n.
• // n / minRun ~ степень двойки.
• // Например, при n = 96, minRun = 48.
int GetMinrun( int n )
    // Станет 1, если среди сдвинутых битов будет хотя бы 1 ненулевой.
    int r = 0;
    while( n >= 64 ) {
       r |= n & 1;
        n >>= 1;
    return n + r;
```

TimSort. Вычисление run'ов, их сортировка.

Собираем run:

- Ищем максимально отсортированный подмассив, начиная с текущей позиции.
- Разворачиваем его, если он отсортирован по убыванию.
- Дополняем отсортированный подмассив до minRun элементов.

Сортируем вставками каждый run.

• Отсортированную часть run'а заново не сортируем, только новые элементы вставляем на свои места.

TimSort. Слияние run'ов.

Выполняем слияние соседних run'ов.

- Создается пустой стек пар <индекс начала подмассива>-<размер подмассива>. Берётся первый упорядоченный подмассив.
- В стек добавляется пара данных <индекс начала>-<размер> для текущего подмассива.
- Определяется, нужно ли выполнять процедуру слияния текущего подмассива с предыдущими. Для этого проверяется выполнение двух правил (пусть X, Y и Z размеры трёх верхних в стеке подмассивов):

$$\begin{array}{l} X > Y + Z \\ Y > Z \end{array}$$

- Если одно из правил нарушается массив Y сливается с меньшим из массивов X и Z. Повторяется до выполнения обоих правил или полного упорядочивания данных.
- Слияние оптимизировано галопом.

К-я порядковая статистика

Порядковые статистики

Определение. К-ой порядковой статистикой называется элемент, который окажется на К-ой позиции после сортировки массива.

Частный случай - Медиана – серединный элемент после сортировки массива.

4 7 1 3 0 6 8 5 2

Порядковые статистики

<u>Алгоритм.</u> Поиск K-ой порядковой статистики методом «Разделяй и властвуй». KStatDC(A, n, K).

- 1. Выбираем опорный элемент, вызываем Partition.
- 2. Пусть позиция опорного элемента после разделения равна Р.
 - а) Если Р == К, то опорный элемент является К-ой порядковой статистикой.
 - б) Если Р > К, то К-ая порядковая статистика находится слева, вызываем

KStatDC(A, P, K).

в) Если P < K, то K-ая порядковая статистика находится справа, вызываем

$$KStatDC(A + (P + 1), n - (P + 1), K - (P + 1)).$$

Порядковые статистики

<u>Алгоритм.</u> Поиск K-ой порядковой статистики методом «Разделяй и властвуй». KStatDC(A, n, K).

Время работы

- T(n) = O(n) в лучшем,
- T(n) = O(n) в среднем (без доказательства),
- $T(n) = O(n^2)$ в худшем.

Поразрядные сортировки

Как сортировать без сравнений?

Задача. Отсортировать массив A[0..n-1], содержащий неотрицательные целые числа меньшие k.

Решение 1.

- Заведем массив C[0..k-1], посчитаем в C[i] количество вхождений элемента i в массиве A.
- Выведем все элементы C по C[i] раз.

```
void CountingSort1( int* a, int n ) {
    int* c = new int[k];
    for( int i = 0; i < k; ++i )
        c[i] = 0;
    for( int i = 0; i < n; ++i )
        ++c[a[i]];
    int pos = 0;
    for( int i = 0; i < k; ++i ) {
        for( int j = 0; j < c[i]; ++j ) {
            a[pos++] = i;
        }
    }
    delete[] c;
}</pre>
```


C1: 0 1 0 2 1 1

C2: 0 0 1 1 3 4

B 1 3 3 4 5

<u>Решение 2.</u> Не создает элементы A, а использует копирование. Полезно при сортировке структур по некоторому полю.

- Заведем массив C[0,...,k-1], посчитаем в C[i] количество вхождений элемента i в массиве A.
- Вычислим границы групп элементов для каждого $i \in [0, ..., k-1]$ (начальные позиции каждой группы).
- Создадим массив для результата В.
- Переберем массив А. Очередной элемент A[i] разместим в В в позиции группы C[A[i]]. Сдвинем текущую позицию группы.
- Скопируем В в А.

```
void CountingSort2( int* a, int n ) {
   int* c = new int[k];
   for( int i = 0; i < k; ++i )</pre>
        c[i] = 0;
    for( int i = 0; i < n; ++i )</pre>
        ++c[a[i]];
    int sum = 0;
    for( int i = 0; i < k; ++i ) {</pre>
        int tmp = c[i];
        c[i] = sum; // Начала групп.
        sum += tmp;
   int* b = new int[n];
   for( int i = 0; i < n; ++i ) {</pre>
        b[c[a[i]]++] = a[i];
    delete[] c;
   memcpy( a, b, n * sizeof( int ) );
   delete[] b;
```

Сортировка подсчетом – стабильная, но не локальная.

Время работы T(n,k) = O(n+k).

Доп. память M(n,k) = O(n+k).

```
void CountingSort2( int* a, int n ) {
   int* c = new int[k];
    for( int i = 0; i < k; ++i )</pre>
        c[i] = 0;
    for( int i = 0; i < n; ++i )</pre>
       ++c[a[i]];
    for( int i = 1; i < k; ++i ) {</pre>
        c[i] += c[i - 1]; // Концы групп.
    int* b = new int[n];
    for (int i = n - 1; i >= 0; --i) {// Проход с конца.
        b[--c[a[i]]] = a[i];
    delete[] c;
   memcpy( a, b, n * sizeof( int ) );
```

Поразрядная сортировка = Radix sort

Если диапазон значений велик – сортировка подсчетом не годится.

Строки, целые числа можно разложить на разряды. Диапазон значений разряда не велик.

Можно выполнять сортировку массива по одному разряду, используя сортировку подсчетом.

С какого разряда начать сортировку?

- LSD least significant digit.
- MSD most significant digit.

Поразрядная сортировка. LSD.

Least Significant Digit.

Сначала сортируем подсчетом по младшим разрядам, затем по старшим.

Ключи с различными младшими разрядами, но одинаковыми старшими не будут перемешаны при сортировки старших разрядов благодаря стабильности поразрядной сортировки.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1 kO3I&t=115s

Поразрядная сортировка. LSD.

Время работы $T(n,k,r) = O(r \cdot (n+k)),$ доп. память M(n,k,r) = O(n+k), где n- размер массива, k- размер алфавита, r- количество разрядов.

Most Significant Digit.

Сначала сортируем подсчетом по старшим разрядам, затем по младшим.

Чтобы не перемешать отсортированные старшие разряды, сортируем по младшим только группы чисел с одинаковыми старшими

разрядами отдельно друг от друга.

237	2 37	216	211
318	2 16	211	216
216	2 11	237	237
462	2 68	268	268
211	<mark>3</mark> 18	318	318
268	462	462	460
460	460	460	462

Визуализация: https://www.youtube.com/watch?v=Gnp8G1 kO3I&t=131s

Поразрядная сортировка. MSD.

```
Время работы в лучшем случае T(n,k,r) = O(n \cdot \log_k n), Время работы в худшем случае T(n,k,r) = O(r \cdot n \cdot k), доп. память M(n,k,r) = O(n+r \cdot k), где n- размер массива, k- размер алфавита, r- количество разрядов.
```

Binary QuickSort

Похожа на MSD по битам.

- 1. Сортируем по старшему биту. Это Partition с фиктивным пивотом 10000..0.
- 2. Рекурсивно вызываем от левой части = 0ххххххх, от правой части = 1хххххххх.

Binary QuickSort

0	1	0	0	0	Ō	1	0	0	0	00101	0 0 0 0 1	00001	00001
1	0	0	0	0	0	0	0	0	1	0 0 0 0 1	0 0 1 0 1	0 0 1 0 1	00101
0	1	1	0	0	0	1	1	0	0	0 0 1 1 1	0 0 1 1 1	0 0 1 1 1	00111
0	0	1	1	1	0	0	1	1	1	0 1 1 0 0	0 1 0 0 0	01000	01000
0	1	1	1	0	0	1	1	1	0	0 1 1 1 0	0 1 1 1 0	0 1 1 0 0	0 1 1 0 0
1	0	1	0	1	О	1	1	0	1	0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	01101
1	0	0	1	0	0	1	1	1	0	0 1 1 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 1 0
1	0	0	0	0	0	0	1	0	1	0 1 0 0 0	0 1 1 0 0	0 1 1 1 0	01110
0	0	1	0	1	1	0	0	0	0	10000	10000	10000	10000
0	1	1	1	0	1	0	0	1	0	1 0 0 1 0	1 0 0 1 0	10000	10000
1	1	0	1	1	1	1	0	1	1	1 0 1 0 1	10000	10010	10010
1	1	1	0	1	1	1	1	0	1	10000	1 0 1 0 1	1 0 1 0 1	10101
0	1	1	0	1	1	0	1	0	1	1 0 1 0 1	1 0 1 0 1	1 0 1 0 1	10101
1	0	1	1	1	1	0	1	1	1	1 0 1 1 1	1 0 1 1 1	1 0 1 1 1	10111
0	0	0	0	1	1	0	0	0	0	1 1 1 0 1	1 1 0 1 1	1 1 0 1 1	11011
1	0	1	0	1	1	0	1	0	1	1 1 0 1 1	1 1 1 0 1	11101	11101

Binary QuickSort

Время работы T(n,r) = O(rn), доп. память M(n,r) = O(1), где n- размер массива, r- количество разрядов.

Нестабильна!

Зато локальна.

Сравнение сортировок. Итог.

Алгоритм	В лучшем	В среднем	В худшем	Память	Стабильнос ть	Метод
Quicksort	$n \log n$	$n \log n$	n^2	1	No	Partitioning
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection
Insertion sort	n	n^2	n^2	1	Yes	Insertion
Selection sort	n^2	n^2	n^2	1	Yes	Selection
Timsort	n	$n \log n$	$n \log n$	n	Yes	Insertion & Merging
LSD	r(k+n)	r(k+n)	r(k+n)	k + n	Yes	Radix
MSD	$n \log n$	$n \log n$	rnk	rk + n	Yes	Radix
Binary QuickSort	$n \log n$	$n \log n$	rn	1	No	Radix

Вопросы?