El 9a

MATHEMATIK

Exponent Basis

2011-12

Zusammenfassung – Potenzrechenregeln

Hier noch einmal alle Regeln in einer Übersicht und mit je einem Beispiel!

1. Regel – Mikrochip bis Megaevent bzw. Terahertz

Die erste Regel ist noch keine echte Regel; es ging um die ganzen Vorsilben wie "Nano", "Kilo" usw., hier eine Übersicht:

Zehnerpotenz	Ехр-		Abkürzung
	Schreibweise		
-18	10 ⁻¹⁸	Atto	a
-15	10 ⁻¹⁵	Femto	f
-12	10 ⁻¹²	Pico	p
-9	10 ⁻⁹	Nano	n
-6	10 ⁻⁶	Mikro	μ
-3	10 ⁻³	Milli	m
-2	10 ⁻²	Zenti	С
-1	10 ⁻¹	Dezi	đ
0	10		
1	10 ¹	Deka	da
2	10 ²	Hekto	h
3	10 ³	Kilo	k
6	10 ⁶	Mega	M
9	10 ⁹	Giga	G
12	10 ¹²	Terra	Т
15	10 ¹⁵	Peta	P
18	10 ¹⁸	Еха	Е

Wobei wir es so genau gar nicht gemacht haben! Einfach mal als "Allgemeinbildung"...

2. Regel – Negative Hochzahl

Beispiel:

$$0.5 = 5 \cdot \frac{1}{10}$$

$$0.05 = 5 \cdot \frac{1}{10 \cdot 10}$$

$$0.005 = 5 \cdot \frac{1}{10 \cdot 10 \cdot 10}$$

$$0.005 = 5 \cdot 10^{-3}$$

Im letzten Schritt wird die Kurznotation gezeigt: $1/10^3$ ist das gleiche wie 10^{-3} . Umgekehrt kannst du also zum Beispiel 5^{-7} gleich als "1 durch 5^{7} ", also $1/5^{7}$, notieren!

3.-5. Regel – zusammengefasst!

$$a^m \cdot a^n - a^{m+n}$$
 $4^2 \cdot 4^3 = 4^{2+3} = 4^5$

$$a^m : a^n = a^{m-n}$$
 $(a \ne 0)$ $4^2 : 4^3 = 4^{2-3} = 4^{-1} = \frac{1}{4^1} = \frac{1}{4}$

Gleiche Exponenten:

$$a^n \cdot b^n = (a \cdot b)^n$$
 $2^3 \cdot 3^3 = (2 \cdot 3)^3 = 6^3$

$$a^n : b^n = (a:b)^n \quad (b \neq 0)$$

 $2^3 : 3^3 = (2:3)^3 = (\frac{2}{3})^3$

Potenzieren:

$$a^{m})^{n} = a^{m \cdot n} (2^{3})^{4} = 2^{3 \cdot 4}$$

Links ist die allgemeine Regel, rechts ein Beispiel. Die allgemeine Regel mit den Buchstaben ist vielleicht noch ungewohnt, daher hier in Worten:

- 3. Regel: Bei gleicher Basis kannst du die Hochzahlen addieren, wenn du ein Produkt hast! Das geht mit positiven (siehe Beispiel oben), aber auch mit negativen Hochzahlen: $3^3 \cdot 3^{-4} = 3^{3+(-4)} = 3^{-1} = 1/3$. Beim Teilen ist es genauso, denn mal 3^{-4} zu nehmen, bedeutet auch "durch 3^{4n} teilen können (siehe Regel 2)! So erklärt sich die 2. Variante der 3. Regel.
- 4. Regel: Bei gleichem Exponenten kannst du die Basen multiplizieren, wenn du ein Produkt hast! Eine identische Regel gibt es wieder fürs Dividieren!
- **5. Regel:** Im Beispiel steht die 2^3 nochmal hoch 4. Das bedeutet, dass es 4 Päckchen zu je 2^3 gibt. Also $2^3 \cdot 2^3 \cdot 2^3 \cdot 2^3 = 2^{3+3+3+3} = 2^{12}$. **Daher kann man gleich 3^4=12 rechnen!**

Noch ein fiese Beispiel; um zu wissen, was 9^{9^9} bedeutet, kann man so vorgehen: 9 ist ungefähr 10, also...

Denn 10^{10} ist ja eine 1 mit 10 Nullern, was wir von früher wissen (oder mit dem GTR ausrechnen). wir müssten also 10 Mrd. mal den Faktor 10 nehmen; eine 1 mit 10 Mrd. Nullern entsteht... Riesengroß!!!

6. Regel – allgemeine Wurzeln

Allgemein ist die Zahl, die 8-mal mit sich selbst multipliziert werden muss, um auf 3 zu kommen, die 8. Wurzel aus 3! Man notiert für diese Zahl

$$\sqrt[8]{3} = 3^{1/8}$$

und wenn man sie so in den GTR eingibt: 3^(1/8) ENTER, kommt etwa 1,147 heraus. Diese Zahl hoch 8 müsste wieder 3 ergeben. Wir testen also 1,147⁸ und das ist 2,996. Nicht genau 3, aber wir haben auch unser Ergebnis vorher gerundet!

Allgemein ist die n-te Wurzel aus der Zahl x so zu notieren:

$$\sqrt[n]{x} = x^{1/n}$$

und bedeutet die Zahl, die man n-mal mit sich selbst multiplizieren muss, um auf x zu kommen. Noch ein Beispiel:

$$\sqrt[3]{8} = 8^{1/3}$$

wäre 2, denn $2 \cdot 2 \cdot 2=8!$

7. Regel - Hochzahlmischmasch

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Diese Regel fehlt uns noch! Trotzdem sei sie hier schon einmal notiert!