Conditional Random Fields cho bài toán VLSP 2018 NER

Giảng viên hướng dẫn:

Sinh viên thực hiện:

TS. Nguyễn Phi Lê

Nguyễn Thị Thắm 20183984

Content

- > NER Problem
 - Problem Overview
 - Approaches
- ➤ Machine Learning Approaches for NER
 - Compare Generative vs Discriminative Models
 - Generative model: HMM
 - Discriminative model : MaxEnt Model
 - Maximum Entropy Markov Model (MEMM)
 - Conditional Random Fields (CRF)
- Reference

Named Entity Recognition Problem (NER)

Ký hiệu:

Đầu vào: chuỗi từ(câu) Cần dự đoán chuỗi nhãn: Tập huấn luyện

$$x = (x_1, x_2, ... x_T)$$

$$y = (y_1, y_2, ... y_T)$$

$$D = \{(x^1, y^1), (x^N, y^N)\}$$

Foreign ORG
Ministry ORG
spokesman O
Shen PER
Guofang PER
told O
Reuters ORG

Nhiệm vụ của mô hình: Cần tính được p(y|x)

Approaches

> Các cách giải quyết:

 Rule-based model: Pattern Matching, Dictionary (spacy)

→ Không khả thi với các bài toán phức tạp. Nhưng có thể sử dụng kết hợp với machine learning model

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}

Ví dụ về rule-based entity recognition

Machine Learning Model:

Classification: SVM

Seq-to-seq: CRF, HMM

→ Với NER, độ chính xác có thể đạt ~ mô hình Deep Learning

• Deep Learning Model: CNN, LSTM, RNN, Bi-LSTM

Content

- ➤ NER Problem
 - Problem Overview
 - Approaches
- ➤ Machine Learning Approaches for NER
 - Compare Generative vs Discriminative Models
 - Generative model: HMM
 - Discriminative model : MaxEnt Model
 - Maximum Entropy Markov Model (MEMM)
 - Conditional Random Fields (CRF)
- > Reference

Machine Learning Model for Seq-to-Seq

Graphical Model Relationship

Chọn mô hình thuộc dạng nào?
 Generative or Discriminative?

Generative vs Discriminative Model

Generative Model :

• Quá trình học: Tính p(x, y) cho tất cả khả năng gán (x,y)

Công thức:
$$p(x,y) = p(x|y).p(y)$$

Với p(x|y), p(y) được tính từ tập dữ liệu huấn luyện

Để phân loại thì cần tính: $p(y|x) = \frac{p(x,y)}{p(x)}$

➤ Discriminative Model:

• Quá trình học: Mô hình p(y|x) bằng cách:

Thiết lập tham số ban đầu → Tính y → Tính Loss → Cập nhật lại đến khi hội tụ

Generative vs Discriminative Model

- > Generative Model (Mô hình sinh):
 - Mô hình điển hình:

Classification: Naïve Bayes

Seq2Seq: Hidden Markov Model

- Discriminative Model:
 - Mô hình điển hình:

Classification: Support Vector Machine, Logistic Regression, CNN

Seq2Seq: Conditional Random Fields, Maximum Entropy Markov Model

Generative vs Discriminative Model

> So sánh 2 mô hình:

	Generative Model		Discriminative Model	
Độ chính xác	Do phải giả định về sự độc lập	٧	Không cần mô hình $p(x y)$ nên không cần giả định	
Với dữ liệu thiếu (các thuộc tính của X không quan sát đầy đủ)	Có thể tính được: $p(y x_{given})$ $= \sum_{x_{miss}} p(y x_{given}, x_{miss})$	^	Bắt buộc cần phải quan sát được toàn bộ x	
Hiệu quả	Thích hợp với tập dữ liệu nhỏ (do giả định về sự độc lập -> tránh overfitting)		Vượt trội hơn nếu có tập dữ liệu lớn	

Generative vs Discriminative Model for NER

Generative Model:

Hidden Markov Model (HMM)

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

 \rightarrow Mô hình cần tính được: p(x,y) cho tất cả các khả năng gán nhãn

$$p(x,y) = \prod_{i=1}^{T} p(y_i|y_{i-1}).p(x_i|y_i)$$

Discriminative Model:

Conditional Random Fields (CRF)

$$= \frac{1}{Z(x)} \exp\left(\sum_{i=1}^{T} \sum_{k=1}^{L} \lambda_k h_k(y_{i-1}, y_i, x, i)\right)$$

$$+\sum_{i=1}^{T}\sum_{k=1}^{L}\mu_{k}g_{k}(y_{i},x,i)$$

→ tính trực tiếp dựa vào tham số

Content

- > NER Problem
- ➤ Machine Learning Approaches for NER
 - Compare Generative vs Discriminative Models
 - Generative model : HMM
 - Representation
 - Inference
 - Learning: Supervised & Semi-supervised Learning
 - Shortcomings
 - Discriminative model : MaxEnt Model
 - Maximum Entropy Markov Model (MEMM)
 - Conditional Random Fields (CRF)

HMM – Representation

- Hidden Markov Model (HMM)
- Dùng Bayesian Network (BN) để biểu diễn mô hình:

BN: đồ thị *có hướng, không có chu*

trình

Mỗi node: biến ngẫu nhiên

Cạnh: A \rightarrow B \sim p(B|A)

- Giả định của HMM:
 - Các x_i độc lập với nhau
 - $\circ x_i$ chỉ phụ thuộc vào y_i
 - $\circ y_i$ chỉ phục thuộc vào y_{i-1}
- Từ giả định → xây dựng BN
- Từ BN \rightarrow cách thức factorize p(x,y):

$$p(x,y) = \prod_{i=1}^{I} p(y_i|y_{i-1}).p(x_i|y_i)$$

HMM – Inference

Mục tiêu:

$$y^* = argmax_y p(y|x)$$

$$= argmax_y \prod_i p(x_i|y_i) p(y_i|y_{i-1})$$

- Độ phức tạp:
 - Mỗi từ có K nhãn, có n từ \rightarrow có K^n khả năng gán nhãn

Trellis Representation

→ Viterbi algorithm

HMM – Inference

> Viterbi Algorithm:

Lưu lại các giá trị trính tại mỗi bước

$$\delta_i(s) = \max_{y \in Y^{i-1}} \prod_{t=1}^{i-1} p(x_t|y_t) p(y_t|y_{t-1}) \cdot p(x_i|s) p(s|y_{i-1})$$

$$\delta_i(s) = p(x_i|s) \max_{y_{i-1}} \left(\delta_{i-1}(y_{i-1}) p(s|y_{i-1}) \right)$$

Time Complexity: $O(K^2n)$!

	x_1	x_2	x_3	x_4	x_5
s_1				/	
s_2					
s_3					
S ₄					
S ₅					
s ₆					
S ₇					

Order of computation

HMM – Learning

- Tham số mô hình cần học: K: số nhãn , n: số từ đầu vào, V: kích thước tập từ vựng.
 - Xác suất chuyển nhãn: $a_{ij} = p(y_i|y_j)$ số lượng: (K * K)
 - Xác suất sinh từ: $b_i(x_t) = p(x_t|y_i)$ số lượng (V * K)
 - Xác suất nhãn ở vị trí đầu tiên: $\pi_i = \overline{p}(y_i)$ số lượng (K)

Gọi tập toàn bộ tham số của mô hình là

$$\lambda = \{a_{ij}, b_j(x_t), \pi_i\}$$

HMM – Learning

- > Các cách huấn luyện:
 - Unsupervised Learning :

 D_u : dữ liệu không gán nhãn (chỉ bao gồm từ)

• Semi-supervised Learning:

 $m{D} = \{m{D}_{m{u}}, m{D}_{m{l}}\}$: dữ liệu có một phần không được gán nhãn

• Supervised Learning:

 D_l : dữ liệu được gán nhãn toàn bộ

- \triangleright Dữ liệu huấn luyện D_l
- Mục tiêu học: Tìm ra Maximum Likelihood Estimator (MLE) cho mô hình \sim Cực đại hóa $p(x,y|\lambda)$

$$L(\lambda; D) = \log(p(x, y | \lambda))$$

$$= \log\left(\prod_{k=1}^{M} p(y_1^k | \lambda) \cdot p(x_1^k | y_1^k, \lambda) \prod_{i=2}^{T} p(y_i^k | y_{i-1}^k, \lambda) \cdot p(x_i^k | y_i^k, \lambda)\right)$$

- $= \sum_{k=1}^{M} \log (p(y_1^k | \lambda)) + \sum_{k=1}^{M} \sum_{i=1}^{T} \log (p(x_i^k | y_i^k, \lambda)) + \sum_{k=1}^{M} \sum_{i=2}^{T} \log (p(y_i^k | y_{i-1}^k, \lambda))$
- Thống kê tần số trên tập dữ liệu để xấp xỉ p

- Xác suất chuyển nhãn: $a_{ij} = p(y_i|y_j)$
- Xác suất sinh từ: $b_{y_i}(x_t) = p(x_t|y_j)$
- Xác suất nhãn ở vị trí đầu tiên: $\pi_i = \overline{p}(y_i)$ Gọi tập toàn bộ tham số của mô hình là $\lambda = \{a_{ij}, b_i(x_t), \pi_i\}$

 $ightharpoonup D\tilde{u}$ liệu huấn luyện $D = \{D_u, D_l\}.$

Hướng thực hiện: sử dụng thuật toán Expectation -Maximization (thuật toán lặp để tìm ra local MLE hoặc MAP cho tham số của mô hình

MLE: Maximum Likelihood

estimator

MAP: Maximum a posteriori

estimate

> Expectation Step: Tính

$$Q(\lambda | \lambda_{old}) = E[l(\lambda; X, Y) | X, \lambda_{old}]$$
$$= \sum_{v} l(\lambda; X, y).p(y | X, \lambda_{old})$$

> Maximization Step:

$$\lambda = argmax_{\lambda}Q(\lambda|\lambda_{old})$$

l: log-likelihood functionE: expected value

```
MLE: \lambda = argmax_{\lambda} \mathcal{L}(\lambda; x, y)= argmax_{\lambda} log (p(x, y | \lambda))EM: \lambda = argmax_{\lambda} Q(\lambda | \lambda_{old})= argmax_{\lambda} E[l(\lambda; X, Y) | X, \lambda_{old}]
```


> Tính hội tụ của EM:

Tại sao không tối ưu trực tiếp được?

$$l(\lambda; X) = \log p(X|\lambda) = \log \sum_{y} p(X, y|\lambda)$$
$$= \log \sum_{y} \frac{p(X, y|\lambda)}{p(y|X, \lambda_{old})} \cdot p(y|X, \lambda_{old})$$

$$= \log E \left[\frac{p(X, y | \lambda)}{p(y | X, \lambda_{old})} | X, \lambda_{old} \right]$$

$$\geq E \left[\log \frac{p(X, y | \lambda)}{p(y | X, \lambda_{old})} | X, \lambda_{old} \right]$$

 $\geq E \left[\log \frac{p(X, y|X)}{p(y|X, \lambda_{old})} \middle| X, \lambda_{old} \right]$ inequality) $= E \left[\log p(X, y|\lambda) \middle| X, \lambda_{old} \right] - E \left[\log p(y|X, \lambda_{old}) \middle| X, \lambda_{old} \right]$

$$= Q(\lambda | \lambda_{old}) - E[\log p(y|X, \lambda_{old}) | X, \lambda_{old}]$$

$$=g(\lambda|\lambda_{old})$$

hi:

Dấu = xảy ra khi:
$$\lambda = \lambda_{old}$$
 (Jensen inequality)

Tốc đô hôi tu của EM:

- Chậm hơn so với các phương pháp tựa Newton, GD
- Có tính ổn định (ko cần xác định step size như GD)
- Đơn giản

ttp://home.ustc.edu.cn/~xiaosong/ppt/EM_tutorial.pdf

Có
$$\begin{cases} l(\lambda_{old}; X) = g(\lambda_{old} | \lambda_{old}) \\ l(\lambda; X) > g(\lambda | \lambda_{old}) \ \forall \lambda \neq \lambda_{old} \end{cases}$$

Tìm được
$$\lambda^*$$
 sao cho $g(\lambda^*|\lambda_{old}) > g(\lambda_{old}|\lambda_{old})$ $\rightarrow l(\lambda^*; X) > l(\lambda_{old}; X)$

Đưa được bài toán:

Về bài toán:

$$\lambda = argmax_{\lambda}l(\lambda; X)$$

$$\lambda = argmax_{\lambda}g(\lambda|\lambda_{old})$$

$$= argmax_{\lambda}Q(\lambda|\lambda_{old})$$

EM đảm bảo tìm được local MLE. Việc tìm được global MLE hay không phụ thuộc vào giá trị λ^0 khởi tạo ban đầu

> EM cho HMM:

- E-step: Tính
- $\circ \quad Q(\lambda|\lambda_{old}) = E[\log p(X, y|\lambda) | X, \lambda_{old}]$
- $= \sum_{v} p(y|X, \lambda_{old}) \cdot \log p(X, y|\lambda)$

- Xác suất chuyển nhãn: $a_{ij} = p(y_i|y_j)$
- Xác suất sinh từ: $b_{y_i}(x_t) = p(x_t|y_i)$
- Xác suất nhãn ở vị trí đầu tiên: $\pi_i = \overline{p}(y_i)$ Gọi tập toàn bộ tham số của mô hình là $\lambda = \{a_{ij}, b_j(x_t), \pi_i\}$

$$= \sum_{y} \left(p(y|X, \lambda_{old}) \cdot \left(\sum_{k=1}^{M} \log \left(\pi_{y_1^k} \right) + \sum_{k=1}^{M} \sum_{t=1}^{T} \log \left(b_{y_t^k}(x_t^k) \right) + \sum_{k=1}^{M} \sum_{t=2}^{T} \log \left(a_{y_{t-1}^k y_t^k} \right) \right) \right)$$

• M-step: giải $\lambda = argmax_{\lambda}Q(\lambda|\lambda_{old})$ sử dụng phương pháp nhân tử Lagrange được nghiệm là:

$$\pi_{i} = \frac{\sum_{k=1}^{M} P(y_{1}^{k} = i, X | \lambda_{old})}{\sum_{k=1}^{M} P(X | \lambda_{old})}$$

$$b_{i}(v) = \frac{\sum_{k=1}^{M} \sum_{t=1}^{T} P(X, y_{t}^{k} = i | \lambda_{old})}{\sum_{k=1}^{M} \sum_{t=1}^{T} P(X, y_{t}^{k} = i | \lambda_{old})}$$

$$a_{ij} = \frac{\sum_{k=1}^{M} \sum_{t=1}^{T-1} P(y_t^k = i, y_{t+1}^k = j, X | \lambda_{old})}{\sum_{k=1}^{M} \sum_{t=1}^{T-1} P(y_t^k = i, X | \lambda_{old})}$$

Gần giống với hàm cross-entropy (Phụ lục)

\succ Công thức cập nhật a_{ij} :

$$a_{ij} = \frac{\sum_{k=1}^{M} \sum_{t=1}^{T-1} P(y_t^k = i, y_{t+1}^k = j, X | \lambda_{old})}{\sum_{k=1}^{M} \sum_{t=1}^{T-1} P(y_t^k = i, X | \lambda_{old})}$$

Để tính các xác suất biên $P(y_t^k = i, y_{t+1}^k = j, X | \lambda_{old})$, dùng thuật toán **forward-backward**

$$P(q_t = i, q_{t+1} = j, O | \lambda) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$$

$$\beta_t(i) = P(o_{t+1}, o_{t+2} \dots o_T | q_t = i, \lambda)$$

$$a_{ij} = \frac{\sum_{k=1}^{M} \sum_{t=1}^{T-1} P(y_t^k = i, y_{t+1}^k = j, X | \lambda_{old})}{\sum_{k=1}^{M} \sum_{t=1}^{T-1} P(y_t^k = i, X | \lambda_{old})}$$

$$\alpha_{t}(j) = P(o_{1}, o_{2} \dots o_{t}, q_{t} = j | \lambda)$$

$$\alpha_{t,2}(N)$$

$$\alpha_{N}$$

$$\alpha_{N}$$

$$\alpha_{N}$$

$$\alpha_{t,2}(3)$$

$$\alpha_{t,2}(3)$$

$$\alpha_{t,2}(2)$$

$$\alpha_{t,2}(2)$$

$$\alpha_{t,2}(2)$$

$$\alpha_{t,2}(2)$$

$$\alpha_{t,2}(2)$$

$$\alpha_{t,2}(1)$$

$$\alpha_{t,1}(2)$$

$$\alpha_{t,1}(1)$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{5}$$

 \succ Công thức cập nhật $b_i(x_t=v)$, π_i :

$$\pi_i = \frac{\sum_{k=1}^{M} P(y_1^k = i, X | \lambda_{old})}{\sum_{k=1}^{M} P(X | \lambda_{old})}$$

$$b_{i}(v) = \frac{\sum_{k=1}^{M} \sum_{t=1}^{T} \sum_{k=1}^{T} P(X, y_{t}^{k} = i | \lambda_{old})}{\sum_{k=1}^{M} \sum_{t=1}^{T} P(X, y_{t}^{k} = i | \lambda_{old})}$$

→ Vẫn sử dụng thuật toán forward – backward để tính

HMM – Shortcomings

> HMM mô hình hóa được sự phụ thuộc cục bộ:

$$p(x,y) = \prod_{i=1}^{T} p(y_i|y_{i-1}).p(x_i|y_i)$$

Với POS tag / NER thì những đặc trưng của từ ở xa vẫn có thể ảnh hưởng đến nhãn của từ hiện tại

ightharpoonup p(y|x) phải tính gián tiếp qua p(x, y). HMM phải mô hình hóa cả $p(x_i|y_i)$

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Content

- > NER Problem
- ➤ Machine Learning Approaches for NER
 - Compare Generative vs Discriminative Models
 - Generative model: HMM
 - Discriminative model : MaxEnt Model
 - MaxEnt Model Overview:
 - Intuition
 - Features Function
 - Models
 - Maximum Entropy Markov Model (MEMM)
 - Conditional Random Fields (CRF)
- > Reference

Maximum Entropy Model (MaxEnt)

Ý tưởng của MaxEnt

Input
$$\longrightarrow$$
 { features } \longrightarrow Tổ hợp tuyến tính các features
$$\sum_i w_i f_i \qquad p(c|x) = \frac{1}{Z} \exp(\sum_i w_i f_i)$$

Lý do dùng hàm exp: VD với bài toán phân loại nhị phân $p(c|x) \in [0,1]$ cần được tính dựa trên $\sum_i w_i f_i \in (-\infty, +\infty)$ Để đưa 2 vế của phép gán về cùng miền giá trị, cần tính như sau:

$$\ln\left(\frac{p(y=true|x)}{1-p(y=true|x)}\right) = w \cdot f$$

$$p(y=true|x) = \frac{e^{w \cdot f}}{1+e^{w \cdot f}}$$

$$p(y=false|x) = \frac{1}{1+e^{w \cdot f}}$$

$$p(y=false|x) = \frac{1}{1+e^{w \cdot f}}$$

$$p(c|x) = \frac{\exp\left(\sum_{i=0}^{N} w_{ci} f_i\right)}{\sum_{c' \in C} \exp\left(\sum_{i=0}^{N} w_{c'i} f_i\right)}$$

$$p(c|x) = \frac{\exp\left(\sum_{i=0}^{N} w_{ci} f_i\right)}{\sum_{c' \in C} \exp\left(\sum_{i=0}^{N} w_{c'i} f_i\right)}$$

MaxEnt – Features

> Feature Function

- Các features sẽ được trích rút bởi feature function
- Giá trị của feature function: $\in \{0, 1\}$

$$f_1(c, \mathbf{x}, i) = \begin{cases} 1, & isCapital(\mathbf{x}_i) \ and \ c = B - LOC \\ 0, & con \ lai \end{cases}$$

$$f_2(c, \mathbf{x}, \mathbf{i}) = \begin{cases} 1, & x_{i-1} = \text{"\^ong" and isCapital}(x_i) \text{ and } c = B - PER \\ 0, & c\^on \ lai \end{cases}$$

$$p(c|x) = \frac{\exp\left(\sum_{i=0}^{N} w_{ci} f_i(c, x)\right)}{\sum_{i=0}^{N} \exp\left(\sum_{i=0}^{N} w_{c'i} f_i(c', x)\right)} \qquad \qquad \hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|x)$$

Tổng_Công_ty B-ORG
Đầu_tư I-ORG
phát_triểnI-ORG
hạ_tầng I-ORG
và I-ORG
đầu_tư I-ORG
tài_chính I-ORG
Việt_Nam
?????

Cần phải tự định nghĩa các thuộc tính (isCapital, x_{i-1} ,...) và các features (tổ hợp thuộc tính)

MaxEnt - Models

- > Các mô hình thuộc họ MaxEnt Model:
 - Classification:
 - Logistic Regression binary classification
 - Multinomial Logistic Regression multiclass classification
 - Sequence Labeling:
 - Maximum Entropy Markov Model (MEMM)
 - Conditional Random Fields (CRF)

Content

- > NER Problem
- Machine Learning Approaches for NER
 - Compare Generative vs Discriminative Models
 - Generative model : HMM
 - Discriminative model : MaxEnt Model
 - MaxEnt Model Overview
 - Maximum Entropy Markov Model (MEMM):
 - Overview
 - Shortcoming: Label bias problem
 - Conditional Random Fields (CRF)
- > Reference

Maximum Entropy Markov Model (MEMM)

> MEMM : là mô hình MaxEnt dùng cho bài

toán Sequence Labeling

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1}, \mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))}{Z(y_{i-1}, \mathbf{x}_{1:n})}$$

→ Giải quyết được cả 2 vấn đề của HMM (phụ thuộc cục bộ & tính toán gián tiếp qua p(x,y))

MEMM – Label bias problem

Quá trình suy diễn trong MEMM

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1},\mathbf{x}_{1:n})$$

Probability of path 1-> 1-> 1:

• $0.4 \times 0.45 \times 0.5 = 0.09$

Probability of path 2->2->2:

 $\bullet 0.2 \times 0.3 \times 0.3 = 0.018$

Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06

Probability of path 1->1->2->2:

 $\bullet 0.4 \times 0.55 \times 0.3 = 0.066$

Trong khi đáng ra: path 1-> 2-> 2: mới là tốt nhất

MEMM – Label bias problem

> Quá trình suy diễn trong MEMM (Viterbi)

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1},\mathbf{x}_{1:n})$$

Mô hình thiên về các **state có ít cạnh** đi ra từ nó hơn

→ Không normalize cục bộ

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^{T}\mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{1:n}))}{Z(y_{i-1}, \mathbf{x}_{1:n})}$$

→ Giải pháp : Conditional Random Fields

Content

- > NER Problem
- Machine Learning Approaches for NER
 - Compare Generative vs Discriminative Models
 - Generative model : HMM
 - Discriminative model : MaxEnt Model
 - MaxEnt Model Overview
 - Maximum Entropy Markov Model (MEMM)
 - Conditional Random Fields (CRF):
 - Overview
 - Inference: y^* , Z, $p(y_{m-1}, y_m|x)$
 - Learning
 - Regularization
- > Reference

Conditional Random Fields

Conditional Random Field (CRF)

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

 ϕ : potential factor (thành phần cấu tạo của Markov network)

- Bayesian Network: đồ thị
 có hướng; cạnh ~ xác suất
 có điều kiện
- Markov Netwok: đồ thị vô hướng; cạnh ~ potential factor

Conditional Random Fields

Công thức chung:

Viết gọn lại:

$$P(y|x) = \frac{1}{Z(x)} \exp\left(\sum_{i=1}^{n} \sum_{k=1}^{L} \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$

Với:

$$Z(x) = \sum_{y \in Y} \exp \left(\sum_{i=1}^{n} \sum_{k=1}^{L_0} \lambda_k h_k(y_{i-1}, y_i, x, i) + \sum_{i=1}^{n} \sum_{k=1}^{L_t} \mu_k g_k(y_i, x, i) \right)$$

$$T: Số từ t gán nhãn Y: Tập các$$

n: Số lượng các đặc trưng

T: Số từ trong câu cần

Y: Tập các khả năng gán nhãn

- > Trong quá trình dự đoán & học của CRF, các đại lượng cần được tính toán bao gồm:
 - Chuỗi nhãn dự đoán: $y^* = argmax_{y \in Y} p(y|x, \theta)$
 - Xác suất biên : $p(y_t, y_{t-1}|x)$ (phục vụ cho việc học của mô hình)
 - Đại lượng chuẩn hóa: Z(x)

Độ phức tạp để tính các đại lượng trên theo cách brute-force là không khả thi

> Sử dụng các thuật toán quy hoạch động để giảm độ phức tạp

> Chọn chuỗi nhãn tốt nhất cho đầu vào x:

Tức là cần tìm $y^* = argmax_{y \in Y} p(y|x, \theta)$ với $|Y|^n$ khả năng gán nhãn

$$y^* = argmax_{y \in Y^n} p(y|x, \theta)$$

$$= argmax_{y \in Y^n} \frac{1}{Z(x)} \exp\left(\sum_{i=1}^n \sum_{k=1}^L \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$

$$= argmax_{y \in Y^n} \left(\sum_{i=1}^n \sum_{k=1}^L \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$

→ Sử dụng thuật toán Viterbi

n: Số lượng các đặc trưng

T: Số từ trong câu cần

gán nhãn

Y: Tập nhãn

> Thuật toán Viterbi

$$\mathbf{y}^* = argmax_{\mathbf{y} \in Y^n} \left(\sum_{i=1}^n \sum_{k=1}^L \theta_k f_k(y_{i-1}, y_i, x, i) \right)$$

Đặt
$$g_i(y_{i-1}, y_i) = \sum_{k=1}^{L} \theta_k f_k(y_{i-1}, y_i, x, i)$$
, ta được:

$$\mathbf{y}^* = argmax_{y \in Y^n} \left(\sum_{i=1}^n g_i(y_{i-1}, y_i) \right)$$

Điểm của nhãn s ở vị trí thứ m:

 g_i ~ cạnh δ : giá trị max của các đường đi tới đỉnh đó

$$\delta_{m}(s) \stackrel{\Delta}{=} \max_{\{y_{1}, \dots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + g_{m}(y_{m-1}, s) \right]$$

$$y^1 = y_4 y_1 y_3 y_5 y_7$$
 $y^2 = y_4 y_1 y_3 y_5 y_2$

Word x_1 takes tag y_4

Để tìm chuỗi nhãn tối ưu, Viterbi thực hiên:

- Gán nhãn cho từng vị trí (trái -> phải)
- Dùng quy hoạch động: Dựa trên các kết quả tính trước đó để tính điểm cho nhãn ở vị trí hiện tại
- Lưu lại các kết quả trung gian để quay lui lại tìm chuỗi nhãn tối ưu

> Thuật toán Viterbi

$$\delta_{m}(s) \stackrel{\Delta}{=} \max_{\{y_{1}, \dots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + g_{m}(y_{m-1}, s) \right]$$

Khởi tạo:

$$\delta_1(s) = g_1(y_0, s); \forall s \in \mathcal{Y}; y_0 = \text{start}$$

Đệ quy:

$$\delta_m(s) = \max_{y \in \mathcal{Y}} \left[\delta_{m-1}(y) + g_m(y, s) \right]$$

 $\delta_m(s)$

Độ phức tạp: $O(K^2n)$

với K: số lượng nhãn, n độ dài

input

\succ Tính Z(x):

$$Z(x) = \sum_{y \in Y} \exp\left(\sum_{i=1}^{n} \sum_{k=1}^{L} \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$

Dùng thuật toán **forward** hoặc **backward** giúp giảm độ phức tạp : $O(K^n) o O(K^2n)$

n: Số lượng các đặc trưng

T: Số từ trong câu cần gán nhãn

Y: Tập các khả năng gán nhãn

K = |Y|: số lượng

nhãn

> Tính Z(x) dùng thuật toán forward:

$$Z(x) = \sum_{y \in Y} \exp\left(\sum_{i=1}^{n} \sum_{k=1}^{L} \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$

Đặt:
$$M_i(y_{i-1}, y_i, x) = \exp\left(\sum_{k=1}^L \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$

$$Z(x) = \sum_{y \in Y} \prod_{i=1}^{n} M_{i}(y_{i-1}, y_{i}, x)$$

n: Số lượng các đặc trưng

T: Số từ trong câu cần gán nhãn

Y: Tập các khả năng gán nhãn

K = |Y|: số lượng

nhãn

> Tính Z(x) dùng thuật toán forward:

$$Z(x) = \sum_{y \in Y} \prod_{i=1}^{n} M_{i}(y_{i-1}, y_{i}, x)$$

$$\alpha_{1}(y_{1}) = M_{1}(y_{0}, y_{1})$$

$$\alpha_{2}(y_{2}) = \sum_{y_{1} \in \mathcal{Y}} M_{2}(y_{1}, y_{2})\alpha_{1}(y_{1})$$

$$\alpha_{3}(y_{3}) = \sum_{y_{2} \in \mathcal{Y}} M_{3}(y_{2}, y_{3})\alpha_{2}(y_{2})$$

$$\vdots$$

$$\alpha_m(y_m) = \sum_{y_{m-1}} M_m(y_{m-1}, y_m) \alpha_{m-1}(y_{m-1}); 2 \le m \le n$$

Khi tính xong với m từ 1 -> n, Z(x) được tính như sau:

$$\sum_{y_n \in \mathcal{Y}} \alpha_n(y_n) = \sum_{\underline{y} \in \mathcal{Y}^n} \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}}) = \mathbf{Z}(\underline{\mathbf{x}}, \boldsymbol{\theta}).$$

Forward algorithm: cơ bản giống Viterbi.

Chỉ khác ở chỗ: Viterbi lấy **max** còn Forward lấy **sum**

> Tính Z(x) dùng thuật toán backward:

$$Z(x) = \sum_{y \in Y} \prod_{i=1}^{n} M_{i}(y_{i-1}, y_{i}, x)$$

$$\beta_m(y_m) = \sum_{y_{m+1} \in \mathcal{Y}} M_{m+1}(y_m, y_{m+1}) \beta_{m+1}(y_{m+1}); 1 \le m \le n-1$$

 $\beta_n(y_n) = 1$

Khi tính xong với m từ n->1, Z(x) được tính như sau:

$$Z(\underline{\mathbf{x}},\boldsymbol{\theta}) = \sum_{y_1 \in \mathcal{Y}} M_1(y_0, y_1) \beta_1(y_1).$$

Giống với forward nhưng theo chiều ngược lại

 \succ Tính xác suất biên : $p(y_{m-1}, y_m|x)$

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} p(\underline{y} | \mathbf{x})$$

$$= \frac{1}{Z(\underline{\mathbf{x}})} M_m(y_{m-1}, y_m, \underline{\mathbf{x}}) \times \sum_{\{y_1, \dots, y_{m-2}\}} \prod_{i=1}^{m-1} M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

$$\times \sum_{\{y_{m+1}, \dots, y_n\}} \prod_{i=m+1}^{n} M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

Sử dụng thuật toán **forward-backward** để tính:

$$p(y_{m-1},y_m|\underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \alpha_{m-1}(y_{m-1}) M_m(y_{m-1},y_m,\underline{\mathbf{x}}) \beta_m(y_m).$$

Việc ước lượng tham số (học) của CRF được thực hiện dựa trên phương pháp Maximum Likelihood

Tập dữ liệu huấn luyện:

D: số lượng

$$\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, y^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, y^{(N)})\}$$

Hàm mục tiêu: Negative Log-likelihood

$$L(\mathcal{D}; \boldsymbol{\theta}) \triangleq -\sum_{q=1}^{N} \log p(\underline{y}^{(q)} | \underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})$$

$$D: s \tilde{o} \text{ lurong}$$

$$c \tilde{a} \tilde{c} \text{ divorng}$$

$$= \sum_{q=1}^{N} \left\{ \log Z(\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) - \sum_{i=1}^{n_q} \sum_{j=1}^{D} \theta_j f_j(y_{i-1}^{(q)}, y_i^{(q)}, \underline{\mathbf{x}}^{(q)}, i) \right\}$$

$$= \sum_{q=1}^{N} \left\{ \log Z(\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) - \sum_{j=1}^{D} \theta_j F_j(\underline{\mathbf{x}}^{(q)}, \underline{y}^{(q)}) \right\}.$$

$$= \sum_{q=1}^{N} \sum_{y \in Y \setminus \{\underline{y}^{(q)}\}} \sum_{j=1}^{D} \theta_j F_j(\underline{\mathbf{x}}^{(q)}, \underline{y})$$

Phân biệt **likelihood** \mathcal{L} vs **probability** P:

- Likelihood $\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{x})$: Đo độ tốt của mô hình dựa trên dữ liệu huấn luyện x
- Probability $P(x|\theta)$: Xác suất để mô hình tạo ra được x

Phương pháp Maximum Likelihood: xấp xỉ tham số θ của mô hình sao cho:

$$\mathcal{L}(\boldsymbol{\theta};\boldsymbol{x}) = \boldsymbol{P}(\boldsymbol{x}|\boldsymbol{\theta})$$

Tức là, mô hình cần học tham số để dữ liệu sinh ra từ mô hình khớp với dữ liệu huấn luyện nhất có thể

$$p(y|x) = \frac{1}{Z(x)} \exp\left(\sum_{i=1}^{n} \sum_{k=1}^{L} \theta_k f_k(y_{i-1}, y_i, x, i)\right)$$
$$Z(x) = \sum_{\underline{y} \in Y} \sum_{j=1}^{D} \theta_j F_j(\underline{\mathbf{x}}^{(q)}, \underline{y})$$

Hàm lồi

> Tính Gradient và câp nhật tham số:

$$\begin{split} & \text{Finh Gradient vá cáb nhất tham số:} \\ & L(\mathcal{D};\theta) = \sum_{q=1}^{N} \left\{ \log Z(\underline{\mathbf{x}}^{(q)};\theta) - \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}^{(q)},\underline{\mathbf{y}}^{(q)}) \right\} \\ & \frac{\partial L(\mathcal{D};\theta)}{\partial \theta_{k}} = \sum_{a=1}^{N} \left\{ \frac{\partial}{\partial \theta_{k}} \log Z(\underline{\mathbf{x}}^{(q)};\theta) - F_{k}(\underline{\mathbf{x}}^{(q)},\underline{\mathbf{y}}^{(q)}) \right\} \\ & \frac{\partial}{\partial \theta_{k}} \log Z(\underline{\mathbf{x}};\theta) = \frac{1}{Z(\underline{\mathbf{x}};\theta)} \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} \frac{\partial}{\partial \theta_{k}} \left[\exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{\mathbf{y}}) \right] \\ & = \frac{1}{Z(\underline{\mathbf{x}};\theta)} \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} F_{k}(\underline{\mathbf{x}},\underline{\mathbf{y}}) \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{\mathbf{y}}) \\ & = \sum_{i=1}^{n} \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(\underline{\mathbf{y}}|\underline{\mathbf{x}};\theta) \\ & = \sum_{i=1}^{n} \sum_{y_{i-1},y_{i} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i-1},y_{j} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i}} f_{k}(y_{i}|\underline{\mathbf{x}};\theta) p(y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i}} f_{k}(y_{i}|\underline{\mathbf{x}};\theta) p(y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i}} f_{k}(y_{i}|\underline{\mathbf{x}};\theta) p(y_{i}|\underline{\mathbf{x}};\theta) \\ & = \sum_{j=1}^{n} \sum_{y_{i}} f_{k}(y$$

> Thuật toán cập nhật tham số theo gradient:

- Generalized iterative scaling: độ chính xác cao nhưng tối ưu chậm
- Gradient Descent: Cần chọn learning rate phù hợp
- Stochastic Gradient Descent : H\u00f6 tr\u00f3 online learning
- Conjugate Gradient : hội tụ nhanh
- Limited-memory BFGS (L-BFGS): hội tụ nhanh, áp dụng được cho dữ liệu lớn

Vấn đề chọn learning rate trong gradient descent

> Thuật toán cập nhật tham số theo gradient:

Dataset	Method	KL Div.	Acc	Iters	Evals	Time
rules	gis	5.124×10^{-2}	47.00	1186	1187	16.68
	iis	5.079×10^{-2}	43.82	917	918	31.36
	steepest ascent	5.065×10^{-2}	44.88	224	350	4.80
	conjugate gradient (fr)	5.007×10^{-2}	44.17	66	181	2.57
	conjugate gradient (prp)	5.013×10^{-2}	46.29	59	142	1.93
	limited memory variable metric	5.007×10^{-2}	44.52	72	81	1.13
lex	gis	1.573×10^{-3}	46.74	363	364	31.69
	iis	1.487×10^{-3}	42.15	235	236	95.09
	steepest ascent	3.341×10^{-3}	42.92	980	1545	114.21
	conjugate gradient (fr)	1.377×10^{-3}	43.30	148	408	30.36
	conjugate gradient (prp)	1.893×10^{-3}	44.06	114	281	21.72
	limited memory variable metric	1.366×10^{-3}	43.30	168	176	20.02
summary	gis	1.857×10^{-3}	96.10	1424	1425	107.05
	iis	1.081×10^{-3}	96.10	593	594	188.54
	steepest ascent	2.489×10^{-3}	96.33	1094	3321	190.22
	conjugate gradient (fr)	9.053×10^{-5}	95.87	157	849	49.48
	conjugate gradient (prp)	3.297×10^{-4}	96.10	112	537	31.66
	limited memory variable metric	5.598×10^{-5}	95.54	63	69	8.52
shallow	gis	3.314×10^{-2}	14.19	3494	3495	21223.86
	iis	3.238×10^{-2}	5.42	3264	3265	66855.92
	steepest ascent	7.303×10^{-2}	26.74	3677	14527	85062.53
	conjugate gradient (fr)	2.585×10^{-2}	24.72	1157	6823	39038.31
	conjugate gradient (prp)	3.534×10^{-2}	24.72	536	2813	16251.12
	limited memory variable metric	3.024×10^{-2}	23.82	403	421	2420.30

Source: A comparison of algorithms for maximum entropy parameter estimation

https://dl.acm.org/doi/pdf/10.3115/1118853.1118871 : các phương pháp tối ưu cho hàm log likelihood

> Thuật toán cập nhật tham số theo gradient:

- Thuật toán Limited-memory BFGS (L-BFGS):
 - o Thuộc họ Quasi-Newton (giúp đơn giản việc tính toán $(\nabla^2 F(x_k))^{-1}$ so với phương pháp Newton thuần túy)
 - O Các phương pháp Quasi-Newton có các cách khác nhau để tính ma trận $H_k = g(H_{k-1}, \nabla f(x_{k-1}), \nabla f(x_k))$ $\sim (\nabla^2 F(x_k))^{-1}$
 - \circ BFGS: Tính H_k tính dựa trên H_0, \dots, H_{k-1}
 - o L-BFGS: Tính H_k tính dựa trên H_{k-m} , ..., H_{k-1}
- → Được sử dụng nhiều để tối ưu các bài toán Maximum Likelihood do:
 - Hội tụ nhanh (đặc điểm của phương pháp Newton cho hàm tuyến tính)
 - Áp dụng được với dữ liệu nhiều chiều (Limitedmemory)

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/toward-higher-order-training-a-progressive-batching-l-bfgs-method.html

CRF – Regularization

> L1- Regularization

K: số lượng
$$L(D;\theta) = L(D;\theta) + \lambda \sum_{j=1}^{K} |\theta_j|$$
 các đặc trưng \rightarrow Chọn lọc đặc trưng

Cập nhật θ với các bước như nhau do $\frac{dL_1(w)}{dw}=\pm 1$ \rightarrow Có nhiều khả năng $\exists \ j \mid \theta_j=0$

> L2- Regularization

$$L(D; \theta) = L(D; \theta) + \lambda \cdot ||\theta||_{2}^{2}$$

→ Tránh overfitting

 θ càng bé -> bước cập nhật càng nhỏ do $\frac{dL_2(w)}{dw} \sim \theta$ \Rightarrow Khó để θ_j nhận giá trị 0

References

- Generative model vs Discriminative model:
 - Intuition: https://medium.com/@mlengineer/generative-and-discriminative-models
 - Compare models: An Introduction to Conditional Random Fields https://arxiv.org/abs/1011.4088
- Hidden Markov Model:
 - HMM for POS tag: Speech and Language Processing. Daniel Jurafsky & James H. Martin, Chapter A: Hidden Markov Models & Chapter 8: Sequence Labeling for Parts of Speech and Named Entity
 - HMM full overview: Hidden Markov Models Part 2: Posterior Decoding, Learning
 - Training strategies for HMM:
- EM algorithm:
 - EM idea: https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/em-hmm.pdf &
 - Why Does the EM Algorithm Work: http://www.columbia.edu/~mh2078/MachineLearningORFE/EM_Algorithm.pdf
 - Apply EM for HMM: https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/pdf/bilmes-em-algorithm.pdf
- MaxEnt Model:
 - Idea: Hidden Markov And Maximum Entropy Models: https://www.cs.jhu.edu/~jason/papers/jurafsky+martin.bookdraft07.ch6.pdf
 - How MaxEnt Models improve HMM's shortcomings: http://www.cs.cmu.edu/~epxing/Class/10708-07/Slides/lecture12-CRF-HMM-annotation.pdf

References

- CRF:
 - Detail: An Introduction to Conditional Random Fields https://arxiv.org/abs/1011.4088
 - CRF detail easier to understand: A Tutorial On Conditional Random Fields With Applications To Music Analysis
 https://perso.telecom-paristech.fr/essid/teach/CRF_tutorial_ISMIR-2013.pdf
 - Training algorithms for CRF: Shallow Parsing with Conditional Random Fields https://www.aclweb.org/anthology/N03-1028.pdf
 & Efficient Training of Conditional Random Fields https://dirichlet.net/pdf/wallach02efficient.pdf
- Regularization in CRF:
 - Maximum entropy sequence models, Smoothing
 https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1162/handouts/MaxentTutorial-16x9-Smoothing-6up.pdf
 - Why L1 norm for sparse models: https://stats.stackexchange.com/questions/45643/why-l1-norm-for-sparse-models

Appendix

- Generative vs Discriminative Models
- Probabilistic Graphical Models:
 - Graphic Model
 - Bayesian Network (Directed Graphic Model)
 - Markov Network (Undirected Graphic Model)
 - Conditional Independence
- Maximum Likelihood Estimator (MLE) vs Maximum a Posteriori estimation (MAP)
- Maxent Model, Log-linear model, feature function, smoothing
- Prior probability vs posterior probability
- Optimization:
 - L-BFGS
 - Conjugate Gradient
 - Newton Method, Quasi Newton Method
 - EM
- Regularization: L1, L2

Thanks for Watching