Foundations of Reversibility in Finite-State Devices

Martin Kutrib

Institut für Informatik, Universität Giessen, Germany

Handout for a Course at the International Training School on Reversible Computation in Toruń August 2017

Contents

- → Very Basics on Finite-State Devices
- → What Does Reversibility Actually Mean?
- → (Minimal) Reversible Finite Automata
- → Pushdown Stores and Queues
- → Time Symmetry

Starting Point

Deterministic devices with a finite number of discrete internal states. The machines have a read-only input tape, may be equipped with further resources, and evolve in discrete time. Given a configuration representing the complete "global state" of a device, the transition function is used to compute the successor configuration.

Recall:

Example: deterministic finite automaton (DFA)

$$M = \langle S, \Sigma, \delta, s_0, F \rangle$$

- \rightarrow S is the finite set of internal states
- \rightarrow $s_0 \in S$ is the initial state
- \rightarrow $F \subseteq S$ is the set of accepting states
- $\rightarrow \Sigma$ is the finite set of input symbols
- \bullet $\delta: S \times \Sigma \to S$ is the partial transition function

Example: deterministic finite automaton (DFA)

Example: deterministic finite automaton (DFA)

Language accepted by the DFA: the set of all accepted strings.

Example: deterministic pushdown automaton (DPDA)

$$M = \langle S, \Sigma, \Gamma, \delta, s_0, F, \bot \rangle$$

- \rightarrow S is the finite set of internal states
- \rightarrow $s_0 \in S$ is the initial state
- \rightarrow $F \subseteq S$ is the set of accepting states

Example: deterministic pushdown automaton (DPDA)

$$M = \langle S, \Sigma, \Gamma, \delta, s_0, F, \bot \rangle$$

- \rightarrow Γ is the finite set of pushdown symbols
- ightarrow $\perp \notin \Gamma$ is the empty pushdown symbol

Example: deterministic pushdown automaton (DPDA)

$$M = \langle S, \Sigma, \Gamma, \delta, s_0, F, \bot \rangle$$

ightharpoonup is the finite set of input symbols

Example: deterministic pushdown automaton (DPDA)

Example: deterministic pushdown automaton (DPDA)

The language $\{a^n \$ a^{2n} \mid n \ge 0\}$ is accepted by some DPDA.

Example: deterministic pushdown automaton (DPDA)

The language $\{a^n \$ a^{2n} \mid n \ge 0\}$ is accepted by some DPDA.

Reversible Computations

- → In essence, every configuration has at most one unique successor configuration and at most one unique predecessor configuration.
- → Reversibility is meant with respect to the possibility of stepping the computation back and forth.

What does reversibility mean?

→ Basically, the definition of logical reversibility requires that the device is deterministic and that any configuration must have at most one predecessor.

But:

- → In which way is the predecessor configuration computed?
- → Do we have to consider all possible configurations?

In which way is the predecessor configuration computed?

→ May we use a universal device? Do we have to use a device of the same type? Or else a device with the same computational power?

Example An irreversible DFA accepting the language a^*bb^* .

In which way is the predecessor configuration computed?

→ May we use a universal device? Do we have to use a device of the same type? Or else a device with the same computational power?

Example An irreversible DFA accepting the language a^*bb^* .

An equivalent DFA with lookahead two.

Do we have to consider all possible configurations?

→ Or only configurations that are reachable from some initial configurations, that is, configurations that actually occur in computations?

Example A DFA and an unreachable configuration.

Recall Minimization:

- → A finite automaton is said to be minimal if its number of states is minimal with respect to the accepted language.
- → For a given n-state DFA one can efficiently compute an equivalent minimal automaton in $O(n \log n)$ time.
- → The minimal DFA accepting a given regular language is unique up to isomorphism.

Problems

- → Is any regular language accepted by some reversible DFA?
- → If not, is it decidable whether a regular language is accepted by a reversible DFA?
- → Is the minimal reversible DFA unique?
- → Can the minimal reversible DFA be constructed?
- → How about the size of a minimal reversible DFA compared with the size of a minimal DFA?

Is any regular language accepted by some reversible DFA?

→ Languages: $a^*b^kb^*$, $k \ge 1$.

irreversible for lookahead k

reversible for lookahead k+1

Theorem

[Angluin 1982; K., Worsch 2014]

For any $k \geq 1$, $\mathcal{L}(\text{REV}(k+1)\text{-DFA}) \supset \mathcal{L}(\text{REV}(k)\text{-DFA})$.

Is any regular language accepted by some reversible DFA with a certain lookahead?

Theorem

[Angluin 1982; K., Worsch 2014]

$$REG \supset \bigcup_{k>1} \mathscr{L}(REV(k)-DFA).$$

- → Let $L \subseteq \Sigma^*$ be a language from $\mathscr{L}(\text{REV}(2)\text{-DFA}) \setminus \mathscr{L}(\text{REV}(1)\text{-DFA}).$
- \rightarrow Define a regular substitution by $s(a) = a\#^*$, for $a \in \Sigma$.
- → Language s(L) is regular.
- → For any $k \ge 1$, language s(L) contains all words from $s(L) \cap (\Sigma \#^k)^*$.
- → If s(L) is accepted by some REV(k)-DFA, it is accepted by some REV(1)-DFA, a contradiction.

Is any regular language accepted by some reversible DFA with a certain lookahead?

Theorem [K., Worsch 2014] $\mbox{unaryREG} = \bigcup_{k>1} \mathscr{L}(\mbox{unaryREV}(k)\mbox{-DFA}).$

Is any regular language accepted by some reversible DFA with a certain lookahead?

Theorem

[K., Worsch 2014]

unaryREG = $\bigcup_{k>1} \mathscr{L}(\text{unaryREV}(k)\text{-DFA})$.

Theorem

[Kondacs, Watrous 1997]

Every regular language is accepted by a reversible two-way DFA.

Is the minimal reversible DFA unique?

 \rightarrow Language: $\{aa, ab, ba\}$.

No: Let L be a regular language accepted by some reversible DFA. Then a minimal reversible DFA accepting L is not necessarily unique, even not up to isomorphism.

Decidability - Key tool.

Theorem (Forbidden Patterns)

[Holzer, Jakobi, K. 2015]

Let $M=\langle S, \Sigma, \delta, s_0, F \rangle$ be a minimal deterministic finite automaton. The language L(M) can be accepted by a reversible DFA if and only if there do not exist useful states $p,q\in S$, a letter $a\in \Sigma$, and a word $w\in \Sigma^*$ such that $p\neq q$, $\delta(p,a)=\delta(q,a)$, and $\delta(q,aw)=q$.

Decidability - Key tool.

Example

- → Both languages a^*ba^* and b^*ab^* are accepted by reversible DFA,
- → but their union is not.

Decidability.

- → The problem to decide whether a given DFA is reversible is trivial by inspection of the transition function.
- → The regular language reversibility problem, that is, given a DFA M, decide whether L(M) is accepted by any reversible DFA, is NL-complete.
- → The problem to decide whether a given DFA is already a minimal reversible DFA is NL-complete.

Size trade-off between minimal and minimal reversible DFA.

Lower bound:

$$\sum_{i=1}^{n} F_i = F_{n+2} - 1 \in \Omega\left(\frac{1+\sqrt{5}}{2}\right)^n = \Omega(\Phi^n)$$

that is, $\sim 1.618^n$, with $\Phi = (1 + \sqrt{5})/2$, the golden ratio.

Size trade-off between minimal and minimal reversible DFA.

Lower bound:

$$\sum_{i=1}^{n} F_i = F_{n+2} - 1 \in \Omega\left(\frac{1+\sqrt{5}}{2}\right)^n = \Omega(\Phi^n) \sim 1.618^n.$$

Theorem (Upper Bound)

[Holzer, Jakobi, K. 2015]

Let M be a minimal n-state DFA that accepts a 'reversible language'. Then a minimal reversible DFA for L(M) has at most 2^{n-1} states.

Size trade-off between minimal and minimal reversible DFA.

Theorem (Lower Bound)

[Holzer, Jakobi, K. 2015]

For every $n \geq 3$ there is an n-state DFA M_n over a k-ary input alphabet accepting a 'reversible language', such that any equivalent reversible DFA needs at least

$$\sum_{i=1}^{n} F_{n-1} + F_{n-2} + \dots + F_{n-k}$$

states.

For k=3 the lower bound is of order 1.839^n and for k=4 it is of order 1.927^n . For growing alphabet sizes the bound asymptotically tends to 2^{n-1} , that is, $\Omega(2^{n-1})$.

Pushdown Stores and Queues

Reversible pushdown automata (REV-PDA).

→ Transition function of the form

$$\delta: S \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\bot\}) \to S \times \Gamma^*$$

 \rightarrow Reverse transition function δ^{\leftarrow} of the same form.

A DPDA M with transition function δ is said to be reversible (REV-DPDA), if there exists a reverse transition function δ^{\leftarrow} inducing a relation \vdash^{\leftarrow} from one configuration to the next, so that

$$c' \vdash^{\leftarrow} c$$
 if and only if $c \vdash c'$,

for any two configurations c, c' of M.

Example

$$\delta(s_1, b, Z) = (s_2, Z'Z)$$

$$\delta^{\leftarrow}(s_2,b,Z') = (s_1,\lambda)$$

Transition structure of reversible pushdown automata.

$$\begin{array}{ll} \text{push: } \delta(s_1,a,Z)=(s_2,YZ) \implies \delta^{\leftarrow}(s_2,a,Y)=(s_1,\lambda) \\ \\ \text{change top: } \delta(s_1,a,Z)=(s_2,Y) \implies \delta^{\leftarrow}(s_2,a,Y)=(s_1,Z) \\ \\ \text{pop: } \delta(s_1,a,Z)=(s_2,\lambda) \implies \\ \\ \text{for all } X \in \Gamma \cup \{\bot\}: \quad \delta^{\leftarrow}(s_2,a,X)=(s_1,ZX) \end{array}$$

Example A reversible REV-PDA accepting the languages

$$\{ wcw^R \mid w \in \{a, b\}^+ \} \text{ or } \{ a^ncb^n \mid n \ge 1 \}.$$

Transitions on empty input.

- → For any REV-PDA, the number of consecutive transitions on empty input are bounded by some constant.
- → For any REV-PDA an equivalent realtime REV-PDA can effectively be constructed.

Theorem

Every language not accepted by some realtime deterministic pushdown automaton is not accepted by REV-PDA.

Example $\{ a^m e b^n c a^m \mid m, n \ge 0 \} \cup \{ a^m e b^n d a^n \mid m, n \ge 0 \}$

Deterministic realtime pushdown automata: Can we simulate them reversibly?

Example

- → The language $\{a^nb^n \mid n \ge 0\}$ is accepted by some deterministic realtime pushdown automaton.
- → It is not accepted by any REV-PDA.

Theorem

There are deterministic realtime pushdown automata that cannot be simulated reversibly.

Computational capacity.

Decidability of basic properties.

- → Finiteness, infiniteness, emptiness, universality, equivalence, and regularity are decidable for REV-PDA.
- → Inclusion is undecidable for REV-PDA.

Decidability of reversibility - machines.

- → The problem to decide whether a given pushdown automaton is reversible on all configurations is trivial by inspection of the transition function.
- → The problem to decide whether a given pushdown automaton is reversible on all reachable configurations is P-complete.

Decidability of reversibility - languages.

- → It is undecidable whether the language accepted by a nondeterministic pushdown automaton can be accepted by a REV-PDA.
- → The same problem for deterministic pushdown automata is open.

Reachable versus unreachable configurations.

Theorem

Given a pushdown automaton that is reversible on all reachable configurations, an equivalent pushdown automaton that is reversible on all configurations can effectively be constructed.

Reversible queue automata (REV-QA).

→ Transition function of the form

$$\begin{split} \delta: S \times (\Sigma \cup \{\lambda\}) \times ((\Gamma \times \Gamma) \cup (\{\bot\} \times \{\bot\})) \to \\ S \times (\Gamma \cup \{\lambda\}) \times \{\texttt{keep}, \texttt{remove}\} \end{split}$$

 \rightarrow Reverse transition function δ^{\leftarrow} of the same form.

Example

$$\delta(s_1, b, Z, X) = (s_2, R, \texttt{remove})$$

$$\delta^{\leftarrow}(s_2,b,Y,R)=(s_1,Z,\mathtt{remove})$$

Computational capacity of general queue automata.

Theorem

Given a deterministic queue automaton, an equivalent reversible queue automaton can effectively be constructed.

Theorem

Every recursively enumerable language is accepted by some reversible queue automaton.

Quasi realtime reversible queue automata.

A DQA is said to work in quasi realtime, if the number of consecutive λ -transitions is bounded by a constant.

Theorem

For every quasi realtime reversible DQA an equivalent realtime reversible DQA can effectively be constructed.

→ It is sufficient and natural to consider realtime reversible DQA.

Example A reversible REV-QA accepting $\{wcw \mid w \in \{a,b\}^+\}$.

$$\begin{array}{ll} \delta(s_0,x,\perp,\perp) = & (s_0,x,\text{keep}) \\ \delta(s_0,x,y,z) = & (s_0,x,\text{keep}) \\ \delta(s_0,c,y,z) = & (s_1,\lambda,\text{keep}) \\ \delta(s_1,x,x,y) = & (s_1,\lambda,\text{remove}) \\ \delta(s_1,\lambda,\perp,\perp) = & (s_+,\lambda,\text{keep}) \end{array}$$

$$\begin{array}{ll} \delta^{\leftarrow}(s_0,x,y,z) &= (s_0,\lambda, \texttt{remove}) \\ \delta^{\leftarrow}(s_1,c,y,z) &= (s_0,\lambda, \texttt{remove}) \\ \delta^{\leftarrow}(s_1,x,y,z) &= (s_1,x,\texttt{keep}) \\ \delta^{\leftarrow}(s_1,x,\bot,\bot) &= (s_1,x,\texttt{keep}) \\ \delta^{\leftarrow}(s_+,\lambda,\bot,\bot) &= (s_1,\lambda,\texttt{keep}) \end{array}$$

$$x, y, z \in \{a, b\}$$

Deterministic realtime queue automata: Can we simulate them reversibly?

Witness
$$L_{bin} = ((aa+a)(bb+b))^+$$
.

$$L_{mcp} = \{\, p\$w_1\$w_1\$w_2\$w_2\$\cdots\$w_n\$w_n \mid p \in L_{bin}, n \geq 0, w_i \in \{a,b\}^* \,\}$$

Example

- → The language L_{mcp} is accepted by some deterministic realtime queue automaton.
- → It is not accepted by any realtime REV-QA.

Theorem

There are deterministic realtime queue automata that cannot be simulated reversibly.

Reversible pushdown automata versus realtime reversible queue automata.

- → The mirror language $\{wcw^R \mid w \in \{a,b\}^+\}$ is accepted by a reversible pushdown automaton, but not by any even irreversible quasi realtime queue automaton.
- → The non-context-free copy language $\{wcw \mid w \in \{a,b\}^+\}$ is accepted by a reversible realtime queue automaton.

Theorem

The families of languages accepted by realtime reversible queue automata and by reversible pushdown automata are incomparable.

Decidability of basic properties.

→ Finiteness, infiniteness, emptiness, universality, equivalence, inclusion, and regularity are not semidecidable for realtime REV-QA.

Decidability of reversibility - machines.

- → The problem to decide whether a given realtime queue automaton is reversible on all configurations is trivial by inspection of the transition function.
- → The problem to decide whether a given realtime queue automaton is reversible on all reachable configurations is not semidecidable.

Reachable versus unreachable configurations.

Theorem

Given a realtime queue automaton that is reversible on all reachable configurations, there exists an equivalent realtime queue automaton that is reversible on all configurations.

- → For example, in Newtonian mechanics, relativity, or quantum mechanics one can go back and forth in time by applying the same dynamics,
- → provided that the sense of time direction is changed by a specific transformation of the phase-space.
- → For Newtonian mechanics, the transformation leaves masses and positions unchanged but reverses the sign of the momenta.
- \rightarrow Here we consider weak transformations τ , that is, involutions having the property $\tau \circ \tau = \mathrm{id}$.
- → Time-symmetric machines themselves cannot distinguish whether they run forward or backward in time.

Example A reversible DFA is time symmetric if and only if there is an involution τ that maps states to states such that

$$\delta_x^{-1} = \tau \circ \delta_x \circ \tau$$

holds for all input symbols x, where δ_x is the transition function for symbol x.

Theorem

There are infinitely many reversible DFA which are not time symmetric.

Example A reversible DFA that is not time symmetric.

Theorem

Each reversible unary DFA is time symmetric.

Example Choose two arbitrary states s_i and s_j and set $\tau(s_i) = s_j$.

Theorem

Any reversible DFA can be simulated by some time-symmetric DFA.

Time-symmetric pushdown automata.

→ A reversible REV-PDA is time symmetric if and only if there is an involution \(\tau \) that maps states and stack symbols to states and stack symbols such that

$$\hat{\delta}_x^{-1} = \tau \circ \hat{\delta}_x \circ \tau$$

holds for all input symbols x, where $\hat{\delta}_x$ is the transition function for symbol x.

Example A time-symmetric pushdown automaton accepting the linear context-free language

$$\{ wcv \mid w \in \{a, b\}^*, w^R = vu, 0 \le |u| \le |w| \}.$$

 \rightarrow Set $\tau(s_0, \gamma) = (s_1, \gamma)$, for all $\gamma \in \Gamma^*$.

$$(\tau \circ \hat{\delta}_b \circ \tau)(s_0, b\gamma) = (\tau \circ \hat{\delta}_b)(s_1, b\gamma) =$$
$$\tau(s_1, \gamma) = (s_0, \gamma) = \hat{\delta}_b^{-1}(s_0, b\gamma)$$

Theorem

There are infinitely many reversible REV-PDA which are not time symmetric.

Example A reversible but not time-symmetric REV-PDA accepting the language a^4a^* .

Theorem

Any reversible REV-PDA can be simulated by some time-symmetric REV-PDA.