

ML for Survival Analysis and Dynamic Survival Analysis

davide.morelli@eng.ox.ac.uk

Goals

- How to approach survival analysis (time-to-event)
 - Preprocessing
 - o ML
 - o DL
- Longitudinal covariates (time series)
 - How this changes the setting
 - Techniques
- A bit of historical overview
- Domain specific loss functions

Summary

ML for Survival Analysis:

- Boosting
- Survival Random Forests
- DeepSurv

Dynamic Survival Analysis:

- Motivation: longitudinal data / trajectories
- Time dependent concordance Index
- Methods for dynamic survival analysis: the old days
 - 2 stage approach, joint models
 - Methods for dynamic survival analysis: today
 - Deep Learning
 - MatchNet
 - RNN-Surv
 - Dynamic-deephit

Davide Morelli

Academia

- PhD Computer Science @ Pisa
- Lecturer @ Pisa
- Research and Teaching Fellow @ Surrey
- DPhil candidate Biomedical Engineering @ Ox

Industry

- CTO @ BioBeats
- ML Lead @ Huma Therapeutics

ML for Survival Analysis

penalised Cox

regression models

boosted survival

models

random survival forests

1.0

0.9

-0.8

-0.7

-0.6

-0.5

Feature Selection Method

From A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction

Feature selection

- Filter Methods:
 - Univariate, Recursive feature elimination
 - Random forest variable importance
 - Random forest minimal depth
 - Maximally Selected Rank Statistics
 - MRMR: <u>Maximum Relevance Minimum Redundancy</u>
- Wrapper Method:
 - Sequential forward selection
- Also:
 - Surrogate minimal depth
 - Permutation feature importance
 - <u>Drop Column feature importance</u>

See <u>Supplementary Materials</u> of "A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction"

ML for Survival Analysis: Boosting

ML for Survival Analysis: Boosting

Boosting:

- Combine weak learners
- Sequential: next weak learner will "focus on the mistakes" of the current model
- The final model uses all weak learners

Models:

- XGBoost, CoxBoost

Still a active research area:

E.g.: A combination of XGBoost, Cox, and ElasticNet: Wang, 2021

ML for Survival Analysis: Random Survival Forests

- See Random survival forests original paper (Ishwaran et al., 2008)
- Modification of Random Forest.
 - Draw B bootstraps of data
 - Grow a tree from each bootstrap
 - For every node select p random features, split using the feature that maximises difference in cumulative hazard function (CHF)
 - CHF is Nelson–Aalen estimator

DL for Survival Analysis

To fit CoxPH you minimise the partial log likelihood:

$$L(\beta,X) = -\sum_{i \in U} \left(\beta^T X_i - \log \sum_{j \in \Omega_i} e^{\beta^T X_j}\right)$$
 For each subject i who had an

Hazard ratio of patient i

Hazard ratio of every subject who had event after i or no event

event

Where's the baseline hazard function?

DL for Survival Analysis

$$L(\beta, X) = -\sum_{i \in U} \left(\beta^T X_i - \log \sum_{j \in \Omega_i} e^{\beta^T X_j} \right)$$

They don't **have** to be linear...

DL for Survival Analysis

Deep Surv:

- Idea originally proposed in the work of <u>Faraggi and Simon</u> back in 1995
- Used in many papers since then: example1, example2, etc...
- PyTorch implementation

Static vs dynamic survival analysis

Static vs dynamic survival analysis

C(t): Time Dependent Concordance Index (CI)

- Proposed in <u>Estimating a time-dependent concordance index for survival prediction models with</u> <u>covariate dependent censoring</u> (2012)

C(t): Time Dependent Concordance Index (CI)

$$C_{t}(t) = E_{ij} \left\{ 1\{M_{n}(t, X_{i}) > M_{n}(t, X_{j})\} \mid T_{i} < T_{j}, T_{i} \leq t, D_{n}^{\text{train}} \right\}$$

CI is now a function of t

Consider only pairs where subject i had an event before time t, and time of event for subject j is > i

C(t): Time Dependent Concordance Index (CI)

$$C_t(t) = E_{ij} \left\{ 1\{M_n(t, X_i) > M_n(t, X_j)\} \mid T_i < T_j, T_i \leq t, D_n^{\text{train}} \right\}$$

Indicator function: is 1 if risk of i is higher than risk of j

C(t): Time Dependent Concordance Index (CI)

$$\mathcal{C}_t(t) = E_{ij} \left\{ 1\{M_n(t,X_i) > M_n(t,X_j)\} \mid T_i < T_j \,, T_i \leqslant t \,, \, D_n^{\text{train}} \right\}$$
 Expected value

```
N = len(Prediction)
                                                        This is a cause-specific c(t)-index
                                                        - Prediction
                                                                        : risk at Time (higher --> more risky)
A = np.zeros((N,N))
                                                                        : survival/censoring time
                                                        Time_survival
Q = np.zeros((N,N))
                                                        - Death
N_t = np.zeros((N,N))
                                                            > 1: death
Num = 0
                                                            > 0: censored (including death from other cause)
                                                        - Time
                                                                        : time of evaluation (time-horizon when evaluating C-index)
Den = 0
for i in range(N):
    A[i, np.where(Time_survival[i] < Time_survival)] = 1
    Q[i, np.where(Prediction[i] > Prediction)] = 1
    if (Time_survival[i]<=Time and Death[i]==1):</pre>
        N_{t[i,:]} = 1
Num = np.sum(((A)*N t)*Q)
Den = np.sum((A)*N_t)
if Num == 0 and Den == 0:
    result = -1 # not able to compute c-index!
else:
    result = float(Num/Den)
                                                                                           From dynamic-deephit source code
return result
```

C(t)-INDEX CALCULATION

def c_index(Prediction, Time_survival, Death, Time):

Landmark models

- Timescale is divided into a discrete set of landmark times
- Separate model is trained at each landmark time for those who are still at risk of the event, as the horizon of the prediction moves forward

Two-stage modelling

- First, longitudinal model is fitted (usually a linear mixed model)
- Next, time-to-event model (Cox PH) is fitted using the parameters of the longitudinal model

Joint modelling

- Requires model for the survival outcome, model for the dynamic marker process and method to link them (often shared random effects)
- Defining joint distribution of the two associated processes
- Can be computationally demanding

2 stage approach: stage 1 - linear mixed model

Stage 1:

Example: each vital sign has a "typical trajectory" over time (e.g. blood pressure increases), i.e. the red line

2 stage approach: stage 1 - linear mixed model

Example: each vital sign has a "typical trajectory" over time (e.g. blood pressure increases), i.e. the red line

2 stage approach: stage 1 - linear mixed model

2 stage approach: stage 2 - regression

We use parameters of "deviation from normal trajectory" to inform a logistic regression model (or cox).

Play with the <u>interactive version</u>

Joint Model

We want to estimate the failure function F:

$$F_i(t+\tau|t,w) = \mathbb{P}(T_{i,\text{surv}} \le t+\tau|T_{i,\text{surv}} > t, \mathbf{X}_{i,t,w})$$

Probability that failure will happen before t + tau, given that:

- it hasn't happened at time t yet
- The predictors are known at time t

The output layer gives us failure estimates for a window of timepoints:

$$\hat{\mathbf{y}}_{i,t} = [\hat{F}_i(t+\delta|t,w), ..., \hat{F}_i(t+ au_{\max}|t,w)]$$

(c) Sliding windows

The total loss:

$$l(\boldsymbol{\theta}) = \frac{\delta^2}{\sum_{i=1}^{N} \sum_{j=1}^{t_i} \tau_i} \sum_{i=1}^{N} \sum_{j=1}^{t_i/\delta} \sum_{k=1}^{\tau_i/\delta} \alpha(i, (j-1)\delta, k\delta) \cdot l_{i, (j-1)\delta, k\delta}$$

For all subjects i

The total loss:

$$l(\boldsymbol{\theta}) = \frac{\delta^2}{\sum_{i=1}^{N} \sum_{j=1}^{t_i} \tau_i} \sum_{i=1}^{N} \sum_{j=1}^{t_i/\delta} \sum_{k=1}^{\tau_i/\delta} \alpha(i, (j-1)\delta, k\delta) \cdot l_{i, (j-1)\delta, k\delta}$$

For all times j

The total loss:

$$l(\boldsymbol{\theta}) = \frac{\delta^2}{\sum_{i=1}^{N} \sum_{j=1}^{t_i} \tau_i} \sum_{i=1}^{N} \sum_{j=1}^{t_i/\delta} \sum_{k=1}^{\tau_i/\delta} \alpha(i, (j-1)\delta, k\delta) \cdot l_{i, (j-1)\delta, k\delta}$$

For all prediction horizons k

The total loss:

$$l(\boldsymbol{\theta}) = \frac{\delta^2}{\sum_{i=1}^{N} \sum_{j=1}^{t_i} \tau_i} \sum_{i=1}^{N} \sum_{j=1}^{t_i/\delta} \sum_{k=1}^{\tau_i/\delta} \alpha(i, (j-1)\delta, k\delta) \cdot l_{i, (j-1)\delta, k\delta}$$

Every subject has a weight that depends on survival duration

The total loss:

$$l(\boldsymbol{\theta}) = \frac{\delta^2}{\sum_{i=1}^{N} \sum_{j=1}^{t_i} \tau_i} \sum_{i=1}^{N} \sum_{j=1}^{t_i/\delta} \sum_{k=1}^{\tau_i/\delta} \alpha(i, (j-1)\delta, k\delta) \cdot l_{i, (j-1)\delta, k\delta}$$

The negative log likelihood of a single estimate

the negative log likelihood for a single estimate is just binary cross entropy:

Evolution of approaches to dynamic risk analysis: MatchNet

8	$\mid \tau \mid$	MATCH-Net	S-TCN	S-MLP	FCN	D-Atlas	RNN	MLP	JM	LM
AUROC	0.5	0.962	0.961	0.959	0.954	0.959	0.949*	0.948*	0.913*	0.909*
	1.0	0.942	0.941	0.932	0.930	0.929	0.930	0.930	0.917*	0.914*
	1.5	0.902	0.902	0.897	0.895	0.892	0.891	0.890	0.881	0.878
	2.0	0.909	0.908	0.904	0.903	0.896	0.901	0.895	0.894	0.890
	2.5	0.886	0.884	0.881	0.883	0.884	0.883	0.874	0.883	0.878
AUPRC	0.5	0.594	0.580	0.500	0.536	0.517	0.464*	0.469*	0.473*	0.469*
	1.0	0.513	0.505	0.447	0.453	0.423	0.410*	0.435	0.415*	0.412*
	1.5	0.373	0.367	0.354	0.357	0.364	0.340	0.340	0.319	0.325
	2.0	0.390	0.380	0.364	0.375	0.352	0.355	0.359	0.362	0.367
	2.5	0.384	0.381	0.371	0.365	0.360	0.365	0.356	0.366	0.363

Multitask learning

$$\mathcal{L}_1 = -\sum_{k=1}^K \sum_{i \in U_k} \left[\mathbb{I}(Y_i > t_k) \log \hat{y}_i^{(k)} + (1 - \mathbb{I}(Y_i > t_k)) \log (1 - \hat{y}_i^{(k)}) \right]$$
 For each time

Cross entropy to predict time to event, modified to support censoring

Multitask learning

$$\mathcal{L}_{1} = -\sum_{k=1}^{K} \sum_{i \in U_{k}} \left[\mathbb{I}(Y_{i} > t_{k}) \log \hat{y}_{i}^{(k)} + (1 - \mathbb{I}(Y_{i} > t_{k})) \log(1 - \hat{y}_{i}^{(k)}) \right]$$

For each admissible subject

Cross entropy to predict time to event, modified to support censoring

Multitask learning

$$\mathcal{L}_1 = -\sum_{k=1}^K \sum_{i \in U_k} \left[\mathbb{I}(Y_i > t_k) \log \hat{y}_i^{(k)} + (1 - \mathbb{I}(Y_i > t_k)) \log(1 - \hat{y}_i^{(k)}) \right]$$

Cross entropy to predict time to event, modified to support censoring

Binary cross entropy

Multitask learning

Maximise, for every admissible couple i and j, where Ti < Tj

$$\mathcal{L}_{2} = -\frac{1}{|\mathcal{C}|} \sum_{(i,j) \in \mathcal{C}} \left[1 + \left(\frac{\log \sigma(\hat{r}_{j} - \hat{r}_{i})}{\log 2} \right) \right]$$

$$\sigma(z) = 1/(1+e^{-z})$$

$$\mathbf{1}_{z>0} \ge 1 + (\log \sigma(z)/\log 2)$$

$$\mathcal{L}_{2} = -\frac{1}{|\mathcal{C}|} \sum_{(i,j) \in \mathcal{C}} \left[1 + \left(\frac{\log \sigma(\hat{r}_{j} - \hat{r}_{i})}{\log 2} \right) \right]$$

Sigmoid

Lower bound to the indicator function

Upper bound to negative c-index, see this paper

(a) The network architecture with K competing risks.

$$\mathcal{L}_{total} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

 $\mathcal{L}_1 = \text{Log likelihood loss:}$

If not censored: captures the event, and the time of the event.

If censored: captures the time of censoring

For all subjects

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

We want to maximise the sum

Function

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

$$\mathcal{L}_1 = -\sum_{i=1}^N \left[\mathbb{1}(k^i \neq \varnothing) \cdot \log \left(\frac{o^i_{k^i,\tau^i}}{1 - \sum_{k \neq \varnothing} \sum_{n \leq t^i_{J^i}} o^i_{k,n}} \right) + \mathbb{1}(k^i = \varnothing) \cdot \log \left(1 - \sum_{k \neq \varnothing} \hat{F}_k(\tau^i | \mathcal{X}^i) \right) \right]$$
 o: output prob for risk k at time t

This is the Cumulative Incidence

Indicator function for risk k. 1 if event k happened

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

$$\mathcal{L}_{1} = -\sum_{i=1}^{N} \left[\mathbb{1}(k^{i} \neq \varnothing) \cdot \log \left(\frac{o_{k^{i},\tau^{i}}^{i}}{1 - \sum_{k \neq \varnothing} \sum_{n \leq t_{J^{i}}^{i}} o_{k,n}^{i}} \right) + \mathbb{1}(k^{i} = \varnothing) \cdot \log \left(1 - \sum_{k \neq \varnothing} \hat{F}_{k}(\tau^{i} | \mathcal{X}^{i}) \right) \right]$$
Event didn't happen (censored subject)

1 - estimated Cumulative Incidence Function

i: experiences event k at time i

j: does not experience any event until i

We want our risk estimate for i larger than for j

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

Hyperparameter for risk k

For all acceptable pairs (A is the indicator function for acceptable pairs). If the pair is not acceptable this becomes 0 and is ignored

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

Differentiable loss function that grows exponentially if risk of j is > risk of i

Play with the <u>interactive version</u>

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

$$\mathcal{L}_3 = \beta \cdot \sum_{i=1}^N \sum_{j=0}^{J^i-1} \sum_{d \in \mathcal{I}} (1-m^i_{j+1,d}) \cdot \zeta(x^i_{j+1,d}, y^i_{j,d})$$
 For all times

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

$$\mathcal{L}_{3} = \beta \cdot \sum_{i=1}^{N} \sum_{j=0}^{J^{i}-1} \sum_{d \in \mathcal{I}} (1 - m_{j+1,d}^{i}) \cdot \zeta(x_{j+1,d}^{i}, y_{j,d}^{i})$$

If next measure is missing this becomes 0 (therefore ignored)

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

Summary

Goals:

- How to approach survival analysis (time-to-event)
 - Preprocessing
 - o ML
 - o DL
- Handling longitudinal covariates (time series)
 - How this changes the setting
 - Techniques
- A bit of historical overview
- Domain specific loss functions

Lab

Preprocessing:

- Understand your data
- One-hot-encoding
- Cross validation
- Normalisation
- Mean-imputation

ML for Survival Analysis:

- CoxBoost
- Survival Random Forests
- Survival Support Vector Machines

Dynamic Survival Analysis:

- Add censoring to known loss
- Where's the bug?
- Write hyper-parameter search code

Questions?

davide.morelli@eng.ox.ac.uk