The okicmd and okithm Packages

Taihei Oki

February 12, 2020

$1 \quad \text{The okicmd } Package$

1.1 Letters

Input	Output	IATEX equivalent
1	ℓ	\ell
\ell	l	1
\epsilon	arepsilon	\varepsilon
\varepsilon	ϵ	\epsilon
\phi	φ	\varphi
\varphi	ϕ	\phi

1.2 Parentheses

Input	Output	IATEX equivalent
\prn{\cdot}	(\cdot)	\left(\cdot\right)
\prn*{\cdot}	(\cdot)	(\cdot)
\prn[\big]{\cdot}	(\cdot)	\bigl(\cdot\bigr)
\prn[\Big]{\cdot}	(\cdot)	\Bigl(\cdot\Bigr)
\prn[\bigg]{\cdot}	(\cdot)	\biggl(\cdot\biggr)
\prn[\Bigg]{\cdot}	$\left(\cdot\right)$	\Biggl(\cdot\Biggr)
\curl{\cdot}	$\{\cdot\}$	\left\{\cdot\right\}
\sqbr{\cdot}	$[\cdot]$	\left[\cdot\right]
\agbr{\cdot}	$\langle \cdot \rangle$	\left\langle\cdot\right\rangle
\dbbr{\cdot}	$\llbracket \cdot \rrbracket$	\left\llbracket\cdot\right\rrbracket
<pre>\pipe{\cdot}</pre>	.	\left \cdot\right
\dbpp{\cdot}	$\ \cdot\ $	\left\ \cdot\right\
\floor{\cdot}	$\lfloor \cdot \rfloor$	\left\lfloor\cdot\right\rfloor
\ceil{\cdot}	آ٠J	\left\lceil\cdot\right\rceil

1.3 Logic

Input	Output	IAT _E X equivalent
\bigland	\wedge	\bigwedge
\biglor	V	\bigvee
a \defeq b	$a \coloneqq b$	a \coloneqq b
a \eqdef b	b =: a	a \eqqcolon b
P \defiff Q	$P \stackrel{\mathrm{def}}{\Longleftrightarrow} Q$	<pre>P \overset{\mathrm{def}}{\iff} Q</pre>

1.4 Sets

Input	Output	\LaTeX equivalent
\set{a \in S}	$\{a \in S\}$	\left\{a \in S\right\}
\set{a \in S}[a^2 = 1]	$\left\{a \in S \mid a^2 = 1\right\}$	<pre>\left\{a \in S \middle a^2 = 1\right\}</pre>
\card{X}	X	\left X\right
\intset{n}	[n]	\left[n\right]
X \symdif Y	$X \triangle Y$	<pre>X \mathbin{\triangle} Y</pre>
\setN	\mathbb{N}	\mathbb{N}
\setZ	${\mathbb Z}$	\mathbb{Z}
\setQ	$\mathbb Q$	\mathbb{Q}
\setR	\mathbb{R}	\mathbb{R}
\setC	$\mathbb C$	\mathbb{C}
\setH	\mathbb{H}	\mathbb{H}
\setF	\mathbb{F}	\mathbb{F}
\setK	\mathbb{K}	\mathbb{K}
\setZp	$\mathbb{Z}_{\geq 0}$	$\mathbb{Z}_{\leq 0}$
\setQp	$\mathbb{Q}_{\geq 0}^-$	\mathbb{Q}_{\ge0}
\setRp	$\mathbb{R}_{\geq 0}$	\mathbb{R}_{
\setNpp	$\mathbb{N}_{>0}^-$	\mathbb{N}_{<>0}
\setZpp	$\mathbb{Z}_{>0}$	\mathbb{Z}_{>0}
\setQpp	$\mathbb{Q}_{>0}$	\mathbb{Q}_{{>0}}
\setRpp	$\mathbb{R}_{>0}$	\mathbb{R}_{<>0}

1.5 Maps

Input	Output	ĿT _E X equivalent
\doms{X}{Y}	$X \to Y$	{X}\to{Y}
\funcdoms{f}{X}{Y}	$f:X\to Y$	<pre>{f}\vcentcolon{X}\to{Y}</pre>
\restr{f}{S}	$f _S$	\left.f\right _{S}
\id_K	id_K	\operatorname{id}_K
\dom f	$\operatorname{dom} f$	\operatorname{dom} f
\cod f	$\operatorname{cod} f$	\operatorname{cod} f
\supp f	$\operatorname{supp} f$	\operatorname{supp} f

1.6 Lattices

Input	Output
x \meet y	$x \wedge y$
x \join y	$x \vee y$
\bigmeet	\wedge
\bigjoin	V

1.7 Algebra

Input	Output
\Hom(G)	$\operatorname{Hom}(G)$
\End R	$\operatorname{End} R$
\Aut_k K	$\operatorname{Aut}_k K$
\abel{G}	$G_{ m ab}$
$\operatorname{Comm}\{G\}$	[G,G]
\ord G	$\operatorname{ord} G$
\sym_n	\mathfrak{S}_n
\sgn(\sigma)	$\operatorname{sgn}(\sigma)$
\mult{R}	R^{\times}
$M_{m,n}(R)$	$M_{m,n}(R)$
$\GL_n(R)$	$\mathrm{GL}_n(R)$
$\SL_n(R)$	$\mathrm{SL}_n(R)$
\ <mark>0</mark> (n)	$\mathrm{O}(n)$
\SO(n)	SO(n)
$\U(n)$	$\mathrm{U}(n)$
$\SU(n)$	SU(n)
L \extends K	L / K

1.8 Number Theory

	Input	Output
a	\coprime b	$a \perp b$
a	\divides b	$a \mid b$
a	\ndivides b	$a \nmid b$

1.9 Linear Algebra

Input	Output
\tr A	$\operatorname{tr} A$
\rank A	$\operatorname{rank} A$
\trank A	$\operatorname{t-rank} A$
$\widetilde{a_1}, \widetilde{a_n}$	$\operatorname{diag}(a_1,\ldots,a_n)$
\blockdiag(A_1, \ldots, A_n)	block-diag (A_1,\ldots,A_n)
\vectorize(A)	$\operatorname{vec}(A)$
\Row(A)	Row(A)
\Col(A)	$\mathrm{Col}(A)$
\onevec	1
\trsp{A}	$A^{ op}$
\adjo{A}	A^*
\inpr{x}{y}	$\langle x, y \rangle$

1.10 Analysis

Input	Output
\e	e
\d	d
$\dif{f}{x}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\displaystyle \begin{array}{l} \mathbf{pdif}\{f\}\{x\} \end{array}$	$\frac{\partial \widetilde{f}}{\partial x_c}$
$\dif{f}{x}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
\dpdif{f}{x}	$\frac{\partial f}{\partial x}$

1.11 Complex Analysis

${\rm Input}$	Output
\i	i
∖Re z	$\operatorname{Re} z$
\Im z	$\operatorname{Im} z$
\Arg z	$\operatorname{Arg} z$
\Loc z	$\operatorname{Log} z$
\Sin z	$\operatorname{Sin} z$
\Cos z	$\cos z$
\Tan z	$\operatorname{Tan} z$
$\Res_{z=0} f(z)$	$\operatorname{Res}_{z=0} f(z)$

1.12 Optimization

Input	Output
\argmin_{x \in S} f(x)	$ \operatorname{argmin}_{x \in S} f(x) $
$\argmax_{x \in S} f(x)$	$ \operatorname{argmax}_{x \in S} f(x) $
\Order(n)	$\mathrm{O}(n)$
\order(n)	o(n)

2 The okithm Package

2.1 Theorems

If the language is set to Japanese like by \usepackage [main = japanese] {babel}, okithm will translate all the environment titles (Theorem, Definition, etc.) into Japanese. You can disable theorems by giving the option notheorem to okicmd.

```
1 \begin{theorem}[Awesome theorem]
    The square root \sqrt{2} of two is irrational.
3 \end{theorem}
5 \begin{definition}[Coprime]
    Integers $a$ and $b$ are said to be \emph{coprime} if their greatest common
    divisor is one.
7 \end{definition}
9 \begin{lemma}
    If $a$ and $b$ are coprime, so are $a^2$ and $b^2$.
11 \end{lemma}
13 \begin{proposition}
    If \sqrt{2} = a/b, then a^2 = 2b^2.
15 \end{proposition}
16
17 \begin{corollary}
    If \sqrt{2} = a/b with $a$ and $b$ being coprime, then $a$ is even.
18
19 \end{corollary}
20
21 \begin{example}
    If a = 2 and b = 1, then a is even but \frac{2} ne a/b.
23 \end{example}
25 \begin{remark}
    Note that $a$ and $b$ must be integers.
26
27 \end{remark}
29 \begin{proof}[of Awesome theorem]
    Suppose to the contrary that \frac{2}{2} = a/b with coprime a and b.
    Then both $a$ and $b$ are even, which contradicts the assumption.
32 \end{proof}
```

Theorem 2.1 (Awesome theorem). The square root $\sqrt{2}$ of two is irrational.

Definition 2.2 (Coprime). Integers a and b are said to be *coprime* if their greatest common divisor is one.

Lemma 2.3. If a and b are coprime, so are a^2 and b^2 .

Proposition 2.4. If $\sqrt{2} = a/b$, then $a^2 = 2b^2$.

Corollary 2.5. If $\sqrt{2} = a/b$ with a and b being coprime, then a is even.

Example 2.6. If a = 2 and b = 1, then a is even but $\sqrt{2} \neq a/b$.

Remark 2.7. Note that a and b must be integers.

Proof (of Awesome theorem). Suppose to the contrary that $\sqrt{2} = a/b$ with coprime a and b. Then both a and b are even, which contradicts the assumption.

2.2 Algorithms

You can disable algorithms by setting the option noalgorithm.

```
| \begin{algorithmic} [1] |
| \lambda \limbda \limbda
```

2.3 Optimization Problems

You can change minimize, maximize and subject to into min, max and s.t., respectively, by setting the option optstyle = short.