

考研数学微积分 IATEX 笔记

作者: Gabriel Liu

时间: April 16, 2020

版本: 0.1

邮箱: jsrglsq@outlook.com

目录

1	极限与连续												1			
	1.1	极限的	有关定义													. 1
	1.2	极限的性质								. 2						
		1.2.1	极限的一般性质.													. 2
		1.2.2	极限的存在性质.													. 3
		1.2.3	无穷小的性质													. 5
	1.3 两个重要极限									. 6						
		1.3.1	准备工作													. 6
		1.3.2	两个重要极限式.													. 7
2.	呈 数	与微分														11

第一章 极限与连续

1.1 极限的有关定义

定义 1.1. 数列极限

数列 $\{a_n\}$, 若对于 $\forall \varepsilon > 0$, $\exists N > 0$, 当 n > N 时, 有

$$|a_n - A| < \varepsilon \tag{1.1}$$

则称数列 $\{a_n\}$ 的极限为 A (或:收敛于 A),记作

$$\lim_{n \to \infty} a_n = A \tag{1.2}$$

定义 1.2. 函数极限-1

函数 f(x), 若对于 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $0 < |x - a| < \delta$ 时, 有

$$|f(x) - A| < \varepsilon \tag{1.3}$$

则称函数 f(x) 的极限为 A, 记作

$$\lim_{x \to a} f(x) = A \tag{1.4}$$

笔记

- 1. 若 $x \to a$, 则 $x \ne a$. 如: $\lim_{x \to 0} \frac{0}{x^3} = 0$;
- 2. $\lim_{x \to a} f(x)$ 与 f(a) 无关。如: $\lim_{x \to 1} \frac{x^2 1}{x 1} = \lim_{x \to 1} (x + 1) = 2$;
- 3. $x \rightarrow a$ 分为 $x \rightarrow a^+$ 和 $x \rightarrow a^-$
- 4. 我们称 $0 < |x a| < \delta$ 为 a 的去心邻域;
- 5. $\lim_{x\to a^-} \triangleq f(a-0)$ (左极限); $\lim_{x\to a^+} \triangleq f(a+0)$ (右极限)。 ★ $\lim f(x)$ 存在 $\iff f(a-0), f(a+0)$ 都存在且相等。

定义 1.3. 函数极限-2

函数 f(x), 若对于 $\forall \varepsilon > 0$, $\exists X > (<)0$, 当 x > X(<-X) 时, 有

$$|f(x) - A| < \varepsilon \tag{1.5}$$

则称函数 f(x) 的极限为 A, 记作

$$\lim_{x \to +\infty(-\infty)} f(x) = A \tag{1.6}$$

如,对于函数
$$f(x) = \arctan x$$
 有: $\lim_{x \to +\infty} f(x) = \frac{\pi}{2}$, $\lim_{x \to -\infty} f(x) = -\frac{\pi}{2}$

1.2 极限的性质 -2-

定义 1.4. 无穷小

 $\stackrel{\scriptstyle \star}{=} \lim_{x \to a} \alpha(x) = 0$,则称 $\alpha(x)$ 当 $x \to a$ 时为无穷小。

豪 筆记

- 1. 0 是无穷小, 但无穷小不一定为 0;
- 2. $\alpha(x)\neq 0$, $\alpha(x)$ 是否为无穷小与 x 的趋向有关; 如, $\alpha=3(x-1)^2$,而 $\lim_{x\to 1}\alpha=0$,则 $3(x-1)^2$ 当 $x\to 1$ 时是无穷小。
- 3. 设 $\alpha \to 0, \beta \to 0$, 有如下三种情形: (a) $\lim \frac{\beta}{\alpha} = 0$, 称 β 为 α 的高阶无穷小,记作 $\beta = o(\alpha)$; (b) $\lim \frac{\beta}{\alpha} = k(\neq \infty, 0)$,称 β 为 α 的同阶无穷小,记作 $\beta = O(\alpha)$ (特例: $\lim \frac{\beta}{\alpha} = 1$,则称 β 与 α 为等价无穷小,记作 $\beta \sim \alpha$)。

1.2 极限的性质

1.2.1 极限的一般性质

下面我们开始介绍极限的一般性质,并给出相关的证明。主要有:唯一性、保号性(重点)两个性质。

1. 唯一性

性质 极限存在必唯一。

证明 设 $\lim_{x\to a}f(x)=A$ 又 $\lim_{x\to a}f(x)=B$,并不妨设 A>B。我们采用反证法来完成相关的证明。

取
$$\varepsilon = \frac{A-B}{2} > 0$$
。因为 $\lim_{x\to a} f(x) = A$,所以存在 $\delta_1 > 0$,当 $0 < |x-a| < \delta_1$

1.2 极限的性质 -3-

时,有
$$|f(x)-A| < \frac{A-B}{2}$$
,也即 $\frac{A+B}{2} < f(x) < \frac{3A-B}{2}(*)$; 同理,由第二个极限可以得出 $\frac{3B-A}{2} < f(x) < \frac{A+B}{2}(**)$ 。从而,若我们取 $\delta = \min{(\delta_1, \delta_2)}$,当 $0 < |x-a| < \delta$ 时,就有 $(*)$ 与 $(**)$ 同时成立。但 $f(x) > \frac{A+B}{2}$ 与 $f(x) < \frac{A+B}{2}$ 显然不可能同时成立,矛盾,从而假设不成立。

同理, 我们可以得到 A < B 也不成立。故 A = B。 2. ★ 保号性

性质 设 $\lim_{x\to a} f(x) = A > (<)0$,则存在 $\delta > 0$,当 $0 < |x-a| < \delta$ 时,有 f(x) > (<)0。

证明 设 A > 0。取 $\varepsilon = \frac{1}{2}A > 0$ 。因为 $\lim_{x \to a} f(x) = A$,故存在 $\delta > 0$,当 $0 < |x - a| < \delta$ 时,有 $|f(x) - A| < \varepsilon = \frac{A}{2}$ 。展开可得 $\frac{A}{2} < f(x) < \frac{3}{2}A$ 。从 而 f(x) > 0。

例 1.1 若函数
$$f(x)$$
 满足 $f(1) = 0$, $\lim_{x \to 1} \frac{f'(x)}{(x-1)^3} = -2$, 则 $x = 1$ 为什么点?

解 因为 $\lim_{x\to 1} \frac{f'(x)}{(x-1)^3} = -2 < 0$,故根据保号性,存在 $\delta > 0$,当 $0 < |x-a| < \delta$ 时,有 $\frac{f'(x)}{(x-1)^3} < 0$ 。于是,当 $x \in (1-\delta,1)$ 时,f'(x) > 0;当 $x \in (1,1+\delta)$

时, f'(x) < 0。故 x = 1 为极大值点。

1.2.2 极限的存在性质

下面介绍几个判定极限存在的性质。

性质

1. 数列型

如果
$$a_n \le b_n \le c_n$$
 且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = A$,则 $\lim_{n \to \infty} b_n = A$ 。

2. 函数型

如果
$$f(x) \leq g(x) \leq h(x)$$
 且 $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$,则 $\lim_{x \to a} g(x) = A$ 。

型一例题:n 项和求极限

例 1.2 求极限:
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)$$
 解 以上是非齐次的情形,采取夹逼定理。于是令 $b_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}$ 容易得到: $\frac{n}{\sqrt{n^2+n}} \le b_n \le \frac{n}{\sqrt{n^2+1}}$,

1.2 极限的性质

1, 故得到 $\lim_{n\to\infty} b_n = 1$ 。

例 1.3 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{1}{n^2+2} + \cdots + \frac{n}{n^2+n}\right)$$
。

例 1.3 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$$
。
解 令 $b_n = \frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{n}{n^2+n}$,从而 $\frac{1}{2} = \frac{n(n+1)}{2(n^2+n)} \le b_n \le \frac{n(n+1)}{2(n^2+1)}$ 。

则
$$\lim_{n\to\infty}$$
 $\dot{L}=\lim_{n\to\infty}$ $\dot{L}=\frac{1}{2}$ 。故所求极限为 $\frac{1}{2}$ 。

例 1.4 求极限
$$\lim_{n\to\infty} (\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n})$$
。

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n+i}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{n}{n+i}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}}$$

$$= \int_{0}^{1} \frac{1}{1+x} dx = \ln(x+1) \Big|_{0}^{1} = \ln 2$$

例 1.5 求极限 $\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2}\right)$ 。

解

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) = \lim_{n \to \infty} \sum_{i=1}^n \frac{n}{n^2 + i^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{n^2}{n^2 + i^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + \frac{i^2}{n^2}}$$

$$= \int_0^1 \frac{1}{1 + x^2} dx = \arctan x \Big|_0^1 = \frac{\pi}{4}$$

 $\stackrel{ extstyle }{ extstyle 2}$ 笔记 对于 n 个数相加,分子或分母不齐次的情况,用夹逼定理; 对于分子、分母齐次且分母多一次的情况, 用定积分定义。

我们还有另一个著名的判定数列极限存在性的定理,也即如下性质:

性质单调有界数列必有极限。

这个性质可以分为两类来讨论,一为单调递增有上界,二为单调递减有下界。

型二例题:极限存在性证明

例 1.6 已知,
$$a_1 = \sqrt{2}, a_2 = \sqrt{2 + \sqrt{2}}, a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \cdots$$

证明 $\lim a_n$ 存在,并求之。

 $\stackrel{n\to\infty}{\mathbf{R}}$ 單调递增,现在我们证明 $a_n \leq 2$,采用数学归纳法:

首先, $a_1 = \sqrt{2} < 2$ 。 假设 $a_k \le 2$,则 $a_{k+1} = \sqrt{2 + a_k} \le \sqrt{2 + 2} = 2$ 。 因此

得 A=2 或 A=-1。由于 $a_n>a_1=\sqrt{2}$,故 A=-1 舍去。从而极限为 2。

例 1.7 已知
$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$ 。证明: $\lim_{n \to \infty} a_n$ 存在。

解 先证明 $a_n > 0$: 由于 $a_1 > 0$, 故设 $a_k > 0$ 。则 $a_{k+1} = \frac{1}{2}(a_k + \frac{1}{a_{k+1}}) > 0$ 。于是根据 均值不等式可以得到 $a_{n+1} \ge 1$ 。而 $a_{n+1} - a_n = \frac{1}{2}(a_n + \frac{1}{a_{n+1}}) - a_n = \frac{1}{2}(\frac{1}{a_n} - a_{n+1})$ 。 由于 $a_n \ge 1$, 故 $\frac{1}{a_n} \le a_n$ 。从而, $a_{n+1} - a_n \le 0$ 。于是数列 $\{a_n\}$ 单调递减,又有 $a_n \ge 1$,从而得到" $\lim a_n$ 存在。

1.2.3 无穷小的性质

(一) 一般性质

1. 若 $\alpha \rightarrow 0$ 且 $\beta \rightarrow 0$,则:

$$\begin{cases} \alpha \pm \beta \to 0, \\ k\alpha \to 0, \\ \alpha\beta \to 0. \end{cases}$$

- 2. 若 $|\alpha| < M, \beta \to 0$,则 $\alpha\beta \to 0$ 。
- 3. $\alpha \to 0$, $\lim f(x) = A \Leftrightarrow f(x) = A + \alpha$.

(二) 等价性质

- 1. (a). $\alpha \sim \alpha$ (自反性);
 - (b). $\alpha \sim \beta \Rightarrow \beta \sim \alpha$ (对称性);
- (c). $\alpha \sim \beta, \beta \sim \gamma \Rightarrow \alpha \sim \gamma$ (传递性)。
 2. $\alpha \sim \alpha_1, \beta \sim \beta_1, \lim \frac{\beta_1}{\alpha_1} = A$,则 $\lim \frac{\beta}{\alpha} = A$ 。
- 3. 当 $x \to 0$ 时:
 - (a). $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x 1 \sim \ln(x+1)$;
 - (b). $1 \cos x \sim \frac{1}{2}x^2$;
 - (c). $(1+x)^a 1 \sim ax$

1.3 两个重要极限

1.3.1 准备工作

我们先证明如下结论: 当 $0 < x < \frac{\pi}{2}$ 时,有

$$\sin x < x < \tan x$$

证明 如图1.2所示,在单位圆中,当 $0 < x < \frac{\pi}{2}$ 时,有 $S_{\triangle AOB} = \frac{1}{2}r^2\sin x = \frac{1}{2}\sin x = S_1$, $S_{\R{B}}AOB} = \frac{1}{2}x = S_2$, $S_{\R{L}}\triangle AOC} = \frac{1}{2}AC = \frac{1}{2}\tan x = S_3$ 。显然有

$$S_3 > S_2 > S_1$$

从而,

$$\frac{1}{2}\tan x > \frac{1}{2}x > \frac{1}{2}\sin x$$

于是, $\sin x < x < \tan x$ 证明完毕。

 $\hat{\mathbf{y}}$ 笔记 这里给出的证明并不够严谨,但更严密的证明需要引入幂级数对 $\sin x$ 进行重新定义,这里不再阐述。

1.3.2 两个重要极限式

- $1. \lim_{\Delta \to 0} \frac{\sin \Delta}{\Delta} = 1$
- $\lim_{\Delta \to 0} (1 + \Delta)^{\frac{1}{\Delta}} = e$
- 笔记 这里的 Δ 表示一切具有趋于零状态的变量与表达式,需要当作一个整体来 进行处理。

型三例题: 不定型

所谓不定型,就是指含有"无穷"与 0 的极限求解。包含 $\frac{0}{0}$ 型, 1^{∞} 型, $\frac{\infty}{\infty}$ 型, $\infty \times \infty$ 型, $\infty - \infty$ 型, ∞^0 型与 0^0 型。

下面分类进行讲解。

1. $\frac{0}{0}$ 型

(a). 习惯:

习惯:
$$\begin{cases} u(x)^{v(x)} \Rightarrow e^{v(x)\ln u(x)}, \\ \ln(\quad) \Rightarrow \ln(1+\Delta) \sim \Delta(\Delta \to 0), \\ (\quad) - 1 \Rightarrow \begin{cases} e^{\Delta} - 1 \sim \Delta; \\ (1+\Delta)^a - 1 \sim a\Delta. \end{cases} (\Delta \to 0) \\ x - \ln(1+x) \Rightarrow \Box$$
 所无穷小,
$$x, \sin x, \tan x, \arcsin x, \arctan x \Rightarrow$$
 任意两个之差

 $nx, tan x, arcsin x, arctan x \Rightarrow 任意两个之差为三阶无穷小$

(b). 注意: 例如,
$$\lim_{x\to 0} \frac{x-\sin x}{x^3} \neq \lim_{x\to 0} \frac{x-x}{x^3} = 0$$
 例 1.8 求极限: $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$ 。

解

原式 =
$$\lim_{x \to 0} \frac{\tan(1 - \cos x)}{x^3}$$

= $\lim_{x \to 0} \frac{x(\frac{1}{2}x^2)}{x^3} = \frac{1}{2}$

 $= \lim_{x \to 0} \frac{x(\frac{1}{2}x^2)}{x^3} = \frac{1}{2}$ 例 1.9 求极限: $\lim_{x \to 0} \frac{(1+x^2)^{\sin x} - 1}{x^2 \ln(1+2x)}$ 。解

原式 =
$$\lim_{x \to 0} \frac{e^{\sin x \ln(1+x^2)} - 1}{2x^3}$$

= $\lim_{x \to 0} \frac{e^{x^3} - 1}{2x^3} = \frac{1}{2}$
例 1.10 求极限: $\lim_{x \to 0} \frac{(\frac{1+\cos x}{2})^x - 1}{x^3}$ 。

解

原式 =
$$\lim_{x \to 0} \frac{e^{x \ln \frac{1 + \cos x}{2}} - 1}{x^3}$$
= $\lim_{x \to 0} \frac{\ln \frac{1 + \cos x}{2}}{x^2}$
= $\lim_{x \to 0} \frac{\ln (1 + \frac{\cos x - 1}{2})}{x^2}$
= $\lim_{x \to 0} \frac{\frac{\cos x - 1}{2}}{x^2}$
= $\lim_{x \to 0} \frac{\frac{1}{2}(-\frac{1}{2}x^2)}{x^2} = -\frac{1}{4}$

2. 1[∞] 型:

主要有两种方法: 一是凑出 $(1+\Delta)^{\frac{1}{\Delta}}$ 的形式,二是恒等变形。

例 1.11 求极限: $\lim_{x\to 0} (1-x\sin x)^{\frac{1}{x-\ln(1+x)}}$ 。

解

原式 =
$$\lim_{x \to 0} (1 + (-x \sin x))^{-\frac{1}{x \sin x} \cdot -\frac{x \sin x}{x - \ln(1 + x)}}$$

= $e^{-\lim_{x \to 0} \frac{x \sin x}{x - \ln(1 + x)}}$
= $e^{-\lim_{x \to 0} \frac{x^2}{x - \ln(1 + x)}}$
= $e^{-\lim_{x \to 0} \frac{2x}{1 + x}}$
= $e^{-\lim_{x \to 0} 2(x + 1)} = e^{-2}$

例 1.12 求极限: $\lim_{x\to\infty}(\cos\frac{1}{x})^{x^2}$ 。

解

原式 =
$$\lim_{x \to \infty} (1 + \cos \frac{1}{x} - 1)^{\frac{1}{\cos \frac{1}{x} - 1}} x^2 (\cos \frac{1}{x} - 1)$$

= $e^{\lim_{x \to \infty} x^2 (\cos \frac{1}{x} - 1)}$
= $e^{\lim_{x \to \infty} \frac{\cos \frac{1}{x} - 1}{\frac{1}{x^2}}}$
 $\frac{t = \frac{1}{x}}{= e^{t \to 0}} e^{\frac{\cos t - 1}{t^2}}$
= $e^{-\frac{1}{2}}$

例 1.13 求极限: $\lim_{x\to 0} \left(\frac{1+x}{1+\sin x}\right)^{\frac{1}{x^3}}$

解

原式 =
$$\lim_{x \to 0} \left[\left(1 + \frac{x - \sin x}{1 + \sin x} \right)^{\frac{1 + \sin x}{x - \sin x}} \right]^{\frac{x - \sin x}{1 + \sin x} \frac{1}{x^3}}$$

$$= e^{\lim_{x \to 0} \frac{1}{1 + \sin x} \frac{x - \sin x}{x^3}}$$

$$= e^{\lim_{x \to 0} \frac{1 - \cos x}{3x^2}}$$

$$= e^{\frac{1}{6}}$$

 $3. \infty - \infty$ 型:

例 1.14 求极限:
$$\lim_{x\to 0} (\frac{1}{x^2} - \frac{1}{(\tan x)^2})$$

原式 =
$$\lim_{x \to 0} \left(\frac{(\tan x)^2 - x^2}{(\tan x)^2 x^2} \right)$$

= $\lim_{x \to 0} \frac{(\tan x)^2 - x^2}{x^4}$
= $\lim_{x \to 0} \frac{\tan x + x}{x} \times \frac{\tan x - x}{x^3}$
= $2 \lim_{x \to 0} \frac{(\sec x)^2 - 1}{3x^2}$
= $\frac{2}{3} \lim_{x \to 0} \frac{(\tan x)^2}{x^2} = \frac{2}{3}$

例 1.15 求极限: $\lim_{x\to\infty}(\sqrt{x^2-4x+8}-x)$

解

原式 =
$$\lim_{x \to \infty} \frac{-4x + 8}{\sqrt{x^2 - 4x + 8} + x}$$
= $\lim_{x \to \infty} \frac{-4 + \frac{8}{x}}{\sqrt{1 - \frac{4}{x} + \frac{8}{x^2}} + 1}$
= 2

4. $\frac{\infty}{\infty}$ 型:

$$\lim_{x \to \infty} \frac{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0} \begin{cases} = 0, & m < n \\ = \frac{b_m}{a_m}, & m = n \\ = \infty, & m > n \end{cases}$$

例 1.16 己知: $\lim_{n\to\infty}\frac{n^{2019}}{(n+1)^a-n^a}=k(\neq 0,\neq \infty)$,求 a,k。解

$$(n+1)^a = C_a^0 n^a + C_a^1 n^{a-1} + \dots + C_a^a$$

= $n^a + an^{a-1} + A$

所以, $(n+1)^a - n^a = an^{a-1} + A$ 。 从而, $a-1 = 2019 \Rightarrow a = 2020$,

则
$$k = \frac{1}{2020}$$
。

例 1.17 求极限: $\lim_{x \to +\infty} \frac{\ln(x^2 + 3)}{\ln(x^4 + 3x + 1)}$

解

原式 =
$$\lim_{x \to +\infty} \frac{\ln x^2 (1 + \frac{3}{x^2})}{\ln x^2 (1 + \frac{3}{x^3} + \frac{1}{x^4})}$$

= $\lim_{x \to +\infty} \frac{2 \ln x + \ln(1 + \frac{3}{x^3})}{4 \ln x + \ln(1 + \frac{3}{x^3} + \frac{1}{x^4})} = \frac{1}{2}$

(b). 洛必达法则

例 1.18
$$\lim_{x \to +\infty} \frac{x^3}{e^x} = \lim_{x \to +\infty} \frac{6}{e^x} = 6$$
例 1.19 $\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to +\infty} \frac{2}{\sqrt{x}} = 0$

5. $0 \times \infty$ 型

可以化成如下两种情形:

$$\begin{cases}
\frac{0}{18} & \text{prod} \\
\frac{0}{18} & \text{prod} \\
\frac{8}{10} & \text{prod}
\end{cases}$$

例 1.20 求极限: $\lim_{x\to+\infty} (2x+1)^2 \sin\frac{1}{x^2}$ 。

解

原式 =
$$\lim_{x \to +\infty} \frac{(2x+1)^2}{x^2} \times \frac{\sin\frac{1}{x^2}}{\frac{1}{x^2}} = 4$$

例 1.21 求极限: $\lim_{x \to +\infty} (x - x^2 \ln(1 + \frac{1}{x}))$ 。

解

原式 =
$$\lim_{x \to +\infty} x^2 \left(\frac{1}{x} - \ln(1 + \frac{1}{x})\right)$$

= $\lim_{x \to +\infty} \frac{\frac{1}{x} - \ln(1 + \frac{1}{x})}{\frac{1}{x^2}}$
 $\frac{t = \frac{1}{x}}{t} \lim_{t \to 0} \frac{t - \ln(1 + t)}{t^2}$
= $\lim_{t \to 0} \frac{1 - \frac{1}{t+1}}{2t}$
= $\lim_{t \to 0} \frac{\frac{t}{t+1}}{2t} = \frac{1}{2}$

第二章 导数与微分