PN - JP62040147 A 19870221

PD - 1987-02-21

PR - JP19850178772 19850814

OPD - 1985-08-14

TI - ION DETECTOR

IN - IDO YUTAKA

PA - SHIMADZU CORP

IC - G01N27/62; G01T1/28; H01J49/06

& WPI/DERWENT

TI - lon detector for mass spectrometry - has ion-to-electron converter electrode placed at front of microchannel plate NoAbstract Dwg 1/3

PR - JP19850178772 19850814

PN - JP62040147 A 19870221 DW198713 007pp

PA - (SHMA) SHIMADZU SEISAKUSHO KK

IC - G01N27/62 ;G01T1/28 ;H01J49/06

OPD - 1985-08-14

AN - 1987-090237 [13]

₽PAJ/JPO

PN - JP62040147 A 19870221

PD - 1987-02-21

AP - JP19850178772 19850814

IN - IDO YUTAKA

PA - SHIMADZU CORP

TI - ION DETECTOR

- AB PURPOSE:To provide an ion detector of simple construction and high sensitivity, by adopting an ion-electron conversion method, and providing an electron repulsion electrode for causing secondary electrons emitted from an ion-electron conversion electrode, to proceed toward a micro-channel plate.
- CONSTITUTION:A major section 5 comprises an electron repulsion electrode 1 shaped as a grid, an ion-electron conversion electrode 2 shaped as a Venetian blind, a micro-channel plate 3 and an electron capturing electrode 4. The ion- electron conversion electrode 2 is kept at negative potential. The electron repulsion electrode 1 is kept at negative potential lower than the former. The electron capturing electrode 4 is kept at positive potential with regard to the micro-channel plate 3. lons 7 accelerated to a prescribed speed by an ion accelerator are projected in rightwards as to the drawing. The ions 7 pass through a grid-like screen electrode 6 and the electron repulsion electrode 1 and collide against the obliquely-oriented Venetian-blind-like ion-electron conversion electrode 2 so that secondary electrons are emitted from the ion-electron conversion electrode 2. Almost all of the secondary electrons are deflected toward the micro-channel plate 4 by the electron repulsion electrode 1.

SI - G01N27/62

I-H01J49/06;G01T1/28

COLOGIA MANTE TELE CITAL

⑩ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭62-40147

@Int_Cl.1

識別記号

庁内整理番号

④公開 昭和62年(1987)2月21日

49/06 H 01 J G 01 T 1/28 27/62 # G 01 N

6680-5C 8105-2G 7363-2G

発明の数 1 (全3頁) 審査請求 未請求

63発明の名称

イオン検出装置

頤 昭60-178772 ②特

②出 願 昭60(1985)8月14日

戸 井 ②発 明 者

京都市中京区西ノ京桑原町1番地 株式会社島津製作所三 豊

条工場内

株式会社島津製作所 ①出 願 人

京都市中京区河原町通二条下ルーノ船入町378番地

新 弁理士 西田 79代 理 人

阴 細

1. 発明の名称

イオン検出装置

2. 特許請求の範囲

被検出イオンの衝突をうけて2次電子を放出す るイオン-電子変換電極と、このイオン-電子変 換電極より放出された2次電子を増倍放出する素 子としてのマイクロチャンネル・プレートと、こ のマイクロチャンネル・プレートより放出される 2次電子を捕集する電子捕集電極と、上記イオン - 電子変換電極より放出された上記2次電子を上 記マイクロチャンネル・プレートに向って反撥す る電子反撥電極より成るイオン検出装置。

3. 発明の詳細な説明

<産業上の利用分野>

本発明はイオン検出器に関する。

<従来技術>

放射線計測や質量分析において、最近、マイク ロチャンネルプレートを利用した荷電粒子検出装 置が多く用いられるようになってきた。マイクロ

チャンネルプレートは、そこに入射される荷電粒 子 (イオン、電子) の衝突によって発生する2次 電子の数を増倍する、見掛け上板状形状を有する 素子であるが、これをイオン検出装置に利用する 場合、2次電子放出体の一般的特性に基づき、低 速重イオンに対しては、マイクロチャンネル・プ レードの2次電子放出能が下り、従って装置のイ オン検出効率が低下する。これに対しては、イオ ンをマイクロチャンネル・ブレートへの入射前に 加速する方法と、マイクロチャンネル・プレート にセシウム膜のコーティングを施してその2次電 子放出能を髙める方法とがある。

しかし、重イオンを加速し、運動量の大きな粒 子を衝突させることはマイクロチャンネル・プレ - トの劣化をはやめることになり、また、セシウ ム膜のコーティングによる 2 次電子放出能の改善 はそれ程大きなものではない。

このため、イオンを直接マイクロチャンネル・ プレートに入射させるのではなく、一旦、別に用 意した丈夫な電極に衝突させ、そこから放出され

1

る 2 次電子をマイクロチャンネル・プレートに導く、いわゆるイオンー電子交換法を用いたイオン 検出装置がある。しかし、この方法を用いた従来 の装置には、別の場所で発生した 2 次電子を効率 よくマイクロチャンネル・プレートに導く手段に 種々の困難があり、 2 次電子をマイクロチャンネル・プレートに向かわせるに磁場を印加するなど、 装置の構造が複雑になるのが欠点である。

<発明が解決しようとする問題点>

本発明は、マイクロチャンネル・プレートを用いた従来のイオン検出装置が有する上記の諸欠点、即ち、イオンの加速によるマイクロチャンネル・プレート劣化の問題や、イオン-電子交換法に伴う 2 次電子補集効率の低下の問題を解決する。

上記の問題を解決するため、本発明による装置においては、イオンー電子変換の方法を採用するとともに、イオンー電子変換電極より放出された2次電子をマイクロチャンネル・プレートに向かわせるための電子反換電極が設けられていること

が特徴である。

<作用>

電子反換電極をイオンー電子変換電極より低い最適の負電位に保つことにより、イオンー電子変換電極から放出された殆どすべての2次電子は、電子反換電極によりマイクロチャンネル・プレートの方向にその進路を曲げられる。

<実施例>

以下に本発明の実施例を図面に基づいて説明する。

第1図は本発明実施例の構成を示す図で、その 要部5は格子状の電子反撥用電極1.ベネチアン ・プラインド型イオンー電子変換電極2.マイク ロチャンネル・プレート3および電子捕集種極4 より構成されている。なお、電子反撥用電極1の 左方に配置されたスクリーン電極6は、イオン飛 でであるための電極で、イオンが通過できるよう、 これも格子状に形成されている。

以上の構成において、イオン-電子交換電極2

を負の電位に、電子反撥用電極」をそれよりさら に低い負の電位に、また、電子捕集電極 4 をマイ クロチャンネル・プレート3に対して正の電位に 保ち、左側よりイオン加速部(図示せず)によっ て定速度に加速されたイオンフを投入すると、こ のイオンは格子状のスクリーン電極 6 および電子 反撥用電極1を通過し、斜めに配向したベネチア ン・プラインド型のイオン-電子交換電極 2 に街 突する。イオンの衝突によりイオンー電子交換電 極2は2次電子を放出するが、放出された2次電 子は、同電極2よりも低い負の電位に保たれた電 子反撥用電極1によりその走路が右方に曲げられ、 マイクロチャンネル・プレート3に到達する。マ イクロチャンネル・プレート3は、到達2次電子 をさらに2次電子放出作用によって連鎖反応的に 増倍する。マイクロチャンネル・プレート 4 から 最終的に放出された電子は、電子捕集電極を通っ て抵抗 8 に流れ、そこに出力電圧を発生させる。 この電圧は通常の電子回路9によって増幅され、 イオン7の到来が電気的に検知される。

第2図は、イオン-電子交換電極2より放出さ れる2次電子の走行路をコンピュータ・シミュレ - ションによって求めた図である。同図(A)は 電子反撥用電極1がイオン-電子交換電極と同電 位に保った場合、同図 (B) は電子反撥用電極1 をイオン-電子交換電極2よりさらに負の、ある 最適の電位に保った場合、同図(C)は電子反撥 用電極!を上記最適電位よりもさらに負の電位に 保った場合の2次電子走行路をそれぞれ示してい る。これらの図からわかるように、電子反撥用電 極1とイオン-電子交換電極2の間の電位差を適 当な値に選ぶことにより、放出された2次電子は、 事実上そのすべてがマイクロチャンネル・プレー ト3の方向へ曲げられる。なお、第3図は、イオ ン-電子交換電極2とマイクロチャンネル・プレ - ト 3 の相対的位置関係を示す図である。

<発明の効果>

以上の説明から明らかなように、本発明によればイオン-電子交換電極より放出される2次電子を介してイオンを検出するので、高速イオンの衝

突によるマイクロチャンネル・プレートの劣化が防止されるだけでなく、単純な構造の格子状電子 反換用電極を附加することにより、 2 次電子を効率よくマイクロチャンネル・プレートに導くこと ができるので、構造が簡単で髙感度のイオン検出 装置が得られる。

4. 図面の簡単な説明

第1図は本発明実施例の構成を示す図である。 第2図はコンピュータ・シミュレーションによる 2次電子走行路図である。第3図は上記実施例に おけるイオンー電子交換電極とマイクロチャンネ ル・プレートの相対的位置関係を示す斜視図である。

- 1 … 電子反撥用電極.
- 2 …イオン-電子交換電極
- 3 …マイクロチャンネル・プレート

特許出願人 株式会社島津製作所

代理人 弁理士 西田 第

-247-

OLASON MAN RE JENG SIHL