

LOCALLY PRIVATE GRAPH NEURAL NETWORKS

Sina Sajadmanesh

Daniel Gatica-Perez

Al4Media Workshop on Explainability, Robustness and Privacy in Al June 2, 2021

Introduction

Graph learning with node data privacy

Setting:

- Graph topology is public to the server
- Node data (features and possibly labels) are private to nodes

Problem:

• How to learn a GNN without exposing private node data?

Local Differential Privacy

- Every data holder perturbs their data using a randomized mechanism
- ► The aggregator collects and aggregates perturbed data to estimate the target statistics

Image Credit: Bennett Cyphers 2/15

Local Differential Privacy

- Every data holder perturbs their data using a randomized mechanism
- ► The aggregator collects and aggregates perturbed data to estimate the target statistics

Definition

a randomized mechanism \mathcal{M} satisfies ϵ -LDP if for all pairs of private data x_1 and x_2 , and for all outputs x' of \mathcal{M} , we have:

$$\Pr[\mathcal{M}(X_1) = X'] \le e^{\epsilon} \Pr[\mathcal{M}(X_2) = X']$$

Image Credit: Bennett Cyphers 2/15

WHY LOCAL DP?

GNNs are message-passing neural networks

AGGREGATE: nodes aggregate their neighbors' representation

vector

UPDATE: a neural network generates new node

representation from aggregated vectors

WHY LOCAL DP?

GNNs are message-passing neural networks

AGGREGATE: nodes aggregate their neighbors' representation vector

UPDATE: a neural network generates new node representation from aggregated vectors

Private neighborhood aggregation with LDP

- ► Node features are perturbed by injecting noise
- ► The neighborhood aggregation cancels out the noise

High-dimensional features

- ► The total privacy budget of a node scales with the number of features
 - Keeping the total privacy budget small \rightarrow Too much noise!

High-dimensional features

- ► The total privacy budget of a node scales with the number of features
 - Keeping the total privacy budget small→Too much noise!

Our solution: Multi-bit mechanism for multidimensional perturbation

- ▶ Multi-bit Encoder: perturb a random subset of node features and compress the output
- ► Multi-bit Rectifier: uncompress and de-bias encoded features

Small neighborhoods

- ► Lots of the nodes have too few neighbors
 - Noise won't cancel out if the neighborhood size is small

Small neighborhoods

- ► Lots of the nodes have too few neighbors
 - Noise won't cancel out if the neighborhood size is small

Our solution: KProp linear convolution

- Expands the neighborhood to the nodes that are up to K-hops away
- ► Applies *K* consecutive **AGGREGATE**
- Can be prepended to any GNN architecture as a feature denoising mechanism

LOCALLY PRIVATE GNN ARCHITECTURE

User-Side:

- 1. Perturb node features using MB encoder
- 2. Send encoded features to server

Server-Side:

- 3. De-bias encoded features with MB rectifier
- 4. De-noise rectifier's output using KProp
- 5. Train GNN on denoised features

LABEL PRIVACY

Randomized Response for label differential privacy

- ► True label **y**
- ► Perturbed label y'
- ► Number of classes *c*
- ightharpoonup DP privacy budget ϵ

$$p(y' \mid y) = \begin{cases} \frac{e^{\epsilon}}{e^{\epsilon} + c - 1}, & \text{if } y' = y\\ \frac{1}{e^{\epsilon} + c - 1}, & \text{otherwise} \end{cases}$$

LEARNING WITH NOISY LABELS

Trivial method: directly train GNN with noisy labels

- ► GNN severely overfits the noisy labels
- ► Poor generalization performance

LEARNING WITH NOISY LABELS

Trivial method: directly train GNN with noisy labels

- ► GNN severely overfits the noisy labels
- ► Poor generalization performance

Key Idea: use KProp to denoise labels!

- Apply KProp on one-hot encoded noisy labels
- ► Pick the label with highest value

DENOISING LABELS WITH KPROP

Effect of KProp on label accuracy

ightharpoonup Accuracy between true label $m oldsymbol{y}$ and recovered label $m oldsymbol{ ilde{y}}$

DENOISING LABELS WITH KPROP

Effect of KProp on label accuracy

lacktriangle Accuracy between true label $oldsymbol{y}$ and recovered label $oldsymbol{ ilde{y}}$

How to find best performing K without clean validation data?

LABEL DENOISING WITH PROPAGATION

Prevent absorbing noise in ỹ

- ightharpoonup y is perturbed by RR and is given KProp to get \tilde{y}
- ► Apply the same process on \hat{p} (y | x) to obtain \hat{p} (\tilde{y} | x)
- ► Train $\hat{p}(\tilde{y} \mid x)$ with \tilde{y}

LABEL DENOISING WITH PROPAGATION

Prevent absorbing noise in ỹ

- ightharpoonup y is perturbed by RR and is given KProp to get \tilde{y}
- ► Apply the same process on \hat{p} (y | x) to obtain \hat{p} (\tilde{y} | x)
- ► Train $\hat{p}(\tilde{y} \mid x)$ with \tilde{y}

Prevent absorbing noise in y'

- ► RR gives an **upperbound** on label accuracy:
 - $Acc^* = p(y' = y) = \frac{e^{\epsilon}}{e^{\epsilon} + c 1}$
- Stop training when GNN's accuracy on y' goes beyond Acc*

LPGNN's performance under varying feature and label privacy budgets

► Base GNN: GraphSAGE

Comparison of base GNN architectures

▶ Dataset: Facebook

Comparison of different LDP mechanisms

► Base GNN: GraphSAGE

 $ightharpoonup \epsilon_y = \infty$

DATASET	MECHANISM	$\epsilon_{\rm X}=0.01$	$\epsilon_{\rm X}=0.1$	$\epsilon_X = 1$	$\epsilon_X = 2$
CORA	1в	45.8 ± 3.3	62.3 ± 1.5	59.9 ± 2.7	58.5 ± 2.9
	LP	43.2 ± 3.1	57.8 ± 2.3	61.9 ± 3.1	58.1 ± 2.1
	AG	59.7 ± 2.3	62.7 ± 2.8	67.5 ± 3.0	77.2 ± 1.9
	MB	68.0 ± 2.9	$\textbf{64.6} \pm \textbf{3.2}$	$\textbf{83.9} \pm \textbf{0.4}$	84.0 ± 0.3
FACEBOOK	1в	57.0 ± 3.4	76.3 ± 1.6	86.1 ± 0.6	84.0 ± 1.3
	LP	54.2 ± 2.9	72.5 ± 2.1	85.4 ± 0.4	84.8 ± 1.6
	AG	78.2 ± 1.4	85.6 ± 0.7	92.0 ± 0.1	92.4 ± 0.2
	MB	$\textbf{85.8} \pm \textbf{0.4}$	$\textbf{91.0} \pm \textbf{0.4}$	$\textbf{92.7} \pm \textbf{0.1}$	$\textbf{92.9} \pm \textbf{0.1}$

Comparison of different learning algorithms

► Base GNN: GraphSAGE

 $ightharpoonup \epsilon_{\scriptscriptstyle X}=1$

DATASET	ϵ_y	CROSS ENTROPY	Forward Correction	Drop
CORA	0.5	18.6 ± 1.3	18.6 ± 2.5	42.9 ± 1.5
	1.0	25.5 ± 1.7	37.1 ± 2.5	$\textbf{69.3} \pm \textbf{1.2}$
	2.0	52.9 ± 2.1	75.1 ± 1.0	$\textbf{78.4} \pm \textbf{0.7}$
FACEBOOK	0.5	50.9 ± 4.2	68.9 ± 1.3	75.1 \pm 0.6
	1.0	55.2 ± 1.3	73.8 ± 1.1	$\textbf{84.9} \pm \textbf{0.2}$
	2.0	81.6 ± 1.2	88.9 ± 0.2	$\textbf{90.7} \pm \textbf{0.1}$
LASTFM	0.5	21.1 ± 4.6	44.9 ± 5.3	70.0 ± 3.0
	1.0	28.4 ± 2.5	58.5 ± 3.6	$\textbf{82.1} \pm \textbf{1.0}$
	2.0	56.8 ± 2.8	79.2 ± 1.3	$\textbf{85.7} \pm \textbf{0.7}$

CONCLUSION

Summary

- ▶ Proposed a privacy-preserving GNN based on local differential privacy
 - Multi-bit mechanism for high-dimensional feature perturbation
 - KProp for feature and label denoising
 - Drop algorithm for learning with noisy labels
- Demonstrated promising results in terms of accuracy-privacy trade-off

Future Work

► Protect privacy of graph topology

THANK YOU!

- sajadmanesh

