A Graphical Framework for Cryptographic Games

Lúcás Críostóir Meier lucas@cronokirby.com

2023-08-03

Abstract

Ahoy

1 Introduction

1.1 Outline

2 An Abstract Theory

3 A Concrete Model

3.1 Stacks

Definition 3.1: Stacks

A stack S consists of:

- a set $O \subseteq [n]$,
- types $T_1, ..., T_n$,
- types = $\sigma_1, \sigma_2, ..., \sigma_{n+1} = \emptyset$,
- functions $f_1, ..., f_n$, each of which is:
 - of type $f_i : \sigma_i \to \sigma_{i+1} \times T_i$ when $i \in O$,
 - of type $f_i:\sigma_i\times T_i\to\sigma_{i+1}$, when $i\not\in O$.

J

Definition 3.2: Games

A *game G* consists of:

- a list of stacks $S_1, ..., S_m$,
- a set *W*,
- a function $\varphi: \bigsqcup_{i \in [m]} [n_i]^1 \to W^?$ whose restriction to $\bigsqcup_{i \in [m]} O_i \to W$ is injective.

 $^{^{1}}$ By this, we mean that the domain of φ is the *disjoint* union of the individual index sets.

Definition 3.3: Literal Game Equality

Two games A,B are said to be *literally equal*, written $A\equiv B$, when $m_A=m_B$, and there exist bijections $\pi:[m]\leftrightarrow[m]$ and $\psi:W_A\leftrightarrow W_B$ such that $\varphi_A(i,x)=\psi(\varphi_B(\pi(i),x))^2$.

Definition 3.4: Game Composition

Given two games A, B, and an equivalence relation \sim on $W_A \sqcup W_B$, such that x=y implies $(i,x)\sim (i,y)$, and that

$$\nexists x \in \bigsqcup_{i} O_{A,i}, y \in \bigsqcup_{i} O_{B,i}. \ (0, \varphi(x)) \sim (1, \varphi(y))$$

, we can define their composition (relative to this relation) $A \diamondsuit_{\sim} B$ as a game consisting of:

- the stacks $S_{A,1}, ..., S_{A,m_A}, S_{B,1}, ..., S_{B,m_B}$,
- the wire set $(W_A \sqcup W_B) / \sim$,
- the function

$$\varphi(i,x) \coloneqq \begin{cases} \varphi_A(i,x) \text{ if } i \leq m_A \\ \varphi_B(i-m_A,x) \text{ if } i > m_A \end{cases}$$

3.2 Diagrams

3.3 Efficient Diagrams

3.4 Randomized Diagrams

4 Some Basic Theory

5 Examples

- 5.1 Encryption from Pseudorandom Functions
- 5.2 The KEM-DEM Paradigm
- 5.3 IND-CPA Secure KEMs from Group Assumptions

²Implicitly, $\psi(\bot) := \bot$ here.

6 Further Work

- **6.1 A Framework for Protocols**
- **6.2 Categorical Structure**
- **6.3 Alternative Interpretations**
- 7 Conclusion