数值解析

第10回 2023年12月14日 最小2乗法のプログラミング

[復習]最小2乗法とは

誤差を含んだデータに関して、平均的にならした近似式を求める場 合に用いられる手法

近似式とデータとの誤差 d_k に関し、 $E=\sum_{k=1}^n (d_k)^2$ を満足させることであり、誤差 d_k は $d_k=y_k-(a_0+a_1x_k)$ であるため、 $E=\sum_{k=1}^n \{y_k-(a_0+a_1x_k)\}^2$

り,誤差
$$d_k$$
は $d_k = y_k - (a_0 + a_1 x_k)$ であるため, $E = \sum_{k=1}^{\infty} \{y_k - (a_0 + a_1 x_k)\}^2$

ここでEは a_0 と a_1 の関数とみなせることから...

[復習]最小2乗法とは

$$E \to$$
最小 となる条件は、 $\frac{\partial E}{\partial a_0} = 0$ 及び $\frac{\partial E}{\partial a_1} = 0$ を満たすことと同じとなる。
よって、 $\frac{\partial E}{\partial a_0} = \sum_{k=1}^n \{-2(y_k - a_0 - a_1 x_k)\}$ $\frac{\partial E}{\partial a_1} = \sum_{k=1}^n \{-2x_k(y_k - a_0 - a_1 x_k)\}$

であるから条件および上式より,
$$\sum_{k=1}^{n} (y_k - a_0 - a_1 x_k) = 0$$

 $\sum x_k (y_k - a_0 - a_1 x_k) = 0$

これらを変形して,

が得られ、 a_0 と a_1 の2元の連立一次方程式であることから解を算出できる。

[復習]Excelを用いた最小2乗法演習

1. 表のように、あるグループの構成員の身長と体重の値が得られている。Excelを用いて最後の欄(Sの欄)にあなたの身長と体重を入れた表を作成しなさい。

(身長と体重の正確な値を記載したくない人は近似値で可)

名前	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S
身長 (cm)	170	182	171	166	168	164	173	170	172	167	164	161	180	173	163	168	165	171	
体重 (kg)	58	80	66	62	65	56	76	81	72	66	61	56	86	78	53	66	59	61	

2. Excelのグラフ機能を用いて、横軸を身長、縦軸を体重都とし、上記の一人一人の身長と体重をプロットしたグラフ(散布図)を作成しなさい。またExcelの近似直線機能を用いて、最小2乗法で上記のデータを解析し、身長と体重の関係をy=ax+bの直線及びその方程式を示しなさい。

最小2乗法のプログラミング

1. 最小2乗法で講義スライド4の表のデータを講義スライド3の式(1)のように解析し、身長と体重の関係を、y=ax+bの直線の方程式として出力するC言語のプログラムを作成せよ。また出力の方程式が先回Excelで計算した近似式と一致することを確認せよ。

(多少の誤差が発生する可能性有)

2. Gauss-Jordan法による連立方程式の解法を用いて上記同様の出力を実現するC言語のプログラムを作成せよ。

プログラム作成のヒント

表データの2次元配列格納(初期化)

```
double x[N] = {170, 182, 171, 166, 168, 164, 173, 170, 172, 167, 164, 161, 180, 173, 163, 168, 165, 171, <自分の身長>};
double y[N] = {58, 80, 66, 62, 65, 56, 76, 81, 72, 66, 61, 56, 86, 78, 53, 66, 59, 61, <自分の体重>};
```

累積値の計算 (繰返し処理)

```
for(i=0; i<N; i++){
    sumx += x[i];
}
```

式(1)の計算 a0 = (sumy*sumxx - sumx*sumxy)/ [略];

方程式の出力 printf("y = %f x + (%f)", a1, a0);

(2.はこの内容に加えてGaussの消去法をプログラミングすれば出来る)

課題

スライド5の指示に従って作成した同スライド1.のC言語による プログラムを実行して求めた近似直線の方程式を Moodle上から回答せよ.

【最終通知】レポート課題2

第8回講義資料スライド5の各種条件に沿って問題を解く C言語のプログラムのソースファイルをMoodle上から期 限厳守にて提出せよ。

提出期限:2023年12月14日(木)23:59:59【厳守】

・レポート課題の不備や未完成は**減点・再提出** (他者のレポートコピー等**不正行為厳禁**)