ЛЕКЦИЯ 2

СТЕРЕОГРАФИЧЕСКАЯ ПРОЕКЦИЯ, ПОНЯТИЕ КОМПЛЕКСНОЙ ФУНКЦИИ, ТЕОРЕМА КОШИ-РИМАНА

§1. Бесконечно-удаленная точка, стереографическая проекция

Понятие бесконечно-удаленной точки комплексной плоскости. Пусть дана последовательность $\{z_n\}$ такая, что для любого положительного, большого числа R найдется номер N(R) такой, что при $n \geq N(R)$ будем иметь $\left|z_n\right| > R$ (см. рис. 6). Такую последовательность будем называть «уходящей последовательностью».

Итак, величины $|z_n|$ могут принимать бесконечно большие значения. С одной стороны, предела у последовательности нет, если под пределом понимать фиксированную точку комплексной плоскости. С другой стороны, мы имеем предельное равенство $\lim_{n\to\infty} |z_n| = \infty$, которое наводит на мысль о том, что можно говорить о стремлении последовательности $\{z_n\}$ к некоторой комплексной точке $z=\infty$. Но что эта за точка? На комплексной плоскости мы ее не видим. Однако формально она существует в силу следующих рассуждений.

Для начала введем в рассмотрение еще одно определение.

Определение 1 (окрестность бесконечно удаленной точки) Будем говорить, что множество комплексных чисел z, удовлетворяющих неравенству |z| > R, является R - окрестностью точки $z = \infty$

Здесь $z=\infty$ выступает пока как мифическая точка. Тогда, в силу определения предела последовательности, можем сказать, что $z=\infty$ является пределом «уходящей» последовательности $\left\{z_n\right\}$, поскольку любая R - окрестность точки $z=\infty$ содержит бесконечное число членов последовательности $\left\{z_n\right\}$, начиная c номера n=N(R).

Следующие рассуждения показывают, что мифическую точку $z = \infty$ можно рассматривать как реальную точку сферы.

Бесконечность и стереографическая проекция

Чтобы получить геометрическое изображение числа ∞ , прибегают к представлению комплексных чисел точками сферы.

На рис. 7 изображена сфера единичного радиуса, центр которой совпадает с началом отчета O комплексной плоскости Y,X. На сфере указаны точки N и S — северный и южный полюса, окружность пересечения сферы с плоскостью Y,X — экваториальная окружность. Сферу отображаем взаимно-однозначно на плоскость Y,X следующим образом.

Берем произвольную точку A' верхней полусферы и соединяем ее с северным полюсом N сферы. Далее продолжаем отрезок до пересечения с плоскостью Y, X в точке A. Таким образом,

точке A' ставится в соответствие точка A комплексной плоскости. Аналогично, берем произвольную точку A комплексной плоскости и ставим ей в соответствие точку A' сферы, как

Рис. 2

это изображено на рисунке. При этом отображении точки экваториальной окружности переходят сами в себя. Итак, верхняя часть сферы отображается взаимно-однозначно на часть комплексной плоскости, расположенной вне экваториальной окружности, включая саму окружность.

Далее, аналогично отображаем точку P', принадлежащую нижней части сферы, в точку P комплексной плоскости. Здесь P будет уже принадлежать внутренности экваториальной окружности, поэтому нижняя полусфера отображается в часть комплексной плоскости Y, X, расположенной внутри экваториальной окружности, т.е. нижняя полусфера отображается на внутренность экваториального круга, причем точке S отвечает начало координат комплексной плоскости.

Построенное отображение называют стереографической проекцией сферы на плоскость.

Таким образом, существует взаимно-однозначное соответствие между точками комплексной плоскости и точками сферы, за исключением точки N. С точностью до этого соответствия мы будем отождествлять комплексную плоскость со всей сферой с выколотым полюсом N.

Чему соответствует выколотая точка N? Оказывается, что она отображается, в силу построенного отображения, в мифическую точку $z=\infty$! Действительно, окружность верхней полусферы, содержащая точки A',B' отображается в окружность, содержащую точки A,B плоскости C (отображается в окружность радиуса R (рис. 2)). Поэтому R - окрестность бесконечно-удаленной точки отображается в часть сферы, лежащей выше окружности, содержащей точки A',B', т.е. отображается в «приполярную» область (приполярную «шапку»). Но это значит, что любая «уходящая последовательность», принадлежащая плоскости Y,X, будет отображаться в последовательность точек сферы из приполярной «шапки», причем пределом ее будет точка N.

Итак, точка N единичной сферы соответствует мифической точке $z=\infty$ комплексной плоскости Y,X, тем самым «материализуя» эту точку.

Определение 2. Комплексную плоскость ${\bf C}$, дополненную точкой $z=\infty$, называют полной комплексной плоскостью.

Очевидно, полная комплексная плоскость отображается с помощью стереографической проекции на всю единичную сферу.

§2. Понятие области.

Как определяется область на комплексной плоскости ${\bf C}$? Определение 3. Множество D будем называть областью, если выполнены два условия:

- 1. Каждая точка $z = x + iy \in D$ является внутренней точкой D, т.е. принадлежит D вместе со своей малой окрестностью.
 - 2. Любые две точки $z_1 \in D, \ z_2 \in D$ можно соединить ломаной кривой, принадлежащей D .

Последнее означает, что область D является связным множеством.

Граница области D определяется также как и в вещественном анализе.

Определение 4. Границей области D называют множество предельных точек, не принадлежащих D.

Характерное свойство границы — любая сколь угодно малая окрестность произвольной точки границы содержит как внутренние точки области D, так и внешние ее точки.

Рис.3

В комплексном анализе вводится понятие односвязной и многосвязной области. Все определяется видом границы, которая рассматривается как непрерывная кривая.

Под непрерывной кривой будем подразумевать множество точек $z = \lambda(t) = x(t) + iy(t)$, когда параметр t меняется в пределах интервала [a,b], c указанием движения изображающей точки (x(t), y(t)) вдоль этого множества. Примеры непрерывных кривых:

Рис. 4

(a) -жордановая кривая; (b), (c) - нежордановые кривые

В случае (а) каждая точка кривой проходится один раз (простые точки). В случаях (b), (c) – существуют точки кривой, которые проходятся дважды (кратные точки).

Определение 5. Кривая, не имеющая кратных точек, называется жордановой или простой кривой.

Возвращаемся к понятию односвязной (многосвязной) области.

Определение 6. Область D называется односвязной, если для любой замкнутой жордановой кривой γ , принадлежащей D, внутренность кривой также принадлежит D.

Рис. 5 Односвязная область

Если для кривой $\gamma \in D$ это условие не выполняется, то область называется многосвязной. Пример двухсвязной области (область имеет две граничные кривые Γ_1 , Γ_2):

Рис. 6 Двусвязная область

Здесь внутренность кривой γ не принадлежит области D . N – связная область D имеет N связных компонент своей общей границы Γ ; связные компоненты – жордановые кривые.

§3. Понятие функции комплексной переменной.

Мы будем иметь дело с комплексной функцией комплексной переменной z

$$w = f(z)$$

Здесь $z = x + iy \in D \subset \mathbb{C}$, а значение функции, т.е. w = u + iv, принадлежит области G комплексной плоскости с координатами u, v. Область D называют областью задания функции f(z), а G — областью значений этой функции.

Функция f ставит переменной $z \in D$ в соответствие некоторое комплексное число $w \in G$. В этом случае говорят, что f задает *отображение двумерной области* D *на двумерную область* G. (см. рис. 5). Если это соответствие однозначное, т.е. фиксированному z ставится в соответствие единственное значение w, то функцию называют *однозначной*; в противной случае функция f(z) является *многозначной*. Пример: $f(z) = z^n$ — однозначная функция, $f(z) = \sqrt[n]{z}$ — многозначная функция, так как $\sqrt[n]{z}$ имеет n значений в точке z.

Введем в рассмотрение обратную функцию $z = \varphi(w)$ как функцию, удовлетворяющую тождеству $w \equiv f(\varphi(w))$

Рис. 7

Тогда, если $\varphi(w)$ -- однозначная функция, то f(z) называют взаимно-однозначной.

Поскольку число z характеризуется парой вещественных чисел x, y, а w парой вещественных значений u, v, то функция w = f(z) означает наличие соответствия между парами чисел (x, y) и (u, v). Поэтому задание функции комплексного переменного равносильно заданию двух действительных функций

$$u = u(x, y), v = v(x, y)$$

Пример. Пусть $w = z^2 = (x + iy)^2 = x^2 - y^2 + i2xy$, тогда $u = x^2 - y^2$, v = 2xy

§4. Непрерывность функции f(z).

Определение 7. Число A называют пределом функции f(z) при $z \to z_0$, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что $|f(z) - A| < \varepsilon$ при $|z - z_0| < \delta$. Пишут

$$A = \lim_{z \to z_0} f(z)$$

A = B + iC, f(z) = u(x, y) + iv(x, y), $z_0 = x_0 + iy_0$. Тогда, рассуждая также как при доказательстве леммы из предыдущей лекции, будем иметь

$$B = \lim_{x \to x_0, y \to y_o} u(x, y), C = \lim_{x \to x_0, y \to y_o} v(x, y)$$

Это значит, что предельные свойства функций двух вещественных переменных в фиксированной точке (x_0, y_0) распространяются на пределы функций комплексной переменной в точке z_0 . Пример. Пусть

$$\lim_{z \to z_0} g(z) = A_1, \ \lim_{z \to z_0} h(z) = A_2$$

Тогда

$$\lim_{z \to z_0} (g(z) \pm h(z)) = A_1 \pm A_2, \quad \lim_{z \to z_0} (g(z) \cdot h(z)) = A_1 \cdot A_2, \quad \lim_{z \to z_0} \frac{g(z)}{h(z)} = \frac{A_1}{A_2}$$

Рассмотрим понятие непрерывности функции f(z) в точке $z_0 \in D$.

Определение 8. Функцию f(z) называют непрерывной в точке z_0 , если выполняется условие

$$\lim_{z \to z_0} f(z) = f(z_0) \tag{1}$$

В силу предыдущих рассуждений имеем эквивалентность равенства (1) совокупности равенств
$$\lim_{x\to x_0,y\to y_o} u(x,y) = u(x_0,y_0), \lim_{x\to x_0,y\to y_o} v(x,y) = v(x_0,y_0)$$

Пусть

$$f(z) = u(x, y) + iv(x, y), z = x + iy$$

Фиксируем $z_0 \in D$.

Определение 9. Если существует предел

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

то он называется комплексной производной от f(z) в точке z_0 и обозначается как $f'(z_0)$

Итак, комплексная производная f'(z) определяется совершенно также, как и производная f'(x) от вещественной функции f(x), с условием замены x на z.

Рассмотрим частный случай, когда z = x (x -- вещественное число). Тогда f(z) = u(x) + iv(x). Имеем:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{x \to x_0} \frac{u(x) - u(x_0)}{x - x_0} + i \lim_{x \to x_0} \frac{v(x) - v(x_0)}{x - x_0} = \frac{\partial u}{\partial x}(x_0) + i \frac{\partial v}{\partial x}(x_0)$$

Приходим к выводу, что производная $f'(z_0)$ существует тогда и только тогда, когда существуют $\frac{\partial u}{\partial x}(x_0)$ и $\frac{\partial v}{\partial x}(x_0)$. Если z=y, то, рассуждая аналогично, приходим к выводу, $f'(z_0)$

существует тогда и только тогда, когда существуют $\frac{\partial u}{\partial y}(y_0)$ и $\frac{\partial v}{\partial y}(y_0)$.

Итак, в частных случаях z=x, либо z=y существование производной f'(z) сводится к существованию производных

$$\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$$

от вещественных функций.

Справедливо ли это утверждение в общем случае, когда переменная z = x + iy является комплексной величиной? Оказывается — нет! В этом отличие общего случая от частных и состоит специфика функций комплексного переменного.

Договоримся называть существование производной $f'(z_0)$ в силу определения 9 дифференцируемостью в комплексном смысле, а существование производных $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$ от вещественных функций u(x,y), v(x,y) будем называть дифференцируемостью в вещественном смысле.

Теорема Коши-Римана. Для дифференцируемости функции f(z) = u(x, y) + iv(x, y) в текущей точке z = x + iy в комплексном смысле необходимо и достаточно, чтобы была дифференцируемость в вещественном смысле (т.е. дифференцируемость функций u(x, y), v(x, y) в точке (x, y)) и выполнялись условия Коши-Римана:

$$\boxed{\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}}$$

Докажем необходимость, т.е. выполнение условий дифференцируемости в вещественном смысле и условий Коши-Римана как следствие дифференцируемости функции f(z). Доказательство достаточности этих условий, как условий, гарантирующих существование производной f'(z), опускаем.

Пусть f(z) дифференцируема в точке z, т.е. существует предел

$$\lim_{z_1 \to z} \frac{f(z_1) - f(z)}{z_1 - z} = f'(z)$$

Положим $\Delta f(z) = f(z_1) - f(z) = \Delta u + i \Delta v$, $\Delta z = z_1 - z = \Delta x + i \Delta y$. Здесь Δf , Δz — малые комплексные величины. Тогда

$$\Delta f(z) = f'(z)\Delta z + \varepsilon \cdot \Delta z, \ f'(z) = a + ib, \ \varepsilon = \varepsilon_1 + i\varepsilon_2 \tag{2}$$

при этом $\varepsilon \to 0$ при $\Delta z \to 0$.

Выделяем действительную и мнимую части в равенстве (2):

$$\Delta u = a \cdot \Delta x - b \cdot \Delta y + \varepsilon_1 \Delta x - \varepsilon_2 \Delta y$$

$$\Delta v = b \cdot \Delta x + a \cdot \Delta y + \varepsilon_2 \Delta x + \varepsilon_1 \Delta y$$
 (3)

Здесь $\varepsilon_1 \to 0$, $\varepsilon_2 \to 0$ при $\Delta x \to 0$, $\Delta y \to 0$

Равенства (3) описывают малые приращения вещественных функций u(x,y), v(x,y) в текущей точке (x,y). Как следует из вещественного анализа функций двух и более переменных равенства (3) гарантируют существование производных $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$ в точке (x,y).

В случае бесконечной малости $\Delta x, \, \Delta y, \Delta u, \Delta v$ имеем $\Delta u = du, \Delta v = dv, \Delta x = dx, \Delta y = dy$. Тогда равенства (3) примут вид

$$du = adx - bdy$$
, $dv = bdx + ady$

С другой стороны, вычисляя полные производные от функций u(x, y), v(x, y), имеем

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy, \ dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy$$

Сравнивая между собой выражения для du, dv, получим

$$a = \frac{\partial u}{\partial x}, -b = \frac{\partial u}{\partial y}, \quad b = \frac{\partial v}{\partial x}, \quad a = \frac{\partial v}{\partial y}$$
 (4)

Отсюда следуют условия Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Итак, имеем дифференцируемость функций u(x, y), v(x, y) в вещественном смысле, при этом выполняются дополнительные условия Коши-Римана. Необходимость доказана.

Заметим, что из выражения для производной f'(z) = a + ib, формул (4), (6) следует, что

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Таким образом, производная f'(z) имеет разные представления с использованием частных производных от u(x,y), v(x,y).

Определение 8. Функцию f(z), имеющую производную f'(z) в точке z и ее малой окрестности, называют аналитической в точке z.

Из доказанной теоремы следует, что условия Коши-Римана являются необходимым и достаточными условиями для аналитичности функции f(z) в точке z.