R.E. Rolon ¹ L.E. Di Persia ^{1,2} H.L. Rufiner ^{1,2,3} R.D. Spies ^{2,4}

¹Instituto de I+D en Señales, Sistemas e Inteligencia Computacional, sinc(i), UNL-CONICET Santa Fe, Argentina.

²Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Argentina.

³Laboratorio de Cibernética, Fac. de Ingeniería, Univ. Nacional de Entre Ríos. Entre Ríos, Argentina

⁴Instituto de Matemática Aplicada del Litoral, IMAL. Santa Fe, Argentina.

October 30, 2014

- Introduction
 - Motivation
- Materials and methods
 - Proposed method
 - Database
 - Sparse representations
 - Learning and inference problems
- MDAS method
- Experiments and results
- Discussion and conclusions

- Introduction
 - Motivation
- Materials and methods
 - Proposed method
 - Database
 - Sparse representations
 - Learning and inference problems
- MDAS method
- Experiments and results
- 5 Discussion and conclusions

- The Obstructive Sleep Apnea-Hypopnea (OSAH) syndrome is characterized by repetitive episodes of airway narrowing during sleep.
- The OSAH has a prevalence of 2 % to 4 % in the adult population.

- The Obstructive Sleep Apnea-Hypopnea (OSAH) syndrome is characterized by repetitive episodes of airway narrowing during sleep.
- The OSAH has a prevalence of 2 % to 4 % in the adult population.
- The current gold standard diagnostic test for OSAH is an overnight polysomnography (PSG) in a sleep laboratory.

- The Obstructive Sleep Apnea-Hypopnea (OSAH) syndrome is characterized by repetitive episodes of airway narrowing during sleep.
- The OSAH has a prevalence of 2 % to 4 % in the adult population.
- The current gold standard diagnostic test for OSAH is an overnight polysomnography (PSG) in a sleep laboratory.

Medical criteria

- apnea: if the amplitude of the airflow signal decreases below 25 % of the "baseline" breathing amplitude and it remains below that level for more than 10 seconds.
- *hypopnea:* if the amplitude of the respiratory signal decreases below 70 % of the "baseline" breathing amplitude, it remains so for more than 10 seconds for more than 2 breathe periods.

Medical criteria

- apnea: if the amplitude of the airflow signal decreases below 25 % of the "baseline" breathing amplitude and it remains below that level for more than 10 seconds
- hypopnea: if the amplitude of the respiratory signal decreases below 70 % of the "baseline" breathing amplitude, it remains so for more than 10 seconds for more than 2 breathe periods.

Apnea-Hypopnea Index (AHI) = average number of AH events per hour.

- 5<AHI<15, mild.
- 15<AHI<30, moderate.
- AHI>30. severe.

Experiments and results

Medical criteria

- apnea: if the amplitude of the airflow signal decreases below 25 % of the "baseline" breathing amplitude and it remains below that level for more than 10 seconds
- hypopnea: if the amplitude of the respiratory signal decreases below 70 % of the "baseline" breathing amplitude, it remains so for more than 10 seconds for more than 2 breathe periods.

Apnea-Hypopnea Index (AHI) = average number of AH events per hour.

- 5<AHI<15, mild.
- 15<AHI<30, moderate.
- AHI>30. severe.

Proposed method

- Introduction
 - Motivation
- Materials and methods
 - Proposed method
 - Database
 - Sparse representations
 - Learning and inference problems
- MDAS method
- Experiments and results
- Discussion and conclusions

Proposed method

Proposed method

Database

- Introduction
 - Motivation
- Materials and methods
 - Proposed method
 - Database
 - Sparse representations
 - Learning and inference problems
- MDAS method
- Experiments and results
- 5 Discussion and conclusions

Experiments and results

SHHS: Sleep Heart Health Study

The SHHS database contains 1000 PSGs of the "Sleep and Epidemiology Research Center (SERC)¹" at the "Case Western Reserve University".

- - Nasal airflow
 - SaO₂
 - OXStat
 - EEG

SHHS: Sleep Heart Health Study

The SHHS database contains 1000 PSGs of the "Sleep and Epidemiology Research Center (SERC)¹" at the "Case Western Reserve University".

- Biomedical signals:
 - Nasal airflow
 - \bullet SaO₂
 - OXStat
 - EEG
- Expert annotations:
 - Respiratory events (AH)
 - Sleep stages

¹ http://cci.case.edu/serc/

SHHS: Sleep Heart Health Study

The SHHS database contains 1000 PSGs of the "Sleep and Epidemiology Research Center (SERC)¹" at the "Case Western Reserve University".

- Biomedical signals:
 - Nasal airflow
 - SaO₂
 - OXStat
 - EEG
- Expert annotations:
 - Respiratory events (AH)
 - Sleep stages

¹ http://cci.case.edu/serc/

Database

Introduction

Signals of interest

Sparse representations

Introduction

- 1 Introduction
 - Motivation
- Materials and methods
 - Proposed method
 - Database
 - Sparse representations
 - Learning and inference problems
- MDAS method
- Experiments and results
- 5 Discussion and conclusions

Dictionary

$$\mathbf{s} = \sum_{j=1}^{M} \phi_j a_j = \mathbf{\Phi} \mathbf{a}$$

 $\mathbf{s} \in \mathbb{R}^N$
 $\mathbf{\Phi} \in \mathbb{R}^{N \times M}, \ M \ge N$
 $\mathbf{a} \in \mathbb{R}^M$

Experiments and results

Sparse representation problem:

000000000

- learning.
- inference.

Introduction

Dictionary

$$\mathbf{s} = \sum_{j=1}^{M} \phi_j a_j = \mathbf{\Phi} \mathbf{a}$$

 $\mathbf{s} \in \mathbb{R}^N$
 $\mathbf{\Phi} \in \mathbb{R}^{N \times M}, \ M \ge N$
 $\mathbf{a} \in \mathbb{R}^M$

Sparse representation problem:

- learning.
- inference.

Learning and inference problems

- 1 Introduction
 - Motivation
- Materials and methods
 - Proposed method
 - Database
 - Sparse representations
 - Learning and inference problems
- MDAS method
- Experiments and results
- 5 Discussion and conclusions

Learning and inference

• Noise Overcomplete Independent Component Analysis (NOCICA)

$$\mathbf{s} = \sum_{j=1}^{M} \phi_j a_j + \varepsilon = \Phi \mathbf{a} + \varepsilon. \tag{1}$$

Then:

$$\Delta \mathbf{\Phi} = \eta \Lambda_{\varepsilon} ((\mathbf{s} - \mathbf{\Phi} \mathbf{a}_{MAP}) \mathbf{a}_{MAP}^{T} - \mathbf{\Phi} H^{-1}). \tag{2}$$

Orthogonal Matching Pursuit (OMP)

$$\min ||\mathbf{s} - \mathbf{\Phi} \mathbf{a}||_2 \text{ subject to } ||\mathbf{a}||_0 \le T, \tag{3}$$

where $||\cdot||_0$ denotes the zero-norm.

Learning and inference

00000000

Noise Overcomplete Independent Component Analysis (NOCICA)

$$\mathbf{s} = \sum_{j=1}^{M} \phi_j a_j + \varepsilon = \Phi \mathbf{a} + \varepsilon. \tag{1}$$

Then:

$$\Delta \mathbf{\Phi} = \eta \Lambda_{\varepsilon} ((\mathbf{s} - \mathbf{\Phi} \mathbf{a}_{MAP}) \mathbf{a}_{MAP}^{T} - \mathbf{\Phi} H^{-1}). \tag{2}$$

Orthogonal Matching Pursuit (OMP)

$$\min ||\mathbf{s} - \mathbf{\Phi} \mathbf{a}||_2 \text{ subject to } ||\mathbf{a}||_0 \le T, \tag{3}$$

where $||\cdot||_0$ denotes the zero-norm.

Most Discriminative Atom Selection

The idea behind this method is to select the most discriminative atoms of Φ in order to improve the classifier's performance.

Main steps:

- ① Compute the atom activation frequency n_{ci}^j given the class i and the atom j.
- ② Select the most discriminative atoms of Φ by $D = |n_{c1}^j n_{c2}^j|$.

Most Discriminative Atom Selection

The idea behind this method is to select the most discriminative atoms of Φ in order to improve the classifier's performance.

Substeps:

- Improve the neural network performance.
- Obtain the optimal configuration of the classifier.

Database

Training set:

AHI	Total studies
AHI≤5	5
5 <ahi≤10< td=""><td>5</td></ahi≤10<>	5
10 <ahi≤15< td=""><td>5</td></ahi≤15<>	5
AHI>15	5

Test set:

AHI	Total studies
AHI≤5	21
5 <ahi≤10< th=""><th>21</th></ahi≤10<>	21
10 <ahi≤15< th=""><th>21</th></ahi≤15<>	21
AHI>15	21

Database

Training set:

AHI	Total studies
AHI≤5	5
5 <ahi≤10< td=""><td>5</td></ahi≤10<>	5
10 <ahi≤15< td=""><td>5</td></ahi≤15<>	5
AHI>15	5

Test set:

AHI	Total studies
AHI≤5	21
5 <ahi≤10< th=""><td>21</td></ahi≤10<>	21
10 <ahi≤15< th=""><th>21</th></ahi≤15<>	21
AHI>15	21

AH events detection

Scatter plots

Tables of results

MDAS method (Multilayer perceptron):

	OAD	CD
Inputs	24	30
Neurons (hidden layer)	14	14

Studies

	OAD	CD
Total studies	84	84
Sensibility (%)	74.52	68.86
Specificity (%)	76.73	67.69
Correlation (%)	90.04	74.57

Tables of results

MDAS method (Multilayer perceptron):

	OAD	CD
Inputs	24	30
Neurons (hidden layer)	14	14

Studies:

	OAD	CD
Total studies	84	84
Sensibility (%)	74.52	68.86
Specificity (%)	76.73	67.69
Correlation (%)	90.04	74.57

- A novel methodology for detecting AH events by using only the SaO₂ signal was developed.
- MDAS method selects the most discriminative atoms of Φ .

- A novel methodology for detecting AH events by using only the SaO₂ signal was developed.
- ullet MDAS method selects the most discriminative atoms of $oldsymbol{\Phi}$.
- ullet A reasonable NN performance by using a subset of atoms of ullet was obtained.

- ullet A novel methodology for detecting AH events by using only the SaO $_2$ signal was developed.
- MDAS method selects the most discriminative atoms of Φ .
- ullet A reasonable NN performance by using a subset of atoms of ullet was obtained.
- A considerably high AHlest-AHl correlation by using OAD was obtained.

- A novel methodology for detecting AH events by using only the SaO₂ signal was developed.
- ullet MDAS method selects the most discriminative atoms of $oldsymbol{\Phi}$.
- ullet A reasonable NN performance by using a subset of atoms of ullet was obtained.
- A considerably high AHlest-AHI correlation by using OAD was obtained.

- A novel methodology for detecting AH events by using only the SaO₂ signal was developed.
- ullet MDAS method selects the most discriminative atoms of $oldsymbol{\Phi}$.
- ullet A reasonable NN performance by using a subset of atoms of ullet was obtained.
- A considerably high AHlest-AHI correlation by using OAD was obtained.

¡Thank you!

Contact: Román Rolon rrolon@santafe-conicet.gov.ar

Introduction