Logica Matematica

APPUNTI DEL CORSO DI LOGICA MATEMATICA TENUTO DAL PROF. MARCELLO MAMINO

Diego Monaco d.monaco2@studenti.unipi.it Università di Pisa

Anno Accademico 2024-25

Indice

1 Introduzione		oduzione	4
2	Forr	nule, Strutture e Teorie	
	2.1	Formule	8
	2.2	Cosa significano le formule	13
	2.3	Sostituzioni	17
	2.4	Teorie	20
	2.5	Esempi di teorie	21
	2.6	PA e Q di Robinson	23
3	Eliminazione dei quantificatori, forme normali ed ultrafiltri		25
	3.1	Eliminazione dei quantificatori	25
	3.2	CNF e DNF	
	3.3	Ultraprodotti	27
	3.4	Teorema di Ax-Grothendieck	
	3.5	Compattezza semantica e teorema di Łoś	32
	3.6	Applicazioni del teorema di compattezza	
	3.7	Teoremi di Löwenheim-Skolem	38
	3.8	Categoricità e completezza	
Bi	bliog	rafia	41

Premessa

Queste dispense sono la quasi esatta trascrizione in LATEX delle dispense del corso di Logica Matematica [1], tenuto dal prof. Marcello Mamino nell'anno accademico 2023-24 presso l'Università di Pisa.

Quest'opera è stata rilasciata con la licenza Creative Commons Attribuzione - Condividi allo stesso modo 4.0 Internazionale. Per leggere una copia della licenza visita il sito web https://creativecommons.org/licenses/by-nc/4.0/deed.it.

§1 Introduzione

La logica matematica nasce dalle ricerche, a cavallo fra il XIX e il XX secolo, sui fondamenti della matematica. Sebbene diverse importanti intuizioni siano considerevolmente più antiche - per esempio il metodo assiomatico degli Elementi di Euclide, l'analisi delle leggi del pensiero nella Logica di Aristotele, l'idea del ragionamento simbolico di Leibniz - si può sostenere che la logica nasca, come branca della matematica, nel momento in cui i concetti quali la dimostrazione o la relazione di conseguenza logica vengono concepiti come oggetti matematici. In altre parole, la logica diventa matematica nel momento in cui si rende conto che le proposizioni matematiche - scrivibili e scritte in un opportuno linguaggio simbolico - sono passibili di studio alla stessa maniera, per dire, dei polinomi o dei numeri interi. Per cui, per esempio, distinguere quali numeri siano composti, quali polinomi abbiano uno zero, quali proposizioni siano dimostrabili, sono problemi diversi, ma fondamentalmente analoghi.

La logica matematica prende le mosse da un problema spropositato: trasformare l'intera matematica in un gioco di scacchi, e stabilirne - decretarne - le regole. Non è per tracotanza che alcuni pensatori concepirono questo obiettivo, ma per necessità, o quasi per spavento. Infatti, si può tollerare che la fondatezza di metodi come la teoria degli insiemi di Cantor sia argomento - e nutrimento - di speculazione filosofica, sol finché le implicazioni di questa dottrina si limitano all'indagine di un buffo concetto di infinito. Quando matematici di spicco riconoscono la rilevanza dei metodi insiemistici per la matematica nel suo complesso - Hilbert: "Aus dem Paradies, das Cantor uns geschaffen..." - allora è necessario che si giunga ad un consenso sulla correttezza di questi metodi.

Di fronte alla controversia, la matematica reagisce nel solo modo che conosce: occorre capire cosa sia precisamente una dimostrazione, studiare le proprietà di questi oggetti, e dimostrare che non è possibile dimostrare una contraddizione, e, forse, avendo fortuna, dimostrare addirittura che una proposizione può essere dimostrata precisamente quando questo è impossibile per la sua negazione. Ecco, sintetizzato in maniera un po' puerile ma avete la mia parola che non so fare meglio - il programma di Hilbert. Chiaramente, mancano mille dettagli - il più importante: quali metodi sono consentiti nell'esecuzione del piano? Qual è la metateoria su cui si deve basare la dimostrazione della solidità delle fondamenta di ogni altra dimostrazione? Possiamo concederci di accantonare questa domanda. Se il programma di Hilbert si potesse portare a termine in una metateoria una qualunque, che non sia contraddittoria - questa costituirebbe un insieme sufficiente di principi, e si lavorerà poi per scremarli. È chiaro, però, che non si deve barare - se si vuole dimostrare che un sistema assiomatico T è solido, non vale partire da una metateoria MT che ha, fra i suoi assiomi, l'enunciato "T è solido". Intuitivamente, perché l'intera operazione abbia un senso, è meglio che MT sia - a prima vista, almeno - non meno affidabile di T stessa. Tecnicamente, il minimo che si possa pretendere è che MT sia un sottoinsieme di T. In conclusione, il programma di Hilbert richiede, come minimo, di trovare un sistema formale abbastanza vasto da servire come ragionevole fondamento della matematica, e di identificare un segmento di questo sistema che sia intuitivamente valido, e capace di dimostrare la coerenza del sistema nel suo complesso.

Tutti sanno che il programma di Hilbert è deragliato a causa dei **teoremi di incompletezza di Gödel**, del 1931. È andata così: in pratica, un'operazione di hacking. Gödel ha considerato un arbitrario sistema assiomatico T, sotto la condizione che abbia una presentazione effettiva e che sia capace di esprimere una modica quantità di aritmetica ragionevolmente, qualunque teoria si voglia prendere a fondamento della matematica deve avere queste caratteristiche. Questo sistema T, dimostra Gödel, è in grado di esprimere

proposizioni a proposito di un calcolatore universale, e, in questo calcolatore universale, si può implementare un sistema formale qualunque, per esempio T stesso. Pare, ora, di essere sulla giusta via per il programma di Hilbert: abbiamo T, e dentro T c'è un pezzo di T che è in grado di esprimere proposizioni a proposito delle dimostrazioni di T, questo pezzo vorrà essere MT. Se si vuole seguire il programma di Hilbert, anzi, si deve passare di qua. Qui, però, cominciano i guai. Grazie a un trucco geniale, è possibile sfruttare questa situazione per costruire una proposizione aritmetica che non può né essere dimostrata né confutata in T: una **proposizione indecidibile**. Sfuma quindi la possibilità che T permetta di dirimere ogni possibile questione matematica. Ma c'è di peggio: un'analisi accurata dell'argomento precedente rivela che la proposizione "T non è contraddittoria" è indecidibile in T. A fortiori, quindi, nessuna metateoria che sia un sottoinsieme di T - neppure, appunto, T stessa - può dimostrare la non contraddittorietà di T. Per l'arbitrarietà di T, il programma di Hilbert è rovinato.

Cosa abbiamo imparato da questo disastro? Intanto abbiamo dato una definizione precisa di enunciato o formula e una definizione di deduzione basata su regole formale, ossia algebriche, simboliche - "abbiamo dato" come comunità matematica, ossia daremo durante il corso. Questa definizione è quella giusta nel senso che, ha dimostrato Gödel nel 1929, c'è una nozione associata di struttura - per esempio i gruppi sono precisamente le strutture che soddisfano le formule che esprimono gli assiomi dei gruppi: $\forall x, y, z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$, $\forall x \ x \cdot e = x, \ \forall x \ e \cdot x = x, \ \text{etc.}$ Una formula è una **conseguenza logica** di un certo insieme di formule quando tutte le strutture che soddisfano le formule dell'insieme soddisfano anche la formula. Il teorema di completezza di Gödel, del 1929, appunto, garantisce che le nozioni di conseguenza logica e deducibilità coincidono. Fissato il sistema di regole deduttive appena descritto, che chiamiamo logica del primo ordine - con riferimento al fatto che è ammesso quantificare $\forall x, \exists x$ su elementi della struttura, ma non si può quantificare su suoi sottoinsiemi - i teoremi di incompletezza di Gödel constatano che certe cose non si possono fare. Per esempio non si può dare un'assiomatizzazione effettiva e completa dell'aritmetica. Ce ne faremo una ragione, come ci siamo fatti una ragione del fatto che l'equazione di quinto grado non si può risolvere per radicali o che una primitiva di $\frac{\sin x}{x}$ non si può scrivere come una composizione di funzioni elementari. Resta il fatto che, per arrivare ai risultati di incompletezza di Gödel, è stato necessario costruire, all'interno dell'aritmetica, un calcolatore universale, operazione che certamente involve rendersi conto dell'esistenza di una nozione generale di funzione calcolabile, e la costruzione di una funzione computabile universale - passi che preludono alla materializzazione elettronica di questi concetti. Va da se che, nel corso, studieremo le basi della teoria della computabilità.

Questi argomenti costituiscono quindi l'ossatura tradizione del corso di logica matematica: il calcolo dei predicati del primo ordine, i teoremi di correttezza e completezza del medesimo, alcuni rudimenti di teoria dei modelli, le bassi della teoria della computabilità, e i famosi teoremi di incompletezza di Gödel.

Prima di intraprendere il viaggio, però, è naturale porsi una domanda: non può essere che le limitazioni evidenziate dal fenomeno dell'incompletezza siano, in qualche modo, legate unicamente al particolare sistema di formule e regole deduttive che ci accingiamo a studiare? O forse al metodo assiomatico? Non può darsi che un paio di millenni di abitudine al metodo assiomatico ci abbiano assuefatto all'angustia di questo particolare vicolo cieco, mentre potrebbe esistere un calcolo logico di concezione completamente diversa e immune all'anatema di Gödel, se solo lo cercassimo con mente aperta? No, non c'è via di fuga, ma si può studiare della matematica interessante per capire perché. Intanto, questo è un corollario dell'incompletezza: che l'insieme delle proposizioni aritmetiche vere, espresse nel linguaggio dell'aritmetica del primo ordine, non è computabile. Ossia, non c'è una

Università di Pisa — Anno Accademico 2024-25

abbia soluzione intera, non è calcolabile.

funzione computabile che, data in input una proposizione aritmetica, stabilisce se questa sia vera oppure no. Se accettiamo la **tesi di Church**, la quale asserisce che le funzioni computabili in teoria sono praticamente quelle implementabili in pratica, potremmo dire che non è concepibile un programma per computer che distingua le proposizioni aritmetiche vere da quelle false. Questo toglie di mezzo gli assiomi, ma resta il fatto che stiamo parlando di proposizioni scritte nel linguaggio dell'aritmetica del primo ordine. Magari, in questo linguaggio si possono scrivere proposizioni esoteriche e incomprensibili alla matematica ordinaria, proposizioni della cui verità non importa a nessuno. È tutto qui il guaio? Non anche se voi vi credete assolti, a patto che vi importi delle equazioni diofantee, siete coinvolti. È infatti, possibile rafforzare il corollario precedente.

Teorema 1.1 (Davis - Putnam - Robinson (1960) + Matijasevic (1970)) L'insieme dei polinomi $p(x_1, ..., x_n)$ a coefficienti interi tali che $p(x_1, ..., x_n) = 0$

In altri termini, è inconcepibile una procedure - sia essa un sistema assiomatico o qualunque altro tipo di algoritmo - che, ricevendo in input il polinomio p, determina infallibilmente se l'equazione diofantea $p(x_1, \ldots, x_n) = 0$ ha soluzione intera. Il decimo problema di Hilbert

Mathematische Probleme.

Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900.

Von

D. Hilbert.

10. Entscheidung der Lösbarkeit einer Diophantischen Gleichung.

Eine Diophantische Gleichung mit irgend welchen Unbekannten und mit ganzen rationalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

non ha soluzione. La dimostrazione di questo risultato è forse l'apoteosi del metodo che ci ha dato Gödel nel suo lavoro del 1931. Se lì, per dimostrare l'incompletezza dell'aritmetica, si trattava di descrivere un compilatore capace di tradurre ogni funzione computabile in una formula aritmetica, per dimostrare questo teorema occorre compilare ogni funzione computabile in un polinomio.

Non c'è quindi scampo per il programma di Hilbert? Il cardine era l'idea di dimostrare la fondatezza di costruzioni concettuali complesse basandosi su teorie più semplici, e, da ultimo, poggiare tutto sull'aritmetica. Questo cardine è saltato, ma cosa ne è degli obiettivi del programma? Ecco, la situazione ricorda (in qualche senso) quel prigioniero

del mercoledì¹. Dopo che abbiamo dimostrato oltre ogni ragionevole dubbio la fine del programma di Hilbert, ci guardiamo attorno, e vediamo che esiste una teoria formale su cui i matematici si trovano d'accordo a fondare la matematica: la teoria degli insiemi di Zermelo-Fraenkel espressa nel contesto del calcolo dei predicati al primo ordine. C'è un vasto consenso sulla coerenza di questa teoria. Il livello di precisione formale delle pubblicazioni matematiche è generalmente aumentato nel corso del XX secolo. E chi ha seguito il corso di Lean 4 sa che ci sono persino diversi matematici di spicco che prendono in seria considerazione la possibilità di formalizzare non solo in teoria, ma in pratica, la matematica per mezzo di opportuni sistemi informatici. Insomma, il cardine è caduto, però il resto del programma non pare che abbia accusato il colpo. Inoltre, fruttuose aree di studio sono nate dalle diramazioni del programma originale: la teoria della dimostrazione, la teoria dei modelli, la teoria degli insiemi, la teoria della computabilità, e forse anche l'informatica teorica. Si può anzi sostenere che il computer, che è nato da molte idee e ha cambiato la faccia dell'umanità, sia, anche, figlio della logica matematica.

In una prigione di qualche remoto paese (Egitto? Texas? Cina?) è domenica e un condannato riceve questa sentenza un po' originale: "Sarai giustiziato prima di domenica prossima, e in nessun modo potrai conoscere il giorno dell'esecuzione fino al giorno stesso". "Sono salvo!" ragiona il condannato. Le esecuzioni, lo sanno tutti, si fanno solo al mattino. Intanto - lemma 1 - l'esecuzione non può avvenire di sabato, altrimenti, venerdì pomeriggio, il condannato potrebbe conoscere il giorno con cortezza. Quindi venerdì è l'ultimo giorno utile. Per cui - lemma 2 - l'esecuzione non può avvenire venerdì, altrimenti, giovedì pomeriggio etc. Si vede bene che ogni giorno può essere escluso, quindi la sentenza è contraddittoria, e non potrà essere eseguita. Mercoledì mattina, però, il boia (sasin) taglia la testa - o lo avvelena, o fate voi - del condannato, il quale, martedì, non aveva idea del fatto che questa sarebbe stata la sua sorte.

§2 Formule, Strutture e Teorie

La logica, lo dice il nome si occupa di linguaggi. Un **linguaggio** è un insieme di **stringhe**, ossia sequenze finite di simboli, di un certo **alfabeto**². Da un punto di vista tecnico, se vogliamo formalizzare il nostro discorso, per esempio, nella teoria degli insiemi, potremmo dire che l'alfabeto può essere un insieme qualunque. Se, per esempio, vogliamo usare come alfabeto $A = \{a, b, c, \ldots, z\}$, dove a, b, c, etc. possono essere qualunque, purché distinti fra loro, allora le stringhe sono sequenze finite come, per esempio:

()
$$(a, x, a, x, a, x, a, x, a, x)$$
 (m, l, \ddot{o})

che conviene scrivere più compattamente come:

$$\varepsilon^3$$
 axaxaxaxa $ml\ddot{o}$

L'ambiente in cui formalizziamo le nostre definizioni, in questo caso la teoria degli insiemi, si dice **metateoria**. Non vogliamo forzare una particolare scelta per la metateoria. Sarà elementare formalizzare il materiale di questo corso, per chi, per esempio, ha seguito il corso di Elementi di Teoria degli Insiemi, prendendo come metateoria la teoria degli insiemi di Zermelo-Fraenkel (ZFC). La nostra esposizione sarà basata su ZFC, mantenendo, però, un tono informale, con due promesse: di non fare leva sui dettagli incidentali della formalizzazione di ZFC, e di evidenziare i casi in cui si sfruttano principi insiemistici non costitutivi - in pratica, forme dell'assioma di scelta.

In conclusione, parleremo di stringhe che sono sequenze finite di elementi dell'alfabeto, ma mantenendo l'illusione che siano semplicemente tracce di inchiostro sulla carta, che è, poi, l'intuizione che intendiamo formalizzare. Illusione doppiamente, perché, nella fattispecie, non c'è inchiostro, ma configurazioni di elettricità statica.

§2.1 Formule

Informalmente, vorremmo generalizzare il meccanismo per mezzo del quale si dice che un **gruppo** è un insieme dotato di un elemento invertibile e, un'operazione , etc. tale che $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $x \cdot e = e \cdot x = x$, etc. Vorremmo dire che un gruppo è semplicemente un **modello** della teoria dei gruppi, la quale è costituita dalle condizioni l'associatività, l'esistenza dell'identità e degli inversi - che vede soddisfare un **struttura** per essere un gruppo. Per esplorare matematicamente la relazione che lega una teoria ai suoi modelli, occorre specificare precisamente di che tipo siano le condizioni che possono costituire una teoria - per noi saranno le **formule al primo ordine** - e come una struttura la soddisfa. L'idea è che una formula si ottenga combinando **formule atomiche** - per esempio equazioni - per mezzo di connettivi logici: $\land, \lor, \neg, \rightarrow$ e i quantificatori \forall, \exists .

²Tecnicamente $L = A^{\leq \mathbb{N}}$, con A alfabeto.

³È la stringa vuota.

Università di Pisa — Anno Accademico 2024-25

Esempio 2.1 (Teoria dei gruppi - v.1)

- simboli di base: e, \dots, \dots^{-1}
- assiomi:

$$\forall x \ \forall y \ \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$\forall x \ e \cdot x = x$$

$$\forall x \ x \cdot e = x$$

$$\forall x \ x \cdot (x^{-1}) = e$$

$$\forall x \ (x^{-1}) \cdot x = e$$

Notare che il dominio dei quantificatori è costituito da tutti gli elementi del gruppo: $\forall x$ significa "per ogni elemento del gruppo".

Spesso non c'è un unico modo di formalizzare un concetto.

Esempio 2.2 (Teoria dei gruppi - v.2)

- simboli di base: e, \ldots
- assiomi:

$$\forall x \ \forall y \ \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$\forall x \ e \cdot x = x$$

$$\forall x \ x \cdot e = x$$

$$\forall x \ x \cdot (x^{-1}) = e$$

$$\forall x \ \exists y \ x \cdot y = e \land y \cdot x = e$$

Crucialmente è ammesso quantificare solo su elementi della struttura, non, per esempio, sui sottoinsiemi. Questo è il motivo per cui si parla di **logica al primo ordine**. della struttura, sui numeri naturali o sulle formule stesse. È per questa ragione che la logica che studiamo si dice **del primo ordine**: se, per esempio, potessimo quantificare anche sui sottoinsiemi della struttura, allora lavoreremmo al **secondo ordine**. ZFC, la teoria degli insiemi, ricorderete, è formalizzata al primo ordine - c'è un solo tipo di oggetti, gli insiemi, e si può dire "per ogni insieme x" o "esiste un insieme x". Quando, in ZFC, si quantifica sui sottoinsiemi, lo si fa per mezzo di una perifrasi, $\forall x \subseteq y \dots$ significa $\forall x \ x \subseteq y \to \dots$, e questo è sottilmente diverso da dire "per ogni sottoinsieme x di y", infatti, dire "per ogni elemento elemento x dell'universo degli insiemi che sia un sottoinsieme di y". Vedremo una conseguenza sorprendente, il **paradosso di Skolem**, di questo fatto. Formalmente, definiremo le formule dando una grammatica - in particolare una **grammatica libera dal contesto** (**CFG**).

Una grammatica identifica le stringhe di un linguaggio descrivendo un processo ricorsivo che permette di scrivere una stringa più lunga combinando stringhe più brevi. Lo studio, in generale, delle grammatiche non fa parte degli obiettivi di questo corso, vediamo invece il caso particolare che ci interessa.

Definizione 2.3 (Linguaggio del primo ordine). Un linguaggio del primo ordine - brevemente linguaggio - L = (R, F, ar) è dato da due insiemi disgiunti R e F, rispettivamente

Università di Pisa — Anno Accademico 2024-25

i simboli di relazione e i simboli di funzione, e una funzione ar : $R \sqcup F \to \mathbb{N}$ che associa ad ogni simbolo un numero naturale, detto arietà.⁴

Esempio 2.4 (Linguaggio degli anelli ordinati)

Il linguaggio degli anelli ordinati è:

$$L_{or} = (\{<\}, \{0, 1, +, \cdot\}, ar_{or})$$

dove:

$$\operatorname{ar}_{or}(<) = 2$$
 < è un simbolo di relazione binaria
 $\operatorname{ar}_{or}(+) = \operatorname{ar}_{or}(\cdot) = 2$ + e · sono simboli di funzione binaria
 $\operatorname{ar}_{or}(0) = \operatorname{ar}_{or}(1) = 0$ 0 e 1 sono simboli di costante

Si osservi che i simboli di constante li vediamo come funzioni di arietà 0.

Nota: qui c'è un piccolo conflitto nella terminologia, perché, secondo la definizione precedente, un "linguaggio" è, in pratica, la collezione dei simboli di base di una teoria, mentre abbiamo già chiamato "linguaggio" l'insieme delle stringhe. È così, non è colpa mia.

Osservazione 2.5 — Nella definizione di linguaggio ammettiamo simboli di funzione 0-ari, che chiameremo simboli di costante, e simboli di relazione 0-ari, che chiameremo simboli di costante proposizionale. Le costanti proposizionali ammetteranno due sole interpretazioni: vero e falso.

Per il resto di questo capitolo fissiamo un linguaggio al primo ordine L = (R, F, ar).

Definizione 2.6 (*L*-termine). Gli *L*-termini sono stringhe costruite con l'alfabeto dato da:

$$F \sqcup \{x_0, x_1, x_2, \ldots\} \sqcup \{(,), ,\}$$

Chiamiamo l'insieme numerabile:

$$\text{Var} \stackrel{\text{def}}{=} \{x_0, x_1, x_2, \ldots\} = \{x_i\}_{i \in \mathbb{N}}$$

insieme dei simboli di variabile. Un *L*-termine è quindi una stringa in $F \sqcup \text{Var} \sqcup \{(,),,\}$, e può essere definito ricorsivamente come segue:

- un simbolo di variabile $x_i \in \text{Var}$
- la stringa $f(t_1,t_2,\ldots,t_k)$, dove $f\in F$ è un simbolo di funzione, t_1,\ldots,t_k sono L-termini, e ar(f) = k.

Moralmente: si parte dai simboli di variabile e si applicano simboli di funzione ricorsivamente per costruire termini più complessi.

Osservazione 2.7 (I simboli di costante sono in automatico L-termini) — Se c è un simbolo di costante - funzione 0-aria - allora c() è un L-termine (abbiamo detto che le funzioni k-arie valutate in L-termini sono a loro volta L-termini, dunque c() lo è in automatico). In pratica, ometteremo le parentesi, scrivendo semplicemente c. Similmente useremo, per i simboli che denotano le operazioni aritmetiche, la comune

⁴Tecnicamente staremmo anche fissando un alfabeto da cui prendere i simboli.

notazione infissa, per esempio $x_0 + (x_1 \cdot x_2)$ in luogo di $+(x_0, \cdot (x_1, x_2))$. Infine ci prenderemo la libertà di usare scritture diverse da x_0, x_1, x_2 etc. per i simboli di variabile, es. $x + y \cdot z$, dove non può esserci confusione. Non bisogna confondere le scritture di questo tipo $x + y \cdot z$, che sono abbreviazioni, un stereografia che impieghiamo fra di noi per parlare dei termini, con i termini stessi, che sono gli oggetti definiti formalmente.

Esempio 2.8 (L-termini)

Ecco alcuni esempi di L_{or} termini:

$$\cdot (+(x_0,1()),x_1) + (+(1(),1()),1())$$

vulgo:

$$(x_0+1)\cdot x_1$$
 $(1+1)+1$

Definizione 2.9 (*L*-formula). Le *L*-formule sono stringhe dell'alfabeto dato da:

$$F \sqcup R \sqcup \operatorname{Var} \sqcup \{(,),,,\top,\bot,\neg,\wedge,\vee,\rightarrow,\forall,\exists\}^5$$

una L-formula può essere una formula atomica, ossia:

- T o ⊥,
- $r(t_1,t_2,\ldots,t_k)$ con $r\in R$ simbolo di relazione e t_1,\ldots,t_k L-termini, e ar(r)=k,
- $t_1 = t_2 \text{ con } t_1, t_2 \text{ L-termini.}$

oppure è ottenuta combinando formule atomiche per mezzo di **connettivi logici** e **quantificatori**:

- $(\neg \varphi)$ con φ *L*-formula,
- $(\varphi \wedge \psi)$ con φ, ψ L-formule,
- $(\varphi \lor \psi)$ con φ, ψ L-formule,
- $(\varphi \to \psi)$ con φ, ψ *L*-formule,
- $(\forall x_k \varphi)$ con φ L-formula e $x_k \in \text{var simbolo di variabile}$,
- $(\exists x_k \varphi)$ con φ L-formula e $x_k \in \text{var simbolo di variabile.}$

La tecnica più immediata per dimostrare un enunciato a proposito di tutte le formule è l'induzione strutturale o induzione sulla complessità delle formule. Ossia, per dimostrare che tutte le formule godono di una proprietà π , si dimostra che π vale per le formule atomiche, e che π vale per una combinazione a patto che valga per le sue componenti. Similmente si può procedere per induzione sulla complessità dei termini: i casi base sono i simboli di variabile e di costante. La correttezza di questi procedimenti è immediata osservando che si possono giustificare con una semplice induzione aritmetica sulla lunghezza delle formule.

⁵Pertanto la differenza sostanziale tra *L*-termini ed *L*-formule sta nel fatto che, nelle seconde, le stringe possono essere costruite ricorsivamente anche usando connettivi logici e quantificatori (ed usando come base anche relazioni di *L*-termini (e non funzioni)).

Osservazione 2.10 — I casi nelle definizioni di L-formula e L-termine sono disgiunti, ossia, data una L-formula, o un L-termine, questo oggetto ricade necessariamente in uno e un solo dei casi della sua definizione.

Questa osservazione ci permette di procedere non solo per induzione, ma anche per ricorsione strutturale, ossia definire una funzione delle formule descrivendo come il valore associato da f a una combinazione dipende solo da f e dalle sue componenti. Vediamo qualche esempio.

Definizione 2.11 (Sottoformula). Le sottoformule di una formula φ sono:

• φ stessa

inoltre:

- se $\varphi = (\neg \psi)$, allora tra le sottoformule di φ ci sono anche le sottoformule di ψ ,
- se $\varphi = (\psi_1 \wedge \psi_2)$ o $\varphi = (\psi_1 \vee \psi_2)$ o $\varphi = (\psi_1 \rightarrow \psi_2)$, allora tra le sottoformule di φ ci sono anche le sottoformule di ψ_1 e ψ_2 ,
- se $\varphi = (\forall x_k \, \psi)$ o $\varphi = (\exists x_k \, \psi)$, allora tra le sottoformule di φ ci sono anche le sottoformule di ψ .

Nella definizione precedente abbiamo definito le sottoformule per via ricorsiva - ossia, abbiamo definito le sottoformule di una formula φ in termini delle sottoformule delle componenti di φ (oltre a φ stessa).

Definizione 2.12 (Variabili libere di una formula). Definiamo prima le **variabili libere** di un termine. Dato un L-termine t definiamo var(t) dicendo che:

- se $t = x_i \in \text{var}$, allora $\text{var}(t) = \{x_i\}$,
- se $t = f(t_1, \dots, t_k)$, allora $var(t) = \bigcup_{i=1}^k var(t_k)$.

Adesso che abbiamo definito ricorsivamente le variabili libere di un L-termine t, possiamo definire le **variabili libere di una** L-formula φ , $vl(\varphi)$ come segue per le formule atomiche:

- se $\varphi = \top$ o $\varphi = \bot$, allora $vl(\varphi) = \emptyset$,
- se $\varphi = r(t_1, \dots, t_k)$, allora $vl(\varphi) = \bigcup_{i=1}^k var(t_k)$,
- se $\varphi = (t_1 = t_2)$, allora $\operatorname{vl}(\varphi) = \operatorname{var}(t_1) \cup \operatorname{var}(t_2)$.

e per le formule composte:

- se $\varphi = (\neg \psi)$, allora $vl(\varphi) = vl(\psi)$,
- se $\varphi = (\psi_1 \wedge \psi_2)$ o $\varphi = (\psi_1 \vee \psi_2)$ o $\varphi = (\psi_1 \rightarrow \psi_2)$, allora $vl(\varphi) = vl(\psi_1) \cup vl(\psi_2)$,
- se $\varphi = (\forall x_k \, \psi)$ o $\varphi = (\exists x_k \, \psi)$, allora $\text{vl}(\varphi) = \text{vl}(\psi) \setminus \{x_k\}$.

Osservazione 2.13 (Variabili legate) — L'ultimo caso è cruciale: nelle formule $\forall x_k \psi$ e $\exists x_k \psi$ la variabile x_k non è libera, è **legata** dal quantificatore. Si noti che non è richiesto che x_k compaia fra le variabili libere di ψ^a .

^aPossibile typo di Mamino(?).

Università di Pisa — Anno Accademico 2024-25

Esempio 2.14

Vediamo alcuni esempi:

- $\Diamond \text{ vl}(\exists x_1 \ x_0 = x_1 \cdot x_1) = \{x_0\} \text{ e la variabile } x_1 \text{ è legata.}$
- $\Diamond \text{ vl}((\exists x_1 \ x_0 = x_1 \cdot x_1) \land (\exists x_0 \ x_1 = x_0 \cdot x_0) = \{x_0\} \cup \{x_1\} = \{x_0, x_1\}^a.$
- \diamondsuit vl($(\forall x_7 \ (\exists x_7 \ x_2 + x_2 = x_4))$) = $\{x_2, x_4\}$, si noti che il \forall all'inizio è uno specchietto per le allodole, in quanto non conta nulla per il significato della formula.

Esercizio 2.15 (Per chi conosce ZF). Dimostrare dettagliatamente in ZF che la ricorsione strutturale è un procedimento corretto.

Nota 2.16 — Le definizioni date in questa sezione hanno lo scopo di trasformare gli enunciati matematici in oggetti matematici essi stessi: le formule. Questa sezione serve per descrivere formalmente i nostri oggetti di studio e non ha un intento normativo^a. In particolare, a patto di non causare ambiguità, scriviamo le formule in modo abbreviato in ogni situazione pratica. Così ad esempio:

$$\forall x \; \exists y \; y \cdot y = x + y$$
 al posto di
$$\forall x_0 (\exists x_1 \; x_1 \cdot x_1 \cdot x_1 = x_0 + x_1)$$
$$\forall x \; 0 < x \to \exists y \; x = y \cdot y$$
 al posto di
$$\forall x_0 (0 < x_0 \to \exists x_1 \; x_0 = x_1 \cdot x_1)$$

§2.2 Cosa significano le formule

Definiamo in questa sezione un concetto di **struttura** che generalizza le familiari strutture algebriche - gruppi, anelli, ordini, etc. Diremo quindi cosa significa che una struttura soddisfa una formula. Questo ci permetterà di precisare la nozione di **conseguenza logica**: ψ è conseguenza logica di φ se ogni struttura che soddisfa φ soddisfa anche ψ . Grazie alla nozione di conseguenza logica, potremo parlare di **teorie** e dei loro **modelli** - per esempio i gruppi saranno i modelli della teoria dei gruppi. Insomma, daremo una **semantica** per la logica del primo ordine, ossia una risposta lla domanda "cosa significano le formule?".

Definizione 2.17 (*L*-struttura). Fissato un linguaggio al primo ordine $L = (R, F, \operatorname{ar})$, diciamo che una *L*-struttura M = (D; i) è il dato di un insieme D non vuoto, detto **dominio** della struttura, e di una funzione i, che chiameremo **interpretazione dei simboli**, avente come dominio $F \sqcup R$ (il nostro alfabeto) e tale che:

$$\forall r \in R \quad i(r) \subseteq D^{\operatorname{ar}(r)}$$

 $\forall f \in F \quad i(f) : D^{\operatorname{ar}(f)} \to D$

ossia un simbolo di relazione n-aria è interpretato come un sottoinsieme di D^n , e un simbolo di funzione n-aria come una funzione da D^n a D.

 $[^]a$ Se interpretassimo queste due affermazioni nei naturali, la prima vorrebbe dire ogni numero è un quadrato, mentre la seconda che ogni numero naturale ha un quadrato.

^aNon stiamo dicendo come la matematica dovrebbe essere fatta/scritta, stiamo constatando che viene fatta/scritta in certi modi, e stiamo formalizzando precisamente cosa sono questi modi.

Nota 2.18 — In molti casi, è chiaro dal contesto quali siano le arietà e le interpretazioni dei simboli di un certo linguaggio. Per esempio, se parliamo della struttura $(\mathbb{Z}, 0, +, -, \cdot, <)$ è chiaro che ci riferiamo alla struttura che ha per dominio \mathbb{Z} , nel linguaggio L = (R, F) con $R = \{<\}$ e $F = \{0, +, -, \cdot\}$, con:

$$ar(<) = 2$$
 $ar(+) = ar(\cdot) = 2$ $ar(-) = 1$ $ar(0) = 0$

con:

$$i(<) = \{(x,y) \in \mathbb{Z}^2 \mid x < y\} \subseteq \mathbb{Z}^2 = D^{\operatorname{ar}(<)}$$
 $i(0) : D^{\operatorname{ar}(0)} = \{\bullet\} \in \mathbb{Z} = D \qquad i(0)(\bullet) = 0$
 $i(-) : D^{\operatorname{ar}(-)} = \mathbb{Z} \to \mathbb{Z} \qquad i(-)(n) = -n$
 $i(+) : D^{\operatorname{ar}(+)} = \mathbb{Z}^2 \to \mathbb{Z} \qquad i(+)(n,m) = n + m$
 $i(\cdot) : D^{\operatorname{ar}(\cdot)} = \mathbb{Z}^2 \to \mathbb{Z} \qquad i(\cdot)(n,m) = n \cdot m$

Non c'è dubbio che conviene scrivere ($\mathbb{Z}; 0, +, -, \cdot, <$), e non ci si confonde. Detta M questa struttura, in luogo, per esempio, di i(+), scriveremo semplicemente $+_M$ o anche solo +, così $i(+)(2,3) = 2 +_M 3 = 2 + 3$.

Per il resto di questa sezione fissiamo una L-struttura M=(D;i). Vogliamo dire quando una formula φ è **valida** nella struttura M, o, equivalentemente, M **soddisfa** φ , in simboli $M \models \varphi$. Per poter formulare la definizione per ricorsione strutturale, occorre generalizzare il concetto introducendo un **ambiente** o **valutazione delle variabili** v. Così, per esempio, $M \models \{v\}$ x = y se e solo se l'ambiente v dà a x e y il medesimo valore.

Definizione 2.19 (Valutazione delle variabili). Valutazione delle variabili è un modo poetico per dire funzione da Var a D.

Notazione 2.20 — Data una valutazione delle variabili v e un $a \in D$, indichiamo con $v[a/x_n]$: Var $\to D$ la valutazione:

$$v[a/x_n](x_i) = \begin{cases} v(x_i) & \text{se } i \neq n \\ a & \text{se } i = n \end{cases}$$

Con $v[a_1/x_{n_1},\ldots,a_k/x_{n_k}]$ indichiamo $v[a_1/x_{n_1}]\ldots[a_k/x_{n_k}]$.

Definizione 2.21 (Semantica di Tarski). Ricordiamo che è fissato un linguaggio al primo ordine L ed una L-struttura M. Fissiamo anche un ambiente v. In questo contesto possiamo definire per ricorsione strutturale l'**interpretazione** degli L-termini come segue:

$$\{v\}_M x_k \stackrel{\text{def}}{=} v(x_k)$$

$$\{v\}_M f(t_1, \dots, t_k) \stackrel{\text{def}}{=} i(f) \left(\{v\}_M t_1, \dots, \{v\}_M t_k\right) \qquad \text{con } f \in F$$

Invece la relazione di **soddisfacibilità** $M \models \{v\}\varphi$ (ometteremo M al pedice d'ora in poi) per una L-formula φ nella struttura M e nell'ambiente v è definita ricorsivamente, a partire dalle formule atomiche, come segue:

$$M \models \{v\} \top \qquad \neg M \models \{v\} \perp$$
$$M \models \{v\} r(t_1, \dots, t_k) \stackrel{\text{def}}{\iff} (\{v\}_M t_1, \dots, \{v\}_M t_k) \in i(r) =: r_M$$

$$M \models \{v\} \, \underline{t_1} = \underline{t_2} \, \stackrel{\mathrm{def}}{\Longleftrightarrow} \, \{v\}_M \, \underline{t_1} = \{v\}_M \, \underline{t_2}$$

ed infine la soddisfacibilità per le L-formule composte è definita come segue:

$$M \models \{v\}(\neg \psi) \qquad \iff \neg M \models \{v\}\psi$$

$$M \models \{v\}(\psi_1 \land \psi_2) \qquad \iff M \models \{v\}\psi_1 \land M \models \{v\}\psi_2$$

$$M \models \{v\}(\psi_1 \lor \psi_2) \qquad \iff M \models \{v\}\psi_1 \lor M \models \{v\}\psi_2$$

$$M \models \{v\}(\psi_1 \to \psi_2) \qquad \iff M \models \{v\}\psi_1 \to M \models \{v\}\psi_2$$

$$M \models \{v\}(\forall x_k \psi) \qquad \iff \forall a \in D \quad M \models \{v[a/x_k]\}\psi$$

$$M \models \{v\}(\exists x_k \psi) \qquad \iff \exists a \in D \quad M \models \{v[a/x_k]\}\psi$$

Esempio 2.22

Sia (M; p), dove p è un simbolo di relazione unaria. Cosa significa, secondo la semantica di Tarski, che $M \models \{v\} \exists x (p(x) \to \forall y \ p(y))$?

Soluzione. Intuitivamente, ci aspettiamo che asserire che M soddisfa quella formula equivalga, nella metateoria, alla proposizione $\exists a \in D(a \in p_M \to \forall b \in D \ b \in p_M)$. Vediamo come questo segue formalmente dalla semantica di Tarski.

$$M \models \{v\}(\exists x(p(x) \to \forall y \ p(y)))$$

$$\exists a \in D \ M \models \{v[a/x]\}(p(x) \to \forall y \ p(y))$$

$$\exists a \in D \ M \models \{v[a/x]\}p(x) \to M \models \{v[a/x]\}\forall y \ p(y)$$

$$\exists a \in D \ \{v[a/x]\}_Mp(x) \to \forall b \in D \ M \models \{v[a/x,b/y]\}p(y)$$

$$\exists a \in D \ \{v[a/x]\}_Mp(x) \to \forall b \in D \ \{v[a/x,b/y]\}_Mp(y)$$

$$\exists a \in D \ a \in p_M \to \forall b \in D \ b \in p_M$$

Incidentalmente, possiamo notare che abbiamo ottenuto una proposizione che non dipende dall'ambiente v. Questo accade perché la formula data è **chiusa**, ossia non ha variabili libere. Inoltre, grazie al fatto che D è non vuoto, la proposizione $\exists a \in D (a \in p_M \to \forall b \in D \ b \in p_M)$ è necessariamente vera indipendentemente da M. Infatti si danno due casi, o la conseguente è sempre vera, per cui l'implicazione è sempre vera indipendentemente dall' $a \in D$ che usiamo (qui serve $D \neq \emptyset$), o esiste un $b \in D$ tale che $b \notin p_M$, ma scegliendo a come quel b otteniamo una implicazione con antecedente falsa, che è sempre vera. Pertanto la formula data è sempre vera ed è chiusa; formule come questa si diranno logicamente valide.

Definizione 2.23 (Formula chiusa). Una *L*-formula φ si dice **chiusa** se vl $(\varphi) = \emptyset$.

Definizione 2.24 (Formula logica valida). Una L-formula φ si dice **logicamente valida** se per ogni L-struttura M=(D;i) e per ogni valutazione delle variabili $v: \mathrm{Var} \to D$ vale $M \models \{v\}\varphi$.

⁶In generale assumeremo sempre che $D \neq \emptyset$ perché vogliamo che la formula $\forall x \varphi$ non sia sempre vera, e la formula $\exists x \varphi$ non sia sempre falsa.

Università di Pisa — Anno Accademico 2024-25

Osservazione 2.25 (Indipendenza dalle variabili non libere) — Sia M = (D; i) un modello e φ una L-formula, siano inoltre $v_1, v_2 : \text{Var} \to D$ tali che:

$$v_1|_{\mathrm{vl}(\varphi)} = v_2|_{\mathrm{vl}(\varphi)}$$

allora:

$$M \models \{v_1\}\varphi \iff M \models \{v_2\}\varphi$$

Dimostrazione. Procediamo per induzione strutturale.

L-termini Sia $t = x_k$, allora $\operatorname{var}(t) = \{x_k\}$, segue che $\{v_1\}_M x_k = v_1(x_k) \stackrel{\text{hp.}}{=} v_2(x_k) = \{v_2\}_M x_k$. Sia ora $t = f(t_1, \dots, t_k)$, con $f \in F$ simbolo di funzione, $\operatorname{ar}(f) = k$ e t_i L-termini; dato che $\operatorname{var}(t) = \bigcup_{i=1}^k \operatorname{var}(t_i)$ segue dall'ipotesi che $v_1|_{\operatorname{var}(t_i)} = v_2|_{\operatorname{var}(t_i)}$ per ogni $i = 1, \dots, k$, a questo punto per ipotesi induttiva $\{v_1\}_M t_i = \{v_2\}_M t_i$, allora usando la definizione di interpretazione dei termini nella semantica di Tarski:

$$\{v_1\}_M f(t_1, \dots, t_k) = i(f)(\{v_1\}_M t_1, \dots, \{v_1\}_M t_k)$$
 (hp. induttiva)
$$= i(f)(\{v_2\}_M t_1, \dots, \{v_2\}_M t_k)$$

$$= \{v_2\}_M f(t_1, \dots, t_k)$$

L-formule atomiche Sia $\varphi = \top$ o $\varphi = \bot$, allora $M \models \{v_1\}\varphi$ e $M \models \{v_2\}\varphi$ sono sempre soddisfatti o mai soddisfatti, quindi la tesi è banale. Se $\varphi = r(t_1, \ldots, t_k)$, con $r \in R$ simbolo di relazione, ar(r) = k e t_i L-termini, allora $\text{vl}(\varphi) = \bigcup_{i=1}^k \text{var}(t_i)$, segue che $v_1|_{\text{var}(t_i)} = v_2|_{\text{var}(t_i)}$ per ogni $i = 1, \ldots, k$, quindi per ipotesi induttiva $\{v_1\}_M t_i = \{v_2\}_M t_i$, allora usando la definizione di soddisfacibilità delle formule atomiche nella semantica di Tarski:

$$M \models \{v_1\}r(t_1, \dots, t_k) \iff (\{v_1\}_M t_1, \dots, \{v_1\}_M t_k) \in i(r) \quad \text{(hp. induttiva)}$$
$$\iff (\{v_2\}_M t_1, \dots, \{v_2\}_M t_k) \in i(r)$$
$$\iff M \models \{v_2\}r(t_1, \dots, t_k)$$

Infine se $\varphi = (t_1 = t_2)$, allora $\operatorname{vl}(\varphi) = \operatorname{var}(t_1) \cup \operatorname{var}(t_2)$, segue che $v_1|_{\operatorname{var}(t_i)} = v_2|_{\operatorname{var}(t_i)}$, per cui per ipotesi induttiva $\{v_1\}_M t_i = \{v_2\}_M t_i$, ed usando ancora la definizione di soddisfacibilità della semantica di Tarski in questo caso si ottiene:

$$M \models \{v_1\}(t_1 = t_2) \iff \{v_1\}_M t_1 = \{v_1\}_M t_2$$
 (hp. induttiva)
$$\iff \{v_2\}_M t_1 = \{v_2\}_M t_2$$

$$\iff M \models \{v_2\}(t_1 = t_2)$$

L-formule Sia ora $\varphi = \psi_1 \wedge \psi_2$ (o $\varphi = \psi_1 \vee \psi_2$ o $\varphi = \psi_1 \rightarrow \psi_2$), allora $\operatorname{vl}(\varphi) = \operatorname{vl}(\psi_1) \cup \operatorname{vl}(\psi_2)$, segue che $v_1|_{\operatorname{vl}(\psi_i)} = v_2|_{\operatorname{vl}(\psi_i)}$, per cui per ipotesi induttiva $M \models \{v_1\}\psi_i \iff M \models \{v_2\}\psi_i$, allora per definizione di soddisfacibilità nella semantica di Tarski:

$$M \models \{v_1\}(\psi_1 \land \psi_2) \iff M \models \{v_1\}\psi_1 \land M \models \{v_1\}\psi_2 \qquad \text{(hp. induttiva)}$$
$$\iff M \models \{v_2\}\psi_1 \land M \models \{v_2\}\psi_2$$
$$\iff M \models \{v_2\}(\psi_1 \land \psi_2)$$

e analogamente per \vee e \rightarrow . Sia ora $\varphi = \forall x_k \ \psi$, allora $\text{vl}(\varphi) = \text{vl}(\psi) \setminus \{x_k\}$, assumiamo che $M \models \{v_1\} \forall x_k \ \psi$, che equivale per definizione a $\forall a \in D \ M \models \{v_1[a/x_k]\} \psi$

e dimostriamo che $M \models \{v_2\} \forall x_k \ \psi$. Fissiamo $a \in D$, allora per ipotesi induttiva si ha che $M \models \{v_1[a/x_k]\} \psi \iff M \models \{v_2[a/x_k]\} \psi$, infatti $v_1[a/x_k]|_{\mathrm{vl}(\psi)} = v_2[a/x_k]|_{\mathrm{vl}(\psi)}$ (ovvio in x_k perché vengono entrambi a, e per tutte le altre variabili vale l'ipotesi) e l'uguaglianza segue dall'ipotesi induttiva; a questo punto abbiamo che $\forall a \in D \ M \models \{v_1[a/x_k]\} \psi \iff M \models \{v_1[a/x_k]\} \psi$, e per definizione di semantica di Tarski abbiamo: $M \models \{v_1\} \forall x_k \ \psi \iff M \models \{v_2\} \forall x_k \ \psi$. Analogamente se $\varphi = \exists x_k \ \psi$, allora $\mathrm{vl}(\varphi) = \mathrm{vl}(\psi) \setminus \{x_k\}$, assumiamo che $M \models \{v_1\} \exists x_k \ \psi$, che equivale per definizione a $\exists a \in D \ M \models \{v_1[a/x_k]\} \psi$, fissato un $a \in D$ per cui M soddisfa $\{v_1[a/x_k]\} \psi$, si ha che per ipotesi induttiva $M \models \{v_1[a/x_k]\} \psi \iff M \models \{v_2[a/x_k]\} \psi$, infatti $v_1[a/x_k]|_{\mathrm{vl}(\psi)} = v_2[a/x_k]|_{\mathrm{vl}(\psi)}$ (come prima), a questo punto, ancora come prima abbiamo che $\exists a \in D \ M \models \{v_1[a/x_k]\} \psi \iff M \models \{v_1[a/x_k]\} \psi$, cioè $M \models \{v_1\} \exists x_k \ \psi \iff M \models \{v_2\} \exists x_k \ \psi$.

Corollario 2.26 (Soddisfacibilità delle formule chiuse)

Se φ è una formula chiusa, allora φ vale in qualche contesto (interpretazione) se e solo se vale in ogni contesto. Ossia, data una qualunque valutazione delle variabili v:

$$M \models \{v\}\varphi \iff \forall v : \text{Var} \to D \ M \models \{v\}\varphi$$

Segue che per verificare che una formula chiusa sia logicamente valida è sufficiente trovare, per ogni modello, un'interpretazione in cui sia valida.

Notazione 2.27 — Scriviamo che $M \models \varphi$, senza specificare il contesto, per dire che M soddisfa φ in ogni contesto, i.e.:

$$M \models \varphi \stackrel{\text{def}}{\iff} \forall v : \text{Var} \to D \ M \models \{v\}\varphi$$

Osservazione 2.28 (Soddisfacibilità per ogni interpretazione) — La scrittura $M \models \varphi$ ha senso anche se φ non è una formula chiusa. In questo caso, se $vl(\varphi) = \{\alpha_1, \dots, \alpha_n\}$ vale che:

$$M \models \varphi \stackrel{\text{def}}{\iff} M \models \forall \alpha_1, \dots, \forall \alpha_n \varphi$$

e quest'ultima è una formula chiusa. Infatti, più in generale si ha che:

$$M \models \psi \stackrel{\text{def}}{\iff} M \models \forall x_k \ \psi$$

Esercizio 2.29. Verificare l'osservazione precedente.

§2.3 Sostituzioni

Questa breve sezione esiste per accomodare una scomodità legata alla nostra ostinazione di usare, come formule, delle liste di simboli. Finché ci limitiamo, per esempio, alle identità algebriche, è chiaro che possiamo sostituire un termine qualunque, al posto di una variabile qualunque, in un'identità [logicamente] valida, ottenendo ancora un'identità valida. Per esempio da $(x+y)(x-y)=x^2-y^2$, scrivendo al posto di x, il termine 1+y ottengo $(1+y+y)(1+y-y)=(1+y)^2-y^2$, che è ancora un'identità valida. Il fatto che y compaia sia nella identità di partenza sia nel termine sostitutivo non compromette la validità di questo procedimento. Se tento lo stesso procedimento ad esempio con

la formula $\exists y \ x < y$, valida nella struttura $(\mathbb{Q}, 1, +, <)$, e sostituisco 1 + y al posto di x, ottengo $\exists y \ 1 + y < y$, che non è più logicamente valida (non vale più in qualsiasi L-struttura). La radice del guaio è fin troppo ovvia: la formula $\exists y \ x < y$ dice che c'è un y, che può dipendere da x, che si trova rispetto a x in una certa situazione. Scrivendo 1+y al posto di x, impongo anche una dipendenza di x da y, creando così un ciclo di dipendenze. È vero che dato un x posso trovare un y, ma non necessariamente questo y soddisfa il vincolo ulteriore di chiudere i ciclo. Se scrivessi la formula così (cromaticamente):

$$\exists y \ 1 + y < y$$

oppure così (biscromaticamente): non ci sarebbero problemi, perché il y (o simbolo) che

compare nella formula non è lo stesso y che compare nel termine 1+y. Volendo tuttavia utilizzare gli stessi simboli per le variabili legate per le variabili libere - convenzione che ha i suoi vantaggi - si cade occasionalmente, ma inevitabilmente nel problema delle catture delle variabili.

Come ne usciamo? Intanto rallegriamoci! Per gli informatici è peggio: il λ -calcolo **vive** di sostituzioni, ed è lì che il male ha messo radici. Noi, ce la caveremo semplicemente vietando le sostituzioni insalubri, cosa che, nel nostro contesto, non ha controindicazioni.

Definizione 2.30 (Sostituibilità). Sia φ una L-formula e sia t un L-termine. Diciamo che t è **sostituibile** per x_k in φ se nessuna occorrenza libera di x_k in φ si trova in una sottoformula del tipo $\forall \alpha \ \psi$ o $\exists \alpha \ \psi$ con $\alpha \in \text{var}(t)$. Più formalmente, usando la ricorsione strutturale diciamo che t è **sostituibile** per x_k in φ se:

- φ è atomica;
- $\varphi = \neg \psi$ e t è sostituibile per x_k in ψ ;
- $\varphi = \psi_1 \wedge \psi_2$ (o $\varphi = \psi_1 \vee \psi_2$ o $\varphi = \psi_1 \rightarrow \psi_2$) e t è sostituibile per x_k in ψ_1 e in ψ_2 ;
- $\varphi = \forall x_i \ \psi$ (o $\varphi = \exists x_i \ \psi$) e si verifica uno dei casi seguenti: o $x_k \in \text{vl}(\varphi), x_i \notin \text{var}(t)$ (cioè la variabile quantifica in φ non appare tra le variabili libere di t, se fosse diversamente, tale variabile verrebbe quantificata catturata a sua volta) e t è sostituibile per x_k in ψ ; oppure $x_k \notin \text{vl}(\varphi)$.

Capiamo prima la definizione informale. Una occorrenza di un simbolo α in una stringa s è un indice i tale che $s_i = \alpha$. Fra le occorrenze del simbolo x_k in φ ce ne sono alcune **legate**, quelle che fanno parte di una sottoformula del tipo $\forall x_k \dots$ o $\exists x_k \dots$, e le altre sono **libere**. Pedantemente, i è un'occorrenza legata se ci sono j_1 e j_2 con $j_1 \leq i \leq j_2$ tali che la sottostringa di φ costituita dai caratteri che vanno dal j_1 -esimo al j_2 -esimo è una sottoformula che inizia per $\forall x_k$ o $\exists x_k$. Per esempio:

$$\forall y \ \forall z (y \cdot z = x \rightarrow \exists x \ \exists t \ t = x + x + x \land y \cdot s(t) = y \cdot y + t)$$

ha una occorrenza libera di x (la prima), mentre le altre sono legate. È chiaro che le variabili libere di una formula sono quelle che hanno almeno una occorrenza libera (in questo caso c'è solo la prima x). In questa formula s(y) e $z \cdot z$ NON sono sostituibili per x, mentre t+t lo è.

Università di Pisa — Anno Accademico 2024-25

Esercizio 2.31. Nella struttura $(\mathbb{N}, s, +, \cdot)$, dove s denota il successore, cosa significa quel delirio sopra?

Esercizio 2.32 (Difficile). Riesci a rimpiazzare 3 con 10 nella formula sopra?

Esercizio 2.33. Convinciti della definizione formale.

Osservazione 2.34 (Le variabili non libere sono sempre sostituibili) — Se $x_k \notin vl(\varphi)$, allora qualunque L-termine t è sostituibile per x_k .

Osservazione 2.35 (Le costanti possono essere sempre sostituite) — Se c è un simbolo di funzione di arietà 0 (costante), allora è sostituibile per x_k in qualunque L-formula

^aLa ragione è che $var(c) = \emptyset$, quindi non può capitare che $x_i \in var(c)$.

Osservazione 2.36 (Gli L-termini semplici possono essere sempre sostituiti) — $f(x_k)$ è sostituibile per x_k in qualunque L-formula φ .

^aInfatti $\operatorname{var}(f(x_k) = \{x_k\}, \text{ quindi non può capitare che } x_i \in \operatorname{var}(f(x_k)) \text{ (e se } x_i = x_k \text{ allora } x_k)$ non sarebbe un'occorrenza libera, per cui saremmo nel caso $x_k \notin vl(\varphi)$).

Bene, sappiamo cosa significa che un termine è sostituibile, ma come si fanno le sostituzioni?

Definizione 2.37 (Sostituzione di una variabile libera con un L-termine). Sia φ una L-formula e t un L-termine sostituibile per x_k in φ . Denotiamo con $\varphi[t/x_k]$ la formula ottenuta rimpiazzando tutte le occorrenze libere di x_k in φ con t. Più formalmente, per ricorsione strutturale:

L-termini | Se $t = x_i$, allora:

$$x_i[t/x_k] = \begin{cases} t & \text{se } i = k \\ x_i & \text{se } i \neq k \end{cases}$$

Se $t = f(t_1, \ldots, t_n)$, con $f \in F$ simbolo di funzione, allora:

$$f(t_1, \ldots, t_n)[t/x_k] = f(t_1[t/x_k], \ldots, t_n[t/x_k])$$

L-formule atomiche | Se $\varphi = \top$ o $\varphi = \bot$, allora $\varphi[t/x_k] = \varphi$. Se $\varphi = r(t_1, \ldots, t_n)$, con $r \in R$ simbolo di relazione, allora:

$$r(t_1, \ldots, t_n)[t/x_k] = r(t_1[t/x_k], \ldots, t_n[t/x_k])$$

Se
$$\varphi = (t_1 = t_2)$$
, allora $(t_1 = t_2)[t/x_k] = (t_1[t/x_k] = t_2[t/x_k])$.

L-formule Se $\varphi = \neg \psi$, allora $\varphi[t/x_k] = \neg(\psi[t/x_k])$. Se $\varphi = \psi_1 \wedge \psi_2$ (o $\varphi = \psi_1 \vee \psi_2$ o $\varphi = \psi_1 \to \psi_2$), allora:

$$(\psi_1 \wedge \psi_2)[t/x_k] = \psi_1[t/x_k] \wedge \psi_2[t/x_k]$$

e Similmente negli altri casi. Se $\varphi = \forall x_i \ \psi$ (o $\varphi = \exists x_i \ \psi$), allora:

$$(\forall x_i \ \psi)[t/x_k] = \begin{cases} \forall x_i \ (\psi[t/x_k]) & \text{se } x_k \neq x_i \\ \forall x_i \ \psi & \text{se } x_k = x_i \end{cases}$$

e similmente nel caso esistenziale.

⁷A fine corso sarà facile, ma per ora è difficile.

d.monaco2@studenti.unipi.it

Nota 2.38 — Quando scriviamo $\varphi[t/x_k]$ assumiamo che t è sostituibile per x_k in φ . La scrittura non ha senso altrimenti. Per esempio, detta φ la formula di prima:

$$\forall y \ \forall z (y \cdot z = \underbrace{x}_{\text{libera}} \rightarrow \exists x \ \exists t \ t = \underbrace{x + x + x}_{\text{legate}} \land y \cdot s(t) = y \cdot y + t)$$

La formula $\varphi[t+t/x]$ è:

$$\forall y \ \forall z (y \cdot z = t + t \to \exists x \ \exists t \ t = x + x + x \land y \cdot s(t) = y \cdot y + t)$$

che ragionevolmente equivale a:

$$\forall y \ \forall z (y \cdot z = t + t \to \exists x \ \exists n \ n = x + x + x \land y \cdot s(n) = y \cdot y + n)$$

tuttavia quest'ultima non si ottiene come sostituzione secondo la definizione precedente in quanto n non è sostituibile per t in φ .

Esercizio 2.39 (Sostituzione e valutazione delle variabili commutano). Vale il seguente fatto: $M \models \{v\}\varphi[t/x_k] \iff M \models \{v[t/x_k]\}\varphi$.

Ossia sostituire t al posto di x_k ha il medesimo effetto che valutare t e assegnare, nell'ambiente, il valore di t alla variabile x_k .

Questo asserto si dimostra precisamente come l'osservazione che $M \models \{v_1\}\varphi \iff M \models \{v_2\}\varphi$ se v_1 e v_2 coincidono sulle variabili libere di φ , ma con più pasticcio di notazioni. Ci servirà per giustificare una delle regole di deduzione.

§2.4 Teorie

Definizione 2.40 (*L*-teoria). Una *L*-teoria è un insieme di *L*-formule.

Definizione 2.41 (Modello). Una *L*-struttura *M* si dice **modello** di una *L*-teoria *T* se $\forall \varphi \in T$ si ha $M \models \varphi$.

Definizione 2.42 (Conseguenza logica). La L-formula φ è **conseguenza logica** della L-teoria T, e si scrive $T \models \varphi$, se per ogni modello M di T vale $M \models \varphi$.

Nota 2.43 (Conseguenza logica del vuoto) — Il simbolo \models si può usare anche con la teoria vuota a sinistra. Si scrive $\models \varphi$, e ciò equivale a dire che φ è logicamente valida.

Definizione 2.44 (Coerenza). Una L-teoria T è coerente se ha un modello.

Osservazione 2.45 (Caratterizzazione della coerenza) — T è coerente se e solo se $T \not\models \bot$.

Dimostrazione. Vediamo le due implicazioni.

 \Longrightarrow Se T è coerente, allora ha un modello M, per cui deve valere che $M \models \bot$ per definizione di conseguenza logica, ma questo non può essere, per definizione di soddisfacibilità, in quanto \bot non è mai soddisfatta (è vero che $\neg M \models \bot$).

⁸Come già osservato con la seconda cosa si intende che, detto $vl(\varphi) = \{\alpha_1, \dots, \alpha_n\}$, si ha $M \models \forall \alpha_1 \dots \forall \alpha_n \ \varphi$.

 \leftarrow Se $T \not\models \bot$, allora esiste un modello M di T tale che $M \not\models \bot$, ma questo è sempre vero per definizione di soddisfacibilità nella semantica di Tarski, per cui M è un modello di T e quindi T è coerente.

Definizione 2.46 (Completezza). La L-teoria T è completa se, per ogni L-formula chiusa φ , vale una e una sola delle seguenti: $T \models \varphi$ oppure $T \models \neg \varphi$.

Osservazione 2.47 (Completezza \implies coerenza) — Se una L-teoria T è completa, allora è coerente.

Dimostrazione. Per definizione $T \models \top$, infatti ogni modello di T soddisfa \top per definizione di soddisfacibilità nella semantica di Tarski, dunque, per completezza, vale necessariamente che $T \not\models \neg \top = \bot$, per cui T è coerente per la caratterizzazione vista prima.

§2.5 Esempi di teorie

È facile costruire una teoria incoerente, per esempio prendendo come assioma il falso: $T = \{\bot\}$. Non sempre, però, è facile distinguere l'incoerenza.

Esercizio 2.48 (Un esempio di teoria incoerente). Dimostra che la teoria, nel linguaggio $\{f,\alpha,\beta\}$ dove f è un simbolo di funzione binaria e α,β sono simboli di costante, data dagli assiomi che seguono:

$$\forall x \ \forall y \ \exists z \ \forall t \ f(x, f(y, t)) = f(z, t)$$
$$\forall x \ f(\alpha, x) = f(x, x)$$
$$\forall x \ \neg (f(\beta, x) = x)$$

non è coerente.

Per un esempio coerente possiamo considerare la teoria dei gruppi, i cui modelli saranno tutti e soli i gruppi.

```
Esempio 2.49 (Teoria dei gruppi)
Consideriamo il linguaggio L_{\text{gruppi}} = \{e, \dots, 1^{-1}\}, e:
             T_{\text{gruppi}} = \{ \forall x \ \forall y \ \forall z \ (x \cdot (y \cdot z) = (x \cdot y) \cdot z), 
                                \forall x \ e \cdot x = x
                                                                                                     \forall x \ x \cdot e = x,
                                                                                                    \forall x \ x^{-1} \cdot x = e \}
                               \forall x \ x \cdot x^{-1} = e
```

Esercizio 2.50. Convinciti del fatto che una struttura \mathcal{G} è un modello di T_{gruppi} se e solo se \mathcal{G} è un gruppo.

La teoria dei gruppi è chiaramente coerente: basta esibire un gruppo qualunque per avere un modello. Questa non è una teoria completa, infatti, ci sono gruppi in cui vale $\varphi = \forall x \ \forall y \ x \cdot y = y \cdot x$ e ce ne sono in cui vale $\neg \varphi$ (quindi viene meno la definizione di completezza di una L-teoria).

Un esempio di teoria completa si può ottenere considerando tutte le formule vere in una cera struttura.

Definizione 2.51 (Teoria completa di una struttura). Data una L-struttura M, definiamo la **teoria completa di** M, denotata Th(M) è l'insieme di tutte le L-formule φ tali che $M \models \varphi$.

Osservazione 2.52 — Th(M) è una L-teoria completa.

Si potrebbe pensare a prima vista che una teoria completa caratterizzi un certo modello, a meno di isomorfismi. Non è così, se non nel caso finito.

Definizione 2.53 (Morfismi di strutture). Date due *L*-strutture M = (D; i) e M' = (D'; i') un morfismo di strutture $F : M \to M'$ è una funzione $F : D \to D'$ tale che:

(i) Per ogni simbolo di relazione r, e $(x_1, \ldots, x_{\operatorname{ar}(r)}) \in D^{\operatorname{ar}(r)}$ si ha che:

$$(x_1,\ldots,x_{\operatorname{ar}(r)}) \in r_M \implies (F(x_1),\ldots,F(x_{\operatorname{ar}(r)})) \in r_{M'}$$

(ii) Per ogni simbolo di funzione f, e $(x_1, \ldots, x_{\operatorname{ar}(f)}) \in D^{\operatorname{ar}(f)}$ si ha che:

$$F \circ f_M(x_1, \dots, x_{ar(f)}) = f_{M'}(F(x_1), \dots, F(x_{ar(f)}))$$

Definizione 2.54 (Immersioni e isomorfismi di strutture). Un morfismo di L-strutture $F: M \to M'$ si dice **immersione** se F, come funzione tra i domini, è iniettiva. Un'immersione F è un **isomorfismo** se F è altresì surgettiva, o F^{-1} è, a sua volta, un morfismo di strutture.

Esercizio 2.55 (Teorie complete e modelli finiti). Dimostra che, se T è completa e M è un modello di T, avente dominio finito, allora tutti i modelli di T sono isomorfi a M.

Se T ha un modello infinito, però, ne ha almeno uno per ogni cardinalità maggiore o uguale a |L|. Questo risultato, che vedremo più avanti, preclude una volta per tutte la possibilità di caratterizzare una struttura per mezzo di una teoria del primo ordine (nel senso che due strutture con la stessa teoria non è detto che siano isomorfe).

Quanto a caratterizzare, il meglio che possiamo sperare è di esibire teorie complete, ossia caratterizzare non una struttura, bensì l'insieme degli enunciati veri in una struttura. La teoria degli ordini totali, densi e senza estremi è un esempio di teoria completa descritta esplicitamente che ha modelli infiniti.

```
Esempio 2.56 (Teoria degli ordini totali, densi e senza estremi)

Consideriamo il linguaggio L_{\rm otdse} = \{<\}, e la teoria:

T_{\rm otdse} = \{\forall x \ \forall y \ \forall z \ x < y \ \land \ y < z \rightarrow x < z, \qquad \text{(transitività)}
\forall x \ \neg x < x, \qquad \text{(irriflessività)}
\forall x \ \forall y \ x < y \lor x = y \lor y < x, \qquad \text{(totalità)}
\forall x \ \forall y \ x < y \rightarrow \exists z \ x < z \land z < y, \qquad \text{(densità)}
\forall x \ \exists y \ x < y, \qquad \text{(assenza di massimo)}
\forall x \ \exists y \ y < x \qquad \text{(assenza di minimo)} \}
```

Esercizio 2.57 (Completezza di $T_{\rm otdse}$). Leggi nella prossima sezione come dimostrare che $T_{\rm otdse}$ è completa.

§2.6 PA e Q di Robinson

Altre due teorie rilevanti per questo corso sono due sottoinsiemi di $Th(\mathbb{N}; 0, s, +, \cdot)$, dove s rappresenta la funzione successore: l'aritmetica di Peano (PA) e la teoria Q di Robinson. Entrambe sono teorie nel linguaggio dell'aritmetica $L_{\text{arit}} = \{0, s, +, \cdot\}$.

Definizione 2.58 (PA e Q di Robinson). Le $L_{\rm arit}$ -teorie PA e Q hanno in comune i seguenti assiomi:

- Q1 $\forall x \ \neg s(x) = 0 \ (0 \text{ non successore});$
- Q2 $\forall x \ \forall y \ s(x) = s(y) \rightarrow x = y$ (iniettività del successore);
- Q3 $\forall x \ x + 0 = x$ (def. ricorsiva somma);
- Q4 $\forall x \ \forall y \ x + s(y) = s(x+y)$ (def. ricorsiva somma);
- Q5 $\forall x \ x \cdot 0 = 0$ (def. ricorsiva prodotto);
- Q6 $\forall x \ \forall y \ x \cdot s(y) = (x \cdot y) + x$ (def. ricorsiva prodotto).

A Q1-6, la teoria Q aggiunge il seguente assioma:

Q7
$$\forall x \ x = 0 \lor \exists y \ s(y) = x \text{ (ogni numero eccetto } 0 \text{ è successore)}.$$

Mentre PA aggiunge a Q1-6 il seguente schema di induzione:

$$I_{\varphi} (\varphi[0/x_k] \wedge \forall x_k (\varphi \to \varphi[s(x_k)/x_k])) \to \forall x_k \varphi.$$

Ossia PA contiene una formula I_{φ} per ogni possibile $L_{\rm arit}$ -formula φ e ogni possibile variabile x_k .

Notazione 2.59 — Se indichiamo una formula qualunque con la scrittura $\varphi(x)$, è per dire che, quando poi scriviamo $\varphi(t)$, intenderemo $\varphi(t/x)$. Così lo schema di induzione si può scrivere più familiarmente:

$$(\varphi(0) \land \forall x \ \varphi(x) \to \varphi(s(x))) \to \forall x \ \varphi(x)$$

al variare di $\varphi(x)$ fra tutte le formule e di x fra tutte le variabili.

Esercizio 2.60 (\mathbb{N} modella PA e Q). Convinciti del fatto che $\mathbb{N} \models \mathsf{PA}$ e quindi anche $\mathbb{N} \models \mathsf{Q}$.

Esercizio 2.61 (Q7 è conseguenza logica di PA). Dimostra che PA \models Q7, quindi tutti i modelli di PA sono modelli di Q.

Esercizio 2.62 (Q non è completa). Trova un modello di Q che non è un modello di PA e deducine che Q non è completa.

Per l'esercizio precedente, Q non è completa, ma, a prima vista, si potrebbe pensare PA lo sia. Infatti è ben noto che il principio di induzione:

$$\forall X \subseteq \mathbb{N} \ (0 \in X \land \forall n \in \mathbb{N} \ n \in X \to s(n) \in X) \to X = \mathbb{N}$$

caratterizza N a meno di isomorfismi. Tuttavia non è così, e PA NON è completa: questo è il famoso primo teorema di incompleteness di Gödel. Com'è possibile?

Il guaio sta nel fatto che il principio di induzione scritto qua sopra, che potremmo chiamare induzione al secondo ordine, fa riferimento ad ogni possibile sottoinsieme X di $\mathbb N$. Lo schema di induzione di PA, d'altro canto, lavora solo sui sottoinsiemi $X=\{n|\varphi(n)\}$ per qualche $L_{\rm arit}$ -formula φ , e questi sono molti meno di tutti i sottoinsiemi di $\mathbb N$, perché c'è solo una quantità numerabile di formule. La dimostrazione dell'incompletezza di PA non è banale, e si vedrà in questo corso.

§3 Eliminazione dei quantificatori, forme normali ed ultrafiltri

§3.1 Eliminazione dei quantificatori

Definizione 3.1 (Formule equivalenti per una teoria). Siano φ e ψ L-formule e T una L-teoria. Diciamo che φ è equivalenti per T, denotato con $T \models (\varphi \leftrightarrow \psi)$ se $T \models (\varphi \rightarrow \psi)$ $(\psi) \wedge (\psi \rightarrow \varphi)$, ossia $T, \varphi \models \psi \in T, \psi \models \varphi$.

Definizione 3.2 (Eliminazione dei quantificatori). La L-teoria T ha l'eliminazione dei quantificatori se ogni L-formula è equivalente, per T, ad una formula senza quantificatori.

Se una teoria coerente T ha l'eliminazione dei quantificatori, e, per ogni formula chiusa e senza quantificatori φ , vale $T \models \varphi$ o $T \models \neg \varphi$, allora T è completa.

Dimostreremo la seguente proposizione.

Proposizione 3.3 (T_{oldse} ha l'eliminazione dei quantificatori)

La teoria degli ordini lineari densi senza estremi $T_{\rm oldse}$ ha la proprietà dell'eliminazione dei quantificatori.

Corollario 3.4 (Completezza di T_{oldse})

La teoria T_{oldse} è completa.

Vediamo la dimostrazione del corollario.

Dimostrazione. T_{oldse} è coerente perché $\mathbb{Q} \models T_{\text{oldse}}$. Inoltre, nel linguaggio di T_{oldse} , non ci sono simboli di costante (c'è solo un simbolo di relazione), quindi le uniche formule chiuse senza quantificatori sono combinazioni booleane di ⊤ e ⊥. È immediato che queste formule hanno un valore di verità definito. Pertanto come osservato sopra, $T_{\rm oldse}$ è completa rispetto alle formule chiuse e senza quantificatori, e per la proposizione precedente questo è sufficiente a dire che T_{oldse} è completa.

Altre teorie con l'eliminazione dei quantificatori sono, per esempio, $\operatorname{Th}(\mathbb{C};0,1,+,\cdot)$ e $\operatorname{Th}(\mathbb{R}; 0, 1, +, \cdot, <)$: rispettivamente, la teoria dei campi algebricamente chiusi e la teoria dei campi reali chiusi.

Nota 3.5 (L'eliminazione dei quantificatori dipende dal linguaggio) — La scelta del linguaggio è cruciale per l'eliminazione dei quantificatori. Per esempio la teoria $\operatorname{Th}(\mathbb{R}; 0, 1, +, \cdot)$ può esprimere le medesime proprietà di $\operatorname{Th}(\mathbb{R}; 0, 1, +, \cdot, <)$, perché x < y equivale a $x \neq y \land \exists z \ x + z \cdot z = y$. Tuttavia, senza il simbolo <, non c'è modo di eliminare il quantificatore esistenziale in $\exists y \ x = y \cdot y$ (esercizio: perché?). In un linguaggio opportuno, ogni teoria ha l'eliminazione dei quantificatori: basta infatti aggiungere un simbolo di relazione \mathcal{R}_{φ} per ogni formula $\varphi(x_1,\ldots,x_k)$ con l'assioma $\varphi(x_1,\ldots,x_k) \leftrightarrow \mathcal{R}_{\varphi}(x_1,\ldots,x_k).$

Questa nuova teoria ha ovviamente l'eliminazione dei quantificatori, che però è inutile, perché decidere le formule atomiche nel linguaggio espanso è tanto complesso quanto decidere le formule della teoria di partenza.

Osservazione 3.6 (Sostituzione di formule equivalenti) — Se φ_1 è una sottoformula di ψ_1 , e rimpiazziamo una occorrenza di φ_1 in ψ_1 con una φ_2 , che soddisfa $T \models \varphi_1 \leftrightarrow \varphi_2$,

Università di Pisa — Anno Accademico 2024-25

allora la formula ψ_2 ottenuta da questa sostituzione soddisfa $T \models \psi_1 \leftrightarrow \psi_2$.

Dimostrazione. Induzione strutturale.

§3.2 CNF e DNF

Introduciamo due nozioni di logica proposizionali che sono elementari ma spesso utili.

Definizione 3.7 (CNF e DNF). Una formula senza quantificatori φ è in forma normale congiuntiva (CNF) se:

$$\varphi = (\alpha_{11} \vee \alpha_{12} \vee \ldots \vee \alpha_{1n_1}) \wedge \ldots \wedge (\alpha_{m1} \vee \alpha_{m2} \vee \ldots \vee \alpha_{mn_m})$$

ovvero φ una congiunzione di disgiunzioni di formule α_{ij} che possono essere formule atomiche o negazioni di formule atomiche. Simmetricamente, φ è in forma normale disgiuntiva (DNF) se:

$$\varphi = (\alpha_{11} \wedge \alpha_{12} \wedge \ldots \wedge \alpha_{1n_1}) \vee \ldots \vee (\alpha_{m1} \wedge \alpha_{m2} \wedge \ldots \wedge \alpha_{mn_m})$$

ovvero φ una disgiunzione di congiunzioni di formule α_{ij} che possono essere formule atomiche o negazioni di formule atomiche.

Lemma 3.8 (Ogni formula senza quantificatori è equivalente ad una in CNF e DNF) Data una formula φ senza quantificatori, esistono ψ_1 in CNF e ψ_2 in DNF equivalenti a φ per la teoria vuota (e quindi per ogni teoria).

Dimostrazione. Ci sono almeno due vie possibili:

- 1. Considerare ogni possibile assegnazione dei valori di verità alle formule atomiche che compaiono in φ . Le asserzioni che rendono φ vera danno i disgiunti (**implicanti primi**) della DNF, quelle che rendono φ falsa danno i congiunti (**clausole**) della CNF.
- 2. Per induzione strutturale dimostra che se φ_1 e φ_2 possono essere espresse in CNF e DNF, allora anche $\neg \varphi_1$, $\varphi_1 \wedge \varphi_2$ possono essere espresse in CNF e DNF. Osservare inoltre che i connettivi \neg e \wedge possono essere usati per esprimere tutti gli altri connettivi.

Dimostriamo ora finalmente che $T_{\rm oldse}$ ha l'eliminazione dei quantificatori.

Dimostrazione. Per induzione strutturale. [FINIRE]

Esercizio 3.9. La struttura (D; <) è un ordine totale discreto se < è una relazione d'ordine totale su D tale che ogni elemento di D ha un predecessore ed un successore. Th(D; <) non elimina i quantificatori, mentre Th(D; <, s) sì.

§3.3 Ultraprodotti

Introduciamo una prima tecnica per costruire modelli: gli ultraprodotti. Usando gli ultraprodotti dimostreremo il seguente teorema.

Teorema 3.10 (Compattezza - versione semantica)

Data una L-teoria T e una L-formula φ , se $T \models \varphi$ allora esiste un sottoinsieme finito $T' \subseteq T$, tale che $T' \models \varphi$.

Ovvero se φ è conseguenza logica di un insieme di premesse T, allora basta, in realtà, una quantità finita di queste premesse per implicare φ . Poco da stupirsi se si pensa alla conseguenza logica come dimostrabilità: infatti una dimostrazione - non abbiamo ancora formalizzato questo concetto - è un argomento di lunghezza finita, non ha quindi spazio per riferirsi a più di una quantità finita di premesse. D'altro canto, sia l'enunciato sia la dimostrazione che vedremo sono puramente semantici: la nozione di conseguenza logica che stiamo considerando è verità in tutte le strutture che soddisfano le premesse.

Per mostrare un'applicazione squisitamente matematica degli ultraprodotti, dimostreremo altresì il seguente.

Teorema 3.11 (Ax-Grothendieck)

Sia $f:\mathbb{C}^n\to\mathbb{C}^n$ una funzione polinomiale iniettiva, allora f è surgettiva.

Bando alle ciance.

Definizione 3.12 (Filtri ed ultrafiltri). Sia I un insieme fissato, un **filtro su** $\mathcal{P}(I)$ è un sottoinsieme $F \subseteq \mathcal{P}(I)$ tale che:

- (i) $\emptyset \notin F \in I \in F$;
- (ii) $A \in F \land A \subseteq B \implies B \in F$;
- (iii) se $A, B \in F$ allora $A \cap B \in F$.

Un filtro U su $\mathcal{P}(I)$ è un ultrafiltro se:

$$\forall A, B \in \mathcal{P}(I) \quad A \cup B = I \rightarrow A \in U \vee B \in U$$

Esempio 3.13 (Ultrafiltro principale)

Fissato $I \neq \emptyset$ e $x \in I$, l'insieme:

$$U_x = \{A \subset I \mid x \in A\}$$

è un ultrafiltro, detto ultrafiltro principale generato da x. Nonostante il nome altisonante, questi ultrafiltri qui servono a poco. Noi abbiamo bisogno di ultrafiltri non principali.

Esempio 3.14 (Filtro dei cofiniti)

Sia I un insieme infinito. L'insieme:

$$F = \{ A \subseteq I : |I \setminus A| < \aleph_0 \}$$

dei sottoinsiemi **cofiniti** di I è un filtro su $\mathcal{P}(I)$.

Proposizione 3.15 (Esistenza degli ultrafiltri)

Se F è un filtro su $\mathcal{P}(I)$ allora esiste un ultrafiltro U su $\mathcal{P}(I)$ tale che $F \subseteq U$.

Dimostrazione. Si verifica usando Zorn, e passando per il fatto che l'unione di filtri in catena è un filtro, che ogni filtro F è contenuto in un filtro massimale U. Se questo filtro U non fosse un ultrafiltro, esisterebbero $A,B\subseteq I$ tali che $A\cup B=I$ ma $A,B\notin U$. Consideriamo:

$$G:=\{X\subseteq I|X\cup B\in U\}$$

è facile verificare che G è un filtro. Inoltre $F \subsetneq G$ perché $A \in G$, ma $A \notin U$. Questo contraddice la massimalità di U, dato che $F \subseteq U \subsetneq G$.

Esempio 3.16 (Esistenza di un ultrafiltro non principale)

Sia I un insieme infinito, allora esiste un ultrafiltro non principale su $\mathcal{P}(I)$. Basta infatti considerare un ultrafiltro U che estende il filtro dei cofiniti. Se U fosse principale generato da $x \in I$, allora avremmo per definizione di filtro principale che $\{x\} \in U$, allo stesso tempo $I \setminus \{x\}$ appartiene al filtro dei cofiniti (avendo complemento finito), e quindi anche a U. Segue quindi che $\emptyset = \{x\} \cap (I \setminus \{x\}) \in U \notin I$.

Definizione 3.17 (Ultraprodotto). Fissiamo un linguaggio L = (R, F) e una famiglia di L-strutture $M_i = (D_i; \ldots)$ indicizzata da $i \in I$. Sia U un ultrafiltro su $\mathcal{P}(I)$, definiamo l'**ultraprodotto** $\prod_{i \in I} M_i /_U$ come la L-struttura avente per dominio $\prod_{i \in I} D_i$ modulo la relazione di equivalenza \sim_U definita come:

$$a, b \in \prod_{i \in I} D_i \quad a \sim_U b \iff \{i \in I : a_i = b_i\} \in U$$

L'interpretazione di $r \in R$ in questo dominio è:

$$([a_1],\ldots,[a_k]) \in r_U \stackrel{\text{def}}{\Longleftrightarrow} \{i \in I | (a_{1i},\ldots,a_{ki}) \in r_{M_i}\} \in U^9$$

L'interpretazione di $f \in F$ in questo dominio è:

$$f_{U}([a_{1}],...,[a_{k}]) \stackrel{\text{def}}{=} [(f_{M_{i}}(a_{1i},...,a_{ki}))_{i \in I}]^{10}$$

⁹Cioè la maggioranza degli indici i (indici corrispondenti alle componenti delle varie classi di I-uple, $[a_i]$), secondo l'ultrafiltro, soddisfa la relazione $r \in R$.

 $^{^{10}}$ Cioè la funzione f applicata alle componenti delle varie classi di I-uple, $[a_j]$, calcolata indice per indice.

Osservazione 3.18 (Buona definizione dell'ultraprodotto) — Occorre verificare che la definizione è ben posta^a, ossia che se $\underline{a}_1 \sim_U \underline{a}'_1, \dots \underline{a}_k \sim_U \underline{a}'_k$ allora:

$$([\underline{a}_1], \dots, [\underline{a}_k]) \in r/U \iff ([\underline{a}'_1], \dots, [\underline{a}'_k]) \in r/U$$

infatti: per ipotesi $([\underline{a}_1], \dots, [\underline{a}_k]) \in r/U$ significa che $A = \{i \in I | (a_{1i}, \dots, a_{ki}) \in r_{M_i}\} \in U$. Ora, sempre per ipotesi, sia $B_{\iota} := \{i \in I | a_{\iota i} = a'_{\iota i}\} \in U, \forall \iota = 1, \dots, k$. Posso quindi considerare:

$$C := A \cap B_1 \cap \ldots \cap B_k \in U$$

e, se, $i \in C$, vale che $(a_{1i}, \ldots, a_{ki}) = (a'_{1i}, \ldots, a'_{ki}) \in r_{M_i}$, di conseguenza, detto $D := \{i \in I | (a'_{1i}, \ldots, a'_{ki}) \in r_{M_i}\}$, si ha che $C \subseteq D$, e quindi $D \in U$. Ovviamente la direzione opposta è simmetrica.

Si procede similmente per la buona definizione dell'interpretazione delle funzioni: similmente a prima, sia $B_{\iota} := \{i \in I | a_{\iota i} = a'_{\iota i}\} \in U, \forall \iota = 1, \ldots, k, \text{ e sia } B := B_1 \cap \ldots \cap B_k \in U, \text{ allora, se } i \in B, \text{ vale che } (a_{1i}, \ldots, a_{ki}) = (a'_{1i}, \ldots, a'_{ki}), \text{ e quindi } f_{M_i}(a_{1i}, \ldots, a_{ki}) = f_{M_i}(a'_{1i}, \ldots, a'_{ki}).$ Di conseguenza, $\{i \in I | f_{M_i}(a_{1i}, \ldots, a_{ki}) = f_{M_i}(a'_{1i}, \ldots, a'_{ki})\} \supseteq B$ per cui appartiene all'ultrafiltro.

Teorema 3.19 (Teorema di Łoś)

$$\prod_{i \in I} M_i /_U \models \varphi([a_1], \dots, [a_k]) \iff \{i \in I | M_i \models \varphi(a_{1i}, \dots, a_{ki})\} \in U$$

Notazione 3.20 (Notazione abbreviata per valutazione di formule) — Se $vl(\varphi) \subseteq \{v_1, \ldots, v_k\}$ allora sappiamo che la validità di φ in M dipende solo dai valori assegnati dalla valutazione delle variabili v_1, \ldots, v_k . Possiamo indicare questa situazione denotando φ con $\varphi(v_1, \ldots, v_k)$ e scrivendo $M \models \varphi(a_1, \ldots, a_k)$, con a_1, \ldots, a_k nel dominio, per dire che vale $M \models \{v\}\varphi$ a patto che $v(v_1) = a_1, \ldots, v(v_k) = a_k$.

Corollario 3.21 (Un ultraprodotto di modelli è un modello della stessa teoria)

Se per ogni $i \in I$, vale $M_i \models \varphi$, allora $\prod_{i \in I} M_i /_U \models \varphi$. Quindi un ultraprodotto di modelli di una teoria T è anch'esso un modello di T. Inoltre, per U non principale, se per ogni $i \in I$, eccetto al più un numero finito di indici, vale $M_i \models \varphi$, allora $\prod_{i \in I} M_i /_U \models \varphi$.

Prima di dare la dimostrazione (un po' noiosa) del teorema di Łoś, vediamo qualche applicazione.

Esempio 3.22 (Modelli non standard di \mathbb{N})

Esistono modelli non isomorfi a \mathbb{N} della teoria $\operatorname{Th}(\mathbb{N}; 0, +, \cdot, s)$, quindi, a fortiori, anche di PA.

^aPer rendere più leggera la trattazione ho deciso di usare la notazione vettoriale per le sequenze di elementi.

Dimostrazione. Sia U un ultrafiltro non principale su $\mathcal{P}(\mathbb{N})$. Consideriamo $*\mathbb{N} = \prod_{i \in \mathbb{N}} \mathbb{N}_{U}$ ossia l'ultraprodotto (**ultrapotenza**) di una quantità numerabile di copie della medesima struttura $(\mathbb{N}; 0, +, \cdot, s)$. Gli elementi di $*\mathbb{N}$ sono classi di equivalenza di elementi di $\prod_{i \in \mathbb{N}} \mathbb{N}$, cioè di sequenze di numeri naturali. Per il corollario precedente $*\mathbb{N} \models \operatorname{Th}(\mathbb{N}; 0, +, \cdot, s)$. Supponiamo, per assurdo, che $f: \mathbb{N} \to *\mathbb{N}$ si un isomorfismo di strutture. Allora $f(0_{\mathbb{N}}) = 0_{*\mathbb{N}} = [c_0]$, dove con c_x indichiamo la successione costante associata ad $x \in \mathbb{N}$. Applicando la funzione successore accade che:

$$f(1) = f(s_{\mathbb{N}}(0_{\mathbb{N}})) \stackrel{(a)}{=} s_{*\mathbb{N}}(f(0_{\mathbb{N}})) = s_{*\mathbb{N}}([c_0]) \stackrel{(b)}{=} [c_1]$$

dove in (a) abbiamo usato che f è un isomorfismo di strutture, per cui commuta con l'interpretazione delle funzioni nei due modelli, mentre in (b) abbiamo usato la definizione di interpretazione della funzione s nell'ultraprodotto, ovvero il simbolo di funzione viene applicato componente per componente alla sequenza che rappresenta l'elemento. Questo fa da caso base per un'induzione che ci mostra che $f(n) = [c_n]$ per ogni $n \in \mathbb{N}$.

Possiamo quindi violare la surgettività di f mostrando che esiste un elemento di \mathbb{N} che non è della forma $[c_n]$ per nessun $n \in \mathbb{N}$; consideriamo la classe della successione rappresentata da $\sigma(i) = i$, tale classe non è uguale ad alcuna classe di successione costante, infatti:

$$\{i \in \mathbb{N} | \sigma(i) = c_n(i)\} = \{i \in \mathbb{N} | i = n\} = \{n\} \notin U \iff [(\sigma_i)_i] \not\sim_U [(c_n)_i] \quad \forall n \in \mathbb{N}$$

Esercizio 3.23 (Campi reali chiusi non archimedei). Esistono altri modelli, oltre ad \mathbb{R} , di Th(\mathbb{R} ; 0, 1, +, ·, <) che non soddisfano l'assioma di Archimede:¹¹

$$\forall a, b \in M \ (0_M <_M a \land 0_M <_M b) \implies \exists n \in \mathbb{N} \ a < \underbrace{b + \ldots + b}_{n \text{-volte}}$$

§3.4 Teorema di Ax-Grothendieck

Per dimostrare il teorema di Ax-Grothendieck, ci serviranno i seguenti fatti.

Fatto 3.24 (Classificazione dei campi algebricamente chiusi). Due campi algebricamente chiusi della medesima caratteristica sono isomorfi se e solo se hanno basi di trascendenza equipotenti. Di conseguenza ogni campo algebricamente chiuso di caratteristica 0, avente cardinalità 2^{\aleph_0} è isomorfo a \mathbb{C} .

Fatto 3.25 (Chiusura algebrica di un campo finito). La chiusura algebrica $\overline{\mathbb{F}_p}$ di \mathbb{F}_p è $\bigcup_{k\in\mathbb{N}} \mathbb{F}_{p^{k!}}$.

Lemma 3.26 (C come ultraprodotto di chiusure algebriche di campi finiti)

Sia U un ultrafiltro non principale su $\mathcal{P}(\mathbb{N})$, e sia p_i il i-esimo numero primo. Allora $(\mathbb{C}; 0, 1, +, \cdot)$ è isomorfo a $F = \prod_{i \in \mathbb{N}} \overline{\mathbb{F}_{p_i}}/U$.

¹¹<u>Hint</u>: Considera un ultrafiltro non principale su $\mathcal{P}(\mathbb{N})$ e l'ultraprodotto di una quantità numerabile di copie di \mathbb{R} , ${}^*\mathbb{R} = \prod_{i \in \mathbb{N}} \mathbb{R}_U$.

Dimostrazione. Il fatto che F sia un campo algebricamente chiuso è esprimibile con una formula nel linguaggio dei campi. Infatti gli assiomi dei campi sono ben noti, inoltre la caratteristica di essere algebricamente chiuso si esprime mediante lo schema di assiomi:

$$\varphi_n = \forall y_0, \dots, y_{n-1} \exists x \ x^n + y_{n-1} x^{n-1} + \dots + y_1 x + y_0 = 0 \quad n \in \mathbb{N}$$

Dove x^n è un'abbreviazione per $x \cdot x \dots x$ n volte. Quindi, siccome i fattori dell'ultraprodotto sono campi algebricamente chiusi, anche F lo è. Inoltre F ha caratteristica 0, infatti, fissato un primo p_k :

$$\{i \in \mathbb{N} : \overline{\mathbb{F}_{p_i}} \models \underbrace{1 + \ldots + 1 = 0}_{p_k \text{ volte}}\} = \{i \in \mathbb{N} : i = k\} = \{k\} \notin U^{12}$$

per cui F è un campo tale che $F \not\models \underbrace{1+\ldots+1=0}^{p_k \text{ volte}}$, per ogni $k \in \mathbb{N}$; quindi F ha necessariamente caratteristica 0.

Resta da dimostrare che $|F| = 2^{\aleph_0}$. Intanto è banale notare che $|F| \leq \left| \prod_{i \in \mathbb{N}} \overline{\mathbb{F}_{p_i}} \right| = 2^{\aleph_0}$; per la disuguaglianza opposta immergiamo i numeri $0, 1, 2, \ldots, i$ in $\overline{\mathbb{F}_{p_i}}$ nel modo naturale $i \mapsto 1 + \ldots + 1$ i volte, questa mappa è iniettiva perché $i < p_i$. Definiamo ora la funzione:

$$f: [0,1] \to F: x \mapsto [(|x \cdot i|)_{i \in \mathbb{N}}]$$

e verifico che è iniettiva per concludere. Osserviamo infatti che, per x < y, se $\frac{1}{y-x} \le i$, allora $x \cdot i + 1 \le y \cdot i$, da cui $\lfloor x \cdot i \rfloor + 1 \le \lfloor y \cdot i \rfloor$, ossia $\lfloor x \cdot i \rfloor < \lfloor y \cdot i \rfloor$; ne segue che:

$$\left\{i\in\mathbb{N}: \lfloor x\cdot i\rfloor\neq \lfloor y\cdot i\rfloor\right\}\supseteq \left\{i\in\mathbb{N}: \frac{1}{y-x}\leq i\right\}\in U$$

dove l'appartenenza all'ultrafiltro vale perché l'insieme a destra è cofinito (banalmente la quantità a sinistra verrà superata), ne segue che f iniettiva.

Passiamo ora alla dimostrazione del teorema di Ax-Grothendieck.

Dimostrazione. L'idea è che, se $\mathbb C$ fosse un insieme finito, l'enunciato sarebbe semplicemente il principio dei cassetti applicato alla funzione f. Ora, $\mathbb C$ non è finito, ma dimostreremo che, poiché l'enunciato vale per tutti i campi finiti, allora vale anche per $\mathbb C$. Sia F il campo costruito dal lemma precedente. Fissiamo un grado d arbitrario. Ci basta dimostrare che se $f: F^n \to F^n$ è una funzione polinomiale iniettiva, allora è surgettiva. Questo enunciato è esprimibile mediante la formula nel linguaggio dei campi: $\varphi_d = \forall z_1, \ldots, z_N \text{ In}(z_1, \ldots, z_N) \to \text{Su}(z_1, \ldots, z_N)$, con $N = n \cdot \binom{d+n}{n}$, dove In e Su sono formule che esprimono il fatto che la funzione polinomiale avente coefficienti z_1, \ldots, z_N sia rispettivamente iniettiva e surgettiva. In particolare $\text{Su}(z_1, \ldots, z_N)$ avrà la forma:

$$\forall y_1, \dots, y_n \; \exists x_1, \dots, x_n$$

$$y_1 = p_1(z_1, \dots, z_N, x_1, \dots, x_n) \wedge \dots \wedge y_n = p_n(z_1, \dots, z_N, x_1, \dots, x_n)$$

o in notazione vettoriale, con $\underline{z}=z_1,\ldots,z_N$ (coefficienti), $\underline{y}=y_1,\ldots,y_n$ e $\underline{x}=x_1,\ldots,x_n$ (indeterminate), come $\forall \underline{y} \ \exists \underline{x} \ \underline{y}=\underline{p}(\underline{z},\underline{x})$. Per la costruzione di F, per il teorema di Loś, è sufficiente dimostrare che $\overline{\mathbb{F}_{p_i}}\models\varphi_d$. Fissiamo un p_i primo, $c_1,\ldots,c_N\in\overline{\mathbb{F}_{p_i}}$ e supponiamo che $\overline{\mathbb{F}_{p_i}}\models \mathrm{In}(c_1,\ldots,c_N)$. Voglio dimostrare che $\overline{\mathbb{F}_{p_i}}\models\forall\underline{y}\ \exists\underline{x}\ \underline{y}=\underline{p}(\underline{c},\underline{x})$. Fissiamo $y_1,\ldots,y_n\in\overline{\mathbb{F}_{p_i}}$ e cerchiamo $x_1,\ldots,x_n\in\overline{\mathbb{F}_{p_i}}$ tali che risolvano l'equazione

¹²Osservare che se un singoletto appartenesse a un ultrafiltro, allora l'ultrafiltro sarebbe principale.

 $\underline{y} = \underline{p}(\underline{c}, \underline{x})$. Ora sfruttiamo il fatto che $\overline{\mathbb{F}_i} = \bigcup_{j \in \mathbb{N}} \mathbb{F}_{p_i^{j!}}$ per dire che esiste $j_0 \in \mathbb{N}$ tale che $c_1, \dots, c_N, y_1, \dots, y_n \in \mathbb{F}_{p_i^{j!}}$. La funzione $\underline{x} \mapsto \underline{p}(\underline{c}, \underline{x})$, definita da $\overline{\mathbb{F}_{p_i}}^n \to \overline{\mathbb{F}_{p_i}}^n$ si restringe a una funzione in iniettiva $g : \mathbb{F}_{p_i^{j_0}}^n \to \mathbb{F}_{p_i^{j_0}}^n$. Sostengo che l' \overline{x} cercato è in $\mathbb{F}_{p_i^{j_0}}^n$, infatti siccome $\mathbb{F}_{p_i^{j_0}}^n$ è finito, allora g è anche surgettiva per il principio dei cassetti.

Esercizio 3.27 (Controesempio alla freccia inversa di Ax-Grothendieck). L'implicazione contraria (surgettiva \rightarrow iniettiva) è ovviamente falsa. Perché la dimostrazione, in questo verso, non funziona?

§3.5 Compattezza semantica e teorema di Łoś

Procediamo ora alla dimostrazione di compattezza semantica e del teorema di Łoś. Ricordiamo gli enunciati in ambo i casi.

Teorema 3.28 (Compattezza - versione semantica)

Data una L-teoria T e una L-formula φ , se $T \models \varphi$ allora esiste un sottoinsieme finito $T' \subseteq T$, tale che $T' \models \varphi$.

Vediamo prima il caso particolare in cui $|T| = \aleph_0$. Questo caso particolare NON necessità di una dimostrazione separata. Tuttavia questa dimostrazione è più semplice di quella generale, servirà per illustrare meglio l'idea.

Dimostrazione. Sia $T = \{\psi_1, \psi_2, \ldots\}$, definiamo $T_i := \{\psi_1, \ldots, \psi_i\}$. Ci basta verificare che $\exists i \in \mathbb{N}$ tale che $T_i \models \varphi$, procediamo per assurdo supponendo che $T_i \not\models \varphi$ per ogni $i \in \mathbb{N}$. Abbiamo allora che $\forall i \in \mathbb{N}$ esiste un modello M_i tale che $M_i \models T_i$ ma $M_i \not\models \varphi$, ovvero $M_i \models \neg \varphi$ (questo segue dal fatto che M_i è un controesempio per $T_i \models \varphi$, cioè $M_i \models \neg \varphi$). Sia U un ultrafiltro non principale su $\mathcal{P}(\mathbb{N})$, consideriamo l'ultraprodotto $M = \prod_{i \in \mathbb{N}} M_i \not\downarrow_U$, dal corollario al teorema di Łoś, si deduce immediatamente che $M \models \neg \varphi$; se riuscissimo a dimostrare che $M \models T$, avremmo un assurdo, perché per ipotesi $T \models \varphi$.

Per dimostrare che $M \models T$ basta dimostrare che $\forall j \in \mathbb{N}$ vale $M \models \psi_j$, e per il teorema di Loś questo equivale a dimostrare che $\{i \in \mathbb{N} : M_i \models \psi_j\} \in U$. Segue dall'ipotesi che $M_k \models \psi_j$ per ogni $k \geq j$, quindi:

$$\{i \in \mathbb{N} | M_i \models \psi_i\} \supseteq \{i \in \mathbb{N} | i \geq j\} \in U$$

dove l'ultima appartenenza segue dal fatto che l'insieme è cofinito e U è un ultrafiltro non principale, quindi non può appartenerci un insieme finito, altrimenti ci apparterebbe un singoletto e l'ultrafiltro sarebbe principale.

Vediamo ora il caso generale del teorema di compattezza semantica.

Dimostrazione. Sia F il sottoinsieme di $\mathcal{P}(\mathcal{P}^{\text{fin.}}(T))$ definito da:

$$X \in F \iff \exists A \in \mathcal{P}^{\text{fin.}}(T) \ \{B \in \mathcal{P}^{\text{fin.}}(T) | A \subseteq B\} \subseteq X$$

verifichiamo che F è un filtro su $\mathcal{P}(\mathcal{P}^{\text{fin.}}(T))$. Infatti:

• $\emptyset \notin F$ perché il vuoto ha come sottoinsieme solo se stesso, mentre c'è almeno un sottoinsieme non banale finito di T che contiene il vuoto, per cui si ha un assurdo; invece $\mathcal{P}^{\text{fin.}}(T) \in F$ per un qualsiasi $A \in \mathcal{P}^{\text{fin.}}(T)$;

- se $X,Y \in F$ allora esistono $A,B \in \mathcal{P}^{\text{fin.}}(T)$ tali che $\{C \in \mathcal{P}^{\text{fin.}}(T) | A \subseteq C\} \subseteq X$ e $\{D \in \mathcal{P}^{\text{fin.}}(T) | B \subseteq D\} \subseteq Y$; quindi, se $E = A \cup B$, si ha che $\{G \in \mathcal{P}^{\text{fin.}}(T) | E \subseteq G\} \subseteq X \cap Y$, per cui $X \cap Y \in F$;
- se $X \in F$ e $X \subseteq Y \subseteq \mathcal{P}^{\text{fin.}}(T)$, allora esiste $A \in \mathcal{P}^{\text{fin.}}(T)$ tale che $\{B \in \mathcal{P}^{\text{fin.}}(T) | A \subseteq B\} \subseteq X$, per cui $\{B \in \mathcal{P}^{\text{fin.}}(T) | A \subseteq B\} \subseteq Y$, e quindi $Y \in F$.

Sia ora U un ultrafiltro che estende F, supponiamo per assurdo che $\forall T' \in \mathcal{P}^{\text{fin.}}(T)$ si abbia $T' \not\models \varphi$, per cui $\forall T' \in \mathcal{P}^{\text{fin.}}(T)$ esiste $M_{T'}$ tale che $M_{T'} \models T'$ e $M_{T'} \not\models \varphi$, e consideriamo $M := \prod_{T' \in \mathcal{P}^{\text{fin.}}(T)} M_{T'} \not\downarrow_U$. Per il corollario al teorema di Łoś, si ha che $M \models \neg \varphi$. Se verifichiamo che $M \models T$ otteniamo un assurdo; ora $M \models T \iff \forall \psi \in T \ M \models \psi$, inoltre per il teorema di Łoś ciò equivale a $\{T' \in \mathcal{P}^{\text{fin.}}(T) | M_{T'} \models \psi\} \in U$. Usando la definizione sopra con $A = \{\psi\}$ si ottiene che $\{B \in \mathcal{P}^{\text{fin.}}(T) | \{\psi\} \subseteq B\} \subseteq \{T' \in \mathcal{P}^{\text{fin.}}(T) | M_{T'} \models \psi\}$, per cui $\{T' \in \mathcal{P}^{\text{fin.}}(T) | M_{T'} \models \psi\} \in F \subseteq U$ e si conclude.

Concludiamo infine questa sezione con la dimostrazione del teorema di Loś di cui ricordiamo l'enunciato.

Teorema 3.29 (Teorema di Łoś)

$$\prod_{i \in I} M_i /_U \models \varphi([a_1], \dots, [a_k]) \iff \{i \in I | M_i \models \varphi(a_{1i}, \dots, a_{ki})\} \in U$$

Dimostrazione. Siccome, a meno di equivalenza logica, ogni formula può essere scritta usando solamente \exists , \neg , \wedge , possiamo supporre che φ non contenga il quantificatore \forall né altri connettivi salvo \neg e \wedge . Procediamo dunque per induzione strutturale. Se $\varphi(x_1, \ldots, x_k) = \neg \psi(x_1, \ldots, x_k)$, allora:

$$\prod_{i \in I} M_{i} /_{U} \models \neg \psi([\underline{a}_{1}], \dots, [\underline{a}_{k}]) \iff \neg \left(\prod_{i \in I} M_{i} /_{U} \models \psi([\underline{a}_{1}], \dots, [\underline{a}_{k}])\right) \qquad \text{(Tarski)}$$

$$\iff \{i \in I | M_{i} \models \psi(a_{1i}, \dots, a_{ki})\} \not\in U \qquad \text{(hp. ind.)}$$

$$\iff \{i \in I | \neg(M_{i} \models \psi(a_{1i}, \dots, a_{ki}))\} \in U \qquad \text{(def. ultraf.)}$$

$$\iff \{i \in I | M_{i} \models \neg \psi(a_{1i}, \dots, a_{ki})\} \in U \qquad \text{(Tarski)}$$

Se $\varphi(x_1,\ldots,x_k)=\psi_1(x_1,\ldots,x_k)\wedge\psi_2(x_1,\ldots,x_k)$, allora:

$$\prod_{i \in I} M_i /_{U} \models (\psi_1([\underline{a}_1], \dots, [\underline{a}_k]) \land \psi_2([\underline{a}_1], \dots, [\underline{a}_k]))$$

$$\iff \prod_{i \in I} M_i /_{U} \models \psi_1([\underline{a}_1], \dots, [\underline{a}_k]) \land \prod_{i \in I} M_i /_{U} \models \psi_2([\underline{a}_1], \dots, [\underline{a}_k])$$

$$\iff \{i \in I | M_i \models \psi_1(a_{1i}, \dots, a_{ki})\} \in U \land \{i \in I | M_i \models \psi_2(a_{1i}, \dots, a_{ki})\} \in U \quad \text{(hp. ind.)}$$

$$\iff \{i \in I | M_i \models \psi_1(a_{1i}, \dots, a_{ki})\} \cap \{i \in I | M_i \models \psi_2(a_{1i}, \dots, a_{ki})\} \in U \quad (\star)$$

$$\iff \{i \in I | M_i \models \psi_1(a_{1i}, \dots, a_{ki}) \land M_i \models \psi_2(a_{1i}, \dots, a_{ki})\} \in U \quad \text{(insiemi)}$$

$$\iff \{i \in I | M_i \models (\psi_1(a_{1i}, \dots, a_{ki}) \land \psi_2(a_{1i}, \dots, a_{ki}))\} \in U \quad \text{(Tarski)}$$

dove in (\star) l'implicazione dal basso verso l'alto è la proprietà 2. della definizione di filtro (chiusura per sovrainsieme), mentre l'implicazione dall'alto verso il basso è la proprietà 3. della definizione di filtro (chiusura per intersezione finita).

Se $\varphi(x_1,\ldots,x_k) = \exists y \ \psi(x_1,\ldots,x_k,y)$, allora:

$$\prod_{i \in I} M_i /_{U} \models \exists y \ \psi([\underline{a}_1], \dots, [\underline{a}_k], y)$$

Università di Pisa — Anno Accademico 2024-25

$$\iff \exists [\underline{b}] \in \prod_{i \in I} M_i / U \prod_{i \in I} M_i / U \models \psi([\underline{a}_1], \dots, [\underline{a}_k], [\underline{b}])$$

$$\iff \exists [\underline{b}] \{ i \in I | M_i \models \psi(a_{1i}, \dots, a_{ki}, b_i) \} \in U$$

$$\iff \{ i \in I | \exists b_i : M_i \models \psi(a_{1i}, \dots, a_{ki}, b_i) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

$$\iff \{ i \in I | M_i \models \exists y : \psi(a_{1i}, \dots, a_{ki}, y) \} \in U$$

dove in $(\star\star)$ l'implicazione dal basso verso l'alto è l'assioma di scelta (AC, per ogni $i \in I$ scelgo un b_i tale che funziona e così costruisco la sequenza \underline{b}), mentre l'implicazione dall'alto verso il basso è la proprietà 2. della definizione di filtro (chiusura per sovrainsieme).

Per completezza vediamo anche i casi in cui φ è una L-formula atomica.

Se $\varphi(\mathbf{x}_1,\ldots,\mathbf{x}_k) = \top,\bot$, allora è banale, infatti $\{i \in I | M_i \models \top\} = I \in U$, e per definizione di ultrafiltro $\{i \in I | M_i \models \bot\} = \emptyset \notin U$.

Se $\varphi(x_1,\ldots,x_k)=r(t_1,\ldots,t_m)(x_1,\ldots,x_k)$, con r simbolo di relazione, e t_1,\ldots,t_m termini con variabili in $\{x_1,\ldots,x_k\}$, allora:

$$\begin{split} &\prod_{i \in I} M_i /_U \models r(t_1, \dots, t_m)([\underline{a}_1], \dots, [\underline{a}_k]) \\ &\iff (t_1, \dots, t_m)([\underline{a}_1], \dots, [\underline{a}_k]) \in r/U \\ &\iff \{i \in I | (a_{1i}, \dots, a_{ki}) \in r_{M_i} \} \in U \\ &\iff \{i \in I | M_i \models r(t_1, \dots, t_m)(a_{1i}, \dots, a_{ki}) \} \in U \end{split} \tag{Tarski}$$

Se $\varphi(\mathbf{x}_1,\ldots,\mathbf{x}_k)=(t_1=t_2)(\mathbf{x}_1,\ldots,\mathbf{x}_k)$, con t_1,t_2 termini con variabili in $\{x_1,\ldots,x_k\}$, allora:

$$\begin{split} &\prod_{i \in I} M_i /_U \models (t_1 = t_2)([\underline{a}_1], \dots, [\underline{a}_k]) \\ &\iff t_1([\underline{a}_1], \dots, [\underline{a}_k]) = t_2([\underline{a}_1], \dots, [\underline{a}_k]) \\ &\iff \{i \in I | t_1(a_{1i}, \dots, a_{ki}) = t_2(a_{1i}, \dots, a_{ki})\} \in U \quad \text{(def. uguaglianza in ultraprod.)} \\ &\iff \{i \in I | M_i \models (t_1 = t_2)(a_{1i}, \dots, a_{ki})\} \in U \quad \text{(Tarski)} \end{split}$$

§3.6 Applicazioni del teorema di compattezza

In questa sezione mostriamo alcuni esempi ed applicazioni del teorema di compattezza. Le tecniche che useremo costituiscono gli elementi della **teoria dei modelli**, che studia le proprietà e della relazione di conseguenza logica. I risultati principali che dimostreremo sono: i teoremi di Löwenheim-Skolem - ce ne sono due, uno per salire e uno per scendere in cardinalità, però, rozzamente, possiamo scrivere come segue.

Teorema 3.30 (Löwenheim-Skolem - alla buona)

O i modelli di una L-teoria T hanno tutti cardinalità $\leq n$ per qualche $n \in \mathbb{N}$. Oppure, per ogni cardinalità $\kappa \geq |L| + \aleph_0$, la teoria T ha un modello di cardinalità κ .

Da questo risultato segue un criterio che, per esempio, ci permetterà di dare una dimostrazione rapida del fatto che $T_{\rm oldse}$ è completa, oppure di dimostrare che la teoria dei campi algebricamente chiusi di caratteristica 0 è completa. Cominciamo innanzitutto con qualche esempio.

Proposizione 3.31 (Finitamente coerente \implies coerente)

Se ogni sottoteoria finita di una teoria T è coerente - ossia se T è finitamente coerente - allora T è coerente.

Dimostrazione. Per la caratterizzazione vista T è coerente se e solo se $T \not\models \bot$, pertanto, se per assurdo $T \models \bot$, per la compattezza semantica esisterebbe un sottoinsieme finito $T' \subseteq T$ tale che $T' \models \bot$, ma per ipotesi T' è coerente, per cui si ha un assurdo. Segue quindi che $T \not\models \bot$, che equivale a dire che T è coerente.

Esempio 3.32 (Modelli non standard di Th(\mathbb{N} ; $0, 1, +, \cdot, s$))

Abbiamo già visto che ci sono modelli non standard di $\operatorname{Th}(\mathbb{N}; 0, 1, +, \cdot, s)$. Dimostriamo questo fatto per compattezza semantica.

Dimostrazione. Sia $L_c = \{0, 1, +, \cdot, s\} \cup \{c_n | n \in \mathbb{N}\} = L_{ar} \cup \{c\}$, il linguaggio dell'aritmetica **espanso** con un nuovo simbolo di costante c. Consideriamo la L_c -teoria:

$$T = \underbrace{\operatorname{Th}(\mathbb{N}; 0, 1, +, \cdot, s)}_{L_{\operatorname{ar}}} \cup \underbrace{\{\exists x \ c = s(x), \exists x \ c = s(s(x)), \ldots\}}_{\operatorname{nuovi assiomi}}$$

Questa teoria è finitamente coerente perché, data $T' \subseteq T$ finita, T' non può che contenere un numero finito di nuovi assiomi, quindi \mathbb{N} , interpretando c come un numero abbastanza grande, è un modello di T'. Per la proposizione precedente, T è coerente, quindi ha un modello M.

Ora M è una $L_{\rm c}$ -struttura e $M \models {\rm Th}(\mathbb{N};0,1,+,\cdot,s)$. Consideriamo il **ridotto** $M|_{L_{\rm ar}}$ di M a $L_{\rm ar}$ - ossia, se M=(D;i), la $L_{\rm ar}$ -struttura $M|_{L_{\rm ar}}=(D;i|_{L_{\rm ar}})$. È chiaro che $M|_{L_{\rm ar}}\models {\rm Th}(\mathbb{N};L_{\rm ar})$, inoltre $M|_{L_{\rm ar}}$ non è isomorfa a \mathbb{N} perché l'elemento c_M , che appartiene al suo dominio, ha una catena infinita di predecessori, per cui un eventuale isomorfismo di $L_{\rm ar}$ -struttura con \mathbb{N} genererebbe un'infinita catena di predecessori in \mathbb{N} $\frac{1}{4}$.

Esercizio 3.33 (Modelli non standard di $\operatorname{Th}(\mathbb{R}; 0, 1, +, \cdot, <)$). Allo stesso modo si può dimostrare anche che esistono modelli non standard di $\operatorname{Th}(\mathbb{R}; 0, 1, +, \cdot, <)$. ¹³

Definizione 3.34 (Assiomatizzabilità e finita assiomatizzabilità). Diciamo che una classe C di L-strutture è **assiomatizzabile** se c'è una L-teoria T tale che una L-struttura appartiene a C se e solo se è un modello di T. Se c'è una T finita siffatta, allora C è finitamente assiomatizzabile.

Esempio 3.35 (Assiomatizzabilità della classe dei buoni ordini)

La classe dei buoni ordini, nel linguaggio $L = \{<\}$ non è assiomatizzabile.

Dimostrazione. Supponiamo, per assurdo, che $M \models T$ se e solo se M è un buon ordine. Allora:

$$T' = T \cup \{c_2 < c_1, c_3 < c_2, c_4 < c_3, \ldots\}$$

¹³ <u>Hint</u>: Basata aggiungere una costante c e gli assiomi $\{1 < c, 1+1 < c, 1+1+1 < c, \ldots\}$.

è una teoria coerente nel linguaggio:

$$L' = L \cup \{c_1, c_2, c_3, \ldots\}$$

infatti, data $T'' \subseteq T'$ finita, avremo:

$$T'' \subseteq T \cup \{c_2 < c_1, \dots, c_n < c_{n-1}\}$$

con $n \in \mathbb{N}$, per cui ω con $c_i = n - i$ è un modello di T'', quindi per la proposizione precedente T' è coerente. Tuttavia, detto M un modello di T', dovremmo avere che $M|_L \models T$, ma questo contraddice il fatto che le interpretazioni delle costanti c_1, c_2, \ldots in M formano una catena discendente infinita.

Esercizio 3.36 (Classi di strutture non assiomatizzabili). Le seguenti classi di strutture NON sono assiomatizzabili:

- 1. insiemi finiti nel linguaggio \emptyset ;
- 2. grafi connessi con il linguaggio $L = \{e(\cdot, \cdot)\}$ (simbolo di relazione binaria);
- 3. gruppi abeliani divisibili $\forall n \in \mathbb{N} \ \forall x \in G \ \exists y \in G \ x = \underbrace{y + \ldots + y}_{n \text{ volte}};$
- 4. campi di caratteristica finita;
- 5. *gruppi liberi;
- 6. *gruppi semplici ossia senza sottogruppi normali non banali.

Esempio 3.37 (Assiomatizzabilità della classe degli insiemi infiniti)

La classe degli insiemi infiniti nel linguaggio vuoto, è assiomatizzabile ma non finitamente assiomatizzabile.

Dimostrazione. Sia:

$$\varphi_n = \exists x_1 \; \exists x_2 \; \dots \; \exists x_n \; \underbrace{\neg \; x_1 = x_2 \land \neg \; x_1 = x_3 \land \dots}_{i < j \le n}$$

e sia $T = \{\varphi_1, \varphi_2, \ldots\}$, è chiaro che tale teoria assiomatizza la classe degli insiemi infiniti (ogni insieme infinito rispetta tutte quelle formule, ed al contempo il soddisfare tutte quelle formule garantisce poter scegliere infiniti elementi distinti).

Così abbiamo dimostrato che la teoria degli insiemi infiniti nel linguaggio vuoto è assiomatizzabile. Supponiamo ora che sia finitamente assiomatizzabile, ossia che esista T' una assiomatizzazione finita. Segue, dalle definizioni di assiomatizzazione e di conseguenza logica che T e T' sono logicamente equivalenti, in particolare $T \models T'$, e per compattezza semantica $\exists n \in \mathbb{N}$ tale che $T'' := \{\varphi_1, \dots, \varphi_n\} \models T'$, per cui anche T'' assiomatizza la classe degli insiemi infiniti nel linguaggio vuoto. Ora siamo arrivati a dire che T'' è logicamente equivalente a T', cioè assiomatizza la classe degli insiemi infiniti, ma questo è assurdo perché, nel linguaggio vuoto, T'' ha come modelli tutti gli insiemi di cardinalità n (ad esempio $\{1,2,\ldots,n\}$, che è una L-struttura nel linguaggio vuoto se poniamo $i=\emptyset$) quindi assurdo.

Esercizio 3.38 (Classi di strutture assiomatizzabili ma non finitamente assiomatizzabili). Le seguenti classi di strutture sono assiomatizzabili ma non finitamente assiomatizzabili:

- 1. gruppi/anelli/campi infiniti;
- 2. campi di caratteristica 0;
- 3. campi algebricamente chiusi;
- 4. *grafi 3-colorabili esiste una partizione dei vertici in tre sottoinsiemi, nessuno dei quali contiene due vertici adiacenti.

Vediamo ora due esempi di applicazione al di fuori della logica matematica.

Definizione 3.39 (Partizione litigiosa). Diciamo che una partizione $V = A \sqcup B$ dei vertici di un grafo G = (V, E) è **litigiosa** se, per ogni vertice $v \in V$, il numero di adiacenti a v che appartiene alla medesima parte di v è \leq del numero di adiacenti a v che appartiene all'altra parte.

Proposizione 3.40

Sia G un grafo **localmente finito** - ossia ogni vertice di G ha un numero finito di vertici adiacenti - allora G ammette una partizione litigiosa.

 $DA\ INSERIRE.$

La seconda applicazione ci dà il pretesto per introdurre le seguenti definizioni, che, in realtà, sono nozioni di base della teoria dei modelli.

Definizione 3.41 (Linguaggio espanso). Sia M = (D; ...) una L-struttura, L(M) è il linguaggio L-espanso con l'aggiunta di una costante c_i per ogni $i \in D$. Possiamo vedere M come una L(M)-struttura, denotata M_M , interpretando ogni c_i con i (come funzione costante o direttamente come elemento stesso i di D).

Definizione 3.42 (Diagramma elementare). Il **diagramma elementare** di una L-struttura M, denotato con ED(M) è la L(M)-teoria $Th(M_M)$ - ossia l'insieme di tutte le L(M)-formule valide in M_M .

Definizione 3.43 (Diagramma atomico). Il **diagramma atomico** di una L-struttura M, denotato con diag(M), è l'insieme delle L(M)-formule atomiche o negazioni di atomiche valide in M_M .

Osservazione 3.44 — È chiaro che $diag(M) \subseteq ED(M)$.

Definizione 3.45 (Sottostruttura). Sia N = (D; i) una L-struttura e $C \subseteq D$. Per ogni simbolo di funzione f di L abbiamo che $f_N[C^{\operatorname{ar}(f)}] \subseteq C$ - ossia C è chiuso per l'operazione f - allora $M = (C; i|_C)$ si dice **sottostruttura** di $N, M \subseteq N$, dove la restrizione $i|_C$ è ottenuta restringendo il dominio di relazioni e funzioni.

Definizione 3.46 (Sottostruttura elementare). Se $M = (C; i|_C)$ è una sottostruttura di N = (D; i) e per ogni L-formula $\varphi(x_1, \ldots, x_k)$:

$$\forall a_1, \dots, a_k \in C \ M \models \varphi(a_1, \dots, a_k) \iff N \models \varphi(a_1, \dots, a_k)$$

allora M si dice sottostruttura elementare di N, e si denota $M \leq N$.

Definizione 3.47 (Estensione). Infine se M è una sottostruttura (elementare) di N, allora N è un'estensione (elementare) di M.

Osservazione 3.48 — Siano M = (C; ...) e N = (D; ...) con $C \subseteq D$. La Lstruttura N può essere vista come una L(M)-struttura N_M , interpretando ogni c_i con i (come funzione costante o direttamente come elemento stesso i di D). Allora:

- $M \subseteq N$ (cioè è una sottostruttura) se e solo se $N_M \models \text{diag}(M)$;
- $M \leq N$ (cioè è una sottostruttura elementare) se e solo se $N_M \models ED(M)$.

Basta burocrazia, questa è l'applicazione promessa.

Teorema 3.49 (Levi)

Ogni gruppo abeliano senza torsione è ordinabile - ossia esiste una relazione di ordine totale < tale che $\forall a, b, c \in G \ a < b \implies ac < bc$.

Sfrutteremo la seguente osservazione.

Osservazione 3.50 (Sottostrutture di modelli di teorie universali) — Se T è una teoria universale - ossia tutte le $\varphi \in T$ sono della forma $\forall x_1 \dots \forall x_k \ \psi$, con ψ senza quantificatori - e M è una sottostruttura di un modello di T, allora M è un modello di T.

Vediamo la dimostrazione dell'osservazione in primis.

Esercizio 3.51 (Formule assolute ed universali). Dimostra che le formule senza quantificatori sono assolute - valgono nella sottostruttura se e solo se valgono nell'estensione. Le formule universali si preservano per sottostrutture. Mentre le formule esistenziali si preservano per estensioni.

Veniamo ora alla dimostrazione del teorema di Levi.

 $DA\ INSERIRE.$

§3.7 Teoremi di Löwenheim-Skolem

Teorema 3.52 (Löwenheim-Skolem verso l'alto - forma debole)

Il teorema di Löwenheim-Skolem verso l'alto dice due cose.

- 1. Sia T una L-teoria. Supponiamo che, per ogni $n \in \mathbb{N}$, ci sia un modello di T di cardinalità $\geq n$. Allora, per ogni cardinalità κ , c'è un modello di T di cardinalità $\geq \kappa$.
- 2. Sia M una L-struttura infinita, allora, per ogni cardinalità κ , c'è una estensione elementare N di M avente cardinalità $> \kappa$.

Dimostrazione. Per il punto 1. è sufficiente espandere L aggiungendo κ costanti c_i , con $i \in \kappa$. Allora la teoria:

$$T' = T \cup \{ \neg c_i = c_i | i, j \in \kappa, i \neq j \}$$

è finitamente coerente, infatti, data $T'' \subseteq T'$ finita, T'' contiene un numero finito di nuovi assiomi, per cui esiste un modello di T di cardinalità abbastanza grande che interpreta le costanti c_i in modo distinto (semplicemente per ipotesi). Segue quindi che T' è coerente, per cui ha un modello M, che necessariamente ha cardinalità $\geq \kappa$, perché interpreta le costanti c_i in modo distinto.

Per il punto 2. basta applicare il punto 1. alla teoria ED(M), che ha un modello, M_M , di cardinalità $\geq |M|$ (perché deve interpretare tutte le costanti distinte).

Vorremo ora rimpiazzare $\geq \kappa$ con $= \kappa$. Ci servirà il lemma seguente, che è spesso utile per costruire sottostrutture elementari.

Lemma 3.53 (Criterio di Tarski-Vaught)

Sia $M\subseteq N$ due L-strutture. Allora $M\preceq N$ se e solo se, per ogni L-formula $\varphi(x,y_1,\ldots,y_k)$ vale:

$$\forall b_1, \ldots, b_k \in M \ N \models \exists x \ \varphi(x, b_1, \ldots, b_k) \implies \exists a \in M \ N \models \varphi(a, b_1, \ldots, b_k)$$

ovvero se una formula con parametri in M è soddisfatta in N, allora è soddisfatta in M da un elemento di M.

Nota 3.54 (Utilità del criterio di Tarski-Vaught) — La condizione del criterio di Tarski-Vaught non menziona $M \models$. Ottimo se stiamo cercando di costruire M, per cui non lo abbiamo ancora fissato.

DA INSERIRE.

Teorema 3.55 (Löwenheim-Skolem verso il basso)

Sia N una L-struttura infinita, Sia A un sottoinsieme del dominio di N. Sia infine κ un cardinalità infinita con $|L|+|A|\leq\kappa\leq|N|$. Allora esiste $M\preceq N$ con $|M|=\kappa$ il cui dominio contiene A.

DA INSERIRE.

Teorema 3.56 (Löwenheim-Skolem - verso l'alto - forma forte)

Come prima, ma con cardinalità esatta.

- 1. Sia T una L-teoria. Supponiamo che, per ogni $n \in \mathbb{N}$, ci sia un modello di T di cardinalità $\geq n$. Allora, per ogni cardinalità $\kappa \geq |L| + \aleph_0$, c'è un modello di T di cardinalità $= \kappa$.
- 2. Sia M una L-struttura infinita, allora, per ogni cardinalità infinita $\kappa \geq |L| + |M|$, c'è una estensione elementare N di M avente cardinalità = κ .

Dimostrazione. È facile usare la forma debole per salire sopra κ , e poi riscendere col teorema di Löwenheim-Skolem verso il basso.

Esercizio 3.57 (Paradosso di Skolem). Se la teoria degli insiemi ZFC è coerente, allora ha un modello numerabile.

Università di Pisa — Anno Accademico 2024-25

Esercizio 3.58 (Modelli numerabili di Th(\mathbb{N} ; 0, 1, +, ·, s)). Dimostra che Th(\mathbb{N} ; 0, +, ·, s) ha 2^{\aleph_0} modelli numerabili (non isomorfi).

§3.8 Categoricità e completezza

Definizione 3.59 (Categoricità). Sia κ una cardinalità. Una L-teoria T si dice κ -categorica se esiste un unico modello di T di cardinalità κ , a meno di isomorfismi.

```
Proposizione 3.60 (Categorica infinita ⇒ completa)
```

Se una L-teoria T è κ -categorica con $|L| + \aleph_0 \le \kappa$, allora T è completa.

Dimostrazione. Supponiamo il viceversa. Allora esistono φ e due modelli M_1, M_2 di T tali che $M_1 \models \varphi$ e $M_2 \models \neg \varphi$. Applicando i teoremi di Löwenheim-Skolem troviamo due L-strutture M'_1, M'_2 di cardinalità κ elementarmente equivalenti a M_1 e M_2 rispettivamente. Queste dovrebbero quindi essere due modelli di T che non possono essere isomorfi in quanto $M_1 \models \varphi$ e $M_2 \models \neg \varphi \not \downarrow$.

Esercizio 3.61. La teoria T_{oldse} è completa.

Nota 3.62 — Abbiamo già dimostrato questo risultato per eliminazione dei quantificatori. Quello che segue è un argomento diretto.

Soluzione. Siccome c'è un solo ordine lineare denso e senza estremi numerabile (Teorema di isomorfismo di Cantor [INSERIRE RIFERIMENTO]), la teoria T_{oldse} è pertanto \aleph_0 -categorica, quindi, per la proposizione precedente, è completa.

Esercizio 3.63. Dai una assiomatizzazione esplicita delle seguenti teorie:

- 1. Th(\mathbb{C} ; 0, 1, +, ·);
- 2. Th($\mathbb{Z}; s$);
- 3. Th($\mathbb{N}; s$);
- 4. $Th(\mathbb{R}; 0, +)$.

Esercizio 3.64. Sia T la teoria nel linguaggio $L = \{\sim\}$ che dice che \sim è una relazione di equivalenza. Classifica le L-teorie complete che estendono T.

Riferimenti bibliografici

- [1] Marcello Mamino, *Logica Matematica*, Università di Pisa, Pisa, 2023-24.
- [2] Marcello Mamino, *Logica Matematica*, Università di Pisa, Pisa, 2024-25.