Wave Front

Point light source → spherical wavefront Linear light Source → cylindrical wavefront Source at infinity \rightarrow Plane wave front

Huygen's principle

i) Each point on a wavefront acts as a fresh source of new disturbance, called secondary waves or wavelets.

The secondary wavelets spread out in all directions with the speed of light in the given medium

ii) A common envelope or common tangent to these secondary wavelets at any later time gives secondary wavefront at that time

WAVE **OPTICS**

Resultant Amplitude

Y,= A, sin wt and

 $Y_2 = A_2 \sin (\omega t + \Phi)$

Resultant
$$A = \sqrt{A_1 + A_2 + 2A_1A_2 \cos \oplus}$$

• $\cos \oplus = 1 \Rightarrow A = A_{\max} = \sqrt{(A_1 + A_2)^2} = A_1 + A_2$

$$\cdot \cos \Phi = -1 \Rightarrow A = A_{\min} = \sqrt{(A_1 - A_2)^2} = A_1 - A_2$$

$$\frac{A_{\text{max}}}{A_{\text{min}}} = \frac{A_1 + A_2}{A_1 - A_2}$$

• Intensity ∝ (amplitude)²

YDSE in Liquid

When YDSE setup is immersed in a liquid, there is change in wavelength

$$n = \frac{c}{v} = \frac{v\lambda}{v\lambda'} = \frac{\lambda}{\lambda'}$$
 $n \rightarrow refractive index$

$$\lambda_{\text{medium}} = \chi = \frac{\lambda}{n}$$
 or $\chi = \frac{\lambda}{\mu}$ $\mu \rightarrow \text{refractive index}$

In air
$$Y_n = n \frac{D\lambda}{d}$$

In medium
$$Y_n^I = \frac{nDX}{d} = \frac{nD\lambda}{d\mu}$$

PHYSICS | Fringe width in air
$$\beta = \frac{D\lambda}{d}$$
 | In medium $\beta' = \frac{D\lambda}{\mu d} \Rightarrow \beta_{med} = \frac{\beta_{air}}{\mu}$

Incident Reflected wavefront wavefront Concave Mirror Spherical converging wavefront wavefront

Convex Mirror

Spherical Plane diverging wavefront wavefront

Refracted

wavefront

Convex Lens

Spherical converging Plane wavefront wavefront

Incident

wavefront

Concave Lens

Phase Difference & Path Difference $\Phi = \frac{2\pi}{\lambda} \Delta x$

Phase Difference & Time Difference $\Phi = \frac{2\pi}{T} \Delta t$

Resultant Intensity

We have, $I = I_1 + I_2 + 2 \sqrt{I_1} \sqrt{I_2} \cos \Phi$

.cosФ=1 ⇒ I= I_...

 $I_{m} = I_1 + I_2 + 2 \sqrt{I_1} \sqrt{I_2}$ $I_{max} = (\int I_1 + \int I_2)^2$

 $\cdot \cos \Phi = -1 \Rightarrow I = I_{min}$

 $I_{min} = (\int I_1 - \int I_2)^2$

 $\frac{\mathbf{I}_{\text{max}}}{\mathbf{I}_{\text{min}}} = \frac{(\mathbf{J}\mathbf{I}_{1} + \mathbf{J}\mathbf{I}_{2})^{2}}{(\mathbf{J}\mathbf{I}_{1} - \mathbf{J}\mathbf{I}_{2})^{2}}$

 $\mathbf{I}_{\text{max}} \propto \mathbf{A}^2_{\text{max}} & \mathbf{A} & \mathbf{I}_{\text{min}} \propto \mathbf{A}^2_{\text{min}}$

 $\frac{\mathbf{I}_{\max}}{\mathbf{I}_{\min}} = \frac{A^2_{\max}}{A^2_{\min}} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2}$ If $I_1 = I_2 = I_0$

 \Rightarrow I = 4I_o Cos² φ

 $\mathbf{I} = \mathbf{I}_{\text{max}} = (\int \mathbf{I}_1 + \int \mathbf{I}_2)^2$

Young's Double-slit experiment (YDSE)

Path difference $\Delta X = \frac{y_n d}{y_n d}$

In general $\Delta X = \frac{y_n d}{r}$

Distance of Minima and Maxima from Central maximum

Maxima

 $y_n = \frac{nD\lambda}{d}$ n = 0,1,2... $y_n = (2n-1)\frac{D\lambda}{2d}$ n = 1,2...

Angular fringe width

Constructive interference Destructive interference Phase difference Ф=180° at the point of observation or $\Phi = (2n-1)\pi$; n=1,2... $\Phi = 0^{\circ} \text{ or } 2n\pi , n = 0,1,2,....$ Also, $\Delta x = (2n-1)\frac{\lambda}{2}$, n = 1, 2, 3, ...Also, $\Delta x = n \lambda$, $n = 0, 1, 2, \ldots$ Resultant intensity at the Resultant intensity at the point of observation is point of observation will be maximum

minimum

 $I = I_{min} = (\int I_1 - \int I_2)^2$

Intensity at any point on screen

For all maxima I = 4I (If $I_1 = I_2 = I_0$) For all minima, I = 0

Fringe visibility $V = \frac{I_{max} - I_{min}}{I + I}$

Overlapping

Let n_i^* max of λ_i , wavelength overlaps with n_2 max of λ_2 wavelength

$$y_{n1} = y_{n2}$$

$$\frac{\mathbf{n}_1 \mathsf{D} \lambda_1}{\mathsf{d}} \ = \ \frac{\mathbf{n}_2 \mathsf{D} \lambda_2}{\mathsf{d}}$$

$$\mathbf{n}_1 \lambda_1 = \mathbf{n}_2 \lambda_2$$

- As we move further away, then overlapping of colours increases if white light is used
- At larger distance, all colours again overlap to give white light pattern

Introduction Of Thin Transparent Sheet in YDSE

Optical path length and geometrical path length

Refractive index $\mu = \frac{C}{V}$

$$\mu = \frac{\nu \lambda}{\nu \lambda_{m}} \Rightarrow \lambda_{m} = \frac{\lambda}{\mu}$$

Time taken by light to travel x length in medium,

$$t = \frac{x}{c/u} = \frac{\mu x}{c}$$

Distance travelled by light in vaccum in same time = optical path length

Optical Path Length (OPL)=velocity x time = $c \times \frac{\mu x}{\mu}$

If Geometrical Path Length (GPL) = x, then OPL=ux, where u is the refractive index of the medium

Fringe Width or Band width (B)

$$\beta_{dark} = \frac{D\lambda}{d}$$

$$\beta_{bright} = \frac{D}{d}$$

For interference pattern $\beta_{dark} = \beta_{bright} = \frac{D\lambda}{d}$

Introduction of thin transparent sheet

Path difference $\Delta x = s_{2}P - s_{1}P$

Additional path difference = $(\mu - 1)$ t

Geometrical path difference before inserting sheet, $\Delta x = \frac{yd}{D}$ $y = \frac{D}{d} \Delta x$

$$y = \frac{D}{d} \Delta x$$

After introducing sheet, $y^{-1} = \frac{D}{d} [\Delta x + (\mu - 1) +]$ Shift S = y' - y = $\frac{D}{d}$ (μ -1) †

If two plates are introduced,

Shift S =
$$|(\mu_1 - 1)t_1 - (\mu_2 - 1)t_2| \frac{D}{d}$$

For normal incidence $2\mu t = n\lambda$

Single Slit Diffraction Path difference = $\Delta x = d \sin \theta$

- · Formation of first secondary minima Path difference = $\frac{\lambda}{2}$
- Formation of 2ndsecondary minima Path difference = 2 A
- Formation of nth secondary minima $d \sin \theta = n \lambda$ n=1,2,3,.....

First secondary maxima

But the intensity of 1 st secondary maxima is lower than central maximum

Nth secondary Maxima

$$x = (2n + 1) \frac{\lambda}{2}$$

d sin
$$\theta_n = (2n + 1) \frac{\lambda}{2}$$

Ratio of intensities of central maxima and secondary maximas

$$1: \frac{1}{2}: \frac{1}{61}: \frac{1}{121}: \dots$$

Distance of N*secondary maxima from CM

Distance of Nth secondary minima from CM

WAVE **OPTICS**

Angular position of Nth secondary minima

Angular position of Nth secondary Maxima

$$\theta_{n} \approx (2n+1) \frac{\lambda}{2d}$$

Angular width and linear width of central maximum

PHYSICS

Angular width and Linear width of secondary minima

Angular position of n th maximum $\theta_n = (2n+1) \frac{\lambda}{2d}$

Angular position of (n+1) th maximum $\theta_{n+1} = (2(n+1)+1) \frac{\lambda}{2d}$

Linear width $\beta = \theta D$

$$\beta = \frac{D\lambda}{d}$$

Validity of Ray Optics: Fresnel's Distance

$$Z_F = \frac{d^2}{\lambda}$$

Resolving Power

$$R.P = \frac{1}{\text{limit of resolution}}$$

Resolving Power (R.P) of a microscope

$$\frac{1}{d} = \frac{2n s}{\lambda}$$

Resolving power of atelescope

$$R.P = \frac{1}{d\theta} = \frac{D}{1.22 \text{ A}}$$

Law of Malus

$$I \propto \cos^2 \theta$$

$$I = I_0 \cos^2 \theta$$

When $\theta = 0^\circ \text{ or } 180^\circ$.

 $\cos \theta = \pm 1 \Rightarrow I = I_{\circ}$

When $\theta = 90^{\circ}$.

When
$$\theta = 90^{\circ}$$
, $\cos \theta = 0 \Rightarrow I = 0$

Polarisation by Reflection

Brewster found that at the polarising angle, the reflected and transmitted rays are perpendicular to each other

This is Brewster's Law

