Theory of Automata and Formal Language Lecture-28

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj June 5, 2021

Pumping Lemma for Context Free Languages

Let L be an infinite context free language. Then there exists some positive integer n such that any $x \in L$ with $x \ge n$, can be decomposed as

Application: This lemma is used to show a given language is not context free.

Example: Show that the language

$$L = \{ a^n b^n c^n \mid n \ge 0 \}$$

is not context free.

Solution:

Exercise

- 1. $L = \{ww \mid w \in \{a,b\}^*\}$
- 2. $L = \{a^{n!} \mid n \ge 0\}$
- 3. $L = \{a^n b^j \mid n = j^2\}$
- 4. $L = \{a^{n^2} ! n \ge 0\}$
- 5. L = $\{a^p \mid p \text{ is a prime number}\}$
- 6. $L = \{a^n b^j c^k \mid k > n, k > j\}$

Decision Properties of Regular and Context Free Languages

Theorem: Given a context free grammar $G=(V,\Sigma,S,P)$, there exists an algorithm for deciding whether or not L(G) is empty.

Proof: For the simplicity, we assume that $\epsilon \notin L(G)$. We use the algorithm for removing useless symbols and productions. If S is found to be useless, then L(G) is empty otherwise L(G) contains at least one element.

Theorem: Given a context free grammar $G=(V,\Sigma,S,P)$, there exists an algorithm for deciding whether or not L(G) is infinite.

Proof: We assume that G contains no ϵ – poductions, no unit-productions, and no useless symbols.

Convert the grammar into CNF.

We draw a directed graph whose vertices are variables in G. If $A \rightarrow BC$ is a production, then there are directed edges from A to B and A to C.

L is finite iff the directed graph has no cycles.

Theorem: Show that there exists an algorithm for deciding whether a regular language, L is empty.

Proof: Construct a deterministic finite automata M accepting L. Determine the set of all the states reachable from q_0 . If this set contains a final state, then L is non-empty otherwise L is empty.

Theorem: Show that there exists an algorithm for deciding whether a regular language, L is infinite.

Proof: Construct a deterministic finite automata M accepting L. L is infinite iff M has a cycle.

AKTU Examination Questions

- 1. Convert the following CFG to its equivalent GNF: $S \rightarrow AA$ a. $A \rightarrow SS$ b.
- 2. Prove that the following Language L = $\{a^nb^nc^n \mid n \geq 1\}$ is not Context Free.
- 3. Is context free language closed under union? If yes, give an example.
- 4. Remove useless productions from the following grammar $S \rightarrow AB/ab$, $A \rightarrow a/aA/B$, $B \rightarrow D/E$
- 5. Reduce the given Grammar $G = (\{S,A,B\},\{a,b\},S,P)$ to Chomosky Norma Form, where P is the following $S \rightarrow bA/aB$, $A \rightarrow a/aS/bAA$, $B \rightarrow b/bS/aBB$

6. Discuss the inherent ambiguity of context free languages with suitable example. Construct the context free grammar that accept the following language

$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

7. Define the parse tree. Construct the parse tree for the string abbcde considering the productions

$$S \rightarrow aAcBe$$
, $A \rightarrow b/Ab$, $B \rightarrow d$

Is this ambiguous? Justify.

- 8. Prove or disprove that union and concatenation of two context free languages is also context free.
- 9. Prove that the language $L = \{a^n b^n c^n \mid n \ge 1\}$ is neither regular nor context free.
- 11. What is inherent ambiguity? Explain with the help of suitable example.

- 12. Remove the Unit productions from the following grammar: $S
 ightarrow aSb|A,\ A
 ightarrow cAd|cd$
- 13. Write the procedure to convert a given CFG into equivalent grammar in CNF. Apply the procedure and convert the grammar with following production into CNF: $S \rightarrow bA|aB$, $A \rightarrow bAA|aS|a$, $B \rightarrow aBB|bS|b$
- 14. Define Greibach normal form for a CFG. Reduce the following CFG into GNF:
- $S \rightarrow AB$, $A \rightarrow BS|a$, $B \rightarrow A|b$
- 15. Let G be the grammar $S \to 0B|1A$, $A \to 0|0S|1AA$, $B \to 1|1S|0BB$

For the string 00110101, find: (i) The leftmost derivation. (ii) The rightmost derivation. (iii) The derivation tree.

- 16. Check whether the grammar is ambiguous or not.
- $R \rightarrow R + R / RR / R^* / a / b / c$. Obtain the string $w = a + b^*c$
- 17. Eliminate unit productions in the grammar. $S{\to}A/bb~A{\to}B/b~B{\to}S/a$
- 18. Find out whether the language $L = \{x^n y^n z^n | n \ge 1\}$ is context free or not.
- 19. Convert the following CFG into CNF
- $\mathsf{S} \to \mathsf{XY} \; / \; \mathsf{Xn} \; / \; \mathsf{p}$
- $X \rightarrow mX / m$
- $Y \rightarrow Xn / o$
- 20. Convert the following CFG into CNF S \to ASA / aB, A \to B / S, B \to b / ϵ
- 21. Write CFG for language L = $\{a^nb^n \mid n \geq 0\}$. Also convert it into CNF.

- 22. Define ambiguity. Show that the grammar G with following production is ambiguous.
- S ightarrow a / aAb / abSb, A ightarrow aAAb / bS
- 23. Convert the following grammar in GNF: S \rightarrow AB , A \rightarrow BS / a , B \rightarrow SA / b
- 24. Define derivation Tree. Show the derivation tree for string 'aabbbb' with the following grammar $S \rightarrow AB/\epsilon$, $A \rightarrow aB$, $B \rightarrow Sb$.