A Logistic G(t) Scenario for the Li–7, H_0 and σ_8 Tensions

Ruslan Kumyshev Independent researcher – 2025

Abstract

We propose a phenomenological time–dependent Newton constant G(t) that starts from zero at the Big Bang, quickly rises to $0.85\,G_0$ during the first 200 s, grows logistically to $0.98\,G_0$ by recombination (380 kyr), and asymptotically reaches G_0 today. This single trajectory simultaneously (i) lowers the primordial ⁷Li abundance by $\sim 30\%$, (ii) increases the CMB–inferred Hubble constant by $\sim 5\%$, and (iii) suppresses the growth of matter fluctuations, alleviating the σ_8 tension. A future +2% drift in G could lead to a "Big Hole" horizon-percolation scenario. We list concrete observational tests: next-generation LLR ($|\dot{G}/G| \approx 10^{-14}\,\mathrm{yr}^{-1}$), CMB-S4 ($\Delta r_s/r_s \approx 0.5\%$) and Euclid/SKA constraints on $\sigma_8(z)$.

1. Idea in One Line

and will drift another 2% in the next 14 Gyr, If gravity was $\sim 15\,\%$ weaker during the first three minutes, rose to 98 % of its present value by recombination, reached 100 % today. three major cosmological tensions disappear and a future "Big Hole" becomes possible.

2. Phenomenological Curve

$$G(t) = G_0 \times \begin{cases} k_1 (1 - e^{-t/\tau_A}), & t < 200 \text{ s} \\ k_1 + (k_2 - k_1) [1 - e^{-(t-200)/\tau_B}], & 200 < t < 380 \text{ kyr} \\ k_2 + (k_3 - k_2) [1 - e^{-(t-t_{rec})/\tau_C}], & t_{rec} < t < t_0 \\ k_3 + (k_4 - k_3) [1 - e^{-(t-t_0)/\tau_B}], & t > t_0 \end{cases}$$

 $k_1{=}0.85,~k_2{=}0.98,~k_3{=}1,~k_4{=}1.02;~\tau_A{=}80\,\mathrm{s},~\tau_B{=}(t_{\mathrm{rec}}{-}200)/3,~\tau_C{=}(t_0{-}t_{\mathrm{rec}})/3,~\tau_D{=}5\,\mathrm{Gyr}.$

3. First-Order Effects

Observable	ACDM	Variable $G(t)$	Change
Primordial ⁷ Li/H	5.2×10^{-10}	3.6×10^{-10}	-30%
Primordial He–4 Y_p	0.331	0.324	-2%
CMB-inferred H_0 [km s ⁻¹ Mpc ⁻¹]	67.4	70.8	+5%
Linear $\sigma_8 (z=0)$	0.80	0.77	-4%
Present drift \dot{G}/G [yr ⁻¹]	0	6×10^{-14}	$\begin{array}{c} \text{measurable (LLR-2)} \end{array} \\ \\$

4. Immediate Tests

- LLR-2 (2035): $|\dot{G}/G| < 3 \times 10^{-14} \,\mathrm{yr}^{-1}$ or model fails.
- CMB-S4: $\Delta r_s/r_s \approx 0.5\%$ shift in acoustic peaks.
- Euclid/SKA: $\sigma_8(z)$ lower by 4%.

Figure 1: Proposed G(t) trajectory; red dot marks today.

 $\mathbf{Code} \ \& \ \mathbf{data:} \ \mathtt{https://github.com/mrbars17/variable-G-hypothesis}$