Problem Set 4

Due Friday, October 4th by 5pm

(10 points per question. Please scan and upload to Canvas as a PDF)

Question 0: If you worked with up to two classmates, please list their names.

- 1. A finite string whose elements belong to $\{a,b\}$ is an A-PALINDROME just in case it is a palindrome that has 'a' as a middle letter.
 - Task 1: Provide a recursive definition of the set of a-palindromes without appealing to the property of being a palindrome as in the rough definition above.

Proof

- 1. Base case 'a' is an a-palindrome
- 2.
- 3. palindrome = letter + palindrome + letter where letter is in $\{a,b\}$
- 4. And any a-palindrome can be built this way
- Task 2: Prove by induction that every a-palindrome has an even number of 'b's.

Proof

- 1. Base case: "a" is a palindrome, number of b is even
- 2. Recursive Step: for any a-palindrome, a...a does not change the number of b's so they are still even. If b...b, then number of B's increases by 2 and an even + 2 is still even
- 3. Conclusion: an a-palindrome has an even number of b's
- 2. No wfs of $\mathcal{L}^{\text{\tiny PL}}$ ever contains consecutive atomic formulas (e.g., ' $(PP \land Q)$ '). Between every atomic formula, there needs to be an operator.
- 3. Let $\mathcal{I}^+(\varphi) = 1$ for every sentence letter φ in $\mathcal{L}^{\text{\tiny PL}}$.
 - Task 1: Show that $\mathcal{V}_{\mathcal{I}^+}(\varphi) = 1$ for every wfs φ of \mathcal{L}^{PL} that does not include negation.

Proof

Repeat here and below...

Task 2: Show that every contradiction contains negation.

Proof

Repeat here and below...

- 4. Complete the proof of Rule 4 (\neg E) from Chapter 4.
- 5. Complete the proof of Rule 6 (\wedge E) from Chapter 4.