Wydział:	Dzień:Poniedziałek 14-17	Zespół:			
Fizyki	Data: 20.03.2017	8			
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:		
Marta Pogorzelska					
Paulina Marikin					
Prowadzący:		Podpis:			

Ćwiczenie 43:

Wyznaczanie $\frac{c_p}{c_v}$ dla powietrza metodą rezonansu akustycznego

1 Cel badań

Doświadczenie miało na celu wyznaczenie współczynnika adiabaty dla powietrza.

2 Wstęp teoretyczny

 κ jest współczynnikiem w równaniu adiabaty, zależnym od ilości stopni swobody danego gazu. W modelu gazu doskonałego pomijane są drgania cząsteczek, zaś ich rotacja, dla cząstek jedno i dwu atomowych, nie wpływa znacząco na interakcje z otoczeniem i także jest pomijana. Definiowany jest on równaniami:

$$\kappa = \frac{c_p}{c_V} = 1 + \frac{1}{n} \tag{1}$$

 c_p - ciepło właściwe przy stałym ciśnieniu, c_V - ciepło właściwe przy stałej objętości, n - liczba stopni swobody.

W tym doświadczeniu jege wartość dla powietrza została wyznaczona metodą Laplac'a, wiążącą równania terodynamiczne z zachowaniem fali akustycznej. Falą taką jest podłużna fala mechanicznaoscylująca w zakresie słyszalnym dla człowieka. Jej ruch to okresowa kompresja i dekompresja ośrodka zachodząca adiabatycznie, można więc do jego opisania stosować równanie adiabaty z którego, w połączeniu z równaniem falowym i równaniem Clapeyrona otrzymujemy:

$$\kappa = \frac{v^2 \rho}{p} \tag{2}$$

Prędkość fali została zmierzona pośrednio na podstawie równości $v=\lambda f$ co wstawione do poprzedniego równania daje nam finalny wzór:

$$\kappa = \frac{\lambda^2 f^2 M}{kT} \tag{3}$$

3 Opis układu i metody pomiarowej

Użyte przyrządy:

- oscyloskop z podłączonymi sygnałami od generatora i mikrofonu
- miarka z podziałką 1mm
- głośnik
- mikrofon na ruchomym tłoku
- rurka z plexi wypełniona powietrzem
- regulowany generator sygnału
- wzmacniacz sygnału
- $\bullet\,$ termometr z podziałką $2^{\circ}C$

Oscyloskop został ustawiony na tryb X-Y pokazujący krzywą eliptyczną gdzie x to sygnał z generatora, a y z mikrofonu. W celu wyznaczenia kolejnych długości fali mierzone były odległości między kolejnymi węzłami, za które uznano maksymalne zwężenie krzywej eliptycznej do prostej. W celu uzyskania kolejnych wezłów manipulowano tłokiem z doczepionym mikrofonem. Zamiast okresu dla każdej z fal została zmierzona częstotliwość $\omega=2\pi T$, mierzona jako odległość między kolejnymi maksimami fali stojącje na obrazie z oscyloskopu. Temperatura została zmierzona raz, po wykonaniu pozostałych pomiarów.

4 Analiza pomiarów

Rysunek 1: wykres pozwalający wyliczyć długość fali

	k	\mathbf{M}	${ m T}$	ΔT	f	$\Delta \mathrm{f}$	λ	$\Delta \lambda$	κ	$\Delta \kappa$
	$\frac{J}{K}10^{-23}$	${ m Kg}~10^{-26}$	K	K	$_{ m Hz}$	$_{\mathrm{Hz}}$	m	m		
0	1.3806	4.81	299.0	1.3	8000.0000	0.0004	0.04352	0.00014	1.4120	0.0076
1	1.3806	4.81	299.0	1.3	7692.3076	0.0003	0.04638	0.00015	1.4824	0.0081
2	1.3806	4.81	299.0	1.3	7142.8571	0.0003	0.0496	0.00009	1.4644	0.0069
3	1.3806	4.81	299.0	1.3	6666.66667	0.00028	0.0535	0.00008	1.4819	0.0068
4	1.3806	4.81	299.0	1.3	6250.00000	0.00025	0.05785	0.00014	1.5226	0.0076
5	1.3806	4.81	299.0	1.3	5263.15789	0.00017	0.06328	0.00025	1.2922	0.0076
6	1.3806	4.81	299.0	1.3	5000.00000	0.00016	0.06896	0.00028	1.3849	0.0083
7	1.3806	4.81	299.0	1.3	4761.90476	0.00014	0.0765	0.00004	1.5470	0.0067
8	1.3806	4.81	299.0	1.3	4000.00000	0.00010	0.08376	0.00008	1.3076	0.0057

5 Analiza niepewności

Niepewności temperatury i okresu wyliczono z niepewności aparaturowych i eksperymentatora, zaś za niepewność długości fali został wzięty pierwiastek z kowariancji dopasowanej prostej. Niepewności częstotliwości i współczynnika adiabaty zostały wyznaczone przy użyciu metody propagacji niepewności.

6 Wnioski

Wszystkie wartości κ są zbliżone do przewidywanego wyniku 1.4. Potwierdza to teoretyczne przewidywania dla modelu gazu doskonałego.

Zjawisko rezonansu akustycznego pozwala na dokładne i łatwo wykonane wyznaczanie współczynnika adiabaty. Chociaż finalna niepewność jest relatywnie mała (poniżej 1% wyniku) głównym czynnikiem ją generującym jest temperatura, której dokładność można łatwo poprawić używając lepszego termometru. Także, nieuwzględniane w opracowaniu zmiany temperatury w trakcie doświadczenia mogły prowadzić do odchyleń wyniku. Otrzymana na końcu κ dla powietrza wynosi: $\kappa=1.4311$