This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Previously Amended) A method of manufacturing a trench field effect
2	transistor on a substrate having a first conductivity type, the method comprising the steps of:
3	forming a first trench extending into the substrate;
4	lining the first trench with dielectric material;
5	substantially filling the first trench with conductive material to form a gate
6	electrode of the field effect transistor;
7	forming a body region having a second conductivity type in the substrate;
8	after substantially filling the first trench with conductive material, forming a
9	source region having the first conductivity type inside the body region and adjacent to the first
10	trench;
11	forming a second trench adjacent to said source region, the second trench defined
12	by sidewalls extending into the body region and a bottom, which terminates below the source
13	region and in contact with the body region; and
14	filling the second trench with high conductivity material for making contact to the
15	body region.
1	2. (Original) The method of claim 1 wherein the step of filling the second
2	trench with high conductivity material for making contact to the body region also makes contact
3	to the source region.
1	3. (Original) The method of claim 2 wherein the step of filling the second
2	trench with high conductivity material comprises a self-aligned masking step for making contact
3	with both the body region and the source region.
-	com and cody region and the source region.
1	4-5. (Previously canceled)

Appl. No. 09/405,210 Amdt. dated May 16, 2003 Reply to Office Action of [date]

PATENT

1	6. (Original) The method of claim 2 further comprising a step of forming a	l
2	thin layer of barrier metal between the high conductivity material and the body region.	
1	7. (Original) The method of claim 6 wherein the high conductivity materia	1
2	comprises aluminum and the thin layer of barrier metal comprises titanium.	
1	8. (Original) The method of claim 2 wherein the step of forming the second	Ĺ
2	trench comprises a step of etching silicon through the source and body regions.	
1	9-11. (Previously Canceled)	
1	12. (Original) The method of claim 8 wherein the step of etching etches the	
2	silicon at an angle resulting in a slanted edge along the etched side of the source region.	
1	13. (Previously Amended) A process for manufacturing a trench field effect	
2	transistor comprising the steps of:	
3	etching a first trench in a substrate having a first conductivity type;	
4	lining the first trench with a layer of dielectric material;	
5	substantially filling the first trench with polysilicon;	
6	implanting impurities of a second conductivity type into the substrate to form a	
7	body region having the second conductivity type over the substrate;	
8	after substantially filling the first trench with polysilicon, implanting impurities	of
9	the first conductivity type inside the body region to form a source region adjacent to the first	
10	trench;	
11	etching a second trench through the source region and into the body region, the	
12	second trench defined by sidewalls and a bottom, which terminates in contact with the body	
13	region; and	
14	filling the second trench with metal making contact with both the source region	
15	and the body region.	

Appl. No. 09/405,210 Amdt. dated May 16, 2003 Reply to Office Action of [date]

PATENT

1	14. (Original) The process of claim 13 further comprising a step of implanting
2	impurities of the second conductivity type into the body region under the second trench before
3	the step of filling the second trench with metal.
1	15. (Original) The process of claim 13 wherein the step of etching the second
2	trench etches the second trench to a shallower depth than the first trench.
1	16-17. (Previously Canceled)
1	18. (Previously Added) The method of claim 1, wherein the first trench is
2	substantially completely filled with conductive material.
1	19. (Previously Added) The method of claim 1, wherein after filling the first
2	trench with conductive material, the conductive material does not extend over a substantial
3	portion of the substrate surface peripheral to the first trench.
1	20. (Previously Added) The method of claim 13, wherein the first trench is
2	substantially completely filled with polysilicon.
ĺ	21. (Previously Added) The method of claim 13, wherein after filling the first
2	trench with polysilicon, the polysilicon does not extend over a substantial portion of the substrate
3	surface peripheral to the first trench.