Amendments to the Claims:

The listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claim 1 (currently amended): A process for the manufacture of a tetrazole of formula

$$R \xrightarrow{N \atop N-N} N \atop H \qquad (I)$$

or a tautomer or a salt thereof, wherein R [[is]] <u>represents an organic residue</u> selected from the group consisting of

- phenyl or pyridyl each of which is unsubstituted or substituted by a substituent selected from the group consisting of halogen, C₁-C₇alkyl, C₁-C₇alkoxy, hydroxyl, hydroxyl-C₁-C₇alkyl, halo-C₁-C₇alkyl, formyl, di-C₁-C₇alkoxy-methyl, and C₂-C₇alkylenemethyl;

- C₃-C₇cycloalkyl;
- C₃-C₇cycloalkenyl;
- biphenyl that is unsubstituted or substituted by a substituent selected from the group consisting of halogen, C₁-C₇alkyl, C₁-C₇alkoxy, hydroxyl, hydroxyl-C₁-C₇alkyl, halo-C₁-C₇alkyl, formyl, di-C₁-C₇alkoxy-methyl, and C₂-C₇alkylene-methyl;
- C₁-C₇alkyl that is unsubstituted or substituted by a substituent selected from the group consisting of halogen, phenyl; phenylsulphonyl, phenylsuphinyl, and phenylmercapto, phenyl being in each case unsubstituted or substituted by a substituent selected from the group consisting of halogen, C₁-C₇alkyl, C₁-C₇alkoxy, hydroxyl, hydroxyl-C₁-C₇alkyl, and halo-C₁-C₇alkyl;
 - carboxy;
- N-phenyl-N-C₁-C₇alkyl-amino phenyl being in each case unsubstituted or substituted by a substituent selected from the group consisting of halogen, C₁-C₇alkyl, C₁-C₇alkoxy, hydroxyl, hydroxyl-C₁-C₇alkyl, and halo-C₁-C₇alkyl; and
- C₂-C₇alkenyl that is unsubstituted or substituted by a substituent selected from the group consisting of halogen, phenyl, carboxy, and N-phenyl-N-C₁-C₇alkyl-amino phenyl, being in each case unsubstituted or substituted by a substituent selected from the group consisting of halogen, C₁-C₇alkyl, C₁-C₇alkoxy, hydroxyl, hydroxyl-C₁-C₇alkyl, and halo-C₁-C₇alkyl,

comprising

- (i) reacting a compound of formula R-CN (II a) with an azide of formula $(R_1)(R_2)$ M-N₃ (II b), wherein R has the meaning as defined above; R₁ and R₂, independently of another, represent an organic residue such as selected from the group consisting of an aliphatic residue, an alicyclic residue, a heteroalicyclic residue; an alicyclic-aliphatic residue; a heteroalicyclic-aliphatic residue; a carbocyclic er and a heterocyclic aromatic residue; an araliphatic residue or an heteroaraliphatic residue, each residue, independently of another; and M is boron or aluminium; and
- (ii) isolating the resulting compound of formula (I) wherein,
- an aliphatic residue is C₁-C₂₀alkyl, C₃-C₂₀alkenyl or C₃-C₂₀alkynyl, each of which can be interrupted by NH, substituted NH, O, or S;
- an alicyclic residue is mono-, bi- or polycyclic, selected from the group consisting of C₃-C₈cycloalkyl and C₃-C₇cycloalkenyl;
- <u>- a heteroalicyclic residue is an alicyclic residue, wherein at least one carbon</u> atom is replaced by a heteroatom selected from the group consisting of NH, substituted NH, O, and S;
- an alicyclic-aliphatic residue is C₁-C₂₀alkyl, C₃-C₂₀alkenyl or C₃-C₂₀alkynyl that is substituted by C₃-C₈cycloalkyl or by C₃-C₇cycloalkenyl;
- a heteroalicyclic-aliphatic residue is C₁-C₈-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl each of which substituted by C₃-C₈cycloalkyl or by C₃-C₈-cycloalkenyl wherein one carbon atom of C₃-C₈cycloalkyl or C₃-C₈-cycloalkenyl, respectively, is replaced by NH, substituted NH, O, or S;
- <u>- a carbocyclic aromatic residue selected from the group consisting of moncyclic, bicyclic and polycyclic, or benzoanellated carbocyclic residue;</u>
- a heterocyclic aromatic residue is 5- or 6-membered and monocyclic radical which has up to four identical or different hetero atoms, selected from the group consisting of nitrogen, oxygen and sulfur atoms, preferably one, two, three or four nitrogen atoms, an oxygen atom or a sulfur atom;
- an araliphatic residue is C₁-C₈-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl each of which is substituted by phenyl or by naphthyl;

- an heteroaraliphatic residue is C₁-C₈-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl each of which is substituted by pyrazolyl, imidazolyl, triazolyl, tetrazolyl, furyl, thienyl or pyridyl; and

- substituted NH is NH which is substituted by C₁-C₈-alkyl, phenyl-C₁-C₈-alkyl, C₂-C₈-alkyl-alkanoyl, phenyl-C₂-C₅-alkanoyl, benzoyl, C₁-C₈-alkanesulfonyl or benzenesulfonyl, comprising

- (i) reacting a compound of formula R-CN (II a) with an azide of formula (R₁)(R₂)M-N₃ (IIb), wherein R has the meaning as defined above; R₁ and R₂, independently of another, represent an aliphatic residue, an alicyclic residue, a heteroalicyclic residue, an alicyclic-aliphatic residue; a carbocyclic or a heterocyclic aromatic residue; an araliphatic residue or an heteroaraliphatic residue, each residue, independently of another, being unsubstituted or substituted; and M is boron or aluminium; and
- (ii) isolating the resulting compound of formula (I).

Claim 2 (currently amended): A process according to claim 1 for the manufacture of said angiotensin II receptor antagonists having as structural feature a tetrazol ring, e.g. a compound of formula (IV),

or a tautomeric form thereof, wherein Rx \underline{is} represents a structural element selected from the group consisting of

(derived from losartan - cf. EP 253310);

(derived from irbesartan - cf. EP 454511);

(derived from UR-7247);

(derived from candesartan-cilexetril-EP

459136);

(derived from candesartan); and

(derived from valsartan - cf. EP 443983);

or, in each case, a salt thereof; characterized by reacting a compound of formula (IV a)

wherein Rx has the meanings as given above, with a compound of formula $(R_1)(R_2)M-N_3$ (II b), wherein R_1 and R_2 , independently of one another, represent an organic residue have the meanings as defined above; and isolating the resulting compound of formula (IV).

Claim 3 (currently amended): A process according to claim 1 for the manufacture of a compound of formula (IV b)

HO
$$H_2C$$
 $N=N$ $N=N$ (IV b)

comprising reacting a compound of formula (IV c)

or an ester thereof with an azide of formula $(R_1)(R_2)M-N_3$ (IIb), wherein R_1 and R_2 , independently of each other, have the meanings as defined above, and isolating the compound of formula (IV-b).

Claim 4 (currently amended): A process according to claim 1 for the manufacture of a compound of formula manufacture of a compound of formula

<u>or</u> a tautomeric form thereof wherein Ry represents C_1 - C_8 -alkyl such as methyl; C_1 - C_8 -alkyl substituted by X' and X' being halogen, sulphonyloxy, hydroxyl, protected hydroxyl, such as bromomethyl, or an acetal of formyl; and X_1 being in a benzylic position, comprising reacting a compound of formula (IV-a) (Va)

with a compound of formula $(R_1)(R_2)M-N_3$ (II b), wherein R_1 and R_2 , independently of one another, represent an organic residue have the meanings as defined above; wherein Ry represents C_1-C_8 -alkyl; C_1-C_8 -alkyl substituted by X' and X' being halogen, sulphonyloxy, hydroxyl, protected hydroxyl, or an acetal of formyl; and X_1 being in a benzylic position; and isolating the resulting compound of formula (V).

Claim 5 (original): A process for the manufacture of the compound of formula (VI)

or a tautomer or salt thereof, comprising

(a) treating a compound of formula (VI a)

wherein X represents a leaving group, first with a nucleophilic agent and then with a "solvolytic" base resulting in a compound of formula (VI b)

(b) reacting a compound of formula (V b) with an azide of formula $(R_1)(R_2)M-N_3$ (II b), wherein the variables R_1 and R_2 , independently of one another, have the meanings as defined above; resulting in a compound of formula (VI c)

(VI c) or a tautomer or salt thereof

(c) oxidizing a compound of formula (VI c) or a tautomer or salt thereof resulting in a compound of formula (VI)

or a tautomer or salt thereof; and

(d) isolating the compound of formula (VI) or a tautomer or salt thereof.

Claim 6 (currently amended): A process for the manufacture of a compound of formula (V c)

comprising oxidizing a compound of formula (VI c)

or a tautomer or salt thereof resulting in a compound of formula (VI) or a tautomer or salt thereof; and isolating a resulting compound of formula (VI).

Claim 7 (currently amended): A process according to claim 5, wherein the oxidation is carried out in the presence of an oxidation agent selected from the group consisting of HNO₂, HNO₃ or a corresponding anhydride thereof, and a peroxodisulfate, and wherein as solvent an alkylated aromatic hydrocarbon solvent such as toluene is used.

Claim 8 (currently amended): A process according to claim 1 for the manufacture of a compound of formula

<u>or</u> a tautomeric form thereof, wherein Ry represents C_1 - C_8 -alkyl such as methyl; C_1 - C_8 -alkyl substituted by X' and X' being halogen, sulphonyloxy, hydroxyl, protected hydroxyl, such as bromomethyl, formyl or an acetal thereof; comprising reacting a compound of formula (VII a)

with a compound of formula $(R_1)(R_2)M-N_3$ (II b), wherein R_1 and R_2 , independently of one another, represent an organic residue have the meanings as defined above; and isolating the resulting compound of formula (VI).

Claim 9 (currently amended): A process according to claim 1, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 10 (withdrawn): A compound of formula $(R_1)(R_2)M-N_3$ (II b), wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_3-C_7 -alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 11 (currently amended): A process according to claim 6, wherein the oxidation is carried out in the presence of an oxidation agent selected from the group consisting of HNO₂, HNO₃ or a corresponding anhydride thereof, and a peroxodisulfate, and wherein as solvent an alkylated aromatic hydrocarbon solvent such as toluene is used.

Claim 12 (currently amended): A process according to any one of claim 2, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 13 (currently amended): A process according to claim 3, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 -alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as eyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as einnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as eyclopropylmethyl or eyclohexylmethyl.

Claim 14 (currently amended): A process according to claim 4, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as eyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or eyclohexylmethyl.

Claim 15 (currently amended): A process according to any one of claim 5, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl

such as cinnamyl, or C₃-C₈-cycloalkyl-C₁-C₈-alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 16 (currently amended): A process according to claim 8, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.