Correction du DS n°5

Sujet groupe A

2 Appliquons l'algorithme du pivot de Gauß.

$$\begin{pmatrix}
1 & 4 & 7 & 1 & 0 & 0 \\
2 & 5 & 8 & 0 & 1 & 0 \\
3 & 6 & 9 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 4 & 7 & 1 & 0 & 0 \\ 0 & -3 & -6 & -2 & 1 & 0 \\ 0 & -6 & -12 & -3 & 0 & 1 \end{pmatrix} \begin{matrix} L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 - 3L_1 \end{matrix}$$

On arrive à une matrice non inversible (car les deux dernières colonnes sont proportionnelles) donc la matrice de départ n'est pas inversible. Passons à la seconde :

$$\begin{pmatrix}
0 & 1 & -1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 \\
2 & 1 & 3 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 & 0 & 1 \end{pmatrix} L_2 \leftrightarrow L_1$$

$$\begin{pmatrix} 1 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 & 0 & 1 \end{pmatrix} L_1 \leftarrow L_1/2$$

$$\begin{pmatrix} 1 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & -1 & 1 \end{pmatrix} L_3 \leftarrow L_3 - 2L_1$$

$$\begin{pmatrix} 1 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 3 & -1 & -1 & 1 \end{pmatrix} L_3 \leftarrow L_3 - L_2$$

On arrive à une matrice triangulaire dont les coefficients diagonaux sont tous non nuls donc cette matrice est inversible : la matrice de départ est donc inversible et on peut poursuivre.

$$\begin{pmatrix} 1 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1/3 & -1/3 & 1/3 \end{pmatrix} L_3 \leftarrow L_3/3$$

$$\begin{pmatrix} 1 & 0 & 0 & 1/6 & 2/3 & -1/6 \\ 0 & 1 & 0 & 2/3 & -1/3 & 1/3 \\ 0 & 0 & 1 & -1/3 & -1/3 & 1/3 \end{pmatrix} \begin{matrix} L_1 \leftarrow L_1 - L_3/2 \\ L_2 \leftarrow L_2 + L_3 \end{matrix}$$

En conclusion

$$A^{-1} = \begin{pmatrix} 1/6 & 2/3 & -1/6 \\ 2/3 & -1/3 & 1/3 \\ -1/3 & -1/3 & 1/3 \end{pmatrix}$$

3 Notons

$$f: \left\{ \begin{array}{l} 1; +\infty \left[\longrightarrow \mathbb{R} \right] \\ x \longmapsto \frac{x}{1+x^2} \end{array} \right.$$

Montrons que c'est une relation d'ordre.

• Soit $x \in \mathbb{R}$. Alors $f(x) \ge f(x)$ donc x R x si bien que R est réflexive.

• Soient $x, y \in \mathbb{R}$ tels que x R y et y R x. Alors $f(x) \ge f(y)$ et $f(y) \ge f(x)$ si bien que f(x) = f(y). f est dérivable et

$$f'(x) = \frac{(1+x^2) - 2x \times x}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2} < 0$$

sur] 1; $+\infty$ [: f est strictement décroissante donc injective, si bien que x = y: R est antisymétrique.

• Soient x, y, z tels que xRy et yRz. Alors $f(x) \ge f(y)$ et $f(y) \ge f(z)$ donc $f(x) \ge f(z)$ c'est-à-dire que xRz: la relation est transitive.

On a donc une relation d'ordre. Enfin, si x et $y \in]1; +\infty[$, $f(x) \ge f(y)$ ou $f(y) \ge f(x)$, c'est-à-dire que x R y ou y R x: l'ordre est total.

R est une relation d'ordre total.

- 4 Montrons que c'est une relation d'équivalence.
 - Soit $(x,y) \in \mathbb{R}^2$. Alors, en prenant a=b=1>0, x=ax et y=by donc (x,y)R(x,y) si bien que R est réflexive.
 - Soient (x_1, y_1) et $(x_2, y_2) \in \mathbb{R}^2$ tels que $(x_1, y_1) R(x_2, y_2)$. Alors il existe a > 0 et b > 0 tels que $x_2 = ax_1$ et $y_2 = by_1$ et donc $x_1 = (1/a) \times x_2$ et $y_1 = (1/b) \times y_2$ et on a 1/a, 1/b > 0 donc $(x_2, y_2) R(x_1, y_1)$: R est symétrique.
 - Soient $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$ tels que $(x_1, y_1)R(x_2, y_2)$ et $(x_2, y_2)R(x_3, y_3)$. Alors il existe a, b, c, d > 0 tels que $x_2 = ax_1, y_2 = by_1, x_3 = cx_2$ et $y_3 = dy_2$ donc $x_3 = cax_1$ et $y_3 = dby_1$ et ac, db > 0 si bien que $(x_1, y_1)R(x_3, y_3)$: la relation est transitive.

C'est une relation d'équivalence.

- 5 Montrons que c'est une relation d'équivalence.
 - Soit $(x,y) \in \mathbb{R}^2$. Alors x = x donc (x,y)R(x,y) si bien que R est réflexive.
 - Soient (x_1, y_1) et $(x_2, y_2) \in \mathbb{R}^2$ tels que $(x_1, y_1)R(x_2, y_2)$. Alors $x_1 = x_2$ donc $x_2 = x_1$ si bien que $(x_2, y_2) = (x_1, y_1)$: $(x_2, y_2)R(x_1, y_1)$, la relation est symétrique.
 - Soient $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$ tels que $(x_1, y_1)R(x_2, y_2)$ et $(x_2, y_2)R(x_3, y_3)$. Alors $x_1 = x_2$ et $x_2 = x_3$ donc $x_1 = x_3$ si bien que $(x_1, y_1)R(x_3, y_3)$: la relation est transitive.

R est une relation d'équivalence sur \mathbb{R}^2 .

Si $(a,b) \in \mathbb{R}^2$, les éléments équivalents à (a,b) sont les points du plan ayant la même abscisse que (a,b), c'est-à-dire la droite d'équation x=a (le dessin est laissé à votre charge).

- 6 Voir question 5 des préliminaires du sujet B et C.
- 7 Puisque ce n'est pas une loi connue, on ne peut pas prouver que c'est un sous-groupe d'un groupe connu. Une seule solution : la définition d'un groupe.
 - La loi est évidemment interne car un produit de deux réels strictement positifs est strictement positif, et donc la première coordonnée est toujours dans \mathbb{R}_{+}^{*} .
 - Montrons que la loi est associative. Soient $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$. D'une part:

$$(x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)) = (x_1, y_1) \oplus (x_2 x_3, x_2 y_3 + y_2)$$
$$= (x_1 x_2 x_3, x_1 (x_2 y_3 + y_2) + y_1)$$
$$= (x_1 x_2 x_3, x_1 x_2 y_3 + x_1 y_2 + y_1)$$

et d'autre part $((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3) =$

$$= (x_1x_2, x_1y_2 + y_1) \oplus (x_3, y_3)$$
$$= (x_1x_2x_3, x_1x_2(y_3) + (x_1y_2 + y_1)$$

donc la loi est associative.

- $(1,1) \oplus (2,2) = (2,3)$ et $(2,2) \oplus (1,1) = (2,4)$ donc la loi n'est pas commutative.
- La loi n'étant pas commutative, il faut prouver que le neutre est neutre des deux côtés (et idem pour le symétrique). Il est immédiat que (1,0) est neutre (des deux côtés!).

• Soit $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}$. On cherche (a,b) tel que $(x,y) \oplus (a,b) = (1,0)$ c'est-à-dire (ax,xb+y) = (1,0). Alors a=1/x et b=-y/x conviennent, et on a également $(1/x,-y/x) \oplus (x,y) = (1,0)$ donc (1/x,-y/x) est le symétrique (à gauche et à droite) de (x,y).

C'est bien un groupe, et il est non abélien.

- 8 Voir question 3 des préliminaires du sujet B et C.
- $\boxed{\mathbf{9}}$ On rappelle que la loi de ce groupe est \mathbb{C}^* . Soient donc z_1 et z_2 dans \mathbb{C}^* .

$$f(z_1 \times z_2) = \frac{z_1 \times z_2}{|z_1 \times z_2|}$$
$$= \frac{z_1}{|z_1|} \times \frac{z_2}{|z_2|}$$
$$= f(z_1) \times f(z_2)$$

On en déduit que f est un morphisme de groupes. Le neutre de \mathbb{C}^* étant 1, $\operatorname{Ker}(f) = \{z \in \mathbb{C}^* \mid f(z) = 1\}$ c'est-à-dire que $\operatorname{Ker}(f)$ est l'ensemble des complexes (non nuls) tels que z = |z|. Par conséquent :

f est un morphisme de groupes et son noyau est \mathbb{R}_+^* .

- **10** Notons A l'ensemble en question.
 - La fonction nulle appartient à A donc A est non vide.
 - A est stable par somme: soient en effet f_1 et f_2 appartenant à A, qui tendent respectivement vers L_1 et $L_2 \in \mathbb{R}$ en $+\infty$. Alors $f_1 + f_2$ tend vers $L_1 + L_2 \in \mathbb{R}$ en $+\infty$ donc $f_1 + f_2 \in A$.
 - $-f_1$ tend vers $-L_1$ en $+\infty$ donc $-f_1 \in A$: A est stable par opposé, c'est un sous-groupe de $(\mathbb{R}^{\mathbb{R}}, +)$.
 - La fonction constante égale à 1 appartient à A.
 - $f_1 \times f_2 \in A$ car tend vers $L_1 \times L_2$: A est stable par produit.

On en déduit que A est un sous-anneau de $\mathbb{R} \times \mathbb{R}$. Ce n'est pas un anneau intègre: par exemple, si on note f l'indicatrice de 0 et g l'indicatrice de [1;2], alors $f \times g$ est la fonction nulle (et f et g appartiennent à A car tendent vers 0) alors que ni f ni g n'est la fonction nulle.

A est un sous-anneau non intègre de $\mathbb{R}^{\mathbb{R}}.$

Attention de ne pas dire que A n'est pas intègre car $\mathbb{R}^{\mathbb{R}}$ ne l'est pas : un anneau non intègre peut avoir un sous-anneau intègre, par exemple le sous-anneau des fonctions constantes (exo).

11 cf. exercice 45 du chapitre 18 (avec k = 1).

C'est un corps.

12 D'après le binôme de Newton,

$$P = \sum_{k=0}^{2024} {2024 \choose k} X^k 2^{2024-k} - \sum_{k=0}^{2024} {2024 \choose k} X^k (-2)^{2024}$$
$$= \sum_{k=0}^{2024} {2024 \choose k} \left(2^{2024-k} - (-2)^{2024-k}\right) X^k$$

Le coefficient de X^{2024} est nul (il vaut $\binom{2024}{0}(2^0-(-2)^0)=0)$ et celui de X^{2023} vaut

$$\binom{2024}{1}(2^{2024-2023}-(-2)^{2024-2023}) = 2024 \times (2-(-2)) = 4 \times 2024 \neq 0$$

En conclusion

P est de degré 2023 et de coefficient dominant 4×2024 .

13 Faite dans le cours.

14 Appliquons l'algorithme d'Euclide.

Ensuite:

Enfin:

On en déduit que 3X - 6 (le dernier reste non nul) est UN PGCD et comme on demande $A \wedge B$ (avec A et B les deux polynômes de l'énoncé), on demande leur unique PGCD unitaire, c'est-à-dire X - 2.

$$A \wedge B = X - 2$$

15 D'après le théorème de division euclidienne, il existe Q et R uniques tels que

$$(X+1)^n - X^n - 1 = (X-2)^2Q + R$$

avec $\deg(R) < \deg((X-2)^2) = 2$ donc $\deg(R) \leq 1$: il existe donc a et b tels que

$$(X+1)^n - X^n - 1 = (X-2)^2Q + aX + b$$

En évaluant en 2, il vient : $3^n - 2^n - 1 = 2a + b$. Dérivons l'égalité ci-dessus, ce qui donne :

$$n(X+1)^{n-1} - nX^{n-1} = (X-2)^2Q' + 2(X-2)Q + a$$

Si on évalue encore en 2, on obtient $a = n3^{n-1} - n2^{n-1}$ si bien que $b = 3^n - 2^n - 1 - 2n3^{n-1} + n2^n$.

Le reste recherché est
$$(n3^{n-1} - n2^{n-1}) \times X + 3^n - 2^n - 1 - 2n3^{n-1} + n2^n$$
.

16 Rappelons que la multiplicité est l'ordre de la première dérivée non nulle. En clair : on dérive jusqu'à obtenir une dérivée non nulle en 1 et ce sera la multiplicité cherchée.

- Tout d'abord, P(1) = 0: 1 est bien racine de P.
- Ensuite, $P' = 6X^5 25X^4 + 32X^3 6X^2 14X + 7$ donc on a encore P'(1) = 0: 1 est racine au moins double (ou est racine multiple).
- $P'' = 30X^4 100X^3 + 96X^2 12X 14$ donc P''(1) = 0: 1 est racine au moins triple.
- $P^{(3)} = 120X^3 300X^2 + 192X 12$ donc $P^{(3)}(1) = 0$: 1 est racine de multiplicité au moins 4.
- $P^{(4)}(1) = 360X^2 600X + 192 \text{ donc } P^{(4)}(1) = -48 \neq 0.$

1 est racine de P de multiplicité 4.

- 17 cf. exercice 6 du chapitre 19.
- 18 Voir question 4 des préliminaires du sujet B et C.
- 19 On fait comme en cours pour donner un polynôme d'interpolation de Lagrange.

$$P = 5 \times \frac{(X-2)(X-10)}{(1-2)(1-10)} + 7 \times \frac{(X-1)(X-10)}{(2-1)(2-10)} - 4 \times \frac{(X-1)(X-2)}{(10-1)(10-2)}$$
 convient.

Correction du DS n°5 5

20 cf. exercice 6 du chapitre 20.

Sujet groupes B et C Préliminaires

- 3 Il est évident qu'on parle d'un groupe pour le produit, et donc le neutre est 1. Notons G cet ensemble.
 - Précisons que G est bien inclus dans \mathbb{R}^* (ne pas oublier de le vérifier) car un quotient de deux entiers impairs est forcément non nul.
 - $1 = 1/1 \in G$ donc G est non vide.
 - Soit $x \in G$ (donc non nul). Il existe p et q impairs tels que x = p/q donc $1/x = q/p \in G$: G est stable par inverse.
 - Soient $x_1, x_2 \in G$. Il existe p_1, p_2, q_1, q_2 impairs tels que $x_1 = p_1/q_1$ et $x_2 = p_2/q_2$ donc $x_1x_2 = (p_1p_2)/(q_1q_2)$. Or, un produit de nombres impairs est impair donc p_1p_2 et q_1q_2 sont impairs donc $x_1x_2 \in G$: G est stable par produit.

G est un sous-groupe de \mathbb{R}^* .

4 On commence par chercher des racines évidentes: 0 et -1 sont racines évidentes, donc P est divisible par $X(X+1) = X^2 + X$. Puisque P est de degré 4, il existe $a, b, c \in \mathbb{R}$ tels que $P = (X^2 + X)(aX^2 + bX + c)$. À l'aide du coefficient dominant, on trouve a = 1. À l'aide du terme constant, on trouve c = 3. À l'aide du terme en X^3 , on trouve que 3 = a + b donc b = 2.

On pouvait également trouver b à l'aide du coefficient en X^2 ou en X. N'hésitez pas à le faire au brouillon, pour vérifier que vous n'avez pas fait d'erreur.

Par conséquent, $P = X(X+1)(X^2+2X+3)$ (on pouvait également faire la division euclidienne de P par X^2+X et on trouvait évidemment le même résultat). Or, le discriminant de X^2+2X+3 est strictement négatif, donc on ne peut pas aller plus loin sur \mathbb{R} .

La factorisation de P sur
$$\mathbb{R}$$
 est: $P = X(X+1)(X^2+2X+3)$.

Sur \mathbb{C} , il suffit de voir (à l'aide d'un calcul de discriminant) que $X^2 + 2X + 3 = (X - 1 + i\sqrt{3})(X - 1 - i\sqrt{3})$.

La factorisation de P sur
$$\mathbb R$$
 est : P = X(X + 1)(X - 1 + i\sqrt{3})(X - 1 - i\sqrt{3}).

5 On fait comme en TD: on a 2 I, 1 M, 2 A, 2 G, 2 N, 1 E, 1 D, 1 R, 1 O, 1 S, ce qui fait 14 lettres.

Il y a
$$\frac{14!}{2!^4} = \frac{14!}{2^4}$$
 anagrammes possibles.

Cela donne 5 448 643 200 possibilités : bon courage ! On pouvait également utiliser la deuxième méthode vue en classe, i.e. jouer au pendu : il y a

$$\binom{14}{2}\times\binom{12}{1}\times\binom{11}{2}\times\binom{9}{2}\times\binom{9}{2}\times\binom{7}{2}\times\binom{5}{1}\times\binom{4}{1}\times\binom{3}{1}\times\binom{2}{1}\times\binom{1}{1}$$

ce qui donnait évidemment le même résultat en simplifiant les factorielles.

Problème - Polynômes cyclotomiques

Partie I. Caractérisation des racines primitives n-ièmes de l'unité

1 En clair, on prend les racines de l'unité en supprimant celles qu'on a déjà rencontrées pour de plus petites valeurs de n. $\mathbb{U}_1 = P_1 = \{1\}$. On a $\mathbb{U}_2 = \{\pm 1\}$ mais 1 n'est pas une racine primitive deuxième donc $P_2 = \{-1\}$. On a $\mathbb{U}_3 = \{1; j; j^2\}$ mais 1 n'est pas une racine primitive troisième donc $P_3 = \{j; j^2\}$. Enfin, $\mathbb{U}_4 = \{\pm 1; \pm i\}$ mais ± 1 ne sont pas des racines primitives quatrièmes (puisqu'on les rencontre avant) donc $P_4 = \{\pm i\}$.

$$P_1 = \{1\}, P_2 = \{-1\}, P_3 = \{j; j^2\}, P_4 = \{\pm i\}$$

 $\boxed{\mathbf{2}}$ Si $n \ge 2$, P_n ne contient pas 1 donc n'est pas un groupe car ne contient pas de neutre. Si n = 1, $P_n = \{1\}$ qui est un groupe (peu intéressant).

$$P_n$$
 est un groupe si et seulement si $n=1$.

3.(a) Notons ce complexe ω . Soit $d = k \wedge n$. Il existe k' et n' (premiers entre eux mais c'est inutile dans la suite) tels que k = k'd et n = n'd donc $\omega = e^{2ik\pi/n} = e^{2ik'\pi/n'}$. Dès lors, $\omega^{n'} = 1$ et n' < n car n

$$\omega = e^{2ik\pi/n}$$
 n'est pas une racine primitive *n*-ième de l'unité.

3.(b) Notons encore $\omega = e^{2ik\pi/n}$. Supposons que ω ne soit pas une racine primitive n-ième de l'unité. Il existe donc $q \in [1; n-1]$ tel que $\omega^q = 1$ donc $e^{2ikq\pi/n} = 1$. Ainsi,

$$\frac{2kq\pi}{n} \equiv 0[2\pi]$$

donc $kq \equiv 0[n]$, c'est-à-dire que n divise kq. Or, $n \wedge k = 1$ donc, d'après le théorème de Gauß, n divise q ce qui est impossible car $q \in [1; n-1]$.

 ω est bien une racine primitive $n\text{-}\mathrm{i\grave{e}me}$ de l'unité.

3.(c) D'après ce qui précède, il existe k_1 et k_2 premiers avec n tels que $z_1 = e^{2ik_1\pi/n}$ et $z_2 = e^{2ik_2\pi/n}$. On cherche u tel que $e^{2ik_1u\pi/n} = e^{2ik_2\pi/n}$ donc tel que

$$\frac{2k_1u\pi}{n} \equiv \frac{2k_2\pi}{n}$$

c'est-à-dire $k_1u \equiv k_2[n]$ donc tel qu'il existe v tel que $k_1u = k_2 + nv$. Or, k_2 est un multiple de $k_1 \wedge n = 1$ donc, d'après le théorème de Bézout, il existe u et v tels que $uk_1 + vn = k_2$. Par conséquent :

$$z_1^u = e^{\frac{2ik_1u\pi}{n}}$$

$$= e^{\frac{2i(k_2-vn)\pi}{n}}$$

$$= e^{\frac{2ik_2\pi}{n} - 2iv\pi}$$

$$= z_2$$

Il suffit enfin de prouver que u est premier avec n. Si d est un diviseur commun à u et n alors d divise $uk_1 + vn = k_2$ donc d est un diviseur commun à n et k_2 qui sont premiers entre eux donc d = 1.

Il existe
$$u$$
 tel que $z_1^u = z_2$.

On pouvait également raisonner en deux temps: d'après le théorème de Bézout, il existe m et p tels que $mk_1 + np = 1$ donc $mk_2k_1 + npk_2 = k_2$. Si on pose $u = mk_2$ alors on montre comme ci-dessus que $z_1^u = z_2$ et, d'après le théorème de Bézout, m est premier avec n, tout comme k_2 , donc $u = mk_2$ est premier avec n (cf. chapitre 6: le produit de deux entiers premiers avec n est premier avec n).

Partie II. DÉFINITION ET PREMIÈRES PROPRIÉ-TÉS DES POLYNÔMES CYCLOTOMIQUES

2 D'après la question 1 de la partie I, on a respectivement:

$$\Phi_1 = X - 1, \Phi_2 = X + 1, \Phi_3 = (X - j)(X - j^2) = X^2 + X + 1 \text{ et } \Phi_4 = (X - i)(X + i) = X^2 + 1 \in \mathbb{Z}[X]$$

Il semblerait même que les Φ_n soient aussi à coefficients égaux à 0 ou \pm 1... Ce n'est qu'une impression! Par exemple, Φ_{105} a un coefficient égal à -2 (Wikipedia est votre ami) et c'est même le premier qui n'a pas un coefficient égal à 0 ou \pm 1: RIP les « par récurrence immédiate »...

3.(a) Par définition:

$$\Phi_5 = \prod_{k=0, k \land 5=1}^{5} (X - e^{2ik\pi/5})$$

Or, 5 est premier donc tous les entiers de [0; 5] (distincts de 0) sont premiers avec 5. On en déduit que:

$$\Phi_5 = \prod_{k=1}^5 (X - e^{2ik\pi/5})$$

Or, d'après la question 1 (la question de cours), $X^5-1=\prod_{k=0}^5(X-e^{2ik\pi/5})$. En clair, « Φ_5 est le polynôme X^5-1 auquel il manque X-1 » :

$$\boxed{\Phi_5 = \frac{X^5 - 1}{X - 1}}$$

On reconnaît « une somme géométrique » (attention, on a des objets formels, ne me parlez pas de valeur interdite) donc

$$\Phi_5 = 1 + X + X^2 + X^3 + X^4$$

3.(b) De même, p étant premier, le seul entier $k \in [0; p-1]$ qui n'est pas premier avec p est p=0 donc il faut « retirer X-1 du polynôme X^p-1 », c'est-à-dire:

$$\Phi_p = \frac{X^p - 1}{X - 1} = 1 + X + X^2 + \dots + X^{p-1}$$

4.(a) Les différents entiers de [1; n] ont un PGCD avec n qui divise n (c'est par définition un diviseur commun). Il suffit ensuite de regrouper les entiers selon leur PGCD avec n (et on trouve même que l'union est disjointe).

$$\llbracket 0; n-1 \rrbracket = \bigcup_{d|n} \mathcal{E}_d$$

4.(b) Soit

$$g: \begin{cases} \mathbf{E}_d \longrightarrow \mathbf{F}_d \\ k \longmapsto \frac{k}{d} \end{cases}$$

Montrons que g est une bijection de E_d dans F_d .

- Justifions déjà que g est bien définie: si $k \in E_d$ alors $k \wedge n = d$ donc k est divisible par d donc k/d est bien un entier. De plus, d'après le cours d'arithmétique, k/d et n/d sont premiers entre eux donc g est bien à valeurs dans F_d .
- g est évidemment injective: si $k_1 \neq k_2$ alors $k_1/d \neq k_2/d$ donc $g(k_1) \neq g(k_2)$.
- Soit $k \in \mathcal{F}_d$. Puisque $k \wedge (n/d) = 1$ alors (cf. chapitre 6) $dk \wedge n = d$. On en déduit que $nk \in \mathcal{E}_d$ et puisque g(nk) = k, alors nk est un antécédent de k si bien que g est surjective.

$$E_d$$
 et F_d sont en bijection.

4.(c) En faisant le changement de variable bijectif k' = g(k) (avec g la bijection de la question précédente), c'est-à-dire, plus simplement, k' = k/d, k = dk', il vient:

$$\prod_{k \in \mathcal{E}_d} (\mathcal{X} - e^{2ik\pi/n}) = \prod_{k' \in \mathcal{F}_d} (\mathcal{X} - e^{2idk'\pi/n}) = \prod_{k' \in \mathcal{F}_d} (\mathcal{X} - e^{2ik'\pi/(n/d)})$$

On conclut en utilisant la définition de F_d : le produit de droite est en fait le produit pour les indices k' tels que $k' \wedge (n/d) = 1$, c'est par définition $\Phi_{n/d}$:

$$\prod_{k \in \mathcal{E}_d} (\mathbf{X} - e^{2ik\pi/n}) = \Phi_{n/d}$$

4.(d) On a successivement:

$$X^{n} - 1 = \prod_{k=0}^{n-1} (X - e^{2ik\pi/n})$$
 Question 1 et cours
$$= \prod_{d|n} \prod_{k \in E_{d}} (X - e^{2ik\pi/n})$$
 Question 4.(a) et regroupement par paquets
$$= \prod_{d|n} \Phi_{n/d}$$
 Question 4.(c)

Or, si on note D l'ensemble des diviseurs de n, $d \mapsto n/d$ est une bijection de D dans lui-même (exo, mais c'est tellement immédiat qu'on peut le dire directement). On peut donc effectuer le changement de variable bijectif d' = n/d si bien que, l'indice étant muet:

$$X^n - 1 = \prod_{d'|n} \Phi_{d'} = \prod_{d|n} \Phi_d$$

5.(a) On a $\Phi_1 = X - 1 \in \mathbb{Z}[X]$.

L'initialisation est donc prouvée.

Un polynôme cyclotomique étant un produit de polynômes de la forme $X-\alpha$, un polynôme cyclotomique est unitaire, et donc B est unitaire, et à coefficients entiers par hypothèse de récurrence : on peut donc bien appliquer le théorème de division euclidienne sur $\mathbb{Z}[X]$. Il existe donc Q et R appartenant à $\mathbb{Z}[X]$ uniques tels que $X^n - 1 = BQ + R$ avec deg(R) < deg(B). Or, d'après la question 4.(d), $X^n - 1 = B \times \Phi_n$ (il ne manque que n parmi les diviseurs de n), c'est-à-dire que $X^n - 1 = B \times \Phi_n + 0$. Puisque deg(0) < deg(B), par unicité, on a $Q = \Phi_n$ et, en particulier, cela implique que $\Phi_n \in \mathbb{Z}[X]$, ce qui clôt la récurrence.

Les polynômes cyclotomiques sont à coefficients entiers (relatifs).

Partie III. THÉORÈME DE WEDDERBURN

2

- Pour tout $y \in K$, $0 \times y = y \times 0 = 0$ (dans un anneau et donc dans un corps, 0, c'est-à-dire le neutre de l'addition, est absorbant). En d'autres termes, $0 \in Z(K)$: Z(K) est non vide.
- Soient x_1 et $x_2 \in K$. Soit $y \in K$. Alors $(x_1 + x_2)y = x_1y + x_2y$ (dans un anneau, et donc dans un corps, le produit est distributif par rapport à la somme, mais il n'est pas indispensable de l'écrire dans votre copie) et x_1 et x_2 appartiennent à Z(K) donc $(x_1 + x_2)y = yx_1 + yx_2 = y(x_1 + x_2)$: $x_1 + x_2 \in Z(K)$ donc Z(K) est stable par somme.
- Soit $y \in K$. $(-x_1)y = x_1(-y) = (-y)x_1 = y(-x_1)$ donc $-x_1 \in Z(K)$: Z(K) est stable par opposé, c'est un sous-groupe de (K, +).
- Pour tout $y \in K$, $y \times 1 = 1 \times y = y$ donc $1 \in Z(K)$.
- Soit $y \in K$. $x_1x_2y = x_1yx_2 = yx_1x_2$ car, successivement, x_2 et x_1 appartiennent à Z(K). On en déduit que $x_1x_2 \in Z(K)$: Z(K) est donc stable par produit.
- Supposons enfin que x_1 soit non nul. Soit $y \in K$. Si y = 0 alors on a évidemment $x_1^{-1}y = yx_1^{-1}$. Si y est non nul, alors y est inversible (on est dans un corps) donc $x_1y^{-1} = y^{-1}x_1$ et, en inversant (en changeant l'ordre), $yx_1^{-1} = x_1^{-1}y$ donc on a bien $x_1^{-1} \in Z(K)$: Z(K) **privé de** 0 est stable par inverse.

$$\mathbf{Z}(\mathbf{K})$$
 est un sous-corps de $\mathbf{K}.$

 $\fbox{3}$ Par définition, Z(K) est l'ensemble des éléments qui commutent avec tous les éléments de K. Si n=1 alors K=Z(K) donc tous les éléments de K = Z(K) commutent avec tous les éléments de K, c'est-à-dire que K est commutatif, ce qui est absurde.

 $\boxed{4}$ Z_a est l'ensemble des éléments de K qui commutent avec a. Or, si un élément commute avec tous les éléments de K, il commute en particulier avec a. En d'autres termes, tout élément de Z(K) appartient à Z_a , d'où l'inclusion $Z(K) \subset Z_a$. Or, a commute évidemment avec lui-même donc $a \in Z_a$ mais, par définition de a, $a \notin Z(K)$ donc l'inclusion est bien stricte.

Correction du DS n°5

Z(K) est inclus strictement dans Z_a .

5.(a) Cette quantité est égale à $q^{pd+r} - q^r + q^r - 1$ et puisque n = pd + r, on a:

$$q^r(q^{pd} - 1) + (q^r - 1) = q^n - 1$$

5.(b) q étant un nombre premier, il est distinct de 1. On reconnaît une somme géométrique de raison $q^d \neq 1$, si bien que:

$$1 + q^d + q^{2d} + \dots + q^{(p-1)d} = \frac{1 - q^{pd}}{1 - q^d} = \frac{q^{pd} - 1}{q^d - 1}$$

5.(c) D'après la question précédente, $q^{pd}-1=(1+q^d+\cdots+q^{(p-1)d})(q^d-1)$. D'après la question 5.(a):

$$q^{n} - 1 = q^{r} \times (1 + q^{d} + \dots + q^{(p-1)d}) \times (q^{d} - 1) + (q^{r} - 1)$$

Or, d'après le théorème de division euclidienne (sur \mathbb{Z}), r < d et $q \ge 2$ donc $q^r < q^d$ et donc $q^r - 1 < q^d - 1$. Par unicité de la division euclidienne (une fois la condition sur le reste vérifiée), on a le résultat voulu.

Le reste de la division euclidienne de q^n-1 par q^d-1 est q^r-1 (et le quotient est $q^r\times (1+q^{d}+\cdots +q^{(p-1)d})$).

 $[\mathbf{5.(d)}]$ K_a étant un corps, K_a^* est un groupe, inclus dans K^* (qui est un groupe pour la même raison), c'est donc un sous-groupe de K^* , et le théorème de Lagrange permet de conclure.

$$q^d - 1$$
 divise $q^n - 1$.

Il en découle que le reste dans la division euclidienne est nul, c'est-à-dire (question précédente) que $q^r - 1 = 0$, c'est-à-dire que $q^r = 1$. Or, $q \ge 2$ donc r = 0, c'est-à-dire que

$$d$$
 divise n .

6.(a) À l'aide d'un simple regroupement par paquets (mais il est inutile d'employer des mots savants, l'égalité qui suit peut être donnée directement sans justification, tant elle est évidente):

$$\prod_{m|n} \Phi_m = \prod_{m|n,m|d} \Phi_m \times \prod_{m|n,m\nmid d} \Phi_m$$

Or, d étant un diviseur de n, un diviseur de d divise forcément n donc:

$$\prod_{m|n} \Phi_m = \prod_{m|d} \Phi_m \times \prod_{m|n,m\nmid d} \Phi_m$$

Le premier polynôme, d'après la partie précédente, est égal à $X^n - 1$, et le second à $X^d - 1$, ce qui donne le résultat voulu.

$$\boxed{\frac{\mathbf{X}^n - 1}{\mathbf{X}^d - 1} = \prod_{m \mid n, m \nmid d} \Phi_m}$$

6.(b) En évaluant l'égalité précédente en q (qui n'est pas une valeur interdite de la fonction rationnelle associée car $q^d - 1 \neq 1$):

$$\frac{q^n - 1}{q^d - 1} = \prod_{m|n,m\nmid d} \Phi_m(q)$$

Or, $d \neq n$ par hypothèse donc m = n est un diviseur de n et pas un diviseur de d. En d'autres termes, le produit ci-dessus contient $\Phi_n(q)$, si bien que:

$$\frac{q^n - 1}{q^d - 1} = \prod_{m \mid n, m \nmid d, m \neq n} \Phi_m(q) \times \Phi_n(q)$$

Un polynôme cyclotomique étant à coefficients entiers (partie II), $\Phi_m(q) \in \mathbb{Z}$ pour tout m, donc le produit ci-dessus est bien un entier.

Si
$$d \neq n$$
, alors $\Phi_n(q)$ divise (dans \mathbb{Z}) $\frac{q^n - 1}{q^d - 1}$.

7.(a) Montrons que c'est une relation d'équivalence.

- Soit $x \in K^*$. Alors $1 \times x \times 1^{-1} = x$ et $1 \in K^*$ donc $x \sim x : \sim$ est réflexive.
- Soient x et $y \in K^*$ tels que $x \sim y$. Il existe donc $g \in K^*$ tel que $gxg^{-1} = K$. En multipliant par g à droite et g^{-1} à gauche (attention, K n'est pas supposé commutatif), on obtient $g^{-1}yg = x$ c'est-à-dire:

$$g^{-1}y(g^{-1})^{-1} = x$$

En d'autres termes, $y \sim x$: \sim est une relation d'équivalence.

• Soient enfin $x, y, z \in K^*$ tels que $x \sim y$ et $y \sim z$. Il existe alors g_1 et g_2 tels que $g_1 x g_1^{-1} = y$ et $g_2 y g_2^{-1} = z$. Dès lors:

$$z = g_2(g_1yg_1^{-1})g_2^{-1}$$
$$= (g_2g_1)y(g_2g_1)^{-1}$$

et $g_2g_1 \in K^*$ (soit parce que K est un corps donc un anneau intègre, donc un produit d'éléments non nuls est non nul, soit parce qu'un produit d'éléments inversibles est inversible) donc $x \sim z$: \sim est transitive.

 \sim est une relation d'équivalence.

 $\boxed{\mathbf{7.(b)}}$ On pourrait le prouver par double inclusion, mais on peut aussi (pour aller plus vite) travailler par équivalence. Soit $g \in \mathbf{K}^*$. Alors:

$$g \in \operatorname{Stab}(x) \iff gxg^{-1} = x \iff gx = xg \iff g \in \operatorname{Z}_x^*$$

On a écrit ${\mathbf Z_x}^*$ et non pas ${\mathbf Z_x}$ car g est non nul par hypothèse. D'où le résultat.

$$Stab(x) = Z_x^*$$

8 Puisque les x de la somme n'appartiennent pas à Z(K), on peut appliquer les questions 4,5 et 6. En remplaçant les cardinaux par leur valeur, on obtient donc:

$$q^{n} - 1 = q - 1 + \sum_{\text{cl}(x) \mid \text{Card} (\text{cl}(x)) \geqslant 2} \frac{q^{n} - 1}{q^{d} - 1}$$

avec d un entier divisant n (question 5.(d)). Précisons que d n'est pas le même pour tout x, d dépend du x choisi (on pourrait le noter d_x mais on ne le fait pas pour ne pas surcharger l'écriture). Cependant, une chose ne change pas: si le cardinal de l'orbite est supérieur ou égal à 2, c'est que $d \neq n$ (et on rappelle que d|n). Par conséquent, dans la somme ci-dessus, tous les d de la somme ci-dessus divisent n et sont distincts de n donc, d'après la question 6.(b), tous les termes de la somme sont divisibles par $\Phi_n(q)$. Or, $\Phi_n(q)$ divise $q^n - 1$ (question 4.(d) de la partie II, évaluée en q). Le résultat en découle.

$$\Phi_n(q)$$
 divise $q-1$.

9 $n \neq 1$ donc $\omega \neq 1$ (1 n'est pas une racine primitive n-ième de l'unité puisque n > 1). Dès lors, Re $(\omega) < 1$ (seul 1 a une partie réelle égale à 1 sur le cercle unité: si $z = x + iy \in \mathbb{U}$ alors $x^2 + y^2 = 1$ donc, si x = 1, alors y = 0 donc z = 1, mais on peut aussi l'affirmer directement) donc $q - \text{Re}(\omega) > q - 1 > 0$. Par conséquent:

$$|q-\omega| = \sqrt{(q-\operatorname{Re}(\omega))^2 + \operatorname{Im}(\omega)^2}$$
 Croissance de la racine carrée
$$\geqslant |q-\operatorname{Re}(\omega)|$$

$$\geqslant q-\operatorname{Re}(\omega)$$

$$q-\operatorname{Re}(\omega) \geqslant 0$$

$$> q-1$$

Or, $\Phi_n(q) = |\Phi_n(q)|$ est le produit des $|q - \omega|$ lorsque ω décrit P_n , l'ensemble des racines primitives n-ièmes de l'unité. Dès lors, $\Phi_n(q)$ est un produit de termes strictement plus grands que q - 1 donc (produit d'inégalités positives) est strictement plus grand que q - 1, ce qui est absurde puisque $\Phi_n(q)|q - 1$ et $q - 1 \neq 0$ (si a|b et si $b \neq 0$ alors $|a| \leq |b|$).

Le théorème de Wedderburn est démontré.

Correction du DS n°5

Partie IV. IRRÉDUCTIBILITÉ DES POLYNÔMES CY-CLOTOMIQUES

1.(a)

- Si P est le polynôme nul, alors $P(\omega) = 0$ donc le polynôme nul appartient à I: I est non vide.
- Soient A_1 et A_2 deux éléments de I. Alors $A_1(\omega) = A_2(\omega) = 0$ donc $(A_1 + A_2)(\omega) = 0$ et $-A_1(\omega) = 0$ donc $A_1 + A_2$ et $-A_1$ appartiennent à I: I est stable par somme et par opposé, donc I est un sous-groupe de $\mathbb{Q}[X]$.
- Enfin, soit $P \in \mathbb{Q}[X]$ et soit $A \in I$. Alors $(PA)(\omega) = P(\omega)A(\omega) = 0$ donc $P \times A \in I$: I est absorbant pour le produit.

I est un idéal de $\mathbb{Q}[X]$.

 $\boxed{ \mathbf{1.(b)} }$ Il suffit de prouver que E est non vide. En effet, il ne contient que des degrés de polynômes non constants donc en particulier de polynômes non nuls donc des entiers (supérieurs ou égaux à 1). En d'autres termes, E est une partie de \mathbb{N}^* et donc il suffit de prouver qu'elle est non vide pour prouver qu'elle admet un plus petit élément. Or, $\mathbb{X}^n - 1$ est un élément de I (car ω est une racine n-ième de l'unité) donc $n \in \mathbb{E}$ ce qui permet de conclure.

 \mid E admet un plus petit élément d.

On aurait aussi pu dire que Φ_n appartient à I car ω est une racine primitive n-ième de l'unité donc annule Φ_n par définition de Φ_n , et donc $\deg(\Phi_n) \in \mathcal{E}$ (Φ_n non constant car est divisible par $\mathcal{X} - \omega$). Attention cependant, car on ne connaît pas son degré! Il n'est pas de degré n! Il est de degré $\varphi(n)$ où $\varphi(n)$ est le nombre d'entiers de $\llbracket 0 ; n-1 \rrbracket$ premiers avec n (la fonction φ est appelée indicatrice d'Euler et est au programme de deuxième année).

1.(c) d étant un plus petit élément, il appartient à E donc il existe $A \in I$ (non constant) de degré d. I étant absorbant pour le produit, si on note α le coefficient dominant (non nul par définition) de A, alors $(1/\alpha) \times A \in I$ et c'est un polynôme unitaire.

I contient un polynôme unitaire de degré d.

 $\boxed{ \mathbf{1.(d)} }$ Soit $P \in I$. Effectuons la division euclidienne de P par M: il existe Q et $R \in \mathbb{Q}[X]$ uniques tels que P = QM + R donc R = P - QM (avec $\deg(R) < \deg(M)$). $P \in I$ et $M \in I$ donc (I absorbant) $QM \in I$ et I est un groupe donc $P - QM \in I$. Or, M est de degré minimal parmi les polynômes non constants de I donc R est constant, et puisque $R \in I$, alors $R(\omega) = 0$ donc R est le polynôme nul, c'est-à-dire que M divise P.

M divise tous les éléments de I.

La réciproque est vraie, c'est-à-dire que tout multiple de M appartient à I car I est absorbant. En d'autres termes, I est exactement l'ensemble des multiples de M c'est-à-dire :

$$I = \{QM \mid Q \in \mathbb{Q}[X]\}$$

On dit que M est le polynôme minimal de ω sur \mathbb{Q} , cf. cours de deuxième année et DS n° 5 (sujet B) d'il y a deux ans!

2.(a) Puisque ω est une racine primitive n-ième de l'unité, ω est racine de Φ_n donc $\Phi_n(\omega) = A(\omega)B(\omega) = 0$. Un produit de facteurs est nul si et seulement si l'un au moins des facteurs est nul.

 ω est racine de A ou de B.

2.(b) A \in I puisque ω est une racine de A donc, d'après la question 1.(d), A est divisible par M, et $\Phi_n = AB$ ce qui permet de conclure.

Il existe $P \in \mathbb{Q}[X]$ tel que $\Phi_n = M \times P \times B$.

2.(c) Soit z une racine primitive n-ième de l'unité. D'après la question 3.(c) de la partie I, il existe u premier avec n tel que $z = \omega^u$. Notons $u = p_1 \times \cdots \times p_k$ avec les p_i des nombres premiers (pas forcément distincts). Puisque u est premier avec n, alors les p_i sont tous premiers avec n (en effet, si l'un des p_i n'est pas premier avec n, il existe d > 1 qui divise n et p_i donc d divise u et n ce qui est exclu), c'est-à-dire ne divisent pas n car ils sont premiers. D'après le lemme-clef, ω est racine de M donc ω^{p_1} est racine de M. On applique le lemme-clef avec ω^{p_1} à la place de z (penser à « truc »): $(\omega^{p_1})^{p_2} = \omega^{p_1 p_2}$ est encore racine de M, et on continue jusqu'à obtenir $z = \omega^u = \omega^{p_1 \dots p_k}$ racine de M.

Toutes les racines primitives de l'unité sont racines de M.

2.(d) Les racines primitives de l'unité étant deux à deux distinctes, d'après le cours,

$$\prod_{\omega \in P_{-}} (X - \omega) | M$$

c'est-à-dire que Φ_n divise M. Or, M divise Φ_n : ceux deux polynômes sont associés donc ont le même degré, et comme $\Phi_n = M \times P \times B$, $\deg(PB) = \deg(P) + \deg(B) = 0$ et en particulier $\deg(B) = 0$: B est constant.

B est constant : Φ_n est irréductible.

Si p est premier, on a vu (question 3.(b) de la partie II) que Φ_p est de degré p-1. Puisqu'il y a une infinité de nombres premiers, pour tout n, il existe un polynôme Φ_p tel que $\deg(\Phi_p) \geqslant n$. Par conséquent, alors que les irréductibles sur $\mathbb{C}[X]$ et sur $\mathbb{R}[X]$ sont assez simples (cf. cours), sur \mathbb{Q} , il existe des polynômes irréductibles de degré arbitrairement grand!