

Report No:CCISE170604804

FCC REPORT

(UNII)

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Tablet PC

Aprix Tab64C, Aprix Tab64A, Aprix Tab64B, Aprix Tab64D, Aprix

Model No.: Tab64E, 64A, 64B, 64C, 64D, 64E, A10, A101, B10, B101,

APT10, APT101, AX10, BX10

Trade mark: APRIX

FCC ID: 2AHJQ-APT67A

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 12 June, 2017

Date of Test: 12 June, to 05 July, 2017

Date of report issued: 06 July, 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 July, 2017	Original

Tested by:	11 lang	Date:	06 July, 2017	
	Test Engineer			
Reviewed by:	Ryan. Lee	Date:	06 July, 2017	
	Project Engineer			

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	MEASUREMENT UNCERTAINTY	8
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	30
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Unwanted Emissions out of the Restricted Bands	40
	6.8	FREQUENCY STABILITY	47
7	TES	T SETUP PHOTO	49
0	CHT	CONSTRUCTIONAL DETAILS	E0.

4 Test Summary

Test Item	Section in CFR 47
Antenna requirement	15.203/15.407 (g)
AC Power Line Conducted Emission	15.207
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)
26dB Occupied Bandwidth	15.407 (a) (5)
6dB Emission Bandwidth	15.407(e)
Power Spectral Density	15.407 (a) (1) (iv) &(a) (3)
Band Edge	15.407(b)
Spurious Emission	15.205/15.209
Frequency Stability	15.407(g)

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address of Applicant:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address of Manufacturer:	Room 308, Building #5, Cofoc (Fuan) Robotics Industrial Park, No.90, Dayang Road, Fuyong Street, Shenzhen City, P.R. China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	Aprix Tab64C, Aprix Tab64A, Aprix Tab64B, Aprix Tab64D, Aprix Tab64E, 64A, 64B, 64C, 64D, 64E, A10, A101, B10, B101, APT10, APT101, AX10, BX10
Operation Frequency:	Band 1: 5180MHz-5240MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2,802.11ac:1
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz, 802.11ac : 80MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11ac)	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-7000mAh
AC adapter :	Model: BY120502000 Input: AC100-240V 50/60Hz 0.3A Output: DC 5.0V, 2A
Remark:	The No.: Aprix Tab64C,Aprix Tab64A,Aprix Tab64B,Aprix Tab64D, AprixTab64E,64A,64B,64C,64D,64E,A10,A101,B10,B101,APT10,APT 101, AX10,BX10 etc. were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel

	Band 1				
802.11a/802.11n20		802.11n40		802.11ac	
Channel	Frequency	Channel Frequency		Channel	Frequency
36	5180MHz	38	5190MHz	42	5210MHz
40	5200MHz	46	5230MHz		
44	5220MHz				
48	5240MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/80	02.11n20	802.11n40		802.11ac	
Channel	Frequency	Channel Frequency		Channel	Frequency
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				

5.3 Test environment andmode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.	

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.		
Mode Data rate		
802.11a	6 Mbps	
802.11n20	6.5 Mbps	
802.11n40	13 Mbps	
802.11ac	23.9 Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20, 13 Mbps for 802.11n40 and 29.3 Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
FLY POWER	Switching Adapter	PS24A120K2000UD	N/A	N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 50

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.7 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.8 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018	
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018	
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013				
TestFrequencyRange:	150kHz to 30MHz	150kHz to 30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kH	lz				
Limit:	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	,			
	0.15-0.5	66 to 56*	0.15-0.5			
	0.5-5	56	0.5-5			
	5-30	60	5-30			
	* Decreases with the logarithm of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test setup:	AUX Equipment Test table/Insula Remark E U.T: Equipment Under LISIN Line Impedence St Test table height=0 8m	E.U.T EMI Receiver	ilter — AC power			
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for o	letails.				
Test results:	Passed					

Measurement Data:

Line:

Trace: 21

Site : CCIS Shielding Room
Condition : FCC PART15 B QP LISN LINE
EUT : Tablet PC
Model : Aprix Tab64C
Test Mode : 5GWIFI mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu√	₫₿	₫₿	dBu₹	₫₿uѶ	dB	
0.211	25.18	0.15	10.76	36.09			
0.322	19.50	0.18	10.73	30.41	49.66	-19.25	Average
0.442	39.98	0.24	10.74	50.96	57.02	-6.06	QP
0.549	39.29	0.26	10.77	50.32	56.00	-5.68	QP
1.359	39.89	0.29	10.91	51.09	56.00	-4.91	QP
1. 359 2. 692 2. 736	23. 49 39. 53 22. 06	0.29 0.33 0.33	10.91 10.93 10.93	50. 79 33. 32	56.00	-5.21	
	MHz 0. 211 0. 219 0. 322 0. 431 0. 442 0. 549 0. 857 1. 359 2. 692	Freq Level MHz dBuV 0.211 25.18 0.219 39.79 0.322 19.50 0.431 21.05 0.442 39.98 0.546 24.86 0.549 39.29 0.857 39.66 1.359 39.89 1.359 23.49 2.692 39.53	Freq Level Factor MHz dBuV dB 0.211 25.18 0.15 0.219 39.79 0.15 0.322 19.50 0.18 0.431 21.05 0.24 0.442 39.98 0.24 0.546 24.86 0.26 0.549 39.29 0.26 0.857 39.66 0.29 1.359 39.89 0.29 1.359 23.49 0.29 2.692 39.53 0.33	MHz dBuV dB dB 0.211 25.18 0.15 10.76 0.219 39.79 0.15 10.76 0.322 19.50 0.18 10.73 0.431 21.05 0.24 10.73 0.442 39.98 0.24 10.74 0.546 24.86 0.26 10.76 0.549 39.29 0.26 10.77 0.857 39.66 0.29 10.83 1.359 23.49 0.29 10.91 1.359 23.49 0.29 10.91 2.692 39.53 0.33 10.93	MHz dBuV dB dB dBuV 0.211 25.18 0.15 10.76 36.09 0.219 39.79 0.15 10.76 50.70 0.322 19.50 0.18 10.73 30.41 0.431 21.05 0.24 10.73 32.02 0.442 39.98 0.24 10.74 50.96 0.546 24.86 0.26 10.76 35.88 0.549 39.29 0.26 10.77 50.32 0.857 39.66 0.29 10.83 50.78 1.359 39.89 0.29 10.91 51.09 1.359 23.49 0.29 10.91 51.09 1.359 39.53 0.33 10.93 50.79	MHz dBuV dB dB dBuV dBuV 0.211 25.18 0.15 10.76 36.09 53.18 0.219 39.79 0.15 10.76 50.70 62.88 0.322 19.50 0.18 10.73 30.41 49.66 0.431 21.05 0.24 10.73 32.02 47.24 0.442 39.98 0.24 10.74 50.96 57.02 0.546 24.86 0.26 10.76 35.88 46.00 0.549 39.29 0.26 10.77 50.32 56.00 0.857 39.66 0.29 10.83 50.78 56.00 1.359 39.89 0.29 10.91 51.09 56.00 1.359 23.49 0.29 10.91 34.69 46.00 2.692 39.53 0.33 10.93 50.79 56.00	MHz dBuV dB dB dBuV dBuV dB dB

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Tablet PC EUT Model : Aprix Tab64C Test Mode : 5GWIFI mode Power Rating : AC120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YI

Remark

CHULK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿u₹	₫₿	₫₿	dBu∛	dBu∛	₫B	
1	0.214	35.00	0.16	10.76	45.92	53.05	-7.13	Average
2	0.222	43.85	0.16	10.75	54.76	62.74	-7.98	QP
3	0.431	29.11	0.23	10.73	40.07	47.24	-7.17	Average
2 3 4 5 6 7 8 9	0.437	40.55	0.23	10.74	51.52	57.11	-5.59	QP
5	0.529	32.04	0.25	10.76	43.05	46.00	-2.95	Average
6	0.549	41.63	0.27	10.77	52.67	56.00	-3.33	
7	0.779	41.61	0.31	10.80	52.72	56.00	-3.28	QP
8	0.862	28.19	0.29	10.83	39.31	46.00	-6.69	Average
9	0.943	27.59	0.27	10.85	38.71	46.00		Average
10	1.071	42.27	0.26	10.88	53.41	56.00	-2.59	QP
11	1.249	27.93	0.26	10.90	39.09	46.00	-6.91	Average
12	1.441	42.52	0.26	10.92	53.70	56.00	-2.30	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)		
Test Method:	ANSI C63.10: 2013, KDB789033		
Limit:	Band 1: 24dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

	Band 1							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result				
	Lowest	4.34	24.00	Pass				
802.11a	Middle	4.33	24.00	Pass				
	Highest	4.04	24.00	Pass				
	Lowest	3.19	24.00	Pass				
802.11n20	Middle	3.12	24.00	Pass				
	Highest	3.90	24.00	Pass				
802.11n40	Lowest	3.99	24.00	Pass				
602. I III40	Highest	3.64	24.00	Pass				
802.11ac	Middle	3.91	24.00	Pass				

Test plot as follows:

Band 1

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

Lowest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)			
Test Method:	ANSI C63.10:2013 and KDB 789033			
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Band 1:

Test Channel		26dB Emission Ba	ndwidth (MHz)		Limit	Result
rest Channel	802.11a	802.11n20	802.11n40	802.11ac	LIIIIII	Result
Lowest	20.32	20.36	40.08			
Middle	19.98	20.28		79.52	N/A	N/A
Highest	19.62	19.86	39.84			
Test Channel		Limit	Dogult			
rest Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	16.82	17.62	35.84			
Middle	16.80	17.64		75.12	N/A	N/A
Highest	16.84	17.62	35.88			

Test plot as follows: Band 1:

Date: 30.JUN.2017 16:08:29

Lowest channel

Date: 30.JUN.2017 16:09:26

Middle channel

Date: 30.JUN.2017 16:10:00

Highest channel

Date: 30.JUN.2017 16:11:12

Lowest channel

Date: 30.JUN.2017 16:11:40

Middle channel

Date: 30.JUN.2017 16:13:06

Highest channel

Date: 30.JUN.2017 16:13:59

Lowest channel

Date: 30.JUN.2017 16:14:58

Highest channel

Date: 30.JUN.2017 16:16:35

Middle channel

Date: 30.JUN.2017 16:08:44

Lowest channel

Date: 30.JUN.2017 16:09:17

Middle channel

Date: 30.JUN.2017 16:10:22

Highest channel

Date: 30.JUN.2017 16:10:51

Lowest channel

Date: 30.JUN.2017 16:11:51

Middle channel

Date: 30.JUN.2017 16:12:12

Highest channel

Date: 30.JUN.2017 16:14:08

Lowest channel

Date: 30.JUN.2017 16:14:37

Highest channel

Date: 30.JUN.2017 16:16:46

Middle channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)		
Test Method:	ANSI C63.10:2013, KDB 789033		
Limit:	Band 1: 11 dBm/MHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Wedsurement Data.					
		Band 1			
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
	Lowest	-5.90	11.00	Pass	
802.11a	Middle	-5.96	11.00	Pass	
	Highest	-6.25	11.00	Pass	
	Lowest	-6.72	11.00	Pass	
802.11n20	Middle	-6.92	11.00	Pass	
	Highest	-7.22	11.00	Pass	
802.11n40	Lowest	-10.18	11.00	Pass	
002. I III 4 0	Highest	-10.46	11.00	Pass	
802.11ac	Middle	-17.38	11.00	Pass	

Test plot as follows:

Band 1:

Date: 30.JUN.2017 16:18:47

Date: 30.JUN.2017 16:19:06

Date: 30.JUN.2017 16:19:24

Highest channel

Test mode:802.11n20

Date: 30.JUN.2017 16:20:05

Lowest channel

Date: 30.JUN.2017 16:20:25

Middle channel

Date: 30.JUN.2017 16:20:43

Highest channel

Date: 30.JUN.2017 16:21:24

Lowest channel

Date: 30.JUN.2017 16:21:43

Highest channel

Test mode:802.11ac

Date: 30.JUN.2017 16:22:25

Middle channel

6.6 Band Edge

olo Balla Lago				
Test Requirement:	FCC Part15 E Secti	ion 15.407 (b)		
Test Method:	ANSI C63.10:2013	, KDB 789033		
Receiver setup:	Detector	RBW	VBW	Remark
•	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	RMS	1MHz	3MHz	Average Value
Limit:	Band	Limit (dBu	ıV/m @3m)	Remark
	Band 1	68	3.20	Peak Value
	Dana 1	54	.00	Average Value
	Remark:			
	1. Band 1 limit:	P[dRm] + 95 2-68	2 dBuV/m for EIP	PR[dRm]27dRm
Test Procedure:	 E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dBm]=-27dBm. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 			
Test setup:	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(Turndow) Grand A	Norr-Sedema Aroteona Aroteona Paras	Tower
Test Instruments:	Refer to section 5.6	for details		Н
Test mode:	Refer to section 5.3	for details		
Test results:	Passed			

Band 1:

802.11a									
Test cl	hannel	Lowest		Level		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	43.14	36.23	7.05	41.93	44.49	68.20	-23.71	Horizontal	
5150.00	42.26	36.23	7.05	41.93	43.61	68.20	-24.59	Vertical	
				802.11a					
Test cl	hannel		Lowest		Le	vel	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.26	36.23	7.05	41.93	33.61	54.00	-20.39	Horizontal	
5150.00	31.26	36.23	7.05	41.93	32.61	54.00	-21.39	Vertical	
				802.11a					
Test cl	hannel	Lowest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.25	35.37	7.11	41.89	42.84	68.20	-25.36	Horizontal	
5350.00	43.67	35.37	7.11	41.89	44.26	68.20	-23.94	Vertical	
				802.11a					
Test cl	hannel	Lowest			Level		Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	31.24	35.37	7.11	41.89	31.83	54.00	-22.17	Horizontal	
5350.00	30.26	35.37	7.11	41.89	30.85	54.00	-23.15	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20									
Test cl	hannel	Lowest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	43.26	36.23	7.05	41.93	44.61	68.20	-23.59	Horizontal	
5150.00	42.12	36.23	7.05	41.93	43.47	68.20	-24.73	Vertical	
802.11n-HT20									
Test cl	nannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	33.27	36.23	7.05	41.93	34.62	54.00	-19.38	Horizontal	
5150.00	32.26	36.23	7.05	41.93	33.61	54.00	-20.39	Vertical	
			8	02.11n-HT20)				
Test cl	nannel	Lowest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	43.22	35.37	7.11	41.89	43.81	68.20	-24.39	Horizontal	
5350.00	41.75	35.37	7.11	41.89	42.34	68.20	-25.86	Vertical	
			8	02.11n-HT20)				
Test channel		Lowest			Level		Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	33.26	35.37	7.11	41.89	33.85	54.00	-20.15	Horizontal	
5350.00	31.47	35.37	7.11	41.89	32.06	54.00	-21.94	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40									
Test cl	hannel	Lowest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	43.56	7.05	41.93	5158.68	-5066.14	68.20	-5134.34	Horizontal	
5150.00	42.75	7.05	41.93	5157.87	-5066.14	68.20	-5134.34	Vertical	
802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	31.27	7.05	41.93	5146.39	-5066.14	54.00	-5120.14	Horizontal	
5150.00	32.29	7.05	41.93	5147.41	-5066.14	54.00	-5120.14	Vertical	
			8	302.11n-HT40)				
Test ch	nannel	Lowest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	43.67	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal	
5350.00	43.16	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical	
			8	302.11n-HT40)				
Test ch	Test channel		Lowest			vel	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	31.42	35.37	7.11	41.89	32.01	54.00	-21.99	Horizontal	
5350.00	32.26	35.37	7.11	41.89	32.85	54.00	-21.15	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80									
Test cl	hannel		Lowest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	42.56	36.23	10.96	40.06	49.69	68.20	-18.51	Horizontal	
5150.00	41.72	36.23	10.96	40.06	48.85	68.20	-19.35	Vertical	
802.11ac-HT80									
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.26	36.23	10.96	40.06	39.39	54.00	-14.61	Horizontal	
5150.00	31.25	36.23	10.96	40.06	38.38	54.00	-15.62	Vertical	
			8	02.11ac-HT8	0				
Test cl	hannel	Lowest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	41.75	35.37	11.19	40.18	48.13	68.20	-20.07	Horizontal	
5350.00	42.26	35.37	11.19	40.18	48.64	68.20	-19.56	Vertical	
			8	02.11ac-HT8	0				
Test cl	Test channel		Lowest			Level		rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.26	35.37	11.19	40.18	38.64	54.00	-15.36	Horizontal	
5350.00	31.58	35.37	11.19	40.18	37.96	54.00	-16.04	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	7.1 Restricted Band								
	Test Requirement:	FCC Part15 E Section 15.407(b)							
	Test Method:	ANSI C63.10: 2013							
	TestFrequencyRange:	Band 1: 4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz							
	Test site:	Measurement Di	stance: 3r	m				,	
	Receiver setup:	Frequency	Detecto				3W	Remark	
		Above 1GHz	Peak RMS				Hz Hz	Peak Value Average Value	
	Limit:	Frequency	,	Limit	mit (dBuV/m @3m			Remark	
		Above 1GHz						Peak Value verage Value	
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet. 							
		Tred Receives Total Receives Grand Advance Plane Total Receives							
	Total Instrument (C								
	Test Instruments:	Refer to section							
	Test mode:	Refer to section 5.3 for details							
	Test results:	Passed							

Band 1:

802.11a

Test channel			Lowest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	44.26	34.50	6.80	42.05	43.51	74.00	-30.49	Horizontal	
4500.00	43.21	34.50	6.80	42.05	42.46	74.00	-31.54	Vertical	
Test cl	nannel		Lowest		Level		Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	32.21	34.50	6.80	42.05	31.46	54.00	-22.54	Horizontal	
4500.00	30.26	34.50	6.80	42.05	29.51	54.00	-24.49	Vertical	
Test cl	Test channel		Highest			vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	42.15	34.90	7.18	41.85	42.38	74.00	-31.62	Horizontal	
5460.00	43.79	34.90	7.18	41.85	44.02	74.00	-29.98	Vertical	
Test cl	Test channel		Highest			Level		Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	32.12	34.90	7.18	41.85	32.35	54.00	-21.65	Horizontal	
5460.00	32.26	34.90	7.18	41.85	32.49	54.00	-21.51	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	45.27	34.50	6.80	42.05	44.52	74.00	-29.48	Horizontal
4500.00	43.30	34.50	6.80	42.05	42.55	74.00	-31.45	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	30.23	34.50	6.80	42.05	29.48	54.00	-24.52	Horizontal
4500.00	32.26	34.50	6.80	42.05	31.51	54.00	-22.49	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.52	34.90	7.18	41.85	42.75	74.00	-31.25	Horizontal
5460.00	43.26	34.90	7.18	41.85	43.49	74.00	-30.51	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.21	34.90	7.18	41.85	32.44	54.00	-21.56	Horizontal
5460.00	31.75	34.90	7.18	41.85	31.98	54.00	-22.02	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.26	34.50	6.80	42.05	42.51	74.00	-31.49	Horizontal
4500.00	41.75	34.50	6.80	42.05	41.00	74.00	-33.00	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.22	34.50	6.80	42.05	31.47	54.00	-22.53	Horizontal
4500.00	32.21	34.50	6.80	42.05	31.46	54.00	-22.54	Vertical
Test cl	nannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.26	34.90	7.18	41.85	42.49	74.00	-31.51	Horizontal
5460.00	41.72	34.90	7.18	41.85	41.95	74.00	-32.05	Vertical
Test cl	nannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.23	34.90	7.18	41.85	32.46	54.00	-21.54	Horizontal
5460.00	31.67	34.90	7.18	41.85	31.90	54.00	-22.10	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	42.56	34.50	10.22	40.67	46.61	74.00	-27.39	Horizontal	
4500.00	41.78	34.50	10.22	40.67	45.83	74.00	-28.17	Vertical	
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	32.26	34.50	10.22	40.67	36.31	54.00	-17.69	Horizontal	
4500.00	42.27	34.50	10.22	40.67	46.32	54.00	-7.68	Vertical	
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	42.59	34.90	11.32	40.23	48.58	74.00	-25.42	Horizontal	
5460.00	41.77	34.90	11.32	40.23	47.76	74.00	-26.24	Vertical	
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	32.02	34.90	11.32	40.23	38.01	54.00	-15.99	Horizontal	
5460.00	31.24	34.90	11.32	40.23	37.23	54.00	-16.77	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205			
Test Method:	ANSI C63.10:20	13				
TestFrequencyRange:	30MHz to 40GH	Z				
Test site:	Measurement Di	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBV	W	Remark
	30MHz-1GHz Quasi-peak 100kHz 300kHz Quasi-peak Va					
	Above 1GHz	Peak	1MHz 3M		Hz Peak Value	
	Above 1GHz	RMS	1MHz	3MF	Ηz	Average Value
Limit:	Frequency		mit (dBuV/m @3	m)		Remark
	30MHz-88M	Hz	40.0		Q	uasi-peak Value
	88MHz-216M	lHz	43.5			uasi-peak Value
	216MHz-960N	ЛHz	46.0		Q	uasi-peak Value
	960MHz-1GI	Hz	54.0		Q	uasi-peak Value
	Above 1GH	lz	68.20			Peak Value
			54.00			Average Value
Test Procedure:	Remark: Above 1GHz limit: E[dBµV/m] = EIRF 1. The EUT wa	P[dBm] + 95.2=6	8.2 dBuV/m,for notestions			
rest i locedure.	1GHz)/1.5m table was re radiation. 2. The EUT wa antenna, wh tower. 3. The antenna ground to de horizontal a measureme 4. For each su and thenthe and the rota maximum re 5. The test-red Specified Ba 6. If the emiss limitspecifie EUT wouldt 10dB margi	n(above 1GHz) potated 360 deg as set 3 meters nichwas mount a height is vari etermine the m nd vertical policy ent. Ispected emiss a table was turn eading. Eaciver system v andwidth with ion level of the d, then testing pe reported. On m would bere-t	above the grorees to determ s away from the ed on the top of ed from one maximum value arizations of the tion, the EUT valued to height ned from 0 deg was set to Peal Maximum Hold EUT in peak rould be stopp therwise the en	e interfector a variate anten vas arrate from a variate from a va	a 3 m positi erence iable- four n field s nna are anged 1 met 360 c et Fune vas 10 d the p s that ng pea	eter camber. The on of the highest e-receiving height antenna heters above the trength. Both e set to make the to its worst case fer to 4 meters degrees to find the ction and dB lower than the beak values of the did not have ak, quasi-peak or

Below 1GHz

Horizontal:

Site : 3m chamber
Condition : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL
EUT : Tablet PC
Model : Aprix Tab64C
Test mode : 5GWIIF Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

REMARK

4								
Freq								Remark
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/n	dB	
30.000	43.16	11.80	0.72	29.98	25.70	40.00	-14.30	QP
55.805	37.69	12.24	1.36	29.80	21.49	40.00	-18.51	QP
171.393	41.50	9.75	2.66	29.04	24.87	43.50	-18.63	QP
212.270	42.05	10.86	2.86	28.75	27.02	43.50	-16.48	QP
311.087	42.28	13.04	2.97	28.48	29.81	46.00	-16.19	QP
416.179	40.84	16.00	3.12	28.81	31.15	46.00	-14.85	QP
	MHz 30.000 55.805 171.393 212.270 311.087	Read. Freq Level MHz dBuV 30.000 43.16 55.805 37.69 171.393 41.50 212.270 42.05 311.087 42.28	ReadAntenna Freq Level Factor MHz dBuV dB/m 30.000 43.16 11.80 55.805 37.69 12.24 171.393 41.50 9.75 212.270 42.05 10.86 311.087 42.28 13.04	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 30.000 43.16 11.80 0.72 55.805 37.69 12.24 1.36 171.393 41.50 9.75 2.66 212.270 42.05 10.86 2.86 311.087 42.28 13.04 2.97	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 30.000 43.16 11.80 0.72 29.98 55.805 37.69 12.24 1.36 29.80 171.393 41.50 9.75 2.66 29.04 212.270 42.05 10.86 2.86 28.75 311.087 42.28 13.04 2.97 28.48	ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 30.000 43.16 11.80 0.72 29.98 25.70 55.805 37.69 12.24 1.36 29.80 21.49 171.393 41.50 9.75 2.66 29.04 24.87 212.270 42.05 10.86 2.86 28.75 27.02 311.087 42.28 13.04 2.97 28.48 29.81	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Tablet PC Condition

model : Aprix Tab64C
Test mode : 5GWIIF Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: YT
REMARK :

Huni:55% 101KPa

	Freq		Antenna Factor						Remark
_	MHz	dBuV	dB/n	₫B	dB	dBuV/n	dBuV/a	dB	
1	43.353					27.27			
2	87.418 143.830	43.42							
4 5 6	216.024 416.179	39.97 37.40						The second second	-
6			18.14						

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	48.26	40.10	9.82	41.97	56.21	68.20	-11.99	Vertical		
10360.00	47.21	40.10	9.82	41.97	55.16	68.20	-13.04	Horizontal		
		802.11	a mode Lowe	est channe	I (AverageVa	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	38.26	40.10	9.82	41.97	46.21	54.00	-7.79	Vertical		
10360.00	37.66	40.10	9.82	41.97	45.61	54.00	-8.39	Horizontal		

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	49.26	40.00	9.85	41.95	57.16	68.20	-11.04	Vertical			
10400.00	48.22	40.00	9.85	41.95	56.12	68.20	-12.08	Horizontal			
		802.11	a mode Mido	lle channe	(AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	39.61	40.00	9.85	41.95	47.51	54.00	-6.49	Vertical			
10400.00	40.20	40.00	9.85	41.95	48.10	54.00	-5.90	Horizontal			

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	50.55	39.70	9.96	41.88	58.33	68.20	-9.87	Vertical		
10480.00	49.63	39.70	9.96	41.88	57.41	68.20	-10.79	Horizontal		
		802.11a	a mode High	est channe	l (AverageV	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	40.12	39.70	9.96	41.88	47.90	54.00	-6.10	Vertical		
10480.00	40.78	39.70	9.96	41.88	48.56	54.00	-5.44	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	49.56	40.10	9.82	41.97	57.51	68.20	-10.69	Vertical			
10360.00	50.23	40.10	9.82	41.97	58.18	68.20	-10.02	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	√alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	40.77	40.10	9.82	41.97	48.72	54.00	-5.28	Vertical			
10360.00	41.56	40.10	9.82	41.97	49.51	54.00	-4.49	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	49.60	40.00	9.85	41.95	57.50	68.20	-10.70	Vertical			
10400.00	50.42	40.00	9.85	41.95	58.32	68.20	-9.88	Horizontal			
		802.11n	20 mode Mid	dle chann	el (Average\	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	41.24	40.00	9.85	41.95	49.14	54.00	-4.86	Vertical			
10400.00	40.74	40.00	9.85	41.95	48.64	54.00	-5.36	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	50.23	39.70	9.96	41.88	58.01	68.20	-10.19	Vertical			
10480.00	50.59	39.70	9.96	41.88	58.37	68.20	-9.83	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average)	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	41.21	39.70	9.96	41.88	48.99	54.00	-5.01	Vertical			
10480.00	40.79	39.70	9.96	41.88	48.57	54.00	-5.43	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	48.69	40.00	9.85	41.95	56.59	68.20	-11.61	Vertical
10380.00	48.75	40.00	9.85	41.95	56.65	68.20	-11.55	Horizontal
	802.11n40 mode Lowest channel (AverageValue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	39.62	40.00	9.85	41.95	47.52	54.00	-6.48	Vertical
10380.00	38.81	40.00	9.85	41.95	46.71	54.00	-7.29	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	49.96	39.80	9.92	41.90	57.78	68.20	-10.42	Vertical
10460.00	50.04	39.80	9.92	41.90	57.86	68.20	-10.34	Horizontal
	802.11n40 mode Highest channel (AverageValue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	39.69	39.80	9.92	41.90	47.51	54.00	-6.49	Vertical
10460.00	40.15	39.80	9.92	41.90	47.97	54.00	-6.03	Horizontal

802.11ac-HT80MHz mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	43.26	39.90	15.46	41.24	57.38	68.20	-10.82	Vertical
10420.00	41.75	39.90	15.46	41.24	55.87	68.20	-12.33	Horizontal
	802.11ac-HT80MHz mode Middle channel (AverageValue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	32.69	39.90	15.46	41.24	46.81	54.00	-7.19	Vertical
10420.00	31.24	39.90	15.46	41.24	45.36	54.00	-8.64	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)		
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.		
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector		
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.		
Test results:	Passed		

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions			Mar De tate (acces)		
Temp(℃)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)		
	4.2V	5179.999620	0.07		
20	3.7V	5179.977485	4.35		
	3.5V	5179.966392	6.49		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Erogueney/MU=)	May Daviation (nam)
Voltage(ac)	Temp(°ℂ)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.986920	2.53
	-10	5179.997490	0.48
	0	5179.966298	6.51
3.7V	10	5179.986385	2.63
3.7 V	20	5179.997845	0.42
	30	5179.979985	3.86
	40	5179.967784	6.22
	50	5179.976259	4.58