

6.1: Introduction to Probability Distributions

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

• A discrete random variable can take on only a finite number of values or a countable number of values.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A continuous random variable can take on any of the countless number of values in a line interval.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Measure the time it takes a randomly selected student to register for the fall term.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Measure the time it takes a randomly selected student to register for the fall term.

Answer: This variable is continuous.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Count the number of bad checks drawn on Upright Bank on a day selected at random.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Count the number of bad checks drawn on Upright Bank on a day selected at random.

Answer: This variable is discrete.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Pick a random sample of 50 registered voters in a district and find the number who voted in the last county election.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Pick a random sample of 50 registered voters in a district and find the number who voted in the last county election.

Answer: This variable is discrete.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Measure the amount of gasoline needed to drive your car 200 miles.

Definition

A quantitative variable x is called a **random variable** if the value that x takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A continuous random variable can take on any of the countless number of values in a line interval.

Example

State whether the random variable is discrete or continuous.

• Measure the amount of gasoline needed to drive your car 200 miles.

Answer: This variable is continuous.

Definition

A **probability distribution** is an assignment of probabilities to each distinct value of a discrete random variable or to each interval of values of a continuous random variable.

Definition

A probability distribution is an assignment of probabilities to each distinct value of a discrete random variable or to each interval of values of a continuous random variable.

Example

Two dice are rolled and the sum is noted. Find the probability distribution for the variable.

Definition

A probability distribution is an assignment of probabilities to each distinct value of a discrete random variable or to each interval of values of a continuous random variable.

Example

Two dice are rolled and the sum is noted. Find the probability distribution for the variable.

Sum of the dice (X)	2	3	4	5	6	7	8	9	10	11	12
$\Pr(X)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Example

Dr. Mendoza developed a test to measure boredom tolerance. He administered it to a group of 20,000 adults between the ages of 25 and 35. The possible scores were 0,1,2,3,4,5, and 6, with 6 indicating the highest tolerance for boredom. The test results for this group are shown below. Find the probability distribution for this data.

Score	0	1	2	3	4	5	6
# of subjects	1400	2600	3600	6000	4400	1600	400

Example

Dr. Mendoza developed a test to measure boredom tolerance. He administered it to a group of 20,000 adults between the ages of 25 and 35. The possible scores were 0,1,2,3,4,5, and 6, with 6 indicating the highest tolerance for boredom. The test results for this group are shown below. Find the probability distribution for this data.

Score	0	1	2	3	4	5	6
# of subjects	1400	2600	3600	6000	4400	1600	400

Score (X)	0	1	2	3	4	5	6
Pr(X)	0.07	0.13	0.18	0.30	0.22	0.08	0.02

Formula

• The **mean** of a discrete population probability distribution is found by the formula

$$\mu = \sum X \cdot \Pr(X)$$

Formula

• The **mean** of a discrete population probability distribution is found by the formula

$$\mu = \sum X \cdot \Pr(X)$$

• The standard deviation of a discrete population distribution is found by the formula

$$\sigma = \sqrt{\sum (X - \mu)^2 \Pr(X)}$$

Formula

• The **mean** of a discrete population probability distribution is found by the formula

$$\mu = \sum X \cdot \Pr(X)$$

• The standard deviation of a discrete population distribution is found by the formula

$$\sigma = \sqrt{\sum (X - \mu)^2 \Pr(X)}$$

Definition

The mean of a probability distribution is often called the **expected value** of the distribution.

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We begin by constructing the probability distribution for the number of heads.

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We begin by constructing the probability distribution for the number of heads.

# of heads (X)	0	1	2	3
Pr(X)	$\frac{1}{8}$	3 8	$\frac{3}{8}$	$\frac{1}{8}$

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We begin by constructing the probability distribution for the number of heads.

# of heads (X)	0	1	2	3
Pr(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

• We now compute $X \cdot \Pr(X)$ for each value of X.

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We begin by constructing the probability distribution for the number of heads.

# of heads (X)	0	1	2	3
Pr(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

• We now compute $X \cdot \Pr(X)$ for each value of X.

$$0 \cdot \Pr(0) = 0$$

$$1 \cdot \Pr(1) = \frac{3}{8}$$

$$2 \cdot \Pr(2) = \frac{3}{4}$$

$$3 \cdot \Pr(3) = \frac{3}{8}$$

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We now compute $X \cdot \Pr(X)$ for each value of X.

$$0 \cdot \Pr(0) = 0$$

$$1 \cdot \Pr(1) = \frac{3}{8}$$

$$2 \cdot \Pr(2) = \frac{3}{4}$$

$$3 \cdot \Pr(3) = \frac{3}{8}$$

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We now compute $X \cdot \Pr(X)$ for each value of X.

$$0 \cdot \Pr(0) = 0$$
 $1 \cdot \Pr(1) = \frac{3}{8}$
 $2 \cdot \Pr(2) = \frac{3}{4}$ $3 \cdot \Pr(3) = \frac{3}{8}$

• Using the formula for the mean of a probability distribution gives the expected value of

$$0 + \frac{3}{8} + \frac{3}{4} + \frac{3}{8} = \frac{3}{2}$$

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• Using the formula for the mean of a probability distribution gives the expected value of

$$0 + \frac{3}{8} + \frac{3}{4} + \frac{3}{8} = \frac{3}{2}$$

Example

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• Using the formula for the mean of a probability distribution gives the expected value of

$$0 + \frac{3}{8} + \frac{3}{4} + \frac{3}{8} = \frac{3}{2}$$

• Since you earn \$1.00 for each heads, you should expect to win an average of \$1.50 per game. Since the game costs \$2.00 to play, you should expect a net loss of \$0.50 per game.