Mou about Parallelism along a curve.

Thm 6.7 (ch 4): Let M be a C^2 surface in R^3 .

Let $Y: (a_1b_1) \longrightarrow M$ be a C^1 curve in M, let $t_* \in (a_1b_1)$.

Let $p = Y(t_*)$, and Let $\hat{X} \in T_pM$. Then there is a unique C^1 Vector field X on M along Y s.t. X is parallel along Y (vel. to M)

and $X(t_*) = \hat{X}$.

Terminology X is called the prallel + constate of X along V.

Pf cln a coord patch x, X satisfies $\frac{dX^{*}}{dt} + \sum_{i,j} \prod_{i,j} X^{i} \frac{dX^{i}}{dt} = 0$ (*)

(**) are linear in X^{*} 's, so \exists a unique solution. (picards m_{in})

Remark Let M and N be C^2 surfaces in R^3 Which are tangent along a C' curve $Y: (a,b) \longrightarrow M \cap N$ $\left(T_{Y(t)}M = T_{Y(t)}N \mid \forall t \in (a,b)\right)$ Let $t \in (a,b)$, let p = Y(t,b), and let $\tilde{X} \in T_p M = T_p N$.

Then the parallel translates of \tilde{X} along X relative to M and M are the same.

Reason Let $X:(a_1b) \longrightarrow \mathbb{R}^3$ be C'. Then $\forall t \in (a_1b)$, $X(t) \in T_{Y(t)}M$ iff $X(t) \in T_{Y(t)}M$, and the orthogonal paid of X'(t) and $T_{Y(t)}M$ is also the orthogonal paid of X'(t) onto $T_{Y(t)}M$, So $\nabla_X^M X = \nabla_Y^N X$.

Let $X: (a_1b) \longrightarrow \mathbb{R}^3$ be $X: (a_1b) \longrightarrow \mathbb{R}^3$ by $X: (a_1b) \longrightarrow \mathbb{R}^3$ be $X: (a_1b) \longrightarrow \mathbb{R}^3$ by $X: (a_1b) \longrightarrow \mathbb{R}^3$ by X:

4-7 The Second Fundamental form and the Weshgarta Merp Let M and N be C^2 surfaces in R^3 . Let $f: M \to N$ be C'.

Let $p \in M$. Let $X \in T_p M$. $Xf = \frac{d f(\alpha(t))}{d t}\Big|_{t=0} = \sum_i X^i \frac{\chi(f \circ \chi)}{2 \mu i} (o_i \circ)$

where $\alpha: (-\xi, \xi) \longrightarrow M$ is C^1 , $\alpha(0) = P$, and $\alpha'(0) = X$. $x: U \circ p = \subseteq \mathbb{R}^2 \longrightarrow V \circ p = M \text{ we } X(0,0) = p, \text{ and } X = \sum X' \times (0,0).$

 $n: M \longrightarrow 5^2$.

(Weingarters Equations)

ey spoze M=52, and choose n to be the outwork pointing normal nip)=p. $L(X) = -X_N = \sum_{i=1}^3 \hat{X}^i \frac{\partial n}{\partial x^i} = -(\hat{X}^1, \hat{X}^2, \hat{X}^3) = -X.$

 $(\chi = (\hat{\chi}', \hat{\chi}^2, \hat{\chi}^3))$

Or (without extending n to R3) get $X \in T_{\rho}S^{2}$, let $t \mapsto \alpha(t) = (\chi'(t), \chi^{2}(t), \chi^{3}(t))$ be a C' curve on S^2 such that $\alpha(0) = P$ and $\alpha'(0) = X$. then $L(X) = -n(p)(X) = -\left[\frac{d}{dt} n(\alpha(t))\right]_{t=0} = -\alpha'(0) = -X$

Reminders:
$$\langle L(x)|y\rangle = \langle -X_n|y\rangle = \langle -\frac{Z}{Z}x^i\frac{2n}{2n^i}|\frac{Z}{Y},\chi_i\rangle$$

$$= -\frac{Z}{Z}x^iy^i\langle \frac{2n}{2n^i}|\chi_i\rangle \quad \text{but} \quad 0 = \frac{2}{2n^i}\langle n|\chi_i\rangle$$

$$= \langle n|\chi_{ii}\rangle + \langle n_i|\chi_i\rangle$$

So $-\langle \frac{2n}{3u'} | \chi_j \rangle = \langle n | \chi_{ji} \rangle = \langle n | \chi_{ij} \rangle$.

thus
$$\langle L(x)|y\rangle = \sum_{i,j} \chi^i y^j \langle n | \chi_{i,j} \rangle = \sum_{i,j} L_{i,j} \chi^i y^j = \prod(x,y).$$

Since $\chi_{i,c} = \chi_{i,j}$, $L_{i,j} = L_{j,c}$, so $\prod (x,y) = \prod (y,x)$.

Thus L: TpM -- TpM is self-adjoint.

Unother reminder For a (2) Unit-speed corve $X: (a,b) \longrightarrow M$ With $Y(x) = \chi(Y'(x), Y'(x))$, we have $K_n = \sum_{i,j} L_{ij} \frac{dx^i}{dx} \frac{dy^j}{dx} = \mathbb{I}(\frac{dx}{dx}, \frac{dx}{dx})$

now let the Lis be defined by $L(x_k) = \sum_{k} L_k x_k$.

then for $X = \sum_{k} X^{k} X_{k} \in T_{p}M$, we have

 $L(X) = L(\sum_{k} X^{*} \times_{k}) = \sum_{k} X^{*} L(x_{k}) = \sum_{k} X^{*} \sum_{k} L_{k}^{*} x_{k} = \sum_{k} \left(\sum_{k} L_{k}^{*} X^{*}\right) x_{k}$

Phos (L_{k}^{l}) is the motivix of L with the basis X_{1}, X_{2} for $T_{p}M$.

Now $L_{jk} = \prod (\chi_{i}, \chi_{k}) = \langle \chi_{j} | L(\chi_{k}) \rangle = \langle \chi_{j} | \sum_{k} L_{k}^{i} \chi_{k} \rangle$ $= \sum_{k} L_{k}^{i} \langle \chi_{i} | \chi_{k} \rangle = \sum_{k} g_{j,k} L_{k}^{i}.$

Thus $\sum_{j} g^{ij} L_{jk} = \sum_{j} g^{ij} \sum_{k} g_{jk} L_{k}^{k} = \sum_{k} (\sum_{j} g^{ij} g_{jk}) L_{k}^{i}$ $= \sum_{k} S_{jk}^{i} L_{k}^{k} = L_{k}^{i}$

Thus $L_k^\ell = \sum_j g^{ij} L_{jk}$