Written Assignment 1 Math 290, Dr. Walnut

Lucas Bouck

9/21/15

1 Problem 1:

1.1 Problem:

Prove the triangle inequality: for all real numbers a and b, $|a| + |b| \ge |a + b|$

1.2 Proof:

Let $a, b \in \mathbb{R}$. We want to show that for all a and b, $|a + b| \le |a| + |b|$. There will be four cases.

Case 1: Let $a, b \ge 0$. Since $a, b \ge 0$, then |a| = a, and |b| = b. Thus, |a| + |b| = a + b. Since $a, b \ge 0$, $a + b \ge 0$. Thus, |a + b| = a + b. Since a + b = a + b, |a| + |b| = |a + b|. Therefore, when $a, b \ge 0$, $|a| + |b| \ge |a + b|$.

Case 2: Let a, b < 0. Since $a, b \le 0$, then |a| = -a and |b| = -b. Thus, |a| + |b| = -a - b. Since a, b < 0, a + b < 0. Since a + b < 0, |a + b| = -(a + b) = -a - b = |a| + |b|. Therefore, |a| + |b| = |a + b|. Therefore, when a, b < 0, $|a| + |b| \ge |a + b|$

Case 3: Let a < 0, and let $b \ge 0$. Then, |a| = -a, and |b| = b. Therefore, |a| + |b| = -a + b. **Subcase 1:** Let |a| > |b|. Then, a + b < 0. Thus, |a + b| = -(a + b) = -a - b. Because $b \ge 0$, b > -b. Therefore, -a + b > -a - b. Therefore, when |a| > |b|, |a + b| < |a| + |b|.

Subcase 2: Let $|a| \le |b|$. Then, $a + b \ge 0$. Then, |a + b| = a + b. Since a < 0, then a < -a, and a + b < -a + b. Therefore, when $|a| \le |b|$, |a + b| < |a| + |b|.

Therefore, when a < 0 and $b \ge 0$, $|a + b| \le |a| + |b|$.

Case 4: Let b < 0, and let $a \ge 0$. Then, |b| = -b, and |a| = b. Therefore, |a| + |b| = a - b. **Subcase 1:** If $|a| \ge |b|$, $a + b \ge 0$. Thus, |a + b| = a + b. Since b < 0, b < -b, and a + b < a - b. Therefore, when $|a| \ge |b|$, $|a + b| \le |a| + |b|$.

Subcase 2: If |b| > |a|, a + b < 0, and |a + b| = -(a + b) = -a - b. Since $a \ge 0$, a > -a, and -a - b < a - b. Therefore, when |b| > |a|, |a + b| < |a| + |b|.

Therefore, when b < 0 and $a \ge 0$, $|a + b| \le |a| + |b|$.

Since $|a+b| \le |a| + |b|$ in all four cases, $|a+b| \le |a| + |b|$ for all $a, b \in \mathbb{R}$.

2 Problem 2:

2.1 Problem:

Use the triangle inequality to prove that for all real numbers a and b, $||a| - |b|| \le |a - b|$.

2.2 Proof:

Let $a, b \in \mathbb{R}$. We want to show that $||a| - |b|| \le |a - b|$. We know |a| = |(a - b) + b| because b - b = 0, and |a + 0| = |a|. Let a - b = c. $c \in \mathbb{R}$ because a and b are real numbers. Thus, |a| = |c + b|. Using the triangle inequality, we know $|c + b| \le |c| + |b|$. Since a - b = c, $|(a - b) + b| \le |a - b| + |b|$. By subtracting |b| from both sides and simplifying |(a - b) + b|, we get $|a| - |b| \le |a - b|$.

Let |b| = |(b-a) + a| because a - a = 0, and b - a + a = b. Let b - a = d. $d \in \mathbb{R}$ because both a and b are real numbers. Thus, |b| = |d + a|. Using the triangle inequality, we know $|d + a| \le |d| + |a|$. Since b - a = d, $|(b - a) + a| \le |b - a| + |a|$. By subtracting |a| from both sides and simplifying |(b - a) + a|, we get $|b| - |a| \le |b - a|$.

We now have the two statements $|a| - |b| \le |a - b|$ and $|b| - |a| \le |b - a|$. Since |a - b| = |-(a - b)| = |b - a|, we get $|a| - |b| \le |a - b|$ and $|b| - |a| \le |a - b|$. Suppose |a| - |b| = z. By the definition of absolute value, if z < 0 then |z| = -z. Since |a| - |b| = z, if |a| - |b| < 0, ||a| - |b|| = -(|a| - |b|) = |b| - |a|. If $z \ge 0$, then |z| = z. Since |a| - |b| = z, if $|a| - |b| \ge 0$, then ||a| - |b|| = |a| - |b|. Therefore,

$$||a| - |b|| = \begin{cases} |a| - |b| : |a| - |b| \ge 0\\ |b| - |a| : |a| - |b| < 0 \end{cases}$$

Since $|a|-|b| \le |a-b|$, and $|b|-|a| \le |a-b|$ for all $a,b \in \mathbb{R}$, $||a|-|b|| \le |a-b|$ for all $a,b \in \mathbb{R}$.

3 Problem 3:

3.1 Problem:

Let a and b be natural numbers. Prove that if a|b then $a \leq b$.

3.2 Proof:

Let a and b be natural numbers. We want to show that if a|b then $a \le b$. Since a|b, we can write a*z=b for some integer z. Since a and be are natural numbers, a and b are not 0. Since a and b are not 0, and a natural number multiplied by 0 equals $0, z \ne 0$. Since a and b are natural numbers, a and b are positive. In order for the product of two numbers to be positive, the numbers must be either both positive or both negative. Since a*z=b, and a and b are positive, z must be positive. Since z must be nonzero and positive, $z \ge 1$. Since

 $1 \le z$ and a is positive, we know $1 * a \le z * a$. Since z * a = b, $1 * a = a \le b$. Therefore, if $a|b, a \le b$.

3.3 Problem:

Use this result to show that for every natural number $n \geq 2$, n does not divide n + 1.

3.4 Proof: (by contradiction)

Assume $n \in \mathbb{R}$, and $n \geq 2$. Say n|(n+1). Then n*z = n+1, where z is an integer. By subtracting n from both sides, we get nz - n = 1. By factoring out an n on the left side, we get n(z-1) = 1. Say z-1 = k. Since z and 1 are integers, then k is an integer. Then, n*k = 1. Since n*k = 1, n divides 1. Based on our previous proof in 3.2, this means $n \leq 1$. Since $n \geq 2$, then $1 \leq 1$. We have a contradiction. Therefore, for every natural number $1 \leq 2$, n does not divide $1 \leq 2$.

4 Problem 4:

4.1 Problem:

Prove that for any positive real numbers x and y, $(x+y)/2 \ge \sqrt{xy}$.

4.2 Proof:

Let $x,y \in \mathbb{R}$, and let x and y be positive. We want to show that $(x+y)/2 \ge \sqrt{xy}$. Since x and y are real numbers, x-y is a real number. Because x-y can only be either negative or nonnegative and the product of two numbers that carry the same sign is nonnegative, $(x-y)(x-y) \ge 0$. Then $x^2 - 2xy + y^2 \ge 0$. By adding 4xy to both sides, $x^2 - 2xy + y^2 + 4xy = x^2 + 2xy + y^2 \ge 4xy$ By factoring the left side, we get $(x+y)^2 \ge 4xy$. Then, $(x+y)^2/4 \ge xy$. Since x and y are positive, xy is positive. Then, we can take the square root of both sides and get $(x+y)/2 \ge \sqrt{xy}$. Therefore, for any positive real numbers x and y, $(x+y)/2 \ge \sqrt{xy}$.

4.3 Problem:

Prove that for any positive real numbers x and y, $(x+y)/2 = \sqrt{xy}$ if and only if x=y.

4.4 Proof:

(\Rightarrow) Let x and y be positive real numbers. Assume $(x+y)/2 = \sqrt{xy}$. By squaring both sides, we get $(x+y)^2/4 = |xy|$. Because x and y are positive, xy is always positive. Then, we can simplify |xy| to xy. Thus, $(x+y)^2/4 = xy$. By multiplying 4 to both sides,

 $(x+y)^2 = 4xy$. By expanding the left side, we get $x^2 + 2xy + y^2 = 4xy$. By subtracting 4xy from both sides, we get $x^2 - 2xy + y^2 = 0$. By factoring the left side, we get $(x-y)^2 = 0$ or $(y-x)^2 = 0$. In order for $(x-y)^2 = 0$, x-y=0, and x=y. In order for $(y-x)^2 = 0$, y-x=0, and y=x. In either case, x=y. Therefore, for any positive real numbers x and y, $(x+y)/2 = \sqrt{xy}$ implies x=y.

(\Leftarrow) Let x and y be positive real numbers. Assume x=y. Say x=y=z. Then $xy=z^2$, and $\sqrt{xy}=\sqrt{z^2}=|z|$. Since x and y are always positive, xy is always positive, and z is positive. Thus, |z|=z, and $\sqrt{xy}=z$. By multiplying 2/2, which is 1, to both sides, we get $(2/2)\sqrt{xy}=2z/2=(z+z)/2$. Since z=x, and z=y, z+z=x+y. Thus, (z+z)/2=(x+y)/2. Then, $(2/2)\sqrt{xy}=(x+y)/2$. 2/2 = 1 so, $(2/2)\sqrt{xy}=\sqrt{xy}$. Thus, $\sqrt{xy}=(x+y)/2$. Therefore, for any positive real numbers x and y, x=y implies $(x+y)/2=\sqrt{xy}$.

Since $(x+y)/2 = \sqrt{xy}$ implies x = y, and x = y implies $(x+y)/2 = \sqrt{xy}$, $(x+y)/2 = \sqrt{xy}$ if and only if x = y.