Average Value of CTS Energy, Power, NENP and orthogonal Signals

IT3105: Signals and Systems

Area of CTS

- Consider any CTS x(t), then the area of that signal is $\int_{-\infty}^{\infty} x(t)dt$
- If x(t) exists between the interval t_1 and t_2 then area, $A = \int_{t_1}^{t_2} x(t) dt$; where $t_1 < t_2$ and x(t) = 0 for $t < t_1$ and $t > t_2$
- To calculate the area of given signal x(t), let us consider a very rectangle with width dt and height x(t), then Area= $x(t) \times dt$, summation of these small area of rectangles will give us the total area of x(t). Such summations can be represented as the integration $\int_{t_1}^{t_2} x(t) dt$

Example of Area measurements

- Area of $x_1(t) = \int_{-2}^2 x_1(t)dt = A + (-A) = 0$
 - · According to fig. area is same but opposite in sign.
 - As we the area of any triangle, $A_1 = \frac{1}{2} \times 2 \times 1 = 1$ and $A_2 = \frac{1}{2} \times 2 \times (-1) = -1$
 - By analyzing the fig, no calculation needed in such cases.
- Area of $x_2(t) = \int_{-2}^2 x_2(t)dt = \int_{-2}^0 x_2(t)dt + \int_0^2 x_2(t)dt$
 - According the equation of straight lines we can rewrite the above areas as:
 - $\int_{-2}^{2} x_2(t)dt = \int_{-2}^{0} (2t+4)dt + \int_{0}^{2} (-2t+4)dt$
 - After integration and putting limits we get the result as area of $x_2(t)=8$
 - We can cross check the result by using the law of area of triangles. Area= $\frac{1}{2} \times 4 \times 4 = 8$

Average Value of CTS

- Average value of CTS = $\frac{total\ area}{total\ time}$
- For periodic signal, (Area) $A = \int_{T_0} x(t)dt$; where T_0 is fundamental period.
- Average value of periodic signals = $\frac{1}{T_0} \int_{T_0} x(t) dt$
- Average value of non-periodic signals= $\lim_{T\to\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} x(t) dt$
 - Why the limit is (-T/2) to (T/2)?
 - For any non-periodic signal, the average value would be for time T and from $-\infty$ to ∞ , the formula of average will be $\lim_{T\to\infty}\frac{1}{T}\int_0^Tx(t)dt$; when we put the limit $-\infty$ to ∞ over the limit 0 to T we get, $0\times(-\infty)=0$ and $T\times(\infty)=\infty$. If we do the integration from 0 to ∞ , then we only get the half of the signal.

Energy Signal

- · Any signal is said to be energy signal of the total power is finite,
- Let us consider the finite duration signal x(t), Energy $E = \int_{-\infty}^{\infty} |x(t)|^2 dt$
- $E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{0} |x(t)|^2 dt + \int_{0}^{2} |x(t)|^2 dt + \int_{2}^{t} |x(t)|^2 dt = \int_{0}^{2} 16 dt = 32 J$ (finite)
- Avg. value of finite duration signal = 0
- Avg. power of finite duration signal =0, Avg. Power $P = \frac{total\ power}{total\ time}$
 - $P = \int_{-\infty}^{\infty} P(t)dt$, will have a finite value for energy signal and total time is infinite. If we divide finite value with an infinite term we get 0.
 - So power can be expressed as $P = \lim_{T \to \infty} \frac{E}{T}$; We know, $P(t) = |x(t)|^2$
 - $P = \int_{-\infty}^{\infty} P(t)dt = \int_{-\infty}^{\infty} |x(t)|^2 dt = E$
 - If any signal is energy signal, then its power will be 0 and vice-versa.

Properties of Energy Signals

- 1. Energy signals are absolutely integrable signals, so its Fourier transform exists.
- 2. Total energy is can be shown under the graph of total area $|x(t)|^2$
- 3. Power $P = \lim_{T \to \infty} \frac{E}{T}$

Power Signals

- Any signals is said to be power signal if the energy is infinite.
 - $E = Power \times Time = \infty$
- Properties of power signals:
 - 1. Periodic signals are power signals but vice-versa is not true
 - 2. Root mean square value, RMS = \sqrt{P} or P = RMS²
 - 3. If modules of two signals are same, average power of them will be same.

Neither Energy Nor Power Signal (NENP)

- Any signal is neither energy nor power signal if the magnitude of the signal is infinite at any instant of time.
- To determine the whether the any signal is energy, power or NENP, first of all we have to determine the average power (*P*) of that signal.
 - If P is zero, then the signal is energy signal, i.e. energy $E \Rightarrow$ finite
 - If P is equal to some finite value then the signal is power signal, i.e. $E = \infty$
 - If $P \neq 0$ and $P \neq$ any finite value, $P => \infty$ then the signal is NENP

Energy and Power DTS

- For DTS, average power is given as: $P = \lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$
- For DTS, total energy is given as, $E = \sum_{n=-\infty}^{\infty} |x[n]|^2$
 - Example 1: Let $x[n] = ramp[n]; x[n] = \begin{cases} 0; n < 0 \\ n; n \ge 1 \end{cases}$
 - $P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$
 - $P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{0} 0 + \sum_{n=0}^{N} n^2 = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=0}^{N} n^2$

•
$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=-\infty}^{\infty} 0 + \sum_{n=0}^{\infty} n^2 = 0 + 0 + 1 + 4 + \dots + \infty = \infty$$

- We can say given signal is a NENP signal
- Example 2: y[n]=A, identify whether it is energy, power or NENP?

Orthogonal signal

- Orthogonality is where we are allowed to transmit more than one signal over a common channel with successful detection.
- Orthogonal Signal: Two signals are said to be orthogonal if they are mutually independent. So we have to identify if to signals are orthogonal or not.
 - For vector space, if \vec{a} and \vec{b} are two vectors, they will be orthogonal if the dot/scaler product of them are 0, i.e. $\vec{a} \cdot \vec{b} = 0$
 - For signal space, if the inner product or definite integral o two signals are zero, then the signals are said to be orthogonal. Let $x_1(t)$ and $x_2(t)$ are two signals, then they are said to be orthogonal if
 - $\int_{-\infty}^{\infty} x_1(t) x_2(t) dt = 0$ for non-parodic signal
 - $\int_0^T x_1(t) x_2(t) dt = 0$ for periodic signal where T is the FTP.

Properties of Orthogonal Signal

- 1. Two harmonics of different frequencies are always orthogonal.
- 2. Sine and Cosine function of same phases and same frequencies are always orthogonal.
- 3. Dc value and sine functions are always orthogonal.
- 4. If two signals $x_1(t)$ and $x_2(t)$ are orthogonal and $y(t) = x_1(t) + x_2(t)$, then the average power of y(t) is $P_y = P_{x_1} + P_{x_2}$ and the total energy $E_y = E_{x_1} + E_{x_2}$