Neural Programmer-Interpreters

Scott Reed & Nando de Freitas

Presented by Benjamín Farías V.

Contents

1. Context

- 2. Related Work
- 3. Model
- 4. Experiments
- 5. Conclusions
- 6. Personal Criticism

Context - Machine Learning

Pros:

- Good results
- Extensively studied

Cons:

- Learns superficial patterns
- Requires a ton of data

Context - Machine Reasoning

- Learns logical rules from data
- Closer to human learning
- Requires less data

Context - Program Learning

- Networks that can deduce and learn programs
- Machines could create their own programs!
- **Future:** Human Level AI?

Contents

- 1. Context
- 2. Related Work
- 3. Model
- 4. Experiments
- 5. Conclusions
- 6. Personal Criticism

Related Work - RNNs

Neural Turing Machines

Pointer Networks

Learn & Execute Simple Programs

Output Space Depends on Input

Related Work - Program Induction

Neural Programmer

RNN + Controller + Operation + Memory

Related Work - Program Induction

Curriculum Learning

Humans and animals learn much better when the examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones. . . . and call them "curriculum learning".

Bengio et al. (2009)

Contents

- 1. Context
- 2. Related Work
- 3. Model
- 4. Experiments
- 5. Conclusions
- 6. Personal Criticism

Model - Neural Programmer-Interpreter (NPI)

[0.32, 0.77, 0.67, ..., 0.42]

Learn to represent and interpret programs

- **Programmer:** Learns new program representations
- Interpreter: Executes learned programs over more complex tasks

- Multi-Layer LSTM network
- Acts as a program router
- Decides which program to call next

Input Components

- State: Environment observation + program arguments
- **Program:** Current program embedding

Input Components

- The **State** is obtained from a domain-specific encoder
- The Program is obtained from a memory module

Hidden Component

- Receives the last hidden state (h-1)
- Computes the feed-forward step

h-1

Output Components

- Key: Lookup key embedding for next program
- **End:** Probability of returning
- Arg: Arguments for next program

Model - NPI Memory

- Global memory, has two components
- Each row in the **Key** component corresponds to the same row in the **Prog** component

Model - NPI Memory

Memory Components

- **Key:** Stores all program keys
- **Prog:** Stores all program embeddings

- Each program has one NPI Core Network
- All NPI Cores share the same weights
- Works like a **call stack**

ADD1()
CARRY()

- The memory is shared
- The output is a sequence of actions

- 1. ACT (4, 2, WRITE)
- 2. ACT (3, LEFT)
- 3. ACT (3, 1, WRITE)

Model - NPI Training

ADD1
WRITE OUT 2
LSHIFT
PTR INP1 LEFT
PTR INP2 LEFT
PTR CARRY LEFT
PTR OUT LEFT

- Use execution traces for real programs
- Predict the next program to be called
- Apply curriculum learning to focus on programs that the model is failing at

Contents

- 1. Context
- 2. Related Work
- 3. Model
- 4. Experiments
- 5. Conclusions
- 6. Personal Criticism

Experiments - Addition

- Addition of two base-10 numbers using a scratch pad
- The model can move the pointers and write numbers.
- **Testing:** Addition for numbers with more digits

Experiments - Sorting

- Array sorting with Bubble Sort on a scratch pad
- The model can **move** the pointers and **swap** elements
- **Testing:** Sorting of longer arrays

Experiments - Canonicalize 3D Models

- Move the camera to the target view by looking at the image
- The model can only see the **current rendering** of the car
- **Testing:** New car models and different positions

Experiments - Results (Sorting)

Accuracy VS # Training Examples

NPI learns at a way **faster rate** compared to a **Seq2Seq LSTM**

Accuracy VS Sequence Length

NPI generalizes to **longer sequences** compared to a **Seq2Seq LSTM**

Experiments - Results (Multitasking)

Task	Single	Multi	+ Max
Addition	100.0	97.0	97.0
Sorting	100.0	100.0	100.0
Canon. seen car	89.5	91.4	91.4
Canon. unseen	88.7	89.9	89.9
Maximum	-	-	100.0

- Single-Task models perform really well
- The **Multi-Task** model is comparable to **all** single-task models!
- MAX can be learned without affecting performance on previous tasks!

Contents

- 1. Context
- 2. Related Work
- 3. Model
- 4. Experiments
- 5. Conclusions
- 6. Personal Criticism

Conclusions

- The **NPI** can learn programs from very dissimilar environments
- Strong generalization in comparison to Seq2Seq LSTMs
- A trained **NPI** with a fixed core can continue to learn without forgetting

Contents

- 1. Context
- 2. Related Work
- 3. Model
- 4. Experiments
- 5. Conclusions
- 6. Personal Criticism

Personal Criticism

Good:

- Interesting approach to program learning by using composition
- Experiments show good generalization capabilities with little data

Bad:

- The model architecture is hard to understand from their explanation
- Training requires already having an implementation for each program

Bibliography

- [1] Reed, S., De Freitas, N. (2016). Neural Programmer-Interpreters.
- [2] Graves, A., Wayne, G., Danihelka, I. (2014). Neural Turing Machines.
- [3] Vinyals, O., Jaitly, N., Fortunato, M. (2015). Pointer Networks.
- [4] Bengio, Y., Louradour, J., Collobert, R., Weston, J. (2009). Curriculum Learning.
- [5] Neelakantan, A., Le, Q., Sutskever, I. (2016). Neural Programmer: Inducing Latent Programs With Gradient Descent.