Intelligent Data Mining - Exercise 4

Michael Debono Mrđen

14 November 2017

1 Assignment 1: Minhashing

- a. Compute the minhash signature for each column if we use the following three has functions:
 - $h_1(x) = 2x + 1 \mod 6$
 - $h_2(x) = 3x + 2 \mod 6$
 - $h_3(x) = 5x + 2 \mod 6$

	Element	S_1	S_2	S_3	S_4	h_1	h_2	h_3
•	0	0	1	0	1	1	2	2
	1	0	1	0	0	3	5	1
	2	1	0	0	1	5	2	0
	3	0	0	1	0	1	5	5
	4	0	0	1	1	3	2	4
	5	1	0	0	0	5	5	3

- b. Which of these hash functions are true permutations? Only h_3 is a true permutation as it defines different hashes for all available elements.
- c. How close are the estimated Jaccard similarities (based on the minhashes) for the six pairs of columns to the true Jaccard similarities.

Signature matrix computation:

Jaccard similarities:

	Estimated	True	Difference
S_1, S_2	1/3	0	0.33
S_1, S_3	1/3	0	0.33
S_1, S_4	2/3	1/4	0.42
S_2, S_3	2/3	0	0.67
S_2, S_4	2/3	1/4	0.42
S_3, S_4	2/3	1/4	0.42

2 Assignment 2: Locality-sensitive hashing

a. Provide plots of the S-curve $1-(1-s^r)^b$ for the following values of r and b:

• r = 5 and b = 50

b. For each of the (r, b) pairs in (a), compute the threshold, that is, the value of s for which the value of $1 - (1 - s^r)^b$ is exactly 1/2. How does this value compare with the estimate of $(1/b)^{1/r}$ that was suggested in Section 3.4.2?

	$s \text{ when } 1 - (1 - s^r)^b = 1/2$	$(1/b)^{1/r}$	Difference
r = 3, b = 10	0.40609	0.46415	0.058
r = 6, b = 20	0.56935	0.60696	0.038
r = 5, b = 50	0.42439	0.45730	0.033

3 Assignment 3: Minhashing in Java

This assignment is done separately.