Wavelet Transform

Topics to be covered

- Limitations of Fourier Transform.
- Why wavelet Transform?
- Working of Wavelet Transform.
- Wavelet families for continuous and discrete wavelet transform.
- The discrete wavelet transform as a Filter bank.
- Single level decomposition and reconstruction.
- Multilevel decomposition.
- Continuous Wavelet Transform.

Limitations of Fourier Transform

Stationarity of a signal

A signal is said to be stationary if its statistical properties do not change over time, otherwise, it is non-stationary.

Limitations of Fourier Transform

- Fourier Transform (FT) works well when the signal is stationary, i.e the frequencies present in the signal are not time-dependent.
- FT becomes more and more uninterpretable as the non-stationarity of the signal increases.
- Most of the real life signals are non-stationary in nature. Thus, a better representation of a signal both in time and frequency domain is required.
- Some of the example of non-stationary signals include ECG signal and chirp signal.

Amplitude Wise Non-stationary signal

Why Wavelet Transform?

How Fourier Transform Works?

How Fourier Transform Works?

Why Wavelet Transform?

- Wavelet Transform (WT) has high resolution in both the time and frequency domain.
- It does not only tell us which frequencies are present in a signal, but also at which time intervals these frequencies are present.
- Wavelet Transform works with different scales. First, it uses large scale OR large window to look for large features and then uses small scales for looking into small features.

- WT uses wavelet rather than a sine wave which was used for FT.
- Sine wave is not localized in time i.e it exists from negative infinity to positive infinity while a wavelet is localized in time. Localization allows the WT to obtain time and frequency information.
- We perform convolution between signal and wavelet (mother wavelet) and repeat convolution at different scales of wavelet.

• Smaller the scale, more compressed will be a wavelet i.e wavelet changes rapidly and its frequency is high. Thus, scales are the inverse of the frequency.

Wavelet Families

Single Level Decomposition

Single Level Decomposition

Multilevel Decomposition

Continuous Wavelet Transform (Time Frequency Analysis)

Signal

Morlet Wavelet

