Exercise 1. A&F 2.5.1. Evaluate $\oint_{\gamma} f(z)dz$ where γ is the unit circle centered at the origin for the following functions f.

Solution 1.

(a) $f(z) = e^{iz}$. The function f(z) is entire as it is the composition of two entire functions e^w and iz. Its derivative is $f'(z) = ie^{iz}$. By Cauchy's Theorem, this means that for the closed curve γ , we have

$$\oint_{\gamma} e^{iz} dz = 0. \tag{1}$$

(b) $f(z) = e^{z^2}$. Once again f(z) is entire as it is the composition of two entire functions e^w and iz. By Cauchy's Theorem, this means

$$\oint_{\gamma} e^{iz} dz = 0. \tag{2}$$

(c) $f(z) = \frac{1}{z-1/2}$. The function f(z) is analytic except at $z = \frac{1}{2}$ which is contained in γ , so we cannot use Cauchy's theorem. We can instead use the residue theorem. Writing f as its Taylor-Laurent series about $z_0 = \frac{1}{2}$,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - 1/2)^n = 1(z - 1/2)^{-1}.$$
 (3)

Here we can see that $a_n = 0$ for all $n \neq -1$ and $a_{-1} = 1$. Therefore, by the Residue theorem, we have

$$\oint_C f(z)dz = 2\pi i a_{-1} = 2\pi i. \tag{4}$$

(d) $f(z) = \frac{1}{z^2-4}$. The function f(z) is analytic except at z = 2, -2, neither of which are in the contour γ . Since f(z) is analytic on and within γ , we can apply Cauchy's theorem, so that

$$\oint_{\gamma} \frac{1}{z^2 - 4} dz = 0. \tag{5}$$

(e) $f(z) = \frac{1}{2z^2+1}$. This function is analytic except at $z_{\pm} = i\frac{\sqrt{2}}{2}, -i\frac{\sqrt{2}}{2}$ which are contained in the contour γ . We can then write

$$f(z) = \frac{1}{2z^2 + 1} = \frac{1}{2(z - i\frac{\sqrt{2}}{2})(z + i\frac{\sqrt{2}}{2})}.$$
 (6)

We'll now compute the residues at z_{\pm} using the following formula for the residue of f at z_0

$$Res(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$
 (7)

For z_+ , we can compute

$$\operatorname{Res}(f, z_{+}) = \lim_{z \to z_{+}} \left(z - i \frac{\sqrt{2}}{2} \right) f(z) \tag{8}$$

$$= \lim_{z \to z_{+}} \frac{1}{2(z + i\frac{\sqrt{2}}{2})} \tag{9}$$

$$=\frac{1}{2\left(i\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)}\tag{10}$$

$$=\frac{1}{2i\sqrt{2}} = \frac{\sqrt{2}}{4i} \tag{11}$$

Similarly, we can compute the residue at z_{-}

$$\operatorname{Res}(f, z_{-}) = \lim_{z \to z_{-}} \left(z + i \frac{\sqrt{2}}{2} \right) f(z) \tag{12}$$

$$= \lim_{z \to z_{-}} \frac{1}{2(z - i\frac{\sqrt{2}}{2})} \tag{13}$$

$$=\frac{1}{2\left(-i\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)}\tag{14}$$

$$= -\frac{1}{2i\sqrt{2}} = -\frac{\sqrt{2}}{4i} \tag{15}$$

$$= -\operatorname{Res}(f, z_{+}) \tag{16}$$

We can then use the residue theorem to compute the integral of f over γ as follows

$$\oint_C \frac{1}{2z^2 + 1} dz = 2\pi i \left(\text{Res}(f, z_+) + \text{Res}(f, z_-) \right) = 0 \tag{17}$$

(f)

Exercise 2. A&F 2.5.5.

Solution 2.

Exercise 3. A&F 2.5.6.

Solution 3.

Exercise 4. A&F 3.3.5.

Solution 4. In order to find the coefficients of the Taylor-Laurent Series about 0 of $f(z) = e^{\frac{t}{2}(z-z^{-1})} = \sum_{n \in \mathbb{Z}} a_n z^n$, we use the formula

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{\frac{t}{2}(z-z^{-1})}}{z^{n+1}} dz \tag{18}$$

where γ is the unit circle parameterized as $\gamma(\theta) = e^{i\theta}$ for $\theta \in [-\pi, \pi]$. We can then simplify the integral as

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{\frac{t}{2}(z-z^{-1})}}{z^{n+1}} dz \tag{19}$$

$$= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{e^{\frac{t}{2}(e^{i\theta} - e^{-i\theta})}}{e^{i(n+1)\theta}} \cdot ie^{i\theta} d\theta. \tag{20}$$

We can simplify $e^{i\theta} - e^{-i\theta}$ as $2i\sin\theta$ and combine the terms $e^{i\theta}$ and $e^{i(n+1)\theta}$, so that

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{e^{\frac{t}{2}(e^{i\theta} - e^{-i\theta})}}{e^{i(n+1)\theta}} \cdot ie^{i\theta} d\theta = \frac{i}{2\pi i} \int_{-\pi}^{\pi} \frac{e^{\frac{t}{2}(2i\sin\theta)}}{e^{in\theta}} d\theta \tag{21}$$

Combining the top and bottom halves of the integrad and canceling the i in front, we get that

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta. \tag{22}$$

We can further simplify this using $e^{-ix} = \cos x - i \sin x$, which gives us

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(n\theta - t\sin\theta) d\theta + \frac{i}{2\pi} \int_{-\pi}^{\pi} \sin(n\theta - t\sin\theta) d\theta.$$
 (23)

Show that $g(\theta) = n\theta - t\sin\theta$ is odd.

Therefore, $\cos(g(\theta))$ is even and $\sin(g(\theta))$ is odd. This means that

$$\int_{-\pi}^{\pi} \cos(n\theta - t\sin\theta)d\theta = 2\int_{0}^{\pi} \cos(n\theta - t\sin\theta)d\theta$$
 (24)

$$\int_{-\pi}^{\pi} \sin(n\theta - t\sin\theta)d\theta = 0 \tag{25}$$

Therefore,

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta = \frac{1}{\pi} \int_{0}^{\pi} \cos(n\theta - t\sin\theta) d\theta.$$
 (26)