HiPAS GridLAB-D

Software Implementation Presentation (May 2020)

EPC 17-043

EPC 17-046

EPC 17-047

GLOW

HiPAS

OpenFIDO

Project Focus Area

Enhance GridLAB-D to support principle California use-cases

- Integration Capacity Analysis Integrate improvements from GLOW (CEC)
- 2. Resilience Integrate improvements from GRIP (DOE)
- 3. <u>Tariff design</u> Integrate improvements from Powernet With Market (CEC)
- 4. <u>Electrification</u> Enable decarbonization simulations

High-performance simulation

Machine learning powerflow solver

Improved data processing tools

- General file input/output ("any input, any output, anytime, anywhere")
- High-performance database module (InfluxDB)

New simulation modules/classes

- Industrial loads (NAICS facilities from NERC LMFT)
- Residential loads (RBSA data, multi-family residences)
- Commercial loads (CEUS data, retail/office/schools/health/etc. buildings)
- Revenue module (tariff and billing)

Github deployment

- Project repository: http://source.gridlabd.us/
- Integrated online documentation at http://docs.gridlabd.us/

Docker containers maintained/updated automatically

Docker hub repository located at http://docker.gridlabd.us/

CircleCI free tier operations

- GitHub projects can run HiPAS GridLAB-D on CircleCl for free
 - Latest master release: slacgismo/gridlabd:latest
 - Release candidate: slacgismo/gridlabd:develop
 - Tagged version: slacgismo/gridlabd:beauharnois-03

Cloud operations: GitHub projects with GridLAB-D

Cloud operations: Running GridLAB-D in CircleCI

SLAC

Results: Electrification Study

SLAC

Next Steps: Deployment and operations infrastructure

SLAC

Restructuring of GridLAB-D resources in GitHub

- Weather data: http://weather.gridlabd.us/ (done)
- Component libraries: http://library.gridlabd.us/ (in progress)
- Project templates: http://template.gridlabd.us/ (coming soon)
- Examples solution: http://example.gridlabd.us/ (coming soon)
- Training videos: http://training.gridlabd.us/ (coming soon)
- Tutorials videos: http://tutorials.gridlabd.us/ (coming soon)
- Online documentation: http://docs.gridlabd.us/ (done)
- Reference models: http://models.gridlabd.us/ (in progress)
- Docker images: http://docker.gridlabd.us/ (done)
- Security/scaling AWS CloudFront (https support)

Highlights: Machine Learning Powerflow

Powerflow simulation in GridLAB-D

- 3-phase, unbalanced, quasi-steady power flow
- Finds voltages given power injections

Standard approach

- Newton Raphson with the current injection method
- Computationally expensive for large networks

Machine learning approach

- Convolutional neural network (CNN)
- Training using previous NR solutions

Solution performance and validation

- Training duration ~ 1 week of simulation
- Voltage error typically < 0.05%

Results: ML powerflow solver prediction accuracy

SLAC

Voltage magnitude prediction for the IEEE 123 bus network (bus 92 phase A) using a fully-connected neural network.

Test errors for the convolutional neural network using *tanh* activation.

Power network	Test error
IEEE 4	1.0e-4
IEEE 13	1.7e-4
IEEE 123	9.9e-5
R1-12.47-3	2.6e-4
R2-12.47-2	4.8e-4

Notes

- Accuracy achieved by the convolutional model is suitable for many simulation applications
- Optimal hyperparameters can be estimated based on known network characteristics (e.g. size)

Explore improved CNN architecture

Network model contain useful topology information

Optimize training duration

Automatically detect when training is done/required

Integrate ML solver into GridLAB-D solvers

- Need to know when to fall back to NR solver
- Opportunity to hot-start NR solver using ML result

Evaluate performance of deployed solver

NR solver performance may be affected by ML solver

Are any new use cases emerging that we consider?

PSPS impact analysis is an emerging use-case

What is your view on cloud operations?

- Utility comfort with cloud operations increasing steadily
- Enable support of multiple cloud vendors

Thank You

Contact: dchassin@slac.stanford.edu

ML Powerflow: Case Studies

SLAC

Populate grid models with residential load data

Individual house end-use metering dataset

Generate training, validation, and test sets

- NR-based GridLAB-D powerflow solver input & output
- IEEE and PNNL taxonomy feeders

Analyze various loading conditions

- Power injection magnitude
- Power factor
- Load composition (voltage dependency)

Power network models vary in terms of

- Input and output dimension
- Linearity

Power network dimensions

Network	Voltage dimension	Power dimension
IEEE 4	12	3
IEEE 13	48	22
IEEE 123	402	95
GC-12.47-1	108	9
R1-12.47-3	297	37
R2-12.47-2	2553	214

ML Powerflow: Performance Results

- The convolution model outperforms other models for most networks and is more scalable with network size
- Training data requirements depend on both the network size, characteristics, and how much the network is loaded
- Tanh NN activation generally results in the best and most consistent performance

ML Powerflow: Spatial Dependency of Errors

IEEE 13 bus network

IEEE 123 bus network

- Marker size indicates prediction error magnitude
- Voltage magnitude prediction errors increase further from the slack bus where there is larger deviation from the nominal voltage

SLAC

Linear Regression

- Fast training time (<15 s on personal laptop)
- Small training set requirements (low memory requirements)

Neural network approaches

- Training time is 1-3 orders of magnitude larger than linear regression
 - Additional computational gains may be achieved using improved optimization and weight initialization methods
- Larger training set requirements (larger memory requirements) compared to linear regression
 - Training set size could potentially be minimized through better design of the training set (the sampling of power injections)

Linear regression training time (using a laptop Intel Core i7 processor)

