

MATH - 1

B4

DR. ADEL MORAD

<u>Aims and Objectives</u>:

- (1) Introduce the notion of the area.
- (2) Understand methods of finding area.
- (3) Explain the concepts of volume of a solid.
- (4) Show how the volume of the solid can be generated.
- (5) Evaluate volumes of solid of revolution.
- (6) Have a strong intuitive feeling for these important concepts.

Notion of the Area:

Applications of Definite Integrals:

The definite integral is useful for solving a large variety of applied problems. In this chapter we shall discuss area, volume, and lengths of curves.

Here you find a brief introduction to applications of definite integrals and area between curves. We introduce first the notion of area bounded by the curve of the function, the x axis, the lines x = a and x = b.

This is mathematical and graphical illustration of area between curves.

Theorem:

If f and g are continuous and $f(x) \ge g(x)$ for all x in [a, b], then the area A of the region bounded by the graphs of

$$f, g, x = a \text{ and } x = b \text{ is } A = \int_{a}^{b} [f(x) - g(x)] dx$$

This formula for A can be extended to the case in which f or g is negative for some x in [a,b].

Example 1:

Find the area of the region bounded by the graphs of

the equations
$$y = x^2$$
 and $y = \sqrt{x}$.

Solution:

We shall employ the Riemann sum approach.

The region and a typical rectangle are sketched in the following figure.

length =
$$\sqrt{w_i} - w_i^2$$

Width = Δx_1
Area = $(\sqrt{w_i} - w_i^2) \Delta x_i$

As indicated in the figure, the length of typical rectangle is $\sqrt{w_i} - w_i^2$ and its area is $(\sqrt{w_i} - w_i^2) \Delta x_i$. Using the theorem with a = 0 and b = 1 we obtain

$$A = \lim_{\|p\| \to 0} \sum_{i} (\sqrt{w_{i}} - w_{i}^{2}) \Delta x_{i} = \int_{0}^{1} (\sqrt{x} - x^{2}) dx$$
$$= \left[\frac{2}{3}x^{3/2} - \frac{1}{3}x^{3}\right]_{0}^{1} = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

The area can be found by direct substitution in the theorem with $f(x) = \sqrt{x}$ and $g(x) = x^2$

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

Example 2:

Find the area of the region bounded by the graphs of $y + \chi^2 = 6$ and $y + 2\chi - 3 = 0$

Solution:

The region and a typical rectangle are sketched in the figure.

The points of intersection (-1,5) and (3,-3) of the two graphs may be found by solving the two given equations

simultaneously.

Length=
$$(6-w_i^2)-(3-2w_i)$$

It is necessary to solve each equation for y terms of χ , obtaining $y = 6 - x^2$ and y = 3 - 2xThe function $f(x) = 6 - x^2$ and g(x) = 3 - 2xAs shown in the figure the length of a typical rectangle is $(6 - w_i^2) - (3 - 2w_i)$

Where is some number in the subinterval of a partition \mathcal{P} of [-1,3] the area of this rectangle is

$$A = \lim_{\|p\| \to 0} \sum_{i} [(6 - w_{i}^{2}) - (3 - 2w_{i})] \Delta x_{i}$$

$$= \int_{-1}^{3} [(6 - x^{2}) - (3 - 2x)] dx$$
Then
$$= \int_{-1}^{3} (3 - x^{2} + 2x) dx$$

$$= [3x - \frac{x^{3}}{3} + x^{2}]_{-1}^{3}$$

$$= [9 - \frac{27}{3} + 9] - [-3 - (-\frac{1}{3}) + 1] = \frac{32}{3}$$

Example 3:

Find the area of the region bounded by the graphs of the equations $2y^2 = \chi + 4$ and $\chi = y^2$

Solution:

One of two sketches of the region can be used to find the area, we use the integration with respect to y to find the area with only one integration.

Length =
$$w_i^2 - (2w_i^2 - 4)$$

Width = Δy_i

Letting $f(y) = y^2$, $g(y) = 2y^2 - 4$, the length $f(w_i) - g(w_i)$ of a horizontal rectangle is $w_i^2 - (2w_i^2 - 4)$ since the width is Δy the area of the rectangle is Hence, the area of \mathcal{R} is $[w_i^2 - (2w_i^2 - 4)]\Delta y_i$

$$A = \lim_{\Delta y \to 0} \sum_{i} [w_{i}^{2} - (2w_{i}^{2} - 4)\Delta y_{i}]$$

$$= \int_{-2}^{2} [y^{2} - (2y^{2} - 4)]dy$$

$$= \int_{-2}^{2} (4 - y^{2})dy$$

$$= [4y - \frac{y^{3}}{3}]_{-2}^{2} = [8 - \frac{8}{3}] - [-8 - (-\frac{8}{3})] = \frac{32}{3}$$

THANK YOU