Task 3 - Feature Engineering This notebook is for Feature Engineering **Data Dictionary** Summary 1. Drop columns that has high amounts of zeros and missing values (> 5% ot total) 2. Decided to drop forecast columns since not sure how accurate the values are in future 3. Decided not to use the other historical energy and power data since too many zeros **Import Libraries** import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm import datetime from datetime import datetime, timedelta import scipy.stats import pandas profiling from pandas profiling import ProfileReport %matplotlib inline #sets the default autosave frequency in seconds **%autosave** 60 sns.set style('dark') sns.set(font scale=1.2) import warnings warnings.filterwarnings('ignore') #import feature_engine.missing_data_imputers as mdi #from feature engine.outlier removers import Winsorizer #from feature_engine import categorical_encoders as ce pd.set_option('display.max_columns', None) #pd.set_option('display.max_rows',None) pd.set_option('display.width', 1000) np.random.seed(0) np.set_printoptions(suppress=True) Autosaving every 60 seconds df = pd.read csv("train.csv", parse_dates=['date_activ', 'date_end', 'date_first_activ', 'date_modif_prod', 'date_renewal dayfirst=True) Out[3]: id activity_new campaign_disc_ele channel_sales cons_12m **0** 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw NaN Imkebamcaaclubfxadlmueccxoimlema 309275 1 24011ae4ebbe3035111d65fa7c15bc57 NaN NaN foosdfpfkusacimwkcsosbicdxkicaua d29c2c54acc38ff3c0614d0a653813dd NaN 4660 NaN foosdfpfkusacimwkcsosbicdxkicaua **3** 764c75f661154dac3a6c254cd082ea7d NaN NaN 544 4 bba03439a292a1e166f80264c16191cb NaN Imkebamcaaclubfxadlmueccxoimlema NaN 1584 18463073fb097fc0ac5d3e040f356987 16091 NaN NaN foosdfpfkusacimwkcsosbicdxkicaua 32270 **16092** d0a6f71671571ed83b2645d23af6de00 foosdfpfkusacimwkcsosbicdxkicaua 7223 NaN **16093** 10e6828ddd62cbcf687cb74928c4c2d2 NaN NaN foosdfpfkusacimwkcsosbicdxkicaua 1844 16094 1cf20fd6206d7678d5bcafd28c53b4db NaN NaN foosdfpfkusacimwkcsosbicdxkicaua 131 16095 563dde550fd624d7352f3de77c0cdfcd NaN NaN NaN 8730 16096 rows × 33 columns **Exploratory Data Analysis** In [4]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 16096 entries, 0 to 16095 Data columns (total 33 columns): Column Non-Null Count Dtype 0 16096 non-null object activity_new 6551 non-null object campaign_disc_ele float64 0 non-null channel sales 11878 non-null object cons 12m 16096 non-null int64 cons_gas_12m 5 16096 non-null int64 cons_last_month 16096 non-null int64 6 date_activ 16096 non-null datetime64[ns] 8 date_end 16094 non-null datetime64[ns]
9 date_first_activ 3508 non-null datetime64[ns]
10 date_modif_prod 15939 non-null datetime64[ns]
11 date_renewal 16056 non-null datetime64[ns] 12 forecast base bill ele 3508 non-null float64 13 forecast_base_bill_year 3508 non-null float64 14 forecast_bill_12m 3508 non-null float64
15 forecast_cons 3508 non-null float64
16 forecast_cons_12m 16096 non-null float64
17 forecast_cons_year 16096 non-null int64 18 forecast_discount_energy 15970 non-null float64 19 forecast meter rent 12m 16096 non-null float64 20 forecast_price_energy_p1 15970 non-null float64 21 forecast_price_energy_p2 15970 non-null float64 22 forecast_price_pow_p1 15970 non-null float64 16096 non-null object 23 has_gas imp_cons 16096 non-null float64
margin_gross_pow_ele 16083 non-null float64
margin_net_pow_ele 16083 non-null float64
nb prod act 16086 25 26 margin_net_pow_ele 27 nb_prod_act 28 net_margin 16096 non-null int64 16081 non-null float64 29 num_years_antig 16096 non-null int64 30 origin_up 16009 non-null object 16093 non-null float64 31 pow_max 32 churn 16096 non-null int64 dtypes: datetime64[ns](5), float64(16), int64(7), object(5) memory usage: 4.1+ MB df.describe() cons_12m cons_gas_12m cons_last_month forecast_base_bill_ele forecast_base_bill_year forecast_bill_12m campaign_disc_ele 3508.000000 count 0.0 1.609600e+04 1.609600e+04 1.609600e+04 3508.000000 3508.000000 3.191164e+04 3837.441866 1.948044e+05 NaN 1.946154e+04 335.843857 335.843857 mean 6.795151e+05 1.775885e+05 8.235676e+04 649.406000 649.406000 5425.744327 std NaN NaN -1.252760e+05 -3.037000e+03 -364.940000 -364.940000 -2503.480000 min -9.138600e+04 NaN 5.906250e+03 0.000000e+00 0.000000e+00 0.000000 0.000000 1158.175000 25% 2187.230000 50% NaN 1.533250e+04 0.000000e+00 9.010000e+02 162.955000 162.955000 5.022150e+04 0.000000e+00 **75%** 4.127000e+03 396.185000 396.185000 4246.555000 4.538720e+06 12566.080000 12566.080000 81122.630000 NaN 1.609711e+07 4.188440e+06 max df.columns Out[6]: Index(['id', 'activity_new', 'campaign_disc_ele', 'channel_sales', 'cons_12m', 'cons gas 12m', 'cons last mo nth', 'date_activ', 'date_end', 'date_first_activ', 'date_modif_prod', 'date_renewal', 'forecast_base_bill_e le', 'forecast_base_bill_year', 'forecast_bill_12m', 'forecast_cons', 'forecast_cons_12m', 'forecast_cons_ye ar', 'forecast_discount_energy', 'forecast_meter_rent_12m', 'forecast_price_energy_p1', 'forecast_price_ener gy_p2', 'forecast_price_pow_p1', 'has_gas', 'imp_cons', 'margin_gross_pow_ele', 'margin_net_pow_ele', 'nb_pr od_act', 'net_margin', 'num_years_antig', 'origin_up', 'pow_max', 'churn'], dtype='object') Drop unwanted features df.columns Out[7]: Index(['id', 'activity_new', 'campaign_disc_ele', 'channel_sales', 'cons_12m', 'cons_gas_12m', 'cons_last_mo nth', 'date_activ', 'date_end', 'date_first_activ', 'date_modif_prod', 'date_renewal', 'forecast_base_bill_e le', 'forecast_base_bill_year', 'forecast_bill_12m', 'forecast_cons', 'forecast_cons_12m', 'forecast_cons_ye ar', 'forecast_discount_energy', 'forecast_meter_rent_12m', 'forecast_price_energy_p1', 'forecast_price_energy_p2', 'forecast_price_pow_p1', 'has_gas', 'imp_cons', 'margin_gross_pow_ele', 'margin_net_pow_ele', 'nb_pr od_act', 'net_margin', 'num_years_antig', 'origin_up', 'pow_max', 'churn'], dtype='object') In [8]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 16096 entries, 0 to 16095 Data columns (total 33 columns): Non-Null Count Dtype # Column _____ 0 id 16096 non-null object 6551 non-null object 0 non-null float64 activity_new campaign disc ele channel sales 11878 non-null object 4 cons 12m 16096 non-null int64 tooso non-null int64

cons_last_month 16096 non-null int64

date_activ 16096 non-null datetime64[ns]

date_end 16094 non-null datetime64[ns]

date_first_activ 3508 non-null datetime64[ns]

date_modif_prod 15939 non-null datetime64[ns]

date_renewal 16056 non-null datetime64[ns] 5 cons_gas_12m 16096 non-null int64 12 forecast base bill ele 3508 non-null float64 13 forecast_base_bill_year 3508 non-null float64 14 forecast_bill_12m 3508 non-null float64
15 forecast_cons 3508 non-null float64
16 forecast_cons_12m 16096 non-null float64
17 forecast_cons_year 16096 non-null int64 18 forecast_discount_energy 15970 non-null float64 19 forecast meter rent 12m 16096 non-null float64 20 forecast price energy pl 15970 non-null float64 21 forecast_price_energy_p2 15970 non-null float64 22 forecast_price_pow_p1 15970 non-null float64 16096 non-null object 16096 non-null float64 16083 non-null float64 23 has_gas 24 imp_cons 25 margin_gross_pow_ele 26 margin_net_pow_ele 16083 non-null float64 27 nb prod act 16096 non-null int64 28 net margin 16081 non-null float64 16096 non-null int64 29 num_years_antig 30 origin_up 16009 non-null object 16093 non-null float64 16096 non-null int64 31 pow_max dtypes: datetime64[ns](5), float64(16), int64(7), object(5) memory usage: 4.1+ MB In [9]: df.drop(['activity new', 'campaign disc ele', 'channel sales', 'date first activ', 'cons 12m', 'cons gas 12m' 'date modif prod', 'date renewal', 'forecast base bill ele', 'forecast base bill year', 'forecast bill 12m', 'forecast cons', 'forecast cons 12m', 'forecast cons year', 'forecast discount energy','forecast meter rent 12m', 'forecast price energy p1', df.head() id cons_last_month date_activ date_end has_gas margin_gross_pow_ele margin_net_pow_ele nb_prod_a 2012-11-2016-11-48ada52261e7cf58715202705a0451c9 10025 -41.76 -41.76 2013-06-2016-06-24011ae4ebbe3035111d65fa7c15bc57 0 25.44 25.44 15 15 2009-08-2016-08d29c2c54acc38ff3c0614d0a653813dd 0 16.38 16.38 2010-04-2016-04-764c75f661154dac3a6c254cd082ea7d 28.60 16 2010-03-2016-03bba03439a292a1e166f80264c16191cb 30.22 30.22 30 df["duration"] = (df.date end - df.date activ).dt.days df.head() id cons_last_month date_activ date_end has_gas margin_gross_pow_ele margin_net_pow_ele nb_prod_a 2012-11-2016-11-**0** 48ada52261e7cf58715202705a0451c9 10025 -41.76 -41.76 07 2013-06-2016-06-24011ae4ebbe3035111d65fa7c15bc57 0 25.44 25.44 15 2009-08-2016-08d29c2c54acc38ff3c0614d0a653813dd 16.38 16.38 2010-04-2016-04-764c75f661154dac3a6c254cd082ea7d 28.60 28.60 16 16 2016-03-2010-03bba03439a292a1e166f80264c16191cb 30.22 30.22 30 df2 = pd.read csv("customerchurn.csv") df2 In [14]: Out[14]: id price_p1_var price_p2_var price_p3_var price_p1_fix price_p2_fix price_p3_fix churn 0.124338 0002203ffbb812588b632b9e628cc38d 0.103794 0.073160 40.701732 24.421038 16.280694 0 0.000000 0004351ebdd665e6ee664792efc4fd13 0.146427 0.000000 0.000000 44.385450 0.000000 0010bcc39e42b3c2131ed2ce55246e3c 0.181559 0.000000 0.000000 45.319710 0.000000 0.000000 0 0010ee3855fdea87602a5b7aba8e42de 0.118757 0.098292 0.069032 40.647427 24.388455 16.258971 00114d74e963e47177db89bc70108537 0.147926 0.000000 0.000000 44.266930 0.000000 0.000000 0 16091 ffef185810e44254c3a4c6395e6b4d8a 0.138863 0.115125 0.080780 40.896427 24.637456 16.507972 fffac626da707b1b5ab11e8431a4d0a2 0.000000 16092 0.147137 0.000000 44.311375 0.000000 0.000000 16093 fffc0cacd305dd51f316424bbb08d1bd 0.153879 0.129497 0.094842 41.160171 24.895768 16.763569 16094 fffe4f5646aa39c7f97f95ae2679ce64 0.123858 0.103499 0.073735 40.606699 24.364017 16.242678 ffff7fa066f1fb305ae285bb03bf325a 0.125360 0.104895 40.647427 16095 0.075635 24.388455 16.258971 0 16096 rows × 8 columns df3 = pd.merge(left=df, right=df2, on="id", how="inner") id cons_last_month date_activ date_end has_gas margin_gross_pow_ele margin_net_pow_ele nb_p 2012-11-2016-11-**0** 48ada52261e7cf58715202705a0451c9 10025 -41.76 -41.76 07 2013-06-2016-06-1 24011ae4ebbe3035111d65fa7c15bc57 25.44 25.44 2016-08-2009-08d29c2c54acc38ff3c0614d0a653813dd 16.38 16.38 21 2010-04-2016-04-764c75f661154dac3a6c254cd082ea7d 0 28.60 28.60 2010-03-2016-03bba03439a292a1e166f80264c16191cb 30.22 30.22 30 30 2012-05-2016-05-16091 18463073fb097fc0ac5d3e040f356987 27.88 27.88 24 2012-08-2016-08-**16092** d0a6f71671571ed83b2645d23af6de00 181 0.00 0.00 2012-02-2016-02-10e6828ddd62cbcf687cb74928c4c2d2 179 39.84 39.84 80 2012-08-2016-08-1cf20fd6206d7678d5bcafd28c53b4db 13.08 13.08 2009-12-2016-12-16095 563dde550fd624d7352f3de77c0cdfcd 11.84 11.84 18 16096 rows × 20 columns df3.drop(['date activ', 'date end', 'id', 'churn x'],axis=1,inplace=True) df3.head() cons_last_month has_gas margin_gross_pow_ele margin_net_pow_ele nb_prod_act net_margin num_years_antig pow_max duration 10025 -41.76 -41.76 1732.36 180.000 1460.0 0 678.99 43.648 1096.0 25.44 25.44 2 0 16.38 16.38 1 18.89 13.800 2566.0 28.60 28.60 13.856 2192.0 6.60 4 0 f 30.22 30.22 25.46 13.200 2192.0 **Data Preprocessing Treat Missing Values** In [19]: df3.isnull().sum() cons last_month 0 Out[19]: has gas 0 margin gross pow ele 13 margin_net_pow_ele 13 nb prod act 0 net margin 15 num years antig 0 pow max 3 duration price pl var 2 price p2 var 2 price_p3_var 2 price_p1_fix price_p2_fix 2 price p3 fix 2 dtype: int64 df3.dropna(inplace=True) df3.isnull().sum() Out[21]: cons_last_month 0 0 has gas 0 margin_gross_pow_ele 0 margin_net_pow_ele nb prod act net margin num years antig pow max duration price p1 var price_p2_var 0 price_p3_var price_p1_fix price p2 fix 0 0 price_p3_fix churn_y 0 dtype: int64 Treat Duplicate Values df3.duplicated(keep='first').sum() Out[22]: 1 df3.drop_duplicates(ignore_index=True, inplace=True) df3.duplicated(keep='first').sum() In [24]: Out[24]: 0 One-hot encoding In [25]: df3.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 16076 entries, 0 to 16075 Data columns (total 16 columns): # Column Non-Null Count Dtype -----16076 non-null int64 0 cons last_month 16076 non-null object 1 has gas 2 margin_gross_pow_ele 16076 non-null float64 3 margin_net_pow_ele 16076 non-null float64 nb_prod_act 16076 non-null int64 4 net_margin num_years_antig 16076 non-null float64 16076 non-null int64 pow_max 16076 non-null float64 7 duration 16076 non-null float64 16076 non-null float64 9 price pl var 10 price_p2_var 16076 non-null float64 11 price_p3_var 16076 non-null float64 16076 non-null float64 12 price_pl_fix 16076 non-null float64 16076 non-null float64 13 price_p2_fix 14 price_p3_fix 15 churn_y 16076 non-null int64 dtypes: float64(11), int64(4), object(1) memory usage: 2.0+ MB df3["has_gas"] = pd.get_dummies(data=df["has_gas"],drop_first=True) df3 cons_last_month has_gas margin_gross_pow_ele margin_net_pow_ele nb_prod_act net_margin num_years_antig pow_max duration 0 10025 0 -41.76 -41.76 1732.36 180.000 1460.(678.99 43.648 1096.0 25.44 25.44 28.60 28.60 6.60 13.856 2192.0 0 30.22 30.22 4 0 1 25.46 13.200 2192.(0 16071 0 27.88 27.88 2 381.77 4 15.000 1445.(0.00 0.00 16072 181 0 90.34 6.000 1461.0 16073 179 39.84 39.84 1 20.38 15.935 1460.0 0 4 16074 13.08 0.96 13.08 11.000 1461.0 16075 0 11.84 11.84 96.34 10.392 2556.0 1 1 16076 rows × 16 columns df3.rename(columns={"churn_y":"churn"}, inplace=True) #df3.to_csv("final2.csv",index=False)

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js