SUMMARY Partial Fraction Decompositions

Let f(x) = p(x)/q(x) be a proper rational function in reduced form. Assume the denominator q has been factored completely over the real numbers and m is a posi-

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \frac{A_3}{(x-r)^3} + \dots + \frac{A_m}{(x-r)^m}.$$

3. Simple irreducible quadratic factor An irreducible factor $ax^2 + bx + c$ in the denominator requires the partial fraction

$$\frac{Ax+B}{ax^2+bx+c}.$$

4. Repeated irreducible quadratic factor (See Exercises 61-64.) An irreducible factor $(ax^2 + bx + c)^m$ with m > 1 in the denominator requires the partial fractions $\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_mx + B_m}{(ax^2 + bx + c)^m}.$

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_mx + B_m}{(ax^2 + bx + c)^m}.$$

SECTION 8.5 EXERCISES

Getting Started

554

What kinds of functions can be integrated using partial fraction decomposition?

Give an example of each of the following.

a. A simple linear factor

b. A repeated linear factor

c. A simple irreducible quadratic factor

d. A repeated irreducible quadratic factor

What term(s) should appear in the partial fraction decomposition of a proper rational function with each of the following?

a. A factor of x - 3 in the denominator

b. A factor of $(x - 4)^3$ in the denominator **c.** A factor of $x^2 + 2x + 6$ in the denominator

What is the first step in integrating $\frac{x^2 + 2x - 3}{x^2 + 2x^2}$?

5–16. Set up the appropriate form of the partial fraction decomposition for the following expressions. Do not find the values of the unknown constants.

5.
$$\frac{4x}{x^2 - 9x + 20}$$

6.
$$\frac{4x+1}{4x^2-1}$$

7.
$$\frac{x+3}{(x-5)^2}$$

7.
$$\frac{x+3}{(x-5)^2}$$
 8. $\frac{2}{x^3-2x^2+x}$

9.
$$\frac{4}{x^5 - 5x^3 + 4x}$$

10.
$$\frac{20x}{(x-1)^2(x^2+1)}$$

11.
$$\frac{1}{x(x^2+1)}$$

12.
$$\frac{2x^2+3}{(x^2-8x+16)(x^2+3x+4)}$$

13.
$$\frac{x^4 + 12x^2}{(x-2)^2(x^2 + x + 2)^2}$$

13.
$$\frac{x^4 + 12x^2}{(x-2)^2(x^2+x+2)^2}$$
 14.
$$\frac{6x^4 - 4x^3 + 15x^2 - 5x + 7}{(x-2)(2x^2+3)^2}$$

15.
$$\frac{x}{(x^4-16)^2}$$

16.
$$\frac{x^2 + 2x + 6}{x^3(x^2 + x + 1)^2}$$

Practice Exercises

17–22. Give the partial fraction decomposition for the following

17.
$$\frac{5x-7}{x^2-3x+2}$$

18.
$$\frac{11x - 10}{x^2 - x}$$

19.
$$\frac{6}{x^2 - 2x - 8}$$

20.
$$\frac{x^2 - 4x + 11}{(x - 3)(x - 1)(x + 1)}$$

21.
$$\frac{2x^2 + 5x + 6}{x^2 + 3x + 2}$$
 (*Hint*: Use long division first.)

22.
$$\frac{x^4 + 2x^3 + x}{x^2 - 1}$$

23-64. Integration Evaluate the following integrals.

23.
$$\int \frac{3}{(x-1)(x+2)} dx$$
 24.
$$\int \frac{8}{(x-2)(x+6)} dx$$

24.
$$\int \frac{8}{(x-2)(x+6)} dx$$

25.
$$\int \frac{6}{x^2-1} dx$$

26.
$$\int_0^1 \frac{dt}{t^2 - 9}$$

27.
$$\int \frac{8x - 5}{3x^2 - 5x + 2} dx$$

28.
$$\int_{1}^{2} \frac{7x-2}{3x^2-2x} dx$$

29.
$$\int_{-1}^{2} \frac{5x}{x^2 - x - 6} dx$$

$$30. \int \frac{21x^2}{x^3 - x^2 - 12x} dx$$

31.
$$\int \frac{6x^2}{x^4 - 5x^2 + 4} dx$$

32.
$$\int \frac{4x-2}{x^3-x} dx$$

$$33. \int \frac{3x^2 + 4x - 6}{x^2 - 3x + 2} dx$$

$$34. \int \frac{2z^3 + z^2 - 6z + 7}{z^2 + z - 6} dz$$

35.
$$\int x^{2} - 3x + 2 dx$$
35.
$$\int \frac{x^{2} + 12x - 4}{x^{3} - 4x} dx$$
37.
$$\int \frac{dx}{x^{4} - 10x^{2} + 9}$$
39.
$$\int \frac{81}{x^{4} - 9} dx$$

$$36. \quad \int \frac{z^2 + 20z - 15}{z^3 + 4z^2 - 5z} dz$$

37.
$$\int \frac{dx}{x^4 - 10x^2 + 9}$$

38.
$$\int_0^5 \frac{2}{r^2 - 4r - 32} dx$$

39.
$$\int \frac{81}{x^3 - 9x^2} dx$$

40.
$$\int \frac{16x^2}{(x-6)(x+2)^2} dx$$

41.
$$\int_{-1}^{1} \frac{x}{(x+3)^2} dx$$

42.
$$\int \frac{dx}{x^3 - 2x^2 - 4x + 8}$$
44.
$$\int_1^2 \frac{2}{t^3(t+1)} dt$$

$$43. \quad \int \frac{2}{x^3 + x^2} dx$$

44.
$$\int_{1}^{2} \frac{2}{t^{3}(t+1)} dt$$

45.
$$\int \frac{x-5}{x^2(x+1)} dx$$

46.
$$\int \frac{x^2}{(x-2)^3} dx$$

$$47. \quad \int \frac{x^3 - 10x^2 + 27x}{x^2 - 10x + 25} \, dx$$

48.
$$\int \frac{x^3 + 2}{x^3 - 2x^2 + x} dx$$

49.
$$\int \frac{x^2 - 4}{x^3 - 2x^2 + x} dx$$
 50.
$$\int \frac{8(x^2 + 4)}{x(x^2 + 8)} dx$$

50.
$$\int \frac{8(x^2+4)}{x(x^2+8)} dx$$

51.
$$\int \frac{x^2 + x + 2}{(x+1)(x^2+1)} dx$$
 52.
$$\int \frac{x^2 + 3x + 2}{x(x^2 + 2x + 2)} dx$$

52.
$$\int \frac{x^2 + 3x + 2}{x(x^2 + 2x + 2)} dx$$

53.
$$\int \frac{2x^2 + 5x + 5}{(x+1)(x^2 + 2x + 2)} dx$$
 54.
$$\int \frac{z+1}{z(z^2+4)} dz$$

$$\int \frac{z+1}{z(z^2+4)} dz$$

55.
$$\int \frac{20x}{(x-1)(x^2+4x+5)} dx$$
 56.
$$\int \frac{2x+1}{x^2+4} dx$$

$$x \ \mathbf{56.} \ \int \frac{2x+1}{x^2+4} dx$$

$$57. \int \frac{x^3 + 5x}{(x^2 + 3)^2} dx$$

58.
$$\int \frac{x^4 + 1}{x^3 + 9x} dx$$

59.
$$\int \frac{x^3 + 6x^2 + 12x + 6}{\left(x^2 + 6x + 10\right)^2} dx$$
 60.
$$\int \frac{dy}{\left(y^2 + 1\right)\left(y^2 + 2\right)}$$

60.
$$\int \frac{dy}{(y^2+1)(y^2+2)}$$

61.
$$\int \frac{2}{x(x^2+1)^2} dx$$

62.
$$\int \frac{dx}{(x+1)(x^2+2x+2)^2}$$

63.
$$\int \frac{9x^2 + x + 21}{(3x^2 + 7)^2} dx$$
 64.
$$\int \frac{9x^5 + 6x^3}{(3x^2 + 1)^3} dx$$

64.
$$\int \frac{9x^5 + 6x^3}{(3x^2 + 1)^3} dx$$

65. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.

a. To evaluate $\int \frac{4x^6}{x^4 + 3x^2} dx$, the first step is to find the partial fraction decomposition of the integrand.

b. The easiest way to evaluate $\int \frac{6x+1}{3x^2+x} dx$ is with a partial fraction decomposition of the integrand

- **c.** The rational function $f(x) = \frac{1}{x^2 13x + 42}$ has an irreducible quadratic denominato
- **d.** The rational function $f(x) = \frac{1}{x^2 13x + 43}$ has an irreducible quadratic denominator.
- 66–68. Areas of regions Find the area of the following regions.
 - **66.** The region bounded by the curve $y = \frac{x x^2}{(x+1)(x^2+1)}$ and the
 - 67. The region bounded by the curve $y = \frac{10}{x^2 2x 24}$, the x-axis, and the lines x = -2 and x = -2and the lines x = -2 and x = 2
 - **68.** The region in the first quadrant bounded by the curves $y = \frac{3x^2 + 2x + 1}{x(x^2 + x + 1)}, y = \frac{2}{x}$, and x = 2
 - **69–72. Volumes of solids** Find the volume of the following solids.
 - **69.** The region bounded by $y = \frac{x}{x+1}$, the x-axis, and x = 4 is
- 70. The region bounded by $y = \frac{1}{x^2(x^2 + 2)^2}$, y = 0, x = 1, and x = 2 is revolved about the y-axis.
 - 71. The region bounded by $y = \frac{1}{\sqrt{x(3-x)}}$, y = 0, x = 1, and x = 2 is revolved about the x-a
 - **72.** The region bounded by $y = \frac{3x^2 + 25}{x^2(x^2 + 25)}$, y = 0, x = 5, and
 - 73. Two methods Evaluate $\int \frac{dx}{x^2 1}$, for x > 1, in two ways: using partial fractions and a trigonometric substitution. Reconcile your two answers.
- **74–75. Finding constants with a computer algebra system** *Give the* appropriate form of the partial fraction decomposition of the expression, and then use a computer algebra system to find the unknown constants.

74.
$$\frac{3x^2 + 2x + 1}{(x+1)^3(x^2 + x + 1)^2}$$
 75. $\frac{x^4 + 3x^2 + 1}{x(x^2+1)^2(x^2+x+4)^2}$

76–83. Preliminary steps The following integrals require a preliminary step such as a change of variables before using the method of partial fractions. Evaluate these integrals.

76.
$$\int \frac{\cos \theta}{(\sin^3 \theta - 4\sin \theta)} d\theta$$
 77.
$$\int \frac{e^x}{(e^x - 1)(e^x + 2)} dx$$

77.
$$\int \frac{e^x}{(e^x - 1)(e^x + 2)} dx$$

78.
$$\int \frac{dy}{y(\sqrt{a} - \sqrt{y})}, a > 0 \text{ (Hint: Let } u = \sqrt{y}.)$$

79.
$$\int \frac{\sec t}{1 + \sin t} dt$$

80.
$$\int \sqrt{e^x + 1} \, dx$$
 (*Hint:* Let $u = \sqrt{e^x + 1}$.)

81.
$$\int \frac{(e^{3x} + e^{2x} + e^x)}{(e^{2x} + 1)^2} dx$$
 82.
$$\int \frac{dx}{x\sqrt{1 + 2x}}$$

$$82. \quad \int \frac{dx}{x\sqrt{1+2x}}$$