Quantitative Analyse - Aufgabe 4

Praktikum zur analystischen Chemie

Verfasser: Maxim Gilsendegen

Matrikelnummer: 3650677

E-Mail-Adresse: 182513@stud.uni-stuttgart.de

Assistent: Robert Stelzer Abgabedatum: 19.07.2023

Inhaltsverzeichnis

1	Aufgabe	1
2	Durchführung	1
3	Auswertug	1
4	Literatur	3

1 Aufgabe

Bestimmung der Stoffmenge von Zn^{2+} und Mg^{2+} durch komplexometrische Doppelbestimmung mit Titriplex(III)-Lösung.

2 Durchführung

Es wurden vier Aliquote je 10 ml vorbereitet, zwei davon wurden auf 100 ml mit demineralisiertem Wasser verdünnt und annährend mit 2 M NaOH-Lösung neutralisiert. Dazu wurden 2 ml an 13.5 M NH₃-Lösung und eine Indikatorpuffertablette gegeben.

Die anderen beiden Aliquote wurden auf 50 ml mit demineralisiertem Wasser verdünnt und mit 3 g NH₄F versetzt, sobald sich das NH₄F komplett gelöst hattt und eine klare Lösung vorlag, wurden 50 ml Methanol, eine Indikatorpuffertablette und auch 2 ml am 13.5 M NH₃-Lösung hinzugegeben, um nur die Stoffmenge von Zn²⁺ zu bestimmen.

Alle Aliquote wurde mit einer 0.09999 M Titriplex(III)-Lösung bis zu einem Farbumschalg von rot nach grün titriert.

3 Auswertug

Bei der Titriplex(III)-Lösung handelt es sich um EDTA, welches ein Chelatkomplexbildner ist, da es 6 Koordinationsstellen besitzt und somit thermodynamisch und kinetisch sehr stabile Komplexe mit Zn²⁺ und Mg²⁺ bildet.

EDTA steht für Ethylendiamintetraacetat und ist in Abbildung 1 bei der Beteiligung an einem Chelatkomplex mit dem Metallkation M^{4+} gezeigt.

Abb.1: Ethylendiamintetraacetat (EDTA) als Chelatkomplexbildner um ein Metallkation \mathcal{M}^{4+}

In Tabelle 1 sind die verbrauchten Volumina an Maßlösung gegeben, die bis zum Umschlagspunkt in die Aliquoten titriert wurden.

Die Gesamtstoffmenge lässt sich analog zur Stoffmenge von Zn^{2+} berechnen und sind in Tabelle 1 gegeben.

$$n_{\text{Ges}} = \Delta V_{\text{Maßl\"osung}} \cdot c_{\text{Maßl\"osung}} \cdot 10$$
$$= 0.00491 \cdot 0.09999 \frac{\text{mol}}{\text{l}} \dot{1}0$$
$$= 4.89951 \, \text{mmol}$$

Tab.1: Verbrauchte Volumina nach Aliquoten wobei bei Aliquot 3 und 4 nur die Stoffmenge von Zn²⁺ bestimmt wurde.

Stommenge von Zu		bestilling wurde.	
Aliquot	$\Delta V_{ m Maßl\"osung}$ [ml]	n_{Ges} [mmol]	$n_{\mathrm{Zn^{2+}}}$ [mmol]
1	4.90	4.8995	-
2	4.90	4.8995	-
3	2.75	-	2.7497
4	2.60		2.59975
Mittelwe	ert	4.8995	2.6747

Die Stoffmenge von ${\rm Mg}^{2+}$ wird durch folgende Gleichung berechnet, hierfür werden jeweils die Mittelwerte aus Tabelle 1 genommen.

$$n(\text{Mg}^{2+}) = n_{\text{Ges}} - n(\text{Zn}^{2+})$$

= 4.8995 mmol - 2.6747 mmol
= 2.2248 mmol

Somit wurde eine Gesamtstoffmenge $n_{\rm Ges}=4.8995\,{\rm mmol}$ und die zwei Stoffmengen $n({\rm Zn}^{2+})=2.6747\,{\rm mmol}$ und $n({\rm Mg}^{2+})=2.2248\,{\rm mmol}$ experimentell bestimmt.

4 Literatur

[1] Skript zum Praktikum im Modul AC I: 19.07.2023