Particle spectrograph

Wave operator and propagator

Source constraints SO(3) irreps Funda	raints Fundamental fields	Multiplicities
~	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
O	$\partial_{\beta}\sigma^{\alpha\beta}{}_{\alpha}==0$	1
9	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
Ó	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\iota^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\iota^{\beta\alpha}$	3
Ó	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	3
6	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == \partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
Ó	$\partial_{\chi}\partial^{\alpha} t^{\beta\chi} + \partial_{\chi}\partial^{\beta} t^{\chi\alpha} + \partial_{\chi}\partial^{\chi} t^{\alpha\beta} = =$	(m
0	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \tau^{\beta\alpha}$	
50	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	3
50	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	<u>د</u>
9	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi \delta}_{\chi} + 3 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}) = =$	5
m	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi \delta}$	
9	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} \partial^{\epsilon} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} == 3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha X \beta} + 3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon} +$	
	$3 \eta^{\beta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} + 3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{\beta\delta}$	
يزا	Total constraints/gauge generators:	33

			ا							[# C#] #] #
			$\iiint (f^{\alpha\beta} \ \iota_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \beta_1 \ (-4 \ \omega_{\alpha \ \chi}^{\ X} \ \partial_{\beta} f^{\alpha\beta} + 4 \ \partial_{\beta} \omega^{\alpha\beta}_{\alpha} + 4 \ \omega_{\beta \ \chi}^{\ X} \ \partial^{\beta} f^{\alpha}_{\alpha} -$	1					$\partial_\delta \omega_{\alpha\beta\chi} - 2\partial_\delta \omega_{\alpha\chi\beta})\partial^\delta \omega^{\alpha\beta\chi})[t,x,y,z]dzdydxdt$	Z#1
33			$\kappa_{\kappa}^{\lambda}$	$\partial_{\chi} f_{\beta}^{\chi}$	+	$-\alpha\beta$ +	β) +	+	1z dly	#
			3 + 4	$\beta^{\beta}f^{\alpha}$	$_{\alpha}^{\lambda}\omega_{\beta}^{\lambda}$	$t_{X\beta} \partial_{X} f$	$^{\chi}\partial^{\chi}f^{\alpha}$	$\omega_{\alpha\beta\delta}$	ı, z]d	#1
			$\partial_{eta}\omega^{lphaeta}$	^X + 4 <i>i</i>	$f^{\alpha}_{\alpha} \partial_{\beta}$	$^{\beta}$ - $\partial_{\alpha}f$	$-\partial_\chi f_{eta_{\mathcal{C}}}$	$\langle \delta \alpha^{-} \partial_{\lambda}$	t, x, y	
			$^{\alpha\beta}$ + 4	$2 \partial_{\beta} f_{\chi}^{X} \partial^{\beta} f^{\alpha}_{\alpha} - 2 \partial_{\beta} f^{\alpha\beta} \partial_{\chi} f_{\alpha}^{X} + 4 \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\chi} f_{\beta}^{X} -$	$4 f^{\alpha\beta} (\partial_{\beta} \omega_{\alpha x}^{\chi} - \partial_{\chi} \omega_{\alpha \beta}^{\chi}) - 4 f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta\chi}_{\beta} +$	$4 \omega_{\alpha\chi\beta} \partial^{\chi} f^{\alpha\beta} - 2 \partial_{\alpha} f_{\beta\chi} \partial^{\chi} f^{\alpha\beta} - \partial_{\alpha} f_{\chi\beta} \partial^{\chi} f^{\alpha\beta} +$	$\partial_{\beta}f_{\alpha\chi}\partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\alpha\beta}\partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\beta\alpha}\partial^{\chi}f^{\alpha\beta}) +$	$\frac{1}{3} \alpha_3 (4 \partial_\beta \omega_{\alpha\chi\delta} - 2 \partial_\beta \omega_{\alpha\delta\chi} + 2 \partial_\beta \omega_{\chi\delta\alpha} - \partial_\chi \omega_{\alpha\beta\delta} +$	$\omega^{\alphaeta\chi}$)[(
			$\int_{X} \partial_{\beta} f'$	$\partial_{eta}f_{lpha}$	$\partial_{\chi}\omega_{\alpha}^{\lambda}$	$\partial_{\alpha}f_{\beta}$	$\langle f_{\alpha\beta}\partial$	$\chi_{\chi\chi}$	$_{\chi \beta}$) g_{arrho}	,
<u>.</u>			χ_{α}	f^{α}_{α} -2	α_{x}^{x}	$f^{\alpha\beta}$ - 2	$\alpha\beta + \dot{\partial}$	$2 \partial_{\beta} \omega_{\rho}$	$\partial_{\delta}\omega_{\alpha}$	(#
erato			arphi eta_1 (-	$f_{\chi}^{\chi}\partial^{\beta}$	$^{\chieta}$ (artheta	$\alpha_{X\beta} \partial^{\chi}$	$f_{XX} \partial_{X} f$	$\sigma_{\alpha\chi\delta}^{-1}$	$\alpha \beta \chi^{-} 2$,
e gen			$\sigma_{\alpha\beta\chi}$ +	$2 \partial_{\beta}$	4 <i>f</i> ^c	4	$\partial_{eta} f_{c}$	$(4 \partial_{eta} u)$	$\partial_\delta \omega$	
gang	ction		υαβχ					$\frac{1}{3} \alpha_3$		#7
aints/	ee) a		$\alpha\beta$ + c							C #
Total constraints/gauge generators:	Quadratic (free) action		$f^{\alpha\beta}$							#1
otal co	Jadra	!!)]]]]							
	ŏ	S ::								

 $\tau_{0}^{\#1} + \\
\tau_{0}^{\#2} + \\$

 $\sigma_{0^{\bar{-}}}^{\#1}$

 $\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$

 $\omega_{1}^{\#2} +^{lpha}$

 $f_{1}^{\#1} +^{\alpha}$

 $f_{0+}^{\#1}$

 $\sigma_{1}^{\#1}$

 $0 \quad \alpha_3 k^2$

 $\sigma_1^{\#2} + \alpha \beta$ $\tau_1^{\#1} + \alpha \beta$

 $\omega_{2}^{\#1} \dagger^{lphaeta}$

 $\sigma_{1}^{\#1} + ^{\alpha}$ $\sigma_{1}^{\#2} + ^{\alpha}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $2 \beta_1 k^2$

0 0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $\beta_1 > 0$