1

Supplementary Material

Abstract

This document is the supplementary material for the article "Knowledge and Data Dual-Driven Channel Estimation and Feedback for Ultra-Massive MIMO Systems". There is one sole part including the derivation of the minimum mean square error (MMSE)-based denoiser.

I. DERIVATION OF THE MINIMUM MEAN SQUARE ERROR DENOISER

Consider the denoising problem for the signal model given by

$$\tilde{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{\Sigma}^{\frac{1}{2}}\mathbf{n},\tag{1}$$

where $\tilde{\mathbf{x}}$ and $\bar{\mathbf{x}} \in \mathbb{C}^{K \times 1}$ denote the noisy and noiseless signals, respectively, $\mathbf{n} \in \mathbb{C}^{K \times 1} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I})$ is an AWGN vector, and $\mathbf{\Sigma} = \mathrm{diag}\left([\sigma^2[1], \sigma^2[2], \ldots, \sigma^2[K]]\right)$ is the diagonal matrix depicting the noise power with $\sigma^2[k] \geq 0, \forall k \in \{1, 2, \ldots, K\}$. Because the support across different subcarriers appears or disappears at the same time, $\bar{\mathbf{x}}$ follows a Bernoulli-Gaussian distribution as $(1-\gamma)\delta_0 + \gamma p_{\mathbf{h}_\epsilon}$. Here, δ_0 denotes the point mass measure at zero and $p_{\mathbf{h}_\epsilon}$ denotes the distribution of $\mathbf{h}_\epsilon \sim \mathcal{CN}(\mathbf{0}, \epsilon \mathbf{I})$.

In this way, the probability when $\tilde{\mathbf{x}} = \mathbf{x}' = \mathbf{h}_{\epsilon} + \Sigma^{\frac{1}{2}}\mathbf{n}$ is γ , and the probability is $1 - \gamma$ when $\tilde{\mathbf{x}} = \Sigma^{\frac{1}{2}}\mathbf{n}$. According to standard estimation theory, defining $\Theta = \operatorname{diag}\left(\frac{1}{\epsilon + \sigma^2[1]}, \ldots, \frac{1}{\epsilon + \sigma^2[K]}\right)$ the mean and covariance matrix of \mathbf{h}_{ϵ} can be computed respectively as

$$\mathbb{E}[\mathbf{h}_{\epsilon}|\mathbf{x}'=\mathbf{x}] = \epsilon \mathbf{\Theta} \mathbf{x},\tag{2}$$

$$\mathbb{E}[\mathbf{h}_{\epsilon}\mathbf{h}_{\epsilon}^{\mathrm{H}}|\mathbf{x}'=\mathbf{x}] = \epsilon\mathbf{I} - \epsilon^{2}\mathbf{\Theta} + \epsilon^{2}\mathbf{\Theta}\mathbf{x}\mathbf{x}^{\mathrm{H}}\mathbf{\Theta}.$$
 (3)

September 16, 2023 DRAFT

Furthermore, we can compute the mean of \bar{x} as

$$\mathbb{E}[\bar{\mathbf{x}}|\hat{\mathbf{x}} = \hat{\mathbf{x}}'] = \int \bar{\mathbf{x}} p_{\mathbf{x}|\hat{\mathbf{x}}}(\bar{\mathbf{x}} = \mathbf{x}|\hat{\mathbf{x}} = \hat{\mathbf{x}}') d\mathbf{x}$$

$$= \frac{1}{p_{\hat{\mathbf{x}}}} \int p_{\mathbf{x}|\hat{\mathbf{x}}}(\bar{\mathbf{x}} = \mathbf{x}|\hat{\mathbf{x}} = \hat{\mathbf{x}}') (\gamma p_{\mathbf{h}_{\epsilon}}(\mathbf{h}_{\epsilon} = \mathbf{x}) + (1 - \gamma)\delta_{0}(\mathbf{x})) d\mathbf{x}$$

$$= \frac{\gamma p_{\mathbf{x}'}(\mathbf{x}' = \hat{\mathbf{x}}')}{p_{\hat{\mathbf{x}}}(\hat{\mathbf{x}} = \hat{\mathbf{x}}') p_{\mathbf{x}'}(\mathbf{x}' = \hat{\mathbf{x}}')} \mathbb{E}[\mathbf{h}_{\epsilon}|\mathbf{x}' = \hat{\mathbf{x}}'], \tag{4}$$

By defining $\phi(\hat{\mathbf{x}}) = \frac{1}{1 + \frac{1 - \gamma}{\gamma} e^{-\hat{\mathbf{x}}^H \mathbf{P} \hat{\mathbf{x}}} \prod_{k=1}^K (1 + \frac{\epsilon}{\sigma^2[k]})}$ and $\mathbf{P} = \operatorname{diag}\left(\frac{\epsilon}{\sigma^2[1](\sigma^2[1] + \epsilon)}, \dots, \frac{\epsilon}{\sigma^2[K](\sigma^2[K] + \epsilon)}\right)$, the shrinkage function $\boldsymbol{\eta}_{\mathrm{CS}}(\hat{\mathbf{x}}'; \gamma, \epsilon, \boldsymbol{\Sigma})$ can be rewritten as

$$\eta_{\text{CS}}(\hat{\mathbf{x}}'; \gamma, \epsilon, \Sigma) = \mathbb{E}[\mathbf{x}|\hat{\mathbf{x}} = \hat{\mathbf{x}}'] = \phi(\hat{\mathbf{x}}')\Theta\hat{\mathbf{x}}'.$$
(5)

It should be noted that when taking the derivative of (5), we can approximate $\phi(\hat{\mathbf{x}})$ as a constant since the dimension of $\hat{\mathbf{x}}$ is quite large, and the derivative becomes $\frac{\epsilon\phi(\hat{\mathbf{x}})}{\epsilon+\sigma^2[k]}$.

September 16, 2023 DRAFT