Matriz aumentada y escalonada

Dr. José Lázaro Martínez Rodríguez

Matriz aumentada

• la matriz aumentada, o matriz ampliada, de una matriz se obtiene al combinar dos matrices tal y como se muestra a continuación.

• Sean las matrices A y B

$$A = egin{bmatrix} 1 & 3 & 2 \ 2 & 0 & 1 \ 5 & 2 & 2 \end{bmatrix}, B = egin{bmatrix} 4 \ 3 \ 1 \end{bmatrix}$$

• Entonces la matriz aumentada (A|B) se representa de la siguiente manera:

$$(A|B) = egin{bmatrix} 1 & 3 & 2 & 4 \ 2 & 0 & 1 & 3 \ 5 & 2 & 2 & 1 \end{bmatrix}$$

Esta notación es útil para resolver sistemas de ecuaciones lineales dados por matrices cuadradas.

Matriz aumentada

 En álgebra lineal, se utiliza la matriz aumentada para representar los coeficientes, así como las constantes de cada ecuación.
 Dado el conjunto de ecuaciones:

$$\left\{egin{array}{l} x_1+2x_2+3x_3=0\ 3x_1+4x_2+7x_3=2\ 6x_1+5x_2+9x_3=11 \end{array}
ight.$$

• la matriz aumentada estaría formada por:

dando como resultado final:

$$A = egin{bmatrix} 1 & 2 & 3 \ 3 & 4 & 7 \ 6 & 5 & 9 \end{bmatrix} \qquad B = egin{bmatrix} 0 \ 2 \ 11 \end{bmatrix} \qquad \qquad C = egin{bmatrix} 1 & 2 & 3 & 0 \ 3 & 4 & 7 & 2 \ 6 & 5 & 9 & 11 \end{bmatrix}$$

Matriz escalonada

- Una Matriz Escalonada (o también Matriz en forma escalonada o Escalonada por Filas), es aquella en la que el primer elemento distinto de cero (llamado pivote) está a la derecha del pivote de la fila anterior.
- Es decir, debajo de cada pivote, todos los elementos de la matriz son iguales a 0.

Matriz escalonada

- En álgebra lineal una matriz se dice que es escalonada, escalonada por filas o que está en forma escalonada si:
 - 1. Todos los renglones cero están en la parte inferior de la matriz.
 - 2. El elemento delantero de cada renglón diferente de cero está a la derecha del elemento delantero diferente de cero del renglón anterior.
 - 3. El primer elemento diferente de 0 y 1 de cada fila está a la derecha del primer elemento diferente de 0.
- Si en cada fila el pivote es el único elemento no nulo de su columna, se dice que es escalonada reducida por filas.

Matriz escalonada

- Ejemplos
- Escalonada reducida

$$\bullet \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Solución a sistema lineal

- Los sistemas de ecuaciones lineales más sencillos de resolver son los sistemas de forma triangular o escalonada. Considere:
- 2x + 3y 2z = 1
- 2y + z = -2
- 3z = -6
- Estos sistemas se resuelven mediante sustitución hacia atrás. Este método consiste en resolver primero la última ecuación; con su solución resolver la penúltima ecuación y así sucesivamente

• En lugar de manejar ecuaciones es preferible manejar la matriz aumentada del sistema. Por lo que las operaciones entre ecuaciones pueden verse como operaciones entre renglones de una matriz.

• La idea es que capturen las operaciones elementales entre las ecuaciones de un sistema lineal pero llevadas a la matriz aumentada.

• Intercambio. Intercambia dos renglones

$$R_i \leftrightarrow R_j$$

- Escalamiento. Multiplicar un renglón por una constante diferente de cero $R_i \leftarrow c\,R_i,\ c \neq 0$
- Eliminación. Sume a un renglón un múltiplo de otro renglón

$$R_j \leftarrow R_j + c R_i$$

- a. Intercambiar el primer renglón por el segundo
- Matriz original

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

Nueva matriz

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \qquad \begin{bmatrix} R_2 \\ R_1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

- **b.** Multiplicar primer renglón por $\frac{1}{2}$
- Matriz original

$$\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$$

Nueva matriz

$$\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{2}R_1 \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$$

• c. Suma -2 veces la primera fila de la matriz original a la tercera fila.

Matriz original

$$\begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 2 & 1 & 5 & -2 \end{bmatrix}$$

Nueva matriz

$$\begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 2 & 1 & 5 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 0 & -2R_1 + R_3 \rightarrow \begin{bmatrix} 0 & 3 & -2 & -1 \\ 0 & -3 & 13 & -8 \end{bmatrix}$$

- Las operaciones elementales son importantes porque ellas no cambian el conjunto de soluciones de un sistema de ecuaciones lineales
- Al efectuar un número finito de operaciones elementales a la matriz aumentada asociada a un sistema de ecuaciones lineales, las soluciones del sistema obtenido son las mismas soluciones del sistema original.

Ejercicio

- Represente la forma aumentada del siguiente sistema
- 2x + 3y 2z = 1
- x + 2y + z = 5
- 3x + y + 3z = 10
- Realice las operaciones
- $R_3 \leftarrow R_3 3R_2$
- $R_3 \longleftrightarrow R_1$
- $R_2 \leftarrow 3R_2$