On the μ -coefficient of Kazhdan-Lusztig polynomials

Greg Warrington — University of Vermont

AMS Spring Eastern Sectional Meeting
College of the Holy Cross, Worcester, MA
Élie Cartan's 142nd Birthday

Kazhdan-Lusztig polynomials

Define $P_{x,w}(q)$ for $x,w\in S_n$.

Facts

- $P_{x,x}(q) = 1$.
- $ullet P_{x,w}(q)=0$ when $x
 ot\leq w$.
- ullet $\deg P_{x,w}(q) \leq rac{\ell(w)-\ell(x)-1}{2}$ when $x \leq w$.

Kazhdan-Lusztig polynomials

$$w=34201,\ \ell(w)=8$$
 $v=34012,\ \ell(v)=6$ $x=03214,\ \ell(x)=3$ $u=01234,\ \ell(v)=0$

$$P_{x,w}(q) = 1 + q^2$$
 $P_{u,v}(q) = 1 + 2q$

When is $P_{x,w}(q)$ of max possible degree?

When is $P_{x,w}(q)$ of max possible degree?

Define

$$egin{align} \mu(x,w)&=\left[q^{rac{\ell(w)-\ell(x)-1}{2}}
ight]P_{x,w}(q)\ \mu[x,w]&=\max\{\mu(x,w),\mu(w,x)\}. \end{aligned}$$

The recursion

$$egin{aligned} P_{x,w}(q) &= q^{1-c}P_{xs,ws}(q) + q^cP_{x,ws}(q) - \ &\sum_{\substack{z \leq ws \ zs < z}} oldsymbol{\mu(z,ws)} q^{rac{\ell(w)-\ell(z)}{2}} P_{x,z}(q) \end{aligned}$$

0 — 1 conjecture

Is $\mu(x, w)$ always 0 or 1?

0 — 1 conjecture

Is $\mu(x,w)$ always 0 or 1?

Theorem [McLarnan-W '03]

No.

0 — 1 conjecture

Is $\mu(x,w)$ always 0 or 1?

Theorem [McLarnan-W '03]

No.

Not even close.

A family of counterexamples

A Sequence

$a_n = 4a_{n-1} + 3a_{n-2}$	0,1,4,19,88,409,1900,
	8827,41008,190513,
Trees of diameter 8	1,4,19,66,219,645,
	1813,4802,12265,
Powers of $\sqrt{19}$	1,4,19,82,361,1573,
rounded down	6859,29897,130321,

Possible values

What values are attained by $\mu(x, w)$?

Current knowledge

Set
$$M(n)=\{\mu(x,w):\,x,w\in S_n\}\setminus\{0\}.$$

Theorem [W '10] We have

- ullet $M(10) = \{1,4,5\}$
- ullet $M(11) = \{1, 3, 4, 5, 18, 24, 28\}$
- $M(12)\supseteq M(11)\cup \ \{2,6,7,8,23,25,26,27,158,163\}$
- $ullet \max_{x,w \in S_{13}} \mu(x,w) \geq 796$

Main Problem

$$|S_{10} \times S_{10}|$$
 13,168,189,440,000

$$\#\{x \leq w\} \sim 800,000,000,000$$

Many are zero

Many are equal

$$\mu[\mathcal{L}_i x, \mathcal{L}_i w] = \mu[x, w] = \mu[x\mathcal{R}_i, w\mathcal{R}_i]$$

L-S Moves

Compression

The whole kit and kaboodle

There can be only one

Theorem [W '10]

The only equivalence class that intersects S_2, S_3, \ldots, S_9 is that of

S_{10}

Only four additional equivalence classes intersect S_{10} .

S_{10}

S_{10}

S_{10} and S_{11}

S_{10} and S_{11}

Guess the μ -value

