Теоретическая информатика.

Лектор — А.С. Охотин, Э.А. Гирш и Д.О. Соколов Создатель конспекта — Глеб Минаев *

TODOs

Содержание

1 Вычислимость 1

Литература:

• . . .

Страницы курса:

• Часть курса, прочитанная А.С. Охотиным.

1 Вычислимость

Определение 1. Машина Тьюринга — это реализация понятия вычисления. Она заключается в том, что имеется бесконечная в обе стороны клетчатая лента с записанным на ней конечным словом (по букве на клетку) — входные данные вычисления — и головка — вычисляющий аппарат, которая в каждый момент времени смотрит на какую-то клетку ленты и имеет в себе некоторое внутреннее состояние вычислений. Каждым своим действием она читает символ в клетке, на которую смотрит, и в зависимости от прочитанного символа и внутреннего состояния в данный момент она пишет в клетку, на которую смотрит новый символ, стирая старый, переходит на новую клетку и меняет внутренне состояние.

Формально машина Тьюринга M — это совокупность

- входного алфавита Σ (конечного) алфавита входных данных,
- рабочего алфавита Γ (конечного) алфавита, над которым мы работаем, что $\Gamma \supseteq \Sigma \sqcup \{ \cup \} \}$,
- конечного множества (внутренних) состояний Q,
- начального состояния $q_0 \in Q$,
- функции переходов $\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1; +1\}$
- и дополнительных объектов и условий в зависимости от предназначения машины.

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Входными данными программы является конечная строка $s_1 \dots s_l$, которая превращается в запись $\{a_i\}_{i\in\mathbb{Z}}$ на ленте по правилу

$$a_i = \begin{cases} s_{i+1} & \text{ если } 0 \leqslant i \leqslant l-1, \\ _ & \text{ иначе.} \end{cases}$$

Состояние каждого момент вычисления — это совокупность

- состояния ленты $\{a_i\}_{i\in\mathbb{Z}}$, где $a_i\in\Sigma$ и все a_i кроме конечного числа элементов являются пробелом \cup ,
- положения головки $n \in \mathbb{Z}$ на ленте и
- состояния головки $q \in Q$.

Состояние начального момента вычислений образуется из

- состояния ленты, полученного из входных данных,
- положения головки по умолчанию n=0
- начального состояния головки q_0 .

Каждым шагом состояние $(\{a_i\}_{i\in\mathbb{Z}},n,q)$ заменяется на состояние $(\{a_i'\}_{i\in\mathbb{Z}},n',q')$, где $a_i'=a_i$ для всех $i\in\mathbb{Z}\setminus\{n\}$ и

$$(q', a'_n, n' - n) := \delta(q, a_n).$$

Далее есть два вида предназначений машины:

- 1. Распознование свойства. В этом случае мы хотим уметь распознавать разные конечные строки, т.е. чтобы машина отвечала "да" или "нет" на вопрос "Лежит ли эта строка в заданном семействе?". В таком случае у машины выделяются принимающее состояние $q_{acc} \in Q$ и отвергающее состояние $q_{rej} \in Q$, и когда машина переходит в одно из этих двух состояний, вычисления прекращаются. В таком случае $\delta(q,a)$ должно быть не определено в случае $q \in \{q_{acc}; q_{rej}\}$.
- 2. Вычисление функции. В этом случае мы хотим вычислять значение некоторой функции $M: \Sigma^* \to \Sigma^*$, т.е. чтобы машаина после некоторого количества действий говорила "Готово." и оставляла на ленте конечное слово в том же формате, в котором производится ввод. В таком случае у машины выделяется состояние останова $q_{halt} \in Q$, и когда машина переходит в это состояние, вычисления прекращаются, а на ленте должно остаться слово в правильном формате. В таком случае $\delta(q,a)$ должно быть не определено в случае $q=q_{halt}$.

Замечание. Фактически множество результатов работы машины состоит из переходов в одно из терминальных состояний $(q_{acc}, q_{rej}$ или $q_{halt})$ и попадание в "вечный цикл".

Теорема 1. В определении машина Тьюринга множество возможных смещений головки $\{+1;-1\}$ можно сменить на некоторое $S \subseteq \mathbb{Z}$. Тогда если S конечно и всякое целое число представляется в виде суммы хотя бы одного значения (возможно, с повторами) из S, то определение получается равносильным.

Доказательство. Действительно, пусть у нас имеется машина с множеством возможных сдвигов S_1 , а у нас есть множество возможных сдвигов S_2 , что всякое число из S_1 представляется в виде суммы некоторых (хотя бы одного и, возможно, с повторениями) членов из S_2 . Тогда для всякой перехода между состояниями $q_1 \to q_2$ можно создать такие фальшсостояния, что смещение на значение из S_1 будет заменено на несколько смещений на значения из S_2 с тем же итогом. Таким образом мы можем всякую машину на S_1 поменять на машину на S_2 и большим числом состояний.

Таким образом множества смещений S_1 и S_2 реализуют равносильные модели, если всякое значение из S_1 расскладывается в сумму значений S_2 и наоборот. При для $S_1 = \{+1; -1\}$ переход $S_2 \to S_1$ очевиден, а переход $S_1 \to S_2$ означает, что 1 и -1 раскладываются в суммы некоторых чисел из S_2 , что равносильно разложимости всякого целого.

Следствие 1.1. Вместо $\{+1; -1\}$ для удобства можно также подразумевать $\{+1; 0; -1\}$.

Замечание. В данный момент мы будем рассматривать только задачу распознавания свойства.

Определение 2. Язык машины M или язык, распознаваемый машиной M, — это множество $L(M)\subseteq \Sigma^*$ входных строк, которые машина принимает. Т.е. это множество всех конечных строк $w\in \Sigma^*$ таких, что машина M на входе w завершает работу и принимает данный вход.

Язык, распознаваемый какой-нибудь машиной, называется рекурсивно-перечислимым.

Язык, распознаваемый какой-нибудь машиной, которая останавливается на любом входе, называется *рекурсивным*.

 $\Pi pumep\ 1.\ \Pi$ усть $\Sigma = \{a;b\},\ L = \{a^nb^n\}_{n\geqslant 0}.$ Тогда L распознаётся машиной Тьюринга (которая причём останавливается на всяком входе!).

Действительно, давайте напишем машину, которая будить ездить из одного конца нашей строки в другую и стирать a справа и b слева, и, если получит пустую строку, примет вход, а если поймет, что в какой-то момент получается что-то неправильное, то отвергнет вход. Формально, возьмём $Q = \{q_0; q_1; q_2; q_3; q_{acc}; q_{rej}\}$ и $\Gamma = \{a; b; \lrcorner\}$, а функцию перехода опишем следующей таблицей:

$Q \backslash \Gamma$	a	b	J
q_0	$q_1, \cup, +1$	q_{rej}	q_{acc}
q_1	$q_1, a, +1$	$q_1, b, +1$	$q_2, _, -1$
q_2	q_{rej}	$q_3, \underline{\ }, -1$	q_{rej}
q_3	$q_3, a, -1$	$q_3, b, -1$	$q_0, _, +1$

Т.е. во с помощью q_0 и q_2 мы стираем a слева и b справа соответственно, а с помощью q_1 и q_2 перемещаемя до конца вправо и влево соответственно.

Теорема 2. Есть язык, нераспознаваемый никакой машиной Тьюринга.

Доказательство. Несложно видеть, что для всякого конечного непустого алфавита Σ количество $|\Sigma^*|$ конечных строк над Σ счётно, а значит языков над Σ континуум. При этом машин Тьюринга с входным алфавитом Σ счётное число. Значит почти все языки не распознаются машинами Тьюринга.

При этом есть довольно простые конкретные примеры нераспознаваемых языков.

Определение 3. Запись $\sigma(M)$ машины Тьюринга M — это конечной битовая строка, созданная по следующему правилу. Пусть у машины $M = (\Sigma, \Gamma, Q, q_0, \delta, q_{acc}, q_{rej})$

•
$$\Sigma = \{a_1; \ldots; a_l\},\$$

- $\Gamma = \Sigma \cup \{a_{l+1}; \ldots; a_m\}$, где причём $a_m = \Box$,
- $Q = \{q_0; \dots; q_{n-1}\}$, где причём $q_{acc} = q_{n-2}, q_{rej} = q_{n-1}$.

Тогда запишем всё в унарной системе счисления, т.е. (всякий абстрактный) массив числовых данных будет храниться в виде последовательностей единиц, длины которых будут равняться соответствующим значениям массиве, разделённых нулями. Тогда машина M будет записана строкой

$$\sigma(M) := 1^l \, 0 \, 1^m \, 0 \, 1^n \, 0 \prod_{\delta(q_i, a_j) = q_{i'}, a_{j'}, d} 1^i \, 0 \, 1^j \, 0 \, 1^{i'} \, 0 \, 1^{j'} \, 0 \, 1^{d+1}$$

(где умножение, безусловно, — конкатенация, а \prod — конкатенация нескольких строк).

Определение 4. Языки L_0 и L_1 — это

$$L_0 := \{ \sigma(M) \mid \sigma(M) \notin L(M) \} \qquad \text{if} \qquad L_1 := \{ \sigma(M) \mid \sigma(M) \in L(M) \}.$$

Теорема 3.

- 1. L_0 не рекурсивно-перечислимый.
- $2. \ L_1 \ peкуpcuвно-перечислимый.$
- $3. \ L_1 \ peкурсивный.$

Доказательство.

- 1. Предположим противное, т.е. есть машина M, распознающая L_0 . Тогда если M принимает $\sigma(M)$, то $\sigma(M) \in L(M)$, но тогда $\sigma(M) \notin L$. Если же M не принимает $\sigma(M)$, то $\sigma(M) \notin L(M)$, но тогда $\sigma(M) \in L$. Противоречие наподобие парадокса Рассела. Значит нет никакой машины, распознающей L_0 .
- 2. Неформально опишем машину, которая будет распознавать L_1 . Идея машины заключается в том, что получая на вход $\sigma(M)$, после этого запсанного кода машины M она запишет код начального состояния q_0 машины M, а затем код $\sigma(M)$ как входную строчку для M. После этого она начнёт моделировать работу машины M на входе $\sigma(M)$. Состояние головки будет писаться перед клеткой, на которую головка смотрит. Если места слева будет не хватать, то вся запись будет просто сдвигаться вправо.
- 3. Покажим, что всякая машина, распознающая L_1 зацикливается при некотором входе. Предположим противное, т.е. есть машина \widetilde{M} , которая распознаёт L_1 и всегда остансавливается. Тогда построим \widehat{M} по алгоритму:
 - Проверить правда ли, что на было подано некоторое $\sigma(M)$. Если нет, то отвергнуть.
 - Работать как \widetilde{M} на $\sigma(M)$. Если \widetilde{M} принимает, то отвергнуть. Если отвергает принять.

Тогда \widehat{M} распознаёт L_0 — противоречие. Значит машины \widetilde{M} не существует.

Теорема 4. Язык

$$L_{\varnothing} := \{ \sigma(M) \mid L(M) = \varnothing \}$$

не рекурсивно-перечислимый.

Доказательство. Предположим противное, т.е. есть машина M_{\varnothing} , которая распознаёт L_{\varnothing} . Тогда построим машину M_0 по следующему алгоритму.

- 1. Проверить правда ли, что на было подано некоторое $\sigma(M)$. Если нет, то отвергнуть.
- 2. Построить $\sigma(M')$, где машина M' работает по следующему алгоритму.
 - Стереть входную строку.
 - Написать $\sigma(M)$.
 - Запустить M.
- 3. Запустить M_{\varnothing} на $\sigma(M')$.

M' принимает любую строку, если M принимает $\sigma(M)$, отвергает любую строку, если M отвергает $\sigma(M)$, и зацикливается, если M зацикливается на $\sigma(M)$. Следовательно M_{\varnothing} примет $\sigma(M')$ тогда и только тогда, когда $\sigma(M) \notin L(M)$. Таким образом M_0 распознаёт L_0 .

Определение 5. Для всякого свойства P языков можно определить язык

$$L_P := \{ \sigma(M) \mid L(M) \text{ обладает свойством } P \}.$$

 Π ример 2.

1. Если P — это "непустота", то

$$L_P := \{ \sigma(M) \mid L(M) \neq \emptyset \}.$$

Такой язык рекурсивно-перечислим.

2.

$$L_P := \{ \sigma(M) \mid M \text{ отвергает конечное число программ на C++} \}.$$

3.

$$L_P := \{ \sigma(M) \mid L(M) = L_0 \}.$$

Как мы уже знаем $L_P = \emptyset$.

Теорема 5 (Райса). Всякое нетривиальное свойство неразрешимо.