```
Ejercicio 1.2
                             a Gratis, barato, oferta, . 1. hantado gamencies
                            b. Fecha limite, enviar, anvacio, hola, becaus destardes, recorde tono, gracias
                            C. El parametro b (bias) en el perceptron afecta diredomente anntos
mensajes son clasificados como spam ya que se el umbral
viado para clasificax emails entre spam y no spam
                             Ejercicio 13
                             9 St x (+) se clasifica mal por w(+), es decir y (+) + w (+) x (+) donde

y (+) cu la etiqueta consecta de x (+), por lo tento (+) x (+) x
                                                                       y (+) w (++1) x (+) (w(++1) = w(+) + y (+) x (+)
                             Sabernos que la regla para actualizar los pesos del perceptro es w (++1) = w(+) + y (+) x (+), así:
                                                                          y(+) w" (++1) x (+) = y(+) (w(+) + y(+) x (+)) x (+)
                                                                                   = y(+)(w(+)+y(+)x(+))x(+)
                                                                                   = (y(+) w (+) + y(+) y (+) x (+) ) x (+) destrobationed
                                                                                     = y(+) w(+) x(+) + y(+) y(+) x(+) x(+) distributed
                                                                                   > 4 (+) w (+) x (+)
                            C. Acabamos de ver que y(t) w (t+1) x(t) > y(t) w (t) x(t) es decir, eq
                              x(4) wt(+) = y(+) = entonces:
y(+) > w(+) = y (+) es positivo entonces w(+) x (+) es negativo, la actualización (esta w(+) = w(+) + y(+) x (+), como y (+) es positivo mo ve mos w(+) x (+) hacía el la do positivo incrementandolo, en y (+) ox (+)
                                  2. (1 y (t) es regativo intonces wt(t) x (t) es positivo ; la actulización

Sería W(t+1) = W(t) t y (t) x (t) , como y (t) es regativo movemos wt(t) x (t)

hacia el lade regativo "incrementantello y (t) x (t) , en este casa como y (t) x (t)

la crementar significa que wt(t) x (t) esta decreciendo.
                             Convergencia algoritmo del gerceptron
                            Asuma que para toda muestra (x, y) del conjunto de coltenamento 

(IXII = R siendo, R un núnero, finito, y también suponda que existe un 

clasificador líneal que clasifique y todas los muestras Correctomente, mas 

precisamente, asuma que existe y > 0 tal que y(t) w x x(t) 2 y gamma 

Se usa para garantizar que toda muestra tes clasificador siquesto mente, 

nótese que w x es el vector de quos del clasificador siquesto.
                             1. Mostrarenos que wx w(t) Se incrementa al menos linealmente en ca o
                                 I tera ción:
                              Suponga que en 19 + Estana Heración hubo una mala clasificación en x(+)
                                                   W* W(+) = W* (w(+-1) + y(+) x(+))
                                                                                                                                                                      Actualización de los pesas
                                                                                - w* w(t-1) + y(t) x(t) v *
                                                                                                                                                                       Dectaboling of
                                                                                 2 w* w(+-1) +
                                                                                                                                                                       the potents classificador haca pertedo
                                                                                                                                                                        con vector pers wt
```

Por lo tanto d'espués de Titeraciones: W* W(+) > + Y. Lucgo W# w(t) en coda iteración se incrementa al menod tinealmente 2. La norma cuadrada 11 m (t) 112 incrementa márino linealmente ca el número de iteraciones tistambién suponga que hobo una mola clasificación s 1/w(+)1/ = 1/w(+-1) + y(+) x(+)1/2 Actualización pesos debido al encor = 11 W (+-1) 112 + 2 y (+) W (+-1) x (+) + 11x (+) 112 propredo des norre < 11w(1-1)112+11x(+)112 24(+) w (+-1) x(+) ≥0 4 11 W (+1) 11 + R2 Al potesis To gre y(+)(w(+-1)) x(+) LO cada ver are se hace voo a ctralización,

pres ty(+) y w(+-1) Tx(+) trenen signos directoros, y por higifesis

11 x(+)11 ER, entonces: 11 W (+)11 E K R2 Ahora si acotemos el coseno del ángulo entre w* y w(t) en la Cos (wx, w(+1) = wx w(+) > xx por la gra parte Por la 2da parte KR2 IIWAII Como el Coseño está acotada por 1: 1 2 KY JKR2 11W #11

Ejercicio 1.10

```
import numpy as np
import matplotlib.pyplot as plt
def tirar_monedas(n):
 #cara: 1, sello: 0
 resultados = np.zeros(n)
 probs = np.random.uniform(size=n)
 resultados[probs > 0.5] = 1 # si la probabilidad es mayor a 0.5 salió cara
 return resultados
def simulacion(n, m,punto b=False):
 #n -> numero de monedas
 #m -> numero de veces que se tira cada moneda
 #v1 -> Fraccion de caras de la primera moneda tirada.
 #vrand -> Fraccion de caras de una moneda escogida al azar.
 #vmin -> Fraccion de caras de la moneda con menor frecuencia de caras.
   v1 = []
   vrand = []
   vmin = []
   crand = np.random.choice(n) # Escoge la moneda al azar de las n que se van a tirar para v
   caras = np.zeros(n) #suma de caras por cada moneda
   for tirada in range(m):
     # tira las n monedas m veces
        caras = caras + tirar monedas(n)
   frecuenciaCaras = caras/m
   v1 = frecuenciaCaras[0]
   vrand = frecuenciaCaras[crand]
   cmin = np.argmin(caras)
   vmin = frecuenciaCaras[cmin]
   if not punto b:
      print(f'Primera moneda: {v1}')
      print(f'Moneda al azar: {vrand} ')
      print(f'Moneda con menos caras: {vmin}')
   return v1, vrand, vmin
```

Punto (a)

Al ser monedas justas tenemos que $\mu = 0.5$, pues estamos utilizando una distribución uniforme.

```
n = 1000
m = 10
```

```
simulacion(n, m)
     Primera moneda: 0.3
     Moneda al azar: 0.6
     Moneda con menos caras: 0.0
     (0.3, 0.6, 0.0)
# Punto b
n = 1000
m = 10
ejecuciones = 1000000
v1s, vrands, vmins = [],[],[] # arreglos para guardar las frecuencias de caras de las monedas
for run in range(ejecuciones):
   v1,vrand,vmin = simulacion(n, m,punto_b=True)
   v1s.append(v1)
   vrands.append(vrand)
   vmins.append(vmin)
fig, axs = plt.subplots(3,1,sharey=True, tight_layout=True)
n bins = 10
axs[0].hist(v1s,bins=n bins)
axs[1].hist(vrands,bins=n_bins)
axs[2].hist(vmins,bins=n bins)
axs[0].set title('Primera moneda')
axs[1].set title('Moneda al azar')
axs[2].set_title('Moneda con menor frecuencia en caras')
plt.show()
```


Punto d

Aunque no pude realizar el punto c según la teoría vista en clase la moneda con la menor frecuencia no debería cumplir la cota de Hoeffding pues esta se escogió después de realizar el experimento y no antes como las otras dos monedas, y como ya sabemos esto viola la condición

para la desigualdad de Hoeffding que dice que la hipotesis se debe haber fijado antes de que se extraigan las muestras.

Punto e

Al escoger la moneda con menor frecuencia de caras es como de nuestro espacio de 1000 hipotesis o de nuestra bolsa con 1000 hipotesis tomar una hipotesis o bin (moneda con menor frecuencia de caras), estamos tomando el bin después del muestreo de los datos (error), las otras dos monedas si se tomaron antes del muestreo.

Ejercicio 1.11

Tenemos $f:X\to Y$ donde $X=\mathbb{R}$ y $Y=\{-1,1\}$, para aprender f tenemos el siguiente espacio de hpotesis $H=\{h_1,h_2\}$ donde h_1 es la función constante +1 y h_2 la función constante -1.

Punto a

No hay garantía que S pueda producir una mejor hipotesis que tenga mejor desempeño fuera de D, supongamos que f tiene 100+1 en D pero tiene -1 en el resto de puntos en X, es decir, por fuera de D, aqui vemos que S escogerá una mala hipotesis pues nunca le dará a ningún punto, sin enmbargo el algoritmo C tiene mas chances pues tiene un chance del 50% de ajustar los datos, en resumen, en este caso es mejor C que S por fuera de D.

Punto b

En el punto a hay un caso donde el algortimo ${\cal C}$ escoge una mejor hipotesis que el algoritmo ${\cal S}.$

Punto c

Con p=0.9 esta vez el algoritmo C escogerá siempre una peor hipotesis que el algoritmo S, ya que si cada punto en D es +1 según la definición de S este escogerá la hipotesis h_1 y el algoritmo C escogerá la hipotesis h_2 , afuera de D, es decir, en X-D la hipotesis h_1 tiene un chance del 0.9 de dar con f, mientras que h_2 sólo un 0.1.

Punto d

Se necesita que C siempre escoja a h_2 , esto se lograría según lo visto si p<0.5, de esta manera h_2 se parecerá mucho más a f que la hipotesis h_1 .

✓ 5 min 40 s completado a las 21:21