Computer Architecture

Chapter 1: Computer Abstractions and Technology
Exercises

Adapted from Computer Organization the Hardware/Software Interface – 5th

Ex1. Chip Manufacturing

Given the following table

Chip	Die size (mm²)	Estimated defect rate (per cm²)	Manufacturing size (nm)	Transistors (millions)
IBM Power5	389	0.30	130	276
Sun Niagara	380	0.75	90	279
AMD Opteron	199	0.75	90	233

- a) What is the Yield for the Sun Niagara and AMD chips, assume that $\alpha = 4$?
- b) Why does the Sun Niagara have a worse yield than the AMD Opteron, even though they have the same defect rate?

Ex2. Chip Manufacturing

- You are trying to figure out whether to build a new fabrication facility for your IBM Power5 chips. It costs \$1 billion to build a new fabrication facility. The benefit of the new fabrication is that you predict that you will be able to sell 3 times as many chips at 2 times the price of the old chips. The new chip will have an area of 186 mm², with a defect rate of 0.7 defects per cm². Assume the wafer has a diameter of 300 mm. Assume it costs \$500 to fabricate a wafer in either technology. You were previously selling the chips for 40% more than their cost.
- a) What is the cost of the old and the new PowerPC chips?
- b) What was/is the profit on each old/new PowerPC chip?
- c) If you sold 500,000 old Power5 chips per month, how long will it take to recoup the costs of the new fabrication facility?

Ex3. Performance

- Suppose we have made the following measurements:
 - Frequency of FP operations = 25%
 - Average CPI of FP operations = 4.0
 - Average CPI of other instructions = 1.33
 - Frequency of FPSQR= 2%
 - CPI of FPSQR = 20
- Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or to decrease the average CPI of all FP operations to 2.5. Compare these two design alternatives using the processor performance equation.

Ex4. Performance

- Assume a program requires the execution of:
 - -50×10^6 FP instructions,
 - -110×10^6 INT instructions,
 - -80×10^6 L/S instructions,
 - and $1^6 \times 106$ branch instructions.
- The CPI for each type of instruction is 1, 1, 4, and 2, respectively. Assume that the processor has a 2 GHz clock rate.
- a) By how much must we improve the CPI of FP instructions if we want the program to run two times faster?
- b) By how much must we improve the CPI of L/S instructions if we want the program to run two times faster?
- c) By how much is the execution time of the program improved if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch is reduced by 30%?

