RAPPELS

	POPULATION QUANTITATIVE		POPULATION QUALITATIVE DICHOTOMIQUE
POPULATION	ESTIMER	ESTIMER 02	ESTIMER TA = NA N
UN ECHON une estimation ponetuelle	$\hat{u} = \overline{z}$	$\hat{\sigma}^2 = S^2$ $= \frac{n}{n-1} S^2$	$\widehat{\mathcal{H}}_A = \frac{n_A}{n} = h_A$
Estimateur = V.a. = Formule de ealeul	$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\hat{\sigma} = \frac{1}{m} \sum_{i=1}^{m} X_{i}^{2} - X^{2}$ $= \sum_{i=1}^{m} \sum_{j=1}^{m} X_{j}^{2} - X^{2}$	$ \frac{\vec{n}_A}{\vec{n}_A} = \frac{n_A}{n} $ $ \text{avec } n_A = \sum_{\lambda=1}^{n} X_{\lambda} $ $ \vec{n}_A = \frac{n_A}{n} $ $ \vec{n}_A = \frac{n_A}{n$
Bonne "représentation" biais?	$E(\hat{\mu}) = \mu$ non!	$E(\hat{\delta}^2) = \frac{n-1}{m} \delta^2$ On corrige l'estimateur.	E(TÂ) = TA nm!
		$\frac{n}{n-1} = \frac{n}{n-1} = \frac{n}{n} = \frac{n}{n}$ $E\left(\frac{n}{n-1}, \frac{n}{n}\right) = \frac{n}{n} = \frac{n}{n}$ $hon bisis i$	
Précision efficace?	$Var\left(\hat{\mu}\right) = \frac{\sigma^2}{n}$ oui!	?	$Var(\widehat{\Pi}_{A}) = \frac{\overline{\Pi}_{A}(1-\overline{\Pi}_{A})}{n}$ $Oui ! \bigcirc$
loi de <u>Probabilité</u>	voir distribution d'échentillonnage	voir distribution d'échantillonnage	Voir distribution d'échantillonnage

Construction des estimateurs

Jusqu'ici: (voir RAPPELS)

- construction intuitive : $\hat{\mu} = \overline{x}$ $\hat{\pi}_A = n_A/n$
- avec adaptation éventuelle pour correction

de biais:
$$\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{k=1}^{\infty} (x_k - \bar{x})^2$$

$$\frac{cat}{s} : \hat{\sigma}^2 = \frac{1}{s} \sum_{k=1}^{\infty} (x_k - \bar{x})^2$$

N.B. :EAS

(NB): utile pour les exercices: $\lambda^{2} = \frac{1}{n} \sum_{k=1}^{n} (n_{k} - \overline{\alpha})^{2} = (1 \sum_{k=1}^{n} n_{k}^{2} - \overline{\alpha})^{2} = n_{k}^{2} - \overline{\alpha}^{2}$ $= n_{k}^{2} - \overline{\alpha}^{2} = n_{k}^{2} - \overline{\alpha}^{2}$ $= n_{k}^{2} - \overline{\alpha}^{2}$

$Q'_{\alpha} \mu'_{\alpha} = E(x^{\alpha}) \quad (Robs \ Ch.4)$ $Q'_{\alpha} \mu'_{\alpha} = E(x^{\alpha}) \quad (Robs \ Ch.4)$

Méthode des moments

Le premier moment de la population (μ) est le plus important dans le « résumé » de la loi de probabilité.

Si le paramètre à estimer est θ , μ'_1 dépendra de θ : $\mu'_1 = g(\theta)$

A partir de l'échantillon $(x_1, x_2, ..., x_n)$, on estime μ'_1 par $m'_1 = m'_1(x_1, x_2, ..., x_n)$

 \Rightarrow Il suffit de résoudre $m'_1 = g(\theta)$ pour obtenir un estimateur de θ :

$$\hat{\theta} = h(x_1, x_2, \dots, x_n)$$

Trouver la valeur de 8 qui maximise la probabilité d'obtenir l'échantillon effectivement observe "

Fontion de vraisemblance = Probabilité d'obtenir l'échon effectivement observé, soit (x, x, ..., xm) EAS

disciets

$$= \frac{n}{n} \left[(x_1 = x_1) \cap (x_2 = x_2) \cap \dots \cap (x_n = x_n) \right]$$

$$[\ln(X_2 = x_2)]$$
. $[\ln(X_n = x_n)]$ in dependence des X_i

$$= \left[\ln \left(X_1 = x_1 \right) \right] \cdot \left[\ln \left(X_2 = x_2 \right) \right] \cdot \dots \cdot \ln \left(X_n = x_m \right) \quad \text{des } X_2$$

$$= \int_{-\infty}^{\infty} \ln \left(X_1 = x_1 \right) \cdot \left[\ln \left(X_2 = x_2 \right) \right] \cdot \dots \cdot \ln \left(X_n = x_m \right) \quad \text{des } X_2$$

$$= \int_{-\infty}^{\infty} \ln \left(X_1 = x_1 \right) \cdot \left[\ln \left(X_2 = x_2 \right) \right] \cdot \dots \cdot \ln \left(X_n = x_n \right) \quad \text{des } X_2$$

$$= \int_{-\infty}^{\infty} \ln \left(X_1 = x_1 \right) \cdot \left[\ln \left(X_2 = x_2 \right) \right] \cdot \dots \cdot \ln \left(X_n = x_n \right) \quad \text{des } X_2$$

$$\delta x_1(x_1) \cdot \delta x_2(x_2) \cdot \dots \cdot \delta x_n(x_n)$$

$$f(x_1) \cdot f(x_2) \cdot \dots \cdot f(x_n)$$

$$f(x_n) \cdot f(x_n) \cdot \dots \cdot f(x_n)$$

$$e \quad \text{car EAS} : X_i identiquement distributes}$$

$$n$$

) can EAS indépendance des Xi

continus

· dépend de O

& En protique, on maximise plus souvent la L(0, x, ..., x,)

- équivalent - élimine produits et puissances.