Université d'Évry Val d'Essonne 2009-2010

M54 algèbre et arithmétique

Feuille 4 — Idéaux

Exercice 1. Soit $A = \mathcal{C}([0,1], \mathbf{R})$ l'anneau des fonctions continues de [0,1] dans \mathbf{R} , et I le sous-ensemble des fonctions qui s'annulent en 1/2. Montrer que I est un idéal de A. Est-il premier, maximal?

Exercice 2. 1. Montrer que l'image réciproque d'un idéal par un morphisme d'anneaux est un idéal.

- 2. Montrer que l'image directe d'un idéal par un homomorphisme d'anneaux n'est en général pas un idéal. Montrer que c'en est un si le morphisme est surjectif.
- 3. Que peut-on dire de l'image réciproque et de l'image directe d'un idéal premier ou maximal par un homomorphisme d'anneaux (éventuellement surjectif)?

Exercice 3. Soit A un anneau commutatif unitaire. Montrer que A est un corps si et seulement si ses seuls idéaux sont (0) et (1).

Exercice 4. Soient k et k' deux corps. Montrer que $k \times k'$ est un anneau principal.

Exercice 5. Soit A un anneau commutatif, I un idéal propre de A. On appelle radical de I l'ensemble $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N}, x^n \in I\}.$

- 1. Montrer que \sqrt{I} est un idéal.
- 2. Dans **Z**, calculer $\sqrt{12\mathbf{Z}}$, $\sqrt{72\mathbf{Z}}$.
- 3. Montrer que $\sqrt{I} \cap \sqrt{J} = \sqrt{I \cap J} = \sqrt{IJ}$.
- 4. Montrer que le radical de I est l'intersection des idéaux premiers qui le contiennent.

Exercice 6. Déterminer $I + J, I \cap J, IJ, \sqrt{I}, \sqrt{J}$ pour

- 1. $I = 8\mathbf{Z}$ et $J = 12\mathbf{Z}$ dans Z;
- 2. I = (X 1) et J = (X) dans $\mathbf{Z}[X]$;
- 3. $I = (X^2 + 1)$ et J = (X + 2) dans $\mathbf{Z}[X]$.

Exercice 7. Déterminer tous les idéaux de l'anneau $\mathbb{Z}/180\mathbb{Z}$. Lesquels sont premiers, lesquels sont maximaux?

Exercice 8. Soit A un anneau commutatif unitaire intègre tel que pour tout élément non nul a de A, l'idéal (a) est premier. Montrer que A est un corps (on prendra $b \neq 0$ et $a = b^2$). En déduire que si A est un anneau non nul dont tout idéal propre est premier, alors A est un corps.

Exercice 9 (anneaux locaux). Soit A un anneau commutatif unitaire qui n'est pas un corps. Montrer que les conditions suivantes sont équivalentes :

- 1. La somme de deux non-inversibles est un non-inversible.
- 2. Les non-inversibles forment un idéal.
- 3. L'anneau A possède un unique idéal maximal.

Exercice 10. Soient I et J deux idéaux d'un anneau commutatif unitaire A, tels que I + J = A.

- 1. Montrer que pour tout n, on a $I^n \subset I$.
- 2. Montrer que $(x+y)^{2n-1} \in I^n + J^n$.
- 3. En déduire que $I^n + J^n = A$.

Exercice 11 (idéaux principaux). 1. Montrer que l'idéal (2, X) de $\mathbf{Z}[X]$ n'est pas principal.

2. Montrer que l'idéal $(5X^2, 17X^2, 3X^2 - X)$ de $\mathbf{Z}[X]$ est principal.

Exercice 12 (suites croissantes d'idéaux). Soit A un anneau commutatif et (I_n) une suite croissante d'idéaux.

- 1. Montrer que $I = \bigcup_n I_n$ est un idéal de A.
- 2. On suppose que A est principal. Montrer qu'il existe $n_0 \in \mathbf{N}$ tel que $I = I_{n_0}$.
- 3. En déduire que l'anneau $\mathbf{R}^{\mathbf{R}}$ n'est pas principal. (On pourra considérer l'idéal I_n des fonctions qui s'annulent en k pour tout $k \geq n$.)

Exercice 13 (caractéristique). Soit p un nombre premier et A un anneau commutatif intègre de caractéristique p.

- 1. Montrer que $p \cdot a = 0$ pour tout $a \in A$.
- 2. Montrer que p divise le coefficient binomial $\binom{p}{k}$ pour tout k compris entre 1 et p-1.
- 3. Montrer que $(a+b)^p = a^p + b^p$, pour tous $a, b \in A$.
- 4. En déduire que l'application $F_p: A \to A, x \to x^p$ est un endomorphisme d'anneaux. On appelle F_p l'endomorphisme de Frobenius.
- 5. Montrer que si A est fini, alors F_p est un automorphisme.

Exercice 14. On désigne par \mathbb{F}_q un corps fini ayant $q = p^n$ éléments, avec p un nombre premier. Montrer que $\forall x \in \mathbb{F}_q$ on a : $x^q = x$. Indication : Pour $x \neq 0$, appliquer le théorème de Lagrange au groupe $(\mathbb{F}_q^{\times}, \times)$.

Exercice 15. Soit A un anneau intègre fini de caractéristique p.

- 1. Montrer que p > 0.
- 2. Monter que l'on peut munir A d'une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel de dimension finie. En déduire que le cardinal de A est une puissance de p.