VSA Course Assignment Sheet

Mon 11/30/2020

and find horizontal

Course Name: Calculus I

Quarter 2

Day	Class Dates	Daily Learning Objectives Student will learn:	Assignment to be Completed by Class Start Unless Otherwise Indicated
17	Mon 11/2/2020	 ☐ How to approximate a zero of a function using Newton's Method. 	 □ Read: Section 3.8, pp 194-197. □ Upload homework: Section 3.7, questions 7, 11, 13, 17, 25, 29, pp 190-193.
18	Wed 11/4/2020	□ About various differentiation techniques and applications.	 □ Upload homework: Section 3.8, questions 3, 5, 7, 11, 21, pp 198-199. □ Upload homework: chap 3 Study Guide, Part A.
19	Mon 11/9/2020	 How to find critical numbers and relative extrema of a function. 	□ Read: Section 4.1, pp 206-210. □ Upload homework: chap 3 Study Guide, Part B.
20	Wed 11/11/2020	□ About Rolle's Theorem and the Mean Value Theorem to find relative extrema and instantaneous rates of change.	 Read: Section 4.2, pp 214-217. Upload homework: Section 4.1, questions 5-17 (odd), 29, 33, 71, 73, pp 211-213. Submit chap 3 Test. Due Saturday 11/14/2020 at 11:55 pm ET.
21	Mon 11/16/2020	 ☐ How to determine when a function is increasing or decreasing, and how to apply the first derivative test. 	 □ Read: Section 4.3, pp 221-226. □ Upload homework: Section 4.2, questions 5-19(odd), 23, 25, 33, 37-43 (odd), pp 218-220.
22	Wed 11/18/2020	□ About upward and downward concavity and points of inflection and how to use the second derivative test to find relative extrema.	 □ Read: Section 4.4, pp 231-235. □ Upload homework: Section 4.3, questions 3, 7, 13, 17, 25, 27, 37, 39, 41, 95, 99, pp 227-230.
Than	ksgiving Break - No	o Classes	
	Mar. 44/20/2020	 How to evaluate limits at infinity to determine end behavior of a function 	□ Read: Section 4.5, pp 239-245.

□ Upload homework: Section 4.4, questions 3, 5, 11, 13, 15, 21, 31-35 (odd), 77, pp 236-238.

		asymptotes.					
24	Wed 12/2/2020	 How to analyze and sketch the graph of a function (part 1). 	 Read: Section 4.6, pp 249-251. Upload homework: Section 4.5, questions 5, 7, 9, 11, 13, 17, 23, 25, 29, 31, 45, 53, 57, pp 246-248. Submit Quiz 4-1 (covers sections 4.1 through 4.3). Due Saturday 12/5/2020 at 11:55 pm ET 				
25	Mon 12/7/2020	 How to analyze and sketch the graph of a function (part 2). 	 Read: Section 4.6, pp. 251-255. Upload homework: Section 4.6, Part A, questions 5, 7, 11, 17, 63, 65, 67, pp. 256-259. 				
26	Wed 12/9/2020	 How to solve applied optimization problems (part 1). 	 Read: Section 4.7, pp 260-265. Upload homework: Section 4.6, Part B, questions 15, 19, 21, 23, 29, 33, 35, pp 256-259. Submit Quiz 4-2 (covers section 4.4 and 4.5). Due Saturday 12/12/2020 at 11:55 pm ET. 				
27	Mon 12/14/2020	 How to solve applied optimization problems (part 2). 	□ Reread: Section 4.7, pp 260-265. □ Upload homework: Section 4.7, Part A, questions 5-17 (odd), 19, page 266.				
28	Wed 12/16/2020	 About the value of the differential compared with the value of the actual change in y. How to estimate a propagated error using a differential. 	 Read: Section 4.8, pp 271-275. Upload homework: Section 4.7, Part B, questions 23 (a and c), 29, 35, 37, 41, pp 267-270. Submit Quiz 4-3 (covers section 4.6). Due Friday 12/18/2020 at 11:55 pm ET. 				
Chris	Christmas Break - No Classes						
29	Mon 1/4/2021	 How to find antiderivatives using indefinite integrals. How to find a particular solution to a differential equation and solve position/velocity/acceleration problems. 	 □ Read: Section 5.1, pp 284-290. □ Upload homework: Section 4.8, questions 1, 7, 9, 21, 25, 29, 31, 37, 39 (a and c), 47, pp 276-277. 				
30	Wed 1/6/2021	 How to write and evaluate a summation using sigma notation and how to find the area of a region using limits. 	 Read: Section 5.2, pp 294-302. Upload homework: Section 5.1, questions 5-29 (odd), 31, 33, 35, 37, 39, 45, 55, 60, 63, 69, pp 291-293. 				
31	Mon 1/11/2021	□ To become more proficient using the concepts learned in chapters 1-4.	□ Upload homework: Midterm Study Guide, Part A.				

32	Wed 1/13/2021	□ To become more proficient using the concepts learned in chapters 1-4.	□ Upload homework: Midterm Study Guide, Part B.				
Midterm Exam Week - Midterms open on 1/15/21 at 12:01 am ET and close on 1/22/21 at 11:55 pm ET.							