Side 1: True or False. Justify.

- (1) The function $f(x) = |x^3|$ is differentiable at x = 0.
- f (2) If $f:[a,b] \to \mathbb{R}$ is continuous and f attains its maximum on [a,b] at x=c, then f'(c)=0.
 - (3) Every nonempty set of real numbers that is bounded above has a maximum element.
- (4) The supremum of the set $\{x \in \mathbb{Q} \mid x < \pi\}$ is π .
 - (5) If the domain of f is \mathbb{R} , then f is continuous at some value of x.
- (6) Every decreasing sequence is convergent.
- (7) The function $f(x) = x^3 2x^2 + 5$ is increasing or decreasing on (0,3).
- (8) The sequence $\left\{\frac{\sin(n^2)}{n}\right\}_{n=1}^{\infty}$ is convergent.
 - (9) We can prove that every polynomial p(x) has a property P by induction on degree by showing that every constant function has property P and then showing that if p(x) has property P then so does p'(x).
- (10) For every pair of integers $m, n \in \mathbb{Z}, m^2 \neq 8n^2$.
 - (11) If f is continuous on [1, 3], and y > f(1) > f(3), then there is no $c \in [1, 3]$ with f(c) = y.

(m,n) + (0,0)

- (12) If f and g are continuous on (-7,7) and g(4)=-1, then $\lim_{x\to 4}(f\circ g)(x)=f(-1)$.
 - (13) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both diverge, then so does $\{a_n + b_n\}_{n=1}^{\infty}$.
- (14) If f(x) > 5 for all $x \neq -7$ and $\lim_{x \to -7} f(x) = L$, then L > 5.

Side 2: True or False. Justify.

- (1) The polynomial $p(x) = x^5 + 5x + 1$ has exactly one (real) root.
- \uparrow (2) If f is differentiable and f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on (a, b).
- (3) The maximum of the set $\{x \in \mathbb{Q} \mid x < \pi\}$ is π .
- \mathcal{T} (4) If S is a set of real numbers and $\sup(S) \in S$, then $\sup(S)$ is the maximum element of S.
- (5) Every convergent sequence is bounded.
 - (6) Every monotone sequence has a convergent subsequence.
 - (7) If f is differentiable at x = 2 and f(2) = 5, then the sequence $\left\{ f\left(\frac{2n+1}{n+4}\right) \right\}_{n=1}^{\infty}$ converges to 5.
 - (8) The function $f(x) = x^3 2x^2 + 5$ attains a minimum value on (0,3).
- (9) The sequence $\{\sin(n^2)\}_{n=1}^{\infty}$ has a convergent subsequence.
- (10) For any real numbers a < b, there is an integer c such that a < n < b.
- (11) If f is differentiable on \mathbb{R} , $f'(x) \leq 0$ for all x > 0, and $f(x) \geq -5$ for all x > 0, then the sequence $\{f(n)\}_{n=1}^{\infty}$ converges.
 - (12) We can prove that every polynomial p(x) has a property P by induction on degree by showing that every constant function has property P and then showing that if p'(x) has property P then so does p(x).
- (13) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both diverge to $+\infty$, then so does $\{a_n+b_n\}_{n=1}^{\infty}$.
- (14) If $\lim_{x \to -3} f(x) > 5$, then $\exists \delta > 0$ such that f(x) > 5 for all $x \in (-3 \delta, -3) \cup (-3, -3 + \delta)$.

*T if all 2n+2 in domain of f