Problem Statement: Abalone Age Prediction

1. Download the dataset: Dataset

2. Load the dataset into the tool.

```
import numpy as np
import pandas as pd

ds=pd.read_csv("abalone.csv")

# Rings / integer / -- / +1.5 gives the age in years

ds['Age']=ds["Rings"]+1.5

ds.head(5)
```

Sex weight	Length \	Diameter	Height	Whole weight	Shucked weight	Viscera
0 M	0.455	0.365	0.095	0.5140	0.2245	
0.1010						
1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485						
2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415						
3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140						
4 I	0.330	0.255	0.080	0.2050	0.0895	
0.0395						

	Shell weight	Rings	Age
0	0.150	15	16.5
1	0.070	7	8.5
2	0.210	9	10.5
3	0.155	10	11.5
4	0.055	7	8.5

3. Perform Below Visualizations.

- Univariate Analysis
- Bi-Variate Analysis
- Multi-Variate Analysis

```
# univarient analysis
```

#frequency table for age

```
ft = ds1['Age'].value counts()
print("Frequency table for Age is given below")
print("{}\n\n".format(ft))
# mean
print("Mean, Median, std \n")
ma=ds1['Age'].mean() #mean of age
mh = ds1['Height'].mean() #mean of height
mel = ds1['Length'].median() #median value of length
stw = ds1['Whole weight'].std() #standard devation of whole weight
#chart
import matplotlib.pyplot as plt # library for plot or graph
import seaborn as sns
plt.subplot(1,2,1)
ch = ds1.boxplot(column='Diameter', grid=True, color = 'red')
plt.title('Box plot')
plt.subplot(1,2,2)
DC = sns.kdeplot(ds1['Diameter'])
plt.title('Density Curve')
print("1-mean of age = ",ma)
print("2-mean of height = ", mh)
print("3-median value of length = ", mel) #
print("4-standard devation of whole weight = ",stw)
print("5-frequency table for rings = \n {}" .format(fre))
print("\nChart\n\n6-boxplot of Diameter", flush=True)
Frequency table for Age is given below
11.5
        32
10.5
        28
8.5
        20
9.5
       18
13.5
       17
12.5
       16
14.5
       13
15.5
       11
16.5
       10
17.5
        7
6.5
        6
```

```
7.5 5
21.5 4
5.5
       4
      3
20.5
19.5
22.5
       2
18.5
Name: Age, dtype: int64
Mean, Median, std
1-mean of age = 12.235
2\text{-mean of height} = 0.13482500000000003
3-median value of length = 0.53
4-standard devation of whole weight = 0.48292555269001314
5-frequency table for rings =
10
      32
      28
7
     20
8
     18
12
    17
11
    16
13
    13
14
    11
15
     10
     7
16
5
     6
6
      5
20
4
      4
19
      3
18
      3
21
      2
17
      1
Name: Rings, dtype: int64
Chart
```

6-boxplot of Diameter

#multi-varient analysis

```
import matplotlib.pyplot as plt
import seaborn as sns

ds1=ds.head(200)
df=sns.countplot(x="Viscera weight",hue='Sex',data=ds1)
print(df)
AxesSubplot(0.125,0.125;0.775x0.755)
```


4. Perform descriptive statistics on the dataset.

ds.describe()

	Length	Diameter	Height	Whole weight	Shucked
weight \setminus					
		177.000000 4	177.000000	4177.000000	
4177.0000		0 405001	0 100516	0.000740	
mean	0.523992	0.407881	0.139516	0.828742	
0.359367 std	0.120093	0.099240	0.041827	0.490389	
0.221963	0.120093	0.099240	0.041027	0.490369	
min	0.075000	0.055000	0.000000	0.002000	
0.001000	0.07000	0.00000	0.00000	0.002000	
25%	0.450000	0.350000	0.115000	0.441500	
0.186000					
50%	0.545000	0.425000	0.140000	0.799500	
0.336000					
75%	0.615000	0.480000	0.165000	1.153000	
0.502000	0.015000	0.650000	1 100000	0.005500	
max	0.815000	0.650000	1.130000	2.825500	
1.488000					
Vi	scera weight	Shell weigh	t Rir	nas A	ge
count				000 4177.0000	_
mean	0.180594				
std	0.109614			.69 3.2241	
min	0.000500	0.00150	0 1.0000	2.5000	00
25%	0.093500			9.5000	
50%	0.171000	0.23400	0 9.0000	10.5000	00

75%	0.253000	0.329000	11.000000	12.500000
max	0.760000	1.005000	29.000000	30.500000

5. Check for Missing values and deal with them.

ds.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
9	Age	4177 non-null	float64
d+ 170	es. float6/1/8)	int64(1) object	(1)

dtypes: float64(8), int64(1), object(1)

memory usage: 326.5+ KB

ds.isnull().sum()

0 Sex Length 0 Diameter Height 0 0 Whole weight Shucked weight 0 Viscera weight 0 Shell weight Rings 0 Age

dtype: int64

ds.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight '
0	True	True	True	True	True	True
1	True	True	True	True	True	True
2	True	True	True	True	True	True
3	True	True	True	True	True	True
4	True	True	True	True	True	True
						• • •
4172	True	True	True	True	True	True
4173	True	True	True	True	True	True
4174	True	True	True	True	True	True
4175	True	True	True	True	True	True

4176	True	True	True	Tru	е	True	True
0	Viscera	weight True	Shell	weight True	Rings True	Age True	
1		True		True	True	True	
2		True		True	True	True	
3		True		True	True	True	
4		True		True	True	True	
4172		True		True	True	True	
4173		True		True	True	True	
4174		True		True	True	True	
4175		True		True	True	True	
4176		True		True	True	True	

[4177 rows x 10 columns]

6. Find the outliers and replace them outliers

#occurence of outliers
#a data point in a data set that is distant from all other
observations

sns.boxplot(ds.Diameter)

/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/ _decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

<AxesSubplot:xlabel='Diameter'>


```
Q1= ds.Diameter.quantile(0.25)
Q3=ds.Diameter.quantile(0.75)
IQR=03-01
            #spread the middle values are
upper limit =Q3 + 1.5*IQR
lower limit =Q1 - 1.5*IQR
ds['Diameter'] =
np.where(ds['Diameter']>upper_limit,30,ds['Diameter'])
sns.boxplot(ds.Diameter)
/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/
decorators.py:36: FutureWarning: Pass the following variable as a
keyword arg: x. From version 0.12, the only valid positional argument
will be `data`, and passing other arguments without an explicit
keyword will result in an error or misinterpretation.
 warnings.warn(
<AxesSubplot:xlabel='Diameter'>
```


7. Check for Categorical columns and perform encoding.

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

ds1['Sex'] = le.fit_transform(ds1['Sex'])
ds1

0 = female, 1 = infant, 2 = male

	Sex	Length	Diameter	Height	Whole	weight	Shucked	weight	\
0	2	0.455	0.365	0.095		0.5140		0.2245	
1	2	0.350	0.265	0.090		0.2255		0.0995	
2	0	0.530	0.420	0.135		0.6770		0.2565	
3	2	0.440	0.365	0.125		0.5160		0.2155	
4	1	0.330	0.255	0.080		0.2050		0.0895	
195	2	0.500	0.405	0.155		0.7720		0.3460	
196	0	0.505	0.410	0.150		0.6440		0.2850	
197	2	0.640	0.500	0.185		1.3035		0.4445	
198	2	0.560	0.450	0.160		0.9220		0.4320	
199	2	0.585	0.460	0.185		0.9220		0.3635	
						_			
	Visc	era weigh		_	Rings	Age			
0		0.101	. 0	0.150	15	16.5			
1		0.048	35	0.070	7	8.5			
2		0.141	. 5	0.210	9	10.5			
3		0.114	10	0.155	10	11.5			
4		0.039	95	0.055	7	8.5			

```
. .
                                . . .
                                       . . .
                 . . .
              0.1535
                             0.245
195
                                        12 13.5
196
              0.1450
                             0.210
                                        11 12.5
197
              0.2635
                             0.465
                                        16 17.5
                                        15 16.5
198
              0.1780
                              0.260
199
              0.2130
                              0.285
                                        10 11.5
```

[200 rows x 10 columns]

8. Split the data into dependent and independent variables.

#Splitting the Dataset into the Independent Feature Matrix

```
x = ds1.iloc[:, 0:9]
Х
     Sex Length Diameter Height Whole weight Shucked weight \
       2
           0.455
                           0.095
                                          0.5140
                                                          0.2245
0
                     0.365
1
       2
          0.350
                     0.265 0.090
                                          0.2255
                                                          0.0995
2
       0 0.530
                     0.420 0.135
                                          0.6770
                                                          0.2565
3
       2
          0.440
                     0.365 0.125
                                          0.5160
                                                          0.2155
4
       1 0.330
                     0.255 0.080
                                          0.2050
                                                          0.0895
. .
     . . .
            . . .
                       . . .
                              . . .
                                             . . .
                                                             . . .
195
       2
         0.500
                     0.405 0.155
                                          0.7720
                                                          0.3460
196
       0
          0.505
                     0.410 0.150
                                          0.6440
                                                          0.2850
197
       2 0.640
                     0.500 0.185
                                          1.3035
                                                          0.4445
198
       2
           0.560
                     0.450 0.160
                                          0.9220
                                                          0.4320
199
           0.585
                     0.460
                                          0.9220
                                                          0.3635
                             0.185
     Viscera weight
                     Shell weight Rings
             0.1010
                            0.150
                                      15
0
                                       7
                            0.070
1
             0.0485
2
                                       9
             0.1415
                            0.210
3
             0.1140
                            0.155
                                      10
4
             0.0395
                            0.055
                                       7
                . . .
                              . . .
                                     . . .
195
             0.1535
                            0.245
                                      12
196
             0.1450
                            0.210
                                      11
             0.2635
                            0.465
                                      16
197
198
             0.1780
                            0.260
                                      15
199
             0.2130
                            0.285
                                      10
```

[200 rows x 9 columns]

#Extracting the Dataset to Get the Dependent Vector

```
y = ds1.iloc[:,9:10]
print(y)

         Age
0     16.5
```

```
1 8.5

2 10.5

3 11.5

4 8.5

......

195 13.5

196 12.5

197 17.5

198 16.5

199 11.5

[200 rows x 1 columns]
```

9. Scale the independent variables

#scaling the independent variables using scale and MinMaxScaler

```
from sklearn.preprocessing import scale
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
x scaled = mm.fit transform(x)
y scaled = mm.fit transform(y)
x scaled
array([[1.
               , 0.51351351, 0.52808989, ..., 0.17680075,
0.14070352,
        0.64705882],
                 , 0.32432432, 0.30337079, ..., 0.07857811,
0.06030151,
       0.176470591,
                  , 0.64864865, 0.65168539, ..., 0.2525725,
       [0.
0.20100503,
       0.294117651,
       . . . ,
                  , 0.84684685, 0.83146067, ..., 0.4808232 ,
       [1.
0.45728643,
       0.70588235],
                 , 0.7027027 , 0.71910112, ..., 0.32086062,
       [1.
0.25125628,
       0.64705882],
                  , 0.74774775, 0.74157303, ..., 0.38634238,
0.27638191,
        0.35294118]])
y scaled
array([[0.64705882],
       [0.17647059],
```

```
[0.29411765],
[0.35294118],
[0.17647059],
[0.23529412],
[0.94117647],
[0.70588235],
[0.29411765],
[0.88235294],
[0.58823529],
[0.35294118],
[0.41176471],
[0.35294118],
[0.35294118],
[0.47058824],
[0.17647059],
[0.35294118],
[0.17647059],
[0.29411765],
[0.41176471],
[0.35294118],
[0.47058824],
[0.29411765],
[0.35294118],
[0.41176471],
[0.41176471],
[0.47058824],
[0.64705882],
[0.41176471],
[0.35294118],
[0.64705882],
[0.82352941],
[0.88235294],
[0.52941176],
[0.23529412],
[0.70588235],
[0.23529412],
[0.41176471],
[0.29411765],
[0.29411765],
[0.58823529],
[0.05882353],
[0.05882353],
[0.
[0.17647059],
[0.29411765],
[0.17647059],
[0.11764706],
[0.29411765],
[0.23529412],
[0.17647059],
```

```
[0.35294118],
[0.35294118],
[0.17647059],
[0.23529412],
[0.23529412],
[0.23529412],
.01
          ],
[0.17647059],
[0.17647059],
[0.29411765],
[0.35294118],
[0.17647059],
[0.23529412],
[0.23529412],
[0.47058824],
[0.52941176],
[0.35294118],
[0.11764706],
[0.52941176],
[0.23529412],
[0.94117647],
[0.41176471],
[0.52941176],
[0.64705882],
[0.29411765],
[0.35294118],
[0.41176471],
[0.58823529],
[0.29411765],
[0.47058824],
[0.70588235],
[1.
           ],
[0.58823529],
[0.47058824],
[0.52941176],
[0.35294118],
[0.29411765],
[0.47058824],
[0.64705882],
[0.47058824],
[0.52941176],
[0.35294118],
[0.64705882],
[0.58823529],
[0.29411765],
[0.23529412],
[0.17647059],
[0.35294118],
[0.17647059],
[0.64705882],
```

```
[0.64705882],
[0.35294118],
[0.47058824],
[0.47058824],
[0.41176471],
[0.35294118],
[0.29411765],
[0.29411765],
[0.29411765],
[0.29411765],
[0.29411765],
[0.29411765],
[0.41176471],
[0.41176471],
[0.41176471],
[0.35294118],
[0.29411765],
[0.23529412],
[0.29411765],
[0.17647059],
[0.58823529],
[0.11764706],
[0.11764706],
[0.05882353],
[0.11764706],
[0.23529412],
[0.88235294],
[0.82352941],
[0.76470588],
[0.29411765],
[0.17647059],
[0.17647059],
[0.17647059],
[0.23529412],
[0.17647059],
[0.29411765],
[0.29411765],
[0.29411765],
[0.35294118],
[0.35294118],
[0.70588235],
[0.41176471],
[0.35294118],
[0.35294118],
[0.35294118],
[0.29411765],
[0.05882353],
[0.
[0.64705882],
[0.29411765],
```

```
[0.35294118],
[0.35294118],
[0.47058824],
[0.35294118],
[0.52941176],
[0.70588235],
[0.52941176],
[0.52941176],
[0.52941176],
[0.52941176],
[0.47058824],
[0.82352941],
[0.70588235],
[0.58823529],
[0.94117647],
[0.94117647],
[0.58823529],
[0.47058824],
[0.58823529],
[0.17647059],
[0.23529412],
[0.23529412],
[0.05882353],
[0.17647059],
[0.05882353],
[0.23529412],
[0.
           ],
[0.41176471],
[0.58823529],
[1.
[0.35294118],
[0.35294118],
[0.47058824],
[0.52941176],
[0.47058824],
[0.35294118],
[0.41176471],
[0.29411765],
[0.52941176],
[0.47058824],
[0.58823529],
[0.23529412],
[0.35294118],
[0.47058824],
[0.41176471],
[0.70588235],
[0.64705882],
[0.35294118]])
```

10. Split the data into training and testing

```
from sklearn.model_selection import train test split # library for
split the data into training and testing
x train, x test, y train, y test =
train test split(x scaled, y scaled, train size=0.80, test size =
0.20, random state=0)
x train
array([[0.5
               , 0.17117117, 0.15730337, ..., 0.0261927 ,
0.01809045,
        0.17647059],
                  , 0.71171171, 0.69662921, ..., 0.34985968,
       [0.
0.31155779,
        0.47058824],
                  , 0.73873874, 0.71910112, ..., 0.49672591,
       [0.
0.27638191,
        0.41176471],
                  , 0.48648649, 0.47191011, ..., 0.16651076,
       [1.
0.15577889,
        0.352941181,
                  , 0.52252252, 0.5505618 , ..., 0.19363891,
0.14070352,
        0.17647059],
                  , 0.63963964, 0.68539326, ..., 0.42376052,
       [1.
0.27638191,
        0.23529412]])
y train
array([[0.17647059],
       [0.47058824],
       [0.41176471],
       [0.29411765],
       [0.58823529],
       [0.17647059],
       [0.29411765],
       [0.64705882],
       [0.29411765],
       [0.41176471],
       [0.23529412],
       [0.11764706],
       [0.47058824],
       [0.23529412],
       [0.
                  ],
       [0.35294118],
       [0.35294118],
```

```
[0.52941176],
[0.29411765],
[0.23529412],
[0.29411765],
[0.29411765],
[1.
           1,
[0.29411765],
[0.35294118],
[0.52941176],
[0.17647059],
[0.82352941],
[0.17647059],
[0.52941176],
[0.29411765],
[0.64705882],
[0.29411765],
[0.64705882],
[0.35294118],
[0.47058824],
[0.29411765],
[0.35294118],
[0.47058824],
[0.35294118],
[0.35294118],
[0.29411765],
[0.29411765],
[0.47058824],
[0.29411765],
[0.35294118],
[0.29411765],
[0.17647059],
[0.17647059],
[0.70588235],
[0.05882353],
[0.58823529],
[0.35294118],
[0.41176471],
[0.41176471],
[0.
[0.17647059],
[0.11764706],
[0.35294118],
[0.29411765],
[0.52941176],
[0.47058824],
[0.23529412],
[0.64705882],
[0.64705882],
[0.29411765],
[0.58823529],
```

```
[0.23529412],
[0.94117647],
[0.58823529],
[0.11764706],
[0.29411765],
[0.11764706],
[0.47058824],
[0.35294118],
[0.52941176],
[0.29411765],
[0.47058824],
[0.23529412],
[0.41176471],
[0.47058824],
[0.41176471],
[0.47058824],
[0.35294118],
[0.17647059],
[0.29411765],
[0.35294118],
[0.41176471],
[0.70588235],
[0.64705882],
[0.94117647],
[0.35294118],
[0.58823529],
[0.17647059],
[0.35294118],
[0.17647059],
[0.52941176],
[0.47058824],
[0.35294118],
[0.35294118],
[0.23529412],
[0.64705882],
[0.23529412],
[0.23529412],
[0.23529412],
[0.17647059],
[0.29411765],
[0.47058824],
[0.05882353],
[0.47058824],
[0.17647059],
[0.23529412],
[0.35294118],
[0.41176471],
[0.17647059],
[0.35294118],
[0.70588235],
```

```
[0.88235294],
       [0.52941176],
       [0.64705882],
       [0.41176471],
       [0.29411765],
       [0.64705882],
       [0.94117647],
       [0.23529412],
       [0.05882353],
       [0.82352941],
       [0.70588235],
       [0.47058824],
       [0.29411765],
       [0.41176471],
       [0.35294118],
       [0.70588235],
       [0.58823529],
       [0.41176471],
       [0.05882353],
       [0.23529412],
       [0.94117647],
       [0.35294118],
       [0.41176471],
       [0.58823529],
       [0.47058824],
       [0.41176471],
       [0.05882353],
       [0.52941176],
       [0.29411765],
       [0.
       [0.35294118],
       [0.29411765],
       [0.52941176],
       [0.35294118],
       [0.70588235],
       [0.35294118],
       [0.88235294],
       [0.35294118],
       [0.52941176],
       [0.58823529],
       [0.35294118],
       [0.17647059],
       [0.23529412]])
x test
array([[1. , 0.35135135, 0.37078652, 0.21052632, 0.08948413,
        0.08160377, 0.06828812, 0.09045226, 0.17647059],
                , 0.94594595, 0.94382022, 0.92105263, 0.76448413,
        0.66226415, 1. , 0.58291457, 0.58823529],
       [0. , 0.59459459, 0.60674157, 0.44736842, 0.25297619,
```

```
0.23632075, 0.23386342, 0.21105528, 0.35294118],
          , 0.54054054, 0.53932584, 0.47368421, 0.19543651,
0.17971698, 0.23666978, 0.15577889, 0.17647059],
      , 0.26126126, 0.25842697, 0.23684211, 0.04503968,
0.04009434, 0.0767072, 0.04020101, 0.23529412],
          , 0.7027027 , 0.71910112, 0.63157895, 0.39424603,
0.39481132, 0.48924228, 0.29145729, 0.35294118],
          , 0.45945946, 0.38202247, 0.28947368, 0.12757937,
0.12311321, 0.13283442, 0.11055276, 0.23529412],
          , 0.52252252, 0.49438202, 0.42105263, 0.19246032,
0.20141509, 0.1898971 , 0.14723618, 0.35294118],
          , 0.57657658, 0.56179775, 0.5 , 0.20297619,
0.19528302, 0.1655753 , 0.18090452, 0.41176471],
          , 0.83783784, 0.86516854, 0.78947368, 0.53234127,
0.46792453, 0.55846586, 0.44221106, 0.35294118],
          , 0.6036036 , 0.61797753, 0.36842105, 0.23611111,
0.27783019, 0.28718428, 0.16582915, 0.29411765],
        , 0.18018018, 0.14606742, 0.10526316, 0.01706349,
0.01698113, 0.03180543, 0.0201005, 0.05882353],
          , 0.72072072, 0.78651685, 0.73684211, 0.3609127 ,
[1.
0.36650943, 0.36202058, 0.28643216, 0.58823529],
          , 0.71171171, 0.71910112, 0.5 , 0.38035714,
0.35518868, 0.26753976, 0.30150754, 0.47058824],
          , 0.72972973, 0.70786517, 0.52631579, 0.36150794,
0.35283019, 0.45930776, 0.27638191, 0.29411765],
          , 0.67567568, 0.66292135, 0.44736842, 0.29285714,
0.26745283, 0.26753976, 0.25125628, 0.70588235],
          , 0.91891892, 0.94382022, 0.71052632, 0.7015873 ,
0.75896226, 0.72217025, 0.44723618, 0.88235294],
          , 0.76576577, 0.78651685, 0.65789474, 0.48888889,
0.44622642, 0.51730589, 0.40201005, 0.76470588],
          , 0.5045045 , 0.50561798, 0.34210526, 0.19543651,
0.21367925, 0.20579981, 0.13567839, 0.23529412],
          , 0.78378378, 0.71910112, 0.81578947, 0.42380952,
0.44386792, 0.52946679, 0.30653266, 0.52941176],
          , 0.81081081, 0.7752809 , 0.71052632, 0.39146825,
0.4009434 , 0.38821328, 0.31658291, 0.35294118],
          , 0.57657658, 0.56179775, 0.44736842, 0.20595238,
0.22122642, 0.18896165, 0.16482412, 0.35294118],
          , 0.3963964 , 0.37078652, 0.28947368, 0.06865079,
0.07264151, 0.07202993, 0.06532663, 0.17647059],
          , 0.72972973, 0.74157303, 0.65789474, 0.43412698,
0.27169811, 0.32179607, 0.4321608, 0.52941176],
          , 0.5045045 , 0.48314607, 0.34210526, 0.15138889,
0.15990566, 0.19831618, 0.12562814, 0.17647059],
          , 0.36036036, 0.30337079, 0.18421053, 0.07301587,
[1.
          , 0.08325538, 0.06030151, 0.11764706],
0.075
           0.73873874, 0.7752809 , 0.57894737, 0.37301587,
[1.
0.35330189, 0.39289055, 0.34170854, 0.41176471],
          , 0.81081081, 0.80898876, 0.78947368, 0.47142857,
```

```
0.50471698, 0.54256314, 0.34673367, 0.52941176],
                 , 0.62162162, 0.66292135, 0.52631579, 0.29206349,
        0.27688679, 0.31057063, 0.24623116, 0.58823529],
       [0.5], 0.07207207, 0.04494382, 0.05263158, 0.0047619,
       0.00660377, 0.01122544, 0.00502513, 0.
                 , 0.33333333, 0.33707865, 0.23684211, 0.10337302,
       0.07971698, 0.06173994, 0.10552764, 0.17647059],
       [0. , 0.59459459, 0.60674157, 0.52631579, 0.25059524,
       0.23207547, 0.31618335, 0.21105528, 0.23529412],
               , 0.75675676, 0.7752809 , 0.55263158, 0.40595238,
        0.40660377, 0.47801684, 0.31658291, 0.64705882],
                 , 0.53153153, 0.51685393, 0.34210526, 0.15912698,
       0.15235849, 0.18802619, 0.16582915, 0.29411765],
       [0. , 0.71171171, 0.69662921, 0.60526316, 0.3609127 ,
        0.39339623, 0.38821328, 0.26130653, 0.47058824],
                 , 0.74774775, 0.74157303, 0.68421053, 0.35813492,
        0.33443396, 0.494855 , 0.28140704, 0.29411765],
                 , 0.97297297, 0.92134831, 0.65789474, 0.76547619,
       0.71320755, 0.47614593, 0.77386935, 0.82352941],
             , 0.28828829, 0.28089888, 0.21052632, 0.06944444,
        0.0745283 , 0.06173994, 0.04522613, 0.17647059],
                , 0.76576577, 0.7752809 , 0.63157895, 0.5109127 ,
                , 0.42563143, 0.57286432, 1. ],
       0.375
                , 0.67567568, 0.6741573 , 0.65789474, 0.30634921,
        0.26698113, 0.33021515, 0.27135678, 0.41176471]])
y test
array([[0.17647059],
       [0.58823529],
       [0.35294118],
       [0.17647059],
       [0.23529412],
       [0.35294118],
       [0.23529412],
       [0.35294118],
       [0.41176471],
       [0.35294118],
       [0.29411765],
       [0.05882353],
       [0.58823529],
       [0.47058824],
       [0.29411765],
       [0.70588235],
       [0.88235294],
       [0.76470588],
       [0.23529412],
       [0.52941176],
       [0.35294118],
       [0.35294118],
       [0.17647059],
```

```
[0.52941176],
       [0.17647059],
       [0.11764706],
       [0.41176471],
       [0.52941176],
       [0.58823529],
       [0.
                  1,
       [0.17647059],
       [0.23529412],
       [0.64705882],
       [0.29411765],
       [0.47058824],
       [0.29411765],
       [0.82352941],
       [0.17647059],
       [0.41176471]])
print(x_scaled.shape)
print(y scaled.shape)
print(x_train.shape)
print(y train.shape)
print(x test.shape)
print(y test.shape)
(200, 9)
(200, 1)
(160, 9)
(160, 1)
(40, 9)
(40, 1)
11. Build the Model
from sklearn.linear model import LinearRegression
mlr = LinearRegression()
mlr.fit(x train, y train)
LinearRegression()
12. Train the Model
13. Test the Model
prediction = mlr.predict(x test)
prediction
array([[1.76470588e-01],
       [5.88235294e-01],
       [3.52941176e-01],
```

```
[1.76470588e-01],
       [2.35294118e-01],
       [3.52941176e-01],
       [2.35294118e-01],
       [3.52941176e-01],
       [4.11764706e-01],
       [3.52941176e-01],
       [2.94117647e-01],
       [5.88235294e-02],
       [5.88235294e-01],
       [4.70588235e-01],
       [2.94117647e-01],
       [7.05882353e-01],
       [8.82352941e-01],
       [7.64705882e-01],
       [2.35294118e-01],
       [5.29411765e-01],
       [3.52941176e-01],
       [3.52941176e-01],
       [1.76470588e-01],
       [5.29411765e-01],
       [1.76470588e-01],
       [1.17647059e-01],
       [4.11764706e-01],
       [5.29411765e-01],
       [5.88235294e-01],
       [2.20691474e-16],
       [1.76470588e-01],
       [2.35294118e-01],
       [6.47058824e-01],
       [2.94117647e-01],
       [4.70588235e-01],
       [2.94117647e-01],
       [8.23529412e-01],
       [1.76470588e-01],
       [1.0000000e+00],
       [4.11764706e-01]])
prediction.astype(int)
array([[0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
```

```
[0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [1],
        [0]])
y_test.astype(int)
array([[0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
```

```
[0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [1],
        [0]])
14. Measure the performance using Metrics.
from sklearn.metrics import r2 score
r2 score(prediction,y_test)
```

from sklearn.preprocessing import PolynomialFeatures

array([[1.00000e+00, 2.00000e+00, 4.55000e-01, ..., 2.25000e-02,

[1.00000e+00, 2.00000e+00, 3.50000e-01, ..., 4.90000e-03,

[1.00000e+00, 0.00000e+00, 5.30000e-01, ..., 4.41000e-02,

[1.00000e+00, 2.00000e+00, 6.40000e-01, ..., 2.16225e-01,

[1.00000e+00, 2.00000e+00, 5.60000e-01, ..., 6.76000e-02,

[1.00000e+00, 2.00000e+00, 5.85000e-01, ..., 8.12250e-02,

plr = PolynomialFeatures(degree=2)

2.25000e+00, 2.25000e+02],

4.90000e-01, 4.90000e+01],

1.89000e+00, 8.10000e+01],

7.44000e+00, 2.56000e+02],

3.90000e+00, 2.25000e+02],

2.85000e+00, 1.00000e+02]])

x poly = plr.fit transform(x)

[0],

1.0

x poly

Abalone Age Prediction

1. LinearRegression

```
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(x poly,y)
LinearRegression()
lr.predict(plr.transform([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.
285, 16]]))
/home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/
base.py:450: UserWarning: X does not have valid feature names, but
PolynomialFeatures was fitted with feature names
  warnings.warn(
array([[17.5]])
2. Ridge
from sklearn.linear model import Ridge
r = Ridge()
r.fit(x,y)
Ridge()
r.predict([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]])
/home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/
base.py:450: UserWarning: X does not have valid feature names, but
Ridge was fitted with feature names
 warnings.warn(
array([[17.49624459]])
3. Lasso
from sklearn.linear model import Lasso
l = Lasso()
l.fit(x,y)
Lasso()
l.predict([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]])
/home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/
base.py:450: UserWarning: X does not have valid feature names, but
Lasso was fitted with feature names
 warnings.warn(
array([17.08721342])
```