

Escola de verão CIBIT-ICNAS 2022

Ressonância Magnética: Estrutural e Funcional

> *Bruno Direito (bruno.direito@uc.pt) João Duarte (joaovduarte@gmail.com)

Overview

- Background
 - Medical imaging, basic concepts
- NMR signal
 - Relaxation
 - longitudinal and transverse
- From signal to image
 - Structure and function

Short bio

(2013-today) Post-doc with CIBIT. Involved in several projects - BrainTrain, NECSUS, Brainplayback, etc.

(2008-2013) PhD degree in Information Science and Technology | Faculty of Science and Technology of the University of Coimbra

Thesis: "Development of classification methods for real-time seizure prediction"

(2007-2008) M.Sc. degree in Biomedical engineering | Faculty of Science and Technology of the University of Coimbra

(2002-2007) Licentiate degree in Biomedical engineering | Faculty of Science and Technology of the University of Coimbra

Overview

A 46-year-old male with hepatocellular carcinoma of the left lobe of liver. Contrast enhanced MR image **shows a periphery enhanced mass** invading the stomach (...) (http://qims.amegroups.com/article/viewFile/13 17/1773/4537)

Keys to identify alterations?

- **Contrast** resolution
- **Spatial** resolution

Overview

- To create an image we need a signal we will use the properties of the tissues generate and the concept of nuclear magnetic resonance
 - We can change the nature of the image, changing specific parameters of MRI to improve the contrast resolution and spatial resolution of the image

T2-weighted image

Un-enhanced T1-weighted

w/ contrast agent

Imaging and the study of the brain

Link between brain trauma, damage and function impairment.

Phineas Gage, Louis Victor Leborgne ("tan tan"), Henry Molaison (H.M.)

From the basic element to the tissue

- The atoms that compose the human body have a property known as spin
 - a fundamental property of all atoms in nature like mass or charge
- Components of an atom such as protons, electrons and neutrons all have spin.
 - Angular moment (they precess)

Properties of the tissues

Magnetic susceptibility

- · Natural property of all tissues
 - Measure of how magnetised the tissue becomes when it is placed in a strong magnetic field (depends on the arrangement of electrons in the tissue)
 - Diamagnetic materials have a very weak susceptibility
 - Produces an internal field in the opposite direction to the applied field. Most body tissues are diamagnetic
 - **Paramagnetic** materials have a stronger susceptibility and produce a field in the same direction as the main field
 - examples include gadolinium (used as an MR contrast agent)
 - Superparamagnetic
 - Ferromagnetic

• The MRI (image) is based on the **magnetic** susceptibility of the elements that are present in each tissue ('magnetic properties of the tissues').

 What would happen if an external magnetic
 B₀ field was applied to this particle (let say the Hydrogen proton)?

The compass problem

Generating the NMR signal

- What would happen if an external magnetic B_o field was applied to this particle (let say the Hydrogen proton)?
 - We would probably expect an alignment with B_0
 - \circ Reality, because of the spin angular momentum, it will rotate around B_{Ω}
 - Precession

Mathematical side note

Vector **amplitude** and **direction Vector decomposition into components (longitudinal and transverse)**

Net Magnetization Vector

Generating the NMR signal

- We have a **Net magnetization** vector (NMV), antiparallel to B_0
 - we cannot detect it along the same direction of B₀ because of B₀ strength
- What we want/need to do is to change the orientation of the NMV
 - The **observable signal** is perpendicular to the B_0
- Is it static (e.g. always pointing to the y-axis)?

Hypothesis - electrical induction using the transverse component

- Hypothesis
 - Longitudinal
 - 'canceled', i.e. sum of all individuals is
 O
 - Transverse (if static we cannot measure it)
 - precessing! around z-axis/B₀
 - Larmor freq.
 - Induces eletric currents
 - · Now the NMV can be detected!

Hypothesis - electrical induction using the transverse component

Transverse

- NMV is rotating around z-axis/B₀
 - · Larmor freq.
- The electrical induction (voltage generation) is proportional to the NMV
 - Signal Intensity (as a measure of transverse magnetization)
- Different location with different NMV (transverse)

- The net magnetization vector can be decomposed in two components: longitudinal and transverse.
- The transverse component preccesses around BO and can be measured

Generating the NMR signal

- · How do we do this?
 - We need an additional 'system'
 - to get enough energy to provoke a change in NMV orientation

Tuning forks

Resonance

- Explore a feature named Resonance
 - Let us consider tuning forks (C or Dó and E or Mi)
 - If we hit the first C (on the left) it will start to oscillate/vibrate and the second C (on the right) will start to oscillate and the E will not!
 - due to the natural frequency at which the tuning fork oscillates
 - there is an efficient transfer of energy between both C's

Generating the NMR signal

- Resonance in NMR
 - Precession, with frequency w_o,
 computed using the Larmor equation
 - If we apply energy in the system at this specific frequency
 - we should have an efficient transfer of energy to the system

Relaxation

- Let us assume that B_1 is removed
 - The system evolves to the lowest possible energy state
 - end up in the resting state
 - release of energy
 - · where does it goes?
 - Let's look at each part separately
 - longitudinal and transversal

Longitudinal relaxation

- Longitudinal magnetisation (increase)
- a.k.a. spin-lattice relaxation
 - lattice unrelated system elements
 - T1 increases with **B**0
 - 63% of baseline longitudinal magnetisation

Transverse relaxation

- Transverse magnetisation (decreases)
 - exponencial decay
 - · max when flip angle is 90°
 - · how can we measure it?
 - the exponencial is described by a time constant called T2
 - amount of time that it takes to loose
 37%

Transverse relaxation

Energy transfer

- from spins (in higher energy state) to other spins
 - a.k.a. Spin-Spin relaxation
- process depends of energy exchange between spins
- Example
 - (pink) e.g. CSF longer T2
 - probability of energy exchange occurring is lower - spins are "far apart"

Longitudinal and Transverse relaxation

- Contrast between tissues
 - Look closer at the transverse/longitudina I magnetisation

 Longitudinal and transverse components relaxation patterns vary from tissue to tissue

As imagens ponderadas em T1 vão ser semelhantes às ponderadas em T2?

T1 vs T2

T1 vs T2 images

- Inversion in signal intensity
 - image with T1
 contribution to the SI,
 higher spatial
 resolution
 - image with the T2 contribution, higher tissue contrast

T1 - Weighted

T2 - Weighted

- We can adjust specific parameters and pulse sequences to produce different images
 - Structural images of the brain - 'tissue' encoded

Magnetic susceptibility

freq determined by the BO

unfortunately, BO is not exactly the same throughout the entire body

interaction of tissues with the applied magnetic field BO causes point-to point variability - local amount of magnetic field (X)

$$\omega = \gamma (B_0 + X)$$

functional MRI

• How can we use this to study the brain function?

Brainvoyager Tutor

functional MRI

- Pre-operative tool (e.g. Epilepsy studies)
- The brain is functionally sub-specialized
 - brain regions related to/engaged specific tasks
 - increase in neuronal activity in these regions
 - the neurons require additional amount of metabolic substrates - vascular response
 - oxygen is delivered to cells bonded to haemoglobin

Brainvoyager Tutor

functional MRI - Background

- Oxygenated haemoglobin is diamagnetic
 - elements that have a very weak susceptibility
- Deoxygenated haemoglobin is paramagnetic
 - have a stronger susceptibility

 Oxygenated haemoglobin and Deoxygenated haemoglobin have different magnetic properties that influence its surroundings

functional MRI - B.O.L.D.

Significant concentrations of deoxygenated hemoglobin shorten transverse the $T2^*$ relaxation time of the tissue

- decrease in SI compared to tissue with oxygenated haemoglobin.

blood-oxygenation-level-dependent effect or BOLD effect

Let us assume that stimulated tissue - e.g. brain cortex engaged in a task -undergoes an increase in blood flow with an increased delivery of oxygenated haemoglobin

functional MRI - B.O.L.D.

 How can we get an image based on this information?

- If enough resolution (contrast), we could determine which voxels change during task performance
 - · delay after the beginning
 - very small signal change (2 to 3 % variation)

fMRI data

difference between two fMRI images

functional MRI

- The typical approach is to perform a large series of measurements in the presence and absence of the stimulus and subtract the images
 - increasing statistical significance

General Linear Model

- Statistical framework
 - · Simplest case: baseline and condition
 - · but we can go further and use different conditions

Se um voluntário estiver a realizar uma tarefa de forma intermitente e fizermos aquisições de sinal ao longo do tempo podemos construir um modelo que nos informe quais as áreas que apresentaram maior amplitude de sinal durante a realização da tarefa.

fMRI statistical map

2D and 3D statistical map based on GLM contrast condition>baseline

Mais, logo nas oficinas RM I e II!

