Real-Time Embedded Convex Optimization

Stephen Boyd

joint work with Michael Grant, Jacob Mattingley, Yang Wang Electrical Engineering Department, Stanford University

Outline

- Real-time embedded convex optimization
- Examples
- Parser/solvers for convex optimization
- Code generation for real-time embedded convex optimization

Embedded optimization

- embed solvers in real-time applications
- *i.e.*, solve an optimization problem at each time step
- used now for applications with hour/minute time-scales
 - process control
 - supply chain and revenue 'management'
 - trading

What's new

embedded optimization at millisecond/microsecond time-scales

Applications

- real-time resource allocation
 - update allocation as objective, resource availabilities change
- signal processing
 - estimate signal by solving optimization problem over sliding window
 - replace least-squares estimates with robust (Huber, ℓ_1) versions
 - re-design (adapt) coefficients as signal/system model changes
- control
 - closed-loop control via rolling horizon optimization
 - real-time trajectory planning
- all of these done now, on long (minutes or more) time scales
 but could be done on millisecond/microsecond time scales

Outline

- Real-time embedded convex optimization
- Examples
- Parser/solvers for convex optimization
- Code generation for real-time embedded convex optimization

Grasp force optimization

- choose K grasping forces on object to
 - resist external wrench (force and torque)
 - respect friction cone constraints
 - minimize maximum grasp force
- convex problem (second-order cone program or SOCP):

minimize
$$\max_i \|f^{(i)}\|_2$$
 max contact force subject to $\sum_i Q^{(i)} f^{(i)} = f^{\text{ext}}$ force equillibrium
$$\sum_i p^{(i)} \times (Q^{(i)} f^{(i)}) = \tau^{\text{ext}}$$
 torque equillibrium
$$\mu_i f_z^{(i)} \geq \left(f_x^{(i)2} + f_y^{(i)2}\right)^{1/2}$$
 friction cone constraints

variables $f^{(i)} \in \mathbf{R}^3$, i = 1, ..., K (contact forces)

Example

Grasp force optimization solve times

- example with K = 5 fingers (grasp points)
- reduces to SOCP with 15 vars, 6 eqs, 5 3-dim SOCs
- custom code solve time: 50μ s (SDPT3: 100ms)

Robust Kalman filtering

- estimate state of a linear dynamical system driven by IID noise
- sensor measurements have occasional outliers (failures, jamming, . . .)
- model: $x_{t+1} = Ax_t + w_t$, $y_t = Cx_t + v_t + z_t$
 - $w_t \sim \mathcal{N}(0, W)$, $v_t \sim \mathcal{N}(0, V)$
 - z_t is **sparse**; represents outliers, failures, . . .
- (steady-state) Kalman filter (for case $z_t = 0$):
 - time update: $\hat{x}_{t+1|t} = A\hat{x}_{t|t}$
 - measurement update: $\hat{x}_{t|t} = \hat{x}_{t|t-1} + L(y_t C\hat{x}_{t|t-1})$
- we'll replace measurement update with robust version to handle outliers

Measurement update via optimization

• standard KF: $\hat{x}_{t|t}$ is solution of quadratic problem

minimize
$$v^T V^{-1} v + (x - \hat{x}_{t|t-1})^T \Sigma^{-1} (x - \hat{x}_{t|t-1})$$
 subject to
$$y_t = Cx + v$$

with variables x, v (simple analytic solution)

• robust KF: choose $\hat{x}_{t|t}$ as solution of convex problem

minimize
$$v^T V^{-1} v + (x - \hat{x}_{t|t-1})^T \Sigma^{-1} (x - \hat{x}_{t|t-1}) + \lambda ||z||_1$$
 subject to $y_t = Cx + v + z$

with variables x, v, z (requires solving a QP)

Example

- 50 states, 15 measurements
- with prob. 5%, measurement components replaced with $(y_t)_i = (v_t)_i$
- so, get a flawed measurement (i.e., $z_t \neq 0$) every other step (or so)

State estimation error

 $||x - \hat{x}_{t|t}||_2$ for KF (red); robust KF (blue); KF with z = 0 (gray)

Robust Kalman filter solve time

- robust KF requires solution of QP with 95 vars, 15 eqs, 30 ineqs
- automatically generated code solves QP in 120 μ s (SDPT3: 120 ms)
- ullet standard Kalman filter update requires 10 μ s

Linearizing pre-equalizer

• linear dynamical system with input saturation

• we'll design pre-equalizer to compensate for saturation effects

Linearizing pre-equalizer

- goal: minimize error e (say, in mean-square sense)
- ullet pre-equalizer has T sample look-ahead capability

- system: $x_{t+1} = Ax_t + B\operatorname{sat}(v_t), \quad y_t = Cx_t$
- (linear) reference system: $x_{t+1}^{\text{ref}} = Ax_t^{\text{ref}} + Bu_t$, $y_t^{\text{ref}} = Cx_t^{\text{ref}}$
- $e_t = Cx_t^{\text{ref}} Cx_t$
- state error $\tilde{x}_t = x_t^{\text{ref}} x_t$ satisfies

$$\tilde{x}_{t+1} = A\tilde{x}_t + B(u_t - v_t), \quad e_t = C\tilde{x}_t$$

• to choose v_t , solve QP

minimize
$$\begin{array}{ll} \sum_{\tau=t}^{t+T} e_{\tau}^2 + \tilde{x}_{t+T+1}^T P \tilde{x}_{t+T+1} \\ \text{subject to} & \tilde{x}_{\tau+1} = A \tilde{x}_{\tau} + B(u_{\tau} - v_{\tau}), \quad e_{\tau} = C \tilde{x}_{\tau}, \quad \tau = t, \ldots, t+T \\ |v_{\tau}| \leq 1, \quad \tau = t, \ldots, t+T \end{array}$$

P gives final cost; obvious choice is output Grammian

Example

- state dimension n=3; h decays in around 35 samples
- pre-equalizer look-ahead T=15 samples
- input u random, saturates ($|u_t| > 1$) 20% of time

Outputs

desired (black), no compensation (red), equalized (blue)

Errors

no compensation (red), with equalization (blue)

Inputs

no compensation (red), with equalization (blue)

Linearizing pre-equalizer solve time

- \bullet pre-equalizer problem reduces to QP with 96 vars, 63 eqs, 48 ineqs
- automatically generated code solves QP in 600μ s (SDPT3: 310ms)

Constrained linear quadratic stochastic control

- linear dynamical system: $x_{t+1} = Ax_t + Bu_t + w_t$
 - $x_t \in \mathbf{R}^n$ is state; $u_t \in \mathcal{U} \subset \mathbf{R}^m$ is control input
 - w_t is IID zero mean disturbance
- $u_t = \phi(x_t)$, where $\phi : \mathbf{R}^n \to \mathcal{U}$ is (state feedback) policy
- objective: minimize average expected stage cost ($Q \ge 0$, R > 0)

$$J = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{E} \left(x_t^T Q x_t + u_t^T R u_t \right)$$

ullet constrained LQ stochastic control problem: choose ϕ to minimize J

Constrained linear quadratic stochastic control

optimal policy has form

$$\phi(z) = \underset{v \in \mathcal{U}}{\operatorname{argmin}} \{ v^T R v + \mathbf{E} V (Az + Bv + w_t) \}$$

where V is Bellman function

- but V is hard to find/describe except when $\mathcal{U} = \mathbf{R}^m$ (in which case V is quadratic)
- many heuristic methods give suboptimal policies, e.g.
 - projected linear control
 - control-Lyapunov policy
 - model predictive control, certainty-equivalent planning

Control-Lyapunov policy

- also called approximate dynamic programming, horizon-1 model predictive control
- CLF policy is

$$\phi_{\text{clf}}(z) = \underset{v \in \mathcal{U}}{\operatorname{argmin}} \{ v^T R v + \mathbf{E} V_{\text{clf}} (Az + Bv + w_t) \}$$

where $V_{\rm clf}: {\bf R}^n \to {\bf R}$ is the control-Lyapunov function

- evaluating $u_t = \phi_{\rm clf}(x_t)$ requires solving an optimization problem at each step
- ullet many tractable methods can be used to find a good $V_{
 m clf}$
- often works really well

Quadratic control-Lyapunov policy

- assume
 - polyhedral constraint set: $\mathcal{U} = \{v \mid Fv \leq g\}, g \in \mathbf{R}^k$
 - quadratic control-Lyapunov function: $V_{\rm clf}(z)=z^TPz$
- evaluating $u_t = \phi_{\rm clf}(x_t)$ reduces to solving QP

$$\begin{array}{ll} \text{minimize} & v^T R v + (Az + Bv)^T P (Az + Bv) \\ \text{subject to} & F v \leq g \end{array}$$

Control-Lyapunov policy evaluation times

• $t_{\rm clf}$: time to evaluate $\phi_{\rm clf}(z)$

• $t_{\rm lin}$: linear policy $\phi_{\rm lin}(z)=Kz$

• $t_{\rm kf}$: Kalman filter update

• (SDPT3 times around $1000 \times$ larger)

n	m	k	$t_{\mathrm{clf}} \; (\mu s)$	$t_{\mathrm{lin}} \; (\mu s)$	$t_{\rm kf} \; (\mu s)$
15	5	10	35	1	1
50	15	30	85	3	9
100	10	20	67	4	40
1000	30	60	298	130	8300

Outline

- Real-time embedded convex optimization
- Examples
- Parser/solvers for convex optimization
- Code generation for real-time embedded convex optimization

Parser/solvers for convex optimization

- specify convex problem in natural form
 - declare optimization variables
 - form convex objective and constraints using a specific set of atoms and calculus rules (disciplined convex programming)
- problem is convex-by-construction
- easy to parse, automatically transform to standard form, solve, and transform back
- implemented using object-oriented methods and/or compiler-compilers
- huge gain in productivity (rapid prototyping, teaching, research ideas)

Example: cvx

- parser/solver written in Matlab
- convex problem, with variable $x \in \mathbb{R}^n$; A, b, λ , F, g constants

```
\begin{aligned} & \text{minimize} & & \|Ax - b\|_2 + \lambda \|x\|_1 \\ & \text{subject to} & & Fx \leq g \end{aligned}
```

• cvx specification:

when cvx processes this specification, it

- verifies convexity of problem
- generates equivalent cone problem (here, an SOCP)
- solves it using SDPT3 or SeDuMi
- transforms solution back to original problem

the cvx code is easy to read, understand, modify

The same example, transformed by 'hand'

transform problem to SOCP, call SeDuMi, reconstruct solution:

Outline

- Real-time embedded convex optimization
- Examples
- Parser/solvers for convex optimization
- Code generation for real-time embedded convex optimization

General vs. embedded solvers

- general solver (say, for QP)
 - handles single problem instances with any dimensions, sparsity pattern
 - typically optimized for large problems
 - must deliver high accuracy
 - variable execution time: stops when tolerance achieved
- embedded solver
 - solves many instances of the same problem family (dimensions, sparsity pattern) with different data
 - solves small or smallish problems
 - can deliver lower (application dependent) accuracy
 - often must satisfy hard real-time deadline

Embedded solvers

- (if a general solver works, use it)
- otherwise, develop custom code
 - by hand
 - automatically via code generation
- can exploit known sparsity pattern, data ranges, required tolerance at solver code development time
- we've had good results with interior-point methods; other methods (e.g., active set, first order) might work well too
- ullet typical speed-up over (efficient) general solver: ${f 100}{-10000}{ imes}$

Convex optimization solver generation

- specify convex problem family in natural form, via disciplined convex programming
 - declare optimization variables, parameters
 - form convex objective and constraints using a specific set of atoms and calculus rules
- code generator
 - analyzes problem structure (dimensions, sparsity, . . .)
 - chooses elimination ordering
 - generates solver code for specific problem family
- idea:
 - spend (perhaps much) time generating code
 - save (hopefully much) time solving problem instances

Parser/solver vs. code generation

Example: cvxmod

- written in Python
- QP family, with variable $x \in \mathbb{R}^n$, parameters P, q, g, h

minimize
$$x^T P x + q^T x$$

subject to $Gx \le h$, $Ax = b$

• cvxmod specification:

cvxmod code generation

• generate solver for problem family qpfam with

```
qpfam.codegen()
```

- output includes qpfam/solver.c and ancillary files
- solve instance with (C function call)

```
status = solve(params, vars, work);
```

Using cvxmod generated code

```
#include "solver.h"
int main(int argc, char **argv) {
    // Initialize structures at application start-up.
    Params params = init_params();
    Vars vars = init_vars();
    Workspace work = init_work(vars);
    // Enter real-time loop.
    for (;;) {
        update_params(params);
        status = solve(params, vars, work);
        export_vars(vars);
}
```

cvxmod code generator

(preliminary implementation)

- handles problems transformable to QP
- primal-dual interior-point method with iteration limit
- direct LDL^T factorization of KKT matrix
- (slow) method to determine variable ordering (at code generation time)
- explicit factorization code generated

Sample solve times for cvxmod generated code

problem family	vars	constrs	SDPT3 (ms)	cvxmod (ms)
control1	140	190	250	0.4
control2	360	1080	1400	2.0
control3	1110	3180	3400	13.2
order_exec	20	41	490	0.05
net_utility	50	150	130	0.23
actuator	50	106	300	0.17
robust_kalman	95	45	120	0.12

ISMP 2009 41

Conclusions

- can solve convex problems on millisecond, microsecond time scales
 - (using existing algorithms, but not using existing codes)
 - there should be many applications
- parser/solvers make rapid prototyping easy
- new code generation methods yield solvers that
 - are extremely fast, even competitive with 'analytical methods'
 - can be embedded in real-time applications

ISMP 2009 42

References

- Automatic Code Generation for Real-Time Convex Optimization (Mattingley, Boyd)
- Real-Time Convex Optimization in Signal Processing (Mattingley, Boyd)
- Fast Evaluation of Quadratic Control-Lyapunov Policy (Wang, Boyd)
- Fast Model Predictive Control Using Online Optimization (Wang, Boyd)
- cvx (Grant, Boyd, Ye)
- cvxmod (Mattingley, Boyd)

all available on-line, but cvxmod code gen not yet ready for prime-time