

An ε -Best-Arm Identification Algorithm for Fixed-Confidence and Beyond

Marc Jourdan, Rémy Degenne and Emilie Kaufmann Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

Motivation

Goal: Identify one item that has a good enough average return.

Typical approaches: control the error and minimize the sampling budget (fixed-confidence) or control the sampling budget and minimize the error (fixed-budget).

⚠ Too restrictive for many applications!

This paper: guarantees at any time on the candidate answer!

ε -Best-arm identification (ε -BAI)

K arms: $\nu_i \in \mathcal{D}$ is the 1-sub-Gaussian distribution of arm $i \in [K]$ with mean μ_i .

Goal: identify one of the ε -good arms $\mathcal{I}_{\varepsilon}(\mu) = \{i \mid \mu_i \geq \mu_{\star} - \varepsilon\}$ with $\mu^{\star} = \max_i \mu_i$.

Algorithm: at time n,

- Recommendation rule: recommend the candidate answer $\hat{\imath}_n$
- Sampling rule: pull arm I_n and observe $X_n \sim \nu_{I_n}$.

Fixed-confidence: given an error/confidence pair $(\varepsilon, \delta) \in \mathbb{R}_+ \times (0, 1)$, define a stopping time $\tau_{\varepsilon, \delta}$ which is (ε, δ) -PAC, i.e. $\mathbb{P}_{\nu}(\tau_{\varepsilon, \delta} < +\infty, \hat{\imath}_{\tau_{\varepsilon, \delta}} \notin \mathcal{I}_{\varepsilon}(\mu)) \leq \delta$, and

Minimize the expected sample complexity $\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]$.

Fixed-budget: given an error/budget pair $(\varepsilon, T) \in \mathbb{R}_+ \times \mathbb{N}$,

Minimize the **probablity of** ε -error $\mathbb{P}_{\nu}(\hat{\imath}_T \notin \mathcal{I}_{\varepsilon}(\mu))$ at time T.

Anytime: Minimize the expected simple regret $\mathbb{E}_{\nu}[\mu^{\star} - \mu_{\hat{\imath}_n}]$ at any time n.

Lower bound on the expected sample complexity

- ? What is the best one could achieve?
- Degenne and Koolen (2019): For all (ε, δ) -PAC algorithms and all Gaussian instances with $\mu \in \mathbb{R}^K$, $\liminf_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon, \delta}]/\log(1/\delta) \geq T_{\varepsilon}(\mu)$ where

$$T_{\varepsilon}(\mu) = \min_{i \in \mathcal{I}_{\varepsilon}(\mu)} \min_{\beta \in (0,1)} T_{\varepsilon,\beta}(\mu,i) \quad \text{and} \quad T_{\varepsilon,\beta}(\mu,i)^{-1} = \max_{w \in \triangle_K, w_i = \beta} \min_{j \neq i} \frac{1}{2} \frac{(\mu_i - \mu_j + \varepsilon)^2}{1/\beta + 1/w_j} \ .$$

Top Two sampling rule: EB-TC_{ε_0} with fixed β or IDS proportions

Input: slack $\varepsilon_0 > 0$, proportion $\beta \in (0,1)$ (only for fixed proportions).

Set
$$\hat{\imath}_n \in \arg\max_{i \in [K]} \mu_{n,i}$$
, $B_n = \hat{\imath}_n$ and $C_n \in \arg\max_{i \neq B_n} \frac{\mu_{n,B_n} - \mu_{n,i} + \varepsilon_0}{\sqrt{1/N_{n,B_n} + 1/N_{n,i}}}$;

Set [fixed] $\bar{\beta}_{n+1}(i,j) = \beta$ or [IDS] $\beta_n(i,j) = N_{n,j}/(N_{n,i}+N_{n,j})$ and update $\bar{\beta}_{n+1}(i,j)$;

Set $I_n = C_n$ if $N_{n,C_n}^{B_n} \le (1 - \bar{\beta}_{n+1}(B_n, C_n))T_{n+1}(B_n, C_n)$, otherwise set $I_n = B_n$;

Output: next arm to sample I_n and next recommendation $\hat{\imath}_n$.

Notation: $N_{n,i} = \sum_{t \in [n-1]} \mathbb{1}(I_t = i), \ \mu_{n,i} = \sum_{t \in [n-1]} X_t \mathbb{1}(I_t = i) / N_{n,i}, \ T_n(i,j) = \sum_{t \in [n-1]} \mathbb{1}((B_t, C_t) = (i,j)), \ \bar{\beta}_n(i,j) = \sum_{t \in [n-1]} \beta_t(i,j) \mathbb{1}((B_t, C_t) = (i,j)) / T_n(i,j), \ N_{n,j}^i = \sum_{t \in [n-1]} \mathbb{1}((B_t, C_t, I_t) = (i,j,j)) \text{ and } T_n(i) = \sum_{j \neq i} (T_n(i,j) + T_n(j,i)).$

(ε, δ) -PAC sequential test

- ? How to obtain a (ε, δ) -PAC sequential test for 1-sub-Gaussian distributions ?
- **GLR**_{ε} stopping rule: recommend $\hat{\imath}_n \in \arg\max_{i \in [K]} \mu_{n,i}$ and stop at time

$$\tau_{\varepsilon,\delta} = \inf \left\{ n > K \mid \min_{i \neq \hat{\imath}_n} \frac{\mu_{n,\hat{\imath}_n} - \mu_{n,i} + \varepsilon}{\sqrt{1/N_{n,\hat{\imath}_n} + 1/N_{n,i}}} \ge \sqrt{2c(n-1,\delta)} \right\} , \tag{1}$$

with $c(n, \delta) = 2\mathcal{C}_G(\log((K-1)/\delta)/2) + 4\log(4 + \log(n/2))$ and $\mathcal{C}_G(x) \approx x + \ln(x)$.

Asymptotic fixed-confidence guarantees

Theorem 1. Let $\varepsilon \geq 0$ and $\varepsilon_0 > 0$. Combined with GLR_{ε} stopping (1), the EB- TC_{ε_0} algorithm satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ such that $|i^{\star}(\mu)| = 1$,

- IDS: $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]/\log(1/\delta) \leq T_{\varepsilon_0}(\mu)D_{\varepsilon,\varepsilon_0}(\mu)$,
- fixed $\beta \in (0,1)$: $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]/\log(1/\delta) \leq T_{\varepsilon_0,\beta}(\mu)D_{\varepsilon,\varepsilon_0}(\mu)$,

where $D_{\varepsilon,\varepsilon_0}(\mu) = (1 + \max_{i \neq i^*} (\varepsilon_0 - \varepsilon)/(\mu_* - \mu_i + \varepsilon))^2$.

Corollary 1. Let $\varepsilon > 0$. Combined with GLR $_{\varepsilon}$ stopping (1), the EB-TC $_{\varepsilon}$ algorithm with IDS (resp. fixed β) proportions is **asymptotically** (resp. β -)**optimal** in fixed-confidence ε -BAI for Gaussian distributions.

Finite fixed-confidence guarantees

Theorem 2. Let $\delta \in (0,1)$ and $\varepsilon_0 > 0$. Combined with GLR_{ε_0} stopping (1), the EB- TC_{ε_0} algorithm with fixed $\beta = 1/2$ satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ ,

$$\mathbb{E}_{\nu}[\tau_{\varepsilon_0,\delta}] \leq \inf_{\varepsilon \in [0,\varepsilon_0]} \max \left\{ T_{\mu,\varepsilon_0}(\delta,\varepsilon) + 1, \ S_{\mu,\varepsilon_0}(\varepsilon) \right\} + 2K^2 \ , \quad \textit{where}$$

 $\limsup_{\delta \to 0} \frac{T_{\mu,\varepsilon_0}(\delta,0)}{\log(1/\delta)} \leq 2|i^\star(\mu)|T_{\varepsilon_0,1/2}(\mu) \text{ and } S_{\mu,\varepsilon_0}(\varepsilon_0/2) = \mathcal{O}(K^2|\mathcal{I}_{\varepsilon_0/2}(\mu)|\varepsilon_0^{-2}\log\varepsilon_0^{-1}).$

Key technical tool

Lemma 1. Let $\delta \in (0,1]$ and n > K. Assume there exists a sequence of events $(A_t(n,\delta))_{n \geq t > K}$ and positive reals $(D_i(n,\delta))_{i \in [K]}$ such that, for all $t \in \{K+1,\ldots,n\}$, under the event $A_t(n,\delta)$, there exists $i_t \in \{B_t,C_t\}$, such that $T_t(i_t) \leq D_{i_t}(n,\delta)$. Then, we have $\sum_{t=K+1}^n \mathbbm{1}(A_t(n,\delta)) \leq \sum_{i \in [K]} D_i(n,\delta)$.

Beyond fixed-confidence guarantees

Anytime guarantees on the probability of ε -error and the expected simple regret.

Theorem 3. Let $\varepsilon_0 > 0$ and $p(x) = x - \log x$. The EB-TC_{ε_0} algorithm with fixed proportions $\beta = 1/2$ satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ , for all $n > 5K^2/2$,

$$\forall \varepsilon \ge 0, \quad \mathbb{P}_{\nu} \left(\hat{\imath}_n \notin \mathcal{I}_{\varepsilon}(\mu) \right) \le K^2 e^2 (2 + \log n)^2 \exp \left(-p \left(\frac{n - 5K^2/2}{8H_{i_{\nu}(\varepsilon)}(\mu, \varepsilon_0)} \right) \right),$$

$$\mathbb{E}_{\nu}[\mu_{\star} - \mu_{\hat{\imath}_n}] \le K^2 e^2 (2 + \log n)^2 \sum_{i \in [C_{\mu} - 1]} (\Delta_{i+1} - \Delta_i) \exp\left(-p\left(\frac{n - 5K^2/2}{8H_i(\mu, \varepsilon_0)}\right)\right) ,$$

where $(H_i(\mu, \varepsilon_0))_{i \in [C_\mu - 1]}$ are such that $H_1(\mu, \varepsilon_0) = K(2\Delta_{\min}^{-1} + 3\varepsilon_0^{-1})^2$ and $K/\Delta_{i+1}^{-2} \le H_i(\mu, \varepsilon_0) \le K \min_{j \in [i]} \max\{2\Delta_{j+1}^{-1}, \ 2\frac{\Delta_j/\varepsilon_0 + 1}{\Delta_{i+1} - \Delta_j} + 3\varepsilon_0^{-1}\}^2$ for all i > 1.

Notation: distinct mean gaps $0=\Delta_1<\Delta_2<\cdots<\Delta_{C_{\mu}}<\Delta_{C_{\mu}}<\Delta_{C_{\mu}+1}=+\infty$ where $C_{\mu}=|\{\mu_i\mid i\in [K]\}|$. For all $\varepsilon\geq 0$, let $i_{\mu}(\varepsilon)=i$ if $\varepsilon\in [\Delta_i,\Delta_{i+1})$.

Other guarantees: unverifiable sample complexity and cumulative regret.

Experiments

Figure 1: (a) Stopping time on instances $\mu_i=1-((i-1)/(K-1))^{0.3}$ for varying K. (b) Simple regret on instance $\mu=(0.6,0.6,0.55,0.45,0.3,0.2)$ fors EB-TC $_{\varepsilon_0}$ with slack $\varepsilon_0=0.1$ and fixed $\beta=1/2$.

Figure 2: Stopping time on (a) random instances (K=20) with $\mu_1=1$, $\mu_i\sim\mathcal{U}([0,0.9)$ for all $i\geq 6$, otherwise $\mu_i\sim\mathcal{U}([0.9,1])$ and (b) "two-groups" instances (K=10) with $(\mu^\star,\Delta_2)=(0.6,0.2)$.

Note: GLR_{ε} stopping (1) with $(\varepsilon, \delta) = (10^{-1}, 10^{-2})$. T3C, EB-TCI, TTUCB, TaS, FWS, DKM are modified for ε -BAI.

Conclusion

- 1. Good empirical performance as regards the sample complexity and the simple regret. Easy to implement and computationally inexpensive algorithm.
- 2. Asymptotic and finite confidence upper bound on the expected sample complexity. Asymptotic (β -)optimality in ε -BAI for Gaussian distributions.
- 3. Anytime upper bounds on the uniform ε -error and the expected simple regret.