Exercice 1. On définit les matrices :

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 2 & 2 & 4 \end{pmatrix} \text{ et } I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **1. a)** Déterminer un réel a tel que : $A^2 8A = aI$.
 - **b)** Montrer que A est inversible et donner l'expression de A^{-1} .
 - c) Déterminer les valeurs propres possibles de A.
- **2. a)** Résoudre AX = 6X, où X est de la forme $\begin{pmatrix} x \\ y \\ 2 \end{pmatrix}$ avec $(x,y) \in \mathbb{R}^2$.
 - **b)** Calculer $A \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $A \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.
- 3. On note $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -3 & 1 \\ 2 & 2 & -2 \end{pmatrix}$ et $D = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 - a) Calculer PQ. En déduire que la matrice P est inversible ainsi que l'expression de son inverse P^{-1} .
 - **b)** Calculer AP et PD. En déduire que A est diagonalisable.
 - c) Par récurrence sur $n \in \mathbb{N}$, montrer que $A^n = PD^nP^{-1}$.
- **4. Application :** Lucile aime lire un livre avant de s'endormir. Elle possède trois types de livres : des livres de chevaux, des livres de dinosaures et des livres de princesses. Le choix du livre se fait en fonction du livre qu'elle a lu la veille selon le schéma suivant, pour $n \in \mathbb{N}^*$:
 - si elle a lu un livre de chevaux le jour n, elle lira un livre de chevaux le jour n+1 avec probabilité $\frac{1}{2}$ ou un livre de princesses avec probabilité $\frac{1}{6}$ ou un livre de dinosaures avec probabilité $\frac{1}{3}$,
 - si elle a lu un livre de princesses le jour n, elle lira un livre de chevaux le jour n+1 avec probabilité $\frac{1}{6}$ ou un livre de princesses avec probabilité $\frac{1}{2}$ ou un livre de dinosaures avec probabilité $\frac{1}{3}$,
- si elle à lu un livre de dinosaures le jour n, elle lira un livre de chevaux le jour n+1 avec probabilité $\frac{1}{6}$ ou un livre de princesses avec probabilité $\frac{1}{6}$ ou un livre de dinosaures avec probabilité $\frac{2}{3}$. Le premier jour, elle lit un livre de dinosaures.

On note, pour tout $n \in \mathbb{N}^*$:

- c_n la probabilité de l'événement C_n : « Lire un livre de chevaux le jour n »,
- p_n la probabilité de l'événement P_n : « Lire un livre de princesses le jour n »,
- $\bullet \ d_n$ la probabilité de l'événement D_n : « Lire un livre de dinosaures le jour n ».
- $\bullet \ X_n = \begin{pmatrix} c_n \\ p_n \\ d_n \end{pmatrix}.$
- a) Que vaut X_1 ?
- **b)** Soit $n \in \mathbb{N}^*$. À l'aide de la formule des probabilités totales appliquée au système complet d'événements (C_n, P_n, D_n) , montrer que $X_{n+1} = \frac{1}{6}AX_n$.
 - c) En déduire par récurrence que, pour tout $n \in \mathbb{N}^*$: $X_n = \frac{1}{6^{n-1}}A^{n-1}X_1$.
- **d)** En utilisant la question **3.d)**, montrer que $d_n = \frac{1}{2} \left(1 + \frac{1}{3^{n-1}}\right)$ pour tout $n \in \mathbb{N}^*$ et en déduire $\lim_{n \to +\infty} d_n$.