Perceptron learning algorithm (single sample correction algo)

example

Example data

Description of the patterns

Pattern no.	1	2	Class
1	0.5	3.0	X
2	1	3	X
3	0.5	2.5	X
4	1	2.5	X
5	1.5	2.5	X
6	4.5	1	O
7	5	1	O
8	4.5	0.5	O
9	5.5	0.5	O

Classification using a linear discriminant function

Augmented + Normalized

Description of the patterns

Pattern no.	1	2	Class
1	0.5	3.0	X
2	1	3	X
3	0.5	2.5	X
4	1	2.5	X
5	1.5	2.5	X
6	4.5	1	O
7	5	1	O
8	4.5	0.5	O
9	5.5	0.5	O

Pattern	1	2	3
\mathbf{Y}_1	-0.5	-3.0	-1
Y_2	-1	-3	-1
Y_3	-0.5	-2.5	-1
Y_4	-1	-2.5	-1
Y_5	-1.5	-2.5	-1
Y_6	4.5	1	1
Y_7	5	1	1
Y_8	4.5	0.5	1
Y 9	5.5	0.5	1

2-dimensional data

3-dimensional data.

Note, class label is not needed here.

Perceptron learning algorithm (single sample correction algo.)

1. Start with
$$a_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

2. classify
$$Y_1 = \begin{bmatrix} -0.5 \\ -3.0 \\ -1 \end{bmatrix}$$

3. $a_0Y_1 \leq 0$, So misclassified, hence

4.
$$a_1 = a_0 + Y_1 = \begin{bmatrix} -0.5 \\ -3.0 \\ -1 \end{bmatrix}$$

5. Now Y_1 is correctly classified.

6. Consider
$$Y_2 = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$$

- 7. Y_2 is correctly classified.
- 8. Similarly Y_3 , Y_4 , Y_5 are all rightly classified.
- 9. Now consider Y_6

10.
$$a_1 = \begin{bmatrix} -0.5 \\ -3.0 \\ -1 \end{bmatrix}$$
, $Y_6 = \begin{bmatrix} 4.5 \\ 1 \\ 1 \end{bmatrix}$ is wrongly classified.

11. So,
$$a_2 = a_1 + Y_6 = \begin{bmatrix} 4.0 \\ -2.0 \\ 0 \end{bmatrix}$$

12. Now, Y_6 , Y_7 , Y_8 , Y_9 are also rightly classified.

- 13. But we need to verify that all are rightly classified.
- 14. Y_1, Y_2, Y_3, Y_4 are also rightly classified.

15. But,
$$Y_5$$
 is not. $Y_5 = \begin{bmatrix} -1.5 \\ -2.5 \\ -1 \end{bmatrix}$

16. So,
$$a_3 = a_2 + Y_5 = \begin{bmatrix} 2.5 \\ -4.5 \\ -1 \end{bmatrix}$$

- Now all patterns are correctly classified.
- So the discriminant is $2.5x_1 4.5x_2 1 = 0$.