Naive Lie Theory 2.2 Exercises

OblivionIsTheName

October 2025

Notes

Again, this is a crash course. Here are some important supplementary details:

- 1. As cosets are disjoint, there is the bijection $gh \mapsto h$ between gH and H. |gH| = |H| for any g.
- 2. As the fundamental theorem of homomorphism states, a homomorphism gives $G/\ker\varphi\cong H$. There is a bijection between the cosets of $\ker\varphi$ and H. The $|\ker\varphi|$ elements of each coset is mapped to one element in H, so φ is $|\ker\varphi|$ -to-1. I am going to use this proposition in 2.2.2.
- 3. Each homomorphism indicates a normal subgroup as its kernel. This is an important method to prove that a group is not simple: if you can find a non-bijective (so the normal subgroup is non-trivial) and non-trivial (so the normal subgroup is not the whole group) homomorphism, the group is not simple.

2.2.1

Let $\varphi(z)=z^2$, $\ker \varphi=\left\{z\in \mathbb{S}^1\mid z^2=1\right\}=\{1,-1\},$ and any left coset by z is $\{z,-z\}.$

2.2.2

The identity will be ± 1 ; the inverse is given by $\{\pm z\}^{-1} = \{\pm z^{-1}\}$; the closure is given by the absolute-value-preservation of multiplications in \mathbb{S}^1 . We first show that φ is a homomorphism:

$$\varphi(z_1 z_2) = \{\pm z_1 z_2\} = \{z_1\} \{z_2\} = \varphi(z_1) \varphi(z_2).$$

If $\varphi(z) = \{\pm 1\}$, then $z \in \{1, -1\}$, so $\ker \varphi = \{1, -1\}$. $|\ker \varphi| = 2$, and φ is therefore 2-to-1.

2.2.3

(Note: I think the problem statement is a bit confusing, as G is the group of $\{\pm z\}$, but the map sends z to z^2 . This is a 2-to-1 homomorphism, as we proved in 2.2.2. I will just pretend that it's sending $\{\pm z\}$ to z^2 .)

We have $\varphi(\{\pm z\}) = z^2$, and $(z)^2 = (-z)^2$. φ is well-defined. To prove that φ

We have $\varphi(\{\pm z\}) = z^2$, and $(z)^2 = (-z)^2$. φ is well-defined. To prove that φ is an isomorphism, it's sufficient and necessary to prove operation-preservation and bijectivity. We have

$$\varphi(\{\pm z_1\} \{\pm z_2\}) = (z_1 z_2)^2 = z_1^2 z_2^2 = \varphi(\{\pm z_1\}) \varphi(\{\pm z_2\}),$$

so φ is operation-preserving.

Assume that $\varphi(\{\pm z_1\}) = \varphi(\{\pm z_2\})$, so $z_1^2 - z_2^2 = 0$ and $(z_1 + z_2)(z_1 - z_2) = 0$. It follows that $z_1 = z_2$ or $z_1 = -z_2$, so $\{\pm z_1\} = \{\pm z_2\}$. Thus φ is injective. Assume $w = e^{i\theta} \in \mathbb{S}^1$. We can always find $z = e^{i\frac{\theta}{2}} \in \mathbb{S}^1$ such that $\varphi(\{\pm z\}) = w$. φ is surjective, thus bijective.

2.2.4

We want to show that for any $q \in \mathbb{S}^3$ and $h \in \{1, -1\}$, $qhq^{-1} = h$. If h = 1, $q1q^{-1} = qq^{-1} = 1$; else $q(-1)q^{-1} = (-1)qq^{-1} = -1$. Note that all real numbers are commutative in quaternions.

2.2.5

Now we want to find counterexamples $q \in \mathbb{S}^3$ and $z \in \mathbb{S}^1$ such that $qzq^{-1} \neq z$. Consider $j \in \mathbb{S}^3$ and $i \in \mathbb{S}^1$. $jij^{-1} = ji(-j) = -j(ij) = -jk = -i \neq i$.