Recap: Optimitation.

- 1) (ritical pts max/mm on boundary (find max/mm of easy function on a region)
- 2) (agrange multiplies (mox/mm or function with a constraint)
- 3) (mor programming

 (max/min of linear function with many linear

 constraints: there's an algorithm)

 Simplex method
 - 4) Newton's method (for roots)
 (for max/mm)
 - (complication function): decimal approx of max/mm without fluding it exactly)
 - 5) Godiert desant: Solves smiler problems to Newton's method.

Newton's method for mmimization

To find minimum of f(x):

- 1) Make an initial gness Xo
- 2) Find pandola through $(x_0, f(x_0))$ that has $f(x_0) = g(x_0)$, $f'(x_0) = g'(x_0)$, $f''(x_0) = g''(x_0)$

$$g(x)=f(x_0)+f'(x_0)(x-x_0)+f''(x_0)(x-x_0)^2$$

Gnes: Minimum et t es near minimum et g: To find minimum of 9(x):

$$g'(x) = f'(x_0) + f''(x_0)(x - x_0) = 0.$$

$$x - x_0 = -\frac{f'(x_0)}{f''(x_0)}$$

$$X_{n+1} = X_n - \frac{f'(X_n)}{f''(X_n)}$$
 as Newton's wethod for a root of $f''(X_n)$

this is the same

(probably firsts a local minimum only) To find absolute: find all local minimal by trying different xo, then compare them.

What about optimizing functions of two variables?

Newton's nethod for optimization:

Given f(x,y):

want a point (x,y)so $f_{x}(x,y)=f_{y}(x,y)+0$

1) Make a guess (Xo, 1/6)

2) Find a paraboloid =

 $g(x,y) = \alpha x^2 + bxy + cy^2 + dx + ey + f$

that has maximum to f(x,y) at (x,y_6) :

g(xo, /6)=-(xo, /6)

 $9xx = f_{xx}$

9x(x0, y0)=(x(x0, y6)

gxy -fxy

9y(xo, yo)=fy(xo, yo)

Dyy=fyx

"Osculating paraboloid"

3) Take (X, Y,) to be minimum, and iderate

Gradient do cont.

To find minimum of f(x,y).

1) Make an initial gros (Xo, Yo)

2) Then move in direction of faster decrease, which is

- Df(xo,)/0).

If I'm is small, you'll frequently update dwection, but you'll have to compute gradient many times!

Picking correct I'm is tricky.