BT2101 Tutorial Week 11

Discrete Choice Model

Agenda

- Logit Model (Logistic Regression)
- Understand Logistic Regression
 - Logistic Distribution (i.e., Sigmoid Function)
 - Maximum Likelihood Estimation
 - Gradient Ascent/Descent
- Probit Model (Probability Unit)

Homework 4 Solutions

Logistic Regression

Buy the House?

$$\beta_0 + \beta_1 \times Size_i + \beta_2 \times Bedroom_i + \beta_3 \times Bathroom_i$$

$$\log(\frac{\Pr(Buy_i = 1)}{1 - \Pr(Buy_i = 1)}) = \beta_0 + \beta_1 \times Size_i + \beta_2 \times Bedroom_i + \beta_3 \times Bathroom_i$$

Example: Predict whether to buy a condo **Buy**

(y=1, buy condo; y=0, otherwise)

3 features:

 $x = \{x_1: size, x_2: \#bedroom, x_3: \#bathroom\}$

Collect data from N=1000 people (i=1,...,1000):

Row	Size (m²)	#Bedroom	#Bathroom	Buy
1	65	2	2	1
2	72	3	2	O
••••	••••	•••••	•••••	••••
1000	50	1	1	О

Logistic Regression

- Think about
 - General specification:

$$Logodds(\Pr(y_{i} = 1)) = \log(\frac{\Pr(y_{i} = 1)}{1 - \Pr(y_{i} = 1)})$$

$$= \beta_{0} + \sum_{j=1}^{p} x_{j} \beta_{j}$$

$$\Pr(y_{i} = 1) = \frac{\exp(\beta_{0} + \sum_{j=1}^{p} x_{j} \beta_{j})}{1 + \exp(\beta_{0} + \sum_{j=1}^{p} x_{j} \beta_{j})}$$

Sigmoid function:(Very Important Function)

Logistic Regression: Likelihood Function

We know score function:
$$\Pr(y_i = 1) = \frac{\exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}{1 + \exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}$$

and
$$Pr(y_i = 0) = 1 - Pr(y_i = 1)$$

So the probability of the occurrence of observation i = 1,...,N:

$$f(y_i) = [\Pr(y_i = 1)]^{(y_i)} [\Pr(y_i = 0)]^{(1-y_i)}$$

$$= \left[\frac{\exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}{1 + \exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}\right]^{(y_i)} \left[\frac{1}{1 + \exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}\right]^{(1-y_i)}$$

Logistic Regression: Likelihood Function

So the probability of the occurrence of all the N observations:

Likelihood Function:
$$l(\beta) = \prod_{i=1}^{N} f(y_i)$$
 Score: $Pr(y_i=1|x,\beta)$

$$= \prod_{i=1}^{N} \left[\frac{e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}}{1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}} \right]^{(1-y_i)}$$

Take log and we will get Log-Likelihood Function:

$$ll(\beta) = \sum_{i=1}^{N} \left[-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i (\beta_0 + \sum_{j=1}^{p} x_j \beta_j) \right]$$

 $Pr(y_i=0|x,\beta)$

Estimation

- Gradient Ascent
 - Maximizing (Log-)Likelihood:

$$\max_{\beta} l(\beta) = \prod_{i=1}^{N} \left[\frac{e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}}{1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}} \right]^{(1 - y_i)}$$

$$\max_{\beta} ll(\beta) = \sum_{i=1}^{N} \left[-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i (\beta_0 + \sum_{j=1}^{p} x_j \beta_j) \right]$$

- Question: How to maximize this complex objective function?
 - Let first-order derivatives = 0? Impossible.
 - Maybe you can take steps by steps (i.e., **iteratively**) to approach the (local) optimal value

Remember What We've Learned in BT1101

Gradient Descent

(For Minimizing)

Gradient Ascent

(For Maximizing)


```
Correct: Simultaneous update

temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)

temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)

temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)

\theta_0 := temp0

\theta_1 := temp1

Incorrect:

temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)

temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)

\theta_1 := temp1
```

- gradient *descent* aims at *minimizing* some objective function: $\theta_j \leftarrow \theta_j \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
- gradient ascent aims at maximizing some objective function: $\theta_j \leftarrow \theta_j + \alpha \frac{\partial}{\partial \theta_j} J(\theta)$

Gradient Ascent

Update Rule:

Follow the direction as shown by gradient value; Move by a step with rate λ :

$$\beta_{j}^{(t)} \leftarrow \beta_{j}^{(t-1)} + \lambda \times \frac{\partial ll}{\partial \beta_{j}^{(t-1)}}$$

Here we need to increase β_j . Note that gradient (1st derivative)

 $rac{\partial ll}{\partial oldsymbol{eta}_{j}^{(t-1)}}$ is positive

Update Rule

- Gradient Ascent
 - Maximizing (Log-)Likelihood:

$$ll(\beta) = \sum_{i=1}^{N} \left[-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i (\beta_0 + \sum_{j=1}^{p} x_j \beta_j) \right]$$

Taylor Expansion

• Gradient Ascent:

- Remember Taylor Expansion
- Newton-Raphson Method
 - Hard to get –H_t⁻¹
- Steepest Ascent Method:
 - Let: $-H_t^{-1} = \lambda I$
 - λ: step size
 - I: Identity Matrix

8.3.1. Newton-Raphson

To determine the best value of β_{t+1} , take a second-order Taylor's approximation of $LL(\beta_{t+1})$ around $LL(\beta_t)$:

(8.1)
$$LL(\beta_{t+1}) = LL(\beta_t) + (\beta_{t+1} - \beta_t)'g_t + \frac{1}{2}(\beta_{t+1} - \beta_t)'H_t(\beta_{t+1} - \beta_t).$$

Now find the value of β_{t+1} that maximizes this approximation to $LL(\beta_{t+1})$:

$$\frac{\partial \text{LL}(\beta_{t+1})}{\partial \beta_{t+1}} = g_t + H_t(\beta_{t+1} - \beta_t) = 0,$$

$$H_t(\beta_{t+1} - \beta_t) = -g_t,$$

$$\beta_{t+1} - \beta_t = -H_t^{-1}g_t,$$

$$\beta_{t+1} = \beta_t + (-H_t^{-1})g_t.$$

Gradient Ascent

$$\beta_{t+1} \leftarrow \beta_t + \lambda \times g_t$$

Gradient Ascent

- Gradient Ascent
 - Objective Function: $ll(\beta) = \sum_{i=1}^{N} [-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i(\beta_0 + \sum_{j=1}^{p} x_j \beta_j)]$
 - Gradient Ascent:
 - (1) Initialize $\beta^{(0)} = (\beta_0^{(0)}, \beta_1^{(0)}, ..., \beta_j^{(0)}) = (0, 0, ..., 0), t = 1$
 - (2) In step *t*, update coefficients:

$$\frac{\partial ll}{\partial \beta_{j}} \leftarrow \sum_{i=1}^{N} (y_{i} - \frac{e^{\beta_{0}^{(t-1)} + \sum_{j=1}^{p} x_{j} \beta_{j}^{(t-1)}}}{1 + e^{\beta_{0}^{(t-1)} + \sum_{j=1}^{p} x_{j} \beta_{j}^{(t-1)}}}) \chi_{ij} \text{ Calculate gradients (first-order derivatives) of coefficients}$$

$$\beta_j^{(t)} \leftarrow \beta_j^{(t-1)} + stepsize \times \frac{\partial ll}{\partial \beta_j}$$
 Update coefficients with Steepest Ascent Method

$$t \leftarrow t + 1$$

• (3) Check convergence condition $\|\nabla ll(\beta^{(t)})\| < tolerance$. If not, repeat (2) until (3) is satisfied

Gradient Ascent

- Gradient Ascent:
 - Python codes:

https://github.com/mozartkun/IS4303 Tutorials 2019 SEM2/blob/mast er/Tutorial%203.%20Data%20Preprocessing%20and%20Linear%20Model /IS4303%20Tutorial%20Week4%20Simplified%20Version.ipynb

Logistic Regression: Interpretation

Given a logistic model: $Logodds(\Pr(y_i = 1)) = \log(\frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)}) = \beta_0 + \sum_{j=1}^p x_j \beta_j$

How to interpret coefficient β_i ?

(1) Marginal effect of x_j on log(odds_ratio): $\log(\frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)})$

$$(2)\frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)} = e^{\beta_0 + \sum_{j=1}^p x_j \beta_j} :$$

 x_j increases by 1 unit, original odds_ratio is multiplied by a factor e^{β_j} (3)Doubling Amout:

 x_j increases by $\frac{\ln(2)}{\beta_i}$ unit, original odds_ratio is doubled

Probit Regression

Buy the House?

 $\beta_0 + \beta_1 \times Size_i + \beta_2 \times Bedroom_i + \beta_3 \times Bathroom_i$

$$Pr(Buy_i = 1) = \Phi(\beta_0 + \beta_1 \times Size_i + \beta_2 \times Bedroom_i + \beta_3 \times Bathroom_i)$$

Example: Predict whether to buy a condo **Buy**

(y=1, buy condo; y=0, otherwise)

3 features:

 $x = \{x_1: size, x_2: \#bedroom, x_3: \#bathroom\}$

Collect data from N=1000 people (i=1,...,1000):

Row	Size (m²)	#Bedroom	#Bathroom	Buy
1	65	2	2	1
2	72	3	2	O
••••	••••	•••••	•••••	••••
1000	50	1	1	0

Probit Regression

• Assume there is a latent unobservable utility y^* (e.g., Level of happiness):

$$y_i^* = \beta_0 + \sum_{j=1}^p x_j \beta_j + \varepsilon \text{ where the outcome: } y_i = \begin{cases} 1, & \text{if } y_i^* \ge 0 \\ 0, & \text{if } y_i^* < 0 \end{cases}$$

$$\Pr(y_i = 1) = \Pr(y_i^* \ge 0) = \Pr(\beta_0 + \sum_{j=1}^p x_j \beta_j + \varepsilon \ge 0) = \Pr(\varepsilon \ge -c) \text{ where } c = \beta_0 + \sum_{j=1}^p x_j \beta_j$$

- Parametric Assumption on random error ${m \epsilon}$
 - Logistic Distribution CDF (i.e., Sigmoid Function):

$$\Pr(\varepsilon \ge -c) = \frac{e^c}{1 + e^c} \Rightarrow \Pr(y_i = 1) = \frac{e^{\beta_0 + \sum_{j=1}^p x_j \beta_j}}{1 + e^{\beta_0 + \sum_{j=1}^p x_j \beta_j}} \Rightarrow \text{Logistic Regression}$$

• Standard Normal Distribution CDF $\Phi(\cdot)$:

$$\Pr(\varepsilon \ge -c) = \Pr(\varepsilon \le c) \Rightarrow \Pr(y_i = 1) = \Phi(\beta_0 + \sum_{j=1}^p x_j \beta_j) \Rightarrow \text{Probit Regression}$$

Estimation

- Gradient Ascent
 - Maximizing (Log-)Likelihood:

$$\max_{\beta} l(\beta) = \prod_{i=1}^{N} \Phi(\beta_0 + \sum_{j=1}^{p} x_j \beta_j)^{y_i} [1 - \Phi(\beta_0 + \sum_{j=1}^{p} x_j \beta_j)]^{(1-y_i)}$$

$$\max_{\beta} ll(\beta) = \sum_{i=1}^{N} [y_i \ln \Phi(\beta_0 + \sum_{j=1}^{p} x_j \beta_j) + (1 - y_i) \ln(1 - \Phi(\beta_0 + \sum_{j=1}^{p} x_j \beta_j))]$$

- Question:
 - Computationally expensive in calculating $\Phi(\beta_0 + \sum_{j=1}^p x_j \beta_j)$
 - Numerical Approximation: https://en.wikipedia.org/wiki/Normal distribution

Homework 4 Solutions

Thank you!