Extendability of Graphs with Perfect Matchings

George Semertzakis AL1180015

ALMA

July 18, 2021

1/25

Table of Contents

Extendability Problem

2 Structural Characterization on Bipartite Graphs

3 Computational Complexity

Matching and Perfect Matching

Definition

Let G = (V, E) be a graph. A matching is a set $M \subseteq E$ of independent edges.

Definition

A perfect matching is a matching that matches all the vertices.

Extendability

Definition

Let k be a positive integer and G = (V, E) be a graph with $|V| \ge 2k + 2$. G is k-extendable if G has a perfect matching and **every** matching of G of cardinality k is a subset of a perfect matching in G.

Extendability

Definition

Let k be a positive integer and G = (V, E) be a graph with $|V| \ge 2k + 2$. G is k-extendable if G has a perfect matching and **every** matching of G of cardinality k is a subset of a perfect matching in G.

Algorithmic Version

Extendability	
Input:	A graph G and a positive integer k .
Question:	Is the graph G k -extendable?

Algorithmic Version

Extendability	
Input:	A graph G and a positive integer k .
Question:	Is the graph G k -extendable?

 \bullet In the general case the problem is coNP-complete.

5 / 25

Algorithmic Version

Extendability	
Input:	A graph G and a positive integer k .
Question:	Is the graph G k -extendable?

- In the general case the problem is coNP-complete.
- In the case where the input graph is bipartite, there is a polynomial algorithm that decides it.

5 / 25

Alternating Paths

Definition

Let G = (V, E) be a graph and let M be a perfect matching of G. An M-alternating path P of G is a path in G where edges in M and edges in $E \setminus M$ appear on P alternately.

Figure: P, Q are M-alternating paths in G.

Table of Contents

Extendability Problem

2 Structural Characterization on Bipartite Graphs

3 Computational Complexity

Menger's Theorem

Theorem

Let G = (V, E) be a graph. G is k-vertex-connected if and only if there are k internally disjoint paths between every pair of two distinct vertices.

Theorem I (Aldred et al., Discrete Math., 2003)

 $G = (X \cup Y, E)$ bipartite with perfect matching. G is k-extendable if and only if

- for every perfect matching M and
- for every pair of vertices $x \in X$ and $y \in Y$

there are k internally disjoint free M-alternating paths connecting x and y.

Theorem I (Aldred et al., Discrete Math., 2003)

 $G = (X \cup Y, E)$ bipartite with perfect matching. G is k-extendable if and only if

- for every perfect matching M and
- for **every** pair of vertices $x \in X$ and $y \in Y$

there are k internally disjoint free M-alternating paths connecting x and y.

Figure: Graph G is 2-extendable.

Figure: P_1 , P_2 are M-alternating paths connecting x and y.

Theorem II (Disgjun Lou et al., Discrete Math., 2005)

 $G = (X \cup Y, E)$ bipartite with perfect matchings M_0 , M. Let $x \in X$ and $y \in Y$.

G has k internally disjoint free M_0 -alternating paths connecting x and y

G has k internally disjoint free M-alternating paths connecting x and y

Theorem II (Disgjun Lou et al., Discrete Math., 2005)

Figure: Graph G is 3-extendable with perfect matchings M_0 , M.

Theorem II (Disgjun Lou et al., Discrete Math., 2005)

Figure: Graph G is 3-extendable with perfect matchings M_0 , M.

Figure: Graphs H, K as obtained by 3-extendable graph G.

Theorem III (J Lakhal et al., IPL, 1998)

 $G = (X \cup Y, E)$ bipartite with perfect matching. G is k-extendable if and only if

for every perfect matching M

• for **every** pair of vertices $x \in X$ and $y \in Y$

there are k internally disjoint free alternating paths and 1 saturated connecting x and y.

Figure: An 1-extendable graph G in case $\{x,y\} \in M$.

Figure: An 1-extendable graph G in case $\{x, y\} \in M$.

Figure: An 1-extendable graph G in case $\{x,y\} \notin M$.

Lemma

Let p and k be two integers such that 0 . <math>G is k-extendable if and only if for every matching $M_p = \{(u_1, v_1), \ldots, (u_p, v_p)\}$ of p edges $G \setminus u_1 \setminus v_1 \setminus \cdots \setminus u_p \setminus v_p$ is (k - p)-extendable.

Lemma

Let p and k be two integers such that 0 . <math>G is k-extendable if and only if for every matching $M_p = \{(u_1, v_1), \ldots, (u_p, v_p)\}$ of p edges $G \setminus u_1 \setminus v_1 \setminus \cdots \setminus u_p \setminus v_p$ is (k - p)-extendable.

Figure: A 3-extendable graph *G*.

Figure: A 3-extendable graph G and paths P_1, P_2, P_3, Q in case $\{u, v\} \notin E'$.

Figure: A 3-extendable graph G and paths P_1, P_2, P_3, Q in case $\{u, v\} \in N$.

Figure: A 3-extendable graph G and paths P_1, P_2, P_3, Q in case $\{u, v\} \in N$.

Figure: A 3-extendable graph G and paths P_1, P_2, P_3, Q in case $\{u, v\} \notin N$.

Obtaining Directed Graphs from Undirected

Definition

We call residual graph of G, denoted by G_M , the graph obtained from G by directing the unmatched edges from X to Y and the matched edges from Y to X.

Obtaining Directed Graphs from Undirected

Definition

We call residual graph of G, denoted by G_M , the graph obtained from G by directing the unmatched edges from X to Y and the matched edges from Y to X.

Figure: A 2-extendable graph G and its residual graph G_M .

17 / 25

Obtaining Directed Graphs from Undirected

Definition

We call residual graph of G, denoted by G_M , the graph obtained from G by directing the unmatched edges from X to Y and the matched edges from Y to X.

Figure: A 2-extendable graph G and its residual graph G_M .

Theorem

Let M be a perfect matching of G. G is k-extendable if and only if its residual graph G_M is strongly connected and there are k vertex internally disjoint directed paths between every vertex of X and every vertex of Y.

Table of Contents

Extendability Problem

2 Structural Characterization on Bipartite Graphs

Computational Complexity

The Polynomial Algorithm on Bipartite Graphs (J Lakhal et al., IPL, 1998)

Figure: A 2-extendable graph G and its residual graph G'.

The Polynomial Algorithm on Bipartite Graphs (J Lakhal et al., IPL, 1998)

Figure: A 2-extendable graph G and its residual graph G'.

```
\begin{aligned} & \textbf{for } u \in U \textbf{ do} \\ & \textbf{ for } v \in V \textbf{ do} \\ & paths \leftarrow \text{max-disjoint-paths}(G', u, v) \\ & k \leftarrow \min(k, paths) \\ & \textbf{ end for} \\ \end{aligned}
```

coNP-completeness on General Graphs (Jan Hackfeld et al., J Comb Optim, 2018)

Theorem

EXTENDABILITY is in NP.

coNP-completeness on General Graphs (Jan Hackfeld et al., J Comb Optim, 2018)

Theorem

EXTENDABILITY is in NP.

$\mathsf{Theorem}$

EXTENDABILITY is NP-hard.

Reduction from VERTEX COVER.

Let (G_{VC}, s) be an instance of VERTEX COVER and let r be the total number of vertices of G_{VC} .

coNP-completeness - The Construction

Figure: An obtained graph G from G_{VC} with a perfect matching M.

coNP-completeness - Part I

Figure: G_{VC} has a vertex cover of size at most 2 and G is not 2-extendable.

coNP-completeness - Part II

Figure: G_{VC} does not contain a vertex cover of size at most 2 and G is 2-extendable.

coNP-completeness - Part II

Figure: G_{VC} does not contain a vertex cover of size at most 2 and G is 2-extendable.

Thank You!!!