Stacky II

Madhan Kumar M S	
Abhishek Sharma	Weendy:
Akansh Nirmal	Marillania
amit khandelwal	-> Nearest smaller element on left.
Bhaveshkumar	> largest Rectangle
Burhan	> Sum of subarrays max min
Gagan Kumar S	
Gowtham	
Murali krishna Talluri	
Naval Oli	Cwent PSP)
Pankaj Bhanu	
Purusharth A	
Rajat Sharma	63 → 7 0%
Rajendra	
Sanket Agarwal	
Sanket Giri	
Saurabh Ruikar	
Shani Jaiswal	
sharath r	
Shrikanth	
Subhashini	
Subhranil Kundu	
Suyash Gupta	
Venkata Sribhavana Nandiraju	
Vimal Kumar	
Vishal Mosa	
Yugesh v	

Nearest smaller Element on Left

```
Given an integer away A, find the index of nearest
smaller element on left & index in ALJ
Formally, \( \formall \) find j such that \( A \text{I} \) \( A \text{I} \) \( \text{j} \) \( \text{i} \) \( \text{j} \) \( \text{maximum} \)
of use
of nse
A U 5 2 10 8 2 value -1 U -1 2 2 -1 indices -1 0 -1 2 2 -1
of rue
```

Observation

$$\begin{array}{c}
10: 7 \\
3: 6 \\
2: 1
\end{array}$$

$$V: i$$

Pseudo code

```
nearest Smaller On Left (int[] A) f
 int []
             stack = []
              ary = [0....0] //nsize
             for(i=0; i < n; i++) d
                 while ( I stack is Empty () &8
                         A[i] <= A[stack.peck()]) {
                         stack pop()
                    if (stack is Empty())
                        anu [i] = -1
                     13 else {
                         any [i] = stack peek()
                      stack.push (i)
             return any
          TC: O(N)
           SC: O (N)
Q> + i, find nearest smaller or equal element on left Q> + i, find nearest greater element on left Q> + i, find nearest greater or eq element on left
```

Q> + i, find nearest smaller element on right.

```
nearest Smaller On Right (in t [] A) {
int []
           stack = []
            ary = [0....0] //n size
            for (i=n+; i \ge 0; i--)
               while ( I stack is Empty () &8
                    A[i] <= A[stack.peck()]) {
stack.pop()
                 if (stack.is Empty()) {
    anu [i] = -L
} else {
    anu [i] = stack peek()
                    stack.push(i)
            xeturn any
 +i nearest smaller or equal element on right -> <
 \forall i nearest greater or equal element on right \longrightarrow >
 \forall i nearest greater or equal element on right \longrightarrow >=
```

Q> Given ATJ, where ATiJ = height of ith box width of each box = 1
find the orea of largest rectangle formed by continuous boxs.

Given
$$i$$
, j area = min(A₁.... A_j) * (j-i+1)

St end

$$A = 12321$$
 $minH = 2$
 $widh = 3$

Bruteforce

 $T(: O(N^3))$ Sc: O(1)

for
$$l \longrightarrow 0$$
 to $N-1$ {

for $k \longrightarrow l$ to $N-1$ {

minH = ∞

for $l \longrightarrow l$ to k {

minH = min (minH, ATi])

}

marea = max (marea, minH * (x-l+1))

grint (marea)

```
Covery Forward Techique
                                     TC: O(N^2)
   for l \longrightarrow 0 to N-1 of
                                    SC:0(1)
      min H = min (minH, ATRI)
        marea = max (marea, min+ * (x-l+1)
                                     Breat: 22: 48
    print (marea)
                                     TC: O(N^2)
V width ----- min Height
 V neight ----- calculate width
Pseudocode
int largest lectangle (intT) A) of
                                       TC: O(N)
    nsel // calculate
                                        SC: O(N)
     nser // calculate
     marea =0
     for i \longrightarrow 0 to N-1 of
        l = nselTi]
         k = nseRTiJ / if k = = -1 make k = N
          w = \varkappa - l - 1
          marea = max (marea, Ali7 * w)
      return morea
```

Q> Given a AI) with distinct integers

+ subarrays, find (max - min) &

return its sum as the answer

$$A = 2 5 3$$
 $C = 2 5 3$
 $C =$

5 * (4 - 1) + 2*(1-3) + 3*(1-2) 8 15 + (4) - 3 =

A = 1 2 3

		max	min	max - min
1		1	1	\bigcirc
1 2		2	1	(
1 2	3	3	1	2
2		2	2	0
2	3	3	2	1
3		3	3	O
				<u> </u>

Bruteforce + subarray add max-min to any T(:0(N3)

In how many subaviays is 5 my max element?

count of subarray where 5
$$\mu$$
 max = $i - ngeLTiJ // ponibilities of start ngeRTiJ - i // ponibilities of end$

nge L

10 2 4
$$\frac{3}{5}$$
 $\frac{3}{3}$ $\frac{3}{20}$

nge L

10 0 0 0 3 -1

nge R

S 2 3 S $\frac{-1}{6}$ replace with N

Stort =
$$3-0$$
 = 3 = 6 # end = $5-3$ = 2

```
count of subarray where 5 4 min =
            * i - nsel [i] // possibilities of stort nser [i] - i // possibilities of end
int sum Min max (ACT)
         nsel, nsek, ngel, ngek // create
         11 also change -1 to N for right.
         any = 0
         for i \longrightarrow 0 to N-1 of
          11 max
            max subs = (i - ngeLTi]*(ngeRTi] - i)

// min

min subs = (i - nseLTi]*(nseRTi] - i)
           (contribution = ATi) * (maxsubs - minsubs)
             aru + = contribution
         return ans
    TC: O(N)
```

(C: OCN)