Jun.-Prof. Dr. Mira Schedensack Mathematisches Institut Universität Leipzig

Numerisches Praktikum

WS 2022/2023 & SS 2023

Projekt: Finite Differenzen für die Konvektions-Diffusions-Gleichung in 1d (empfohlene Gruppengröße: 3)

Die Konvektions-Diffusions-Gleichung lautet

$$-\varepsilon u'' + u' = 1. \tag{1}$$

Beim zugehörigen Randwertproblem wird eine Lösung $u:[0,1]\to\mathbb{R}$ mit u(0)=u(1)=0 für die Gleichung (1) gesucht. Typische Lösungen zu dieser Gleichung entwickeln steile Randschichten für kleine Werte von ε . Eine exakte Lösung ist durch

$$u(x) = \frac{e^{(x-1)/\varepsilon} - 1}{e^{-1/\varepsilon} - 1} + x - 1$$

gegeben.

Wir betrachten im folgenden drei verschiedene Finite-Differenzen-Verfahren für dieses Problem, siehe auch [RST08, Abschnitt 2.1.2]. Es sei $N \in \mathbb{N}$, $\Delta x := 1/N$ und $x_j := j\Delta x$ für $j = 0, \ldots, N$. Ein Finite-Differenzen-Verfahren zur Approximation von Lösungen von (1) ist gegeben durch $U_0 = U_N = 0$ und

$$-\varepsilon \frac{U_{j+1} - 2U_j + U_{j-1}}{(\Delta x)^2} + \frac{U_{j+1} - U_j}{\Delta x} = 1$$

für alle j = 1, ..., N - 1. In einem zweiten Finite-Differenzen-Verfahren ist eine Approximation von (1) gegeben durch $u_0 = u_N = 0$ und

$$-\varepsilon \frac{U_{j+1} - 2U_j + U_{j-1}}{(\Delta x)^2} + \frac{U_j - U_{j-1}}{\Delta x} = 1$$

für alle $j=1,\ldots,N-1$. Die Matrizen $A,B,C\in\mathbb{R}^{(N-1)\times(N-1)}$ seien definiert durch

$$A = \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & \ddots & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & -1 & 2 & -1 & 0 \\ \vdots & & & \ddots & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & -1 & 1 \\ 0 & \dots & \dots & 0 & -1 \end{pmatrix},$$

und $C = -B^{\top}$. Setze $F = (1, ..., 1) \in \mathbb{R}^{N-1}$. Dann ist das erste Verfahren äquivalent zu

$$\left(\frac{\varepsilon}{|\Delta x|^2}A + \frac{1}{|\Delta x|}B\right)U = F$$

und das zweite zu

$$\left(\frac{\varepsilon}{|\Delta x|^2}A + \frac{1}{|\Delta x|}C\right)U = F,$$

wobei $U = (U_1, \dots, U_{N-1}) \in \mathbb{R}^{N-1}$.

- 1. Implemenieren Sie die beiden obigen Verfahren. Beachten Sie dabei, dass Sie die Matrizen A, B und C als sparse-Matrizen erstellen. Für die Lösung der linearen Gleichungssysteme können Sie auf existierende Routinen (für sparse-Matrizen) zurückgreifen, z.B. auf die python-Routine scipy.sparse.linalg.spsolve.
- 2. Führen Sie numerische Tests durch für die Parameter $\varepsilon=0.5, 0.05, 0.005, 0.0005$. Stellen Sie die exakte Lösung und die diskreten Lösungen für die Gitterweiten N=10, N=100 und N=1000 und N=1000 graphisch dar. Vergleichen Sie die beiden Verfahren für diese Wahl von Parametern.
- 3. Setze $\hat{u} = (u(x_0), \dots, u(x_N))^{\top} \in \mathbb{R}^{N+1}$. Berechnen Sie den Fehler

$$\|\hat{u} - U\|_{h,L^2} := \Delta x \|\hat{u} - U\|_{\ell^2} = \sqrt{\sum_{j=0}^{N} \Delta x |\hat{u}_j - U_j|^2}$$

für die in 2 genannten Werte von ε und Δx und vergleichen Sie die beiden Verfahren. Erstellen Sie ein Diagramm (loglog-plots), in denen Sie den Fehler gegen die Schrittweite Δx auftragen. Welche Konvergenzraten lassen sich beobachten? Welche Vorasymptotik lässt sich beobachten?

Literatur

[RST08] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska. Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, volume 24 of Springer Ser. Comput. Math. Berlin: Springer, 2nd ed. edition, 2008.