RAGHAV G. JHA

| +1 757-940-9624, Visit: https://rgjha.github.io | raghav.govind.jha@gmail.com

EMPLOYMENT

• Jefferson National Lab (JLab)

Postdoctoral Researcher Staff

September 2022 - today Newport News, VA, USA

 \bullet Perimeter Institute for Theoretical Physics

Postdoctoral Fellow

September 2019 - August 2022 Waterloo, ON, Canada

EDUCATION

• Ph.D. Physics, Syracuse University, NY, USA

August 2013 - May 2019

• M.Sc. Physics, St. Xavier's College & Bose Institute, Kolkata, INDIA

August 2011 - May 2013

• M.S. in Nanomaterials, Sorbonne Université, Paris, FRANCE

September 2010 - July 2011

• B.Sc. Physics (Honours), St. Stephen's College, Delhi, INDIA

July 2007 - May 2010

PUBLICATIONS

[Google Scholar, iNSPIRE, ORCID]

(Authors are mostly listed in alphabetical order)

34. Real-Time Scattering in Ising Field Theory using Matrix Product States (in review)

arXiv:2411.13645

Raghav G. Jha, Ashley Milsted, Dominik Neuenfeld, John Preskill, Pedro Vieira

33. Quantum computation of SU(2) lattice gauge theory with continuous variables (in review)

arXiv:2410.14580

Victor Ale, Nora Bauer, Raghav G. Jha, Felix Ringer, George Siopsis

32. Sparsity dependence of Krylov state complexity in the SYK model (in review)

arXiv:2407.20569

Raghav G. Jha, Ranadeep Roy

31. Thermal state preparation of the SYK model using a variational quantum algorithm (in review)

arXiv:2406.15545

Jack Araz, Raghav G. Jha, Felix Ringer, Bharath Sambasivam

30. SU(2) principal chiral model with tensor renormalization group on a cubic lattice arXiv:2406.10081, Phys. Rev. D 110, 034519 (2024)
Shinichiro Akiyama, Raghav G. Jha, Judah Unmuth-Yockey

29. Phase diagram of generalized XY model using tensor renormalization group arXiv:2404.17504, Phys. Rev. D 110, 034504 (2024)

Abhishek Samlodia, Vamika Longia, **Raghav G. Jha**, Anosh Joseph

28. Hamiltonian simulation of minimal holographic sparsified SYK model arXiv:2404.14784, Nucl. Phys. B 1012 (2025) 116815

Raghav G. Jha

- 27. Tensor renormalization group study of 3D principal chiral model arXiv:2312.11649, PoS LATTICE2023 (2023) 355
 Shinichiro Akiyama, Raghav G. Jha, Judah Unmuth-Yockey
- 26. Nonperturbative phase diagram of two-dimensional N = (2,2) super-Yang-Mills arXiv:2312.04980, Phys. Rev. D 110, 054507 (2024)
 Navdeep S. Dhindsa, Raghav G. Jha, Anosh Joseph, David Schaich
- 25. Sachdev-Ye-Kitaev model on a noisy quantum computer arXiv:2311.17991, Phys. Rev. D 109, 105002 (2024) Muhammad Asaduzzaman, Raghav G. Jha, Bharath Sambasivam
- 24. Continuous variable quantum computation of the O(3) model in 1+1 dimensions arXiv:2310.12512, Phys. Rev. A 109, 052412 (2024)
 Raghav G. Jha, Felix Ringer, George Siopsis, Shane Thompson
- 23. Toward quantum computations of the O(3) model using qumodes arXiv:2308.06946, PoS LATTICE2023 (2023) 230

 Raghav G. Jha, Felix Ringer, George Siopsis, Shane Thompson
- 22. GPU-Acceleration of Tensor Renormalization with PyTorch using CUDA arXiv:2306.00358, Computer Physics Communications 294 (2024) 108941 Raghav G. Jha, Abhishek Samlodia
- 21. Notes on Quantum Computation and Information arXiv:2301.09679 Raghav G. Jha
- 20. Supersymmetric Wilson loops on the lattice in the large N limit Eur. Phys. J. Spec. Top. 232:355–358 (2023)
 Raghav G. Jha
- Non-perturbative phase structure of the bosonic BMN matrix model arXiv:2201.08791, JHEP 05 (2022) 169
 Navdeep S. Dhindsa, Raghav G. Jha, Abhishek Samlodia, Anosh Joseph, David Schaich
- 18. Thermal phase structure of dimensionally reduced super-Yang-Mills arXiv:2201.03097, PoS LATTICE2021 (2022) 187
 David Schaich, Raghav G. Jha, Anosh Joseph
- 17. Tensor renormalization of three-dimensional Potts model arXiv:2201.01789
 Raghav G. Jha
- 16. Introduction to Monte Carlo for Matrix Models arXiv:2111.02410, SciPost Phys. Lect. Notes 46 (2022) Raghav G. Jha
- 15. Large-N limit of two-dimensional Yang-Mills theory with four supercharges arXiv:2109.01001, PoS LATTICE2022 (2022) 433
 Navdeep S. Dhindsa, Raghav G. Jha, Anosh Joseph, David Schaich
- Tensor renormalization group study of the 3d O(2) model arXiv:2105.08066, Phys. Rev. D 104, 094517 (2021)
 Jacques Bloch, Raghav G. Jha, Robert Lohmayer, Maximilian Meister

- 13. Three-dimensional super-Yang-Mills theory on the lattice and dual black branes arXiv:2010.00026, Phys. Rev. D 102, 106009 (2020)
 Simon Catterall, Joel Giedt, Raghav G. Jha, David Schaich, Toby Wiseman
- 12. Positive geometries for all scalar theories from twisted intersection theory arXiv:2006.15359, Phys. Rev. Research 2, 033119 (2020)
 Nikhil Kalyanapuram, Raghav G. Jha
- 11. Critical analysis of two-dimensional classical XY model arXiv:2004.06314, J. Stat. Mech. (2020) 083203
 Raghav G. Jha
- 10. Thermal phase structure of a supersymmetric matrix model arXiv:2003.01298, PoS LATTICE2019 (2020) 069
 David Schaich, Raghav G. Jha, Anosh Joseph
- 9. Finite N unitary matrix models arXiv:2003.00341 Raghav G. Jha
- 8. Tensor renormalization group study of the non-Abelian Higgs model in two dimensions arXiv:1901.11443, Phys. Rev. D 99, 114507 (2019)
 Alexei Bazavov, Simon Catterall, Raghav G. Jha, Judah Unmuth-Yockey
- 7. Lattice quantum gravity with scalar fields arXiv:1810.09946, PoS LATTICE2018 (2019) 043 Raghav G. Jha, Jack Laiho, Judah Unmuth-Yockey
- 6. The properties of D1-branes from lattice super Yang-Mills theory using gauge/gravity duality arXiv:1809.00797, PoS LATTICE2018 (2019) 308
 Raghav G. Jha
- Removal of the trace mode in lattice N = 4 super Yang-Mills theory arXiv:1808.04735, Phys. Rev. D 98, 095017 (2018)
 Simon Catterall, Joel Giedt, Raghav G. Jha
- Nonperturbative study of dynamical SUSY breaking in N = (2, 2) Yang-Mills arXiv:1801.00012, Phys. Rev. D 97, 054504 (2018)
 Simon Catterall, Raghav G. Jha, Anosh Joseph
- 3. Truncation of lattice $\mathcal{N}=4$ super Yang-Mills EPJ Web of Conferences 175, 11008 (2018) Simon Catterall, Joel Giedt, Raghav G. Jha
- Testing the holographic principle using lattice simulations arXiv:1710.06398, EPJ Web of Conferences 175, 08004 (2018)
 Raghav G. Jha, Simon Catterall, David Schaich, Toby Wiseman
- 1. Testing holography using lattice super-Yang-Mills on a 2-torus arXiv:1709.07025, Phys. Rev. D 97, 086020 (2018)
 Simon Catterall, Raghav G. Jha, David Schaich, Toby Wiseman

- 47. Quantum gravity on noisy quantum computers | APS Global Summit, Anaheim, CA, USA | March 17, 2025
- 46. Real-time scattering in Ising field theory | Brookhaven National Laboratory, Upton, NY, USA | February 13, 2025 [Slides]
- 45. Krylov complexity for quantum chaos on quantum computer (KC for QC on QC) | CFNS WORKSHOP, STONY BROOK UNIVERSITY, NY, USA | February 12, 2025
- 44. Scattering in Ising field theory UC Berkeley/LBNL Nuclear Theory Seminar, Berkeley, CA, USA [Online] January 29, 2025 [Slides]
- 43. Probing fundamental physics in a new era of computation University of Miami, USA January 22, 2025
- 42. State preparation and operator growth of SYK model on IBM quantum computer Tensor Network 2024 workshop, Ishikawa, Japan [Online] November 17, 2024 [Slides]
- 41. Thermal state preparation and dynamics of random all-to-all fermionic model C2QA MEETING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, BOSTON, USA July 17, 2024 [Slides]
- 40. SYK model on a noisy quantum computer dynamics and state preparation | MANDELSTAM INSTITUTE FOR THEORETICAL PHYSICS (MITP) AND THE NATIONAL INSTITUTE FOR THEORETICAL AND COMPUTATIONAL SCIENCES (NITHECS), JOHANNESBURG, SOUTH AFRICA [ONLINE] | May 07, 2024 [YouTube]
- 39. Introduction to tensor networks for classical computing of spin systems and gauge theories | Set of four lectures at 14th Jo'burg School on String theory at University of Pretoria, South Africa[Online] | April 29-30 and May 02, 2024 [YouTube]
- 38. Quantum computing for quantum many-body systems | William & Mary, Williamsburg, USA | April 17, 2024 [Slides]
- 37. Approaches to universal quantum computing for spin and gauge models | University of Iowa [Online] | April 16, 2024 [Slides]
- 36. Random dense Hamiltonians on current noisy quantum computers | University of Maryland, USA | March 28, 2024 [Slides]
- 35. Extracting Physics with IBM's 127-qubit quantum processor | Jefferson Lab, VA, USA | March 13, 2024 [Slides]
- 34. Real-time dynamics of SYK model on a noisy quantum computer | Workshop on 'Toward Quantum simulation of gauge/gravity duality and lattice gauge theory' | March 05, 2024 [Slides]
- 33. SYK model on a noisy quantum computer Indian Institute of Science, Bangalore, India [Online] February 06, 2024 [Slides] [YouTube]
- 32. Quantum Computation of the O(3) model using qumodes | Contributed Talk at Lattice 2023 at Fermilab, USA | August 02, 2023 [Slides]
- 31. Computation with Quantum Mechanics | Set of two lectures at Quantum Computing Bootcamp 2023, Jefferson Lab, USA | June 20, 2023 [Resource]

- 30. Can quantum computation improve our understanding of quantum fields? Set of two lectures at HUGS 2023 Summer School, Jefferson Lab, USA June 7, 2023 [YouTube, Part 1] [Part 2]
- 29. Non-linear sigma models using quantum computation | C2QA Theory and Software Retreat, New York City, USA | May 30, 2023 [Slides]
- 28. Introduction to Quantum Computing methods in Physics | Tata Institute, Mumbai, India [Online] | April 27, 2023 [Slides] [YouTube]
- 27. Aspects of classical and quantum computing of quantum many-body systems | ASHOKA UNIVERSITY, SONEPAT, INDIA [Online] | February 10, 2023 [Slides]
- 26. Classical computation using tensor networks and quantum computation with qubits and qumodes

 | Jefferson Lab, USA | November 14, 2022 [Slides] [Video]
- 25. Application of tensor methods to real-space renormalization and real-time study of field theories

 Brookhaven National Lab (BNL), USA [Online] | October 31, 2022 [Slides]
- 24. New tools for old problems in spin and gauge models on the lattice IIT Hyderabad, India [Online] October 12, 2022 [Slides]
- 23. Some old problems on the lattice using tensors | NUMSTRINGS 2022, ICTS, BANGALORE, INDIA | August 26, 2022 [YouTube]
- 22. Introduction to Quantum Computation using QISKIT | TWO LECTURES FOR SUMMER SCHOOL 2022 AT RENSSELAER POLYTECHNIC INSTITUTE, USA [ONLINE] | June 22 and 23, 2022 [Lecture 1 & 2] [YouTube]
- 21. New approach to continuous spin models in two and three dimensions | Numerical Methods in Theoretical Physics conference, APCTP, Pohang, South Korea [Online] | May 17, 2022 [Slides] [YouTube]
- 20. Holography with large matrices on the lattice | Institute of Nuclear Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico | March 24, 2022 [Slides]
- 19. Large N matrix models using Monte Carlo and Bootstrap | University of Surrey, Surrey, UK [Online] | February 22, 2022 [Slides]
- 18. Introduction to tensor networks and spin systems | Azim Premji University, Bengaluru, India | January 11, 2022
- 17. Tensor networks and spin models | Indian Institute of Science Education and Research (IISER), Mohali, India | December 7, 2021 [Slides]
- 16. Real-space tensor renormalization for spin models in three dimensions | Perimeter Institute, Waterloo, Canada | November 19, 2021
- 15. Solving matrix models at large and finite N | Two lectures for Summer School 2021 at Rensselaer Polytechnic Institute, USA [Online] | June 28 and 29, 2021 [Lecture 1 & 2]
- 14. Holographic gauge theories on the lattice Dublin Institute for Advanced Studies, Dublin, Ireland June 23, 2021 [Slides] [YouTube]
- 13. Old and new methods for new and old problems in Physics | Indian Institute of Technology (IIT) Madras, India | March 8, 2021 [Slides]

- 12. Probing holographic dualities with lattice supersymmetric Yang-Mills theories | MASSACHUSETTS INSTITUTE OF TECHNOLOGY, BOSTON, USA [ONLINE] | February 25, 2021 [Slides] [YouTube]
- 11. New tool for old problems Tensor network approach to spin models and gauge theories

 UNIVERSITY OF LIVERPOOL, LIVERPOOL, UK [ONLINE] | October 14, 2020 [Slides]
- 10. Tensor Networks: Algorithm & Applications | Two lectures for CyberTraining Summer School 2020 at Rensselaer Polytechnic Institute, USA [Online] | June 10 and 11, 2020 [Lecture 1 & 2] [Resource] [YouTube]
- 9. Holographic aspects of supersymmetric gauge theories | Perimeter Institute, Waterloo, Canada | October 4, 2019
- 8. Numerical Approaches to Holography | Ashoka University, Sonepat, India | August 28, 2019 | [Slides]
- 7. Numerical Approaches to Holography | Indian Institute of Science Education and Research (IISER) Mohali, India | August 8, 2019
- 6. Holographic dualities and tensor renormalization group study of gauge theories Perimeter Institute, Waterloo, Canada March 11, 2019 [Video (PIRSA, 19030108)]
- 5. Supersymmetry breaking and gauge/gravity duality on the lattice | University of Colorado Boulder, USA | April 6, 2018 [Slides]
- 4. Recent results from lattice supersymmetry in $2 \le d < 4$ dimensions | ICTS, Bangalore, India | January 31, 2018 [YouTube]
- 3. Testing gauge/gravity duality using lattice simulations | Contributed Talk at Lattice 2017 Granada, Spain | June 22, 2017 [Slides]
- 2. Testing holography through lattice simulations Yukawa Institute for Theoretical Physics, Kyoto, Japan April 4, 2017 [Slides]
- 1. Supersymmetry on the lattice April Meeting 2016 Salt Lake City, Utah, USA April 17, 2016 [Slides]

TEACHING EXPERIENCE

- Recitation Instructor for PHY 216 (General Physics II for Honors and Majors) [Evaluation report] and Grader for PHY 662 (Quantum Mechanics II) Spring 2019
- Recitation Instructor for PHY 215 (General Physics I for Honors and Majors) and Grader for PHY 312 (Relativity & Cosmology)
 Spring 2018
- Grader for PHY 424 (Electromagnetism) and PHY 360 (Waves and Oscillations) Fall 2016
- Recitation Instructor for PHY 212 General Physics II Spring 2016
- Grader for PHY 641 (Statistical Mechanics) and PHY 731 (Electromagnetic theory) Fall 2015
- Recitation Instructor for PHY 211 General Physics I Fall 2014
- Recitation Instructor for PHY 211 General Physics I [Evaluation report] Spring 2014
- Lab Instructor for PHY 101 General Physics Fall 2013

AWARDS

- Henry Levinstein Fellowship for Outstanding Senior Graduate Student Department of Physics,
 Syracuse University [USD 2000]
- College of Arts and Sciences Fellowship for best performance in Graduate Courses Syracuse University [USD 1700]
- CSIR/UGC-NET Junior Research Fellowship (JRF) by Government of India 2013
- Erasmus Mundus Scholarship for pursuing M.S at Sorbonne Université [EUR 12000] 2010
- National Top 25 Students (out of 5153 students) in National Graduate Physics Examination
 (NGPE) conducted by Indian Association of Physics Teachers (IAPT)
- KVPY (Kishore Vaigyanik Protsahan Yojana) Scholarship by Department of Science & Technology,
 Government of India [about USD 3500 in two years]
- Merit certificate by University of Delhi (11th in the university out of ≈ 1200 students) 2008
- NIUS (National Initiative on Undergraduate Sciences) Fellowship by Tata Institute of Fundamental Research (TIFR), Mumbai

PROFESSIONAL SERVICES AND COMPUTING GRANTS

- Referee for Nature npj QI (Quantum Information), Physical Review A, Physical Review D, Physical Review Letters, Physical Review Research, European Physical Journal (EPJ), IOP Machine Learning: Science and Technology. *Total papers reviewed:* 10
- Chair of parallel session on 'Quantum Computation and Information' in the 40th Annual Lattice conference at Fermilab, USA [1 August 2023]
- Co-organizer of 'Quantum Computing Bootcamp' at Jefferson Lab, USA from June 20-30, 2023 funded by Quantum Horizons, Department of Energy (DOE).
- Quantum Fields and Strings Seminar Organizer at Perimeter Institute [January 2020 March 2021].
- Awarded DiRAC computing grant in 2022 for \approx 24M core-hours with David Schaich, Toby Wiseman, Anosh Joseph and USQCD computing grants of \approx 12M core-hours on Fermilab pi0 machine each year in 2017 & 2018

MENTORING EXPERIENCE

- 1. Nikhil Kalyanapuram (Perimeter Scholar International (PSI) student at Perimeter Institute \rightarrow PhD Penn State \rightarrow Industry) 2019-2020
- 2. Navdeep S. Dhindsa (PhD IISER Mohali \rightarrow Postdoc at IMSc, Chennai) 2020-2023
- 3. Vamika Longia (PhD student at IISER Mohali) 2021-2022
- 4. Abhishek Samlodia (BS-MS IISER Mohali \rightarrow PhD candidate at Syracuse University) 2021-2024
- 5. Nikhil Bansal (BS-MS IISER Mohali \rightarrow PhD candidate at University of Warwick)) 2022-2023

6. Shane Thompson (PhD University of Tennessee Knoxville \rightarrow Postdoc at U.S. Naval Resea Washington DC)	rch Lab, 2023-2024
7. Bharath Sambasivam (PhD Syracuse University \rightarrow Postdoc at Virginia Tech, USA)	2023-2024
8. Ranadeep Roy (PhD student at The Ohio State University)	2023-
9. Victor Ale (PhD student at University of Tennessee Knoxville)	2024-
10. Nora Bauer (PhD student at University of Tennessee Knoxville)	2024-

REFERENCES (IN ALPHABETICAL ORDER)

- SIMON CATTERALL Professor, Syracuse University, USA [smcatter@syr.edu]

ROBERT EDWARDS
 Senior Staff, Theory Center, Jefferson Lab, USA
 [edwards@jlab.org]

- John Preskill Richard P. Feynman Professor of Theoretical Physics, California Institute of Technology, USA [preskill@caltech.edu]

- DAVID SCHAICH
Lecturer in Theoretical Particle Physics, University of Liverpool, Liverpool, UK
[david.schaich@liverpool.ac.uk]

PEDRO VIEIRA
 Faculty at Perimeter Institute, Canada & ICTP-SAIFR, São Paulo, Brazil
 [pedrogvieira@gmail.com]

- TOBY WISEMAN
Professor of Theoretical Physics, Imperial College, London, UK
[t.wiseman@imperial.ac.uk]

Last Updated: 18 April 2025