

Projektseminar ALADIN

Projektablauf

- Wöchentliche Absprache (~1h)
 - Wer hat was gemacht?
 - Wo gab es Probleme?
 - Was sind die Ziele bis zur n\u00e4chsten Absprache?
- Individuelle Bearbeitung je eines Aufgabentyps
 - (Gruppenbildung möglich je nach Aufgabentyp)
 - Beinhaltet folgende Aspekte:
 - Manuelles Erstellen und Lösen einer/mehrerer Aufgabe/n
 - Entwurf zur Generierung von Aufgabe, Lösung und Lösungshilfen, der Generierungsparameter und einer Komplexitätsmetrik
 - Implementation des Generierungsalgorithmus und der Komplexitätsmetrik
 - Integration in ALADIN/CARPET
 - Bevorzugte Programmiersprachen:
 - Typescript/JS, Python
- Abschließender Projektbericht

Aufgabentypen

- Musiktheorie (neo-riemansche Triaden-Transformationen)
- Chemie (Reaktionsgleichungen am Beispiel der "Bromierung")
- Regular Expressions
- Spatial SQL
- Endliche Automaten (Finite State Machines)
- Entscheidungsbäume
- Hierarchische Clusteranalyse
- Phrase Structure Trees (Natural Language Processing)
- ...

Musiktheorie (neo-Riemansche Triaden-Transformationen)

- 1-2 Personen
- Anstrebung einer wissenschaftlichen Publikation (s. https://engagingstudentsmusic.org/about/submissions)
- Mögliche Aufgaben
 - Finde Sequenz mit n Transformationen um von Anfangszustand zu Endzustand zu gelangen
 - Input: Anfangs- und Endzustand, n
 - Output: Tonfolge
 - Komponiere n Takte und beachte zusätzliche Constraints
 - Input: n, [Constraints]
 - Output: Tonfolge
- Zusatz: "Hörbare" Generierung der Tonfolge/Musik mittels generativer KI (z. B. <u>Audiocraft von Meta</u>)
- Ressourcen

- https://viva.pressbooks.pub/openmusictheory/chapter/neo-riemannian-triadic-progressions/
- https://www.fransabsil.nl/htm/tonnetz_riemannian_transformations.htm

Chemie

- 1-2 Personen
- Anstrebung einer wissenschaftlichen Publikation
- Aufgabe
 - Vervollständige die Reaktionsgleichung mit einem generierten R und "generierten" Reaktionsbedingungen
 - Input: R, Reaktionsbedingungen
 - Output: Reaktionsergebnis
 - Ggf. auf weitere Atome ausweiten (insb. welche zugehörig zur "elektrophilen aromatische Substition" sind)

Statt "ortho/meta/para" könnten auch Zahlen verwendet werden, idealerweise könnten aber gleich diese Ausdrücke mitbenutzt werden. (Eine Sache vorneweg: "ortho" tritt alleine als Antwort nie auf. Es ist chemisch gesehen immer nur das Nebenprodukt.

Reaktionsbedingungen

entweder als Text (z.B. "Bromierung") oder als "echte" chemische Reaktionsbedingungen dann z.B: so

Br₂ kat. FeBr₃ Erhitzen die Struktur in der Box wäre nicht gegeben. Das müssten die Studierenden selbst zeichnen

im konkreten Fall mit den Reaktionsbedingungen wäre hier X = Br. Das wird idealerweise mit abgefragt.

Ressourcen:

Siehe Teams-Dokument

Regular Expressions

1 Person

- Mögliche Aufgaben
 - Finde RegEx der Eingabesequenz(en) erkennt
 (u. zstl. Bedingungen genügt)
 - Input: Eingabesequenz(en), [Bedingungen]
 - Output: RegEx
 - Modelliere FSM welche Eingabesequenz verarbeiten kann
 - Input: Eingabesequenz
 - Output: FSM (Tabelle | Diagramm)
 - Löse RegEx-Puzzle
 - Input: RegEx-Puzzle
 - Output: Sequenzen zur Lösung

Ressourcen

https://regexcrossword.com/

Spatial SQL

2 Personen

- Generierung von Spatial-SQL-Queries
 - Abbildung einer Teilmenge von Spatial-SQL-Funktionen
- Aufgabe:
 - Finde SQL-Query zur Aufgabenstellung
 - Input: Aufgabenstellung (textuell)
 - Output: (Spatial-) SQL-Query

Ressourcen:

- https://carto.com/spatial-data-catalog/browser/?license=public (Daten)
- https://knowwheregraph.org/graph/ (Daten)
- https://geoinformatik.htw-dresden.de/anleitungen/SQL/Postgres_old_grosses_schema/Spatial_SQL3.html (Übungen)

Endliche Automaten (Finite State Machines)

Person

- Mögliche Aufgaben
 - Erzeuge Zustandsdiagram | Zustandstabelle:
 - Input: Zustandstabelle | Zustandsdiagramm
 - Output: Zustandsdiagramm | Zustandstabelle
 - Erzeuge Ausgabe zu einer gegebenen Eingabe (oder umgekehrt)
 - Input: Eingabesequenz, FSM
 - Output: Ausgabesequenz
 - Bestimme ob Eingabe verarbeitet werden kann (u. finde Fehler falls nicht)
 - Input: Eingabesequenz, FSM
 - Output: Verarbeitbarkeit, [Fehlerstellen]
- Ressourcen:

Torsten Munkelt und Paul Christ

Rosen, Kenneth H. Discrete mathematics and its applications (Kapitel 13.2 ff.)

State	Next State Input 5 10 25 0 R					Output Input 5 10 25 O R				
	s_0	s_{i}	s_2	s_5	s_0	s_0	n	n	n	n
s_1	s_2	s_3	s_6	s_1	s_1	n	n	n	n	n
s_2	s_3	s_4	s_6	s_2	s_2	n	n	5	n	n
s_3	s_4	85	86	s_3	s_3	n	n	10	n	n
s_4	s ₅	86	86	s_4	s_4	n	n	15	n	n
s_5	s ₆	86	s ₆	85	$s_{\rm s}$	n	5	20	n	n
s_6	86	s_6	s_6	s_0	s_0	5	10	25	OJ	A.

with the input and the output for that transition. Figure 1 shows such a directed graph for the vending machine.

13.2.2 Finite-State Machines with Outputs

We will now give the formal definition of a finite-state machine with output

A finite-state machine $M = (S, I, O, f, g, s_0)$ consists of a finite set S of states, a finite input alphabet I, a finite output alphabet O, a transition function f that assigns to each state and input pair a new state, an output function g that assigns to each state and input pair an output, and an initial state so.

Let $M = (S, I, O, f, g, s_0)$ be a finite-state machine. We can use a state table to represent the values of the transition function f and the output function g for all pairs of states and input. We previously constructed a state table for the vending machine discussed in the introduction to this

EXAMPLE 1 The state table shown in Table 2 describes a finite-state machine with $S = \{s_0, s_1, s_2, s_3\}$, $I = \{0, 1\}$, and $O = \{0, 1\}$. The values of the transition function f are displayed in the first two columns, and the values of the output function g are displayed in the last two columns.

FIGURE 1 A vending machine.

Entscheidungsbäume

1 Person

- Mögliche Aufgaben:
 - Bilde den Entscheidungsbaum für ein Datenset
 - Input: Datenset (inkl. Feature- und Klassenvektor), Split-Kriterium, Stop-Kriterium
 - Output: Entscheidungsbaum
 - Klassifiziere neue Daten anhand eines Entscheidungsbaums
 - Input: Entscheidungsbaum, Daten
 - Output: Klasse
 - "Stutze" einen Entscheidungsbaum
 - Input: Entscheidungsbaum, Pruning-Verfahren
 - Output: Bester getrimmter Teilbaum
- Ressourcen:
 - https://online.stat.psu.edu/stat508/lesson/11

Hierarchische Clusteranalyse

Person

- Mögliche Aufgaben:
 - Führe eine hierarchische Clusteranalyse durch
 - Input: Datenset, Ähnlichkeitsmetrik, Linkkriterium
 - Output: Dendrogram
 - Bestimme die optimale Clusteranzahl nach Metrik X
 - Input: Distanzmatrix, Dendrogram, Metrik
 - Output: Clusteranzahl, Cluster

Ressourcen:

https://online.stat.psu.edu/stat508/lesson/11

Seite 10

Phrase Structure Trees (NLP)

1 Person

- Mögliche Aufgaben
 - Bestimme den PST
 - Input: Tagset, Grammar-Rules, Eingabesequenz
 - Output: PST
 - Bestimme die Regeln zur Erzeugung eines PST
 - Input: PST
 - Output: Grammar-Rules
 - Finde alternativen PST für mehrdeutige Phrasen
 - Input: Tagset, Grammar-Rules, PST
 - Output: alternativen PST
- Ressourcen:

Torsten Munkelt und Paul Christ

https://web.stanford.edu/~jurafsky/slp3/ (Kapitel 12 ff.)

Fragen & Organisatorisches

Bei weiteren Rückfragen:

- Torsten Munkelt: torsten.munkelt@htw-dresden.de
- Paul Christ: <u>paul.christ@htw-dresden.de</u>
- Wöchentlicher Termin:
 - Mo: 15:00 16:00
 - Do: Notfalltermin Ausweichtermin 15:00-16:00

- Ihre Aufgaben bis nächsten Mo:
 - Gruppen zu finden
 - Aufgabentyp zu finden
 - Eine Beispielaufgabe erstellen und lösen