Borne supérieure dans ${\mathbb R}$

Aperçu

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de ${\mathbb R}$
- 4. La droite achevée $\overline{\mathbb{R}}$

Richard Dedekind (1831-1916)

- 1. Majorant, minorant
- 1.1 Partie bornée
- 1.2 Plus grand élément, plus petit élément
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de ℝ
- 4. La droite achevée \mathbb{R}

- 1. Majorant, minorant
- 1.1 Partie bornée
- 1.2 Plus grand élément, plus petit élément
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de \mathbb{R}
- 4. La droite achevée \mathbb{R}

- **D 1** Soit A une partie de \mathbb{R} .
 - ightharpoonup On dit qu'un réel M est un majorant de A si

$$\forall x \in A, x \leq M$$
.

On dit alors que la partie A est majorée.

ightharpoonup On dit qu'un réel m est un **minorant** de A si

$$\forall x \in A, m \leq x$$
.

On dit alors que la partie A est minorée.

Une partie majorée et minorée est dite bornée.

La valeur absolue permet de caractériser facilement les parties bornées de \mathbb{R} .

P 2 Une partie A de \mathbb{R} est bornée si et seulement si

$$\exists \mu \in \mathbb{R}_+, \forall x \in A, |x| \le \mu.$$

- R n'est ni minoré ni majoré.
- \triangleright [0, 1] est majorée par 5, minorée par 0.
- >]0, 1] est majorée par 5, minorée par 0.

- 1. Majorant, minorant
- 1.1 Partie bornée
- 1.2 Plus grand élément, plus petit élément
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de ℝ
- 4. La droite achevée \mathbb{R}

- D 3 Soit A une partie de \mathbb{R} .
 - On dit que a est le plus grand élément de A ou le maximum de A si

 $a \in A$

et $\forall x \in A, x < a$

Lorsqu'il existe, le plus grand élément de A se note max(A).

On dit que a est le plus petit élément de A ou le minimum de A si

 $a \in A$

et $\forall x \in A, a < x$

Lorsqu'il existe, le plus petit élément de A se note min(A).

- [0,1] a pour maximum 1 et pour minimum est 0.
- > 10, 11 a pour maximum 1 et n'a pas de minimum.

P 5

Soit
$$x \in \mathbb{R}$$
, alors

$$\lfloor x \rfloor = \max \{ n \in \mathbb{Z} \mid n \le x \}.$$

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 2.1 Borne supérieure
- 2.2 Borne inférieure
- 3. Les dix types d'intervalles de R
- 4. La droite achevée \mathbb{R}

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 2.1 Borne supérieure
- 2.2 Borne inférieure
- 3. Les dix types d'intervalles de R
- 4. La droite achevée \mathbb{R}

C'est la propriété cruciale de \mathbb{R} .

D 6 Soit A une partie de \mathbb{R} . Si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A et on la note sup A.

On admet la propriété fondamentale suivante

T 7 Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.

- 1. L'ensemble $\mathbb N$ n'a pas de borne supérieure dans $\mathbb R$.
- 2. La borne supérieure de [0, 1] est 1, c'est aussi son plus grand élément.
- 3. La borne supérieure de [0,1[est 1, mais [0,1[n'a pas de plus grand élément.
- **E 9** Il existe un réel positif x tel que $x^2 = 2$.

E 8

C'est la propriété cruciale de \mathbb{R} .

D 6 Soit A une partie de \mathbb{R} . Si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A et on la note sup A.

On admet la propriété fondamentale suivante

- **T** 7 Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.
 - 1. L'ensemble $\mathbb N$ n'a pas de borne supérieure dans $\mathbb R$.
 - 2. La borne supérieure de [0, 1] est 1, c'est aussi son plus grand élément.
 - 3. La borne supérieure de [0,1[est 1, mais [0,1[n'a pas de plus grand élément.
- **E 9** Il existe un réel positif x tel que $x^2 = 2$.

E 8

R

Il est faux que toute partie non vide majorée de $\mathbb Q$ admet une «borne supérieure» dans $\mathbb Q$. Par exemple avec $A=\left\{ \begin{array}{c|c} x\in\mathbb Q & x^2<2 \end{array} \right\}$. L'ensemble des rationnels qui majore A est $[\sqrt{2},+\infty[\cap\mathbb Q]]$: il n'a pas de plus petit élément dans $\mathbb Q$.

$$A = \left\{ -\frac{1}{n} \mid n \in \mathbb{N}^{+} \right\} = \left\{ -1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots \right\}$$

Alors A n'a pas de plus grand élément et $\sup(A) = 0$.

T 11 Soit A et B deux parties non vides de \mathbb{R} . On suppose que $A \subset B$ et que B est majorée. Alors A est majorée et sup $A \leq \sup B$.

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 2.1 Borne supérieure
- 2.2 Borne inférieure
- 3. Les dix types d'intervalles de R
- 4. La droite achevée \mathbb{R}

- **D 12** Soit A une partie de \mathbb{R} . Si l'ensemble des minorants de A admet un plus grand élément, celui-ci est appelé la borne inférieure de A et on la note inf A.
- T 13 Toute partie non vide et minorée de R admet une borne inférieure.
- **T 14** Soit A et B deux parties non vides de \mathbb{R} . On suppose que $A \subset B$ et que B est minorée. Alors A est minorée et inf $A \geq \inf B$.
- **T 15** Soit A une partie non vide majorée de \mathbb{R} . On pose $B = \{-x \mid x \in A\}$. Alors B est minorée et inf $B = -\sup A$.

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de \mathbb{R}
- 3.1 Parties convexes de \mathbb{R}
- 3.2 Caractérisation des parties convexes
- 4. La droite achevée \mathbb{R}

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de \mathbb{R}
- 3.1 Parties convexes de \mathbb{R}
- 3.2 Caractérisation des parties convexes
- 4. La droite achevée \mathbb{R}

D 16 Une partie A de \mathbb{R} est convexe lorsque tout segment dont les extrémités sont deux éléments de A est inclus dans A, c'est-à-dire

$$\forall (x, y) \in A^2, [x, y] \subset A.$$

ou encore

$$\forall (x, y) \in A^2, \forall z \in \mathbb{R}, x \le z \le y \implies z \in A.$$

T 17 Soit a et b deux réels tels que $a \le b$.

Montrer que

$$[a, b] = \{ (1 - \lambda)a + \lambda b \mid \lambda \in [0, 1] \}.$$

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de $\mathbb R$
- 3.1 Parties convexes de R
- 3.2 Caractérisation des parties convexes
- 4. La droite achevée \mathbb{R}

T 18 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles ouverts, de la forme

$$\begin{aligned}]a, +\infty[&= \{ \ x \in \mathbb{R} \mid a < x \ \} \\]-\infty, b[&= \{ \ x \in \mathbb{R} \mid x < b \ \} \\]a, b[&=]-\infty, b[\cap]a, +\infty[&= \{ \ x \in \mathbb{R} \mid a < x < b \ \} \\]-\infty, +\infty[&= \mathbb{R} \end{aligned}$$

T 18 Caractérisation des partie convexes de ℝ

Les parties convexes de \mathbb{R} sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles fermés, de la forme

$$[a, +\infty[= \{ x \in \mathbb{R} \mid a \le x \}]$$

$$]-\infty, b] = \{ x \in \mathbb{R} \mid x \le b \}$$

$$[a, b] =]-\infty, b] \cap [a, +\infty[= \{ x \in \mathbb{R} \mid a \le x \le b \}]$$

$$]-\infty, +\infty[= \mathbb{R}$$

Les intervalles de la forme [a, b] fermés et bornées sont aussi appelés segments.

T 18 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles de la forme

$$[a, b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

 $[a, b[= \{ x \in \mathbb{R} \mid a \le x < b \}]$

Ces intervalles ne sont ni ouverts, ni fermés.

T 18 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de \mathbb{R} sont les suivantes, les bornes a et b étant des nombres réels.

- L'ensemble vide : Ø.
- Noter que si b < a, alors $]a, b[= [a, b] = \emptyset$. Si a = b, on a $[a, a] = \{a\}$.
- Par ailleurs, $\mathbb R$ et \emptyset sont des intervalles ouverts et fermés.

C 19 Toute intersection d'intervalles est un intervalle.

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de ℝ
- 4. La droite achevée $\overline{\mathbb{R}}$
- 4.1 Prolongement de la relation \leq , de l'addition, de la multiplication
- 4.2 Borne supérieure dans $\overline{\mathbb{R}}$
- 4.3 Intervalles de \mathbb{R}

On note $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ appelé droite numérique achevée.

Notation à ne pas confondre avec l'adhérence de $\mathbb R$ dans $\mathbb R$ qui est $\mathbb R!$

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de ℝ
- 4. La droite achevée \mathbb{R}
- 4.1 Prolongement de la relation \leq , de l'addition, de la multiplication
- 4.2 Borne supérieure dans ℝ
- 4.3 Intervalles de R

D 20 On étend à $\overline{\mathbb{R}}$ la relation \leq de la façon suivante

$$\forall x \in \mathbb{R}, -\infty < x < +\infty.$$

D 21 On prolonge l'addition de \mathbb{R} de la façon suivante

$$\forall x \in \mathbb{R}, x + (+\infty) = (+\infty) + x = +\infty$$

$$\forall x \in \mathbb{R}, x + (-\infty) = (-\infty) + x = -\infty$$

$$(+\infty) + (+\infty) = +\infty$$

$$(-\infty) + (-\infty) = -\infty$$

Par contre, nous ne donnerons aucun sens aux expressions

$$(+\infty) + (-\infty)$$
 et $(-\infty) + (+\infty)$.

D 22 On prolonge la multiplication de \mathbb{R} de la façon suivante

$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (+\infty) = (+\infty) \times x = \begin{cases} +\infty & \text{si } x > 0 \\ -\infty & \text{si } x < 0 \end{cases}$$

$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (-\infty) = (-\infty) \times x = \begin{cases} -\infty & \text{si } x > 0 \\ +\infty & \text{si } x < 0 \end{cases}$$

Nous posons également

$$\frac{1}{+\infty} = 0 \qquad \qquad \frac{1}{-\infty} = 0$$

Par contre, nous ne donnerons aucun sens aux expressions

$$0 \times (\pm \infty), \quad (\pm \infty) \times 0, \quad \frac{\pm \infty}{\pm \infty}, \quad \frac{x}{0}$$

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de ℝ
- 4. La droite achevée $\overline{\mathbb{R}}$
- 4.1 Prolongement de la relation ≤, de l'addition, de la multiplication
- 4.2 Borne supérieure dans $\overline{\mathbb{R}}$
- 4.3 Intervalles de \mathbb{R}

- 1. Si A est une partie non vide et majorée de \mathbb{R} , sa borne supérieure dans \mathbb{R} et dans \mathbb{R} coïncide.
- 2. Tout partie de $\overline{\mathbb{R}}$ est majorée par $+\infty$.
- 3. Si A est une partie non majorée de \mathbb{R} , elle est toutefois majorée dans $\overline{\mathbb{R}}$ par $+\infty$. On peut alors écrire

$$\sup(A) = +\infty.$$

- 4. L'ensemble vide admet tout élément de $\overline{\mathbb{R}}$ pour majorant dans $\overline{\mathbb{R}}$. Or $\overline{\mathbb{R}}$ admet $-\infty$ pour plus petit élément (dans $\overline{\mathbb{R}}$). Donc la borne supérieure de \emptyset dans $\overline{\mathbb{R}}$ est $-\infty$.
- **T 24** Toute partie de $\overline{\mathbb{R}}$ possède une borne inférieure dans $\overline{\mathbb{R}}$, éventuellement $\pm \infty$.

- 1. Majorant, minorant
- 2. Théorème de la borne supérieure
- 3. Les dix types d'intervalles de R
- 4. La droite achevée $\overline{\mathbb{R}}$
- 4.1 Prolongement de la relation ≤, de l'addition, de la multiplication
- 4.2 Borne supérieure dans $\overline{\mathbb{R}}$
- 4.3 Intervalles de \mathbb{R}

D 25 Pour
$$a, b \in \mathbb{R}$$
 avec $a \le b$, on définit les intervalles

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a \le x \le b \right\}$$

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a < x < b \right\}$$

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a \le x < b \right\}$$

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a < x \le b \right\}$$

D 26 Une partie A de $\overline{\mathbb{R}}$ est convexe lorsque

$$\forall (x, y) \in A^2, [x, y] \subset A.$$

T 27 Les parties convexes de $\overline{\mathbb{R}}$ sont exactement les intervalles de $\overline{\mathbb{R}}$.