MATH5725: Galois Theory (2014, S2) Revision Problem Set

You should know the meaning of the following terms: ring, field, field extension, finite field extension, algebraic field extension, ideal, prime ideal, maximal ideal, quotient ring, domain, unique factorisation domain, Euclidean domain, group, normal subgroup, quotient group, group homomorphism, ring homomorphism.

- **A.** True or False Questions Write down which of the following statements are true and which are false:
- 1. If $f: G \longrightarrow H$ be an injective group homomorphism, then $\ker(f) = 1$ (the trivial the group).
- 2. If G is a finite group with n > 1 elements then if $x \in G$ satisfies $x^n = 1$ then x = 1 (the identity).
- 3. If $f: G \longrightarrow H$ is a group homomorphism then $\ker(f)$ is not a normal subgroup of G.
- 4. If $f: G \longrightarrow H$ is a group homomorphism then Im(f) is a normal subgroup of H.
- 5. If $f: G \longrightarrow H$ is a surjective group homomorphism then Im(f) = H.
- 6. The rings $\mathbf{Q}[X]/(X^2-2)$ and $\mathbf{Q}(\sqrt{2})$ are not isomorphic.
- 7. If k is a field and $f: \mathbf{Z} \longrightarrow k$ is a ring homomorphism, $\ker(f) = 0$ or $\ker(f) = \mathbf{Z}/(p)$ for some prime number p. (Recall that $f(1) = 1_k$).
- 8. If R is a domain and $f: \mathbf{Z} \longrightarrow R$ is a ring homomorphism then $\ker(f) = (ab)$ with a, b > 1.
- 9. If R is a unique factorisation domain then R[X] is a unique factorisation domain.
- 10. If k is a field then k[X] is a unique factorisation domain.
- 11. If k is a field and $f \in k[X]$ is irreducible then k[X]/(f) is a field.
- 12. If k is a field and $f, g \in k[X]$ have degree greater than 1 then k[X]/(fg) is a domain.
- 13. If R is a ring there are at most 2 different ring homomorphisms from \mathbf{Z} to R.
- 14. The ring $\mathbf{Z}[X]/(X^2+1,3)$ has exactly 9 elements.
- 15. The ring $\mathbf{Z}[X]/(X^2 + 1, 5)$ is a domain.
- 16. The field extension $\mathbf{Q}(\pi)/\mathbf{Q}$ is algebraic.
- 17. If R is a ring and $\mathfrak{p} \subset R$ is a prime ideal then R/\mathfrak{p} is a field.
- 18. If R is a ring and $\mathfrak{m} \subset R$ is a maximal ideal then R/\mathfrak{m} is a domain.
- 19. If G is a group with 6 elements then it is commutative.
- 20. If G is a group with 4 elements then it is isomorphic to $\mathbb{Z}/(4)$.
- 21. If K/k is a field extension $\alpha \in K$ and $f \in k[X]$ is irreducible and $f(\alpha) = 0$ then if $g \in k[X]$ satisfies $g(\alpha) = 0$ then $f \mid g$.
- 22. Let $\sqrt[3]{2} \in \mathbf{R}$ be a real zero of $X^3 2$. The rings $\mathbf{Q}(\sqrt[3]{2})$ and $\mathbf{Q}(\sqrt[3]{2}e^{2\pi i/3})$ are isomorphic.

B. Longer answer questions

- 1. What form do the ideals of the ring **Z** have? What about the ring $\mathbf{Q}[X]$?
- 2. When is an ideal $I \subset \mathbf{Q}[X]$ prime? If it is prime, is it maximal? (You may assume that all ideals of $\mathbf{Q}[X]$ are generated by one element).
- 3. Let $\alpha \in \mathbf{C}$ be the solution of a polynomial $f(X) \in \mathbf{Q}[X]$. Let $g(X) \in \mathbf{Q}[X]$ be such that $g(\alpha) \neq 0$. Prove that you can always "rationalise the denominator" of $1/g(\alpha)$. (Hint: what is the greatest common divisor of f(X) and g(X) in $\mathbf{Q}[X]$? Can you write down a simple expression for it, for example, by using the Euclidean algorithm.)
- 4. Let $\alpha \in \mathbf{C}$; show that $\mathbf{Q}[\alpha]$ is a domain; show that it is a field if and only if there is a polynomial $f \in \mathbf{Q}[X]$ such that $f(\alpha) = 0$.
- 5. Write down two examples of Euclidean domains.
- 6. Can you give an example of a non-abelian group with 8 elements? (Hint: consider the symmetries of the square, a.k.a., the dihedral group D_4). If so, can you give a second example of an non-abelian group with 8 elements?
- 7. Let G be a group and let $N, H \subset G$ be sub-groups such that N.H = G and $N \cap H = 1$. Is it true that $G \cong N \times H$ as groups? If not, can you give a counter-example? (See question 2).
- 8. Let p be a prime and let \mathbf{F}_p be the field with p elements (i.e. $\mathbf{F}_p \cong \mathbf{Z}/(p)$). Let $\mathrm{GL}_2(\mathbf{F}_p)$ be the set of all 2×2 matrices with entries in \mathbf{F}_p which have an inverse under multiplication? What is the cardinality of $\mathrm{GL}_2(\mathbf{F}_p)$?
- 9. Let G be a group and let N, H be subgroups of G. Is $H \cap N$ a subgroup of G? If N is normal, is $H \cap N$ a normal subgroup of G? Is it a normal subgroup of either H or N?
- 10. Let K/k be an algebraic field extension and let $\alpha \in K$ and let $f \in k[X]$ be a minimal degree polynomial such that $f(\alpha) = 0$. Show that f is irreducible and unique up to multiplication by an element of k^* . (Hint: use the fact that for any two polynomials f, g different from 0 there exist unique polynomials f and f such that f = gf + r and the degree or f is less than that of f.)