同济大学课程考核试卷 (重修卷) 2007-2008 学年第一学期

命题教师签名:

审核教师签名:

课号: 122010 课名: 线性代数 B 考试考查: 考查

此卷选为: 期中考试()、期终考试()、重修(√)试卷

	得分						,		
		t: 本ì	【卷 共六大	題,三大张,義	分 100 分. 考试	 	要求写出解題过		分)
	填空 (+ 30) 分,每	至3分):					
					其中 <i>a</i> 1, <i>a</i> 2, <i>a</i> 3	为 A 的列向:	量. 设B=(α,	$,2\alpha_{1},3\alpha_{3}+4\alpha_{4}$	χ,),并且
							. «		
2.	设非:	齐次	线性方	程组 A _{mxn} X =	β有解,并.	且其系数矩	阵的秩为 r.	则其解向:	量组的秩
为: 3、	矩阵方	程人	X = B 有	 解的充分必	要条件是:_			·	
4、	如果三	阶矩	阵A的	持征值为1, −	1,2,则行列:	式 A* + 3A - 2	2E 的值为:		<u>_</u> .
5、	矩阵	1 2 2 b x y	$\begin{pmatrix} 3 \\ c \\ z \end{pmatrix} \oplus j$	元素 c 的代数	余子式的值为	b:			
6、	矩阵 A	_{m×m} 可	对角化的	的充分必要象	条件为:	<u> </u>			
7、	如果二	大型.	f(x, y, z)	$=-5x^2-6y^2$	$a^2 - pz^2 + 4xy +$	+ 4xz 负定, 则	lp的取值范	围是:	
8.	设矩阵	A的	秩为r.	下面说法正	确的是:				
A: C:	A 的每·	一个, 一个的	阶子式 予数大于	都不为零; ·r的子式都:	是零;	B: A的每一 D: A的每一	个阶数小于/ 个z阶的子式	· 的子式都不 【都是零.	为零:
					为其伴随矩阵				二行得到,
即人	4-5+5	→B,	则下面	说法正确的	是:				
A:	A*	^z -→B	• ;		B: A*-	$\xrightarrow{r_1\leftrightarrow r_2} -B^*;$			
C	4° 944	c, , r			D 4	G ↔C1 . D*			

- 10、设 $A_{x,y}X = \beta$ 为非齐次线性方程组. 下面说法正确的是: ______.
- A: 如果 $A_{m\times n}X = \beta$ 无解,则 $A_{m\times n}X = 0$ 也无解;
- B: 如果 $A_{max}X = 0$ 有无穷多解,则 $A_{max}X = \beta$ 也有无穷多解;
- C: 如果 $A_{m,n}X = 0$ 有唯一解,则 $A_{m,n}X = \beta$ 也有唯一解;
- D: 如果 $A_{mxn}X = \beta$ 有唯一解,则 $A_{mxn}X = 0$ 也有唯一解.
- 二、(15分) 设 $\alpha_1 = (1 -2 2 3)$, $\alpha_2 = (-2 4 -1 3)$, $\alpha_3 = (-1, 2 0 3)$,

 $\alpha_4 = (0\ 6\ 2\ 3), \ \alpha_5 = (2\ -6\ 3\ 4).$ 求该向量组的秩及一个最大线性无关组,并用该最大线性无关组表示其余向量.

三、(10 分)解线性方程组
$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1, \\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4, \\ x_1 + 5x_2 - 9x_3 - 8x_4 = 0. \end{cases}$$

四、(10 分)设 $\alpha_1=\begin{pmatrix}1\\0\\1\end{pmatrix}$, $\alpha_2=\begin{pmatrix}0\\1\\-1\end{pmatrix}$, $\alpha_3=\begin{pmatrix}1\\0\\4\end{pmatrix}$. 试对向量组 $\alpha_1,\alpha_2,\alpha_3$ 正交化,并由此求出一个规范正交向量组。

五、(20分)设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ -1 & 4 & 3 \end{pmatrix}$$
, 定义映射 $T: \mathbb{R}^3 \to \mathbb{R}^3$ 如下: 对任意 $\alpha \in \mathbb{R}^3$, $T(\alpha) = A\alpha$.

- (1) 证明: T为ℝ3上的线性变换;
- (2) 求线性变换T的核 $T^{-1}(0)$;
- (3) 求线性变换T的像空间 $T(\mathbb{R}^3)$ 的维数及一组基;

(4) 求线性变换
$$T$$
在基 $\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 下的矩阵.

六、(15分)设 $\alpha = (a_1, a_2, \dots, a_n)^T (n \ge 2)$ 为非零向量, $A = \alpha \alpha^T$.

- (1) 证明: $A = \alpha \alpha^T$ 为对称矩阵;
- (2) 证明: 矩阵 A 的秩为1;
- (3) 求矩阵 A 的所有特征值;
- (4) 求可逆矩阵P,使得 $P^{-1}AP = \Lambda$ 为对角矩阵.