Chapter 3

The Relational
Data Model
and Relational
Database
Constraints

Addison-Wesley is an imprint of

Chapter 3 Outline

- The Relational Data Model and Relational Database Constraints
- Relational Model Constraints and Relational Database Schemas
- Update Operations, Transactions, and Dealing with Constraint Violations

The Relational Data Model and Relational Database Constraints

Relational data model

Only tables are allowed

Addison-Wesley

Relational Model Concepts

- Represents data as a collection of relations
- Table of values
 - Row
 - Represents a collection of related data values
 - Fact that typically corresponds to a real-world entity or relationship
 - Tuple
 - Table name and column names
 - Interpret the meaning of the values in each row attribute

Relational Model Concepts (cont'd.)

Figure 3.1
The attributes and tuples of a relation STUDENT.

Relational Model Notation

- Relation schema R of degree n
 - Denoted by $R(A_1, A_2, ..., A_n)$
- Uppercase letters Q, R, S
 - Denote relation names
- Lowercase letters q, r, s
 - Denote relation states
- Letters t, u, v
 - Denote tuples

Relational Model Notation

- Name of a relation schema: STUDENT
 - Indicates the current set of tuples in that relation
- Notation: STUDENT(Name, Ssn, ...)
 - Refers only to relation schema
- Attribute A can be qualified with the relation name R to which it belongs
 - Using the dot notation R.A

Domains, Attributes, Tuples, and Relations (cont'd.)

- Relation (or relation state)
 - Set of *n*-tuples $r = \{t_1, t_2, ..., t_m\}$
 - Relation is a Set of tuples t₁,..., t_m
 - Each Tuple in a Set Should Be Unique
 - The Order among the Tuples are not important
 - Each n-tuple t
 - Ordered list of n values of attributes

$$t = \langle v_1, v_2, ..., v_n \rangle$$

 Each value v_i, 1 ≤ i ≤ n, is an element of dom(A_i) or is a special NULL value

Characteristics of Relations

- Ordering of tuples in a relation
 - Relation defined as a Set of Tuples
 - Elements have no order among them

- Ordering of values within a tuple and an alternative definition of a relation
 - Order of attributes and values is not that important
 - As long as correspondence between attributes and values maintained

Domains, Attributes, Tuples, and Relations (cont'd.)

- Relation schema R
 - Denoted by $R(A_1, A_2, ..., A_n)$
 - Made up of a relation name R and a list of attributes, A₁, A₂, ..., A_n
- Attribute A_i
 - Name of a role played by some domain D in the relation schema R
- Degree (or arity) of a relation
 - Number of attributes n of its relation schema

Relational Model Notation

- n-tuple t in a relation r(R)
 - Denoted by $t = \langle v_1, v_2, ..., v_n \rangle$
 - v_i is the value corresponding to attribute A_i
- Component values of tuples:
 - t[A_i] and t.A_i refer to the value v_i in t for attribute A_i
 - $t[A_u, A_w, ..., A_z]$ and $t.(A_u, A_w, ..., A_z)$ refer to the subtuple of values $\langle v_u, v_w, ..., v_z \rangle$ from t corresponding to the attributes specified in the list

Domains, Attributes, Tuples, and Relations (cont'd.)

- Relation (or relation state) r(R)
 - Mathematical relation of degree n on the domains $dom(A_1)$, $dom(A_2)$, ..., $dom(A_n)$
 - Subset of the Cartesian product of the domains that define R:
 - $r(R) \subseteq (\text{dom}(A_1) \times \text{dom}(A_2) \times ... \times \text{dom}(A_n))$

Domains, Attributes, Tuples, and Relations (cont'd.)

Cardinality

Total number of values in domain

Current relation state

- Relation state at a given time
- Reflects only the valid tuples that represent a particular state of the real world

Attribute names

Indicate different roles, or interpretations, for the domain

Relational Databases and Relational Database Schemas

Relational database schema S

- Set of relation schemas $S = \{R_1, R_2, ..., R_m\}$
- Set of integrity constraints IC

Relational database state

- Set of relation states $DB = \{r_1, r_2, ..., r_m\}$
- Each r_i is a state of R_i and such that the r_i relation states satisfy integrity constraints specified in IC

Relational Databases and Relational Database Schemas

Invalid state

Does not obey all the integrity of Constraints

Valid state

 Satisfies all the constraints in the defined set of Integrity Constraints IC

Relational Model Constraints

- Database Constraints are:
 - Database Rules Required for Correctness of any SQL Results
 - Restrictions on the actual values in a Column in Database State
 - Derived from the Rules in a real-word application that the Database Represents

Constraints on

Domains, Attributes, Tuples, and Relations

- Domain Constraint on Column
 - Set of atomic values in a Same Domain Type
- Atomic Constraint
 - Each value should be Single and Indivisible
- Specifying a domain
 - Data type specified for each domain for each column

Examples of Domain Types

- Typically include:
 - Numeric data types for integers and real numbers
 - Characters
 - Booleans
 - Fixed-length strings
 - Variable-length strings
 - Date, time, timestamp
 - Money
 - Other special data types

First Normal Form Constraints of Relations

- Values and NULLs in tuples
 - Each value in a tuple is atomic
 - Flat relational model
 - Composite and multivalued attributes not allowed
 - First normal form assumption
 - Multivalued attributes
 - Must be represented by separate relations
 - Composite attributes
 - Represented only by simple component attributes in basic relational model

Characteristics of Relations

NULL values

- Represent the values of attributes that may be unknown or may not apply to a tuple
- Meanings for NULL values
 - Value unknown
 - Value exists but is not available
 - Attribute does not apply to this tuple (also known as value undefined)

Key Constraints and Constraints on NULL Values

 No two tuples can have the same combination of values for all their attributes.

Superkey

 No two distinct tuples in any state r of R can have the same value for SK

Key

- Superkey of R that satisfies additional property of minimal
- Removing any attribute A from K leaves a set of attributes K that is not a superkey, (so, not counique) of Rany more

Key Constraints

- Key satisfies two properties:
 - No Duplicate Tuples: Two distinct tuples in any state of relation cannot have identical values for (all) attributes in key
 - Minimal Superkey
 - A minimum number of attributes to be unique
 - Minimal means if any attribute is removed from a minimal set of the primary key attributes, the value of the rest of the attributes together is not unique anymore
 - Cannot remove any attributes and still have uniqueness constraint in above condition hold

Key Constraints and Constraints on NULL Values (cont'd.)

- Candidate key
 - Relation schema may have more than one key
- Primary key of the relation
 - Designated among candidate keys
 - Underline attribute
- Other candidate keys are designated as unique keys

Primary Key Constraint

- Primary Key Constraint:
 - Any Value of Primary Key Should Be Unique
 - No Duplicates
- Entity Integrity Constraint
 - No primary key value can be NULL
 - Null Value Can Not Be Inserted

Key Constraints and Constraints on NULL Values (cont'd.)

CAR

Figure 3.4
The CAR relation, with two candidate keys:
License_number and
Engine_serial_number.

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

PEARSON

Characteristics of Relations (cont'd.)

Figure 3.2

The relation STUDENT from Figure 3.1 with a different order of tuples.

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Integrity, Referential Integrity, and Foreign Keys

- Entity integrity constraint
 - No primary key value can be NULL
- Referential integrity constraint
 - Specified between two relations
 - Maintains consistency among tuples in two relations

Referential Integrity Contraint for Foreign Keys

- Foreign key rules:
 - The attributes in FK have the same domain(s) as the primary key attributes PK
 - Value of FK in a tuple t_1 of the current state $r_1(R_1)$ either an Existing value of PK for some tuple t_2 in the current state $r_2(R_2)$ or is NULL

Integrity, Referential Integrity, and Foreign Keys (cont'd.)

- Diagrammatically display referential integrity constraints
 - Directed arc from each foreign key to the relation it references
- All integrity constraints should be specified on relational database schema

Other Types of Constraints

- Semantic integrity constraints
 - May have to be specified and enforced on a relational database
 - Use triggers and assertions
 - More common to check for these types of constraints within the application programs

Other Types of Constraints (cont'd.)

- Functional dependency constraint
 - Establishes a functional relationship among two sets of attributes X and Y
 - Value of X determines a unique value of Y

State constraints

 Define the constraints that a valid state of the database must satisfy

Transition constraints

Define to deal with state changes in the database

Update Operations, Transactions, and Dealing with Constraint Violations

- Operations of the relational model can be categorized into retrievals and updates
- Basic operations that change the states of relations in the database:
 - Insert
 - Delete
 - Update (or Modify)

Figure 3.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Ε	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

Figure 3.6
One possible database state for the COMPANY relational database schema.

WORKS_ON

Essn	Pno	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	NULL	

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

PEARSON

PEARSON

The Insert Operation

- Provides a list of attribute values for a new tuple t that is to be inserted into a relation R
- Can violate any of the four types of constraints
- If an insertion violates one or more constraints
 - Default option is to reject the insertion

The Delete Operation

- Can violate only referential integrity
 - If tuple being deleted is referenced by foreign keys from other tuples
 - Restrict
 - Reject the deletion
 - Cascade
 - Propagate the deletion by deleting tuples that reference the tuple that is being deleted
 - Set null or set default
 - Modify the referencing attribute values that cause the violation

The Update Operation

- Necessary to specify a condition on attributes of relation
 - Select the tuple (or tuples) to be modified
- If attribute not part of a primary key nor of a foreign key
 - Usually causes no problems
- Updating a primary/foreign key
 - Similar issues as with Insert/Delete

Characteristics of Relations (cont'd.)

- Interpretation (meaning) of a relation
 - Assertion
 - Each tuple in the relation is a fact or a particular instance of the assertion
 - Predicate
 - Values in each tuple interpreted as values that satisfy predicate

The Transaction Concept

Transaction

- Executing program
- Includes some database operations
- Must leave the database in a valid or consistent state
- Online transaction processing (OLTP) systems
 - Execute transactions at rates that reach several hundred per second

Summary

- Characteristics differentiate relations from ordinary tables or files
- Classify database constraints into:
 - Inherent model-based constraints, explicit schema-based constraints, and applicationbased constraints
- Modification operations on the relational model:
 - Insert, Delete, and Update

