

proof that a gcd domain is integrally closed

 ${\bf Canonical\ name} \quad {\bf ProofThatAGcdDomainIsIntegrallyClosed}$

Date of creation 2013-03-22 18:19:27 Last modified on 2013-03-22 18:19:27

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Derivation Classification msc 13G05 **Proposition 1.** Every gcd domain is integrally closed.

Proof. Let D be a gcd domain. For any $a, b \in D$, let GCD(a, b) be the collection of all gcd's of a and b. For this proof, we need two facts:

- 1. GCD(ma, mb) = m GCD(a, b).
- 2. If GCD(a, b) = [1] and GCD(a, c) = [1], then GCD(a, bc) = [1].

The proof of the two properties above can be found http://planetmath.org/PropertiesOfAGc For convenience, we let gcd(a, b) be any one of the representatives in GCD(a, b).

Let K be the field of fraction of D, and $a/b \in K$ $(a, b \in D \text{ and } b \neq 0)$ is a root of a monic polynomial $p(x) \in D[x]$. We may, from property (1) above, assume that gcd(a, b) = 1.

Write

$$f(x) = x^{n} + c_{n-1}x^{n-1} + \dots + c_{0}.$$

So we have

$$0 = (a/b)^n + c_{n-1}(a/b)^{n-1} + \dots + c_0.$$

Multiply the equation by b^n then rearrange, and we get

$$-a^{n} = c_{n-1}ba^{n-1} + \dots + c_{0}b^{n} = b(c_{n-1}a^{n-1} + \dots + c_{0}b^{n-1}).$$

Therefore, $b \mid a^n$. Since gcd(a,b) = 1, $1 = gcd(a^n,b) = b$, by repeated applications of property (2), and one application of property (1) above. Therefore b is an associate of 1, hence a unit and we have $a/b \in D$.

Together with the additional property (call it property 3)

if GCD(a, b) = [1] and $a \mid bc$, then $a \mid c$ (proof found http://planetmath.org/PropertiesOf we have the following

Proposition 2. Every qcd domain is a Schreier domain.

Proof. That a gcd domain is integrally closed is clear from the previous paragraph. We need to show that D is pre-Schreier, that is, every non-zero element is primal. Suppose c is non-zero in D, and $c \mid ab$ with $a, b \in D$. Let $r = \gcd(a, c)$ and rt = a, rs = c. Then $1 = \gcd(s, t)$ by property (1) above. Next, since $c \mid ab$, write cd = ab so that rsd = rtb. This implies that sd = tb. So $s \mid tb$ together with $\gcd(s, t) = 1$ show that $s \mid b$ by property (3). So we have just shown the existence of $r, s \in D$ with c = rs, $r \mid a$ and $s \mid b$. Therefore, c is primal and D is a Schreier domain.