MATEMÁTICA UNINOVE

Módulo - V

Probabilidade simples

E conceitos fundamentais

Objetivo: Apresentar o conceito de probabilidade simples e estudar alguns exemplos típicos.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Chama-se experimento ou fenômeno aleatório aquele processo que, mesmo repetido várias vezes, apresenta resultado imprevisível.

O conjunto de todos os possíveis resultados de um experimento aleatório recebe o nome de espaço amostral e é indicado pela letra Ω .

EXEMPLO

Para os experimentos aleatórios: "lançamento de uma moeda" e para o "lançamento de um dado", os espaços amostrais são, respectivamente, $\Omega_{\rm moeda}$ ={Ca, Co} e $\Omega_{\rm dado}$ ={1,2,3,4,5,6}.

Chama-se evento qualquer subconjunto do espaço amostral Ω de um experimento aleatório. Dessa forma, qualquer que seja E o evento de Ω , temos que $E \subset \Omega$, isto é, E está contido em Ω .

DICA:

É necessário que você relembre os conceitos de subconjunto ⊂, de união ∪, de intersecção ∩, de conjunto vazio Ø e de complementar (para acompanhar o conteúdo de probabilidades.

Dado Ω um espaço amostral de um experimento aleatório E, dizemos que:

- Se $E=\Omega$, então E é chamado de evento certo.
- Se E=Ø, então E é chamado de evento impossível.
- Se E⊂Ω é um conjunto unitário (isto é, com um único elemento),
 então E é chamado de evento elementar.

Dado um espaço amostral Ω , diremos que ele é equiprovável se todos os seus elementos tiverem a mesma chance de acontecer. Caso contrário, o espaço amostral Ω é dito não equiprovável.

Dados um espaço amostral não vazio Ω e um evento E deste espaço, chamamos de probabilidade de E o número:

$$P(E) = \frac{n(E)}{n(\Omega)}$$

Em que n(E) e $n(\Omega)$ são, respectivamente, o número de elementos do evento e E o número de elementos do espaço amostral Ω .

Para qualquer evento E de um espaço amostral não vazio , temos que $0 \le P(E) \le 1$. Mais que isso, nós temos:

- Se $E=\Omega$ é o evento certo, então P(E)=1.
- Se E=Ø é o evento impossível, então P(E)=0.
- Se E⊂Ω não é nem o evento certo nem o evento impossível, então
 0<P(E) <1.

Situação problema 1

Seja Ω ={1,2,3,4,5,6} o espaço amostral do lançamento de um dado, considere os seguintes eventos de Ω :

- E_1 : "saiu a face 6 do dado".
- E2: "saiu uma face de número ímpar".
- E3: "saiu uma face de número entre 1 e 7".
- E₄: "não saiu nenhuma face".

Calcular as probabilidades de cada um dos eventos que foram dados.

Em primeiro lugar, temos que $n(\Omega)=6$. Além disso, cada evento pode ser escrito matematicamente por $E_1=\{6\}$, $E_2=\{1,3,5\}$, $E_3=\{1,2,3,4,5,6\}$ e $E_4=\emptyset$. Logo, nós temos $n(E_1)=1$, $n(E_2)=3$, $n(E_3)=6$ e $n(E_4)=0$. Portanto resulta que:

$$P(E_1) = \frac{n(E_1)}{n(\Omega)} = \frac{1}{6}$$
 $P(E_2) = \frac{n(E_2)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}$

$$P(E_3) = \frac{n(E_3)}{n(\Omega)} = \frac{6}{6} = 1$$
 $P(E_4) = \frac{n(E_4)}{n(\Omega)} = \frac{0}{6} = 0$

Note que E_3 é o evento certo, pois sua probabilidade é 1 e E_4 é o evento impossível, já que sua probabilidade é 0.

Situação problema 2

Considere um baralho comum com 52 cartas. Qual a probabilidade de tirarmos um ás?

O baralho é o nosso espaço amostral Ω , logo $n(\Omega)=52$. Já o evento "retirar um ás" do baralho é $E=\{A_{\bullet}, A_{\bullet}, A_{\bullet}\}$, já que há quatro ases distintos no baralho, ou seja, n(E)=4.

Portanto segue que P(E)=
$$\frac{n(E)}{n(\Omega)} = \frac{4}{52} = \frac{1}{13}$$
.

Situação problema 3

No lançamento de dois dados, calcule a probabilidade de se obter soma igual a 7 para as faces que ficam voltadas para cima.

O espaço amostral para o lançamento de dois dados tem um total de 36 elementos, pois, de acordo com o princípio multiplicativo, para ambos os dados, podem ocorrer faces de 1 a 6. Logo, tem-se 6·6=36. De fato, temos $\Omega=\{(1,1),...,(1,6),...,(6,1),...,(6,6)\}$, já o evento que queremos é constituído de faces que somam 7, ou seja, $E=\{(1,6);(6,1);(2,5);(5,2);(4,3);(3,4)\}$, logo n(E)=6, portanto a probabilidade procurada é $P(E)=\frac{n(E)}{n(\Omega)}=\frac{6}{36}=\frac{1}{6}$.

Sabemos que um evento pode ocorrer ou não. Chamando de p a probabilidade de que ele ocorra (sucesso) e de q a probabilidade de que ele não ocorra (fracasso), então vale a relação:

$$p+q=1$$

Se $E \subset \Omega$ é um evento, com probabilidade P(E)=p, qualquer, então o seu evento complementar é indicado por E(C)=p, a suponha que sua probabilidade é P(E(C)=q). Desse modo, o espaço amostral se escreve como $\Omega=E\cup E(C)=p$ e esses eventos são mutuamente exclusivos (sucesso/insucesso), logo vale que $P(\Omega)=P(E)+P(E(C))=p$, portanto, segue que P(D)=p

Situação problema 4

Qual a probabilidade de que, ao lançarmos um dado, não ocorra a face 4?

Chamando de p a probabilidade de sair 4 (sucesso) e de q a de não sair 4 (fracasso), nós temos que $p=\frac{1}{6}$ e, portanto, pelo complementar, segue que $q=1-\frac{1}{6}=\frac{5}{6}$.

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

HAZZAN, Samuel. Fundamentos de Matemática Elementar. 6 ed. São Paulo: Atual Editora, 1993.

KIYUKAWA, Rokasaburo. Os Elos da Matemática. 3 ed. São Paulo: Saraiva, 1993.