Lineare Algebra

Manuel Strenge

Vektoren

Sinn

Wenn eine Grösse mit einem wert dargestellt werden kann, wie z.B. Temperator, dann wird es skalar genannt. skalare = reele zahlen.

Gewisse physische faktoren können nicht nur mit einer nummer dargestellt werden. z.B. Richtung.

Ein Vektor \mathbb{R}^3 kann durch 3 reele Zahlen, ein 3-Tupel beschrieben werden.

Für 2- oder 3-Tupel lassen sich die Rechenoperationen auch geometrisch veranschaulichen. Für allgemeine n-Tupel ist das nicht möglich, trotzdem ist die geometrische Anschauung für n=2 oder n=3 oft der Schlüssel zur Lösung komplizierter Probleme.

Definition

Ein n-Tupel $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ nennt man auch Vektor. Die reellen Zahlen $a_1, a_2, ..., a_n$ heissen die Koordinaten oder Komponenten des Vektors.

Die Komponenten eines Vektors schreiben wir häufig als Spalten:

$$\underset{a}{\rightarrow} = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix} = R^n$$

Zwei Vektoren sind gleich, wenn sie koordinatenweise übereinstimmen. Die Vektorgleichung $\underset{a}{\rightarrow} = \underset{b}{\rightarrow}$ ist also nichts anderes als eine abkürzende Schreibweise für die n Gleichungen.

$$a_1 = b_1 a_2 = b_2 ... a_n = b_n$$

Vektoren in \mathbb{R}^2 bzw. in \mathbb{R}^3 können wir uns als Pfeile vorstellen und der Pfeil darf vom beliebigen Punkt eingezeichnet werden.

Um einen Vektor $\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix}$ in R^2 einzuzeichnen:

- 1. wählt man einen Anfangspunkt,
- 2. geht ax Schritte entlang der x-Achse und ay Schritte entlang der y-Achse,
- 3. erreicht so den Endpunkt des Vektors.

Der Vektor $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ wird auch als Pfeil ausgehend vom Ursprung O

Seine Spitze beschreibt den Ort jenes Punktes, dessen Koordinaten gleich den Komponenten des Vektors sind. Um zu betonen, dass es der Ortsvektor des Punktes P ist, schreibt man \vec{OP} .

1

Siehe bild unter definition vektor

Figure 1: Eingezeichnete Ortsvektoren

Zusammenfassend darf der Pfeil in R^2 bzw. R^3 beliebig parallel verschoben werden. Es bleibt immer der gleiche Vektor: $\vec{v} = \vec{OP}$

In der Ebene:
$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, mit $P(x;y)$

Im Raum: $\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, mit $P(x;y;z)$

In \mathbb{R}^n : $\overrightarrow{OP} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, mit $P(x_1;\ldots;x_n)$

Figure 2: Insbesondere lautet dieser Zusammenhang für den Ortsvektor

Definition

Der Vektor, dessen Anfangspunkt und Endpunkt übereinstimmen, heisst der Nullvektor und wird durch $\vec{0}$ bezeichnet.

Addition, Subtraktion und Skalarmultiplikation

Definition Die Summe zweier Vektoren der gleichen Dimension n ist komponentenweise definiert und ergibt wieder einen n-dimensionalen Vektor:

Geometrische betrachtungsweise

Die geometrische Addition der Vektoren \vec{a} und \vec{b} :

- 1. Der Vektor \vec{b} wird parallel zu sich selbst verschoben, bis sein Anfangspunkt auf den Endpunkt des Vektors \vec{a} trifft
- 2. Der Anfangspunkt des Vektors \vec{a} wird mit dem Endpunkt des Vektors \vec{b} verbunden. Der resultierende Pfeil repräsentiert den Summenvektor $\vec{c} = \vec{a} + \vec{b}$.

$$ec{a} + ec{b} = egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix} + egin{pmatrix} b_1 \ b_2 \ dots \ b_n \end{pmatrix} = egin{pmatrix} a_1 + b_1 \ a_2 + b_2 \ dots \ a_n + b_n \end{pmatrix}$$

Figure 3: vector addition

Figure 4: vector addition geomoetrisch visualisiert

$$\vec{a} + \vec{b} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 9 \end{pmatrix}$$