

Álgebra Linear

TRANSFORMAÇÕES LINEARES 1

3ALG Manhã

- Transformaçõe Lineares
- · Matriz Canônica de uma Transformação Linear
- · Núcleo e Imagem de uma Transformação Linear

Professor Cláudio Bispo

1. Verifique, em cada caso abaixo, se a transformação dada é linear:

a)
$$T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

 $(x,y) \mapsto T(x,y) = (x+y, 2x-3y, 3x)$

b)
$$T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

 $(x, y, z) \mapsto T(x, y, z) = (x + y + z, x^2 + y^2)$

c)
$$T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

 $(x,y) \mapsto T(x,y) = (x^2 - y^2, x)$

d)
$$T: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto T(x,y) = \frac{2x-y}{5}$

e)
$$T: \mathbb{R}^2 \to \mathbb{R}^4$$

 $(x,y) \mapsto T(x,y) = (x+y, x-3, 2y, 3x)$

f)
$$T: \mathbb{R}^4 \to \mathbb{R}^2$$
 $(x, y, z, w) \mapsto T(x, y) = \left(\frac{x+y}{z}, \frac{x-y}{w}\right)$

- **2.** Seja T(x, y, z) = (x y + z, 3y 2x + 5z) uma transformação linear, determine:
- a) Domínio de T.
- b) Contradomínio de T.
- c) T(1,0,0), T(0,1,0) e T(0,0,1).
- d) T(1, 2, 3).
- e) T(1,0,0) + 2T(0,1,0) + 3T(0,0,1).
- f) O vetor (x, y, z) tal que T(x, y, z) = (1, 1).
- g) O vetor (x, y, z) tal que T(x, y, z) = (3, 1).
- **3.** As transformações lineares cujo domínio e o contradomínio são o mesmo espaço vetorial são chamadas de Operadores Lineares. Seja T um operador linear cuja lei de formação é $\left(\frac{3x+4y}{5},\frac{4y-3x}{5}\right)$, determine:
- a) Domínio de T.
- b) Contradomínio de T.
- c) T(1,0) e T(0,1).
- d) T(2,3).
- e) 2T(1,0) + 3T(0,1).

- f) O vetor (x, y) tal que T(x, y, z) = (1, 5).
- g) O vetor (x, y) tal que T(x, y, z) = (3, 4).
- **4.** Seja T uma transformação linear de \mathbb{R}^n em \mathbb{R}^m dizemos que a matriz [T], tipo $\mathfrak{m} \times \mathfrak{n}$, é a **matriz canônica** ou **matriz natural** da transformação T e as suas colunas serão as transformações dos vetores da base canônica de \mathbb{R}^n . Por exemplo:

Seja T uma transformação linear definida por $T(x,y)=(x+2y,\,3x-4y,\,2y+3x)$ então a sua matriz canônica [T] será

$$[T] = \begin{bmatrix} 1 & 2 \\ 3 & -4 \\ 3 & 2 \end{bmatrix}$$

$$\xrightarrow[\tau(1, 0)]{\uparrow} \xrightarrow[\tau(0, 1)]{\uparrow}$$

Determine a matriz canônica das transformações lineares abaixo:

- a) T(x, y, z) = (2x, 3y + z).
- b) T(x,y) = (2x, 3y + z, 5y).
- c) $T(x,y) = \left(\frac{2y}{5}, \frac{x}{6}\right)$.
- d) T(x, y, z, w) = (x 2y, 3z 2w).
- e) T(x, y, z) = (2z, 3y + z, x 5z).

f)
$$T(x,y) = \left(\frac{x-3y}{4}, \frac{3y-x}{5}\right)$$
.

5. Considerando os espaços vetoriais V e W e a transformação linear $T:V\to W$, definimos como "**Núcleo**"(ou **Kernel**), sob a notação de **Ker**(\mathbf{T}) ou $\mathbf{N}(\mathbf{T})$, o subconjunto de V dado por $Ker(T)=\{u\in V:T(u)=0\}$. Por exemplo:

Para transformação Linear $T:\mathbb{R}^2\to\mathbb{R}^3$ dada por T(x,y)=(0,x+y,0) o vetor (x,-x) pertence ao Ker(T), isto é, quando y=-x. Assim: $Ker(T)=\{(x,-x):x\in\mathbb{R}\}$. Determine o núcleo de cada transformação linear abaixo:

- a) T(x, y) = (x + y, x 2y).
- b) T(x, y, z) = (y + z, x y).
- c) T(x,y) = (y + x, x y, 2x y).

- d) T(x, y, z) = (y, x y, y z).
- **6.** Considerando os espaços vetoriais $V \in W$ e a transformação linear $T: V \rightarrow W$, a imagem desta Transformação Linear é: $Im(t) = \{w = T(u) : u \in T(u)$ V e $v \in W$ }. Por exemplo:

Para transformação Linear T : $\mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (x + y, x - y), a imagem de T será: $Im(t) = \{ v \in \mathbb{R}^2 : v = (x + y, x - y) \}.$

Determine a imagem de cada transformação linear cuja matriz canônica e dada por:

a)
$$[T] = \begin{bmatrix} 1 & 2 & 1 \\ 5 & 3 & 0 \end{bmatrix}$$

b)
$$[T] = \begin{bmatrix} 1 & 1 \\ 5 & 3 \end{bmatrix}$$

c) [T] =
$$\begin{bmatrix} 2 & 0 \\ -1 & 4 \\ -2 & 3 \end{bmatrix}$$

d) [T] =
$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

e) [T] =
$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & -2 \\ 1 & -3 & 2 \end{bmatrix}$$

7. A **dimensão** de um espaço vetorial V não nulo é o número de vetores de uma base para V. Denota-se dim(V).

OBS.: Se $V = \{0\}$, então $\dim(V) = 0$.

Determine a dimensão de Ker(T) e de Im(T) dos itens do exercício 6.

- Nos itens abaixo serão apresentadas transformações lineares. Para cada uma delas:
- **8.1** Determinar o N(T), uma base para este subespaço e sua dimensão.
- **8.2** Determinar a Im(T), uma base para este subespaço e sua dimensão.
- a) T: $\mathbb{R}^2 \to \mathbb{R}^2$, dada por T(x, y, z) = (3x y, y 3x).
- b) T: $\mathbb{R}^2 \to \mathbb{R}^3$, dada por T(x,y) = (x + y, x, 2y).
- c) T: $\mathbb{R}^2 \to \mathbb{R}^2$, dada por T(x,y) = (x 2y, x + y).
- d) T: $\mathbb{R}^3 \to \mathbb{R}^2$, dada por T(x, y, z) = (x + 2y z, 2x -
- e) T: $\mathbb{R}^3 \to \mathbb{R}^3$, dada por T(x,y,z) = (x-2y-2z-1)x + 2y + z, x - 3z).
- f) T: $\mathbb{R}^3 \to \mathbb{R}^3$, dada por T(x, y, z) = (x 3y, x z, z - χ).

9. Considere a transformação linear:

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 dada por $T(x,y) = (2x+y, 3x+2y, -2x-y)$

- a) Determinar o núcleo e a imagem de T.
- b) Determinar bases para o núcleo e para a imagem.

GABARITO

- **1.** a) sim b) não c) não d) sim e) não f) não
- 2. a) \mathbb{R}^3 b) \mathbb{R}^2
- c) T(1,0,0) = (1,-2); T(1,0,0) = (-1,3); T(1,0,0) = (1,5).
- d) T(1,2,3) = (2, 19).
- e) (2, 19)
- f) $(4 8z, 3 7z, z, \text{ com } z \in \mathbb{R}.$
- g) (10 8z, 7 7z, z), com $z \in \mathbb{R}$.
- a) \mathbb{R}^2
- c) $T(1,0) = \left(\frac{3}{5}, -\frac{3}{5}\right); \quad T(0,1) = \left(\frac{4}{5}, \frac{4}{5}\right).$

- d) $\left(\frac{18}{5}, \frac{6}{5}\right)$. e) $\left(\frac{18}{5}, \frac{6}{5}\right)$. f) $x = -\frac{10}{3}$ e $y = \frac{15}{4}$. g) $x = -\frac{5}{6}$ e $y = \frac{35}{8}$.
- a) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 5 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 2/5 \\ 1/6 & 0 \end{bmatrix}$
- d) $\begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 0 & 3 & -2 \end{bmatrix}$ e) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & 0 & -5 \end{bmatrix}$ f) $\begin{bmatrix} 1/4 & -3/4 \\ -1/5 & 3/5 \end{bmatrix}$

- a) $Ker(T) = \{(0,0)\}$
- b) $Ker(T) = \{(-z, -z, z) : z \in \mathbb{R}\}$
- c) $Ker(T) = \{(0,0)\}$
- d) $Ker(T) = \{(0, 0, 0)\}$
- 6.
- a) $Im(T) = \{ v \in \mathbb{R}^2 : v = (x + 2y + z, 5x + 3y) \}$
- b) $Im(T) = \{ v \in \mathbb{R}^2 : v = (x + y, 5x + 3y) \}$
- c) $Im(T) = \{v \in \mathbb{R}^3 : v = (2x, -x + 4y, -2x + 3y)\}$
- d) $Im(T) = \{ v \in \mathbb{R}^3 : v = (x + y + z, y + z, z) \}$
- e) $Im(T) = \{ v \in \mathbb{R}^3 : v = (x + y, 2x + 2z, x 3y + 2z) \}$

GABARITO

```
a) \dim N(T) = 1 e \dim Im(T) = 2
b) \dim N(T) = 0 e \dim Im(T) = 2
c) \dim N(T) = 0 e \dim Im(T) = 3
d) \dim N(T) = 0 e \dim Im(T) = 3
e) \dim N(T) = 0 e \dim Im(T) = 3
8.
a) N(T) = \{(x, 3x) : x \in \mathbb{R}\}
B_N = \{(1, 3)\} \Rightarrow \dim N(T) = 1.
Im(T) = \{ v \in R^2 : v = (3x - y, y - 3x) \}
B_{Im} = \{(-1, 1)\} \Rightarrow dim Im(T) = 1.
b) N(T) = \{(0, 0) : x \in \mathbb{R}\}
\begin{split} B_N = & \{(0, 0)\} \Rightarrow \dim N(T) = 0. \\ Im(T) = & \{\nu \in R^3 : \nu = (x + y, x, 2y)\} \end{split}
B_{Im} = \{(1, 1, 0), (1, 0, 2)\} \Rightarrow dim Im(T) = 2.
c) N(T) = \{(0, 0) : x \in \mathbb{R}\}
B_N = \{(0, 0)\} \Rightarrow \dim N(T) = 0.
Im(T) = \{ v \in R^2 : v = (x - 2y, x + y) \}
B_{Im} = \{(1, 1), (-2, 1)\} \Rightarrow dim Im(T) = 1.
d) N(T) = \left\{ \left( \frac{z}{5}, \frac{3z}{5}, z \right) : x \in \mathbb{R} \right\}
B_N = \{(1, -3, 5)\} \Rightarrow \dim N(T) = 1.
Im(T) = \{ v \in R^2 : v = (x + 2y - z, 2x - y + z) \}

B_{Im} = \{ (1, 2), (2, -1) \} \Rightarrow \dim Im(T) = 2.
e) N(T) = \{(0, 0, 0)\}
B_N = \{(0,0,0)\} \Rightarrow \dim N(T) = 0.
\begin{split} &\text{Im}(\mathsf{T}) = \{ \nu \in \mathsf{R}^3 : \nu = (x-2y-2z, -x+2y+z, x-3z) \} \\ &\text{B}_{\text{Im}} = \{ (1,1,-1), \ (-2,2,0), \ (-2,1,-3) \} \Rightarrow \dim \mathsf{Im}(\mathsf{T}) = 3. \end{split}
f) N(T) = \{(0,0,0)\}
B_N = \{(0,0,0)\} \Rightarrow \dim N(T) = 0.

Im(T) = \{v \in R^3 : v = (x-3y, x-z, z-x)\}
B_{\text{Im}} = \{(1,1,-1),\,(3,0,0),\,(0,-1,1)\} \Rightarrow \text{dim}\,\text{Im}(T) = 3.
9.
a) N(T) = \{(0, 0)\} \Rightarrow B_N = \{(0, 0)\} \Rightarrow \dim N(T) = 0
b) Im(T) = \{(v \in \mathbb{R}^3 : v = (2x + 3y, 3x + 2y, -2x - y)\} \Rightarrow
B_{Im} = \{(2, 3, 2), (1, 2, -1)\} \Rightarrow dim Im(T) = 2
```