

MODELTIME Workflow

Create Modeltime Table

modeltime_table()

Calibrate

modeltime_calibrate()

Refit

modeltime_refit()

Forecast Test Set

modeltime_forecast()

plot_modeltime_forecast()

Test Accuracy

modeltime_accuracy()

		Accuracy	Table					
model_id	.model_desc	.type	mae	mape	mase	smape	rmse	rsc
1	ARIMA(0,1,1)(0,1,1)[12]	Test	151.33	1.41	0.52	1.43	197.71	0.93
2	ARIMA(0,1,1)(0,1,1)[12] W/ XGBOOST ERRORS	Test	147.04	1.37	0.50	1.39	191.84	0.93
3	ETS(M,A,A)	Test	77.00	0.73	0.26	0.73	90.27	0.98
4	PROPHET	Test	177.51	1.70	0.61	1.70	234.65	0.88
5	LM	Test	629.12	6.01	2.15	5.81	657.19	0.91
6	EARTH	Test	709.83	6.59	2.42	6.86	782.82	0.58

table_modeltime_accuracy()

Forecast Future

modeltime_forecast()

plot_modeltime_forecast()

Resources:

- This workflow is covered in depth in the <u>High-Performance Time Series</u> Course (Modules 7 to 18)
- A beginner tutorial is available here: Getting Started with Modeltime
- The "Global Forecasting Workflow" is used to create scalable highperformance model(s) that forecast many time series
- This is NOT the "Iterative Forecasting Process" (Nested Workflow), which is used to forecast iteratively. The Iterative Forecasting Procedure is shown on Page 5.

Modeltime Workflow Page 2

Hyperparameter Tuning Page 3

MODELTIME ENSEMBLE

Multi-Level Stacking

Level 3: Weighted Stack

ensemble_weighted()
ensemble_average()

w1*m1 + w2*m2 + w3*m3 + ...

Level 2:

Stacking Algorithms

ensemble_model_spec()
modeltime_fit_resamples()

Linear Stack

Tree Stack

Level 1:

Sub-Models

ARIMA GLMNET

SVM

XGBoost

arima_reg()

linear_reg()

svm_rbf()

boost_tree()

Additional Resources:

- The Modeltime Ensemble process is covered in-depth in the <u>High-Performance Time Series Course Module 14</u>
- The Lost Time Series Module 5 shows how to use Ensembles to improve Hierarchical Forecasting Performance
- Additional Resource: Getting Started with Modeltime Ensemble

Modeltime Ensemble Page 4

Iterative Forecasting (Nested Workflow)

Used to make individual models for many time series. Can be more accurate than Global Forecasting, but is less scalable.

- This process is covered in-depth in the Lost Time Series Modules (Module 2 - Iterative Forecasting at Scale) and (Module 3 -Recursive Iterative Forecasting)
- Additional Resource: Getting Started with Nested Forecasting.

Nested Time Series Data

extend_timeseries() nest_timeseries() split_nested_timeseries()

Many Models

modeltime_nested_fit()

Nested Modeltime Table

```
# Nested Modeltime Table
  Trained on: .splits | Model Errors: [0]
 # A tibble: 7 × 5
        .actual_data
                             .future_data
                                                 .splits
                                                                   modeltime_tables
  <fct> <list>
1 1_1 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                                  <mdl_time_tbl [2 \times 5]>
2 1_3 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                                  < mdl_time_tbl [2 \times 5] >
       <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:</pre>
                                                                  < mdl_time_tbl [2 \times 5] >
4 1_13 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                                  < mdl_time_tbl [2 \times 5] >
5 1_38 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                                  < mdl_time_tbl [2 \times 5] >
6 1_93 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                                  < mdl_time_tbl [2 \times 5] >
7 1_95 <tibble [104 × 2]> <tibble [52 × 2]> <split [52/52]:
                                                                  <mdl time tbl [2 \times 5]>
```


Core Functions | Nested Forecasting

1: Nested Fitting

```
modeltime_nested_fit()
```

- Trains each model on training split
- Logs test accuracy, test forecast with confidence intervals on testing
- Logs additional information including error reports

2: Select Best

```
modeltime nested select best()
```

- Selects best model using accuracy metric
- · Filters test forecasts to just those of best models
- Logs best models

3: Nested Refitting

```
modeltime_nested_refit()
```

- Retrains selected models on actual
- Logs future forecast on future data

Extracting Nested Modeltime Table Logs

Nested Modeltime Table

Contains Logged Attributes for fast extraction

Test Accuracy extract_nested_test_accuracy()

U	2 XHECOST	Test	6236.79	26.31	1.23	24.57	9017.22	0.16
1,3	1 PROPHET	Test	3110.80	29.87	1.87	25.46	4707.77	0.80
1,3	2 X08008T	Test	3185,78	18.81	1.20	20.40	6085.81	0.75
1,8	1 PROPHET	Test	4282.98	11.15	1.82	11.96	4845.08	0.00
1,8	2 MGBCGST	Test	3186,77	9.33	1.53	9.80	4001.47	0.30
1,13	1 PROPHET	Test	6861.13	17.02	2.53	18.76	7309.61	0.15
1,12	2 XGBCOST	Test	2336,42	5,83	0.86	6.02	2721.47	0.5
UB	1 PROPHET	Text	20107.21	52.57	2.22	32.50	27931.63	0.00
1,38	2 XGBCOST	Test	0147,04	0.47	0.58	8.75	0025.20	0.46
1,93	1 PROPHET	Tent	17165-30	21.37	1.73	24.46	19123.17	0.00
1,90	2 XGBCOST	Test	7210.95	9.11	0.73	9.66	9979.21	0.46
1,96	1 PROPHET	Test	22826.09	18.30	2.76	20.27	24294.49	0.46
1,96	2 XSECOST	Test	10789.75	8.54	1.30	8.90	12843.50	0.14

Test Forecast

Error Reporting extract_nested_error_report()

.model_id .model_desc .error_desc 2 BOOST_TREE "'data' has class 'character' and length 52.\n 'data... 2 BOOST_TREE "'data' has class 'character' and length 52.\n 'data... 1 BOOST_TREE "`x` should be an `rsplit` object" 2 BOOST_TREE "`x` should be an `rsplit` object"

Iterative Forecasting Workflow Page 5