ENG5009 Advanced Control 5 – Model descriptions

RunModel.m

This is the main working file for the simulation. The file is split up into sections. The only sections that need to be altered by you are indicated by *----* in the file.

DynamicalModel.m

This file is a mathematical representation of a four wheeled robot. The robot is run by applying voltages to each of the motors.

The inputs to the model are:

voltages – voltages supplied to each motor. An array with four elements, [voltageLeft voltageLeft voltageRight]. The first two are voltages applied to the left-side motor and the last two are voltages applied to the right-side motors. The voltage range is -7.4 to 7.4V and YOU should limit this within the simulation file.

state – is the current state of the mobile robot. This is calculated for you in the main working file. The variables of importance are:

stepSize time — is the main simulation step size and should not be altered.

In the main file (RunModel.m), the outputs of the dynamical model are captured in stateDerivative and state.

Sensor.m

This function calculates the output of the sensors based on the obstacle matrix (which contains all walls). The function is used as follows:

```
[ sensorOutput ] = Sensor(robot x, robot y, headingAngle, obstacleMatrix)
```

in which:

[leftSensor, rightSensor], which are the distance to the nearest obstacle for that sensor.

Important note: when there is no obstacle, the sensor returns 1.

WallGeneration.m

```
This function updates the obstacle matrix by adding a wall. The function is used as follows:
```

```
[ wall, obstacleMatrix_new ] = WallGeneration(start_y, end_y, start_x, end_x,
direction, obstacleMatrix)
```

in which:

```
start_y - y-coordinate of start of wall
end_y - y-coordinate of end of wall
start_x - x-coordinate of start of wall
end_x - x-coordinate of end of wall
end_x - x-coordinate of end of wall
direction - direction of wall, either 'h' or 'v' (horizontal or vertical, respectively)
obstacleMatrix - obstacle matrix
wall - coordinates of wall (you can use this to plot them in figures)
obstacleMatrix new - updated obstacle matrix
```