Introduzione alla Fisica dei Sistemi Complessi

BERSELLI GREGORIO LANZI SAMUELE

Indice

1	Intr	Introduzione						
	1.1	1 Sistema Complesso						
	1.2	Teoria di Ljapunov						
	1.3	3 Costruzione di un modello						
		1.3.1	Modelli ad agente					
		1.3.2	Modelli a equazioni					
	1.4	1.4 Esempi						
		1.4.1	Random Walk 1D					
		1.4.2	Random Walk 2D					
		1.4.3	Random Walk non omogenea					
		1.4.4	Dinamica generica di interazione					
		1.4.5	Catmap					
		1.4.6	Modello economico					
		1.4.7	Modello economico evoluto					
		1.4.8	La rovina di un giocatore					
_		•						
2		Entropia e Informazione 1 2.1 Distribuzioni						
	2.1							
	2.2	Proba						
	2.2	2.2.1	Ranking distribution					
	2.3	r						
	2.4							
		2.4.1	Matrice stocastica					
		2.4.2	Teoria di Markov					
	2.5	-	oi					
		2.5.1	Utilizzo della misura invariante					
		2.5.2	Entropia di una mano di carte					
		2.5.3	Broken Stick Model/Modello di Markov					
		2.5.4	Penney's game					
3	Mo	delli di	i trasporto 23					
-	3.1		23					
	3.2		oi					
	-	r						

4	Teo	Teoria del controllo					
	4.1	Appro	occio generale				
	4.2	Esemp	oi				
		4.2.1	Pendolo rovesciato				
		4.2.2	Marriage Model/Modello relazionale				
5	Altı	Altre applicazioni					
	5.1	Teoria					
	5.2	Esemr	ni				

Capitolo 1

Introduzione

1.1 Sistema Complesso

Definizione 1.1.1. Sistema Complesso è un sistema dinamico composto da sottosistemi interagenti tra loro, chiamati agenti.

Per lo studio di un sistema complesso si usa solitamente un approccio olistico, ossia ssi studiano prevalentemente le proprietà macroscopiche del sistema totale, senza considerare i singoli sottosistemi. Un'osservazione importante che va effettuata è che un sistema complesso **prevede**, non descrive.

Definizione 1.1.2. Lo spazio degli stati dinamici del sistema è detto spazio delle fasi.

Definizione 1.1.3. I gradi di libertà di un sistema sono dati da $\#d.o.f. = \frac{dimensione dello spazio}{2}$

Per un numero elevato di gradi di libertà è possibile utilizzare l'approccio della meccanica statistica. Alcune delle proprietà principali dei sistemi complessi sono:

- complessità: presenza di molti d.o.f. (molti agenti)
- **proprietà emergenti**: derivano dal grande numero di agenti. Ad esempio possiamo definire *fluido* un insieme di molte particelle ma la particella singola non può essere fluida.
- autorganizzazione: i sistemi complessi sono ibridi, ossia metà stocastici e metà deterministici. Per studiarli devo dare ugual peso a entrambi gli aspetti.

La complessità dei sistemi fa si che per definirne uno stato occorra molta informazione. Ogni sistema complesso fornisce un feedback rispetto alle condizioni inziali che sono fornite. In particolare, si parla di feedback positivo se le condizioni iniziali portano il sistema a "esplodere", ossia ad allontanarsi inesorabilmente dall'origine, mentre si parla di feedback negativo quando dopo un certo periodo di tempo il sistema ritorna alle condizioni iniziali.

Definizione 1.1.4. Un sistema a feedback negativo è detto in equilibrio dinamico.

1.2 Teoria di Ljapunov

In un sistema classico, una volta scritta la lagrangiana (o hamiltoniana) del sistema e ottenute le equazioni del moto, è cosa fatta determinarne l'evoluzione nel tempo (traiettorie). Nei sistemi complessi, tuttavia, non è possibile utilizzare un approccio deterministico: si parla infatti di caos deterministico. Questo caos è causato soprattutto dalle fluttuazioni intrinseche dei sistemi complessi, le quali li rendono particolamente sensibili alle condizioni iniziali. Si consideri sistema alle condizioni iniziali x_0 . Dopo un tempo t, si troverà naturalmente il sistema in una posizione x(t) determinata dalle condizioni iniziali. Si assuma ora la presenza di fluttuazioni sulle condizioni iniziali $x_0 + \delta_0$: il sistema evolverà ora come $x(t) + \delta(t)$. La teoria vuole che le fluttuazioni seguano l'andamento

$$\delta(t) \simeq \delta_0 e^{\lambda t}$$

dove il coefficiente λ è detto esponente di Ljapunov. Il calcolo di questo parametro non è banale, pertanto non verrà dimostrato ma solo riportato.

Teorema 1.2.1.
$$\lambda = \lim_{\delta \to 0, t \to \infty} \frac{1}{t} \ln \|\Phi^t(x+\delta) - \Phi^t(x)\|$$

Nonostante il calcolo precedente possa spaventare, nella maggior parte dei casi si può utilizzare l'approssimazione $\lambda \simeq \frac{1}{t} \sum_k \ln \frac{\delta_k}{\delta_0}$, dove k indicizza una traslazione temporale Δt . Per comprendere i limiti dell'approssimazione precedente si può notare come $\delta_0 e^{\lambda t} = o(1)$, quindi $\ln \delta_0 + \lambda t = 0$.

Definizione 1.2.1. $t=-\frac{\ln\delta_0}{\lambda}$ tempo di predittività del modello

Si può notare come:

- l'esponente di Ljapunov è una proprietà dell'orbita, non del punto, ed è quindi necessario interagire su tempi lunghi;
- un'alta sensibiltà alle condizioni iniziali implica una scarsa predittività;
- per $\lambda >> 1$ è possibile utilizzare l'approccio statistico;
- le proprietà sono locali (ma non così tanto locali).

Non è possibile conoscere a priori il segno di λ . Il caos deterministico, ovviamente, si ottiene solo se $\lambda > 0$ (l'esponenziale esplode) in un insieme a misura finita. Ne consegue che le orbite debbano espandersi rimanendo limitate, fenomeno noto come stretching-folding, e quindi la conservazione di una misura (volume).

Teorema 1.2.2. di Poincarè (del ritorno)

Un sistema dinamico che conserva i volumi su un compatto ritorna arbitrariamente vicino alle condizioni iniziali (feedback negativo).

1.3 Costruzione di un modello

Punto fondamentale di un sistema complesso è costruire un modello che riesca a riprodurre le sue caratteristiche fondamentali, per poi studiarlo. Innanzitutto, per prevedere un sistema occorre:

- un modello (matematico) per l'evoluzione;
- una conoscenza dello stato presente (o passato) del sistema *sufficiente* ad inizializzare il modello;

Si possono distinguere due tipologie di modelli, le quali verranno ora analizzate.

1.3.1 Modelli ad agente

La prima tipologia di modello sono i modelli ad agente, ossia quei modelli in cui si effettua uno stduio di tipo bottom-up (dal particolare al generale). Assunzione fondamentale è di avere piena conoscenza sui comportamenti dei singoli agenti e sull'ambiente in cui questi si relazionano. Una volta formalizzati matematicamente i comportamenti dei singoli è possibile procedere con una simulazione, la quale fornirà una possibile evoluzione del sistema. È essenziale notare come in questo caso il risultato ottenuto sia solamente uno dei tanti possibili: bisognerà quindi effettuare la simulazione numerose volte e mediare sui risultati ottenuti. Riguardo la costruzione del modello, la prima cosa da definire è l'ambiente in cui ci si trova. Questo può essere neutro o avere caratteristiche, ad esempio una distribuzione di nutrimento (per sistemi biologici). Altro punto fondamentale è definire spazio e tempo. Spesso non fa differenza la scelta di spazi e tempi discreti rispetto ai continui, quindi è preferibile assumere una discretizzazione iniziale per poi passare al continuo successivamente. Una volta definito lo spazio bisogna poi decidere le condizioni al contorno, ossia il comportamento ai bordi. Si possono avere barriere di tre tipi:

- **riflettenti**, dove si ha un bordo *non* oltrepassabile. Si crea quindi un fenomeno di **attrattività delle pareti**.
- **periodico**, dove si hanno i bordi coincidenti (esco da una parte e rientro dall'altra). Lo spazio assume in questo caso una forma toroidale.
- assorbenti, dove gli oggetti "uscenti" vengono distrutti. In questo caso bisogna di introdurre delle *sorgenti* nel modello per evitare di perdere tutti gli agenti.

Si nota facilmente come più piccolo sia il modello, più importante sia il contributo degli effetti di bordo.

Nella maggior parte dei sistemi non tutti gli agenti hanno le stesse caratteristiche: si definiscono allora **classi** di appartenenza, legate tra loro da relazioni matematiche.

1.3.2 Modelli a equazioni

La seconda ed ultima tipologia di sistema complesso è data dai modelli a equazioni, ossia quei modelli in cui si effettua uno stduio di tipo top-down (dal generale al particolare). In questo caso si assume di non avere conoscenza sui singoli agenti ma di possedere informazioni di carattere puramente macroscopico, dette osservabili del sistema. Tipicamente, gli osservabili sono legati tra di loro tramite equazioni differenziali le quali, una volta integrate, forniscono un'evoluzione del sistema nel tempo. In questo caso il risultato ottenuto rappresenta già una media di tutti i risultati possibili: le fluttuazioni del sistema provocheranno quindi uno scostamento da questo valore. Ovviamente, più tempo si farà evolvere il sistema, più rilevante sarà l'effetto delle fluttuazioni e meno preciso sarà il risultato della previsione.

1.4 Esempi

1.4.1 Random Walk 1D

Il modello più basilare di sistema complesso è sicuramente la random walk su una retta, ossia un punto che ogni istante di tempo decide in maniera casuale se spostarsi a destra o a sinistra. Sia $p = \frac{1}{2}$ la probabilità di muoversi verso destra (quindi anche a sinistra) di un passo Δx . Si hanno:

- {R}: $p(t + \Delta t) = x(t) + \Delta x$
- {L}: $p(t + \Delta t) = x(t) \Delta x$

Dopo n passi si ha quindi $p(n\Delta t) = x_0 + \sum_k \xi_k \Delta x$ con $\xi(t) = \pm 1$. Inoltre si può verificare che $\langle \xi_k \rangle = 0$, $\langle \xi_k^2 \rangle = 1$, $\langle \xi_k \xi_h \rangle = \langle \xi_k \rangle \langle \xi_h \rangle$, $k \neq h$. Per il teorema del limite centrale si ha: $\sum_k^n \xi_k \Delta x = \sqrt{n\Delta t} \left(\frac{1}{\sqrt{n}} \sum_k^n \xi_k\right) \frac{\Delta x}{\sqrt{\Delta t}} = \frac{1}{\sqrt{2\pi Dt}} e^{-\frac{z^2}{2Dt}}$, con z variabile gaussiana. Introducendo il concetto di diffusione:

Definizione 1.4.1. Diffusione. $D = \frac{\Delta x^2}{\Delta t}$

si può descrivere l'evoluzione del sistema come $x(t) = x_0 + z\sqrt{Dt}$ Si utilizza \sqrt{n} per normalizzare in quanto è l'unico esponente non divergente. La varianza della gaussiana cresce nel tempo, infatti calcolando i momenti della distribuzione si trova $\langle x(t) \rangle = x_0$, $\langle (x(t) - x_0)^2 \rangle = Dt$. Se la topologia del sistema fosse una circonferenza (e non una retta), si avrebbe un rilassamento esponenziale a una situazione stazionaria.

Definito un intervallo -L, L sulla retta, la probabilità che il punto vi sca dopo un tempo t è data da:

$$P(|x| > L) = 1 - \int_{-L}^{L} \frac{1}{\sqrt{2\pi Dt}} e^{-\frac{x^2}{2Dt}} dx$$
 (1.1)

Si può facilmente notare come raddoppiando la distanza L il tempo t quadruplichi.

1.4. ESEMPI 9

1.4.2 Random Walk 2D

Volendo espandere il modello di random walk ad uno spazio 2D si nota subito come, essendo ogni asse indipendente dall'altro, si possa semplicemente comporre due gaussiane:

$$(x,y) \simeq \frac{1}{2\pi\Delta t}e^{-\frac{x^2+y^2}{2\Delta t}} = \rho(x,y,t)$$

Dove la diffusione segue la definizione precedente ed è la stessa in tutte le direzioni. La funzione $\rho(x, y, t)$ rappresnta di fatto la probabilità che la il soggetto in analisi si trovi in un volume $\Delta x \Delta y$. Si può riscrivere la relazione precedente in coorfinate polari ottenendo:

$$\rho(r,\theta,t) = \frac{r}{2\pi\Delta t}e^{-\frac{r^2}{2\Delta t}}$$

studiando più semplicemente l'allontanamento dall'origine. In particolare, l'allontanamento medio risulta:

$$< r > = \int_0^\infty \rho(r, \theta, t) r dr = \sqrt{\frac{\pi}{2} \Delta t}$$

e la densità diminuisce quindi esponenzialmente.

1.4.3 Random Walk non omogenea

Si consideri ora una random walk 1D con probabilità non uniforme in un reticolo di passo Δx . Sia ϵ un parametro e si definiscano le probabilità:

$$\begin{cases} p_{++} = p_{--} = \frac{1}{4}(1 + \epsilon x) & x \ge 0 \implies x \to x \pm 2\Delta x \\ p_{+} = p_{-} = \frac{1}{4}(1 - \epsilon x) & x < 0 \implies x \to x \pm \Delta x \end{cases}$$

Si può verificare facilmente come le probabilità siano ben definite. Il sistema tende a muoversi più velocemente nel verso positivo delle x e più lentamente nel verso opposto, assomigliando a una scatola con aria a diversa temperatura: vi è quindi un equilibrio locale (ogni nodo è identico). Si può osservare come:

$$<\Delta x> = 0$$

 $<\Delta x^2> = (4\Delta x^2)(p_{++} + p_{--}) + \Delta x^2(p_+ + p_-) = \left(\frac{5}{2} + \frac{3}{2}\epsilon x\right)\Delta x^2$

Ogni passo ho un *enemble* differente, quindi lo spazio non è omogeneo. Ponendo $T(x) = <\Delta x^2>$ come funzione corrispondente alla temperatura fisica, si ottiene un gradiente costante:

$$\frac{dT}{dx} = \frac{3}{2}\epsilon \Delta x^2$$

Questo gradiente si ritrova spesso in natura, ad esempio i batteri variano la velocità di movimento (casuale) dei loro flagelli seguendo un gradiente di cibo. Per essere

apprezzabile la variazione di temperatura deve essere tale che $\Delta T = \frac{\partial T}{\partial x} \Delta x \propto \Delta x^3$ e in un limite continuo si ottiene:

$$\begin{split} \frac{\partial p}{\partial t} &= \frac{1}{2} \frac{\partial p}{\partial x} T(x) \frac{\partial p}{\partial x} p(x,t) \\ \frac{d < x >}{dt} &= \frac{1}{2} \int x \frac{\partial p}{\partial x} T(x) \frac{\partial p}{\partial x} p(x,t) > 0 \quad \frac{\partial T}{\partial x} > 0 \end{split}$$

Andando a calcolare media e mediana del sistema si nota come:

$$\int xp(x,t)dx > 0$$
$$-\int_{-L}^{0} p(x,t)dx + \int_{0}^{L} p(x,t)dx < 0$$

In conclusione la maggior parte delle particelle si trova nella zona fredda (x < 0), come vuole la fisica, ma la media della distribuzione si trova nella zona calda (x > 0).

1.4.4 Dinamica generica di interazione

Consideriamo di avrere n_0 individui iniziali su una griglia (spazio discretizzato) che si muovono seguendo una Random Walk 2D e soggetti alle seguenti restrizioni:

- se un individuo ha spazio sufficiente, si riproduce in un tempo Δt , allora si deve avere $\Delta n(t) \propto n(t)$;
- se due individui competono per lo stesso spazio, uno dei due soccombe con una certa probabilità p, il che implica $\Delta n(t) \propto -n^2(t)$;

Si osservi come il termine $n^2(t)$ conti il numero di coppie. Definita la scala di tempo Δt , in un modello continuo si deve avere (teoria del campo medio):

$$n(t + \Delta t) = n(t) + \left(an(t) - bn^{2}(t)\right) \Delta t$$

con a parametro di riproduzione e $\frac{b}{a}$ competizione nella popolazione (dato dall'ambiente). Imponendo l'equilibrio

$$\dot{n}(t) = an(t) \left(1 - \frac{b}{a}n(t) \right) = 0$$

si ottengono i punti critici n=0, instabile, e $n=\frac{a}{b}$ stabile. La soluzione al sistema è quindi del tipo

$$n(t) = \frac{an_0}{(a - bn_0)e^{-at} + bn_0}$$
(1.2)

e la funzione logistica del sistema è

$$f(t) = \frac{1 - e^{-t}}{1 + e^{-t}} = \tanh \frac{t}{2}$$
(1.3)

1.4. ESEMPI 11

1.4.5 Catmap

Consideriamo un gatto su un toro Π^2 (ciambella) in gradi di muoversi secondo la:

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix}$$

Risulta ovvio come

$$\det\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = 1$$

quindi si conservino le aree. Calcolo degli autovalori:

$$\det\begin{pmatrix} 2-\lambda & 1\\ 1 & 1-\lambda \end{pmatrix} = \lambda^2 - 3\lambda + 1 = 0$$

e si ottengono

$$\begin{cases} \lambda_{\pm} = \frac{3 \pm \sqrt{5}}{2} \\ \lambda_{+} \lambda_{-} = 1 \end{cases}$$

Il sistema dilata densamente lungo la direzione v_+ dell'autovettore $\lambda_+ > 1$. Dato un vettore iniziale x_0 , $(x_0 \cdot v_t)\lambda_t^n \Rightarrow \ln \lambda_t$ è l'esponenziale di Ljapunov. Problema: data una distribuzione di punti ρ_0 , cosa succede a $\rho_0(T^n x)$?

Per definizione, data una distribuzione $\rho(x)$, questa deve essere normalizzata $\int_{\Pi^2} \rho(x) dx = 1$. L'equazione di continuità permette di imporre la conservazione del numero di particelle:

$$\rho(x,n) = \rho_0 \left(T^{-n} x \right) \left| \frac{\partial T^{-n}}{\partial x} \right|$$

in cui si riconosce $\left|\frac{\partial T^{-n}}{\partial x}\right| = \det\begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix} = 1$, quindi $\rho_0\left(T^nx\right)$ evolve in una distribuzione di particelle. Si può ora constatare che, se I(x) è un osservabile del sistema, vale la relazione:

$$< I > (n) = \int I(x)\rho(x,n)dx$$

La teoria suggerisce l'esistenza di una distribuzione invariante $\rho_s(T^{-n}x) = \rho_s$. Sia ora $\chi_A(x)$ la funzione caratteristica del dell'insieme A, e $\rho_0(y) = \frac{\chi_A(y)}{m(A)}$, $I(x) = \chi_B(x)$. L'integrale precedente diviene:

$$\langle I \rangle (n) = \int \chi_{B}(x) \frac{\chi_{A} T^{-n} x}{m(A)} dx = \int_{B} \frac{\chi_{A} T^{-n} x}{m(A)} dx =$$

$$= \frac{1}{m(A)} \int_{T^{B}} \chi_{A}(y) dy = \frac{1}{m(A)} m(A) m(B) = m(B)$$

$$m(B) = \int \chi_{B}(x) \rho_{s}(x) dx$$

$$(1.4)$$

e si è così dimostrato il teorema 1.2.2.

1.4.6 Modello economico

Si vuole ora costruire un primo modello legato alla realtà simulando, per quanto grossolanamente, l'economia globale.

Supponiamo di avere M individui con n soldi ciascuno, che si muovono su una griglia secondo una Random Walk 2D. Ogni qualvolta due individui si trovino sulla stessa cella questi si scambiano 1 soldo con probabilità $p = \frac{1}{2}$.

Caso limite: se si incontra un povero (n = 0), si gioca lo stesso (gioco scorretto) per permettere a tutti di uscire dalla povertà. Il sistema ha quindi i seguenti limiti:

$$\begin{cases} \sum_{k} n_k = N \\ n_k \ge 0 \end{cases}$$

con N costante, quindi non si ha creazione/distruzione di denaro. La probabilità di trovare un individuo con n soldi è:

$$p(n) = \frac{\binom{M+N-2-n}{M-2}}{\binom{M+N-1}{N-1}}$$

e, ponendo $\overline{n} = \frac{N}{M}$, si può calcolare:

$$\lim_{M \to \infty} \frac{1}{\overline{n}} \left(1 - \frac{n}{M} \right)^M = \frac{1}{\overline{n}} e^{-\frac{n}{\overline{n}}} \tag{1.5}$$

quindi la probabilità decresce esponenzialmente. Il modello prevede quindi:

- molti poveri e pochi ricchi (ma praticamente nessun super-ricco)
- esiste un tempo in cui un povero diventa ricco (e viceversa)
- simile alla distribuzione di energia di Maxwell-Boltzmann
- se chi è ricco pagasse di più si otterrebbe una curva a campana

Tuttavia osservando i dati sperimentali si nota una discrepanza: nella realtà la probabilità sembra seguire una legge a potenza piuttosto che esponenziale.

1.4.7 Modello economico evoluto

Per adattare il modello precedente alla realtà si introduce una microdinamica sugli scambi di denaro.

Sia π_{\pm} la probabilità di guadagnare ± 1 soldi se un soggetto ne possiede n. Il sistema possiede una struttura di catena:

Definizione 1.4.2. Struttura di catena.

Un modello ha struttura di catena quando il flusso in una direzione implica un secondo flusso nella direzione opposta.

1.4. ESEMPI 13

A causa di questa struttura, all'equilibrio si deve avere:

$$\pi_{+}(n-1)p(n-1) + \pi_{-}(n+1)p(n+1) = \pi_{+}(n)p(n) + \pi_{-}(n)p(n)$$

e in particolare è verificato il bilancio dettagliato:

$$\pi_{+}(n-1)p(n-1) = \pi_{-}(n)p(n) \quad \forall n \ge 1$$
 (1.6)

Normalizzata la distribuzione è possibile iterare il tutto:

$$p(n) = \prod_{k=1}^{n} \frac{\pi_{+}(k-1)}{1pi_{-}(k)} p(0)$$

Riscrivendo un maniera più comoda il bilancio dettagliato, si può poi procedere:

$$\pi_{+}(n - \frac{1}{2})p(n - \frac{1}{2}) = \pi_{-}(n + \frac{1}{2})p(n + \frac{1}{2})$$
$$[\pi_{+}(n) - \pi_{-}(n)]p(n) - \frac{1}{2}\frac{\partial}{\partial n}[\pi_{+}(n) - \pi_{-}(n)]p(n) \simeq 0$$
$$ap(n) + \frac{\partial}{\partial n}(bn)p(n) \simeq 0$$

Si possono notare ora le seguenti dipendenze, introducendo la coppia di parametri costanti (a, b):

$$\begin{cases} \pi_{+}(n-1) - \pi_{-}(n) \simeq a \\ \pi_{+}(n) \simeq bn - \frac{a}{2} \\ \pi_{-}(n) \simeq bn + \frac{a}{2} \end{cases}$$

Cercando ora l'andamento di p(n):

$$p(n) - p(n-1) = \left(\frac{bn - \frac{a}{2}}{bn + \frac{a}{2}} - 1\right) p(n-1)$$

$$\frac{dp}{dn} = -\frac{a}{bn} p(n-1)$$

$$\Rightarrow \lim_{n \to \infty} p(n) \propto n^{-\frac{a}{b}}$$

$$(1.7)$$

si ottiene esattamente l'andamento a potenza ricercato.

1.4.8 La rovina di un giocatore

Si consideri un giocatore d'azzardo con a disposizione un capitale k e che vuole arrivare ad un capitale M. Il gioco finisce ai "bordi" (barriera assorbente) per k=0 (giocatore rovinato) o per k=M (giocatore felice). Siano p la probabilità di guadagnare, q=1-p la probabilità di perdere, $P_M(k)$ la probabilità di arrivare al capitale M partendo da k. Come nel modello economico evoluto si ha:

$$P_M(k) = pP_M(k+1) + qP_M(k-1)$$

con i vincoli

$$\begin{cases} P_M(0) = 0 \\ P_M(M) = 1 \end{cases}$$

Ragionando per induzione si ottiene:

$$P_M(k+1) - P_M(k) = \frac{q}{p} \left[P_M(k) - P_M(k-1) \right] = \left(\frac{q}{p} \right)^k P_M(1)$$

$$P_M(k) = \frac{1 - \left(\frac{q}{p}\right)^k}{1 - \left(\frac{q}{p}\right)^M} \tag{1.8}$$

Inoltre,

$$P_{\infty}(k) = 1 - \left(\frac{q}{p}\right)^k \tag{1.9}$$

In particolare, considerando un gioco equo, si può notare come $P_M(k) = \frac{k}{M}$ e quindi:

- il gioco è alla pari solo se $k \simeq M$
- la probabilità di vincita aumenta all'aumentare del proprio capitale rispetto a quello avversario
- contro un casinò $(M \to \infty)$ la probabilità di vincita è evidentemente nulla anche in caso di gioco equo (assunzione oltretutto inverosimile)

Capitolo 2

Entropia e Informazione

Distribuzioni 2.1

Vediamo ora una serie di distribuzioni e teoremi ad esse legati che ci aiuteranno nell'analisi dei sistemi.

Definizione 2.1.1.

- Gaussiana $\rho(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- \bullet Esponenziale $\rho(x) = \frac{1}{k}e^{-\frac{x}{k}}$
- Potenza $\rho(x) \propto \frac{1}{x^a}$, con a > 0

Definizione 2.1.2. Momenti di una distribuzione: $\langle x^k \rangle = \int_{-\infty}^{+\infty} x^k \rho(x) dx$

Teorema 2.1.1. Invarianza di scala: se $\rho(x) \propto \frac{1}{x^a}$ allora posto $y = \lambda x$ si ha $\rho(y) = \frac{\lambda^a}{x^a} \propto \frac{1}{y^a}$

Teorema 2.1.2. Limite centrale:

Siano x_k variabili casuali indipendenti, allora:

$$\lim_{N \to \infty} z = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} x_k = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}$$

2.2Probabilità

Data una distribuzione di probabilità $\rho(x)$ normalizzata è possibule procedere con le seguenti definizioni:

Definizione 2.2.1. Probabilità: $p(x \in [a, b]) = \int_a^b \rho(x) dx$

$$p(x \in [a,b]) = \int_a^b \rho(x) dx$$

Definizione 2.2.2. Probabilità cumulata:

$$p(x \le a) = \int_{-\infty}^{a} \rho(x) dx$$

Definizione 2.2.3. Probabilità stazionaria

La probabilità stazionaria è il numero di volte che un evento accade in una sequenza.

Teorema 2.2.1. legge dei grandi numeri

Siano A e B due eventi distinti (osservati N volte), allora si ha che $\lim_{N\to\infty} \frac{p(AB)}{p(A)} = p(B/A)$

2.2.1 Ranking distribution

Definizione 2.2.4. Sia x una variabile aleatoria con un sample $\{x_1, \ldots, x_n\}$ di osservazioni ordinate tali che $x_1 \geq x_2 \geq \ldots$ Allora $x_j = f(j)$ è detta ranking distribution.

Solitamente tale distribuzione è normalizzata in modo che $y_j = \frac{x_j}{x_1}$. Per definizione la frequenza di un evento è $\frac{j}{n}$, quindi la distribuzione cumulata risulta

$$F(x_j) = 1 - \frac{j}{n} = 1 - \frac{J(x_j)}{n}$$
 (2.1)

con $J(x_j)$ inverso del ranking. La funzione di distribuzione sarà quindi

$$p(x) = -\frac{1}{n} \frac{dJ}{dx} \tag{2.2}$$

2.3 Entropia

Si supponga di voler calcolare l'incertezza di una distribuzione di probabilità p_1, \ldots, p_n per gli eventi $\{x_1, \ldots, x_n\}$. Si assuma:

- $H(p_1,\ldots,p_n)$ continua;
- se $p_j = \frac{1}{n}$ allora $H(\frac{1}{n}, \dots, \frac{1}{n})$ è monotona crescente;
- Dati gli eventi composti $y_1 = \{x_1, \dots, x_m\}, y_2 = \{x_{m+1}, \dots, x_{m+k}\}$ con probabilità $P(y_i/x_i) = \frac{p_i}{w_i}$, allora

$$H(p_1, \dots, p_n) = H(w_1, \dots, w_n) + w_1 H\left(\frac{p_1}{w_1}, \dots, \frac{p_m}{w_1}\right) + w_2 H\left(\frac{p_2}{w_2}, \dots, \frac{p_m}{w_2}\right) + \dots;$$

La soluzione è del tipo $H(p_1, \ldots, p_n) = -k_s \sum_i p_i \ln(p_i)$ dove si definisce

Definizione 2.3.1. $S = -k_s \sum_i p(x_i) \ln p(x_i)$ entropia di informazione (di Shannon)

con $k_s = \frac{1}{\ln 2}$ costante di Shannon. Si può notare come $H(p_1, \dots, p_n)$ sia massima per $p_j = \frac{1}{n}$. Fissato $\bar{x} = \sum_j x_j p_j$, l'entropia è massimizzabile utilizzando i moltiplicatori di lagrange:

$$\delta H = -\sum_{i} \delta p(x_i) \ln p(x_i) + \lambda \sum_{j} x_j \delta p_j = 0$$

il che implica $-\ln p_j + \lambda x_j = 0$, con soluzione

$$p_j = \frac{e^{\lambda x_j}}{\sum_j e^{\lambda x_j}} \tag{2.3}$$

con $\lambda \simeq -\frac{1}{\bar{x}}$ (risultato fondamentale della meccanica statistica). La distribuzione è quindi esponenziale, con $p_j \propto e^{-\frac{x_j}{\bar{x}}}$.

2.4 Informazione

Definizione 2.4.1. Una variabile x a valori discreti $\{x_0, x_1, ...\}$ è detta variabile di CODING

Si consideri una sequenza (codifica) $\{x_k\}_1^N$: si può assumere $P(\{x_k\}) = p(x_1)...p(x_N)$. Una codifica è detta **ottimale** se può descrivere in maniera univoca un'orbita.

Definizione 2.4.2. Data una codifica, si definisce $-\ln(x)$ l'informazione portata dal carattere x

Si nota subito come più un valore della variabile di coding è probabile, minor informazione questo porti. Informaticamente, la misura è circa il numero di bit necessari per memorizzare la sequenza (da qui il fattore ln 2 dell'entropia di Shannon). L'equazione 2.3.1 rappresenta quindi l'informazione media portata da un singolo carattere. Non bisogna confondere entropia con informazione: la variabile deve avere un significato! Data l'indipendenza dei caratteri, si può scrivere l'entropia di una coppia come

$$\begin{split} S\left(P_{2}\left(\left\{x_{k_{1}},x_{k_{2}}\right\}\right)\right) &= -\sum_{k_{1},k_{2}} P_{2}\left(\left\{x_{k_{1}},x_{k_{2}}\right\}\right) \ln P_{2}\left(\left\{x_{k_{1}},x_{k_{2}}\right\}\right) = \\ &= -\sum_{k_{1}} P\left(x_{k_{1}}\right) \ln P\left(x_{k_{1}}\right) \sum_{k_{2}} P\left(x_{k_{2}}\right) \ln P\left(x_{k_{2}}\right) \end{split}$$

Iterando il ragionamento si giunge alla conclusione che l'entropia di Shannon misura l'aumento di informazione data dall'aggiunta di un carattere.

2.4.1 Matrice stocastica

Si è analizzato finora il caso di caratteri indipendenti gli uni dagli altri. Tuttavia, per comprendere una sequenza bisogna, in generale, conoscerne la memoria, ossia tutte

le dipendenze di un evento dagli altri. Formalmente, ciò vorrebbe dire che, dati due eventi A e B, $P(\{AB\}) = P(B/A) P(A) \neq P(A) P(B)$. Si può facilmente osservare come $\lim_{N\to\infty} \frac{P(\{AB\})}{P(A)} = P(B/A)$, dove N rappresenta il numero totale di eventi. L'irreversibilità di un evento si ha quando la coppia di eventi AB è diversa dalla coppia di eventi BA.

Definizione 2.4.3. $p_{ij} = p(x_j/x_i)$ matrice stocastica

La matrice stocastica ha per definizione le seguenti proprietà:

- $0 \le p_{ij} \le 1$
- $\sum_{i} p_{ij} = 1$

Questa matrice è molto importante, essento intrinsecamente legata alla probabilità condizionata, ed è alla base di ogni problema di trasporto. Si consideri ora una sequenza infinita e sia p_i la probabilità di avere l'elemento x_i in quella posizione. Qual è la probabilità p_j di avere l'elemento successivo? Sia n il numero di passi per arrivare in posizione i, allora:

$$p_j^{n+1} = \sum_{i} p_{ij} p_j^n \tag{2.4}$$

Risulta quindi utile il seguente teorema:

Teorema 2.4.1. Esiste un autovettore con autovalore $\lambda_0 = 1$, ossia $p_j^s = \sum_i p_{ij} p_j^s$

Corollari:

- p_j^s è un vettore stazionario situato nel primo quadrante
- l'iperpiano $\sum_{i,j} p_{ij} v_i = \sum_i v_i = 0$ sono invarianti per p_{ij}
- $\lambda_i < 1 \quad \forall i \neq 0$
- $p_j^{n+1} = \sum_i p_{ij} p_j^n = 1 \Leftrightarrow \sum_i p_i^n = 1$

2.4.2 Teoria di Markov

A questo punto si può calcolare come cambi quantitativamente l'informazione di una catena aggiungendo un carattere.

Definizione 2.4.4. Proprietà di Markov (di tempo presente)
$$P(\{x_1,...,x_{n+1}\}) = P(x_{n+1}/Px_n)P(\{x_1,...,x_n\})$$

2.5. ESEMPI 19

Si può quindi calcolare l'entropia dell'(N+1)esimo passo

$$S_{N+1} = -\sum P(\{x_1 \dots x_{N+1}\}) \ln P(\{x_1 \dots x_{N+1}\}) =$$

$$= -\sum P(\{x_{N+1}/x_N\}) P(\{x_1 \dots x_{N+1}\}) [\ln P(\{x_{N+1}/x_N\}) \ln P(\{x_1 \dots x_{N+1}\})] =$$

$$= -\sum P(\{x_1 \dots x_N\}) \ln P(\{x_1 \dots x_N\}) - \sum_{i,j} p_j^s P(x_i/x_j) \ln P(x_i/x_j)$$

ottenendo, nel limite N >> 1, l'espressione:

$$S_{N+1} = S_N - \sum_{ij} p_j^s p_{ij} \ln p_j \tag{2.5}$$

Nei linguaggi l'aggiunta di un carattere non cambia di molto l'entropia (per fortuna, altrimenti sarebbe molto difficile parlarsi, ndr). Questa entropia fornisce tuttavia un'importante risultato sulla reversibilità del processo: se invertendo il tempo non ho differenza di entropia, allora il processo è reversibile, altrimenti no. Le fluttuazioni di un sistema all'equilibrio sono sempre un processo reversibile, infatti osservando tale sistema non si riesce a distinguere tra passato e futuro. Come esempio per giustificare la precedente affermazione si può prendere un pendolo fisico in assenza di attriti/forse esterne, oppure un moto browniano.

In conclusione, la teoria dell'informazione è applicabile quasi in ogni ambito. Sono stati effettuati studi sui linguaggi, premiando finlandese e tedesco come lingue più entropiche, e studi sulla musica, che vedono Bach meno entropico di Hindemith.

2.5 Esempi

2.5.1 Utilizzo della misura invariante

Sia $x_n = 2^n$ un numero, con $n \ge 1$. Qual è la probabilità che esso abbia un 7 come prima cifra?

Supponendo $2^n = 7 \cdot \dots \times 10^k$, allora $\log 2^n = \log 7 \cdot \dots + k$. Si consideri ora la dinamica

$$y_{n+1} = y_n + \log 2 \mod 1 \tag{2.6}$$

che rappresenta sostanzialmente una traslazione nell'intervallo [0, 1]. In questo caso l'esponente di Ljapunov è nullo in quanto non vi è espansione. Iterando la 2.6 si ottiene

$$y_n = y_0 + n \log 2 \mod 1$$

e la misura invariante risulta quindi una distribuzione uniforme nell'intervallo [0,1]. Da qui la probabilità $\lim_{n\to\infty} P(7) = \log 8 - \log 7$.

2.5.2 Entropia di una mano di carte

Supponiamo di possedere un mazzo di N carte differenti e di pescare da esso $k \leq N$ carte. Per calcolare l'entropia di informazione associata alla mano pescata, bisogna

innanzitutto calcolare la probabilità di una mano singola. Le combinazioni di k carte di un mazzo di N carte sono date dal coefficiente binomiale:

$$C = \binom{N}{k} = \frac{N!}{k!(N-k)!} \tag{2.7}$$

Assumendo che il mazzo non sia truccato, quindi che ogni estrazione sia equiprobabile, la probabilità di ogni singola mano è $p_i = \frac{1}{C}$. L'entropia di informazione (o di Shannon) associata ad essa è quindi

$$S = -k_S \sum_{i=1}^{C} p_i \ln p_i = -k_S C \left(\frac{1}{C} \ln \frac{1}{C} \right) = k_S \ln \frac{N!}{k!(N-k)!}$$

con $k_S = \frac{1}{\ln 2}$ costante di Shannon.

2.5.3 Broken Stick Model/Modello di Markov

Si consideri un segmento di lunghezza unitaria nel quale viene inserito casualmente un punto $x_1 \in [0,1]$ secondo una distribuzione uniforme. Si scarti ora il segmeno $[0,x_1]$ e si iteri il processo per N volte: si tratta di un processo ricorsivo con memoria del passato. Essendo la distribuzione di probabilità uniforme risulta ovvio come $\langle x \rangle = \frac{1}{2}$ quindi è possibile riscalare il tutto con una variabile $y \to \frac{y}{2}$ Definita la densità ρ del sistema si può scrivere:

$$\rho_{N+1}\left(\frac{y}{2}\right)\frac{dy}{2} = \rho_N(y)dy$$

$$\Rightarrow \lim_{N \to \infty} \rho_N(y) \propto \frac{1}{y}$$

Il risultato è una legge a potenza con $\alpha = -1$, quindi non normalizzabile in quanto l'integrale diverge. Il sistema ha un effetto di memoria assoluta: una volta tagliato il segmento non è possibile riattaccarlo. Se il segmento non venisse tagliato si otterrebbe un andamento a potenza con $\alpha \geq 1$ e risulterebbe pertanto normalizzabile. Un'utile applicazione dei modelli di Markov si trova nel linguaggio (verbi) e in biologia (DNA).

2.5.4 Penney's game

Si prenda una moneta e la si lanci all'infinito. Si vuole scommettere con un'altra persona su una terna di uscite consecutive dai lanci e ci si chiede come si possa vincere più facilmente. Analizzando attentamente il problema si può notare come l'uscita delle sequenze non sia casuale ma segua un percorso ben preciso: l'unica sequenza casuale è quella data dalle prime tre uscite.

2.5. ESEMPI 21

Figura 2.1: Schema del gioco di Penney

In questo modo risulta abbastanza semplice fregare l' avversario: facendolo scegliere per primo, è sempre possibile scegliere una sequenza più probabile della sua. Eseguendo i calcoli si nota subito come la probabilità stazionaria del sistema sia data da $\left(\frac{1}{2}\right)^3 = \frac{1}{8} = 12.5\%$. Scegliendo per secondi si vince sempre a meno che la sequenza dell'avversario non esca dai primi tre lanci, quindi eseguendo i calcoli sulle probabilità si ottiene la seguente tabella:

1st player's choice	2nd player's choice	2nd player's winning chance
HHH	$\mathbf{T}HH$	87.5%
HHT	$\mathbf{T}HH$	75.0%
HTH	$\mathbf{H}HT$	66.7%
HTT	$\mathbf{H}HT$	66.7%
THH	$\mathbf{T}TH$	66.7%
THT	$\mathbf{T}TH$	66.7%
TTH	$\mathbf{H}TT$	75.0%
TTT	$\mathbf{H}TT$	87.5%

Capitolo 3

Modelli di trasporto

3.1 Teoria

Consideriamo due punti $(A \in B)$ di un generico spazio e colleghiamoli con un canale immaginario, facendo riferimento alla Fig.1, possiamo definire il flusso $\Phi_{A\to B}$ di una quantità fisica trasportata nell'unità di tempo tra i due punti. Definiamo $V_{A/B}$ una

$$\bigcirc A \longrightarrow \bigcirc B$$

Figura 3.1

certa proprietà del nodo A/B, questa proprietà ne definisce lo stato. Possiamo quindi scrivere una sorta di legge di Ohm per la situazione descritta

$$\Phi_{A \to B} R = V_A - V_B$$

dove R è una proprietà del link (ad es. la portanza di una strada ma anche la probabilità di transizione). Osserviamo che è di notevole importanza la dimensione del link (L) in quanto se attraversiamo il link abbiamo un flusso Φ , di conseguenza la capacità del sistema di trasporto richiede ΦL di veicoli".

Figura 3.2

3.2 Esempi

Capitolo 4

Teoria del controllo

4.1 Approccio generale

La teoria del controllo è quella branca della fisica che studia come controllare i sistemi dinamici. L'obiettivo principale è quello di creare un controllo, ossia un modello/algoritmo, in grado di portare un sistema dinamico in un determinato stato dato uno stato iniziale (in input).

Definizione 4.1.1. Il modello è detto ottimale quando si è raggiunto un buon livello di stabilità, minimizzando i riratdi e gli errori.

Il dispositivo che gestisce il sistema dinamico è detto controllore e va selezionato accuratamente in base alle richieste del sistema da gestire. Formalmente il controllo viene immesso nel sistema attraverso una forzante che, aggiunta alla lagrangiana, permette lo studio e l'ottimizzazione del problema. Per maggiori informazioni sulla meccanica analitica è possibile consultare gli appunti delle lezioni al link https://github.com/Grufoony/Fisica_UNIBO/blob/main/Appunti_meccanica_analitica.pdf.

4.2 Esempi

4.2.1 Pendolo rovesciato

L'esempio più classico di sistema controllabile è dato dal pendolo rovesciato.

Figura 4.1: Pendolo rovesciato

Siano $x_C(t)$ la coordinata del controllore, $x_O(t)$ la coordinata del pendolo di lunghezza l e θ l'angolo formato da esso con la verticale. Utilizzando la meccanica lagrangiana:

$$\begin{cases} x_O = x_C + l \sin \theta \\ y_O = l \cos \theta \end{cases}$$
$$\begin{cases} \dot{x}_O = \dot{x}_C + l \dot{\theta} \cos \theta \\ \dot{y}_O = l \dot{\theta} \sin \theta \end{cases}$$

La lagrangiana del sistema si può scrivere come:

$$\mathcal{L} = \frac{m}{2} \left(\left(\dot{x}_C + l\dot{\theta}\cos\theta \right)^2 + l^2\dot{\theta}^2\sin^2\theta \right) - mgl\cos\theta \simeq \frac{m}{2} \left(l^2\dot{\theta}^2 + 2\dot{x}_C l\dot{\theta}\cos\theta \right) - mgl\cos\theta$$

alle piccole oscillazioni ($\theta \simeq 0$ e $mgl\cos\theta \simeq -mgl\frac{\theta^2}{2}$):

$$\mathcal{L}_{PO} = \frac{m}{2} \left(l^2 \dot{\theta}^2 + 2\dot{x}_C l \dot{\theta} \right) + mgl \frac{\theta^2}{2}$$

L'equazione del moto risulta infine:

$$\ddot{\theta} = \frac{g}{l}\theta - \frac{\ddot{x}_C}{l} \tag{4.1}$$

Riconosciuta la forzante, per semplicità si pone $\ddot{x}_C = \pm a(t)$ costante. La soluzione non è omogenea:

$$\theta(t) = \left(\theta_0 - \frac{a(t)}{g}\right) \cosh \omega t + \frac{\dot{\theta}_0}{\omega} \sinh \omega t + \frac{a(t)}{g}$$

Assumendo ora $\theta_0 \simeq 0$ e $\dot{\theta}_0 \neq 0$ e che il pendolo si stabilizzi in un tempo T si ha la soluzione stabile:

$$\theta(T) = C \cosh \omega T + C \sinh \omega T \simeq C e^{-\omega T}$$

4.2. ESEMPI 27

Si può ora ricavare la condizione richiesta:

$$C = \theta(T) = -\frac{\dot{\theta}(T)}{\omega} \tag{4.2}$$

Andando a importa si ottiene:

$$-\frac{a}{g}\cosh\omega T + \frac{\dot{\theta}(T)}{\omega}\sinh\omega T + \frac{a}{g} = \frac{a}{g}\sinh\omega T - \frac{\dot{\theta}(T)}{\omega}\cosh\omega T$$

Da cui si può ricavare il periodo di stabilità:

$$T = \frac{1}{\omega} \ln \frac{\frac{a}{g}}{\frac{a}{g} - \frac{\dot{\theta}(T)}{\omega}}$$
 (4.3)

Un'osservazione importante riguarda la condizione critica del sistema, ove esso non risulta più controllabile, che si ha quando $\dot{\theta}_0 = \frac{a\omega}{q}$.

4.2.2 Marriage Model/Modello relazionale

Si supponga ora di voler controllare una relazione con un'altra persona, che tipo di relazione conviene studiare? La scrittrice Anna Karenina sembra fornire una soluzione al problema, constatando che tutte le relazioni felici sono uguali ma ogni relazione infelice lo è a modo suo. Sia ora x(t) il grado di felicità nella relazione che, per semplicità si assume positivo $(x(t) \in \mathbb{R}^+)$ in accordo con l'ipotesi della Karenina. L'equazione che descrive la relazione sarà del tipo:

$$\dot{x} = -rx(t) + ac(t) \tag{4.4}$$

in cui riconosciamo la funzione $costo\ c(t)$ della relazione (ove per costo si intende uscire a cena, fare un regalo, ecc...), il parametro r (quanto la felicità tenda a diminuire) e il parametro a (amplificazione del costo). La relazione giungerà al termine una volta arrivati ad un valore minimo della felicità, che verrà denotato come x_m .

Per rafforzare il modello si introducono ora due potenziali:

- U(x), utility potential, il quale indica quanto funziona la coppia. Esso deve essere tale che U'(x) > 0 ma U''(x) < 0, in quanto troppa felicità tende a saturare la relazione;
- D(c), disutility potential, il quale tiene conto dello sforzo eseguito. Più il costo del mantenimento della relazione aumenta, più essa tende a fallire (non ne vale la pena). Ovviamente D(c) deve avere un minimo, dato che esiste uno sforzo considerato accettabile per mantenere la relazione;

Si può ora definire il funzionale di soddisfazione come:

$$W(c) = \int_0^\infty e^{-\lambda t} \left[U(x(t)) - D(c(t)) \right] dt$$

dove il coefficiente λ^{-1} rappresenta la scala di memoria del sistema. Per ottimizzare il problema si deve avere

$$\delta \dot{x} = -r\delta x + a\delta c$$

e quindi la variazione infinitesima del funzionale

$$\delta W(c) = \int_0^\infty e^{-\lambda t} \left[U'(x)' \delta x - D'(c) \delta c \right] dt = \int_0^\infty e^{-\lambda t} \left[U'(x)' \delta x - D'(c) \frac{\delta \dot{x} + r \delta x}{a} \right] dt$$

Integrando per parti:

$$-\int e^{-\lambda t} D'(c) \frac{\delta \dot{x}}{a} dt = -\left[e^{-\lambda t} D'(c) \frac{\delta x}{a} \right]_0^{\infty} + \int_0^{\infty} \frac{d}{dt} \left[\frac{e^{-\lambda t} D'(c) \delta x}{a} \right] dt$$

e quindi

$$\delta W = \int_0^\infty \left\{ e^{-\lambda t} U'(x) + \frac{d}{dt} \left[\frac{e^{-\lambda t} D'(c)}{a} \right] - \frac{e^{-\lambda t} D'(c) r}{a} \right\} \delta x dt$$

Essendo δx arbitrario

$$D''(c(t))\frac{dc}{dt} = (r+\lambda)D'(c) - aU'(x)$$

Si assumano ora, per esempio, i seguenti potenziali

$$\begin{cases} U(x) = U_{\infty} (1 - e^{-\alpha x}) \\ D(c) = c (c - 2c_0) \end{cases}$$
 (4.5)

che forniscono il seguente sistema (equilibrio instabile):

$$\begin{cases} \dot{x} = -rx + ac \\ \dot{c} = (r+\lambda)(c-c_0) - \alpha \frac{e^{-\alpha x}}{2} \end{cases}$$
(4.6)

Figura 4.2: Orbite relazionali.

4.2. ESEMPI 29

Le orbite risultanti sono riportate in Fig.(4.2), dove si possono distinguere due strategie:

- STRATEGIA A: si segue un'orbita γ_A dai punti $A \to A'$ poi si fa una decrescita discontinua lungo una c(t) da $A' \to A$. Sostanzialmente si spende molto per la relazione (nei termini visti in precedenza) poi, una volta divenuto intollerabile il costo, si fa una bella litigata e si ricomincia il ciclo;
- STRATEGIA B: si segue un'orbita γ_B dai punti $B \to B'$ poi si fa una crescita discontinua lungo una c(t) da $B' \to B$. In questo caso si lascia andare la relazione senza apportare sufficiente sforzo poi, ad un passo dalla rottura, si rimedia il tutto con un gesto importante (alto costo) per ristabilire l'orbita.

In entrambi i casi bisogna, tuttavia, prestare parecchia attenzione una volta raggiunti i minimi: se lungo la γ_A si fa una litigata troppo pesante o lungo la γ_B si trascura troppo la relazione, si rischia di finire fuori orbita (quindi fuori equilibrio) e far così fallire la relazione (il che è no buono, n.d.r.).

Capitolo 5

Altre applicazioni

- 5.1 Teoria
- 5.2 Esempi