Measured-Bundle Projection Framework (MBPF)

Abstract

We develop a framework in which a nonnegative density $\lambda \in L^1(B)$ on a two-dimensional spindle–torus base B weights local fiber data in a measured bundle $\pi: E \to B$. A transport kernel K projects fiber functions to functions on a target space, with a Gaussian factor enforcing locality around an embedding $X: B \to \mathbb{R}^3$. On a periodic T^3 domain, we prove stationarity of the induced covariance and derive a spectral transfer law predicting a turnover at the fundamental mode and a Gaussian roll-off. We further incorporate a U(1) connection from the Hopf fibration, equipping the transport with a gauge-consistent phase and quantized invariants.

1 Introduction

We formulate a mathematically explicit version in which data resides on a two-dimensional spindle—torus base B and is transported to functions on a three-dimensional space by a thread-weighted projection (TWP).

The central element is a measured bundle $\pi: E \to B$ whose fibers store local data and a nonnegative density λ , called threads, that weights contributions from base points. A locality-preserving transport kernel K (minimal form: a Gaussian centered on the embedded base $X(B) \subset \mathbb{R}^3$) pushes forward fiber functions to induced functions Φ .

On a toroidal domain T^3 we prove that, under normalization, the induced covariance is stationary (depends only on separations) and the power spectrum obeys a transfer law exhibiting a turnover at the fundamental mode and Gaussian roll-off at high k. We then introduce a Hopf lift: a U(1) connection inherited from the Hopf fibration induces a gauge-consistent phase in the transport, yielding quantized invariants.

2 Geometry of the base and measured bundle

2.1 Spindle-torus base and embedding

Definition 1 (Spindle torus). For radii R, r > 0 with r > R, the spindle torus

$$\mathcal{T}_{\rm sp}(R,r) \subset \mathbb{R}^3$$

is the surface parametrized by

$$(x, y, z) = ((R + r\cos u)\cos v, (R + r\cos u)\sin v, r\sin u), \quad u, v \in [0, 2\pi).$$

Topologically $\mathcal{T}_{sp}(R,r) \cong T^2$, though it self-intersects in \mathbb{R}^3 .

Let B be a spindle–torus surface embedded in \mathbb{R}^3 by a smooth map $X : B \to \mathbb{R}^3$. We use only that B is compact, orientable away from the self-intersection locus, and admits a Borel measure ν_B .

2.2 Measured fiber bundle and threads

Definition 2 (Measured bundle and threads). Let $\pi: E \to B$ be a measurable fiber bundle with typical fiber F and fiber measure ν_F . We assume $\nu_F(F)$ is finite and normalize so that $\nu_F(F) = 1$. A thread density is a function $\lambda \in L^1_+(B,\nu_B) \cap L^2(B,\nu_B)$, $\lambda \geq 0$, with normalization

$$\int_{B} \lambda \, d\nu_B = \Lambda > 0.$$

A fiber function is a measurable map $\varphi: E \to \mathbb{C}$ with finite second moment, and we write $d\nu_E := d\nu_F d\nu_B$.

3 Thread-weighted projection (TWP) and minimal locality

3.1 Transport kernel

Let $x \in M \subset \mathbb{R}^3$ denote a target point. We define a transport kernel

$$K(x|b, f) = G_{\Sigma(b)}(x - X(b))U(b, f; x),$$

where G_{Σ} is a Gaussian with covariance $\Sigma(b)$ positive-definite, and U is a bounded modulation factor.

Definition 3 (Thread-weighted projection). Given λ, φ, K , define

$$\Phi(x) = \int_{B} \int_{F} K(x|b, f) \varphi(b, f) \lambda(b) \, d\nu_{F}(f) d\nu_{B}(b).$$

Proposition 1 (Well-posedness). Assume $U \in L^{\infty}$ and $\sup_b \|G_{\Sigma(b)}\|_{L^1(\mathbb{R}^3)} < \infty$. If $\varphi \in L^2(E, \nu_E)$ and $\lambda \in L^1(B) \cap L^2(B)$, then $\Phi \in L^2(M)$ and the map $(\varphi, \lambda) \mapsto \Phi$ is continuous.

3.2 Normalization on T^3

On $M=T^3=[0,L)^3$ we periodize G_Σ and impose

$$\int_{T^3} G_{\Sigma}^{(T)}(\chi) d^3 \chi = 1.$$

This ensures stationarity of the induced covariance.

4 Stationarity and the spectral transfer law on T^3

Proposition 2 (Stationarity). With the periodized kernel and base covariance invariant under isometries of B, the induced covariance $C_{\Phi}(x,y)$ depends only on $x-y \in T^3$.

Proposition 3 (Spectral transfer law). With isotropic $\Sigma = \sigma^2 I$, one has

$$P_{\Phi}(k) = |\hat{G}_{\sigma}^{(T)}(k)|^2 P_{\psi}(k), \quad \hat{G}_{\sigma}^{(T)}(k) = e^{-\frac{1}{2}\sigma^2 ||k||^2},$$

where P_{ψ} is the spectrum of the fiber-aggregated source.

5 Anisotropic kernels and director fields

Proposition 4 (Anisotropic spectral imprint). Assume n is C^1 and $\|\nabla n\|$ is uniformly small on the support of G_{Σ} . Let $E_B[\cdot]$ denote averaging over B with weight $\lambda d\nu_B$. Then

$$P_{\Phi}(k) \approx \exp\left(-\frac{1}{2}|k|^2[\sigma_{\perp}^2 + (\sigma_{\parallel}^2 - \sigma_{\perp}^2)E_B[(\hat{k} \cdot n)^2]]\right)P_{\psi}(k).$$

6 Hopf lift: U(1) connection and invariants

Let $\pi_H: S^3 \to S^2$ be the Hopf map with connection A and curvature F = dA. Pull back along $h: B \to S^2$ to obtain A_h . Quantized invariants $\frac{1}{2\pi} \int_B h^* F \in \mathbb{Z}$ are defined only on orientable patches of B away from self-intersection.

Definition 4 (Phase-modulated transport). Let N be a tubular neighborhood of X(B) and ρ : $N \to B$ a smooth retraction. Set $A_{\text{ext}} := \rho^* A_h$. For x near X(B) choose the radial retraction path $\gamma(b,x) \subset N$ from X(b) to x and define

$$\Theta(b;x) := \int_{\gamma(b,x)} A_{\text{ext}}, \qquad U(b,f;x) := \exp\{iq\Theta(b;x)\},$$

with $q \in \mathbb{Z}$. Radial paths are contractible in N, so Θ is well defined up to gauge; observables depend only on F_h .

7 Vector-valued outputs and helicity

Proposition 5 (Helical decomposition). For isotropic kernels, the vector covariance decomposes as

$$\langle \hat{\Phi}_i(k)\hat{\Phi}_j(k)\rangle = P_S(k)\Pi_{ij}^{(S)}(k) + iP_H(k)\Pi_{ij}^{(H)}(k).$$

When $q \neq 0$ and $F_h \not\equiv 0$, $P_H(k) \neq 0$. If anisotropy is present, mixing corrections occur; here we restrict to isotropic analysis.

8 Identifiability and inverse problems

Proposition 6 (Identifiability (informal)). If $DF(\lambda_0)$ has a bounded inverse on the chosen statistic space (e.g. band-limited L^2), then identifiability holds up to noise. A rigorous statement requires fixing the function class and noise model.