2.4.27

Sai Sreevallabh - EE25BTECH11031

September 7, 2025

Question

Three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} satisfy the condition $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$. Evaluate the quantity $\mu = \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$. If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$ and $|\mathbf{c}| = 2$.

Given:

$$a + b + c = 0$$
 and $||a|| = 3$, $||b|| = 4$, $||c|| = 2$ (1)

To find

$$\mu = \mathbf{a}^{\mathsf{T}} \mathbf{b} + \mathbf{b}^{\mathsf{T}} \mathbf{c} + \mathbf{c}^{\mathsf{T}} \mathbf{a} \tag{2}$$

Multiplying $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ with \mathbf{a}^{\top} on both sides

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{a}^{\mathsf{T}}\mathbf{c} = 0 \tag{3}$$

Similarly, upon multiplying with \boldsymbol{b}^{\top} and \boldsymbol{c}^{\top} , we get

$$\mathbf{b}^{\top} \mathbf{a} + \mathbf{b}^{\top} \mathbf{b} + \mathbf{b}^{\top} \mathbf{c} = 0 \tag{4}$$

$$\mathbf{c}^{\mathsf{T}}\mathbf{a} + \mathbf{c}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} = 0 \tag{5}$$

Adding the above three equations,

$$2\left(\mathbf{a}^{\top}\mathbf{b} + \mathbf{b}^{\top}\mathbf{c} + \mathbf{c}^{\top}\mathbf{a}\right) + \mathbf{a}^{\top}\mathbf{a} + \mathbf{b}^{\top}\mathbf{b} + \mathbf{c}^{\top}\mathbf{c} = 0$$
 (6)

$$\implies 2\mu + \mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} = 0 \tag{7}$$

By using $\mathbf{x}^{\top}\mathbf{x} = \|\mathbf{x}\|^2$ we get

$$2\mu + (\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + \|\mathbf{c}\|^2) = 0$$
 (8)

Substituting the values of $\|\mathbf{a}\|$, $\|\mathbf{b}\|$, $\|\mathbf{c}\|$ we get

$$\mu = \frac{-29}{2} \tag{9}$$

 \therefore The value of μ is $\frac{-29}{2}$.