DP 1 loop graphs

Action Functional:

$$S_{R} = \psi^{\dagger}(-Z_{1}\partial_{t} - Z_{4}(\mathbf{v} \cdot \nabla) - aZ_{5}(\nabla \cdot \mathbf{v}) + Z_{2}D\nabla^{2} - Z_{3}D\tau)\psi + \frac{D\lambda}{2} \left[Z_{6}(\psi^{\dagger})^{2}\psi - Z_{7}\psi^{\dagger}\psi^{2}\right] + Z_{8}\frac{u_{2}}{2D}\psi^{\dagger}\psi\mathbf{v}^{2} - \frac{1}{2}\mathbf{v}D_{v}^{-1}\mathbf{v}.$$
(1)

Green function in the model

$$\langle \psi^{\dagger} \psi \rangle_{1-ir} = i\omega Z_1 - Dp^2 Z_2 - D\tau Z_3 + \underbrace{\qquad \qquad } + \underbrace{\qquad \qquad }$$

$$+ \underbrace{\qquad \qquad } + \underbrace{\qquad \qquad } + \underbrace{\qquad \qquad } + \underbrace{\qquad \qquad }$$

$$(2)$$

$$\langle \psi^{\dagger} \psi^{\dagger} \psi \rangle_{1-ir} = D\lambda Z_6 + 2 + + + + 2 + 2 + + (4)$$

p - momentum of the ψ and q - momentum of the ${\bf v}$ in vertex $\psi^\dagger \psi {\bf v}$

 \bullet effective charge g_2

$$g_2 \equiv \lambda^2 \tag{6}$$

 \bullet Redefinition of charges g_1 and g_2

$$\frac{g_1}{16\pi^2} \to g_1 \qquad \qquad \frac{g_2}{16\pi^2} \to g_2$$

ullet

$$d = 4 - \epsilon$$

•

$$I_{\epsilon} = \frac{S_d}{(2\pi)^d} m^{\epsilon} \quad I_y = \frac{S_d}{(2\pi)^d} m^{-y} \tag{7}$$

$$- \frac{g_1 D p^2 I_y}{2d(1+u_1)} \frac{1}{y} \left[d - 1 + \alpha - \frac{2\alpha}{1+u_1} + \frac{\alpha a(1-a)}{1+u_1} \left(\frac{4}{1+u_1} - d \right) \right]$$

$$- i\omega \frac{g_1 \alpha a(1-a) I_y}{2(1+u_1)^2} \frac{1}{y} + \tau D \frac{g_1 \alpha a(1-a) I_y}{2(1+u_1)^2} \frac{1}{y}$$

$$= \frac{I_{\epsilon}}{2D} \left[\frac{i\omega}{2D} - \tau - p^2 \frac{d-2}{2d} \right] \frac{1}{\epsilon}$$

$$= \frac{g_1 D^2 (d-1+\alpha)}{2} \frac{S_d}{(2\pi)^d} \int_0^{\sqrt{\tau} \Lambda} dk \quad k^{2-y-1}$$

$$=\frac{-iI_{\epsilon}}{4dD^{2}}\frac{1}{\epsilon}[2p_{j}+q_{j}(ad+3-d)]$$

$$=\frac{ig_{1}\alpha I_{y}}{2(1+u_{1})^{2}}\frac{1}{y}\left[\left(p_{j}+aq_{j}\right)\left(\frac{1}{d}+a-a^{2}\right)-\frac{2a(1-a)}{(1+u_{1})d}(2p_{j}+q_{j})\right]$$

$$=-\frac{ip_{j}g_{1}DI_{y}}{2d(1+u_{1})}\frac{1}{y}\left[d-1+\alpha\left(1-\frac{2a}{1+u_{1}}\right)\right]$$

$$= -\frac{i(p_j + q_j)g_1DI_y}{2d(1 + u_1)} \frac{1}{y} \left[d - 1 + \alpha - \frac{2\alpha(1 - a)}{1 + u_1} \right]$$

$$= \frac{I_{\epsilon}}{4D^2} \frac{1}{\epsilon}$$

$$= \frac{\alpha g_1 I_y (1 - a)^2}{2(1 + u_1)} \frac{1}{y}$$

$$= -\frac{\alpha g_1 a (1-a) I_y}{2(1+u_1)^2} \frac{1}{y}$$

$$=\frac{I_{\epsilon}}{4D^2}\frac{1}{\epsilon}$$

$$= \frac{g_1 \alpha a^2 I_y}{2(1+u_1)} \frac{1}{y}$$

$$= -\frac{g_1 \alpha a (1-a) I_y}{2(1+u_1)^2} \frac{1}{y}$$

$$= -\frac{I_{\epsilon}\delta_{ij}}{8dD^3}\frac{1}{\epsilon}$$

$$= \frac{g_1 \alpha a (1 - a) I_y \delta_{ij}}{2d (1 + u_1)^3 D} \frac{1}{y}$$

$$= \frac{I_{\epsilon}\delta_{ij}}{4dD^3} \frac{1}{\epsilon}$$

$$=\frac{I_{\epsilon}\delta_{ij}}{4D^2}\frac{1}{\epsilon}$$

$$= -\frac{\alpha g_1 a (1-a) I_y \delta_{ij}}{2(1+u_1)^2} \frac{1}{y}$$

$$= -\frac{g_1 \alpha a \delta_{ij} I_y}{2d(1+u_1)^2} \frac{1}{y}$$

$$= -\frac{\alpha g_1 I_y (1-a) \delta_{ij}}{2d(1+u_1)^2} \frac{1}{y}$$

$$= \frac{g_1 D \delta_{ij} I_y}{2d(1+u_1)} \frac{1}{y} \left(d-1+\alpha\right)$$

$$\frac{\psi^{\dagger}\psi\mathbf{v}^{2}}{21.}$$

$$\psi^{\dagger}\psi\mathbf{v}^{2}$$

Propagators

$$\frac{}{2^*\Psi}$$
 ψ^+

$$= \frac{1}{-i\omega + D(k^2 + \tau)}$$

$$\frac{1}{2^*\psi^+}$$
 ψ

$$= \tfrac{1}{i\omega + D(k^2 + \tau)}$$

$$_{2^{*}}v_{i}$$

$$\mathbf{V}_{j} = \frac{g_{1}u_{1}D^{3}k^{4-d-y-\eta}}{\omega^{2} + u_{1}^{2}D^{2}(k^{2-\eta})^{2}} (P_{ij}^{k} + \alpha Q_{ij}^{k})$$

Vertices

$$2^* = -D\lambda$$

$$2^* = D\lambda$$

$$2^* = -ip_j - iaq_j$$

$$10 2^* = \frac{u_2}{D} \delta_{ij}$$

$egin{bmatrix} 1.\ \psi^\dagger\psi \end{bmatrix}$	Vertex factor: 1 Symmetry coefficient:	1
$\begin{bmatrix} 2.\\ \psi^\dagger \psi \end{bmatrix}$	Vertex factor: $-D^2\lambda^2$ Symmetry coefficient:	$\frac{1}{2}$
$\begin{bmatrix} 3. \\ \psi^{\dagger} \psi \end{bmatrix}$	Vertex factor: $\frac{u_2}{D}\delta_{ij}$ Symmetry coefficient:	$\frac{1}{2}$
$egin{array}{c} 4.\ \psi^\dagger\psi\mathbf{v} \end{array}$	Vertex factor: $-D^2\lambda^2$ Symmetry coefficient:	1
$5.$ $\psi^{\dagger}\psi\mathbf{v}$	Vertex factor: 1 Symmetry coefficient:	1
$6.$ $\psi^{\dagger}\psi\mathbf{v}$	Vertex factor: $\frac{u_2}{D}\delta_{ij}$ Symmetry coefficient:	1
$7.\ \psi^\dagger\psi{f v}$	Vertex factor: $\frac{u_2}{D}\delta_{ij}$ Symmetry coefficient:	1
$8. \atop (\psi^{\dagger})^2 \psi$	Vertex factor: $-D^3\lambda^3$ Symmetry coefficient:	1
$\left[\begin{array}{c}9.\\(\psi^{\dagger})^2\psi\end{array}\right]$	Vertex factor: $D\lambda$ Symmetry coefficient:	1
$ \begin{array}{ c } \hline 10. \\ (\psi^{\dagger})^2 \psi \end{array} $	Vertex factor: $D\lambda$ Symmetry coefficient:	1
$egin{bmatrix} 11.\ \psi^\dagger\psi^2 \end{bmatrix}$	Vertex factor: $(D\lambda)^3$ Symmetry coefficient:	1

12. $\psi^{\dagger}\psi^{2}$

Vertex factor: $-D\lambda$

Symmetry coefficient: 1

13. $\psi^{\dagger}\psi^2$

Vertex factor: $-D\lambda$

Symmetry coefficient: 1

14. $\psi^{\dagger}\psi\mathbf{v}^{2}$

Vertex factor: $-D^2\lambda^2$

Symmetry coefficient: 1

15. $\psi^{\dagger}\psi\mathbf{v}^2$

Vertex factor: 1

Symmetry coefficient:

1

16. $\psi^{\dagger}\psi\mathbf{v}^{2}$

Vertex factor: $-D^2\lambda^2$

Symmetry coefficient: 1

17. $\psi^{\dagger}\psi\mathbf{v}^{2}$

Vertex factor: $-Du_2\lambda^2\delta_{ij}$

Symmetry coefficient: 1