Dominik Mańkowski

KIEROWANIE ORAZ MAPOWANIE ETYKIET

LEGENDA

IP = Internet Protocol

MPLS = MultiProtocol Label Switching

LSR = Label Switching Router

LER = Label Edge Router

LSP = Label Switched Path

Ingress LER = pierwszy router na LSP

Egress LER = ostatni router na LSP

FEC = Forwarding Equivalence Class = klasa, do której należy pakiet; lokalne ID tunelu, do którego zostanie skierowany pakiet; FEC może być równe np. adresowi źródłowemu, docelowemu pakietu, albo prefixie któregoś z nich; równie dobrze może być to port wejściowy routera, albo co innego...;

MPLS-FIB = MPLS-Forwarding Information Base = tabela mapująca np. Prefix adresu docelowego <-> FEC (zamiast prefixu adresu docelowego może być coś innego, np. Pełny adres docelowy; wtedy każde FEC jest przypisane tylko do jednego adresu; może być to też port wejściowy, adres źródłowy i inne)

IP-FIB = tabela routingu po IP (czyli najzwyczajny w świecie Longest Matching Prefix)

NHLFE = Next Hop Label Forwarding Entry = zawiera informacje takie jak (ID, next hop info = outPort, outLabel, operation = pop/push/swap, ptr_to_next_ID)

FTN = FEC To NHLFE = tablica występująca tylko w ingress LER; dzięki niej możemy dla danego FEC odnaleźć odpowiedni zbiór wskaźników do wpisów NHLFE

ILM = Incoming Label Map = słownik (incPort,incLabel, poppedLabels) do zbioru wskaźników do wpisów NHLFE

- 1) Wchodzi goły pakiet IP do sieci MPLS
- 2) Ingress LER przegląda tablicę MPLS-FIB, aby dowiedzieć się, jaka jest FEC pakietu. Ta tabela wygląda w ten sposób: [parametr_pakietu, FEC], gdzie parametrem pakietu może być np. Adres docelowy, adres źródłowy, prefix któregoś z tych adresów, port wejściowy routera lub inne. Jeżeli FEC == 0, to routuj po IP, czyli idź do tabeli IP-FIB i tam znajdź port wyjściowy dla pakietu. Jeśli nie znaleziono FEC odpowiadające takiemu parametrowi pakietu, to odrzuć pakiet. A jeśli FEC != 0, to...

	MPLS-FIB			IP-FIB	
Router LER	destAddress	FEC	Router LER	destAddress	outPort
R1	172.16.222.34	0	R1	172.16.222.34	20300
R1	172.16.222.33	0	R1	172.16.222.33	20400
R1	188.88.141.12	31	R3	188.88.141.12	11111
R1	119.44.55.200	41	R5	83.139.22.49	23184
R1	83.139.22.49	51	R6	119.44.55.200	5432

3) Ingress LER przegląda tablicę FTN, aby odnaleźć odpowiedni zbiór wskaźników do wpisów NHLFE dla znalezionego wcześniej FEC. Z tego zbioru musi wybrać jeden, konkretny NHLFE (w projekcie zawsze będzie tylko 1 wpis NHLFE, ale np. jakbyśmy chcieli zrobić LSP Multicast, które może służyć np. do load-balancingu, to wtedy potrzebowaliśmy tych wpisów wiele).

	FTN		
Router LER	FEC	NHLFE_ID	
R1	31	1	
R1	41	2	
R1	51	3	
R3	13	31	
R3	43	32	
R3	53	33	

4) Mamy więc wskaźnik do jakiegoś wpisu NHLFE, idziemy tam, stamtąd patrzymy na akcję - może to być tylko push (bo mamy goły pakiet). Czyli przykładowo, na rysunku u dołu idziemy do NHLFE_ID=1, operacja to PUSH (mamy tylko 3 operacje: POP, PUSH i SWAP) - wsadzamy etykietę 17 na szczyt stosu i patrzymy na nextNHLFE_ID - jakieś jest, więc tam idziemy (a zatem outPort to NULL, bo i tak z niego teraz nie skorzystamy). Pod ID=5 mamy akcję dołóż etykietę 44 na stos etykiet i wyślij pakiet portem 13997

		NHLFE			
Router	NHLFE_ID	action	outLabel	outPort	nextID
R1	1	PUSH	17	NULL	5
R1	2	PUSH	66	13999	NULL
R1	3	PUSH	22	NULL	5
R1	4	POP	NULL	NULL	NULL
R1	5	PUSH	44	13997	NULL

- 5) Trzeba pamiętać, że etykieta na najniższym poziomie (tj. ta na samym dole stosu, poziom 1) ma ustawiony bit "s" bottom of the stack na 1. W każdej etykiecie na wyższym poziomie na 0. Parametr ten indykuje, kiedy router ma skończyć zczytywać bity należące do tego pakietu [bo cały pakiet wygląda tak: część IP, etykieta na poziomie "m", "m-1"...,"1"]
- 6) ...oraz należy pamiętać, że pierwsze 16 (licząc od 0) etykiet jest zarezerwowanych.
- 7) I taki pakiet MPLS-owy idzie do routera LSR.

8) LSR to odbiera, sprawdza w tablicy ILM jaki jest wskaźnik do wpisu NHLFE (a właściwie to zbiór wskaźników, ale znowu, wybierzemy i tak tylko jeden). Samym kluczem w tym słowniku jest konkatenacja [incPort, incLabel, poppedLabelStack], a wartością NHLFE_ID. Wyobraźmy sobie taką sytuację:

Przychodzi pakiet z portu 100 w tunelu o etykiecie 50, w którym zagnieżdżony jest tunel o etykiecie 40, w którym zagnieżdżony jest tunel o etykiecie 30. I jednocześnie przychodzi pakiet - również do portu 100 - o etykiecie 30 (tj. niezagnieżdżonej nigdzie). I powiedzmy, że zdejmiemy te dwie etykiety 50 i 40. Jak teraz odróżnić te 30? Trzeba patrzeć na to, co zostało zdjęte. Czyli jak przyjdzie tunel z etykietą 50, to najpierw znajdzie mu wpis w ILM: [100, 50, -, 66], czyli port wejściowy 100, etykieta wejściowa 50, brak zdjętych etykiet i NHLFE_ID to 66. I pod tym NHLFE_ID=66 powiedzmy, że będzie tylko POP, nic więcej - czyli mamy zakończenie tunelu. Nie możemy dać w tym NHLFE wpisu next_NHLFE_ID, ponieważ jeśli by była sytuacja, że obok tunelu 40 idzie 41, i jeden chciałby iść w prawo, a drugi w lewo - to mamy problem.

No to musimy wrócić zatem do ILM. I tutaj znajdujemy wpis:

[100, 40, 50, 66] - i znowu zdejmujemy jedną etykietę. I znowu idziemy do ILM:

[100, 30, 50-40, 67] - i ten wpis odróżniamy od innych "30" na podstawie tego, że zdjęliśmy z niego dwie etykiety. I idziemy do NHLFE_ID=67, gdzie będzie jakiś SWAP, a tam może być już next_NHLFE_ID=NULL, czyli będzie jakiś outPort i to wypluwamy, albo outPort=NULL i next_NHLFE_ID = np. 68, gdzie będzie np. PUSH i outPort, albo nextNHLFE_ID, itd.

	ILM			
Router	incPort	incLabel	poppedLabelStack	NHLFE_ID
R1	13999	66	-	4
R1	13997	17	-	4
R1	13997	22	-	4
R2	1025	44	-	21
R2	1026	93	-	22
R2	1026	28	-	23
R3	44444	58	-	34
R3	44444	17	58	34
R3	44444	22	58	35
Do	0404	4.4		24

- 9) Jeśli LSR nie znajdzie takiego klucza w ILM, to pakiet zostaje odrzucony (*dropped*) nie można routować po IP, bo by mogła powstać pętla (chyba, że jesteśmy w stanie zapewnić, że nie powstanie) ale domyślnie odrzucamy. Jeśli jednak by pętla powstała, to wówczas, po krótkim czasie, wartość TTL spadnie do 0 i wtedy pakiet zostanie definitywnie odrzucony (i jeszcze router będzie mógł zajrzeć w głąb nagłówka IP pakietu, aby ewentualnie wysłać wiadomość o błędzie ICMP do adresu źródłowego).
- 10) I wysyłamy ten pakiet dalej LSP.
- 11) Pakiet dochodzi do egress LER, ten sprawdza w ILM co ma zrobić. I tam znajduje wpis NHLFE, który będzie miał akcję POP (i całą resztę równą NULL) i będziemy mieli goły pakiet IP teraz.
- 12) Patrzymy więc do IP-FIB, znajdujemy port wyjściowy, tyle [nie idziemy do MPLS-FIB].