Formulario di Modelli di Calcolo e Algoritmi Avanzati

Paolo Speziali

Giugno 2022

1 Grammatiche

Tipi di grammatiche

Tipo 0

Detta anche **non limitata**, ammette **qualunque tipo** di produzione, anche quelle che accorciano le forme di frase, come ad esempio quelle che si ottengono da ε -produzioni (es. $aA \rightarrow b \mid \varepsilon$).

Tipo 1

Detta anche **context-sensitive**, ammette **qualunque tipo** di produzione che **non accorci** le forme di frase (es. $aA \rightarrow Bb$).

Tipo 2

Detta anche **context-free**, ammette produzioni in cui il termine sinistro è formato da un solo non terminale e la forma di frase non si accorcia mai (es. $A \rightarrow aBb$).

Tipo 3

Detta anche **regolare**, ammette produzioni in cui il termine sinistro è formato da un solo non terminale e il termine destro o da un solo terminale o da un terminale seguito da un non terminale (es. $A \rightarrow b \mid aB$).

2 Macchine a Registri

Operandi ed etichette

Ogni operando <op> può avere una delle forme seguenti:

- **n**: <op> indica l'intero memorizzato nel registro n;
- (n): <op> indica l'intero memorizzato nel registro indirizzato dal registro n;
- #n: <op> indica il numero n.

Ogni etichetta $\langle et \rangle$ ha la forma \mathbf{n} , ed indica il numero intero n.

Istruzioni di trasferimento

- LOAD <op> (R[0] := <op>);
- STORE <op> (R[<op>] := R[0]).

Istruzioni aritmetiche

- ADD < Op> (R[0] := R[0] + < op>);
- **SUB** <op> (R[0] := R[0] <op>);
- MULT <op> (R[0] := R[0] * <op>);
- **DIV** <op> (R[0] := R[0] / <op>).

Istruzioni di I/O

- **READ** <op> (R[<op>] := IN);
- **WRITE** <op> (OUT := <op>).

Istruzioni di salto e di controllo

- · JUMP <et> (CI := <et>);
- **JGTZ** <et> (if (R[0] > 0) then CI := <et> else CI := CI + 1);
- JZERO <et> (if (R[0] = 0) then CI := <et>
 else CI := CI + 1):
- HALT (fine, il calcolo si arresta).

3 Linguaggi

Pumping Lemma per L. Regolari

Se L è un linguaggio regolare allora $\exists n > 0$ tale che $\forall z \in L \text{ e } |z| \geq n$, si ha che $\exists u, v, w$ tali che:

- 1. z = uvw
- 2. $|uv| \leq n$
- 3. $|v| \ge 1$
- 4. $uv^iw \in L, \forall i \geq 0$

Da Gram. Reg. a Esp. Reg.

Dal sistema di equazioni lineari si ricava una espressione regolare applicando le due tecniche sequenti ripetutamente:

- **Sostituzione**: si può sostituire un simbolo non terminale con una espressione equivalente (es. $A \, aB + b$, $B = cA \Rightarrow = acA + b$)
- Eliminazione della ricorsione: si può sostituire la prima equazione con la seconda

$$A = \alpha_1 A + \alpha_2 A + ... + \alpha_n A + \beta_1 + \beta_2 + ... + \beta_n$$

$$A = (\alpha_1 + \alpha_2 + ... + \alpha_n)^* (\beta_1 + \beta_2 + ... + \beta_n)$$

Forma ridotta

Una grammatica G CF è in forma ridotta se:

- G non contiene ε-produzioni se non sull'assioma, ed in tal caso l'assioma non compare a destra di nessuna produzione;
- G non contiene simboli inutili, cioè non fecondi o non generabili;
- G non contiene produzioni unitarie (cioè del tipo $A \rightarrow B$).

Forma normale di Greibach (GNF)

Una grammatica G CF è in GNF se tutte le sue produzioni sono del tipo $A \to a\beta$, dove β è una sequenza (eventualmente vuota) di non terminali e a è un simbolo terminale.

Forma normale di Chomsky (CNF)

Una grammatica G CF è in CNF se tutte le sue produzioni sono del tipo $A \to BC$ o $A \to a$.

Per arrivarci si porta G in forma ridotta e si sostituisce ogni terminale a con un non terminale X_a in tutte le produzioni in cui compare a ed si introduce la produzione $X_a \rightarrow a$ (la forma ottenuta a questo punto si chiama **quasi CFN**).

Infine si sotituisce ricorsivamente ogni produzione del tipo:

 $A \to BC\alpha$ con le seguenti: $A \to BD$, $D \to C\alpha$ dove D è un nuovo non terminale.

Pumping Lemma per L CF

Se L è un linguaggio CF allora $\exists n > 0$ tale che $\forall z \in L \text{ e } |z| \geq n$, si ha che $\exists u, v, w, x, y$ tali che:

- 1. z = uvwxy
- $2. |vwx| \leq n$
- 3. $|vx| \ge 1$
- 4. $uv^iwx^iy \in L, \forall i \geq 0$

4 Trattabilità

Problemi in NP

Dimostrare che un problema B appartiene ad NP:

- 1. Definire in cosa consiste l'insieme *S* delle **soluzioni candidate** di *B* e quale è la proprietà che ogni soluzione candidata deve possedere per essere una soluzione effettiva;
- 2. Definire uno **schema di codifica** delle soluzioni candidate di *B*;
- 3. Mostrare che le codifiche delle soluzioni candidate hanno **taglia polinomiale** nell'input;
- Definire un algoritmo deterministico che verifica in tempo polinomiale se una data soluzione candidata rispetta la proprietà richiesta.

5 Complessità

Tipologie di problemi

Per definire le varie tipologie di problemi useremo degli esempi che partono dal concetto di **Clique**.

Problemi di decisione

Un prob. di decisione P_D è definito da:

- Un insieme di istanze I_{P_D} ;
- Un predicato $\pi:I_{P_D} \to \{\text{vero, falso}\}.$

CLIQUE

Istanza: Grafo G, intero K>0 Predicato: Esiste una clique di G di dimensione \geq K?

Problemi di ricerca

Un prob. di decisione P_R è definito da:

- Un insieme di istanze I_{P_R} ;
- Un insieme di soluzioni candidate S_{P_R} ;
- Una proprietà di ammissibilità che deve valere per ogni soluzione di una data istanza.

RICERCA CLIQUE

Istanza: Grafo G, intero K>0 Soluzione candidata: Sottoinsieme V^{\prime} di vertici

Un algoritmo che lo risolve prende in input una istanza x e restituisce (se esiste) un elemento di

Sol(x) = { $y \in S_{P_R} : y$ rispetta la proprietà di ammissibilità }.

Tipologie di problemi

Ogni problema di ricerca P_R ha un problema di decisione associato P_D .

Problemi di enumerazione

Un prob. di decisione P_E è definito da:

- Un insieme di istanze I_{P_E} ;
- Un insieme di soluzioni candidate $S_{P_{\scriptscriptstyle F}}$;
- · Una proprietà di ammissibilità.

Un algoritmo che lo risolve prende in input una istanza x e restituisce la cardinalità dell'insieme Sol(x).

Problemi di ottimizzazione

Un prob. di decisione P_O è definito da:

- Un insieme di istanze I_{P_O} , un insieme di soluzioni candidate S_{P_O} , ed una proprietà di ammissibilità;
- Una funzione di misura $\mu:\,I_{P_O}\times S_{P_O}\,\to\,\mathbb{N} \text{ definita solo sulle coppie }(x,y)\text{ tali che }y\,\in\,Sol(x);$
- Un criterio di scelta $c \in \{MIN, MAX\}$:

Un algoritmo che lo risolve prende una istanza x e restituisce y tale che,

 $\forall z \in Sol(x)$,

 $m(x,y) \le m(x,z)$ se c = MIN e m(x,y) > m(x,z) se c = MAX.

MASSIMA CLIQUE

Istanza: Grafo $\,G\,$

Soluzione candidata: Insieme V^\prime di

Ammissibilità: V^\prime è una clique di G

Misura: |V'| Criterio: MAX

Complessità parametrica

Problema parametrizzato

Si tratta di un linguaggio $L \subseteq \Sigma^* \times \mathbb{N}$. Data un'istanza $(x,k) \in \Sigma^* \times \mathbb{N}$, $k \in \mathbb{N}$ il **parametro** del problema. L è detto Fixed-Parameter Tractable (**FPT**) se esiste una terna (A, f, c) dove:

- $f: \mathbb{N} \to \mathbb{N}$ è una funzione calcolabile;
- c è una costante:
- \cdot A è un algoritmo che decide se una data istanza (x,k) appartiene ad L in un tempo limitato superiormente da $f(k) \cdot |x|^c$.

L è detto Slice-Wise Polynomial (**XP**) se esiste una terna (A, f, q) dove:

- $f, q : \mathbb{N} \to \mathbb{N}$ sono due funzioni calcolabili;
- A è un algoritmo che decide se una data istanza (x,k) appartiene ad L in un tempo limitato superiormente da $f(k) \cdot |x|^{g(k)}$.

Kernelizzazione

Approccio sistematico allo studio di algoritmi di preprocessing che lavorano in tempo polinomiale. Sia $Q \subset \Sigma^* \times \mathbb{N}$ un problema parametrizzato, diciamo che due istanze (x,k) e (x',k') sono equivalenti se $(x,k) \in Q \Leftrightarrow (x',k') \in Q$. Una funzione $\Phi: \Sigma^* \times \mathbb{N} \to \Sigma^* \times \mathbb{N}$ è una **regola di riduzione** per Q se:

- Φ mappa ciascuna istanza (x,k) in una equivalente (x', k'), ovvero è **safe**;
- ullet Φ è calcolabile in tempo polinomiale nella dimensione di (x, k).

La **dimensione dell'output** di A è una funzione $size_A(k): \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ definita come segue: $size_A(k) = sup\{|x'| + k' : (x', k') = A(x, k), x \in \Sigma^*\}.$ Un algoritmo di kernelizzazione A per il problema Q è un algoritmo di preelaborazione tale che $size_A(k) < q(k)$, per una qualche funzione calcolabile $g: \mathbb{N} \to \mathbb{N}$. Se la funzione g è polinomiale (lineare) in k, allora diciamo che Q ammette un kernel polinomiale (lineare). Un problema parametrizzato Q è FPT se e solo se

ammette un algoritmo di kernelizzazione.

Matching

Dato un grafo bipartito $G = (X \cup Y, E)$, un **matching** di X in Y è un insieme $M \subseteq E$ di archi indipendenti tale che ciascun vertice di X è adiacente ad un arco di M

Per un qualsiasi sottoinsieme $C \subset X$, sia N(C)l'insieme di vertici in Y adiacenti ai vertici in C.

- I seguenti teoremi rappresentano strumenti fondamentali nell'ambito della kernelizzazione:
- · La dimensione minima di un vertex cover in un grafo bipartito è pari alla dimensione del massimo matching
- · Sia G un grafo bipartito. Allora G contiene un **matching** di X in Y se e solo se |N(C)| > |C| per ogni sottoinsieme $C \subseteq X$.
- Sia G un grafo bipartito. Possiamo trovare un matching di dimensione massima (e un vertex cover di dimensione minima) in PTIME.

Inoltre, in tempo polinomiale, possiamo trovare o un matching di X in Y, oppure un insieme minimale non vuoto $C \subseteq X$ tale che |N(C)| < |C|.

Crown Decomposition

Una crown decomposition di un grafo G = (V, E) è una partizione di V in tre insiemi (C, H, R) tale che:

- C è un indipendent set non vuoto;
- Nessun vertice di C è connesso a un vertice di R. ovvero **H separa C e R**;
- E contiene un matching di H in C.

almeno 3k + 1 vertici. Allora G contiene un **matching** di dimensione k+1 oppure una **crown** decomposition. Inoltre, una delle due strutture può essere calcolata in tempo polinomiale.

Teoremi di Robertson-Seymour

Un grafo H è un **minor** di G, denotato con $H \leq_M G$, se H può essere ottenuto da un sottografo di Gattraverso una serie di contrazioni di un arco (o con rimozione di un arco o un vertice).

Una famiglia di grafi F è **minor-closed**, se per ogni grafo $G \in F$ e per ogni minore H di G, abbiamo che $H \in F$.

 $\forall k$ fissato, la famiglia di grafi con vertex cover number al più k è minor-closed.

- 1. Qualsiasi famiglia infinita di grafi contiene due elementi tali che uno è un minore dell'altro. Per ogni fissata famiglia minor-closed F. esiste un insieme finito di grafi Forb(F), detta famiglia dei minimal forbidden minors, tale che qualsiasi grafo G appartiene a F se e solo se non esiste un minor di G che corrisponde (a meno di un isomorfismo) a un membro di Forb(F).
- 2. Esiste una funzione calcolabile f e un algoritmo A, tali che per una data coppia di grafi H = (V', E') e G = (V, E), A decide se $H \leq_M G$ in tempo $f(|H|) \cdot |V|^3$.
- 3. Sia F una famiglia di grafi minor-closed, esiste una costante c_F che dipende soltanto da F, tale che per ogni grafo G con n vertici, possiamo decidere se $G \in F$ in tempo al più $c_F \cdot n^3$.
- 4. Per ogni fissato k, esiste un algoritmo che risolve **VERTEX-COVER** in tempo $c_k \cdot n^3$ dove $c_k = f(k)$ per una qualche funzione calcolabile f.

L'ultimo teorema non ci dimostra che VERTEX-COVER è FPT, ci dice però che esiste una collezione di algoritmi FPT per il nostro problema, uno per ogni valore di k.

Un problema parametrizzato L è detto nonuniformly FPT se esiste una terna $((A_K)_{K\in\mathbb{N}}, f, c)$ dove:

- $f: \mathbb{N} \to \mathbb{N}$ è una funzione calcolabile;
- c è una costante:
- $(A_K)_{K\in\mathbb{N}}$ è una collezione di algoritmi, tale che $\forall k \in \mathbb{N}, A_k$ decide se una data istanza (x, k)appartiene ad L in un tempo limitato da $f(k) \cdot |x|^c$.

Treewidth

Se un grafo ha un valore di treewidth piccolo, allora possiamo applicare un approccio di programmazione dinamica simile a quello usato per gli alberi.

Una **tree decomposition** di G=(V,E) è una coppia $\tau=(T,\{X_t\}_{t\in T})$ tale che:

- T è un albero e ciascun nodo $t \in T$ è associato con un un insieme $X_t \subseteq V$ chiamato **bag**;
- $\bigcup_{t \in T} X_t = V$ (per ciascun vertice di G esiste almeno una bag che lo contiene);
- $\forall (u,v) \in E$, \exists un nodo $t \in T$ tale che $\{u,v\} \subseteq X_t$ (per ciascun arco di G esiste almeno una bag che contiene entrambi i suoi estremi);
- $\forall u \in V$, $T_u = \{t \in T : u \in X_t\}$ induce un sottoalbero connesso di T.

La **width** di $\tau = (T, \{X_t\}_{t \in T})$ è pari alla dimensione della bag più grande meno uno, ovvero: $width(\tau) = max_{t \in T}|X_t| - 1$.

La **treewidth** di un grafo G, denotata tw(G), è la più piccola width possibile per una sua tree decomposition.

Una tree decomposition τ di G è **nice** se le seguenti proprietà valgono, assumendo che T è radicato nel nodo r:

- $X_r = \emptyset$ e $X_l = \emptyset$ per ogni foglia l di T.
- Per ogni nodo interno t di T, vale una delle seguenti proprietà:
 - 1. **Introduce node**: t ha solo un figlio t' in T tale che $X_t = X_{t'} \bigcup \{v\}$ per un qualche vertice $v \notin X_{t'}$. Diciamo che v è introdotto in t.
- 2. Forget node: t ha solo un figlio t' in T tale che $X_t \bigcup \{w\} = X_{t'}$ per un qualche vertice $w \in X_{t'}$. Diciamo che w è dimenticato in t.
- 3. **Join node**: t ha solo due figli t_1 e t_1 in T tale che $X_t = X_{t_1} = X_{t_2}$.

Se un grafo G ammette una tree decomposition τ con width al più k, allora ammette anche una nice tree decomposition τ' con width al più k e tale che $|T'| \in O(k|V|)$.

Inoltre, τ' è calcolabile partendo da τ in tempo $O(k^2 \cdot max(|T|,|V|))$.

Path decomposition

Una tree decomposition $P=(P,X_{tt\in P})$ in cui P è un cammino, prende il nome di **path decomposition**.

La **width** di $P = (P, X_{tt \in P})$ è ancora pari alla dimensione della bag più grande meno uno, ovvero: $width(P) = max_{t \in P}|X_t| - 1$.

La **pathwidth** di un grafo G, denotata pw(G), è la più piccola width possibile per una sua path decomposition.

Per definizione, dato un qualsiasi grafo G, abbiamo che $tw(G) \leq pw(G)$.

Una **nice path decomposition** può essere definita similmente a una nice tree decomposition, ignorando il concetto di join node.

Calcolo della treewidth

Sia G un grafo con n vertici e sia k un intero positivo. Esiste un algoritmo che, in tempo $O(k^{O(k^3)} \cdot n)$, o calcola una tree decomposition di G con width al più k, oppure termina concludendo che tw(G) > k.

W-hierarchy

Uno strumento utile al fine di identificare quali sono i problemi intrattabili a parametro fissato (se quindi ammettono algoritmi FPT) è la **W-hierarchy**. Siano A,B due problemi parametrizzati. Una riduzione parametrizzata da A a B è un algoritmo che, per ogni data istanza (x,k) di A, fornisce in output un'istanza (x',k') di B tale che:

- 1. $(x,k) \in A$ se e solo se $(x',k') \in B$, ovvero le due istanze sono equivalenti;
- 2. $k' \leq g(k)$, dove g è una qualche funzione;
- 3. (x', k') è calcolata in tempo $f(k) \cdot |x|^{O(1)}$, dove f è una qualche funzione calcolabile.

Se esiste una riduzione parametrizzata da A a B, e B è un problema FPT, allora A è un problema FPT. Se ne esiste un'altra B a C, altro problema parametrizzato, allora esiste una riduzione parametrizzata da A a C.

Circuiti Booleani

Un **circuito booleano** è un grafo diretto aciclico dove ogni nodo v è etichettato come segue:

- v è un nodo di **input** se il suo indegree è 0;
- v è un nodo di **negazione** se il suo indegree è 1;
- v è un nodo di and o di or se il suo indegree è almeno 2

Inoltre esiste esattamente un nodo con outdegree 0 etichettato come nodo di **output**.

Dato un circuito booleano, assegnando un valore in $\{0,1\}$ a ciascun nodo di input e applicando gli operatori logici corrispondenti alle etichette dei nodi del circuito, otteniamo un valore in $\{0,1\}$ per il nodo in output. Se tale valore è 1 allora diciamo che l'assegnamento in input soddisfa il circuito. Verificare se un dato assegnamento soddisfa o meno un circuito è fattibile in tempo polinomiale nella dimensione del circuito.

Sappiamo che decidere se un circuito booleano ammette un assegnamento dell'input che lo soddisfa è NP-completo. Al fine di definire una versione parametrizzata del problema, definiamo il **peso di un assegnamento** come il numero di nodi in input a cui viene assegnato il valore 1.

Dato un circuito booleano C e un intero k, il WEIGHTED-CIRCUIT-SAT (WCS) è il problema di decidere se C ammette un assegnamento che lo soddisfa con peso al più k. Se n è la dimensione del circuito, esistono $O(n^k)$ possibili assegnamenti, ognuno verificabile in tempo polinomiale, pertanto WCS appartiene banalmente alla classe XP (si ritiene non sia FPT).

La **depth** di un circuito booleano è pari alla lunghezza del più lungo cammino tra un nodo di input e il nodo di output.

La **weft** di un circuito booleano è pari al numero massimo di nodi con indegree >2 in un qualsiasi percorso da un nodo di input al nodo di output.

Sia $C_{t,d}$ la famiglia dei circuiti booleani con weft al più t e depth al più d, e sia WSC[$C_{t,d}$] la restrizione del problema WSC a questa famiglia di circuiti. Per un dato $t \geq 1$, la classe W[t] è costituita da tutti i problemi parametrizzati P per cui esiste una riduzione parametrizzata da P a WSC[$C_{t,d}$] per un qualche fissato valore di $d \geq 1$.