

Projekt "Uruchomienie unikatowego kierunku studiów Informatyka Stosowana odpowiedzią na zapotrzebowanie rynku pracy" jest współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Metody numeryczne

materiały do ćwiczeń dla studentów

1. Teoria błędów, notacja O

- 1.1. Błąd bezwzględny, błąd względny
- 1.2. Ogólna postać błędu
- 1.3. Problem odwrotny teorii błędów
 - zasada równego wpływu
 - metoda równych kresów górnych błędów bezwzględnych
 - metoda jednakowego pomiaru
- 1.4. Notacja O

I. Wiadomości wstępne

Wymagana jest znajomość następujących pojęć:

- pochodna funkcji;
- pochodna cząstkowa funkcji wielu zmiennych;
- różniczka funkcji wielu zmiennych;
- rozwinięcie Taylora funkcji wielu zmiennych;

oraz umiejętności:

- obliczania pochodnych;
- obliczania pochodnych cząstkowych.

Obliczenia prowadzimy z dokładnością do (co najmniej) czterech miejsc po przecinku, o ile treść zadania nie podaje innej dokładności.

II. Zadania

- zad. 1) Wyznaczyć błąd bezwzględny Δa oraz błąd względny δa , gdy liczba A jest przybliżana przez jej obcięcie do czterech miejsc po przecinku. Jakie są kres górny błędu bezwzględnego Δ_a oraz kres górny błędu względnego δ_a (z dokładnością do pięciu miejsc po przecinku)?
 - a) A = 0.321947,
 - b) $A = e \approx 2,7182818$,
- zad. 2) Dysk twardy w pewnym komputerze ma pojemność 120000 MB. Użytkownik tego komputera oszacował, że dysk pomieści około 120 GB danych. Wiedząc, że 1 GB = 1024 MB, oblicz rzeczywistą pojemność dysku w GB, a potem błąd bezwzględny i względny szacowania pojemności dysku w GB.
- zad. 3) Obliczyć kresy górne błędów bezwzględnego i względnego wartości zagregowanego popytu obliczanych przy zaokrąglonych cenach, gdy popyt jest opisany formułą

$$Q(p_1, p_2, p_3) = \frac{2}{p_1} + \frac{3}{p_2} + \frac{4}{p_3},$$

a ceny towarów wynoszą $p_1 = 2 \pm 0.01$, $p_2 = 3 \pm 0.12$, $p_3 = 2 \pm 0.1$.

zad. 4) Objętość 1 kilograma pewnego gazu w zależności od (wyrażonej w molach) liczby cząsteczek trzech jego składowych: x, y i z wyraża sie wzorem

$$V(x,y,z) = x^2z + \sqrt{\frac{x}{y}}.$$

Obliczyć kresy górne błędów bezwzględnego i względnego popełnianych przy obliczaniu objętości kilograma gazu, jeśli liczby cząsteczek składowych tego gazu wynoszą $x=4\pm0.04$, $y=1\pm0.02$, $z=2\pm0.01$,

zad. 5) Pole powierzchni działki trójkątnej można obliczyć przy pomocy wzoru Herona

$$P(a,b,c) = \frac{1}{4}\sqrt{4a^2b^2 - (a^2 + b^2 - c^2)^2},$$

gdzie a, b, c to długości krawędzi działki. Z jaką dokładnością należy znać wartości $a \approx 3m$, $b \approx 4m$, $c \approx 5m$, by pole powierzchni działki było obliczone z dokładnością 0,1? Wyniki podać w oparciu o metody: jednakowo dokładnego pomiaru, równych kresów górnych błędu bezwzględnego i równego wpływu.

- zad. 6) Promień podstawy walca wynosi $r \approx 2cm$, a wysokość walca $h \approx 3cm$. Z jaką dokładnością należy określić r, h oraz π , aby objętość walca obliczyć z dokładnością do $0.1cm^3$ (Za przybliżenie początkowe π przyjmij wartość 3.14)?
- zad. 7) W związku ze zbliżającym się końcem okresu wsparcia dla systemu operacyjnego Okna XL, administrator sieci uniwersyteckiej planuje aktualizację oprogramowania na podległych mu maszynach. W tym celu przygotowuje on listę n systemów operacyjnych, wraz z możliwością posortowania listy ze względu na różne kryteria. Administrator rozważa implementację jednego z następujących algorytmów sortujących:
 - a) Sortowanie przez wstawianie: w k –tym kroku $(1 \le k \le n)$ mamy posortowane pierwsze k-1 elementów listy. Wybieramy k –ty element listy i wstawiamy go we właściwe miejsce poprzez porównanie go z elementami już posortowanymi.
 - b) Sortowanie przez wybieranie: w k –tym kroku ($1 \le k \le n$) mamy posortowane k-1 najmniejszych elementów listy. Spośród pozostałych elementów wybieramy najmniejszy i zamieniamy go w liście z elementem na pozycji k –tej.

Wyznacz złożoność obliczeniową tych algorytmów (oblicz liczbę wykonywanych operacji porównywania) i wskaż lepszy z nich (pod względem złożoności).

zad. 8) Wyznacz liczbę operacji mnożenia oraz liczbę operacji dodawania wykonywanych podczas rozwiązywania układu n równań liniowych o n niewiadomych metodą eliminacji Gaussa-Jordana i na tej podstawie podaj złożoność obliczeniową algorytmu.

III. Zadania do samodzielnego rozwiązania

- zad. 1) Wyznaczyć błąd bezwzględny Δa oraz błąd względny δa , gdy liczba A jest przybliżana przez liczbę a. Jakie są kres górny błędu bezwzględnego Δ_a oraz kres górny błędu względnego δ_a (z dokładnością do czterech miejsc po przecinku)?
 - a) A = 1,129124, a = 1,12;
 - b) A = 1,129124, a = 1,13;
 - c) $A = \pi$, a = 3.14
- zad. 2) Obliczyć błędy bezwzględny i względny wartości podanych funkcji obliczanych dla wskazanych wartości argumentów.

 - a) $f(x,y) = \ln x + \ln y$, $x = 10 \pm 0.001$, $y = \frac{1}{10} \pm 0.0001$; b) $f(x,y,z) = (x+y)^2 + (y+z)^2 (x+z)^2$, $x = 1 \pm 0.02$, $y = -1 \pm 0.03$, z = 3 + 0.02.
- zad. 3) Zgodnie z prawem powszechnego ciążenia dwa ciała o masach M kg i m kg odległe od siebie o r metrów przyciągają się wzajemnie z siłą

$$F(M,m,r) = \frac{GMm}{r^2},$$

gdzie przyjmujemy, że $G = \frac{20}{3} \frac{m^3}{kg \, s^2}$. Oblicz błąd bezwzględny i względny siły przyciągania ciał o masach $M=4\pm\frac{9}{100}kg$, $m=2\pm\frac{3}{100}kg$ i odległych o $r=2\pm\frac{3}{100}kg$

- Dana jest funkcja f i przybliżone wartości argumentów. Z jaką dokładnością zad. 4) należy określić wartości x, y oraz z, aby obliczyć wartość f z dokładnością 0,03? Zadanie rozwiązać trzema metodami i porównać otrzymane wyniki.
 - a) f(x, y, z) = y xyz, $x \approx 2$, $y \approx 5$, $z \approx 1$;
 - b) $f(x, y, z) = e^{x+y+z}(x^2 + y^2 + z^2), x \approx 1, y \approx 0, z \approx -1.$
- Z Centrum Lotów Kosmicznych w Krakowie przyszło polecenie, aby skorygować zad. 5) położenie stacji kosmicznej Miś, znajdującej się na orbicie okołoziemskiej. W celu zmiany położenia stacji należy posłużyć się trzema silnikami manewrowymi. Czas działania każdego z silników powinien wynieść $x \approx 2$ minuty, $y \approx 4$ minuty, $z \approx 3$ minuty. Zmianę położenia stacji (w metrach), powstałą w wyniku działania silników, opisuje funkcja:

$$f(x, y, z) = xy + yz - xz.$$

Oblicz z jaką dokładnością należy określić wielkości x, y i z tak, aby korekta położenia stacji nie spowodowała błędu położenia przekraczającego 0,3 metra. Zadanie rozwiąż metodami równego wpływu, równych kresów i pomiaru jednakowo dokładnego, a wynik podaj w sekundach.

- zad. 6) Wyznacz liczbę operacji mnożenia oraz liczbę operacji dodawania wykonywanych podczas wyznaczania:
 - a) macierzy odwrotnej do macierzy $n \times n$ metodą eliminacji Gaussa-Jordana;
 - b) rzędu macierzy $n \times n$ metodą eliminacji Gaussa;

i na tej podstawie podaj złożoność obliczeniową algorytmu.

IV. Odpowiedzi

zad. 1)

a)
$$\Delta a = 0.009124$$
, $\Delta_a = 0.0092$
 $\delta a \approx 0.00808$, $\delta_a = 0.0081$

b)
$$\Delta a = 0,000876$$
, $\Delta_a = 0,0009$
 $\delta a \approx 0,000776$, $\delta_a = 0,0008$

c)
$$\Delta a = \pi - 3.14 \approx 0.0015926535$$
, $\Delta_a = 0.0016$
 $\delta a = \frac{\pi - 3.14}{\pi} \approx 0.000506957$, $\delta_a = 0.0006$

zad. 2)

a)
$$|\Delta f| = 0.0011$$
, $f(x, y) = 0 \pm 0.0011$, δf – nie można zastosować

b)
$$|\Delta f| = 0.36$$
, $f(x, y, z) = -12 \pm 0.36$, $\delta f = 0.03$

zad. 3) Odpowiedź:

$$\Delta F = \frac{66}{100} \frac{kg \ m}{s^2}, \delta F = \frac{99}{2000} = 4,95\%$$

zad. 4)

zasada równego wpływu:

a)
$$\Delta_x = 0.002, \Delta_y = 0.01, \Delta_z = 0.001$$

b) nie można zastosować
$$(f_z'(1,0,-1)=0)$$

metoda równych kresów górnych błędów bezwzględnych

a)
$$\Delta_x = \Delta_y = \Delta_z = 0.001875$$
;

b)
$$\Delta_x = \Delta_y = \Delta_z = 0.005$$

metoda pomiaru jednakowo dokładnego

a)
$$\Delta_x = 0.0024$$
, $\Delta_y = 0.006$, $\Delta_z = 0.0012$

b)
$$\Delta_x = 0.0075, \Delta_y = 0, \Delta_z = 0.0075$$

zad. 5)

metoda równego wpływu:
$$\Delta_x=6$$
 sekund, $\Delta_y=\frac{6}{5}$ sekundy, $\Delta_z=3$ sekundy metoda równych kresów górnych: $\Delta_x=\Delta_y=\Delta_z=\frac{9}{4}$ sekundy pomiar jednakowo dokładny: $\Delta_x=\frac{9}{7}$ sekundy, $\Delta_y=\frac{18}{7}$ sekundy, $\Delta_z=\frac{27}{14}$ sekundy

zad. 6)

a) liczba operacji mnożenia:

$$\sum_{k=1}^{n} [n - (k-1) + (n - (k-1))(n-1)] + \sum_{k=1}^{n} [n + n(n-1)] = \frac{1}{2}n^{2}(3n+1),$$

liczba operacji dodawania:

$$\sum_{k=1}^{n} (n - (k-1))(n-1) + \sum_{k=1}^{n} n(n-1) = \frac{1}{2}(n-1)n(3n+1),$$

łączna liczba operacji: $\frac{1}{2}n(2n-1)(3n+1)$,

złożoność obliczeniowa: $O(n^3)$.

b) liczba operacji mnożenia:

$$\sum_{k=1}^{n} (n - (k-1))(n-1 - (k-1)) = \frac{1}{3}(n-1)n(n+1),$$

liczba operacji dodawania:

$$\sum_{k=1}^{n} (n - (k-1))(n-1 - (k-1)) = \frac{1}{3}(n-1)n(n+1),$$

łączna liczba operacji: $\frac{2}{3}(n-1)n(n+1)$,

złożoność obliczeniowa: $O(n^3)$.