8

大学物理(下)期末考试试卷A

Ledanisation	题号	-		,	. 129	<i>ħ</i> .	六	と	入	总分
And de la contraction de la co	, , ,									
(Decility of the Control of the Cont	得分					4		· .		
		1]	<u> </u>	<u> </u>				_	

一、选择题 (每题 3 分, 共计 36 分。)

自觉

竴

试 想 则 内

不

1/E

巡

	~ AC.	LANCO /	· m- MO -										·
序号	Tį.	2	3	4	5	6	7	8	9	. 10	terrot (errot)	12	小 计。
答案	C	A	B-	C		C	A	C	D	8	C	B	

- 1. 一弹簧振子, 当把它水平放置时, 它可以作简谐振动, 若把它竖直放置或放在固定的光滑斜面上, 试判断下面哪种情况是正确的:
 - (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;
 - (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动;
 - (C) 两种情况都可作简谐振动:
 - (D) 两种情况都不能作简谐振动

 $\left(3\pi\left(+-\frac{2}{3}\right)+\pi\right)$

- 2. 一平面简谐波的表达式为 $y = 0.1\cos(3\pi t \pi x + \pi)$
- (SI), t=0 时的波形曲线如图所示,则
 - (A) O点的振幅为-0.i m:
- (B) 波长为3m;
- (C) a、b 两点间相位差为 $\frac{1}{2}\pi$; (D) 波速为 9 m/s.
- 3. 在真空中沿着 x 轴正方向传播的平面电磁波,其电场强度波的表达式是 $E_z=E_0\cos 2\pi (vt-x/\lambda)$,则磁场强度波的表达式是:

(A)
$$H_y = \sqrt{\varepsilon_0/\mu_0} E_0 \cos 2\pi (vt - x/\lambda)$$
:

(B)
$$H_z = \sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (v\ell - x/\lambda)$$
:

(C)
$$H_{\tau} = -\sqrt{\varepsilon_0/\mu_0}E_0\cos 2\pi(vt - x/\lambda)$$
:

(D)
$$H_r = -\sqrt{\varepsilon_0/\mu_0} E_0 \cos 2\pi (vt + x/\lambda)$$
.

大学物理(下)期末考试试卷A 第 1 页 共 6 页

4. 一束波长为2的平行单色光垂直入射到一单缝 AB 上, 装置如图. 在屏幕 D上形成衍射图样, 如果 P 是中央亮纹 侧第一个暗纹所在的位置,则 BC 的长度为

 $(A) \lambda/2$:

(B) λ :

(C) $3\lambda/2$:

(D) 22.

5. 波长 600nm 的单色平行光垂直入射到一光栅常数为 2.5×10-3mm 的光栅上, 已知此 光栅的刻痕与缝宽相等,则屏幕上所呈现的全部光谱级次是: (A) 0,±1,±2,±3,±4; (B) 0,±2,±4; (C) $0.\pm 1.\pm 3$

 $(D) \pm 1 \pm 3$.

6. 三个偏振片 P_1 , P_2 与 P_3 堆叠在一起, P_1 与 P_3 的偏振化方向相互垂直, P_2 与 P_1 的偏振化方向间的夹角为 30° . 强度为 I_0 的自然光垂直入射于偏振片 P_1 ,并依次 透过偏振片 P_1 、 P_2 与 P_3 ,则通过三个偏振片后的光强为

 $(A) I_0 / 4$:

(B) 3 I₀ / 8;

(C) 31, 732;

(D) $I_0 / 16$.

7. 宇宙飞船相对于地面以速度 v 作匀速直线飞行,某一时刻飞船头部的宇航员向 飞船尾部发出一个光讯号,经过Ar(飞船上的钟)时间后,被尾部的接收器收到, 则由此可知飞船的固有长度为 (c表示真空中光速)

(C) $\frac{c \cdot \Delta t}{\sqrt{1 - (v/c)^2}}$; (D) $c \cdot \Delta t \cdot \sqrt{1 - (v/c)^2}$

8. 一匀质矩形薄板,在它静止时测得其长为 a, 宽为 b, 质量为 mo. 由此可算出其 面积密度为m。lab. 設定该薄板沿长度方向以接近光速的速度 v 作匀速直线运动, 此时再测算该矩形薄板的面积密度则为

(B) $\frac{m_0}{ab\sqrt{1-(v/c)^2}}$

(D) $\frac{m_0}{ab(1-(v/c)^2)^{3/2}}$

9. 已知一单色光照射在钠表面上, 测得光电子的最大动能是 1.2 eV, 波长是 540.0 nm, 那么入射光的波长是 (A) 535.0 nm; (B) 500.0 nm; (C) 435.0 nm;

10. 若 α 粒子(电荷为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动, 则α粒子的德布罗意波长是

(A) h/(2eRB): (B) h/(eRB):

(C) 1/(2eRBh);

(D) 1/(eRBh).

11. 在原子的 K 壳层中,电子可能具有的四个量子数 (n, l, m_l, m_s) 是

(1) (1, 1, 0, $\frac{1}{2}$):

(2) $(1, 0, 0, \frac{1}{2});$

(3) (2, 1, 0, $-\frac{1}{2}$); (4) (1, 0, 0, $-\frac{1}{2}$).

以上四种取值中,哪些是正确的?

- (A) 只有(1)、(3)正确:
- (B) 只有(2)、(4)正确:
- (C) 只有(2)、(3)、(4)正确:
- (D) 全部正确。

12. 按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:

- (A) 两个原子自发辐射的同频率光相干,原子受激辐射的光与入射光不相干;
- (B) 两个原子自发辐射的同频率光不相干,原子受激辐射的光与入射光相干:
- (C) 两个原子自发辐射的同频率光不相干。原子受激辐射的光与入射光不相干;
- (D) 两个原子自发辐射的同频率光相干,原子受激辐射的光与入射光相干.

二、填充题 (每空格 3 分,共计 21 分)

		,	****				y
· Control Constitution	序号	I.	2	3	. 4	5	小计
- 1			A PARTY OF THE PROPERTY OF THE				*
	得分						

1. 一质点作简谐振动. 其振动曲线如图所示. 根据此图, 它的周期

$$T = \frac{1}{2}$$
 ,用佘弦函数描述时初相 $\phi = \frac{2}{3}$.

2. 如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动

3. 如图所示,假设有两个同相的相干点光源 S_1 和 S_2 ,发出波长为 λ 的光. A 是它们连线的中垂线上的一点。若在 S_1 与 A 之间插入厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的相位差

 $\Delta \phi = \frac{\sqrt{(n+1)}e}{\lambda}$ 若己知 $\lambda = 500 \text{ nm}$. n=1.5, Λ 点恰为第四级明纹中

4. 在电子单缝衍射实验中,若缝宽为 $\alpha=0.1$ nm $(1 \text{ nm}=10^9 \text{ m})$,电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量 $\Delta p_y = 6.63 \times 10^{-24}$ N·s.

(普朗克常量 h=6.63×10⁻³⁴ J·s)

5. 原子中电子的主量子数 n=2,它可能具有的状态数最多为_____个.

大学物理(下)期末考试试卷A 第3页共6页

三、(5 分) 质量为 2.0 kg 的质点,按方程 $x = 0.2\sin(5t - (\pi/6))$ (SI) 沿着 x 轴振动。求: (1) t=0 时,作用于质点的力的大小;(2)作用于质 点的力的最大值和此时质点的位置.

$$V = P - GO (5t - \frac{11}{6})$$

 $A = -J S_{11}^{11} (Jf - \frac{11}{6})$

得 分

四、(8分)一平面简谐波沿 Cx 轴的负方向传播。 波长为1, P处质点的振动规律如图所示。

- (1) 求 P 处质点的振动方程:
- (2) 求此波的波动表达式:
- (3) 若图中 $d=\frac{1}{2}\lambda$, 求坐标原点 O 处质点的振动方

程.

$$y_{0} = A \cos(\omega t + \pi t)$$

$$y_{0} = A \cos(\omega t + \pi t) = A \cos(\omega t + \pi t)$$

$$= A \cos(\omega t + \pi t)$$

J= Acout.

考_订 内 考 娎 不 题 作

自

得分

五 (5分) 如图所示, S_1 , S_2 为两平面简谐波相干波源。 S_2 的祠位比 S_1 的相位超前 $\pi/4$,波长 $\lambda=8.00$ m, $r_1=12.0$ m, $r_2=14.0$ m, S_1 在 P 点引起的振动振幅为0.30 m, S_2 在 P 点引起的振动振幅为0.20 m,求 P 点

的合振幅.

$$S_{1} \rightarrow \varphi_{1} \qquad S_{2} \rightarrow \varphi_{2}$$

$$Q_{2} - \varphi_{1} = \frac{\Pi}{4}$$

$$\Delta \varphi = \varphi_{2} - \varphi_{1} - \frac{2\Pi}{\Lambda} (G - Y_{1}) = \frac{\Pi}{4} - \frac{2\Pi}{8} (14.0 - 12.0) = \frac{\Pi}{9} - \frac{\Pi}{5} = -\frac{\pi}{4}$$

$$A = \int_{0.3^{2} + 0.2^{2} + 2 \times 0.3 \times 0.2} G_{2} dq = \int_{0.09 + 0.04 + \frac{1}{2} \times \frac{1}{2}} (14.0 - 12.0) = \frac{\Pi}{9} - \frac{\Pi}{5} = -\frac{\pi}{4}$$

$$= \int_{0.04 + \frac{1}{2} \times \frac{1}{2}$$

得 分

六、(10分) 用波长为 500 nm (1 nm= 10^9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上,在观察反射光的干涉现象中,距野形膜核边 l=1.56 cm 的 A 处是从核边算起的第四条暗条纹中心。(1) 求此空气劈形膜的劈尖角 θ 。(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反

射光的干涉条纹,A处是明条纹还是暗条纹?(3)在第(2)问的情形从棱边到 A处的范

围内共有几条明纹? 几条暗纹?

$$\frac{3e_{k} + \lambda = (2k+1)^{\lambda}}{2e_{k} + 3} = \frac{3}{2} \lambda = 750 \text{ nm}$$

$$\frac{2e_{k} + \lambda}{3} = (2k+1)^{\lambda} - k = \frac{3}{2} \lambda = 750 \text{ nm}$$

$$\frac{2e_{k} + \lambda}{3} = (2k+1)^{\lambda} - k = \frac{3}{2} \lambda = 750 \text{ nm}$$

$$\frac{2e_{k} + \lambda}{3} = \frac{3}{2} \lambda = \frac{3}{2} \lambda = 750 \text{ nm}$$

$$\frac{2e_{k} + \lambda}{3} = \frac{3}{2} \lambda = \frac{3}{2}$$

指验证3种股.

大学物理(下)期末考试试卷A 第5页 共6页

七、(5分)设有宇宙飞船 A 和 B,固有长度均为 b = 100 m,沿同一方向匀速飞行,在飞船 B 上观测到飞船 A 的船头、船尾经过飞船 B 船头的时间间隔为 Δt = (5/3)×10⁻⁷ s,求飞船 B 相对于飞船 A 的速度的大小.

$$\begin{aligned}
&l \sqrt{1 - \frac{1}{C^2}} = Vat \\
&l \sqrt{1 - \frac{1}{C^2}} = Vcot \\
&l \sqrt{1 - \frac{1$$

得分

八、(10分) 已知粒子在无限深势阱中运动,其波函数为 $\psi(x) = \Psi_o \sin(\pi x/a)$ (0 $\leq x \leq a$)

求(1)由归一化求波函数的波幅型。(2) 粒子概率为最大的位置。

$$\int_{0}^{\infty} \frac{1}{4} \int_{0}^{\infty} \frac{1}{4} \int_{0}^{\infty}$$

X= 3m+ +0x(

南京邮电大学 2013/2014 学年第一学期

《大学物理下》期末考试试卷A

院(系)	班组	没		学号_		姓	名	
题号 得分	 Piggs		ħå	Ā.	六	+	总分	

一、选择欧	(TIL)	837	10 7	N8 20	, 4,4 E.							
序号	2	3	4	5	6	7	8	9.7	10.	T T	12	小计
						F		- 1		~ (1)	Λ	
1 2x 1 2	2	3	. K	A		113	(1)	1	1	17	177	
	1			// /		<u> </u>	B			 		A

- 1、一质点在x轴上作简谐振动,振辐A=4 cm,周期T=2-s,其平衡位置取作坐标 原点。若t=0 时刻质点第一次通过x=-2 cm 处,且向x 轴负方向运动, 次通过 x = -2 cm 处的时刻为
 - (B) (A)

- 2、图中所画的是两个简谐振动的振动曲线。若这两个简 谐振动可叠加,则合成的余弦振动的初村
 - (A) 1.5π .
- (C) 0.5π.
- (D) 0.

- 3、关于驻波的特性,以下说法错误的是
 - (A) 驻波是一种特殊的振动,波节处的势能与波腹处的动能相互转化;
 - (B) 两波节之间的距离等于产生驻波的相干波的波长:
 - (C) 一波节两边的质点的振动步调(或位相)相反;
 - (D) 相邻两波节之间的质点的振动步调(或位相)相同.
- 4、真空中, 平面电磁波的电场强度 E、磁场强度 H 和传播速度 u 的关系是:
 - (A) 三者相互垂直,而电场强度 B 和磁场强度 H 位相相差 n/2;
 - (B) 三者相互垂直,而 E、H、u 构成右手螺旋;
 - (C) 电场强度 E 和磁场强度 H 方向相同; 且与 u 的方向垂直;
 - (D) 电场强度 E 和磁场强度 H 方向不确定: 但与 u 的方向垂直:

- 5、在真空中波长为 λ 的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B 两点位相差为 π ,则此路径AB的光程为
 - $(A)0.5\lambda$
- (B) $0.5 n\lambda$
- $(C)3\lambda$
- (D) $0.5 \lambda/n$

- 6、空气劈尖干涉实验中。
- (A) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时, 条纹变稀, 从中心向两边扩展;
- (B) 干涉条纹是垂直干棱边的直条纹, 劈尖夹角变小时, 条纹变密, 从两边向中心靠拢;
- (C) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时, 条纹变疏, 条纹背向. 棱边扩展:
- (D) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时, 条纹变密, 条纹向棱边靠拢。
- 7、一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角点,则在界面 2 的反射光
- (A) 是自然光:
- (B) 是线偏振光且光矢量的振动方向垂直于入射面;
- (C) 是线偏振光且光矢量的振动方向平行于入射面:
- (D) 是部分偏振光。
- 8、 所谓"黑体"是指这样的一种物体,即:
 - (A) 不能反射任何可见光的物体:
 - (B) 不能反射任何电磁辐射的物体:
 - (C) 颜色是纯黑的物体:
 - (D) 能够全部吸收外来的任何电磁辐射的物体。
- 9、光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此过程,在以下几种理解中,正确的是:
 - (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程:
 - (B) 两种效应都相当于电子与光子的弹性碰撞过程:
 - (C) 两种效应都属于电子吸收光子的过程:
 - (D) 两种效应都是电子与光子的碰撞, 都服从动量守恒定律和能量守恒定律 大学物理期末考试试卷 第 2 页

10、在菜地发生两件粤、薛小位王法典作品测得。
10、在某地发生两件等,静止位于该地的甲测得时间间隔为 6s,若相对甲以 4c/5(c 表示真空中光速)的速率作匀速直线运动的乙测得时间间隔为
(A) 10e (D) 0.
(E) 6s. (E) 3.6s. (E) 4.8s. 11、如果两种不同质量的粒子, 其德布罗意波长相同, 则这两种粒子的
(A) 动量相同。 (B) 能量相同。
(C) 速度相同. (D) 动能相同.
12、设粒子运动的波函数图线分别如图(A)、 (A) (A) (A) (A)
(B)、(C)、(D)所示,那么其中确定粒子动量的
~精确度最高的波函数是哪个图?
$(C) \longrightarrow X$
得分 二、填充题 (每格 2 分, 共计 22 分)
1、A、B是简谐波波线上距离小于波长的两点。已知, B点振动的相位比
A 点落后 $\frac{1}{3}\pi$, 波长为 $\lambda=3$ m, 则 A , B 两点相距 $L=$ 2 m.
3 $m \cdot m$
2、一物体作简谐振动,振动方程为 $x = A\cos(\omega t + \frac{1}{2}\pi)$. 则该物体在 $t = 0$ 时刻
的动能与 $t=T/8$ (T 为振动周期) 时刻的动能之比为 $2 = 1$
3、一静止的报警器, 其频率为 1000 Hz, 有一汽车以 79.2 km 的时速背离报警器时,
坐在汽车里的人听到报警声的频率是 <u>93J.3</u> (设空气中声速为340 m/s)
4、如图所示,两个直径有微小差别的彼此平行的滚柱之间的距
离为 L, 夹在两块平晶的中间, 形成空气劈尖, 当单色光垂直
入射时,产生等厚干涉条纹.如果两滚柱之间的距离 L 变大,
则在7. 范围由于2000年以来, 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
则在 L 范围内于涉条纹的数目 不多 (填写: 不变, 变多
或变小),间距 支大 (填写: 不变, 变大或变小)
5、牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径
由 1.42cm 变成 1.27cm,由此得该液体的折射率 n=
5、 区元为 16 的目然无依次垂直通过三块偏振片 PL。P2 和 P3。P1 与 P2 的偏振化
方向成 45°角,P2 与 P3 的偏振化方向成 45°角。则透过三块偏振片的光强 I 为
大学物理期末考试试卷·第3页

得 分

三、(本題 10 分)

图示为一平面简谐波在 *t* = 0 时刻的波形图,求

- (1) 该波的波动表达式。
- (2) P 处质点的振动方程.

$$0.08 = 0.2$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{0.477} = 5.65 \text{ }$$

 $X_{p=0, a}$

$$\int_{P} = 0.0 \% \approx \left(\frac{1}{f} \pi C f - \frac{0.2}{0.09}\right) - \frac{11}{2} \int_{-2}^{2} = 4.0 \% \cos(\frac{2\pi}{f}) + \frac{11}{2}$$

四、(本题 8 分) 双缝干涉实验装置,双缝与屏之间的距离 D=120cm,两缝之间的距离 d=0.50mm,用波长 $\lambda=5000$ Å 的单色光垂直照射双缝.

- (1) 求原点 O(零级明条纹所在处)上方的第五级明条纹的坐标;
- (2) 如果用厚度 $e=1.0\times10^{-2}$ mm, 折射率 n=1.58 的透明薄膜覆盖在图中的 s_1 缝后面,求上述第五级明条纹的坐标 x' 。

$$7 = \frac{1}{5} =$$

得 分

五、(本题 10分) 波长2=6000Å 的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30°, 且第三级是缺级。

- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 @等于多少?
- (3) 在选定了上述(a+b)和 a 之后,求在衍射角 $-\pi/2 < \varphi < \pi/2$ 范围内可能观察到的全部主极大的级次。

$$dx = 2 \times 6 \times 10^{-7}$$

$$d = 2 \cdot 4 \times 10^{-6} \text{ m}$$

$$\frac{d}{\alpha} = 3. \qquad \alpha = \frac{d}{3} = 9 \times 10^{-7} \text{ m}$$

$$d = 8 \times 10^{-7} \text{ m}$$

看到: o ±1 ±2. ±4.

大学物理期末考试试卷 第5页

11

六、(本题 8 分)实验发现基态氢原子可吸收能量为 12.75eV 的光子

- (1) 试问氢原子吸收该光子后将被激发到哪个能级?
- (2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请定性

地画出能级图,并将这些跃迁画在能级图上

$$E_1 = -13.6 \text{ eV}$$
. $E_n = \frac{E_1}{n}$ 中3的创作为四种位 $E_{n-1} = -0.35 \text{ eV}$. 电3的创作为四种位 $E_{n-1} = -0.35 \text{ eV}$.

得 分

七、(本题 6 分) 一粒子被限制在相距为 1 的两个不可穿透的壁之间,如

图 24.2 所示。描写粒子状态的波函数为 $\psi = cx(1-x)$, 其中 c 为待定常量,求在 $0 \sim l/3$

区间发现粒子的概率.

$$\int_{0}^{R} e^{2x^{2}(R-x)^{2}} dx = 1$$

$$\int_{0}^{2} \frac{d^{2}x^{2}}{(e^{2}-2kx+k^{2})dx} = 1$$

$$\int_{0}^{2} \frac{d^{2}x^{2}}{(e^{2}k^{2}-2c^{2}k^{3}+c^{2}k^{4})dx} = 1$$

$$\int_{0}^{2} \frac{d^{2}x^{2}}{(c^{2}k^{3}-2c^{2}k^{3}+c^{2}k^{4})dx} = 1$$

$$\int_{0}^{2} \frac{d^{2}x^{2}}{(c^{2}k^{3}-2c^{2}k^{3}+c^{2}k^{4})dx} = 1$$

$$= \frac{d^{2}x^{3}}{3} - \frac{d^{2}x^{4}}{4} + \frac{d^{2}x^{4}}{5} = 1$$

$$= \frac{d^{2}x^{3}}{3} - \frac{d^{2}x^{4}}{4} + \frac{d^{2}x^{4}}{5} = 1$$

$$= \frac{d^{2}x^{4}}{3} - \frac{d^{2}x^{4}}{3} + \frac{d^{2}x^{4}}{3} = 1$$

$$= \frac{d^{2}x^{4}}{3} + \frac{d^{2}x^{4}}{3} + \frac{d^{2}x^{4}}{3} = 1$$

$$= \frac{d^{2}x^{4}}{3} +$$

自 .بيد آبر 遊 守 iΓ 考 沉 规 则 Ø 娰 俼 考 \$5 üţ 绝 不 题 作 **9**\$

南京邮电大学 2013/2014 学年第一学期

《 大学物理下 》期末考试试卷 A

b	元(系) 		班		学号_	 姓	名	
	题号			 523	五		总分	, and the same of
	得分							
i		L		 		 		

二、选择题(每题3分,共计36分)

			~ ~ ~ /	<i>3 </i>	. Y ; Je	1 /3 /							
序号	1	2	3	4	5	6	7	8	9	10	11 /	ļ	小计
答案	В	В	В	В	A	C	B	D	A	A	A	A	

1、一质点在x轴上作简谐振动,振辐 A=4 cm,周期 T=2 s,其平衡位置取作坐标原点.若 t=0 时刻质点第一次通过 x=-2 cm 处,且向x 轴负方向运动,则质点第二次通过 x=-2 cm 处的时刻为

- (A) 1s. (B)
 - (B) 2/3 s.
- (C) 4/3 s.
- (D) 2s.

2/图中所画的是两个简谐振动的振动曲线. 若这两个简

谐振动可叠加,则合成的余弦振动的初相为

- (A) 1.5π .
- (B) π
- (C) 0.5π .
- (D) 0.

- 3、关于驻波的特性,以下说法错误的是
- (A) 驻波是一种特殊的振动,波节处的势能与波腹处的动能相互转化;
 - (B) 两波节之间的距离等于产生驻波的相干波的波长;
 - (C) 一波节两边的质点的振动步调(或位相)相反;
 - (D) 相邻两波节之间的质点的振动步调(或位相)相同.
- 4、真空中, 平面电磁波的电场强度 E、磁场强度 H 和传播速度, u 的关系是:
- (A) 三者相互垂直, 而电场强度 E 和磁场强度 H 位相相差 11/2;
- (B) 三者相互垂直,而 E、H、u 构成右手螺旋;
- (C) 电场强度 E 和磁场强度 H 方向相同; 且与 u 的方向垂直;
- (D) 电场强度 B 和磁场强度 H 方向不确定: 但与 u 的方向垂直:

大学物理期末考试试卷 第1页

2/4(052xX 2) (052xft

7

- 5、在真空中波长为 λ 的单色光,在折射率为n的透明介质中从A沿某路径传播到
 - B, 若 $A \setminus B$ 两点位相差为 π , 则此路径 AB 的光程为
 - $(A)0.5\lambda$
- (B) $0.5 n\lambda$
- $(C)3\lambda$
- (D) $0.5 \lambda/n$

- 6、空气劈尖干涉实验中,
- (A) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时, 条纹变稀, 从中心向两边扩展;
- (B) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时, 条纹变密, 从两边向中心靠拢:
- (C) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时, 条纹变疏, 条纹背向 棱边扩展;
- (D) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时, 条纹变密, 条纹向棱边靠拢。
- 7、一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角 i₀,则在 界面 2 的反射光
- (A) 是自然光;
- (B) 是线偏振光且光矢量的振动方向垂直于入射面:
- (C) 是线偏振光且光矢量的振动方向平行于入射面:
- (D) 是部分偏振光。
- 8、 所谓"黑体"是指这样的一种物体, 即:
 - (A) 不能反射任何可见光的物体:
 - (B) 不能反射任何电磁辐射的物体:
 - (C) 颜色是纯黑的物体:
 - (D) 能够全部吸收外来的任何电磁辐射的物体。
- 9、光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此过程,在以下几种理解中,正确的是:
 - (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程;
 - (B) 两种效应都相当于电子与光子的弹性碰撞过程:
 - (C) 两种效应都属于电子吸收光子的过程;
 - (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 大学物理期末考试试卷 第2页

10、在某地发生两件事,静止位于该地的甲测得时间间隔为 6s,若相对甲以 4c/5(c 表示真空中光速)的速率作匀速直线运动的乙测得时间间隔为 (A) 10s. (B) 8s. (C) 6s. (D) 3.6s. (E) 4.8s
(A) 10s. (B) 8s. (C) 6s. (D) 3.6s. (E) 4.8s. 11、如果两种不同质量的粒子, 其德布罗意波长相同, 则这两种粒子的 (A) 动量相同. (B) 能量相同. (C) 速度相同. (D) 动能相同. 12、设粒子运动的波函数图线分别如图(A)、 (A) (A) (B)、(C)、(D)所示, 那么其中确定粒子动量的 精确度最高的波函数是哪个图? (C)
图 分 二、填充题(每格 2 分,共计 22 分) 1、 A 、 B 是简谐波波线上距离小于波长的两点。已知, B 点振动的相位比 A 点落后 $\frac{1}{3}\pi$,波长为 $\lambda=3$ m,则 A , B 两点相距 $L=$
2 、一物体作简谐振动,振动方程为 $x=A\cos(\omega t+\frac{1}{2}\pi)$,则该物体在 $t=0$ 时刻的动能与 $t=7/8$ (T 为振动周期)时刻的动能之比为 $\frac{2}{2}$
3、一静止的报警器,其频率为 1000 Mz,有一汽车以 79.2 km 的时速背离报警器时, 72 (2 M) 坐在汽车里的人听到报警声的频率是 (设空气中声速为 (340 m/s)
4、如图所示,两个直径有微小差别的彼此平行的滚柱之间的距 离为 L,夹在两块平晶的中间,形成空气劈尖,当单色光垂直
入射时,产生等厚干涉条纹.如果两滚柱之间的距离 L 变大,则在 L 范围内干涉条纹的数目(填写:不变,变多
或变小),间距 (填写:不变,变大或变小)
5、牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径
由 1.42 cm 变成 1.27 cm,由此得该液体的折射率 $n = \frac{1}{1.42}$
6、使光强为 I ₀ 的自然光依次垂直通过三块偏振片 P1, P2 和 P3。P1 与 P2 的偏振化
方向成 45°角, P2 与 P3 的偏振化方向成 45°角.则透过三块偏振片的光强 I 为 大学物理期末考试试卷·第 3 页

.

¥2.

7、有一速度为 u 的宇宙飞船沿 x 轴的正方向飞行、飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船尾光源发出的光脉冲的传播速度大小为 C 处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为 C 表	,	41.
作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为		7、有一速度为 u 的宇宙飞船沿 x 轴的正方向飞行,飞船头尾各有一个脉冲光源在下
8、 数义相对论中,一质点的质量 m 与速度 v 的关系式为		
其动能的表达式为	•	处于船头的观察者测得船尾光源发出的光贮冲的传播速度大小为。
		8、狭义相对论中,一质点的质量 m 与速度 v 的关系式为,
图示为一平面简谱波在 $I = 0$ 时刻的波 形图。求 (1) 该波的波动表达式: (2) P 处质点的振动方程. $O.04$ (3) $O.04$ (3) $O.04$ (4) $O.04$ (6) $O.04$ (6) $O.04$ (7) $O.04$ (8) $O.04$		其动能的表达式为(已知静止质量为 m _o)
0.04(0) (10年 (10年 (10年 10年 10年 10年 10年 10年 10年 10年 10年 10年		图示为一平面简谐波在 $t = 0$ 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程。 $Q.04$ A
$Z = 0.04 COS$ $N = 0.4$, $U = 0.08$, $f = \frac{1}{2} = 0.2$. $N = 0.4$, $U = 0.08$, $f = \frac{1}{2} = 0.2$. $V = 2\pi f = 0.4\pi$.	<i>}</i>)	0.04 CB (3t+2)
$Z = 0.04 COS$ $N = 0.4, U = 0.08, f = 7 = 0.2.$ $N = 2\pi f = 0.4\pi.$ $V = 2\pi f = 0.4\pi.$		0.04(0×10t-×) tq)
$V=2\pi f=0.4\pi$. $V=2\pi f=0.4\pi$. $V=0.04$, $V=0.04$, $V=0.05$ $V=0.08$ V		
$V=2\pi f=0.4\pi$. $V=2\pi f=0.4\pi$. $V=0.04$, $V=0.04$, $V=0.05$ $V=0.08$ V		$N = 0.4 \ \mu = 0.08, f = \tilde{\eta} = 0.2.$
たのは、 604 $5=0$ 60 $50=0$ 60 60 60 60 60 60 60 6		1=27f=0.47.
日 $Q = -\frac{2}{2}$ 人 $Q = 0.04 COS [0.47 (な 6-0.08) + -\frac{2}{2}]$ 大学物理期末考试试卷 第4页の分音 $\frac{5}{2}$ \frac	Λ	$\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty$
・ 大学物理期末考试试卷 第4页の 夕	A	f) h (2- 7
・ 大学物理期末考试试卷 第4页の 夕	V)	B 4- Z , XQ Y=0.04C05[0.47(184 t-0.08) 1 2]
20= ξ δ = 5 δ = δ (t - 5) - ξ) δ = δ (t - 5) - ξ) δ = δ (t - 5) - ξ) δ = δ (t - 5) - ξ)		・大学物理期末者は试券 笛ょ前の ケー・クレク ファス
	29 ;	= \frac{27}{5} = \frac{27}{5} \fr

四、(本题 8 分) 双缝干涉实验装置,双缝与屏之间的距离 D=120cm 两缝之 间的距离 d=0.50mm, 用波长 l=5000 A 的单色光垂直照射双缝.

- (1) 求原点 O(零级明条纹所在处)上方的第五级明条纹的坐标;
- (2) 如果用厚度 $e=1.0\times10^{-2}$ mm, 折射率 n=1.58 的透明薄膜覆盖在图中的 s_1 缝后

(I) 光栅常数(a+b)等于多少? (2) 透光缝可能的最小宽度 a 等于多少?

(3) 在选定了上述(a+b)和 a之后,求在衍射角 $-\pi/2 < \varphi < \pi/2$ 范围内可能观察 到的全部主极大的级次。

到的全部主极大的级次。
$$a + b = 3$$

$$a +$$

六、(本题 8 分)实验发现基态氢原子可吸收能量为 12.75eV 的光子

- (1) 试问氢原子吸收该光子后将被激发到哪个能级?
- (2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请定性

地画出能级图,并将这些跃迁画在能级图上054

(1)

七、(本题6分)一粒子被限制在相距为1的两个不可穿透的壁之间,如

图 24.2 所示。描写粒子状态的波函数为

 $\psi = cx(1-x)$, 其中 c 为待定常量, 求在 0~1/3

区间发现粒子的概率.

À 覚 規 则 内 信 试 绝 7 作

南京邮电大学 2012/2013 学年第一学期

《 大学物理下 》期末考试试卷 A

院(系)	班级	学号	姓名
------	----	----	----

题号	фициализм фициализм	- Company of the Comp	四	五	六	t	八	カ	总分
得分				· · · · · · · · · · · · · · · · · · ·					

*			4 × × ×				,	
序号	ţ.			6	7	8	9	小计
答案								

1. 图中所画的是两个简谐振动的振动曲线、若这两个简谐振动 可叠加,则合成的余弦振动的初相为

- (A) $\frac{3}{7}\pi$;

2. 如图所示,两列波长为 λ 的相干波在P点相遇,波在 S_1 点振 动的初相是 ϕ_1 , S_1 到 P 点的距离是 r_1 : 波在 S_2 点的初相是 ϕ_2 , S_2 到 P点的距离是 r_2 ,以 k 代表零或正、负整数,则 P点是干涉极大的 条件为:

- (A) $r_2 r_i = k\lambda$:
- (B) $\phi_2 \phi_1 + 2\pi(r_2 r_1)/\lambda = 2k\pi$;
- (C) $\phi_2 \phi_1 = 2k\pi$; (D) $\phi_2 \phi_1 + 2\pi(r_1 r_2)/\lambda = 2k\pi$.

3. 在真空中沿着 z 轴负方向传播的平面电磁波, 其磁场强度波的表达式为 $H_z = -H_0 \cos \omega (t + z/c)$, 则电场强度波的表达式为

- (A) $E_y = \sqrt{\mu_0/\varepsilon_0} H_0 \cos \omega (t + z/c)$;

(B)
$$E_x = \sqrt{\mu_0 / \varepsilon_0} H_0 \cos \omega (t + z/c)$$
;
(C) $E_y = -\sqrt{\mu_0 / \varepsilon_0} H_0 \cos \omega (t + z/c)$;
(D) $E_y = -\sqrt{\mu_0 / \varepsilon_0} H_0 \cos \omega (t - z/c)$.

4. 如图所示,两个直径有微小差别的彼此平行的滚柱之间的 距离为 L, 夹在两块平晶的中间, 形成空气劈尖, 当单色光垂 直入射时,产生等厚干涉条纹. 如果两滚柱之间的距离 L 变 大,则在 Z 范围内干涉条纹

- (A) 数目增加, 间距不变: (B) 数目减少, 间距变大;

 - (C) 数目增加,间距变小, (D) 数目不变,间距变大.

5. 在单缝夫琅和费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹

- (A) 宽度不变,且中心强度不变;
- ~(B) 宽度变大:
- (C) 宽度不变,但中心强度变小;
- (Ď) 宽度变小。

、6/波长 600nm 的单色平行光垂直入射到一光栅常数为 2.5×10⁻³mm 的光栅上,已知此 光栅的刻痕与缝宽相等,则屏幕上所呈现的全部光谱级次是:

- (A) $0,\pm 1,\pm 2,\pm 3,\pm 4;$ (B) $0,\pm 2,\pm 4;$ (C) $0,\pm 1,\pm 3;$
- (D) $\pm 1, \pm 3$.

7. 一束自然光自空气射向一块平板玻璃(如图),设入射角等 于布儒斯特角 io, 则在界面 2 的反射光为

- (A) 自然光:
- (B) 线偏振光且光矢量的振动方向垂直于入射面:
- (C) 线偏振光且光矢量的振动方向平行于入射面:
- (D) 部分偏振光.

8. 一火箭的固有长度为 L,相对于地面作匀速直线运动的速度为 v_1 ,火箭上有一个 人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为 v₂的子 學, 在火箭上测得子弹从射出到击中靶的时间间隔是:(c表示真空中光速)

$$(A) \quad \frac{L}{v_1 + v_2}$$

(B)
$$\frac{L}{v_2}$$

$$(C) \quad \frac{L}{v_2 - v_1}$$

(A)
$$\frac{L}{v_1 + v_2}$$
; (B) $\frac{L}{v_2}$; (C) $\frac{L}{v_2 - v_1}$; (D) $\frac{L}{v_1 \sqrt{1 - (v_1/c)^2}}$

9. 波长 λ =500 nm 的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda$ =10 4 nm,则利用 不确定关系式 $\Delta p_x \Delta x \geq h$ 可得光子的 x 坐标的不确定量至少为

- (A) 25 cm;
- (B) 50 cm; (C) 250 cm;
- (D) 500 cm.

10. 氢原子中处于 3d 量子态的电子,描述其量子态的四个量子数 (n, l, m_l, m_s) 可 能取的值为

(A)
$$\left(3, 0, 1, -\frac{1}{2}\right)$$
; (B) $\left(1, 1, 1, -\frac{1}{2}\right)$;

(B)
$$\left(1, 1, 1, -\frac{1}{2}\right)$$

(C)
$$\left(2, 1, 2, \frac{1}{2}\right)$$
; (D) $\left(3, 2, 0, \frac{1}{2}\right)$.

(D)
$$\left(3, 2, 0, \frac{1}{2}\right)$$

《大学物理下》期末考试试卷 A 第 2 页 共 7 页

二、填充题(每格2分,共计18分)

周期 T=

	·*		-	Y	****		
序号	1	2	3	4	5	6	小计
得分							

1. 一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为 20,此振子自由振动的

2. 一质点作简谐振动, 其振动曲线如图所示. 根据此图, 它的

3. 质量为m物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为

A自由简谐振动时,其振动能量 E=

周期 T=_____,用余弦函数描述时初相d=

4. 一点波源发出均匀球面波,发射功率为4W. 不计媒质对波的吸收,则距离波源

为2m处的强度是_____

② 用方解石晶体(负晶体)切成一个截面为正三角形的棱镜,光轴方向如图,若自然光以入射角;入射并产生双折射,试定性地分别画出。 光和 e 光的光路及振动方向。

6. 已知某金属的逸出功为 A, 用频率为 y 的光照射该金属能产生光电效应, 则该金

属的红限频率的=______, n > n,且遏止电势差|Ud=

《大学物理下》 期末考试试卷 A 第 3 页 共 7 页

三、(本題 8 分) 平面简谐波沿 x 轴正方向传播, 损幅为 2 cm, 频率为 50 Hz, 波速为 200 m/s. 在 t=0 时, x=0 处的质点正在平衡位置向y轴正方 向运动,求x=4m处媒质质点振动的表达式及该点在1=2s时的提动这

振动方程: 1=0.02105(1007+型) t=0时, x=0, 1=0, v=致>0, 初相位,工

:波沙特: Y=0.02 W5[100x(t-至)-至] Y4=0.02 W5(100xt-至) V= 2+ =-0.02 X100715in [100x(+-1/2)] v(4,2) =-225/mT/1007(2-1)-57=22(m5-1)

四〈(本歷 10 分)双缝干涉实验装置如图所示,双缝与屏之间的距离 D= 120 cm, 两缝之间的距离 d=0.50 mm, 用波长4=500 nm (1 nm=10 m) 的单色光垂直照射双缝。(1) 求原点 O (零级明条纹所在处)上方的第五级

明条纹的坐标 x;(2) 如果用厚度 /=1.0×10-2 mm, 折 射率 n=1.58 的透明薄膜复盖在图中的 Si 缝后面,求

上远第五级明条纹的坐标 x'.

 $1 dx/D \approx k \lambda D >> d$ $2 dx/D \approx k \lambda D >> d$ $2 dx/D \approx k \lambda D >> d$ $2 dx/D \approx k \lambda D >> d$ $3 dx/D \approx k \lambda D >> d$ $4 dx/D \approx k \lambda D >> d$ 4 dx/D >> d >> d 4 dx/D >> d >> d 4 dx/D >> d >> d >> d 4 dx/D >> d >> d >> d >>1) Ida/Daka

12-1, 2dx/D.

dsino ad 1 = the

V=12-(r1-l+nL) = m2-N1-(N-1)L

要级上方第2级即效有 T=k入 第五级明各致:X'=D[(n-1)]+KA]/d

= 12007(1.58-1)X0.0/15X5X104 /05 mes =19.9mm

《大学物理下》期末考试试卷 A 第 4 页 共 7 页

10 = (n-1) L +k)

白 試 规 則内 * 不 告 1856. 1850.

等分

五、(本题 6 分)用含有两种波长A=600 nm 和 X'=500 nm (1 nm=10° m)的复色光垂直入射到每毫米有 200 条刻痕的光栅上,光端后面放置一点距为 f=50 cm 的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距Ax.

スニーナック、ころが中央は日中 Sinp、三人人・・スニーナリリ、ペチン人 Aスニス、ース、ニーナインーナリリーナタリート Aニーナインノイニーノーナット 多な存着事と記中での的距离なり写为 メニケ・ナロハロ

得分

六、(本题 8 分)设有宇宙飞船 A 和 B。固有长度均为 6 = 100 m,沿同一方向与速飞行,在飞船 B 上观器到飞船 A 的船头、船尾经过飞船 B 船头的时间间隔为 Δ = (5/3)×10⁷ s,求飞船 B 相对于飞船 A 的速度的大小。

St- TT-V/C

V= \frac{1}{5t} = \frac{1/1-120}{5t} = 0.196c.

《大学物理下》期末考试试卷 A 第 5 页 共 7 页

七、(本题 5 分)一电子以v=0.99c(c为真空中光速)的速率运动。试求(1) 电子的总能量是多少?(2)电子的经典力学的动能与相对论动能之比是多少?(电子静止质量 m=9.11×10³¹ kg)

$$m' = \frac{m_0}{\sqrt{1-\frac{2}{50}}} \approx b.45 \times 10^{-30} \text{fg}$$

$$E_{K}' = \frac{1}{2} m / V^2 = 2.8 \times 10^{-30} \text{fg}$$

$$L_1 = \frac{1}{2} m / V^2 = \frac{m_0}{2} \approx 0.14$$

 $\Psi_1 = \sqrt{\frac{2}{\pi}} \sin \frac{2\pi x}{\pi}$,试求拉丁的板率定度分布函数及拉于最可能出现的位

$$w_{2} = \left| \frac{1}{\sqrt{(X)}} \right|^{2} = \frac{2}{\alpha} \sin^{2} \frac{n\pi}{\alpha} \times \frac{1}{\alpha} \times \frac{1}{\alpha$$

极大值:51m(空x)=到

X=(トナン)る. 根,是人

ZX= StkR

得分

九、(本歷9分) α 粒子在磁感应强度为 B=0.025 T 的均匀磁场中沿半径为 R=0.83 cm 的圆形轨道运动。(1) 试计算其德布罗意波长;(2) 若使质量 m=0.1 g 的小球以与 α 粒子相同的速率运动。则其波长为多少?(α 粒子的质

量 $m_q = 6.64 \times 10^{-17} \text{ kg}$,普朗克常量 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{ s}$,基本电荷 $e = 1.60 \times 10^{-19} \text{ C}$)

PH =
$$\frac{mv^2}{R}$$
 $R = \frac{mv}{R}$
 $R = \frac{h}{eRB}$
 $R = \frac{h}{RB}$
 $R = \frac{h}{RB}$

* AP APPLIES OF THE STREET OF

南京邮电大学 2011/2012 学年第 一 学期 《 大学物理下 》试卷 A *附*/2案

本试卷共7页; 考试时间 110 分钟

院(系)				班级	<u> </u>		学号	姓名				
	題号		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		四四	五	六	七	• •	总分		
*************	得分		÷									

一、选择题(每题3分,共计36分)

1					/ 7 / 3		_							
	序号	1	2 -	3	4	5	6	7	8	9	10	11	12	
	答案						•	,						

- 1. 一弹簧振子作简谐振动,总能量为 E_1 , 如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量 E_2 变为
 - (A) $E_1/4$.
- (B) $E_1/2$.
- (C) $2E_1$.
- (D) 4 E_1
- 2. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中
 - (A) 它的势能转换成动能.
 - (B) 它的动能转换成势能.
 - (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
 - (D) 它把自己的能量传给相邻的一段媒质质元, 其能量逐渐减小.
- 3. 下图为一向右传播的简谐波在 t 时刻的波形图,BC 为波密介质的反射面,波由 P 点反射,则反射波在 t 时刻的波形图为

《大学物理下》试卷A 第 1 页 共 7 页

4. 两相干涉	源 S ₁ 和 S ₂ 相距 λ/4,(λ)	E. S. L. L. S.			
				- λ /4 -1	
S ₁ 的位相比 S	$\frac{1}{2}$ 的位相超前 $\frac{1}{2}\pi$,在S	ı、S ₂ 的连		$\frac{ -\lambda/4 }{ S_1 }$ $\frac{ S_2 }{ S_2 }$	vineracións
线上, S ₁ 外便	各点(例如 P.点)两波				
(A) 0	(B) π	(C) $\frac{1}{2}\pi$	(D)	$\frac{3}{2}\pi$	
5. 在迈克尔运	处于涉仪的一支光路中,	∠ 放入一片折射率头	1 的缺乏		
小儿们几任左	的以受重为一个波长え,	则薄膛的厚度具		4	,测出了
(A) $\lambda/2$	(B) $\lambda/(2n)$	(C) λ/n	, (D)	2/20n_n	
6. 如图所示,	折射率为 m 、厚度为 e	的透明介质薄膜的	的上方和	737 2(71-1)	
下方的透明介	质的折射率分别为 n, 和 n	is,已知 ni < ni < x	, ale fri	. O (2)
夜长为 的单	色平行光垂直入射到该薄	膜上,则从薄膜上	二、下两		
表面反射的光	來①与②的光程差是		-		n_1
(A) $2n_2e$	(B) $2n_2e$	- 2/2			<i>n</i> ₂
(C) $2n_2e - 1$	(D) $2n_2e -$	$\lambda/2n$,			<i>Π</i> ₃ .
7. 一束光是自	然光和线偏振光的混合光	, 让它垂直通过一	他生品	*University and	
轴旋转偏振片,	测得透射光强度最大值	見器小店がより	NATURATION	石以此人射光	5束为
偏振光的光强出	达值为	在水小但的3倍,	那么入射	光束中自然为	与线

(A)1/2 (B)1/5 (C)1/3(D)2/3

- 8. 一束自然光自空气射向一块平板玻璃(如图), 设入射角等于布儒斯特角 io, 则在界 面 2 的反射光
 - (A) 是自然光,
 - (B) 是线偏振光且光矢量的振动方向垂直于入射面.
 - (C) 是线偏振光且光矢量的振动方向平行于入射面.
 - (D) 是部分偏振光
- 9. 在某地发生两件事,静止位于该地的甲测得时间间隔为 45 , 若相对于甲作匀速直 线运动的乙测得时间间隔为-5s-,一则乙相对于甲的运动速度是(c表示真空中光速)
- (A) (4/5) c. (B) (3/5) c. (C) (2/5) c. (D) (1/5) c.
- 10. 对黑体加热后, 测得总的辐出度(即单位面积辐射功率)增大为原来的16倍, 则黑 体的温度与原温度的比值以及最大单色辐出度所对应的波长与原波长的比值分别为
- (B) 2, 1/2. (C) 4, 1/2.
- (D) 2,

《大学物理下》试卷 A 第 2 页 共 7 页

11. 用频率为 ν_1 的单色光照射某种金属时,测得饱和电流为 I_1 ,以频率为 $ u_2$ 的单
色光照射该金属时,测得饱和电流为 I_2 ,若 $I_1 \!\!>\! I_2$,则
(A) $\nu_1 > \nu_2$. (B) $\nu_1 < \nu_2$.
(C) $\nu_1 = \nu_2$ (D) $\nu_1 = \nu_2$ 的关系还不能确定。 12. 关于不确定关系 $\Delta x \cdot \Delta p_2 \geq \hbar$,有以下几种理解。
(1) 粒子的动量不可能确定.
(2) 粒子的坐标不可能确定.
(3) 粒子的动量和坐标不可能同时准确地确定。
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。
其中正确的是:
(A) (1), (2). (B) (2), (4). (C) (3), (4). (D) (1), (4).
□ □、填充题 (每空 2 分, 共计 24 分)
1. 两个同方向的简谐振动曲线如图所示。合振 4. 人 人 2.00
动的振幅为
7)
2. 如图所示,在双缝干涉实验中 $SS_1 = SS_2$,用波长为 λ 的光照射双
缝 S_1 和 S_2 ,通过空气后在屏幕 E 上形成干涉条纹。已知 P 点处为第 1 S1 \longrightarrow P
三级明条纹,则 S_1 和 S_2 到 P 点的光程差为。若将整 S
个装置放于某种透明液体中,P点为第四级明条纹,则该液体的折射 S2 字 n=
3. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射. 若屏上P点处为第二级暗纹,
则单缝处波面相应地可划分为个半波带。若将单缝宽度缩小一半,P点处
将是第
4. 康普顿散射中,当散射光子与入射光子方向成夹角 ø =
子的频率小得最多; 当 ø =
5. 电子的静止质量为 m_o ,若以速度 $v=0.6c$ 运动,则它的动能为
它的德布罗波长为
《大学物理下》试卷A 第 3 页 共 7 页

三、(10分)

已知一平面简谐波的表达式为 $y = A\cos\pi(4t - 2x)$ (SI).

- (1) 求该波的波长 λ 、频率 ν 、周期 T 和波速u的值;
- (2) 写出 t= 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;
 - (3) 求 t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻 t.

近的那个被峰通过坐标原点的时刻。 16.84-27 16.84-

《大学物理下》试卷 A 第 4 页 共 7 页

四、(6分)

用波长 $\lambda = 500 \text{ nm}$ 的平行光垂直照射折射率 n = 1.33 的劈形膜,观察反射光的等厚干涉条纹. 从劈形膜的棱算起,第 5 条明纹中心对应的膜厚度是多少?

2nets n=kn

得 分

五、(10分)

一束平行光垂直入射到某个光栅上,该光束有两种波长的光。 λ_1 —440 mm, λ_2 =660 cm (1 nm = 10^{-9} m). 实验发现,两种波长的谐线(不计中央明纹)

第二次重合于衍射角 φ =60°的方向上。求此光棚的光棚常数 d

得分

六、(6分)

在惯性 K 系,有两事件发生于同一地点,且第二事件比第一事件晚发生 8s ,而在另一惯性系 K' 中,观测到第二事件比第一事件晚 10s ,求:

- (1) K'相对于 K 运动的速度;
- (2) K'中测得两事件发生地点之间的距离。

得 分

七、(8分)

量子力学得出: 若氢原子处于主量子数 n = 4 的状态,则其轨道角动量(动量矩)可能取的值?对应于 l=3 的状态,氢原子的角动量在外磁场方向的投

影可能取的值? (用 ħ 表示)

八、附加题(10分)(强化班学生必做,其它班级学生选做) 已知一自由电子的波函数为 $\Psi(x) = A\cos(5.00 \times 10^{10} x)$, 式中x的单位是 m。(省朗克常量h=6.63×10⁻¹⁴ J-s, 电子质量为9.11×10⁻³¹ kg). 求:

- 自由电子的德布罗意波长; (1)
- 自由电子的动量: (2)
- (3) 自由电子的动能。

 $E(\overline{x}) = E_{x,1} = \mathcal{U}$ $\rho(x) = \frac{\rho x}{n} = \frac{\epsilon x}{n}$ E-15 = D(K) = 62 O.IHF EIN=P PM=P(IP) = 版分介 Pix=k)=(*p*(-p)*** E(x)=np, pix)=kp(-p) 海沟桥 PIX=K)=Xe产业公内的 EN- and DN- BY 即此文 DINF文 **IEEAA** fr)=1/10=-NW.631 EW= 1, M)= 62 T~tin) T2~ F(IIN) すへF(Kil)

17 |X-Em| > 8 | Sem P/1x-EN/< 8 / 21- PS/ En = 10 Etydx DON = E(X) - (EIX)) 64(X,T) = E(X,T) - E(x)-E(x) Gray at = allower, 1) (01/ X+1/5)= (01/2)+101/2) DX 9年 (CV(X,Y) 相关系统 我最大加兴度HE $OL(x_1,...,x_n,0) = f(x_n,0).-f(x_n,0)$ 4 Lin- xn,e)= dent = 0 日本大瓜似古什值下 3 X 无格 E(d) = E(xk) = Soxx fixio) dx = 0 有 目的= E(水)= 0 - 的元7日

《大学物理下》试卷 A 第 7 页 共 7 页

南京邮电大学 2011/2012 学年第 一 学期

《 大学物理下 》试卷 A 答案

一、选择题 (每题 3分, 共计 33 分)

				, , ,,	- / N / I	00 /	,							
ĺ	序号	1	2	3	4	5	1 6	7	8	T 0	1 10	1	r	7
	答案	n		*				ĺ			f	<u> </u>		
Į						. !	Å	A	В	В	В	D	С	

二、填充题 (每空 2分, 共计 24分)

1.
$$A_2 - A_1$$
 $(A_2 - A_1) \cos(\frac{2\pi}{T} - \frac{\pi}{2})$

- 2. 3λ, 1.33
- 3. 4, 第一、 暗纹
- $4. \pi ; 0$

$$5. \quad 0.25 m_0 c^2 \,, \qquad \frac{4 \quad h}{3 \, m_0 c}$$

$$6. \quad \sqrt{\frac{2}{a}} \sin \frac{nx}{a} e^{-\frac{i x^3 k^2}{\hbar 2 \pi a^2}t}$$

三、(10分) .

解:这是一个向 x 轴负方向传播的波.

(1)
$$\lambda = 2\pi / k = 1 \text{ m}$$

 $v = \omega / 2\pi = 2 \text{ Hz}$
 $T = 1/v = 0.5 \text{ s}$
 $u = v\lambda = 2 \text{ m/s}$

1分

1分

1分

1分

(2) 波峰的位置,即y=A的位置。

$$\cos \pi (4t - 2x) = 1$$

《大学物理下》试卷 A 第 1 页 共 3 页

六、(6分)

解: (1)
$$\Delta t = 8s$$
, $\Delta t' = 10s$, $\Delta t' = \frac{\Delta t}{\sqrt{1 - v^2/c^2}}$, $\sqrt{1 - v^2/c^2} = \frac{4}{5}$

$$\therefore v = 0.6c = 1.8 \times 10^8 \text{ m/s}$$

3分

(2)
$$\Delta x' = \frac{\Delta x - \nu \Delta t}{\sqrt{1 - \nu^2/c^2}} = \frac{-1.8 \times 10^8 \times 8}{4/5} = -1.8 \times 10^9 \text{ m}$$
 3 \(\frac{\partial}{2}{2}\)

七、(8分)

 $\mathbf{k}: n=4, \qquad l=0,1,2,3$

$$L = \sqrt{l(l+1)}\hbar$$

则轨道角动量分别为: $\sqrt{12}\hbar$, $\sqrt{6}\hbar$, $\sqrt{2}\hbar$,0;

4分

$$L_z = m_l \hbar \qquad m_l = 0, \pm 1, \pm 2, \cdots \pm l$$

角动量在外磁场方向的投影可能取的值: ±3ħ, ±2ħ, ±ħ, θ

4分

八、附加题(10分)

解:(1)因为波长具有空间周期性,则有

$$A\cos_{t}^{r}5.00\times10^{10}(x+\lambda)]=A\cos[5.00\times10^{10}(x+2\pi)]$$

$$5.00 \times 10^{10} \lambda = 2\pi$$

$$\lambda = 0.126$$
nm

4分

(2)
$$p = \frac{h}{\lambda} = 5.26 \times 10^{-24} \, kg \cdot m \cdot s^{-1}$$

(3)
$$E_k = E - m_0 c^2 = \sqrt{p^2 c^2 + m_0^2 c^2} - m_0 c^2$$

$$=1.52\times10^{-17}J=94.8eV$$
 3分

(大学物理下) 试卷A 第3页共3页

解的

$$x=k-2t.$$

当 1=4.2s 时,

$$x = (-k + 0.4)$$
 m.

3分

所谓离坐标原点最近,在上式中取 k=0,可得 x=0.4

1分

(3),
$$\Delta t = |\Delta x|/u = |\Delta x|/(v\lambda) = 0.2 s$$

: 该波峰经过原点的时刻

$$t = 4 s$$

2分

四、(6分)

解: 明纹,

$$2ne + \frac{1}{2}\lambda = k\lambda \quad (k=1, 2, \cdots)$$

3分

第五条, k=5,

$$e = \frac{\left(5 - \frac{1}{2}\right)\lambda}{2n} = 8.46 \times 10^{-4} \text{ mm}$$

2分

五、(10分)

解: 由光栅衍射主极人公式得

$$d\sin\varphi_1 = k_1 \lambda_1$$

$$d\sin\varphi_2 = k_2 \lambda_2$$
2 \(\frac{\partial}{2}\)

$$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{k_1 \lambda_1}{k_2 \lambda_2} = \frac{k_1 \times 440}{k_2 \times 660} = \frac{2k_1}{3k_2}$$
 1 \(\frac{\frac{1}}{3}\)

当两谱线重合时有 φ= φz

1分

ĦΠ

$$\frac{k_1}{k_2} = \frac{3}{2} = \frac{6}{4} = \frac{9}{6}$$

1分

两诸线第二次重合即是

$$\frac{k_1}{k_2} = \frac{6}{4}, \qquad k_1 = 6, \quad k_2 = 4$$
 2 \(\frac{1}{2}\)

由光棚公式可知 d sin60°=6A

$$d = \frac{6\lambda_1}{\sin 60^\circ} = 3.05 \times 10^{-3} \,\mathrm{mm}$$

3分

(大学物理下) 试卷 A 第 2 页 共 3 页

南京邮电大学 2010/2011 学年

《 大学物理 》期末考试试卷 (A) 答案

班级_______ 学号 姓名 院(系)_____

题号	 		<u>(73</u>)	五	六	七	总分
得分					manufacture of the second seco		
13 27		<u> </u>					<u> </u>

一、选择题(计36分,每小题3分)

(注:请将您的答案写在下表相应题号的空格内)

題号	1	2	3	4	5	6	7	3	9	10	11	12	
答案	В	В	D	C	С	В	D	A	D	A	D	С	-

! 一个质点作简谐振动,振幅为 A,在起始时刻质点的位移为 A/2 ,且向 x 轴的正 方向运动, 代表此简谐振动的旋转矢量图为

- 2. 右图中所画的是两个简谐振动的振动曲线. 若这两个简 谐振动可叠加,则合成的余弦振动的初相为

- (B) π . (C) $\frac{1}{2}\pi$.

- (A) 9/16.
- (B) 11/16.
- (C) 13/16. (D) 15/16.
- 4. 见右图, 平行单色光垂直照射到薄膜上, 经上下两表面反 射的两束光发生干涉,若薄膜的厚度为 e_i 并且 $n_i \le n_2 \ge n_3$. A, 为入射光在折射率为 m, 的媒质中的波长, 则两束反射光在 相遇点的相位差为

(大学物理) 试卷 A 答案 第 1 页 共 5 页

	and the second s	
(A) $2\pi n_2 e / (n_1 \lambda_1)$.	•	(B) $[4\pi n_1 e/(n_2 \lambda_1)] + \pi$.
(C) $[4\pi n_2 e / (n_1 \lambda_1)] + \pi$		(D) $4\pi n_2 e/(n_1 \lambda_1)$.
5. 两块平玻璃构成空	气劈形膜,左边	为棱边,用单色平行光垂直入射。若上面的平玻
璃慢慢地向上平移,则		
(A) 向棱边方向平移。	条纹间隔变小.	(B) 向棱边方向平移,条纹间隔变大。
(C) 向棱边方向平移,	条纹间隔不变。	(D) 向远离棱边的方向平移,条纹间隔不变.

6. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮 纹的中心位置不变外,各级衍射条纹

(A) 对应的衍射角变小.

(B) 对应的衍射角变大.

(C) 对应的衍射角也不变.

(D) 光强也不变。

7. X.射线射到晶体上, 对于间距为 d 的平行点阵平面, 产生衍射主极大的最大波长为

(A) d/4.

(B) d/2. (C) d. (D) 2d.

8. 如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为6的自然光垂直 入射在偏振片上,则出射光强为

(A) $I_9 / 8$.

(B) I_G / 4.

 $(C) \exists I_0/8.$ (D) $\exists I_0/4.$

9. 用频率为内的单色光照射某一种金属时。测得光电子的最大动能为5a:用频率为15 的单色光照射另一种金属时,测得光电子的最大动能为 E_{R} 。如果 $E_{R} \geq E_{R}$,那么

(A) パー ½. (B) パー ½. (C) パ= ½. (D) ハ 可能大于也可能小于 ½.

10. 如果两种不同质量的粒子, 其德布罗意波长相同, 则这两种粒子的

(A) 动量相同、

(B) 能量相同

(C) 速度相同.

11. 将波函数在空间各点的振幅同时增大D倍,则粒子在空间的分布概率将

(A) 增大D²倍. (B) 增大2D倍. (C) 增大D倍.

12. 激光全息照相技术主要是利用激光的哪一种优良特性?

(A) 亮度高。 (B) 方向性好。 (C) 相干性好。 (D) 抗电磁干扰能力强。

得分

二、填空题(18分) 題号 得 分

1. (4') 一根长为 4. 横截面积为 8 的长直密绕螺线管通以电流 4. 内部充满均匀、各 向同性磁导率为 μ 的磁介质,管上单位长度绕有 n 距导线,则管内部的磁能密度为

$$\frac{1}{2} \mu n^2 I^2$$
 (2') ____, 其自感系数为_ $\mu n^2 lS$ (2') ____

(大学物理》试卷 / 答案 第 2 页 共 5 页

2. (5') 右图为1时刻的驻波波形曲线。若此时曲线中 D点质元向上运动。试分别指出图中 A, B, C 处各质 元在该时刻的运动方向:

A 向下 (2'); B 向下 (2'); C 向上 (1') .

- 3. (3') 一简谐平面电磁波在真空中沿 x 轴传播。已知电场强度 Ē 在 y 方向上振动。 振幅为 E_0 . 则磁场强度在 Z (2')方向上振动,且振幅 $H_0 = \sqrt{\varepsilon_0/\mu_0} E_0$ (1')
- 4.(3')汽车两盏前灯相距 1.5观察者相距 S=10 km. 夜间人眼瞳孔直径 d=5.0 mm. 人 眼敏感波长为 $\lambda=550~\mathrm{nm}~(1~\mathrm{nm}=10^{-9}~\mathrm{m})$,若只考虑人眼的圆孔衍射,则人眼可分辨 出汽车两前灯的最小间距 /= 1.34 (3') (m).
- 5. (3') 光子波长为 λ . 则其能量= $\frac{hc}{\lambda}$ (1'); 动量的大小= $\frac{h}{\lambda}$ (1'); 质量= $\frac{h}{\lambda c}$ (1').

三、(10分)两条平行长直导线和一边长为 a 的正方形导线框共面. 且导 线框的一个边与长直导线平行, 其到两长直导线的距离分别为 a、2a. 已知 两导线中电流都为 $I=I_0\sin\omega$, 其中 I_0 和 ω 为常数, ι 为时间。求导线框中 的感应电动势 G: 若某时刻 d//dr > 0, 则此时 G 在回路中绕向如何?

解:两个载同向电流的长直导线在如图坐标 x 处所产

生的磁场为

$$B = \frac{\mu_0}{2\pi} (\frac{1}{x} + \frac{1}{x - a})$$
 2 3

选顺时针方向为线框回路正方向,则

$$\phi_m = \int BdS = \frac{\mu_0 Ia}{2\pi} \left(\int_{1a}^{3a} \frac{\mathrm{d}x}{x} + \int_{2a}^{3a} \frac{\mathrm{d}x}{x - a} \right)$$
$$= \frac{\mu_0 Ia}{2\pi} \ln 3$$

$$\therefore \mathcal{E}_{i} = -\frac{\mathrm{d}\phi_{m}}{\mathrm{d}t} = -\frac{\mu_{0}a\ln 3}{2\pi}\frac{\mathrm{d}I}{\mathrm{d}t}$$
$$= -\frac{\mu_{0}I_{0}a\omega\ln 3}{2\pi}\cos\omega t \qquad 3\%$$

若 $\frac{dI}{dt}>0$,则 $\mathcal{E}_{i}<0$,感应电动势在回路中的绕向为"逆时针"方向。

学物理》试卷 A 答案 第一3 页 共 5

得分

四、(6分)有一轻弹簧,当下端挂一个质量 m=10 克的物体而平衡时,伸长量为9.3 cm.用这个弹簧和该物体组成一弹簧振子.取平衡位置为原点,向上为x轴的正方向.将 m从平衡位置向下拉 2 cm 后,给予向上的初速度

 $v_0 = 20\sqrt{3} \text{ cm/s}$ 并开始计时,试求该系统的振动周期和振动方程的数值表达式(重力加速度 g 取 980 cm/s²)

解: 弹簧倨强系数 $k = mg/\Delta l = 1000 \text{ (dn/cm)}$

$$\omega = \sqrt{k/m} = 10 \text{ (s}^{-1})$$

$$T = \frac{2\pi}{\omega} = \frac{\pi}{5} \approx 0.63 \text{ (s)} \qquad (2 \text{ 5}^{\circ})$$

$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$

$$= \sqrt{(-2)^2 + (20\sqrt{3}/10)^2} = 4 \text{ (cm)} \qquad (2 \text{ cm})$$

由旋转矢量图可知: 初相位 $\varphi_0 = -\frac{2\pi}{3}$ (1分)

则,振动方程为:
$$x = 4\cos(10t - \frac{2\pi}{3})$$
 (cm) (1分)

得 分

五、(10分) 图示一平面简谐波在 /= 0 时刻的波形图, 求

- (1) 该波的波函数;
- (2) P处质元的振动方程

解:由图可知, 2=0.4m,则

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{\lambda/u} = \frac{\pi}{4}$$
 (3 \(\frac{\pi}{2}\))

原点 0 处质元此时在平衡位置向一y 方向运动。由旋转矢量图可知,原点 0 处质元的初相位:

$$\varphi_0 = \frac{\pi}{2} \tag{2.51}$$

波函数为:

$$y = A\cos[\omega(t-\frac{x}{u})+\varphi_0]$$

= $\frac{1}{2}0.06\cos[\frac{\pi}{4}(t-\frac{x}{0.05})+\frac{\pi}{2}]$ (m) (3 分)
将 x=0.2m 代入上式,得 P 点振动方程:

$$y = 0.06\cos(\frac{\pi}{4}t + \frac{3\pi}{2})$$
 (m)

或
$$y = 0.06\cos(\frac{\pi}{4}t - \frac{\pi}{2})$$
 (m) (2 分)

《大学物理》试卷 A 答案 第 4 页 共 5 页

得 分

六、(10 分)双缝干涉实验装置如图所示,双缝与屏之间的距离 $D=120~\mathrm{cm}$,两缝之间的距离 $d=0.10~\mathrm{mm}$,用波长 $\lambda=500~\mathrm{nm}$ ($1~\mathrm{nm}=10^{-9}~\mathrm{m}$)的单色光垂直照射双缝.(1)求原点 O(零级明条纹所在处)上方的第五

级明条纹的坐标 x. (2) 如果用厚度 $l=1.0\times 10^{-2}$ mm, 折射率 n=1.50 的透明薄膜 复盖在图中的 S_1 缝后面,求上述第五级明条纹的坐标 x'

$$eta$$
: (1) \therefore $\ddot{o} = r_2 - r_1 \approx dx/D \approx k\lambda$
 $\therefore x \approx Dk\lambda/d = (1200 \times 5 \times 500 \times 10^{-6}/0.1)$ mm=30 mm (4分)

(2) 从几何关系,近似有 $n-n \approx dx'/D$ 有透明薄膜时,两相干光线的光程差

$$\delta = r_2 - (r_1 - l + nl) = r_2 - r_1 - (n-1)l$$

= $d x' / D - (n-1)l$ (2.51)

对零级明条纹上方的第5级明纹有

$$\delta = 5\lambda \tag{2 } \%$$

零级上方的第五级明条纹坐标

得分

七、(10分)用钠光(3=589.3 nm)垂直照射到某光棚上,测得第三级明纹主极大的衍射角为60°、(1)若换用另一光源测得其第二级明纹主极大的衍射角为30°,求后一光源发光的波长、(2)若以白光(400 nm~760

nm) 照射在该光栅上,求其第二级光谱的张角。(1 nm= 10⁻⁹ m)

解:
$$(1) d \sin \varphi = k\lambda$$

(2分)

 $d = 3\lambda / \sin \varphi$, $\varphi = 60^{\circ}$

 $d = 2\lambda' \sin \varphi'$ $\varphi' = 30^{\circ}$

 $3\lambda / \sin \varphi = 2\lambda / \sin \varphi'$

$$\hat{\lambda} = 510.3 \text{ nm}$$

(3分)

(2) $d = 3\lambda / \sin \varphi = 2041.4 \text{ nm}$

$$\varphi_2' = \arcsin(2 \times 400 / 2041.4)$$
 (2=490nm) (2.51)

$$\varphi_2'' = \arcsin(2 \times 760 / 2041.4) \quad (\lambda = 760 \text{nm}) \quad (2 \%)$$

白光第二级光谱的张角

$$\Delta \varphi = \varphi_2'' - \varphi_2' = 25^\circ \tag{1 }$$

《大学物理》试卷 A 答案 第 5 页 共 5 页

南京邮电大学 2010/2011

《大学物理下》期末试卷B/参学/红

itali,					e file i i i i i i i i i i i i i i i i i i							ST K	M/
院(系	نسا			班级_			学号			姓	名		
PÎ	Ť							27 T 5,2			-		٠.
700	5				(<u>. 188</u>)	179	J.		大道			公分;	
得	% .												
* *							-						444
得分			选择	题 (包	手 题 3	分, 其	‡ 计 3	6 41)			2.369.24		
		. (答案填	入下	表相互	又题号	KI SI	2カイ		- 1			
			er freet.	작 (411년) 1	H.Y	##\$[J	na ma	H.F. C			Willey.	$\mathcal{P} = \mathbb{F}_{p}$	
25 S			[j	T	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		r	T	r	~_1
顯号 	1	2	3	4	, 5	6	7	8	9	10	11	12	
答案					-						:	ļ	
1、一辨	· 管振司	~ 在光	~ —— 滑 水 平	面上格	ille iii =	上 2首2	生たい を	19 z: 47.	ا	dhe ll. di	L = C = 3	<u></u>	J
动的鱼:	節末头	$\omega = 0$	te /m Y = 1	\s+=+ \s	- n= √1€29 155 -¥- 4	u, ppg	e calve.	四	Д K,	19914-II	リ质重え	50 四,书	奖.
动的角度为	75. (- 73		K/H/	工匠	植刀 A,	自旋	于的英	能和卖	於能相等	等的瞬	时,物	体的运	k
				. 1									
(A) $\sqrt{2}$									ø	(D)	ωA		
2、一横	波沿线	子传)	層时的:	波动方	程为力	$\nu = 0.0$	5 cos($4\pi x - 1$	l 0πt)(.	SI),	则	P''	
LØ i	皮长为	0. 5m							27				4.4
(C) ½	支速力	25m/s		•		(D) 波	· 速为 5i	n/s	4.7.				
9、如图	示,两	列平	五余弦	皮分别					· 杨沙 - 1		_ \$ŧ		- : در
D 10cm		1.072	i A	S. 1 0	C. M. E		H-E-	211 011				بني المنطقة المراجعة	market in the second
ν =3.00	in /			1317		Aurin 13	CALLY CALL	キル 2017 上で上	175	con 5			
ý r=3co. C-⊅ s<				STACKC	型人工	2601/11 2 (3)	が出来	自歌間			12 27		
$S_i \mathcal{P} = \hat{S}_i$	ÇIII,		F = Zf	cni.	有个	考尼政	能量不	EI传播		\$52			(A)
里中的技	4 7 4	ال الدا								4 733	2010		7
A) lem			8/7 cm		(c)	3cm		(D) 4	ġ m ,				
う真空	中,平	面电磁	域的	场强 [变 E、	磁场强	度礼和	1传播5	東度山	的关系	. 根.	V (2)	
(A) <u>=</u>	者相互	垂直,	而电影	强度	E和磁	扬裙度	并松末	和差	~ ~ . n √o.	- oʻs dist	•>		

- - (E) 三者相互垂直,而 E. H. u构成右手螺旋; (C) 电场强度 E 和磁场强度 H 方向相同; 且与 u 的方向垂直,
 - (D) 电场强度 E 和磁场强度 H 方向不确定,但与 L 的方向垂直

8、一勾质矩形薄板,在它静止时测得其长为 a, 宽为 b, 质量为 mo. 由此可算出其 面积密度为mo/ab:假定该薄板沿长度方向以接近光速的速度。作句速直线运动,此 时再测算该矩形薄板的面积密度则为

(A)
$$\frac{m_0 \sqrt{1_{ii}(v/c)^2}}{ab}$$
 (B) $\frac{m_0}{ab\sqrt{1_{ii}(v/c)^2}}$ (C) $\frac{m_0}{ab[1-(v/c)^2]}$ (P) $\frac{m_0}{ab[1-(v/c)^2]}$

9、光子能量为 0.5 MeV 的 X 射线、入射到某种物质上而发生康普顿散射。 子的动能为 0.1 MeV. 则散射光波长的改变量与入射光波长的比值为 (A) 0.20.

- -(£) 0.30 10、由氢原于理论知, 当大量氢原子处于 n=3 的激发态时, 原子跃迁将发出
 - (A) 一种波长的光;
- (8) 两种波长的光
- 种波长的光
- (D) 连续光谱

11、用频率为 v, 和 v, 的两种单色光,先后照射同一种金属均能产生光电效应,已知该金属的红限频率为 v。 测得两次照射时的遏止电压 | u _ , | = 2 | u _ , | , 则这两种单色光的频率有如下关系

 $(A) \nu_1 = \nu_1 + \nu_0$; $(B) \nu_2 = 2\nu_1 - \nu_0$; $(C) \nu_2 = \nu_1 - 2\nu_0$; $(D) \nu_2 = \nu_1 - \nu_0$. 12. 按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是。

(A) 两个原子自发辐射的向频率的光是相干的,原子受激辐射的光与入射光是不相干的。

(B)两个原子自发辐射的同频率的光是不相于的。原子受激辐射的光与入射光是相干的。

(C)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是 不相干的。

(D)两个原子自发辐射的同频率的光是相干的,原子受散辐射的光与入射光是相干。

得分

二、填充题(每空格 2 分,共计 20 分)

1、右图,表示简谐振动的位移 x-1图,则图的

谐振动表述式为

2、一平面简谐机械波在媒质中传播时,若一媒质质元

在i时刻的波的能量是BJ,则在(t+T)(T为波的周期)时刻该媒质质元的振动动能是

3、一质点同时参与了三个简谐振动,它们的振动方程分别为 $x_1 = A\cos(\omega t + \pi/2)$ $x_2 = A\cos(\omega t + 7\pi/6)$ 。 $x_3 = A\cos(\omega t + \pi/6)$,其合振动方程为

4. 月球距地面大约3.8 $\frac{10^{\circ} \text{kin}}{2}$ 。假设自然发长可按 1=500 im 计算,则在地段上用直径 D=500 cm 的天文望远镜恰好能分辨月球表面相距为______ in 的两点。

5、一束光强为五的自然光,相继通过三个偏振片点、A、A、已知 A和 A的偏振化 了。1、cs 8 方向相互垂直,A和 A的偏振化方向的夹角是 80°,则出射光的光强为_____

6、在图示的双缝干涉实验中,若用薄玻璃片(折射率 n=1.4) 覆盖缝 S. 用同样厚度的玻璃片(但折射率 n=1.7) 覆盖缝 S. 将使原来未放玻璃时屏上的中央明条纹处 a 变为第五级明纹、设单色光波长为 480 nm(lnm=101 m), 玻璃片的厚度 d(可认为光线垂直穿过玻璃片)为______

(A, 小) (大学物理下》 期末试卷 B 第 3 页 共 6 页

7、一字宙飞船相对于地球以 0.8c (c.表示真空中光速)的速度飞行。现在 从船尾传到船头,已知飞船上的观察者测得飞船长为 90 m,则地球上的观察者测得 光脉冲从船尾发出和到达船头两个事件的空间间隔为____

8. 一个光子的波长为300.0 nm, 如果测定此波长的精确度为 Δ2/1=10% 则此

- 9、桂晶体的禁带宽度为-1、2eV、适当掺入碎后、施主能级和硅导带底的 9.045eV,此掺杂半导体能吸收的光子的最大波长为
- 10、己知粒子在一维矩形无限深势阱中运动,其波函数为.

$$\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

那么粒子在x=5a/6处出现的概率密度为

三、(12分)一平面谐波沿 x 方向传播, BC 为波密媒质的反射面, 波传 播到P点被反射, $OP = \frac{3}{4}\lambda$ 。t = 0时O处质点由平衡点与正方向运动。

设A、 a 为己知, 求:

- (1) 以 O 为原点写出入射波的波动方程;
- (2) 反射波的波动方程:
- (3) 合成波的波动方程;

- 得分 四、(12 分) 用波长为(600 nm) (i nm=10 m) 的单色光垂直照射到由两块 折射率为 1.60 的光学平玻璃构成的空气劈形膜上。在观察反射光的干涉 现象中,距劈形膜棱边 L = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹
- 中心. (1) 求此空气劈形膜的劈尖角:
- (2) 改用 600 cm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹? 从楼边到 A 处的范围内有几条暗纹?
- (3) 假如在劈尖内充满折射率为 1.50 的液体时,用 600 nm 的单色光垂直照少射到此劈尖上时,相邻明纹间距比劈尖内是空气时的间距改变了美

母 分 \ 五、(8分) 波长 500m 的单色光垂直入射在一光拇上,第二级明条纹的衍射角为 30°、 第三级缺级。(1)。光盘常验 4 有多大;(2)光栅上可能包量小宽度 a 有多大;(3)按照上述选定的 4. a 值。光屏上可能观察到的

ダ-冷冽/自星文光を小?

(大学物理下) 期末试卷 B 英孚東 天 6 页

得分

六、(6分) 初速度为零的电子经 U 电压加速后垂直来行入射到缝宽为 a 的单缝上,在距离狭缝为 L 处放置一贵光屏,(1) 若不考虑相对论效应,求加速后的电子的动量、波长;(2) 计算屏上的射图样中央最大的宽度。

得分

七、 $(6\, \mathcal{G})$ 在惯性参考系 S 中,有两个静止质量都是 m_0 的粒子 A 和 B,分别以 v=0.6c 的速度沿同一直线相向运动,相礁后合在一起成为一个粒子,则合成粒子静止质量 M_0 的值是多少?(真空中光速用 c 表示)

(大学物理下) 如末试卷 日、第 6 页 共 6 征

南京邮电大学 2010/2011 学年第 一 学期

大学物理下》期末 试卷 B 答案及评分标准

程题(每题3分,共计36分)

記念	 †: 2 	ĵ	4	5	Ó	7	8	9	10	11	12
答案	A	А	B	D ,	В	В	С	В	С	В	В

题(每空格2分,共计20分)

1.
$$x = cos(\frac{5}{6}\pi t - \frac{\pi}{3})$$
:

(农马成生或没写光=0,和1分)

$$8. \ 0.3m.$$

10.
$$\frac{1}{2a}$$
.

解: (1) 资 振动方程为
$$y_0 = A \cos[\omega t + \rho]$$
,

$$t = x = 0, \quad y = 0, \quad v > 0, \quad \varphi = -\frac{\pi}{2}, \tag{13}$$

$$\mathbb{R}^{2} \quad \forall y = A \cos\left[\omega t - \frac{2\pi}{\lambda} \times -\frac{\pi}{2}\right] \tag{2.3}$$

(2) 设反射波方程为
$$y_2 = A\cos\left[\omega i + \frac{2\pi}{\lambda}x + \varphi'\right]$$
. 当 $x = OP = \frac{3}{4}\lambda$ 反射的存在

半波损失[
$$\omega t + \frac{2\pi}{\lambda} x + \varphi'$$
] $- [\omega t - \frac{2\pi}{\lambda} x - \frac{\pi}{2}] = -\pi$

$$\therefore \varphi' = -4\pi - \frac{\pi}{2}, \qquad \text{含弃} - 4\pi, \quad \mathbb{D} \varphi' \mathbb{R} - \frac{\pi}{2}$$
 (2分)

(5)
$$y = y_1 + y_2 = 2A \cos \frac{2\pi x}{\hat{a}} \cos \left(\omega t - \frac{\pi}{2}\right)$$
 (2 37)

(4) 当
$$x = OP - DP = \frac{7}{12}\lambda$$
时, $y = -\sqrt{3}A\sin\omega t$ (3分)

四、(12分)

$$\theta = \frac{d_k}{L} = \frac{1.5\lambda}{L} = \frac{1.5 \times 500 \times 10^{-9}}{1.56 \times 10^{-2}} = 4.8 \times 10^{-5} \text{ rad} \qquad (2\%)$$

(2)
$$\lambda' = 600nm$$
 时, $\delta' = 2d_k + \frac{\lambda'}{2} = 3\lambda + \frac{\lambda'}{2} = 3\lambda' = k \lambda'$ 滿足亮纹条件,则 A 处看到的是亮纹。

因 E'=3.则从核边到 A 处的范围内有 3 条暗纹 (2分)

(3) 劈尖内充满折射率为 1.50 的液体时相邻明纹间距为 $l'=\frac{\lambda'}{2n\theta}$

劈尖内是空气时柜邻明纹间距为 $l=\frac{\lambda'}{2\theta}$

何距改变
$$\Delta l = l - l' = \frac{\lambda'}{2\theta} - \frac{\lambda'}{2n\theta} = 2.08mm$$
 (4分)

五、(8分)

解: (1)
$$d \sin \theta = k\lambda$$
, $k = 2$, $\theta = 30^{\circ}$, $d = \frac{2\lambda}{\sin 30^{\circ}} = 4\lambda = 2400 \text{ nm}$ (2分)

(2)
$$\begin{cases} d \sin \theta = k\lambda \\ a \sin \theta = k'\lambda \end{cases}, \quad \frac{k}{k'} = \frac{d}{a}, \quad k = 3, \quad a = \frac{d}{3}k' = 800k' \text{ nm}$$

$$k' = 1$$
, $o = 800 \, \text{nm}$; (3.5f)

(3)
$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$
. $k_{\pi} = \frac{d}{\lambda} = \frac{2400}{600} = 4$. $k = 3 缺级$. 所以能看到 $0,\pm 1,\pm 2$ 级。

六、(6分)

解: (1)
$$eU = \frac{P^2}{2m_e}$$
 得 $P = \sqrt{2m_e eU}$ (1分)

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2m_e eU}} \tag{2.5}$$

(2)
$$a\sin\theta = \lambda$$
 (1 \Re)

$$\sin\theta \approx tg\theta = \frac{d/2}{L}$$

$$d = \frac{2L\lambda}{a} = \frac{2Lh}{a\sqrt{2m_e eU}}$$
 (2 \(\frac{1}{2}\))

七、(6分)

解: 设碰撞后的合成粒子质量为 M. 速度为 v

动量守恒:
$$mv - mv = MV = 0$$
 说明合成粒子静止 (2分)

能量守恒:
$$mc^2 + mc^2 = M_0 c^2$$
 (2分)

择得
$$M_0 = 2m = \frac{2m_0}{\sqrt{1 + m^2 + m^2}} = 2.5m_0$$
 (2.分)

(大学物理下) 试卷 B 答案 第 3 页 共 3 页

自觉遵守考试规则"诚信考试"绝不作"数"订"线"内"不"要 答 题

南京邮电大学 2009/2010 学年第 一 学期

《大学物理(下)》 期末 试卷(B)

院(系)	班级	V	学 号		姓名_	
题号 一 二	三(1)	= (2)	三(3)	£ (4)	= (5)	总分
得分						
得分 一、选择题(共 36 分,每	小題 3 分)		16.00 - 200-107 (110000		1
1-(3 分) 弹簧分割为等 振动时,振动频率为	弹簧振子在; 长的两半,原					
(A) v	Ĭ)	3) $\sqrt{2}v$				
(C) 2 v	(;	O) 0.5 v				
答:[]]						
2. (3分) 沿波的传播方向	l (x轴) 上有	A . B 两点	京, 相距 1	$m (\lambda > \frac{1}{3})$	m), B 点的	的振动比
A 点滞后 1/24 秒 相位日				~		
$(A) 2H_Z$		(B) 4H				
(C) 6H ₂		(D) 81	ĥĪ _Z			
答:[A]						
3. (3 分) 在驻波中,两个 (A) 振幅相同,位相 (C) 振幅相同,位相	相同。	(B)	振幅不同],位相相] [

答: []]

4. (3分) 在双缝干涉实验中,若单色光源 S 到两缝 S_1 、 S_2 距离相等,则观察屏上中央明条纹位于图中 O 处。现将光源 S 向下移动到示意图中的 S 位置,则 (A) 中央明条纹也向下移动,且条纹间距不变,

《大学物理(下)》、试卷B 第1页共6页

- (B) 中央明条纹向上移动,且条纹间距不变,
- (C) 中央明条纹向下移动,且条纹间距增大,
- (D) 中央明条纹向上移动,且条纹间距增大。

答:[]

5. (3分) 一束波长为 A 的单色光由空气垂直入射到折射率为 n 的透明薄膜上,透明薄 膜放在空气中, 要使透射光得到干涉加强, 则薄膜最小的厚度为 (A) $\lambda/4$ (B) $\lambda/(4n)$

- $(C)\lambda/2$
- (D) $\lambda/(2n)$

答:[]]]

6. (3分) 在迈克耳孙干涉仪的一支光路中,放入一片折射率为 6 的透明介质蓉膜后, 测出两束光的光程差的改变量为一个波长(波长为 2),则薄膜的厚度为: (A) 2/2

- (B) $\lambda I(2n)$
- (C) 2/ n
- (D) $\lambda / (2n-2)$

答:[7]]

7. (3分) 波长为 4 的单色平行光垂直入射到一狭缝上, 岩第一级衍射暗纹的位置对应 的衍射角为 θ = ± $\pi/6$, 则狭缝缝宽为 (A) 2/2 (B) ん

- (D) 3 2

答:[(]]

8. (3 分) 一束光强为 I_0 的自然光,相继通过三个偏振片 P_1 、 P_2 、 P_3 、已知 P_1 和 P_3 的偏 振化方向相互垂直, P_1 和 P_2 的偏振化方向间的夹角为 30° ,则出射光的光强 I 为: (A) $I_0/4$ (B) $3I_0/8$

- (C) $3I_0/32$
- (D) $I_0/16$

答:[(]

9. (3分) 若一字航员要到离地球 5 光年的星球去旅行,他希望将这段路程缩短为 3 光 年,则他所乘的宇宙飞船相对于地球的速度应为(c表示真空中的光速) (A) (1/2) c (B) (3/5) c

- (C) $(4/5)_{c}$
- (D) (9/10) c

答:[[]

10. (3分) 根据狭义相对论,动能为 0.25 MeV 的电子,其运动速度约等于 (c表示真空 中的光速,电子的静能 $m_0c^2 = 0.5 \text{ MeV}$)

(A) 0.1c (B) 0.5c (C) 0.75c

(D) 0.85c

答:[()

11. (3分) 如果两种不同质量的粒子, 其德布罗意波长相同, 则这两种粒子的

(A) 动量相同

(B) 能量相同 (C) 速度相同

(D) 动能相同

答:[A]

12. (3 分) 不确定关系式 $\Delta x \cdot \Delta p_x \ge \hbar$ 表示在 x 方向上

(A) 粒子位置不能准确确定

(B) 粒子位置和动量都不能准确确定

(C) 粒子动量不能准确确定

(D) 粒子位置和动量不能同时准确确定

答:[()]

得分

二、填空题(共20分)

1. (3 分) 设平面电磁波的电场强度为 \vec{E} 、磁场强度为 \vec{H} 。 \vec{E} 和 \vec{H} 的方向相 工 专方 , 任意时刻 尼和 开的相位 本

$$\vec{H}$$
的大小关系 $\frac{E}{H} =$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$ $\frac{\Pi}{E}$

2. (3 分) 一平面简谐波沿x轴负向无衰减地传播, 波的振幅为 2×10^{-2} m, 周期为 0.01s, 波速为 400m·s^{-1} 。当 t=0 时 x 轴原点处的质元正通过平衡位置向 y 轴正方向运动,则该

3.(3分)一平面简谐机械波在媒质中传播时,若一媒质质元在 t 时刻的波的能量是 10.J, 则在(t+T)时刻,该媒质质元的振动势能是_ ____。(T为波的周期)

Ė 淤 遵 F. 2 42 规 厠 扚 城 不 擂 Ħ 27 W. 始 不 题 作

整

4. (3 分) 一质点同时参与了三个简谐振动,它们的振动方程分别为:

 $x_1 = A\cos(\omega t + \pi/3)$, $x_2 = 2A\cos(\omega t + 5\pi/3)$, $x_3 = A\cos(\omega t + \pi)$, 则其合振动的振动方程为: $x = A\cos(\omega t + \frac{5\pi}{3})$ 。

7. (2 分) 一束动量为P的电子,通过缝宽为b的狭缝。在距离狭缝为L 查放置一荧光屏,屏上衍射图样中央最大的宽度 d 为 ______ $\geq h$ D

三、计算题(共44分)

得 分

1. $(9 \, f)$ 一平面简谐波,沿x轴正向无衰减地传播,t=0 时的波形如图。 若波速 u=0.08 m/s ,求简谐波的表达式。

得 分

2. (10 分) 一束具有两种波长石和石的平行光垂直照射到一衍射光栅上, 测得 波长A,的第三级主极大衍射角和A,的第四级主极大衍射角均为 30°。

已知: $\lambda_1 = 560 \text{ nm}$ ($1nm = 10^{-9} m$), 试求: (1) 光栅常数 d; (2) 波长 λ_2 。

(1)
$$d(s) = 3\lambda$$
, $d = \frac{3\lambda_1}{5 \times 30} = 6\lambda_1 = 3.36\lambda$
(2) $d(s) = 30^\circ = 4\lambda_1$, $\lambda_2 = \alpha > 0$ nm.

3. (10 分) 将两个偏振片叠放在一起,这两个偏振片的偏振化方向之间的夹角 为 60°、一束强度为 6 的线偏振光垂直入射到偏振片上,该光束的光矢量 振动方向与二偏振片的偏振化方向皆成30°角。(1)求:透过每个偏振片后 的光强度:(2)若将原入射光束改换为强度相同的自然光,求:透过每个偏 振片后的光强度。

(1)
$$\frac{1}{4} = \frac{3}{4} I_0$$
 $\frac{1}{12} = \frac{7}{16} I_0$

 $I_1 = \frac{1}{2}I_0$

 $\Psi_3 = \sqrt{\frac{2}{a}} \sin \frac{3\pi x}{a}$, (0 < x < a)。求:粒子的概率密度分布函数及概率密

$$\frac{dw_{3}}{dx} = 0$$

$$\frac{dw_{3}}{dx} = 0$$

$$\frac{dx}{dx} = 0$$

$$\frac{dx$$

5. (7分) 一光子的波长为え=300 nm, 如果此波长的不确定量 Δλ 与波长え 之比为 $\frac{\Delta\lambda}{\lambda}=10^{-6}$,求:(1)光子动量的不确定量:(2)光子位置的最小不

(普朗克常数: h=6.63×10⁻³⁴J-s)

(2)
$$P = \frac{h}{5}$$
. $AP = \frac{h}{12}AI = 2.21 \times 10^{-33} + 9. m. f^{3}$
(2) $ax = \frac{h}{op} = 0.30 \text{ m}$.

自 觉 Ě ÷ \vec{x} 绝 不 作 弊

《大学物理下》期末试卷 A 产发客

学院_			班级	ŧ			学号		<u>,</u>	姓名。		AND IN COURT
題号					414	<u>tā</u>	<u> </u>		六	t		总分
得分				AT IT			.,,,		A-A			
得分		(2	选择题 答案填入	(每题 下列相	3 分, 应题号	共计 36 的空格) 内)					
題号	1	Ś	3	4	S	6	7	8	9	10	11	12
答案					Total Control of the							

1、物体作简运动,运动方程为 $x = A\cos(\omega t + \frac{1}{4}\pi)$ 。在t = T/4(T为周期)时刻,物体加 速度为

$$(A) = \frac{1}{2} \sqrt{2} A \omega^2$$

(B)
$$\frac{1}{2}\sqrt{2}A\omega^2$$

(A)
$$-\frac{1}{2}\sqrt{2}A\omega^2$$
 (B) $\frac{1}{2}\sqrt{2}A\omega^2$ (C) $-\frac{1}{2}\sqrt{3}A\omega^2$ (D) $\frac{1}{2}\sqrt{3}A\omega^2$

$$(D) \frac{1}{2} \sqrt{3} A \omega^2$$

2、一弹簧握子作简谐运动,总能量为 E_1 ,如果简谐运动的振幅增加为原来的两倍,重物的

质量增为原来的四倍,则它的总能量 \mathcal{E}_2 变为

(A)
$$E_1/4$$

(B)
$$E_1/2$$
 (C) $2E_1$

3、一列机械横波在1时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置

$$(C)$$
 o' , d

4、如图,用单色光垂照射在观察牛顿环的装置上,当平凸 透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环 干涉条纹

- (A) 向右平移
- (B) 向中心收缩
- (C) 向外扩张
- (D) 静止不动
- (E) 向左平移

《大学物理下》期末试卷 4 第 1 页 共 6 页

状

得分

二、填充题 (每空格 2 分, 共计 20 分)

2、一物体同时参与同一直线上的两个简谐运动:

$$x_i = 0.05\cos(4\pi i + \frac{1}{3}\pi)$$
 (SI)

$$x_2 = 0.03\cos(4\pi t - \frac{2}{3}\pi)$$
 (Si)

3、己知平面简谐波的表达式为 $y = A\cos(Bt - Cx)$ 式中 $A \otimes B \otimes C$ 为正值常量,此波的波长

是_____,被速是____。在波传播方向上相距为 d 的两点的振动相位差是_____。

4、当一束自然光以布儒斯特角入射到两种媒质的分界面上时,就偏振状态来说反射光为__

得分

三、(本题 10 分) 一列平面简谐波在媒质中以 波速 u = 5m/s 沿 x 轴正向传播, 原点 O 处质元 的振动曲线如图所示、求:(1) 该波的波函数:(2) /=/s 时, x=25m 处质元的振动速度。

四、(本题 10 分) 在双缝干涉实验中,单色光源 S_o

到两缝 S_1 和 S_2 距离分别为 I_1 和 I_2 ,并且 I_1 - I_2 = 3λ , λ 为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D(D>>d)如图,求。

(1) 零级明纹词屏幕中央0点的距离,(2) 相邻明条纹间的距离。

1

得分

五、(本题 10分)

- (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, $\lambda_1 = 400 \text{nm}$, $\lambda_2 = 600 \text{nm}$ ($1 \text{nm} = 10^9 \text{m}$)。已知单缝宽度 $b = 1.0 \times 10^{-2} \text{cm}$,透镜焦距 f = 50 cm,求两种光第一级衍射明纹中心之间的距离。
- (2) 若用光棚常数 $d=1.0\times10^{-3}$ cm 的光棚替换单缝,其他条件和上问相同,求两种光第一级主明纹中心之间的距离。

得分

六(本題8分)

质量为 m_e 的电子被电势差 $U_{ij}=100$ kV的电场加速,如果考虑相对论效

应,试计算其德布罗意波的波长。(电子静止质量 $m_e=9.11\times10^{-31}$ kg,普朗克 常量 $h=6.63\times10^{-34}$ J·s,基本电荷 $e=1.60\times10^{-19}$ C)

得分

七(本题6分)

己知粒子在一维无限深势阱中运动,其波函数为

 $\psi(x) = \sqrt{2/a}\sin(\pi x/a) \quad (0 \le x \le a)$

宗:(1) 粒子在何处出现的概率最大;

(2) 在 (0. a/2) 区间找到粒子的凝率

08/09 学年《大学物理下》期末试卷 A 参考答案及评分标准

一、选择题 (每题 3 分,共 36 分)

3.B 4.B 5.B 6.D 7.B 8.B 9. B 10.A 11. D 12. C

二、填空题(每空2分,共20分)

1. 0.04 0.04\cos(4\pi t -
$$\frac{\pi}{2}$$
)(SI); 2

2. 0.02; 3.
$$\frac{2\pi}{c} \frac{B}{c} cd$$

4. (完全) 偏振光 (或线偏振光), 垂直; 5. $\frac{h}{2\pi}$, 0, 量子力学

5.
$$\frac{h}{2\pi}$$
, 0 , 量子力学

以下计算题仅给出评分框架,其中所含考点得分可自行酌情细分。

三、(本题 10分)

(1) O 处振动方程
$$y = 2 \times 10^{-2} \cos(\frac{\pi}{2}t - \frac{\pi}{2})$$
(SI)

4分

波函数
$$y = 2 \times 10^{-2} \cos\left[\frac{\pi}{2}(t - \frac{x}{5}) - \frac{\pi}{2}\right]$$
(SI)

2分

(2)
$$x = 25m$$
 处质元振动方程 $y = 2 \times 10^{-2} \cos(\frac{\pi}{2}t - 3\pi)$ (SI)

2分

$$t = 1s \text{ Hi}$$
 $v = \frac{dy}{dt} = 3.14 \times 10^{-2} \text{ m/s}$

2分

四、(本题 10 分)(1)如图,设 p_0 为零级明纹中心

3分

$$\Delta = (l_2 + r_2) - (l_1 + r_1) = 0 \qquad r_2 - r_1 = 3\lambda$$

$$\overline{p_0O} = D(r_2 - r_1)/d = 3D\lambda/d$$

3分

$$\Delta \approx (dx/D) - 3\lambda$$

2分

明纹条件
$$\Delta = \pm k\lambda$$
 $k = 1, 2, \dots \Delta x = x_{k+1} - x_k = D\lambda/d$

2分

五、(本题10分)

(1) 明纹:
$$b \sin \theta = \frac{1}{2}(2k+1)\lambda = \frac{3}{2}\lambda$$
 (k=1)

2分

$$x = f \tan \theta \approx f \sin \theta = \frac{3}{2} \frac{f\lambda}{b}$$

$$\Delta x = x_2 - x_1 = \frac{3}{2} f \Delta \lambda / b = 0.15 \text{cm}$$

2分

(2) 主明纹:
$$d \sin \theta = \lambda (k=1)$$

2分

$$x = f \tan \theta \approx f \sin \theta$$

$$\Delta x = x_2 - x_1 = f \Delta \lambda / d = 1.0cm$$

2分

《大学物理下》期末试卷 A 答案第 1 页 共 2 页

六、(本题8分)

$$p = mv = m_0 v / \sqrt{1 - (v/c)^2}$$

$$eU_{12} = [m_0 c^2 / \sqrt{1 - (v/c)^2}] - m_0 c^2$$

$$\lambda = h / p$$

$$2$$

$$\lambda = \frac{hc}{\sqrt{eU_{12}(eU_{12} + 2m_0 c^2)}} = 3.71 \times 10^{-12} \text{m}$$

$$2$$

$$\pm \sqrt{\frac{A }{2}} = \frac{1}{\sqrt{2}} \left[|\psi(x)|^2 - \frac{1}{2} \sin^2 \frac{\pi x}{a} \right]$$

$$\pm \sqrt{2} + \sqrt{2} \left[|\psi(x)|^2 + \frac{1}{2} \sin^2 \frac{\pi x}{a} \right]$$

$$\pm \sqrt{2} + \sqrt{2} + \sqrt{2} \left[|\psi(x)|^2 + \frac{1}{2} \cos^2 \frac{\pi x}{a} \right]$$

$$\pm \sqrt{2} + \sqrt{2}$$

南京邮电大学 2008/2009 学年第一学期

《大学物理下》期末试卷 B 登案附后

, r	
, 1	
ti	总分
33	
1	

得分			一、选择题(每题3分, 共计36分) (答案填入下列相应题号的空格内)										
题号	ĺ	2	3	. %	5	6	7	8	9	10	11	.12	
 答案		H=V**PW*/AI/Aussau		- P				11 - 11 - 11 - 12 - 13 - 13 - 13 - 13 -		11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	MANAGEMENT AND		

1. 一简谐振动曲线如图所示,则振动周期是

(A) 2.62s.

(B) 2.40s.

(C)2.20s.

- (D) 2.00s.
- 2. 一质点作简谐运动,周期为 T. 当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为
- (A) T/12.
- (B) T/8

(C) T/6.

- (D) T/4
- 3. 在波长为 2 的驻波中,两个相邻波腹之间的距离为
- (A) $\lambda/4$.

- (B) $\lambda/2$.
- (C) $3\lambda/4$.
- (D) λ .
- 4. 一辆机车以30m/s 的速度驶近一位静止的观察者,如果机车的汽笛的频率为550Hz,此观察者听到的声音频率是(空气中声速为330m/s)
- (A) 605Hz.
- (B) 6 90Hz.

(C) 504Hz,

(D) 500Hz.

5. 在真空中波长为 λ 的单色光,在折射率为 n 的透明**介质中从 \lambda 沿某路径传播到 B** ,若 λ 、 B 两点相位差为 3π ,则此路径 AB 的光程为 (A) 1.5λ . (B) $1.5\lambda/n$.

(0) 1 5 ... 11

. .

(C) $1.5 n\lambda$.

(D) 3 A.

6. 在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 $D(D\gg d)$. 波长为 λ 的平行单色光垂直照射到双缝上,屏幕上干涉条纹中相邻暗纹之间的距离是

 $(A) 2 \lambda D/d$.

(B) $\lambda d/D$.

(C) dD/λ .

(D) $\lambda D/d$.

7. 一束波长为 A 的平行单色光垂直入射到一单缝 AB上,装置如图,在屏幕 D上形成衍射图样,如果 P 是

中央亮纹一侧第一个暗纹所在的位置,则BC的长度

为

(A) $\frac{\lambda}{2}$.

(B) λ.

 $(C)3\lambda/2$

(D) 2A

8. 如果两个偏振片堆叠在一起,且偏振化方向之间夹角为 60° ,光强为 I_0 的自然光垂直入射在偏振片上,则出射光强为

(A) $I_0/8$.

(B) $I_0/4$.

(C) $3I_0/8$.

(D) $3I_0/4$.

9. 质子在加速器中被加速,当其动能为静止能量的 4 倍时,其质量为静止质量的

(A) 4倍

(B) 5倍.

(C)6倍.

(D) 8倍

10. 它知一单色光照射在钠表面上,测得光电子的最大动能是 1.2eV,而钠的红限波长是 540nm,那么入射光的波长是

(A) 535nm.

(B) 500nm

(C).435nm

(D) 355nm

11. 按照玻尔理论,电子绕核作圆周运动时,电子角动量L的可能值为

(A) 任意值.

- (B) nh, n=1,2,3,...
- (C) $2\pi nh$, $n = 1, 2, 3, \cdots$
- (D) $nh/(2\pi), n = 1, 2, 3, \cdots$

12 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的

(A) 动量相同.

(二) 能量相同.

(C) 速度相同、

(D) 动能相同.

(大学物理下) 期末试卷B 第2页 共6页

二、填空题(每空2分,共20分)

- - 2. 一个质点同时参与两个在同一直线上的简谐振动, 其表达式分别为

$$x_1 = 4 \times 10^{-2} \cos(2t + \frac{1}{6}\pi), \quad x_2 = 3 \times 10^{-2} \cos(2t - \frac{5}{6}\pi)$$
 (SI)

则其合成振动的振幅为______,初相为_____

3. 设平面简谐波沿x轴传播时在x=0处发生反射,入射波的波函数为

 $y_1 = A\cos[2\pi(vt + x/\lambda) + \pi/2]$

已知反射点为一自由端,则反射波的波函数为_____

- 4. 用波长为 λ 的单色光垂直照射折射率为n的劈形膜形成等厚干涉条纹,若测得相邻明条纹的同距为l,则劈尖角 θ =
- 6.在主量子数n=4的量子态中,角量子数l的可能取值为_____;磁量子数m。 的可能取值为

得分

三、(本题 10 分)图示为一平面简谐波在t=0 时刻的波形图,求

- (1) 该波的波函数;
- (2) P处质点的运动方程。

得分

四、(本题 10 分)如图所示,牛顿环装置的平 凸透镜与平板玻璃有一小缝隙 e_0 ,现用波长为一 λ 的单色光垂直照射,已知平凸透镜的曲率半 径为 R,求反射光形成的牛顿环的各暗环半径

得分

,五、(本题 10 分) 用钠光 (λ = 589.3nm) 垂直照射到某光棚上,测得第三级光谱的衍射角为 60° 。

- (1) 若换用另一光源测得其第二级光谱的衍射角为 30°, 求后一光源发光的波长。
- (2) 若以白光 (400nm-760nm) 照射在该光棚上,求其第二级光谱的张角.(lnm=10⁻⁹ m).

六、(本题 8 分) 设康普顿效应中入射 X 射线(伦琴射线)的波长 $\lambda=0.07\,\mathrm{nm}$,散射的 X 射线与入射的 X 射线垂直,求:

(1) 散射 X 射线的波长 \mathcal{X} : (2) 反冲电子的动能 E_{k} .

得分

七、(本题 6 分)一艘宇宙飞船的船身固有长度为 $L_0=90$ m,相对于地面以

v=0.8c (c为真空中光速)的匀速度在地面观测站的上空飞过.

- (1) 观测站测得飞船的船身通过观测站的时间间隔是多少?
- (2) 宇航员测得船身通过观测站的时间间隔是多少?

08/09 = 耳第一学期《大学物理下》B 卷参考答案及评分标准

- 一、选择。 で题 3 分, 共 36 分)
 - ıв 4A 5A 6D. 8A 9B 10D 11D
- 二、填空! 5空2分,共20分)
 - Tr, 1.6Hz; 2. 0.01m, $\pi/6$; 3. $y_2 = A\cos[2\pi(vt \frac{x}{2}) + \pi/2]$ 1. 2.
 - 5. 30°,1.73(或 $\sqrt{3}$); 6. 0,1,2,3; $0,\pm 1,\pm 2,\pm 3$
 - 题仅给出评分框架, 其中所含考点得分可自行酌情细分 以下计
- 三、(本题
 - $=\frac{\lambda}{n}=5s, \quad 2\,\mathcal{H}; \qquad \varphi=-\frac{\pi}{2}$ (1)
 - $=0.04\cos\left[2\pi(\frac{t}{5} \frac{x}{0.4}) \frac{\pi}{2}\right]$ (SI)
 - 性质元 $y_p = 0.04\cos(0.4\pi t \frac{3}{2}\pi)$ (SI) 2分
- 四(本題)
 - 三径为产,由图可知,根据几何关系,近似有 设某的
 - - $\Im \epsilon_0 + \frac{1}{2}\lambda = \frac{1}{2}(2k+1)\lambda$ 5分
 - 七于零的整数,把式①代入式②可得
 - $r = \sqrt{\lambda 2e_{\alpha}}$ 2分
 - (k为 致, 且k>2e,/1) 1.5
- 五、(本題: 丁)
 - (1) 知為: $d\sin 60^{\circ} = 3\lambda_1$ 2分;
 - $\exists \mathcal{A}_2 : d\sin 30^\circ = 2\mathcal{A}_2$ 2分
 - $=510.3 \, \mathrm{nm}$ 2分
 - 光: 光栅常数 $d = 2041.4 \, \text{nm}$ 2分
 - $=\arcsin\frac{2\lambda}{d}$ 1分; 张角 $\Delta\theta = \theta_7 - \theta_1 = 25^\circ$ 1分

六(本题 8分)

(1)
$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

$$\theta = \frac{\pi}{2}$$

$$\lambda' = \lambda + \frac{h}{m_e c} = 0.0724 \, \text{nm}$$

(2) 能量守恒
$$m_e c^2 + h v = h v' + m c^2$$

$$E_{\kappa} = h\nu - h\nu' = hc(\lambda' - \lambda)/(\lambda'\lambda) = 9.42 \times 10^{-17} \text{ J}$$

七、(本题 6分)

则

(1) 观测站测得飞船船身的长度为

$$L = L_0 \sqrt{1 - (v/c)^2} = 54 \,\mathrm{m}$$

$$\Delta t_1 = L/\nu = 2.25 \times 10^{-7} \,\mathrm{s}$$

(2)字航员测得飞船船身的长度为 L_0 ,

$$\emptyset \qquad \Delta t_2 = L_0 / \nu = 3.75 \times 10^{-7} \, \text{s}$$

南京邮电大学 2007/2008 学年第一学期

《 大学物理 》期末考试试卷 (B)

院(系)_		**************************************	班级		学号	3	—— 姓名	
題号	panders and a second se	Was to the second secon		Ma	Ŧ	六	t	总分
得分	一、选	择题(计 36 分	,每小	题 3 分)			At an explore engines at Name of the Control

				•		2 4 V5	2 /1 /						
	l	注:请	特您的	答案写	在下表	_相应是	悬号的写	区格内)				
题号]	2	3	4	5	6	1.7	8	9	10	<u> </u>		ì
答表	C	В	В	A	В	. С	C	С	A	<i>y</i>	11	12	
			4				L		<u></u>		A	\cup	

1. 面积为 S 和2S的两圆线图1、2如图放置,通有相同的电流; 线圈1的电流所产生的通过线圈2的磁通用 on 表示, 线圈2的电 流所产生的通过线圈1的磁通用 ϕ_1 表示,则 ϕ_1 和 ϕ_2 的大小关 系为:

- (8) $\Phi_{2i} > \Phi_{12}$.

- 2. 一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是
- (A.) T/4.
- (B) T/2.
- (C) T.
- 3. 电磁波的电场强度 E、磁场强度 I 和传播速度 ū 的关系是:
- (A) 三者互相垂直,而 \bar{E} 和 \bar{H} 位相相差 $\pi/2$.
- (B) 三者互相垂直,而且 $\bar{E} imes \bar{H}$ 与 \bar{u} 同方向。
- (C) 三者中 \bar{E} 和 \bar{H} 是同方向的,但都与 \bar{u} 垂直.
- (D) 三者中 E 和 F 可以是任意方向的, 但都必须与 证 垂直.
- 4. 在简谐被传播过程中,沿传播方向相距为 2/2 (2为波长)的两点的振动速度必定 (A) 大小相同,而方向相反——(B) 大小和方向均相同。

- (C) 大小不同,方向相同.
- (D) 大小不同,而方向相反,
- 5. 一束波长为 λ的 单色光由空气垂直入射到折射率为n的透明薄膜上, 透明薄膜放在空

气中,要使反射光得到于**涉加强,则薄膜最小的厚度为** (A) $\lambda/4$ (B) $\lambda/(4n)$ (C) $\lambda/2$.

- (D) $\lambda I(2n)$.

6. 如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入 n= 、1.60 的液体中,凸透镜可沿 OO' 移动,用波长2=500 nm(lnm=10-9m)的单色光垂直入射,从上向下观察,看到中心是一 个暗斑,此时凸透镜顶点距平板玻璃的距离最少是

7. 波长为2的单色平行光垂直入射到一狭缝上,若第一级暗纹的 位置对应的衍射角为 & 土π/6. 则缝宽的大小为 $(A) \lambda/2$

- (B) \(\lambda\).

8. 使一光强为 I_0 的平面偏振光先后通过两个偏振片 P_1 和 P_2 . P_1 和 P_2 的偏振化方向与 原入射光光矢量振动方向的夹角分别是lpha和 90°,则通过这两个偏振片后的光强 I是

- $(A) = \frac{1}{2} I_0 \cos^2 \alpha$ (C) $\frac{1}{4}I_0\sin^2(2\alpha)$. (D) $I_0\cos^4\alpha$. (B) 0.
- 9. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是 Ue (使电 子从金属逸出需作功 eU_0),则此单色光的波长 λ 必须满足:
- (A) $\ell \leq hc/(eU_c)$. (B) $\lambda \geq hc/(eU_o)$. (C) $\lambda \leq eU_o/(hc)$. (D) $\lambda \geq eU_o/(hc)$.
- 10. 廣普顿效应的主要特点是
- (A) 散射光波长均比入射光波长短,且随散射角增大而减小,但与散射体的性质无关
- (B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关。
- (C) 散射光中既有与入射光波长相同的, 也有比入射光波长长的和比入射光波长短的
- (D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与 入射光波长相同. 这都与散射体的性质无关.
- 11. 己知粒子在一维矩形无限深势阱中运动, 其波函数为:

$$\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

那么粒子在 x = a/6 处出现的概率密度为

- (A) 17(2a).
- (B) 1/a. (C) $1/\sqrt{2a}$.
- 12. 不确定关系式 Δx Δp, ≥ h/2表示在x 方向上
- 、(A) 粒子位置不能准确确定。
- (C) 粒子位置和动量都不能准确确定。 (D)-粒子位置和动量不能同时准确确定。

(大学物理) 试卷 B 答案 第 2 页 共 5 页

四、(10分)载有电流/的长直导线附近,放一与长直导线共面的半圆环导 体ACB,且端点AB的连线与长直导线垂直,半圆环的半径为R,环心O1与 导线相距2R. 设半圆环以速度 \overline{v} 平行导线平移, 求半圆环上 AB 两端的电

压 $V_A - V_B$. (真空磁导率以 μ_0 表示)

解:作辅助导线AO_iB,构成闭合回路ACEA,则

将上式代入积分得:
$$\mathcal{E}_{AO_1B} = -\frac{\mu_0 I v}{2\pi} \ln 3$$
 1分

$$V_{A} - V_{B} = -\mathcal{E}_{ACB} = \frac{\mu_{0} I v}{2\pi} \ln 3 \qquad 3 \text{ }$$

五、(10分) 一列平面简谐波在媒质中以波速u=5 m/s沿x辐距向传播,原点 O处质元的振动曲线如图所示。(1) 求O处质元的振动方程:(2) 求解该波的 波函数: (3) 求解x = 25 m处质元的振动方程. 解: 由旋转矢量图可知

2:分

$$\varphi_{o} = -\frac{\pi}{2}$$
 : $\omega = \frac{2\pi}{T} = \frac{\pi}{2}$

3分

0 处质元振动方程.

$$y = 2 \times 10^{-1} \cos(\frac{1}{2}\pi t - \frac{\pi}{2})$$
 (m)

波函数:

$$y = 2 \times 10^{-2} \cos\left[\frac{1}{2}\pi(t - \frac{x}{5}) - \frac{\pi}{2}\right]$$
 (m) 4 \(\frac{\psi}{2}\)

(若该步答案错,但写出 $y = A\cos\frac{1}{2}\pi(t-\frac{x}{u}) + \varphi_0$)

类似的标准形式可得 2 分)

x=25m 处质元振动方程。

$$y = 2 \times 10^{-3} \cos(\frac{1}{2}\pi t - 3\pi)$$
 (m) 2 $\%$

(或: $y = 2 \times 10^{-2} \cos(\frac{1}{2}\pi t \pm \pi)$ (m))

*注:若标出单位或写明(SI),则不另外得分;若未标出单位。则扣 1 分。

《大学物理》试卷 B 答案 第 4 页 共 5 页

7 规 不 倍 弊

É

觉

Γ-	(a)			填色	空题(2	0分)			
_	待 分	`	挺	동	: 1-	2	3	4	5,
			得	分	-				,
ì		l					<u> </u>	L	L

1. (3) 一列火车以 20 m/s 的速度行驶,若机车汽笛的频率为 600 Hz,一静止观测 考在机车正前和机车正后所听到的笛声频率分别为 $v_1, v_2, \, \mathbf{p}_1 \, v_1 > (1 \, f) \, v_2$ (选填">"、"="、"<")。 $|v_1-v_2| = 70.8 \, (2 \, f)$ (Hz)(设空气中声速为 340 m/s)

2. (3) 4. B是简谐波波线上距离小于波长的两点。已知,B点振动的相位比A 气容后 $\frac{1}{2}$ π 双长为 $\lambda=3$ m,则A,B两点相距L= <u>0.5 (3 分)</u> (m).

3. (5) 一平面简谐波的表达式为 $y = 0.025\cos(125t - 0.37x)$ (SI), 其角频率 $\omega = 125$ (2分) (rad/s), 波速u = 338 (2分) (m/s), 波长 $\lambda = 17.0$ (1分) (m).

4. (5) 平行单色光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为_4(2分)___个半波带,若将单缝宽度缩小一半,P点处将是第_1(1分)__级___暗(2分)__纹.

5. (4) 低速运动的质子和 α 粒子,若它们的德布罗意波长相同,则它们的动量之比 $\dot{P}_{p}:\ P_{\alpha}=\underline{1:1}\ (2\ \mathcal{H})$ ______. 动能之比 $E_{p}:\ E_{\alpha}=\underline{4:1}\cdot(2\ \mathcal{H})$ ______.

得 分

三、(6分)两个物体作同方向、同频率、同振幅的简谐振动。在振动过程中,每当第一个物体经过位移为 A/2 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动。试画出旋转矢量图,并求它们的相位差。

解:由旋转矢量图可知 4分

 $(\bar{A}_1 \times \bar{A}_2$ 各2分: 若 ω 規順时针该步不得分)

$$\Delta \phi = \frac{2}{3}\pi \qquad \qquad 2\%$$

 $(或 \Delta \phi = \frac{4}{3}\pi$, 或以上答案 ± 2 $k\pi$)

《大学物理》试卷B答案 第 3 页 共 5 页