GdE 1: 1. Aufgabenblatt

SS2011 Prof. Dr.-Ing. S. Tschirley

Reihen- und Parallelschaltungen

letzte Änderung: 21. April 2011

1. Aufgabe: Bestimmung von Gesamtwiderständen

Bestimmen Sie den Gesamtwidersand der folgenden Netzwerke.

1.1. Widerstandsberechnung

$$R_1=10\Omega, R_2=5\Omega, R_3=24\Omega, R_4=6\Omega, R_5=6\Omega R_6=15\Omega, R_7=60\Omega, R_8=9\Omega$$
 [Kurzlösung $R_{\rm G}=23\Omega$]

1.2. Widerstandsberechnung

$$R_1=4\Omega, R_2=16\Omega, R_3=8\Omega, R_4=8\Omega, R_5=3\Omega R_6=28\Omega, R_7=15\Omega, R_8=6\Omega$$
 [Kurzlösung $R_{\rm G}=25\Omega$]

1.3. Widerstandsberechnung

$$R_1=18\Omega, R_2=9\Omega, R_3=12\Omega, R_4=6\Omega$$
 [Kurzlösung $R_{\rm G}=10\Omega$]

1.4. Widerstandsberechnung

$$R_1=20\Omega, R_2=60\Omega, R_3=30\Omega, R_4=40\Omega R_5=4\Omega$$
 [Kurzlösung $R_{\rm G}=9,6\Omega$]

2. Aufgabe: Berechnungen mit Kirchhoffschen Gesetzen

Bestimmen Sie die Ströme I_1 und I_2 in dem gegebenen Netzwerk. Es ist $R_1=12\Omega, R_2=24\Omega, R_3=8\Omega, R_4=12\Omega$ $6\Omega R_5=12\Omega$ und $I_0=2$ A.

3. Aufgabe: Berechnungen mit Kirchhoffschen Gesetzen

Es ist $R_1=6\Omega$ und $U_{\rm B}=10$ V. Bei geöffnetem Schalter misst man $U_2=5$ V, bei geschlossenem Schalter wird eine Spannung $U_2=4\mathrm{V}$ gemessen. Welchen Wert haben R_2 und R_L .

Seite 2 von 3 GdE 1: 1. Aufgabenblatt

[Kurzlösung $R_2=6\Omega, R_{\rm L}=12\Omega$]