24 张宇 8 套卷 (二)

1. 下列函数中,在
$$x = 0$$
处不可导的是
$$A \quad f(x) = |x| \tan |x|$$

$$B \quad f(x) = |x| \tan |x|$$

A. $f(x) = x \tan x $.	$B. f(x) = x \tan \sqrt{ x }.$

 $C. f(x) = \sqrt{\cos |x|}.$ D. $f(x) = \cos \sqrt{|x|}$.

the state of the s

2. 已知函数
$$f(x), g(x)$$
 可导,且 $f'(x) > 0, g'(x) < 0,$ 则

A.
$$\int_{-1}^{0} f(x)g(x) dx > \int_{0}^{1} f(x)g(x) dx$$
.

 $C. \int_{-1}^{0} f[g(x)] dx > \int_{0}^{1} f[g(x)] dx.$

D. $\int_{-1}^{0} f[f(x)] dx > \int_{0}^{1} g[g(x)] dx.$

3.设一正方形边长为 1,作其内切圆,以四个切点为顶点作第二个正方形,对第二个正方形作其内切圆,再以其四个切点为顶点作第三个正方形,以此类推,记第 n 个正方形的面积为 a_n ,则

A. 2. B.
$$2\sqrt{2}$$
. C. $4\sqrt{2}$. D. $+\infty$.

4. 设平面曲线 L: f(x,y) = 1 过第一象限的点 A 和第三象限的点 B, f(x,y) 有一阶连续偏导数, Γ 为 L 上从点 A 到点 B 的一段弧,设 $I_1 = \int_{\Gamma} f(x,y) dx$, $I_2 = \int_{\Gamma} f(x,y) ds$, $I_3 = \int_{\Gamma} f'_x(x,y) dx + \int_{\Gamma} f(x,y) dx$

 $f_{y}(x,y)dy, \emptyset$

B. $I_2 > I_3 > I_1$. A. $I_1 > I_2 > I_2$.

D. $I_3 > I_2 > I_1$. C. $I_3 > I_1 > I_2$.

 $C. r_1 \leqslant r_2 \leqslant r_3.$

5. 设 A,B,C 均为 n 阶矩阵, $r(AB) \leqslant r(BA)$, 记 $\begin{bmatrix} O & AB \\ B & CB \end{bmatrix}$, $\begin{bmatrix} B & BC \\ AB & O \end{bmatrix}$, $\begin{bmatrix} BA & BAC \\ O & B \end{bmatrix}$ 的秩分别为

$$r_1, r_2, r_3$$

 $r_1, r_2, r_3, 则$

$$A. r_2 \leqslant r_3 \leqslant r_1.$$

B. $r_2 \leqslant r_1 \leqslant r_3$.

D. $r_3 \leqslant r_2 \leqslant r_1$.

6. $f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 - 3x_2x_3 = 1$ 表示	
A. 椭球面.	B. 双曲柱面.
C. 双叶双曲面.	D. 单叶双曲面.

①Ax = 0 = Bx = 0 同解:

7. 设 3 维列向量组 α_1 , α_2 , α_3 与 β_1 , β_2 , β_3 等价, 记 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3)$,则下列结论:

② $A^{T}x = 0$ 与 $B^{T}x = 0$ 同解:

B. (1)(3).

D. (1)(2)(3)(4).

 $\Im \left| \frac{A}{R} \right| x = 0 \, \exists \, Ax = 0 \, \exists \, R;$

所有正确结论的序号是

A. (1)(2). C. 24.

A. $\frac{1}{3}$.

9. 设 X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, ρ_1 , ρ_2 , ρ_3 分别是 X 取整数、偶数与奇数的概率,则 B. $p_1 = p_2 > p_3$. A. $p_1 = p_2 = p_3$.

C. $p_1 > p_2 > p_3$. D. $p_1 > p_2 = p_3$.

10. 设 X_1, X_2 是来自正态总体 $N(\mu, 1)$ 的简单随机样本,并设原假设 $H_0: \mu = 2$,备择假设 $H_1: \mu =$

$$4$$
,若拒绝域为 $W=\{\overline{X}>3\}$, $\overline{X}=rac{1}{2}\sum_{i=1}^2X_i$,记 $lpha$, eta 分别为犯第一类错误和第二类错误的概率,

A. $\alpha = \beta = 1 - \Phi(\sqrt{2})$. B. $\alpha = 1 - \Phi(\sqrt{2}), \beta = \Phi(\sqrt{2}).$

C. $\alpha = \Phi(\sqrt{2})$, $\beta = 1 - \Phi(\sqrt{2})$. D. $\alpha = \beta = \Phi(\sqrt{2})$.

V. PI / PZ / PS.

一、項空趣:
$$11 \sim 10$$
 小趣,母小趣 5 分 $11. \sum_{n=1}^{\infty} \frac{1}{(n+2)n!} = \underline{\hspace{1cm}}$.

12. 设可微函数 z = f(x,y) 与 xOy 面的交线方程为 $y = \int_0^x e^{t^2} dt + x$, 且 $f'_x(0,0) = 1$, 则 $f'_{\nu}(0,0) =$ _____.

ccc

14. 设函数 $f(x,y) = \begin{cases} \frac{x^2 \mid y \mid}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$ 则 f(x,y) 在点(0,0) 处沿 l = (1,1) 的方向 (x,y) = (0,0),

- 1 XAAE_____ 15. 设 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2ax_1x_3 + 2ax_2x_3$ 的正负惯性指数分别为 p = 2,
- q = 0,则 $f(x_1, x_2, x_3) = 1$ 在点(0,1,1) 处的切平面方程为______.

q = 0,则 $f(x_1,x_2,x_3) = 1$ 任息(0,1,1) 处的切半曲刀住刀______. 16. 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(1, \sigma^2)$ 的简单随机样本, $\sigma^2 > 0$ 未知,记 σ^2 的最大似然估 计量为 $\hat{\sigma}^2$,则 $D(\hat{\sigma}^2) =$ _____.

求极限
$$\lim_{x\to 0} \left[\frac{1+\int_0^x (1+t)^{\frac{1}{t}} dt}{x} - \frac{1}{\sin x} \right]$$

 $\sin x \rfloor$

18. (本题满分 12 分) 设可微函数 z = z(x,y) 在平面上任一点(x,y) 处沿 x 轴正向 i 与 y 轴正向 j 的方向导数分别为 $[e^{-x} - f(x)]y$ 与 f(x),其中 f(x) 的一阶导数连续,且 f(0) = 1.

(1) 求 z(x,y) 的表达式;

(2) 判断 z(x,y) 是否有极值,若有,求之,若无,说明理由.

- 19. (本题满分 12 分) 设函数 f(x) 在[0,2] 上一阶可导, f(0) = 0, f(x) 在 $x = x_0$ 处取得最大值 $Mx_0, x_0 \in (0,2)$, 且 $f'(x) \leq M$. 证明:
- - (1) 当 $x \in [0,x_0]$ 时,有 f(x) = Mx;

(2)M = 0.

设锥面 $\Sigma(0 \le z \le 1)$ 的顶点是 A(0,0,1),准线是 $\begin{cases} (x+1)^2 + y^2 = 1, \\ z = 0. \end{cases}$ 直线 L 过顶点 A 和准

(1) 求直线 L 与锥面 Σ 的方程;

已知矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 2 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \mathbf{A} = \mathbf{BC}.$$

(1) 求矩阵 C:

(2) 计算 A¹⁰.

22.(本题满分 12 分) 将长度为1的铁丝沿其上低一点折成两段,较短的一段长度记为X,并以这两段作为矩形的两 条边,记矩形面积为Z,求:

(1)X 的概率密度; (1) 当x ∈ [0.

(2)E(Z). (2)