Introducción a la Inteligencia Artificial Clase 7

Índice

Clase 7

- 1. Motivación
 - a. Aprendizaje No supervisado
 - b. Aplicaciones
- 2. Gaussian Mixture Models
 - a. Aplicaciones
 - b. Formulación
- 3. Expectation Maximization

Aprendizaje no supervisado

Aprendizaje no supervisado

Machine Learning Supervisado	Machine Learning no Supervisado
Proceso aleatorio \bar{X} , y	Proceso aleatorio \bar{X}
$i f_{y/\bar{x}}(y \bar{x})? \longrightarrow Bayes y M.V.$	$i f_{\bar{x}}(\bar{x})$? Bayes y M.V.
Inferencias, predicciones	Clusterización, Reducción Dimensionalidad

Aprendizaje no supervisado

Aplicaciones Generales

- Data Mining
- Pattern Recognition
- Statistical Analysis

Aplicaciones Específicas

- Density Estimation
- Clustering
- Anomaly Detection
- Object Tracking
- Speech Feature Extraction

Formulación

$$p(x \mid \boldsymbol{\theta}) = 0.5 \mathcal{N}(x \mid -2, \frac{1}{2}) + 0.2 \mathcal{N}(x \mid 1, 2) + 0.3 \mathcal{N}(x \mid 4, 1)$$

Formulación

$$p(x) = \underbrace{0.3}_{\pi_1} \mathcal{N} \left(x \mid \underbrace{\begin{pmatrix} 4 \\ 4.5 \end{pmatrix}}_{\mu_1}, \underbrace{\begin{pmatrix} 1.2 & 0.6 \\ 0.6 & 0.5 \end{pmatrix}}_{\Sigma_1} \right) + \underbrace{0.5}_{\pi_2} \mathcal{N} \left(x \mid \underbrace{\begin{pmatrix} 8 \\ 1 \end{pmatrix}}_{\mu_2}, \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{\Sigma_2} \right) + \underbrace{0.2}_{\pi_3} \mathcal{N} \left(x \mid \underbrace{\begin{pmatrix} 9 \\ 8 \end{pmatrix}}_{\mu_3}, \underbrace{\begin{pmatrix} 0.6 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}}_{\Sigma_3} \right)$$

Gaussian Mixture Models: Estudio de fenómenos naturales

"Old Faithful" dataset. 272 mediciones de erupciones del "Old Faithful" geyser en el Parque Nacional Yellowstone. El eje horizontal representa la duración de una erupción (medida en minutos) y el vertical el tiempo hasta la próxima erupción.

Gaussian Mixture Models: Clustering

Ejemplo de Gaussian Mixture. En la imagen (a) se muestran las tres distribuciones subyacentes indicando con colores sus variables latentes. En la imagen (b) las curvas de nivel de la distribución conjunta y en la (c) la densidad.

Gaussian Mixture Models: Clustering

Gaussian Mixture Models - kMeans

Gaussian Mixture Models: Clustering

Gaussian Mixture Models: Detección de anomalías

LOF: Local outlier factor

$$P(\mathbf{X}) \cong \sum_{k=1}^K \omega_k \eta_k(\mathbf{X}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \qquad \text{such that } \sum_{k=1}^K \omega_k = 1$$
 where:
$$\eta(\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})^T(\boldsymbol{\Sigma})^{-1}(\mathbf{X} - \boldsymbol{\mu})}$$
 Mean
$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_r \\ \boldsymbol{\mu}_g \\ \boldsymbol{\mu}_b \end{bmatrix} \quad \text{Covariance matrix } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix} \quad \text{(can be a full matrix)}$$

Formulación

$$p(x) = \sum_{k=1}^{K} \pi_k p_k(x)$$
$$0 \leqslant \pi_k \leqslant 1, \quad \sum_{k=1}^{K} \pi_k = 1,$$

Mixture Models - General

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$0 \leqslant \pi_k \leqslant 1, \quad \sum_{k=1}^{K} \pi_k = 1,$$
$$\boldsymbol{\theta} := \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k : k = 1, \dots, K\}$$

Gaussian Mixture Models

GMM y EM - JAMBOARD

Gaussian Mixture Models - Teoría

(b) Dataset colored according to the responsibilities of the mixture components.

Notebooks

Bibliografía

Bibliografía

- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Pattern Recognition and Machine Learning | Bishop
- Gaussian Mixture Model | John McGonagle, Geoff Pilling, Andrei Dobre
- Expectation-Maximization Algorithms | Stanford CS229: Machine Learning
- First Principles of Computer Vision| Computer Science Department, School of Engineering and Applied Sciences, Columbia University

