# CS215 Assignment 2

# Group Members:

B.Abhinav 23B1018

G.Abhiram 23B1084

U.Sai Likhith 23B1058

September 9, 2024

# Contents

| 1 | Mat                          | chemagic  | 3               |  |
|---|------------------------------|-----------|-----------------|--|
|   | 1.1                          | Task A    | 3               |  |
|   | 1.2                          | Task B    | 3               |  |
|   | 1.3                          | Task C    | 4               |  |
|   | 1.4                          | Task D    | 5               |  |
|   | 1.5                          | Task E    | 5               |  |
|   | 1.6                          | Task F    | 6               |  |
|   | 1.7                          | Task G    | 7               |  |
| 2 | Normal Sampling 9            |           |                 |  |
|   | 2.1                          | Task A    | 9               |  |
|   | 2.2                          | Task B    | 10              |  |
|   | 2.3                          | Task C    | 11              |  |
|   | 2.4                          | Task D    | 11              |  |
|   | 2.5                          | Task E(B) | 12              |  |
| 3 | Fitting Data                 |           |                 |  |
|   | 3.1                          | Task A    | 13              |  |
|   | 3.2                          | Task B    | 14              |  |
|   | 3.3                          | Task C    | 14              |  |
|   | 3.4                          | Task D    | 15              |  |
|   | 3.5                          | Task E    | 16              |  |
|   | 3.6                          | Task F    | 16              |  |
| 4 | Quality in Inequalities 16   |           |                 |  |
|   | 4.1                          | Task A    | 17              |  |
|   | 4.2                          | Task B    | 18              |  |
|   | 4.3                          | Task C    | 19              |  |
|   | 4.4                          | Task D    | 20              |  |
|   | 4.5                          | Task E    | 22              |  |
| 5 | A Pretty "Normal" Mixture 24 |           |                 |  |
|   | 5.1                          |           | 24              |  |
|   | 5.2                          |           | 24              |  |
|   | 5.3                          |           | 26              |  |
|   | 5.4                          |           | $\frac{-5}{27}$ |  |

# 1 Mathemagic

# 1.1 Task A

#### **Solution:**

Lets derive the PGF for  $X \sim Ber(p)$ . PMF for Ber(p) is given by :

$$P(X=1) = p$$

$$P(X=0) = 1 - p$$

G(z) for Bernoulli random variable is given by:

$$G_{Ber} = E(z^{X}) = \sum_{n=0}^{1} P[X = n] z^{n}$$

$$G_{Ber} = (1-p)z^{0} + pz^{1} = 1 - p + pz$$
(1)

# 1.2 Task B

# Solution:

PMF of Bin(n, p) is given by:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

G(z) for Binomial random variable is given by:

$$G_{Bin} = \sum_{k=0}^{n} P[X = k] z^k$$

$$G_{Bin} = \sum_{k=0}^{n} \binom{n}{k} (zp)^k (1-p)^{n-k}$$

Using Binomial Theorem:

$$G_{Bin} = (1 - p + zp)^n \tag{1}$$

From  $G_{Ber}$  in Task A:

$$G_{Bin} = G_{Ber}(z)^n (2)$$

#### 1.3 Task C

#### **Solution:**

 $X_1, X_2, X_3, \ldots, X_k$  are independent non-negative-integer-valued random variables, each distributed with the same probability mass function P and have a common PGF G.

$$X = X_1 + X_2 + X_3 + \cdots + X_k$$

PGF of X is given by:

$$G_{\Sigma}(z) = E(z^{X}) = E(z^{X_1 + X_2 + X_3 + \dots + X_k})$$
  
 $G_{\Sigma}(z) = E(z^{X_1} z^{X_2} z^{X_3} \dots z^{X_k})$ 

Using the fact that when a, b are 2 independent random variables we have:

$$E(f(a)g(b)) = E(f(a))E(g(b)) \tag{1}$$

The proof is as follows:

$$E(f(a)g(b)) = \sum_{a_i \in S(a)} \sum_{b_i \in S(b)} P_a[a = a_i] P_b[b = b_j] a_i b_j$$

As they are independent ie a,P(a) do not depend on b we get:

$$E(f(a)g(b)) = \sum_{a_i \in S(a)} P_a[a = a_i] a_i \sum_{b_j \in S(b)} P_b[b = b_j] b_j$$

This proves the result. As all  $X_i$  are independent we have :

$$G_{\Sigma}(z) = E(z^{X_1})E(z^{X_2})E(z^{X_3})\dots E(z^{X_k})$$

As all of them have common PGF G we get:

$$G_{\Sigma}(z) = G(z)^k \tag{2}$$

#### 1.4 Task D

#### **Solution:**

PMF of Geo(p) is as follows:

$$P[X = n] = (1-p)^{n-1}p$$

where X = 1, 2, 3... PGF of Geo(p) is :

$$\sum_{n=1}^{\infty} P[X=n]z^n = \sum_{n=1}^{\infty} (1-p)^{n-1} pz^n$$

$$G_{Geo} = \frac{p}{1-p} \sum_{n=1}^{\infty} (z(1-p))^n$$

This summation only converges when:

$$|z(1-p)| < 1 \Rightarrow |z| < \frac{1}{|1-p|}$$
 (1)

Using the formula for sum of infinite GP:

$$G_{Geo} = \frac{p}{1-p} \times \frac{z(1-p)}{1-z(1-p)}$$

under the condition (1) Simplifies to:

$$G_{Geo} = \frac{zp}{1 - z + zp} \tag{2}$$

# 1.5 Task E

#### Solution:

Consider  $X \sim \text{Bin}(n, p)$  and  $Y \sim \text{NegBin}(n, p)$ .

Let us compute the PGF for Y using the result (2) from Task C. We know that NegBin(n, p) random variable can be written as sum of n independent Geo(p) random variables.

$$G_Y^{(n,p^{-1})}(z^{-1}) = G_{Geo}^{p^{-1}}(z^{-1})^n$$

Using (2) from Task D with p and z replaced with  $p^{-1}$  and  $z^{-1}$  We ge :

$$G_Y^{(n,p^{-1})}(z^{-1}) = \left(\frac{z^{-1}p^{-1}}{1-z^{-1}+z^{-1}p^{-1}}\right)^n$$

This simplifies to:

$$G_Y^{(n,p^{-1})}(z^{-1}) = \left(\frac{1}{1-p+zp}\right)^n$$

Inverse on both sides and using (1) from Task B:

$$\left(G_Y^{(n,p^{-1})}(z^{-1})\right)^{-1} = (1-p+zp)^n = G_X^{(n,p)}(z)$$

Replacing p with  $p^{-1}$  and  $z^{-1}$  we prove the result and inverting:

$$G_Y^{(n,p)}(z) = \left(G_X^{(n,p^{-1})}(z^{-1})\right)^{-1}$$
 (1)

Note that z is bounded by condition (1) in Task D.

# 1.6 Task F

#### Solution:

PMF of  $Y \sim \text{NegBin}(n, p)$  is given by (for k = n, n+1, ...):

$$P[Y = k] = {\binom{k-1}{n-1}} p^n (1-p)^{k-n}$$
 (1)

The RHS of the equation (1) in Task E simplifies to:

$$(1 - p^{-1} + z^{-1}p^{-1})^{-n} = \left(\frac{p^n z^n}{(1 - z + pz)^n}\right)$$

The PGF of NegBin(n, p) by definition was:

$$G_Y^{(n,p)}(z) = E(z^Y) = \sum_{k=n}^{\infty} {k-1 \choose n-1} p^n (1-p)^{k-n} z^k$$

Equate both of them and use k = n + r substitution in LHS:

$$\sum_{r=0}^{\infty} \binom{n+r-1}{n-1} p^n (1-p)^r z^{r+n} = \frac{p^n z^n}{(1-z+pz)^n}$$

Cancelling the common terms this simplifies to:

$$(1 - z(1-p))^{-n} = \sum_{r=0}^{\infty} {n+r-1 \choose n-1} (z(1-p))^r$$

We have proved in Task D that PGF for Y is only defined under |z(1-p)| < 1. Substitute x = z(1-p) under |x| < 1 to get:

$$(1-x)^{-n} = \sum_{r=0}^{\infty} {n+r-1 \choose n-1} x^r$$

Using

$$\binom{n}{r} = \binom{n}{n-r}$$

and substituting x with -x we get:

$$(1+x)^{-n} = \sum_{r=0}^{\infty} (-1)^r \binom{n+r-1}{r} x^r \tag{2}$$

From the general definition of  $\binom{n}{r}$  we have:

$$\binom{-n}{r} = \frac{(-n)(-n-1)(-n-2)....(-n-r+1)}{r!}$$

$$\binom{-n}{r} = (-1)^r \frac{(n+r-1)(n+r-2)...(n+1)(n)}{r!}$$

$$\binom{-n}{r} = (-1)^r \binom{n+r-1}{r}$$

Using this in (2) we get For  $n \in N$  and |x| < 1:

$$(1+x)^{-n} = \sum_{r=0}^{\infty} (-1)^r \binom{n+r-1}{r} x^r = \sum_{r=0}^{\infty} \binom{-n}{r} x^r$$
 (3)

that is the Binomial Theorem for negative exponent.

# 1.7 Task G

#### **Solution:**

We have for a random variable X with PGF G(z)

$$G(z) = \sum_{n=0}^{\infty} P[X=n]z^n$$

$$G'(z) = \sum_{n=0}^{\infty} nz^{n-1}P[X=n]$$

Substituting z = 1 we get:

$$E(X) = \sum_{n=0}^{\infty} nP[X = n] = G'(1)$$
 (1)

Mean for Bern(p):

$$E_{Ber} = G'_{Ber}(1), G_{Ber}(z) = 1 - p + zp \Rightarrow G'_{Ber}(z) = p$$

Hence:

$$E_{Ber} = p (2)$$

Mean for Bin(n, p)

$$G_{Bin}(z) = (1 - p + zp)^n \Rightarrow G'_{Bin}(z) = np(1 - p + zp)^{n-1} \Rightarrow G'_{Bin}(1) = np$$

Hence

$$E_{Bin} = np (3)$$

Mean for Geo(p)

$$G_{Geo}(z) = \frac{zp}{1 - z + zp} \Rightarrow G'_{Geo}(z) = \frac{(1 - z + zp)(p) - (zp)(p - 1)}{(1 - z + zp)^2}$$

$$G'_{Geo}(z) = \frac{p}{(1-z+zp)^2} \Rightarrow G'_{Geo}(1) = \frac{1}{p}$$

Hence

$$E_{Geo}(z) = \frac{1}{p} \tag{4}$$

Mean for NegBin(n, p)

$$G_{NegBin}(z) = G_{Geo}(z)^n \Rightarrow G'_{NegBin}(z) = nG_{Geo}(z)^{n-1}G'_{Geo}(z)$$

$$G'_{NegBin}(1) = \frac{n}{p}$$
 as  $G_{Geo}(1) = 1$ 

Hence

$$E_{NegBin} = \frac{n}{p} \tag{5}$$

# 2 Normal Sampling

#### 2.1 Task A

#### **Solution:**

It suffices to prove that  $f_Y(y) = 1$ , Let us prove the following theorem first: Given random variables X and Y with PDFs  $f_X(x)$  and  $f_Y(y)$ , under an invertible transformation Y = g(X),

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$$

#### **Proof:**

Let  $x_1, x_2, y_1, y_2 \in \mathbb{R}$  such that  $y_1 = g(x_1)$  and  $y_2 = g(x_2)$ . We have assuming g is non decreasing::

$$P(x_1 \le X \le x_2) = P(y_1 \le Y \le y_2)$$

Since g is invertible, The probability of the event must be the same whether expressed in terms of X or Y. This can be written as:

$$\int_{x_1}^{x_2} f_X(x) \, dx = \int_{y_1}^{y_2} f_Y(y) \, dy$$

Using the transformation y = g(x), we know that:

$$x = g^{-1}(y)$$
 and  $dx = (g^{-1})'(y)dy$ 

Thus, the integral becomes:

$$\int_{y_1}^{y_2} f_Y(y) \, dy = \int_{y_2}^{y_2} f_X(g^{-1}(y))(g^{-1})'(y) dy$$

As the above is true  $\forall y1, y2 \in R$ , The integrands must be equal. This can also be shown by treating them as functions and differentiating both integrals. (Second Fundamental Theorem of Calculus)

$$f_Y(y) = f_X(g^{-1}(y)) \cdot (g^{-1})'(y)$$

From calculus we have  $(g^{-1})'(y) = \frac{1}{g'(g^{-1}(y))}$ . It follows that:

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$$

The modulus is accounting for the case when g is non increasing (Same proof with -ve sign) as PDF's are always non negative. Coming back to our question the invertible transformation g is  $F_X$  the CDF of X.

$$g(x) = \int_{-\infty}^{x} f_X(x)dx \implies g'(x) = f_X(x)$$

Therefore here we have  $g'(g^{-1}(y)) = f_X(g^{-1}(y))$  and  $g' \ge 0$  as CDF is non decreasing, which concludes through the above result:

$$f_Y(y) = 1$$

Therefore we proved that Y is uniformly distributed in [0, 1].

# 2.2 Task B

From the theorem we have proved in Task A we can sample a standard normal distribution. Let X be a standard normal distribution. We have

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Since  $F'_X(x) = f(x) > 0$ ,  $F_X(x)$  is invertible. We know that  $Y = F_X(X)$  is a uniform distribution in [0,1] from Task A.

Our algorithm  $\mathcal{A}$  involves computing the inverse  $G_X(Y)$  of  $F_X(X)$  and then mapping the uniform distribution Y using it.

Using this we can sample a standard normal distribution from a uniform distribution Y in [0,1].

This also implies that  $\forall u \in R$  we have

$$F_{\mathcal{A}}(u) = F_X(u)$$
 and  $f_{\mathcal{A}}(u) = f_X(u)$ 

since we are essentially recreating the distribution through a one one correlation to Y.

# 2.3 Task C

# Check the code in 2c.py



Figure 1: The Bell curve

# 2.4 Task D

### Check the code in 2d.py

The shape of the graph, which appears to be approximately bell-shaped for large depth(h), suggests that the distribution of the final positions of the balls is similar to normal distribution.

This is because:

- 1. The majority of the balls tend to fall in the middle pockets.
- 2. The number of balls in each pocket decreases as you move away from the middle.
- 3. The distribution is symmetric around the middle.



Figure 2: Plot for h = 50 and N = 100000



Figure 3: Plot for h = 100 and N = 100000

# 2.5 Task E(B)

#### Part A

Lets compute  $P_h[X=2i]$ . For each collision we have equally probable outcomes 1 or -1. For landing in pocket 2i let the number of 1's and -1's be m, n. We have m+n=2k and m-n=2i. Solving them gives m=k+i, n=k-i. We need to chose k+i collisions and give them 1 ie the probability will be given by:

$$P_h[X=2i] = {2k \choose k+i} \left(\frac{1}{2}\right)^{2k} \tag{1}$$

(2)

#### Part B

We will use stirling's approximation on (2k)!, (k+i)!, (k-i)!. The approximation being:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$$

$$P_{h}[X = 2i] = \binom{2k}{k+i} \left(\frac{1}{2}\right)^{2k}$$

$$= \frac{(2k)!}{(k+i)!(k-i)!(2^{2k})}$$

$$= \frac{\sqrt{2\pi 2k} \left(\frac{2k}{e}\right)^{2k}}{\sqrt{2\pi (k+i)} \left(\frac{k+i}{e}\right)^{k+i} \sqrt{2\pi (k-i)} \left(\frac{k-i}{e}\right)^{k-i} 2^{2k}}$$

$$= \frac{1}{\sqrt{\pi}} \sqrt{\frac{k}{k^{2}-i^{2}}} \left(\frac{k}{k+i}\right)^{k+i} \left(\frac{k}{k-i}\right)^{k-i} \Rightarrow approx \ k^{2} - i^{2} \approx k^{2} \ as \ k >> i^{2}$$

We are going to use the The infinite series expansion of log(1+x) that is:

$$log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} \dots$$

$$P_{h}[X = 2i] = \frac{1}{\sqrt{\pi k}} \frac{1}{(1 + \frac{i}{k})^{k+i} (1 - \frac{i}{k})^{k-i}}$$

$$= \frac{1}{\sqrt{\pi k}} \left( \frac{1}{e^{(k+i)\log(1 + \frac{i}{k}) + (k-i)\log(1 - \frac{i}{k})}} \right)$$
(3)

The exponent simplifies to using the series expansion and ignoring higher order terms(that is  $(\frac{i^2}{k})^2$  and above as we have been given  $\frac{i^2}{k} << 1$ ).

$$(k+i)log(1+\frac{i}{k}) + (k-i)log(1-\frac{i}{k}) = (k+i)(\frac{i}{k} - \frac{i^2}{2k^2} + \frac{i^3}{3k^3}...) - (k-i)(\frac{i}{k} + \frac{i^2}{2k^2} + \frac{i^3}{3k^3}...)$$

$$= \frac{i(k+i-k+i)}{k} + \frac{i^2(-k+i-k-i)}{2k^2} + \frac{i^3(2i)}{3k^3}...$$

$$\approx \frac{2i^2}{k} - \frac{i^2}{k} = \frac{i^2}{k}$$

$$(4)$$

Substituting in 3 we get:

$$P_{h}[X=2i] = \frac{1}{\sqrt{\pi k}} e^{-\frac{i^{2}}{k}}$$

$$P_{h}[X=i] = \frac{1}{\sqrt{\pi k}} e^{-\frac{i^{2}}{4k}}$$
(5)

Which is clearly the normal distribution  $N(\mu = 0, \sigma^2 = 2k)$ .

# 3 Fitting Data

# 3.1 Task A

Solution:

Check the code in 3.ipynb

# 3.2 Task B

# **Solution:**

# Check the code in 3.ipynb



Figure 4: Histogram

# 3.3 Task C

# **Solution:**

# Check the code in 3.ipynb Proof:

For first two moments  $\mu_1^{bin}$  and  $\mu_2^{bin}$ : Given,

$$\mu_1 = E[X]$$

$$\mu_2 = E[X^2]$$
(1)

As we know that, for binomial distribution

$$E[X] = E\left[\sum_{i=1}^{n} Y_{i}\right]$$

$$= \sum_{i=1}^{n} E[Y_{i}]$$

$$= \sum_{i=1}^{n} p$$

$$\mu_{1} = E[X] = np$$
(2)

Where,  $X_i = \sum_{i=1}^n Y_i$  and  $Y_i \sim Bern(p)$ 

$$E[X^{2}] = Var[X] + (E[X])^{2}$$

$$= np(1-p) + (np)^{2}$$

$$= np - np^{2} + n^{2}p^{2}$$

$$\mu_{2} = E[X^{2}] = np + n(n-1)p^{2}$$
(3)

Where, Var[X] = np(1-p) (for normal binomial distribution) and E[X] = np

# 3.4 Task D

#### **Solution:**

# Check the code in 3.ipynb Proof:

The first two moments are given by  $\mu_1^{Gamma} = E[X]$  and  $\mu_2^{Gamma} = E[X^2]$ : Note that the random variable x is non negative in gamma distributions.

$$E[X] = \int_0^\infty x f_X(x) dx$$

$$= \int_0^\infty x \left(\frac{1}{\theta^k \tau(k)} x^{k-1} e^{-\frac{x}{\theta}}\right) dx$$

$$= \frac{1}{\theta^k \tau(k)} \int_0^\infty x^k e^{-\frac{x}{\theta}} dx$$

$$= \frac{1}{\theta^k \tau(k)} \int_0^\infty \theta^{k+1} t^k e^{-t} dt$$

$$= \frac{1}{\theta^k \tau(k)} (\theta^{k+1} \tau(k+1))$$

$$= \frac{\theta^{k+1} (k\tau(k))}{\theta^k \tau(k)}$$

$$\mu_1^{Gamma} = E[X] = k\theta$$

$$(1)$$

We have used the Gamma function property  $\tau(k+1) = k\tau(k)$ .

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx$$

$$= \int_{0}^{\infty} x^{2} \left(\frac{1}{\theta^{k} \tau(k)} x^{k-1} e^{-\frac{x}{\theta}}\right) dx$$

$$= \frac{1}{\theta^{k} \tau(k)} \int_{0}^{\infty} x^{k+1} e^{-\frac{x}{\theta}} dx$$

$$= \frac{1}{\theta^{k} \tau(k)} \int_{0}^{\infty} \theta^{k+2} t^{k+1} e^{-t} dt$$

$$= \frac{1}{\theta^{k} \tau(k)} (\theta^{k+2} \tau(k+2))$$

$$= \frac{\theta^{k+2} (k(k+1)\tau(k))}{\theta^{k} \tau(k)}$$

$$\mu_{2} = E[X^{2}] = k(k+1)\theta^{2}$$

$$(2)$$

# 3.5 Task E

Solution:

Check the code in 3.ipynb

# 3.6 Task F

Solution:

Check the code in 3.ipynb

# 4 Quality in Inequalities

Given, Markov's Inequality

$$P[X \ge a] \le \frac{E[X]}{a} \tag{1}$$

Where,  $X \ge 0, a > 0$ 

#### 4.1 Task A

#### Solution:

#### Intuitive proof:

Imagine a jar containing a large number of balls  $(N_t)$  each having some weight. The random variable here is the weight of a ball. Now for some weight a, this is what we will do:

- 1) We will remove all balls with weight less than a,
- 2) We will replace all the balls with weight greater than a with a ball of weight a.

Obviously the weight of jar can never increase. ie  $N_t E(x) \ge N_l a \Rightarrow E(x) \ge a * \frac{N_l}{N_t}.(N_l \text{ is number of balls left.})$ 

$$P[x \ge a] \le \frac{E[x]}{a}$$

### Rigorous proof:

Let X be discrete Random variable and  $x_i$  be in non decreasing order. Let  $x_m$  be the smallest value such that  $x_m \ge a$  To get  $P[X \ge a]$ :

$$E[X] = \sum_{i=1}^{n} x_i P[x_i]$$

$$\geq \sum_{i=m}^{n} x_i P[x_i]$$

$$\geq \sum_{i=m}^{n} a P[x_i]$$

$$\geq a \sum_{i=m}^{n} P[x_i]$$

$$E[X] \geq a P[X \geq a]$$
(1)

Therefore, we get

$$P[X \ge a] \le \frac{E[X]}{a} \tag{2}$$

We can similarly for continuous Random variables by limiting n to infinity.

# 4.2 Task B

To be proved:

$$P[X - \mu \ge \tau] \le \frac{\sigma^2}{\sigma^2 + \tau^2} \forall \tau > 0 \tag{1}$$

Where,  $\mu$  = mean of R.V,  $\sigma$  = standard deviance of R.V

#### Solution:

We can write the following

$$P[X - \mu \ge \tau] = P[X - \mu + \alpha \ge \tau + \alpha]$$

$$\le P[(X - \mu + \alpha)^2 \ge (\tau + \alpha)^2]$$
(2)

Where,  $\alpha \geq -\tau$ 

we can apply the Markov's inequality to (2)

$$P[(X - \mu + \alpha)^{2} \ge (\tau + \alpha)^{2}] \le \frac{E((X - \mu + \alpha)^{2})}{(\tau + \alpha)^{2}}$$

$$\le \frac{E((X - \mu)^{2} + 2(X - \mu)\alpha + \alpha^{2})}{(\tau + \alpha)^{2}}$$

$$\le \frac{E((X - \mu)^{2}) + 2E((X - \mu))\alpha + \alpha^{2}}{(\tau + \alpha)^{2}}$$
(3)

$$P[(X - \mu + \alpha)^2 \ge (\tau + \alpha)^2] \le \frac{\sigma^2 + \alpha^2}{(\tau + \alpha)^2}$$
(4)

$$P[X - \mu \ge \tau] \le \frac{\sigma^2 + \alpha^2}{(\tau + \alpha)^2} \tag{5}$$

We can further decrease the range in (5) by differentiating with  $\alpha$ . So that we get minimum value in right term.

$$\frac{d(\frac{\sigma^2 + \alpha^2}{(\tau + \alpha)^2})}{d\alpha} = 0$$

$$\frac{2\alpha(\tau + \alpha) - 2(\sigma^2 + \alpha^2)}{(\tau + \alpha)^3} = 0$$

$$2\alpha(\tau + \alpha) = 2(\sigma^2 + \alpha^2)$$

$$\alpha = \frac{\sigma^2}{\tau}$$
(6)

By substituting (6), we will get

$$\left(\frac{\sigma^2 + \alpha^2}{(\tau + \alpha)^2}\right)_{min} = \frac{\sigma^2}{\sigma^2 + \tau^2} \tag{7}$$

So, from (7) and (5), we can conclude that

$$P[X - \mu \ge \tau] \le \frac{\sigma^2}{\sigma^2 + \tau^2} \tag{8}$$

# 4.3 Task C

To be proved:

$$P[X \ge x] \le e^{-xt} M_X(t) \forall t > 0 \tag{1}$$

$$P[X \le x] \le e^{-xt} M_X(t) \forall t < 0 \tag{2}$$

#### **Solution:**

We can write MGF for X as

$$M_X(t) = \int_0^\infty e^{ty} P[X = y] dy \tag{3}$$

# • Case 1: t > 0

Similar to the Method used in Task A, we can extend it to continuous and do the following

$$\int_{0}^{\infty} e^{ty} P[X = y] dy \ge \int_{x}^{\infty} e^{ty} P[X = y] dy$$

$$\int_{0}^{\infty} e^{ty} P[X = y] dy \ge e^{tx} \int_{x}^{\infty} P[X = y] dy$$

$$M_{X}(t) \ge e^{tx} \int_{x}^{\infty} P[X = y] dy$$

$$e^{-tx} M_{X}(t) \ge \int_{x}^{\infty} P[X = y] dy$$

$$e^{-tx} M_{X}(t) \ge P[X \ge x]$$

$$(4)$$

Hence, proved.

#### • Case 2: t<0

Similarly,

$$\int_{0}^{\infty} e^{ty} P[X = y] dy \ge \int_{0}^{x} e^{ty} P[X = y] dy$$

$$\int_{0}^{\infty} e^{ty} P[X = y] dy \ge e^{tx} \int_{0}^{x} P[X = y] dy$$

$$M_{X}(t) \ge e^{tx} \int_{0}^{x} P[X = y] dy$$

$$e^{-tx} M_{X}(t) \ge \int_{0}^{x} P[X = y] dy$$

$$e^{-tx} M_{X}(t) \ge P[X \ge x]$$

$$(5)$$

Hence, proved.

# 4.4 Task D

#### **Solution:**

For, n i.i.ds,  $X_1, X_2, \dots, X_n$ , which have Bernouli distribution with  $\mathrm{E}[X_i] = p_i$ , Y can be written as  $Y = \sum_{i=1}^n X_i$ 

#### 1. Expectation of Y

As all X's are independent and identically distributed, we can do as follows

$$E[Y] = E[X_1 + X_2 + \dots + X_n]$$

$$= E[X_1] + E[X_2] + \dots + E[X_n]$$

$$= \sum_{i=1}^{n} p_i$$

$$= np_i$$
(1)

#### 2. Prove:

$$P[Y \ge (1+\delta)\mu] \le \frac{e^{\mu(e^t-1)}}{e^{(1+\delta)t\mu}}$$
 (2)

Where,  $\mu = \text{expectation of Y}, \ \delta > -1, t > 0$ 

Using (1) of Task C, we can write that

$$P[Y \ge (1+\delta)\mu] \le e^{-t(1+\delta)\mu} M_Y(t), t > 0$$

$$\le e^{-t(1+\delta)\mu} E[e^{Yt}]$$

$$\le e^{-t(1+\delta)\mu} E[e^{t\sum_{i=1}^n X_i}]$$
(3)

As X's are i.i.d, we can write

$$P[Y \ge (1+\delta)\mu] \le e^{-t(1+\delta)\mu} \prod_{i=1}^{n} E[e^{tX_i}]$$

$$P[Y \ge (1+\delta)\mu] \le e^{-t(1+\delta)\mu} \prod_{i=1}^{n} (1+p_i(e^t-1))$$

$$P[Y \ge (1+\delta)\mu] \le e^{-t(1+\delta)\mu} (1+p_i(e^t-1))^n$$
(4)

Now using the inequality  $1 + a < e^a, \forall a > 0$ , we can write

$$e^{-t(1+\delta)\mu}(1+p_i(e^t-1))^n \le e^{-t(1+\delta)\mu}e^{p_i(e^t-1)n}$$

$$e^{-t(1+\delta)\mu}(1+p_i(e^t-1))^n \le e^{-t(1+\delta)\mu}e^{\mu(e^t-1)}$$

$$P[Y \ge (1+\delta)\mu] \le e^{-t(1+\delta)\mu}e^{\mu(e^t-1)}$$
(5)

Therefore, we can conclude that

$$P[Y \ge (1+\delta)\mu] \le \frac{e^{\mu(e^t-1)}}{e^{(1+\delta)t\mu}}$$
 (6)

## 3. Improve the bound with appropriate t

Using (2), to improve bound, we need to minimise right term. We can do so by differentiating right term with t and equating it with 0.

$$\frac{d(\frac{e^{\mu(e^t-1)}}{e^{(1+\delta)t\mu}})}{dt} = 0$$

$$\mu(e^t) - (1+\delta)\mu = 0$$

$$e^t = 1+\delta$$
(7)

From (3), we get  $t = \ln(1 + \delta)$ . By substituting it in (2), we get

$$P[Y \ge (1+\delta)\mu] \le \frac{e^{\mu\delta}}{(1+\delta)^{(1+\delta)\mu}}$$

$$\frac{e^{\mu\delta}}{(1+\delta)^{(1+\delta)\mu}} = e^{\mu\delta - (1+\delta)\ln(1+\delta)\mu}$$
(8)

• Case 1:  $\delta > 0$ 

We can use  $ln(1+\delta) \ge \frac{2\delta}{2+\delta}$  and get:

$$e^{\mu\delta - (1+\delta)\ln(1+\delta)\mu} < e^{\mu\delta - (1+\delta)\frac{2\delta}{2+\delta}\mu} \tag{9}$$

Therefore,

$$P[Y \ge (1+\delta)\mu] \le e^{-\frac{\mu\delta^2}{2+\delta}} \tag{10}$$

• Case 2:  $-1 < \delta < 0$ 

Similarly, we can use  $ln(1+\delta) \ge \frac{\delta(\delta+2)}{2(\delta+1)}$  and get:

$$e^{\mu\delta - (1+\delta)ln(1+\delta)\mu} < e^{\mu\delta - (1+\delta)\frac{\delta(\delta+2)}{2(\delta+1)}} \tag{11}$$

Therefore,

$$P[Y \le (1+\delta)\mu] \le e^{-\frac{\mu\delta^2}{2}}$$
 (12)

# 4.5 Task E

#### **Solution:**

# To be Proved:

Let  $X_1, X_2, \ldots, X_n$  be i.i.d random variables with each having mean  $\mu$ . We define  $A_n = \frac{\sum_{i=1}^n X_i}{n}$ . Then for all  $\epsilon > 0$ , we have

$$\lim_{n \to \infty} P[|A_n - \mu| > \epsilon] = 0 \tag{1}$$

First lets remove modulus and bound it to the minimum range(just like chernoff's bound)

$$P[|A_n - \mu| > \epsilon] = P[A_n - \mu > \epsilon] + P[A_n - \mu < -\epsilon] \tag{2}$$

Lets first assume the sum  $S_n = \sum_{i=1}^n X_i$ , so  $A_n = \frac{S_n}{n}$ 

• First lets focus on  $P[A_n > \mu + \epsilon]$ 

$$P[A_n > \mu + \epsilon] = P[S_n > n(\mu + \epsilon)] \le e^{-tn(\mu + \epsilon)} E[tS_n]$$
 (3)

Since  $X_1, X_2, \dots, X_n$  are independent , the M.G.F of  $S_n$  is a product of M.G.Fs of  $X_i's$ 

$$E[e^{tS_n}] = (E[e^{tX_i}])^n$$

$$P(S_n > n(\mu + \epsilon)) \le (e^{-t(\mu + \epsilon)} E[e^{tX_i}])^n$$
(4)

To get the minimum range in the bound, we need to minimize the R.H.S W.R.T  ${\bf t}.$ 

$$f(t) = e^{-t(\mu + \epsilon)} E[e^{tX_i}]$$

Here we don't need the exact value of t because the limits we are applying are on 'n' whereas the function f(t) doesnt depend on n, we just need to know that for some choice of t:

$$P(S_n > n(\mu + \epsilon)) \le e^{-cn} \tag{5}$$

Where, c is a constant W.R.T n.

• Similarly for  $P[A_n - \mu < -\epsilon]$ :

$$P[A_n < \mu - \epsilon] = P[S_n < n(\mu - \epsilon)]$$

$$P[S_n < n(\mu - \epsilon)] \le e^{-cn}$$
(6)

Now by combining the bounds:

$$P[|A_n - \mu| > \epsilon] \le (e^{-cn} + e^{-cn} = 2e^{-cn})$$
(7)

Now applying  $\lim_{n\to\infty}$  on B.S:

$$\lim_{n \to \infty} P[|A_n - \mu| > \epsilon] \le \lim_{n \to \infty} 2e^{-cn}$$
 (8)

As  $n\to\infty$  ,  $\lim_{n\to\infty}2e^{-cn}\to 0$  and we know that  $P[|A_n-\mu|>\epsilon]\ge 0$  Therefore:

$$\lim_{n \to \infty} P[|A_n - \mu| > \epsilon] = 0 \tag{9}$$

# 5 A Pretty "Normal" Mixture

# 5.1 Task A

**Solution:** Lets find the pdf for random variable  $\mathcal{A}$ , that is  $f_{\mathcal{A}}(x)$ .

Lets find the probability that our algorithm samples a value between x and dx. The probability for this is  $f_{\mathcal{A}}(x)dx$ .

It can also be computed using conditional probability .Let  $P(X_i)$  be probability that  $X_i$  is chosen in first step and  $f_i(x)$  be the PDF of  $X_i$ .As all such events(that a specific  $X_i$  is selected) are mutually exclusive probability can be added.

$$f_{\mathcal{A}}(x)dx = \sum_{i=0}^{k} P(X_i)P\left(\frac{X_i = x \text{ to } dx}{X_i}\right)$$
$$f_{\mathcal{A}}(x)dx = \sum_{i=0}^{k} p_i f_i(x)dx$$
$$f_{\mathcal{A}}(x) = \sum_{i=0}^{k} p_i f_i(x)$$

From question  $f_X(x) = \sum_{i=0}^k p_i f_i(x)$ . Therefore  $\forall u \in \mathcal{R}$ 

$$f_X(u) = f_{\mathcal{A}}(u) \tag{1}$$

# 5.2 Task B

#### Solution:

# 1. $\mathbf{E}[\mathbf{X}]$

As X is GMM sampled, we can write it's expectation as

$$E[X] = \sum_{i=1}^{k} p_i E[X_i] \tag{1}$$

Also, we know that

$$E[X_i] = \mu_i \tag{2}$$

From (1) and (2),

$$\mu = E[X] = \sum_{i=1}^{k} p_i \mu_i \tag{3}$$

# 2. Var[X]

For a GMM, acc to Law of Total Variance, Var[X] can be written as

$$Var[X] = E[Var[X_i]] + Var[E[X_i]]$$

$$= \sum_{i=1}^{k} p_i Var[X_i] + Var[\sum_{i=1}^{k} p_i \mu_1 | \mu]$$
(4)

For the second term,

$$Var[\sum_{i=1}^{k} p_i \mu_i | \mu] = \sum_{i=1}^{k} p_i (\mu_i - \mu)^2$$
 (5)

From (4) and (5),

$$Var[X] = \sum_{i=1}^{k} p_i \sigma_i^2 + \sum_{i=1}^{k} p_i (\mu_i - \mu)^2$$
 (6)

# 3. The MGF, M(t) of X

MGF of a GMM is

$$M_X(t) = \sum_{i=1}^{k} p_i M_{X_i}(t)$$
 (7)

For a Normal Guassian variable,

$$M_{X_{i}}(t) = E[e^{tX_{i}}]$$

$$= \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}\sigma_{i}} e^{\frac{-(x-\mu_{i})^{2}}{2\sigma_{i}^{2}}} dx$$

$$= e^{t\mu_{i} + \frac{1}{2}t^{2}\sigma_{i}^{2}} \frac{1}{\sqrt{2\pi}\sigma_{i}} \int_{-\infty}^{\infty} e^{-\frac{(x-(\mu_{i} + \sigma_{i}^{2}t))^{2}}{2\sigma_{i}^{2}}} dx$$

$$M_{X_{i}}(t) = e^{t\mu_{i} + \frac{1}{2}t^{2}\sigma_{i}^{2}}$$
(8)

From (7) and (8),

$$M_X(t) = \sum_{i=1}^k p_i e^{t\mu_i + \frac{1}{2}t^2\sigma_i^2}$$
(9)

# 5.3 Task C

**Solution:** Given random variable Z as

$$Z = \sum_{i=1}^{k} p_i X_i \tag{1}$$

# 1. **E**[**Z**]

We can write expectation of Z similar to the GMM above.

$$E[Z] = E\left[\sum_{i=1}^{k} p_i X_i\right]$$

$$= \sum_{i=1}^{k} p_i E[X_i]$$
(2)

Therefore,

$$E[Z] = \sum_{i=1}^{k} p_i \mu_i \tag{3}$$

# 2. **Var**[**Z**]

acc to the formula for variance calculation of sum of independent random variables  $\,$ 

$$Var[Z] = p_1^2 Var[X_1] + p_2^2 Var[X_2] + \dot{+}p_k^2 Var[X_k]$$

$$= \sum_{i=1}^k p_i^2 \sigma_i^2$$
(4)

# 3. The PDF, $f_Z(u)$ , of Z

As Z is a Normal Gaussian Distribution which we can say by comparing MGF, PDF of Z is

$$f_Z(u) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u-\mu)^2}{2\sigma^2}}$$
 (5)

Where, 
$$\mu = \sum_{i=1}^{k} p_i \mu_i, \sigma^2 = \sum_{i=1}^{k} p_i^2 \sigma_i^2$$

# 4. The MGF, $M_Z(t)$ , of Z

For MGF,

$$M_{Z}(t) = E(e^{Zt})$$

$$= E(e^{(p_{1}X_{1} + p_{1}X_{2} + \dots + p_{k}X_{k})t})$$

$$= E(e^{p_{1}X_{1}t})E(e^{p_{2}X_{2}t})\dots E(e^{p_{2}X_{k}t})$$

$$= \prod_{i=1}^{k} e^{tp_{i}\mu_{i} + \frac{1}{2}p_{i}^{2}\sigma_{i}^{2}t^{2}}$$

$$= e^{t\sum_{i=1}^{k} p_{i}\mu_{i} + \frac{1}{2}t^{2}\sum_{i=1}^{k} p_{i}^{2}\sigma_{i}^{2}}$$
(6)

$$M_Z(t) = e^{t\mu + t^2 \frac{1}{2}\sigma^2} \tag{7}$$

Where, 
$$\mu = \sum_{i=1}^k p_i \mu_i$$
,  $\sigma^2 = \sum_{i=1}^k p_i^2 \sigma_i^2$ 

Here, MGF is similar to Normal Gaussian randam variables.

#### 5. Conclusion

Weighted sum of Normal Gaussian variables, Z, is different from GMM, X. They have same expectation but remaining properties are different. Therefore, we can conclude that Z and X have different properties.

#### 6. Type of Distribution

Z follows Normal Gaussian Distribution.

# 5.4 Task D(B)

#### **Solution:**

For a finite discrete random variable X, we need to show that its MGF and PDF uniquely determine each other.

To do so, we need to complete proving 2 parts, i.e., given a PDF, there exist a unique MGF and vice-versa.

Let's take a finite discrete random variable X with PDF,  $P[X=x_i] = p_i$ , and MGF,  $M_X(t) = \sum_{i=1}^n e^{x_i t} p_i$ .

# Proof of uniqueness:

#### 1. PDF to MGF:

It is simpler to prove this direction.

- For a given PDF P, we can always write MGF,  $M_X(t)$ , as  $\sum_{i=1}^n e^{x_i t} p_i$ .
- The MGF can be uniquely defined for a particular X and its corresponding PDF,P.

#### 2. MGF to PDF:

Now let's take two random variables X, Y with  $M_X(t) = M_Y(t)$ .

- We can write  $M_X(t)$  as  $\sum_{i=1}^n e^{x_i t} p(x_i)$  and  $M_Y(t)$  as  $\sum_{i=1}^n e^{y_i t} p(y_i)$ .
- Using Taylor series we can split them into powers of t as follows:

$$M_X(t) = \sum_{i=1}^{n} \left(\sum_{k=0}^{\infty} \frac{t^k x_i^k}{k!}\right) p(x_i)$$
 (1)

$$M_Y(t) = \sum_{i=1}^{n} \left(\sum_{k=0}^{\infty} \frac{t^k y_i^k}{k!}\right) p(y_i)$$
 (2)

• As we already assumed  $M_X(t) = M_Y(t)$ , we get

$$\sum_{i=1}^{n} \left(\sum_{k=0}^{\infty} \frac{t^k x_i^k}{k!}\right) p(x_i) = \sum_{i=1}^{n} \left(\sum_{k=0}^{\infty} \frac{t^k y_i^k}{k!}\right) p(y_i)$$
 (3)

• By comparing  $t^k$  coefficients, we get

$$\sum_{i=1}^{n} \frac{x_i^k}{k!} p(x_i) = \sum_{i=1}^{n} \frac{y_i^k}{k!} p(y_i), \forall k \in W$$
 (4)

• As the given equation satisfy for all k, from the properties of linear equations with  $p(x_i)$  and  $p(y_i)$  as unknowns, equation has unique solutions.

• Hence, we can say that there is unique PDF for a given MGF.

From 1 and 2, we can conclude that for a finite discrete random variable X,its MGF and PDF uniquely determine each other.

# Conclusion for X and Z:

- Z is a simple Gaussian because its MGF corresponds to that of a normal distribution, confirming it has a unique Gaussian PDF.
- X is not Gaussian even though its MGF uniquely determines its distribution.X's distribution is a more complex mixture of Gaussians which depends on the probability selection of different Gaussian components.