

2013 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time 5 minutes
- o Working Time 2 hours
- Write using a blue or black pen. Black pen is preferred
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14

	MC	Q11	Q12	Q13	Q14	Total
PE3		/6				/6
HE1	/10					/10
HE2			/4			/4
HE3				/12	/10	/22
HE4					/5	/5
HE5	3 11 16 14 12 15 15 15 15 15 15	/9	/11	/3		/23
	/10	/15	/15	/15	/15	/70

Total marks (70)

Section I

Total marks (10)

- o Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Total marks (60)

- Attempt questions 11 14
- Answer in the blank answer books provided, unless otherwise instructed
- o Start a new book for each question
- All necessary working should be shown for every question
- Allow about 1 hour 45 minutes for this section

Section I – 10 marks Attempt Questions 1–10 All questions are of equal value

Marks

Use the multiple-choice answer sheet for Questions 1–10.

- 1. What is the value of $\lim_{x\to 0} \left(\frac{\sin\frac{1}{3}x}{2x}\right)$?
 - (A) $\frac{1}{6}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{3}{2}$
 - (D) 6
- 2. Which of the following is an expression for $\frac{d}{dx}(2^x)$?
 - (A) $x2^{x-1}$
 - (B) 2^{x-1}
 - (C) 2^x
 - (D) $2^x log_e 2$
- 3. The equation $2x^3 + x^2 13x + 6 = 0$ has roots α , $\frac{1}{\alpha}$ and β . What is the value of β ?
 - (A) 3
 - (B) 2
 - (C) -3
 - (D) -6

4.

ABC is a triangle inscribed in a circle. The tangent to the circle at A meets BC produced at D where BC=10cm and AD=12cm. What is the length of CD?

1

- (A) 6cm
- (B) 7cm
- (C) 8cm
- (D) 9cm
- 5. Consider a projectile launched with an initial velocity v at an angle θ to the horizontal.

 Assume that g = 9.8 m/s2 and that air resistance is negligible.

 Which of the following statements is correct?
- (A) The acceleration of the projectile decreases during its upward flight.
- (B) The acceleration of the projectile is greatest during its upward flight.
- (C) The acceleration of the projectile increases during its downward flight.
- (D) The acceleration of the projectile remains constant during its entire flight.

- 6. The area enclosed between the curve $y = x^3 1$, the y-axis and the lines y = 1 and y = 2 is given by:
 - (A) $\int_{1}^{2} (x^3 1) dy$
 - (B) $\int_{1}^{2} (\sqrt[3]{y+1}) dy$
 - (C) $\int_{1}^{2} \left(\sqrt[3]{y} + 1\right) dy$
 - (D) $\int_1^2 (y+1) \, dy$
- 7. Which equation shows a particle **not** moving in simple harmonic motion?
 - (A) $x = a \sin(nt + \alpha)$
 - (B) $x = a \tan(nt + \alpha)$
 - (C) $x = a \cos (nt + \alpha) a \sin(nt + \alpha)$
 - (D) $x = a \cos (nt + \alpha)$
- 8. Find $\int \frac{dx}{\sqrt{4-x^2}}$
 - (A) $\frac{1}{4}\sin^{-1}\left(\frac{x}{4}\right) + C$
 - (B) $\sin^{-1}\left(\frac{x}{4}\right) + C$
 - (C) $\frac{1}{2}\sin^{-1}\left(\frac{x}{2}\right) + C$
 - (D) $\sin^{-1}\left(\frac{x}{2}\right) + C$

9. Which of the following is an expression for $\frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right)$?

$$(A) \qquad \frac{-x^2}{1+x^2}$$

- (B) $\frac{-1}{1+x^2}$
- $(C) \qquad \frac{1}{1+x^2}$
- $(D) \qquad \frac{x^2}{1+x^2}$
- 10. Which of the following lines is a horizontal asymptote of the curve $y = \frac{e^{x}-2}{e^{x}+2}$?

(A)
$$y = -2$$

(B)
$$y = -1$$

(C)
$$y = 0$$

(D)
$$y = 2$$

Section II – 60 marks Attempt Questions 11–14

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle moves in a straight line so that its acceleration is given by $\frac{dv}{dt} = x 1$, where v is its velocity and x is its displacement from the origin. Initially the particle is at the origin and has v = 1.
 - (i) Show that $v^2 = (x-1)^2$.
 - (ii) Find x as a function of t, that is, x(t).
- (b) Find the coordinates of the point, P that divides the interval MN with M (1,4) and N (5,2) in the ratio -1:3.
- (c) Using the substitution u = 1 + 2x, find $\int \frac{6}{\sqrt{(1+2x)^3}} dx$.
- (d) The polynomial $P(x) = x^3 + px^2 + qx + 5$, where p and q are constants, leaves remainders of 7 and 17 when divided by x 2 and x + 3 respectively.
 - (i) Find the value of p and q.
 - (ii) Find the remainder when P(x) is divided by x-4.

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) Seven people are sitting around a table.
 - (i) How many seating arrangements are possible?

1

2

- (ii) Two people, Kevin and Julia, do not sit next to each other.
- 2
 - How many seating arrangements are now possible?
- Use Mathematical Induction to show that $n! > e^n$ for all (b) 3 positive integers $n \ge 6$.

(c)

CD is a vertical pole of height 1 metre that stands with its base C on horizontal ground. A is a point due South of C such that the angle of elevation of D from A is 45°. B is a point due East of C such that the angle of elevation of D from B is α . M is the midpoint of AB.

(i) Show that
$$AB = cosec \alpha$$
.

(ii) Show that
$$CM = \frac{1}{2} cosec \alpha$$
.

(Question 12 continued on next page)

- (d) AB and AC are tangents to a circle. D is a point on the circle such that $\angle BDC = \angle BAC$ and $2 \times \angle DBC = \angle BAC$.
 - (i) Show that BC = AB.
 - (ii) Show that DB is a diameter. Show that BC = AB.

1

3

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) $P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ with focus F(0, a).
 - (i) Use differentiation to show that the tangent to the parabola at P 2 has gradient t and equation $tx y at^2 = 0$.
 - (ii) Show that the shortest distance between the focus and this tangent is $a\sqrt{1+t^2}$.
- (b) Consider the function $f(x) = sin^{-1}(x 1)$.
 - (i) Find the domain of the function.
 - (ii) Sketch the graph of the curve y = f(x) showing the endpoints and the x axis intercept.
 - (iii) The region in the first quadrant bounded by the curve y=f(x) and the y-axis between the lines y=0 and $y=\frac{\pi}{2}$ is rotated through one complete revolution about the y-axis. Find in simplest exact form the volume of the solid of revolution.
- (c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds its displacement from a fixed point 0 on the line, is x metres, given by $x=4\sqrt{2}\cos\left(\frac{\pi}{4}t-\frac{\pi}{4}\right)$, its velocity is v ms⁻¹ and its acceleration is \ddot{x} ms⁻².
 - (i) Find the amplitude and period of the motion.
 - (ii) Find the initial position of the particle and determine if it is initially moving towards or away from *O*.
 - (iii) Find the distance travelled by the particle in the first 3 seconds of its motion.

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Express 5sinx + 12cosx in the form $Asin(x + \alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$. 2 (Give the value of α in radians, correct to two decimal places.)
 - (ii) Hence or otherwise, solve 5sinx + 12cosx = 8 for $0 \le \alpha \le \pi$. **2** (Give the value, or values, of x in radians, correct to two decimal places.)
- (b) A vertical building of height 60 metres stands on horizontal ground. A particle is projected from a point O at the top of the building with speed $V=20\sqrt{2}\ ms^{-1}$ at an angle α above the horizontal. It moves in a vertical plane under gravity where the acceleration due to gravity is $=10ms^{-2}$, and hits the ground at a distance of 120 metres from the foot of the building. At time t seconds its horizontal and vertical displacements from O are t metres and t metres respectively, given by t and t are t and t are t and t are t and t an
 - (i) Show that $\alpha = \frac{\pi}{4}$ or $\alpha = tan^{-1}\frac{1}{3}$.
 - (ii) If $\alpha = tan^{-1}\frac{1}{3}$, find the exact time taken for the particle to hit the ground.
 - (iii) If $\alpha = \frac{\pi}{4}$, find the exact speed of the particle after 6 seconds.
- (c) Consider the function $f(x) = x + e^{-x}$, $x \ge 0$.
 - (i) Show that for all values of x > 0, the function is increasing and the curve y = f(x) is concave up.
 - (ii) Sketch the graph of y = f(x) showing clearly the coordinates of the endpoint and the equation of the asymptote.
 - (iii) On the same diagram, sketch the graph of the inverse function $y = f^{-1}(x).$

END OF PAPER

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

STUDENT NUMBER/NAME:	

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the grid below.

	A	В	C	D
1				
2				•
3				
4				
5				
6				
7		÷	·	
8				
9				
10				

6.

ALEX Q11 + 14(b)

Questions 1-10 (1 mark each)

Best 1 2013 Inail Solutions

H5

Question Answer Solution Outcomes

1. A $\lim_{x\to 0} \left(\frac{\sin\frac{1}{3}x}{2x}\right) = \frac{1}{6}\lim_{x\to 0} \left(\frac{\sin\frac{1}{3}x}{\frac{1}{3}x}\right) = \frac{1}{6} \times 1 = \frac{1}{6}$ 1. D $\frac{d}{dx}(2^{x}) = \frac{d}{dx}\left(e^{\log_{e}2^{x}}\right) = \frac{d}{dx}\left(e^{x\log_{e}2}\right) = e^{x\log_{e}2}\log_{e}2 = 2^{x}\log_{e}2$ 1. H5

3. C $\alpha \times \frac{1}{\alpha} \times \beta = -\frac{6}{2} \quad \therefore \beta = -3$ PE3

3. C CD Let $\overrightarrow{BD} = x \text{ cm}$. Then $(10+x)x = 12^2$ and x > 0 $\therefore (x+18)(x-8) = 0$ $\therefore x = 8$ CD = 8 cm

The fact that gravity, g is constant indicates that the acceleration remains constant throughout flight.

Question 6 B

As it is an area to the y-axis we need $\int_{1}^{2} f(y).dy$, so given $y = x^{3} - 1$ we get $f(y) = \sqrt[3]{y+1}$. The area is $\int_{1}^{2} \sqrt[3]{y+1}.dy$.

7. Question 7 B HE3 Band 4-5

The functions $a\sin(nt+\alpha)$, $a\cos(nt+\alpha)$, $a\sin(nt+\alpha)-a\cos(nt+\alpha)$ are all functions that represent SHM. Therefore, $a\tan(nt+\alpha)$ does not represent SHM.

8. $\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{dx}{\sqrt{2^2-x^2}}.$ Hence using standard integrals $\int \frac{dx}{\sqrt{2^2-x^2}} = \sin^{-1}\left(\frac{x}{2}\right) + C$

9. $\frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) = \frac{1}{1 + \left(\frac{1}{x} \right)^2} \left(-\frac{1}{x^2} \right) = \frac{-1}{1 + x^2}$

10. $\lim_{x \to -\infty} \left(\frac{e^x - 2}{e^x + 2} \right) = \frac{0 - 2}{0 + 2} = -1. \text{ Hence } y = -1 \text{ is an asymptote as } x \to -\infty.$

(F)(a)(i)		HE5 Band 5-6
	$\frac{d\left(\frac{1}{2}v^2\right)}{dx} = (x-1)$	• Correctly finds $C = 0$ and shows the final result
	$\frac{dx}{\frac{1}{2}}v^2 = \frac{1}{2}(x-1)^2 + C_1$	• Uses $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) \dots 1$
	When $x = 0, v = 1$	
	$C_1 = 0$ and $\frac{1}{2}v^2 = \frac{1}{2}(x-1)^2$	
	$\frac{1}{2}v - \frac{1}{2}(x-1)$ $v^2 = (x-1)^2$	
		HE5 Band 4-5
(ii)	$\left(\frac{dx}{dt}\right)^2 = \left(x - 1\right)^2$	• Correctly writes $x(t)$ 4
	$\frac{dx}{dt} = \pm (x-1)$	• Correctly integrates
	Since, $v = 1$ when $x = 0$	• Correctly shows $\frac{dx}{dt} = -(x-1) \dots 2$
	$\frac{dx}{dt} = -(x-1)$	ut
	$\int \frac{dx}{(1-x)} = \int dt$	• Uses $v = \frac{dx}{dt}$
	$-\ln(1-x) = t + C_2$	
	Since, $t = 0$, $x = 0$	
	$C_2 = 0,$	
	$1-x=e^{-t}$ $x=1-e^{-t}$	
(b)	$P\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)$	PE3 Band 3-4
<i>-</i> ,		Gives the correct answer2
	$P\left(\frac{-1(5)+3(1)}{2},\frac{-1(2)+3(4)}{2}\right)$	Uses correct formula
	$P(-1,5)$ \checkmark	
(E)	Putting $u = 1 + 2x$ $\therefore du = 2dx$	HE7 Band 4-5
	$\int \frac{6}{\sqrt{(1+2x)^3}} dx$	• Gives the correct answer3
		• Correctly integrates2
	$=3\int \frac{2}{\sqrt{(1+2x)^3}}dx$	Correctly changes variable
	$=3\int \frac{du}{v^{\frac{3}{2}}} \qquad HES$	
	$=3\int u^{-\frac{1}{2}}du$	
	$=3\left[-2u^{-\frac{1}{2}}\right]+C$	
	$=-\frac{6}{\sqrt{(1+2x)}}+C$	
	$\sqrt{(1+2x)}$	

(i)	$P(x) = x^{3} + px^{2} + qx + 5$ P(2) = 7, P(-3) = 17 $\therefore 8 + 4p + 2q + 5 = 7$ $\therefore -27 + 9p - 3q + 5 = 17$ 4p + 2q = -6 and $9p - 3q = 392p + q = -3$ $3p - q = 13Adding these equations;5p = 10p = 2, q = -7$	PE3 Band 3-4 • Correctly solves equations for p and q
(ii)	$P(x) = x^{3} + 2x^{2} - 7x + 5$ $P(4) = 64 + 32 - 28 + 5$ $P(4) = 73$	PE3 Band 3-4 • Gives the correct answer
Question	112	
(a) (i)	(7-1)! = 720	PE3 Band 3-4 • Gives the correct answer
(ii)	Kevin and Julia sit together in $2 \times 5! = 240$ ways Hence, Kevin and Julia do not sit together in 720 - 240 = 480 ways.	PE3 Band 4-5 • Gives the correct answer

Q12 (cont)

(b) a. Outcomes assessed: HE2

Marking Guidelines

Criteria	Marks
• defines an appropriate sequence of statements and verifies that the first is true	1
• shows that if $S(k)$ is true, then $(k+1)! > (k+1)e^k$	1
• deduces that since $k \ge 6$, $S(k)$ true implies $S(k+1)$ true, and completes the induction process	1

Answer

Let S(n), n = 6, 7, 8, ... be the sequence of statements defined by S(n): $n! > e^n$

Consider S(6):

$$6! = 720 > e^6 \approx 403.4$$

Hence S(6) is true.

If S(k) is true:

$$k! > e^k **$$

Consider S(k+1):

$$(k+1)! = (k+1) k!$$

 $>(k+1)e^k$ if S(k) is true using ** $>e.e^k$ for $k \ge 6$ $=e^{k+1}$

Hence if S(k) is true, then S(k+1) is true. But S(6) is true, hence S(7) is true and then S(8) is true and so on. Therefore by Mathematical Induction, $n! > e^n$ for all integers $n \ge 6$.

6. Outcomes assessed: H5

Marking Guidelines

<u>Criteria</u>	Marks
i • writes down the length of AC and writes an expression for BC in terms of α	1
• uses Pythagoras' theorem in $\triangle ABC$ to find AB in terms of α	1
ii • deduces that A , B , C lie on a circle with centre M	.
• uses equal radii to deduce result	1 1

Answer

- i. In $\triangle ABC$: AC = 1, $BC = \cot \alpha$ and $\angle ACB = 90^{\circ}$ $\therefore AB^2 = 1 + \cot^2 \alpha = \csc^2 \alpha$ $AB = \csc \alpha$
- ii. A unique circle can be drawn through A, B and C. Since $\angle ACB = 90^{\circ}$, AB is a diameter of this circle and hence M is its centre and CM, BM are radii. $\therefore CM = BM = \frac{1}{2} \csc \alpha$

	Sample answer	Syllabus outcomes and marking guide
Question	112	
(i) (i)	Let $\angle DBC = x$ $AB = AC$, (tangents drawn from an external point are equal) $\angle BAC = 2x$, (given) $\angle BAC = \angle BDC = 2x$, (given) $\angle BDC = \angle ABC = 2x$, (angle between the tangent to a circle and a chord through the point of contact is equal to the angle in the alternate segment) $\angle ACB = \angle ABC = 2x$, (base angles of isosceles triangle are equal) $6x = 180$, (angle sum of a triangle is 180) $x = 60$ hence, $\angle BCD = 90$, (angle sum of a triangle is 180) So, DB is diameter of circle as angle in semi-circle is 90.	 HE2 Band 5-6 Correctly shows angle in semicircle is 90 degrees
(ii)	$\triangle ABC$ is an equilateral triangle (all angles are equal to 60°) $BC = AB$, (opposite sides of an equilateral triangle are equal)	• Gives the correct answer1

Marking Guidelines

THE MILE OF THE PROPERTY OF TH	
Criteria	Marks
i • uses differentiation to show tangent has gradient t	1
• finds equation of tangent	1
ii • writes expression for perpendicular distance from F to the tangent and simplifies	1

Answer

i.
$$y = at^{2} \Rightarrow \frac{dy}{dt} = 2at$$

$$x = 2at \Rightarrow \frac{dx}{dt} = 2a$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$$

Hence tangent at $P(2at, at^2)$ has gradient t and equation $y - at^2 = t(x - 2at)$ $tx - y - at^2 = 0.$

ii.
$$\perp$$
 distance from $F(0, a)$ to line $tx - y - at^2 = 0$ is $d = \frac{\left|0 - a - at^2\right|}{\sqrt{t^2 + (-1)^2}} = \frac{a(1 + t^2)}{\sqrt{1 + t^2}} = a\sqrt{1 + t^2}$

b. Outcomes assessed: HE4, H8

Marking Guidelines		
Criteria	Marks	
i • states domain	1	
ii • sketches curve with correct shape and x-intercept	1	
• shows endpoints of curve		
iii • writes definite integral for V	1 1 .	
• expands and finds primitive function	1	
• evaluates by substitution of limits	_	

Answer

$$f(x) = \sin^{-1}(x-1)$$

i. Domain: $-1 \le x - 1 \le 1$
 $\{x : 0 \le x \le 2\}$

ii.

iii.
$$V = \pi \int_0^{\frac{\pi}{2}} (1 + \sin y)^2 dy$$
$$= \pi \int_0^{\frac{\pi}{2}} \left\{ 1 + 2\sin y + \frac{1}{2} (1 - \cos 2y) \right\} dy$$
$$= \pi \left[\frac{3}{2} y - 2\cos y - \frac{1}{4} \sin 2y \right]_0^{\frac{\pi}{2}}$$
$$= \pi \left(\frac{3\pi}{4} + 2 \right)$$

Volume is $\pi(\frac{3\pi}{4}+2)$ cubic units.

c. Outcomes assessed: HE3

Marking Guidelines

Training Guidenies	
Criteria	Marks
i • writes down the amplitude	1
• finds the period	1
ii • finds the initial position	1
• determines the initial direction of travel	.] 1
iii • finds the position of the particle when $t = 3$	1
• determines the distance travelled in the first three seconds.	

$$x = 4\sqrt{2}\cos\left(\frac{\pi}{4}t - \frac{\pi}{4}\right), \quad \dot{x} = -\pi\sqrt{2}\sin\left(\frac{\pi}{4}t - \frac{\pi}{4}\right)$$

- i. Amplitude $4\sqrt{2}$ m, period $2\pi + \frac{\pi}{4} = 8$ s
- ii. $t = 0 \Rightarrow x = 4$, $v = \pi > 0$. Particle is initially 4m to the right of O and moving away from O.
- iii. Particle first reaches its positive extreme at $x = 4\sqrt{2}$ when t = 1. In the next 2 seconds ($\frac{1}{4}$ period) the particle travels from this extreme back to O. Hence the distance travelled in the first three seconds is $(4\sqrt{2} - 4) + 4\sqrt{2} = 8\sqrt{2} - 4$ metres.

(i)
$$A \sin(x+\alpha) = A \sin x \cos \alpha + A \cos x \sin \alpha$$
 (3)
= $5 \sin x + 12 \cos x$

. Acosd = 5 and Asmid = 12

$$\frac{A \text{smd}}{A \text{cood}} = \frac{12}{5} = \text{tond}$$

$$\beta = \frac{1}{5}$$
, $\alpha = 1.18^{\circ}$ (to 2d.p.)

$$A = \sqrt{5^2 + 12^2}$$

(ii)
$$5 \text{ pinn}(+1205) = 8$$

He 13 sm (641.18°) = 8
 $\text{sm}(641.18°) = \frac{8}{13}$
 $\text{sc}(+1.18°) = 0.66$, $2048°$, $6.94°$

$$9C+1.18^{2}=0.66$$
, 9.48 , 9.76

(2) 2 marks for correct Answer

I mark for a correct only

I moule for A correct only

2 mails for correct auswer in vactories 2 meuls for correct

answer caleulated from wong assure ! ments for an error

in an otherwise correct solution

b. Outcomes assessed: HE3

Marking Cuidelines

Criteria		Marks
i • writes equation for tan α	V=20/2	1
• solves for $\tan \alpha$ to deduce required values of angle of projection		1
ii • finds exact value of $\cos \alpha$ given $\tan \alpha$		1
• uses this value to find exact time to hit the ground	1/2	1 1
iii • finds expressions for horizontal and vertical components of velocity	360m	1 1
• uses Pythagoras' theorem to find the speed	120m->	

Answer

i.
$$x = 20\sqrt{2} t \cos \alpha$$
, $y = 20\sqrt{2} t \sin \alpha - 5t^2$
Ground is 60m below O.
When $x = 120$, $y = -60$.

When
$$x = 120$$
, $y = -60$.

$$20\sqrt{2} \sin \alpha \left(\frac{120}{20\sqrt{2} \cos \alpha}\right) - 5\left(\frac{120}{20\sqrt{2} \cos \alpha}\right)^2 = -60$$

$$120 \tan \alpha - 5 \times 6 \times 3 \sec^2 \alpha = -60$$

$$4 \tan \alpha - 3(1 + \tan^2 \alpha) = -2$$

$$3 \tan^2 \alpha - 4 \tan \alpha + 1 = 0$$

$$(\tan \alpha - 1)(3 \tan \alpha - 1) = 0$$

$$\therefore \tan \alpha = 1 \quad \text{or} \quad \tan \alpha = \frac{1}{3}$$

$$\alpha = \frac{\pi}{4} \qquad \alpha = \tan^{-1} \frac{1}{3}$$

ii.
$$\tan \alpha = \frac{1}{3} \Rightarrow \sec^2 \alpha = \frac{10}{9}$$
, $\cos \alpha = \frac{3}{\sqrt{10}}$
Particle hits ground when

$$t = \frac{120}{20\sqrt{2}\cos\alpha} = \frac{6}{\sqrt{2}} \cdot \frac{\sqrt{10}}{3} = 2\sqrt{5} \text{ s } /$$

iii.
$$\alpha = \frac{\pi}{4} \implies \dot{x} = 20$$
 and $\dot{y} = 20 - 10t$
Then $t = 6 \implies \dot{x} = 20$ and $\dot{y} = -40$

(C) (i)
$$60=x+e^{-x}$$
, $x>0$

$$f(0)=1-e^{-x}>0 \text{ for } x>0$$

$$f''(0)=e^{-x}>0 \text{ for } x>0$$
Hence come is concave up for $x>0$.

- (1) for correct graph of for)
 showing endpoint (91)

 (1) for showing subject asymptote

 y=>c

 (1) for correctly shetching f (x).