Développements limités

Un développement limité d'une fonction en un point x_0 fini ou infini est une approximation polynomiale de cette fonction au voisinage de ce point. Ce qui permet l'étude locale de cette fonction (le calcul de limites au voisinage de x_0 , la détermination de la tangente à la courbe d'une fonction, les droites asymptotes,...). Nous commençons ce chapitre par les développements limités au voisinage de 0, puis nous généralisons cette notion au voisinage d'un point quelconque x_0 et de l'infini par un changement de variable simple.

I) Développements limités au voisinage de 0

Définition 1 Soient $n \in \mathbb{N}$, I un intervalle ouvert de centre 0 et f une fonction définie sur I sauf peut-être en 0. On dit que f admet un développement limité d'ordre n au voisinage de 0, s'il existe un polynôme de degré n à coefficients réels a_0, a_1, \dots, a_n et une fonction ε définie sur I tels que

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x), \quad avec \lim_{x \to 0} \varepsilon(x) = 0.$$

Remarques:

- Le polynôme $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ de degré $\leq n$ est appelé partie principale ou régulière du développement limité.
- L'expression $x^n \varepsilon(x)$ est aussi notée par $o(x^n)$, c'est le reste du développement limité, qui est la partie négligeable c'est-à-dire $\lim_{x\to 0} \frac{o(x^n)}{x^n} = 0$. La notation $o(x^n)$ fut introduite par le mathématicien Russe Lev Landau.
- On écrit $f(x) = \sum_{k=0}^{n} a_k x^k + \underbrace{o(x^n)}_{\text{reste}}$.
- On écrit en général $DL_n(0)$ pour dire développement limité à l'ordre n au voisinage de 0.

Exemple 1 Toute fonction polynomiale admet un développement limité au voisinage de 0 à tout ordre. Par exemple la fonction polynomiale $f(x) = 2 + 3x + x^3$ admet un DL au voisinage de 0 à l'ordre 1, dont la partie principale est 2 + 3x et $x^3 = o(x)$ est la partie négligeable.

Elle admet un DL au voisinage de 0 à l'ordre 3, dont la partie principale est $2 + 3x + x^3$ et le reste est nul.

Exemple 2 La fonction $f(x) = x - x^2 + 2x^3 + x^4 \sin\left(\frac{1}{x}\right)$ n'est pas définie en 0 et admet un développement

limité à l'ordre 1,2 et 3 au voisinage de 0. En effet

$$f(x) = x + \underbrace{x \left(-x + 2x^2 + x^3 \sin\left(\frac{1}{x}\right) \right)}_{o(x)} DL \ \hat{a} \ lordre \ 1, \quad \operatorname{car} \lim_{x \to 0} \left(-x + 2x^2 + x^3 \sin\left(\frac{1}{x}\right) \right) = 0.$$

$$f(x) = x - x^2 + \underbrace{x^2 \left(2x + x^2 \sin\left(\frac{1}{x}\right) \right)}_{o(x^2)} DL \ \hat{a} \ lordre \ 2, \quad \operatorname{car} \lim_{x \to 0} \left(2x + x^2 \sin\left(\frac{1}{x}\right) \right) = 0.$$

$$f(x) = x - x^2 + 2x^3 + \underbrace{x^3 \left(x \sin\left(\frac{1}{x}\right) \right)}_{o(x^3)}, \quad DL \ \hat{a} \ lordre \ 3, \quad \operatorname{car} \lim_{x \to 0} \left(x \sin\left(\frac{1}{x}\right) \right) = 0.$$

Exemple 3 Pour tout $n \in \mathbb{N}$ et $x \neq 1$, on a:

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}$$

Donc

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \frac{x^{n+1}}{1-x}.$$

 $En\ posant\ \frac{x^{n+1}}{1-x^n}=x^n\left(\frac{x}{1-x}\right)=o\left(x^n\right)\ o\grave{u}\ \lim_{x\to 0}\frac{o\left(x^n\right)}{x^n}=\lim_{x\to 0}\frac{x}{1-x}=0,\ on\ obtient\ un\ d\acute{e}veloppement\ limit\'{e}\ \grave{a}\ l'ordre\ n\ au\ voisinage\ de\ 0\ de\ la\ fonction\ x\longmapsto \frac{1}{1-x},\ c'est-\grave{a}-dire$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n) \quad \dots (*)$$

Exemple 4 Développement limité à l'ordre n au voisinage de 0 de la fonction $x \mapsto \frac{1}{1+x}$.

En écrivant la fonction $f(x) = \frac{1}{1+x}$ sous la forme $f(x) = \frac{1}{1-(-x)}$ et en remplaçant dans (*) (x) par (-x) qui est aussi au voisinage de 0, on obtient:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n) + \dots (**)$$

Exemple 5 Développement limité à l'ordre n au voisinage de 0 de la fonction $x \mapsto \frac{1}{1+x^2}$. De même, en remplaçant dans (2), (x) par (x^2) et comme x^2 est aussi un voisinage de 0, on obtient :

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n}).$$

Nous avons le résultat suivant qui découle directement de la définition d'un développement limité.

Proposition 1 Si f admet un DL à l'ordre n au voisinage de 0

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n),$$

alors $\lim_{x\to 0} f(x) = a_0$ (existe et finie).

Remarque : Si $\lim_{x\to 0} f(x)$ n'existe pas ou si elle est égale à $\pm \infty$. Alors, f n'admet pas de DL au voisinage de 0.

Exemple 6 La fonction $f(x) = \ln x$ n'admet pas de DL au voisinage de 0 car $\lim_{x\to 0^+} \ln x = -\infty$.

Proposition 2 (Unicité du développement limité)

Si f admet un développement limité à l'ordre n au voisinage de 0, alors ce développement est unique.

Preuve 1 Supposons qu'il existe des réels $a_0, \ldots, a_n, b_0, \ldots, b_n$ et deux fonctions ε_1 et ε_2 tels que

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon_1(x^n), \quad avec \lim_{x \to 0} \varepsilon_1(x) = 0$$

$$f(x) = b_0 + b_1 x + \dots + b_n x^n + x^n \varepsilon_2(x^n), \quad avec \lim_{x \to 0} \varepsilon_2(x) = 0.$$

Par soustraction, on obtient

$$(a_0 - b_0) + (a_1 - b_1) x + \dots + (a_n - b_n) x^n = x^n (\varepsilon_2(x) - \varepsilon_1(x)).$$
 (1)

Passant à la limite quand x tend vers 0 dans (1), on obtient

$$a_0 - b_0 = 0 \Leftrightarrow a_0 = b_0.$$

La relation (1) devient

$$(a_1 - b_1) x + \dots + (a_n - b_n) x^n = x^n (\varepsilon_2(x) - \varepsilon_1(x)),$$

soit

$$(a_1 - b_1) + \cdots + (a_n - b_n) x^{n-1} = x^{n-1} (\varepsilon_2(x) - \varepsilon_1(x)).$$

En prenant de nouveau la limite quand x tend vers θ , on obtient

$$a_1 - b_1 = 0 \Leftrightarrow a_1 = b_1.$$

En poursuivant l'opération n fois, on trouve

$$a_n - b_n = \varepsilon_2(x) - \varepsilon_1(x),$$

d'où

$$a_n - b_n = \lim_{x \to 0} (\varepsilon_2(x) - \varepsilon_1(x)) = 0,$$

d'où $a_n = b_n$.

Proposition 3 (Développements limités et parité)

Soit f une fonction admettant un DL à l'ordre n au voisinage de 0.

- Si f est paire, alors les coefficients de rang impair de DL sont nuls.
- Si f est impaire. alors les coefficients de rang pair de DL sont nuls.

Preuve 2 Soit f une fonction paire admettant un $DL_n(0)$. Donc

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x),$$

et

$$f(-x) = a_0 - a_1 x + a_2 x^2 + \dots + (-1)^n a_n x^n + (-1)^n x^n \varepsilon(-x).$$

Or f est paire, donc f(-x) = f(x), par conséquent il en résulte de l'unicité du développement limité que

$$a_i = (-1)^j a_i$$
, $0 < i < n \text{ et } \varepsilon(x) = (-1)^n \varepsilon(-x)$.

D'où, tous les coefficients d'indice impair $(a_1, a_3, \dots, a_{2k+1}, \dots)$ sont nuls. Le développement de f s'écrit alors

$$f(x) = a_0 + a_2 x^2 + \dots + a_{2n} x^{2n} + x^{2n} \varepsilon(x).$$

On démontre de la même manière le cas f est impaire.

Proposition 4 (Troncature) Si une fonction f admet un DL à l'ordre n au voisinage de 0. alors elle admet un DL au voisinage de 0 à l'ordre k, pour tout $0 \le k \le n$.

Preuve 3 Soit $k \in \mathbb{N}$ tel que $0 \le k \le n$. Supposons que la fonction f admet un DL à l'ordre n au voisinage de 0 de la forme: :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + a_{k+1} x^{k+1} + \dots + a_n x^n + x^n \varepsilon(x).$$

Alors:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + x^k \underbrace{\left(x a_{k+1} + \dots + a_n x^{n-k} + x^{n-k} \varepsilon \left(x^{n-k}\right)\right)}_{\varepsilon_1(x)}$$

 $o\grave{u}\ \varepsilon_1(x) = x^{n-k}\varepsilon\left(x^{n-k}\right)\ et\ \lim_{x\to 0}\varepsilon_1(x) = 0,\ donc$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + x^k \varepsilon_1(x)$$

Ainsi, f admet un DL à l'ordre k au voisinage de θ .

1) Développements limités obtenus par la formule de Taylor-Young

Théorème 1 (Formule de Taylor-Young à l'ordre n) Soient I un intervalle contenant 0 et $f: I \to \mathbb{R}$ une fonction de classe C^n sur I, alors il existe une fonction $\varepsilon: I \to \mathbb{R}$ vérifiant $\lim_{x\to 0} \varepsilon(x) = 0$ telle que, pour tout $x \in I$,

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + x^n\varepsilon(x).$$

Proposition 5 Soit $n \in \mathbb{N}$. Si une fonction f est de classe C^n au voisinage de 0, alors elle admet un DL à l'ordre n au voisinage de 0 donné par :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n).$$

Où les coefficients du polynôme de la partie régulière du DL, sont donnés par :

$$\forall n \in \mathbb{N}, a_n = \frac{f^{(n)}(0)}{n!}$$

Remarque: L'existence de la dérivée n-ième d'une fonction f au point x = 0 entraine l'existence du $DL_n(0)$. La réciproque est fausse ; il existe des fonctions admettant un $DL_n(0)$ sans pour autant que la formule de Taylor-Young soit applicable.

Développements limités de quelques fonctions élémentaires obtenus par la formule de Taylor-Young au voisinage de 0

1. $f(x) = e^x$, on a $\forall n \in \mathbb{N}, f^{(n)}(x) = e^x$ donc $f^{(n)}(0) = 1$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}).$$

2. $f(x) = \sin x$, on a $\forall n \in \mathbb{N}, f^{(n)}(x) = \sin \left(x + \frac{n\pi}{2}\right)$

$$\sin x = x - \frac{x^3}{3!} + \dots + \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o\left(x^{2k+2}\right).$$

3. $f(x) = \cos x$, on a $\forall n \in \mathbb{N}, f^{(n)}(x) = \cos\left(x + \frac{n\pi}{2}\right)$, donc

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^k}{(2k)!} x^{2k} + o\left(x^{2k+1}\right).$$

Remarque: Dans la partie principale du DL de la fonction $\cos x$, ne figure que les monômes de puissances paires, car la fonction $\cos x$ est paire. De même pour la fonction $\sin x$ qui est impaire, on retrouve que des puissances impaires dans la partie principale de son DL.

4. $f(x) = (1+x)^{\alpha}$, où $\alpha \in \mathbb{R}$. On a pour tout $n \in \mathbb{N}$,

$$f^{(n)}(x) = \alpha(\alpha - 1) \cdots (\alpha - (n - 1))(1 + x)^{\alpha - n}$$

Donc

$$f(x) = (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-(n-1))}{n!}x^n + o(x^n).$$

Pour $\alpha = \frac{1}{2}$, on a

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + (-1)^{n-1}\frac{1 \cdot 3 \cdot \dots (2n-3)}{2 \cdot 4 \cdot \dots (2n)}x^n + o(x^n).$$

Pour $\alpha = -\frac{1}{2}$, on a

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots + (-1)^n \frac{1 \cdot 3 \dots (2n-1)}{2 \cdot 4 \dots (2n)}x^n + o(x^n).$$

2) Opérations sur les développements limités

Théorème 2 Soient f et g deux fonctions admettant des DL au même ordre n au voisinage de 0 de la forme :

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$ $(d^{\circ}P \le n, d^{\circ}Q \le n)$.

Alors

1. La somme f + g admet un DL à l'ordre n au voisinage de 0 de la forme

$$f(x) + g(x) = \left(P(x) + Q(x)\right) + o\left(x^{n}\right).$$

2. Le produit $f \times g$ admet un DL a l'ordre n au voisinage de 0 de la forme :

$$f(x) \times g(x) = R(x) + o(x^n).$$

où R(x) est le polynôme de degré inférieur ou égal à n obtenu en ne gardant dans le produit P(x) par Q(x) que les termes de degré inférieur ou égal à n.

3. $Si \lim_{x\to 0} g(x) \neq 0$, alors le quotient $\frac{f}{g}$ admet un DL au voisinage de 0 à l'ordre n, sa partie régulière est le quotient à l'ordre n dans la division suivant les puissances croissantes de P(x) par Q(x).

Remarque: Supposons que

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$$
 et $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + o(x^n)$

Si $\lim_{x\to 0} g(x) = 0$, c'est-à-dire $b_0 = 0$, on distingue deux cas :

- Cas 1 : $a_0 \neq 0$ et $b_0 = 0$, dans ce cas $\frac{f(x)}{g(x)}$ tend vers ∞ et donc $\frac{f}{g}$ n'admet pas de DL au voisinage de 0 et on parle d'un développement limité généralisé.
- Cas 2: $a_0 = 0$ et $b_0 = 0$, on met la plus petite puissance x^p en facteur commun pour f et g, ainsi $\frac{f(x)}{g(x)} = \frac{x^p \cdot f_1(x)}{x^p \cdot g_1(x)} = \frac{f_1(x)}{g_1(x)}$ et on se ramène soit au cas $\lim_{x \to 0} g_1(x) = 0$ ou bien $\lim_{x \to 0} g_1(x) \neq 0$.

Exemple 7 Déterminans le DL à l'ordre n = 3 au V(0) de $f(x) = \frac{1}{1-x} + e^x$. On a :

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3), e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3).$$

Donc

$$f(x) = 2 + 2x + \frac{3}{2}x^2 + \frac{7}{6}x^3 + o(x^3).$$

Exemple 8 Soit $f(x) = \text{ch} x = \frac{e^x + e^{-x}}{2}$. En utilisant DL à l'ordre n au voisinage de 0 des fonctions e^x et de e^{-x} donnés par :

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

 $comme \lim_{x\to 0} (-x) = 0$, alors

$$e^{-x} = 1 + (-x) + \frac{(-x)^2}{2!} + \dots + \frac{(-x)^n}{n!} + o((-x)^n)$$
$$= 1 - x + \frac{x^2}{2!} + \dots + (-1)^n \frac{x^n}{n!} + o(x^n),$$

Par sommation des deux DL puis division par 2, on obtient :

$$chx = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{1}{(2k)!}x^{2k} + o\left(x^{2k+1}\right).$$

Exemple 9 Calculons le DL a l'ordre 4 au V(0) de $\sin x(1 - \cosh x)$. On a

$$\sin x = x - \frac{1}{6}x^3 + o\left(x^4\right)$$

$$1 - \operatorname{ch} x = -\frac{1}{2}x^2 - \frac{1}{24}x^4 + o\left(x^4\right)$$

$$\sin x(1 - \cosh x) = \left(x - \frac{1}{6}x^3\right)\left(-\frac{1}{2}x^2 - \frac{1}{24}x^4\right) + o\left(x^4\right) = -\frac{1}{2}x^3 + o\left(x^4\right).$$

Comme on cherche à déterminer un DL à l'ordre 4, alors dans le produit des deux parties régulières, on néglige tous les termes de degré supérieur ou égal à 5.

Exemple 10 Calculons le le DL à l'ordre 3 au voisinage de 0 de $f(x) = \frac{e^x}{\cos x}$. On a

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + o(x^{3}),$$
$$\cos x = 1 - \frac{1}{2}x^{2} + o(x^{3}).$$

Méthode 1 : On effectue la division suivant les puissances croissantes de x.

Ainsi, on obtient le DL au voisinage de 0 à l'ordre 3 suivant

$$\frac{e^x}{\cos x} = 1 + x + x^2 + \frac{2}{3}x^3 + o(x^3).$$

Méthode 2 : La deuxième méthode consiste à calculer le $DL_3(0)$ de la fonction $x \mapsto \frac{1}{\cos x}$ ensuite multiplier le résultat obtenu par le $DL_3(0)$ de la fonction exponentielle. On a

$$\frac{1}{\cos x} = \frac{1}{1 - \frac{1}{2}x^2 + o(x^3)}$$

et

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + o(u^3).$$

On pose $u(x) = -\frac{1}{2}x^2$, on a u(0) = 0 et

$$\frac{1}{\cos x} = \frac{1}{1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o\left(x^4\right)} = 1 + \frac{1}{2}x^2 + o\left(x^3\right).$$

Puisque

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + o(x^{3}),$$

on trouve

$$\frac{e^x}{\cos x} = \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3\right) \left(1 + \frac{1}{2}x^2\right) + o\left(x^3\right)$$
$$= 1 + x + x^2 + \frac{2}{3}x^3 + o\left(x^3\right)$$

Proposition 6 (Développement limité d'une fonction composée)

Soient f et g deux fonctions admettant des DL au même ordre n au voisinage de 0 de la forme :

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$ $(d^{\circ}P \le n, d^{\circ}Q \le n)$.

Si $\lim_{x\to 0} g(x) = 0$, alors $f\circ g$ admet un DL à l'ordre n au voisinage de 0 dont la partie régulière est obtenu en ne gardant dans la composée $(P\circ Q)(x)$ que les termes de degré inférieur ou égal à n.

Exemple 11 Calculons le DL à l'ordre 3 de la fonction $f(x) = e^{\sin x}$.

On $a f(x) = e^{\sin x} = (u \circ v)(x)$ où $u(x) = e^x$ et $v(x) = \sin x$.

Écrivons d'abord les DL à l'ordre 3 de u et v. On a :

$$u(x) = e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$
 et $v(x) = \sin x = x - \frac{1}{6}x^3 + o(x^3)$.

On $a \lim_{x \to 0} v(x) = 0$. En Posant $t = \sin x$, alors $t \longrightarrow 0$ quand $x \longrightarrow 0$, ainsi

$$e^{\sin x} = e^{t} = 1 + t + \frac{1}{2}t^{2} + \frac{1}{6}t^{3} + o(t^{3})$$

$$= 1 + \left(x - \frac{1}{6}x^{3}\right) + \frac{1}{2}\left(x - \frac{1}{6}x^{3}\right)^{2} + \frac{1}{6}\left(x - \frac{1}{6}x^{3}\right)^{3} + o(x^{3})$$

$$= 1 + \left(x - \frac{1}{6}x^{3}\right) + \frac{1}{2}x^{2} + \frac{1}{6}x + o(x^{3})$$

On déduit que $f(x) = 1 + x + \frac{1}{2}x^2 + o(x^3)$

3) Dérivation et intégration d'un développement limité

Théorème 3 Soient I un intervalle contenant 0 et $f:I\to\mathbb{R}$ une fonction continue, admettant au voisinage de 0 le développement limité d'ordre n suivant :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n) = P(x) + o(x^n)$$

et si F est une primitive de f (c'est-à-dire pour tout $x \in I$, F'(x) = f(x)), alors F admet un développement limité à l'ordre n+1 au voisinage de 0 donné par

$$F(x) = F(0) + a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots + \frac{a_n}{n+1} x^{n+1} + o\left(x^{n+1}\right) = F(0) + \int_0^x P(t) \ dt + o(x^{n+1}).$$

Exemple 12 Soit F la fonction définie par $F(x) = \ln(1+x)$, dérivable sur un intervalle ouvert contenant 0 tel que $F'(x) = f(x) = \frac{1}{1+x}$.

La fonction f admet au voisinage de 0 le DL suivant

$$f(x) = \frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n).$$

alors par intégration, on obtient

$$F(x) = F(0) + x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^n}{n+1} x^{n+1} + o(x^{n+1}).$$

comme F(0) = 0, alors

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^n}{n+1} x^{n+1} + o(x^{n+1}).$$

Exemple 13 Soit F la fonction définie par $F(x) = \arctan x$, dérivable sur un intervalle ouvert contenant 0 tel que $F'(x) = f(x) = \frac{1}{1+x^2}$.

La fonction f admet au voisinage de 0 le DL suivant

$$f(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n+1}).$$

Par intégration, on obtient

$$F(x) = F(0) + x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right)$$

comme F(0) = 0, alors

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right).$$

Exemple 14 Soit F la fonction définie par $F(x) = \arcsin(x)$, dérivable sur un intervalle ouvert contenant 0 tel que $F'(x) = f(x) = \frac{1}{\sqrt{1-x^2}}$ et F(0) = 0.

On a

$$f(x) = \frac{1}{\sqrt{1-x^2}} = (1+(-x^2))^{-\frac{1}{2}}.$$

En utilisant le DL de la fonction $x \mapsto (1+x)^{\alpha}$ pour $\alpha = \frac{-1}{2}$, on obtient

$$f(x) = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n}x^{2n} + o(x^{2n}).$$

Ce qui donne par intégration

$$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+1}\right).$$

Proposition 7 (Dérivation d'un développement limité)

Soit f une fonction dérivable sur un intervalle ouvert I contenant 0 admettant un DL à l'ordre n au voisinage de 0 de la forme

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n) = P(x) + o(x^n).$$

Si f' admet un DL à l'ordre n-1 au voisinage de 0, alors

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + o(x^{n-1}) = P'(x) + o(x^{n-1}).$$

Exemple 15 Soit f la fonction définie par $f(x) = \frac{1}{1-x}$, dérivable sur un intervalle ouvert contenant $f'(x) = \frac{1}{(1-x)^2}$.

La fonction f admet au voisinage de 0 le DL suivant

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n).$$

Comme f' admet un DL au voisinage de 0, alors

$$\frac{1}{(1-x)^2} = x + 2x + 3x^2 + \dots + nx^{n-1} + o(x^{n-1}).$$

II) Développements limités au voisinage de x_0

Définition 2 Soient $n \in \mathbb{N}$ et f une fonction définie au voisinage de x_0 sauf peut-être en x_0 . On dit que f admet un développement limité d'ordre n au voisinage de x_0 , si la fonction $t \mapsto f(t+x_0)$ admet un développement limité à l'ordre n au voisinage de 0, c'est-à-dire

$$f(t+x_0) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n + t^n\varepsilon(t), \quad avec \lim_{t\to 0} \varepsilon(t) = 0$$

que l'on peut écrire en utilisant le changement de variable $t = x - x_0$ sous la forme

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon(x - x_0), \quad avec \quad \lim_{x \to x_0} \varepsilon(x - x_0) = 0.$$

Remarque:

• L'expression $(x-x_0)^n \varepsilon (x-x_0)$ est aussi notée par $o((x-x_0)^n)$, ainsi

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o((x - x_0)^n).$$

- Les propriétés qui ont été données pour les développements limités en 0 se généralisent aux développements limités en x_0 .
- Pour déterminer un DL au voisinage de x_0 , il suffit de considérer le changement de variable $t = x x_0$ pour ce ramener au voisinage de 0.

Exemple 16 Soit $f(x) = e^x$. Calculons le DL à l'ordre 3 au voisinage de $x_0 = 1$. On pose t = x - 1. alors $t \longrightarrow 0$ quand $x \longrightarrow 1$. On a:

$$f(1+t) = e^{1+t} = e^1 \cdot e^t$$
$$= e^1 \left(1 + t + \frac{t^2}{2} + \frac{t^3}{6} + o\left(t^3\right) \right)$$

Donc

$$e^x = e^1 + e^1(x-1) + e^1\frac{(x-1)^2}{2} + e^1\frac{(x-1)^3}{6} + o((x-1)^3).$$

Exemple 17 Soit $f(x) = \ln x$, calculons le DL à l'ordre 3 au voisinage de $x_0 = 2$. On pose y = t - 2. alors $t \longrightarrow 0$ quand $x \longrightarrow 2$. On a

$$f(2+t) = \ln(2+t) = \ln 2\left(1 + \frac{t}{2}\right)$$

$$= \ln 2 + \ln\left(1 + \frac{t}{2}\right), \quad \frac{t}{2} \longrightarrow 0$$

$$= \ln 2 + \frac{t}{2} - \frac{t^2}{8} + \frac{t^3}{24} + o\left(t^3\right) \quad d' \text{ après le DL de} \ln(1+x)$$

d'où

$$\ln x = \ln 2 + \frac{(x-2)}{2} - \frac{(x-2)^2}{8} + \frac{(x-2)^3}{24} + o\left((x-2)^3\right).$$

Exemple 18 Soit $f(x) = \frac{\ln x}{x^2}$, calculons le DL à l'ordre n=3 au voisinage de $x_0=1$. On pose t=x-1. alors $t\longrightarrow 0$ quand $x\longrightarrow 1$. On a:

$$f(1+t) = \frac{\ln(1+t)}{(1+t)^2} = \frac{t - \frac{1}{2}t^2 + \frac{1}{3}t^3 + o(t^3)}{1 + 2t + t^2}$$

En faisant une division suivant les puissances croissantes de t, on obtient:

$$\frac{t - \frac{1}{2}t^2 + \frac{1}{3}t^3 + o(t^3)}{1 + 2t + t^2} = y - \frac{5}{2}t^2 + \frac{13}{3}t^3 + o(t^3)$$

ainsi,

$$f(x) = \frac{\ln x}{x^2} = (x-1) - \frac{5}{2}(x-1)^2 + \frac{13}{3}(x-1)^3 + o\left((x-1)^3\right).$$

III) Développements limités au voisinage de l'infini

Définition 3 On dit qu'une fonction f admet un développement limité d'ordre n au voisinage de $\pm \infty$ si la fonction $t \longmapsto f\left(\frac{1}{t}\right)$ admet un développement limité à l'ordre n au voisinage de 0, c'est-à-dire

$$f\left(\frac{1}{t}\right) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + t^n \varepsilon(t), \quad avec \lim_{t \to 0} \varepsilon(t) = 0$$

que l'on peut écrire en utilisant le changement de variable $t = \frac{1}{x}$ sous la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} + \frac{1}{x^n} \varepsilon \left(\frac{1}{x}\right), \quad avec \quad \lim_{x \to \pm \infty} \varepsilon \left(\frac{1}{x}\right) = 0.$$

Remarque:

• L'expression $\frac{1}{x^n} \varepsilon\left(\frac{1}{x}\right)$ est aussi notée par $o\left(\frac{1}{x^n}\right)$, ainsi

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} + o\left(\frac{1}{x^n}\right).$$

- Les propriétés qui ont été données pour les développements limités en 0 se généralisent aux développements limités en $\pm \infty$.
- Pour déterminer un DL au voisinage de $\pm \infty$, il suffit de considérer le changement de variable $t = \frac{1}{x}$ pour ce ramener au voisinage de 0.

Exemple 19 Calculons le DL à l'ordre 4 au voisinage de $+\infty$ de $f(x) = \frac{x}{x-1}$.

On pose $t = \frac{1}{x}$, donc $t \to 0$ lorsque $x \to +\infty$ et $x = \frac{1}{y}$, alors

$$f\left(\frac{1}{t}\right) = \frac{\frac{1}{t}}{\frac{1}{t} - 1} = \frac{1}{1 - t}.$$

En utilisant le DL à l'ordre 4 au voisinage de 0 de $t \mapsto \frac{1}{1-t}$, on obtient

$$f\left(\frac{1}{t}\right) = \frac{1}{1-t} = 1 + t + t^2 + t^3 + t^4 + o\left(t^4\right),$$

d'où

$$f(x) = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4} + o\left(\frac{1}{x^4}\right).$$

IV) Développement limité généralisé

Soit f une fonction définie au voisinage de 0 sauf peut-être en 0 . On suppose que f n'admet pas de DL au voisinage de 0 mais que la fonction $x \longmapsto x^{\alpha}f(x)$, (avec $\alpha \in \mathbb{R}^+$) en admet un DL au voisinage de 0. Alors on peut écrire

$$x^{\alpha} f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n).$$

D'où

$$f(x) = \frac{1}{x^{\alpha}} [a_0 + a_1 x + \dots + a_n x^n + o(x^n)].$$

Un tel développement est appelé développement limité généralisé ou développement asymptotique.

Exemple 20 La fonction $f(x) = \frac{1}{x - x^2}$ n'admet pas de DL au voisinage de 0 car $\lim_{x \to 0} f(x) = \infty$, mais la fonction $xf(x) = \frac{1}{1 - x}$ admet un DL à l'ordre n au voisinage de 0, donné par

$$xf(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n),$$

ainsi

$$f(x) = \frac{1}{x - x^2} = \frac{1}{x} + 1 + x + x^2 + \dots + x^{n-1} + o(x^{n-1}),$$

Exemple 21 Calculer le développement limité généralisé d'ordre 3 au V(0) de $x \mapsto \cot x$. La fonction $x \mapsto \cot x$ définie sur \mathbb{R}^*n' admet pas de DL(0) car $\lim_{x\to 0} \cot x = \infty$. On a

$$\cot g x = \frac{1}{\operatorname{tg} x} = \frac{1}{x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)}$$

$$= \frac{1}{x} \left(\frac{1}{1 + \frac{1}{3}x^2 + \frac{2}{15}x^4 + o(x^4)} \right)$$

$$= \frac{1}{x} \left(1 - \frac{x^2}{3} - \frac{x^4}{45} + o(x^4) \right)$$

$$= \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} + o(x^3).$$

Exemple 22 Calculer le développement limité généralisé d'ordre 2 au V(0) de $f: x \longmapsto \frac{1}{[\ln(1+x)]^2}$. On a

$$\ln(1+x) = x - \frac{x}{2} + \dots \Rightarrow [\ln(1+x)]^2 = x^2 + \dots$$

On calcule par conséquent le DL(0) de $x \mapsto x^2 \frac{1}{[\ln(1+x)]^2}$ l'ordre 4. On a

$$\frac{x}{\ln(1+x)} = \frac{x}{x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 + o(x^5)}$$

$$= \frac{1}{1 - \frac{1}{2}x + \frac{1}{3}x^2 - \frac{1}{4}x^3 + \frac{1}{5}x^4 + o(x^4)}$$

$$= 1 + \frac{1}{2}x - \frac{1}{12}x^2 + \frac{1}{24}x^3 - \frac{19}{720}x^4 + o(x^4).$$

Donc

$$\left(\frac{x}{\ln(1+x)}\right)^2 = \left(1 + \frac{1}{2}x - \frac{1}{12}x^2 + \frac{1}{24}x^3 - \frac{19}{720}x^4\right)^2 + o\left(x^4\right)$$
$$= 1 + x + \frac{1}{12}x^2 - \frac{1}{240}x^4 + o\left(x^4\right).$$

Ainsi

$$f(x) = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{12} - \frac{1}{240}x^2 + o(x^2).$$

V) Continuité, dérivabilité et prolongement

Proposition 8 Soit f une fonction définie dans un voisinage de x_0 contenant x_0 ($f(x_0)$ est défini).

• f admet un DL à l'ordre 0 au voisinage de x_0 si et seulement si elle est continue en x_0 et dans ce cas, on a:

$$f(x) = f(x_0) + o((x - x_0)^0) = f(x_0) + o(1).$$

• f admet un DL à l'ordre 1 au voisinage de x_0 si et seulement si elle est dérivable en x_0 et dans ce cas, on a:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o((x - x_0)).$$

Remarque : Pour $k \ge 2$, une fonction peut admettre un DL à l'ordre k au voisinage de 0 sans être k fois dérivable en 0 . Prenons l'exemple de la fonction

$$f(x) = \begin{cases} x + x^3 \sin\left(\frac{1}{x^2}\right) & \text{si } x \neq 0\\ 0 & \text{sinon} \end{cases}$$

fadmet un DL à l'ordre 2 en 0 qui s'écrit :

$$f(x) = x + \underbrace{x^2 \left(x \sin\left(\frac{1}{x^2}\right) \right)}_{o(x^2)} \quad \text{où } \lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right) = 0.$$

Cependant f est dérivable sur \mathbb{R}^* et on a $f'(x) = 1 + 3x^2 \sin\left(\frac{1}{x^2}\right) - 2\cos\left(\frac{1}{x^2}\right)$. Ainsi f' n'a pas de limite en 0, donc f' n'est pas dérivable en 0.

Dans le cas où f est définie dans un voisinage de x_0 sauf en x_0 , grâce à un développement limité d'ordre 1 au voisinage de x_0 , on peut dire si la fonction f est prolongeable par continuité en x_0 et si son prolongement dérivable en x_0 .

Proposition 9 Soit f une fonction définie sur l'intervalle $I \setminus \{x_0\}$ tel que $x_0 \in \overline{I}$. On suppose que f admet un DL d'ordre 1 au voisinage de x_0 de la forme :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

Alors

- 1. la fonction f est prolongeable par continuité en x_0 en posant $f(x_0) = a_0$
- 2. le prolongement de f est dérivable en x_0 et $f'(x_0) = a_1$.

Exemple 23
$$f(x) = \frac{\sin x}{x}$$
, $g(x) = \frac{\ln(1+x)}{x}$

VI) Application des développements limités

1) Calculs de limites

Les développements limités au voisinage de x_0 (ou au voisinage de $\pm \infty$) d'une fonction f sont très utiles pour calculer des limites ayant des formes indéterminées quand x tend vers x_0 .

Exemple 24
$$\lim_{x\to 0} \frac{\sin x - x}{x^3} = \lim_{z\to 0} \frac{x - \frac{x^3}{6} + o(x^3) - x}{x^3} = \lim_{x\to 0} -\frac{1}{6} + o(1) = -\frac{1}{6}$$
.

Exemple 25
$$\lim_{x\to 0} \frac{1 + \ln(1+x) - e^x}{1 - \cos x}$$
, on a

$$\frac{1 + \ln(1+x) - e^x}{1 - \cos x} = \frac{1 + x - \frac{x^2}{2} - \left(1 + x + \frac{x^2}{2}\right) + o(x^2)}{1 - 1 + \frac{x^2}{2} + o(x^2)}$$
$$= \frac{-x^2 + o(x^2)}{\frac{x^2}{2} + o(x^2)} = -2 + o(1)$$

$$D'où \lim_{x \to 0} \frac{1 + \ln(1+x) - e^x}{1 - \cos x} = -2.$$

Exemple 26
$$\lim_{x\to +\infty} x^5 \left(\operatorname{argsh} \frac{1}{x} + \arcsin \frac{1}{x} - \frac{2}{x} \right)$$
. On pore $y = \frac{1}{x}$, ce qui donne:

$$x^{5} \left(\operatorname{argsh} \frac{1}{x} + \arcsin \frac{1}{x} - \frac{2}{x} \right) = \frac{1}{y^{5}} (\operatorname{argsh} y + \arcsin y - 2y).$$

Le DL de argshy à l'ordre 5 au voisinage de y=0 est obtenu par intégration terme à terme du DL à l'ordre 4 de la fonction $\frac{1}{\sqrt{1+y^2}} = (1+(y^2))^{\frac{1}{2}}.$

On trouve $\operatorname{argsh} y = y - \frac{1}{6}y^3 + \frac{3}{40}y^5 + o(y^5)$ ainsi

$$x^{5} \left(\operatorname{argsh} \frac{1}{x} + \arcsin \frac{1}{x} - \frac{2}{x} \right) = \frac{1}{y^{5}} \left(\operatorname{argsh} y + \arcsin y - 2y \right)$$

$$= \frac{1}{y^{5}} \left[\left(y - \frac{1}{6} y^{3} + \frac{3}{40} y^{5} \right) + \left(y + \frac{1}{6} y^{3} + \frac{3}{40} y^{5} \right) - 2y + o\left(y^{5}\right) \right]$$

$$= \frac{1}{y^{5}} \left(\frac{3}{20} y^{5} + o\left(y^{5}\right) \right) = \frac{3}{20} + o(1)$$

$$Ainsi \lim_{x \to +\infty} x^5 \left(\operatorname{argsh} \frac{1}{x} + \arcsin \frac{1}{x} - \frac{2}{x} \right) = \lim_{y \to 0} \frac{1}{y^5} (\operatorname{argsh} y + \arcsin y - 2y) = \lim_{y \to 0} \left(\frac{3}{20} + o(1) \right) = \frac{3}{20}.$$

2) Fonctions équivalentes

Définition 4 Deux fonctions f et g sont dites équivalentes au voisinage de x_0 (x_0 peut être égal à $\pm \infty$) si et seulement si $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 1$. On écrit $f \sim g$.

Exemple 27 On $a \lim_{x\to 0} \frac{\sin x}{x} = 1$, $donc \sin x \sim x$

Proposition 10 Si f une fonction admet un DL d'ordre n au voisinage de x_0 de la forme

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o((x - x_0)^n)$$

Notons p le plus petit entier tel que $a_p \neq 0$, alors $f(x) \sim a_p(x-x_0)^p$

Remarque: Le développement limité d'une fonction f au voisinage de x_0 permet de trouver un équivalent à f au voisinage de x_0 en prenant le premier terme non nul du DL au voisinage de x_0 .

Exemple 28 Les équivalences suivantes sont directement déduites des différents DL calculés dans les exemples précédents.

- 1. On $a \cos x = 1 \frac{x^2}{2!} + o(x^2)$, $donc \cos x \sim 1$.
- 2. On $a \ln(1+x) = x \frac{1}{2}x^2 + o(x^2)$, donc $\ln(1+x) \sim x$.
- 3. On $a \sin x (1 \cosh x) = -\frac{1}{2}x^3 + o(x^4)$ donc $\sin x (1 \cosh x) \sim -\frac{1}{2}x^3$.

Équation de la tangente 3)

Proposition 11 Soit f une fonction définie en x_0 . Si f admet un DL au voisinage de x_0 (x_0 finie) de la forme:

$$f(x) = \underbrace{a_0 + a_1 (x - x_0)}_{Equation \ de \ las \ tangente} + \underbrace{a_k (x - x_0)^k}_{Terrne \ indicateur \ de \ las \ position} + o\left((x - x_0)^k\right), \quad k \in \mathbb{N}, k \ge 2.$$

Alors $y = a_0 + a_1(x - x_0)$ est l'équation de la tangente à la courbe (C_f) de f au point $(x_0, f(x_0))$. De plus la position de cette tangente par rapport à la courbe (C_f) dépend du signe de $a_k(x-x_0)^k$ c'est-à-dire dépend de la parité de k et du signe de a_k .

- Si k est pair et $a_k > 0$ alors la courbe de f reste localement en-dessus de sa tangente en $(x_0, f(x_0))$.
- Si k est pair et $a_k < 0$ alors la courbe de f reste localement en-dessous de sa tangente en $(x_0, f(x_0))$.
- Si k est impair, alors la courbe de f traverse sa tangente en $(x_0, f(x_0))$ (il s'agit d'un point d'inflexion).

Exemple 29 Déterminons l'équation de la tangente à la courbe de la fonction f définie par $f(x) = e^x$ au point d'abscisse $x_0 = 1$ ainsi que sa position par rapport à la courbe (C_f) . Le DL de la fonction f à l'ordre 2 au voisinage de 1 est donné par :

$$e^x = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + o((x - 1)^2).$$

On déduit que la courbe (C_f) admet au point (1,e) une tangente (T) d'équation y = e + e(x-1). De plus sa position dépend du signe de $\frac{e}{2}(x-1)^2$ qui est positif, donc la courbe (C_f) est en-dessus de la tangente (T) au voisinage de 1.

Exemple 30 Déterminons l'équation de la tangente à la courbe de la fonction f définie par $f(x) = \sin x$ au point d'abscisse $x_0 = 0$ ainsi que sa position par rapport à la courbe (C_f) . Le DL de la fonction f à l'ordre 3 au voisinage de 0 est donné par :

$$\sin x = x - \frac{1}{6}x^3 + o(x^3)$$

On déduit que la droite (T) d'équation y=x est la tangente à la courbe (Cf) au point (0,0). De plus, le terme $-\frac{1}{6}x^3 < 0$ change de signe donc la tangente traverse la courbe (Cf) et on a

- Au voisinage de 0^+ , le terme $-\frac{1}{6}x^3 < 0$ alors la droite (T) est en-dessous de la courbe (Cf).
- Au voisinage de 0^- , le terme $-\frac{1}{6}x^3 > 0$ alors la droite (T) est en-dessus de la courbe (Cf).

Par conséquent le point (0,0) est un point d'inflexion.

4) Branches infinies

Soient I un intervalle non borné et f une fonction définie sur I à valeurs dans \mathbb{R} . On suppose que f admet au $V(+\infty)$ un DL généralisé de type

$$f(x) = a_0 x + a_1 + \frac{a_p}{x^p} + o\left(\frac{1}{x^p}\right), p \ge 1, a_p \ne 0.$$

Alors la fonction f admet au $V(+\infty)$ une asymptote d'équation

$$y = a_0 x + a_1$$

De plus le signe de $\frac{a_p}{x^p}$ indique la position de la courbe (C_f) de f par rapport à cette asymptote. Il en est de même pour l'équation de l'asymptote au voisinage de $-\infty$.

Exemple 31 Déterminer les équations des éventuelles asymptotes au voisinage de $\pm \infty$ et leurs positions par rapport à la courbe de la fonction

$$f(x) = \sqrt{x^2 - 3x + 2}$$

La fonction f est définie sur $\mathcal{D}_f =]-\infty,1] \cup [2,+\infty[$. Pour déterminer son $DL(\infty)$, on pose $t=\frac{1}{x}$, donc $x=\frac{1}{t}$ et on a

$$f\left(\frac{1}{t}\right) = \sqrt{\frac{1}{t^2} - \frac{3}{t} + 2} = \sqrt{\frac{1 - 3t + 2t^2}{t^2}} = \frac{\sqrt{1 - 3t + 2t^2}}{|t|}$$

Au voisinage de $+\infty$: lorsque $x \to +\infty$, $t \to 0^+$ donc t > 0, ainsi

$$f\left(\frac{1}{t}\right) = \frac{\sqrt{1 - 3t + 2t^2}}{t}.$$

Pour trouver l'équation de l'asymptote on doit calculer le DL ($+\infty$) de f à l'ordre 1 (au moins) pour cela on calcule le DL(0) en la variable y à l'ordre 1 et donc on calcule le DL(0) de $y \mapsto \sqrt{1-3t+2t^2}$ à l'ordre 2 (au moins). En utilisant la formule

$$\sqrt{1+v} = 1 + \frac{1}{2}v - \frac{1}{8}v^2 + o(v^2)$$

avec $v = -3t + 2t^2$, on obtient $v^2 = 9t^2 + o(t^2)$ et donc

$$f\left(\frac{1}{t}\right) = \frac{1}{t} \left[1 + \frac{1}{2} \left(-3t + 2t^2 \right) - \frac{1}{8} \left(9t^2 \right) + o\left(t^2 \right) \right]$$
$$= \frac{1}{t} \left[1 - \frac{3}{2}t - \frac{1}{8}t^2 + o\left(t^2 \right) \right]$$
$$= \frac{1}{t} - \frac{3}{2} - \frac{1}{8}t + o(t).$$

D'où

$$f(x) = x - \frac{3}{2} - \frac{1}{8x} + o\left(\frac{1}{x}\right).$$

Ainsi, l'équation de l'asymptote oblique au voisinage de $+\infty$ est donnée par

$$y = x - \frac{3}{2}.$$

De plus, $f(x) - y = -\frac{1}{8x} < 0$, d'où la courbe de f se trouve en-dessous de l'asymptote.

A u voisinage de $-\infty$: lorsque $x \to -\infty$, $t \to 0^-$ donc t < 0, ainsi

$$f\left(\frac{1}{t}\right) = \frac{\sqrt{1 - 3t + 2t^2}}{-t}.$$

Répétant les mêmes calculs mais en divisant cette fois par -y, on obtient

$$f(x) = -x + \frac{3}{2} + \frac{1}{8x} + o\left(\frac{1}{x}\right).$$

Ainsi, l'équation de l'asymptote oblique au voisinage de $+\infty$ est donnée par

$$y = -x + \frac{3}{2}.$$

De plus, $f(x) - y = \frac{1}{8x} < 0$, d'où la courbe de f se trouve en-dessous de l'asymptote.