

Developing a Microfluidic Nozzle to Generate Water Sheet Jets for Cooling Sharp Leading Edges

Priyanka Sinha

Thermo-Fluids and Interfaces Lab, Faculty of Aerospace Engineering
Technion – Israel Institute of Technology

MSc Research seminar
Under the supervision of Asst. Prof. Alexandros Terzis

Hypersonic flight and aerodynamic heating

Mach Number

Glenn Research Center

ratio = Object Speed | Mach Number |
Speed of Sound | Mach Number |

Hypersonic Mach > 5.0

Supersonic Mach > 1.0

Transonic Mach = 1.0

Subsonic Mach < 1.0

$$M \uparrow \Rightarrow r \downarrow \& T \uparrow$$

- Viscous interaction
- High temperature

↑Aerodynamic heating→↓ L/D

Aerodynamic heating on LE

-3

Aerodynamic heating on LE

- Sustainable solution
- Effective handling of high T and q"
- Active-Passive combination

Aerodynamic heating on LE

Challenges:

- Confined LE (1-3 mm radii)
- Extreme thermal loads
- Insufficient Passive TPS

MSc Research Objective & Methodology

Motivation: Make hypersonic flights feasible

- Maintain aerodynamic efficiency
- Effectively manage extreme thermal loads

Objective: Develop an internal active cooling system for sharp and slender leading edges

Methods: Parametrically design and develop a microfluidic device for liquid sheet/spray cooling to characterize the:

- Dynamics of liquid sheets
- Jet & spray breakup

Presentation Outline

- 1. Introduction
- 2. Liquid sheets
- 3. Experimental Methods
- 4. Numerical Methods
- 5. Results
- 6. Summary and Conclusions

Liquid sheet formation

- Collision of two identical, high Re & coplanar jets at an oblique angle
- Dynamics dominated by surface tension & inertia
- Liquid sheet generation perpendicular to the plane of incidence
- Leaf-shaped links, formed in mutually orthogonal planes

A fluid chain resulting from the collision of a pair of identical laminar jets of a glycerol—water solution.

Scale bar: 1cm

Liquid sheet generation

- Impinging jets approach
 - Instabilities due to jet collision
 - Higher sensitivity to external perturbations
 - Jet misalignment
- In-chip flow-channels approach

Front & side views of the fluid chain resulting from the collision of a pair of identical laminar jets¹⁰

Liquid sheet morphology

 Dynamics described by Reynolds (Re) & Weber (We) numbers

$$Re = \frac{Q}{\nu R_j} \& We = \frac{\rho Q^2}{\sigma R_j^3}$$

Symbol	Behaviour Oscillating streams		
Δ			
*	Sheets with disintegrating rin		
0	Fluid chains		
+	Fish-bones		
♦ Spluttering chains			
☐ Disintegrating sheets			
×	× Violent flapping		

Presentation Outline

- 1. Introduction
- 2. Liquid sheets
- 3. Experimental Methods
- 4. Numerical Methods
- 5. Results
- 6. Summary and Conclusions

Nozzle chips fabrication

- 1) Spin coat photoresist
- 2) Expose mask geometry and develop
- 3) Deep Reactive Ion Etching
- 4) Strip photoresist
- 5) Wafer alignment & Anodic bonding
- 6) Channel filling with wax
- 7) Dicing
- 8) Polishing

Nozzle thickness	t	μm	50-150
Outlet width	W_o	μm	250-1000
Nozzle angle	θ	deg	40-80
Flow rate	Q	ml/min	20-100

Shadowgraph Imaging setup

- HPLC dosing unit (1) with external pulse dampener (2) for DI water flow
- Backlight-diffused illumination (3 & 4) for shadowgraph imaging (5)
- 100 kHz framerate with 8.93 μs exposure time
- 70 μm/px optical magnification

Presentation Outline

- 1. Introduction
- 2. Liquid sheets
- 3. Experimental Methods
- 4. Numerical Methods
- 5. Results
- 6. Summary and Conclusions

Numerical simulation configuration

- ANSYS Fluent 2022 R1
- Grid Independence study
 - Longitudinal velocity profile evaluation
 - Outlet width $w_o = 900 \mu m$
 - Inlet width w_i = 4950 μ m
 - Nozzle thickness- t = 60 μm
 - Nozzle angle θ = 60°

Numerical setup and validation

- ANSYS Fluent 2022 R1
- Steady, incompressible and laminar solver
- Residuals criterion: 10⁻⁶
- Validation with PIV measurements

Grid Convergence Index (GCI)

GCI =
$$\frac{E_{mf}}{E_f} \left(\frac{r^p}{r^{p-1}} \right) = 1.135 < 5\%$$

$$E_{mc} = \phi_m - \phi_c = 3.97$$

 $E_{mf} = \phi_f - \phi_m = 0.47$

r = 1.6 r: Grid refinement ratio

$$p = \frac{\ln\left(\frac{E_{mc}}{E_{mf}}\right)}{\ln(r)} = 4.54$$

p: Order of convergence

Presentation Outline

- 1. Introduction
- 2. Liquid sheets
- 3. Experimental Methods
- 4. Numerical Methods
- 5. Results
- 6. Summary and Conclusions

Nozzle velocity field-CFD

- Similar velocity field characteristics
- Laminar flow despite high Re
- No indications of flow non-uniformities & present disturbances

Comparison of longitudinal velocity contours and vector plots in the nozzle for varying flowrate (Q) of a) 20mL/min, b) 40mL/min, c) 80mL/min

Nozzle velocity field - CFD

- Parametric investigation of nozzle angle θ variation effects
- Inversely analogous dependency between nozzle angle $\boldsymbol{\theta}$ and the velocity field in the nozzle
- Exit velocity dependent only on outlet dimensions

Nozzle velocity field - CFD

- Parametric investigation of outlet width w_o variation effects
- \bullet Inversely analogous dependency between outlet width w_{o} and the velocity field
- Augmented exit velocity due to smaller outlet cross-sectional area

Effect of Q-variation on sheet dynamics

- Nozzle geometry
 - $w_0 = 750 \mu m$, $\theta = 40^{\circ}$ and $t = 100 \mu m$
- Video playback speed 1650 times slower
- Gradual rim thickness change
- Increasing length and width
- Decreasing number of links
- Rim breakup before the link's apex

$$\{I_s, w_s\}(Q)^{\sim} We \cdot Ca^m$$

Effect of θ -variation on sheet dynamics

- Nozzle geometry and flow conditions
 - $w_0 = 750 \mu m$, Q=30 mL/min and t = 100 μm
- Video playback speed 1100 times slower

- Max sheet size at $\theta \approx 55^{\circ}$
- Rim instability propagation with $\theta \uparrow$
- Drop shedding from rims at $\theta \ge 70^\circ$

$$\{l_s, w_s\}(\theta)^{-1} = [1 + \cot(0.67\theta)]^{-n}$$

Effect of w_o-variation on sheet dynamics

- Nozzle geometry and flow conditions
 - $\theta = 60^{\circ}$, Q=60 mL/min and t = 150 μ m
- Video playback speed 1100 times slower
- A_{ex} increase and V_{ex} decrease
- Length and width decrease
- Instability damping & Breakup delay
- Shift from spray to jet breakup

$$\{l_s, w_s\}(w_0)^{\sim}(1+1.5\alpha^2)^{-n}$$

Outlet polishing effects on sheet length

$I_s/t = 0.23 \text{We} \cdot \text{Ca}^{-0.1} (1+1.5\alpha^2)^{-0.5} [1+\cot(0.67\theta)]^{-0.5}$

Outlet polishing effects on sheet width

$w_s/t = 0.074We \cdot Ca^{-0.2}(1+1.5\alpha^2)^{-1}[1+cot(0.67\theta)]^{-1}$

Design point shift due to polishing

Outlet dimensions increase

Polishing-exposed fabrication flaws

- Outlet defects Shape deformation, Edge roughness & Wafer cracks
- Introduction of flow perturbations → Outliers presence

Sheet-breakup regime classification

- Nozzle thickness increase delaying spray formation
- Nozzle angle increase accelerating spray formation
- Linear regime boundaries Re = $a+b\theta$

Presentation Outline

- 1. Introduction
- 2. Liquid sheets
- 3. Experimental Methods
- 4. Numerical Methods
- 5. Results
- 6. Summary and Conclusions

Summary & Conclusions

- Design and development of a microfluidic device for liquid sheet generation
 - Lithographic fabrication of nozzle chips
 - Parametric study of fabrication, geometric and flow effects
- Evaluation of fabrication methods effects on sheet dynamics
- Sheet classification applying combined sheet and breakup patterns

30

Summary & Conclusions

- Design and development of a microfluidic device for liquid sheet generation
 - Lithographic fabrication of nozzle chips
 - Parametric study of fabrication, geometric and flow effects
- Evaluation of fabrication methods effects on sheet dynamics
- Sheet classification applying combined sheet and breakup patterns

- Pronounced Q- and w_o-effects on liquid sheet dimensions
- Nozzle angle θ controlling sheet and rim stability
 - Drop-shedding rims at higher θ
 - Transition from jet- to spray-breakup
- Critical influence of outlet polishing
 - Outlet dimensions modification
 - Sizing and stability features shift

Future Work

- Heat transfer efficiency for a flat surface using LS
- Heat transfer for a curved surface
- Study on the droplet dynamics

Developing a Microfluidic Nozzle to Generate Water Sheet Jets for Cooling Sharp Leading Edges

Priyanka Sinha

Thank you for your attention!

Questions?

EFFECT ON THE THICKNESS

For thinner sheets:

- a) Increased impingement angle
- b) Working fluids

-use of solvents

c) Lower surface tension

Taylor: $h \propto 1/r$

Hasson and Peck: $\frac{hr}{R_j^2} = \frac{\sin^3(\theta)}{\{1 - \cos(\phi)\cos(\theta)\}^2}$

h-thickness of the sheet r-radial distance ϕ -azimuthal angle

Application of LS

- X-ray, electron spectroscopy
- Fluid mixing in liquid propellants
- Chemical kinetics^[9]

Liquid sheet used in photoelectron spectroscopy (PES)^[8]

Effect of Re on stability

Q variation –internal flow

Spanwise direction [mm]

CONTRIBUTING FACTORS

Aerodynamic waves
Hydrodynamic/impact waves

INSTABILITY PATTERN

Open rim w/o droplets

Closed rim w/ droplets

Open rim w/ droplets

Rimless sheet

Bow-shaped ligaments

Fully developed spray

DISINTERGATION MECHANISM

Jet impingement

Formation of flapping sheet

Evolution of ligaments

Eventual droplet formation

