Elliptic PDE

Fang-Hua Lin

Transcribed by Ron Wu

This is a graduate course, offered in fall 2013 at New York University. Course textbooks are *Elliptic Partial Differential Equations* by Han, Lin; *Elliptic Partial Differential Equations of Second Order* by Gilbarg, Trudinger; and *Fully Nonlinear Elliptic Equations* by Caffarelli, Cabre. There would be no midterm or final. Textbooks used in PDE I & II may be good for review. They are *Partial Differential Equations* by Fritz John, and *Partial Differential Equations* by Evans.

Contents

1	Cou	rse Overview	3
	1.1	Basic Methods	3
	1.2	Classical Theories (1900 - 1955)	4
	1.3	More Recent Results (1955 -)	5
2	Lap	lace Operators	8
	2.1^{-}	Mean-Value Properties	8
		Harnack Inequality	
	2.3	Harmonic Measure	1
	2.4	Perron Methods	3
	2.5	Regular Point on $\partial\Omega$ for Δ	5
	2.6	Fundamental Solutions	
	2.7	Maximum Principle on Unbounded Boundary 1	

3	Cla	ssical Results	17		
	3.1	Dini Continuous	17		
	3.2	Unbounded Boundary	20		
	3.3	Probability Measure	21		
	3.4	Quasi-Open, Quasi-Continuous	23		
	3.5	Serrin-Weinberger Method	24		
	3.6	Maximum Principle	27		
	3.7	Moving Plane Method	29		
4	Modern Results 3				
	4.1	Krylov-Safonov Theorem	31		
	4.2	Calderon-Zygmund Lemma	31		
	4.3	Continuity Method	31		
	4.4	Lax-Milgram			
	4.5	DeGiorgi Theory	31		
	4.6	John-Nirenberg Estimate	31		
	4.7	Morrey-Stampacchia Theory	31		
5	Mo	re Recent Developments	31		

1 Course Overview

1.1 Basic Methods

Lecture 1 (9/4/13)

Elliptic PDE is when a_{ij} positive definite, it has two forms: Divergence Form v.s. non Divergence Form.

Divergence Form

$$\partial_{x_i}(a_{ij}(x)u_{x_i}) = f$$

one uses Variational Method, or Energy Method.

Assume (1) $a_{ij}(x) \in L^{\infty}$ (2) $a_{ij}(x)\xi_i\xi_j \geq \lambda |\xi|^2 \xi \in \mathbb{R}^n$, then in Hilbert space, solution exists always in integral form (often involve integration by parts). More recently result (1960s) we will study include *De Giorgi-Nash-Moser* gives Holder continuous.

More specifically one can use *Dirichlet Principle*. That is if

$$\Delta u = 0$$

then u is the energy minimizer,

$$\min \int |\nabla u|^2 \, dx$$

Non-Divergence Form

$$a_{ij}(x)u_{x_ix_j} + b_i(x)u_{x_i} + c(x)u = f$$

Assume (1) symmetric $a_{ij} = a_{ji}$ (2) uniformly elliptic $\Lambda I \geq (a_{ij}) \geq \lambda I$.

one uses Maximum principle for Hopf-Tpye or Alexandroff-Tpye, or uses Viscosity Solutions. All of them give C^{α} regularities. More recently (1980s) Krylov-Safonov show more general result, no smooth/continuity assumptions on a_{ij} , give $u \in C^{\alpha}(\bar{\Omega})$.

Affine Invariant

The theorems mentioned above are stated in Balls B_R in \mathbb{R}^n .

For example, pde

$$det(u_{ij}) = 1, \quad (u_{ij}) > 0$$

In 2-D, this equals to

$$u_{xx}u_{yy} - u_{xy}^2 = 1$$

then u(x) is a solution, implies u(Ax + b) is a solution det(A) = 1, more specifically, this means the solution is invariant under rotation, and scalaring, i.e. Affine Invariant. That is $R \in O(n)$, $u \to u(Rx + a)$ or $u \to u(\lambda x)$.

Instead of working with Balls, we can also use *convex* set.

Theorem 1. (John's Lemma) Let Ω be a convex body in \mathbb{R}^n , then there is an affine transformation $T: x \to Ax + b \ det(A) = 1$ such that

$$B_R^n \subseteq T(\Omega) \subseteq B_{c(n)R}^n$$

Note 2. where $c(n) = \sqrt{n}$ (?)

1.2 Classical Theories (1900 - 1955)

Review Function Theory, Geometric Function Theory (conformal Mapping)

Cauchy Integral

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(\xi)}{\xi - z} d\xi \implies f^n(z) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f^n(\xi)}{\xi - z} d\xi$$

so

$$|f(z)| \le \max |f(\xi)| \left(\frac{l(\partial \Omega)}{2\pi dist(z,\xi)}\right)^{1/n} \le_{n\to\infty} \max |f(\xi)|$$

Maximum Principle

$$a_{ij}(x)u_{x_ix_j}=0$$

in Ω , then $\forall x \in \Omega$

$$|u(x)| \le \max_{y \in \partial\Omega} |u(y)|$$

Notice this is no correct for vector functions $u = (u^1, u^2, ..., u^n)$

$$Lu=0\iff a_{\alpha\beta}^{ij}u_{x_ix_j}^\beta=0\ \mathrm{in}\Omega,\ \alpha=1,2,...,n$$

then

$$\sup_{x\in\Omega}|u(x)|\not\leq \sup_{y\in\partial\Omega}|u(y)|$$

Gradient Estimate

$$f^{(n)}(z) = \frac{c(n)}{2\pi i} \oint_{\partial \Omega} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

Looking for an integral representation for the solution. Things involved are *Power Series* (Analyticity), *Unique Continuation*, *Liouville Theorem* (local estimate). 1950s Power Series for non-linear pde developed.

Theorem 3. (Hopf Theorem 2-D case)

$$a_{ij}(x)u_{x_ix_j} = 0$$

in \mathbb{R}^2 , $(a_{ij}) > 0$. If u = o(|x|) as $|x| \to \infty$, then u(x) = constant.

Singularities

Is it removable or not? Other involves Fundamental Solutions, eigenvalues \mathcal{E} eigenfunctions.

For example

$$\begin{cases} \Delta u^{\lambda} + \lambda u = 0 & \text{in } \Omega \\ u^{\lambda} = 0 & \text{on } \partial \Omega \end{cases}$$

we require the solution to be normalized

$$\int_{\Omega} \left| u^{\lambda} \right|^2 dx = 1$$

choose a probability measure $\mu_{\lambda} = \left| u^{\lambda} \right|^2 dx$, let $\mu_{\lambda} \rightharpoonup \mu$.

Questions (1) What's the support of μ ? (2) Do we have to take subsequence to make the weak convergence to work?

Potential Theory

More of these are in Harmonic Analysis.

1.3 More Recent Results (1955 -)

DeGiogi-Moser-Nash

Late 1950's DeGiogi-Moser-Nash developed C^{α} regularity for $(a_{ij}(x)u_{x_j})_{x_i}=0$. This solves Quasilinear Elliptic PDEs. The problem is motivated by Hilbert's 19th Problem: "whether the solutions of regular problems in the calculus of variations are always analytic." More improved results see Serrin, Trudinger.

Krylov-Safonov

1980's Krylov-Safonov showed

$$a_{ij}(x)u_{x_ix_j}=0 \implies u \in C^{\alpha}$$

with no smooth assumption on a_{ij} . This problem is motivated by solving $F(D^2u) = 0$.

Example

$$\begin{cases} F(D^2u) = 0\\ u|_{\partial\Omega} = g \end{cases}$$

is uniformly elliptic at u iff

$$\lambda |N| \le F(M+N) \le \Lambda |N|$$

or

$$\lambda I \le \left(\frac{\partial F}{\partial M_{ij}}\right) \le \Lambda I$$

where $M \in S_{n \times n}$, $N \in S_{n \times n}^+$.

Now

$$0 = \partial_l F(D^2 u) = F_{ij}(D^2 u) D_{ij}^2 u_l = 0$$

Let $a_{ij}(x) = F_{ij}(D^2u)$ uniformly elliptic, let $V = u_l$ so

$$a_{ij}(x)v = 0$$

By Krylov-Safonov

$$\implies D^2 u_l \in C^{\alpha}(\Omega)$$
$$\implies u \in C^{1,\alpha}$$

In addition, if F is concave, then $u \in C^{2,\beta}(\Omega)$, $\beta > 0$ by Evans, Krylov, Caffarelli.

Regularity Theory (Linear)

$$\begin{cases} a_{ij}(x)u_{x_ix_j} = f(x) & \text{in } \Omega \subseteq \mathbb{R}^n \\ u|_{\partial\Omega} = 0 \\ \Lambda I \ge (a_{ij}(x)) \ge \lambda I \end{cases}$$

(i) $a_{ij}(x) \in C^{\alpha}(\bar{\Omega})$ Holder continuous $(1 > \alpha > 0) \implies ||u||_{C^{\alpha+2}(\bar{\Omega})} \le c(n, \alpha, \lambda, \Lambda, ||a_{ij}||_{C^{\alpha}}) ||f||_{C^{\alpha}(\bar{\Omega})}.$

This is called Schauder Estimate. See Trudinger Chap 6.

(ii)
$$a_{ij}(x) \in C^0(\bar{\Omega}) \implies a_{ij} \in VMO$$
.

This was proved by C. B. Morrey, L. Nirenberg. Furthermore Calderon-Zygmund, showed

$$a_{ij}(x) \in C^0(\bar{\Omega}) \implies \|u\|_{W^{2,p}(\Omega)} \le c(n,\alpha,\lambda,\Lambda,\|a_{ij}\|_{C^{\alpha}}) \|f\|_{L^p(\Omega)}$$

 $\forall 1 , then by Sobolev invariant, we got <math>u \in C^{1-\alpha} \ \forall 0 < \alpha < 1$.

Recall $f \in VMO$ (vanishing mean oscillation) if

(a) $f \in BMO$ (bounded mean oscillation) i.e.

$$\int_{B_r} \left| f - \bar{f}_{B_r} \right| dx \le C, \ \forall B_r \in \Omega$$

(b)
$$\lim_{r \to 0} \frac{1}{r^n} \int_{B_n} \left| f(x) - \oint_{B_n} f \right| \to 0$$

uniformly for $x \in \Omega$.

Theorem 4. If $f \in W^{1,n}(\Omega)$, $dim\Omega = n$, then $f \in VMO$.

Proof. By Poincare inequality

$$\int_{B_r} \left| f - \bar{f}_{B_r} \right|^n \le c(n) \int_{B_r} \left| \nabla f \right|^n dx \to 0$$

as
$$r \to 0$$

The reverse version of the theorem goes like

$$\forall p \in (1, \infty), \exists \delta_p = \delta_p(n, \lambda, \Lambda) \text{ st if}$$

$$\limsup_{r \to 0^+} \int_{B_r(x)} |a_{ij}(y) - (a_{ij})_{B_r}| \le \delta_p$$

uniformly $x \in \Omega$, then

$$u\in W^{2,p}(\Omega)$$

Divergent Type

$$\begin{cases} \partial_{x_i}(a^{ij}(x)u_{x_i}) = f \\ u|_{\partial\Omega} = 0 \end{cases}$$

- (1) Assume $a^{ij} \in C^{\alpha}$, $u \in C^{1,\alpha}$ if $f \in L^p$, $\alpha = 1 n/p(\alpha)$ by G.Stampacchia, M. Giaquinta, E. Giusti in later 1970's.
- $(2) \ a^{ij} \in C^0 \implies u \in W^{1,p} \ \forall \, 1$
- (3) $a^{ij} \in VMO \implies u \in W^{1,p} \text{ or } a^{ij} \in SMALL BMO norm <math>\implies u \in W^{1,p_0}$.
- (4) $\partial_{x_i}(a^{ij}(x)u_{x_i}) = f \implies u \in C^{\alpha}$ for some optimal $\alpha = \alpha(n,\lambda,\Lambda) > 0$

2-D Cases

Non-Divergent case

Worked by Morrey, Nirenberg

$$a_{ij}(x)u_{x_ix_j} = 0$$

in $C^{1,\alpha}$, then $(\nabla u) = (u_x, u_y)$ the map $\Omega \to \mathbb{R}^2$ is quasi-conformal.

Divergent case

Worked by Ahlfors, Courant, Bernstein $Du \in C^{\alpha} \implies u \in C^{\alpha}$.

2 Laplace Operators

Definition 5. A function $u \in C^2$ is harmonic if $\Delta u = 0$ in Ω .

But most of the discussion below will only assume $\Delta u=0$ in Ω , not $u\in C^2$.

2.1 Mean-Value Properties

Definition 6. Let $u \in L^1(\Omega)$, we say u satisfies mean-value property if

 $u(x) = \frac{1}{|B_r|} \int_{B_r(x)} u(y) dy$

for a.e. $x \in \Omega$, for any r > 0, s.t. $B_r(x) \subset \Omega$.

Lecture 2 (9/18/13)

This definition is equivalent to

$$u(x) = \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} u(y) dS_y$$

Theorem 7. If u satisfies the mean-value property, then u is smooth.

(For proof, see Lin Theorem 1.8) Basic idea, let $\phi(r) \in C_0^1(B_r)$ with $\int_{B_1} \phi(r) dr = 1$, let $p_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \phi(\frac{x}{\varepsilon})$, one can show

$$p_{\varepsilon} * u(x) = u_{\varepsilon}(x) \in C^{\infty}$$

and

$$u_{\varepsilon}(x) \equiv u(x), \forall \varepsilon > 0$$

Theorem 8. If $u \in C^2(\Omega)$ and $\Delta u = 0$, then u satisfies the mean value property.

That is because

$$0 = \int_{B_r(x)} \Delta u(y) dy = \int_{\partial B_r(x)} \frac{\partial u}{\partial \nu} dS_y = r^{n-1} \frac{\partial}{\partial \nu} \int_{\partial B_r(x)} u(y).$$

Theorem 9. If u satisfies mean-value property, then u satisfies the maximum principle,

$$\max_{\Omega} u \leq \max_{\partial \Omega} u$$

If $u(x_0) = \max_{\Omega} u$, $x_0 \in \Omega \implies u \equiv constant \ in \ a \ connected \ component \ of <math>\Omega$ that contains x_0 .

Theorem 10. Let u be a distribution, then Δu is also a distribution.

Proof. By Wyel Theorem, $\Delta u = 0$ in $\mathcal{D}' \iff u$ is smooth and $\Delta u = 0$ point wise. That $\Delta u = 0$ in \mathcal{D}' implies

$$\Delta \rho_{\varepsilon} * u = \rho_{\varepsilon} * \Delta u = 0$$

So $u_{\varepsilon} = \rho_{\varepsilon} * u$ is harmonic and $u_{\varepsilon} \to u$ as $\varepsilon \to 0$, we have

$$u_{\varepsilon} \stackrel{C^{2,\alpha}_{loc}(\Omega)}{\longrightarrow} u$$

Thus $\Delta u = 0$ in C^2 sense.

Now we study Gradient Estimate for harmonic functions $\Delta u = 0$ in B_1 , $\Delta u_{x_i} = 0$, by mean-value property

$$u_{x_i}(x_0) = \frac{1}{|B_r|} \int_{B_r(x_0)} u_{x_i} dx_i$$
$$= \frac{1}{|B_r|} \int_{\partial B_r(x_0)} u\nu_i dS_y$$

Theorem 11. (Gradient Estimate) Given u above,

$$|u_{x_i}(x_0)| \le \frac{|\partial B_r(x_0)|}{|B_r|} \oint_{\partial B_r(x_0)} |u| = \frac{c_n}{r} \oint_{\partial B_r(x_0)} |u|, \ \forall r$$

Moreover if $u \geq 0$ in Ω

$$|\nabla u|(x_0) \le \frac{c_n}{r} \int_{\partial B_r(x_0)} u \le \frac{c_n}{r} u(x_0)$$

The last line is equal to

$$|\nabla \log u|(x_0) \le \frac{c_n}{r}$$

Theorem 12.

$$\begin{cases} \Delta u = 0 & in \ B_R(0) \\ u|_{\partial B_R} = \phi \end{cases}$$

is solvable if $\phi \in C^0(\partial B_R)$, and Poisson Formula

$$u(x) = c_n \int_{\partial B_R} \frac{R^2 - |x|^2}{|x - y|^n} \phi(y) dS_y$$

2.2 Harnack Inequality

Use Poisson Formula, Gradient Estimate, and Mean-Value property, one can get Harnack Inequality, which states

Theorem 13. Let $u \ge 0$ be s.t. $\Delta u = 0$ in Ω then

$$u(x) \le c(K, \Omega)u(y)$$

for all $x, y \in K \subseteq \Omega$.

c depends on the ratio of the size of Ω and $\mathrm{dist}(K,\Omega)$. We can check this by a special case

If $\Delta u = 0$ in B_R and $u \ge 0$ in B_R ,

$$\begin{cases} u(x) \le c_n u(y) \\ x, y \in B_{R/2} \end{cases}$$

let

$$P(x,y) = c_n \frac{R^2 - |x|^2}{|x - y|^2}$$

x in B_R and $y \in \partial B_R$, choose r s.t. |x| < r < R, then

$$c_n \frac{R-r}{(R+r)^{n-1}} \le P(x,y) \le c_n \frac{R^2-r^2}{(R-r)^n} = c_n \frac{R+r}{(R-r)^{n-1}}$$

 $c_n \frac{R-r}{(R+r)^{n-1}}$ gives the optimal constant. That is because for fixed $y \in \partial B_R$

$$\begin{cases} \Delta_x P(x,y) = 0 & \text{in } B_R \\ P(x,y)|_{x=\partial B_R} \equiv \delta_y \end{cases}$$

One can also see that for fixed $y \in \partial B_R$, $\{P(x,y)\} = H_+$, the set of positive harmonic function on B_R , forms a positive cone in $C(B_R)$. Here K = extreme points of H_+ .

2.3 Harmonic Measure

Let $h \geq 0$, $\Delta h = 0$ in B_R ,

$$h = \int_{K} \phi_{y} d\mu(y)$$

We say u satisfies the Martin boundary, if u > 0, and

$$\Delta u - c^2 u = 0$$

or

$$\Delta u + \vec{b} \cdot \overrightarrow{\nabla u} + c(x)u = 0$$

in \mathbb{R}^n . Let

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = \phi & \text{on } \partial \Omega \end{cases}$$

 $\phi \in C(\partial\Omega)$, Ω open and bounded. let $x_0 \in \Omega$, then for all $\phi \in C(\partial\Omega)$, the map l

$$\phi \xrightarrow{l} u_{\phi}(x_0)$$

is linear and positive representation,

$$l(\phi) = u_{\phi}(x_0) = \int_{\partial\Omega} dw_{x_0}(y)$$

 $\{w_{x_0}(y)\}$ probability measure on $\partial\Omega$.

The support of $w_{x_0}(\cdot)$, K, is a subset of $\partial\Omega$. For $x_1, x_2 \in K \subseteq \Omega$, (K compact) one has

$$w_{x_1} \le c w_{x_2} \le c^2 w_{x_1}$$

where c = c(K).

When n = 2, the Hausdorff dimension of K is 1. This is due to T. Wolff.

$$\eta(r) = r \log(\log(\log r))$$

When $n \geq 3$, the Hausdorff dimension of $K \leq n - \varepsilon(n)$. This is due to J. Bourgain.

More facts: $\exists \Omega$ s.t. Hausdorff dimension of K > n-1. And the following

Theorem 14. (Dahlberg's theorem) If Ω is Lipschitz, then w_{x_0} is an A_p weight.

C. Kenig studied harmonic measure on Lipschitz domains, his main result

Theorem 15. For 1

$$\left(\oint_E w^p \right)^{1/p} \le c_p \oint_E w$$

Let us now consider distribution function. let

$$Lu = \frac{\partial}{\partial x_i}(a_{ij}(x)u_{x_j}) = 0$$

 $(a_{ij}(x))$ positive definite, and $\lambda |\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2$. Since

$$\Delta \frac{c_n}{r^{n-2}} = -\delta_0$$

consider
$$G(x,y)$$

$$LG = -\delta_x$$

and

$$E_r(x) = \{ y \in \mathbb{R}^n : G(y, x) \ge r^{2-n} \}$$

Let Lu = 0, then

$$u(x) = \int_{E_r} (GLu - uLG)$$

$$= \int_{\partial E_r} (GA\nabla u \cdot \nu - u(A\nabla G) \cdot \nu) ds$$

$$\geq r^{2-n} \int_{\partial E_r} A\nabla u \cdot \nu + \int_{\partial E_r} u(A|\nu|) |\nabla G|$$

$$= r^{2-n} \int_{E_r} Lu + \int_{\partial E_r} u(A|\nu|) |\nabla G|$$

$$= \int_{\partial E_r} Au(y) |\nabla G| dS_y$$

Exercise 16. Find mean-value formula for

$$\Delta u + c^2 u = 0$$

$$\Delta u - c^2 u = 0$$

Exercise 17. Consider the region Ω in \mathbb{R}^2 is bounded by x, y axes and a line y = -ax + b, a, b > 0. Solve $\Delta u = 0$ in Ω with the boundary conditions u = 0 on y axis and $\frac{\partial u}{\partial y} = 0$ on the other two edges. Show that

$$u = cx, \quad c \in \mathbb{R}$$

are all solutions. Generalize this problem to n-dim.

2.4 Perron Methods

We solve

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = \phi \in C(\partial \Omega) \end{cases}$$

Let $S_{\phi} = \{v | v \text{ is subharmonic in } \Omega \text{ and } v \leq \phi \text{ on } \partial \Omega\}.$

Definition 18. $v \in C(\Omega)$ is called subharmonic if $v \leq u$ in $B_r(x_0) \subset \Omega$.

Here $\Delta u = 0$ in $B_r(x_0)$, $u|_{\partial B_r(x_0)} = v|_{\partial B_r(x_0)}$. These are equivalent to $v(x_0) \leq \int_{B_r(x_0)} v(y) dy$.

Theorem 19. (i) $S_{\phi} \neq \emptyset$, $v = \min_{\partial \Omega} \phi \equiv m \in S_{\phi}$.

(ii) $u_{\phi}(x) = \sup_{v \in S_{\phi}} v(x)$ is well-defined, and it $is \leq M \equiv \max_{\partial \Omega} \phi$.

Theorem 20. u_{ϕ} is harmonic in Ω , $u_{\phi} \leq \phi(x) \ \forall x \in \partial \Omega$.

Proof. Take $x_0 \in \Omega$, $B_r(x_0) \subset \Omega$, $\exists v_i \in S_\phi$ s.t. $v_i(x_0) \to u_\phi(x_0)$.

Let
$$\tilde{v}_i = \begin{cases} w_i & \text{in } \overline{B_r(x_0)} \\ v_i & \text{outside } B_r(x_0) \end{cases}$$
, then $\begin{cases} \Delta w_i = 0 & \text{in } B_r(x_0) \\ w_i = v_i & \text{on } \partial B_r(x_0) \end{cases}$. More

$$v_i \leq \tilde{v}_i \implies \tilde{v}_i(x_0) \to u_\phi(x_0)$$

and

$$m \le w_i \le M$$

implies $v \in S_{\phi}$, $m \in S_{\phi}$ and $\max(v, m) \in S_{\phi}$. Thus

$$w_i \stackrel{C_{loc}^{2,\alpha}}{\longrightarrow} w \quad \text{in } B_r(x_0)$$

with $\Delta w = 0$. Next $u_{\phi} \equiv w$ on $B_r(x_0)$. Let $x_1 \in B_r(x_0) \exists \bar{v}_i \in S_{\phi}$ s.t. $\bar{v}_i(x_1) \to u_{\phi}(x_1)$. And $\Delta \bar{w}_i = 0$ in $B_r(x_0)$

$$\bar{w}_i = \begin{cases} \max(\tilde{v}_i, \bar{v}_i) \in S_\phi \\ \max(\tilde{v}_i, \bar{v}_i)|_{\partial B_r} \end{cases}$$

So \bar{w}_i is harmonic and $\bar{w}_i \to \bar{w}$ is harmonic in $B_r(x_0)$, $\bar{w} \ge w$ in $B_r(x_0)$. Combining $\bar{w}(x_0) \ge w(x_0) = u_{\phi}(x_0)$ and $\bar{w}(x_0) \le u_{\phi}(x_0)$, $\bar{w} \equiv w \implies w(x_1) = u_{\phi}(x_1) \ \forall x_1 \in B_r(x_0)$.

Now we show $u_{\phi}(x_0) = \phi(x_0)$ for any $x_0 \in \partial \Omega$.

Definition $x_0 \in \partial\Omega$, $B_{x_0}(x)$ is called a barrier function for Δ at x_0 if $B_{x_0}(x) \in C(\Omega)$, $\Delta B_{x_0}(x) = 0$ and $B_{x_0}(x_0) = 0$ and $B_{x_0}(x) < 0 \,\forall x \in \partial\Omega$.

If at $x_0 \in \Omega$ s.t. such $B_{x_0}(x)$ exists, then $u_{\phi}(x_0) = \phi(x_0)$. (see theorem 22 below)

Lecture 3 (9/25/13)

Summary of Perron's Method

For $\Delta u = 0$ in $\Omega \subseteq \mathbb{R}^n$ (bounded, open), $u|_{\partial\Omega} = \phi \in C(\partial\Omega)$, Perron method is based on

- (a) Maximum Principle (comparison principle)
- (b) Solvability of the problem on a ball B.

 $S_{\phi} = \{v \in C(\bar{\Omega}) : v \text{ subharmonic in } \Omega \& v \leq \phi \text{ on } \partial\Omega\} \text{ then (i) } S_{\phi} \neq \emptyset$ (ii) $u_{\phi}(x) = \sup_{v \in S_{\phi}} v(x), \ x \in \Omega \text{ is the solution.}$

2.5 Regular Point on $\partial\Omega$ for Δ

Definition 21. x_0 is called regular point of Δ if $\exists B_{x_0}(x)$ continuous in $B_R(x_0) \cap \bar{\Omega}$ s.t. $B_{x_0}(x_0) = 0$, $\Delta B_{x_0}(x) \geq 0$ and $B_{x_0} < 0 \ \forall x \in \partial \Omega$.

Theorem 22. x is regular $\implies u_{\phi}(x_0) = \phi(x_0)$.

Proof. $m \equiv \inf_{\partial\Omega} \phi \leq u_{\phi} \leq M \equiv \sup_{\partial\Omega} \phi, \ \forall x \in B_R(x_0) \cap \Omega, \ \forall \varepsilon > 0, \ \exists K(R, m, M, \varepsilon), \text{ s.t.}$

$$\phi(x_0) - \varepsilon + KB_{x_0} \le u_\phi(x) \le \phi(x_0) + \varepsilon - KB_{x_0}(x)$$

 $\lim_{x \to x_0} u_{\phi}(x) = \phi(x_0)$

$$B_{x_0}(x) \leq -c_{\delta} < 0$$
, on $B_{\delta}^c(x_0) \cap \partial \Omega$

then Maximum principle implies the conclusion.

Example 23. If Ω has an exterior cone at $x_0 \in \partial \Omega$, with angle $\theta_0 \in (0, \pi)$, use conformal mapping, one can show

$$-B_{x_0}(x) = r^{1+\alpha} \sin(\frac{\theta}{\theta_0}\pi)$$

 $\alpha = \alpha(\theta_0) > 0$, and $\Delta B_{x_0}(x) = 0$ in Ω , $B_{x_0}(x_0) = 0$, and $B_{x_0} \le 0$.

Theorem 24. (Wiener Criterion) If $x_0 \in \partial \Omega$, then x_0 is regular for $\Delta \iff$

$$\int_0^{r_0} \frac{c_{x_0}(\rho)}{\rho^{n-1}} d\rho = \infty.$$

where $c_{x_0}(\rho) = capacity \text{ of } \Omega^c \cap B_{\rho}(x_0).$

Definition 25. Let E be compact in \mathbb{R}^n , then

$$\operatorname{cap}(E) = \int_{\mathbb{R}^n} |\nabla u|^2 dx$$
$$= \inf \{ \int_{\mathbb{R}^n} |\nabla v|^2 dx, \, v \in H_0^1(\mathbb{R}^n), v \ge 1 \text{ on } E \}$$

Example 26. Capacity on B_{r_0}

$$u(r) = \begin{cases} 1 & r < r_0 \\ \left(\frac{r_0}{r}\right)^{n-2} & r > r_0 \end{cases}$$

This is close related to Bernstein Method (1930's).

Theorem 27. (Bernstein) $\Delta u = 0$ in B_1 , then $|\nabla u(0)| \leq c(n) \max_{B_1(0)} |u|$.

Proof.

$$\Delta(|\nabla u|^2(x)) = 2|Hess\,u|^2 = 2\sum_{ij}u_{x_ix_j}^2 \ge 0$$

implies

$$|\nabla u|^2(0) \le \sup_{\partial B_1(0)} |\nabla u(x)|^2$$

 $\forall \phi \in C_0^{\infty}(B_1)$ s.t. $\phi = 1$ for $0 < x < 1/2, \ \phi = 0$ for x > 1, then by $\Delta u^2 = 2 |\nabla u|^2$,

$$\Delta(\phi^2 |\nabla u|^2 + M_{\phi} u^2)^{1/2} \ge 0$$

this shows that $(\phi^2 |\nabla u|^2 + M_{\phi}u^2)^{1/2}$ is subharmonic, then

$$|\nabla u|^2(0) \le (\phi^2 |\nabla u|^2 + M_\phi u^2)(0) \le \sup_{\partial B_1} (\phi^2 |\nabla u|^2 + M_\phi u^2) = M_\phi \sup_{\partial B_1} (u^2)$$

since
$$\phi|_{\partial B_1} = 0$$
.

H.F. Weinberger, Shing-Tung Yau showed $\Delta_M u = 0$.

2.6 Fundamental Solutions

We use $\Delta u = 0$ in B_1 , $\Delta \frac{1}{|x|^{n-2}} = -c(n)\delta_0$.

Proposition 28. Let u(x) be a harmonic function in $B_1 \setminus \{0\}$. Suppose $u(x) = o(|x|^{2-n})$, as $|x| \to 0$, then u(x) can be defined at x = 0 in a way $\Delta u = 0$ in B_1 .

For proof see Lin Theorem 1.28.

The following two theorems also deal with *Riemann removable singular- ity*.

Theorem 29. f(z) is holomorphic on $B_1 \setminus \{0\}$ and if $|f(z)| \leq M$ or $|f(z)| \leq o(\frac{1}{|z|})$, as $z \to 0$, then $f^*(z)$ is holomorphic in B_1 .

Theorem 30. u(z) harmonic in $B^2 \setminus \{0\}$ and if $u(z) = o(|\log |z||)$, then u is harmonic in B(0).

Proof. Solve

$$\begin{cases} \Delta h = 0 & \text{in } B_1 \\ h|_{\partial B_1} = u \end{cases}$$

then u-h=v is harmonic in $B_1\setminus\{0\}$, and $v(x)=o(|x|^{2-n})$, as $|x|\to 0^+$. $v|_{\partial B_1}=0$.

That is

$$-\varepsilon |x|^{2-n} \le v(x) \le \varepsilon |x|^{2-n}$$

 $\forall \varepsilon \in (0,1) \text{ and } x \in B_1 \setminus \{0\}, \text{ then let } \varepsilon \to 0^+, \text{ we get the desire results.}$

2.7 Maximum Principle on Unbounded Boundary

Suppose we want to do

$$\Delta u = 0$$

in $B_1^c = \{x \in \mathbb{R}^n : |x| > 1\}$ with $u|_{\partial B_1} = 0$.

u=0 is a solution and $u=1-|x|^{2-n}$ is also a solution, and we require solution to be $u(x)\to 0$, as $|x|\to \infty$, by involution.

3 Classical Results

We now begin to study general elliptic pde operators.

3.1 Dini Continuous

Example 31. $Lu = a_{ij}(x)u_{x_ix_j} = 0, \ \lambda |\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2, \ \forall x, \xi \in \mathbb{R}^n.$

Consider

$$a_{ij}(x) = \delta_{ij} + g(r) \frac{x_i x_j}{r^2}$$

then

$$\Delta u = u_{rr} + \frac{n-1}{r}u_r + \frac{1}{r^2}\Delta_\theta u$$

and

$$\frac{u_{rr}}{u_r} = \frac{1-n}{(g(r)+1)r}$$

So

$$u(r) = \int_0^r \exp\left[\int^{\gamma} \frac{1-n}{g(\rho)} \frac{d\rho}{\rho}\right] d\gamma$$

and

$$\lambda = \min(1, 1+g) \Lambda = \max(1, 1+g).$$

If n=2, $g(r)=-\frac{2}{2+\log r}$, $0< r< e^{-2}$, then this g(r) is continuous and g(0)=0, but not Holder i.e.

$$|g(x) - g(y)| \le C |x - y|^{\alpha}$$

for some C, α . g is also not $Dini\ continuous$. i.e.

$$\int_0^1 \frac{w_g(r)}{r} dr = \infty$$

where the modulus of continuity of g, $w_g(r) = \sup_{d(x,y) \le r} d(g(x), g(y)) \sim 1/\log r$.

Recall

$$f(r) = a + \frac{b}{\log r}$$

is not Dini continuous.

Things go wrong when u is not Dini continuous.

- (a) Extended Maximum Principle is not true.
- (b) No positive fundamental solution. (No positive solution v(x) in neighborhood of 0 s.t. $v(x) \to +\infty$, as $x \to 0$.)
- (c) Removable singularity theorem is also not true.
- (d) If $a_{ij} \in C^{\alpha}(Dini)$, then exists fundamental solution.

Example 32. n=2, let $g(r)=\frac{2}{\log r-2} \Longrightarrow u=\left(\log\frac{1}{r}\right)^3$. So existence of positive solution v(x) near r=0, s.t. $v(x)\to +\infty$ as $|x|\to 0$. It is not like $\log 1/r$.

Example 33. n > 2, let $g(r) = -\frac{1}{1 + (n-1)\ln r}$, then $u(r) = \frac{r^{2-n}}{\log r}(1 + \varepsilon(r))$, where $\varepsilon(r) \to 0$ as $r \to 0^+$. $u(r) = o(r^{2-n})$. $u(x) \neq O(|x|^{2-n+\delta})$ for any $\delta > 0$.

Example 34. n > 2, let $g(r) = \frac{(n-2)\ln r - 2}{\ln r + 2}$, r > 0, g(0) = n - 2, so $\frac{1-n}{1+g(r)} = -1 - \frac{2}{\ln r} \implies u(r) = a + b/\ln r$.

The following theorem is very important. See paper "On isolated singularities of solutions of second order elliptic differential equations" (1953-Acta Math) by D. Gilbarg, James Serrin.

Theorem 35. If (a_{ij}) is Dini at r = 0, and if u is a non-constant solution of $Lu = a_{ij}(x)u_{x_ix_j} \ge 0$ in $\{0 < r \le r_0\}$. Let $M = \max_{|x|=r_0} u$ and if $u(x) = \begin{cases} o(\ln r) & n = 2\\ o(r^{2-n}) & n \ge 3 \end{cases}$, then u(x) < M in $\{r : 0 < r < r_0\}$. More $\overline{\lim}_{|x| \to 0^+} u(x) < M$.

Corollary 36. (of theorem 35) If (a_{ij}) are continuous at r = 0 and u is as above. If $u(x) = O(|x|^{2-n+\delta})$, $\delta > 0$, then conclusion of theorem 35 is true.

Proof. (Corollary 36) Let $g = r^{2-n}$, $h = r^{2-n+\delta'} = g^{1-r}$. $0 < \delta' < \delta$, $r = \delta'/(n-2)$. Calculate, we find

$$Lh \le \varepsilon_1(r)r^{-n}$$

and

$$a_{ij}g_{x_i}g_{x_j} \ge (n-2)^2(1-\varepsilon_2(r))r^{2-2n}$$

we need

$$\varepsilon_1 - r(n-2)^2(1-\varepsilon_2) \le 0$$

 $0 < r < r_1$. Consider $v(x) = u - \varepsilon h - M$, then apply Maximum principle, we got v < 0 in $\{0 < r < r_1\}$

$$u \le M \text{ in } \{0 < r < r_1\}.$$

Now we give a sketch of proof of theorem 35.

Proof. Let

$$h(x) = h(r) = \int_0^g \exp K(r + \int_0^r \phi(s) \frac{ds}{s}) dg$$

where $\phi(s)$ =modulo of continuity of a_{ij} . and let $g = r^{2-n}$. Remark 37. if $a_{ij}(x)$ is Holder, then $h = g(1 + Kr^{\alpha})$ Therefore

 $Lh \leq 0$

Lecture 4 (10/2/13)

Summary

Assume $Lu = a_{ij}(x)u_{x_ix_j} = 0$, $|a_{ij}(x) - \delta_{ij}| \ll c(\delta_1)$

(i) $a_{ij} \in C^0(B_{r_0}), L(r^{2-n+\delta_1}) \leq 0$ on B_{r_1} , then h > 0, $\Delta h = 0 \implies \Delta h^{\alpha} \leq 0$ for $0 \leq \alpha < 1$.

Lu=0 in $\{0<|x|< r_0\}$ and $u(x)=o(|x|^{2-n+\delta}) \Longrightarrow \lim_{x\to 0}|u(x)|\le M=\sup_{\partial B_{r_0}}|u(x)|$. This is because x=0 is removable singularity.

(ii) $a_{ij} \in \text{Holder (Dini)}, \ h(r) = r^{2-n}(1 + Kr^{\alpha}), \ Lh \leq 0 \text{ in } B_{r_0} \implies u(x) = o(|x|^{n-2}), \ x = 0 \text{ is removable singularity.}$

$$\overline{\lim_{x\to 0}}\,|u(x)|\leq M=\sup_{\partial B_{r_0}}|u(x)|$$

and

$$Lu = 0$$
 in $\{0 < |x| < r_0\}$.

3.2 Unbounded Boundary

We first take u(x) which is bounded on one-side.

Theorem 38. Assume $u(x) \ge -M$, then $\lim_{x\to 0} u(x) = +\infty$, or finite, both exists.

Proof. $\underline{\lim}_{x\to 0} u(x) = u_0 \ge -M$, consider $v_{\varepsilon}(x) = u(x) - v_0 + \varepsilon$, $\forall \varepsilon > 0$. $\underline{\lim}_{x\to 0} v(x) = \varepsilon > 0$. By Harnack inequality,

$$\sup_{|x|=r} v(x) \le \inf_{|r|=r} v(x) \cdot c_*$$

(since the value at each ball is comparable.)

$$\sup_{|x|=r} v_{\varepsilon} \le \inf_{|r|=r} v(x) \cdot c_* \to c_* \varepsilon,$$

as $r \to 0$. If $u_0 < \infty$,

$$\lim_{|x|\to 0} \sup v_{\varepsilon} \le c_* \varepsilon$$

$$\therefore \overline{\lim}_{x \to 0} v(x) = u_0$$

Theorem 39. If $u \in H^1(B_1)$, $E \subset \bar{B}_1$ closed, $\Delta u = 0$ in $B_1 \setminus E$, then $\Delta u = 0$ in B_1 if Cap(E) = 0.

Proof. $Cap(E) = \min\{\int_{\mathbb{R}^n} |\nabla u|^2 : v \in H_0^1(\mathbb{R}^n), v \ge 1 \text{ on } E\}, \text{ and }$

$$\begin{cases} -\Delta v_E = \mu_E \ge 0 \\ v_E = 1 & \text{on } E \end{cases}$$

 $v_E(\infty) = 0, \ Cap(E) = \int_{\mathbb{R}^n} |\nabla v_E|^2 dx = \int_{\mathbb{R}^n} (-\Delta v_E \cdot v_E) dx = \int_{\mathbb{R}^n} \mu_E v_E$

$$v_E(x) = c(n) \int_{\mathbb{R}^n} \frac{d\mu_E(y)}{|x - y|^{n - 2}} = c(n) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{d\mu_E(x) d\mu_E(y)}{|x - y|^{n - 2}}$$

That cap(E)=0 gives $\exists \{v_i\} \in C_0^\infty(\mathbb{R}^n)$ s.t. $v_i \geq 1$ on $E, 0 \leq v_i \leq 1$ in B_1

$$\int_{\mathbb{R}^n} |\nabla v_i|^2 \, dx \to 0$$

 $\Delta u = 0 \text{ in } B_1. \ \forall \phi \in C_0^{\infty}(B_1),$

$$0 = \int_{B_1} \phi(1 - v_i) \Delta u$$

 $\phi v_i \xrightarrow{H^1} 0$, so

$$\int_{B_1} \phi v_i \Delta u \to 0$$

as $i \to \infty$. $\Delta u \in H^{-1}$, hence

$$0 = \int_{B_1} \phi \Delta u$$

3.3 Probability Measure

Definition 40. Given a Radon measure μ on \mathbb{R}^n (with point separated), we define

t-potential of μ ,

$$\phi_t = \int \frac{d\mu(y)}{|x - y|^t}.$$

t-energy of μ ,

$$I_t(\mu) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{d\mu_t(x)d\mu_t(y)}{|x - y|^t}.$$

Given compact set E, we define

$$C_t(E) = \sup_{\mu} \{ \frac{1}{I_t(\mu)} : \mu \text{ is a probabilty measure on } E \}$$

One can check that the notion in the proof of theorem 39,

$$v_E(x) = c(n) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{d\mu_E(x) d\mu_E(y)}{|x - y|^{n-2}}$$

$$\mu_E(E) = \int_E d\mu_E(x)$$

$$= \int_E v_E(x)d\mu_E(x)$$

$$= c(n)I_{n-2}(\mu_E)$$

$$\tilde{\mu} = \frac{\mu_E}{c(n)I_{n-2}(\mu_E)}$$

is probability measure.

$$I_{n-2}(\tilde{\mu}) = \frac{1}{c^*(\mu)I_{n-2}(\mu_E)}.$$

Theorem 41. Let μ be a probability measure, let

$$E_0 = \{x : \overline{\lim_{r \to 0}} \frac{\mu(B(x,r))}{r^t} > 0\}$$

then $I_t(\mu) < \infty \implies \mu(E_0) = 0$.

Proof. $I_t(\mu) < \infty \implies \phi_t(x) < \infty$ for μ a.e. x. If at x_0 $\phi_t < \infty$, i.e. $\int \frac{d\mu(y)}{|x_0-y|^t} < \infty$

$$\therefore \frac{\mu(B(x,r))}{r^t} \to 0$$

as $r \to 0^+$.

Proposition 42. (i) if $H^t(E) < \infty$, then $C_t(E) = 0$. (ii) if $C_t(E) = 0$, then $H^s(E) = 0 \ \forall s > t$.

Proof. Let μ be a probability measure. $H^t(E) \ge H^t(E \setminus E_0)$, note $\forall \varepsilon > 0$, $E \setminus E_0$ can be finitely covered by balls $B_1(x)$, such that

$$\frac{\mu(B_r(x))}{r^t} < \varepsilon \implies r^t > \frac{\mu(B_r(x))}{\varepsilon}$$

Conversely $H^t(E \setminus E_0) \ge \frac{1}{\varepsilon} \mu(E \setminus E_0) = \frac{\mu(E)}{\varepsilon} = \frac{1}{\varepsilon} \implies H^t(E) = \infty$. If $C_t(E) > 0$, then $\exists \mu$ s.t. $I_t(\mu) < \infty$.

Corollary 43. If $E \subset B_1$ closed and $H^{n-2}(E) < \infty$, then E is removable for any H^1 solution of $\Delta u = 0$ in $B_1 \setminus E$.

3.4 Quasi-Open, Quasi-Continuous

Definition 44. A set $E \subseteq \mathbb{R}^n$ (Borel) is called Quasi-open if $\forall \varepsilon > 0$, $\exists O_{\varepsilon}$ open set s.t.

$$cap(O_{\varepsilon}\Delta E) < \varepsilon$$
.

Definition 45. $f: \mathbb{R}^n \to \mathbb{R}$ is called Quasi-continuous if $\forall \varepsilon > 0, \exists f_{\varepsilon}$ continuous $f_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}$ s.t.

$$cap\{x: f_{\varepsilon}(x) \neq f(x)\} < \varepsilon.$$

Theorem 46. (Federer-Ziemer) If $f \in H^1(\mathbb{R}^n)$, then f is Quasi-continuous.

Definition 47. We define $E_n \Rightarrow E$ (bounded sets) $\subseteq \Omega$ to mean that if we solve $\begin{cases} -\Delta u_{E_n} = f, & f \in H^{-1} \\ u_{E_n} = 0 & \text{on } \Omega \backslash E_n \end{cases}$, then

$$u_{E_n} \xrightarrow{H^1} u_E \text{ s.t. } \begin{cases} -\Delta u_E = f \\ u_E = 0 \end{cases} \text{ on } \Omega \backslash E$$

Definition 48. We define $E_i \stackrel{*}{\rightharpoonup} E$ to mean that if we solve $\begin{cases} -\Delta u_i = 1 \\ u_i = 0 \end{cases}$ on $\Omega \setminus E_i$, then

$$u_i(x) \stackrel{H^1}{\rightharpoonup} w(x)$$
 where $E = \{x | w(x) > 0\}$

Clearly if $w(x) = u_E(x)$, then $E_i \stackrel{*}{\rightharpoonup} E$. If $E_n \Rightarrow E$, $\lambda_i(E_i) \to \lambda(E)$. Remark 49. $\exists Lu = a_{ij}(x)u_{x_ix_j} = 0$ in $B_{r_0}\setminus\{0\}$ uniformly elliptic, $a_{ij} \in C^w(B_{r_0}\setminus\{0\})$. $\exists u^*(x)$ solution of LU = 0 in $B_{r_0}\setminus\{0\}$ s.t. $u^*|_{\partial B} = 1$, $u^*(0) = 0$, $u^*(x)$ Holder.

3.5 Serrin-Weinberger Method

The following theorem is applied to divergence form

$$Lu = \partial_{x_i}(a_{ij}(x)u_{x_i}) = 0$$

in $B_{r_0} \setminus \{0\}$, $\lambda |\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2$.

Theorem 50. (Littman-Stampacchia-Weinberger) $\exists G(x) \geq 0$, $LG(x) = -\delta(x)$, $G(x) \cong |x|^{2-n}$, $\nabla G \in L^{\frac{n}{n-1}}$, $G \in L^{\frac{n}{n-1}-\varepsilon}$, $\forall \varepsilon > 0$, $G \in Holder$ in $\mathbb{R}^n \setminus \{0\}$, and $G \in H^1_{loc}(\mathbb{R}^n \setminus \{0\})$ and

$$c|x|^{2-n} \le G(x) \le C|x|^{2-n}$$

Lemma 51. If Lu = 0 in $B_{r_0} \setminus \{0\}$ & $u(x) = o(|x|^{2-n})$, then u(x) = aG(x) + w(x), where a is a constant, Lw(x) = 0 in B_{r_0} and $w \in Holder$ in B_{r_0} .

Proof. (See Serrin) $\begin{cases} Lv = 0 & \text{in } B_{r_0} \\ v = G & \text{on } \partial B_{r_0} \end{cases}$ let g = G - v in B_{r_0} . Since $u(x) = o(|x|^{2-n})$, let $u^*(x) = u(x) - w(x)$, $u^*|_{\partial B_{r_0}} = 0$, one need to show $u^*(x) = ag$. We have $u^*(x) = O(|x|^{2-n}) = O(g)$, $u^*|_{\partial B_{r_0}} = 0 \implies u^*(x) \le Mg(x)$ for large M.

Let $a = \inf\{M \in \mathbb{R}, u^*(x) \leq Mg(x) \text{ for } x \in B_{r_0} \setminus \{0\}\}$, one wants to show $0 \leq ag(x) - u^*(x) = 0$, that is to show

$$\underline{\lim}_{|x| \to 0} \frac{ag(x) - u^*(x)}{|x|^{n-2}} = 0$$

suppose that $\underline{\lim}_{|x|\to 0} \frac{ag(x)-u^*(x)}{|x|^{n-2}} \ge \varepsilon_0 > 0$, then by Maximum principle

$$ag(x) - u^*(x) \ge \frac{\varepsilon_0}{c}g(x)$$
 for $0 < |x| < r_0$

then

$$ag(x) - u^*(x) \le \varepsilon g(x) \quad \forall \varepsilon > 0, \ 0 < |x| < r_0$$

let $\varepsilon \to 0$,

$$ag(x) - u^*(x) \le 0$$

Theorem 52. (Serrin-Weinberger) Consider Lu = 0 in $B_R^c = \{|x| > R\}$,

$$m(\sigma) = \inf_{\partial B_{\sigma}} u \quad M(\sigma) = \sup_{\partial B_{\sigma}} u$$

Either $u(x) \to u_{\infty}$ as $x \to \infty$; or else $M(\sigma) \ge A\sigma^{\alpha}$, $m(\delta) \le -A\sigma^{\alpha}$, for some A > 0 and $\alpha = \alpha(n, \lambda, \Lambda)$. More u_{∞} is finite if $n \ge 3$.

Note 53. Lu = 0 in \mathbb{R}^n . $M(\sigma) \uparrow$, $m(\sigma) \downarrow$, Moser showed $M(\sigma) - m(\sigma) \ge A\sigma^{\alpha}$.

Lecture 5 (10/9/13)

Proof. If u is bounded on one-side, then $\lim_{|x|\to\infty} u(x) = u_0$ exists (finite if $n \geq 3$). $\exists G(x)$ fundamental solution s.t.

$$\begin{cases} L(C-G) = 0 & \text{in } B_R^c \\ C - G|_{\partial B_R} = 0 \end{cases}$$

Since Lv = 0 in B_R^c , $v \ge 0$ in B_R^c , and $v(x) \to \infty$ as $|x| \to \infty$. $C - G \le \varepsilon v$, $\forall \varepsilon > 0$. So the fundamental solution goes to C, hence u is not bounded on neither side.

By maximum principle $M(\sigma) = \max_{|x|=\sigma} u(x)$ can have at most one relative maximum; $m(\sigma) = \min_{|x|=\sigma} u(x)$ can have at most one relative minimum. And $M(\sigma) \to \infty$, $m(\sigma) \to -\infty$, as $\sigma \to \infty$. So $\exists \sigma_0$ s.t. for $\sigma \in [\sigma_0, \infty)$, $M(\sigma) \uparrow \infty$, $M(\sigma) \geq 0$ and $m(\sigma) \downarrow -\infty$, $m(\sigma) \leq 0$.

Let $A_{\sigma} = \{\frac{\sigma}{2} < |x| < 2\sigma\}$, then

$$0 \le M(2\sigma) - u(x), \ 0 \le u(x) - m(2\sigma), \quad \text{on} A_{\sigma}$$

$$\therefore M(\sigma) - m(2\sigma) \le c \left(m(\sigma) - m(2\sigma) \right)$$

Apply Harnack inequality of Moser on $|x| = \sigma \implies$

$$M(2\sigma) - m(\sigma) \le c \left(M(2\sigma) - M(\sigma) \right)$$

Combining the two,

$$M(\sigma) - m(2\sigma) + M(2\sigma) - m(\sigma) \leq c\left(M(2\sigma) - m(2\sigma)\right) - c\left(M(\sigma) - m(\sigma)\right)$$

Or

$$(M(\sigma) - m(\sigma)) \le \frac{c-1}{c+1} \left(M(2\sigma) - m(2\sigma) \right)$$

That gives

$$M(\sigma) - m(\sigma) \ge A\delta^{\alpha}, \ \sigma \ge 2\sigma_0$$

and

$$M(2\sigma) - M(\sigma) \geq \frac{1}{c} (M(2\sigma) - m(\sigma))$$
$$\geq \frac{1}{c} (M(\sigma) - m(\sigma))$$
$$\geq \frac{A}{c} \sigma^{\alpha}$$

Thus

$$\sup_{|x|=r} u(x) \ge Ar^{\alpha}$$

Corollary 54. If Lu = 0 in $\{|x| > r_0\}$ and if either $\overline{\lim} |x|^{-\alpha} u(x) \le 0$ or $\underline{\lim} |x|^{-\alpha} u(x) \ge 0$, then $\lim_{|x| \to \infty} u(x) = u_0$ is finite.

Theorem 55. If Lu = 0 in $\{0 < |x| \le r_0\}$, $\exists \delta = \delta(m, \lambda, \Lambda) > 0$ s.t. suppose either $\overline{\lim} |x|^{2-n-\delta} u(x) \le 0$ or $\underline{\lim} |x|^{2-n-\delta} u(x) \ge 0$, then u(x) = aG(x) + w(x), where Lw(x) = 0 and w(x) is regular solution.

If $\Delta u(x) = 0$ in |x| > 1, then

$$v(y) = \frac{u(\frac{y}{|y|^2})}{\frac{1}{|y|^{n-2}}} = |y|^{n-2} u(\frac{y}{|y|^2})$$

solves $\Delta v(y) = 0$ in |y| < 1.

For more general elliptic operator, if $a^{ij}(x)u_{x_ix_j}=0$ in |x|<1, define

$$v(y) = \frac{u(\frac{y}{|y|^2})}{G(y)}$$

to be solution of $\tilde{L}v = 0$ in |y| > 1, where

$$\tilde{L} = \partial_{y_i}(\tilde{a}^{ij}(y)\partial_{y_j}), \ \tilde{a}^{ij}(y) = \frac{G^2(y)}{J(y)}a^{kj}(x)\frac{\partial y^i}{\partial x_i}\frac{\partial y^j}{\partial x_i}$$

$$c\lambda \le (\tilde{a}^{ij}) \le c\Lambda, \ \frac{\partial y^i}{\partial x_i} \sim \frac{1}{|x|^2}, \ J(y) \sim \frac{1}{|x|^{2n}}, \ G(y) \sim |x|^{2-n}$$

$$\tilde{a}^{ij}(y) \sim \frac{|x|^{2n}}{|x|^4} \left(|x|^{2-n}\right)^2$$

so

3.6 Maximum Principle

We now discuss two aspects of Maximum principle.

Theorem 56. (i) If $a_{ij}(x)u_{x_ix_j} \geq 0$ in B_1 and $u \in C^2(B_1)$, then

$$\sup_{x \in B_1} u(x) \le \sup_{\partial B_1} u(x)$$

(ii) (Hopf boundary point lemma or strong Maximum principle) If

$$u(x_0) = \max_{x \in \bar{B}_1} u(x)$$

 $u \in C^2$, and $u \neq constant$, then

$$\frac{\partial u}{\partial \nu}(x_0) > 0.$$

Another version: $u(x) < u(x_0) \ \forall x \in \bar{B}_1 \setminus \{x_0\}, \ u \in C^0(\bar{B}_1) \cap C^2(B_1),$ then

$$\frac{\partial u}{\partial \nu}(x_0) \ge c(n, \lambda, \Lambda) \left(u(x_0) - u(0) \right)$$

Proof. Consider $h(x) = e^{-\alpha |x|^2} - e^{-\alpha}$, h vanishes on boundary and ≥ 0 inside.

$$Lh = (4\alpha^2 a_{ij}(x)x_ix_j + o(\alpha))e^{-\alpha|x|^2}$$

Lh > 0 if $|x| \ge 1/2$, $0 \ge \alpha(n, \lambda, \Lambda)$

$$v = u(x) - u(x_0) + \varepsilon h(x) \le 0$$

in $\{1/2 < |x| < 1\}$, implies

$$Lv \geq 0$$

in $\{1/2 < |x| < 1\}$, implies

$$v(x) \le 0 \text{ in } \{\frac{1}{2} < |x| < 1\}, \ v(x_0) = 0$$

So

$$\frac{\partial v}{\partial \nu}(x_0) \ge 0$$

which gives

$$\frac{\partial u}{\partial \nu}(x_0) \ge -\varepsilon \frac{\partial h}{\partial \nu}(x_0) \ge \varepsilon \alpha > 0$$

How big is $u(x_0) - u(x)$ on $|x| = \frac{1}{2}$? Since

$$c(u(x) - u(x_0)) \le u(x_0) - u(x) \le c(u(x_0) - u(0))$$

we have

$$(u(x) - u(x_0)) \sim (u(x_0) - u(0)) \sim \varepsilon$$

$$\therefore \frac{\partial u}{\partial \nu}(x_0) \ge c(n, \lambda, \Lambda) (u(x_0) - u(0))$$

Exercise 57. Lu = 0 in B_1 . Show Hopf boundary point lemma \Longrightarrow Holder of solution.

$$M(R) = \max_{|x| \le R} (u(x) - u(0)), RM'(R) \ge c(n, \lambda, \Lambda)M(R)$$
 ($R = 1$ by scaling), $M(R) \ge 2^c M(R/2)$, for $0 \le r < 1$, $M(r) \le M(1)r^c$.

Theorem 58. (Alexandroff Estimate or ABP-Estimate [Alexandroff-Bakelman-Pucci]) $a_{ij}(x)u_{x_ix_j}(x) \geq f(x) \in L^n(\Omega), \ u \in W^{2,n}(\Omega), \ u|_{\partial\Omega} \leq 0, \ then$

$$\sup_{\Omega} u^{+} \leq c(n)(dim\Omega) \left(\int_{\Omega} \left| \frac{f^{-}}{A} \right|^{n} dx \right)^{1/2}$$

where $A = det^{1/n}(a_{ij}(x))$. $f = f^+ - f^-$.

Remark 59. If $(a_{ij}) \geq \lambda I$, $A \geq \lambda$.

Proof. Let $\Gamma_u(x)$ be the minimum concave function which vanishes on $\partial\Omega$ and lies above u. So

$$M = \max \Gamma_u = \max u^+$$

Let $d = dim\Omega$.

$$Vol\left(\frac{B_M^n(0)}{d}\right) = c(n)\left(\frac{M}{d}\right)^n$$

 $D\Gamma_u(\Omega) = \{D\Gamma_u(x) : x \in \Omega\} \supseteq B_M^n(0)/d$, any plane from $u = \infty$ with slope $\leq M/d$ will have to touch the graph Γ_u before it hits $\partial\Omega$, that implies

$$c(n) \left(\frac{M}{d}\right)^{n} \leq |D\Gamma_{u}(\Omega)|$$

$$\leq \int_{\Omega} |\det(\operatorname{Hessian of }\Gamma_{u})| dx$$

$$\leq \int_{\Omega} |\det(D^{2}u(x))| dx$$

$$\leq \int_{\{(D^{2}u)\leq 0\}} |\det(D^{2}u(x))| dx$$

here we used det (Hessian of Γ_u) = $J_{ac}(D\Gamma_u(\Omega))$ for Lipschitz map Γ_u . Moreover

$$-a_{ij}(x)u_{ij}(x) \le -f(x) \le f^{-}(x)$$

$$det(A)det(-D^{2}u) = det(A(-D^{2}u))$$

$$\leq c(n) \left[tr(A(-D^{2}u))\right]^{n}$$

$$\leq c(n) f^{n}(x)$$

on
$$(D^2u \le 0)$$
, use $\lambda_1\lambda_2...\lambda_n \le \left(\frac{\lambda_1+...+\lambda_n}{n}\right)^n$, we get

$$c(n) \left(\frac{M}{d}\right)^n \leq \int_{\{(D^2u)\leq 0\}} \left| \det(D^2u(x)) \right| dx \leq c(n) \int_{\Omega} \frac{(f^-)^n}{\det A} dx$$

$$\therefore \sup u^+ = M \le c(n) dim \Omega \left(\int_{\Omega} \frac{(f^-)^n}{det A} \right)^{1/n}$$

We will apply Alexandroff estimate to get the following result

Proposition 60. (small-volume maximum principle) Let $d = \dim \Omega$, $\delta = Vol\Omega$, and $|c(x)| \leq M$. If $\Delta u + c(x)u = 0$ in Ω , $u \leq 0$ on $\partial \Omega$, then $\exists \delta_0 = \delta_0(n, M, d)$ s.t. if $\delta \leq \delta_0$ then $u(x) \leq 0$ in Ω .

Proof.
$$\sup u^+ \le c(n)d \| (c(x)u)^+ \|_{L^n(\Omega)} \le c(n)dM \sup u^+ \delta^{1/n} \implies \sup u^+ = 0$$
, if $\delta^{1/n}c(n)Md < 1$.

3.7 Moving Plane Method

We borrow an idea from Geometry: Constant-mean-curvature surface in \mathbb{R}^3 must be sphere by Alexandrov.

Theorem 61. If

Lecture 6 (10/23/13)

$$\begin{cases} \Delta u + f(x) = 0 & in B_1 \\ u = 0 & on \partial B_1 \\ u > 0 & in B_1 \end{cases}$$

with $f \in Lip$, then u(x) = u(|x|).

See Lin Lemma 2.35 gives a different version of the theorem.

Lemma 62. (Similar to Lin 2.35) Consider the plane $T_{\lambda} = \{x_1 = \lambda\}$, $0 \leq \lambda \leq 1$, let $\Sigma_{\lambda} = B_1 \cap \{x_1 > \lambda\}$ and $\Sigma_{\lambda}^* = reflection of \Sigma_{\lambda}$ with respect to T_{λ} . Then

$$u(x^{\lambda}) \le u(x)$$

 $x \in \Sigma_{\lambda}^*$ for all $0 \le \lambda \le 1$, where $x^{\lambda} = (2\lambda - x_1, x')$.

Notice when $\lambda = 0$, the lemma says $u(x_1, x') \leq u(-x_1, x')$.

Idea of proof Lemma: Let $w^{\lambda} = u(x^{\lambda}) - u(x)$, $x \in \Sigma_{\lambda}^*$, then $w^{\lambda} = 0$ on T_{λ} , $w^{\lambda} < 0$ on $\partial \Sigma_{\lambda}^* \backslash T_{\lambda}$ and

$$\Delta w^{\lambda}(x) + c^{\lambda}(x)w^{\lambda}(x) = 0$$

in Σ_{λ}^* , where $|c^{\lambda}(x)| \leq L = \max |f'|$, and $c^{\lambda}(x)w^{\lambda}(x) = f(u^{\lambda}) - f(u)$, where $u^{\lambda}(x) = u(x^{\lambda})$.

Proof. (of Lemma 62) If $1 - \delta_0 \le \lambda \le 1$ ($\delta_0 > 0$ small), $|\Sigma_{\lambda}^*| \le c\delta_0$ and $\dim \Sigma_{\lambda} \le 2$. By ABP-estimate, $w^{\lambda}(x) \le 0$, $x \in \Sigma_{\lambda}^*$ and $w^{\lambda}(x) < 0$ inside Σ_{λ}^* .

Since $\sup_{\Sigma_{\lambda}^*} (w_+^{\lambda}) \le c \dim |\Sigma_{\lambda}^*| \cdot ||c^{\lambda} w^{\lambda}||_{L^n(\Sigma_{\lambda}^*)},$

$$\sup w_+^{\lambda} \le c \dim |\Sigma_{\lambda}^*| L \sup w_+^{\lambda} |\Sigma_{\lambda}^*|^{1/n}$$

$$\therefore \sup w_+^{\lambda} = 0$$

for $\sup w_+^{\lambda}$ appears on both sides but $c\dim |\Sigma_{\lambda}^*| |\Sigma_{\lambda}^*|^{1/n}$ is arbitrarily small.

Let $\lambda_0 = \inf\{\lambda_* \in (0,1) : w^{\lambda}(x) \leq 0 \,\forall \, \lambda \geq \lambda_*\}$, if $\lambda_0 = 0$ we are done, i.e. $u(x_1, x') = u(-x_1, x')$, $x_1 \geq 0$. (choose all planes)

If $\lambda_0 > 0$, then $u^{\lambda_0}(x) \le u(x)$ on $\Sigma_{\lambda_0}^*$, $u(x) = u^{\lambda_0}(x)$ on T_{λ_0} and $u^{\lambda_0}(x) \le u(x)$ on $\partial \Sigma_{\lambda_0}^* \backslash T_{\lambda_0}$. By Hopf,

$$u^{\lambda_0}(x) < u(x)$$

inside $\Sigma_{\lambda_0}^*$, it implies $w^{\lambda_0}(x) < 0$, so $w^{\lambda_0}(x)$ is continuous on $\Sigma_{\lambda_0}^*$ \Longrightarrow

$$w^{\lambda_0}(x) \le -\eta_0(K) < 0$$

on $K \subseteq \Sigma_{\lambda_0}^*$. Choose K large s.t. $\left| \Sigma_{\lambda_0}^* \backslash K \right| < \delta_0/2$ for $\lambda_0 - \delta \le \lambda < \lambda_0$ $(\delta \ll \delta_0)$

Consider $w^{\lambda}(x)$ continuous in λ on $\Sigma_{\lambda_0}^* \Longrightarrow w^{\lambda}(x) \leq -\frac{\eta_0}{2} \ \forall x \in K$ and $|\Sigma_{\lambda}^* \backslash K| < \delta_0$. Consider w^{λ} on $\Sigma_{\lambda}^* \backslash K$, $w^{\lambda} \leq 0$ on $\partial(\Sigma_{\lambda}^* \backslash K)$,

$$\Delta w^{\lambda} = -c^{\lambda}(x)w^{\lambda}$$

in Σ_{λ}^* . Then by ABP-estimate,

$$\sup_{\Sigma_{\lambda}^{*}\backslash K} \left| w_{+}^{\lambda} \right| \leq c_{0} 2L \left| w_{+}^{\lambda} \right|_{L^{n}(\Sigma_{\lambda}^{*}\backslash K)}$$

$$\leq 2c_{0} L \left| \Sigma_{\lambda}^{*}\backslash K \right| \sup_{\Sigma_{\lambda}^{*}\backslash K} \left| w_{+}^{\lambda} \right|$$

$$\leq 2c_{0} L \delta_{0}^{1/n} \sup_{\Sigma_{\lambda}^{*}\backslash K} (w_{+}^{\lambda})$$

This gives

$$\sup_{\Sigma_{\lambda}^* \backslash K} (w_+^{\lambda}) = 0$$

One can use the same idea in the proof to show: M^2 embedded in \mathbb{R}^3 consider constant mean curvature $H_M = const > 0 \implies M^2 \cong S^2$ standard sphere.

4 Modern Results

- 4.1 Krylov-Safonov Theorem
- 4.2 Calderon-Zygmund Lemma
- 4.3 Continuity Method
- 4.4 Lax-Milgram
- 4.5 DeGiorgi Theory
- 4.6 John-Nirenberg Estimate
- 4.7 Morrey-Stampacchia Theory

5 More Recent Developments