Multilingual Text-Editing

- Token = the smallest unit of text fed to your model
- Unglamorous but of great **practical importance**!
 - o If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning
 - Particularly important for text **generation** models and for **internationalization**

- Token = the smallest unit of text fed to your model
- Unglamorous but of great **practical importance**!
 - o If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning
 - Particularly important for text **generation** models and for **internationalization**
- Different levels of tokenization
 - words
 - subwords
 - o morphemes
 - characters/bytes

- Token = the smallest unit of text fed to your model
- Unglamorous but of great practical importance!
 - o If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning
 - Particularly important for text **generation** models and for **internationalization**
- Different levels of tokenization
 - words used in the LaserTagger paper
 - o subwords used in the Felix and Edit5 papers
 - morphemes
 - characters/bytes

Tokenization Trade-Offs (Text Editing)

Words

```
Untokenized text. ⇒
["Untokenized", "text", "."]
```

Characters

```
"Untokenized text." ⇒
["U", "n", "t", "o", "k", "e",
"n", "i", "z", "e", "d", " ",
"t", "e", "x", "t", "."]
```

Tokenization Trade-Offs (Text Editing)

Words

```
Untokenized text. ⇒
["Untokenized", "text", "."]
```

Poorly handles morphology

Characters

```
"Untokenized text." ⇒
["U", "n", "t", "o", "k", "e",
"n", "i", "z", "e", "d", " ",
"t", "e", "x", "t", "."]
```

NAR decoding can produce nonsense

Tokenization Trade-Offs

Words

```
Untokenized text. ⇒
["Untokenized", "text", "."]
```

- UNK tokens
- Large vocabulary
- Big embedding matrix
- Many rare words

Characters

```
"Untokenized text." ⇒
["U", "n", "t", "o", "k", "e",
"n", "i", "z", "e", "d", " ",
"t", "e", "x", "t", "."]
```

- Long-sequences => lower quality
- Slow training and inference
- Non-meaningful units (especially for non-ASCII alphabets)

Tokenization Trade-Offs

Words

```
Untokenized text. ⇒
["Untokenized", "text", "."]
```

- UNK tokens
- Large vocabulary
- Big embedding matrix
- Many rare words

Characters

```
"Untokenized text." ⇒
["U", "n", "t", "o", "k", "e",
"n", "i", "z", "e", "d", " ",
"t", "e", "x", "t", "."]
```

- Long-sequences => lower quality
- Slow training and inference
- Non-meaningful units (especially for non-ASCII alphabets)

e.g., ByT5 [Xue et al. 2021], Charformer [Tay et al. 2021]: seq2seq; HCTagger [Gao, Xu, and Shi 2021]

Subword Segmentation

```
Untokenized text. ⇒ ["_Un", "token", "ized", "_text", "."]
```

Different algorithms for optimizing the segmentation:

BPE, UnigramLM, WordPiece

- Most are reversible: text == detokenize(tokenize(text))
 - \circ Original BERT's WordPiece is not \rightarrow bad for NLG
- Typical vocabulary size: 30k-250k

Tokenizers Landscape

Figure 1: A taxonomy of segmentation and tokenization algorithms and research directions

Mielke et al. Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP. arXiv 2021 (pdf)

Different Alphabets and Scripts

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?
 - We probably have other letters
 - so something like ["sen", "s", "e", "i"]

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "겡", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?
 - We probably have other letters
 - o so something like ["sen", "s", "e", "i"]
- 3. But what about "선생"?
 - ["전", "UNK"]

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "♂", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?
 - We probably have other letters
 - o so something like ["sen", "s", "e", "i"]
- 3. But what about "선생"?
 - ["전", "UNK"]
- 4. Solution: fallback to bytes
 - ㅇ ["선", 236, 131, 157]

Handling Morphology

Editing Morphology

Grammatical Error Correction (GEC) example:

Source: "She no drives to market."

Target: "She did no not drives drive to market."

Depending on tokenization, potentially inefficient drives->drive replacement

Morphological Operations

Similar to PRONOMINALIZE tag in sentence fusion, we can introduce a \$VERB_FORM_VBZ_VB tag:

- drives -> drive
- goes -> go
- carries -> carry

Omelianchuk et al., 2020 (pdf)

Tag Example \$KEEP ... many people want to travel during the summer not sure if you are $\{you \Rightarrow \emptyset\}$ gifting ... **\$DELETE** \$REPLACE_a ... the bride wears $\{$ the \Rightarrow $a\}$ white dress ... \$REPLACE_cause ... hope it does not $\{make \Rightarrow cause\}$ any trouble ... \$APPEND for ... he is {waiting \Rightarrow waiting for} your reply ... \$APPEND_know ... I $\{don't \Rightarrow don't \ know\}$ which to choose... ... surveillance is on the {internet ⇒ Internet} ... \$CASE_CAPITAL ... I want to buy an $\{iphone \Rightarrow iPhone\}$... \$CASE_CAPITAL_1 \$CASE_LOWER ... advancement in $\{Medical \Rightarrow medical\}$ technology ... \$CASE_UPPER ... the $\{it \Rightarrow IT\}$ department is concerned that... \$MERGE_SPACE ... insert a special kind of gene $\{in to \Rightarrow into\}$ the cell ... \$MERGE_HYPHEN ... and needs $\{in depth \Rightarrow in-depth\}$ search ... \$SPLIT_HYPHEN ... support us for a $\{long-run \Rightarrow long run\}$... \$NOUN_NUMBER_SINGULAR ... a place to live for their $\{$ citizen \Rightarrow citizens $\}$ \$NOUN_NUMBER_PLURAL ... carrier of this $\{diseases \Rightarrow disease\}$... \$VERB_FORM_VB_VBZ ... going through this $\{make \Rightarrow makes\}$ me feel ... \$VERB_FORM_VB_VBN ... to discuss what $\{happen \Rightarrow happened\}$ in fall she sighed and $\{ draw \Rightarrow drew \}$ her ... \$VERB_FORM_VB_VBD ... shown success in $\{prevent \Rightarrow preventing\}$ such ... \$VERB_FORM_VB_VBG ... a small percentage of people $\{goes \Rightarrow go\}$ by bike ... \$VERB_FORM_VB_VBZ ... development has $\{pushes \Rightarrow pushed\}$ countries to ... \$VERB_FORM_VBZ_VBN ... he $\{drinks \Rightarrow drank\}$ a lot of beer last night ... \$VERB_FORM_VBZ_VBD ... couldn't stop $\{$ thinks \Rightarrow thinking $\}$ about it ... \$VERB_FORM_VBZ_VBG \$VERB_FORM_VBN_VB ... going to $\{depended \Rightarrow depend\}$ on who is hiring ... \$VERB_FORM_VBN_VBZ ... yet he goes and $\{eaten \Rightarrow eats\}$ more melons ... \$VERB_FORM_VBN_VBD ... he {driven \Rightarrow drove} to the bus stop and ... \$VERB_FORM_VBN_VBG ...don't want you fainting and {broken \Rightarrow breaking} each of these items will $\{fell \Rightarrow fall\}$ in price ... \$VERB_FORM_VBD_VB ... the lake $\{froze \Rightarrow freezes\}$ every year ... \$VERB_FORM_VBD_VBZ ... he has been went $\{$ went \Rightarrow gone $\}$ since last week ... \$VERB_FORM_VBD_VBN \$VERB_FORM_VBD_VBG ... talked her into $\{gave \Rightarrow giving\}$ me the whole day free time, I just $\{$ enjoying \Rightarrow enjoy $\}$ being outdoors ... \$VERB_FORM_VBG_VB \$VERB_FORM_VBG_VBZ ... there still $\{$ existing \Rightarrow exists $\}$ many inevitable factors people are afraid of being $\{$ tracking \Rightarrow tracked $\}$... \$VERB_FORM_VBG_VBN ... there was no $\{$ mistook \Rightarrow mistaking $\}$ his sincerity ... \$VERB_FORM_VBG_VBD

Learned Edit Operations

Idea: instead of learning a vocabulary of **word** replacement, learn vocabulary of **character** replacements

Learned Edit Operations

Idea: instead of learning a vocabulary of **word** replacement, learn vocabulary of **character** replacements

and
however_,
,_but
he
because
,_although
but
,_and
although
his
,_while
it
,_which
she

KEEP APPEND a APPEND b APPEND z REPL. $1^{st} \rightarrow \emptyset$ REPL. $1^{st} \rightarrow a$ REPL. $1^{st} \rightarrow b$ REPL. $2^{nd} \rightarrow \emptyset$ REPL. $2^{nd} \rightarrow a$ REPL. $5^{th} \rightarrow \emptyset$ UPPERCASE 1st

Learned Edit Operations

Idea: instead of learning a vocabulary of word replacement, learn vocabulary of character replacements

Source: gatherin leafes ["_gathe", "rin", "_lea", "fes"]

Target: Gathering leaves

Tags: [UPP.2nd , APP.g, KEEP , REPL.1st \rightarrow v]

Realize: ["_Gathe", "ring", "_lea", "ves"]

and however.., , but he because , although but. , and although his , while it

, which she

KEEP APPEND a APPEND b APPEND z REPL. $1^{st} \rightarrow \emptyset$ REPL. $1^{st} \rightarrow a$ REPL. $1^{st} \rightarrow b$ REPL. $2^{nd} \rightarrow \emptyset$ REPL. $2^{nd} \rightarrow a$ REPL. $5^{th} \rightarrow \emptyset$ UPPERCASE 1st

Straka et al., 2021 (pdf)

Practical Aspects of Multilingual Models

Per-Language Model (vs. Multilingual)

Per-language

- + better alphabet => relying less on byte
- fallback (e.g., KR-BERT, RuBERT)
- + smaller model
- + independent release cycle

Multilingual

- + cross-lingual learning
- + simpler training
- + lower maintenance costs
 - + lower complexity
 - + lower resource (TPU/RAM) footprint

Per-Language Edit Operations

A change to introduce a separate softmax layer for LaserTagger per language. TPU Inference time (scale)

Encoder Vocabulary & Tokenization

One size does not fit all:

- Bigger [SentencePiece] vocabulary => smaller sequence
 length => faster encoding
- ... but it can make the source/target alignment harder
- ... and it makes the model bigger
- ... and languages need to be properly balanced

See Chung et al. (2020) [pdf] on how to merge vocabularies

Questions?