NBA 4920/6921 Lecture 15

Shrinkage Methods: Elastic Net

Murat Unal

Johnson Graduate School of Management

10/21/2021

Agenda

Recap: Ridge & lasso regression

Elastic net

Application in R

Shrinkage methods

- Fit a model that contain all p predictors
- ▶ At the same time constrain or **regularize** the coefficient estimates
- Regularization shrinks the coefficients towards zero
- 1. Ridge regression
- 2. Lasso
- 3. Elastic net

Ridge regression

Recall that we estimate coefficients $\beta_0, \beta_1, \dots, \beta_p$ by minimizing RSS

$$\min_{\hat{\beta}} \mathsf{RSS} = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 = \sum_{i=1}^{n} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - \hat{\beta_2} x_{i2} - \dots - \hat{\beta_p} x_{ip})^2$$

Ridge regression makes a small change by adding a shrinkage penalty, the sum of squared coefficients $(\lambda \sum_j \beta_j^2)$

$$\min_{\hat{\beta^R}} \sum_{i=1}^n (y_i - \hat{y_i})^2 + \frac{\lambda}{\lambda} \sum_j \beta_j^2 = \min_{\hat{\beta}} RSS + \frac{\lambda}{\lambda} \sum_j \beta_j^2$$

Ridge regression

$$\min_{\hat{\beta^R}} \sum_{i=1}^n (y_i - \hat{y_i})^2 + \lambda \sum_j \beta_j^2$$

 $\lambda >= 0$ is a tuning parameter that determines the magnitude of the penalty $\lambda = 0 \rightsquigarrow$ no penalty \rightsquigarrow back to least squares

Ridge regression

- ► While the shrinkage penalty has the effect of shrinking the estimates towards zero, it never forces them to be zero.
- ► As a result, we can end up with many tiny coefficients.
- ► This also means that Ridge regression can <u>not</u> be used for variable/feature/subset selection
- ► Enter the Lasso!

Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) replaces Ridge's squared coefficients with absolute values

$$\min_{\hat{\beta^L}} \sum_{i=1}^n (y_i - \hat{y_i})^2 + \frac{\lambda}{\lambda} \sum_j |\beta_j| = \min_{\hat{\beta^L}} RSS + \frac{\lambda}{\lambda} \sum_j |\beta_j|$$

Lasso

$$\min_{\hat{\beta^L}} \sum_{i=1}^n (y_i - \hat{y_i})^2 + \frac{\lambda}{\lambda} \sum_j |\beta_j| = \min_{\hat{\beta^L}} \mathsf{RSS} + \frac{\lambda}{\lambda} \sum_j |\beta_j|$$

 $\lambda>=0$ is a tuning parameter that determines the magnitude of the penalty

 $\lambda = 0 \rightsquigarrow$ no penalty \rightsquigarrow back to least squares

Lasso

- ➤ Similar to Ridge regression, the Lasso shrinks the coeffcient estimates towards zero
- However, the shrinkage penalty now has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.
- As such, the Lasso performs feature/subset selection
- ightharpoonup Each value of λ results in different coefficient estimates, thus selecting a good value is critical

Selecting the tuning parameter λ

- \blacktriangleright We perform cross-validation to find the optimum λ
- Start by defining a grid of λ values, and compute the cross-validation error rate for each value of λ
- Select the tuning parameter value for which the cross-validation error is smallest
- ► Finally, the model is fit again using all of the available observations and the selected value of the tuning parameter.

Ridge or Lasso?

Ridge

- Shrinks $\hat{\beta}_j$ towards 0
- ightharpoonup Many tiny \hat{eta}_j
- ► Can not select features
- ► Harder to interpret
- ▶ Better to use when all $\hat{\beta}_j \neq 0$

Lasso

- ightharpoonup Shrinks $\hat{\beta}_j$ towards 0
- Many $\hat{\beta}_j = 0$
- Can select features
- Easier to interpret
- Assumes some $\hat{\beta}_j = 0$

Can't we use both?

Elastic net combines Ridge and Lasso

$$\min_{\hat{\beta^L}} \sum_{i=1}^n (y_i - \hat{y_i})^2 + (1 - \alpha) \lambda \sum_j \beta_j^2 + \alpha \lambda \sum_j |\beta_j|$$

Which increases the tuning parameters to two: α , λ

With $\alpha = 0$ we're back to Ridge

With $\alpha = 1$ we're back to Lasso

We need to tune both α and λ using cross-validation

- When the number of features p is as large as, or larger than, the number of observations n, OLS, should not be used.
- ▶ Regardless of whether or not there truly is a relationship between the features and the response, OLS will yield a set of coefficient estimates that result in a perfect fit to the data, such that the residuals are zero.

Left: Least squares regression in the low-dimensional setting.

Right: Least squares regression with n=2 observations and two parameters to be estimated (an intercept and a coefficient).

On a simulated example with n=20 training observations, features that are completely unrelated to the outcome are added to the model. Left: The R2 increases to 1 as more features are included. Center: The training set MSE decreases to 0 as more features are included. Right: The test set MSE increases as more features are included

The lasso was performed with n=100 and three values of p. Of the p features, 20 were associated with the response. The boxplots show the test MSEs that result using three different values of the tuning parameter λ .

- 1. Regularization or shrinkage plays a key role in high-dimensional problems
- 2. Appropriate tuning parameter selection is crucial for good predictive performance
- 3. The test error tends to increase as the dimensionality of the problem increases, unless the additional features are truly associated with the response.

- ▶ In general, adding additional signal features that are truly associated with the response will improve the fitted model, in the sense of leading to a reduction in test set error.
- ► However, adding noise features that are not truly associated with the response will lead to a deterioration in the fitted model, and consequently an increased test set error.

References

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2017)

An Introduction to Statistical Learning

Springer.

https://www.statlearning.com/

Ed Rubin (2020)

Economics 524 (424): Prediction and Machine-Learning in Econometrics *Univ, of Oregon*.