

IoT Engineering (iot)

10. Januar 2022

thomas.amberg@fhnw.ch

Assessment

Vorname:	Punkte:	/ 90,	Note:
Name:	Frei lassen	für Korrek	ctur.
Klasse: 5ibb1			
Hilfsmittel:			
- Ein A4 Blatt handgeschriebene Notizen.			
- Lösen Sie die Aufgaben direkt auf den Prüfungsblätterr	1.		
- Zusatzblätter, falls nötig, mit Ihrem Namen und Frager	ı-Nr. auf jed	lem Blatt.	
Nicht erlaubt:			
- Unterlagen (Slides, Bücher,).			
- Computer (Laptop, Smartphone,).			
- Kommunikation mit anderen Personen.			
Bewertung:			
- Multiple Response: \square <i>Ja</i> oder \square <i>Nein</i> ankreuzen, +1/-	1 Punkt pro	richtige/fa	lsche Antwort,
beide nicht ankreuzen ergibt +0 Punkte; Total pro Frag	ge gibt es nie	e weniger al	s 0 Punkte.
- Offene Fragen: Bewertet wird Korrektheit, Vollständig	keit und Kür	ze der Antv	vort.
Antworten Sie in ganzen Sätzen, das ist oft klarer als nu	ur einzelne S	Stichworte.	
Fragen zur Prüfung:			

- Während der Prüfung werden vom Dozent keine Fragen zur Prüfung beantwortet.

- Ist etwas unklar, machen Sie eine Annahme und notieren Sie diese auf der Prüfung.

Internet of Things

1) Nennen Sie ein	konkretes for Anwendungsbeispiel zu jeder Eigenschaft. Punkte: _ / 6
Komplettieren Sie	e jeweils den Satz, mit Beispiel und Begründung:
IoT bringt E	ffizienz, z.B.
IoT bringt B	equemlichkeit, z.B.
IoT bringt n	eue Einsichten, z.B.
2) Welche dieser	Aussagen über Connectivity-Optionen sind korrekt? Punkte: _ / 4
Zutreffendes ank	reuzen:
□ Ja □ Nein	Bluetooth Connectivity ist ideal für landwirtschaftliche Anwendungen.
□ Ja □ Nein	Eine Option mit mehr Reichweite braucht immer auch mehr Strom.
□ Ja □ Nein	LoRaWAN Datenfunk hat mehr Bandbreite als Wi-Fi Connectivity.
□ Ja □ Nein	Der Setup-Zeitpunkt ist je nach Connectivity Option verschieden.

Mikrocontroller

 \Box Ja | \Box Nein

3) Nennen Sie drei	wesentliche Aufgaben für Mikrocontroller (ohne Connect	ivity). P.kte: _ / 6
Komplettieren Sie	jeweils den Satz mit der Aufgabe, und einer kurzen Erklö	irung:
Ein Mikrocontr	oller kann	
Ein Mikrocontr	oller kann	
Ein Mikrocontr	oller kann	
4) Welche dieser A Zutreffendes ankre	ussagen über Sensoren und Aktuatoren sind korrekt?	Punkte: _ / 4
□ Ja □ Nein	Temperatur-Sensoren wandeln ein elektrisches Signal	in Wärme um.
□ Ja □ Nein	Ein interaktives System ohne Connectivity braucht nur	Aktuatoren.
□ Ja □ Nein	Analoge Sensoren haben einen grösseren Wertebereich	ı als digitale.

Analoge Sensoren können (via MCU) digitale Aktuatoren auslösen.

5) Gegeben den folgenden Code, wie sieht die State-Machine des Geräts aus? Punkte: _ / 6

```
01 ... // ignore includes, defines
02
03 int state = 0;
04 DHT dht(DHT_PIN, DHT_TYPE);
05 TM1637 tm1637(CLK_PIN, DIO_PIN);
06
07 void setup() { ... } // ignore setup details
08 void display(float f) { ... } // 4-digit, ignore details
09
10 void loop() {
11
     int h = digitalRead(BTN_1_PIN); // active high, labelled H
12
     int t = digitalRead(BTN_2_PIN); // active high, labelled T
     float humi = dht.readHumidity(); // %
13
     float temp = dht.readTemperature(); // *C
14
15
     if (state == 0 && !h && !t) {
16
       display(humi);
     } else if (state == 0 && !h && t) {
17
18
       state = 1;
19
     } else if (state == 1 && !h && !t) {
20
       state = 2;
21
     } else if (state == 2 && !h && !t) {
       display(temp);
22
23
     } else if (state == 2 && h && !t) {
       state = 3;
24
     } else if (state == 3 && !h && !t) {
25
       state = 0;
26
     }
27
28 }
```

Zeichnen Sie die State-Machine, mit Übergängen der Form [S1]—condition \mid action \rightarrow [S2].

6) Schreiben Sie eine kurze Bedienungsanleitung für das Gerät aus Aufgabe (5). Punl	xte: _ / 4
IoT Plattformen	
7) Welche sechs Informationen braucht es, um ein IoT Plattform API zu nutzen? Pun	kte: _ / 6
Nennen Sie jeweils die Art der Information und ein konkretes Beispiel:	
1.	
2.	
3.	
4.	
5.	
6.	

Internet Protokolle

8) Welche dieser Aussagen zum Thema Internet Protokolle sind korrekt? Punkte: _ / 4

Zutreffendes ankreuzen:

\square Ja \square Nein	Curl ist ein Command Line Tool um einen Web-Server zu simulieren.
□ Ja □ Nein	CoAP ist eine Art "binär codiertes HTTP", das weniger Bytes braucht.
□ Ja □ Nein	HTTP kann nur Text-basierten Content (HTML, JSON,) übertragen.
□ Ja □ Nein	Bei Basic Authentication schickt der Server Passworte Base64-kodiert.

Bluetooth Low Energy (BLE)

9) Gegeben diesen GATT Service, um einen langsamen Servo zu steuern (mittels Ziel-Winkel in Grad oder Rad) und die jeweils aktuelle Servoposition auszulesen, ergänzen Sie die Rollen, Operationen und UUIDs im untenstehenden Sequenzdiagramm.

Punkte: _ / 6

```
0x8001 ServoService  
0x8002 UnitCharacteristic [W] // -> byte 0x00 for deg, 0x01 for rad 0x8003 TargetPositionCharacteristic [W] // -> 0x???? = 0-180 or 0-\pi 0x8004 ActualPositionCharacteristic [N] // <- 0x???? = 0-180 or 0-\pi
```

Ergänzen Sie Rollen (Central, Peripheral), Operationen (Read, Write, Notify), und UUIDs:

Raspberry Pi als lokaler Gateway

10) Gegeben ein H	TTP-zu-BLE Gateway mit Web-Service API, welche vier BLE-spezifischen
Informationen mu	ss ein Web-Request enthalten, um ein BLE Device zu steuern? Punkte: _ /4
Nennen Sie jeweils	s die Art der Information:
1.	
2.	
3.	
4.	
Messaging P	rotokolle
11) Welche dieser	Aussagen zu MQTT Topics, Clients und Brokern sind korrekt? Punkte: $_/$ 4
Zutreffendes ankr	euzen:
□ Ja □ Nein	Für jedes Topic speichert der Broker maximal eine Client Subscription.
□ Ja □ Nein	Ein Client kann durch mehrere Subscriptions $n>1$ Topics abonnieren.
□ Ja □ Nein	Clients können nicht auf Topics publizieren, die mit <i>\$SYS/</i> beginnen.
□ Ja □ Nein	Die Topic Wildcard $a/+/+/d$ matched auf Topics $a/b/d$ und $a/b/c/d$

12) Gegeben die folgende MQTT Topic Hierarchie eines Parkhaus-Leitsystems: Punkte: _ / 6

```
parking
  /entry
    /info-display "n" // number of free spaces
    /spaces
    /ID // space IDs are numbers, from 0 to N
        /distance-sensor "1m|2m" // car, no car
        /color-led "red|green" // taken, free
```

Welche Anfragen (PUB, SUB*) macht ein MQTT Client, der über freie Plätze Buch führt, pro Platz die LED aktualisiert, und jeweils die Info-Anzeige der Anzahl freie Plätze aktualisiert? *Nutzen Sie Wildcards der Form "a/+/b", um mehrere Topics (oder hier IDs) zu matchen.

Long Range Connectivity

13) Nennen Sie je zwei wesentliche Argumente für diese LoRaWAN Use-Cases. Punkte: $_/$ 6 Komplettieren Sie jeweils den Satz mit einer kurzen Begründung (keine Wiederholungen):

LoRaWAN i	ist geeignet	für Citizen Sensing, weil
LoRaWAN i	ist geeignet	für Industrie-Areale, weil
LoRaWAN i	ist geeignet	für Gebäude-Automation, weil
14) Welche	dieser Integrat	ionen erlauben es einer App, Sensor-Daten zu lesen? Punkte: $_/4$
Zutreffende	s ankreuzen (S	emantik des Pfeils ist A — $Request \rightarrow B$):
□ Ja □ N	Nein [TTN	LoRa Backend] —POST→ [Glue Code] ←GET— [App Backend]
□ Ja □ N	Nein [TTN	LoRa Backend] ←PUB− [Glue Code] ←POST− [App Backend]
□ Ja □ N	Nein [TTN	LoRa Backend] ←SUB— [Glue Code] —POST→ [App Backend]
\Box Ja \Box N	Nein [TTN	LoRa Backend] ←POST— [Glue Code] —SUB→ [App Backend]

Dashboards und Apps

15) Nennen Sie drei wesentliche Aufgaben von Glue Code zwischen zwei Backends. P.kte: $_/6$ Komplettieren Sie jeweils den Satz, und geben Sie ein kurzes Beispiel:

Glue Code übersetzt Glue Code adaptiert Glue Code adaptiert 16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte:/ 4		
Glue Code adaptiert	Glue Code	transportiert
Glue Code adaptiert		
Glue Code adaptiert	Clue Code	ühorootat
	Gide Code	ubersetzt
16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4	Glue Code	adaptiert
16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4		
16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4		
16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4		
16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4		
16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4		
	16) Wieso ka	nn eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: / 4
l l		

Sprachsteuerung

17) Welche dieser A	Aussagen zu Sprachassistenten wie Amazon Alexa sind korrekt? P.kte: $_ \ / \ 4$
Zutreffendes ankre	euzen:
□ Ja □ Nein	Die eigentliche Spracherkennung geschieht im Voice Service Backend.
□ Ja □ Nein	Der Intent (Absicht) wird aus dem Wake-Word (Weck-Wort) erkannt.
□ Ja □ Nein	Die Antwort des Sprachassistenten nennt man Utterance (Äusserung).
□ Ja □ Nein	Skills (Sprach-Apps) können auch auf einem Raspberry Pi laufen.
Edge Compu	ıting
18) Zeichnen Sie ei	n Referenzmodell für ein mobiles IoT Messsystem, das 1 Gbps Sensordaten
liest, mit Edge-Cor	mputing zu 9 Mbps verdichtet, und im Cloud-Backend ablegt. Punkte: _ / 6
Tragen Sie ein, wo	die Auswertung geschieht, sowie gewählte Connectivity und Protokolle.

Zusatzblatt zu Aufgabe Nr	von (Name)	