Electrical Engineering Formulas

Ohms Law

Rectifier Efficiency

$$\eta = \frac{P_{dc}}{P_{ac}} \times 100$$

 $\eta \longrightarrow \text{Rectifier Efficiency}$

 $P_{dc} \longrightarrow DC$ output power

 $P_{ac} \longrightarrow AC input power$

Ripple Factor

Formula

Ripple Factor:

Ripple Factor =
$$\frac{\text{RMS Voltage}}{\text{DC Voltage}} \times 100$$

Single Phase AC Power

Single phase:

Horsepower =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{PF} \times \text{Eff}}{745.7}$$

$$Watts = Volts \times Amperes \times PF$$

$$Kilowatts = \frac{Volts \times Amperes \times PF}{1000}$$

Kilowatt-hours =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{PF} \times \text{hours}}{1000}$$

$$KVA = \frac{Volts \times Amperes}{1000}$$

Two Phase AC Power

Two phase:

Horsepower =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{PF} \times \text{Eff} \times 2}{745.7}$$

Watts = Volts
$$\times$$
 Amperes \times PF \times 2

$$Kilowatts = \frac{Volts \times Amperes \times PF \times 2}{1000}$$

Kilowatt-hours =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{PF} \times \text{hours} \times 2}{1000}$$

$$KVA = \frac{Volts \times Amperes \times 2}{1000}$$

metcalc.com

Three Phase AC Power

Three phase:

Horsepower =
$$\frac{\text{Volts} \times \text{Amperes} \times \sqrt{3} \times \text{PF} \times \text{Eff}}{745.7}$$

Watts = Volts
$$\times$$
 Amperes \times PF $\times \sqrt{3}$

Kilowatts =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{PF} \times \sqrt{3}}{1000}$$

Kilowatt-hours =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{PF} \times \text{hours} \times \sqrt{3}}{1000}$$

$$KVA = \frac{Volts \times Amperes \times \sqrt{3}}{1000}$$

KVA → Kilo-Volts-Amperes

PF → Power Factor

Eff → Efficiency

DC Power

DC Power:

Horsepower =
$$\frac{\text{Volts} \times \text{Amperes} \times \text{Eff}}{745.7}$$

Watts = $Volts \times Amperes$

$$Kilowatts = \frac{Volts \times Amperes}{1000}$$

$$Kilowatt-hours = \frac{Volts \times Amperes \times hours}{1000}$$

Eff → Efficiency

Power Factor

Formula

Power Factor =
$$\frac{\text{True Power}}{\text{Apparent Power}}$$

Torque to Horsepower (hp)

Formula

Horsepower =
$$\frac{\text{Torque}_{\text{in-lb}} \times \text{Speed in RPM}}{63,025}$$

Horsepower =
$$\frac{\text{Torque}_{\text{ft-lb}} \times \text{Speed in RPM}}{5,252}$$

Horsepower =
$$\frac{\text{Torque}_{\text{Nm}} \times \text{Speed in RPM}}{9,550}$$

Horsepower (hp) to Torque

$$Torque_{in\text{-}lb} = \frac{Power in HP \times 63,025}{Speed in RPM}$$

$$Torque_{ft\text{-}lb} = \frac{Power in HP \times 5,252}{Speed in RPM}$$

$$Torque_{Nm} = \frac{Power in KW \times 9,550}{Speed in RPM}$$

$$Torque_{in\text{-}lb} \longrightarrow Torque in US Customary Units}$$

$$Torque_{Nm} \longrightarrow Torque in SI Units$$

metcalc.com

Cylindrical Coil Inductance

$$L = \frac{\mu_0 \, N^2 \, \pi \, r^2}{\ell}$$

If N=nℓ

$$L \ = \ \frac{\mu_0 \ N^2 \ \pi \ r^2}{\ell} \ = \ \mu_0 \ n^2 \ell \, \pi \ r^2 \ = \mu_0 \ n^2 \ell \, A$$

L → Inductance of a Cylindrical Coil

 μ \longrightarrow permeability of free space

 $\ell \longrightarrow$ length of wire used in coil

N --- number of turns in coil

r → radius of coil cross section

A ---- cross-sectional area of coil

etcalc.com

Equivalent Resistance - Series & Parallel Circuit

Equivalent Resistance (R_{eq}) :

for series connection:

$$R_{eq} = R_1 + R_2 + R_3$$

for parallel connection:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

 $R_{eq} \longrightarrow Equivalent Resistance$

 $R_1 \longrightarrow \text{resistance of resistor } R_1$

 $R_2 \longrightarrow resistance of resistor R_2$

 R_3 resistance of resistor R_3

Equivalent Capacitance - Series & Parallel Circuit

Equivalent Capacitance (C_{eq}):

for series connection:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

for parallel connection:

$$C_{eq} = C_1 + C_2 + C_3$$

C_{eq} → Equivalent Capacitance

 C_1 \longrightarrow capacitance of capacitor C_1

C₂ → capacitance of capacitor C₂

 C_3 \longrightarrow capacitance of capacitor C_3

Equivalent Inductance - Series & Parallel Circuit

Equivalent Inductance (L_{eq}) :

for series connection:

$$L_{eq} = L_1 + L_2 + L_3$$

for parallel connection:

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

 $L_{eq} \longrightarrow Equivalent Inductance$

L₁ → inductance of inductor or coil L₁

 $L_2 \longrightarrow \text{inductance of inductor or coil } L_2$

L₃ → inductance of inductor or coil L₃

___etcalc.com

Equivalent Impedance - RLC Series Circuit

Impedance for RLC Series:

$$Z_{RL-series} = \sqrt{R^2 + X_L^2}$$

$$Z_{RC-series} = \sqrt{R^2 + X_C^2}$$

$$Z_{LC-series} = \sqrt{(X_L - X_C)^2}$$

$$Z_{RLC-series} = \sqrt{R^2 + (X_L - X_C)^2}$$

$$X_L = 2\pi fL$$

$$X_C = \frac{1}{2\pi fC}$$

Equivalent Impedance - RLC Parallel Circuit

etcalc.com

Impedance for RLC Parallel:

$$\frac{1}{Z_{RL-parallel}} = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_L}\right)^2}$$

$$\frac{1}{Z_{RC-parallel}} = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_C}\right)^2}$$

$$\frac{1}{Z_{LC-parallel}} = \sqrt{\left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}$$

$$\frac{1}{Z_{RLC-parallel}} = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}$$

$$\chi_L = 2\pi fL$$

$$\chi_{C} = \frac{1}{2\pi fC}$$

Voltage Drop

Formula

$$Voltage_{drop} = I \times Z$$
 $Voltage_{drop} \longrightarrow Voltage Drop$
 $I \longrightarrow current in Amps$
 $Z \longrightarrow impedance in ohms$

Magnetic Field Strength

$$\phi = K_f \times I_f$$

 $\varphi \; \longrightarrow \; \mathsf{Magnetic} \, \mathsf{Field} \, \mathsf{Strength}$

 $K_f \longrightarrow magnetic field constant$

 $I_f \longrightarrow field current$

