CS 6190: Probabilistic Machine Learning Spring 2022

Solutions to Homework 0

by: Meysam Alishahi (UNID: u01323606)

Handed out: 10 Jan, 2022 Due: 11:59pm, 21 Jan, 2022

- You are welcome to talk to other members of the class about the homework. I am more concerned that you understand the underlying concepts. However, you should write down your own solution. Please keep the class collaboration policy in mind.
- Feel free discuss the homework with the instructor or the TAs.
- Your written solutions should be brief and clear. You need to show your work, not just the final answer, but you do *not* need to write it in gory detail. Your assignment should be **no more than 10 pages**. Every extra page will cost a point.
- Handwritten solutions will not be accepted.
- The homework is due by midnight of the due date. Please submit the homework on Canvas.

Warm up [100 points + 5 bonus]

1. [2 points] Given two events A and B, prove that

$$p(A \cup B) \le p(A) + p(B)$$

$$p(A \cap B) \le p(A), p(A \cap B) \le p(B)$$

When does the equality hold?

In view of the third probability Axiom, known as the assumption of σ -additivity, we have

$$p(A \cup B) = P(A \setminus B) + P(B) \qquad \text{and} \qquad p(A) = p(A \setminus B) + p(A \cap B) \tag{1}$$

since $(A \setminus B) \cap B = \emptyset$ and $(A \setminus B) \cap B = \emptyset$. Since p(B) is non-negative, these equalities imply

$$p(A \cup B) = p(A \setminus B) + p(B)$$
$$= p(A) - p(A \cap B) + p(B)$$
$$\leq p(A) + p(B).$$

To have the equality, we need $p(A) - p(A \cap B) + p(B) = p(A) + p(B)$ which concludes $p(A \cap B) = 0$. In particular, when $A \cap B = \emptyset$ we have the equiity.

In view of the second equality in Equality (1),

$$p(A \cap B) = p(A) - p(A \setminus B)$$

< $p(A)$.

Again, to have the equality, we should have $p(A) - p(A \setminus B) = p(A)$ or equivalently, $p(A \setminus B) = 0$. In particular, when $A \subseteq B$, the equality holds. With a similar approach, we can prove $p(A \cap B) \le p(B)$ and for which the equality holds if and only if $p(B \setminus A) = 0$. In particular, when $B \subseteq A$, we have the equality.

2. [2 points] Let $\{A_1, \ldots, A_n\}$ be a collection of events. Show that

$$p(\cup_{i=1}^n A_i) \le \sum_{i=1}^n p(A_i).$$

When does the equality hold? (Hint: induction) We are going to prove the following statement:

If $\{A_1, \ldots, A_n\}$ are a collection of events, then $p(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n p(A_i)$ and equality holds if and only if $p(A_i \cap A_j) = 0$ for each $i \neq j \in \{1, \ldots, n\}$. In particular, if A_1, \ldots, A_n are pairwise disjoint, i.e., $A_i \cap A_j = \emptyset$ for each $i \neq j \in \{1, \ldots, n\}$, then we have the equality.

Proof. The induction base (n=2) is holding due to Exercise 1. Assume that the statement is true for $n=k\geq 2$ and we want to prove it for n=k+1. Set $A=\cup_{i=1}^k A_i$ and $B=A_{k+1}$. By induction base and hypothesis, we have

$$p(\bigcup_{i=1}^{n} A_i) = p(A \cup B)$$

$$\leq p(A) + p(B)$$

$$= p(\bigcup_{i=1}^{k} A_i) + p(A_{k+1})$$

$$\leq \sum_{i=1}^{k} p(A_i) + p(A_{k+1}).$$

To have the equality, we should have

$$p(A \cup B) = p(A) + p(B)$$
 and $p(\bigcup_{i=1}^{k} A_i) = \sum_{i=1}^{k} p(A_i).$

Again using induction base, we conclude $p((\bigcup_{i=1}^k A_i) \cap A_{k+1}) = 0$, which implies $p(A_i \cap A_{k+1}) = 0$ for each $i \in \{1, \dots, k\}$. Also, from the induction hypothesis, since $p(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k p(A_i)$, we got

$$p(A_i \cap A_j) = 0$$
 for each $i \neq j \in \{1, \dots, k\}$.

Overall, we proved that if $p(\bigcup_{i=1}^{k+1} A_i) = \sum_{i=1}^{k+1} p(A_i)$, then

$$p(A_i \cap A_j) = 0$$
 for each $i \neq j \in \{1, ..., k+1\}$.

3. [14 points] We use $\mathbb{E}(\cdot)$ and $\mathbb{V}(\cdot)$ to denote a random variable's mean (or expectation) and variance, respectively. Given two discrete random variables X and Y, where $X \in \{0,1\}$ and $Y \in \{0,1\}$. The joint probability p(X,Y) is given in as follows:

	Y = 0	Y = 1
X = 0	3/10	1/10
X = 1	2/10	4/10

(a) [10 points] Calculate the following distributions and statistics.

i. the the marginal distributions p(X) and p(Y)Marginal distributions p(X):

$$p(X = 0) = p(X = 0, Y = 0) + p(X = 0, Y = 1) = 3/10 + 1/10 = 4/10$$

 $p(X = 1) = p(X = 1, Y = 0) + p(X = 1, Y = 1) = 2/10 + 4/10 = 6/10$

Marginal distributions p(Y):

$$p(Y = 0) = p(X = 0, Y = 0) + p(X = 1, Y = 0) = 3/10 + 2/10 = 5/10$$

 $p(Y = 1) = p(X = 0, Y = 1) + p(X = 0, Y = 1) = 1/10 + 4/10 = 5/10$

ii. the conditional distributions p(X|Y) and p(Y|X) Conditional distributions p(X|Y):

$$p(X=0|Y=0)=3/5$$
 and $p(X=1|Y=0)=2/5$
 $p(X=0|Y=1)=1/5$ and $p(X=1|Y=1)=4/5$
 $p(Y=0|X=0)=3/4$ and $p(Y=1|X=0)=1/4$
 $p(Y=0|X=1)=1/3$ and $p(Y=1|X=1)=2/3$

iii. $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{V}(X)$, $\mathbb{V}(Y)$

$$\mathbb{E}(X) = 0.6 \qquad \text{and} \qquad \mathbb{E}(Y) = 0.5$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = 0.6 - 0.36 = 0.24$$

$$\mathbb{V}(X) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = 0.5 - 0.25 = 0.25$$

iv.
$$\mathbb{E}(Y|X=0)$$
, $\mathbb{E}(Y|X=1)$, $\mathbb{V}(Y|X=0)$, $\mathbb{V}(Y|X=1)$

$$\mathbb{E}(Y|X=0) = 1/4 \qquad \text{and} \qquad \mathbb{E}(Y|X=1) = 2/3$$

$$\mathbb{V}(Y|X=0) = \mathbb{E}(Y^2|X=0) - \mathbb{E}(Y|X=0)^2 = 1/4 - 1/16 = 3/16$$

$$\mathbb{V}(Y|X=1) = \mathbb{E}(Y^2|X=1) - \mathbb{E}(Y|X=1)^2 = 2/3 - 4/9 = 2/9$$

v. the covariance between X and Y

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0.4 - 0.6 \times 0.5 = 0.37$$

(b) [2 points] Are X and Y independent? Why? No, since

$$0.3 = p(X = 0, Y = 0) \neq p(X = 0)p(Y = 0) = 0.4 \times 0.5 = 0.2$$

- (c) [2 points] When X is not assigned a specific value, are $\mathbb{E}(Y|X)$ and $\mathbb{V}(Y|X)$ still constant? Why? No, since X and Y are not independent, $\mathbb{E}(Y|X)$ and $\mathbb{V}(Y|X)$ are both functions of X and therefore, they are two random variables depending on X.
- 4. [9 points] Assume a random variable X follows a standard normal distribution, i.e., $X \sim \mathcal{N}(X|0,1)$. Let $Y = e^{-X^2}$. Calculate the mean and variance of Y.

(a) $\mathbb{E}(Y)$

Note that if $Z \sim \mathcal{N}(Z|\mu,\sigma)$, then the probability density function of Z is $f_Z(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(z-\mu)^2}{2\sigma^2}}$.

$$\mathbb{E}(Y) = \int_{-\infty}^{+\infty} e^{-X^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{X^2}{2}} dx$$

$$= \frac{1}{\sqrt{3}} \int_{-\infty}^{+\infty} \frac{1}{\frac{1}{\sqrt{3}} \sqrt{2\pi}} e^{-\frac{X^2}{2/3}} dx$$

$$= \frac{1}{\sqrt{3}} \times 1 = \frac{1}{\sqrt{3}}.$$

Note that $g_X(x) = \frac{1}{\frac{1}{\sqrt{3}}\sqrt{2\pi}}e^{-\frac{x^2}{2/3}}$ is the probability density function of $\mathcal{N}(X|0,1/\sqrt{3})$ and thus $\int_{-\infty}^{+\infty} \frac{1}{\frac{1}{\sqrt{2}}\sqrt{2\pi}}e^{-\frac{X^2}{2/3}}dx = 1.$

(b) **V**(*Y*)

To compute $\mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2$, we need to know $\mathbb{E}(Y^2)$. Lets compute it,

$$\mathbb{E}(Y^2) = \int_{-\infty}^{+\infty} e^{-2X^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{X^2}{2}} dx$$
$$= \frac{1}{\sqrt{5}} \int_{-\infty}^{+\infty} \frac{1}{\frac{1}{\sqrt{5}}\sqrt{2\pi}} e^{-\frac{X^2}{2/5}} dx$$
$$= \frac{1}{\sqrt{5}} \times 1 = \frac{1}{\sqrt{5}}.$$

Therefore,

$$\mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = \frac{1}{\sqrt{5}} - (\frac{1}{\sqrt{3}})^2 = \frac{1}{\sqrt{5}} - \frac{1}{3}$$

(c) cov(X, Y)

We know that $cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$. As we know $\mathbb{E}(X) = 0$ and $\mathbb{E}(Y) = \frac{1}{\sqrt{3}}$, to compute cov(X,Y), it suffices to know the value of $\mathbb{E}(XY)$.

$$\mathbb{E}(XY) = \int_{-\infty}^{+\infty} X e^{-X^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{X^2}{2}} dx$$

$$= \frac{1}{\sqrt{3}} \int_{-\infty}^{+\infty} X \frac{1}{\frac{1}{\sqrt{3}} \sqrt{2\pi}} e^{-\frac{X^2}{2/3}} dx$$

$$= \frac{1}{\sqrt{3}} \mathbb{E}(X) \qquad \text{where } X \sim \mathcal{N}(X|0, 1/\sqrt{3})$$

$$= 0.$$

Therefore, $cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0 - 0 \times \frac{1}{\sqrt{3}} = 0$.

5. [8 points] Derive the probability density functions of the following transformed random variables.

4

(a) $X \sim \mathcal{N}(X|0,1)$ and $Y = X^3$.

We remind that if $X \sim f(X)$, then by changing the variable X = g(Y) where g is monotonic function, $Y \sim g'(Y)f(g(Y))$. Therefore, since here $g(Y) = Y^{1/3}$ and $X \sim \frac{1}{\sqrt{2\pi}}e^{-\frac{X^2}{2}}$, we have

$$Y \sim \frac{1}{3}Y^{-2/3} \frac{1}{\sqrt{2\pi}} e^{-\frac{Y^{2/3}}{2}} = \frac{1}{3\sqrt{2\pi}\sqrt[3]{Y^2}} e^{-\frac{Y^{2/3}}{2}}.$$

(b)
$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} | \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & -1/2 \\ -1/2 & 1 \end{bmatrix})$$
 and $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ -1/3 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$. We remind that if $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$, then $\mathbf{y} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$. Therefore, $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ has a Gaussian distribution with mean

$$\left[\begin{array}{cc} 1 & 1/2 \\ -1/3 & 1 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

and covariance

$$\begin{bmatrix} 1 & 1/2 \\ -1/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1/2 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 \\ -1/3 & 1 \end{bmatrix}^{\top} = \begin{bmatrix} 3/4 & -1/4 \\ -1/4 & 13/9 \end{bmatrix}.$$

In other words,

$$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] | \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 3/4 & -1/4 \\ -1/4 & 13/9 \end{array}\right]\right).$$

- 6. [10 points] Given two random variables X and Y, show that
 - (a) $\mathbb{E}(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$

$$\mathbb{E}(\mathbb{E}(Y|X)) = \int \mathbb{E}(Y|X = x) f_X(x) dx$$

$$= \int \left(\int y f_{Y|X}(y|x) dy \right) f_X(x) dx$$

$$= \int \int y f_X(x) f_{Y|X}(y|x) dy dx$$

$$= \int \int y f_{X,Y}(x,y) dy dx$$

$$= \int y \left(\int f_{X,Y}(x,y) dx \right) dy$$

$$= \int y f_Y(y) dy = \mathbb{E}(Y) \qquad \text{(we used the fact that } f_Y(y) = \int F_{X,Y}(x,y) dx)$$

(b)
$$\mathbb{V}(Y) = \mathbb{E}(\mathbb{V}(Y|X)) + \mathbb{V}(\mathbb{E}(Y|X))$$

$$\begin{split} \mathbb{V}(Y) &= \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 \\ &= \mathbb{E}(\mathbb{E}(Y^2|X)) - \mathbb{E}(\mathbb{E}(Y|X))^2 \\ &= \mathbb{E}\Big(\mathbb{E}(Y^2|X) - \mathbb{E}(Y|X)^2 + \mathbb{E}(Y|X)^2\Big) - \mathbb{E}(\mathbb{E}(Y|X))^2 \\ &= \mathbb{E}(\mathbb{E}(Y^2|X)) - \mathbb{E}(Y|X)^2) + \mathbb{E}(\mathbb{E}(Y|X)^2) - \mathbb{E}(\mathbb{E}(Y|X))^2 \qquad \text{linearity of expectation} \\ &= \mathbb{E}(\mathbb{V}(Y|X)) + \mathbb{V}(\mathbb{E}(Y|X)). \end{split}$$

7. [9 points] Given a logistic function, $f(\mathbf{x}) = 1/(1 + \exp(-\mathbf{a}^{\mathsf{T}}\mathbf{x}))$ (\mathbf{x} is a vector),

(a) derive
$$\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}}$$

We know $\frac{\mathrm{d}\sigma}{\mathrm{d}z} = \sigma(z)(1-\sigma(z))$ if $\sigma(z) = 1/(1+\exp(-z))$. Set $z = \mathbf{a}^{\top}\mathbf{x}$ and note that $f(\mathbf{x}) = \sigma(z)$.
$$\mathrm{d}f(\mathbf{x}) = \frac{\mathrm{d}\sigma}{\mathrm{d}z}\mathrm{d}z$$

$$= \sigma(z)(1-\sigma(z))\mathrm{d}(\mathbf{a}^{\top}\mathbf{x})$$

$$= \sigma(z)(1-\sigma(z))\mathbf{a}^{\top}\mathrm{d}\mathbf{x} \implies \frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sigma(z)(1-\sigma(z))\mathbf{a}^{\top}$$

(b) derive $\frac{d^2 f(\mathbf{x})}{d\mathbf{x}^2}$, i.e., the Hessian matrix Set $t(\mathbf{x}) = f(\mathbf{x})(1 - f(\mathbf{x}))$. The vector \mathbf{a} is $n \times 1$ and here, we consider t as a 1×1 matrix. Clearly, $\frac{df(\mathbf{x})}{d\mathbf{x}} = t(\mathbf{x})\mathbf{a}^{\mathsf{T}}$. Therefore,

$$d\left(\frac{df(\mathbf{x})}{d\mathbf{x}}\right) = d\left(\mathbf{a}t(\mathbf{x})\right)$$

$$= \mathbf{a}(dt(\mathbf{x}))$$

$$= \mathbf{a}f(\mathbf{x})(1 - f(\mathbf{x}))(1 - 2f(\mathbf{x}))\mathbf{a}^{\top}d\mathbf{x} \implies \frac{d^2f(\mathbf{x})}{d\mathbf{x}^2} = f(\mathbf{x})(1 - f(\mathbf{x}))(1 - 2f(\mathbf{x}))\mathbf{a}\mathbf{a}^{\top}$$

(c) show that $-\log f(\mathbf{x})$ is convex Note that $0 \le f(\mathbf{x}) \le 1$. To prove that $-\log f(\mathbf{x})$ is convex, we use a result asserting that a function $g(\mathbf{x})$ is convex if its Hessian matrix $H(\mathbf{x})$ is semi-positive for each x, i.e, $\frac{d^2 g(\mathbf{x})}{d\mathbf{x}^2} \ge 0$.

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(-\log f(\mathbf{x})) = -\frac{1}{f(\mathbf{x})}\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = -(1 - f(\mathbf{x}))\mathbf{a} \qquad \text{Using Part (a)}$$

Therefore,

$$\frac{\mathrm{d}^2}{\mathrm{d}\mathbf{x}^2}(-\log f(\mathbf{x})) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} (-\log f(\mathbf{x})) \right)$$
$$= \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(-(1 - f(\mathbf{x}))\mathbf{a} \right)$$
$$= f(\mathbf{x})(1 - f(\mathbf{x}))\mathbf{a}\mathbf{a}^t$$

Notice $A_{n\times n}$ is semi-positive if and only if for each vector $\mathbf{z} \in \mathbb{R}^n$, we have $z^{\top}A\mathbf{z} \geq 0$.

$$\mathbf{z}^{\top} \Big(f(\mathbf{x})(1 - f(\mathbf{x})) \mathbf{a} \mathbf{a}^{\top} \Big) \mathbf{z} = f(\mathbf{x})(1 - f(\mathbf{x})) \mathbf{z}^{\top} \mathbf{a} \mathbf{a}^{\top} \mathbf{z}$$

$$= f(\mathbf{x})(1 - f(\mathbf{x})) \mathbf{z}^{\top} \mathbf{a} (\mathbf{z}^{\top} \mathbf{a})^{\top}$$

$$= f(\mathbf{x})(1 - f(\mathbf{x}))(\mathbf{z}^{\top} \mathbf{a})^{2} \ge 0 \qquad \text{We used } f(\mathbf{x})(1 - f(\mathbf{x})) \ge 0 \text{ as well.}$$

- 8. [10 points] Derive the convex conjugate for the following functions
 - (a) $f(x) = -\log(x)$ By the definition, the convex conjugate of f(x) is $f^*(\lambda) = \max_{x \in (0,\infty)} (\lambda x + \log x)$. Note that since, for each arbitrary fixed $\lambda \in \mathbb{R}$, $\lambda x + \log x$ is a strictly concave function, either it takes its maximum in a unique point (can be found by setting its derivative to zero) or its maximum is $+\infty$. When $\lambda \geq 0$, clearly $\max_x (\lambda x + \log x) = \infty$. When $\lambda < 0$, if we set the derivative of $\max_{x \in (0,\infty)} (\lambda x + \log x)$ to zero, then

$$(\lambda x + \log x)' = \lambda + 1/x = 0$$
 \Longrightarrow $x = -1/\lambda$.

Substituting $x = -1/\lambda$, we get $\max_{x \in (0,\infty)} (\lambda x + \log x) = -(1 + \log(\lambda))$. Therefore,

$$f^*(\lambda) = \begin{cases} +\infty & \lambda \ge 0 \\ -(1 + \log(\lambda)) & \lambda < 0 \end{cases}$$

(b)
$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$$
 where $\mathbf{A} \succ 0$
By the definition,

$$f^*(\mathbf{y}) = \max_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{y}^\top \mathbf{x} - \mathbf{x}^\top \mathbf{A}^{-1} \mathbf{x}).$$

Since $(\mathbf{y}^{\top}\mathbf{x} - \mathbf{x}^{\top}\mathbf{A}^{-1}\mathbf{x})$ is strictly concave, it takes its maximum in a point making its derivative zero.

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\mathbf{y}^{\top} \mathbf{x} - \mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x} \right) = \mathbf{y} - 2 \mathbf{A}^{-1} \mathbf{x} = 0 \quad \Longrightarrow \mathbf{x} = \frac{1}{2} \mathbf{A} \mathbf{y}.$$

Substituting $\mathbf{x} = \frac{1}{2}\mathbf{A}\mathbf{y}$, we get $f^*(\mathbf{y}) = \frac{1}{4}\mathbf{y}^{\top}\mathbf{A}\mathbf{y}$.

9. [20 points] Derive the (partial) gradient of the following functions. Note that bold small letters represent vectors, bold capital letters matrices, and non-bold letters just scalars.

(a)
$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$
, derive $\frac{\partial f}{\partial \mathbf{x}}$

$$df(\mathbf{x}) = d(\mathbf{x}^{\top} \mathbf{A} \mathbf{x})$$

$$= (d\mathbf{x})^{\top} \mathbf{A} \mathbf{x} + \mathbf{x}^{\top} d(\mathbf{A} \mathbf{x})$$

$$= (d\mathbf{x})^{\top} \mathbf{A} \mathbf{x} + \mathbf{x}^{\top} \mathbf{A} d\mathbf{x}$$

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} d\mathbf{x} + \mathbf{x}^{\top} \mathbf{A} d\mathbf{x} \qquad \text{Since } (d\mathbf{x})^{\top} \mathbf{A} \mathbf{x} \text{ is scaler, it is equal to its transpose.}$$

$$= (\mathbf{x}^{\top} \mathbf{A}^{\top} + \mathbf{x}^{\top} \mathbf{A}) d\mathbf{x} \implies \frac{\partial f}{\partial \mathbf{x}} = \mathbf{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top})$$

(b)
$$f(\mathbf{x}) = (\mathbf{I} + \mathbf{x} \mathbf{x}^{\top})^{-1} \mathbf{x}$$
, derive $\frac{\partial f}{\partial \mathbf{x}}$

$$\begin{split} \mathrm{d}f(\mathbf{x}) &= \mathrm{d}\left((\mathbf{I} + \mathbf{x}\mathbf{x}^{\top})^{-1}\mathbf{x}\right) \\ &= \mathrm{d}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x} + \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\mathbf{x} \\ &= -\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x} + \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\mathbf{x} \\ &= -\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\left((\mathbf{d}\mathbf{x})\mathbf{x}^{\top} + \mathbf{x}(\mathbf{d}\mathbf{x})^{\top}\right)\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x} + \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\mathbf{x} \\ &= -\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\left(\mathbf{d}\mathbf{x}\right)\mathbf{x}^{\top}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x} - \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x}\left(\mathbf{d}\mathbf{x}\right)^{\top}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x} + \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\mathbf{x} \\ &= -\left(\mathbf{x}^{\top}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x}\right)\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\left(\mathbf{d}\mathbf{x}\right) - \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x}\mathbf{x}^{\top}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\mathbf{x} + \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathrm{d}\mathbf{x} \\ &= \left[-\left(\mathbf{x}^{\top}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x}\right)\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1} - \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\mathbf{x}\mathbf{x}^{\top}\left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1} + \left(\mathbf{I} + \mathbf{x}\mathbf{x}^{\top}\right)^{-1}\right]\mathrm{d}\mathbf{x} \end{split}$$

(c) $f(\alpha) = \log |\mathbf{K} + \alpha \mathbf{I}|$, where $|\cdot|$ means the determinant. Derive $\frac{\partial f}{\partial \alpha}$ We know that $\partial (\ln |X|) = \operatorname{tr}(X^{-1}\partial \mathbf{X})$

$$d \log |\mathbf{K} + \alpha \mathbf{I}| = \operatorname{tr} \left((\mathbf{K} + \alpha \mathbf{I})^{-1} d(\mathbf{K} + \alpha \mathbf{I}) \right)$$

$$= \operatorname{tr} \left((\mathbf{K} + \alpha \mathbf{I})^{-1} (d\alpha) \mathbf{I} \right)$$

$$= \operatorname{tr} \left((\mathbf{K} + \alpha \mathbf{I})^{-1} \right) d\alpha \qquad \Longrightarrow \qquad \frac{d \log |\mathbf{K} + \alpha \mathbf{I}|}{d\alpha} = \operatorname{tr} \left((K + \alpha \mathbf{I})^{-1} \right)$$

(d)
$$f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \left(\mathcal{N}(\mathbf{a} | \mathbf{A} \boldsymbol{\mu}, \mathbf{S} \boldsymbol{\Sigma} \mathbf{S}^{\top}) \right)$$
, derive $\frac{\partial f}{\partial \boldsymbol{\mu}}$ and $\frac{\partial f}{\partial \boldsymbol{\Sigma}}$, We remind that

$$f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{-1}{2} (\mathbf{a} - \mathbf{m})^t \boldsymbol{\Omega}^{-1} (\mathbf{a} - \mathbf{m}) - \frac{1}{2} \log |\boldsymbol{\Omega}| + C,$$

where $\mathbf{m} = \mathbf{A}\mu$ and $\mathbf{\Omega} = \mathbf{S}\mathbf{\Sigma}\mathbf{S}^{\top}$ and C is a constant.

$$\begin{split} \mathrm{d}f &= \frac{-1}{2}\mathrm{d}(\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}(\mathbf{a} - \mathbf{m}) + \frac{-1}{2}(\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}\mathrm{d}(\mathbf{a} - \mathbf{m}) \\ &= \frac{-1}{2}\mathrm{d}(\mathbf{m})^{\top} \mathbf{\Omega}^{-1}(\mathbf{a} - \mathbf{m}) + \frac{1}{2}(\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}\mathrm{d}(\mathbf{m}) \\ &= \frac{1}{2}(\mathbf{a} - \mathbf{m})^{\top} (\mathbf{\Omega}^{-1})^{\top}\mathrm{d}(\mathbf{m}) + \frac{1}{2}(\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}\mathrm{d}(\mathbf{m}) \quad \text{Since } \mathrm{d}(\mathbf{m})^{\top} \mathbf{\Omega}^{-1}(\mathbf{a} - \mathbf{m}) \text{ is scaler.} \\ &= (\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}\mathrm{d}(\mathbf{m}) \\ &= (\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}\mathrm{A}\mathrm{d}\mu \quad \Longrightarrow \quad \frac{\mathrm{d}f}{\mathrm{d}\mu} = (\mathbf{a} - \mathbf{m})^{\top} \mathbf{\Omega}^{-1}\mathrm{A} \end{split}$$

$$\begin{split} \mathrm{d}f &= -\frac{1}{2}(\mathbf{a} - \boldsymbol{\mu})^{\top}(\mathrm{d}\boldsymbol{\Omega}^{-1})(\mathbf{a} - \boldsymbol{\mu}) - \frac{1}{2}\mathrm{d}(\log|\boldsymbol{\Omega}|) \\ &= -\frac{1}{2}(\mathbf{a} - \boldsymbol{\mu})^{\top}\boldsymbol{\Omega}^{-1}(\mathrm{d}\boldsymbol{\Omega})\boldsymbol{\Omega}^{-1}(\mathbf{a} - \boldsymbol{\mu}) - \frac{1}{2}\mathrm{tr}(\boldsymbol{\Omega}^{-1}(\mathrm{d}\boldsymbol{\Omega})) \\ &= -\frac{1}{2}(\mathbf{a} - \boldsymbol{\mu})^{\top}\boldsymbol{\Omega}^{-1}\mathbf{S}(\mathrm{d}\boldsymbol{\Sigma})\mathbf{S}^{\top}\boldsymbol{\Omega}^{-1}(\mathbf{a} - \boldsymbol{\mu}) - \frac{1}{2}\mathrm{tr}(\boldsymbol{\Omega}^{-1}\mathbf{S}(\mathrm{d}\boldsymbol{\Sigma})\mathbf{S}^{\top}) \\ &= -\mathrm{tr}\left(\frac{1}{2}\mathbf{S}^{\top}\boldsymbol{\Omega}^{-1}(\mathbf{a} - \boldsymbol{\mu})(\mathbf{a} - \boldsymbol{\mu})^{\top}\boldsymbol{\Omega}^{-1}\mathbf{S}(\mathrm{d}\boldsymbol{\Sigma})\right) - \frac{1}{2}\mathrm{tr}(\mathbf{S}^{\top}\boldsymbol{\Omega}^{-1}\mathbf{S}(\mathrm{d}\boldsymbol{\Sigma})) \end{split}$$

Therefore,

$$\begin{aligned} \frac{\mathrm{d}f}{\mathrm{d}\Sigma} &= -\frac{1}{2}\mathbf{S}^{\top}\mathbf{\Omega}^{-1}(\mathbf{a} - \boldsymbol{\mu})(\mathbf{a} - \boldsymbol{\mu})^{\top}\mathbf{\Omega}^{-1}\mathbf{S} - \frac{1}{2}\mathbf{S}^{\top}\mathbf{\Omega}^{-1}\mathbf{S} \\ &= -\frac{1}{2}\boldsymbol{\Sigma}^{-1}\mathbf{S}^{-1}(\mathbf{a} - \boldsymbol{\mu})(\mathbf{a} - \boldsymbol{\mu})^{\top}(\mathbf{S}^{-1})^{\top}\boldsymbol{\Sigma}^{-1} - \frac{1}{2}\boldsymbol{\Sigma}^{-1} \end{aligned}$$

(e) $f(\Sigma) = \log (\mathcal{N}(\mathbf{a}|\mathbf{b}, \mathbf{K} \otimes \Sigma))$ where \otimes is the Kronecker product (Hint: check Minka's notes). Note that $f(\Sigma) = -\frac{1}{2}(\mathbf{a} - \mathbf{b})^t \Omega^{-1}(\mathbf{a} - \mathbf{b}) - \frac{1}{2}\log |\Omega| + C$, where $\Omega = \mathbf{K} \otimes \Sigma$ and C is a constant.

$$\begin{split} \mathrm{d}f &= -\frac{1}{2}(\mathbf{a} - \boldsymbol{\mu})^{\top}(\mathrm{d}\Omega^{-1})(\mathbf{a} - \boldsymbol{\mu}) - \frac{1}{2}\mathrm{d}\log|\Omega| \\ &= -\frac{1}{2}(\mathbf{a} - \boldsymbol{\mu})^{\top}\Omega^{-1}(\mathrm{d}\Omega)\Omega^{-1}(\mathbf{a} - \boldsymbol{\mu}) - \frac{1}{2}\mathrm{tr}(\Omega^{-1}(\mathrm{d}\Omega)) \\ &= -\frac{1}{2}\mathrm{tr}\left((\mathbf{a} - \boldsymbol{\mu})^{\top}\Omega^{-1}(\mathbf{K}\otimes\mathrm{d}\Sigma)\Omega^{-1}(\mathbf{a} - \boldsymbol{\mu})\right) - \frac{1}{2}\mathrm{tr}(\Omega^{-1}(\mathbf{K}\otimes\mathrm{d}\Sigma)) \quad \text{Using } \mathrm{d}\Omega = \mathbf{K}\otimes\mathrm{d}\Sigma \\ &= -\frac{1}{2}\mathrm{tr}\left(\Omega^{-1}(\mathbf{a} - \boldsymbol{\mu})(\mathbf{a} - \boldsymbol{\mu})^{\top}\Omega^{-1}(\mathbf{K}\otimes\mathrm{d}\Sigma)\right) - \frac{1}{2}\mathrm{tr}(\Omega^{-1}(\mathbf{K}\otimes\mathrm{d}\Sigma)) \end{split}$$

10. [2 points] Given the multivariate Gaussian probability density,

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = |2\pi\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$

Show that the density function achieves the maximum when $\mathbf{x} = \boldsymbol{\mu}$.

Since $\log(\cdot)$ is an increasing function, to make computation easy, we prove that $\log(p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}))$ takes it maximum in $\boldsymbol{\mu}$.

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\log(p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})) \right) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(-(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) + C \right) \qquad C \text{ here is a constant}$$
$$= -2\boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = 0 \qquad \Longrightarrow \boldsymbol{x} = \boldsymbol{\mu}$$

Moreover, since $\frac{\mathrm{d}^2}{\mathrm{d}\mathbf{x}^2}(\log(p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}))) = -2\Sigma^{-1} \prec 0$, the function $\log(p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}))$ is a strictly concave function taking its maximum in $x = \boldsymbol{\mu}$, as desired.

11. [5 points] Show that

$$\int \exp(-\frac{1}{2\sigma^2}x^2) \mathrm{d}x = \sqrt{2\pi\sigma^2}.$$

Note that this is about how the normalization constant of the Gaussian density is obtained. Hint: consider its square and use double integral.

Set $I = \int \exp(-\frac{1}{2\sigma^2}x^2) dx$. In the following we prove that $I^2 = 2\pi\sigma^2$.

$$\begin{split} I^2 &= (\int_{-\infty}^{\infty} \exp(-\frac{1}{2\sigma^2}x^2) \mathrm{d}x)^2 \\ &= \left(\int_{-\infty}^{\infty} \exp(-\frac{1}{2\sigma^2}x^2) \mathrm{d}x\right) \left(\int_{-\infty}^{\infty} \exp(-\frac{1}{2\sigma^2}y^2) \mathrm{d}y\right) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x^2 + y^2)\right) \mathrm{d}x \mathrm{d}y \\ &= \int_{0}^{2\pi} \int_{0}^{\infty} r \exp\left(-\frac{1}{2\sigma^2}r^2\right) \mathrm{d}r \mathrm{d}\theta \\ &= 2\pi \left[-\sigma^2 \exp\left(-\frac{1}{2\sigma^2}r^2\right)\right]_{0}^{\infty} = 2\pi\sigma^2 \quad \Longrightarrow \quad I = \sqrt{2\pi\sigma^2} \end{split}$$

12. [5 points] The gamma function is defined as

$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du.$$

Show that $\Gamma(1) = 1$ and $\Gamma(x+1) = x\Gamma(x)$. Hint: using integral by parts.

$$\Gamma(1) = \int_0^\infty e^{-u} du$$
$$= \left[-e^{-u} \right]_0^\infty = 0 - (-1) = 1.$$

$$\Gamma(x+1) = \int_0^\infty u^x e^{-u} du \qquad (U = u^x \text{ and } V' = e^{-u})$$
$$= \left[-u^x e^{-u} \right]_0^\infty + \int_0^\infty x u^{x-1} e^{-u} du$$
$$= 0 + x \int_0^\infty u^{x-1} e^{-u} du = x \Gamma(x).$$

13. [2 points] By using Jensen's inequality with $f(x) = \log(x)$, show that for any collection of positive numbers $\{x_1, \ldots, x_N\}$,

$$\frac{1}{N} \sum_{n=1}^{N} x_n \ge \left(\prod_{n=1}^{N} x_n \right)^{\frac{1}{N}}.$$

Since $f(x) = -\log(x)$ is convex, using Jensen's inequality, we conclude

$$-\log\left(\frac{1}{N}\sum_{n=1}^{N}x_n\right) \le \frac{1}{N}\sum_{n=1}^{N}-\log(x_n)$$
$$=-\log\left(\left(\prod_{n=1}^{N}x_n\right)^{1/N}\right)$$

Since $\log(\cdot)$ is an increasing monotonic function, it implies

$$\frac{1}{N} \sum_{n=1}^{N} x_n \ge \left(\prod_{n=1}^{N} x_n \right)^{\frac{1}{N}}.$$

14. [2 points] Given two probability density functions $p(\mathbf{x})$ and $q(\mathbf{x})$, show that

$$\int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} \ge 0.$$

Since $f(x) = -\log(x)$ is convex, by Jensen's inequality, we have

$$\int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} = \mathbb{E}_{x \sim p} \left(-\log \frac{q(\mathbf{x})}{p(\mathbf{x})} \right)$$
(using Jensen's inequality for $-\log(x)$) $\geq -\log \left(\mathbb{E}_{x \sim p} \left(\frac{q(\mathbf{x})}{p(\mathbf{x})} \right) \right)$

$$= -\log \left(\int p(x) \left(\frac{q(\mathbf{x})}{p(\mathbf{x})} \right) dx \right)$$

$$= -\log \left(\int q(\mathbf{x}) dx \right) = -\log 1 = 0.$$

15. [Bonus][5 points] Show that for any square matrix $X \succ 0$, $\log |X|$ is concave to X.

Consider **X** as a vector in \mathbb{R}^{2n} whose coordinates are indexed by $ij \in [n] \times [n]$. We know that $\frac{d \log |\mathbf{X}|}{d\mathbf{X}} = X^{-1}$ and consequently,

$$\frac{\mathrm{d}^2 \log |\mathbf{X}|}{\mathrm{d}\mathbf{X}^2} = \frac{\mathrm{d}\mathbf{X}^{-1}}{\mathrm{d}\mathbf{X}}.$$

By the Matrix Cookboo,

$$\frac{\mathrm{d}(\mathbf{X}^{-1})_{kl}}{\mathrm{d}(\mathbf{X})_{ij}} = -(X^{-1})_{ki}(X^{-1})_{jl}.$$

If we consider $\log(|\mathbf{X}|)$ as a function from $\mathbb{R}^{n^2} \longrightarrow \mathbb{R}$, then $L = \frac{\mathrm{d}^2 \log |\mathbf{X}|}{\mathrm{d}\mathbf{X}^2}$ is a $n^2 \times n^2$ matrix whose rows and columns are indexed by $ij \in [n] \times [n]$. In what follows, we prove that this matrix is semi-negative definite. Consider $\mathbf{Z} \in \mathbb{R}^{n^2}$, as a vector, such that its entries are indexed by indices $ij \in [n] \times [n]$. To fulfill the proof,

$$\begin{split} \mathbf{Z}^{\top}L\mathbf{Z} &= \sum_{kl} \sum_{ij} \mathbf{Z}_{kl} L_{kl,ij} \mathbf{Z}_{ij} \\ &= -\sum_{kl} \sum_{ij} \mathbf{Z}_{kl} (\mathbf{X}^{-1})_{ki} (\mathbf{X}^{-1})_{jl} \mathbf{Z}_{ij} \\ &= -\sum_{i} \sum_{l} \left(\sum_{j} (\mathbf{X}^{-1})_{jl} \mathbf{Z}_{ij} \right) \left(\sum_{k} \mathbf{Z}_{kl} (\mathbf{X}^{-1})_{ki} \right) \\ &= -\sum_{i} \sum_{l} (\mathbf{Z}\mathbf{X}^{-1})_{il} \left((\mathbf{X}^{-1})^{\top} \mathbf{Z} \right)_{il} \quad \text{Hereafter, we see } \mathbf{X} \text{ and } \mathbf{Z} \text{ as Matrices!} \\ &= -\sum_{i} \sum_{l} (\mathbf{X}^{-1} \mathbf{Z})_{il}^{2} \leq 0 \quad \text{ since } \mathbf{X} \text{ is symmetric.} \end{split}$$