Universidade Federal da Bahia

Departamento de Engenharia Elétrica e Computacação - DEEC

Relatório da Etapa II - Trabalho de Curto-Circuito - 2021.1

Discentes: Henrique Nunes Poleselo, Leonardo Lima, Miguel Damásio

Docente: Daniel Barbosa

Conteúdo

1	Esp	ecificações	1
2	Des	envolvimento dos Scripts	2
	2.1	Diagrama de Sequência Zero	3
	2.2	Falta Monofásica	3
	2.3	Falta Bifásica	5
	2.4	Falta Bifásica à Terra	6
	2.5	Um condutor aberto na linha LT05C1	7
3	Sim	ulações	7
	3.1	Resistência de Aterramento do transformador TR03T1	7
	3.2	Resistência de falta para controlar tensão resultante na barra 2	8
	3.3	Desconsiderando a Impedância Mútua Z0m	8
	3.4	Transformadores TR02T1 e TR03T1 em Yy0	8

1 Especificações

Durante esta segunda etapa do trabalho de curto-circuito, explorou-se os conceitos acerca de faltas assimétricas e condutor aberto. Utilizou-se o software Anafas para validar os dados calculados pelos scripts em Python que foram desenvolvidos. O sistema elétrico de potência que foi analisado em questão é mostrado na Fig. 1. Sendo os requisitos desta segunda etapa:

- As tensões de pós-falta (Va1, Va2, Va0, Va, Vb, Vc) em todas as barras em Volts e por unidade e as contribuições de corrente nas linhas de transmissão circunvizinhas (Ia1, Ia2, Ia0, Ia, Ib, Ic) para os seguintes curtos-circuitos:
 - Monofásico na barra da SE4 345kV com impedância de falta $Z_{fa}=1,673\Omega$
 - Bifásico na barra da SE5 138kV com impedância de falta $Z_{fb}=2,033\Omega$
 - Bifásico à terra na barra da SE2 345kV com impedância de falta $Z_{fc}=0,328\Omega$
 - Matriz de impedância de base de sequência positiva;
- Tensões de pós-falta (Va1, Va2, Va0, Va, Vb, Vc) em todas as barras:
 - Um condutor aberto na linha LT05C1 (5-6)
 - Dois condutores abertos na linha LT04C1 (4-9)
- Os diagramas de sequência negativa e zero;
- As matrizes de impedância de base negativa e zero:

Além disso, algumas tarefas relacionadas ao Anafas foram feitas, resultados e a discussão dessas podem ser encontrados na seção 3 de Simulações.

As tensões de pré-falta foram fornecidas, como indicado na tabela 1.

Figura 1: Representação do SEP que foi analisado.

Barra	Módulo(PU)	Angulo
1	1.0394	-13.8148°
2	1.0266	-13.8715°
3	1.0346	-14.0869°
4	1.0222	-13.6568°
5	1.0166	-20.6902°
6	1.0161	-21.1685°
7	0.9891	-26.0122^{0}
8	1.0136	-12.2356°
9	1.0207	-8.8582°

Tabela 1: Tabela das tensões de pré-falta.

2 Desenvolvimento dos Scripts

Nesta segunda etapa do trabalho de curto-circuito a grande questão de se trabalhar com faltas assimétricas e pela sua dificuldade de cálculo por meio do método tradicional utilizado na etapa 1, é trabalhar com o sistema de componentes simétricos. Na primeira etapa deste trabalho, para o cálculo das faltas simétricas, fez-se o uso do diagrama de sequência positiva. Para o cálculo de componentes simétricos, estende-se os diagramas para o de sequência zero e sequência negativa. É importante salientar que no dado SEP em questão, o diagrama de sequência negativa é o mesmo que o de sequência positiva por não haver máquinas rotativas no sistema.

Fez-se proveito do que foi feito na primeira etapa, já que o Z-Barra e Y-Barra de sequência positiva foram exportados como CSV e os mesmos são necessários para o cálculo das correntes de falta, tensão de pós-falta e correntes circunvizinhas de sequência. A importação das matrizes foi feita no script assymetrical-fault.py, que é o código principal para o cálculo dos requisitos mencionados na seção 1.

2.1 Diagrama de Sequência Zero

Como foi menciado, é necessário construir o diagrama de sequência zero, portanto, como foi orientado, utilizou-se o método do Z-Barra para a construção da matriz Z-Barra de sequência zero. Lembrando que na sequência zero, dados adicionais como a impedância mútua e transformadores de aterramento. Ambas as matrizes Y-Barra e Z-Barra de sequência 0 podem ser vistos nas Fig. 11 e Fig. 12, respectivamente anexados a este relatório. Além disso a matriz Z-Barra de sequência negativa também foi anexada na Fig. 13.

2.2 Falta Monofásica

Para o cálculo das tensões de pós-falta monofásicas, é necessário o cálculo da corrente de falta, visto que a variação das tensões nas barras é resultado da corrente de falta passante entre elas. No entanto, o cálculo deve ser feito para as tensões de pós-falta de sequência positiva, negativa e zero. Por se tratar de uma falta monofásica, as correntes de falta de sequência são iguais, portanto, no cálculo das correntes têm-se do script assymetric-fault.py:

```
Corrente de Falta na barra 4 é: em PU/Graus: (5.8566, -65.7072)
Corrente de Falta na barra 4 é: Módulo(kA): (0.9801, -65.7072)
```

É importante salientar que para o cálculo da corrente de falta monofásica, há uma dependência direta com as matrizes Z-Barra de sequência positiva, negativa e zero, que pode ser notado na equação (1):

$$I_{f_k} = \frac{V_{pref}}{3 \cdot Z_{f_k} + Z_{k_{kn}} + Z_{k_{kp}} + Z_{k_{k0}}} \tag{1}$$

Onde I_{f_k} representa a corrente de falta, V_{pref} a tensão de pré-falta, $Z_{k_{kp}}$ o elemento da matriz Z-Barra de sequência positiva (onde o k representa a barra em que a falta ocorre), $Z_{k_{kn}}$ o elemento da matriz Z-Barra de sequência negativa e $Z_{k_{k0}}$ o elemento da matriz Z-Barra de sequência zero.

Para calcular as tensões de pós-falta V_{pos_p} de sequência positiva em cada barra:

$$V_{pos_p} = V_{pref} - Z_{k_{kp}} \cdot I_{f_k} \tag{2}$$

Para calcular as tensões de pós-falta V_{pos_n} de sequência negativa em cada barra:

$$V_{pos_n} = -Z_{k_{in}} \cdot I_{f_k} \tag{3}$$

Onde $-Z_{k_{jn}}$ representa o elemento de transferência da matriz Z-Barra de sequência negativa, ou seja, sendo k o número da barra de falta e j a barra em que o cálculo da tensão de pós-falta está sendo feito.

Para calcular as tensões de pós-falta V_{pos_0} de sequência zero em cada barra:

$$V_{pos_0} = -Z_{k_{i0}} \cdot I_{f_k} \tag{4}$$

Onde $Z_{k_{j0}}$ representa o elemento de transferência da matriz ZBarra de sequência zero.

Após o cálculo das tensões de pós-falta de sequência, ao aplicar componente simétrico às tensões, obtêm-se as tensões de pós-falta por fase. O mesmo vale para as correntes circunvizinhas, como mostrado na equação 5.

$$V_{p_h} = [\mathbf{A}] \cdot V_{s_{eq}} \tag{5}$$

Onde V_{p_h} representa a tensão de pós-falta de fase e é neste caso um vetor 3x1, assim como A é a matriz de transformação 3x3 que contém os operadores rotacionais e $V_{s_{eq}}$ as tensões de pós-falta de sequência. O mesmo procedimento vale para as correntes circunvizinhas, exceto que o $V_{s_{eq}}$ é substituído pelas correntes circunvizinhas de sequência.

Com as tensões de pós-falta calculadas, consegue-se calcular as correntes circunvizinhas de sequência positiva 6, negativa 7 e zero 8.

$$I_{c_p} = V_{pos_{p_h}} - V_{pos_{p_k}} \cdot (-Y_{h_{kp}}) \tag{6}$$

Onde $Y_{h_{kp}}$ representa o elemento da matriz Y-Barra, em que os índices h sendo o número da barra conectada à barra de falta e k a barra de falta. O mesmo vale para os índices das tensões de pós-falta de sequência positiva $V_{pos_{p_h}}$ e $V_{pos_{p_k}}$.

$$I_{c_n} = V_{pos_{n_h}} - V_{pos_{n_k}} \cdot (-Y_{h_{kn}}) \tag{7}$$

$$I_{c_0} = V_{pos_{0_h}} - V_{pos_{0_k}} \cdot (-Y_{h_{k_0}}) \tag{8}$$

As tensões de pós-falta em todas as barras e as contribuições de corrente nas linhas de transmissão circunvizinhas podem ser encontradas em anexo a este relatório.

2.3 Falta Bifásica

Os cálculos foram feitos com base no fato de que a falta bifásica ocorre entre as fases B e C. Em comparação à falta monofásica, as correntes de falta da falta bifásica não são iguais, portanto é necessário calcular uma a uma, através das relações 13 e 15:

$$I_{f_{k_p}} = \frac{V_{pref}}{Z_{f_k} + Z_{k_{k_n}} + Z_{k_{k_p}} + Z_{k_{k_0}}} \tag{9}$$

É importante notar que o $3*Z_{f_k}$ não aparece no denominador justamente por não ser igual nas 3 sequências.

$$I_{f_{k_n}} = -\frac{V_{pref}}{Z_{f_k} + Z_{k_{k_n}} + Z_{k_{k_p}} + Z_{k_{k_0}}}$$

$$\tag{10}$$

Além disso a corrente de falta de sequência negativa é a mesma em módulo da corrente de sequência positiva apenas defasada em 180 graus. E como as faltas ocorrem nas fases B e C, a corrente de falta de sequência 0 será 0.

Por meio do script desenvolvido em Python, obteve-se a seguinte saída do programa, *i.e*: as seguintes correntes de falta de sequência:

```
Corrente de Falta de seq. + na barra 5 é: em PU, Graus: (3.2859, -107.8017)

Corrente de Falta de seq. + na barra 5 é: Módulo(kA), Graus: (1.3747, -107.8017)

Corrente de Falta de seq. - na barra 5 é: em PU, Graus: (3.2859, 72.1982)

Corrente de Falta de seq. - na barra 5 é: Módulo(kA), Graus: (1.3747, 72.1982)

Corrente de Falta de seq. 0 na barra 5 é: em PU, Graus: (0.0, 0.0)

Corrente de Falta de seq. 0 na barra 5 é: Módulo(kA), Graus: (0.0, 0.0)
```

Percebe-se que a corrente de falta de sequência 0 é 0, como foi comentado previamente. Após isto, aplicou-se componentes simétricos para obter-se as correntes de fase, onde naturalmente a corrente de fase de A será 0. Os resultados podem ser consultados na tabela em anexo a este relatório.

Para calcular as tensões de pós-falta V_{pos_p} de sequência positiva em cada barra:

$$V_{pos_p} = V_{pref} - Z_{k_{k_p}} \cdot I_{f_{k_p}} \tag{11}$$

Para calcular as tensões de pós-falta V_{pos_n} de sequência negativa em cada barra:

$$V_{pos_n} = -Z_{k_{jn}} \cdot I_{f_{k_n}} \tag{12}$$

Já as tensões de pós-falta de sequência 0 serão 0 já que o cálculo é similar ao da equação 12 e a corrente de falta de sequência 0 é 0.

Para calcular as correntes circunvizinhas de sequência, faz-se o mesmo procedimento, utilizando as mesmas equações 6, 7 e 8 de falta monofásica, exceto que deve-se tomar cuidado com as defasagens que devem ser aplicadas às barras e estas se alternam de sequência positiva para negativa.

2.4 Falta Bifásica à Terra

No caso de falta bifásica ligado ao terra, o cálculo das correntes de falta de sequência sofrem uma pequena alteração, esta sendo:

$$I_{f_{k_p}} = \frac{V_{pref}}{Z_{k_{k_p}} + \frac{(Z_{k_k n} \cdot (Z_{k_k 0} 3 \cdot Z_{f_k})}{3 \cdot Z_{f_k} + Z_{k_k n} + Z_{k_k 0}}}$$
(13)

$$I_{f_{k_n}} = -\frac{I_{f_{k_p}} \cdot (Z_{k_{k_0}} + 3 \cdot Z_{f_k})}{3 \cdot Z_{f_k} + Z_{k_{k_n}} + Z_{k_{k_0}}}$$
(14)

$$I_{f_{k_0}} = -\frac{I_{f_{k_p}} \cdot Z_{k_{k_n}}}{3 \cdot Z_{f_k} + Z_{k_{k_n}} + Z_{k_{k_0}}}$$

$$\tag{15}$$

O script desenvolvido retorna os seguintes valores para as correntes de falta de sequência:

```
Corrente de Falta de seq. + na barra 2 6: em PU, Graus: (14.64372, -69.8419)

Corrente de Falta de seq. + na barra 2 6: Módulo(kA), Graus: (2.45059, -69.8419)

Corrente de Falta de seq. - na barra 2 6: em PU, Graus: (10.707252, 110.4772)

Corrente de Falta de seq. - na barra 2 6: Módulo(kA), Graus: (1.7918, 110.4772)

Corrente de Falta de seq. 0 na barra 2 6: em PU, Graus: (3.937, 109.29)

Corrente de Falta de seq. 0 na barra 2 6: Módulo(kA), Graus: (0.6588, 109.29)
```

Para o cálculo das tensões de pós-falta de sequência utiliza-se as mesmas equações 11 e 12 do caso bifásico da seção 2.3, no entanto, no caso de bifásico ligado a terra a corrente de falta de sequência 0 não é 0 como foi apresentado no resultado acima, portanto:

$$V_{pos_0} = -Z_{k_{j_0}} \cdot I_{f_{k_0}} \tag{16}$$

As tensões de pós-falta em todas as barras e as contribuições de corrente nas linhas de transmissão circunvizinhas podem ser encontradas em anexo a este relatório. Para o cálculo das correntes circunvizinhas de sequência fez-se o mesmo procedimento da seção 2.2. Após todos os cálculos terem sido feitos, aplicou-se componente simétrico às tensões e correntes para se obter as relações por fase. Todos os resultados referentes à tensões de pós-falta, correntes de falta, circunvizinhas de sequência e fase se encontram em um arquivo PDF TabelaTensoesCorrentesResultado.pdf juntamente com o arquivo deste relatório Os resultados foram colocados em uma tabela que se encontram em anexo a este relatório.

2.5 Um condutor aberto na linha LT05C1

A equipe apesar de ter implementado o condutor aberto no script, os resultados não foram condizentes com o esperado e não houve tempo hábil de conseguir consertar os valores. No entanto, o que era esperado, já que uma fase está em aberto (fase a) é que uma das correntes de sequência fosse zero, já que uma fase está em aberto. Consequentemente duas das tensões de fase B e C de condutor aberto serão 0.

3 Simulações

No diretório Simulacoes Anafas fornecido juntamente com este relatório, há 2 arquivos de simulação, onde o arquivo FALTA MONOFÁSICA. ANA simulou-se a falta monofásica e a bifásica aterrada e o arquivo FALTA BIFÁSICA. ANA simula a falta bifásica.

3.1 Resistência de Aterramento do transformador TR03T1

Ao ocorrer uma falta monofásica (A-Terra) na barra 7, foi simulada uma corrente de falta de 12.6kA como mostrado na Fig. 2, a fim de diminuir a corrente de falta, foi adicionado um resistor de aterramento no Anafas, de forma que a corrente de falta na barra 7 fosse no máximo de 30A, o valor obtido foi de 138PU, como mostrado na Fig 3. Dada a resistência de 138PU, a corrente obtida foi de exatos 30A, como mostrado na Fig. 4.

Figura 2: Simulação no Anafas para uma falta monofásica na barra 7.

Figura 3: Resistência de aterramento para uma corrente de falta de 30A na barra 7.

3.2 Resistência de falta para controlar tensão resultante na barra 2

Foi simulado a falta na barra 4 direto para o terra de forma a analisar qual era o afundamento na barra 2, que foi indicado na Fig. 5. Ao ajustar a resistência de falta da barra, de forma que o afundamento não fosse superior a 10% da tensão original, ou seja, $0.9\mathrm{PU}$. Tal valor foi atingido com uma resistencia de falta de 130 Ω .

3.3 Desconsiderando a Impedância Mútua Z0m

Foi simulado e observadas algumas alterações nas tensões das barras e nas contribuições das correntes devido à remoção da impedância mútua Z0m. Isso ocorre pois a impedância mútua faz parte do diagrama de sequência zero do circuito e portanto sua remoção tem impacto no Z-Barra de sequência zero. Como pode ser visto respectivamente nas barras 2, 4 e 5, nas Figuras 7, 8 e 9, respectivamente.

3.4 Transformadores TR02T1 e TR03T1 em Yy0

Percebeu-se a alteração nas tensões de barra devido à alteração do grupo fasorial dos transformadores que compõe o circuito. Em especial nos transformadores próximos à barra 5, que é a barra onde ocorre a falta. Apesar da alteração da configuração dos transformadores trazer mudanças no diagrama de sequência 0, a

Figura 4: Corrente resultante com a configuração de resistência de aterramento de 13800.

falta bifásica nao é alterada pela corrente de falta de sequência 0, portanto o maior motivo das alterações percebidas nas tensões das barras é a alteração do grupo fasorial. As tensões nas barras podem ser observadas nas Fig. 10 e comparadas com os valores das tensões pós-falta de fase A fornecida em anexo.

Figura 5: Simulação de Falta na Barra 4 com afundamento de 0.430 PU.

Figura 6: Tensão na barra 2 dada a falta na barra 4 com resistência de falta de 130 Ω

.

Figura 7: Simulação de falta na barra 2 sem impedância mútua.

Figura 8: Simulação de falta na barra 4 sem impedância mútua.

Figura 9: Simulação de falta na barra 5 sem impedância mútua.

Figura 10: Falta na barra 5 com alteração da configuração dos transformadores TR02T1 e TR03T1

Ybarra									
(2.6709-99.8703j)	0j	0j	0j	0j	0j	0j	0j	0j	(-2.4756+94.6770j)
0j	(0.6030-11.6414j)	0j	(-0.6030+5.4350j)	0j	0j	0j	0j	0j	0j
0j	0j	(0.1211-6.6843j)	0j	0j	0j	0j	0j	0j	(-0.1211+6.6843j)
0j	(-0.6030+5.4350j)	0j	(2.3009-18.0038j)	0j	0j	0j	(-1.1431+9.0810j)	(-0.5547+3.4877j)	Oj
0j	0j	0j	0j	(0.9035-11.4125j)	(-0.9035+3.2692j)	0j	0j	0j	0j
0j	0j	0j	0j	(-0.9035+3.2692j)	(0.9035-3.2692j)	0j	0j	0j	0j
0j	0j	0j	0j	0j	0j	-5.9594j	0j	0j	0j
0j	0j	0j	(-1.1431+9.0810j)	0j	0j	0j	(2.2605-13.5401j)	(-1.1173+4.4590j)	0j
0j	0j	0j	(-0.5547+3.4877j)	0j	0j	0j	(-1.1173+4.4590j)	(8.6329-98.6839j)	0j
(-2.4756+94.6770j)	0j	(-0.1211+6.6843j)	0j	0j	0j	Oj	0j	0j	(2.8501-132.0482j)

Figura 11: YBarra de sequência 0 dado em PU.

Zbarra									
(0.0006+0.0352j)	0j	(0.0003+0.0266j)	0j	0j	0j	0j	0j	0j	(0.0003+0.0266j)
0j	(0.0048+0.1099j)	0j	(0.0040+0.0516j)	0j	0j	0j	(0.0039+0.0354j)	(-6.5955e-05+0.00	0j
(0.0003+0.0266j)	0j	(0.0030+0.1776j)	0j	0j	0j	0j	0j	0j	(0.0003+0.0280j)
0j	(0.0040+0.0516j)	0 j	(0.015+0.1094j)	0j	0j	0j	(0.01283+0.07503j	(0.0002+0.0074j)	0j
0j	0j	0 j	0j	(4.3538e-18+0.122	(4.3538e-18+0.122	0j	0j	0j	0j
0j	0j	0 j	0j	(8.3160e-18+0.122	(0.07854+0.4069j)	0j	0j	0j	0j
0j	0j	0 j	0j	0j	0j	0.1678j	0j	0j	0j
0j	(0.0039+0.0354j)	0j	(0.0128+0.075j)	0j	0j	0j	(0.0224+0.1243j)	(0.0003+0.0085j)	0j
0j	(-6.5955e-05+0.00	0j	(0.0002+0.0074j)	0j	0j	0j	(0.0003+0.0085j)	(0.0008+0.01071j)	0j
(0.0003+0.02661j)	0j	(0.0003+0.02807j)	0j	0j	0j	0j	0j	0j	(0.0003+0.0280j)

Figura 12: ZBarra de sequência 0 dado em PU.

	Zbarra (sequência negativa)								
(0.0028+0.0376j)	(0.0023+0.0229j)	(0.0026+0.03402j)	(0.0014+0.01438j)	(0.0014+0.0143j)	(0.0014+0.01438j)	(0.0014+0.01438j)	(0.001+0.0102j)	(8.01288e-05+0.00	(0.0026+0.0340j)
(0.0023+0.0229j)	(0.0029+0.04038j)	(0.00257774273536	(0.0017+0.02529j)	(0.0017+0.02529j)	(0.00177+0.02529j)	(0.0017+0.02529j)	(0.0012+0.0180j)	(7.9044e-05+0.002	(0.0025+0.02722j)
(0.0026+0.0340j)	(0.0025+0.0272j)	(0.0055+0.1898j)	(0.0015+0.01705j)	(0.0015+0.0170j)	(0.0015+0.01705j)	(0.0015+0.01705j)	(0.0011+0.0121j)	(8.2714e-05+0.001	(0.0027+0.0403j)
(0.0014+0.0143j)	(0.0017+0.0252j)	(0.0015+0.0170j)	(0.0024+0.03169j)	(0.0024+0.03169j)	(0.0024+0.03169j)	(0.0024+0.03169j)	(0.0017+0.0226j)	(0.00011+0.0025j)	(0.0015+0.0170j)
(0.0014+0.0143j)	(0.0017+0.0252j)	(0.0015+0.0170j)	(0.0024+0.03169j)	(0.0024+0.03169j)	(0.0024+0.1544j)	(0.0024+0.1544j)	(0.0017+0.0226j)	(0.00011+0.0025j)	(0.0015+0.0170j)
(0.0014+0.0143j)	(0.0017+0.0252j)	(0.0015+0.0170j)	(0.0024+0.03169j)	(0.0024+0.03169j)	(0.0094+0.2399j)	(0.0094+0.2399j)	(0.0017+0.0226j)	(0.00011+0.0025j)	(0.0015+0.0170j)
(0.0014+0.0143j)	(0.0017+0.0252j)	(0.0015+0.0170j)	(0.0024+0.03169j)	(0.0024+0.03169j)	(0.0094+0.2399j)	(0.0094+0.4077j)	(0.0017+0.0226j)	(0.00011+0.0025j)	(0.0015+0.0170j)
(0.0010+0.0102j)	(0.0012+0.0180j)	(0.0011+0.01219j)	(0.0017+0.02266j)	(0.0017+0.0226j)	(0.0017+0.0226j)	(0.00176+0.02266j)	(0.0028+0.0343j)	(0.00013+0.0027j)	(0.0011+0.0121j)
(8.0128e-05+0.001	(7.9044e-05+0.002	(8.2714e-05+0.001	(0.0001+0.0025j)	(0.0001+0.0025j)	(0.0001+0.0025j)	(0.0001+0.0025j)	(0.00013+0.002j)	(0.0001+0.0032j)	(8.2714e-05+0.0013j)
(0.0026+0.03402j)	(0.0025+0.02722j)	(0.0027+0.0403j)	(0.0015+0.01705j)	(0.0015+0.01705j)	(0.0015+0.01705j)	(0.0015+0.01705j)	(0.0011+0.01219j)	(8.2714e-05+0.001	(0.0027+0.04033j)

Figura 13: Matriz ZBarra de sequência negativa dado em PU.