

DYNAMIC DESIGN

OMAR HASAN SHAWKY

ECU1 STATE MACHINE

TOTAL ECU1 STATE MACHINE

ECU1 CPU LOAD CALCULATION

there are three tasks running as below:

- Task 1:Speed sensor reading => periodicity = 5ms
- Task2:Door sensor reading => periodicity = 10ms
- Task3: light switch reading => periodicity = 20ms

Assuming each task has an execution time of 0.5ms and the Hyper-period will be 20ms as it is the period which the system will repeat itself again So we could calculate the CPU load as fellow:

CPU_load=total execution tasks time / Hyper period

$$CPU_load = ((0.5*20)/5) + ((0.5*20)/10) + ((0.5*20)/20) = 3.5\%$$

 $\underline{CPU\ load} = 3.5\%$

ECU2 STATE MACHINE

TOTAL ECU2 STATE MACHINE

ECU2 CPU LOAD CALCULATION

there are three tasks running as below:

- Task1: lights_Task => periodicity = 10ms
- Task2: Buzzer_Control => periodicity = 10ms

Assuming each task has an execution time of 0.3ms and the Hyper-period will be 10ms as it is the period which the system will repeat itself again So we could calculate the CPU load as fellow:

CPU_load=total execution tasks time / Hyper period

$$CPU_load = ((0.3*10)/10) + ((0.3*10)/10) = 0.6\%$$

CPU load=0.6%