Halloween Candy

Julia Ainsworth

Quarto

In this mini-project we will examine 538 Halloween Candy data. What is your favorite candy? What is nougat anyway??

Importing the candy dataset

```
candy <- read.csv("candy-data.csv", row.names = 1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	${\tt hard}$	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	0		0.732	0	.860	66.97173	
3 Musketeers	0	1	0		0.604	0	.511	67.60294	
One dime	0	0	0		0.011	0	.116	32.26109	
One quarter	0	0	0		0.011	0	.511 4	46.11650	
Air Heads	0	0	0		0.906	0	.511	52.34146	
Almond Joy	0	1	0		0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

```
num_fruity_candies <- sum(candy$fruity)
num_fruity_candies

[1] 38

Finding out how popular the candy is:
    candy["Twix", ]$winpercent

[1] 81.64291</pre>
```

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
A: Reese's pieces

candy["ReeseÕs pieces", ]$winpercent

[1] 73.43499
```

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
[1] 76.7686
```

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

candy["Tootsie Roll Snack Bars",]\$winpercent

[1] 49.6535

Installed the skimr package:

#can use skimr::skim()

skimr::skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

A: winpercent is on a different scale than the rest of the columns in the dataset

Q7. What do you think a zero and one represent for the candy\$chocolate column?

Probably true or false for whether the candy contains chocolate or not

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

Alternately, using ggplot

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins =10, col="black", fill="darkgreen")
```


Q9. Is the distribution of winpercent values symmetrical?

No

Q10. Is the center of the distribution above or below 50%?

Below

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

Higher!

```
choc.inds <- as.logical(candy$chocolate)
chocolate.win <- candy[choc.inds, ]$winpercent
mean(chocolate.win)

[1] 60.92153

fruit.inds <- as.logical(candy$fruity)
fruit.win <- candy[fruit.inds, ]$winpercent
mean(fruit.win)</pre>
[1] 44.11974
```

Q12. Is this difference statistically significant?

```
t.test(chocolate.win, fruit.win)

Welch Two Sample t-test

data: chocolate.win and fruit.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974

A: looks like yes!
```

3. Overall Candy Rankings

The base R sort() and order() functions are very useful!

```
x <- c(5, 2, 1, 6)
sort(x)
```

```
[1] 1 2 5 6
```

```
# versus
x[order(x)]
```

[1] 1 2 5 6

We can arrange this dataset using dplyr This one arranges them in ascending order so we can see the lowest 5

Q13. What are the five least liked candy types in this set?

```
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

candy %>%
    arrange(winpercent) %>%
    head(5)
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
Nik L Nip	0	1	0	0	0
Boston Baked Beans	0	0	0	1	0
Chiclets	0	1	0	0	0
Super Bubble	0	1	0	0	0
Jawbusters	0	1	0	0	0

	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent
Nik L Nip	0	0	0	1	0.197	0.976
Boston Baked Beans	0	0	0	1	0.313	0.511
Chiclets	0	0	0	1	0.046	0.325
Super Bubble	0	0	0	0	0.162	0.116
Jawbusters	0	1	0	1	0.093	0.511
	winpercent					
Nik L Nip	22.44534					
Boston Baked Beans	23.41782					
Chiclets	24.52499					
Super Bubble	27.30386					
Jawbusters	28.12744					

Q14. What are the top 5 all time favorite candy types out of this set?

```
candy %>%
  arrange(desc(winpercent)) %>%
  head(n=5)
```

	chocolate	fruity	carar	nel	peanutyalr	nondy	nougat
ReeseÕs Peanut Butter cup	1	0		0		1	0
ReeseÕs Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	rpercent
ReeseÕs Peanut Butter cup		0	0	0	0		0.720
ReeseÕs Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	ent winp	percer	nt			
ReeseÕs Peanut Butter cup	0.6	851 84	1.1802	29			
ReeseÕs Miniatures	0.2	279 81	1.8662	26			
Twix	0.9	906 81	1.6429	91			
Kit Kat	0.5	511 76	3.7686	30			
Snickers	0.6	351 76	6.6737	78			

Q15. Make a first barplot of candy ranking based on winpercent values.

Using ggplot: (note: use geom_col over geom_bar most of the time!!)

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
p <- ggplot(candy) +
aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col()
p</pre>
```


If I wanted to save this, I would use:

```
#If I want to save this barplot
# ggsave("mybarplot.png")
```

To use colors for the plot, we need to set up a vector with colors

```
my_cols = rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill = my_cols)
```


Q17. What is the worst ranked chocolate candy?

A: Nik E Nip

- Q18. What is the best ranked fruity candy?

A: Starburst

Now we can use ggrepel to make the text labels easier to read

```
library(ggrepel)

#A plot of price vs the percentage of winning

ggplot(candy) +
   aes(winpercent, pricepercent, label =rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size = 1.4, max.overlaps = 11)
```

Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider increasing max.overlaps

this combination of arguments for text_repel gets us a plot with everything labeled

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

The least popular among the most expensive candy types is Nik L Nip

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruit!

Q23. Similarly, what two variables are most positively correlated?

Winpercent and chocolate seem to be associated

Now we can use PCA to the candy dataset, remembering that we need to scale the data because winpercent is at a different scale than the rest of the data (0 to 100 instead of 0 to 1)

```
pca <- prcomp(candy, scale = T)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530

```
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Now we can plot PC1 vs PC2

```
plot(pca$x[,1], pca$x[,2], col=my_cols, pch = 16)
```


Now we can make a new dataframe with our PCA results and candy data to be able to plot this with ggplot

```
geom_point(col=my_cols)
p
```


Then we will add non-overlapping candy names, title, and a subtitle

```
library(ggrepel)

p + geom_text_repel(size = 2.2, col = my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title = "Halloween Candy PCA Space",
        subtitle = "Colored by type: chocolate bar (dark brown), chocolate other (light brocaption = "Data from 538")
```

Warning: ggrepel: 48 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Also trying plotly to be able to mouse over the plot: Note: this worked, but the pdf did not like it!! I have commented it out

```
# library(plotly)
# ggplotly(p)

par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Yes! It is showing us what we've seen throughout the dataset, where fruity and pluribus are very different from chocolate and bar