SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY, VASAD

Academic Year: 2019-20_EVEN Faculty Name: Ms. Vaibhavi Darshankumar Patel

Subject: Artificial Intelligence Sem: 8 ClassName: LYIT-1

Sr.	Unit Number Name of Unit Hrs. Alloted by GTU	Lecture Number	Topics	Teaching Method	Teaching Aid	Online Posts (Y/N)
1	1 What is AI? 2	1	The AI problems, The underlaying assumption, AI Techniques, The AI problems, The underlaying assumption, AI Techniques,	Lecture	PPT	N
2	2 Problem, State space search and heuristic	2	Problem as a state space search, production system	Lecture	PPT	N
		3	Issues annd problems in the design of search programs	Lecture	PPT	N
		4	Generate-and-test, Hill climbing	Lecture	PPT	N
	search	5	Best-first search, Problem reduction	Lecture	PPT	N
	techniques 6	6	Constraint satisfaction	Lecture	PPT	N
		7	means-ends analysis	Lecture	PPT	N
3	3	8	Representation and mappings	Lecture	PPT	N
	Knowledge Representation Issues 2	9	Approaches to knowledge representation	Lecture	PPT	N
4	4	10	Representation of simple facts in logic	Lecture	PPT	N
	Using Predicate Logic 5	11	Propositional logic	Lecture	PPT	N
		12	Instance and Isa relationship	Lecture	PPT	N
		13	computable functions and predicates	Lecture	PPT	N
		14	Resolution	Lecture	PPT	N
5	5 Representing knowledge	15	Representing knowledge using rules	Lecture	PPT	N
		16	logic programming	Lecture	PPT	N
	using rules	17	Forward vs backword reasoning	Lecture	PPT	N

Sr.	Unit Number Name of Unit Hrs. Alloted by GTU	Lecture Number	Topics	Teaching Method	Teaching Aid	Online Posts (Y/N)
	3					
6	6 6 Symbolic Reasoning	18	Non-monotonic reasoning	Lecture	PPT	N
		19	logics for non-monotonic reasoning	Lecture	PPT	N
	under uncertanity 3	20	logics for non-monotonic reasoning	Lecture	PPT	N
7	7	21	Probability and Bay's theorem, certanity factors, rule-base system	Lecture	PPT	N
	Statistical Reasoning	22	Rule-Base systems, Bayesian networks	Lecture	PPT	N
	3	23	Dempster shafer Theory, Fuzzy Logic	Lecture	PPT	N
8	8 Weak-slot-and- filler structures 2	24	semantic nets	Lecture	PPT	N
		25	Frames	Lecture	PPT	N
9	9	26	Conceptual Dependency	Lecture	PPT	N
	strong-slot-and- filler structures 2	27	Scripts,CYC	Lecture	PPT	N
10	10	28	MinMax, Alpha-Beta Cut-off	Lecture	PPT	N
	Game Playing 5	29	Refinements, Iterative Deepening,The Block world	Lecture	PPT	N
	3	30	Components of a planning system, Goal stack planning	Lecture	PPT	N
		31	Non-linear planning, hierarchical planning	Lecture	PPT	N
		32	Reactive planning and other techniques	Lecture	PPT	N
11	11	33	Whats is unerstanding? What make it hard?	Lecture	PPT	N
	Understanding 2	34	As constraint satisfaction	Lecture	PPT	N
12	12	35	Introduction, Syntactic Processing, Semantic Analysis	Lecture	PPT	N
	Natural Language	36	Discourse and Pragmatic Processing, Spell checking	Lecture	PPT	N

	Unit Number Name of Unit Hrs. Alloted by GTU	Lecture Number	Topics	Teaching Method	Teaching Aid	Online Posts (Y/N)
	Processing 2					
13	13	37	Introduction, Hopfield Network	Lecture	PPT	N
	Connectionist Models	-	Neural network with applications	Lecture	PPT	N
	5	39	Recurrent Networks	Lecture	PPT	N
		40	Distribution Representations	Lecture	PPT	N
		41	Connectionist AI and Symbolic AI	Lecture	PPT	N
Artificial	Intelligence: A Mo	dern Appı	oach By Stuart Russel			