MATH 4322 Final Project Group 9

Introduction

Logistic Regression (Ryan Nguyen, Alan Johnson)

Paragraph explaining why we are using logistic regression models and the advantages and disadvantages of the model.

Model Formula

$$P(cardio=1|X) = \frac{e^{(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n)}}{1 + e^{(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n)}}$$

Model 1 - Include all predictors

```
cardio_train$alco = as.factor(cardio_train$alco)
  cardio_train$active = as.factor(cardio_train$active)
  cardio_train$cardio = as.factor(cardio_train$cardio)
  heart.logistic1 = glm(cardio ~ . - id, family = "binomial",
                       data = cardio_train)
Warning: glm.fit: algorithm did not converge
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
  summary(heart.logistic1)
Call:
glm(formula = cardio ~ . - id, family = "binomial", data = cardio_train)
Deviance Residuals:
    Min
             1Q Median
                              3Q
                                      Max
-8.4904 -0.9635 -0.0980 0.9907
                                   4.6621
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.084e+00 2.213e-01 -36.535 < 2e-16 ***
age
            1.485e-04 3.557e-06 41.735 < 2e-16 ***
                                            0.497
gender2
             1.430e-02 2.107e-02
                                  0.679
height
            -5.626e-03 1.232e-03 -4.567 4.95e-06 ***
             1.521e-02 6.607e-04 23.023 < 2e-16 ***
weight
ap_hi
             3.951e-02 6.057e-04 65.235 < 2e-16 ***
ap_lo
             3.004e-04 6.735e-05 4.460 8.18e-06 ***
cholesterol2 4.222e-01 2.593e-02 16.285 < 2e-16 ***
cholesterol3 1.134e+00 3.444e-02 32.929 < 2e-16 ***
gluc2
             3.011e-02 3.438e-02 0.876
                                            0.381
gluc3
            -3.387e-01 3.809e-02 -8.894 < 2e-16 ***
smoke1
            -1.314e-01 3.320e-02 -3.958 7.57e-05 ***
alco1
            -1.695e-01 4.026e-02 -4.211 2.54e-05 ***
           -2.101e-01 2.105e-02 -9.981 < 2e-16 ***
active1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 97041 on 69999
                                   degrees of freedom
Residual deviance: 80883 on 69986 degrees of freedom
AIC: 80911
Number of Fisher Scoring iterations: 25
Paragraph explaining which predictors are significant (look at significance table output)
Model 2 - Only include statistically significant predictors
  heart.logistic2 = glm(cardio ~ age+height+weight+ap_hi+ap_lo+cholesterol+smoke+alco+act
                           , family = "binomial",
                        data = cardio_train)
  summary(heart.logistic2)
Call:
glm(formula = cardio ~ age + height + weight + ap_hi + ap_lo +
    cholesterol + smoke + alco + active, family = "binomial",
    data = cardio_train)
Deviance Residuals:
    Min
              1Q Median
                                3Q
                                       Max
-8.4904 -0.9639 -0.0992
                           0.9900
                                     4.6678
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.124e+00 2.028e-01 -40.062 < 2e-16 ***
age
             1.476e-04 3.551e-06 41.550 < 2e-16 ***
height
             -5.356e-03 1.103e-03 -4.857 1.19e-06 ***
              1.516e-02 6.586e-04 23.023 < 2e-16 ***
weight
ap_hi
              3.960e-02 6.047e-04 65.485 < 2e-16 ***
              3.028e-04 6.765e-05 4.475 7.63e-06 ***
ap_lo
cholesterol2 4.234e-01 2.497e-02 16.959 < 2e-16 ***
cholesterol3 9.855e-01 2.962e-02 33.275 < 2e-16 ***
            -1.222e-01 3.205e-02 -3.812 0.000138 ***
smoke1
```

3

-1.641e-01 4.013e-02 -4.090 4.31e-05 ***
-2.085e-01 2.104e-02 -9.909 < 2e-16 ***

alco1

active1

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 97041 on 69999 degrees of freedom
Residual deviance: 80984 on 69989 degrees of freedom
AIC: 81006
Number of Fisher Scoring iterations: 8
  step(heart.logistic2)
Start: AIC=81005.71
cardio ~ age + height + weight + ap_hi + ap_lo + cholesterol +
   smoke + alco + active
            Df Deviance
                         AIC
            1
                 80978 80998
- smoke
                 80978 80998
- alco
            1
<none>
                 80984 81006
- ap_lo
            1 80991 81011
- height
            1 80999 81019
            1 81062 81082
- active
- weight 1 81324 81344
- cholesterol 2 82180 82198
- age
             1 82526 82546
             1 88091 88111
- ap_hi
Step: AIC=80998.02
cardio ~ age + height + weight + ap_hi + ap_lo + cholesterol +
   alco + active
            Df Deviance AIC
                  80978 80998
<none>
- ap_lo
            1 81009 81027
- alco
            1 81015 81033
- height
            1 81024 81042
- active
            1 81083 81101
- weight 1 81342 81360
- cholesterol 2 82196 82212
            1 82558 82576
- age
```

- ap_hi 1 88096 88114

Coefficients:

ap_hi	weight	height	age	(Intercept)
0.0395437	0.0151616	-0.0060018	0.0001480	-8.0256093
active1	alco1	cholesterol3	cholesterol2	ap_lo
-0.2101295	-0.2143313	0.9849712	0.4216361	0.0003027

Degrees of Freedom: 69999 Total (i.e. Null); 69990 Residual

Null Deviance: 97040

Residual Deviance: 80980 AIC: 81000

Model 3 - Using predictors from stepwise regression

Paragraph explaining the results of stepwise regression

```
heart.logistic3 = glm(formula = cardio ~ age + height + weight + ap_hi + ap_lo +cholestero
summary(heart.logistic3)
```

Call:

Deviance Residuals:

```
Min 1Q Median 3Q Max -8.4904 -0.9635 -0.1015 0.9910 4.6663
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.026e+00 2.011e-01 -39.908 < 2e-16 ***
             1.480e-04 3.550e-06 41.684 < 2e-16 ***
age
            -6.002e-03 1.090e-03 -5.507 3.66e-08 ***
height
             1.516e-02 6.586e-04 23.022 < 2e-16 ***
weight
             3.954e-02 6.043e-04 65.434 < 2e-16 ***
ap_hi
ap_lo
             3.027e-04 6.753e-05
                                  4.482 7.38e-06 ***
cholesterol2 4.216e-01 2.496e-02 16.894 < 2e-16 ***
cholesterol3 9.850e-01 2.961e-02 33.260 < 2e-16 ***
alco1
            -2.143e-01 3.787e-02 -5.660 1.51e-08 ***
            -2.101e-01 2.104e-02 -9.989 < 2e-16 ***
active1
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 97041 on 69999 degrees of freedom
Residual deviance: 80978 on 69990 degrees of freedom
AIC: 80998

Number of Fisher Scoring iterations: 25
```

Determining Best Model

```
extract_info = function(model) {
  deviance <- summary(model)$null.deviance</pre>
  residual_deviance <- summary(model)$deviance</pre>
  r_squared <- 1 - (residual_deviance / deviance)</pre>
  AIC <- AIC(model)
  BIC <- BIC(model)
  return(c(Null_Deviance = deviance,
           Residual_Deviance = residual_deviance,
           R_Squared = r_squared,
           AIC = AIC,
           BIC = BIC))
# Extract information from each model
info1 <- extract_info(heart.logistic1)</pre>
info2 <- extract_info(heart.logistic2)</pre>
info3 <- extract_info(heart.logistic3)</pre>
# Create a data frame to store the information
model_info <- data.frame(</pre>
  Model = c("heart.logistic1", "heart.logistic2", "heart.logistic3"),
  Null_Deviance = c(info1["Null_Deviance"], info2["Null_Deviance"], info3["Null_Deviance"]
  Residual_Deviance = c(info1["Residual_Deviance"], info2["Residual_Deviance"], info3["Residual_Deviance"],
  R_Squared = c(info1["R_Squared"], info2["R_Squared"], info3["R_Squared"]),
  AIC = c(info1["AIC"], info2["AIC"], info3["AIC"]),
  BIC = c(info1["BIC"], info2["BIC"], info3["BIC"])
(model_info)
```

```
ModelNull_DevianceResidual_DevianceR_SquaredAICBIC1 heart.logistic197040.5880882.620.166507280910.6281038.812 heart.logistic297040.5880983.710.165465681005.7181106.433 heart.logistic397040.5880978.020.165524280998.0281089.58
```

Final Equation for Logistic Regression Model

Insert latex equation here

Training/ Validation

```
set.seed(100)
for(i in 1:10){
    # initialize vector to store prediction errors
test_errors = numeric(10)
sample= sample.int(n = nrow(cardio_train), size = floor(0.80*nrow(cardio_train)))
train.heart.logistic = cardio_train[sample,]
test.heart.logistic = cardio_train[-sample,]

train.logistic = glm(cardio ~ age + height + weight + ap_hi + ap_lo +cholesterol + alco +
glm.pred = predict.glm(train.logistic, newdata = test.heart.logistic, type = "response")

# Convert probability to binary
test_predictions_binary = ifelse(glm.pred > 0.5, 1, 0)

# Calculate test prediction error
test_error= mean(test_predictions_binary != test.heart.logistic$cardio)
test_errors[i] = test_error
}

(mean_test_error = mean(test_errors))
```

[1] 0.02805

Paragraph explaining the procedure above and the mean error rate

Results

Insert graphics

Two paragraphs to provide the interpretation of results and your conclusions as it pertains to the original overall question.

Neural Network