Perceptron multi-couche

Apprentissage et reconnaissance – GIF-4101 / GIF-7005 Professeur : Christian Gagné

Semaine 13: 2 décembre 2011

Intelligence naturelle

- Cerveau : siège de l'intelligence naturelle
 - Calculs parallèles et distribués
 - Apprentissage et généralisation
 - Adaption et contexte
 - ► Tolérant aux fautes
 - ► Faible consommation d'énergie
- Machine computationelle biologique!

Neurone biologique

Modèle de neurone artificiel

Réseau de neurones

 Chaque neurone est un discriminant linéaire avec une fonction de transfert f

$$y = f\left(\sum_{i} w_{i}x_{i} + w_{0}\right) = f(\mathbf{w}^{T}\mathbf{x} + w_{0})$$

- Exemples de fonctions de transfert
 - Fonction linéaire : $f_{lin}(a) = a$
 - Fonction sigmoïde : $f_{sig}(a) = \frac{1}{1 + \exp(-a)}$
 - ▶ Fonction seuil : $f_{seuil}(a) = 1$ si $a \ge 0$ et $f_{seuil}(a) = 0$ autrement
- Plusieurs neurones connectés ensembles forment un réseau de neurones
 - Réseau à une couche : neurones connectés sur les entrées
 - Réseau à plusieurs couches : certains neurones sont connectés sur les sorties d'autres neurones

Réseau de neurones (une couche)

Perceptron multi-couche

- Réseau à une couche : ensemble de discriminants linéaires
 - Incapable de classer correctement des données non-linéairement séparables
- Réseau à plusieurs couches (perceptron multi-couche)
 - Discriminants linéaires (neurones) cascadés à la sortie d'autres discriminants linéaires
 - Capable de classer des données non-linéairement séparables
 - ► Ensemble de classifieurs simples
 - ▶ Chaque couche fait une projection dans un nouvel espace
- Lors du traitement de données, l'information se propage des entrées vers les sorties

Perceptron multi-couche

Problème du XOR

Problème du XOR

$$\mathbf{x}_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
 $r_1 = 0$
 $\mathbf{x}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ $r_2 = 1$
 $\mathbf{x}_3 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ $r_3 = 1$
 $\mathbf{x}_4 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ $r_4 = 0$

• Exemple de données non-linéairement séparables

Réseau pour le problème du XOR

Topologies de réseaux

- Selon la topologie de réseau utilisé, différentes frontières de décisions sont possibles
 - Réseau avec une couche cachée et une couche de sortie : frontières convexes
 - Deux couches cachées ou plus : frontières concaves
 - ★ Le réseau de neurones est alors un approximateur universel
- Nombre de poids (donc de neurones) détermine directement la complexité du classifieur
 - Détermination de la bonne topologie est souvent ad hoc, par essais et erreurs

Formes de frontières de décision

Exemples de frontières de décision : (a) convexe ouverte ; (b) convexe fermée ; (c) concave ouverte ; et (d) concave fermée

Nombre de neurones sur la couche cachée

Tiré de R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley Interscience, 2001.

Nombre de neurones sur la couche cachée

Tiré de C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Rétropropagation des erreurs

- Apprentissage avec le perceptron multi-couche : déterminer les poids
 w,w₀ de tous les neurones
- Rétropropagation des erreurs
 - Apprentissage par descente du gradient
 - Couche de sortie : correction guidée par l'erreur entre les sorties désirées et obtenues
 - Couches cachées : correction selon les sensibilités (influence du neurone sur l'erreur dans la couche de sortie)

Rétropropagation des erreurs

Valeurs de sortie des neurones

• Valeur y_j^t du neurone j pour la donnée \mathbf{x}^t

$$y_j^t = f(a_j^t) = f\left(\sum_{i=1}^R w_{j,i}y_i^t + w_{j,0}\right)$$

- ▶ f : fonction d'activation du neurone
- $a_j^t = \sum_{i=1}^R w_{j,i} y_i^t + w_{j,0}$: sommation pondérée des entrées du neurone
- $\mathbf{w}_{j,i}$: poids du lien connectant le neurone j au neurone i de la couche précédente
- \triangleright $w_{j,0}$: biais du neurone j
- y_i^t : sortie du neurone i de la couche précédente pour la donnée \mathbf{x}^t
- ▶ R : nombre de neurones sur la couche précédente

Erreur de la couche de sortie

- Un ensemble de données $\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$, avec $\mathbf{r}^t = [r_1^t \ r_2^t \ \dots \ r_K^t]^T$, où $r_j^t = 1$ si $\mathbf{x}^t \in C_j$, autrement $r_j^t = 0$
- Erreur observée pour donnée \mathbf{x}^t sur neurone j de la couche de sortie

$$e_j^t = r_j^t - y_j^t$$

 Erreur quadratique observée pour donnée x^t sur les K neurones de la couche de sortie (un neurone par classe)

$$E^t = \frac{1}{2} \sum_{j=1}^{K} (e_j^t)^2$$

ullet Erreur quadratique moyenne observée pour les données du jeu ${\mathcal X}$

$$E = \frac{1}{N} \sum_{t=1}^{N} E^t$$

Correction de l'erreur pour la couche de sortie

 Correction des poids par descente du gradient de l'erreur quadratique moyenne

$$\Delta w_{j,i} = -\eta \frac{\partial E}{\partial w_{j,i}} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial w_{j,i}}$$

- L'erreur du neurone j dépends des neurones de la couche précédente
 - ▶ Développement en utilisant la règle du chaînage des dérivées $\left(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}\right)$

$$\begin{array}{ll} \frac{\partial E^t}{\partial w_{j,i}} & = & \frac{\partial E^t}{\partial e^t_j} \frac{\partial e^t_j}{\partial y^t_j} \frac{\partial y^t_j}{\partial a^t_j} \frac{\partial a^t_j}{\partial w_{j,i}} \\ \frac{\partial E^t}{\partial w_{j,0}} & = & \frac{\partial E^t}{\partial e^t_j} \frac{\partial e^t_j}{\partial y^t_j} \frac{\partial y^t_j}{\partial a^t_j} \frac{\partial a^t_j}{\partial w_{j,0}} \end{array}$$

Calcul des dérivées partielles

• Développement avec fonction d'activation sigmoïde $(y_j^t = \frac{1}{1 + \exp(-a_i^t)})$

$$\begin{split} \frac{\partial E^t}{\partial e_j^t} &= \frac{\partial}{\partial e_j^t} \frac{1}{2} \sum_{j=1}^K (e_j^t)^2 = e_j^t \\ \frac{\partial e_j^t}{\partial y_j^t} &= \frac{\partial}{\partial y_j^t} r_j^t - y_j^t = -1 \\ \frac{\partial y_j^t}{\partial a_j^t} &= \frac{\partial}{\partial a_j^t} \frac{1}{1 + \exp(-a_j^t)} = \frac{\exp(-a_j^t)}{[1 + \exp(-a_j^t)]^2} \\ &= \frac{1}{1 + \exp(-a_j^t)} \frac{\exp(-a_j^t) + 1 - 1}{1 + \exp(-a_j^t)} = y_j^t (1 - y_j^t) \\ \frac{\partial a_j^t}{\partial w_{j,i}} &= \frac{\partial}{\partial w_{j,i}} \sum_{i=1}^R w_{j,i} y_i^t + w_{j,0} = y_i^t \\ \frac{\partial a_j^t}{\partial w_{j,0}} &= \frac{\partial}{\partial w_{j,0}} \sum_{i=1}^R w_{j,i} y_i^t + w_{j,0} = 1 \end{split}$$

Apprentissage pour la couche de sortie

Apprentissage des poids de la couche de sortie

$$\Delta w_{j,i} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial w_{j,i}} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial e_{j}^{t}} \frac{\partial e_{j}^{t}}{\partial y_{j}^{t}} \frac{\partial y_{j}^{t}}{\partial a_{j}^{t}} \frac{\partial a_{j}^{t}}{\partial w_{j,i}}$$
$$= \frac{\eta}{N} \sum_{t=1}^{N} e_{j}^{t} y_{j}^{t} (1 - y_{j}^{t}) y_{i}^{t}$$

Apprentissage des biais de la couche de sortie

$$\Delta w_{j,0} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial w_{j,0}} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial e_{j}^{t}} \frac{\partial e_{j}^{t}}{\partial y_{j}^{t}} \frac{\partial y_{j}^{t}}{\partial a_{j}^{t}} \frac{\partial a_{j}^{t}}{\partial w_{j,0}}$$
$$= \frac{\eta}{N} \sum_{t=1}^{N} e_{j}^{t} y_{j}^{t} (1 - y_{j}^{t})$$

Règle du delta

• Poser un delta δ_j^t , qui corresponds au gradient local du neurone j pour la donnée \mathbf{x}^t

$$\delta_j^t = e_j^t y_j^t (1 - y_j^t)$$

$$\Delta w_{j,i} = \frac{\eta}{N} \sum_{t=1}^N \delta_j^t y_i^t$$

$$\Delta w_{j,0} = \frac{\eta}{N} \sum_{t=1}^N \delta_j^t$$

• Formulation utile pour correction de l'erreur sur les couches cachées

Correction de l'erreur pour les couches cachées

• Gradient de l'erreur pour les couches cachées

$$\frac{\partial E^t}{\partial w_{j,i}} = \frac{\partial E^t}{\partial y_j^t} \frac{\partial y_j^t}{\partial a_j^t} \frac{\partial a_j^t}{\partial w_{j,i}}$$

- Seul $\frac{\partial E^t}{\partial y_j^t}$ change, $\frac{\partial y_j^t}{\partial a_j^t}$ et $\frac{\partial a_j^t}{\partial w_{j,i}}$ sont les même que sur la couche de sortie
 - ► Erreur pour un neurone de la couche cachée dépend de l'erreur des neurones *k* de la couche suivante (rétropropagation des erreurs)

$$E^t = \frac{1}{2} \sum_k (e_k^t)^2$$

$$\frac{\partial E^t}{\partial y_j^t} = \frac{\partial}{\partial y_j^t} \frac{1}{2} \sum_k (e_k^t)^2 = \sum_k e_k^t \frac{\partial e_k^t}{\partial y_j^t}$$

Correction de l'erreur pour les couches cachées

$$\begin{split} \frac{\partial E^t}{\partial y_j^t} &= \frac{\partial}{\partial y_j^t} \frac{1}{2} \sum_k (e_k^t)^2 = \sum_k e_k^t \frac{\partial e_k^t}{\partial y_j^t} \\ &= \sum_k e_k^t \frac{\partial e_k^t}{\partial a_k^t} \frac{\partial a_k^t}{\partial y_j^t} \\ &= \sum_k e_k^t \frac{\partial (r_k^t - y_k^t)}{\partial a_k^t} \frac{\partial (\sum_l w_{k,l} y_l^t + w_{k,0})}{\partial y_j^t} \\ &= \sum_k e_k^t [-y_k^t (1 - y_k^t)] w_{k,j} \\ \delta_k^t &= e_k^t [y_k^t (1 - y_k^t)] \\ \frac{\partial E^t}{\partial y_j^t} &= -\sum_k \delta_k^t w_{k,j} \end{split}$$

Correction de l'erreur pour les couches cachées

Correction de l'erreur correspondante

$$\frac{\partial E^{t}}{\partial w_{j,i}} = \frac{\partial E^{t}}{\partial y_{j}^{t}} \frac{\partial y_{j}^{t}}{\partial a_{j}^{t}} \frac{\partial a_{j}^{t}}{\partial w_{j,i}}$$

$$= -\left[\sum_{k} \delta_{k}^{t} w_{k,j}\right] y_{j}^{t} (1 - y_{j}^{t}) y_{i}^{t}$$

$$\delta_{j}^{t} = y_{j}^{t} (1 - y_{j}^{t}) \sum_{k} \delta_{k}^{t} w_{k,j}$$

$$\Delta w_{j,i} = -\eta \frac{\partial E}{\partial w_{j,i}} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial w_{j,i}} = \frac{\eta}{N} \sum_{t=1}^{N} \delta_{j}^{t} y_{i}^{t}$$

$$\Delta w_{j,0} = -\eta \frac{\partial E}{\partial w_{j,0}} = -\frac{\eta}{N} \sum_{t=1}^{N} \frac{\partial E^{t}}{\partial w_{j,0}} = \frac{\eta}{N} \sum_{t=1}^{N} \delta_{j}^{t}$$

Rétropropagation des erreurs

Apprentissage batch et en-ligne

- Apprentissage batch
 - Guidé par l'erreur quadratique moyenne $(E = \frac{1}{N} \sum_{t} E^{t})$
 - Correction des poids une fois à chaque époque, en calculant l'erreur pour tout le jeu de données
 - ▶ Relative stabilité de l'apprentissage
- Apprentissage en-ligne
 - Correction des poids pour chaque présentation de données, donc N corrections de poids par époque
 - Guidé par l'erreur quadratique de chaque donnée (E^t)
 - Requiert la permutation de l'ordre de traitement à chaque époque pour éviter les mauvaises séquences
 - Apprentissage en-ligne est plus rapide qu'en mode batch, mais avec risque de plus grandes instabilités

Saturation des neurones

- Plage opératoire des neurones avec fonction sigmoïde autours de 0
 - Pour valeurs de a faibles $\mathrm{f}_{sig}(a) \to 0$, et pour valeurs de a élevée, $\mathrm{f}_{sig}(a) \to 1$

$$f_{\textit{sig}}(1) = 0.7311, \quad f_{\textit{sig}}(5) = 0.9933, \quad f_{\textit{sig}}(10) \approx 1$$

- Pour valeurs grandes/petites, disons x < -10 ou x > 10, gradient pratiquement nul
 - Apprentissage extrêmement lent
- Valeurs d'entrées, les \mathbf{x}^t , doivent être normalisées au préalable dans [-1, 1]
 - Typiquement, normalisation selon valeurs min et max du jeu de données pour chaque dimension
 - Appliquer la même normalisation aux données évaluées (ne pas recalculer la normalisation)

Valeurs désirées en sortie

- En classement, valeurs désirées $r_i^t \in \{0,1\}$
 - Souffre également du problème de saturation des neurones avec fonction sigmoïde
 - ▶ On vise à approximer les r_i^t avec les neurones de la couche de sortie

$$f_{sig}(a) = 0 \Rightarrow a \rightarrow -\infty, \quad f_{sig}(a) = 1 \Rightarrow a \rightarrow \infty$$

- Solution : transformer les valeurs désirées en valeurs $ilde{r}_i^t \in \{0.05, 0.95\}$
 - ▶ Si $\mathbf{x}^t \in C_i$ alors $\tilde{r}_i^t = 0.95$
 - Autrement $\tilde{r}_i^t = 0.05$

Initialisation des poids

- Les poids et biais d'un perceptron multi-couche sont initialisés aléatoirement
 - ► Typiquement, on initialise les poids et biais uniformément dans [-0,5,0,5]

$$w_{j,i} \sim \mathcal{U}(-0.5, 0.5), \forall i,j$$

- Perceptron multi-couche est donc un algorithme stochastique
 - D'une exécution à l'autre, on n'obtient pas nécessairement les mêmes résultats

Algorithme de rétropropagation

- **(4)** Normaliser données d'entraînement $x_i^t \in [-1,1]$ et sortie désirées $\tilde{r}_j^t \in \{0,05,0,95\}$
- ② Initialiser les poids et biais aléatoirement, $w_{i,j} \in [-0.5,0.5]$
- 3 Tant que le critère d'arrêt n'est pas atteint, répéter :
 - Calculer les sortie observées en propageant les données vers l'avant
 - Calculer les erreurs observées sur la couche de sortie

$$e_j^t = \tilde{r}_j^t - y_j^t, \quad j = 1, \dots, K, \quad t = 1, \dots, N$$

Ajuster les poids et biais en rétropropageant l'erreur observée

$$w_{j,i} = w_{j,i} + \Delta w_{j,i} = w_{j,i} + \frac{\eta}{N} \sum_{t} \delta_{j}^{t} y_{i}^{t}$$

$$w_{j,0} = w_{j,0} + \Delta w_{j,0} = w_{j,0} + \frac{\eta}{N} \sum_{t} \delta_{j}^{t}$$

où le gradient local est défini par :

$$\delta_j^t = \left\{ \begin{array}{ll} e_j^t y_j^t (1-y_j^t) & \text{si } j \in \text{couche de sortie} \\ y_j^t (1-y_j^t) \sum_k \delta_k^t w_{k,j} & \text{si } j \in \text{couche cach\'ee} \end{array} \right.$$

Surapprentissage et critère d'arrêt

- Nombre d'époques : facteur déterminant pour le surapprentissage
- Critère d'arrêt : lorsque l'erreur sur l'ensemble de validation augmente (généralisation)
- Requiert utilisation d'une partie des données de l'ensemble pour la validation

Tiré de R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley Interscience, 2001.

Momentum

Régle du delta généralisée

$$w_{j,i}(n) = w_{j,i}(n-1) + \frac{\eta}{N} \sum_{t} \delta_{j}^{t} y_{i}^{t} + \alpha \Delta w_{j,i}(n-1)$$

$$w_{j,0}(n) = w_{j,0}(n-1) + \frac{\eta}{N} \sum_{t} \delta_{j}^{t} + \alpha \Delta w_{j,0}(n-1)$$

- Facteur $\Delta w_{j,i}(n-1)$ est la correction effectuée au poids/biais à l'époque précédente
- Paramètre $\alpha \in [0,5,1]$ est nommé *momentum*
- Donne une « inertie » à la descente du gradient, en incluant une correction provenant des itérations précédentes
- Avec momentum, le facteur $\Delta w_{j,i}(n-1)$ dépend lui-même de la correction de l'itération précédente $\Delta w_{j,i}(n-2)$, et ainsi de suite

Momentum

Tiré de R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley Interscience, 2001.

Régression avec perceptron multi-couche

- Algorithme de rétropropagation développé ici pour fonction de transfert sigmoïde, pour le classement
 - ▶ D'autres fonctions de transfert peuvent être utilisées
 - ★ Fonction linéaire : $f_{lin}(a) = a$
 - ★ Fonction tangente hyperbolique : $f_{tanh}(a) = tanh(a)$
 - En fait, toutes fonctions continues dérivables sur IR peuvent être utilisées
- Perceptron multi-couche approprié pour de la régression
 - Topologie conseillée : une couche cachée avec fonction sigmoïde et une couche de sortie avec fonction linéaire
 - ► Critère de l'erreur quadratique moyenne approprié pour la régression

Méthode du deuxième ordre

- La descente du gradient est une méthode du premier ordre (dérivées premières)
- Possibilité de faire mieux avec des méthodes du deuxième ordre
- Méthode de Newton
 - Basé sur l'expansion de la série de Taylor du deuxième ordre, $\mathbf{x}' = \mathbf{x} + \Delta \mathbf{x}$ un point dans le voisinage de \mathbf{x}

$$F(\mathbf{x}') = F(\mathbf{x} + \Delta \mathbf{x}) \approx F(\mathbf{x}) + \nabla F(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 F(\mathbf{x}) \Delta \mathbf{x} = \hat{F}(\mathbf{x})$$

▶ Recherche un plateau dans l'erreur quadratique $\hat{F}(\mathbf{x})$

$$\frac{\partial \hat{F}(\mathbf{x})}{\partial \mathbf{x}} = \nabla F(\mathbf{x}) + \nabla^2 F(\mathbf{x}) \Delta \mathbf{x} = 0$$
$$\Delta \mathbf{x} = -(\nabla^2 F(\mathbf{x}))^{-1} \nabla F(\mathbf{x})$$

- ▶ Calcul de l'inverse de la matrice Hessienne $((\nabla^2 F(\mathbf{x}))^{-1})$ coûteux en calculs
- Méthode du gradient conjugué évite le calcul de l'inverse de la matrice Hessienne

Fonctions de base radiale

Fonctions de base radiale (RBF : Radial Basis Functions)

$$\phi_i(\mathbf{x}) = \exp\left[-\frac{\|\mathbf{x} - \mathbf{m}_i\|^2}{2s_i^2}\right]$$

- Consiste en une fonction gaussienne centrée sur m; avec une influence locale paramétrée par s;
 - A strictement parler, ce n'est pas une densité de probabilité de loi multinormale ($\int_{-\infty}^{\infty} \phi_i(\mathbf{x}) d\mathbf{x} \neq 1$)
- Idée : chaque fonction gaussienne capture un groupe de données dans un certain voisinage
- Avec R fonctions gaussiennes, projection dans un espace à R dimensions

$$\phi = [\phi_1 \dots \phi_R]^T : \mathbb{R}^D \to \mathbb{R}^R$$

Discrimination avec fonctions gaussiennes

Discrimination avec R fonctions gaussiennes (K classes)

$$h_{j}(\mathbf{x}) = \sum_{i=1}^{R} w_{j,i} \phi_{i}(\mathbf{x}) + w_{j,0} = \sum_{i=1}^{R} w_{j,i} \exp\left[-\frac{\|\mathbf{x} - \mathbf{m}_{i}\|^{2}}{2s_{i}^{2}}\right] + w_{j,0}$$

- Paramètres du discriminant à estimer
 - Positions m_i des fonctions gaussiennes
 - Étalement si des fonctions
 - ★ Fréquent de le partager entre les fonctions gaussiennes, $s_i = s$, $\forall i$
 - ▶ Poids $w_{i,i}$ des fonctions gaussiennes
 - ★ Poids $w_{j,i}$ lie la j-ième classe à la i-ième fonction gaussienne
 - * Peut être fixé à des constantes, $w_i = \pm 1$, selon l'association entre fonctions gaussiennes et classes
 - ▶ Biais $w_{i,0}$ des sorties
 - ★ Avec poids égaux, ex. $w_{j,i} = \pm 1$, biais peut être nul, $w_{j,0} = 0$

Réseau RBF et rétropropagation

- Réseau RBF peut être vu comme un cas particulier d'un perceptron multi-couche
 - Une couche cachée avec fonction gaussienne
 - Couche de sortie avec fonction linéaire
- Développement des équations pour mettre à jour les \mathbf{m}_i , \mathbf{w}_j , $w_{j,0}$ et même s_i avec descente du gradient est une instance de l'algorithme de rétropropagation des erreurs
 - ► Corrige d'abord les poids \mathbf{w}_i et $w_{i,0}$ sur la couche de sortie
 - ightharpoonup Corrige ensuite les positions des centres \mathbf{m}_i et étalements s_i

Réseau RBF comme réseau de neurones

Apprentissage avec descente du gradient (\mathbf{w}_j et $w_{j,0}$)

• Critère d'erreur quadratique

$$E(\mathbf{w}, w_0 | \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \frac{1}{2} \sum_{j=1}^{K} (e_j^t)^2 = \frac{1}{2N} \sum_{t=1}^{N} \sum_{j=1}^{K} \left[r_j^t - \left(\sum_{i=1}^{R} w_{j,i} \phi_i(\mathbf{x}^t) + w_{j,0} \right) \right]^2$$

• Dérivée partielle pour \mathbf{w}_i et $w_{i,0}$

$$\frac{\partial E}{\partial w_{j,i}} = -\frac{1}{N} \sum_{t=1}^{N} \left[r_j^t - \left(\sum_{i=1}^{R} w_{j,i} \phi_i(\mathbf{x}^t) + w_{j,0} \right) \right] \phi_i(\mathbf{x}^t) = -\frac{1}{N} \sum_{t=1}^{N} e_j^t \phi_i(\mathbf{x}^t)$$

$$\frac{\partial E}{\partial w_{i,0}} = -\frac{1}{N} \sum_{t=1}^{N} \left[r_j^t - \left(\sum_{i=1}^{R} w_{j,i} \phi_i(\mathbf{x}^t) + w_{j,0} \right) \right] = -\frac{1}{N} \sum_{t=1}^{N} e_j^t$$

• Descente du gradient pour $w_{j,i} = w_{j,i} + \Delta w_{j,i}, i = 0, \dots, K$

$$\Delta w_{j,i} = -\eta \frac{\partial E}{\partial w_{j,i}} = \frac{\eta}{N} \sum_{t=1}^{N} e_j^t \phi_i(\mathbf{x}^t), \quad \Delta w_{j,0} = -\eta \frac{\partial E}{\partial w_{j,0}} = \frac{\eta}{N} \sum_{t=1}^{N} e_j^t$$

Apprentissage avec descente du gradient (\mathbf{m}_i)

• Dérivée partielle pour $\mathbf{m}_i = [m_{i,1} \ m_{i,2} \ \cdots \ m_{i,D}]^T$

$$\frac{\partial \phi_{i}(\mathbf{x}^{t})}{\partial m_{i,k}} = \frac{\partial \exp\left[-\frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{2s_{i}^{2}}\right]}{\partial m_{i,k}} = \frac{(x_{k}^{t} - m_{i,k})}{s_{i}^{2}} \exp\left[-\frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{2s_{i}^{2}}\right]$$

$$= \frac{(x_{k}^{t} - m_{i,k})}{s_{i}^{2}} \phi_{i}(\mathbf{x}^{t})$$

$$\frac{\partial E}{\partial m_{i,k}} = -\frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{K} w_{j,i} \left[r_{j}^{t} - \left(\sum_{i=1}^{R} w_{j,i} \phi_{i}(\mathbf{x}^{t}) + w_{j,0}\right)\right] \frac{\partial \phi_{i}(\mathbf{x}^{t})}{\partial m_{i,k}}$$

$$= -\frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{K} e_{j}^{t} w_{j,i} \frac{(x_{k}^{t} - m_{i,k})}{s_{i}^{2}} \phi_{i}(\mathbf{x}^{t})$$

• Apprentissage : $m_{i,k} = m_{i,k} + \Delta m_{i,k}, i = 1, ..., R, k = 1, ..., D$

$$\Delta m_{i,k} = -\eta \frac{\partial E}{\partial m_{i,k}} = \frac{\eta}{N} \sum_{t=1}^{N} \sum_{i=1}^{K} e_j^t w_{j,i} \frac{(x_k^t - m_{i,k})}{s_i^2} \phi_i(\mathbf{x}^t)$$

Apprentissage avec descente du gradient (s_i)

• Dérivée partielle pour si

$$\frac{\partial \phi_{i}(\mathbf{x}^{t})}{\partial s_{i}} = \frac{\partial \exp\left[-\frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{2s_{i}^{2}}\right]}{\partial s_{i}} = 2\frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{2s_{i}^{3}} \exp\left[-\frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{2s_{i}^{2}}\right]$$

$$= \frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{s_{i}^{3}} \phi_{i}(\mathbf{x}^{t})$$

$$\frac{\partial E}{\partial s_{i}} = -\frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{K} w_{j,i} \left[r_{j}^{t} - \left(\sum_{i=1}^{R} w_{j,i} \phi_{i}(\mathbf{x}^{t}) + w_{j,0}\right)\right] \frac{\partial \phi_{i}(\mathbf{x}^{t})}{\partial s_{i}}$$

$$= -\frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{K} e_{j}^{t} w_{j,i} \frac{\|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}}{s_{i}^{3}} \phi_{i}(\mathbf{x}^{t})$$

• Apprentissage : $s_i = s_i + \Delta s_i, i = 1, ..., R$

$$\Delta s_i = -\eta \frac{\partial E}{\partial s_i} = \frac{\eta}{N} \sum_{t=1}^{N} \sum_{i=1}^{K} e_j^t w_{j,i} \frac{\|\mathbf{x}^t - \mathbf{m}_i\|^2}{s_i^3} \phi_i(\mathbf{x}^t)$$

Apprentissage en bloc et hybride

- Apprentissage en bloc de réseau RBF
 - Apprentissage en bloc de \mathbf{w}_j , $w_{j,0}$, \mathbf{m}_i et s_i par descente du gradient peut être relativement lourd, computationnellement parlant
 - Convergence lente vers résultats satisfaisants
- Apprentissage hybride
 - ▶ Fixer $s_i = s$ et apprendre les positions \mathbf{m}_i par clustering (ex. K-means)
 - ▶ Ensuite, apprendre \mathbf{w}_j et $w_{j,0}$ par descente du gradient

PRTools: perceptron multi-couche

- [W,HIST] = BPXNC(A,UNITS,ITER,W_INI,T) : Perceptron multi-couche avec rétropropagation des erreurs
 - A : Dataset PRTools pour l'entraînement
 - ▶ UNITS : Vecteur donnant le nombre de neurone sur chaque couche cachée (par défaut : [5])
 - ▶ ITER : Nombre d'époque maximum pour l'entraînement (défaut : inf)
 - W_INI : Poids initiaux du réseau (défaut : aléatoire)
 - ► T : Dataset de validation (défaut : [], utiliser A)
 - ▶ W : Mapping PRTools résultant
 - HIST : Tracé des performances selon les époques
 - Requiert la Neural Network Toolbox
- [W,HIST] = LMNC(A,UNITS,ITER,W_INI,T) : Perceptron multi-couche avec rétropropagation des erreurs basé sur une méthode du deuxième ordre (Levenberg-Marquardt)

PRTools: réseau RBF

- W = RBNC(A, UNITS) : réseau RBF entraîné par descente du gradient
 - ▶ A : dataset pour l'entraînement
 - ▶ UNITS : nombre de fonctions gaussiennes utilisées (defaut : 0,2 × nb. d'object, max de 100)
 - W : Mapping PRTools correspondant au réseau RBF entraîné
 - ▶ Requiert également la Neural Network Toolbox