Machine Learning Homework: Week 9 & 10

周书予

2000013060@stu.pku.edu.cn

May 18, 2022

Algorithm 1 Randomized Weighted Updating

- 1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$
- 2: Choose parameter $\beta \in [\frac{1}{2}, 1)$
- 3: for $t = 1 \rightarrow T$ do
- 4: Chooes $\tilde{y}_t = \tilde{y}_{t,i}$ with probability proportional to $w_{t,i}$

5:
$$w_{t+1,i} \leftarrow \begin{cases} \beta \cdot w_{t,i}, & \tilde{y_{t,i}} \neq y_t \\ w_{t,i}, & \tilde{y_{t,i}} = y_t \end{cases}, \forall i \in [n]$$

6: end for

定理 1. 在 Randomized Weighted Updating 算法下, 有

$$\mathbb{E}\left[L_T\right] \leqslant (2 - \beta)m_T^* + \frac{\ln n}{1 - \beta}$$

证明. 注意到权值的更新无关于每轮有没有答错, 因此 $\mathbb{1}[\tilde{y_t} \neq y_t]$ 是独立随机变量.

第 i 轮结束后, 总权值的变化一定是 $W \to W(1-(1-\beta)\mathbb{P}(\tilde{y_t} \neq y_t))$, 由于 $\mathbb{E}[L_T] = \sum_{t=1}^T \mathbb{P}(\tilde{y_t} \neq y_t)$, 因此

$$\beta^{m_T^*} \leqslant n \prod_{t=1}^T (1 - (1 - \beta) \mathbb{P} (\tilde{y_t} \neq y_t)) \leqslant n \prod_{t=1}^T e^{-(1 - \beta) \mathbb{P} (\tilde{y_t} \neq y_t)} = n e^{-(1 - \beta) \mathbb{E} [L_T]}$$

从而得到了

$$\mathbb{E}\left[L_T\right] \leqslant \frac{\ln(1/\beta)m_T^* + \ln n}{1 - \beta}$$

只需要进一步证明 $\frac{\ln(1/\beta)}{1-\beta} \leqslant 2-\beta$. 考虑函数 $f(\beta) = \ln \beta + (1-\beta)(2-\beta), f'(\beta) = \frac{(1-\beta)(1-2\beta)}{\beta},$ 当 $\beta \in [\frac{1}{2},1)$ 时恒有 $f'(\beta) \leqslant 0$, 从而 $f(\beta) \geqslant f(1) = 0$, 说明了 $\ln(1/\beta) \leqslant (1-\beta)(2-\beta), \frac{\ln(1/\beta)}{1-\beta} \leqslant 2-\beta$.