(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 02.05.2001 Bulletin 2001/18 (51) Int Cl.7: **H04L 9/32**, G06F 1/00

(21) Application number: 97102779.2

(22) Date of filing: 20.02.1997

(54) Device and method for authenticating user's access rights to resources according to the Challenge-Response principle

Vorrichtung und Verfahren zur Authentifizierung von Zugangsrechten eines Benutzers zu Betriebsmitteln nach dem Challenge-Response-Prinzip

Dispositif et procédé d'authentification de droits d'accès d'un utilisateur à des ressources selon le principe Challenge-Response

- (84) Designated Contracting States: **DE FR GB**
- (30) Priority: 23.02.1996 JP 6207696 06.01.1997 JP 41897
- (43) Date of publication of application: 27.08.1997 Bulletin 1997/35
- (73) Proprietor: FUJI XEROX CO., LTD. Minato-ku, Tokyo (JP)
- (72) Inventors:
 - Shin, Kil-ho
 Ashigarakami-gun, Kanagawa (JP)
 - Kobayashi, Kenichi
 Ashigarakami-gun, Kanagawa (JP)

- Aratani, Toru
 Ashigarakami-gun, Kanagawa (JP)
- (74) Representative: Hoffmann, Eckart, Dipl.-Ing.
 Patentanwalt,
 Bahnhofstrasse 103
 82166 Gräfelfing (DE)
- (56) References cited:
 - BUCHHEIT M: "SOFTWARE-KOPIERSCHUTZ" ELEKTRONIK, vol. 41, no. 14, 7 July 1992, pages 68-74, XP000307635
 - KEUL M: ""DONGLES": HARDWARE SCHUTZT SOFTWARE" ELEKTRONIK, vol. 39, no. 10, 11 May 1990, pages 82-84, 86, XP000117036

> 0 792 044 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

15

20

30

35

40

45

[0001] The present invention relates to a device for authenticating user's access rights to resources.

[0002] Program execution control technologies are known in the field to which the present invention belongs. The program execution control technologies are technologies to:

- 1. Embed a routine for user authentication during the use of an application program;
- 2. Have the routine examine whether the user attempting execution of the application possesses a key for proper authentication; and
- 3. Continue the program only when the existence of the key for authentication is verified, otherwise to halt execution.

[0003] By using these technologies, execution of the application program is enabled only for proper users having the authentication key. The technologies are commercialized in the software marketing field, two examples being SentinelSuperPro (trade mark) from Rainbow Technologies, Inc. and HASP (trade mark) from Aladdin Knowledge Systems, Ltd.

[0004] In the use of program execution control technologies, a user who executes software possesses an authentication key as user identification information. The authentication key is a key for encryption and is distributed to the user by a party who allows use of software, a software vender, for example. The authentication key is securely sealed in a memory, or the like, of hardware to prevent duplication, and is delivered to the user using physical means such as the postal service. The user mounts personal computer/workstation using a designated method. When the user starts up the application program and when the execution of the program reaches the user authentication routine, the program communicates with the hardware in which the authentication key of the user is embedded. Based on the results of the communication, the program identifies the authentication key, and moves the execution to the following step upon confirmation of existence of the correct authentication key. If the communication fails and the verification of the existence of the authentication key is not established, the program stops automatically, discontinuing the execution of subsequent steps.

[0005] Identification of the authentication key by the user authentication routine is executed according to the following protocol, for example:

- The user authentication routine generates and transmits an appropriate number to the hardware in which the key is embedded.
- 2. The hardware in which the key is embedded encrypts the number using the embedded authentication key and transmits it back to the authentication routine.
- 3. The authentication routine determines whether or not the number transmitted back is the number expected beforehand, or, in other words, the number obtained by encrypting the number with a correct authentication key
- 4. If the number transmitted back coincides with the expected number, the execution of the program is continued, otherwise the execution is halted.
- 5. In this case, communication between the application program and the hardware in which the authentication key is embedded must be different for each execution even if it is between the same location in the same application with the same hardware.

Otherwise, a user who does not possess the correct authentication key may be able to execute the program by recording once the content of communication during the normal execution process, and by responding to the application program according to the recording each time the subsequent program is executed. Such improper execution of the application program by replaying the communication content is called a replay attack.

[0006] In order to prevent a replay attack, in general, a random number is generated and used for each communication as the number to be transmitted to the hardware in which the key is embedded

[0007] Elektronik 41(1992), pages 68 to 74, discloses software protection by using a dongle having a processor which decrypts encrypted data supplied from the software to be protected. The dongle key consists of a firm and user code and is supplied to the decryption algorithm together with a selection code.

[0008] The present invention has been made in view of the above circumstances and an aspect of the present invention is to provide a device for authenticating user's access rights to resources and its method which set both users and the protecting side such as application providers free from inconveniences caused by handling of large amount of unique information, for example, a lot of authentication keys, and thereby user's access rights are easily and simply authenticated when the execution control of the program, privacy protection of electronic mails, access control of files or computer resources and so forth are carried out.

[0009] The invention provides a device as defined in claim 1.

[0010] With the above constitution, the unique security characteristic information of the device assigned to the pro-

tecting side and the unique identifying information of the user are made to be independent of each other. The information on actual access rights is represented as proof support information (i.e., an access ticket). The user has the user unique identifying information in advance, and on the other hand, a protector, such as a program creator prepares the unique security characteristic information, or the counterpart of the unique security characteristic information in terms of the public key cryptography, independent of the user unique identifying information held by the user. An access ticket is generated based on the user unique identifying information and the unique security characteristic information used in creation of the application program or the like. Access tickets are distributed to the users, whereby authentication of the user's access rights to resources such as execution control can be performed. Thus complexity occurring in the case where both sides of user and protector use the same information for performing authentication can be avoided. [0011] Moreover, in the above constitution, at least the second memory means and the response generation means may be confined in the protect means which prevents any data inside from being observed or being tampered with from the outside. It may also be possible to implement at least the second memory means and the response generation means within a small portable device such as a smart card.

10

25

35

40

45

50

55

[0012] The response generating means may comprise first calculation means and second calculation means, wherein the first calculation means executes predetermined calculations to the user unique identifying information stored in the second memory means and the proof support information stored in the third memory means to obtain the unique security characteristic information as a result, and the second calculation means executes predetermined calculations to the challenging data stored in the first memory means and the unique security characteristic information calculated by the first calculation means to generate the response as a result of calculation.

[0013] The above-described response generation means may comprise third calculation means, fourth calculation means and fifth calculation means. The third calculation means executes predetermined calculations to the challenging data stored in the first memory means and the proof support information stored in the third memory means, the fourth calculation means executes predetermined calculations to the challenging data stored in the first memory means and the user unique identifying information stored in the second memory means, and the fifth calculation means executes predetermined calculations to the results of calculation by the third and fourth calculation means, whereby the response is generated. In this case, at least the second memory means and the fourth calculation means can be confined within the protect means which prevents any data inside from being observed or being tampered with from the outside. At least the second memory means and the fourth calculation means may be implemented within a small portable device such as a smart card.

[0014] The invention furthermore provides a method as defined in claim 47, a computer program product as indicated in claim 48 or 49, a control device according to claim 50, and an apparatus as defined in claim 51.

[0015] The accompanying drawings, which are incorporated in and constitute a part of this specification illustrate embodiment of the invention and, together with the description, serve to explain the objects, advantages and principles of the invention. In the drawings:

Fig. 1 is a block diagram showing an example of the fundamental constitution of the present invention;

Fig. 2 is a block diagram showing an example of the constitution of the present invention in case that an entire device is implemented within a single PC:

Fig. 3 is a block diagram showing the constitution of a first embodiment of a device for authenticating user's access rights to resources according to the present invention;

Fig. 4 is a flow chart showing functions of means constituting the devices of the first embodiment;

Fig. 5 is a block diagram showing the constitutions of a verification device and a proving device of a second embodiment of the device for authenticating user's access rights to resources according to the present invention; Fig. 6 is a flow chart showing functions of means constituting the verification device of the second embodiment;

Fig. 7 is a block diagram showing a constitutional example of execution means of the verification means of the second embodiment;

Fig. 8 is a flow chart showing functions of the constitutional example of the execution means shown in Fig. 7;

Fig. 9 is a block diagram showing a second constitutional example of execution means of the verification means of the second embodiment;

Fig. 10 is a flow chart showing functions of the constitutional example of the execution means shown in Fig. 9; Fig. 11 is a block diagram showing a third constitutional example of execution means of the verification means of the second embodiment;

Fig. 12 is a flow chart showing functions of the constitutional example of the execution means shown in Fig. 11; Fig. 13 is a block diagram showing a fourth constitutional example of execution means of the verification means of the second embodiment;

Fig. 14 is a flow chart showing functions of the constitutional example of the execution means shown in Fig. 13; Fig. 15 is a block diagram showing the constitution of a proving device of a third embodiment of the device for authenticating user's access rights to resources according to the present invention;

Fig. 16 is a flow chart showing functions of means constituting the proving device of the third embodiment;

Fig. 17 is a block diagram showing a constitutional example of a fourth embodiment of the device for authenticating user's access rights to resources according to the present invention;

Fig. 18 is a block diagram showing another constitutional example of the fourth embodiment;

5

10

15

45

Fig. 19 is a flow chart showing functions of means of the constitutional example shown in Fig. 17;

Fig. 20 is a block diagram showing the constitution of a fifth embodiment of the device for authenticating user's access rights to resources according to the present invention;

Fig. 21 is a flow chart showing functions of means constituting a verification device of the fifth embodiment;

Fig. 22 is a block diagram showing the constitution of a sixth embodiment of the device for authenticating user's access rights to resources according to the present invention;

Fig. 23 is a flow chart showing functions of means constituting devices of the sixth embodiment;

Fig. 24 is a block diagram showing the constitution of a seventh embodiment of the device for authenticating user's access rights to resources according to the present invention;

Fig. 25 is a flow chart showing functions of means constituting devices of the seventh embodiment; and

Fig. 26 is a block diagram showing a part of constitution of a proving device of ninth and tenth embodiments of the device for authenticating user's access rights to resources according to the present invention.

[0016] At first, an example of the fundamental constitution of the present invention is described. The user authentication system of the example can be applied to privacy protection of electronic mails or control of access to files or computer resources as well as control of execution of applications.

[0017] In Fig. 1, the user authentication system comprises a verification device 10 and a proving device 11: the proving device 11 receives an access ticket (proof support data) from an access ticket generation device 12; the verification device 10 executes a verification routine 15; the proving device 11 retains user identifying information 16 and the access ticket 13 and executes a response generation program 17.

[0018] The access ticket generation device 12 is installed in the protector side, such as an application provider. The access ticket generation device 12 generates the access ticket 13 based on unique security characteristic information of the device 14 and the user identifying information 16 and the access ticket 13 is forwarded to the user through communication or sending of a floppy-diskette or the like to be retained by the proving device 11 of the user. Then the verification device 10 sends challenging data 18 to the proving device 11. The proving device 11 generates a response 19 by utilizing the access ticket 13 and the user identifying information 16, and returns it to the verification device 10. The verification device 10 verifies the legitimacy of the response based on the challenging data, that is, the verification device 10 verifies that the response has been generated based on the challenging data and the unique security characteristic information of the device.

[0019] If the legitimacy of the response is verified, the access rights of the user is authenticated; accordingly, continuation of execution of a program, access to files, and so forth, are permitted.

[0020] With the above constitution, an example of execution control of an application program is now described.

[0021] In the above constitution, a user of an application program retains only one piece of user identifying information 16. The user identifying information is equivalent to a password in the password authentication and is unique, significant information which identifies the user. If it is possible for the user to copy and distribute the user identifying information 16, it will lead to the use of the application program by the user without legitimate access rights; therefore, the user identifying information 16 is protected by protection means 160 so that even the user who is a legitimate owner of the user identifying information 16 cannot steal it. The protection means 160 may be a hardware with a protecting effect (hereinafter referred to as tamper-resistant hardware) against theft of the inside conditions by external probes. A method of implementation of the tamper-resistant hardware will be described later.

[0022] In addition to the user identifying information 16, the response generation program 17 which executes predetermined computations is provided to the user. The program 17 performs communication with a user authentication routine (verification routine 15): on receiving two parameters, namely, the user identifying information 16 and the access ticket 13, the program 17 executes computations to arbitrary inputted values to generate the response 19 for identifying the user. The user identifying information 16 is used in the course of the computation, and it is required to protect at least a part of the program 17 by the protection means 160 since leakage of the user identifying information 16 to the outside will cause a problem by the above-described reason.

[0023] Hereinafter, memory means for storing the user identifying information and a part of the program which are protected by the protection means 160, device for executing the part of the program (for example, consisting of a memory and a MPU) and the protection means 160 are integrally referred to as token (shown by the reference numeral 20 in Fig. 1). The token may have portability, like a smart card.

[0024] Similar to the conventional execution control technologies, the verification routine 15 is set to the application program. The verification routine 15 is same as that of the conventional technologies in that it communicates with the response generation program 17 retained by the user, and continues execution of the program if and only if a returned

result (response 18) is correct. Therefore, it is necessary that the program creator knows the method of computing the combination of transferred data (challenging data 18) and correct returned data corresponding thereto (response 19). [0025] Some examples of functions of the verification routine 15 are explained as follows:

1. Data to be transferred (challenging data 18) and expected returned data (expected value) are embedded in the verification routine 15. The verification routine 15 fetches the data to be transferred and transfers it to the user, and receives the returned data from the user. Then the verification routine 15 compares the returned data from the user with the expected value: if they are identical with each other, the verification routine 15 executes the next step of the program; if they are not identical, the verification routine 15 halts the execution of the program.

In the case where the returned data is assumed to be a result of encryption of the transferred data in accordance with a predetermined encryption algorithm, the unique security characteristic information of the device is an encryption key.

10

15

20

25

30

35

40

50

55

2. Data to be transferred (challenging data 18) and data generated by applying a one-way function to expected returned data (expected value) are embedded in the verification routine 15. The verification routine 15 fetches the data to be transferred and transfers it to the user, and receives the returned data from the user. Then the verification routine 15 compares data generated by applying the one-way function to the returned data from the user with the expected value: if they are identical with each other, the verification routine 15 executes the next step of the program; if they are not identical, the verification routine 15 halts the execution of the program.

In the case where the returned data is assumed to be a result of encryption of the transferred data in accordance with a predetermined encryption algorithm, the unique security characteristic information of the device is an encryption key.

3. Protection is provided by encrypting a part of code of the application program in accordance with a predetermined encryption algorithm so that execution of the program may be impossible. The verification routine 15 transfers the encrypted code to the user and receives returned data from the user, and then replace the received value with the encrypted code.

With this constitution, execution of the program may be possible if and only if the returned data is a correct decryption of the encrypted code. In this case, the unique security characteristic information is a decryption key for decrypting the encrypted code.

4. Protection is provided by encrypting a part of code of the application program in accordance with a predetermined encryption algorithm so that execution of the program may be impossible. Moreover, data generated by encrypting a decryption key paired with the encryption key used for encrypting the code is embedded as transferred data in the verification routine 15. The verification routine 15 transfers the encrypted decryption key to the user and receives returned data from the user, and then decrypts the encrypted code with the value of the received data as a decryption key.

[0026] With this constitution, the encrypted code is correctly decrypted if and only if the returned data is a decryption key which has been correctly decrypted, and accordingly execution of the program becomes possible. In this case, the unique security characteristic information of the device is a decryption key for decrypting the encrypted decryption key.

[0027] In the conventional execution control technologies, the user identifying information (authentication key of the user) is identical with the unique security characteristic information of the device. The conventional response generation routine receives the unique security characteristic information and the data transferred from the verification routine as the input, and then executes computations thereto for generating data to be returned.

[0028] By contrast, the present invention is characterized in that the user identifying information 16 and the unique security characteristic information of the device 14 are independent of each other. In this constitutional example, the response generation program 17 adds the access ticket 13 to the user identifying information 16 and the data transferred from the verification routine 15 (challenging data 18) as the input, and then executes predetermined computations to them for generating the data to be returned (response 19). The constitution has the following properties:

- 1. The access ticket 13 is the data calculated based on the specific user identifying information 16 and the unique security characteristic information of the device.
- 2. At least from the viewpoint of the computation amount, it is impossible to calculate the unique security characteristic information from the access ticket 13 without knowing the user identifying information 16.
- 3. The response generation program 17 executes computations for generating correct data to be returned if and only if a correct combination of the user identifying information 16 and the access ticket 13. Note that the access ticket 13 has been calculated based on the user identifying information 16.

[0029] With the constitution described so far, the execution control can be carried out by the following steps: the user

has the user identifying information 16 in advance; the program creator prepares the application program independent of the user identifying information 16 retained by the user; and the program creator generates the access ticket 13 based on the user identifying information 16 and the unique security characteristic information of the device 16 used in creating the application program and distributes the access ticket 13 to the user.

[0030] It may be possible to constitute the user identifying information 16 by two pieces of user identifying information for distinguishing the information used for preparing the access ticket 13 from the information used in a communication program by the user. In the most representative example, the user identifying information 16 is made to be a public key pair: the public key is published to be used for generating the access ticket; and the individual key is confined within the token 20 as user's individual secret information. In this case, it is possible to calculate the access ticket 13 while the user identifying information 16 is kept secret by calculating the access ticket 13 from the unique security characteristic information 14 and the public key of the public key pair.

First Embodiment

25

30

35

40

[0031] In a first embodiment, an access ticket t is defined as the relation (1).

(1)
$$t = D - e + \omega \phi (n)$$

- 20 [0032] In the following bulleted paragraphs, symbols used in the above relation are described.
 - An integer n is an RSA modulus, hence, a product of two very large prime numbers p and q (n = pq).
 - φ (n) denotes the Euler number of n, hence, a product of two integers p-1 and q-1 (φ(n) = (p-1) (q-1)).
 - A piece of user identifying information e is an integer allocated to each user. A piece of user identifying information is unique to a user: a different user identifying information is allocated to a different user.
 - An access-ticket secret key D is a private key of an RSA public key pair. Since the modulus is assumed to be n, the relation 2 is derived from the definition.

(2)
$$gcd(D, \phi(n)) = 1$$

• In the above, gcd (x, y) denotes the greatest common divisor of two integers x and y. The existence of an integer E satisfying the relation (3), which is called an access-ticket public key, is derived from the relation (2).

(3) ED mod
$$\phi(n) = 1$$

ω is an integer dependent upon both n and e. It is required that a probably different value will be allocated to ω if
at least one of n and e is different. In defining ω in a consistent manner, a one-way hash function h may be used.

(4)
$$\omega = h (n \mid e)$$

[0033] In the relation (4), $n \mid e$ denotes the concatenation of the two bit-string representations of n and e. A one way hash function h is a function having the property that it is extremely difficult to calculate two distinct x and y satisfying h(x) = h(y). Known examples of one-way hash functions are the MD2, MD4 and MD5 of RSA Data Securities Inc., and the standard SHS (Secure Hash Standard) of the U.S. federal government.

[0034] Among the above numbers, t, E and n can be open to public without any risk, while the rest of the numbers, namely D, e, ω , p, q and ϕ (n), are to be kept secret to everybody but those who are allowed to generate an access ticket. Fig. 3 depicts the constitution of the first embodiment. A verification device 10 comprises the followings: an access ticket public key storing means 101; a random number generation means 102; a random number storing means 103; a response storing means 105; a verification means 106; an execution means 107; and an error trapping means 108. On the other hand, a proving device 11 comprises the followings: a challenging data storing means 111; a first calculation means 112; an access ticket storing means 113; a second calculation means 114; a user identifying information storing means 115; and a response generation means 116.

[0035] By the following numbered paragraphs, the function of the means constituting the devices will be described.

1. The verification device 10 is invoked by a user. The way to invoke the device varies depending upon how the

5

10

15

20

25

30

35

40

45

50

device is implemented. A few examples are now shown. First, the verification device 10 may be implemented as a part of an application program to be installed and executed on a user's PC or workstation. In this case, the user may invoke the verification device 10 by invoking the application program in ordinary ways. For example, the user may click the iconic symbol representing the application program on the computer screen with a pointing device such as a mouse, or may use a keyboard. The verification device 10 may be implemented as a program installed and executed on a server computer that is connected to a user's PC or workstation by means of computer network. In this case, in order to invoke the verification device 10, a user first invokes a communication program installed on his/her own PC or workstation: the communication program establishes a connection to the server, and asks the server to invoke the verification device 10. When the communication program and the server follow the TCP/ IP protocols, for instance, the verification device 10 is allocated to a predefined port number on the server computer. When the communication program issues a requirement for establishing a connection to the port, inetd, a demon program running on the server computer, receives the requirement. After checking which program is allocated to the specified port, it finally invokes the verification device 10, and establishes a connection between the verification device and the communication program. This way of implementation is very common in networked computer systems like Internet. The verification device 10 may be implemented as a program written on a ROM or EEPROM within a smart card reader-writer. In this case, the proving device 11 is a program installed on an IC chip of a smart card; the verification device 10 is invoked whenever a user inserts his/her smart card into the smart card readerwriter

- 2. The verification device 10 sends challenging data C and a modulus n to the challenging data storing means 111 of the proving device 11. The modulus n is stored in the access-ticket public key storing means 101. On the other hand, challenging data C is generated as follows: the random number generation means 102 generates a random integer r so that r and the modulus n are relatively prime $(\gcd(r, n) = 1)$; the generated random integer r is stored in the random number storing means 103; finally, the random number generation means 102 sets the value of C to r. As stated later in more detail, the response which the proving device 11 is to respond to the verification device 10 is RSA-encryption of r with D as the key and n as the modulus. Since the value of C is identical to the random integer r, it varies with occurrence of communication between the verification device 10 and the proving device 11. This prevents so-called replay attack from succeeding.
- 3. The first calculation means 112 of the proving device 11 calculates an intermediate result R' according to the relation (5). An access ticket t to be used is stored in the access ticket storing means 113.

(5)
$$R' = C^t \mod n$$

4. The second calculation means 114 of the proving device 11 calculates a differential S according to the relation (6). A user identifying information e to be used is stored in the user identifying information storing means 115.

(6)
$$S = C^e \mod n$$

5. Receiving R' and S from the first calculation means 112 and the second calculation means 114, the response generation means 116 of the proving device 11 calculates a response R according to the relation (7).

(7)
$$R = R'S \mod n$$

- 6. The proving device 11 returns the generated response R to the response storing means 105 of the verification device 10.
- 7. The verification means 106 of the verification device 10 first performs the calculation (8). Both the exponent E and the modulus n are stored in the access ticket public key storing means 101, and the response R is stored in the response storing means 105.

[0036] Finally, the verification means 106 examines the relation (9).

(9)
$$C \mod n = R^E \mod n$$

[0037] If the relation (9) holds, the verification means invokes the execution means 107. The execution means 107 provides a user with utilities that he/she wanted to access to. Otherwise, it invokes the error trapping means 108. The error trapping means 108 may deny user access by terminating the execution.

Second Embodiment

5

10

20

25

30

35

40

45

50

55

[0038] A second embodiment to be described is the same as the first embodiment regarding the definition of an access ticket t and the function of the proving device. However, the verification device works differently. The difference in the roles between challenging data C and a response R causes the difference in the function between the two embodiments: in the first embodiment, a response R is encryption of a random challenging data C; in the second embodiment, a response R will be decryption of challenging data C which is encryption of some other meaningful data. [0039] Fig. 5 depicts the constitution of devices of the second embodiment, and Fig. 6 depicts flow of data. A verification device 10 comprises the following means: an access ticket public key storing means 101; a random number generation means 102; a random number storing means 103; a response storing means 105; a randomizing means 121; a challenge seed storing means 122; a de-randomizing means 123; and an execution means 310. A proving device 11 comprises the following means: a challenging data storing means 111; a first calculation means 102; an access ticket storing means 113; a second calculation means 114; a user identifying information storing means 115; and a response generation means 116.

[0040] By the following numbered paragraphs, the function of the means constituting the devices will be described step by step.

- 1. The verification device 10 is invoked by a user.
- 2. The verification device 10 sends challenging data C and a modulus n to the challenging data storing means 111 of the proving device 11. The modulus n is stored in the access ticket public key storing means 101. On the other hand, challenging data C is generated by carrying out the following steps: the random number generating means 102 generates a random integer r so that r and the modulus n are relatively prime (gcd (r, n) = 1); the random integer r is stored in the random number storing means 103; the randomizing means 121 generates challenging data C according to the relation (10).

(10)
$$C = r^E C' \mod n$$

The integer C' is stored in the challenge seed storing means 122, and satisfies the relation (11) for some data K.

(11)
$$C' = K^E \mod n$$

The exponent E (access ticket public key) and the modulus n are both stored in the access ticket public key storing means 101.

The verification device 10 retains encryption C' of K instead of K itself. In fact, C' is RSA encryption of K with a public key E and a modulus n. This has an advantage in the viewpoint of security: the data K crucial for authentication procedures never leaks from the verification device 10. The randomness of r also plays an important role: if r were identical to some secret constant, the challenging data C would be encryption of the data K up to a constant coefficient, and therefore the response which the proving device 11 generates would be K up to a constant coefficient; thus, constant r would allow replay attacks since communication between the verification device 10 and the proving device 11 would be always identical. In this embodiment, by generating challenging data C so that it is dependent on a random number r (see the relation (10)), communication between the verification device 10 and the proving device 11 occurs with variation, and therefore attempts of replay attacks become hopeless.

3. The first calculation means 112 of the proving device 11 calculates an intermediate result R' according to the relation (12).

(12)
$$R' = C^t \mod n$$

In course of calculation, the means uses the access ticket t stored in the access ticket storing means 113.

4. The second calculation means 114 of the proving device 11 calculates a differential S according to the relation (13).

(13)
$$S = C^e \mod n$$

In course of calculation, the means uses the user identifying information e stored in the user identifying information storing means 115.

5

10

15

20

30

35

40

45

50

55

5. Receiving the intermediate result R' and the differential S from the first calculation means 112 and the second calculation means 114, the response generation means 116 of the proving device calculates a response R according to the relation (14).

(14) $R = R'S \mod n$

- 6. The proving device 11 returns the generated response R to the response storing means 307 of the verification device 10.
- 7. The de-randomizing means 123 of the verification device 10 calculates K' according to the relation (15).

(15)
$$K' = r^{-1}R \mod n$$

[0041] In course of calculation, the means uses the random number r stored in the random number storing means 103 and the response R stored in the response storing means 105. Note that the values K' and K are identical with each other, if and only if the proving device 11 calculated the response R based on a right pair of an access ticket t and a user identifying information e.

[0042] Finally, the de-randomizing means 123 sends K' to the execution means 310, and the execution means 310 executes predefined procedures using this given K'. The execution means 310 is designed so that it works properly only when K' is identical with K; otherwise it fails to work.

[0043] The following paragraphs describes several examples of implementation of the execution means 310.

- 1. Fig. 7 depicts a first example. A memory means 310 a of the execution means 310 retains the data K. Receiving K' from the de-randomizing means 123, a comparison means 310b directly examines the equality K = K'. If the equality does not hold, the execution means 310 suspends its performance immediately. Otherwise, the execution means 310 continues its performance and provides users with utilities. This example includes the disadvantage caused from the fact that the data K critical for authentication procedures appears as it is in the device: when a computer program to be installed and executed on a user's PC or workstation is implemented on the execution means 310, it is not impossible for a user to find out the value K by analyzing the code of the application program. The value K is crucial, because, if once the user knows the value of K, and further if he/she can predict random number sequences to be generated by the random number generation means 102, he/she can construct a device simulating the proving device 10 without any of an access ticket and a user identifying information e. In other words, anybody could pass the authentication check by the verification device 10 with this simulator, whether he/she is authorized or not.
- 2. Fig. 9 depicts a second example. In this example, a memory means 310a retains h(K), instead of K, which is a value obtained by applying a one-way hash function h to K. A significant property of one-way hash functions is that it is computationally impossible to calculate x satisfying y = h(x) given y. Receiving K' from a de-randomizing means 123, a hashing means 310c calculates h(K') which is the result of applying the one-way hash function h to K'.

Then, the comparison means 310b examines the identity of this h(K') and the value stored in the memory means 310a (= h(K)). Compared with the first example, this example is safer since there is no effective means to find out the critical data K: even though a user succeeded in analyzing the code of the program constituting the execution means 310, he/she couldn't find out any more than the value of h(K); due to the property of one-way hash functions, it is computationally impossible to calculate K given h(K). However, when the execution means 310 is implemented as a computer program, the comparison means 310b may be represented as an if-clause. If the verification device is further assumed to be executed on a user's PC or workstation, a user may have a chance to modify the code so that the if-clause shall be always skipped.

Therefore, the implementation of the this example is not safe enough, in particular, if the execution means 310 is implemented as a computer program to be executed on a user's PC or workstation.

3. Fig. 11 depicts a third example. This time, protection is applied such that execution of the program of the execution means 310 becomes impossible by encrypting a portion or the whole of the code of the program. The encrypted code is stored in the challenge seed storing means 122 as a seed C' for challenging data C. More precisely, the crucial data K is program code to be encrypted, and C' is RSA encryption of the code K with a public key E and a

modulus n (C = KE mod n). Both E and n are the values stored in the access ticket public key storing means 101. The execution means 310 includes a code storing means 310d, a code loading means 310e and a code execution means 310f. The code loading means 310e feeds K', which the code storing means 310d received from the derandomizing means 123, to the code execution means 310f. Only when K' is identical with K, the code fed to the code execution means 310f is meaningful as a part of the program of the execution means 310. In the following, a more detailed description of the composition is provided. Consider the case where the execution means 310 is implemented as a computer program executed on a user's PC or workstation. The code storing means 310d is a specified region within a memory of a user's PC.

The code execution means 310f comprises the CPU and OS of the PC. The CPU and OS, cooperating with each other, fetch instructions form a certain predefined region within the memory space (called program region), and executes those instructions one by one. Generally speaking, a meaningful chunk of instructions is called a program, and a program is located within the program region. The entity of the code loading means 310e is a part of the program constituting the execution means 310, and it is to be executed at first when the execution means 310 is invoked. When invoked, the code loading means 310e orders the code execution means 310f to copy the content stored in the code storing means 310d onto a specified area within the program region, and then orders the code execution means 310f to execute the copied sequence of instructions by issuing a JMP command, for example.

Thus, since a part or the whole of the code of the program of the execution means 310 is encrypted, and further since it is decrypted temporarily only when the verification device 10 and the proving device 11 cooperate with each other properly, the execution means 310 is much safer than in the cases of the preceding two examples: even though a user succeeded in analyzing the program, he/she couldn't obtain the missing code K at all; modifying the code of the program without the knowledge about K is definitely no use.

4. Fig. 13 depicts a fourth example. This example is substantially the same as the third example except that K is the encryption key used in encrypting code of the program constituting the execution means 310, while K is the code itself in the previous example. Since the code to be encrypted may be of large size, according to the composition of the third example, the size of K (namely, that of C' and C) may be large enough to make the performance of the verification device 10 and the proving device 11 worse. In contrast, according to the composition of the fourth example, the size of K (namely, that of C') remains unchanged irrespective of the size of the program code to be encrypted: the size of K is determined by the cipher algorithm to be used; if DES (Data Encryption Standard) is used, K is always 64 (56) bits long even when the size of the code to be encrypted is measured by Mbyte.

[0044] The execution means 310 comprises an encrypted code storing means 310g, a decryption means 310h, a code loading means 310l, and code execution means 310f. Receiving the data K' from the de-randomizing means 123, the decryption means 310h decrypts the content stored in the encrypted code storing means 310g. In the process of decryption, K' is used as a decryption key. The code loading means 310l loads the output of the decryption means 310h, which is decrypted code if K' is identical with K, onto a specified area within the program region, and then orders the execution means 310f to execute the loaded code.

Third Embodiment

5

10

15

20

25

30

40

45

50

55

[0045] In a third embodiment, the definition of an access ticket is given as the relation (16).

(16)
$$t = D + F(n, e)$$

[0046] The following bulleted paragraphs illustrate the symbols appearing in the relation (16).

- An integer n is an RSA modulus, hence, a product of two very large prime numbers p and q (n = pq).
- \$\phi\$ (n) denotes the Euler number of n, hence, a product of two integers p-1 and q-1 (\$\phi\$ (n) = (p-1) (q-1)).
- A user identifying information e is an integer allocated to each user. The user identifying information e is unique
 to each user:
 - A different user identifying information is allocated to a different user.
- An access-ticket secret key D is the private key of an RSA public key pair. Since the assumed modulus is n, D satisfies the relation (17).

(17)
$$gcd(D, \phi(n)) = 1$$

In the above, gcd(x, y) denotes the greatest common divisor of two integers x and y. The existence of an integer
E satisfying the relation (18), which is called an access-ticket public key, is derived form the relation 17.

(18) ED mod
$$\phi$$
 (n) = 1

• A two variable function F(x, y) is an arbitrary collision-free function. Practically, a collision-free function may be constructed using a one-way hash function h as the relation (19).

(19)
$$F(x, y) = h(x | y)$$

[0047] Figs. 15 and 16 are for depicting this embodiment: Fig. 15 depicts the constitution of the devices of this embodiment; Fig. 16 depicts flow of data.

[0048] In Fig. 15, a proving device 11 comprises a challenging data storing means 111, a first calculation means 112, an access ticket storing means 113, a second calculation means 114, a user identifying information storing means 115, a response generation means 116, and an exponent generation means 130. A verification device 10 in this embodiment may be identical with that in any of the first embodiment (shown in Fig. 3) or the second embodiment (shown in Fig. 5). [0049] By the following numbered paragraphs, the function of the means constituting the devices will be described step by step.

1. The verification device 10 is invoked by a user.

5

10

20

25

30

35

40

45

50

55

- 2. The verification device 10 sends challenging data C and a modulus n to the challenging data storing means 111 of the proving device 11. The modulus n is stored in the access ticket public key storing means 101, and the challenging data C is generated in one of the manners defined in the first embodiment or the second embodiment: C is identical with either r^E mod n or r^E C' mod n.
- 3. The first calculation means 112 of the proving device 11 calculates an intermediate result R' according to the relation (20).

An access ticket t to be used is stored in the access ticket storing means 113.

(20)
$$R' = C^t \mod n$$

4. The exponent generation means 130 calculates F(n, e) by applying the collision-free function F to the modulus n, stored in the challenging data storing means 111, and the user identifying information e, stored in the user identifying information storing means 115.

5. Receiving the result from the exponent generation means 130, the second calculation means 114 of the proving device 11 calculates a differential S according to the relation (22).

(22)
$$S = C^{F(n, e)} \mod n$$

6. Receiving R' and S from the first calculation means 112 and the second calculation means 114, the response generation means 116 of the proving device calculates a response R according to the relation (23).

(23)
$$R = R'S^{-1} \mod n$$

In the relation (23), S⁻¹ denotes the reciprocal of S under the modulus n. Hence, S and S⁻¹ satisfy the relation (24).

(24)
$$SS^{-1} \mod n = 1$$

- 7. The proving device 11 returns the generated response R to the response storing means 105 of the verification device 10
- 8. The verification device 10 examines the response received from the proving device 11.

5 Fourth Embodiment

20

25

50

55

[0050] In a fourth embodiment, a proving device 11 comprises a computer program executed on a user's PC or workstation, a smart card or PC card (PCMCIA card) attachable to the user's PC or workstation, and a program executed on this smart card or PC card.

[0051] As is obvious from the explanation of the former three embodiments, a user identifying information e, stored in a user identifying information storing means 115, must be kept secret to others. Furthermore, observing process of execution of a second calculation means 114, which needs e as an input to itself, may lead to leak of e. The same situation applies to an exponent generation means 130. Consequently, in practical use, the user identifying information storing means 115, the second calculation means 114 and the exponent generation means 130 should be protected by some means against attempts to pry out some crucial secret out of them.

[0052] One solution is confining the crucial part of the proving device 11 within hardware equipped with function to prevent its inside from being observed or tampered with by unauthorized means. Generally, such hardware is called tamper-resistant hardware.

[0053] In creating the tamper-resistant hardware, it is possible to use the technology disclosed in Patent Number 1,863,953, Patent Number 1,860,463 or Japanese Laid-Open Patent Publication 3-100753, for example. In Patent Number 1,863,953, an enclosure composed of a plurality of cards having multi-layered conductive patterns is provided surrounding an information memory medium. Memory information is destroyed when the conductive pattern which is detected differs from an expected pattern.

[0054] In Patent Number 1,860,463, a detection circuit composed of an integration circuit or the like is provided surrounding an information memory medium in addition to a conductive winding being formed, and through this, when there is infiltration to the electronic circuit region, fluctuations in electromagnetic energy are detected and memory information is destroyed.

[0055] In Japanese Laid-Open Patent Publication 3-100753, an optical detector is provided within hardware, and the optical detector detects external light which enters when a force is applied which destroys the hardware or punctures the hardware, and a memory destruction device resets memory information.

[0056] Further, choosing tamper-resistant hardware with portability such as a smart card or PC card may provide users with additional merits. Among information dealt with by a proving device 11, only an access ticket and a user identifying information are unique to an individual user. Hence, for example, it may be useful to confine a user identifying information storing means 115, access ticket storing means 113, a second calculation means 114 and exponent generation means 130 within a smart card or PC card, and implement the rest of the proving device 10 as a program to be executed on an arbitrary PC or workstation: a user can use an arbitrary PC or workstation, assuming that the program is installed on it, as his/her proving device only by inserting his/her own smart card or PC card into the computer. [0057] Fig. 17 depicts constitution of a proving device 11 of the first and second embodiments when a user identifying information storing means 115 and a second calculation means 114 are confined within a smart card.

[0058] Fig. 18 depicts constitution of a proving device 11 of the third embodiment when a exponent generation means 130 in addition to a user identifying information storing means 114 and a second calculation means 114 is confined within a smart card.

[0059] For both Figs. 17 and 18, a card-side I/F means 141 within a smart card is an interface to a host computer for communication between a host computer and the smart card. More practically, the card-side I/F means 141 comprises buffer memory and a communication program.

[0060] A host-side I/F means 140, which is a part of a host computer, is the counter part of the card-side I/F means 141. Both I/F means, cooperating with each other, transfer messages from the host computer to the smart card, and vice versa.

[0061] The following numbered paragraphs describe the function of the means constituting the devices.

- 1. The verification device 10 is invoked by a user.
- 2. The verification device 10 sends challenging data C and a modulus n stored in the access ticket public key storing means 101 to the challenging data storing means 111 of the proving device 11.
- 3. The host-side I/F means 140 of the proving device 10 sends the challenging data C and the modulus n to the card-side I/F means 141 within the smart card.
- 4. The access ticket searching means 142 retrieves an access ticket t corresponding to the modulus n that is stored in the challenging data storing means 111. As shown before, in any of the former three embodiments, the definition of an access ticket t involves a modulus n ($t = D e + \omega \phi$ (n) or t = D + F(n, e)). In the access ticket storing means

- 113, zero or more access ticket are stored, and each access ticket is indexed with the modulus that was used in generating the access ticket.
- 5. The first calculation means 112 of the proving device 11 calculates an intermediate result R' according to the relation (25).
- An access ticket t is stored in the access ticket storing means 113.

(25)
$$R' = C^t \mod n$$

6. The host-side I/F means 140 issues a requirement for a differential S to the card-side I/F means 141. A response which the host-side I/F means 140 receives is a differential S of one of the following forms: if the access ticket t and the means within the smart card were implemented in the manner of the first and second embodiments, the differential S satisfies the relation (26); if the access ticket t and the means within the smart card were implemented in the manner of the third embodiment, the differential S satisfies the relation (27).

(26)
$$S = C^e \mod n$$

(27)
$$S = C^{F(n, e)} \mod n$$

7. The response generation means 116 of the proving device 11 calculates a response R according to either the relation (28) or (29): if the access ticket t and the means within the smart card were implemented in the manner of the first and second embodiments, the relation (28) shall be applied; if the access ticket t and the means within the smart card were implemented in the manner of the third embodiment, the relation (29) shall be applied.

(28)
$$R = R'S \mod n$$

(29)
$$R = R'S^{-1} \mod n$$

8. The proving device 11 returns the generated response R to the response storing means 307 of the verification device 10.

[0062] In this embodiment, it is possible to calculate the intermediate result R' and the differential S concurrently, because the former is calculated within the host computer and the latter is within the smart card. Obviously, this concurrent calculation reduces the total time which the proving device 11 needs for calculating a response to a received challenging data.

[0063] Further, in this embodiment, the access ticket storing means 113 may retain more than one access tickets, and the access ticket searching means 142 retrieves an appropriate access ticket using a modulus issued by the verification device 10 as a key for retrieval. Basically, different verification device, which may be embedded within a different application program or server program, should assume a different modulus. Therefore, a user who want to access to more than one application programs or server programs is obliged to have a number of access tickets.

[0064] The stated function of the access ticket searching means 142 would release a user from paraphernalia of selecting a correct access ticket by himself.

Fifth Embodiment

5

10

15

20

25

30

35

55

[0065] In a fifth embodiment, the Pohlig-Hellman asymmetric key cryptography is used instead of the RSA public key cryptography.

[0066] In this embodiment, the definition of an access ticket t is given as the relation (30).

(30)
$$t = D + F(p, e)$$

[0067] The following bulleted paragraphs illustrate the symbols appearing in the relation (30).

An integer p is a very large prime number.

15

20

35

40

45

50

55

- A user identifying information e is an integer allocated to each user. The user identifying information e is unique
 to an individual user: a different user identifying information is allocated to a different user.
- An access ticket secret key D is one component of a Pohlig-Hellman asymmetric key pair. Since the assumed modulus is p, D satisfies the relation (31).

(31)
$$gcd(D, p-1) = 1$$

10 [0068] In the above, gcd(x, y) denotes the greatest common divisor of two integers x and y. The existence of an integer E satisfying the relation (32), which is called an access-ticket public key, is derived from the relation (31).

(32) ED mod
$$p-1 = 1$$

A two variable function F(x, y) is an arbitrary collision-free function. Practically, a collision-free function may be
constructed using a one-way hash function h as the relation (33).

(33)
$$F(x, y) = h(x | y)$$

[0069] Figs. 20 and 21 are for depicting this embodiment: Fig. 20 depicts the constitution of the devices of this embodiment; Fig. 21 depicts flow of data. In Fig. 20, a proving device 41 comprises the following means: a challenging data storing means 411; a first calculation means 412; an access ticket storing means 413; a second calculation means 414; a user identifying information storing means 415; a response generation means 416; and an exponent generation means 430. On the other hand, a verification device 40 comprises the following means: a key storing means 401; a random number generation means 402; a random number storing means 403; a response storing means 405; a randomizing means 421; a challenging seed storing means 422; a de-randomizing means 423; and an execution means 310

[0070] By the following numbered paragraphs, the function of the means constituting the devices will be described step by step.

- 1. The verification device 40 is invoked by a user.
- 2. The verification device 40 sends challenging data C and a modulus p to the challenging data storing means 411 of the proving device 41. The modulus p is stored in the key storing means 401. In this embodiment, the challenging data C is assumed to be generated in a manner similar to that in the second embodiment. However, it is easy to construct another embodiment such that challenging data C is generated in a manner similar to that in the first embodiment. The challenging data C in this embodiment is generated by carrying out the following steps: the random number generating means 402 generates a random integer r so that r and the modulus p are relatively prime (gcd(r, p) = 1); the random integer r is stored in the random number storing means 403; and the randomizing means 121 generates challenging data C according to the relation (34).

(34)
$$C = r^E C' \mod p$$

The integer C' is stored in the challenge seed storing means 422, and satisfies the relation (35) for some data K.

(35)
$$C' = K^E \mod p$$

The exponent E (access ticket public key) and the modulus p are both stored in the key storing means 401.

3. The first calculation means 412 of the proving device 41 calculates an intermediate result R' according to the relation 36.

An access ticket t to be used is stored in the access ticket storing means 113.

(36)
$$R' = C^t \mod p$$

1/

4. The exponent generation means 430 calculates F(p, e) by applying the collision-free function F to the modulus p, stored in the challenging data storing means 111, and the user identifying information e, stored in the user identifying information storing means 415.

5

5. Receiving the result from the exponent generation means 430, the second calculation means 414 of the proving device 41 calculates a differential S according to the relation (38).

10

(38)
$$S = C^{F(p, e)} \mod p$$

15

6. Receiving R' and S from the first calculation means 412 and the second calculation means 414, the response generation means 416 of the proving device 41 calculates a response R according to the relation (39).

(39)
$$R = R'S^{-1} \mod p$$

20

In the relation (39), S-1 denotes the reciprocal of S under the modulus p. Hence, S and S-1 satisfy the relation (40).

(40)

40)
$$SS^{-1} \mod p = 1$$

25

- 7. The proving device 41 returns the generated response R to the response storing means 405 of the verification
- 8. The de-randomizing means 423 of the verification device 40 calculates K' according to the relation (41).

30

35

40

(41)
$$K' = r^{-1}R \mod p$$

[0071] In course of calculation, the means uses the random number r stored in the random number storing means 403 and the response R stored in the response storing means 405.

Sixth Embodiment

[0072] A sixth embodiment is substantially similar to the third embodiment except that the ElGamal public key cryptography is used this time instead of the RSA public key cryptgraphy. In this embodiment, the definition of an access ticket t is given as the relation (42).

(42)
$$t = X + F(p, e)$$

45

- [0073] The following bulleted paragraphs illustrate the symbols appearing in the relation (42).
 - An integer p is a very large prime number.
 - A user identifying information e is an integer allocated to each user. The user identifying information is unique to an individual user: a different user identifying information is allocated to a different user.
- Let (X, Y) be an arbitrary ElGamal asymmetric key pair assuming p is the modulus. Therefore the relation (43) is satisfied.

$$(43) Y = G^X \bmod p$$

55

50

[0074] In the relation (43), G denotes an integer representing a generator of the multiplicative group of the finite field of order p.

• Equivalently, G satisfies the relations (44) and (45).

$$(44)$$
 $G > 0$

5

10

(45)
$$\min \{x>0 \mid G^X = 1 \mod p\} = p-1$$

- X is called an access ticket secret key, while Y is called an access ticket public key.
- A two variable function F(x, y) is an arbitrary collision-free function. Practically, a collision-free function may be constructed using a one-way hash function h as the relation (46).

(46)
$$F(x, y) = h(x | y)$$

15

25

30

[0075] Figs. 22 and 23 are for depicting this embodiment: Fig. 22 depicts the constitution of the devices of this embodiment; Fig. 23 depicts flow of data.

[0076] In Fig. 22, a proving device 51 comprises the following means: a challenging data storing means 511; a first calculation means 512; an access ticket storing means 513; a second calculation means 514; a user identifying information storing means 515; a response generation means 516; and an exponent generation means 530. On the other hand, a verification device 50 comprises the following means: an access ticket public key storing means 501; a random number generation means 502; a random number storing means 503; a response storing means 505; a randomizing means 521; a challenge seed storing means 522; a de-randomizing means 523; and an execution means 310.

[0077] By the following numbered paragraphs, the function of the means constituting the devices will be described step by step.

- 1. The verification device 50 is invoked by a user.
- 2. The verification device 50 sends a pair (u, C) of challenging data and a modulus p to the challenging data storing means 511 of the proving device 51. The modulus p is stored in the access ticket public key storing means 501. On the other hand, the challenging data u and C is generated as follows. The first component u is stored in the challenge seed storing means 522, and satisfies the relation (47) for some secret random number z.

(47)
$$u = G^z \mod p$$

35

40

45

In the challenge seed storing means 522, one more seed C' is stored. C' satisfies the relation (48) for some crucial data K.

(48)
$$C' = Y^z K \mod p$$

Using this C' as a seed, the other component C is generated as follows. The random number generating means 502 generates a random integer r so that r and the modulus p are relatively prime (gcd(r, p) = 1); the random integer r is stored in the random number storing means 503; the randomizing means 521 generates challenging data C according to the relation (49).

(49)
$$C = rC' \mod p$$

50

3. The first calculation means 512 of the proving device 51 calculates an intermediate result S according to the relation (50).

An access ticket t to be used is stored in the access ticket storing means 513.

(50)
$$S = u^t \mod p$$

55

4. The exponent generation means 530 calculates F(p, e) by applying the collision-free function F to the modulus p, stored in the challenging data storing means 511, and the user identifying information e, stored in the user

identifying information storing means 515.

5

5. Receiving the result from the exponent generation means 530, the second calculation means 514 of the proving device 51 calculates a differential S' according to the relation (52).

(52)
$$S' = u^{F(p, e)} \mod p$$

, 10

6. Receiving S and S' from the first calculation means 512 and the second calculation means 514, the response generation means 516 of the proving device 51 calculates a response R according to the relation (53).

15

(53)
$$R = S^{-1}S'C \mod p$$

In the relation (53), S-1 denotes the reciprocal of S over the modulus p. Hence, S and S-1 satisfy the relation (54).

20

25

(54)
$$SS^{-1} \mod p = 1$$

- 7. The proving device 51 returns the generated response R to the response storing means 505 of the verification device 50.
- 8. The de-randomizing means 523 of the verification device 50 calculates K' according to the relation (55).

(55)
$$K' = r^{-1}R \mod p$$

30 [

[0078] In course of calculation, the means uses the random number r stored in the random number storing means 503 and the response R stored in the response storing means 505.

[0079] The straightforward implementation of the above constitution would involve the following problem: use of a common pair of seeds for challenging data (u, C') for more than one occurrences of authentication allows an attacker to construct a device which emulates the proving device 11 without the user identifying information or the access ticket. To construct such an emulator, $H = RC-1 \mod p$ is recorded first where C is the challenging data at the first occurrence of authentication and R is the response to C calculated by the proving device 11. The emulator retains this H instead of the user identifying information e and the access ticket t, and on arbitrary input (u, C) issued by the verification device 10, returns to a response R calculated according to the relation $R = HC \mod p$. Thus, the verification device 10 should have pairs of seeds (u³, C') as many as necessary, and should use distinct pair for distinct occurrence of authentication (Note that k for $u = G^2 \mod p$ is a random number).

Seventh Embodiment

[0080] A seventh embodiment exploits the ElGamal signature rather than the RSA public key cryptography in the first three embodiments or the ElGamal public key cryptography in the sixth embodiment.

[0081] In this embodiment, the definition of an access ticket t is given as the relation (56).

(56)
$$t = X + F(p, e)$$

50

55

[0082] The following bulleted paragraphs illustrate the symbols appearing in the relation (56).

- An integer p is a very large prime number.
- A user identifying information e is an integer allocated to each user. The user identifying information e is unique to an individual user: a different user identifying information is allocated to a different user.
- Let (X, Y) be an arbitrary ElGamal asymmetric key pair assuming p is the modulus. Therefore the relation (57) is satisfied.

$$(57) Y = G^X \bmod p$$

[0083] In the relation (57), G denotes an integer representing a generator of the multiplicative group of the finite field of order p.

[0084] Equivalently, an integer G satisfies the relations (58) and (59).

(58)
$$G > 0$$

10

(59)
$$\min \{x>0 \mid G^X = 1 \mod p\} = p-1$$

[0085] X is called an access ticket secret key, while Y is called an access ticket public key.

15

A two variable function F(x, y) is an arbitrary collision-free function. Practically, a collision-free function may be constructed using a one-way hash function h as the relation (60) shows.

(60)
$$F(x, y) = h(x | y)$$

20

30

35

40

45

[0086] Figs. 24 and 25 are for depicting this embodiment: Fig. 24 depicts the constitution of the devices of this embodiment; Fig. 25 depicts flow of data.

[0087] In Fig. 24, a proving device 61 comprises the following means: a challenging data storing means 611; a random number generation means 612; a first calculation means 613; a second calculation means 614; an access ticket storing means 615; and a user identifying information storing means 616. On the other hand, verification device 60 comprises the following means: an access ticket public key storing means 601; a random number generation means 602; a random number storing means 603; a response storing means 605; a verification means 606; a execution means 607; and an error trapping means 608.

[0088] By the following numbered paragraphs, the function of the means constituting the devices will be described step by step.

- 1. The verification device 60 is invoked by a user.
- 2. The verification device 60 sends challenging data C, a modulus p and a generator G to the challenging data storing means 611 of the proving device 61. The modulus p and the generator G are stored in the access ticket public key storing means 601. On the other hand, the challenging data u and C are generated as follows: the random number generation means 602 generates a random integer r so that r and the modulus n are relatively prime (gcd(r, n) = 1); the generated random integer r is stored in the random number storing means 603; finally, the random number generation means 602 sets the value of C to r. As stated later in more detail, the response which the proving device 61 is to respond to the verification device 60 is ElGamal-signature of r with X as the signature key and p as the modulus.
- 3. The random number generation means 612 of the proving device 61 generates a random integer k so that k and p are relatively prime (gcd(k, p) = 1). Receiving the random integer k from the random number generation means 612 and the modulus p and the generator G from the challenging data storing means 611, the first calculation means 613 calculates a first component R of a response according to the relation (61).

(61)
$$R = G^k \mod p$$

50

Concurrently, the second calculation means 614 calculates a second component S of a response according to the relation (62).

• (62)
$$S = (C - R (t - F(p, e)))k^{-1} \mod p - 1$$

55

The access ticket t is stored in the access ticket storing means 615, and the modulus p and the challenging data C are stored in the challenging data storing means 611.

4. The proving device 61 returns the generated response R to the response storing means 605 of the verification

device 60.

5. The verification means 606 of the verification device 60 examines the relation (63)

(63)
$$G^r = Y^R R^S \mod p$$

The random integer r is stored in the random number storing means 603; the response pair (R, S) is stored in the response storing means 605; the modulus p, the access ticket public key Y and the generator G are all stored in the access ticket public key storing means 601.

Eighth Embodiment

10

30

50

55

[0089] An eighth embodiment provides an example of specification for ways how to generate access tickets safely.
[0090] In any case of the previous embodiments, access tickets are calculated as output of a predefined function on input of specific secret information, namely user identifying information and access ticket secret keys. Since leak of that secret information threatens the safety of the entire scheme of authentication, a safe device may be necessary in generating access tickets.

[0091] Such a device is required to provide the function which absolutely prevents leakage of the secret information contained within it or results of calculations carried out within it.

[0092] One of the simplest ways to constitute such a safe device is to implement services of generating and issuing access ticket to users on an isolated computer kept safe from any attempts at illegal accesses by users: in order to protect that server computer against physical accesses by users, the computer should be placed in a room entry into which is severely controlled; further, if the server computer is networked with users' PCs and access tickets are issued to users on network, the threat of attacks via network should be taken into account; in protecting the server computer from those network attacks, the firewall technology (for details see "Building Internet Firewalls" by D. Brent Chapman and Elizabeth D. Zwicky, O'Reilly & Associates, Inc.) may be useful.

[0093] As shown in the previous embodiments, an access ticket is generated so that only the user to whom the ticket is issued can use it. Speaking more accurately, a user may succeed in authentication procedure between a verification device and a proving device if and only if he is able to feed to the proving device both an access ticket and user identifying information based on which the access ticket has been generated.

[0094] Moreover, access tickets stated in the previous embodiments satisfy a stricter standard of safety: there is no way to forge an access ticket or to construct a device which emulates the proving device even though an attacker is assumed to be able to collect an arbitrary number of access tickets issued by legitimate access ticket issuers.

[0095] The fact that access ticket satisfies the above standard implies that access tickets are safe enough to be conveyed to users by relatively insecure means like electronic mails on Internet.

Ninth Embodiment

[0096] A ninth embodiment uses a composition method for an access ticket and user identifying information differing from those of the previous embodiments: this method is different from those of the previous embodiments in that the public information associated with user identifying information is used instead of the user identifying information itself in generating an access ticket.

[0097] Therefore, according to the method stated below, a safe access ticket issuing server stated in the eighth embodiment is not necessary: a user is allowed to generate an access ticket with a program executed on his own PC or workstation. That program doesn't contain any secret information or any secret algorithm.

[0098] The identifying information of a user U is the private key d_U of an RSA public key pair. By (e_U, n_U) , the public key corresponding to the private key d_U is denoted. Hence, $n_U = p_U q_U$ for two distinct large prime numbers p_U and q_U , and d_U and e_U are integers determined so as to satisfy the relations (64).

$$1 \leq d_{U} < (p_{U} - 1) (q_{U} - 1)$$

$$1 \leq e_{U} < (p_{U} - 1) (q_{U} - 1)$$

$$e_{U}d_{U} \equiv 1 \mod (p_{U} - 1) (q_{U} - 1)$$

[0099] Hereafter, the condition that n_U is at least as large as a constant N common to all users is further assumed. [0100] An access ticket for a user U is composed as follows: the public key (E, n) of an RSA public key pair is taken

to be the public key of the access ticket to be generated; the private key D which is paired with this public key (E, n) is taken to be the secret key of the access ticket; when the prime factorization of n is n = pq, the relations 65 is established; finally, the access ticket t_{ij} is defined by the relation (66).

$$(65) 1 \leq D < N$$

$$DE \equiv 1 \mod (p-1)(q-1)$$

(66)
$$t_U = D^e_U \mod n_U$$

[0101] In the above composition, the unique security characteristic information for authentication process is the private key D. Same as the cases in the previous embodiments, a user succeeds in authentication procedures if and only if he is able to prove that he has means to calculate a right response to challenging data issued to him by a verification device: the calculated response is right only when it is calculated based on the unique security characteristic information D

[0102] The composition method presented in this embodiment is characterized by the property that an access ticket is encryption of the unique security characteristic information D and the user identifying information is the unique decryption key to obtain D from the access ticket. In addition, since the user identifying information is the private key of an RSA key pair, anybody who is allowed to know the public key paired with the private key can generate an access ticket for the user at will.

[0103] Hereafter, the device composition and operation of the proving device 71 are described with reference to Fig. 26.

- 1. A verification device 10 sends challenging data C to a challenging data storing means 711 of a proving device 71.
- 2. A decryption key generation means 712 of the proving device 71 acquires user identifying information du which is stored in a user identifying information storing means 715 and an access ticket t_U which is stored in an access ticket storing means 713, and then calculates D' according to the relation (67).

(67)
$$D' = t_U^{dU} \mod n_U$$

3. On input of D' calculated by the decryption key generation means 712 and the challenging data C stored in the challenging data storing means 711, a response generation means 714 of the proving device 71 calculates a response R according to the relation (68). The calculated response R is returned to the verification device 10.

(68)
$$R = C^{D'} \mod n$$

4. The verification device 10 verifies the legitimacy of the response R.

[0104] The access ticket secret key D in the definition of the access ticket $t_U = D^e_U$ mod n_U must be kept secret to the user U. Therefore, the user identifying information storing means 713, the decryption key generation means 712 and the response generation means 714 are to be incorporated in a defense means 760 which is a tamper-resistant hardware.

[0105] The same as the cases of the previous embodiments, the verification device authenticates access rights of the user if and only if he has the right pair of the ticket t_U and the user identifying information e.

Tenth Embodiment

5

10

25

30

35

40

[0106] A tenth embodiment is substantially the same as the ninth embodiment, except that a response R is calculated using a symmetric key cipher instead of using the RSA public key cryptography as in the ninth embodiment and an access ticket is RSA-encryption of the decryption key (same as the encryption key) D of the symmetric key cipher. As the encryption key to generate the access ticket, the public key (e_{I,I}, n_{I,I}) and the RSA algorithm is used.

[0107] When the encryption function of the symmetric key encryption is expressed as Encrypt (key, plain message the output of this function being the cipher message of the plain message which is the second argument of the function) and the decryption function is expressed as Decrypt (key, cipher message: the output being the plain message corre-

sponding to the cipher message which is the second argument of the function), the challenging data C is defined by relation (69).

[0108] Furthermore, the access ticket tU is defined by the relation (70).

$$(70) t_U = D^{eU} \bmod n_U$$

[0109] Hereafter, the operation of the proving device 11 is described with reference to Fig. 26.

- 1. A verification device 10 sends challenging data C to a challenging data storing means 711.
- 2. A decryption key generation means 712 of the proving device 11 acquires user identifying information d_U which is stored in a user identifying information storing means 715 and an access ticket t_U which is stored in an access ticket storing means 713, and then calculates D' according to the relation (71).

(71)
$$D' = t_U^{dU} \mod n_U$$

3. On input of D' calculated by the decryption key generation means 712 and the challenging data C stored in the challenging data storing means 711, a response generation means 714 of the proving device 11 calculates a response R according to the relation (72). The calculated response R is sent back to the verification device 10.

4. The verification device 10 verifies the legitimacy of the response R.

[0110] The foregoing description of preferred embodiments of this invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.

40 Claims

5

10

15

20

25

30

45

50

55

1. A device for authenticating user's access rights to resources comprising:

first memory means (111) for storing challenging data (18);

second memory means (115) for storing user unique identifying information (16);

third memory means (113) for storing proof support information (13) which is a result of executing predetermined computations to the user unique identifying information (16) and unique security characteristic information (14) of the device;

response generation means (116) for generating a response (19) from the challenging data (18) stored in the first memory means (111), the user unique identifying information (16) stored in the second memory means (115), and the proof support information (13) stored in the third memory means (113); and

verification means (106) for verifying the legitimacy of the response (19) by verifying that the response (19), the challenging data (18) and the unique security characteristic information (14) of the device satisfy a specific predefined relation.

2. The device for authenticating user's access rights to resources of claim 1 further comprising:

protect means (160) for preventing any data inside from being observed or being tampered with from the outside, at least confining the second memory means (115) and the response generation means (116).

- 3. The device for authenticating user's access rights to resources of claim 1, wherein at least the second memory means (115) and the response generation means (116) are implemented within a small portable device such as a smart card.
- 4. The device for authenticating user's access rights to resources of any of claims 1 through 3, wherein the response generation means (116) comprises:

10

20

25

30

35

40

50

55

first calculation means (712) for replaying the unique security characteristic information (14) of the device by executing predetermined calculations to the user unique identifying information (16) stored in the second memory means (115) and the proof support information (13) stored in the third memory means (113); and second calculation means (714) for generating a response by executing predetermined calculations to the challenging data (18) stored in the first memory means (111) and the unique security characteristic information (14) of the device replayed by the first calculation means (712).

5. The device for authenticating user's access rights to resources of any of claims 1 through 3, wherein the response generation means (116) comprises:

third calculation means (112) for generating first intermediate information by executing predetermined calculations to the challenging data stored in the first memory means and the proof support information stored in the third memory means:

fourth calculation means (114) for generating second intermediate information by executing predetermined calculations to the challenging data (18) stored in the first memory means (111) and the user unique identifying information (16) stored in the second memory means (115); and

fifth calculation means (116) for generating a response by executing predetermined calculations to the first intermediate information generated by the third calculation means (112) and the second intermediate information generated by the fourth calculation means (114).

- 6. The device for authenticating user's access rights to resources of claim 5, further comprising: protect means (160) for preventing any data inside from being observed or being tampered with from the outside, at least confining the second memory means (115) and the fourth calculation means (114).
- 7. The device for authenticating user's access rights to resources of claim 5, wherein at least the second memory means (115) and the fourth calculation means (114) are implemented within a portable device such as a smart card.
- 8. The device for authenticating user's access rights to resources of any of claims 1 through 7, wherein

the unique security characteristic information (14) of the device is a decryption key of a cipher function, the challenging data (18) is encryption of information using the cipher function with the encryption key corresponding to the decryption key, and

the verification means (106) verifies the legitimacy of the response by verifying that the response (19) generated by the response generation means (116) is identical with decryption of the challenging data with the decryption key.

The device for authenticating user's access rights to resources of any of claims 1 through 7, wherein

the unique security characteristic information (14) of the device is an encryption key of a cipher function, and the verification means (106) verifies the legitimacy of the response by verifying that the response (19) generated by the response generation means (116) is identical with encryption of the challenging data with the encryption key.

10. The device for authenticating user's access rights to resources of any of claims 1 through 7, wherein

the characteristic information (14) of the device is the signature key of a digital signature function, and the verification means (106) verifies the legitimacy of the response by verifying that the response (19) generated by the response generation means (116) is identical with the digital signature for the challenging data, which is calculated with the signature key.

11. The device for authenticating user's access rights to resources of claim 8 or 9, wherein

the cipher function is of the asymmetric key cryptography, and the unique security characteristic information (14) of the device is one component of the key pair of the cipher function.

12. The device for authenticating user's access rights to resources of claim 11, wherein

5

10

15

20

25

30

35

40

45

50

55

the cipher function is of the public key cryptography, and the unique security characteristic information (14) of the device is the private key of the public key pair of the cipher function

13. The device for authenticating user's access rights to resources of claim 8 or 9, wherein

the cipher function is of the symmetric key cryptography, and the unique security characteristic information (14) of the device is the common key of the cipher function.

14. The device for authenticating user's access rights to resources of any of claims 1 through 13, further comprising:

a proving device (11) having the first memory means (111), the second memory means (115), the third memory means (113) and the response generation means (116); and a verification device (10) having fourth memory means for storing the challenging data (18), fifth memory means (105) for storing the response (19) and the verification means (106), wherein the verification device (10) transfers the challenging data (18) stored in the fourth memory means to the first memory means (111) of the proving device (11), the proving device (11) transfers the response (19) generated

memory means (111) of the proving device (11), the proving device (11) transfers the response (19) generated by the response generation means (116) to the fifth memory means (105) of the verification device (10), and the verification means (106) of the verification device (10) verifies the legitimacy of the response stored in the fifth memory means (105).

15. The device for authenticating user's access rights to resources of claim 14, wherein

the unique security characteristic information (14) of the device is an encryption key of a cipher function, the verification device (10) comprises random number generation means (102) for generating a random number and for storing it in the fourth memory means, and the verification means (106) verifies the legitimacy of the response by verifying that the response stored in the

the verification means (106) verifies the legitimacy of the response by verifying that the response stored in the fifth memory means (105) is identical with encryption of the challenging data stored in the fourth memory means (103) with the encryption key.

16. The device for authenticating user's access rights to resources of claim 14, wherein

the unique security characteristic information (14) of the device is a decryption key of a cipher function, the verification device (10) comprises random number generation means (102) for generating a random number, sixth memory means (103) for storing the generated random number and seventh memory means (122) for storing a seed for challenging data, and wherein

the random number generation means (102) stores the generated random number in the sixth memory means (103) while randomizing the seed for the challenging data stored in the seventh memory means (122) by executing predefined calculations to the random number stored in the sixth memory means (103) and the seed stored in the seventh memory means (122) and then storing the randomized seed as challenging data in the fourth memory means, and

the verification means (106) of the verification device (10) de-randomizes the response stored in the fifth memory means (105) by executing predefined calculations to the random number stored in the sixth memory means (103) and the response stored in the fifth memory means (105), and then verifies the legitimacy of the de-randomized response by verifying that the de-randomized result is identical with decryption of the seed stored in the seventh memory means (122) with the decryption key which is the unique security characteristic information (14) of the device.

17. The device for authenticating user's access rights to resources of claim 14, wherein

the unique security characteristic information (14) of the device is the signature key of a digital signature function, and

the verification device (10) comprises random number generation means (102) for generating a random number and storing the generated random number as challenging data in the fourth memory means, and wherein

the verification means (106) of the verification device (10) verifies the legitimacy of the response by verifying that the response stored in the fifth memory means (105) is identical with the digital signature for the challenging data stored in the fourth memory means, which is calculated with the signature key which is the unique security characteristic information (14) of the device.

18. The device for authenticating user's access rights to resources of claim 15, wherein

5

10

15

25

30

35

40

45

50

55

the unique security characteristic information (14) of the device is the private key D of an RSA public key pair with a modulus n, and

the verification means (106) verifies the legitimacy of the response by verifying that the E-th power of the response R stored in the fifth memory means (105), where E denotes the public key associated with the private key D, is congruent with the challenging data C stored in the fourth memory means modulo n, i.e. R^E mod n = C mod n.

19. The device for authenticating user's access rights to resources of claim 16, wherein

the unique security characteristic information (14) of the device is the private key D of an RSA public key pair with a modulus n,

a seed C' for challenging data stored in the seventh memory means (122) is an RSA-encryption of data K with the public key E of the RSA public key pair, i.e. DE mod $\phi(n) = 1$, C' = K^E mod n,

a random number r generated by the random number generation means (102) is stored in the sixth memory means (103),

challenging data C generated and stored in the fourth memory means satisfies the relation $C = r^EC' \mod n$, and the verification means (106) verifies the legitimacy of the response R stored in the fifth memory means (105) by verifying that the quotient of R divided by r modulo n is congruent with the data K modulo n, i.e. K mod n = r^1R mod n.

20. The device for authenticating user's access rights to resources of claim 18 or 19, wherein

a proof support information t (13) stored in the third memory means (113) satisfies the relation $t = D - e + w \phi$ (n), where e denotes user unique identifying information (16) stored in the second memory means (115), w denotes a conflict-free random number determined dependent upon both n and e and ϕ (n) denotes the Euler number of n, and

the response generated by response generation means (116) is identical with the D-th power of challenging data C stored in the first memory means (111) modulo n, i.e. $R = C^D \mod n$.

21. The device for authenticating user's access rights to resources of claim 20, wherein the response generation means (116) further comprises:

third calculation means (112) for calculating the t-th power of challenging data C stored in the first memory means (111) modulo n, i.e. C^t mod n, where t denotes proof support information (13) stored in the third memory means (113);

fourth calculation means (114) for calculating the e-th power of the challenging data C modulo n, i.e. C^e mod n, where e denotes user unique identifying information (16) stored in the second memory means (115); and fifth calculation means (116) for calculating a response R by multiplying the result calculated by the third calculation means (112) by the result calculated by the fourth calculation means (114) modulo n, i.e. $R = C^tC^e$ mod n.

- 22. The device for authenticating user's access rights to resources of claim 21, further comprising: protect means (160) for preventing any data inside from being observed or being tampered with from the
 - outside, confining the second memory means (115) and the fourth calculation means (114).
- 23. The device for authenticating user's access rights to resources of claim 18 or 19, wherein

proof support information t (13) stored in the third memory means (113) satisfies the relation t = D + F(n, e), where e denotes user unique identifying information (16) stored in the second memory means (115), and F(x, y) denotes a two-variable collision-free function, and

a response generated by the response generation means (116) is identical with the D-th power of challenging data C stored in the first memory means (111) modulo n, i.e. $R = C^D \mod n$.

24. The device for authenticating user's access rights to resources of claim 23, wherein the response generation means (116) further comprises:

5

10

15

20

25

30

35

40

50

55

third calculation means (112) for calculating the t-th power of challenging data C stored in the first memory means (111) modulo n, where t denotes the proof support information (13) stored in the third memory means (113), i.e. C^t mod n;

fourth calculation means (114) for calculating the F(n, e)-th power of the challenging data C modulo n, i.e. $C^{F(n,e)}$ mod n, where e denotes the user unique identifying information (16) stored in the second memory means (115) and F(x, y) denotes a two-variable collision-free function; and

fifth calculation means (116) for calculating a response R by dividing the result calculated by the third calculation means (112) by the result calculated by the fourth calculation means (114) modulo n, i.e. $R = C^t C^{-F(n,e)} \mod n$.

- 25. The device for authenticating user's access rights to resources of claim 24, further comprising: protect means (160) for preventing any data inside from being observed or being tampered with from the outside, confining the second memory means (115) and the fourth calculation means (114).
 - 26. The device for authenticating user's access rights to resources of claim 15, wherein

the unique security characteristic information (14) of the device is a key D of a Pohlig-Hellman key pair of a modulus p, and

the verification means (106) verifies the legitimacy of the response by verifying that the E-th power of the response R stored in the fifth memory means (105), where E denotes the counterpart key of the key D, i.e. DE mod (p-1) = 1, is congruent with the challenging data C stored in the fourth memory means modulo p, i.e. $R^E \mod p = C \mod p$.

27. The device for authenticating user's access rights to resources of claim 16, wherein

the unique security characteristic information (14) of the device is a key D of a Pohlig-Hellman key pair of a modulus p,

a seed C' for challenging data stored in the seventh memory means (422) is Pohlig-Hellman-encryption of data K with the counterpart key E of the key D, i.e. DE mod (p-1) = 1, C' = K^E mod p,

a random number r generated by the random number generation means (402) is stored in the sixth memory means (403),

challenging data C stored in the fourth memory means satisfies the relation $C = r^EC' \mod p$, and the verification means (106) verifies the legitimacy of the response R stored in the fifth memory means (405) by verifying that the quotient of R divided by r modulo p is congruent with the data K modulo p, i.e. K mod p = r^1R mod p.

45 **28.** The device for authenticating user's access rights to resources of claim 26 or 27, wherein

proof support information t (13) stored in the third memory means (413) satisfies the relation t = D + F(p, e), where e denotes the user unique identifying information (16) stored in the second memory means (415), and F(x, y) denotes a two-variable collision-free function, and

a response generated by the response generation means (416) is identical with the D-th power of challenging data C stored in the first memory means (411) modulo p, i.e. $R = C^D \mod p$.

29. The device for authenticating user's access rights to resources of claim 28, wherein the response generation means (416) further comprises:

third calculation means (412) for calculating the t-th power of challenging data C stored in the first memory means (411) modulo p, where t denotes the proof support information (13) stored in the third memory means (413), i.e. C^t mod p;

fourth calculation means (414) for calculating the F(p, e)-th power of the challenging data C modulo p, i.e. $C^{F(p,e)}$ mod p, where e denotes the user unique identifying information (16) stored in the second memory means (415) and F(x, y) denotes a two-variable collision-free function; and

fifth calculation means (416) for calculating a response R by dividing the result calculated by the third calculation means (412) by the result calculated by the fourth calculation means (414) modulo p, i.e. $R = C^t C^{-F(p,e)}$ mod p.

- 30. The device for authenticating user's access rights to resources of claim 29, further comprising: protect means (160) for preventing any data inside from being observed or being tampered with from the outside, confining the second memory means (415) and the fourth calculation means (414).
- 31. The device for authenticating user's access rights to resources of claim 16, wherein

the unique security characteristic information (14) of the device is the private key X of an ElGamal public key pair with a modulus p and a generator G.

the public key Y corresponding to X is the X-th power of G modulo p, i.e. $Y = G^X \mod p$,

u denotes the z-th power of G modulo p ($u = G^z \mod p$) for a random number z,

K' denotes the product modulo p of the z-th power of Y modulo p and a data K, i.e. $K' = Y^z K \mod p$,

the seventh memory means (522) retains the pair of u and K',

a random number r generated by the random number generation means (602) is stored in the sixth memory means (603),

C denotes the product modulo p of K' and r, i.e. $C = rK' \mod p$,

the fourth memory means retains the pair C and u, and

5

.10

15

20

25

30

35

40

45

50

the verification means (106) verifies the legitimacy of the response R stored in the fifth memory means (505) by verifying that the quotient of R divided by r modulo p is congruent with K modulo p, i.e. K mod p = Γ^1 R mod p.

- 32. The device for authenticating user's access rights to resources of claim 31, wherein
 - proof support information t (13) stored in the third memory means (513) satisfies the relation t = D + F(p, e), where e denotes the user unique identifying information (16) stored in the second memory means (515) and F(x, y) denotes a two-variable collision-free function, and
 - a response R generated by the response generation means (516) is identical with the quotient of C divided by X-th power of u modulo p, i.e. $R = u^{-X}C \mod p$, where the pair C and u is the challenging data stored in the first memory means (511).
- 33. The device for authenticating user's access rights to resources of claim 32, wherein the response generation means (516) further comprises:
 - third calculation means (512) for calculating the t-th power of the component u of the challenging data pair stored in the first memory means (511) modulo p, where t denotes proof support information stored in the third memory means (513), i.e. u^t mod p;

fourth calculation means (514) for calculating the F(p, e)-th power of u modulo p, i.e. $u^{F(p,e)}$ mod p, where e denotes the user unique identifying information (16) stored in the second memory means (515) and F(x, y) denotes a two-variable collision-free function; and

fifth calculation means (516) for calculating a response R by dividing the product of the other component C of the challenging data pair and the result calculated by the fourth calculation means (514) by the result calculated by the third calculation means (512) modulo p, i.e. $R = Cu^{F(p,e)} u^{-1} \mod p$.

- 34. The device for authenticating user's access rights to resources of claim 33, further comprising:
 - protect means (160) for preventing any data inside from being observed or being tampered with from the outside, confining the second memory means (515) and the fourth calculation means (514).
- 35. The device for authenticating user's access rights to resources of claim 17, wherein
- the unique security characteristic information (14) of the device is the signature key X of an ElGamal public key pair with a modulus p and a generator G,

the public key Y corresponding to X is the X-th power of G modulo p, i.e. $Y = G^X \mod p$, a response stored in the fifth memory means (605) is a pair of R and S, and

the verification means (606) verifies the legitimacy of the response R stored in the fifth memory means (605) by verifying that the C-th power of G for the challenging data C stored in the fourth memory means is congruent modulo p with the product of the R-th power of Y and the S-th power of R, i.e. G^C mod $P = Y^R R^S$ mod p.

5 36. The device for authenticating user's access rights to resources of claim 35, wherein

10

15

25

50

55

proof support information t (13) stored in the third memory means (613) satisfies the relation t = D + F(p, e), where e denotes the user unique identifying information (16) stored in the second memory means (616), and F(x, y) denotes a two-variable collision-free function, and

the response generation means (116) generates a response pair R and S by carrying out the following steps of:

generating a random number k; calculating R as the k-th power of G modulo p, i.e. $R = G^k \mod p$; and calculating S according to the relation $S = (C - RX) k^1 \mod (p-1)$.

calculating S according to the relation $S = (C - RX) k^1 \mod (p-1)$.

37. The device for authenticating user's access rights to resources of claim 36, further comprising: protect means (160) for preventing any data inside from being observed or being tampered with from the outside, confining the second memory means (616) and the fourth calculation means (614).

38. The device for authenticating user's access rights to resources of claim 4, wherein

the user unique identifying information (16) stored in the second memory means (715) is a decryption key of a cipher function,

the proof support information (13) stored in the third memory means (713) is an encryption of the unique security characteristic information of the device with the encryption key corresponding the decryption key, and the first calculation means (712) calculates the unique security characteristic information (14) of the device by decrypting the proof support information stored in the third memory means (713) with the decryption key stored in the second memory means (715).

39. The device for authenticating user's access rights to resources of claim 38, wherein

the cipher function is of the asymmetric key cryptography, and the user unique identifying information (16) is a component of the key pair of the cipher function.

40. The device for authenticating user's access rights to resources of claim 39, wherein

the cipher function is of the public key cryptography, and the user unique identifying information (16) is the private key of the public key pair of the cipher function.

40 41. The device for authenticating user's access rights to resources of claim 38, wherein

the cipher function is of the symmetric key cryptography, and the user unique identifying information (16) is the common secret key of the cipher function.

45 42. The device for authenticating user's access rights to resources of claim 8 or 16, wherein the verification device (10) further comprises:

eighth memory means (310a) for storing a clear data encryption of which is the challenging data or the seed for challenging data stored in the first memory means (111); and

comparison means (310b) for examining whether the clear data stored in the eighth memory means (310a) is identical with data inputted to the comparison means (310b), and wherein

the verification means (106) feeds the response or the de-randomized value of the response stored in the fifth memory means (105) to the comparison means (310b), receives the answer from the comparison means (310b), and thereby the verification means (106) verifies the legitimacy of the response if and only if the received answer shows that the clear data stored in the eighth memory means (310a) is identical with the data inputted to the comparison means (310b).

43. The device for authenticating user's access rights to resources of claim 8 or 16, wherein

the verification device (10) further comprises:

5

10

15

20

25

30

35

40

45

50

55

ninth memory means (310a) for storing a value obtained by applying a one-way function to clear data encryption of which is the challenging data or the seed for challenging data stored in the seventh memory means (122); sixth calculation means (310c) for outputting a value calculated by applying the one-way function to an inputted data: and

comparison means (310b) for examining whether the value stored in the ninth memory means (310a) is identical with data inputted to the comparison means (310b), and wherein

the verification means (106) feeds the response or the de-randomized value of the response to the sixth calculation means (310c), receives a result from the sixth calculation means (310c), feeds the result to the comparison means (310b) and receives an answer from the comparison means (310b), and thereby the verification means (106) verifies the legitimacy of the response if and only if the received answer shows that the result of the calculation by the sixth calculation means (310c) is identical with the data stored in the ninth memory means (310a).

44. The device for authenticating user's access rights to resources of claim 8 or 16, wherein the verification device (10) further comprises:

program execution means (310) for executing code of a program encryption of which is the challenging data stored in the seventh memory means (122), and wherein

the verification means (106) feeds the response stored in the fifth memory means (105) as program code to the program execution means (310), and

the program execution means (310) correctly functions if and only if the response generation means (116) correctly decrypts the challenging data which is an encryption of the code of the program, that is, the encryption of the program is correctly decrypted.

45. The device for authenticating user's access rights to resources of claim 8 or 16, wherein the verification device (10) further comprises:

program execution means (310);

program storing means (310g); and

program decryption means (310h), and wherein

the program storing means (310g) stores code of a program a part or all of which is encrypted,

an encryption of the decryption key for the partial or whole encrypted program code is the challenging data stored in the seventh memory means (122),

the verification means (106) feeds the response to the program decryption means (310h),

the program decryption means (310h) decrypts the program stored in the program storing means (310g) with the response as a decryption key, and

the program execution means (310) correctly executes the decrypted program if and only if the response generation means (116) correctly decrypts the challenging data, that is, the decryption key for decrypting the encryption of the program is correctly decrypted.

46. The device for authenticating user's access rights to resources of claim 14, wherein

the proving device (11) and the verification device (10) are installed in a box material, and the verification device (10) transfers the challenging data (18) stored in the fourth memory means to the first memory means (111) of the proving device (11) and the proving device (11) transfers the response (19) generated by the response generation means (116) to the fifth memory means (105) of the verification device (10) without using a communication network outside of the box material.

47. A method for authenticating user's access rights to resources by verifying the legitimacy of a response generated from challenging data for proving the user's access rights, comprising:

a step for storing the challenging data;

a step for storing user unique identifying information;

a step for storing proof support information which is a result of predetermined computations to the user unique identifying information and unique security characteristic information;

a step for generating a response by executing predetermined computations to the challenging data, the user

28

unique identifying information and the proof support information; and a step for verifying the legitimacy of the response by verifying that the response, the challenging data and the unique security characteristic information satisfy a specific predefined relation.

48. A computer program product for use with a computer, the computer program product comprising:

a computer usable medium having computer readable program code means embodied in the medium for causing the computer to generate a response (19) from challenging data (18), the legitimacy of which is to be verified for authenticating user's access rights, the computer program product having:

computer readable program code means for causing the computer to store the challenging data (18); computer readable program code means for causing the computer to store user unique identifying information (16):

computer readable program code means for causing the computer to store proof support information (13) which is a result of predetermined computations to the user unique identifying information (16) and unique security characteristic information (14); and

computer readable program code means for causing the computer to generate a response (19) by executing predetermined computations to the challenging data (18), the user unique identifying information (16) and the proof support information (13).

49. The computer program product of claim 48, comprising:

computer readable program code means for causing the computer to verify the legitimacy of the response (19) by verifying that the response (19), the challenging data (18) and the unique security characteristic information (14) satisfy a specific predefined relation.

50. A program execution control device for authenticating user's access rights to resources by verifying the legitimacy of a response generated from challenging data for proving the user's access rights and controlling execution of a program based on the authentication of the user's access rights, comprising a device as defined in any one of claims 1 to 46 and

continuation means for continuing execution of the program if the legitimacy of the response is verified.

51. An information processing apparatus for authenticating user's access rights to specific information processing resources by verifying the legitimacy of a response (19) generated for proving the user's access rights and permitting access to the specific information processing resources, comprising a device as defined in any one of claims 1 to 46 and

permission means for permitting access to the specific information processing resources if the legitimacy of the response is verified.

Patentansprüche

10

15

30

35

40

45

50

55

Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen, umfassend:

eine erste Speicheranordnung (111) zum Speichern von Abfragedaten (18);

eine zweite Speicheranordnung (115) zum Speichern einer eindeutigen Benutzerkennung (16);

eine dritte Speicheranordnung (113) zum Speichern von Nachweisunterstützungsinformation (13), die ein Ergebnis der Ausführung vorbestimmter Berechnungen an der eindeutigen Benutzerkennung (16) und eindeutiger Sicherheitskenninformation (14) der Vorrichtung ist;

eine Antworterzeugungsanordnung (116) zum Erzeugen einer Antwort (19) aus den in der ersten Speicheranordnung (111) gespeicherten Abfragedaten (18), der in der zweiten Speicheranordnung (115) gespeicherten eindeutigen Benutzerkennung (16) und der in der dritten Speicheranordnung (113) gespeicherten Nachweisunterstützungsinformation (13); und

eine Verifikationsanordnung (106) zum Verifizieren der Richtigkeit der Antwort (19) durch Verifizieren, daß die Antwort (19), die Abfragedaten (18) und die eindeutige Sicherheitskenninformation (14) der Vorrichtung eine spezielle vordefinierte Relation erfüllen.

2. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 1, ferner umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außen einsehbar oder

29

manipulierbar sind, die zumindest die zweite Speicheranordnung (115) und die Antworterzeugungsanordnung (116) einschließt.

- Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 1, bei der zumindest die zweite Speicheranordnung (115) und die Antworterzeugungsanordnung (116) innerhalb einer kleinen tragbaren Vorrichtung wie einer Chipkarte implementiert sind.
- Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach einem der Ansprüche 1 bis
 bei der

die Antworterzeugungsanordnung (116) umfaßt:

5

10

15

20

40

50

55

eine erste Rechenanordnung (712) zum Wiedergeben der eindeutigen Sicherheitskenninformation (14) der Vorrichtung durch Ausführen vorbestimmter Berechnungen an der in der zweiten Speicheranordnung (115) gespeicherten eindeutigen Benutzerkennung (16) und der in der dritten Speicheranordnung (113) gespeicherten Nachweisunterstützungsinformation (13); und

eine zweite Rechenanordnung (714) zum Erzeugen einer Antwort durch Ausführen vorbestimmter Berechnungen an den in der ersten Speicheranordnung (111) gespeicherten Abfragedaten (18) und der von der ersten Rechenanordnung (712) wiedergegebenen eindeutigen Sicherheitskenninformation (14) der Vorrichtung.

 Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach einem der Ansprüche 1 bis 3, bei der

dié Antworterzeugungsanordnung (116) umfaßt:

eine dritte Rechenanordnung (112) zum Erzeugen einer ersten Zwischeninformation durch Ausführen vorbestimmter Berechnungen an den in der ersten Speicheranordnung gespeicherten Abfragedaten und der in der dritten Speicheranordnung gespeicherten Nachweisunterstützungsinformation; eine vierte Rechenanordnung (114) zum Erzeugen einer zweiten Zwischeninformation durch Ausführen vorbestimmter Berechnungen an den in der ersten Speicheranordnung (111) gespeicherten Abfragedaten (18)
 und der in der zweiten Speicheranordnung (115) gespeicherten eindeutigen Benutzerkennung (16); und eine fünfte Rechenanordnung (116) zum Erzeugen einer Antwort durch Ausführen vorbestimmter Berechnungen an der durch die dritte Rechenanordnung (112) erzeugten ersten Zwischeninformation und der durch die vierte Rechenanordnung (114) erzeugten zweiten Zwischeninformation.

35 6. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 5, des weiteren umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außen einsehbar oder manipulierbar sind, die zumindest die zweite Speicheranordnung (115) und die vierte Rechenanordnung (114) einschließt.

- Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 5, bei der zumindest die zweite Speicheranordnung (115) und die vierte Rechenanordnung (114) innerhalb einer tragbaren Vorrichtung wie einer Chipkarte implementiert sind.
- Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach einem der Ansprüche 1 bis 7, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung ein Entschlüsselungsschlüssel einer Verschlüsselungsfunktion ist,

die Abfragedaten (18) eine Verschlüsselung von Information unter Verwendung der Verschlüsselungsfunktion mit dem Verschlüsselungsschlüssel entsprechend dem Entschlüsselungsschlüssel sind und die Verifikationsanordnung (106) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die von der Antworterzeugungsanordnung (116) erzeugte Antwort (19) identisch mit der Entschlüsselung der Abfragedaten mit dem Entschlüsselungsschlüssel ist.

 Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach einem der Ansprüche 1 bis 7, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung ein Verschlüsselungsschlüssel einer Verschlüsselungsfunktion ist und

die Verifikationsanordnung (106) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die von der Antworterzeugungsanordnung (116) erzeugte Antwort (19) identisch mit der Verschlüsselung der Abfragedaten mit dem Verschlüsselungsschlüssel ist.

Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach einem der Ansprüche 1 bis
 bei der

5

10

20

25

30

35

40

45

50

55

- die Kenninformation (14) der Vorrichtung der Signaturschlüssel einer digitalen Signaturfunktion ist und die Verifikationsanordnung (106) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die von der Antworterzeugungsanordnung (116) erzeugte Antwort (19) identisch mit der digitalen Signatur für die Abfragedaten ist, die mit dem Signaturschlüssel berechnet wird.
- 15 11. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 8 oder 9, bei der
 - die Verschlüsselungsfunktion aus der Kryptographie mit asymmetrischem Schlüssel stammt und die eindeutige Sicherheitskenninformation (14) der Vorrichtung eine Komponente des Schlüsselpaars der Verschlüsselungsfunktion ist.
 - 12. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 11, bei der
 - die Verschlüsselungsfunktion aus der Kryptographie mit öffentlichem Schlüssel stammt und die eindeutige Sicherheitskenninformation (14) der Vorrichtung der private Schlüssel des Paars mit öffentlichem Schlüssel der Verschlüsselungsfunktion ist.
 - 13. Vorrichtung zum Authentifizieren von Benützerzugangsrechten zu Ressourcen nach Anspruch 8 oder 9, bei der
 - die Verschlüsselungsfunktion aus der Kryptographie mit symmetrischem Schlüssel stammt und die eindeutige Sicherheitskenninformation (14) der Vorrichtung der gemeinsame Schlüssel der Verschlüsselungsfunktion ist.
 - 14. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach einem der Ansprüche 1 bis 13, ferner umfassend:
 - eine Nachweisvorrichtung (11), welche die erste Speicheranordnung (111), die zweite Speicheranordnung (115), die dritte Speicheranordnung (113) und die Antworterzeugungsanordnung (116) enthält; und eine Verifikationsvorrichtung (10), welche eine vierte Speicheranordnung zum Speichern der Abfragedaten (18), eine fünfte Speicheranordnung (105) zum Speichern der Antwort (19) und die Verifikationsanordnung (106) enthält, wobei
 - die Verifikationsvorrichtung (10) die in der vierten Speicheranordnung gespeicherten Abfragedaten (18) an die erste Speicheranordnung (111) der Nachweisvorrichtung (11) überträgt, die Nachweisvorrichtung (11) die von der Antworterzeugungsanordnung (116) erzeugte Antwort (19) an die fünfte Speicheranordnung (105) der Verifikationsvorrichtung (10) überträgt und die Verifikationsanordnung (106) der Verifikationsvorrichtung (10) die Richtigkeit der in der fünften Speicheranordnung (105) gespeicherten Antwort verifiziert.
 - 15. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 14, bei der
 - die eindeutige Sicherheitskenninformation (14) der Vorrichtung ein Verschlüsselungsschlüssel einer Verschlüsselungsfunktion ist,
 - die Verifikationsvorrichtung (10) eine Zufallszahlerzeugungsanordnung (102) zum Erzeugen einer Zufallszahl und zu deren Speicherung in der vierten Speicheranordnung umfaßt und
 - die Verifikationsanordnung (106) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die in der fünften Speicheranordnung (105) gespeicherte Antwort identisch mit der Verschlüsselung der in der vierten Speicheranordnung (103) gespeicherten Abfragedaten mit dem Verschlüsselungsschlüssel ist.
 - 16. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 14, bei der

5

10

15

25

30

35

40

45

50

55

die eindeutige Sicherheitskenninformation (14) der Vorrichtung ein Entschlüsselungsschlüssel einer Verschlüsselungsfunktion ist,

die Verifikationsvorrichtung (10) eine Zufallszahlerzeugungsanordnung (102) zum Erzeugen einer Zufallszahl, eine sechste Speicheranordnung (103) zum Speichern der erzeugten Zufallszahl und eine siebte Speicheranordnung (122) zum Speichern eines Startparameters für Abfragedaten umfaßt, und bei der

die Zufallszahlerzeugungsanordnung (102) die erzeugte Zufallszahl in der sechsten Speicheranordnung (103) speichert, während der in der siebten Speicheranordnung (122) gespeicherte Startparameter für die Abfragedaten durch Ausführen vordefinierter Berechnungen an der in der sechsten Speicheranordnung (103) gespeicherten Zufallszahl und dem in der siebten Speicheranordnung (122) gespeicherten Startparameter randomisiert wird und dann der randomisierte Startparameter als Abfragedaten in der vierten Speicheranordnung gespeichert wird, und

die Verifikationsanordnung (106) der Verifikationsvorrichtung (10) die in der fünften Speicheranordnung (105) gespeicherte Antwort durch Ausführen vorbestimmter Berechnungen an der in der sechsten Speicheranordnung (103) gespeicherten Zufallszahl und der in der fünften Speicheranordnung (105) gespeicherten Antwort de-randomisiert und dann die Richtigkeit der de-randomisierten Antwort verifiziert, indem verifiziert wird, daß das de-randomisierte Ergebnis identisch mit der Entschlüsselung des in der siebten Speicheranordnung (122) gespeicherten Startparameters mit dem Entschlüsselungsschlüssel ist, der die eindeutige Sicherheitskenninformation (14) der Vorrichtung ist.

20 17. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 14, bei der

die eindeutige Sicherheitskenninformation (14) - der Vorrichtung der Signaturschlüssel einer digitalen Signaturfunktion ist und

die Verifikationsvorrichtung (10) eine Zufallszahlerzeugungsanordnung (102) zum Erzeugen einer Zufallszahl und zum Speichern der erzeugten Zufallszahl als Abfragedaten in der vierten Speicheranordnung umfaßt, und bei der

die Verifikationsanordnung (106) der Verifikationsvorrichtung (10) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die in der fünften Speicheranordnung (105) gespeicherte Antwort identisch mit der digitalen Signatur für die in der vierten Speicheranordnung gespeicherten Abfragedaten ist, die mit dem Signaturschlüssel berechnet wird, der die eindeutige Sicherheitskenninformation (14) der Vorrichtung ist.

18. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 15, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung der private Schlüssel D eines RSA-Paars mit öffentlichem Schlüssel mit einem Modul n ist und

die Verifikationsanordnung (106) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die E-te Potenz der in der fünften Speicheranordnung (105) gespeicherten Antwort R, wobei E den dem privaten Schlüssel D zugeordneten öffentlichen Schlüssel bezeichnet, kongruent mit den in der vierten Speicheranordnung gespeicherten Abfragedaten C modulo n ist, d.h. R^E mod n = C mod n.

19. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 16, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung der private Schlüssel D eines RSA-Paars mit öffentlichem Schlüssel mit einem Modul n ist,

ein Startparameter C' für in der siebten Speicheranordnung (122) gespeicherte Abfragedaten eine RSA-Verschlüsselung von Daten K mit dem öffentlichen Schlüssel E des RSA-Paars mit öffentlichem Schlüssel ist, d. h. DE mod $\phi(n) = 1$, C' = K^E mod n,

eine von der Zufallszahlerzeugungsanordnung (102) erzeugte Zufallszahl r in der sechsten Speicheranordnung (103) gespeichert ist,

erzeugte und in der vierten Speicheranordnung gespeicherte Abfragedaten C die Relation $C = r^EC' \mod n$ erfüllen, und

die Verifikationsanordnung (106) die Richtigkeit der in der fünften Speicheranordnung (105) gespeicherten Antwort R verifiziert, indem verifiziert wird, daß der Quotient R dividiert durch r modulo r kongruent mit den Daten K modulo r ist, d.h. K mod r = r mod r.

20. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 18 oder 19, bei der

in der dritten Speicheranordnung (113) gespeicherte Nachweisunterstützungsinformation t (13) die Relation

t=D-e+w $\phi(n)$ erfüllt, wobei e eine in der zweiten Speicheranordnung (115) gespeicherte eindeutige Benutzerkennung (16) bezeichnet, w eine konfliktfreie Zufallszahl ist, die abhängig sowohl von n als auch e ermittelt wird, und $\phi(n)$ die Euler-Zahl von n bezeichnet, und

die von der Antworterzeugungsanordnung (116) erzeugte Antwort identisch mit der D-ten Potenz von in der ersten Speicheranordnung (111) gespeicherten Abfragedaten C modulo n ist, d.h., R = C^D mod n.

21. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 20, bei der die Antworterzeugungsanordnung (116) des weiteren umfaßt:

5

10

15

30

35

40

55

eine dritte Rechenanordnung (112) zum Berechnen der t-ten Potenz von in der ersten Speicheranordnung (111) gespeicherten Abfragedaten C modulo n, d.h. C^t mod n, wobei t in der dritten Speicheranordnung (113) gespeicherte Nachweisunterstützungsinformation (13) bezeichnet;

eine vierte Rechenanordnung (114) zum Berechnen der e-ten Potenz der Abfragedaten C modulo n, d.h. Ce mod n, wobei e eine in der zweiten Speicheranordnung (115) gespeicherte eindeutige Benutzerkennung (16) bezeichnet; und

eine fünfte Rechenanordnung (116) zum Berechnen einer Antwort R durch Multiplikation des von der dritten Rechenanordnung (112) berechneten Ergebnisses mit dem von der vierten Rechenanordnung (114) berechneten Ergebnis modulo n, d.h. R = C^tC^e mod n.

20 22. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 21, ferner umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außen einsehbar oder manipulierbar sind, welche die zweite Speicheranordnung (115) und die vierte Rechenanordnung (114) einschließt.

25. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 18 oder 19, bei der

in der dritten Speicheranordnung (113) gespeicherte Nachweisunterstützungsinformation t (13) die Relation t = D + F(n, e) erfüllt, wobei e eine in der zweiten Speicheranordnung (115) gespeicherte eindeutige Benutzerkennung (16) bezeichnet und F(x, y) eine kollisionsfreie Funktion mit zwei Variablen bezeichnet, und eine von der Antworterzeugungsanordnung (116) erzeugte Antwort identisch mit der D-ten Potenz von in der ersten Speicheranordnung (111) gespeicherten Abfragedaten C modulo n ist, d.h. $R = C^D \mod n$.

24. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 23, bei der die Antworterzeugungsanordnung (116) des weiteren umfaßt:

eine dritte Rechenanordnung (112) zum Berechnen der t-ten Potenz von in der ersten Speicheranordnung (111) gespeicherten Abfragedaten C modulo n, wobei t die in der dritten Speicheranordnung (113) gespeicherte Nachweisunterstützungsinformation (13) bezeichnet, d.h. Ct mod n;

eine vierte Rechenanordnung (114) zum Berechnen der F(n, e)-ten Potenz der Abfragedaten C modulo n, d. h. C^{F(n, e)} mod n, wobei e die in der zweiten Speicheranordnung (115)

eine fünfte Rechenanordnung (116) zum Berechnen einer Antwort R durch Dividieren des von der dritten Rechenanordnung (112) berechneten Ergebnisses durch das von der vierten Rechenanordnung (114) berechnete Ergebnis modulo n, d.h. R = C¹C-F(n, e) mod n.

45 25. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 24, ferner umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außen einsehbar oder manipulierbar sind, welche die zweite Speicheranordnung (115) und die vierte Rechenanordnung (114) einschließt.

⁵⁰ **26.** Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 15, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung ein Schlüssel D eines Pohlig-Hellman-Schlüsselpaars mit einem Modul p ist und

die Verifikationsanordnung (106) die Richtigkeit der Antwort verifiziert, indem verifiziert wird, daß die E-te Potenz der in der fünften Speicheranordnung (105) gespeicherten Antwort R, wobei E den Gegenschlüssel des Schlüssels D bezeichnet, d.h. DE mod (p-1) = 1, kongruent mit den in der vierten Speicheranordnung gespeicherten Abfragedaten modulo p ist, d.h. R^E mod p = C mod p.

27. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 16, bei der

5

10

20

25

30

35

40

45

50

55

die eindeutige Sicherheitskenninformation (14) der Vorrichtung ein Schlüssel D eines Pohlig-Hellman-Schlüsselpaars mit einem Modul p ist,

ein in der siebten Speicheranordnung (422) gespeicherter Startparameter C' für Abfragedaten eine Pohlig-Hellman-Verschlüsselung von Daten K mit dem Gegenschlüssel E des Schlüssels D ist, d.h. DE mod (p-1) = 1, $C' = K^E \mod p$,

eine von der Zufallszahlerzeugungsanordnung (402) erzeugte Zufallszahl r in der sechsten Speicheranordnung (403) gespeichert ist,

in der vierten Speicheranordnung gespeicherte Abfragedaten C die Relation $C = r^EC'$ mod p erfüllen, und die Verifikationsanordnung (106) die Richtigkeit der in der fünften Speicheranordnung (405) gespeicherten Antwort R verifiziert, indem verifiziert wird, daß der Quotient R dividiert durch r modulo p kongruent mit den Daten K modulo p ist, d.h. K mod $p = r^1R$ mod p.

15 28. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 26 oder 27, bei der

in der dritten Speicheranordnung (413) gespeicherte Nachweisunterstützungsinformation t (13) die Relation t = D + F(p, e) erfüllt, wobei e die in der zweiten Speicheranordnung (415) gespeicherte eindeutige Benutzerkennung (16) bezeichnet und F(x, y) eine kollisionsfreie Funktion mit zwei Variablen bezeichnet, und eine von der Antworterzeugungsanordnung (416) erzeugte Antwort identisch mit der D-ten Potenz von in der ersten Speicheranordnung (411) gespeicherten Abfragedaten C modulo p ist, d.h. $R = C^D \mod p$.

29. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 28, bei der die Antworterzeugungsanordnung (416) des weiteren umfaßt;

eine dritte Rechenanordnung (412) zum Berechnen der t-ten Potenz von in der ersten Speicheranordnung (411) gespeicherten Abfragedaten C modulo p, wobei t die in der dritten Speicheranordnung (413) gespeicherte Nachweisunterstützungsinformation (13) bezeichnet, d.h. C^t mod p:

eine vierte Rechenanordnung (414) zum Berechnen der F(p, e)-ten Potenz der Abfragedaten C modulo p, d. h. $C^{F(p,e)}$ mod p, wobei e die in der zweiten Speicheranordnung (415) gespeicherte eindeutige Benutzerkennung (16) bezeichnet und <math>F(x, y) eine kollisionsfreie Funktion mit zwei Variablen bezeichnet; und eine fünfte Rechenanordnung (416) zum Berechnen einer Antwort R durch Dividieren des von der dritten Rechenanordnung (412) berechneten Ergebnisses durch das von der vierten Rechenanordnung (414) berechnete Ergebnis modulo $p, d.h. R = C^t C^{-F(p, e)} \mod p$.

30. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 29, ferner umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außerhalb einsehbar oder manipulierbar sind, welche die zweite Speicheranordnung (415) und die vierte Rechenanordnung (414) einschließt.

31. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 16, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung der private Schlüssel X eines ElGamal-Paars mit öffentlichem Schlüssel mit einem Modul p und einem Generator G ist,

der X entsprechende öffentliche Schlüssel Y die X-te Potenz von G modulo p ist, d.h. $Y = G^x \mod p$, u die z-te Potenz von G modulo p ($u = G^z \mod p$) für eine Zufallszahl z bezeichnet,

K' das Produkt modulo p der z-ten Potenz von Y modulo p und einem Datenwert K bezeichnet, d.h. $K' = Y^z K$ mod p,

die siebte Speicheranordnung (522) das Paar aus u und K' hält,

eine von der Zufallserzeugungsanordnung (602) erzeugte Zufallszahl r in der sechsten Speicheranordnung (603) gespeichert ist,

C das Produkt modulo p von K' und r bezeichnet, d.h. C = rK' mod p,

die vierte Speicheranordnung das Paar C und u hält, und

die Verifikationsanordnung (106) die Richtigkeit der in der fünften Speicheranordnung (505) gespeicherten Antwort R verifiziert, indem verifiziert wird, daß der Quotient R dividiert durch r modulo p kongruent mit K modulo p ist, d.h. K mod $p = r^1R$ mod p.

32. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 31, bei der

in der dritten Speicheranordnung (513) gespeicherte Nachweisunterstützungsinformation t (13) die Relation t = D + F(p, e) erfüllt, wobei e die in der zweiten Speicheranordnung (515) gespeicherte eindeutige Benutzerkennung (16) bezeichnet und F(x, y) eine kollisionsfreie Funktion mit zwei Variablen bezeichnet, und eine von der Antworterzeugungsanordnung (516) erzeugte Antwort R identisch mit dem Quotienten C dividiert durch die X-te Potenz von u modulo p ist, d.h. $R = u^x C \mod p$, wobei das Paar C und u die in der ersten Speicheranordnung (511) gespeicherten Abfragedaten sind.

33. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 32, bei der die Antworterzeugungsanordnung (516) des weiteren umfaßt:

5

15

20

25

35

40

45

50

55

eine dritte Rechenanordnung (512) zum Berechnen der t-ten Potenz der Komponente u des in der ersten Speicheranordnung (511) gespeicherten Abfragedatenpaars modulo p, wobei t eine in der dritten Speicheranordnung (513) gespeicherte Nachweisunterstützungsinformation bezeichnet, d.h. u^t mod p; eine vierte Rechenanordnung (514) zum Berechnen der F(p, e)-ten Potenz von u modulo p, d.h. u^{F(p,e)} mod p, wobei e die in der zweiten Speicheranordnung (515) gespeicherte eindeutige Benutzerkennung (16) bezeichnet und F(x, y) eine kollisionsfreie Funktion mit zwei Variablen bezeichnet; und eine fünfte Rechenanordnung (516) zum Berechnen einer Antwort R durch Dividieren des Produkts der anderen Komponente C des Abfragedatenpaars mit dem von der vierten Rechenanordnung (514) berechneten Ergebnis durch das von der dritten Rechenanordnung (512) berechnete Ergebnis modulo p, d.h. R = Cu^{F(p,e)} u^{-t} mod p.

34. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 33, ferner umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außerhalb einsehbar oder manipulierbar sind, welche die zweite Speicheranordnung (515) und die vierte Rechenanordnung (514) einschließt.

35. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 17, bei der

die eindeutige Sicherheitskenninformation (14) der Vorrichtung der Signaturschlüssel X eines ElGamal-Paars mit öffentlichem Schlüssel mit einem Modul p und einem Generator G ist, der X entsprechende öffentliche Schlüssel Y die X-te Potenz von G modulo p ist, d.h. $Y = G^X$ mod p, eine in der fünften Speicheranordnung (605) gespeicherte Antwort ein Paar aus R und S ist, und die Verifikationsanordnung (606) die Richtigkeit der in der fünften Speicheranordnung (605) gespeicherten Antwort R verifiziert, indem verifiziert wird, daß die C-te Potenz von G für die in der vierten Speicheranordnung gespeicherten Abfragedaten C kongruent modulo p mit dem Produkt der R-ten Potenz von Y und der S-ten Potenz von R ist, d.h. G^C mod $P = Y^RR^S$ mod $P = Y^RR^S$

36. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 35, bei der

in der dritten Speicheranordnung (613) gespeicherte Nachweisunterstützungsinformation t (13) die Relation t = D + F(p, e) erfüllt, wobei e die in der zweiten Speicheranordnung (616) gespeicherte eindeutige Benutzerkennung (16) bezeichnet und F(x, y) eine kollisionsfreie Funktion mit zwei Variablen bezeichnet, und die Antworterzeugungsanordnung (116) ein Antwortpaar R und S durch Ausführen der folgenden Schritte erzeugt:

Erzeugen einer Zufallszahl k; Berechnen von R als k-te Potenz von G modulo p, d.h. $R = G^k \mod p$; und Berechnen von S nach Maßgabe der Relation $S = (C - RX) k^{-1} \mod (p-1)$.

37. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 36, ferner umfassend:

eine Schutzanordnung (160) zum Verhindern, daß irgendwelche Daten in ihr von außen einsehbar oder manipulierbar sind, welche die zweite Speicheranordnung (616) und die vierte Rechenanordnung (614) einschließt.

die in der zweiten Speicheranordnung (715) gespeicherte eindeutige Benutzerkennung (16) ein Entschlüsselungsschlüssel einer Verschlüsselungsfunktion ist,
die in der dritten Speicheranordnung (713) gespeicherte Nachweisunterstützungsinformation (13) eine Verschlüsselung der eindeutigen Sicherheitskenninformation der Vorrichtung mit dem Verschlüsselungsschlüssel entsprechend dem Entschlüsselungsschlüssel ist, und die erste Rechenanordnung (712) die eindeutige Sicherheitskenninformation (14) der Vorrichtung durch Entschlüsseln der in der dritten Speicheranordnung (713) gespeicherten Nachweisunterstützungsinformation mit dem in der zweiten Speicheranordnung (715) gespeicherten Entschlüsselungsschlüssel berechnet.

38. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 4, bei der

39. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 38, bei der

die Verschlüsselungsfunktion aus der Kryptographie mit asymmetrischem Schlüssel stammt und die eindeutige Benutzerkennung (16) eine Komponente des Schlüsselpaars der Verschlüsselungsfunktion ist.

40. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 39, bei der

15

20

25

30

35

40

45

50

55

die Verschlüsselungsfunktion aus der Kryptographie mit öffentlichem Schlüssel stammt und die eindeutige Benutzerkennung (16) der private Schlüssel des Paars mit öffentlichem Schlüssel der Verschlüsselungsfunktion ist.

41. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 38, bei der

die Verschlüsselungsfunktion aus der Kryptographie mit symmetrischem Schlüssel stammt und die eindeutige Benutzerkennung (16) der gemeinsame geheime Schlüssel der Verschlüsselungsfunktion ist.

42. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 8 oder 16, bei der die Verifikationsvorrichtung (10) des weiteren umfaßt:

eine achte Speicheranordnung (310a) zum Speichern von Klardaten, deren Verschlüsselung die Abfragedaten oder der Startparameter für die in der ersten Speicheranordnung (111) gespeicherten Abfragedaten sind; und eine Vergleichsanordnung (310b) zur Überprüfung, ob die in der achten Speicheranordnung (310a) gespeicherten Klardaten identisch mit Daten sind, die in die Vergleichsanordnung (310b) eingegeben werden, und hei der

die Verifikationsanordnung (106) die Antwort oder den de-randomisierten Wert der in der fünften Speicheranordnung (105) gespeicherten Antwort an die Vergleichsanordnung (310b) liefert, die Rückantwort von der Vergleichsanordnung (310b) empfängt und dadurch die Verifikationsanordnung (106) die Richtigkeit der Antwort dann und nur dann verifiziert, wenn die empfangene Rückantwort zeigt, daß die in der achten Speicheranordnung (310a) gespeicherten Klardaten identisch mit den in die Vergleichsanordnung (310b) eingegebenen Daten sind.

43. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 8 oder 16, bei der die Verifikationsvorrichtung (10) des weiteren umfaßt:

eine neunte Speicheranordnung (310a) zum Speichern eines Werts, der durch Anwenden einer Einwegfunktion auf Klardaten erhalten wird, deren Verschlüsselung die Abfragedaten oder der Startparameter für in der siebten Speicheranordnung (122) gespeicherte Abfragedaten sind;

eine sechste Rechenanordnung (310c) zum Ausgeben eines Werts, der durch Anwenden der Einwegfunktion auf einen eingegebenen Datenwert berechnet wird; und

eine Vergleichsanordnung (310b) zur Überprüfung, ob der in der neunten Speicheranordnung (310a) gespeicherte Wert identisch mit in die Vergleichsanordnung (310b) eingegebenen Daten ist, und bei der

die Verifikationsanordnung (106) die Antwort oder den de-randomisierten Wert der Antwort an die sechste Rechenanordnung (310c) liefert, ein Ergebnis von der sechsten Rechenanordnung (310c) empfängt, das Ergebnis an die Vergleichsanordnung (310b) liefert und eine Rückantwort von der Vergleichsanordnung (310b) empfängt und die Vergleichsanordnung (106) dadurch die Richtigkeit der Antwort dann und nur dann verifiziert, wenn die empfangene Rückantwort zeigt, daß das Ergebnis der Berechnung durch die sechste Rechenanordnung (310c) identisch mit den in der neunten Speicheranordnung (310a) gespeicherten Daten ist.

44. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 8 oder 16, bei der die Verifikationsvorrichtung (10) des weiteren umfaßt:

eine Programmausführungsanordnung (310) zum Ausführen von Code eines Programms, dessen Verschlüsselung die in der siebten Speicheranordnung (122) gespeicherten Abfragedaten sind, und bei der die Verifikationsanordnung (106) die in der fünften Speicheranordnung (105) gespeicherte Antwort als Programmcode an die Programmausführungsanordnung (310) liefert, und die Programmausführungsanordnung (310) dann und nur dann korrekt funktioniert, wenn die Antworterzeugungsanordnung (116) die Abfragedaten korrekt entschlüsselt, die eine Verschlüsselung des Codes des Programms sind, d.h., wenn die Verschlüsselung des Programms korrekt entschlüsselt wird.

45. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 8 oder 16, bei der die Verifikationsvorrichtung (10) des weiteren umfaßt:

eine Programmausführungsanordnung (310);

5

10

15

20

25

30

35

45

50

55

eine Programmspeicheranordnung (310g); und

eine Programmentschlüsselungsanordnung (310h), und bei der

die Programmspeicheranordnung (310g) Code eines Programms speichert, das teilweise oder vollständig verschlüsselt ist.

eine Verschlüsselung des Entschlüsselungsschlüssels für den teilweise oder vollständig verschlüsselten Programmcode die in der siebten Speicheranordnung (122) gespeicherten Abfragedaten sind,

die Verifikationsanordnung (106) die Antwort an die Programmentschlüsselungsanordnung (310h) liefert,

die Programmentschlüsselungsanordnung (310h) das in der Programmspeicheranordnung (310g) gespeicherte Programm mit der Antwort als Entschlüsselungsschlüssel entschlüsselt, und

die Programmausführungsanordnung (310) das entschlüsselte Programm dann und nur dann korrekt ausführt, wenn die Antworterzeugungsanordnung (116) die Abfragedaten korrekt entschlüsselt, d.h., der Entschlüsselungsschlüssel zum Entschlüsseln der Verschlüsselung des Programms korrekt entschlüsselt ist.

46. Vorrichtung zum Authentifizieren von Benutzerzugangsrechten zu Ressourcen nach Anspruch 14, bei der

die Nachweisvorrichtung (11) und die Verifikationsvorrichtung (10) in einer gehäuseartigen Anordnung installiert sind und

die Verifikationsvorrichtung (10) die in der vierten Speicheranordnung gespeicherten Abfragedaten (18) an die erste Speicheranordnung (111) der Nachweisvorrichtung (11) überträgt und die Nachweisvorrichtung (11) die von der Antworterzeugungsanordnung (16) erzeugte Antwort (19) an die fünfte Speicheranordnung (105) der Verifikationsvorrichtung (10) ohne Verwendung eines Kommunikationsnetzes außerhalb der gehäuseartigen Anordnung überträgt.

47. Verfahren zum Authentifizieren von Benutzerzugriffsrechten auf Ressourcen durch Verifizieren der Richtigkeit einer aus Abfragedaten erzeugten Antwort zum Nachweis der Benutzerzugriffsrechte, umfassend:

einen Schritt zum Speichern der Abfragedaten;

einen Schritt zum Speichern einer eindeutigen Benutzerkennung;

einen Schritt zum Speichern von Nachweisunterstützungsinformation, die ein Ergebnis vorbestimmter Berechnungen an der eindeutigen Benutzerkennung und eindeutiger Sicherheitskenninformation ist;

einen Schritt zum Erzeugen einer Antwort durch Ausführen vorbestimmter Berechnungen an den Abfragedaten, der eindeutigen Benutzerkennung und der Nachweisunterstützungsinformation; und

einen Schritt zum Verifizieren der Richtigkeit der Antwort durch Verifizieren, daß die Antwort, die Abfragedaten und die eindeutige Sicherheitskenninformation eine spezielle vordefinierte Relation erfüllen.

48. Computerprogrammprodukt zur Verwendung bei einem Computer, wobei das Computerprogrammprodukt umfaßt:
ein von einem Computer verwendbares Medium, auf dem computerlesbare Programmcodemittel vorhanden
sind, die dazu dienen, den Computer zu veranlassen, eine Antwort (19) aus Abfragedaten (18) zu erzeugen, deren
Richtigkeit für die Authentifzierung von Benutzerzugriffsrechten zu verifizieren ist, wobei das Computerprogrammprodukt aufweist:

computerlesbare Programmcodemittel, die dazu dienen, den Computer zu veranlassen, die Abfragedaten (18) zu speichern;

computerlesbare Programmcodemittel, die dazu dienen, den Computer zu veranlassen, eine eindeutige Benutzerkennung (16) zu speichern;

computerlesbare Programmcodemittel, die dazu dienen, den Computer zu veranlassen, Nachweisunterstützungsinformation (13) zu speichern, die ein Ergebnis vorbestimmter Berechnungen an der eindeutigen Benutzerkennung (16) und eindeutiger Sicherheitskenninformation (14) ist; und

computerlesbare Programmcodemittel, die dazu dienen, den Computer zu veranlassen, durch Ausführen vorbestimmter Berechnungen an den Abfragedaten (18), der eindeutigen Benutzerkennung (16) und der Nachweisunterstützungsinformation (13) eine Antwort (19) zu erzeugen.

- 49. Computerprogrammprodukt nach Anspruch 48, umfassend:
 - computerlesbare Programmcodemittel, die dazu dienen, den Computer zu veranlassen, die Richtigkeit der Antwort (19) zu verifizieren, indem verifiziert wird, daß die Antwort (19), die Abfragedaten (18) und die eindeutige Sicherheitskenninformation (14) eine spezielle vordefinierte Relation erfüllen.
- 50. Programmausführungssteuervorrichtung zum Authentifizieren von Benutzerzugriffsrechten auf Ressourcen durch Verifizieren der Richtigkeit einer aus Abfragedaten erzeugten Antwort zum Nachweis der Benutzerzugriffsrechte und zum Steuern der Ausführung eines Programms auf der Basis der Authentifizierung der Benutzerzugriffsrechte, umfassend eine Vorrichtung gemäß einem der Ansprüche 1 bis 46 und

eine Fortführungsanordnung zum Fortführen der Ausführung des Programms, wenn die Richtigkeit der Antwort verifiziert ist.

51. Informationsverarbeitungsgerät zum Authentifizieren von Benutzerzugriffsrechten auf spezielle Informationsverarbeitungsressourcen durch Verifizieren der Richtigkeit einer Antwort (19), die erzeugt wird, um die Benutzerzugriffsrechte nachzuweisen und den Zugriff auf die speziellen Informationsverarbeitungsressourcen zu gewähren, umfassend eine Vorrichtung gemäß einem der Ansprüche 1 bis 46 und

eine Gewährungsanordnung zum Gewähren des Zugriffs auf die speziellen Informationsverarbeitungsressourcen, wenn die Richtigkeit der Antwort verifiziert ist.

30 Revendications

5

20

25

35

40

45

50

55

- 1. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources comprenant :
 - un premier moyen de mémoire (111) pour enregistrer des données à vérifier (18); un deuxième moyen de mémoire (115) pour enregistrer une information individuelle d'identification de l'utilisateur (16);
 - un troisième moyen de mémoire (113) pour enregistrer une information d'assistance de contrôle (13) qui est un résultat de l'exécution de calculs prédéterminés sur l'information individuelle d'identification de l'utilisateur (16) et une information de caractéristique de sécurité individuelle (14) du dispositif;
 - un moyen de génération de réponse (116) pour générer une réponse (19) à partir des données à vérifier (18) enregistrées dans le premier moyen de mémoire (111), l'information d'identification individuelle de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115), et l'information d'assistance de contrôle (13) enregistrée dans le troisième moyen de mémoire (113); et
 - un moyen de vérification (106) pour vérifier la légitimité de la réponse (19) en vérifiant que la réponse (19), les données à vérifier (18) et l'information de caractéristique de sécurité individuelle (14) du dispositif satisfont une relation prédéfinie spécifique.
- 2. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 1 comprenant de plus :
 - un moyen de protection (160) pour empêcher que toute donnée intérieure soit observée ou trafiquée de l'extérieur, au moins en confinant le deuxième moyen de mémoire (115) et le moyen de génération de réponse (116).
- 3. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 1, dans lequel au moins le deuxième moyen de mémoire (115) et le moyen de génération de réponse (116) sont mis en oeuvre dans un petit dispositif portatif tel qu'une carte intelligente.
 - 4. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon l'une quelconque des reven-

dications 1 à 3, dans lequel

5

10

15

20

25

30

35

40

45

50

55

le moyen de génération de réponse (116) comprend :

un premier moyen de calcul (712) pour exécuter à nouveau l'information de caractéristique de sécurité individuelle (14) du dispositif en effectuant des calculs prédéterminés sur l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115) et l'information d'assistance de contrôle (13) enregistrée dans le troisième moyen de mémoire (113); et

un deuxième moyen de calcul (714) pour générer une réponse en effectuant des calculs prédéterminés sur les données à vérifier (18) enregistrées dans le premier moyen de mémoire (111) et l'information de caractéristique de sécurité individuelle (14) du dispositif exécutée à nouveau par le premier moyen de calcul (712).

Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon l'une quelconque des revendications 1 à 3, dans lequel

le moyen de génération de réponse (116) comprend :

un troisième moyen de calcul (112) pour générer une première information intermédiaire en effectuant des calculs prédéterminés sur les données à vérifier enregistrées dans le premier moyen de mémoire et l'information d'assistance de contrôle enregistrée dans le troisième moyen de mémoire;

un quatrième moyen de calcul (114) pour générer une deuxième information intermédiaire en effectuant des calculs prédéterminés sur les données à vérifier (18) enregistrées dans le premier moyen de mémoire (111) et l'information d'identification individuelle de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115); et

un cinquième moyen de calcul (116) pour générer une réponse en effectuant des calculs prédéterminés sur la première information intermédiaire générée par le troisième moyen de calcul (112) et la deuxième information intermédiaire générée par le quatrième moyen de calcul (114).

6. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 5, comprenant de plus :

un moyen de protection (160) pour empêcher toute donnée intérieur d'être observée ou trafiquée de l'extérieur, au moins en confinant le deuxième moyen de mémoire (115) et le quatrième moyen de calcul (114).

- 7. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 5, dans lequel au moins le deuxième moyen de mémoire (115) et le quatrième moyen de calcul (114) sont mis en oeuvre dans un dispositif portatif tel qu'une carte intelligente.
- Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon l'une quelconque des revendications 1 à 7, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est une clé de déchiffrement d'une fonction de chiffrement,

les données à vérifier (18) sont un chiffrement d'information utilisant la fonction de chiffrement avec la clé de chiffrement correspondant à la clé de déchiffrement, et

le moyen de vérification (106) vérifie la légitimité de la réponse en vérifiant que la réponse (19) générée par le moyen de génération de réponse (116) est identique au déchiffrement des données à vérifier avec la clé de déchiffrement.

9. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon l'une quelconque des revendications 1 à 7, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est une clé de chiffrement d'une fonction de chiffrement, et

le moyen de vérification (106) vérifie la légitimité de la réponse en vérifiant que la réponse (19) générée par le moyen de génération de réponse (116) est identique au chiffrement des données à vérifier avec la clé de chiffrement.

 Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon l'une quelconque des revendications 1 à 7, dans lequel

l'information caractéristique (14) du dispositif est la clé de signature d'une fonction de signature numérique, et le moyen de vérification (106) vérifie la légitimité de la réponse en vérifiant que la réponse (19) générée par le moyen de génération de réponse (116) est identique à la signature numérique destinée aux données à vérifier qui est calculée avec la clé de signature.

5

11. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 8 ou 9, dans lequel

10

la fonction de chiffrement est du type de chiffrement à clé asymétrique, et l'information de caractéristique de sécurité individuelle (14) du dispositif est une composante de la paire de clés de la fonction de chiffrement.

12. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 11, dans lequel

15

la fonction de chiffrement est du type de chiffrement à clé publique, et l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé privée de la paire de clés publiques de la fonction de chiffrement.

20

13. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 8 ou 9, dans

la fonction de chiffrement est du type de chiffrement à clé symétrique, et l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé commune de la fonction de

25

14. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon l'une quelconque des revendications 1 à 13, comprenant de plus :

30

un dispositif de confirmation (11) comprenant le premier moyen de mémoire (111), le deuxième moyen de mémoire (115), le troisième moyen de mémoire (113) et le moyen de génération de réponse (116); et un dispositif de vérification (10) comprenant un quatrième moyen de mémoire pour enregistrer les données à vérifier (18), un cinquième moyen de mémoire (105) pour enregistrer la réponse (19) et un moyen de vérification (106), dans lequel

35

le dispositif de vérification (10) transfère les données à vérifier (18) enregistrées dans le quatrième moyen de mémoire au premier moyen de mémoire (111) du dispositif de confirmation (11), le dispositif de confirmation (11) transfère la réponse (19) générée par le moyen de génération de réponse (116) au cinquième moyen de mémoire (105) du dispositif de vérification (10), et le moyen de vérification (106) du dispositif de vérification (10) vérifie la légitimité de la réponse enregistrée dans le cinquième moyen de mémoire (105).

40

15. Dispositif pour authentifier des dròits d'accès d'un utilisateur à des ressources selon la revendication 14, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est une clé de chiffrement d'une fonction de chiffrement.

45

le dispositif de vérification (10) comprend un moyen de génération de nombre aléatoire (102) pour générer un nombre aléatoire et l'enregistrer dans le quatrième moyen de mémoire, et

le moyen de vérification (106) vérifie la légitimité de la réponse en vérifiant que la réponse enregistrée dans le cinquième moyen de mémoire (105) est identique au chiffrement des données à vérifier enregistrées dans le quatrième moyen de mémoire (103) avec la clé de chiffrement.

50

16. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 14, dans lequel

55

l'information de caractéristique de sécurité individuelle (14) du dispositif est une clé de déchiffrement d'une fonction de chiffrement.

le dispositif de vérification (10) comprend un moyen de génération de nombre aléatoire (102) pour générer un nombre aléatoire, un sixième moyen de mémoire (103) pour enregistrer le nombre aléatoire généré et un

5

10

15

20

25

30

35

40

45

50

55

septième moyen de mémoire (122) pour enregistrer une valeur de départ pour des données à vérifier, et dans lequel

le moyen de génération de nombre aléatoire (102) enregistre le nombre aléatoire généré dans le sixième moyen de mémoire (103) en randomisant la valeur de départ pour les données à vérifier enregistrée dans le septième moyen de mémoire (122) en effectuant des calculs prédéfinis sur le nombre aléatoire enregistré dans le sixième moyen de mémoire (103) et la valeur de départ enregistrée dans le septième moyen de mémoire (122) et en enregistrant ensuite la valeur de départ randomisée comme données à vérifier dans le quatrième moyen de mémoire, et

le moyen de vérification (106) du dispositif de vérification (10) dé-randomise la réponse enregistrée dans le cinquième moyen de mémoire (105) en effectuant des calculs prédéfinis sur le nombre aléatoire enregistré dans le sixième moyen de mémoire (103) et la réponse enregistrée dans le cinquième moyen de mémoire (105), et vérifie ensuite la légitimité de la réponse dé-randomisée en vérifiant que le résultat dé-randomisé est identique au déchiffrement de la valeur de départ enregistrée dans le septième moyen de mémoire (122) avec la clé de déchiffrement qui est l'information de caractéristique de sécurité individuelle (14) du dispositif.

17. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 14, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé de signature d'une fonction de signature numérique, et

le dispositif de vérification (10) comprend un moyen de génération de nombre aléatoire (102) pour générer un nombre aléatoire et enregistrer le nombre aléatoire généré comme données à vérifier dans le quatrième moyen de mémoire, et dans lequel

le moyen de vérification (106) du dispositif de vérification (10) vérifie la légitimité de la réponse en vérifiant que la réponse enregistrée dans le cinquième moyen de mémoire (105) est identique à la signature numérique pour les données à vérifier enregistrées dans le quatrième moyen de mémoire, qui est calculée avec la clé de signature qui est l'information de caractéristique de sécurité individuelle (14) du dispositif.

18. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 15, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé privée D d'une paire de clés publiques RSA avec un modulo n, et

le moyen de vérification (106) vérifie la légitimité de la réponse en vérifiant que la puissance E-ième de la réponse R enregistrée dans le cinquième moyen de mémoire (105), où E désigne la clé publique associée à la clé privée D, est congrue aux données à vérifier C enregistrées dans le quatrième moyen de mémoire modulo n, c.-à-d. R^E modulo n = C modulo n.

19. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 16, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé privée D d'une paire de clés publiques RSA avec un modulo n,

une valeur de départ C' pour des données à vérifier enregistrées dans le septième moyen de mémoire (122) est un chiffrement RSA de données K avec la clé publique E de la paire de clés publiques RSA, c.-à-d. DE modulo $\Phi(n) = 1$, C' = K^E modulo n,

un nombre aléatoire r généré par le moyen de génération de nombre aléatoire (102) est enregistré dans le sixième moyen de mémoire (103),

des données à vérifier C générées et enregistrées dans le quatrième moyen de mémoire satisfont la relation $C = r^E C'$ modulo n, et

le moyen de vérification (106) vérifie la légitimité de la réponse R enregistrée dans le cinquième moyen de mémoire (105) en vérifiant que le quotient de R divisé par r modulo n est congru aux données K modulo n, c.-à-d. K modulo n = r¹R modulo n.

 Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 18 ou 19, dans lequel

une information d'assistance de contrôle t (13) enregistrée dans le troisième moyen de mémoire (113) satisfait

la relation $t = D - e + w \Phi(n)$, où e désigne une information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115), w désigne un nombre aléatoire compatible déterminé en fonction à la fois de n et de e et $\Phi(n)$ désigne le nombre d'Euler de n, et

la réponse générée par les moyen de génération de réponse (116) est identique à la puissance D-ième de données à vérifier C enregistrées dans le premier moyen de mémoire (111) modulo n, c.-à-d. R = C^D modulo n.

 Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 20, dans lequel

le moyen de génération de réponse (116) comprend de plus :

5

10

15

20

25

30

35

40

45

55

un trainième mayon de calcul (110) nous calcular la puiscance t

un troisième moyen de calcul (112) pour calculer la puissance t-ième de données à vérifier C enregistrées dans le premier moyen de mémoire (111) modulo n, c.-à-d. C^t modulo n, où t désigne l'information d'assistance de contrôle (13) enregistrée dans le troisième moyen de mémoire (113);

un quatrième moyen de calcul (114) pour calculer la puissance e-ième des données à vérifier C modulo n, c.-à-d. Ce modulo n, où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115); et

un cinquième moyen de calcul (116) pour calculer une réponse R en multipliant le résultat calculé par le troisième moyen de calcul (112) par le résultat calculé par le quatrième moyen de calcul (114) modulo n, c.-à-d. R = C¹Ce modulo n.

22. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 21, comprenant de plus :

un moyen de protection (160) pour empêcher toute donnée intérieure d'être observée ou trafiquée de l'extérieur, en confinant le deuxième moyen de mémoire (115) et le quatrième moyen de calcul (114).

23. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 18 ou 19, dans lequel

une information d'assistance de contrôle t (13) enregistrée dans le troisième moyen de mémoire (113) satisfait la relation t = D + F(n, e), où e désigne une information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115), et F(x, y) désigne une fonction de deux variables sans collision, et

une réponse générée par le moyen de génération de réponse (116) est identique à la puissance D-ième de données à vérifier C enregistrées dans le premier moyen de mémoire (111) modulo n, c.-a-d. $R = C^D$ modulo n.

24. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 23, dans lequel

le moyen de génération de réponse (116) comprend de plus :

un troisième moyen de calcul (112) pour calculer la puissance t-ième de données à vérifier C enregistrées dans le premier moyen de mémoire (111) modulo n, où t désigne l'information d'assistance de contrôle (13) enregistrée dans le troisième moyen de mémoire (113), c.-à-d. C^t modulo n;

un quatrième moyen de calcul (114) pour calculer la puissance F(n, e)-ième des données à vérifier modulo n, c.-à-d. $C^{F(n, e)}$ modulo n, où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (115) et F(x, y) désigne une fonction de deux variables sans collision; et un cinquième moyen de calcul (116) pour calculer une réponse R en divisant le résultat calculé par le troisième moyen de calcul (112) par le résultat calculé par le quatrième moyen de calcul (114) modulo n, c.-à-d. $R = C^tC^{-F(n, e)}$ modulo n.

50 25. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 24, comprenant de plus :

un moyen de protection (160) pour empêcher toute donnée intérieure d'être observée ou trafiquée de l'extérieur, en confinant le deuxième moyen de mémoire (115) et le quatrième moyen de calcul (114).

26. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 15, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est une clé D d'une paire de clés de

Pohlig-Hellman d'un modulo p, et

5

10

15

20

25

30

35

40

45

50

55

le moyen de vérification (106) vérifie la légitimité de la réponse en vérifiant que la puissance E-ième de la réponse R enregistrée dans le cinquième moyen de mémoire (105), où E désigne la clé image de la clé D, c.-à-d. DE modulo (p-1) = 1, est congrue aux données à vérifier C enregistrées dans le quatrième moyen de mémoire modulo p, c.-à-d. RE modulo p = C modulo p.

27. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 16, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est une clé D d'une paire de clés de Pohlig-Hellman d'un modulo p.

une valeur de départ C' pour des données à vérifier enregistrées dans le septième moyen de mémoire (422) est un chiffrement de Pohlig-Hellman des données K avec la clé image E de la clé D, c.-à-d. DE modulo (p-1) = 1, C' = K^E modulo p,

un nombre aléatoire r généré par le moyen de génération de nombre aléatoire (402) est enregistré dans le sixième moyen de mémoire (403),

des données à vérifier C enregistrées dans le quatrième moyen de mémoire satisfont la relation $C = r^EC'$ modulo p, et

le moyen de vérification (106) vérifie la légitimité de la réponse R enregistrée dans le cinquième moyen de mémoire (405) en vérifiant que le quotient de R divisé par r modulo p est congru aux données K modulo p, c.-à-d. K modulo $p = r^1R$ modulo p.

28. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 26 ou 27, dans lequel

l'information d'assistance de contrôle t (13) enregistrée dans le troisième moyen de mémoire (413) satisfait la relation t = D + F(p, e), où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (415), et F(x, y) désigne une fonction de deux variables sans collision, et une réponse générée par le moyen de génération de réponse (416) est identique à la puissance D-ième de données à vérifier C enregistrées dans le premier moyen de mémoire (411) modulo p, c.-à-d. $R = C^D$ modulo p.

29. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 28, dans lequel

le moyen de génération de réponse (416) comprend de plus :

un troisième moyen de calcul (412) pour calculer la puissance t-ième de données à vérifier C enregistrées dans le premier moyen de mémoire (411) modulo p, où t désigne l'information d'assistance de contrôle (13) enregistrée dans le troisième moyen de mémoire (413), c.-à-d. Ct modulo p;

un quatrième moyen de calcul (414) pour calculer la puissance F(p, e)-ième des données à vérifier C modulo p, c.-à-d. $C^{F(p, e)}$ modulo p, où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (415) et F(x, y) désigne une fonction de deux variables sans collision; et un cinquième moyen de calcul (416) pour calculer une réponse R en divisant le résultat calculé par le troisième moyen de calcul (412) par le résultat calculé par le quatrième moyen de calcul (414) modulo p, c.-à-d. $R = C^tC^{-F(p, e)}$ modulo p.

30. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 29, comprenant de plus :

un moyen de protection (160) pour empêcher toute donnée intérieure d'être observée ou trafiquée de l'extérieur, en confinant le deuxième moyen de mémoire (415) et le quatrième moyen de calcul (414).

31. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 16, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé privée X d'une paire de clés publiques d'ElGamal avec un modulo p et un générateur G,

la clé publique Y correspondant à X est la puissance X-ième de G modulo p, c.-à-d. Y = G^X modulo p, u désigne la puissance z-ième de G modulo p ($\dot{u}=G^Z$ modulo p) pour un nombre aléatoire z,

K' désigne le produit modulo p de la puissance z-ième de Y modulo p et d'une donnée K, c.-à-d. K' = YzK

modulo p,

5

10 .

15

20

25

30

45

50

55

le septième moyen de mémoire (522) contient la paire formée de u et de K',

un nombre aléatoire r généré par le moyen de génération de nombre aléatoire (602) est enregistré dans le sixième moyen de mémoire (603).

C désigne le produit modulo p de K' et r, c.-à-d. C = rK' modulo p,

le quatrième moyen de mémoire contient la paire formée de C et de u, et

le moyen de vérification (106) vérifie la légitimité de la réponse R enregistrée dans le cinquième moyen de mémoire (505) en vérifiant que le quotient de R divisé par r modulo p est congru à K modulo p, c.-à-d. K modulo $p = r^1R$ modulo p.

32. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 31, dans lequel

l'information d'assistance de contrôle t (13) enregistrée dans le troisième moyen de mémoire (513) satisfait la relation t = D + F(p, e), où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (515) et F(x, y) désigne une fonction de deux variables sans collision, et une réponse R générée par le moyen de génération de réponse (516) est identique au quotient de la division de R par la puissance R de R modulo R modulo R, R is a vérifier enregistrées dans le premier moyen de mémoire (511).

33. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 32, dans lequel

le moyen de génération de réponse (516) comprend de plus :

un troisième moyen de calcul (512) pour calculer la puissance t-ième de la composante u de la paire de données à vérifier enregistrées dans le premier moyen de mémoire (511) modulo p, où t désigne l'information d'assistance de contrôle enregistrée dans le troisième moyen de mémoire (513), c.-à-d. uf modulo p; un quatrième moyen de calcul (514) pour calculer la puissance (F(p, e)-ième de u modulo p, c.-à-d. uF(p, e) modulo p, où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée le deuxième moyen de mémoire (515) et F(x, y) désigne une fonction de deux variables sans collision; et un cinquième moyen de calcul (516) pour calculer une réponse R en divisant le produit de l'autre composante C de la paire de données à vérifier et du résultat calculé par le quatrième moyen de calcul (514) par le résultat calculé par le troisième moyen de calcul (512) modulo p, c.-à-d. R = Cu^{F(p, e)}u-t modulo p.

35 34. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 33, comprenant de plus :

un moyen de protection (160) pour empêcher toute donnée intérieure d'être observée ou trafiquée de l'extérieur, en confinant le deuxième moyen de mémoire (515) et le quatrième moyen de calcul (514).

40 35. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 17, dans lequel

l'information de caractéristique de sécurité individuelle (14) du dispositif est la clé de signature X d'une paire de clés publiques d'ElGamal avec un modulo p et un générateur G, la clé publique Y correspondant à X est la puissance X-ième de G modulo p, c.-à-d. Y = G^X modulo p, une réponse enregistrée dans le cinquième moyen de mémoire (605) est une paire formée de R et de S, et

le moyen de vérification (606) vérifie la légitimité de la réponse R enregistrée dans le cinquième moyen de mémoire (605) en vérifiant que la puissance C-ième de G pour les données à vérifier C enregistrées dans le quatrième moyen de mémoire est congrue modulo p au produit de la puissance R-ième de Y et de la puissance S-ième de R, c.-à-d. G^C modulo p = Y^RR^S modulo p.

36. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 35, dans lequel

l'information d'assistance de contrôle t (13) enregistrée dans le troisième moyen de mémoire (613) satisfait la relation t = D + F(p, e), où e désigne l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (616), et F(x, y) désigne une fonction de deux variables sans collision, et le moyen de génération de réponse (116) génère une paire de réponses R et S en effectuant les opérations

suivantes consistant à :

5

10

15

20

25

30

35

40

45

50

55

générer un nombre aléatoire k; calculer R comme la puissance k-ième de G modulo p, c.-à-d. $R = G^k$ modulo p; et calculer S selon la relation $S = (C - RX) k^1$ modulo (p-1).

37. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 36, comprenant de plus :

un moyen de protection (160) pour empêcher toute donnée intérieure d'être observée ou trafiquée de l'extérieur, en confinant le deuxième moyen de mémoire (616) et le quatrième moyen de calcul (614).

38. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 4, dans lequel

l'information individuelle d'identification de l'utilisateur (16) enregistrée dans le deuxième moyen de mémoire (715) est une clé de déchiffrement d'une fonction de chiffrement,

l'information d'assistance de contrôle (13) enregistrée dans le troisième moyen de mémoire (713) est un chiffrement de l'information de caractéristique de sécurité individuelle du dispositif avec la clé de chiffrement correspondant à la clé de déchiffrement, et

le premier moyen de calcul (712) calcule l'information de caractéristique de sécurité individuelle (14) du dispositif en déchiffrant l'information d'assistance de contrôle enregistrée dans le troisième moyen de mémoire (713) avec la clé de déchiffrement enregistrée dans le deuxième moyen de mémoire (715).

39. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 38, dans lequel

la fonction de chiffrement est du type de chiffrement à clé asymétrique, et l'information individuelle d'identification de l'utilisateur (16) est une composante de la paire de clés de la fonction de chiffrement.

 Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 39, dans lequel

la fonction de chiffrement est du type de chiffrement à clé publique, et l'information individuelle d'identification de l'utilisateur (16) est la clé privée de la paire de clés publiques de la fonction de chiffrement.

41. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 38, dans lequel

la fonction de chiffrement est du type de chiffrement à clé symétrique, et l'information individuelle d'identification de l'utilisateur (16) est la clé secrète commune de la fonction de chiffrement.

42. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 8 ou 16, dans lequel

le dispositif de vérification (10) comprend de plus :

un huitième moyen de mémoire (310a) pour enregistrer un chiffrement de donnée en clair dont sont les données à vérifier ou la valeur de départ pour des données à vérifier enregistrées dans le premier moyen de mémoire (111); et

un moyen de comparaison (310b) pour examiner si les données en clair enregistrées dans le huitième moyens de mémoire (310a) sont identiques aux données introduites dans le moyen de comparaison (310b), et dans lequel

le moyen de vérification (106) transmet la réponse ou la valeur dé-randomisée de la réponse enregistrée dans le cinquième moyen de mémoire (105) au moyen de comparaison (310b), reçoit la réponse du moyen de comparaison (310b), et le moyen de vérification (106) vérifie ainsi la légitimité de la réponse si et seulement si la réponse reçue montre que les données en clair enregistrées dans le huitième moyen de mémoire (310a) sont identiques aux données introduites dans le moyen de comparaison (310b).

43. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 8 ou 16, dans lequel

le dispositif de vérification (10) comprend de plus :

un neuvième moyen de mémoire (310a) pour enregistrer une valeur obtenue en appliquant une fonction unidirectionnelle au chiffrement des données en clair dont sont les données à vérifier ou la valeur de départ pour des données à vérifier enregistrées dans le septième moyen de mémoire (122);

un sixième moyen de calcul (310c) pour émettre une valeur calculée en s'appliquant la fonction unidirectionnelle à des données introduites; et

un moyen de comparaison (310b) pour examiner si la valeur enregistrée dans le neuvième moyen de mémoire (310a) est identique aux données introduites dans le moyen de comparaison (310b), et dans lequel le moyen de vérification (106) transmet la réponse ou la valeur dé-randomisée de la réponse au sixième moyen de calcul (310c), reçoit un résultat du sixième moyen de calcul (310c), transmet le résultat au moyen de comparaison (310b) et reçoit une réponse du moyen de comparaison (310b), et le moyen de vérification (106) vérifie ainsi la légitimité de la réponse si et seulement si la réponse reçue montre que le résultat du calcul effectué par le sixième moyen de calcul (310c) est identique aux données enregistrées dans le neuvième moyen de mémoire (310a).

44. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 8 ou 16, dans lequel

le dispositif de vérification (10) comprend de plus :

un moyen d'exécution de programme (310) pour exécuter un code d'un chiffrement de programme dont sont les données à vérifier enregistrées dans le septième moyen de mémoire (122), et dans lequel le moyen de vérification (106) transmet la réponse enregistrée dans le cinquième moyen de mémoire (105) comme code de programme au moyen d'exécution de programme (310), et le moyen d'exécution de programme (310) fonctionne correctement si et seulement si le moyen de génération de réponse (116) déchiffre correctement les données à vérifier qui sont un chiffrement du code du programme, c.-à-d. si le chiffrement du programme est correctement déchiffré.

30

35

40

45

50

55

25

5

10

15

45. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 8 ou 16, dans lequel

le dispositif de vérification (10) comprend de plus :

un moyen d'exécution de programme (310);

un moyen d'enregistrement de programme (310g); et

un moyen de déchiffrement de programme (310h), et dans lequel

le moyen d'enregistrement de programme (310g) enregistre un code d'un programme dont tout ou une partie est chiffré,

un chiffrement de la clé de déchiffrement pour le code de programme partiellement ou totalement chiffré est constitué par les données à vérifier enregistrées dans le septième moyen de mémoire (122),

le moyen de vérification (106) transmet la réponse au moyen de déchiffrement de programme (310h),

le moyen de déchiffrement de programme (310h) déchiffre le programme enregistré dans le moyen d'enregistrement de programme (310g) avec la réponse comme clé de déchiffrement, et

le moyen d'exécution de programme (310) exécute correctement le programme déchiffré si et seulement si le moyen de génération de réponse (116) déchiffre correctement les données à vérifier, c.-à-d. si la clé de déchiffrement pour déchiffrer le chiffrement du programme est correctement déchiffrée.

46. Dispositif pour authentifier des droits d'accès d'un utilisateur à des ressources selon la revendication 14, dans lequel

le dispositif de confirmation (11) et le dispositif de vérification (10) sont installés dans un matériel sous boîtier, et le dispositif de confirmation (10) transfère les données à vérifier (18) enregistrées dans le quatrième moyen de mémoire au premier moyen de mémoire (111) du dispositif de confirmation (11) et le dispositif de confirmation (11) transfère la réponse (19) générée par le moyen de génération de réponse (116) au cinquième moyen de mémoire (105) du dispositif de vérification (10) sans utiliser de réseau de communication à l'extérieur du matériel sous boîtier.

47. Procédé pour authentifier des droits d'accès d'un utilisateur à des ressources en vérifiant la légitimité d'une réponse générée à partir de données à vérifier pour confirmer les droits d'accès de l'utilisateur, comprenant :

une opération consistant à enregistrer les données à vérifier;

5

10

15

20

25

30

35

40

45

50

55

une opération consistant à enregistrer une information individuelle d'identification de l'utilisateur; une opération consistant à enregistrer une information d'assistance de contrôle qui est un résultat de calculs prédéterminés effectués sur l'information individuelle d'identification de l'utilisateur et l'information de caractéristique de sécurité individuelle;

une opération consistant à générer une réponse en effectuant des calculs prédéterminés sur les données à vérifier, l'information individuelle d'identification de l'utilisateur et l'information d'assistance de contrôle; et une opération consistant à vérifier la légitimité de la réponse en vérifiant que la réponse, les données à vérifier et l'information de caractéristique de sécurité individuelle satisfont une relation prédéfinie particulière.

48. Produit sous forme de programme d'ordinateur destiné à être utilisé avec un ordinateur, le produit sous forme de programme d'ordinateur comprenant :

un support d'information utilisable par un ordinateur ayant un moyen de code de programme lisible par ordinateur incorporé au support d'information pour faire générer à l'ordinateur une réponse (19) à partir de données à vérifier (18) dont la légitimité doit être vérifiée pour authentifier des droits d'accès d'un utilisateur, le produit sous forme de programme d'ordinateur possédant:

un moyen de code de programme lisible par ordinateur pour faire enregistrer à l'ordinateur les données à vérifier (18);

un moyen de code de programme lisible par ordinateur pour faire enregistrer à l'ordinateur une information individuelle d'identification de l'utilisateur (16);

un moyen de code de programme lisible par ordinateur pour faire enregistrer à l'ordinateur une information d'assistance de contrôle (13) qui est le résultat de calculs prédéterminés effectués sur l'information individuelle d'identification de l'utilisateur (16) et l'information de caractéristique de sécurité individuelle (14); et un moyen de code de programme lisible par ordinateur pour faire générer à l'ordinateur une réponse (19) en effectuant des calculs prédéterminés sur les données à vérifier (18), l'information individuelle d'identification de l'utilisateur (16) et l'information d'assistance de contrôle (13).

49. Produit sous forme de programme d'ordinateur selon la revendication 48, comprenant :

un moyen de code de programme lisible par ordinateur pour faire vérifier à l'ordinateur la légitimité de la réponse (19) en vérifiant que la réponse (19), les données à vérifier (18) et l'information de caractéristique de sécurité individuelle (14) satisfont une relation prédéfinie particulière.

50. Dispositif de commande d'exécution de programme pour authentifier des droits d'accès d'un utilisateur à des ressources en vérifiant la légitimité d'une réponse générée à partir de données à vérifier pour confirmer les droits d'accès de l'utilisateur et commander l'exécution d'un programme en fonction de l'authentification des droits d'accès de l'utilisateur, comprenant un dispositif tel que défini dans l'une quelconque des revendications 1 à 46 et un moyen de continuation pour continuer l'exécution du programme si la légitimité de la réponse est vérifiée.

51. Dispositif informatique servant à authentifier des droits d'accès d'un utilisateur à des ressources de traitement de l'information particulières en vérifiant la légitimité d'une réponse (19) générée pour confirmer les droits d'accès de l'utilisateur et permettre l'accès aux ressources de traitement de l'information particulières, comprenant un dispositif tel que défini dans l'une quelconque des revendications 1 à 46 et

un moyen d'autorisation pour permettre l'accès aux ressources de traitement de l'information particulières si la légitimité de la réponse est vérifiée.

FIG.1

FIG.2

FIG.3

FIG.7

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

FIG.13

FIG.16

FIG.19

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.