Chapter 9: LPC2300 Pin connect block

- if the EMC_Reset_Disable = 1 (see <u>Section 3–7 "Other system controls and status flags"</u>), they retain their values for external memory interface
- else if the EMC_Reset_Disable = 0, they are reset to '0'.

6.1 Pin Function Select register 0 (PINSEL0 - 0xE002 C000)

The PINSEL0 register controls the functions of the pins as per the settings listed in <u>Table 9–84</u>. The direction control bit in the IO0DIR register (or the FIO0DIR register if the enhanced GPIO function is selected for port 0) is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Table 84. Pin function select register 0 (PINSEL0 - address 0xE002 C000) bit description

PINSEL0	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P0.0	GPIO Port 0.0	RD1	TXD3	SDA1	00
3:2	P0.1	GPIO Port 0.1	TD1	RXD3	SCL1	00
5:4	P0.2	GPIO Port 0.2	TXD0	Reserved	Reserved	00
7:6	P0.3	GPIO Port 0.3	RXD0	Reserved	Reserved	00
9:8	P0.4	GPIO Port 0.4	I2SRX_CLK	RD2	CAP2.0	00
11:10	P0.5	GPIO Port 0.5	I2SRX_WS	TD2	CAP2.1	00
13:12	P0.6	GPIO Port 0.6	I2SRX_SDA	SSEL1	MAT2.0	00
15:14	P0.7	GPIO Port 0.7	I2STX_CLK	SCK1	MAT2.1	00
17:16	P0.8	GPIO Port 0.8	I2STX_WS	MISO1	MAT2.2	00
19:18	P0.9	GPIO Port 0.9	I2STX_SDA	MOSI1	MAT2.3	00
21:20	P0.10	GPIO Port 0.10	TXD2	SDA2	MAT3.0	00
23:22	P0.11	GPIO Port 0.11	RXD2	SCL2	MAT3.1	00
25:24[1]	P0.12	GPIO Port 0.12	Reserved	MISO1	AD0.6	00
27:26[1]	P0.13	GPIO Port 0.13	U2UP_LED	MOSI1	AD0.7	00
29:28[1]	P0.14	GPIO Port 0.14	U2CONNECT	Reserved	SSEL1	00
31:30	P0.15	GPIO Port 0.15	TXD1	SCK0	SCK	00

^[1] LPC2378 only. These bits are reserved for LPC2364/66/68.

6.2 Pin Function Select Register 1 (PINSEL1 - 0xE002 C004)

The PINSEL1 register controls the functions of the pins as per the settings listed in Table 9–85. The direction control bit in the IO0DIR (or the FIO0DIR register if the enhanced GPIO function is selected for port 0) register is effective only when the GPIO function is selected for a pin. For other functions direction is controlled automatically.

Table 85. Pin function select register 1 (PINSEL1 - address 0xE002 C004) bit description

PINSEL1	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P0.16	GPIO Port 0.16	RXD1	SSEL0	SSEL	00
3:2	P0.17	GPIO Port 0.17	CTS1	MISO0	MISO	00
5:4	P0.18	GPIO Port 0.18	DCD1	MOSI0	MOSI	00
7:6	P0.19	GPIO Port 0.19	DSR1	MCICLK	SDA1	00
9:8	P0.20	GPIO Port 0.20	DTR1	MCICMD	SCL1	00

UM10211_1 © NXP B.V. 2007. All rights reserved.

Chapter 9: LPC2300 Pin connect block

Table 85.	Pin 1	function se	elect register	1 (PINS	EL1 -	- address	0xE002	C004)	bit de	escription
-----------	-------	-------------	----------------	---------	-------	-----------	--------	-------	--------	------------

PINSEL1	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
11:10	P0.21	GPIO Port 0.21	RI1	MCIPWR	RD1	00
13:12	P0.22	GPIO Port 0.22	RTS1	MCIDAT0	TD1	00
15:14	P0.23	GPIO Port 0.23	AD0.0	I2SRX_CLK	CAP3.0	00
17:16	P0.24	GPIO Port 0.24	AD0.1	I2SRX_WS	CAP3.1	00
19:18	P0.25	GPIO Port 0.25	AD0.2	I2SRX_SDA	TXD3	00
21:20	P0.26	GPIO Port 0.26	AD0.3	AOUT	RXD3	00
23:22	P0.27	GPIO Port 0.27	SDA0	Reserved	Reserved	00
25:24	P0.28	GPIO Port 0.28	SCL0	Reserved	Reserved	00
27:26	P0.29	GPIO Port 0.29	U1D+	Reserved	Reserved	00
29:28	P0.30	GPIO Port 0.30	U1D-	Reserved	Reserved	00
31:30[1]	P0.31	GPIO Port 0.31	U2D+	Reserved	Reserved	00

^[1] LPC2378 only. These bits are reserved for LPC2364/66/68.

6.3 Pin Function Select register 2 (PINSEL2 - 0xE002 C008)

The PINSEL2 register controls the functions of the pins as per the settings listed in Table 9–86. The direction control bit in the IO1DIR register (or the FIO1DIR register if the enhanced GPIO function is selected for port 1) is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Table 86. Pin function select register 2 (PINSEL2 - address 0xE002 C008) bit description

PINSEL2	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P1.0	GPIO Port 1.0	ENET_TXD0	Reserved	Reserved	00
3:2	P1.1	GPIO Port 1.1	ENET_TXD1	Reserved	Reserved	00
5:4	P1.2	Reserved	Reserved	Reserved	Reserved	00
7:6	P1.3	Reserved	Reserved	Reserved	Reserved	00
9:8	P1.4	GPIO Port 1.4	ENET_TX_EN	Reserved	Reserved	00
11:10	P1.5	Reserved	Reserved	Reserved	Reserved	00
13:12	P1.6	Reserved	Reserved	Reserved	Reserved	00
15:14	P1.7	Reserved	Reserved	Reserved	Reserved	00
17:16	P1.8	GPIO Port 1.8	ENET_CRS	Reserved	Reserved	00
19:18	P1.9	GPIO Port 1.9	ENET_RXD0	Reserved	Reserved	00
21:20	P1.10	GPIO Port 1.10	ENET_RXD1	Reserved	Reserved	00
23:22	P1.11	Reserved	Reserved	Reserved	Reserved	00
25:24	P1.12	Reserved	Reserved	Reserved	Reserved	00
27:26	P1.13	Reserved	Reserved	Reserved	Reserved	00
29:28	P1.14	GPIO Port 1.14	ENET_RX_ER	Reserved	Reserved	00
31:30	P1.15	GPIO Port 1.15	ENET_REF_CLK	Reserved	Reserved	00

Chapter 9: LPC2300 Pin connect block

6.4 Pin Function Select Register 3 (PINSEL3 - 0xE002 C00C)

The PINSEL3 register controls the functions of the pins as per the settings listed in <u>Table 9–87</u>. The direction control bit in the IO1DIR register (or the FIO1DIR register if the enhanced GPIO function is selected for port 1) is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Table 87. Pin function select register 3 (PINSEL3 - address 0xE002 C00C) bit description

PINSEL3	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P1.16	GPIO Port 1.16	ENET_MDC	Reserved	Reserved	00
3:2	P1.17	GPIO Port 1.17	ENET_MDIO	Reserved	Reserved	00
5:4	P1.18	GPIO Port 1.18	U1UP_LED	PWM1.1	CAP1.0	00
7:6	P1.19	GPIO Port 1.19	Reserved	Reserved	CAP1.1	00
9:8	P1.20	GPIO Port 1.20	Reserved	PWM1.2	SCK0	00
11:10	P1.21	GPIO Port 1.21	Reserved	PWM1.3	SSEL0	00
13:12	P1.22	GPIO Port 1.22	Reserved	Reserved	MAT1.0	00
15:14	P1.23	GPIO Port 1.23	Reserved	PWM1.4	MISO0	00
17:16	P1.24	GPIO Port 1.24	Reserved	PWM1.5	MOSI0	00
19:18	P1.25	GPIO Port 1.25	Reserved	Reserved	MAT1.1	00
21:20	P1.26	GPIO Port 1.26	Reserved	PWM1.6	CAP0.0	00
23:22	P1.27	GPIO Port 1.27	Reserved	Reserved	CAP0.1	00
25:24	P1.28	GPIO Port 1.28	Reserved	PCAP1.0	MAT0.0	00
27:26	P1.29	GPIO Port 1.29	Reserved	PCAP1.1	MAT0.1	00
29:28	P1.30	GPIO Port 1.30	Reserved	V _{BUS}	AD0.4	00
31:30	P1.31	GPIO Port 1.31	Reserved	SCK1	AD0.5	00

6.5 Pin Function Select Register 4 (PINSEL4 - 0xE002 C010)

The PINSEL4 register controls the functions of the pins as per the settings listed in <u>Table 9–88</u>. The direction control bit in the FIO2DIR register is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Table 88. Pin function select register 4 (PINSEL4 - address 0xE002 C010) bit description

PINSEL4	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P2.0	GPIO Port 2.0	PWM1.1	TXD1	TRACECLK[1]	00
3:2	P2.1	GPIO Port 2.1	PWM1.2	RXD1	PIPESTAT0[1]	00
5:4	P2.2	GPIO Port 2.2	PWM1.3	CTS1	PIPESTAT1[1]	00
7:6	P2.3	GPIO Port 2.3	PWM1.4	DCD1	PIPESTAT2[1]	00
9:8	P2.4	GPIO Port 2.4	PWM1.5	DSR1	TRACESYNC[1]	00
11:10	P2.5	GPIO Port 2.5	PWM1.6	DTR1	TRACEPKT0[1]	00
13:12	P2.6	GPIO Port 2.6	PCAP1.0	RI1	TRACEPKT1[1]	00
15:14	P2.7	GPIO Port 2.7	RD2	RTS1	TRACEPKT2[1]	00
17:16	P2.8	GPIO Port 2.8	TD2	TXD2	TRACEPKT3[1]	00
19:18	P2.9	GPIO Port 2.9	U1CONNECT	RXD2	EXTINO[1]	00

UM10211_1 © NXP B.V. 2007. All rights reserved.

Chapter 9: LPC2300 Pin connect block

Reserved

00

		3			,	
PINSEL4	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
21:20	P2.10	GPIO Port 2.10	EINT0	Reserved	Reserved	00
23:22	P2.11	GPIO Port 2.11	EINT1	MCIDAT1	I2STX_CLK	00
25:24	P2.12	GPIO Port 2.12	EINT2	MCIDAT2	I2STX_WS	00
27:26	P2.13	GPIO Port 2.13	EINT3	MCIDAT3	I2STX_SDA	00
29:28	P2.14	Reserved	Reserved	Reserved	Reserved	00

Table 88. Pin function select register 4 (PINSEL4 - address 0xE002 C010) bit description

Reserved

Reserved

6.6 Pin Function Select Register 5 (PINSEL5 - 0xE002 C014)

Reserved

31:30

P2.15

The PINSEL5 register controls the functions of the pins as per the settings listed in Table 9–89. The direction control bit in the FIO2DIR register is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Table 89. Pin function select register 5 (PINSELS - address UXEUUZ CU14) bit descri	Table 89.	in function select register 5 (PINSEL5 - address 0xE0	002 C014) bit description
---	-----------	---	---------------------------

PINSEL5	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P2.16	Reserved	Reserved	Reserved	Reserved	00
3:2	P2.17	Reserved	Reserved	Reserved	Reserved	00
5:4	P2.18	Reserved	Reserved	Reserved	Reserved	00
7:6	P2.19	Reserved	Reserved	Reserved	Reserved	00
9:8	P2.20	Reserved	Reserved	Reserved	Reserved	00
11:10	P2.21	Reserved	Reserved	Reserved	Reserved	00
13:12	P2.22	Reserved	Reserved	Reserved	Reserved	00
15:14	P2.23	Reserved	Reserved	Reserved	Reserved	00
17:16	P2.24	Reserved	Reserved	Reserved	Reserved	00
19:18	P2.25	Reserved	Reserved	Reserved	Reserved	00
21:20	P2.26	Reserved	Reserved	Reserved	Reserved	00
23:22	P2.27	Reserved	Reserved	Reserved	Reserved	00
25:24	P2.28	Reserved	Reserved	Reserved	Reserved	00
27:26	P2.29	Reserved	Reserved	Reserved	Reserved	00
29:28	P2.30	Reserved	Reserved	Reserved	Reserved	00
31:30	P2.31	Reserved	Reserved	Reserved	Reserved	00

6.7 Pin Function Select Register 6 (PINSEL6 - 0xE002 C018)

The PINSEL6 register controls the functions of the pins as per the settings listed in Table 9–90. The direction control bit in the FIO3DIR register is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

^[1] See Section 9–6.11 "Pin Function Select Register 10 (PINSEL10 - 0xE002 C028)" for details on using the ETM functionality.

Chapter 9: LPC2300 Pin connect block

Reserved

Reserved

Reserved

00

00

00

PINSEL6	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0[1]	P3.0	GPIO Port 3.0	D0	Reserved	Reserved	00
3:2[1]	P3.1	GPIO Port 3.1	D1	Reserved	Reserved	00
5:4 <mark>[1]</mark>	P3.2	GPIO Port 3.2	D2	Reserved	Reserved	00
7:6 ^[1]	P3.3	GPIO Port 3.3	D3	Reserved	Reserved	00
9:8[1]	P3.4	GPIO Port 3.4	D4	Reserved	Reserved	00
11:10 ^[1]	P3.5	GPIO Port 3.5	D5	Reserved	Reserved	00
13:12 ^[1]	P3.6	GPIO Port 3.6	D6	Reserved	Reserved	00
15:14 ^[1]	P3.7	GPIO Port 3.7	D7	Reserved	Reserved	00
17:16	P3.8	Reserved	Reserved	Reserved	Reserved	00
19:18	P3.9	Reserved	Reserved	Reserved	Reserved	00
21:20	P3.10	Reserved	Reserved	Reserved	Reserved	00
23:22	P3.11	Reserved	Reserved	Reserved	Reserved	00
25:24	P3.12	Reserved	Reserved	Reserved	Reserved	00

Table 90. Pin function select register 6 (PINSEL6 - address 0xE002 C018) bit description

Reserved

Reserved

Reserved

27:26

29:28

31:30

P3.13

P3.14

P3.15

6.8 Pin Function Select Register 7 (PINSEL7 - 0xE002 C01C)

The PINSEL7 register controls the functions of the pins as per the settings listed in <u>Table 9–91</u>. The direction control bit in the FIO3DIR register is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Table 91. Pin function select register 7 (PINSEL7 - address 0xE002 C01C) bit description

PINSEL7	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P3.16	Reserved	Reserved	Reserved	Reserved	00
3:2	P3.17	Reserved	Reserved	Reserved	Reserved	00
5:4	P3.18	Reserved	Reserved	Reserved	Reserved	00
7:6	P3.19	Reserved	Reserved	Reserved	Reserved	00
9:8	P3.20	Reserved	Reserved	Reserved	Reserved	00
11:10	P3.21	Reserved	Reserved	Reserved	Reserved	00
13:12	P3.22	Reserved	Reserved	Reserved	Reserved	00
15:14 <u>11</u>	P3.23	GPIO Port 3.23	Reserved	CAP0.0	PCAP1.0	00
17:16 ^[1]	P3.24	GPIO Port 3.24	Reserved	CAP0.1	PWM1.1	00
19:18	P3.25	GPIO Port 3.25	Reserved	MAT0.0	PWM1.2	00
21:20	P3.26	GPIO Port 3.26	Reserved	MAT0.1	PWM1.3	00
23:22	P3.27	Reserved	Reserved	Reserved	Reserved	00
25:24	P3.28	Reserved	Reserved	Reserved	Reserved	00

^[1] LPC2378 only. These bits are reserved for LPC2364/66/68.

Chapter 9: LPC2300 Pin connect block

Table 91. Pin function select register 7 (PINSEL7 - address 0xE002 C01C) bit description

PINSEL7	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
27:26	P3.29	Reserved	Reserved	Reserved	Reserved	00
29:28	P3.30	Reserved	Reserved	Reserved	Reserved	00
31:30	P3.31	Reserved	Reserved	Reserved	Reserved	00

^[1] LPC2378 only. These bits are reserved for LPC2364/66/68.

6.9 Pin Function Select Register 8 (PINSEL8 - 0xE002 C020)

The PINSEL8 register controls the functions of the pins as per the settings listed in <u>Table 9–92</u>. The direction control bit in the FIO4DIR register is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

Table 92. Pin function select register 8 (PINSEL8 - address 0xE002 C020) bit description

PINSEL8	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0[1]	P4.0	GPIO Port 4.0	A0	Reserved	Reserved	00
3:2[1]	P4.1	GPIO Port 4.1	A1	Reserved	Reserved	00
5:4 <mark>11</mark>	P4.2	GPIO Port 4.2	A2	Reserved	Reserved	00
7:6 <mark>[1]</mark>	P4.3	GPIO Port 4.3	A3	Reserved	Reserved	00
9:8 <mark>[1]</mark>	P4.4	GPIO Port 4.4	A4	Reserved	Reserved	00
11:10 ^[1]	P4.5	GPIO Port 4.5	A5	Reserved	Reserved	00
13:12 <mark>[1]</mark>	P4.6	GPIO Port 4.6	A6	Reserved	Reserved	00
15:14 <mark>[1]</mark>	P4.7	GPIO Port 4.7	A7	Reserved	Reserved	00
17:16 <mark>[1]</mark>	P4.8	GPIO Port 4.8	A8	Reserved	Reserved	00
19:18 <mark>[1]</mark>	P4.9	GPIO Port 4.9	A9	Reserved	Reserved	00
21:20[1]	P4.10	GPIO Port 4.10	A10	Reserved	Reserved	00
23:22[1]	P4.11	GPIO Port 4.11	A11	Reserved	Reserved	00
25:24 <mark>[1]</mark>	P4.12	GPIO Port 4.12	A12	Reserved	Reserved	00
27:26 <mark>[1]</mark>	P4.13	GPIO Port 4.13	A13	Reserved	Reserved	00
29:28 <mark>[1]</mark>	P4.14	GPIO Port 4.14	A14	Reserved	Reserved	00
31:30[1]	P4.15	GPIO Port 4.15	A15	Reserved	Reserved	00

^[1] LPC2378 only. These bits are reserved for LPC2364/66/68.

6.10 Pin Function Select Register 9 (PINSEL9 - 0xE002 C024)

The PINSEL9 register controls the functions of the pins as per the settings listed in Table 9–93. The direction control bit in the FIO4DIR register is effective only when the GPIO function is selected for a pin. For other functions, direction is controlled automatically.

UM10211_1 © NXP B.V. 2007. All rights reserved.

N° Canal	Masque Hexa	Source
0	0x00000001	Watchdog Timer
1	0x00000002	Reserved for software interrupts only
2	0x00000004	ARM Core Embedded ICE, DbgCommRx
3	0x00000008	ARM Core Embedded ICE, DbgCommTx
4	0x00000010	TIMER0
5	0x00000020	TIMER1
6	0x00000040	UART0
7	0x00000080	UART1
8	0x00000100	PWM1
9	0x00000200	I2C0
10	0x00000400	SPI0, SSP0
11	0x00000800	SSP1
12	0x00001000	PLL
13	0x00002000	RTC
14	0x00004000	External Interrupt 0
15	0x00008000	External Interrupt 1
16	0x00010000	External Interrupt 2
17	0x00020000	External Interrupt 3
18	0x00040000	A/D Converter
19	0x00080000	I2C1
20	0x00100000	Brown Out Detect
21	0x00200000	Ethernet
22	0x00400000	USB
23	0x00800000	CAN
24	0x01000000	SD / MMC
25	0x02000000	GP DMA
26	0x04000000	Timer 2
27	0x08000000	Timer 3
28	0x10000000	UART 2
29	0x20000000	UART 3
30	0x40000000	I2C2
31	0x80000000	I2S

₹

0

3. Registre EXTMODE

Reset

Bit à 1

Bit à 0

Fonction

Bits

4. Registre EXTPOLAR

0

0

Niveau haut ou Front Montant

Niveau bas ou Front Descendant

EXTPOLAR0

EXTPOLAR1

0

selon EXTMODE

selon EXTMODE

EXTPOLAR2

2

EXTPOLAR3

က

Réservé

7:4

Bits	Fonction	Bit à 0	Bit à 1	Reset
0	EXTMODE0	Niveau	Front	0
1	EXTMODE1	Niveau	Front	0
2	EXTMODE2	Niveau	Front	0
3	EXTMODE3	Niveau	Front	0
7:4	Réservé	ı	-	N/A

5. Registre d'interruptions EXTINT

sits	Bits Fonction	Description		Reset
0	EINTO	Mis à 1 lorsque EINTx est	NTx est	0
_	EINT1	selectioninee et : Niveau actif détecté	er. :ecté	0
2	EINT2	Ou Front attendu détecté.	détecté.	0
က	EINT3	Mis à 0 si on écrit 1, sauf quand broche à 1 et sensible à 1 niveau.	sauf quand à 1 niveau.	0
7:4	7:4 Réservé	1	1	N/A

This bit is cleared by writing a one to it, except in level sensitive mode when the pin is in its active state

6. Broches associés

EINT0 Bar P2.10

P2.11

• P2.12 • P2.13

EINT1 Bar EINT2 Bar EINT3 Bar

Actions définies par TyMCR

	Description	Reset
Ď	Demande d'interruption MR0 si match TyMR0 (si bit à 1)	0
	Mise à 0 de Ty si match TyMR0 (si bit à 1)	0
	Arrêt de Ty si match TyMR0 (si bit à 1)	0
ă	Demande d'interruption MR1 si match TyMR1 (si bit à 1)	0
	Mise à 0 de Ty si match TyMR1 (si bit à 1)	0
	Arrêt de Ty si match TyMR1 (si bit à 1)	0 5

Demande d'interruptions de match pour Ty : TyIR Interrupt Request

	Description	Reset
+	Demande d'interruption de Match TyMR0	0
+	Demande d'interruption de Match TyMR1	0
+	Demande d'interruption de Match TyMR2	0
+	Demande d'interruption de Match TyMR3	0

Quand le drapeau vaut 1, l'interruption est demandée. Quand le drapeau vaut 0, l'interruption n'est pas demandée.

Actions définies par TyMCR (bis)

Bit#	Description	Reset
9	Demande d'interruption MR2 si match TyMR2 (si bit à 1)	0
2	Mise à 0 de Ty si match TyMR2 (si bit à 1)	0
8	Arrêt de Ty si match TyMR2 (si bit à 1)	0
6	Demande d'interruption MR3 si match TyMR3 (si bit à 1)	0
10	Mise à 0 de Ty si match TyMR3 (si bit à 1)	0
11	Arrêt de Ty si match TyMR3 (si bit à 1)	0

Trame de données

Architecture – Timers LPC2378

Registres Correspondants

Timer Counter : TxTC (Lecture seule)Prescaler : TxPC (Lecture seule)

Prescaler Register : TxPR

- x = 0,1,2 ou 3

Master SDI - M1 IMI - 2009-10

Registre de Commande

• Registre TxTCR (x=0,1,2 ou 3)

- Bit 0: Démarrage/Arrêt du Compteur

- Bit 1: Reset du Compteur

Table 430: Timer Control Register (TCR, TIMERn: TnTCR - addresses 0xE000 4004, 0xE000 8004, 0xE007 0004, 0xE007 4004) bit description

Bit	Symbol	Description	Reset Value
0	Counter Enable	When one, the Timer Counter and Prescale Counter are enabled for counting. When zero, the counters are disabled.	0
1	Counter Reset	When one, the Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	0

Match (Comparaison)

- Chaque Timer possède 4 Match Register
 - TxMR0, TxMR1, TxMR2, TxMR3

- A chaque incrémentation du Timer Tx, le contenu de TxTC est comparé aux Match Registers
 - Si les deux valeurs sont égales, une action peut alors être entreprise

7.2 PWM Timer Control Register (PWM1TCR 0xE001 8004)

The PWM Timer Control Register (PWMTCR) is used to control the operation of the PWM Timer Counter. The function of each of the bits is shown in <u>Table 24–485</u>.

Table 485: PWM Timer Control Register (PWM1TCR address 0xE001 8004) bit description

Bit	Symbol	Value	Description	Reset Value
0	Counter Enable	1	The PWM Timer Counter and PWM Prescale Counter are enabled for counting.	0
		0	The counters are disabled.	
1	Counter Reset	1	The PWM Timer Counter and the PWM Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until this bit is returned to zero.	0
		0	Clear reset.	_
2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
3	PWM Enable	1	PWM mode is enabled (counter resets to 1). PWM mode causes the shadow registers to operate in connection with the Match registers. A program write to a Match register will not have an effect on the Match result until the corresponding bit in PWMLER has been set, followed by the occurrence of a PWM Match 0 event. Note that the PWM Match register that determines the PWM rate (PWM Match Register 0 - MR0) must be set up prior to the PWM being enabled. Otherwise a Match event will not occur to cause shadow register contents to become effective.	0
		0	Timer mode is enabled (counter resets to 0).	
7:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

7.1 PWM Interrupt Register (PWM1IR - 0xE001 8000)

The PWM Interrupt Register consists of eleven bits (<u>Table 24–484</u>), seven for the match interrupts and four reserved for the future use. If an interrupt is generated then the corresponding bit in the PWMIR will be high. Otherwise, the bit will be low. Writing a logic one to the corresponding IR bit will reset the interrupt. Writing a zero has no effect.

Table 484: PWM Interrupt Register (PWM1IR - address 0xE001 8000) bit description

Bit	Symbol	Description	Reset Value
0	PWMMR0 Interrupt	Interrupt flag for PWM match channel 0.	0
1	PWMMR1 Interrupt	Interrupt flag for PWM match channel 1.	0
2	PWMMR2 Interrupt	Interrupt flag for PWM match channel 2.	0
3	PWMMR3 Interrupt	Interrupt flag for PWM match channel 3.	0

_2 ONXP 8.V. 2009. All rights reserved.
manual Rev. 02 — 11 February 2009 568 of 706

Semiconductors

UM10211

Chapter 24: LPC23XX Pulse width modulator

Table 484: PWM Interrupt Register (PWM1IR - address 0xE001 8000) bit description

Bit	Symbol	Description	Reset Value
4	PWMCAP0 Interrupt	Interrupt flag for capture input 0	0
5	PWMCAP1 Interrupt	Interrupt flag for capture input 1.	0
7:6	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
8	PWMMR4 Interrupt	Interrupt flag for PWM match channel 4.	0
9	PWMMR5 Interrupt	Interrupt flag for PWM match channel 5.	0
10	PWMMR6 Interrupt	Interrupt flag for PWM match channel 6.	0
15:11	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

7.4 PWM Match Control Register (PWM1MCR - 0xE001 8014)

The PWM Match Control Registers are used to control what operations are performed when one of the PWM Match Registers matches the PWM Timer Counter. The function of each of the bits is shown in Table 24-487.

Table 487: Match Control Register (PWM1MCR - address 0xE000 8014) bit description

Bit	Symbol	Value	Description		
0	PWMMR0I	 Interrupt on PWMMR0: an interrupt is generated when PWMMR0 matches the value in the PWMTC. 		0	
		0	This interrupt is disabled.		
1 PWMMR0R		1	Reset on PWMMR0: the PWMTC will be reset if PWMMR0 matches it.		
		0	This feature is disabled.		
2 PWMMR0S		1	Stop on PWMMR0: the PWMTC and PWMPC will be stopped and PWMTCR[0] will be set to 0 if PWMMR0 matches the PWMTC.	0	
		0	This feature is disabled		
3	PWMMR1I	1	Interrupt on PWMMR1: an interrupt is generated when PWMMR1 matches the value in the PWMTC.	0	
		0	This interrupt is disabled.		
4 PWMMR1R		1	Reset on PWMMR1: the PWMTC will be reset if PWMMR1 matches it.	0	
		0	This feature is disabled.		
5	PWMMR1S	1	Stop on PWMMR1: the PWMTC and PWMPC will be stopped and PWMTCR[0] will be set to 0 if PWMMR1 matches the PWMTC.	0	
		0	This feature is disabled.		

Bit	Symbol Value Description				
6 PWMMR2I		1	Interrupt on PWMMR2: an interrupt is generated when PWMMR2 matches the value in the PWMTC.	0	
		0	This interrupt is disabled.		
7	PWMMR2R	1	Reset on PWMMR2: the PWMTC will be reset if PWMMR2 matches it.	0	
		0	This feature is disabled.		
8	PWMMR2S	1	Stop on PWMMR2: the PWMTC and PWMPC will be stopped and PWMTCR[0] will be set to 0 if PWMMR2 matches the PWMTC.	0	
		0	This feature is disabled		
9	PWMMR3I	1	Interrupt on PWMMR3: an interrupt is generated when PWMMR3 matches the value in the PWMTC.		
		0	This interrupt is disabled.	_	
10 PWMMR3R		1	Reset on PWMMR3: the PWMTC will be reset if PWMMR3 matches it.	0	
		0	This feature is disabled	_	
11	PWMMR3S	1	Stop on PWMMR3: The PWMTC and PWMPC will be stopped and PWMTCR[0] will be set to 0 if PWMMR3 matches the PWMTC.	0	
		0	This feature is disabled	_	
12 PWMMR4I		1	Interrupt on PWMMR4: An interrupt is generated when PWMMR4 matches the value in the PWMTC.	0	
		0	This interrupt is disabled.	_	
13 PWMMR4R		1	Reset on PWMMR4: the PWMTC will be reset if PWMMR4 matches it.	0	
		0	This feature is disabled.		
14 PWMMR4S		1	Stop on PWMMR4: the PWMTC and PWMPC will be stopped and PWMTCR[0] will be set to 0 if PWMMR4 matches the PWMTC.	0	
		0	This feature is disabled	_	
15	PWMMR5I	1	Interrupt on PWMMR5: An interrupt is generated when PWMMR5 matches the value in the PWMTC.	0	
		0	This interrupt is disabled.		
16	PWMMR5R	1	Reset on PWMMR5: the PWMTC will be reset if PWMMR5 matches it.	0	
		0	This feature is disabled.	-	

7.6 PWM Control Registers (PWM1PCR - 0xE001 804C)

The PWM Control Registers are used to enable and select the type of each PWM channel. The function of each of the bits are shown in <u>Table 24–489</u>.

Table 489: PWM Control Registers (PWM1PCR - address 0xE001 804C) bit description

Bit	Symbol	Valu e	Description	Rese Value		
1:0	Unused		Unused, always zero.			
2	PWMSEL2	2 1 Selects double edge controlled mode for the PWM2 output		0		
		0	Selects single edge controlled mode for PWM2.			
3	PWMSEL3	1	Selects double edge controlled mode for the PWM3 output.	0		
		0	Selects single edge controlled mode for PWM3.			
4	PWMSEL4	1	Selects double edge controlled mode for the PWM4 output.	0		
		0	Selects single edge controlled mode for PWM4.			
5 PWMSEL5		1	Selects double edge controlled mode for the PWM5 output.	0		
		0	Selects single edge controlled mode for PWM5.			
6	PWMSEL6	1	Selects double edge controlled mode for the PWM6 output.	0		
		0	Selects single edge controlled mode for PWM6.			
8:7	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.		NA		
9	PWMENA1	1	The PWM1 output enabled.	0		
		0	The PWM1 output disabled.			
10	PWMENA2	1	The PWM2 output enabled.	0		
			0	The PWM2 output disabled.		

G NXP B.V. 2009. All rights recens

Rev. 02 — 11 February 2009

573 of 70

Semiconductors

anual

UM10211

Chapter 24: LPC23XX Pulse width modulato

Table 489: PWM Control Registers (PWM1PCR - address 0xE001 804C) bit description

Bit	Symbol	Valu e	Description	Reset Value
11	PWMENA3	1	The PWM3 output enabled.	0
		0	The PWM3 output disabled.	
12	PWMENA4	1	The PWM4 output enabled.	0
		0	The PWM4 output disabled.	
13	PWMENA5	1	The PWM5 output enabled.	0
		0	The PWM5 output disabled.	
14	PWMENA6	1	The PWM6 output enabled.	0
		0	The PWM6 output disabled.	
31:15	Unused		Unused, always zero.	NA

Table 490: PWM Latch Enable Register (PWM1LER - address 0xE001 8050) bit description

Bit	Symbol	Description	Reset Value	
0	Enable PWM Match 0 Latch	Writing a one to this bit allows the last value written to the PWM Match 0 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".		
1	Enable PWM Match 1 Latch	Writing a one to this bit allows the last value written to the PWM Match 1 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".	0	
2	Enable PWM Match 2 Latch	Writing a one to this bit allows the last value written to the PWM Match 2 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".	0	
3	Enable PWM Match 3 Latch	Writing a one to this bit allows the last value written to the PWM Match 3 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".	0	
4	Enable PWM Match 4 Latch	Writing a one to this bit allows the last value written to the PWM Match 4 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".	0	
5	Enable PWM Match 5 Latch	Writing a one to this bit allows the last value written to the PWM Match 5 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".	0	
в	Enable PWM Match 6 Latch	Writing a one to this bit allows the last value written to the PWM Match 6 register to be become effective when the timer is next reset by a PWM Match event. See Section 24–7.4 "PWM Match Control Register (PWM1MCR - 0xE001 8014)".	0	
7	•	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

	occurs.			
MR0	Match Register 0. MR0 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC sets any PWM output that is in single-edge mode, and sets PWM1 if it's in double-edge mode.	R/W	0	PWM1MR0 - 0xE001 8018
MR1	Match Register 1. MR1 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC clears PWM1 in either edge mode, and sets PWM2 if it's in double-edge mode.	R/W	0	PWM1MR1 - 0xE001 801C
MR2	Match Register 2. MR2 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC clears PWM2 in either edge mode, and sets PWM3 if it's in double-edge mode.	R/W	0	PWM1MR2 - 0xE001 8020
MR3	Match Register 3. MR3 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC clears PWM3 in either edge mode, and sets PWM4 if it's in double-edge mode.	R/W	0	PWM1MR3 - 0xE001 8024
MR4	Match Register 4. MR4 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC clears PWM4 in either edge mode, and sets PWM5 if it's in double-edge mode.	R/W	0	PWM1MR - 0xE001 8040
MR5	Match Register 5. MR5 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC clears PWM5 in either edge mode, and sets PWM6 if it's in double-edge mode.	R/W	0	PWM1MR - 0xE001 8044
MR6	Match Register 6. MR6 can be enabled in the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt when it matches the TC. In addition, a match between this value and the TC clears PWM6 in either edge mode.	R/W	0	PWM1MR - 0xE001 8048

Table 480. Set and reset inputs for PWM Flip-Flops

PWM Channel	Single Edge PWN	(PWMSELn = 0)	Double Edge PWM (PWMSELn = 1)		
	Set by	Reset by	Set by	Reset by	
1	Match 0	Match 1	Match 0[1]	Match 1 ^[1]	
2	Match 0	Match 2	Match 1	Match 2	
3	Match 0	Match 3	Match 2[2]	Match 3[2]	
4	Match 0	Match 4	Match 3	Match 4	
5	Match 0	Match 5	Match 4 ^[2]	Match 5 ^[2]	
6	Match 0	Match 6	Match 5	Match 6	