Smallest Simple Function for Big Oh

- ▶ If f(n) is $O(n^2)$, is it also $O(n^3)$?
 - Since $O(n^3)$ grows faster than $O(n^2)$, it is true.
 - However, $O(n^3)$ over estimates an $O(n^2)$ function.
- So, our attempt will be to find the smallest simple function for which f(n) is O(g(n)).
- Some well known growth functions in order of growth:
 - 1, $\log n$, n, $n \log n$, n^2 , n^3 , 2^n , etc.
- ▶ Notice that only +ve integral values of *n* are of interest.

Guidelines for Computing Big Oh

- ▶ Find the dominant term of the function and find its order.
 - A logarithmic function dominates all constants.
 - A polynomial function dominates all logarithmic functions.
 - A polynomial of degree k dominates all lower degree polynomials.
 - An exponential function dominates all polynomial functions.
- Basis here is that:
 - The dominant term grows more rapidly compared to others.
 - It will quickly outgrow non-dominant terms.

Other Simple Rules

- ▶ If $T_1(n) = O(f_1(n))$, and $T_2(n) = O(f_2(n))$, then $T_1(n) + T_2(n) = \max\{ O(f_1(n)), O(f_2(n)) \}$ $T_1(n) * T_2(n) = O(f_1(n) * f_2(n))$
- ▶ If T(n) is a polynomial of k then $T(n) = \Theta(n^k)^1$
- $ightharpoonup \log^k n = O(n)$ for any constant k
- ▶ For checking whether g(n) and f(n) are comparable find $\lim \frac{f(n)}{g(n)} \le k$, where k > 0 is a constant?
- ► E.g.: $\lim \frac{n^2}{n^2+6} = \lim \frac{2n}{2n} = 1$
- $ightharpoonup \lim \frac{\log n}{\log n^2} = \lim \frac{(1/n)}{2(1/n)} = 1/2.$

¹Not defined yet

Some Examples

- Examples of O(n^2) functions: n^2 , $n^2 + n$, $n^2 + 1000n$, $100n^2 + 1000n$, n, n/100, $n^{1.99999}$, $n^2/(\log \log \log n)$
- $\log n! = O(n \log n):$

$$\log n! = \log 1 + \log 2 + \ldots + \log n$$

$$\leq \log n + \log n + \ldots + \log n = n \log n$$

- $ightharpoonup 2^{n+1} = 2.2^n \text{ for all } n.$
 - So with $c = 2, n_0 = 1, 2^{n+1} = O(2^n)$.
- ▶ But $2^{2n} \neq O(2^n)$ can be proved by contradiction.
 - We have $0 \le 2^{2n} = 2^n . 2^n \le c . 2^n$, then $2^n \le c$.
 - But no constant is greater than 2^n .

Exercise 1

Prove that $n^3 + 20n + 1$ is not $O(n^2)$.

- ▶ Assume that $n^3 + 20n + 1$ is $O(n^2)$.
- ▶ By definition of big-Oh it implies $n^3 + 20n + 1 \le c.n^2$.
- ▶ Divide both side of the inequality by n^2 .
- ▶ So, $n + \frac{20}{n} + \frac{1}{n} \le c$.
- ▶ Since left side grows with n, c cannot be a constant.

Exercise 2

Prove that $f(n) = \frac{n^2 + 5 \log n}{2n+1}$ is O(n)

- ▶ $5 \log n < 5n < 5n^2$, for all n > 1
- ▶ 2n + 1 > 2n, so $\frac{1}{2n+1} < \frac{1}{2n}$ for all n > 0
- ▶ Thus $\frac{n^2 + 5 \log n}{2n + 1} \le \frac{n^2 + 5n^2}{2n} = 3n$ for all n > 1.
- ▶ So, with c = 3 and $n_0 = 1$ we have f(n) < c.n

Exercise 3

Let $f(n) = n^k$, and m > k, then $f(n) = O(n^{m-\epsilon})$, where $\epsilon > 0$

- ▶ Set $\epsilon = (m-k)/2$, so $m \epsilon = (m+k)/2 > k$.
- ▶ Hence, $n^{(m-\epsilon)}$ dominates n^k .

Exercise 4

Let $f(n) = n^k$, and m < k, then $f(n) = \Omega(n^{m+\epsilon})^a$, where $\epsilon > 0$

 $^{a}\Omega$ not defined yet

- Set $\epsilon = (k-m)/2$, so $m + \epsilon = (m+k)/2 < k$.
- ▶ Hence, $n^{(m+\epsilon)}$ is dominated by n^k .

Exercise 5

Show $f(n) = n^k$ is of $O(n^{\log \log n})$ for any constant k > 0

- $ightharpoonup n^k < n^{\log \log n}$ iff $k < \log \log n$, i.e., $n > 2^{2^k}$.
- ▶ Setting $n_0 = 2^{2^k}$, we have $n^k = O(n^{\log \log n})$.

Computing Big Oh of Programs

- Single loops: for, while, do-while, repeat until
 - Number of operations is equal to number of iterations times the operations in each statement inside loop.
- Nested loops:
 - Number of statements in all loops times the product of the loop sizes.
- Consecutive statements:
 - Use addition rule: O(f(n)) + O(g(n)) = max(g(n), f(n))
- Conditional statement:
 - Number of operations is equal to running time of conditional evaluation and the maximum of running time of if and else clauses.

Computing Big Oh of Programs

Switch statements:

- Take the complexity of the most expensive case (with the highest number of operations).
- Function calls:
 - First, evaluate the complexity of the method being called.
- Recursive calls:
 - Write down recurrence relation of running time.
 - Solution mostly possible by observing pattern of growth and prove the same on the basis of induction from the base case.
 - For divide and conquer algorithms Master Theorem can be used.

Analysis of for Loops

```
 \begin{array}{lll} \textbf{for} & (i=0\,;\;\;i < n\,;\;\;i++) \\ & \texttt{a}\,[i] = 0\,; \\ & \textbf{for} & (j=0\,;\;\;j < n\,;\;\;j++) \end{array} \left. \left\{ \begin{array}{c} \\ \texttt{sum} = i+j\,; \\ \\ \texttt{size}\,++; \end{array} \right. \right\}
```

- ▶ First for loop: n times
- Nested for loops: n² times
- ► Total: $O(n + n^2) = O(n^2)$

Switch Case Statement

```
char key;
   int X[5], Y[5][5], i, j;
6
   switch(key) {
     case 'a' :
8
         for (i = 0; i < sizeof(X)/sizeof(X[0]); i++)
             sum = sum + X[i];
                                       \Rightarrow O(n)
10
         break:
   case 'b' :
11
12
         for (i = 0; i < sizeof(Y)/sizeof(Y[0]); i++)
13
             for (j = 0; j < sizeof(Y[0]) / sizeof(Y[0][0]); j++)
                  sum = sum + Y[i][i]; \Rightarrow O(n^2)
14
15
        break:
16 } // End of switch block
```

▶ So using switch statement rule: $O(n^2)$

for & if else

```
1  char key;
2  int A[5][5], B[5][5], C[5][5];
3  ...
4  if(key == '+') {
5   for(i = 0; i < n; i++)
6   for(j = 0; j < n; j++)
7    C[i][j] = A[i][j] + B[i][j];
8  } // End of if block  => O(n²)
9  else if(key == 'x')
10  C = matrixMult(A, B);  => O(n³)
11  else
12  printf("Error! Enter '+' or 'x'! :");  => O(1)
```

▶ Overall complexity is: $O(n^3)$.

Exponential Algorithm are Expensive

Exercise 6

Let us first prove $n^k = O(b^n)$ whenever $0 < k \le c$,

$$\lim \frac{n^k}{b^n} = \lim \frac{kn^{k-1}}{\ln b \cdot b^n} \text{ (set } b^n = e^{n \ln b})$$

- ► The numerator's exponent decremented after each application of L Hospital's rule.
- ▶ So, b^n dominates n^k for any finite k.

Big Oh for Recursive Algorithms

```
\begin{array}{ll} \textbf{procedure} \ \mathsf{T}(n \colon \mathsf{size} \ \mathsf{of} \ \mathsf{the} \ \mathsf{problem}) \ \{ \\ & \ \mathsf{if} \ (n < 1) \\ & \ \mathsf{exit} \ () \\ & \ \mathsf{Do} \ \mathsf{work} \ \mathsf{of} \ \mathsf{amount} \ n^k \\ & \ \mathsf{T}(n/b) \ // \ \mathit{Repeat} \ \mathit{for} \ \mathit{a} \ \mathit{times} \\ & \ \mathsf{T}(n/b) \\ & \dots \\ & \ \mathsf{T}(n/b) \ \} \end{array}
```

- ▶ The original problem is recursively divided into a subproblems of n/b.
- ▶ In each recursive call $O(n^k)$ work is done.

Big Oh for Recursive Algorithms

Master Theorem

► The expression for time complexity is

$$T(n) = aT(n/b) + O(n^k)$$
, where $a > 0, b > 1$ and $k \ge 0$

The time complexity for recursive algorithms is given by:

$$T(n) = \begin{cases} O(n^k) \text{ if } a < b^k \\ O(n^k \log n) \text{ if } a = b^k \\ O(n^{\log_b a}) \text{ if } a > b^k \end{cases}$$

Recursion Tree

- ▶ Before solving, let us take a look at recursion tree.
- ightharpoonup n is assumed to be a power of b, if not pad n to be larger.
- ▶ It requires more than b to be added to n.
- \blacktriangleright At level 0, when we start the problem size is n.
- ▶ At level 1, we have a problems of size n/b each.
- ▶ In general, at level i, we have a^i problems of size n/b^i each.

Recursion Tree

Solution of Master's Theorem

First let us unfold the recurrence relation:

$$T(n) = aT\left(\frac{n}{b}\right) + n^k$$

$$= a\left(aT\left(\frac{n}{b^2}\right) + \frac{n^k}{b^k}\right) + n^k$$

$$\vdots$$

$$= n^k + \frac{a}{b^k}n^k + \frac{a^2}{(b^k)^2}n^k + \dots + \frac{a^L}{(b^k)^L}n^k$$

$$= n^k\left(1 + \frac{a}{b^k} + \left(\frac{a}{b^k}\right)^2 + \left(\frac{a}{b^k}\right)^3 + \dots + \left(\frac{a}{b^k}\right)^L\right)$$

 $\blacktriangleright \text{ Here, } L = \log_b n.$

Solution of Master's Theorem: Case I

► The expression within brackets is a GP, of the form

$$1+r+r^2+r^3+\cdots+r^L$$
, where $r=rac{a}{b^k}$ and $L=\log_b n$

- ▶ In this case $a < b^k$, $r = \frac{a}{b^k} < 1$
- Therefore, the first term dominates the running time.
- ▶ In other words, the level 0 of the recursion dominates the runtime.
- ▶ Hence, the solution in this case will be $O(n^k)$.

Solution of Master's Theorem: Case II

- ▶ In this case $a = b^k$, or r = 1 in the expression for the running time.
- ▶ In this case, equal work $(=n^k)$ is done at every level of the recursion.
- Since depth of recursion is $1 + \log n$, the running time in this case is $O(n^k \log n)$.

Solution of Master's Theorem: Case III

- ▶ Here, $a > b^k$, which implies $\frac{a}{b^k} > 1$.
- ► This means the last term in the sum dominates the runtime.
- So, the runtime should be $O(n^k \left(\frac{a}{b^k}\right)^L) = O(a^L)$, as $(b^k)^L = (b^L)^k = n^k$
- ▶ Now replace L by $\log_b n$ to get $O(a^{\log_b n})$
- $a^L = (b^{\log_b a})^{\log_b n} = (b^{\log_b n})^{\log_b a} = n^{\log_b a}.$