Data in the form of complete Numerical
 We have some understanding the data

1. Read the data 2. Separate Categorical columns and Numerical columns 3. Data quick checks shape, columns, dtypes 4. Null value analysis A. Check if any null values are present B. Fill the null values with median or KNNImputer for numerical columns C. Fill the null values with mode for Categorical columns 5. Do some data preprocessing If any columns are corrupted Ex- Numerical values in categorical columns ex- Categorical values in Numerical columns 6. Drop the id columns which means a data has more unique lables Drop the single value columns 7. Categorical column analysis a. Frequency tables b. Bar charts c. pie charts 8. Numerical columns analysis a. Histogram : b. Distribution c. Box plot 9. Outliers analysis Impute the outliers with median 10. Find the correlation between numerical columns heat maps 11. Convert Categorical to numerical a. LabelEncoder b. One hot Encoder 12. Scale the data a. Z standardization b. Normalization By the time of 12 steps, we achieve 3 things 1. Cleaned data

Out[3]:		year	customer_id	phone_no	gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched
	0	2015	100198	409-8743	Female	36	62	no	no	148.35
	1	2015	100643	340-5930	Female	39	149	no	no	294.45
	2	2015	100756	372-3750	Female	65	126	no	no	87.30
	3	2015	101595	331-4902	Female	24	131	no	yes	321.30
	4	2015	101653	351-8398	Female	40	191	no	no	243.00
	•••				•••					
	1995	2015	997132	385-7387	Female	54	75	no	yes	182.25
	1996	2015	998086	383-9255	Male	45	127	no	no	273.45
	1997	2015	998474	353-2080	NaN	53	94	no	no	128.85
	1998	2015	998934	359-7788	Male	40	94	no	no	178.05
	1999	2015	999961	414-1496	Male	37	73	no	no	326.70
	2000 rd	ows × 1	16 columns							

file:///C:/Users/suman/Downloads/NEW DATASET.html

Out[7]: 24

```
In [9]: gender_mode=telecom_df['gender'].mode()
  telecom_df['gender']=telecom_df['gender'].fillna(gender_mode.values[0])
  telecom_df
```

\cap	+	ΓΩ	٦.
υt		L⊃] •

:		year	customer_id	phone_no	gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched
	0	2015	100198	409-8743	Female	36	62	no	no	148.35
	1	2015	100643	340-5930	Female	39	149	no	no	294.45
	2	2015	100756	372-3750	Female	65	126	no	no	87.30
	3	2015	101595	331-4902	Female	24	131	no	yes	321.30
	4	2015	101653	351-8398	Female	40	191	no	no	243.00
	•••		•••							
19	95	2015	997132	385-7387	Female	54	75	no	yes	182.25
19	96	2015	998086	383-9255	Male	45	127	no	no	273.45
19	97	2015	998474	353-2080	Male	53	94	no	no	128.85
19	98	2015	998934	359-7788	Male	40	94	no	no	178.05
19	99	2015	999961	414-1496	Male	37	73	no	no	326.70

2000 rows × 16 columns

Out[11]:		year	customer_id	phone_no	gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched
	0	2015	100198	409-8743	Female	36	62	no	no	148.35
	1	2015	100643	340-5930	Female	39	149	no	no	294.45
	2	2015	100756	372-3750	Female	65	126	no	no	87.30
	3	2015	101595	331-4902	Female	24	131	no	yes	321.30
	4	2015	101653	351-8398	Female	40	191	no	no	243.00
	•••									
	1995	2015	997132	385-7387	Female	54	75	no	yes	182.25
	1996	2015	998086	383-9255	Male	45	127	no	no	273.45
	1997	2015	998474	353-2080	Male	53	94	no	no	128.85
	1998	2015	998934	359-7788	Male	40	94	no	no	178.05
	1999	2015	999961	414-1496	Male	37	73	no	no	326.70
	2000 rd	ows × 1	16 columns							
	4									•
In [13]:	telec	om df['age'].isnul	l().sum()						
Out[13]:				· · · · · · · · · · · · · · · · · · ·						
ouc[15].	0									
In [15]:	age_mo		round(teleco	m_df['age'	.median	())				
Out[15]:	37									
In [17]:		om_df[round(teleco 'age']=telec				_median)			

Out[17]:		year	customer_id	phone_no	gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched
	0	2015	100198	409-8743	Female	36	62	no	no	148.35
	1	2015	100643	340-5930	Female	39	149	no	no	294.45
	2	2015	100756	372-3750	Female	65	126	no	no	87.30
	3	2015	101595	331-4902	Female	24	131	no	yes	321.30
	4	2015	101653	351-8398	Female	40	191	no	no	243.00
	•••									
	1995	2015	997132	385-7387	Female	54	75	no	yes	182.25
	1996	2015	998086	383-9255	Male	45	127	no	no	273.45
	1997	2015	998474	353-2080	Male	53	94	no	no	128.85
	1998	2015	998934	359-7788	Male	40	94	no	no	178.05
	1999	2015	999961	414-1496	Male	37	73	no	no	326.70

2000 rows × 16 columns

In [19]: telecom_df.drop(['year','customer_id','phone_no'],axis=1,inplace=True)
 telecom_df

Out[19]:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum
	0	Female	36	62	no	no	148.35	12.2	
	1	Female	39	149	no	no	294.45	7.7	
	2	Female	65	126	no	no	87.30	11.9	
	3	Female	24	131	no	yes	321.30	9.5	
	4	Female	40	191	no	no	243.00	10.9	
	•••								
	1995	Female	54	75	no	yes	182.25	11.3	
	1996	Male	45	127	no	no	273.45	9.3	
	1997	Male	53	94	no	no	128.85	15.6	
	1998	Male	40	94	no	no	178.05	10.4	
	1999	Male	37	73	no	no	326.70	10.3	

2000 rows × 13 columns

```
In [21]: for i in num[2:]:
    medians=round(telecom_df[i].median())
    telecom_df[i]=round(telecom_df[i].fillna(medians))

telecom_df
```

Out[21]:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum			
	0	Female	36	62	no	no	148.0	12.0				
	1	Female	39	149	no	no	294.0	8.0				
	2	Female	65	126	no	no	87.0	12.0				
	3	Female	24	131	no	yes	321.0	10.0				
	4	Female	40	191	no	no	243.0	11.0				
	•••											
	1995	Female	54	75	no	yes	182.0	11.0				
	1996	Male	45	127	no	no	273.0	9.0				
	1997	Male	53	94	no	no	129.0	16.0				
	1998	Male	40	94	no	no	178.0	10.0				
	1999	Male	37	73	no	no	327.0	10.0				
	2000 rd	ows × 13	colum	nns								
	4								>			
In [23]:	num=te	<pre>cat=telecom_df.select_dtypes(include='object').columns num=telecom_df.select_dtypes(exclude='object').columns cat,num</pre>										
Out[23]:												

FREQUENCY TABLE

```
In [25]: keys=telecom_df['gender'].value_counts().keys()
    values=telecom_df['gender'].value_counts().values
```

```
dff=pd.DataFrame(zip(keys, values))
         dff.to_csv('gender_table.csv')
In [27]: import os
         folder='CHURN DATASET'
         path=os.getcwd()
         new_dir=os.path.join(path,folder)
         try:
             os.makedirs(new_dir)
         except Exception as e:
             print(e)
         for i in cat:
             keys1=telecom_df[i].value_counts().keys()
             values1=telecom_df[i].value_counts().values
             col=['TYPES','NO OF TYPES']
             name=f'{i}_table.csv'
             new_path=os.path.join(new_dir,name)
             df1=pd.DataFrame(zip(keys1,values1),columns=col)
             df1.to_csv(new_path)
```

[WinError 183] Cannot create a file when that file already exists: 'C:\\Users\\suman\\OneDrive\\Documents\\NARESH IT \\EDA\\CHURN DATASET'

CATEGORICAL COLUMN

```
In [277... keys1=telecom_df['gender'].value_counts().keys()
    values1=telecom_df['gender'].value_counts().values
    plt.bar(keys1,values1)
    plt.show()
```



```
for i in cat:
    keys1=telecom_df[i].value_counts().keys()
    values1=telecom_df[i].value_counts().values
    plt.bar(keys1,values1)
    plt.title(f'{i}_BAR CHART')
    plt.xlabel('TYPES')
    plt.ylabel('NO OF TYPES')
    name1=f'{i}_bar_chart.jpg'
    new_path1=os.path.join(new_dir,name1)
    plt.savefig(new_path1)
    plt.show()
```



```
In [281... keys1=telecom_df['gender'].value_counts().keys()
    values1=telecom_df['gender'].value_counts().values
    plt.pie(x=values1,labels=keys1,autopct='%0.1f%%')
    plt.title('GENDER')
    plt.show()
```



```
for i in cat:
    keys1=telecom_df[i].value_counts().keys()
    values1=telecom_df[i].value_counts().values
    plt.pie(values1,labels=keys1,autopct="%0.1f%")
    plt.title(f'{i}_PIE_CHART')
    plt.xlabel('TYPES')
    plt.ylabel('NO OF TYPES')
    name1=f'{i}_bar_chart.jpg'
    new_path1=os.path.join(new_dir,name1)
    plt.savefig(new_path1)
    plt.show()
```


 $multi_screen_PIE_CHART$

$mail_subscribed_PIE_CHART$

TYPES

NUMERICAL COLUMNS ANALYSIS

```
In [168... telecom_df['age'].hist()
```

Out[168... <Axes: >

In [188... plt.hist(telecom_df['age'])

Out[188... (array([96., 310., 623., 469., 241., 124., 74., 41., 17., 5.]), array([18., 24.4, 30.8, 37.2, 43.6, 50., 56.4, 62.8, 69.2, 75.6, 82.]), <BarContainer object of 10 artists>)


```
for i in num:
    plt.hist(telecom_df[i])
    plt.title(f'{i}_HISTOGRAM')
    plt.xlabel(f'{i}')
    plt.ylabel('COUNTS')
    name2=f'{i}_histogram.jpg'
    new_path2=os.path.join(new_dir,name2)
    plt.savefig(new_path2)
    plt.show()
```



```
In [29]: Q1=np.quantile(telecom_df['age'],0.25)
   Q3=np.quantile(telecom_df['age'],0.75)
   IQR=Q3-Q1
   lb=Q1-1.5*IQR
   ub=Q3+1.5*IQR
   con1=telecom_df['age']<lb
   con2=telecom_df['age']>ub
   con3=con1|con2
   outliers_data=telecom_df[con3]
   outliers_data
```

Out[29]:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum
	2	Female	65	126	no	no	87.0	12.0	
	30	Female	63	106	no	no	281.0	11.0	
	71	Male	67	163	no	no	372.0	10.0	
	87	Male	64	21	no	yes	199.0	13.0	
1	154	Female	66	68	no	no	223.0	12.0	
	•••								
18	352	Male	65	58	no	no	352.0	10.0	
18	355	Female	72	143	no	no	304.0	5.0	
18	384	Male	69	73	no	yes	123.0	12.0	
19	970	Female	67	144	yes	no	225.0	9.0	
19	981	Female	70	93	no	no	285.0	9.0	

63 rows × 13 columns

```
In [31]: Q1=np.quantile(telecom_df['age'],0.25)
Q3=np.quantile(telecom_df['age'],0.75)
IQR1=Q3-Q1
lb1=Q1-1.5*IQR1
ub1=Q3+1.5*IQR1
con4=telecom_df['age']>lb1
con5=telecom_df['age']<ub1
con6=con4&con5
non_outliers_data=telecom_df[con6]
non_outliers_data</pre>
```

ut[31]:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum
	0	Female	36	62	no	no	148.0	12.0	
	1	Female	39	149	no	no	294.0	8.0	
	3	Female	24	131	no	yes	321.0	10.0	
	4	Female	40	191	no	no	243.0	11.0	
	5	Male	31	65	no	no	194.0	13.0	
	•••								
	1995	Female	54	75	no	yes	182.0	11.0	
	1996	Male	45	127	no	no	273.0	9.0	
	1997	Male	53	94	no	no	129.0	16.0	
	1998	Male	40	94	no	no	178.0	10.0	
	1999	Male	37	73	no	no	327.0	10.0	
		ows × 13	colum	nns					
	4								•

'means': []}

plt.boxplot(outliers_data['age'],vert=False)

In [325...


```
In [327... plt.subplot(3,2,1).boxplot(telecom_df['age'],vert=False)
    plt.subplot(3,2,2).hist(telecom_df['age'])
    plt.subplot(3,2,3).boxplot(non_outliers_data['age'],vert=False)
    plt.subplot(3,2,4).hist(non_outliers_data['age'])
    plt.subplot(3,2,5).boxplot(outliers_data['age'],vert=False)
    plt.subplot(3,2,6).hist(outliers_data['age'])
    plt.show()
```



```
In [329...
          for i in num:
              Q1=np.quantile(telecom_df[i],0.25)
              Q3=np.quantile(telecom_df[i],0.75)
              IQR=Q3-Q1
              lb=Q1-1.5*IQR
              ub=Q3+1.5*IQR
              con1=telecom_df[i]<lb</pre>
               con2=telecom_df[i]>ub
               con3=con1 con2
              outliers_data=telecom_df[con3]
              con4=telecom_df[i]>lb
               con5=telecom_df[i]<ub</pre>
               con6=con4&con5
              non_outliers_data=telecom_df[con6]
               plt.title(f'{i}_histo_boxplot')
               plt.subplot(3,2,1).boxplot(telecom_df[i],vert=False)
```

```
plt.subplot(3,2,2).hist(telecom_df[i])
plt.subplot(3,2,3).boxplot(non_outliers_data[i],vert=False)
plt.subplot(3,2,4).hist(non_outliers_data[i])
plt.subplot(3,2,5).boxplot(outliers_data[i],vert=False)
plt.subplot(3,2,6).hist(outliers_data[i])
plt.show()
```


OUTLIERS ANALYSIS

```
In [33]:
    q1=np.quantile(telecom_df['age'],0.25)
    q3=np.quantile(telecom_df['age'],0.75)
    med=round(telecom_df['age'].median())
    iqr=q3-q1
    lb1=q1-1.5*iqr
    ub1=q3+1.5*iqr
    new_data=[]
    for i in telecom_df['age']:
        if i<lb1 or i>ub1:
            new_data.append(med)
        else:
            new_data.append(i)
```

```
telecom_df['age']=new_data
telecom_df
```

Ο.	+	Гэ:	
Uι	1 L	0.3	> .

:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum
	0	Female	36	62	no	no	148.0	12.0	
	1	Female	39	149	no	no	294.0	8.0	
	2	Female	37	126	no	no	87.0	12.0	
	3	Female	24	131	no	yes	321.0	10.0	
	4	Female	40	191	no	no	243.0	11.0	
	•••								
	1995	Female	54	75	no	yes	182.0	11.0	
	1996	Male	45	127	no	no	273.0	9.0	
	1997	Male	53	94	no	no	129.0	16.0	
	1998	Male	40	94	no	no	178.0	10.0	
	1999	Male	37	73	no	no	327.0	10.0	

2000 rows × 13 columns

telecom_df[j]=new_data
telecom_df

Out[35]:

	gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum
0	Female	36	62	no	no	148.0	12.0	
1	Female	39	149	no	no	294.0	8.0	
2	Female	37	126	no	no	87.0	12.0	
3	Female	24	131	no	yes	321.0	10.0	
4	Female	40	191	no	no	243.0	11.0	
•••								
1995	Female	54	75	no	yes	182.0	11.0	
1996	Male	45	127	no	no	273.0	9.0	
1997	Male	53	94	no	no	129.0	16.0	
1998	Male	40	94	no	no	178.0	10.0	
1999	Male	37	73	no	no	327.0	10.0	

2000 rows × 13 columns

4

In [47]: num_corr=telecom_df.corr(numeric_only=True)
num_corr

Out[47]:		age	no_of_days_subscribed	weekly_mins_watched	minimum_daily_mins	maximum_daily_mins	we
	age	1.000000	0.017936	0.001937	0.015210	0.002090	
	no_of_days_subscribed	0.017936	1.000000	0.000706	0.014317	0.002278	
	weekly_mins_watched	0.001937	0.000706	1.000000	-0.016341	0.999493	
	minimum_daily_mins	0.015210	0.014317	-0.016341	1.000000	-0.017131	
	maximum_daily_mins	0.002090	0.002278	0.999493	-0.017131	1.000000	
	weekly_max_night_mins	0.040461	-0.001967	0.037780	0.006799	0.038193	
	videos_watched	0.014284	0.019414	0.018619	0.048514	0.019366	
	maximum_days_inactive	0.032164	0.019338	-0.014064	0.920389	-0.014779	
	customer_support_calls	-0.004074	0.013419	-0.036866	-0.003236	-0.036526	
	churn	-0.009296	0.002517	0.162977	0.066680	0.162561	
	4						•
In [53]:	<pre>plt.figure(figsize=(10 sns.heatmap(num_corr,a)</pre>)				

Out[53]: <Axes: >

CATEGORICAL TO NUMERICAL COLUMNS

```
In [58]: from sklearn.preprocessing import LabelEncoder
label=LabelEncoder()
for i in cat:
    telecom_df[i]=label.fit_transform(telecom_df[i])

telecom_df
```

Out[58]:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	maximum
	0	0	36	62	0	0	148.0	12.0	
	1	0	39	149	0	0	294.0	8.0	
	2	0	37	126	0	0	87.0	12.0	
	3	0	24	131	0	1	321.0	10.0	
	4	0	40	191	0	0	243.0	11.0	
	•••								
1	995	0	54	75	0	1	182.0	11.0	
1	996	1	45	127	0	0	273.0	9.0	
1	997	1	53	94	0	0	129.0	16.0	
1	998	1	40	94	0	0	178.0	10.0	
1	999	1	37	73	0	0	327.0	10.0	

2000 rows × 13 columns

```
In [62]: from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    for i in num:
        telecom_df[i]=scaler.fit_transform(telecom_df[[i]])
    telecom_df
```

Out[62]:		gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins	max
	0	0	-0.137921	-0.949794	0	0	-1.517013	0.644145	
	1	0	0.248232	1.239136	0	0	0.295695	-0.790876	
	2	0	-0.009203	0.660453	0	0	-2.274378	0.644145	
	3	0	-1.682534	0.786254	0	1	0.630922	-0.073365	
	4	0	0.376950	2.295860	0	0	-0.337511	0.285390	
	•••								
_1	1995	0	2.178998	-0.622713	0	1	-1.094876	0.285390	
1	1996	1	1.020539	0.685613	0	0	0.034963	-0.432121	
_1	1997	1	2.050280	-0.144671	0	0	-1.752914	2.079167	
1	1998	1	0.376950	-0.144671	0	0	-1.144539	-0.073365	
1	1999	1	-0.009203	-0.673033	0	0	0.705417	-0.073365	

2000 rows × 13 columns

```
In [64]: from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    for i in cat:
        telecom_df[i]=scaler.fit_transform(telecom_df[[i]])
    telecom_df
```

]:	gender	age	no_of_days_subscribed	multi_screen	mail_subscribed	weekly_mins_watched	minimum_daily_mins
0	-1.080207	-0.137921	-0.949794	-0.331478	-0.631349	-1.517013	0.644145
1	-1.080207	0.248232	1.239136	-0.331478	-0.631349	0.295695	-0.790876
2	-1.080207	-0.009203	0.660453	-0.331478	-0.631349	-2.274378	0.644145
3	-1.080207	-1.682534	0.786254	-0.331478	1.583910	0.630922	-0.073365
4	-1.080207	0.376950	2.295860	-0.331478	-0.631349	-0.337511	0.285390
•••							
1995	-1.080207	2.178998	-0.622713	-0.331478	1.583910	-1.094876	0.285390
1996	0.925748	1.020539	0.685613	-0.331478	-0.631349	0.034963	-0.432121
1997	0.925748	2.050280	-0.144671	-0.331478	-0.631349	-1.752914	2.079167
1998	0.925748	0.376950	-0.144671	-0.331478	-0.631349	-1.144539	-0.073365
1999	0.925748	-0.009203	-0.673033	-0.331478	-0.631349	0.705417	-0.073365
2000 r	ows × 13 co	lumns					
4							

In []: