Examor Unidad 4,5 Prof. M. Ariama Gabriela Gonzalez Salazar 23/05/2022 Algebra Lineal 1. De la siguientes valores del componente de vector, determinar por el metodo de transformación el valor de alta, beta y delta y concluir to tradajo especificando si el sistema es linealmente dependiente o independiente. A(0,0,0)=(1,1,1),(1,2,3),(2-1,1) A=(0,0,0) {(1,1,1),(1,2,3),(2,-1,1)} { 2+B+d $0.0 = \angle (1,1,1) + B(1,2,3) + \angle (2,-1,1)$ > 0= x+B+21 > 0= x+2B-8 ->0= x+3B+8 2+B+26=0 Matriz x+21-0=0 x+3B+J=0 01-2-1 F3=F3-F2 1120 Transformación por el metodo de gassis

1120 Matriz triangular superior

2021/2 Matriz Unidad $F_{2}-1 = 12-10 \qquad F_{3}-1 = 1310 \qquad F_{3} \div 2 \quad 020-1 \qquad F_{5}-F_{2} \quad 010-\frac{1}{2} = \frac{1}{2} \cdot \frac$

Examin Unidad 4,5 Prof. M. Arianna Gabriela Gonzalez Salazan 23/05/2022 Algebra Lineal
4. Resolver el siguiente espacio vectorial por transformación lineal y obtinor matriz asociada, concluir con la comprobación del ejercicio.
$T = 2 \rightarrow w / T(\bar{x}) = \bar{y}$ $f: R^3 \rightarrow R^3 / f(x_1, x_2, x_3) / = x_1 - 5x_2, x_2 + x_3, x_1 - 3x_3$ $x_1 = 2$
$\begin{array}{c} \chi_2 = -1 \\ \chi_3 = 0 \end{array}$
O Sustituir valores $\overline{\chi} \rightarrow \overline{\chi}$ $f(2,-1,0) = 2-5(-1), -1+0, 2-3(0)$ O Resolver componentes $\overline{\chi}$
$ \begin{array}{c} \text{ \mathbb{C} Resolver components } \bar{y} \\ f(2;1,0) = (7,-1,2) \bar{x} fv \bar{y} \end{array} $ $ \begin{array}{c} \text{$T: v \longrightarrow w(T(\bar{x}) = A \cdot \bar{y} \\ f: R^3 \longrightarrow R^5/f(x_1, x_2, x_3)/= x_1 - 5x_2, x_2 + x_3, x_1 - 3x_3} \end{array} $
M.A. Comprobación = $T(\overline{x}) = A \cdot (\overline{x})$ $1 - 5 \cdot 0$ $X_1 - 5 \cdot x_2$ $X_1 - 5 \cdot x_2$ $X_2 = X_2 + X_3 = \lambda$ is la matrix asociada congenia $1 \cdot 0 - 3$ $X_3 - 3 \cdot x_3$ $X_1 - 3 \cdot x_3$ con el vector de llegada, $X_1 - 3 \cdot x_3$ por orde, comple con las características de una
características de una transformación lineal por el método de matriz asociada
16.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19

