Angewandte Mathematik Integralrechnung

Dr. Marcel Ritter
Univ.-Prof. Dr. Matthias Harders
Sommersemester 2022

Einführungsfilm

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Sätze der Integralrechnung
- Integrationsregeln
- Mehrdimensionale Integration
- Anwendungen

Angewandte Mathematik für die Informatik – SS2022

universit

Inhalt

- Einführung
- Sätze der Integralrechnung
- Integrationsregeln
- Mehrdimensionale Integration
- Anwendungen

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Sätze der Integralrechnung
- Integrationsregeln
- Mehrdimensionale Integration
- Anwendungen

VANSE A

Angewandte Mathematik für die Informatik – SS2022

Definitionen

 Annäherung der Fläche unter Funktion (hier eine Untersumme)

$$A \approx \sum_{k=0}^{3} A_k = \sum_{k=0}^{3} \Delta x f\left(x_k\right)$$

bzw. allgemeiner

$$A \approx \sum_{k=0}^{n-1} A_k = \sum_{k=0}^{n-1} \Delta x f\left(x_k\right)$$

$$\Delta x = (x_n - x_0) / n$$

Angewandte Mathematik für die Informatik – SS2022

Definitionen

• Für eine beliebige Zerlegung des Intervalls, sowie beliebigen Zwischenpunkten $\xi_i \in [x_i, x_{i+1}]$ erhalten wir als Näherung die Riemannsumme

$$A \approx \sum_{k=0}^{n-1} \Delta x_k f\left(\xi_k\right)$$

mit Längen $\Delta x_i = x_{i+1} - x_i$

(Beachte: A_k können < 0 sein)

Angewandte Mathematik für die Informatik – SS202

Definitionen

• Wir nennen eine Funktion f(x)(Riemann-)integrierbar auf [a,b]wenn als Grenzwert existiert

$$\lim_{n\to\infty,\Delta x_k\to 0}\sum_{k=0}^{n-1}f\left(\xi_k\right)\Delta x_k=\int_a^bf\left(x\right)dx$$

Angewandte Mathematik für die Informatik – SS2022

11

Definitionen

• Wir nennen eine Funktion f(x)(Riemann-)integrierbar auf [a,b]wenn als Grenzwert existiert

$$\lim_{n\to\infty,\Delta x_k\to 0}\sum_{k=0}^{n-1}f\left(\xi_k\right)\Delta x_k=\int_a^bf\left(x\right)dx$$

Angewandte Mathematik für die Informatik – SS2022

Definitionen

• Wir nennen eine Funktion f(x)(Riemann-)integrierbar auf [a,b]wenn als Grenzwert existiert

$$\lim_{n\to\infty,\Delta x_k\to 0}\sum_{k=0}^{n-1}f\left(\xi_k\right)\Delta x_k=\int_a^bf\left(x\right)dx$$

@igs

Angewandte Mathematik für die Informatik – SS2022

11

Definitionen

• Wir nennen eine Funktion f(x)(Riemann-)integrierbar auf [a,b]wenn als Grenzwert existiert

$$\lim_{n\to\infty,\Delta x_k\to 0}\sum_{k=0}^{n-1}f\left(\xi_k\right)\Delta x_k=\int_a^bf\left(x\right)dx$$

- Dieser Grenzwert ist das bestimmte Integral von f auf [a,b]
- Anschaulich: die (vorzeichenbehaftete) Fläche

Angewandte Mathematik für die Informatik – SS2022

Eigenschaften Bestimmte Integrale

• Für integrierbare Funktionen f, g mit Konstanten $a,b \in \mathbb{R}, a < b, x \in [a,b]$ gilt:

- Für
$$f(x) \ge 0$$
:
$$\int_{a}^{b} f(x) dx \ge 0$$
- Für $f(x) \le 0$:
$$\int_{a}^{b} f(x) dx \le 0$$

- Für
$$f(x) \le 0$$
:
$$\int_{a}^{b} f(x) dx \le 0$$

- Für
$$f(x) \le g(x)$$
:
$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$
 (Monotonie)

Eigenschaften Bestimmte Integrale

• Für eine integrierbare Funktion f mit Konstanten $a,b,c \in \mathbb{R}$, a < b < c gilt:

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx + \int_{b}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Notation

Bezeichnungen

■ Variablenname wählbar: $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(\theta) d\theta$

@igs

Angewandte Mathematik für die Informatik – SS2022

Beispiel - Berechnung Fläche

• Untersumme von $f(x) = \frac{1}{2}x + 2$ mit variablem b; a = 0

$$\begin{split} A &\approx \sum_{k=0}^{N-1} \Delta x f\left(x_{k}\right) = \sum_{k=0}^{N-1} \frac{b-a}{N} \left(\frac{1}{2}x_{k}+2\right) = \sum_{k=0}^{N-1} \frac{b-a}{N} \left(\frac{1}{2}\left(a+k\Delta x\right)+2\right) \\ &= \sum_{k=0}^{N-1} \frac{b-a}{N} \left(\frac{1}{2}\left(a+k\frac{b-a}{N}\right)+2\right) = \sum_{k=0}^{N-1} \frac{b}{N} \left(k\frac{b}{2N}+2\right) \end{split}$$

Angewandte Mathematik für die Informatik – SS2022

Beispiel – Berechnung Fläche

• Untersumme von $f(x) = \frac{1}{2}x + 2$ mit variablem b; a = 0

$$A \approx \sum_{k=0}^{N-1} \frac{b^2}{2N^2} k + \sum_{k=0}^{N-1} \frac{2b}{N} = \frac{b^2}{2N^2} \sum_{k=0}^{N-1} k + N \frac{2b}{N} = \frac{b^2}{2N^2} \frac{(N-1)N}{2} + 2b$$

$$\lim_{N \to \infty} \frac{b^2}{4} \frac{(N-1)N}{N^2} + 2b = \frac{1}{4} b^2 + 2b$$

Angewandte Mathematik für die Informatik – SS2022

16

Mittelwertsatz der Integralrechnung

• Es sei Funktion $f: [a,b] \to \mathbb{R}$ stetig, somit integrierbar; dann existiert ein $\xi \in [a,b]$, so dass gilt:

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Mittelwertsatz der Integralrechnung

 Mit Hilfe dieses Satzes lässt sich somit auch ein Mittelwert einer kontinuierlichen Funktion ermitteln:

$$\overline{f} = \frac{1}{(b-a)} \int_{a}^{b} f(x) dx$$

Mögliche Alternative: Quadratisches Mittel

$$\overline{f} = \sqrt{\frac{1}{(b-a)} \int_{a}^{b} (f(x))^{2} dx}$$

Angewandte Mathematik für die Informatik – SS2022

Definition Stammfunktion

- Eine differenzierbare Funktion $F:[a,b] \to \mathbb{R}$ ist eine Stammfunktion von $f:[a,b] \to \mathbb{R}$, wenn für alle $x \in [a,b]$ gilt: F'(x) = f(x)
- Wenn F_1 und F_2 verschiedene Stammfunktionen von f sind, dann muss $F_1-F_2=c\in\mathbb{R}$ sein

$$(F_1(x)+c)' = (F_1(x))' + (c)' = f(x)+0=(F_2(x))'$$

 Beachte: Existenz einer Stammfunktion impliziert nicht Riemann-Integrierbarkeit, und Riemann-Integrierbarkeit impliziert nicht die Existenz einer Stammfunktion

Angewandte Mathematik für die Informatik – SS2022

Hauptsatz der Differential- & Integralrechnung

■ Es sei $f:[a,b] \to \mathbb{R}$ stetig, sowie $\lambda \in [a,b]$, dann ist die Abbildung

$$F_{\lambda}(x) = \int_{1}^{x} f(t)dt$$

eine Stammfunktion von f, d.h. $F'_{\lambda}(x) = f(x)$

Beweisführung

Differenzenquotient

$$\frac{g(x+h)-g(x)}{h} = \frac{F_{\lambda}(x+\Delta x)-F_{\lambda}(x)}{\Delta x} = \frac{1}{\Delta x} \left(\int_{\lambda}^{x+\Delta x} f(t)dt - \int_{\lambda}^{x} f(t)dt \right)$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Beweisführung

Differenzenquotient

$$\frac{g(x+h)-g(x)}{h} = \frac{F_{\lambda}(x+\Delta x)-F_{\lambda}(x)}{\Delta x} = \frac{1}{\Delta x} \left(\int_{\lambda}^{x+\Delta x} f(t) dt - \int_{\lambda}^{x} f(t) dt \right)$$

Angewandte Mathematik für die Informatik – SS2022

21

Beweisführung

Differenzenquotient

$$\frac{g(x+h)-g(x)}{h} = \frac{F_{\lambda}(x+\Delta x)-F_{\lambda}(x)}{\Delta x} = \frac{1}{\Delta x} \left(\int_{x}^{x+\Delta x} f(t)dt - \int_{x}^{x} f(t)dt\right) = \frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(t)dt$$

Angewandte Mathematik für die Informatik – SS2022

Beweisführung

Gemäß Mittelwertsatz der Integralrechnung

$$\frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(t) dt = \frac{1}{\Delta x} f(\xi) \Delta x = f(\xi) \qquad \xi \in [x, x + \Delta x]$$

Differentialquotient

$$\lim_{\Delta x \to 0} f(\xi) = f(x) \quad \text{da } \xi \to x \text{ wenn } \Delta x \to 0$$

Angewandte Mathematik für die Informatik – SS2022

22

Hauptsatz der Differential- & Integralrechnung

• Sei Funktion $F:[a,b] \to \mathbb{R}$ eine beliebige Stammfunktion von Funktion f, dann gilt:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$

■ Beweis: $F_{\lambda}(x)$ ist Stammfunktion von f, somit gilt für eine beliebige Stammfunktion $F(x) = F_{\lambda}(x) + c$; und speziell mit $\lambda = a$ ergibt sich somit:

$$F(b) - F(a) = F_a(b) + c - (F_a(a) + c) = \int_a^b f(t)dt + c - \left(\int_a^a f(t)dt + c\right)$$

$$= \int_a^b f(t)dt + c - 0 - c = \int_a^b f(t)dt = \int_a^b f(x)dx$$

Angewandte Mathematik für die Informatik – SS202

Unbestimmtes Integral

 Eine beliebige Stammfunktion einer integrierbaren Funktion f kann als unbestimmtes Integral notiert werden (d.h. ohne Nennung konkreter Grenzen)

$$\int f(x)dx = F(x)$$

- Darstellung nicht eindeutig, da F(x) + c auch eine Stammfunktion ist
- In bestimmten Integralen hebt sich die Konstante auf

$$\int_{a}^{b} f(x)dx = F(b) + c - (F(a) + c) = F(b) - F(a)$$

Angewandte Mathematik für die Informatik – SS2022

24

Anmerkungen

- Der Hauptsatz verbindet zwei zentrale Gebiete der Analysis: Integral- und Differentialrechnung
- In der moderneren Mathematik existieren andere Integralbegriffe; häufig wird anstatt des Riemanndas Lebesgue-Integral verwendet
- Vorgehen Flächenberechnungen
 - Bestimmung Stammfunktion (ggbfs. Probe)
 - Eventuell Integrationsgrenzen bestimmen
 - Auswertung Stammfunktion an Grenzen
 - Falls erforderlich Vorzeichen der Flächen beachten

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Sätze der Integralrechnung
- Integrationsregeln
- Mehrdimensionale Integration
- Anwendungen

Angewandte Mathematik für die Informatik – SS2022

Elementare Integrationsregeln

■ Für integrierbare Funktionen f, g mit Konstanten $a,b,\lambda_1,\lambda_2 \in \mathbb{R}, \ a < b$ gilt:

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} \lambda_{1}f(x)dx = \lambda_{1} \int_{a}^{b} f(x)dx$$

somit auch

$$\int_{a}^{b} (\lambda_1 f(x) + \lambda_2 g(x)) dx = \lambda_1 \int_{a}^{b} f(x) dx + \lambda_2 \int_{a}^{b} g(x) dx$$

(Integration ist ein linearer Operator)

@igs

Angewandte Mathematik für die Informatik – SS2022

Auswahl Einiger Integrale/Stammfunktionen

Beispiele

- Integrale von Konstanten $\int k \, dx = kx + c$, $k \in \mathbb{R}$
- Integral eines Bereiches $\int_{a}^{b} dx = \int_{a}^{b} 1 \cdot dx = x \Big|_{a}^{b} = b a$
- Integrale von Potenzen $\int x^k dx = \frac{x^{k+1}}{k+1} + c, \qquad k \neq -1$
- Integral Quadratwurzel $\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{2\sqrt{x}^3}{3} + c$

27

universiti

Auswahl Einiger Integrale/Stammfunktionen

Beispiele

- Integrale von e $\int e^{kx} dx = \frac{1}{k} e^{kx} + c, \qquad k \neq 0$
- Integral vom Kehrwert $\int \frac{1}{x} dx = \ln|x| + c, \qquad x \neq 0$
- Integral vom Cosinus $\int \cos x \, dx = \sin x + c$
- Integral von ln $\int \ln x \, dx = x \ln x x + c, \qquad x > 0$

Angewandte Mathematik für die Informatik – SS202

Angewandte Mathematik für die Informatik – SS2022

Partielle Integration

• Seien zwei Funktionen $f,g:[a,b] \to \mathbb{R}$, auf [a,b] stetig differenzierbar, dann gilt:

$$\int f'(x) \cdot g(x) \, dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) \, dx$$

(entsprechend auch für bestimmte Integrale)

Beweis basiert auf Produktregel

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\int (f(x) \cdot g(x))' dx = \int f'(x) \cdot g(x) dx + \int f(x) \cdot g'(x) dx$$

$$f(x) \cdot g(x) = \int f'(x) \cdot g(x) \, dx + \int f(x) \cdot g'(x) \, dx$$

Angewandte Mathematik für die Informatik – SS2022

Berechnung Integrale – Beispiele

• Fläche zwischen Funktion $f(x) = \sin x$ und x-Achse im Intervall $[0,\pi]$

$$\int_{0}^{\pi} \sin x \, dx = -\cos(x)\Big|_{0}^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 - (-1) = 2$$

Stammfunktion von cos² x

$$\int \cos^2 x \, dx = \sin x \cdot \cos x - \int -\sin^2 x \, dx =$$

$$\sin x \cdot \cos x - \int \cos^2 x - 1 \, dx = \sin x \cdot \cos x - \int \cos^2 x \, dx + \int 1 \, dx$$

$$\Rightarrow 2 \int \cos^2 x \, dx = \sin x \cdot \cos x + x$$

$$\Rightarrow \int \cos^2 x \, dx = \frac{1}{2} \left(\sin x \cdot \cos x + x \right)$$

@igs

Angewandte Mathematik für die Informatik - SS2022

Substitutionsregel

■ Sei Funktion $g:[a,b] \to I \subseteq \mathbb{R}$ stetig differenzierbar, sowie Funktion $f:I \to \mathbb{R}$ stetig, dann gilt:

$$\int_{a}^{b} f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(x)dx = F(x)\Big|_{g(a)}^{g(b)}$$

Beispiel: Fläche des halben Einheitskreises

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = \int_{\sin^{-1}(-1)}^{\sin^{-1}(1)} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_{-\pi/2}^{\pi/2} \sqrt{\cos^2 t} \cos t \, dt$$
$$= \int_{-\pi/2}^{\pi/2} \cos^2 t \, dt = \frac{1}{2} \left(\cos t \sin t + t \right) \Big|_{-\pi/2}^{\pi/2} = \pi/2$$

Angewandte Mathematik für die Informatik – SS202

Substitutionsregel

- Beispiel: Nebenrechnungen
 - Grenzen umrechnen: $x = \sin t \rightarrow t = \sin^{-1} x$

Unter Grenze: $x = -1 \rightarrow t_u = \sin^{-1} - 1 = -\frac{\pi}{2}$

Obere Grenze: $x = 1 \rightarrow t_o = \sin^{-1} 1 = \frac{\pi}{2}$

- Differential: $x = \sin t$ $/ \cdot \frac{d}{dt}$

$$\frac{d}{dt}x = \frac{d}{dt}\sin t$$

 $\frac{dx}{dt} = \cos t \to dx = \cos t \ dt$

Angewandte Mathematik für die Informatik – SS2021

2

Nicht-Elementar Integrierbare Funktionen

- Elementare Funktionen bestehen aus "einfachen" grundlegenden Funktionen (z.B. Polynome, Kreisfunktionen, Logarithmen, Exponentialfunktionen)
- Funktionen deren Stammfunktionen nicht mithilfe elementaren Funktionen darstellbar sind, werden nicht-elementar integrierbar genannt
- Beispiele: $\int e^{x^2} dx$ $\int \sqrt{\ln x} dx$ $\int \frac{\sin x}{x} dx$
- Beachte aber:

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Sätze der Integralrechnung
- Integrationsregeln
- Mehrdimensionale Integration
- Anwendungen

Angewandte Mathematik für die Informatik – SS2022

Riemannsumme in 2D

• Approximation des Volumens unter der Fläche einer skalaren Funktion in 2D im Bereich $D = [a_1,b_1] \times [a_2,b_2]$

$$V \approx \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \Delta x_k \Delta y_l f\left(\xi_k, \psi_l\right) \qquad \xi_k \in \left[x_k, x_{k+1}\right], \ \psi_l \in \left[y_l, y_{l+1}\right]$$

 $\Delta x_k = x_{k+1} - x_k$

 $\Delta y_l = y_{l+1} - y_l$

Angewandte Mathematik für die Informatik – SS2022

Bestimmtes Integral in 2D (Doppelintegral)

• Sei Funktion f(x,y) stückweise stetig auf dem Bereich $D = [a_1,b_1] \times [a_2,b_2]$, dann erhalten wir wiederum über Grenzwertbildung das Volumen unter der Fläche als:

$$V = \iint_D f(x, y) dxdy = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x, y) dxdy$$

- Dieses Volumen ist ebenso vorzeichenbehaftet
- Beispiel: Volumen unter Ebene f(x,y) = 3 in $[1,3] \times [2,3]$

$$V = \int_{2}^{3} \int_{1}^{3} 3 \, dx \, dy = \int_{2}^{3} \left(3x \Big|_{1}^{3} \right) dy = \int_{2}^{3} \left(9 - 3 \right) dy = \int_{2}^{3} 6 \, dy = 6 \, y \Big|_{2}^{3} = 6$$

85

Bestimmtes Integral im Normalbereich in 2D

- Der Bereich der Integration kann allgemeiner durch Funktionen bestimmt werden
- Ein Normalbereich bzgl. der x-Achse ist $D \subseteq \mathbb{R}^2$ mit

$$D = \{(x, y) : a \le x \le b, \ g(x) \le y \le h(x)\}$$

Bestimmtes Integral im Normalbereich in 2D

Integral auf einem Normalbereich bzgl. der x-Achse

$$\iint\limits_{D} f(x,y) dxdy = \int\limits_{x=a}^{b} \left(\int\limits_{y=g(x)}^{h(x)} f(x,y) dy \right) dx$$

• Beispiel: Integral von $f(x,y) = xy^2$ auf Dreiecksregion

$$\iint_{D} xy^{2} dx dy = \int_{x=0}^{1} \left(\int_{y=0}^{x} xy^{2} dy \right) dx =$$

$$\int_{x=0}^{1} \left(\frac{1}{3} xy^{3} \Big|_{0}^{x} \right) dx = \int_{x=0}^{1} \frac{1}{3} x^{4} dx = \frac{1}{15} x^{5} \Big|_{0}^{1} = \frac{1}{15}$$

$$h(x) = x$$

Angewandte Mathematik für die Informatik – SS2022

37

Bestimmtes Integral im Normalbereich in 2D

Integral auf einem Normalbereich bzgl. der y-Achse

$$\iint\limits_{D} f(x,y) dxdy = \int\limits_{y=g}^{h} \left(\int\limits_{x=a(y)}^{b(y)} f(x,y) dx \right) dy$$

• Beispiel: Integral von $f(x,y) = xy^2$ auf Dreiecksregion

$$\iint_{D} xy^{2} dx dy = \int_{y=0}^{1} \left(\int_{x=y}^{1} xy^{2} dx \right) dy = a(y) = y$$

$$\int_{y=0}^{1} \left(\frac{1}{2} x^{2} y^{2} \Big|_{y}^{1} \right) dy = \int_{x=0}^{1} \frac{1}{2} y^{2} - \frac{1}{2} y^{4} dy = 1$$

$$\frac{1}{6} y^{3} - \frac{1}{10} y^{5} \Big|_{0}^{1} = \frac{1}{6} - \frac{1}{10} = \frac{1}{15}$$

Angewandte Mathematik für die Informatik – SS2022

Mehrdimensionale Integrale im Normalbereich

- Nicht-Normalbereiche k\u00f6nnen h\u00e4ufig als eine Vereinigung von Normalbereichen behandelt werden
- Mehrfachintegrale können damit durch mehrere Einfachintegrale berechnet werden
- Die Reihenfolge bei der Integration ist zu beachten, mit den entsprechenden Begrenzungsfunktionen
- Ein wichtiges Element ist die korrekte Beschreibung der Integrationsgrenzen des mehrdimensionalen Bereiches

Angewandte Mathematik für die Informatik – SS2022

Dreifachintegrale

- Dreifachintegral der Funktion f(x,y,z) auf Bereich Ω $\iiint_{\Omega} f(x,y,z) dxdydz = \int_{a_{1}}^{b_{2}} \int_{a_{2}}^{b_{1}} f(x,y,z) dxdydz$
- lacktriangle Dreifachintegral über einen Normalbereich Ω in 3D

$$\Omega = \{ (x_1, x_2, x_3) : a_1 \le x_1 \le b_1, \ a_2(x_1) \le x_2 \le b_2(x_1), a_3(x_1, x_2) \le x_3 \le b_3(x_1, x_2) \}$$

$$\iiint_{\Omega} f(x_{1}, x_{2}, x_{3}) dx_{1} dx_{2} dx_{3} = \int_{x_{1}=a_{1}}^{b_{1}} \left(\int_{x_{2}=a_{2}(x_{1})}^{b_{2}(x_{1})} \left(\int_{x_{3}=a_{3}(x_{1}, x_{2})}^{b_{3}(x_{1}, x_{2})} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1}$$

Angewandte Mathematik für die Informatik – SS202

Satz von Fubini

- Ein Integral einer stetigen Funktion über einen Normalbereich $\Omega \subseteq \mathbb{R}^n$ kann durch iterative Ausführung von eindimensionalen Integrationen berechnet werden
- Es sei mit Intervallen $I_j = [a_j, b_j], a_j < b_j, j = 1, ..., n$, sowie dem Bereich $\Omega = I_1 \times I_2 \times ... \times I_n$ und stetigem f:

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(x_1, \dots, x_n) dx_1 \dots dx_n =$$

$$\int_{I_n} \left(\dots \left(\int_{I_2} \left(\int_{I_1} (f(x_1, \dots, x_n)) dx_1 \right) dx_2 \right) \dots \right) dx_n$$

 Änderung der Reihenfolge der Variablen bzw. der Integrationen ändert das Ergebnis nicht

Angewandte Mathematik für die Informatik – SS2022

41

Notation

Integrale über Flächen/Volumen abgekürzt notiert:

$$\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) dxdy = \int_{A}^{b_{1}} f dA \qquad \int_{a_{3}}^{b_{3}} \int_{a_{1}}^{b_{1}} \int_{a_{1}}^{b_{1}} f(x, y, z) dxdydz = \int_{V}^{b_{1}} f dV$$

mit dA = dxdy, dV = dxdydz (Flächen-/Volumenelement)

Schreibweise der Integration als Operator:

$$\iint_{A} f \ dA = \int_{A} dA f \qquad \qquad \iint_{D} f(x, y) dx dy = \int_{D_{1}} dy \int_{D_{2}} dx f(x, y)$$

• Flächeninhalt/Volumen als Integral über ebene Bereiche

$$\int_{A} dA = \iint_{A} 1 \ dA = A \qquad \qquad \int_{V} dV = \iiint_{V} 1 \ dV = V$$

@igs

Angewandte Mathematik für die Informatik – SS202

Inhalt

- Einführung
- Sätze der Integralrechnung
- Integrationsregeln
- Mehrdimensionale Integration
- Anwendungen

Angewandte Mathematik für die Informatik – SS2022

Berechnung Fläche Zwischen Funktionen

- Fläche A zwischen f: $x = \frac{1}{2}y^2 3$ und g: y = x 1
- Schnittpunkte finden für Integrationsgrenzen

$$\frac{1}{2}y^2 - 3 = y + 1 \Leftrightarrow y^2 - 2y + 8 = 0 \Leftrightarrow (y + 2)(y - 4) = 0$$

Angewandte Mathematik für die Informatik – SS2022

Berechnung Fläche Zwischen Funktionen

- Integration hinsichtlich y-Achse im Intervall [-2,4]
- Da $f(y) \le g(y)$ in [-2,4]

$$A = \int_{-2}^{4} (y+1) - \left(\frac{1}{2}y^2 - 3\right) dy = -\frac{1}{6}y^3 + \frac{1}{2}y^2 + 4y\Big|_{-2}^{4} = 18$$

Angewandte Mathematik für die Informatik - SS2022

11

Bewegung - Kinematische Größen

dt

Positionsänderung als Integral der Geschwindigkeit

$$\int_{0}^{t} v(t)dt = x(t) - x(0) \Rightarrow x(t) = x(0) + \int_{0}^{t} v(t)dt$$

Allgemeiner Zusammenhang zwischen den Größen

dt

Angewandte Mathematik für die Informatik – SS2022

Massenmittelpunkt

- Ein (physikalischer) Körper in 3D mit Volumen V und konstanter Dichte ρ hat Masse $m=V\cdot \rho$
- Bei einer kontinuierlichen, nicht konstanten Masseverteilung im Körper ergibt sich die Masse als

$$m = \int_{V} \rho(\mathbf{x}) dV = \int_{V} \rho(x, y, z) dV$$

 Der Schwerpunkt (Massenmittelpunkt) eines solchen Körpers kann bestimmt werden via

$$\mathbf{x}_{M} = \frac{1}{m} \int_{V} \mathbf{x} \rho(\mathbf{x}) dV = \frac{1}{m} \int_{V} \begin{bmatrix} x & y & z \end{bmatrix}^{T} \rho(x, y, z) dV$$

Angewandte Mathematik für die Informatik – SS2022

46

Massemittelpunkt - Beispiel Dreieck in 2D

- Berechnung über Integrale (sollte hier [1/3 1/3] ergeben)
- "Masse" bei konstanter Dichte $\rho = 3 \text{ kg/m}^3$

$$m = \int_{A} \rho(x, y) dA = \int_{0}^{1} \int_{0}^{1-x} 3dy dx = 3 \int_{0}^{1} y \Big|_{0}^{1-x} dx = 3 \int_{0}^{1} 1-x dx = 3x - \frac{3}{2}x^{2} \Big|_{0}^{1} = \frac{3}{2}$$

Schwerpunkt (Position in 2D)

$$\mathbf{x}_{M} = \frac{1}{m} \int_{A} \mathbf{x} \rho(x, y) dA = \begin{bmatrix} \frac{1}{m} \int_{A} x \rho(x, y) dA & \frac{1}{m} \int_{A} y \rho(x, y) dA \end{bmatrix}^{T}$$

Angewandte Mathematik für die Informatik – SS202

Massemittelpunkt – Beispiel Dreieck in 2D

Beispiel Berechnung x-Komponente

$$\frac{1}{m} \int_{A} x \rho(x, y) dA = \frac{2}{3} \int_{0}^{1} \int_{0}^{1-x} x3 \, dy dx = 2 \int_{0}^{1} xy \Big|_{0}^{1-x} dx = 2 \int_{0}^{1} x (1-x) dx = 2 \int_{0}^{1} x - x^{2} dx = x^{2} - \frac{2}{3} x^{3} \Big|_{0}^{1} = \frac{1}{3}$$

- Berechnung y-Komponente analog
- In einem Dreieck natürlich einfacher gegeben durch

$$\mathbf{x}_{M} = \frac{1}{3} (\mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3})$$

Angewandte Mathematik für die Informatik - SS2022

48

Uneigentliche Integrale

 Betrachtung des Verhaltens bestimmter Integrale bei Grenzwertbildung hinsichtlich Integrationsgrenzen, z.B.

$$\lim_{b \to \infty} \int_{a}^{b} f(x) dx \qquad \lim_{a \to -\infty} \int_{a}^{b} f(x) dx \qquad \lim_{c \to b} \int_{a}^{c} f(x) dx$$

- In verkürzter Schreibweise wird Grenze ∞ angegeben
- Beispiele:

Normierung Normalverteilung

- Gaußsche Glockenkurve (Normalverteilung) in 1D, mit Mittelwert $\mu = 0$ und Standardabweichung $\sigma = 1$
- Dichtefunktion der Standardnormalverteilung

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Zugehörige Verteilungsfunktion

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} dx$$

■ Insbesondere gilt: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx = 1 \Rightarrow \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx = \sqrt{2\pi}$

Angewandte Mathematik für die Informatik – SS2022

50

Skalarprodukt für Funktionen

- In der VL Lineare Algebra sind *K*-Vektorräume mit der Skalarmultiplikation vorgestellt worden
- Beispiel: Skalarprodukt bei Vektoren in 3D

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cos \sphericalangle (\mathbf{a}, \mathbf{b}) = a_1 b_1 + a_2 b_2 + a_3 b_3$$

- Durch stetige und beschränkte reellwertige Funktionen auf Intervall [a,b] wird auch ein K-Vektorraum gebildet
- Entsprechendes Skalarprodukt:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$
 (L² - Skalarprodukt)

Angewandte Mathematik für die Informatik – SS202

Vorschau - Lösung Einfacher Differentialgleichungen

- Eine trennbare Differentialgleichung hat die Form $y'(x) = f(y(x)) \cdot g(x)$
- Lösung über Trennung der Variablen und Integration

$$\frac{dy}{dx} = f(y(x)) \cdot g(x) \Rightarrow \frac{dy}{f(y(x))} = g(x)dx$$

Beispiel:
$$y' - (y)^2 x = 0$$

$$\Rightarrow \int \frac{1}{f(y(x))} dy = \int g(x) dx$$

$$\int \frac{1}{y^2} dy = \int x dx \Longrightarrow -y^{-1} + C_f = \frac{1}{2}x^2 + C_g \Longrightarrow y = -\frac{2}{x^2 + C_g}$$

Angewandte Mathematik für die Informatik - SS2022

Vorschau - Numerische Quadratur

Trapezregel

Angewandte Mathematik für die Informatik – SS2022

Vorschau - Numerische Quadratur

Trapezregel

Einige Hilfreiche Weblinks

- Khan Academy Spendenfinanzierte Webseite mit Lehrmaterialien, auch für Mathematik https://www.khanacademy.org/math/
- mathe-online Österreichische Initiative zum Aufbau von Online-Materialien für Mathematik, z.B.
 https://www.mathe-online.at/nml/materialien/ innsbruck/

(A) Università

Angewandte Mathematik für die Informatik – SS2022

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	E .

Angewandte Mathematik für die Informatik – SS2022