Motvirkende krefter for kjørende bil

#algebra #modellering #andregradsfunksjon #omgjøring av enheter #proporsjonalitet #digital kompetanse

La F være summen av kreftene som virker i motsatt retning av en bils kjøreretning. Ifølge en rapport¹ fra SINTEF kan² F tilnærmes som

$$F(v) = mgC_r + \frac{1}{2}\rho v^2 D_m \qquad , \qquad v \ge 10$$

	betydning	verdi	enhet
\overline{v}	bilens hastighet	variabel	m/s
m	bilens masse^3	1409	kg
g	${ m tyngde}$ akselerasjonen	9.81	$\mathrm{m/s^2}$
C_r	koeffisient for bilens rullemotstand	0.015	
ho	tettheten til luft	1.25	${ m kg/m^3}$
D_m	koeffisient for bilens luftmotstandsareal ⁴	0.74	

- a) Tegn grafen til F for $v \in [10, 35]$
- b) På intervallet gitt i oppgave a, for hvilken hastighet er det at
 - rullemotstanden gir det største bidraget til F?
 - luftmotstanden gir det største bidraget til F?

Oppgi svarene rundet av til nærmeste heltall og målt i km/h.

- c) Med "energiforbruk" mener vi her den energien som må til for å motvirke F over en viss kjørelengde. Ved konstant hastighet er energiforbruket etter kjørt lengde proporsjonal med F. På norske motorveier er $90\,\mathrm{km/h}$ og $110\,\mathrm{km/h}$ vanlige fartsgrenser. Hvor stor økning i energiforbruk vil en økning fra $90\,\mathrm{km/h}$ til $110\,\mathrm{km/h}$ innebære?
- d) Lag en funksjon F_1 som gir F ut ifra bilens hastighet målt i km/h.

¹https://sintef.brage.unit.no/sintef-xmlui/handle/11250/2468761

²Det er er her forutsatt flatt strekke, og sett vekk ifra motstand ved akselerasjon.

³Det er tatt ugangspunkt i gjennomsnittsvekten til en norsk personbil.

⁴Verdien er hentet fra en.wikipedia.org/wiki/Automobile_drag_coefficient#Drag_area

⁵Den totale energimengden en bil bruker på en kjørelengde vil være høyere enn det vi har kalt "energiforbruket". Som regel vil den totale energimengden som kreves for å kjøre en strekning være høyere jo høyere hastighet man har. Slik kan man anta at differansen i energiforbruk vi finner i denne oppgaven er et minimum for den reelle differansen i total energimengde.