

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISH	HED I	JNDER THE PATENT COOPERATION TREATY (PCT)	
(51) International Patent Classification 6:	A1	(11) International Publication Number: WO 95/09	
C07F 5/02, A61K 31/69, C07K 5/062, C07D 207/16, C07F 9/572, A61K 38/05		(43) International Publication Date: 13 April 1995 (13.04.95)	
(21) International Application Number: PCT/US: (22) International Filing Date: 6 October 1994 (0	(74) Agents: REINERT, Norbert, F. et al.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).		
(30) Priority Data: 08/133,252 7 October 1993 (07.10.93) 08/139,444 20 October 1993 (20.10.93)	-	(81) Designated States: AU, CA, CZ, FI, HU, JP, KR, NO, NZ, PL, SK, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(71) Applicant: THE DU PONT MERCK PHARMACE COMPANY [US/US]; 1007 Market Street, Wilmin, 19898 (US).	Published With international search report.		
(72) Inventors: FEVIG, John, Matthew; 987 Church Road, University, PA 19352-9349 (US). ABELMAN, Nark; 873 Stevens Avenue, Apartment 3312, Solan CA 92075 (US). AMPARO, Eugene, Cruz; 107 Avenue, West Chester, PA 19380 (US). CAC Joseph; 105 Pattie Drive, Newark, DE 19702-286 KETINER, Charles, Adrian; 2411 Chatham Drive ington, DE 19803-2709 (US). PACOFSKY, James; 510 Polk Street, Raleigh, NC 27604 (US). Chia-Lin, J.; First floor, 12, Alley 85, Chang Hsin Taipei (TW).	Matthewso Beac Garfie CCIOLA 04 (US e, Wiln Gregor WAN(w, b, ld à,). a- y,	

- (54) Title: DIPEPTIDE BORONIC ACID INHIBITORS OF TRYPSIN-LIKE ENZYMES
- (57) Abstract

• Ì, The present invention relates to the discovery of new C-terminal boronic acid dipeptide inhibitors of tripsin-like enzymes such as thrombin and pharmaceutical compositions thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	. GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belghm	GR	Grecce	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	DE	Ireland	NZ	New Zealand
BJ	Benin	π	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Кепуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
Œ	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CEI	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon:	U	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Моласо	П	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongotia	VN	Viet Nam
GA	Gebon			•••	

TITLE

5 Dipeptide Boronic Acid Inhibitors of Trypsin-like Enzymes

Field of the Invention

The present invention relates to the discovery of new C-terminal boronic acid dipeptide inhibitors of trypsin-like enzymes such as thrombin and pharmaceutical compositions thereof.

15

Background of the Invention

The activity of many biological systems is mediated by proteolytic enzymes which cleave precursor proteins at specific amino acid residues. One major type of these enzymes, the serine proteases, are so named 20 because the initial step in their proteolysis reactions is the attack of the hydroxyl of an active site serine on the amide carbonyl at the scissile site of the protein. This results in a tetrahedral intermediate which subsequently breaks down into an acyl enzyme and 25 the amino terminus of the cleaved sequence. Hydrolysis of the acyl enzyme releases the carboxyl terminus and the free enzyme. A subclass of the serine proteases is composed of the trypsin-like enzymes, which cleave 30 proteins site-specifically such that the liberated carboxyl terminus is arginine or lysine.

A great deal of research has been directed at finding mechanism-based inhibitors of serine proteases. In general, this approach has involved finding small molecules or peptides that both fit into the active site and contain a functionality able to interact with the

active site serine. Irreversible inhibitors would contain a functionality that forms a covalent bond with the serine residue. Of more therapeutic interest are reversible inhibitors, which would contain a functionality that interacts with the serine residue to form a transient species that mimics the tetrahedral intermediate formed during cleavage of the natural substrate.

Several researchers have experimented with boroncontaining reversible inhibitors of serine proteases. The binding of boronic acids to serine proteases most likely involves initial attack of the serine hydroxyl onto boron to form a tetrahedral boron "ate" complex. This complex can serve as a mimic of the tetrahedral intermediate formed during hydrolysis of the natural 15 substrate, as disclosed by Zhong et. al., J. Am. Chem. Soc. 113, 9429 (1991). For example, Koehler et al. in Biochemistry 10, 2477 (1971) reports that 2phenylethane boronic acid inhibits chymotrypsin at millimolar levels. The synthesis of boronic acid analogs of N-acyl- α -amino acids has yielded more effective inhibitors. Matteson et al. J. Am. Chem. Soc. 103, 5241 (1981) described Ac-boroPhe-OH, (R)-1acetamido-2-phenylethane boronic acid, which inhibits chymotrypsin with a Ki of 4 µM. More recently, Shenvi, 25 in U.S. Patent No. 4,537,773 disclosed that boronic acid analogs of α -amino acids, containing a free amino group, were effective inhibitors of aminopeptidases. Shenvi, in U.S. Patent No. 4,499,082, disclosed that peptides containing an α -aminoboronic acid with a neutral side 30 chain were more effective inhibitors of serine proteases, exceeding inhibitors disclosed earlier by as much as three orders of magnitude in potency.

The trypsin-like protease thrombin is the final protease in both the intrinsic and extrinsic pathways of the blood coagulation cascade and thus is of crucial

importance in the blood coagulation process. Thrombin is responsible for the cleavage of fibrinogen to fibrin, which is then cross-linked by factor XIIIa, thereby stabilizing a developing blood clot. In addition, thrombin activates platelets and also factors V and VIII, which potentiate its own production, as described in Hemker and Beguin, Jolles et. al. "Biology and Pathology of Platelet Vessel Wall Interactions," 1986, pp. 219-226; Crawford and Scrutton in: Bloom and 10 Thomas "Haemostasis and Thrombosis," 1987, pp. 47-77. Inhibitors of thrombin are expected to be effective in the treatment of thrombosis, a condition in which unbalanced activity of the hemostatic mechanism leads to intravascular thrombus formation. Direct thrombin inhibitors are also expected to be devoid of the side 15 effects of bleeding and high interpatient variability which are common with heparin and vitamin K antagonist therapy (Green et al. Thromb. res. 1985, 37, 145-153).

Several mechanism-based thrombin inhibitors have

been disclosed, most notably those based on the D-PhePro-Arg sequence. The chloromethyl ketone Ac-D-Phe-ProArgCH2Cl disclosed by Kettner and Shaw Thromb. Res.

14, 969 (1979) was found to be a potent and selective
irreversible inhibitor of human thrombin. The

corresponding aldehyde Ac-D-Phe-Pro-Arg-H, desclosed by
Bajuez et. al. Folia Haematol. 109, s. 16 (1982) was
shown to be a reversible inhibitor of thrombin with a Ki
= 75 nM. This class of reversible thrombin inhibitors
is also exemplified by the trifluoromethyl ketone D-PhePro-ArgCF3 disclosed by Kolb et. al., AU-B-52881/86.

This series of tripeptide thrombin inhibitors was expanded to include the boronic acid derivatives which are exemplified by Ac-D-Phe-Pro-boroArgOH in Kettner and Shenvi, European Patent Application EP 293 881. This compound has a $\rm K_i$ = 0.041 nM and is highly effective in the inhibition of blood coagulation both *in vitro* and *in*

35

vivo. Additional boronic acid inhibitors of thrombin have been disclosed: Elgendy et al., Tetrahedron Lett. 33, 4209 (1992) have described peptides containing α -aminoboronic acids with aliphatic neutral sidechains which are thrombin inhibitors.

There have been patent disclosures which describe alternatives to the D-Phe residue in the D-Phe-Pro-Arg amino acid sequence. Metternich, in European Patent Application EP 471 651, has described peptides containing boroArginine and boroLysine which contain at 10 least one unnatural amino acid residue. Kakkar in PCT Application WO 92/07869 has claimed peptide thrombin inhibitors of the general structure, X-Aa₁-Aa₂-NH-CH(Y)-Z where Aa₁ and Aa₂ are unnatural amino acid residues, Z can be a variety of electrophilic groups including 15 boronic acid, and Y can be a variety of basic sidechains. Tripeptide agents limited to α -alkyl and α aryl or heteroaryl substituted glycines conjugated to -Pro-Arg-H have been disclosed by Lilly in European Patent Application EP 0 479 489 A2. Sandoz has disclosed in European Patent Application EP 471 651 A2 boroLysine and boroArginine peptide analogs containing at least one unnatural hydrophobic α-amino acid substituted with groups such as trimethylsilyl or naphthyl. Balasubramanian et. al., in J. Med. Chem. 36, 300 (1993), has reported replacements for the D-Phe of D-Phe-Pro-Arg-H and found the dihydrocinnamoyl group to be effective, although somewhat less potent.

Despite the foregoing, more efficacious and specific thrombin inhibitors are needed as potentially useful therapeutic agents for the treatment of thrombosis. The present invention relates to an extensive study of non-amino acid replacements for the D-Phe of the boropeptide D-Phe-Pro-boroArgOH.

35

30

Summary of the Invention

[1] There is provided by this invention a compound of formula (I)

5

$$\begin{array}{c|c}
 & O \\
 & N \\
 & N \\
 & R^2 & R^1
\end{array}$$
(I)

or a pharmaceutically acceptable salt, hydrate or 10 prodrug thereof, wherein:

R¹ is

a) $-(C_1-C_{12} \text{ alkyl})-X$, or

b)

15

20

X is

a) halogen

b) -CN,

 $c) -NO_2,$

d) -CF3,

e) -NH₂

f) -NHC (=NH) H,

g) -NHC (=NH) NHOH,

25 h) -NHC (=NH) NHCN,

i) $-NHC (=NH) NHR^2$,

j) $-NHC (=NH) NHC (=O) R^2$,

k) $-C (=NH) NHR^2$

1) $-C (=NH) NHC (=O) R^2$

```
m) -C (=0) NHR<sup>2</sup>,
              n) -CO_2R^2
              o) -OR^2,
              p) -OCF3,
              q) - SR^2, or
  5
              q) -SC (=NH) NHR^2;
      \mathbb{R}^2 is
              a) hydrogen,
10
              b) C1-C4 alkyl,
              c) aryl,
              d) -(C1-C4 alkyl)-aryl, where aryl is defined
     R^3 is
15
             a) -C (=0) CR^6R^7 - ary1,
             b) -C(=0)-(C_2-C_5 \text{ alkenyl})-\text{aryl},
             c) -C (=0) CR^6R^7 (CH_2)_r - W - (CR^6R^7)_r - aryl,
             d) -C (=0) CR^6R^7 (CH_2) _rCR^8R^9-aryl,
             e) -C (=0) CR^6R^7 (CH<sub>2</sub>) _rCR^8R^9-heteroaryl,
20
             f) -C (=0) CR^6R^7 (CH_2) rCR^8R^9-heterocycle,
             g) -C(=0)-aryl, wherein aryl is defined as above,
             h) -C(=0)-heteroaryl,
             i) -C(=0)-heterocycle,
25
             j) -C (=0) O (CH_2)_t-adamantyl,
             k) -C(=0)(CH<sub>2</sub>)<sub>t</sub>-(C<sub>5</sub>-C<sub>7</sub> cycloalkyl),
             1) -C (=0) (CH<sub>2</sub>)<sub>t</sub>-W-(C<sub>5</sub>-C<sub>7</sub> cycloalkyl),
             m)
                                              aryl, wherein aryl is
                    limited to phenyl,
30
```

n)

0)

5 p)

q)

r)

10

s)

WO 95/09858

PCT/US94/11048

t)

u)

v)

5

w)

10 x)

y)

\$ N W

z)

aa)

bb)

5

بار ا

cc)

SY O

10 dd)

ee)

ff)

gg)

5

 ${\sf R}^4$ and ${\sf R}^5$ are independently selected at each occurrence from the group consisting of:

- a) hydrogen,
- b) C₁-C₄ alkyl,
- c) $-(C_1-C_4 \text{ alkyl})-\text{aryl}$, or
- d) -C5-C7 cycloalkyl;

15

 ${\rm R}^6,~{\rm R}^7,~{\rm R}^8$ and ${\rm R}^9$ are independently selected at each occurrence from the group consisiting of:

- a) hydrogen,
- b) C₁-C₄ alkyl,
- 20 c) C_1-C_4 alkoxy,

```
{\ensuremath{\mathsf{R}}}^{10} is phenyl, where phenyl is optionally substituted
              with one to three substituents selected from the
              group consisting of:
                       halogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy,
10
                       methylenedioxy, -NO_2, -CF_3, OCF_3, -S(O)_r-(C1-
                       C4-alkyl), -OH, -NH_2, -NH(C_1-C_4 alkyl), -N(C_1-C_4 alkyl)
                       C_4 alkyl)<sub>2</sub>, -NHC(=0)R^4, NHCO<sub>2</sub>R^4, -(CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>R^4;
       R<sup>11</sup> is hydrogen or -CO<sub>2</sub>R<sup>4</sup>;
15
       R<sup>12</sup> is:
               a) hydrogen,
              b) C_1-C_4 alkyl,
               c) aryl,
20
               c) -(C_1-C_4 \text{ alkyl})-\text{aryl}, or
              d) C5-C7 cycloalkyl;
       R^{14} is ?
25
      A is
             a) -BY^1Y^2,
            b) -C (=0) CF_3,
             c) -PO_3H_2, or
             d) -CO_2H;
30
      W is
             a) -0-,
            b) -S(0)_{r}-,
             c) -NR^{4}-,
             d) -NC(=0)R^{4}-, or
35
             e) -NCO<sub>2</sub>R<sup>4</sup>-;
```

d) aryl,

5

f) -O-aryl, or
g) -(CH₂)_p-CO₂R⁴;

e) $-(C_1-C_4 \text{ alkyl})-\text{aryl}$,

 Y^1 and Y^2 are a) -OH, b) -F, c) $-NR^4R^5$, 5 d) C_1-C_8 alkoxy, or when taken together Y^1 and Y^2 form a e) cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, 10 or O, f) cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, 15 or O, g) cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or 0; 20 n is independently selected at each occurence from 0 or 1; p is independently selected at each occurrence from 0 to 25 3; q is independently selected at each occurrence from 0 to 4; 30 r is independently selected at each occurrence from 0 to 2;

35

t is independently selected at each occurrence from 1 to

[2] Preferred compounds of formula (I) are those compounds wherein:

 \mathbb{R}^1 is

5 a) $-(CH_2)_4NHR^2$,

- b) $-(CH_2)_3NHC(=NH)_NHR^2$,
- c) -(CH₂)₃NHC (=NH)H,
- d) -(CH₂)₃SC(=NH)NHR²;

10 R² is hydrogen or C₁-C₄ alkyl;

 \mathbb{R}^3 is

- a) -COCR⁶R⁷-aryl,
- b) $-COCR^6R^7(CH_2)_r-W-(CR^6R^7)_r-aryl$,
- 15 c) $-COCR^6R^7(CH_2)_rCR^8R^9-aryl$,
 - d) -COCR⁶R⁷ (CH₂) rCR⁸R⁹-heteroaryl,

e)

limited to phenyl,

20 f)

to phenyl,

g)

25 h)

PCT/US94/11048 WO 95/09858

c R4 is independently selected at each occurrence from the group consisting of:

- 5 a) hydrogen,
 - b) C_1-C_4 alkyl,
 - c) (C₁-C₄ alkyl)-aryl;

 R^6 , R^7 , R^8 , and R^9 are independently selected at each 10 . occurrence from the group consisting of:

- a) hydrogen, or
- b) C₁-C₄ alkyl;

 ${\tt R}^{10}$ is phenyl, where phenyl is optionally substituted 15 with one to three substituents selected from the group consisting of:

halogen, C1-C4 alkyl, C1-C4 alkoxy, -CF3;

A is

a) $-BY^1Y^2$; 20

W is

- a) -0-,
- b) $-S(0)_{r}-$,
- c) $-NR^{4}-$, 25
 - d) $-NC (=0) R^{4}-$, or
 - e) -NCO₂R⁴-;

 Y^1 and Y^2 are

- 30 a) -OH,
 - b) C_1-C_8 alkoxy, or when taken together Y^1 and \dot{Y}^2 form a

PCT/US94/11048

c) cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;

5

WO 95/09858

r is independently selected at each occurrence from 0 to 2;

t is 1.

10

. More preferred compounds of formula (I) are those compounds wherein:

 R^1 is

15

- a) $-(CH_2)_4NH_2$.
- b) -(CH₂)₃NHC(NH)NH₂,
- c) -(CH₂)₃NHC(NH)H,
- d) $-(CH_2)_3SC(NH)_NH_2$
- e) -(CH₂)₃NHC (NH) NHCH₃;

20

R² is hydrogen

 \mathbb{R}^3 is

- a) $-COCR^6R^7(CH_2)_r-W-(CR^6R^7)_r-aryl$,
- 25 b) $-COCR^6R^7(CH_2)_rCR^8R^9-aryl$,

c)

d)

PCT/US94/11048

WO 95/09858

e)

f)

5

 ${\sf R}^4$ is independently selected at each occurrence from the group consisting of:

- a) hydrogen,
- b) C₁-C₄ alkyl,
- 10 c) -(C₁-C₄ alkyl)-aryl;

 R^6 , R^7 , R^8 , and R^9 are independently at each occurrence from the group consisiting of:

- a) hydrogen, or
- b) C_1-C_4 alkyl;

R¹⁰ is phenyl, where phenyl is optionally substituted with one to three substituents selected from the group consisting of:

20 halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, methylenedioxy, $-NO_2$, $-CF_3$, -S(0) r- $(C_1$ - C_4 alkyl), -OH, $-NH_2$, $-NH(C_1$ - C_4 alkyl), $-N(C_1$ - C_4 alkyl), -NHC(=O) R⁴, $NHCO_2$ R⁴ - $(CH_2)_p$ - CO_2 R⁴;

A is

25 a) $-BY^1Y^2$;

W is

- a) -0-,
- b) $-S(0)_{r}-,$

PCT/US94/11048

- c) $-NR^{4}$ -,
- d) $-NC (=0) R^4-$, or
- e) -NCO₂R⁴-;
- 5 Y^1 and Y^2 are
 - a) -OH,
 - b) C_1-C_8 alkoxy, or

when taken together Y^1 and Y^2 form a

- c) cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;
- p is 0-4

15

10

- r is independently selected at each occurrence from 0 to 2;
- t is 1.

20

Illustrative of the preferred compounds of this invention are the following:

25 (a) $PhCH_2CH_2C (=0) -Pro-$

NHCH [(CH₂) 3NHC (=NH) NH₂] BO₂C₁₀H₁₆

- (b) $PhCH_2CH_2C (=0) Pro-NHCH [(CH_2)_4NH_2]B (OH)_2$
- (c) $PhOCH_2C (=0) Pro-NHCH [(CH_2)_4NH_2]B (OH)_2$
- (d) PhOC (CH₃) $_2$ C (=O) -Pro-NHCH [(CH₂) $_4$ NH₂] B (OH) $_2$
- 30 (e) $PhSCH_2C (=0) Pro-NHCH[(CH_2)_4NH_2]B (OH)_2$
 - (f) $3-CH_3C_6H_4CH_2CH_2C$ (=0) -Pro-

NHCH [$(CH_2)_4NH_2$] BO₂C₁₀H16

(g) $2-CF_3C_6H_4CH_2CH_2C$ (=0) -Pro-

NHCH [(CH2) 4NH2] BO2C10H16

35 (h) (4-CH₃O-3-CH₃)-C₆H₃CH₂CH₂C (=O)-Pro-

NHCH [(CH2) 4NH2] BO2C10H16

	(i)	$3-[(2-CF_3)C_6H_4CH_2]C_6H_4C(=0)-Pro-$
		NHCH[(CH ₂) ₄ NH ₂]BO ₂ C ₁₀ H ₁₆
	(j)	$3-(PhS)C_6H_4C(=0)-Pro-NHCH[(CH_2)_4NH_2]BO_2C_{10}H_{16}$
	(k)	$3-(PhO)C_6H_4C(=O)-Pro-NHCH[(CH_2)_4NH_2]BO_2C_{10}H_{16}$
5	(1)	trans-[4-(3-CF ₃ C ₆ H ₄)-Pyrrolidine-3-(C=O)]Pro-
		NHCH[(CH ₂) ₄ NH ₂]BO ₂ C ₁ 0H ₁₆
	(m)	[(1R,2R)-2-Phenylcyclohexanecarbonyl]Pro-
		NHCH [(CH ₂) 4NH ₂] B (OH) 2
	- (n)	2-(C ₅ H ₄ N)CH ₂ CH ₂ C(=O)-Pro-
10		NHCH [(CH ₂) 4NH ₂] BO ₂ C ₁₀ H ₁₆
	(0)	2-(Ph)-C ₆ H ₄ CH ₂ CH ₂ C (=O)-Pro-
		NHCH[(CH ₂) ₄ NH ₂]BO ₂ C ₁₀ H ₁₆
	(p)	3,4-(C1)2-C6H3CH2C(=O)-Pro-
•		NHCH [(CH_2) 3NHC (=NH) NH ₂]BO ₂ C ₁₀ H ₁₆
15	(q)	PhCH ₂ CH ₂ C(=0)-Pro-NHCH((CH ₂) ₃ NHC(=NH)H)B(OH) ₂ .

Detail Description of the Invention

As used throughout the specifications, the

20 following abbreviations for amino acid residues or amino acids apply:

Ala = L-alanine

Arg = L-arginine

Asn = L-asparagine

25 Asp = L-aspartic acid

Cys = L-cysteine

Gln = L-glutamine

Glu = L-glutamic acid

Gly = glycine

30 His = L-histidine

Ile = L-isoleucine

Leu = L-leucine

Lys = L-lysine

Met = L-methionine

35 Phe = L-phenylalanine

Pro = L-proline

Ser = L-serine

Thr = L-threonine

Trp = L-tryptophan

Tyr = L-tyrosine

5 Val = L-valine

Sar = or N-methylglycome

The "p" prefix for the foregoing abbreviations indicates the amino acid is in the p-configuration.

"D,L" indicates the amino is present in mixture of the p
10 and the L-configuration. The prefix "boro" indicates amino acid residues where the carboxyl is replaced by a boronic acid or a boronic acid ester. For example, if R¹ is isopropyl and Y¹ and Y² are OH, the C-terminal residue is abbreviated "boroVal-OH" where "-OH"

15 indicates the boronic acid is in the form of the free acid. The pinanediol boronic acid ester is abbreviated "-C10H16". Thus, an example of the chemical structure based on the nomenclature used herein is:

20 PhSCH₂C (=0) -Pro-NHCH [(CH₂) $_4$ NH₂] B (OH) $_2$

represents

Examples of other useful diols for esterification with
the boronic acids are 1,2-ethanediol, 1,3-propanediol,
1,2-propanediol, 2,3-butanediol, 1,2disopropylethanediol, 5,6-decanediol, and 1,2dicyclohexylethanediol. Other common abbreviations are:
THF, tetrahydrofuran; Et₃N, triethylamine; NaHCO₃,
sodium bicarbonate; EtOAc, ethyl acetate; Na₂SO₄, sodium
sulfate; h, hours; min, minutes; MeOH, methanol; HCl,

hydrochloric acid; DMF, N, N-dimethylformamide; Et₂O, diethyl ether; NH₄Cl, ammonium chloride; CBZ, benzyloxycarbonyl; BSA, benzenesulfonic acid; THF, tetrahydrofuran; Boc-, t-butoxycarbonyl-; Ac-, acetyl; pNA, p-nitro-aniline; DMAP, 4-N, N-dimethylaminopyridine; Tris, Tris(hydroxymethyl)aminomethane; MS, mass spectrometry; FAB/MS, fast atom bombardment mass spectrometry. LRMS(NH₃-CI) and HRMS(NH₃-CI) are low and high resolution mass spectrometry, respectively, using NH₃ as an ion source.

The term "amine-blocking group" or "amineprotecting group" as used herein, refers to various acyl, thioacyl, alkyl, sulfonyl, phosphoryl, and phosphinyl groups comprised of 1 to 20 carbon atoms. Substitutents on these groups maybe either alkyl, aryl, 15 alkaryl which may contain the heteroatoms, O, S, and N as a substituent or as an in chain component. A number of amine-blocking groups are recognized by those skilled in the art of organic synthesis. Examples of suitable groups include formyl, acetyl, benzoyl, trifluoroacetyl, 20 and methoxysuccinyl; aromatic urethane protecting groups, such as, benzyloxycarbonyl; and aliphatic urethane protecting groups, such as t-butoxycarbonyl or adamantyloxycarbonyl. Gross and Meienhofer, eds., The Peptides, Vol 3; 3-88 (1981), Academic Press, New York, 25 and Greene and Wuts Protective Groups in Organic Synthesis, 315-405 (1991), J. Wiley and Sons, Inc., New York disclose numerous suitable amine protecting groups and they are incorporated herein by reference for that 30 purpose.

"Amino acid residues" as used herein, refers to natural or unnatural amino acids of either D- or L-configuration. Natural amino acids residues are Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val. Roberts and Vellaccio, The Peptides, Vol 5; 341-449 (1983), Academic

Press, New York, discloses numerous suitable unnatural amino acids and is incorporated herein by reference for that purpose.

"Amino acids residues" also refers to various amino acids where sidechain functional groups are coupled with appropriate protecting groups known to those skilled in the art. "The Peptides", Vol 3, 3-88 (1981) discloses numerous suitable protecting groups and is incorporated herein by reference for that purpose.

10

15

20

25

30

As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; "alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- or poly-cyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl and cyclooctyl, and so forth. "Alkenyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like. "Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo.

As used herein, "aryl" or is intended to mean phenyl, naphthyl, biphenyl or fluorenyl which may be unsubstituted or include optional substitution with one to five substituents.

The term "heteroaryl" is meant to include 5-, 6- or 10-membered mono- or bicyclic aromatic rings, which can optionally contain from 1 to 3 heteroatoms selected from the group consisting of O, N, and S; said ring(s) may be unsubstituted or include optional substitution with one to three substituents. Included in the definition of the group heteroaryl, but not limited to, are the following: 2-, or 3-, or 4-pyridyl, 2- or 3-furyl,

thiophenyl, 2-, or 4-, or 5-imidazoyl, 2-, or 4-, or 5oxazoyl, 2-, or 4-, or 5-thiazoyl, 2- or 3-benzofuranyl,
2- or 3-benzo[b]thiophenyl, 2-, or 3-, or 4-quinolinyl;
1-, or 3-, or 4-isoquinolinyl; 2- or 3-pyrrolyl; 1- or 2benzimidazoyl, 2-benzoxazoyl, 1- or 2-benzothiazoyl,
indolinoyl-2-onyl, indolinoyl, indolyl, pyrrolyl, 2- or
4- or 5-thiazolyl; 2-benzothiazolyl; 3- or 4- or 5isoxazolyl; 3- or 4- or 5-pyrazolyl; 3- or 4- or 5isothiazolyl; 3- or 4-pyridazinyl; 2- or 4- or 5pyrimidinyl; 2-pyrazinyl; 2-triazinyl; 3- or 4cinnolinyl; 1-phthalazinyl; 2- or 4-quinazolinyl; or 2quinoxalinyl ring. Particularly preferred are 2-, 3-,
or 4-pyridyl; 2-, or 3-furyl; 2-, or 3-thiophenyl; 2-,
3-, or 4-quinolinyl; or 1-, 3-, or 4-isoquinolinyl.

The term "heterocycle" is meant to include 5-, 6or 10-membered mono- or bicyclic rings, which can
optionally contain from 1 to 3 heteroatoms selected from
the group consisting of O, N, and S; said ring(s) may be
unsubstituted or include optional substitution with one
to three substituents. Included in the definition of
the group heterocycle, but not limited to, are
tetrahydroisoquinolinyl, tetrahydroquinolinyl,
tetrahydrofuranyl, tetrahydrothiophenyl, piperidinyl,
piperazinyl, morpholinyl. Particularly preferred are 13-, or 4-tetrahdroisoquinolinyl.

The substituents that may be attached to the aryl, heteroaryl or heterocycle ring(s) may be independently selected at each occurrence from the group consisting of:

halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, methylenedioxy, -NO₂, -OCF₃, -CF₃, -SH, -S(0)_r-(C_1 - C_4 alkyl), -CN, -OH, -NH₂, -NH(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)₂, -NHC(=0)R⁴, -(CH₂)_p-CO₂R⁴, or phenyl which may be unsubstituted or substituted with R¹³.

35 It is understood that many of the compounds of the present invention contain one or more chiral centers and

that these stereoisomers may possess distinct physical and biological properties. The present invention comprises all of the stereoisomers or mixtures thereof. If the pure enantiomers or diasteromers are desired, they may be prepared using starting materials with the appropriate stereochemistry, or may be separated from mixtures of undesired stereoisomers by standard techniques, including chiral chromatography and recrystallization of diastereomeric salts.

By "stable compound" or "stable structure" is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

10

15

20

25

30

35

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound of formula (I) is modified by making acid or base salts of the compound of formula (I). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug according to formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include compounds of formula (I) wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but

are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I); and the like.

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

15

Synthesis

The compounds of formula (I) were or can be 20 prepared by the general procedures described in the following schemes. It will be understood by those skilled in the art of organic synthesis that the particular process or reagents chosen for a chemical transformation should be consistent with the functionality present on the molecules involved and this 25 will sometimes require judgement as to the order and manner in which the desired synthetic sequence is performed. Other procedures for synthesis of the compounds of the present invention can be found in Kettner and Shenvi, U.S. Patent No. 5, 187,157, as well 30 as Applicant's Assignee's commonly assigned patent applications USSN 08/010,731 (filed January 29, 1993), USSN 08/036,378 (filed March 24, 1993), and USSN 08/052,835 (filed April 27, 1993); all of which are 35 hereby incorporated by reference.

Scheme 1 outlines the general procedure employed when R³ in dipeptides of Formula (I) is an acyl group and the C-terminus is a boronic acid derivative of lysine, arginine or the isothiouronium derivative thereof. There are many synthetic methods for preparing amides (III) beginning with L-proline ester hydrochlorides, of which three methods are preferred. In the first method, a 0°C solution of the proline ester in a suitable solvent, such as but not limited to tetrahydrofuran or dichloromethane, is treated with one 10 equivalent of the desired acid chloride (IIa) and two equivalents of tertiary amine base, preferrably The mixture is allowed to warm to room triethylamine. temperature and stirred for several hours. Standard aqueous workup provides the desired amide (III). This 15 method is generally preferred when R3 is such that the acid chloride is commercially available.

The second method is the mixed anhydride procedure of Anderson, et. al. described in J. Am. Chem. Soc. 89, 20 5012 (1967). In this method, a 0°C solution of the carboxylic acid (IIb) in non-protic solvent, such as tetrahydrofuran, is treated with one equivalent of tertiary amine base, preferrably N-methylmorpholine and one equivalent of isobutyl chloroformate. After 15 minutes, the resulting isobutyl mixed anhydride is 25 treated sequentially with the amine salt and one equivalent of triethylamine or N-methylmorpholine. resulting mixture is typically allowed to warm to room temperature, stirred for one to several hours and then subjected to standard aqueous workup. 30

Scheme 1

10

The third method is the dicyclohexylcarbodiimide/
1-hydroxybenzotriazole (DCC/HOBT) method of Konig and
Geiger, Chem. Ber. 103, 788 (1970). In this
method, a solution of amine salt and carboxylic acid
(IIb) in N,N-dimethylformamide or tetrahydrofuran can be
treated with one equivalent of DCC, HOBT and
triethylamine. The resulting mixture can be stirred for
several hours or overnight and subjected to standard
aqueous workup.

PCT/US94/11048 WO 95/09858

The standard aqueous workup referred to above typically involves removing the solvent in vacuo and then diluting the residue with a solvent such as ethyl acetate. This solution can be then washed sequentially 5 with dilute aqueous acid, saturated aqueous sodium bicarbonate and brine. After drying over magnesium sulfate or sodium sulfate, the solution is concentrated in vacuo to afford the crude amide (III). In many cases this material is sufficiently pure to make unnecessary further purification. If purification of (III) is necessary, it is generally best done by flash column chromatography on silica gel.

10

15

20

25

30

The choice of ester protecting group R' on the amine salt depends upon the functionality present in -C(=0)R (identical to R³ group defined above) and is generally methyl, benzyl or tert-butyl. Those skilled in the art of organic synthesis will be able to determine which ester is appropriate considering the functionality in \mathbb{R}^3 and determine an appropriate method for cleavage to the carboxylic acid (IV).

The synthesis of the aminoboronates (Va) and (Vb) and their subsequent coupling with the carboxylic acid (IV) to give the bromides (VIa) and (VIb) was performed using the procedures described by Kettner and Shenvi U.S. Patent No. 5,187,157.

The preferred method for preparing the borolysine analogs (VIIIb) and (IX) involves an azide displacement of the bromide (VIb) with sodium azide in DMF at 100°C to give (VIIb). This azide can be reduced according any of the various methods for reduction of the azide to the corresponding amine found in Hudlicky, Reductions In Organic Synthesis, John Wiley and Sons, pp. 134 (1984). A preferred method involves hydrogenation over Pearlman's catalyst (palladium hydroxide on carbon) to 35 afford the borolysine ester (VIIIb). Removal of the pinanediol ester is best accomplished by a

transesterification reaction using excess phenylboronic acid. This procedure gives the free boronic acid (IX) which can be further purified by ion exchange chromatography.

Scheme 2 outlines the procedures employed for converting the bromide (VIa) to the boroarginine analog and to the isothiouronium, N-methylarginine and formamidino derivatives thereof. The bromide (VIa) was taken on to the corresponding isothiouronium analog (X) by treating with thiourea as described by Kettner and Shenvi in U.S. Patent No. 5,187,157.

The preferred method for preparing the boroarginine analogs (XIa) and (XIIIa) involves the formamidation of the boroornithine derivative (VIIIa), derived from (VIa) as described for the borolysine analog, with aminoiminomethanesulfonic acid and 4-dimethylaminopyridine (Kim et al. Tetrahedron Lett. 29, 3183 (1988). This affords guanidine (XIa) which can be transesterified to the free boronic acid (XIIIa).

Treatment of the boroornithine derivative (VIIIa) with N-methylaminoiminomethanesulfonic acid reported in Walter et. al. Liebigs Ann. Chem. 722, 98 (1969) under the same reaction conditions affords the Nmethylguanidine (XIb) which can be similarly transesterified to the free boronic acid (XIIIb).

The formamidino analog (XII) can also be prepared from the boroornithine (VIIIa) by treatment with ethyl formimidate. Transesterification with phenylboric acid then provides the boronic acid (XIIa).

30

15

Scheme 2

For many of the inhibitors contained in this invention, the required acid chloride (IIa) or

carboxylic acid (IIb) are commercially available, in which case the synthesis followed the steps outlined in Schemes 1 & 2. When (IIa) or (IIb) were not commercially available, they were synthesized by the general routes outlined in Schemes 3-12 or by other standard techniques familiar to those skilled in the art of organic synthesis. Subsequently, they can be coupled with a proline ester and elaborated to the desired boronic acid inhibitors following the procedures outlined in Schemes 1 and 2.

10 outlined in Schemes 1 and 2.

The substituted hydrocinnamic acids (Table 1),
wherein the aryl in R³ is substituted, can be prepared
by the general route shown in Scheme 3. Wittig
olefination, using known reagents of general formula
15 Ph₃P=CHCO₂R', of the appropriately substituted aldehyde
or ketone (XIV) gives the ester (XV). Various
conditions for reduction of the double bond are reported
in Hudlicky (1984), however a preferred method was
hydrogenation using palladium on carbon catalyst.
20 Cleavage of the acid protecting group can be affected by
a variety of conditions depending on the choice of R'.
In the case of a benzyl ester (where R' = -CH₂C6H₅),

may be effected under an atmosphere of hydrogen gas in the presence of platinum or palladium on carbon catalyst according to the reported by Hartney and Simonoff, Org. React. VII, 263 (1953). In the case with a methyl ester (where R' = -CH₃), treatment of an ethanol solution of the compound with an aqueous base, such as one

hydrogenolysis of an alcohol solution of the compound

equivalent of sodium hydroxide solution, will give the desired acid. In the case of the t-butyl ester (where $R' = -C(CH_3)_3$), cleavage by acid under anhydrous conditions; for example trifluoroacetic acid in dichloromethane solution removes the t-butyl ester at

ambient temperature as reported by Bryan et. al., J. Am. Chem. Soc. 99, 2353 (1977). A number of alternative

esters and procedures are detailed in Greene and Wuts (1991). Ester cleavage, as previously described, affords the hydrocinnamic acid (XVI).

Scheme 3

The symmetrical bis-benzylated acetic acids (XX) 10 (Table 1) can be prepared according to Scheme 4.

Scheme 4

15

20

5

Bisalkylation of diester (XVII) using a strong non-nucleophilic base, preferrably sodium hydride, and the bromide (XVIII) gives diester (XIX), which can be hydrolyzed and decarboxylated using alkaline hydroxide and heat to the acid (XX).

The substituted phenoxyacetic acids (Table 1) are prepared by the general route shown in Scheme 5. The

substituted phenols (XXI) are deprotonated with a strong base, preferrably sodium hydride, and then alkylated with the appropriate bromoacetate (XXII) to give (XXIII). Ester cleavage using an above described method can provide the acid (XXIV).

Scheme 5

10

Ç

The substituted thiophenoxyacetic acids (Table 1) are prepared by a similar route as shown in Scheme 6.

Scheme 6

15

Thus, deprotonation of thiophenol (XXV) and alkylation according to Scheme 4 affords (XXVI). Ester cleavage then gives the thiophenoxyacetic acid (XXVIII, n=0). Alternatively, the sulfur can be oxidized by 1 or 2 equivalents of sodium periodate or other suitable oxidizing agent to give the corresponding sulfoxide (XXVIII, n=1) or sulfone (XXVIII, n=2), respectively.

The α,α-dimethylphenoxy- or α,α-dimethylthiophenoxy acetic acids (XXXI) (Table 1) can be prepared according to Scheme 7. The phenol or thiophenol (XXIX) can be treated with 2-trichloromethyl-2-propanol (XXX) in the presence of sodium hydroxide, according to the method of Corey et. al. J. Am Chem Soc. 91, 4782 (1969) to produce the acid (XXXI).

15

10

Scheme 7

The diphenylmethane derivatives **35** (Table 3) are prepared as outlined in Scheme 8.

Scheme 8

The dianion of 3-bromobenzoic acid (XXXII) (Parham et. al. J. Org. Chem 39, 2051 (1974)), prepared by sequential treatment with 1 eq of n-butyllithium and 2 eq of t-butyllithium at -78°C, is allowed to react with aldehyde (XXXIII) to give alcohol (XXXIV). This alcohol can be reductively deoxygenated to the methylene adduct (XXXV) by a number of methods; the preferred methods include reduction with triethylsilane in trifluoroacetic acid, according to the method of Doyle et. al. J. Org. Chem. 38, 2675 (1973), or reduction with sodium cyanoborohydride in the presence of zinc iodide, according to the method described in Lau et. al. J. Org. Chem. 51, 3038 (1986).

The diphenylsulfides (XL) and diphenylsulfoxides (XLI) (Table 3) are prepared according to Scheme 9.

20

Scheme 9

When the thiophenol (XXXVIII) was not commercially available, it can be readily prepared from bromide (XXXVI). Metallation with t-butyllithium followed by trapping with dimethyldisulfide can provide (XXXVII), provided that the functionality substituted on the aryl is compatible to the reaction conditions or is suitably protected to withstand such conditions. Oxidation 10 followed by Pummerer rearrangement and methanolysis affords the substituted thiophenol (XXXVIII), based on that reported by Young et. al. Tetrahedron Lett. 25, 1753 (1984). The corresponding disulfide (XXXIX) can readily prepared by air oxidation of (XXXVIII). The dianion of bromobenzoic acid (XXXII), similar to Scheme 8, can be trapped with disulfide (XXXIX) to afford sulfide (XL). When the sulfone (XLI) is desired, it can readily prepared by oxone oxidation of sulfide (XL), according to the method of Trost et. al. Tetrahedron 20 Lett. 22, 1287 (1981).

The 4-arylpyrrolidine-3-carboxylic acids (Table 5) are prepared according to Scheme 10 by [3+2]

cycloaddition of olefin (XLII) with an N-benzyl azomethine ylide which can be generated in situ in two different ways.

5

25

Scheme 10

PG is a suitable amine protecting group

The preferred method involves treating N-benzyl-N
(methoxymethyl)trimethylsilylmethylamine (XLIIIb) with trifluoroacetic acid, according to the method of Achiwa et. al. Chem. Pharm. Bull. 33, 2762 (1985).

Alternatively, N-benzyl-N-

(XLV)

(cyanomethyl)trimethylsilylmethylamine (XLIIIa) can be

treated with silver fluoride in the dark, according to
the method of Padwa et. al. J. Org. Chem. 50, 4006
(1985). Generation of the azomethine ylide by either
method and reaction with (XLII) affords the pyrrolidine
(XLIV). Manipulation of the amine-protectiong group to
give a more versatile carbamate-protected (CBZ or t-BOC)
pyrrolidine followed by ester hydrolysis using alkaline
hydrolysis can provide the carboxylic acid (XLV).

The 2-phenylcyclohexane carboxylic acids (Table 5) can be prepared according to Scheme 11. Ketoester (XLVI) can be converted into its corresponding enol trifluoromethanesulfonate and subsequently coupled with

phenylboric acid under palladium catalysis, according to the method of Suzuki et. al. Syn. Commun. 11, 513 (1981) to afford (XLVII). Catalytic hydrogenation using the conditions previously described gives cis-(XLVIII), which can readily be isomerized to trans-(XLVIII) upon treatment with alkoxide in an alcoholic solvent. Ester hydrolysis as described above using alkoxide in an aqueous alcoholic solvent mixture can provide the acid (IL) of either stereoisomer.

10

20

25

(%)

(:

Scheme 11

Ph

The cyclic urea analogs (Table 6) are prepared according to Scheme 12. Condensation of 1,2-phenylenediamine (L) with ethyl acetoacetate (LI) in a high boiling solvent such as xylene gives the unusual isopropenyl substituted (LII) based on the described by Davoll J. Chem. Soc. p. 308 (1960). N-alkylation with ethyl bromoacetate using a strong base, preferrably sodium hydride, can provide (LIII), wherein R = C(=CH₂)CH₃), which gives the corresponding acid (LIV) upon ester hydrolysis using mineral acid. Ultimately this residue can be reduced to an isopropyl substituent in the final boropeptide of formula (I). Alternatively, N-alkylation of (LII) as above followed by sulfuric acid hydrolysis gives (LIII), wherein R = H. This intermediate can be carried on directly to (LIV),

PCT/US94/11048

wherein R = H or N-alkylated prior to ester hydrolysis to give N-alkyl derivatives.

Scheme 12

5

(LIII) R=H, C(=CH₂)CH₃ (LIV)
R=Me, Et (steps b-e); H (steps b,c,e);

C(=CH₂)CH3 (steps b,e)

Using the procedures described in Schemes 1-12

above and other standard procedures known to those skilled in the art of organic synthesis, the compounds of this invention listed in Tables 1-10 were or can be prepared.

15

Examples

Example 4

Ph(CH₂)₂C(=0)Pro-boroArg-OH·hydrochloride salt

20

25

Part A: Preparation of $Ph(CH_2)_2C(=0)$ Pro-OBn

To a cooled (0°C) solution of hydrocinnamic acid (2.0 g, 13.3 mmol) in THF (40 mL) was added Et₃N (3.71 mL, 26.6 mmol) followed by isobutyl chloroformate (1.73 mL, 1.82 g, 13.3 mmol). The mixture was stirred for 15 min at which

time L-Proline benzyl ester hydrochloride (3.22 g, 13.3 mmol) was added. The mixture was stirred with warming to 25°C for 2 h. The solvent was removed in vacuo, the residue was diluted with EtOAc and washed with 10% aq HCl, sat'd aq NaHCO3 and brine. After drying (Na₂SO₄), the solvent was removed and the residue was purified by flash chromatography to give the product (3.1 g). ¹H NMR (CDCl₃) & 7.40-7.05 (m, 10H), 5.16 (q, 2H), 4.55 (dd, 1H), 3.55 (m, 1H), 3.37 (m, 1H), 2.97 (t, 2H), 2.60 (m, 2H), 2.20-1.80 (m, 4H).

Part B: Preparation of Ph(CH₂)₂C(=O)Pro-OH

To a solution of Ph(CH₂)₂C(=O)Pro-OBn (3.1 g, 9.1

mmol) in absolute MeOH (10 mL) was added 10% Pd/C catalyst

(0.50 g). The mixture was stirred under 1 atm of hydrogen

(H₂) at 25°C for 16 h and then was filtered through Celite

and concentrated to afford the product (2.2 g). ¹H NMR

(CDCl₃) δ 7.35-7.10 (m, 5H), 4.57 (d, 1H), 3.45 (m, 1H),

3.30 (m, 1H), 3.00 (t, 2H), 2.65 (t, 2H), 2.30 (m, 1H),

Part C: Preparation of Ph(CH₂)₂C(=0)Pro-NH-CH[(CH₂)₃Br]BO₂-Ci₀H₁₆.

10

()

To a cooled (0°C) solution of Ph(CH₂)₂C(=O)Pro-OH (0.50 g, 2.0 mmol) in THF (10 mL) was added N-methylmorpholine (0.22 mL, 2.0 mmol) followed by isobutyl chloroformate (0.26 mL, 2.0 mmol). The mixture was stirred for 15 min at which time H₂NCH[(CH₂)₃Br]BO₂-C₁₀H₁₆·HCl (0.74 g, 2.0 mmol) was added followed by Et₃N (0.7 mL, 5.1 mmol). The reaction was stirred with warming to 25°C for 1.5 h and then the solvent was removed. The residue was diluted with EtOAc, washed with 10% aq HCl, sat'd aq NaHCO₃ and brine, dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography to give the product (0.22 g). MS: m/z 561 (M+H)+.

Part D: Preparation of Ph(CH₂)₂C(=O)Pro-NH-CH[(CH₂)₃N₃]BO₂-C₁₀H₁₆

(E)

(· ·

30

To a solution of Ph(CH₂)₂C(=0)Pro-NH-CH[(CH₂)₃Br]BO₂
5 C₁₀H₁₆ (1.34 g, 2.39 mmol) in DMF (5 mL) was added sodium azide (0.31 g, 4.79 mmol). The solution was stirred at 100°C for 2 h and then it was allowed to cool to 25°C. The mixture was diluted with EtOAc, washed with water (H₂O) and brine, dried (Na₂SO₄) and concentrated to afford the 10 product. MS: m/z 522 (M+H)+.

Part E: Preparation of Ph(CH₂)₂C(=O)Pro-boroOrn-C₁₀H₁₆

To a solution of Ph(CH₂)₂C(=O)Pro-NH-CH[(CH₂)₃N₃]BO₂C₁₀H₁₆ (0.27 g, 0.52 mmol) in MeOH (3 mL) was added 20%
Pd(OH)₂/C catalyst (100 mg). The mixture was stirred under 1 atm of H₂ for 1h and then filtered through Celite and concentrated to give the product (0.21 g).

Part F: Prepartion of Ph(CH₂)₂C(=O)Pro-boroArg-C₁₀H₁₆·HCl

To a solution of Ph(CH₂)₂C(=O)Pro-boroOrn-C₁₀H₁₆

(0.21g, 0.40 mmol) in ethanol (3 mL) was added (DMAP) (98 mg, 0.8 mmol) and formamidine sulfonic acid (100 mg, 0.8 mmol). The mixture was stirred at reflux for 3 h and then filtered through Celite. The solvent was removed in vacuo and th residue was purified by chromatography on a Sephadex LH-20 column (elution with MeOH) to afford 62 mg of material which was treated with anhydrous hydrogen chloride in Et₂O (1 N) to obtain the title compound. MS: m/z 538 (M+H)+.

Part G: To a solution of $Ph(CH_2)_2C$ (=0) $Pro-boroArg-C_{10}H_{16}\cdot HCl$ (150 mg, 0.26 mmol) in Et_2O (5 mL) and H_2O (5 mL) was added phenylboric acid (160 mg, 1.3 mmol). This mixture was stirred at 25°C for 3h. The separated aqueous layer was washed with ether twice and the water was removed

in vacuo to give 105 mg of the product. MS: m/z 358 $(M+H(-BO_2H_3))+.$

5

Example 5

Ph(CH₂)₂C(=0)Pro-boroLys-OH, hydrochloride

- Part A: Preparation of Ph(CH₂)₂C(=O)Pro-NH-CH[(CH₂)₄Br]BO₂-C₁₀H₁₆
- This compound was prepared by coupling the acid

 Ph(CH₂)₂C(=O)Pro-OH with the amine H₂NCH[(CH₂)₄Br]BO₂
 C₁₀H₁₆·HCl according to the procedure in Example 4, Part C.

 MS: m/z 536 (M+H)+.
- Part B: Ph(CH₂)₂C(=O)Pro-NHCH[(CH₂)₄N₃]BO₂-C₁₀H₁₆

 This compound was prepared from the bromide in Part A above according to the procedure in Example 4, Part D. MS: m/z 536 (M+H)+.
- 20 Part C: Ph(CH₂)₂C(=0)Pro-boroLys-C₁₀H₁₆·HCl

 This compound was prepared from the azide in Part B

 above according to the procedure in Example 4, Part E. MS:

 m/z 510 (M+H)+.
- Part D. Ph(CH₂)₂C(=O)Pro-boroLys-OH·HCl

 This compound was prepared from the product in Part C

 above according to the procedure in Example 4, Part G. MS:

 m/z 340 (M+H(-ZH₂O))+.
- 30 Example 166
 3-[2-CF₃C₆H₄CH₂]C₆H₄C (=0) Pro-boroLys-C₁₀H₁₆·hydrochloride
 - Part A: Preparation of 3-[2-CF₃C₆H₄CH(OH)]C₆H₄CO₂H

 To a cooled (-78°C) solution of 3-bromobenzoic acid

 (15.0 g, 74.6 mmol) in THF (300 mL) was added n
 butyllithium (30.0 mL of a 2.5M solution in hexanes, 74.6

This was followed by the dropwise addition mmol) dropwise. of t-butyllithium (88.0 mL of a 1.7M solution in hexanes, 149.2 mmol). The solution was allowed to stir at -78°C for 1h and then α, α, α -trifluoro-o-tolualdehyde (13.0 g, 74.6 5 mmol) was added and the solution was maintained at -78°C an additional 1 h. The solution was then allowed to warm to 25°C and was quenched by the addition of 20 mL of sat'd aqueous NH4Cl. The solvent was removed in vacuo and the residue was diluted with water and extracted with 1:1 hexane/ether. The organics were discarded. The aqueous 10 layer was acidified with concentrated HCl and then extracted with ethyl acetate. The ethyl acetate extracts were washed with sat'd aqueous sodium chloride (NaCl), dried over magnesium sulfate (MgSO₄) and concentrated to 15 give the crude product as a yellow oil. MS: m/z 314 $(M+NH_4)+.$

Part B: Preparation of 3-[2-CF₃C₆H₄CH(OH)]C₆H₄CO₂H

To a solution of 3-[2-CF₃C₆H₄CH(OH)]C₆H₄CO₂H (13.5g,
45.8 mmol) in trifluoroacetic acid (50 mL) was added

triethylsilane (30.0 mL, 183.3 mmol). This solution was allowed to stir at 25°C for 24 h. The trifluoroacetic acid was removed in vacuo and the residue was taken up in 1M potassium hydroxide. This solution was extracted with 1:1 hexane/Et₂O. The organics were discarded. The aqueous

layer was acidified with concentrated HCl and then extracted with ethyl acetate. The ethyl acetate extracts were washed with sat'd aqueous NaCl, dried (MgSO₄) and concentrated to give the product as a waxy yellow solid.

MS: m/z 298.0 (M+NH₄)+.

30

Part C: The carboxylic acid $3-[2-CF_3C_6H_4CH_2]C_6H_4CO_2H$ was carried on according to the procedures described in Example 5, Parts A-D to afford the title compound.

Example 212

trans-[N-BOC-4-(3-(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl]ProboroLys-C₁₀H₁₆, hydrochloride

- 5 Part A: Preparation of (E)-3-(CF₃)C₆H₄CH=CHCO₂CH₃

 To a solution of (E)-3-trifluoromethylcinnamic acid
 (5.6 g, 25.9 mmol) in absolute MeOH (50 mL) was added
 concentrated sulfuric acid (2 mL). The solution was
 stirred at reflux for 16h and then was allowed to cool
 10 to 25°C. The solvent was removed in vacuo and the
 residue was diluted with EtOAc, washed with H₂O, sat'd
 aq NaHCO₃ and brine, dried (MgSO₄) and concentrated to
 give the ester as an oil.
- 15 Part B: Preparation of trans-[N-Benzyl-4-(3-(CF3)C6H4)-3-(C=O)-pyrrolidinyl]OCH3.

To a solution of the product from Part A (3.25 g, 14.1 mmol) in acetonitrile (CH₃CN, 100 mL) was added N-benzyl trimethylsilylmethylaminoacetonitrile (3.27 g, 14.1 mmol)

- 20 14.1 mmol) followed by siver fluoride (1.97 g, 15.5 mmol). This mixture was stirred in the dark at 25°C for three days. The mixture was diluted with chloroform (CHCl₃), filtered through a pad of silica gel/Celite and concentrated. The residue was purified by flash
- 25 chromatography (5:1 hexanes/EtOAc) to afford the product (2.6 g) as an oil. MS (NH₃/CI): m/z 364 (M+H)+.
 - Part C: Preparation of trans-[4-(3-(CF₃)C₆H₄)-3-(C=0)-pyrrolidinyl]OCH₃·HCl
- To a solution of trans-[N-Benzyl-4-(3-(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl]OCH₃ (2.6 g, 7.2 mmol) in absolute MeOH (50 mL) was added 10% Pd/C catalyst (0.26g) and conc. HCl (0.60 mL, 7.2 mmol). This mixture was stirred under 1 atm of H₂ for 5 h and then was filtered through Celite and concentrated to give the product as a solid. MS (NH₃/CI): m/z 274 (M+H)+.

Part D: Preparation of trans- $\{N-BOC-4-(3-(CF_3)C_6H_4)-3-(C=0)-pyrrolidinyl\}OCH_3$.

To a cooled (0°C) solution of trans-[4-(3
(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl)OCH₃·HCl (2.15 g, 6.94 mmol) in dichloromethane (CH₂Cl₂, 40 mL) was added ditert-butyl dicarbonate (1.51 g, 6.94 mmol), disopropylethylamine (2.42 mL, 13.9 mmol) and DMAP (0.21g, 1.74 mmol). The resulting solution was allowed to warm to 25°C and stirred 16 h. The solvent was removed in vacuo and the residue was diluted with 1:1 hexanes/EtOAc and then washed with 10% aq HCl, sat'd NaHCO₃ and brine. After drying (MgSO₄) the solution was filtered through a pad of silica gel and concentrated to afford the product as an oil. MS (NH₃/CI): m/z 374 (M+H)+.

Part E: Preparation of trans- $[N-BOC-4-(3-(CF_3)C_6H_4)-3-(C=0)-pyrrolidinyl]OH$.

To a solution of trans-[N-BOC-4-(3-(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl]OCH₃ (2.5 g, 6.7 mmol) in THF (20 mL) and H₂O (10 mL) was added lithium hydroxide hydrate (LiOH H₂O). The solution was stirred at 25°C for 4 h at which time it was diluted with H₂O and extracted with 1:1 hexanes/EtOAc. The organics were discarded. The aqueous layer was acidified to pH 2 with 10% aq HCl and extracted with EtOAc. The organics were washed with brine, dried (MgSO₄) and concentrated to afford the product (2.3 g) as a white solid. MS (NH₃/CI): m/z 360 (M+H)+.

Part F: Preparation trans-[N-BOC-4-(3-(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl]Pro-OMe

To a solution of trans-[N-BOC-4-(3-(CF₃)C₆H₄)-3-5 (C=O)-pyrrolidinyl]OH (1.52 g, 4.23 mmol) in DMF (10 mL) was added L-Proline methyl ester hydrochloride (0.70 g,

4.23 mmol), O-benzotriazol-1-yl-N,N,N',N'tetramethyluronium hexafluorophospate (1.60 g, 4.23
mmol) and diisopropylethylamine (1.62 mL, 9.31 mmol).
The resulting solution was stirred at 25°C for three
days. The mixture was diluted with EtOAc, washed with
H2O (2 times) and brine, dried (MgSO₄) and concentrated.
The residue was purified by flash chromatography (1:1
hexanes/EtOAc) to afford the product as an oil. MS
(NH₃/CI): m/z 471 (M+H)+.

10

Part G: Preparation of trans- $[N-BOC-4-(3-(CF_3)C_6H_4)-3-(C=0)-pyrrolidinyl]$ Pro-OH.

To a solution of trans-[N-BOC-4-(3-(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl]Pro-OCH₃ (2.0 g, 4.24 mmol) in 20 mL of THF and 10 mL of H₂O was added LiOH·H₂O (0.20 g, 4.7 mmol). The resulting solution was stirred at 25°C for 3 h and then was diluted with H₂O and extracted with 1:1 hexanes/EtOAc. The organics were discarded. The aqueous layer was acidified to pH 2 with 10% aq HCl and extracted with EtOAc. The organics were washed with brine, dried (MgSO₄) and concentrated to give the product as a white solid. MS (NH₃/CI): m/z 457 (M+H)+.

Part H: Preparation of trans-[N-BOC-4-(3-(CF₃)C₆H₄)-3-(C=O)-pyrrolidinyl]Pro-NHCH[(CH₂)₄Br]BO₂C₁₀H₁₆.

This compound was prepared by coupling the acid from Part G above with $H_2NCH[(CH_2)_4Br]BO_2-C_{10}H_{16}\cdot HCl$ according to the procedure in Example 4, Part C. MS (NH₃/CI): m/z 782/784 (M+H)+.

30

25

Part I: Preparation of trans- $[N-BOC-4-(3-(CF_3)C_6H_4)-3-(C=0)-pyrrolidinyl]$ Pro-NH-CH $[(CH_2)_4N_3]BO_2-C_{10}H_{16}$.

This compound was prepared from the bromide in Part 35 H above according to the procedure in Example 4, Part D. MS (NH $_3$ /CI): m/z 745 (M+H)+.

Part J: This compound was prepared from the azide in Part I above according to the procedure in Example 4, Part E. MS (DCI): m/z 719 (M+H)+.

5

Example 213

trans- $[4-(3-(CF_3)C_6H_4)-3-(C=O)-pyrrolidinyl]$ Pro-boroLys- $C_{10}H_{16}$, dihydrochloride

10

To a solution of Example 195 (0.30 g, 0.40 mmol) was added 12N HCl (about 0.5 mL). This solution was stirred at 25°C for 16 h. The mixture was partitioned between $\rm H_2O$ and EtOAc. The aqueous layer was washed with EtOAc and concentrated to afford the product as a white solid. MS (DCI): m/z 619 (M+H)+.

Table 1

ExNo.	R ¹	A	R	Phys Data
1 .	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	PhCH2CH2-	MS
2	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	PhCH2CH2-	MS
3	-(CH ₂) ₄ NH ₂	BO2C10H16	PhCH2CH2-	MS
4	- (CH ₂) 3NHC (=NH) NH ₂	B (OH) 2	PhCH2CH2-	MS
5	- (CH ₂) 4NH ₂	B (OH) 2	PhCH2CH2-	MS
6	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	4-PhC6H4CH2CH2-	MS
7	- (CH ₂) 4NH ₂	B (OH) 2	4-PhC6H4CH2CH2-	
8	- (CH ₂) 3SC (≃NH) NH ₂	BO2C10H16	2-PhC6H4CH2CH2-	MS
9	- (CH ₂) 4NH ₂	BO2C10H16	2-PhC6H4CH2CH2-	MS
10	-(CH ₂) ₄ NH ₂	B (OH) 2	3-PhC6H4CH2CH2-	
11	-(CH ₂) 3SC (=NH) NH ₂	BO2C10H16	2-0CH3C6H4CH2CH2-	MS
12	-(CH ₂) ₄ NH ₂	BO2C10H16	2-0CH3C6H4CH2CH2-	MS
13	-(CH ₂) ₄ NH ₂	B (OH) 2	3-0CH3C6H4CH2CH2-	
14	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	4-0CH3C6H4CH2CH2-	MS
15	-(CH ₂) ₄ NH ₂	BO2C10H16	4-0CH3C6H4CH2CH2-	MS
16	-(CH ₂) ₄ NH ₂	BO2C10H16	3-CF3C6H4CH2CH2-	MS
17	- (CH ₂) 4NH ₂	B (OH) 2	3-CF3C6H4CH2CH2-	MS
18 -	- (CH ₂) ₄ NH ₂	BO2C10H16	2-CF3C6H4CH2CH2-	MS
19	-(CH ₂) ₄ NH ₂	B (OH) 2	4-CF3C6H4CH2CH2-	
20	-(CH ₂) ₄ NH ₂	BO2C10H16	3-CH3C6H4CH2CH2-	MS
21	-(CH ₂) ₄ NH ₂	B (OH) 2	3-CH3C6H4CH2CH2-	MS
22	-(CH ₂) 4NH ₂	BO2C10H16	2-CH3C6H4CH2CH2-	MS
23	-(CH ₂) ₄ NH ₂	B (OH) 2	4-CH3C6H4CH2CH2-	MS
4	-(CH ₂) ₄ NH ₂	BO2C10H16	4-OCH3-3-	MS
			сн ₃ с ₆ н ₃ сн ₂ сн ₂ -	
:5	-(CH ₂) ₄ NH ₂	BO2C10H16	2,4-	MS
			(CH3) 2C6H3CH2CH2-	,

26	-(CH ₂) ₄ NH ₂	BO2C10H16	3, 4-	MS
	•		(OCH2O) C6H3CH2CH2-	
27	-(CH ₂) ₄ NH ₂	B (OH) 2	2,3-	
			(OCH2O) C6H3CH2CH2~	
28	- (CH ₂) 3SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	4-	MS
			(NHCO (CH ₂) 3Ph) C ₆ H ₄ CH	
			2CH2-	
29	-(CH ₂) ₄ NH ₂	B (OH) 2	2-OHC6H4CH2CH2-	
30	-(CH ₂) ₄ NH ₂	BO2C10H16	3-0HC6H4CH2CH2-	MS
31	-(CH ₂) ₄ NH ₂	B(OH) ₂	4-0HC6H4CH2CH2-	
32.	-(CH ₂) ₄ NH ₂	B (OH) 2	2-(CO2H) C6H4CH2CH2-	
33	-(CH ₂) ₄ NH ₂	B (OH) 2	3- (CO2H) C6H4CH2CH2-	
34	-(CH ₂) ₄ NH ₂	BO2C10H16	4- (CO2H) C6H4CH2CH2-	MS
35	- (CH ₂) 4NH ₂	B (OH) 2	2-	
			(CO2CH3) C6H4CH2CH2-	
36	- (CH ₂) ₄ NH ₂	B (OH) 2	3-	
			(CO2CH3) C6H4CH2CH2-	
37	-(CH ₂) ₄ NH ₂	B (OH) 2	4-	
			(СО2СН3) С6Н4СН2СН2-	
38	-(CH ₂) ₄ NH ₂	B (OH) 2	2-(PhC (=0) NH)-	
			C6H4CH2CH2-	
39	- (CH ₂) 4NH ₂	B (OH) 2	3-(PhC (=0) NH)-	
			C6H4CH2CH2-	
40	- (CH ₂) ₄ NH ₂	B (OH) 2	4-(PhC (=0) NH)-	
	•		C6H4CH2CH2-	
41	-(CH ₂) ₄ NH ₂	B (OH) 2	2-NH2C6H4CH2CH2-	
42	-(CH ₂) ₄ NH ₂	B (OH) 2	3-NH2C6H4CH2CH2-	
43	-(CH ₂) ₄ NH ₂	B (OH) 2	4-NH2C6H4CH2CH2-	
44	-(CH ₂) ₄ NH ₂	B (OH) 2	2- .	
			(CH2NH2) C6H4CH2CH2-	
45	-(CH ₂)4NH ₂	B (OH) 2	3-	
			(CH2NH2) C6H4CH2CH2-	
46	-(CH ₂)4NH ₂	B (OH) 2	4-	
			(CH2NH2) C6H4CH2CH2-	
47	-(CH ₂) ₄ NH ₂	B (OH) 2	2-CNC6H4CH2CH2-	

48	-(CH ₂) ₄ NH ₂	B (OH) 2	3-CNC6H4CH2CH2-	
49	- (CH ₂) 4NH ₂	B (OH) 2	4-CNC6H4CH2CH2-	
50	-(CH ₂) 4NH ₂	B (OH) 2	2-FC6H4CH2CH2-	
51	-(CH ₂) 4NH ₂	B (OH) 2	3-FC6H4CH2CH2-	
52	-(CH ₂) 4NH ₂	B (OH) 2	4-FC6H4CH2CH2-	
53	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	trans-PhCH=CH-	MS
54	-(CH ₂) ₄ NH ₂	B (OH) 2	cis-PhCH=CH-	
55	-(CH ₂) 4NH ₂	BO2C10H16	Ph2CHCH2-	MS
56	-(CH ₂) ₄ NH ₂	BO2C10H16	(4-FC6H4CH2)2CH-	MS
57	-(CH ₂) 4NH ₂	BO2C10H16	(4-OCH3C6H4CH2)2CH-	MS
58	-(CH ₂) ₄ NH ₂	BO2C10H16	(3-CH3C6H4CH2)2CH-	MS
59	-(CH ₂) ₄ NH ₂	BO2C10H16	PhCH (CH3) CH2-	MS
60	-(CH ₂) ₄ NH ₂	BO2C10H16	PhCH (CH2CO2H) CH2-	MS
61	-(CH ₂) ₄ NH ₂	BO2C10H16	2-PhC6H4CH (CH3) CH2-	MS
62	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	PhocH2-	MS
63	- (CH ₂) 3NHC (=NH) NH ₂	B (OH) 2	PhocH2-	MS
64	- (CH ₂) 4NH ₂	BO2C10H16	PhoCH2-	MS
65	- (CH ₂) 4NH ₂	B (OH) 2	PhoCH2-	MS
66	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	4-FC6H4OCH2-	MS
67	- (CH ₂) 3NHC (=NH) NH ₂	B (OH) 2	4-FC6H4OCH2-	MS
68	-(CH ₂) ₄ NH ₂	BO2C10H16	4-FC6H4OCH2-	MS
69	-(CH ₂) 4NH ₂	B(OH) ₂	4-FC6H4OCH2-	MS
70	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	4-C1C6H4OCH2-	MS
71	-(CH ₂) ₄ NH ₂	BO2C10H16	4-C1C6H4OCH2-	MS
72	- (CH ₂) 4NH ₂	B (OH) 2	2-CF3C6H4OCH2-	
73	-(CH ₂) ₄ NH ₂	BO2C10H16	3-CF3C6H4OCH2-	MS
74	-(CH ₂) ₄ NH ₂	BO2C10H16	4-CF3C6H4OCH2-	MS
75	-(CH ₂) 4NH ₂	B (OH) 2	2-OCF3C6H4OCH2-	
76	-(CH ₂) 4NH ₂	BO2C10H16	3-0CF3C6H4OCH2-	MS
77	-(CH ₂) 4NH ₂	BO2C10H16	4-0CF3C6H4OCH2-	MS
78	-(CH ₂) ₄ NH ₂	B (OH) 2	2-	
			(CH2CO2CH3) C6H4OCH2-	
79	-(CH ₂) 4NH ₂	BO2C10H16	3~	MS
			(CH2CO2CH3) C6H4OCH2-	

80	-(CH ₂) ₄ NH ₂	B (OH) 2	4∸	
	•		(CH2CO2CH3) C6H4OCH2-	
81	- (CH ₂) 4NH ₂	B (OH) 2	2-(CH2CO2H)C6H4OCH2-	
82	- (CH ₂) 4NH ₂	BO2C10H16	3-(CH2CO2H)C6H4OCH2-	MS
83	-(CH ₂) ₄ NH ₂	BO2C10H16	4-(CH2CO2H)C6H4OCH2-	MS
84	- (CH ₂) 4NH ₂	BO2C10H16	3-(CH2OTHP)C6H4OCH2-	MS
85	- (CH ₂) 4NH ₂	B (OH) 2	3-(CH2OTHP)C6H4OCH2-	MS
86	- (CH ₂) 4NH ₂	B (OH) 2	2- (CH2OH) C6H4OCH2-	
87	- (CH ₂) 4NH ₂	BO2C10H16	3- (CH2OH) C6H4OCH2-	MS
88	- (CH ₂) 4NH ₂	B (OH) 2	3-(CH2OH)C6H4OCH2-	MS
89	- (CH2) 3SC (=NH) NH2	BO2C10H16	3- (CH2OH) C6H4OCH2-	MS
.90	- (CH ₂) 4NH ₂	B (OH) 2	4- (CH2OH) C6H4OCH2-	
91	- (CH ₂) 4NH ₂	B (OH) 2	2-(COCH3)C6H4OCH2-	
92	-(CH ₂) ₄ NH ₂	B(OH) ₂	3-(COCH3)C6H4OCH2-	
93	- (CH ₂) 4NH ₂ .	BO2C10H16	4-(COCH3)C6H4OCH2-	MS
94	- (CH ₂) 4NH ₂	B (OH) 2	4-(COCH3)C6H4OCH2-	MS
95	- (CH ₂) 4NH ₂	BO2C10H16	2-PhC6H4OCH2-	MS
96	- (CH ₂) 4NH ₂	B (OH) 2	3-PhC6H4OCH2-	
97	-(CH ₂) ₄ NH ₂	B (OH) 2	4-PhC6H40CH2-	
98	- (CH ₂) 4NH ₂	B (OH) 2	2-(CO2CH3)C6H4OCH2-	
99	-(CH ₂) ₄ NH ₂	BO2C10H16	3-(CO2CH3)C6H4OCH2-	MS
100	-(CH ₂) ₄ NH ₂	B (OH) 2	4-(CO2CH3)C6H4OCH2-	
101	-(CH ₂) ₄ NH ₂	B (OH) 2	2-(CO2H)C6H4OCH2-	
102	-(CH ₂) ₄ NH ₂	BO2C10H16	3-(CO ₂ H)C ₆ H ₄ OCH ₂ -	MS
103	-(CH2)4NH2	BO2C10H16	4-(CO2H)C6H4OCH2-	MS
104	- (CH ₂) 4NH ₂	BO2C10H16	4-C1C6H4OC (CH3) 2-	MS
105	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	Phoch (CH2CH3) -	MS
106	- (CH ₂) 4NH ₂	BO2C10H16	Phoch (CH2CH3) -	MS
108	-(CH ₂) ₄ NH ₂	B (OH) 2	Phoch (CH2CH3) -	MS
109	-(CH ₂) ₄ NH ₂	BO2C10H16	Phoc (CH ₃) ₂ -	MS
110	- (CH ₂) 4NH ₂	B (OH) 2	Phoc (CH ₃) ₂ -	MS
111	- (CH ₂) 4NH ₂	B (OH) 2	Phoc (CH ₃) ₂ -	MS
112	- (CH ₂)-3NHC (=NH) NH ₂	BO2C10H16	Phoch (CH ₃) -	MS
113	-(CH ₂) ₄ NH ₂	BO2C10H16	Phoch (CH ₃) -	MS
114	- (CH ₂) 4NH ₂	B (OH) 2	Phoch (CH3) -	MS
	· ·			

115	-(CH ₂)4NH ₂	BO2C10H16	(Pho) 2CH-	MS
116	-(CH ₂) ₄ NH ₂	BO2C10H16	PhSCH2-	MS
117	-(CH ₂) ₄ NH ₂	B (OH) 2	PhSCH2-	MS
118	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	PhSCH2-	MS
119	- (CH ₂) 3NHC (=NH) NH ₂	B (OH) 2	PhSCH2-	MS
120	-(CH ₂) ₄ NH ₂	BO2C10H16	PhSC (CH ₃) ₂ -	MS
121	- (CH ₂) 4NH ₂	BO2C10H16	PhSOCH2-	MS
122	-(CH ₂) ₄ NH ₂	BO2C10H16	4-(NHCOCH3)C6H4SCH2-	MS
123	- (CH ₂) 4NH ₂	B (OH) 2	4-(NHCOCH3)C6H4SCH2-	MS
124	-(CH ₂) ₄ NH ₂	BO2C10H16	PhSO2CH2-	MS
125	- (CH ₂) 4NH ₂	B (OH) 2	PhSO2CH2-	MS
126	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	PhSO2CH2-	MS
127	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	4-(NHCBZ) C6H4CH2-	MS
128	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	4-NH2C6H4CH2-	MS
129	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	3,4-(C1)2C6H3CH2-	MS
130	- (CH ₂) 3NHC (=NH) H	B (OH) 2	3,4-(C1)2C6H3CH2-	MS
131	- (CH ₂) 3NHC (=NH) NHCH ₃	B (OH) 2	3,4-(C1)2C6H3CH2-	MS
132	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	PhCH (CH2CH3) -	MS
133	-(CH ₂) ₄ NH ₂	BO2C10H16	2-PhC6H4CH2	MS
134	- (CH ₂) 4NH ₂	B (OH) 2	3-PhC6H4CH2-	
135	- (CH ₂) 4NH ₂	B (OH) 2	4-PhC6H4CH2-	
136	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	PhCH2-	MS
137	- (CH2) 3SC (=NH) NH2	BO2C10H16	Ph (CH ₂) 4CH ₂ -	MS
138	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	CH3 (CH2) 3CH2-	MS
139	-(CH ₂)4NH ₂	BO2C10H16	CH3 (CH2) 3CH2-	MS
140	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	(CH ₃) ₂ CHCH ₂ CH ₂ -	MS
141	-(CH ₂)4NH ₂	BO2C10H16	(CH ₃) ₂ CHCH ₂ CH ₂ -	MS
142	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	СH3CH2CH (СH3) СH2-	MS
143	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	Ph (CH ₂) 3CH ₂ -	MS
144	- (CH ₂) 4NH ₂	BO2C10H16	C6H11CH2CH2-	MS
145	-(CH ₂) ₄ NH ₂	BO2C10H16	(CH3) 2CH (CH2) 2CH2-	MS
146	-(CH ₂) ₄ NH ₂	BO2C10H16	C5H9CH2CH2-	MS
147	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	PhCH2OCH2-	MS
148	-(CH ₂) ₄ NH ₂	BO2C10H16	C6H11OCH2-	MS
149	- (CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	PhoCH2CH2-	MS

150	- (CH ₂) 3NHC (=NH) H	во ₂ С ₁₀ н ₁₆	3,4-(C1)2C6H3CH2-	MS
151	- (CH2) 3NHC (=NH) NHCH3	BO2C10H16	3,4-(C1)2C6H3CH2-	MS

PCT/US94/11048

Table 2

_	Ex No.	. R ¹	A	R	Phys Data
	152	- (CH ₂) 4NH ₂	BO2C10H16	Pho-	MS
	153	- (CH ₂) 4NH ₂	BO2C10H16	PhCH2-	MS .
	154	- (CH ₂) 4NH ₂	BO2C10H16	Ph-	MS
	155	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	Ph-	MS
	156	- (CH ₂) 3NHC (=NH) H	BO2C10H16	PhCH2-	MS
	157	- (CH ₂) 3NHC (=NH) H	B (OH) 2	PhCH2-	MS
	158	- (CH ₂) 3NHC (=NH) NHCH ₃	BO2C10H16	PhCH ₂ -	MS
-	159	- (CH ₂) 3NHC (=NH) NHCH ₃	B (OH) 2	PhCH2-	MS

5

Table 3

Ex No.	R ¹	<u>A</u>	B	Data
160	- (CH ₂) 4NH ₂	BO2C10H16	PhO-	MS
161	- (CH ₂) 4NH ₂	B (OH) 2	2-FC6H4CH2-	
162	- (CH ₂) 4NH ₂	BO2C10H16	3-FC6H4CH2-	MS
163	- (CH ₂) 4NH ₂	B (OH) 2	4-FC6H4CH2-	
164	-(CH ₂)4NH ₂	BO2C10H16	PhCH2-	MS
165	- (CH ₂) 4NH ₂	B (OH) 2	PhCH2-	MS
166	- (CH ₂) 4NH ₂	BO2C10H16	2-CF3C6H4CH2-	MS
167	- (CH ₂) 4NH ₂	BO2C10H16	3-CF3C6H4CH2-	MS
168	-(CH ₂)4NH ₂	BO2C10H16	4-CF3C6H4CH2-	MS

1.00				
169	-(CH ₂) ₄ NH ₂	B (OH) 2	2,3-	
			(ОСН2О) С6Н3СН2-	
170	-(CH ₂)4NH ₂	BO2C10H16	3,4-	MS
			(OCH2O) C6H3CH2-	
171	-(CH ₂)4NH ₂	BO2C10H16	3,4-	MS
		•	(OCH3) 2C6H3CH2-	
172	- (CH ₂) 4NH ₂	BO2C10H16	2-CH3C6H4CH2-	MS
173	- (CH ₂) 4NH ₂	B (OH) 2	3-CH3C6H4CH2-	
174	-(CH ₂) ₄ NH ₂	B (OH) 2	4-CH3C6H4CH2-	
175	- (CH ₂) 4NH ₂	B (OH) 2	2-0CH3C6H4CH2-	
176	- (CH ₂) 4NH ₂	B (OH) 2	3-0CH3C6H4CH2-	
177	- (CH ₂) 4NH ₂	B (OH) 2	4-0CH3C6H4CH2-	
178	- (CH ₂) 4NH ₂	BO2C10H16	2-BrC6H4CH2-	MS
179	- (CH ₂) 4NH ₂	BO2C10H16	2-SCH3C6H4CH2-	MS
180	-(CH ₂) ₄ NH ₂	BO2C10H16	Phs-	MS
181	- (CH ₂) 4NH ₂	BO2C10H16	PhSO2-	MS
182	-(CH2)4NH2	B (OH) 2	PhS-	MS
183	- (CH ₂) 4NH ₂	B (OH) 2	PhSO2-	MS
184	- (CH ₂) 4NH ₂	BO2C10H16	2-0CH3C6H4S-	MS
185	-(CH ₂)4NH ₂	BO2C10H16	2-0CH3C6H4SO2-	MS
186	-(CH2)4NH2	B (OH) 2	3-0CH3C6H4S-	
187	- (CH ₂) 4NH ₂	B (OH) 2	3-0CH3C6H4SO2-	
188	-(CH2)4NH2	BO2C10H16	4-0CH3C6H4S-	MS
189	- (CH ₂) 4NH ₂	BO2C10H16	4-0CH3C6H4SO2-	MS
190	- (CH ₂) 4NH ₂	BO2C10H16	2-CF3C6H4S-	MS
191	-(CH2)4NH2	B (OH) 2	3-CF3C6H4S-	
192	- (CH ₂) 4NH ₂	B (OH) 2	4-CF3C6H4S-	
193	- (CH ₂) 4NH ₂	BO2C10H16	Ph ₂ PO-	MS
194	- (CH ₂) 4NH ₂	B (OH) 2	PhCH2CH2-	
195	- (CH ₂) 4NH ₂	B (OH) 2	cis-PhCH=CH-	
196	- (CH ₂) 4NH ₂	B (OH) 2	trans-PhCH=CH-	

Table 4

Ex No.	R ¹	<u> </u>	R	Data
€ 197	- (CH2) 3SC (=NH) NH2	BO2C10H16	н	MS
198	-(CH ₂) ₄ NH ₂	BO2C10H16	н	MS
199	-(CH2) 3NHC (=NH) NH2	BO2C10H16	NH2CH2-	MS
200	-(CH ₂) 3NHC (=NH) NH ₂	BO2C10H16	CBZNH-	MS
201	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	Ph	MS
202	-(CH ₂) ₄ NH ₂	BO2C10H16	Ph	MS ·
203	-(CH ₂) ₄ NH ₂	BO2C10H16	PhCH2-	MS
204	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	CH3 (CH2) 2CH2-	MS
205	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	cyclohexyl	MS
206	- (CH ₂) 3NHC (=NH) NHCH ₃	BO2C10H16	Ph	MS
207	- (CH ₂) 3NHC (=NH) NHCH ₃	B (OH) 2	Ph	MS
208	- (CH ₂) 3NHC (=NH) H	BO2C10H16	Ph	MS
209	- (CH ₂) 3NHC (=NH) H	B (OH) 2	Ph	MS

Table 5

Ex No.	R ¹	A	n	M	<u>R</u>	Data
210	-(CH ₂)4NH ₂	BO2C10H16	1	NCH2Ph	Ph	MS
211	-(CH ₂)4NH ₂	BO2C10H16	1	NBOC	Ph	MS
212	-(CH ₂) ₄ NH ₂	BO2C10H16	1	NBOC	3-CF3C6H4-	MS
213	-(CH ₂) ₄ NH ₂	BO2C10H16	1	NH	3-CF3C6H4-	MS
214	-(CH ₂)4NH ₂	B (OH) 2	1	0	Ph	
215	- (CH ₂) 4NH ₂	B (OH) 2	1	s	Ph	
216	- (CH ₂) 4NH ₂	BO2C10H16	2	CH ₂	Ph	MS

217	-(CH ₂) ₄ NH ₂	B (OH) 2	2	CH ₂	Ph	MS
218	-(CH ₂)4NH ₂	B (OH) 2	1	CH ₂	Ph	
219	-(CH ₂)4NH ₂	BO2C10H16	1	NH	Ph	
220	-(CH ₂)4NH ₂	BO2C10H16	1	NCBZ	Ph	
221	-(CH ₂) ₄ NH ₂	BO2C10H16	1	NAc	Ph	
222	-(CH ₂) ₄ NH ₂	B (OH) 2	1	NH	3-pyridyl	

Table 6

5

Ex No.	R ¹	A	2.	M	Data
223	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	N	NCH2CH3	MS
224	- (CH ₂) 4NH ₂	BO2C10H16	N	NCH2CH3	MS
225	-(CH ₂) 4NH ₂	BO2C10H16	N	NH	MS
226	-(CH ₂)4NH ₂	BO2C10H16	N	NCH2 (CH3) 2	MS
227	-(CH ₂) 3SC (=NH) NH ₂	B (OH) 2	N	NCH2 (CH3) 2	MS
228	-(CH ₂) 3SC (=NH) NH ₂	BO2C10H16	N	NCH3	MS
229	- (CH ₂) 4NH ₂	BO2C10H16	Сн	NCH3	MS
230	-(CH2)4NH2	BO2C10H16	N	o	
231	-(CH2) 4NH2	BO2C10H16	N	NCH3	MS
232	- (CH ₂) 4NH ₂	B (OH) 2	N	ИН	MS

Table 7

Ex No.	R ¹	A	n	M	Phys Data
233	- (CH ₂) 3SC (=NH) NH ₂	BO2C10H16	1	CH ₂	MS
234	-(CH ₂) ₄ NH ₂	BO2C10H16	0	0	MS
235	-(CH ₂) ₄ NH ₂	BO2C10H16	0	NH	
236	- (CH ₂) 4NH ₂	BO2C10H16	0	NCOCH3	
237	- (CH ₂) 4NH ₂	BO2C10H16	0	S	
238	- (CH ₂) 4NH ₂	BO2C10H16	0	CH ₂	

Table 8

$$\begin{array}{c|c} & H \\ & N \\ & N \\ & O \end{array}$$

Ex	R^1	A	R	Phys Data
239	- (CH ₂) 4NH ₂	BO ₂ C ₁₀ H ₁₆	· N	MS
240	-(CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	Y	MS
241	- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	4-0	MS
242	- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	,, °	MS
243	- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	PF F	MS
244	- (CH ₂) ₃ NHC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	ş. S	MS
245	- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆		MS
246	- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆		MS

€.

Table 9

$$\begin{array}{c}
 & H \\
 & N \\$$

\mathbb{R}^1	A	R	Phys Data
- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆		MS
- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆		MS
- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	M e N N N N N N N N N N N N N N N N N N N	MS
-(CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	r N	MS
-(CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	PhON	MS
- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	, N	MS
- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	p h	MS
	- (CH ₂) ₃ SC (=NH) NH ₂ - (CH ₂) ₄ NH ₂ - (CH ₂) ₃ SC (=NH) NH ₂	-(CH2)3SC (=NH) NH2 BO2C10H16 $-(CH2)4NH2 BO2C10H16$ $-(CH2)4NH2 BO2C10H16$ $-(CH2)4NH2 BO2C10H16$ $-(CH2)4NH2 BO2C10H16$ $-(CH2)3SC (=NH) NH2 BO2C10H16$	$-(CH_{2})_{3}SC (=NH) NH_{2} \qquad BO_{2}C_{10}H_{16} \qquad \qquad$

(6)

Table 10

$$\bigcap_{R \to 0} \bigcap_{N \to 1}^{H} \bigcap_{N \to 1}^{A}$$

τ	Ex No	R ¹	A	R	Phys Data
	254	- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	Property of the second	MS
	255	- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆	LY WEST	MS
	256	- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆	P N N N N N N N N N N N N N N N N N N N	MS
•	257	- (CH ₂) ₄ NH ₂	B (OH) ₂		MS
	258	- (CH ₂) ₄ NH ₂	BO ₂ C ₁₀ H ₁₆		MS
	259	- (CH ₂) ₃ SC (=NH) NH ₂	BO ₂ C ₁₀ H ₁₆		MS

Utility

The dipeptide boronic acids which are described in the present invention represent a novel class of potent, reversible inhibitors of trypsin-like enzymes. Trypsinlike enzymes are a group of proteases which hydrolyze peptide bonds at basic residues liberating either a Cterminal arginyl or lysyl residue. Among these are enzymes of the blood coagulation and fibrinolytic system 10 required for hemostasis. They are Factors II, X, VII, IX, XII, kallikrein, tissue plasminogen activators, urokinase-like plasminogen activator, and plasmin. Enzymes of the complement system, acrosin (required for fertilization), pancreatic trypsin are also in this 15 group. Elevated levels of proteolysis by these proteases can result in disease states. For example, consumptive coagulopathy, a condition marked by a decrease in the blood levels of enzymes of both the coagulation system, the fibrinolytic system and 20 accompanying protease inhibitors is often fatal. Intervention by a synthetic inhibitor would clearly be valuable. More specifically, proteolysis by thrombin is required for blood clotting. Inhibition of thrombin results in an effective inhibitor of blood clotting. 25 The importance of an effective inhibitor of thrombin is underscored by the observation that conventional anticoagulants such as heparin (and its complex with the protein inhibitor, antithrombin III) are ineffective in blocking arterial thrombosis associated with myocardial 30 infractions and other clotting disorders. However, a low molecular weight thrombin inhibitor, containing a different functionality, was effective in blocking arterial thrombosis [Hanson and Harker (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3184-3188]. Therefore, we have chosen to demonstrate utility of compounds in the

inhibition of thrombin, both as in buffered solutions

PCT/US94/11048 WO 95/09858

and in plasma. Specifically, the compounds have utility as drugs for the treatment of diseases arising from elevated thrombin activity such as myocardial infarction, and as reagents used as anticoagulants in 5 the processing of blood to plasma for diagnostic and other commercial purposes.

Compounds of the present invention are expected to be effective in the control of aberrant proteolysis and a number of accompanying disease states such as inflammation, pancretitis, and heritary angioedema.

10

25

30

The effectiveness of compounds of the present invention as inhibitors of the blood coagulation protease thrombin were determined under two different conditions: (1) Measurements in buffered solutions 15 using a synthetic substrate. (2) Measurement in plasma where the rate of blood clotting is determined. For the former, the chromogenic substrate S2238 (Helena Laboratories, Beaumont, TX) was used following procedures similar to those described in Kettner et al. 20 1990. Here hydrolysis resulted in the release of pNA which was monitored spectrophotometricaly by measuring the increase in absorbance at 405 nm. The Michaelis constant, K_{m} , for substrate hydrolysis was determined at 25 °C in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000 using the

Values of Ki were determined by allowing thrombin (0.19 nM) to react with substrate (0.20 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate Ki values.

35
$$v_0 - v_s = I$$

 $v_s = K_i (1 + S/K_m)$

method of Lineweaver and Burk.

where '

 v_{O} is the velocity of the control in the absence of inhibitor;

5 v_S is the velocity in the presence of inhibitor;
I is the concentration of inhibitor;
K_i is the dissociation constant of enzyme: inhibitor complex;

S is the concentration of substrate;

10 Km is the Michaelis constant.

Inhibition of blood clotting activity of thrombin in plasma was determined in rabbit plasma. Plasma was prepared by diluting blood 1:10 with 3.2% aqueous citric acid and centrifuging. Buffer consisted of 0.10 M Tris, 15 pH 7.4, containing 0.9% sodium chloride, and 2.5 mg/mL bovine serum albumin. Bovine thrombin was obtained from Sigma and was diluted to 24 NIH units/mL. Plasma (200 μL) and buffer (50 μL) containing inhibitor were incubated 3 min at 37 °C in a fibrameter. 20 were initiated by adding thrombin (50µL) and clotting times measured. Controls were run under identical conditions except in the absence of inhibitor. final concentration of thrombin was 4 NIH units/mL. effectiveness of compounds in prolonging clotting times 25 is reported as IC50 (level of inhibitor required to prolong clotting to the time observed for 2 NIH units/mL thrombin in the absence of inhibitor). Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit a Ki 30 of less than 1 mM, thereby confirming the utility of the compounds of the invention as effective thrombin inhibitors.

The ability of the compounds to inhibit coagulation was assayed in normal rabbit plasma which was prepared by diluting blood 1:10 with 3.2% aqueous citric acid followed by centrifugation. Bovine thrombin was

obtained from Sigma and diluted to 24 NIH units/mL. Plasma (0.2 mL) and buffer (0.05 mL, 0.10 M Tris[hydroxymethyl]-aminomethane hydrochloride, pH 7.4, 0.9% (w/v) sodium chloride, and 2.5 mg/mL bovine serum albumin) containing inhibitor were incubated 3 min at 37 °C in a fibrameter. Reactions were initiated by adding thrombin (0.05 mL) to achieve a final concentration of 4 NIH units/mL. The effectiveness of compounds as anticoagulants is reported as the level of inhibitor required to prolong clotting to that observed for 2 NIH units/mL thrombin in the absence of inhibitor. In this assay then, better inhibitors require lower concentrations to delay clot formation. Representative compounds of this invention were evaluated and found to be active.

Since the compounds of formula (I) have antithrombogenic properties, they may be employed when an
anti-thrombogenic agent is indicated, such as for the
control of the coagulation of the fibrinolysis system in
mammals or they may be added to blood for the purpose of
preventing coagulation of the blood due to contact with
blood collecting or distribution containers, tubing or
apparatus.

15

25

30

Generally, these compounds may be administered orally, parenterally or intravenously to a host to obtain an anti-thrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as determined by one skilled in the art. In the case of large mammals such as humans, the compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/kg to obtain the anti-thrombogenic effect, and may be given as a single dose or in divided doses or as a sustained release formulation.

Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or the like which can serve as suitable dosage forms for administration of the compounds of this invention.

Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable dosage forms for administration of the compounds of this invention.

WHAT IS CLAIMED IS:

5

1. A compound of formula (I)

10

or a pharmaceutically acceptale salt, hydrate or prodrug thereof, wherein:

 R^1 is

15

a)
$$-(C_1-C_{12} \text{ alkyl})-X$$
, or

b)

X is

20

- a) halogen
- b) -CN,
- c) -NO2,
- d) -CF3,
- e) -NH₂

- f) -NHC (=NH) H,
- g) -NHC (=NH) NHOH,
- h) -NHC (=NH) NHCN,
- i) $-NHC (=NH) NHR^2$,
- j) $-NHC (=NH) NHC (=O) R^2$,

```
k) -C (=NH) NHR<sup>2</sup>,
              1) -C (=NH) NHC (=0) R^2,
              m) -C (=0) NHR<sup>2</sup>,
              n) -CO_2R^2,
  5
              o) -OR^2,
              p) -OCF3,
              q) -SR^2, or
              q) -SC (=NH) NHR<sup>2</sup>;
      \mathbb{R}^2 is
10
              a) hydrogen,
             b) C_1-C_4 alkyl,
              c) aryl,
              d) -(C1-C4 alkyl)-aryl, where aryl is defined
15
              above;
      R^3 is
             a) -C (=0) CR^{6}R^{7} - aryl,
             b) -C(=0)-(C_2-C_5 \text{ alkenyl})-aryl,
             c) -C (=0) CR^6R^7 (CH_2)_r - W - (CR^6R^7)_r - aryl,
20
             d) -C (=0) CR^6R^7 (CH_2) rCR^8R^9 - ary1,
             e) -C (=0) CR^6R^7 (CH<sub>2</sub>) _rCR^8R^9-heteroaryl,
             f) -C (=0) CR^6R^7 (CH_2)_r CR^8R^9-heterocycle,
             g) -C(=0)-aryl, wherein aryl is defined as above,
             h) -C(=0)-heteroaryl,
25
             i) -C(=0)-heterocycle,
             j) -C (=0) O (CH_2)_t-adamantyl,
             k) -C (=0) (CH<sub>2</sub>)<sub>t</sub> - (C<sub>5</sub>-C<sub>7</sub> cycloalkyl),
             1) -C (=0) (CH_2)_t - W - (C_5 - C_7 \text{ cycloalkyl}),
30
             m)
                    limited to phenyl,
```

aryl, wherein aryl is limited

5 to phenyl,

p)

d)

10 r) O (CH₂)r

s)

WO 95/09858

PCT/US94/11048

t)

u)

5 v)

w)

10 x)

y)

z)

aa)

bb)

cc)

10 dd)

ee)

ff)

gg)

5

 ${\rm R}^4$ and ${\rm R}^5$ are independently selected at each occurrence 10 from the group consisting of:

- a) hydrogen,
- b) C_1-C_4 alkyl,
- c) $-(C_1-C_4 \text{ alkyl})-\text{aryl}$, or
- d) -C5-C7 cycloalkyl;

15

 ${\bf R}^6$, ${\bf R}^7$, ${\bf R}^8$ and ${\bf R}^9$ are independently selected at each occurrence from the group consisiting of:

- a) hydrogen,
- b) C_1-C_4 alkyl,
- 20 c) C_1-C_4 alkoxy,

d) aryl,

35

 Y^1 and Y^2 are

```
e) -(C_1-C_4 \text{ alkyl})-\text{aryl},
                f) -O-aryl, or
                g) -(CH_2)_p-CO_2R^4;
   5
         R^{10} is phenyl, where phenyl is optionally substituted
               with one to three substituents selected from the
               group consisting of:
                       halogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy,
  10
                       methylenedioxy, -NO_2, -CF_3, -S(0)_r-(C1-C4-
                       alkyl), -OH, -NH<sub>2</sub>, -NH(C_1-C_4 alkyl), -N(C_1-C_4
                       alkyl)<sub>2</sub>, -NHC (=0) R^4, NHCO<sub>2</sub>R^4, -(CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>R^4;
        R^{11} is hydrogen or -CO_2R^4;
  15
        R<sup>12</sup> is:
               a) hydrogen,
               b) C_1-C_4 alkyl,
               c) aryl,
  20
               c) -(C_1-C_4 \text{ alkyl})-\text{aryl}, or
               d) C5-C7 cycloalkyl;
        A is
              a) -BY^1Y^2,
 25
              b) -C (=0) CF_3,
              c) -PO_3H_2, or
              d) -CO_2H;
        W is
. 30
             a) -0-,
             b) -S(0)_{r}-,
             c) -NR^{4}-,
             d) -NC (=0) R^{4}-, or
             e) -NCO<sub>2</sub>R<sup>4</sup>-;
```

a) - OH,

b) -F,

- c) $-NR^4R^5$,
- d) C₁-C₈ alkoxy, or
- 5 when taken together Y^1 and Y^2 form a
 - e) cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- f) cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- g) cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;
- n is independently selected at each occurence from 0 or 20 1;
 - p is independently selected at each occurrence from 0 to 3:
- 25 q is independently selected at each occurrence from 0 to 4;
 - r is independently selected at each occurrence from 0 to 2;
 - t is independently selected at each occurrence from 1 to 3;
- wherein "aryl" or is intended to mean phenyl, naphthyl, 35 biphenyl or fluorenyl which may be unsubstituted or

include optional substitution with one to five substituents;

"heteroaryl" is meant to include 5-, 6- or 10-membered mono- or bicyclic aromatic rings, which can optionally contain from 1 to 3 heteroatoms selected from the group consisting of O, N, and S; said ring(s) may be unsubstituted or include optional substitution with one to three substituents. Included in the definition of 10 the group heteroaryl, but not limited to, are the following: 2-, or 3-, or 4-pyridyl, 2- or 3-furyl, thiophenyl, 2-, or 4-, or 5-imidazoyl, 2-, or 4-, or 5oxazoyl, 2-, or 4-, or 5-thiazoyl, 2- or 3-benzofuranyl, 2- or 3-benzo[b]thiophenyl, 2-, or 3-, or 4-quinolinyl; 1-, or 3-, or 4-isoquinolinyl; 2- or 3-pyrrolyl; 1- or 2-15 benzimidazoyl, 2-benzoxazoyl, 1- or 2-benzothiazoyl, indolinoyl-2-onyl, indolinoyl, indolyl, pyrrolyl, 2- or 4- or 5-thiazolyl; 2-benzothiazolyl; 3- or 4- or 5isoxazolyl; 3- or 4- or 5-pyrazolyl; 3- or 4- or 5isothiazolyl; 3- or 4-pyridazinyl; 2- or 4- or 5-20 pyrimidinyl; 2-pyrazinyl; 2-triazinyl; 3- or 4cinnolinyl; 1-phthalazinyl; 2- or 4-quinazolinyl; or 2quinoxalinyl ring;

"heterocycle" is meant to include 5-, 6- or 10-membered mono- or bicyclic rings, which can optionally contain from 1 to 3 heteroatoms selected from the group consisting of O, N, and S; said ring(s) may be unsubstituted or include optional substitution with one to three substituents. Included in the definition of the group heterocycle, but not limited to, are tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydrofuranyl, piperazinyl, morpholinyl;

35

the substituents that may be attached to the aryl, heteroaryl or heterocycle ring(s) may be independently selected at each occurrence from the group consisting of:

halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, methylenedioxy, $-NO_2$, $-OCF_3$, $-CF_3$, -SH, $-S(0)_r$ - $(C_1$ - C_4 alkyl), -CN, -OH, $-NH_2$, $-NH(C_1$ - C_4 alkyl), $-N(C_1$ - C_4 alkyl), $-NHC(=0)R^4$, $-(CH_2)_p$ - CO_2R^4 , or phenyl which may be unsubstituted or substituted with R^{13} .

10

()

2. A compound of claim 1 wherein:

 R^1 is

15

- a) -(CH₂)₄NHR²
- b) -(CH₂)₃NHC (=NH) NHR²,
- c) -(CH₂)₃NHC (=NH)H,
- d) -(CH₂)₃SC(=NH)NHR²;

20 R² is hydrogen or C₁-C₄ alkyl;

 \mathbb{R}^3 is

- a) -COCR⁶R⁷-aryl,
- b) $-COCR^6R^7(CH_2)_r-W-(CR^6R^7)_r-aryl$,
- 25 c) $-COCR^6R^7(CH_2)_rCR^8R^9-aryl$,
 - d) -COCR⁶R⁷ (CH₂)_rCR⁸R⁹-heteroaryl,

e)

aryl, wherein aryl is

limited to phenyl,

30 f)

to phenyl,

g) P₁₀ w or

5 h)

R⁴ is independently selected at each occurrence from the group consisting of:

10 a) hydrogen,

- b) C₁-C₄ alkyl,
- c) $-(C_1-C_4 \text{ alkyl}) \text{aryl};$

 R^6 , R^7 , R^8 , and R^9 are independently selected at each occurrence from the group consisting of:

- a) hydrogen, or
- b) C₁-C₄ alkyl;

R¹⁰ is phenyl, where phenyl is optionally substituted 20 with one to three substituents selected from the group consisting of:

halogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, -CF₃;

A is

25 a) $-BY^1Y^2$;

W is

- a) -0-,
- b) $-S(0)_{r}-,$
- c) $-NR^4-$,
- 5 d) $-NC (=0) R^4$, or
 - e) $-NCO_2R^4-;$

Y¹ and Y² are

- a) -OH,
- 10 b) C₁-C₈ alkoxy, or

when taken together Y^1 and Y^2 form a

- c) cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;
- r is independently selected at each occurrence from 0 to 2;
- 20 t is 1;

15

()

- 3. A compound of claim 2 wherein:
- 25 R^1 is
 - a) $-(CH_2)_4NH_2$,
 - b) -(CH₂)₃NHC(NH)NH₂,
 - c) $-(CH_2)_3NHC(NH)H$,
 - d) -(CH₂)₃SC(NH)NH₂
- 30 e) -(CH₂)₃NHC(NH)NHCH₃;

 R^3 is

- a) $-COCR^6R^7$ (CH₂)_r-W- (CR⁶R⁷)_r-aryl,
- b) $-COCR^6R^7(CH_2)_rCR^8R^9-aryl$,
- 35 c)

e) Pio W or

f) (CH₂)r

R⁴ is independently selected at each occurrence from the group consisting of:

a) hydrogen,

5

- b) C₁-C₄ alkyl,
- c) $-(C_1-C_4 \text{ alkyl})-\text{aryl};$

15 R^6 , R^7 , R^8 , and R^9 are independently at each occurrence from the group consisiting of:

- a) hydrogen, or
- b) C₁-C₄ alkyl;

20 R¹⁰ is phenyl, where phenyl is optionally substituted with one to three substituents selected from the group consisting of:

halogen, C_1-C_4 alkyl, C_1-C_4 alkoxy, methylenedioxy, $-NO_2$, $-CF_3$, $-S(O)r-(C_1-C_4$ alkyl), -OH, $-NH_2$, $-NH(C_1-C_4$ alkyl), $-N(C_1-C_4$ alkyl), $-NHC(=O)R^4$, $NHCO_2R^4-(CH_2)_p-CO_2R^4$;

5 Ais

a) $-BY^1Y^2$;

W is

a) -0-,

10

20

- b) $-s(0)_{r}$ -,
- c) $-NR^4-$,
- d) $-NC (=0) R^{4}$ -, or
- e) -NCO₂R⁴-;

15 Y^1 and Y^2 are

- a) -OH,
- b) C_1-C_8 alkoxy, or when taken together Y^1 and Y^2 form a
- c) cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;

r is independently selected at each occurrence from 0 to 25 2;

t is 1;

wherein "aryl" is defined as phenyl, fluorenyl, biphenyl 30 and naphthyl, which may be unsubstituted or include optional substitution with one to five substituents;

"heteroaryl" is meant to include 2-, 3-, or 4-pyridyl; 2-, or 3-furyl; 2-, or 3-thiophenyl; 2-, 3-, or 4-quinolinyl; or 1-, 3-, or 4-isoquinolinyl which may be

unsubstitued or include optional substitution with one to three substituents;

"heterocycle" is meant to include 1-, 3-, or 4
5 tetrahdroisoquinolinyl, 2- or 3-pyrrolidinyl, and 2-, 3or 4-piperidinyl which may be unsubstituted or include
optional substitution with one to three substituents;

the substituents that may be attached to the aryl,

10 heteroaryl and heterocycle ring(s) may be independently selected at each occurrence from the group consisting of:

halogen, C_1-C_4 alkyl, C_1-C_4 alkoxy, methylenedioxy, $-CF_3$, $-S(0)r-(C_1-C_4$ alkyl).

15

30

(j)

(

- 4. A compond of claim 3 selected from the group consisitng of:
 - (a) $PhCH_2CH_2C$ (=0) -Pro-
- 20 NHCH $\{(CH_2)_3NHC(=NH)_1_2\}BO_2C_{10}H_{16}$
 - (b) $PhCH_2CH_2C (=0) Pro-NHCH [(CH_2)_4NH_2]B (OH)_2$
 - (c) $PhOCH_2C (=0) Pro-NHCH[(CH_2)_4NH_2]B(OH)_2$
 - (d) PhOC (CH₃) $_2$ C (=0) -Pro-NHCH [(CH₂) $_4$ NH₂] B (OH) $_2$
 - (e) $PhSCH_2C (=0) Pro-NHCH [(CH_2)_4NH_2]B (OH)_2$
- 25 (f) 3-CH₃C₆H₄CH₂CH₂C (=0)-Pro-

NHCH [$(CH_2)_4NH_2$] $BO_2C_{10}H16$

(g) $2-CF_3C_6H_4CH_2CH_2C$ (=0) -Pro-

NHCH [(CH₂) 4NH₂]BO₂C₁₀H16

NHCH [(CH2) 4NH2] BO2C10H16

- (h) $(4-CH_3O-3-CH_3)-C_6H_3CH_2CH_2C$ (=0)-Pro-NHCH[(CH₂)₄NH₂]BO₂C₁₀H₁₆
- (i) $3-[(2-CF_3)C_6H_4CH_2]C_6H_4C(=0)-Pro-$
 - 3-(PhS)C₆H₄C(=0)-Pro-NHCH[(CH₂)₄NH₂]BO₂C₁₀H₁₆
 - (k) 3- (PhO) C_6H_4C (=0) -Pro-NHCH [(CH₂) $_4NH_2$] $BO_2C_{10}H_{16}$
- 35 (1) trans-[4-(3-CF₃C₆H₄)-Pyrrolidine-3-(C=O)]Pro-NHCH[(CH₂)₄NH₂]BO₂C₁₀H₁₆

(m) [(1R, 2R) -2-Phenylcyclohexanecarbonyl]Pro-NHCH[(CH₂) 4NH₂]B(OH)₂

- (n) $2-(C_5H_4N) CH_2CH_2C (=0) -Pro-$ NHCH[(CH₂)₄NH₂]BO₂C₁₀H₁₆
- 5 (o) 2-(Ph)-C₆H₄CH₂CH₂C(=O)-Pro-NHCH[(CH₂)₄NH₂]BO₂C₁₀H₁₆
 - (p) 3,4-(C1)₂-C₆H₃CH₂C (=0)-Pro-NHCH [(CH₂)₃NHC (=NH) NH₂]BO₂C₁₀H₁₆
 - (q) $PhCH_2CH_2C (=0) Pro-NHCH [(CH_2)_3NHC (=NH)_H]_B (OH)_2$.

10

5. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 1.

- 6. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 2.
- 7. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 3.
- 8. A pharmaceutical composition comprising a
 25 pharmaceutically suitable carrier and a therapeutically
 effective amount of a compound of claim 4.
- 9. A method of treating a physiological disorder in a warm blooded animal catalyzed by trypsin-like
 30 enzymes comprising administering to an animal in need such treatment an effective amount of a compound of claim 1.
- 10. A method of treating a physiological disorder 35 in a warm blooded animal catalyzed by trypsin-like enzymes comprising administering to an animal in need

such treatment an effective amount of a compound of claim 2.

- 11. A method of treating a physiological disorder in a warm blooded animal catalyzed by trypsin-like enzymes comprising administering to an animal in need such treatment an effective amount of a compound of claim 3.
- 10 12. A method of treating a physiological disorder in a warm blooded animal catalyzed by trypsin-like enzymes comprising administering to an animal in need such treatment an effective amount of a compound of claim 4.

INTERNATIONAL SEARCH REPORT

Inter. .mal Application No PCT/US 94/11048

		PC1/US 94/11046						
A. CLASS IPC 6	ification of subject matter C07F5/02 A61K31/69 C07K5/0 A61K38/05	062 C07D207/16	C07F9/572					
According 1	to International Patent Classification (IPC) or to both national class	sification and IPC						
B. FIELDS SEARCHED								
Minimum d IPC 6	locumentation searched (dassification system followed by dassifica CO7F CO7K A61K	ation symbols)						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
	۲							
Electronic d	lata base consulted during the international search (name of data be	ase and, where practical, search ter	ms used)					
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.					
Y	EP,A,O 293 881 (E.I. DU PONT DE AND CO.) 7 December 1988 cited in the application see the whole document	NEMOURS	1-12					
Y	EP,A,O 504 064 (MERRELL DOW PHARMACEUTICALS INC.) 16 Septemb see the whole document	1-12						
Υ	EP,A,O 471 651 (SANDOZ LTD.) 19 1992	EP,A,O 471 651 (SANDOZ LTD.) 19 February						
	cited in the application see the whole document	• •						
Y	WO,A,92 07869 (THROMBOSIS RESEAR INSTITUTE) 14 May 1992 cited in the application see the whole document	1-12						
Purt	her documents are listed in the continuation of box C.	X Patent family members a	re listed in annex.					
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but "T" later document published after the international involve to invention "X" document of particular relevance; the cannot be considered novel or cannot be considered to involve an inventive step when the decument is combined with one or means, such combination being obvious in the art.			conflict with the application but ciple or theory underlying the same cannot be considered to the document is taken alone ance; the claimed invention olve an inventive step when the one or more other such docuing obvious to a person skilled					
	actual completion of the international search	"&" document member of the san						
	6 December 1994	- 2. 01.						
Name and 1	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rigswik Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Authorized officer Beslier, L						

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern. Anal Application No
PCT/US 94/11048

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0293881	07-12-88	US-A- AU-B- AU-A- CA-A- CA-A- DE-A- JP-A- SU-A- US-A-	5187157 623592 1733288 1328332 1333208 3878991 1063583 1807988 5242904 5250720	16-02-93 21-05-92 08-12-88 05-04-94 22-11-94 15-04-93 09-03-89 07-04-93 07-09-93
EP-A-0504064	16-09-92	EP-A- JP-A-	0503203 5112598	16-09-92 07-05-93
EP-A-0471651	19-02-92	AU-B- AU-A- CA-A- JP-A- US-A-	643312 8179291 2048953 4330094 5288707	11-11-93 20-02-92 14-02-92 18-11-92 22-02-94
WO-A-9207869	14-05-92	AU-B- AU-A- EP-A- JP-T- NZ-A-	636521 8900791 0509080 5504775 240477	29-04-93 26-05-92 21-10-92 22-07-93 26-10-94