# **LATEST SAMPLE QUESTION PAPER**

# MATHEMATICS (H)-10th [For 2024-2025 Examination]

# **ANSWER KEY**

#### खण्ड-क

**3.** (a) 
$$x^2 - 4x + 3\sqrt{2} = 0$$

**5.** (c) 
$$\pm 4$$

8. (a) 
$$\frac{5}{2}$$

**9.** (c) 
$$r^2$$
 and  $r^2$  sand

**10.** (d) 
$$\sqrt{6} : \sqrt{\pi}$$

**13.** 
$$a = 3$$

**16.** 
$$A + B = 90^{\circ}$$

**17.** 
$$r^2$$
  $a^{-1}$   $a^{-1}$   $a^{-1}$ 

**18.** माध्यक वर्ग की निम्न सीमा = 
$$10$$
 बहुलक वर्ग की निम्न सीमा =  $15$  कुल योग =  $25$ 

# रवण्ड-रव

**21.** (a) यहाँ पर,

$$2x + y = 23 \qquad \dots(i)$$

$$4x - y = 19 \qquad \dots (ii)$$

समीकरण (i) और (ii) को जोड़ने पर,

$$6x = 42$$

या

$$x = 7$$

x के मान को समीकरण (i) में रखने पर, हमें प्राप्त होता है,

$$2(7) + y = 23$$

 $\Rightarrow$ 

$$14 + y = 23$$

 $\Rightarrow$ 

$$y = 23 - 14$$

 $\Rightarrow$ 

$$y = 9$$

x और y के मानों को 5y-2x और  $\frac{y}{x}-2$  में रखने पर, हमें प्राप्त होता है,

$$5y - 2x = 5 \times 9 - 2 \times 7$$
  
= 45 - 14  
= 31

और

$$\frac{y}{x} - 2 = \frac{9}{7} - \frac{2}{1}$$
$$= -\frac{5}{7}$$

अथवा

(b) प्रश्नानुसार,

$$4x + py + 8 = 0$$

$$2x + 2y + 2 = 0$$

$$a_1 = 4, a_2 = 2, b_1 = p$$
 और  $b_2 = 2$ 

यदि रैखिक समीकरणों के एक युग्म का अद्वितीय हल है, तब

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{4}{2} \neq \frac{p}{2}$$

इस प्रकार, 4 को छोड़कर p के सभी मानों के लिए एक अद्वितीय हल है।

22. प्रश्नानुसार,

*:*.

$$CD = x + 3$$

$$AD = 3x + 19$$

$$CE = x$$

$$BE = 3x + 4$$

$$\frac{\mathrm{CD}}{\mathrm{AD}} = \frac{\mathrm{CE}}{\mathrm{BE}}$$

[आधारभूत समानुपातिकता प्रमेय द्वारा]

$$\Rightarrow \frac{x+3}{3x+19} = \frac{x}{3x+4}$$

$$\Rightarrow (x+3)(3x+4) = x(3x+19)$$

$$\Rightarrow 3x^2 + 4x + 9x + 12 = 3x^2 + 19x$$

$$\Rightarrow 13x + 12 = 19x$$

$$\Rightarrow 13x - 19x = -12$$

$$\Rightarrow -6x = -12$$

$$\Rightarrow x = \frac{12}{6}$$

$$\Rightarrow x = 2$$

इसलिए, x का मान 2 है।

**23.** माना, दिए गए दो संकेंद्रीय वृत्तों का केंद्र O है तथा AB बड़े वृत्त की जीवा है जो छोटे वृत्त को बिंदु P पर स्पर्श करती है। OP तथा OA को मिलाओ।

हम जानते हैं कि स्पर्श रेखा और त्रिज्या परस्पर लंबवत् होती है।

ः 
$$\angle OPA = 90^{\circ}$$
 $OP = 3$  सें $\circ$ मी $\circ$ 
 $OA = 5$  सें $\circ$ 



अतः जीवा AB की लंबाई = 8 cm

24. (a) यहाँ पर, 
$$\sin{(A-B)} = \frac{1}{2}$$
 $\Rightarrow \sin{(A-B)} = \sin{30^{\circ}}$ 
 $\Rightarrow A-B = 30^{\circ}$  ......(i)
 $\Rightarrow \cos{(A+B)} = \frac{1}{2}$ 
 $\Rightarrow \cos{(A+B)} = \cos{60^{\circ}}$ 
 $\Rightarrow A+B = 60^{\circ}$  .....(ii)

समीकरण (i) और (ii) को जोड़ने पर,

$$2A = 90^{\circ}$$
 या  $A = \frac{90^{\circ}}{2} = 45^{\circ}$ 

A का मान समीकरण (i) में रखने पर,

$$45^{\circ} - B = 30^{\circ}$$
 $\Rightarrow B = 45^{\circ} - 30^{\circ}$ 
 $= 15^{\circ}$ 
अਗ:  $A = 45^{\circ}$  ਕ  $B = 15^{\circ}$ 

अथवा

(b)
$$= \frac{a^2}{x^2} - \frac{b^2}{y^2}$$

$$= \frac{a^2}{a^2 \sin^2 \theta} - \frac{b^2}{b^2 \tan^2 \theta} \qquad [\because x = a \sin \theta, y = b \tan \theta]$$

$$= \frac{1}{\sin^2 \theta} - \frac{1}{\tan^2 \theta}$$

$$= \csc^2 \theta - \cot^2 \theta \qquad [\because 1 + \cot^2 \theta = \csc^2 \theta]$$

$$\therefore \csc^2 \theta - \cot^2 \theta = 1$$

25. प्रश्नानुसार, ABCD एक आयताकार मैदान है।

आकृति में, एक गाय जिस क्षेत्र को चर सकती है वह एक वृत्त के त्रिज्यखंड के रूप में है।

अत:, AGEF 14 मीटर (m) त्रिज्या वाले वृत्त का एक त्रिज्यखंड है।



अत:, गाय जिस क्षेत्र में चर सकती है वह 154 वर्ग मीटर है।

# रवण्ड-ग

**26.** माना  $2\sqrt{5} - 3$  एक परिमेय संख्या है जो कि दिए गए के विपरीत है। अब  $2\sqrt{5}-3=\frac{a}{b}$  जहाँ a और b सह-अभाज्य पूर्णांक हैं तथा  $b\neq 0$  है।

क्योंकि a और b पूर्णांक हैं जिस कारण  $\frac{3b+a}{2b}$  एक परिमेय संख्या होगी।

इसिलए  $\sqrt{5}$  एक परिमेय संख्या होगी जो कि असत्य है क्योंकि  $\sqrt{5}$  एक अपरिमेय संख्या है। अतः हमारी कल्पना गलत है। इससे सिद्ध होता है कि  $2\sqrt{5}-3$  एक अपरिमेय संख्या है।

**27.** दिया है, 
$$\alpha$$
 और  $\beta$  बहुपद  $f(x) = 2x^2 - 7x + 3$  के शून्यक हैं।

$$f(x) = 2x^{2} - 7x + 3$$

$$2x^{2} - 6x - x + 3$$

$$2x(x - 3) - 1(x - 3)$$

$$2x - 1 = 0, x - 3 = 0$$

$$x = \frac{1}{2}, x = 3 \Rightarrow \alpha = \frac{1}{2}, \beta = 3$$
श्रूत्यकों का योग =  $(\alpha + \beta) = \frac{1}{2} + \frac{3}{1} = \frac{7}{2}$ 
श्रूत्यकों का गुणनफल =  $\alpha\beta = \frac{1}{2} \times 3 = \frac{3}{2}$ 

$$\alpha + \beta = -\left(\frac{-7}{2}\right) = \frac{7}{2}$$
 और  $\alpha\beta = \frac{3}{2}$ 

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= \left(\frac{7}{2}\right)^{2} - 2 \times \frac{3}{2} = \frac{49}{4} - \frac{3}{1} = \frac{49 - 12}{4} = \frac{37}{4}$$

# **28.** (a) यहाँ पर,

माना किताब का प्रथम 2 दिनों का निश्चित शुल्क = ₹x

व किताब का प्रत्येक दिन का अतिरिक्त शुल्क = ₹y

प्रश्नानुसार रैखिक समीकरण होगी, 
$$x + 4y = 22$$
 (लितका के लिए) ...( $i$ )

व 
$$x + 2y = 16 \text{ (आनंद के लिए)} \qquad ...(ii)$$

समीकरण (ii) को समीकरण (i) में से घटाने पर,

$$x + 4y = 22$$

$$x + 2y = 16$$

$$2y = 6$$

$$y = \frac{6}{2} = 3$$

या

y का मान समीकरण (i) में रखने पर,

$$x + 4(3) = 22$$
  
या  $x = 22 - 12 = 10$   
 $x = 10$ 

अतः किताब का प्रथम 2 दिनों का निश्चित शुल्क = ₹10 किताब का प्रत्येक दिन का अतिरिक्त शुल्क = ₹3

#### अथवा

(b) यहाँ पर,

माना दो अंकों की संख्या का इकाई का अंक = x

दो अंकों की संख्या का दहाई का अंक = y

संख्या = 10x + y

अंकों को उलटने पर प्राप्त संख्या = 10y + x

प्रश्नानुसार,

 $\Longrightarrow$ 

$$(10x + y) + (10y + x) = 66$$
$$11x + 11y = 66$$

$$\Rightarrow$$
 11  $(x+y)=66$   $\Rightarrow$   $x+y=6$  ...(i) दोनों अंकों के बीच का अंतर 2 है। (दिया है)

दोनों अंकों के बीच का अंतर 2 है।

...(ii)

समीकरण (ii) को समीकरण (i) में से घटाने पर,

$$x + y = 6$$

$$x - y = 2$$

$$- + -$$

$$2 y = 4$$

$$y = 2$$

y का मान समीकरण (i) में रखने पर,

$$x+y=6$$
  $x+2=6$   $\Rightarrow$   $x=6-2=4$  अतः अभीष्ट संख्याएँ  $10x+y=10\times 4+2=42$   $10y+x=10\times 2+4=24$ 

29. दिया है: एक वृत्त △ABC की भुजा BC को P पर और भुजा AB तथा AC को आगे बढ़ाने पर क्रमश: Q और R पर स्पर्श करता है।

सिद्ध करना है :  $AQ = 1/2 (BC + CA + AB/\Delta ABC$  का परिमाप)

प्रमाण : किसी बाह्य बिंदु से वृत्त पर खींची गई स्पर्श रेखाओं की लंबाई बराबर होती है।

$$\Rightarrow$$
 AQ = AR, BQ = BP, CP = CR  
 $\triangle$ ABC का परिमाप = AB + BC + CA

$$\Rightarrow$$
 AB + (BP + PC) + (AR – CR)

$$\Rightarrow$$
 AB + BQ + PC + AQ - PC

$$\Rightarrow (AB + BQ) + (PC) + (AQ - PC)$$

$$\Rightarrow$$
 AQ + AQ

$$\Rightarrow$$
 2 AQ

$$\Rightarrow$$
 AQ =  $\frac{1}{2}$  ( $\triangle$ ABC का परिमाप)

∴ AQ, ∆ABC के परिमाप का आधा भाग है।

**30.** (a) 
$$\sin\theta + \cos\theta = \sqrt{3}$$
 (दोनों ओर का वर्ग करने पर)

$$\Rightarrow \qquad (\sin\theta + \cos\theta)^2 = 3$$

$$\Rightarrow \qquad \sin^2\theta + \cos^2\theta + 2\sin\theta \cos\theta = 3$$

$$\Rightarrow \qquad 1 + 2\sin\theta \cos\theta = 3$$

$$\Rightarrow \qquad 2\sin\theta \cos\theta = 3 - 1$$

$$\Rightarrow \qquad 2\sin\theta \cos\theta = 2$$

$$[\because \sin^2\theta + \cos^2\theta = 1]$$

[: AQ = AR, BQ = BP, CP = CR]

दोनों ओर 2 से भाग करने पर

$$\sin\theta \cos\theta = 1 = \sin^2\theta + \cos^2\theta$$

$$\Rightarrow \frac{\sin^2\theta + \cos^2\theta}{\sin\theta \cos\theta} = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$$

$$\Rightarrow \tan\theta + \cot\theta = 1$$

अथवा

$$(b) \qquad \qquad \overline{\text{बायाँ पक्ष}} \ = \ \frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$$
 
$$\frac{\cos A \left(\frac{1}{\sin A} - 1\right)}{\cos A \left(\frac{1}{\sin A} + 1\right)} = \frac{\left(\frac{1}{\sin A} - 1\right)}{\left(\frac{1}{\sin A} + 1\right)} = \frac{\csc A - 1}{\csc A + 1} = \text{दायाँ पक्ष}$$

**31.** दिया है, एक थैले में 24 गेंदें हैं जिनमें से x लाल, 2x सफेद और 3x नीली गेंदें हैं।

एक गेंद यादृच्छिक रूप से चुनी जाती है 
$$= x + 2x + 3x = 24$$

$$\Rightarrow$$
  $6x = 24$ 
 $\Rightarrow$   $x = \frac{24}{6}$ 
 $\Rightarrow$   $x = 4$ 
इस प्रकार, लाल गेंदों की संख्या =  $x = 4$ 
सफेद गेंदों की संख्या =  $2x = 2(4)$ 
 $= 8$ 
नीली गेंदों की संख्या =  $3x = 3(4)$ 
 $= 12$ 
सभी संभव परिणामों की संख्या =  $24$ 

लाल गेंद के अतिरिक्त सफेद गेंद और नीली गेंदों के अनुकूल परिणामों की संख्या = 8 + 12 = 20

$$\therefore \qquad \qquad P \ ( \ \overline{} \ \text{लाल } \ \overline{} \ \overline{}$$

(ii) 
$$P(\vec{R}) = \frac{8}{24} = \frac{2}{6} = \frac{1}{3}$$

### खण्ड-घ

**32.** (*a*) माना, वास्तविक अंक = 
$$x$$

(*i*)

इसलिए, सुनीता को परीक्षा में 15 अंक मिले।

[दोनों ओर 2 से भाग करने पर]

#### अथवा

(b) माना दो क्रमागत धनात्मक पूर्णांक = x तथा x + 1

प्रश्नानुसार, 
$$(x)^2 + (x+1)^2 = 365$$
  
 $\Rightarrow x^2 + x^2 + 2x + 1 - 365 = 0$   
 $\Rightarrow 2x^2 + 2x - 364 = 0$   
 $\Rightarrow x^2 + x - 182 = 0$   
 $\Rightarrow x^2 + 14x - 13x - 182 = 0$   
 $\Rightarrow x(x+14) - 13(x+14) = 0$   
 $\Rightarrow (x+14)(x-13) = 0$   
 $\Rightarrow x + 14 = 0$  या  $x - 13 = 0$   
 $\Rightarrow x = -14$  या  $x = 13$ 

परंतु x = -14 संभव नहीं है, क्योंकि पूर्णांक धनात्मक है। अतः अभीष्ट क्रमागत धनात्मक पूर्णांक = 13 व 14

33. (a) दिया है :  $\Delta NSQ \cong \Delta MTR$  और  $\angle 1 = \angle 2$ 

सिद्ध करना है :  $\Delta PTS \sim \Delta PRQ$ प्रमाण : क्योंकि  $\Delta NSQ \cong \Delta MTR$ 

इसलिए SQ = TR

साथ ही  $\angle 1 = \angle 2 \Rightarrow PT = PS$ 

[∵ समान कोणों की सम्मुख भुजाएँ भी बराबर होती हैं।]

समीकरण 
$$(i)$$
 और  $(ii)$  से,  $\frac{PS}{SQ} = \frac{PT}{TR}$ 

 $\Rightarrow$  ST || QR

 $\therefore$   $\angle 1 = \angle PQR$ 

और ∠2 = ∠PRO

 $\Delta$ PTS तथा  $\Delta$ PRQ में,

$$\angle P = \angle P$$

 $\angle 1 = \angle PQR$ 

$$\angle 2 = \angle PRQ$$

∴  $\Delta$ PTS ~  $\Delta$ PRQ



[आधारभूत समानुपातिकता प्रमेय के विलोम द्वारा] [संगत कोण]

[उभयनिष्ठ कोण]

[AAA समरूपता कसौटी द्वारा]

# अथवा

(b) **दिया है** : ABCD एक समलंब है जिसमें AB || DC तथा विकर्ण AC और BD परस्पर बिंदु O पर प्रतिच्छेद करते हैं।

सिद्ध करना है :  $\frac{AO}{BO} = \frac{CO}{DO}$ 

रचना : बिंदु O से OE || AB या DC खींचें जो AD को E पर काटे। उपपत्ति : △ADC में OE || DC (रचना द्वारा)



इसी प्रकार ΔABD में OE || AB (रचना द्वारा)

$$\therefore \frac{AE}{ED} = \frac{BO}{DO}$$



[आधारभूत समानुपातिकता प्रमेय से] ....(i)

[आधारभूत समानुपातिकता प्रमेय से] ....(ii)

समीकरण (i) व (ii) की तुलना से,

या

$$\frac{AO}{CO} = \frac{BO}{DO}$$

$$\frac{AO}{BO} = \frac{CO}{DO}$$

<del>\_\_\_\_\_</del>

**34.** (a) यहाँ पर दिया है, शंकु की ऊँचाई = 4 से०मी० शंकु के आधार का व्यास = 8 से०मी० शंकु के आधार का व्यास = अर्धगोले का व्यास = 8 से०मी० तथा त्रिज्या =  $\frac{8}{2}$  = 4 से०मी०

तथा त्रिज्या = 
$$\frac{8}{2}$$
 = 4 से०मी० 
$$= \frac{2}{3} \pi r^3$$
$$= \frac{2}{3} \times \frac{22}{7} \times (4)^3$$

$$= \frac{2}{3} \times \frac{22}{7} \times 64$$

$$= 134.095 \text{ cm}^3$$

शंकु का आयतन 
$$= \frac{1}{3} \pi r^2 h$$

$$= \frac{1}{3} \times \frac{22}{7} \times (4)^2 \times 4$$

$$= \frac{1}{3} \times \frac{22}{7} \times 64$$

$$= 67.047 \text{ cm}^3$$

इस प्रकार खिलौने का आयतन = अर्धगोले का आयतन + शंकु का आयतन

$$= 134.095 \text{ cm}^3 + 67.047 \text{ cm}^3$$

$$= 201.142 \text{ cm}^3$$

दिया है, खिलौने के चारों ओर एक घन है

इस प्रकार घन का आयतन 
$$= a^3 = (8)^3$$

$$= 512 \text{ cm}^3$$

अतः घन और खिलौने के आयतन में अंतर  $= 512 \text{ cm}^3 - 201.142 \text{ cm}^3$ 

$$= 310.858 \text{ cm}^3$$



[इति सिद्धम्]

(ii) तिर्यक ऊँचाई (
$$l$$
) =  $\sqrt{r^2 + h^2} = \sqrt{(4)^2 + (4)^2} = \sqrt{16 + 16} = \sqrt{32}$  =  $5.657$  cm शंकु का वक्र पृष्ठीय क्षेत्रफल =  $\pi r l$  =  $\frac{22}{7} \times 4 \times 5.657$  =  $71.117$  cm<sup>2</sup> अर्धगोले का वक्र पृष्ठीय क्षेत्रफल =  $2\pi r^2$  =  $2 \times \frac{22}{7} \times (4)^2$  =  $\frac{44}{7} \times 16$ 

अतः खिलौने का कुल पृष्ठीय क्षेत्रफल = शंकु का वक्र पृष्ठीय क्षेत्रफल + अर्धगोले का वक्र पृष्ठीय क्षेत्रफल =  $71.117 \text{ cm}^2 + 100.571 \text{ cm}^2$  =  $171.688 \text{ cm}^2$ 

 $= 100.571 \text{ cm}^2$ 

# अथवा

(b) यहाँ पर, दिए गए ठोस बेलन के

आधार की त्रिज्या (r) = 3.5 cm

दिए गए ठोस बेलन की ऊँचाई (h) = 10 cm

 $\Rightarrow$  दिए गए ठोस बेलन का वक्र पृष्ठीय क्षेत्रफल ( ${
m A_1}$ ) =  $2\pi rh$ 

$$= 2 \times \frac{22}{7} \times 3.5 \times 10 \text{ cm}^2 = 220 \text{ cm}^2$$

निकाले गए प्रत्येक अर्धगोले की त्रिज्या (r) = 3.5 cm

 $\Rightarrow$  निकाले गए दोनों अर्धगोलों का पृष्ठीय क्षेत्रफल ( $A_2$ ) = 2 ( $2\pi r^2$ )

$$= 4 \times \frac{22}{7} \times 3.5 \times 3.5 \text{ cm}^2$$

 $= 154 \text{ cm}^2$ 

अतः दी गई वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल = 
$$A_1 + A_2$$
 =  $(220 + 154) \text{ cm}^2$  =  $374 \text{ cm}^2$ 



**35.** (a) यहाँ पर,

| वर्ग-अंतराल | बारंबारता (f) | संचयी बारंबारता ( <i>cf</i> ) |  |
|-------------|---------------|-------------------------------|--|
| 0–100       | 2             | 2                             |  |
| 100–200     | 5             | 7                             |  |
| 200–300     | x             | 7+x                           |  |
| 300–400     | 12            | 19 + x                        |  |
| 400–500     | 17            | 36 + x                        |  |
| 500–600     | 20            | 56 + x                        |  |
| 600–700     | y             | 56 + x + y                    |  |
| 700–800     | 9             | 65 + x + y                    |  |
| 800–900     | 7             | 72 + x + y                    |  |
| 900–1000    | 4             | 76 + x + y                    |  |

अथवा

(b) यहाँ पर, माना कल्पित माध्य (a) = 150 तथा वर्ग-माप (h) = 20 तब  $u_i = \frac{x_i - 150}{20}$ 

| वर्ग-अंतराल | बारंबारता $(f_i)$ | वर्ग चिह्न $(x_i)$ | $u_i = \frac{x_i - 150}{20}$ | $f_i u_i$              |
|-------------|-------------------|--------------------|------------------------------|------------------------|
| 100-120     | 12                | 110                | -2                           | -24                    |
| 120–140     | 14                | 130                | -1                           | -14                    |
| 140–160     | 8                 | 150                | 0                            | 0                      |
| 160–180     | 6                 | 170                | 1                            | 6                      |
| 180–200     | 10                | 190                | 2                            | 20                     |
| योग         | $\Sigma f_i = 50$ |                    |                              | $\Sigma f_i u_i = -12$ |

$$\therefore$$
 माध्य  $\left(\overline{x}\right)=a+\left(\dfrac{\Sigma f_i u_i}{\Sigma f_i}\right) imes h$  
$$=150+\left(\dfrac{-12}{50}\right) imes 20$$
 
$$=150-4.8$$
 
$$=145.2$$
 अतः माध्य दैनिक मज़दूरी  $=$  ₹ 145.20

# खण्ड-ङ

 $A.P. = 4, 7, 10, 13, \dots$ 

36.

(*i*)

$$d = 7 - 4 = 3$$

$$a_n = a_1 + (n - 1) d$$

$$a_{15} = 4 + (15 - 1) 3$$

$$a_{15} = 4 + 14 \times 3$$

$$\Rightarrow 4 + 42 = 46$$

$$\therefore 15 वें पैटर्न में 46 टूथिफ होंगे।$$
(ii)
$$A.P. = 4, 7, 10, 13, \dots 136$$

$$d = a_2 - a_1 = 7 - 4 = 3$$

$$a_n = 136$$

$$a_n = a_1 + (n - 1) d$$

$$136 = 4 + (n - 1) 3$$

$$136 - 4 = 3n - 3$$

$$132 + 3 = 3n$$

$$135 = 3n$$

$$135 = 3n$$

$$n = \frac{135}{3}$$

n = 45

(iii) (a) 
$$S_{30} = \frac{30}{2} [2 \times 4 + (30 - 1) 3]$$

$$S_{30} = 15 [8 + 29 \times 3]$$

$$S_{30} = 15 [8 + 87]$$

$$S_{30} = 15 \times 95$$

$$= 1425$$

∴ पहले 30 पैटर्न बनाने में 1425 टूथिपक का उपयोग किया जाता है। अथवा

(b) 
$$a_{20} = a_1 + (20 - 1) d$$
$$= 4 + 19 \times 3$$
$$= 4 + 57$$
$$= 61$$

∴ 20वें पैटर्न को बनाने में 61 टूथिपक का उपयोग किया जाता है।

**37.** (*i*)  $\Delta PQR$  के शीर्षों के निर्देशांक P(4,6), Q(3,2) और R(6,5) हैं।

(ii) (a) 
$$PQ = \sqrt{(3-4)^2 + (2-6)^2} = \sqrt{(-1)^2 + (-4)^2} = \sqrt{17} \text{ m}$$
  

$$QR = \sqrt{(6-3)^2 + (5-2)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{18} \text{ m} = 3\sqrt{2} \text{ m}$$

#### अथवा

(b) मान लीजिए S(x,y) वह बिंदु है जो बिंदुओं P(4,6) और R(6,5) को मिलाने वाले रेखाखंड को आंतरिक रूप से 2:1 के अनुपात में विभाजित करता है।

विभाजन सूत्र द्वारा 
$$S(x,y) = S\left(\frac{2\times 6+1\times 4}{2+1}, \frac{2\times 5+1\times 6}{2+1}\right)$$

$$= S\left(\frac{12+4}{3}, \frac{10+6}{3}\right)$$

$$= S\left(\frac{16}{3}, \frac{16}{3}\right)$$

(iii) 
$$PQ = \sqrt{(3-4)^2 + (2-6)^2} = \sqrt{(-1)^2 + (-4)^2} = \sqrt{17} \text{ m}$$
  
 $QR = \sqrt{(6-3)^2 + (5-2)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{18} \text{ m} = 3\sqrt{2} \text{ m}$   
 $PR = \sqrt{(6-4)^2 + (5-6)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{5} \text{ m}$ 

 $PQ \neq QR \neq PR$ 

∴ ∆PQR एक समद्विबाहु त्रिभुज नहीं है बल्कि एक विषमबाहु त्रिभुज है।

**38.** (*i*)



(ii) समकोण 
$$\triangle ADB$$
 में,  $\tan 45^\circ = \frac{BD}{AD}$ 

$$\therefore \qquad AD = \frac{BD}{\tan 45^\circ}$$

$$AD = BD = (10 - h) \text{ m}$$

$$AD = \frac{10 + h}{10 - h} = \frac{\sqrt{3}}{1}$$

$$\Rightarrow \qquad \frac{10 + h}{10 - h} = \frac{\sqrt{3}}{1}$$

$$\Rightarrow \qquad 10 + h = 10\sqrt{3} - \sqrt{3} \text{ h}$$

$$\Rightarrow \qquad (\sqrt{3} + 1) \text{ h} = 10 (\sqrt{3} - 1)$$

$$\therefore \qquad h = \frac{10(\sqrt{3} - 1)}{(\sqrt{3} + 1)}$$

$$\Rightarrow \qquad h = \frac{10(\sqrt{3} - 1)}{(\sqrt{3} + 1)}$$

$$\Rightarrow \qquad h = \frac{10(\sqrt{3} - 1)}{(\sqrt{3} + 1)}$$

 $[\sqrt{3} = 1.73$  का उपयोग करते हुए]