

degeit

COMPETÊNCIAS TRANSFERÍVEIS

Finanças Empresariais | 2024/25

Capítulo 1 Noções fundamentais de Cálculo Financeiro

1

Tempo

"1€ hoje vale mais que 1€ amanhã"

O valor temporal do dinheiro é um dos <u>princípios fundamentais das</u> <u>finanças empresariais</u>, pelas seguintes razões

- Preferências por consumo imediato;
- Incerteza;
- Possibilidade de aplicação do montante respetivo

Tempo

- Qual é o montante que recebido daqui a um ano é equivalente a ter hoje 100 euros?
- Se, no mercado, for possível investir os 100 euros num ativo sem risco com uma taxa de juro de 5%:
 - ⇒ Se eu investir os 100 euros hoje, daqui a um ano terei 105 euros : 100 x (1+0,05)
 - ⇒ Ou seja, capital inicial (100€) **+ juro** (5€)

Valor acumulado ou valor capitalizado

Operação financeira

Toda a ação que tem como objetivo alterar quantitativamente um capital, tendo como características base:

- Duração
- Taxa usada
- Contingência quanto à sua realização (certas ou aleatórias)

degeit

Competências transferíveis | Finanças Empresariais | 2024/25

3

2

Juro e taxa de juro

O **juro** traduz a remuneração de um fator produtivo cedido ou aplicado temporariamente pelo titular do fator

O cálculo do juro é função de três variáveis:

- Do capital investido (C ou C₀ capital inicial ou capital referido ao momento 0)
- Da taxa de juro (i)
- Do prazo (n)

 $J = C \times n \times i$ (J – juro produzido no final do período n)

Juro

Remuneração de determinado capital durante determinado prazo, em <u>valor</u> absoluto.

Taxa de juro

Montante, expresso em <u>percentagem</u>, que é pago para compensar o montante do empréstimo.

degeit

Competências transferíveis | Finanças Empresariais | 2024/25

Δ

Capitalização e valores acumulados ; atualização e valores atuais

Comparar capitais em diferentes momentos no tempo, implica colocá-los num momento do tempo equivalente:

"Andar para a frente no tempo", colocando todos os capitais num mesmo **momento futuro**

Tempo

"Andar para trás no tempo", colocando todos os capitais no **momento presente**

 $C_n = V_n$ Capital acumu

Capital acumulado corresponde ao valor acumulado ou capitalizado

 $C_0 = V_0$

Capital inicial designa-se por valor atual ou atualizado

degeit

Competências transferíveis | Finanças Empresariais | 2024/25

5

_

Tempo

Exemplos

1. Suponha que alguém está disposto a oferecer-lhe 100€, e lhe dá a escolher entre receber agora ou receber a mesma importância daqui a 10 anos. Que hipótese escolher?

R: Será preferível receber agora, e fazer uma aplicação financeira desses 100€ que poderá aumentar esse valor.

2. E se lhe for proposto receber agora os 100€ ou 200€ no fim de 10 anos. Que hipótese escolher?

Para responder à questão basta ter UMA das seguintes informações:

OU o Valor Futuro dos 100€, OU o Valor Presente dos 200€.

$$C_n = C_0(1+i)^n$$

Suponha que a taxa de juro de mercado a 10 anos é de 5%; então:

- Valor Futuro dos 100€: C_n= 100 (1+0,05)¹⁰ ≈163€
- Valor Presente dos 200€: 200 = $C_0 (1+0.05)^{10}$ <=> $C_0 \approx 123$ €

R: Será preferível esperar 10 anos e receber os 200€ no futuro.

Juro simples

Regime de juro simples

Os juros saem do circuito de capitalização no momento do seu vencimento. O capital aplicado permanece constante durante todo o prazo da aplicação; mais utilizado em operações de <u>curto prazo.</u>

- ☐ Fórmula geral do cálculo de juros, em regime de juro simples:
 - Anual: $J = C_0.n.i$
 - Se o período de capitalização é fornecido em dias (ano civil): J = (C₀.n.i) / 365
 - No caso da contagem de dias ser feita em ano comercial: $J = (C_0.n.i) / 360$
 - Se n for fornecido em meses: J = (C₀.n.i) / 12
- \square Para calcular o juro dum período específico x temos: $j_x = C_0.i$
- \Box Fórmula de capitalização para n períodos (anuais): $C_n = C_0 + J = C_0 + C_0$.n.i = C_0 (1 + n.i)

Neste caso, não há juros de juros!

⇒ o capital sobre o qual se calculam os juros mantém-se constante, bem como o juro pago no final de cada período

degeit

Juro composto

Regime de juro composto

Os juros, no momento do seu vencimento, são integrados no circuito de capitalização. O capital aplicado vai aumentando no início de cada período, pela adição dos juros vencidos; mais utilizado em operações <u>de médio e longo prazo.</u>

Fórmula geral:
$$J = C_0 \cdot [(1+i)^n - 1]$$
; $j_x = C_0 \cdot (1+i)^{x-1} \cdot i$

$$C_n = C_{n-1} + J_n = C_{n-1} (1 + i)$$
; i constante

Com taxa de juro constante ao longo de n períodos temos um crescimento exponencial:

$$C_1 = C_0 + J_1 = C_0 + C_0.i = C_0 (1+i)$$

$$C_2 = C_1 (1+i) = C_0 (1+i)(1+i) = C_0 (1+i)^2 \qquad (:::::)$$

$$C_n = C_{n-1} (1+i) = C_0 (1+i)(1+i)...(1+i) = C_0 (1+i)^n \implies \text{(Fórmula Geral)}$$

"Juros vencem juros"

- ⇒ Incorporação dos juros produzidos ao longo dos períodos de aplicação no capital aplicado inicialmente
- ⇒ O valor do capital aplicado aumenta e o juro de cada período será superior ao juro do período anterior

Juro composto

Conforme esquema slide 6

Generalizando, em regime de juro composto, e considerando que a taxa de juro *i* não varia:

Capitalização: $C_n = C_0(1+i)^n$

Atualização: $C_0 = \frac{C_n}{(1+i)^n} = C_n(1+i)^{-n}$

Fatores de atualização:

Um período: $(1+i)^{-1}$ n períodos: $(1+i)^{-n}$

Fatores de capitalização:

Um período: $(1+i)^1$ n períodos: $(1+i)^n$

Exemplos

Capital (C)	1,000.00€	
Anos (n)	3	
Taxa de juro (i)	2%	

	Juros simples .	Juros compostos	
	$C_n = C_0(1+n\times i)$	$C_n = C_0(1+i)^n$	$C_0 = C_n (1+i)^{-n}$
	1,060.00	1,061.21	
Capital	1,000.00		
Juro Ano 1	20.00	1,020.00	
Juro Ano 2	20.00	1,040.40	
Juro Ano 3	20.00_	1,061.21	1,000.00
	1,060.00		
	Capitali	Atualização	

degeit

Competências transferíveis | Finanças Empresariais | 2024/25

10

Valor atual

Se eu ganho 100 em t, 200 em t+1 e 150 em t+2, quanto vale isso hoje?

$$V_0 = C_0 = 100 + 200 + 150$$
?

Não! Se quisermos fazer operações envolvendo <u>quantias recebidas e/ou pagas em diferentes momentos</u> <u>do tempo</u> temos de exprimir todos esses montantes em unidades de dinheiro que sejam realmente <u>equivalentes.</u>

⇒ Ou seja, temos de calcular o valor de todas as quantias no mesmo momento do tempo:

Para t = 0
$$\Rightarrow$$
 V₀ = C₀ = 100 + 200/(1+i) + 150/(1+i)²
No momento t+2 (com t = 0) teremos (capitalização) \Rightarrow V_{n=2} = 100 (1+i)² + 200 (1+i) + 150

• A **taxa de juro** para um certo período de tempo é o <u>preço</u> de utilizar uma unidade monetária durante esse período de tempo.

Relação entre diferentes períodos e tipologias

☐ Importância da variável taxa de juro

- · representa o valor de mercado do dinheiro
- valor ao qual os credores estão dispostos a emprestar dinheiro ou os devedores estão dispostos a pedir emprestado dinheiro
- ☐ Por vezes o período de determinação dos juros não coincide com o período da taxa. Normalmente, o sistema financeiro indica taxa anual, mas o período de contabilização dos juros é diferente de um ano: semestral, quadrimestral, trimestral, mensal, diário.

☐ Conceitos a abordar:

- 1. Taxas proporcionais
- 2. Taxas equivalentes
- 3. Taxas efetivas e taxas nominais
- 4. Taxas correntes e reais (quando a taxa de inflação está a ser considerada ou não, respetivamente)
- 5. Taxas ilíquidas e líquidas (quando estão incluídos ou excluídos os impostos sobre o juro)
- 6. Outros conceitos de taxas

degeit

1. Taxas proporcionais

- Em regime de juro simples, quando se relacionam taxas apenas se pode falar em taxas proporcionais.
- Duas taxas dizem-se proporcionais (efetivas) quando, sendo de períodos diferentes, existe entre elas a mesma relação de valor que existe entre os seus períodos:

$$i_k = \frac{i_m^k}{m} \iff i_m^k = i_k \times m$$
 $\frac{\underline{m}}{\underline{m}} = n^{\underline{o}}$ de períodos no ano (periodicidade da taxa) $\underline{\underline{k}} = A$, S, T, Q, M,.. (A = anual; S = Semestral; T = trimestral; Q = quadrimestral; M = mensal) indica o período k da taxa

- o **Exemplo**: Considere uma taxa anual e uma taxa trimestral
 - Relação entre períodos: 4 para 1
 - Taxa anual = $\vec{l}_m^k = 8\% \Rightarrow$ taxa trimestral = $\vec{i}_k = \frac{\vec{l}_m^k}{m} = \frac{8\%}{4} = 2\%$

Regra da proporcionalidade

- 2. Taxas equivalentes
- Usadas em regime de juro composto
- Não é possível aplicar diretamente as <u>taxas proporcionais</u> em regime de juro composto, dado que estas <u>não consideram o processo de capitalização</u> de juros de juros
- Duas taxas dizem-se equivalentes quando, sendo relativas a períodos diferentes, aplicadas durante o mesmo prazo e ao mesmo capital, produzem um valor acumulado (ou atualizado) igual, em regime de juro composto:

$$i_L = (1 + i_k)^m - 1 \Leftrightarrow i_k = (1 + i_L)^{1/m} - 1$$

 $\underline{i_k}$ a taxa efetiva de período menor $\underline{i_L}$ a taxa efetiva de período maior \underline{m} a variável que traduz a relação entre as taxas (m = nº meses período maior / nº meses período menor; se em meses); L = A, S, T, Q, M,...

- o Exemplo:
 - i_s = 10% semestral (S); i anual = ?
 - $i_A = (1 + 0.1)^{12/6} 1 = 0.21 => 21\%$

Regra da equivalência

degeit

3. Taxas efetivas e taxas nominais

Na prática comercial é frequente usar taxas anuais proporcionais para períodos de juros <1 ano, distinguindo-se pelo facto da taxa <u>refletir ou não a existência de juros de juros</u>

- Efetiva: considera o efeito de <u>capitalizações sucessivas</u>. Apenas se faz referência a <u>1 período</u> (taxa anual, taxa semestral,...). O período de formação e incorporação dos juros ao capital <u>coincide</u> com aquele a que a taxa está referida: "25% ao semestre com capitalização semestral". **Usualmente esta é a taxa aplicável.**
- Nominal: o período de formação e incorporação dos juros ao capital <u>não coincide</u> com aquele a que a taxa está referida: "34% ao ano com capitalização mensal". Há sempre <u>2 períodos indicados</u>: o da taxa e o de cálculo dos juros; taxa anual convertível semestralmente: ano = período da taxa; semestre = período de cálculo dos juros.
- ☐ Formulação: Para qualquer taxa efetiva, pode apresentar-se a seguinte expressão:

$$i_L = \left(1 + \frac{i_m^k}{m}\right)^m - 1$$
 e, invertendo a equação: $i_m^k = \left[(1 + i_L)^{1/m} - 1\right] \times m$ \Longrightarrow i_L - taxa efetiva i_m^k - taxa nominal

 $\frac{i_m^k}{m}$ - taxa nominal do período k [anual (A), semestral (S), ...] com capitalização \underline{m} (semestral=2, se k=ano; trimestral=4 se k=ano)

degeit

3. Taxas efetivas e taxas nominais – exemplo

Exemplo 1:

Um investidor efetuou um **depósito a prazo** de <u>um ano</u> com <u>juros trimestrais</u>. A taxa indicada pelo banco é de 4% ao ano com cálculo de juros trimestrais.

Ou seja, taxa de juro nominal \Rightarrow taxa nominal anual convertível trimestralmente.

Apesar da taxa de juro indicada ser a anual, os juros são calculados por trimestre, com base na taxa trimestral proporcional à taxa nominal anual de 4%. O rendimento será efetivamente de 1% ao trimestre

- A taxa efetiva trimestral será: i_T = 4% / 4 = 1%
- De acordo com a fórmula de equivalência de taxas:
- Taxa anual efetiva será: $i_A = (1+0.01)^4 1 = 0.040604 \implies 4.0604\%$

(A – Anual; T – Trimestral)

degeit

3. Taxas efetivas e taxas nominais – exemplo

Exemplo 2:

Se uma conta poupança paga uma taxa de juro anual de 10%, um depósito de 100€ transformar-se-á num valor de 110€ ao fim de 1 ano.

Contudo, se a <u>capitalização do juro for semestral em vez de anual</u>, a conta de poupança proporcionará uma taxa de juro de 5% em cada semestre.

Utilizando a relação de proporcionalidade do tempo (1 ano=2 semestres), conseguimos transformar taxas nominais em taxas efetivas, ou seja,

Taxa de juro nominal anual = 10% \rightarrow Taxa de juro efetiva semestral = 10%/2 = 5%

Portanto, o montante que irá existir na conta poupanças com capitalização semestral ao fim de um ano será:

100 (1 + 0.05) 2 = 110,25€

<u>Concluindo</u>, o depósito inicial crescerá, efetivamente a uma taxa de juro anual de 10.25% em vez de 10%, efeito da capitalização semestral, que pode ser obtida assim: $i_A = (1+0.05)^2 - 1 = 0.1025$ pela relação de equivalência.

4. Taxas correntes e taxas reais

Taxas correntes /reais: distinção tem a ver com o facto de a taxa refletir ou não o efeito da inflação

A fórmula de cálculo é:

Taxa de juro real = taxa de juro nominal - inflação

Exemplo:

Se depositarmos 1000€ numa conta bancária, para receber uma taxa de juro nominal de 2,5%, no prazo de um ano obtém-se 1025€.

Mas, se os preços aumentarem 3%, precisamos de 1030€ para comprar os mesmos bens ou serviços que, um ano antes, teríamos adquirido por 1000€.

 \Rightarrow A rendibilidade real será de -0,5%. Esta é a taxa de juro real, que é calculada subtraindo a taxa de inflação (3%) à taxa de juro nominal (2,5%).

5. Taxas ilíquidas e líquidas

Taxas ilíquidas/líquidas – a distinção tem a ver com o facto de a taxa refletir ou não a existência de <u>impostos sobre juros</u> (efeito da fiscalidade)

- Taxa ilíquida ou bruta é a taxa que não leva em consideração o efeito fiscal
- Taxa líquida: contempla o efeito fiscal, ou seja, o valor que efetivamente recebemos numa aplicação financeira: i_{liq} = (1-t_{imp}).i_{iliq}

4. Outros conceitos de taxas

Spread:

Diferença entre a taxa ativa (ex. empréstimos concedidos) e a taxa passiva (ex. depósitos).

Por regra superior a zero, uma vez que normalmente as instituições financeiras (IF) remuneram os depósitos a taxas inferiores àquelas que obtêm quando concedem empréstimos, obtendo uma margem de lucro pelo diferencial das taxas

O termo *spread* também pode ser usado como o acréscimo que as IF aplicam a uma determinada taxa de referência para obter a taxa de juro que será utilizada numa determinada operação bancária (ex. crédito à habitação de taxa indexada, empréstimos bancários de empresas, etc.).

Euribor:

A designação *Euribor* é o acrónimo de *Euro Interbank Offered Rate*, que traduz uma média das taxas de juros às quais os principais bancos que operam na Zona Euro trocam euros entre si. Período de referência a 1, 3, 6 ou 12 meses.

Ou seja, simplificadamente: Taxa de juro a contratualizar = Spread + Euribor

degeit

- ☐ De forma a financiar investimentos, as empresas podem recorrer a uma fonte de capital alheio, como é o caso dos **empréstimos bancários** (outras formas de financiamento alheio, como obrigações, não serão abordadas por simplificação nesta UC).
- ☐ A liquidação desses empréstimos pressupõe o pagamento de **prestações**. Estas dividem-se em:
 - amortização do capital (m), correspondente ao reembolso do capital pedido
 - pagamento de juros (j), no decorrer da duração do empréstimo
- ☐ Em empréstimos apenas falamos de regime de juros compostos (RJC)

degeit

Modalidades de amortização de empréstimos

A combinação de diferentes alternativas de:

- Pagamento de juros: único no final, único no início, ao longo do empréstimo,
- Reembolso do capital: único no final, em prestações (diversos pagamentos escalonados ao longo do prazo = reembolso a prestações)

Ficamos com 6 modalidades possíveis de liquidação de empréstimos:

- Modalidade 1 Reembolso do capital e juros pagos de uma só vez no final do empréstimo
- Modalidade 2 Reembolso do capital de uma só vez e juros pagos no início do empréstimo
- Modalidade 3 Reembolso do capital de uma só vez e juros pagos ao longo do prazo do empréstimo
- Modalidade 4 Reembolso do capital ao longo do prazo do empréstimo e juros pagos no início do empréstimo
- Modalidade 5 Reembolso do capital ao longo do prazo do empréstimo e juros pagos no final do empréstimo

Foco nesta UC: Modalidade 6 / opcão 2 <u>Modalidade 6</u> – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo. É a mais utilizada em empréstimos e podemos ter:

- (1) O valor do reembolso do capital é constante em cada período;
- (2) O valor da prestação total (reembolso do capital + juros) é constante em cada período => Sistema francês de quotas constantes, mais usual em Portugal e que será o nosso foco nesta UC

Nota: O empréstimo também pode considerar períodos de carência, com impacto no cálculo na amortização do empréstimo (não aprofundado nesta UC).

degeit

Competências transferíveis | Finanças Empresariais | 2024/25

22

Modalidades de amortização de empréstimos

Modalidade 6 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo

2) Prestações (Capital e juros) constantes (mais frequente nos empréstimos à habitação)

Neste caso consideramos que:

- Os juros são pagos ao longo do prazo do empréstimo
- O reembolso do capital é efetuado ao longo do prazo do empréstimo
- O valor da prestação total é constante em cada período

	Quadro de Amortização de Emprestimos						
	(Prestações Constantes (Capital + Juros))						
Período (t)	Capital em Dívida no início (C _{t-1})	Juro a pagar no fim do período (j _t)	Prestação (pt)	Amortizaçã o no final do período (m _t)	Amortizações Acumuladas (M _t)	Capital em dívida no final (C _t)	
1	C_0	j_1	р	m_1	$M_\mathtt{1}$	C_1	
2	C_1	j_2	р	m_2	M_2	C_2	
3	C_2	j_3	р	m_3	M_3	C_3	
	•••			•••			
n	C - m	i	n	m	N/I	C	

Notas:

- j é muito elevado no início e diminui depois, porque C₀ é mais elevado que C_t
- m é baixo no início e vai aumentando para compensar

degeit

Competências transferíveis | Finanças Empresariais | 2024/25

23

Modalidades de amortização de empréstimos

Modalidade 6 – Reembolso do capital ao longo do prazo do empréstimo e juros pagos ao longo do prazo do empréstimo

- 2) Prestações (Capital e juros) constantes (cont)
- a) Cada uma das **prestações** \underline{p} abrange uma parte $(\underline{m}_{\underline{t}})$ destinada ao reembolso do capital e outra ao pagamento dos juros do período (j_t) : $p = m_t + j_t$
- b) Os valores de **reembolso de capital** de períodos sucessivos variam segundo uma progressão geométrica de razão (1+i); então: $m_t = m_{t-1}$ (1+i), o que permite calcular o valor de um qualquer reembolso no período t a partir de outro reembolso. Como: $m_2 = m_1$ (1+i); $m_3 = m_2$ (1+i) = m_1 (1+i)²; etc; ou seja: $m_t = m_1$ (1+i)^{t-1}
- c) Isto também permite calcular o valor inicial do empréstimo a partir do valor do 1º reembolso, fazendo:

$$C = m_1 [1 + (1+i) + (1+i)^2 + ... + (1+i)^{n-1}]$$
, ou seja, $C = m_1.s_{n|i}$

d) Se pretendermos determinar o valor do primeiro reembolso podemos utilizar a expressão:

$$m_1 = C (1 / s_{n|i}) = C/[((1+i)^{n-1})/i]$$

e) O valor em dívida em cada período é função das prestações vincendas, ou seja, prestações que ainda não venceram. Se considerarmos que está previsto o pagamento de um empréstimo através de n prestações constantes, pode-se determinar o valor em dívida num determinado momento t através da expressão: $C_t = p \cdot a_{n-t \mid i} = p \cdot [(1-(1+i)^{-(n-t)})/i]$

Modalidade 6 | Caso 2: Exemplo

Exemplo:

A Empresa 2COOL SA comprou um equipamento por 80.000€, tendo para tal, recorrido a um financiamento bancário na totalidade do valor. Ao sair do banco com o quadro de amortização do empréstimo que lhe foi proposto, o Eng. Silva responsável pela área de produção deparou-se com o facto de que a impressora tinha falhado e não deixou que todos os valores saíssem no papel. Ajude-o a preencher o mesmo (preencha todos os espaços em branco), com base nos dados disponíveis:

Período carência 1 ano Taxa de juro anual efetiva ... %

	Capital em	Juro do período	Amortização	Prestação do período	Capital dívida	
Ano	dívida no início		do capital do		no final do	
	do período		período	ao periodo	período	
	C_0	j _t	m _t =p _t -j _t	p _t	$C_t = C_{t-1} - m_t$	
1	80 000	4 664	0	4 664	80 000	
2	80 000	4 664	14 240	18 904	65 760	
3	65 760	3 834	15 070	18 904	50 690	
4	50 690	2 955	15 949	18 904	34 741	
5	34 741	2 025	16 879	18 904	17 863	
6	17 863	1 041	17 863	18 904	0	

<u>Cálculos auxiliares</u>:

Empréstimo 80 000,00

Taxa de juro: 5,83%

Prestação: 18 903,97

(...)

degeit

Modalidade 6 | Caso 2: Exemplo

Interligando o exercício anterior com o capítulo 1.3:

De que forma ficaria refletido na Demonstração de Resultados, Balanço e Mapa de Tesouraria o 1.º ano de movimentos, assumindo uma taxa de depreciação do equipamento de 10% e uma taxa de imposto (IRC) de 25%. Neste primeiro ano, a empresa conseguiu atingir um volume de vendas de 100 mil euros que já foi recebido.

Demonstração de resultados		Balanço		Mapa de Tesouraria	
Vendas Custo da Mercadoria Vendida ()	100 000	Ativo Ativo fixo tangível ()	167 336 72 000	Atividades operacionais Recebimento de Clientes	100 000
Depreciações do exercício Encargos financeiros	-8 000 -4 664	Clientes Depósitos bancários	95 336	Atividades de financiamento Recebimento de financiamento	80 000
Resultado antes de imposto Imposto	87 336 21 834	Capital próprio Capital social	65 502	Pagamento de juros	-4 664
Resultado líquido	65 502	() Resultado líquido	65 502	Atividades de investimento Pagamento do ativo fixo (equipamento)	-80 000
		Passivo Empréstimos bancários Imposto a pagar ()	101 834 80 000 21 834	Cash no início do ano Cash no final do ano	95 336
		Ativo = Passivo + Capital próprio	0		
d egeit		Competências transferíveis F	nanças Empresariais 2	024/25	26

~ ~