The group G is isomorphic to the group labelled by [42, 1] in the Small Groups library. Ordinary character table of $G \cong C7$: C6:

Normalisers N_i	N_1				N_2		
p-subgroups of G up to conjugacy in G	P_1				P_2		
Representatives $n_j \in N_i$	1a	3a	7a	3b	1a	3a	3b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	2	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2 * E(3)	2	$2 * E(3)^2$	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	2	$2 * E(3)^2$	2	2 * E(3)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	6	0	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	E(3)	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	$E(3)^{2}$	1	E(3)	1	$E(3)^{2}$	E(3)

Trivial source character table of $G \cong \mathbb{C}7$: C6 at $p=2$:							
Normalisers N_i	N_1				N_2		
p-subgroups of G up to conjugacy in G	P_1				P_2		
Representatives $n_j \in N_i$	1a	3a	7a	3b	1a	3a	3b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	2	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2 * E(3)	2	$2 * E(3)^2$	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	2	$2 * E(3)^2$	2	2 * E(3)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	6	0	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	E(3)	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	$E(3)^{2}$	1	E(3)	1	$E(3)^{2}$	E(3)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,2)(3,5)(4,36)(6,33)(7,10)(8,40)(9,30)(11,38)(12,27)(13,42)(14,35)(15,24)(16,41)(17,32)(18,21)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31)]) \cong \mathbf{C2}$

 $N_1 = Group([(1,2)(3,5)(4,36)(6,33)(7,10)(8,40)(9,30)(11,38)(12,27)(13,42)(14,35)(15,24)(16,41)(17,32)(18,24)(18$ $N_2 = Group([(1,2)(3,5)(4,36)(6,33)(7,10)(8,40)(9,30)(11,38)(12,27)(13,42)(14,35)(15,24)(16,41)(17,32)(18,21)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31),(1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35)]) \cong C6$

-E(3) $E(3)^2$ -1 E(3) $-E(3)^2$