Práctica 6

Nombre y Apellidos de los miembros del grupo:

1. Sea $\mathcal{M}_{2\times 1}(\mathbb{R})$ el conjunto de matrices 2×1 con coeficientes en \mathbb{R} . En $\mathcal{M}_{2\times 1}(\mathbb{R})$ consideramos las siguientes operaciones

$$\left(\begin{array}{c} a \\ b \end{array}\right) + \left(\begin{array}{c} c \\ d \end{array}\right) = \left(\begin{array}{c} a+c \\ b+d \end{array}\right) \qquad \text{y} \qquad \alpha \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} \alpha^2 a \\ \alpha^2 b \end{array}\right)$$

donde $a,b,\alpha\in\mathbb{R}.$ Observa que la multiplicación por escalares NO es la habitual. Calcula

$$2\left(\begin{array}{c}a\\b\end{array}\right) = \qquad \qquad 3\left(\begin{array}{c}a\\b\end{array}\right) = \qquad \qquad 5\left(\begin{array}{c}a\\b\end{array}\right) =$$

; Es $\mathcal{M}_{2\times 1}(\mathbb{R})$ con estas operaciones un espacio vectorial sobre \mathbb{R} ? Razona la respuesta.

2. Calcular el valor de a y b para que el vector v=(a,2,-1,b) se pueda expresar como combinación lineal de los vectores $u_1=(1,2,-3,4)$ y $u_2=(-1,0,-2,-3)$.

3. Considérese el subespacio vectorial

$$L[(-1,1,0),(0,-1,1)] = \{\lambda(-1,1,0) + \beta(0,-1,1) : \lambda,\beta \in \mathbb{R}\}$$

de \mathbb{R}^3 . ¿Pertenece el vector (1,1,1) al subespacio V?

4.	¿Es el conjunto $U = \{(x, y, z) : x - y = 0\}$ un subespacio vectorial de \mathbb{R}^3 ? Si
	la respuesta es afirmativa, pruébalo. Realiza un dibujo de U . Encuentra dos
	vectores de \mathbb{R}^3 que generen U .

- 5. ¿Es el polinomio $x^3 + 1$ una combinación lineal de $x^2 + x 1$ y x + 2?
- 6. (Opcional) Sea V un espacio vectorial sobre \mathbb{R} . Sean U y W dos subespacios vectoriales de V. Demostrar que la intersección $U\cap W$ también es un subespacio vectorial de V.

Solución: Lo primero que observamos es que $U \cap W$ no es vacío. En efecto, puesto que tanto U como W son subespacios vectoriales de V, se cumple que $\vec{0} \in U$ y $\vec{0} \in W$. Por tanto, $\vec{0} \in U \cap W$.

Ahora, debemos comprobar que $U \cap W$ satisface las dos condiciones que debe satisfacer un conjunto no vacío para ser subespacio vectorial de V.

i) Sean $v_1 \in U \cap W$ y $v_2 \in U \cap W$. ¿Es cierto que $v_1 + v_2 \in U \cap W$?

ii) Sean $v \in U \cap W$ y $\lambda \in U \cap W$. ¿Es cierto que $\lambda v \in U \cap W$?