QD 541 G6

EXCHANGE

UNIV. OI Californ

The Solubility of Liquids in Liquids. The Partition of the Lower Acids between Water and Cottonseed Oil. Also the Partition of Formic Acid between Water and Various Organic Compounds

A DISSERTATION

SUBMITTED TO THE BOARD OF UNIVERSITY STUDIES OF THE JOHNS HOPKINS UNIVERSITY IN PARTIAL FULL HANGE FILLMENT OF THE REQUIREMENTS FOR THE 24 192 DEGREE OF DOCTOR OF PHILOSOPHY

NEIL, E. GORDON Baltimore, Maryland June, 1917

Easton, Pa.: Eschenbach Printing Co. 1922 OALIFORN

impo Califor

The Solubility of Liquids in Liquids. The Partition of the Lower Acids between Water and Cottonseed Oil. Also the Partition of Formic Acid between Water and Various Organic Compounds

A DISSERTATION

SUBMITTED TO THE BOARD OF UNIVERSITY STUDIES OF THE JOHNS HOPKINS UNIVERSITY IN PARTIAL FUL-FILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY
NEIL, E. GORDON
Baltimore, Maryland
June, 1917

Easton, Pa.:
Eschenbach Printing Co.
1922

o vibili Archiaŭ

EXCHANGE

0766

CONTENTS

Acknowledgment	3
Introduction	5
Material	11
Results	11
Procedure	13
Tables	3-31
Discussion of Results	32
Graphs	35
Summary	41
Biography	

ACKNOWLEDGMENT

This investigation, having been carried out under the advice and kind assistance of Doctor Reid, I take this opportunity to express my deep appreciation for the help he has given me. I also feel under obligation to Drs. Frazer, Remsen, Lovelace, and Gilpin, for instruction and encouragement received. I shall long remember the enthusiastic personality of the late Doctor Jones, who inspired me to take up graduate work at the Johns Hopkins University.

THE SOLUBILITY OF LIQUIDS IN LIQUIDS. THE PARTITION OF THE LOWER ACIDS, PARTICULARLY FORMIC, BETWEEN WATER AND VARIOUS ORGANIC SOLVENTS¹

That some substances dissolve when brought into contact with various liquids must have been one of the first observations that can be classed as chemical. In the last three decades the study of solutions has been the chief occupation of chemists. Yet our knowledge of solutions is still far from adequate and some of our conceptions are still not clear.

If we shake a portion of water with oxygen, another portion with ether, and a third with sugar, assuming constant temperature, equilibria are reached and we call the three solutions saturated, speaking of the concentrations of the three solutes in the water as their solubilities. The words "saturated and solubility" are used for all, but actually have quite different meanings in the three cases.

The solubility of the sugar is definite, since in that case the solid phase is pure sugar, unchanged in composition and concentration by its contact with the water. In the case of the oxygen and water, the only thing that we can determine is the ratio of the concentrations of oxygen in the two phases. Since the water vapor does not affect the partial pressure of the oxygen, this ratio is definite and independent of the water vapor present in the gas phase. As previously pointed out² while the solubility of the ether is definite, yet the solubility that we find is not the true solubility, i. e., the amount of ether taken up by water in contact with anhydrous ether. We can no more determine the solubility of ether in water than we can

¹ Contribution from the Chemical Laboratory of the Johns Hopkins University.

² Wroth and Reid: Jour. Am. Chem. Soc., 38, 2316 (1916).

that of formic acid, since we cannot have a solution of either ether or formic acid in contact with the anhydrous liquid. We may hope that sometime a method, or formula, may be devised for finding the true, or ideal, solubility of ether in water, perhaps from the observed equilibrium of the solution of ether in water with one of water in ether, perhaps from some other data.

In the case of solid iodine, where the solubilities are true solubilities, Jakowkin¹ found the ratio of the solubilities in two solvents, S_a/S_b , remarkably near to the partition ratio, C_a/C_b , or r, measured with the same two solvents. He further found that r changes progressively, approaching more and more nearly the value S_a/S_b as the concentrations of iodine in the two solvents increase, i. e., as C_a/C_b approaches S_a/S_b as C_a and C_b approach S_a and S_b .

As is well known, the partition ratio, r, remains constant with changing concentrations, only when the substance partitioned dissolves in both solvents in the same form. Furthermore, it is stipulated that the two solvents must be absolutely insoluble in each other, even when both contain large amounts of the common solute. This condition is, of course, never more than approximately fulfilled, the disturbing influences becoming greater, the higher the concentrations of the solute.

In the present investigation formic acid has been partitioned between water and the following solvents: cottonseed oil, kerosene, benzene, toluene, xylene, carbon tetrachloride, carbon disulphide and bromoform. The so-called solubilities of formic acid in these eight solvents and the solubilities of these liquids in formic acid have been determined.

If the solubility figure found for formic acid in benzene, say, were the ideal solubility and the partition ratio found were correct, then the product of these two should give the ideal solubility of formic acid in water which we cannot find directly. The ideal solubility from the data obtained from these eight solvents should be the same, or, since the several

¹ Zeit. phys. Chem., 18, 590 (1895).

partition ratios vary with the concentrations, the values found should tend to approach some one limit, as the concentrations of formic acid in the non-aqueous solvents approach the solubilities of formic acid in these solvents.

In the case of carbon disulphide and water, and in that only, the partition ratio remained practically constant with changing concentration, being 1606 when the acid in the water layer was 8.4% and 1616 when this had increased to 54.8%. When carbon disulphide and formic acid are shaken together there is 1.28 g of the acid to 100 g carbon disulphide in the one layer and 4.66 g carbon disulphide to 100 g formic acid in the other. Even in this case 1.28 is not the ideal solubility of formic acid since the solution was in contact with a mixture of 95.55% formic acid and 4.45% carbon disulphide and not with the pure acid, but as in this case the mutual "solubilities" are the lowest and the partition ratio is the most nearly constant, this appears to be, by far, the most favorable Multiplying 1.28, the "solubility" of formic acid in carbon disulphide, by the partition ratio, 1616, we have 2068 as the ideal solubility of formic acid in water, i. e., 2068 g of the acid should be taken up by 100 g of water in contact with anhydrous formic acid, a condition which can, of course, never be realized. With the other seven solvents the products of the several solubilities by the respective partition ratios should approach 2068 as the concentrations increase. is the figures in the last columns of Tables 1 and 7-12 should approach 2068 as we read down. The results are represented graphically in Fig. 1 in which these hypothetical ideal solubilities are plotted against the percentage of saturation of the non-aqueous layer. The curves as drawn extend only to 8%, not far enough to include all the points on the kerosene, cottonseed oil and bromoform curves. For very dilute solutions the figures obtained are more or less erratic on account of the difficulties involved in determining the small amounts of acid present in even large amounts of the oil layers, e.g., in the most dilute solution with carbon tetrachloride the amount of formic acid per 100 g of oil was only 0.0038 g.

Most of the series were terminated at 55% to 60% of formic acid in the water layer as it was thought that results with greater concentrations could not be trusted on account of mutual solubilities of the two solvents in presence of so much of the solute. But with cottonseed oil the concentration was carried up to 87.2% of formic acid in the water layer when there was 5.026 g of acid per 100 g of the oil layer while the solubility of the anhydrous acid in the oil is 8.68 g per 100 g. This gives us a point in the cottonseed oil curve at 58% for which the ordinate is 1179 which is well on the way to the figure indicated by the carbon disulphide curve.

Fig. 1

It is interesting to note that cottonseed oil takes up only 58% as much formic acid from an 87% acid as from the 100% acid. On a molecular basis 73% of the molecules are formic acid, so it appears that the water in the acid is more than a diluent: it restrains the formic acid molecules from passing into the oil layer. A similar inference may be drawn from other experiments. In most cases where the water layer con-

tains over 50% of formic acid the oil layer takes up only 5% to 7% as much acid as from 100% formic acid.

The results with kerosene are regarded as unreliable as the oil layer was much colored at the higher concentrations indicating some sort of reaction.

Looking at the figure, there appears to be a tendency for the various curves to converge on the carbon disulphide line indicating an ideal solubility around 2000, though the bromoform curve is very low down and the one for cottonseed oil has a considerable distance to go. The xylene curve appears to cross the 2000 line. It is certainly hazardous to extrapolate from 6 or 8% to 100%.

Fig. 2

In Fig. 2 the same data are presented on a different basis; the ordinates are the same but the abscissae are the percentage of formic acid in water layer at equilibrium. On this basis the curves are steeper and do not show as much tendency to converge though we have the advantage of having to extrapolate over a much shorter distance, as all of the curves go as far as 55% and one even to 87%.

The results obtained do not settle the question but it is hoped they do open it. One method of approach has been tried: better ones may be found. Even by this method more measurements are desirable at higher concentrations, with other solvents, and with other solutes. The results so far obtained have value as partition and solubility measurements. The degrees of association of formic acid in the various solvents can be calculated from the variation of the partition ratios.

Fig. 3

As formic acid is a strong acid, its dissociation in the water layer influences the partition ratios, but as its lowest concentration was 0.24 N, at which it is only moderately dissociated and, as it turned out, the high concentrations are the ones which are of most interest from the present point of view, the dissociation may be disregarded. It is interesting to note that formic acid shows a real partition ratio in all cases even in dilute solution, which is in marked contrast to the behavior of silver perchlorate as found by Hill.¹

¹ Jour. Am. Chem. Soc., 43, 254 (1921).

Georgievics¹ partitioned formic acid between benzene and water. Calculating his results according to our method we obtain the following partition ratios:

% Acid 4.4 5.8 6.7 7.8 8.6 8.7 13.3 13.3 18.9 23.9 Ratio 370 261 400 302 264 562 304 347 269 298

Disregarding the sixth, the average of these is 316 which is not far from 292 the average of our results over the same range.

In addition to the experiments with formic acid, acetic, propionic and butyric were partitioned between cottonseed oil and water and acetic acid between kerosene and water. The partition ratios are plotted in Fig. 3. The proportion of the organic acid taken by the water layer increases rapidly as we go from formic to butyric. The formic acid curve bends sharply upward at about 70% of acid in the water layer. Acetic acid has a definite solubility in the oil but propionic and butyric have not. Formic is the only one of these that shows limited solubility in the other solvents.

Materials

Cottonseed Oil: The Wesson oil used was found to have an acid reaction. In order to eliminate this the oil was shaken with a dilute solution of barium hydroxide for an hour. It was then centrifuged and filtered, when it gave a perfectly neutral reaction.

Formic Acid: This was distilled under reduced pressure over anhydrous copper sulphate as suggested by Garner, Saxton and Parker. The pressure used was 120 mm, when the acid distilled over at 50°. This method was found to be a very satisfactory one. Beginning with an acid 89.2 percent pure, the first distillation resulted in an acid 96.5 percent, the second 98.2 percent, and the third distillation gave an acid 99.99 percent pure. This acid melted at 8.35° and had density 1.2170²⁵/₂₅. This anhydrous acid was used for the solubility work only. For the partition work, commercial acid was used

¹ Zeit. phys. Chem., 84, 359 (1913).

² Am. Chem. Jour., 46, 236 (1911); J., 1886, 216.

since it was found to contain only water. The water it contained was calculated and added to the weight of water taken.

Acetic Acid: Like formic acid the commercial acid was used for the partition work. For the solubility the acid was purified by freezing. It was found that the number of freezings necessary to render it anhydrous could be cut down by introducing a crystal of the acid to prevent too great undercooling. It melted at 16.7° , and titrated 99.9 percent pure. Its density was 1.0445_{25}^{26} .

Propionic and Butyric Acids: These acids mixed in all proportions with both oil and water and thus it was not necessary to make them anhydrous. As their densities and titrations showed they contained only water as an impurity, they were used without further purification.

Organic Solvents: First class commercial grades of benzene, toluene, xylene, carbon tetrachloride, carbon disulphide, and bromoform were used. To insure purity, the boiling points and densities were taken and found to agree well with those given in the literature.

Waddell¹ found in his investigation that the same partition coefficient was given with purified benzene as with commercial benzene.

Standard Solutions: Standard solutions of approximately N/10 were prepared, and frequently standardized. The solutions were kept in large stock bottles from which they were siphoned into the burettes. The barium hydroxide bottle and burettes were protected from the air by tubes containing soda lime.

Water: Freshly distilled water was used.

Kerosene Oil: Commercial kerosene oil was distilled and the portion obtained between 180° and 260° was used in the partition work. It had a density of 0.798_{25}^{25} .

¹ Jour. Phys. Chem., 2, 233 (1895).

Procedure

The filling, shaking and centrifuging of the bottles containing cottonseed oil, water and the respective acids was carried out approximately as the former work where the alcohols were used instead of the acids. It seemed necessary to shake the acids longer than the alcohols to obtain concordant results. The centrifuge was used only with the cottonseed oil and water.

Estimation of Acids in Non-aqueous Solvent Layers.—The oil layer containing the acid was drawn off by means of a special pipet, shaped similar to the Ostwald pycnometer. An amount of oil was taken out with the pipet sufficient to require about 10 cc of the barium hydroxide for neutralization. The oil was put into a 180-cc beaker containing about 80 cc of distilled water for titration. The oil, with ordinary stirring failed to give up its acid promptly, making the titration slow and uncertain. A mechanical stirrer was used and this accelerated the speed with which the acid passed from the oil into the water. Even under these conditions the end-point was not as accurate as it was in the water. In spite of all efforts the acid seemed to have a slight tendency to cling to the oil. The other organic solvents were handled similarly.

Estimation of Acid in Water Layer.—A small thin-walled glass bulb was weighed, partly filled from the water layer, sealed and reweighed. The bulb was then broken under water to avoid evaporation, and the amount of acid, which it con-

tained was determined by titration.

The absolute solubilities of formic and acetic acids in cottonseed oil were found by shaking the oil and anhydrous acids in the constant temperature bath for four hours, and then estimating the amount of acid in the oil layer and the amount of oil in the acid layer by the titration method as just described. The absolute solubility of formic acid in the other organic solvents used and the solubility of the solvents in the formic acid were carried out in a similar manner.

14

Solubilities at 25°

Formic Acid in Cotton	nseed Oil	Cottonseed Oil in Formic Acid			
Sample Found	In 100 g	Sample	Found	In 100 g	
0.3154 0.0251 0.1656 0.0416 0.4437 0.0360 0.5019 0.0393	8.65 8.72 8.84 8.50 8.68	0.1656 0.1141 0.1086 0.1142	0.0013 0.0009 0.0008 0.0009	0.78 0.79 0.74 0.79 0.77	
Acetic Acid in Cotton		Cottonseed Oil in Acetic Acid			
0.1421 0.0508 0.0858 0.0309 0.0831 0.0299 0.0684 0.0245 0.1008 0.0345	55.4 56.3 56.3 55.96 54.3 v. 55.7	0.1016 0.0996 0.0616 0.1373 0.0894	0.0058 0.0055 0.0036 0.0073 0.0050	5.8 5.5 5.7 5.6 5.6 5.6	
Formic Acid in Be	Benzene in Formic Acid				
Sample Found	In 100 g	Sample	Found	In 100 g	
0.2718 0.0341 0.3300 0.0416 0.3950 0.0502 0.4277 0.0537 0.4197 0.0527 A	14.3 14.4 14.5 14.3 14.40 v. 14.40	0.1825 0.0992 0.1455 0.0030	0.0238 0.01312 0.0189 0.0122	15.0 15.2 14.9 15.4 v. 15.14	
Formic Acid in To	oluene	Toluene	e in Formic	Acid	
0.2815 0.0284 0.3795 0.0376 0.2986 0.0295 0.3565 0.0358	11.20 10.98 10.96 11.17 v. 11.08	0.1793 0.1323 0.0851	0.0149 0.0110 0.0071	9.08 9.06 9.10	
Formic Acid in X	Xylene in Formic Acid				
0.5440 0.0442 0.3535 0.0251 0.4480 0.0357	8.83 8.70 8.70 8.74	0.1009 0.0790	0.0063 0.0057	6.81 7.77 Av. 7.29	

Solubilities at 25°

Formi	e Acid in Ca	rbon	Carbon	Tetrachlorio	do in	
	etrachloride			ormic Acid	ie in	
0.1910 0.3434 0.3623 0.3158	0.0069 0.0115 0.0119 0.0105	(3.76) 3.45 3.40 3.44 Av. 3.43	0.0484 0.0934 0.0918	0.0030 0.0062 0.0063	6.60 6.95 7.31 Av. 6.95	
	e Acid in Ca Disulphide	arbon	Carbon D	isulphide in Acid	Formic	
2.4628 1.9878 2.6070 4.7033 4.9431 7.461	0.0313 0.0240 0.0311 0.0549 0.0569 0.0959	1.29 1.28 (1.21) (1.18) (1.16) 1.29 Av. 1.28	0.0631 0.1429	0.0604 0.1398	4.47 4.85	
		1			Av. 4.66	
Formic A	Acid in Bron	noform	Bromoform in Formic Acid			
1.9684 1.2830 3.2351	$0.0475 \\ 0.0310 \\ 0.0767$	2.47 2.47 2.42	0.1301 0.1085	0.0362	25.2 25.4	
		Av. 2.45		A	v. 25.3	
Formi	e Acid in Ke	erosene	Kerosen	e in Formic	Acid	
Sample	Found	In 100 g	Sample	Found	In 100 g	
3.3003 2.9977	0.0294 0.0267	0.899 0.905 Av. 0.897	0.1003 0.0681	0.0015 0.0011	1.52 1.60 Av. 1.56	
Acetic	Acid in Ker	rosene	Kerosene in Acetic Acid			
1.0690 0.7638	0.1909 0.1367 A	21.74 21.80 v. 21.77	0.0735 0.0802	0.0082 0.0088 A	12.6 12.3 v. 12.4	

Partition Experiments

The results are given in the tables below, no completed determination being omitted, the first column showing the final percentage of acid in the water layer, the next three the amounts of water, oil and acid weighed in, while the fifth and sixth give the amounts of acid found in the two layers, the sum of these should equal the weight of acid in column four. In the seventh is found the molecular partition ratio or the acid dissolved by 1 mol. of water divided by that dissolved by 1 mol. of the oil. The m. wt. of cottonseed oil was assumed to be 885. In the case of kerosene this ratio is omitted. The next column gives the partition ratio for equal weights of water and oil and the last gives this weight ratio multiplied by the solubility of the acid in the oil when this is known.

Table 1
Partition of Formic Acid between Cottonseed Oil and Water

%				Weigh	t acid in	Partitio	on ratios	Weight
Acid	Water	Oil	Acid	Water	Oil	Molec- ular	Weight	× 8.68
1.1	15.42	66.85	0.183	0.169	0.0115	1.29	63.6	552
2.3	16.94	70.53	0.423	0.399	0.0253	1.33	65.7	570
3.7	14.57	75.37	0.595	0.556	0.0430	1.36	66.8	580
4.2	22.54	72.63	1.036	0.990	0.0471	1.38	67.8	588
5.5	22.66	67.69	1.385	1.326	0.0592	1.36	66.9	581
8.1	12.05	81.52	1.163	1.064	0.1064	1.38	67.7	588
12.7	27.00	63.19	4.077	3.945	0.1224	1.54	75.4	654
14.4	6.84	5.91	1.166	1.152	0.0130	1.56	76.5	664
20.9	13.11	20.47	3.556	3.470	0.0680	1.62	79.7	692
30.3	5.57	6.576	2.500	2.429	0.0323	1.87	91.9	798
32.4	12.62	22.87	6.168	6.045	0.1192	1.81	88.8	771
51.1	4.54	5.051	4.827	4.747	0.0563	1.91	93.9	815
62.5	3.65	5.857	6.258	6.087	0.0997	1.99	97.9	850
71.3	3.16	4.981	8.043	7.854	0.1241	2.03	99.5	864
80.7	1.79	6.102	7.720	7.463	0.2222	2.34	114.8	996
86.3	0.799	7.728	5.493	5.023	0.3705	2.67	131.1	1138
87.2	0.728	8.589	5.894	4.972	0.4317	2.76	135.8	1179

Table 2
Partition of Acetic Acid between Cottonseed Oil and Water

%		-	Acid Weight acid in Water Oil		Partition ratios		Weight	
Acid	Water	Oil				Molec- ular	1	ratio × 55.7
1.9	25.84	68.32	0.544	0.5105	0.0363	0.757	37.2	2071
2.1	24.32	66.23	0.550	0.5130	0.0364	0.781	38.4	2137
2.4	26.70	65.86	0.696	0.6504	0.0463	0.705	34.6	1930
7.5	27.51	71.33	2.408	2.238	0.1711	0.690	33.9	1888
8.2	26.31	64.31	2.513	2.346	0.1718	0.671	33.4	1859
12.7	26.68	68.80	4.185	3.877	0.3006	0.677	33.3	1853
14.1	28.28	69.97	4.9751	4.636	0.3471	0.672	33.0	1840
16.2	24.75	67.27	5.195	4.791	0.3940	0.673	33.1	1841
28.9	13.13	25.64	5.673	5.345	0.3177	0.667	32.9	1830
31.8	11.13	25.35	5.534	5.178	0.3453	0.695	34.2	1903
46.9	4.38	5.950	4.044	3.875	0.1424	0.752	36.9	2059
50.9	4.360		4.729	4.516	0.1720	0.743	36.5	2035
62.1	1.387	7.574	2.586	2.270	0.3118	0.809	39.7	2212
70.2	1.001	7.572	2.794	2.361	0.4311	0.843	41.4	2308
81.8	1.958	5.975	9.574	8.827	0.6483	0.845	41.5	2314

 ${\bf TABLE} \ 3 \\ {\bf Partition} \ {\bf of} \ {\bf Propionic} \ {\bf Acid} \ {\bf between} \ {\bf Cottonseed} \ {\bf Oil} \ {\bf and} \ {\bf Water} \\$

% Acid	Water	Oil	Acid	Weigh	t acid in	Partition ratios		
Acid	water	Oil	Acid	Water	Oil	Molecular	Weight	
0.4	90.15	40.00	1 000	1 947	0.0010	0.123	6 05	
3.4	38.15	48.33	1.620	1.347	0.2819	0.125	6.05	
7.4	39.75	42.39	3.836	3.165	0.6580	0.104	5.13	
14.3	20.05	20.09	4.045	3.335	0.7240	0.094	4.62	
23.0	15.09	20.88	5.855	4.502	1.358	0.093	4.59	
36.2	3.416	7.705	2.744	1.938	0.7779	0.114	5.60	
59.8	2.988	5.516	5.311	4.438	0.8959	0.186	9.14	
62.5	0.8750	7.750	2.853	1.458	1.366	0.192	9.45	
67.3	0.4755	8.919	2.873	0.979	1.874	0.199	9.79	

Table 4
Partition of Butyric Acid between Cottonseed Oil and Water

% Acid	Water	Oil	Acid	Weight	acid in	Partition	ratios
Acid	water	On	Acid	Water	Oil	Mólecular	Weight
2.7 5.0 9.2 14.0 30.5 41.3	16.135 16.568 6.530 3.139 3.911 1.802	24.590 25.095 6.562 6.755 6.597 6.590	0.747 1.612 1.164 1.308 3.458 3.203	0.4526 0.8798 0.6615 0.5106 1.714 1.268	0.2764 0.7350 0.4906 0.7880 1.692 1.948	0.0508 0.0369 0.0276 0.0284 0.0348 0.0484	2.495 1.813 1.355 1.395 1.709 2.380

Table 5
Partition of Formic Acid between Kerosene and Water

		0.11		Weigh	it acid in	Partition ratio	Weight	
% Acid	Water	Oil	Acid	Water	Oil	Weight ratio	ratio × 0.897	
17.9 30.9	10.634 9.801	65.717 72.723	2.324 4.452		0.00648 0.01586	2209 2052	1981 1841	
38.9 43.2	9.778 2.547	65.189 7.422	6.283 1.945	6.224	0.02146	1933 1831	1734 1642	
59.8 66.3	2.725 3.153	5.645 30.950	4.160 6.400	4.060	$\begin{bmatrix} 0.00714 \\ 0.05358 \end{bmatrix}$	1180	1058 1019	

Table 6
Partition of Acetic Acid between Kerosene and Water

~	***	0.11		Weigh	t acid in	Partition ratio	Weight	
% Acid	Water	Oil	Acid	Water	Oil	Weight ratio	ratio × 21.77	
9.1	7.110	32.024	0.730	0.7127	0.02164	1483	32300	
17.0	6.027	30.676	1.392	1.236	0.05796	1086	23600	
27.2	6.786	29.831	2.665	2.532	0.1332	836	18200	
46.9	2.503	8.479	2.330	2.214	0.09804	765	16700	
59.2	2.819	6.243	4.273	4.089	0.1217	744	16200	

Table 7
Partition of Formic Acid between Benzene and Water

OH.				Weight	acid in	Partitio	n ratios	Weight
Acid	% Water O	Oi1	Acid	Water	Oil	Molec- ular	Weight	ratio × 14.40
5.3 6.4 9.9 13.6 18.5 29.2 41.2 58.2	20.61 11.46 19.96 21.71 28.39 10.30 12.71 3.272	74.21 89.07 82.54 65.42 51.66 28.71 32.92 40.73	1.138 0.742 2.195 3.444 6.506 4.395 9.126 5.096	1.146 0.716 2.192 3.432 6.437 4.258 8.894	0.0126 0.0175 0.0329 0.0382 0.0434 0.0449 0.1060 0.3279	75.1 73.5 63.5 62.4 62.3 61.0 50.8	327 319 275 270 270 264 220 178	4710 4590 3960 3890 3890 3810 3170 2570

Table 8

Partition of Formic Acid between Toluene and Water

~				Weigh	Weight acid in		Partition ratios		
% Acid	Water	Oil	Acid	Water	Oil	Molec- ular	Weight	ratio × 11.08	
5.3 7.9 16.5 31.0 41.7 59.7	21.04 20.43 10.319 9.210 5.618 3.276	79.04 64.20 88.00 84.70 30.87 32.68	1.174 1.799 2.086 4.257 4.181 5.186	1.177 1.761 2.039 4.148 4.019 4.834		74.0 68.5 68.5 64.0 52.8 39.5	378 350 349 327 270 202	4190 3880 3870 3620 2990 2230	

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RETURN TO the circulation desk of any University of California Library

or to the

NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station University of California Richmond, CA 94804-4698

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 2-month loans may be renewed by calling (510) 642-6753

1-year loans may be recharged by bringing books to NRLF

Renewals and recharges may be made 4 days prior to due date

DUE AS STAMPED BELOW

	APR 2 4 1995	
20,000 (4/94)		

543993

UNIVERSITY OF CALIFORNIA LIBRARY

