Show all steps:

4 / problem 21p

Signals and Systems (2nd Edition)

Problem

Step-by-step solution

Post a question

Answers from our experts for your tough homework questions

Enter question

CONTINUE TO POST

20 questions remaining

My Textbook Solutions

Signals and Systems 2nd Edition Vector Calculus 4th Edition Electric Circuits 10th Edition

View all solutions

Chegg tutors who can help right now

Josh Ph.D. in Mathematics 576

Pavel Southern Methodis... 75

Nick Minot State Univer... 1056

FIND ME A TUTOR

$$= \int_{0}^{\alpha} e^{-\alpha t} \left(\frac{e^{-\alpha t} + e^{-\beta t}}{2} \right) e^{-\beta t t} dt$$

$$= \frac{1}{2} \left[\int_{0}^{\infty} e^{(-\alpha + \beta(-\omega + \omega_{0}))t} dt + \int_{0}^{\infty} e^{(-\alpha + \beta(-\omega - \omega_{0}))t} dt \right] dt$$

$$\begin{split} X\left(j\omega\right) &= \frac{1}{2} \left[\frac{-e^{-(\alpha+j(\omega-\omega_{0}))t}}{\alpha+j(\omega-\omega_{0})} \right]_{0}^{\infty} + \frac{1}{2} \left[\frac{-e^{-(\alpha+j(\omega+\omega_{0}))t}}{\alpha+j(\omega+\omega_{0})} \right]_{0}^{\infty} \\ &= \frac{1}{2} \left[-0 - \left(\frac{-1}{\alpha+j(\omega-\omega_{0})} \right) \right] + \frac{1}{2} \left[-0 - \left(\frac{-1}{\alpha+j(\omega_{0}+\omega)} \right) \right] \\ &= \frac{1}{2} \left[\frac{1}{\alpha+j(\omega-\omega_{0})} + \frac{1}{\alpha+j(\omega_{0}+\omega)} \right] \\ &= \frac{1}{2} \left[\frac{1}{\alpha-j(\omega_{0}-\omega)} + \frac{1}{\alpha+j(\omega_{0}+\omega)} \right] \end{split}$$

Comment

Step 2 of 15

Simplify further.

$$X(j\omega) = \frac{1}{2} \left[\frac{1}{\alpha - j(\omega_o - \omega)} + \frac{1}{\alpha + j(\omega_o + \omega)} \right]$$
$$= \frac{0.5}{\alpha - j(\omega_o - \omega)} + \frac{0.5}{\alpha + j(\omega_o + \omega)}$$

Thus, the Fourier transform of the signal x(t) is $\frac{0.5}{\alpha - j(\omega_o - \omega)} + \frac{0.5}{\alpha + j(\omega_o + \omega)}$

Chegg: Study

TEXTBOOK SOLUTIONS EXPERT Q&A

Sτep 3 of 15

The signal, $x(t) = e^{-3|t|} \sin 2t$

Compute the Fourier transform of this signal.

$$\begin{split} X(j\omega) &= \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \\ &= \int_{-\infty}^{\infty} \left(e^{-3|t|} \sin 2t\right)e^{-j\omega t} dt \\ &= \int_{-\infty}^{0} e^{3t} \left(\frac{e^{2jt} - e^{-2jt}}{2j}\right)e^{-j\omega t} dt + \int_{0}^{\infty} e^{-3t} \left(\frac{e^{j2t} - e^{-j2t}}{2j}\right)e^{-j\omega t} dt \\ &= \frac{1}{2j} \left[\int_{0}^{0} \left(e^{(3+2j-j\omega)t} - e^{(3-2j-j\omega)t}\right) dt\right] + \frac{1}{2j} \left[\int_{0}^{\infty} \left(e^{-(3-2j+j\omega)t} - e^{-(3+2+j\omega)t}\right) dt\right] \end{split}$$

Comment

Step 4 of 15

$$=\frac{1}{2j}\left|\frac{e^{-(3-2j+j\omega)t}}{-(3-2j+j\omega)}\right|_{0}^{\infty}-\frac{e^{-(3+2+j\omega)t}}{-(3+2j+j\omega)}\right|_{0}^{\infty}$$

$$=\frac{1}{2j}\left\{\left(\frac{1}{3+j(2-\omega)}\right)-\left(\frac{1}{3-j(2+\omega)}\right)+\left(\frac{1}{(3-2j+j\omega)}\right)\right\}$$

$$-\left(\frac{1}{(3+2j+j\omega)}\right)$$

Simplify further.

$$X(j\omega) = \frac{1}{2j} \begin{cases} \frac{1}{3+j(2-\omega)} - \frac{1}{3-j(2+\omega)} + \frac{1}{(3-j(2-\omega))} - \\ \frac{1}{(3+j(2+\omega))} \end{cases}$$

$$= \frac{1}{2j} \begin{cases} \frac{1}{3+j(2-\omega)} + \frac{1}{(3-j(2-\omega))} \\ \frac{1}{3-j(2+\omega)} + \frac{1}{(3+j(2+\omega))} \end{cases}$$

$$= \frac{1}{2j} \begin{cases} \frac{6}{9+(2-\omega)^2} \\ + \frac{1}{2j} \begin{cases} \frac{-6}{9+(2+\omega)^2} \\ \end{cases}$$

$$= \frac{-3j}{9+(2-\omega)^2} + \frac{3j}{9+(2+\omega)^2}$$

Thus, the Fourier transform of the signal x(t) is $\frac{3j}{9+(2+\omega)^2} - \frac{3j}{9+(2-\omega)^2}$

Comment

Step 5 of 15

(c)

The signal,
$$x(t) = \begin{cases} 1 + \cos \pi t, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$$

Compute the Fourier transform of this signal.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-1}^{1} (1+\cos \pi t)e^{-j\omega t}dt$$

$$= \int_{-1}^{1} e^{-j\omega t}dt + \int_{-1}^{1} \left(\frac{e^{j\pi t} + e^{-j\pi t}}{2}\right)e^{-j\omega t}dt$$

$$= \int_{-1}^{1} e^{-j\omega t}dt + \frac{1}{2}\left\{\int_{-1}^{1} e^{jt(\pi-\omega)}dt + \int_{-1}^{1} e^{-jt(\pi+\omega)}dt\right\}$$

$$\begin{split} X\left(j\omega\right) &= \frac{e^{-j\omega t}}{-j\omega}\bigg|_{-1}^{1} + \frac{1}{2} \left\{ \frac{e^{ji(\pi-\omega)}}{j(\pi-\omega)}\bigg|_{-1}^{1} + \frac{e^{-ji(\pi+\omega)}}{-j(\pi+\omega)}\bigg|_{-1}^{1} \right\} \\ &= \frac{e^{-j\omega} - e^{j\omega}}{-j\omega} + \frac{1}{2} \left\{ \frac{e^{j(\pi-\omega)} - e^{-j(\pi-\omega)}}{j(\pi-\omega)} - \frac{e^{-j(\pi+\omega)} - e^{j(\pi+\omega)}}{j(\pi+\omega)} \right\} \\ &= \frac{-2j\sin\omega}{-j\omega} + \frac{2j\sin(\pi-\omega)}{2j(\pi-\omega)} + \frac{2j\sin(\pi+\omega)}{2j(\pi+\omega)} \\ &= \frac{2\sin\omega}{\omega} + \frac{\sin(\pi-\omega)}{\pi-\omega} + \frac{\sin(\pi+\omega)}{\pi+\omega} \end{split}$$

Simplify further.

$$X\left(j\omega\right) = \frac{2\sin\omega}{\omega} + \frac{\sin\left(\pi - \omega\right)}{\pi - \omega} + \frac{\sin\left(\pi + \omega\right)}{\pi + \omega}$$

Note: $\sin(\pi - \omega) = \sin \omega$ and $\sin(\pi + \omega) = -\sin \omega$

Hence,

$$X(j\omega) = \frac{2\sin\omega}{\omega} + \frac{\sin\omega}{\pi - \omega} - \frac{\sin\omega}{\pi + \omega}$$

Thus, the Fourier transform of the signal x(t) is $\frac{2\sin\omega}{\omega} + \frac{\sin\omega}{\pi - \omega} - \frac{\sin\omega}{\pi + \omega}$

Comment

Step 7 of 15

(d)

The signal,
$$x(t) = \sum_{k=0}^{\infty} \alpha^k \delta(t - kT), |\alpha| < 1$$

Compute the Fourier transform of this signal.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \sum_{k=0}^{\infty} \alpha^k \delta(t-kT)e^{-j\omega t}dt$$

$$= \sum_{k=0}^{\infty} \alpha^k \int_{-\infty}^{\infty} \delta(t-kT)e^{-j\omega t}dt$$

$$= \sum_{k=0}^{\infty} \alpha^k \left(e^{-j\omega t}\right|_{t=kT}$$

Simplify further.

$$X(j\omega) = \sum_{k=0}^{\infty} \alpha^k e^{-j\omega kT}$$
$$= \sum_{k=0}^{\infty} (\alpha e^{-j\omega T})^k$$
$$= \frac{1}{1 - \alpha e^{-j\omega T}}$$

Thus, the Fourier transform of the signal x(t) is $\boxed{\frac{1}{1-\alpha\,e^{-j\omega T}}}$

(e)

The signal,
$$x(t) = \int te^{-2t} \sin 4t \, dt$$

Compute the Fourier transform of this signal.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \left[te^{-2t}\sin 4t\right]u(t)e^{-j\omega t}dt$$

$$= \int_{0}^{\infty} te^{-2t}\left(\frac{e^{4jt} - e^{-4jt}}{2j}\right)e^{-j\omega t}dt$$

$$= \frac{1}{2j} \int_{0}^{\infty} \left\{te^{-(2-4j+j\omega)t} - te^{-(2+4j+j\omega)t}\right\}dt$$

$$= \frac{1}{2j} \left\{ (0-0) + \int_{0}^{\infty} \frac{e^{-(2-4j+j\omega)t}}{(2-4j+j\omega)} dt - (0-0) - \int_{0}^{\infty} \frac{e^{-(2+4j+j\omega)t}}{(2+4j+j\omega)} dt \right\}$$

$$= \frac{1}{2j} \left\{ \int_{0}^{\infty} \frac{e^{-(2-4j+j\omega)t}}{(2-4j+j\omega)} dt - \int_{0}^{\infty} \frac{e^{-(2+4j+j\omega)t}}{(2+4j+j\omega)} dt \right\}$$

$$= \frac{1}{2j} \left\{ \left(\frac{1}{(2-4j+j\omega)} \right) \left(\frac{-e^{-(2-4j+j\omega)t}}{(2-4j+j\omega)} \right) \Big|_{0}^{\infty} - \left(\frac{1}{(2+4j+j\omega)} \right) \left(\frac{-e^{-(2+4j+j\omega)t}}{(2+4j+j\omega)} \right) \right|_{0}^{\infty} \right\}$$

Comment

Step 8 of 15

Simplify further.

$$X(j\omega) = \frac{1}{2j} \left\{ \left(\frac{1}{(2-4j+j\omega)} \right) \left(\frac{1}{(2-4j+j\omega)} \right) - \left\{ \frac{1}{(2+4j+j\omega)} \right) \left(\frac{1}{(2+4j+j\omega)} \right) \right\}$$
$$= \frac{1}{2j} \left\{ \frac{1}{(2-4j+j\omega)^2} - \frac{1}{(2+4j+j\omega)^2} \right\}$$

Thus, the Fourier transform of the signal x(t) is

$$\left[\frac{1}{2j} \left\{ \frac{1}{(2-4j+j\omega)^2} - \frac{1}{(2+4j+j\omega)^2} \right\} \right]$$

Comment

Step 9 of 15

(f)

The signal,
$$x(t) = \left[\frac{\sin \pi t}{\pi \tau}\right] \left[\frac{\sin 2\pi (t-1)}{\pi (t-1)}\right]$$

Compute the Fourier transform of this signal

Assume,

$$x_1(t) = \frac{\sin \pi t}{\pi t}$$
$$x_2(t) = \frac{\sin 2\pi (t-1)}{\pi (t-1)}$$

Write the Fourier transform of $x_1(t) = \frac{\sin \pi t}{\pi t}$

$$X_1(j\omega) = \begin{cases} 1, & |\omega| < \pi \\ 0, & \text{otherwise} \end{cases}$$

Write the Fourier transform of $x_2(t) = \frac{\sin 2\pi (t-1)}{\pi (t-1)}$

$$X_{2}(j\omega) = \begin{cases} e^{-2\omega} & |\omega| < 2\pi \\ 0 & \text{otherwise} \end{cases}$$

Write the multiplication property in Fourier domain.

$$X(t) = X_1(t)X_2(t) \longleftrightarrow X(j\omega) = \frac{1}{2\pi} \left\{ X_1(j\omega) * X_2(j\omega) \right\}$$

Thus, the Fourier transform of the signal x(t) is

$$X(j\omega) = \begin{cases} e^{-j\omega} & |\omega| < \pi \\ \left(\frac{1}{2\pi}\right) (3\pi + \omega) e^{-j\omega} & -3\pi < \omega < -\pi \\ \left(\frac{1}{2\pi}\right) (3\pi - \omega) e^{-j\omega} & \pi < \omega < 3\pi \\ 0 & \text{otherwise} \end{cases}$$

(g)

Consider the following figure:

Figure 1

Write the mathematical representation of the signal in Figure 1.

$$x(t) = \begin{cases} -1, & -2 < t < -1 \\ t, & -1 < t < 1 \\ 1, & 1 < t < 2 \end{cases}$$

Compute the Fourier transform of this signal.

$$\begin{split} X(j\omega) &= \int\limits_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \\ &= \int\limits_{-2}^{-1} (-1)e^{-j\omega t} dt + \int\limits_{-1}^{1} te^{-j\omega t} dt + \int\limits_{1}^{2} (1)e^{-j\omega t} dt \\ &= \frac{-e^{-j\omega t}}{-j\omega} \bigg|_{-2}^{1} + t \frac{e^{-j\omega t}}{-j\omega} \bigg|_{1}^{1} - \int\limits_{-1}^{1} \frac{e^{-j\omega t}}{-j\omega} dt + \frac{e^{-j\omega t}}{-j\omega} \bigg|_{1}^{2} \\ &= \bigg[\frac{e^{j\omega} - e^{2j\omega}}{j\omega} \bigg] - \bigg[\frac{e^{-j\omega} - (-1)e^{j\omega}}{j\omega} \bigg] - \bigg[\frac{e^{-j\omega t}}{(-j\omega)^{2}} \bigg|_{-1}^{1} \bigg] - \bigg[\frac{e^{-2j\omega} - e^{-j\omega}}{j\omega} \bigg] \end{split}$$

Comments (1)

Step 11 of 15

$$= -\left[\frac{c}{j\omega}\right] - \left[\frac{\omega}{\omega^2}\right]$$
$$= \frac{-2\cos 2\omega}{j\omega} - \frac{2j\sin \omega}{\omega^2}$$

Simplify further.

$$\begin{split} X \Big(j \omega \Big) &= \frac{-2j \cos 2\omega}{j \cdot j \omega} - \frac{2j \sin \omega}{\omega^2} \\ &= \frac{2j \cos 2\omega}{\omega} - \frac{2j \sin \omega}{\omega^2} \end{split}$$

Thus, the Fourier transform of the signal x(t) is $\frac{2j\cos 2\omega}{\omega} - \frac{2j\sin \omega}{\omega^2}$

Comment

Step 12 of 15

(h)

Consider the following figure:

Figure 2

Write the mathematical representation of the signal in Figure 2.

Assume,

$$x_1(t) = \sum_{k=-\infty}^{\infty} \delta(t - 2k)$$

Write the Fourier transform of this signal.

$$X_1 \left(j\omega \right) = \frac{2\pi}{2} \sum_{k=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi k}{2} \right)$$

Clearly from Figure 2, the input signal is,

$$x(t) = 2x_1(t) + x_1(t-1)$$

Compute the Fourier transform of this signal.

$$\begin{split} X\left(j\omega\right) &= 2X_1\left(j\omega\right) + e^{-j\omega}X_1\left(j\omega\right) \\ &= X_1\left(j\omega\right)\left[2 + e^{-j\omega}\right] \\ &= \frac{2\pi}{2}\sum_{k=-\infty}^{\infty}\delta\left(\omega - \frac{2\pi k}{2}\right)\left[2 + e^{-j\omega}\right] \\ &= \pi\sum_{k=-\infty}^{\infty}\delta\left(\omega - \pi k\right)\left(2 + e^{-j\omega}\right) \end{split}$$

$$X(j\omega) = \pi \sum_{k=-\infty}^{\infty} \delta(\omega - \pi k) (2 + e^{-j\omega})$$

$$= \pi \sum_{k=-\infty}^{\infty} \delta(\omega - \pi k) [2 + e^{-j\pi k}]$$

$$= \pi \sum_{k=-\infty}^{\infty} \delta(\omega - \pi k) [2 + (e^{-j\pi})^{k}]$$

$$= \pi \sum_{k=-\infty}^{\infty} \delta(\omega - \pi k) [2 + (-1)^{k}]$$

Step 13 of 15

(i)

The signal,
$$x(t) = \begin{cases} 1 - t^2 & 0 < t < 1 \\ 0 & \text{otherwise} \end{cases}$$

Compute the Fourier transform of this signal.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{0}^{1} (1-t^{2})e^{-j\omega t}dt$$

$$= \int_{0}^{1} e^{-j\omega t}dt - \int_{0}^{1} t^{2}e^{-j\omega t}dt$$

$$= \frac{e^{-j\omega t}}{-j\omega}\Big|_{0}^{1} - t^{2}\frac{e^{-j\omega t}}{-j\omega}\Big|_{0}^{1} + \int_{0}^{1} 2t\frac{e^{-j\omega t}}{-j\omega}dt$$

Simplify further.

$$X(j\omega) = \frac{e^{-j\omega} - 1}{-j\omega} + \frac{e^{-j\omega}}{j\omega} + 2\left[\frac{te^{-j\omega t}}{(-j\omega)^{2}}\Big|_{0}^{1} - \int_{0}^{1} \frac{e^{-j\omega t}}{(-j\omega)^{2}} dt\right]$$

$$= \frac{1 - e^{-j\omega} + e^{-j\omega}}{j\omega} + \frac{2e^{-j\omega}}{(-j\omega)^{2}} - \frac{2e^{-j\omega t}}{(-j\omega)^{3}}\Big|_{0}^{1}$$

$$= \frac{1}{j\omega} - \frac{2e^{-j\omega}}{-\omega^{2}} - \frac{2e^{-j\omega}}{(-j\omega)^{3}} + \frac{2}{(-j\omega)^{3}}$$

$$= \frac{1}{j\omega} - \frac{2e^{-j\omega}}{-\omega^{2}} + \frac{2 - 2e^{-j\omega}}{(-j\omega)^{3}}$$

Thus, the Fourier transform of the signal x(t) is $\frac{1}{j\omega} - \frac{2e^{-j\omega}}{-\omega^2} + \frac{2 - 2e^{-j\omega}}{\left(-j\omega\right)^3}$

Comment

Step 14 of 15

(j)

The signal,
$$x(t) = \sum_{n=-\infty}^{\infty} e^{-|t-2n|}$$

Compute the Fourier transform of this signal.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} e^{-|t-2n|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} \sum_{n=-\infty}^{0} e^{t-2n}e^{-j\omega t}dt + \int_{0}^{\infty} \sum_{n=0}^{\infty} e^{-t+2n}e^{-j\omega t}dt$$

$$= \sum_{n=-\infty}^{0} e^{-2n} \int_{-\infty}^{0} e^{t}e^{-j\omega t}dt + \sum_{n=0}^{\infty} e^{2n} \int_{0}^{\infty} e^{-t}e^{-j\omega t}dt$$

ABOUT CHEGG

Media Center
College Marketing
Privacy Policy
Your CA Privacy Rights
Terms of Use
General Policies
Intellectual Property Rights
Investor Relations
Corporate Development

RESOURCES

Site Map Mobile Publishers Join Our Affiliate Program Advertising Choices

TEXTBOOK LINKS

Return Your Books Textbook Rental eTextbooks Used Textbooks Cheap Textbooks College Textbooks Sell Textbooks

STUDENT SERVICESChegg Play

Study 101 Chegg Coupon Scholarships Career Search Internships College Search Scholarship Redemption

COMPANY

Jobs Customer Service Give Us Feedback Chegg For Good Become a Tutor

LEARNING SERVICES

Online Tutoring Chegg Study Help Solutions Manual Tutors by City GPA Calculator Test Prep

Enrollment Services

Over 6 million trees planted