PE-3 August 2015 QE

PE-3 page 1 of 2

(34) 1. Consider the dc-to-dc converter.

Assume ideal switches and diodes and $T \ll L_{AA}/r_a$.

- (a) If $\omega_r = 100 \text{ rad/s}$, $I_1 = -1 \text{ A}$, and $I_2 = 3 \text{ A}$, establish the duty cycle k.
- (b) Sketch steady state i_{D1} , i_{S1} , and approximate their average values.
- (34) 2. Consider the three-phase full-bridge rectifier.

Suppose $e_{ga} = E \cos \theta_e$, $e_{gb} = E \cos(\theta_e - \frac{2\pi}{3})$, and $e_{gc} = E \cos(\theta_e + \frac{2\pi}{3})$ where $\theta_e = \omega_e t$.

- (a) If $l_c = 0$, over what subinterval of $0 \le \theta_e \le 2\pi$ do Thyristors 2 and 3 conduct assuming the firing delay angle α is zero. Assume the dc current I_d is constant and positive. Sketch the simplified equivalent circuit of this interval.
- (b) For the interval in (a), establish an expression for $v_{dc}(\theta_e)$ and evaluate its average value in terms of E.

(32) 3. All switches and diodes are ideal. The load is a symmetrical ac motor. Assume complimentary switching $(S2a = \overline{S1a}, S2b = \overline{S1b}, \text{ and } S2c = \overline{S1c})$.

Suppose S1a, S1b, and S2c are closed.

- (a) Establish v_{ng} (voltage from n to g) in V.
- (b) Establish v_{bn} in V.
- (c) If, instead, S2a, S2b, and S2c are closed, what is the value of v_{bn} ?
- (d) If a conventional sine-triangle modulator is used (i.e. without third-harmonic injection), what is the maximum peak amplitude of \hat{v}_{an} (fast average of v_{an}) if over-modulation is not allowed?

Write in Exam Book Only