Algebra Abstracta: Tarea #5

Jonathan Andrés Niño Cortés

27 de febrero de 2015

1. Sea F un campo y sea f(x) un polinomio no constante en F[x]. Describa el nilradical de F[x]/(f(x)) en términos de la factorización de f(x)

Demostración. Como F es un campo tenemos que F[x] es un dominio euclideano y por lo tanto es un D.I.P y un D.F.U. En primer lugar existe una factorización única de f(x) en irreducibles. Sea dicha factorización $f(x) = \pi_1^{\alpha_1} \cdots \pi_n^{\alpha_n}$. En un punto en una tarea anterior se demostró que el nilradical de R/I es igual al rad I/I donde rad I es $\{r \in R \mid r^n \in I \text{ para algún } R \in \mathbb{Z}^+\}$

Para nuestro caso rad $(f(x)) = (\pi_1 \cdots \pi_n)$. En efecto, para cualquier $r \in \text{rad } (f(x))$ tenemos que $r^n = q\pi_1^{\alpha_1} \cdots \pi_n^{\alpha_n}$. Entonces r también es divisible por los mismos irreducibles que r^n por lo que $r \in (\pi_1 \cdots \pi_n)$ y además $\pi_1 \cdots \pi_n \in \text{rad } (f(x))$ pues $\pi_1^{\alpha} \cdots \pi_n^{\alpha} \in (f(x))$ para $\alpha = \max(\alpha_i)$.

Por lo tanto el nilradical de F[x]/(f(x)) es $(\pi_1 \cdots \pi_n)/(f(x))$.

2. a) Sean $F \subseteq K$ dos cuerpos y sean p(x), q(x) dos polinomios diferentes de cero en F[x]. Muestre que

$$\mathrm{m.c.d}_{F[x]}(p,q) = 1 \iff \mathrm{m.c.d}_{K[x]}(p,q) = 1.$$

Demostración. F[x] y K[x] son ambos dominios euclideos, y por lo tanto también son dominios de factorización única.

 \Rightarrow : m.c.d_{F[x]}(p,q) = 1 implica que existen $r, s \in P[x]$ tales que pr + qs = 1. Pero p, r, q y s pertenecen a K[x]. Por lo tanto, m.c.d_{K[x]}(p,q) = 1.

Observación: Tanto en F[x] como en K[x] las unidades son los polinomios de grado 0, es decir las constantes. Esto es una consecuencia de la norma euclidea asociada a estos anillos.

 \Leftarrow : Si suponemos por contradicción que $m = \text{m.c.d}_{F[x]}(p,q) \neq 1$ entonces m es un polinomio de grado mayor a 0 que divide tanto a p como a q. Entonces extendiendo a K[x], m sigue dividiendo tanto a p como a q y por lo tanto debe dividir a $\text{m.c.d}_{K[x]}(p,q)$, que por lo tanto no puede ser igual a 1 porque m no es una unidad en K[x].

b) Sea R un anillo conmutativo con identidad. La derivada formal en el anillo de polinomios R[x] se define de la manera usual i.e., si $p(x) = a_0 + a_1x + \cdots + a_nx^n$ entonces

$$p'(x) := a_1 + 2a_2x^{+}3a_3x^{2} \cdot \cdot \cdot + a_nnx^{n-1}$$

Sea F un cuerpo contenido en los números complejos y $p(x) \in F[x]$. Una raiz $\alpha \in \mathbb{C}$ de p(x) se llama raíz repetida si $(x - \alpha)^2$ divide a p(x) en $\mathbb{C}[x]$.

Sea $p(x) \in F[x] \setminus 0$ Muestre que m.c.d(p, p') = 1 si y sólo si p no tiene raíces repetidas.

Demostración. Por el literal anterior, esto es equivalente a demostrar que m.c. $d_{\mathbb{C}[x]}(p, p') = 1$ si y sólo si p no tienes raices repetidas.

 \Rightarrow : Suponga que p tiene raices repetidas. Entonces $p(x) = (x - \alpha)^2 q(x)$, donde $\alpha \in \mathbb{C}$ y $q(x) \in \mathbb{C}$. Por cálculo de variable compleja sabemos que la derivada es igual a $p'(x) = 2(x - \alpha)q(x) + (x - \alpha)^2 q'(x)$. Concluimos que $(x - \alpha)$ divide tanto a p como a p'. Luego m.c.d $\mathbb{C}[x](p, p') \neq 1$.

 \Leftarrow : Suponga que p(x) no tiene raices repetidas. Luego $p = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$. Además, sabemos que en $\mathbb C$ los polinomios de grado 1 son irreducibles por lo que esta es la factorización única en irreducibles de p. Entonces vamos a demostrar que níngun $x - \alpha_i$ divide a p'(x) lo que implica que m.c.d $\mathbb{C}[x](p, p') = 1$, pues no tendrían factores irreducibles en común.

Obsérvese que $p(x) = (x - \alpha_i)q(x)$ donde q(x) no es divisible por $(x - \alpha_i)$. Si p'(x) fuera divisible por $(x - \alpha_i)$ entonces $q(x) = p'(x) - (x - \alpha_i)q'(x)$ sería divisible por $(x - \alpha_i)$ lo cual es una contradicción. Por lo tanto p'(x) no es divisible por $x - \alpha_i$. Esto concluye la demostración.

3. Sea R un D.F.U. y sea $a \in R$. De condiciones necesarias y suficientes sobre a de tal forma que $x^2 - a$ sea un polinomio irreducible en R[x].

Demostración. La condición necesaria y suficiente para que x^2-a sea un polinomio irreducible en R[x] es que a no sea un cuadrado perfecto. Por un lado es necesaria porque si $a=\alpha^2$ entonces $x^2-a=(x-\alpha)(x+\alpha)$. Por otro lado es suficiente pues si suponemos que x^2-a es reducible, entonces existen polinomios que deben ser de grado 1, $(x+\alpha)(x+\beta)$ con $\alpha,\beta\in R$ tales que $(x+\beta)(x+\gamma)=x^2-1$. Por lo tanto, $x^2+(\alpha+\beta)x+\alpha\beta=x^2-1$ de donde deducimos que $\alpha+\beta=0$ y $\alpha\beta=-a$. Por lo tanto, $\alpha=-\beta$ y $-a=\alpha(-\alpha)$ de donde concluimos que $a=\alpha^2$ es un cuadrado perfecto.

4. Sea K un cuerpo y sea $f(x) \in K[x]$ un polinomio de grado al menos 1 que no es un cuadrado perfecto. Muestre que

$$K[x,y]/\langle y^2 - f(x)\rangle$$

es un dominio.

Demostración. Esto es una consecuencia del punto anterior, pues K[x,y] = K[x][y] y nuestra suposición nos dice que f(x) no es un cuadrado perfecto en K[x]. Por lo tanto, $y^2 - f(x)$ es irreducible en K[x,y]. Pero además, como K es un cuerpo K[x] sería un dominio euclideo y por lo tanto un D.F.U. y K[x,y] sería un D.F.U. también por un teorema visto en clase. Por lo tanto, $y^2 - f(x)$ también es primo y entonces $K[x,y]/\langle y^2 - f(x)\rangle$ es un dominio.

- 5. Sea R un dominio con cuerpo de fracciones K. El anillo R se llama integralmente cerrado si todo $r \in K$ que es raiz de un polinomio mónico con coeficientes en R está en R.
 - a) Muestre que todo D.F.U es integrálmente cerrado

Demostración. Tome p(x) un polinomio mónico en R[x] y supongamos que $r \in K$ es una raíz de p. Entonces, p(x) como polinomio en K[x] es divisible por (x-r), es decir que existen $q \in K[x]$ tal que p(x) = (x-r)q(x). Como p es mónico q también tiene que ser mónico. Luego si q fuera de grado 0 tendría que ser 1, y esto implicaria que p(x) = x - r, pero como p(x) pertenece a R[x] esto implica que $r \in R$. Si q(x) es de grado mayor entonces por el lema de Gauss (que podemos utilizar porque R es un D.F.U.) existen elementos $r, s \in F$ tales que rq(x) y $s(x-r) \in R[x]$ y p(x) = rq(x)s(x-r) pero como p(x) es mónico esto implica que rs = 1, es decir p(x) = q(x)(x-r) con q(x) y (x-r) en R[x]. Esto implica que $r \in R$.

b) Muestre que el anillo $\mathbb{C}[x,y]/\langle y^2-x^3\rangle$ es un dominio que no es integralmente cerrado.

Demostración. Sea $R = \mathbb{C}[x]\mathbb{C}[x,y]/\langle y^2 - x^3 \rangle$

 x^3 no es cuadrado perfecto en $\mathbb{C}[x]$. Por lo tanto, el punto 4 nos permite concluir que R es un dominio. Notese que $x^3 \equiv y^2 \mod \langle y^2 - x^3 \rangle$. Ahora para demostrar que no es integralmente cerrado tomese el polinomio mónico $z^2 - x$. Este polinomio es irreducible en R[z] pues claramente x no es un cuadrado perfecto de R. Pero si tomamos K[z] donde K es el campo de fracciones de R. Entonces $y/x \in K$ sería una raiz del polinomio. En efecto $(y/x)^2 - x = y^2/x^2 - x$, pero $y^2 = x^3$, por lo tanto, $y^2/x^2 - x = x^3/x^2 - x = x - x = 0$. Esto demuestra que R no es integralmente cerrado.

c) Sean m y n enteros positivos y suponga que m no es una potencia n-ésima perfecta (por ejemplo 32 no es un cuadrado perfecto y 25 no es un cubo perfecto.) Muestre que $\sqrt[n]{m}$ es irracional.

Demostración. Por el punto a) tenemos que $\mathbb{Z}[x]$ es integralmente cerrado. Entonces considere el polinomio $x^n - m$, que es un polinomio mónico con coeficientes en \mathbb{Z} . $\sqrt[n]{m}$ es precisamente una raiz de este polinomio en $\mathbb{R}[x]$. Ahora si suponemos

que $\sqrt[n]{m}$ es racional entonces por el literal a) tendriamos que $\sqrt[n]{m}$ sería un entero. Es decir que $m=z^n$ para $z=\sqrt[n]{m}\in\mathbb{Z}$, lo que contradice nuestra suposición que m no es potencia n-ésima perfecta.

- 6. Un anillo conmutativo con unidad R se llama anillo local si R tiene un único ideal maximal.
 - a) Sean R un anillo conmutativo con identidad, M un ideal maximal de R y n un entero positivo. Muestre que R/M^n es un anillo local.

Demostraci'on. Por un punto realizado en una tarea anterior tenemos que si N es un ideal máximal en R/M^n entonces $N^*=\pi^{-1}(N)$ es un ideal máximal en R donde π es el homomorfismo natural entre R y R/M^n que claramente es sobrevectivo.

Pero vemos que $M^n \subseteq N^*$ y que además como N^* es máximal entonces es primo. Ahora por un teorema visto en clase concluimos que $M \subseteq N^*$ o que $M^{n-1} \subseteq N^*$. Repitiendo este proceso n veces llegamos a que $M \subseteq N^*$. Pero como M es máximal esto significa que N^* debe ser igual a M. Por lo tanto, M/M^n es el único ideal máximal de R/M^n , es decir que es un anillo local.

b) Sea R un D.I.P y sea $I \neq 0$ un ideal de R. Muestre que R/I es isomorfo a un producto finito de anillos locales.

Demostración. En primer lugar, como R es un D.I.P también es un D.F.U. Si I=(1) no hay nada que demostrar pues $R/I=\{0\}$ es trivialmente un anillo local. Entonces, sea $I=(\alpha)$ y sea $\pi_1^{\alpha_1}\cdots\pi_n^{\alpha_n}$ la factorización de α en irreducibles. Como π_i es irreducible entonces es primo, pero además como estamos en un D.I.P primo implica maximal. Luego cada (π_i) es máximal. Además $(\pi_i^{\alpha_i})$ y $(\pi_j^{\alpha_j})$ son comaximales pues sus generadores no tienen factores irreducibles en común. Luego por el teorema chino del residuo tenemos que $R/I \cong R/(\pi_1^{\alpha_1}) \times \cdots \times R/(\pi_n^{\alpha_n})$ donde cada $R/(\pi_i^{\alpha_i})$ es un anillo local por el punto a).