TEL252E Problems

Problem 1 CT System Properties.

Consider a CT system with input x(t) and output y(t). For each of the following systems, i) prove that it is linear or give a counter example, ii) prove that it is time-invariant or give a counter example, iii) determine whether it is causal or noncausal, and iv) determine if it is a memoryless or memory system.

- (a) y(t) = u(t)x(t)
- (b) $y(t) = x(\sin(t))$
- (c) $y(t) = \sin(x(t))$
- (d) $y(t) = \frac{dx(t)}{dt}$
- (e) y(t) = x(2t) x(t-1)
- (f) y(t) = x(0)
- (g) $y(t) = \int_0^t x(\tau)d\tau$

Problem 2 DT System Properties.

Consider a system with input x[n] and output y[n]. For each of the following systems, i) prove that it is linear or give a counter example, ii) prove that it is time-invariant or give a counter example.

- (a) y[n] = x[n] + 1
- (b) y[n] = x[2n] (This operation is known as decimation.)
- (c) $y[n] = \begin{cases} x[n/2], & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$
- (d) $y[n] = \begin{cases} x[n], & x[n] < 4 \\ 4, & \text{else} \end{cases}$

Problem 3 *Determining the impulse response of DT LTI systems.*

For each of the following systems with input x and output y, i) prove that the system is linear; ii) prove that the system is time invariant; iii) compute the system's impulse response. Simplify your answer as much as possible.

- (a) $y_n = \sum_{k=0}^{\infty} b_k x_{n-k}$
- (b) $y_n = \frac{1}{3} \left(x_n \frac{1}{2} (x_{n-1} + x_{n+1}) \right)$
- (c) $y_n = \frac{1}{2}y_{n-1} + x_n$

Problem 4 *Determining the impulse response of CT LTI systems.*

Determine the impulse response for the following system under the assumption that the system is initially at rest.

$$y(t) = ay(t) + x(t)$$

Problem 5 *Determining the impulse response of CT LTI systems.*

For each of the following systems with input x and output y, i) prove that the system is linear; ii) prove that the system is time invariant; iii) compute the system's impulse response. Simplify your answer as much as possible.

(a)
$$y(t) = \int_{-\infty}^{\infty} r(\tau - t)x(\tau)d\tau$$

(b)
$$y(t) = x(t) + 2x(t+1) + 3x(t-1)$$

(c)
$$\frac{dy(t)}{dt} = -x(t)$$

Problem 6 Properties of LTI systems.

A time invariant system $T[\cdot]$ is observed to have the following input/output relationships.

$$\begin{array}{rcl} \delta_{n-1} + 2\delta_{n-2} & = & T \left[\, \delta_n + 2\delta_{n-2} \, \right] \\ \delta_{n-1} + 2\delta_{n-3} & = & T \left[\, 3\delta_{n-2} \, \right] \\ \delta_{n+1} + 2\delta_n + \delta_{n-1} & = & T \left[\, \delta_{n-3} \, \right] \end{array}$$

- (a) Prove that the system is linear or nonlinear.
- (b) Compute the response to an input of δ_n , that is compute $T[\delta_n]$.

Problem 7 Properties of LTI systems.

Prove the following properties.

- (a) The commutative property of DT convolution, that is, $x_n * y_n = y_n * x_n$
- (b) The associative property of DT convolution, that is, $(x_n * y_n) * z_n = x_n * (y_n * z_n)$
- (c) The distributive property of DT convolution, that is, $x_n * (y_n + z_n) = x_n * y_n + x_n * z_n$
- (d) Let h_n be the impulse response of a DT system. Then the system is causal if and only if $h_n = 0$ for n < 0.

Problem 8 Responses of LTI systems.

Find the outputs of the following LTI systems with the following inputs.

- (a) Impulse response of h(t) = u(t+1) u(t-1); input of x(t) = u(t) u(t-2)
- (b) Impulse response of $h_n = a^n u_n$; input of $x_n = u_n$ for |a| < 1.
- (c) Impulse response of $h_n = (-a)^n u_n$; input of $x_n = u_n$ for |a| < 1.

Problem 9 Convolutions.

Calculate the output of a LTI system with impulse response h(n), input x(n), and output y(n).

(a)
$$h(n) = a^n u(n)$$
 and $x(n) = b^n u(n)$ where $a \neq b$.

(b)
$$h(n) = a^n u(n)$$
 and $x(n) = a^n u(n)$

(c)
$$h(n) = a^n u(n)$$
 and $x(n) = \cos(\omega n)$ where $|a| < 1$.

(d)
$$h(n) = u(n) - u(n - N)$$
 and $x(n) = u(n) - u(n - P)$ for $P > N$.

Problem 10 Causal and Stable LTI systems.

For the following discrete-time and continuous-time LTI systems, determine whether each system is causal and/or stable. Justify your answers.

(a)
$$h_n = (\frac{1}{2})^n u_{-n}$$

(b)
$$h_n = (-\frac{1}{2})^n u_n + (1.01)^n u_{n-1}$$

(c)
$$h(t) = e^{2t}u(-1-t)$$

(d)
$$h(t) = te^{-t}u(t)$$

Problem 11 Properties of convolution.

- (a) Consider a CT LTI system y(t) = x(t) * h(t). Show the input $\frac{dx(t)}{d(t)}$ results in the output $\frac{dy(t)}{d(t)}$.
- (b) Consider the DT LTI system $y_n = x_n * h_n$. Prove that

$$\sum_{n=-\infty}^{\infty} y_n = \left(\sum_{n=-\infty}^{\infty} x_n\right) \left(\sum_{n=-\infty}^{\infty} h_n\right)$$

(c) Consider a CT LTI system y(t) = x(t) * h(t). Prove that if x(t) is periodic with period T, then y(t) is also periodic with period T.

Problem 12 Properties of convolution.

Let x_n be a signal which is nonzero only in the interval $0 \le n < M$ and h_n be a signal which is nonzero only in the interval $0 \le n < M$.

- (a) Determine the interval $L_1 \le n \le L_2$ over which $y_n = x_n * h_n$ is nonzero. Express L_1 and L_2 in terms of M and N.
- (b) Verify the result in the the previous part by analytically computing the convolution of the signals $x_n = u_n u_{n-5}$ and $h_n = 2(u_n u_{n-3})$.
- (c) Verify the result in the the previous part by graphically computing the convolution of the signals $x_n = u_n u_{n-5}$ and $h_n = 2(u_n u_{n-2})$.

Problem 13 Discrete-time Impulse Response

Consider the discrete-time LTI system described by the equation

$$y_n = x_n - 3x_{n-1} + 2x_{n-2}$$

- (a) Compute the impulse response of the system.
- (b) Express the system in the form $y_n = x_n * h_n$.
- (c) Find the output when the input is given by $x_n = u_n$.
- (d) Find the output when the input is given by $x_n = 1$.

Problem 14 System response to a complex exponential input.

For the following continuous-time and discrete-time systems with the given input and output, determine whether the system is definitely *not* LTI.

(a)
$$S_1[e^{j7t}] = te^{j7t}$$

(b)
$$S_2[e^{j7t}] = e^{j7(t-2)}$$

(c)
$$S_3[e^{j7t}] = \sin(7t)$$

(d)
$$S_4[e^{j\pi n/4}] = e^{j\pi n/4}u_n$$

(e)
$$S_5[e^{j\pi n/4}] = e^{j3\pi n/4}$$

(f)
$$S_6[e^{j\pi n/4}] = 2e^{3\pi/4}e^{j\pi n/4}$$

Problem 15 DT Impulse Response

Consider the DT LTI system described by the equation

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

where $\lim_{n\to-\infty} y[n] = 0$.

- (a) Compute the impulse response of the system.
- (b) Express the system in the form y[n] = x[n] * h[n].
- (c) Find the output when the input is given by x[n] = u[n].
- (d) Find the output when the input is given by x[n] = 1.

Problem 16 Parseval's formula.

For a signal expressed using Equation 1 show that

$$\int_{a}^{b} |x(t)|^{2} dt = \sum_{m=-\infty}^{\infty} |a_{m}|^{2}$$

This important result is known as the Parseval's formula. Note that the left side is the energy in x(t). **Problem 17** Determining Fourier series coefficients.

Each of the following functions is periodic with period T. For each function sketch the real and imaginary parts of the function on the interval [0,2T] and calculate the Fourier series coeffcients.

- (a) $x(t) = e^{j2\pi t/3}$ with period T = 3.
- (b) $x(t) = \sin(2\pi t/3) + 3\cos(\pi t/6)$ with period T = 12.
- (c) x(t) = rect(t) for |t| < T/2 with period T = 2. (put in simplest form)
- (d) $x(t) = \Lambda(t)$ for |t| < T/2 with period T = 2. (put in simplest form)

Problem 18 Properties of Fourier series.

Suppose that the Fourier series coefficients for the function x(t) with period T are given as a_k , and the Fourier series coefficients for the function y(t) with period T are given as b_k . Prove the following relationships.

- (a) If $y(t) = \frac{dx(t)}{dt}$ then $b_k = jk\frac{2\pi}{T}a_k$.
- (b) If y(t) = x(-t) then $b_k = a_{-k}$.
- (c) If x(t) is real, then $a_k = a_{-k}^*$.
- (d) If x(t) is real and x(t) = x(-t), then a_k are real and $a_k = a_{-k}$.

Problem 19 Reconstructing signals from Fourier series coefficients.

In each of the following, the Fourier series coefficients and the period of a signal are specified. Determine the signal x(t) in each case.

(a)
$$a_k = (\frac{1}{2})^{|k|}$$
 and $T = 2$.

(b)
$$a_k = \begin{cases} jk & |k| < 3 \\ 0 & \text{otherwise} \end{cases}$$
 and $T = 4$.

(c)
$$a_k = \cos(\pi k/4)$$
 and $T = 4$.

Problem 20 Fourier series and LTI systems.

Suppose that the signal x(t) is periodic with period T and Fourier series coefficients a_k . Let y(t) = h(t) * x(t) where h(t) is the impulse response of an LTI system.

- (a) Show that y(t) is also periodic with period T.
- (b) Show that the Fourier series coefficients of y(t) have the form $b_k=c_k\,a_k$ where c_k are multiplicative constants.
- (c) Derive an expression for the multiplicative constants c_k .

Problem 21 Evaluating CTFTs.

Calculate the continuous-time Fourier transform for the following signals:

a)
$$x(t) = e^{-at}u(t)$$
 for $a > 0$

b)
$$x(t) = te^{-at}u(t)$$
 for $a > 0$

c)
$$x(t) = rect(t)$$

d)
$$x(t) = \text{rect}\left(\frac{t-a}{b}\right)$$
 for any two real numbers a and b .

e)
$$x(t) = \delta(t)$$

f)
$$x(t) = a\delta(t-b)$$
 for any two real numbers a and b .

Problem 22 Properties of CTFTs.

For the following problems, let $X(\omega)$ and $Y(\omega)$ be the CTFT's of x(t) and y(t), respectively. Calculate the CTFT of each function in terms of the functions x(t), y(t), $X(\omega)$, and $Y(\omega)$.

5

(a)
$$5x(t-a)$$

(b)
$$X(t)$$

(c)
$$x(t) * y(t)$$

(d)
$$x(t)y(t)$$

(e)
$$x(-t)$$

(f)
$$x(t)e^{j\omega_0t}$$

(g)
$$\frac{1}{|a|}X\left(\frac{\omega}{a}\right)$$

Problem 23 Evaluating inverse CTFTs.

Calculate the **inverse** CTFT for the following signals.

a)
$$X(\omega) = \delta(\omega)$$

b)
$$X(\omega) = \delta(\omega - \omega_0)$$

c)
$$X(\omega) = \text{rect}(\omega)$$

Problem 24 Evaluating CTFTs.

Use answers to Problems 1 and 2 above to compute the CTFT for the following signals.

- a) $x(t) = \operatorname{sinc}(t)$.
- b) $x(t) = \operatorname{sinc}\left(\frac{t-a}{b}\right)$ for any two real numbers a and b.
- c) x(t) = 1
- d) $x(t) = e^{j\omega_0 t}$
- e) $x(t) = \cos(\omega_0 t)$
- f) $x(t) = \sin(\omega_0 t)$

Problem 25 Transfer functions for LTI systems.

For an LTI system T we have

$$T[e^{-2t}u(t)] = te^{-t}u(t) + 2e^{-2t}u(t)$$

Determine the transfer function, $H(\omega) = \frac{Y(\omega)}{X(\omega)}$, for this system.

Problem 26 Deriving CTFT Properties

Derive each of the following CTFT properties. Assume that in each case the CTFT of x(t) and y(t) are $X(\omega)$ and $Y(\omega)$ respectively.

- b) $x(-t) \stackrel{CTFT}{\Leftrightarrow} X(-\omega)$
- c) $x(t-t_0) \overset{CTFT}{\Leftrightarrow} X(\omega)e^{-j\omega t_0}$
- d) $x(at) \overset{CTFT}{\Leftrightarrow} \frac{1}{|a|} X(\frac{\omega}{a})$
- e) $X(\omega) = X^*(-\omega)$ if x(t) is real
- h) $x(t)y(t) \stackrel{CTFT}{\Leftrightarrow} \frac{1}{2\pi}X(\omega) * Y(\omega)$
- j) $\frac{dx(t)}{dt} \stackrel{CTFT}{\Leftrightarrow} j\omega X(\omega)$

Problem 27 Computing CTFT Transforms

For each of the following functions, compute the CTFT then sketch the function x(t) and its Fourier transform $X(\omega)$. (Hint: Use CTFT property 12 from notes.)

a)
$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - k/2)$$

b)
$$x(t) = \operatorname{sinc}(t) \sum_{k=-\infty}^{\infty} \delta(t - k/2)$$

c)
$$x(t) = \operatorname{sinc}(t) \sum_{k=-\infty}^{\infty} \delta(t-k)$$

Problem 28 Frequency analysis of linear differential equations

Consider the system with input x(t) and output y(t) described by the differential equation

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} + x(t)$$

where the system is assumed to be initially at rest.

- a) Calculate the frequency response of the system $H(\omega)$.
- b) Express $H(\omega)$ as the ratio of factored polynomials.

Problem 29 Duality property of the CTFT

Use the duality property to determine the CTFT of the following signals

- (a) $x(t) = \frac{1}{5+j2\pi t}$
- (b) $x(t) = \frac{t}{(1+t^2)^2}$ (Hint: see question 4.12 in the textbook.)

Problem 30 Symmetry properties of the CTFT

For each of the following transforms, determine whether the corresponding time-domain signal is (i) real, purely imaginary, or complex, and (ii) even, odd, or neither even nor odd. Do this without evaluating the inverse CTFT.

- (a) $X(\omega) = \sin(2\omega)\cos(3\omega)$
- (b) $X(\omega) = \sin(\omega) e^{j(2\omega + \pi/2)}$
- (c) $X(\omega) = u(\omega) u(\omega 4\pi)$

Problem 31 Frequency analysis of LTI systems

Consider a LTI system with frequency response $H(\omega)$, input x(t), and output y(t).

(a) Derive an expression for

$$\int_{-\infty}^{\infty} h(t)dt$$

in terms of the function $H(\omega)$.

- (b) Derive an expression for h(0) in terms of $H(\omega)$.
- (c) If the input is x(t) = a, then express the output y(t) in terms of a and $H(\omega)$.
- (d) If the input is x(t) = a, then express the output y(t) in terms of a and h(t).
- (e) You are asked to design a LTI system with a DC gain of A. What do you know about the impulse response of the system?
- (f) You are asked to design a LTI system with a DC gain of A. What do you know about the frequency response of the system?

Problem 32 Frequency analysis of linear differential equations

Consider the system with input x(t) and output y(t) described by the differential equation

$$\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 10y(t) = \frac{dx(t)}{dt} - x(t)$$

where the system is assumed to be initially at rest.

- (a) Determine the frequency response of the system $H(\omega)$.
- (b) Determine the impulse response of the system h(t).
- (c) If the input to the system is $x(t) = e^{-t}u(t)$ find the corresponding output.

Problem 33 Inverse CTFT's

Calculate the inverse CTFT's of the following transforms.

(a)
$$X(\omega) = \frac{1}{j\omega+5}$$

(b)
$$X(\omega) = \frac{1}{(i\omega + 5)^2}$$

(c)
$$X(\omega) = \frac{1}{(j\omega+5)(j\omega+2)}$$

Problem 34 Convolution and CTFT's

For each of the following, calculate $X(\omega)$, $Y(\omega)$, $Z(\omega) = X(\omega)Y(\omega)$, and z(t).

(a)
$$x(t) = e^{-t}u(t)$$
 and $y(t) = e^{-t}u(t)$

(b)
$$x(t) = (e^{-t}u(t)) * (e^{-t}u(t))$$
 and $y(t) = e^{-t}u(t)$

(c)
$$x(t) = \frac{t^{n-1}}{(n-1)!}e^{-t}u(t)$$
 and $y(t) = e^{-t}u(t)$

(d)
$$x(t) = e^{-t}u(t)$$
 and $y(t) = e^{-2t}u(t)$

(e)
$$x(t) = e^{-t}u(t)$$
 and $y(t) = te^{-2t}u(t)$

Problem 35 DFT

For each of the following discrete-time signals x(n), calculate the DFT X_k for $0 \le k < N$. In each case, assume that m is an integer.

(a)
$$x(n) = \delta(n)$$
 for $0 \le n \le N$.

(b)
$$x(n) = \delta(n - m)$$
 for $0 \le n, m < N$.

(c)
$$x(n) = e^{j\frac{2\pi nm}{N}}$$
 for $0 \le n, m < N$.

(d)
$$x(n) = \cos\left(\frac{2\pi nm}{N}\right)$$
 for $0 \le n, m < N$.

(e)
$$x(n) = \sin\left(\frac{2\pi nm}{N}\right)$$
 for $0 \le n, m < N$.

Problem 36 DFT of a Sine Wave

Let $x(n) = e^{j\omega n}$ for $0 \le n < N$ and let X_k be its DFT.

- (a) Calculate an explicit expresion for X_k that is correct for any value of ω .
- (b) Sketch a plot of $|X_k|$ for $\omega = \pi/N$ and N = 20.
- (c) Calculate a simplified expression for X_k when $\omega = 2\pi m/N$ where m is an integer

8

(d) Sketch a plot of $|X_k|$ for $\omega = 2\pi/N$ and N = 20.

Problem 37 Parseval's Theorem for the DFT

(a) Let the functions $\phi_k(n)$ for $0 \le n, k < N$ have the property that

$$\langle \phi_k, \phi_l \rangle = \alpha \delta(k-l)$$

and let

$$x(n) = \sum_{k=0}^{N-1} X_k \phi_k(n)$$

then prove that

$$\sum_{n=0}^{N-1} |x(n)|^2 = \alpha \sum_{k=0}^{N-1} |X_k|^2$$

(b) Specify the functions $\phi_k(n)$, the constant α , and the form of the innerproduct $<\phi_k,\phi_l>$ so that the transform described in part a) is a DFT as described in lecture.

Problem 38 DTFT Transforms

Compute the DTFT, $X(\omega)$, for the following signals.

(a)
$$x(n) = u(n) - u(n-m)$$
 for $m \ge 0$.

(b)
$$x(n) = \delta(n-m)$$
 for m an integer.

(c)
$$x(n) = e^{(j\omega_0 - a)n}u(n)$$

(d)
$$x(n) = \cos(\omega_0 n + \phi)$$

(e)
$$x(n) = \sin(\omega_0 n + \phi)$$

(f)
$$x(n) = a^n u(n)$$
 where $|a| < 1$

(g)
$$x(n) = a^{|n|}$$
 where $|a| < 1$

(h)
$$x(n) = na^n u(n)$$
 where $|a| < 1$

(i)
$$x(n) = a^{n-1}u(n-1)$$
 where $|a| < 1$

Problem 39 Difference Equations

Consider the discrete time system y(n) = T[x(n)] with input x(n) and output y(n) which obeys the following difference equation

$$y(n) = 2r\cos(\theta)y(n-1) - r^2y(n-2) + x(n)$$

where |r| < 1 and θ are real valued constants.

- (a) Prove the system $T[\cdot]$ is linear.
- (b) Prove the system $T[\cdot]$ is time invariant.
- (c) Calculate the frequency response $H(\omega)$ of the system.
- (d) Calculate the impulse response h(n) of the system.

Problem 40 Sampling and DTFT's

Consider the functions

$$y(n) = x(nT)$$

For each example, i) sketch x(t), ii) calculate $X(\omega)$ the CTFT of x(t), iii) sketch $|X(\omega)|$, iv) sketch y(n), v) calculate $Y(\omega)$ the DTFT of y(n), vi) sketch $|Y(\omega)|$, vii) indicate if there is aliasing.

- (a) $x(t) = (\text{sinc}(t))^2$ and T = 3/8.
- (b) $x(t) = (\text{sinc}(t))^2$ and T = 1/2.
- (c) $x(t) = (\text{sinc}(t))^2$ and T = 5/8.

Problem 41 Sampling and Reconstruction

A signal x(t) is sampled at period T to form y(n).

$$y(n) = x(nT)$$

The signal y(n) is then used as the input to an impulse generator to form s(t).

$$s(t) = \sum_{k=-\infty}^{\infty} y(n)\delta(t - kT)$$

The signal s(t) is then filtered to form the final output z(t) using the filter $H(\omega)$.

- (a) Sketch a general function $|X(\omega)|$ which is bandlimited to $|\omega| < \frac{\pi}{T}$.
- (b) Calculate $Y(\omega)$ in terms of $X(\omega)$.
- (c) Sketch $|Y(\omega)|$ for a typical function $X(\omega)$.
- (d) Calculate $S(\omega)$ in terms of $X(\omega)$.
- (e) Sketch $|S(\omega)|$.
- (f) Calculate $Z(\omega)$ in terms of $X(\omega)$.
- (g) Calculate $Z(\omega)$ in terms of $X(\omega)$ assuming that $H(\omega) = T \operatorname{rect} \left(T \omega / (2\pi) \right)$
- (h) Sketch $|Z(\omega)|$ assuming that $H(\omega) = Trect (T\omega/(2\pi))$

Problem 42 Sampling and reconstruction

Consider a sampling system

$$y(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

where T=1 and x(t) is a function that is band-limited to $|\omega|<\pi$. Then, consider the signal

$$z(t) = y(t) * h(t)$$

where $h(t) = \operatorname{sinc}(t)$.

- (a) Determine $Y(\omega)$ in terms of $X(\omega)$.
- (b) Sketch $Y(\omega)$ for a typical function $X(\omega)$.
- (c) Determine and sketch $H(\omega)$.
- (d) Determine $Z(\omega)$ in terms of $X(\omega)$.
- (e) Sketch $Z(\omega)$ for a typical function $X(\omega)$.
- (f) Determine z(t) in terms of x(t).