Features and kernels

Online Perceptron

Online Perceptron

input Labeled examples $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ from $\mathbb{R}^d \times \{-1,+1\}$.

1: initialize
$$\hat{w}_1 := 0$$
.

2: **for**
$$t = 1, 2, ..., n$$
 do

3: if
$$y_t \langle \hat{\boldsymbol{w}}_t, \boldsymbol{x}_t \rangle \leq 0$$
 then

$$\hat{\boldsymbol{w}}_{t+1} := \hat{\boldsymbol{w}}_t + y_t \boldsymbol{x}_t.$$

6:
$$\hat{m{w}}_{t+1} \coloneqq \hat{m{w}}_t$$

7: end if

8: end for

9: return $\hat{m{w}}_{n+1}$.

Theorem: If $R:=\max_{t\in\{1,\ldots,n\}}\|m{x}_t\|_2$, and $m{w}_\star\in\mathbb{R}^d$ satisfies

$$y\langle \boldsymbol{w}_{\star}, \boldsymbol{x}_{t} \rangle \geq 1 \quad \text{for all } (\boldsymbol{x}_{t}, y_{t}),$$

then Online Perceptron makes at most $\|w_{\star}\|_{2}^{2} \cdot R^{2}$ mistakes (and updates).

Example run of Online Perceptron

Example run of Online Perceptron

3 / 20

Example run of Online Perceptron

Example run of Online Perceptron

5 / 29

Example run of Online Perceptron

Example run of Online Perceptron

7 / 29

Example run of Online Perceptron

What to do if data is not linearly separable

Noise: even Bayes classifier not perfect

Adding new features

Original feature vector: $\boldsymbol{x} = (x_1, x_2)$. New feature vector: $\phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)$.

Decision boundary is non-linear in x, but is linear in $\phi(x)$.

Getting the most out of linear classifiers

Often, with a "good" set of features, a linear classifier can well-approximate the Bayes classifier.

Two approaches:

- 1. Think very hard and carefully about which features to use.
- 2. Use all features that come to mind.

The kitchen sink of features

Example: document classification

► Word features:

1{ "aardvark" appears}, 1{ "abacus" appears}, ..., 1{ "zygote" appears}

▶ Bi-gram features:

1{ "bank deposit" appears}, 1{ "river bank" appears}, ...

► Tri-gram features:

1{ "New York City" appears}, 1{ "wherefore art though" appears}, . . .

Example: new features from old features $oldsymbol{x} \in \mathbb{R}^d$

► Pairwise interactions:

$$(x_1x_2, x_1x_3, \ldots, x_1x_d, x_2x_3, \ldots, x_{d-1}x_d) \in \mathbb{R}^{\binom{d}{2}}$$

► Etc.

All degree ≤ 2 interaction features

14 / 2

All degree ≤ 2 interaction features

Learning with the kitchen sink of features

- Let $\phi \colon \mathbb{R}^d \to \mathbb{R}^D$ be the mapping to the expanded feature space (e.g., all original features and all deg. 2 interactions, so $D = \Omega(d^2)$).
- ▶ Learn linear classifier $f_{\boldsymbol{w}} \colon \mathbb{R}^D \to \{\pm 1\}$ (i.e., learn a weight vector $\boldsymbol{w} \in \mathbb{R}^D$) using data with expanded features $\{(\boldsymbol{\phi}(\boldsymbol{x}_i), y_i)\}_{i=1}^n$.
- ▶ Caveat: can be computationally expensive to do this directly if D is large. Naïvely: takes $\Omega(D)$ time to even make a prediction.

Kernel trick

${\sf Degree} \le 2 \ {\sf interaction} \ {\sf features}$

▶ Recall: Online Perceptron weight vector (using expanded features) is

$$oldsymbol{w} = \sum_{(oldsymbol{x},y)\in\mathcal{M}} y oldsymbol{\phi}(oldsymbol{x})$$

where $\ensuremath{\mathcal{M}}$ is the subset of labeled examples where Online Perceptron made a mistake during training.

 $lackbox{ Prediction}$ using Online Perceptron weight vector on new point $oldsymbol{z} \in \mathbb{R}^d$:

$$\langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{z}) \rangle = \sum_{(\boldsymbol{x}, y) \in \mathcal{M}} y \langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{z}) \rangle.$$

Computational cost: $|\mathcal{M}| \times$ time to compute inner product $\langle \phi(x), \phi(z) \rangle$. Sometimes this can be faster than O(D).

 $\phi \colon \mathbb{R}^d \to \mathbb{R}^{1+2d+\binom{d}{2}}$, where

$$\phi(\mathbf{x}) = \left(1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \frac{\sqrt{2}x_1 x_2, \dots, \sqrt{2}x_1 x_d, \dots, \sqrt{2}x_{d-1} x_d}\right)$$

(Don't mind the $\sqrt{2}$'s.)

▶ Computing $\langle \phi(x), \phi(x') \rangle$ in O(d) time:

$$\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle = (1 + \langle \boldsymbol{x}, \boldsymbol{x}' \rangle)^2.$$

▶ Much better than $\Omega(d^2)$.

7 / 29

18 / 29

Products of all feature subsets

$\phi \colon \mathbb{R}^d \to \mathbb{R}^{2^d}$, where

$$\phi(\boldsymbol{x}) = \left(\prod_{i \in S} x_i : S \subseteq \{1, 2, \dots, d\}\right)$$

▶ Computing $\langle \phi(x), \phi(x') \rangle$ in O(d) time:

$$\langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}') \rangle = \prod_{i=1}^d (1 + x_i x_i').$$

▶ Much better than $\Omega(2^d)$.

Infinite dimensional feature expansion

For any $\sigma>0$, there is an infinite feature expansion $\phi\colon\mathbb{R}^d\to\mathbb{R}^\infty$ (involving Hermite polynomials of all orders) such that

$$\langle oldsymbol{\phi}(oldsymbol{x}), oldsymbol{\phi}(oldsymbol{x}')
angle \ = \ \exp\!\left(-rac{\|oldsymbol{x} - oldsymbol{x}'\|_2^2}{2\sigma^2}
ight),$$

which can be computed in O(d) time.

(This is called the **Gaussian kernel** with bandwidth σ .)

Kernels

String kernels

A **kernel function** $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function with the following property:

For any $x_1, x_2, \dots, x_n \in \mathcal{X}$, the $n \times n$ matrix whose (i, j)-th entry is $K(x_i, x_j)$ is positive semidefinite.

For any kernel K, there is a feature mapping $\phi \colon \mathcal{X} \to \mathbb{H}$ such that

$$\langle \phi(x), \phi(x') \rangle = K(x, x'),$$

(\mathbb{H} is a Hilbert space—i.e., a special kind of inner product space—called the Reproducing Kernel Hilbert Space corresponding to K.)

 $m{\phi} \colon \mathsf{Strings} \to \mathbb{N}^{\mathsf{Strings}}$, where

$$\phi(x) = (\mathsf{number} \ \mathsf{of} \ \mathsf{times} \ s \ \mathsf{appears} \ \mathsf{in} \ x : s \in \mathsf{Strings})$$

$$K(x,x') = \langle \phi(x), \phi(x') \rangle$$
 = measure of similarity between strings.

▶ Computing K(x, x'):

For each substring s of x, count how many times s appears in x' and add to total.

Dynamic programming in time $O(\operatorname{length}(\boldsymbol{x}) \times \operatorname{length}(\boldsymbol{x}'))$.

1 / 29

22 / 29

Implicit representation of weight vector

► Implicit representation:

$$oldsymbol{w} \ = \ \sum_{(oldsymbol{x},y)\in\mathcal{M}} y oldsymbol{\phi}(oldsymbol{x})$$

- ightharpoonup Never explicitly form weight vector w.
- ▶ Instead, store all labeled examples in \mathcal{M} .
- ▶ Whenever need to compute $\langle w, \phi(z) \rangle$ for new point z, iterate over examples in $\mathcal M$ to compute

$$\langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{z}) \rangle \; = \; \sum_{(\boldsymbol{x},y) \in \mathcal{M}} y \langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{z}) \rangle \; = \; \sum_{(\boldsymbol{x},y) \in \mathcal{M}} y K(\boldsymbol{x},\boldsymbol{z}) \, .$$

The kernel approach

- ► Focus on designing good kernels (rather than feature maps), which means designing good similarity functions.
- Lots of ways to construct kernels.
 (E.g., combine existing kernels.)
- ▶ Lots of algorithms can be / have been "kernelized" (like Perceptron).

Experimental results on OCR

More computational issues

- ► OCR digits data, binary classification problem: distinguish "9" from other digits.
- ▶ # training examples: 60000 (about 6000 are from class "9").
- ► Test error rates using Kernelized Averaged Perceptron (similar to Voted Perceptron).

# passes	0.1	1	2	3	4	10
Linear kernel	0.045	0.039	0.038	0.038	0.038	0.037
Degree 2	0.024	0.012	0.010	0.010	0.009	0.009
Degree 4	0.020	0.009	0.008	0.007	0.007	0.006

► Implicit representation:

$$oldsymbol{w} = \sum_{(oldsymbol{x},y)\in\mathcal{M}} y oldsymbol{\phi}(oldsymbol{x})$$

- ▶ Number of mistakes $|\mathcal{M}|$ could be $\Omega(n)$.
- ► Computing predictions as expensive as brute-force NN search.
- ▶ Training algorithms quite slow (e.g., $\Omega(n^2)$).

25 / 29

26 / 2

Kernel approximations

Experimental results on e-mail data

Many ways to try to speed-up kernel methods using approximations.

- ▶ Limit number of examples used to represent weight vector.
 - "Nystrom approximation"
 - "Budgeted Perceptron"
- $lackbox{ Use } explicit ext{ feature maps } m{z} \colon \mathbb{R}^d o \mathbb{R}^m ext{ such that }$

$$\langle \boldsymbol{z}(\boldsymbol{x}), \boldsymbol{z}(\boldsymbol{x}') \rangle \approx K(\boldsymbol{x}, \boldsymbol{x}').$$

- "Random projections / feature hashing"
- "Random kitchen sinks"

- \blacktriangleright Spam data set (4601 e-mail messages, 39.4% are spam).
- $\triangleright \mathcal{Y} = \{\text{spam, not spam}\}, \mathcal{X} = \mathbb{R}^{57} \text{ (message features)}$
- ▶ # training examples: 3065, # test examples: 1536
- ► Test error rates
 - ► Decision tree learning: 9.3%
 - ► Averaged Perceptron (128 passes): 8.27%
 - ► Random Kitchen Sink Averaged Perceptron (64 passes): 6.12% (approximates Gaussian kernel)

Key takeaways

- 1. Linear classifiers only as good as given feature representation.
- 2. Explicit feature expansion (sometimes okay!)
- 3. Kernel trick: sometimes never need $\phi(x)$ directly, but only via $\langle \phi(x), \phi(x') \rangle$, computed quickly as K(x, x').
- 4. Kernel approach: "similarity engineering" rather than "feature engineering"
- 5. High-level idea of using kernel approximations.