IFCE - Campus Maracanaú Teoria da Computação

Ciência da Computação Prof. Thiago Alves

5^a Lista de Exercícios

Aluno(a):	Matrícula:	
0 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0		

- 1. Apresente uma gramática livre de contexto para gerar $C = \{w \in \{0,1\}^* \mid w \text{ começa e termina com o mesmo símbolo}\}.$
- 2. Construa uma gramática livre de contexto para gerar a linguagem $T = \{w \in \{0,1\}^* \mid w \text{ tem pelo menos três 1's}\}$
- 3. Seja $O = \{w \in \{0,1\}^* \mid w \text{ tem tamanho impar}\}$. Mostre que O é livre de contexto.
- 4. Prove que se L_1 e L_2 são linguagens livres de contexto então L_1L_2 é uma linguagem livre de contexto. **Dica**: mostre como construir uma gramática livre de contexto G_3 para gerar a linguagem L_1L_2 a partir das gramáticas livres de contexto G_1 e G_2 tal que $L(G_1) = L_1$ e $L(G_2) = L_2$.
- 5. Seja $I = \{a^i b^j c^k \mid i = j \text{ ou } i = k\}$. Defina uma gramática livre de contexto para gerar a linguagem I.
- 6. Seja $D = \{a^i b^j \mid i \neq j\}$. Mostre que D é livre de contexto.
- 7. Mostre uma gramática livre de contexto para gerar a linguagem de todas as expressões regulares com alfabeto $\{0,1\}$. Os terminais da sua gramática são os elementos do conjunto $T = \{0,1,+,*,(,),\emptyset,e\}$ em que e representa a expressão regular ϵ .
- 8. Seja $M = \{w \in \{a,b\}^* \mid \text{a quantidade de } a\text{'s \'e pelo menos a quantidade de } b\text{'s}\}.$ Mostre que M \'e livre de contexto.
- 9. Seja $G = (V, \Sigma, S, R)$ uma gramática livre de contexto. Defina a gramática livre de contexto $G' = (V, \Sigma, S, R \cup \{S \to SS, S \to \epsilon\}).$
 - (a) Apresente um contra-exemplo para a seguinte afirmação: para toda gramática livre de contexto G, $L(G') = (L(G)^*)$.
 - (b) Mostre como construir uma gramática livre de contexto G^{\circledast} a partir de G tal que $L(G^{\circledast})=(L(G)^*)$.
- 10. Converta a seguinte gramática livre de contexto em uma equivalente na forma normal de Chomsky:

$$S \to ASB \mid \epsilon$$

$$A \rightarrow aAS \mid a$$

$$B \to SbS \mid A \mid bb$$