Some formulas and concepts of statistical physics

(Computational Chemistry and Materials Modeling, Skoltech 2014)

Ergodicity: $\lim_{T\to\infty} \int_0^T A(t) dt$ does not depend on starting point.

Ensemble average: $\langle A \rangle = \int A(p,q) \rho(p,q) \, d\Gamma$, where $d\Gamma = \frac{dp \, dq}{(2\pi\hbar)^N}$.

Thermodynamic ensembles and energies: NVE (microcanonical, energy E or entropy S), NVT (canonical, free energy F), NPT (Gibbs free energy G), NPE (enthalpy H).

Fundamental thermodynamic relation: $T dS \ge \delta Q = dE + p dV + \sum a dA - \mu dN$.

Heat capacity: $C = \frac{\delta Q}{\delta T} = T \frac{dS}{dT}$.

Canonical ensemble: $\rho(p,q) = \exp\left(\frac{F - H(p,q)}{kT}\right)$, $F = kT \ln Z$, $Z = \int e^{-H(p,q)/kT} d\Gamma$.

Quantum oscillator: $E_n = \hbar\omega \left(n + \frac{1}{2}\right)$, $Z = \left(2\sinh\frac{\hbar\omega}{2kT}\right)^{-1}$, $E = \frac{\hbar\omega}{2}\coth\frac{\hbar\omega}{2kT}$, $C/k = \left(\frac{\hbar\omega}{2kT}/\sinh\frac{\hbar\omega}{2kT}\right)^2$.