



# Time-of-Day Neural Style Transfer for Architectural Photographs

Yingshu Chen<sup>1</sup> Tuan-Anh Vu<sup>1</sup> Ka-Chun Shum<sup>1</sup> Binh-Son Hua<sup>2</sup> Sai-Kit Yeung<sup>1</sup>

INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY 2022



### **Motivation and Problem**

- Architectural photography style transfer is challenging due to its special composition of dynamic sky and static foreground.
- Generic neural style transfer and image-toimage translation treat the architectural image a single entity without knowing the foreground and background, leading to the mismatched chrominance destroyed and geometric features of the original architecture.
- Task: given an architectural photo and the style reference, we transfer styles of background and foreground separately while keeping the foreground geometry intact.









correct semantic style (Ours)

# Contributions

- 1) A new problem setting for style transfer: photorealistic style transfer for architectural photographs of different times of day.
- two-branch image-to-image translation with disentanglement network representation that separately considers style transfer for image foreground and background respectively, accompanied with simple but effective geometry losses designed for image content preservation.
- 3) A new dataset of architectural photographs and an extensive benchmark for architectural style transfer.

# Methodology



<sup>1</sup>The Hong Kong University of Science and Technology

Architectural style transfer framework contains three main modules: segmentation, image translation and blending optimization. Segmented foreground and background images are fed into the translation network respectively. The translated and blended image  $x_{1\to 2}$  with input source  $x_1$ can be further refined by blending optimization module.



## Experiments

### segmentation & blending optimization

|                                                            | e-SSIM↑ | Acc↑   | IS↑    | IoU↑   |  |  |  |
|------------------------------------------------------------|---------|--------|--------|--------|--|--|--|
| Ours-whole                                                 | 0.6838  | 0.8282 | 2.5240 | 0.7410 |  |  |  |
| Ours                                                       | 0.6359  | 0.9486 | 2.7290 | 0.7257 |  |  |  |
| Ours-opt                                                   | 0.8094  | 0.9007 | 2.6127 | 0.7715 |  |  |  |
| *whole: w/o segmentation; opt: with blending optimization. |         |        |        |        |  |  |  |

| titative Evalu | <u>'</u> |        |        |
|----------------|----------|--------|--------|
| Iol            | J↑ I     | 0.6056 | 0.6536 |
| IS↑            |          | 2.6858 | 2.7183 |
| Ac             | c†       | 0.8934 | 0.9201 |

geometry losses

w/o  $\mathcal{L}_{kl} + \mathcal{L}_{gd}$ 

w/o $\mathcal{L}_{kl}$  w/o $\mathcal{L}_{gd}$   $\mathcal{L}_{total}$ 

0.9265

2.7241

0.6359

0.9486

2.7290

0.6612 **0.7257** 

**Ablation Study** 

|                  | DRIT++ | MUNIT  | FUNIT   | DSMAP         | StarGANv2 | AdaIN  | SANet  | AdaAttN | LST    | Ours   |
|------------------|--------|--------|---------|---------------|-----------|--------|--------|---------|--------|--------|
| e-SSIM↑          | 0.5214 | 0.5653 | 0.4959  | 0.4790        | 0.4778    | 0.4962 | 0.4854 | 0.5194  | 0.4903 | 0.6359 |
| Acc↑             | 0.8903 | 0.8678 | 0.77.14 | <u>0.9106</u> | 0.8788    | 0.7352 | 0.6193 | 0.6443  | 0.7071 | 0.9486 |
| $IS\!\!\uparrow$ | 2.6160 | 2.5916 | 2.5903  | 2.6580        | 2.6088    | 2.4082 | 2.1062 | 2.0928  | 1.7299 | 2.7290 |
| IoU↑             | 0.6915 | 0.7382 | 0.5473  | 0.4975        | 0.4100    | 0.6642 | 0.7183 | 0.6532  | 0.6264 | 0.7257 |

### Experiments

<sup>2</sup>VinAl Research



#### **Qualitative Comparisons**

Comparison to image-to-image translation methods



#### Comparison to neural style transfer methods



#### References

[1] X. Huang and S. Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization", ICCV 2017. [2] H. Wu, S. Zheng, J. Zhang, and K. Huang, "GP-GAN: Towards realistic high-resolution image blending,"ACMMM 2019.