

C66

โจทย์ การวิเคราะห์การเคลื่อนที่ของวัตถุภายใต้แรงโน้มถ่วง (Advanced Gravitational Motion Analysis)

สถานการณ์

ในการศึกษาการเคลื่อนที่ของวัตถุภายใต้แรงโน้มถ่วง นักฟิสิกส์ต้องการทราบข้อมูลเกี่ยวกับ การเคลื่อนที่ของวัตถุหลายชิ้นที่ตกลงมาพร้อมกัน โดยคำนึงถึงมวล ความสูง และเวลาที่ตกของ วัตถุ นักเรียนต้องการโปรแกรมที่จะช่วยคำนวณและวิเคราะห์การเคลื่อนที่ของวัตถุหลายชิ้นเหล่านี้ได้ อย่างมีประสิทธิภาพ

รายละเอียด

รับข้อมูลจำนวนวัตถุ N (1 ≤ N ≤ 100,000) และรับข้อมูลมวล (m) และความสูง (h) ของแต่ละวัตถุในหน่วยกิโลกรัมและเมตร จากนั้นคำนวณพลังงานศักย์โน้มถ่วงของวัตถุแต่ละชิ้น และแสดงผลรวมของพลังงานศักย์ทั้งหมด โดยใช้สูตร P.E. = m * g * h โดยที่ g คือความเร่ง เนื่องจากแรงโน้มถ่วง มีค่าเท่ากับ 9.81 m/s^2

ข้อกำหนดเพิ่มเติม

โจทย์นี้ต้องการการประมวลผลที่รวดเร็วเนื่องจากจำนวนข้อมูลที่มีมาก ดังนั้นการใช้ โครงสร้างข้อมูลและอัลกอริทึมที่มีประสิทธิภาพเป็นสิ่งสำคัญ

แนวคิด

ใช้การวนลูปเพื่อประมวลผลข้อมูลมวลและความสูงของวัตถุแต่ละชิ้น คำนวณพลังงานศักย์ และเก็บผลรวมไว้ เพื่อให้สามารถแสดงผลลัพธ์ได้อย่างรวดเร็วและมีประสิทธิภาพ

วัตถุประสงค์

เพื่อฝึกการทำงานกับข้อมูลขนาดใหญ่และการออกแบบอัลกอริทึมที่มีประสิทธิภาพสำหรับการ แก้ปัญหาที่มีข้อกำหนดด้านเวลาในการประมวลผล

TESTCASE

input	output
3	Total Gravitational Potential Energy: 3531.60 J
10 5	
15 10	
20 8	
2	Total Gravitational Potential Energy: 2452.50 J

input	output
5 20	
10 15	
1	Total Gravitational Potential Energy: 0.00 J
50 0	