QUERY AWARE DATABASE TUNING SYSTEM WITH DEEP REINFORCEMENT LEARNING

KNOB TUNING

- Knobs are parameters of database configuration
- > Knob tuning aims to achieve optimal configuration for performance
 - High throughput and low latency
 - Hybrid transaction/analytical processing(HTAP)

BACKGROUND

- > Knob tuning is NP-hard, database usually have hundreds of knobs:
 - **MySQL: 215**
 - > PostgreSQL: 247
 - MongoDB: 132
- **Existing methods have limitations**

PRIOR WORKS

- BestConfig
- **>** OtterTune
- **CDBTune**

BESTCONFIG

- Basic Idea: Use a heuristic method to search for the optimal configuration from the history
- But: may NOT find good knob values if there is no similar configuration in the history
 - > Can't guarantee a systematically optimal configuration

OTTERTUNE

- **▶** Basic Idea: Find optimal configuration by learning DBA's experience from historical data through Machine Learning
- ▶ But: A large number of high-quality training data(DBA experience data), which is hard to obtain, is necessary for a well-performing model
 - > Hard to realize

CDBTUNE

- ▶ Basic Idea: Use deep reinforcement learning (DRL) to tune the database by using a try-and-error strategy
- **>** But:
 - Time-Consuming: Run a SQL query workload multiple times for evaluation
 - Coarse-grained only: e.g. read-only/write-only/read-write workload
 - > Pretrained-model: Based on reconfiguring actions

STATE OF ART

- > Three granularities: query-level/workload-level/cluster-level
- **Easy to realize: evaluated under PostgreSQL/MySQL/MongoDB**
- **▶** High performance: outperform state-of-art tuning methods before

QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning

Guoliang Li[†], Xuanhe Zhou[†], Shifu Li[‡], Bo Gao[‡]

† Department of Computer Science, Tsinghua University, Beijing, China [‡] Huawei Company liguoliang@tsinghua.edu.cn, zhouxuanhe@bupt.edu.cn, {gaobo15,lishifu}@huawei.com

DATASET FEATURIZATION

- > Featurize SQL queries
- **Considering rich query features:**
 - Query type
 - **Tables**
 - Query cost
- Output a vector

MODEL

- ➤ A Double-State Deep Deterministic Policy Gradient(DS-DDPG) Model
- Using actor-critic networks
- ➤ A DS-DDPG Model embeds the query features and utilizes the actorcritic algorithm to learn the relations among queries, database state and configurations to tune database configurations

OVERVIEW

- Query2Vector
- > Vector2Pattern
- > Pattern2Cluster
- **Tuner**

EVALUATION

(d) Sysbench (RW)

THANK YOU