WQO 入門2 — ヒグマンの補題

齊藤哲平

May 12, 2024

概要

1. WQO の復習

2. 補題の主張 (文字列上の埋め込み順序は WQO)

3. 補題の証明 (極小悪列論法)

Definition

擬順序 ≤ を考える

○ 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること

Definition

擬順序 ≤ を考える

- 。 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (すなわち比較不能列) は悪列と呼ぶ

Definition

擬順序 ≤ を考える

- 。 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (すなわち比較不能列) は悪列と呼ぶ
- < の悪列が存在しないとき < をWQOと呼ぶ

Definition

擬順序 ≤ を考える

- \circ 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (すなわち比較不能列) は悪列と呼ぶ
- 。 ≤ の悪列が存在しないとき ≤ をWQOと呼ぶ

自然数上の順序は WQO;

Definition

擬順序 ≤ を考える

- 。 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (すなわち比較不能列) は悪列と呼ぶ
- 。 ≤ の悪列が存在しないとき ≤ をWQOと呼ぶ

自然数上の順序は WQO; その整数への最小の拡張は WQO でない

Definition

擬順序 ≤ を考える

- 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (すなわち比較不能列) は悪列と呼ぶ
- 。 ≤ の悪列が存在しないとき ≤ をWQOと呼ぶ

自然数上の順序は WQO; その整数への最小の拡張は WQO でない

命題

以下は同値

- 。 ≼はWQO
- $\circ \leqslant$ の任意の拡張 \leqslant' が整礎 (無限降下列 $a_0 >' a_1 >' \cdots$ がない)

Definition

擬順序 ≤ を考える

- 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (すなわち比較不能列) は悪列と呼ぶ
- 。 ≤ の悪列が存在しないとき ≤ をWQOと呼ぶ

自然数上の順序は WQO; その整数への最小の拡張は WQO でない

命題

以下は同値

- 。 < は WQO
- $\circ \leqslant$ の任意の拡張 \leqslant' が整礎 (無限降下列 $a_0 >' a_1 >' \cdots$ がない)
- \circ 任意の無限列 a_0, a_1, \ldots は単調部分列 $a_{\phi(0)} \leqslant a_{\phi(1)} \leqslant \cdots$ を含む

擬順序集合 (Σ,\leqslant) 上の文字列の集合 Σ^* を考える

擬順序集合 (Σ, \leqslant) 上の文字列の集合 Σ^* を考える

Definition

以下の性質をもつ最小の擬順序を文字列の 埋め込み順序 ≤emb と呼ぶ

除去性: $u \leq_{\mathsf{emb}} au$

擬順序集合 (Σ, \leqslant) 上の文字列の集合 Σ^* を考える

Definition

以下の性質をもつ最小の擬順序を文字列の 埋め込み順序 ≤emb と呼ぶ

除去性: $u \leqslant_{emb} \overline{au}$

単調性: $a \leqslant b$ ならば $uav \leqslant_{\mathsf{emb}} ubv$

ここで $a,b \in \Sigma$ と $u,v \in \Sigma^*$ は任意

擬順序集合 (Σ,\leqslant) 上の文字列の集合 Σ^* を考える

Definition

以下の性質をもつ最小の擬順序を文字列の 埋め込み順序 ≤emb と呼ぶ

除去性: $u \leq_{\mathsf{emb}} au$

単調性: $a \leqslant b$ ならば $uav \leqslant_{\mathsf{emb}} ubv$

ここで $a,b \in \Sigma$ と $u,v \in \Sigma^*$ は任意

Example

擬順序として自然数を考えると

$$\varepsilon \leqslant_{\mathsf{emb}} 0 \leqslant_{\mathsf{emb}} 00 \leqslant_{\mathsf{emb}} 000 \leqslant_{\mathsf{emb}} 010 \leqslant_{\mathsf{emb}} 020 \leqslant_{\mathsf{emb}} 021$$

であり、さらに

擬順序集合 (Σ, \leqslant) 上の文字列の集合 Σ^* を考える

Definition

以下の性質をもつ最小の擬順序を文字列の 埋め込み順序 ≤emb と呼ぶ

除去性: $u \leq_{\mathsf{emb}} au$

単調性: $a \leqslant b$ ならば $uav \leqslant_{\mathsf{emb}} ubv$

ここで $a,b \in \Sigma$ と $u,v \in \Sigma^*$ は任意

擬順序として自然数を考えると

 $\varepsilon \leqslant_{\mathsf{emb}} 0 \leqslant_{\mathsf{emb}} 00 \leqslant_{\mathsf{emb}} 000 \leqslant_{\mathsf{emb}} 010 \leqslant_{\mathsf{emb}} 020 \leqslant_{\mathsf{emb}} 021$

であり、さらに 01 と 10 は比較不能である

命題 (Higman 1952)

≼が WQO ならば ≤_{emb} も WQO

命題 (Higman 1952)

≼が WQO ならば ≤emb も WQO

|s| で文字列 s の長さを表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 s_0,s_1,\ldots が存在する: 任意の i について s_0,\ldots,s_{i-1},t で始まり $|t|<|s_i|$ を満たす悪列はない

命題 (Higman 1952)

≼が WQO ならば ≤emb も WQO

|s|で文字列sの長さを表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 s_0, s_1, \ldots が存在する: 任意の i について s_0, \ldots, s_{i-1}, t で始まり $|t| < |s_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 s_0, s_1, \ldots のこと

(i=0) 悪列 t_0, t_1, \dots で $|t_0| < |s_0|$ となるものは存在しない

0 0 0 0 0

命題 (Higman 1952)

≼が WQO ならば ≤emb も WQO

|s|で文字列 s の長さを表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 s_0, s_1, \ldots が存在する: 任意の i について s_0, \ldots, s_{i-1}, t で始まり $|t| < |s_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 s_0, s_1, \ldots のこと

(i=0) 悪列 t_0,t_1,\ldots で $|t_0|<|s_0|$ となるものは存在しない

(i=1) 悪列 s_0, t_1, t_2, \dots で $|t_1| < |s_1|$ となるものは存在しない

0 0 0 0 0

命題 (Higman 1952)

≼が WQO ならば ≤emb も WQO

|s|で文字列 s の長さを表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 s_0, s_1, \ldots が存在する: 任意の i について s_0, \ldots, s_{i-1}, t で始まり $|t| < |s_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 s_0, s_1, \ldots のこと

- t(i=0) 悪列 t_0,t_1,\ldots で $|t_0|<|s_0|$ となるものは存在しない
- (i=1) 悪列 s_0, t_1, t_2, \dots で $|t_1| < |s_1|$ となるものは存在しない
- $\overline{(i=2)}$ 悪列 $\overline{s_0,s_1,t_2,t_3},\ldots$ で $|t_2|<|s_2|$ となるものは存在しない

命題 (Higman 1952)

≼が WQO ならば ≤emb も WQO

|s|で文字列 s の長さを表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 s_0, s_1, \ldots が存在する: 任意の i について s_0, \ldots, s_{i-1}, t で始まり $|t| < |s_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 s_0, s_1, \ldots のこと

- (i=0) 悪列 t_0,t_1,\ldots で $|t_0|<|s_0|$ となるものは存在しない
- (i=1) 悪列 s_0, t_1, t_2, \dots で $|t_1| < |s_1|$ となるものは存在しない
- (i=2) 悪列 $s_0, s_1, t_2, t_3, \dots$ で $|t_2| < |s_2|$ となるものは存在しない
- (以下同様)

くが WQO ならば ≤emb も WQO

証明.

≤emb の悪列が存在すると仮定して矛盾を導く

1. 極小悪列 s_0, s_1, \ldots をとると

≤がWQOならば≤embもWQO

証明.

≤emb の悪列が存在すると仮定して矛盾を導く

1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$

_<が WQO ならば <emb も WQO

証明.

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- 2. \leqslant が WQO だから単調部分列 $a_{\phi(0)} \leqslant a_{\phi(1)} \leqslant \dots$ が取れる

証明.

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- $2.\leqslant$ が WQO だから単調部分列 $a_{\phi(0)}\leqslant a_{\phi(1)}\leqslant \dots$ が取れる
- 3. 実は $s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ も良列: ある i < j について $s'_{\phi(i)} \leqslant_{\mathsf{emb}} s'_{\phi(j)}$

≼が WQO ならば ≤emb も WQO

証明.

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- $2.\leqslant$ が WQO だから単調部分列 $a_{\phi(0)}\leqslant a_{\phi(1)}\leqslant \dots$ が取れる
- 3. 実は $s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ も良列: ある i < j について $s'_{\phi(i)} \leqslant_{\mathsf{emb}} s'_{\phi(j)}$
- 4. 単調性から $s_{\phi(i)}=a_{\phi(i)}\overline{s'_{\phi(i)}}\leqslant_{\mathsf{emb}}a_{\phi(j)}s'_{\phi(j)}=s_{\phi(j)}$

≼が WQO ならば ≤emb も WQO

証明.

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- $2.\leqslant$ が WQO だから単調部分列 $a_{\phi(0)}\leqslant a_{\phi(1)}\leqslant \ldots$ が取れる
- 3. 実は $s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ も良列: ある i < j について $s'_{\phi(i)} \leqslant_{\mathsf{emb}} s'_{\phi(j)}$
- 4. 単調性から $s_{\phi(i)} = a_{\phi(i)} s'_{\phi(i)} \leqslant_{\mathsf{emb}} a_{\phi(j)} s'_{\phi(j)} = s_{\phi(j)}$ となり矛盾

≼が WQO ならば ≤emb も WQO

証明.

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- 2. \leq が WQO だから単調部分列 $a_{\phi(0)} \leq a_{\phi(1)} \leq \dots$ が取れる
- 3. 実は $s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ も良列: ある i < j について $s'_{\phi(i)} \leqslant_{\mathsf{emb}} s'_{\phi(j)}$
- 4. 単調性から $s_{\phi(i)}=a_{\phi(i)}s'_{\phi(i)}\leqslant_{\mathsf{emb}}a_{\phi(j)}s'_{\phi(j)}=s_{\phi(j)}$ となり矛盾
- ステップ3の詳細: $s'_{\phi(0)}, s'_{\phi(1)}, \dots$ が悪列だとして矛盾を導く
 - 1. 任意の $0 \le i \le \phi(0) 1$ と j について、もし $s_i \le_{\mathsf{emb}} s'_{\phi(i)}$ なら矛盾:

$$s_i \leqslant_{\mathsf{emb}} s'_{\phi(j)} \leqslant_{\mathsf{emb}} a_{\phi(j)} s'_{\phi(j)} = s_{\phi(j)}$$

くが WQO ならば ≤emb も WQO

証明.

≤emb の悪列が存在すると仮定して矛盾を導く

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- 2. \leqslant が WQO だから単調部分列 $a_{\phi(0)} \leqslant a_{\phi(1)} \leqslant \ldots$ が取れる
- 3. 実は $s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ も良列: ある i < j について $s'_{\phi(i)} \leqslant_{\mathsf{emb}} s'_{\phi(j)}$
- 4. 単調性から $s_{\phi(i)}=a_{\phi(i)}s'_{\phi(i)}\leqslant_{\mathsf{emb}}a_{\phi(j)}s'_{\phi(j)}=s_{\phi(j)}$ となり矛盾
- ステップ3の詳細: $s'_{\phi(0)}, s'_{\phi(1)}, \dots$ が悪列だとして矛盾を導く
 - 1. 任意の $0 \leqslant i \leqslant \phi(0) 1$ と j について、もし $s_i \leqslant_{\mathsf{emb}} s'_{\phi(j)}$ なら矛盾:

$$s_i \leqslant_{\mathsf{emb}} s'_{\phi(j)} \leqslant_{\mathsf{emb}} a_{\phi(j)} s'_{\phi(j)} = s_{\phi(j)}$$

2. $s_0, \ldots, s_{\phi(0)-1}, s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ は悪列;

≼が WQO ならば ≤_{emb} も WQO

証明.

≤emb の悪列が存在すると仮定して矛盾を導く

- 1. 極小悪列 s_0, s_1, \ldots をとると空文字は現れないので $s_i = a_i s_i'$
- 2. \leqslant が WQO だから単調部分列 $a_{\phi(0)} \leqslant a_{\phi(1)} \leqslant \ldots$ が取れる
- 3. 実は $s'_{\phi(0)}, s'_{\phi(1)}, \ldots$ も良列: ある i < j について $s'_{\phi(i)} \leqslant_{\mathsf{emb}} s'_{\phi(j)}$
- 4. 単調性から $s_{\phi(i)}=a_{\phi(i)}s'_{\phi(i)}\leqslant_{\mathsf{emb}}a_{\phi(j)}s'_{\phi(j)}=s_{\phi(j)}$ となり矛盾
- ステップ3の詳細: $s'_{\phi(0)}, s'_{\phi(1)}, \dots$ が悪列だとして矛盾を導く
 - 1. 任意の $0 \le i \le \phi(0) 1$ と j について、もし $s_i \le_{\mathsf{emb}} s'_{\phi(i)}$ なら矛盾:

$$s_i \leqslant_{\mathsf{emb}} s'_{\phi(j)} \leqslant_{\mathsf{emb}} a_{\phi(j)} s'_{\phi(j)} = s_{\phi(j)}$$

2. $s_0,\ldots,s_{\phi(0)-1},s'_{\phi(0)},s'_{\phi(1)},\ldots$ は悪列; $|s'_{\phi(0)}|<|s_{\phi(0)}|$ で矛盾

0 0 0 0