	Surface Area of 3D shapes Mark Scheme	
1	Area of top = $\pi \times 3^2 = 9\pi$ Area of base = $\pi \times 3^2 = 9\pi$ $12 \times 6\pi = 72\pi$	[1] Correct curved surface area
	Surface Area = $72\pi + 9\pi + 9\pi$ = 90π = $282.74cm^2$ (2 d.p.)	[1] Correct answer
2(a)	Area of $A = 78 cm^2$ Area of $B = 52 cm^2$	[1] Correct surface area
	Surface Area = $78 + 52 = 130 \text{ cm}^2$	[1] Correct answer
2(b)	$(3 \times 2) \times 2 = 12$	[1] Result is the loss of two regions with area 12 shown
	$130 - 12 = 118 cm^2$	[1] Correct answer
3(a)	Big cuboid $(12 \times 3) \times 2 = 72$ $(9 \times 12) \times 2 = 216$ $(3 \times 9) \times 2 = 54$ $total SA = 342 mm^2$	[1] Correct surface area
	Small cuboid $(3 \times e) \times 2 = 6e$ $(1 \times e) \times 2 = 2e$ $(3 \times 1) \times 2 = 6$ $total SA = (6 + 8e) mm2$	[1] Correct expression for surface area
	Overlapping surface area = $(3 \times 1) \times 2 = 6$	[1] Overlapping surface area
	Total area SA of USB is $342 + (8e + 6) - 6 = 342 + 8e$	[1] Correct answer
3(b)	360 = 342 + 8e 8e = 18 e = 2.25 mm	[1] Correct answer
4	Area of base = $\pi \times 4^2 = 16\pi$	[1] Substitution into correct formula
	Area of curved surface = πLr = $\pi \times 4 \times 9$ = 36π	[1] Area of curved surface
	Total surface area = $36\pi + 16\pi$ = 52π = 163.36 cm^2	[1] Correct answer
5	Surface Area = $4 \times \pi \times 5^2 = 100\pi$	[1] Area of curved surface
	$SA = 314.16 \ cm^2 \ (2d.p.)$	[1] Correct answer

6	Area of triangles = $1/2 \times base \times height$ = $1/2 \times 6 \times 8$ = 24 $24 \times 2 = 48$ Area of base = $6 \times 11 = 66$	[1] Area of triangles and base calculated
	Slanted height = $\sqrt{73}$	[1] Use of Pythagoras to calculate slanted height
	Slanted side area = $\sqrt{73} \times 11 = 11\sqrt{73}$ $11\sqrt{73} \times 2 = 22\sqrt{73}$	[1] Area of slanted face
	Total Area = $48 + 66 + 22\sqrt{73}$ = 301.97 cm^2	[1] All areas added together for final answer
7(a)	$2 \times \pi r^2 + \pi Dh$ $2 \times \pi \times 5^2 + \pi \times 10 \times 4$	[1] Correct formula used
	$2 \times \pi \times 5^2 + \pi \times 10 \times 4 = 90\pi$	[1] Substitution of values with answer in terms of π
7(b)	Surface area of cylinder – 2 cuboid faces. $90\pi - (2 \times 6 \times 1) = 270.7433$	[1] Correct surface area
	$270.7433 + 6 \times 4 \times 2 = 48$ $4 \times 1 \times 2 = 8$ $270.7433 + 48 + 8 = 326.7433$ $326.74 cm^{2} (2 d.p.)$	[1] Correct answer