Optimization Techniques and Application Marketing Management

GROUP 27

18UCS222 ANIRUDH SINGH 19UCS042 VIPUL AGGARWAL 19UCS045 RISHIRAJ YADAV 19UCS103 KHUSHI SANCHETI 19UCS129 RISHABH SAHU 19UCS147 MANIT MEHTA

Submitted to:

Dr. Jayaprakash Kar

Objective 1 :-

In the given project we have to decrease the transportation expenditure to its minimum value for marketing management.

Problem Statement:

In this problem ,we have to produce products at supply locations and transport them to destinations where they are demanded at minimum cost. The origins are two plants at Jaipur and Kota which supplies or capacities of 400kg and 600kg while the destination are three distributions centre i.e. Mumbai, Pune and Bangalore with demand of 300,400 and 250kg respectively. The cost of transporting 1kg of the product from Jaipur to distribution centers are Rs.7,Rs.8 and Rs.9 respectively and from Kota are Rs.10,Rs.11 and Rs.12 respectively. The cost of product per kg in Jaipur and Kota are Rs.26 and Rs.30 respectively.

Optimize the transportation cost that the marketing manager has to pay to the transportation company.

$To \rightarrow$				
From↓				
	Mumbai	Pune	Banglore	Supply
	7	8	9	400 kg
Jaipur				
	10	11	12	600 kg
Kota				
	300 kg	400 kg	250 kg	
Demand				

FORMULATION:-

For the formulation of the above problem, we need to define some notations that are given below:-

Notation	Definitions		
X1	Product transported from Jaipur to Mumbai		
у1	Product transported from Jaipur to Pune		
z1	Product transported from Jaipur to Bangalore		
x2	Product transported from Kota to Mumbai		
y2	Product transported from Kota to Pune		
z2	Product transported from Kota to Banglore		

Objective Function :-

The objective is to minimize **the total transportation cost** that is to be paid to the transportation .

Minimize

$$Z = 7x_1 + 8y_1 + 9z_1 + 10x_2 + 11y_2 + 12z_2$$

<u>Subject to Constraints:</u>

$$x_1 + y_1 + z_1 \le 400k$$

 $x_2 + y_2 + z_2 \le 600k$
 $x_1 + x_2 = 300k$
 $y_1 + y_2 = 400k$
 $z_1 + z_2 = 250k$
 $x_1, y_1, z_1, x_2, y_2, z_2 \ge 0$

METHOD USED-DUAL SIMPLEX METHOD

Reason:

As the given problem is linear so we can use either simplex or dual simplex method. Dual simplex method is better because the possibility of infeasible solution gets removed by its use.

Matlab and Results:-

Objective 2 :-

In the following problem we have to create a model which allows the marketing manager to analyze its audience coverage and its advertisement from the accessible media, given the advertising budget as the constraints.

Problem Statement:-

The duty of manager is to suggest allotment of budget between different platforms like TELEVISION, NEWSPAPERS, HOARDINGS, GOOGLE ADS and Facebook. These allotments are done supposing that our office has done investigation in setting up web analytics service and is calculating conversions through path length reports while performing Multi Channel Funnel Analysis. It has been learnt that a Rs.1 spent on each channel has customer reach as:

Channel(#customers reached)
TV(3),Newspapers(0.4),Hoardings(1.9),Google

Ads(1.1), Facebook(2).

Ways of Advertisement	ROI(in Percent)
TV	9
Newspapers	11
Hoardings	13
Google Ads	15
Facebook	17

FORMULATION:-

For the formulation of the above problem, we need to define some notations that are given below:-

Notation	Definitions	
X1	Budget for TV	
X2	Budget for Newspapers	
X3	Budget for Hoardings	
X4	Budget for Google Ads	
X5	Budget for facebook market	

Objective Function:-

Maximize customer outreach

$$Z = (0.09x_1 + 0.11x_2 + 0.13x_3 + 0.15x_4 + 0.17x_5)$$

Subject to Constraints:

- 1)Total budget should not exceed Rs.10 Million $x1 + x2 + x3 + x4 + x5 \le 10000k$
- 2)TV advertising costs at least Rs.1000k $x1 \ge 1000k$
- 3)Budget of printing of newspapers is not greater than 50000k x2 <= 500k changed to x2<50000k
- 4)Minimum cost of printing of newspaper is at least Rs.400k $x2 \ge 400k$
- 5)Budget for Hoardings and google Ads is at least 60% of budget

$$x3 + x4 >= 0.6(x1 + X2 + x3 + x4 + x5)$$

 $0.6x1 + 0.6x2 - 0.4x3 - 0.4x4 + 0.6x5 \le 0$

6)Budget for google ads is not to be more than 3.5 times of budget of hoardings

7)Budget for google ads more than 400k -x4 < 400k

- 8)Budget for google ads not more than 800k x4 < 8000k
- 9)Facebook advertising costs at least Rs.200k x5 > 200k
- 10)Budget for Hoardings should be greater than 15000 x3>15000,
- 11) Reaching more than 3 million customers 3x1 + 0.4x2 + 1.9x3 + 1.1x4 + 2x5 > 3000k

$$x1,x2,x3,x4,x5 >= 0$$

Method Used-Dual simplex method **Reason:**

As the given problem is linear so we can use either simplex or dual simplex method. Dual simplex method is better because the possibility of infeasible solution gets removed by its use.

As minimization is default in linear programming .So maximization is done by taking -z . So we will find -z.

Matlab and Results:-

```
Editor - C:\Users\risha\Documents\MATLAB\project_part2_advertising.m
 project_part2_advertising.m × +
       f=[-0.09,-0.11,-0.13,-0.15,-1.17];
       A = [1 \ 1 \ 1 \ 1 \ 1 \ 0.6 \ 0.6 \ -0.4 \ -0.4 \ 0.6; 0 \ 0 \ 3.5 \ -1 \ 0; \ -3 \ -0.4 \ -1.9 \ -1.1 \ -2];
       b=[100000000 0 0 0]';
       lb=[1000000 400000 15000 400000 200000];
       ub=[100000000 50000000 100000000 8000000 100000000];
       [x, fval, exitflag] = linprog(f, A, b, [], [], lb, ub)
Command Window
   Optimal solution found.
   x =
      1.0e+06 *
       1.0000
       0.4000
       2.2857
       8.0000
       5.4571
   fval =
    -8.0160e+06
                                                                      UTF-8 script
```

References:

- Lecture notes and Guidance by Dr. Jayaprakash Kar
- Book referred Engineering Optimization, Theory and Practice 4th Edition by Singiresu S. Rao, JOHN WILEY & SONS, INC

Contribution:

Problem Definition:

Manit Mehta, Vipul Agarwal and Rishi Raj

Formulation:

Khushi Sancheti

Coding:

Rishabh Sahu

Formatting:

Anirudh Singh