P1 Chapter 1: Algebra

Surds

Surds

Recap:

A surd is a root of a number that does not simplify to a rational number.

Laws:

$$\frac{\sqrt{a} \times \sqrt{b} = \sqrt{ab}}{\frac{\sqrt{a}}{\sqrt{b}}} = \sqrt{\frac{a}{b}}$$

Note: A *rational* number is any which can be expressed as $\frac{a}{b}$ where a, b are integers. $\frac{2}{3}$ and $\frac{4}{1}=4$ are rational numbers, but π and $\sqrt{2}$ are not.

$$\sqrt{3} \times 2$$
 = ?
 $3\sqrt{5} \times 2\sqrt{5}$ = ?
 $\sqrt{8} = \sqrt{4}\sqrt{2}$ = ?
 $\sqrt{12} + \sqrt{27}$ = ?
 $(\sqrt{8} + 1)(\sqrt{2} - 3)$ = ?
= ?
= ?

Surds

Recap:

A surd is a root of a number that does not simplify to a rational number.

Laws:

$$\frac{\sqrt{a} \times \sqrt{b} = \sqrt{ab}}{\frac{\sqrt{a}}{\sqrt{b}}} = \sqrt{\frac{a}{b}}$$

Note: A *rational* number is any which can be expressed as $\frac{a}{b}$ where a, b are integers. $\frac{2}{3}$ and $\frac{4}{1} = 4$ are rational numbers, but π and $\sqrt{2}$ are not.

$$\sqrt{3} \times 2 = 2\sqrt{3}
3\sqrt{5} \times 2\sqrt{5} = 30
\sqrt{8} = \sqrt{4}\sqrt{2} = 2\sqrt{2}
\sqrt{12} + \sqrt{27} = 2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}
(\sqrt{8} + 1)(\sqrt{2} - 3) = \sqrt{16} - 3\sqrt{8} + \sqrt{2} - 3
= 4 - 6\sqrt{2} + \sqrt{2} - 3
= 1 - 5\sqrt{2}$$

Exercise 1.5

Pearson Pure Mathematics Year 1/AS Page 4

Homework Exercise

1 Do not use your calculator for this exercise. Simplify:

d
$$\sqrt{32}$$

$$f = \frac{\sqrt{1}}{2}$$

$$g \frac{\sqrt{27}}{3}$$

h
$$\sqrt{20} + \sqrt{80}$$

i
$$\sqrt{200} + \sqrt{18} - \sqrt{72}$$

$$\sqrt{175} + \sqrt{63} + 2\sqrt{28}$$

$$k \sqrt{28} - 2\sqrt{63} + \sqrt{7}$$

j
$$\sqrt{175} + \sqrt{63} + 2\sqrt{28}$$
 k $\sqrt{28} - 2\sqrt{63} + \sqrt{7}$ **l** $\sqrt{80} - 2\sqrt{20} + 3\sqrt{45}$

$$\mathbf{m} \ 3\sqrt{80} - 2\sqrt{20} + 5\sqrt{45}$$

$$\mathbf{n} \ \frac{\sqrt{44}}{\sqrt{11}}$$

o
$$\sqrt{12} + 3\sqrt{48} + \sqrt{75}$$

2 Expand and simplify if possible:

a
$$\sqrt{3}(2+\sqrt{3})$$

b
$$\sqrt{5}(3-\sqrt{3})$$

$$c \sqrt{2}(4-\sqrt{5})$$

d
$$(2-\sqrt{2})(3+\sqrt{5})$$

e
$$(2-\sqrt{3})(3-\sqrt{7})$$

$$\begin{array}{lll} \textbf{a} & \sqrt{3}(2+\sqrt{3}) & \textbf{b} & \sqrt{5}(3-\sqrt{3}) & \textbf{c} & \sqrt{2}(4-\sqrt{5}) \\ \textbf{d} & (2-\sqrt{2})(3+\sqrt{5}) & \textbf{e} & (2-\sqrt{3})(3-\sqrt{7}) & \textbf{f} & (4+\sqrt{5})(2+\sqrt{5}) \end{array}$$

$$g(5-\sqrt{3})(1-\sqrt{3})$$

h
$$(4+\sqrt{3})(2-\sqrt{3})$$

g
$$(5-\sqrt{3})(1-\sqrt{3})$$
 h $(4+\sqrt{3})(2-\sqrt{3})$ **i** $(7-\sqrt{11})(2+\sqrt{11})$

3 Simplify $\sqrt{75} - \sqrt{12}$ giving your answer in the form $a\sqrt{3}$, where a is an integer.

(2 marks)

Homework Answers

1 a
$$2\sqrt{7}$$
 b $6\sqrt{2}$ **c** $5\sqrt{2}$ **d** $4\sqrt{2}$

b
$$6\sqrt{2}$$

$$f \sqrt{3}$$

i
$$7\sqrt{2}$$
 j $12\sqrt{7}$ k $-3\sqrt{7}$ l $9\sqrt{5}$

m
$$23\sqrt{5}$$
 n 2

2 a
$$2\sqrt{3} + 3$$

c
$$4\sqrt{2} - \sqrt{10}$$

e
$$6 - 2\sqrt{7} - 3\sqrt{3} + \sqrt{21}$$
 f $13 + 6\sqrt{5}$

$$g = 8 - 6\sqrt{3}$$

i
$$3 + 5\sqrt{11}$$

d
$$4\sqrt{2}$$

$$\mathbf{g} \sqrt{3}$$

f
$$\sqrt{3}$$
 g $\sqrt{3}$ h $6\sqrt{5}$

$$k - 3\sqrt{7}$$

1
$$9\sqrt{5}$$

b
$$3\sqrt{5} - \sqrt{15}$$

d
$$6 + 2\sqrt{5} - 3\sqrt{2} - \sqrt{10}$$

f
$$13 + 6\sqrt{5}$$

g
$$8-6\sqrt{3}$$
 h $5-2\sqrt{3}$