Supplementary Materials for Modeling the competing effects of the immune system and EMT on epithelial cancers

Daniel R. Bergman 1, Matthew Karikomi 1, Qing Nie 1,2,* and Adam L. MacLean 3,*

 $^1{\rm Department}$ of Mathematics, University of California, Irvine, Irvine, CA 92697, USA $^2{\rm Department}$ of Cell and Developmental Biology, University of

California, Irvine, CA 92697, USA ³Department of Biological Sciences, University of Southern California,

Los Angeles, CA 90089, USA *Correspondence: qnie@uci.edu (Q.N.); macleana@usc.edu (A.L.M.)

Contents

1	Definition of parameters specifying the model	2
2	Parameter values used for simulation	3

1 Definition of parameters specifying the model

Name	Name Description	
p	proliferation rate of tissue cells	
d_C	death rate of tissue cells	
$\Delta_{ m MIE}$	mesenchymal immune evasion	
$\Delta_{ m MGA}$	mesenchymal growth arrest	
Δ_A	mutant cells decreased apoptosis	
$\Delta_{ m IE}$	mutant cells increased immune evasion	
Δ_P	mutant cells increased proliferation	
K_0	EC50 term for negative feedback of tissue cells on own proliferation	
K_1	EC50 term for probability of NK cell finding mutant cell	
K_2	EC50 term for Treg inhibition of cytotoxic functions	
K_3	EC50 term for how much TGF- β each cell has	
K_4	EC50 term for TGF- β activation of Tregs	
$E_{ m NK}$	rate of NKs clearing mutants	
$E_{\rm CTL}$	rate of CTLs clearing mutants	
$\sigma_{ m NK}$	NK source rate	
$\sigma_{ m CTL}$	CTL source rate per cleared mutant cell	
$\sigma_{ m Treg}$	Treg source rate per cleared mutant cell	
$d_{ m NK}$	NK death rate	
d_{CTL}	CTL death rate	
d_{Treg}	Treg death rate	
$k_{ m EMT}$	EMT/MET rate	
σ	standard deviation of noise in TGF- β each cell receives	
$ au_{ m max}$	max amount of TGF- β any cell can receive	
$ au_{ ext{MUT}}$	rate of TGF- β production by mutant cells	
$ au_{ m Treg}$	rate of TGF- β production by Treg	

Table 1: The model parameter names and descriptions. Note that many of these values are affected by the inflammation state of the system.

2 Parameter values used for simulation

Name	Description	INFL Low Value			
n	weight of proliferation for tissue cells	0.28			
d_C	weight of apoptosis for tissue cells			0.28	
$\Delta_{ m MIE}$	MIE	0.6			
$\Delta_{ m MGA}$	MGA	0.2			
Δ_{MGA} Δ_{A}	proportional decrease to weight of apopto-	0.3			
A	sis for cells with mutated apoptosis path-	0.0			
	way				
$\Delta_{ m IE}$	proportional increase to weight of immune	0.48			
	evasion for cells with mutated immune	0.10			
	evasion pathway				
Δ_P	proportional increase to weight of prolifer-	0.36			
	ation for cells with mutated proliferation				
	pathway				
K_0	EC50 term for negative feedback of tissue	80 cells			
	cells on own proliferation				
K_1	EC50 term for probability of NK cell find-	8 cells			
	ing mutant cell				
K_2	EC50 term for Treg inhibition of cytotoxic	5 cells / volume			
	functions	,			
K_3	EC50 term for cumulative absorption of	200 amount / volume			
	$ ext{TGF-}eta$,			
K_4	EC50 term for TGF- β activation of Tregs	$50 \; \mathrm{amount} \; / \; \mathrm{volume}$			
$E_{ m NK}$	weight of NKs clearing mutants	10			
E_{CTL}	weight of CTLs clearing mutants	200			
$\sigma_{ m NK}$	NK source rate	1.3 cells / cycle			
$\sigma_{ m CTL}$	CTL source rate per cleared mutant cell	100 cells / (cleared mutants \times c			
$\sigma_{ m Treg}$	Treg source rate per cleared mutant cell	200 cells / (cleared mutants × concentration			
$d_{ m NK}$	NK death rate	0.13 / cycle			
d_{CTL}	CTL death rate	$0.0260 \ / \ \mathrm{cycle}$			
d_{Treg}	Treg death rate	$0.0260 \ / \ \mathrm{cycle}$			
$k_{ m EMT}$	EMT/MET rate	0.01 / concentration of TGF			
σ	standard deviation of noise in TGF- β each	6 concentration of TGF- β			
	cell receives				
$ au_{ m max}$	max amount of TGF- β any cell can receive	500 concentration of TGF-			
$ au_{ ext{MUT}}$	rate of TGF- β production by mutant cells	0.05 concentration of TGF- β / cel			
$ au_{\mathrm{Treg}}$	rate of TGF- β production by Treg	0.5 concentration of TGF- β / cell			
	RP Cancer Line	0.5			
	INFL High Duration	30 cycles			
	INFL Low Duration	30 cycles			
	Mes Threshold	0.7			
	maximum initial mutation damage after	0.01			
	warmup				
	increase in probability to mutate for non-	0.0001			
	mutating proliferating cells				

Table 2: The model parameter names, descriptions, and values during both low and high inflammation. Parameters with only one value do not change with the inflammatory state.

Name	Description	INFL Low Value	INFL High Value
p	proliferation rate of tissue cells	0.28	
d_C	death rate of tissue cells	0.14	
$\Delta_{ m MIE}$	MIE	0.6	
$\Delta_{ m MGA}$	MGA	0.2	
Δ_A	mutant cells decreased apoptosis	0.3	
$\Delta_{ m IE}$	mutant cells increased immune evasion	0.48	
Δ_P	mutant cells increased proliferation	0.36	
K_0	EC50 term for negative feedback of tissue cells on own proliferation	80	
K_1	EC50 term for probability of NK cell find-	8	
7.7	ing mutant cell		0.00
K_2	EC50 term for Treg inhibition of cytotoxic functions	5	0.025
K_3	EC50 term for how much TGF- β each cell has	200	
K_4	EC50 term for TGF- β activation of Tregs	50	
$E_{ m NK}$	rate of NKs clearing mutants	10	30
E_{CTL}	rate of CTLs clearing mutants	200	600
$\sigma_{ m NK}$	NK source rate	1.3	000
$\sigma_{ m CTL}$	CTL source rate per cleared mutant cell	100	
σ_{Treg}	Treg source rate per cleared mutant cell	200	
$d_{ m NK}$	NK death rate	0.13	
d_{CTL}	CTL death rate	0.0260	
d_{Treg}	Treg death rate	0.0260	
$k_{\rm EMT}$	EMT/MET rate	0.01	
σ	standard deviation of noise in TGF- β each cell receives	6	
$ au_{ m max}$	max amount of TGF- β any cell can receive	500	
$ au_{ ext{MUT}}$	rate of TGF- β production by mutant cells	0.05	
$ au_{\mathrm{Treg}}$	rate of TGF- β production by Treg	0.5	
	RP Cancer Line	0.5	
	INFL High Duration	30	
	INFL Low Duration	30	
	Mes Threshold	0.7	
	maximum initial mutation damage after warmup	0.01	
	increase in probability to mutate for non-mutating proliferating cells	0.0001	

Table 3: The model parameter names, descriptions, and values during both low and high inflammation. Parameters with only one value do not change with the inflammatory state.

Figure 1: A. K-means clustering of LIHC using gene ontology terms indicative of EMT and inflammation signatures (k=2). B. Survival plots corresponding to the clustering on EMT and inflammation. C. K-means clustering of LIHC using gene ontology terms indicative of an EMT signature (k=2). D. Survival plots corresponding to the clustering on EMT. E. K-means clustering of LIHC using gene ontology terms indicative of inflammation (k=2). F. Survival plots corresponding to the clustering on inflammation.