Lab 3 Notes

Week of October 4, 2021

Review of expectation, variance, and covariance operators

Expectation

Let X, Y be two random variables whose expectations exist and let $a \in \mathbb{R}$.

- 1. $\mathbf{E}(aX) = a\mathbf{E}(X)$
- 2. $\mathbf{E}(X + Y) = \mathbf{E}(X) + \mathbf{E}(Y)$
- 3. $\mathbf{E}(a) = a$

Through properties 1 and 2, the expectation is known as a *linear operator*. If you have taken first year calculus, you have already seen two examples of linear operators: differentiation and integration!

For example, let $\mathbf{D}(\cdot)$ be the differentiation operator. Then

$$\mathbf{D}(3x^2) = 3\mathbf{D}(x^2)$$

 $\mathbf{D}(x^2 + x^3) = \mathbf{D}(x^2) + \mathbf{D}(x^3)$

You can remember the linear operator properties of expectation by recalling the linear operator properties of differentiation.

Variance

Let X be a random variable with $\mathbf{E}(X) = \mu$.

$$\mathbf{Var}(X) = \mathbf{E}\left((X - \mu)^2\right)$$

$$= \mathbf{E}\left(X^2 - 2\mu X + \mu^2\right)$$

$$= \mathbf{E}\left(X^2\right) - 2\mu \mathbf{E}\left(X\right) + \mathbf{E}\left(\mu^2\right)$$

$$= \mathbf{E}\left(X^2\right) - 2\mu^2 + \mu^2$$

$$= \mathbf{E}\left(X^2\right) - \mu^2$$

$$= \mathbf{E}\left(X^2\right) - (\mathbf{E}\left(X\right))^2$$

Let X and Y be two random variables whose expectations exist and let $a \in \mathbb{R}$.

- 1. $\mathbf{Var}(aX) = a^2 \mathbf{Var}(X)$
- 2. Var(X + Y) = Var(X) + Var(Y) for X, Y independent
- 3. Var(a) = 0.

Covariance

Let X and Y be two random variables with $\mathbf{E}(X) = \mu_X$ and $\mathbf{E}(Y) = \mu_Y$.

$$\begin{aligned} \mathbf{Cov}\left(X,Y\right) &= \mathbf{E}\left((X-\mu_X)(Y-\mu_Y)\right) \\ &= \mathbf{E}\left(XY-\mu_YX-\mu_XY+\mu_X\mu_Y\right) \\ &= \mathbf{E}\left(XY\right) - \mu_Y\mathbf{E}\left(X\right) - \mu_X\mathbf{E}\left(Y\right) + \mathbf{E}\left(\mu_X\mu_Y\right) \\ &= \mathbf{E}\left(XY\right) - \mu_Y\mu_X - \mu_X\mu_Y + \mu_X\mu_Y \\ &= \mathbf{E}\left(XY\right) - \mu_X\mu_Y \\ &= \mathbf{E}\left(XY\right) - \mathbf{E}\left(X\right)\mathbf{E}\left(Y\right) \end{aligned}$$

Note that $\mathbf{Cov}(X, X) = \mathbf{Var}(X)$.