logic hw theory solutions

by Petrova Ksenia (cs y2021)

itmo cs t4 2023

prac 1

схемы аксиом для КИВ

- (1) $\alpha \to \beta \to \alpha$
- (2) $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- (3) $\alpha \to \beta \to \alpha \& \beta$
- (4) $\alpha \& \beta \to \alpha$
- (5) $\alpha \& \beta \to \beta$
- (6) $\alpha \to \alpha \vee \beta$
- (7) $\beta \to \alpha \vee \beta$
- (8) $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- (9) $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- (10) $\neg \neg \alpha \rightarrow \alpha$

task 3g

task: $\vdash ((A \to B) \to A) \to A$ (закон Пирса)

по теореме о дедукции достаточно доказать: $(A \to B) \to A \vdash A$

1.
$$(\phi \to \pi) \to (\psi \to \pi) \to (\phi \lor \psi \to \pi)$$
 - аксиома 8
$$\phi = A \to B \quad \pi = A \quad \psi = A$$

$$((A \to B) \to A) \to (A \to A) \to ((A \to B) \lor A \to A)$$

$$\underbrace{(A \to B) \to A \quad ((A \to B) \to A) \to ((A \to A) \to ((A \to B) \lor A \to A)}_{(A \to A) \to ((A \to B) \lor A \to A)}$$
 2.

3. ранее доказано: $A \to A$

4.
$$\frac{A \to A \quad (A \to A) \to ((A \to B) \lor A \to A)}{(A \to B) \lor A \to A}$$

5. гипотеза:
$$(A \to B) \to A \quad \Rightarrow \quad A \to B \vdash A \quad \Rightarrow \quad A \to B$$

6.
$$\alpha \to \alpha \lor \beta$$
 - аксиома 6 $\alpha = A \to B \quad \beta = A$ $(A \to B) \to (A \to B) \lor A$ $A \to B \quad (A \to B) \to (A \to B) \lor A \quad (5, 6 пункты)$ 7.
$$\frac{(A \to B) \lor A \quad (A \to B) \lor A}{A} \quad (4, 7 пункты)$$

prac 3

определения

Замкнутое множество — такое, дополнение которого открыто.

Bнутренностью множества A° назовём наибольшее открытое множество, содержащееся в A. 3амыканием множества \overline{A} назовём наименьшее замкнутое множество, содержащее A.

Назовём *окрестностью* точки x такое открытое множество V, что $x \in V$.

Будем говорить, что точка $x \in A$ внутренняя, если существует окрестность V, что $V \subseteq A$.

Точка x — *граничная*, если любая её окрестность V пересекается как с A, так и с его дополнением.

task 1a

task: покажите, что A открыто тогда и только тогда, когда все точки A — внутренние. Также покажите, что $A^\circ = \{x \mid x \in A \ \& \ x$ — внутренняя точка $\}$.

proof:

$$\Rightarrow \quad A-$$
открытое $\Rightarrow \forall x\mid x\in A\;\exists\; V_x=A-$ открытое и $A\subseteq A\Rightarrow x-$ внутренняя

$$\Leftarrow$$
 $\forall x \in A \; \exists \; V_x \mid V_x \in A \; \& \; V_x -$ открытое

$$V_x$$
 — открытое $\Rightarrow V_x \in \Omega$

Возьмём
$$V_x \, \forall x \in A \Rightarrow \bigcup_{x \in A} V_x \in \Omega$$

$$\bigcup_{x\in A}V_x=A\Rightarrow A\in\Omega\Rightarrow A$$
 — открытое

proof:

$$A^{\circ}$$
 — наибольшее открытое множество | $A^{\circ} \subseteq A$

Рассмотрим
$$A^{\circ} \cup x \mid x \notin A$$

$$\begin{bmatrix} A^\circ \cup x - \text{ не открытое} \Rightarrow x - \text{ не внутренняя} \\ A^\circ \cup x \not\subseteq A \Rightarrow x \not\in A \end{bmatrix} \Rightarrow \forall x \mid x \in A^\circ \Rightarrow x \in A \& x - \text{внутренняя}$$

task 1b

task: покажите, что A замкнуто тогда и только когда, когда содержит все свои граничные точки. Также покажите, что $\overline{A} = \{x \mid x$ — внутренняя или граничная точка $\}$. Верно ли, что $\overline{A} = X \setminus ((X \setminus A)^\circ)$?

proof:

 \Rightarrow Пусть $\exists x$ — граничная точка для $A \mid x \notin A \Rightarrow x \in A^c$

A — замкнутое \Rightarrow A^c — открытое \Rightarrow x — внутренняя для A^c \Rightarrow

 $\exists~V_x\mid V_x\subseteq A^c\Rightarrow V_x\cap A=\varnothing\Rightarrow x$ — не граничная для $A\Rightarrow$

любая граничная для A точка принадлежит A

 \Leftarrow A содержит все свои граничные точки \Rightarrow не все точки A внутренние \Rightarrow

A — не открытое $\Rightarrow A$ — замкнутое

task: Также покажите, что $\overline{A} = \{x \mid x$ — внутренняя или граничная точка $\}$.

proof:

Рассмотрим x - внутренняя для A и $x \notin \overline{A}$

x - внутренняя для $A\Rightarrow x\in A$ и $x\notin \overline{A}\Rightarrow A\nsubseteq \overline{A}\Rightarrow \overline{A}$ — не замыкание A

Рассмотрим x - граничная для A и $x \notin \overline{A}$

x - граничная для $A\Rightarrow\exists\ V_x\mid V_x\cap A\neq\varnothing$

 $A\subseteq \overline{A}\Rightarrow V_x\cap \overline{A}\neq\varnothing\Rightarrow x$ — граничная для \overline{A} или x— внутренняя для \overline{A}

Если x — граничная для \overline{A} и $x \notin \overline{A} \Rightarrow \overline{A}$ — не замкнутое

Если x — внутренняя для \overline{A} и $x \notin \overline{A} \Rightarrow x$ — не внутренняя для \overline{A}

task: Верно ли, что $\overline{A} = X \setminus ((X \setminus A)^{\circ})$?

proof:

$$X \setminus A = A^c$$

$$(X \setminus A)^{\circ} = (A^c)^{\circ} = A^c \setminus \partial A$$

$$X \setminus ((X \setminus A)^{\circ}) = X \setminus (A^{c})^{\circ} = X \setminus (A^{c} \setminus \partial A) = A \cup \partial A = \overline{A}$$

task 1f

task: Покажите, что $\overline{\left(\overline{A^{\circ}}\right)^{\circ}} = \overline{A^{\circ}}$.

proof:

Пусть $B = \overline{A^\circ}$. Заметим, что B — замкнутое множество, значит содержит все свои граничные точки

$$B^{\circ} = B \setminus \partial B$$
$$\overline{B^{\circ}} = (B \setminus \partial B) \cup \partial B = B$$

task 2a

условиям:

task: Связны ли \mathbb{Q} и $\mathbb{R}\setminus\mathbb{Q}$ как топологические подпространства \mathbb{R} ? $A\subseteq X$ — несвязное как подпространство \mathbb{R} , если $\exists~U,V\subseteq X~|~U,V\in\Omega$ и удовлетворяют

- 1. $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$
- 2. $U \cap V \cap A = \emptyset$
- 3. $A \subseteq U \cup V$

proof:

Рассмотрим $A = \bigcup_{n=0}^{\infty} (\sqrt{2} + n, \sqrt{2} + n + 1)$

$$B = \bigcup_{n=0}^{\infty} (\sqrt{2} - n - 1, \sqrt{2} - n)$$

 $A,B\in\Omega$ как счётное объединение открытых на $\mathbb R$ множеств

- 1. $A \cap \mathbb{Q} \neq \emptyset$, $B \cap \mathbb{Q} \neq \emptyset$
- $2. \ A \cap B \cap \mathbb{Q} = \emptyset$
- 3. $\mathbb{Q} \subseteq A \cup B$

 $\mathbb Q$ - несвязное как подпространство

 $\mathbb{C} \ \mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ аналогично, только 0 вместо $\sqrt{2}$

task 2b

покажем, что \nexists $A,B\in\Omega\mid A\cup B=(0,1),\ A\cap B=\varnothing,\ A,B\neq\varnothing$ попробуем найти $A=(a_0,a_1),\ B=(b_0,b_1),$ удовлетворяющие условиям $(a_0,a_1)\cup(b_0,b_1)=(0,1)\Rightarrow a_0=0,\ b_1=1$ $\begin{bmatrix} a_1=b_0\ \text{или}\ a_0>b_1\Rightarrow A\cap B\neq\varnothing\\ a_1< b_0\Rightarrow (a_0,a_1)\cup(b_0,b_1)\neq (0,1) \end{bmatrix}$

task 3a

Для каждого из примеров ниже проверьте, задано ли в нём топологическое пространство, и ответьте на следующие вопросы, если это так: каковы окрестности точек в данной топологии; каковы замкнутые множества в данной топологии; связно ли данное пространство.

Топология Зарисского на \mathbb{R} : $\Omega = \{\varnothing\} \cup \{X \subseteq \mathbb{R} \mid \mathbb{R} \setminus X \text{ конечно}\}$, то есть пустое множество и все множества с конечным дополнением.

- 1. $\emptyset \in \Omega$ $\mathbb{R} \setminus \mathbb{R} = \emptyset$ конечное $\Rightarrow \mathbb{R} \in \Omega$
- 2. Пусть $A_i \in \Omega$ $\mathbb{R} \setminus \bigcap_{i=1}^n A_i = \bigcup_{i=1}^n (\mathbb{R} \setminus A_i)$ конечно, как конечное объединение конечных множеств $\Rightarrow \bigcap_{i=1}^n A_i \in \Omega$
- 3. Пусть $A_i \in \Omega$ $\mathbb{R} \setminus \bigcup_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} (\mathbb{R} \setminus A_i)$ конечно, как счётное пересечение конечных множеств $\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \Omega$

Окрестность точки x — такое открытое множество V_x , что $x \in V_x$ Для $x \in A \in \Omega \Rightarrow V_x = A$ — набор интервалов

Замкнутые множества - множества, дополнения которых открыты Замкнутые множества: конечные множества (наборы точек)

Покажем, что $\nexists A, B \in \Omega \mid A \cup B = \mathbb{R}, \ A \cap B = \varnothing, \ A, B \neq \varnothing$ Пусть $A \in \Omega \Rightarrow A$ — набор интервалов. Пусть $A \cup B = \mathbb{R} \Rightarrow \mathbb{R} \setminus A = B$ — конечный набор точек $\Rightarrow B \notin \Omega \Rightarrow$ пространство связное

prac 4

task 5

task: Покажите аналог теоремы о дедукции для естественного вывода: $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$

solution

 \Leftarrow

пусть $\Gamma \vdash \alpha \rightarrow \beta$, покажем $\Gamma, \alpha \vdash \beta$

- 1. по условию существует вывод $\frac{\delta_1, \delta_2, \dots, \delta_{n-1}}{\alpha \to \beta}$
- $2. \ \Rightarrow \frac{\delta_1, \delta_2, \dots, \delta_{n-1}, \alpha \to \beta, \alpha}{\beta}$ тоже вывод
- 3. в предыдущем пункте α стало гипотезой, а β получилось по правилу Modus Ponens из $\alpha \to \beta$ и β
- $4. \Rightarrow \Gamma, \alpha \vdash \beta$

 \Rightarrow

воспользуемся правилом введения связок с лекции: $\frac{\Gamma,\alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta}$

prac 5

task 5.6a

task: Покажите, что исчисление предикатов не полно в моделях ограниченной конечной мощности. А именно, пусть дана модель $\mathcal{M} = \langle D, F, T, E \rangle$. Назовём мощностью модели мощность её предметного множества: $|\mathcal{M}| = |D|$. Покажите, что для любой конечной мощности модели $n \in \mathbb{N}$ найдётся такая формула α , что при $|\mathcal{M}| \leq n$ выполнено $[\![\alpha]\!]_{\mathcal{M}} = \mathrm{II}$, но $\not\vdash \alpha$.

solution

- 1. |D| = n конечная мощность
- 2. введём в модель операцию равенства $x_1 = x_2$, будем оценивать её так: $[x_1 = x_2] = \mathbf{H}$, если $x_1 = x_2$

- 3. рассмотрим формулу $\alpha_k = \exists x_1...x_k. \bigwedge_{1 \leq p < q \leq k} \neg (x_p = x_q)$ = $\exists x_1...x_k. (\neg (x_1 = x_2) \land \neg (x_1 = x_3) \land ... \land \neg (x_1 = x_k) \land \neg (x_2 = x_3) \land ... \land \neg (x_{k-1} = x_k))$
- 4. из лекции знаем, что оценка предметной области $E(x) \mid E \subseteq D$. пусть |E| = |D| = n (максимальная можность |E|). буквами $a_1...a_n \in D$ будем обозначать значения функции оценки предметных переменных
- 5. чтобы большая конъюкция оценивалась в истину, нужно, чтобы каждое равенство оценивалось в ложь \Rightarrow каждую переменную нужно оценить разным элементом из $E \Rightarrow [\![x_i]\!] = a_i$
- 6. для любого $k \leq n$ выполнено $[\![\alpha_k]\!] = \mathbb{N}$, однако для k = n+1 так оценить уже не получится и большая конъюкция оценится в ложь $([\![\alpha_{n+1}]\!] = \mathbb{N}) \Rightarrow$ формула α не общезначима $(\not\models \alpha)$
- 7. теорема о корректности исчисления предикатов: всякая формула, выводимая в классическом исчислении предикатов, общезначима ($\vdash \alpha \Rightarrow \models \alpha$)
 - $\Rightarrow \not\models \alpha \Rightarrow \not\vdash \alpha$ (вспоминаем правило $A \Rightarrow B$ значит $\neg B \Rightarrow \neg A$)
- 8. итак, получили, что формула α_k оценивается в истину $\forall k \leq n,$ но $\not\vdash \alpha$
- 9. для общезначимости α и доказемости необходимо, чтобы $|D|=\infty$

task 5.4a

task: Докажите или опровергните (каждую формулу в отдельности): $(\forall x. \exists y. \phi) \to (\exists x. \forall y. \phi)$ и $(\exists x. \forall y. \phi) \to (\forall x. \exists y. \phi)$

solution формула 1: $(\forall x. \exists y. \phi) \rightarrow (\exists x. \forall y. \phi)$

опровергнем:

пусть $D = \mathbb{R}, \quad \varphi(x,y) = x + y > 0$

 $[\![\forall x.\exists y.\phi]\!]=\mathrm{H},$ но $[\![\exists x.\forall y.\phi]\!]=\mathrm{H}$

формула 2: $(\exists x. \forall y. \phi) \rightarrow (\forall x. \exists y. \phi)$

опровергнем: $D = \mathbb{R}, \quad \varphi(x) = x > 0$

 $[\![\exists x. \forall y. \phi]\!] = H$, но $[\![\forall x. \exists y. \phi]\!] = Л$

prac 6

task 6.4b

task: Пусть M — непротиворечивое множество формул и \mathcal{M} — построенная в соответствии с теоремой о полноте исчисления предикатов оценка для M. Мы ожидаем, что \mathcal{M} будет моделью для M, для чего было необходимо доказать несколько утверждений. Восполните некоторые пробелы в том доказательстве. А именно, если φ — некоторая формула и для любой формулы ζ , более короткой, чем φ , выполнено $\mathcal{M} \models \zeta$ тогда и только тогда, когда $\zeta \in M$, тогда покажите:

(b) если $\varphi = \neg \alpha$, $\mathcal{M} \models \neg \alpha$, то $\neg \alpha \in M$; и если $\mathcal{M} \not\models \neg \alpha$, то $\neg \alpha \notin M$.

solution

- 1. докажем, что если $\varphi = \neg \alpha$, $\mathcal{M} \models \neg \alpha$, то $\neg \alpha \in M$
 - (a) по условию $\mathcal{M} \models \neg \alpha \Rightarrow \llbracket \neg \alpha \rrbracket_{\mathcal{M}} = \Pi \Rightarrow \llbracket \alpha \rrbracket_{\mathcal{M}} = \Pi$
 - (b) $\mathcal{M} \not\models \alpha$ и α короче, чем $\neg \alpha \Rightarrow$ по условию $\alpha \not\in M \Rightarrow$ по теореме о полноте $\neg \alpha \in M$
- 2. докажем, что если $\mathcal{M} \not\models \neg \alpha$, то $\neg \alpha \notin M$
 - (a) $\mathcal{M} \not\models \neg \alpha \Rightarrow \llbracket \neg \alpha \rrbracket_{\mathcal{M}} = \mathcal{I} \Rightarrow \llbracket \alpha \rrbracket_{\mathcal{M}} = \mathcal{I}$
 - (b) $\mathcal{M} \models \alpha$ и α короче, чем $\neg \alpha \Rightarrow$ по условию $\alpha \in M \Rightarrow M \vdash \alpha$
 - (c) предположим, что $\neg \alpha \in M \Rightarrow M \vdash \neg \alpha$
 - (d) $M \vdash \alpha$ и $M \vdash \neg \alpha \Rightarrow M$ противоречиво, что противоречит условию, значит предположение неверно $\Rightarrow \neg \alpha \not\in M$

task 6.2a

task: Покажите, что если классическое исчисление высказываний противоречиво, то также противоречиво и интуиционистское исчисление высказываний.

solution

предположим, что КИВ противоречиво, то есть $\exists \alpha \mid \vdash \alpha \& \neg \alpha$ высказывание α в КИВ эквивалентно высказыванию $\alpha \to \bot$ в ИИВ

1.
$$\alpha\&\beta\to\alpha$$
 — аксиома 4
$$\beta=\neg\alpha$$

$$\alpha\&\neg\alpha\to\alpha$$

2.
$$\frac{\alpha \& \neg \alpha \quad \alpha \& \neg \alpha \to \alpha}{\alpha}$$
 — М.Р. предположение и п.1

- 3. $\vdash \alpha \Rightarrow \models \alpha$ по теореме о полноте
- 4. при любой оценке $[\![\alpha]\!] = \mathbb{N} \Rightarrow [\![\alpha \to \bot]\!] = \mathbb{N}$
- 5. $\alpha \& \beta \to \beta$ аксиома 5 $\beta = \neg \alpha$ $\alpha \& \neg \alpha \to \neg \alpha$
- 6. $\frac{\alpha \& \neg \alpha \quad \alpha \& \neg \alpha \to \neg \alpha}{\neg \alpha} \text{M.P. предположение и п.5}$
- 7. $\vdash \neg \alpha \Rightarrow \models \neg \alpha$ по теореме о полноте
- 8. при любой оценке $[\![\neg \alpha]\!] = \mathcal{H} \Rightarrow [\![\alpha]\!] = \mathcal{H} \Rightarrow [\![\alpha \to \bot]\!] = \mathcal{H}$

пришли к противоречию

prac 7

task 7.2e

task: Определим отношение «меньше или равно» так: $0 \le a$ и $a' \le b'$, если $a \le b$. Докажите, что:

Будем говорить, что a делится на b с остатком, если существуют такие p и q, что $a=b\cdot p+q$ и $0\leq q< b$. Покажите, что p и q всегда существуют и единственны, если b>0.

solution

 \exists

∃!

- 1. докажем от противного: пусть $\exists p_1, p_2, q_1, q_2 \mid p_1 \neq p_2, \quad q_1 \neq q_2, \quad a = b \cdot p_1 + q_1,$ $a = b \cdot p_2 + q_2$
- 2. $a=b\cdot p_1+q_1$ и $b\cdot p_1'>a$ (по тому, как работает алгоритм) $\Rightarrow p_2\leq p_1$ $p_2\neq p_1\Rightarrow p_2< p_1$
- 3. $a=b\cdot p_2+q_2$ и $b\cdot p_2'>a$ (по тому, как работает алгоритм) $\Rightarrow p_1\leq p_2$ $p_1\neq p_2\Rightarrow p_1< p_2$
- 4. противоречие: $p_1 = p_2 = p$
- 5. $a=b\cdot p+q_2$ и $b\cdot p+q_2'>a$ (по тому, как работает алгоритм) $\Rightarrow q_1\leq q_2$ $q_1\neq q_2\Rightarrow q_1< q_2$
- 6. $a = b \cdot p + q_1$ и $b \cdot p + q_1' > a$ (по тому, как работает алгоритм) $\Rightarrow q_2 \leq q_1$ $q_2 \neq q_1 \Rightarrow q_2 < q_1$

task 7.3d

task: Определим «ограниченное вычитание»:

$$ab = \begin{cases} 0, & a = 0 \\ a, & b = 0 \\ pq, & a = p', b = q' \end{cases}$$

Докажите, что: ab=0 тогда и только тогда, когда $a\leq b$.

solution

- 1. $a = 0^{(n)}$ $b = 0^{(m)}$, где n, m количество штрихов
- 2. ab = 0, когда a = 0 (по условию)
- 3. в противном случае: $ab = pq = 0^{(n-1)}0^{(m-1)}$
- 4. в этом случае ab=0, если такимим переходами мы уменьшим количество штрихов у a до 0, не позже чем у $b\Rightarrow n\leq m\Rightarrow a\leq b$

task 7.5a

task: Будем говорить, что k-местное отношение R выразимо в формальной арифметике, если существует формула формальной арифметики ρ со свободными переменными x_1, \ldots, x_k , что:

- для всех $\langle a_1, \dots, a_k \rangle \in R$ выполнено $\vdash \rho[x_1 := \overline{a_1}] \dots [x_k := \overline{a_k}]$ (доказуема формула ρ с подставленными значениями a_1, \dots, a_k вместо свободных переменных x_1, \dots, x_k);
- для всех $\langle a_1, \dots, a_k \rangle \notin R$ выполнено $\vdash \neg \rho[x_1 := \overline{a_1}] \dots [x_k := \overline{a_k}].$

Выразите в формальной арифметике (укажите формулу ρ и докажите требуемые свойства про неё):

- «полное» отношение $R=\mathbb{N}^2$ (любые два числа состоят в отношении); solution
- 1. рассмотрим $\rho = (x_1 \cdot 0 = 0) \& (x_2 \cdot 0 = 0)$
- 2. для всех $\langle a_1, a_2 \rangle \in R = \mathbb{N}^2$ формула доказуема:
 - (a) $\overline{a_1} \cdot 0 = 0$ нелогическая аксиома 7
 - (b) $\overline{a_2} \cdot 0 = 0$ нелогическая аксиома 7

$$\begin{array}{lll} \text{(c)} & \alpha \to \beta \to \alpha \& \beta & - \text{ аксиома 3} \\ & \alpha = (\overline{a_1} \cdot 0 = 0) & \beta = (\overline{a_2} \cdot 0 = 0) \\ & (\overline{a_1} \cdot 0 = 0) \to (\overline{a_2} \cdot 0 = 0) \to (\overline{a_1} \cdot 0 = 0) \& (\overline{a_2} \cdot 0 = 0) \\ & \overline{a_1} \cdot 0 = 0 & (\overline{a_1} \cdot 0 = 0) \to (\overline{a_2} \cdot 0 = 0) \to (\overline{a_1} \cdot 0 = 0) \& (\overline{a_2} \cdot 0 = 0) \\ & (\text{d)} & (\overline{a_2} \cdot 0 = 0) \to (\overline{a_1} \cdot 0 = 0) \& (\overline{a_2} \cdot 0 = 0) & - \text{ M.P. (a), (c)} \\ & \overline{a_2} \cdot 0 = 0 & (\overline{a_2} \cdot 0 = 0) \to (\overline{a_1} \cdot 0 = 0) \& (\overline{a_2} \cdot 0 = 0) \\ & (\text{e)} & (\overline{a_1} \cdot 0 = 0) \& (\overline{a_2} \cdot 0 = 0) & - \text{ M.P. (b), (d)} \end{array}$$

3. $\nexists \langle a_1, a_2 \rangle \notin \mathbb{N}^2$

prac 8

task 8.4

task: Покажите, что в определении представимости пункт $\vdash \neg \varphi(\overline{x_1}, \dots, \overline{x_n}, \overline{y})$ при $f(x_1, \dots, x_n) \neq y$ не является обязательным и может быть доказан из остальных пунктов определения представимой функции.

определение

Будем говорить, что функция $f: \mathbb{N}_0^n \to \mathbb{N}_0$ представима в ΦA , если существует формула φ , что:

- 1. если $f(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 2. если $f(a_1,\ldots,a_n) \neq u$, то $\vdash \neg \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 3. для всех $a_i \in \mathbb{N}_0$ выполнено $\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x))(\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p)\varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q)$

solution

- 1. покажем, что пункт 2 следует из остальных пунктов определения
- 2. предположим, что $f(x_1,\ldots,x_n)\neq u\Rightarrow \vdash \varphi(\overline{x_1},\ldots,\overline{x_n},u)$
- 3. $f(x_1,\ldots,x_n)\neq u \Rightarrow f(x_1,\ldots,x_n)=v$
- 4. по 1 пункту определения: $f(x_1,\ldots,x_n)=v\Rightarrow \vdash \varphi(\overline{x_1},\ldots,\overline{x_n},v)$
- 5. по 3 пункту определения: $\vdash \varphi(\overline{x_1},\ldots,\overline{x_n},u)\&\varphi(\overline{x_1},\ldots,\overline{x_n},v) \to u=v$
- 6. из 3 пункта: $f(x_1, \dots, x_n) = v = u$ противоречие

prac 9

task d9.2b

$$f(a,b) = \left[\frac{b}{a}\right] = q \quad \Rightarrow \quad \vdash \varphi(a,b,q) = \exists d. (b = a \cdot q + d) \& (d < a)$$