Machine Learning (DS4023) Assignment 4

Deadline: Nov. 25, 2024.

Problem 1: Neural Networks (20 pts)

Consider a 3-layer fully connected neural network with the following architecture:

- Input layer: n = 4 neurons.
- **Hidden layer**: m = 3 neurons using a custom activation function $f(x) = \text{ReLU}(x) + \sin(x)$.
- Output layer: k=2 neurons using the softmax activation function $\sigma(z_i) = \frac{e^{z_i}}{\sum_i e^{z_i}}$.

The network parameters (weights and biases) are given as:

- $W_1 \in \mathbb{R}^{3 \times 4}$ and $b_1 \in \mathbb{R}^3$ for the hidden layer.
- $W_2 \in \mathbb{R}^{2 \times 3}$ and $b_2 \in \mathbb{R}^2$ for the output layer.

Given the input vector $\boldsymbol{x} \in \mathbb{R}^4$ and target output $\boldsymbol{y} \in \mathbb{R}^2$. Define the loss function as cross-entropy loss:

$$Loss = -\sum_{i=1}^{k} y_i \log(\hat{y}_i),$$

where \hat{y} is the output after the softmax activation.

Your tasks (rounding to 4 decimal points):

- 1. 1) Derive the equations for the forward pass through the network, including both the hidden and output layers. (3 pts)
 - 2) Calculate the outputs \mathbf{Z}_1 , \mathbf{H} , \mathbf{Z}_2 , and $\hat{\mathbf{y}}$ explicitly for a given input $\mathbf{x} = [1, -1, 0.5, 2]^T$ and the following initial weights and biases:

$$\mathbf{W}_1 = \begin{pmatrix} 0.1 & -0.2 & 0.3 & 0.4 \\ 0.5 & -0.3 & 0.1 & -0.2 \\ 0.4 & 0.2 & -0.5 & 0.3 \end{pmatrix}, \quad \mathbf{b}_1 = \begin{pmatrix} 0.1 \\ -0.1 \\ 0.05 \end{pmatrix}$$

$$\mathbf{W}_2 = \begin{pmatrix} -0.3 & 0.2 & 0.1 \\ 0.4 & -0.5 & 0.3 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 0.05 \\ -0.05 \end{pmatrix}.$$

- Note that Z_1 is the net input to the hidden layer, H is the activation output of the hidden layer, and Z_2 is the net input to the output layer. (3 pts)
- 2. Derive the gradient of the loss with respect to each parameter $(\boldsymbol{W}_1, \boldsymbol{b}_1, \boldsymbol{W}_2, \boldsymbol{b}_2)$ in the network and obtain the gradient values using results from the first question. Use matrix calculus to express the gradients. Hint: You can first calculate the error terms $\boldsymbol{\delta}_2$ and $\boldsymbol{\delta}_1$ for each layer and use them to express the gradients. (10 pts)
- 3. Suppose the learning rate $\alpha = 0.001$. Please calculate the updated parameter values after one back propagation process. (4 pts)

Problem 2: Programming (80 pts)

Complete the jupyter notebook attached on programming for CNN and RNN. Submit the completed file.

To submit:

- 1. A file containing the written answer to the Problems 1.
- 2. The Jupyter notebook with solutions to Problem 2.