

Automatic anomaly detection using NfSen

Wim Biemolt, SURFnet

Werner Schram, SURFnet

Automatic anomaly detection using NfSen

- SURFnet and netflow anomaly detection
 - NERD
 - NfSen
 - PeakFlow SP
- Currently used detection methods
 - DDos
 - Botnet
 - Holt-Winters aberrant behavior

SURFnet and netflow anomaly detection

- NERD v1
 - Developed by TNO
 - Based on cflowd
 - cflowd is no longer supported
- NERD v2
 - Initially developed by TNO
 - Has serious performance problems
 - NfSen can do the same but without the performance problems

NfSen

- Netflow Sensor (NfSen) is a
 - network statistics tool
 - Developed by Peter Haag
 - Currently in active development
 - Alert plug-in system
 - Generic plug-in system
 - Some plug-ins already available

NfSen

Overview Profile: live, Group: (nogroup)

SURF

DDos detection

- Simple flow analysis
 - based on NERD v1 DDos detection
 - using a low threshold and a high threshold
 - Rules for traffic between those thresholds
 - Custom thresholds for high load services

Expected traffic

Definitively Conspicuous Traffic

Border cases

High load servers

Custom thresholds

DDos interface: report

Home Graphs Details Alerts Stats Plugins live Bookmark URL Profile: live ▼							
alarm Events							
report setup thresholds botnets							
number of alarms to show: 10 (0 for all)							
from 7 days ago							
up to 0 days ago							
alarms: ddos 🔽							
Ok							

The ddos alarms between 2007-12-07 and 2007-12-15

\mathbb{D}	Destination	Flows per 5 minutes	Average packets/flow	Average bytes/flow	Starttime	Stoptime	Active	
<u>#50598</u>	3	7772	5054	4	2007-12-14 08:55:00	2007-12-14 16:32:50	1	<u>Delete</u>
#50596	5	10620	3859	4	2007-12-14 08:39:54	2007-12-14 16:32:50	1	<u>Delete</u>
<u>#50594</u>	1	9510	3147	3	2007-12-14 08:25:01	2007-12-14 16:32:50	1	<u>Delete</u>
<u>#50593</u>	3	12951	129	2	2007-12-14 08:24:58	2007-12-14 16:32:50	1	<u>Delete</u>
<u>#50490</u>	0	9517	73	1	2007-12-13 06:13:41	2007-12-14 16:32:50	1	<u>Delete</u>
#49820	0	281618	163	1	2007-12-04 14:47:47	2007-12-14 16:32:50	1	<u>Delete</u>
<u>#49191</u>	1	327975	125	1	2007-11-27 13:19:14	2007-12-14 16:32:50	1	<u>Delete</u>
<u>#49074</u>	4	22047	171	2	2007-11-26 13:32:20	2007-12-14 16:32:50	1	<u>Delete</u>
<u>#50656</u>	5	5222	2550	3	2007-12-14 16:20:07	2007-12-14 16:29:56	1	<u>Delete</u>
<u>#50635</u>	5	6031	1155	7	2007-12-14 11:44:53	2007-12-14 16:22:51	1	<u>Delete</u>

DDos interface: Details

Botnet detection

- Hosts infected by viruses connect to hosts known as botnet controllers
- List of botnet controllers are available, for example:
 http://www.bleedingthreats.net/rules/bleeding-botcc.rules
- Our plug-in logs all hosts that connect to known botnet controllers
- Automatically reports to incident report system using IODEF

Botnet IODEF reports

Holt-Winters aberrant behavior detection

 Uses information about periodic data to predict aberrant behavior.

Holt-Winters: Original implementation

Prediction

Limitations of the original implementation

- The original algorithm has three parameters which define:
 - the weight of historical data
 - the weight of the trend
 - the amount of expected noise
- The original algorithm has a constant learning rate
 - If a low learning rate is used, the selection of the initial values is critical.

 This will introduce false positives for a long time.
 - With a high learning rate, the model will likely be overfitted. This will introduce false negatives
- The trend parameter has no significant influence with the resolution we are using

Holt-Winters: Multiple trends

Network traffic time series often show multiple recurring patterns, for example a weekly trend:

Holt-Winters: Multiple periods

Learning rate

Fixed learning rate:
The first pattern is overweighted

Real data example

Holt Winters: Usage Example

Normal ICMP Traffic

Aberrant ICMP Traffic: Caused by DDos attack by Stormworm botnet

Holt Winters: Other possible uses

Common SMTP Traffic

Last week SMTP Traffic

Wim Biemolt
Wim.Biemolt@surfnet.nl
www.surfnet.nl

Werner Schram
Werner.Schram@surfnet.nl
www.surfnet.nl