

Robot Modelling IV

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Content

- Utilization of the dynamic model
- Linear and angular accelerations
- Moment of inertia
- Calculation of dynamics via Newton-Euler
- Calculation of dynamics via Lagrange
- Comparison of approaches

Dynamics Modelling

- Calculates the relations between forces, torques and motions which occur in a mechanical multi-body system
- Applications
 - Analysis of dynamics
 - Synthesis of mechanical structures
 - Modelling of elastic structures
 - Controller design

Dynamics Modelling: Application

Phases of robot development and operation

- Modelling in different phases
- High effort; errors and inconsistencies probable
- Reusability of model's code difficult if structure changes (kinematic structure, joint types, actuators)

Dynamics Modelling: Equations of Movement

• Relation between forces/torques, poses, velocities and accelerations of the n links

$$\vec{\tau} = M(\vec{\theta}) \cdot \ddot{\vec{\theta}} + n(\dot{\vec{\theta}}, \vec{\theta}) + g(\vec{\theta}) + R \cdot \dot{\vec{\theta}}$$
(8.1)

- $\vec{\tau}$: $n \times 1$ vector of general actuating forces and torques
- $M(\vec{\theta})$: $n \times n$ moment of inertia matrix
- $n(\vec{\theta}, \vec{\theta})$: $n \times 1$ vector with centrifugal and Coriolis components
- $g(\vec{\theta})$: $n \times 1$ vector with gravitational components
- $R: n \times n$ diagonal matrix describing friction forces
- $\vec{\theta}$: $n \times 1$ manipulator variables

Direct Dynamic Problem

 Given the mass, external forces and torques, as well as pose, initial velocity and accelerations the resulting difference of motion is calculated

Solve Eq. (8.1) for: $\vec{\theta}(t)$, $\dot{\vec{\theta}}(t)$, $\ddot{\vec{\theta}}(t)$

Inverse Dynamic Problem

 From desired parameters of motion and kinematics, determine the required actuation forces and torques

Calculate Eq. (8.1)

Acceleration of Rigid Bodies

Linear acceleration

$${}^{B}\vec{v_{q}} = \frac{d}{dt} {}^{B}\vec{v_{q}} = \lim_{\Delta t \to 0} \frac{{}^{B}\vec{v_{q}}(t + \Delta t) - {}^{B}\vec{v_{q}}(t)}{\Delta t}$$

Angular acceleration

Angular acceleration
$${}^{A}\vec{\omega_{B}} = \frac{d}{dt} {}^{A}\vec{\omega_{B}} = \lim_{\Delta t \to 0} \frac{{}^{A}\vec{\omega_{B}}(t + \Delta t) - {}^{A}\vec{\omega_{B}}(t)}{\Delta t}$$

Linear Acceleration

Linear acceleration based on velocity

$${}^{A}\vec{v}_{q} = {}^{A}_{B}R \cdot {}^{B}\vec{v}_{q} + {}^{A}\vec{\omega}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{q}$$
 Compare (7.1)

Because the origins of frames A and B coincide, it follows:

$$\frac{d}{dt}({}_{B}^{A}R \cdot {}^{B}\vec{q}) = {}_{B}^{A}R \cdot {}^{B}\vec{v}_{q} + {}^{A}\vec{\omega}_{B} \times {}_{B}^{A}R \cdot {}^{B}\vec{q}$$
 (8.2)

Derivative of velocity: Linear acceleration

$${}^{A}\vec{v}_{q} = \frac{d}{dt} \left({}^{A}_{B}R \cdot {}^{B}\vec{v}_{q} \right) + {}^{A}\dot{\vec{\omega}}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{q} + {}^{A}\vec{\omega}_{B} \times \frac{d}{dt} \left({}^{A}_{B}R \cdot {}^{B}\vec{q} \right)$$
(8.3)

Substituting (8.2) into (8.3)

$${}^{A}\dot{\vec{v}}_{q} = {}^{A}_{B}R \cdot {}^{B}\dot{\vec{v}}_{q} + {}^{A}\vec{\omega}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{v}_{q} + {}^{A}\dot{\vec{\omega}}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{q}$$

$$+ {}^{A}\vec{\omega}_{B} \times \left({}^{A}_{B}R \cdot {}^{B}\vec{v}_{q} + {}^{A}\vec{\omega}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{q} \right)$$

Linear Acceleration

Simplification

General case (frames A, B without common origin)

$${}^{A}\dot{\vec{v}}_{q} = {}^{A}\dot{\vec{v}}_{OB} + {}^{A}_{B}R \cdot {}^{B}\dot{\vec{v}}_{q} + 2 \cdot ({}^{A}\vec{\omega}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{v}_{q})$$
$$+ {}^{A}\dot{\vec{\omega}}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{q} + {}^{A}\vec{\omega}_{B} \times ({}^{A}\vec{\omega}_{B} \times {}^{A}_{B}R \cdot {}^{B}\vec{q})$$

• Considering \vec{q} does not move

Distribution of Mass: Geometric Pre-Examination

dm: Mass particle

• C_B : Center of mass of body K_B

• \vec{u}_{C_R} : Vector to center of mass

• \vec{r} : Vector to mass particle

Distribution of Mass: Inertia Tensor

Inertia tensor in reference to frame A, specifying the body's inertia regarding rotation

$${}^{A}I = \begin{bmatrix} {}^{A}i_{XX} & -{}^{A}i_{xy} & -{}^{A}i_{xz} \\ -{}^{A}i_{xy} & {}^{A}i_{yy} & -{}^{A}i_{yz} \\ -{}^{A}i_{xz} & -{}^{A}i_{yz} & {}^{A}i_{zz} \end{bmatrix}$$

- Scalar elements of inertia tensor (calculation through integration of mass distribution M)
 - Axial moments of inertia

$$^{A}i_{xx} = \iiint_{M}(y_{A}^{2} + z_{A}^{2})dm$$
 $^{A}i_{yy} = \iiint_{M}(x_{A}^{2} + z_{A}^{2})dm$ $^{A}i_{zz} = \iiint_{M}(x_{A}^{2} + y_{A}^{2})dm$

Inertia products

$$^{A}i_{xy} = \iiint_{M} x_{A}y_{A}dm$$
 $^{A}i_{xz} = \iiint_{M} x_{A}z_{A}dm$ $^{A}i_{yz} = \iiint_{M} y_{A}z_{A}dm$

For a point mass the tensor becomes a zero matrix

Distribution of Mass: Example Cuboid

- Calculation of inertia tensor for cuboid with uniform density ρ
- With $dm = \rho dx dy dz$ it follows:

$$A_{l_{XX}} = \int_{0}^{h} \int_{0}^{l} \int_{0}^{w} (y_{A}^{2} + z_{A}^{2}) \rho dx_{A} dy_{A} dz_{A}$$

$$= \int_{0}^{h} \int_{0}^{l} (y_{A}^{2} + z_{A}^{2}) w \rho dy_{A} dz_{A}$$

$$= \int_{0}^{h} \left(\frac{l^{3}}{3} + z_{A}^{2} l\right) w \rho dz_{A}$$

$$= \left(\frac{h l^{3} w}{3} + \frac{h^{3} l w}{3}\right) \rho$$

$$= \frac{m}{3} (l^{2} + h^{2}) \text{ (with total mass } m)$$

• For ${}^{A}i_{yy}$ and ${}^{A}i_{zz}$ it follows analogously:

$${}^{A}i_{yy} = \frac{m}{3}(w^{2} + h^{2})$$
$${}^{A}i_{zz} = \frac{m}{3}(l^{2} + w^{2})$$

Distribution of Mass: Example Cuboid

Calculation of

$$A_{l_{xy}} = \int_{0}^{h} \int_{0}^{l} \int_{0}^{w} x_{A} y_{A} \rho dx_{A} dy_{A} dz_{A}$$

$$= \int_{0}^{h} \int_{0}^{l} \frac{w^{2}}{2} y_{A} \rho dy_{A} dz_{A} = \int_{0}^{h} \frac{w^{2} l^{2}}{4} \rho dz_{A} = \frac{m}{4} w l$$

- Analogous computation of ${}^Ai_{xz} = \frac{m}{4}hw$, ${}^Ai_{yz} = \frac{m}{4}hl$
- Inertia tensor

$${}^{A}I = \begin{bmatrix} \frac{m}{3}(l^2 + h^2) & -\frac{m}{4}wl & -\frac{m}{4}hw \\ -\frac{m}{4}wl & \frac{m}{3}(w^2 + h^2) & -\frac{m}{4}hl \\ -\frac{m}{4}hw & -\frac{m}{4}hl & \frac{m}{3}(l^2 + w^2) \end{bmatrix}$$

Steiner's Theorem

- For parallel axes through the center of mass
- For arbitrary frame A and frame C with origin in center of mass and axes parallel to frame A, the following holds:

$$\bullet \quad ^A i_{zz} = \quad ^C i_{zz} + m \cdot \left(^A u_{C_x}^2 + ^A u_{C_y}^2 \right)$$

$$\bullet \quad {}^{A}i_{xy} = {}^{C}i_{xy} - m \cdot {}^{A}u_{C_{x}} \cdot {}^{A}u_{C_{y}}$$

- With position vector $\vec{A}\vec{u}_C = \left(\vec{A}u_{C_x}, \vec{A}u_{C_y}, \vec{A}u_{C_z}\right)^T$
- Remaining scalars follow analogously

Distribution of Mass: Example Cuboid

Steiner's theorem in matrix notation:

$${}^{A}I = {}^{C}I + m \cdot \left[{}^{A}\vec{u}_{C}^{T} \cdot {}^{A}\vec{u}_{C} \cdot E_{3} - {}^{A}\vec{u}_{C}^{T} \cdot {}^{A}\vec{u}_{C} \right]$$

- With $E_3 = 3 \times 3$ identity matrix
- Applied to cuboid example

$${}^{A}\vec{u}_{C} = \begin{pmatrix} {}^{A}u_{C_{x}} \\ {}^{A}u_{C_{y}} \\ {}^{A}u_{C_{z}} \end{pmatrix} = \frac{1}{2} {w \choose l} \qquad {}^{C}i_{zz} = \frac{m}{12} \cdot (w^{2} + l^{2}) \qquad {}^{C}i_{xy} = 0$$

 The remaining elements follow from symmetry considerations. Resulting inertia tensor:

$${}^{C}I = \begin{bmatrix} \frac{m}{12} \cdot (h^2 + l^2) & 0 & 0\\ 0 & \frac{m}{12} \cdot (w^2 + h^2) & 0\\ 0 & 0 & \frac{m}{12} \cdot (l^2 + w^2) \end{bmatrix}$$

Geometric Description of Neighboring Arm Elements

- C_i : Center of mass of link i
- \vec{u}_{c_i} : Vector to center of mass of link i in CS i
- \vec{u}_{i+1} : Vector from origin i to i+1 in CS i

Derivation of Equations of Motion

- Synthetic method (Newton-Euler):
 Free body diagram
 - Conservation of (angular) momentum
 - Elimination of constraining forces results in equations of motion
- Analytic methods (Lagrange):
 Application of extremal principles
 - Work and energy considerations
 - Formal derivation yields equations of movement

Newton-Euler Method: Fundamental Equations

- Newton equation: $\vec{f}_C = m \cdot \dot{\vec{v}}_C$
 - *m*: Total mass of body
 - $\dot{\vec{v}}_{C}$: Acceleration in center of mass C
 - \vec{f}_C : Force acting on the center

Newton-Euler Method: Fundamental Equations

- Euler equation: $\vec{n}_C = {}^C I \cdot \dot{\vec{\omega}}_C + \vec{\omega}_C \times {}^C I \cdot \vec{\omega}_C$
 - $\vec{\omega}_C$: Body's angular velocity
 - ^cI: Inertia tensor in frame C (center of mass)
 - \vec{n}_C : Torque in center, causing the rotation

- Iterative determination of velocities and accelerations in order to calculate the segments' mass forces
- Rotational velocity of element i + 1

$${}^{i+1}\vec{\omega}_{i+1} = {}^{i+1}R \cdot ({}^{i}\vec{\omega}_{i} + \dot{\theta}_{i+1} \cdot {}^{i}\vec{e}_{z_{i}})$$
$${}_{i+1}^{i}R \cdot {}^{i+1}\vec{\omega}_{i+1} = {}^{i}\vec{\omega}_{i} + \dot{\theta}_{i+1} \cdot {}^{i}\vec{e}_{z_{i}}$$

For rotational acceleration the following applies

Rotation matrix
$$_{i+1}^{i}R$$
 dependent on $\vec{\theta}$ and thus time dependent

Rotation matrix
$$_{i+1}^{i}R$$
 dependent on $\vec{\theta}$ and thus time dependent $\frac{d}{dt}(_{i+1}^{i}R\cdot_{i+1}^{i+1}\vec{\omega}_{i+1}) = \frac{d}{dt}(_{i}\vec{\omega}_{i}+\dot{\theta}_{i+1}\cdot_{i}\vec{e}_{z_{i}})$

$$\left(\frac{d}{dt}_{i+1}^{i}R\right)\cdot^{i+1}\overrightarrow{\omega}_{i+1} + {}_{i+1}^{i}R\cdot^{i+1}\dot{\overrightarrow{\omega}}_{i+1} = {}^{i}\overrightarrow{\omega}_{i} + \ddot{\theta}_{i+1}\cdot^{i}\overrightarrow{e}_{z_{i}}$$
(8.2) follows

$$\dot{\theta}_{i+1} \cdot {}^{i}\vec{e}_{z_{i}} \times {}^{i}_{i+1}R \cdot {}^{i+1}\vec{\omega}_{i+1} + {}^{i}_{i+1}R \cdot {}^{i+1}\dot{\vec{\omega}}_{i+1} = {}^{i}\dot{\vec{\omega}}_{i} + \ddot{\theta}_{i+1} \cdot {}^{i}\vec{e}_{z_{i}}$$

$$\begin{array}{lll}
\stackrel{i}{i+1}R & \cdot \stackrel{i+1}{\dot{\omega}}_{i+1} = \stackrel{i}{\dot{\omega}}_{i} + \ddot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}} - \dot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}} \times \stackrel{i}{i+1}R \cdot \stackrel{i+1}{\dot{\omega}}_{i+1} \\
\stackrel{i}{i+1}R & \cdot \stackrel{i+1}{\dot{\omega}}_{i+1} = \stackrel{i}{\dot{\omega}}_{i} + \ddot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}} + \stackrel{i}{\dot{\omega}}_{i+1} \times \dot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}} \\
\stackrel{i+1}{\dot{\omega}}_{i+1} = \stackrel{i+1}{i}R \cdot (\stackrel{i}{\dot{\omega}}_{i} + \ddot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}} + (\stackrel{i}{\dot{\omega}}_{i} + \dot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}}) \times \dot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}}) \\
\stackrel{i+1}{\dot{\omega}}_{i+1} = \stackrel{i+1}{i}R \cdot (\stackrel{i}{\dot{\omega}}_{i} + \ddot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}} + \stackrel{i}{\dot{\omega}}_{i} \times \dot{\theta}_{i+1} \cdot \stackrel{i}{e}_{z_{i}})
\end{array}$$

Simplification for linear joints: $i^{+1}\dot{\vec{\omega}}_{i+1} = i^{+1}R \cdot i\dot{\vec{\omega}}_{i}$

Linear velocity of element i + 1

$$\vec{v}_{i+1} = \vec{v}_{i+1} = \vec{v}_{i+1} + \vec{v}_{i+1} + \vec{v}_{i+1} + \vec{d}_{i+1} + \vec{d$$

Linear acceleration in link origin

$$\dot{\vec{v}}_{i+1} = \dot{\vec{v}}_{i+1} R \cdot \left(\dot{\vec{v}}_{i} + \ddot{d}_{i+1} \cdot \dot{\vec{e}}_{z_{i}} + \dot{\vec{\omega}}_{i+1} \times \dot{\vec{u}}_{i+1} \right) + \dot{\vec{\omega}}_{i+1} \times \left(\dot{\vec{e}}_{z_{i}} \dot{d}_{i+1} \times \dot{\vec{v}}_{i+1} \right) + 2 \dot{\vec{\omega}}_{i+1} \times \left(\dot{\vec{e}}_{z_{i}} \dot{d}_{i+1} \right)$$

Simplification for revolute joint

$$\vec{v}_{i+1} = \vec{v}_{i+1} = \vec{v}_{i} R \cdot \left(\vec{v}_{i} + \vec{v}_{i+1} \times \vec{u}_{i+1} \times \vec{u}_{i+1} + \vec{v}_{i} \vec{\omega}_{i+1} \times \vec{u}_{i+1} \right)$$

Linear acceleration in center of mass

$${}^{i}\dot{\vec{v}}_{C_{i}} = {}^{i}\dot{\vec{v}}_{i} + {}^{i}\dot{\vec{\omega}}_{i} \times {}^{i}\vec{u}_{C_{i}} + {}^{i}\vec{\omega}_{i} \times ({}^{i}\vec{\omega}_{i} \times {}^{i}\vec{u}_{C_{i}})$$

- Calculation of first link: ${}^0\vec{\omega}_0 = {}^0\dot{\vec{\omega}}_0 = \vec{0}$
- With linear and angular accelerations in the centers of mass the following forces and torques result:

$$\vec{f}_{C_i} = m_i \cdot \dot{\vec{v}}_{C_i}$$

$$\vec{n}_{C_i} = {^{C_i}I} \cdot \dot{\vec{\omega}}_i + \vec{\omega}_i \times {^{C_i}I} \cdot \vec{\omega}_i$$

- Forces and torques equilibrium for each link
 - Consideration of own mass force and inertia
 - Consideration of forces and torques enacted by neighboring links
- $\vec{f_i}$: Force enacted upon link i by link i+1
- \vec{n}_i : Torque enacted upon link i by link i+1

Coordinate Systems and Designators

Robot modelling IV 25 rrlab.cs.uni-kl.de

Force equilibrium in joint i

$$i\vec{f}_i = i\vec{f}_{C_i+1} + i^i_{t+1}R \cdot i^{t+1}\vec{f}_{i+1}$$

Torque equilibrium

$$\vec{n}_{i} = \vec{n}_{C_{i+1}} + \vec{n}_{i+1} R \cdot \vec{n}_{i+1} + \vec{n}_{i+1} + \vec{n}_{C_{i+1}} \times \vec{f}_{C_{i+1}} + \vec{n}_{i+1} \times \vec{n}_{i+1} R$$

Calculation proceeds from last joint to base ("backwards")

 For calculation of the forces required in joint i, only the z component is used

$$\tau_{i+1} = {}^{i}\vec{n}_i^T \cdot {}^{i}\vec{e}_{z_i}$$

Linear force for linear joints

$$\tau_{i+1} = {}^{i}\vec{f}_{i}^{T} \cdot {}^{i}\vec{e}_{z_{i}}$$

• In free space the initial forces and torques are set to 0:

$$\vec{f}_N = \vec{n}_N = \vec{0}$$

(If contact with environment or existing load -> ≠ 0)

Newton-Euler Method: Algorithm for Calculation of Torques

 Iterative calculation of velocities and accelerations starting from first link (outer iteration)

$$\begin{split} ^{i+1}\overrightarrow{\omega}_{i+1} &= ^{i+1}_{i}R \cdot \left(^{i}\overrightarrow{\omega}_{i} + \dot{\theta}_{i+1} \cdot ^{i}\overrightarrow{e}_{z_{i}} \right) \\ ^{i+1}\overrightarrow{\omega}_{i+1} &= ^{i+1}_{i}R \cdot \left(^{i}\overrightarrow{\omega}_{i} + \ddot{\theta}_{i+1} \cdot ^{i}\overrightarrow{e}_{z_{i}} + ^{i}\overrightarrow{\omega}_{i} \times \dot{\theta}_{i+1} \cdot ^{i}\overrightarrow{e}_{z_{i}} \right) \\ ^{i+1}\overrightarrow{v}_{i+1} &= ^{i+1}_{i}R \cdot \left(^{i}\overrightarrow{v}_{i} + \ddot{d}_{i+1} \cdot ^{i}\overrightarrow{e}_{z_{i}} + ^{i}\overrightarrow{\omega}_{i+1} \times ^{i}\overrightarrow{u}_{i+1} \right) \\ &+ ^{i}\overrightarrow{\omega}_{i+1} \times \left(^{i}\overrightarrow{\omega}_{i+1} \times ^{i}\overrightarrow{u}_{i+1} \right) + 2 \cdot ^{i}\overrightarrow{\omega}_{i+1} \times \left(^{i}\overrightarrow{e}_{z_{i}}\dot{d}_{i+1} \right) \right) \\ ^{i}\overrightarrow{v}_{C_{i}} &= ^{i}\overrightarrow{v}_{i} + ^{i}\overrightarrow{\omega}_{i} \times ^{i}\overrightarrow{u}_{C_{i}} + ^{i}\overrightarrow{\omega}_{i} \times \left(^{i}\overrightarrow{\omega}_{i} \times ^{i}\overrightarrow{u}_{C_{i}} \right) \\ ^{i}\overrightarrow{f}_{C_{i}} &= m_{i} \cdot ^{i}\overrightarrow{v}_{C_{i}} \\ ^{i}\overrightarrow{n}_{C_{i}} &= ^{c_{i}}I \cdot ^{i}\overrightarrow{\omega}_{i} + ^{i}\overrightarrow{\omega}_{i} \times ^{c_{i}}I \cdot ^{i}\overrightarrow{\omega}_{i} \end{split}$$

Newton-Euler Method: Algorithm for Calculation of Torques

If gravity is considered, then:

$${}^0\dot{\vec{v}}_0 = \vec{g}'$$

- g' in opposite direction of gravitation vector
- Corresponds to acceleration of robot base by 1g upward
- Backward calculation of forces and torques starting from last link and ending in robot base (inner iteration)

$$au_{i+1} = \vec{i} \vec{n}_i^T \cdot \vec{e}_{z_i}$$
 bzw. $au_{i+1} = \vec{i} \vec{f}_i^T \cdot \vec{e}_{z_i}$

- Example of a closed-form solution
 - Two-joint robot
 - Simplification: Point masses m_1, m_2 in link centers

Procedure

- Determining known values
- Determining rotation matrices between links
- Outer iteration (velocity, acceleration)
 - For joint 1, 2
- Inner iteration (forces, torques)
 - For joint 2, 1

- Determining known values
 - Vectors to centers of mass

$${}^{1}\vec{u}_{C_{1}} = -\frac{a_{1}}{2} \cdot {}^{1}\vec{e}_{x_{1}}, \ {}^{2}\vec{u}_{C_{2}} = -\frac{a_{2}}{2} \cdot {}^{2}\vec{e}_{x_{2}}$$

Inertia tensor (because of point mass)

$${}^{C_1}I_1 = {}^{C_2}I_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- No forces acting on TCP: $\vec{f}_2 = \vec{0}$, $\vec{n}_2 = \vec{0}$
- No movement of robot base: $\vec{\omega}_0 = \vec{0}$, $\dot{\vec{\omega}}_0 = \vec{0}$
- Consideration of gravity: ${}^0\dot{\vec{v}}_0 = g \cdot {}^0\vec{e}_{y_0}$

Vector to next coordinate system

$${}^{0}\vec{u}_{1} = \begin{pmatrix} c_{1}a_{1} \\ s_{1}a_{1} \\ 0 \end{pmatrix}, \ {}^{1}\vec{u}_{2} = \begin{pmatrix} c_{2}a_{2} \\ s_{2}a_{2} \\ 0 \end{pmatrix}$$

Rotation matrices between joint-frames (see chapter VII)

Outer iteration (1st step)

$$^{1}\vec{\omega}_{1} = {}^{1}_{0}R \cdot \left({}^{0}\vec{\omega}_{0} + \dot{\theta}_{1} \cdot {}^{0}\vec{e}_{z_{0}} \right) = \vec{0} + \begin{pmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{pmatrix}$$

$$^{1}\dot{\vec{\omega}}_{1} = {}^{1}_{0}R \cdot \left({}^{0}\dot{\vec{\omega}}_{0} + \ddot{\theta}_{1} \cdot {}^{0}\vec{e}_{z_{0}} + {}^{0}\vec{\omega}_{0} \times \dot{\theta}_{1} \cdot {}^{0}\vec{e}_{z_{0}} \right) = \vec{0} + \begin{pmatrix} 0 \\ 0 \\ \ddot{\theta}_{1} \end{pmatrix} + \vec{0}$$

$$^{1}\dot{\vec{v}}_{1} = {}^{1}_{0}R \cdot \left({}^{0}\dot{\vec{v}}_{0} + {}^{0}\dot{\vec{\omega}}_{1} \times {}^{0}\vec{u}_{1} + {}^{0}\vec{\omega}_{1} \times \left({}^{0}\vec{\omega}_{1} \times {}^{0}\vec{u}_{1} \right) \right)$$

$$= \begin{pmatrix} s_{1}g \\ c_{1}g \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \ddot{\theta}_{1} \cdot a_{1} \\ 0 \end{pmatrix} + \begin{pmatrix} -\dot{\theta}_{1}^{2} \cdot a_{1} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} s_{1}g - \dot{\theta}_{1}^{2} \cdot a_{1} \\ c_{1}g + \ddot{\theta}_{1} \cdot a_{1} \\ 0 \end{pmatrix}$$

Outer iteration (1st step)

$$\overset{1}{\vec{v}}_{C_{1}} = \overset{1}{\vec{v}}_{1} + \overset{1}{\vec{\omega}}_{1} \times \overset{1}{\vec{u}}_{1} \times \overset{1}{\vec{u}}_{C_{1}} + \overset{1}{\vec{\omega}}_{1} \times (\overset{1}{\vec{\omega}}_{1} \times \overset{1}{\vec{u}}_{C_{1}})$$

$$= \begin{pmatrix} s_{1}g - \dot{\theta}_{1}^{2} \cdot a_{1} \\ c_{1}g + \ddot{\theta}_{1} \cdot a_{1} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -\ddot{\theta}_{1} \cdot \frac{a_{1}}{2} \\ 0 \end{pmatrix} + \begin{pmatrix} \dot{\theta}_{1}^{2} \cdot \frac{a_{1}}{2} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} s_{1}g - \dot{\theta}_{1}^{2} \cdot \frac{a_{1}}{2} \\ c_{1}g + \ddot{\theta}_{1} \cdot \frac{a_{1}}{2} \\ 0 \end{pmatrix}$$

- Arbitrary number of joints
- Use Loads on links are calculated
- Small computational effort O(n) (n = number of joints)
- **8** Recursion

Physical Background: Energy

- Potential energy $P = m \cdot g \cdot h$ with mass m, height h
- Kinetic energy $K = \frac{1}{2} \cdot m \cdot v^2$
- Kinetic energy for a rotating body

$$K_{\text{rot}} = \frac{1}{2} \cdot m \cdot v^2 = \frac{1}{2} \cdot m \cdot r^2 \cdot \omega^2 = \frac{1}{2} \cdot J \cdot \omega^2$$

Kinetic energy after a free fall from height h

$$K = m \cdot g \cdot h = m \cdot \frac{v^2}{2 \cdot g} \cdot g = \frac{1}{2} m \cdot v^2$$

Subsystems 36 rrlab.cs.uni-kl.de

Lagrange Method

Equation of movement according to Lagrange

$$\tau_i = \frac{d}{dt} \frac{\delta l}{\delta \dot{\theta}_i} - \frac{\delta l}{\delta \theta_i}$$

- θ_i : Rotation angle or translation distance
- $\dot{\theta}_i$: joint velocities
- τ_i : force/torque vector in joints
- Lagrange function: $l = e_{kin} e_{pot}$ (in reference to base)
 - Describes the difference between kinetic and potential energy of a mechanical system

Lagrange Method: Kinetic Energy

Kinetic energy
$$e_{kin,i}$$
 of joint i

$$e_{kin,i} = \underbrace{\frac{1}{2} m_i \cdot \vec{v}_{C_i}^T \cdot \vec{v}_{C_i}}_{\text{Linear portion}} + \underbrace{\frac{1}{2}}_{\text{Rotational portion}}^{i \vec{\omega}_i^T \cdot c_i} I_i \cdot \overset{i}{\vec{\omega}_i}$$

- \vec{v}_{C_i} and \vec{v}_{i} dependent on position and velocity of joints
- Total kinetic energy

$$e_{kin} = \sum_{i=1}^{n} e_{kin,i}$$

Lagrange Method: Kinetic Energy

Kinetic energy can be described dependent on position and velocity

$$e_{kin}(\vec{\theta}, \dot{\vec{\theta}}) = \frac{1}{2} \dot{\vec{\theta}}^T \cdot M(\vec{\theta}) \cdot \dot{\vec{\theta}}$$

- $M(\vec{\theta})$: Here $n \times n$ mass matrix, in which every element is a complex function depending on $\vec{\theta}$
- $M(\vec{\theta})$: Positive-definite matrix, thus $\dot{\vec{\theta}}^T \cdot M(\vec{\theta}) \cdot \dot{\vec{\theta}}$ always yields a positive scalar
- This equation corresponds to the common formulation of kinetic energy of a point mass

$$e_{kin} = \frac{1}{2}m \cdot v^2$$

Lagrange Method: Potential Energy

- Potential energy u_i of link i $e_{pot,i} = -m_i \cdot {}^0 \vec{g}^T \cdot {}^0 \vec{u}_{C_i} + e_{pot,ref_i}$
 - ${}^{0}\vec{g}$: 3 × 1 Gravitation vector, in reference to frame 0
 - ${}^{0}\vec{u}_{C_{i}}$: 3 × 1 Vector, describing the center of mass of i (dependent on joint position)
 - e_{pot,ref_i} : Constant, so that $e_{pot,i} \ge 0$ holds
- The total potential energy e_{pot} is given by

$$e_{pot} = \sum_{i=1}^{n} e_{pot,i}$$

The potential energy can also be formulated as a function $e_{pot}(\vec{\theta})$ in dependence of the joint values

Lagrange Method

Thus, for the Lagrange function follows:

$$l\left(\vec{\theta}, \dot{\vec{\theta}}\right) = e_{kin}\left(\vec{\theta}, \dot{\vec{\theta}}\right) - e_{pot}(\vec{\theta})$$

• For the equation of movement with torque vector $\vec{\tau}$:

$$\vec{\tau} = \frac{d}{dt} \frac{\delta l}{\delta \dot{\vec{\theta}}} - \frac{\delta l}{\delta \vec{\theta}}$$

For a manipulator:

$$\vec{\tau} = \frac{d}{dt} \frac{\delta e_{kin} \left(\vec{\theta}, \dot{\vec{\theta}} \right)}{\delta \dot{\vec{\theta}}} - \frac{\delta e_{kin} \left(\vec{\theta}, \dot{\vec{\theta}} \right)}{\delta \vec{\theta}} + \frac{\delta e_{pot} (\vec{\theta})}{\delta \vec{\theta}}$$

Lagrange Method

- Formulating the equations is simple
- Closed model
- Analytical evaluation possible
- Computationally very expensive $O(n^4)$ (n = number of joints)
- Only actuating torques are calculated

Efficiency of the Approaches

- Newton-Euler method
 - Multiplications: 126n 99
 - Additions: 106*n* − 92
- Lagrange method
 - Multiplications: $32n^4 + 86n^3 + 171n^2 + 53n 128$
 - Additions: $25n^4 + 66n^3 + 129n^2 + 42n 96$
- For typical robots (n = 6 joints) the Newton-Euler method is $100 \times \text{more efficient}$
- Optimizations possible for both methods

Requirements for Manipulators

- Reliable positioning : Accuracy (repeatability)
- Collision avoidance
- Execution of movement: Fluid with appropriate velocities and accelerations
- Adaptation to changing conditions

Fundamental Questions

- Direct kinematics
 - Given all joint values. Where is the TCP?
- Inverse kinematics
 - Given TCP-pose. Which joint values are required to achieve pose?
- Dynamics
 - Which forces/torques do the actuators have to enact to accelerate TCP by a certain magnitude?
- Trajectory planning
 - How does a "good" trajectory that avoids collisions look like?

Next Lecture ...

Trajectory control

- Fundamentals
- Methods of interpolation
- Spline-interpolation