Data Mining

DAPT 631

Vishal Patel

Spring 2023

- O Vishal
- O I run my own Data Science practice at DERIVE, LLC
- O MS in Computer Science 2003 (IIT, Chicago), and MS in Decision Sciences 2012 (VCU, Richmond)
- O Mining data since 2003

ActiveCampaign >

PETRO

McDonald's

HOME SERVICES

O Introduction

O History

Course Structure

O Introduction

O History

O Course Structure

One zettabyte = One trillion gigabytes = One sextillion (10^{21}) bytes

For comparison, the universe is 4×10^{17} seconds old.

CONTINUUM° ANALYTICS

Era of Data Literacy

- Data exploration and analysis are going to be a new kind of literacy that will be required to do great work in any field.
- Language is a human instinct and is a natural path to insight. We see
 this in our interaction with Python/PyData users, whose passion chiefly
 stems from this expressiveness and agility.
- An analytical language is "thoughtware", not "software".

What is Data Mining?

Data mining is the process of

discovering patterns in large data sets
involving methods at the intersection of
machine learning, statistics, and database systems.

[Wikipedia]

Data mining is the extraction of implicit, previously-unknown, and potentially-useful information from data.

– Witten and Frank

Data mining is the process of discovering meaningful new correlations, patterns and trends by sifting through large amounts of data stored in repositories, using pattern recognition technologies as well as statistical and mathematical techniques.

- Gartner

What is Data Science?

Data science is a field that involves using scientific methods, processes, algorithms and systems to extract knowledge and insights from structured and unstructured data. It is a multidisciplinary field that combines domain expertise, programming skills, and knowledge of math and statistics to extract meaningful insights from data. Data scientists work with large and complex datasets to identify patterns, trends, and relationships that can help organizations make better decisions and improve their operations. They use a variety of tools and techniques, such as machine learning and statistical analysis, to analyze and interpret data, and communicate their findings through reports, visualizations, and other forms of presentation.

Data Mining Tasks

Applications of Data Mining

O Introduction

O History

O Course Structure

Statistics

Census

Mortality tables

Accounting

From Latin: *status* state

... teaches us what is the political arrangement of all modern states of the world.

W Hooper, 1770

DATA COLLECTIONS + ANALYSIS + DECISION MAKING

Statistics

EXAMPLE #1: UNCERTAINTY

Siege of Plataea (5th Century BCE)

What do you think they used as the best estimate for the height of the wall?

- A. Mean
- B. Median
- C. Mode
- D. Max

Statistics

EXAMPLE #2 FREQUENCY ANALYSIS, CRYPTOANALYSIS

Caesar Cipher

Original message: Et tu, Brute?

Encrypted message: Hw wx, Euxwh?

Al-Kindi (801-873 AD)

Statistics

EXAMPLE #3 MORTALITY TABLES, DEMOGRAPHY

Data from Edmond Halley's *An Estimate of the Degrees of Mortality of Mankind (1693)*, table p.600. The graph shows the probability of surviving one of more year(s) at a certain age.

Modern Statistics

t distribution

t distribution

Random sampling

Design ofexperiments

Bayesian Statistics

A rigorous mathematical discipline for analysis, decision making, and inference

Sir Francis Galton (1822–1911) Correlation, regression

Carl Pearson (1857–1936)
Founder of mathematical statistics

R A Fisher (1890–1962) ANOVA, Maximum Likelihood, DOE

Modern Statistics

EXAMPLE: DATA VISUALIZATION

Original map by **John Snow** showing the clusters of cholera cases in the **London epidemic of 1854** [Source]

Data Mining

Algorithms &
Computation
Computer Science
Neural Networks
Decision Trees
Genetic Algorithms
Relational Databases

Alan Turing (1912 –1954) Theoretical Computer Science

Claude Shannon (1916 –2001) Information Theory

- O Warren McCulloch and Walter Pitts created a computational model for neural networks. (1943)
- O John Holland introduced Genetic Algorithm based on the concept of Darwin's theory of evolution. (1960)
- O E. F. Codd published an important paper to propose the use of a relational database model. (1970)

Data Science

Gradient Boosting Random Forests Support Vector-Machines Recommendersystems Unstructured data Open source Big Data

Data science is an interdisciplinary field
that uses scientific methods, processes, algorithms and systems
to extract knowledge and insights
from data in various forms,
both structured and unstructured,
similar to data mining.†

Artificial Intelligence

Deep learning
ReinforcementLearning
Speech recognition
Natural LanguageProcessing
Computer vision

Regression
Correlation
Frequency analysis
Descriptive statistics
ANOVA

Normal distribution

t distribution

Random sampling

Design of Experiments

Bayesian statistics

Algorithms &
Computation
Computer Science
Neural Networks
Decision trees
Genetic algorithms
Relational Databases

Gradient Boosting
Random Forests
Support Vector Machines
Recommender systems
Unstructured data
Open source
Big Data

Deep learning
ReinforcementLearning
Speech recognition
Natural LanguageProcessing
Computer vision

Prehistory – 18th Century

Late 19th / Early 20th Century

Mid-Late 20th Century

21st Century

Calculations by hand

Distributed computing

Evolution of techniques and technology

Machine Learning

Field of study that gives computers the ability to learn without being explicitly programmed.

Artur Samuel, 1959

O Introduction

O History

O Course Structure

Data Science ≈ Data Mining

- O The specific definitions and boundaries between these disciplines remain fuzzy.
- O For the purpose of this class, I will use the terms 'Data Science' and 'Data Mining' interchangeably (with a preference to the former).
- O We will cover several Data Science techniques in this class, e.g., Gradient Boosting.

Two Cultures

THEORETICAL

PRACTICAL

INFERENCE

PREDICTION

Data Science

Statistics

ASSUMPTIONS

EMPIRICAL

MANUAL

AUTOMATION

Course Outline

- 1. Introduction
- 2. The Data Science Process
- 3. Supervised Learning
- 4. Unsupervised Learning
- 5. Wrap Up

Class Structure

- 1. Ask questions at any time!
- 2. Collaboration is encouraged.
- 3. All content (course material) will be available on Blackboard (and on a git repository).
- 4. Data Mining + Python
- 5. Homework assignments in Python

My Objectives

- 1. Provide a practical knowledge of data mining algorithms.
- 2. Give a broader perspective to help understand what role data mining plays in the decision-making process.
- 3. Help you develop an appreciation for the beauty of the theoretical foundations underlying data mining.
- 4. Help you think more like a Data Scientist.
- 5. (For myself) Continue learning.

Data Mining + Python

Learn Data Mining Concepts Implement them in Python

Course Material

	Friday 11:30 - 12:30	Week 1 44567 Lunch	HyFlex Week 2 20-Jan Lunch	Week 3 44595 Lunch	HyFlex Week 4 17-Feb Lunch	Week 5 44623 Lunch	HyFlex Week 6 44637 Lunch	Week 7 44651 Lunch	HyFlex Week 8 14-Apr Lunch	Week 9 44679 Lunch
Session 1	12:30 - 2:15	Statistics	Data Mining	Practicum Client Meetings	Data Mining	Statistics	Risk Analysis	Statistics	Statistics	Statistics
Session 2	2:30 - 4:15	Statistics	Statistics	Forecasting	Forecasting	Forecasting	Forecasting	Forecasting	Python	Risk Analysis
Session 3	4:30 - 6:15	Forecasting	Statistics	Forecasting	Forecasting	Forecasting	Tableau	Forecasting	Python	Risk Analysis
Special Events	6:45 - 8:00	Social		Social		Social		Spring Gala		
	Saturday	7-Jan	21-Jan	4-Feb	44610	4-Mar	18-Mar	1-Apr	44666	29-Apr
	7:30 - 8:00	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast
Session 4	8:00 - 9:45	Data Mining	Python	Data Mining	Statistics	Python	Data Mining	Data Mining	Risk Analysis	Data Mining
Session 5	10:00 - 11:45	Data Mining	Python	Data Mining	Statistics	Python	Data Mining	Data Mining	Risk Analysis	Data Mining
	11:45 - 12:30	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch
Session 6	12:30 - 2:15	Practicum Introductions	Forecasting	Tableau	Tableau	Practicum Status Reports	Statistics	Tableau	Tableau	Practicum Status Reports
Session 7	2:30 - 3:45	CATME	Forecasting	Tableau	Tableau	Practicum	Statistics	Tableau	Tableau	Practicum Status

vishal@derive.io

www.linkedIn.com/in/VishalJP

@derive_io