

Introduced By: Prof. Safia Abbas

Text Books:

"An Introduction to the theory of computation" by Michael Sipser, 2nd Edition, PWS Publishing Company, Inc. 2006; ISBN: 0-534-95097-3

"An Introduction to Formal Languages & Automata" by Peter Linz, 5th Edition, Jones & Bartlett Publishers, Inc. January 2012; ISBN:978-1-4496-1552-9.

Agenda

Examples of STM (accepters)

Turing machines

- $leftilde{left}{left}{f O}_M$ is said to halt starting from some initial configuration
 - $x_1q_ix_2 \quad x_1q_ix_2 \overset{r}{dash} y_1q_iay_2 \quad ext{ wher } \delta\left(q_j,a
 ight) \quad ext{ is defined.}$
- We said that $x_1q_ix_2$ yields $y_iq_i a y_2$ in one or more steps.
- The configuration of the machine M that never halts will be presented by

$$x_1qx_2 \stackrel{*}{\vdash} \infty,$$

The sequence of configuration leading to a halt state called a computation

Example of a DTM

L(T)= $\{0^n \mid 0^n \mid n \ge 0\}$

M=

 $(\{p1,p2,p3,p4,q1,h\}, \{0,1\},\{0,1\},\delta,p1,h\}$

How a DTM works

On the input 0001000, the TM halts.

Yield in zero step or more: Example

(p1, <u>0</u> 001000)
(p2,€ <u>0</u> 01000)
(p2,€001000 <u>€</u>)
(p3,€00100 <u>0</u>)
(p4,€0010 <u>0</u> €)
(p4, <u>€</u> 00100€)
(p1,€ <u>0</u> 0100€)
(p2,€€ <u>0</u> 100€)
(p2,€€0100 <u>€</u>)
(p3,€€010 <u>0</u>)

(p4,€€01<u>0</u>) (p4,€<u>€</u>010) (pI,€€<u>0</u>I0) (p2,€€€<u>I</u>0) (p2,€€€1<u>0</u>) (p2,€€€10<u>€</u>) (p3,€€€1<u>0</u>) (p4,€€€<u>I</u>) (p4,€€<u>€</u>1) (pI,€€€<u>I</u>) (q1,€€€€<u>€</u>) (h <u>,€</u>)

Example of language accepted by a TM

- $L(T) = \{0^n \mid 0^n \mid n \ge 0\}$
- T halts on $0^n 10^n$
- T hangs on $0^{n+1}10^n$ at p3
 - T hangs on $0^n 10^{n+1}$ at q l
 - Thangs on $0^n I^2 0^n$ at q

Turing machine

Design a Turing machine that accepts the language

 $L=\{a^nb^n: n>=0\}$

$$egin{aligned} Q &= \{q_0, q_1, q_2, q_3, q_4\}\,, \ F &= \{q_4\}\,, \ \Sigma &= \{a, b\}\,, \ \Gamma &= \{a, b, x, y, \Box\}\,. \end{aligned}$$

$$\delta(q_0, a) = (q_1, x, R),$$
 $\delta(q_1, a) = (q_1, a, R),$
 $\delta(q_1, y) = (q_1, y, R),$
 $\delta(q_1, b) = (q_2, y, L),$

$$\delta (q_2, y) = (q_2, y, L), \qquad \delta (q_0, y) = (q_3, y, R),$$
 $\delta (q_2, a) = (q_2, a, L), \qquad \delta (q_3, y) = (q_3, y, R),$
 $\delta (q_2, x) = (q_0, x, R). \qquad \delta (q_3, \square) = (q_4, \square, R).$

```
q_0aa\cdots abb\cdots b\vdash xq_0a\cdots ayb\cdots b,
q_0aa\cdots abb\cdots b \vdash xxq_0\cdots ayy\cdots b,
 a_aaabb \vdash xq_1abb \vdash xaq_1bb \vdash xq_2ayb
            \vdash q_2xayb \vdash xq_0ayb \vdash xxq_1yb
            \vdash xxyq_1b \vdash xxq_2yy \vdash xq_2xyy
            \vdash xxq_0yy \vdash xxyq_3y \vdash xxyq_3\Box
            \vdash xxyy\Box q_4\Box.
```

Another Turing Machine Example

Turing machine for the language $\{a^nb^n\}$

Halt & Accept

Observation:

since we can find the machine for the language $\{a^nb^n\}$

So, we can easily construct a machine for the language $\{a^nb^nc^n\}$

Question

- Design the Simple Eraser TM. This Turing machine reads strings in the language given by the expression (0+1)* and replaces the right-most symbol by a blank (#).
- Then find the derivation of the string "1110"

 Note: the problem considers the blank symbol is #

Answer

TM = $(\{q_0,q_1,q_2,q_3\},\{0,1\},\{0,1,\#\},\delta,q_0,\{p\})$ where δ is given by:

	Σ	0	1	#
Q				
q	0	(q ₁ ,0,R)	(q ₁ ,1,R)	Ø
q	1	(q ₁ ,0,R)	(q_1 , 1 , R)	$(q_2, \#, L)$
q	2	(q ₃ ,#,L)	(q ₃ ,#,L)	Ø
q	3	(q ₃ ,0,L)	(q ₁ ,1,R) (q ₁ ,1,R) (q ₃ ,#,L) (q ₃ ,1,L)	(p,#,L)

 $\#q_01110\# \to \#1q_1110\# \to \#11q_10\# \to \#1110q_1\# \to \#111q_20\# \to \\ \#11q_31\#\# \to \#1q_311\#\# \to \#q_3111\#\# \to q_3\#111\#\# \to p\#\#111\#\#$

Thanks for Listning