第8章 自 相 关

8.1 自相关的后果

违反球形扰动项的另一情形是扰动项存在自相关。

对于扰动项 $\{\varepsilon_1, ..., \varepsilon_n\}$,如果存在 $i \neq j$,使得 $E(\varepsilon_i \varepsilon_j | X) \neq 0$,即协方差矩阵 $Var(\varepsilon | X)$ 的非主对角线元素不全为0,则存在"自相关" (autocorrelation)或"序列相关"(serial correlation)。

1

在自相关的情况下:

- (1) OLS 估计量依然无偏、一致且渐近正态,因为证明这些性质时,并未用到"无自相关"的假定。
- (2) OLS 估计量方差 $Var(\hat{\beta}|X)$ 的表达式不再是 $\sigma^2(XX)^{-1}$,因为 $Var(\varepsilon|X) \neq \sigma^2 I$ 。使用普通标准误的 t 检验、F 检验失效。
 - (3) 高斯-马尔可夫定理不再成立, OLS 不再是 BLUE。

为直观理解在自相关的情况下,OLS 不再是 BLUE,假设扰动项存在正自相关,即 $E(\varepsilon_i \varepsilon_i | X) > 0$,参见图 8.1。

图 8.1 自相关的后果

实线表示真实的总体回归线。如果 $\varepsilon_1 > 0$,由于扰动项存在正自相关,则 $\varepsilon_2 > 0$ 的可能性也很大。

如果 ε_{n-1} <0,则 ε_n <0的可能性也就很大。

样本回归线(虚线)很可能左侧翘起、右侧下垂,使得对回归线斜率的估计过小。

反之,如果 ε_1 <0,由于扰动项存在正自相关,故 ε_2 <0的可能性也很大。

如果 $\varepsilon_{n-1} > 0$ (图中右边小圆点),则 $\varepsilon_n > 0$ 的可能性也就很大。

样本回归线(虚线)很可能左侧下垂、右侧翘起,使得对回归线斜率的估计过大。

由于自相关的存在,使得样本回归线上下摆动幅度增大,导致参数估计变得不准确。

从信息角度,由于 OLS 估计忽略了扰动项自相关所包含的信息, 故不是最有效率的估计方法。

8.2 自相关的例子

(1) 时间序列:由于经济活动通常具有连续性或持久性,自相关在时间序列中较常见。

例:相邻两年的GDP增长率、通货膨胀率。

例:某意外事件或新政策的效应需要随时间逐步释放出来。

例:最优资本存量需要通过若干年的投资才能逐渐达到(滞后的调整过程)。

(2) 横截面数据: 截面数据不易出现自相关,但相邻的观测单位之间也可能存在"溢出效应"(spillover effect 或 neighborhood effect),这种自相关也称为"空间自相关"(spatial autocorrelation)。

例:相邻的省份、国家之间的经济活动相互影响(通过贸易、投资、劳动力流动等)

例:相邻地区的农业产量受到类似天气变化的影响

例:同一社区内的房屋价格存在相关性

(3) 对数据的人为处理:如果数据中包含移动平均数(moving average)、内插值或季节调整时,可从理论上判断存在自相关。

统计局提供的某些数据可能事先经过了人为处理。

(4) 设定误差(misspecification): 如果模型设定中遗漏了某个自相关的解释变量,并被纳入到扰动项中,会引起扰动项的自相关。

8.3 自相关的检验

1. 画图

由于残差 $\{e_t\}_{t=1}^n$ 可大致视为扰动项的实现值 $\{\varepsilon_t\}_{t=1}^n$,故可通过残差来考察扰动项的自相关。

一个直观的方法是将残差 e_t 与残差滞后 e_{t-1} 画成散点图。

也可计算残差的各阶样本相关系数,比如残差的一阶相关系数 $\hat{\rho}_1$,二阶相关系数 $\hat{\rho}_2$,乃至k阶相关系数 $\hat{\rho}_k$ 。

相关系数 $\hat{\rho}_k$ 是滞后阶数 k 的函数,将 $(k,\hat{\rho}_k)$ 画图,可得残差的"自相关图" (correlogram),参见图 8.6。

2. BG 检验(Breusch, 1978; Godfrey, 1978)

考虑多元线性模型:

$$y_t = \beta_1 + \beta_2 x_{t2} + \dots + \beta_K x_{tK} + \varepsilon_t \qquad (8.1)$$

假设扰动项 ε ,存在一阶自相关,即

$$\varepsilon_t = \gamma \varepsilon_{t-1} + u_t \tag{8.2}$$

其中, u_t 为白噪声。方程(8.2)没有常数项,因为 $E(\varepsilon_t)=0$ 。

为检验是否存在一阶自相关,只要检验 $H_0: \gamma = 0$ 即可。

由于可能存在高阶自相关,考虑扰动项的p阶自回归:

$$\varepsilon_t = \gamma_1 \varepsilon_{t-1} + \dots + \gamma_p \varepsilon_{t-p} + u_t \tag{8.3}$$

并检验原假设" $H_0: \gamma_1 = \cdots = \gamma_p = 0$ "。

 ε_t 不可观测,故用 e_t 替代,并引入解释变量 (x_{t2}, \dots, x_{tK}) ,进行如下辅助回归:

$$e_{t} = \gamma_{1}e_{t-1} + \dots + \gamma_{p}e_{t-p} + \delta_{2}x_{t2} + \dots + \delta_{K}x_{tK} + v_{t} \quad (t = p + 1, \dots, n)$$
(8.4)

由于残差 e_t 是解释变量 $(x_{t2},...,x_{tK})$ 的函数,如果遗漏 $(x_{t2},...,x_{tK})$,可能导致扰动项 v_t 与 $(e_{t-1},...,e_{t-p})$ 相关,使得估计不一致。

在辅助回归(8.4)中,"无自相关"的原假设相当于检验 $H_0: \gamma_1 = \dots = \gamma_p = 0$,通常用 nR^2 形式的LM 统计量进行检验:

$$LM = (n-p)R^2 \xrightarrow{d} \chi^2(p)$$
 (8.5)

由于辅助回归(8.4)使用了 e_{t-p} ,损失p个样本观测值,故样本容量仅为(n-p)。

如果LM 超过 $\chi^2(p)$ 的临界值,则拒绝无自相关的原假设。

此检验称为"Breusch-Godfrey 检验"(Breusch, 1978; Godfrey, 1978, 简记 BG)。

Davidson and MacKinnon(1993)建议,把残差中因滞后而缺失的项用其期望值 0 来代替,以保持样本容量仍为n,然后使用 LM 统计量 $nR^2 \xrightarrow{d} \chi^2(p)$ 。

Davidson-MacKinnon 方法为 Stata 的默认设置。

3. Q 检验

记 ρ_1, \dots, ρ_p 分别为扰动项的 $1 \subseteq p$ 阶自相关系数。

检验自相关的另一思路是,检验各阶自相关系数均为 0,即 $H_0: \rho_1 = \cdots = \rho_p = 0$ 。

定义残差的各阶样本自相关系数为

$$\hat{\rho}_{j} \equiv \frac{\sum_{t=j+1}^{n} e_{t} e_{t-j}}{\sum_{t=1}^{n} e_{t}^{2}} \quad (j=1,\dots,p)$$
 (8.6)

如果 $H_0: \rho_1 = \cdots = \rho_p = 0$ 成立,则 $\hat{\rho}_j$ 应离 0 不远。

根据大数定律, $\hat{\rho}_i$ 依概率收敛至 0。

根据中心极限定理, $\sqrt{n}\hat{\rho}_{i}$ 服从渐近正态分布。

故 $\sqrt{n}\hat{\rho}_j$ 的平方和(对j求和)为渐近卡方分布,即"Box-Pierce Q 统计量"(Box and Pierce, 1970):

$$Q_{\rm BP} \equiv n \sum_{j=1}^{p} \hat{\rho}_j^2 \xrightarrow{d} \chi^2(p)$$
 (8.7)

经改进的 "Ljung-Box Q 统计量" (Ljung and Box, 1979)为

$$Q_{\rm LB} \equiv n(n+2) \sum_{j=1}^{p} \frac{\hat{\rho}_{j}^{2}}{n-j} \xrightarrow{d} \chi^{2}(p)$$
 (8.8)

这两种 Q 统计量在大样本下等价,但 Ljung-Box Q 统计量的小样本性质更好,为 Stata 所采用。

如何确定自相关阶数 p 呢?

如果p太小,可能忽略高阶自相关的存在。

如果p较大(与样本容量n相比),Q 统计量的小样本分布可能与 $\chi^2(p)$ 相差较远。

Stata 默认的 p 值为min{floor(n/2) – 2, 40}, 其中floor(n/2)为不超过n/2的最大整数,并在[floor(n/2) – 2]与 40 之间取其小者。

4. DW 检验

"DW 检验" (Durbin and Watson, 1950)是较早出现的自相关检验, 已不常用。

主要缺点是只能检验一阶自相关,且须在解释变量满足严格外生性的情况下才成立(BG 检验无此限制)。

DW 检验的统计量为

$$DW \equiv d \equiv \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{\sum_{t=2}^{n} e_t^2 - 2\sum_{t=2}^{n} e_t e_{t-1} + \sum_{t=2}^{n} e_{t-1}^2}{\sum_{t=1}^{n} e_t^2}$$

$$\approx 2 - 2 \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2} \equiv 2(1 - \hat{\rho}_1)$$
(8.9)

其中, $\hat{\rho}_1$ 为残差的一阶自相关系数。

当d=2时, $\hat{\rho}_1 \approx 0$,无一阶自相关;

当d=0时, $\hat{\rho}_1 \approx 1$,存在一阶正自相关;

当d=4时, $\hat{\rho}_1 \approx -1$,存在一阶负自相关。

DW 检验的另一缺点是,其 d 统计量的分布还依赖于数据矩阵 X,无法制表,须使用其上限分布 d_U 与下限分布 $d_L(d_L < d < d_U)$ 来间接检验。

即便如此,仍存在"无结论区域"。

DW 统计量的本质就是残差的一阶自相关系数,没有太多信息。

DW 检验的具体检验方法,根据 d_U 与 d_L 的临界值,可做如下判断(参见图 8.2):

- (1) 如果 $0 < d \le d_L$,则存在正自相关;
- (2) 如果 $d_L < d < d_U$, 则无法确定;
- (3) 如果 $d_U \le d \le 4 d_U$, 则无自相关;
- (4) 如果 $4-d_U < d < 4-d_L$, 则无法确定;
- (5) 如果 $4-d_L \leq d$,则存在负自相关。

图 8.2 DW 检验的无结论区域

8.4 自相关的处理

如果发现自相关,大致有以下四种处理方法。

1. 使用 "OLS + 异方差自相关稳健的标准误"

在自相关的情况下,OLS 估计量依然无偏且一致,仍可使用 OLS 来估计回归系数。

为了正确地进行统计推断,须使用"异方差自相关稳健的标准误"(Heteroskedasticity and Autocorrelation Consistent Standard Error,简记 HAC),即在存在异方差与自相关的情况下也成立的稳健标准误。

这种方法称为"Newey-West 估计法"(Newey and West, 1987), 只改变标准误的估计值,不改变回归系数的估计值。

根据第6章,异方差稳健的协方差矩阵为夹心估计量:

$$\widehat{\operatorname{Var}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X})} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X})} \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1}$$
 (8.10)

类似地,异方差自相关稳健的协方差矩阵也是夹心估计量,但考虑到自相关的存在,"三明治"中间的"菜" $\widehat{\text{Var}(\boldsymbol{\varepsilon}\mid \boldsymbol{X})}$ 更复杂。

在计算 HAC 标准误时,如果仅考虑前几阶自相关系数(比如只考虑一阶自相关系数 ρ_1)将导致此标准误不一致,因为忽略了高阶自相关。

另一方面,如果同时考虑所有各阶相关系数,即 $(\rho_1, ..., \rho_{n-1})$,则待估参数多达(n-1),随样本容量n同步增长,也将导致估计量不一致。

而且,对 ρ_{n-1} 的估计将很不准确,因为只有一对数据 (e_1, e_n) 可用于此估计;类似地,对 ρ_{n-2} 的估计也不准确,因为只有两对数据 (e_1, e_{n-1}) 、 (e_2, e_n) 可用于估计;以此类推。

正确的做法是,包括足够多阶数的自相关系数,并让此阶数p随着样本容量n而增长。

一般建议取 $p = n^{1/4}$ 或 $p = 0.75n^{1/3}$,称为"截断参数"(truncation parameter),即比p更高阶的自相关系数被截断而不考虑。

实践中,建议使用不同的截断参数,以考察 HAC 标准误是否对于截断参数敏感。

2. 准差分法

在自相关的情况下,由于 OLS 未充分利用此信息,故不是最有效率的 BLUE。

根据 WLS 的思路,如能够变换原模型,使得转换后的扰动项变为球形扰动项,可得到更有效率的估计。

假设原模型为

$$y_t = \beta_1 + \beta_2 x_{t2} + \dots + \beta_K x_{tK} + \varepsilon_t \quad (t = 1, \dots, n)$$
 (8.11)

其中,扰动项 ε_{t} 存在自相关,且为一阶自回归形式:

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t \tag{8.12}$$

其中,自回归系数 $|\rho|$ <1,且 u_t 为白噪声。

将原模型(8.11)滞后一期,然后在方程两边同乘 ρ :

$$\rho y_{t-1} = \rho \beta_1 + \rho \beta_2 x_{t-1,2} + \dots + \rho \beta_K x_{t-1,K} + \rho \varepsilon_{t-1}$$
 (8.13)

将原方程减去方程(8.13)可得

$$y_{t} - \rho y_{t-1} = (1 - \rho)\beta_{1} + \beta_{2}(x_{t2} - \rho x_{t-1,2}) + \dots + \beta_{K}(x_{tK} - \rho x_{t-1,K}) + \underbrace{(\varepsilon_{t} - \rho \varepsilon_{t-1})}_{u_{t}}$$
(8.14)

其中, $t=2,\dots,n$,故损失一个样本观测值。

新扰动项 $(\varepsilon_t - \rho \varepsilon_{t-1}) = u_t$ (白噪声),故满足球型扰动项的假定。

对方程(8.14)进行 OLS 估计,可提高估计效率,称为 "Cochrane-Orcutt 估计法" (Cochrane and Orcutt, 1949,简记 CO)。

此法也称为"准差分法"(quasi differences),因为在做变换时,只是减去滞后值的一部分(比如 $y_t - \rho y_{t-1}$),而非全部(比如 $y_t - y_{t-1}$)。

准差分法将损失一个样本容量, 仍不是 BLUE。

为得到 BLUE 估计量,补上损失的第一个方程:

$$y_1 = \beta_1 + \beta_2 x_{12} + \dots + \beta_K x_{1K} + \varepsilon_1$$
 (8.15)

由于 $\{u_t\}_{t=1}^n$ 为白噪声,故 ε_1 与准差分后的新扰动项 $u_t = (\varepsilon_t - \rho \varepsilon_{t-1})$ 均不相关。

加入第一个方程不会导致自相关; 但会导致异方差。

第一个方程的扰动项方差为 $\sigma_{\varepsilon}^2 \equiv \text{Var}(\varepsilon_t)$ 。

准差分方程(8.14)的扰动项方差为 $\sigma_u^2 \equiv \text{Var}(u_t)$ 。

对方程(8.12)两边求方差,可得 σ_{ϵ}^2 与 σ_{μ}^2 之间的关系:

$$Var(\varepsilon_t) = \rho^2 Var(\varepsilon_{t-1}) + Var(u_t)$$
 (8.16)

整理可得

$$\sigma_u^2 = (1 - \rho^2)\sigma_\varepsilon^2 \tag{8.17}$$

故 σ_u^2 是 σ_ε^2 的 $(1-\rho^2)$ 倍;除非 $\rho=0$ (无自相关),否则二者不等。

将第一个方程两边同乘 $\sqrt{1-\rho^2}$:

$$\sqrt{1-\rho^2} y_1 = \sqrt{1-\rho^2} \beta_1 + \beta_2 \sqrt{1-\rho^2} x_{12} + \dots + \beta_K \sqrt{1-\rho^2} x_{1K} + \sqrt{1-\rho^2} \varepsilon_1$$
(8.18)

方程(8.18)的扰动项方差为

$$\operatorname{Var}\left(\sqrt{1-\rho^2}\,\varepsilon_1\right) = (1-\rho^2)\sigma_{\varepsilon}^2 = \sigma_u^2 \qquad (8.19)$$

故这n个方程满足同方差与无自相关的假定,为球形扰动项。

进行 OLS 估计,可得 BLUE。

这种方法称为"Prais-Winsten 估计法"(Prais and Winsten, 1954, 简记 PW)。

无论 CO 法还是 PW 法均不可行(infeasible),因为都假设知道一阶自回归系数 ρ 。

实践中,须用数据估计一阶自回归系数 $\hat{\rho}$ 。

Stata 默认的方法使用 OLS 残差进行辅助回归:

$$e_t = \hat{\rho}e_{t-1} + error_t \tag{8.20}$$

也可用残差的一阶自相关系数来估计 $\hat{\rho}$:

$$\hat{\rho} = \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}$$
 (8.21)

或通过 DW 统计量来估计 $\hat{\rho}$:

$$\hat{\rho} = 1 - \frac{DW}{2} \tag{8.22}$$

实践中,常使用迭代法。

首先,用 OLS 估计原模型,使用 OLS 残差作辅助回归(8.20),得到 $\hat{\rho}^{(1)}$ (对 ρ 的第一轮估计),再用 $\hat{\rho}^{(1)}$ 进行 CO 或 PW 估计;

然后,使用 CO 或 PW 法的新残差估计 $\hat{\rho}^{(2)}$ (对 ρ 的第二轮估计),

再用 $\hat{\rho}^{(2)}$ 进行 CO 或 PW 估计,以此类推,直至收敛(即相邻两轮的 ρ 与系数估计值之差足够小)。

3. 广义最小二乘法(GLS)

一般地,可能同时存在异方差与自相关。

可使用"广义最小二乘法"(Generalized Least Square, 简记 GLS), 同时处理异方差与自相关。

假设扰动项的协方差矩阵 $Var(\varepsilon | X) = \sigma^2 V(X) \neq \sigma^2 I_n$,其中V(X)为对称正定矩阵且已知,但可能依赖于X。

GLS 的基本思想是,通过变量转换,使得转换后的模型满足球型扰动项的假定。

命题 对于对称正定矩阵 $V_{n\times n}$,存在非退化矩阵 $C_{n\times n}$,使得 $V^{-1}=C'C$ 。

在一维情况下,"V正定"即要求V为正数,故 $\frac{1}{V}$ 也是正数,可分解为 $\frac{1}{\sqrt{V}}\cdot\frac{1}{\sqrt{V}}$;反之,如果V为0或负数,则无法进行此分解。推广到多维情形,就是此命题。

此命题中的矩阵C不唯一,但不影响GLS的最终结果。

根据此命题,对于协方差矩阵 $Var(\varepsilon|X) = \sigma^2 V(X)$,首先找到非退化矩阵C,使得 $V^{-1} = C'C$ 。

其次,将原回归模型 $y=X\beta+\varepsilon$ 两边同时左乘矩阵C:

$$Cy = CX\beta + C\varepsilon \tag{8.23}$$

定义变量转换:

$$\tilde{y} \equiv Cy, \ \tilde{X} \equiv CX, \ \tilde{\varepsilon} \equiv C\varepsilon$$
 (8.24)

将模型写为

$$\tilde{\mathbf{y}} = \tilde{\mathbf{X}}\boldsymbol{\beta} + \tilde{\boldsymbol{\varepsilon}} \tag{8.25}$$

变换后的回归模型仍满足严格外生性,因为

$$E(\tilde{\boldsymbol{\varepsilon}} \mid \tilde{X}) = E(\boldsymbol{C}\boldsymbol{\varepsilon} \mid \boldsymbol{C}X) = E(\boldsymbol{C}\boldsymbol{\varepsilon} \mid X) = \boldsymbol{C}E(\boldsymbol{\varepsilon} \mid X) = \boldsymbol{0} \quad (8.26)$$

其中,由于C非退化,故 $E(C\varepsilon | CX) = E(C\varepsilon | X)$ 。

球型扰动项的假定也得到满足,因为

$$\operatorname{Var}(\tilde{\boldsymbol{\varepsilon}} \mid \tilde{\boldsymbol{X}}) = \operatorname{E}(\tilde{\boldsymbol{\varepsilon}} \tilde{\boldsymbol{\varepsilon}}' \mid \boldsymbol{X}) = \operatorname{E}(\boldsymbol{C} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}' \boldsymbol{C}' \mid \boldsymbol{X}) = \boldsymbol{C} \operatorname{E}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}' \mid \boldsymbol{X}) \boldsymbol{C}' = \sigma^2 \boldsymbol{C} \boldsymbol{V} \boldsymbol{C}'$$

$$= \sigma^2 \boldsymbol{C} (\boldsymbol{V}^{-1})^{-1} \boldsymbol{C}' = \sigma^2 \boldsymbol{C} (\boldsymbol{C}' \boldsymbol{C})^{-1} \boldsymbol{C}' = \sigma^2 \boldsymbol{C} \boldsymbol{C}^{-1} (\boldsymbol{C}')^{-1} \boldsymbol{C}' = \sigma^2 \boldsymbol{I}_n$$

$$(8.27)$$

因此,高斯-马尔可夫定理成立。

对变换后的方程使用 OLS 即得到 GLS 估计量:

$$\hat{\boldsymbol{\beta}}_{GLS} = (\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{y}} = [(\boldsymbol{C}\boldsymbol{X})'(\boldsymbol{C}\boldsymbol{X})]^{-1}(\boldsymbol{C}\boldsymbol{X})'\boldsymbol{C}\boldsymbol{y}$$

$$= (\boldsymbol{X}'\underline{\boldsymbol{C}'\boldsymbol{C}}\boldsymbol{X})^{-1}\boldsymbol{X}'\underline{\boldsymbol{C}'\boldsymbol{C}}\boldsymbol{y} = (\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{y}$$
(8.28)

虽然C不唯一,但 $\hat{\boldsymbol{\beta}}_{GLS}$ 唯一,因为 $\hat{\boldsymbol{\beta}}_{GLS}$ 不依赖于C。

由于高斯-马尔可夫定理成立,故 $\hat{\pmb{\beta}}_{GLS}$ 是 BLUE,比 OLS 更有效率。

使用 GLS 的前提是,须知道协方差矩阵V。

由于V通常未知,故GLS不可行。

实践中,须通过数据估计 \hat{V} ,再进行 GLS 估计,称为"可行广义最小二乘法"(Feasible GLS,简记 FGLS)。

WLS 与 PW 都是 GLS 的特例,而 FWLS 与可行的 PW 法都是 FGLS 的特例。

何时使用 FGLS 处理自相关?

在使用 FGLS 处理自相关时,如果对自相关系数ρ的估计比较准确,且满足严格外生性,则 FGLS 比 OLS 更有效率。

但如不满足严格外生性,而仅满足前定解释变量(同期外生)的

假定,则FGLS可能不一致,尽管OLS依然一致。

在使用准差分法时,变换后的新扰动项为($\varepsilon_t - \rho \varepsilon_{t-1}$),而新解释变量为($x_t - \rho x_{t-1}$);故在同期外生的假定下,二者仍可能存在相关性,比如 $Cov(\varepsilon_t, x_{t-1}) \neq 0$,导致不一致的估计。

FGLS 的适用条件比 OLS 更苛刻,不如 OLS 稳健。

4. 修改模型设定

在有些情况下,自相关的深层原因可能是模型设定有误。

比如,遗漏了自相关的解释变量;或将动态模型(解释变量中包含被解释变量的滞后值)误设为静态模型,而后者也可视为遗漏了解释变量。

假设真实模型为

$$y_{t} = \alpha + \beta x_{t} + \rho y_{t-1} + \varepsilon_{t}$$
 (8.29)

由于 y_t 是 y_{t-1} 的函数,故 $\{y_t\}$ 存在自相关。

假设此模型被错误地设定为

$$y_{t} = \alpha + \beta x_{t} + \underbrace{(\rho y_{t-1} + \varepsilon_{t})}_{v_{t}}$$
 (8.30)

其中, ρy_{t-1} 被纳入到扰动项 v_t 中,导致扰动项 $\{v_t\}$ 出现自相关,因为 $\{y_{t-1}\}$ 存在自相关。

此例说明,对于时间序列存在的自相关,有时可通过引入被解释变量的滞后来消除。

对于模型设定误差所导致的自相关,最好从改进模型设定着手解决,而不是机械地使用 FGLS。

8.5 处理自相关的 Stata 命令及实例

1. 时间序列算子

在 Stata 中使用时间序列算子(time-series operator), 首先要定义时间变量(必须是时间序列或面板数据)。

假设时间变量为 year, 可使用如下命令:

. tsset year

其中,"tsset"表示 time series set,它告诉 Stata,该数据集为时间序列,且时间变量为 year。

常用时间序列算子包括滞后(lag)与差分(difference),分别以"L."与"D."来表示(可以小写)。

一阶滞后算子为"L.",即L. $x_t = x_{t-1}$;二阶滞后算子为"L2.",即L2. $x_t = x_{t-2}$,以此类推。

如要同时表示一阶至四阶滞后,可简写为"L(1/4).",即 $L(1/4).x_t = (x_{t-1} x_{t-2} x_{t-3} x_{t-4})$ 。

比如,以下命令

- . reg y L.x L2.x L3.x L4.x 可以简写为
- . reg y L(1/4).x

类似地,"L(0/1).(x y)"表示L(0/1).($x_t y_t$)=($x_t x_{t-1} y_t y_{t-1}$), 其中"0"表示零阶滞后,即当前值。

- 一阶差分算子为"D.",即D. $x_t = \Delta x_t = x_t x_{t-1}$;
- 二 阶 差 分 算 子 为 " D2.",即 D2. $x_t = \Delta(\Delta x_t) = \Delta(x_t x_{t-1}) = (x_t x_{t-1}) (x_{t-1} x_{t-2}) = x_t 2x_{t-1} + x_{t-2}$ (二阶差分为一阶差分的差分)。

以上时间序列算子可以混合使用。

比如,"LD."表示一阶差分的滞后值,"DL."表示滞后值的一阶差分, 二者实际上是等价的, 因为

$$LD.x_{t} = L.(x_{t} - x_{t-1}) = x_{t-1} - x_{t-2} = D.x_{t-1} = DL.x_{t} \circ$$

有关时间序列算子的更多说明,参见"help tsvarlist"。

2. 画残差图

假设在作完回归后,将残差记为 e1,可输入如下命令画残差与 其滞后的散点图:

scatter el L.el

如果想看残差自相关图(即各阶自相关系数),可使用命令 ac e1

其中,"ac"表示 autocorrelation(自相关)。

3. BG 检验

作完 OLS 回归后,可使用如下命令进行 BG 检验:

estat bgodfrey, lags(p) nomiss0

选择项 "lags(p)" 用来指定 BG 检验的滞后阶数 p,默认 "lags(1)",即 p=1;

选择项"nomiss0"表示进行不添加 0 的 BG 检验,默认以 0 代替缺失值,即 Davidson-MacKinnon 的方法。

如何确定滞后阶数 p? 一个简单方法是,看自相关图。

在使用 Stata 命令 ac 画自相关图时, 所有落在 95%的置信区域(以阴影表示)以外的自相关系数均显著地不等于 0。

确定滞后阶数 p 的另一方法是,设定一个较大的 p 值,作回归

$$e_{t} = \gamma_{1}e_{t-1} + \dots + \gamma_{p}e_{t-p} + \delta_{2}x_{t2} + \dots + \delta_{K}x_{tK} + v_{t} \quad (t = p+1, \dots, n)$$
(8.31)

然后看最后一个系数 γ_p 的显著性,如果 γ_p 不显著,考虑滞后 (p-1)期,以此类推,直至显著为止。

4. Q 检验

假设将 OLS 残差记为 e1,则可使用如下命令进行 Q 检验:

wntestq e1,lags(p)

其中,"wntestq"指 white noise test Q,因为白噪声没有自相关。选择项"lags(p)"用来指定滞后阶数,默认滞后阶数为 $min\{floor(n/2)-2, 40\}$ 。

进行 Q 检验的另一命令是 corrgram e1, lags(p)

其中,"corrgram"表示 correlogram,即画自相关图。选择项"lags(p)"用来指定滞后阶数,而默认滞后阶数也是 $min\{floor(n/2)-2, 40\}$ 。

5. DW 检验

作完 OLS 回归后可使用命令 "estat <u>dwa</u>tson"显示 DW 统计量。由于 DW 检验的局限性,Stata 并不提供其临界值。

6. HAC 稳健标准误

在 Stata 中进行 OLS 估计,但提供 Newey-West 标准误,可输入命令

newey y x1 x2 x3,lag(p)

其中,必选项"lag(p)"用来指定截断参数p,即用于计算 HAC 标准误的最高滞后阶数。

7. 处理一阶自相关的 FGLS

在 Stata 中使用准差分法处理自相关,可使用命令

prais y x1 x2 x3,corc

选择项"corc"表示使用CO估计法,默认为PW估计法。

以 Hildreth and Lu(1960)对冰淇淋需求函数的经典研究为例。

数据集icecream.dta包含了下列变量的30个月度时间序列数据:consumption(人均冰淇淋消费量),income(平均家庭收入),price(冰淇淋价格),temp(平均华氏气温),time(时间)。

首先,打开数据集,并将其设为时间序列数据。

- . use icecream.dta,clear
- . tsset time

其次,为了看冰淇淋的消费量与气温的时间趋势图,输入命令:
. twoway connect consumption
time,msymbol(circle) yaxis(1) || connect temp
time, msymbol(triangle) yaxis(2)

其中,"connect"表示将观测点用线连接起来,选择项"msymbol(circle)"与"msymbol(triangle)"分别表示点的"图标"(marker symbol)分别为圆圈与三角形;"yaxis(1)"与"yaxis(2)"指定使用不同的纵坐标;参见图 8.3。

图 8.3 冰淇淋消费与气温的时间趋势

冰淇淋消费量与温度明显地正相关。

考虑以下线性回归模型:

consumption_t = $\beta_0 + \beta_1 \operatorname{temp}_t + \beta_2 \operatorname{price}_t + \beta_3 \operatorname{income}_t + \varepsilon_t$ (8.32) 首先进行 OLS 回归:

. reg consumption temp price income

Source	SS	df	MS		Number of obs	= 30	
					F(3, 26)	= 22.17	
Model	.090250523	3	.030083508		Prob > F	= 0.0000	
Residual	.035272835	26	.001356647		R-squared	= 0.7190	
					Adj R-squared	= 0.6866	
Total	.125523358	29	.004328392		Root MSE	= .03683	
'							
····							
consumption	Coef.	Std. E	rr. t	P> t	[95% Conf.	<pre>Interval]</pre>	
temp	.0034584	.00044	55 7.76	0.000	.0025426	.0043743	
price	-1.044413	.8343	57 -1.25	0.222	-2.759458	.6706322	
income	.0033078	.00117	14 2.82	0.009	.0008999	.0057156	
_cons	.1973149	.27021	61 0.73	0.472	3581223	.752752	

气温(temp)与收入(income)均在 1%的水平上显著为正,表示气温越高、收入越高,则冰淇淋的消费量越大;

价格(price)的系数为负,表明价格越高,则消费量越低,但并不显著(p值为 0.222)。

由于这是时间序列,怀疑扰动项存在自相关。

首先计算残差(记为 e1),及其滞后值(1.e1),然后画残差与残差滞后的散点图:

- . predict el,r
- . twoway scatter el l.el | lfit el l.el 其中, "lfit"表示 linear fit(线性拟合),即画出 el 与 l.el 的 拟合回归线;参见图 8.4。

图 8.4 残差与残差滞后的散点图

扰动项很可能存在一阶正自相关。

画残差与其二阶滞后的散点图,参见图 8.5:

. twoway scatter el l2.el | lfit el l2.el

图 8.5 残差与二阶残差滞后的散点图

残差似乎不存在二阶自相关。

画残差的自相关图,参见图 8.6。

. ac el

图 8.6 自相关图

阴影部分为置信度为95%的置信区间(区域)。

各阶自相关系数的取值均在 95%的置信区间之内,故可接受各阶自相关系数为 0 的原假设。

但一阶自相关系数已很接近置信区间的边界,故仍怀疑存在一阶自相关,而更高阶自相关可忽略。

进行正式的BG检验,考察是否存在一阶自相关:

. estat bgodfrey

I	Breusch-Godfre	ey LM test for autocorre	elation	
	lags(p)	chi2	df	Prob > chi2
-	1	4.237	1	0.0396
-		H0: no seria	l correlation	

BG 检验的p值为 0.039 6, 故可在 5%的显著性水平上拒绝"无自相关"的原假设,而认为存在自相关。

如果不以0取代缺失值,可输入命令

. estat bgodfrey,nomiss0

Breusch-Godfre	ey LM test for autocorr	elation	
lags(p)	chi2	đf	Prob > chi2
1	4.704	1	0.0301
	HO: no seria	l correlation	

依然可在5%水平上拒绝"无自相关"的原假设。

进行Q检验。

. wntestq e1

```
Portmanteau test for white noise

Portmanteau (Q) statistic = 26.1974

Prob > chi2(13) = 0.0160
```

其中, "Prob > chi2(13) = 0.016"表明默认的滞后阶数为 13 阶, 且可在 5%水平上拒绝"无自相关"的原假设。

使用命令 corrgram 进行 Q 检验。

. corrgram el

LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
1	0.3298	0.3969	3.6	0.0578	<u> </u>	<u> </u>
2	0.0362	-0.1681	3.645	0.1616		_
3	0.0111	0.0767	3.6494	0.3019		
4	-0.0934	-0.1483	3.9715	0.4099		_
5	-0.3186	-0.3565	7.8703	0.1635		
6	-0.2058	0.0011	9.5645	0.1442	_	
7	-0.2582	-0.4237	12.346	0.0897		
8	-0.1373	-0.0721	13.169	0.1062	_	
9	-0.1035	-0.3300	13.658	0.1350		
10	-0.2378	-0.8928	16.372	0.0895	_	
11	-0.1193	-0.5017	17.091	0.1052		
12	0.1923	-0.4590	19.064	0.0870	_	
13	0.3554	0.0493	26.197	0.0160		

上表汇报了从 1-13 阶的自相关系数(AC),Q 统计量(Q)及其相应 p 值(Prob>Q)。

计算 DW 统计量:

. estat dwatson

Durbin-Watson d-statistic(4, 30) = 1.021169

由于 DW=1.02, 离 2 较远而靠近 0, 可大致判断存在正自相关。

由于扰动项存在自相关,故普通标准误不准确,应使用异方差自相关稳健的 HAC 标准误。

由于 $n^{1/4} = 30^{1/4} \approx 2.34$,取 Newey-West 估计量滞后阶数为p = 3:

. newey consumption temp price income, lag(3)

Regression wi	th Newey-West	standard er	rors	Num	ber of obs =	30
maximum lag: :	3			F(3, 26) =	27.63
				Pro	b > F =	0.0000
	<u> </u>					
		Newey-West				
consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
temp	.0034584	.0004002	8.64	0.000	.0026357	.0042811
price	-1.044413	.9772494	-1.07	0.295	-3.053178	.9643518
income	.0033078	.0013278	2.49	0.019	.0005783	.0060372
_cons	.1973149	.3378109	0.58	0.564	4970655	.8916952
	l					· · · · · · · · · · · · · · · · · · ·

Newey-West 标准误与 OLS 标准误相差无几(但略大)。

考察 Newey-West 标准误是否对于截断参数敏感,将滞后阶数增大一倍,再重新估计。

. newey consumption temp price income, lag(6)

egression with	Newey-West	standard er	rors	Num	ber of obs =	30
aximum lag: 6				F(3, 26) =	52.97
				Pro	b > F =	0.0000
		Newey-West				
consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
temp	.0034584	.0003504	9.87	0.000	.0027382	.0041787
price	-1.044413	.9821798	-1.06	0.297	-3.063313	.9744864
income	.0033078	.00132	2.51	0.019	.0005945	.006021
		.3299533	0.60	0.555	4809139	.8755437

无论截断参数为3还是6, Newey-West 标准误变化不大。

由于存在自相关,故考虑使用 FGLS,进行更有效率的估计。

首先使用 CO 估计法:

. prais consumption temp price income, corc

```
Iteration 0: rho = 0.0000
Iteration 1: rho = 0.4006
Iteration 2: rho = 0.4008
Iteration 3: rho = 0.4009
Iteration 4: rho = 0.4009
Iteration 5: rho = 0.4009
Iteration 6: rho = 0.4009
Iteration 7: rho = 0.4009
Cochrane-Orcutt AR(1) regression -- iterated estimates
      Source
                     SS
                              df
                                       MS
                                                       Number of obs =
                                                                            29
                                                       F( 3,
                                                                 25) = 15.40
       Model
                .047040596
                               3 .015680199
                                                       Prob > F
                                                                     = 0.0000
    Residual
                .025451894
                              25 .001018076
                                                       R-squared
                                                                     = 0.6489
                                                       Adj R-squared = 0.6068
       Total
                .072492491
                              28 .002589018
                                                       Root MSE
                                                                     = .03191
 consumption
                    Coef.
                            Std. Err.
                                          t
                                                P>|t|
                                                          [95% Conf. Interval]
                            .0005547
                                                                      .0047008
        temp
                 .0035584
                                         6.42
                                                0.000
                                                           .002416
                                                                      .7775807
      price
                -.8923963
                            .8108501
                                        -1.10
                                                0.282
                                                         -2.562373
      income
                 .0032027
                            .0015461
                                         2.07
                                                0.049
                                                          .0000186
                                                                      .0063869
                 .1571479
                            .2896292
                                         0.54
                                                0.592
                                                         -.4393546
                                                                      .7536504
       _cons
         rho
                 .4009256
Durbin-Watson statistic (original)
                                      1.021169
Durbin-Watson statistic (transformed) 1.548837
```

使用 CO 估计法得到的系数估计值与 OLS 比较接近,但样本容量降为 29(损失一个样本观测值)。

上表最后一行显示,经过模型转换后 DW 值改进为 1.55。

然后使用PW估计法:

. prais consumption temp price income, nolog 其中,选择项"nolog"表示不显示迭代过程。

Prais-Winsten	AR(1) regress	ion	iterated est	imates			
Source	SS	df	MS		Number of obs F(3, 26)		
Model	.04494596	3	.014981987		Prob > F	= 0.0000	
Residual	.027154354	26	.001044398		R-squared	= 0.6234	
					Adj R-squared		
Total	.072100315	29	.002486218		Root MSE	= .03232	
	,						
consumption	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]	
temp	.0029541	.0007	109 4.16	0.000	.0014929	.0044152	
price	-1.048854	.759	751 -1.38	0.179	-2.610545	.5128361	
income	0008022	.0020	458 -0.39	0.698	0050074	.0034029	
_cons	.5870049	.2952	699 1.99	0.057	0199311	1.193941	
rho	.8002264						
Ourbin-Watson	statistic (or	iginal) 1.021169				
Ourbin-Watson	statistic (tr	ansfor	med) 1.846795				

虽然 PW 法使 DW 统计量进一步改进为 1.85, 但收入(income) 的系数估计值却变为负数(-0.0008),似乎 PW 反而不如 OLS 稳健。

自相关可能由于模型设定不正确。

在解释变量中加入气温(temp)的滞后,然后进行 OLS 回归:

. reg consumption temp L.temp price income

Source	SS	df	MS		Number of obs	= 29	
					F(4, 24)	= 28.98	
Model	.103387183	4 .02	5846796		Prob > F	= 0.0000	
Residual	.021406049	24 .00	0891919		R-squared	= 0.8285	
					Adj R-squared	= 0.7999	
Total	.124793232	28 .00	4456901		Root MSE	= .02987	
'							
consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
						 	
temp							
temp	.0053321	.0006704	7.95	0.000	.0039484	.0067158	
- 1	.0053321	.0006704	7.95 -3.02	0.000	.0039484 0037119	.0067158	
 L1.	0022039	.0007307	-3.02	0.006	0037119	0006959	
 L1. price	0022039 8383021	.0007307	-3.02 -1.22	0.006	0037119 -2.258307	0006959 .5817025	
 L1.	0022039	.0007307	-3.02	0.006	0037119	0006959	

气温的滞后项(L.temp)在 1%的水平上显著地不等于 0,但符号为负(系数为-0.0022);

当期气温仍然显著地为正(系数为 0.0053)。这可能意味着,当气温上升时,对冰淇淋的需求上升,但不会在当月全部消费完,而增加冰箱中的冰淇淋库存,导致下期对冰淇淋的开支下降。

使用 BG 检验判断重新设定的模型是否存在自相关:

. estat bgodfrey

Breusch-Godfre	ey LM test for autocorr	elation	
lags(p)	chi2	df	Prob > chi2
1	0.120	1	0.7292
	HO: no seria	l correlation	

由于 p 值为 0.73, 故可放心接受"无自相关"的原假设。

计算 DW 统计量。

. estat dwatson

Durbin-Watson d-statistic(5, 29) = 1.582166

DW 值也改进为 1.58。

通过修改模型设定,加入气温滞后项,扰动项不再存在自相关。

究竟应使用哪种模型, 在一定程度上取决于研究者的判断。

可在研究报告中同时列出各种模型的结果,以说明系数估计值与标准误的稳健性(不依估计方法的改变而剧烈变化),给读者自己判断的机会。