Decodificación

v.

Previa

- Imaginemos
 - Un procesador de:
 - 16 líneas de bus de direcciones
 - 8 líneas de bus de datos.
 - O Una memoria ROM de:
 - o 64k x 8

¿Cómo es el mapa de memoria del CPU?

¿Queda espacio en el mapa si conectamos la ROM?

Previa (cont)

- Para conectar <u>más de un dispositivo</u> al procesador tenemos que hacer "decodificación"
- Para hacer **decodificación** necesitamos herramientas electrónicas:

- Compuertas
- Decodificadores

Integrados Compuertas y Decodificadores

Ejemplo de integrado (compuerta NOT)

☐ Código: 74LS04

☐ Composición: 6 compuertas NOT

7404 Hex Inverters

Ejemplos de integrados

6 compuertas NOT

4 compuertas OR

Compuertas

AND

В	A	B.A				
0	0	0				
0	1	0				
1	0	0				
1	1	1				

OR

В	Α	B+A
0	0	0
0	1	1
1	0	1
1	1	1

NOT

A	\overline{A}
0	1
1	0

NAND

В	A	$\overline{B.A}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR

 $\frac{2}{3}$

В	A	$\overline{B+A}$
0	0	1
0	1	0
1	0	0
1	1	0

XOR

В	A	$B \oplus A$
0	0	0
0	1	1
1	0	1
1	1	0

BUFFER

Α	Α
0	0
1	1

Decodificación de Hardware

Decodificación

Sistema 1

¿Qué solución/sistema puedo implementar con este hardware?

¿Que limitaciones tiene?

EJ Decodificación de ROM (1)

Se dispone de un microprocesador con 16 líneas de bus de direcciones y 8 líneas de bus de datos.

Se desea conectar el procesador con dos integrados de ROM de 32k x 8

EJ Decodificación de ROM (2)

Se dispone de un microprocesador con 16 líneas de bus de direcciones y 8 líneas de bus de datos.

Se desea conectar el procesador un integrado de ROM de 2K x 8

Decodificador 3 a 8

Entradas

Salidas

12	2	I 1	10	00	01	O2	О3	04	O 5	O6	07
0		0	0	1	0	0	0	0	0	0	0
0		0	1	0	1	0	0	0	0	0	0
0		1	0	0	0	1	0	0	0	0	0
0		1	1	0	0	0	1	0	0	0	0
1		0	0	0	0	0	0	1	0	0	0
1		0	1	0	0	0	0	0	1	0	0
1		1	0	0	0	0	0	0	0	1	0
1		1	1	0	0	0	0	0	0	0	1

Otros decodificadores

Decodificador de 2 a 4

Decodificador de 4 a 16

EJ Decodificación de ROM (3)

Se dispone de un microprocesador con 16 líneas de bus de direcciones y 8 líneas de bus de datos.

Se desea conectar el procesador dos integrados de ROM de 16K x 8 a partir de la dirección de memoria 8000h

<u>Buses</u>

Pines básicos de control

/WR (Cuando vale cero hay una escritura)

/RD (Cuando vale cero hay una lectura)

IO/M (Si vale 1: operaciones con ports, si vale 0: operaciones con la memoria)

Decodificación de hardware

Decodificación de hardware

Decodificación completa

Se dice que una decodificación es completa cuando hay una relación biunívoca entre cada posición de memoria y cada dirección

Decodificación incompleta

Por simplicidad o para minimizar la cantidad de componentes no se hacen llegar todas las líneas del bus de direcciones. Por lo tanto aparecen "imágenes"

EJ Decodificación de hardware

Ejercicio de decodificación de Memoria

Se dispone de un microprocesador con 16 líneas de bus de direcciones y 8 líneas de bus de datos.

Se desea conectar dicho procesador con 4K x 8 de ROM para el programa, 2K x 8 de RAM para los datos

Realice la decodificación completa, sin imágenes, de éste sistema.

Sistema de Entrada y Salida

E/S aislada

Una señal especial del micro indica la ejecución de una operación de E/S.

Interrupción

Una señal externa interrumpe al micro para requerir un servicio de atención

Acceso directo a memoria (DMA)

La información se transfiere directamente a la memoria, no requiere de intervención del CPU

Mapeo en memoria

Se le otorga un sector de memoria principal al dispositivo

Periférico Estándar

- 8 bits de datos (Bus de 8 líneas)
- 4 registros internos de 8 bits (R1,R2, R3 y R4)

¿ Como se decodifica?

Sistema de E/S

- **♦** Bus de direcciones = 180h
- \bullet Bus de datos = ?

uP

Bus de datos

Bus de direcciones

EJ Decodificación de hardware

Ejercicio de decodificación de E/S

Se dispone de un microprocesador con 16 líneas de bus de direcciones y 8 líneas de bus de datos.

Se desea agregar a la decodificación anterior un periférico que posee 7 registros, los cuales deben poder ser escritos y leídos.

Realice la decodificación completa, sin imágenes, de éste sistema.

Mapeo en memoria

- Un dispositivo es manejado como una o varias posiciónes de memoria.
- ❖ Cada posición de memoria puede ser un registro interno diferente del dispositivo.
- ❖ Ventaja: Se utilizan la instrucciones de acceso a memoria, por lo tanto las alternativas de programación son mayores por tener mayor cantidad de instrucciones para manejo de memoria.
- ❖ Ventaja: Se modifica directamente los registros del periférico sin necesidad de obtener el valor con las instrucciones IN y OUT.
- ❖ Desventaja: Reduce cantidad de memoria. El impacto es mínimo relacionado con la cantidad de memoria que tienen las PC actuales.

Mapeo en memoria

Se decodifica al periferico en el mapa de memoria, cambiando la logica digital.

