

Investment Replica

Ghesini Matteo

Mazzè Alice

Tegon Anna

Volterra Camilla

Wu Qiao

OUR GOAL

Replicate a Monster index with Futures

Our steps

01

Construction of the Monster index and selection of replicating portfolio

Construction of a Regression Benchmark

Application of the Kalman Algorithm

MONSTER INDEX	WEIGHTS
FRXGL	$\frac{1}{3}$
MXWO	$\frac{1}{3}$
LEGATRUU	$\frac{1}{3}$

Stationarity of Monster index returns

Stationarity of Futures returns

REPLICATING PORTFOLIO FUTURES

LASSO REGRESSION

 $TEV_{lasso} = 0.0285$

VS

RIDGE REGRESSION

 $TEV_ridge = 0.0716$

ASSET REPLICATION ALGORITHM PROCESS FLOW KALMAN FILTERING

TIME UPDATE («PREDICT»)

1. Project the state ahead

$$\hat{x}^- = \hat{x}_{t-1}$$

2. Project the error covariance ahead

$$P_t^- = P_{t-1} + V1$$

Initial condition for \hat{x}_{t-1} and P_{t-1}

MEASUREMENT UPDATE («CORRECT»)

- 1. Compute the Kalman gain $K_t = P_t^- H_t^T (H_t P_t^- H_t^T + V2)^{-1}$
- 2. Update estimate with measurement:

$$\hat{x}_t = \hat{x}_t^- + K_t(r_t^{observed} - H_t \hat{x}_t^-)$$

3. Update the error covariance

$$P_t = (I - K_t H_t) P_t^-$$

TEV Kalman=0.020639 TEV benchmark=0.0288

Kalman Filter Algorithm is very sensitive to initial conditions

EMPIRICAL INITIAL WEIGHTS

RANDOM COMBINATION OF INITIAL WEIGHTS

UNIFORM INITIAL WEIGHTS

COST BENEFIT ANALYSIS

Actual cost of transaction

It is assumed to be 5\$ for each transaction, indipendently of quantity selled or buyed, but just of the open transaction.

WEIGHTS	WEEKLY COSTS (\$)	TEV
WEEKLY WEIGHTS	43.5156	0.0206
MONTHLY WEIGHTS	11.4347	0.0296
YEARLY WEIGHTS	1.1364	0.0325

COST BENEFIT ANALYSIS

04 COST CONSIDERATIONS OF REPLICATION STRATEGIES

COST BENEFIT ANALYSIS

LASSO vs KALMAN

04 COST CONSIDERATIONS OF REPLICATION STRATEGIES

Number of weeks

DYNAMICAL WEIGHTS

Kalman Filter Algorithm

Sensible to calibration

Limited capability of the model to be reused in different context

High transaction costs

Interesting approach

Capable to catch fluctuations

Thanks!

REFERENCES

- o r-project.org
- it.mathworks.com
- Stevens institute of technology, Asset replication via Kalman Filtering FE 800 special problems in FE
- Youngjoo Kim and Hyochoong Bang, Introduction to Kalman Filter and its application, Felix Govaeres, 2018.