1. [12 Pts] Let S defined recursively by (1) $5 \in S$ and (2) if $s \in S$ and $t \in S$, then $st \in S$. Let $A = \{5^i \mid i \in Z+\}$. Prove that

(a) [6 Pts] $A \subseteq S$ by mathematical induction.

[$\forall x \in A, x \in S$] $\forall n \in Z+, P(n): 5^n \in S$

Basis:

P(1): $5^1 \in S$. Prove $5^1 = 5 \in S$. $5 \in S$ by basis of inductive def of S.

Ind Step:

Assume: P(k): $5^k \in S$ Prove: P(k+1): $5^k \in S$

Since $x = 5 \in S$ by basis step of inductive def of S and $y = 5^k \in S$ by IH, therefore $xy = 5(5^k) \in S$ by ind step of ind def of S. So, $5(5^k) = 5^k * 5^1 = 5^k * 5^1 = 5^k$ QED

(b) [6 Pts] $S \subseteq A$ by structural induction.

 $[\forall x \in S, x \in A]$

Basis:

By basis step of ind def of S, $5 \in S$. We prove that $5 \in A$. Since $5 \land 1 = 5$ and $1 \in Z+$, by definition of A, $5 \in A$.

Ind Step:

Consider s,t \in S, assume s,t \in A. By ind step of ind def, st \in S. We prove that st \in A. Since, by IH s and t \in A, it follows that s = 5^i, i \in Z+ and t = 5^j, j \in Z+ Therefore, st = 5^i * 5^j = 5^(i+j), where i+j \in Z+ So, st \in A, as required QED

2. [5 Pts] Give an inductive definition of the set of palindromes over the alphabet {a, b, c}. You do not need to prove that your construction is correct. Note: a, b, c, aa, cc, aba are all palindromes.

Let Σ be the alphabet. Σ^* = set of palindroms over Σ Basis $\mathcal{E} \subseteq \Sigma^*$ Ind if $w \subseteq \Sigma$, $r \subseteq \Sigma^*$ then $wrw \subseteq \Sigma^*$

3. [5 Pts] Define the set $S = \{2^k * 3^m \mid k, m \in Z+\}$ inductively. You do not need to prove that your construction is correct.

Basis
$$6 \in S$$

Ind if $x \in S$, then $x * 3 \in S$ and $x * 2 \in S$

4. [8 Pts] Given the inductive definition of full binary trees (FBTs), define n(T), the number of vertices in tree T, and $\mathcal{L}(T)$, the number of leaves in tree T, inductively. Then, use structural induction to prove that for all FBTs T, n(T) = $2\mathcal{L}(T) - 1$.

The number of vertices in a FBT is:

- a) Is one, if T has a single vertex and no children, n(T) = 1
- b) If T has children, n(T) = 1 + n(T1) + n(T2)

The number of leaves in a FBT is:

- a) Is one of T has no children, $\mathcal{L}(T) = 1$
- b) If T has children $\mathcal{L}(T) = \mathcal{L}(T1) + \mathcal{L}(T2)$

Theorem: For all FBTs $n(T) = 2\mathcal{L}(T) - 1$ Proof:

Basis:

Consider FBT containing a single vertex.

So, n(T) and $\mathcal{L}(T) = 1$ by basis step of ind def of vertices and of leafs.

$$n(1) = 2\mathcal{L}(1) - 1$$

So,
$$n(T) = 2\mathcal{L}(T) - 1$$

```
Ind Step
Let T1 and T2 be left and right subtrees of T.
Assume n(T1) = 2\mathcal{L}(T1) - 1 and n(T2) = 2\mathcal{L}(T2) - 1

Prove that n(T) = 2\mathcal{L}(T) - 1

Now, n(T) = 1 + n(T1) + n(T2), by ind def of vertices
= 1 + 2\mathcal{L}(T1) - 1 + 2\mathcal{L}(T2) - 1
= 2\mathcal{L}(T1) + 2\mathcal{L}(T2) - 1
= 2\mathcal{L}(T1) + \mathcal{L}(T2) - 1
= 2\mathcal{L}(T) - 1, by ind def of leaves

Thus, n(T) = 2\mathcal{L}(T) - 1

QED
```

- 5. [15 Pts] Let L = $\{(a, b) \mid a, b \in Z, (a b) \mod 3 = 0\}$. We want to program a robot that can get to each point $(x, y) \in L$ starting at (0, 0).
- (a) [5 Pts] Give an inductive definition of L. This will describe the steps you want the robot to take to get to points in L starting at (0, 0). Let L' be the set obtained by your inductive definition.

```
Define L'

Basis (0,0) \in L'

i) if (x,y) \in L, then (x+3,y) \in L',

(x-3,y) \in L',

(x,y+3) \in L',

(x,y-3) \in L'
```

(b) [5 Pts] Prove inductively that $L' \subseteq L$, i.e., every point that the robot can get to is in L.

```
Basis:
```

```
By basis ind step of L', (0,0) \in L'
We prove that (0,0) \in L. Since (0-0) mod 3 and 0 \in Z, by def of L, (0,0) \in L
```

```
Ind Step
Consider x,y \in L', assume x,y \in L.
So, x,y \in Z, (x-y) \mod 3 = 0
So, \exists k \in Z, x-y \in k
So, k \mod 3 = 0
By the inductive step of ind def of L', (x+3,y), (x-3,y), (x,y+3), (x,y-3) \in L'
We prove that (x+3,y), (x-3,y), (x,y+3), (x,y-3) \in L
i) x+3-y=k+3 where (k+3) \mod 3=k \mod 3+3 \mod 3=0+0=0
Also, x+3 and y \in Z, so (x+3,y) \in L
ii) x-3-y=k-3 where (k-3) \mod 3=k \mod 3-3 \mod 3=0-0=0
Also, x-3 and y \in Z, so (x-3,y) \in L
iii) x- (y+3) = x - y - 3 = k - 3 where (k-3) \mod 3 = k \mod 3 - 3 \mod 3 = 0 + 0 = 0
Also, x and y+3 \in Z, so (x,y+3) \in L
iiii) x-(y-3) = x - y + 3 = k + 3 where (k+3) mod 3 = k mod 3 + 3 mod 3 = 0 + 0 = 0
Also, x and y-3 \in Z, so (x,y-3) \in L
QED
```

(c) [5 Pts] Extra Credit Prove that $L \subseteq L'$, i.e., the robot can get to every point in L.

To prove this, you need to give the path the robot would take to get to every point in L

from (0, 0), following the steps defined by your inductive rules.