Problem Set 1 Abstract Algebra II

Bennett Rennier barennier@gmail.com

January 15, 2018

Section 8.1

Ex ? Let a and b be two relatively prime positive integers. Prove that every sufficiently large positive integer N can be written as an integer combination ax + by of a and b where a and a are non-negative. Prove in fact that the integer ab - a - b cannot be written as a positive integer combination of a and b, but that every integer greater than ab - a - b can be.

Proof. Suppose there exists $x,y \in \mathbb{N}$ such that xa+yb=ab-a-b. Rearranging we get that (x+1-b)a+(y+1)b=0. Since y,a, and b are positive, this means that x+1-b<0, which means that $x \le b$. If we look at the original equation mod b, we get that $xa=-a \pmod{b}$. This means that $x=-1 \pmod{b}$. Since $x \le b$, this means that x=b-1. By similar argument, we see that y=a-1. Plugging this in we get that ab-a-b=xa+yb=(b-1)a+(a-1)b=ab-a+ab-b, which means that ab=ab+ab=2ab, this would mean that ab=0, which is a contradiction as a,b>0. This proves that ab-a-b cannot be expressed.

Lemma: We can choose $x, y \in \mathbb{Z}$ such that t = xa + yb where $0 \le x < b$ for any t. Proof: Since $\gcd(a,b) = 1$ we know that there exist $x, y \in \mathbb{Z}$ such that xa + yb = 1. This means that t = txa + tyb. This shows that t = txa + typ + mab - mab = (tx + mb)a + (y - ma)b for all $m \in \mathbb{Z}$. Choose m so that $0 \le tx + mb < b$. This proves the lemma.

Let n > 0. By our lemma, choose x and y such that xa + yb = ab - a - b + n where $0 \le x < b$. Then yb = ab - a - b + n - xa = (b - x - 1)a + n - b. If we divide by b, we get that $y = \frac{(b - x - 1)a}{b} + \frac{n}{b} - 1$. This means that $y + 1 = \frac{(b - (x + 1))a}{b} + \frac{n}{b}$. Since $0 \le x < b$, then $0 < x + 1 \le b$, which means that $b - (x + 1) \ge 0$. Since b - (x + 1), a, b, and n are all positive, this means that y + 1 > 0, which shows that $y \ge 0$. Since $x, y \ge 0$, this proves that all integers greater than ab - a - b can be written as a nonnegative integer combination of a and b.

Ex 9 Prove that the ring of integers \mathcal{O} in the quadratic integer ring $\mathbb{Q}(\sqrt{2})$ is a Euclidean Domain with respect to the norm given by $N(a+b\sqrt{2})=|a^2-2b^2|$. $\mathbb{Z}(\sqrt{2})$?

Proof. Let $a=a_1+a_2\sqrt{2}$ and $b=b_1+b_2\sqrt{2}$ be arbitrary elements of $\mathbb{Z}[\sqrt{2}]$, where $b\neq 0$. Since $\mathbb{Q}(\sqrt{2})$ is a field, we know that there exists a $x=x_1+x_2\in\mathbb{Q}(\sqrt{2})$ such that $x=\frac{a}{b}$. Let c_1 and c_2 be the closest integers to x_1 and x_2 respectively. Let $c=c_1+c_2\sqrt{2}$, which is in $\mathbb{Z}[\sqrt{2}]$. Let $y=\frac{a}{b}-c=(x_1-c_1)+(x_2-c_2)\sqrt{2}$. This means that yb=a-cb, which turns into a=cb+yb. We see that $yb=(\frac{a}{b}-c)b=a-cb$ which is clearly in $\mathbb{Z}[\sqrt{2}]$.

Now we need to check that N(yb) < N(b) or N(yb) = 0. Since c_1 and c_2 were defined as the closest integers to x_1 and x_2 respectively, we see that that $N(y) = |(x_1 - c_1)^2 - 2(x_2 - c_2)^2| \le |(x_1 - c_1)^2| + |-2(x_2 - c_2)^2| = (x_1 - c_1)^2 + 2(x_2 - c_2)^2 \le \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)^2 = \frac{3}{4}$. This means that $N(yb) = \frac{3}{4}N(b)$. Thus N(yb) < N(b) unless N(b) = 0, which shows that N(yb) = 0. This proves the statement.

Ex 10 Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$. [Use the fact that $I = (\alpha)$ for some nonzero α and then use the Division Algorithm in this Euclidean Domain to see that every coset of I is represented by an element of norm less than $N(\alpha)$.]

Proof. Let $I \subseteq \mathbb{Z}[i]$ be a nonzero ideal. Since $\mathbb{Z}[i]$ is an Euclidean domain with norm $N(a+bi)=a^2+b^2$, this means that $\mathbb{Z}[i]$ is also a PID. Thus, $I=(\alpha)$ for some $\alpha \in \mathbb{Z}[i]$. Let x+I be an arbitrary coset of I. By the Euclidean Algorithm, there exists $q,r \in R$ such that $x=q\alpha+r$ where $N(r) < N(\alpha)$. Rearranging the equation, we get that $r=x-q\alpha=x+(-q)\alpha \in x+I$. Thus, x+I=r+I, which means that every coset of I can be represented by an element with a norm less that $N(\alpha)$. But we can see that under this norm, there are only finitely many elements with norm n for each $n \in \mathbb{N}$ (Visually, this norm is a circle in the complex plane and can only intersect finitely many integer coordinates). Thus, there are only finitely many elements in $\mathbb{Z}[i]$ with norm less than α . This proves that there are only finitely many cosets for I, and thus $\mathbb{Z}[i]/I$ is finite.

Ex 11 Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least common multiple of a and b is an element $e \in R$, such that

- i) $a \mid e$ and $b \mid e$, and
- ii) if $a \mid e'$ and $b \mid e'$, then $e \mid e'$.
- a) Prove that a least common multiple of a and b (if such exists) is a generator for the unique largest principal ideal contained in $(a) \cap (b)$.
- b) Deduce that any two nonzero elements in a Euclidean Domain have a least common multiple which is unique up to multiplication by a unit.
- c) Prove that in a Euclidean Domain the least common multiple of a and b is $\frac{ab}{\gcd(a,b)}$.

Proof. a) Let e be a least common multiple of a and b. Since $a \mid e$ and $b \mid e$, we see that $(e) \subseteq (a)$ and that $(e) \subseteq (b)$. Thus, we get that $(e) \subseteq (a) \cap (b)$. Now, let I be an ideal contained in $(a) \cap (b)$. This means that $I \subseteq (a)$ and that $I \subseteq (b)$. Let i be an element of I. Since $I \subseteq (a)$, this means that i = ax for some $x \in R$. Similarly, i = by for some $y \in R$. This means that $a \mid i$ and $b \mid i$. Since e is a least common multiple, this means that $e \mid i$. Thus $(i) \subseteq (e)$. This means that $i \in (e)$. Since i was an arbitrary member of I, this proves that $I \subseteq (e)$. Thus e is the greatest ideal contained in $(a) \cap (b)$. [Is principal necessary?]

- b) Since all Euclidean Domains are PIDs, this means that $(a) \cap (b) = (e)$ for some $e \in R$. Thus, since (e) is the largest principal ideal contained in $(a) \cap (b)$, this means that e is the least common multiple. Assume that f is also a least common multiple. Then (f) is also the unique principal ideal contained in $(a) \cap (b)$. Thus, (f) = (e). Since all Euclidean Domains are Integral Domains, by Proposition 3, this means that f = ue for some unit $r \in R$. This proves that e is unique up to multiplication by a unit.
- c) Let d be the greatest common divisor of a and b. Since $d \mid a$ and $d \mid b$, we know that $d \mid ab$. Thus ed = ab for some $e \in R$. Claim: e is the least common multiple of a and b.
 - 1) Since $d \mid ab$, we can let $e = \frac{ab}{d}$. Since $d \mid b$, we see that $e = a \cdot \frac{b}{d}$. Thus, $e \in (a)$, which means that $(e) \subseteq (a)$. Similarly, $(e) \subseteq (b)$. This means that $(e) \subseteq (a) \cap (b)$.
 - 2) Suppose there exists an $f \in R$ such that $(e) \subseteq (f) \subseteq (a) \cap (b)$. We see that since $a \mid f$ that f = ax for some $a \in R$. Multiplying by b, we get that bf = abx. Since ed = ab, this means that bf = abx = edx. Since $(e) \in (b)$, this means $b \mid e$, which means we get that $f = \frac{edx}{b} = e \cdot \frac{dx}{b}$. This shows that $f \in (e)$, which means that (e) = (f). This proves that e is the least common multiple of e and e.

Section 8.2

Ex 1 Prove that in a Principal Ideal Domain two ideals (a) and (b) are comaximal if and only if a greatest common divisor of a and b is 1.

Proof. Suppose that 1 is a greatest common divisor of a and b. This means that 1 = sa + tb for some $s, t \in R$. Thus, $1 \in (a, b)$. This proves that (a, b) = (a) + (b) = R.

Now suppose (a) and (b) are comaximal, that is (a) + (b) = R. Since $1 \in R$, this means that sa + tb = 1 for some $s, t \in R$. Thus, $1 \in (a, b)$. This means that (a, b) = R = (1). By proposition 2, this proves that 1 is a greatest common divisor of a and b.

Ex 3 Prove that a quotient of a PID by a prime ideal is again a PID.

Proof. Let R be a PID, and I be a prime ideal in R. Since R is a PID, this means that I is maximal (Proposition 7). Thus, R/I is a field. Let J be a nonzero ideal of R/I, and let $a \in J$ be nonzero. Since R/I is a field, this means that a^{-1} exists. Thus, $1 = a^{-1}a \in J$. This means that J = (1), which is principal. Thus, all the ideals of R/I are principal. \square

Ex 6 Let R be an integral domain and suppose that every prime ideal in R is principal.

- a) Assume that the set of ideals of R that are not principal is nonempty and prove that this set has a maximal element under inclusion.
- b) Let I be an ideal which is maximal with respect to being nonprincipal, and let $a, b \in R$ with $ab \in I$, but $a \notin I$ and $b \notin I$. Let $I_a = (I, a)$ be the ideal generated by I and a, let $I_b = (I, b)$ be the ideal generated by I and b, and define $J = \{r \in R \mid rI_a \subseteq I\}$. Prove that $I_a = (\alpha)$ and $J = (\beta)$ are principals ideals in R with $I \subsetneq I_b \subseteq J$ and $I_aJ = (\alpha\beta) \subseteq I$.

- c) If $x \in I$ show that $x = s\alpha$ for some $s \in J$. Deduce that $I = I_a J$ is principal, a contradiction, and conclude that R is a PID.
- Proof. a) Since the set of ideals of R that are not principal is nonempty, we can put a partial ordering on this set using set inclusion. Suppose $I_1 \subseteq I_2 \subseteq \ldots$ is a chain of ideals. Claim: $\bigcup_{i \in \mathbb{N}} I_i$ is an ideal. Let $a, b \in \bigcup_{i \in \mathbb{N}} I_i$. This means that $a \in I_j$ and $b \in I_k$ for some $i, j \in \mathbb{N}$. Assume without loss of generality that $j \leq k$. This means that $a, b \in I_k$. This proves that $a + b \in I_k$ and that $ra \in I_k$ for all $r \in R$. Thus, $a + b, ra \in \bigcup_{i \in \mathbb{N}} I_i$. This proves that $\bigcup_{i \in \mathbb{N}} I_i$ is an ideal. We also clearly see that $I_j \subseteq \bigcup_{i \in \mathbb{N}} I_i$ for every $j \in \mathbb{N}$. Thus proves that every chain has an upper bound. By Zorn's Lemma, this means that this set has a maximal element.
- b) Suppose that I_a is not a principal ideal. Since $a \notin I$, we see that $I \subsetneq I_a = (I, a)$. However, I is the maximal nonprincipal ideal. This proves that I_a is a principal ideal. Let $x_1i_1 + y_1a$ and $x_2i_2 + y_2b$ be arbitrary elements in I_a and I_b respectively. We see that $(x_1i_1 + y_1a)(x_2i_2 + y_2b) = x_1x_2i_1i_2 + x_1i_1y_2b + y_1x_2i_2a + y_1y_2ab$. Since i_1, i_2 , and ab are all in I, this proves that this product is in I. Thus, $I_b \subseteq J$. By a similar argument as the one used in the last paragraph $I \subsetneq I_b$. This means that $I \subsetneq I_b \subseteq J$. Since I is the maximal nonprinciple ideal, this means that J must be principle.
 - Let $I_a = (\alpha)$ and $J = (\beta)$ since they are both principle. We see that $\alpha\beta \in I_aJ$. Letting $x\alpha y\beta$ be an arbitrary element of I_aJ , we see that $x\alpha y\beta = xy\alpha\beta \in (\alpha\beta)$. This proves that $I_aJ = (\alpha\beta)$. It follows from the definition of J that $I_aJ \subseteq I$. This shows that $I_aJ \subseteq I \subseteq I_b$.
- c) Let $x \in I$. Since $I \subseteq I_a = (\alpha)$, we see that $x = s\alpha$ for some $s \in R$. Since $sI_a = s(\alpha) = (s\alpha) = (x) \subseteq I$, we see that $s \in J$. This means that $I \subseteq I_aJ$ and thus that $I = I_aJ$. Since $I_aJ = (\alpha\beta)$, we see that I is principal. This is a contradiction against the definition of I. Thus, either Zorn's Lemma is false or the set of all nonprincipal ideals of R is empty. Since we assume Zorn's Lemma, it must be that R contains no nonprincipal ideals, which makes R a PID.

Section 8.3

Ex 2 Let a and b be nonzero elements of the Unique Factorization Domain R. Prove that a and b have a least common multiple and describe it in terms of the prime factorizations of a and b in the same fashion that Proposition 13 describes in their greatest common divisor.

Proof. Let a and b be two nonzero elements of a UFD R. Let $a = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$ and $b = p_1^{f_1} p_2^{f_2} \dots p_n^{f_n}$ be the unique prime factorizations for a and b, where $p_1 \dots p_n$ are distinct primes, $e_i \geq 0$, and $f_i \geq 0$. Claim: $\ell = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \dots p_n^{\max(e_2, f_2)}$ is the least common multiple of a and b. Since the exponents of the primes in ℓ are larger than the exponents on the corresponding primes of both a and b, we see that a and b divide ℓ . Let k be a common multiple of a and b. Since $k \in R$, it has a unique factorization. Let this factorization be

4

 $c=q_1^{g_1}q_2^{g_2}\dots q_m^{g_m}$. Since p_i divides a and a divides c, we see that p_i divides c. This means that p_i must divide one of the q_j 's. This means that $\{p_i,\dots,p_n\}\subseteq\{q_i,\dots q_m\}$, and also that the exponents of the primes in common must be greater in c than in a. By similar argument, the exponents of the primes in common must be greater in c than in b as well. This means that $c=p_1^{h_1}p_2^{h_2}\dots p_n^{h_n}q_1^{h_{n+1}}\dots q_m^{h_m}$, where $h_i\geq \max(e_i,f_i)$ for $i\leq n$. This shows that ℓ divides c. Thus, $\lim(a,b)=\ell$, which proves that any $a,b\in R\setminus\{0\}$ have a least common multiple in R.

Ex 3 Determine all the representations of the integer $2130797 = 17^2 \cdot 73 \cdot 101$ as a sum of two squares.

Proof. By Corollary 19, we see that since $17 = 73 = 101 = 3 \pmod{4}$, that 2130979 can be written as the sum of two squares. Also by that Corollary, we see that there are $4 \cdot 3 \cdot 2 \cdot 2 = 48$ ways to do so. Let $2130797 = A^2 + B^2$. Since $17^2 = (4+i)^2(4-i)^2$, 73 = (8+3i)(8-3i), and 101 = (10+i)(10-i), the factorization of A + Bi into units are

$$(4+i)(4+i)(8+3i)(10+i) = 851+1186i$$

$$(4+i)(4+i)(8-3i)(10+i) = 1421+334i$$

$$(4+i)(4+i)(8+3i)(10-i) = 1069+994i$$

$$(4+i)(4+i)(8-3i)(10-i) = 1459+46i$$

$$(4+i)(4-i)(8+3i)(10+i) = 1309+646i$$

$$(4+i)(4-i)(8-3i)(10+i) = 1411-374i$$

$$(4+i)(4-i)(8+3i)(10-i) = 1411+374i$$

$$(4+i)(4-i)(8+3i)(10-i) = 1309-646i$$

$$(4-i)(4-i)(8+3i)(10+i) = 1459-46i$$

$$(4-i)(4-i)(8+3i)(10+i) = 1069-994i$$

$$(4-i)(4-i)(8+3i)(10-i) = 1421-334i$$

$$(4-i)(4-i)(8-3i)(10-i) = 851-1186i$$

From this we see that $2130797 = 851^2 + 1186^2 = 1421^2 + 334^2 = 1069^2 + 994^2 = 1459^2 + 46^21309^2 + 646^2 = 1411^2 + 374^2$ are 6 different ways to write 2130797 as the sum of two squares. When we consider that there are 2 choices for ordering and 4 choices for different signs, this gives us the full $2 \cdot 4 \cdot 6 = 48$ possible ways.

Ex 6 a) Prove that the quotient ring $\mathbb{Z}[i]/(1+i)$ is a field of order 2.

- b) Let $q \in \mathbb{Z}$ be prime with $q = 3 \pmod{4}$ Prove that the quotient ring $\mathbb{Z}[i]/(q)$ is a field with q^2 elements.
- *Proof.* a) [I tried to do this problem before I read the chapter, so there is much more work than necessary.] We know that $\mathbb{Z}[i]$ is a ED under the norm $N(a+bi)=a^2+b^2$. We also see that $N((a+bi)(x+yi))=N((ax-by)+(bx+ay)i)=(ax-by)^2+(bx+ay)^2=(ax)^2+(by)^2+(bx)^2+(ay)^2-axby+bxay=x^2(a^2+b^2)+y^2(a^2+b^2)=(x^2+y^2)(a^2+b^2)=$

 $N(a+bi)\cdot N(x+yi)$. Thus, N(ab)=N(a)N(b) for all $a,b\in\mathbb{Z}[i]$. Let 1+i=ab for some $a,b\in\mathbb{Z}[i]$. We see that

$$2 = 1^2 + 1^2 = N(1+i) = N(ab) = N(a)N(b)$$

which means that N(a) = 1 and N(b) = 2 or vice-versa. Without loss of generality assume that N(a) = 1. Let a = x + iy. This means that $N(a) = x^2 + y^2 = 1$. Rearranging, we get that $x^2 \le 1 - y^2 \le 1$, which shows that x = 0 or x = 1. Similarly, y = 0 or y = 1. However, if x = y = 1, then $N(a) = 1^2 + 1^2 = 2$, a contradiction. Similarly, it's a contradiction if x = y = 0. Thus, either x = 1 and y = 0 or y = 1 and x = 0. This means that a = 1 or a = i. However, both 1 and i are units $(i \cdot i^3 = 1)$. This proves that 1 + i is irreducible. Since $\mathbb{Z}[i]$ is a ED, and thus a PID, this means that 1 + i is prime, which means that 1 + i is a prime ideal. Since $\mathbb{Z}[i]$ is a PID, this means that 1 + i is a maximal ideal. Finally, this implies that $\mathbb{Z}[i]/(1 + i)$ is a field. By Section 8.1 Ex 10, we know that $\mathbb{Z}[i]/(1 + i)$ is finite.

Let $a + bi \in \mathbb{Z}[i]/(1+i)$. We see that $(1+i)(1+i) = 1+i+i-1 = 2i \in \mathbb{Z}[i]/(1+i)$ and that $(1-i)(1+i) = 1+i-i+1 = 2 \in \mathbb{Z}[i]/(1+i)$. Thus, $a, b \in \{0, 1\}$. Let I = (i+1) so that we can use parenthesis in the next equation. We see that

$$-1 + I = -1 + 2 + I = 1 + I = 1 - (i + 1) + I = -i + I = -i + 2i + I = i + I$$

Since $\mathbb{Z}[i]/(1+i)$ is a field, this means that $1+(1+i)\neq (1+i)$, so the only elements of $\mathbb{Z}[i]/(1+i)$ are 1+(1+i) and (1+i). This proves that $\mathbb{Z}[i]/(1+i)$ is a field of order 2.

b) Since $q = 3 \pmod{4}$, q is irreducible by Proposition 18. Since $\mathbb{Z}[i]$ is a PID, (q) is prime. This means that (q) is a prime ideal. Since $\mathbb{Z}[i]$ is a PID, this means (q) is maximal, and thus that $\mathbb{Z}[i]/(q)$ is a field.

Let $x + yi + (q) \in \mathbb{Z}[i]/(q)$, where $x, y \in \mathbb{Z}$. Since \mathbb{Z} is a Euclidean Domain, we see that x = pq + r for some $0 \le r < q$. Similarly, y = sq + t where $0 \le t < q$. This means that x + yi + (q) = pq + r + (sq + t)i + (q) = r + ti + (q). Thus, all the cosets of $\mathbb{Z}[i]/(q)$ are of the form x + yi + (q) where $0 \le x, y < q$. Suppose a + bi + (q) = x + yi + (q) are two such cosets. Then $(a - x) + (b - y)i \in (q)$. This means that (a - x) + (b - y)i is divisble by q. Thus a - x and b - y are both divisible by q. However, since $0 \le a, b, x, y < q$, it's impossible for a - x and b - y to be divisible by q. Thus, the cosets of this form are distinct. There are clearly q^2 cosets of this form, which proves that the order of the field $\mathbb{Z}[i]/(q)$ is p^2 .

Ex 8 Let R be the quadratic integer ring $\mathbb{Z}\left[\sqrt{-5}\right]$ and define the ideals $I_2=(2,1+\sqrt{-5})$, $I_3=(3,2+\sqrt{-5})$, and $I_3'=(3,2-\sqrt{-5})$. Prove that $2,3,1+\sqrt{-5}$, and $1-\sqrt{5}$ are irreducibles in R, no two of which are associate in R, and that $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{5})$ are two distinct factorizations of 6 into irreducibles in R.

Proof. [Incomplete. The Frobenius Coin Problem took a long time.]

Additional Problems

Ex A At the end of Section 8.3 is a summary which gives examples of rings which shows that there are strict inclusions among each type of ring we considered this week. Please write up a verification that each example actually proves the corresponding inclusion is strict.

Proof. Section 8.3 Ex 8 proves that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. It is an integral domain as $\mathbb{Z}[\sqrt{-5}] \subseteq \mathbb{C}$ which is a field.

 $\mathbb{Z}[x]$ is not a PID as (2,x) is an ideal which is not principal. $\mathbb{Z}[x]$ is a UFD as \mathbb{Z} is a UFD. [The proof of this fact is later on in the book.]

The proofs that $\mathbb{Z}[(1+\sqrt{-19})/2]$ is a PID but not a ED are unfortunately omitted due to time constraints, but I will make sure to know them.

 \mathbb{Z} is a Euclidean domain with N(n) = |n| (in fact, it's the prime example of one). It's not a field as 2 has no inverse.