FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

AUDIO PRO AB

WIRELESS MULTIROOM LOUDSPEAKER

Model Number: A36, A26

FCC ID: 2AGNC-A36

Prepared for:	AUDIO PRO AB					
	Garnisonsgatan 52, 25466, Helsingborg, Sweden					
Prepared By:	EST Technology Co., Ltd.					
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China					
Tel: 86-769-83081888-808						

Report Number:	ESTE-R1908101	
Date of Test:	Jul. 29~Aug. 30, 2019	
Date of Report:	Sep. 02, 2019	

EST Technology Co., Ltd Report No. ESTE-R1908101 Page 1 of 90

TABLE OF CONTENTS

Descr	iptior	1	<u>Page</u>
TEST R	EPORT	Γ VERIFICATION	3
1.	GEN	IERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Antenna Information	5
2.	SUM	IMARY OF TEST	6
	2.1.	Summary of test result	6
	2.2.	Test Facilities	
	2.3.	Measurement uncertainty	8
	2.4.	Assistant equipment used for test	8
	2.5.	Block Diagram	8
	2.6.	Test mode	9
	2.7.	Channel List	10
	2.8.	Power Setting of Test Software	10
	2.9.	Test Equipmen	11
3.	MAX	XIMUM PEAK OUTPUT POWER	12
	3.1.	Limit	12
	3.2.	Test Setup	12
	3.3.	Spectrum Analyzer Setting	12
	3.4.	Test Procedure	12
	3.5.	Test Result	13
4.	20 E	OB BANDWIDTH	18
	4.1.	Limit	18
	4.2.	Test Setup	18
	4.3.	Spectrum Analyzer Setting	18
	4.4.	Test Procedure	18
	4.5.	Test Result	19
5.	Car	RRIER FREQUENCY SEPARATION	24
	5.1.	Limit	24
	5.2.	Test Setup	24
	5.3.	Spectrum Analyzer Setting	24
	5.4.	Test Procedure	24
	5.5.	Test Result	25
6.	Nun	MBER OF HOPPING CHANNEL	30
	6.1.	Limit	30
	6.2.	Test Setup	30
	6.3.	Spectrum Analyzer Setting	30
	6.4.	Test Procedure	30
	6.5.	Test Result	31
7.	Dwi	ELL TIME	33
	7.1.	Limit	33
	7.2.	Test Setup	33
	7.3.	Spectrum Analyzer Setting	
	7.4.	Test Procedure	33
	7.5.	Test Result	34

8.	Coni	DUCTED BAND EDGE	39
	8.1.	Limit	39
	8.2.	Test Setup	39
	8.3.	Spectrum Analyzer Setting	39
	8.4.	Test Procedure	39
	8.5.	Test Result	40
9.	Coni	ducted Spurious Emissions	44
	9.1.	Limit	44
	9.2.	Test Setup	44
	9.3.	Spectrum Analyzer Setting	44
	9.4.	Test Procedure	44
	9.5.	Test Result	45
10.	RADI	IATED SPURIOUS EMISSIONS AND BAND EDGE	49
	10.1.	Limit	49
	10.2.	Test Setup	50
	10.3.	Spectrum Analyzer Setting	51
	10.4.	Test Procedure	52
	10.5.	Test Result	53
11.	AC P	Power Line Conducted Emissions	67
	11.1.	Limit	67
	11.2.	Test Setup	67
	11.3.	Spectrum Analyzer Setting	67
	11.4.	Test Procedure	67
	11.5.	Test Result	68
12.	ANTI	ENNA REQUIREMENTS	72
	12.1.	Limit	72
	12.2.	Test Result	72
13.	TEST	Γ SETUP PHOTO	73
14.	РНО	TO EUT	75

EST Technology Co., Ltd.

Applicant: AUDIO PRO AB

Address: Garnisonsgatan 52, 25466, Helsingborg, Sweden

Manufacturer: DONGGUAN TRISTAR ELECTRONIC CO., LTD.

Address: No.24A Dongxing Ave. South, Zhenxingwei, Tangxia Town,

Dongguan China

E.U.T: WIRELESS MULTIROOM LOUDSPEAKER

Model Number: A36, A26

(Except for the appearance size and model name, the rest is identical.)

Power Supply: AC 100-240V, 50/60Hz, 200W

Trade Name: audio pro Serial No.: -----

Date of Receipt: Jul. 29, 2019 Date of Test: Jul. 29~Aug. 30, 2019

FCC Part 15 Subpart C (15.247)

Test Specification: ANSI C63.10:2013

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

Test Result: The device described above is tested by EST Technology Co., Ltd. The

measurement results were contained in this test report and EST Technology Co., Ltd. was assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliance

with he FCC Rules and Regulations Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in

part without written approval of EST Technology Co., Ltd.

Prepared by:

Reviewed by:

Date: Sep. 02, 20 Approved by:

Ring / Assistant

Tony / Engineer

Iceman Hu/Manager

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products ,It is not permitted to be duplicated in extracts without written approval of EST Technology Co., Ltd.

EST TO

EST Technology Co., Ltd

Report No. ESTE-R1908101

Page 4 of 90

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Product Name	:	WIRELESS MULTIROOM LOUDSPEAKER
Model Number	:	A36, A26
Software Version	:	A1
Hardware Version		V1.2
Operation frequency	:	2402MHz~2480MHz
Number of channel	:	79
Max Output Power (PEAK)	:	GFSK: 6.12dBm
Modulation Type	:	BT BDR(1Mbps): GFSK BT EDR(2Mbps): π/4-DQPSK BT EDR(3Mbps): 8-DPSK
Sample Type		Prototype production

Note:

For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

1.2. Antenna Information

Ant No.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Internal	N/A	0

EST Technology Co., Ltd Report No. ESTE-R1908101 Page 5 of 90

2. SUMMARY OF TEST

2.1. Summary of test result

Report Section	Description of Test Item	FCC Standard Section	Results
3	Maximum Peak Output Power	15.247(a)(1)	PASS
4	20dB Bandwidth	15.247(a)(1)	PASS
5	Carrier Frequency Separation	15.247(a)(1)	PASS
6	Number Of Hopping Channel	15.247(a)(1)(iii)	PASS
7	Dwell Time	15.247(a)(1)(iii)	PASS
8	Conducted Band Edge	15.247(d)	PASS
9	Conducted Spurious Emissions	15.247(d)	PASS
10	Radiated Spurious Emissions and Band Edge	15.205 15.209 15.247(d)	PASS
11	AC Power Line Conducted Emissions	15.207	PASS
12	Antenna Requirement	15.203	PASS

Note:

(1) "N/A" denotes test is not applicable in this test report

EST Technology Co., Ltd Report No. ESTE-R1908101 Page 6 of 90

2.2. Test Facilities

EMC Lab

: Certificated by CNAS, CHINA

Registration No.: L5288

Date of registration: November 13, 2017

Certificated by FCC, USA Designation Number: CN1215

Test Firm Registration Number: 722932 Date of registration: November 21, 2017

Certificated by A2LA, USA Registration No.: 4366.01

Date of registration: November 07, 2017

Certificated by Industry Canada CAB identifier No.: CN0035

Date of registration: January 04, 2019

Certificated by VCCI, Japan

Registration No.: R-13663; C-14103 Date of registration: July 25, 2017

This Certificate is valid until: July 24, 2020

Certificated by TUV Rheinland, Germany Registration No.: UA 50413872 0001 Date of registration: July 31, 2018

Certificated by TUV/PS, Shenzhen

Registration No.: SCN1017

Date of registration: January 27, 2011

Certificated by Intertek ETL SEMKO Registration No.: 2011-RTL-L2-64 Date of registration: April 28, 2011

Certificated by Nemko, Hong Kong

Registration No.: 175193

Date of registration: May 4, 2011

Name of Firm : EST Technology Co., Ltd.

Site Location : Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong,

China

EST Technology Co., Ltd

2.3. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	±3.48dB
Uncertainty for spurious emissions test	±4.60 dB(Polarize: H)
(30MHz-1GHz)	±4.68 dB(Polarize: V)
Uncertainty for spurious emissions test (1GHz to 18GHz)	±4.96dB
Uncertainty for radio frequency	7×10 ⁻⁸
Uncertainty for conducted RF Power	0.20dB
Uncertainty for Power density test	0.26dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.4. Assistant equipment used for test

Item	Equipment	Brand	Model Name/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.8m	AC Cable

2.5. Block Diagram

For radiated emissions test: EUT was placed on a turn table, which is 0.8 (or 1.5) meter high above ground. EUT was beset into Bluetooth test mode by software before test.

(EUT: WIRELESS MULTIROOM LOUDSPEAKER)

EST Technology Co., Ltd Report No. ESTE-R1908101 Page 8 of 90

2.6. Test mode

Combining all the rates, modulations, and packet types, the Pre-scans had been carried out. The worst case test mode was selected for the final test as listed below.

Test Item	Modulation Type	Operating Mode	Packet Type	Test Channel
Maximum Peak Output Power	GFSK&8-DPSK	Non Hopping	DH5	Low/Middle/High
20dB Bandwidth	GFSK&8-DPSK	Non Hopping	DH5	Low/Middle/High
Carrier Frequency Separation	GFSK&8-DPSK	Hopping	DH5	Low/Middle/High
Number Of Hopping Channel	GFSK&8-DPSK	Hopping	DH5	All Channel Hopping
Dwell Time	GFSK&8-DPSK	Hopping	DH1/DH 3/DH5	Middle(All Channel Hopping)
Conducted Band Edge	GFSK&8-DPSK	Non Hopping	DH5	Low/ High& All Channel Hopping
Conducted Spurious Emissions	GFSK&8-DPSK	Non Hopping	DH5	Low/Middle/High
Radiated Spurious Emissions(Below 1GHz)	GFSK&8-DPSK	Non Hopping	DH5	Low/Middle/High
Radiated Spurious Emissions(Above 1GHz)	GFSK&8-DPSK	Non Hopping	DH5	Low/Middle/High
Radiated Band Edge	GFSK&8-DPSK	Non Hopping	DH5	Low/High
AC Power Line Conducted Emissions	GFSK&8-DPSK	Non Hopping	DH5	Low/Middle/High

Note:

EST Technology Co., Ltd Report No. ESTE-R1908101 Page 9 of 90

^{1.} In radiated measurement, the EUT had been pre-scan on the positioned of each 3 axis(X,Y,Z), the worst case was found when positioned on **X-plane**.

2.7. Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

2.8. Power Setting of Test Software

Software Name	BlueTest3		
Frequency(MHz)	2402	2441	2480
GFSK(1Mbps) Setting	N/A	N/A	N/A
8-DPSK(3Mbps) Setting	N/A	N/A	N/A

EST Technology Co., Ltd Repor

2.9. Test Equipmen

For conducted emission test								
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.		
EMI Test Receiver	Rohde & Schwarz	ESHS30 X37354 LISAL		LISAI	June 14,19	1 Year		
Artificial Mains Network	Rohde & Schwarz	ENV216	101260	LISAI	June 14,19	1 Year		
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	101100	LISAI	June 14,19	1 Year		
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A		

For radiated emission test(9 kHz-30MHz)								
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.		
EMI Test Receiver	Rohde & Schwarz	$1 - \text{FSR}^{\prime}$ $1 - 101780 + 11841 + 1$		June 14,19	1 Year			
Active Loop Antenna	SCHWAREB ECK	FMZB 1519B	1519B-088	LISAI	June 14,19	1 Year		
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A		
9kHz-30MHz Cable	N/A	EST-001	N/A	N/A	N/A	N/A		

For radiated emissions test (30-1000MHz)								
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.		
EMI Test Receiver	Rohde & Schwarz	ESR7	101780	LISAI	June 14,19	1 Year		
Bilog Antenna	Teseq	CBL 6111D	37062	LISAI	June 14,19	1 Year		
Test Software	Test Software Audix		N/A	N/A	N/A	N/A		
30-1000MHz Cable	N/A	EST-002	N/A	N/A	N/A	N/A		

For radiated emission test(Above 1000MHz)									
Equipment	Manufacturer	Manufacturer Model No. Ser		Calibration Body	Last Cal.	Next Cal.			
Horn Antenna	SCHWARZB ECK	IBBHA9170101		LISAI	June 14,19	1 Year			
Signal Amplifier	SCHWARZB ECK BBV9718		9718-212	LISAI	June 14,19	1 Year			
Spectrum Analyzer	Rohde &Schwarz	FSV	103173	LISAI	June 14,19	1 Year			
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A			
Above 1GHz Cable	N/A	EST-003	N/A	N/A	N/A	N/A			

For connect EUT antenna terminal test								
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.		
Spectrum Analyzer	Rohde &Schwarz	FSV	EST-E069	LISAI	June 14,19	1 Year		

EST Technology Co., Ltd Report No. ESTE-R1908101

3. MAXIMUM PEAK OUTPUT POWER

3.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

3.2. Test Setup

3.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	3MHz
VBW	3MHz
Span	7.5MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 3.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

Temperature	25℃	Relative Humidity	55%	Test Voltage		Test Voltage		120V/60Hz
Mode	Freq	Peak Outp	out Power	Lir	Limit			
Mode	(MHz)	dBm	W	dBm W		Result		
	2402	2.31	0.0017	20.97	0.1250	PASS		
GFSK	2441	4.71	0.0030	20.97	0.1250	PASS		
	2480	6.12	0.0041	20.97	0.1250	PASS		
	2402	0.49	0.0011	20.97	0.1250	PASS		
8-DPSK	2441	3.56	0.0023	20.97	0.1250	PASS		
	2480	5.06	0.0032	20.97	0.1250	PASS		

GFSK 2402 MHz

GFSK 2441 MHz

4. 20 DB BANDWIDTH

4.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.2. Test Setup

4.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	30KHz
VBW	100KHz
Span	3MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 4.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the ndB down function to measure 20dB Bandwidth.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

Temperature 25°C Relative Humidi		ity 5	5%	
Test Voltag	ge	120V/	60Hz	
Mode	Freq (MHz)	20dB Bandwidth (MHz)	Limit (MHz)	Result
	2402	0.9508	/	PASS
GFSK	2441	0.9465	/	PASS
	2480	0.9465	/	PASS
	2402	1.2590	/	PASS
8-DPSK	2441	1.2547	/	PASS
	2480	1.2590	/	PASS

5. CARRIER FREQUENCY SEPARATION

5.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.2. Test Setup

5.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	30KHz
VBW	100KHz
Span	3MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 5.3.
- c. Set the EUT transmit continuously with maximum output power in all channel hopping mode.
- d. Allow trace to stabilize, use the marker-delta function to measure channel separation between two adjacent channels.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

Temperature	25℃	Rel	lative Humidity 55%		6	Test Voltage 120		V/60Hz	
Mada	Channel		Channel Separation (MHz)		2	2/3 of 20dB Bandwidth Limit		Result	
Mode						(MHz)			
	Low C	CH 1.0000				0.6339		PASS	
GFSK	Mid C	Н	1.0000			0.6310		PASS	
	High C	СН	1.0000			0.6310		PASS	
	Low C	CH	1.0000			0.8393		PASS	
8-DPSK	Mid C	H	1.0000			0.8365		PASS	
	High C	СН	1.0000			0.8393		PASS	

GFSK Low Channel

GFSK Mid Channel

6. NUMBER OF HOPPING CHANNEL

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

6.2. Test Setup

6.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	300KHz
VBW	300KHz
Start frequency	2400MHz
Stop frequency	2483.5MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 6.3.
- c. Set the EUT transmit continuously with maximum output power in all channel hopping mode.
- d. Allow trace to stabilize, use the marker-peak function to mark the first and last frequency hopping channel.
- e. Repeat above procedures until all test modes were measured.
- f. Record the results in the test report.

Temperature	25℃	Relative Humidity	55%	Test Voltage	120V/60Hz	
Mode	Number of Hopping Channel			Limit Result		
GFSK	79		SK 79 ≥1		≥15	PASS
8-DPSK	79		79		≥15	PASS

7. DWELL TIME

7.1. Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

7.2. Test Setup

7.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	1MHz
VBW	1MHz
Span	Zero
Detector	Peak
Sweep Time	2.5ms(DH1)/10ms(DH3)/20ms(DH5)
Sweep Mode	Single Sweep

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 7.3.
- c. Set the EUT transmit continuously with maximum output power in all channel hopping mode.
- d. Allow trace to stabilize, use the marker-delta function to measure single pulse duration.
- e. Repeat above procedures until all test modes were measured.
- f. Record the results in the test report.

Temperature	25℃	Relative Humidity		55%	Test Voltage	120V/60Hz
Mode	Freq (MHz)	Hops in Observation Period(hops)	Pulse Duration (ms)	Dwell time (ms)	Limit	Result
GFSK DH1	2441	320	0.4348	139.14	<400ms	PASS
GFSK DH3	2441	160	1.6957	271.31	<400ms	PASS
GFSK DH5	2441	106.67	3.0000	320.00	<400ms	PASS
8-DPSK 3DH1	2441	320	0.4457	142.62	<400ms	PASS
8-DPSK 3DH3	2441	160	1.7210	275.36	<400ms	PASS
8-DPSK 3DH5	2441	106.67	3.0543	325.79	<400ms	PASS

- 1. DH1 Packet permit maximum 1600 hops/s with 2 timeslot in 79 channels (1 timeslot TX, 1 timeslot RX), So the hops in Observation Period($0.4s \times 79$ channel)=(1600/79/2)hops/ $s \times 0.4s \times 79$ =320 hops.
- 2. DH3 Packet permit maximum 1600 hops/s with 4 timeslot in 79 channels (3 timeslot TX, 1 timeslot RX), So the hops in Observation Period($0.4s \times 79$ channel)=(1600/79/4)hops/ $s \times 0.4s \times 79$ =160 hops.
- DH5 Packet permit maximum 1600 hops/s with 6 timeslot in 79 channels (5 timeslot TX, 1 timeslot RX), So the hops in Observation Period(0.4s×79 channel)=(1600/79/5)hops/s×0.4s×79=106.67 hops.
- 4.Dwell Time= Hops in Observation Period × Pulse Duration.

8. CONDUCTED BAND EDGE

8.1. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.2. Test Setup

8.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	100KHz
VBW	300KHz
Span	100MHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

8.4. Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 8.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the marker function to mark the highest emission level outside the authorized band.
- e. Repeat above procedures until all channels and test modes were measured(including frequency hopping off and frequency hopping on).
- f. Record the results in the test report.

8.5. Test Result

Temperature	25℃	Relative Humidity	55%	Test Voltage	120V/60Hz
Result	PASS				

EST Technology Co., Ltd Report No. ESTE-R1908101 Page 40 of 90

9. CONDUCTED SPURIOUS EMISSIONS

9.1. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the ntentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

9.2. Test Setup

9.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	100KHz
VBW	300KHz
Start frequency	30MHz
Stop frequency	25GHz
Sweep Time	Auto
Detector	Peak
Trace Mode	Max Hold

9.4. Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 8.3.
- c. Set the EUT transmit continuously with maximum output power over fixed single hopping channel.
- d. Allow trace to stabilize, use the marker function to mark the highest emission level outside the authorized band.
- e. Repeat above procedures until all channels and test modes were measured.
- f. Record the results in the test report.

9.5. Test Result

Temperature	25℃	Relative Humidity	55%	Test Voltage	120V/60Hz
Result	PASS				

GFSK 2402 MHz

8-DPSK 248MHz Spectrum Ref Level 20.00 dBm RBW 100 kHz 40 dB SWT 250 ms • VBW 300 kHz Mode Auto Sweep ●1Pk Max -39.69 dBm 17.8050 GHz M1[1] 10 dBm-D1 3.020 dBm -10 dBm-D2 -16.980 dBm -20 dBm--30 dBm--40 dBm 250 dem -60 dBm--70 dBm-691 pts Start 30.0 MHz Stop 25.0 GHz Measuring...

