Лекция 5

Производные и дифференциалы высших порядков

1. Производная n-го порядка.

а) Вторая производная. Пусть функция f(x) имеет производную во всех точках интервала (a,b). Если функция f'(x) дифференцируема в точке $x_0 \in (a,b)$, то ее производную называют второй производной или производной второго порядка функции f(x) в точке x_0 и обозначают $f''(x_0)$, $f^{(2)}(x_0)$, $\frac{d^2 f(x_0)}{dx^2}$, $f''_{xx}(x_0)$. Таким образом, по определению

$$f''(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x}.$$

Заметим, что функцию f'(x) часто называют первой производной или производной первого порядка функции f(x), а под производной нулевого порядка $f^{(0)}(x)$ подразумевается функция f(x), т. е. $f^{(0)}(x) \equiv f(x)$.

Выведем, далее, формулу для второй производной функции в случае когда эта функция задана параметрически. Пусть функции x=x(t) и y=y(t) такие, что существуют $x'(t_0)\neq 0$ и $y'(t_0)$, и пусть, кроме того, существуют производные $x''(t_0)$ и $y''(t_0)$, которые будем обозначать соответственно x''_{tt}, y''_{tt} . Тогда функция y=y(x) имеет в точке x_0 , где $x_0=x(t_0)$, вторую производную $y''_{xx}=y''_{xx}(x_0)$, причем

$$y_{xx}^{"} = \left(\frac{y_t^{\prime}}{x_t^{\prime}}\right)_t^{\prime} \frac{1}{x_t^{\prime}},\tag{4}$$

ИЛИ

$$y_{xx}^{"} = \frac{y_{tt}^{"}x_t^{\prime} - y_t^{\prime}x_{tt}^{"}}{(x_t^{\prime})^3}.$$
 (5)

О Действительно, по правилу дифференцирования сложной функции

$$y_{xx}'' = (y_x')_t' t_x',$$

где $y'_x = \frac{y'_t}{x'_t}$, $t'_x = \frac{1}{x'_t}$, откуда следует формула (4), которую можно представить в виде (5). \bullet

Пример. Найти y''_{xx} , если $x=\frac{1}{\cos t},\ y=\operatorname{tg} t-t,\ 0< t<\frac{\pi}{2}.$ \triangle Так как $x'_t=\frac{\sin t}{\cos^2 t},\ y'_t=\frac{1}{\cos^2 t}-1=\frac{\sin^2 t}{\cos^2 t},\ \text{то}\ y'_x=\frac{y'_t}{x'_t}=\sin t,$ и по формуле (4) получаем

$$y_{xx}'' = \cos t \, \frac{1}{x_t'} = \frac{\cos^3 t}{\sin t}. \quad \blacktriangle$$

Обратимся к вопросу о вычислении второй производной сложной и неявной функции.

Если функция y=y(x) имеет вторую производную в точке x_0 , а функция z=z(y) — вторую производную в точке y_0 , где $y_0=y(x_0)$, то существует вторая производная в точке x_0 сложной функции w=z(y(x)), причем

$$w''(x_0) = z_{yy}''(y_x')^2 + z_y'y_{xx}'', (6)$$

где в правой части формулы (6) опущены обозначения аргументов. О Заметим сначала, что в некоторой окрестности точки x_0 определена сложная функция w=z(y(x)), так как функции y(x) и z(y) непрерывны соответственно в точках x_0 и y_0 , причем $y_0=y(x_0)$. По правилу дифференцирования сложной функции $w_x'=z_y'y_x'$, откуда $w_{xx}''=(z_y')_x'y_x'+z_y'y_{xx}''$, где $(z_y')_x'=z_{yy}''y_x'$. Формула (6) доказана. \bullet Вторую производную неявной функции в простейших случаях час-

Вторую производную неявной функции в простейших случаях часто удается найти с помощью дифференцирования тождества, которое получается при вычислении первой производной

Поясним это на примере.

Пример 3. Найти y''_{xx} , где y=y(x) — неявная функция, определяемая уравнением

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

△ В § 15 (пример 11) было показано, что

$$y_x' = -\frac{b^2 x}{a^2 y}. (7)$$

Дифференцируя тождество (7) по x, получаем $y''_{xx} = -\frac{b^2}{a^2y} + \frac{b^2x}{a^2y^2} y'_x$, откуда, используя формулу (7) и равенство $a^2y^2 + b^2x^2 = a^2b^2$, находим

 $y_{xx}^{\prime\prime} = -\frac{b^4}{a^2 y^3}. \quad \blacktriangle$

б) Производная n-го $nopя \partial ка$. Производную от второй производной функции f(x) называют третьей производной или производной третьего порядка этой функции и обозначают f'''(x) или $f^{(3)}(x)$. Аналогично определяются производные любого порядка.

Пусть функция f(x) имеет на интервале (a,b) производные $f'(x), ..., f^{(n-1)}(x)$. Если в точке $x \in (a,b)$ существует производная функции $f^{(n-1)}(x)$, то эту производную называют производной n-го порядка или n-й производной функции f(x) и обозначают $f^{(n)}(x)$.

Таким образом, если функция f(x) имеет в точке x производные до n-го порядка включительно, то

$$f^{(n)}(x) = (f^{(n-1)}(x))',$$

т. е.

$$f^{(n)}(x) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x + \Delta x) - f^{(n-1)}(x)}{\Delta x}.$$

2. Дифференциал n-го порядка. Пусть функция y = f(x) дифференцируема на интервале (a,b). Тогда ее дифференциал

$$dy = f'(x) dx$$

в точке $x \in (a,b)$, который называют также *первым дифференциалом* функции f, зависит от двух переменных, а именно от x и dx.

Если дифференциал dx, совпадающий с приращением Δx независимого переменного x, не меняется (фиксирован), то дифференциал dy является функцией только от x. Дифференциал этой функции, т. е. дифференциал от f'(x) dx, где dx — постоянная величина, называют вторым дифференциалом или дифференциалом второго порядка функции y = f(x) в точке x и обозначают d^2y или d^2f . При этом предполагается, что при вычислении дифференциала d(dy) (если он существует) приращение dx независимого переменного выбрано таким же, как и при вычислении первого дифференциала.

Пусть функция f имеет вторую производную в точке x. Тогда, пользуясь тем, что $dg=g'(x)\,dx$ и $d(Cg)=C\,dg$, где $C={\rm const.}$ получаем

$$d^{2}y = d(dy) = d(f'(x) dx) = dx d(f'(x)) = dx f''(x) dx = f''(x) dx^{2}.$$

Таким образом, при указанных выше условиях второй дифференциал функции y = f(x) в точке x существует, причем

$$d^2y = f''(x) dx^2 = y'' dx^2, (21)$$

где

$$dx^2 = (dx)^2.$$

Аналогично, предполагая, что функция y=f(x) имеет в точке x производную n-го порядка, определим n-й $\partial u \phi \phi$ еренциал $d^n y$ как дифференциал от $d^{n-1}y$, т. е.

$$d^n y = d(d^{n-1}y).$$

Предполагая, что приращение независимого переменного при вычислении первого и всех последующих дифференциалов выбирается одним и тем же, легко доказать методом индукции формулу

$$d^n y = f^{(n)}(x) dx^n. (22)$$

Из формулы (22) следует, что

$$y^{(n)} = \frac{d^n y}{dx^n},$$

т. е. производная n-го порядка функции y=f(x) равна отношению дифференциала n-го порядка этой функции к n-й степени дифференциала независимого переменного.

Из формулы (22) следует, что

$$d^n x = 0$$
 при $n > 1$,

т. е. дифференциал n-го порядка независимого переменного при $n\geqslant 2$ равен нулю.

Основные теоремы для дифференцируемых функций

1. Локальный экстремум и теорема Ферма. Пусть существует число $\delta > 0$ такое, что функция f(x) определена в δ -окрестности точки x_0 , т. е. на множестве $U_\delta(x_0) = (x_0 - \delta, x_0 + \delta)$, и пусть для всех $x \in U_\delta(x_0)$ выполняется неравенство

$$f(x) \geqslant f(x_0). \tag{1}$$

Тогда говорят, что функция f(x) имеет в точке x_0 локальный минимум.

Аналогично, если существует число $\delta > 0$ такое, что для всех $x \in U_{\delta}(x_0)$ выполняется неравенство

$$f(x) \leqslant f(x_0),\tag{2}$$

то говорят, что функция f(x) имеет в точке x_0 локальный максимум. Локальный минимум и локальный максимум объединяются общим термином локальный экстремум. Функция y = f(x), график ко-

Рис. 17.1

Рис. 17.2

торой изображен на рис. 17.1, имеет локальные экстремумы в точках $x_1 = 1, x_2 = 3, x_3 = 4,$ а именно минимумы при x = 1 и x = 4 и максимум при x = 3.

Tеорема 1 (Ферма). Если функция f(x) имеет локальный экстремум в точке x_0 и дифференцируема в этой точке, то

$$f'(x_0) = 0. (3)$$

О Пусть, например, функция f(x) имеет локальный минимум в точке x_0 . Тогда в силу (1) для всех $x \in (x_0 - \delta, x_0 + \delta)$ выполняется неравенство

$$f(x) - f(x_0) \geqslant 0. \tag{4}$$

Если $x \in (x_0 - \delta, x_0)$, то $x - x_0 < 0$, и из условия (4) следует, что

$$\frac{f(x) - f(x_0)}{x - x_0} \leqslant 0,\tag{5}$$

а если $x \in (x_0, x_0 + \delta)$, то выполняется неравенство

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0. \tag{6}$$

Так как функция f дифференцируема в точке x_0 , то существует предел при $x \to x_0$ в левой части неравенства (5), равный $f'_-(x_0) = f'(x_0)$. По свойствам пределов из (5) следует, что

$$f'(x_0) \leqslant 0. \tag{7}$$

Аналогично, переходя к пределу в неравенстве (6), получаем

$$f'(x_0) \geqslant 0. \tag{8}$$

Из неравенств (7) и (8) следует, что $f'(x_0) = 0$. •

Замечание 1. Теорема Ферма имеет простой геометрический смысл: касательная к графику функции y = f(x) в точке локального экстремума $(x_0, f(x_0))$ параллельна оси абсцисс (рис. 17.2).

2. Теорема Ролля о нулях производной.

Теорема 2 (Ролля). Если функция f(x) непрерывна на отрезке [a,b], принимает в концах этого отрезка равные значения, т. е.

$$f(a) = f(b), (9)$$

u дифференцируема на интервале (a,b), то существует точка $\xi \in (a,b)$ такая, что

$$f'(\xi) = 0. \tag{10}$$

Теорему Ролля можно кратко сформулировать так: между двумя точками, в которых дифференцируемая функция принимает равные значения, найдется хотя бы один нуль производной этой функции. Для случая f(a) = f(b) = 0 теорема формулируется еще короче: между двумя нулями дифференцируемой функции лежит хотя бы один нуль ее производной.

Замечание 2. Геометрический смысл теоремы Ролля: при условиях теоремы 2 существует значение $\xi \in (a,b)$ такое, что касательная к графику функции y=f(x) в точке $(\xi,f(\xi))$ параллельна оси Ox (рис. 17.3).

3. Формула конечных приращений Лагранжа.

Tеорема 3 (Лагранжа). Если функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то в этом интервале найдется хотя бы одна точка ξ такая, что

$$f(b) - f(a) = f'(\xi)(b - a). \tag{11}$$

Рассмотрим функцию

$$\varphi(x) = f(x) + \lambda x,$$

где число λ выберем таким, чтобы выполнялось условие $\varphi(a)=\varphi(b)$, т. е. $f(a)+\lambda a=f(b)+\lambda b$. Отсюда находим

$$\lambda = -\frac{f(b) - f(a)}{b - a}.\tag{12}$$

Так как функция $\varphi(x)$ непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и принимает равные значения в концах этого интервала, то по теореме Ролля существует точка $\xi \in (a,b)$ такая, что $\varphi'(\xi) = f'(\xi) + \lambda = 0$. Отсюда в силу условия (12) получаем равенство

$$f'(\xi) = \frac{f(b) - f(a)}{b - a},\tag{13}$$

равносильное равенству (11). ●

Замечание 4. Правая часть формулы (13) равна угловому коэффициенту секущей, которая проходит через точки A(a,f(a)) и B(b,f(b)) графика функции y=f(x), а левая часть этой формулы равна угловому коэффициенту касательной к графику в точке $(\xi,f(\xi))$. Поэтому теорема Лагранжа имеет следующую геометрическую интерпретацию: существует значение $\xi \in (a,b)$ такое, что касательная к графику функции y=f(x)

Рис. 17.7

в точке $(\xi, f(\xi))$ параллельна секущей (рис. 17.7), соединяющей точки A(a, f(a)) и B(b, f(b)).

Пример 1. Доказать, что

$$ln(1+x) < x \quad \text{при} \quad x > 0, \tag{17}$$

$$|\arctan x_2 - \arctan x_1| \le |x_2 - x_1|, \quad x_1 \in R, \quad x_2 \in R.$$
 (18)

 Δ а) Применяя теорему Лагранжа к функции $f(x) = \ln(1+x)$ на отрезке [0,x], где x>0, получаем $\ln(1+x)=\frac{1}{1+\xi}x$, откуда следует неравенство (17), так как $0<\xi< x$.

б) По теореме Лагранжа для функции $\arctan x$ на отрезке с концами x_1 и x_2 находим

$$\arctan x_2 - \arctan x_1 = \frac{1}{1+\xi^2}(x_2 - x_1),$$

откуда получаем $|\arctan x_2 - \arctan x_2| = \frac{|x_2 - x_1|}{1 + \xi^2} \leqslant |x_2 - x_1|$, так как $0 < \frac{1}{1 + \xi^2} \leqslant 1$. \blacktriangle

Полагая в соотношении (18) $x_2 = x$, $x_1 = 0$, получаем

$$|\operatorname{arctg} x| \le |x|, \quad x \in R,$$
 (19)

4. Некоторые следствия из теоремы Лагранжа.

Следствие 1. Если функция f(x) дифференцируема на интервале (a,b) и f'(x)=0 для всех $x\in (a,b)$, то

$$f(x) = C = \text{const}, \quad x \in (a, b).$$

О Пусть x_0 — фиксированная точка интервала (a,b), x — любая точка этого интервала. Применяя теорему Лагранжа к функции f(x) на отрезке с концами x_0 и x, получаем

$$f(x) - f(x_0) = (x - x_0)f'(\xi),$$

где $\xi \in (a,b), f'(\xi) = 0$, откуда $f(x) = f(x_0) = C$. \bullet

Следствие 2. Если функция f(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и для всех $x \in (a,b)$ выполняется равенство f'(x) = k, где k — постоянная, то

$$f(x) = kx + B, \quad x \in [a, b],$$

т. е. f — линейная функция.

О Применяя теорему Лагранжа к функции f на отрезке [a,x], где $a\leqslant x\leqslant b$, получаем f(x)-f(a)=k(x-a), откуда следует, что f(x)=kx+B, где B=f(a)-ka.

Следствие 3. Пусть функция f(x) дифференцируема на интервале (a,b), за исключением, быть может, точки $x_0 \in (a,b)$, и непрерывна в точке x_0 . Тогда если существует конечный или бесконечный

$$\lim_{x \to x_0 - 0} f'(x) = A,\tag{21}$$

то в точке x_0 существует левая производная, причем

$$f'_{-}(x_0) = A. (22)$$

Аналогично, если существует

$$\lim_{x \to x_0 + 0} f'(x) = B,\tag{23}$$

mo

$$f'_{+}(x_0) = B. (24)$$

Следствие 4. Если функции φ и ψ дифференцируемы при $x \geqslant x_0$ и удовлетворяют условиям $\varphi(x_0) = \psi(x_0), \ \varphi'(x) > \psi'(x)$ при $x > x_0,$ то $\varphi(x) > \psi(x)$ при $x > x_0$.

О Применяя теорему Лагранжа к функции $f(x) = \varphi(x) - \psi(x)$ на отрезке $[x_0, x]$, где $x > x_0$, получаем $f(x) = f'(\xi)(x - x_0)$, так как $f(x_0) = 0$. Отсюда, учитывая, что

$$\xi > x_0, \quad f'(\xi) = \varphi'(\xi) - \psi'(\xi) > 0,$$

получаем f(x) > 0, т. е. $\varphi(x) > \psi(x)$ при $x > x_0$. •

5. Обобщенная формула конечных приращений (формула Коши).

Теорема 4. Если функции f(x) и g(x) непрерывны на отрезке [a,b], дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ во всех точках этого интервала, то найдется хотя бы одна точка $\xi \in (a,b)$ такая, что

 $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$ (28)

О Рассмотрим функцию

$$\varphi(x) = f(x) + \lambda g(x),$$

где число λ выберем таким, чтобы выполнялось равенство $\varphi(a) = \varphi(b)$, которое равносильно следующему:

$$f(b) - f(a) + \lambda(g(b) - g(a)) = 0.$$
(29)

Заметим, что $g(b) \neq g(a)$, так как в противном случае согласно теореме Ролля существовала бы точка $c \in (a,b)$ такая, что g'(c) = 0 вопреки условиям теоремы 4. Итак, $g(b) - g(a) \neq 0$, и из равенства (29) следует, что

$$\lambda = -\frac{f(b) - f(a)}{g(b) - g(a)}.\tag{30}$$

Так как функция φ при любом λ непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), а при значении λ , определяемом формулой (30), принимает равные значения в точках a и b, то по теореме Ролля существует точка $\xi \in (a,b)$ такая, что $\varphi'(\xi) = 0$, т. е.

 $f'(\xi) + \lambda g'(\xi) = 0$, откуда $\frac{f'(\xi)}{g'(\xi)} = -\lambda$. Из этого равенства и формулы (30) следует утверждение (28). ullet

Замечание 6. Теорема Лагранжа — частный случай теоремы Коши (g(x)=x).