3.3.4. Эффект Холла в полупроводниках.

Толстикова М.С. Группа Б04-205

21 сентября 2023 г.

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник питания (1,5 В), образцы легированного германия.

1 1. Теоритические сведения.

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e- абсолютный заряд электрона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_A = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la$$
,

найдем ЭДС Холла:

$$\mathscr{E}_X = U_A = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок, b_e b_p - их подвижности.

2. Экспериментальная установка.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 2a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 26), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathcal{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} \pm U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{2}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

3. Ход работы.

$$a = 1 \text{ mm}; l_{3,5} = 5 \text{ mm}; l = 4 \text{ mm}; SN = 75$$

3.1. Расчет индукции магнитного поля.

Калибровочный график электромагнита.

3.2. Измерение ЭДС Холла.

Для разных I через образец снимем зав-ть ЭДС Холла от тока $I_{\scriptscriptstyle \rm M}$ через электромагнит:

I = 0.3 mA		I = 0.4 mA		I = 0.5 mA		I = 0.6 mA		I = 0.7 mA	
Im, A	U34, mV								
0	0,004	0	0,005	0	0,005	0	0,007	0	0,007
0,15	0,036	0,15	0,047	0,15	0,06	0,15	0,072	0,15	0,089
0,3	0,07	0,3	0,093	0,3	0,116	0,3	0,14	0,3	0,174
0,5	0,116	0,5	0,154	0,5	0,193	0,5	0,231	0,5	0,281
0,7	0,158	0,7	0,21	0,7	0,264	0,7	0,319	0,7	0,382
0,85	0,186	0,85	0,247	0,85	0,309	0,85	0,371	0,85	0,45
1	0,207	1	0,277	1	0,346	1	0,417	1	0,495
1,2	0,227	1,2	0,305	1,2	0,382	1,2	0,458	1,2	0,54
1,38	0,241	1,38	0,324	1,37	0,404	1,36	0,484	1,36	0,564

I=0.8mA		I=0.9mA		I=1mA	L	$I_{flip} = 1 \text{mA}$		
Im, A	U34, mV	Im, A	U34, mV	Im, A	U34, mV	Im, A	U34, mV	
0	0,008	0	0,009	0	0,01	0	-0,012	
0,15	0,094	0,15	0,116	0,15	0,118	0,15	-0,122	
0,3	0,186	0,3	0,222	0,3	0,228	0,3	-0,234	
0,5	0,308	0,5	0,366	0,5	0,386	0,5	-0,385	
0,7	0,421	0,7	0,49	0,7	0,529	0,7	-0,528	
0,85	0,496	0,85	0,574	0,85	0,622	0,85	-0,628	
1	0,554	1	0,637	1	0,696	1	-0,695	
1,2	0,608	1,2	0,695	1,2	0,766	1,2	-0,766	
1,35	0,641	1,35	0,725	1,35	0,804	1,34	-0,805	

Последнее измерение было произведено при изменённой ориентации образца. Теперь вычислим значение $\mathcal{E}_x = U_{34} - U_0$ и сопоставим токи в электромагните с соответствующими значениями индукции магнитного поля. Полученные результаты занесём в таблицу:

I=0,3 мА		I=0,4 м A		I=0,5 м A		I=0,6 м A		I=0,7 м A	
В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
154,3	0,032	154,3	0,042	154,3	0,055	154,3	0,065	154,3	0,082
300,6	0,066	300,6	0,088	300,6	0,111	300,6	0,133	300,6	0,167
509,3	0,112	509,3	0,149	509,3	0,188	509,3	0,224	509,3	0,274
696,1	0,154	696,1	0,205	696,1	0,259	696,1	0,312	696,1	0,375
806,5	0,182	806,5	0,242	806,5	0,304	806,5	0,364	806,5	0,443
889,2	0,203	889,2	0,272	889,2	0,341	889,2	0,41	889,2	0,488
963,4	0,223	963,4	0,3	963,4	0,377	963,4	0,451	963,4	0,533
1011	0,237	1011	0,319	1008	0,399	1006	0,477	1006	0,557

I=0,8 мА		I=0,9 мл	4	I=1 мА		I_{flip} $=1$ мА		
В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	
154,3	0,086	154,3	0,107	154,3	0,108	154,3	-0,11	
300,6	0,178	300,6	0,213	300,6	0,218	300,6	-0,222	
509,3	0,3	509,3	0,357	509,3	0,376	509,3	-0,373	
696,1	0,413	696,1	0,481	696,1	0,519	696,1	-0,516	
806,5	0,488	806,5	0,565	806,5	0,612	806,5	-0,616	
889,2	0,546	889,2	0,628	889,2	0,686	889,2	-0,683	
963,4	0,6	963,4	0,686	963,4	0,756	963,4	-0,754	
1004	0,633	1004	0,716	1004	0,794	1004	-0,793	

Аппроксимируем полученные данные зависимостями вида $\mathcal{E}_x = K(I)B + c$ методом наименьших квадратов. Результаты аппроксимации заносим в таблицу.

І, мА	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$k * 10^{-3}, \mathrm{B/Tл}$	0,237	0,319	0,399	0,478	0,555	0,636	0,712	0,805
$\sigma * 10^{-3}, \text{B/T}_{\text{Л}}$	0,004	0,006	0,007	0,008	0,005	0,011	0,007	0,012

Графики зависимости $\mathcal{E}_x(B)$.

График зависимости k(I).

Апроксимируем полученные данные зависимостью k=pI с помощью MHK:

$$p = (797 \pm 5) * 10^{-3} \frac{\mathrm{B}}{\mathrm{Tu} \cdot \mathrm{A}}$$

Определим постоянную Холла:

$$R_H = pa = (797 \pm 5) * 10^{-6} \frac{B \cdot M}{T_{\text{JI}} \cdot A}$$

Определим концентрацию носителей заряда:

$$n = \frac{1}{R_H e} = (784 \pm 5) \cdot 10^{19} \text{ M}^{-3}$$

3.3. Расчёт удельной проводимости и подвижности

Нассчитаем удельную проводимость нашего образца. По результатам измерений $U_{35}=4,105~\mathrm{mB},\,l_{3.5}=5~\mathrm{mm};\,l=4~\mathrm{mm};\,I=(1\pm0,01)~\mathrm{mA}.$ В итоге получаем:

$$\sigma = \frac{IL_{35}}{U_{35}al} = (304 \pm 3) \ (\text{Om} \cdot \text{m})^{-1}$$

Теперь, зная эти характеристики, можно рассчитать подвижность носителей заряда по следующей формуле:

$$\mu = \frac{\sigma}{en} = 2420 \pm 30 \, \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

4. Вывод

В ходе выполнения данной лабораторной работы был исследован эффект Холла в полупроводнике, а именно в легированном германии. Была определена постоянная Холла для исследуемого образца $R_x = (797 \pm 5) \cdot 10^{-6} \text{ см}^{-3}/\text{Кл}$. Также была вычислена концентрация носителей заряда $n = (784 \pm 5) \cdot 10^{19} \text{ м}^{-3}$.

По полярности вольтметра, полярности подключения источника тока и направлению тока в катушках была определён тип проводимости. Тип проводимости оказался электронным.

Также была вычислена подвижность электронов в германии $\mu = (2420 \pm 29) \text{ см}^2/\text{B} \cdot \text{c}$. Однако полученный результат отличается от табличной подвижности электронов в германии $b_0 = 3900 \text{ см}^2/\text{B} \cdot \text{c}$. Это может свидетельствовать о наличие примесей исследуемом образце.

Также ощутимый вклад в ошибку полученных данных может внести зависимость характеристик исследуемого образца от температуры, которая могла значительно изменяться в силу прохождения через образец электрического тока.