Théorie des groupes

Cours par Frédéric Touzet

Leothaud Dylan

Chapitre 1

Notion de base.

1.1 Groupes

Définition 1.1.1 (Loi de composition interne.). Soit E un ensemble.

Une loi de composition interne est une application \star : $\begin{tabular}{ll} E imes E & \to & E \\ (x,y) & \mapsto & x \star y \end{tabular}$

On dit de plus que \star est associative si :

$$\forall (x, y, z) \in E^3, (x \star y) \star z = x \star (y \star z).$$

Remarque 1.1.2. Si la loi * est associative, l'usage des parenthèses est facultative. En effet, pour $(x,y,z) \in E^3$, $x \star y \star z = (x \star y) \star z = x \star (y \star z)$ est définie sans ambiguité. De plus, pour $n \in \mathbb{N}^*$, on définie $x^n = \begin{cases} x & \text{si } n = 1 \\ x \star x^{n-1} & \text{sinon} \end{cases}$.

De plus, pour
$$n \in \mathbb{N}^*$$
, on définie $x^n = \begin{cases} x & \text{si } n = 1 \\ x \star x^{n-1} & \text{sinon} \end{cases}$

Définition 1.1.3 (Groupe). Soit G un ensemble et \star une loi de composition interne associative sur G telle que :

- $\bullet \exists e \in G, \forall x \in G, x \star e = e \star x = x$
- $\forall x \in G, \exists y \in G, x \star y = y \star x = e$

On dit alors que (G, \star) est un groupe.

Si de plus $\forall (x,y) \in G^2, x \star y = y \star x$, on dit alors que (G,\star) est un groupe abélien (ou commutatif).

On dit que l'élément e est le neutre pour \star et pour tout $x \in G$, l'élément $y \in G$ tel que $x \star y = y \star x = e$ est appelé inverse de x.

Remarque 1.1.4. L'élément neutre et l'inverse des éléments sont définis de manière unique.

Proposition 1.1.5. Dans un groupe (G, \star) , tous les éléments sont simplifiable à gauche (resp. à droite), c'est-à-dire :

$$\forall (x, y, z) \in G^3, \left\{ \begin{array}{l} x \star y = x \star z \Rightarrow y = z \\ y \star x = z \star x \Rightarrow y = z \end{array} \right.$$

1.2 Morphisme

Définition 1.2.1. Soit (G, \cdot) et (H, \star) deux groupes et $\varphi : G \to H$. On dit que φ est un morphisme (de groupe) si :

$$\forall (x,y) \in G^2, \varphi(x \cdot y) = \varphi(x) \star \varphi(y)$$

Proposition 1.2.2. Soit (G,\cdot) et (H,\star) des groupes et $\varphi:G\to H$ un morphisme. Alors :

- 1. $\varphi(1_G) = 1_H$.
- 2. $si \varphi$ est bijective, alors $\varphi^{-1}: H \to G$ est un morphisme.

Définition 1.2.3. Soit (G,\cdot) et (H,\star) deux groupes et $\varphi:G\to H$. On dit que φ est un isomorphisme si φ est un morphisme de groupe bijectif. De plus, si G=H, on dit que φ est un automorphisme. On note, Aut(G) l'ensemble des isomorphismes de G.

Proposition 1.2.4. Soit (G, \star) un groupe.

Alors $(Aut(G), \circ)$ est un groupe de neutre $I_d: \longrightarrow$