Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Дисциплина «Безопасность жизнедеятельности»

Домашнее задание «Искусственное освещение»

Вариант 12

Выполнил: студент 4 курса, гр. ИУ7-71 Покасова Анастасия

Проверил: Татаринов В.В.

Задание варианта

Характеристики помещения:

Тип помещения — механический цех, металлорежущие станки;

Габариты помещения, м (Д х Ш х В) 12х6х;

Характеристика зрительных работ:

Вид работ – чертеж;

Размер объекта, мм - 0.5;

Цвет объекта – черный;

Цвет фона – белый.

1. Расчет общего искусственного освещения

1.1 Выбор источника света

В качестве источника света выбираем люминесцентные лампы, так как они более экономичны и обладают более благоприятной цветностью излучения по сравнению с аналогами. Кроме того, они рекомендуются для использования в помещениях с недостаточным естественным освещением, к которым в некоторых случаях можно отнести участи прецизионного станка.

1.2 Выбор осветительных приборов

В механическом цехе повышенная запыленность, поэтому выбираем светильники серии ПВЛ-1. *Светильники типа ПВЛ* являются *подвесными*, рассеянного света, пылевлагозащищенными.

Рис. 1. Светильники для люминесцентных ламп типов ПВЛ-1

1.3 Определение размещения осветительных приборов

Высоту промышленного помещения с прецизионными станками в расчетах примем равной H = 4 м. Высота рабочей поверхности от пола составляет H1 = 1 м. Расстояние от потолка до подвешенного светильника примем равной 0.55 м (см Рис. 1). Следовательно, высота подвеса светильника над рабочей областью равна h = 4 - 1 - 0.6 = 2.4 м.

Рис. 2. Схема цеха

Из таблиц получаем значение наивыгоднейшего светотехнического относительного расстояния между светильниками $\lambda c = 1,5$. Отсюда можем определить расстояние между лампами и расстояние от ламп до стен помещения:

$$L = \lambda c * h = 1,5 * 2,4 \approx 3.6 \text{ m. L/3} \approx 1,2 \text{ m.}$$

В каждом ряду предусматривается установка четырех светильников с двумя лампами мощностью 40 Вт в каждом.

1.4 Определение нормированной освещенности Ен

Цвет объекта — черный, цвет фона — белый. Следовательно, контраст определяется как «высокий», а фон - «светлый». Исходя из размеров объекта — 0,5 мм в соответствии с Таблицей 7 из Методических рекомендаций определяем следующие характеристики:

•характеристика зрительной работы — высокой точности;

- •разряд работ III;
- •подразряд работ г;
- • $E_H = 200 \text{ лк}$.

Нормированную освещенность в соответствии с заданием определяем только для общего освещения.

1.5 Расчет светового потока лампы Фл по методу коэффициента использования светового потока.

1.5.1 Выбор коэффициентов к и Z

Из таблиц определяем коэффициент запаса (k) для прецизионного оборудования: k=1,5. Отношение средней освещенности к минимальной принимаем равной Z=1,1.

1.5.2 Определение коэффициента использования светового потока п

Выбираем значения для коэффициентов отражения потолка $\rho n = 50\%$ и стен $\rho c = 30\%$. Индекс помещения рассчитывается по формуле:

$$i = \frac{A \cdot B}{H_n(A+B)}$$
,

где A и B — соответственно длина и ширина помещения, м; Нп — высота подвеса светильников, м. Таким образом, $i=(12*6)/(2,4*(12+6)\approx 1,7$. По соответствующей таблице выбираем коэффициент использования светового потока $\eta=31\%$.

1.5.3 Расчет светового потока лампы

Световой поток лампы в люменах определяется по следующей формуле:

$$\Phi = \frac{E H \cdot S \cdot k \cdot Z}{\eta \cdot N \cdot n} ,$$

где Ен — выбранная нормируемая освещенность, лк;

S – площадь помещения, M^2 ;

k – коэффициент запаса;

Z – отношение средней освещенности к минимальной;

N – число светильников;

n – число ламп в светильниках;

η – коэффициент использования светового потока.

В соответствии с формулой получим: Φ =200*12*6*1,5*1,1/(0,36*8*2) = 4125 лм.

1.5.4 Расчет суммарной мощности и Етіп.

Наиболее подходит к рассчитанному значению светового потока лампа ЛД80 со световым потоком 4070 лм. Фактическое значение минимальной освещенности рабочей поверхности с учетом выбранной лампы определяется по формуле:

$$Emin = \frac{E \cdot F \epsilon \cup \delta p a + h \cup \delta}{F p a c \cdot e m + b \cup \delta}$$
,

где Гвыбранный — световой поток выбранной лампы, Грасчетный — рассчитанный световой поток.

Таким образом получим: Emin = $200 * 4070/4125 \approx 197$ лк.

Суммарная мощность ламп равна: Pсум = N * P = 16 * 40 = 640 Bт.

Отклонение $\Delta \epsilon \Delta \epsilon_E$ вычисляется по формуле:

$$\frac{\dot{c} \vee E_H - E\phi \vee \dot{c}}{\dot{c} E_H > \dot{c} \dot{c}} * 100\%$$

$$E_{\varphi} = (N * \eta * \Phi_{\pi}) / (S * k * Z) = (8 * 0.36 * 4125) / (72 * 1.5 * 1.1) = 100 \text{ JK}.$$

Отклонение не выходит за пределы допустимой погрешности для E_{φ} , следовательно, расчет выполнен верно.