AKalmanLibrary

1.0

Generated by Doxygen 1.8.15

Contents

Index

1	Clas	s Index			1
	1.1	Class L	ist		1
2	Clas	s Docui	mentation	1	3
	2.1	ROUK	F Class Re	eference	3
		2.1.1	Detailed	Description	4
		2.1.2	Member	Enumeration Documentation	4
			2.1.2.1	PARAM_TYPE	4
		2.1.3	Construc	ctor & Destructor Documentation	4
			2.1.3.1	ROUKF()	4
		2.1.4	Member	Function Documentation	5
			2.1.4.1	executeStep()	5
			2.1.4.2	executeStepParallel()	5
			2.1.4.3	getParametersStd()	6
			2.1.4.4	reset()	6
			2.1.4.5	toString()	6
	2.2	Sigmal	PointsGen	erator Class Reference	7
		2.2.1	Detailed	Description	7
		2.2.2	Member	Function Documentation	7
			2.2.2.1	canonicSigmaPoints()	7
			2.2.2.2	generateSigmaPoints()	7
			2.2.2.3	simplexSigmaPoints()	8
			2.2.2.4	starSigmaPoints()	8
	2.3	StaticR	OUKF Cla	ass Reference	8
		2.3.1	Construc	ctor & Destructor Documentation	8
			2.3.1.1	StaticROUKF()	9
		2.3.2	Member	Function Documentation	9
			2.3.2.1	executeStep()	9
			2.3.2.2	executeStepParallel()	9
			2.3.2.3	setParameters()	9
			2.3.2.4	toString()	10

11

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ROUKF
SigmaPointsGenerator
StaticROUKF

2 Class Index

Chapter 2

Class Documentation

2.1 ROUKF Class Reference

```
#include <ROUKF.h>
```

Public Types

• enum PARAM_TYPE { DEFAULT, POSITIVE, RANGED_LOG_DIST, RANGED_NORMAL_DIST }

Public Member Functions

- ROUKF (int nObservations, int nStates, int nParameters, double *statesUncertainty, double *parameters
 — Uncertainty, SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution)
- double executeStep (double *Zkhatc, forwardOp A, observationOp H)
- double executeStepParallel (double *Zkhatc, forwardOp A, observationOp H, int seed, MPI_Comm local_

 comm, MPI_Comm masters_comm)
- void reset (int nObservations, int nStates, int nParameters, double *statesUncertainty, double *parameters
 — Uncertainty, SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution)
- void toString ()
- void getState (double **XC)
- void setState (double *XC)
- void getParameters (double **ThetaC)
- void setParameters (double *ThetaC)
- vector< double > getParametersStd ()
- void getError (double **err)
- · double getObsError (int numObservation)
- int getObservations () const
- int getStates () const

2.1.1 Detailed Description

Implementation of the ROUKF.

Usage:

```
int (ptA)(double, int) = NULL; void (ptH)(double, int, double*, int) = NULL; ptA = ptH =
```

Initialization parameters for (int i = 0; i < nParameters; i++) { initialGuess[i] = 2.5E5; // -> X0 parameters \leftarrow Uncertainties[i] =1E8; // -> U0 $^{-1}$ } ROUKF *kalmanInstance = new ROUKF(nStates, nParameters, states \leftarrow Uncertainties, parametersUncertainties);

Set initial condition kalmanInstance->setState(initialGuess, nParameters);

```
for (int it = 0; it < 3000; it++) { error = kalmanInstance->executeStep(observation, nStates, ptA, ptH); }
```

Get the Kalman estimation kalmanInstance->getState(&sol); // -> XSol Class that implements the reduced order unscented Kalman filter.

2.1.2 Member Enumeration Documentation

2.1.2.1 PARAM_TYPE

```
enum ROUKF::PARAM_TYPE
```

Not implemented yet.

2.1.3 Constructor & Destructor Documentation

2.1.3.1 ROUKF()

```
ROUKF::ROUKF (
    int nObservations,
    int nStates,
    int nParameters,
    double * statesUncertainty,
    double * parametersUncertainty,
    SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution )
```

Creates the covariance matrixes and sigma points associated with the extended vector X and their uncertainty.

Parameters

nObservations	Quantity of observations.	
nStates	Quantity of states.	
nParameters	Quantity of parameters.	
statesUncertainty	Vector with the uncertainty of each state in X.	Generated by Doxygen
parametersUncertainty	Vector with the uncertainty of each parameter in Theta.	

2.1.4 Member Function Documentation

2.1.4.1 executeStep()

Performs one step of the Kalman filtering process in serial execution of the sigma points.

Parameters

Zkhatc	Current observations estimations.
Α	Forward operator.
Н	Observation operator;

Returns

Current L2 norm of the errors across all observations.

2.1.4.2 executeStepParallel()

Performs one step of the Kalman filtering process with parallel execution of the sigma points.

Parameters

Zkhatc	Current observations estimations.
Α	Forward operator.
Н	Observation operator;
seed	Sigma point ID for the current MPI process.
local_comm	Communicator of all MPI processes that solve the sigma point seed.
masters_comm	Communicator of the master MPI processes of each sigma point seed.

Returns

Current L2 norm of the errors across all observations.

2.1.4.3 getParametersStd()

```
vector< double > ROUKF::getParametersStd ( )
```

Returns a vector with the standard variation of each parameter at the current iteration.

Returns

Vector with the standard variation of each parameter at the current iteration.

2.1.4.4 reset()

```
void ROUKF::reset (
    int nObservations,
    int nStates,
    int nParameters,
    double * statesUncertainty,
    double * parametersUncertainty,
    SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution )
```

Returns to the initial state of the kalman filter. Not fully tested

Parameters

nObservations	Quantity of observations.
nStates	Quantity of states.
nParameters	Quantity of parameters.
statesUncertainty	Vector with the uncertainty of each state in X.
parametersUncertainty	Vector with the uncertainty of each parameter in Theta.
sigmaDistribution	Type of sigmas applied to assess the unscented transform. Only SIMPLEX is available by now.

2.1.4.5 toString()

```
void ROUKF::toString ( )
```

Prints the private attributes of the ROUKF instance.

The documentation for this class was generated from the following files:

- ROUKF.h
- ROUKF.cpp

2.2 SigmaPointsGenerator Class Reference

```
#include <SigmaPointsGenerator.h>
```

Public Types

enum SIGMA_DISTRIBUTION { SIMPLEX, CANONIC, STAR, SIMPLEX_STAR }

Static Public Member Functions

• static void generateSigmaPoints (int nParameters, SIGMA DISTRIBUTION distribution, arma::mat *sigma)

Static Protected Member Functions

- static void canonicSigmaPoints (int nParameters, arma::mat *sigma)
- static void simplexSigmaPoints (int nParameters, arma::mat *sigma)
- static void starSigmaPoints (int nParameters, arma::mat *sigma)
- static void simplexStarSigmaPoints (int nParameters, arma::mat *sigma)

2.2.1 Detailed Description

Static class which generates different distributions of sigma points.

2.2.2 Member Function Documentation

2.2.2.1 canonicSigmaPoints()

Generates the canonical sigma points distribution which contains symmetric independent perturbations of the parameters.

2.2.2.2 generateSigmaPoints()

```
void SigmaPointsGenerator::generateSigmaPoints (
    int nParameters,
    SIGMA_DISTRIBUTION distribution,
    arma::mat * sigma ) [static]
```

Switch function that invokes the appropriate function for the sigma points generation.

2.2.2.3 simplexSigmaPoints()

Generates the simplex sigma points distribution which allows a full parameters space search with minimum amount of sigma points.

2.2.2.4 starSigmaPoints()

Generates the star sigma points distribution, with the same canonic distribution properties although it increase a sigma point which is the distribution centroid (this implies no perturbation at all).

The documentation for this class was generated from the following files:

- · SigmaPointsGenerator.h
- · SigmaPointsGenerator.cpp

2.3 StaticROUKF Class Reference

Public Types

enum PARAM_TYPE { DEFAULT, POSITIVE, RANGED_LOG_DIST, RANGED_NORMAL_DIST }

Public Member Functions

- StaticROUKF (int nObservations, int nStates, int nParameters, double *statesUncertainty, double *parametersUncertainty, SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution)
- double executeStep (double *Zkhatc, forwardOp A, observationOp H)
- void **reset** (int nObservations, int nStates, int nParameters, double ∗statesUncertainty, double ∗parameters ∪ Uncertainty, SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution)
- void getParameters (double **ThetaC)
- void setParameters (double *ThetaC)
- vector< double > getParametersStd ()
- void getError (double **err)
- double getObsError (int numObservation)
- void toString ()
- int getObservations () const
- int getStates () const

2.3.1 Constructor & Destructor Documentation

2.3.1.1 StaticROUKF()

```
StaticROUKF::StaticROUKF (
        int nObservations,
        int nStates,
        int nParameters,
        double * observationsUncertainty,
        double * parametersUncertainty,
        SigmaPointsGenerator::SIGMA_DISTRIBUTION sigmaDistribution )
```

Creates the covariance matrixes and sigma points associated with the extended vector X and their uncertainty.

2.3.2 Member Function Documentation

2.3.2.1 executeStep()

Executes one step of the ROUKF updating X, U, L according to the given measurement zkhatc, assuming an observation variance according to Wi $^{-1}$.

Forward and observation operators are arguments of the function.

The method return the 2-norm error according to the observations.

2.3.2.2 executeStepParallel()

MPI Parallel version of ROUKF with one communicator per sigma point sigmaPoint: the sigma point that the current thread must process. world_comm: is the MPI_Comm of the group of all threads that share data in the optimization process. sigmaMasters_comm: is the MPI_Comm with the 0 rank process of the local_comm (each one of them process a different sigma point).

2.3.2.3 setParameters()

Sets the current state of the filter. Once executeStep is executed the state automatically updates.

2.3.2.4 toString()

```
void StaticROUKF::toString ( )
```

Prints the atributes of the ROUKF object.

The documentation for this class was generated from the following files:

- StaticROUKF.h
- StaticROUKF.cpp

Index

```
canonicSigmaPoints
    SigmaPointsGenerator, 7
executeStep
    ROUKF, 5
    StaticROUKF, 9
executeStepParallel
    ROUKF, 5
    StaticROUKF, 9
generateSigmaPoints
    SigmaPointsGenerator, 7
getParametersStd
    ROUKF, 6
PARAM TYPE
    ROUKF, 4
ROUKF, 3
    executeStep, 5
    executeStepParallel, 5
    getParametersStd, 6
    PARAM_TYPE, 4
    ROUKF, 4
    reset, 6
    toString, 6
reset
    ROUKF, 6
setParameters
    StaticROUKF, 9
SigmaPointsGenerator, 7
    canonicSigmaPoints, 7
    generateSigmaPoints, 7
    simplexSigmaPoints, 7
    starSigmaPoints, 8
simplexSigmaPoints
    SigmaPointsGenerator, 7
starSigmaPoints
    SigmaPointsGenerator, 8
StaticROUKF, 8
    executeStep, 9
    executeStepParallel, 9
    setParameters, 9
    StaticROUKF, 8
    toString, 9
toString
    ROUKF, 6
    StaticROUKF, 9
```