

数学模型与数学建模之

聚类分析之 系统聚类法及其SPSS实现

于晶贤

E-mail: yujingxian@126.com

主要内容:

- 1. 样品与样品间的距离
- 2. 指标和指标间的"距离"
- 3. 类与类间的距离
- 4. 常用系统聚类法
- 5. 例子

聚类分析(物以类聚,人以群分)

引例1 下表是30个学生的六门课的成绩。根据这30个人的成绩,对这30个学生进行分类。

序号	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57
28	77	90	85	68	73	76
29	91	82	84	54	62	60
30	78	84	100	51	60	60

引例2 下表是30个学生的六门课的成绩。根据这30个人的成绩,将六门课程分为两类。

序号	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57
28	77	90	85	68	73	76
29	91	82	84	54	62	60
30	78	84	100	51	60	60

引例3 下表是中国大陆地区31个省级行政区域的月人均消费数据(单位:元),请根据消费水平对这31个省级行政区域进行分类。

城市	人均 粮食 支出	人均副 食支出	人均烟、 酒、饮 料支出	人均 衣着 支出	人均日 用杂品 支出	人均水 电燃料 支出	人均其他 非商品支 出
北京	21.3	124.89	35.43	93.01	20.58	43.97	433.73
天津	21.5	122.39	29.08	55.04	11.3	54.88	288.13
河北	18.25	90.21	24.45	62.48	7.45	47.5	178.84
青海	20.33	75.64	20.88	53.81	10.06	32.82	171.32
宁夏	19.75	70.24	18.67	61.75	10.08	40.26	165.22
新疆	21.03	78.55	14.35	64.98	9.83	33.87	161.67

如何分类

引例1中,如果只考虑数学成绩(取前十个学生的成绩来分析),可以将十个人的分数画在x轴上,然后把接近的点放入一类。

ID	数学
1	65
2	76
3	67
4	84
5	74
6	78
7	66
8	77
9	83
10	86

引例1中,如果考虑数学成绩和物理成绩 (取前十个学生的成绩来分析),可以 将十个人的两个分数看作是 *xoy* 平面上 的点,然后把接近的点分为一类。

ID	数学	物理
1	65	61
2	76	77
3	67	63
4	84	95
5	74	70
6	78	84
7	66	71
8	77	71
9	83	100
10	86	94

分类准则

距离近的样品聚为一类

数据的一般的格式

	指标 1 X ₁	指标 2 X ₂	•••	指标 j	•••	指标 p X_p
样品1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	X_{1j}	•••	x_{1p}
样品 2	x ₂₁	x_{22}	•••	x_{2j}	•••	x_{2p}
:	:	:	•••	:	•••	:
样品 <u>i</u>	x_{i1}	x_{i2}	•••	x_{ij}	•••	x_{ip}
÷	:	:	•••	:	•••	:
样品n	x_{n1}	x_{n2}	•••	X_{nj}	•••	x_{np}

样品与样品之间的常用距离(样品i与样品j)

绝对值距离:
$$d(\vec{x}_i, \vec{x}_j) = \sum_{k=1}^p |x_{ik} - x_{jk}|$$

欧氏距离:
$$d(\vec{x}_i, \vec{x}_j) = \sqrt{\sum_{k=1}^p (x_{ik} - x_{jk})^2}$$

Minkowski距离:
$$d(\vec{x}_i, \vec{x}_j) = \left[\sum_{k=1}^p (x_{ik} - x_{jk})^q\right]^{\frac{1}{q}}$$

Chebyshev距离:
$$d(\vec{x}_i, \vec{x}_j) = \max_{1 \le k \le p} |x_{ik} - x_{jk}|$$

马氏距离:
$$d(\vec{x}_i, \vec{x}_j) = (\vec{x}_i - \vec{x}_j)' \Sigma^{-1} (\vec{x}_i - \vec{x}_j)$$

其中:
$$\vec{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip})'$$
 $\vec{x}_j = (x_{j1}, x_{j2}, \dots, x_{jp})'$

Σ为样本的协方差矩阵

物理 数学 ID

绝对值距离:

$$d(\vec{x}_1, \vec{x}_2) = \sum_{k=1}^{p} |x_{1k} - x_{2k}| = 27$$

欧氏距离:

$$d(\vec{x}_1, \vec{x}_2) = \sqrt{\sum_{k=1}^{p} (x_{1k} - x_{2k})^2} = 19.416$$

Minkowski距离:

$$d(\vec{x}_1, \vec{x}_2) = \left[\sum_{k=1}^{p} (x_{1k} - x_{2k})^3\right]^{\frac{1}{3}} = 17.573$$

Chebyshev距离:

$$d(\vec{x}_1, \vec{x}_2) = \max_{1 \le k \le p} |x_{1k} - x_{2k}| = 16$$

马氏距离:

$$d(\vec{x}_1, \vec{x}_2) = (\vec{x}_1 - \vec{x}_2)' \Sigma^{-1} (\vec{x}_1 - \vec{x}_2) = 2.2305$$

指标与指标之间的常用"距离"(指标i与指标j)

相关系数:
$$\rho(X_i, X_j) = \frac{\sum_{k=1}^{p} (x_{ki} - \overline{x}_i)(x_{kj} - \overline{x}_j)}{\sqrt{\sum_{k=1}^{p} (x_{ki} - \overline{x}_i)^2 \sum_{k=1}^{p} (x_{kj} - \overline{x}_j)^2}}$$

夹角余弦:
$$r(X_i, X_j) = \frac{\sum_{k=1}^p x_{ki} x_{kj}}{\sqrt{\sum_{k=1}^p x_{ki}^2 \sum_{k=1}^p x_{kj}^2}}$$

序号	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57

相关系数:
$$\rho($$
数学,语文 $) = \frac{\sum_{k=1}^{p} (x_{ki} - \overline{x}_{i})(x_{kj} - \overline{x}_{j})}{\sqrt{\sum_{k=1}^{p} (x_{ki} - \overline{x}_{i})^{2} \sum_{k=1}^{p} (x_{kj} - \overline{x}_{j})^{2}}} = -0.663$

夹角余弦:
$$r(数学,语文) = \frac{\sum_{k=1}^{p} x_{ki} x_{kj}}{\sqrt{\sum_{k=1}^{p} x_{ki}^2 \sum_{k=1}^{p} x_{kj}^2}} = 0.983$$

类与类之间的常用距离

- 1.由一个样品组成的类是最基本的类;如果每一类都由一个样品组成,那么样品间的距离就是类间距离。
- 2.如果某一类包含不止一个样品,那么就要确定类间距 离,类间距离是基于样品间距离定义的,大致有如下几种 定义方式:

记号: G_p 和 G_q 是两个类, $D(G_p, G_q)$ 是这两个类的距离。 $\vec{x}_i \in G_p \quad \vec{x}_j \in G_q \quad d(\vec{x}_i, \vec{x}_j)$ 是这两个样品的距离。

最短距离法:

(Nearest Neighbor)

$$D(G_p, G_q) = \min d(\vec{x}_i, \vec{x}_j)$$

最长距离法:

(Furthest Neighbor)

$$D(G_p, G_q) = \max d(\vec{x}_i, \vec{x}_j)$$

组间平均连接法:

(Between-group Linkage)

$$D(G_p, G_q) = \frac{d_1 + d_2 + d_3 + d_4}{4}$$

组内平均连接法

(Within-group Linkage)

$$D(G_p, G_q) = \frac{d_1 + d_2 + d_3 + d_4 + d_5 + d_6}{6}$$

重心法:

(Centroid clustering)

$$D(G_p, G_q) = d(\overline{x}_p, \overline{x}_q)$$

两个类的重心如下:

$$\overline{x}_p = \frac{\vec{x}_{p1} + \vec{x}_{p2}}{2}$$
 $\overline{x}_q = \frac{\vec{x}_{q1} + \vec{x}_{q2}}{2}$

理学院 数学系

最短距离系统聚类法

根据五个学生的六门课的成绩,对这五个学生进行分类

ID	数学	物理	化学	语文	历史	英语
学生1	65	61	72	84	81	79
学生2	77	77	76	64	70	55
学生3	67	63	49	65	67	57
学生4	80	69	75	74	74	63
学生5	74	70	80	84	81	74

遊寧石油化工大學 LIAONING SHIHUA UNIVERSITY

1. 写出样品间的距离矩阵(以欧氏距离为例)

$$D_0 = \begin{pmatrix} 0 & & & & \\ 38.9 & 0 & & & \\ 39.7 & 32.2 & 0 & & \\ 26.5 & 15.9 & 32.4 & 0 & \\ 15.8 & 30.9 & 43.6 & 18.2 & 0 \end{pmatrix} G_1$$

2. 将每一个样品看做是一个类,即 G_1, G_2, G_3, G_4, G_5

观察 $D(G_1,G_5)=15.8$ 最小,故将 G_1 与 G_5 聚为一类,记为 G_6 .

计算新类与其余各类之间的距离,得到新的距离矩阵 D_1

$$D(G_6, G_2) = \min\{D(G_1, G_2), D(G_5, G_2)\} = \min\{38.9, 30.9\} = 30.9$$

$$D(G_6, G_3) = \min\{D(G_1, G_3), D(G_5, G_3)\} = \min\{39.7, 43.6\} = 39.7$$

$$D(G_6, G_4) = \min\{D(G_1, G_4), D(G_5, G_4)\} = \min\{26.5, 18.2\} = 18.2$$

$$D_{1} = \begin{pmatrix} 0 & & & & \\ 30.9 & 0 & & & \\ 39.7 & 32.2 & 0 & \\ 18.2 & 15.9 & 32.4 & 0 \end{pmatrix} \begin{matrix} G_{6} \\ G_{2} \\ G_{3} \\ G_{4} \end{matrix}$$

3. 观察 $D(G_2, G_4) = 15.9$ 最小,故将 $G_2 = 16.9$ 最小,故将 $G_2 = 16.9$ 最小,故将 $G_3 = 16.9$ 最小,故将 G_4 聚为一类,记为 G_7 . 计算新类与其余各类之间的距离,得到新的距离矩阵 D_7

$$D(G_7, G_6) = \min\{D(G_2, G_6), D(G_4, G_6)\} = \min\{30.9, 18.2\} = 18.2$$

$$D(G_7, G_3) = \min\{D(G_2, G_3), D(G_4, G_3)\} = \min\{32.2, 32.4\} = 32.2$$

$$D_2 = \begin{pmatrix} 0 & & & \\ 18.2 & 0 & & \\ 32.2 & 39.7 & 0 \end{pmatrix} G_7$$

4. 观察 $D(G_6, G_7) = 18.2$ 最小,故将 G_6 与 G_7 聚为一类,记为 G_8 . 计算新类与其余各类之间的距离,得到新的距离矩阵 D_3

 $D(G_8, G_3) = \min\{D(G_6, G_3), D(G_7, G_3)\} = \min\{39.7, 32.2\} = 32.2$

$$D_3 = \begin{pmatrix} 0 & \\ 32.2 & 0 \end{pmatrix} G_8$$

5. 最后将 G_8 与 G_3 聚为一类,记为 G_9 .

聚类的谱系图

最长距离系统聚类法

1. 写出样品间的距离矩阵(以欧氏距离为例)

$$D_0 = \begin{pmatrix} 0 & & & & & \\ 38.9 & 0 & & & & \\ 39.7 & 32.2 & 0 & & & \\ 26.5 & 15.9 & 32.4 & 0 & \\ 15.8 & 30.9 & 43.6 & 18.2 & 0 \end{pmatrix} G_1$$

2. 将每一个样品看做是一个类,即 G_1, G_2, G_3, G_4, G_5

观察 $D(G_1,G_5)=15.8$ 最小,故将 G_1 与 G_5 聚为一类,记为 G_6 .

计算新类与其余各类之间的距离,得到新的距离矩阵 D_1

$$D(G_6, G_2) = \max\{D(G_1, G_2), D(G_5, G_2)\} = \max\{38.9, 30.9\} = 38.9$$

$$D(G_6, G_3) = \max\{D(G_1, G_3), D(G_5, G_3)\} = \max\{39.7, 43.6\} = 43.6$$

$$D(G_6, G_4) = \max\{D(G_1, G_4), D(G_5, G_4)\} = \max\{26.5, 18.2\} = 26.5$$

$$D_{1} = \begin{pmatrix} 0 & & & & \\ 38.9 & 0 & & & \\ 43.6 & 32.2 & 0 & \\ 26.5 & 15.9 & 32.4 & 0 \end{pmatrix} \begin{matrix} G_{6} \\ G_{2} \\ G_{3} \\ G_{4} \end{matrix}$$

3. 观察 $D(G_2, G_4) = 15.9$ 最小,故将 $G_2 = 16.9$ 最小,故将 $G_2 = 16.9$ 最小,故将 $G_3 = 16.9$ 最小,故将 G_4 聚为一类,记为 G_7 . 计算新类与其余各类之间的距离,得到新的距离矩阵 D_7

$$D(G_7, G_6) = \max\{D(G_2, G_6), D(G_4, G_6)\} = \max\{38.9, 26.5\} = 38.9$$

$$D(G_7, G_3) = \max\{D(G_2, G_3), D(G_4, G_3)\} = \max\{32.2, 32.4\} = 32.4$$

$$D_2 = \begin{pmatrix} 0 & & & \\ 38.9 & 0 & & \\ 32.4 & 43.6 & 0 \end{pmatrix} \begin{matrix} G_7 \\ G_6 \\ G_3 \end{matrix}$$

4. 观察 $D(G_3, G_7) = 32.4$ 最小,故将 G_3 与 G_7 聚为一类,记为 G_8 . 计算新类与其余各类之间的距离,得到新的距离矩阵 D_3

 $D(G_8, G_6) = \max\{D(G_3, G_6), D(G_7, G_6)\} = \max\{43.6, 38.9\} = 43.6$

$$D_3 = \begin{pmatrix} 0 & \\ 43.6 & 0 \end{pmatrix} G_8$$

5. 最后将 G_8 与 G_6 聚为一类,记为 G_9 .

聚类的谱系图

其它系统聚类法

组间平均连接系统聚类法

组内平均连接系统聚类法

重心系统聚类法

注: 这些方法的差别就是在计算新类与其余各类间的距离,

如需学习详细内容,可参考多元统计分析相关书籍。

参考教材:《多元统计分析》,何晓群,中国人民大学出版社,2008.

《多元统计分析》,于秀林,中国统计出版社,2006.

聚类分析需要注意的问题

- 1. 对于一个实际问题要根据分类的目的来选取指标,指标选取的不同分类结果一般也不同。
- 2. 样品间距离定义方式的不同,聚类结果一般也不同。
- 3. 聚类方法的不同,聚类结果一般也不同(尤其是样品特别多的时候)。最好能通过各种方法找出其中的共性。
- 4. 要注意指标的量纲,量纲差别太大会导致聚类结果不合理。
- 5. 聚类分析的结果可能不令人满意,因为我们所做的是一个数学的处理,对于结果我们要找到一个合理的解释。

文件(E) 编辑	₹ (<u>E</u>) {	% ₩%	数据(D)	转换(<u>T</u>)	分析(A)	图形(G) 实	用程序(U) 附	加内容(0)	窗口(W)	帮助
□ □ □	<u></u>	b et	* 📭 [? M	*	₩ 🖷	⋄ • •	abc		
6:										
	ID	math	phys	chem	chin	hist	engl	变量	变量	量
1	1	65	61	72	84	81	79			
2	2	77	77	76	64	70	55			
3	3	67	63	49	65	67	57			
4	4	80	69	75	74	74	63			
5	5	74	70	80	84	81	74			
6	6	78	84	75	62	71	64			
7	7	66	71	67	52	65	57			
8	8	77	71	57	72	86	71			
9	9	83	100	79	41	67	50			
10	10	86	94	97	51	63	55			
11	11	74	80	88	64	73	66			
12	12	67	84	53	58	66	56			
13	13	81	62	69	56	66	52			
14	14	71	64	94	52	61	52			
15	15	78	96	81	80	89	76			
16	16	69	56	67	75	94	80			
17	17	77	90	80	68	66	60			
	4					- ***	-			

理学院数学系

选择方法

理学院数学系

统计量选项

绘制选项

方法选项

保存选项

谢谢大家