CME 307 / MS&E 311: Optimization LP modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

January 10, 2024

Course survey

You're interested in

- duality
- modeling real-world problems
- hyperparameter and blackbox optimization
- ▶ fairness and ethics in optimization
- **.**..

Outline

definitions

geometry

modeling

Duality

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x > 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$? henceforth assume $A \in \mathbf{R}^{m \times n}$ has full row rank m **Q:** why? how to check?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$? henceforth assume $A \in \mathbb{R}^{m \times n}$ has full row rank m **Q:** why? how to check? **A:** otherwise infeasible or redundant rows; use gaussian elimination to check and remove

matrix $A \in \mathbf{R}^{m \times n}$

 \triangleright span of A:

matrix $A \in \mathbf{R}^{m \times n}$

▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of *A*:

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of *A*: nullspace(*A*) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of *A*?

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- \blacktriangleright how to solve Ax = b?

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations A^TAx = A^Tb and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if

- ▶ span of A: span $(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - solution set is a hyperplane of dimension

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - \triangleright solution set is a hyperplane of dimension n-m
 - ightharpoonup null space of A, **nullspace**(A), is a hyperplane of dimension

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - ightharpoonup solution set is a hyperplane of dimension n-m
 - ▶ null space of A, **nullspace**(A), is a hyperplane of dimension n-m
 - ▶ solution set is $\{x : Ax = b\} = \{x_0 + Vz\}$ where columns of $V \in \mathbf{R}^{n \times n m}$ span **nullspace**(A)

matrix $A \in \mathbf{R}^{m \times n}$

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - ightharpoonup solution set is a hyperplane of dimension n-m
 - ▶ null space of A, **nullspace**(A), is a hyperplane of dimension n-m
 - ▶ solution set is $\{x : Ax = b\} = \{x_0 + Vz\}$ where columns of $V \in \mathbb{R}^{n \times n m}$ span **nullspace**(A)

if these are confusing: review linear algebra and prove them all!

- \triangleright x_i servings of food i
- c; cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- ▶ b_i required amount of nutrient j

```
minimize c^T x
subject to Ax = b
x \ge 0
```

- \triangleright x_i servings of food i
- c_i cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- ▶ b_i required amount of nutrient j

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

extensions:

ightharpoonup foods come from recipes? x = By

- \triangleright x_i servings of food i
- c_i cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- ▶ b_i required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

- foods come from recipes?
- ensure diversity in diet?

- \triangleright x_i servings of food i
- c_i cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- ▶ b_i required amount of nutrient j

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- foods come from recipes?
- ▶ ensure diversity in diet? $y \le u$

- \triangleright x_i servings of food i
- c_i cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- ▶ b_i required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

- foods come from recipes?
- ensure diversity in diet? $y \le u$
- ranges of nutrients?

- \triangleright x_i servings of food i
- c_i cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- ▶ b_i required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

- ▶ foods come from recipes?
- ightharpoonup ensure diversity in diet? $y \leq u$
- ▶ ranges of nutrients? $1 \le y \le u$

Outline

definitions

geometry

modeling

Duality

Geometry of LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

the **feasible set** is the set of points x that satisfy all constraints

- ▶ interpretation: add up columns of A so they match b
- ightharpoonup Ax = b defines a **hyperplane**
- $ightharpoonup x_i \ge 0$ is a halfspace
- \triangleright $x \ge 0$ is the **positive orthant**

Geometry of LP: convexity

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- ▶ define the **feasible set** $\{x : Ax = b, x \ge 0\}$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

- prove: the feasible set is convex
- define extreme point: x is an extreme point of C if it cannot be written as a linear combination of other points in C:

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

Geometry of LP: polytopes

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

▶ define **polytope** P: convex hull of finite set of points $v_1, \ldots, v_k \in \mathbb{R}^n$:

$$P = \{ x \in \mathbf{R}^n \mid x = \sum_{i=1}^k \theta_i v_i, \ \theta_i \ge 0, \ \sum_{i=1}^k \theta_i = 1 \}$$

- ▶ if feasible set is bounded, it is a polytope
- prove: if a solution exists, then some extreme point of the feasible set is optimal

Solving LPs

algorithms:

- enumerate all vertices and check
- ▶ fourier-motzkin elimination
- simplex method
- ellipsoid method
- interior point methods
- first-order methods
- **•** . . .

Solving LPs

algorithms:

- enumerate all vertices and check
- ▶ fourier-motzkin elimination
- simplex method
- ellipsoid method
- interior point methods
- first-order methods

remarks:

- enumeration and elimination are simple but not practical
- simplex was the first practical algorithm; still used today
- ellipsoid method is the first polynomial-time algorithm; not practical
- interior point methods are polynomial-time and practical
- first-order methods are practical and scale to large problems

Discuss: how to solve LPs?

write down a method to solve LPs; discuss in groups

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- ▶ $A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- if $x_S \ge 0$, then x is a feasible extreme point (a basic feasible solution BFS)
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{s}} = 0$
- if $x_S \ge 0$, then x is a feasible extreme point (a basic feasible solution BFS)
- \triangleright evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there?

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- ▶ $A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- if $x_S \ge 0$, then x is a feasible extreme point (a basic feasible solution BFS)
- \triangleright evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there? n choose m is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ ("exponentially many")

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective $c^T x$
- \triangleright move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

later:

- how to find an initial BFS?
- how to find a neighboring BFS with better objective?
- how to prove optimality?

LP inequality form

another common form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

how to transform to standard form?

▶ inequality constraints $Ax \le b$?

LP inequality form

another common form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

how to transform to standard form?

- ▶ inequality constraints $Ax \le b$? slack variables $s \ge 0$
- ▶ free variable $x \in \mathbf{R}^n$?

LP inequality form

another common form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

how to transform to standard form?

- inequality constraints $Ax \le b$? slack variables $s \ge 0$
- free variable $x \in \mathbb{R}^n$? split into positive and negative parts

we will see later that these forms are also related by **duality**

LP example: production planning

- \triangleright x_i units of product i
- c_i cost per unit
- ▶ a_{ij} amount of resource j used by product i
- $ightharpoonup b_j$ amount of resource j available
- \triangleright d_i demand for product i
- u_i upper bound on production of product i
- *l_i* lower bound on production of product*i*

minimize $c^T x$ subject to $Ax \le b$ $l \le x \le u$

LP example: production planning

- \triangleright x_i units of product i
- c_i cost per unit
- a_{ij} amount of resource j used by product i
- $ightharpoonup b_j$ amount of resource j available
- $ightharpoonup d_i$ demand for product i
- u_i upper bound on production of product i
- *l_i* lower bound on production of product*i*

extensions:

fixed cost for product i?

minimize $c^T x$ subject to $Ax \le b$ $l \le x \le u$

LP example: production planning

- \triangleright x_i units of product i
- c; cost per unit
- a_{ij} amount of resource j used by product i
- $ightharpoonup b_j$ amount of resource j available
- $ightharpoonup d_i$ demand for product i
- u_i upper bound on production of product i
- *I_i* lower bound on production of product*i*

extensions:

▶ fixed cost for product i? $c^Tx + f^Tz$, $z_i \in \{0, 1\}$, $x_i \leq Mz_i$ for M large

minimize $c^T x$ subject to $Ax \le b$ $l \le x \le u$

Geometry of LP: inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

- $ightharpoonup Ax \leq b$ defines a **polyhedron**
- ► (a polytope is a bounded polyhedron)
- the set of constraints that hold with equality is the active set

Outline

definitions

geometry

modeling

Duality

Let's do some modeling!

- OptiMUS: https://optimus-solver.vercel.app/
- power systems: https://jump.dev/JuMP.jl/stable/tutorials/ applications/power_systems/
- multicast routing: https://colab.research.google.com/drive/ 1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing

Let's do some modeling!

- OptiMUS: https://optimus-solver.vercel.app/
- power systems: https://jump.dev/JuMP.jl/stable/tutorials/ applications/power_systems/
- multicast routing: https://colab.research.google.com/drive/ 1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing

practical solvers for MILP:

- Gurobi and COPT (cardinal optimizer) are the state-of-the-art commercial solvers
- GLPK is a free solver that is not as fast
- JuliaOpt/JuMP is a modeling language in Julia that calls solvers like Gurobi and is specialized for MILP applications
- CVX* (including CVXPY in python) are modeling languages that call solvers like Gurobi with good support for convex problems
- OptiMUS is a LLM-based modeling tool for MILP

Modeling challenges

- |x|
- ightharpoonup max(x, y)
- assignment constraints: e.g., every class is assigned exactly one classroom
- ▶ flow constraints: e.g., find the least cost way to ship an item from s to t
- ▶ logical constraints: e.g., class enrollment must be less than the capacity of its assigned room

Closing announcements

Fill out exit survey by Friday (linked from schedule)

Outline

definitions

geometry

modeling

Duality

Why duality?

- certify optimality
 - turn ∀ into ∃
 - use dual lower bound to derive stopping conditions
- new algorithms based on the dual
 - solve dual, then recover primal solution

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbf{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

 \implies can efficiently certify infeasibility of a linear program

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbf{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$
- \implies can efficiently certify infeasibility of a linear program **proof:** suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$.

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbf{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

 \implies can efficiently certify infeasibility of a linear program **proof:** suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$. (opposite direction is similar)

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y (\mathcal{P})
 $x \ge 0$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$.

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y (\mathcal{P})
 $x > 0$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^T x - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y (\mathcal{P})
 $x \ge 0$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^{T}x - \langle y, b - Ax \rangle$$

$$p^{*} = \inf_{x:Ax=b} \mathcal{L}(x,y) \ge \inf_{x} \mathcal{L}(x,y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y (\mathcal{P})
 $x \ge 0$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^{T}x - \langle y, b - Ax \rangle$$

$$p^{*} = \inf_{x:Ax=b} \mathcal{L}(x,y) \ge \inf_{x} \mathcal{L}(x,y)$$

$$= \inf_{x} c^{T}x + \langle y, -b + Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \left(c^{T}x + \langle A^{T}y, x \rangle \right)$$

$$= \langle y, -b \rangle + \inf_{x} \left(\langle c + A^{T}y, x \rangle \right)$$

unbounded below unless $c + A^T y = 0$. true for any y, so

inequality holds for any $y \in \mathbb{R}^m$, so we have proved **weak** duality

$$p^{\star} \geq g(y) \quad \forall y \in \mathbf{R}^{m}$$

$$\geq \sup_{y} g(y) =: d^{\star}$$
(1)

dual optimal value $d^\star \leq p^\star$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff f(x^{\star}) - g(y^{\star}) = 0$$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff f(x^{\star}) - g(y^{\star}) = 0$$

strong duality holds

- for feasible LPs (pf later)
- for convex problems under constraint qualification aka Slater's condition. feasible region has an interior point x so that all inequality constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded

Strong duality for LPs

primal and dual LP in standard form: (derive!)

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

maximize $b^T y$
subject to $A^T y \le c$

claim: if primal LP has a bounded feasible solution x^* , then strong duality holds *i.e.*, dual LP has a bounded feasible solution y^* and $p^* = d^*$

consider the following system with variables $x' \in \mathbf{R}^n$, $\tau \in \mathbf{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^Tx'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, x > 0$$
 or $A^{T}y > 0, b^{T}y < 0$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, \ x \ge 0 \qquad \text{or} \qquad A^T y \ge 0, \quad b^T y < 0 \\ \begin{bmatrix} A & -b \\ c^T & -\rho^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} A^T & c \\ -b^T & -\rho^* \end{bmatrix} \begin{bmatrix} y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) > 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, \ x \ge 0 \qquad \text{or} \qquad A^T y \ge 0, \quad b^T y < 0$$

$$\begin{bmatrix} A & -b \\ c^T & -p^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} A^T & c \\ -b^T & -p^* \end{bmatrix} \begin{bmatrix} y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$$

use second system to show y/σ is dual feasible and optimal

Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if

$$\langle y, b - Ax \rangle = 0$$

They satisfy **strict complementary slackness** if $y_i(b_i - a_i^T x) = 0$ for i = 1, ..., n.

for conic problem, strong duality \iff complementary slackness

$$\langle y, s \rangle = \langle y, b - Ax \rangle$$

$$= \langle y, b \rangle - \langle A^*y, x \rangle$$

$$= \langle y, b \rangle - \langle c, x \rangle$$