Universidad Nacional de Entre Ríos

Facultad de Ciencias de la Administración

Carrera: Licenciatura en Sistemas

Cátedra: Análisis Matemático I

Trabajo Práctico N° 4: Derivadas

1) Se ha modelizado la posición de un coche que se mueve por una carretera, a través de la siguiente fórmula:

$$s(t) = 20.t^2$$
 siendo $0 \le t \le 2$

donde t se mide en horas y s(t) se mide en kilómetros.

- a) ¿Es posible determinar la velocidad promedio del coche durante las dos primeras horas? Si la respuesta es afirmativa, hallarla.
- b) ¿Es posible determinar la velocidad del coche a la hora de iniciado el recorrido? Si la respuesta es afirmativa, encontrarla.
- La distancia recorrida a las dos horas, ¿será mayor a 100 km? Explicar.
- 2) Considerar las siguientes funciones de valores reales a valores reales. ¿Es posible que no sean derivables en algún o algunos puntos? Justificar analítica y gráficamente.

d)
$$f(x) = \begin{cases} 2x & x < 0 \\ 1 & x \ge 0 \end{cases}$$

b)
$$f(x) = |x - 1|$$

b)
$$f(x) = |x - 1|$$
 c) $f(x) = \begin{cases} x^2 + 4 & x < 2 \\ 4x & x \ge 2 \end{cases}$

3) ¿Es posible encontrar la ecuación de la recta tangente a la curva que es gráfica de cada función en el punto que se indica? Explicar. Y, en caso afirmativo, hallarla.

a)
$$f(x) = \sqrt[3]{x}$$
 en $P(1,1)$

a)
$$f(x) = \sqrt[3]{x}$$
 en $P(1,1)$ b) $f(x) = x + \frac{4}{x}$ en $P(2,4)$ c) $f(x) = |x-1|$ en $P(1,0)$

c)
$$f(x) = |x - 1|$$
 en $P(1, 0)$

- 4) Determinar la veracidad de las siguientes proposiciones. Justificar la respuesta.
 - a) Una función continua siempre es derivable.
 - b) Si f'(2) existe y $\lim_{x\to 2} f(x) = 4$ es posible determinar el valor de f(2).
 - c) Si las derivadas laterales de una función existen en el punto de abscisa x=c, entonces la función es derivable en dicho punto.
 - d) Si f es derivable en x = a, entonces es continua en x = a.
- 5) Calcular las funciones derivadas de las siguientes funciones:

a)
$$f(x) = \sqrt{2} - \pi^3$$

b)
$$f(x) = \frac{1}{2}x^2 - \sqrt{3}x + 1$$

c)
$$f(x) = (6x + 5)(x^3 - 2)$$

d)
$$f(x) = \frac{x^2 - x}{x + 1}$$

e)
$$f(x) = x^3 \cdot \sin x$$

$$f) f(x) = \ln(2x - 1)$$

$$g) f(x) = \cos(2x) - \frac{1}{x}$$

h)
$$f(x) = e^{-2x} + 3^x$$

- **6)** Sea $f: \mathbb{R} \to \mathbb{R} f(x) = x^3 3x + 5$, responder:
 - a) ¿Existe algún o algunos puntos donde la recta tangente a la curva que es gráfica de f sea paralela a la recta y = x?
 - b) ¿Existe algún o algunos puntos donde la recta tangente sea horizontal a la curva que es gráfica de
- 7) ¿Es posible encontrar valores para a y b que hagan que la siguiente función sea derivable en todos sus puntos? En caso afirmativo, encontrar los valores.

$$f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$$

8) Calcular los siguientes límites:

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 b) $\lim_{x \to 0} \frac{x^2 - 2x - 4}{x^3 - 1}$ c) $\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$ d) $\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}$

c)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$$

d)
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x}-\sqrt{2}}$$

e)
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{2x}$$

e)
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{2x}$$
 f) $\lim_{x \to +\infty} \frac{(2x-3)(3+x)}{x^2 - 6x + 4}$ g) $\lim_{x \to 2} \frac{sen(x-2)}{2x^2 - 8}$ h) $\lim_{x \to +\infty} \frac{x^3}{2^x}$

g)
$$\lim_{x\to 2} \frac{sen(x-2)}{2x^2-8}$$

h)
$$\lim_{x \to +\infty} \frac{x^3}{2^x}$$

9) Realizar el estudio completo de la función $f: \mathbb{R} - \{-1\} \to \mathbb{R}/f(x) = \frac{x}{x+1}$