

Technologie bazodanowe

Rozproszony system baz danych

jest zbiorem współpracujących ze sobą systemów baz danych, z których każdy znajduje się w innym węźle sieci. Z punktu widzenia użytkownika wszystkie te bazy logicznie stanowią jedną rozproszoną bazę danych.

Zalety:

- dane umieszczone " blisko " użytkownika skrócenie czasu transmisji sieciowej
- mniejsze ryzyko utraty wszystkich danych na skutek awarii systemu
- wzrost niezawodności całego systemu

Wady:

- utrudniony dostęp do pełnego (zintegrowanego) zbioru danych
- konieczność utrzymywania kopii danych (replik) i ich odświeżania.

C.J.Date zaproponował 12 reguł jakie powinien spełniać system rozproszonej bazy danych

- 1. Lokalna autonomia
- 2. Uniezależnienie od centralnego miejsca
- 3. Działanie ciągłe
- 4. Niezależność lokalizacji
- 5. Niezależność fragmentacji

Wykład VI

- 6. Replikacja
- 7. Niezależność sprzętowa
- 8. Niezależność od systemu operacyjnego
- 9. Niezależność od systemu zarządzania bazą danych
- 10. Niezależność od sieci
- 11. Rozproszone zarządzanie transakcjami
- 12. Rozproszone przetwarzanie zapytań

Aktywny system baz danych

- system, który jest aktywny nawet wtedy, gdy nie są do niego jawnie kierowane żadne transakcje czy żądania.

Zmiana stanu bazy następuje na skutek:

- zajścia określonego zdarzenia zewnętrznego
- zakończenia realizacji określonego zbioru transakcji kierowanych do SZBD
- upływu określonego kwantu czasu
- kombinacji dwóch powyższych przypadków

Aktywne bazy danych wykorzystują:

- model definiowania aktywnych reguł: Event Condition Action (wystąpienie zdarzenia, weryfikacja warunku, odpalenie akcji)
- modele aktywności zależności czasowe i przyczynowo skutkowe między zdarzeniami i akcjami
- operatory zdarzeniowe zbiór operatorów umożliwiających specyfikację złożonych wyrażeń zdarzeniowych

Semistrukturalny system baz danych

- zapewnia trwałe przechowywanie danych w strukturach XML, wykorzystuje języki zapytań takie jak: XQUERY, Xpath, XQL, XML_QL, posiada bardzo dobrą przenaszalność. Umożliwia zagnieżdżanie i hierarchizację danych.

przykłady: DbXML, eXist, BaseX, Sedna

Podejście dano – centryczne:

- XML wykorzystywane jako medium transportowe
- regularna struktura dokumentów
- dane pochodzą z bazy danych lub będą wprowadzane do bazy danych

Podejście dokumento – centryczne

- dokumenty najczęściej tworzone ręcznie
- nieregularna struktura dokumentów
- stosunkowo duża ziarnistość danych

Multimedialny system baz danych

- jego przeznaczeniem jest przechowywanie i wyszukiwanie danych dotyczących zawartości multimedialnych (nagrań muzycznych, filmów, grafiki itp.)

Klasyfikacja danych:

- ciągłe (dźwięk, mowa, animacja, video) uwzględnienie wymiaru czasu
- dyskretne (tekst, obraz, grafika komputerowa, typy konwencjonalne) bez uwzględniania czasu

Wyzwania:

- duży rozmiar danych,
- brak standardu przechowywania informacji multimedialnej
- sposób przesyłania danych multimedialnych nie jest ujednolicony
- kompresja
- synchronizacja w odtwarzaniu różnych elementów przekazu
- język zapytań dostosowany do danych multimedialnych

Hurtownia danych

jest bardzo dużą bazą danych posiadającą następujące cechy:

- dane w niej składowane nie są modyfikowane przez użytkowników, są jedynie przez nich odczytywane
- zawiera wszystkie dane historyczne i bieżące
- zawiera dane zagregowane na wielu poziomach szczegółowości
- zawartość hurtowni jest zorientowana tematycznie

przykłady: Oracle, DB2 UDB, SybaseIQ, SAS Entrerprise BI Server, MS SQL Server,

Zaawansowane systemy baz danych - ZSBD

Podstawowa architektura HD

ETL.

Oprogramowanie ETL (*Extraction, Translation, Loading*) realizuje tzw. procesy ETL, składające się z trzech następujących faz:

- odczytu danych ze źródeł (*Extraction*)
- transformacji ich do wspólnego modelu wykorzystywanego w magazynie wraz z usunięciem wszelkich niespójności (*Translation*)
- wczytywanie danych do magazynu (Loading)

OLAP

- (*ang. On* – *Line Analytical Processing*) - aplikacje analityczne zorientowane na wspieranie procesów decyzyjnych, przetwarzanie danych historycznych i zagregowanych.

Aplikacje analityczne wspomagają decyzje i służą do eksploracji danych, wykonują zaawansowane analizy, wspomagają zarządzanie przedsiębiorstwem, np.:

- analiza trendów sprzedaży
- analiza nakładów reklamowych i zysków
- analiza ruchu telefonicznego

Wielowymiarowy model danych

- dane zorganizowane w postaci wielowymiarowego modelu danych (ang. Multidimensional Data Model) - fakty i wymiary
- fakty informacje podlegające analizie charakteryzowane ilościowo za pomocą miar
- wymiary ustalają kontekst analizy, składają się z poziomów, które tworzą hierarchię, zależności hierarchiczne między poziomami tworzą tzw. strukturę wymiaru

Strumieniowy system baz danych

- dane są przedstawione w postaci zbioru strumieni danych, umożliwiający analizę serii czasowych i przetwarzanie danych napływających z dużą szybkością

Cechy

- ciągłe zapytania (plan realizacji jest zamknięty w martwej pętli)
- strumień danych ma charakter nieskończony (odmienne operatory złączenia i funkcje agregające)
- zapytania predefiniowane i zadawane ad hoc
- język zapytań oparty o zmodyfikowaną/rozszerzoną/alternatywną algebrę opisującą operacje na strumieniach danych

Zastosowania strumieniowych systemów baz danych

- medyczne systemy monitorujące
- kontrola sieci czujników
- monitorowanie ruchu danych w sieciach telekomunikacyjnych, serwerów WWW
- wspomaganie bieżącej analizy finansowej: giełdy, sieci bankomatów
- bieżąca analiza transakcji
- zastosowania militarne

przykłady:

STREAM (*The Stanford Data Stream Management System*) - najważniejszą ideą wypracowaną przez zespół projektu STREAM jest model strumieni danych, jak również język CQL (*continuos query language*), w którym rejestruje się ciągle zapytania w systemie. Telegraph projekt Berkeley, NiagaraCQ,

Temporalny system baz danych

- dla każdej danej przechowuje jej czas ważności (okres, w którym dany fakt jest prawdziwy względem świata rzeczywistego) oraz czas transakcji (okres, w którym dany fakt jest zapisany w bazie danych)

Cechy

- temporalny język definicji, modyfikacji i wyszukiwania danych
- wsparcie temporalnych ograniczeń integralnościowych
- algebra relacyjna rozszerzona o operacje uwzględniające czas

przykłady systemów – TimeDB, Tiger

Mikro system baz danych

- okrojony, uproszczony system baz danych

Cechy

- prostota
- funkcjonalność zaspokajająca potrzeby wielu aplikacji
- mikro rozmiar
- kompilacja poleceń SQL do wirtualnego kodu maszynowego

Przykłady: SQLite, HSQLDB, tinySQL, picoSQL, Axion

Zalety i wady modelu relacyjnego

Zalety:

- intuicyjność modelu
- łatwość przejścia z systemów plików
- · wykorzystanie wieloprocesowości
- wieloplatformowość
- zapytania równoległe
- zaawansowane metody optymalizacji, metody bezpieczeństwa danych
- rozbudowany system transakcji

Wady:

- ubogi zestaw typów
- brak funkcji i procedur użytkownika
- problemy z hierarchizacją
- brak danych zagnieżdżonych
- brak dziedziczenia
- niedopasowanie pomiędzy językiem operowania danymi a językami tworzącymi aplikacje niezgodność impedancji
- brak uwzględnienia wersji i czasu

Niezgodność impedancji (w zakresie)

- składni
- systemu typów
- semantyki i paradygmatów języków
- pragmatyki użycia
- faz i mechanizmów wiązania
- przestrzeni nazw i reguł zakresu
- schematów iteracyjnych
- traktowania cechy trwałości danych
- środków programowania ogólnego

Najczęściej stosowane rozwiązania najczęściej wśród SZBD

- Obiektowe bazy danych
- Postrelacyjne bazy danych model relacyjny poszerzony o

- · elementy obiektowości
- obsługę XML
- rozwiązania analityczne
- · zapytania historyczne,

Model obiektowy

- obiekt jako podstawowa składowa
- · cechy obiektów: atrybuty i związki
- funkcjonalność obiektu: metody
- tożsamość obiektu
- hermetyczność obiektów
- dziedziczenie; współdzielenie implementacji i relacja podtypu
- przeciążenie i dynamiczne wiązanie funkcjonalności obiektów

Zalety

- odzwierciedlenie dowolnych obiektów świata rzeczywistego w postaci złożonych typów
- możliwość wprowadzenia agregacji i dziedziczenia
- zmniejszenie dystansu pomiędzy fazami analizy, projektowania i implementacji
- dopasowanie, bądź osadzenie wewnątrz języków programowania aplikacji
- uwzględnienie informacji proceduralnej (metody)
- zwiększenie poziomu abstrakcji w myśleniu programistów i użytkowników
- duża elastyczność

Wady

- brak standaryzacji
- problemy ze skalowalnością, niezawodnością i efektywnością
- słabo rozwinięta optymalizacja i bezpieczeństwo danych

Manifest baz obiektowych trzeciej generacji – 1989, 1990

Poniższy tekst z Kazimierz Subieta: **Słownik terminów z zakresu obiektowości**. Akademicka Oficyna Wydawnicza PLJ, Warszawa 1999

" Istotną rolę w rozwoju obiektowości odegrał manifest obiektowych systemów baz danych autorów: Atkinson, Bancilhon, DeWitt, Dittrich, Maier, Zdonik, który zrywając z ideologią modelu relacyjnego ustalił ramowe założenia obiektowości w bazach danych. Manifest postulował zachowanie klasycznych cech baz danych (trwałość, zarządzanie pamięcią pomocniczą, współbieżność, transakcje, odtwarzanie, rozproszenie, języki zapytań i inne), przystosowując je do cech obiektowości (złożone obiekty, tożsamość obiektów, hermetyzacja, typy lub klasy, dziedziczenie, przesłanianie połączone z dynamicznym wiązaniem, rozszerzalność). Reakcją na ten manifest był tzw. "manifest systemów baz danych trzeciej generacji" grupy konserwatywnych zwolenników obecnej filozofii systemów relacyjnych (Stonebrakera i innych), postulujący zachowanie wszystkich potwierdzonych w praktyce cech modelu relacyjnego (w szczególności SQL jako "intergalaktycznego języka danych") i wzmocnienie go o nowe własności, m.in. obiektowe.

Manifesty w dziedzinie baz danych są odpowiedzią na brak naukowych i technologicznych kryteriów, które mogłyby obiektywnie wyznaczyć kierunki rozwoju tej dyscypliny. W tej sytuacji ekspert lub grupa ekspertów stawia się w roli proroka, próbującego *a priori* dyktować światu, jak ma budować swoją przyszłość. Niezbywalną cechą wszystkich manifestów - od komunistycznego do obiektowego - jest to, że większość wymienianych w nich postulatów jest rozsądna i zgodna z powszechnym odczuciem dobrego. Jest to psychologiczna baza, na której mogą być przemycone cechy utopijne, kontrowersyjne, lub nieakceptowalne. Zatem w stosunku do wszelkich manifestów należy zachować sporo rezerwy i sceptycyzmu. To właśnie mówi ostatnia doktryna manifestu obiektowych baz danych, nakazująca obowiązek kwestionowania wszystkich poprzednich doktryn tego manifestu.

Wykład VI

manifest obiektowych systemów baz danych (*Object-Oriented Database System Manifesto*) Dokument opracowany przez autorów: Atkinson, Bancilhon, DeWitt, Dittrich, Maier, Zdonik (1989) formułujący podstawowe założenia obiektowych baz danych w postaci charakterystyk, które są podzielone na trzy grupy:

- Obowiązkowe, czyli takie, które musi posiadać każdy system zarządzania bazą danych określany mianem "obiektowy". Do nich należą: złożone obiekty, tożsamość obiektów, hermetyzacja, typy lub klasy, dziedziczenie, przesłanianie wraz z późnym wiązaniem, rozszerzalność, kompletność obliczeniowa, trwałość, zarządzanie pamięcią pomocniczą, współbieżność, odtwarzanie oraz udogodnienia dla zapytań ad hoc.
- *Opcyjne*, czyli takie, które nie są obowiązkowe, ale które mogą podnieść jakość systemu. Do nich zaliczono: wielokrotne dziedziczenie, kontrolę typów i wnioskowanie o typie, rozproszenie bazy danych, transakcje projektowe (długie lub zagnieżdżone) oraz wersje.
- *Otwarte*, czyli takie, gdzie projektanci systemów mają pewną dowolność co do ich wyboru. Do nich zaliczono: paradygmat programowania, system typów, system reprezentacji oraz zuniformizowanie.

manifest systemów baz danych trzeciej generacji (*Third-Generation Database System Manifesto*) Manifest będący reakcją na pojawienie się manifestu obiektowych baz danych zrywającego z założeniami modelu relacyjnego (co, jak można się domyśleć, wprowadziło pewną nerwowość w kręgach dostawców systemów relacyjnych). Został on opracowany przez następujących autorów: Stonebraker, Rowe, Lindsay, Gray, Carey, Brodie, Bernstein, Beach (1990). Manifest systemów baz danych trzeciej generacji (3GDB) zawiera trzy doktryny:

- 3GDB muszą wspomagać bogatsze struktury danych i reguły.
- 3GDB muszą posiadać wszystkie pozytywne cechy baz danych drugiej generacji.
- 3GDB muszą być otwarte dla innych systemów.

oraz 13 postulatów:

- 3GDB muszą posiadać bogaty system typów.
- Dziedziczenie jest dobrym pomysłem.
- Funkcje (w tym zapamiętane procedury i metody) plus hermetyzacja są dobrymi pomysłami.
- Unikalne identyfikatory powinny być stosowane wtedy, gdy nie są dostępne klucze główne.
- Reguły (wyzwalacze, więzy integralności) staną się główną cechą przyszłych systemów.
- Cały dostęp do bazy danych powinien odbywać się poprzez nieproceduralny język wysokiego poziomu.
- Kolekcje powinny być specyfikowane zarówno przez ich nazwę, jak i poprzez zapytanie. Chodzi o to, aby istniała możliwość przetwarzania kolekcji wyprodukowanych przez zapytanie, a nie tylko kolekcji zapamiętanych w bazie danych.
- Aktualizowalne perspektywy (*views*) są istotne.
- Własności fizyczne nie mają związku z modelem danych i powinny być z niego usunięte.
- 3GDB muszą być dostępne z wielu języków wysokiego poziomu.
- Języki te powinny być wyposażone w cechę trwałości i zintegrowane z językiem zapytań.
- Na lepsze i gorsze, SQL jest intergalaktycznym językiem danych.
- Zapytania i odpowiedzi na zapytania powinny być dolnym poziomem komunikacji klient-serwer (chodzi o to, aby ten poziom nie ograniczał się do przesyłania fizycznych stron).

Wykorzystano

Wykłady dr inż. Olga Siedlecka-Lamch – Systemy baz danych z roku 2012 http://wazniak.mimuw.edu.pl/index.php?title=Zaawansowane_systemy baz danych