1. Если $x = \varphi(t)$ - решение динамической системы

$$\dot{x} = f(x) \tag{1}$$

то, для любого $c, x = \varphi(t+c)$ также является решением.

Доказательство. Следует из равенств

$$\frac{d}{dt}\varphi(t+c) = \varphi(t+c) = f(\varphi(t+c))$$

2. Если $x=\varphi(t)$ и $x=\psi(t)$ - два решения системы (1) и $\varphi(t_1)=\psi(t_2)$, то $\psi(t)=\varphi(t+c)$, где $c=t_1-t_2$. Иначе говоря, если траектории $x=\varphi(t)$ и $x=\psi(t)$ имеют общую точку, то эти траектории совпадают.

Доказательство. В силу свойства 1, $x = \varphi(t+c)$ ($c = t_1 - t_2$) - решение системы (1), а в силу равенства $\varphi(t_1) = \psi(t_2)$,

$$\varphi(t_2 + c) = \varphi(t_1) = \psi(t_2)$$

Таким образом, решения $x=\varphi(t+c)$ и $x=\psi(t)$ удовлетворяют одинаковым начальным условиям при $t=t_2$ и, в силу теоремы единственности, совпадают, т.е.

$$\varphi(t+c) = \psi(t)$$

3. Решения динамической системы обладают групповым свойством: если $x=\varphi(t,x_0)$ - решение системы (1), удовлетворяющее начальному условию $\varphi(0,x_0)=x_0$, то

$$\varphi(t, \varphi(s, x_0)) = \varphi(t + s, x_0)$$

Доказательство. Положим $x_1=\varphi(s,x_0)$. Тогда $\varphi_1(t)=\varphi(t,x_1)$ - решение системы (1) и, в силу свойства 1, $\varphi_2=\varphi(t+s,x_0)$ также является решением (1); при этом

$$\varphi_1(0) = \varphi(0, x_1) = x_1,$$

$$\varphi_2(0) = \varphi(s, x_0) = x_1.$$

Таким образом, решения $\varphi_1(t)$ и $\varphi_2(t)$ системы уравнений (1) удовлетворяют одинаковым начальным условиям. В силу теоремы единственности $\varphi(t)=\varphi_2(t)$ или

$$\varphi(t, \varphi(s, x_0)) = \varphi(t + s, x_0)$$

Решение системы (1) вида x=a, где a - постоянный вектор, называется положением равновесия или точкой покоя.

Очевидно, что если x=a - положение равновесия, то f(a)=0, и наоборот, если f(a)=0, то x=a - положение равновесия.

Пусть $x=\varphi(t)$ - решение динамической системы (1), определенное при $-\infty < t < +\infty$. Число c называется периодом решения $x=\varphi(t)$, если $\varphi(t+c)=\varphi(t)$ при всех t.

Обозначим F множество всех периодов решения $x=\varphi(t)$ (это множество непусто, так как $0\in F$). Докажем следующие свойства множества F.

1. Если $c \in F$, то $-c \in F$.

Доказательство. Так как c - период, то $\varphi(t+c)=\varphi(t)$. Заменяя в этом равенстве t на t-c, получим $\varphi(t)=\varphi(t-c)$, т.е. -c является периодом. \square

2. Если $c_1 \in F$, $c_2 \in F$, то $c_1 + c_2 \in F$.

Доказательство. Следует из равенств

$$\varphi(t+c_1+c_2) = \varphi(t+c_1) = \varphi(t)$$

3. F - замкнутое множество. Д. Пусть c_n - сходящаяся последовательность периодов и $\lim_{n\to\infty}c_n=c_0$. Тогда в силу непрерывности имеем

$$\varphi(t+c_0) = \varphi(t + \lim_{n \to \infty} c_n) = \lim_{n \to \infty} \varphi(t+c_n) = \varphi(t)$$

Таким образом $c_0 \in F$, и, следовательно, F - замкнутое множество.

Теорема. Пусть траектория $x = \varphi(t)$ динамической системы (1) сама себя пересекает. Тогда решение $\varphi(t)$ может быть продолжено на интервал $-\infty < t < +\infty$ и имеет место одна из следующих возможностей:

- 1. $\varphi(t) = a, m.e.$ решение $\varphi(t)$ является положением равновесия;
- 2. существует такое число T>0, что $\varphi(t+T)=\varphi(t)$ при всех t, но при $0<|t_1-t_2|< T, \ \varphi(t_1)\neq \varphi(t_2)$

в случае 2 решение $x=\varphi(t)$ называется периодическим, а его траектория - замкнутой траекторией или циклом.

Доказательство. Пусть решение $x=\varphi(t)$ опреелено при a< t< b. По предположению траектория решение сама себя пересекает, т.е. сущствуют такие $t_1,t_2\in(a,b),\ (t_1>t_2)$ что $\varphi(t_1)=\varphi(t_2)$

В силу свойства 2 решений динамических систем,

$$\varphi(t) = \varphi(t+c) \tag{2}$$

где $c=t_1-t_2>0$. Функция $x=\varphi(t+c)$ является решением системы (1), определенным при a-c< t< b-c, и, кроме того в силу (2), эти решения совпадают на общей части их областей определения, т.е. при a< t< b-c. Следовательно, решение

$$x = \psi(t) = \begin{cases} \varphi(t), & a < t < b, \\ \varphi(t+c), & a - c < t \le a, \end{cases}$$
 (3)

является продолжением решения $x=\varphi(t)$ на интервал (a-c,b). Последовательно повторяя описанную процедуру, получим продолжение решения $x=\varphi(t)$, определенное на интервале $(-\infty,b)$.

С помощью равенства $\varphi(t) = \varphi(t-c)$, которое получается из (2) заменой t на t-c, получим продолжение решения $x = \varphi(t)$ с интервала $(-\infty, b)$ на всю числовую ось $(-\infty, +\infty)$.

Итак решение $x=\varphi(t)$ можно считать определенным при $-\infty < t < +\infty$, причем, как ясно из самого способа продолжения, постоянная $c=t_1-t_2>0$ является периодом этого решения.

Пусть F - множество периодов решения $x=\varphi(t)$. Могут представится две возможности:

- а) F содержит сколь угодно малые положительные числа,
- б) в F найдется наименьшее положительное число T.

В случае а) существует сходящаяся к нулю последовательность положительных периодов c_n . Пусть t - произвольное действительное число. Дробные части

$$\alpha_n = \frac{t}{c_n} - \left[\frac{t}{c_n}\right]$$

чисел $\frac{t}{c_n}$ образуют ограниченную последовательность, а так как $c_n \to 0$, то

$$\lim_{n \to \infty} \left\{ t - \left[\frac{t}{c_n} \right] \right\} = \lim_{n \to \infty} (\alpha_n c_n) = 0$$

Числа $\left[\frac{t}{c_n}\right]c_n$, будучи целыми кратными периодов c_n , сами являются периодами решения $\varphi(t)$. Поэтому

$$\varphi(t) = \varphi\left(t - \left\lceil \frac{t}{c_n} c_n \right\rceil\right)$$

переходя в равенстве (3) к пределу при $n \to \infty$, получим

$$\varphi(t) = \lim_{n \to \infty} \varphi\left(t - \left[\frac{t}{c_n}\right]c_n\right) = \varphi\left(\lim_{n \to \infty} \left(t - \left[\frac{t}{c_n}\right]c_n\right)\right) = \varphi(0)$$

Таким образом, решение $x=\varphi(t)$ в случае а) является положением равновесия.

В случае б)

$$\varphi(t+T) = \varphi(t)$$

Покажем, что $\varphi(t_1) \neq \varphi(t_2)$ при $0 < |t_1 - t_2| < T$. Предположим противное. Тогда найдутся такие t_1, t_2 ($0 < |t_1 - t_2| < T$), что $\varphi(t_1) = \varphi(t_2)$. В силу свойства $2, \varphi(t) = \varphi(t+c)$, где $c = t_1 - t_2 \neq 0$. Таким образом, $c = t_1 - t_2$ служит периодом решения $\varphi(t)$. В силу свойства 1 множества F, положительное число $|t_1 - t_2| = \pm c$ также является периодом, а это противоречит предположению, что T - наименьший положительный период решения $\varphi(t)$.

Из доказанной теоремы непосредственно получаем следующее

Следствие. Траектория любого непродолжаемого решения динамической системы (1) может быть либо положением равновесия, либо замкнутой траекторией, либо траекторией без самопересечений.