Open-Minded

Scientific Questions

- What is key to understand charge carrier dynamics under non-equilibrium conditions?
- Are local relaxation and non-local / transport effects determined by identical or different microscopic processes?
- What is happening at interfaces?
- What is the influence on the excited charge carrier density *n*?
- How does the static electronic structure $E(\mathbf{k})$ affect the non-equilibrium dynamics
- How does a particular optical or THz stimulus modify the dynamics and what are the respective processes activated?

Goals

Work package 1

- Analysis of scattering processes and propagation in non-equilibrium transport along the interface normal direction
- Separation of phononic and electronic contributions
- Analysis of transport in Bloch bands in comparison to transport by hopping in staples of 2D materials

Work package 2

- Time- and angle-resolved photoemission using THz field transients
- Analysis of in-plane charge carrier transport dynamics in real time
- Linear and non-linear response
- Manipulation of the electron dynamics by modifications of the static electronic structure using alkali surface doping

Expected Results

Work Program

Work package 1 Time-resolved photoemission of charge carriers propagating in layered materials

Metallic heterostructures Au/Fe/MgO(001)

2020

- time-resolved linear photoemission using back side pumping to analyze transport effects in the vicinity of the Fermi energy (→ preliminary results)
- first steps regarding temperature dependent experiments employing back side pumping to identify phonon contributions (→ reduce sample vibration)

2021

- temperature dependent experiments (continutation)
- angle-resolved experiments for ballistic electron propagation to probe elastic scattering by a position sensitive anode, see figure for interface transmittance at Fe/Au(001) \$\overline{8}\$ -1.0

2022

Stacks of two-dimensional materials MoS₂ MoSe₂, and TaS₂ upon back side pumping

- Sample preparation by exfoliation on thin Au films on transparent substrates (collaboration with project C05)
- Temperature dependent experiments to analyze hopping propability

2023

■ Analysis of thermally activated charge carrier transport mediated by hopping,

■ Energy and temperature dependent transport of non-equilibrium carriers

Work package 2 Real-time analysis of THz driven charge currents in surfaces of black phosphorus

2020

- Optimization of THz generation using photoconductive antenna emitter and Ti:sapphire RegA @ 100 kHz → gating of bias voltage to limit dc heating of antennae, reach peak field >50 kV/cm → funding application for gated pulse generator and voltage amplifier
- Laser ARPES of black phosphorus

2021

■ Alkali surface doping of black phosphorus Band inversion by giant Stark effect

■ NIR pumping - ARPES probing of black phosphorus for different doping

2022

- Alkali surface doping of black phosphorus
- NIR pumping ARPES probing and

Chen et al., Nano Letters **19**, 488 (2019)

2023

- THz pump ARPES probe experiments
- Analysis of electron dynamics near E_{F} for variation of $E(\mathbf{k})$ by alkali doping along armchair and zigzag directions
- Manipulation of non-equilibrium electron dynamics by alkali doping
- Linear to non-linear crossover in response to THz driving the electron system

Cross Linking and Collaboration

Lattice dynamics and ultrafast diffraction

C01

Sokolowski-Tinten

Horn-von Hoegen

Samples of 2D materials, e.g., TaS₂, MoS₂

Schleberger, Sokolowski-Tinten, Wucher

Generation of THz field transients

Mittendorff

Complementary experiments on electron dynamics at interfaces

B06

Campen Meyer zu Hasselbrink, Tong Heringdorf Model calculations of propagating electronic excitations

König, Sothmann

Dynamics by ab initio methods

Gruner, Pentcheva Kratzer

Modeling non-equilibrium dynamics

König, Kratzer, Schützhold

Preliminary Work

- Results obtained by 2PPE presents superdiffusive propagation behaviour of hot e's due to fast scattering processes at energies $E-E_F=0.6-2.0$ eV
- Idea: exciting hot e's close to Fermi edge $E_{\scriptscriptstyle F}$ to see mainly ballistic propagating hot e's due to longer relaxation times

scatterings appear and the overall motion is well approximated by standard diffusion. ■ First results with front and back side

- Observation of differences in population dynamics at a given energy *E-E_F* hardly to
- transport effects less obvious due to time independent signal background
- But: integration over an energy range of $E-E_{\rm F}=0$ - 1.55 eV reveals a clear contrast in pump-probe signal and relaxation

- back pump: small delayed shift in peak intensity and broadening in population dynamics → signature for transport?
 - Nenno et al.,PRB **98**, 224416 (2018): delayed shift and broadening of particle densities at lower energies due to spatiotemporal transport and scattering processes

- Generation of THz pulse to investigate realtime charge transport using a THzpump photoemission-proBiasbe experiment by using a photoconductive (PC) antenna. This part is implemented by collaboration with project B09.
- The generated THz field with 400 V/m amplitude with the near-IR fiber laser (780 nm, 80 MHz) of energy per pulse of 1.4 nJ:

■ Next steps: 1- Increasing energy per pulse to 4 uJ by using RegA 9040 pulsed laser (800 nm, 250 kHz).

2- Increasing bias voltage.

■ Challenges and solutions: 1- Excessive heating of the PC (solution: using a pulse generator and an amplifier).

■ 2- Increasing the size of the PC emitters (solution: optimization of the THz pulse by using different PCs).