8. Základní věty diferenciálního počtu

8.1. **Úvod**

V (Fermatova): Nechť funkce f je definována na M a nabývá v některém vnitřním bodě $x_0 \in M$ své největší nebo nejmenší hodnoty. Má-li f v bodě x_0 derivaci, pak $f'(x_0) = 0$.

Princip důkazu: Uvažujeme znaménko podílu $d(x) = \frac{f(x) - f(x_0)}{x - x_0}$ v levém a pravém okolí

bodu x_0 , v němž nabývá své největší (nejmenší) hodnoty. Z věty o limitě nerovnosti pak plyne $f'(x_0) = \lim_{x \to x_0} d(x) = 0$. \square

Fermatovu větu lze vztáhnout na lokální extrém a jeho okolí, tato věta má tedy lokální charakter a lze ji formulovat takto: má-li funkce f v bodě x_0 lokální extrém a má v něm derivaci, pak se tato derivace rovná nule. Tedy:

V: Nutnou podmínkou existence lokálního extrému funkce f v bodě x_0 je, že v něm derivace $f'(x_0)$ buď neexistuje nebo je rovna nule.

Pro diferencovatelnou funkci f je nutnou podmínkou rovnost $f'(x_0) = 0$.

8.2. Věty o střední hodnotě

Uvedeme zde trojici vět (Rolleova, Lagrangeova, Cauchyova), které jsou obvykle nazývány větami o střední hodnotě diferenciálního počtu. Jádrem je věta Lagrangeova.

V (Rolleova): Nechť funkce f

- 1) je spojitá na intervalu $\langle a,b\rangle$,
- 2) má derivaci na intervalu (a,b),
- 3) splňuje rovnost f(a) = f(b).

Pak v intervalu (a,b) existuje bod ξ tak, že $f'(\xi) = 0$.

 $D\mathring{u}kaz$: Podle 2.Weierstrassovy věty nabývá funkce f v nějakém bodě $c_1 \in \langle a,b \rangle$ své nejmenší hodnoty a v nějakém bodě $c_2 \in \langle a,b \rangle$ své největší hodnoty. Kdyby c_1 i c_2 byly oba krajními body intervalu $\langle a,b \rangle$, platilo by f(x)=konst., takže za ξ bychom mohli vzít libovolný bod intervalu (a,b). Je-li jeden z bodů c_1 , c_2 vnitřním bodem intervalu (a,b) (označme jej c), pak tvrzení plyne z Fermatovy věty, kde $\xi=c$.

Takových bodů, v nichž je derivace funkce f rovna 0, může být i více; např. funkce $\sin x$ na $\langle 0,2\pi \rangle$ splňuje předpoklady Rolleovy věty a její derivace je nulová v bodech $\frac{\pi}{2}$ a $\frac{3\pi}{2}$.

Úlohy:

- **8.2.1.** Proveďte grafickou ilustraci Rolleovy věty.
- **8.2.2.** Formou protipříkladů ukažte, že všechny tři předpoklady Rolleovy věty jsou nutné. Uveď te tedy příklady tří funkcí f_1 , f_2 , f_3 , pro něž neplatí tvrzení Rolleovy věty, a to tak, že
- 1) funkce f_1 je nespojitá v jediném bodě intervalu $\langle a,b\rangle$, ale předpoklady 2 a 3 jsou splněny;
- 2) funkce f_2 nemá derivaci v jediném bodě intervalu (a,b), ale předpoklady 1 a 3 jsou splněny;
- 3) pro funkci f_3 platí $f_3(a) \neq f_3(b)$, ale předpoklady 1 a 2 jsou splněny.

 \mathbf{V} (Lagrangeova): Nechť funkce f

- 1) je spojitá na intervalu $\langle a,b \rangle$,
- 2) má derivaci na intervalu (a,b),

Pak v intervalu (a,b) existuje bod ξ tak, že platí $\frac{f(b)-f(a)}{b-a}=f'(\xi)$.

 $D\mathring{u}kaz$: Zavedeme pomocnou funkci $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ a ověříme, že

jsou pro ni splněny předpoklady Rolleovy věty. Z tvrzení Rolleovy věty pro funkci F pak plyne tvrzení věty Lagrangeovy.

Úlohy

- **8.2.3.** Proved'te grafickou ilustraci Lagrangeovy věty.
- **8.2.4.** Formou protipříkladů (dle 8.2.2) ukažte, že oba předpoklady Lagrangeovy věty jsou nutné.

Lagrangeova věta se používá v různých tvarech; některé uvedeme.

Položíme-li $a=x_0,\ b=x_0+\Delta x$ a označíme-li θ číslo z intervalu $(0,1),\ lze$ tvrzení upravit takto: Pak existuje $\theta\in(0,1)$ tak, že platí $f(x_0+\Delta x)=f(x_0)+f'(x_0+\theta\,\Delta x)\cdot\Delta x$.

Označíme-li $x = x_0 + \Delta x$, lze vztah z Lagrangeovy věty zapsat ve tvaru $f(x) = f(x_0) + (x - x_0) \cdot f'(x_0 + \theta (x - x_0))$.

Jiný zápis: $\Delta y = f'(x_0 + \theta \Delta x) \cdot \Delta x$, ukazuje, proč se Lagrangeově větě říká též *věta* o přírůstku funkce.

Lagrangeova věta má četné důsledky, z nichž některé lze posuzovat jako samostatné a významné výsledky matematické analýzy (viz 8.3).

V (Cauchyho věta, zvaná též zobecněná věta o střední hodnotě): Nechť funkce f, g

- 1) jsou spojité na intervalu $\langle a,b \rangle$,
- 2) mají derivace na intervalu (a,b),
- 3) $g'(x) \neq 0$ na intervalu (a,b).

Pak v intervalu
$$(a,b)$$
 existuje bod ξ tak, že platí $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

 $D\mathring{u}kaz$: Předně $g(a) \neq g(b)$, neboť jinak by podle Rolleovy věty existoval bod $\xi_r \in (a,b)$ tak, že by $g'(\xi_r) = 0$, což by bylo ve sporu s předpokladem 3. Zavedeme pomocnou funkci

$$F(x) = [f(b) - f(a)] \cdot [g(x) - g(a)] - [f(x) - f(a)] \cdot [g(b) - g(a)]$$

a ověříme, že jsou pro F na $\langle a,b \rangle$ splněny předpoklady Rolleovy věty. V (a,b) tedy existuje ξ tak, že $F'(\xi) = 0$, tedy $[f(b) - f(a)] \cdot g'(\xi) - f'(\xi) \cdot [g(b) - g(a)] = 0$, z čehož plyne tvrzení. \Box Cauchyova věta se používá např. k důkazu l'Hospitalova pravidla (viz 8.3).

Všimněme si ještě vztahu uvedených tří vět o střední hodnotě: implikace $(R) \Rightarrow (L)$, $(R) \Rightarrow (C)$ znázorňují, že pomocí Rolleovy věty jsme dokázali zbývající dvě. Avšak také je $(L) \Rightarrow (R)$, neboť tvrzení Rolleovy věty lze chápat jako zvláštní případ tvrzení věty Lagrangeovy, když platí f(a) = f(b). Stejně tak lze ukázat, že Lagrangeova věta je zvláštním případem věty Cauchyovy, tj. $(C) \Rightarrow (L)$, jestliže g(x) = x. Jsou tedy všechny tři věty o střední hodnotě navzájem ekvivalentní. \Box

8.3. Některé důsledky vět o střední hodnotě

Nejprve uvedeme dva typické důsledky vět o střední hodnotě; na jednom je založen pojem neurčitého integrálu, druhý umožňuje jednoduchý výpočet limit funkcí.

V (o konstantní funkci): Funkce f je na intervalu (a,b) konstantní \Leftrightarrow má na (a,b) derivaci a $\forall x \in (a,b)$ platí f'(x) = 0.

 $D\mathring{u}kaz$: Z definice derivace plyne, že funkce konstantní na (a,b) má na (a,b) derivaci rovnu 0 (viz 7). Naopak nechť na (a,b) je f'(x)=0. Dokážeme, že pro každé dva body $x_1, x_2 \in (a,b)$ platí $f(x_1)=f(x_2)$. Zvolme označení tak, aby $x_1 < x_2$. Pak na intervalu $\langle x_1, x_2 \rangle$ jsou splněny předpoklady Lagrangeovy věty, tedy existuje bod $\xi \in \langle x_1, x_2 \rangle$ tak, že je

$$f(x_2) = f(x_1) + (x_2 - x_1) \cdot f'(\xi).$$

Rovnost $f(x_2) = f(x_1)$ plyne z toho, že derivace ve výše uvedeném vztahu je nulová.

Důsledek: Mají-li dvě funkce f, g na (a,b) stejné derivace, tj. f'(x) = g'(x), pak se na tomto intervalu liší jen o konstantu, tj. $\exists C \in R$ tak, že na (a,b) je f(x) = g(x) + C.

Tímto důsledkem jsou vytvořeny předpoklady k definici pojmu neurčitý integrál. Tedy primitivní funkcí např. k funkci $\cos x$ je nejen funkce $\sin x$, ale také každá funkce tvaru $\sin x + C$, kde $C \in \mathbf{R}$. Neurčitý integrál jako množina všech primitivních funkcí k funkci f je podle důsledku Lagrangeovy věty množinou všech funkcí tvaru F(x) + C, kde F je jedna z primitivních funkcí k funkci f a C je libovolná (integrační) konstanta (viz 11).

Následující věta se týká výpočtu limit typu $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Podobnou větu lze vyslovit i pro li-

mity typu $\left\lceil \frac{\infty}{\infty} \right\rceil$ a obě pak použít k výpočtu několika dalších typů limit.

V (L'Hospitalovo pravidlo): Nechť

1° funkce f, g mají derivace v P(a), kde $a \in \mathbb{R}^*$,

$$2^{\circ} \lim_{x \to a} f(x) = 0, \lim_{x \to a} g(x) = 0,$$

3° existuje vlastní nebo nevlastní $\lim_{x\to a} \frac{f'(x)}{g'(x)} = K$.

Pak existuje i
$$\lim_{x\to a} \frac{f(x)}{g(x)}$$
 a rovná se K .

Princip důkazu (pro $a \in \mathbb{R}$, $x \to a+$): Podle 2° lze doplnit definici funkcí f, g tak, aby byly spojité v U(a), když položíme f(a) = g(a) = 0. Existuje pak interval $\langle a, b \rangle \subset U(a+)$ tak, že obě funkce f, g jsou na něm spojité a na (a, b) mají derivaci. Předpoklady Cauchyovy věty jsou tak splněny nejen na intervalu $\langle a, b \rangle$, ale na každém podintervalu $\langle a, x \rangle \subset \langle a, b \rangle$. Podle Cauchyovy věty pak na každém intervalu $\langle a, x \rangle$ existuje bod ξ tak, že

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Pro $x \to a^+$ je též $\xi \to a^+$. Podle předpokladu existuje $\lim_{\xi \to a^+} \frac{f'(\xi)}{g'(\xi)} = K$ a vzhledem k rov-

nosti
$$\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}$$
 má stejnou limitu pro $x \to a+$ i podíl na její levé straně. \Box

Úlohy:

8.3.1. Vypočtěte
$$\lim_{x\to 2} \frac{\arctan(x-2)}{x^2-4}$$
. $\left[\frac{1}{4}\right]$

8.3.2. Vypočtěte
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$
. [1]

8.3.3. Vypočtěte
$$\lim_{x \to +\infty} \frac{6x^3 + 5x + 4}{3x^3 + 2x^2 + 1}$$
. [2]

Z důkazu věty je zřejmé, že l'Hospitalovo pravidlo platí i pro jednostranné limity, což už jsme měli i v úloze 8.3.3.

Úloha 8.3.4. Vypočtěte
$$\lim_{x\to 0+} \frac{\ln x}{\cot x}$$
. [0]

L'Hospitalovo pravidlo neplatí naopak a to v tomto smyslu: z existence limity podílu funkcí neplyne existence limity podílu jejich derivací nebo, což je totéž, z neexistence limity podílu derivací ještě neplyne neexistence limity podílu funkcí. Např. $\lim_{x\to 0} \frac{\sin|x|}{|x|} = 1$.

Někdy je potřebné použít l'Hospitalovo pravidlo i vícekrát, případně provádět při výpočtu úpravy, které postup zjednoduší.

Úloha 8.3.5. Vypočtěte
$$\lim_{x\to 0} \frac{1-\cos 3x}{\sin^2 x}$$
. $\left[\frac{9}{2}\right]$

Při výpočtu limit typu $[0 \cdot \infty]$ součinu funkcí $f \cdot g$ upravíme součin funkcí na podíl f/(1/g) nebo naopak g/(1/f) tak, aby to bylo vhodné pro použití l'Hospitalova pravidla (tedy např. funkci logaritmickou je zpravidla nejvhodnější nechat v čitateli).

Úloha 8.3.6. Vypočtěte
$$\lim_{x\to 0+} x \ln x$$
. [0]

Počítáme-li limitu typu $[\infty-\infty]$ rozdílu funkcí f-g, upravíme rozdíl funkcí na podíl: f-g=1/(1/f)-1/(1/g)=(1/g-1/f)/(1/fg).

Úloha 8.3.7. Vypočtěte
$$\lim_{x\to 0} \left(\cot g^2 x - \frac{1}{x^2} \right)$$
.

 $\left[-\frac{2}{3}\right]$; před použitím l'Hospitalova pravidla nejprve získaný zlomek vhodně rozložíme na součin funkcí.]

U limit typu $[0^0]$, $[\infty^0]$ a $[1^\infty]$ pro funkce f^g postupujeme tak, že tuto funkci nejprve upravíme na tvar $e^{g \cdot \ln f(x)}$, limitu přeneseme do exponentu (podle věty o limitě složené funkce) a v exponentu dostaneme limitu typu $[0 \cdot \infty]$.

Úloha 8.3.8. Vypočtěte
$$\lim_{x\to 0+} x^{\sin x}$$
. [1]

8.4. Taylorův vzorec

Mějme funkci f, $U(x_0) \subset D(f)$; h nechť je přírůstek nezávisle proměnné a nechť platí $f(x_0 + h) \in U(x_0)$. Hodnotu $f(x_0 + h)$ dovedeme vyjádřit přesně pomocí Lagrangeovy věty

$$f(x_0 + h) = f(x_0) + h. f(x_0 + \theta h),$$

kde $\theta \in (0, 1)$, a přibližně užitím diferenciálu

$$f(x_0 + h) = f(x_0) + h. f'(x_0).$$

1. vzorec je sice přesný, ale na závadu někdy může být (např. při numerických výpočtech), že neznáme θ. Druhý vzorec dává aproximaci funkce f lineární funkcí, což je na jedné straně výhodné pro jednoduchost této aproximace, na druhé straně je lineární aproximace v některých případech nedostatečně přesná. Položme

$$f(x_0 + h) = f(x_0) + h \cdot f'(x_0) + R(h),$$

kde R(h) je nějaký "zbytek". Platí tedy

$$\frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) = \frac{R(h)}{h}, \text{ takže } \lim_{h \to 0} \frac{R(h)}{h} = 0.$$

Zbytek R(h) je tedy "vyššího řádu" než h, "jde k 0 rychleji než h", např. může být typu $a.h^2$.

Chtěli bychom nyní zachovat jednoduchost aproximace hodnoty $f(x_0 + h)$, ale přitom zvýšit přesnost. Můžeme toho dosáhnout tím že $f(x_0 + h)$ aproximujeme mnohočlenem v h stupně n; tento mnohočlen označíme $T_n(h)$. Při vhodném postupu bude zbytek, tedy rozdíl $f(x_0 + h) - T_n(h)$, záviset až na h^{n+1} .

V (Taylorova): Nechť funkce f má v $U(x_0)$ spojité derivace až do řádu n+1.

Pak pro každé $x \in U(x_0)$ platí (označíme-li $h = x - x_0$) tzv. Taylorův vzorec:

$$f(x_0+h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + ... + \frac{f^{(n)}(x_0)}{n!}h^n + R_n(h),$$

kde $R_n(h)$, tzv. **zbytek**, lze psát ve tvaru

Lagrangeově:
$$R_n(h) = \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!} h^{n+1}$$
, kde $\theta \in (0,1)$, nebo

Cauchyově:
$$R_n(h) = \frac{f^{(n+1)}(x_0 + \overline{\theta}h)}{n!} (1 - \overline{\theta})^n h^{n+1}$$
, kde $\overline{\theta} \in (0,1)$.

V důkazu se používají pomocné funkce a Rolleova věta.

Druhý obvyklý tvar Taylorova vzorce dostaneme po dosazení $h = x - x_0$:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x - x_0),$$

Koeficienty
$$\frac{f^{(n)}(x_0)}{n!}$$
 se nazývají **Taylorovy koeficienty**.

Položíme-li $x_0 = 0$, což je např. u elementárních funkcí častý a přirozený požadavek, dostaneme zvláštní případ Taylorova vzorce pro okolí bodu 0, a tento vzorec se někdy nazývá *Maclaurinův* (čti mekloren):

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x),$$

Prvních n+1 členů na pravé straně Taylorova (Maclaurinova) vzorce tvoří Taylorův polynom $T_n(x)$, takže platí $f(x) = T_n(x) + R_n(x)$. Pokud na nějakém $U(x_0)$ je $\lim_{n \to +\infty} R_n(x) = 0$. je Taylorův polynom aproximací funkce f. Polynom $T_n(x)$ se také nazývá **Taylorův** (**Maclaurinův**) rozvoj funkce f; zde je to rozvoj podle vzorce, ale pracujeme rovněž s rozvojem funkce v mocninnou řadu.

V (přehled Maclaurinových rozvojů některých elementárních funkcí):

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + R_{n}(x)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + R_{2m-1}(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{m-1} \frac{x^{2m}}{(2m)!} + R_{2m}(x)$$

$$\operatorname{arctg} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{2m-1} + R_{2m-1}(x)$$

$$\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2m-1}}{(2m-1)!} + R_{2m-1}(x)$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2m}}{(2m)!} + R_{2m}(x)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n-1} \frac{x^{n}}{n} + R_{n}(x)$$

$$(1+x)^{r} = 1 + \binom{r}{1}x + \binom{r}{2}x^{2} + \binom{r}{3}x^{3} + \dots + \binom{r}{n}x^{n} + R_{n}(x) \quad (\forall r \in \mathbf{R})$$

Jestliže zjišťujeme, pro která x platí $\lim_{n\to +\infty} R_n(x) = 0$, dostaneme, že u funkcí e^x , sin x, cos x, sh x, ch x je to pro $x \in \mathbb{R}$, u funkce arctg x pro $x \in \langle -1, 1 \rangle$, u funkce $\ln(1+x)$ pro $x \in (-1, 1)$ a u funkce $(1+x)^r$ pro $x \in (-1, 1)$ nebo na intervalu širším v závislosti na r.

Úlohy (na Maclaurinův rozvoj funkcí)

8.4.1. Určete Taylorovy koeficienty rozvojů funkcí uvedených v předchozím přehledu (použitím obecného vzorce).

[V podstatě jde o využití vhodných pravidel pro výpočet derivací vyšších řádů pro zadanou funkci.]

- **8.4.2.** Najděte rozvoj funkcí e^{-x} , sin 3x.
- **8.4.3.** Odvoď te rozvoj funkcí $\frac{1}{1+x}$, $\sqrt{1+x}$.
- **8.4.4.** Určete první členy rozvoje funkcí (x + 1).ch 2x, x.e^{-2x} až po členy s x^5 .

8.4.5. Zobrazte na grafickém kalkulátoru (nebo na počítači pomocí vhodného SW systému) funkci $y = \cos x$ společně s jejími aproximacemi danými Maclaurinovým rozvojem:

$$f_1(x) = 1$$
, $f_2(x) = 1 - \frac{x^2}{2}$, $f_3(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$, $f_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720}$.

Sledujte, jak se rozšiřuje interval těch $x \in \mathbb{R}$, pro něž $\cos x \approx f_k(x), k = 1, 2, 3, 4$.

8.4.6. Totéž proveď te pro funkce $\sin x$, ch x, sh x, arctg x, případně i pro jiné.

_ * _