UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS APUCARANA

JULIO CESAR GARCIA RIBEIRO

RELATÓRIO DA ATIVIDADE SEMANAL 4 SISTEMAS DE CONTROLE 2 O processo de moagem do Concentrador 3 da Samarco é também chamado de moagem secundária, ou remoagem e é alimentado pelo concentrado do circuito de flotação com vazão nominal de 1455 t/h por linha.

Os dois moinhos funcionam em paralelo, com ciclones de 0,25m. O número de ciclones em operação depende da pressão da alimentação, com no máximo 18 ciclones em funcionamento. A Figura 1 descreve o fluxograma do processo de remoagem.

Figura 1 – Fluxograma do processo de moagem

Foram propostas quatro malhas para o controle de vazão utilizando controladores PI:

- 1- SIC-004: Controla a vazão da bomba 01
- 2- FIC-013: Controla a vazão de água no moinho de bolas
- 3- LIC-001: Controla o nível da caixa de descarga
- 4- SIC-001: Controla a vazão da bomba 02
- O desgaste devido ao uso do equipamento, falta ou manutenção precária e uma modelagem ruim justificam a aplicação de um controlador robusto.

Os principais equipamentos considerados mais importantes são citados abaixo:

- Moinho de bolas: O material a ser moído é misturado com água suficiente para formar uma polpa na entrada do moinho. Duas variáveis são importantes nesse processo: O percentual de sólidos do da polpa que alimenta o moinho (controlada pela adição de água na alimentação, que depende da granulometria do material e da alimentação e tipo de moinho); A potência do motor (controlado com a adição de bolas para se atingir uma potência ideal de operação).
- **Hidrociclones:** As variáveis operacionais deste dispositivo que podem ser controladas são: O percentual de sólidos (controlado com a abertura ou fechamento de hidrociclones); E a pressão de alimentação.
- **Bombas de polpa:** As principais variáveis para o controle deste equipamento são a vazão no recalque e a velocidade. A variação da velocidade é feita com o uso de inversores de frequência.

O moinho de bolas é o principal equipamento no processo de moagem, por isso, as variações que ocorrem nele afetam fortemente a moagem. Variações no processo podem ocorrer devido a um comportamento oscilatório e desvio do *set-point*; controle ineficiente da qualidade do produto; desgaste desnecessário do moinho; e o moinho não operando com máxima eficiência energética.

Os objetivos do controle na moagem são o controle da granulometria do produto para que 80% do produto possa passar; manter a pressão de entrada no hidrociclone abaixo dos limites toleráveis; manter o nível do reservatório dentro da faixa de operação e manter a corrente elétrica da bomba de circulação abaixo dos limites.

Se podem observar também três situações comuns na operação da planta, a primeira está relacionada a mudança do tipo de material na alimentação do moinho e outras duas se referem ao percentual de minério na polpa de alimentação.

A identificação das malhas foi realizada com erro de até 8%, resultando em modelos de primeira ordem, que apresentavam atrasos de transporte na casa dos 2s, descritos genericamente por:

$$G(s) = \frac{K}{as + 1}e^{-\tau s}$$

Os modelos das malhas podem ser observados na Tabela 1 abaixo e foram obtidos por meio de um sinal PRBS (*Pseudo Random Binary Signal*) aplicado ao modelo simulado no software IDEAS_{TM} e identificado via *System Identication* do MATLAB.

Tabela 1 – Fund	ferência das n	

I docia 1	i unções de transferencia das mamas do sistema
Malha	Função de Transferência
SIC-004	$G(s) = \frac{16,7608}{2,7174s + 1}e^{-2s}$
FIC-013	$G(s) = \frac{2,1045}{1,7895s + 1}e^{-1,8s}$
LIC-001	$G(s) = \frac{11,6279}{1,0668s + 1}e^{-2,5s}$
SIC-001	$G(s) = \frac{36,5620}{2,4522s + 1}e^{-2s}$

A resposta de malha aberta das malhas do processo foram adquiridas utilizando o Software MATLAB e podem ser vistas na Figura 2 abaixo:

Figura 2 – Respostas em malha aberta das malhas do processo de moagem

Para encontrar os parâmetros dos controladores, se aproveitou do formato da equação da planta:

$$G(s) = \frac{K}{\tau s + 1} e^{-\theta s}$$

E se utilizou as seguintes tabelas para calcular os valores requeridos (em ordem: Ziegler-Nichols; Cohen & Coon; IAE e ITAE):

Controlador	K_p	T_i	T_d
P	$\tau/K\theta$	-	-
PI	$0.9(\tau/K\theta)$	3.33θ	-
PID	$1.2(\tau/K\theta)$	2θ	0.5θ

Controlador	K_p	T_i	T_d
P	$(1.03+0.35(\frac{\tau}{\theta}))\frac{\tau}{K\theta}$	-	-
PI	$(0.9 + 0.083(\frac{\tau}{\theta}))\frac{\tau}{K\theta}$	$\frac{(0.9+0.083(\frac{\tau}{\theta}))}{1.27+0.6(\frac{\tau}{\theta}))}\Theta$	-
PID	$(1.35 + 0.25(\frac{\tau}{\theta}))\frac{\tau}{K\theta}$	$\frac{(1.35+0.25(\frac{\tau}{\theta}))}{(0.54+0.6(\frac{\tau}{\theta}))}\theta$	$\frac{0.5\theta}{(1.35+0.25(\frac{\theta}{\tau}))}$

Controlador	K_p	T_i	T_d
PI - IAE	$\frac{0.758}{K} \left(\frac{\tau}{\theta}\right)^{0.861}$	$\frac{\tau}{(1.02-0.323(\theta/\tau))}$	-
PI - ITAE	$\frac{0.586}{K} \left(\frac{\tau}{\theta}\right)^{0.916}$	$\frac{\tau}{(1.03-0.165(\theta/\tau))}$	-
PID- IAE	$\frac{0.1.086}{K} \left(\frac{\tau}{\theta}\right)^{0.869}$	(0.7.0 0.120(0/0/)	$0.348\tau \left(\frac{\theta}{\tau}\right)^{0.914}$
PID- ITAE	$\frac{0.965}{K} \left(\frac{\tau}{\theta}\right)^{0.850}$	$\frac{\tau}{(0.796-0.147(\theta/\tau))}$	$0.308 \tau \left(\frac{\theta}{\tau}\right)^{0.929}$

Fonte: (PINTO, 2014)

Para o método Ziegler-Nichols foram encontrados os valores dispostos na Tabela 2 para as constantes dos controladores.

Tabela 2 – Valores Kp, Ti e Td com Ziegler-Nichols

Tubble 2 valores rip; Tre ra com Ziegier ritenois				
Controlador_Malha	Kp	Ti	Td	
PI_SIC-004	0.0729	6.6600	-	
PID_SIC-004	0.0972	4	1	
PI_FIC-013	0.4252	5.9940	-	
PID_FIC-013	0.5669	3.6000	0.9000	
PI_LIC-001	0.0330	8.3250	-	
PID_LIC-001	0.0440	5	1.2500	
PI_SIC-001	0.0302	6.6600	-	
PID_SIC-001	0.0402	4	1	

Na Figura 3 abaixo se pode verificar a resposta controlada do sistema em malha fechada de cada malha disponível:

Figura 3 – Respostas em malha fechada das malhas controladas do processo de moagem

Na Figura 4 abaixo se pode verificar o diagrama de bode de cada malha controlada disponível:

Figura 4 – Diagrama de bode das malhas controladas do processo de moagem

Para o método Cohen & Coon foram encontrados os valores dispostos na Tabela 3 para as constantes dos controladores.

Tabela 3 – Valores Kp, Ti e Td com Cohen & Coon				
Controlador_Malha	Kp	Ti	Td	
PI_SIC-004	0.0820	0.9714	-	
PID_SIC-004	0.1368	2.4936	0.5918	
PI_FIC-013	0.4641	0.9475	-	
PID_FIC-013	0.7552	2.5318	0.5630	
PI_LIC-001	0.0343	1.5324	-	
PID_LIC-001	0.0535	4.5748	0.8581	
PI_SIC-001	0.0336	0.9989	-	
PID_SIC-001	0.0556	2.5971	0.6037	

Na Figura 5 abaixo se pode verificar a resposta controlada do sistema em malha fechada de cada malha disponível:

Figura 5 – Respostas em malha fechada das malhas controladas do processo de moagem

Na Figura 6 abaixo se pode verificar o diagrama de bode de cada malha controlada disponível:

Figura 6 – Diagrama de bode das malhas controladas do processo de moagem

Para o método IAE foram encontrados os valores dispostos na Tabela 4 para as constantes dos controladores.

Tabela 4 – Valores Kp, Ti e Td com IAE				
Controlador_Malha	Kp	Ti	Td	
PI_SIC-004	0.0588	3.4737	-	
PID_SIC-004	0.0845	4.4671	0.7146	
PI_FIC-013	0.3584	2.5744	-	
PID_FIC-013	0.5134	3.1217	0.6261	
PI_LIC-001	0.0313	4.0553	-	
PID_LIC-001	0.0446	2.6713	0.8086	
PI_SIC-001	0.0247	3.2412	-	
PID_SIC-001	0.0355	4.1009	0.7083	

Na Figura 7 abaixo se pode verificar a resposta controlada do sistema em malha fechada de cada malha disponível:

Figura 5 – Respostas em malha fechada das malhas controladas do processo de moagem

Na Figura 8 abaixo se pode verificar o diagrama de bode de cada malha controlada disponível:

Figura 8 – Diagrama de bode das malhas controladas do processo de moagem

Para o método ITAE foram encontrados os valores dispostos na Tabela 5 para as constantes dos controladores.

Tabela 5 – Valores Kp, Ti e Td com ITAE				
Controlador_Malha	Kp	Ti	Td	
PI_SIC-004	0.0462	2.9909	-	
PID_SIC-004	0.0746	3.9508	0.6296	
PI_FIC-013	0.2770	2.0711	-	
PID_FIC-013	0.4563	2.7610	0.5542	
PI_LIC-001	0.0231	1.6582	-	
PID_LIC-001	0.0402	2.3627	0.7248	
PI_SIC-001	0.0193	2.7386	-	
PID_SIC-001	0.0314	3.6269	0.6250	

Na Figura 9 abaixo se pode verificar a resposta controlada do sistema em malha fechada de cada malha disponível:

Figura 9 – Respostas em malha fechada das malhas controladas do processo de moagem

Na Figura 10 abaixo se pode verificar o diagrama de bode de cada malha controlada disponível:

Figura 10 – Diagrama de bode das malhas controladas do processo de moagem

Se pode observar resultados semelhantes para os métodos de sintonia. É interessante observar, que no caso do método Cohen & Coon foram geradas duas respostas instáveis para o sistema controlado por PI na malha SIC-004 e FIC-013, entretanto, todos os outros casos atingiram respostas aceitáveis.

REFERÊNCIAS

DE CASTRO, Felipe F.; EUZÉBIO, Thiago AM; BRAGA, Márcio F. Projeto e Análise de Controladores Robustos aplicados a Moagem na Mineração. In: ANAIS DO 140 SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE, 2019, Ouro Preto. Anais eletrônicos... Campinas, Galoá, 2019. Disponível em: https://proceedings.science/sbai-2019/papers/projeto-e-analise-de-controladores-robustos-aplicados-a-moagem-na-mineracao. Acesso em: 18 set. 2020.

PINTO, Jan Erick Mont Gomery. **Aplicação Prática do Método de Sintonia de Controladores PID Utilizando o Método do Relé com Histerese.** 2014. 92 f. Dissertação (Mestrado) - Curso de Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte, Natal, 2014. Disponível em: https://repositorio.ufrn.br/jspui/bitstream/123456789/15507/1/JanEMGP_DISSERT.pdf. Acesso em: 03 out. 2020.