

## Desempenho de Processadores

# Arquitetura e Organização de Computadores

Universidade Federal de Uberlândia Faculdade de Computação Prof. Dr. rer. nat. Daniel D. Abdala

#### Nesta Aula

- Definição de desempenho;
- Mensuração de desempenho;
- Desempenho da UCP e seus fatores;
- Desempenho de instruções;
- Considerações acerca do consumo de energia;
- Desempenho em sistemas multiprocessados;
- Benchmarrking.

## A Importância do Desempenho

- Avaliar desempenho de computadores
  - Desafiador / Complexo;
  - Importante → a classe de problemas resolvíveis é limitada pelo desempenho;
  - Escolha do sistema computacional;
  - Estimar as necessidades computacionais para uma determinada aplicação;

# O que é Desempenho?

 O que significa dizer?
"Computador A possui melhor desempenho que o Computador B"

Uma analogia para definir o termo:

# Exemplo

| Veículo | Vel. média | Alcance  | Capacidade | Flexibilidade |
|---------|------------|----------|------------|---------------|
| Trem    | 100km/h    | 4.000 km | 600        | Baixa         |
| Avião   | 800km/h    | 8.000 km | 400        | Baixa         |
| Carro   | 90km/h     | 600 km   | 5          | Alta          |
| Ônibus  | 70km/h     | 700 km   | 42         | Média         |

- Qual veículo apresenta melhor desempenho?
  - Depende de como definimos desempenho:
    - Velocidade
    - Alcance
    - Capacidade
    - flexibilidade

## Do ponto de vista computacional...

- Um programa em dois computadores distintos:
  - Computador que termina o programa antes possui maior desempenho
- Datacenter com diversos computadores rodando diversas tarefas:
  - O computador mais rápido é aquele que completa o maior número de tarefas por dia.

## Throughput & Tempo de Execução

- Largura de Banda
  - Ou Throughput;
  - Quantidade total de trabalho em um determinado tempo;
- Tempo de Resposta
  - Ou tempo de execução;
  - Tempo decorrido entre o início e o término de uma tarefa;

## Questões Chave:

- Substituir o processador em um sistema computacional por um processador mais rápido.
- Acrescentar processadores adicionais a um sistema que utiliza múltiplos processadores para tarefas separadas.

## Tempo de Resposta

 Desempenho é inversamente proporcional ao tempo de resposta

$$Desempenho_{x} = \frac{1}{Tempo \ de \ Execução_{x}}$$

Considerando dois computadores, dizemos que se

$$\frac{1}{Tempo\ de\ Execução_{x}} > \frac{1}{Tempo\ de\ Execução_{x}} > \frac{1}{Tempo\ de\ Execução_{v}}$$

## Desempenho Relativo

 Computador A executa um programa em 10s e computador B em 15s. Quanto A é mais rápido que B?

$$\frac{Desempenho_x}{Desempenho_y} = n$$

$$\frac{15}{10} = 1,5$$

#### Outros pontos a serem considerados

- Tempo de execução → tempo decorrido entre o início de um processo e seu término.
- Tempo de CPU → tempo efetivamente transcorrido em que o processador trabalha no processo.
- Tempo de acesso a memória
- Tempo de entrada e saída

## Desempenho da UCP

 Considere um programa executando em um computador hipotético qualquer:

 $Tempo\ de\ Exec.\ da\ CPU = \#Ciclos\ de\ Clock \times Tempo\ do\ ciclo\ de\ clock$ 

- Fica claro que duas formas de se melhorar o tempo de execução e consequentemente o desempenho seriam:
  - Diminuir o números de clock necessários para executar o programa
  - Diminuir a duração do ciclo de clock

# Desempenho da Instrução

- A equação anterior não faz menção ao # de instruções que compõem o programa;
- Podemos definir o tempo de execução de um programa como:
  - # de instruções x tempo médio das instruções
- CPI → Ciclos de Clock por Instruções (Clockcicles Per Instruction)
- Consequentemente:

*CPI* = #instr.× # médio de ciclos de clock por instr.

#### Equação Clássica de Desempenho da UCP

$$Tempo_{UCP} = \frac{\#instruções \times CPI}{Taxa \ de \ Clock}$$

Exercícios

## Desempenho em Sistemas Paralelos

- Intuição
  - $-1 \mu Proc | 1 thread \rightarrow tempo de execução = x <math>\eta s$
  - -2 μProc|1 thread → tempo de execução = x/2 ηs
  - -4 μProc|1 thread → tempo de execução = x/4 ηs
- Certo?
  - Infelizmente ... NÃO!!!!!

#### Lei de Amdahl

 Frequentemente usado em computação paralela para prever o máximo speedup teórico usando múltiplos processadores;

$$s(n) = \frac{1}{B + 1/n(1-B)}$$

- n = número de threads
- B = parcela do algoritmo puramente sequencial [0,1]

# Speedup para B = 0.1 (10%)

- S(1)=1
- S(2)=1.81
- S(4)=3.07
- S(16)=6.4
- S(32)=7.8
- S(64)=8.7
- S(128)=9.34
- S(256)=9.66

# Bibliografia

Livro do Patterson, edição nova. Páginas 19 a
29

#### Trabalho Extra

- Escreva um pequeno artigo no qual a lei de Amdahl é revisada e explicada. Aponte os problemas com ela e então correlacione as correções previstas pela lei de Gustafson;
- 2 pontos na média;
- Entrega no final do semestre;