NE 795 Homework 3

NE 795 Spring 2025

Homework Assignment No. 3

1. (10 points)

Perform asymptotic analysis of the grey $P_{1/3}$ equations coupled with the material energy balance (MEB) equation to find out accuracy of this RT model in the equilibrium diffusion limit in terms of the small parameter ε .

2. (10 points)

Plot the spectral Planck function

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kT}} - 1} \tag{1}$$

for $T = \{1 \, eV, 10^2 \, eV, 10^3 \, eV\}$ as a function of ν in [eV].

3. (10 points)

Calculate the group Planck function

$$B_g = \int_{\nu_g}^{\nu_{g+1}} B_{\nu}(T) d\nu \,, \tag{2}$$

where $B_{\nu}(T)$ is given by Eq. (1). Use 17 energy groups shown in Table 1. Plot B_{ν} and histogram of $\frac{1}{\nu_{g+1}-\nu_g}B_g$ for $T=\{1\,eV,10^2\,eV,10^3\,eV\}$. (See NE 795 notes on integration of the Planck function.)

Table 1: Upper boundaries for each frequency group

rasio r. oppor soundarios for oden modules, broup											
g	1	2	3	4	5	6	7	8	9		
$\nu_g \; [{ m KeV}]$	0	0.7075	1.415	2.123	2.830	3.538	4.245	5.129	6.014		
g	10	11	12	13	14	15	16	17	18		
$\nu_g \; [{\rm KeV}]$	6.898	7.783	8.667	9.551	10.44	11.32	12.20	13.09	1×10^{4}		

4. (10 points)

Given the spectral opacity defined by [1]

$$\varkappa_{\nu} = \frac{27}{(h\nu)^3} \left(1 - e^{-\frac{h\nu}{kT}} \right) \tag{3}$$

compute group Planck opacities given by

$$\varkappa_{B,g} = \frac{\int_{\nu_g}^{\nu_{g+1}} \varkappa_{\nu}(T) B_{\nu}(T) d\nu}{\int_{\nu_g}^{\nu_{g+1}} B_{\nu}(T) d\nu}$$
(4)

for 17 energy groups shown in Table 1. For a given T, plot \varkappa_{ν} and the histogram of $\varkappa_{B,g}$ on the same graph. Make a set of plots for $T = \{1 \, eV, 10^2 \, eV, 10^3 \, eV\}$. (See the NE 795 notes on calculation of group opacities in Fleck-Cummings test.)

NE 795 Homework 3

5. (10 points)

Compute group Rosseland opacities

$$\frac{1}{\varkappa_{R,g}} = \frac{\int_{\nu_g}^{\nu_{g+1}} \frac{1}{\varkappa_{\nu}(T)} \frac{\partial B_{\nu}(T)}{\partial T} d\nu}{\int_{\nu_g}^{\nu_{g+1}} \frac{\partial B_{\nu}(T)}{\partial T} d\nu}$$
(5)

for spectral opacity given by Eq. (3) using 17 energy groups shown in Table 1. For a given T,

- plot \varkappa_{ν} and histogram of $\varkappa_{R,g}$ on the same graph,
- $\bullet\,$ plot histograms of $\varkappa_{B,g}$ and $\varkappa_{R,g}$ on the same graph to compare them.

Make this collection of plots for $T = \{1 eV, 10^2 eV, 10^3 eV\}.$

Problem	1	2	3	4	5	total	%
Points							
Maximum	10	10	10	10	10	10	

References

[1] J. A. Fleck, J. D. Cummings, "An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport," *Journal of Computational Physics*, 8, 313–342 (1971).