

CSCI-UA.0480-003 Parallel Computing

Lecture 2: Parallel Hardware: Basics

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Computer History

Eckert and Mauchly

- 1st working electronic computer (1946)
- 18,000 Vacuum tubes
- 1,800 instructions/sec
- 3,000 ft³

Computer History

EDSAC 1 (1949)

Maurice Wilkes

1st stored program computer 650 instructions/sec 1,400 ft³

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

Intel 4004 Die Photo

Introduced in 1970

Firstmicroprocessor

2,250 transistors 12 mm²

108 KHz

Intel 8086 Die Scan

- 29,000 transistors
- 33 mm²
- 5 MHz
- Introduced in 1979
 - Basic architecture
 of the IA32 PC

Intel 80486 Die Scan

- 1,200,000 transistors
- 81 mm²
- 25 MHz
- Introduced in 1989
 - 1st pipelined implementation of IA32
 - 1st processor with on-chip cache

Pentium Die Photo

- 3,100,000 transistors
- 296 mm²
- 60 MHz
- Introduced in 1993
 - 1st superscalar implementation of IA32

Pentium 4

55,000,000 transistors 146 mm² 3 GHz Introduced in 2000

http://www.chip-architect.com

Pentium 4

Core 2 Duo (Merom)

Intel Core i7 (Nehalem)

IBM Power 8

Intel Xeon Phi (50 cores)

Tilera (72 cores)

How did the hardware evolve like that?

First Generation (1970s)

Single Cycle Implementation

The Von Neumann Architecture

Second Generation (1980s)

·Pipelinining:

- ·the hardware divided into stages
- ·temporal parallelism
- ·Number of stages increases with each generation
- •Maximum CPI (Cycles Per Instruction) = 1
 - Due to dependencies
 (i.e. an instruction must wait for the result of another instruction)

Some Enhancements

Third Generation (1990s)

- time is called superscalar capability.
- •performance = instructions per cycle (IPC)
- •Speculative Execution (prediction of branch direction) is introduced to make the best use of superscalar capability —> This can make some instructions execute out-of-order!!

Fourth Generation (2000s)

Simultaneous Multithreading (SMT) (aka Hyperthreading Technology)

Some definitions before we proceed

An operating system "process"

- An instance of a computer program that is being executed.
- · Components of a process:
 - The executable machine language program
 - A block of memory
 - Descriptors of resources the OS has allocated to the process
 - Security information
 - Information about the state of the process

Multitasking

- Gives the illusion that a single processor system is running multiple programs simultaneously.
- Each process takes turns running >time
 slice
- After its time is up, it waits until it has a turn again.

Threading

- Threads are contained within processes.
- They allow programmers to divide their programs into (more or less) independent tasks.
- The hope is that when one thread blocks because it is waiting on a resource, another thread will have work to do and can run.

As you can see ...

We can have several processes, executed in a multitasking fashion, and each process can consist of several threads.

The Status-Quo

- We moved from single core to multicore to manycore:
 - for technological reasons, as we saw last lecture.
- Free lunch is over for software folks
 - The software will not become faster with every new generation of processors
- Not enough experience in parallel programming
 - Parallel programs of old days were restricted to some elite applications -> very few programmers
 - Now we need parallel programs for many different applications

How Did These Advances Happen?

The Multicore Software Triad

Conclusions

- The hardware evolution, driven by Moore's law, was geared toward two things:
 - exploiting parallelism
 - Dealing with memory (latency, capacity)