27. a.i.	Describe the RTL-NOR gate operation with a circuit diagram and truth table.	5	1	1	1
ii.	Describe the DTL-NAND gate operation with a circuit diagram and truth	5	1	1	1
	table.				
	(OR)				
Ъ.	Explain the operation of TTL NAND gate operation with a neat circuit diagram and truth table.	10	1	1	1
28. a.	Reduce using Quine McCluskey method $F(a,b,c,d) = \Sigma m(2,3,7,9,11,13) + \Sigma d(1,10,15)$	10	2	2	2
	(OD)				
h	(OR)	10	2	5	2
D.	Design half adder using data flow modeling.				
29. a.	A sequential circuit has one input and one output the state diagram is shown. Design the sequential circuit with D-FF.	10	3	3	2
	\bigcap_{i} 0/0				
	1/0 200				
	1/0				
	0/0				
	(01) \longrightarrow (11) $1/1$				
	1/0				
	1/0				
	(10)				
	0/1				
	(OR)	10	3	3	2
b.	Design an asynchronous sequential circuit that has two internal states and	10	3	3	Z
	one output. The excitation and output function describing the circuit are as follows:				
	$Y_1 = x_1 x_2 + x_1 y_2 + x_2 y_1$				
	$Y_2 = x_2 + x_1 y_1 y_2 + x_1 y_1$				
	$Z = x_2 + y_1$ (i) Prove the legis discrement of the circuit				
	(i) Draw the logic diagram of the circuit(ii) Derive the transition table output map and flow table				
	(ii) Don't the transition table output map and now able				
30. a.	Develop a 2-bit synchronous binary counter using T flip-flop.	10	.2	3	2
	(OR)				
b.	Derive the expression for the output voltage for 100 binary input to R-2R	10	2	3	2
	ladder DAC along with neat circuit diagram. Also draw the transfer characteristics of 3 bit DAC.				

* * * * *

Reg. No.			H		171			

B.Tech. DEGREE EXAMINATION, MAY 2022

Third Semester

18CSS201J – ANALOG AND DIGITAL ELECTRONICS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

(i)			t - A should be answered in OMR short to hall invigilator at the end of 40 th in		vithin first 40 minutes and OMR shee e.	t shoul	ld be	han	ded
(ii))	Par	t - B should be answered in answer b	ookle	t.				
Time	e: 2 ¹	⁄₂ Ho	urs			Max.	Ma	rks:	75
			$PART - A (25 \times 1 =$	= 25]	Marks)	Marks	BL	СО	PO
			Answer ALL Q		·				
	1.	JFE'	T is a controlled device, v			1	1	1	1
			Current, high input impedance Current, high noise level						
	2.	Tran	nsistor works as an amplifier whe	n		1	1	1	1
			Input junction is forward biased and the output junction is reverses biased	(B)	Input junction is reverse biased and output junction is forward biased				
		(C)		(D)	Both input and output junction are reverse biased				
d	3.		ermine the gain of non-inverting $= 99 \text{ K}\Omega$.	op-ar	mp with resistors $R_1 = 1 \text{ K } \Omega$ and	1	2	1	2
		(A)	100	(B)	1				u.
					100				
		(C)	$\frac{-1}{100}$	(D)	-100				
	4.	amp	a current shunt feedback ampli		the current gain of the forward $\beta = 0.19$. Find current gain with		2	1	2
		(A)	2	(B)	3				
		(C)	4	(D)	5				
	5.	Pin :	number 3 of 555 timer is			1	1	1	1
			Trigger	(B)	Threshold				
		(C)	Output	(D)	Reset				
	6.	_	rating temperature range for com			1	1	1	1
		. ,	0 to 70°C	\ /	10 to 70°C				
		(C)	0 to 17°C	(D)	50 to 70°C				
	7.	The	device with short propagation de	lay h	as	1	1	1	1
			Medium speed	-	Low speed				
		(C)	High speed	(D)	Very low speed				

24MF318CSS201J

Note:

	(C) High resistance	(B) Low impedance (D) Low resistance	1	1	1	1	19.	if (A)	two states of a synchronous sequential circuit is said to be equivalent For event input the output are (B) For every input the outputs and the same next states are the same	1	1	2	1
	Consider the following statements with (A) Switching speed is high and it provide OR and NOR logic operation	(B) Power dissipation is small as compared to other logic gates	1	1	1	1		(C)	For every input the next states (D) For every input the outputs may are the same be different but the next states are the same				
	(C) Its logic levels are compatible with other logic family gates	(D) It provides AND logic operation					20.	(A)	characteristic equation of J-K flip flop is $Q(n+1) = JQ(n) + \overline{K}Q(n) $ (B) $Q(n+1) = \overline{J}Q(n) + \overline{K}Q(n)$	1	1	2	1
		(B) Entity	1	1	5	1	21.		$Q(n+1) = J\overline{Q}(n) + K\overline{Q}(n)$ (D) $Q(n+1) = J\overline{Q}(n) + \overline{K}Q(n)$ our-bit SISO right shift register is initialized to a value 0001. Input to	1	2	3	2
11.		(D) Package	1	1	2	1		the	shift register is 1111. Identify the number of clock pulses required to in 1110 from the initial values.				
-	(A) MUX	(B) DEMUX (D) Encoder						(A) (C)	1 1				
		s are required.	1	1	2	-1 -	22.	A 3-	bit counter has a maximum modulus of (B) 6	1	1	3	1
	` '	(B) 2 ^M (D) M*M					22	(C)	8 (D) 10	. 1	.1	3	1
	(A) 3	of bits at a time. (B) 2 (D) 5	1	1	2	1	23.		final decimal number count in a counter designed with 8 flip flops is 255 (B) 256 31 (D) 32		(1.4	J	,
	If $A = 1010$ and $B = 0101$ then the con (A) $A > B$	nparator output is (B) A = B	1	1	2	1	24.	ADO	The state of the s	1	1	3	1
		(D) A-B	1	1	2	1		(A) (C)					
	The expression for C_3 in carry look ahe (A) $C_3 = G_0 + P_0 C_{in}$ (B) $C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 G_1$		1	1	2	1 -	25.	outp	at is the smallest change in voltage which may be produced at the aut due to the step change in the input of the DAC?	1	1	3	1
	(C) $C_3 = G_1 + P_1C_{in}$ (D) $C_3 = G_1 + P_1C_{in}$	~in .					39	. ,	Linearity (B) Accuracy Monotonicity (D) Resolution				
(eans (B) Set $Q = 0$ and $\overline{Q} = 1$ (D) Input SR are = 1	1	1	2	1			$PART - B (5 \times 10 = 50 Marks)$ Answer ALL Questions	Marks			
17.		gered JK flip-flop is logic 1. If K = 1,	1	1	2	1			e the pin details of IC 741 op-amp. It are the characteristics of an ideal op-amp?				1
1		(B) 0							lyse the gain of inverting op-amp.	4	1	1	1
18.		(D) Can't be determined tlop are T = 1, preset = 0, clear = 1.	I	E	2	1	b.	expi	(OR) n a neat diagram for voltage series feedback amplifier, obtain the ession for	4	Ī	1	1
+	(A) 0	(B) 1 (D) Can't be determined						(i (i (i) Input impedance with feedback	2 2 2	1 1 1	1 1 1	I I 1