Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	Систем управления и информати	<u>ки</u>	Группа_	P4235			
ЛАБОРАТОРНАЯ РАБОТА №5							
по курсу: «Методы оптимального и адаптивного управления»							
Синтез оптимального управления (принцип максимума)							
	Вариант №2						
_				_			
Авторы	работы:		тонов Е.С темов К. <i>Р</i>	-			
		F	Temob It.	••			
Препода	аватель:	Ге	расимов Д	(.H.			
« <u>20</u> » дег	кабря 2017 г.						

Санкт-Петербург 2017 г.

Работа выполнена с оценкой

Дата защиты «___» _____ 2017 г.

1 Цель работы

Для заданного объекта управления синтезировать оптимальное управление, при заданных критерии качества, начальных условиях и ограничениях (принцип максимума).

2 Теоретические сведения

Рассматриваемый объект управления:

$$\dot{x} = ax + bu, \quad x(0) \tag{1}$$

где a, b — известные параметры.

Критерий качества для системы (1) с фиксированным временем и фиксированными концами:

$$J_A = \int_0^{t_f} H(x, u, \lambda) + \dot{\lambda}x d\tau + \theta \eta_2(x(t_f))$$
 (2)

где $H(x,u,\lambda)=L(x,u)+\lambda f(x,u),\,\theta$ — множитель Лагранжа (константа), η_2 — функция для фиксации положения в t_f .

Функция накладывающая ограничение на значение состояния ОУ в момент времени t_f :

$$\eta_2(x(t_f)) = x(t_f) - x_f = x(t)\big|_{t=t_f} - x_f$$
(3)

Уравнение оптимальности:

$$\frac{\partial H}{\partial u} = 0 \tag{4}$$

Уравнение сопряженной системы:

$$\dot{\lambda} = -\frac{\partial H}{\partial x} \tag{5}$$

Уравнение трансверсальности:

$$\left(-\lambda + \theta \frac{\partial \eta_2}{\partial x} \right) \bigg|_{t_f} = 0$$
(6)

3 Исходные данные

Варианту №2 соответствует следующий набор исходных данных:

$$\dot{x} = -2x + u, \quad J = \int_{0}^{1} x^{2}(\tau) + u^{2}(\tau) d\tau, \quad x(1) = 5.$$
 (7)

4 Результаты практических действий

Запишем Лагранжиан и Гамильтониан системы:

$$L(x, u) = x^2 + u^2, \quad H(x, u, \lambda) = x^2 + u^2 + \lambda(-2x + u)$$
 (8)

Найдем структуру регулятора из уравнения оптимальности:

$$2u + \lambda = 0 \quad \Rightarrow \quad u = -\frac{1}{2}\lambda \tag{9}$$

Тогда ОУ:

$$\dot{x} = -2x - \frac{1}{2}\lambda\tag{10}$$

Запишем уравнение сопряженной системы:

$$\dot{\lambda} = 2\lambda - 2x\tag{11}$$

Объединим модели ОУ с регулятором и сопряженной системы и запишем:

$$\dot{x} = -2x - \frac{1}{2}\lambda
\dot{\lambda} = -2x + 2\lambda$$

$$\Rightarrow \quad \dot{\xi} = A_{\xi}\xi \quad \Rightarrow \quad \xi = e^{A_{\xi}t}\xi(0) \tag{12}$$

где
$$\xi = \begin{bmatrix} x & \lambda \end{bmatrix}^T$$
, $A_{\xi} = \begin{bmatrix} -2 & -\frac{1}{2} \\ -2 & 2 \end{bmatrix}$.

Из условия трансверсальности:

$$\lambda(t_f) = \theta \tag{13}$$

И, используя заданные ограничения, получим:

$$\xi(1) = e^{A_{\xi}} \xi(0) \quad \Leftrightarrow \quad \begin{bmatrix} 5 \\ \theta \end{bmatrix} = Z \cdot \begin{bmatrix} x(0) \\ \lambda(0) \end{bmatrix} \quad \Rightarrow \quad \lambda(0) = \frac{5 - Z_{11} x(0)}{Z_{12}} \tag{14}$$

где $Z = e^{A_{\xi}}$.

Таблица 1 – Значения критерия качества для различных начальных условий и различных коэффициентах регулятора

	Опт. регулятор	Неоптимальный	Неоптимальный
	$ m u =$ - $0.5~\lambda$	$\mathrm{u}=$ -0.1 λ	$u=$ - 2 λ
J(1.2) x(0)=0	107.197	107.325	108.387
J(1.2) x(0)=10	87.623	88.643	96.741

Графики переходных процессов показаны на рисунках 1–2, а использованная дли их получения схема моделирования— на рисунке 3.

Рисунок 1 – Графики переходных процессов для начального условия x(0) = 0

Рисунок 2 – Графики переходных процессов для начального условия x(0)=10

Рисунок 3 – Схема моделирования рассматриваемой системы

5 Выводы по работе

В результате проделанной работы для заданного ОУ было рассчитано управление, оптимальным образом решающее задачу управления в условиях наложенного ограничения с точки зрения минимизации критерия (7).