EE 660

MACHINE LEARNING FROM SIGNALS: FOUNDATIONS AND METHODS

Prof. B. Keith Jenkins

Lecture 22

Lecture 22	EE 660	Nov 5, 2020
Lecture 22		NOV 5, 20

Lecture 22 announcements

- Homework 8 is due tomorrow.
- Homework 9 will be posted

Lecture 22 outline

- Semi-supervised learning (SSL) (part 2)
 - Self-training models
 - Mixture models and parametric classification (SL)
 - Mixture models and parametric classification (SSL)

Use their prediction $\hat{f}(\underline{x}^{(u)})$ for additional training.

[Self-tr. & prop INN algorithms]
[Smallex-]

Variant of prop. INN alg.: prop. KNN - use a KNN for the S.L. module.

[Prop. INN applied to 100 aliens data]

This alg. tends to work well when data forms C dense, well separated clusters, or C long chains of data that are separated.

SSL Self-Training Models [Zhu and Goldberg text]

Algorithm 2.4. Self-training. (wrapper)

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$.

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \text{ and } U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.

Specific example:

Algorithm 2.7. Propagating 1-Nearest-Neighbor.

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function d().

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \text{ and } U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- Pt. in 2. Repeat until U is empty:

 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$. find closest 2 pts; one from L and one 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly.

 5. Remove \mathbf{x} from \mathbf{U} ; add $(\mathbf{x}, f(\mathbf{x}))$ to \mathbf{L} .

Assumption: data pts. with highest confidence of f(x) tend to be correct.

Propagating I-NN example:

X	y=+1 (setosa)
0	y=-1 (virginica)
•	unlabeled

iteration #	pt. X
1	75
2	<u>X</u> 3
3	Xq
4	Z,

Figure 2.3: Propagating 1-nearest-neighbor applied to the 100-little-green-alien data.

Mixture Models and Parametric Classification - Supervised Learning (SL)

Suppose we made p(x ly) as a pdf with some unknown parameters, e.g.:

$$p(z|y, \theta) = N(z)\mu_y, \Xi_y$$
 $y = class index$

 μ_y and \leq_y , y=1,2,...,C, are unknown. \Rightarrow parameters Θ .

Posterior predictive p(y/x) =?

To find p(xly), how can estimate 0? (in SL)

One way: MLE

$$\hat{\theta}_{\text{MLE}} = \underset{\underline{\theta}}{\operatorname{argmax}} p(\mathcal{D}|\underline{\theta}) = \underset{\underline{\theta}}{\operatorname{argmax}} ln p(\mathcal{D}|\underline{\theta})$$

$$\frac{\partial}{\partial u} = \underset{i=1}{\operatorname{argmax}} \sum_{i=1}^{\underline{J}} \ln p(\underline{x}_{i}, \underline{y}_{i} | \underline{\theta})$$

$$= \underset{i=1}{\operatorname{argmax}} \sum_{i=1}^{\underline{J}} \ln \left[p(\underline{x}_{i} | \underline{y}_{i}, \underline{\theta}) p(\underline{y}_{i} | \underline{\theta}) \right]$$

$$= \underset{i=1}{\operatorname{argmax}} \sum_{i=1}^{\underline{J}} \ln \left[p(\underline{x}_{i} | \underline{y}_{i}, \underline{\theta}) p(\underline{y}_{i} | \underline{\theta}) \right]$$

$$= \underset{i=1}{\operatorname{prioron}} \underline{y} = \mathcal{H}_{\underline{y}}, \underline{y} = \underset{index}{\operatorname{class}}$$

-) For a given for. p(x y, D), solution gives $\hat{\theta}_{MLE}$.

Given our estimates ô, we have:

$$P(\underline{x}) = \sum_{y'} P(\underline{x} | y', \hat{\theta}) P(\underline{y}' | \hat{\theta})$$
Let $\pi_{y'} = P(\underline{y}') = P(\underline{y}' | \hat{\theta})$

 $P(x) = \sum_{y'} \pi_{y'} p(x|y', \theta) = \alpha \text{ mixture density.}$

Mixture Models for SSL

We want to find p(y | x)

Let's model each class as a specified density with unknown parameters:

(1)
$$P(E,g|\underline{\theta}) = P(E|y,\underline{\theta}) P(y|\underline{\theta})$$

(assuming 0 is not random)

=
$$p(x(y, \theta))p(y)$$

class-conditional xy

density, conditioned on D.

Our model:

Labeled data D_:

(setosa) P(2/y=1, 0) p(x)y=2,0)

M2 χ_{l} (P. L.

$$\underline{\hat{\Theta}} = \begin{bmatrix} \mathcal{N}_1 \\ \mathcal{N}_2 \\ \vdots \\ \vdots \\ \mathcal{N}_n \end{bmatrix}$$

Unlabeled data
$$\mathcal{D}_{i}$$
:

$$p(\underline{x} \mid \underline{\theta}) = \underbrace{\sum_{y=1}^{\infty} p(\underline{x} \mid \underline{y}, \underline{\theta}) p(\underline{y} \mid \underline{\theta})}_{\text{component mixing density parameter}} = \underline{a \text{ mixture density}}_{\text{density parameter}}$$

=> How do we use both models (for D and D) together to estimate 0?

Find 0 from data using MLE

and treat the unknown yi in du as "hidden variables", denoted A.

JIf we knew H, we could: ⊕ MIE = argmax { lnp(A, H | D)}

(as in SL). But, don't know H.

-) Use Expectation maximization (EM) to estimate Hand D.