Clase 17

La sesión anterior demostramos el siguiente criterio de convergencia:

Teorema 1 Si $\{a_n\}$ es una sucesión no decreciente y acotada superiormente, entonces $\{a_n\}$ converge.

Y enunciamos un corolario de este:

Corolario 2 $Si\{a_n\}$ es una sucesión no creciente y acotada inferiormente, entonces $\{a_n\}$ converge.

En esta sesión continuaremos estudiando los criterios de convergencia de sucesiones y para ello es necesario introducir dos conceptos, el de subsucesión y el de sucesión de Cauchy.

Criterios de Convergencia (2da. parte)

Definición 3 Sea $\{a_n\}$ una sucesión. Decimos que $\{a_{n_k}\}$ es una **subsucesión** de $\{a_n\}$ si existe una función $g: \mathbb{N} \longrightarrow \mathbb{N}$ creciente tal que $a \circ g(k) = a_{n_k}$.

Observación 4 Una subsucesión de una sucesión es una sucesión en sí misma pues sigue siendo una función de \mathbb{N} en \mathbb{R} .

Ejemplo 5 Si $\{a_n\}$ es una sucesión, entonces $\{a_n\}$ es subsucesión de $\{a_n\}$ porque la función identidad $\mathrm{Id}: \mathbb{N} \longrightarrow \mathbb{N}$ es estrictamente creciente.

Ejemplo 6 La sucesión $\{(-1)^n\}$ tiene como subsucesión a $\{(-1)^{2k}\}=\{1\}$, basta considerar la función $g: \mathbb{N} \longrightarrow \mathbb{N}$ dada por g(k)=2k.

Ejemplo 7 La sucesión $\{a_n\}$ tiene como subsucesión a $\{a_{n+1}\}$, en este caso, consideramos $g: \mathbb{N} \longrightarrow \mathbb{N}$ dada por g(n) = n + 1.

Lema 8 Si $\{a_n\}$ es una sucesión, entonces existe una subsucesión $\{a_{n_k}\}$ que es o bien no decreciente o bien no creciente.

Demostración. Llamaremos punto cumbre de la sucesión $\{a_n\}$ a un número natural n tal que $a_n > a_m$ para toda m > n, vea figura 1.

Analizaremos los dos posibles casos, $\{a_n\}$ tiene una infinidad de puntos cumbre o $\{a_n\}$ tiene un número finito de puntos cumbre.

Supongamos, primero, que $\{a_n\}$ tiene una infinidad de puntos cumbre, digamos

$$n_1 < n_2 < n_3 < \dots < n_k < \dots \tag{1}$$

Ahora, por definición de punto cumbre, tenemos que

$$a_{n_1} > a_{n_2} > a_{n_3} > \dots > a_{n_k} > \dots$$
 (2)

De (1) se sigue que la función $g: \mathbb{N} \longrightarrow \mathbb{N}$ dada por $g(k) = n_k$ es creciente y por lo tanto $a \circ g(k) = a_{n_k}$, es decir, $\{a_{n_k}\}$ es una subsucesión de $\{a_n\}$. Además, por (2), tenemos que $\{a_{n_k}\}$ es decreciente, por lo que, en este caso, es la subsucesión deseada.

Supongamos ahora que $\{a_n\}$ tiene un número finito de puntos cumbre y que M es el mayor de ellos. Consideremos $n_1 > M$. Como n_1 NO es punto cumbre, entonces existe $n_2 > n_1$ tal que $a_{n_2} \geq a_{n_1}$. Recursivamente construimos $\{n_k\}$ con $n_{k+1} > n_k$ tal que $a_{n_{k+1}} \geq a_{n_k}$. Así, al definir $g: \mathbb{N} \longrightarrow \mathbb{N}$ dada por $g(k) = n_k$ obtenemos que g es creciente y $a \circ g(k) = a_{n_k}$, es decir, $\{a_{n_k}\}$ es una subsucesión de $\{a_n\}$ tal que $a_{n_{k+1}} \geq a_{n_k}$ (es no decreciente).

Figura 1: 3 y 6 son puntos cumbre.

Corolario 9 (Teorema de Bolzano-Weierstrass) Toda sucesión acotada tiene una subsucesión convergente.

Demostración. Sea $\{a_n\}$ una sucesión acotada. Por el Lema 8, existe $\{a_{n_k}\}$ una subsucesión no decreciente (o bien no creciente) de $\{a_n\}$. Como $\{a_{n_k}\}$ es una sucesión acotada (¿por qué?), entonces por el Teorema 1 (o bien el Corolario 2), se sigue que $\{a_{n_k}\}$ es convergente.

Para concluir esta sesión, introduciremos un concepto que nos permitirá dar otro criterio de convergencia.

Definición 10 Sea $\{a_n\}$ una sucesión. Diremos que $\{a_n\}$ es una **sucesión de Cauchy** si para toda $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que si $m, n \in \mathbb{N}$ cumplen que $m, n \geq N$, entonces $|a_n - a_m| < \varepsilon$. Lo anterior suele escribirse como

$$\lim_{n,m\to\infty} |a_n - a_m| = 0.$$

Lema 11 Si $\{a_n\}$ es una sucesión de Cauchy, entonces $\{a_n\}$ es acotada.

Demostración. Como $\{a_n\}$ es de Cauchy, para el número positivo 1, existe $N \in \mathbb{N}$ tal que si $n, m \geq N$, entonces $|a_n - a_m| < 1$. En particular, si $n \geq N$ se cumple que $|a_n - a_N| < 1$, de donde

$$|a_n| < 1 + |a_N|$$

para toda $n \ge N$. Así, si $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1 + |a_N|\}$, entonces

$$|a_n| \leq M$$
,

para toda $n \in \mathbb{N}$. Es decir, $\{a_n\}$ es una sucesión acotada.

Lema 12 Sea $\{a_n\}$ una sucesión de Cauchy. Si $\{a_{n_k}\}$ es una subsucesión convergente de $\{a_n\}$, entonces $\{a_n\}$ también es convergente.

Demostración. Supongamos que $\{a_{n_k}\}$ converge a alguna $l \in \mathbb{R}$. Veamos que $\{a_n\}$ también converge a l.

Sea $\varepsilon>0$. Como $\{a_{n_k}\}$ converge a l, para el número positivo $\varepsilon/2$, existe $N_1\in\mathbb{N}$ tal que si $n_k\geq N_1$, entonces

 $|a_{n_k} - l| < \frac{\varepsilon}{2}.$

Ahora, como $\{a_n\}$ es una sucesión de Cauchy, existe $N_2 \in \mathbb{N}$ tal que para cualesquiera $m, n \geq N_2$ se cumple que

 $|a_n - a_m| < \frac{\varepsilon}{2}.$

Así, si $N=\max\{N_1,N_2\},$ se tiene, para $n\geq N,$ que

$$|a_n - \ell| \le |a_n - a_{n_N}| + |a_{n_N} - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

donde el resultado se obtiene porque $n_N \ge N$ pues la función que permite definir la subsucesión es estrictamente creciente, así que $n_N \ge N_1$ y por ello $|a_n - a_{n_N}| < \frac{\varepsilon}{2}$.

Por lo tanto, $\{a_n\}$ converge a l.

Teorema 13 Sea $\{a_n\}$ una sucesión. Se cumple que $\{a_n\}$ es convergente si y sólo si $\{a_n\}$ es de Cauchy.

Demostración. Supongamos que $\{a_n\}$ es una sucesión convergente y que $\lim_{n \to \infty} a_n = \ell$ para alguna $\ell \in \mathbb{R}$.

Sea $\varepsilon > 0$. Entonces existe $N \in \mathbb{N}$ tal que si $n \geq N$ entonces $|a_n - \ell| < \frac{\varepsilon}{2}$. Luego, si $m, n \geq N$ se cumple que

$$|a_n - a_m| \le |a_n - \ell| + |\ell - a_m| = |a_n - \ell| + |a_m - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Por lo tanto, $\{a_n\}$ es una sucesión de Cauchy.

Recíprocamente, supongamos que $\{a_n\}$ es una sucesión de Cauchy. Por el Lema 11, $\{a_n\}$ es una sucesión acotada. Luego, por el Teorema de Bolzano-Weierstrass (Corolario 9), existe una subsucesión $\{a_{n_k}\}$ de $\{a_n\}$ que es convergente. Finalmente, por el Lema 12 obtenemos que $\{a_n\}$ es una sucesión convergente.