brary 2-761-9-4.

TECHNICAL MEMORANDUMS

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

No. 821

ON THE ACTUAL LOADS ON AIRPLANE LANDING GEARS

By S. Shiskin

Central Aero-Hydrodynamical Institute

4,7,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 821

ON THE ACTUAL LOADS ON AIRPLANE LANDING GEARS*

By S. Shiskin

I. INTRODUCTION

The problem of the actual loads exerted on the airplane landing gear has long engaged the attention of the airplane designer. Repeated tests have been conducted for the purpose of determining the forces acting on the landing wheels during landing. Two methods have been applied to the solution of this problem, one of which was to measure the accelerations by means of an accelerometer, the other to measure the displacements of the shockabsorber systems. The first method has the serious disadvantage that the readings of the accelerometer strongly depend on the location and method of attachment of the accelerometer to the airplane and it always remains unclear just what mass is to be taken in connection with the accelerometer reading in computing the force from the acceleration. By the second method only the maximum travel of the shock absorber in the landing and take-off runs is measured. This latter method is of little use in determining the force with a rubber-cord shock absorber since the properties of rubber depend very much on the temperature and the rate at which the load is applied. The error from the last cause alone may amount to more than 20 percent. For an oleo-shock-absorption mechanism the actual form of the dependence of the shock-absorber force on the piston travel is even more uncertain since the laboratory tests with such apparatus are few in number.

The methods described above give no indication of the direction of the force acting on the wheel and are intended to give only a rough approximation of this force. It has now been found possible to obtain a considerably more accurate solution of this problem as a result of the application of an apparatus, developed in the flight tests of the Central Aerodynamical Institute (CAHI), for obtaining a time-history record of the stresses in the chassis members by means of extensometer measurements.

Report No. 269, of the Central Aero-Hydrodynamical In- stitute, Moscow, 1936.

II. PROCEDURE

Extensometers were placed on all important members of the landing gear, their readings being synchronized by time recorders. Readings were first recorded on all instruments with the airplane at rest. The airplane was then allowed to take off and another record obtained with the airplane flying level and smoothly at low velocities. With the aid of these recordings it was possible to determine the stresses in each landing-gear member with the airplane at rest. After this the regular take-off and landing runs were made. Knowing the stress history of all the important elements of the landing gear during the various runs, it is a simple matter to compute the forces and their resultant acting on the landing-gear wheel. ! resultant will be obtained both in magnitude and direction. The data thus obtained supply the designer with information on the actual forces exerted on the landinggear members and the load factors.

As an illustration and check, the external force P acting on the airplane wheel at rest was determined by the above method. For airplane no. 1 the force was thus found to be P=1,872 kilograms as compared with the known value, 1,900 kilograms.

III. OBJECT OF INVESTIGATION

The investigation was intended to throw light on a number of problems:

- Obtain a time history of the force acting on the gear wheels during the take-off and landing runs.
- 2. Obtain the time history of the direction of this force (magnitude of its three components along the coordinate axes).
- 3. Derive conclusions as to the design load factors.

In connection with the latter, of especial interest was the solution of such problems as: (a) the dynamic loads in the three main landing attitudes, namely, a 3-point landing, horizontal load landing, and landing with

side load; (b) the problem of the true direction of the forces for each of the above "pure" types of landing; (c) combination of the above types; and (d) the comparison for each of the chassis members of the computed force (according to the design standards) with the actual force measured in the tests so as to determine the actual factors of safety.

IV. RESULTS

The landing gears of two airplanes were investigated in the take-off and landing runs. The landing gear of no. lairplane is of especial interest, being of modern construction with pneumatic-oleo-shock absorbers and 900 by 200 pneumatic tires. Landing gear no. 2 was provided with a rubber-disk shock-absorbing mechanism and 900 by 200 tires. It is also proposed in the near future to carry out tests on the same airplanes provided with skis. We shall now consider the data for each of the landing gears.

1. Landing Gear No. 1

A. Landing-gear structure. A sketch of the landing-gear arrangement is shown on figure 1. As seen from the figure, the landing gear may be considered to be a combination of the column 2-5 with a very simple girder. Points 3, 3', and 4 may be considered as rigid supports. Point 2 may be considered as a rigid support in plane XZ and a roller support in the direction of the Y axis, since it is connected to the longeron where there are no struts attached. The axial force on the member 2-5 is therefore eventually taken up not by support 2 but by supports 3 and 3' through the medium of struts 0-3 and 0-3'.

The above arrangement of the landing-gear members is very convenient for the purposes of our investigation and makes possible a simple and reliable determination of the magnitude of the components of the force P acting on the wheel by measuring the forces in each of the struts. Thus, the projection on the X axis of the force on member 1-4, corrected for the lever arm of the member 1-2, immediately gives the horizontal component P_x , i.e.,

$$P_{X} = (S_{1-4})_{X} \frac{l_{1-2}}{l_{2-5}} = 0.484 (S_{1-4})_{X}$$

Similarly, the sum of the projections on the Z axis of the

forces on members 0-3 and 0-3! (with lever arm correction) gives the side component P_z :

$$\left[\left(S_{0-3} \right)_{z} + \left(S_{0-3} \right)_{z} \right] \frac{l_{0-2}}{l_{2-6}} = 0.455 \left[\left(S_{0-3} \right)_{z} + \left(S_{0-3} \right)_{z} \right]$$

The sum of the projections on the Y axis of the forces on the three struts: 0-3, 0-3', and 1-4, is directly equal to Py. It should be observed that the struts are hinged at each end, the hinges having each a single axis of rotation. The extensometers were placed on the struts as shown in figure 2, so as to exclude the effect of possible secondary bending stresses. The portion 1-2 of strut 2-5 was not investigated with extensometers, since it consisted of a shock-absorbing cylinder so that the stress at any point depended on the piston position. In general, the stresses in this portion were of little interest since they could not be large due to the small rigidity of support 2 with respect to the Y axis.

- B. Computed data for no. 1 landing gear. We shall now consider the results obtained for the no. 1 landing gear. The computed data consist of: (1) a time history of the external force P acting on the wheel, curves of its components Px, Py, and Pz (see figs. 3-9); and (2) tables of the forces on the members and the computed components of the force P. The tables are given in part in the text (see table I) and are fully presented in appendix I. The parts of the tables given in the text are taken for the instants of time giving the maximum everloads and forces, the values of which were used farther on.
- C. Analysis of computed data. The strength standards for the landing gear tend to be based on the three conditions of landing described above, namely, where the force is vertical (E), horizontal (G), and side (F). We shall therefore consider the maximum load factors for each of these cases: vertical (E), forward (G), and side (F) with the object of comparing the experimental values with those obtained by the standard computations.

TABLE I
Landing 1, Airplane No. 1

		•				The second second
	0-3!	0-3	1-4	Impact	no. 1; t	=0 sec.
s	-194 6	-4100	+1740	Σ	ΚΣ	P (kg)
$s_{\mathbf{x}}$	0	0	+1418	+1418	+686	
sy	→1751	-3690	+1005	-443 6	-4436	4509
S _z ···	-848	+1788	0	+940	+428	·
S	-1845	-4200	+2020	Impact	no. 2; t	=1.5 sec.
s_x	0	0	+1646	+1646	+796	
Sy	-1661	-3780	+1167	-4 274	-4274	4372
S _z · · ·	-804	+1831	0	+1027	+467	
s	-1230	-2151	+2680		no. 22;	t=17.5 sec
$s_x \dots$	0	0	+2184	+2184	+1056	
s_y	-1107	-1936	+1549	-1494	-1494	1839
S _z	- 536	+937	0	+401	+182	ىنى ئىسى ئىسى ئىسى ئىسى ئىسى ئىسى ئىسى ئ
	La	nding 2,	Airplane	No. 1		
S	∸ 2563	-3075	-1608	Impact	no. 4; t	=3.7 sec.
$s_x \dots$	0	0	-1310	-1310	-634	
$s_y \dots$	-2307	→ 2768	- 929	-6004	-6004	6038
S _z	-1117	+1341	0	+224	+102	
S	-2040	+2050	-668	Impact	no. 5; ţ	=5.3 sec.
S _x	0	0	- 545	-545	-264	
$s_y \dots$	-1842	+1845	-387	-384	-384	940
S _z	-393	-894	0	-1787	-815	
	La	nding 3,	Airplane	No. 1	·	
S	-1230	+1640	-1338	Impact	no. 8; t	=8.58 sec
$s_x \cdots$	0	0	-1090	-1090	-527	
s y	-1105	+1475	-774	-404	-404	873
s _z	- 536	-714	0	-1250	-567	
S	-1640	-3075	-1696	Impact	no. 12;	t=12 sec.
$s_{\mathbf{x}}$	0	σ	-1310	-1310	-634	
S _y	-1480	-2775	-928	-5183	-5183	5229
S _z	-715	+1340	0	+625	+285	ţ
	1	1	1	1	1	r

The largest value for the vertical load factor was obtained for the landing of no. 2 landing gear 4 seconds after the first impact with the ground, the value being

$$\eta_{y_{\text{max}}} = \frac{P_{y}}{P_{y}^{0}} = \frac{P_{y}}{P_{0} \cos \gamma}$$

where P_0 is the pressure on the wheel when at rest and Y is the ground angle, i.e.,

$$\eta_{y_{\text{max}}} = \frac{6004}{1900 \cos 130} = 3.24$$

(The design load factor for this landing gear was 4.5.) It is proper to remark here that high values of P_y are obtained, as a rule, not at the instant of first contact with the ground but later in the landing run, and the loads during the take-off run are near and sometimes even exceed those during the landing run.

The maximum value of the side load factor $\eta_{z_{max}}$ was obtained during the landing of no. 2, 6 seconds after first impact, the force acting in the direction from wheel toward the plane of symmetry of the airplane:

$$\eta_{z_{\text{max}}} = \frac{815}{G/2} = \frac{815}{2125} = 0.383$$
 (computed value 1.1)

Here G denotes the weight of the airplane during the test.

The value of $\eta_{x_{max}}$ (opposite to the flight direction) was likewise obtained during the second and third landings after 4, and 12 seconds, respectively:

$$\eta_{x_{\text{max}}} = \frac{P_x}{\frac{G}{2} \cos (Y + 20^\circ)} = \frac{634}{1780} = 0.356 \text{ (computed value 3)}$$

Comparison of the actual and standardized load factors does not determine, however, the values of the safety factors since in practice all the three components act simultaneously on the fuselage members. The safety factors must therefore be considered with respect to the maximum forces

in the struts as computed and as obtained from experiment.

Name of member	Notation	Computed maximum load P	Experimental maximum load P	P _{exp} /P _{comp}
Wheel strut	1-5	-8,320 (E)	-6,004	1.39
Side struts	0-3 0-31	±5,900 (F)	-4,200 +2,050	1.4
Rear strut	1-4	-13,400 (G) +4,900	~1,608	8.35*

TABLE II

The strut 1-5 is of lower strength than that assumed by the design norms since the maximum computed safe load factor was determined as equal to 3 in the damping computations, and in the rough landing of no. 2 the value of 3.24 was reached. The side struts have a lower strength for the reason that, as may be seen from table I, the severest case of vertical load was accompanied by side impact.

Let us now consider the question of the direction of the force $\,P\,$ and the comparison with that assumed in the design norms.

D. Various conditions of landing on landing gear no. l.- (a) Three-point landing, Case E: According to the norms, the force P_E is inclined forward of the vertical by angle β equal to the landing angle γ . In considering this case it is particularly interesting to note a considerable vertical component of the force P_E and the fact that the horizontal component is in the flight direction. Let us see what the direction of the force P_x actually is.

For $P_{y_{max}} = 6,004$ kg (landing 2, 4 seconds) the direction of the horizontal component P_x is opposite to that assumed in the standards, since to case E there is here added the horizontal impact of the maximum force during the test. For other instants and at other landings we find the force P_E inclined in a forward direction at considerable values of P_y (table III).

^{*}See section V.

Landing	Seconds	P _y	P _X (against flight direction)	Angle β
Landing no. 1	3.5	5,431	-634	6° 40'
Landing no. 1	0	4,436	~ 686	8° 50'
Landing no. 1	1.5	4,274	- 796	10° 30 !

TABLE III

The force P_{E} may thus have a direction approaching near that of the norms.

(b) Case G, forward impact: According to the norms, the force P_G lies in the plane X-Y and is inclined to the horizontal by the angle Y + 20°, i.e., in the given case by 33° (figs. 10 and 11). At the instant when P_X has its maximum value and is equal to 634 kilograms (i.e., at the fourth and twelfth second of the second and third landings), there is also a component P_Y equal, respectively, to 6,004 kilograms (likewise a maximum) and 5,183 kilograms and the side component P_Z is at 35 percent of its maximum value. It therefore follows that a considerable vertical component may be present at the horizontal impact. The angle β , at P_Y = 6,004 kg and P_X =

$$\beta = Y + 70^{\circ}$$

From the tests it is evident, however, that the angle β may have very different values and in general may be near the normalized value. Thus, for landing no. 3, after 8.58 seconds, it is equal to $\gamma + 24.5^{\circ}$ (with $P_y = 404$ kg and $P_x = 527$ kg). The vertical component in this case is small and the horizontal component is 83 percent of its maximum value.

(c) Case F, side impact: According to the norms, the force $P_{\rm F}$ acts at the rim of the wheel in the direction of the Z axis. The test indicates the actual existence of such a force and that it may be directed from the wheel toward the axis of symmetry as well as in the opposite direction. The maximum values of $P_{\rm Z}$ are: toward the axis

of symmetry, +815 kg (landing 2, impact 5); toward the wing tip, 467 kg (landing 1, impact 2). At the instant when $P_{\rm Z}$ is at its maximum value and is equal to 815 kilograms, i.e., after 6 seconds of the second landing, there is also a horizontal thrust of amount 264 kilograms, equal to 42 percent of the maximum, and a small vertical component $P_{\rm y}$ equal to 387 kilograms. In general, in cases of considerable side impact (near 50 percent of the maximum value and above), the vertical component sometimes assumes a large value up to as much as 74 percent. For example, landing 1, 0 second, $P_{\rm z}$ = 428 kg (52 percent), $P_{\rm y}$ = 4,436 kg (74 percent).

As an illustration of what has been said above on the simultaneous action of the different types of loads, there is presented in figure 12 a time history of the forces acting on the landing gear in the XY and ZY planes. As may be seen from the figure, the airplane first rested on the wheel and ran a few seconds under the action of a forward thrust, the tail was then let down, the direction of the force being the usual one for a 3-point landing, and then the landing gear again experienced a force in the horizontal direction. During the entire landing and landing run there were side loads acting mostly in the direction from wheel toward the axis of symmetry of the airplane.

- 2. Landing Gear of Airplane No. 2
- A. The arrangement of this landing gear is shown on figure 13.
- B. Computed data. The extensometers were placed on all the fuselage struts of one-half the landing gear. For this landing gear we shall analyze only the P_y and P_x components. The results are presented partially in table IV and figures 14-17, and are given fully in appendix 2.

TABLE IV

			Landing	1, Alr	plane No	• 2	
		1-2	1-3	4-2	4-21	Σ	P
S	• • •	-2450	-1182	+1580	- 920	Impact no.	11; t=8.6
$s_{\mathbf{x}}$	• • •	431	-923	٠ -	-	-492	+492
Sy	• • •	-2100	_	.~	-	-2100	1772
			Landing	2, Air	olane No	. 2	
S	• • •	- 1225	-788	-2235	-1050	Impact no.	6; $t=3.5$
s_x	• • •	+216	-615	-	-	→ 399	+399
Sy	• • •	-1050		-,		-1050	. +885
S	• • •	-3430	+394	+1050	+1445	Impact no.	18; t=9.6
s_x	• • •	+604	+ 707		_	+911	-911
	• • •	-2940	-	· ·		- 2940	+2480
S	• • •	-3680	-335	+920	+1445	Impact no.	20; t=10.7
s_x	• • •	+647	-262	-	. -	+385	-385
s_y	• • •	-3154	⊸	-	· _	-3154	+2659

			Take-off	l, Air	plane N	0. 2		
s.	• •	→ 735	- 920	1970	2365	Impact no.	11;	t = 5.7
s_{x} .		130	-718			- 588		+588
$s_{\mathbf{y}}$.	••	-630			-	-630		+531

 $\underline{\text{C. Discussion of results.}}$ The maximum value of the vertical load factor was obtained for landing no. 2, impact no. 20. The value is

$$\eta_{y_{\text{max}}} = \frac{2659}{1330 \text{ cos } 120} = 2.05$$
 (computed value about 6)

Here the value 1,330 kilograms denotes the pressure on the wheel of the airplane at rest, and 12° is the ground angle of the airplane.

The maximum value of $\,\eta_{x}\,\,$ is obtained for flight 1, impact no. 11:

$$\eta_{x_{\text{max}}} = \frac{588}{\frac{2995}{2} \cos 32^{\circ}} = 0.464$$
 (value computed according to norms is 3)

Here 2,995 kilograms is the weight of the airplane during

the test and 32° is the ground angle of the airplane $+20^{\circ}$ according to the norms.

Table V gives the factors of safety for the various landing-gear struts.

	л	TRIE A	
Member	P computed	P experimental maximum	$f = \frac{P_{comp}}{P_{exp}}$
1-2	-11,000	-3,680	2,99
1-3 2-4	-5 ,000	-1,182	4.23
21-4	-2,930 (F)	-2,235	1.31

TABLE V

D. Discussion of the different types of landing on landing gear no. 2.

(a) Case E: At the value $P_{y_{max}} = 2,659$ kg the direction of the horizontal component P_{x} agrees with the standard (landing 2, impact 20). The angle the force makes with the vertical plane is

$$\beta = \arctan \frac{385}{2659} = 8^{\circ} 15! \quad (12^{\circ} \text{ according to norms})$$

This angle has a larger value at somewhat smaller values of $P_{v^{\bullet}}$ Thus, for the same second landing, impact no. 18,

$$\beta = \arctan \frac{911}{2480} \approx 20^{\circ}$$
 (i.e., even exceeds the norms somewhat)

(b) Case G: At the instant when $P_{\rm X}$ has its maximum in the forward direction equal to 588 kilograms, there is a vertical component $P_{\rm y}=531~{\rm kg}$. Thus, the angle the direction of $P_{\rm G}$ makes with the XZ plane will be

$$\beta = \arctan \frac{531}{588} = 42^{\circ}$$

while, according to the norms, it is $20^{\circ} + 12^{\circ} = 32^{\circ}$. Thus, the actual direction of the force $P_{\rm ff}$ is near that

of the norms, although for a somewhat smaller forward force. On figure 18 is shown graphically the time history of the force acting on the wheel in the plane XY during flight 1.

V. SUMMARY OF RESULTS AND CONCLUSIONS

In tables VI and VII are brought together the results obtained in section 4 on both landing gears. The first table (table VI) gives the comparison of the values of the "maximum applied" loads assumed by the norms (i.e., the maximum break-down loads divided by the safety factor 1.5) with the maximum loads obtained in the tests, and there is also given the ratio between them for each of the landing-gear members. In the second table (table VII) are brought together the results of the investigation on the simultaneous action of the different standardized types of landing impact as obtained for landing gear no. 1.

TABLE VI

					•			<u></u>
Land- ing gear	Maximu	n comput	mental	Member	Pcomp	Maximum P _{exp}	P _{comp}	
	L ^A	$\eta_{\mathbf{x}}$	ηz					
1	$\frac{3}{3.24}$	2 0.356	0.734	1-5	-8,320	-6,004	1.39	Pneumatic-oleo shock apsorber
				0-3 0-3	±5;900	-4,200 +2,050	1.4	900 oy 200 air wheels, split axle
				1-4.	-13,400 +4,900	-1,608 +2,680	8.35	
2	4.0 2.05	2	-	1-2	-11,000	-3,680	2.99	Rubber disk shock absorber
				1-3	-5,000	-1,182	4,23	900 by 200 air
!			,	{ 2-4 2 ' −4	-2,930	-2,235	1.31	wheels, con- tinuous axle

TABLE VII
Landing Gear No. 1

Landing	_	t of m		value	t of ma accord rms (2)	ing	Notes			
	Py	P _x	$P_{\mathbf{z}}$	Ру	P _y P _x					
2 landing, 4 seconds	100	100	12.5	108	18	6.5	(1) Maximum values from test: P _v = 6,004 kg			
3 landing, 12 seconds	86.5	100 .	35	93.5	18	18.3	$P_x = 634 \text{ kg}$ $P_z = 815 \text{ kg}$			
2 landing, 6 secon d s	6.5	42	100	7	7.5	52	(2) Maximum value according to norms:			
<pre>l landing, 0 second</pre>	74.0	- ,	52	80	-	27	$P_y = 8320/1.5=5556$ $P_x = 5350/1.5=3566$			
<pre>l landing, l.5 seconds</pre>	71.3	-	57.3	77	-	30	$P_{z} = 2340/1.5 = 156$			

From an examination of tables VI and VII, as well as the preceding data, the following conclusions may be derived:

- l. Case E (vertical impact): A 3-point landing may actually take place as assumed, such that the conventional direction of the force (normal to the ground in the static position of the airplane) is maintained throughout. As far as the magnitude of the force is concerned, it should be observed that, in general, it agrees well with the assumed norms, although a case occurred for which the computed force was exceeded ($\eta_y = 3.24$ instead of 3), and this in our opinion may be explained not by any defect in the shock absorber but by a certain disagreement between the computed and actual forces. This condition may be corrected only by increasing the factor of safety from 1.5 to 1.6-1.8, i.e., causing this factor to approach more nearly the value customary for structures operating under bending stresses.
- 2. Case G (horizontal impact): Actually occurs as far as the direction of the force is concerned, but the force is by far not as great as that assumed in the norms (instead

of the assumed load factor $\frac{3}{1.5}$ = 2, the maximum obtained was 0.464).

In the case of landing gear no. 1, there was a striking difference between the computed and actual force obtained for the rear strut (1,608 instead of 12,000 to 13,000), in spite of the fact that the landings were sudden with the vertical load attaining its maximum. It should be borne in mind, of course, that the landings were made on a good landing field, but still it is clear that the load factor for this case may be lowered. The design standards of other countries do not give such a large value for the horizontal force as do our standards, their value being about one-third as large but with the vertical component being larger as a rule. A sufficiently cautious figure for the load factor would be $\eta_C = 2$. However, in addition to this simple case G, the additional case of the simultaneous action of types E and G must be considered. It would be most expedient to assume the force in the XY plane, applied at the center of gravity of the airplane. For the usual ground angle of about 12° to 14° we then obtain, for a "typical" value $\eta_E = 5$, the value $\eta_G = 5 \sin (12^{\circ}-14^{\circ})$ =̃ 1.

Case F (side impact): Does not take place as assumed in the design standards as there is always the accompanying action of case E. The lead factor of our stand- $\eta_{\rm F} = \frac{v_{\rm landing}}{100}$ appears to be a safe value and this is confirmed both by experiment and by comparison with the foreign standards where the value of $\eta_{
m T}$ varies between 0.5 and 1. The several failures of the landing gear in landing in a side wind that have occurred recently are explained for the most part by the simultaneous action of a considerable vertical component which, as a rule, is very unfavorable to the structure with the present-day splitaxle type of landing gear. For the above reason we propose that the "pure" case F be entirely removed as a separate case in the design rules and be considered only in connection with case E acting simultaneously, the load , factor $\eta_{
m F}$ being defined by the preceding formula. As far as NE is concerned, for this new mixed case, our test did not give any coincidence in the maxima of the vertical and side components. The worst condition occurred P_{y} when $P_{z} = 60 \text{ per}$ for a value $P_y = 75$ percent of P_{zmax} In the light of the recent accidents, cent of

however, and taking into account the peculiarities of modern chassis design (split-axle type), we should assume a complete combination (100 percent) of cases E and F as correct. The introduction of this new case removes the necessity of any special consideration of landings in a side wind.

Translation by S. Reiss, National Advisory Committee for Aeronautics. The state of the s

Appendix I Ferces on landing gear numbers, their components and the resultnats acting on the wheel.

			8728	cting on	CHE ADSEN	L.							
	Le	nding No.	1, Airpl	ane No. 1			s	- 1 435	-1845	+1338	Impact 1	io.18;t=	14.6 200.
	0-3'	0-3		1 7			S _x	0	0	+1090	+ 1 090	+ 527	1
	0-0	0-3	1-4	Impacs	Wo. 1; t=	=U eec.	s,	-1291	-1 661	+ 773	-2179	— 2 179	2 243
s	1946	-4100	+1740	2	2.5	P	s	- 625	+ 804	, ,,,	+ 179	+ 81	2213
s	i	0	+1418	+1418	+ 686	'	<u> </u>		i		 		<u> </u>
S,	-	-3690	+1005	-4436	1-4436	4 509	S	-2 150	1 230	+ 1 876		No.19;t=	15 sec.
s,		+1788	0	+ 910	+ 428	'	s	0	0	+1 529	+1529	+ 740	
	i	i	<u> </u>	Impact N		1.5 sec.	<i>s</i> ,	— 1 935 — 937	1 108	- 	1 959	1 959	2102
s		- 4 200	+2020				S	937	+ 536	0	401	— 182	<u> </u>
S _x	0 -1661	0	+1646	+1646	+ 796		s	-1947	1 538	+1680	Impact N	e,20;t= <u>1</u>	6.15eec.
S _y	1	- 3 780 + 1 831	+1167	- 4 274 + 1 027	[-4274]	4 372	S,	0	0	+1 310	+1 310	+ 634	
. S	- 001	+1831	0		+ 467	1	S,	1 752	-1384	+ 928	2 2 0 8	2 208	. 2 299
\$	3 585	— 3 48 I	+1608	Impact N	o. 3; t=	3.5 sec.	S	848	+ 670	0	- 178	- 81	ł
Sz	. 0	0	+1310	+1310	+ 634		s	2 560	-1743	+1338	Impact No	.21;t= 1	6.9 sec.
S _y		-3 133	+ 928	- 5 43 1	- 5 4 3 1	5468	s,	0	0	+1090	+1090	+ 527	
S,	-1563	+1518	0	45	24		S,	- 2 304	-1 569	+ 773	-3100	-3100	3149
s	- 3 075	1 947	+ 936	Impact N	o. 4: t=	4.7 sec.	s,	-1116	+ 760	0	— 356·	162	
S	. 0	0	+ 762	+ 762	+ 369	_ 			i			o.22;t=1	7 5 400
s	- 2 767	- 1 752	+ 541	- 3 978	- 3 978	4 013	\$	— 1 230	2151	+ 2680			7.0 800.
s,		+ 848	0	493	- 224		S,	0	0	+2184	+2184	+1056	
		<u> </u>		Impact		= 6 sec.	S _v	1 107	—1 936 	+1549	1 494	— 1 494	1 839
s		-1 334	+1876			- 0 100.	S	— 536	+ 937	0	+ 401	+ 182	
S ₂	r.	0	+1529	+1529	+ 740		S	— 1 025	1 025	+1 472	Impact M	o.23;t=1	7.9 sec.
S, :		1 201	+1084	-2421	- 2 421	2 543	S ₂	0	0	+1200	+1 200	+ 580	
S,	 -	+ 581	0	535	- 243	<u> </u>	S,	- 922	— 922	+ 850	994	994	1 155
s	-2 150	-1127	+1876	Impact N	io. 6; t=	6.7 sec.	S	— 447 .	+ 447	0	0	0	1
Sz	. 0	0	+ 1 529	+1 529	+ 740								
S,	— 1 935	1 014	+1084	1 865	1 865	2 017							
S	937	+ 491	0	446	— 203	į į	1	T.e	ading No.	2 417	ene Wo 1		
s	- 1 947	— 1 538	+1204	Impact No	o. 7; t=1	7.35 sec.	J ,			a, arry			
S _z	1	0	+ 981	+ 981	+ 475		1	0 3'	0 - 3	1 — 4	Impac	Fo. 1;t	= 0 sec.
s,		-1381	+ 695	- 2 441	-2441	2 488			 	<u> </u>	 	i	
s,		+ 670	0	- 178	- 81	""	s.;	1 435	-1735	- 801	Σ	KΣ	P
	i -	 		 	¥o. 8; t=	- 9	S _z	0	0	- 656	~ 656	— 318 .	
s	-1640	1 947	+ 668		<u>-</u> -	- 0 BEC.	S,	1 292	1 562	466	- 3 320	— 3 320	3 336
S	1	0	+ 544	+ 544	263		S	— 62 5	+ 757	0	+ 142	65	<u> </u>
<i>S</i> ,	1 476	1 752	+ 386	- 2 842	- 2842	2 354	s	— 1 43 5	—1 435	668	Impact	To.2; t =	1.72 sec.
S	— 715	+ 848	0	+ 133	+ 61		S	0	0	- 545	545	— 264	
s	1 334	2 050	+ 668	Impact N	o. 9; t=	8.5 sec.	s,	1 292	- 1 292	— 3 86	- 2 970	2 970	2 982
S	0	0	+ 544	+ 544	+ 263		s	- 625	+ 625	0	0	0	
s,	1 201	1 845	+ 386	2 680	— 2 680	2 697	s	1 538	1 590	- 536	Impact	No.3; t = 2	.58 sec.
S	— 582	+ 894	0	+ 312	+ 141		s,	0	0	- 437	- 437	212	1
S	-1640	— 1 947	+ 668	Impact	No. 10; t	= O sec.	s	1 384	1 431	- 309	-3124	-3124	3 131
s	0.	0	+ 544	+ 544	+ 263		S,	- 670	+ 693	0	+ 23	÷ 11	0.01
S,	-1476	— 1 752	+ 386	- 2 842	- 2842	2 854			i		:	<u> </u>	7.7
5,	_ 715	+ 848	0	+ 133	+ 61		S	- 2 563	- 3 075	1-1608	l	No.4; t=	3.7 BEC.
	 				o. 11; t=	- 10	S _z	0	0	— 1 310	<u> 1 310 </u>	- 634	
S	1 538	2 255	+1204			10 400.	S,	- 2 307	- 2 768	— 929	-6004	-6004	6 038
S,	0	0	+ 981	+ 981	+ 475		<i>S</i> ,	- 1 117	+1341	0	+ 224	+ 102	<u> </u>
S.,	1 384	2 030	+ 695	- 2719	-2719	2 764	s	- 2040	+2050	— 668	Impact	No.5; t= 5	5.3 sec.
S	<u> </u>	+ 983	0	+ 313	+ 142	L	S	0	0	— 54 5	— 545	— 264	
s	- 2 560	—3 172	+1 338	Impact N	o.12;t=1	0.5 sec.	S,	-1842	+1845	— 387	— 384	- 384	940
S _z	0	0	+ 1 090	+1090	+ 527		s,	893	- 894	~0	1 78 7	815	<u> </u>
S,	-2304	 2855	+ 773	— 4 386	4 386	4 419	s	- 2 050	+ 1 435	+ 804	Impact	Wo.6;t=6	.15 sec.
s	—1116	+ 1 383	0	+ 267	+ 122		S ₄	0	1 1 1 1 3 2	+ 655	+ 655	+317	i
s	-2 050	-2354	+1740	Impact No	.13;t= 1	1.15 sec.	S,	- 1845	±1290	+ 465	– 90	- 90	766
S _x		0	+1418	+1418	+ 686		5	- 894	626	"0"	-1 520	691	
S,	— 1 845	-2119	+1005	- 2 959	— 2 959	3 038	II	·	i —	 		fo.7; t = 6	.85 sec.
S	— 894	+1026	T 1 005	+ 132	+ 60	""	s	- 2 255	1 538	+ 936		. —	1
-		· · · · · · · · ·				1 75	S	0	0	+ 763	+ 763	+ 370	
s		-2 050	+1740		0.14; t = 1	##C.	S _y	- 2 030	1384	+ 541	2 873	- 2873	2 900
S		0	+1418	+1418	-+ 686		S	- 983	+ 671	0	— 312	- 142	10
s,		— 1 845	+1005	— 2 501	— 2 501	2 594	5	2665	1 538	+1474	Impact 1	10.8;t=8	.15 Bec.
S	804	+ 894	0	+ 90	+ 41	Ļ	S	0	0	+1 201	+1 201	+ 581	1
s	— 1 43 5	1 538	+ 936	Impact No	.15;t= 1	2.45 sec.	S,	2 399	1 384	853	2 930	- 2 930	2 995
S _z	0	0	+ 762	+ 762	+ 369		S,	1 162	+ 671	0	- 49t	_ 224	
s,	— 1 291	1 384	+ 541	- 2134	-2134	2 166		0 — 3'	0 — 3	1-4.	Impact	No.9:t=8	.7 sec.
<i>s.</i>		+ 670	-1.0	+ + 45	+ 20								
s	i i	— 1 538	+1072		. 16; t = 1;	3,25 sec.	s	2563	-2050	+1340	Σ	KΣ	P
S		0	+ 874	+ 874	+ 423	· · · · · · · · ·	S	0	0	+1091	+1091	+ 528	
s,	1	-1 384	+ 619	+ 8/4 - 2 056	- 2 056	2 099	s,	2 307	—1 845	774	- 3 378	- 3 378	3 420
S,		+ 670	T 019	+ 45	+ 20		s	1 117	+ 894	0	— 223	— 101	
I						7 0	1		 	·	<u> </u>	<u> </u>	10 4
S	1	- 2 563	1 876		0.17;t= 1	3.7 Hec.	s	718	— 513	— 536		fe.10;t=	10.780C.
1		0	+1529	+1529	+ 740	1 1	S	0	0	— 437	— 437	211	1
S	1					1	31 1		ı	1			
1	-1 476	-2307 +1116	+1084	-2699 + 401	- 2 699 + 182	2 804	s,	647 313	462 + 224	-310 0	-1 419 - 89	-1 419 - , 40	1 435

H.A.C.A. Technical Memoran	kum No.	821
----------------------------	---------	-----

H.A.C.,	. Technical													
		Le	nding No.	3, Airpl	ana No.	<u> </u>		s	1 742	1 538	-536		Bo.6; t = 5	.43 sec.
:		0 — 3′	0-3	1-4	Impact	No. 1; t=	- D Bec.	S,	0 1 568	0 1394	437 310	- 437 2262	- 211 - 3 262	3 269
	5	-1230	-2255	—1 205	1	ΚΞ	P	s,	- 758	+ 670	0	- 84	- 40	3207
	S	. 0	0	- 962	982	— 475		s	1 128	—1536	- 670	Impact	Yo. 7; t = 6	.58 sec.
i	s,	1 107	-2030	— 696 0	- 3 833 + 447	— 3 #33 → 203	3 867	s	0	•	—516 .	— 546 .	- 264	
	s,	- 536	+ 983	 	<u></u>	¥o. 2: t=	2 sec.	s,	1 015 492	—1 384 + 670	— 387 0	-2786 + 178	-2786 + 78	2 799
	s	1 230 0	-3075 0	— 1 072 — 874	— 874	- 423	1			-2 050	-804	<u> </u>	Yo. 8; t = 8	34 500
	S,	-1107	2767	- 620 ·	-4194	-4 494	4 529	s	— 1 536	- 20 30	655	- 655	_ 317	
	s	— 536	+1341	۰ ا	+ 805	_ 366	<u> </u>	s,	· —1384	1 845	- 455	-3 \$86	3 686	3 701
	s	— 1 025	-2560	804		No. 3; t=	3.5	S	<u> </u>	+ 893	0	+ 223	+ 101	
.	S	- 920	0 -2305	- 655 465	655 3 690	— 317 — 3690	3 720	S						
-	S	- 447	+1118	0	+ 671	- 355	"""	ļ.						
	s	1 230	-2 560	536	Impact	To. 4; t=	4.72eec.			alm-off H	n 9 airel	ane Wail		
	s	0	0	437	— 437	- 211]						
	S,	—1 107 — 536	- 2305 + 1118	310 0	-3722 + 682	-3722 + 310	3 746		0 3"	0-3	1-4	Lupac	t Wo.1;t=	O sec.
	i		-3 075	268		No. 5;t-5	.73sec.	s	-2252	-1 640	+936	1	KZ	P
	S	3 075 0	0	218	- 218	- 105	1	s	0		764	+ 764	+ 370	
	S	- 2767	-2767	—155	-56 89	- 5689	5 690	s,	2 027	-1 476	+445	3 058	-3058	3 083
	s	— 1 341	+1341	0	0	0		S	<u> </u>	+ 715	0	<u> </u>	_ 122	-
			-2050	536	Impact	No. 6:3=6	.43 sec.	s	— 1 230 0	2050 0	404 329	Impact - 329	Wo.2;t=0	/1 BOC.
	S	—1 127 0	0	536 437	- 436	- 211		s,	— j 107	_ 1 845	- 234	- 329 - 3186	- 159 - 3186	3 194
	s,	-1014	-1847	311	-3172	3172	3 184	s <u></u> .	536	+ 994	0	+ 358	+ 163	
	<u>s,</u>	- 492	+ 894	0	+ 402	+ 183	<u> </u>	s	— 1 538	- 2 050	404		We.3;t-1	.14sec.
	s	1 127	-2050	+1 205		#o. 7;t-	7.3sec.	S ₂	0	0	-329	. — 829	- 15 9	3.4-
	S ₂	-1 014	0 —1847	+ 982 + 692	+ 982	+ 475 2169	2 228	S,	— 1 384 — 671	—1 845 + 894	234 0	-3 463 + 223	-3463 + 101	3 467
	s	— 492	+ 894	_ •	+ 402,	+ 183	}	s	— 1 435	- 2 050	268		Yo. 4; t= 1	.7lsec.
	s	—1 230	+1640	-1338	Impact	No. 8; t=8	.58sec.	s	0	0	-219	_ 219	- 106	
	S	0	0	- 1 090	— 1 090	- 527		s,	- 1 292	— 1 845	155	- 3 292	_ 3'292	3 296
	S,	— 1 105 — 536	+1475	774	- 404 1 250	404 567	873	S		+ 894	0	. + 268	# 122 Fo.5: t = 2	29000
	s	-1846	+512	-1 338		To.9:t=9	3.3 sec.	S	— 2 560 0	3 582 0	+1205 + 982	+ 982	+ 476	
	S _z	0	0	1 090	1 090	- 527	<u> </u>	s,	-2304	- 3 224	+ 697	- 4831	- 4 831	4 859
	s,	— 1 662	461	— 274	- 1974	1 974	2 061	s	-1 116	+1562	0	+ 146	+ 203	<u> </u>
	·s,	805	224	0	- 581	- 264	1	s	- 2 0 5 0	- 3 075	+1606		No.6; t=2	.86sec.
İ	S	— 3 075 0	2 050 0	669 545	545	#0.10:1=	10 sec.	S	0 1 845	0 2768	+ 1 310	+1310 -3684	+ 631 - 3684	3 735
	s,	- 2775	-1 850	- 388	-5013	-5013	5 024	s,		+1341	T 427	+ 442	+ 204	3,03
	s	— 1 340	+ 893	0	- 447	- 204		s	1 230	-2560	- 404	Impact	Wo.7; t=3	.57eec.
	s	- 2150	3 385	— 1 338		Wo.11;t=10	0.5 sec.	S ₄	0	0	_ 329	329	_ 159	
	S _x	0 — 1 935	0 -3045	— 1 090 — 773	- 1 090 - 5 753	- 527 - 5 753	5 782	s,	— 1 107	-2304	- 234	-3645	-3645	3 658
	s	- 937	+1 478	0	+ 541	+ 241	7.02	S	- 5 36	+1116	0	+ 580	+ 264	
	s	1 640	— 3 075	-1606	Impact	No.12;t=1	2 sec.	[<u> </u>		Impact	Yo. 8: t=4.	28sec.
	S _x	0	0	-1310	1310	<u>-634</u>		s	— 1 025 0	-2460 0	- 404 - 329	- 329	159	
	S,	— 1 490 — 715	-2775 +1340	928 0	-5183 + 625	5183 + 285	5 229	s	— 922	-2214	_ 23¢	- 3370	- 3370	3 386
	s	- 615	-1538	536		fo. 13;t=1	3,4sec.	s,	_ 447	+1072	0	+ 625	+ 265	
	S	- 615	-1538 0	536 437	- 437	- 212				<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	S,	- 555	— 1 3 88	-310	2 253	- 2 253	2 269		0 - 3'	0-3	1-4	Impact	No.9; t=4	,85sec.
ļ	s	- 242	+ 603	0	+ 363	+ 165	L	s	- 1 D25	- 2560	- 404	ı	ΚΣ	P
ĺ		70	ke-off Mo	. l. airp	lane No.	1,		s	0	0	- 329	- 329	_ 159	
	<u> </u>	0 — 3'	0-3	1-4	J	No. 1:1-	0 sec	s,	- 922	-2304	- 234	-3460	3 460	3 477
	 		1	 	-			S		+1116	0	+669	# 304 Wo.10; t=5	.42===
	s s	1 538 0	-1 025 0	670 546	— 546	KS	P	S		-1 62 5	404 329	- 329		
	S _y		- 923	388	- 2695	265 2695	2710	s,	— 461	_ 922	-234	-1617	1 617	1 628
	<i>s</i> ,		+ 447	0	- 223	— 101		s,	- 224	+ 447	0	+ 223	+ 101	
	s	— 1 950	- 2 255	— 936	Impact	No. 2;t-0	.6 вес.	s	— 1 025	2 560	— 404	Impact	No.11;t-5	.7) sec.
	S _x	0 1754	0 - 2030	- 752 - 541	752 4 325	- 362 - - 4325		S	0	0	329	- 329	: 1	
	s,	— 850	+ 981	0	+ 131	+ 59	4315	<i>s</i> ,	- 922 - 447	-2304 +1116	— 234 0	-3460 + 669	-3460 + 304	3 477
	s	1 640	_2 050	806		No.3; s = 1		s	-1 356	- 2 560	- 536		Fo. 12; t -	7 sec.
اوداد	s	-100	-2050	- 655	- 655	- 317		s	. 0	-2500	- 337	- 437	_ 211	
i	S,	-1477	—1 847	465	3 789	- 3 789	3 903	s,	— 1 222	—3304	-311	- 3 837	3'837	3 850
	_ S,	714	+ 893	0	+ 179	+ 84	40	<i>s</i>	- 592	+1116		+ 524	+ 239	88
	s	-2050 0	-3075 0	936 752		He.4; t = 2	.1500.	S	— 1 025 0	- 2560 0			fe. 13; t=8.	3556C+
i	S ₂	-1 847	2770	—752 —541	- 752 - 5 158	- 364 5 158	5 175	s,	- 922	-2304	0,	0 -3226	0 3 226	3 237
	s		+1343	0	+ 450			<i>s.</i>	- 447	+1116	•	+ 669	+ 304	
	s	1 845	— 2 255	— 1 20 5		Be.5; t = 4	47sec.	s	— 1 02 5	1 538	— 1 072		No.14; t-1	0.3200.
i	s	0	0	981	— 961	- 475		S ₂	0 922	0 1 305	874	- 874	425	
1	s,	1 660 304	2 030 + 941	— 697 0	- 4387 + 177	-4387 + 87	4413	S,		-1 385 + 678	- 620	2 927 + 231	-2927 + 105	2 958
			,	, , ,		0/				, 5,5	- 1	1. 5201	- 100	

<u></u> i	T- 0 — 3'	0-3	0.3, Airp	Inne Wo.1	A - 0===	Table o	f forces mts in t	in strut	Y directi	ing gears	No.2 and	their
	0 — 3	0-3	1-4	Impact No.1;	t- Deec.			L	anding No	. 1		
s	1 230	-1 538	- 536	Σ KΣ	P			Зави нога		Sars		
S _x	0	0	437	- 437 - 21		`	1-2	13	4-2	4-2	Σ	ΚΣ
S,	-1 107	-1 384	-310	-2801 -280	I.	s	— 735	+788	-1182	+1445		0.1; :=1.8
, S	- 536	+ 670	0	+ 134 + 6	'	S	130	+616			746	- 746
s	— 1 230	— 1 845	+ 536	Impact No.2;		5,	630	<u> </u>				531
S ₂	0	0	+ 437	+ 437 + 28	1	s	-1960	+ 656	—1 84 0	-1315		0.2;t=2.8
<i>s</i> ,	1 107	1 476	-310	-2 273 -2 27 + 269 + 12	-	S _x	345	+512	-	-	857	- 857
<i>s.</i>	536	+ 805	0	; -		S,	-1681	<u> </u>	<u> </u>	<u> </u>	-1681	1 420
s	— 1 23 0	-1 640	+ 268	Impact No.3;	,	∭ s	—1 225	— 656	1 970	920	Impact F	0.3;t=3.2
Sz	0	0 —1475	+218 +155	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S _e	216	- 512	_	-	- 296	296
S _y	— 1 107 — 536	+ 716	1 +123	+ 180 + 9		S,	— 1 050	<u> </u>	<u>! </u>	<u> </u>	-1 050	887
	' 	i —	+ 804	Impact No.4; t		s	- 1 225	+ 394	+1050	-1 050	Impact N	o.4; t=3.6
s	-2252 0,	—3075 0	+ 655	+ 655 + 31		S	216	308	-	-	524	524
S	- 2 029	-2767	+465	-4331 -433	1	S,	-1 050	<u> - </u>		<u> </u>	— 1 050	887
S	- 982	+1340	. 0	+ 358 + 16	3 ¦	s	2 203	+ 526	-1 315	656	Impact N	o.5; t=4.6
s	1 743	-1946	+404	Impact No.5;	=6.72sec.	s, \dots	392	+ 411	-	! –	9	-9
S	0	-1940	+ 329	+ 329 + 15		S,	1 915	<u> </u>	<u> </u>		 1 915	1 616
S,	1 570	1 753	+ 234	-3089 -308	1	s	— 1 225	+ 394	-1445	-1 182	Impact N	o.6;t=5,1
s	— 759	848	0_	+ 89 + 4	1	S _x	216	308	-	-	524	— 524
s	- 1 334	-2 560	+ 268	Impact No.6;	t≃8.15sec.	S _y	— 1 050	-	-	-	—1 050	827
S	0	0	+218	+ 218 + 10	5	s	980	+ 394	- 525	+ 526	Impact N	0.7;t×6.1
S,	1 200	2 300	+ 149	-3351 -335	3 361	s,	173	308	_	-	481	— 481
5,	<u> </u>	+1 117	0	+ 536 + 26		S,	- 840		-	-	- 840	708
ş	a	2 050	0	Impact No.7;	t=10 sec.	5	1 750	- 920	+ 920	+1445	Impact N	o.B; t-7.1
S	0	0	0	0 -		S _*	308	- 718		_	- 410	410
S _y	0	-1 846	0	-1846184	1	s,	— 1 502	_	_	_	—1 502	1 268
S	0	+ 893	0	+ 893 + 40	7	s	-2910	- 394	_ 1 580	-1 315	Impact N	0.9;t=7.7
		Teire-off 1	fo. 4: e1m	plane No.1		S ₂	517	- 308			209	- 209
	•		,	p. 4.1.		s,	- 2 520	_	_	-	- 2 520	2 121
	0 3'	0-3	1-4	Impact No.1	t=D=er	s	-1715	— 788	-1315	-2100	Impact No	.10;t=8.1
		ļ <u></u>		12-2-31		s,	302	616			- 314	314
s	— 1 025	-1 230	0	Σ ΚΣ	P	s,	-1 470	-	_	-	-1 470	1241
S	0	0	0	0 0			0.50			1	Impact Fo.	.11:t=8.6
S _y	- 923	1 107	0	-2030203 + 89 + 4	0 2031	S	2 450 431	- 1 182 - 923	+1580	— 920	- 492	492
<i>s</i>	- 447	+ 536	 	+ 89 + 4		s,	-2100	_ 723	1 _	1 -	-2100	1 772
s	— 1 538	1 435 0	— 268 — 218	- 218 - 10		s			1	<u> </u>	Impact No	<u> </u>
S	0 1 383	-1290	— 218 — 155	-2828 -2828	- 1	S	2 940 517	+ 526 411	+1315	- 2 235	928	- 928
S	- 670	+ 625	0		90	S,	- 2 520		l	_	- 2 520	2 121
s	-1 435	-1946	- 404	Impact No.3; t	=2.15sec.	· III		<u> </u>	<u> </u>	<u> </u>	Impact No.	<u> </u>
S	0	0	- 329	_ 329] _ 15		S	- 2940 517	- 788 - 616	1 315	— 1 050 —	— 99	99
S _y	— 1 290	—1750	— 234	-3274 -327	I	s,	- 2 520		_	l	- 99 - 2 520	2 121
s,	— 625	+ 848	0_	+ 223 + 10	1	 	<u> </u>		<u> </u>	1	mpact No.	<u> </u>
s	1 640	—1 130	—134	Impact No.4	t=4 sec.	S	1 715 302	— 7,88 — 616	+1445	-1182	- 314	314
S_x	0	0	109	— 109 — 5	- 1	s,	1 470		i _	_	-1470	1 241
Sy	1 490	-1 016	- 775	-3271 -327	1	s	_ 735	- 656	+ 920	man Ti	mpact No.	5-t=70.8
<i>s,</i>	<u> </u>	+ 493	0	222 10		S ₂	129	- 512	7 920		- 383	383
s	- 2 050	-1946	- 268	Impact No.5;t		s,	- 630	_	_		- 630	531
S _z	0 1 844	G — 1 750	- 218 - 149	- 218 - 10 -3743 -374	l l	'		<u></u>	ــــــــــــــــــــــــــــــــــــــ	·		<u> </u>
s,	— 895	+ 848	0	- 47 - 2	l l	li		Lai	ding No.	2		
s	-1 025	1743	0	Impact Mo.6;		s	- 2 450	+ 132	-1315	— 1 315	Impact Fo	.1; t= 0
S	0	0	0	0 0		S	+ 431	+ 103	- 1313	-1313	+ 534	- 534
S,	- 922	— 1 569	0	-2491 -249	2 495	,s,	2 100	-	_	~	2 100 ·	+ 1 770
s,	447	+ 762	0	+ 315 + 14	3	5	— 735	+ 263	— 1 315	1 315	Impact No	.2; t=1
s	1 230	— 1 538	— 670	Impact Wo.7;	=8.3 sec.	s	+ 129	+ 205	-1313	- 1365	+ 334	_ 334
S	0	0	546	— 546 — 26	+	s,	— 630	_	_		- 630	+ 531
S _y	-1116	-1 384	388	-2878 -287			— 1960	+ 525	1 FBA		Impact No	
s,	— 536	+ 670	0	+ 134 + 6		s	— 1 960 — 340	+ 410	1 580 	— 2150 —	+ 750	— 750
s	— 718	-1743	— 134	Impact No.8;		s,	-1680		_	_	-1 680	+1415
S	0	0	109	109 ; 5		s	-2205	+ 788	+1580	— 788	Impact No	
s,	646 313	- 1 568 + 760	— 77 0	$\begin{vmatrix} -2291 & -229 \\ +447 & +20 \end{vmatrix}$		S	2 205 -} 388	+ 615		- /88 	+1003	1 003
		<u>' ———</u>	<u></u>			s,	— 1 89 0	-		_	—1 890	+ 1 593
s	922	-1435	404 330	_ 329 15		s	1 225	+ 263	+1590	1 050	Impact No	.5; t=2.9
S ₂	0 830	0 -1290	— 329 234	- 329 - 15 -2354 -235		s,	+ 216	+ 205	-		+ 421	- 421
s	- 402	+ 625	0	+ 223 7 10		s,	— 1 050	-	_	_	—1 050	+ 885

野野

4.92		Lex	ding No.		e in a serie			<u> </u>	74	o-off No.	. 1		<u> </u>
	·						9	1-2	1-3	42	4-2	r	KΣ
	1-2	1-3	42	4-2	T.	KΣ	s	- 1 470	— 263	656	656	Impact	fo.1; t
s	-1 225	— 788	-2 235	— 1 05 0	Impact M	.6;t-3.5	s	258	- 205	-	-	53	÷− 5.
s	+ 216	615	_	~	- 399	+ 399	S,	- 1 260		_		- 1 260	+106
s,	— 1 050	-		_	— 1 050	+ 885	s	980	656	1 050	394	Impact Me	.2; t=0
s	-2450	+263	+1 315	- 526	Impact E	0.7;t=4	s	173	- 512	-	-	- 333	+ 33
s,	+ 431	+ 205	_	_	+ 636	— 636	5,	- 840	<u> </u>		<u> </u>	- 840	+ 70
s,	2100	-	- 1		2100	+1770	s	— 1 470	7 8 9	656	656	Impact F	0.3;t=1
s	-1715	~- 263	1 050	+1315	Impact No	. 8; t-4. 8	s	288	616	–	. – .	- 358	+ 35
s	+ 302	205	-		+ 97	— 97	<i>S</i> ,	1 260	<u></u> _	<u> </u>		—1 260	+106
s,	— 1 470				-1 470	+1240	s	— 1 225	- 525	1 313	920	Impact Fo	
s	1 715	+ 656	—1 05 0.	— 788	Impact N		s	216 — 1 050	410 		_	- 194 1050	+ 19 + 88
s	+ 302	+512	-	_	+ 814	— 814	S,	-1000				l	
S _y	1 470	-	-		<u> </u>	+1240	s	2 450	394	1 970	1 182	Impact M	
s	— 1 470	+ 526	— 788	526	Impact No.	10; t=5.9	S	431 2 100	308	_ '	_	123	- 12 +177
S _z	+ 258	+411	_	_	+ 669	- 669	- 		!	 	ļ		<u></u>
S,	— 1 260]			— t 200	+1 %2	s	2 450	- 394	788	1 050	Impact N	
s	— 2 450	+ 263	920	+ 920	Impact No		S,	431 — 2 100	308	_	_	- 123 -2100	+ 12 +177
S	+ 431	+ 205	-	-	+ 636	- 636	S,		<u> </u>	<u> </u>		!	<u> </u>
s,	-2100		_		-2100	+1770	s	2 205 388	- 67.6 - 512	1 313	1 1#2	Impact N - 123	+ 12
s	-1715	— 394	+ 920	+ 1 315	spect No.		S,	— 1 892	-512	i	_	- 1892	+159
S	+ 302 1 470	307		_	5 1 470	+ 5 +1240			 		1 313	Impact N	
<i>s,</i>			_	_		<u>'</u>	S	— 1 715 302	- 656 - 512	2100	1313	- 210	+ 21
s	-1715	- 263	- 788	+1315	impact No.	- 97	s,	— 1 470		_	_	1 470	+124
S _y	+ 302 1 470	- 205 		_	+ 97 1 470	- 97 - +1240	i	980	- 656	1.313	1 313	Impact N	0.9:t=4
<u>i</u>					Impact No.		S	- 960 173	- 512	_		- 339	+ 33
s	- 2 700 + 475	263 205	+ 788	+1 315	+ 270	- 270	S,	- 840		-	_	- 810	+ 70
S,	+ 7/3 2316			_	-2316	+1 950	s	- 2 450	789	1 840	1 050	Impact N	o.10;t=
ī	- 2940	- 394	+1050	+1050	Impact No	.15: t=8.1	s,	431	616	_	_	- 185	+ 18
s	- 2940 + 517	- 374 - 307	-+1050	+1050	+ 210	- 210	S,	- 2 100	i –	-	_	2100	+177
Sy	- 2 520	-		_	— 2 520	+2123	s	735	920	1 970	2 365	Impact Fo	.11;t=5
			l	<u></u>	1		S _s	130	—718	_	_	588	[— 58
5	- 2700	263	+ 788	+1 445	Impact No.	.16;t=8.6	s,	— 630	_		_	630	53
s	+ 475	205	_	-	+ 270	_ 270			7	aks-off N	0.2		
S,	2316		_	<u> </u>	-2316	+ 1 950	s	— 1 470	394	2105	2 105	Impact No	.1;t=0.
s	— 2 940	526	+ 788	+1445	Impact No		S _s	258	306	-	-	- 50	+ 5
s _z	+ 517	— 4 11	- .	-	+ 106	- 106	S _y	1 260				1 260	+106
S,	2 520			<u> </u>	-2520	+2123	s	— 1 715	— 920	1 315	— 789	Impact N	
s	3 430	+ 394	+1 050	ניויד	Impact No		s	302	7i8	_		316	+ 31
S	+ 604 - 2940	+307	_	_	+ 911 - 2910	+2 480	S,	- 1 470		<u> </u>		1 470	+124
S _y			<u> </u>	 			5	1 470	— 789	789	— 78 9	Impact M	
s	- 2 450	656 512	+1 445		mpact No.		S _z	258 1 260	- 6 16	_	_	358 1 260	+ 35 +106
S _p	+ 431 - 2100	-512	_	_	- 81 2100	+ 81 + 1770	s,		<u> </u>	'	-1 448	Impact M	
			 	Tanat	mpact No.	<u> </u>	s s	1 470 258	+789 -616	789 	— 1 448 —	— 874	+ 87
s	- 3 e 80 + 647	- 334 262	+ 920	1	+ 385	<u> </u>	s,	- 1 260	_	_	_	- 1 260	+106
S _y	- 3 154		_	-	-3154	+2659	s	-1 470	+ 789	-1 315	- 2105	Impact B	e.5; t-1
<u> </u>	- 2 450	+132	+ 920		mpact No.	·	S	1 479 258	-616	-1315	-2103	- 358	+ 35
s	- 2450 + 431	+103	- 420	+1315-	+ 534	— 534	s,	— 1 260	-	- ,	-	— 1 260	+106
S	—2 100	-		-	— 2 100	+1770	s	- 490	- 394	1 315	1 050	Impact No	.6; t=3
						١	s	16	308	-	_	- 222	+ 22
							s,	- 425	ι	! —	! _	- 425	+ :

Member			cos (ly)	(l_z)
0-3	980	.0	.90	4 36
0-3	980	.0	. 90	.436
1-4	1,352	.815	.578	.0

Figure 1.- Arrangement of landing gear of airplane no. 1.

Hinge axis. Extensometer

Figure 2.- Showing how extensometer is placed on strut.

P kg.
2,710
4345
3,803
5,175
4,413
3269
2,799
3,701

500 7 300 ₇	+Px-Opposite flight direction
100 0	
0	6-7
-1 00 -	AD Mowards plans of sum
-300	74Pz-Towards plane of sym.
-500	2 4 6 8 t sec.

t sec	$P_{\mathbf{x}}$	Py	D Z
0	265	2695	101
0.6	362	4,325	-59
1.4	317	3,789	-84
2.4	364	5,158	-205
4.47	475	4387	-87
5.43	211	3,262	40
6.58	264	2,786	-78
8.34	317	3,686	-101

Figure 3.- Time history of external force P on wheel of airplane no. 1 (taxe-off no. 1).

	
t sec.	P kg.
0	3,083
0.71	3,194
1.14	3,467
1.71	3,296
2.29	4,859
2.86	3,735
3.57	3,658
4.28	3,386
4.85	3,477
5.42	1.628
5.71	3,477
7	3,850
8.55	3,237
10.3	2,958

	t sec.	Px	Ру	$P_{\mathbf{z}}$
	О	-370	3,058	122
	0.71	+159	3,186	-163
	1.14	+159	3,463	-101
	1.71	+106	3,292	-122
	2.29	-476	4,831	-203
	2.86	-631	3,684	-204
	3.57	+159	3,645	-264
	4.28	+159	3,370	-285
	4.85	+ 1 59	3,460	-304
	5.42	+159	1,617	-101
	5.71	+159	3,460	-304
	7	+211	3,837	-239
	8,55	0	3,226	-304
	10.3	+425	2,927	-105
L		i		l

500 7 +Px-0	Opposite flig	tht direction
300	1	/ /
100 000	No-var	, , , , , , , , , , , , , , , , , , ,
100 100	14 06 8	10 t sec.
300	iago b.a.	
500 J . d	' ' ' ' ' '	rds plane m.

Figure 4.- Time history of external force P on wheel of airplane no. 1 (take-off no. 2).

N.A.C.A. Technical Memorandum No. 821

t sec.	P kg.
0	2,009
1.86	2286
3.29	2,431
4.43	4,347
6.72	3,093
8.15	3361
10	1,890

			 ,
t sec	Px	Ру	$P_{\mathbf{z}}$
0		2,801 2,273	-61 -123
3.29	-106	2,427	-92
4.43 6.72		4,33 1 3,089	-163 -41
8.15 10	-1 05	3,351 1,846	-244 -407

Figure 5.- Time history of external force P on landinggear wheel of airplane no. 1 (take-off 3).

t sec.	P kg.
0	2,031
1.57	2,830
2.15	3,279
4	3,273
5 .1 5	3,744
7.15	2,495
8.3	2,890
9.3	2,305
10.85	2,361

t sec.	P_	P	P_
	X	У	Z
. 0	0	2,030	-41
1.57	105	2,828	-20
2.15	159	3,274	-101
4	53	3,271	101
5.15	1 05	3,743	21
7.15	0	2,491	- -14 3
8.3	264	2,878	-61
9.3	53	2,291	-203
10.85	159	2,354	-101

Figure 6.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane no. 1 (take-off).

tsec	$P_{\mathbf{k}\mathbf{g}}$	tsec	Pkg
0	4509	11.15	3038
1.5	4372	11.75	2594
3.5	5468	12.45	2166
4.7	4013	13.25	2099
6.0	2543	13.90	2804
6.7	2017	14.6	2243
7.35	2488	15.0	2102
8.0	2354	16.15	2299
8.5	2697	16.9	3149
9.0	2954	17.5	1839
10.0	2764	17.9	1155
10.5	4419		

			
tsec		Py	$P_{\mathbf{z}}$
0	- 586		-428
1.5	-796	4274	-467
3.5	-634	5431	24
4.7	-3 69	3978	224
6.0	-740	2421	243
6.7	-740	1865	203
7.35	-475	2441	81
8.0	-263	2842	- 61
8.5	-≥63	≈ 680	-141
9.0	-263	284%	- 61
10.0	-475	2719	-142
10.5	-527	4386	-122
11.15	-686	2959	- 60
11.75	-686	2501	- 41
12.45	-369	2134	- 20
13.25	-423	≈ 056	- 20
13.9	-740	≥ 699	-182
14.6	-527	z179	- 81
15.0	-740	1959	182
16.15	-634	2208	81
16.9	-527	3100	162
17.5	-1 056	1494	-182
17.9	-580	994	0

	P _z (Towards p	lana of	esma)	11.15	- 68
300		Tane or	syn •)	11.75	- 68
300	1000			12.45	-36
	1 4 4		۶. ۹	13.25	-42
100	1 / 9		10	13.9	-74
0	0 1	.550		14.6	-5%
100	4 / 32	٠ ' ' ' ' کی ـ	9	15.0	-74
		o	<i>y</i> 8	16.15	-63
300] / 69			16.9	-5
500	1/0 81	· a		17.5	-105
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 10		17.9	-58
500	1 / / /	90 1 1	9	·	
	1 2 1	1 / 1	13 8		
700	\$ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	jd j	1 () H		
	1,20	(<i>)</i>		,
	Px	(Opposi	te flight	directi	on)
	0 4 8	12	16	•	
	• •		+ •		

t, sec

Figure 7.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane No. 1. (landing 1).

t, sec.

t sec.	P.kg.
0	3,867
2	4,529
3.5	3,720
4.72	3,736
5.73	5,690
6.43	3,184
7.3	2,228
8.58	873
9.3	2,051
10	5.024
10.5	5,782
12	5,229
13.4	2,269

t sec	$P_{\mathbf{x}}$ re	[⊃] y kg	P_z kg
0	+475	3,833	-203
	423	4,494	-366
3.5	317	3,690	-355
4.72		3,722	-310
5.73		5,689	0
6.43	ı	3,172	-183
7.3		2,169	-183
8.58	527	404	+567
9.3	1	1,974	+264
10		5,0 1 3	+204
10.5	ŀ	5,753	-241
12		5,183	-285
13.4		2,253	-186

700 -	+P _x Opposite	e flight	direction
500 0-	Ko.	P-9 5	-9
300	, 'Q'	$\frac{1}{2}$,
100 -	2 8		خ
100	2 4 6	//8 10	12 14
300	t sec. / 6-k		
500	1	3	

+Pz-Towards plane of sym.

Figure 9.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane no. 1 (landing 3).

Figure 10.

Figure 13.- Landing-gear arrangement of airplane no. 2.

Figure 12.- Time history of forces P_x , P_y and P_z , P_y on landing-gear wheel of airplane no. 1 (landing 2).

^t sec	$P_{\mathbf{x}}$	Py
0	- 53	1060
•7	339	708
1.0	358	1060
1.4	194	884
2.2	-123	1773
2.8	123	1773
3.4	123	1595
3.8	210	1240
4.2	339	708
5.0	185	1772
5.7	588	531
-	'	1

Figure 14.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane no. 2 (take-off no. 1)

	tsec	P_{X}	Py
	Ō	50	1064
	.7ö	316	1242
	1.26	358	1064
	1.76	-874	.1064
	2.36		1064
į	3.46	222	±359

Figure 15.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane no. 2 (take-off no. 2)

t _{sec}	Px	Py
1.8	-746	531
2.8	-857	1420
3.2	296	887
3.8	-524	887
4.6	- 9	1616
5.1	-524	887
6.1	-481	708
7.1	410	1268
7.7	-209	2121
8.1	314	1241
8.6	492	1772
9.1	-928	2121
9.7	99	2121
10.1	314	1241
10.8	383	531

Figure 16.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane no. 2 (landing no.1)

tsec		P_{X}	Py
0		534	1770
1		334	.531
1.8	-	750	1415
2.4	-:	1003	1593
2.9		421	885
3.5		399	885
4.0	-	636	1770
4.8	-	97	1240
5.1	-	814	1240
5.9	-	669	1062
6.1	-	636	1770
6.6		5	1240
7.1		97	1240
7.5	-	270	1950
8.1	-	210	2123
8.6		270	1950
8.8	-	106	2123
9.6		911	2480
10.2		81	1770
10.7	-	385	2659
11.2	-	534	1770
			i

Figure 17.- Time history of vertical and horizontal components of pressure on landing-gear wheel of airplane no.2 (landing no.2)

Figure 18.- Time history of external force on landing-gear wheel of airplane no. 2 (take-off 1)

