Research Methods in Political Science I 12. Generalized Linear Models

Yuki Yanai

School of Law and Graduate School of Law

January 13, 2016

Today's Menu

- Generalize Linear Models
 - Introduction
 - Exponential Family of Distribution
 - Generalized Linear Models
- 2 Logit and Probit
 - Logit (Logistic) Regression and Probit Regression
- 3 GLM in R
 - glm()
 - Non-binary Categorical Responses

Linear Models

Linear model

$$E(Y_i) = \mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$
$$Y_i \sim N(\mu_i, \sigma^2)$$

- \mathbf{x}_i^T : the *i*-th row of the design matrix (predictor matrix) X
- Generalized linear models: extensions of linear models
 - Non-normal response variables (including discrete responses)
 - Non-linear relationship between the response and the predictors

From Linear Models to Generalized Linear Models

Generalized linear models (GLMs, 一般化線形モデル)

- Non-normal responses
 - Normal distribution belongs to the exponential family → extend to the exponential family
- Non-linear relationship b/w response and the predictors
 - Link $E(Y_i) = \mu_i$ to the linear predictor $x_i^T \beta$ by non-linear function g

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$
 or $\mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$

g: Link function

Exponential Family of Distribution

• Exponential family: PDF (PMF) of a random variable Y with the single parameter θ is represented in the following form

$$f(y|\theta) = s(y)t(\theta) \exp[a(y)b(\theta)]$$

= $\exp[a(y)b(\theta) + c(\theta) + d(y)]$

- a, b, s, t are some known functions
- $s(y) = \exp[d(y)], t(\theta) = \exp[c(\theta)]$
- y and θ are symmetric
- When a(y) = y: Canonical form (正準形)
- $b(\theta)$: Natural parameter (自然母数)
- Parameters other than θ : Nuisance parameter (撹乱母数)

Probability Distributions in the Exponential Family

- Normal
- Bernoulli, Binomial
- Poisson
- Negative binomial
- Beta
- Gamma
- Weibull
- Wishart
- Dirichlet
- etc.

Normal Distribution

• Normal PDF with parameter μ and nuisance parameter σ^2 : $Y \sim N(\mu, \sigma^2)$

$$f(y|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(y-\mu)^2\right]$$

$$= \exp[\log(2\pi\sigma^2)^{-\frac{1}{2}}] \exp\left[-\frac{1}{2\sigma^2}(y^2 - 2y\mu + \mu^2)\right]$$

$$= \exp\left[y\frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2) - \frac{y^2}{2\sigma^2}\right]$$

- $a(y) = y \rightarrow \text{Canonical form}$
- Natural parameter $b(\mu) = \mu/\sigma^2$

•
$$c(\mu) = -\frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)$$

$$\bullet$$
 $d(y) = -y/2\sigma^2$

Generalize Linear Models

000000

Binomial Distribution

• The number of successes y in n independent Bernoulli trials with success probability π $Y_i \sim \text{Bin}(n_i, \pi)$

$$f(y|\pi) = \binom{n}{y} \pi^{y} (1-\pi)^{n-y}$$

$$= \exp\left[\log\binom{n}{y} \pi^{y} (1-\pi)^{n-y}\right]$$

$$= \exp\left[y\{\log \pi - \log(1-\pi)\} + n\log(1-\pi) + \log\binom{n}{y}\right]$$

- $a(y) = y \rightarrow \text{Canonical form}$
- Natural parameter: $b(\pi) = \log \pi \log(1 \pi) = \log \frac{\pi}{1 \pi}$: logit
- $c(\pi) = n \log(1 \pi)$
- $d(y) = \log \binom{n}{y}$

Poisson Distribution

 the number of the event occurrences Y in a given time (or space) Y_i ~ Poisson(θ_i)

$$f(y|\theta) = \frac{\theta^{y} \exp(-\theta)}{y!}$$
$$= \exp(y \log \theta - \theta - \log y!)$$

- $a(y) = y \rightarrow \text{Canonical form}$
- Natural parameter: $b(\theta) = \log \theta$
- $c(\theta) = -\theta$
- $d(y) = -\log y!$

Binomial or Poisson?

- Binomial: $X_i \sim \text{Bin}(n_i, \pi_i)$
- Poisson: $Y_i \sim \mathsf{Poisson}(\theta_i)$
- Common: count the number of events
- Different: Binomial count X_i has the upper limit n_i , but Poisson count Y_i doesn't
 - X_i is an integer in $[0, n_i]$
 - Y_i in a non-negative integer
 - \rightarrow Use binomial when n_i is independent of the number of events. Otherwise, use Poisson.
- Both has possibility of overdispersion
 - Binomial with overdispersion → Beta-binomial distribution
 - Poisson with overdispersion → Negative binomial distribution

Generalized Linear Models

Random variables $Y_1, ..., Y_n$ following a distribution of the exponential family

① PDF (PMF) of each Y_i is in canonical form and has one parameter (save nuisance parameters):

$$f(y_i|\theta_i) = \exp[y_ib_i(\theta_i) + c_i(\theta_i) + d_i(y_i)]$$

② All Y_i follows the same distribution (θ_i can be different) \rightarrow Joint distribution of Y_1, \dots, Y_n :

$$f(y_1, \dots, y_n | \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_n)$$

$$= \prod_{i=1}^n \exp[y_i b(\boldsymbol{\theta}_i) + c(\boldsymbol{\theta}_i) + d(y_i)]$$

$$= \exp\left[\sum_{i=1}^n y_i b(\boldsymbol{\theta}_i) + \sum_{i=1}^n c(\boldsymbol{\theta}_i) + \sum_{i=1}^n d(y_i)\right]$$

Purpose of GLMs

- Purpose: Estimating not θ_i but β_1, \dots, β_k (k < n)
- Suppose μ_i is a function of θ_i and $E(Y_i) = \mu_i$. Consider the following function g.

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$$

- g is a monotonic function (increasing, decreasing, or constant)
- ② x_i^T is the $1 \times k$ matrix of the predictors (row vector)
- ③ β is the $k \times 1$ matrix of the parameters (column vector)

Components of GLMs

- ① Response following the same distribution (in the exponential family): Y_1, \ldots, Y_n
- 2 Parameter vector β and design matrix X:

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_1 \ dots \ oldsymbol{eta}_k \end{bmatrix}, \quad \mathbf{X} = egin{bmatrix} \mathbf{x}_1^T \ dots \ \mathbf{x}_n^T \end{bmatrix} = egin{bmatrix} x_{11} & \cdots & x_{1k} \ dots & \ddots & dots \ x_{n1} & \cdots & x_{nk} \end{bmatrix}$$

Monotonic link function g:

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$
 or $\mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$

where
$$\mu_i = E(Y_i)$$

Logistic Regression and a Latent Variable

• Model the response Y_i with a continuous latent variable Z_i :

$$y_i = \begin{cases} 1 & (z_i \ge 0) \\ 0 & (z_i < 0) \end{cases}$$
$$z_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

• ε_i follows the logistic distribution:

$$\Pr(\varepsilon_i \leq x) = \operatorname{logit}^{-1}(x), \quad \forall x$$

Therefore,

$$Pr(y_i = 1) = Pr(z_i \ge 0) = Pr(\varepsilon_i \ge -x_i^T \beta) = Pr(\varepsilon_i \le x_i^T \beta)$$
$$= logit^{-1}(x_i^T \beta)$$

Probit Model

Model the responseY_i with a continuous latent variable Z_i:

$$y_i = \begin{cases} 1 & (z_i \ge 0) \\ 0 & (z_i < 0) \end{cases}$$
$$z_i = \mathbf{x}_i^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

- $\varepsilon_i \sim N(0,1)$
- Therefore,

$$Pr(y_i = 1) = Pr(z_i \ge 0) = Pr(\varepsilon_i \ge -\boldsymbol{x}_i^T \boldsymbol{\beta}) = Pr(\varepsilon_i \le \boldsymbol{x}_i^T \boldsymbol{\beta})$$
$$= \Phi(\boldsymbol{x}_i^T \boldsymbol{\beta})$$

where Φ is the standard normal CDF

CDFs of Logit and Probit

Difference between Logit and Probit

• Regression model with a latent variable Z_i:

$$y_i = \begin{cases} 1 & (z_i > 0) \\ 0 & (z_i < 0) \end{cases}$$
$$z_i = \mathbf{x}_i^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

- Suppose $\varepsilon_i \sim N(0, 1.6^2)$
- Estimation result of this models is almost same as that of logistic model
- Logistic (logit) ≈ Probit with the sd multiplied by 1.6

Can We Estimate σ in a Latent Variable Model?

- Can we set $\varepsilon_i \sim N(0, \sigma^2)$ and estimate σ ?
- Answer: No!
- Following models are equivalent:

$$z_{i} = \beta_{1} + \beta_{2}x_{i} + \varepsilon_{i}, \quad \varepsilon_{i} \sim N(0, 1.6^{2})$$

$$z_{i} = (10\beta_{1}) + (10\beta_{2})x_{i} + \varepsilon_{i}, \quad \varepsilon_{i} \sim N(0, 16^{2})$$

$$z_{i} = (100\beta_{1}) + (100\beta_{2})x_{i} + \varepsilon_{i}, \quad \varepsilon_{i} \sim N(0, 160^{2})$$

- Need fix $\sigma \rightarrow \sigma = 1$: Probit
- ullet σ in GLMs is a nuisance parameter

Models Estimated by glm() in R

- Following models are estimated by glm()
 - Linear regression
 - Logistic (logit) regression
 - Probit regression
 - Poisson regression
 - Beta-binomial
 - Negative-binomial
- For non-binary categorical response: use different functions in R

What to Specify in glm()

- Response variable vector: y
- ② Linear predictor: $X\beta$
 - Design matrix: X
 - Parameter vector: β
- Link function: "link" argument of glm()
- Probability distribution of the response: "family" argument of glm()
- Nuisance parameters: parameters other than that appear in the link function or the distribution

Linear Regression Model

• Link: Identity function (恒等関数)

$$\boldsymbol{x}_i^T\boldsymbol{\beta} = g(\mu_i) = \mu_i$$

• Probability distribution of the response:

$$Y_i \sim N(\mu_i, \sigma^2), \quad E(Y_i) = \mu_i$$

- Specifying "family" of glm():
 family = gaussian(link = "identity")
- Nuisance parameter: σ^2

Logistic Regression Model

Link: Logit function

$$\mathbf{x}_{i}^{T}\boldsymbol{\beta} = g(\boldsymbol{\pi}_{i}) = \operatorname{logit}(\boldsymbol{\pi}_{i}) = \operatorname{log}\left(\frac{\boldsymbol{\pi}_{i}}{1 - \boldsymbol{\pi}_{i}}\right)$$

• Probability distribution of the response:

$$Y_i \sim \mathsf{Bernoulli}(\pi_i) = \mathsf{Binomial}(n=1,\pi_i), \quad \mathsf{E}(Y_i) = \pi_i$$

• Specifying "family" of glm():
 family = binomial(link = "logit")

Probit Regression Model

Link: Probit function

$$\boldsymbol{x}_i^T\boldsymbol{\beta} = g(\boldsymbol{\pi}_i) = \boldsymbol{\Phi}^{-1}(\boldsymbol{\pi}_i)$$

• Probability distribution of the response:

$$Y_i \sim \mathsf{Bernoulli}(\pi_i) = \mathsf{Binomial}(n=1,\pi_i), \quad \mathsf{E}(Y_i) = \pi_i$$

• Specifying "family" of glm():
 family = binomial(link = qy"probit")

Poisson Regression Model

• Link: Logarithmic function

$$\mathbf{x}_i^T bm\beta = g(\theta_i) = \log \theta_i$$

• Probability distribution of the response:

$$Y_i \sim \text{Poisson}(\theta_i), \quad E(Y_i) = \theta_i$$

• Specifying "family" of glm():
 family = poisson(link = "log")

Non-binary Categorical Responses

Models for Non-binary Categorical Responses

- Ordinal response
 - Ordered logit
 - Ordered probit
- Nominal response
 - Multinomial (unordered) logit
 - Multinomial (unordered) probit)

Some R Functions

- Ordered logit or probit
 - MASS::polr()
 - arm::bayespolr()
 - ③ ordinal::clm()
- Multinomial models
 - Multinomial logit
 - mlogit::mlogit()
 - ② VGAM::multinomial()
 - Multinomial probit: MNP::mnp()