Concepts of Programming Languages Judgements, Inference Rules & Proofs

Lecturer: Gabriele Keller

Tutor: Liam O'Connor

University of New South Wales

School of Computer Sciences & Engineering

Sydney, Australia

COMP 3161/9161

Our Toolbox

- Formalisation of programming languages (PLs)
 - ★to reason about PLs, we need a language in which we can describe PLs and their properties
 - ★a language to talk about other languages is called a meta-language
 - ★to be sufficiently precise, we need a formal language
- This is what we need to be able to describe:
 - ★language grammar syntax
 - *scoping rules static semantics
 - ★type systems static semantics

*execution behaviour dynamic semantics

Fortunately, we can use natural deduction/inference rules for all of these tasks!!

Judgements and Inference Rules

Definition: Judgement

A judgement is a statement asserting a certain property for an object

Examples

- ★ 3+4*5 is a valid arithmetic expression
- ★ the string "madam" is a palindrome
- ★ 0.21312423 is a floating point value

A formal notation: we denote that property A holds for object s by writing s A

- ★ formally, s is an element of a universe *U* (a set) where
 - \rightarrow $A \subseteq U$ and $s \in A$
 - in our case, *U* will usually be the set of strings or terms

Inference Rules

Definition: Inference Rules

Given judgements J, J₁, J₂ up to J_n, an inference rule is an implication of the form:

If J_1 , J_2 , up to J_n are inferable, then J is inferable

A formal notation: we denote an inference rule formally by writing

Terminology:

- We call J₁ to J_n the premises of the rule and
- J its conclusion
- If a rule has no premise, it is called an axiom

Examples

- Using inference rules to define the set of natural numbers
 - \star to assert that n is a natural number, we write n **nat**
- Inference rules to define this judgement
 - ★ "o is a natural number" (axiom)

o **nat**

 \star "if *n* is a natural number, then s(n) is a natural number (*s* for *successor*)

★this set of rules characterises the set of syntactic objects

$$nat = \{o, s(o), s(s(o)), s(s(s(o))),\}$$

Examples

- Using inference rules to define the set of even and odd natural numbers
 - ★n even and n odd
- Inference rules used to define the judgement
 - ★"o is even" (axiom)

o even

★"if n is even, then s(s(n)) is even"

n even s(s(n)) even

★"if n is even, then s(n) is odd"

n even s(n) odd

Proofs by natural deduction

- What we covered:
 - ★ definitions of sets/properties using judgements
 - *using inference rules to describe the elements of a set
- What we want to do
 - ★how can we formally show that an object is an element of such a set?
 - a natural number is odd or even
 - ▶ a program is valid in a particular language
- Natural deduction: to show that s A holds
 - 1) find a rule whose conclusion matches s A
 - 2) show that the precondition of the rule holds
 - 3) continue until all preconditions have been reduced to axioms

Natural deduction

- Example: show that s(s(s(s(o)))) is even
- Let's start informally
 - $\star s(s(s(s(o))))$ is even if s(s(o)) is even
 - $\star s(s(o))$ is even if o is even
 - ★o is even
- Note: the preconditions of the rules we use become proof obligations

Grammars as inference rules

• Example: take the set of properly matched parentheses

$$M = \{\epsilon, (), (()), ()(), (()()), ()(), ...\}$$

- Informally
 - the empty string (denoted by ε) is in M
 - if s_1 and s_2 are in M, so is s_1s_2 (concatenation)
 - \blacktriangleright if s is in M, so is (s)
- Formal definition as EBNF
 - ► $M \rightarrow \varepsilon \mid MM \mid (M)$

Grammars as inference rules

Definition by inference rules

(1) the empty string is in *M*

(2) if s_1 and s_2 are in M, so is s_1s_2 (concatenation)

(2)
$$\frac{s_1 M}{s_1 s_2 M}$$

(3) if s is in M, so is (s)

$$(3) \frac{s M}{(s) M}$$

Natural deduction

• Show that () (()) M

(2)
$$\frac{s_1 M}{s_1 s_2 M}$$

$$(3) \frac{s M}{(s) M}$$

- But what happens if we start with Rule (3) instead?
 - if we're running into a `dead end' trying to prove a judgement, it doesn't mean that this judgement is not derivable

Admissible and derivable rules

What happens if we add the following rule to the system?

▶ this rule is derivable wrt to the original three - it's the same as applying Rule (3) twice - adding it to the rules would not add any new objects to *M*

▶ this rule is admissible wrt to the original three rules, because it doesn't add any new objects to M, but it is not derivable (not just a combination of the original rules)

▶ not admissible: we could derive)(M using this rule!

Rule Induction

- We call a set of inference rules an inductive definition of a judgement if the rules are exhaustive; i.e,
 - ★if a judgement holds, it can be inferred from the rules, and
 - ★if a judgement can be inferred, it holds
- Example: Rules (1)-(3) of *M* are an inductive definition of *M*:
 - ▶ for every string s of properly matched parenthesis, we can infer s M
 - ▶ whenever we can infer *s M*, s really is a string of properly matched parentheses
- If we want to show that a property holds for every element of an inductively defined set, how can we do this?
 - ★every string s in M has the same number of opening and closing parentheses

Rule Induction (structural induction)

(1)

$$(1) \quad \overline{\varepsilon} \quad M$$

(2)

(2)
$$\frac{s_1 M}{s_1 s_2 M}$$

(3)

3)
$$\frac{s M}{(s) M}$$

Rule Induction

Definition: Rule Induction

Given a set of rules *R*, we can prove inductively that a property *P* holds for all judgements that can be inferred from *R*:

For each rule of the form

$$J_1, J_2, ..., J_n$$

show that

if P holds for J_1 to J_n , then P holds for J.

Base cases and induction steps:

- axioms form the base case of the induction
- all other rules form the induction steps
- the J_i become the Induction Hypothesis

Rule Induction over Natural Numbers

We have two rules which define the natural numbers:

o **nat**

n nat s(n) nat

- Therefore, if we can show that a property P
 - holds for o and
 - holds for s(n) if (under the assumption that) it holds for n

we have shown that it holds for any n in nat

Induction over natural numbers is just a special case of rule induction!

Rule induction example

- Show that: if s M is inferable by rules (1)-(3), then s has the same number of opening and closing parenthesis
- Formalise the property:
 - \star let pl(s) be the number of left parens and pr(s) the number of right parens, then we have to show that

$$pl(s) = pr(s)$$
 for all $s M$

- Proof outline: we have to consider three cases (one case per rule). If s M was inferred using
 - Rule (1), then $s = \varepsilon$
 - ▶ Rule (2), then $s = s_1s_2$, for some $s_1 M$ and $s_2 M$
 - Rule (3), then $s = (s_1)$ for some $s_1 M$

Proof

- Proof case for Rule (1)
 - ★Rule (1) is an axiom ⇒ base case (usually easy to prove)
 - as $s = \varepsilon$, we have pl(s) = 0 = pr(s)
- Proof case for Rule (2)
 - ★ need to show that
 - if $pl(s_1) = pr(s_2)$, and $pl(s_2) = pr(s_2)$, then $pl(s_1s_2) = pr(s_1s_2)$
- Proof case for Rule (3)
 - ★ need to show that
 - if $pl(s_1) = pr(s_1)$, then $pl((s_1)) = pr((s_1))$

Simultaneous Inductive Definitions

As an example, consider the following grammar

where Int is an integer constant

It corresponds to the following inference rules

 $e_1 + e_2$ Expr $e_1 * e_2$ Expr

Simultaneous Inductive Definitions

• Infer 1 + 2 * 3 Expr

- The grammar is ambiguous!
 - we don't want ambiguous grammars, as they lead to ambiguous interpretations of the program
- We need alternative inference rules to reflect the fact that
 - · addition and multiplication are left associative
 - multiplication has a higher precedence than addition

Simultaneous Inductive Definitons

Alternative inference rules

e₁ SExpr e₂ PExpr e PExpr e SExpr e SExpr e SExpr e SExpr e SExpr e FExpr e FExpr e PExpr e PExpr e PExpr e PExpr e PExpr
$$i \in Int$$
 $i \in Int$ $i \in Int$

- SExpr corresponds to Expr in the previous definition
- ▶ FExpr and PExpr are auxiliary symbols to define SExpr
 - FExpr ⊆ PExpr ⊆ SExpr
- ▶ Simultaneous inductive definition: SExpr depends on PExpr, PExpr on FExpr, which in turn depends on SExpr

Rule Induction and Simultaneous Inductive Definitions

- The principle of rule induction extends to simultaneous inductive definitions
- To prove a property P of a term in SExpr, we need to show that
 - ▶ it holds for all integer values
 - if it holds for two terms e_1 and e_2 , it holds for $e_1 + e_2$
 - if it holds for two terms e_1 and e_2 , it holds for $e_1 * e_2$
 - if it holds for a term e, it holds for (e)

Ambiguous Grammars

- M is also ambiguous:
 - \star empty string problem ($\epsilon = \epsilon \epsilon = \epsilon \epsilon \epsilon =$)

$$(M-1) \frac{s_1 M}{\varepsilon M} \qquad (M-2) \frac{s_1 M}{s_1 s_2 M} \qquad (M-3) \frac{s M}{(s) M}$$

• Example: derive () M

$$(M-1) \frac{\varepsilon M}{\varepsilon M}$$

$$(M-3) \frac{\varepsilon M}{\varepsilon M}$$

$$(M-1) = \frac{\varepsilon M}{\varepsilon M} = \frac{\varepsilon M}{\varepsilon M}$$

$$(M-2) = \frac{\varepsilon \varepsilon M}{(\varepsilon \varepsilon) M}$$

Ambiguos Grammars

- How can we solve this?
 - ★we regard the expressions as a possibly empty list *L* of nested parenthesised expressions *N*

$$(L-1) \frac{s_1 N \quad s_2 L}{\varepsilon L} \qquad (N-1) \frac{s L}{(s) N}$$

- L corresponds to M in the previous definition, N is just an auxiliary construct
- · L is defined in terms on N, and vice versa
- this is another example of a simultaneous inductive definition

Ambiguos Grammars

- do both set of rules really define the same language? Is L = M?
- we need to show that they are indeed the same, we need to show that s M if and only if (iff) s L:
 - (1) s M implies s L (i.e., $M \subseteq L$)
 - (2) $s L \text{ implied } s M \text{ (i.e., } L \subseteq M)$
- · we can't derive it directly from the given rules

$$(L-1)\frac{s_1 N s_2 L}{\varepsilon} \qquad (N-1)\frac{s_1 N s_2 L}{s_1 s_2 L} \qquad (N-1)\frac{s_1 N}{s_1 s_2 L} \qquad (N-1)\frac{s_1 M}{s_1 s_2 M} \qquad (M-2)\frac{s_1 M s_2 M}{s_1 s_2 M} \qquad (M-3)\frac{s_1 M}{s_1 s_2 M}$$

- · we can use rule induction
- Part (1) of proof: show that s M implies $s L (M \subseteq L)$
- one case per inference rule of M

(1)
$$s = \varepsilon$$
 (base case)

- (2) $s = (s_1)$ for some string $s_1 M$ (induction step 1)
- (3) $s = s_1 s_2$ for some $s_1 M$ and $s_2 M$ (induction step 2)

$$(L-1) \frac{s_1 N \quad s_2 L}{s_1 s_2 L} \qquad (N-1) \frac{s L}{(s) N}$$

$$(M-1) \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \qquad (M-2) \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \qquad (M-3) \frac{s M}{(s) M}$$

• Part (1), Case (1): $s = \varepsilon$

- Part (1), Case (2): $s = (s_1)$ for some string $s_1 M$
 - ★Induction hypothesis: s₁ L

(I.H.)
$$\frac{s_1 L}{(N-1)}$$
 — (L-1) $\frac{(s_1) N \varepsilon L}{(s_1) L}$

$$(L-1) \frac{s_1 N \quad s_2 L}{s_1 s_2 L} \qquad (N-1) \frac{s L}{(s) N}$$

$$(M-1) \frac{s_1 M \quad s_2 M}{\varepsilon} \qquad (M-2) \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \qquad (M-3) \frac{s M}{(s) M}$$

- Part (1), Case (3): $s = s_1 s_2$ for some $s_1 M$, $s_2 M$
 - ★Induction hypothesis 1: s₁ L
 - ★Induction hypothesis 2: s₂ L

doesn't work - we can't be sure that s_1 is actually in N!

$$\frac{????}{S_1 N} - \frac{(I.H.-2)}{S_2 L}$$
(L-2)
$$\frac{S_1 N}{S_1 S_2 L}$$

$$(L-1) \frac{s_1 N \quad s_2 L}{s_1 s_2 L} \qquad (N-1) \frac{s L}{(s) N}$$

$$(M-1) \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \qquad (M-2) \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \qquad (M-3) \frac{s M}{(s) M}$$

To summarise, we have

$$\star$$
 s₁ L (I.H.-1)

- ★ s₂ L (I.H.-2), and need to show that this implies
- **★**S1S2 L
- unfortunately, we can't directly derive it from any of the rules we have
- can we use rule induction to prove the lemma:

$$S_1 L S_2 L$$

 $S_1 S_2 L$

$$(L-1) \frac{S_1 N S_2 L}{\varepsilon L} \qquad (N-1) \frac{S_1 N S_2 L}{S_1 S_2 L} \qquad (N-1) \frac{S_1 N}{\varepsilon}$$

To do this, we assume

$$(A-1)$$
 s L

(A-2) t L, and show that this implies st L

Induction over s

▶ base case: $s = \varepsilon$

▶ inductive step: $s = s_1s_2$ for (A-3) $s_1 N$, and (A-4) $s_2 L$

(I.H.)
$$s_2 L t L$$
 for a fixed s_2 and any t

(A-3)
$$\frac{s_2 L}{s_1 N} \frac{T}{s_2 L} \frac{(A-2)}{t L}$$
 (I.H.) $\frac{s_1 N}{s_1 s_2 t L} \frac{s_2 L}{L} \frac{(L-2)}{s_1 s_2 t L}$

$$(M-1) \frac{s_1 M s_2 M}{\varepsilon} \qquad (M-2) \frac{s_1 M s_2 M}{s_1 s_2 M} \qquad (M-3) \frac{s M}{(s) M}$$

- summary so far:
 - ★we showed that if s M, then s L by rule induction over s
 - base case was easy
 - ▶ for the inductive step, we first had to prove the lemma

using induction over s₁

★ we still need to show that if s L then s M

Judgements revisited

- A judgement states that a certain property holds for a specific object (which corresponds to a set membership)
- More generally, judgements express a relationship between a number of objects (n-ary relations)
- Examples:
 - ★4 divides 16 (binary relationship)
 - ★ail is a substring of mail (binary)
 - ★3 plus 5 equals 8 (tertiary)
- Infix notation to denote binary relations
 - ★ 4 div 16
 - ★ail substr mail

Relations

Definition: A binary relation **R** is

symmetric, iff for all a, b, aRb implies bRa

reflexive, iff for all a, aRa holds

transitive, iff for all a, b, c, aRb and bRc implies aRc

Definition:

A relation which is symmetric, reflexive, and transitive is called equivalence relation.

