Applied Physics-II by Sachin Sir

Unit-01 Wave motion and its applications

- 1.1 Wave motion, transverse and longitudinal wave motion with examples. Sound and light waves and their properties. Definition of wave velocity, frequency and wave length and their relationship.
- 1.2 Wave equation y = r sin wt, phase, phase difference, principle of superposition of waves and amplitude
- 1.3 Simple Harmonic Motion (SHM): definition, expression for displacement, velocity, acceleration, time period, frequency in S.H.M., Energy of a body executing S. H. M., study of vibration of cantilever and determination of its time period, concept of simple harmonic progressive wave.
- 1.4 Free, Damped and forced oscillations, Resonance with examples.
- 1.5 Echo and reverberation, Sabine formula for reverberation time(without derivation), coefficient of absorption of sound, methods to control reverberation time and their applications, Acoustics of building.
- 1.6 Ultrasonic Introduction properties and applications in engineering and medical applications.

Energy Transfer — Wave motion

Wave modion (तरंग गित) = Energy को स्क जगह से इसरे जगह Transfer

Applied Physics-II by Sachin Sir

Wave Motion

- तरंग गति ऊर्जा को एक स्थान से दूसरे स्थान तक स्थानांतरित करने की प्रक्रिया है, जिसमें पदार्थ का स्थानांतरण शामिल नहीं होता।
- यह कंपन या दोलन के माध्यम से होती है और इसे ध्विन तरंगों, जल तरंगों या प्रकाश तरंगों के रूप में देखा जा सकता है।
- Wave motion refers to the transfer of energy from one point to another without the movement of matter between the points.
- It occurs through oscillations or vibrations, and it can travel in different forms such as sound waves, water waves, or light waves.

Types of Wave Mostron (तरंग गति के प्रकार)

Electromagnetic Wave विद्युत पुम्वकीय तर्ग

No medium required for propagation संचिरत होने के लिए भाष्ट्यम की आवश्यकता नहीं

ex-Light Wave (Transverse Wave) Mechanical Wave (withan axii)

Medium required for propagation

Transverse Wave (अनुप्रस्थ तर्ग)

Longitudinal
(27 Jessivisi)

Applied Physics-II by Sachin Sir

Electromagnetic Waves (विद्युत चुम्बकीय तरंगें)

- वे तरंगे जिनके संचरण के लिए माध्यम की उपस्थिति आवश्यक नहीं होती। इन्हें विद्युत चुम्बकीय तरंगें कहते हैं।
- Example-प्रकाश की तरंगें, रेडियो तरंगें, एक्स-किरणें, गामा-किरणें ८५८
- Those waves which do not require the presence of a medium for their propagation. These are called electromagnetic waves.
- Example-Light waves, Radio waves, X-rays, Gamma-rays

Applied Physics-II by Sachin Sir

Mechanical Wave (यांत्रिक तरंग) - प्राह्यम की आवश्यकता होती हैं।

- यांत्रिक तरंग वह तरंग है जिसे यात्रा करने के लिए किसी माध्यम (जैसे वायु, जल, या ठोस) की आवश्यकता होती है।
- यह निर्वात (खाली स्थान) में नहीं चल सकती क्योंकि इसे ऊर्जा के स्थानांतरण के लिए माध्यम के कणों के कंपन पर निर्भर रहना पड़ता है।
- Example- ध्वनि तरंगें, जल की तरंगें, स्प्रिंग की तरंगे ९ 🕂 🤇
- A mechanical wave is a type of wave that requires a medium (such as air, water, or solids) to travel.
- It cannot move through a vacuum because it depends on the vibration of particles in the medium to transfer energy.
- Example- Sound waves, water waves, spring waves etc.

Sound Wave -> Mechanical Light Wave > Electromagnetic wave Water Wave > Mechanical Y-ray -> Emw

Applied Physics-II by Sachin Sir

Working Principle of Mechanical Wave

जब एक यांत्रिक तरंग माध्यम से गुजरती है:

- 1.माध्यम के कण अपने संतुलन स्थिति के आसपास कंपन करते हैं।
- 2. ये कंपन एक कण से दूसरे कण तक पहुँचते हैं, जिससे ऊर्जा स्थानांतरित होती है।

When a mechanical wave travels through a medium:

- 1. The particles of the medium vibrate around their equilibrium position.
- 2. These vibrations are passed from one particle to another, transferring energy.

Types of Mechanical Wave

Transverse Wave (अनुप्रस्थ तर्ग)

Longritudinal Wave (अर्द पेंटर्स तरंग)

Applied Physics-II by Sachin Sir

Types of Mechanical Waves (यांत्रिक तरंगों के प्रकार)

1. अनुप्रस्थ तरंग (Transverse wave)

Applied Physics-II by Sachin Sir

Types of Mechanical Waves (यांत्रिक तरंगों के प्रकार)

- 1. अनुप्रस्थ तरंग (Transverse wave)
 - जब किसी माध्यम के कणों के कम्पन करने की दिशा, तरंग-संचरण की दिशा के लम्बवत् होती है
 तो माध्यम में उत्पन्न तरंग को 'अनुप्रस्थ तरंग' कहते हैं।
 - When the direction of vibration of the particles of a medium is perpendicular to the direction of wave propagation, then the wave generated in the medium is called 'transverse wave'.
 - प्रकाश की (विद्युत-चुम्बकीय) तरंगें अनुप्रस्थ तरंगें हैं।
 - Light (electromagnetic) waves are transverse waves.

Example: Waves on water (पानी की सतह पर तरंगें)।

Perpendicular motion

Applied Physics-II by Sachin Sir

- अनुप्रस्थ तरंगें केवल उन्हीं माध्यमों में उत्पन्न की जा सकती हैं जिनमें दृढ़ता (rigidity) होती है।
- सभी ठोस दृढ़ होते हैं। अत: ठोसों में अनुप्रस्थ तरंगें उत्पन्न की जा सकती हैं।
- गैसें दृढ़ नहीं होतीं अतः उनमें अनुप्रस्थ तरंगें उत्पन्न नहीं की जा सकतीं हैं।
- द्रवों में अनुप्रस्थ तरंगें केवल उनकी सतह पर ही बन सकती हैं, उनके भीतर नहीं।
- Transverse waves can be generated only in those mediums which have rigidity.
- All solids are rigid. Hence, transverse waves can be generated in solids.
- gases are not rigid so transverse waves cannot be generated in them.
- Transverse waves in liquids can form only on their surface and not inside them.

Applied Physics-II by Sachin Sir

2. अनुदैर्ध्य तरंग (Longitudinal wave) -

Particle do Arun and Gan and direction

Applied Physics-II by Sachin Sir

2. अनुदैर्ध्य तरंग (Longitudinal wave) -

- जब किसी माध्यम के कणों के कम्पन करने की दिशा तरंग संचरण की दिशा के समान्तर होती है
 तो माध्यमों में उत्पन्न तरंग को अनुदैर्ध्य तरंग' कहते हैं।
- अनुदैर्ध्य तरंगें सभी प्रकार के माध्यमों (ठोस, द्रव तथा गैस) में उत्पन्न की जा सकती हैं।
- वायु में तथा द्रवों के भीतर उत्पन्न तरंगें सदैव अनुदैर्ध्य तरंगें ही होती है।

Example: Sound waves (ध्वनि तरंग)

L'anserverse Wave (अनुपेहर्य तरंग) longritudinal Wqve

Applied Physics-II by Sachin Sir

- When the direction of vibration of the particles of a medium is parallel to the direction of wave propagation, then the wave generated in the medium is called 'longitudinal wave'.
- Longitudinal waves can be generated in all types of media (solid, liquid and gas).
- The waves generated in air and liquids are always longitudinal waves.
 ८४ > ८०५१ ८०५६ (ध्विन तरंगे)

Sound Wave (Earth 1737) ->
Mechanical wave (viilla

Mechanical wave (थांतिक त्रंग) निष्यम की । longitudinal wave (अंदुदेहर्य तरंग) निष्यम की

9520348863

Applied Physics-II by Sachin Sir

Sound wave

- ध्वनि तरंगें (Sound Waves) यांत्रिक तरंगें (Mechanical Waves) होती हैं, जो किसी माध्यम (medium) जैसे गैस, द्रव, या ठोस में अनुदैर्ध्य (longitudinal) प्रकार से संचरित होती हैं।,
- Sound waves are mechanical waves that travel longitudinally in a medium such as a gas, liquid, or solid.
- ध्वनि तरंगों का निर्माण कंपन (vibration) के कारण होता है, जो माध्यम के कणों में संपीड़न (compression) और विरलन (rarefaction) उत्पन्न करता है।
- Sound waves are formed due to vibration, which produces compression and rarefaction in the particles of the medium.

2 Due 16 ration

Direction of Sound Waves

Applied Physics-II by Sachin Sir

ध्वनि तरंगों का निर्माण (Production of Sound Waves)

1. कंपन (Vibration):

- ध्विन का निर्माण कंपन के कारण होता है। जब कोई वस्तु कंपन करती है, तो यह आसपास की हवा के कणों को भी कंपन करने के लिए मजबूर करती है
- Sound is produced due to vibrations. When an object vibrates, it forces the surrounding air particles to vibrate as well
- उदाहरण: जब आप गिटार के तार को बजाते हैं, तो तार के कंपन से ध्विन उत्पन्न होती है।
- Example: When you pluck a guitar string, the vibration of the string produces sound.

Applied Physics-II by Sachin Sir

2. माध्यम की आवश्यकता (Medium is Required):

- ध्विन तरंगों को चलने के लिए माध्यम की आवश्यकता होती है, क्योंिक यह माध्यम के कणों के आपसी संपर्क से संचरित होती है। निर्वात (vacuum) में ध्विन नहीं चल सकती।
- Sound waves require a medium to travel because they are transmitted by the interaction of the particles of the medium. Sound cannot travel in a vacuum.

Applied Physics-II by Sachin Sir

ध्वनि तरंगों के गुण (Properties of Sound Waves)

- 1. संपीड़न और विरलन (Compression and Rarefaction):
 - संपीड़न (Compression): माध्यम के कण आपस में पास आते हैं
 - Compression: The particles of the medium come closer to each other
 - विरलन (Rarefaction): माध्यम के कण दूर चले जाते हैं
 - Rarefaction: The particles of the medium move apart

2. गति (Speed of Sound):

- ध्वनि की गति माध्यम के घनत्व (density) और प्रत्यास्थता (elasticity) पर निर्भर करती है।
- The speed of sound depends on the density and elasticity of the medium.

ठोस > द्रव > गैस में ध्वनि की गति।

Applied Physics-II by Sachin Sir

3. आवृत्ति (Frequency):

- ध्वनि तरंग की आवृत्ति यह बताती है कि एक सेकंड में कितने कंपन (cycles) पूरे होते हैं।
- The frequency of a sound wave indicates how many vibrations (cycles) it completes in one second.

4. आयाम (Amplitude):

- ध्वनि तरंग के आयाम से ध्वनि की तीव्रता (loudness) का पता चलता है।
- The amplitude of a sound wave indicates the loudness of the sound.
- बड़ा आयाम (Bigger amplitude) = तेज आवाज (louder sounds)

5. तरंगदैर्ध्य (Wavelength):

- यह दो लगातार संपीड़न या दो लगातार विरलन के बीच की दूरी है।
- It is the distance between two successive compressions or two successive rarefactions.

Applied Physics-II by Sachin Sir

6. ध्वनि का परावर्तन (Reflection of Sound):

- ध्विन एक सतह से टकराकर वापस लौट सकती है। इसे प्रतिध्विन (Echo) कहते हैं।
- Sound can bounce back after hitting a surface. This is called an echo.

7. ध्वनि का अपवर्तन (Refraction of Sound):

- ध्विन एक माध्यम से दूसरे माध्यम में जाने पर अपनी दिशा और गित बदल सकती है।
- Sound can change its direction and speed when it travels from one medium to another.

Applied Physics-II by Sachin Sir

6. Refraction (अपवर्तन):

- प्रकाश जब एक माध्यम से दूसरे माध्यम में जाता है, तो उसकी दिशा बदल जाती है।
- Light bends when it passes from one medium to another.

7. Dispersion (वितरण)

- Light splits into different colors, like in a rainbow.
- प्रकाश विभिन्न रंगों में विभाजित हो जाता है, जैसे इंद्रधनुष में होता है।