Deep contextualized word representations

1. Introduction

- 기존의 Word2Vec은 각 단어가 한 개의 벡터로만 표현됨 -> 문법구조나 다의어에 따른 뜻 변형을 반영하기가 어려움
- 문맥에 따라 다르게 word embedding 하는 방법을 생각하게 됨
 - 단어를 임베딩하기 전에 전체 문장을 고려해서 embedding
 - -> 문맥을 반영한 워드 임베딩 (Contextualized Word Embedding)

1. Introduction

- **ELMo**: Embeddings from Language Model
 - 사전 훈련된 언어 모델을 사용
 - 문맥을 고려하는 문맥 반영 언어 모델
 - LSTM의 마지막 layer만 사용하는 기존과는 **달리 LSTM의 모든 내부 layer를 사용**-> 더 많은 정보 사용 가능
 - **higher-level** LSTM : **semantic 한 정보**를 잘 표현 (output layer 에 가까운 layer)
 - lower-level LSTM : syntax 한 정보를 잘 표현 (input layer 에 가까운 layer)
 - 전체 문장을 input으로 받고, 각 단어들의 representation을 뽑음
 - 큰 사이즈로 biLM pre-train 시켰을 때, semi-supervised learning 가능
 - 쉽게 다른 모델에 붙일 수 있음

2. Bidirectional Language Model

- bidirectional Language model
 - forward language model + backward language model
 - N 개의 token (t_1, t_2, ... ,t_N) 이 있다고 할 때
 - forward language model: (t_1, t_2, ..., t_k-1) 로 t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1}).$$

• backward language model : $(t_k+1, t_k+2, ..., t_N)$ 로 t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N).$$

• 최종적으로 forward + backward, 두 방향의 log likelihood를 최대화 시키는 방향으로 학습

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)).$$

2. Bidirectional Language Model

3. ELMo

- biLM의 중간 층들의 representation 들의 결합으로 나타낼 수 있음
 - 입력 t_k에 대해 L 개의 층이 있을 때, L+L+1 (context independent representation) 으로 **2L+1 개의 representation**을 사용하게 됨

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

• 최종적으로 모든 층에서 생성한 representation을 결합해 하나의 벡터를 생성

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

3. ELMo

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

- 1. 각 층의 출력값 연결
- 2. 각 층의 출력값 별로 가중치를 줌
- 3. 각 층의 출력값을 모두 더함
- 4. scalar parameter를 곱해 벡터의 크기 결정

 $\times S_3$

4. Using biLMs for supervised NLP tasks

- ELMo representation 을 이용해서 기존의 NLP task의 성능을 끌어올릴 수 있음
 - x_k: 기존의 문맥을 고려하지 않는 단어 임베딩
 - h_k : x_k 임베딩에 ELMo representation을 결합/ task model의 input으로 사용됨
- ELMo representation을 기존의 task에 함께 사용하는 방법
 - 1. biLM의 가중치를 고정(freeze)
 - 2. 문맥을 고려하지 않은 단어 임베딩인 x_k를 ELMo representation과 연결 $[\mathbf{x}_k; \mathbf{ELMo}_k^{task}]$
 - 3. 새로 생성한 문맥을 고려한 단어 임베딩을 task 모델의 input으로 제공
- ELMo에 dropout 적용, loss에 $\lambda \|w\|_2^2$ 를 더해 ELMo 가중치를 정규화하는 방법이 성능 향상에 도움이 되었음

5. Pre-trained bidirectional language model architecture

- 본 논문에서 다루는 최종 모델
 - 2개의 LSTM 층 사용 (L=2)
 - 각 층의 output은 4096 개의 unit 과 512 차원
 - 첫번째 층과 두번째 층을 residual connection으로 연결
 - 문맥을 고려하지 않는 임베딩은 2048 character n-gram convolution filter 사용, 2개의 highway layer를 추가적으로 사용, 최종적으로 512차원의 output
 - -> 입력에 대해 총 3개의 representation 생성
 - 10 epoch 동안 1B Word Benchmark를 기반으로 학습
 - Backward perplexity: 39.7
 - Forward perplexity와 backward perplexity가 거의 유사하게 측정되었지만 backward perplexity가 조금 더 낮게 측정

6. Evaluation

• Task에 대한 성능 비교

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

- ELMo representation을 추가함으로써 6개의 NLP task에서 성능 향상을 이뤄냄
- 6개의 task : Question answering(질의응답), Textual entailment(가설이 참인지 판단), Semantic role labeling(의미역 결정), Coreference resolution(상호 참조), Named entity extraction(개체명 인식), Sentiment analysis(감성 분석)

6. Evaluation

• λ에 대한 성능 비교

Task	Baseline	Last Only	All layers	
Task			λ =1	λ=0.001
SQuAD	80.8	84.7	85.0	85.2
SNLI	88.1	89.1	89.3	89.5
SRL	81.6	84.1	84.6	84.8

- 마지막 layer만 쓰는 것보다 모든 layer를 쓰는 것이 더 좋음
- λ를 작게 하는 것이 더 성능이 높음

6. Evaluation

• ELMo 위치에 대한 성능 비교

Tools	Input	Input &	Output
Task	Only	Output	Only
SQuAD	85.1	85.6	84.8
SNLI	88.9	89.5	88.7
SRL	84.7	84.3	80.9

• SQuAD, SNLI 에서는 biRNN의 output에도 ELMo를 추가하는 것이 더 성능이 높음

- Glove와 biLM에서의 "play"

 - Glove에서는 "play"에 관련된 단어들로 스포츠와 유사한 것들이 나옴
 biLM에서는 "play"와 유사한 의미로 사용되는 문장이 유사한 것으로 나옴

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round
	grounder {}	excellent play .
	Olivia De Havilland	{} they were actors who had been handed fat roles in
	signed to do a Broadway	a successful play, and had talent enough to fill the roles
	play for Garson $\{\}$	competently, with nice understatement.

• Word-Sense Disambiguation (단어 모호성 해소)

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

- biLM이 CoVe 보다 성능이 우수함
- biLM의 first layer를 이용하는 것보다 second layer를 이용하는 것이 성능이 높음 -> 높은 layer일수록 문맥 정보 학습

• POS tagging (형태소 분석)

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

- biLM이 CoVe보다 성능이 우수함
- biLM의 first layer가 second layer보다 성능이 우수
 - -> 낮은 layer'일수록 문법 정보 학습

Training set 크기에 따른 성능 비교

• 모델에 ELMo를 추가했을 때가 추가하지 않았을 때보다 학습 속도가 빠름

• 학습된 weights 시각화

- Softmax-normalized 학습 계층 가중치를 시각화한 것
- Input layer에서는 첫번째 layer에 더 높은 가중치를 둠
- Output layer에서는 모든 layer에 균형있게 가중치를 둠

8. Conclusion

- biLM 으로부터 깊은 문맥 의존 representation을 학습하는 일반적인 접근법을 도입
- 광범위한 NLP task에서 ELMo 를 적용했을 때 성능 향상이 있는 것을 볼 수 있음
- biLM 계층이 문맥 내 단어들에 대한 다른 유형의 구문 및 의미 정보를 효율적으로 인코딩하고, 모든 계층 사용 시 전반적인 작업 성능 향상이 있음

Thank You

감사합니다.