Let's revisit the task of outocompletion

At any time step t, we want to compute

arg max
$$P(y_t = j | y_{t-1}, y_{t-2}, \dots, y_i)$$

word Vocabulary

eg.
$$P(y_y = home \mid at, am, I)$$

Using RNN,

$$P(Y_{t} = j \mid Y_{t-1}, Y_{t-2}, \dots, Y_{l}) = \left(softmax \left(V_{s_{t}} + c\right)\right).$$

$$S_{t} \text{ captures all the information until time step } t.$$

At test time,

Image Captioning

We want to generate a sentence given an image. 7 Image. We are interested in $P(y_t = j \mid y_{t-1}, \dots, y_1, I)$

Since CNN architectures are good for images, we use it to learn important features from the image and then pass it on to the RNN model.

Encoder - Decoder

In image captioning,

A CNN is used to "encode" the image

- Learn good feature representation of
the input.

An RNN is used to "decode" a sentence from this encoding.

Task: Image Captioning

Data: $\{x_i = image, y_i = caption \}_{i=1}^{N}$

Model:

Encoder

 $S_0 = CNN(x_i)$

Decoder

 $S_t = RNN(S_{t-1}, y_{t-1})$

Parameters: U, V, W, b, c and all weights and biases

Training all parameters of encoder and decoder together.

- End to end model

Video Captioning

