INF2220 – høsten 2015, 5. nov.

Sortering del I (kap. 7.)

Arne Maus, Gruppen for Programmering og Software Engineering (PSE) Inst. for informatikk, Univ i Oslo

Essensen av kurset

- Lære et sett av gode (og noen få dårlige) algoritmer for å løse kjente problemer
 - Gjør det mulig å vurdere effektiviteten av programmer
- Lære å lage effektive & velstrukturerte programsystemer/biblioteker
- Lære å løse ethvert "vanskelig" problem så effektivt som mulig.
 - Også lære noen klasser av problemer som ikke kan løses effektivt
- Eks: Hvor lang tid tar det å sortere 1 million tall ?
 - 16 timer og 10 min (optimalisert Boblesortering)
 - 1,4 sek. (Quick-sort)
 - 0,8 sek. (radix-sort)
 - 0,09 sek (parallell radix)

Tidsmålinger

Hvor lang tid bruker:

A) Enkel for-løkke

for (int
$$i = 0$$
; $i < n$; $i++$)
 $a[i] = a[n-i-1];$

B) Dobbel for-løkke

for (int
$$i = 0$$
; $i < n$; $i++$)
for (int $j = i$; $j < n$; $j++$)
 $a[i] = a[n-j-1]$;

n=	A) Enkel	B) Dobbel
10	1	1
100	1	1
1 000	1	56
10 000	2	5 856
100 000	13	640 110
1 000 000	134	?

(Tid i millisek.)

```
import java.util.*;
public class Tatid
// både mulig å bruke fra 'main' og via subklasse
   long tid = 0;
   Tatid(int n)
   { tid = System.nanoTime();
     bruk(n);
     tid = System.nanoTime() - tid;
     System.out.println("Tid brukt: " +( tid/1000000.0) + " millisekunder");
    void bruk(int n)
    { // redefineres i subklasse
    } // end bruk
    public static void main ( String[] args)
    { if (args.length < 1){ System.out.println(" Bruk: >java TaTid <n - antall>");
         } else {
          int n = new Integer(args[0]).intValue(); // få parameter fra linja
         Tatid t = new Tatid(n);
     }} // end main
 } // end **** class Tatid *****
```

```
import easylO.*;
import java.util.*;
public class Lokke extends Tatid
   Lokke(int i)
      super(i);
    void bruk(int n)
    { for (int k = 0; k < n; k++)
        for (int j = 0; j < n; j++)
    } // end bruk
    public static void main (String[] args)
    { if (args.length < 1){ System.out.println(" Bruk: \n > java Lokke < n1> ");
                 } else {
        int n = new Integer(args[0]).intValue(); // få parameter fra linja
        Lokke I = new Lokke(n);
     }} // end main
 } // end **** class Lokke *****
```

Sort

Sortering

- Hva sorterer vi i praksis
 - Bare tall eller tekster eller noe mer
- Hvordan definere problemet
 - Krav som må være oppfylt
- Empirisk testing av hastigheten til algoritmer
 - antall
 - Hvilke verdier (fordeling, max og min verdi er antallet gitt)
- Hva avgjør tidsforbruket ved sortering
 - Sorteringsalgoritmen
 - N, antall elementer vi sorterer
 - Fordelingen av disse (Uniform, skjeve fordelinger, spredte,..)
 - Effekten av caching
 - Optimalisering i jvm (Java virtual machine) også kalt >java
 - Parallell sortering eller sekvensiell
 - Når lønner parallell løsning seg?

To klasser av sorteringsalgoritmer

Sammenligning-baserte:

Baserer seg på sammenligning av to elementer i a[]

- Innstikk, boble
- Tree
- Quicksort
- Verdi-baserte :

Direkte plassering basert på verdien av hvert element – ingen sammenligninger med nabo-elementer e.l.

- Bøtte
- Radix

Sorteringsproblemet, definisjon.

- Kaller arrayen a[] før sorteringen og a'[] etter
 - og n er lengden av a: dvs. a = new int [n];.
- Sorteringskravet:
 - $a'[i] \le a'[i+1], i = 0,1,...,n-2$
- Stabil sortering
 - Like elementer skal beholde sin innbyrdes rekkefølge etter sortering.
 Dvs. hvis a[i] = a[j] og i < j, og hvis a[i] er sortert inn på plass 'k' i a'[] og a[j] sortert inn på plass 'r' i a[], så skal k < r.
- Sorteringsalgoritmene antar at det kan finnes like verdier i a[]
 - I bevisene antar vi alle a_i er forskjellige_: a[i] ≠ a[j] , når i ≠ j.
- I terstkjøringene antar vi at innholdet i a[] er en tilfeldig trukne tall mellom 0 og n-1. Dette betyr at også etter all sannsynlighet er dubletter (to eller flere like tall) som skal sorteres, men ikke så veldig mange.
- Hvor mye ekstra plass bruker algoritmen
 - Et lite fast antall, et begrenset antall (eks. $< 10^{12}$) heltall, eller n ekstra ord
- N.B Ett krav til hvilket ?

N.B. Husk bevaringskriteriet

- Bevaringskriteriet:
 - Alle elementene vi hadde i a[], skal være i a'[]
 - Formelt: Skal eksistere en permutasjon, p, av tallene 0..n-1 slik at a'[i] = a[p[i]], i = 0,1,..n-1 (kan også defineres 'den andre veien', men mindre nyttig)

■ Hvis inndata er 1, 1, 0 så skal sortert rekkefølge være 0, 1, 1 (IKKE 0, 0, 1), men kanskje 0, 1, 1 (dvs. ustabil)

En litt enklere kode enn boka, antar vi sorterer heltall.

 Lar seg lett generalisere til bokas tilfelle, som antar at den sorterer en array av objekter som er av typen Comparable.

tids-forbruk, millisek. – 450MHz PC

Lengde av a: 10

Boble-sort = 0,061

Innstikk-sort = 0.037

Tree - sort = 0,072

Lengde av a: 1 000

Boble-sort = 46,100

Innstikk-sort = 10,900

Tree - sort = 1,600

Lengde av a: 100

Boble-sort = 0,610

Innstikk-sort = 0,220

Tree - sort = 0.160

Lengde av a: 10 000

Boble-sort = 4735,000

Innstikk-sort = 1230,000

Tree - sort = 17,000

Boblesort – den aller langsomste!

```
void bytt(int[] a, int i, int j)
  \{ int t = a[i];
    a[i]=a[j];
    a[j] = t;
  void bobleSort (int [] a)
  \{ int i = 0 \}
   while (i < a.length)
         if (a[i] > a[i+1]) {
             bytt (a, i, i+1);
             if (i > 0) i = i-1;
          } else {
                i = i + 1;
  } // end bobleSort
```

Ide: Bytt om naboer hvis den som står til venstre er størst, lar den minste boble venstreover

Theorem 7.1 – antall ombyttinger

En inversjon ('feil') er per def: a[i] > a[j], men i < j. Th 7.1

Det er gjennomsnittlig n(n-1)/4 inversjoner i en array av lengde n.

Bevis

Se på en liste L og den samme listen reversert L_r . Ser vi på to vilkårlige elementer x,y i begge disse listene. I en av liste står de opplagt i gal rekkefølge (hvis x \neq y). Det er n(n-1)/2 slike par i de to listene, og i snitt står halvparten 'feil' sortert, dvs. n(n-1)/4 inversjoner i L.

Dette er da en nedre grense for algoritmer som bruker naboombyttinger – de har alle kjøretid O(n²)

analyse av Boble-sortering

- Boble er opplagt O(n²) fordi:
 - Th. 7.1 sier at det er O(n²) inversjoner, og en naboombytting fjerner bare en slik inversjon.
- Kunne også argumentert som flg.:
 - Vi går gjennom hele arrayen, og for hver som er i gal rekkefølge (halvparten i snitt) – bytter vi disse (i snitt) halve arrayen ned mot begynnelsen.
 - $n/2 \times n/2 = n^2/4 = O(n^2)$, men mange operasjoner ved å boble (nabo-ombyttinger)

Innstikk-sortering – likevel best for n < 50

```
void insertSort(int [] a )
 \{int i, t, max = a.length -1;
  for (int k = 0; k < max; k++) {
   // Invariant: a[0..k] er sortert, skal
   // nå sortere a[k+1] inn på riktig plass
     if (a[k] > a[k+1]) {
           t = a[k+1];
           i = k:
          do{ // gå bakover, skyv de andre
              // og finn riktig plass for 't'
                  a[i+1] = a[i]:
            a[i+1] = t;
 // end insertSort
```

Idé: Ta ut ut element a[k+1] som er mindre enn a[k]. Skyv elementer k, k-1,... ett hakk til høyre til a[k+1] kan settes ned foran et mindre element.

Generell design-metodikk

- Gitt en klar spesifikasjon med flere ledd
- En av delene i spesifikasjonen nyttes som invariant i programmets (ytterste) hovedløkke i en litt endret form.
 - (løkke-invariant = noe som er sant i begynnelsen av løkka)
- Dette kravet svekkes litt (gjøres litt enklere);
 gjelder da typisk bare for en del av datastukturen
- I denne hoved-løkka, gjelder så resten av spesifikasjonene:
 - i begynnelsen av hoved-løkka
 - ødelegges ofte i løpet av løkka
 - gjenskapes før avslutning av løkka

Design, innstikksortering

Svekker Sortert-kravet til bare å gjelde a[0..k-1] Bevaringskravet beholdes (for hele a[0..n-1])

Innstikk-sortering (for k = 0, 1,2,...,n-1:):

- 1) Ta ut det 'galt plasserte' elementet a[i]
- 2) Finn *i* hvor 'gamle a[k+1]' skal plasseres og skyv a[i..k] ett-hakk-til- høyre (ødelegger Bevaringskravet)
- 3) Sett 'gamle a[k+1]' inn på plass *i* (*gjenskaper Bevaringskravet*)

Rotrettet tre (heap)

- ★ Ide for (Heap &) Tre sortering rotrettet tre i arrayen:
 - 1. Rota er største element i treet (også i rota i alle subtrær rekursivt)
 - Det er ingen ordning mellom vsub og hsub (hvem som er størst)
 - Vi betrakter innholdet av en array a[0:n-1] slik at vsub og hsub til element 'i' er i: '2i+1' og '2i+2' (Hvis vi ikke går ut over arrayen)

Feil i rota, '2' er ikke størst:

Feil i bladnode, '99' er større enn sin rot:

Hjelpemetode – roten i et (sub)tre muligens feil :

```
static void dyttNed (int i, int n)
// Rota er (muligens) feilplassert - dytt 'gammel og liten' rot nedover
// få ny, større oppover
{ int j = 2*i+1, temp = a[i];
    while (j \le n) {
       if (j < n \&\& a[j+1] > a[j]) j++;
       if (a[j] > temp)
       \{ a[i] = a[j]; i = j; j = j*2+1; \}
        else break;
                                     Før:
                                                       dyttNed (0, 5)
                                                                          Etter:
    a[i] = temp;
                                             3
                              11
                                                       a
                                                             11
                                                                 10
                                                                     3
                                                                                  1
                    a
                              11
                                          10
                                       9
                                                                        3
                                                5
```

```
void dyttNed (int i, int n) {
 // Rota er (muligens) feilplassert
    Dytt gammel nedover
// få ny og større oppover
int i = 2*i+1, temp = a[i];
  while(j \le n)
  { if(j < n \&\& a[j+1] > a[j]) j++;
      if (a[j] > temp) {
           a[i] = a[i]:
            i = j;
           j = j*2+1;
       else break;
  a[i] = temp;
 } // end dyttNed
```

Eksekveringstider for dyttNed

Vi ser at metoden starter på subtreet med rot i a[i] og i verste tilfelle må flytte det elementet helt til ned til en bladnode – ca. til a[n],

Avstanden er (n-i) i arrayen og hver gang **dobler** vi j inntil j \leq = n: dvs. while-løkka går maks. log(n-i) ganger = $O(\log n)$

(dette er det samme som at høyden i et binærtre er $\geq \log(n)$)

Ideen bak Tre (& Heap)-sortering

Tre – sortering:

 Vi starter med røttene, i først de minste subtrærne, og dytter de ned (får evt, ny større rotverdi oppover)

(Heap-sortering:

 Vi starter med bladnodene, og lar de stige oppover i sitt (sub)-tre, hvis de er større enn rota.)

Felles:

Etter denne første ordningen, er nå største element i a[0]

Tre sortering

a[i] = temp;

} // end dyttNed

```
9 10 1 9 2 1

void treeSort(int [] a)

{ int n = a.length-1;
```

Ide: Vi har et binært ordningstre i a[0..k] med største i rota. Ordne først alle subtrær. Få største element opp i a[0] og Bytt det med det k'te elementet (k=n, n-1,...)

```
a[]: 2 11 3 9 10 1
```

0	1	2	3	4	5
11	10	3	9	2	1

23

analyse av tree-sortering

- Den store begrunnelsen: Vi jobber med binære trær, og 'innsetter' i prinsippet n verdier, alle med vei log 2 n til rota = O(n log n)
 - Først ordner vi n/2 subtrær med
 gjennomstitshøyde = (log n) / 2 = n*logn/4
 - Så setter vi inn en ny node 'n' ganger i toppen av det treet som er i a[0..k], k = n, n-1,..,2,1 I snitt er høyden på dette treet (nesten) log n – dvs n logn
 - Summen er klart O(n logn)

Quicksort – generell idé

- 1. Finn ett element i (den delen av) arrayen du skal sortere som er omtrent 'middels stort' blant disse elementene kall det *'part'*
- 2. Del opp arrayen i to deler og flytt elementer slik at:
 - a) små de som er mindre enn 'part' er til venstre
 - b) like de som har samme verdi som 'part' er i midten
 - c) store de som er større, til høyre

3. Gjennta pkt. 1 og 2 rekursivt for de *små* og *store* områdene hver for seg inntil lengden av dem er < 2, og dermed sortert.


```
void quicksort ( int [] a, int I, int r)
 { int i= l, j=r;
   int t, part = a[(l+r)/2];
     while ( i <= j) {
            while (a[i] < part ) i++; //hopp forbi små
            while (part < a[j] ) j--; // hopp forbi store
            if (i <= j) {
               // swap en for liten a[j] med for stor a[i]
                   = a[i];
               a[j] = a[i];
               a[i]=t;
                i++;
    if ( | < j ) { quicksort (a,l,j); }</pre>
    if (i < r) { quicksort (a,i,r); }
} // end quickSort
```

```
Void quick (int [] a) {
   quicksort(a, 0 , a.length-1);
}
```

QuickSort - eksempel

Quick – sort, tidsforbruk

Vi ser at ett gjennomløp av quickSort tar O(r-l) tid, og første gjennomløp O(n) tid fordi r-l = n første gang

Verste tilfellet

Vi velger 'part' slik at det f.eks. er det største elementet hver gang. Da får vi totalt n kall på quickSort, som hver tar O(n/2) tid i gj.snitt – dvs O(n ²) totalt

Beste tilfellet

Vi velger 'part' slik at den deler arrayen i to like store deler hver gang. Treet av rekursjons-kall får dybde log n. På hvert av disse nivåene gjennomløper vi alle elementene (høyst) en gang – dvs:

$$O(n) + O(n) + ... + O(n) = O(n \log n)$$

(log n ledd i addisjonen)

Gjennomsnitt

I praksis vil verste tilfellet ikke opptre – men kan velge 'part' som medianen av a[l], a[(l+r)/2 og a[r] og vi får 'alltid' O (n log n)

Quicksort i praksis I

- Bruker en annen implementasjon enn den som er vist tidligere (med færre ombyttinger)
- Kaller 'innstikkSort' når lengden av det som skal sorteres er mindre enn ca. 40
- Raskere enn 'bare' Quicksort hvorfor?

```
void quickSort ( int [] a,int l,int r)
{ int i=l, j=r;
   int t, part = a[(l+r)/2];
    while (i \le j)
    { while (a[i] < part) i++;
       while (part < a[j] ) j--;
       if (i <= j) {
              = a[i];
          a[j] = a[i];
          a[i] = t;
          i++;
```

Quicksort i praksis II

- Valg av partisjoneringselement 'part' er vesentlig
- Bokas versjon av Quicksort OK, men tidligere versjoner i Weiss var lang dårligere.
- Quicksort er ikke den raskeste algoritmen (f.eks er Radix minst dobbelt så rask), men Quicksort nyttes mye – f.eks i java.util.Arrays.sort();
- Quicksort er ikke stabil (dvs. to like elementer i inndata kan bli byttet om i utdata)

En helt annen koding av Quicksort (ganske rask):

```
void sekvQuick( int[] a, int low, int high) {
         // only sort arrayseggments > len =1
         int ind =(low+high)/2,
              piv = a[ind];
         int større=low+1, // hvor lagre neste 'større enn piv'
         mindre=low+1; // hvor lagre neste 'mindre enn piv'
         bytt (a,ind,low); // flytt 'piv' til a[lav], sortér resten
         while (større <= high) {
                   // test iom vi har et 'mindre enn piv' element
                   if (a[større] < piv) {</pre>
                            // bytt om a[større] og a[mindre], få en liten ned
                            bytt(a,større,mindre);
                            ++mindre;
                   } // end if - fant mindre enn 'piv'
                   ++større;
         } // end gå gjennom a[i+1..j]
         bytt(a,low,mindre-1); // Plassert 'piv' mellom store og små
          if (mindre-low > 2) sekvQuick (a, low,mindre-2); // sortér alle <= piv
                                                              // (untatt piv)
          if ( high-mindre > 0) sekvQuick (a, mindre, high); // sortér alle > piv
} // end sekvensiell Quick
```


Flette - sortering (merge)

Velegnet for sortering av filer.

Generell idé:

- Vi har to sorterte sekvenser A og B (f.eks på hver sin fil)
- Vi ønsker å få en stor sortert fil C av de to.
- Vi leser da det minste elementet på 'toppen av' A eller B og skriver det ut til C, ut-fila
- 4. Forsett med pkt. 3. til vi er ferdig med alt.

I praksis skal det meget store filer til, før du bruker flettesortering. 8 GB intern hukommelse er i dag meget billig (noen få tusen kroner). Før vi begynner å flette, vil vi sortere filene stykkevis med f.eks Radix, Kvikk- eller Bøtte-sortering

skisse av Flette-kode

```
Algoritme fletteSort (innFil A, innFil B, utFil C)
  a = A.first;
  b = B. first;
  while (a!= null && b!= null)
    if ( a < b) { C.write (a); a = A.next;}
            { C.wite (b); b = B.next;}
  while (a!= null) { C.write (a); a = A.next;}
  while (b!= null) { C.write (b); b = B.next;}
```


Verdi-baserte sorteringsmetoder

- Direkte plassering basert på verdien av hvert element ingen sammenligninger med nabo-elementer e.l.
- Telle-sortering, en metode som ikke er brukbar i praksis (hvorfor ?)
- Er klart av O(n), men 'svindel':

```
void telleSort(int [] a) {
  int max = 0, i,m, ind = 0;
  for (i = 1 ; i < n; i++)  if (a[i] > max) max = a[i];

int [] telle = new int[max+1];

for( i = 0; i < n; i++) telle[a[i]] ++;

for( i = 0; i <= max; i++) {
    m = telle[i];
    while ( m > 0 ) {
        a[ind++] = i;
        m--;
    }
}
```

2 Radix-algoritmer:

- RR: fra høyre og venstre-over (vanligst iterativ)
- LR: fra venstre og høyreover (raskest rekursiv)

- Sorterer en array a [] på hvert siffer
 - Et siffer et 'bare' ett visst antall bit
 - RR sorterer på siste (mest høyre) siffer først
 - LR sorterer på første (mest venstre) siffer først
- Algoritmene:
 - Begge: Finner først max verdi i a []
 - = bestem største 'siffer' i alle tallene
 - 2. Tell opp hvor mange elementer det er av hver verdi på det sifferet (hvor mange 0-er, 1-ere, 2-....) man sorterer på
 - Da vet vi hvor 0-erne skal være, 1-erne skal være,... etter sortering på dette sifferet ved å addere disse antallene

Arrayen 'ant' et eksempel, HRsortering siste siffer først

Arrayen 'ant' et eksempel, HRsortering andre siffer

b	_
40	0
30	1
12	2
46	3
09	4
29	5


```
Innledende kode for å radix-sortere på to siffer:
static void radix2(int [] a) {
    // 2 digit radixSort: a[]
    int max = 0, numBit = 2, n = right-left+1;
    for (int i = 0; i \le a.length; i++)
       if (a[i] > max) max = a[i];
    // bestemme antall bit i max
    while (max >= (1 << numBit)) numBit++;
    int bit1 = numBit/2,
       bit2 = numBit-bit1;
    int[] b = new int [n];
    radixSort(a,b, bit1, 0);
    radixSort(b,a, bit2, bit1);
```

Ett element i fra[]:


```
static void radixSort (int [] a, int [] b, int maskLen, int shift){
    int acumVal = 0, j, n = right-left+1;
    int mask = (1 << maskLen) -1;
    int [] count = new int [mask+1];
 // a)count=the frequency of each radix value in a
    for (int i = left; i <=right; i++)
      count[(a[i]>> shift) & mask]++;
  // b) Add up in 'count' - accumulated values
    for (int i = 0; i \le mask; i++) {
       j = count[i];
        count[i] = acumVal;
        acumVal += j;
  // c) move numbers in sorted order a to b
    for (int i = 0; i < n; i++)
     b[count[(a[i]>>shift) \& mask]++] = a[i];
 } /* end radixSort */
```


Radix-sortering – steg a) første, bakerste siffer

Vi skal sorterere på siste siffer med 3 bit sifferlengde (tallene 0-7)

a) Tell opp sifferverdier i count[]:

	a	
0		6 2
		4 1
2		7 0
3		11
4		0 3
5		1 0
1 2 3 4 5 6		3 7

	Før telling: count
0	0
1	0
	0
2 3 4	0
4	0
5	0
6	0
7	0

	Etter telling	g:
	count	
0	2	
	2	
1 2 3 4 5 6	1	
3	1	
4	0	
5	0	
6	0	
7	1	

4

Radix-sortering – steg b) finne ut hvor sifferverdien skal plasseres

De a[i] ene som inneholder 'j' – hvor skal de flyttes sortert inn i b[] ?
- Hvor skal 0-erne stare å flyttes, 1-erne,osv

b) Adder opp sifferverdier i count[]:

Før a	addering	: Ette	er addering	g:	
coun	it	CC	ount		b
0	2	0	0] → 0	
1	2	1	2	$\frac{1}{2}$	
2	1	2	4	2	
3	1	3	5	3	
4	0	4	6	34	
5	0	5	6	5	
6	0	6	6	6	
7	1	7	6		

Kan også sies sånn: Første 0-er vi finner plasserer vi b[0], første 1-er i b[2] fordi det er 2 stk 0-ere og de må først. 2-erne starter vi å plassere i b[4] fordi 2 stk 0-ere og 2 stk 1-ere må før 2-erne,....osv.

Radix-sortering – steg c) flytt a[k] til b[] der count[s] 'peker', hvor s= sifferverdien i a[k]

c) flytt a[k] til b[] der count[s] 'peker', hvor s= sifferverdien i a[k], øk count[s] med 1.

Så sortering på siffer 2 – fra b[] til a[] trinn a) og b)

Etter telling på Etter addering :

b				
			7	0
			1	0
			4	1
			1	1
			6	2
			0	3
			3	7
	b	b	b	7

Så sortering på siffer 2 – fra b[] til a[] trinn c)

Situasjonen etter sortering fra b[] til a[] på siffer 2

b	
	7 0
	1 0
	4 1
	1 1
	6 2
	0 3
	3 7
	b

Etter flytting

a[] er sortert!

1

Litt oppsummering

- Mange sorteringsmetoder med ulike egenskaper (raske for visse verdier av n, krever mer plass, stabile eller ikke, spesielt egnet for store datamengder,...)
- Vi har gjennomgått
 - Boblesortering : bare dårlig (langsomst)
 - Innstikksorteing: raskest for n < 50
 - Tre-sortering: Interessant og ganske rask
 - Quick: rask på middelstore datamengder (ca. n < 1000)
 - Radix-sortering: Raskest når n > 500, men HøyreRadix trenger mer plass (mer enn n -ekstra plasser – flytter fra a[] til b[])
 - Hvilken av følgende sorterings-algoritmer er stabile?
 - Innstikk
 - Quick
 - Radix
 - Tre
 - Svar: Radix og Innstikk er stabile, Quick og Tre er ikke stabile.