2003 AP® CHEMISTY FREE-RESPONSE QUESTIONS (Form B)

- 3. In an experiment, a sample of an unknown, pure gaseous hydrocarbon was analyzed. Results showed that the sample contained 6.000 g of carbon and 1.344 g of hydrogen.
 - (a) Determine the empirical formula of the hydrocarbon.
 - (b) The density of the hydrocarbon at 25°C and 1.09 atm is 1.96 g L^{-1} .
 - (i) Calculate the molar mass of the hydrocarbon.
 - (ii) Determine the molecular formula of the hydrocarbon.

In another experiment, liquid heptane, $C_7H_{16}(l)$, is completely combusted to produce $CO_2(g)$ and $H_2O(l)$, as represented by the following equation.

$$C_7H_{16}(l) + 11 O_2(g) \rightarrow 7 CO_2(g) + 8 H_2O(l)$$

The heat of combustion, ΔH_{comb}° , for one mole of $C_7H_{16}(l)$ is -4.85×10^3 kJ.

(c) Using the information in the table below, calculate the value of ΔH_f° for $C_7H_{16}(l)$ in kJ mol⁻¹.

Compound	ΔH_f° (kJ mol ⁻¹)
$CO_2(g)$	-393.5
$H_2O(l)$	-285.8

- (d) A 0.0108 mol sample of $C_7H_{16}(l)$ is combusted in a bomb calorimeter.
 - (i) Calculate the amount of heat released to the calorimeter.
 - (ii) Given that the total heat capacity of the calorimeter is 9.273 kJ °C⁻¹, calculate the temperature change of the calorimeter.