Solving System of linear equations: Elimination

1. Solving non-singular systems of linear equations. (Non-singular system has the unique solution)

Systems of equations

2. Solving singular system of linear equations

What if the system is singular (contradictory)?

3. Solving Systems of equations with more variable

Elimination method

System

- a + b + 2c = 12• -2b - 7/3c = -11• -3/2b + c = 0
- Divide last two rows by the coefficient of b

- a + b + 2c = 12
- b + 7/6 c = 11/2
- b 2/3 c = 0

Use the second equation to remove 'b' from the third

c = 3

Elimination method

System

•
$$a + b + 2c = 12$$

• $b + 7/6 c = 11/2$

• $b + 7/6 c = 11/2$

• $a + 2 + 6 = 12$

• c = 3

Replace c = 3 in the second equation, get b = 2 Replace c = 3 and b = 2 in the first equation, get a = 4 The solution is a = 4 b = 2 c = 3

4. Matrix row-reduction

Systems of equations to matrices

Systems of equations to matrices

For echelon matrix, On the main diagonal, we can have a bunch of ones followed by perhaps a bunch of zeros. You could potentially have all ones, but you could also have all zeros. Below the diagonal, everything is a zero, to the right of the ones any number is allowed and finally to the right of the zeros, everything must be zero.

- 5. Row operations that preserve singularity of matrix.
 - a. Switching rows
 - b. Multiplying a row by a (non-zero) scalar
 - c. Adding a row to another row

Solving System of linear equations: Row echelon form and rank

1. The rank of a matrix

Systems of information

System 1 The dog is black The cat is orange	System 2 The dog is black The dog is black	System 3 The dog The dog
Two sentences	Two sentences	Two sentences
Two pieces of information	One piece of information	Zero pieces of information
Rank = 2	Rank = 1	Rank = 0

Rank and solutions to the system

Dimension of solution space = 0 Dimension of solution space = 1 Dimension of solution space = 2

Rank of a matrix

Dimension of solution space = 0 Dimension of solution space = 1 Dimension of solution space = 2

Rank = 2 - (Dimension of solution space)

Rank for matrices

Syste	em 1			Syste	m 2			Syste	m 3			Syst	em 4		
a + 2b	+ c = (b + c = + 2c =	0 🖋		a+b a+b a+b	+ c = 0 + 2c = + 3c =	0 8 0		2a + 2	+ c = 0 2b + 2d 3b + 3d	= 0		0a +	0b + 0 0b + 0 0b + 0	c = 0	X
	uations ces of		mation		ations ces of		mation		ations ce of i		ation		ations ces of		nation
Rank	3			Rank	2			Rank	1			Rank	0		
1	1	1		1	1	1		1	1	1		0	0	0	
1	2	1		1	1	2		2	2	2		0	0	0	
1	1	2		1	1	3		3	3	3		0	0	0	

Is there an easier way to calculate the rank?

>> Yes! It has to do with the row echelon form of the matrix

2. Row echelon form

Row echelon form, singularity, and rank

Rank for matrices

ΝЛ	2	۲r	ı٧	

1	1	1
1	2	1
1	1	2

Rank = 3

м	а	T	rı	Y	-

1	1	1
1	1	2
1	1	3

Rank = 2

Matrix 3

1	1	1
2	2	2
3	3	3

Rank = 1

Matrix 4

0	0	0
0	0	0
0	0	0

$$Rank = 0$$

Row echelon forms

1	1	1
0	1	0
0	0	(1)

Number of pivots = 3

(1)	1	1
0	0	1
0	0	0

Number of pivots = 2

1	1	1
0	0	0
0	0	0

Number of pivots = 1

Number of pivots = 0