

9 – Matemática

Prof. **João Paulo** R. R. Leite joaopaulo@**unifei**.edu.br ECOE44 & ECOE45 – Maratona de Programação sites.google.com/site/unifeimaratona/

Estudaremos três tópicos que são de maior importância em problemas matemáticos:

- Matemática Básica
- Teoria dos Números
- Análise Combinatória

Normalmente, pelo menos um problema da competição envolverá algum tipo de solução matemática, onde utilizar um pouco de matemática antes da codificação pode simplificar e reduzir o código.

Encontrando padrões e fórmulas

Alguns problemas possuem soluções que formam algum tipo de padrão. Ao encontrarmos um padrão, solucionamos o problema.

Este tipo de problema pode ser classificado como **matemático** *Ad-Hoc* e requer um pouco de intuição matemática para ser resolvido. Algumas dicas são:

- Resolva algumas instâncias pequenas a mão;
- E veja se as soluções formam algum padrão.
- O padrão envolve algum tipo de sobreposição?
 Talvez possamos utilizar PD.

Com certa frequência, vemos padrões como este:

Que tipo de padrão é este?

Este tipo de padrão é uma Progressão Aritmética, cuja fórmula base é:

$$a_n = a_{n-1} + c$$

Quando temos uma P.A., existem alguns tipos clássicos de dados que são pedidos como solução de um problema:

1) É necessário calcular o enésimo elemento:

$$a_n = a_1 + (n-1)c$$

2) É necessário calcular a soma de todos os elementos em uma porção definida da progressão:

$$S_n = \frac{n(a_1 + a_n)}{2}$$

Vemos, também, com certa frequência, padrões como:

1, 2, 4, 8, 16, 32, 64, 128...

Que tipo de padrão é este?

Este tipo de padrão é uma Progressão Geométrica, que pode ser, mais genericamente expressa por:

$$a$$
, ar , ar^2 , ar^3 , ar^4 , ar^5 , ar^6 , ... $a_n = ar^{n-1}$

Quando temos uma P.G., podemos também calcular algumas coisas através de fórmulas:

1) Soma de elementos:

$$\sum_{i=0}^{n} ar^{i} = \frac{a(1 - r^{n})}{(1 - r)}$$

2) Soma de elementos de m até n.

$$\sum_{i=m}^{n} ar^{i} = \frac{a(r^{m} - r^{n+1})}{(1 - r)}$$

Realizar alguns cálculos utilizando logaritmos pode ser uma alternativa eficientes para alguns problemas. Em C++, temos funções para:

- Logaritmo natural: double log(double x);
- Logaritmo na base 10: double log10(double x);
- Exponencial: double exp(double x);

Todas as funções estão definidas em <cmath>

Exemplo:

Qual a primeira potência de 17 que contém k dígitos na base b?

Solução simples, ou ingênua (naive): Passar pelas potências de 17 e contar o número de dígitos.

Qual o problema? Potências de 17 crescem exponencialmente! 17¹⁶ > 2⁶⁴

E se k == 500? (~1.7 x 10^{615}), ou ainda maior? Fica impossível de se trabalhar com números de maneira normal. Portanto, porque não utilizar log?

Lembre-se de que podemos calcular o comprimento de um número n na base b utilizando $\lfloor log_b(n) + 1 \rfloor$.

Mas como faremos isso tendo apenas In e log10?

Mudando de base! Veja:

$$log_b(a) = \frac{log_d(a)}{log_d(b)} = \frac{\ln(a)}{\ln(b)}$$

Agora podemos, pelo menos, contar o comprimento sem ter que converter bases.

Ainda teremos que percorrer as potências de 17, mas podemos fazê-lo em log:

$$\ln(17^{x-1} \cdot 17) = \ln(17^{x-1}) + \ln(17)$$

Utilizando-se de algumas propriedades:

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$\log_b(a^c) = c \cdot \log_b(a)$$

Podemos simplificar ainda mais: a solução de nosso problema é, em termos matemáticos, encontrar c para:

$$\log_b(17^x) = k - 1$$

Utilizando as propriedades anteriores, temos que:

$$\mathbf{x} = \left\lceil (\mathbf{k} - 1) \cdot \frac{\ln(10)}{\ln(17)} \right\rceil$$

Que é muito melhor do que verificar um a um.

E por falar em bases...

O que precisamos para realizar conversões de base? Veja um algoritmo simples que transforma números da base 10 para qualquer outra base:

```
vector<int> to_base(int base, int val)
{
    vector<int> res;
    while(val) {
        res.push_back(val % base);
        val /= base;
    }
    return res;
}
```

Este algoritmo coloca em um vetor **res**, o valor convertido, de forma inversa. **Ex:** Para uma conversão do valor 32 para a base 16, ficaríamos com

$$res[0] = 0$$

Res[1] = 2

Trabalhando com doubles

Comparar valores do tipo double pode não ser a melhor das ideias, dado que sua precisão é grande e muitas vezes gostaríamos de comparar apenas até certo grau de precisão apenas (digamos 10⁻⁹).

Podemos, portanto, definir que dois números reais são iguais se sua diferença for menor que algum **épsilon** (como um erro aceitável), que nós mesmos definimos. Veja:

Trabalhando com doubles

Podemos fazer o mesmo tipo de solução para:

• Etc.

Algumas definições que todos deveríamos saber:

- Número primo: é um inteiro positivo maior que 1 que não possui nenhum divisor positivo diferente de 1 e ele mesmo.
- Máximo Divisor Comum (MDC): O MDC de dois inteiros a e b é o maior número que divide tanto a quanto b.
- Mínimo Múltiplo Comum (MMC): O MMC de dois inteiros a e b é o menor inteiro que tanto a e b dividem.
- Fator primo de um inteiro é um número primo que o divide.
- Fatoração prima: É a decomposição de um inteiro em seus fatores primos. Pelo teorema fundamental da aritmética, cada inteiro > 1 tem uma fatoração prima única.

Algoritmo Euclidiano

O Algoritmo Euclidiano é um algoritmo recursivo que calcula o MDC de dois números. Seu tempo de execução é O(log²N). Veja:

```
int gcd(int a, int b){
    return b == 0 ? a : gcd(b, a % b);
}
```

Este algoritmo também calcula o MMC, uma vez que é possível provar que:

$$mmc(a,b) = \frac{a.b}{mdc(a,b)}$$

Algoritmo Euclidiano Estendido

Ao reverter os passos do algoritmo euclidiano, temos a identidade de Bézout:

$$mdc(a,b) = ax + bx$$

que simplesmente define que sempre existem x e y tal que a equação acima seja verdadeira.

O algoritmo euclidiano estendido calcula o MDC e os coeficientes x e y. Veja:

```
int egcd(int a, int b, int& x, int& y) {
    if (b == 0) {
        x = 1;
        y = 0;
         return a;
    } else {
         int d = \operatorname{egcd}(b, a \% b, x, y);
         x -= a / b * y;
         swap(x, y);
        return d;
```

Entre outras aplicações, este algoritmo é essencial no **algoritmo RSA** de criptografia de dados.

Teste de primalidade:

Um teste de primalidade é um algoritmo para determinar se um dado número inteiro é primo. Este tipo de teste é usado em áreas da matemática como a criptografia. Diferentemente da fatoração de inteiros, os testes de primalidade geralmente não fornecem os fatores primos, indicando apenas se o número fornecido é ou não primo.

Existem alguns métodos para se realizar esta verificação:

Teste de primalidade:

- Método ingênuo: Passar por todos 1 < i < n e checar se n é divisível por i. Roda em O(N).
- 2) Um pouco melhor: Se n não for primo, ele possui um divisor $\leq \sqrt{n}$. Portanto, podemos iterar apenas até \sqrt{n} . Roda em $O(\sqrt{n})$.
- 3) Ainda melhor: Se n não for primo, ele tem um divisor primo $\leq \sqrt{n}$. Podemos iterar pelos números primos até \sqrt{n} . Existem aproximadamente N/In(N) primos menores que N. Portanto, roda em O(\sqrt{n} /logN)

Geração de números primos

Se quisermos gerar números primos, utilizar o teste de primalidade é muito ineficiente. Ao invés disso, nosso método preferido será o Crivo de Erastóstenes.

Como funciona:

- Para todos os números entre 2 e \sqrt{n} :
- Se o número não estiver marcado, itere por cada múltiplo do número até n e os marque.
- Os números não marcados são aqueles que não são múltiplos de nenhum número menor.
- − Roda em O($\sqrt{N}\log \sqrt{N}$).

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

Veja esta **simulação** e, em seguida, o **código**.

```
vector<int> primes;
void erastostenes(int n)
    vector<bool> is_prime(n, true);
    for(int i = 2; i < n; ++i) {
        if(is_prime[i]) {
            primes.push_back(i);
            for(int j = 2*i; j < n; j += i)
                is_prime[j] = false;
```

Encontra todos os números primos menores que um inteiro n dado.

Fatoração de números inteiros

O teorema fundamental da aritmética define que cada inteiro maior que 1 é uma multiplicação única de números inteiros:

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} ... p_k^{e_k}$$

Para fatorar um inteiro n, temos que:

- Utilizar o Crivo de Erastóstenes para gerar todos os números primos até \sqrt{n} .
- Iterar por todos os primos gerados, checando se eles dividem n, e determinando a maior potencia que divide n.

```
map<int, int> factor(int N) {
    vector<int> primes;
    primes = eratosthenes(static cast<int>(sqrt(N+1)))
    map<int, int> factors;
    for(int i = 0; i < primes.size(); ++i){</pre>
        int prime = primes[i], power = 0;
        while(N % prime == 0){
            power++;
            N /= prime;
        if(power > 0){
            factors[prime] = power;
    return factors;
```

Revisão de Análise Combinatória

Combinação de n elementos em conjuntos de k. Em combinações, não importa a ordem dos elementos, apenas os integrantes:

$$C_{n,k} = \frac{A_{n,k}}{P_k} = \frac{n!}{k! (n-k)!} = {n \choose k}$$

Outro conceito importante é o de arranjos, que são conjuntos de tamanho k formados a partir de n elementos. A diferença para a combinação, é que nos arranjos a ordem é importante:

$$A_{n,k} = \frac{n!}{(n-k)!}$$

Revisão de Análise Combinatória

A permutação é um arranjo de n elementos entre si, ou seja:

$$P_n = A_{n,n} = \frac{n!}{(n-n)!} = n!$$

Quando existem elementos repetidos em permutações (como permutações com as letras da palavra MATEMATICA), existe outra fórmula:

$$P^* = \frac{n!}{a! \, b! \, g! \dots l!}$$

Onde a, b, g... L são as vezes que os elementos se repetem.

Revisão de Análise Combinatória

A permutação circular, ou seja, quando o arranjo não tem começo ou fim (uma mesa redonda, por exemplo) é dada por:

$$P_c(n) = (n-1)!$$

Arranjos com repetição, onde pode haver mais de um dado de cada:

$$A_{n,k}^* = n^k$$

E, finalmente, combinações com repetição:

$$C_{n,k}^* = C_{n+k-1,k} = \binom{n+k-1}{k}$$

Example

How many rectangles can be formed on a $m \times n$ grid?

- ► A rectangle needs 4 edges, 2 vertical and 2 horizontal.
 - 2 vertical
 - 2 horizontal
- Total number of ways we can form a rectangle

$$\binom{n}{2} \binom{m}{2} = \frac{n!m!}{(n-2)!(m-2)!2!2!} = \frac{n(n-1)m(m-1)}{4}$$

Binomial coefficients

How many different lattice paths are there from (0,0) to (n,m)?

- ▶ There is 1 path to (0,0)
- ► There is 1 path to (1,0) and (0,1)
- Paths to (1, 1) is the sum of number of paths to (0, 1) and (1, 0).
- Number of paths to (i,j) is the sum of the number of paths to (i-1,j) and (i,j-1).

Binomial coefficients

How many different lattice paths are there from (0,0) to (n,m)?

- ▶ There is 1 path to (0,0)
- ► There is 1 path to (1,0) and (0,1)
- Paths to (1, 1) is the sum of number of paths to (0, 1) and (1,0).
- ▶ Number of paths to (i,j) is

$$\binom{i+j}{i}$$

Thanks to **Tómas Ken Magnússon Bjarki Ágúst Guðmundsson**From School of Computer Science **Reykjavík University, Iceland**

This material has been based on their original work.