

Università degli Studi di Bergamo

SCUOLA DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Informatica (LM-32)

Laboratorio di Elettronica - Trigger di Schmitt, Oscillatore e Monostabile

Gruppo:

Raffaele Giacomo Giovanni Di Maio

Matricola 1053435

Nicholas Iotti

Matricola 1058728

Giorgio Passarella

Matricola 1079287

Emilio Meroni

Matricola 1080976

Trigger di Schmitt

L'amplificatore operazionale è un circuito elettronico che permette di confrontare due tensioni in ingresso e fornirne la differenza tra le due moltiplicata per un fattore di amplificazione A.

$$V_{out} = A \cdot (V^+ - V^-)$$

Nel caso ideale $A \to \infty$, pertanto l'uscita V_{out} saturerà alla tensione di alimentazione positiva V_{DD} solo se la differenza tra le due tensioni è maggiore di zero, altrimenti $V_{out} = -V_{DD}$.

Questo permette di utilizzarlo come comparatore di due tensioni. Tuttavia nella realtà sono presente delle problematiche dovute alla presenza di rumore elettronico che porta il segnale in uscita ad avere degli scatti spuri dovuti al ripetuto passaggio della soglia a causa del rumore stesso. Per risolvere questo problema si utilizza il trigger di Schmitt 1.

Figura 1: Schematico del Trigger di Schmitt

Grazie all'utilizzo di una soglia dinamica dipendente da V_{out} permette al segnale di diventare insensibile al rumore. Sempre la presenza della soglia dinamica porta alla creazione di un ciclo di isteresi con ampiezza..

Utilizzando i valori a tabella 1:

Elemento	Valore
V_{DD}	$10\mathrm{V}$
V_{inpp}	$20\mathrm{V}$
freq	$1\mathrm{KHz}$
R_1	$9.0 K\Omega$
R_2	$9.0 K\Omega$

Tabella 1: Valori utilizzati nel circutio: Trigger di Schmitt.

Sono stati ricavati i seguenti grafici dall'oscilloscopio

Figura 2: Figure (a) e (b): V_{in} in giallo e V_{out} in azzurro, nella prima si ha un segnale in ingresso pulito, nel secondo si inietta anche del rumore

Figura 3: Ciclo di isteresi del Trigger di Schmitt

Oscillatore

L'oscillatore è un circuito elettronico che genera un segnale ad onda quadra con un duty cycle pari al 50 per cento. Questo viene fatto attraverso la carica e la scarica di un condensatore (vedi circuito). Il funzionamento del circuito si può suddividere in due fasi: vout=Vdd vout=-Vdd

E' possibile inoltre osservare la carica e scarica del condensatore nel tempo attraverso le seguenti equazioni: Vc(t1) Vc(t2)

Dalle quali possiamo ricavarci i due periodi T1, T2 e il periodo totale del segnale T: T1= T2= T=

Infine modificando il valore della resistenza R si può controllare il valore della costante di tempo tau influenza la frequenza dell'onda generata (guardare plot)

Figura 4: Schematico oscillatore.

In questo circuito si ottiene un duty cycle del 50 dovuto alla carica e scarica del condensatore sulla stessa resistenza. Di conseguenza se si volesse modificare questo aprametro si dovrebbe utilizzare un schema circuitale composto da due diodi opposti con resistenze R3 e R4 diverse.

Monostabile

Il Monostabile è un circuito elettronico che riceve in ingresso un segnale e dà in uscita un impulso di durata ben definita. Inoltre, il fronte d'onda ascendente del segnale in uscita è sincronizzato con il fronte d'onda discendente del segnale in ingresso.

In una configurazione iniziale con diodo collegato in parallelo alla capacità, questo porta l'uscita ad essere costante al valore di accensione del diodo

Figura 5: Variazione della frequenza al variare della costante di tempo τ .

circa 0.7V a causa del fluire della corrente nel percorso a resistenza più bassa e quindi la capacità smette di caricarsi.

La presenza del derivatore (filtro passa-alto) permette di estrarre gli impulsi a delta di dirac da un segnale in ingresso e questo fa si che la soglia dinamica cambi. In aggiunta, collegando un diodo al derivatore fa si che passino solo gli impulsi negativi e quindi che il segnale venga disaccoppiato dal resto del circuito.

La durata dell'impulso è definita dalla costante tau e dalle resistenze R1 e R2: formule...

Tabella dati f=100hz Vdd=10V R=tre da 9khom e una resistenza variabile da 10.3kohm C=70nF CT=1nF

Figura 6: Variazione della frequenza al variare della costante di tempo $\tau.$