Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3\}$. For each of the relations R from A to B listed below list all pairs $(a, b) \in \mathbb{R}$ and write the corresponding $\{0, 1\}$ -indicator-matrix.

a.
$$a = b : (0, 0), (1, 1), (2, 2), (3, 3)$$

b. a + b = 4 : (1, 3), (2, 2), (3, 1), (4, 0)

c. a > b : (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3)

d. a divides b: (1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (1, 2), (2, 2), (1, 3)

For each of these relations on the set {1, 2, 3, 4} decide whether or not it is reflexive, symmetric, antisymmetric, and transitive.

- a. $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
- b. $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
- c. $\{(2, 4), (4, 2)\}$
- d. $\{(1, 2), (2, 3), (3, 4)\}$
- e. $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
- f. $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$

Relation	R	S	A	T
a	0	0	0	1
b	1	1	0	1
c	0	1	0	1
d	0	0	1	0
e	1	1	1	1
f	0	0	0	1

Exercise 3

Let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$, and let S be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$ on the set $A = \{1, 2, 3, 4\}$

a. Find $R \cup S$

$$\{(1, 2), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 2)\}$$

- b. Find $R \cap S$
 - $\{(3, 1)\}$
- c. Find R o S

$$\{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

Exercise 4

Let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$ on the set $A = \{1, 2, 3, 4\}$.

a. Find the reflexive closure of R.

$$\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (3, 1), (3, 3), (4, 4)\}$$

b. Find the symmetric closure of R.

$$\{(1, 2), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 2)\}$$

c. Find the transitive closure of R.

$$\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (1, 4)\}$$

Prove the following:

a. A relation R is reflexive iff R^{-1} is reflexive (where R^{-1} is the inverse relation that just reverses the order).

Assume R is reflexive.

Let $(a, a) \in R$

Then $(a, a) \in \mathbb{R}^{-1}$

Hence, \mathbf{R}^{-1} is reflexive.

 \leftarrow

Assume R^{-1} is reflexive.

Let $(a, a) \in \mathbb{R}^{-1}$

Then $(a, a) \in R$

Hence, R is reflexive.

b. A relation R is symmetric iff $R = R^{-1}$.

Assume R is symmetric.

Let $(a, b) \in R$.

Want to show: $(a, b) \in R^{-1}$.

Notice: $(b, a) \in R$.

Thus, $(a, b) \in R^{-1}$.

Hence, $R = R^{-1}$.

 \leftarrow

Assume $R = R^{-1}$.

Let $(a, b) \in R$.

Then $(a, b) \in \mathbb{R}^{-1}$.

 $(a, b) \in R \Rightarrow (b, a) \in R^{-1}.$

But since $R^{-1} = R$, $(b, a) \in R$.

So, $(a, b) \in R \Rightarrow (b, a) \in R$.

Hence, R is symmetric..

c. A relation R is anti-symmetric iff $R \cap R^{-1} \subset \Delta : \Delta = \{(a, a) : a \in A\}$

Assume R is anti-symmetric.

Then $(a, b), (b, a) \in R \Rightarrow a = b.$

So, $R \cap R^{-1}$ will only contain tuples such that a = b.

 \leftarrow

Assume $R \cap R^{-1} \subset \Delta : \Delta = \{(a, a) : a \in A\}.$

Let $(a, b) \in R$. If $a \neq b$, then $(a, b) \notin R \cap R^{-1}$. Thus, $(a, b) \notin R^{-1}$.

Hence, R is anti-symmetric.

Let R be the relation represented by the matrix $M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Find the matrices for the relations:

- a. R^2 $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$
- b. \mathbb{R}^3 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- c. \mathbb{R}^4 $\begin{bmatrix}
 0 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{bmatrix}$

Exercise 7

Which of these relations on {0, 1, 2, 3} are equivalence relations? If they are not, why?

- a. $\{(0, 0), (1, 1), (2, 2), (3, 3)\}$ Yes.
- b. $\{(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)\}$ No, (1, 1) isn't in there.
- c. $\{(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$ Yes.
- d. $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$ No, (1,2) isn't in there.
- e. $\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)\}$ Yes.

Exercise 8

List the ordered pairs in the equivalence relations produced by these partitions of {0, 1, 2, 3, 4, 5}.

- a. $\{0\}, \{1, 2\}, \{3, 4, 5\}$ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 1), (3, 4), (4, 5), (3, 5), (5, 3), (4, 3)...
- b. $\{0, 1\}, \{2, 3\}, \{4, 5\}$
- c. $\{0, 1, 2\}, \{3, 4, 5\}$
- d. {0}, {1}, {2}, {3}, {4}, {5}

Which of these relations on {0, 1, 2, 3} are partial orderings? If they are not, why?

a. $\{(0, 0), (1, 1), (2, 2), (3, 3)\}$

Yes.

b. $\{(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)\}$

No: (0, 2) and (2, 0) are both in there.

c. $\{(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$

No: (1, 2) and (2, 1) are both in there.

d. $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

No: (1, 3) and (3, 1) are both in there.

e. $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)\}$

No: (0, 1) and (1, 0) are both in there.

Exercise 10

Answer these questions for the divides poset ($\{3, 5, 9, 15, 24, 45\}$; |).

a. Draw the Hasse diagram

b. List the maximal and minimal elements.

Maximal: {45, 24}. Minimal: {3, 5}

c. Is there a greatest element? A least element?

There is no element greater than nor less than all others.

d. Find all upper bounds of {3, 5}. Find the least upper bound of {3, 5}, if it exists.

 $UB({3, 5}): {15, 45}.$ $LUB({3, 5}): {15}$

e. Find all the lower bounds of {15, 45}. Find the greatest lower bound of {15, 45}, if it exists.

 $LB(\{15, 45\}): \{3, 5, 15\}.$ $GLB(\{15, 45\}): \{15\}$

Prove the following:

a. There is exactly one greatest element of a poset, if such an element exists.

Suppose \exists a, b \in a poset P, such that a and b are the greatest elements of P.

Then $a \ge x$ and $b \ge x \ \forall \ x \in P$.

So $a \ge b$ and $b \ge a$.

Thus, a = b.

b. There is exactly one maximal element in a poset with a greatest element.

Let P be a poset and let a be the greatest element in P.

Let $b \in P$ such that $b \neq a$.

Then, by definition, $a \leq b$.

Thus, a is the only maximal element in P.

c. The least upper bound of a set in a poset is unique if it exists.

Let P be a poset and $a \in P$.

Suppose $\exists U_1$ and $U_2 \in P$ such that U_1 and U_2 are least upper bounds for a and $U_1 \neq U_2$

Then, by definition, $U_1 \leq U_2$ and $U_2 \leq U_1$.

Hence, $U_1 = U_2$

Exercise 12

Determine whether these posets are lattices.

a. $(\{1, 3, 6, 9, 12\}; |)$

No, 9 join 6 doesn't have a LUB.

b. ({1, 5, 25, 125}; |)

Yes.

c. $(\mathbb{Z}; \geq)$

Yes, but it's not a complete lattice.

d. $(\mathcal{P}(S), \subset)$, where $\mathcal{P}(S)$ is the power set of a set S.

Yes.

Exercise 13

Show that every totally ordered set is a lattice.

Let T be a totally ordered set, and let a, $b \in T$.

Since T is totally ordered, either $a \le b$ or $b \le a$.

Case:

i) a < b

Then a meet b = a, and a join b = b.

ii) $b \leq a$

Then b meet a = b, and b join a = a.

Hence, any two elements have a LUB and GLB.

Show that every finite lattice has a least element and a greatest element.

Let L be a finite lattice.

Suppose there are two least elements in L: $l_1,\, l_2$ such that $l_1 \neq l_2$

Let $l = l_1$ meet l_2 (which exists because L is a lattice)

Case:

- i) $l = l_1$: a contradiction, since l_2 is the least element.
- ii) $l = l_2$: a contradiction, since l_1 is the least element.
- iii) $l \neq l_1$ and $l \neq l_2$: a contradiction, since l_1 and l_2 are the least elements.

Thus, the least element in L is unique, if it exists.

Let $A = a_1$ meet a_2 meet ... a_n where n = |L| and $a_i \in L$

Since A exists and is the least possible element, L has a least element.

WLOG, the same is true for a greatest element. (can I do this?)

Exercise 15

Give an example of an infinite lattice with

a. neither a least nor a greatest element.

$$(\mathbb{Z}^n, \leq n)$$

b. a least but not a greatest element.

$$(\mathbb{Z}^+, \leq)$$

c. a greatest but not a least element.

$$(\mathbb{Z}^{-}, \leq)$$

d. both a least and a greatest element.

$$(\mathbb{Q}^{[0,1]},<)$$

Exercise 16

Show that in any lattice $(x \wedge y) \wedge z = x \wedge (y \wedge z)$. Note: $(x \wedge y) \wedge z \leq x \wedge (y \wedge z)$ was shown in class.)

Exercise 17

Show that in any lattice $x \vee (x \wedge y) = x$. Note: the dual absorption law was shown in class.

Exercise 18

Show that any lattice $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$. Note: the dual distributive inequality was shown in class.

Exercise 19

Show that the two distributive equalities are equivalent. That is, $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ if, and only if, $x \land (y \lor z) = (x \land y) \lor (x \land z)$.

Show that the distributive law implies the modular law. That is, if a lattice satisfies one (hence both, from problem 19), then $(x \le z \Rightarrow x \lor (y \land z) = (x \lor y) \land z)$.

Exercise 21

Check if the lattice N_5 is distributive.