בלתי תלויה $S_e = \{(1,0,0,0)\,,\,(1,-1,0,0)\,,\,(1,-2,1,0)\,,\,(1,-3,3,1)\}$ בלתי תלויה ליניארית, לכן גם S בלתי תלויה ליניארית.

דוגמה 6: נתונים $\mathbf{v}_3, \mathbf{v}_2, \mathbf{v}_1$ וקטורים בלתי תלויים ליניארית. הוכיחו שגם $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{w}_2 = \mathbf{v}_1 - 3\mathbf{v}_2$, $\mathbf{w}_3 = \mathbf{v}_1 + 5\mathbf{v}_2 - \mathbf{v}_3$ בלתי תלויים ליניארית.

הוכחה: היות ו- $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ בלתי תלויים ליניארית, ניתן להתייחס אליהם $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ של תת-מרחב ($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$) נמצא קואורדינטות של הוקטורים $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ בבסיס זה.

 \mathbf{w}_1 (\mathbf{w}_1) $_v=(1,1,0)$, (\mathbf{w}_2) $_v=(1,-3,0)$, (\mathbf{w}_3) $_v=(1,5,-1)$ נשאיר לקורא לבדוק שהוקטורים (1,5,-1) , (1,-3,0) , (1,1,0) בלתי תלויים ליניארית, לכן גם $\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3$ בלתי תלויים ליניארית.

תרגילים:

 $R_4[x]$ בסיס במרחב הפולינומים $e = \{1,1+x,x+x^2,x^2+x^3\}$ מצא בבסיס זה קואורדינטות של הוקטורים:

$$a + bx + cx^2 + dx^3$$
 $= 2 - 3x + x^2 + 2x^3$.x

2. מרחב וקטורי של מטריצות סימטריות מסדר 2 מעל R.

.W א בטיט של
$$e = \left\{ \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} \right\}$$
 הוא בטיט של ...

$$B = \begin{pmatrix} 1 & -5 \\ -1 & 2 \end{pmatrix}$$
 -ו $A = \begin{pmatrix} 1 & -5 \\ -5 & 5 \end{pmatrix}$ ב. חשבו קואורדינטות של בכסיס זה.

3. הוכיחו שבקבוצה

$$e = \{1, 1+x, 1+x+x^2, 1+x+x^2+x^3, ..., 1+x+...+x^{n-1}\}$$
 היא בטיס במרחב $R_n[x]$ והקבוצה

$$R_n[x]$$
 - אינה בטיט ב- $f = \{1 + x, x + x^2, x^2 + x^3, ..., x^{n-2} + x^{n-1}\}$

היות וסימטריות אנטי-סימטריות וסימטריות על תת-מרחבים של מטריצות אנטי-סימטריות וסימטריות אנטי-סימטריות וסימטריות מסדר R בהתאמה במרחב של המטריצות הריבועיות מסדר מעל R. מצאו: בהתאמה במרחב של המטריצות הריבועיות מסדר מעל של משלה. משלה משלה משלה של המטריצות הריבועיות מסדר העל המטריצות הריבועיות מסדר העל המטריצות המשלה משלה משלה משלה המטריצות המשלה המש