Question 1:-What is the mean by viable prefixes?

Answer

Definition: - The prefixes of right sentential form that can appear on the stack of a shift-reduce parser are called prefixes.

OY

od is a viable prefix of the grammar if there is w such that aw is a right sentinel form. The set of prefixes of right sentinel form that can appear on the stack of a shift-reduce parser are called viable prefixes.

Exi Let
$$S \rightarrow X_1 X_2 X_3 X_4$$

 $A \rightarrow X_1 X_2$

\$ AX3

let w = X, X2 X3 Let 6 = X1 X2 Input Stack XIXXX \$ X1 X2X3 \$ X1X2 \$ X1 X2 X3 \$ A \$ A

Stack Inpul-\$ X,

as we see X, X2X3 will never appear on the stack. So it is Reanned with CamScanner Viable prefix.

W= X, X2 is a viable prefix.

Question 2:What are the problems with top down parsing? Write the algorithms for first and follow?

Answer

problem with Top-Down Parsing:

- 1) Not applicable for left recursive production.
- (2) Left factoring is another issue associated with Top-Down parsing.
- 3 Back Tracking

Algorithm to compute First -

- 1 If X is a terminal, then First (x) = X
- ② If $X \rightarrow \in$ is a production in grammar then add \in to First(X)
- 3 If X is a non-terminal and X > Y, Y2-Yn then
 - @ First (X) = First (Y, Yo Yn) # First (Y1) does not contain null &
 - (B) else First (X) = First (Y1) E U First (Y2/2-Ym)
- 4) If First (Y1), First (Y2) First (Yn) contains NUII (E) thun

First (X) = First (Y) U First (Y2) U - First (Yn)

Algorithm to compute Follow: -

- 1) If S is the start symbol then add \$ in Follow (S)
- (3) If there is a production A > a Bb
 - (1) Follow (B) = First (b) if first (b) does not contain
 - (B) Follow (B) = First(b) € U Follow(A)
- 3) If there is a production $A \rightarrow aB$, then everything in Follow (A) is in Follow (B)

Question 3:-Perform Shift reduce parsing for the given input strings using the grammar $S \to (L) \mid a$ $L \to L$, $S \mid S$

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L$, $S \mid S$

- (a,(a,a))I.
- II. (a,a)

()	i) Pansing of (a, (a, a))	
Stack	Input Buffer	Parsing Action
\$	(a, (a, a)) \$	shift ^u
\$ (a, (a,a)) \$	shift
\$ (a	, (a,a)) \$	Reduce (s>a)
\$ (s	s(a,a)) \$	Reduce (L→S)
\$ (L	,(a,a)) \$	Shift
\$ (L,	(a,a)) \$	shi/t
\$ (L) (a,a)) \$	shiff
\$ (L, (a	,a)) \$	Reduce (S>a)
\$ (L, (S	, a)) \$	Reduce (L→S)
\$ (L, CL		shift
\$ (L, (L,	ı	shy1-
\$ (L, (L)		Reduce (S>a)
\$ (L, (L, S		Reduce (L-> L,S)
\$ (L, (L)) \$	ship
\$(L, (L)) \$	Reduce (S→(L))
\$ (L,S) \$	Reduce (L-> L,S)
\$ (L.) \$	shiff
\$ (L)	\$	Reduce S > (L)
\$ 5	\$	Reduce S >> (L) Accept
7	•	70
(ii)	Similarly do 2nd parl-	- (0.0)
	J Party	- (9,a)

Question 4:-Construct LR(0) parsing table for the following grammar $S \rightarrow c B \mid c c A$ $A \rightarrow c A \mid a$ $B \rightarrow c c B \mid b$ **Answer** grammar S -> cB/ccA A -> cA/a Cannonical collection LR(0) item 2 S → C.B/c.cA 5 S → · c B / · cc P S-> cc. A A -> . cA/.a B→ b. B -> C.CB B-> CCB. A> .cAl·a B>CB A>c.A S -> cc A. A→ c. A A > . cA/.a B→cc.B A->.cA/.a B→·cc B/. b B- C.CB A>CA. 13 y a A-> a A

LR(0) Parsing table

- State	1	A	ction			Go	to
- State	a	. b		\$	S	A	В
1			\$3		2	,	
2				Acapt			
3		Se	S \$5		t		4
. 4	8	Yı	81	γ_1			
5			S7		1.	8	ı
6	86	γ_{ϵ}	γ_{ϵ}	Ne			ć.
7		S6	Slo	- V 6		- 11	9
8	Y2	82	82	Y2_			
9	Y5	Y5	Y5,	Y5		(,	ý
10	S 13		SIZ			11	2
11 .	Y3	Y3	Y3	Y3	0		
12	SB		* S12	#3;	n e		9
13	84	84	Υ_{Y}	Υ_{Y}		V	

Note:-This table is LR(0) table not SLR(1) table . In the question there is some doubt about LR(0) or SLR(1).

Note:- for SLR(1) table construction only reduce entries is change.

Question 5:-Eliminate the left recursion from the following grammar

$$S \rightarrow AB$$

 $A \rightarrow BS \mid b$
 $B \rightarrow SA \mid a$

Answer

$$S \rightarrow AB$$
 $A \rightarrow BS \mid b$
 $B \rightarrow SA \mid a$

Substitute STAB in the production

Substitute A -> BS/b in the production no. (4)

Now eliminate the left trucursion from production (5)

NOW the final rusult is

$$S \rightarrow AB$$

 $A \rightarrow BS \mid b$
 $B \rightarrow aB' \mid bBAB'$
 $B' \rightarrow SBAB' \mid E$

Question 6:-Explain non recursive predictive parsing. Consider the following grammar and construct the predictive parsing table

 $E \rightarrow TE'$

E'→+TE'|€

T→FT'

T'→*FT'|€

F→* F|a|b

Answer

Non-recursive predictive parsing:

The predictive parsing is a special form of recursive discent parsing, where no backtracking is required, so this can predict which production to use to replace the input-string. Hon-recursive predictive passing or table-driven is also known as LL(1) parser.

	First	Follow
E>TE'	{ x, a, b}	3\$3
$E' \rightarrow + TE' / \epsilon$	₹+, €}	<pre>\$ \$ 3</pre>
T→ FT'	{*,a,b}	<pre>{+,\$}</pre>
T'> * FT'/ E	{*, ∈}	{+,\$3
F > F a b	{*,a,b}	₹\+,\$3

 Question 7:-Give operator-precedence parsing algorithm. Consider the following grammar and build up operator precedence table. Also parse the input string (id+(id*id))

 $E \rightarrow E+T \mid T$ $T \rightarrow T*F \mid F$ $F \rightarrow (E) \mid id$

Answer

Algorithm :

Set i/p pointer to the first symbol of ws repeal forever

if \$ is on top of the stack and i/p points to \$

else let a be the topmost terminal symbol on the stack and let b be the symbol pointed to by i/p pointer

if adb or a=b then

push b onto the stack advance i/p-pointer to the next i/p symbol.

else if a >b then

pop the stack until the top stack terminal is related by < to the terminal most recently popped.

else

error

		oþera-	lor p	riceden	a par	sing ta	ble
	+	X	()	îd	\$	94
+	>	< .	<	>	<	>	- ×
*	>	>	<	>	<	>	
(<	<	<	-	<		
)	>	>		>		>	
id	>	>		>		>	
\$	<	<	<		<		

Stack	Input	0/P
\$	(id+(id*id))\$	~
\$(id + (id × id))\$	shift
\$ (id	+ (id x id)) \$	Shill-
\$ (F	+ (id * id)) \$	Reduce (F→1'd)
\$ (T+	(id * id)) \$	Shi(F
\$(E+(;	id × id)) \$	shi(H
\$ CE+ Cid	* id)) \$	Reduce (F-31d)
\$(E+(F	> id)) \$	still-
\$(E+(T*	id)) \$	shijl-
\$(E+(E × id)) \$ ·	Reduce (Fold)
\$(E+(E*F)) \$	ShuJI-
\$(E+(E*T)) \$	Shift .
\$(E+(E)) \$	Reduce
\$ (E+F)	\$	8hij/-
\$(E+T)	\$	Reduce
\$ (E)	\$ \$	Reduce.
\$ F	\$ \$	Redun
\$ T \$ E	\$ \$	Reduce
, v =	*	LReduce —

Question 8:-For the grammar

S→aAd | bBd | aBe | bAe

 $A \rightarrow f$

 $B \rightarrow f$

Construct LR(1) Parsing table . Also draw the LALR table from the derived LR(1) parsing table.

LR(1) Passing table

		1				U				
				Actio	W			G	roto	
	State	a	Ь	d	е	f		1 1		
1		S3	S4			<u></u>	\$	<u>S</u>	A	В
	2						Accept	<i>ح</i> ل		
	3					\$7	-		6	8
	4					S7 S10				
	5					÷5(0	81		11	9
	6			Sa			'			
	7			S ₅	86					
	8			_	γ ₆ 512			<u>s</u>		
	9	!		Siz	3/2		-			
	16			S13						
				86	Υ ₅					
	11				Y ₅	line I	e 1	177	. d j	1 4
1	12					- No.	-	•		
-	13						3			ľ
-					-		r ₂			
-	14					, 7	sy			
1			-				٩]			

Because in the cononical collection of LR(1) item there is no state who's LR(0) item is stimilar so. LALR parsing table is similar to LR(1) table.

Question:-9 Consider the following grammar

 $E \rightarrow E + E$

E→E*E

 $E \rightarrow (E) \mid id$

Construct SLR parsing table and suggest your final parsing table.

1		SLR	tion.	J	table		Goto
late.	id	+	*	()	\$	E
0	S3			Sa			1
1		S ₄	S ₅			Acapt	(*
2				11			6
3		84	84		Yy	Υ ₄	1000
4	S ₃	1		Sz		•	7
5	S ₃	454	1 /	S ₂			7.
: 6		Sy	Ss		Sg		-
7,	1	8,	S ₅		8,	Υ,	7
8		82	SS		82	Y2_	- 3
9		7 3	Y3		83 ₂₄	×3	
,	37.5					,	<i>'</i>

So we resolve the conflict by operator precidence scanned with relationand construct above table.

Question 10:-State the problem associated with top down parsing?

Answer

Refer to answer of question 2

Question 11:-What is the role of left recursion.

Answer

Lest Recursion: - A production of a grommar is said to have left sucursion if the left most variable of its RHS is some as voulable of its LHS. A gramman corrtaining a production having left recursion is called as left Recursive grammar. EN: A>AX

left sucursion is used in the production when we need to make left associative of a grammar

Drawback'- left recursion is not immlimented through the funn because of infinite looping

Question 12:-Construct an SLR(1) parsing table for the following grammar

$$S \rightarrow A$$
)
 $A \rightarrow A$, P) (P, P
 $P \rightarrow \{num, num\}$

		0	SLR(1) Par	sing t	able.					
State	A 1:								oto		
	()	{	3	3	num	\$	S	ı A	P	
1				1				2	3		
3	-				·		Acc				
		S4			S ₅	s . D	:		-		_
4				1			Y 1				
5		,	S ₇	*	,		6.	-	<u> </u>		,
6		Sg	-	* .	4		-		1	6	
7		- 0				.1	- € 25.	+ .	. 1. 00		,
8	Sio	1	-	-		Sq	<- !	or to ") j		
9	,	· ·				1 T	;		-	•	1
10			: 3,		512	1			-		٠
		-	Ä			S ₇				11	
11		1	· .	1,1	Ŝ ₁₅	-		******			
12					:	S13		!			
13	Ė	-		Siy	÷ ;	313	•		j,		<i>k</i> .
14	100	¥3		019		-					
				-	V3	()				-	
15			S ₇			-				16	Á.
16		Y2	i (confi	into	Y2		1-1				- 1"
	with Co	Cooperati	. *		7						. ,.
CS canned	with Cam	ocanner	4.	1	*			1			

Question 13:-Consider the following operator precedence matrix draw precedence graph and compute the precedence function

	a	()	;	\$
a			۸	۸	^
(<	<	=	٧	
)			۸	۸	^
;	٧	'	۸	۸	
\$	<	<			

Question 14:-Show that the following grammar S→Aa | bAc | Bc | bBa A→d B→d is LR(1) but not LALR(1) Answer

Augmented grammar is.

S'→S
S→ Aa | bAc | Bc | bBa

 $A \rightarrow d$ $B \rightarrow d$

No conflicts in any state, so grammar is LR(1)
But grammar is not LALR(1) because on murging
State 6 and 7. we get reduce-reduce conflict
on lookahead 9,c

	7, 1	LALR	(1) Tabl	e	`	
State	a	Action	٠\$	S	Hoto A	
0 1 2 36 47	536 536 536	S47 S47 S47	Accept Y3		2 5 89	í
5 89	Y 2	Ya	γ ₁			

Question 16:-Check whether left recursion exists for the following grammar or not and if exist eliminate it.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$

Step (1) 'First eliminate left sucursion from S-> Aa/b
This is already free from left sucursion
Step (2):-

Substituting the productions of S in A->Sd, we get the following grammar

S> Aa/b A> Ac/Aad/bd/E

Step (3) - Now eliminating left recursion from the production of A, we get the following grammar

 $S \rightarrow Aa \mid b$ $A \rightarrow bdA' \mid A'$ $A' \rightarrow cA' \mid adA' \mid E$

This is the final grammar after eliminating

Question 17:-Construct CLR parsing table for the following grammar.

 $S \rightarrow AA$

A→aA

 $A \rightarrow b$

Answer

Canonical Collection of LR(1) item

	CL	? (1) Table	· ·	*	
State		Action		Goto	,
-	a	b	\$	S	A
0	S3	S4		1	2
			Accept		
2	S_{ϵ}	S7			5
3	S_3	S4_	-		8
4 "	/ Y2	γ_{3}			
5	5	٧	8,		
6	SL	57			-9
7			82		
8	Y	Y2	~		
9			Ya		

Prepared By:
Prabhat Shukla
UCER, CS/IT Department
Prayagraj

Note: For any discrepancy contact

Whatsapp no.: - 8957419537

Email Id:- shuklaprabhat2k7@gmail.com