

Procesos

- Concepto de Proceso
- ▶ Planificación de Proceso
- Operaciones sobre Procesos
- ▶ Comunicaciones Interprocesos (IPC)
- ▶ Ejemplos de Sistemas de IPC
- ▶ Comunicación en un Sistema Cliente-Servidor

KMC © 2018

Concepto de Proceso • Un SO ejecuta una variedad de programas: • Sistema Batch – jobs • Sistemas de Tiempo Compartido – programas de usuario o tareas • Proceso – un programa en ejecución. • Un proceso incluye: • contador de programa • stack • sección de datos

Colas de Planificación de Procesos

- Cola de Job (o tareas) − conjunto de todos los procesos en el sistema.
- ▶ Cola de listos conjunto de todos los procesos residentes en memoria principal, listos y esperando para ejecutar.
- ▶ Colas de dispositivos conjunto de procesos esperando por una E/S en un dispositivo de E/S.
- Migración de procesos entre las colas.

KMC © 2018

Planificadores de Procesos

- Planificador de largo término (o planificador de jobs) selecciona que procesos deberían ser puestos en la cola de listos.
- ▶ Planificador de corto término (o planificador de CPU) selecciona que procesos deberían ser proximamente ejecutados y colocados en la CPU.
- Planificador de mediano término

KMC © 2018 Sistemas Operativos – Procesos

Planificadores de Procesos

- ▶ El planificador de corto término es invocado muy frecuentemente (milisegundos) ⇒ (debe ser rápido).
- ► El planificador de largo término es invocado poco frecuentemente (segundos, minutos) ⇒ (puede ser muy lento).
- El planificador de largo término controla el *grado de multiprogramación*.
- Los procesos pueden ser descriptos como:
 - Procesos limitados por E/S
 - Procesos limitados por CPU

KMC © 2018

Sistemas Operativos - Procesos

Cambio de contexto

- ▶ Cuando la CPU conmuta a otro proceso, el sistema debe salvar el estado del viejo proceso y cargar el estado para el nuevo proceso vía un cambio de contexto.
- ▶ El contexto de un proceso está representado en el PCB
- El tiempo que lleva el cambio de contexto es sobrecarga; el sistema no hace trabajo útil mientras está conmutando.
- ▶ El tiempo depende del soporte de hardware.

KMC © 2018

Creación de Procesos

Actividades

- 1. Asignar un identificar de proceso único al proceso.
- 2. Reservar espacio para proceso.
- 3. Inicialización del PCB.
- 4. Establecer los enlaces apropiados.
- 5. Creación o expansión de otras estructuras de datos.

KMC © 2018

Sistemas Operativos - Procesos

Creación de Procesos - Políticas

- ▶ Espacio de direcciones
 - ▶ El hijo duplica el del padre.
 - ▶ El hijo tiene un programa cargado en él.
- ▶ Recursos compartidos
 - ▶ Padres e hijos comparten todos los recursos.
 - ▶ Hijo comparte un subconjunto de los recursos del padre.
 - Padre e hijo no comparten ningún recurso.
- Ejecución
 - ▶ Padres e hijos ejecutan concurrentemente.
 - ▶ Padres esperan hasta que los hijos terminan.

KMC © 2018

Terminación de Procesos

- ▶ El proceso ejecuta la última sentencia y espera que el SO haga algo (exit).
 - Los datos de salida del hijo se pasan al padre (vía wait).
 - Los recursos de los procesos son liberados por el SO.
- ▶ El padre puede terminar la ejecución del proceso hijo (abort).
 - ▶ El hijo ha excedido los recursos alocados.
 - La tarea asignada al hijo no es mas requerida.
 - ▶ El padre está terminando.
 - ▶ El SO no permite a los hijos continuar si su padre termina.
 - ▶ Terminación en cascada.

KMC © 2018

Procesos Cooperativos

- Un proceso independiente no puede afectar ni ser afectado por la ejecución de otro proceso.
- Un proceso cooperativo puede afectar o ser afectado por la ejecución de otro proceso.
- Ventajas de los procesos cooperativos
 - ▶ Información compartida
 - Aceleración de la computación
 - Modularidad
 - Conveniencia

KMC © 2018

Problema del Productor-Consumidor

- Paradigma procesos cooperativos, el proceso productor produce información que es consumida por un proceso consumidor.
 - buffer ilimitado no tiene límites prácticos en el tamaño del buffer.
 - buffer limitado supone que hay un tamaño fijo de buffer.

KMC © 2018

Sistemas Operativos - Procesos

Modelos de Comunicación – Memoria Compartida

Ejemplo de procesos cooperativos: Productor-Consumidor

```
while (true) {
       /* produce an item in next_produced */
       while (((in + 1) % BUFFER_SIZE) == out)
         ; /* do nothing */
       buffer[in] = next_produced;
      in = (in + 1) % BUFFER_SIZE;
 }
                                while (true) {
#define BUFFER_SIZE 10
                                     while (in == out)
                                        ; /* do nothing */
 typedef struct {
                                     next_consumed = buffer[out];
 }item;
                                      out = (out + 1) % BUFFER_SIZE;
item buffer[BUFFER_SIZE];
                                      /* consume the item in next_consumed */
int in = 0;
 int out = 0;
KMC © 2018
                                  Sistemas Operativos - Procesos
```

11

Comunicación entre Procesos (IPC)

- ▶ Sistema de mensajes los procesos se comunican uno con otro sin necesidad de variables compartidas.
- Provee dos operaciones:
 - send(mensaje)
 - receive(mensaje)
- ▶ Si *P* and *Q* desean comunicarse, necesitan:
 - Establecer un vínculo de comunicación entre ellos
 - ▶ Intercambiar mensajes via send/receive
- ▶ Implementación de un vínculo de comunicación
 - ▶ lógico (p.e., propiedades lógicas)
 - ▶ físico (p.e., memoria compartida, canal hardware)

KMC © 2018

Sistemas Operativos - Procesos

Comunicación Directa

- Los procesos deben nombrar al otro explícitamente:
 - ▶ send (*P, mensaje*) envía un mensaje al proceso P
 - ▶ receive(Q, mensaje) recibe un mensaje del proceso Q
- Propiedades del vínculo de comunicación
 - Un vínculo está asociado con exactamente un par de procesos que se comunican.
 - Entre cada par de procesos existe exactamente un vínculo.
 - El vínculo puede ser unidireccional, pero es usualmente bidireccional.

► KMC © 2018

Comunicación Indirecta

- Los mensajes son dirigidos y recibidos desde *mailboxes*
- Vínculo de comunicación
 - Se establece solo si los procesos comparten un mailbox común.
 - ▶ Puede ser asociado con muchos procesos.
 - Cada par de procesos puede compartir varios vínculos de comunicación.
 - Puede ser unidireccional o bi-direccional.
- Operaciones
 - crear un nuevo *mailbox*
 - enviar y recibir mensajes por medio del mailbox
 - destruir un *mailbox*
- Las primitivas son:
 send(A, message) enviar un mensaje al mailbox A
 receive(A, message) recibir un mensaje del mailbox A

KMC © 2018

Sistemas Operativos - Procesos

Sincronización

- ▶ El pasaje de mensajes puede ser bloqueante o no bloqueante.
- > Bloqueante es considerado sincrónico
 - Send bloqueante
 - Receive bloqueante
- No bloqueante es considerado asincrónico
 - > Send no bloqueante
 - Receive no bloqueante

KMC © 2018

Buffering

- La cola de mensajes asociada al vínculo se puede implementar de tres maneras.
 - 1. Capacidad 0 mensajes El enviador debe esperar por el receptor (*rendez-vous*).
 - 2. Capacidad limitada longitud finita de *n* mensajes El enviador debe esperar si el vínculo está lleno.
 - 3. Capacidad ilimitada longitud infinita El enviador nunca espera.

KMC © 2018

Sistemas Operativos – Procesos

Comunicación Cliente-Servidor

- Sockets
- Llamadas a Procedimientos Remotos (RPC:Remote Procedure Calls)
- Invocación a Métodos Remotos (RMI:Remote Method Invocation (Java))

KMC © 2018

Bibliografía:

- Silberschatz, A., Gagne G., y Galvin, P.B.; "*Operating System Concepts*", 7^{ma} Edición 2009; 9^{na} Edición 2012; 10^{ma} Edición 2018.
- Stallings, W. "Operating Systems: Internals and Design Principles", Prentice Hall, 5^{ta} Edición 2005; 6^{ta} Edición 2009; 7^{ma}Edición 2011; 9^{na} Edición 2018.
- Tanenbaum, A.; "*Modern Operating Systems*", Addison-Wesley, 3^{ra.} Edición 2008, 4^{ta}. Edición 2014.

KMC © 2018