AML Assignment-1

Aditya Neeraje

January 20, 2025

Contents

1	Question 1	1
2	Question 2 2.1 Part a 2.2 Part b 2.3 Part c	1 1 2
3	Question 3 3.1 Part a 3.2 Part b	2 2 2
4	Question 4 4.1 Part 1 4.2 Part 2	3 3
5	Question 5	4
6	Question 6	4
7	Question 7	5
8	Question 8 8.1 Part a 8.2 Part b	5 5
9	Question 9 9.1 Part a 9.2 Part b 0.3 Part a	6 6 6 7

Question 2 Neeraje - 23B0940

1 Question 1

Without loss of generality, assume the x_i are topologically ordered (from ancestors to descendants w.r.t to the DAG). This assumption can be done because the only difference in the formula made by permuting the indices by a permutation ψ is that π_i is replaced by some π'_i obtained by applying the permutation ψ to the set of parents of x_i .

Now, by factorizing the joint distribution as per the DAG, we get:

$$P(x_1, \dots x_{n-1}) = \sum_{x_1, \dots x_{n-1}} P(x_1, \dots x_{n-1})$$

$$= \prod_{i=1}^{n-1} f_i(x_i, x_{\pi_i}) \cdot \left(\sum_{x_n} f_n(x_n, x_{\pi_n}) \right)$$

$$= \prod_{i=1}^{n-1} f_i(x_i, x_{\pi_i})$$

Proceeding inductively, we can observe:

$$P(x_1, \dots x_j) = \prod_{i=1}^{j} f_i(x_i, x_{\pi_i}) \cdot \prod_{i=j+1}^{n} \left(\sum_{x_i} f_i(x_i, x_{\pi_i}) \right)$$
$$= \prod_{i=1}^{j} f_i(x_i, x_{\pi_i}) \cdot \prod_{i=j+1}^{n} 1$$
$$= \prod_{i=1}^{j} f_i(x_i, x_{\pi_i})$$

Thus, $P(x_i|\{x_1,\ldots,x_{i-1}\}) = \frac{P(x_1,\ldots,x_i)}{P(x_1,\ldots,x_{i-1})} = f_i(x_i,x_{\pi_i})$ However, by the fact that P factorizes over the given DAG, $P(x_i|\{x_1,\ldots,x_{i-1}\}) = P(x_i|x_{\pi_i})$ Thus, $f_i(x_i,x_{\pi_i}) = P(x_i|x_{\pi_i})$

2 Question 2

2.1 Part a

$$ZP(1,0,1,1) = e^{0} \cdot e^{0} = 1$$

$$ZP(1,1,0,0) = e^{0} \cdot e^{0} = 1$$

$$ZP(1,1,0,1) = e^{0} \cdot e^{1} = e$$

$$ZP(1,1,1,0) = e^{1} \cdot e^{1} = e^{2}$$

$$ZP(1,1,1,1) = e^{1} \cdot e^{0} = e$$

2.2 Part b

First, x_1 is added to the BN. It has no parents. When adding x_2 , observe that $P(x_1, x_2) = \frac{1}{4}$ for all combinations of (x_1, x_2) . This equals $P(x_1) \cdot P(x_2)$. Thus, $x_2 \perp \!\!\! \perp x_1$.

When x_3 is added, given both x_1 and x_2 , the probability that $x_3 = x_1 \oplus x_2$ is $\frac{1}{e}$ times the probability of $x_3 = \neg(x_1 \oplus x_2)$. Similarly, x_3 is dependent on x_2 given x_1 . Thus, we add edges from x_1 and x_2 to x_3 .

When x_4 is added, given x_3 , the probability that $x_4 = x_3$ is e times the probability that $x_4 = \neg x_3$ and is independent of x_1 and x_2 . Thus, we add an edge from x_3 to x_4 .

Question 3 Neeraje - 23B0940

2.3 Part c

Node	0	1
x_1	$\frac{1}{2}$	$\frac{1}{2}$

Node	0	1
x_2	$\frac{1}{2}$	$\frac{1}{2}$

x_1, x_2	(0, 0)	(0, 1)	(1, 0)	$\mid (1, 1) \mid$
$x_3 = 0$	$\frac{1}{e+1}$	$\frac{e}{e+1}$	$\frac{e}{e+1}$	$\frac{1}{e+1}$
$x_3 = 1$	$\frac{e}{e+1}$	$\frac{1}{e+1}$	$\frac{1}{e+1}$	$\frac{e}{e+1}$

x_3	0	1
$x_4 = 0$	$\frac{1}{e+1}$	$\frac{e}{e+1}$
$x_4 = 1$	$\frac{e}{e+1}$	$\frac{1}{e+1}$

3 Question 3

3.1 Part a

 x_1, x_2, x_3, x_4 are all unconditionally independent of x_6 . This is because the only possible path from x_6 to any of them uses x_5 as the center of a v-structure, and x_5 is not observed and has no observed descendants when no variables are observed, and hence cannot be the center of a v-structure. x_5 is dependent on x_6 because they are directly connected.

3.2 Part b

 x_5 is dependent on x_6 . $x_4 \not\perp x_5 | S$ for any S by virtue of a direct edge between them. $x_4 \not\perp x_6 | x_5$ by virtue of x_5 being a valid center of a v-structure.

 $x_3 \not\perp x_5 | S$ and $x_3 \not\perp x_4 | S$ for any S. $x_3 \not\perp x_6 | \{x_4, x_5\}$ due to x_5 being a valid center of a v-structure

 $x_2 \not\perp \!\!\! \perp x_4 | S$ for any S. $x_2 \not\perp \!\!\! \perp x_3 | x_4$. Thus, $x_2 \perp \!\!\! \perp x_5, x_6 | \{x_4, x_3\}$ is the best we can do.

 $x_1 \not\perp x_4 \mid S$ for any S. $x_1 \not\perp x_3 \mid x_4$ and $x_1 \not\perp x_2 \mid x_4$. Thus, $x_1 \perp \!\!\! \perp x_5, x_6 \mid \{x_4, x_3, x_2\}$ is the best we can do.

Question 4 Neeraje - 23B0940

4 Question 4

4.1 Part 1

Consider the following BN for the given model:

Since P factorizes over G, G is an I-map for P. Since $I(G) \subseteq I(P)$, the conditional independence $F \perp \!\!\! \perp B|A$, which holds in this graph, holds in P as well.

4.2 Part 2

We cannot guarantee that C is independent of E. In this very graph, C-A-B-E is an active path from C to E given no observed variables. We at the same time cannot guarantee that C is dependent on E. Consider the graph below, which satisfies all the conditional independencies satisfied in P and some more.

Question 6 Neeraje - 23B0940

5 Question 5

6 Question 6

$x_4 \perp \!\!\!\perp x_3, x_1 x_2(\text{given})$	(1)
$x_4 \perp \!\!\! \perp x_3 x_1, x_2(\text{Weak Union})$	(2)
$x_3 \perp \!\!\! \perp x_2 x_1(\text{given})$	(3)
$x_3 \perp \!\!\!\perp x_4, x_2 x_1(\text{Contraction on 2 and 3})$	(4)
$x_3 \perp \!\!\! \perp x_4 x_1(\text{Decomposition})$	(5)
$x_4 \perp \!\!\! \perp x_1 x_2 \text{(Decomposition on 1)}$	(6)
$x_1 \perp \!\!\! \perp x_2(\text{given})$	(7)
$x_1 \perp \!\!\! \perp x_4(\text{Contraction on 6 and 7})$	(8)
$x_4 \perp \!\!\! \perp x_3(\text{Contraction on 5 and 8})$	(9)

Question 8 Neeraje - 23B0940

7 Question 7

Given that $Pa(x_i)$ and $Pa(x_j)$ are observed, notice that no path emerging out of x_i in the direction of one of its parents can be active (since the edge is directed towards x_i , the parent is not the center of a v-structure, and is observed, hence the parent is blocked).

Thus, any active path must come out of x_i towards one of its children. If we consider this path to keep going downwards in the graph until some node x_k which it enters from a parent of x_k and exits via another parent of x_k . Since x_k is the center of a v-structure, it has to be an ancestor of $Pa(x_j)$ (since if it was an ancestor of $Pa(x_i)$ and also a descendant of x_i , the graph would no longer be a DAG.)

Thus, x_j is a descendant of x_k and x_k is a descendant of x_i . Thus, x_j is a descendant of x_i . By the same argument with x_i and x_j swapped, x_i is a descendant of x_j . Thus, x_i and x_j are descendants of each other.

This is not possible in a DAG.

8 Question 8

8.1 Part a

We use Proposition 4.8 from Koller-Friedman: Let G be any Bayesian network graph. The moralized graph M[G] is a minimal I-map for G.

That gives us the following diagram equivalent Markov network.

8.2 Part b

 $x_1 \perp \!\!\! \perp x_2$ and $x_1 \perp \!\!\! \perp x_2 | x_3$ are two CIs that hold in G but not in H.

Question 9 Neeraje - 23B0940

9 Question 9

9.1 Part a

Justification: We use the algorithm for constructing an I-map of a given distribution given in Algorithm 3.2 of Friedman-Koller.

When x_5 is inserted, it has of course to be connected with x_4 , but x_1 is also not independent of x_5 given x_4 in H. For x_2 , x_5 and x_1 together separate it from x_4 , and this blanket is minimal since it has to be connected to both x_1 and x_5 . For x_3 , x_2 is necessarily its parent. x_3 cannot be rendered independent of x_5 by any subset of $\{x_1, x_2, x_4\}$, so x_5 is also a parent. At this point, x_3 is separated from x_1 and x_4 . For x_6 , it is necessary to add its neighbours in H as its parents in G, and these d-separate it in H from all other vertices, so we are done. In total, this approach created 9 directed edges.

9.2 Part b

A simple change that generates more variables is to consider the order $x_1, x_4, x_3, x_2, x_5, x_6$.

When x_3 is inserted, no subset of $\{x_4, x_1\}$ d-separates it from the other vertex. When x_2 is now added, in the absence of x_5 , it cannot be d-separated from x_4 by x_1, x_3 (note that due to monotonicity of d-separation in Markov networks, we do not need to separately consider subsets of $\{x_1, x_3\}$). x_5 needs to be connected with both its neighbours, and also with x_3 since $\{x_2, x_4\}$ does not d-separate it from x_3 . x_6 has to be connected to all its neighbours, who form a Markov blanket. In total, this approach created 10 directed edges.

Question 9 Neeraje - 23B0940

9.3 Part c

 $x_3 \perp \!\!\! \perp x_5 | x_2, x_6$ and $x_5 \perp \!\!\! \perp x_1 | x_2, x_4$ are two CIs that hold in H but not in G (since x_3 and x_5, x_5 and x_1 now have edges between them in G, but were d-separated from each other by an appropriate set of vertices in H).