AI FOR NETWORKING

NETWORK RESOURCE MANAGEMENT

• Managing and allocating resources for networking processes.

TRAFFIC PREDICTION

 Resources can be assigned differently depending on the amount of network traffic that is being processed

USECASES

No.	Approach	Task	Dataset
1	Supervised: prediction with	Traffic volume prediction	Synthetic and real traffic traces
	Hidden-Markov Model		with flow statistics
	(HMM)		
2	Supervised: Multi-Layer	End-to-end path bandwidth	NSF TeraGrid dataset
	Perceptron-NN	availability prediction (TSF)	
3	Supervised: MLP-NN with	Network traffic prediction	1000 points dataset
	different training algorithms	(TSF)	
	(GD, CG, SS, LM, RP)		
4	Supervised: KBR · LSTM-RNN	Inferring future traffic	Network traffic volume and flow
		volume based on flow	count collected every 5 min over a
		statistics (regression)	24-week period
5	Supervised: Multi-Layer	Link load prediction in ISP	Internet traffic collected at the
	Perceptron-NN	networks (TSF)	POP of an ISP network

RESOURCE ALLOCATION

 Resource allocation is a decision problem that actively manages resources to maximize resource utilization.

USECASES

No.	Approach	Network	Task (Output)	Dataset
1	Supervised: MLP-NN	Wireless Networks	Throughput · Delay ·	Simulation data
			Reliability	generated using ns-
				Miracle simulator
2	Supervised: MDP · BN	VNF chains	Dynamically allocate	Simulation data
			resources for NFV	generated using
			components · Future	Workflow Sim
			resource reliability	
3	Supervised: FNN	VNF chains	Resource requirements	VoIP traffic traces
			of each VNFC	
4	Supervised: MLP-NN	Wireless LAN	Throughput of an	Synthetic data
			access point	generated using
				testbed
5	Supervised: Linear	Wireless networks	Quality level of each	38 video clips taken
	classifier		video in terms of the	from CIF
	Unsupervised: RNN		average SSIM index	

ADMISSION CONTROL

• The objective in admission control is to optimize the utilization of resources by monitoring and managing the resources in the network (Acceptance or Rejection).

USECASES

No.	Approach	Network	Task (output)	Dataset
1	Supervised: MLP-NN	Wireless LAN	Whether an access	ns-3 simulator and
			point can sustain the	testbed
			new VoIP call	
2	Supervised: NN · BN	Cellular (LTE) network	Estimate the R-factor	ns-3 simulator
			QoS metric	
3	Supervised: BN	Wireless LAN	Voice call quality	ns-3 simulator
4	Supervised: MLP-NN	ATM	Acceptance or rejection	Simulation
			of a call	