Лаб: Вложени цикли

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането със С++"

Тествайте решенията си в **Judge системата**: https://judge.softuni.org/Contests/534/Nested-Loops-Lab

1. Часовник

Напишете програма, която отпечатва часовете в денонощието от 0:0 до 23:59, всеки на отделен ред. Часовете трябва да се изписват във формат "{час}: {минути}".

Примерен вход и изход

Вход	Изход
(няма вход)	0:0
	0:1
	0:2
	0:3
	0:4
	0:5
	0:6
	0:7
	0:8
	0:9
	0:10
	•••
	23:50
	23:51
	23:52
	23:53
	23:54
	23:55
	23:56
	23:57
	23:58
	23:59

Насоки

- 1. Създайте 2 вложени for-цикъла, с които да итерирате през всяка една минута и час от денонощието.
- 2. Отпечатайте резултата.

2. Таблица за умножение

Отпечатайте на конзолата таблицата за умножение за числата от 1 до 10 във формат:

"{първи множител} * {втори множител} = {резултат}".

Вход	Изход
------	-------

(няма вход)	1 * 1 = 1
	1 * 2 = 2
	1 * 3 = 3
	1 * 4 = 4
	1 * 5 = 5
	1 * 6 = 6
	1 * 7 = 7
	1 * 8 = 8
	1 * 9 = 9
	1 * 10 = 10
	• • •
	10 * 1 = 10
	10 * 2 = 20
	10 * 3 = 30
	10 * 4 = 40
	10 * 5 = 50
	10 * 6 = 60
	10 * 7 = 70
	10 * 8 = 80
	10 * 9 = 90
	10 * 10 = 100

Насоки

- 1. Създайте 2 вложени for-цикъла, с които да итерирате всяка възможна стойност на двата множителя от
- 2. Намерете произведението на двата множителя и отпечатайте резултата.

3. Комбинации

Напишете програма, която изчислява колко решения в естествените числа (включително и нулата) има уравнението:

x1 + x2 + x3 = n

Числото n е цяло число и се въвежда от конзолата.

Вход	Изход	Обяснения		Изход	Вход	Изход
25	351	Генерираме всички комбинации от 3 числа,	20	231	5	21
		като първата е:				
		0+0+0=0, но понеже не е равна на 25,				
		продължаваме:				
		0+0+1=1 – също не е 25 и т.н.				
		Стигаме до първата валидна комбинация:				
		0 + 0 + 25 = 25, увеличаваме броя на валидни				
		комбинации с 1,втората валидна комбинация				
		e:				
		0 + 1 + 24 = 25				
		Третата:				

0 + 2 + 23 = 25 ит.н.		
След генериране на всички възможни		
комбинации, броят на валидните е 351.		

Насоки

- 1. Прочетете входните данни едно цяло число, въведено от потребителя и го запаметете в
- 2. Създайте 3 вложени for-цикъла, с които да итерирате всяка възможна стойност на едно от 3те числа в уравнението.
- 3. Направете проверка в най-вътрешния вложен цикъл за стойностите на х1, х2, х3 във всяка една итерация. За да бъде валидно уравнението, техният сбор трябва да е равен на п. Създайте променлива validCombinationsCount, която да пази броя на валидните комбинации и добавяйте към нея всеки път, когато генерирате такава.
- 4. Накрая принтирайте броя на валидните комбинации (validCombinationsCount).

4. Сума от две числа

Напишете програма която проверява всички възможни комбинации от двойка числа в интервала от две дадени числа. На изхода се отпечатва, коя поред е комбинацията чиито сбор от числата е равен на дадено магическо число. Ако няма нито една комбинация отговаряща на условието се отпечатва съобщение, че не е намерено.

Вход

Входът се чете от конзолата и се състои от три реда:

- Първи ред начало на интервала цяло число в интервала [1...999]
- Втори ред край на интервала цяло число в интервала [по-голямо от първото число...1000]
- Трети ред магическото число цяло число в интервала [1...10000]

Изход

На конзолата трябва да се отпечата един ред, според резултата:

- Ако е намерена комбинация чиито сбор на числата е равен на магическото число
 - "Combination N:{пореден номер} ({първото число} + {второ число} = {магическото число})"
- Ако не е намерена комбинация отговаряща на условието
 - "{броят на всички комбинации} combinations neither equals {магическото число}"

Вход	Изход	Обяснения	Вход	Изход
1 10 5	Combination N:4 (1 + 4 = 5)	Всички комбинации от две числа между 1 и 10 са: 1 1, 1 2, 1 3, 1 4, 1 5, 2 1, 2 2, 4 9, 4 10, 5 1 10 9, 10 10 Първата комбинация, чиито сбор на числата е равен на магическото число 5 е четвъртата (1 и 4)	88 888 1000	Combination N:20025 (112 + 888 = 1000)
Вход	Изход	Обяснения	Вход	Изход

23	4 combinations -	Всички комбинации от две числа	88	641601	
24	neither equals	между 23 и 24 са: 23 23, 23 24, 24 23, 24	888	combinations -	
20	20	24 (общо 4)	2000	neither equals	
		Няма двойки числа, чиито сбор е равен		2000	
		на магическото 20			

5. Пътуване

Ани обича да пътува и иска тази година да посети няколко различни дестинации. Като си избере дестинация, ще прецени колко пари ще й трябват, за да отиде до там и ще започне да спестява. Когато е спестила достатъчно, ще може да пътува.

От конзолата всеки път ще се четат първо дестинацията и минималния бюджет, който ще е нужен за пътуването.

След това ще се четат няколко суми, които Ани спестява като работи и когато успее да събере достатъчно за пътуването, ще заминава, като на конзолата трябва да се изпише:

"Going to {дестинацията}!"

Когато е посетила всички дестинации, които иска, вместо дестинация ще въведе "End" и програмата ще приключи.

Вход	Изход	Вход	Изход
Greece	Going to Greece!	France	Going to France!
1000	Going to Spain!	2000	Going to Portugal!
200		300	Going to Egypt!
200		300	
300		200	
100		400	
150		190	
240		258	
Spain		360	
1200		Portugal	
300		1450	
500		400	
193		400	
423		200	
End		300	
		300	
		Egypt	
		1900	
		1000	
		280	
		300	
		500	
		End	

6. Сграда

Напишете програма, която извежда на конзолата номерата на стаите в една сграда (в низходящ ред), като са изпълнени следните условия:

- На всеки четен етаж има само офиси
- На всеки нечетен етаж има само апартаменти
- Всеки апартамент се означава по следния начин : А{номер на етажа}{номер на апартамента}, номерата на апартаментите започват от 0.
- Всеки офис се означава по следния начин : О{номер на етажа}{номер на офиса}, номерата на офисите също започват от 0.
- На последният етаж винаги има апартаменти и те са по-големи от останалите, за това пред номера им пише 'L', вместо 'A'. Ако има само един етаж, то има само големи апартаменти!

От конзолата се прочитат две цели числа - броят на етажите и броят на стаите за един етаж.

Вход	Изход	Обяснения			
6	L60 L61 L62 L63	Имаме с	Имаме общо 6 етажа, с по 4 стаи на етаж. Нечетните етажи имат само		
4	A50 A51 A52 A53	апартам	апартаменти, а четните само офиси.		
	040 041 042 043				
	A30 A31 A32 A33				
	020 021 022 023				
	A10 A11 A12 A13				
Вход	Изход	Вход	Изход		
9	L90 L91 L92 L93 L94	4	L40 L41 L42 L43		
5	080 081 082 083 084	4	A30 A31 A32 A33		
	A70 A71 A72 A73 A74		020 021 022 023		
	060 061 062 063 064		A10 A11 A12 A13		
	A50 A51 A52 A53 A54				
	040 041 042 043 044				
	A30 A31 A32 A33 A34				
	020 021 022 023 024				
	A10 A11 A12 A13 A14				

