Inference For High Dimensional M-estimates: Fixed Design Results

Lihua Lei, Peter Bickel and Noureddine El Karoui

Department of Statistics, UC Berkeley

Berkeley-Stanford Econometrics Jamboree, 2017

Table of Contents

Background

Main Results

Heuristics and Proof Techniques

Numerical Results

Table of Contents

Background

Main Results

Heuristics and Proof Techniques

Numerical Results

Setup

Consider a linear Model:

$$Y = X\beta^* + \epsilon$$
.

- $y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$: response vector;
- $X = (x_1^T, \dots, x_n^T)^T \in \mathbb{R}^{n \times p}$: design matrix;
- $\beta^* = (\beta_1^*, \dots, \beta_p^*)^T \in \mathbb{R}^p$: coefficient vector;
- $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T \in \mathbb{R}^n$: random unobserved error with independent entries.

M-Estimator

M-Estimator: Given a convex loss function $\rho(\cdot):\mathbb{R} \to [0,\infty)$,

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(y_i - x_i^T \beta).$$

When ρ is differentiable with $\psi=\rho'$, $\hat{\beta}$ can be written as the solution:

$$\frac{1}{n}\sum_{i=1}^{n}\psi(y_i-x_i^T\hat{\beta})=0.$$

M-Estimator: Examples

 $ho(x) = x^2/2$ gives the Least-Square estimator;

M-Estimator: Examples

- $\rho(x) = x^2/2$ gives the Least-Square estimator;
- $\rho(x) = |x|$ gives the Least-Absolute-Deviation estimator;

M-Estimator: Examples

- $\rho(x) = x^2/2$ gives the Least-Square estimator;
- ho(x) = |x| gives the Least-Absolute-Deviation estimator;

- X is treated as fixed;
- ▶ no assumption imposed on β^* ;
- ightharpoonup and the dimension p is **comparable to** the sample size n.

- X is treated as fixed;
- ▶ no assumption imposed on β^* ;
- ightharpoonup and the dimension p is **comparable to** the sample size n.
- Why coordinates?

- X is treated as fixed;
- ▶ no assumption imposed on β^* ;
- ightharpoonup and the dimension p is **comparable to** the sample size n.
- Why coordinates?
- Why fixed designs?

- X is treated as fixed;
- ▶ no assumption imposed on β^* ;
- ightharpoonup and the dimension p is **comparable to** the sample size n.
- Why coordinates?
- Why fixed designs?
- ▶ Why assumption-free β^* ?

- X is treated as fixed;
- ▶ no assumption imposed on β^* ;
- ightharpoonup and the dimension p is **comparable to** the sample size n.
- Why coordinates?
- Why fixed designs?
- ▶ Why assumption-free β^* ?
- ▶ Why $p \sim n$?

▶ Consider β_1^* WLOG;

- ▶ Consider β_1^* WLOG;
- ▶ Ideally, we construct a 95% confidence interval for β_1^* as

$$\left[q_{0.025}\left(\mathcal{L}(\hat{\beta}_1)\right), q_{0.975}\left(\mathcal{L}(\hat{\beta}_1)\right)\right]$$

where q_{α} denotes the α -th quantile;

- Consider β₁* WLOG;
- ▶ Ideally, we construct a 95% confidence interval for β_1^* as

$$\left[q_{0.025}\left(\mathcal{L}(\hat{\beta}_1)\right), q_{0.975}\left(\mathcal{L}(\hat{\beta}_1)\right)\right]$$

where q_{α} denotes the α -th quantile;

• Unfortunately, $\mathcal{L}(\hat{eta}_1)$ is unknown.

- ▶ Consider β_1^* WLOG;
- ▶ Ideally, we construct a 95% confidence interval for β_1^* as

$$\left[q_{0.025}\left(\mathcal{L}(\hat{\beta}_1)\right), q_{0.975}\left(\mathcal{L}(\hat{\beta}_1)\right)\right]$$

where q_{α} denotes the α -th quantile;

- ▶ Unfortunately, $\mathcal{L}(\hat{\beta}_1)$ is unknown.
- ► This motivates the asymptotic arguments, i.e. find a distribution *F* s.t.

$$\mathcal{L}(\hat{\beta}_1) \approx F.$$

Asymptotic Arguments: Textbook Version

▶ The limiting behavior of $\hat{\beta}$ when p is fixed, as $n \to \infty$,

$$\mathcal{L}(\hat{\beta}) \to N\left(\beta^*, (X^T X)^{-1} \frac{\mathbb{E}(\psi^2(\epsilon_1))}{[\mathbb{E}\psi'(\epsilon_1)]^2}\right);$$

▶ As a consequence, we obtain an approximate 95% confidence interval for β_1^* ,

$$\left[\hat{\beta}_1 - 1.96\widehat{\operatorname{sd}}(\hat{\beta}_1), \hat{\beta}_1 + 1.96\widehat{\operatorname{sd}}(\hat{\beta}_1)\right]$$

where $\widehat{sd}(\hat{\beta}_1)$ could be any consistent estimator of the standard deviation.

original problem

$$(n = 100, p = 30)$$

$$y \sim X \Rightarrow \hat{\beta}_1$$

original problem

$$(n = 100, p = 30)$$

$$y \sim X \Rightarrow \hat{\beta}_1$$

$$(n_1 = 200, p_1 = 30)$$

$$y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$$

original problem

$$(n = 100, p = 30)$$

$$y \sim X \Rightarrow \hat{\beta}_1$$

hypothetical problem

$$(n_1 = 200, p_1 = 30)$$

$$y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$$

$$(n_2 = 500, p_2 = 30)$$

$$y^2 \sim X^2 \Rightarrow \hat{\beta}_1^{(2)}$$

original problem

$$(n = 100, p = 30)$$

 $y \sim X \Rightarrow \hat{\beta}_1$

hypothetical problem

$$(n_1 = 200, p_1 = 30)$$

 $y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$

hypothetical problem

$$(n_2 = 500, p_2 = 30)$$

 $y^2 \sim X^2 \Rightarrow \hat{\beta}_1^{(2)}$

hypothetical problem

$$(n_3 = 2000, p_3 = 30)$$

$$y^3 \sim X^3 \Rightarrow \hat{\beta}_1^{(3)}$$

original problem

$$(n = 100, p = 30)$$

 $y \sim X \Rightarrow \hat{\beta}_1$

hypothetical problem

$$y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$$

hypothetical problem

$$(n_2 = 500, p_2 = 30)$$

$$y^2 \sim X^2 \Rightarrow \hat{\beta}_1^{(2)}$$

hypothetical problem

$$(n_3 = 2000, p_3 = 30)$$

 $y^3 \sim X^3 \Rightarrow \hat{\beta}_1^{(3)}$

Asymptotic argument: use $\lim_{j\to\infty} \mathcal{L}(\hat{\beta}_1^{(j)})$ to approximate $\mathcal{L}(\hat{\beta}_1)$.

▶ Huber [1973] raised the question of understanding the behavior of $\hat{\beta}$ when both n and p tend to infinity;

- ▶ Huber [1973] raised the question of understanding the behavior of $\hat{\beta}$ when both n and p tend to infinity;
- ▶ Huber [1973] showed the L_2 consistency of $\hat{\beta}$:

$$\|\hat{\beta} - \beta^*\|_2^2 \to 0$$
, when $p = o(n^{\frac{1}{3}})$;

- ▶ Huber [1973] raised the question of understanding the behavior of $\hat{\beta}$ when both n and p tend to infinity;
- ▶ Huber [1973] showed the L_2 consistency of $\hat{\beta}$:

$$\|\hat{\beta} - \beta^*\|_2^2 \to 0$$
, when $p = o(n^{\frac{1}{3}})$;

lacktriangle Portnoy [1984] prove the L_2 consistency of \hat{eta} when

$$p = o\left(\frac{n}{\log n}\right).$$

▶ Portnoy [1985] and Mammen [1989] showed that $\hat{\beta}$ is **jointly** asymptotically normal when

$$p <\!\!< n^{\frac{2}{3}},$$

▶ Portnoy [1985] and Mammen [1989] showed that $\hat{\beta}$ is **jointly** asymptotically normal when

$$p <\!\!< n^{\frac{2}{3}},$$

in the sense that for any sequence of vectors $a_n \in \mathbb{R}^p$,

$$\mathcal{L}\left(\frac{a_n^T(\hat{\beta} - \beta^*)}{\sqrt{\operatorname{Var}(a_n^T\hat{\beta})}}\right) \to N(0, 1)$$

p/n: A Measure of Difficulty

All of the above works requires

$$p/n \to 0$$
 or $n/p \to \infty$.

p/n: A Measure of Difficulty

All of the above works requires

$$p/n \to 0$$
 or $n/p \to \infty$.

- ▶ n/p is the number of samples per parameter;
- ▶ Classical rule of thumb: $n/p \ge 5 \sim 10$;
- ▶ Heuristically, a larger n/p would give an easier problem;
- ▶ Hypothetical problems with $n_j/p_j \to \infty$ are not appropriate because they are increasingly easier than the original problem.

Formally, we define $\mathbf{Moderate}\ \mathbf{p}/\mathbf{n}$ Regime as

$$p/n \to \kappa > 0$$
.

original problem

$$(n = 100, p = 30)$$

$$y \sim X \Rightarrow \hat{\beta}_1$$

Formally, we define **Moderate** \mathbf{p}/\mathbf{n} **Regime** as

$$p/n \to \kappa > 0$$
.

original problem

$$(n = 100, p = 30)$$

 $y \sim X \Rightarrow \hat{\beta}_1$

$$(n_1 = 200, p_1 = 60)$$

 $y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$

Formally, we define **Moderate** \mathbf{p}/\mathbf{n} **Regime** as

$$p/n \to \kappa > 0$$
.

original problem

$$(n = 100, p = 30)$$

 $y \sim X \Rightarrow \hat{\beta}_1$

hypothetical problem

$$(n_1 = 200, p_1 = 60)$$

 $y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$

$$(n_2 = 500, p_2 = 150)$$

$$y^2 \sim X^2 \Rightarrow \hat{\beta}_1^{(2)}$$

Formally, we define **Moderate** p/n **Regime** as

$$p/n \to \kappa > 0$$
.

original problem

$$(n = 100, p = 30)$$

 $y \sim X \Rightarrow \hat{\beta}_1$

hypothetical problem

$$(n_1 = 200, p_1 = 60)$$

 $y^1 \sim X^1 \Rightarrow \hat{\beta}_1^{(1)}$

hypothetical problem

$$(n_2 = 500, p_2 = 150)$$

$$y^2 \sim X^2 \Rightarrow \hat{\beta}_1^{(2)}$$

$$(n_3 = 2000, p_3 = 600)$$

$$y^3 \sim X^3 \Rightarrow \hat{\beta}_1^{(3)}$$

Moderate p/n Regime: More Informative Asymptotics

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

Moderate p/n Regime: More Informative Asymptotics

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

X

A simulation to compare Fix-p Regime and Moderate p/n Regime:

A simulation to compare Fix-p Regime and Moderate p/n Regime:

A simulation to compare Fix-p Regime and Moderate p/n Regime:

$$y^1 = egin{pmatrix} eta^* \ X \end{bmatrix} egin{pmatrix} eta^* \ + \ eta^1 \end{bmatrix}$$

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^1 = egin{pmatrix} X & egin{pmatrix} eta^* & + & egin{pmatrix} \epsilon^1 & & & \end{pmatrix}$$

M-Estimates: $\hat{\beta}_1^{(1)}$,

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^2 = egin{pmatrix} X & egin{pmatrix} eta^* & + & \epsilon^1 \ & \epsilon^2 & & \end{pmatrix}$$

M-Estimates: $\hat{\beta}_1^{(1)}$,

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^2 = egin{pmatrix} X & egin{pmatrix} eta^* \ & + & \epsilon^1 \ \end{bmatrix} egin{pmatrix} \epsilon^2 \ & & \end{pmatrix}$$

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$,

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^3 = egin{pmatrix} X & egin{pmatrix} eta^* & + & egin{pmatrix} \epsilon^1 & eta^2 & eta^3 \end{pmatrix}$$

M-Estimates: $\hat{\beta}_{1}^{(1)}$, $\hat{\beta}_{1}^{(2)}$,

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^3 = X$$
 $+ \epsilon^1 \epsilon^2 \epsilon^3$

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$, $\hat{\beta}_1^{(3)}$,

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^r = X$$
 β^*
 $+ \epsilon^1 \epsilon^2 \epsilon^3 \cdots \epsilon^r$

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$, $\hat{\beta}_1^{(3)}$,

A simulation to compare Fix-p Regime and Moderate p/n Regime:

Original problem: n=50, $p=50\kappa$, Huber loss, i.i.d. ϵ_i 's.

$$y^r = X$$
 β^*
 $+ \epsilon^1 \epsilon^2 \epsilon^3 \cdots \epsilon^r$

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$, $\hat{\beta}_1^{(3)}$, ..., $\hat{\beta}_1^{(r)}$.

A simulation to compare Fix-p Regime and Moderate p/n Regime:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta^* & + & egin{aligned} \epsilon^1 & egin{aligned} \epsilon^2 & egin{aligned} \epsilon^3 & \cdots & egin{aligned} \epsilon^r \end{aligned} \end{aligned}$$

M-Estimates:
$$\hat{\beta}_1^{(1)}$$
, $\hat{\beta}_1^{(2)}$, $\hat{\beta}_1^{(3)}$, ..., $\hat{\beta}_1^{(r)}$.

$$\Longrightarrow \hat{\mathcal{L}}(\hat{\beta}_1; X) = \operatorname{ecdf}(\{\hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(r)}\}).$$

A Simulation to compare Fix-p Regime and Moderate p/n Regime:

Fix-p Approximation: n = 1000, $p = 50\kappa$.

A Simulation to compare Fix-p Regime and Moderate p/n Regime:

Fix-p Approximation: n = 1000, $p = 50\kappa$.

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta^* \ & + \ & \epsilon^1 \ & \epsilon^2 \ & \epsilon^3 \ \end{pmatrix} & \cdots & \epsilon^r \end{aligned}$$

M-Estimates:
$$\hat{\beta}_1^{(F,1)}$$
, $\hat{\beta}_1^{(F,2)}$, $\hat{\beta}_1^{(F,3)}$, ..., $\hat{\beta}_1^{(F,r)}$.

$$\Longrightarrow \hat{\mathcal{L}}(\hat{\beta}_1^F; X) = \operatorname{ecdf}(\{\hat{\beta}_1^{(F,1)}, \dots, \hat{\beta}_1^{(F,r)}\}).$$

A Simulation to compare Fix-p Regime and Moderate p/n Regime:

Moderate-p/n **Approximation:** n = 1000, $p = 1000\kappa$.

A Simulation to compare Fix-p Regime and Moderate p/n Regime:

 ${\bf Moderate-} p/n \ {\bf Approximation:} \ n=1000, \ p=1000\kappa.$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta^* & + & \epsilon^1 \ & \epsilon^2 \ & \epsilon^3 \ \end{pmatrix} & \cdots & \epsilon^r \end{aligned}$$

M-Estimates:
$$\hat{\beta}_1^{(M,1)}$$
, $\hat{\beta}_1^{(M,2)}$, $\hat{\beta}_1^{(M,3)}$, ..., $\hat{\beta}_1^{(M,r)}$.

$$\Longrightarrow \hat{\mathcal{L}}(\hat{\beta}_1^M; X) = \operatorname{ecdf}(\{\hat{\beta}_1^{(M,1)}, \dots, \hat{\beta}_1^{(M,r)}\}).$$

Measure the accuracy of two approximations by the Kolmogorov-Smirnov statistics

$$d_{KS}\left(\hat{\mathcal{L}}(\hat{\beta}_1),\hat{\mathcal{L}}(\hat{\beta}_1^F)\right) \text{ and } d_{KS}\left(\hat{\mathcal{L}}(\hat{\beta}_1),\hat{\mathcal{L}}(\hat{\beta}_1^M)\right)$$

The moderate p/n regime in statistics:

The moderate p/n regime in statistics:

▶ Huber [1973] showed that for least-square estimators there always exists a sequence of vectors $a_n \in \mathbb{R}^p$ such that

$$\mathcal{L}\left(\frac{a_n^T(\hat{\beta}^{LS} - \beta^*)}{\sqrt{\operatorname{Var}(a_n^T\hat{\beta}^{LS})}}\right) \not\to N(0, 1).$$

The moderate p/n regime in statistics:

▶ Huber [1973] showed that for least-square estimators there always exists a sequence of vectors $a_n \in \mathbb{R}^p$ such that

$$\mathcal{L}\left(\frac{a_n^T(\hat{\beta}^{LS} - \beta^*)}{\sqrt{\operatorname{Var}(a_n^T\hat{\beta}^{LS})}}\right) \not\to N(0, 1).$$

▶ Bickel and Freedman [1982] showed that the bootstrap fails in the Least-Square case and the usual rescaling does not help;

The moderate p/n regime in statistics:

▶ Huber [1973] showed that for least-square estimators there always exists a sequence of vectors $a_n \in \mathbb{R}^p$ such that

$$\mathcal{L}\left(\frac{a_n^T(\hat{\beta}^{LS} - \beta^*)}{\sqrt{\operatorname{Var}(a_n^T\hat{\beta}^{LS})}}\right) \not\to N(0, 1).$$

- ▶ Bickel and Freedman [1982] showed that the bootstrap fails in the Least-Square case and the usual rescaling does not help;
- ► El Karoui et al. [2011] showed that for general loss functions, $\|\hat{\beta} \beta^*\|_2^2 \leftrightarrow 0.$

The moderate p/n regime in statistics:

▶ Huber [1973] showed that for least-square estimators there always exists a sequence of vectors $a_n \in \mathbb{R}^p$ such that

$$\mathcal{L}\left(\frac{a_n^T(\hat{\beta}^{LS} - \beta^*)}{\sqrt{\operatorname{Var}(a_n^T\hat{\beta}^{LS})}}\right) \not\to N(0, 1).$$

- ▶ Bickel and Freedman [1982] showed that the bootstrap fails in the Least-Square case and the usual rescaling does not help;
- ► El Karoui et al. [2011] showed that for general loss functions, $\|\hat{\beta} \beta^*\|_2^2 \not\to 0.$
- ▶ El Karoui and Purdom [2015] showed that most widely used resampling schemes give poor inference on β_1^* .

Moderate p/n Regime: Reason of Failure

Qualitatively,

▶ Influential observation *always* exists [Huber, 1973]: let $H = X(X^TX)^{-1}X^T$ be the hat matrix,

$$\max_{i} H_{i,i} \ge \frac{1}{n} \operatorname{tr}(H) = \frac{p}{n} \gg 0.$$

Moderate p/n Regime: Reason of Failure

Qualitatively,

▶ Influential observation *always* exists [Huber, 1973]: let $H = X(X^TX)^{-1}X^T$ be the hat matrix,

$$\max_{i} H_{i,i} \ge \frac{1}{n} \operatorname{tr}(H) = \frac{p}{n} \gg 0.$$

Regression residuals fail to mimic true error:

$$R_i \triangleq y_i - x_i^T \hat{\beta} \not\approx \epsilon_i.$$

Moderate p/n Regime: Reason of Failure

Qualitatively,

▶ Influential observation *always* exists [Huber, 1973]: let $H = X(X^TX)^{-1}X^T$ be the hat matrix,

$$\max_{i} H_{i,i} \ge \frac{1}{n} \operatorname{tr}(H) = \frac{p}{n} \gg 0.$$

Regression residuals fail to mimic true error:

$$R_i \triangleq y_i - x_i^T \hat{\beta} \not\approx \epsilon_i.$$

Technically,

► Taylor expansion/Bahadur-type representation fails!

▶ Bean et al. [2013] showed that when X has i.i.d. Gaussian entries, for any sequence of $a_n \in \mathbb{R}^p$

$$\mathcal{L}_{X,\epsilon}\left(\frac{a_n^T(\hat{\beta}-\beta^*)}{\sqrt{\operatorname{Var}_{X,\epsilon}(a_n^T\hat{\beta})}}\right) \to N(0,1);$$

▶ Bean et al. [2013] showed that when X has i.i.d. Gaussian entries, for any sequence of $a_n \in \mathbb{R}^p$

$$\mathcal{L}_{X,\epsilon}\left(\frac{a_n^T(\hat{\beta}-\beta^*)}{\sqrt{\operatorname{Var}_{X,\epsilon}(a_n^T\hat{\beta})}}\right) \to N(0,1);$$

▶ El Karoui [2015] extended it to general random designs.

▶ Bean et al. [2013] showed that when X has i.i.d. Gaussian entries, for any sequence of $a_n \in \mathbb{R}^p$

$$\mathcal{L}_{X,\epsilon}\left(\frac{a_n^T(\hat{\beta}-\beta^*)}{\sqrt{\operatorname{Var}_{X,\epsilon}(a_n^T\hat{\beta})}}\right) \to N(0,1);$$

- ▶ El Karoui [2015] extended it to general random designs.
- ▶ The above result does not contradict Huber [1973] in that the randomness comes from both X and ϵ ;

▶ Bean et al. [2013] showed that when X has i.i.d. Gaussian entries, for any sequence of $a_n \in \mathbb{R}^p$

$$\mathcal{L}_{X,\epsilon}\left(\frac{a_n^T(\hat{\beta}-\beta^*)}{\sqrt{\operatorname{Var}_{X,\epsilon}(a_n^T\hat{\beta})}}\right) \to N(0,1);$$

- El Karoui [2015] extended it to general random designs.
- ▶ The above result does not contradict Huber [1973] in that the randomness comes from both X and ϵ ;
- ▶ El Karoui et al. [2011] showed that for general loss functions,

$$\|\hat{\beta} - \beta^*\|_{\infty} \to 0.$$

Moderate p/n Regime: Summary

▶ Provides a more accurate approximation of $\mathcal{L}(\hat{\beta}_1)$;

Moderate p/n Regime: Summary

- ▶ Provides a more accurate approximation of $\mathcal{L}(\hat{\beta}_1)$;
- ▶ Qualitatively different from the classical regimes where $p/n \rightarrow 0$;
 - L_2 -consistency of $\hat{\beta}$ no longer holds;
 - the residual R_i behaves differently from ϵ_i ;
 - fixed design results are different from random design results.

Moderate p/n Regime: Summary

- ▶ Provides a more accurate approximation of $\mathcal{L}(\hat{\beta}_1)$;
- ▶ Qualitatively different from the classical regimes where $p/n \rightarrow 0$;
 - L_2 -consistency of $\hat{\beta}$ no longer holds;
 - the residual R_i behaves differently from ϵ_i ;
 - fixed design results are different from random design results.
- ▶ Inference on the vector $\hat{\beta}$ is hard; but inference on the coordinate / low-dimensional linear contrasts of $\hat{\beta}$ is still possible.

Goals (Formal)

Our Goal (formal): Under the linear model

$$Y = X\beta^* + \epsilon,$$

Derive the asymptotic distribution of **coordinates** $\hat{\beta}_j$:

- ▶ under the **moderate** \mathbf{p}/\mathbf{n} **regime**, i.e. $p/n \to \kappa \in (0,1)$;
- with a fixed design matrix X;
- without assumptions on β^* .

Table of Contents

Background

Main Results

Heuristics and Proof Techniques

Numerical Results

Main Result (Informal)

Definition 1.

Let P and Q be two distributions on \mathbb{R}^p ,

$$d_{\mathrm{TV}}(P,Q) = \sup_{A \subset \mathbb{R}^p} |P(A) - Q(A)|.$$

Main Result (Informal)

Definition 1.

Let P and Q be two distributions on \mathbb{R}^p ,

$$d_{\mathrm{TV}}(P,Q) = \sup_{A \subset \mathbb{R}^p} |P(A) - Q(A)|.$$

Theorem.

Under appropriate conditions on the design matrix X, the distribution of ϵ and the loss function ρ , as $p/n \to \kappa \in (0,1)$, while $n \to \infty$,

$$\max_{j} d_{\text{TV}} \left(\mathcal{L} \left(\frac{\hat{\beta}_{j} - \mathbb{E} \hat{\beta}_{j}}{\sqrt{\text{Var}(\hat{\beta}_{j})}} \right), N(0, 1) \right) = o(1).$$

Main Result (Informal)

If ρ is an even function and $\epsilon \stackrel{d}{=} -\epsilon$, then

$$\hat{\beta} - \beta^* \stackrel{d}{=} \beta^* - \hat{\beta} \Longrightarrow \mathbb{E}\hat{\beta} = \beta^*.$$

Theorem.

Under appropriate conditions on the design matrix X, the distribution of ϵ and the loss function ρ , as $p/n \to \kappa \in (0,1)$, while $n \to \infty$,

$$\max_{j} d_{\text{TV}} \left(\mathcal{L} \left(\frac{\hat{\beta}_{j} - \beta_{j}^{*}}{\sqrt{\text{Var}(\hat{\beta}_{j})}} \right), N(0, 1) \right) = o(1).$$

Why Surprising?

Classical approaches heavily rely on

- L_2 consistency of $\hat{\beta}$, which only holds when p = o(n);
- ▶ Bahadur-type representation for $\hat{\beta}$ where

$$\sqrt{n}(\hat{\beta} - \beta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_i + o_p \left(\frac{1}{\sqrt{n}}\right),$$

for some i.i.d. random variable Z_i 's;

• which can be proved only when $p = o(n^{2/3})$;

Why Surprising?

Classical approaches heavily rely on

- L_2 consistency of $\hat{\beta}$, which only holds when p = o(n);
- ▶ Bahadur-type representation for $\hat{\beta}$ where

$$\sqrt{n}(\hat{\beta} - \beta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_i + o_p \left(\frac{1}{\sqrt{n}}\right),$$

for some i.i.d. random variable Z_i 's;

• which can be proved only when $p = o(n^{2/3})$;

Question: What happens when $p \in [O(n^{2/3}), O(n)]$?

Our Contributions and Limitations

Instead, we develops a novel strategy that is built on

- Leave-on-out method [El Karoui et al., 2011];
- and Second-Order Poincaré Inequality [Chatterjee, 2009].

Our Contributions and Limitations

Instead, we develops a novel strategy that is built on

- Leave-on-out method [El Karoui et al., 2011];
- ▶ and Second-Order Poincaré Inequality [Chatterjee, 2009].

We prove that

- $\hat{\beta}_1$ is asymptotically normal for all $p \in [O(1), O(n)]$ for fixed designs under regularity conditions;
- ▶ the conditions are satisfied by "most" design matrices.

Our Contributions and Limitations

Instead, we develops a novel strategy that is built on

- Leave-on-out method [El Karoui et al., 2011];
- ▶ and Second-Order Poincaré Inequality [Chatterjee, 2009].

We prove that

- $\hat{\beta}_1$ is asymptotically normal for all $p \in [O(1), O(n)]$ for fixed designs under regularity conditions;
- the conditions are satisfied by "most" design matrices.

Limitations:

- we impose strong conditions on ρ and $\mathcal{L}(\epsilon)$;
- we do not know how to estimate $Var_{\epsilon}(\hat{\beta}_1)$.

Examples: Realization of i.i.d. Designs

We consider the case where X is a **realization** of a random design Z. The examples below are proved to **satisfy the technical** assumptions with high probability over Z.

Examples: Realization of i.i.d. Designs

We consider the case where X is a realization of a random design Z. The examples below are proved to satisfy the technical assumptions with high probability over Z.

- Example 1 Z has i.i.d. mean-zero sub-gaussian entries with $\operatorname{Var}(Z_{ij}) = \tau^2 > 0$;
- Example 2 Z contains an intercept term, i.e. $Z=(\mathbf{1},\tilde{Z})$ and $\tilde{Z}\in\mathbb{R}^{n\times(p-1)}$ has independent sub-gaussian entries with

$$\tilde{Z}_{ij} - \mu_j \stackrel{d}{=} \mu_j - \tilde{Z}_{ij}, \quad Var(\tilde{Z}_{ij}) > \tau^2$$

for some arbitrary μ_j 's.

Consider a one-way ANOVA situation. Each observation i is associated with a label $k_i \in \{1,\ldots,p\}$ and let $X_{i,j} = I(j=k_i)$. This is equivalent to

$$Y_i = \beta_{k_i}^* + \epsilon_i.$$

Consider a one-way ANOVA situation. Each observation i is associated with a label $k_i \in \{1, \ldots, p\}$ and let $X_{i,j} = I(j = k_i)$. This is equivalent to

$$Y_i = \beta_{k_i}^* + \epsilon_i.$$

It is easy to see that

$$\hat{\beta}_j = \arg\min_{\beta \in \mathbb{R}} \sum_{i: k_i = j} \rho(y_i - \beta_j).$$

This is a standard location problem.

Let $n_j = |\{i : k_i = j\}|$. In the least-square case, i.e. $\rho(x) = x^2/2$,

$$\hat{\beta}_j = \beta_j^* + \frac{1}{n_j} \sum_{i:k_i = j} \epsilon_i.$$

Let $n_j = |\{i : k_i = j\}|$. In the least-square case, i.e. $\rho(x) = x^2/2$,

$$\hat{\beta}_j = \beta_j^* + \frac{1}{n_j} \sum_{i: k_i = j} \epsilon_i.$$

Assume a balance design, i.e. $n_j \approx n/p$. Then $n_j \ll \infty$ and

- ▶ none of $\hat{\beta}_j$ is normal (unless ϵ_i are normal);
- ▶ holds for general loss functions ρ .

Let $n_j = |\{i : k_i = j\}|$. In the least-square case, i.e. $\rho(x) = x^2/2$,

$$\hat{\beta}_j = \beta_j^* + \frac{1}{n_j} \sum_{i: k_i = j} \epsilon_i.$$

Assume a balance design, i.e. $n_j \approx n/p$. Then $n_j \ll \infty$ and

- ▶ none of $\hat{\beta}_j$ is normal (unless ϵ_i are normal);
- ▶ holds for general loss functions ρ .

Conclusion: some "non-standard" assumptions on X are required.

Table of Contents

Background

Main Results

Heuristics and Proof Techniques

Least-Square Estimator: A Motivating Example Second-Order Poincaré Inequality Assumptions Main Results

Numerical Results

The
$$L_2$$
 loss, $\rho(x)=x^2/2$, gives the least-square estimator
$$\hat{\beta}^{LS}=(X^TX)^{-1}X^TY=\beta^*+(X^TX)^{-1}X^T\epsilon.$$

The L_2 loss, $\rho(x)=x^2/2$, gives the least-square estimator $\hat{\beta}^{LS}=(X^TX)^{-1}X^TY=\beta^*+(X^TX)^{-1}X^T\epsilon.$

Let e_j denote the canonical basis vector in \mathbb{R}^p , then

$$\hat{\beta}_j^{LS} - \beta_j^* = e_j^T (X^T X)^{-1} X^T \epsilon \triangleq \alpha_j^T \epsilon.$$

Lindeberg-Feller CLT claims that in order for

$$\mathcal{L}\left(\frac{\hat{\beta}_{j}^{LS} - \beta_{j}^{*}}{\sqrt{\operatorname{Var}(\hat{\beta}_{j}^{LS})}}\right) \to N(0, 1)$$

it is sufficient and almost necessary that

$$\frac{\|\alpha_j\|_{\infty}}{\|\alpha_j\|_2} \to 0. \tag{1}$$

To see the necessity of the condition, recall the one-way ANOVA case. Let $n_j = |\{i: k_i = j\}|$, then

$$X^T X = \operatorname{diag}(n_j)_{j=1}^p.$$

Recall that $\alpha_j^T = e_j^T (X^T X)^{-1} X^T.$ This gives

$$\alpha_{j,i} = \begin{cases} \frac{1}{n_j} & \text{if } k_i = j\\ 0 & \text{if } k_i \neq j \end{cases}$$

To see the necessity of the condition, recall the one-way ANOVA case. Let $n_j=|\{i:k_i=j\}|$, then

$$X^T X = \operatorname{diag}(n_j)_{j=1}^p$$
.

Recall that $\alpha_j^T = e_j^T (X^T X)^{-1} X^T.$ This gives

$$\alpha_{j,i} = \begin{cases} \frac{1}{n_j} & \text{if } k_i = j\\ 0 & \text{if } k_i \neq j \end{cases}$$

As a result, $\|\alpha_j\|_{\infty}=\frac{1}{n_j}, \|\alpha_j\|_2=\frac{1}{\sqrt{n_j}}$ and hence

$$\frac{\|\alpha_j\|_{\infty}}{\|\alpha_j\|_2} = \frac{1}{\sqrt{n_j}}$$

However, in moderate p/n regime, there exists j such that $n_j \leq 1/\kappa$ and thus $\hat{\beta}_j^{LS}$ is not asymptotically normal.

M-Estimator

The result for LSE is derived from the analytical form of $\hat{\beta}^{LS}$. By contrast, an analytical form is not available for general ρ .

M-Estimator

The result for LSE is derived from the analytical form of $\hat{\beta}^{LS}$. By contrast, an analytical form is not available for general ρ .

Let $\psi = \rho'$, it is the solution of

$$\frac{1}{n}\sum_{i=1}^{n}\psi(y_i-x_i^T\hat{\beta})=0 \Longleftrightarrow \frac{1}{n}\sum_{i=1}^{n}\psi(\epsilon_i-x_i^T(\hat{\beta}-\beta^*))=0.$$

We show that

- $\hat{\beta}_j$ is a smooth function of ϵ ;
- \blacktriangleright $\frac{\partial \hat{\beta}_j}{\partial \epsilon}$ and $\frac{\partial \hat{\beta}_j}{\partial \epsilon \partial \epsilon^T}$ are computable.

Second-Order Poincaré Inequality

 $\hat{\beta}_j$ is a smooth transform of a random vector, ϵ , with independent entries. A powerful CLT for this type of statistics is Second-Order Poincaré Inequality [Chatterjee, 2009].

Second-Order Poincaré Inequality

 $\hat{\beta}_j$ is a smooth transform of a random vector, ϵ , with independent entries. A powerful CLT for this type of statistics is Second-Order Poincaré Inequality [Chatterjee, 2009].

Definition 2.

For each $c_1,c_2>0$, let $L(c_1,c_2)$ be the class of probability measures on $\mathbb R$ that arise as laws of random variables like u(W), where $W\sim N(0,1)$ and $u\in C^2(\mathbb R^n)$ with

$$|u'(x)| \le c_1 \text{ and } |u''(x)| \le c_2.$$

For example, $u = \operatorname{Id}$ gives N(0,1) and $u = \Phi$ gives U([0,1]).

Second-Order Poincaré Inequality

Proposition 1 (SOPI; Chatterjee [2009]).

Let $\mathscr{W}=(\mathscr{W}_1,\ldots,\mathscr{W}_n)\stackrel{indep.}{\sim} L(c_1,c_2)$. Take any $g\in C^2(\mathbb{R}^n)$ and let $U=g(\mathscr{W})$,

$$\kappa_1 = (\mathbb{E} \|\nabla g(\mathcal{W})\|_2^4)^{\frac{1}{4}};$$

$$\kappa_2 = (\mathbb{E} \|\nabla^2 g(\mathcal{W})\|_{op}^4)^{\frac{1}{4}};$$

$$\kappa_0 = (\mathbb{E} \sum_{i=1}^n |\nabla_i g(\mathcal{W})|^4)^{\frac{1}{2}}.$$

If $\mathbb{E}U^4 < \infty$, then

$$d_{\text{TV}}\left(\mathcal{L}\left(\frac{U - \mathbb{E}U}{\sqrt{\text{Var}(U)}}\right), N(0, 1)\right) \leq \frac{\kappa_0 + \kappa_1 \kappa_2}{\text{Var}(U)}.$$

Assumptions

A1
$$\rho(0)=\psi(0)=0$$
 and for any $x\in\mathbb{R}$,
$$0< K_0\leq \psi'(x)\leq K_1,\quad |\psi''(x)|\leq K_2;$$

- **A**2 ϵ has independent entries with $\epsilon_i \in L(c_1, c_2)$;
- **A**3 Let λ_+ and λ_- be the largest and smallest eigenvalues of X^TX/n and

$$\lambda_+ = O(1), \quad \lambda_- = \Omega(1).$$

A4 "Similar to" the condition for OLS:

$$\max_{j} \frac{\|e_{j}^{T}(X^{T}X)^{-1}X^{T}\|_{\infty}}{\|e_{j}^{T}(X^{T}X)^{-1}X^{T}\|_{2}} = o(1)$$

A5 "Similar to" the condition that

$$\min_{j} \operatorname{Var}(\hat{\beta}_{j}) = \Omega\left(\frac{1}{n}\right)$$

Main Results

Theorem 3.

Under assumptions **A**1 – **A**5, as $p/n \to \kappa$ for some $\kappa \in (0,1)$ while $n \to \infty$,

$$\max_{j} d_{\text{TV}} \left(\mathcal{L} \left(\frac{\hat{\beta}_{j} - \mathbb{E} \hat{\beta}_{j}}{\sqrt{\text{Var}(\hat{\beta}_{j})}} \right), N(0, 1) \right) = o(1).$$

Table of Contents

Background

Main Results

Heuristics and Proof Techniques

Numerical Results

Setup

Design matrix X:

- (i.i.d. design): $X_{ij} \stackrel{i.i.d.}{\sim} F$;
- (partial Hadamard design): a matrix formed by a random set of p columns of a $n \times n$ Hadamard matrix.

Entry Distribution F:

- F = N(0,1);
- ▶ $F = t_2$.

Error Distribution $\mathcal{L}(\epsilon)$: ϵ_i are i.i.d. with

- $\bullet \epsilon_i \sim N(0,1);$
- $ightharpoonup \epsilon_i \sim t_2.$

Setup

Sample Size $n: \{100, 200, 400, 800\};$

$$\kappa = \mathbf{p/n}$$
: {0.5, 0.8};

Loss Function ρ : Huber loss with k = 1.345,

$$\rho(x) = \begin{cases} \frac{1}{2}x^2 & |x| \le k \\ kx - \frac{k^2}{2} & |x| > k \end{cases};$$

Coefficients: $\beta^* = 0$.

$$egin{aligned} y^1 &= egin{pmatrix} X & egin{pmatrix} eta^* &+ & \epsilon^1 \end{pmatrix} \end{aligned}$$

M-Estimates: $\hat{\beta}_1^{(1)}$,

M-Estimates: $\hat{\beta}_1^{(1)}$,

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$,

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$,

M-Estimates: $\hat{\beta}_{1}^{(1)}$, $\hat{\beta}_{1}^{(2)}$, $\hat{\beta}_{1}^{(3)}$,

M-Estimates: $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$, $\hat{\beta}_1^{(3)}$,

$$y^r = X$$
 β^*
 $+ \epsilon^1 \epsilon^2 \epsilon^3 \cdots \epsilon^r$

$$ightharpoonup \widehat{sd} \leftarrow \operatorname{se}\left(\{\hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(r)}\}\right);$$

$$y^r = X$$
 $+ \epsilon^1 \epsilon^2 \epsilon^3 \cdots \epsilon^r$

- $ightharpoonup \widehat{sd} \leftarrow \operatorname{se}\left(\{\hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(r)}\}\right);$
- lacksquare want to compare $\mathcal{L}\left(\hat{eta}_1/\widehat{sd}\right)$ with N(0,1);

$$y^r = X$$
 β^*
 $+ \epsilon^1 \epsilon^2 \epsilon^3 \cdots \epsilon^r$

- $ightharpoonup \widehat{sd} \leftarrow \operatorname{se}\left(\{\hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(r)}\}\right);$
- lacksquare want to compare $\mathcal{L}\left(\hat{eta}_1/\widehat{sd}
 ight)$ with N(0,1);
- count the fraction of $\hat{\beta}_1^{(j)} \in [-1.96\widehat{sd}, 1.96\widehat{sd}]$ as the proxy;

$$y^r = X$$
 β^*
 $+$
 ϵ^1
 ϵ^2
 ϵ^3
 \cdots
 ϵ^r

- $ightharpoonup \widehat{sd} \leftarrow \operatorname{se}\left(\{\hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(r)}\}\right);$
- lacksquare want to compare $\mathcal{L}\left(\hat{eta}_1/\widehat{sd}
 ight)$ with N(0,1);
- count the fraction of $\hat{\beta}_1^{(j)} \in [-1.96\widehat{sd}, 1.96\widehat{sd}]$ as the proxy;
- should be close to 0.95 ideally.

Conclusion

- We establish the coordinate-wise asymptotic normality of the M-estimator for certain fixed design matrices under the moderate \mathbf{p}/\mathbf{n} regime under regularity conditions on $X, \mathcal{L}(\epsilon)$ and ρ but no condition on β^* ;
- We prove the result by using the novel approach Second-Order Poincaré Inequality [Chatterjee, 2009];
- We show that the regularity conditions are satisfied by a broad class of designs.

- ▶ Inference \approx asym. normality + asym. bias + asym. variance
 - ▶ $Var(\hat{\beta}_1|X) \approx Var(\hat{\beta}_1)$ when X is indeed a realization of a random design?
 - ▶ Resampling method to give conservative variance estimates?
 - More advanced boostrap?

- ▶ Inference \approx asym. normality + asym. bias + asym. variance
 - ▶ $Var(\hat{\beta}_1|X) \approx Var(\hat{\beta}_1)$ when X is indeed a realization of a random design?
 - Resampling method to give conservative variance estimates?
 - More advanced boostrap?
- Relax the regularity conditions:
 - Generalize to non-strongly convex and non-smooth loss functions?
 - Generalize to general error distributions?

- ▶ Inference \approx asym. normality + asym. bias + asym. variance
 - ▶ $Var(\hat{\beta}_1|X) \approx Var(\hat{\beta}_1)$ when X is indeed a realization of a random design?
 - Resampling method to give conservative variance estimates?
 - More advanced boostrap?
- Relax the regularity conditions:
 - Generalize to non-strongly convex and non-smooth loss functions?
 - Generalize to general error distributions?
- Get rid of asymptotics:
 - ▶ Yes, exact finite-sample guarantee if n/p > 20;
 - ▶ No assumption on X or β^* ;
 - ▶ Only exchangeability assumption on ϵ .

Thank You!

References

- Derek Bean, Peter J Bickel, Noureddine El Karoui, and Bin Yu. Optimal m-estimation in high-dimensional regression. *Proceedings of the National Academy of Sciences*, 110(36):14563–14568, 2013.
- Peter J Bickel and David A Freedman. Bootstrapping regression models with many parameters. Festschrift for Erich L. Lehmann, pages 28–48, 1982.
- Sourav Chatterjee. Fluctuations of eigenvalues and second order poincaré inequalities. Probability Theory and Related Fields, 143(1-2):1-40, 2009.
- Noureddine El Karoui. On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators. 2015.
- Noureddine El Karoui and Elizabeth Purdom. Can we trust the bootstrap in high-dimension? *UC Berkeley Statistics Department Technical Report*, 2015.
- Noureddine El Karoui, Derek Bean, Peter J Bickel, Chinghway Lim, and Bin Yu. On robust regression with high-dimensional predictors. *Proceedings* of the National Academy of Sciences, 110(36):14557–14562, 2011.
- Peter J Huber. Robust regression: asymptotics, conjectures and monte carlo. *The Annals of Statistics*, pages 799–821, 1973.
- Enno Mammen. Asymptotics with increasing dimension for robust regression with applications to the bootstrap. *The Annals of Statistics*, pages 382–400, 1989.
- Stephen Portnoy. Asymptotic behavior of m-estimators of p regression parameters when p2/n is large. i. consistency. *The Annals of Statistics*, pages 1298–1309, 1984.
- Stephen Portnoy. Asymptotic behavior of m estimators of p regression parameters when p2/n is large; ii. normal approximation. The Annals of Statistics, pages 1403–1417, 1985.