

Auxiliar N°1: Isostasia

Geomorfología GL3402

Primavera 2020

Auxiliar: Manuel Hernández

Ayudantes: Sebastián Perroud y Nicolás Buono-Core

Contenidos

Bienvenida al curso

Calendario escuela

Reglas del curso

Clase de hoy

2. Calendario primavera 2020

3. Reglas del curso

- Clase auxiliar de 9:00-10:30 aprox.
 - Break de 10 minutos 9:45
- Actividades tendrán 1 semana de plazo.
- Horario de consulta con el profesor días jueves.
- Contenidos de auxiliares pueden ser evaluadas en los controles de catedra .

4. Clase de hoy.. ¿Qué procesos actúan en este relieve?

https://www.geomorphology.org.uk/node/514

4. Sistemas geomorfológicos

Sistema geomorfológico conjunto de elementos inter-relacionados o interconectados, que se supone existen en el mundo real, y que poseen características únicas que los humanos pueden medir, describir, analizar o presentar (Strahler, 1980).

Sistemas Endógenos crean relieve

Sistemas Exógenos destruyen relieve

Escala geomorfológica espacial

ORDEN	KM2	CARACTERISTICA	CLIMA	MECANISMO	ТІЕМРО
1	10^7	CONTINENTES, CUENCAS OCEANICAS	GRANDES SISTEMAS ZONALES	DIFERENCIACIÓN DE LA CORTEZA TERRESTRE	10^9
II	10^6	GRANDES ENTIDADES ESTRUCTURALES (CRATONES, CUENCAS)	GRANDES TIPOS CLIMÁTICOS	MOVIMIENTOS CORTICALES	10^8
III	10^4	PRINCIPALES UNIDADES ESTRUCTURALES (MACIZOS, CUENCAS, ORÓGENOS)	SUBDIVISIONES DE LOS TIPOS CLIMÁTICOS	UNIDADES TECTÓNICAS Y TASA DE EROSIÓN	10^7
IV	10^2	UNIDADES TECTÓNICAS (MACIZOS MONTAÑOSOS, HORST, FOSAS)	CLIMAS REGIONALES	FACTORES TECTÓNICOS	10^7

Escala geomorfológica espacial (cont.)

ORDEN	KM2	CARACTERISTICA	CLIMA	MECANISMO	ТІЕМРО
V	10	ACCIDENTES TECTÓNICOS: PLIEGUES, MONTES, VALLES	CLIMAS LOCALES	PREDOMINIO DE LA LITOLOGÍA Y ESTRUCTURAL	10^6-10^7
VI	10^-2	FORMAS DEL RELIEVE: TERRAZAS, CIRCOS GLACIARES, MORENAS, DEPÓSITOS ALUVIALES	CLIMAS LOCALES	LITOLOGÍA	10^4
VII	10^-6	MICROFORMAS: LÓBULOS DE SOLIFLUXIÓN, BADLANDS	MICROCLIMA	LITOLOGÍA	10^2
VIII	10^-8	MICROSCÓPICO: DETALLES DE CORROSIÓN	MICROAMBIENTES	TEXTURA DE LA ROCA	

Conceptos confusos

Conceptos confusos

Meteorización: Proceso in situ mediante el cual las rocas se disgregan y descomponen por la acción de agentes externos tales como el viento, la lluvia, los cambios de temperatura, las plantas y las bacterias. La meteorización es la etapa inicial en el proceso de denudación.

Erosión: Fase del proceso de denudación generado a partir de meteorización. Comprende el desgaste de la superficie terrestre mediante la acción mecánica de los materiales detríticos transportados. La erosión implica movimiento y transporte del material.

Denudación: Conjunto de los procesos que determinan la degradación o rebaje general de la superficie del terreno. Procesos endógenos tales como volcanes, terremotos y alzamiento tectónico puede exponer exponer corteza a procesos exógenos tales como meteorización y erosión

Exhumación: Desplazamiento de roca respecto a la superficie. La exhumación ocurre tanto por erosión como por tectónica extensional

Conceptos confusos

1 > 2

Alzamiento de superficie:

Movimiento vertical de la superficie de la Tierra respecto a un nivel de referencia fijo.

Alzamiento de roca:

Desplazamiento de las rocas respecto al geoide

Surface Uplift = Rock Uplift -Exhumation

$$RU = SU + E$$

Conceptos previos: ¿qué es la Isostasia?

Condición de equilibro que presenta la superficie terrestre debido a la diferencia de densidad de sus diferentes partes.

La corteza es menos densa que el manto y esta "flota" en él, comportándose como un fluido.

El material se hunde en un porcentaje variable, pero siempre tiene parte de él emergido.

Ejemplo isostasia

 Cuando la parte emergida pierde volumen y peso, la parte sumergida asciende para compensarlo (o viceversa) → se restablece el equilibrio.

 Los ajustes isostáticos son muy lentos y dada la rigidez y espesor de la litósfera, se requiere grandes variaciones de masa para que se produzcan.

Ejemplo: Sólido sumergido en un fluido

Dado que los fluidos no presentan esfuerzo de corte (yield stress =0), no mantiene presiones laterales diferenciales. Es decir, fluye para eliminar el gradiente de presión.

Equilibrio de fuerzas de las dos columnas compensadas:

Dado que m=rxv, tenemos m=rh,

Describe el equilibrio isostático del diagrama.

EJEMPLO 1: Calcular el espesor de la Litósfera

Usando refracción sísmica hemos calculado la profundidad del moho (**hc**)
La elevación (**e**) es conocida, y los valores estándar de densidades son los siguientes:

$$\rho_c$$
=2800 kg/m³ ρ_m =3400 kg/m³ ρ_a =3300 kg/m³

¿A qué profundidad encontraremos la base de la litósfera?

Despejamos Z:

$$\rho_{a}(Z) = \rho_{c}(hc+e) + \rho_{m}(Z-hc)$$

$$\rho_{a}(Z) - \rho_{m}Z = \rho_{c}(hc+e) - \rho_{m}hc$$

$$Z = \frac{\rho_{c}(hc+e) - \rho_{m}hc}{(\rho_{a}-\rho_{m})}$$

Lectura de actividad