Brandon Bocklund

(925) 960-5631 • bocklund1@llnl.gov

Research Experience

• Materials Science Division, Lawrence Livermore National Laboratory

Livermore, CA 2021 - Present

Postdoctoral Researcher (Supervisor: Aurélien Perron)

- Modeling phase transformations through atomistic, mesoscale, and machine learning techniques
- Led development of Materials Acceleration Platform (MAP) used by several LLNL projects
- Contributed to three successful LDRD proposals (23-ERD-005, 23-ERD-034, and 24-FS-030) and two externally funded proposals (FY24-26 NA-22 and FY24 Critical Materials Institute)
- Team member for TAOS (The Alloy Optimization Software), an LLNL commercialized product
- Selected to Cohort 5 of the Critical Materials Institute Leadership Academy (2024)
- MSD Seminar Organizing Team member (2022 *Present*)
- Supervised a Materials and Chemistry Institute (MaCI) summer graduate student intern (A.M. Krajewski, 2022 and 2023)
- Completed ALE3D Introductory Course (2022)

• Phases Research Lab, Pennsylvania State University

University Park, PA

NASA Space Technology Research Fellow (Advisor: Zi-Kui Liu)

2016 - 2021

- Developed uncertainty quantification methods for CALPHAD modeling through development of pycalphad and ESPEI, open research and education software for computational thermodynamics
- Established ICME approaches for designing functionally graded, additively manufactured materials
- Designed methods for high-throughput first-principles DFT calculations for metals and alloys
- Co-organized and delivered two workshops on "Software Tools from Atomistics to Phase Diagrams" with over 140 total attendees (November 10-11, 2020 and December 8-9, 2020)
- Mentored undergraduate students in the Women In Science and Engineering Research (WISER) program

• NASA Jet Propulsion Lab

La Cañada Flintridge, CA

Graduate Research Intern (Mentors: Richard Otis, Peter Dillon)

05/2017 - 08/2017

- Used computational thermodynamics to develop bulk metallic glass alloy composition specifications
- Developed a model for oxygen tolerance in bulk metallic glasses

• Solid State Ionics Laboratory, Michigan State University

Undergraduate Research Assistant (Advisor: Jason D. Nicholas)

East Lansing, MI

2015 - 2016

- Fabricated and improved the performance of solid oxide fuel cells
- Characterized fuel cells with EIS, XRD, and SEM

• Composite Materials & Structures Center, Michigan State University

Undergraduate Research Assistant (Advisor: Lawrence T. Drzal)

East Lansing, MI

2014 - 2015

- Designed a graphene nanoplatlet-based capacitive deionization cell
- Characterized graphene nanoplatelet papers using scanning electron microscopy

Teaching Experience

• Department of Materials Science and Engineering, Pennsylvania State University Teaching Assistant University Park, PA

2016 - Present

- (Spring 2020) MatSE 410: Phase Relations in Materials Systems
- (Spring 2018) MatSE 404/BME 444: Surfaces and the Biological Response to Materials
- (Spring 2017) MatSE 462: General Properties Laboratory in Materials

• College of Engineering, Michigan State University

Undergraduate Lab Mentor

East Lansing, MI

2015 - 2016

- (Spring 2016) EGR 102: Introduction to Engineering Modeling
- (Fall 2015) EGR 100: Introduction to Engineering Design
- (Fall 2015) EGR 291: Spatial Visualization

Education

• Pennsylvania State University

University Park, PA

Ph.D., Materials Science and Engineering; Graduate Minor, Computational Materials

- NASA Space Technology Research Fellow (2018 Present)
- NSF Research Trainee in the CoMET Program (dftcomet.psu.edu) (2016 2018)

• Michigan State University

B.S. Materials Science and Engineering

East Lansing, MI 2012 - 2016

- 3.56 GPA
- Dean's List, 5 semesters

Awards and Honors

• LLNL PLS FY24 Winter Directorate Award: Excellence in Publication	2024
Robert E. Newnham Award for Research Excellence, Pennsylvania State University	2020
Larry Kaufman Scholarship, Calphad XLIX Conference	2020
• Runner Up, NASA Software of the Year (SoY) award - pycalphad	2019
Honorable Mention, National Science Foundation Graduate Research Fellowship Program	2018
Outstanding Contribution in Reviewing - CALPHAD Journal	2017
Travel Award for iMATSE Graduate Students, Pennsylvania State University	2017
Helen R. and Van H. Leichliter Graduate Fellowship, Pennsylvania State University	2016
College of Engineering Endowed Opportunity Fund scholarship, Michigan State University	2015

Publications

- 30. H. Sun, B. Pan, Z. Yang, A. Krajewski, **B. Bocklund**, S.-L. Shang, J. Li, A.M. Beese, Z.-K. Liu, MaterialsMap: A CALPHAD-Based Tool to Design Composition Pathways through feasibility map for Desired Dissimilar Materials, demonstrated with RSW Joining of Ag-Al-Cu, *Submitted*.
- 29. N. Ury, **B. Bocklund**, A. Perron, K. Bertsch, Automated Path Planning for Functionally Graded Materials Considering Phase Stability and Solidification Behavior, *Submitted*.
- 28. **B. Bocklund**, A. Perron, J.T. McKeown, K. Bertsch, Implementation of an Extensible Property Modeling Framework in ESPEI with Applications to Molar Volume and Elastic Stiffness Models, **Calphad** *Accepted*.
- 27. S. Liu, **B. Bocklund**, J. Diffenderfer, S. Chaganti, B. Kailkhura, S. McCall, B. Gallagher, A. Perron, J.T. McKeown, A Comparative Study of Predicting High Entropy Alloy Phase Fractions with Traditional Machine Learning and Deep Neural Networks, **npj Computational Materials** *Accepted*.
- 26. C. Kunselman, **B. Bocklund**, A. van de Walle, R. Otis, R. Arroyave, Analytically Differentiable Metrics for Phase Stability, **Calphad** *Accepted*.
- 25. B. Tonyali, H. Sun, **B. Bocklund**, J.P. Borgonia, R.A. Otis, S.-L. Shang, Z.-K. Liu, A.M. Beese, Additively manufactured Ni-20Cr to V functionally graded material: Computational predictions and experimental verification of phase formations, **Journal of Alloys and Compounds** 985 (2024) 174011. doi: 10.1016/j.jallcom.2024.174011.
- 24. J. Shittu, C.J. Rietema, M. Juhasz, B. Ellyson, K.L.M. Elder, **B. Bocklund**, Z.C. Sims, T.T. Li, H.B. Henderson, J. Berry, A. Samanta, T. Voisin, A.A. Baker, S.K. McCall, A.P. Perron, J.T. McKeown, Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys, **Journal of Alloys and Compounds** 997 (2024) 173349. doi: 10.1016/j.jallcom.2023.173349.
- 23. H. Sun, S.L-. Shang, R. Gong, **B. Bocklund**, A.M. Beese, Z.-K. Liu, Thermodynamic modeling of the Nb-Ni system with uncertainty quantification using PyCalphad and ESPEI, **Calphad** 82 (2023) 102563. doi: 10.1016/j.calphad.2023.102563.
- 22. J. Paz Soldan Palma, R. Gong, **B. Bocklund**, R. Otis, M. Poschmann, M. Piro, S. Shahbazi, T.G. Levitskaia, S. Hu, N.D. Smith, Y. Wang, H. Kim, Z.-K. Liu, S.-L. Shang, Thermodynamic modeling with uncertainty quantification using the modified quasichemical model in quadruplet approximation: Implementation into PyCalphad and ESPEI, **Calphad** 83 (2023) 102618. doi: 10.1016/j.calphad.2023.102618.
- 21. K.L.M. Elder, J. Berry, **B. Bocklund**, J. Shittu, C.J. Rietema, H.B. Henderson, S.K. McCall, A. Perron, J.T. McKeown, Computational discovery of ultra-strong, stable, and lightweight refractory multi-principal element alloys. Part II: comprehensive ternary design and validation, **npj Computational Materials** 9 (2023) 88. doi: 10.1038/s41524-023-01031-6.
- 20. K.L.M. Elder, J. Berry, **B. Bocklund**, S.K. McCall, A. Perron, J.T. McKeown, Computational discovery of ultra-strong, stable, and lightweight refractory multi-principal element alloys. Part I: design principles and rapid down-selection, **npj Computational Materials** 9 (2023) 84. doi: 10.1038/s41524-023-01030-7.

- 19. M. Ostrowska, P. Riani, **B. Bocklund**, Z.-K. Liu, G. Cacciamani, Thermodynamic modeling of the Al-Co-Cr-Fe-Ni high entropy alloys supported by key experiments, **Journal of Alloys and Compounds** 897 (2022) 162722. doi: 10.1016/j.jallcom.2021.162722
- 18. I. Sanghyeok, S.-L. Shang, N.D. Smith, A.M. Krajewski, T. Lichtenstein, S. Hui, **B. Bocklund**, Z.-K. Liu, H. Kim, Thermodynamic properties of the Nd-Bi system via emf measurements, DFT calculations, machine learning, and CALPHAD modeling, **Acta Materialia** 223 (2022) 117448. doi: 10.1016/j.actamat.2021.117448.
- 17. L.D. Bobbio, **B. Bocklund**, E. Simsek, R.T. Ott, M.J. Kramer, Z.-K. Liu, A.M. Beese, Design of an additively manufactured functionally graded material of 316 stainless steel and Ti-6Al-4V with Ni-20Cr, Cr, and V intermediate compositions, **Additive Manufacturing** 51 (2022) 102649. doi: 10.1016/j.addma.2022.102649.
- 16. Y. Wang, M. Liao, **B.J. Bocklund**, P. Gao, S.-L. Shang, H. King, A.M. Beese, L.-Q. Chen, Z.-K. Liu DFTTK: Density Functional Theory Tool Kit for High-throughput Calculations of Thermodynamic Properties at Finite Temperatures, **Calphad** 75 (2021) 102355 doi: 10.1016/j.calphad.2021.102355
- 15. C. Wang, S.-L. Shang, J. You, **B. Bocklund**, Y. Wang, H.-Y. Wang, Z.-K. Liu, Understanding the effect of oxygen on the glass-forming ability of Zr43Cu43Al7Be7 bulk metallic glass by ab initio molecular dynamics simulations, **Metallurgical** and Materials Transactions A 52 (2021) 2501–2511. doi: 10.1007/s11661-021-06242-4.
- 14. L.D. Bobbio, **B. Bocklund**, Z.-K. Liu, A.M. Beese, Tensile behavior of stainless steel 304L to Ni-20Cr functionally graded material: experimental characterization and computational simulations, **Materialia** (2021) 101151. doi: 10.1016/j.mtla.2021.101151
- 13. P. Vogt, F.V.E. Hensling, K. Azizie, C.S. Chang, D. Turner, J. Park, J.P. McCandless, H. Paik, **B. Bocklund**, G. Hoffman, O. Bierwagen, D. Jena, H.G. Xing, S. Mou, D.A. Muller, S.-L. Shang, Z.-K. Liu, D.G. Schlom, Adsorption-Controlled Growth of Ga2O3 by Suboxide Molecular-Beam Epitaxy, *Featured APL Materials* 9(3) 031101. doi: 10.1063/5.0035469.
- 12. R. Otis, **B. Bocklund**, Z.-K. Liu, Sensitivity estimation for calculated phase equilibria, **Journal of Materials Research** (2020) 1–11. doi: 10.1557/jmr.2020.269.
- 11. K.M. Adkison, S.-L. Shang, **B. Bocklund**, D. Klimm, D.G. Schlom, Z.-K. Liu, Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis, *Featured APL Materials* 8 (2020) 081110. doi: 10.1063/5.00131
- 10. S. Zomorodpoosh, **B. Bocklund**, A. Obaied, R.A. Otis, Z.-K. Liu, I. Roslyakova, Statistical approach for automated weighting of datasets: Application to heat capacity data, **CALPHAD** 71 (2020) 101994. doi: 10.1016/j.calphad.2020.101994.
- 9. **B. Bocklund**, L.D. Bobbio, R.A. Otis, A.M. Beese, Z.-K. Liu, Experimental validation of Scheil-Gulliver simulations for the gradient path planning in additive manufactured functionally graded materials, **Materialia** 11 (2020) 100689. doi: 10.1016/j.mtla.2020.100689.
- 8. A. Obaied, **B. Bocklund**, S. Zomorodpoosh, L. Zhang, R. Otis, Z.-K. Liu, I. Roslyakova, Thermodynamic re-assessment of pure chromium using modified segmented regression model, **CALPHAD** 69 (2020) 101762. doi: 10.1016/j.calphad.2020.101762.
- 7. L.D. Bobbio, **B. Bocklund**, A. Reichardt, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, B.W. McEnerney, P. Hosemann, Z.-K. Liu, A.M. Beese, Analysis of formation and growth of the σ phase in additively manufactured functionally graded materials, **Journal of Alloys and Compounds** 814 (2020) 151729. doi: 10.1016/j.jallcom.2019.151729.
- 6. **B. Bocklund**, R.A. Otis, A. Egorov, A. Obaied, I. Roslyakova, Z.-K. Liu, ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: application to Cu-Mg, **MRS Communications** 9(2) (2019) 618-627. doi: 10.1557/mrc.2019.59.
- 5. N.H. Paulson, **B. Bocklund**, R.A. Otis, Z.-K. Liu, S. Marius, Quantified Uncertainty in Thermodynamic Modeling for Materials Design. **Acta Materialia** 174 (2019) 9-15. doi: 10.1016/j.actamat.2019.05.017.
- 4. Y. Wang, Y.-J. Hu, **B. Bocklund**, S.-L. Shang, B.-C. Zhou, Z.-K. Liu, L.-Q. Chen, First-principles thermodynamic theory of Seebeck coefficients, **Physical Review B** 98 (2018) 224101. doi: 10.1103/PhysRevB.98.224101.
- 3. L.D. Bobbio, **B. Bocklund**, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, B. McEnerney, Z.-K. Liu, A.M. Beese, Characterization of a functionally graded material of Ti-6Al-4V to 304L stainless steel with an intermediate V section. **Journal of Alloys and Compounds** 742 (2018) 1031-1036. doi: 10.1016/j.jallcom.2018.01.156
- 2. L.D. Bobbio, **B. Bocklund**, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, B. McEnerney, Z.-K. Liu, A.M. Beese, Experimental analysis and thermodynamic calculations of an additively manufactured functionally graded material of V to Invar 36, **Journal of Materials Research** 33 (2018) 1642–1649. doi: 10.1557/jmr.2018.92.
- 1. K. Mathew, J.H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang, I. Chu, T. Smidt, **B. Bocklund**, M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu, J. Neaton, S.P. Ong, K. Persson, A. Jain, Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. **Computational Materials Science** 139, 140–152 (2017). doi: 10.1016/j.commatsci.2017.07.030

Presentations

- 20. **B. Bocklund***, A. Perron, K. Bertsch (2024, May). Implementation of an extensible property modeling framework in ESPEI. Calphad LI, Stockholm, Sweden.
- 19. **B. Bocklund***, N. Ury, A. Perron (2024, April). Progress in thermodynamic modeling of molten salt separation processes for NdCl3. CMI Hub Meeting, Golden, CO.
- 18. B. Bocklund*, R.A. Otis* (2023, June). Software Workshop: PyCalphad and ESPEI. CALPHAD 50, Boston, MA.
- 17. **B. Bocklund***, A. Perron (2023, March). Rapidly generating Calphad databases with high-throughput first-principles calculations. TMS 2023 Annual Meeting, San Diego, CA.
- 16. **B. Bocklund***, R.A. Otis* (2022, September). *Software Workshop:* PyCalphad and ESPEI. Structure and Thermodynamics of Oxides/carbides/nitrides/borides at High Temperatures (STOHT), Tempe, AZ.
- 15. **B. Bocklund***, R.A. Otis, A. Perron, Z.-K. Liu (2022, May). A general approach for computing the residuals between CAL-PHAD models and phase diagram data. Calphad XLIX, Stockholm, Sweden.
- 14. **B. Bocklund***, R.A. Otis, Z.-K. Liu (2022, March). Uncertainty Quantification and Propagation in CALPHAD Modeling. TMS 2022 Annual Meeting, Anaheim, CA.
- 13. **B. Bocklund***, R.A. Otis, Z.-K. Liu (2020, February). Uncertainty quantification and propagation in ICME enabled by ES-PEI. TMS 2020 Annual Meeting, San Diego, CA.
- 12. **B. Bocklund***, R.A. Otis, Z.-K. Liu (2019, October) *Invited*. Automated CALPHAD modeling and uncertanty quantification of a ternary system using ESPEI. Materials Science and Technology 2019, Portland, OR.
- 11. B. Bocklund, R.A. Otis*, Z.-K. Liu (2019, June). Software Workshop: PyCalphad and ESPEI. CALPHAD XLVIII, Singapore.
- 10. N.H. Paulson, **B. Bocklund***, R.A. Otis, Z.-K. Liu, M. Stan (2019, June). Quantified Uncertainty in CALPHAD for Materials Design. CALPHAD XLVIII, Singapore.
- 9. M. Feurer, **B. Bocklund***, S. Shang, A. Beese, Z.-K. Liu (2019, June). High-Throughput Modeling of Cr-Fe-Ni Sigma Phase. CALPHAD XLVIII, Singapore.
- 8. **B. Bocklund***, R.A. Otis, Z.-K. Liu (2019, June). Automated CALPHAD modeling and uncertanty quantification of a ternary system using ESPEI. CALPHAD XLVIII, Singapore.
- 7. **B. Bocklund***, L.D. Bobbio, R.A. Otis, S. Shang, A.M. Beese, Z.-K. Liu (2019, March). Impact of Uncertainty Quantification in Automated Calphad Modeling on the design of Additively Manufactured, Functionally-graded Alloys. TMS 2019 Annual Meeting, Phoenix, AZ.
- 6. **B. Bocklund***, R.A. Otis, Z.-K. Liu (2018, October). Computational Tools for the Automated Development of a Cr-Fe-Ni-Ti-V CALHPAD Database. Materials Science and Technology 2018, Columbus, OH.
- 5. **B. Bocklund***, R.A. Otis*, Z.-K. Liu (2018, May). *Software Workshop:* PyCalphad and ESPEI. CALPHAD XLVII, Juriquilla, Mexico.
- 4. **B. Bocklund***, A. Egorov, A. Obaied, R.A. Otis, I. Roslayakova, Z.-K. Liu (2018, May). ESPEI for Efficient Database Development, Modification and Uncertainty Quantification. CALPHAD XLVII, Juriquilla, Mexico.
- 3. **B. Bocklund**, R.A. Otis*, Z.-K. Liu (2018, March). *Software Workshop:* PyCalphad and ESPEI. TMS 2018 Annual Meeting, Phoenix, AZ.
- 2. **B. Bocklund***, R.A. Otis, Z.-K. Liu (2018, March). Thermodynamic Modeling with Uncertainty Quantifiation and its Implicitaions for Additive Manufacturing. TMS 2018 Annual Meeting, Phoenix, AZ.
- 1. **B. Bocklund***, R.A. Otis, J. Paz Soldan-Palma, Y. Wang, Z.-K. Liu (2017, May). Automating Thermodynamic Database Development with ESPEI. 4th World Congress on Integrated Computational Materials Engineering, Ypsilanti, MI.

^{*} presenter