

# **Exponentielle**

# I.La fonction exponentielle

#### Lemme:

Si il existe une fonction f dérivable sur  $\mathbb{R}$  telle que f'=f et f(0)=1 alors f ne s'annule pas sur  $\mathbb{R}$ .

### Théorème:

Il existe une unique fonction f dérivable sur telle que f'=f et f(0)=1.

### <u>Définition</u>:

On appelle **fonction exponentielle**, notée exp, l'unique fonction dérivable sur R et telle que f'=f et f(0)=1.

Nous noterons cette fonction définie par  $f(x) = e^x$  et  $e^0 = 1$ .

# II.Les propriétés de la fonction exponentielle

#### Théorème:

On considère deux nombres réels x et y.

Nous avons  $e^{x+y} = e^x e^y$ .

#### Exemple:

e<sup>5+2</sup>=e<sup>5</sup>e<sup>2</sup>

### Propriétés:

On considère deux nombres réels x et y et n un entier naturel.

Nous avons les propriétés suivantes :

- $e^{-x} = \frac{1}{e^x}$ ;
- $\varepsilon^{x-y} = \frac{\varepsilon^{x}}{\varepsilon^{y}}$ ;
- $\varepsilon^{nx} = (\varepsilon^x)^n$

### Exemple:

$$\varepsilon^{-2} = \frac{1}{\varepsilon^2}$$

$$\frac{e^7}{e^5} = e^7 - 5 = e^2$$

# III.Etude de la fonction exponentielle

## 1.Le signe et ses variations

## Propriété:

On considère la fonction définie et dérivable sur  $\mathbb{R}$  par  $f(x)=e^x$ .

- f est continue sur  $\mathbb{R}$ ;
- f est strictement positive sur  $\mathbb{R}$ ;
- f est strictement croissante sur  $\mathbb{R}$ .

## 2.Les limites en l'infini

## Propriété:

On considère la fonction définie et dérivable sur  $\mathbb{R}$  par  $f(x)=e^x$ .

Nous avons 
$$\lim_{x \neq rrow, +\infty} f(x) = +\infty$$
 et  $\lim_{x \neq rrow, -\infty} f(x) = 0^+$ .

# 3. Tableau de variation et courbe représentative





## <u>Remarques:</u>

La droite d'équation y=0 est une asymptote horizontale à la courbe de la fonction exponentielle en  $-\infty$ .

La droite d'équation y=x+1st une asymptote oblique à la courbe de la fonction exponentielle en 0.

# 3. Equations et inéquations

## Propriété:

On considère deux nombres réels x et y.

 $e^x = e^y \Leftrightarrow_{,} x = y$   $x < y \Leftrightarrow_{,} e^x < e^y$