

Project Title	Top Instagram Influencers Data (Cleaned)
Tools	ML, Python, SQL, Excel
Domain	Data Analyst,
Project Difficulties level	intermediate

Dataset : Dataset is available in the given link. You can download it at your convenience.

Click here to download data set

About Dataset

Instagram is an American photo and video sharing social networking service founded in 2010 by Kevin Systrom and Mike Krieger, and later acquired by Facebook Inc.. The app allows users to upload media that can be edited with filters and organized by hashtags and geographical tagging. Posts can be shared publicly or with preapproved followers. Users can browse other users' content by tag and location, view trending content, like photos, and follow other users to add their content to a personal feed.

Instagram network is very much used to influence people (the users followers) in a particular way for a specific issue - which can impact the order in some ways.

About this file

In this file, basically there are 10 attributes. It has been ordered on basis of the rank which has been decided on basis of "followers".

rank: Rank of the Influencer on basis of number of followers they have

channel_info: Username of the Instagrammer

influence score: Influence score of the users. It is calculated on basis of mentions,

importance and popularity

posts: Number of posts they have made so far

followers: Number of followers of the user

avg likes: Average likes on instagrammer posts (total likes/ total posts)

60_day_eng_rate: Last 60 days engagement rate of instagrammer as faction of

engagements they have done so far

new post avg like: Average likes they have on new posts

total Likes: Total likes the user has got on their posts. (in Billion)

country: Country or region of origin of the user.

Example: You can get the basic idea how you can create a project from here

Project: Analysis and Prediction on Top Instagram Influencers Data

This project will analyze and predict insights on Instagram influencers using a dataset containing information on influencer ranking, engagement metrics, followers, likes, and more. This project targets a more advanced audience with 5 years of experience, so it will involve detailed exploratory data analysis (EDA), visualizations, and a machine learning model to predict key engagement metrics.

Dataset Overview

Here's an overview of the columns we'll be working with:

rank: Influencer rank

channel_info: Instagram handle or channel information

influence_score: Calculated influence score based on engagement and followers

posts: Total number of posts made by the influencer

followers: Number of followers

avg_likes: Average likes per post

60_day_eng_rate: Engagement rate over the past 60 days

new_post_avg_like: Average likes on recent posts

total_likes: Cumulative likes on all posts

country: Influencer's country

Step 1: Data Loading and Preprocessing

```
import pandas as pd
import numpy as np

# Load the dataset
df = pd.read_csv('top_instagram_influencers.csv')

# Quick inspection of data
```

```
print(df.info())
print(df.describe())
# Drop any duplicate rows if present
df.drop_duplicates(inplace=True)
# Handle missing values
# Fill missing numerical values with median, and categorical
with mode
for column in df.columns:
    if df[column].dtype == 'object':
        df[column].fillna(df[column].mode()[0], inplace=True)
    else:
        df[column].fillna(df[column].median(), inplace=True)
# Convert necessary columns to appropriate data types
df['followers'] = df['followers'].astype(int)
df['posts'] = df['posts'].astype(int)
df['total_likes'] = df['total_likes'].astype(int)
```

Step 2: Exploratory Data Analysis (EDA)

EDA is critical for uncovering patterns, trends, and relationships in the data.

1. Summary Statistics

Generate a summary of key metrics to understand distributions.

```
# Display summary statistics for numeric columns
print(df[['influence_score', 'followers', 'avg_likes',
'60_day_eng_rate', 'new_post_avg_like']].describe())
```

2. Relationship between Followers and Engagement

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 6))
sns.scatterplot(data=df, x='followers', y='60_day_eng_rate',
hue='country', alpha=0.7)
plt.title('Followers vs 60-Day Engagement Rate')
plt.xlabel('Number of Followers')
plt.ylabel('60-Day Engagement Rate (%)')
plt.legend(title='Country')
plt.show()
```

3. Distribution of Influence Score

```
plt.figure(figsize=(10, 5))
sns.histplot(df['influence_score'], bins=30, kde=True)
```

```
plt.title('Distribution of Influence Score')
plt.xlabel('Influence Score')
plt.show()
```

4. Most Active Countries

```
top_countries = df['country'].value_counts().head(10)

plt.figure(figsize=(10, 5))
sns.barplot(x=top_countries.index, y=top_countries.values,
palette="viridis")
plt.title('Top 10 Countries by Number of Influencers')
plt.xlabel('Country')
plt.ylabel('Number of Influencers')
plt.show()
```

Step 3: Feature Engineering

To improve our model's performance, let's create a few additional features that might be helpful predictors.

```
# Creating engagement-related features

df['like_follower_ratio'] = df['total_likes'] / df['followers']

df['post_follower_ratio'] = df['posts'] / df['followers']

df['avg_likes_ratio'] = df['avg_likes'] / df['followers']
```

Step 4: Model Building

Objective: Predict influence_score using other variables.

Split the data into training and testing sets

Scale the features for optimal performance

Train a regression model to predict the influence score

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
# Define feature columns and target variable
X = df[['followers', 'avg_likes', '60_day_eng_rate',
'new_post_avg_like', 'like_follower_ratio',
'post_follower_ratio']]
y = df['influence_score']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
# Standardize features
```

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Initialize and train a Random Forest Regressor
model = RandomForestRegressor(n_estimators=100,
random_state=42)
model.fit(X_train_scaled, y_train)
# Predictions and evaluation
y_pred = model.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
print(f'R^2 Score: {r2}')
Step 5: Model Interpretation and Feature Importance
# Display feature importances
feature_importances = pd.Series(model.feature_importances_,
index=X.columns)
feature_importances.sort_values().plot(kind='barh',
title='Feature Importance')
```

plt.show()

Step 6: Visualizing Predictions

```
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, alpha=0.6)
plt.plot([y.min(), y.max()], [y.min(), y.max()], '--',
color='red')
plt.xlabel('True Influence Score')
plt.ylabel('Predicted Influence Score')
plt.title('True vs Predicted Influence Score')
plt.show()
```

Step 7: Final Observations and Summary

Top Influential Factors: Feature importance analysis indicates which features most influence the influence_score.

Model Performance: With the achieved R² score, assess the accuracy of the model in predicting an influencer's influence score based on follower metrics.

Business Insights: Using insights on top-engaging influencers by country and engagement rates, businesses can strategize influencer collaborations for marketing.

Sample Code and output

```
# This Python 3 environment comes with many helpful analytics
libraries installed
# It is defined by the kaggle/python Docker image:
https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g.
pd.read_csv)
# Input data files are available in the read-only "../input/"
directory
# For example, running this (by clicking run or pressing
Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory
(/kaggle/working/) that gets preserved as output when you create
```

```
a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they
won't be saved outside of the current session
```

```
/kaggle/input/top-instagram-influencers-data-cleaned/top_insta_
influencers_data.csv
```

Lets Learn Pandas

Pandas is a Library which is used to do operations on datasets or dataframe which basically is a 2D format of data which means set od rows and columns

Here we are taking a dictionary in which there is an array of names and array of marks and we are simply making a dataframe out of it to understand basics of pandas

```
In [2]:
dictionary = { 'Names': ["Alice", "Oggy", "Modi ji", "SRK",
"Tony Stark"], "Marks": [10,15,20,17,18] }
df = pd.DataFrame(dictionary)
df.head()
```

	Name s	Mar ks
0	Alice	10
1	Oggy	15
2	Modi ji	20
3	SRK	17
4	Tony Stark	18

In [3]:

```
print(df['Names'])
```

0 Alice

1 Oggy

2 Modi ji

```
3
             SRK
     Tony Stark
Name: Names, dtype: object
                                                                 In [4]:
print(df.loc[3])
Names
          SRK
Marks
           17
Name: 3, dtype: object
Earlier we took a very small and simple dataframe out of a self made dictionary of
elements now lets take any real time dataset
We usually import dataset from any source we like and give the pd.read_csv function
the path to access the dataset
                                                                 In [5]:
insta df =
pd.read_csv('/kaggle/input/top-instagram-influencers-data-clean
ed/top_insta_influencers_data.csv')
print('Dataset is ready to use')
```

Dataset is ready to use

In [6]:

insta_df.head(25)

Out[6]:

	ra n k	channel_ info	influenc e_score	po sts	follo wers	avg_ likes	60_day_ eng_rate	new_post _avg_like	total _like s	cou
0	1	cristiano	92	3. 3k	475. 8m	8.7m	1.39%	6.5m	29.0 b	Spa in
1	2	kyliejenn er	91	6. 9k	366. 2m	8.3m	1.62%	5.9m	57.4 b	Unit ed Stat es
2	3	leomessi	90	0. 89	357. 3m	6.8m	1.24%	4.4m	6.0b	Na N

				k						
3	4	selenago mez	93	1. 8k	342. 7m	6.2m	0.97%	3.3m	11.5 b	Unit ed Stat es
4	5	therock	91	6. 8k	334. 1m	1.9m	0.20%	665.3k	12.5 b	Unit ed Stat es
5	6	kimkarda shian	91	5. 6k	329. 2m	3.5m	0.88%	2.9m	19.9 b	Unit ed Stat es
6	7	arianagr ande	92	5. 0k	327. 7m	3.7m	1.20%	3.9m	18.4 b	Unit ed Stat es

7	8	beyonce	92	2. 0k	272. 8m	3.6m	0.76%	2.0m	7.4b	Unit ed Stat es
8	9	khloekar dashian	89	4. 1k	268. 3m	2.4m	0.35%	926.9k	9.8b	Unit ed Stat es
9	1 0	justinbie ber	91	7. 4k	254. 5m	1.9m	0.59%	1.5m	13.9 b	Can
1 0	1	kendallje nner	90	0. 66 k	254. 0m	5.5m	2.04%	5.1m	3.7b	Unit ed Stat es
1	1 2	natgeo	91	10 .0 k	237. 0m	302. 2k	0.07%	159.3k	3.0b	Unit ed Stat es

1 2	1 3	nike	90	0. 95 k	234. 1m	329. 0k	0.08%	181.8k	313. 6m	Unit ed Stat es
1 3	1	taylorswi ft	91	0. 53 k	222. 2m	2.4m	1.01%	2.3m	1.3b	Unit ed Stat es
1 4	1 5	jlo	89	3. 2k	220. 4m	1.7m	0.62%	1.4m	5.3b	Unit ed Stat es
1 5	1 6	virat.kohl i	87	1. 4k	211. 8m	3.5m	0.96%	2.0m	4.9b	Na N
1 6	1 7	nickimin aj	90	6. 4k	201. 6m	2.1m	0.53%	1.0m	13.5 b	Unit ed Stat es

1 7	1 8	kourtney kardash	89	4. 4k	195. 2m	1.8m	0.67%	1.3m	7.7b	Unit ed Stat es
1 8	1 9	mileycyr	89	1. 2k	181. 5m	1.3m	0.51%	913.6k	1.6b	Na N
1 9	2	neymarjr	90	5. 3k	177. 1m	2.7m	1.09%	1.9m	14.1 b	Bra zil
2	2	katyperr	92	2. 0k	170. 3m	715. 0k	0.16%	265.1k	1.5b	Na N
2	2 2	kevinhart 4real	88	8. 2k	152. 0m	522. 0k	0.08%	115.2k	4.3b	Unit ed Stat es
2	2 3	zendaya	87	3. 5k	150. 7m	5.8m	3.17%	4.8m	20.6 b	Unit ed Stat

										es
2	2 4	iamcardi b	75	1. 6k	140. 5m	3.1m	1.10%	1.5m	5.0b	Unit ed Stat es
2 4	2 5	ddlovato	88	0. 08 k	139. 1m	1.1m	0.27%	363.4k	91.3 m	Unit ed Stat es

In [7]:

insta_df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 200 entries, 0 to 199

Data columns (total 10 columns):

Column Non-Null Count Dtype

--- ----- -----

0 rank 200 non-null int64

1 channel_info 200 non-null object

2 influence_score 200 non-null int64

200 non-null object 3 posts followers 200 non-null object 4 avg_likes 200 non-null object 5 60_day_eng_rate 200 non-null object 6 7 new_post_avg_like 200 non-null object 8 total_likes 200 non-null object country 138 non-null object 9 dtypes: int64(2), object(8) memory usage: 15.8+ KB

In [8]:

insta_df.shape

Out[8]:

(200, 10)

Lets Do some Data Visualization

For visualizing data we use the two very famous libraries Matplotlib and Seaborn

Lets import them and plot some nice visualizations

In [9]:

```
import matplotlib.pyplot as plt
import seaborn as sns
                                                          In [10]:
country = insta_df['country'].value_counts()
                                                          In [11]:
country
                                                          Out[11]:
country
United States
                           66
Brazil
                           13
India
                           12
Indonesia
                            7
France
                            6
Spain
                            5
United Kingdom
                            4
Colombia
                            3
Canada
                            3
Mexico
                            2
Turkey
                            2
```

```
Netherlands
                           2
Switzerland
                            1
Germany
                            1
Czech Republic
                            1
British Virgin Islands
                            1
Sweden
                            1
Australia
                            1
Anguilla
                            1
Côte d'Ivoire
                            1
Puerto Rico
                            1
United Arab Emirates
                            1
Italy
                            1
Uruguay
                            1
Russia
                            1
Name: count, dtype: int64
                                                         In [12]:
plt.figure(figsize=(15,8))
plt.title('Influencers on Instagram from nations')
sns.countplot(x=insta_df["country"])
plt.xticks(rotation=90)
                                                         Out[12]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
```

```
14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24]),
 [Text(0, 0, 'Spain'),
 Text(1, 0, 'United States'),
 Text(2, 0, 'Canada'),
 Text(3, 0, 'Brazil'),
 Text(4, 0, 'Netherlands'),
 Text(5, 0, 'United Kingdom'),
 Text(6, 0, 'India'),
 Text(7, 0, 'Uruguay'),
 Text(8, 0, 'Turkey'),
 Text(9, 0, 'Indonesia'),
 Text(10, 0, 'Colombia'),
 Text(11, 0, 'France'),
 Text(12, 0, 'Australia'),
 Text(13, 0, 'Italy'),
 Text(14, 0, 'United Arab Emirates'),
 Text(15, 0, 'Puerto Rico'),
 Text(16, 0, "Côte d'Ivoire"),
 Text(17, 0, 'Anguilla'),
 Text(18, 0, 'Switzerland'),
 Text(19, 0, 'Sweden'),
 Text(20, 0, 'British Virgin Islands'),
 Text(21, 0, 'Czech Republic'),
 Text(22, 0, 'Mexico'),
```

Text(23, 0, 'Germany'), Text(24, 0, 'Russia')]) Influencers on Instagram from nations 60 40 30 20 10 Switzerland -United States Brazil Netherlands United Kingdom Turkey ndonesia Australia United Arab Emirates Puerto Rico CĀ´te d'Ivoire Sweden **British Virgin Islands** Czech Republic Germany Russia

Processing Data

As we saw that in the datafram we have alot of different values and we need mostly numeric values to make a nice plot so lets process the data

country

In [13]:

insta_df.duplicated().sum()

Out[13]:

0

In [14]:

insta_df.describe()

Out[14]:

	rank	influence _score
cou	200.00	200.0000
me an	100.50 0000	81.82000
std	57.879 185	8.878159

min	1.0000	22.00000
25 %	50.750 000	80.00000
50 %	100.50 0000	84.00000
75 %	150.25 0000	86.00000 0
ma x	200.00	93.00000

```
In [15]:
```

```
# Selecting specific columns to view
insta_df[['channel_info', 'followers', '60_day_eng_rate']]
```

Out[15]:

	channel _info	follow ers	60_day_en g_rate
0	cristiano	475.8 m	1.39%
1	kyliejen ner	366.2 m	1.62%
2	leomess	357.3 m	1.24%
3	selenag omez	342.7 m	0.97%
4	therock	334.1 m	0.20%

19	iambeck	33.2	1.40%
5	yg	m	
19	nancyajr	33.2	0.64%
6	am	m	
19	luansant	33.2	0.26%
7	ana	m	
19	nickjona s	33.0 m	1.42%
19	raisa669	32.8	0.30%
9	0	m	

200 rows × 3 columns

```
In [16]:
```

```
# # Filtering influencers with over 1 million followers
# high_follower_df = insta_df[insta_df['followers'] > 1_000_000]
```

Filtering influencers with an engagement rate above 5%

Making string values such as 2M into numeric like 2000000

as we know M stands for million and K stands for thousand and so on so we wrote a regex(regular expression that replaces M with 6 zeros, k with 3 zeros and so on)

We are taking all the columns which have these kind of symbols and at once converting them

```
In [18]:
replace = {'b': 'e9', 'm': 'e6', 'k': 'e3', '%': ''}
convert_column = ['total_likes', 'posts', 'followers',
'avg_likes', '60_day_eng_rate', 'new_post_avg_like']
insta_df[convert_column] =
insta_df[convert_column].replace(replace,
regex=True).astype(float)
insta_df[convert_column]
```

Out[18]:

	total_like	post s	follower s	avg_li kes	60_day_en g_rate	new_post_a vg_like
0	2.900000 e+10	330 0.0	475800 000.0	87000 00.0	1.39	6500000.0
1	5.740000 e+10	690 0.0	366200 000.0	83000 00.0	1.62	5900000.0
2	6.000000 e+09	890. 0	357300 000.0	68000 00.0	1.24	4400000.0
3	1.150000 e+10	180	342700 000.0	62000 00.0	0.97	3300000.0
4	1.250000 e+10	680	334100 000.0	19000 00.0	0.20	665300.0

19 5	1.400000 e+09	230	332000 00.0	62380 0.0	1.40	464700.0
19 6	1.500000 e+09	380	332000 00.0	39040 0.0	0.64	208000.0
19 7	1.492000 e+08	770. 0	332000 00.0	19330 0.0	0.26	82600.0
19	1.700000 e+09	230	330000 00.0	71960 0.0	1.42	467700.0
19 9	9.691000 e+08	420 0.0	328000 00.0	23220 0.0	0.30	97400.0

200 rows × 6 columns

```
In [19]:
```

```
# Filtering influencers with over 1 million followers
high_follower_df = insta_df[insta_df['followers'] > 1_000_000]
```

high_follower_df

Out[19]:

				_						[] .
	r a n k	chann el_info	influenc e_scor e	po sts	followers	avg_ likes	60_day_ eng_rat e	new_post _avg_like	total_li kes	cou ntry
0	1	cristia no	92	33 00. 0	47580 0000. 0	8700 000. 0	1.39	6500000. 0	2.9000 00e+1 0	Spai n
1	2	kylieje nner	91	69 00. 0	36620 0000. 0	8300 000. 0	1.62	5900000. 0	5.7400 00e+1 0	Unit ed Stat es
2	3	leome ssi	90	89	35730 0000. 0	6800 000. 0	1.24	4400000. 0	6.0000 00e+0 9	NaN
3	4	selena	93	18	34270	6200	0.97	3300000.	1.1500	Unit

		gome z		00.	0000.	000.		0	00e+1 0	ed Stat es
4	5	theroc k	91	68 00. 0	33410 0000. 0	1900 000. 0	0.20	665300.0	1.2500 00e+1 0	Unit ed Stat es
1 9 5	1 9 6	iambe ckyg	71	23 00. 0	33200 000.0	6238 00.0	1.40	464700.0	1.4000 00e+0 9	Unit ed Stat es
1 9 6	1 9 7	nancy ajram	81	38 00. 0	33200 000.0	3904 00.0	0.64	208000.0	1.5000 00e+0 9	Fran ce
1 9	1 9	luansa	79	77	33200	1933	0.26	82600.0	1.4920 00e+0	Braz

7	8	ntana		0.0	000.0	00.0			8	il
1 9 8	1 9 9	nickjo nas	78	23 00. 0	33000 000.0	7196 00.0	1.42	467700.0	1.7000 00e+0 9	Unit ed Stat es
1 9 9	2 0 0	raisa6 690	80	42 00. 0	32800 000.0	2322 00.0	0.30	97400.0	9.6910 00e+0 8	Indo nesi a

200 rows × 10 columns

In [20]:

Filtering influencers with an engagement rate above 5%
high_engagement_df = insta_df[insta_df['60_day_eng_rate'] > 5]

high_engagement_df

Out[20]:

r	channel	influen	po	follow		60_day	new_pos		cou
а	GHAHHO	ce_sco	2	10110	avg_l	_eng_ra	t_avg_lik	10101_11	cou

	n k	_info	re	sts	ers	ikes	te	е	kes	ntry
3 2	3	billieeilis h	73	69 0.0	10520 0000. 0	8500 000.0	5.02	5200000. 0	5.9000 00e+0 9	Na N
3 8	3 9	lalalalis a_m	70	87 0.0	80900 000.0	5800 000.0	9.00	7200000. 0	5.1000 00e+0 9	Na N
4 9	5	jennieru byjane	76	86 0.0	68900 000.0	5100 000.0	8.36	5700000. 0	4.4000 00e+0 9	Na N
5	5 4	tomholla nd2013	77	12 00. 0	67700 000.0	5400 000.0	10.83	7300000. 0	6.6000 00e+0 9	Na N
5	5	bts.bighi tofficial	78	12 00. 0	66900 000.0	4100 000.0	5.40	3600000. 0	4.9000 00e+0 9	Uru gua y

6 4	6 5	sooyaaa —	82	83	62900 000.0	4500 000.0	9.43	5900000. 0	3.8000 00e+0 9	Na N
6 9	7	roses_a re_rosie	82	82	61800 000.0	4600 000.0	9.72	6000000. 0	3.8000 00e+0 9	Na N
7 5	7	milliebo bbybrow n	80	28 0.0	57600 000.0	4000	8.63	5000000. 0	1.1000 00e+0 9	Uni ted Sta tes
7 8	7 9	karolg	83	33 00. 0	55600 000.0	3100 000.0	10.25	5700000. 0	1.0100 00e+1 0	Indi a
8 3	8 4	zacefro n	86	66 0.0	54500 000.0	2300 000.0	8.18	4400000. 0	1.5000 00e+0 9	Uni ted Sta tes

1 0 2	1 0 3	thv	83	60. 0	49300 000.0	1540 0000. 0	25.80	1260000 0.0	9.8740 00e+0 8	Na N
1 1 4	1 1 5	harrystyl	57	59 0.0	46900 000.0	4700 000.0	6.38	2900000. 0	2.8000 00e+0 9	Uni ted Sta tes
1 1 8	1 1 9	zayn	82	16 0.0	46500 000.0	4700 000.0	8.81	4000000.	7.7350 00e+0 8	Uni ted Sta tes
1 2 0	1 2 1	travissc ott	78	32 00. 0	46200 000.0	3000 000.0	5.71	2600000. 0	9.6000 00e+0 9	Uni ted Sta tes
1 3 8	1 3 9	badbun nypr	83	10.	42100 000.0	3700 000.0	13.09	5400000. 0	6.7500 00e+0 7	Na N

1 4 0	1 4 1	j.m	83	20.	41900 000.0	1420 0000. 0	26.41	1100000 0.0	3.6810 00e+0 8	Na N
1 5 6	1 5 7	georgin agio	74	73 0.0	39100 000.0	2200 000.0	8.56	3300000. 0	1.6000 00e+0 9	Na N
1 7 7	1 7 8	kimberly .loaiza	78	59 0.0	35500 000.0	2600 000.0	5.23	1800000. 0	1.6000 00e+0 9	Me xic o

In [21]:

```
top10_er = insta_df.drop(["rank",
    "influence_score", "posts", "avg_likes", "new_post_avg_like",
    "total_likes", "country"], axis = 1)
top10_er.head(10)
```

Out[21]:

channel_i	follower	60_day_en
-----------	----------	-----------

	nfo	S	g_rate
0	cristiano	475800 000.0	1.39
1	kyliejenne r	366200 000.0	1.62
2	leomessi	357300 000.0	1.24
3	selenago mez	342700 000.0	0.97
4	therock	334100 000.0	0.20
5	kimkardas hian	329200 000.0	0.88

6	arianagra nde	327700 000.0	1.20
7	beyonce	beyonce 272800 000.0	
8	khloekard ashian	268300 000.0	0.35
9	justinbieb er	254500 000.0	0.59

```
In [22]:
replace = {'b': 'e9', 'm': 'e6', 'k': 'e3', '%': ''}

converted_data = top10_er['60_day_eng_rate'].replace(replace,
regex=True).astype(float)
converted_data.head()
```

Out[22]:

```
1.62
1
2
     1.24
     0.97
     0.20
Name: 60_day_eng_rate, dtype: float64
                                                        In [23]:
# Check for missing values
insta_df.isnull().sum()
# Fill missing engagement rates with the average engagement rate
insta_df['60_day_eng_rate'].fillna(insta_df['60_day_eng_rate'].
mean(), inplace=True)
# Drop rows with any missing values
insta_df.dropna(inplace=True)
print("Data Cleaned")
Data Cleaned
/tmp/ipykernel_18/1562330709.py:5: FutureWarning: A value is
trying to be set on a copy of a DataFrame or Series through
```

```
chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method
will never work because the intermediate object on which we are
setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)',
try using 'df.method({col: value}, inplace=True)' or df[col] =
df[col].method(value) instead, to perform the operation inplace
on the original object.
insta_df['60_day_eng_rate'].fillna(insta_df['60_day_eng_rate'].
mean(), inplace=True)
                                                        In [24]:
country= insta_df['country'].value_counts()[:20].to_list()
name_countries =
insta_df['country'].value_counts().index[:20].to_list()
name_countries.append("Others")
max20 = sum(country)
others = len(insta_df) - max20
```

```
country.append(others)
plt.figure(figsize=(10, 8))
sns.barplot(x=country, y=name_countries, palette='viridis')
plt.title('Distribution of Influencers by Country')
plt.xlabel('Number of Influencers')
plt.ylabel('Country')
plt.show()
/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:176
5: FutureWarning: unique with argument that is not not a
Series, Index, ExtensionArray, or np.ndarray is deprecated and
will raise in a future version.
 order = pd.unique(vector)
```


We were trying to see which influencer has high engagement rate so here is a relationship between followers and engagement rate as you can see on x axis we have followers and on y axis we have engagement rate

```
In [25]:
plt.figure(figsize=(10, 8))
sns.scatterplot(x='followers', y='60_day_eng_rate',
data=insta_df)
plt.title('Relationship between Followers and 60-Day Engagement
Rate')
plt.xlabel('Followers')
```

```
plt.ylabel('60-Day Engagement Rate')
plt.show()
                     Relationship between Followers and 60-Day Engagement Rate
   10
    8
 60-Day Engagement Rate
    2
    0 -
                                         2
                      i
                                                            3
                                                                                              1e8
                                                Followers
```

```
plt.figure(figsize=(10, 6))
sns.histplot(insta_df['influence_score'], kde=True,
color='skyblue')
```

In [26]:

```
plt.title('Distribution of Influencer Scores')
plt.xlabel('Influencer Score')
plt.ylabel('Frequency')
plt.show()

/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:111
9: FutureWarning: use_inf_as_na option is deprecated and will
be removed in a future version. Convert inf values to NaN
before operating instead.
  with pd.option_context('mode.use_inf_as_na', True):
```


In []:

To make predictions with this data, we'll need to select a target variable. For example, let's predict *engagement rate* based on features like *followers*, *category*, and *country*. Here's a concise approach, including data preparation, model selection, training, and making predictions.

Steps for Prediction:

```
Data Preparation
```

Feature Selection and Encoding

Splitting the Data

Model Selection and Training

Making Predictions

Let's go through this in code using a basic regression model

```
In [27]:
```

```
# Import necessary libraries
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import LabelEncoder
```

```
In [28]:
# Feature Selection and Encoding
# Selecting features and encoding categorical variables
features = insta_df[['followers', 'influence_score',
'country']]
target = insta_df['60_day_eng_rate']
```

```
In [29]:
# Encoding categorical variables
encoder = LabelEncoder()
# features['category_encoded'] =
encoder.fit_transform(features['category'])
features['country_encoded'] =
encoder.fit_transform(features['country'])
print("Encoding completed")
Encoding completed
/tmp/ipykernel_18/177526071.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a
DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin
g.html#returning-a-view-versus-a-copy
 features['country_encoded'] =
encoder.fit_transform(features['country'])
```

In [30]:

features = features[['followers', 'influence_score',
'country_encoded']]

features

Out[30]:

	follower s	influence _score	country_en coded
0	475800 000.0	92	17
1	366200 000.0	91	23
3	342700 000.0	93	23

4	334100 000.0	91	23
5	329200 000.0	91	23
19 5	332000 00.0	71	23
19 6	332000 00.0	81	8
19 7	332000 00.0	79	2
19	330000 00.0	78	23

19 9	328000 00.0	80	11						
138 rows × 3 columns									
In [31]:									
# Sp	plit the	data into	o training	and testing sets					
X_t	rain, X_	test, y_t	rain, y_te	st = train_test_split(features,					
tar	get, tes	t_size=0.	1, random_	state=42)					
<pre>print("TTS Done")</pre>									
TTS Done									

In [32]:

```
# Linear Regression Model
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
print("Training Completed")
```

Training Completed

```
In [33]:
# Random Forest Model
rf_model = RandomForestRegressor(n_estimators=100,
random_state=42)
rf_model.fit(X_train, y_train)
print("Training Completed")
Training Completed
                                                         In [34]:
# Making Predictions and Comparing Models
lr_preds = lr_model.predict(X_test)
rf_preds = rf_model.predict(X_test)
                                                         In [35]:
lr_preds
                                                         Out[35]:
```

```
array([1.37028635, 1.30255527, 1.01603073, 1.49674945,
1.12804654,
       1.37867911, 1.38950008, 1.32829439, 1.45159326,
1.39365706,
       1.40583913, 1.28780069, 1.42115805, 1.54741186])
                                                          In [ ]:
                                                         In [36]:
# Evaluate the models
# lr_mse = mean_squared_error(y_test, lr_predictions)
# rf_mse = mean_squared_error(y_test, rf_predictions)
# # Print out the results
# print("Linear Regression MSE:", lr_mse)
# print("Random Forest MSE:", rf_mse)
                                                          In [ ]:
                                                         In [37]:
```

```
# # Plotting Actual vs Predicted Engagement Rate
# plt.figure(figsize=(10, 5))
# sns.scatterplot(x=y_test, y=y_pred, color='blue')
# plt.plot([y_test.min(), y_test.max()], [y_test.min(),
y_{test.max}()], 'r--') # Line for perfect predictions
# plt.xlabel("Actual Engagement Rate")
# plt.ylabel("Predicted Engagement Rate")
# plt.title("Actual vs Predicted Engagement Rate")
# plt.show()
# # Partial Dependency Plots for each feature
# fig, axes = plt.subplots(1, 3, figsize=(18, 5))
# sns.scatterplot(ax=axes[0], x=X_test['followers'], y=y_test,
label="Actual", color='blue')
# sns.lineplot(ax=axes[0], x=X_test['followers'],
y=lr_model.predict(X_test), label="Predicted", color='red')
# axes[0].set_title("Followers vs Engagement Rate")
# axes[0].set_xlabel("Followers")
# axes[0].set_ylabel("Engagement Rate")
# sns.scatterplot(ax=axes[1], x=X_test['influence_score'],
y=y_test, label="Actual", color='blue')
# sns.lineplot(ax=axes[1], x=X_test['influence_score'],
y=lr_model.predict(X_test), label="Predicted", color='red')
# axes[1].set_title("Influence Score vs Engagement Rate")
```

```
# axes[1].set_xlabel("Influence Score")
# axes[1].set_ylabel("Engagement Rate")
# sns.scatterplot(ax=axes[2], x=X_test['country_encoded'],
y=y_test, label="Actual", color='blue')
# sns.lineplot(ax=axes[2], x=X_test['country_encoded'],
y=lr_model.predict(X_test), label="Predicted", color='red')
# axes[2].set_title("Country Encoded vs Engagement Rate")
# axes[2].set_xlabel("Country Encoded")
# axes[2].set_ylabel("Engagement Rate")
# plt.tight_layout()
# plt.show()
                                                         In [38]:
# Create a DataFrame with test features and predictions
predictions_df = X_test.copy()
predictions_df['Actual Engagement Rate'] = y_test.values
predictions_df['Predicted Engagement Rate'] = lr_preds
# Display the first few rows of the predictions DataFrame
predictions_df.head()
```

	follower	influence _score	country_en coded	Actual Engagement Rate	Predicted Engagement Rate
12	459000 00.0	80	15	1.00	1.370286
14	400000 00.0	85	17	0.41	1.302555
13	222200 000.0	91	23	1.01	1.016031
33	859000 00.0	74	22	1.26	1.496749
85	539000 00.0	86	2	0.51	1.128047

In [39]:

Now to perform classification on this dataset we can do it by transforming it into a classification problem. For example, you could classify influencers based on their engagement rate into categories like "Low," "Medium," or "High." Here's how to proceed:

Define Classes: Convert the engagement rate into categorical classes. Train-Test Split: Use followers, influence score, and encoded country as features. Build and Train a Classifier: A Random Forest Classifier can work well for this. Evaluate the Model: Check the classification accuracy.

In [40]:

insta_df.head()

Out[40]:

	ra n k	channe I_info	influenc e_score	po sts	follow ers	avg_l ikes	60_day_ eng_rate	new_post _avg_like	total_li kes	co unt ry
О	1	cristian o	92	33 00. 0	47580 0000. 0	8700 000. 0	1.39	6500000. 0	2.9000 00e+1 0	Sp ain

1	2	kylieje nner	91	69 00. 0	36620 0000. 0	8300 000. 0	1.62	5900000. 0	5.7400 00e+1 0	Uni ted Sta tes
3	4	selena gomez	93	18 00. 0	34270 0000. 0	6200 000. 0	0.97	3300000. 0	1.1500 00e+1 0	Uni ted Sta tes
4	5	therock	91	68 00. 0	33410 0000. 0	1900 000. 0	0.20	665300.0	1.2500 00e+1 0	Uni ted Sta tes
5	6	kimkar dashia n	91	56 00. 0	32920 0000. 0	3500 000. 0	0.88	2900000. 0	1.9900 00e+1 0	Uni ted Sta tes

```
In [41]:
```

```
bins = [0, 1, 3, insta_df['60_day_eng_rate'].max()]
labels = ['Low', 'Medium', 'High']
```

```
insta_df['engagement_rate_class'] =
pd.cut(insta_df['60_day_eng_rate'], bins=bins, labels=labels)
insta_df.head(20)
```

Out[41]:

	r a n k	chann el_info	influe nce_s core	po sts	follo wers	avg _lik es	60_da y_eng _rate	new_po st_avg_ like	total_ likes	co un try	engagem ent_rate_ class
0	1	cristia no	92	33 00 .0	4758 0000 0.0	870 000 0.0	1.39	650000 0.0	2.900 000e +10	Sp ain	Medium
1	2	kylieje nner	91	69 00 .0	3662 0000 0.0	830 000 0.0	1.62	590000 0.0	5.740 000e +10	Un ite d St at es	Medium

3	4	selena gomez	93	18 00 .0	3427 0000 0.0	620 000 0.0	0.97	330000 0.0	1.150 000e +10	Un ite d St at es	Low
4	5	theroc k	91	68 00 .0	3341 0000 0.0	190 000 0.0	0.20	665300	1.250 000e +10	Un ite d St at es	Low
5	6	kimkar dashia n	91	56 00 .0	3292 0000 0.0	350 000 0.0	0.88	290000 0.0	1.990 000e +10	Un ite d St at es	Low
6	7	ariana grand	92	50 00	3277 0000	370 000	1.20	390000 0.0	1.840 000e	Un ite d	Medium

		е		.0	0.0	0.0			+10	St	
										es	
7	8	beyon ce	92	20 00 .0	2728 0000 0.0	360 000 0.0	0.76	200000	7.400 000e +09	Un ite d St at es	Low
8	9	khloek ardas hian	89	41 00 .0	2683 0000 0.0	240 000 0.0	0.35	926900	9.800 000e +09	Un ite d St at es	Low
9	1 0	justinb ieber	91	74 00 .0	2545 0000 0.0	190 000 0.0	0.59	150000 0.0	1.390 000e +10	Ca na da	Low
1	1	kendal	90	66 0.	2540 0000	550 000	2.04	510000	3.700 000e	Un	Medium

0	1	ljenner		0	0.0	0.0		0.0	+09	d St at es	
1	1 2	natge o	91	10 00 0. 0	2370 0000 0.0	302 200 .0	0.07	159300	3.000 000e +09	Un ite d St at es	Low
1 2	1 3	nike	90	95 0. 0	2341 0000 0.0	329 000 .0	0.08	181800 .0	3.136 000e +08	Un ite d St at es	Low
1 3	1 4	taylors wift	91	53 0. 0	2222 0000 0.0	240 000 0.0	1.01	230000 0.0	1.300 000e +09	Un ite d St at	Medium

										es	
1 4	1 5	jlo	89	32 00 .0	2204 0000 0.0	170 000 0.0	0.62	140000 0.0	5.300 000e +09	Un ite d St at es	Low
1 6	1 7	nickim inaj	90	64 00 .0	2016 0000 0.0	210 000 0.0	0.53	100000	1.350 000e +10	Un ite d St at es	Low
1 7	1 8	kourtn eykard ash	89	44 00 .0	1952 0000 0.0	180 000 0.0	0.67	130000 0.0	7.700 000e +09	Un ite d St at es	Low

1 9	2 0	neyma rjr	90	53 00 .0	1771 0000 0.0	270 000 0.0	1.09	190000 0.0	1.410 000e +10	Br azi	Medium
2	2 2	kevinh art4re al	88	82 00 .0	1520 0000 0.0	522 000 .0	0.08	115200 .0	4.300 000e +09	Un ite d St at es	Low
2 2	2 3	zenda ya	87	35 00 .0	1507 0000 0.0	580 000 0.0	3.17	480000 0.0	2.060 000e +10	Un ite d St at es	High
2	2 4	iamcar dib	75	16 00 .0	1405 0000 0.0	310 000 0.0	1.10	150000 0.0	5.000 000e +09	Un ite d St at	Medium

۱.	 			 	 	
ш						
ш					es	
ш					00	
ш						
ш						
ш						
Ш						

In [42]:

high_engagement_df = insta_df[insta_df['engagement_rate_class']

== "High"]

high_engagement_df

Out[42]:

	r a n k	chann el_info	influe nce_s core	po st s	follo wers	avg _lik es	60_da y_eng _rate	new_p ost_av g_like	total_ likes	co unt ry	engagem ent_rate_ class
2 2	2 3	zenda ya	87	35 00 .0	1507 0000 0.0	580 000 0.0	3.17	480000 0.0	2.060 000e +10	Un ite d St ate s	High
5	5	narend ramodi	85	54 0.	6890 0000	290 000	3.01	200000	1.600 000e	Ind ia	High

				0	.0	0.0			+09		
5	5 2	aliaab hatt	82	18 00 .0	6870 0000 .0	180 000 0.0	3.14	210000 0.0	3.300 000e +09	Ind ia	High
5 6	5 7	bts.big hitoffici al	78	12 00 .0	6690 0000 .0	410 000 0.0	5.40	360000 0.0	4.900 000e +09	Ur ug ua y	High
7 5	7	millieb obbybr own	80	28 0. 0	5760 0000 .0	400 000 0.0	8.63	500000 0.0	1.100 000e +09	Un ite d St ate s	High
7	7 8	chrish emsw orth	86	88 0. 0	5590 0000 .0	280 000 0.0	3.69	210000 0.0	2.500 000e +09	Au str ali a	High

7 8	7 9	karolg	83	33 00 .0	5560 0000 .0	310 000 0.0	10.25	570000 0.0	1.010 000e +10	Ind ia	High
8 3	8 4	zacefr on	86	66 0. 0	5450 0000 .0	230 000 0.0	8.18	440000	1.500 000e +09	Un ite d St ate s	High
9 7	9 8	adele	84	42 0. 0	5070 0000 .0	470 000 0.0	3.82	190000 0.0	2.000 000e +09	Un ite d St ate s	High
1 0 3	1 0 4	lelepo ns	81	25 00 .0	4920 0000 .0	240 000 0.0	3.55	170000 0.0	6.100 000e +09	Un ite d St ate	High

										S	
1 1 4	1 1 5	harryst	57	59 0. 0	4690 0000 .0	470 000 0.0	6.38	290000	2.800 000e +09	Un ite d St ate s	High
1 1 8	1 1 9	zayn	82	16 0. 0	4650 0000 .0	470 000 0.0	8.81	400000	7.735 000e +08	Un ite d St ate s	High
1 2 0	1 2 1	traviss cott	78	32 00 .0	4620 0000 .0	300 000 0.0	5.71	260000 0.0	9.600 000e +09	Un ite d St ate s	High

1 3 2	1 3 3	hrithikr oshan	85	58 0. 0	4370 0000 .0	160 000 0.0	3.82	160000 0.0	9.499 000e +08	CÃ 'te d'I voi re	High
1 7 7	1 7 8	kimber ly.loaiz a	78	59 0. 0	3550 0000 .0	260 000 0.0	5.23	180000 0.0	1.600 000e +09	Me xic o	High
1 8 4	1 8 5	danna paola	68	19 00 .0	3470 0000 .0	150 000 0.0	3.49	120000 0.0	2.800 000e +09	Me xic o	High
1 9 1	1 9 2	danbil zerian	84	14 00 .0	3360 0000 .0	200 000 0.0	3.58	120000 0.0	2.800 000e +09	Ca na da	High

In [43]:

```
# Encode the 'country' column
encoder = LabelEncoder()
insta_df['country_encoded'] =
```

```
encoder.fit_transform(insta_df['country'])
                                                        In [44]:
# Select features and target for classification
features = insta_df[['followers', 'influence_score',
'country_encoded']]
target = insta_df['engagement_rate_class']
                                                        In [45]:
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(features,
target, test_size=0.2, random_state=42)
print("TTS Completed")
TTS Completed
                                                        In [46]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report,
accuracy_score
```

```
In [47]:
# Build and train the Random Forest Classifier
classifier = RandomForestClassifier(n_estimators=100,
random_state=42)
classifier.fit(X_train, y_train)
print("Model Trained")
Model Trained
                                                       In [48]:
# Make predictions on the test set
y_pred = classifier.predict(X_test)
y_pred
                                                      Out[48]:
array(['Low', 'Low', 'Low', 'Low', 'Low', 'Low', 'Low',
'Low',
       'Low', 'Low', 'Low', 'Medium', 'Low', 'Medium',
```

```
'Low',
      'Low', 'Low', 'Low', 'Low', 'Low', 'Low', 'Low',
'Low',
      'Low', 'Low'], dtype=object)
                                                    In [49]:
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:" + str(float(accuracy)*100) + "%")
print("\nClassification Report:\n",
classification_report(y_test, y_pred))
print("Ideal f1: >0.7")
print("Ideal recall =: 1.0")
Accuracy:50.0%
Classification Report:
              precision recall f1-score support
       High
             0.00
                       0.00
                                     0.00
                                                 4
                        1.00
        Low
                  0.50
                                     0.67
                                                13
                  0.50
     Medium
                           0.09
                                     0.15
                                                 11
                                     0.50
                                                 28
   accuracy
```

macro	avg	0.33	0.36	0.27	28
weighted	avg	0.43	0.50	0.37	28

Ideal f1: >0.7

Ideal recall =: 1.0

/opt/conda/lib/python3.10/site-packages/sklearn/metrics/_classi fication.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/opt/conda/lib/python3.10/site-packages/sklearn/metrics/_classi
fication.py:1344: UndefinedMetricWarning: Precision and F-score
are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control
this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/opt/conda/lib/python3.10/site-packages/sklearn/metrics/_classi
fication.py:1344: UndefinedMetricWarning: Precision and F-score
are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control
this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [50]:
from sklearn.metrics import confusion_matrix
                                                        In [51]:
# Generate the confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred, labels=labels)
# Plotting the confusion matrix
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Actual Class')
plt.title('Confusion Matrix of Engagement Rate Classification')
plt.show()
# Bar plot for the distribution of actual vs. predicted classes
plt.figure(figsize=(10, 5))
# Plot actual class distribution
plt.subplot(1, 2, 1)
sns.countplot(x=y_test, order=labels, palette="viridis")
```

```
plt.title("Actual Class Distribution")
plt.xlabel("Engagement Rate Class")
plt.ylabel("Count")

# Plot predicted class distribution
plt.subplot(1, 2, 2)
sns.countplot(x=y_pred, order=labels, palette="viridis")
plt.title("Predicted Class Distribution")
plt.xlabel("Engagement Rate Class")
plt.ylabel("Count")

plt.tight_layout()
plt.show()
```


/opt/conda/lib/python3.10/site-packages/seaborn/categorical.py: 641: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

grouped_vals = vals.groupby(grouper)

Reference link

You can practice and get experience from here for sql project

SQL Project: Analysis of Top Instagram Influencers Data

This project is designed for someone with approximately five years of experience in data analysis and SQL, aiming to dive into exploratory data analysis (EDA), data transformations, and visualizations for insight extraction on Instagram influencers.

Dataset Schema

rank: Rank of the influencer

channel_info: Name or handle of the influencer

influence_score: Score reflecting influencer's overall impact

posts: Number of posts by the influencer

followers: Total follower count

avg_likes: Average number of likes per post

60_day_eng_rate: Engagement rate over the past 60 days

new_post_avg_like: Average likes on recent posts

total_likes: Total likes across all posts

country: Country of the influencer

Step 1: Database Setup and Data Insertion

First, create the database and import the data. We will use SQL for data manipulation, and the project may also involve Python for visualization.

```
Sal code
-- Create the database
CREATE DATABASE InstagramInfluencers:
USE InstagramInfluencers;
-- Create the table
CREATE TABLE influencers (
    rank INT PRIMARY KEY,
    channel_info VARCHAR(100),
    influence_score DECIMAL(5, 2),
    posts INT,
    followers BIGINT,
    avg_likes INT,
    sixty_day_eng_rate DECIMAL(4, 2),
    new_post_avg_like INT,
    total_likes BIGINT,
    country VARCHAR(50)
);
```

Insert Data

Load the data into this table from a CSV file or directly insert sample data if testing manually.

Sql code

```
Sample insertINSERT INTO influencers (rank, channel_info, influence_score,
```

```
posts, followers, avg_likes, sixty_day_eng_rate,
new_post_avg_like, total_likes, country)

VALUES
(1, 'influencer1', 85.50, 500, 10000000, 200000, 4.50, 21000,
100000000, 'USA'),
(2, 'influencer2', 80.25, 450, 950000, 18000, 4.20, 18500,
8500000, 'UK');
```

Step 2: Exploratory Data Analysis (EDA)

1. Distribution of Followers

This query helps to understand which countries have the most followed influencers.

2. Top Influencers by Influence Score

```
Sql code
-- Retrieve top influencers based on influence_score
SELECT
    rank,
    channel_info,
    influence_score,
    followers,
    avg_likes
FROM influencers
ORDER BY influence_score DESC
LIMIT 10;
```

This identifies the highest-ranking influencers by influence score, giving insights into their audience reach and engagement.

3. Engagement Rate Analysis

```
Sql code
```

```
-- Calculate engagement rate statistics
SELECT
    AVG(sixty_day_eng_rate) AS avg_eng_rate,
    MAX(sixty_day_eng_rate) AS max_eng_rate,
    MIN(sixty_day_eng_rate) AS min_eng_rate
FROM influencers;
```

This query provides average, maximum, and minimum engagement rates to assess

overall engagement trends among top influencers.

4. Influencers with High Engagement but Low Followers

Sql code

```
-- Identify influencers with high engagement but relatively low
followers
SELECT
    channel_info,
    followers,
       sixty_day_eng_rate
FROM influencers
WHERE followers < 500000
AND sixty_day_eng_rate > 5
ORDER BY sixty_day_eng_rate DESC;
```

This finds influencers who, despite a lower follower count, have high engagement rates, making them potential high-return micro-influencers.

Step 3: Visualization and Analysis with Python

After querying, we can use Python with libraries like matplotlib and seaborn to visualize the data.

Example Visualization: Distribution of Followers by Country

```
Python code
import pandas as pd
import seaborn as sns
```

```
import matplotlib.pyplot as plt
# Load data into pandas DataFrame
data = pd.read_sql_query("SELECT country, AVG(followers) AS
avg_followers FROM influencers GROUP BY country", connection)
# Plot the data
plt.figure(figsize=(12, 6))
sns.barplot(data=data, x="country", y="avg_followers")
plt.xticks(rotation=45)
plt.title("Average Followers by Country")
plt.xlabel("Country")
plt.ylabel("Average Followers")
plt.show()
Visualization: Engagement vs Follower Count
Python code
# Query for engagement vs followers
data = pd.read_sql_query("SELECT followers, sixty_day_eng_rate
FROM influencers", connection)
# Scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(data=data, x="followers".
y="sixty_day_eng_rate", hue="country")
```

```
plt.title("Engagement Rate vs Followers")
plt.xlabel("Followers")
plt.ylabel("60-Day Engagement Rate")
plt.show()
```

Step 4: Advanced Analysis

1. Growth Potential (New Post Like Analysis)

```
Sql code
-- Find influencers whose new post average likes have increased
by 10% over average likes
SELECT
     channel_info,
     avg_likes,
     new_post_avg_like
FROM influencers
WHERE new_post_avg_like > avg_likes * 1.1
ORDER BY new_post_avg_like DESC;
```

This finds influencers experiencing growth in engagement, useful for targeting those with increasing influence.

2. Country-wise Average Influence Score

Sql code

-- Find average influence score by country

```
SELECT
    country,
    AVG(influence_score) AS avg_influence_score
FROM influencers
GROUP BY country
ORDER BY avg_influence_score DESC;
```

Final Report Summary

Influencer Rankings and Distribution:

Analyzed top influencers, their reach, and engagement patterns.

Country-based Trends:

Identified which countries have the most active influencer bases and higher follower counts.

Micro-Influencers with High Engagement:

Discovered lower-followed influencers with significant engagement.

Growth Indicators:

Showcased influencers with rising engagement rates on recent posts.

Reference link