§7.3 单稳态触发器

One-Shots (Monostable Multivibrators)

单稳态触发器

- ① 一个稳定状态,一个不稳定状态(暂稳态)
- ② 单稳态触发器通常处于稳定状态,在触发时 变到不稳定状态
- 3 不稳定状态持续 $T_{
 m w}$ 时间后,自动回到稳定状态

 $T_{
m W}$ 取决于定时元件

符号

1: 一次触发不可重复触发

§7.3.1 555 定时器构成的单稳态触发器

555 Timer Connected as an One-Shot

6,7 脚桁连

2 郯 (触发端)接输入 V_i ,非触发时为高电平,下降沿(低电平)触发

R, C 定时元件

电容隔直,故 V_{CO} 悬空,防止引入干扰,既非1,也非0

确定电路的稳定状态

设 Q=0, $\overline{Q}=1$,

放电管 T 导通, 7→地

7, 6
$$\to$$
 GND, $(V_6 < \frac{2}{3}V_{CC})$

$$V_{\rm i} = 1$$
, $(V_2 > \frac{1}{3} V_{\rm CC})$ Q $(R) = 0$

设 Q=1, $\overline{Q}=0$, T 截止, $7\to$ 开路

 $V_{\rm CC}$ 向C 充电, $V_{\rm C}$ 升高, 当 $V_{\rm C} > \frac{2}{3}V_{\rm CC}$,Q = 0

$$\overline{Q}$$
=1,放电管 T 导通(7地) $V_6 < \frac{2}{3}V_{CC}$, $V_2 > \frac{1}{3}V_{CC}$

Q=0 保持

所以,稳定状态为: Q=0

单稳态触发器工作原理

触发前, Q=0 (T导通, 6,7地)

触发瞬间, $V_{\rm i} < \frac{1}{3} V_{\rm CC}$ Q = 1

 $\bar{Q}=0$,T 截止 (断开), C 充电

充电路径: $V_{CC} \rightarrow R \rightarrow C \rightarrow$ 地 \bigcirc

时间常数 $\tau_1 = RC$, C 充电, V_0

当
$$V_{\rm C} > \frac{2}{3}V_{\rm CC} (V_6 > \frac{2}{3}V_{\rm CC})$$

$$V_{\rm i}$$
早已回到 1 ($V_{\rm 2} > \frac{1}{3}V_{\rm CC}$)

C放皂、路径: $C \to T \to \mathbb{D}$

放电时间常数 $\tau_2 = R_{on}C$,

Ron: T导通电阻

$$V_{
m C}\downarrow$$

暂稳态持续时间 T_{w}

电容C充电到 $\frac{2}{3}V_{CC}$ 所用时间

$$T_{w} = RC \ln \frac{V_{C}(\infty) - V_{C}(0)}{V_{C}(\infty) - V_{C}(t)}$$

$$= RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}} = 1.1RC$$

T_{W} 是重要参数

$$T_{\rm W} = 1.1RC$$

单稳态触发器的恢复时间

(Recovery Time):

$$T_{\rm R} = (3\sim5)R_{\rm on}C = 4R_{\rm on}C$$

: 触发信号最小周期:

$$T = T_{\rm w} + T_{\rm R} = 1.1RC + 4 R_{\rm on}C$$

T: resolution 分辨率

触发信号最大工作频率:

$$f = \frac{1}{T}$$

实际触发周期 $T_i: T_i \geq T$

§7.3.2 集成单稳态触发器74121

集成单稳态触发器根据电路及工作状态不同可分为 可重复触发和不可重复触发两种

非重复触发单稳态触发器74121工作波形图

 $FF进入 督稳态后,不再接收新触发信号,直到<math>T_W$ 时间后结束

74LS121原理框图

控制电路用于产生窄脉冲。当输入满足以下条件时,控制 电路产生窄脉冲的

- (1) 若A、A₂中至少有一个为0时,B由0 21;
 (2) 若B=1, A₁、A₂中至少有一个由1 20。

CMOS或非门构成的微分型单稳态触发器

门电路+RC微分电路→微分型单稳

- G_2 为CMOS或非门 v_0 分别为 G_1 、 G_2 的输出, v_{12} 为 G_2 输入

单稳态触发器的稳态

无触发脉冲输入, v₁ 为低电平, © 没有充放电, 相当于断开

二触发器的稳态为 $\nu_{\rm O1} \approx V_{\rm DD}$, $\nu_{\rm O} \approx 0$ V。此时,电容两端的电压相等,无充放电

・当火」加一正脉冲时、由稳态进入智稳态

• 暂稳态自动回到稳态

IEEE 符号

7 GND, $14 V_{CC}$, 2, 8, 12, 13 $\stackrel{\blacksquare}{\Longrightarrow}$

输入 (触发):

 $\left\{egin{aligned} A_1,\ A_2 & \mathbf{CFOM} & \mathbf{Schmitt} \ B & \mathbf{Schmitt} \end{aligned}
ight.$

R_{int}:内电阻(不用时悬空)

 $C_{\rm ev}$. 外接电容

 $R_{\rm ext}/C_{\rm ext}$: 共用

* 非数字信号,接R, C

74121 功能表

В	A_2	$A_{\rm l}$	Q	$\overline{\varrho}$	功能
0	×	X	0	1	/[] 杜 / H 丁 44 十 \
X	1	1	0	1	保持(处于稳态)
1	X	0	几		用B正边沿触发
1	0	×			用D正见行照及
1	1	↓	Л	T	
1	ţ	1	Л	\Box	用A负边沿触发
1	ļ	ţ			0

(1) 稳定状态 (Q=0)

3变量 (A_1, A_2, B)

- →8个组合
- 8个状态都是稳定状态
 - (2) 暂稳态
 - ① B = 1, A₁ 和 A₂ 至少有一个为下降沿, 另一个为高电平
 - ② $A_1 \cdot A_2 = 0$, *B*上升沿

(3) 定时元件接法

定时元件 R, C

外接 $\begin{cases} R: RX \sim V_{CC}$ 之间 $C: CX \sim RX$ 之间

内接 $\begin{cases} R_{\text{int}} \text{ (RI): } R_{\text{int}} = 2 \text{ k}\Omega \\ RI \sim V_{\text{CC}} \text{ (内接电阻)} \end{cases}$ C: CX (外接电容)

74121暂稳态时间

 $T_{\rm w} = 0.7RC$

§7.3.3 单稳态触发器应用

1. 波形整形

• 把不符合要求的波形整形成工。, $V_{\rm m}$ 一定的脉冲

$$T_{\rm w} \sim R, C$$

555 定时器单稳态:

触发 $\left\{ \begin{array}{l}$ **负边沿** $\left\{ \frac{1}{3} V_{\text{CC}} \right\} \end{array} \right\}$

• 脉冲展宽和变窄

2. 定时

例 2. 楼道照明灯控制电路

定时元件: R, C TH: 双向晶闸管

灯亮的间: $T_{\text{W}} = 1.1RC$

工作原理

按 // 之前, V_i = 1, Q = 0, 稳态, T_1 截止, $V_e = 0$, TH 开路, 灯不亮;

按 A, $V_i = 0$, Q = 1, T_1 导通, $V_e > 0$, TH 导通, 灯亮.

3. 延时 $T_{\rm W}$ 下降沿触发下一个电路

例:用基于555定时器的单稳态触发器实现花房自动控

制系统:每次喷药2 s, 马上喷水15 s

分析:

第一个单稳态 Tw = 2 s (喷药),

T'w、下降沿触发喷水开关

$$T''_{W} = 15 \text{ s} (7\text{K}).$$

两个单稳态触发器

- · 基于555的单稳态触发器,在 $T'_{\rm w}$ 后 Q_1 不回到高电平
- · 在两个单稳态触发器之间需要一个微分电路,形成一个容脉冲来触发 T''。

4. 用 74121 设计电路, 其输入输出波形如图所示

设 $R_1 = R_2 = 10 \text{ k}\Omega$, 求 C_1 , C_2

在输入和输出间需 要一个输出Q',其下 降沿触发第二个74121.

$$T_{W1} = 100 \times 10^{-6}$$

= $0.7R_1C_1$

$$T_{W2} = 30 \times 10^{-6}$$
$$= 0.7R_2C_2$$

电路 方法 1

暂稳态

$$I, II \quad \left\{ \begin{array}{l} A_1 = A_2 \\ B = 1 \end{array} \right.$$

方法 2

暂稳态

II
$$\left\{ \begin{array}{l} B & \nearrow \\ A_1 \bullet A_2 = 0 \end{array} \right.$$

* RX/CX

 $V_{\rm CC}$

121

GND

方法 3

暂稳态

$$\begin{cases} \mathbf{B} & \mathbf{A} \\ A_1 \cdot A_2 = 0 \end{cases} \begin{cases} \mathbf{B} = \mathbf{1} \\ A_1 = A_2 \end{aligned}$$

$$0.7C'_1R'_1 = 90 \mu s$$