MATH2504 Programming of Simulation, Analysis, and Learning (Data) Systems

Michael Kasumagic, s4430266

Semester 2, 2024

Contents

Chapter 1	Unit I: Hello World Bootcamp	Page 2
1.1	Hello World!	2
1.2	test.pl	2
1.3	Jupyter Notebooks	2
1.4	Some Builtins and Language Features	4
Chapter 2	Template.tex - Delete me Later!	Page 5
2.1	Random Examples	5
2.2	Random	6
2.3	Algorithms	8

Chapter 1

Unit 1: Hello World Bootcamp

1.1 Hello World!

We will learn Julia over Python in this course, because Julia is more mathematical by nature. It is also a natural step forward from MATLAB which was previously taught in the School of Math and Physics.

Let us now print "Hello World!" using Julia...

```
Output: Hello World!")

Output: Hello World!

Note:-

Julia doesn't play nice with GitBash, consider using JuliaUP, a Julia installer and version multiplexer.
```

1.2 test.pl

Let us now create a little test file, which we will approriately name test.pl.

```
" $ mkdir ./MATH2504
" $ cd ./MATH2504
"/MATH2504 $ vim ./test.pl

1    print("Hi what is your name?")
2    my_name = readline()
3    println("ahh welcome, so your name is $(my_name). Great to meet you!")
```

```
Note:-
```

readline() is an interative function, and isn't in the course notes. We'll use it here though.

```
~/MATH2504 $ julia test.jl
Hi what is your name?Michael
ahh welcome, so your name is Michael. Great to meet you!
```

1.3 Jupyter Notebooks

Changing gears now, lets play around with Jupyter notebooks:

```
--- Cell 1 ---
for i in 1:5
println("My favourite number is: $i")
```

```
My favourite number is: 1
 My favourite number is: 2
 My favourite number is: 3
 My favourite number is: 4
 My favourite number is: 5
--- Cell 2 ---
 # Top Heading
 ## Smaller Heading
 ### Even smaller Heading!
 This is markdown text!
 In-text latex!
 \int_0^{infty \frac{1}{x} 		textrm{d}x}
--- Cell 3 ---
 <html>
 <h1>
  We can do in-text HTML too!
  HTML can do some things better then markdown like links.
  It's uglier but more versitile
 </html>
_____
--- Cell 4 ---
x = 1
_____
1
--- Cell 5 ---
y = 2
2
--- Cell 6 ---
1 + 1 * 3 # Order of Operations matters!
(1 + 1) * 3 # Parens give us control of 000
6
--- Cell 7 ---
my_tup = ("Hello", 35, \pi, "world", '!')
typeof(my_tup)
Tuple{String, Int64, Irrational{:\pi}, String, Char}
--- Cell 8 ---
 (1984)
 typeof(ans)
 (1984,)
 typeof(ans)
```

Int64
Tuple{Int64}

Note:-

Consider giving Pluto.jl a go! It's like Jupyter, but conserves state continuously, in a way which Jupyter doesn't.

1.4 Some Builtins and Language Features

print() prints what is given to it. println() will print what is given, then prints a newline; it also lets us specify the an IOBuffer to print to.

Output: I love math 7

Note:-

My lecturer insists that a kilobyte is 1024 bytes! Didn't understand what we were talking about when we pointed out that kibibytes exist smh...

```
1 \eta = 1 / \pi
2 typeof(\eta)
```

Output: Float64

Doing any arthimatic on a type Irational will cast it to a float.

Output: Hello World!

Julia uses the '*' operator for string concatonation.

```
1     import Base: +
2     +(a::String, b::String) = a * b
3     x + y
```

Output: HelloWorld!

We've overloaded the '+' operator to concatonate strings!

Chapter 2

Template.tex - Delete me Later!

2.1 Random Examples

Definition 2.1.1: Limit of Sequence in \mathbb{R}

Let $\{s_n\}$ be a sequence in \mathbb{R} . We say

$$\lim_{n \to \infty} s_n = s$$

where $s \in \mathbb{R}$ if \forall real numbers $\epsilon > 0$ \exists natural number N such that for n > N

$$s - \epsilon < s_n < s + \epsilon$$
 i.e. $|s - s_n| < \epsilon$

Question 1

Is the set x-axis\{Origin} a closed set

Solution: We have to take its complement and check whether that set is a open set i.e. if it is a union of open balls

Note:-

We will do topology in Normed Linear Space (Mainly \mathbb{R}^n and occasionally \mathbb{C}^n)using the language of Metric Space

Claim 2.1.1 Topology

Topology is cool

Example 2.1.1 (Open Set and Close Set)

Open Set: $\bullet \phi$

- $\bigcup_{x \in X} B_r(x)$ (Any r > 0 will do)
- $B_r(x)$ is open

Closed Set:

- $\bullet X, \phi$
- \bullet $\overline{B_r(x)}$

x-axis $\cup y$ -axis

Theorem 2.1.1

If $x \in \text{open set } V \text{ then } \exists \ \delta > 0 \text{ such that } B_{\delta}(x) \subset V$

Proof: By openness of $V, x \in B_r(u) \subset V$

Given $x \in B_r(u) \subset V$, we want $\delta > 0$ such that $x \in B_\delta(x) \subset B_r(u) \subset V$. Let d = d(u, x). Choose δ such that $d + \delta < r$ (e.g. $\delta < \frac{r-d}{2}$)

If $y \in B_{\delta}(x)$ we will be done by showing that d(u, y) < r but

$$d(u,y) \le d(u,x) + d(x,y) < d + \delta < r$$

☺

Corollary 2.1.1

By the result of the proof, we can then show...

Lenma 2.1.1

Suppose $\vec{v_1}, \dots, \vec{v_n} \in \mathbb{R}^n$ is subspace of \mathbb{R}^n .

Proposition 2.1.1

1 + 1 = 2.

2.2 Random

Definition 2.2.1: Normed Linear Space and Norm $\|\cdot\|$

Let V be a vector space over \mathbb{R} (or \mathbb{C}). A norm on V is function $\|\cdot\| \ V \to \mathbb{R}_{\geq 0}$ satisfying

- $(1) ||x|| = 0 \iff x = 0 \ \forall \ x \in V$
- (2) $\|\lambda x\| = |\lambda| \|x\| \ \forall \ \lambda \in \mathbb{R} (\text{or } \mathbb{C}), \ x \in V$
- (3) $||x+y|| \le ||x|| + ||y|| \ \forall \ x, y \in V$ (Triangle Inequality/Subadditivity)

And V is called a normed linear space.

• Same definition works with V a vector space over \mathbb{C} (again $\|\cdot\| \to \mathbb{R}_{\geq 0}$) where ② becomes $\|\lambda x\| = |\lambda| \|x\|$ $\forall \lambda \in \mathbb{C}, x \in V$, where for $\lambda = a + ib$, $|\lambda| = \sqrt{a^2 + b^2}$

Example 2.2.1 (*p*-Norm)

 $V = \mathbb{R}^m, p \in \mathbb{R}_{>0}$. Define for $x = (x_1, x_2, \cdots, x_m) \in \mathbb{R}^m$

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_m|^p)^{\frac{1}{p}}$$

(In school p = 2)

Special Case p = 1: $||x||_1 = |x_1| + |x_2| + \cdots + |x_m|$ is clearly a norm by usual triangle inequality. Special Case $p \to \infty$ (\mathbb{R}^m with $||\cdot||_{\infty}$): $||x||_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_m|\}$

For m = 1 these p-norms are nothing but |x|. Now exercise

Question 2

Prove that triangle inequality is true if $p \ge 1$ for p-norms. (What goes wrong for p < 1?)

Solution: For Property (3) for norm-2

When field is \mathbb{R} :

We have to show

$$\sum_{i} (x_i + y_i)^2 \le \left(\sqrt{\sum_{i} x_i^2} + \sqrt{\sum_{i} y_i^2} \right)^2$$

$$\implies \sum_{i} (x_i^2 + 2x_i y_i + y_i^2) \le \sum_{i} x_i^2 + 2\sqrt{\left[\sum_{i} x_i^2\right] \left[\sum_{i} y_i^2\right]} + \sum_{i} y_i^2$$

$$\implies \left[\sum_{i} x_i y_i\right]^2 \le \left[\sum_{i} x_i^2\right] \left[\sum_{i} y_i^2\right]$$

So in other words prove $\langle x, y \rangle^2 \leq \langle x, x \rangle \langle y, y \rangle$ where

$$\langle x, y \rangle = \sum_{i} x_i y_i$$

- Note:- $\|x\|^2 = \langle x, x \rangle$
- $\bullet \ \langle x, y \rangle = \langle y, x \rangle$
- $\langle \cdot, \cdot \rangle$ is \mathbb{R} -linear in each slot i.e.

 $\langle rx + x', y \rangle = r \langle x, y \rangle + \langle x', y \rangle$ and similarly for second slot

Here in $\langle x, y \rangle$ x is in first slot and y is in second slot.

Now the statement is just the Cauchy-Schwartz Inequality. For proof

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

expand everything of $\langle x - \lambda y, x - \lambda y \rangle$ which is going to give a quadratic equation in variable λ

$$\begin{split} \langle x - \lambda y, x - \lambda y \rangle &= \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle \\ &= \langle x, x \rangle - \lambda \langle x, y \rangle - \lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle \\ &= \langle x, x \rangle - 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle \end{split}$$

Now unless $x = \lambda y$ we have $\langle x - \lambda y, x - \lambda y \rangle > 0$ Hence the quadratic equation has no root therefore the discriminant is greater than zero.

When field is \mathbb{C} :

Modify the definition by

$$\langle x, y \rangle = \sum_{i} \overline{x_i} y_i$$

Then we still have $\langle x, x \rangle \geq 0$

2.3 Algorithms

```
Algorithm 1: what
  Input: This is some input
   Output: This is some output
   /* This is a comment */
 1 some code here;
 x \leftarrow 0;
y \leftarrow 0;
4 if x > 5 then
 5 x is greater than 5;
                                                                                     // This is also a comment
 6 else
 7 x is less than or equal to 5;
 s end
9 foreach y in 0..5 do
10 y \leftarrow y + 1;
11 end
12 for y in 0..5 do
13 y \leftarrow y - 1;
14 end
15 while x > 5 do
16 | x \leftarrow x - 1;
17 end
18 return Return something here;
```