

Con	dition Number
	a livear system Az = b
X	he stability of the solution depends on
the	condition Number of A denoted K(A)
	Is how sensitive is solution to charges in A or b. (A) = Grax (A) < largest simpler A value of A
	in A or b.
Fact	K(A) = Grax (A) Large of the
	Gmin(A) smallest sing, val.
	age K(A) = very sensitue linear system
Sr	neell K(A) = not so sensitive
K	(A) = 00 (A) A isn't invertible.
	do me care?
V	Jont to solve (XTX) B = XTY
	A Z b
Λ	
The	stability of B = (xTX) XTy depends on
	$K(X^TX)$

(f K(x ^T X) is large than the regrill-conditioned - very sensitive to X	estin is
ill-conditioned - very sensitive to X	rd Y
Several cauxes:	
Ex, one var is (approx.) a L(2 of
Olvers	
(vars. highly correlated)	
Ex, P>N (so K(x ^T x) = ∞)	
e.s. X measus P= 20K gen	res for
N=30 patients	
How to deal w/ this?	-
,	
Daviable selection	
(2) Shrinkasl	
Goal of (1) is to pick some	subset
of "important" variables to use.	$\overline{}$
\ muli	J. do
> how do me define?	nou Dick?

Two approaches! (1) use some individual metric for each var and choose vars w/ best metric. e.g. calc. p-val. for each var. ad use set of vars w/ smallest p-vals.

potential problem- performence of one var.

may depend on others. 2) Calc. Some metric on groups of vars - choose group w/ host metric. potential problem: W/P vars I have 2th possible subsets Careful not to look at training metric RSS train V as PT Solus! DX-val. (comp. expensive) (2) penalized training metric (classic)

$$R^2 = 1 - \frac{N-1}{N-P-1} (1-R^2)$$

$$C_p = \frac{1}{N} (RSS_{train} + 2P\hat{G}^2)$$
penalty

AIC =
$$\frac{1}{N\hat{6}^2}$$
 (RSS_{train} + 2P $\hat{6}^2$)

Penaliza Res

= RSS train

(2) Backwords Schection > Starts w/ model w/ all vars > removes them one-at-a-time. Can I deal w/ ill-conditioning in a more continuas way? Ridge Regression For OLS we minimize $L(p) = RSS(p) = ||y - xp||^2$ i.e. $\beta = \operatorname{arsmin}_{\mathcal{B}} L(\beta)$ If some of my vars are highly correlated then the assoc. coef. tend to blow-up $(\pm \infty)$ \mathcal{E}_{X} . $Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$ say $\beta_1 = 5$, $\beta_2 = 7$ if X, = X2 Her model is Y = Bo + (B, +Bz) X, eculs. as good is B= 5000, B= -4988

Ridge regression penalizes optimination to avoid large Bs. $\alpha(ridge)$ $\beta = argmin L(\beta) + \lambda \|\beta\|^2$ $\lambda \pi = \lambda \pi = \lambda \pi = \lambda \pi$ By adding on ABN2 if elements of B get too large this pencelty becomes large. If $\lambda = 0$ we get $0LS \hat{\beta}$. as $\lambda \to \infty$ we get $\beta^{(ridyi)} \to 0$ (Typically exclude Bo from penalty) Often we standardize vars before ridge. Also typically choose & via X-val.