HW1

Lei Xia (MML)

September 18, 2020

1. Union and intersection:

- (a) $\{x \in \mathbb{N} : x \text{ is even}\} \cap \{x \in \mathbb{N} : x \text{ is odd}\} = \emptyset$
- (b) $\{x \in \mathbb{N} : x \text{ is even}\} \cup \{x \in \mathbb{N} : x \text{ is odd}\} = \{x \in \mathbb{N}\}$
- (c) $\{x \in \mathbb{N} : x \text{ is even}\} \cap \{x \in \mathbb{N} : x \text{ is odd}\} = \{x : x = 2\}$
- 2. **Disjoint and subsets**: $S \subseteq T$ if and only if $S \cap T = S$; At the same time, S and T are disjoint, i.e. $S \cap T = \emptyset$; => S is \emptyset
- 3. Complement: $(S_1 \cup S_2) \cap \tilde{S}_1 = (S_1 \cap \tilde{S}_1) \cup (S_2 \cap \tilde{S}_1) = \emptyset \cup (S_2 \cap \tilde{S}_1) = S_2 S_1$
- 4. Cartesian product: $S_1 \times (S_2 \cup S_3) = \{(a,b) : a \in S_1 \text{ and } b \in S_2 \text{ or } S_3\} = \{(a,b) : a \in S_1 \text{ and } b \in S_2\} \cup \{(a,b) : a \in S_1 \text{ and } b \in S_3\} = (S_1 \times S_2) \cup (S_1 \times S_3)$
- 5. Cartesian product calculations:
 - (a) $\{1,2,3\} \times \{H,T\} = \{(1,H),(2,H),(3,H),(1,T),(2,T),(3,T)\}$
 - (b) $S \times \emptyset = \{(a, b) : a \in S \text{ and } b \in \emptyset\} = \{(a, \emptyset)\} = \emptyset$
- 6. **Set algebras**: If $S_1, S_2 \in \mathcal{F}$, it is known from 2nd property of algebra definition that $S_1 \cup S_2 \in \mathcal{F}$. Since $(S_1 \cap S_2) \in (S_1 \cup S_2)$, then $(S_1 \cup S_2) \in \mathcal{F}$.
- 7. Trivial set algebra: $\{\emptyset, \Omega\}$ is an algebra:
 - (a) $\Omega \in \{\emptyset, \Omega\}$
 - (b) $F_1, F_2 \in \mathcal{F}$, then $(F_1, F_2) \in \{(\emptyset, \emptyset), (\emptyset, \Omega), (\Omega, \emptyset), (\Omega, \Omega)\}$, then $(F_1 \cup F_2) \in \{\emptyset, \Omega\}$ anyway.
 - (c) If $F \in \{\emptyset, \Omega\}$, then F is \emptyset or Ω , \tilde{F} would be Ω or \emptyset . Either way, $F \in \{\emptyset, \Omega\}$ and $\tilde{F} \in \{\emptyset, \Omega\}$
- 8. Power set and empty set: $\mathcal{P}(\emptyset)$.
 - (a) The power set of a set is the set that contains all of its subsets.
 - (b) The only subset of ØisØ itself.
 - (c) As a result, the power set of \varnothing is \varnothing
 - (d) $\mathcal{P}(\emptyset) = {\emptyset}$.
- 9. Empty set probability:
 - (a) $\mathbb{P}(\Omega) = 1$
 - (b) When $S_1, S_2 \in \mathcal{F}$ are disjoint, $\mathbb{P}(S_1 \cup S_2) = \mathbb{P}(S_1) + \mathbb{P}(S_2)$. As a result, $\mathbb{P}(\varnothing \cup \Omega) = \mathbb{P}(\varnothing) + \mathbb{P}(\Omega)$.
 - (c) $\mathbb{P}(\varnothing \cup \Omega) = \mathbb{P}(\Omega) = 1$, then $\mathbb{P}(\varnothing) + \mathbb{P}(\Omega) = \mathbb{P}(\Omega) = 1$, so $\mathbb{P}(\varnothing) = 0$.
- 10. Probability measure calculations: Given a,b,c,d, it is known that $\mathbb{P}(S_3) = 0.3, \mathbb{P}(S_1 S_3) = 0.2, \mathbb{P}(S_2 S_3) = 0.1$
 - (a) $\mathbb{P}(S_1 \cup S_2) = 0.2 + 0.3 + 0.1 = 0.6$
 - (b) $\mathbb{P}(S_1 S_2) = \mathbb{P}(S_1 \cap \tilde{S}_2) = 0.2$
 - (c) $\mathbb{P}(S_1 \cup S_2) = \mathbb{P}(x : x \notin S_1 \text{ nor } S_2) = 1 (0.2 + 0.3 + 0.1) = 0.4$