lecture 232 Sessiona.

lecture 24i-

Revision. Complete Dipartile.

K216.

Sub Graph:

G = (V, E). H = (W, F).

WEV & F. CE. H is a Subgraph of G.

Vz faibic, dieiff. a

4

H .

FSE. F= { (a,b), (a,c), (a,e), (b,c), (b,e). (b,a), (c,a), (e,a), (c,b), (e,b)}. Wzfaib, c,e}

WEV.V.

HSG. HW.

UNION & INTERSECTION.

Gi

Hal. Ex 546-549.

Graphs Representation.

1- Adja curay lost.

Vertices.	Adjacent	Vertus.
a	bicie	
b	a	
C	areid	
d	cie	
e	a,c,d	•

Vortices.	Terminal Vortex.
a	b,c,e,d
ط	b, d
C	c, a,e
d	<u> </u>
ė.	b, c, d.

(ASCII) HW.

2	Incident	Matrix
	a	. b.
dog(a) 23		,
(b) 22	\times	
(4) 22		

	fow:	5-2 C	olumn	5 3.	Mertius 1.
	1 a	5	2	ď	
29	0	1	1	1	3.
26	1	D	1	0	2.
3 6	1	1	D	0	2.
4 d.	g	D	0	\mathcal{O}	1

2- if I a non-zero entry en Main dragonal. Then it is not a Simple Graph.

2- 1/3 an entry 71 -7. Not a Simple Graph.
3- The Possisse/ Columbisse Sum gives you
the degree of Vortices.

Graph - Matorx.

EXS PS51.

Sessional IP

)
$$||\mathbf{r}||_{2} = ||\mathbf{r}||_{2} = ||$$

$$2) \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- 4). { \andier, \biciff? \squares \angle \angle \angle \circ \circ \frac{1}{2}. \squares \angle \angle \angle \angle \circ \angle \angle
- 8) Red (a1b) | a1b 2 b1a? Acd dat d bt d a1b? d b1ct?,

 16 dements. AxA 2 d (dat hal),

= 14 clost. = (5 b, cl, 4 b, c3) \{.

6). Azáaibir? Pau (A) $z \neq p$, fa?, ---?.

Pau (A) xPau (A) z 64.

Right (a,b) | $a \land b \neq p$?

Right (a,b) | $a \land b \neq p$?

27 elmets.

03. 01,2,4,5

	03. Q1,2,4,5°)	
CLO:	3, 4.		
	<u>6</u> . <u>15</u> .	Τ,	
	= . = .		

