Assignment -3 Problem Statement-Abalone Age Prediction

Assignment Date	06 October 2022
Student Name	Miss.Jeeva B
Student Roll Number	620119106034
Maximum Marks	2 Marks

Question-1:

1.download the data set

2.load the dataset

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn

data=pd.read_csv("abalone.csv")data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Age=1.5+data.Ringsdata["Age"]=Agedata=data.rename(columns = {'Whole weight': 'Whole_weight', 'Shucked weight': 'Shucked_weight', 'Viscera_weight', 'Viscera_weight', 'Viscera_weight', 'Age'']=Agedata=data.rename(columns = {'Whole weight': 'Whole_weight', 'Shucked_weight', 'Shucked_w

'Shell weight': 'Shell_weight'})data=data.drop(columns=["Rings"],axis=1)data.head()

	C	1	D!	11-1-1-6	Marie e l'el esse l'este de	Charaland and alle	Minney well-ha	Chall and ale	0
	зех	Length	Diameter	Height	wnoie_weight	Shucked_weight	viscera_weight	Snell_weight	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

3.perform below visualizations univariate analysis

Ans:

sns.displot(data["Age"], color='red')

Out[4]:

<seaborn.axisgrid.FacetGrid at 0x187953d26a0>

sns.histplot(y=data.Age,color='blue')

Out[5]:

<AxesSubplot:xlabel='Count', ylabel='Age'>

sns.histplot(x=data.Age,color='yellow')

<AxesSubplot:xlabel='Age', ylabel='Count'>

In [6]: sns.boxplot(x=data.Age,color='green')

<AxesSubplot:xlabel='Age'>

sns.countplot(x=data.Age)
<AxesSubplot:xlabel='Age', ylabel='count'>

bi - variate analysis

sns.barplot(x=data.Height,y=data.Age)

<AxesSubplot:xlabel='Height', ylabel='Age'>

 $sns.lineplot(x=data.Age,y=data.Height,\ color='orange')$

<AxesSubplot:xlabel='Age', ylabel='Height'>

sns.scatterplot(x=data.Age,y=data.Height,color='black')

sns.pointplot(x=data.Age, y=data.Height, color="pink")
 <AxesSubplot:xlabel='Age', ylabel='Height'>

sns.regplot(x=data.Age,y=data.Height,color='red')

multi - variate analysis

In [9]:

sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Shucked_weight","Viscera_weight","Shell_weig

4. descriptive statistics

data.describe(include='all')

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	М	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25 %	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75 %	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
тах	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing values and deal with them

data.isnull().sum()	
Sex	0
Length	0
Diameter	0
Height	0
Whole_weight	0
Shucked_weight	0
Viscera_weight	0
Shell_weight	0
Age	0
dtype: int64	

6. Find the outliers and replace them outliers

In [18]:

outliers=data.quantile(q=(0.25,0.75))outliers

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	9.5
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	12.5

 $a = data.Age.quantile(0.25)b = data.Age.quantile(0.75)c = b - alower_limit = a - 1.5 * cdata.median(numeric_only= True)$

Length	0.5450	
Diameter	0.4250	
Height	0.1400	
Whole_weight	0.7995	
Shucked_weight	0.3360	
Viscera_weight	0.1710	
Shell_weight	0.2340	
Age	10.5000	
dtypa: float64		

dtype: float64

$$\begin{split} & \text{data['Age'] = np.where(data['Age'] < lower_limit, 7, data['Age'])sns.boxplot(x=data.Age,showfliers = \textbf{False}) } \\ & < \text{AxesSubplot: xlabel= 'Age'} > \end{split}$$

7. Check for Categorical columns and perform encoding

In [21]:

data.head()

Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

from sklearn.preprocessing import LabelEncoder

lab = LabelEncoder()data.Sex = lab.fit_transform(data.Sex) data.head()

:	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	. 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

8. Split the data into dependent and independent variables

y = data["Sex"] y.head()

In [24]:

x=data.drop(columns=["Sex"],axis=1)x.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

9. Scale the independent variables

In [25]:

from sklearn.preprocessing import scale

X_Scaled = pd.DataFrame(scale(x), columns=x.columns)

X_Scaled.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

10. Split the data into training and testing

In [26]:

from sklearn.model_selection import train_test_split

X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=0.2, random_state=0)

In [27]:

X_Train.shape,X_Test.shape

Output

((3341, 8), (836, 8))

Y_Train.shape,Y_Test.shape

output

((3341,), (836,))

In [29]:

X_Train.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
3141	-2.864726	-2.750043	-1.423087	-1.622870	-1.553902	-1.583867	-1.644065	-1.543234
3521	-2.573250	-2.598876	-2.020857	-1.606554	-1.551650	-1.565619	-1.626104	-1.387181
883	1.132658	1.230689	0.728888	1.145672	1.041436	0.286552	1.538726	1.577830
3627	1.590691	1.180300	1.446213	2.164373	2.661269	2.330326	1.377072	0.017298
2106	0.591345	0.474853	0.370226	0.432887	0.255175	0.272866	0.906479	1.265723

X_Test.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
3141	-2.864726	-2.750043	-1.423087	-1.622870	-1.553902	-1.583867	-1.644065	-1.543234
3521	-2.573250	-2.598876	-2.020857	-1.606554	-1.551650	-1.565619	-1.626104	-1.387181
883	1.132658	1.230689	0.728888	1.145672	1.041436	0.286552	1.538726	1.577830
3627	1.590691	1.180300	1.446213	2.164373	2.661269	2.330326	1.377072	0.017298
2106	0.591345	0.474853	0.370226	0.432887	0.255175	0.272866	0.906479	1.265723

```
3141 1
3521 1
883 2
3627 2
2106 2
Name: Sex, dtype: int32
```

Y_Test.head()

11. Build the Model

In [33]:

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10,criterion='entropy')
In [34]:
model.fit(X_Train,Y_Train)
Output
```

RandomForestClassifier(criterion='entropy', n_estimators=10)

12. Train the Model

from sklearn.metrics **import** accuracy_score,confusion_matrix,classification_report In [38]:

```
print('Training accuracy: ',accuracy_score(Y_Train,y_predict_train))
```

Output

Training accuracy: 0.9817419934151451

13. Test the Model

In [39]:

print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))

Output

Testing accuracy: 0.5322966507177034

14. Measure the performance using Metrics

In [40]:

pd.crosstab(Y_Test,y_predict)

 col_0
 0
 1
 2

 Sex
 0
 116
 29
 104

125 58 113

 $print(classification_report(Y_Test,y_predict))$

	precision	recall	f1-score	support
0	0.42	0.47	0.44	249
1	0.71	0.74	0.73	291
2	0.44	0.38	0.41	296
accuracy			0.53	836
macro avg	0.52	0.53	0.53	836
weighted avg	0.53	0.53	0.53	836