pestpp-glm

April 29, 2019

1 PESTPP-GLM

In this notebook, we will run PESTPP-GLM in standard parameter estimation mode and regularization mode. In both cases, we will use the baked-in bayes-linear posterior monte carlo analysis to get posterior forecast PDFs. We will use the prior monte carlo outputs as the prior forecast PDF.

```
In [2]: import os
    import shutil
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import flopy
    import pyemu
```

flopy is installed in /Users/jeremyw/Dev/gw1876/activities_2day_mfm/notebooks/flopy

0	ut[4]:		type	transform	count	initial	value	\
		grsy5	grsy5	log	705		0	
		pp_ss2	pp_ss2	log	32		0	
		ss6_cn	ss6_cn	log	1		0	
		ss8_cn	ss8_cn	log	1		0	
		vka8_cn	vka8_cn	log	1		0	
		pp_ss1	pp_ss1	log	32		0	
		grhk5	grhk5	log	705		0	
		pp_hk1	pp_hk1	log	32		0	
		strt7_cn	strt7_cn	log	1		0	
		grsy4	grsy4	log	705		0	
		grss4	grss4	log	705		0	
		pp_strt2	pp_strt2	log	32		0	
		pp_hk2	pp_hk2	log	32		0	

strt6_cn	strt6_cn	108	g 1	0
pp_rech0	pp_rech0	108	g 32	0
sy8_cn	sy8_cn	log	g 1	0
grsy3	grsy3	log	g 705	0
flow	flow	log	g 1	0
pp_strt0	pp_strt0	108	g 32	0
vka7_cn	vka7_cn	108	g 1	0
vka6_cn	vka6_cn	108	g 1	0
hk8_cn	hk8_cn	108	g 1	0
sy6_cn	sy6_cn	108	g 1	0
grvka5	grvka5	log	g 705	0
grvka4	grvka4	log		0
drncond_k00	drncond_k00	log		0
hk7_cn	hk7_cn	log		0
grvka3	grvka3	log	_	0
pp_strt1	pp_strt1	log		0
pp_sy2	pp_sy2	log		0
strk	strk	log		0
grhk4	grhk4	108	_	0
grstrt5	grstrt5	log		0
pp_rech1	pp_rech1	108	_	0
rech5_cn	rech5_cn	log		-0.39794
grss5	grss5	108	_	0
pp_vka2	pp_vka2	log		0
pp_ss0	pp_ss0	108	_	0
grss3	grss3	log	,	0
pp_sy1	pp_sy1	log	,	0
grstrt3	grstrt3	log	,	0
sy7_cn	sy7_cn	log		0
strt8_cn	strt8_cn	log		0
grrech3	grrech3	log	,	0
pp_vka1	pp_vka1	log		0
ss7_cn	ss7_cn	log		0
welflux_k02	welflux_k02	log	,	0
hk6_cn	hk6_cn	log	_	0
rech4_cn	rech4_cn	log	_	0
welflux	welflux	log	,	0 to 0.176091
grhk3	grhk3	log	,	0
pp_hk0	pp_hk0	log	_	0
pp_sy0	pp_sy0	10g	-	0
pp_vka0	pp_vka0	108	-	0
grstrt4	grstrt4	108		0
grrech2	grrech2	108		0
0	01100112	-08	, , , ,	v
			-	

	upper bound	lower bound	standard deviation
grsy5	0.243038	-0.60206	0.211275
pp_ss2	1	-1	0.5
ss6_cn	1	-1	0.5

ss8_cn	1	-1	0.5
vka8_cn	1	-1	0.5
pp_ss1	1	-1	0.5
grhk5	1	-1	0.5
•	1	-1	0.5
pp_hk1	0.0211893	-0.0222764	0.0108664
strt7_cn	0.243038		0.010004
grsy4		-0.60206	0.211275
grss4	0.0011803	-1 -0.0222764	0.0108664
pp_strt2	0.0211893	-0.0222764 -1	0.0100604
pp_hk2	0.0211893	-0.0222764	0.0108664
strt6_cn			
pp_rech0	0.0413927	-0.0457575	0.0217875
sy8_cn	0.243038	-0.60206	0.211275
grsy3	0.243038	-0.60206	0.211275
flow	0.09691	-0.124939	0.0554622
pp_strt0	0.0211893	-0.0222764	0.0108664
vka7_cn	1	-1	0.5
vka6_cn	1	-1	0.5
hk8_cn	1	-1	0.5
sy6_cn	0.243038	-0.60206	0.211275
grvka5	1	-1	0.5
grvka4	1	-1	0.5
drncond_k00	1	-1	0.5
hk7_cn	1	-1	0.5
grvka3	1	-1	0.5
pp_strt1	0.0211893	-0.0222764	0.0108664
pp_sy2	0.243038	-0.60206	0.211275
strk	2	-2	1
grhk4	1	-1	0.5
grstrt5	0.0211893	-0.0222764	0.0108664
pp_rech1	0.0413927	-0.0457575	0.0217875
rech5_cn	-0.09691	-1	0.225772
grss5	1	-1	0.5
pp_vka2	1	-1	0.5
pp_ss0	1	-1	0.5
grss3	1	-1	0.5
pp_sy1	0.243038	-0.60206	0.211275
grstrt3	0.0211893	-0.0222764	0.0108664
sy7_cn	0.243038	-0.60206	0.211275
strt8_cn	0.0211893	-0.0222764	0.0108664
grrech3	0.0413927	-0.0457575	0.0217875
pp_vka1	1	-1	0.5
ss7_cn	1	-1	0.5
welflux_k02	1	-1	0.5
hk6_cn	1	-1	0.5
rech4_cn	0.0791812	-0.09691	0.0440228
welflux	0.176091 to 0.30103	-0.30103 to 0	0.0752575 to 0.11928
grhk3	1	-1	0.5

pp_hk0	1	-1	0.5
pp_sy0	0.243038	-0.60206	0.211275
pp_vka0	1	-1	0.5
grstrt4	0.0211893	-0.0222764	0.0108664
grrech2	0.0413927	-0.0457575	0.0217875

1.0.1 reduce the number of adjustable parameters

In [4]: par = pst.parameter_data

ss7_cn

1

This is the painful part: we cant use 10K+ pars because we cant wait around for that many runs and then the linear algebra of factoring a 10k+ by 10K+ matrix is also difficult. So that means we need to fix a lot a parameters #frownyface

```
In [5]: # grid-scale pars
        gr_pars = par.loc[par.pargp.apply(lambda x: "gr" in x), "parnme"]
        par.loc[gr_pars,"partrans"] = "fixed"
        pst.npar_adj
Out[5]: 620
In [6]: # these are the sfr conductance parameters - Ive left all 40 adjustable
        # but if you uncomment this, it will tie them into 1 parameter effectively
        strk_pars = par.loc[par.pargp=="strk","parnme"]
        p1 = strk_pars.iloc[0]
        par.loc[strk_pars.iloc[1:],"partrans"] = "tied"
        par.loc[strk_pars.iloc[1:],"partied"] = p1
        pst.npar_adj
In [7]: par.loc[par.pargp.apply(lambda x: "pp" in x), "pargp"].unique()
Out[7]: array(['pp_hk0', 'pp_hk1', 'pp_hk2', 'pp_rech0', 'pp_rech1', 'pp_ss0',
               'pp_ss1', 'pp_ss2', 'pp_strt0', 'pp_strt1', 'pp_strt2', 'pp_sy0',
               'pp_sy1', 'pp_sy2', 'pp_vka0', 'pp_vka1', 'pp_vka2'], dtype=object)
  Fix the storage pilot points - we still have layer-scale storage pars adjustable
In [8]: \#s_pars = par.loc[par.pargp.apply(lambda x: "pp" in x and ("ss" in x or "sy" in x)), "p
        par.loc[s_pars,"partrans"] = "fixed"
        pst.npar_adj
Out[8]: 620
In [9]: adj_par = par.loc[par.partrans=="log",:]
        adj_par.pargp.value_counts().sort_values()
Out[9]: hk7_cn
        vka6_cn
                        1
        ss6_cn
                        1
```

```
hk6_cn
                 1
rech4_cn
                 1
rech5_cn
                 1
vka8_cn
                 1
strt7_cn
                 1
ss8_cn
                 1
flow
                 1
strt8_cn
sy7_cn
                 1
vka7_cn
                 1
hk8_cn
                 1
                 1
sy8_cn
                 1
strt6_cn
                 1
sy6_cn
                 2
welflux
welflux_k02
                 6
drncond_k00
                10
pp_hk0
                32
pp_strt1
                32
pp_sy2
                32
pp_hk2
                32
                32
pp_ss1
pp_strt2
                32
                32
pp_hk1
pp_strt0
                32
                32
pp_vka1
pp_vka2
                32
                32
pp_vka0
                32
pp_rech0
pp_rech1
                32
                32
pp_ss2
pp_ss0
                32
pp_sy0
                32
                32
pp_sy1
                40
strk
Name: pargp, dtype: int64
```

fix the future recharge pilot points, vka in layers 1 and 3 and the initial condition pilot points (we still have layer-scale pars for each of these types)

Ok, thats better...so lets run PESTPP-GLM. We will use a single "base parameter" jacobian matrix as the basis for 6 super parameter iterations. Then we will draw 100 realizations from the

FOSM posterior parameter covariance matrix and run those 100 realizations to get the psoterior forecast PDFs

Here we see the distribution of phi values across the 100 posterior realizations. Should we accept all of these??? The theoretical phi we should accept is number of nonzero obs (14).

To get a "posterior" ensemble, we need to throw out the realizations with large phi - lets just take the 20 best:

```
In [15]: oe_pt = oe.loc[oe.phi_vector.sort_values().index[:20],:] #just take the 20 lowest phi
```

We can also load and plot the FOSM forecast results along side of the ensemble results:

```
In [17]: f_df = pd.read_csv(os.path.join(m_d, "freyberg_pp.pred.usum.csv"),index_col=0)
         f_df.index = f_df.index.map(str.lower)
         f_df
Out[17]:
                             prior_mean prior_stdev prior_lower_bound \
         name
                              -977.2390
                                           295.32800
                                                             -1567.8900
         fa_hw_19791230
         fa_hw_19801229
                              -351.2160
                                           409.77000
                                                             -1170.7600
         fa_tw_19791230
                              -453.0330
                                           409.35100
                                                             -1271.7400
         fa_tw_19801229
                                           506.73200
                                                              -904.5040
                               108.9600
         hds_00_013_002_000
                                39.6102
                                             3.96314
                                                                 31.6840
         hds_00_013_002_001
                                38.3838
                                             4.05782
                                                                 30.2681
                             prior_upper_bound post_mean post_stdev \
         name
         fa_hw_19791230
                                     -386.5840 -1353.4000 247.839000
                                      468.3240 -399.0650 335.565000
         fa_hw_19801229
                                      365.6690 -712.0900
                                                           170.592000
         fa_tw_19791230
         fa_tw_19801229
                                     1122.4200
                                                122.4170 263.672000
         hds_00_013_002_000
                                       47.5365
                                                  39.0899
                                                             0.273990
         hds_00_013_002_001
                                       46.4994
                                                  37.5112
                                                             0.687837
                             post_lower_bound post_upper_bound
         name
         fa_hw_19791230
                                   -1849.0800
                                                      -857.7250
         fa_hw_19801229
                                   -1070.2000
                                                       272.0660
         fa_tw_19791230
                                   -1053.2700
                                                      -370.9060
         fa_tw_19801229
                                    -404.9260
                                                       649.7600
         hds_00_013_002_000
                                                        39.6379
                                      38.5420
         hds_00_013_002_001
                                      36.1355
                                                        38.8868
In [18]: obs = pst.observation_data
         fnames = pst.pestpp_options["forecasts"].split(",")
         for forecast in fnames:
             ax = plt.subplot(111)
             oe_pt.loc[:,forecast].hist(ax=ax,color="b",alpha=0.5,normed=True)
             ax.plot([obs.loc[forecast,"obsval"],obs.loc[forecast,"obsval"]],ax.get_ylim(),"r"
             axt = plt.twinx()
             x,y = pyemu.plot_utils.gaussian_distribution(f_df.loc[forecast,"prior_mean"],f_df
             axt.fill_between(x,0,y,facecolor="0.5",alpha=0.25)
             x,y = pyemu.plot_utils.gaussian_distribution(f_df.loc[forecast,"post_mean"],f_df.
             axt.fill_between(x,0,y,facecolor="b",alpha=0.25)
             axt.set_ylim(0,axt.get_ylim()[1])
             axt.set_yticks([])
             ax.set_title(forecast)
             plt.show()
```


1.0.2 Setup of Tikhonov regularization

Now lets setup and use some formal regularization to bring the final phi up to around 14. We will use first-order regularization based on the covariance matrix we build earlier:

```
In [19]: cov = pyemu.Cov.from_binary(os.path.join(t_d,"prior_cov.jcb"))
In [20]: cnames = set(cov.row_names)
         pnames = set(pst.adj_par_names)
         cnames.symmetric_difference(pnames)
Out[20]: {'ss3024002',
          'sy3015015',
          'sy3006002',
          'vka4005004',
           'ss4016011',
          'strt3021007',
          'hk3025007',
           'strt5038014',
          'ss5036017',
           'sy5005001',
          'sy3028008',
           'sy3013001',
           'rech2028002',
           'ss3035012',
           'vka5029019',
          'rech3008007',
          'vka3012010',
          'hk4027011',
           'vka3003005',
          'vka5024013',
          'vka5000015',
          'ss4024018',
          'vka5021008',
          'hk5012010',
          'ss4009001',
           'sy3032008',
           'sy4008008',
           'ss5019016',
           'ss3020015',
          'hk3014010',
          'vka5026009',
           'hk5033014',
           'vka3006010',
           'sy5005018',
           'hk3039007',
           'strt5006015',
          'hk5010008',
           'strt4024002',
```

```
'sy5012019',
'strt4013003',
'ss3016017',
'sy4000008',
'vka4032002',
'ss3005002',
'hk4028007',
'vka3037011',
'strt5013015',
'strt4017012',
'hk4033018',
'hk5008010',
'strt5021015',
'sy5029001',
'strt4001006',
'vka5033002',
'rech2001018',
'sy3001007',
'hk3023011',
'rech3023018',
'strt016',
'hk5023008',
'strt108',
'vka3017018',
'sy5003013',
'sy5036012',
'ss5038010',
'strt3029003',
'strt4029002',
'hk5018003',
'sy4029017',
'sy5009018',
'hk3030005',
'sy5023012',
'rech3032012',
'vka5008010',
'vka3011013',
'hk5005014',
'sy4031012',
'strt5019012',
'vka4023018',
'sy3010018',
'vka4008003',
'sy5027005',
'rech2033010',
'sy5022009',
'rech122',
'rech2001011',
```

```
'strt3026016',
'sy3002014',
'sy5027007',
'strt3034011',
'strt3007003',
'ss4033011',
'strt5002019',
'vka4037017',
'hk5008017',
'rech3031007',
'vka3032013',
'ss3026017',
'hk5008002',
'rech2036004',
'strt5007016',
'hk5030004',
'vka3015012',
'ss4036009',
'vka3005007',
'ss4005009',
'rech2036013',
'ss5022016',
'ss5002012',
'ss4035016',
'sy3015011',
'sy4019011',
'rech2037010',
'vka5024009',
'sy5031001',
'ss3004008',
'hk5029010',
'strt4004006',
'hk5028016',
'vka5011017',
'sy3001004',
'hk4024009',
'vka3028000',
'hk5022010',
'ss3017018',
'sy3024017',
'ss5024015',
'hk5031011',
'vka3006005',
'ss4026001',
'strt3015012',
'hk4020019',
'vka5018003',
'ss4039010',
```

```
'vka3036006',
'strt3039007',
'vka3014018',
'vka5030008',
'hk4029017',
'strt218',
'ss3019018',
'sy3001012',
'sy5003004',
'strt3017002',
'strt4011001',
'ss5018000',
'vka4023002',
'vka3001011',
'hk4023017',
'sy5020012',
'hk3027010',
'strt4023005',
'sy3037007',
'sy4025009',
'strt3009010',
'vka3019002',
'rech2003011',
'sy5025010',
'hk5033008',
'strt009',
'sy4031007',
'hk5005003',
'sy4016014',
'sy3019013',
'ss3038006',
'ss5016009',
'strt5009002',
'hk5005008',
'rech3014015',
'vka3013008',
'ss4023004',
'sy3032014',
'sy3036016',
'vka3000005',
'vka3037015',
'vka5005018',
'hk4035018',
'rech3001015',
'rech3033006',
'sy3006000',
'strt4006014',
'hk3032002',
```

```
'strt4030010',
'ss5028016',
'vka4024014',
'strt5020012',
'vka212',
'sy4005012',
'hk3011000',
'rech3032010',
'ss5031017',
'hk3038010',
'hk3007017',
'rech2037013',
'sy4033012',
'ss5004003',
'vka4030014',
'strt4004004',
'vka5024017',
'strt3013017',
'hk5010009',
'vka5033009',
'rech3019003',
'vka4023019',
'hk3032016',
'ss5034004',
'vka4034009',
'sy4033003',
'ss5020009',
'sy3035014',
'vka3029013',
'vka5005007',
'sy3029006',
'vka5008018',
'sy4001001',
'ss3021007',
'sy4023010',
'ss3009012',
'strt3003015',
'vka3033018',
'vka201',
'vka4026006',
'ss3007002',
'sy4017002',
'hk3027000',
'ss5021018',
'hk3010010',
'ss3002003',
'sy4020016',
'vka5008001',
```

```
'strt4015018',
'sy5005015',
'vka4023008',
'ss4035007',
'sy3004016',
'rech3023004',
'strt5004017',
'hk4022007',
'rech3024004',
'strt5031009',
'sy3014008',
'strt4008014',
'hk4013000',
'vka5019008',
'rech2000014',
'sy4012016',
'strt4028008',
'ss4014019',
'ss3021000',
'strt3032004',
'hk5000008',
'ss3022016',
'rech3027005',
'hk3016017',
'hk3008008',
'strt4025008',
'sy4006000',
'hk4022015',
'strt4015009',
'ss5018011',
'hk4027006',
'hk5005013',
'hk5027015',
'ss5012014',
'strt5014018',
'ss5037008',
'strt5002015',
'vka4034011',
'sy3005014',
'strt4019017',
'strt5031017',
'sy3036014',
'vka3031016',
'strt3023013',
'hk5027010',
'strt5037013',
'vka3017016',
'hk3038015',
```

```
'ss4027007',
'sy5016008',
'rech2027004',
'strt4033007',
'rech2028007',
'vka4019012',
'strt4036014',
'hk4002002',
'sy5034012',
'hk4003015',
'hk5038016',
'rech3034019',
'hk3031015',
'ss3002008',
'hk4026008',
'ss3013003',
'strt5017019',
'rech2019003',
'strt4014002',
'vka5004011',
'hk3004005',
'rech2018013',
'hk5030014',
'rech2013017',
'ss5007011',
'strt3013013',
'sy5032010',
'vka5020010',
'rech105',
'sy4022008',
'ss3018018',
'vka5007008',
'vka3035010',
'vka5031006',
'sy5024003',
'ss4000006',
'ss4005011',
'sy5008013',
'strt3015013',
'strt4015016',
'sy4028009',
'hk3023001',
'rech2032009',
'strt3031004',
'hk5028006',
'hk4024016',
'strt5022009',
'hk4029015',
```

```
'hk3001008',
'ss3010019',
'hk3005017',
'ss5001006',
'hk5021001',
'ss3031019',
'sy3009019',
'vka4038014',
'strt5025016',
'sy5032019',
'ss4017018',
'sy5019011',
'hk4007015',
'strt5020018',
'ss3029019',
'sy3005013',
'ss5034016',
'ss3035018',
'strt3005004',
'hk3011010',
'strt5012012',
'hk3002012',
'rech3035004',
'rech2032013',
'ss4005006',
'vka3023007',
'hk4024005',
'strt3026015',
'strt5008014',
'sy5037017',
'strt5006002',
'rech2032008',
'sy4030002',
'strt5023011',
'sy3016017',
'hk3015001',
'strt5034008',
'sy4002014',
'hk3011002',
'sy5023002',
'strt4023002',
'sy5030011',
'ss5037005',
'rech2001000',
'strt4008000',
'sy5032016',
'strt5002014',
'sy3038012',
```

```
'vka3033005',
'sy4004000',
'sy5004011',
'vka4027018',
'ss5000003',
'rech3008000',
'vka3023006',
'ss3035016',
'strt3021010',
'vka5005013',
'ss5006006',
'sy4001014',
'ss3006008',
'rech2000011',
'hk4025015',
'rech3015003',
'sy4012008',
'sy4008003',
'hk4026010',
'vka3030009',
'ss3037008',
'ss5027016',
'vka3031014',
'sy5011009',
'ss4002019',
'hk3006005',
'sy4008012',
'strt5029001',
'vka5025018',
'hk3032005',
'rech3000019',
'sy4017018',
'ss3026003',
'sy5024018',
'hk3024011',
'sy5004000',
'sy5020015',
'strt4002014',
'sy3003010',
'ss5005017',
'rech3019011',
'vka5020003',
'rech2021011',
'vka5025009',
'sy5038014',
'hk5009010',
'hk4013015',
'sy3034003',
```

```
'sy3002004',
'vka5028011',
'sy3018018',
'rech2003013',
'ss3002005',
'hk5024015',
'sy4037017',
'hk5036012',
'rech2029002',
'vka4008014',
'ss3006018',
'vka4028003',
'sy3007017',
'sy4024010',
'ss3036018',
'vka3011008',
'rech3003003',
'rech3039014',
'vka4004000',
'strt029',
'sy3033012',
'vka4025018',
'hk3026012',
'ss5024011',
'sy3019019',
'strt4016002',
'strt4018009',
'sy4013009',
'ss5010018',
'ss5029003',
'strt5003019',
'rech3020003',
'strt4002012',
'hk3035017',
'vka4020016',
'hk4026019',
'ss5033007',
'ss4025013',
'sy4009014',
'strt3032009',
'sy4007012',
'sy3000004',
'sy3001005',
'ss3006004',
'vka5036007',
'sy4022002',
'vka5000017',
'ss4014000',
```

```
'rech2008008',
'strt3035010',
'hk4014018',
'vka3032007',
'hk5019003',
'hk5005004',
'ss4014014',
'hk3004013',
'strt3008001',
'hk3027008',
'vka3030019',
'vka030',
'strt3003011',
'sy4024000',
'vka4015016',
'rech2009016',
'sy5030009',
'hk3016019',
'strt4005009',
'strt4018002',
'rech3035017',
'sy4026001',
'rech2014017',
'hk4026001',
'hk3030001',
'hk5010003',
'rech3033019',
'vka4028016',
'hk3002005',
'rech3027019',
'hk4009017',
'strt3026018',
'vka3033007',
'ss5037006',
'vka4026008',
'sy3030001',
'sy5002005',
'ss3025017',
'ss5036018',
'sy5023013',
'ss5027008',
'strt4030008',
'sy4031006',
'hk3026003',
'sy5023011',
'strt4019012',
'vka5036010',
'hk3017003',
```

```
'ss3036006',
'rech3009000',
'strt4016013',
'vka3035012',
'vka4023016',
'sy3033014',
'hk5029013',
'sy4024011',
'sy3016018',
'vka4005018',
'rech2015015',
'strt5007001',
'strt5013017',
'sy3027007',
'vka3032005',
'ss4012000',
'ss4006012',
'strt3030009',
'strt3002012',
'sy4036012',
'vka4033010',
'hk5010001',
'hk3005014',
'ss3031006',
'sy5025008',
'rech2031013',
'ss4007015',
'strt3001016',
'strt5015009',
'strt4030009',
'ss3030004',
'rech2009010',
'sy4034015',
'hk5005015',
'vka3009003',
'vka4006019',
'vka4019003',
'strt3000016',
'vka3030004',
'sy5035017',
'hk5023014',
'ss3031012',
'strt3000015',
'rech3011019',
'vka5027004',
'sy3033003',
'sy3015002',
'rech2031009',
```

```
'ss4020019',
'vka5025001',
'hk3017013',
'hk4007006',
'strt5008008',
'hk4015017',
'vka4029005',
'hk5012011',
'sy3017001',
'ss4027005',
'strt5010011',
'rech2033002',
'rech2036008',
'sy5005004',
'ss5030012',
'sy5032007',
'rech3023019',
'ss3026012',
'hk3032007',
'ss3038015',
'strt4029001',
'strt4003002',
'strt3030019',
'ss4039009',
'vka3017001',
'vka015',
'strt4025007',
'hk5036016',
'sy5031000',
'vka3035004',
'hk3011001',
'hk4000012',
'rech3001010',
'vka5039011',
'ss5032005',
'ss5024002',
'strt4019014',
'sy5014013',
'sy3029017',
'rech3014000',
'strt3018010',
'sy3004004',
'ss5031009',
'strt3004004',
'sy5008000',
'vka3023015',
'vka4005009',
'sy4000017',
```

```
'hk3024005',
'vka4036006',
'vka4010003',
'strt5006019',
'sy4007004',
'vka3027016',
'vka4003006',
'sy3022000',
'sy5037015',
'hk5030000',
'vka220',
'ss3006003',
'hk4001009',
'ss3036011',
'vka3016010',
'hk3017002',
'sy5032002',
'hk4016013',
'vka4019019',
'strt3033005',
'hk3000007',
'strt4010015',
'sy5020009',
'sy5035009',
'vka5022012',
'hk4006009',
'sy5016011',
'vka5032007',
'rech2021018',
'vka4019015',
'sy5002001',
'strt4003015',
'ss5006016',
'rech2008011',
'strt5009009',
'sy4037005',
'ss4024000',
'hk5009000',
'vka4031012',
'strt4000018',
'strt5011010',
'rech131',
'rech3014008',
'ss4020003',
'ss4009010',
'rech2002001',
'strt3003008',
'ss5009014',
```

```
'sy5017002',
'vka5026000',
'rech2024016',
'sy3026003',
'strt5010015',
'hk4039012',
'sy4028007',
'vka3016013',
'ss5031006',
'hk5002008',
'sy5032011',
'rech2013014',
'rech3028008',
'hk5029005',
'strt018',
'ss3027005',
'hk3008010',
'strt126',
'strt5033010',
'rech3006003',
'vka4019018',
'sy5039007',
'strt5017017',
'ss3029000',
'vka3004012',
'rech3004008',
'ss4028005',
'rech2020012',
'ss3011003',
'hk5009017',
'ss4024003',
'hk3023006',
'hk3036008',
'strt4024001',
'rech2017002',
'sy5015003',
'hk4005015',
'hk3018019',
'sy5018017',
'strt3006010',
'hk4019001',
'strt5025009',
'ss5028015',
'strt3033017',
'sy4005003',
'vka4003010',
'vka5037010',
'ss5025012',
```

```
'rech2006002',
'sy5012017',
'hk5019014',
'ss4034003',
'hk5021010',
'vka4008011',
'sy4030016',
'rech2026007',
'strt3005017',
'strt4035005',
'vka5010015',
'ss4021015',
'sy3031014',
'hk5027017',
'sy3038016',
'rech2020003',
'hk3007019',
'strt3032006',
'sy5008009',
'hk3026010',
'hk4017003',
'sy4003006',
'hk3017009',
'hk5007006',
'hk3015008',
'strt3036007',
'sy4027007',
'ss4033013',
'hk3000016',
'vka3024004',
'ss5028010',
'strt3038010',
'rech3031002',
'ss4022009',
'hk4009015',
'strt4034016',
'hk4005014',
'vka4037012',
'vka5013012',
'hk3035007',
'strt3001005',
'vka5034013',
'rech3005009',
'rech2038012',
'hk4003011',
'vka3013017',
'ss3005014',
'vka4001001',
```

```
'hk5024017',
'hk3012016',
'sy5021018',
'strt3012018',
'ss4022018',
'ss3024000',
'hk3021000',
'strt3028007',
'vka5021003',
'rech119',
'vka5028018',
'hk5001006',
'strt111',
'vka3008000',
'strt5014011',
'vka5025002',
'vka5004019',
'ss5033010',
'vka3032009',
'ss5001001',
'vka4024012',
'strt4009011',
'vka4029000',
'strt3033007',
'sy5027019',
'hk4025016',
'vka001',
'vka5034014',
'rech3010003',
'sy5036017',
'strt4000019',
'sy4023009',
'hk4015015',
'sy3003011',
'rech2012002',
'ss5026011',
'strt3009003',
'ss5028000',
'ss3003008',
'vka3030007',
'hk5001016',
'vka3012016',
'hk3029015',
'sy5028014',
'vka4003019',
'ss4002003',
'strt3002018',
'strt5024010',
```

```
'ss3005015',
'vka5037012',
'sy3005011',
'strt3020011',
'rech2034004',
'ss4015009',
'strt5007012',
'strt4007004',
'sy4000000',
'vka4031001',
'ss4002011',
'sy3031006',
'vka5023015',
'vka4019001',
'vka5010003',
'ss5011003',
'strt4027006',
'rech2038007',
'vka3032016',
'rech2002004',
'hk5032006',
'rech3020001',
'rech2027008',
'ss3009014',
'hk3032004',
'hk5033009',
'rech2029000',
'ss5003004',
'strt5013019',
'rech3000004',
'rech3022000',
'vka4013000',
'vka5021006',
'sy5032015',
'strt3001002',
'ss3030018',
'hk5007017',
'sy3026013',
'vka3020016',
'strt5004019',
'strt5013013',
'sy5016015',
'vka5002007',
'ss5033006',
'sy3018001',
'rech2007013',
'sy3035011',
'ss5005004',
```

```
'ss5025008',
'strt3000019',
'rech2031016',
'hk5038013',
'rech3022014',
'vka5011010',
'strt3011016',
'hk4002004',
'hk4010009',
'ss5004015',
'rech3002008',
'ss3012018',
'sy4007009',
'rech2007001',
'rech2029011',
'sy4037010',
'ss5011018',
'ss4029004',
'strt5028006',
'ss4003003',
'strt3013019',
'strt4024009',
'ss3005007',
'hk3010019',
'ss3034014',
'sy3022015',
'rech2010000',
'sy4006017',
'sy4025003',
'strt3024014',
'ss4011001',
'ss5004002',
'sy4021014',
'vka3026013',
'sy4037008',
'hk5015016',
'ss3006014',
'hk3002010',
'sy3027017',
'strt5010008',
'rech3021016',
'ss4032003',
'ss5021019',
'sy4002018',
'rech3005000',
'rech2014010',
'ss3000016',
'rech2030018',
```

```
'hk3037015',
'ss4025005',
'hk3007011',
'sy3008008',
'vka3021014',
'strt3008015',
'sy4037006',
'vka200',
'sy3031000',
'sy3039009',
'ss5018016',
'hk3019003',
'sy4022011',
'hk5004004',
'hk5002007',
'sy4015017',
'ss4030007',
'ss5030018',
'vka3013009',
'sy3017009',
'sy5036004',
'strt4026000',
'vka5031011',
'ss5031010',
'vka4035012',
'hk5035014',
'strt3001008',
'vka5026013',
'strt4024000',
'sy5008014',
'sy5026015',
'strt4014001',
'ss3019011',
'ss5028014',
'sy3031009',
'vka3000007',
'ss4013008',
'rech2027015',
'hk4001006',
'rech2035015',
'sy5011018',
'vka3013018',
'vka225',
'hk5029003',
'hk5024007',
'hk5021002',
'hk5031009',
'sy4015002',
```

```
'rech3006004',
'strt4022002',
'rech2030001',
'strt5035011',
'strt5020015',
'ss3014013',
'sy4018019',
'vka4022006',
'sy4030010',
'strt5024004',
'hk3008015',
'sy3011010',
'sy5015019',
'rech2025006',
'hk4010003',
'hk3022001',
'rech3017008',
'ss5032003',
'rech2031000',
'strt5026018',
'vka3029014',
'hk5018013',
'vka4002008',
'vka3027010',
'ss5037014',
'ss4015003',
'hk4005009',
'hk5019010',
'ss5012017',
'vka4035017',
'strt4031012',
'sy3030009',
'rech2027010',
'strt4008010',
'hk4033005',
'sy4001008',
'rech3002016',
'sy4026008',
'rech2006013',
'vka3018014',
'strt3003010',
'sy3017016',
'rech3032009',
'sy4007001',
'hk4003007',
'hk5015002',
'ss5024000',
'rech3021015',
```

```
'vka3031011',
          'hk3027005',
          ...}
In [21]: pyemu.helpers.first_order_pearson_tikhonov(pst,cov)
getting CC matrix
processing
In [22]: pst.prior_information.head()
Out [22]:
                                                               equation
                                                                           obgnme \
        pilbl
        pcc_1 1.0 * log(dc0000390005) - 1.0 * log(dc0000390006) = 0.0 regul_cc
        pcc_2 = 1.0 * log(dc0000390005) - 1.0 * log(dc0000390007) = 0.0
                                                                         regul cc
        pcc_3 1.0 * log(dc0000390005) - 1.0 * log(dc0000390008) = 0.0
                                                                         regul_cc
        pcc_4 = 1.0 * log(dc0000390005) - 1.0 * log(dc0000390009) = 0.0
                                                                         regul_cc
        pcc_5 1.0 * log(dc0000390005) - 1.0 * log(dc0000390010) = 0.0 regul_cc
               pilbl
                         weight
        pilbl
        pcc_1 pcc_1 0.904837
        pcc_2 pcc_2 0.818731
        pcc_3 pcc_3 0.740818
        pcc_4 pcc_4 0.670320
        pcc_5 pcc_5 0.606531
In [23]: shutil.copy2(os.path.join(m_d, "freyberg_pp.jcb"),os.path.join(t_d, "restart_pp.jcb"))
Out[23]: 'template/restart_pp.jcb'
In [24]: pst.pestpp_options["base_jacobian"] = "restart_pp.jcb"
        pst.reg_data.phimlim = pst.nnz_obs
        pst.reg_data.phimaccept = pst.reg_data.phimlim * 1.1
        pst.write(os.path.join(t_d, "freyberg_pp.pst"))
In [25]: pyemu.os_utils.start_slaves(t_d,"pestpp-glm","freyberg_pp.pst",num_slaves=20,slave_ro
                                    master_dir=m_d)
In [26]: df = df=pd.read_csv(os.path.join(m_d,"freyberg_pp.post.obsen.csv"),index_col=0)
         oe = pyemu.ObservationEnsemble.from_dataframe(pst=pst,df=df)
In [27]: ax = oe.phi_vector.hist() #bins=np.linspace(0,100,20))
```


Same as before, to get a "posterior" ensemble, we need to throw out the realizations with large phi - lets just take the 20 best:

```
In [28]: oe_pt = oe.loc[oe.phi_vector.sort_values().index[:20],:]
In [29]: f_df = pd.read_csv(os.path.join(m_d, "freyberg_pp.pred.usum.csv"), index_col=0)
         f_df.index = f_df.index.map(str.lower)
         f_df
Out [29]:
                             prior_mean prior_stdev prior_lower_bound \
         name
         fa_hw_19791230
                              -977.2390
                                            295.32800
                                                              -1567.8900
         fa_hw_19801229
                              -351.2160
                                            409.77000
                                                              -1170.7600
         fa tw 19791230
                              -453.0330
                                            409.35100
                                                              -1271.7400
         fa_tw_19801229
                               108.9600
                                            506.73200
                                                               -904.5040
         hds_00_013_002_000
                                39.6102
                                              3.96314
                                                                 31.6840
         hds_00_013_002_001
                                38.3838
                                              4.05782
                                                                 30.2681
                             prior_upper_bound post_mean post_stdev \
         name
         fa_hw_19791230
                                      -386.5840 -1354.3600
                                                            249.469000
         fa_hw_19801229
                                       468.3240 -421.9530
                                                            338.242000
         fa_tw_19791230
                                       365.6690
                                                -751.4970
                                                            175.174000
         fa_tw_19801229
                                     1122.4200
                                                   72.8314
                                                            267.254000
         hds_00_013_002_000
                                        47.5365
                                                   39.1835
                                                              0.281947
         hds_00_013_002_001
                                        46.4994
                                                   37.6265
                                                              0.691057
```

```
post_lower_bound post_upper_bound
name
fa_hw_19791230
                          -1853.2900
                                              -855.4170
fa_hw_19801229
                          -1098.4400
                                               254.5310
fa_tw_19791230
                          -1101.8400
                                              -401.1500
fa_tw_19801229
                           -461.6770
                                               607.3400
hds_00_013_002_000
                             38.6196
                                                39.7474
hds_00_013_002_001
                             36.2444
                                                39.0086
```


