802.11

Prof. Marcelo A. Rauh Schmitt Redes de Computadores

Nomenclatura

WiFi (http://www.wi-fi.org)

WLAN (Wireless LAN)

802. I I (padrões da IEEE)

Banda utilizada pelas WLANs

- Banda ISM (industrial, científica e médica)
 - 902 a 928MHz
 - 2,4 GHz a 2,5GHz
 - 5,725 GHz a 5,850GHz
- Bandas utilizadas
 - 2,4 GHz
 - 5 GHs

- BSS (Basic Service Set)
 - Estações sem fio
 - No máximo um AP (Access Point) estação base

BSS: Basic service set AP: Access point

Rede ad hoc (BSS sem AP)

Rede de infra-estrutura (BSS com AP)

Tipos de serviços (BSS ou ESS)

- ESS (Extended Service Set)
 - União de dois ou mais BSS
 - APs unem os BSS

Controle de acesso ao meio

- Impossibilidade de detectar colisões
 - Dispositivo mais caro
 - Estação oculta

B e C estão ocultas uma em relação à outra no que diz respeito a A

Controle de acesso ao meio

- WLAN usa serviço com confirmação ACK
- Três métodos
 - Escuta o meio e envia determinado pelo threshhold do AP
 - Não evita colisões
 - Modo de operação comum nos APs (threshhold)
 - DCF Distributed Coordination Function
 - Importante quando há estações ocultas
 - Utiliza o protocolo CSMA/CA
 - PCF Point Coordination Function
 - Pouco implementado
 - Opcional
 - Utiliza um método de varredura das estações que estão prontas para transmitir

CSMA/CA (Collision Avoidance)

Quadro 2.2 Passos	do Protocolo	CSMA/CA
-------------------	--------------	---------

	Quadro 2.2 Passos do Protocolo CSMA/CA							
s	Descrição							
	Após perceber que o canal está livre, a estação não inicia nenhuma transmissão, aguardando um tempo determinado chamado DIFS (<i>DCF Interframe Space</i>). Isso acontece porque uma estação distante pode já ter iniciado a transmissão.							
	Se o meio continua livre após DIFS, é escolhida uma janela de contenção baseada em fatias de tempo. Tal escolha é feita de forma semelhante ao algoritmo de backoff das redes Ethernet. A cada intervalo de tempo que constitui essa janela de contenção, o meio é testado. Se estiver ocupado, o temporizador é congelado; senão, é decrementado.							
	Após a expiração do tempo de contenção, a comunicação da mensagem propriamente dita ainda não é feita. A estação envia um pedido de transmissão (RTS – Request to Send).							
	Ao receber o RTS, a estação destino aguarda um intervalo de tempo denominado SIFS (<i>Short Interframe Space</i>) e envia uma confirmação para a origem (CTS – <i>Clear to Send</i>).							
	Após aguardar também o SIFS, a estação origem envia o quadro com os dados ao destino.							
	Por último, após o SIFS, a estação destino envia novamente uma confirmação de recebimento correto dos dados (ACK – <i>Acknowledgement</i>).							

• Tempo de transmissão incluído no RTS

Formato do quadro 802. I I

- Tamanho total 2346 bytes
 - Cabeçalho 34 bytes
 - Dados 2312 bytes

2 bytes	2 bytes	6 bytes	6 bytes	6 l	bytes	2 byte	s 6 bytes		0 to 2.3	12 byte	es	4 bytes
FC	D	Endereço 1	Endereço 2	Ende	ereço 3	SC	Endereço	4	Corpo	do fram	e	FCS
Versão d protocol	1 100	Su	btipo	To DS	From DS	More flag	Tentar novamente	Pwr mgt	More data	WEP	Rsvd	
2 bits	2 bit	s 4	bits	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	•

Formato do quadro 802.11

- CQ (Controle do Quadro 2 bytes): esse campo define o tipo de quadro (gerenciamento, controle e dados) e algumas informações de controle (fragmentação, gerenciamento de energia, criptografia, etc).
- D (Duração 2 bytes): em quadros de dados, esse campo define a duração da transmissão, o que é muito importante para que as outras estações estabeleçam o NAV.
- Endereços (6 bytes para cada endereço): há quatro campos de endereços que serão detalhados na próxima seção.
- CS (Controle de Sequência 2 bytes): campo utilizado para realizar o controle de fluxo. Cada quadro é enviado com um número de sequência, permitindo a confirmação do recebimento.
- Corpo do quadro (de 0 a 2312 bytes: essa área é reservada para o transporte dos dados, isto é, aquilo que foi entregue pelo nível que está acima do enlace.
- FCS (Frame Check Sequence 4 bytes): esse campo contém código CRC-32 para controle de erro.

Tipos de quadros

- Quadros de gerenciamento são aqueles trocados entre estações sem fio e APs para iniciarem uma comunicação.
- Quadros de controle são aqueles usados para acessar o canal e confirmar recebimento de dados (RTS, CTL e ACK).
- Quadros de dados são os que carregam as informações do nível de rede.

Endereçamento

Mesmos endereços MAC da rede Ethernet

a. Caso 1

c. Caso 3

b. Caso 2

d. Caso 4

Padrões existentes

Quadro 2.3 Características principais dos padrões de WLAN

	802.11a	802.11b	802.11g	802.11n
Velocidade máxima	54Mbps	11Mbps	54Mpps	150-600Mbps
Banda ISM	5GHz	2,4GHz	2,4GHz	2,4 ou 5GHz
Quantidade de canais	23	Mundo - 13 Estados Unidos - 11 Japão - 14	Mundo - 13 EUA - 11	Mundo - 13 (2,4GHz - 20MHz) Estados Unidos - 11 (2,4GHz - 20MHz) 24 (5GHz - 20MHz) 12 (5GHz - 40MHz)
Canais que não se sobrepõem	-	1,6,11,14	1,6,11	1,6,11 (2,4GHz - 20MHz)
Sinalização	OFDM ¹	HR- DSS ²	OFDM	MIMO-OFDM

Sobreposição de canais

802.11b

802.11b channel to frequency map [2]

Channel	Center Frequency	Frequency delta	Channel Width	Overlaps Channels		
1	2.412 GHz	5 MHz	2.401-2.423 GHz	2		
2	2.417 GHz	5 MHz	2.406-2.428 GHz	1,3		
3	2.422 GHz	5 MHz	2.411-2.433 GHz	2,4		
4	2.427 GHz	5 MHz	2.416-2.438 GHz	3,5		
5	2.432 GHz	5 MHz	2.421-2.443 GHz	4,6		
6	2.437 GHz	5 MHz	2.426-2.448 GHz	5,7		
7	2.442 GHz	5 MHz	2.431-2.453 GHz	6,8		
8	2.447 GHz	5 MHz	2.436-2.458 GHz	7,9		
9	2.452 GHz	5 MHz	2.441-2.463 GHz	8,10		
10	2.457 GHz	5 MHz	2.446-2.468 GHz	9,11		
11	2.462 GHz	5 MHz	2.451-2.473 GHz	10,12		
12	2.467 GHz	5 MHz	2.456-2.478 GHz	11,13		
13	2.472 GHz	5 MHz	2.461-2.483 GHz	12		
14	2.484 GHz	12 MHz	2.473-2.495 GHz			

Canais não sobrepostos

Non-Overlapping Channels for 2.4 GHz WLAN

802.11b (DSSS) channel width 22 MHz

802.11g/n (OFDM) 20 MHz ch. width - 16.25 MHz used by sub-carriers

802.11n (OFDM) 40 MHz ch. width - 33.75 MHz used by sub-carriers

Segurança

- WEP
 - RC4 com 40 ou 104 bits
 - Não é seguro
- WPA
 - TKIP
 - Mais seguro
 - Compatível com o WEP em termos de hardware
- WPA2
 - AES
 - Seguro
- Modos do WPA e WPA2
 - Personal chave compartilhada
 - Enterprise autenticação em outro servidor