Sample size and z test for two independent Bernoulli samples with the same size

Introduction: things to keep in mind about ... 1

Bernoulli random variables and normal approximation of the sample mean

Given X_1, \ldots, X_{n_1} a random sample of size n_1 drawn from a Bernoulli population X of parameter p_1 and Y_1, \ldots, Y_{n_2} a random sample of size n_2 drawn from a Bernoulli population Y of parameter p_2 independent of X, we are interested in studying the relationship between sample size and effect size $|p_1 - p_2|$ in comparing the sample mean $\overline{X}_{(n_1)} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$ and $\overline{Y}_{(n_2)} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$ at a given significance level α and, in a second step, with a given power $1 - \beta$. For our purposes we use samples of the same size, namely $n_1 = n_2 = n$ so we can refer to the sample means simply as: \overline{X} and \overline{Y} .

Remark: in general the effect size for comparing two means is given by $\frac{|\mu_0 - \mu_1|}{\sigma}$; as it will be clear soon, here, since we use an upper bound for the standard deviation of a Bernoulli distribution, we can neglect σ .

The expected value and the variance of a Bernoulli random variable of parameter p are respectively p and $p \cdot (1-p)$. It is also easy to show that the variance is bounded above by 0.25, at the maximum is reached at p = 1/2. Therefore $E(X) = p_1$, $var(X) = p_1 \cdot (1 - p_1) \le 1/4$ and $E(Y) = p_2$, $var(Y) = p_2 \cdot (1 - p_2) \le 1/4$. Being the sample mean an unbiased estimator for the expected value, it holds that $E(\overline{X} = p_1)$ and $E(\overline{Y} = p_2)$.

Let $D = \overline{X} - \overline{Y}$.

It holds that: $E(D) = p_1 - p_2$ and, since $X \perp Y$, it also holds that: $var(D) = var\left(\overline{X} - \overline{Y}\right) = \frac{var\left(\sum_{i=1}^{n_1} X_i\right) + var\left(\sum_{i=1}^{n_1} Y_i\right)}{n^2} = \frac{p_1 \cdot (1 - p_1) + p_2 \cdot (1 - p_2)}{n}$, that implies

$$\sigma_D = \sqrt{\frac{p_1 \cdot (1 - p_1) + p_2 \cdot (1 - p_2)}{n}} \le \sqrt{\frac{1}{2 \cdot n}}$$
 (1)

Let D^* the standardization of D, namely

$$D^* = \frac{D - E(D)}{\sqrt{var(D)}} = \frac{(\overline{X} - \overline{Y}) - (p_1 - p_2)}{\sqrt{\frac{p_1 \cdot (1 - p_1) + p_2 \cdot (1 - p_2)}{n}}}$$
(2)

The sum of n independent and identically distributed Bernoulli random variables with parameter p follows a binomial distribution whose parameters are n and p. If we suppose $n \gg 1$, the binomial distribution can be approximated by a Normal distribution, and the approximation is already good starting from values of non the order of magnitude of 10^2 . In this approximation it holds that D follows a Normal distribution and $D^* \sim N(0,1)$, so it is possible to compute a sufficient sample size starting from the Normal random variable. Remark: This observation is important because, in order to apply the Central Limit Theorem, n must tend to infinity; if the theorem is used to find the value of n, it is necessary to verify whether for the original distribution (in our case a Bernoulli distribution) that value is large enough to allow a good approximation of the sample mean with a normal distribution.

1.2 standard Normal variables

The cumulative distribution function of a standard Normal variable D^* is called Φ , that is $\Phi(x) = P(D^* \le x)$.

As the standard Normal distribution is an even function, called z_{α} the α -quantile of the distribution, it holds that

$$z_{\alpha} = -z_{1-\alpha}$$
, and, equivalently: $|z_{\alpha}| = |z_{1-\alpha}|$ (3)

Remark: sometimes in the literature z_{α} is referred to as the upper quantile α and is such that $P(D^* \geq z_{\alpha})$. It is easy to show that

$$P(|D^*| \le k) = 2 \cdot \Phi(k) - 1$$
 (4)

Since a linear function of a Normal random variable is still a Normal random variable, it holds that

$$D \sim N\left(E(D), \sqrt{var(D)}\right)$$
 (5)

1.3 hypothesis testing

Consider the **null hypothesis** $H_0: p_1 = p_2 = p$ vs. $H_1: p_1 \neq p_2$.

We commit a **type I error** if we reject H_0 when H_0 is true.

The significance level α of the test is the probability of committing a type I error, that is $\alpha = P_{H_0}$ (reject H_0).

Given a statistic T_n , a **critical region** C at significance level α is the region of rejection of H_0 , that is C is such that $P_{H_0}(T_n \in C) = \alpha$.

We commit a **type II error** if we do not reject H_0 when H_0 is false.

If we call β the probability of committing a type II error, that is $\beta = P_{H_1}$ (not reject H_0), the **power** of the test is the probability $1 - \beta$ of rejecting H_0 when H_0 is false, that is $1 - \beta = P_{H_1}$ (reject H_0).

2 Sample size at a given significance level α for a two-sided test

Consider the null hypothesis $H_0: p_1 = p_2 = p$ vs. $H_1: p_1 \neq p_2$ at significance level α (assume $\alpha < 0.5$ without loss of generality). Requiring a **significance level** α is equivalent to requiring

$$P_{H_0}(|D>c|) \le \alpha \tag{6}$$

Let us call c > 0 critical value.

If If H_0 is true, then E(D) = 0, and

$$\alpha \ge P_{H0}(|D| \ge c) =$$

$$P_{H0}(|D| \ge c) = P(|D/\sigma_D| \ge c/\sigma_D) =$$

$$P(|D^*| \ge c/\sigma_D) = 2 - 2 \cdot \Phi(c/\sigma_D)$$
(7)

that implies

$$\Phi\left(\frac{c}{\sigma_D}\right) \ge 1 - \frac{\alpha}{2} \tag{8}$$

The minimum value c/σ_D satisfying the equation in (8) is therefore the $(1 - \alpha/2)$ -quantile of the standard Normal distribution, and we **reject** H_0 if $|D^*| \geq z_{1-\alpha/2}$, that is if

$$\left| \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{2 \cdot p \cdot (1 - p)}{n}}} \right| \ge z_{1 - \alpha/2} \tag{9}$$

In order to turn $\left| \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{2 \cdot p \cdot (1-p)}{n}}} \right|$ into a statistic (getting rid of the unknown parameter p), note that

$$\sigma_D \le \sqrt{\frac{1}{2 \cdot n}} \text{ implies } c/\sigma_D \ge \sqrt{2 \cdot n} \cdot c$$
 (10)

and that, being Φ is a monotonic increasing function, it holds that

$$\Phi(c/\sigma_D) \ge 1 - \alpha/2 \text{ for } c/\sigma_D \ge z_{1-\alpha/2} \tag{11}$$

Therefore we can reason in the worst case

$$\left| \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{2 \cdot p \cdot (1 - p)}{n}}} \right| \ge \left| \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{1}{2 \cdot n}}} \right| \ge z_{1 - \alpha/2} \tag{12}$$

Solving with respect to n we obtain:

$$n \ge \frac{1}{2} \cdot \left(\frac{z_{1-\alpha/2}}{\overline{X} - \overline{Y}}\right)^2 \tag{13}$$

If we want to be able to detect a significant difference at least equal to d (effect size) at level α it is therefore sufficient that

$$n \ge \frac{1}{2} \cdot \left(\frac{z_{1-\alpha/2}}{\overline{X} - \overline{Y}}\right)^2 \ge \frac{1}{2} \cdot \left(\frac{z_{1-\alpha/2}}{d}\right)^2 \tag{14}$$

It is worth to note that n is inversely proportional to the square of the effect size.

Fig. 4 shows the sufficient sample size n as a function of effect size at different significance levels α .

Figura 1: n as a function of effect size

3 Sample size at a given significance level α and power $1 - \beta$ for a two-sided test

Now we take int account also type II error: not reject H_0 when it is false, whose probability is β . If H_1 is true, we have to explicitly take into account the two means p_1 and p_2 , since $E(D) = p_1 - p_2$. So let's restart from the very beginning. First of all recall that (type I error):

$$\alpha \ge P_{H0}(|D| \ge c) = 1 - \left(2 \cdot \Phi\left(\frac{c}{\sigma_D}\right) - 1\right) \text{ that implies}$$

$$\Phi\left(\frac{c}{\sigma_D}\right) = 1 - \frac{\alpha}{2} \text{ and the critical values } c_1 = z_{1-\frac{\alpha}{2}} \cdot \sigma_D \text{ and } c_2 = -z_{1-\frac{\alpha}{2}} \cdot \sigma_D = z_{\frac{\alpha}{2}} \cdot \sigma_D.$$
(15)

Then we require that (type II error): $P_{H1}(|D| \le c) \le \beta$, or, equivalently, that $P_{H1}(|D| \ge c) \ge 1 - \beta$, that is

$$1 - \beta \leq P_{H1}(|D| \geq c) = P_{H1}(|D| \geq z_{1-\frac{\alpha}{2}} \cdot \sigma_{D}) =$$

$$P_{H1}\left(D > z_{1-\frac{\alpha}{2}} \cdot \sigma_{D} \cup D \leq z_{\frac{\alpha}{2}} \cdot \sigma_{D}\right) = P_{H1}\left(D > z_{1-\frac{\alpha}{2}} \cdot \sigma_{D}\right) + P_{H1}\left(D \leq z_{\frac{\alpha}{2}} \cdot \sigma_{D}\right) =$$

$$P\left(\frac{D - (p_{1} - p_{2})}{\sigma_{D}} > z_{1-\frac{\alpha}{2}} - \frac{(p_{1} - p_{2})}{\sigma_{D}}\right) + P\left(\frac{D - (p_{1} - p_{2})}{\sigma_{D}} \leq z_{\frac{\alpha}{2}} - \frac{(p_{1} - p_{2})}{\sigma_{D}}\right) =$$

$$P\left(D^{*} > z_{1-\frac{\alpha}{2}} - \frac{(p_{1} - p_{2})}{\sigma_{D}}\right) + P\left(D^{*} \leq z_{\frac{\alpha}{2}} - \frac{(p_{1} - p_{2})}{\sigma_{D}}\right) =$$

$$1 - \Phi\left(z_{1-\frac{\alpha}{2}} - \frac{(p_{1} - p_{2})}{\sigma_{D}}\right) + \Phi\left(z_{\frac{\alpha}{2}} - \frac{(p_{1} - p_{2})}{\sigma_{D}}\right)$$

$$(16)$$

Taking the upper bound $\sqrt{\frac{1}{2 \cdot n}}$ for σ_D , the plot of $1 - \beta$ against $(p_1 - p_2)$ for different significance levels and in the particular case of n = 100 is shown in Figure 2, while in Figure 3 the power function is plot for different sample sizes in the particular case of $\alpha = 0.05$.

Note that $1-\beta$ is an even function, see the plot it against $|p_1-p_2|$. Therefore we can consider the case $(p_1-p_2)>0$. It holds that $\Phi\left(z_{\frac{\alpha}{2}}-\frac{(p_1-p_2)}{\sigma_D}\right)<\alpha/2$, and we can neglect it, getting

$$\beta \lessapprox \Phi \left(z_{1 - \frac{\alpha}{2}} - \frac{(p_1 - p_2)}{\sigma_D} \right) \tag{17}$$

Therefore

$$z_{\beta} \simeq z_{1-\frac{\alpha}{2}} - (p_1 - p_2)/\sigma_D$$
 and, for (3) it holds that: $-z_{1-\beta} \simeq z_{1-\frac{\alpha}{2}} - (p_1 - p_2)/\sigma_D$ (18)

Figura 2: power as a function of effect size for different significance levels

Figura 3: power as a function of effect size for different sample sizes

Considering the worst case, that is $\sigma_D \leq \sqrt{\frac{1}{2 \cdot n}}$, from:

$$z_{1-\beta} + z_{1-\frac{\alpha}{2}} \simeq d/\sigma_D \le \sqrt{2 \cdot n} \cdot d \tag{19}$$

it is possible to compute the sufficient sample size n needed to detect a minimum effect size d at α significance level and power $1 - \beta$, as follows:

$$n \ge \frac{1}{2} \cdot \left(\frac{z_{1-\beta} + z_{1-\frac{\alpha}{2}}}{d}\right)^2 \tag{20}$$

It is worth to note that n is inversely proportional to the square of the effect size. Fig. ?? shows the sufficient sample size n as a function of effect size at different powers at the given significance level $\alpha = 0.05$.

Figura 4: n as a function of effect size