METHOD FOR MANUFACTURING THIN FILM DEVICE

Patent number:

JP2003031778

Publication date:

2003-01-31

Inventor:

UTSUNOMIYA SUMIO SEIKO EPSON CORP

Applicant:

Classification:
- international:

G02F1/1368; G09F9/30; G09F9/35; H01L21/336; H01L27/12; H01L29/786; H05B33/02; G02F1/13; G09F9/30; G09F9/35; H01L21/02; H01L27/12;

H01L29/66; H05B33/02; (IPC1-7): H01L27/12; G02F1/1368; G09F9/30; G09F9/35; H01L21/336;

H01L29/786; H05B33/02

- european:

Application number: JP20010213332 20010713 Priority number(s): JP20010213332 20010713

Report a data error here

Abstract of JP2003031778

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of connecting a new element from a rear surface of the device by using a release transfer technique. SOLUTION: A method for manufacturing a thin film device comprises the steps of releasing an element forming layer (3) formed on one substrate (1), and transferring the layer to other substrate (5). The method further comprises the steps of opening a connecting hole (37) at an exposed surface of the layer (3) inverted by transferring to allow an inner element to be connected, and forming a new element (38) on the exposed surface. Thus, wiring of an element forming layer to its exterior, connection of the electrode, thin film element or the like can be easily assured even by the manufacturing steps of one time release and transfer.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(II)特許出願公開番号 特開2003-31778

(P2003-31778A) (43)公開日 平成15年1月31日(2003.1.31)

(51) Int. Cl. 7	識別記号	FI			テーマコード (参考)
H01L 27/12		H01L 27/12		В	2H092
G02F 1/1368		G02F 1/1368			3K007
G09F 9/30	338	G09F 9/30	338		5C094
	365		365	Z	5F110
9/35		9/35			
	審査請求	未請求 請求項の数14	OL	(全7)	頁) 最終頁に続く
(21)出願番号 (22)出願日	特願2001-213332(P2001-213332) 平成13年7月13日(2001.7.13)	(72)発明者 宇都宮	・エプソ 宿区西 純夫 i訪市大利 ン株式会 08	新宿 2 丁 知 3 丁目 会社内	会社 「目4番1号 日3番5号 セイコ (外2名)

最終頁に続く

(54) 【発明の名称】薄膜装置の製造方法

(57)【要約】

【課題】 剥離転写技術を用いて、半導体装置の裏面から新たな素子を接続可能な半導体装置を提供する。

【解決手段】1の基板(1)に形成した素子形成層(3)を剥離して他の基板(5)に転写して薄膜装置を製造する方法において、転写によって反転した素子形成層(3)の露出面に接続孔(37)を開口して内部の素子と接続できるようにし、該露出面に新たな素子(38)を形成する。それにより、1回の剥離・転写による製造工程によっても素子形成層とその外部との配線、電極、薄膜素子などの接続を容易に確保可能とする。

10

1

【特許請求の範囲】

【請求項1】基礎基板に形成した薄膜素子を転写基板に 転写する薄膜装置の製造方法であって、

前記基礎基板上に、所要のエネルギ付与によって剥離する特性を持つ分離層を形成する工程と、

前記分離層上に薄膜素子を含む被転写層を形成する工程 と、

前記被転写層の一面に接着層を介して転写基板を接合する工程と、

前記分離層に前記エネルギを付与して剥離を生ぜしめ、前記被転写層を前記転写基板に転写する工程と、

前記転写基板に転写されて露出した前記被転写層の他面 に、前記薄膜素子と接続するための露出穴を開口する工 程と、

前記被転写層の他面側に前記露出穴を介して前記薄膜素子に接続される新たな薄膜素子を形成する工程と、 を含む薄膜装置の製造方法。

【請求項2】基礎基板に形成した薄膜素子を転写基板に 転写する薄膜装置の製造方法であって、

前記基礎基板上に、所要のエネルギ付与によって剥離す 20 る特性を持つ分離層を形成する工程と、

前記分離層上に下地層を形成し、この下地層の一面に薄 膜素子を含む被転写層を形成する工程と、

前記被転写層上に接着層を介して転写基板を接合する工程と、

前記分離層に前記エネルギを付与して剥離を生ぜしめ、 前記被転写層を前記転写基板に転写する工程と、

前記転写基板に転写されて露出した前記被転写層の下地 基板の他面に、前記薄膜素子と接続するための露出穴を 開口する工程と、

前記下地基板の他面側に前記露出穴を介して前記薄膜素子に接続される新たな薄膜素子を形成する工程と、 を含む薄膜装置の製造方法。

【請求項3】基礎基板に形成した薄膜素子を転写基板に 転写する薄膜装置の製造方法であって、

前記基礎基板上に、所要のエネルギ付与によって剥離する特性を持つ分離層を形成する工程と、

前記分離層上に薄膜素子を含む被転写層を形成する工程と、

前記被転写層の一面に接着層を介して転写基板を接合す 40 る工程と、

前記分離層に前記エネルギを付与して剥離を生ぜしめ、 前記被転写層を前記転写基板に転写する工程と、

前記被転写層の他面側に新たな薄膜素子を形成する工程 と、を含み、

前記基礎基板上の一部に突起を形成し、これにより、前記被転写層の他面に開口を形成して、前記被転写層に含まれる薄膜素子と前記新たな薄膜素子とを接続可能とした、薄膜装置の製造方法。

【請求項4】前記新たな薄膜素子は、配線膜、電極、端 50 ~12531号に「剥離方法」等として詳細に説明され

子、薄膜トランジスタを含む、請求項1乃至3のいずれ かに記載の薄膜装置の製造方法。

【請求項5】前記分離層は、光の照射によって原子間又は分子間の結合力が消失又は減少する、請求項1乃至4のいずれかに記載の薄膜装置の製造方法。

【請求項6】前記分離層は複数の膜からなる、請求項1 乃至5のいずれかに記載の薄膜装置の製造方法。

【請求項7】前記分離層は、アモルファスシリコン又は 窒化シリコンを含む、請求項1乃至6のいずれかに記載 の薄膜装置の製造方法。

【請求項8】前記複数の膜は、アモルファスシリコン膜 とその上に形成された金属膜を含む、請求項6に記載の 薄膜装置の製造方法。

【請求項9】前記アモルファスシリコンは水素を含む、 請求項7又は8に記載の薄膜装置の製造方法。

【請求項10】前記接着層は永久接着剤である、請求項 1乃至9のいずれかに記載の薄膜装置の製造方法。

【請求項11】前記薄膜装置は半導体装置である、請求項1乃至10のいずれかに記載の薄膜装置の製造方法。

【請求項12】請求項1乃至11のいずれかに記載の方法を用いて二次元に配置された複数の画素電極にそれぞれ接続される複数の薄膜トランジスタを製造したアクティブマトリクス基板。

【請求項13】請求項11記載の前記アクティブマトリクス基板を使用した電気光学装置。

【請求項14】前記電気光学装置は、液晶表示装置、エレクトロルミネッセンス、及び電気泳動装置のいずれかである請求項13記載の電気光学装置。

【発明の詳細な説明】

30 [0001]

【産業上の利用分野】本発明は、薄膜素子の基板間転写 技術を使用した半導体装置の製造方法に関する。

[0002]

【従来の技術】液晶表示器(LCD)パネル、エレクトロルミネッセンス(EL)表示器のような半導体応用装置では、変形や落下による壊れ防止、コスト引き下げ等の理由などにより下地基板にプラスチック基板を使用することが望ましい場合がある。

【0003】しかし、パネル型の表示器に使用される薄膜トランジスタの製造では高温プロセスを使用するが、プラスチック基板や、EL素子等の回路素子には高温に耐えられないものがある。

【0004】そこで、出願人は高温プロセスを含む従来の半導体製造技術によって薄膜半導体装置を耐熱の基礎基板上に製造した後、該基板から薄膜半導体装置が形成されている素子形成膜(層)を剥離し、これをプラスチック基板に貼り付けることによって半導体応用装置を製造する転写技術を提案している。例えば、特開平10-12529号、特開平10-12530号、特開平10

ている。

[0005]

【発明が解決しようとする課題】しかしながら、上記剥 離転写技術を使用して製造した薄膜装置は、1回転写の 状態では、基礎基板から転写基板に素子形成層が相対的 に上下反転して転写されるために、素子形成層の元の上 面が転写基板に密着し、そのままでは素子形成層に外部 配線を接続することができない。

【0006】このため、1回目の転写を基礎基板から仮 転写基板に行い、更に、2回目の転写を仮転写基板から 10 目的とする転写基板(プラスチック基板など)に行うこ とによって、基礎基板に形成されたときと同様の向きと なるように転写基板に素子形成層を転写する。すなわ ち、素子形成層の上面で配線接続や他の素子の形成を行 うために、2回転写を必要としている。

【0007】また、薄膜装置の多層積層化に伴い、プロ セスが複雑化しているので、転写回数が1回で済むこと が望ましい。

【0008】よって、本発明は、2回転写による工程の 複雑化、長時間化を軽減することを可能とする薄膜装置 20 の製造方法を提供することを目的とする。

【0009】また、本発明は、薄膜装置の基板片面への 積層度を軽減することを目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するため 本発明の薄膜装置の製造方法は、基礎基板に形成した薄 膜素子を転写基板に転写する薄膜装置の製造方法におい て、上記基礎基板上に、所要のエネルギ付与によって剥 離する特性を持つ分離層を形成する工程と、上記分離層 上に薄膜素子を含む被転写層を形成する工程と、上記被 30 転写層の一面に接着層を介して転写基板を接合する工程 と、上記分離層に上記エネルギを付与して剥離を生ぜし め、上記被転写層を上記転写基板に転写する工程と、上 記転写基板に転写されて露出した上記被転写層の他面 に、上記薄膜素子と接続するための露出穴を開口する工 程と、上記被転写層の他面側に上記露出穴を介して上記 薄膜素子に接続される新たな薄膜素子を形成する工程 と、を含む。

【0011】かかる構成とすることによって、薄膜素子 を含む被転写層の裏面をも薄膜装置の形成に利用するこ 40 とが可能となり、1回の転写で済む。

【0012】また、本発明の薄膜装置の製造方法は、基 礎基板に形成した薄膜素子を転写基板に転写する薄膜装 置の製造方法において、上記基礎基板上に、所要のエネ ルギ付与によって剥離する特性を持つ分離層を形成する 工程と、上記分離層上に下地層を形成し、この下地層の 一面に薄膜素子を含む被転写層を形成する工程と、上記 被転写層上に接着層を介して転写基板を接合する工程 と、上記分離層に上記エネルギを付与して剥離を生ぜし め、上記被転写層を上記転写基板に転写する工程と、上 50 どが含まれ、それらのプラスチック基板を使用したアク

記転写基板に転写されて露出した上記被転写層の下地基 板の他面に、上記薄膜素子と接続するための露出穴を開 口する工程と、上記下地基板の他面側に上記露出穴を介 して上記薄膜素子に接続される新たな薄膜素子を形成す る工程と、を含む。

【0013】かかる構成とすることによって、剥離転写 される被転写層の下地基板の両面に素子や配線等を形成 することが可能となり、1回の転写で済む。

【0014】また、本発明の薄膜装置の製造方法は、基 礎基板に形成した薄膜素子を転写基板に転写する薄膜装 置の製造方法において、上記基礎基板上に、所要のエネ ルギ付与によって剥離する特性を持つ分離層を形成する 工程と、上記分離層上に薄膜素子を含む被転写層を形成 する工程と、上記被転写層の一面に接着層を介して転写 基板を接合する工程と、上記分離層に上記エネルギを付 与して剥離を生ぜしめ、上記被転写層を上記転写基板に 転写する工程と、上記被転写層の他面側に新たな薄膜素 子を形成する工程と、を含み、上記基礎基板上の一部に 突起を形成し、これにより、上記被転写層の他面に開口 を形成して、上記被転写層に含まれる薄膜素子と上記新 たな薄膜素子とを接続可能としている。

【0015】かかる構成とすることによって、後に基板 への孔あけを必要とすることなく、被転写層の他面側の 新たな薄膜素子を被転写層内の薄膜素子に接続すること が可能となる。

【0016】好ましくは、上記新たな薄膜素子は、配線 層、電極層、薄膜トランジスタを含む。それにより、1 回転写によって基板に対して反転して位置する素子形成 層の下地層の平坦な裏面に、配線層、電極層、薄膜トラ ンジスタなどを形成することを可能とする。

【0017】好ましくは、上記分離層は、レーザ光線な どの光の照射によって原子間又は分子間の結合力が消失 又は減少するアプレーションを生ずるように材質を選定

【0018】好ましくは、上記分離層はアモルファスシ リコン膜やその上に形成された金属膜等を含む多層膜か らなる。それにより、分離層内での剥離、分離層と隣接 する層との境界での剥離を生じやすくする。

【0019】好ましくは、上記分離層は、アモルファス シリコン又は窒化シリコンを含み、アモルファスシリコ ンは水素を含む。それにより、光線が照射されると水素 が分離(ガス化)して、分子同士の結合力が弱くなる。 また、窒化シリコンは窒素を含み、光線が照射されると 窒素が分離して分子同士の結合力が弱くなる。

【0020】好ましくは、上記転写基板と被転写層との 接合層は永久接着剤である。

【0021】上述のようにして製造される薄膜装置は、 例えば、薄膜半導体装置や電気光学装置である。電気光 学装置には、液晶表示装置、EL装置、電気泳動装置な

10

ティブマトリクス基板に適用すると好都合である。な お、本発明は、転写基板はプラスチック基板に限定され るものではなく、ガラスやセラミックなど種種の基板が 使用可能である。

[0022]

【発明の実施の形態】以下、本発明の薄膜装置の製造方 法の実施の形態について図面を参照して説明する。

【0023】図1 (a) 乃至同図 (e) は、本発明の第 1の実施例に係る薄膜装置の製造過程(工程)を示して いる。

【0024】まず、図1(a)に示すように、例えば、 1000℃程度に耐える石英ガラスなどの透光性耐熱基 板を素子形成基板1とする。素子形成基板1には、石英 ガラスの他、ソーダガラス、コーニング7059、日本 電気ガラス〇A-2等の耐熱性ガラス等を使用可能であ る。素子形成基板1の厚さには、大きな制限要素はない が、0.1mm~0.5mm程度であることが好まし く、0.5mm~1.5mmであることがより好まし い。素子形成基板1の厚さが薄すぎると強度の低下を招 き、逆に厚すぎると、素子形成基板1の透過率が低い場 20 合に照射光の減衰を招く。ただし、素子形成基板1の照 射光の透過率が高い場合には、上記上限値を越えてその 厚みを厚くすることができる。この素子形成基板1上に 分離層2が形成される。

【0025】分離層2は、レーザ光等の照射光により当 該層内や界面において剥離(「層内剥離」または「界面 剥離」ともいう)を生ずる。すなわち、一定の強度の光 を照射することにより、分離層2を構成する材料の原子 または分子における原子間または分子間の結合力が消失 しまたは減少し、アブレーション(ablation)等を生じ、 剥離を起こすものである。また、照射光の照射により、 分離層2から気体が放出され、分離に至る場合もある。 分離層2に含有されていた成分が気体となって放出され 分離に至る場合と、分離層 2 が光を吸収して気体にな り、その蒸気が放出されて分離に至る場合とがある。

【0026】分離層2の組成としては、例えば、非晶質 シリコン(a-Si)を使用することができる。この非晶 質シリコン中には、水素(H)が含有されていてもよ い。水素の含有量は、2at%程度以上であることが好 ましく、2~20 a t %であることがさらに好ましい。 水素が含有されていると、光の照射により水素が放出さ れることにより分離層2に内圧が発生し、これが剝離を 促進する。水素の含有量は、成膜条件、例えば、CVD 法を用いる場合には、そのガス組成、ガス圧力、ガス雰 囲気、ガス流量、ガス温度、基板温度、投入する光のパ ワー等の条件を適宜設定することによって調整する。こ の他の分離層材料としては、酸化ケイ素若しくはケイ酸 化合物、窒化ケイ素、窒化アルミ、窒化チタン等の窒化 物セラミックス、有機高分子材料(光の照射によりこれ

l. Li. Ti. Mn, In, Sn, Y, La, Ce, Nd, Pr, Gd若しくはSm、またはこれらのうち少 なくとも一種を含む合金が挙げられる。

【0027】分離層2の厚さとしては、 $1nm\sim20\mu$ m程度であるのが好ましく、 $10nm \sim 2\mu m$ 程度であ るのがより好ましく、 $40nm\sim1\mu m$ 程度であるのが さらに好ましい。分離層2の厚みが薄すぎると、形成さ れた膜厚の均一性が失われて剥離にむらが生ずるからで あり、分離層2の厚みが厚すぎると、剥離に必要とされ る照射光のパワー(光量)を大きくする必要があった り、また、剥離後に残された分離層2の残渣を除去する のに時間を要したりする。

【0028】分離層2の形成方法は、均一な厚みで分離 層2を形成可能な方法であればよく、分離層2の組成や 厚み等の諸条件に応じて適宜選択することが可能であ る。例えば、CVD(MOCCVD、低圧CVD、EC R-CVD含む) 法、蒸着、分子線蒸着 (MB) 、スパ ッタリング法、イオンプレーティング法、PVD法等の 各種気相成膜法、電気メッキ、浸漬メッキ(ディッピン グ)、無電解メッキ法等の各種メッキ法、ラングミュア ・プロジェット(LB)法、スピンコート、スプレーコ ート法、ロールコート法等の塗布法、各種印刷法、転写 法、インクジェット法、粉末ジェット法等に適用でき る。これらのうち2種以上の方法を組み合わせてもよ

【0029】特に、分離層2の組成が非晶質シリコン (a-Si) の場合には、CVD、特に低圧CVDやプ ラズマCVDにより成膜するのが好ましい。また、分離 層 2 をゾルーゲル(sol-gel)法によりセラミックを用い て成膜する場合や有機高分子材料で構成する場合には、 塗布法、特にスピンコートにより成膜するのが好まし 67.

【0030】なお、好ましくは、分離層2と後述の素子 形成層3との間に中間層を形成する、あるいは分離層3 を中間層等を含めて複数層化するのが良い。この中間層 は、例えば製造時または使用時において被転写層を物理 的または化学的に保護する保護層、絶縁層、被転写層へ のまたは被転写層からの成分の移行(マイグレーショ ン)を阻止するパリア層、反射層としての機能のうち少 なくとも一つを発揮するものである。

【0031】この中間層の組成は、その目的に応じて適 宜選択されえる。例えば、非晶質シリコンで構成された 分離層と被転写層との間に形成される中間層の場合に は、SiO2等の酸化珪素が挙げられる。また、他の中 間層の組成としては、例えば、Pt、Au、W, Ta, Mo, Al, Cr, Tiまたはこれらを主成分とする合 金のような金属が挙げられる。

【0032】中間層の厚みは、その形成目的に応じて適 宜決定される。通常は、10 nm~5μm程度であるの らの原子間結合が切断されるもの)、金属、例えば、A 50 が好ましく、 $40\,\mathrm{nm} \sim 1\,\mu\mathrm{m}$ 程度であるのがより好ま

40

しい。

【0033】中間層の形成方法としては、分離層2で説 明した各種の方法が適用可能である。中間層は、一層で 形成する他、同一または異なる組成を有する複数の材料 を用いて二層以上形成することもできる。

【0034】この分離層2の上に、薄膜トランジスタな どの電気素子が形成される素子形成層3を形成する。素 子形成層3は、素子形成の下地層となるシリコン酸化膜 等の絶縁層31、不純物がドープされたされたソース・ ドレイン領域を含むシリコン層、ゲート絶縁膜33、ゲ 10 ート配線膜34、層間絶縁膜35、ソース・ドレインの 配線膜36等によって構成されている。

【0035】例えば、CVD法によってシリコン酸化膜 を堆積することによって絶縁層31を形成し、更にシリ コン層32を形成する。次に、シリコン層32をパター ニングしてトランジスタ領域をする。シリコン膜を酸化 してゲート酸化膜33を形成する。トランジスタ領域に ゲート領域用のイオン注入を行う。次に、CVD法によ って不純物を高濃度拡散したポリシリコンを堆積し、パ ターニングを行ってゲート配線膜34を形成する。ゲー 20 ト配線を利用してソース・ドレイン領域上に高濃度不純 物注入を行い、ソース・ドレインを形成する。不純物活 性化の熱処理を行い、次に、CVD法によってシリコン 酸化膜を堆積し、層間絶縁膜35を形成する。ソース・ ドレイン領域上の層間絶縁膜35にコンタクトホールを 開口する。不純物を高濃度で注入したポリシリコンをC VD法で、あるいは金属膜をスパッタ法で堆積し、これ をパターニングして配線膜36を形成する。

【0036】このようにして、素子形成層3が構成され る。この他、素子形成層3に含まれる薄膜素子として は、画素電極、接続パッド、抵抗、キャパシタ、等か形 成可能である。薄膜トランジスタなどの形成法は、例え ば、特公平2-50630号などに記載の方法に従って 行うことが可能である。

【0037】なお、上記の場合には、素子形成層3が被 転写層であるが、被転写層は薄膜に限定されず、塗布膜 やシートのような厚膜であっても良い。

【0038】次に、図1 (b) に示すように、素子形成 層3の上に接着剤をスピンコートなどによって塗布し、 接着膜4を形成する。この上に転写用基板5を載置し、 接合する。

【0039】接着剤としては、例えば、反応硬化型接着 剤、熱硬化型接着剤、光硬化型接着剤、嫌気硬化型接着 剤等の各種硬化型接着剤が使用可能である。組成として は、エポキシ系、アクリレート系、シリコーン系、等適 宜に選択される。

【0040】転写基板5としては、例えば、後の工程に 高温プロセスがなければ、耐熱性、耐食性等の特性が劣 るものであっても良い。可撓性、弾性を有するものであ

種ガラス剤が挙げられる。合成樹脂としては、熱可塑性 樹脂、熱効果性樹脂のいずれでも良く、例えば、ポリエ チレン、ポリプロピレン、エチレン-プロピレン共重合 体等、その他のものが適用可能である。ガラス材として は、例えば、石英ガラス、ケイ酸アルカリガラス、ソー ダ石灰ガラス、その他のものが使用可能である。

【0041】なお、転写基板5としては、例えば、液晶 セルのように、それ自体独立したデバイスを構成するも のや、例えば、カラーフィルタ、電極層、誘電体層、絶 緑層、半導体素子のように、デバイスの一部を構成する ものであっても良い。

【0042】次に、図1 (c) に示すように、第1の基 板側1から、例えば、レーザ(laser)光を全面に照射 し、分離層2の原子や分子の結合を弱める。また、分離 層2内の水素を分子化して結晶の結合から分離させ、基 礎基板側1と素子形成層3とを剥離する。これにより、 被転写層としての素子形成層3は転写基板5に転写され る。

【0043】次に、図1 (d) に示すように、素子形成 層3のソース・ドレイン領域に相当する非常に平坦な下 地絶縁膜31をパターニングして20~30μm程度の 径のコンタクトホールを開口する。パターニングは、フ ォトリソグラフィやインクジェット法によるエッチング 液の滴下、レーザエッチングなどを適用可能である。

【0044】次に、図1(e)に示すように、例えば、 透明電極のITO38を下地層31に積層してパターニ^ ングして画素電極や、端子電極などを形成する。このよ うな基板は、液晶表示器やEL表示器の画素基板として 使用される。

【0045】なお、第1の実施例では、薄膜素子として 30 透明電極を形成しているが、これに限られない。例え ば、画素電極、接続端子、配線、薄膜トランジスタ、誘 電体、EL発光体など、種々のものが形成可能である。 【0046】図2(a)乃至同図(e)は、本発明の第 2の実施例を示している。同図において、図1と対応す る部分には同一符号を付し、かかる部分の説明は省略す

【0047】この第2の実施例においては、下地基板3 1に後の工程において、開口37を形成する代わりに (図1(d)参照)、基礎基板1に開口37に相当する 部分に突起1aの形成された基板を使用している。基礎 基板1に分離膜2を形成した後、下地層としてのシリコ ン酸化膜31を所定の膜厚に堆積する。このシリコン酸 化膜31を分離膜2までエッチバックして平坦化する。 エッチバックは、機械的研磨とエッチングを使用可能で ある。以後、第1の実施例と同様の処理を行って素子形 成層3が構成される(図2(a))。その後、転写基板 5を接着し(図2(b))、基礎基板1を剥離する(図 2 (c))。基礎基板1の突起部1aによって下地層3 っても良い。このような材料として、各種合成樹脂、各 50 1には、素子形成層に接続可能な開口37が形成される

q

(図2(d))。この開口37を使用して、下地層31の裏面側に形成された薄膜素子38と表面側に形成が素子形成層3の素子とが電気的に接続される(図2

(e))。このようなパネルは、液晶表示器やEL表示器の画素基板として使用される。薄膜素子38は、画素電極、接続端子、配線、薄膜トランジスタ、誘電体、EL発光体など、種々のものを形成可能である。

【0048】突起1aが形成された基礎基板1は繰り返し使用可能であるので、比較的に高価な基礎基板を効率よく使用でき好都合である。

【0049】このように、上述した各実施例によれば、 仮転写基板を使用する工程を経ることなく、プラスチック等の転写基板5に素子形成層3が転写形成される。 転写工程が1度で済むため、製造工程が簡略化される。 また、通常は利用されていない、 薄膜素子下地基板裏面が 利用される。この面は平坦な面であるので、後工程での利用が容易である。

【0050】また、上記工程は、通常の薄膜トランジス

夕製造設備に使用でき具合がよい。

[0051]

【発明の効果】以上説明したように、本発明においては素子形成膜の下地の裏面側に配線を引き出す構成としているので、1回転写による製造工程によっても素子形成膜と外部との配線、電極、薄膜素子などの接続を容易に確保可能となる。

【図面の簡単な説明】

【図1】図1は、本発明の第1の実施例を説明する工程 10 図である。

【図2】図2は、本発明の第2の実施例を説明する工程図である。

【符号の説明】

- 1 基板
- 2 分離層
- 3 素子形成層
- 4 接着層
- 5 転写基板

【図1】

【図2】

フロントページの続き

(51) Int. Cl. ⁷ H O 1 L 21/336 29/786 識別記号

H 0 5 B 33/02 H 0 1 L 29/78

FΙ

テーマコード(参考)

6 2 7 D

H 0 5 B 33/02

F 夕一ム(参考) 2H092 GA00 GA55 JA01 JA24 KA05 MA05 MA07 MA10 MA16 MA30 NA25 PA01 3K007 AB18 EB00 FA01 5C094 AA43 BA03 BA29 BA43 CA19 DA14 DA15 DB04 EA04 EA07 GB10 5F110 AA16 BB01 CC10 DD01 DD02 DD03 DD12 EE09 EE45 FF02 FF23 GG02 GG44 GG52 HJ13 HJ23 HL02 HL07 HL08 HL23 HL24 NN22 NN23 NN34 NN34

QQ19 QQ30

NN35 NN36 QQ03 QQ11 QQ16

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.