数字图像处理第一次作业

姓名: 任珂含

班级: 自动化少 61 学号: 2140506104

提交日期: 2019年3月4日

摘要:

本文简单介绍了 bmp 图像格式,完成了对 lena 512*512 图像灰度级逐级递减 8-1 显示,计算了 lena 图像的均值方差,对 lena 图像和 elain 图像进行了 shear 和 rotate 变换以及最邻近、双线性、双三次插值这三种方法的 zoom 变换。

一、 bmp 图像格式简介

BMP(全称 Bitmap)是 Windows 操作系统中的标准图像文件格式,可以分成两类:设备有向量相关位图(DDB)和设备无向量相关位图(DIB),使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP 文件所占用的空间很大。BMP 文件的图像深度可选 lbit、4bit、8bit 及 24bit。BMP 文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。由于 BMP 文件格式是 Windows 环境中交换与图有关的数据的一种标准,因此在 Windows 环境中运行的图形图像软件都支持 BMP 图像格式。典型的 BMP 图像文件由四部分组成:

- (1) 位图头文件数据结构,它包含 BMP 图像文件的类型、显示内容等信息;
- (2) 位图信息数据结构,它包含有 BMP 图像的宽、高、压缩方法,以及定义颜色等信息;
- (3)调色板,这个部分是可选的,有些位图需要调色板,有些位图,比如真彩色图(24位的 BMP)就不需要调色板:
- (4) 位图数据,这部分的内容根据 BMP 位图使用的位数不同而不同,在 24 位图中直接使用 RGB,而其他的小于 24 位的使用调色板中颜色索引值。
 - 24位真彩色位图没有颜色表,所以只有1、2、4这三部分。

使用软件 ultraedit 打开文件 7.bmp, 如下:

```
00000000h: 42 4D 6E 04 00 00 00 00 00 36 04 00 00 28 00 ; BMn......6...(
00000010h: 00 00 07 00 00 00 07 00 00 00 01 00 08 00 00 00 ; ........
00000020h: 00 00 38 00 00 00 00 00 00 00 00 00 00 00 00 ;
                                                            ..8.........
00000030h: 00 00 00 00 00 00 00 00 00 01 01 01 00 02 02;
00000040h: 02 00 03 03 03 00 04 04 04 00 05 05 05 00 06 06
00000050h: 06 00 07 07 07 00 08 08 08 00 09 09 09 00 0A 0A;
00000060h: 0A 00 0B 0B 0B 00 0C 0C 0C 00 0D 0D 0D 00 0E 0E
00000070h: 0E 00 0F 0F 0F 00 10 10 10 00 11 11 11 00 12 12
00000080h: 12 00 13 13 13 00 14 14 14 00 15 15 15 00 16 16
00000090h: 16 00 17 17 17 00 18 18 18 00 19 19 19 00 1A 1A
000000a0h: 1A 00 1B 1B 1B 00 1C 1C 1C 00 1D 1D 1D 00 1E 1E
000000b0h: 1E 00 1F 1F 1F 00 20 20 20 00 21 21 21 00 22 22
000000c0h: 22 00 23 23 23 00 24 24 24 00 25 25 25 00 26 26
                                                            ".###.$$$.%%%.&&
000000d0h: 26 00 27 27 27 00 28 28 28 00 29 29 29 00 2A 2A; &.'''.(((.))).**
000000e0h: 2A 00 2B 2B 2B 00 2C 2C 2C 00 2D 2D 2D 00 2E 2E
                                                          : *.+
000000f0h: 2E 00 2F 2F 2F 00 30 30 30 00 31 31 31 00 32 32 ; ..///.000.111.22
00000100h: 32 00 33 33 33 00 34 34 34 00 35 35 35 00 36 36 ; 2.333.444.555.66
00000110h: 36 00 37 37 37 00 38 38 38 00 39 39 39 00 3A 3A; 6.777.888.999.::
00000120h: 3A 00 3B 3B 3B 00 3C 3C 3C 00 3D 3D 3D 00 3E 3E;::;;;.<<<.===.>>
00000130h: 3E 00 3F 3F 3F 00 40 40 40 00 41 41 41 00 42 42 ; >.???.@@@.AAA.BB
0000140h: 42 00 43 43 43 00 44 44 44 00 45 45 00 46 46 ; B.CCC.DDD.EEE.FF
00000150h: 46 00 47 47 47 00 48 48 48 00 49 49 49 00 4A 4A ; F.GGG.HHH.III.JJ
                                                          ; J.KKK.LLL.MMM.NN
00000160h: 4A 00 4B 4B 4B 00 4C 4C 00 4D 4D 4D 00 4E 4E
                                                          ; N.OOO.PPP.QQQ.RR
00000170h: 4E 00 4F 4F 4F 00 50 50 50 00 51 51 51 00 52 52
00000180h: 52 00 53 53 53 00 54 54 54 00 55 55 55 00 56 56
                                                          ; R.SSS.TTT.UUU.VV
00000190h: 56 00 57 57 57 00 58 58 58 00 59 59 59 00 5A 5A
                                                          ; V.WWW.XXX.YYY.ZZ
000001a0h: 5A 00 5B 5B 5B 00 5C 5C 5C 00 5D 5D 5D 00 5E 5E
                                                            Z.[[[.\\\.]]].^^
                                                          ;
                                                                   ``.aaa.bb
000001b0h: 5E 00 5F 5F 5F 00 60 60 60 00 61 61 61 00 62 62
000001c0h: 62 00 63 63 63 00 64 64 64 00 65 65 65 00 66 66
                                                          ; b.ccc.ddd.eee.ff
000001d0h: 66 00 67 67 67 00 68 68 68 00 69 69 69 00 6A 6A ; f.ggg.hhh.iii.jj
000001e0h: 6A 00 6B 6B 6B 00 6C 6C 6C 00 6D 6D 6D 00 6E 6E ; j.kkk.lll.mmm.nn
000001f0h: 6E 00 6F 6F 6F 00 70 70 70 00 71 71 71 00 72 72 ; n.ooo.ppp.qqq.rr
```

```
76 76
00000200h: 72 00 73 73 73 00 74 74 74 00
                                         75 75 75 00
00000210h: 76 00 77 77 77 00 78 78 78 00 79 79 79 00
                                                     7A 7A
00000220h: 7A 00 7B 7B 7B 00 7C 7C 7C
                                      00
                                         7D
                                            7D 7D 00
                                                     7E
                                                        7E
00000230h: 7E 00 7F
                    7F
                       7F 00 80 80 80 00
                                         81 81 81 00
                                                     82
                                                        82
00000240h: 82 00 83 83 83 00 84 84 84 00
                                            85 85 00
                                         85
                                                        86
00000250h: 86 00 87 87
                       87 00 88 88 88 00
                                         89
                                            89 89 00
                                                        8A
00000260h: 8A 00 8B 8B
                       8B 00 8C 8C 8C 00
                                         8D 8D 8D 00
                                                     8E
                                                        8E
00000270h: 8E 00 8F 8F
                       8F 00 90 90 90
                                         91
                                            91 91 00
                                                     92 92
                                      00
00000280h: 92 00 93 93
                       93 00 94 94 94 00
                                         95
                                            95
                                               95 00
                                                     96
                                                        96
00000290h: 96 00 97 97
                       97 00 98 98 98 00 99 99 99 00
                                                     9A 9A
000002a0h: 9A 00 9B 9B 9B 00 9C 9C 00 9D 9D 9D 00 9E 9E
000002b0h: 9E 00 9F 9F
                      9F 00 A0 A0 A0 00 A1 A1 A1 00
                                                     A2 A2
000002c0h: A2 00 A3 A3 A3 00 A4 A4 A4 00 A5 A5 A5 00
                                                     A6 A6
000002d0h: A6 00 A7 A7 A7 00 A8 A8 A8 00 A9 A9 A9 00 AA AA
000002e0h: AA 00 AB AB
                       AB 00 AC AC AC 00 AD AD AD 00
                                                     AE AE
000002f0h: AE 00 AF AF
                       AF 00 B0 B0 B0 00 B1 B1 B1 00 B2 B2
00000300h: B2 00 B3 B3 B3 00 B4 B4 B4 00 B5 B5 B5 00 B6 B6
00000310h: B6 00 B7 B7 B7 00 B8 B8 B8 00 B9 B9 B9 00 BA BA
00000320h: BA 00 BB BB
                       BB 00 BC BC BC 00 BD BD BD 00
                                                     BE BE
                       BF 00 C0 C0 C0 00 C1 C1 C1 00
00000330h: BE 00 BF BF
                                                     C2 C2
00000340h: C2 00 C3 C3 C3 00 C4 C4 C4 00 C5 C5 C5 00
                                                     C6 C6
00000350h: C6 00 C7 C7 C7 00 C8 C8 C8 00 C9 C9 C9 00 CA CA
00000360h: CA 00 CB CB CB 00 CC CC CC 00 CD CD CD 00 CE CE
00000370h: CE 00 CF CF CF 00 D0 D0 D0 D1 D1 D1 D0 D2 D2
00000380h: D2 00 D3 D3 D3 00 D4 D4 D4 00 D5 D5 D5 00
                                                     D6 D6
00000390h: D6 00 D7 D7 D7 00 D8 D8 D8 00 D9 D9 D9 00 DA DA
000003a0h: DA 00 DB DB
                      DB 00 DC DC DC 00 DD DD DD 00 DE DE
000003b0h: DE 00 DF DF DF 00 E0 E0 E0 00 E1 E1 E1 00 E2 E2
                      E3 00 E4 E4 E4 00 E5 E5 E5 00 E6 E6
000003c0h: E2 00 E3 E3
000003d0h: E6 00 E7 E7 E7 00 E8 E8 E8 00 E9 E9 E9 00 EA EA
000003e0h: EA 00 EB EB EB 00 EC EC EC 00 ED ED ED 00
                                                     EE
                                                        EE
000003f0h: EE 00 EF EF EF 00 F0 F0 F0 00 F1 F1 F1 00 F2 F2
                                                             ?篌?猷?貂?鲻
00000400h: F2 00 F3 F3 F3 00 F4 F4 F4 00 F5 F5
                                                  00 F6
                                                        F6
                                                           :
                                               F5
                                                             ?儡?
00000410h: F6 00 F7 F7 F7 00 F8 F8 F8 00
                                         F9
                                            F9
                                                     FA FA
                                               F9
                                                  00
00000420h: FA 00 FB FB FB 00 FC FC FC
                                     00
                                         FD
                                            FD
                                               FD 00 FE
                                                        FΕ
00000430h: FE 00 FF FF FF 00 67 63 64 54 56 62 62 00 62 65
                                                                    .gcdTVbb.be
00000440h: 66 56 45 47 5F 00 61 5C 5B 63 48 47 52 00 58 4B ; fVEG .a\[cHGR.XK
00000450h: 55 65 5A 5B 46 00 68 47 3F 69 5D 4C 2A 00 61 59 ; UeZ[F.hG?i]L*.aY
00000460h: 5A 5F 47 28 45 00 52 52 49 3B 37 50 5A 00
                                                           ; Z G(E.RRI;7PZ.
```

二、 把 lena 512*512 图像灰度级逐级递减 8-1 显示

原始图像位深度为 8,有 256 个可能的离散灰度值,范围是 0-255。通过对各像素灰度值依次进行除以二取整的处理,即可依次得到 8-1 灰度级的图像。图像结果如下。可以看出,灰度级越高,画质越好。当灰度级大于 4 时,肉眼看图像画质变化不大;灰度级为 1 时,变为二值图像。

三、 计算 lena 图像的均值方差

通过查阅资料,我安装了图像处理工具包,使用其中 mean2 和 std2 函数求得 lena 图像的均值和方差。结果如图,方差为 52.8775,均值为 99.0512。

四、 把 lena 图像用近邻、双线性和双三次插值法 zoom 到 2048*2048

Matlab 中有 imresize 函数,该函数用于对图像做缩放处理。

格式: B = imresize(A, [numrows numcols], method)

numrows 和 numcols 分别指定目标图像的高度和宽度。 显而易见, 由于这种格式允许图像缩放后长宽比例和源图像长宽比例不相同,因此所产生的图像有可能发生畸变。

method 参数用于指定在改变图像尺寸时所使用的算法,可以为以下几种:

'nearest': 这个参数也是默认的, 即改变图像尺寸时采用最近邻插值算法;

'bilinear': 采用双线性插值算法;

'bicubic': 采用双三次插值算法,在 R2013a 版本里,默认为这种算法,所以不同版本可能有不同的默认参数,使用之前建议使用命令 help imresize 获得帮助信息,以帮助信息为准。

对 lena 图像的处理结果如下,

最近邻插值法:

双线性插值法:

双三次插值法:

放大观察发现双三次插值效果最好,但是对于本实验三种放大方式差别并不巨大。

五、 把 lena 和 elain 图像分别进行水平 shear (参数可设置为 1.5,或者自行选择)和旋转 30 度,并采用用近邻、双线性和双三次插值法 zoom 到 2048*2048

由书 p51 表 2.2 得到水平 shear 和 rotate 操作的仿射矩阵,使用 maketform 和 imtransform 函数对原图像进行 shear 与 rotate 处理,最后使用实验 4 的三种方法 zoom 到 2048*2048。

以下为处理结果,顺序均为 zoom 前、最邻近、双线性、双三次插值 zoom。

(1) Lena 图像 shear

(2) Lena 图像 rotate

(3) Elain 图像 shear

(4) Elain 图像 rotate

在进行水平 shear 操作时,我发现按书上所给仿射矩阵处理结果实际是垂直 shear,原因是书上的 xy 轴与一般意义的 xy 轴不同。我不知道这是否是在图像处理领域的特殊规定,但我本次实验暂且 使用了书上垂直 shear 变换的仿射矩阵,得出的处理结果如上,是我认为的水平 shear 变换结果。

附录:

- 1.源代码见 txt 文件
- 2.参考文献:
- [1]冈萨雷斯.数字图像处理(第三版).[M].电子工业出版社,2017.
- [2]bmp 百度百科. [EB/OL].https://baike.baidu.com/item/BMP/35116?fr=aladdin
- [3] aidem brown.位图(bmp)文件格式分析.
- [EB/OL].https://blog.csdn.net/aidem_brown/article/details/80500637
- [4] denny402.利用 matlab 求图像均值和方差的几种方法.
- [EB/OL].https://www.cnblogs.com/denny402/p/4008210.html
- [5]imresize 百度百科. [EB/OL].https://baike.baidu.com/item/imresize/9948188?fr=aladdin