

Análisis Avanzado - Espacios Métricos 2

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

$$B(x,n) = \{j \in E \mid d(j,x) \in n\}$$

$$(R^{2},d_{2})$$

$$(R^{2},d_{2})$$

$$E:R$$

$$d(x_{1}) = [x-j]$$

$$B(x,n) = (x-n,x+n)$$

$$|x-j| \in n$$

$$|x-n| = (x-n,x+n)$$

$$|$$

(E,d) $x \in E$, n > 0

Topología en espacios métricos

Definición

Sea $A \subset E$. Decimos que x es un punto interior de A si existe algún r > 0 tal que $B(x, r) \subset A$.

Definición

Sea $A \subset E$. El interior de A es el conjunto de todos los puntos interiores de A, y lo notamos A° .

Definición

Un conjunto $G \subset E$ se dice abierto si cada punto de G es un punto interior de G (análogamente, si $G = G^{\circ}$).

Observación

Un conjunto $G \subset E$ es abierto si y sólo si para todo $x \in G$ existe algún r > 0 tal que $B(x, r) \subset G$.

EJERCICIO (6UIA) XEE, NOO B(v, 1) & un conj aliento bola abierta. (se puede usar pare probar) EJERCIUS (X) a & B(x,r). PROBAR. XEE (N.70) $S_{\lambda} = N - d(a_1 n)$ = $\beta(a,\ell) \in \beta(x,n)$. ESOJEMI: SEA JEB(9, 8) --- ---- =) JEB(4, 17) 3/12 n - d(q, x)

Se tienen las siguientes propiedades:

(i)
$$A^{\circ} \subset A$$
.

 $\chi \in A^{\circ} \supset \int \int \int \int \int \chi(\chi, \Lambda) (A) d\Lambda = \chi(\Lambda) \int \int \int \chi(\Lambda) d\Lambda$

- (i) $A^{\circ} \subset A$.
- (ii) $A_1 \subset A_2$, entonces $A_1^{\circ} \subset A_2^{\circ}$.

- (i) $A^{\circ} \subset A$.
- (ii) $A_1 \subset A_2$, entonces $A_1^{\circ} \subset A_2^{\circ}$.
- (iii) A° es un conjunto abierto.

- $(i) A^{\circ} \subset A.$
- (ii) $A_1 \subset A_2$, entonces $A_1^{\circ} \subset A_2^{\circ}$.
- (iii) A° es un conjunto abierto.
- (iv) Si G es abierto y $G \subset A$, entonces $G \subset A^{\circ}$.

La unión de cualquier familia o colección de conjuntos abiertos es abierta. GFINITA O INFINITA La intersección de finitos conjuntos abiertos es abierta. I conjunto de molios FINITO.

6. ale. YNGI DEM: (Gi)iGE A= U G: See NEA = UG; → Fio EI / x ∈ 6,. =)] 120 / B(NINICGi, CUG: = 4 : A e alierto

EJERCIA: Probas la 2 de parte . busas un ejemplo de so aliertos con 1.

Decidir si son ciertas las siguientes afirmaciones:

$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ} \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

SUBGRENCIA:
$$E = IR$$
, $A = R$
 $B = IR \cdot R$

Decidir si son ciertas las siguientes afirmaciones:

$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ} \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

Definición

XEE

Un conjunto $V \subset E$ se llama un entorno de x si existe un conjunto abierto G tal que $x \in G \subset V$.

Decidir si son ciertas las siguientes afirmaciones:

$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$$
 $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$

Definición

Un conjunto $V \subset E$ se llama un entorno de x si existe un conjunto abierto G tal que $x \in G \subset V$.

Observación /

El conjunto V es un entorno de x si y sólo si $x \in V^o$.

Everc.

Un conjunto G es abierto si y sólo si es un entorno de cada $x \in G$.

DefiniciónDecimos que \underline{x} es un punto de adherencia del conjunto $\underline{A} \subset E$ si para todo r > 0, $\underline{A} \cap \underline{B}(x,r) \neq \emptyset$.

A OA OProposition OA OProposition OA OA

Definición

Decimos que x es un punto de adherencia del conjunto $A \subset E$ si para todo r > 0, $A \cap B(x, r) \neq \emptyset$.

Es equivalente decir que para todo r > 0, existe $a \in A$, tal que $a \in B(x, r)$.

Definición

Decimos que x es un punto de adherencia del conjunto $A \subset E$ si para todo r > 0, $A \cap B(x, r) \neq \emptyset$.

Es equivalente decir que para todo r > o, existe $a \in A$, tal que $a \in B(x, r)$.

Definición

La clausura de $A \odot E$ es el conjunto \bar{A} formado por todos los puntos (de E) de adherencia del conjunto A.

Sean A, B C E. x x & A A x e, de adh s x & A J VER (ii) Si $A \subset B$ entonces $\bar{A} \subset \bar{B}$ (iii) $\bar{\bar{A}} = \bar{A}$. DEM DE (mí) · A C(A) (por (i) applicate a A A , See X G(A) JagB(x,n)n'

See (=n=d(a, x)

8/12

Sean A, $B \subset E$.

- (i) $A \subset \bar{A}$.
- (ii) Si $A \subset B$ entonces $\bar{A} \subset \bar{B}$
- (iii) $\bar{\bar{A}} = \bar{A}$.

Ejercicio

Decidir si son ciertas las siguientes afirmaciones:

$$\overline{A \cup B} = \overline{A} \cup \overline{B} \quad \overline{A \cap B} = \overline{A} \cap \overline{B}.$$

Definición

Un conjunto se llama cerrado si $F = \overline{F}$.

Definición

Un conjunto se llama cerrado si $F=ar{F}$.

Teorema

A es cerrado si y sólo si A^c es abierto.

A = E A

DEM: =) ralemos que A es cerrado, queremos probas que A es abiento

que A sacient

See NGAD => X &A = A => N&A =>

3770/B(x11/1A=\$ =) (3/170/B(x11)CA)

i. A c la aliento

(=) EJERCICO.

Observación (i) \overline{A} es cerrado; $\overline{\overline{A}} = \overline{A} \implies \overline{A}$ s arrado

Observación (i) \overline{A} es cerrado; (ii) $A \subset \overline{A}$; $\mathcal{X} \subset A$ $(ii) A \subset \overline{A}$ $(iii) A \subset \overline{A}$

Observación
(i) \overline{A} es cerrado;
(ii) $A \subset \overline{A}$;
(iii) Si F es un cerrado y $A \subset F$, entonces $\overline{A} \subset \overline{F} \subset F$.

ACF, Former => ACF

A es EL MENOR cerado que

contine a A.

Mayor alierto que contrene a A

contenido en A

igt

- A) La intersección de cualquier familia o colección de conjuntos cerrados es cerrada.
- لمّا La unión de finitos conjuntos cerrados es cerrada.

Consideremos el espacio métrico $\mathbb Z$ con la distancia dada por el módulo de la diferencia.

Consideremos el espacio métrico $\mathbb Z$ con la distancia dada por el módulo de la diferencia.

¿Cuáles son los subconjuntos abiertos de \mathbb{Z} ? ¿Y los cerrados?