

<u>Help</u>

<u>Course</u> > <u>Object Classification And Detection</u> > <u>Deep Learning</u> > Lesson Quiz

Lesson Quiz

Answer the following questions to test your knowledge of the concepts and techniques taught in this lesson.

Note: Some of the questions are based on the lab associated with this lesson, so make sure you have explored and run the lab.

Question 1

1/1 point (graded)

When training our Deep Learning models, we need to be careful of which of the following occurring? Choose all that apply

- ☑ High bias ✓
- ✓ High variance ✓
- Low bias
- Low variance

Explanation

You have used 1 of 1 attempt Submit

1 Answers are displayed within the problem

Question 2

1/1 point (graded)
Which of the following statements are correct?
Choose all that apply

☑ Underfitting refers to a model that can neither fit well to training data nor generalize to new data. ✔
Underfitting refers to a model that can not generalize to new data, but is okay with the training data.
☑ Underfitting is the same as high bias. ✔
□ Underfitting is the same as high variance.
☑ Using a more complex model with greater capacity can help with underfitting ✔
Using more training data can help with underfitting
□ Using fewer features can help with underfitting
☑ Bias is reduced as model complexity increases. ✔
✓
Explanation
Submit You have used 1 of 1 attempt
• Answers are displayed within the problem
Question 3
1/1 point (graded) Which of the following statements are correct? Choose one
Convolutional Layers calculate the average value over a receptive field.
Convolutional Layers calculate the maximum value over a receptive field.

The term Convolutional Layers is another name for Dense Layers.
Non-linearities are need to model linear functions.
■ Non-linearities allow us to model complex targets.
Submit You have used 1 of 1 attempt
Question 4
1/1 point (graded) Which of the following non-linear activation functions is the most commonly used with hidden layers in a CNN? Choose one.
● ReLU ✔
Sigmoid
Tanh
O Adam
O Momentum
Explanation The Rectified Linear Unit (ReLU) is the mostly commonly used activation function as it is faster to train and helps with vanishing gradients.
Submit You have used 1 of 1 attempt
Answers are displayed within the problem
Question 5

1/1 point (graded)

Given a leaky RelU activation fun	iction as defined in our video on	Deep Learning Basics, w	vhat is the post activation v	alue if the input is -76?
Choose one.				

0 0			
O -76			
·7.6			
0 -0.76			
0 76			
O 7.6			
• 0.76			

Question 6

Submit

1/1 point (graded)

The following is a question based on the lab in this lesson. To the nearest 5% what accuracy did the pre-trained ResNet model get on CIFAR-10?

Choose one

O 90%
O 95%
O 100%

You have used 1 of 1 attempt

○ 80%	
Explanation	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Question 7	
I/1 point (graded) The following is a question based on the lab in thi on CIFAR-10? Choose one	is lesson. To the nearest 20% what accuracy did our single-epoch trained ResNet model get
● 40% 	
O 60%	
○ 80%	
0 100%	
O 20%	
Explanation	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
	Learn About Verified Certificates