${\bf Table~1}~~{\bf Definitions~and~Comparisons~of~Conditions}$

Uncertainty Versions	
Finite Human Wealth Condition (FHWC) $\Phi/R < 1$ $\Phi/R < 1$	
$\Phi/R < 1$	
The model's risks are mean-preserving spreads, so the PDV of future income is unchanged by their introduction.	
Absolute Impatience Condition (AIC)	
D < 1	
If wealth is large enough, the expectation of consumption next period will be smaller than this period's consumption: $\lim_{m_t \to \infty} \mathbb{E}_t[\mathbf{c}_{t+1}] < \mathbf{c}_t$	
Conditions	
ence Conditions Weak RIC (WRIC)	
$\wp^{1/\rho}\mathbf{P}/R < 1$	
If the probability of the zero-income event is $\wp=1$ then income is always zero and the condition becomes identical to the RIC. Otherwise, weaker. $c'(m)<1-\wp^{1/\rho}\mathbf{P}/R<1$	
lence Conditions	
GIC-Nrm	
$\mathbf{p} \mathbb{E}[\mathbf{\Psi}^{-1}]/\mathbf{\Phi} < 1$	
By Jensen's inequality stronger than GIC. Ensures consumers will not expect to accumulate m unboundedly. $\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{p}_{\underline{\Phi}}$	
utarky Conditions	
FVAC	
$\beta \Phi^{1-\rho} \mathbb{E}[\Psi^{1-\rho}] < 1$	
ρ	
By Jensen's inequality, stronger than the PF-FVAC because for $\rho > 1$ and nondegenerate Ψ , $\mathbb{E}[\Psi^{1-\rho}] > 1$.	