5.6 Notes – Net Change/ Displacement versus total distance traveled

Draw a graph representing the distance traveled if the rate is 75mph and the time is 2 hours. Determine the integral representing this simplistic scenario.

$$\int_{0}^{2} 75 dt = 75t /_{0}^{2} = 75(2) - 75(0) = 150 \text{ miles}$$

In general, we can say displacement is: $\int v(t)dt = displacement$ from time t, to tz.

How would we find total distance traveled?

$$\int_{t_{i}}^{t_{z}} |v(t)| dt$$

Try these problems with me.

1. Find the displacement over the time interval [1, 6] of a helicopter whose (vertical) velocity at

time t is
$$v(t) = .02t^2 + t$$
 m/s.
Displacement = $\int (.02t^2 + t) dt = \left[\frac{.02t^3}{3} + \frac{t^2}{2} \right]_1^6 = (1.44 + 18) - (.006 + .5)$

$$= 18.933 \text{ ft.}$$

2. Find the displacement and total distance traveled for a particle in its first 6 seconds of movement if it has a velocity function of $v(t) = 32 - 2t^2$ ft/s. Draw a motion diagram for the

particle.

$$D:splacement = \int_{0}^{6} (32-2t^{2}) dt = \left[32t-\frac{2t^{3}}{3}\right]_{0}^{6} = (192-144)-0 = 48ft.$$

Distance
$$\rightarrow$$
 Need $32-2t^2 \ge 0$

$$2(4-t)(4+t) \ge 0$$

$$|32-2t^2| = \begin{cases} 32-4t^2, \ t=[0,4] \\ -(32-4t^2), \ t>4 \end{cases}$$

$$|32-2t^2| = \begin{cases} 32-4t^2, & t=[0,4] \\ -(32-4t^2), & t>4 \end{cases}$$

Distance =
$$\int (32-2t^2)dt + \int (32-2t^2)dt$$
=
$$\left[32t - \frac{2}{3}t^3\right]_0^4 + \left[32t - \frac{2}{3}t^3\right]_0^4 = \left(\frac{256}{3} - 0\right) + \left(\frac{256}{3} - 48\right)$$
=
$$\frac{368}{3} \approx 122.667 ft$$

Motion Diagram

