

r_{m} , r_{m} roots of $2(Er^2+r)-c^2=0$ En general, esperamos que $\Phi(E,C)$.

Teorema de Bertrand (ver Arnold pg. 37): Las unicas fuerzas centrales para que todas las órbitas acotadas se trazan curvas cerradas son Hooke y Kepler.

Leyes de Kepler \Leftrightarrow $F \sim$

De las observaciones de Brahe, Kepler deduce las siguentes leyes para los movimientos de las planetas:

K1: la órbita de una planeta se traza una elipse alrededor el sol con foco por el sol K2: el area de sector aumenta a ritmo constante. K3: el periodo de una órbita cuadrado es proporcional al eje mayor de elipse al cubo.

* en K2 el constante puede depender de la órbita, en K3 el constante de proporcion es 'universal' *

ecuaciones por cónicas con foco en el origien $r = \alpha x + \beta y + \gamma$

Assumimos que las órbitas de $\ddot{q} = -F(q)$ satisficen K1-3 $(con q \in \mathbb{R}^3)$.

En coordenadas polares (r,θ) en este plano: $q \times \dot{q} = r^2 \dot{\theta} \, \dot{N}$ $\Rightarrow q \times \dot{q} = cst.$ (K2) $\Rightarrow 0 = q \times \ddot{q} = q \times F(q)$ $\Rightarrow F(q) = f(q) \ q, \ f: \mathbb{R}^3 \to \mathbb{R}$

 $q \times \ddot{q} = C(t) \vec{N}$

Por K1 otra vez (pero mas fuerte), la órbita es de la forma: $\rho = \frac{1}{r} = \frac{1}{p} + \frac{e}{p}\cos(\theta - g)$ en algún coordenadas polares en este plano.

$$c_{1} = -\frac{1}{2}r' = -\frac{1}{2}r'$$

$$c_{1} = -\frac{1}{2}r'$$

$$c_{2} = -\frac{1}{2}r'$$

Usando K3, podemos mostrar que $-\frac{C^2}{}$ es constante.

$$\frac{C}{2} + = \pi ab$$

$$p = a(1-e^{2}) = \frac{b^{2}}{a^{2}}$$

$$\frac{C^{2}}{p} = \frac{4\pi^{2}a^{2}b^{2}}{7^{2}} \cdot \frac{a}{p} = \frac{4\pi^{2}a^{3}}{7^{2}}$$

 $\Rightarrow F = -K \frac{q}{|q|^3}$

* estos pasos son reversibles *

$$\begin{split} |f_{ij}| &= G \frac{m_1 m_2}{r^2} \\ Para \ dos \ cuerpos \ con \ q_{cm} = 0 \ : \\ q_1 &= -\frac{m_2}{m_1 + m_2} q, \ q_2 = \frac{m_1}{m_1 + m_2} q \\ donde \ q &= q_2 - q_1 \ satisficie \ : \\ \ddot{q} &= -\frac{G(m_1 + m_2)}{|a|^3} q \end{split}$$

$$|f_{ij}| = G \frac{m_1 m_2}{r^2}$$

1672 : Cassini mide $\approx a_{Mars}$ (método de paralaje) 1761 : el tránsito de venus determina a_{Venus} con mucho precisión 1798: Cavendish determina G (pesa el sol, tierra,...)

K1 por un truco listo de Lagrange:

recordar: f'' + a(t) f' + b(t) f = c(t)cada solución es de la forma: $\alpha f_1(t) + \beta f_2(t) + f_p(t), \quad a,b \in \mathbb{R}$ con f_1, f_2 soluciones de la ecuacion homogenea (c = 0).

Ecuación de Kepler (tiempo a lo largo de las órbitas):

 $a^{-\frac{3}{2}}t = u - e \sin u$

relaciona tiempo y posición.

La posición desde el 'sol' es:

 $|\xi = a(\cos u - e), \eta = b\sin u, r = a(1 - e\cos u)$