The **Ultimate** Formula Sheet for SAT Math

These formulas are provided in the reference information included with each SAT math module:

Area of a Circle: $A = \pi r^2$

Circumference of a Circle: $C = 2\pi r$

Area of a Rectangle: A = Iw

Area of a Triangle: $A = \frac{1}{2}bh$

Pythagorean Theorem: $q^2 + b^2 = c^2$

Special Right Triangles:

Volume of a Cylindar: $V = \pi r^2 h$

Volume of a Sphere: $V = \frac{4}{3}\pi r^3$

Volume of a Cone: $V = \frac{1}{3}\pi r^2 h$

Volume of a Pyramid: $V = \frac{1}{3}lwh$

Fractions, Decimals, and Percentages: (for this section, r is the percent in decimal form)

$$Fraction = \frac{part}{whole}$$

$$percent = \frac{part}{100}$$

Percent Increase or Decrease:

$$\frac{\left|old-new\right|}{old} \times 100\%$$

$$\bigstar$$
 Increase by a percent: multiply by $(1+r)$

$$\bigstar$$
 Decrease by a percent: multiply by $(1-r)$

Simple Interest:
$$A = P(1+rt)$$

Interest Compounded Annually: $A = P(1+r)^t$

Interest Compounded n times per year:

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Rates, Ratios, and Proportions:

Distance = Rate x Time

Linear Units:
$$10ft\left(\frac{12in}{1ft}\right) = 120in$$

General form of a conversion factor:

$$\left(\frac{\textit{ending}_\textit{units}}{\textit{starting}_\textit{units}}\right)$$

A Square Units:
$$10ft^2 \left(\frac{12in}{1ft}\right)^2 = 1440in^2$$

©2023, World Class Tutoring LLC.

Copying permitted for educational use. Visit us at worldclasstutoring.com to learn more.

Exponents, Roots, & Polynomials:

 \bigstar Multiplication Rule for Exponents: $a^b \cdot a^c = a^{b+c}$

 \bigstar Division Rule for Exponents: $\frac{a^b}{a^c} = a^{b-c}$

Negative Exponents: $a^{-b} = \frac{1}{a^b}$

Fractional Exponents: $a^{\frac{b}{c}} = \sqrt[c]{a^b} or (\sqrt[c]{a})^b$

 \bigstar Power Rule for Exponents: $(a^b)^c = a^{bc}$

Parabolas:

Standard Form: $f(x) = ax^2 + bx + c$;

vertex=
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
;

y-intercept = c;

x-intercepts =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(This is the Quadratic Formula)

Sum of solutions =
$$\frac{-b}{a}$$

Product of Solutions: $\frac{c}{a}$

Discriminant = $b^2 - 4ac$; Pos=2 real roots Zero= 1 real root; Neg=2 imaginary roots

Factored Form: f(x) = a(x-m)(x-n);

x-intercepts are m and n;

x-coordinate of vertex = $\frac{m+n}{2}$

Vertex Form: $f(x) = a(x-h)^2 + k$; vertex = (h,k)

 \bigstar Difference of Squares: $a^2 - b^2 = (a+b)(a-b)$

Perfect Square Trinomial: $a^2 + 2ab + b^2 = (a+b)^2$ and $a^2 - 2ab + b^2 = (a-b)^2$

Completing the Square: $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$

Graphing Lines:

Slope of horizontal line = 0

Slope of vertical line = undefined

Standard Form:
$$Ax + By = C$$

$$\bigstar$$
 Slope-Intercept Form: $y = mx + b$

Point-Slope Form: $y - y_1 = m(x - x_1)$

Distance Formula:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula:
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Parallel lines: equal slopes

⊥ Lines: slopes are opposite reciprocals

Data and Probability:

average =
$$\frac{\text{sum_of_items}}{\text{number_of_items}}$$

range = maximum - minimum

$$probability = \frac{desired_outcomes}{possible_outcomes}$$

Angles:

Vertical \angle 's are \cong

∠'s that form a linear pair are supplementary (add up to 180°)

∠'s that form a circle add up to 360°

When || lines are cut by a transversal, all acute ∠' s are \cong and all obtuse \angle 's are \cong

Triangles:

 \bigstar The three \angle 's of a Δ add up to 180°

An exterior ∠ is equal to the sum of the two remote interior ∠'s

Circles:

A radius and tangent make a right ∠

$$\frac{x}{360} = \frac{arc}{circumference}$$

and
$$\frac{x}{360} = \frac{\text{sector}}{\text{area_of_circle}}$$

A central ∠ is double the inscribed ∠

Pythagorean Triples: 3-4-5 and 5-12-13

where x = central angle

Formula for a Circle: $(x-h)^2 + (y-k)^2 = r^2$, where (h,k) is the center and r is the radius

The Ultimate Formula Sheet for SAT Math ©2024 by World Class Tutoring LLC. Visit us at worldclassutoring.com

Polygons: (for this section, n is the number of sides)

Area of a trapezoid:
$$\frac{1}{2}(b_1 + b_2)h$$

One interior angle of a regular polygon:

$$\frac{180(n-2)}{n}$$

Sum of the interior angles: 180(n-2)

Sum of the exterior angles: 360°

Properties of Parallelograms:

1. Opp sides are \parallel and \cong

2. Opp \angle 's are \cong

3. Consec ∠'s are supplementary

4. Each diagonal forms a pair of $\cong \Delta$'s

5. Diagonals bisect each other

 \rightarrow If they are \cong it is a rectangle

 \rightarrow If they are \perp it is a rhombus

6. Area = base \times height

Trigonometry:

$$\sin = \frac{opp}{hyp}$$
 $\cos = \frac{adj}{hyp}$ $\tan = \frac{opp}{adj}$

$$\cos = \frac{adj}{hvx}$$

$$\tan = \frac{opp}{adi}$$

 $\sin(x) = \cos(90 - x)$ The sine of an \angle is equal to the cosine of its complement.

Parent Graphs & Transformations:

$$y = |x|$$

$$y = x^2$$

$$y = x^3$$

Transformation

$$f(x)+k$$

$$f(x)-k$$

$$f(x+h)$$

$$f(x+n)$$

 $f(x-h)$

$$-f(x)$$

$$\frac{1}{c}f(x)$$

Visual effect

Shift up by k units

Shift down by k units

Shift left by h units

Shift right by h units

Reflect over the x axis (flip upside down)

Stretch vertically by a factor of c (becomes skinnier)

Shrink vertically by a factor of c (becomes fatter)