ECE253/CSE208 Introduction to Information Theory

Lecture 2: Probability Theory Revisited

Dr. Yu Zhang

ECE Department
University of California, Santa Cruz

- H. Stark and J. Woods, "Probability, Random Processes, and Estimation Theory for Engineers".
- A. Papoulis, "Probability, Random Variables, and Stochastic Processes".

Probability Space

Probability space is a three-tuple (Ω, \mathcal{F}, P) :

- Sample space Ω : the set of all outcomes of a random experiment.
 - Ω may be finite ($\{H, T\}$), countably infinite ($\Omega = \{1,2,3,...\}$), or uncountably infinite ([0,1]).
- Event space \mathcal{F} : a set whose elements $A \in \mathcal{F}$ are subsets of Ω .
- Probability function P: satisfies three axioms:
 - $P(A) > 0, \forall A \in \mathcal{F}$.
 - $P(\Omega) = 1$.
 - If $A_1,A_2,...$ are mutually exclusive events; i.e. $A_i\cap A_j=\emptyset$, $\forall i\neq j$, then

$$P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i}).$$

Properties of Probability

Consider events $A, B, C \subseteq \Omega$. Let P(AB) denote $P(A \cap B)$.

- $A \subseteq B \Rightarrow P(A) \le P(B)$.
- $P(AB) \le \min\{P(A), P(B)\}.$
- $P(A \cup B) = P(A) + P(B) P(AB)$.
- $P(\bar{A}) = 1 P(A)$: $\bar{A} = \Omega \backslash A$.
- Complement rule (De Morgan's Law): $\overline{AB} = \bar{A} \cup \bar{B}; \ \overline{A \cup B} = \bar{A}\bar{B}$
- P(AB) = P(A|B)P(B) = P(B|A)P(A).
- Conditional probability: $P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$ (Bayes' theorem).
- If A and B are independent, then P(AB) = P(A)P(B).
- Distributive law: $(A \cup B) \cap C = (AC) \cup (BC)$.

Venn Diagram

Figure: A Venn diagram is a diagram that shows the relationship between and among a finite collection of sets.

Conditional vis-à-vis Unconditional Probability

Q:
$$P(A|B) \leq P(A)$$
?

A: It can be any case in general.

Some special cases:

- If A and B are independent (denoted as $A \perp \!\!\! \perp B$), then P(A|B) = P(A).
- If $AB=\emptyset$ and 0< P(A), P(B)<1, then $P(A|B)=\frac{P(AB)}{P(B)}=\frac{P(\emptyset)}{P(B)}=0< P(A)\Rightarrow P(A|B)< P(A).$
- If $B\subset A$ and P(A)<1, then $P(A|B)=\frac{P(AB)}{P(B)}=\frac{P(B)}{P(B)}=1>P(A)\Rightarrow P(A|B)>P(A).$
- If $A \subseteq B$, and 0 < P(B) < 1, then $P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)}{P(B)} > P(A).$

A Concrete Example

Take a standard deck of cards (52 cards without Jokers). Remove all black queens and kings. When picking a card, define 3 events:

- A: The card picked is a face card.
- B_1 : The card picked is a heart.
- B_2 : The card picked is a spade.

Question: Find the values of P(A), $P(A|B_1)$, $P(A|B_2)$.

- A: 48 cards left with 8 face cards: $P(A) = \frac{1}{6}$.
- B_1 : 13 cards of hearts left with 3 face cards: $P(A|B_1) = \frac{3}{13}$.
- B_2 : 11 card of spades left with only 1 face card (the Jack of Spades): $P(A|B_2) = \frac{1}{11}$.

We have $P(A|B_2) < P(A) < P(A|B_1)$.

Chain Rule for Conditional Probability and Partition Theorem

For 3 events, A, B, and C, we have P(ABC) = P(C|AB)P(B|A)P(A). This can be extended to the case of n events $A_1, A_2, ..., A_n$:

$$P(A_1 A_2 \cdots A_n) = P(A_n | A_1 A_2 \cdots A_{n-1}) \times P(A_{n-1} | A_1 A_2 \cdots A_{n-2}) \times \cdots \times P(A_2 | A_1) \times P(A_1)$$

Theorem (Partition Theorem, a.k.a. Law of Total Probability)

Let $B_1, B_2, ..., B_n$ form a partition (i.e., $B_iB_j = \emptyset, \forall i \neq j$ and $\bigcup_i B_i = \Omega$) of the sample space Ω , and assume $P(B_i) \neq 0$ for all i. Then,

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

The Birthday Paradox

Given n people named $p_1, p_2, ..., p_n$, what is the probability that at least two of them have the same birthday?

Solution 1:

Let A_2 be the event that p_2 has a different birthday from p_1 . p_1 only has their birthday on one of the days of the entire year. Hence, $P(A_2)=1-\frac{1}{365}$.

Let A_3 be the event that p_3 has a different birthday from p_2 and p_1 . So, $A_3|A_2$ denotes the event that p_3 has a different birthday from p_2 and p_1 given that p_2 and p_1 have different birthdays. We have $P(A_3|A_2)=1-\frac{2}{365}$.

 A_2A_3 is the event that p_1,p_2 , and p_3 have 3 different birthdays.

$$P(A_2A_3) = P(A_3|A_2)P(A_2) = \left(1 - \frac{2}{365}\right)\left(1 - \frac{1}{365}\right)$$

$$P(A_3) = P(A_3|A_2)P(A_2) + P(A_3|\bar{A}_2)P(\bar{A}_2)$$
$$= \left(1 - \frac{2}{365}\right)\left(1 - \frac{1}{365}\right) + \left(1 - \frac{1}{365}\right) \times \frac{1}{365} = 0.9945$$

The Birthday Paradox (Cont'd)

Now, define a general A_i as the event that the birthday of p_i is not the same day as any of the birthdays of $p_1,p_2,...,p_{i-1}$. We have $P(A_i|A_1A_2...A_{i-1})=1-\frac{i-1}{365}$.

The probability that all n people have different birthdays is

$$q_n := P(A_1 A_2 ... A_n) = P(A_n | A_1 A_2 ... A_{n-1}) P(A_{n-1} | A_1 A_2 ... A_{n-2}) ... P(A_2 | A_1) P(A_1)$$
$$= \left(1 - \frac{n-1}{365}\right) \times \left(1 - \frac{n-2}{365}\right) \times \dots \times \left(1 - \frac{1}{365}\right)$$

Note that $P(A_1) = 1 - \frac{0}{365} = 1$.

The complement event of $A_1A_2\cdots A_n$ is at least two people have the same birthday. Hence, the probability we try to find is $b_n=1-q_n$, which is an increasing function in n. $\implies b_{23}=0.507;\ b_{30}=0.706;\ b_{40}=0.891;\ b_{70}\approx 0.999.$

Solution 2:

To directly calculate q_n . The total number of all possibilities is 365^n since each person has 365 days to choose as his/her birthday. The number of cases that they all have different birthdays is 365 permute n: $\frac{365!}{(365-n)!}$. Hence, $q_n = \frac{365!}{(365-n)! \times 365^n}$.

Random Variables

Definition (Random Variable (RV))

Let Ω be the sample space of an experiment, and $\mathbb R$ denote the set of real numbers. Then, a random variable $X:\Omega\mapsto\mathbb R$ associated with this experiment is a function that assigns each outcome in Ω to a real number. The range of X is denoted as $\mathrm{val}(X)$.

Example. Flip a coin 5 times. Let X denote the random variable for the number of times the coin came up heads. Then $X(\omega_0)=3$, for the outcome $\omega_0=\{\mathrm{HHTHT}\}$. There are two different types of random variables that are often studied: discrete and continuous.

Random Variables (Cont'd)

If X is a discrete random variable, we use the notation

$$\Pr(X = k) := \Pr(\{\omega : X(\omega) = k\})$$

for the probability of the event X = k.

If X is a continuous random variable, we use the notation

$$\Pr(a \leq X \leq b) \coloneqq \Pr(\{\omega : a \leq X(\omega) \leq b\})$$

for the probability of the event $a \leq X \leq b$.

Cumulative Distribution Function (CDF)

Definition

Let X be a random variable associated with an experiment. Then,

$$F_X(x) := \Pr(X \le x)$$

is a cumulative distribution function.

Properties of CDFs:

- (a) $0 \le F_X(x) \le 1$.
- (b) $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to +\infty} F_X(x) = 1$.
- (c) F_X is nondecreasing, namely if $x \leq y$ then $F_X(x) \leq F_X(y)$.
- (d) F_X is right-continuous, i.e. $\lim_{x\to a^+} F_X(x) = F_X(a)$.

CDF for Discrete and Continuous RVs

Figure: CDF of a discrete random variable.

Figure: CDF of a continuous random variable.

PMF and PDF

For discrete random variables, we have the probability mass function (PMF):

$$p_X(x) \coloneqq \Pr(X = x),$$

where $\sum_{x \in \text{val}(X)} p_X(x) = 1$.

For continuous random variables, we instead consider probability density function (PDF),

$$f_X(x) := \frac{dF_X(x)}{dx} = F_X'(x),$$

provided that F_X is differentiable at x.¹ Notice that $f_X(x)$ and $\Pr(X=x)$ are two different concepts, which can be related by

$$\Pr(x \le X \le x + \Delta x) \approx f_X(x)\Delta x$$

and

$$\Pr(X \in A) = \int_{x \in A} f_X(x) dx,$$

14 / 33

where $A \subseteq val(X)$.

Yu Zhang (UCSC) ECE253/CSE208: Lecture 2

¹Note that F_X may not be everywhere differentiable even for continuous random variable X.

Common Distributions

Name of the probability distribution	Probability distribution function	Mean	Variance
Binomial distribution	$\Pr\left(X=k ight)=inom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
Geometric distribution	$\Pr\left(X=k\right)=(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
Normal distribution	$f\left(x\mid\mu,\sigma^{2} ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}e^{-rac{\left(x-\mu ight)^{2}}{2\sigma^{2}}}$	μ	σ^2
Uniform distribution (continuous)	$f(x\mid a,b) = egin{cases} rac{1}{b-a} & ext{for } a\leq x\leq b, \ 0 & ext{for } x< a ext{ or } x>b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential distribution	$f(x\mid \lambda) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Figure: PDF or PMF of commonly used random variables (Wiki).

Gaussian (Normal) Distribution

Figure: PDF and CDF of Gaussian distribution.

PDF of Gaussian distribution: $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ CDF of standard Gaussian distribution ($\mu=0,\,\sigma=1$): $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}\,dt$ PDF for multivariate Gaussian distribution:

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) := \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where $\mathbf{x} = [x_1, \dots, x_n]^\top$, $\boldsymbol{\mu} = [\mu_1, \dots, \mu_n]^\top \in \mathbb{R}^n$ and $\boldsymbol{\Sigma}$ is the $n \times n$ covariance matrix, of which the (i, j)-entry is $\mathrm{Cov}[X_i, X_j]$.

Yu Zhang (UCSC) ECE253/CSE208: Lecture 2 16/33

Expectation

Definition (Expectation)

Let $g: \mathbb{R} \to \mathbb{R}$ be a function and X be a random variable, discrete or continuous, then the *expectation* of the random variable g(X) is

$$\mathrm{E}[g(X)] \coloneqq \sum_{x \in \mathrm{val}(X)} g(x) p_X(x) \quad \text{or} \quad \mathrm{E}[g(X)] \coloneqq \int\limits_{x \in \mathrm{val}(X)} g(x) f_X(x) dx,$$

respectively.

Linearity of the expectation operator:

- (a) $\mathrm{E}[ag(X)+bh(X)]=a\mathrm{E}[g(X)]+b\mathrm{E}[h(X)]$ for any constants a,b, and arbitrary functions $g(\cdot),h(\cdot)$.
- (b) $X \perp \!\!\!\perp Y \Rightarrow \mathrm{E}[XY] = \mathrm{E}[X]\mathrm{E}[Y].$

The indicator function:
$$\mathbf{1}_A \coloneqq \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{otherwise.} \end{cases} \Rightarrow$$

$$E[\mathbf{1}_A] = \Pr(A) \times 1 + \Pr(\bar{A}) \times 0 = \Pr(A), \ F_X(x) = E[\mathbf{1}_{\{X \le x\}}].$$

Yu Zhang (UCSC)

Variance

Given a distribution of a random variable, we use the notion of variance to measure how concentrated that distribution is around the expectation (mean). Formally, we have

Definition (Variance)

$$\mathrm{Var}[X] \coloneqq \mathrm{E}[(X - \mathrm{E}[X])^2] = \mathrm{E}[X^2] - (\mathrm{E}[X])^2 \text{, where } \mathrm{E}[X^2] \text{ is the second moment of } X.$$

The following can be derived immediately from the definition:

- (a) $Var[cX] = c^2 Var[X]$.
- (b) Var[c] = 0 for any constant c.
- (c) $\operatorname{Var}[aX \pm bY] = a^2 \operatorname{Var}[X] + b^2 \operatorname{Var}[Y] \pm 2ab \times \operatorname{Cov}[X, Y].$

Examples of Expectation and Variance

Let $X \sim \exp(\lambda)$ whose density function is $f_X(x) = \lambda e^{-\lambda x}$. Find E[X] and Var[X].

Solution: From the definition of expectation and integration by parts, we have

$$E(X) = \int_0^\infty x f_X(x) dx$$

$$= \lambda \int_0^\infty x e^{-\lambda x} dx$$

$$= -x e^{-\lambda x} \Big|_0^\infty + \int_0^\infty e^{-\lambda x} dx$$

$$= 0 + \frac{e^{-\lambda x}}{-\lambda} \Big|_0^\infty = \frac{1}{\lambda}.$$

$$\begin{split} V(X) &= \int_0^\infty x^2 f_X(x) \, dx - \frac{1}{\lambda^2} \\ &= \lambda \int_0^\infty x^2 e^{-\lambda x} \, dx - \frac{1}{\lambda^2} \\ &= -x^2 e^{-\lambda x} \Big|_0^\infty + 2 \int_0^\infty x e^{-\lambda x} \, dx - \frac{1}{\lambda^2} \\ &= -x^2 e^{-\lambda x} \Big|_0^\infty - \frac{2x e^{-\lambda x}}{\lambda} \Big|_0^\infty - \frac{2}{\lambda^2} e^{-\lambda x} \Big|_0^\infty - \frac{1}{\lambda^2} = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} \; . \end{split}$$

Characteristic Function and Moment-generating Function

Definition (Characteristic Function)

The characteristic function of random variable X is defined as $\varphi_X : \mathbb{R} \to \mathbb{C}$:

$$\varphi_X(t) := \mathbb{E}[e^{itX}] = \int_{\mathbb{R}} e^{itx} dF_X(x) = \int_{\mathbb{R}} e^{itx} f_X(x) dx, \quad t \in \mathbb{R}$$

where $i = \sqrt{-1}$.

Definition (Moment-generating Function)

The moment-generating function of random variable X is defined as $M_X : \mathbb{R} \to \mathbb{R}$:

$$M_X(t) := \mathbb{E}[e^{tX}] = \int_{\mathbb{R}} e^{tx} f_X(x) dx, \quad t \in \mathbb{R}$$

- (a) $\varphi_X(-it) = M_X(t)$. Characteristic function is the Fourier transform of the PDF with sign reversal in the complex exponential.
- (b) $E[X^n] = \frac{d^n M_X(t)}{dt^n} \Big|_{t=0}$.
- (c) If $S_n = \sum_{i=1}^n a_i X_i$ for independent RVs $\{X_i\}_{i=1}^n$, then $M_{S_n}(t) = M_{X_1}(a_1 t) \times M_{X_2}(a_2 t) \times \cdots \times M_{X_n}(a_n t)$.

20 / 33

Multivariate Random Variables

Definition (Joint CDF)

Let X, Y be two random variables associated with an experiment. Then the *joint* cumulative distribution function of X and Y is

$$F_{XY} := \Pr(X \le x, Y \le y)$$

and the marginal cumulative distribution function of X is

$$F_X(x) := \lim_{y \to +\infty} \Pr(X \le x, Y \le y).$$

Similarly, the joint PMF $p_{XY}(x,y)\coloneqq\Pr(X=x,Y=y)$ the marginal PMF of X, $p_X(x)=\sum\limits_{y\in\mathrm{val}(Y)}\Pr(X=x,Y=y).$

The joint PDF of continuous X and Y is $f_{XY}(x,y) \coloneqq \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$ the marginal PDF of X: $f_X(x) = \int\limits_{y \in \mathrm{val}(Y)} f_{XY}(x,y) dy$.

Conditional Distribution

The above summation or integral operation is called marginalization. Note that

$$\iint\limits_A f_{XY}(x,y)dxdy = \Pr\Big((x,y) \in A\Big).$$

Definition (Conditional Distribution for Discrete RVs)

Let X and Y be discrete random variables. The $\emph{conditional distribution}$ of Y given

X = x is

$$p_{Y|X}(y \mid x) := \frac{p_{XY}(x,y)}{p_X(x)},$$

provided that $p_X(x) \neq 0$.

We say that X and Y are independent if $p_{Y|X}(y \mid x) = p_Y(y)$.

Note that $X \perp \!\!\!\perp Y \Leftrightarrow p_{XY}(x,y) = p_X(x)p_Y(y)$.

Q: If $X \perp\!\!\!\perp Y$. For arbitrary functions $g(\cdot)$ and $h(\cdot)$, are $g(X) \perp\!\!\!\perp h(Y)$?

A: Yes

Covariance & Correlation

Definition (Covariance and Correlation)

Let X and Y be two random variables. Their *covariance* is defined as

$$Cov[X,Y] \coloneqq \mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])] = \mathrm{E}[XY] - \mathrm{E}[X]\mathrm{E}[Y].$$

Their correlation is defined as

$$Corr[X, Y] := \frac{Cov[X, Y]}{\sqrt{Var(X)Var(Y)}}.$$

- 1. $Corr[X, Y] \in [-1, 1]$ is a measure of linear association between X and Y.
- 2. X and Y are uncorrelated if Corr[X, Y] = 0.
- 3. $Corr[X, Y] = \pm 1 \Leftrightarrow Y = aX + b$ for some constants a and b.
- 4. If $X \perp \!\!\!\perp Y \implies$ they are uncorrelated.
- 5. X and Y can be uncorrelated yet dependent due to a nonlinear relationship.

Example: $X \sim N(0,1), Y = X^2 \implies \operatorname{Corr}[X,Y] = \operatorname{E}[XY] - \operatorname{E}[X]\operatorname{E}[Y] = \operatorname{E}[X^3] = 0$ (all odd-order moments of X are equal to zero). Hence, X and Y are uncorrelated. But they are clearly dependent.

Example 1 of Covariance

Let X and Y be discrete random variables, with joint probability function $p_{X,Y}$ given by

$$p_{X,Y}(x, y) = \begin{cases} 1/2 & x = 3, y = 4\\ 1/3 & x = 3, y = 6\\ 1/6 & x = 5, y = 6\\ 0 & \text{otherwise.} \end{cases}$$

Then
$$E(X) = (3)(1/2) + (3)(1/3) + (5)(1/6) = 10/3$$
, and $E(Y) = (4)(1/2) + (6)(1/3) + (6)(1/6) = 5$. Hence,

$$Cov(X, Y) = E((X - 10/3)(Y - 5))$$

$$= (3 - 10/3)(4 - 5)/2 + (3 - 10/3)(6 - 5)/3 + (5 - 10/3)(6 - 5)/6$$

$$= 1/3. \blacksquare$$

Example 2 of Covariance

Let X be any random variable with Var(X) > 0. Let Y = 3X, and let Z = -4X. Then $\mu_Y = 3\mu_X$ and $\mu_Z = -4\mu_X$. Hence,

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E((X - \mu_X)(3X - 3\mu_X))$$

= 3 E((X - \mu_X)^2) = 3 Var(X),

while

$$Cov(X, Z) = E((X - \mu_X)(Z - \mu_Z)) = E((X - \mu_X)((-4)X - (-4)\mu_X))$$

= $(-4)E((X - \mu_X)^2) = -4 \text{Var}(X)$.

Note in particular that Cov(X, Y) > 0, while Cov(X, Z) < 0. Intuitively, this says that Y increases when X increases, whereas Z decreases when X increases.

Conditional Expectation Definitions

1. The conditional expectation of a discrete RV X given an event A is defined as

$$\mathrm{E}[X|A] = \sum_x x \Pr[X = x|A] = \sum_x x \frac{\Pr[X = x \cap A]}{\Pr[A]} = \frac{\mathrm{E}[X\mathbf{1}_A]}{\Pr[A]}$$

2. The conditional expectation of a discrete RV Y given that X=x is defined as

$$\mathrm{E}[Y|X=x] = \sum_y y \Pr[Y=y|X=x]$$

3. The conditional expectation of a continuous RV Y given that X=x is defined as

$$E[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) dy$$

Note that $h(x)=\mathrm{E}[Y|X=x]$ is a function depending on the particular observation x while $h(X)=\mathrm{E}[Y|X]$ is a random variable itself; i.e., $\mathrm{E}[Y|X](\omega)=\mathrm{E}[Y|X=X(\omega)]$.

Properties of Conditional Expectation²

Let $a,b\in\mathbb{R},\ g:\mathbb{R}\to\mathbb{R}$, and X,Y,Z be RVs. Then, we have

•
$$E[aX + bY|Z] = aE[X|Z] + bE[Y|Z]$$

- $E[X|Y] \ge 0$ if $X \ge 0$
- E[X|Y] = E[X] iif $X \perp \!\!\!\perp Y$
- E[g(X)|X] = g(X)
- E[Xg(Y)|Y] = g(Y)E[X|Y]
- E[X|Y,g(Y)] = E[X|Y]
- ullet $\mathrm{E}[X] = \mathrm{E}_Y igg[\mathrm{E}[X|Y] igg]$ /law of total expectation/
- $Var[X] = E_Y \left[Var(X|Y) \right] + Var_Y \left[E(X|Y) \right]$ /law of total variance/
- For any function h, $\mathrm{E}[(X-\mathrm{E}[X|Y])^2] \leq \mathrm{E}[(X-h(Y))^2]$ and equality holds iif $h(Y) = \mathrm{E}[X|Y] \ / \mathrm{E}[X|Y]$ is the function of Y that best approximates X in the sense of mean squared error/

Yu Zhang (UCSC) ECE253/CSE208: Lecture 2

27 / 33

²see more in https://en.wikipedia.org/wiki/Conditional_expectation

LLN and CLT

Theorem (Law of Large Numbers (LLN))

Let X_1, X_2, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables so that $\mathrm{E}[X_1] = \mathrm{E}[X_2] = \dots = \mathrm{E}[X_n] < \infty$. Let

$$\bar{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n}$$

denote the sample mean of those n random variables. Then $\bar{X}_n \to \mathrm{E}[X_1]$ as $n \to \infty$ almost surely (a.s., strong law) and in probability (i.p., weak law).

Theorem (Central Limit Theorem (CLT))

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables, and assume that $\mathrm{E}[X_i] = \mu$ and $\mathrm{Var}[X_i] = \sigma^2$, for all i. Let $S_n \coloneqq X_1 + X_2 + \cdots + X_n$. Then, $\mathrm{E}[S_n] = n\mu$, $\mathrm{Var}[S_n] = n\sigma^2$ and we have the standardization of S_n ,

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{i.p.} N(0,1)$$
 as $n \to \infty$

where N(0,1) denotes the standard normal random variable.

Convergence of Random Variables

Definition (Convergence of random variables)

The given sequence of random variables X_1, X_2, \ldots converges to a random variable X:

- 1. In probability $(X_n \xrightarrow{P} X)$ if for every $\epsilon > 0$, $\lim_{n \to \infty} \Pr\{|X_n X| > \epsilon\} = 0$
- 2. Almost sure [a.k.a. convergence with probability 1] $(X_n \xrightarrow{a.s.} X)$ if $\Pr{\lim_{n\to\infty} X_n = X} = 1$
- 3. In distribution $(X_n \xrightarrow{dist} X)$ if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for all continuity points x of $F_X(x)$
- 4. In r^{th} -order mean $(X_n \xrightarrow{L^r} X)$ if $\lim_{n \to \infty} \mathbb{E}[|X_n X|^r] = 0$
- 5. In mean square (special case when r=2) if $\lim_{n\to\infty}\mathrm{E}[(X_n-X)^2]=0$

Strong & Weak Convergence

Strong convergence: Convergence almost surely and convergence in $r^{\it th}$ -order mean.

Weak convergence: Convergence in probability and convergence in distribution.

Their relationships are given as follows:

Concentration Inequalities

Concentration inequalities provide bounds on how a random variable deviates from some value (e.g., its expected value):

- Markov's inequality: If X is a nonnegative RV, then $\Pr(X \geq t) \leq \frac{\mathrm{E}(X)}{t}$, for any t > 0.
- Chernoff's inequality: If X is a nonnegative RV, then $\Pr(X \geq t) = \Pr(e^{aX} \geq e^{at}) \leq \frac{\mathbb{E}(e^{aX})}{e^{at}}, \text{ for any } a > 0.$
- Chebyshev's inequality: $\Pr(|X \mathrm{E}(X)| \ge t) \le \frac{\mathrm{Var}(X)}{t^2}$, for any t > 0.
- Hoeffding's inequality: Consider the empirical mean $\bar{X}_n := \frac{1}{n}(X_1 + \dots + X_n)$ for independent random variables $X_i \in [a_i,b_i]$ for all i. Then, $\Pr(|\bar{X}_n \mathrm{E}(\bar{X}_n)| \geq t) \leq 2\exp\left(-\frac{2n^2t^2}{\sum_{i=1}^n(b_i-a_i)^2}\right)$, for any t>0.

Relationships among Common Distributions

630 Table of Common Distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/