Міністерство освіти і науки України КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРССИТЕТ

Кафедра автоматизації та систем неруйнівного контролю Група ПМ-11

ПРОЕКТУВАННЯ СИСТЕМ АВТОМАТИЗАЦІЇ

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №2

Розробка та складання схем електричних принципових керування промисловими двигунами

Керівник	(підпис)	д.т.н., проф.	Черепанська І. Ю. (дата)
Виконавець	(підпис)		Погорелов Б. Ю. (дата)

Лабораторна робота №2

Тема роботи

Розробка та складання схем електричних принципових керування промисловими двигунами

Мета роботи

Вивчити будову та принцип дії промислових двигунів різних типів, як складових систем автоматичного керування / регулювання / контролю. Навчитися складати схеми електричні принципові для керування промисловими двигунами різних типів.

Вихідні дані (Варіант 09)

Для варіанту 9:

- Номінальна потужність на валу, $P_{\text{ном.мех}} = 125 \, \text{кBT}$
- Коефіцієнт потужності, $\cos \varphi_{\text{ном}} = 0.95$
- ullet Номінальна швидкість обертання, $n_{ ext{hom}} = 1460\, ext{of/xB}$
- Коефіцієнт перенавантажної здатності, $\gamma = 2.3$
- ККД, $\eta = 91\%$
- \bullet Коефіцієнт кратності пускового струму, $\alpha=5.1$
- \bullet Коефіцієнт кратності пускового моменту, $\beta=2.35$

					$\Pi M1109.04.00.02 arP$			
Зм.	Лист	№ докум.	Підпис	Дата				
Роз	роб.	Погорелов Б.Ю				Літ.	Аркуш	Аркушів
Пер	рев.	Черепанська І.Ю.			Розробка та складання схем		2	9
					електричних принципових керування промисловими двигунами КПІ ім. І. Сікорського			
Н. І	Контр.						ого, ПБФ	
Зат	В.	Черепанська І.Ю.						

Завдання

Трифазний асинхронний двигун з короткозамкненим ротором має такі параметри:

- 1. напруга живлення: 380/220 В;
- 2. номінальна потужність на валу: $P_{\text{ном.мех}}$;
- 3. номінальна швидкість: $n_{\text{ном}}$;
- 4. коефіцієнт корисної дії: η ;
- 5. коефіцієнт потужності: $\cos \varphi_{\text{ном}}$;
- 6. коефіцієнт кратності пускового струму: α ;
- 7. коефіцієнт кратності пускового моменту: $\beta = \frac{M_{\text{пуск}}}{M_{\text{H}}};$
- 8. коефіцієнт перенавантажної здатності: $\gamma = \frac{M_{\max}}{M_{\scriptscriptstyle H}}$.

Двигун увімкнено за схемою "зірка" до мережі з лінійною напругою $U_{\text{лін}} = 380 \text{ B}$, частотою f = 50 Гц.

З врахуванням даних таблиці визначити:

- 1. споживану потужність: активну, реактивну, повну;
- 2. споживаний струм;
- 3. пусковий струм;
- 4. ємність конденсаторів для підвищення $\cos \varphi$ до 0,95 при вмиканні їх за схемами "зірка"та "трикутник побудувати векторні діаграми напруги і струмів та трикутник потужностей;
- 5. обертаючі моменти двигуна: номінальний, пусковий, критичний;
- 6. номінальне і критичне значення ковзання;
- 7. обертаючий момент двигуна при значеннях ковзання: $S=0;\,S_{\text{ном}};\,0,8S_{\text{кр}};\,S_{\text{кр}};\,1,2S_{\text{кр}};\,0,2;\,0,4;\,0,6;\,0,8;\,1.$

Змн.	Арк.	№ докум.	Підпис	Дата

Схеми

Рис. 2.1: Схема електрична принципова реверсивного керування асинхронним електродвигуном

Рис. 2.2: Схема електрична принципова нереверсивного керування асинхронним електродвигуном

Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 2.3: Схема електрична принципова керування трифазним асинхронним електродвигуном з короткозамкненим ротором з обмеженням пускового струму і моменту активними опорами

Рис. 2.4: Схема електрична принципова керування трифазним асинхронним електродвигуном з перемиканням обмотки статора із «зірки» на «трикутник» при пуску

Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 2.5: Схема електрична принципова

Розрахунки

1. Споживана потужність

Активна потужність:

$$P_{ ext{hom.em}} = rac{P_{ ext{hom.mex}}}{n} = rac{125}{0.91} pprox 137.36\, ext{кBt}$$

Повна потужність:

$$S_{ ext{hom}} = rac{P_{ ext{hom.ept}}}{\cos arphi_{ ext{hom}}} = rac{137.36}{0.95} pprox 144.59 \, {
m kBA}$$

Реактивна потужність:

$$Q_{\text{ном}} = \sqrt{S_{\text{ном}}^2 - P_{\text{ном.ел}}^2} = \sqrt{144.59^2 - 137.36^2} \approx 45.16\,\mathrm{кBAp}$$

2. Споживаний струм

$$I = \frac{S_{\text{\tiny HOM}}}{\sqrt{3} \cdot U_{\text{\tiny JIH}}} = \frac{144.59 \times 10^3}{\sqrt{3} \cdot 380} \approx 219.6 \,\text{A}$$

3. Пусковий струм

$$I_{\text{пуск}} = \alpha \cdot I_{\text{ном}} = 5.1 \times 219.6 \approx 1120 \,\text{A}$$

					T15//00 0/ 00 00 TD	Арк.
					$\Pi M1109.04.00.02 J\!IP$	
Змн.	Арк.	№ докум.	Підпис	Дата		6

4. Ємність конденсаторів для підвищення $\cos \varphi$ до 0.95

Для схеми "зірка":

$$C_Y = \frac{Q_{\text{конд}}}{2\pi f \cdot 3U^2} = \frac{45.16 \times 10^3}{2\pi \cdot 50 \cdot 3 \cdot (220)^2} \approx 49.5 \,\mu\text{F}$$

Для схеми "трикутник":

$$C_{\Delta} = \frac{Q_{\text{конд}}}{2\pi f \cdot 3U_{\text{лін}}^2} = \frac{45.16 \times 10^3}{2\pi \cdot 50 \cdot 3 \cdot (380)^2} \approx 16.5 \,\mu\text{F}$$

5. Обертові моменти

Номінальний момент:

$$M_{ ext{hom}} = rac{P_{ ext{hom.mex}}}{\Omega} = rac{125 imes 10^3}{2\pi \cdot rac{1460}{60}} pprox 818.5 \, ext{Hm}$$

Пусковий момент:

$$M_{
m Hyck} = eta \cdot M_{
m Hom} = 2.35 imes 818.5 pprox 1923.5 \, {
m Hm}$$

Критичний момент:

$$M_{\text{KD}} = \gamma \cdot M_{\text{HOM}} = 2.3 \times 818.5 \approx 1882.6 \, \text{H}\,\text{M}$$

6. Ковзання

Номінальне ковзання:

$$s_{\text{HOM}} = \frac{n_1 - n_{\text{HOM}}}{n_1} = \frac{1500 - 1460}{1500} \approx 0.0267$$

Критичне ковзання:

$$s_{\text{kp}} = s_{\text{hom}} \cdot \left(\gamma + \sqrt{\gamma^2 - 1} \right) = 0.0267 \cdot \left(2.3 + \sqrt{2.3^2 - 1} \right) \approx 0.12$$

7. Потужність втрат

Втрати в обмотках:

$$P_{ ext{втр}} = P_{ ext{ном.ел}} - P_{ ext{ном.мех}} = 137.36 - 125 = 12.36 \, \mathrm{кBr}$$

Обчислення обертаючого моменту

Обертаючий момент асинхронного двигуна визначається за формулою:

$$M = \frac{M_{\rm Kp}}{\frac{S_{\rm Kp}}{S} + \frac{S}{S_{\rm Kp}}} \tag{1}$$

де:

Змн.	Арк.	№ докум.	Підпис	Дата

- M обертаючий момент двигуна при ковзанні S, $H \cdot M$;
- $M_{\rm kp}$ критичний момент (максимальний обертаючий момент), Н·м;
- S значення ковзання:
- $S_{\rm kp}$ критичне ковзання (значення ковзання, при якому досягається максимальний момент).

Ця формула дозволяє обчислити момент для різних значень ковзання:

- при S = 0 момент теоретично дорівнює нулю;
- при $S = S_{\text{кр}}$ двигун розвиває максимальний момент $M_{\text{кр}}$;
- ullet при великих значеннях S момент зменшується.

Рис. 2.6: Розрахунок крутного моменту

Висновки

Отримані результати дозволяють оцінити параметри роботи трифазного асинхронного двигуна, його енергетичні характеристики та вибір необхідних ємностей для підвищення коефіцієнта потужності.

Контрольні питання

1. Чому асинхронний двигун так називається? Асинхронний двигун називається так тому, що частота обертання його ротора не співпадає з частотою обертання магнітного поля статора (яка

						Арк.
					$\Pi M1109.04.00.02~\Pi P$	_
Змн.	Арк.	№ докум.	Підпис	Дата		8

визначається частотою змінного струму). Різниця між цими частотами називається ковзанням.

- 2. Чому є небажаною велика сила пускового струму? Велика сила пускового струму небажана, оскільки вона може призвести до значних механічних та електричних навантажень на двигун і мережу, викликати пошкодження ізоляції проводів, зменшити термін служби обладнання, а також викликати перевантаження трансформаторів і підстанцій.
- 3. Що використовують для зниження сили пускового струму? Для зниження сили пускового струму використовують спеціальні пристрої, такі як стартери з обмеженням струму, трансформатори з регульованим напругою або пристрої плавного пуску, що забезпечують поступове збільшення напруги на двигуні.

I					
I					
	3мн.	Арк.	№ докум.	Підпис	Дата