BST 140.751 I	Midterm	exam
---------------	---------	------

Notes:

- $\bullet\,$ You may not use a calculator for this exam.
- Please be neat and write legibly. Use the back of the pages if necessary.
- Good luck!

printed name

- 1. You are playing a game with a friend where you flip a coin and if it comes up heads you give her x dollars and if it comes up tails she gives you cx dollars for some value of c. The coin has probability of a head of p.
 - a. What must be true about c for the game to be "fair". That is, to have expected winnings 0 for both players?
 - b. Suppose that you play the game n times. What is the mean and variance for your earnings?
 - c. How could you make your variance the largest?

- 2. Let Y_1,\ldots,Y_I be independent random variables so that $Y_i\sim N(x_i\beta,\sigma^2)$ where $\{x_i\}_{i=1}^I$ are known.
 - a. Show that the ML estimate of β is $\hat{\beta} = \frac{\sum_{i=1}^{I} y_i x_i}{\sum x_i^2}.$
 - b. Show that this estimate is unbiased.
 - c. Derive the variance of $\hat{\beta}$.
 - d. Derive the ML estimate of $\sigma^2.$

- 3. Let X_i be independent $\mathsf{Poisson}(\lambda t_i)$ for $i=1,\ldots,I$. The t_i are known. Recall a variable is $\mathsf{Poisson}(\mu)$ if it has mass function $\frac{\mu^x e^{-\mu}}{x!}$ for $x=0,1,\ldots$ The mean and variance of the Poisson mass function is μ .
 - a. Argue that the Poisson mass function is a valid mass fuction.
 - b. Give a univariate function of the collection $\{X_i\}$ that is sufficient for specifying the likelihood for λ .
 - c. Give the maximum likelihood estimate for λ .
 - d. Show that the ML estimate of λ is both unbiased and derive its variance.

- 4. Consider a diagnostic test. Let D be the event that the patient has the disease and T_1 be the event that a first test is positive. Let T_2 be the result that a second test is positive. Assume that the result of the second test is independent of the first.
 - a. Symbolically derive the positive predictive value of a positive value on the first test in the terms of its sensitivity and specificity.
 - b. Consider the test T_3 defined as positive if either T_1 or T_2 (or both). Derive the sensitivity and specificity of T_3 as a function of the sensitivity and specificity of T_1 and T_2 .
 - c. Consider the test T_4 defined as positive if both T_1 and T_2 . Derive the sensitivity and specificity of T_4 as a function of the sensitivity and specificity of T_1 and T_2 .
 - d. Say what you can about the ordering $(>, \ge, <, \le)$ between the sensitivities of the four tests. Repeat this for the specificities.