SB015

Biology 1 Semester 1 Session 2023/2024 2 hours

No. Matrik					Nama	Kelas				

KOLEJ MATRIKULASI JOHOR KEMENTERIAN PELAJARAN MALAYSIA

BIOLOGI 2 jam

JANGAN DIBUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Untuk kegunaa	n pemeriksa
No. Soalan	Markah
1	
2	
3	
4	
5	
6	
7	
Jumlah	

INSTRUCTIONS TO CANDIDATE:

This question paper contains 7 questions. Answer **all** questions in the space provided in this question paper.

(a)	Desribe	the events oc	ecur in mitosis.		[5 marks		
(b)	FIGUR	RE 1 shows ch	nromosomal beha	vior of cell division.			
			integration of the state of the	rasa			
]	FIGURE 1				
(i)	Identif	y the stage of	cell division in F	IGURE 1.	[1 <i>mark</i>		
(ii)		ne (1) chromo		lifference between sta	age FIGURE 1 [1 <i>marl</i>		
(a) FIGURE 2 shows parts of the monohybrid cross of a plant.							
Parental:		Tall	X	Dwarf			
Gam	netes:	G1 \sim		G2			
F1			All tall				
	eration :	788	Riftan Stall and 263 dwa	rfs			
gene	ration:						
			FIGURE 2				
State th Ta	_	al genotype fo	or the following:		[2 marks]		

	Dwarfness :	
(ii)	State the generation F1 genotype.	[1 <i>mark</i>]
iii)	Determine the ratio of plants for tallness and dwarfness.	[1 <i>mark</i>]
llele grey ly w	Black coloured body & vestigial wing in Drosophila is controlled by two (b) and (vg) respectively. Dominant alleles, (b+) and (vg+) produced will-coloured body, normal wing). A homozygous wild type is crossed to a horith black-coloured body and vestigial wing. The F1 progeny produced is test generations are as follows:	d type fly mozygous
]	Wild type 1930 Black vestigial 1888 Black normal 412 Grey vestigial 370	
i)	What type of the inheritance shown above?	[1 <i>mark</i>]
ii)	What are the expected phenotypic ratio of the F2 generation according to the Mendelian Law.	[1 mark]
iii)	Conclude why the observed ratio shown above does not fit the expected ratio?	[1 mark]
	fruit flies, eye colour is a sex-linked trait. Red eye is dominant to white eye. of a white-eyed female with a red-eyed male.	Show the [3 <i>marks</i>]

(d) The colour of flowers for $\textit{Antirrhinum}$ sp. (snapdragon) are controlled by genotype $\mathbf{C^R}\mathbf{C^R}$
for red flowers, C^RC^W for pink flowers and C^WC^W for white flowers.

(i)	State the type of inheritance of the flower colours.	[1 <i>mark</i>]

(ii)	State the possible crossings which do not produce plants with white flowers. [2 marks]

In the study of human blood groups, its was found that among a population of 600 individuals, 502 were **Rh**+ and 98 were **Rh**-. Assuming that the **Rh**+ traits is controlled by a dominant allele (**R**).

(a)	State the Hardy-Weinberg law.	[2 marks]		

(b) Find the frequency of individuals with **Rh**+ trait but carry the allele **r**. (Calculate up to three decimal places). [4 *marks*]

4 (a) **FIGURE 3** shows part of the process that occurs during protein synthesis.

FIGURE 3

(i) If **A** in **FIGURE 3** has the following sequence

5'-GATACATGGAATTCCATGCTGA-3', what is the sequence of B and C strands? [2 *marks*] (ii) Name structure **C** and give its function in protein synthesis. [2 *marks*] (b) FIGURE 4 shows a translation process in protein synthesis. State and describe the process shown by analyzing the 3 step cycle. [10 *marks*] - Amino acid Large ribosomal subunit Anticodon -5' mRNA Codon -Small ribosomal subunit FIGURE 4

5 **FIGURE 5** shows a fragment of DNA with specific base sequence and its altered sequence resulting from a gene mutation.

FIGURE 5

Identify mutation A .	[1 <i>mark</i>]						
Mutation A:							
What is the effect of gene mutation A in FIGURE 5 .	[2 marks]						
Explain the effect of mutation B.	[4 marks]						
	What is the effect of gene mutation A in FIGURE 5 .						

(b) **FIGURE 6** shows formation of polyploidy in plants.

Based on **FIGURE 6** answer the following questions.

(i) Identify the type of ploidy.

[1 *mark*]

	(ii) Determine the chromosome number for plant C.	[1 <i>mar</i>
	(iii) Explain how process X cause plant D become fertile.	[2 mark.
(a)	Explain the function of the cloning vector and the important characteristic in recombinant DNA technology.	nce of its [4 mark
(b)	FIGURE 7 below shows part of donor DNA containing a serecombinant DNA technology	specific gene used
	<u> </u>	specific gene used i
	recombinant DNA technologyTAGAATTCGTGAATTC	
	recombinant DNA technologyTAGAATTCGTGAATTCATCTTAAGCACTTAAG	Donor DNA
(i) Id	recombinant DNA technologyTAGAATTCGTGAATTCATCTTAAGCACTTAAG FIGURE 7	Donor DNA aves the DNA. [1 max

(iv)	Draw the DNA fragments produced when it is cleaved by the restric enzyme.	tion
	chzyme.	[1 mark
(v)	Explain how the fragment produced in (iv) is used in recombinant D technology.	ONA [3 marks
(a)	FIGURE 8 shows structure of a secondary oocyte.	
	F G H	
	G H	
(i) N	G H	[1 mark]
(ii) S	FIGURE 8	

	(iv) Give ON genetic conte	NE difference between primary oocyte and secondary oocytent.	e in terms of [1 mark]
(b) Desc	cribe the stag	ges that are involved in fertilization process in the fallopian	tube. [8 marks]
			[0 marks]
(c)]	FIGURE 9 s	shows growth pattern of maize plant.	
		40 - (6) ss 30 - 20 -	
		10 - X - 5 10 15 20 25 Time (weeks)	
		FIGURE 9	
	(i)	Why there is sudden increase in mass after phase X .	[2 marks]
	(ii)	Give two (2) differences between growth pattern of maiz Meranti tree.	e plant and [2 marks]