SISTEMI DI MODULAZIONE	$B_s = 2B_a$	VSB	$ _{S_{Tx}(t)} = [a(t) + A]\cos(2\pi f_0 t + \phi_0)$	$ \beta_D = \max_{t} \Lambda(t_0)(t) = K_D a_M =$	$s_L(t) = \cos(2\pi f_0 t + \phi_0 +$	$(\tilde{a}_{Ch}(f))_{dB/km} = 3.45_{E-3}(a^{-1} + b^{-1})$
ANALOGICA	Prestazioni	Implementazione sistema	= A[1 + mā(t)]cos(2 π f ₀ t + ϕ ₀)	$(K_P \sqrt{M_a})/k_f$	2πK _F d(t)),	1)(√f)/log ₁₀ (b/a), 2a diam int, 2b
Modello sistema	$\Lambda_0 = \Gamma$	MOD: a(t)→[⊗(cos(2πf₀t +	DEMOD (coerente):	Banda del sistema B₃	$h_d(t) = (1/2\pi)k_dd/dt \leftrightarrow H_d(f) = jk_df$	1,
$a(t)\rightarrow[MOD]\rightarrow s_{Tx}(t)\rightarrow[CHANNEL]$	_	$ \phi_0\rangle$ $\rightarrow a_c(t)\rightarrow [BPF]\rightarrow s_{Tx}(t),$	$s_{Tx}(t) \rightarrow [\otimes(\cos(2\pi f_0 t +$	$B_s = 2B_a(1 + \beta_P)$	$\Rightarrow s_d(t) = (1/2\pi)k_d ds_L(t)/dt = -k_d(f_0)$	
$\rightarrow [\oplus w_{Rc}(t)] \rightarrow r(t) \rightarrow [BPF] \rightarrow$		$H_{PBF}(f) : H_{PBF}(f + f_0) + H_{PBF}(f - f_0)$		Prestazioni	+ K_F a(t))sin(2π f_0 t + ϕ_0 +	$\lambda f = c/n$, con n indice di
$r_{Mi}(t) \rightarrow [DEMOD] \rightarrow r_0(t) = a_0(t) +$	$\pi(f) = \frac{1}{2}(1 + \operatorname{sgn}(f))$	= K, f ≤ B, B = B _a	$a_0(t) = \frac{1}{2}[a(t) + A]\cos(\phi_0 - \phi_1)$		2πK _F d(t)),	rifrazione del mezzo (n = 1 nel
$W_0(t)$, $r_{Mi}(t) = S_{Rc}(t) + W_{Rc}(t)$		$S_{Tx}(f) = [\frac{1}{2}e^{j\phi_0} A(f - f_0) + \frac{1}{2}e^{-j\phi_0}]$	DEMOD (non coerente):	FM	$a_0(t) = k_d f_0 + K_Fa(t) = k_df_0 +$	vuoto)
SNR di uscita ∧₀		$A(f + f_0)]H_{PBF}(f)$	$ s_{Tx}(t)\rightarrow[.]\rightarrow d(t)\rightarrow[LPF]\rightarrow a_0(t),$	$\Delta f_s(t) = K_F a(t)$	$k_d K_F a(t)$ se $f_0 \gg K_F a_m$	Collegamento radio
$\Lambda_0 = M_{a0}/M_{w0}$		H_{PBF}(f): H _{PBF} (f) = {1 per $f_0 + \rho B <$		$f_s(t) = f_0 + K_F a(t)$	Banda del sistema B₃	Ant,Tx(→Ch→)Ant,Rc
SNR di riferimento Γ _{rif}	MOD SSB ₊ : a(t)→[⊗(cos(2πf₀t +		A] $ \cos(2\pi k f_0 t + \phi_0) = 2/\pi +$	$\Delta \phi_s(t) = 2\pi K_F \int a(\tau) d\tau, \ \tau = -\infty,, \ t$		Ant,Tx(: $\Phi_0 = P_{Tx}/4\pi d^2$ [W/m ²], d
B _a banda di a(t)	$[\phi_0]$ $\rightarrow a_c(t) \rightarrow [BPF] \rightarrow s_{Tx}(t),$	f_0 / ρ B)] per $f_0 - \rho$ B < $ f < f_0 + \rho$ B,		$S_{Tx}(t) = A\cos(2\pi f_0 t + \phi_0 +$	Prestazioni	distanza, antenna isotropica
$\Gamma = M_{sRc}/M_{wRc} = M_{sTx}/(N_0B_aa_{Ch})$		0 per f_0 - $\rho B < f < f_0$ - B , irrilev.		$2\pi K_F \int a(\tau) d\tau, \ \tau = -\infty,, t)$	$\Gamma_{th} = 20(1 + \beta_F)$	$\Phi = \Phi_0 g_{Ant,Tx} [W/m^2]$ antenna
$\Gamma = P_{sRc}/P_{wRc} =$		altrove}, B(1 + ρ) banda	Banda del sistema B₅	$\beta_F = (1/B) \max_t \Delta f_s(t) = K_F a_M / B$	$\Lambda_0 = 3k_f^2\beta_F^2\Gamma \text{ per } \Gamma > \Gamma_{th}$	direzionale
P _{sTx} /(KT _{eff,Rc} B _a a _{Ch})	altrove $\}$, $B = B_a$	occupata	$B_s = 2B_a$	$= (K_F \sqrt{M_a})/Bk_f$	$\Lambda_0 = 3k_f^2 \beta_F^2 \Gamma/(1 + \Gamma_{th}/\Gamma) \text{ per } \Gamma <$	Ant,Rc(: $P_{Rc} = \Phi A_{Ant,Rc} \eta_{Ant,Rc}$,
Prestazioni		DEMOD: $s_{Tx}(t) \rightarrow [\otimes(\cos(2\pi f_0 t +$	Prestazioni	Max dev. di freq.: ΔF =	Γ _{th}	A _{Ant.Rc} area efficace, η _{Ant.Rc}
<u>Λ</u> ₀ ↔ Γ	***	$[\phi_1)] \rightarrow u(t) \rightarrow [LPF] \rightarrow a_0(t)$	$\Lambda_0 = \eta \Gamma$	$\max_{t} \Delta f_s(t) = K_F a_M$	SEGNALI	fattore di efficienza, condizioni
MODULAZIONI LINEARI	Filtro di Hilbert	$U(f) = \frac{1}{4}e^{j(\phi 0 - \phi 1)}A(f)H_{PBF}(f + f_0) +$		FM Narrowband	Banda pratica	di adattamento
Implementazione sistema	$H^{(h)}(f) = -jsgn(f)$	$\frac{1}{4}e^{-j(\phi_0-\phi_1)}A(f)H_{PBF}(f-f_0) + \frac{1}{4}e^{j(\phi_0-\phi_1)}A(f)H_{PBF}(f-f_0)$		$d(t) = \int a(\tau)d\tau, \ \tau = -\infty,, t$	Primo zero: B = {f > 0, H(f) = 0}	
$a(t)\rightarrow [MOD]\rightarrow s_{Tx}(t)\rightarrow [CHANNEL]$.,,	$+ \varphi^{1)}A(f - 2f_0)H_{PBF}(f - f_0) + \frac{1}{4}e^{-j(\varphi^0 + \varphi^0)}$		$D(f) = A(f)/j2\pi f$	Ampiezza (dB): $B = \{f > 0,$	$(a_{Ch})_{dB} = 32.4 + 20log_{10}(d)_{km} +$
$\rightarrow r(t) \rightarrow [DEMOD] \rightarrow a_0(t)$	$\langle a(t), a^{(h)}(t) \rangle = 0, M_{a(h)} = M_a$	$\phi^{(1)}A(f + 2f_0)H_{PBF}(f + f_0)$	$S_{Tx}(t) = A\cos(\phi_s)$	$s_{Tx}(t) = A\cos(2\pi f_0 t + \phi_0 +$	$ H(f) /H_0 = 10^{-A/20}$, con A = 3, 4,	20log ₁₀ (f ₀) _{MHz} - (g _{Ant,Tx}) _{dB} -
MOD: a(t)→[⊗(cos(2πf₀t +	HILBERT MOD SSB+:	$\phi_0 = \phi_1 \Rightarrow A_0(f) = \frac{1}{4}A(f)[H_{PBF}(f +$	Ampiezza: A	$2\pi K_F d(t)$ = Acos($2\pi f_0 t$ +	60 dB	(g _{Ant,Tx}) _{dB}
$\phi_0)]\rightarrow a_c(t)\rightarrow [BPF]\rightarrow s_{Tx}(t),$	$(a(t), a(t)) \rightarrow (a(t), [H^{(h)}]) \rightarrow (a(t),$	f_0) + $H_{PBF}(f - f_0)$] = $\frac{1}{4}A(f)K$	φ ist. : φ _s (t)		Energia: {f > 0,	BIPOLI
$a_c(t) = a(t)\cos(2\pi f_0 t + \varphi_0)$		Banda del sistema B₅	f ist.: $f_s(t) = (1/2\pi)d\phi_s(t)/dt$	ϕ_0)sin(2 π K _F d(t))	$\int_{0^{B}} H(f) ^{2} df / \int_{0^{+\infty}} H(f) ^{2} df = p/100 \},$	$\overline{v_i(t), Z_s, Z_L, G(f)}$
$A_c(f) = \frac{1}{2}e^{j\phi_0}A(f - f_0) + \frac{1}{2}e^{-j\phi_0}A(f + f_0)$		$B_s = B_a(1 + \rho)$	$φ$ nat.: $φ_N(t) = 2πf_0t + φ_0$	$K_F \ll 1/(2\pi \max_t d(t)) \Rightarrow s_{Tx}(t) =$	con p = 90, 99, 99.9	$v_i(t) \rightarrow [g_1] \rightarrow v_L(t)$
f ₀)	$S_{Tx}(f) = \frac{1}{2} \left[\frac{1}{2} e^{j\phi 0} A(f - f_0) + \frac{1}{2} e^{-j\phi 0} \right]$	Prestazioni	f nat.: $f_N(t) = (1/2\pi)d\phi_N(t)/dt = f_0$	Acos(2πf ₀ t + φ ₀) - A2πsin(2πf ₀ t	ESD	$P_{v} = E[v_{L}(t)i_{L}(t)] = r_{vLiL}(0) =$
$s_{Tx}(t) = (a_c * h_{PBF})(t)$	$A(f + f_0)$] - $\frac{1}{2}[\frac{1}{2}e^{j\phi_0} A^{(h)}(f - f_0) +$	Λ ₀ = Γ	Dev. ϕ ist.: $\Delta \phi_s(t) = \phi_s(t) - \phi_N(t)$	+ φ ₀)	$\overline{\varepsilon_{x}(f)} = X(f) ^{2}$	$\int_{\partial V LiL}(f)df = \int \Re[\partial V LiL(f)]df =$
$S_{Tx}(f) = A_c(f)H_{PBF}(f)$	$\frac{1}{2}e^{-j\phi_0} A^{(h)}(f + f_0)$	DSB-TC (AM)	= $2\pi \int \Delta f_s(\tau) d\tau$, $\tau = -\infty$,, t	$S_{Tx}(f) = \frac{1}{2}Ae^{j\phi 0}\delta(f - f_0) + \frac{1}{2}Ae^{-j\phi 0}$	PSD	$\int p_{v}(f)df, p_{v}(f) = \Re[\wp_{vLiL}(f)]$
DEMOD: $s_{Tx}(t) \rightarrow [\otimes(\cos(2\pi f_0 t +$	$s_{Tx}(t) = \frac{1}{2}a(t)\cos(2\pi f_0 t + \phi_0)$	Parametri	Dev. f ist.: $\Delta f_s(t) = f_s(t) - f_N(t) =$	$\delta(f + f_0) + \frac{1}{2}Ae^{j\phi_0}K_FA(f - f_0)/(f - f_0)$	$\wp_x(f) = \mathscr{F}(r_x(\tau)), r_x(\tau) = E[x(t +$	densità di potenza elettrica
$\phi_1)] \rightarrow u(t) \rightarrow [LPF] \rightarrow a_0(t)$	½a ^(h) (t)sin(2πf ₀ t + φ ₀)	Valore min.: a _m = -min _t a(t)	$(1/2\pi)d\Delta\phi_s(t)/dt$	+ $\frac{1}{2}$ Ae- $\frac{1}{9}$ 0K _F A(f + f ₀)/(f + f ₀)	$T(x^*(T))$, $M_x = r_x(0)$, $p_{xy}(f) = 0$	$\wp_{VLiL}(f) = V_L(f)I_L^*(f) = \wp_{Vi}(f)Z_L/ Z_S +$
DSB-SC	DEMOD: $s_{Tx}(t) \rightarrow [\otimes(\cos(2\pi f_0 t +$	Indice di mod.: m = a _m /A	$S_{Tx}(t) = A\cos(\phi_s) = A\cos(2\pi f_0 t +$	B _s = 2B _a	$X(f)Y^*(f)$	$Z_L ^2$
Implementazione sistema	$\phi_1)]\rightarrow u(t)\rightarrow [LPF]\rightarrow a_0(t)$	Segnale norm.: ā(t) = a(t)/a _m	$\varphi_0 + \Delta \varphi_s$)	FM Wideband (Formula di	$\wp_{xy}(f) = \mathscr{F}(r_{xy}(\tau)), r_{xy}(\tau) = E[x(t +$	$p_{v}(f) = \wp_{vi}(f)R_L/ Z_S + Z_L ^2$
MOD: a(t)→[⊗(cos(2πf₀t +	$U(f) = \frac{1}{4}e^{j(\phi 0 - \phi 1)}A^{(+)}(f) + \frac{1}{4}e^{-j(\phi 0 - \phi 1)}A^{(+)}(f) + \frac{1}{4}e^{-j(\phi 0 - \phi 1)}A^{(+)}(f)$	Ass. dist. inviluppo ⇔ a(t) + A ≥	a(t) segnale di informazione	Carson)	$\tau)y^*(\tau)], M_{xy} = r_{xy}(0)$	Condizione di adatt per il max
$\phi_0)] \rightarrow s_{Tx}(t),$	$^{\phi 1)}A^{(-)}(f) + \frac{1}{4}e^{j(\phi 0 + \phi 1)}A^{(+)}(f - 2f_0) +$	$0 \Leftrightarrow A \ge a_m \Leftrightarrow m \le 1$	Param. di mod.: K _F , K _P	$B_s = 2B_a(1 + \beta_F) = 2(B_a + \Delta F) =$	Heaviside conditions	trasf di potenza
$s_{Tx}(t) = a(t)\cos(2\pi f_0 t + \phi_0)$	$\frac{1}{4}e^{-j(\phi_0 + \phi_1)}A^{(-)}(f + 2f_0)$	Fatt. di forma: k _f ² = M _ā /a _m ²	Indice di mod.: β _F , β _P	2B _a se ΔF ≪ 1	1. H(f) = H₀, f ∈ B	$Z_s = Z_L^* \Rightarrow p_v(f) = \wp_{vi}(f)/4R_S$
	$a_0(t) = \frac{1}{4}a(t)\cos(\phi_0 - \phi_1)$ -	Eff. di mod.: $\eta = \frac{1}{2}M_a/M_{sTx} =$	Valore max.: a _M = max _t a(t) =	Implementazione sistema	2. argH(f) = -2πft₀	Rumore termico
$S_{Tx}(f) = \frac{1}{2}e^{j\phi_0}A(f - f_0) + \frac{1}{2}e^{-j\phi_0}A(f - f_0)$		m ² k _f ² /(1 + m ² k _f ²)	$a_m = -min_ta(t)$	MOD: omissis	MEZZI TRASMISSIVI	$\wp_{W}(f) \simeq 2KTR, K = 1.3805_{E-3}$
$S_{Tx}(f) = \frac{1}{2}e^{j\phi_0}A(f - f_0) + \frac{1}{2}e^{-j\phi_0}A(f + f_0)$	$\frac{1}{4}a^{(h)}(t)\sin(\phi_0 - \phi_1)$	111 K(/ (1 · 111 K()				
	$1/4$ a ^(h) (t)sin(ϕ_0 - ϕ_1) Banda del sistema B ₈	Implementazione sistema	<u>PM</u>	DEMOD:	<u>Linea</u>	$[J/K] \Rightarrow p_w(f) \approx \frac{1}{2}KT$
+ f ₀)		· ·		DEMOD: $s_{Tx}(t) \rightarrow [limitatore] \rightarrow s_L(t) \rightarrow [derivat]$		[J/K] ⇒ p _w (f) ≃ ½KT <u>RETI 2-PORTE</u>
+ f_0) DEMOD: $s_{Tx}(t) \rightarrow [\otimes (\cos(2\pi f_0 t +$	Banda del sistema B₃	Implementazione sistema			$\overline{(\tilde{a}_{Ch}(f))_{dB/km}} = (\tilde{a}_{Ch}(f))_{dB/km} \sqrt{(f/f_1)}$	
+ f ₀) DEMOD: $s_{Tx}(t) \rightarrow [\otimes(cos(2\pi f_0 t + \phi_1)] \rightarrow u(t) \rightarrow [LPF] \rightarrow a_0(t),$	Banda del sistema B _s B _s = B _a	Implementazione sistema MOD: $a(t) \rightarrow [\oplus A] \rightarrow [\otimes (\cos(2\pi f_0 t + \cos(2\pi f_0 t))]$	$\Delta \phi_{\rm s}(t) = K_{\rm P}a(t)$	$s_{Tx}(t) \rightarrow [limitatore] \rightarrow s_{L}(t) \rightarrow [derivat]$	$(\widetilde{a}_{Ch}(f))_{dB/km} = (\widetilde{a}_{Ch}(f))_{dB/km} \sqrt{(f/f_1)}$ $(a_{Ch}(f))_{dB} = (\widetilde{a}_{Ch}(f))_{dB/km} (d)_{km}$	RETI 2-PORTE

$v_i(t) \rightarrow [g_1] \rightarrow v_1(t) \rightarrow [g_2] \rightarrow v_2(t) \rightarrow [g_1]$	$[p_{\underline{r}]an}(\underline{\rho} n) = p_{\underline{w}}(\underline{\rho} - \underline{s}_m) =$	$\rho = 0, I = 2$	$a_n \in A = \{\alpha_1,, \alpha_m\}, M = L^2 \Rightarrow \alpha_{m,l},$	$a_n\varepsilonA = \{\alpha_1,,\alpha_m\} \Rightarrow \alpha_{m,l}\varepsilon$	Ortogonali \Leftrightarrow $f_n = f_0 + m/2T$, $f_0 \gg$	SNR di quantizzazione Λ_q
v _L (t)	$(1/(\pi N_0)^{1/2}) \exp(- \underline{\boldsymbol{\rho}} - \underline{\mathbf{s}}_m ^2/N_0)$	MODULAZIONE M-ARIA	$\alpha_{m,Q}$ ε {-(L-1), -(L-3),, (L-3), (L-	$\{\cos(\phi_m), m = 1,, M\}, \alpha_{m,Q} \varepsilon$	1/T	$\Lambda_q = M_a/M_{eq}$
Guadagno di potenza della	rete Regioni di Voronoi	$(N_{min}/M)Q(d_{min}/2\sigma_I) \le P_e \le (M -$	1)}	$\{\sin(\phi_m), m = 1,, M\}$	Segnale S _m (t) (M-FSK non	e_q granulare \Rightarrow $M_{eq} \simeq M_{egr} = \Delta^2/12$
$g(f) = p_{v,out}(f)/p_{v,in}(f)$	R _m = { <u>ρ</u> m = argmax _{k ε {1,, M}}	1)Q($d_{min}/2\sigma_{I}$), N _{min} = # d_{min}	Base ortogonale {Φ _i }	Base ortogonale {Φ _i }	coerente)	$\Rightarrow \Lambda_q = 3k_f^2L^2$
Condizione di adatt per il m	$D(\underline{\rho};k)$	M-PAM	$f_0 > B_h$: $\Phi_1(t) =$	$f_0 > B_h$: $\Phi_1(t) =$	$S_m(t) = Asin(2\pi f_m t + \phi_m)$ se $0 \le t <$	$(\Lambda_q)_{dB} \approx 6.02b + 4.77 + 20log_{10}(k_f)$
trasf di potenza	Criterio MAP	Segnale S _m (t)	$\sqrt{(2/E_h)h_{Tx}(t)\cos(2\pi f_0 t)}$, $\Phi_2(t) = -$	$\sqrt{(2/E_h)h_{Tx}(t)\cos(2\pi f_0 t)}$, $\Phi_2(t) = -$	T, $S_m(t) = 0$, altrimenti, $m = 1,, M$	<u>A-law</u>
$Z_1 = Z_S^* e Z_L = Z_2^*$	$\hat{a}_n = \operatorname{argmax}_{k \in \{1,, M\}} D(\underline{\boldsymbol{\rho}}; k),$	$S_m(t) = \alpha_m h_{Tx}(t), \ \alpha_m = 2m - 1 - M,$	$\sqrt{(2/E_h)h_{Tx}(t)sin(2\pi f_0 t)}$	$\sqrt{(2/E_h)}h_{Tx}(t)sin(2\pi f_0 t$	Ortogonali \Leftrightarrow f _n = f ₀ + m/T, f ₀ \gg	A = 87.56, v _{sat} = 1
Temperatura di rumore	$D(\underline{\boldsymbol{\rho}};k) = p_{\underline{\boldsymbol{\eta}}an}(\underline{\boldsymbol{\rho}} n)p_m, p_m = P[a_n =$	m = 1,, M	Costellazione (s _m)	Costellazione {s _m }	1/T	$y = F[a] = {A a /(1 + In(A)) per 0 \le }$
$p_{w,in}(S)(f) = \frac{1}{2}KT_S(f)$	α _m]	Alfabeto A	$\underline{\mathbf{s}}_{m} = \sqrt{(E_{h}/2)[\alpha_{m,l}, \alpha_{m,Q}]}$	$\underline{\mathbf{s}}_{m} = \sqrt{(E_{h}/2)[\cos(\phi_{m}), \sin(\phi_{m})]}$	Alfabeto A	$ a \le 1/A$, $(1 + \ln(A a))/(1 + \ln(A))$
$p_{w,out}(S)(f) = \frac{1}{2}KT_S(f)g(f)$	Rumore AWGN ⇒ per due simboli	$a_n \in A = \{\alpha_1,, \alpha_m\} = \{-(M-1), -(M-1)\}$	$E_s = E_h(M-1)/3$	$E_s = E_h/2$	Omissis	per 1/A ≤ a ≤ 1
		3),, (M-3), (M-1)}	$d_{min} = \sqrt{(2E_h)}$	$d_{min} = \sqrt{(2E_h)sin(\pi/M)}$	Base ortogonale {Φι}	sgn[y] = sgn[a]
$p_{w,out}(f) = p_{w,out}(S)(f) + p_{w,out}(A)(f)$	nel punto: $\rho_{ij} = (N_0/(2(s_j - 1)))$	Base ortogonale {Φ _i }	Regioni di decisione (R _m)	Regioni di decisione {R _m }	$\Phi_i(t) = s_i(t)/\sqrt{E_i}, i = 1,, M$	μ-law
$p_{w,out}(A)(f) = \frac{1}{2}KT_A(f)g(f)$	$s_i)))In(p_{an}(\alpha_i)/p_{an}(\alpha_j)) + \frac{1}{2}(s_j + s_i)$	$\Phi_1(t) = h_{Tx}(t) / \sqrt{E_h}$	$ \{R_{ang}\} = 4$, $ \{R_{ext}\} = 4(L - 2)$,		Costellazione (s _m)	μ = 255, v_{sat} = 1
$T_{eff,in}(f) = T_S(f) + T_A(f)$	Criterio ML	Costellazione (s _m)	$ \{R_{int}\} = (L - 2)^2$	$\leq \pi/M$ }, $\underline{\mathbf{e}} = [\mathbf{e}_1, \mathbf{e}_2]$	<u>s</u> m = √En <u>e</u> m	$y = F[a] = ln(1 + \mu a)/ln(1 + \mu)$
$p_{w,in}(f) = \frac{1}{2}KT_{eff,in}(f)$	$\hat{a}_n = \operatorname{argmax}_{k \in \{1,, M\}} p_{\underline{r} an}(\underline{\rho} n),$	$\mathbf{s}_{m} = [\alpha_{m} \sqrt{E_{h}}]$	Implementazione sistema	Implementazione sistema	$E_s = E_n = A^2T/2$	$(\Lambda_q)_{dB} = 6.02b + 4.77 -$
$p_{w,out}(f) = \frac{1}{2}KT_{eff,in}(f)g(f)$	p _m = 1/M, m = 1,, M	$E_s = E_h(M^2-1)/3$	Tx: $(a_{n,l}, a_{n,Q}) \rightarrow [(h_{Tx},$	Tx: $(a_{n,l}, a_{n,Q}) \rightarrow [(h_{Tx},$	$d_{min} = \sqrt{(2E_s)}$	20log ₁₀ [ln(1 + μ)] - 10 log ₁₀ {1 +
Figura di rumore	Criterio minima distanza	Regioni di decisione (R _m)	$h_{Tx})] \rightarrow [\otimes(\cos(2\pi f_0 t), -$	$h_{Tx})]\rightarrow [\otimes(\cos(2\pi f_0 t), -$	Regioni di decisione {R _m }	$(v_{sat}/\mu\sigma_a)^2 + (v_{sat}/\mu\sigma_a)\sqrt{3}$
$F(f) = p_{w,out}(f)/p_{w,out}(A)(f) = 1$. " " " " " " " " " " " " " " " " " "	$R_1 = \{ \mathbf{s}_1 + e \mid e \le \sqrt{E_h} \}$	$sin(2\pi f_0t))]\rightarrow \oplus \rightarrow s_{Tx}(t), s_{Tx}(t) =$	$sin(2\pi f_0 t))] \rightarrow \oplus \rightarrow s_{Tx}(t),$	omissis	<u> Арсм</u>
$p_{w,out}(A)(f)/p_{w,out}(S)(f) = 1 +$	AWGN, p _m = 1/M, m = 1,, M	$R_m = \{s_m + e \mid e \le \sqrt{E_h}\}, m = 2,,$	$\sum a_{n,l}h_{Tx}(t - nT) \cos(2\pi f_0 t) -$	$s_{Tx}(t) = \sum a_{n,l} h_{Tx}(t - nT) \cos(2\pi f_0 t) -$	Implementazione sistema	$\Lambda_{PCM} = E[a^2(t)]/E[\tilde{a}(t) - a(t) ^2] =$
$T_A(f)/T_S(F) = 1 + T_A(f)/T_0$	detector I: $r(t) \rightarrow [(\Psi_1,,$	M-1	$\sum a_{n,Q}h_{Tx}(t-nT)\sin(2\pi f_0t), n=-\infty,$	$\sum a_{n,Q}h_{Tx}(t-nT) \sin(2\pi f_0 t), n = -\infty,$	omissis	$E[a^2(nT_s)]/E[\tilde{a}_q(nT_s) - a(nT_s) ^2]$
Rete passiva \Rightarrow F(f) = a(f)	$\Psi_{I})] \rightarrow (\cap^{1(t0)},, \cap^{I(t0)}) \rightarrow (r_{n,1},, r_{n,I}) \rightarrow [\underline{r}]$	$R_{M} = \{\mathbf{s}_{M} + \mathbf{e} \mid \mathbf{e} \geq -\sqrt{E_{h}}\}$, $+\infty$, $a_{n,l} = \Re[a_n]$, $a_{n,Q} = \Im[a_n]$ Rc :	, $+\infty$, $a_{n,l} = \Re[a_n] \in \{\alpha_{m,l} =$	Banda minima B _{min}	$\Lambda_{PCM} = M_a/(M_{eq} + M_{eBC}) = \Lambda_q/(1 +$
Cascata di reti 2-porte	- <u>s</u> _m]→(D ₁ ,,D _M)→[argmax _m	Implementazione sistema	$r(t)\rightarrow [\otimes(\cos(2\pi f_0 t), -$		$B_{min} = M/2T$	$4(2^{2b} - 1)P_{bit}), \ \Lambda_q = M_a/(\Delta^2/12)$
$g(f) = g_1(f)g_2(f)g_N(f)$	- '' '	Tx: $a_n \rightarrow [h_{Tx}] \rightarrow s_{Tx}(t)$, $s_{Tx}(t) =$	$sin(2\pi f_0 t))] \rightarrow [(h_{Rc}, h_{Rc})] \rightarrow (f^{(t0+nT)},$	$\varepsilon \{ \alpha_{m,Q} = \sin(\varphi_m), m = 1,, M \} $ Rc :		SNR Λ _a di una tx analogica
$T_A(f) = T_1(f) + T_2(f)/g_1(f) +$	+ I detector II: $r(t) \rightarrow [(\xi_1,,$	$\sum a_n h_{Tx}(t - nT), n = -\infty,, +\infty, a_n \in A$		$r(t)\rightarrow [\otimes(\cos(2\pi f_0 t), -$	$\Gamma_{\rm rif} = 2E_{\rm s}/MN_0$	lineare con ripetitori analogici
$T_N(f)/g_1(f)g_{N-1}(f)$	$[\zeta_M] \rightarrow (\uparrow^{1(U)},,\uparrow^{I(U)}) \rightarrow [\oplus (-\frac{1}{2}E_1,,-$	Rc:	$h_{Rc}(t) = h^*_{Tx}(t_0 - t)/\sqrt{(E_h/2)}$	$\sin(2\pi f_0 t))] \rightarrow [(h_{Rc}, h_{Rc})] \rightarrow (\cap^{(t0+nT)},$	P[errore sul simbolo] Pe	$\Lambda_a = P_{Tx}/kT_0NFsrB = \Gamma_{rif,a}/N, N = #$
$F(f) = F_1(f) + (F_2(f)-1)/g_1(f) +$	½E _M)]→(U _{1,} ,U _M)→[argmax _m	$r(t) \rightarrow [h_{Rc}] \rightarrow \cap^{(t0+nT)} \rightarrow r_n \rightarrow [detector]$	$\underline{\mathbf{r}}_n = \underline{\mathbf{s}}_{an} + \underline{\mathbf{w}}_n = \underline{\mathbf{a}}_n \sqrt{(E_h/2)} + \underline{\mathbf{w}}_n$	$(t_{n,1}, r_{n,2}) \rightarrow [detector] \rightarrow \hat{a}_n,$	$Q(\sqrt{(E_s/2\sigma^2)}) \le P_e \le (M -$	sez. rip.
$(F_N(f)-1)/g_1(f)g_{N-1}(f)$	$U_m] \rightarrow \hat{a}_n$, $\xi_m = S^*_m(t_0 - t)$, $m = 1,,$	$\rightarrow \hat{a}_n$, $h_{Rc}(t) = h^*_{Tx}(t_0 - t)/\sqrt{E_h}$	Banda minima B _{min}	$h_{Rc}(t) = h^*_{Tx}(t_0 - t)/\sqrt{(E_h/2)}$	1)Q(√(E₅/2σ²))	SNR Λ _{PCM} di una tx digitale M-
	M	$r_n = s_{an} + w_n = a_n \sqrt{E_h} + w_n$	$B_{min} = 1/T$, $h_{Tx}(t) = A_{Sinc}(t/T)$	$\underline{\mathbf{r}}_n = \underline{\mathbf{s}}_{an} + \underline{\mathbf{w}}_n = \underline{\mathbf{a}}_n \sqrt{(E_h/2)} + \underline{\mathbf{w}}_n$	P[errore sul bit] P _{bit}	PAM con ripetitori
SNR out	MODULAZIONE BINARIA	Banda minima B _{min}	SNR di riferimento Γ _{rif}	Banda minima B _{min}	$P_{bit} = (M/2)Q(\sqrt{M\Gamma/2})$	analogici/rigeneneratori
$\Lambda_{\rm M} = M_{\rm sL}/M_{\rm wL}$	Coefficiente di correlazione	$B_{min} = 1/2T$, $h_{Tx}(t) = Asinc(t/T)$	$\Gamma_{\text{rif}} = E_{\text{s}}/N_0$	$B_{min} = 1/T, h_{Tx}(t) = Asinc(t/T)$	BANDA MINIMA E LINK BUDGET	
$\Lambda_P = P_{s,out}/P_{w,out}$	$\rho = \langle S_1(t), S_2(t) \rangle / (\sqrt{E_1} \sqrt{E_2})$	SNR di riferimento Γ _{rif}	P[errore sul simbolo] Pe	SNR di riferimento Γ _{rif}	Efficienza spettrale v	$P_{bit,N} = Q(\sqrt{(3(\Gamma_{rif,d}/N)/(M^2-1))})2(M - \frac{1}{2})$
Narrowband $\Rightarrow \Lambda_M = \Lambda_P$	Distanza d	$\Gamma_{\text{rif}} = 2E_s/N_0$	$P_e \simeq 4(1-1/\sqrt{M})Q(\sqrt{(3\Gamma/(M-1))})$	$\Gamma_{\text{rif}} = E_s/N_0$	$v = R_b/2B_{min}$	1)/(Mlog ₂ M), N = # sez. rip.
$\Lambda_{M} = M_{sTx}/N_0Ba_{Ch}$	$d = d(S_1(t), S_2(t)) = \sqrt{(E_1 + E_2 - C_1)}$	P[errore sul simbolo] Pe	P[errore sul bit] P _{bit}	P[errore sul simbolo] Pe	SNR di riferimento Γ _{rif}	$P_{bit,N} = Q(\sqrt{(3\Gamma_{rif,d}/(M^2-1))})2N(M - \frac{1}{2})$
$\Lambda_P = P_{Tx}/KT_{eff,Rc}Ba_{Ch}$	2ρ√(E₁E₂))	$P_e \simeq 2(1-1/M)Q(\sqrt{(3\Gamma/(M^2-1))})$	$P_{bit} = P_e/log_2M$	$P_e = Q(\sqrt{(2\Gamma)}), M = 2$	$\Gamma = M_{sTx}/(N_0B_{min}a_{Ch})$	1)/(Mlog₂M), N = # sez. rig.
Link budget	$d = \sqrt{(2E_s(1 - \rho))}, E_s = E_1 = E_2$	P[errore sul bit] P _{bit}	M-PSK	$P_e \simeq 2Q(\sqrt{(2\Gamma \sin^2(\pi/M))}), \Gamma \gg 1, M$, , ,	
$(\Lambda)_{dB} = (P_{Tx})_{dBm} - (a_{Ch})_{dB} + 1$		$P_{bit} = P_e/log_2M$	Segnale S _m (t)	≥ 4	Link budget	
$10log_{10}(T_{eff,Rc}/T_0) - 10log_{10}(E_0)$		M-QAM (M = L ²)	$S_m(t) = h_{Tx}(t)\cos(2\pi f_0 t + \phi_m) =$	P[errore sul bit] P _{bit}	$(\Gamma)_{dB} = (P_{Tx})_{dBm} - (a_{Ch})_{dB} + 114 -$	
SISTEMI DI MODULAZIONE		Segnale S _m (t)	$\cos(\varphi_m)h_{Tx}(t)\cos(2\pi f_0 t)$ -	$P_{bit} = Q(\sqrt{2\Gamma}), M = 2$	10log ₁₀ (T _{eff,Rc} /T ₀) -	
DIGITALE	$P_{bit} = P_e$	$S_m(t) = \alpha_{m,l}h_{Tx}(t)\cos(2\pi f_0 t) - \frac{1}{2\pi} \int_0^t dt dt dt$	$\sin(\varphi_m)h_{Tx}(t)\sin(2\pi f_0 t), \cos(\varphi_m) =$	P _{bit} = P _e /log ₂ M, M > 2	10log ₁₀ (B _{min}) _{MHz}	
Rumore AWGN	$P_{bit} = Q(\sqrt{(E_s(1 - \rho)/2\sigma_l^2)})$	$\alpha_{m,Q}h_{Tx}(t)\sin(2\pi f_0 t), \ \alpha_m = \alpha_{m,I} + \dots$	$\alpha_{m,l}$, $\sin(\varphi_m) = \alpha_{m,Q}$, $\alpha_m = \alpha_{m,l} + \frac{1}{2}$	ORTOGONALE COERENTE, M-	TRASMISSIONE DIGITALE DI	
$\underline{\mathbf{w}} = [\mathbf{w}_1,, \mathbf{w}_i], \mathbf{w}_i \sim \aleph(0, \sigma_i^2)$	Segnali antipodali	$j\alpha_{m,Q}, m = 1,, M$	$j\alpha_{m,Q}, \varphi_m = (\pi/M)(2m - 1) m = 1,,$	FSK	SEGNALI ANALOGICI	
9/0 N /0\ : = 4 I	$\rho = -1, I = 1$	Alfabeto A	IVI	Segnale S _m (t)	Fattore di carico k _f	i

М

Alfabeto A

Segnale S_m(t)

Fattore di carico ke

 $k_f = \sigma_a/v_{sat}$

Alfabeto A

 $\rho = -1, I = 1$

Segnali ortogonali

x(0, N₀/2), i = 1, ..., I