



# Module 2 : Réseaux de Neurones

Nicolas PASQUIER Université Côte d'Azur EUR DS4H (Digital Systems for Humans) Laboratoire I3S (UMR-7271 UCA/CNRS) http://www.i3s.unice.fr/~pasquier

Co-financé par :

Use cases réalisés par les masters :















#### Méthodes d'Extraction de Modèles de Connaissances



## Réseaux de Neurones Artificiels : Principe de l'Approche

- « Artificial Neural Networks » ou « ANN » (W. McCulloch & W. Pitts, 1950).
- Objectif: reproduire le fonctionnement des neurones biologiques.
- Réseaux de nœuds appelés neurones artificiels interconnectés.
- Les neurones sont organisés en couches, chacune correspondant à un rôle, dans le réseau :
  - Couche d'entrée :
    - Neurones qui reçoivent chacun les valeurs d'une variable de l'ensemble d'apprentissage.
  - Couche(s) cachée(s) :
    - Neurones de calculs qui ont un rôle de « mémoire ».
    - Différents cas : zéro (classifieur linéaire), une ou plusieurs couches cachées .
  - Couche de sortie:
    - Neurones qui génèrent le résultat final (prédictions des classes).

## Réseaux de Neurones de Type Perceptron

 L'information (données calculées en fonction des valeurs des variables) circule dans le réseaux de la couche d'entrée vers la couche de sortie;



#### Structure des Neurones Artificiels

 Chaque neurone reçoit en entrée de une (neurone de la couche d'entrée) à N (neurones des couches cachées et de sortie) valeurs numériques V<sub>i</sub>.



## Perceptrons Mono-Couche

- « The Perceptron A Perceiving and Recognizing Automaton » (Rosenblatt, 1957).
- Type de réseau de neurones artificiels le plus simple : une unique couche de neurones assure les fonctions d'entrée, calcul et sortie.
- Classifieur linéaire : calcule la décision par combinaison linéaire des valeurs des variables.
- Efficace pour les données de grande dimension.
- Incapable de traiter des problèmes non linéaires (M. L. Minsky & S. Papert, 1969).



### Perceptrons Mono-Couche

- « Back-Propagation Learning » (D. E. Rumelhart & Y. LeCun, 1986).
- Couche d'entrée :
  - Taille (nombre de neurones) définie automatiquement par l'algorithme en fonction de l'ensemble d'apprentissage.
  - Nombre et types des variables détermine la taille : un neurone par valeur (variables discrètes) ou par intervalles de valeurs (variables continues) le plus souvent.
- Couche(s) cachée(s) :
  - Le nombre de couches (1 ou plus) et la taille de chacune (nombre de neurones) sont des paramètres définis par l'utilisateur.
- Couche de sortie :
  - Taille (nombre de neurones) définie automatiquement par l'algorithme en fonction de l'application (principalement le nombre de classes à distinguer).

### Perceptrons Mono-Couche

- Capables de traiter des problèmes non-linéaires de différents types grâce aux différentes topologies et fonctions d'activation ou transfert.
- Apprentissage : détermination des poids P<sub>nm</sub> optimaux pour chaque connexion inter-neuronale entre les neurones n et m de deux couches adjacentes.
- Problème d'optimisation basé sur la minimisation de l'erreur quadratique.
- Erreur quadratique locale E(i) pour l'exemple (instance) i : différence entre la sortie attendue  $y_i$  et la sortie calculée par le réseau  $\sigma_i$
- $E(i) = \frac{1}{2}(\gamma_i \sigma_i)^2$
- Erreur quadratique globale E(EA) pour l'ensemble d'apprentissage EA: cumul des différences pour les N exemples.
- $E(EA) = \frac{1}{2N} \sum_{i=1}^{i=N} (\gamma_i \sigma_i)^2$

#### Apprentissage d'un Réseau de Neurones

- Rétropropagation du gradient de l'erreur
  - Les poids des connexions inter-neuronales sont modifiés selon l'importance de leur contribution à l'erreur.
  - Les connexions inter-neuronales sont traitées de la dernière couche vers la première couche.
- Entrée de l'algorithme de rétropropagation :
  - Configuration du réseau de neurones (e.g. nombre et taille des couches).
  - Ensemble d'apprentissage EA.
- Paramètres de l'algorithme de rétropropagation :
  - Condition d'arrêt de l'apprentissage : nombre d'itérations (i.e. parcours de l'ensemble d'apprentissage),
     temps de calcul ou seuil de mesure d'évaluation à atteindre (e.g. erreur globale).
  - Taux d'apprentissage α ∈ [0.0, 1.0] : définit la vitesse d'évolution du réseau (facteur de la m-à-j des poids).

## Apprentissage des Poids : Algorithme de Rétropropagation

1.

<u>répéter</u>

```
pour chaque exemple e \in EA faire
                  présenter e au perceptron
                  si sortie calculée σ ≠ sortie attendue γ alors
 5.
                        <u>pour chaque</u> neurone n \in \text{couche de sortie } \underline{\text{faire}}
 6.
                            \delta_n \leftarrow \sigma_n (1 - \sigma_n) (\gamma_n - \sigma_n)
                                                                                              // Dérivée
                       finpour
 8.
                        pour chaque couche adjacente précédente C
                             pour chaque neurone n \in \text{couche } C \text{ faire}
 9.
                                 \delta_n \leftarrow \sigma_n (1 - \sigma_n) \sum_{k \in \text{Succ}(n)} \delta_k P_{nk}
10.
11.
                             finpour
12.
                       finpour
13.
                                                                                     \delta_n: facteur de modification des poids pour n
                 finsi
                                                                                     \sigma_n: sortie du neurone n
                 pour chaque poids P_{nm} faire
14.
                                                                                     \gamma_n: valeur attendue pour le neurone n
                       P_{nm} \leftarrow P_{nm} + \alpha \delta_n e_{nm}
15.
                                                                                     Succ(n): neurones successeurs de n
16.
                  finpour
                                                                                     P_{nm}: poids de la connexion de n vers m
17.
             finpour
                                                                                     e_{nm}: valeur transmise entre n et m pour e
18.
        <u>jusqu'à</u> condition d'arrêt
                                                                                     α: taux d'apprentissage
```

#### Rétropropagation du Gradient de l'Erreur

#### Deux modes d'application possibles :

- Mode on-line : la mise-à-jour a lieu pour <u>chaque exemple</u> d'apprentissage.
  - Avantage: tend plus rapidement vers la solution optimale.
  - o Inconvénient : un trop grand nombre d'itérations peut conduire à un sur-apprentissage (overfitting).
  - Le réseau est alors très performant pour les exemples de l'EA, mais ne parvient que peu, ou pas, à généraliser pour d'autres exemples.
- Mode batch : la mise-à-jour des poids a lieu après introduction de tous les exemples de l'ensemble d'apprentissage.
  - Avantage : diminue les risques de sur-apprentissage.
  - Inconvénient : corrige les poids sur la globalité des exemples et l'impact de chaque exemple sur la correction apportée est faible.
  - Nécessite beaucoup de temps (itérations) avant de tendre vers une bonne solution.

## Problème du Sur-Apprentissage

- Classement d'un exemple : l'exemple transite par le réseau et le vecteur en sortie définit la prédiction de classe.
- « Sur-ajustement » (over-fitting) peut être causé par :
  - Un dimensionnement inadéquat des couches du réseau (taille et nombre des couches trop important).
  - Un apprentissage trop poussé (trop d'itérations).
- Caractérisation :
  - Le réseaux décrit intégralement chaque exemple d'apprentissage, c-à-d tient compte systématiquement de toutes les valeurs des variables de l'exemple appris.
- Conséquence :
  - Un nouvel exemple ne pourra être classé correctement que s'il est intégralement identique à un exemple d'apprentissage.
  - Mauvaises propriétés de généralisation.

#### Réseaux de Neurones Récurrents

- Perceptrons : réseaux de neurones à propagation avant
  - « Feed-forward Neural Networks ».
  - Pas de cycle : l'information n'est transmise que vers l'avant dans le réseau, des nœuds d'entrée vers les nœuds de sortie.
- Réseaux de neurones récurrents, ou à propagation arrière :
  - « Feedback Neural Networks » ou « Recurrent Neural Networks ».
  - Cycles dirigés : l'information est transmise vers l'avant (couche suivante) mais également aux neurones de la couche courante et éventuellement aussi à ceux des couches précédentes.
  - Information générée à l'itération t+1 tient compte de celle générée à l'itération t : renforcer « l'effet mémoire ».
  - Variantes dans les topologies, connectivités et types de neurones : Hopfield networks, Boltzmann machines, Bidirectional Associative Memory, Gated Recurrent Unit, Long Short-Term Memory, etc.

## Réseaux de Neurones Intégralement Connectés

- Réseaux constitué de L neurones à états binaires ({-1,1} ou {0,1}) qui sont tous interconnectés.
- La sortie du réseau est la combinaison d'états finaux (état stable) des L neurones.
- Peut mémoriser environ 0,15 × L patterns, i.e. modèles à reconnaître.
- Ces réseaux ont démontré leur efficacité pour les problèmes de reconnaissances de formes : écriture manuscrite (mémorisation des caractères), identification d'objets dans des images (médicale, satellite, etc.).

#### Types de Neurones





#### Réseau de Hopfield



Réseau de Boltzmann



## Topologies des Perceptrons et Réseaux Récurrents



#### Neurones Récurrents à Portes : Mémorisation Renforcée



**GRU** (Gated Recurrent Unit)

Combat la perte d'information grâce aux portes « reset » et « update ».

Reset : détermine quelle proportion de l'entrée est ajoutée à la valeur générée.

<u>Update</u>: détermine quelle proportion de la précédente valeur générée est ajoutée.



Combat la perte d'information grâce aux portes « input », « forget » et « output ».



<u>Input</u>: détermine quelle proportion de l'entrée est ajoutée à la valeur générée.

<u>Forget</u>: détermine quelle proportion de la précédente valeur générée est ajoutée.

Output: détermine quelle proportion de la valeur générée est transmise au reste du réseau.





#### Réseaux de Neurones Profonds ou Réseaux Convolutifs

- « Deep Learning » : mémorisation à long terme, problèmes séquentiels.
- Notion de « profondeur » : liée au nombre de couches cachées (plusieurs dizaines usuellement) et à leur taille (plusieurs milliers de neurones).
- Premières couches cachées (convolutionnaires)
   : extraient des caractéristiques simples (e.g. contours).
- Couches suivantes : combinent pour former des concepts de plus en plus complexes (e.g. assemblages de contours en motifs, de motifs en parties d'objets, de parties d'objets en objets, etc.).



#### Paramétrage de Réseaux de Neurones

- Normalisation des variables numériques continues :
  - Une magnitude importante de valeurs peut entraîner la saturation de plusieurs neurones et bloquer l'apprentissage.
- Topologie : nombre et taille des couches cachées.
- Taux d'apprentissage : détermine l'amplitude de l'apprentissage :
  - Trop petit : lenteur de la convergence (temps de calcul longs, problème des minimas locaux).
  - Trop grand : oscillations (mauvaise convergence).
  - Le plus souvent autour de 0.05 à 0.15 (définition empirique).
- Durée d'apprentissage :
  - Nombre d'itérations (usuellement plusieurs centaines).
  - Durée d'apprentissage (usuellement en minutes).
  - Seuil de mesure d'erreur à atteindre (e.g. erreur quadratique cumulée).

## Réseaux de Neurones : Propriétés

#### Avantages :

- Bonne tolérance aux données bruitées (exceptions, erreurs de classes, etc.).
- Efficaces dans le traitement des ensembles de données numériques continues de grande dimension.

#### Inconvénients :

- Effet « boîte noire » : impossible pour un humain d'interpréter l'information représentée par les poids des connexions et la topologie du réseau.
- Temps d'apprentissage peut être long.
- Difficulté de configuration (choix de topologie et taux d'apprentissage).
- o Risque de sur-apprentissage.

## Références et Bibliographie

#### Principales Librairies R

- o <u>nnet</u>: réseaux de neurones à couche cachée unique (inclus dans R base).
- <u>neuralnet</u>: réseaux à couches cachées multiples offrant de nombreuses possibilités de paramétrisation (nombre et taille des couches, fonctions d'activation ou transfert, rétropropagation récurrente ou non, etc.).
- o <u>deepnet</u>: réseaux de neurones intégralement récurrents et profonds (réseaux de Hopfield et Boltzmann, réseaux profonds avec auto-encodeurs successifs, deep belief neural networks, etc.).
- RSNNS: implémentations du Stuttgart Neural Network Simulator (SNNS) fournissant une grande variété de topologies de réseaux de neurones (perceptrons, réseaux récurrents, etc.).
- <u>tensorflow</u>: interface vers la bibliothèque libre <u>TensorFlow</u> permettant la parallélisation des calculs sur CPU et GPU.
- <u>keras</u>: interface vers la bibliothèque libre <u>Keras</u> proposant des réseaux profonds et récurrents, et fonctionne de façon transparente sur CPU et GPU.