Reconstruction 3D géométrie épipolaire et stéréovision

François Cabestaing

Master Informatique, spécialité "Image Vision Interaction"

reconstruction 3D

Objectif: tenter de reconstituer la troisième dimension qui a été perdue du fait de la projection sur le plan image.

Space carving, cones généralisés et silhouettes

	Mono-caméra	Vision active
	Shape from shading, from focus	Lumière structurée
	Stéréo-photométrie	Laser
Multi-caméra et Vision passive		
	Stéréovision et reconstruction stéréoscopique	

reconstruction 3D géométrie épipolaire stéréovision bibliographie

vue unique: shape from focus (from defocus)

Utilisation de l'effet de flou de défocalisation pour estimer la distance ou la forme des objets.

- les propriétés du système optique d'acquisition d'image sont connues : ouverture de l'objectif, profondeur de champ
- si la profondeur de champ est finie, le flou dépend de la distance entre l'objet et la caméra

image réelle

image avec flou simulé

reconstruction 3D géométrie épipolaire stéréovision bibliographie

vue unique: shape from focus (from defocus)

mise au point distante

reconstruction 3D

mise au point proche

carte des distances

vue unique: shape from shading

Utilisation des variations d'intensité dans l'image pour estimer la distance ou la forme des objets.

- les conditions d'éclairage de la scène sont parfaitement connues
- les surfaces sont lambertiennes : l'intensité de la lumière réfléchie dépend de son incidence

image initiale

carte de profondeur

E. Trucco, A. Verri: Introductory Techniques for 3-D Computer Vision. Prentice Hall, 1998

vue unique : lumière structurée

On contrôle la *structure* de la source lumineuse pour faire apparaître le relief des objets.

- nécessite une source de lumière dont les propriétés sont parfaitement connues (ex : faisceau laser)
- l'analyse des lignes de transition noir/blanc permet de reconstituer la forme

visage

objets divers

reconstruction à partir de vues multiples

On exploite les différences existant entre les images acquises depuis différents points de vue.

- objets mobiles : on doit acquérir les images à partir de plusieurs caméras donc les paramètres sont connus
- objets fixes : on peut acquérir les images au moyen d'une caméra qui se déplace dans la scène

reconstruction par intersection de cones

On calcule l'intersection entre les cones généralisés reconstruits à partir des silhouettes des objets.

- ne permet de reconstruire que l'enveloppe convexe de l'objet
- la reconstruction est d'autant plus précise qu'on dispose de nombreux points de vue

reconstruction à partir de 6 vues

reconstruction par space carving

On reconstruit la forme 3D en éliminant des voxels qui ne se projettent pas sur la silhouette de l'objet.

- possibilité d'associer aux voxels des propriétés comme la couleur
- inconvénient : la qualité du modèle reconstitué est directement liée au pas de discrétisation 3D

exemple d'objet reconstruit

stéréovision

Reconstruction 3D de certains points de la scène à partir de deux images obtenues à partir de points de vue différents.

- recherche des points homologues dans les deux images par mise en correspondance
- reconstruction 3D à partir des propriétés des points homologues

Suite du cours :

- géométrie épipolaire : étude des propriétés des transformations projectives impliquant deux projections perspectives
- techniques de mise en correspondance stéréoscopique

deux projections perspectives

Un point **M** de \mathbb{P}^3 est transféré sur deux plans projectifs π_1 et π_2 :

Connaissant les matrices des projections ${\bf P}_1$ et ${\bf P}_2$, on peut calculer les coordonnées des points ${\bf m}_1$ et ${\bf m}_2$ à partir de celles de ${\bf M}$:

$$\boldsymbol{m}_1 \equiv \boldsymbol{P}_1 \boldsymbol{M} = \boldsymbol{A}_1 (\mathcal{R}_1 \mid \boldsymbol{t}_1) \boldsymbol{M}$$

$$\boldsymbol{m}_2 \equiv \boldsymbol{P}_2 \boldsymbol{M} = \boldsymbol{A}_2 (\mathcal{R}_2 \mid \boldsymbol{t}_2) \boldsymbol{M}$$

où \mathbf{A}_i et $(\mathcal{R}_i \mid \mathbf{t}_i)$ désigneront les matrices intrinsèque et extrinsèque de la caméra i quand la formation de l'image est modélisée par une transformation projective.

droites épipolaires

Connaissant un point projeté sur l'un des plans, que peut-on déduire du point projeté dans l'autre?

- le point \mathbf{m}_1 peut être la projection de n'importe quel point de l'espace situé sur la droite $\mathbf{O}_1\mathbf{m}_1$.
- la projection de cette droite $\mathbf{O}_1\mathbf{m}_1$ dans le plan projectif π_2 est également une droite.
- cette droite est appelée droite épipolaire de π_2 associée à \mathbf{m}_1 .

épipoles ou points épipolaires

- le centre de projection O_1 appartient à toutes les droites joignant un point M de l'espace à sa projection m_1 dans π_1 .
- la projection \mathbf{e}_2 de \mathbf{O}_1 dans π_2 appartient donc à toutes les droites épipolaires d'un point de π_1 .
- les points **e**₁ et **e**₂ sont appelés épipoles ou points épipolaires.
- la droite joignant les centres optiques (donc passant par les épipoles) est appelée droite de base.

plan épipolaire et faisceau épipolaire

- le plan épipolaire π_M associé à ${\bf M}$ est le plan de l'espace projectif défini par ${\bf M}$ et les deux centres de projection.
- les deux droites épipolaires associées aux deux projections de ${\bf M}$ sont les intersections de π_M avec les plans de projection.
- le faisceau épipolaire est l'ensemble de tous les plans épipolaires.

produit vectoriel, notation matricielle

Rappel: pour calculer le point d'intersection de deux droites, ou la droite passant par deux points, on utilise un *produit vectoriel* des coordonnées homogènes.

Le produit vectoriel peut être considéré comme une homographie :

$$\mathbf{p} \times \mathbf{q} = \mathbf{p}^{\times} \cdot \mathbf{q}$$
, avec :

$$\mathbf{p}^{\times} = \begin{pmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{pmatrix}$$

- la matrice de l'homographie \mathbf{p}^{\times} est de rang 2 (l'un de ses vecteurs propres est nul).
- ${\bf p}$ est le vecteur propre de ${\bf p}^{\times}$ associé à cette valeur propre nulle car :

$$\mathbf{p}^{\times} \cdot \mathbf{p} = \mathbf{p} \times \mathbf{p} = 0$$

matrice fondamentale

Il existe une homographie \mathcal{H}_{π} du plan π_M qui transforme \mathbf{m}_1 en \mathbf{m}_2 .

La droite épipolaire associée à \mathbf{m}_1 est déterminée par le produit vectoriel de \mathbf{e}_2 et de \mathbf{m}_2 , qui est donné par :

$$\mathbf{e}_2 \times \mathbf{m}_2 = \mathbf{e}_2^{\times} \cdot \mathbf{m}_2 = \mathbf{e}_2^{\times} \cdot \mathcal{H}_{\pi} \mathbf{m}_1 = (\mathbf{e}_2^{\times} \mathcal{H}_{\pi}) \cdot \mathbf{m}_1$$

La matrice $\mathbf{F} = \mathbf{e}_2^{\times} \mathcal{H}_{\pi}$ est appelée matrice fondamentale.

propriétés de la matrice fondamentale

F est une matrice homogène de rang 2 définie par 7 degrés de liberté.

Quand \mathbf{m}_1 et \mathbf{m}_2 sont les projections d'un même point \mathbf{M} de l'espace sur π_1 et π_2 alors $\mathbf{m}_2^T \mathbf{F} \mathbf{m}_1 = 0$.

Droites épipolaires :

- la droite épipolaire de π_2 associée à \mathbf{m}_1 est $\mathbf{d}_2 = \mathbf{Fm}_1$
- la droite épipolaire de π_1 associée à \mathbf{m}_2 est $\mathbf{d}_1 = \mathbf{F}^T \mathbf{m}_2$

Les épipoles vérifient : $\mathbf{Fe}_1 = 0$ et $\mathbf{F}^T \mathbf{e}_2 = 0$.

Calcul à partir des matrices de projection P_1 et P_2

 $\mathcal{H}_{\pi}=\textbf{P}_{2}\textbf{P}_{1}^{+}, \text{ où } \textbf{P}^{+}$ désigne la pseudo-inverse d'une matrice P, donc :

 $\mathbf{F} = (\mathbf{P}_2 \mathbf{O}_1)^{\times} \mathbf{P}_2 \mathbf{P}_1^+$, où $\mathbf{P}_2 \mathbf{O}_1$ est la projection de \mathbf{O}_1 sur π_2

formation des images stéréoscopiques

Dans le cas de la géométrie projective, une *infinité* de points de l'espace se trouvent projetés sur un unique point du plan.

Dans le cas de la formation d'une image, en général chaque point d'une image correspond à la projection d'un seul point de la scène visible par la caméra.

Dans le cas de la stéréovision, un point de la scène peut être :

- visible par les deux caméras
- masqué pour les deux caméras
- visible pour une seule caméra et masqué pour l'autre

Dans ce dernier cas, on dit que le point est *occulté* pour l'une des deux caméras.

Attention: on parle d'occultation en français, le terme occlusion est un anglicisme incorrect.

points homologues

Deux points image \mathbf{m}_1 et \mathbf{m}_2 sont dits homologues s'ils correspondent aux deux projections d'un même point \mathbf{M} de la scène sur les deux images.

Un point d'une image correspondant à un point de la scène qui est visible par sa caméra, mais qui est invisible pour l'autre caméra, ne possède pas d'homologue.

reconstruction stéréoscopique

La recontruction stéréoscopique est le procédé qui permet, en déterminant des paires de points homologues dans les deux images, d'estimer par triangulation la troisième dimension.

Étapes de la reconstruction stéréoscopique :

- identification de points ou de primitives d'intérêt (features)
- recherche de correspondance entre les primitives
- reconstruction 3D par triangulation

On distingue les méthodes de reconstruction :

- éparses, dans lesquelles uniquement quelques points sont utilisés pour la mise en correspondance
- denses, dans lesquelles on recherche l'homologue de tous les points des images et on identifie les zones occultées

exemple de méthode éparse (TP)

Détection de points d'intérêt

- détection de points particuliers dans les images : les coins
- détecteur de Shi & Tomasi qui recherche les pixels pour lesquels la fonction image a une forte courbure locale.

Mise en correspondance

- estimation d'une distance généralisée entre chaque paire possible de points (gauche, droite)
- la distance généralisée comprend :
 - un terme de distance euclidienne entre ce point et la droite épipolaire de son correspondant potentiel
 - un terme lié à la similarité des niveaux de gris dans les deux voisinages des images centrés sur ces deux points
- recherche de correspondance par traitement du tableau des distances généralisées

bibliographie

Éléments de cours

 Séance "tutorial" de Richard Hartley and Andrew Zisserman lors de la conférence CVPR'99.

http://users.cecs.anu.edu.au/~hartley/Papers/CVPR99-tutorial/tutorial.pdf

- Frédéric Devernay, INRIA Grenoble, cours "Vision par ordinateur 3-D".
 http://devernay.free.fr/cours/vision/
- Cours de Sébastien Roy sur la vision 3D, Université de Montréal. http://www.iro.umontreal.ca/~roys/fr ift6145H07.shtml

Articles de chercheurs

- C. Harris and M. Stephens, A combined corner and edge detector.
 Proceedings of the 4th Alvey Vision Conference, 1988.
- J. Shi and C. Tomasi, Good Features to Track. 9th IEEE Conference on Computer Vision and Pattern Recognition, 1994.

