The Identity Problem in virtually solvable matrix groups over algebraic numbers

Corentin Bodart¹ and Ruiwen Dong²

University of Oxford

LICS 2025

¹partially supported by the Swiss NSF Grant 200020-200400.

²partially supported by ERC Advanced Grant 101097307.

Identity Problem

We consider the following decision problem:

Definition (Identity Problem)

Input: A set of square matrices $S = \{A_1, \dots, A_K\}$.

Question: Does there exist a sequence $A_{i_1}, A_{i_2}, A_{i_3}, \ldots \in S$, such that the product $A_{i_1}, A_{i_2}, A_{i_3}, \cdots$ is equal to the identity matrix I?

i.e. whether the semigroup $\langle S \rangle$ generated by S contains the neutral element 1?

Identity Problem

We consider the following decision problem:

Definition (Identity Problem)

Input: A set of square matrices $S = \{A_1, \ldots, A_K\}$. **Question:** Does there exist a sequence $A_{i_1}, A_{i_2}, A_{i_3}, \ldots \in S$, such that the product $A_{i_1}A_{i_2}A_{i_3}\cdots$ is equal to the identity matrix I?

i.e. whether the semigroup $\langle S \rangle$ generated by S contains the neutral element 1?

The Identity Problem has applications in:

- theory of ordered groups (does a group admit a left-ordering?)
- weighted automata (is there a word with neutral effect?)
- computational group theory (is a given element in a semigroup invertible?)

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

"proof" by example:

Let $A_1,A_2,A_3\in\mathbb{Q}^{1 imes 1}$. The Identity Problem asks whether 1 belongs to the semigroup $\langle A_1,A_2,A_3\rangle$.

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

"proof" by example:

Let $A_1,A_2,A_3\in\mathbb{Q}^{1 imes 1}$. The Identity Problem asks whether 1 belongs to the semigroup $\langle A_1,A_2,A_3\rangle$.

Since A_1,A_2,A_3 commute, this is equivalent to asking whether there exist $n_1,n_2,n_3\in\mathbb{N}$, not all zero, such that $A_1^{n_1}A_2^{n_2}A_3^{n_3}=1$.

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

"proof" by example:

Let $A_1,A_2,A_3\in\mathbb{Q}^{1\times 1}$. The Identity Problem asks whether 1 belongs to the semigroup $\langle A_1,A_2,A_3\rangle$.

Since A_1,A_2,A_3 commute, this is equivalent to asking whether there exist $n_1,n_2,n_3\in\mathbb{N}$, not all zero, such that $A_1^{n_1}A_2^{n_2}A_3^{n_3}=1$.

This can be done using integer programming: For example, suppose

$$A_1 = 12 = 2^2 \times 3$$
, $A_2 = \frac{27}{16} = 2^{-4} \times 3^3$, $A_3 = 6 = 2 \times 3$.

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

"proof" by example:

Let $A_1,A_2,A_3\in\mathbb{Q}^{1\times 1}$. The Identity Problem asks whether 1 belongs to the semigroup $\langle A_1,A_2,A_3\rangle$.

Since A_1, A_2, A_3 commute, this is equivalent to asking whether there exist $n_1, n_2, n_3 \in \mathbb{N}$, not all zero, such that $A_1^{n_1} A_2^{n_2} A_3^{n_3} = 1$.

This can be done using integer programming: For example, suppose

$$A_1 = 12 = 2^2 \times 3$$
, $A_2 = \frac{27}{16} = 2^{-4} \times 3^3$, $A_3 = 6 = 2 \times 3$.

Then

$$A_1^{n_1}A_2^{n_2}A_3^{n_3}=2^{2n_1-4n_2+n_3}\times 3^{n_1+3n_2+n_3}.$$

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

"proof" by example:

Let $A_1,A_2,A_3\in\mathbb{Q}^{1\times 1}$. The Identity Problem asks whether 1 belongs to the semigroup $\langle A_1,A_2,A_3\rangle$.

Since A_1, A_2, A_3 commute, this is equivalent to asking whether there exist $n_1, n_2, n_3 \in \mathbb{N}$, not all zero, such that $A_1^{n_1} A_2^{n_2} A_3^{n_3} = 1$.

This can be done using integer programming: For example, suppose

$$A_1 = 12 = 2^2 \times 3$$
, $A_2 = \frac{27}{16} = 2^{-4} \times 3^3$, $A_3 = 6 = 2 \times 3$.

Then

$$A_1^{n_1}A_2^{n_2}A_3^{n_3}=2^{2n_1-4n_2+n_3}\times 3^{n_1+3n_2+n_3}.$$

Therefore $A_1^{n_1}A_2^{n_2}A_3^{n_3}=1$ if and only if

$$2n_1 - 4n_2 + n_3 = 0$$
, $n_1 + 3n_2 + n_3 = 0$.

Theorem (folklore)

The Identity Problem is decidable for 1×1 matrices over \mathbb{Q} .

"proof" by example:

Let $A_1,A_2,A_3\in\mathbb{Q}^{1\times 1}$. The Identity Problem asks whether 1 belongs to the semigroup $\langle A_1,A_2,A_3\rangle$.

Since A_1, A_2, A_3 commute, this is equivalent to asking whether there exist $n_1, n_2, n_3 \in \mathbb{N}$, not all zero, such that $A_1^{n_1} A_2^{n_2} A_3^{n_3} = 1$.

This can be done using integer programming: For example, suppose

$$A_1 = 12 = 2^2 \times 3$$
, $A_2 = \frac{27}{16} = 2^{-4} \times 3^3$, $A_3 = 6 = 2 \times 3$.

Then

$$A_1^{n_1}A_2^{n_2}A_3^{n_3}=2^{2n_1-4n_2+n_3}\times 3^{n_1+3n_2+n_3}.$$

Therefore $A_1^{n_1}A_2^{n_2}A_3^{n_3}=1$ if and only if

$$2n_1 - 4n_2 + n_3 = 0$$
, $n_1 + 3n_2 + n_3 = 0$.

Whether there exist non-trivial, non-negative integer solutions $n_1, n_2, n_3 \in \mathbb{N}$, can be decided by integer programming.

Is the Identity Problem decidable in other matrix groups?

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

• $GL(2,\mathbb{Z})$: 2×2 invertible integer matrices (Choffrut and Karhumäki 2005)

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

• $GL(2,\mathbb{Z})$: 2×2 invertible integer matrices (Choffrut and Karhumäki 2005)

The Identity Problem is undecidable in:

• $GL(4,\mathbb{Z})$: 4×4 invertible integer matrices (Bell and Potapov 2010)

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

• $GL(2,\mathbb{Z})$: 2×2 invertible integer matrices (Choffrut and Karhumäki 2005)

- $GL(4,\mathbb{Z})$: 4×4 invertible integer matrices (Bell and Potapov 2010)
- $SL(3,\mathbb{Q})$: 3×3 rational matrices of determinant one (Ko, Niskanen and Potapov 2017)

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

- \bullet GL(2, \mathbb{Z}): 2 \times 2 invertible integer matrices (Choffrut and Karhumäki 2005)
- abelian groups (Babai, Beals, Cai, Ivanyos, Luks 1996)

- $GL(4,\mathbb{Z})$: 4×4 invertible integer matrices (Bell and Potapov 2010)
- $SL(3,\mathbb{Q})$: 3×3 rational matrices of determinant one (Ko, Niskanen and Potapov 2017)

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

- \bullet GL(2, \mathbb{Z}): 2 \times 2 invertible integer matrices (Choffrut and Karhumäki 2005)
- abelian groups (Babai, Beals, Cai, Ivanyos, Luks 1996)
- nilpotent groups (\approx uni-triangular matrices $\begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$) (Shafrir 2024, independently: Bodart, Ciobanu and Metcalfe 2024)

- $GL(4,\mathbb{Z})$: 4×4 invertible integer matrices (Bell and Potapov 2010)
- $SL(3,\mathbb{Q})$: 3×3 rational matrices of determinant one (Ko, Niskanen and Potapov 2017)

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

- \bullet GL(2, $\mathbb{Z}):~2\times 2$ invertible integer matrices (Choffrut and Karhumäki 2005)
- abelian groups (Babai, Beals, Cai, Ivanyos, Luks 1996)

• nilpotent groups (
$$\approx$$
 uni-triangular matrices
$$\begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
)

(Shafrir 2024, independently: Bodart, Ciobanu and Metcalfe 2024)

• metabelian groups (\approx 2 \times 2 triangular matrices $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$) (Dong 2024)

- $GL(4,\mathbb{Z})$: 4×4 invertible integer matrices (Bell and Potapov 2010)
- $SL(3,\mathbb{Q})$: 3×3 rational matrices of determinant one (Ko, Niskanen and Potapov 2017)

Is the Identity Problem decidable in other matrix groups?

The Identity Problem is decidable in:

- \bullet GL(2, $\mathbb{Z}):~2\times 2$ invertible integer matrices (Choffrut and Karhumäki 2005)
- abelian groups (Babai, Beals, Cai, Ivanyos, Luks 1996)

• nilpotent groups (
$$\approx$$
 uni-triangular matrices
$$\begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
)

(Shafrir 2024, independently: Bodart, Ciobanu and Metcalfe 2024)

• metabelian groups (
$$\approx$$
 2 \times 2 triangular matrices $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$) (Dong 2024)

The Identity Problem is undecidable in:

- $GL(4,\mathbb{Z})$: 4×4 invertible integer matrices (Bell and Potapov 2010)
- $SL(3,\mathbb{Q})$: 3×3 rational matrices of determinant one (Ko, Niskanen and Potapov 2017)

meta-question: is there an "algebraic" criterion of the matrix group for decidability of the Identity Problem?

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.
- ▶ If a matrix group contains $F_2 \times F_2$, then it has undecidable Identity Problem (Bell and Potapov 2010)

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.
- ▶ If a matrix group contains $F_2 \times F_2$, then it has undecidable Identity Problem (Bell and Potapov 2010)
- If a matrix group over Q is virtually solvable, then it has decidable Identity Problem (Bodart and Dong 2025, this talk)

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.
- ▶ If a matrix group contains $F_2 \times F_2$, then it has undecidable Identity Problem (Bell and Potapov 2010)
- If a matrix group over Q is virtually solvable, then it has decidable Identity Problem (Bodart and Dong 2025, this talk)

Theorem (Tits alternative, 1972)

- ullet either G contains the free group F_2 as a subgroup,
- or G is virtually solvable.
- ▶ If a matrix group contains $F_2 \times F_2$, then it has undecidable Identity Problem (Bell and Potapov 2010)
- If a matrix group over Q is virtually solvable, then it has decidable Identity Problem (Bodart and Dong 2025, this talk)

Definition/Theorem

A matrix group G over $\overline{\mathbb{Q}}$ is **virtually solvable**, if and only if it admits a finite index subgroup T that is triangularizable. (i.e. there is a matrix h such that every hth^{-1} , $t \in T$ is upper-triangular.)

Definition/Theorem

A matrix group G over $\overline{\mathbb{Q}}$ is **virtually solvable**, if and only if it admits a finite index subgroup T that is triangularizable. (i.e. there is a matrix h such that every hth^{-1} , $t \in T$ is upper-triangular.)

Example of a virtually solvable group: $G = \text{Tr}(3, \mathbb{Q}) \times S_2$, where

$$\mathsf{Tr}(3,\mathbb{Q}) \coloneqq \left\{ egin{pmatrix} a & b & c \ 0 & d & e \ 0 & 0 & f \end{pmatrix} \middle| a,b,c,d,e,f \in \mathbb{Q}
ight\}, \qquad \mathcal{S}_2 \coloneqq \{-1,1\}.$$

Definition/Theorem

A matrix group G over $\overline{\mathbb{Q}}$ is **virtually solvable**, if and only if it admits a finite index subgroup T that is triangularizable. (i.e. there is a matrix h such that every hth^{-1} , $t \in T$ is upper-triangular.)

Example of a virtually solvable group: $G=\operatorname{Tr}(3,\mathbb{Q}) imes S_2$, where

$$\mathsf{Tr}(3,\mathbb{Q}) \coloneqq \left\{ egin{pmatrix} a & b & c \ 0 & d & e \ 0 & 0 & f \end{pmatrix} \middle| a,b,c,d,e,f \in \mathbb{Q}
ight\}, \qquad \mathcal{S}_2 \coloneqq \{-1,1\}.$$

Example of a set of elements in G:

$$A_{1} = \begin{pmatrix} \begin{pmatrix} 2 & 7 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, -1 \end{pmatrix}, A_{2} = \begin{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 1 \end{pmatrix}, 1 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} \begin{pmatrix} 1/2 & 1 & 3 \\ 0 & 1/2 & -1 \\ 0 & 0 & 1 \end{pmatrix}, 1 \end{pmatrix}.$$

Definition/Theorem

A matrix group G over $\overline{\mathbb{Q}}$ is **virtually solvable**, if and only if it admits a finite index subgroup T that is triangularizable. (i.e. there is a matrix h such that every hth^{-1} , $t \in T$ is upper-triangular.)

Example of a virtually solvable group: $G = \text{Tr}(3, \mathbb{Q}) \times S_2$, where

$$\mathsf{Tr}(3,\mathbb{Q}) \coloneqq \left\{ egin{pmatrix} a & b & c \ 0 & d & e \ 0 & 0 & f \end{pmatrix} \middle| a,b,c,d,e,f \in \mathbb{Q}
ight\}, \qquad \mathcal{S}_2 \coloneqq \{-1,1\}.$$

Example of a set of elements in G:

$$\begin{split} A_1 &= \left(\begin{pmatrix} 2 & 7 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, -1 \right), \ A_2 = \left(\begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 1 \end{pmatrix}, 1 \right), \\ A_3 &= \left(\begin{pmatrix} 1/2 & 1 & 3 \\ 0 & 1/2 & -1 \\ 0 & 0 & 1 \end{pmatrix}, 1 \right). \end{split}$$

Question (Identity Problem): does the semigroup $\langle A_1, A_2, A_3 \rangle$ contain the neutral element (I, 1)? We now illustrate our algorithm using this example.

Step 1: Identity Problem \longrightarrow automaton over triangular matrices

(Identity Problem): does the semigroup $\langle A_1, A_2, A_3 \rangle$ contain the neutral element (I, 1)?

Step 1: Identity Problem → automaton over triangular matrices

(Identity Problem): does the semigroup $\langle A_1, A_2, A_3 \rangle$ contain the neutral element (I, 1)?

$$\begin{pmatrix}
1 & -1 & 1 \\
0 & 2 & 5 \\
0 & 0 & 1
\end{pmatrix}, 1
\end{pmatrix}
\begin{pmatrix}
1/2 & 1 & 3 \\
0 & 1/2 & -1 \\
0 & 0 & 1
\end{pmatrix}, 1$$

$$start
\begin{pmatrix}
2 & 7 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}, -1$$

Equivalently: does the above automaton admit a non-empty run, whose label product is (I,1)?

Step 1: Identity Problem \longrightarrow automaton over triangular matrices

(Identity Problem): does the semigroup $\langle A_1, A_2, A_3 \rangle$ contain the neutral element (I, 1)?

$$\begin{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 1 \end{pmatrix}, 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1/2 & 1 & 3 \\ 0 & 1/2 & -1 \\ 0 & 0 & 1 \end{pmatrix}, 1 \end{pmatrix}$$

$$\text{start} \longrightarrow \begin{pmatrix} \begin{pmatrix} 2 & 7 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, -1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 2 & 7 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, -1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 1 & 3 \\ 0 & 1/2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 7 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 7 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 1 & 3 \\ 0 & 1/2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Equivalently: does the above automaton admit a non-empty run, whose label product is (I,1)? **Equivalently:** does the automaton (right) admit a non-empty run, whose label product is I?

Does the automaton below admit a non-empty run, whose label product is 1?

Does the automaton below admit a non-empty run, whose label product is 1?

Theorem (structure theorem of subsemigroups of nilpotent groups)

Let N be a nilpotent group of finite Prüfer rank and M be a subsemigroup of N. If M[N, N] = N, then M = N.

Does the automaton below admit a non-empty run, whose label product is 1?

Theorem (structure theorem of subsemigroups of nilpotent groups)

Let N be a nilpotent group of finite Prüfer rank and M be a subsemigroup of N. If M[N,N]=N, then M=N. Long story short: we can ignore the upper-right entries in the above matrices.

Does the automaton below admit a non-empty run, whose label product is 1?

Theorem (structure theorem of subsemigroups of nilpotent groups)

Let N be a nilpotent group of finite Prüfer rank and M be a subsemigroup of N. If M[N,N]=N, then M=N. Long story short: we can ignore the upper-right entries in the above matrices.

Step 3: reduce to rational subsemigroups of metabelian groups

Does the automaton admit a run, whose label product is $\begin{pmatrix} 1 & 0 & \blacksquare \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$?

Step 3: reduce to rational subsemigroups of metabelian groups

Does the automaton admit a run, whose label product is $\begin{pmatrix} 1 & 0 & \blacksquare \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$?

We now work in the "quotient" group

$$\mathsf{Tr}(3,\mathbb{Q})/\blacksquare := \left\{ egin{pmatrix} a & b & \blacksquare \ 0 & d & e \ 0 & 0 & f \end{pmatrix} \middle| a,b,d,e,f \in \mathbb{Q}
ight\}.$$

Step 3: reduce to rational subsemigroups of metabelian groups

Does the automaton admit a run, whose label product is $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

We now work in the "quotient" group

$$\mathsf{Tr}(3,\mathbb{Q})/lacktriangledown:=\left\{egin{pmatrix} a & b & \blacksquare \ 0 & d & e \ 0 & 0 & f \end{pmatrix} \middle| a,b,d,e,f\in\mathbb{Q}
ight\}.$$

Problem: does the following automaton admit a run, whose label product is identity?

Problem: does the following automaton admit a run, whose label product is identity?

Theorem (Dong 2024)

The Identity Problem in metabelian groups is decidable.

Problem: does the following automaton admit a run, whose label product is identity?

Theorem (Dong 2024)

The Identity Problem in metabelian groups is decidable. i.e. the above problem is decidable if the automaton has only one state.

Problem: does the following automaton admit a run, whose label product is identity?

Theorem (Dong 2024)

The Identity Problem in metabelian groups is decidable. i.e. the above problem is decidable if the automaton has only one state.

Theorem (generalization of Dong)

The above problem is decidable (when initial state = final state).

Conclusion and future work

To summarize our result:

Theorem (Bodart, Dong 2025)

A virtually solvable matrix group over $\overline{\mathbb{Q}}$ has decidable Identity Problem.

Decidability map of the Identity Problem

Conclusion and future work

To summarize our result:

Theorem (Bodart, Dong 2025)

A virtually solvable matrix group over $\overline{\mathbb{Q}}$ has decidable Identity Problem.

Future work: **Semigroup Membership** (given a finite set S and an element h in a group G, decide whether h belongs to the semigroup $\langle S \rangle$)?

Decidability map of the Identity Problem

Conclusion and future work

To summarize our result:

Theorem (Bodart, Dong 2025)

A virtually solvable matrix group over $\overline{\mathbb{Q}}$ has decidable Identity Problem.

Future work: **Semigroup Membership** (given a finite set S and an element h in a group G, decide whether h belongs to the semigroup $\langle S \rangle$)?

Decidability map of Semigroup Membership