Embedded Saftware

CMDE244 Sept. 29 (Wed) f: 108: 10pm. 3. Integration & Development of 0.5. Kenel + Devik From Link to Be used for the Firer + Scusovo Actualing Eithire Semester HARRY LI, Office: Engr. Bilding Stepher motor Drive Sensors LSM303 2-mil: hua. Li@sjsn.edu. P.I.D Controller. Text messages ((50)400-1116. Farier Transform. Web Server (GUI) Grading Policy: Open (U, Uren Gr 1º Projects & Assignment 30% Introduction 2 mandatory Projects, 10/202 = 20% 1. Davelgment Setup 1 Semester-lang Project 10% Bonid 2º miltem: 30% 3° Final: 40% Organization of the Course 1. QU Auchitecture Memory Map. tigl. C. T Sperial Purpose Registers for theirita config Wive Wapping Board of Feriphene Controller. Firmware a. Host PC Leptor, LINLX Development. (13 weeks) Ubuntu 18.04 7. Kernel (O.S) Source Distribution Virtual Box Installed, then install Linux on top of it. JOE Integrated Development Environment), to be able to b. Target Platform (To Be Optimite Kemelinage to be able determined) to modify existing Denice Inivers. C. Wire Wapping Board

townto your own Device Driver

(~3 weeks)

Target

Through Holes with metal coating

Target Platforms To Consider CPU Data sheet ___ CPU 1. NXP LPC17XX, 1769 Architectus well Documented Clock Rate: Zoontz-400mHz memory map well Documented RTOS But Not Unix D.S. No Linux Rich I lo Interne Ref: 1/2 20217-1076- ... Example: ScH of LPC176a. LPCXpresso "3+ 1"pin: SPIL Serial Peripheral Interface)

JUARTS TX Transmission / multiplexed

SPID/UARTS

SCL:

GPP (GPID: General Turpose Port I/D)

F 6 ADC (ATO - Analog to Digital Convension) IZC

	² 1	LPCX	presso	
J2-28 >	·	VOUT (+3.3\	out) if self e +3.3V input	Ī
J2-29 > —		not used		Ţ
J2-30) —		not used		<u> </u>
J2-31 > —		not used		
J2-32 >	ETH_RXN	RD-		1 RxH, RxP; TxH, TxP
J2-33 >	ETH_RXP	RD+		Ethernet
J2-34 >	FTH_TXN	TD-		1 / FINGUMEN
J2-35 >	ETH_TXP	TD+]_/
J2-36 >	USB-DM	USB-D-		LUSB
J2-37)	USB-DP	USB-D+		t usb
J2-38 >	P0 4	P0.4	CAN_RX2	The CAN-B.
J2-39 >	P0.5	P0.5	CAN_TX2	J CAN-Bus
J2-40 >	P0.10	P0.10	TXD2/SDA2) UARTZ/I2C
J2-41 >	P0 11	P0.11	RXD2/SCL2	MAIST C/ IZC
J2-42 >	P2.0	P2.0	PWM1.1	7 9
J2-43 >	P2 1	P2.1	PWM1.2	1 1 5 424
J2-44 >	P2.2	P2.2	PWM1.3	LPOrts PWM
J2-45 >	P2 3	P2.3	PWM1.4	† [
J2-46 >	P2.4	P2.4	PWM1.5	†-
J2-47 3	P2.5	P2.5	PWM1.6	Υ
J2-48 >	P2 6	P2.6		Ť
J2-49 >	P2.7	P2.7		1
J2-50 >	P2 8	P2.8		
J2-51 >	P2.10-ISP_EN	P2.10		1
7 J2-52 >	P2 11	P2.11		1
13/2-53	P2.12	P2.12		1
19/2-54	GND	GND		1

Option Target platform: CFPGA. Fulno Electronics.

FPGA Igluoz: RISGV.

Superset of ARM Architecture

IP Core: Open Source. Supports 1205 Limitations: No Unix/Linux O.S.

Smiller tate Canits, - cless

Compositional Compubility.

Fie. Broad Com BOM

(, mbE3AA Features: Support Linux Mbunta. Provides Machine/Computer Vision Capubility; OpenCV. YoLo (You only Liok Once) Deep Learning, NO AOC Pie-3 Version B GPIO Pins https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-SV Promer Ground GP1014 UARTE_TX GP1015 GP1023 GP1023 GP1023 GP1024 GP1025 GP1026 GP1026 GP1026 GP1026 GP1026 GP1026 GP1016 GP1022
SP1022
SP1023
SP1023
SP1023
SP1026
SP1023
SP1026 Plus: CPU Datusheet CPU Architecture Device peripheral controllers, Gr.E. (gruphics Development. Empire) Option: ARM-11 Samsing. CAN: 53C6410X

CAU Datasheet: Architecture Block Dingram _ well Document

GON Soontto memory myp, well Designed, documented Support Linux, Well Document/Sample code for Driver Development State of the - Art Feature: Graphics thousand Engine___ GPU LPCITXX, NO; FPGA RISC V, NO; BCM-Pie G.E. Yes ARM-11. Video Codec, Marginal Option: NVDA - Jetson TX2 6 Cars + 256 GPU in a Single Package

CMPE244 Signup as a developer at nxp website Supports Linux/Wounty, I/O Interface is limited; (LPC17xx trus the Best I/O I/F Supert): ~57W Der. Kit. Well Documented www.nxp.com MCU Xpresso Datusheet.

Detson

Option: NVDA NAND. Uhuntu Linux

Support.

Multiple Crust 128 GPU Oct b (Thursday). TUPIS: 1° Arch: Fertural Asperts up Detrished __ Not As Detriled Exhedded System for as other platform) Settwee Implementation Developer Journ is very Active Datishvet + Bourd Sch. + and it gives a good references. Special Ruponse Tegister + I.at (Complex and Homework: 1 Form 2-4 person team Flightoul) By Next week; Example: LPC1769 ARM Contex M3 20 Chouse Tanget Hatform C+402hoheet 30 Bring Wire Wrapping Bourd Simpler Avalitedare Phototype Board to the Class (1) NXP LTC 1769 Breline 3) SamSung ARMII Datusheet for show of Tell j CPU Block Dingram 40 Sign up @ Widia nebsite memon mup as a developer - Kernel Sperial Purpose Register Jource Distribution NXP, MCU
L Jetpack Xpresso
WWW.NXP. Com Tol Chain Soffware Design, Imlanentation

CmpE244

	_	8
_	Memory mup:	SPRs: Those Registers to
1.	RISC: Reduced Instruction Set	fulfill special functions,
•	Architectuc	Such as init à compig-for
	1979 David Patterson	
	1982 John Hennesy	Peripherial controllers.
		3. Memory map
	Regularity	
	Chhogonally	a. Byte Addressable machine
2.	32 3H RISC Architecture	The Smalles Memory Cell
	_ ^	with an unique Adduess is
	Data Bus: 326it, Bi-directional	
	D[m:n] Vector Notation	a Single Byte Byte
	most Significant Bit Deast	Addressable Machine!
	D[31:0] Significat Bit	Question: What is the
		Mary hadrest a land and market
	Endian "Little Endian"	Max Address for the memory Map of a given Coll 7
Addve	55 Bus: 32 bit, Uni-Directional	
	ALU (Arithmetic/Logic Uvit) 32 bits	Sinle 32 - Addr. Bit Bus Architecture 32bits
		Bit Bus
	Register File: 32 bit	Architecture 32bits
	J General Purpose Registers: 32 hi	+
	GPRs	2
	Special Purpose Registers: 321	Pit Z = Z 10. 210. 22
	SPRs	Z10 /K
		720 Kx K = Meg
	GPPR: Those that can puticipate	
	Any meaningful Arithmet	ric 230 IMXIK=14.
	Any meaningful Arithmet Logic Operations,	4 GByte (Byte Addressable)
	Ų · · ·	' 0 6 '

Question: Which 3 bits? Z=46B Addv. [31:4] men, mup 03/03/024 ··· 020/00 Add,[3]:29] = a3/a3029 Question: Find the Stanting Address of Each memory Bank? Fig.3 <u>∑</u>i: 0x00000000 System Power-Np Address: The Address when CPU is Forward aziazoaza; az8 location to fetch the 1st instruction 0 X 0 000_0000 00,0 BANKO 0 0 1 0 0 0X2000-0000 Bankl 0000_000D X D to execute. Bank2 BANKS: A Block of memory. BankT Divid memory Mapinto 8 Datisheet, PP.14 from NXP LTC1769 Equal Banks. Munoy map, SSPP as an example. ISTBANK: BANKU ZndBank: BANKU then, starting Addr. for Memory Starting Modernes SSPO: 8th BANK: BANKT. 0x4v8_8000 Question: How many Address 1314s Questial: How much memory does sopt need? Do we need to define each memory tank? 3 bits

Control Register: In: + & Config.	
Control Register: In: + 2 Config. Outa Register: Data 1/0 Operation	
Operation	
Pull up Down: Shectrical Charant	uistic
of the Controller	
4. Naminy Convention of Special Purpose Registers.	(-
Rypose Registers.	S3C641
Let's Design Define Naming	Por
	GP.
Convention.	GP
tollow RISC Design Guidelines	GP
	GP
Prefix + Root + Postscript	GP
4	GP
	GP
3 Letters 3 letters	GP
	GF
Control Register: GRX CON	GP
	GP
GPx: General Purpose Port x	GP
	GP
Meaning we have more than one yeneral purpose	GP
than the yeneral Purpose	GP

Ports.

17 Gpps	a .			
33C6410 includes 187multi-functional input/o				
PortName Number of Pins.				
GPA port	8	UAI		
GPB port	7	UAI		
GPC port	8	SPI		
GPD port	5	PCI		
GPE port	5	PCI		
GPF port	16	CAI		
GPG port	7	SDI		
GPH port	10	SDI		
GPI port	16	LCI		
GPJ port	12	LCI		
GPK port	16	Hos		
GPL port	15	Hos		
GPM port	6	Hos		
GPN port	16	EIN		
GPO port	16	Mei		
GPP port	15	Mei		
GPQ port	9	Mei		

C. Typical Number of

Samsung Arem 11:

L7C1769 PU, P1, P2, P3.

GTPP:

	Fiz5.	IF PM = 1 (con)	
(1)	, 3	TO, 9 Q Part (GPP)	Fig.b.
Negative	LPCXpresso	Dual row to b Theoretically pins can	, .C.
"Active	GND VIN (4.5-5.5V)	EXT_VIN (J2-2) be as many as 32	•
וישס	VB (battery supply)		γ φ
0-2	P0.9 MOSI1	TARGET_RESET (J2-4 P0.9	
Resul	P0.8 MISO1	P0.8 (J2-6	
	P0.7 SCK1 P0.6 SSEL1	P0.7 (J2-7 Y3) Pmq	FigT

C. GPX DAT ping:

Root

GPXDAT[9] the world "program. Thun on/off LED VIA
[Input) UPID OP GPIO Pin for " or" o" d. Thysical connector pin to when switch is toggled: GPXDAT[a] is given from Note: for MICK XPVESSO IDE Sch Design. Example, LACITED down Load, you would have to Become a developer at NXP 769 - Jz-5 (Connector Jz website, www.nxp. Lom. Pin5) Then, Down Load MCU xpresso, and finish the installation. e. GRX PUD (Pull-up Down) SPR. One installed, down load f. Question: How many can we have LFC1769 pitch from Class Control functions for a cythrob, import it into your Single Control Tregister ? IDE. IVE. Honowork: Down load Image Example: Continued from GPX LON And Bring up your Target Momber of Possible control Dct.13 (Wed) fractions? Ref: 1° 2025-112-Homework From CPU Datasheet (ARMII) SPRS (New Submission to CAN VAS) Register Address 2°2021F-113-LPC17W.R GPBCON 0x7F008020 (FULNEP LICITXX Platform) 0x7F008024 **GPBDAT GPBPUD** 0x7F008028 Homework, Note GPIO Pinsselection 0x7F00802C GPBCONSLP **GPBPUDSLP** 0x7F008030

Select One for Vistent, One

for the Input, for Hello, the

R۸

R٨

R٨

R٨

R٨

R٨

memory (Address)

Define GPBy as a input pin

					_
-	GPBCON	Bit		Description	
-	GPB0		0000 = Input 0010 = UART RXD[2] 0100 = IrDA RXD 0110 = Reserved	0001 = Output 0011 = Ext. DMA Request 0101 = ADDR_CF[0] 0111 = External Interrupt Group 1[8]	tuble
-	GPB1	[7:4]	0000 = Input 0010 = UART TXD[2] 0100 = IrDA TXD 0110 = Reserved	0001 = Output 0011 = Ext. DMA Ack 0101 = ADDR_CF[1] 0111 = External Interrupt Group 1[9]	
-	CDD2	[1 1 - 0]	0000 - Input	0001 - Output	

Note 1 32 Bit Architecture

32 Bit Spizs (Special

Rappose Register)

Address 4 Bytes Apart.

131

14

GPBCON 0X7-8020

Fig.1.

No. of possible functions for Control register:

33 = 4 4.

Example: Implement Design

Hello, the world "program.

Connector Type, DB-9

GPBD -> Pind -> CPU, GPDDAT[D]

GPBCON[3:0] = 0000 // Define GPBD in Fut

GPBCON[3:0] = 000 | // Define GPBD Distrit

GPBCON[3:0] = 000 | // Define GPBD D

Rx (Receiving) Tx (Transmithing) Steps Involved for this is

1°. Identify the più (s)

from a connector

of en tanget Bourd;

Z° Find Driver Program

to allow us to config

GPP for Input Dutent

tunction.

$$=\frac{3.3-1.7}{10\times10^{-3}}=\frac{7.1\times10^{2}}{10\times10^{-3}}$$

Bring your Frototype Board for quick Domo. (Torget Board + Carrier Board

with I/o Teoling CKT)