Teoria de conjuntos - I

Um *conjunto* é uma colecção de objectos distintos. Aos objectos num conjuntos chamamos *elementos* ou *membros*.

• Lista de elementos entre chavetas:

$$S = \{a, b, c, d\}$$
 o mesmo que $\{b, c, a, d\}$ o mesmo que $\{b, c, a, d, a, b\}$

- x é um elemento de S (ou x pertence a S): $x \in S$
- Podemos usar reticências para especificar uma sequência que segue um padrão

$$S = \{1, 2, \dots\}$$
 ou $S = \{1, \dots, 64\}$

• Ambiguidade na definição usando reticências: $S = \{1, 2, \dots, 64\}$, pode representar os inteiros positivos até 64, mas também pode indicar o conjunto de todas as potências de 2 até 64 $(S = \{2^0, 2^1, \dots, 64\}$ notação mais apropriada)

Conjuntos: exemplos

- {1, {1}}.
- $\mathbb{N} = \text{naturais} = \{0, 1, 2, 3, 4, \ldots\}$
- $\bullet \ \mathbb{Z} = \mathsf{inteiros} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$
- $\{2^0, 2^1, \dots\}$
- $\{1,3,\ldots,2k+1,\ldots\}$
- $\mathbb{Z}^+ = \text{inteiros positivos}$.

Teoria de conjuntos - II

- Podemos evitar ambiguidade definindo os conjuntos por compreensão
- Os elementos à esquerda de (|) têm que satisfazer a condição P(X), para pertencerem ao conjunto S:

$$S = \{ X \mid P(X) \}$$

Nota: podemos também escrever $S = \{ X : P(X) \}$

- Exemplos:
 - $\mathbb{Z} = \{ x \mid x \in \mathbb{N} \text{ ou } -x \in \mathbb{N} \}$.
 - $\mathbb{Q} = \mathsf{racionais} = \{ \ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0 \ \}$.
 - $\{ x \mid x \in \mathbb{R}, -2 < x < 5 \}.$

Conjuntos

Subconjuntos - I

 Dizemos que A é um subconjunto de B (notação A ⊆ B), se e só se, todos os elementos de A são também elementos de B, ou seja,

Para todo x, se $x \in A$ então $x \in B$

- O conjunto A é um subconjunto de si mesmo $(A \subseteq A)$.
- Dizemos que A é um subconjunto próprio de B (notação A ⊂ B), se e só se, A ⊆ B e A ≠ B.
- O conjunto A não é um subconjunto próprio de si mesmo (A ⊄ A).
- Dois conjuntos A e B são iguais (notação A = B), se e só se têm os mesmo elementos. Mais formalmente,

$$A = B$$
 se e só se, $A \subseteq B$ e $B \subseteq A$.

Subconjuntos - II

- O conjunto vazio, ∅ (ou {}), é o único conjunto que não contém elementos. (x ∈ ∅ é sempre falso!)
- \emptyset é um subconjunto de qualquer conjunto. É sempre verdade que:

Para todo
$$x$$
, se $x \in \emptyset$ então $x \in A$

- **Exemplos:** Seja $A = \{1, 2, 5, 7\}$, $B = \{1, 5\}$ e $C = \{3, 7\}$.
 - 1. *B* ⊆ *A*?
 - 2. $C \subseteq A$?
 - **3**. *B* ⊆ *B*?

Conjuntos de conjuntos

- Um conjunto pode ter como elementos outros conjuntos.
 Exemplo: {{2,4}, {13}, 17}
- Note que, $\{2,4\} \in \{\{2,4\},\{13\},17\}$, mas $\{2,4\} \subseteq \{2,4,13,17\}$
- Note que, $13 \notin \{\{2,4\},\{13\},17\}$, mas $\{13\} \in \{\{2,4\},\{13\},17\}$
- O conjunto $\{\emptyset\}$ não é o conjunto vazio: $\emptyset \in \{\emptyset\}$

O conjunto de subconjuntos

 O conjunto de todos os subconjuntos de um conjunto A é chamado o conjunto das partes de A (notação 2^A ou P(A)), ou seja:

$$\mathcal{P}(A) = 2^A = \{ S \mid S \subseteq A \}$$

• Exemplo: se $A = \{1, 2, 3, 4\}$ então

$$P(A) = 2^{A} =$$

Operações sobre conjuntos

 Dados dois conjuntos A e B, definimos a intersecção, união e diferença de conjuntos da seguinte forma:

$$A \cap B = \{ x \mid x \in A \text{ e } x \in B \}$$

 $A \cup B = \{ x \mid x \in A \text{ ou } x \in B \}$
 $A \setminus B = \{ x \mid x \in A \text{ e } x \notin B \}$

• As operações de união e interseção podem ser definidas para múltiplos conjuntos. Considerando n conjuntos A_1, A_2, \ldots, A_n , então

$$\bigcap_{i=1}^n A_i$$
 e $\bigcup_{i=1}^n A_i$

definem respectivamente a sua intersecção e a sua união.

• Considerando um determinado universo \mathcal{U} , definimos o complementar de A, como:

$$\overline{A} = \{ x \mid x \notin A \} = \mathcal{U} \setminus A$$

Exemplo

Seja $\mathcal{U}=\{0,1,2,3,4,5,6,7,8,9,10\}$, $A=\{1,2,3,4,5\}$ e $B=\{6,7,8\}$. Então:

- $A \cup B =$
- $A \cap B =$
- $\overline{A} =$
- *A* \ *B* =

- **1.** Determine conjuntos *A* e *B* tais que se verifiquem as condições seguintes.
 - $A \cup B = \{1, 2, 3, 4, 5\};$
 - $A \cap B = \{3, 4, 5\};$
 - $1 \notin A \setminus B$;
 - 2 ∉ *B* \ *A*.
- **2.** Sejam A e B conjuntos quaisquer num universo \mathcal{U} . Relacione os conjuntos seguintes (quanto à inclusão).
 - $\mathcal{P}(A) \cap \mathcal{P}(B)$ e $\mathcal{P}(A \cup B)$;
 - $\mathcal{P}(A) \cup \mathcal{P}(B)$ e $\mathcal{P}(A \cup B)$.

Exercícios (cont.):

3. Considere os conjuntos $A = \{ 11k + 8 \mid k \in \mathbb{Z} \}$ e $B = \{ 4m \mid m \in \mathbb{Z} \}$ e $C = \{ 11(4n + 1) - 3 \mid N \in \mathbb{Z} \}$. Mostre que $A \cap B = C$.

Cardinalidade

- O número de elementos (distintos!) em A, (notação |A| ou #A), é chamado a cardinalidade de A.
- Se a cardinalidade de um conjunto é um número natural (N), então o conjunto é finito, caso contrário é infinito.
- Exemplo: Se $A = \{a, b\}$ então $|\{a, b\}| = 2$ e $|2^A| = 4$.
- O número de subconjuntos de um conjunto com n elementos é 2ⁿ, ou seja,

$$|2^A|=2^{|A|}$$

- $|A \setminus B| = |A| |A \cap B|$.
- $|A \cup B| = |A| + |B| |A \cap B|$.

Exercícios (cont.):

4. Numa escola do secundário com 100 estudantes, as turmas de inglês, alemão e francês têm respectivamente 28, 30 e 42 inscritos. 8 alunos frequentam as turmas de inglês e alemão, 10 as de inglês e francês e 5 as de alemão e francês. 3 estudantes estão inscritos nas três turmas. Quantos alunos aprendem exatamente uma língua estrangeira? E quantos dos 100 estudantes não aprendem nenhuma?

Produto cartesiano de conjuntos

- Um n-tuplo ordenado (a_1, a_2, \ldots, a_n) , é uma colecção ordenada, que tem a_i como i-ésimo elemento.
- Um 2-tuplo ordenado é chamado de par ordenado.
- O produto cartesiano de o conjunto A com o conjunto B, A × B, é o conjunto de pares ordenados

$$\{ (a, b) \mid a \in A \ e \ b \in B \}.$$

O produto cartesiano dos conjuntos A₁, A₂,..., A_n,
 A₁ × A₂ × ... A_n, é o conjuntos de todos os n-tuplos ordenados
 { (a₁, a₂,..., a_n) | a₁ ∈ A₁, a₂ ∈ A₂... a_n ∈ A_n }.

• **Exemplo:** Seja $A = \{a, b\}$ e $B = \{1, 2, 3\}$. Então:

$$A \times B =$$

Conjuntos: propriedades

A teoria de conjuntos é uma instância de um sistema algébrico chamado

Álgebra Booleana.

- 1. Comutatividade: para todo o conjunto A e B; $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- 2. Associatividade: para todo o conjunto A, B e C; $A \cap (B \cap C) = (A \cap B) \cap C$ e $A \cup (B \cup C) = (A \cup B) \cup C$.
- 3. Distributividade: para todo o conjunto A, B e C; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ e $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. Complemento duplo: para todo o conjunto A, $\overline{A} = A$.
- 5. Idempotência: para todo o conjunto A, $A \cup A = A$ e $A \cap A = A$.

Conjuntos: propriedades II

- 6 Elemento neutro: para todo o conjunto A e universo \mathcal{U} ; $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.
- 7 Elemento absorvente: para todo o conjunto A e universo $\mathcal U$; $A\cup \mathcal U=\mathcal U$ e $A\cap \emptyset=\emptyset$.
- 8 Leis de De Morgan: para todo o conjunto A e B; $\overline{A \cup B} = \overline{A} \cap \overline{B}$ e $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 9 Leis de absorção: para todo o conjunto A e B, $A \cup (A \cap B) = A$ e $A \cap (A \cup B) = A$.
- 10 Complementar: para todo o conjunto A e universo \mathcal{U} , $A \cup \overline{A} = \mathcal{U}$ e $A \cap \overline{A} = \emptyset$.

Provas...

Vamos provar que $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Prova: Vamos mostrar que, para todo o *x*:

$$x \in \overline{A \cup B} \Leftrightarrow x \in \overline{A} \cap \overline{B}$$

Seja x um elemento arbitrário do domínio

- (⇒) Se $x \in \overline{A \cup B}$, então (pela definição de complementar) $x \not\in (A \cup B)$. Além disso, $x \not\in (A \cup B)$ implica (pela definição de união) que $x \not\in A$ e $x \not\in B$. Se $x \not\in A$, então (pela definição de complementar) $x \in \overline{A}$ e $x \not\in B$ implica (pela definição de complementar) $x \in \overline{B}$. Mas, se $x \in \overline{A}$ e $x \in \overline{B}$, então (pela definição de intersecção) $x \in \overline{A} \cap \overline{B}$.
- (⇐) Análogo ao sentido inverso.

$$\mathsf{Logo}\ x \in \overline{A \cup B} \Leftrightarrow x \in \overline{A} \cap \overline{B}$$

Provas...

Seja A um conjunto (fixo, mas genericamente escolhido), para mostrar que $A \cap \emptyset = \emptyset$ basta mostrar que $A \cap \emptyset$ não contém nenhum elemento.

Suponhamos que $x \in (A \cap \emptyset)$, por definição de intersecção $x \in A$ e $x \in \emptyset$. Em particular $x \in \emptyset$, o que é impossível por definição de \emptyset .

Esta contradição mostra que a hipótese de existir um $x \in (A \cap \emptyset)$ é falsa. Logo $A \cap \emptyset$ não contém elementos e $A \cap \emptyset = \emptyset$.

Exercício: Sejam A, B e C conjuntos quaisquer num universo \mathcal{U} ; prove a veracidade ou falsidade das afirmações seguintes.

- a) $A \setminus B = A \cap \overline{B}$.
- b) $A \cap B = A \setminus (A \setminus B)$.
- c) $(A \cap \overline{B}) \cup (\overline{A} \cap B) = (A \cup B) \cup (\overline{A \cap B}).$

- Das seguintes afirmações identifique as verdadeiras:
 - 1. $2 \in \{1, 2, 3\}$
 - 2. $\{2\} \in \{1, 2, 3\}$
 - 3. $2 \subseteq \{1, 2, 3\}$
 - 4. $\{2\} \subseteq \{1,2,3\}$
 - 5. $\{2\} \subseteq \{\{1\}, \{2\}\}$
 - 6. $\{2\} \in \{\{1\}, \{\{2\}\}\}\$
- Seja $A = \{a, b\}$ e $B = \{1, 2, 3\}$. Determine:
 - 1. $B \times A \in A \times B \times A$.
 - 2. $|A \times B|$.
- Se |A| = 4 e |B| = 2, determine $|A \times B|$.
- Mostre que para todo o conjunto A e B, $A \cap B \subseteq A$.
- Mostre que para todo o conjunto A e B, $A \setminus B = A \cap B$.
- Mostre que para todo o conjunto $A,B \in C$ $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C).$

- 1. Sejam A, B e C conjuntos quaisquer num universo \mathcal{U} ; prove a veracidade ou falsidade das afirmações seguintes.
 - a) Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.
 - b) Se $A \subseteq B$ e $B \not\subseteq C$, então $A \not\subseteq C$.
 - c) Se $A \subseteq B$ e $B \not\subseteq C$, então $A \subseteq C$.
 - d) Se $A \not\subseteq B$ e $B \subseteq C$, então $A \not\subseteq C$.

Prove cada um dos seguintes resultados, sendo A, B, C e D conjuntos num universo \mathcal{U} .

- a) Se $A \subseteq B$ e $C \subseteq D$, então $A \cap C \subseteq B \cap D$;
- b) Se $A \subseteq B$ e $C \subseteq D$, então $A \cup C \subseteq B \cup D$.

Prove a validade ou falsidade das seguintes afirmações, sendo A, B e C conjuntos quaisquer.

- a) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$;
- b) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$;
- c) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$;
- d) se $A \subseteq B$, então $A \cap C \subseteq B \cap C$;
- e) se $A \cup C = B \cup C$, então A = B;
- f) se $A \subseteq B$, então $2^A \subseteq 2^B$.

Pares ordenados

- Dois elementos a, b podem ser agrupados num par ordenado, o qual é denotado por (a, b).
- Dados dois pares ordenados (x, y), (u, v), então (x, y) = (u, v) se e só se x = u e y = v
- A noção de par ordenado pode ser estendida a tuplos de tamanho n
- A noção de tuplos de n elementos, permite representar conjuntos de objectos, nos quais a ordem entre os elementos é importante.

Produto Cartesiano

Definição: Dados dois conjuntos $A \in B$, o seu *produto cartesiano* $A \times B$ é o conjunto de todos os pares ordenados (x, y), tais que $x \in A$ e $y \in B$:

$$A \times B = \{ (x, y) \mid x \in A, y \in B \}.$$

Um caso especial bastante útil é:

$$A^2 = A \times A = \{ (x, y) \mid x, y \in A \}.$$

De uma forma geral definimos: $A^1 = A$, e para $n \ge 2$

$$A^n = \{ (x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in A \}.$$

Produto Cartesiano

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Seja $(u, v) \in (A \times C) \cup (B \times C)$. Isso implica que $(u, v) \in A \times C$ ou $(u, v) \in B \times C$. No primeiro caso $u \in A$ e $v \in C$ e no segundo caso $u \in B$ e $v \in C$. Logo $u \in A \cup B$ e $v \in C$, o que implica que $(u, v) \in (A \cup B) \times C$.

Relações binárias

Definição: Uma *relação binária* de um conjunto A num conjunto B é um subconjunto $R \subseteq A \times B$.

Se A = B, i.e. $R \subseteq A \times A$, dizemos também que R é uma relação binária definida em A.

A relação R indica os pares (a, b) para os quais a relação representada por R é verdadeira.

Por exemplo, a relação > em $\{1,2,3\}$ é:

$$>$$
 = {(2,1),(3,1),(3,2)}

Se $(a, b) \in R$, então a está em relação com b em R. Podemos também usar a notação aRb para indicar que $(a, b) \in R$.

Exemplos de relações matemáticas, que já vimos: <, >, \le , \ge , =, \ne , |, \equiv_n , \subset , \subseteq , etc...

Exemplos

Seja $A = \{1, 2, 3, 4, 5, 6\}$. Determine as relações binárias seguintes (por extensão).

- (\equiv_4, A) ;
- $(\equiv_4, \mathbb{Z});$
- (|, A);
- (|, ℤ);
- $(\subseteq, \mathcal{P}(\{1,2,3\}))$.

Representação de Relações

Matrizes Seja R uma relação entre $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$. R pode ser representada pela matriz $M_R = \{m_{ij}\}$, onde

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{se} & (a_i,b_j) \in R \ 0 & ext{se} & (a_i,b_j)
otin R \end{array}
ight.$$

Exemplo $R = \{(a, a), (a, b), (b, a), (b, b), (b, c)(c, b), (c, c)\}$

R	а	b	С
а	1	1	0
ь	1	1	1
С	0	1	1

Matrizes

Definição: Sejam $E=(e_{ij})_{m\times n}$ e $F=(f_{ij})_{m\times n}$ duas matrizes (0,1) de $m\times n$. Dizemos que E precede F e escrevemos $E\leq F$, se $e_{ij}\leq f_{ij}$ para todo $1\leq i\leq m,\ 1\leq j\leq n$.

Definição:Para $n \in \mathbb{Z}^+$, $I_n = (\delta_{ij})$ é a matriz de $n \times n$ tal que

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{se} & i = j \\ 0 & \text{se} & i \neq j \end{array} \right.$$

Definição: Seja $A=(a_{ij})_{m\times n}$ uma matriz (0,1). A transposta de A, escrevemos A^t , é a matriz $(a_{ji}^*)_{n\times m}$ tal que $a_{ji}^*=a_{ij}$, para todo $1\leq i\leq m,\ 1\leq j\leq n$.

Matrizes

Seja A um conjunto com |A| = n e R uma relação em A. Se M_R é a matriz da relação R, então:

- $M_R = 0$ (a matriz com todas as posições 0) se e só se $R = \emptyset$.
- $M_R = 1$ (a matriz com todas as posições 1) se e só se $R = A \times A$.