Sesión 1: Procesamiento y Visualización de Datos con R y Python

Mauricio Alejandro Mazo Lopera Universidad Nacional de Colombia Facultad de Ciencias Escuela de Estadística Medellín

Contenido del curso:

Inicialmente se presenta un comparativo general entre ambos programas y se tratarán los siguientes puntos tanto en R como en Python:

- Importación y exportación de datos.
- Análisis descriptivos básicos.
- Descriptivo por grupos.
- Unión de bases de datos.
- Gráficos descriptivos.

R versus Python:

R versus Python: Enlaces

R versus Python: Integrated Development Environment (IDE)

R versus Python: Integrated Development Environment (IDE)

Python

- Gratuito
- Académicos
- Estadístico
- Ajuste de modelos
- Visualización gráfica
- Interacción con la nube
- Buena documentación

- Gratuito
- Desarrolladores
- Multipropósito
- En desarrollo
- En desarrollo
- Interacción con la nube
- Menos documentación

"Mundo" Tidyverse en R-Studio

"Mundo" Tidyverse en R-Studio

El Tidyverse es una colección de paquetes del R que permiten preparar, procesar y graficar bases de datos. Se destacan los siguientes:

- ggplot: permite crear visualizaciones elegantes de los datos de una manera relativamente sencilla.
- stringr: permite manipular cadenas de caracteres con el fin de realizar substitucioes, detectar duplicados, analizar patrones, etc.

"Mundo" Tidyverse en R-Studio

- tidyr: tiene como objetivo obtener datos ordenador. Destacan funciones como gather para crear factores con base en nombres de columnas y separate para crear factores separando los caracteres de una columna.
- readr: permite importar y exportar bases de datos en diferentes formatos y tiene implementada la función **problems** que detecta problemas en nuestras bases.

Para más información visitar la página web: https://www.tidyverse.org/packages/

Librerías en Python

Librerías en Python

Algunas de las librerías que más se utilizan para procesamiento, visualización y análisis de bases de datos:

- pandas: importación y exportación de bases de datos, además de manipulación de las mismas.
- matplotlib: realización de gráficos.
- seaborn: realización de gráficos considerando subgrupos o categorías.
- statmodels: ajuste de modelos estadísticos.
- numpy: manejo de matrices.
- SciPy: análisis numérico.

Creación de reportes en R con R Markdown:

Creación de reportes en python con Jupyter Notebook:

Extensiones - Bases de datos

```
.RData
   .CSV
.dta
       .sas7bdat
                      .sav
 .xls
         .json
                  .txt
  .xlsx
                   .data
           .rds
```

Importando y exportando bases de datos en R:

Algunos paquetes utilizados para importar y exportar bases de datos en R son:

- readr: permite importar y exportar datos en varios formatos.
- readxl: Importar datos en formato "Excel".
- haven: Importar y exportar datos en "SPSS", "Stata" y "SAS".
- httr: Herramientas para trabajar con URLs y archivos HTTP.
- rvest: útil para extraer información de las páginas web
- xml2: Leer archivos HTML o XML.

Importando y exportando bases de datos en Python:

Algunas librerías utilizados para importar y exportar bases de datos en python son:

- csv: Importar y exportar datos .csv.
- pandas: Importar y exportar datos .csv, "Excel", "SAS", "SPSS", "html", "stata", "sql", etc.

FUERTE: Antioquia. Departamento Administrativo de Planeación. Encuestas de Calidad de Vida 2017, Tasa de desempleo.

```
Datos_1<-read.table("DATOS/DESEMPLEO_ECV_2017_MUNICIPIOS.txt",
                      sep=";",header=TRUE)
names(Datos 1)
head(Datos 1)
## [1] "Municipio" "Total"
                            "Abierto"
                                       "Oculto"
                                                 "Urbano"
                                                            "Rural"
## [7] "Hombre"
                 "Mujer"
                            "Subregion"
##
     Municipio Total Abierto Oculto Urbano Rural Hombre Mujer
## 1
      Medellin 8.34
                      6.98
                            1.37
                                   8.34 8.40
                                               8.19 8.54
## 2
    Barbosa 12.99 8.73 4.25 14.41 11.69 8.64 20.82
## 3
    Bello 8.82 7.17 1.64 8.79 10.42 8.29 9.56
## 4
       Caldas 9.15 6.46 2.69 8.77 10.53 8.05 10.70
## 5 Copacabana 9.42 8.14 1.28 9.58 8.26 8.66 10.56
## 6
      Envigado 5.27
                      4.30
                            0.97
                                   5.23 6.26 4.98 5.62
         Subregion
##
## 1 Vallé de Aburrá
## 2 Vallé de Aburrá
## 3 Vallé de Aburrá
## 4 Vallé de Aburrá
## 5 Vallé de Aburrá
## 6 Vallé de Aburrá
```

```
dim(Datos 1)
str(Datos 1)
## [1] 125 9
## 'data.frame': 125 obs. of 9 variables:
   $ Municipio: Factor w/ 125 levels "Abejorral", "Abriaquí", ...: 71 15
   $ Total
##
              : num 8.34 12.99 8.82 9.15 9.42 ...
   $ Abierto: num 6.98 8.73 7.17 6.46 8.14 4.3 9.21 5.15 4.46 4.02
##
##
   $ Oculto : num 1.37 4.25 1.64 2.69 1.28 0.97 1.66 1.25 1.5 1.68
   $ Urbano : num 8.34 14.41 8.79 8.77 9.58 ...
##
   $ Rural : num 8.4 11.69 10.42 10.53 8.26 ...
##
##
   $ Hombre : num 8.19 8.64 8.29 8.05 8.66 ...
##
   $ Mujer
              : num 8.54 20.82 9.56 10.7 10.56 ...
##
   $ Subregion: Factor w/ 9 levels "Bajo Cauca", "Magdalena Medio",...:
```

summary(Datos_1)

```
Oculto
##
         Municipio
                         Total
                                          Abierto
    Abeiorral: 1
                     Min.
                             : 0.420
                                       Min.
                                              : 0.420
                                                                -0.000
                                                         Min.
    Abriaquí : 1
                     1st Qu.: 4.575
                                       1st Qu.: 3.297
                                                        1st Qu.:0.465
    Alejandría:
                     Median : 6.345
                                       Median : 4.925
                                                        Median :1.240
##
    Amagá
                     Mean
                             : 7.160
                                       Mean
                                              . 5.545
                                                         Mean
                                                                :1.615
    Amalfi
                     3rd Qu.: 8.967
                                       3rd Qu.: 7.025
                                                        3rd Qu.:2.090
    Andes
                             :22.770
                                              :21.920
                                                                :9.240
                     Max.
                                       Max.
                                                         Max.
    (Other)
              :119
                     NA's
                             :3
                                       NA's
                                              :3
                                                        NA's
                                                                :3
##
##
        Urbano
                         Rural
                                           Hombre
                                                             Mujer
    Min.
           : 0.420
                             : 0.000
                                       Min.
                                              : 0.180
                                                                : 0.75
##
                     Min.
                                                         Min.
    1st Qu.: 6.035
                     1st Qu.: 2.272
                                      1st Qu.: 2.947
                                                        1st Qu.: 6.57
   Median: 8.315
                     Median: 4.315
                                       Median: 4.895
                                                        Median :10.76
    Mean
           : 9.201
                             : 5.294
                                       Mean
                                              : 5.564
                                                                :11.40
                     Mean
                                                        Mean
    3rd Qu.:10.940
                     3rd Qu.: 7.520
                                       3rd Qu.: 7.322
                                                        3rd Qu.:13.26
    Max.
           :35.010
                     Max.
                             :28.170
                                       Max.
                                              :22.650
                                                         Max.
                                                                :46.22
   NA's
           :3
                     NA's
                             :3
                                       NA's
                                              :3
                                                        NA's
                                                                :3
        Subregion
##
   Oriente :23
   Surgeste :23
   Occidente: 19
             :17
   Norte
   Urabá
             :11
   Nordeste :10
    (Other) :22
```

```
with(Datos 1, summary(Urbano))
with(Datos_1, summary(Rural))
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
                                                NA's
##
    0.420
           6.035 8.315
                         9.201
                                10.940 35.010
                                                   3
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
                                                NA's
                                                   3
##
    0.000
           2.272 4.315
                         5.294 7.520 28.170
```

```
with(Datos 1, summary(Urbano))
with(Datos 1, summary(Rural))
##
    Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
                                                NA's
##
    0.420
           6.035 8.315 9.201
                                10.940 35.010
                                                   3
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
                                                NA's
##
    0.000
           2.272 4.315
                         5.294 7.520 28.170
                                                   3
with(Datos_1, summary(Mujer))
with(Datos 1, summary(Hombre))
##
     Min. 1st Qu. Median Mean 3rd Qu. Max.
                                                NA's
##
     0.75
            6.57 10.76
                         11.40
                                 13.26
                                        46.22
                                                   3
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
                                                NA's
##
    0.180
           2.947 4.895
                         5.564 7.322 22.650
                                                   3
```

```
with(Datos_1, summary(Abierto))
with(Datos_1, summary(Oculto))
     Min. 1st Qu. Median
##
                           Mean 3rd Qu.
                                          Max.
                                                  NA's
    0.420
            3.297 4.925
                          5.545 7.025 21.920
                                                     3
##
                                                  NA's
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
    0.000
            0.465 1.240 1.615
                                  2.090
                                         9.240
                                                     3
##
```


tapply(Datos_1\$Total, Datos_1\$Subregion, mean)

```
##
        Bajo Cauca Magdalena Medio
                                            Nordeste
                                                                Norte
                NΑ
                                  NΑ
                                            7.832000
                                                             6.390588
##
##
         Occidente
                            Oriente
                                            Suroeste
                                                                Urabá
          6.671579
                           6.386087
                                            5.876522
                                                             8.150909
##
## Vallé de Aburrá
##
          8.293000
```

```
tapply(Datos_1$Total, Datos_1$Subregion, mean)
##
        Bajo Cauca Magdalena Medio
                                          Nordeste
                                                             Norte
                NΑ
                                          7.832000
##
                                NΑ
                                                          6.390588
##
         Occidente
                           Oriente
                                          Suroeste
                                                             Urabá
          6.671579
                                          5.876522
##
                          6.386087
                                                          8.150909
## Vallé de Aburrá
##
          8.293000
tapply(Datos_1$Total, Datos_1$Subregion, length)
        Bajo Cauca Magdalena Medio
                                          Nordeste
                                                             Norte
##
##
                 6
                                 6
                                                10
                                                                17
##
         Occidente
                           Oriente
                                          Suroeste
                                                             Urabá
##
                19
                                23
                                                23
                                                                11
## Vallé de Aburrá
##
                10
```

```
Datos 12<-na.omit(Datos 1)
tapply(Datos 12$Total, Datos 12$Subregion, mean)
##
       Bajo Cauca Magdalena Medio
                                         Nordeste
                                                           Norte
##
         8.070000
                        14.578000
                                         7.832000
                                                        6.390588
##
        Occidente
                          Oriente
                                         Suroeste
                                                           Urabá
         6.671579
                         6.386087
                                         5.876522
                                                        8.150909
##
## Vallé de Aburrá
##
         8.293000
```

```
Datos 12<-na.omit(Datos 1)
tapply(Datos_12$Total, Datos_12$Subregion, mean)
##
       Bajo Cauca Magdalena Medio
                                         Nordeste
                                                            Norte
##
         8.070000
                         14.578000
                                         7.832000
                                                         6.390588
        Occidente
                          Oriente
                                         Suroeste
                                                            Urabá
##
         6.671579
                                         5.876522
##
                         6.386087
                                                         8.150909
## Vallé de Aburrá
##
         8.293000
tapply(Datos_12$Total, Datos_12$Subregion, length)
##
       Bajo Cauca Magdalena Medio
                                         Nordeste
                                                            Norte
##
                                 5
                                               10
                                                               17
        Occidente
                                                            Urabá
##
                          Oriente
                                         Suroeste
                               23
##
                19
                                                23
                                                               11
## Vallé de Aburrá
                10
##
```

```
na_1<-which(is.na(Datos_1$Total))
na_1
## [1] 11 15 22</pre>
```

```
na 1<-which(is.na(Datos 1$Total))</pre>
na 1
## [1] 11 15 22
Datos_1$Municipio[na_1]
## [1] Cáceres Tarazá Yondó
## 125 Levels: Abejorral Abriaquí Alejandría Amagá Amalfi
Datos_1$Subregion[na_1]
## [1] Bajo Cauca Bajo Cauca Magdalena Medio
## 9 Levels: Bajo Cauca Magdalena Medio Nordeste Norte Occ
```

```
min 1<-with(Datos 12,min(Total))
max 1<-with(Datos_12,max(Total))</pre>
with(Datos_12, Municipio[Total==min_1])
## [1] Concordia
## 125 Levels: Abejorral Abriaquí Alejandría Amagá Amalfi
with(Datos_12,Municipio[Total==max_1])
## [1] Puerto Nare
## 125 Levels: Abejorral Abriaquí Alejandría Amagá Amalfi
```

plot(Datos_1[,5:8], pch=19)

Paquete ggplot2

require(ggplot2)


```
require(ggplot2)
ggplot(Datos_1, aes(y=Total, x=Subregion)) +
   geom_boxplot(color="blue")
```



```
require(dplyr)
min1<-tapply(Datos 12$Total, Datos 12$Subregion, min)
BD_min1<-filter(Datos_12,Total %in% min1)
max1<-tapply(Datos 12$Total, Datos 12$Subregion, max)
BD max1<-filter(Datos 12, Total %in% max1)
Tabla1<-data.frame(
        Subregion=BD_min1$Subregion,
        Municipio_Min=BD_min1$Municipio,
        Minimo=BD_min1$Total,
        Municipio Max=BD max1$Municipio,
        Maximo=BD max1$Total,
        row.names = NULL)
```

require(knitr)
kable(Tabla1)

Subregion	pregion Municipio_Min Minimo		Municipio_Max	Maximo
Vallé de Aburrá	Envigado	5.27	Barbosa	12.99
Bajo Cauca	El Bagre	6.04	Caucasia	9.97
Magdalena Medio	Maceo	9.51	Puerto Nare	22.77
Nordeste	Anorí	2.05	Cisneros	13.64
Norte	Ituango	2.37	Yarumal	14.73
Occidente	Ebéjico	2.30	Sabanalarga	18.09
Oriente	La Unión	1.59	San Rafael	21.29
Suroeste	Concordia	0.42	Fredonia	14.21
Urabá ————————————————————————————————————	Murindó	1.02	Arboletes	22.40

```
sex<-c(rep("Hombre", 125), rep("Mujer", 125))
psex<-c(Datos 1$Hombre,Datos 1$Mujer)</pre>
sector <-c(rep("Rural", 125), rep("Urbano", 125))
psector<-c(Datos 1$Rural,Datos 1$Urbano)</pre>
tipo<-c(rep("Abierto",125),rep("Oculto",125))
ptipo<-c(Datos 1$Abierto,Datos 1$Oculto)</pre>
Subregion <- rep (Datos 1$Subregion, 2)
Datos 13<-data.frame(sex,psex, sector,
                      psector, tipo, ptipo,
                      Subregion)
```

Paquete tidyr

require(tidyr)


```
require(tidyr)
bd1<-gather(Datos 1[,1:4], "Abierto", "Oculto",
            key="tipo", value="ptipo")
bd2<-gather(Datos 1[,5:6], "Urbano", "Rural",
            key="sector", value="psector")
bd3<-gather(Datos 1[,7:9], "Hombre", "Mujer",
            key="sex", value="psex")
Datos 13<-cbind(bd1,bd2,bd3)
```

head(bd1)

```
## Municipio Total tipo ptipo

## 1 Medellín 8.34 Abierto 6.98

## 2 Barbosa 12.99 Abierto 8.73

## 3 Bello 8.82 Abierto 7.17

## 4 Caldas 9.15 Abierto 6.46

## 5 Copacabana 9.42 Abierto 8.14

## 6 Envigado 5.27 Abierto 4.30
```

tail(bd1)

```
## 245 Municipio Total tipo ptipo

## 245 Mutatá 3.09 Oculto 0.74

## 246 Necoclí 5.49 Oculto 0.33

## 247 San Juan de Urabá 1.43 Oculto 0.41

## 248 San Pedro de Urabá 3.69 Oculto 0.00

## 249 Turbo 18.26 Oculto 8.09

## 250 Vigía del Fuerte 3.37 Oculto 0.00
```

```
ggplot(Datos_13, aes(x=psex, fill=sex)) +
  geom_density(alpha=0.4)
```



```
ggplot(Datos_13, aes(x=psex, fill=sex)) +
  geom_density(alpha=0.4)+
  facet_wrap(~Subregion)
```


ggplot(Datos_13, aes(x=psector, fill=sector)) +
 geom_density(alpha=0.4)


```
ggplot(Datos_13, aes(x=psector, fill=sector)) +
  geom_density(alpha=0.4)+
  facet_wrap(~Subregion)
```



```
ggplot(Datos_13, aes(x=ptipo, fill=tipo)) +
  geom_density(alpha=0.4)
```



```
ggplot(Datos_13, aes(x=ptipo, fill=tipo)) +
  geom_density(alpha=0.4)+
  facet_wrap(~Subregion)
```



```
require(tibble)
Datos_12<-na.omit(Datos_1)</pre>
Porc M<-tapply(Datos 12$Hombre, Datos 12$Subregion,
               mean)
Porc_F<-tapply(Datos_12$Mujer, Datos_12$Subregion,
               mean)
Subr1<-levels(Datos_12$Subregion)
n1<-length(Subr1)
reg1<-tibble(
Porcentaje=c(Porc M, Porc F),
Sexo=c(rep("M",n1),rep("F",n1)),
Subregion=c(Subr1,Subr1)
```


##		Municipio Subregi	Subregion	
##	17	Caracolí Magdalena Med	lio	
##	21	Puerto Triunfo Magdalena Med	lio	
##	25	Cisneros Nordes	ste	
##	35	Briceño Nor	rte	
##	38	Donmatías Nor	rte	
##	43	San Andrés de Cuerquia Nor	rte	
##	64	Sabanalarga Occider	ıte	
##	65	San Jerónimo Occider	ıte	
##	75	El Peñol Orien	ıte	
##	79	Guarne Orien	ıte	
##	106	Pueblorrico Suroes	ste	
##	119	Murindó Ura	ıbá	

##		Municipio		Subregion
##	8	Itagüí	Vallé	de Aburrá
##	35	Briceño		Norte
##	38	Donmatías		Norte
##	39	Entrerríos		Norte
##	43	San Andrés de Cuerquia		Norte
##	63	Peque		${\tt Occidente}$
##	64	Sabanalarga		${\tt Occidente}$
##	74	El Carmen de Viboral		Oriente
##	89	San Rafael		Oriente