Math 435 09/10/2025 Notes

September 10, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. A collection \mathcal{B} of subsets of a set X is called a basis if

- 1. The sets in \mathscr{B} cover X, i.e., $\forall x \in X$ there exists $B \in \mathscr{B}$ with $x \in B$.
- 2. If $B_1, B_2 \in \mathcal{B}$ and if $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $X \in B_3 \subseteq B_1 \cap B_2$.

Definition 2. Let $\mathcal{U}_1, \mathcal{U}_2$ be topologies on X. If $\mathcal{U}_1 \subseteq \mathcal{U}_2$ we say that \mathcal{U}_2 is finer than \mathcal{U}_1 , and \mathcal{U}_1 is coarser than \mathcal{U}_2 .

Today

- Topology inclusion lemma
- Basis generation lemma.

Proposition 1. Let $\mathcal{U}_1, \mathcal{U}_2$ be the topologies generated by bases \mathcal{B}_1 and \mathcal{B}_2 on X. If every element of \mathcal{B}_1 is a union of elements of \mathcal{B}_2 , then $\mathcal{U}_1 \subseteq \mathcal{U}_2$.

Proof: Let $U \in \mathcal{U}_1$. Then $U = \bigcup_{i=1}^n B_i$ with $B_i \in \mathcal{B}_1$. But each element of \mathcal{B}_1 is a union of elements of \mathcal{B}_2 . So $U = \bigcup_{i=1}^n C_i$ where $C_i \in \mathcal{B}_2$, where \mathcal{B}_2 are the elements of \mathcal{U}_2 . So $U \in \mathcal{U}_2$ implies $\mathcal{U}_1 \subset \mathcal{U}_2$.

Lemma 1. (How to get a basis from a topology) Let (X, \mathcal{U}) be a topological space. If $\mathcal{C} \subseteq \mathcal{U}$ such that for all $U \in \mathcal{U}$ and for all $x \in U$, there exists $C \in \mathcal{C}$ such that $x \in C \subseteq U$, then \mathcal{C} is a basis for \mathcal{U} .

Example 1. Consider $(\mathbb{R}^2, \mathcal{U})$ where \mathcal{U} is the **standard topology** (open sets look like sets without boundaries). Let $\mathcal{C} = \text{collection of open balls}$. Then given $x \in U \subseteq \mathcal{U}$, there exists an open ball C such that $x \in C \subseteq U$.

Figure 1: Example 1 Picture

Proof (Lemma 1): For the first part, we want to prove that \mathscr{C} covers X. Then we want to prove the second axiom for showing that \mathscr{C} is a basis. Finally, we want to show that it is a basis for the given topology, i.e., it actually generates \mathscr{U} .

For part 1, X itself is open in \mathscr{U} . So, given $x \in X$, there exists $c \in \mathscr{C}$ such that $x \in C \subseteq X$. This holds for all $x \in X$, so the sets in \mathscr{C} cover X.

For part 2, suppose $x \in C_1 \cap C_2$ for some $C_1, C_2 \in \mathscr{C}$. Now, C_1, C_2 are open because they are elements of \mathscr{C} . Thus, $C_1 \cap C_2$ is open. Hence by proposition 1, there exists $C \in \mathscr{C}$ such that $x \in C \subseteq C_1 \cap C_2$.

Last but not least, to show that \mathscr{C} generates \mathscr{U} , let \mathscr{U}' denote the topology generated by \mathscr{C} . We want to show first that $\mathscr{U}' \subseteq \mathscr{U}$, then show that $\mathscr{U} \subseteq \mathscr{U}'$. We know that every element of \mathscr{U}' is an arbitrary union of elements of \mathscr{C} . But, $\mathscr{C} \subseteq \mathscr{U}$. So every element of \mathscr{U}' is also an

element of \mathscr{U} . Thus, $\mathscr{U}' \subseteq \mathscr{U}$.

Now we want to show that $\mathscr{U} \subseteq \mathscr{U}'$. Let $U \in \mathscr{U}$. We want to show that U can be written as a union of elements of \mathscr{C} . Given $x \in U$, there exists $C_x \in \mathscr{C}$ such that $x \in C_x \subseteq U$. So $U = \bigcup_{x \in U} C_x$. Thus, $\mathscr{U}' = \mathscr{U}$.

This lemma is **really useful** for showing that a set is a basis.