Guide to Computer Forensics and Investigations Fourth Edition

Network Forensics, and Live Acquisitions

Syllabus

- Introduction to Network Forensics and tracking network traffic
- Reviewing Network Logs
- Network Forensics Tools
- Performing Live Acquisitions
- Order of Volatility
- Standard Procedure

Network Forensics Overview

Network Forensics Overview

Network forensics

- Systematic tracking of incoming and outgoing traffic
 - To ascertain how an attack was carried out or how an event occurred on a network
- Intruders leave trail behind
- Determine the cause of the abnormal traffic
 - Internal bug
 - Attackers

Securing a Network

Layered network defense strategy

 Sets up layers of protection to hide the most valuable data at the innermost part of the network

Defense in depth (DiD)

- Similar approach developed by the NSA
- Modes of protection
 - People (hiring and treatment)
 - Technology (firewalls, IDSs, etc.)
 - Operations (patches, updates)

Securing a Network (continued)

- Testing networks is as important as testing servers
- You need to be up to date on the latest methods intruders use to infiltrate networks
 - As well as methods internal employees use to sabotage networks

Performing Live Acquisitions

Performing Live Acquisitions

- Live acquisitions are especially useful when you're dealing with active network intrusions or attacks
- Live acquisitions done before taking a system offline are also becoming a necessity
 - Because attacks might leave footprints only in running processes or RAM
- Live acquisitions don't follow typical forensics procedures
- Order of volatility (OOV)
 - How long a piece of information lasts on a system

Performing Live Acquisitions (continued)

Steps

- Create or download a live-acquisition forensic CD
- Make sure you keep a log of all your actions
- A network drive is ideal as a place to send the information you collect; an alternative is a USB disk
- Copy the physical memory (RAM)
- The next step varies: search for rootkits, check firmware, image the drive over the network, or shut down for later static acquisition
- Be sure to get a forensic hash value of all files you recover during the live acquisition

Performing a Live Acquisition in Windows

- Several tools are available to capture the RAM.
 - Mantech Memory DD
 - Win32dd
 - winen.exe from Guidance Software
 - BackTrack

Figure 11-3 Some of the tools available in BackTrack

Developing Standard Procedures for Network Forensics

Developing Standard Procedures for Network Forensics

- Long, tedious process
- Standard procedure
 - Always use a standard installation image for systems on a network
 - Close any way in after an attack
 - Attempt to retrieve all volatile data
 - Acquire all compromised drives
 - Compare files on the forensic image to the original installation image

Developing Standard Procedures for Network Forensics (continued)

- Computer forensics
 - Work from the image to find what has changed
- Network forensics
 - Restore drives to understand attack
- Work on an isolated system
 - Prevents malware from affecting other systems

Reviewing Network Logs

- Record ingoing and outgoing traffic
 - Network servers
 - Routers
 - Firewalls
- Tcpdump tool for examining network traffic
 - Can generate top 10 lists
 - Can identify patterns
- Attacks might include other companies
 - Do not reveal information discovered about other companies

Using Network Tools

Using Network Tools

- Sysinternals
 - A collection of free tools for examining Windows products
- Examples of the Sysinternals tools:
 - RegMon shows Registry data in real time
 - Process Explorer shows what is loaded
 - Handle shows open files and processes using them
 - Filemon shows file system activity

SysInternals

Link Ch 11b

Using Network Tools (continued)

- Tools from PsTools suite created by Sysinternals
 - PsExec runs processes remotely
 - PsGetSid displays security identifier (SID)
 - PsKill kills process by name or ID
 - PsList lists details about a process
 - PsLoggedOn shows who's logged locally
 - PsPasswd changes account passwords
 - PsService controls and views services
 - PsShutdown shuts down and restarts PCs
 - PsSuspend suspends processes

Using UNIX/Linux Tools

- Knoppix Security Tools Distribution (STD)
 - Bootable Linux CD intended for computer and network forensics
- Knoppix-STD tools
 - Dcfldd, the U.S. DoD dd version
 - memfetch forces a memory dump
 - photorec grabs files from a digital camera
 - snort, an intrusion detection system
 - oinkmaster helps manage your snort rules

Using UNIX/Linux Tools (continued)

- Knoppix-STD tools (continued)
 - john
 - chntpw resets passwords on a Windows PC
 - tcpdump and ethereal are packet sniffers
- With the Knoppix STD tools on a portable CD
 - You can examine almost any network system

Using UNIX/Linux Tools (continued)

BackTrack

- Contains more than 300 tools for network scanning, brute-force attacks, Bluetooth and wireless networks, and more
- Includes forensics tools, such as Autopsy and Sleuth Kit
- Easy to use and frequently updated

Using Packet Sniffers

- Packet sniffers
 - Devices or software that monitor network traffic
 - Most work at layer 2 or 3 of the OSI model
- Most tools follow the PCAP format
- Some packets can be identified by examining the flags in their TCP headers

TCP Header

TCP Header

Bit offset	0 1 2 3	4 5 6 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	Source port										Destination port															
32	Sequence number																									
64	Acknowledgment number																									
96	Data offset	Reserved	C W R	E C E	U R G	A C K	p S H	R S T	S Y N	F I N	Window Size															
128	Checksum											Urgent pointer														
160		Options (if Data Offset > 5)																								

From Wikipedia

Tools

- Tcpdump (command-line packet capture)
- Tethereal (command-line version of Ethereal)
- Wireshark (formerly Ethereal)
 - Graphical packet capture analysis
- Snort (intrusion detection)
- Tcpslice
 - Extracts information from one or more tcpdump files by time frame

Tools

- Tcpreplay (replays packets)
- Tcpdstat (near-realtime traffic statistics)
- Ngrep (pattern-matching for pcap captures)
- Etherape (views network traffic graphically)
- Netdude (GUI tool to analyze pcap files)
- Argus (analyzes packet flows)

Examining the Honeynet Project

- Attempt to thwart Internet and network hackers
 - Provides information about attacks methods
- Objectives are awareness, information, and tools
- Distributed denial-of-service (DDoS) attacks
 - A recent major threat
 - Hundreds or even thousands of machines (zombies) can be used

Examining the Honeynet Project (continued)

Examining the Honeynet Project (continued)

Zero day attacks

- Another major threat
- Attackers look for holes in networks and OSs and exploit these weaknesses before patches are available
- Honeypot
 - Normal looking computer that lures attackers to it
- Honeywalls
 - Monitor what's happening to honeypots on your network and record what attackers are doing

Examining the Honeynet Project (continued)

- Its legality has been questioned
 - Cannot be used in court
 - Can be used to learn about attacks
- Manuka Project
 - Used the Honeynet Project's principles
 - To create a usable database for students to examine compromised honeypots
- Honeynet Challenges
 - You can try to ascertain what an attacker did and then post your results online