PinPlace: CNN based location image search And its adaptation to social network

CNN Build

Data processing

HONG SEONGJUN

Modify CNN model & improve accuracy
CHE SEUNG YUN

TEAM H Week 8

Front end

Cover pages & listup pages

JEONG CHAEWON, LEE JI SEOP

CNN Build

Our CNN model development process

- Collect and process data necessary for learning.
- 2. Train an appropriate artificial intelligence model using the processed learning data.
- 3. Deploy the trained model to utilize it in application.

Data processing

Remove irrelevant images more carefully

We tried to crawl Instagram images, but we failed.

After image processing, 600 images remain for each class.

Modified CNN model & test it

Modify last CNN model using TenserFlow on google colab.

The collected and processed learning data is trained on the modified CNN model.

Check the accuracy.

Modified CNN model & test it

- Dongdaemun_Design_Plaza
- Gyeongui_Line_Forest_Park
- Haebangchon
- Han_River_Sebitseom
- Ikseon_Dong_Hanok_Village
- Jamsil_Lotte_Tower
- Myeongdong_Cathedral
- Naksan_Park
- Namsan_Seoul_Tower
- The_Hyundai_Seoul_Mall

#모델 형태를 표로 요약 model.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_7 (Conv2D)	(None, 128, 128, 32)	896
max_pooling2d_6 (MaxPooling2	(None, 64, 64, 32)	0
dropout_7 (Dropout)	(None, 64, 64, 32)	0
conv2d_8 (Conv2D)	(None, 64, 64, 32)	9248
max_pooling2d_7 (MaxPooling2	(None, 32, 32, 32)	0
dropout_8 (Dropout)	(None, 32, 32, 32)	0
conv2d_9 (Conv2D)	(None, 32, 32, 64)	18496
max_pooling2d_8 (MaxPooling2	(None, 16, 16, 64)	0
dropout_9 (Dropout)	(None, 16, 16, 64)	0
conv2d_10 (Conv2D)	(None, 16, 16, 64)	36928
max_pooling2d_9 (MaxPooling2	(None, 8, 8, 64)	0
dropout_10 (Dropout)	(None, 8, 8, 64)	0
conv2d_11 (Conv2D)	(None, 8, 8, 128)	73856
conv2d_12 (Conv2D)	(None, 8, 8, 128)	147584
max_pooling2d_10 (MaxPooling	(None, 4, 4, 128)	0
dropout_11 (Dropout)	(None, 4, 4, 128)	0
conv2d_13 (Conv2D)	(None, 4, 4, 128)	147584
max_pooling2d_11 (MaxPooling	(None, 2, 2, 128)	0
dropout_12 (Dropout)	(None, 2, 2, 128)	0
flatten_1 (Flatten)	(None, 512)	

Simple CNN model

optimizer='Nadam',

dense_2 (Dense)	(None,	256)	131328
dropout_13 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	10)	2570

Total params: 568,490 Trainable params: 568,490 Non-trainable params: 0

Modified CNN model & test it

Accuracy of model is 0.6100

```
print("정확도 : %.4f" % (model.evaluate(X_test, y_test)[1]))
```


Modified CNN model & test it

We tried data augmentation

Modified CNN model & test it

We tried data augmentation

We are in process in augmentation version

- 1. Accuracy is not enough as about 54%.
- 2. But we can check decrease in difference between test accuracy and learning accuracy
- 3. We need to modify the code.
- 4. Deploy the trained model to utilize it in application.

Next week

- 1. Improve the accuracy by changing CNN models and by modifying augmentation version Q_{π} CHE SEUNG YUN
- 2. Define classes more in detail

HONG SEONG JUN

- 3. Save the model by file
 - CHE SEUNG YUN
- 4. check the model works well

Web Programming Part > October Plan

• @Collaboration Work Confirm Concept @Collaboration Work Make Web Structure • @Individual Work Make Specific Web page

Front end

Cover Page

Cover Page

- Static splash image
- Problem Observed:
- The splash image is optimized for only one screen size (375x812 px)
- The image cannot be resized, since resizing may cause uncomfortable looking
- Possible Solutions:
- Make a few pre-resized images for various screen sizes
- Extend the image from its boundary
- Recreate as a vector image
- Future work:
- Make an introductory popup after the splash image

Common Layout for Subpages # Hot Place List Subpage

Common Layout for Subpages

- Prepared for various screen sizes
- Fixed the position of the header menu bar
- Color scheme for vertical listings
- The menu bar and the subpage are separate blocks
 - On each subpage's activation, the new subpage block will replace the old one

Hot Place List Subpage

- Designed for ten places and their representative images, one for each
- First, second, and third entries have larger images for emphasis
- General structure for each entry is identical, so the listing with actual places can be made automatically by JavaScript

THANK YOU:)