(Integer linear programming) البرامج الخطية التامة (بأعداد صحيحة)

يعطى شكل البرنامج الخطى التام (LPI) بحالة تعظيم على الشكل التالى:

$$\max z = c^{t} x$$

$$st \quad Ax = b$$

$$x \in \mathbb{Z}_{+}^{n}$$

ملاحظة. لنأخذ البرنامج الخطى التالى:

$$\max z = c^{t} x$$

$$st \quad Ax \le b$$

$$x \in \mathbb{Z}_{+}^{n}$$

حيث A و b مؤلفة من أعداد نسبية، يمكن على الدوام ضرب قيود البرنامج الخطي بثابت موجب كبير نسبياً بحيث يتم نقل متراجحات القيود \overline{b} و \overline{b} مؤلفة من أعداد يتم نقل متراجحات القيود \overline{b} على تالك المتراجحات نجد أن

$$\max z = c^{t} x$$

$$st \quad \overline{A}x + t = \overline{b}$$

$$x \in \mathbb{Z}_{+}^{n}$$

$$t \in \mathbb{Z}_{+}^{m}$$

مثال. لنأخذ البرنامج الخطى التالى:

$$\max z = 0.25x_1 + x_2$$

$$0.5x_1 + x_2 \le 1.75$$

$$x_1 + 0.3x_2 \le 1.5$$

$$x_1, x_2 \in \mathbb{Z}_+$$

بضرب معاملات القيد الأول بـ 4 و معاملات القيد الثاني بـ 10 نجد البرنامج المكافىء التالي:

$$\max z = 0.25x_1 + x_2$$

$$2x_1 + 4x_2 + t_1 = 7$$

$$10x_1 + 3x_2 + t_2 = 15$$

$$x_1, x_2, t_1, t_2 \in \mathbb{Z}_+$$

طريقة قاطع غومري للبرامج الخطية التامة أو الصحيحة

لنأخذ البرنامج الخطي التام (LPI)

$$\max z = c^{t} x$$

$$st \quad Ax = b \qquad \text{LPI(I)}$$

$$x \in \mathbb{Z}_{+}^{n}$$

البرنامج الخطي المتعلق به (LPII) هو

$$\max z = c^{t} x$$

$$st \quad Ax = b \qquad \text{LP(II)}$$

$$x \in \mathbb{R}^{n}_{+}$$

بتطبيق خوارزمية السمبلكس على (LPII) ، نحصل على جدول السمبلكس النهائي التالي:

В	C_B	b	x_1	 X_{m}	x_{m+1}	 \mathcal{X}_n
x_1		b_1^f	1	 0	$a_{1,m+1}^f$	 $a_{1,n}^f$
x 2		b_2^f	0	 0	$a_{2,m+1}^f$	 $a_{2,n}^f$
			•	•		
		•				
X_{m}		b_m^f	0	 1	$a_{m,m+1}^f$	 $a_{m,n}^f$

حيث نرمز بـ I(B) لمجموعة أدلة متغيرات القاعدة $I(B)=\{1,2,...,m\}$ متغيرات القاعدة $J(B)=\{m+1,m+2,...,n\}$ خارج القاعدة $J(B)=\{m+1,m+2,...,n\}$ و $J(B)=\{m+1,m+2,...,n\}$ يمكن كتابة $J(B)=\{m+1,m+2,...,n\}$ بالشكل التالى:

$$\begin{aligned} \max z &= \sum_{j=1}^{n} c_{j} x_{j} \\ b_{i}^{f} &= x_{i} + \sum_{j \in J(B)} a_{i,j}^{f} x_{j} & i \in I(B) \text{ LPI(I)} \\ x_{j} &\in \mathbb{Z}_{+} & j \in \{1, 2,, n\} \\ \\ \max z &= \sum_{j=1}^{n} c_{j} x_{j} \\ b_{i}^{f} &= x_{i} + \sum_{j \in J(B)} a_{i,j}^{f} x_{j} & i \in I(B) \text{ LP(II)} \\ x_{j} &\in \mathbb{R}_{+} & j \in \{1, 2,, n\} \end{aligned}$$

نرمز بـ [lpha] إلى أكبر عدد صحيح أصغر أو يساوي العدد الحقيقي lpha، و يمكن على الدوام كتابة التالي:

$$\begin{bmatrix} b_{i}^{f} = [b_{i}^{f}] + f_{i} \\ where \ 0 \le f_{i} < 1 \end{bmatrix} \quad i \in I(B)$$

$$\begin{bmatrix} a_{i,j}^{f} = [a_{i,j}^{f}] + f_{i,j} \\ where \ 0 \le f_{i,j} < 1 \end{cases} \quad i \in I(B)$$

نظرية. الشرط اللازم لكون أي حل ممكن للمسألة (LP(II) صحيحاً هو أن يكون

$$f_i + s_i = \sum_{j \in J(B)} f_{i,j} x_j$$
 $i \in I(B)$, $j \in J(B)$ (قاطع أو حاجز غومري)

 $s_i \in \mathbb{Z}_+$ مو متغير صحيح فضفاض لغومري: مو متغير صحيح

المخطط التدفقي لخوارزمية غومري

LP(II)- complete

 $I(B) = \{ \text{indices set of } basic \text{ variables} \}$

 $J(B) = \{ \text{indices } set \text{ of } non - basic \text{ variables} \}$

Notations $\{ [\alpha] = \text{the greatest integer } less than or equal to \alpha \}$

$$\begin{vmatrix} b_i^f = [b_i^f] + f_i & i \in I(B) \\ a_{i,j}^f = [a_{i,j}^f] + f_{i,j} & i \in I(B), j \in J(B) \end{vmatrix}$$

- $f_{\lambda} = \max_{i \in I(B)} f_i$ ليكن b_{λ}^f متغير معرف على الشكل التالي: 1.
- $f_{\lambda} = \sum_{j \in J(B)} f_{\lambda,j} \, x_j s_{\lambda} : b_{\lambda}^f$ مشکل قاطع غومري معتمد على .2
- 3. أتمم أو أكمل LP(II) بإضافة القيد التالي على جدولُ السمبلكس النهائي

$$-f_{\lambda} = -\sum_{j \in J(B)} f_{\lambda,j} x_{j} + s_{\lambda}$$

4. حل LP(II)-complete باستخدام خوارزمية السمبلكس للمرافق

البرمجة الخطية التامة أو الصحيحة (أمثلة)

مثال 1. لنأخذ البرنامج الخطى التالى:

$$\max z = 3x_1 + 2x_2$$

$$st -x_1 + x_2 \le 1$$

$$x_1 + 2x_2 \le 10$$

$$7x_1 + 2x_2 \le 28$$

$$x_1, x_2 \in \mathbb{Z}^+$$

$$\downarrow \downarrow$$

$$\max z = 3x_1 + 2x_2$$

$$st -x_1 + x_2 + t_1 = 1$$

$$x_1 + 2x_2 + t_2 = 10 \qquad (LPI(I))$$

$$7x_1 + 2x_2 + t_3 = 28$$

$$x_1, x_2, t_1, t_2, t_3 \in \mathbb{Z}^+$$

$$\downarrow \downarrow$$

$$\max z = 3x_1 + 2x_2$$

$$st -x_1 + x_2 + t_1 = 1$$

$$x_1 + 2x_2 + t_2 = 10 \qquad (LP(II))$$

$$7x_1 + 2x_2 + t_3 = 28$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

يعطى جدول السمبلكس النهائي على الشكل التالي:

	max		3	2	0	0	0
В	C_B	b	x_1	x_2	t_1	t_2	t_3
t_1	0	1/2	0	0	1	-3/4	1/4
x_2	2	7/2	0	1	0	7/12	-1/12
x_1	3	3	1	0	0	-1/6	1/6
-16			0	0	0	-2/3	-1/3

يعطى الحل المثالي كما يلي:
$$x_1 = 3, x_2 = 7/2, t_1 = 1/2, t_2 = 0, t_3 = 0, z = 16$$
 و هو غير صحيح

$$\left. \begin{array}{ll} f_{\lambda} = \max_{i \in I(B)} f_i & st \ x_i^f = [x_i^f] + f_i & 0 \le f_i < 1 \\ 0.5 = 0 + 0.5 \\ 3.5 = 3 + 0.5 \\ 3 = 3 + 0 \end{array} \right\} \Rightarrow f_{\lambda} = \max\{0.5, 0.5, 0\} = 0.5$$

إذاً $1 = \lambda$ و منه القيد الأول

$$f_{\lambda} = \sum_{j \in J(B)} f_{\lambda,j} x_j - s_1 \quad st \ a_{\lambda,j} = [a_{\lambda,j}^f] + f_{\lambda,j} \ , j \in J(B)$$

 $s_1 \in \mathbb{Z}^+$ حيث s_1 متحول صحيح فضفاض لغومري:

$$0.5 = 0.25t_2 + 0.25t_3 - s_1$$
(قاطع غومري)

	max			3	2	0	0	0	0
	В	C_B	b	\boldsymbol{x}_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1
	t_1	0	1/2	0	0	1	-3/4	1/4	0
Ī	x_2	2	7/2	0	1	0	7/12	-1/12	0
	x_1	3	3	1	0	0	-1/6	1/6	0
•	- s ₁	0	-1/2	0	0	0	-1/4	-1/4	1
			-16	0	0	0	-2/3	-1/3 _▲	0
_									

	max			2	0	0	0	0
В	C_B	b	x_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1
t_1	0	0	0	0	1	-1	0	1
x_2	2	11/3	0	1	0	2/3	0	-1/3
x_1	3	8/3	1	0	0	-1/3	0	2/3
t_3	0	2	0	0	0	1	1	-4
-46/3		-46/3	0	0	0	-1/3	0	-4/3

$$x_1 = 8/3, x_2 = 11/3, t_1 = 0, t_2 = 0, t_3 = 2, s_1 = 0, z_1 = 46/3$$
 الحل المثالي صحيحاً

إذاً $\lambda=2$ و منه القيد الثاني

$$f_{\lambda} = \max\{2/3, 2/3, 0, 0\} = 2/3$$

$$2/3 = 2/3t_2 + 2/3s_1 - s_2$$
 (قاطع غومري), $s_2 \in \mathbb{Z}^+$

		max		3	2	0	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1	s_2
	t_1	0	0	0	0	1	-1	0	1	0
	x_2	2	11/3	0	1	0	2/3	0	-1/3	0
	x_1	3	8/3	1	0	0	-1/3	0	2/3	0
	t_3	0	2	0	0	0	1	1	-4	0
•	- s ₂	0	-2/3	0	0	0	-2/3	0	-2/3	1
			-46/3	0	0	0	- 1/3 ▲	0	-4/3	0
							I			
		max		3	2	0	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1	s_2
·	t_1	0	1	0	0	1	0	0	2	-3/2

	max			2	0	0	0	0	0
В	C_B	b	x_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1	s_2
t_1	0	1	0	0	1	0	0	2	-3/2
x_2	2	3	0	1	0	0	0	-1	1
x_1	3	3	1	0	0	0	0	1	-1/2
t_3	0	1	0	0	0	0	1	-5	3/2
t_2	0	1	0	0	0	1	0	1	-3/2
-15		0	0	0	0	0	-1	-1/2	

الحل المثالي التالي: $x_1 = 3, x_2 = 3, t_1 = 1, t_2 = 1, t_3 = 1, z = 15$ صحيحاً

مثال 2. لنأخذ البرنامج الخطي التالي:

$$\min z = 3x_1 + 2x_2$$

$$st \qquad x_1 \le 3/2$$

$$x_2 \le 5/2$$

$$5x_1 + 6x_2 \ge 15$$

$$x_1, x_2 \in \mathbb{Z}^+$$

$$\downarrow \downarrow$$

$$\min z = 3x_1 + 2x_2$$

$$st \qquad 2x_1 + t_1 = 3$$

$$2x_2 + t_2 = 5 \qquad (LPI(I))$$

$$5x_1 + 6x_2 - t_3 = 15$$

$$x_1, x_2, t_1, t_2, t_3 \in \mathbb{Z}^+$$

$$\downarrow \downarrow$$

$$\min z = 3x_1 + 2x_2$$

$$st 2x_1 + t_1 = 3$$

$$2x_2 + t_2 = 5 (LP(II))$$

$$5x_1 + 6x_2 - t_3 = 15$$

$$x_1, x_2, t_1, t_2, t_3 \in \mathbb{R}^+$$

يعطى جدول السمبلكس النهائي للمسألة باستخدام خوار زمية السمبلكس للمرافق:

	min		3	2	0	0	0
В	$c_{\scriptscriptstyle B}$	b	x_1	x_2	t_1	t_2	t_3
t_1	0	1	0	0	1	4/5	2/5
<i>x</i> ₁	3	1	1	0	0	-2/5	-1/5
x_2	2	5/3	0	1	0	1/3	0
19/3			0	0	0	-8/15	-3/5

الحل المثالي
$$x_1=1, x_2=5/3, t_1=1, t_2=0, t_3=0, z=19/3$$
 ليس صحيحاً

$$f_{\lambda} = 2/3 2/3 = 1/3t_2 - s_1$$

		min		3	2	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1
	t_1	0	1	0	0	1	4/5	2/5	0
	x_1	3	1	1	0	0	-2/5	-1/5	0
ì	x_2	2	5/3	0	1	0	1/3	0	0
•	- s ₁	0	-2/3	0	0	0	-1/3	0	1
			19/3	0	0	0	-8/15 _▲	-3/5	0

	min		3	2	0	0	0	0
B	C_B	b	x_1	x_2	t_1	t_2	t_3	\boldsymbol{s}_1
t_1	0	-3/5	0	0	1	0	2/5	12/5
x_1	3	9/5	1	0	0	0	-1/5	-6/5
x_2	2	1	0	1	0	0	0	1
t_2	0	2	0	0	0	1	0	-3
37/5			0	0	0	0	-3/5	-8/5

-3/5 < 0 and $(0, 0, 1, 2/5, 12/5) \ge 0$

و ليس للمسألة LP(II) حل ممكن ، و بالتالي ليس للمسألة LPI(I) حل ممكن.

مسائل

حل المسائل الخطية التالية بأعداد صحيحة (بوحدات تامة)

1.

$$\max z = 2x_1 + 3x_2$$

$$st -x_1 + x_2 \le 1$$

$$2x_1 \le 3$$

$$x_1, x_2 \in \mathbb{Z}^+$$

3.

$$\max z = x_1 + 2x_2$$

$$st -4x_1 + 3x_2 \le 0$$

$$4x_1 + 3x_2 \le 24$$

$$2x_2 \le 5$$

$$x_1, x_2 \in \mathbb{Z}^+$$

5.

$$\max z = 0.25x_1 + x_2$$

$$st \qquad 0.5x_1 + x_2 \le 1.75$$

$$x_1 + 0.3x_2 \le 1.5$$

$$x_1, x_2 \in \mathbb{Z}^+$$

 $\max z = x_1 + 2x_2$

st
$$0.5x_1 + 0.5x_2 \le 3.85$$

 $-0.5x_1 + 0.5x_2 \le 0.65$
 $x_1, x_2 \in \mathbb{Z}^+$

7.

$$\min z = 3x_1 + 2x_2$$

$$st 4x_1 - 5x_2 \ge 0$$

$$4x_1 + 5x_2 \le 20$$

$$x_2 \ge 1.1$$

$$x_1, x_2 \in \mathbb{Z}^+$$

2.

$$\max z = 2x_1 + x_2$$

$$st \qquad 3.5x_1 + 2x_2 \le 6.5$$

$$x_1, x_2 \in \mathbb{Z}^+$$

4.

$$\min z = 4.5x_1 + 3.5x_2$$

$$st 2x_1 + x_2 \ge 5$$

$$3x_1 + 5x_2 \ge 15$$

$$x_1 + x_2 \le 5$$

$$x_1, x_2 \in \mathbb{Z}^+$$

6.

8.

$$\min z = -x_1 + x_2$$

$$st 2x_1 - x_2 \ge -2$$

$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \le 6$$

$$x_1, x_2 \in \mathbb{Z}^+$$