Data Structures

3. Complexity Analysis

Comparing Algorithms

- Given two or more algorithms to solve the same problem, how do we select the best one?
- Some criteria for selecting an algorithm
 - Is it easy to implement, understand, modify?
 - How long does it take to run it to completion?
 - How much of computer memory does it use?
- Software engineering is primarily concerned with the first criteria
- In this course we are interested in the second and third criteria

Comparing Algorithms

- Time complexity
 - The amount of time that an algorithm needs to run to completion
 - Better algorithm is the one which runs faster
 - ➤ Has smaller time complexity
- Space complexity
 - The amount of memory an algorithm needs to run
- In this lecture, we will focus on analysis of time complexity

Most algorithms transform input objects into output objects

- The running time of an algorithm typically grows with input size
 - Idea: analyze running time as a function of input size

 Most important factor affecting running time is usually the size of the input

```
int find_max( int *array, int n ) {
   int max = array[0];
   for ( int i = 1; i < n; ++i ) {
       if ( array[i] > max ) {
            max = array[i];
       }
   }
   return max;
}
```

- Regardless of the size n of an array the cost will always be same
 - Every element in the array is checked one time

Even on inputs of the same size, running time can be very different

```
int search(int arr[], int n, int x) {
   int i;
   for (i = 0; i < n; i++)
       if (arr[i] == x)
       return i;
   return -1;
}</pre>
```

- Idea: Analyze running time for different cases
 - Best case
 - Worst case
 - Average case

- Best case running time is usually not very useful
- Average case time is very useful but often hard to determine
- Worst case running time is easier to analyze
 - Crucial for real-time applications such as games, finance and robotics

Experimental Evaluations of Running Times

- Write a program implementing the algorithm
- Run the program with inputs of varying size
- Use clock methods to get an accurate measure of the actual running time
- Plot the results

Limitations Of Experiments

Experimental evaluation of running time is very useful but

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis of Running Time

- Uses a pseudo-code description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Analyzing an Algorithm – Operations

- Each machine instruction is executed in a fixed number of cycles
 - We may assume each operation requires a fixed number of cycles
- Idea: Use abstract machine that uses steps of time instead of secs
 - Each elementary operation takes 1 steps
- Example of operations
 - Retrieving/storing variables from memory
 - Variable assignment
 - Integer operations
 - Logical operations
 - Bitwise operations
 - Relational operations
 - Memory allocation and deallocation

Complexity 11

new delete

Analyzing an Algorithm – Blocks of Operations

- Each operation runs in a step of 1 time unit
- Therefore any fixed number of operations also run in 1 time step

```
- s1; s2; ....; sk
```

As long as number of operations k is constant

```
Tree_node *lrl = left->right->left;
Tree_node *lrr = left->right->right;
parent = left->right;
parent->left = left;
parent->right = this;
left->right = lrl;
left = lrr;
```

```
// Swap variables a and b
int tmp = a;
a = b;
b = tmp;
```


- Operations 1,2,8 are executed once
- Operations 4,5,6,7: Once per each iteration of for loop n iteration
- Operation 3 is executed n+1 times
- The complexity function of the algorithm is : T(n) = 5n + 4

Analyzing an Algorithm – Growth Rate

• Estimated running time for different values of n:

```
    n = 10
    n = 100
    n = 100
    n = 504 steps
    n = 1,000
    n = 5004 steps
    n = 1,000,000
    s = 5,000,004 steps
```

As n grows, number of steps T(n) grow in linear proportion to n

Growth Rate

Growth Rate

Growth Rate

- Changing the hardware/software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- Thus we focus on the big-picture which is the growth rate of an algorithm
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm sumArray

Constant Factors

- The growth rate is not affected by
 - Constant factors or
 - Lower-order terms
- Examples
 - 10²n + 10⁵ is a linear function
 - 10⁵n² + 10⁸n is a quadratic function

Growth Rate – Example

Consider the two functions

$$- f(n) = n^2$$

 $- g(n) = n^2 - 3n + 2$

• Around n = 0, they look very different

Growth Rate – Example

Yet on the range n = [0, 1000], f(n) and g(n) are (relatively) indistinguishable

20

Growth Rate – Example

The absolute difference is large, for example,

```
- f(1000) = 1 000 000
- g(1000) = 997 002
```

But the relative difference is very small

$$\left| \frac{f(1000) - g(1000)}{f(1000)} \right| = 0.002998 < 0.3\%$$

- The difference goes to zero as n → ∞

Constant Factors

- The growth rate is not affected by
 - Constant factors or
 - Lower-order terms
- Examples
 - -10^{2} n + 10^{5} is a linear function
 - -10^5 n² + 10^8 n is a quadratic function
- How do we get rid of the constant factors to focus on the essential part of the running time?
 - Asymptotic Analysis

Upper Bound – Big-Oh Notation

- Indicates the upper or highest growth rate that the algorithm can have
 - Ignore constant factors and lower order terms
 - Focus on main components of a function which affect its growth

Definition: Given functions f(n) and g(n)

- We say that f(n) is O(g(n))
- If there are positive constants c and n_o such that
 - $f(n) \le cg(n)$ for $n \ge n_0$

Big-Oh Notation – Examples

- 7n-2 is O(n)
 - Need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$
 - True for c = 7 and $n_0 = 1$
- $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - Need c > 0 & $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$
 - True for c = 4 and $n_0 = 21$
- $3 \log n + 5 \text{ is } O(\log n)$
 - Need c > 0 & $n_0 \ge 1$ such that 3 log n + 5 \le clog n for $n \ge n_0$
 - True for c = 8 and $n_0 = 2$

• Simple Assignment

```
- a = b
- O(1)
```

Simple loops

```
- for(i=0; i<n; i++) { s; }
- O(n)</pre>
```

Nested loops

Loop index doesn't vary linearly

```
- h = 1;
while ( h <= n ) {
    s;
    h = 2 * h;
}
- h takes values 1, 2, 4, ... until it exceeds n
- There are 1 + log<sub>2</sub>n iterations
- O(log<sub>2</sub> n)
```

• Loop index depends on outer loop index

```
- for(j=0;j<=n;j++)
    for(k=0;k<j;k++){
        s;
}</pre>
```

Inner loop executed 0, 1, 2, 3, ..., n times

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

 $- O(n^2)$

Relatives of Big-Oh

Big-Omega

- f(n) is $\Omega(g(n))$
- If there is a constant c > 0 and an integer constant $n_0 \ge 1$
- Such that $f(n) \ge c.g(n)$ for $n \ge n_0$

Big-Theta

- f(n) is $\Theta(g(n))$
- if there are constants $c_1 > 0$ and $c_2 > 0$ and an integer constant $n_0 \ge 1$
- such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

Big-Omega

- f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- Note: f(n) is $\Omega(g(n))$ if and only if g(n) is O(f(n))

Big-Theta

- f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)
- Note: f(n) is $\Theta(g(n))$ if and only if
 - -g(n) is O(f(n)) and
 - f(n) is O(g(n))

Final Notes

- Even though in this course we focus on the asymptotic growth using big-Oh notation, practitioners do care about constant factors occasionally
- Suppose we have 2 algorithms
 - Algorithm A has running time 30000n
 - Algorithm B has running time 3n2
- Asymptotically, algorithm A is better than algorithm B
- However, if the problem size you deal with is always less than 10000, then the quadratic one is faster

Any Question So Far?

