

Readings and deadlines

- Lab 1 assignment due at the start of class
- Readings for this lab:
 - Chapter 2- Context and Inference

Exponential growth

Continuous Discrete
$$N_t = N_0 e^{rt}$$
 or $N_{t+1} = N_t \lambda$

- In what circumstances do we expect exponential growth to occur?
 - Abundant resources
 - Examples:
 - Bacteria in a petri dish
 - Invasive species (ex. rabbits in Australia)

What does exponential growth look like?

Logistic growth

$$\frac{dN}{dt} = rN(1 - \frac{N}{K}) \qquad N_t = \frac{K}{1 + \frac{K - N_0}{N_0}}e^{-rt}$$

- In what circumstances do we expect logistic growth to occur?
 - Limited resources
 - Examples:
 - Large herbivores
 - Marine predators (e.g. harbor seals)

What does logistic growth look like?

Stochasticity

Strategy for this lab

- We have 2 weeks to do the lab
- Pace yourself- try and get sections 1 and 2 done today, and 3 done next week

Lab 2 - Projecting Population Growth Using Exponential and Logistic Growth Models

Erik Blomberg (edited by Matt Mensinger and Liam Berigan)

09/15/2023

Contents

1	Lab Overview	2
	1.1 Learning objectives	:
2	Getting Started	:
3	Lab Part 1 - Exponential Growth	;
	3.1 Model system - invasive nutria	;