Iluminação do Campus

Time Limit: s segundos

Para aumentar a segurança no entorno dos prédios da UFF, foi feito um levantamento de como anda a iluminação desses entornos. Para simplificar, imagine que todos os prédios são cercados por ruas, de modo que seja possível dar a volta completa em um prédio, sendo que esse caminho contém **N** postes igualmente espaçados, cada poste com exatamente uma lâmpada. Atualmente há lâmpadas de várias potências luminosas nos postes.

Vamos chamar o trecho rua entre duas lâmpadas adjacentes (ou seja, uma vizinha à outra) de trecho escuro se a soma das potências dessas duas lâmpadas é menor do que 1000.

Para justificar um pedido à reitoria para que troquem as lâmpadas, os diretores dos prédios querem saber qual o maior número de trechos escuros consecutivos (ou seja, um imediatamente em seguida de outro) das ruas que circulam seus respectivos prédios.

Entrada

A primeira linha da entrada contém um inteiro \mathbf{N} ($2 \le \mathbf{N} \le 500.000$), o número de postes. Cada uma das \mathbf{N} linhas seguintes contém um inteiro $\mathbf{P_i}$ ($1 \le \mathbf{P_i} \le 1.000$, para $1 \le \mathbf{i} \le \mathbf{N}$), a potência luminosa de uma lâmpada. A posição de cada lâmpada é dada pela ordem da entrada (ou seja, a ordem das lâmpadas ao longo das ruas é a ordem dada na entrada).

Saída

Seu programa deve produzir uma única linha, contendo um único inteiro, o maior número de trechos escuros consecutivos.

Exemplos

Entrada	Saída
3	3
499	
500 499	
499	

Entrada	Saída
6	1
900	
700	
100	
900	
100 900 200 700	
700	