化學考科

一作答注意事項—

考試範圍:高一~高三(上) 原子構造、化學鍵結、水溶液中

酸鹼鹽的平衡、氧化還原反應

考試時間:80分鐘

作答方式:

•選擇題用 2B 鉛筆在「答案卡」上作答;更正時,應以 橡皮擦擦拭,切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上 作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或 未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨 認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

參考資料

說明:下列資料,可供回答問題之參考

一、元素週期表(1~36號元素)

H 1.0																	2 He 4.0
3	4											5	6	7	8	9	10
Li	Ве											В	C	N	0	F	Ne
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
23.0	24.3											27.0	28.1	31.0	32.0	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0	40.0	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8

二、 $\log 2 = 0.3$,理想氣體常數 R = 0.082 L atm K^{-1} mol^{-1}

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(占80分)

一、單選題(占60分)

說明:第1.題至第20.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

1. 綠色化學是目前最重要的課題,製造阿司匹靈反應式為:

請問製造阿司匹靈主產物之原子使用效率為多少%?

- (A) 50
- (B) 60
- (C) 75
- (D) 80
- (E) 90

2. 取若干量的硫化氫 H_2S ,經過燃燒後得產物為 $SO_2 \cdot SO_3$ 及 H_2O 混合氣體 68.4 克,將混合氣體通過無水過氯酸鎂後,過氯酸鎂重量增加 14.4 克,請問混合氣體中含 SO_2 多少克?

- (A) 16
- (B) 23
- (C) 40
- (D) 43
- (E) 55

3. 油脂是由三個脂肪酸與一個甘油進行酯化所形成,故又稱為「三酸甘油酯」。油脂除了食用之外,可進行皂化反應製成肥皂,皂化價就是每1克油脂皂化所需 KOH 之毫克數。皂化反應式如下:(式中 R、R'、R"分別表示相同或相異的長鏈烷基)

三酸甘油酯

脂肪酸鹽

已知有一款油脂的皂化價為240,試問該油脂的分子量為何?

- (A) 500
- (B) 600
- (C) 700
- (D) 800
- (E) 900

4. 在標準狀態下,依據下列熱化學反應式:

$$2H_2O_{2(\ell)} \rightarrow 2H_2O_{(\ell)} + O_{2(g)}$$
 $\Delta H = -196.0 \text{ kJ}$

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(\ell)}$$
 $\Delta H = -571.6 \text{ kJ}$

在生活中,過氧化氫是一種無色液體,其水溶液常用來漂白或殺菌。請問過氧化氫的莫耳 生成熱為多少 kJ?

- (A) 473.6
- (B) 416.7
- (C) 241.8
- (D) 187.8
- (E) 94.7

- 5. 嗎啡結構式如圖 1,請問嗎啡分子式為何?
 - (A) $C_{16}H_{17}NO_3$ (B) $C_{16}H_{18}NO_3$
- (C) C₁₇H₁₈NO₃

- (D) $C_{17}H_{19}NO_3$
- (E) $C_{17}H_{20}NO_3$

6. 瑞典科學家芮得柏研究氫原子光譜的譜線後,歸納提出芮得柏方程式:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} \right)$$
 , $R_H = 1.097 \times 10^{-2} \ nm^{-1}$,為氫原子光譜各系列譜線均可符合的通式。

已知氫分子解離時可形成氫原子,氫原子中的部分能階如圖2所示,圖3為氫原子被激發 時所顯現的光譜。試問圖 3 中的 486.1 nm 之譜線是經過下列何種能階躍遷所產生的?

- $(A) n=4 \rightarrow n=1$
- (D) $n=1 \rightarrow n=2$
- (E) $n=2 \rightarrow n=4$
- 7. 下列關於 S^{2-} 、 Cl^- 、Ar、 K^+ 和 Ca^{2+} 等五種原子或離子,哪一項敘述錯誤?
 - (A)電子組態皆相同
 - (B)半徑大小為 $S^{2-}>Cl^->Ar>K^+>Ca^{2+}$
 - (C)游離能大小為 S²⁻>Cl⁻>Ar>K⁺>Ca²⁺
 - (D)此五種粒子彼此所形成離子化合物中, KCI 的熔點比 CaS 的熔點低
 - (E)此五種粒子的價殼層皆為 M 層

8. 、9. 題為題組

2016年臺北市政府為降低一次性及美耐皿 (melamine) 餐具濫用與不當 使用對環境的危害,並造成民眾健康風險,規定臺北市高中職以下學校全面 實施禁用一次性和美耐皿餐具、禁止販售瓶裝水。其中美耐皿餐具的原料為 「三聚氰胺甲醛樹脂(melamine-formaldehyde resin)」, 英文縮寫「MF」。

三聚氰胺的結構式如圖 4,本身為低毒性,一般成年人身體會排出大部分的 三聚氰胺,不過如果食物盛裝在品質不良的美耐皿容器中,溶出的三聚氰胺或甲醛可能會轉移 到食物中,影響身體健康。美耐皿餐具若用來盛裝高溫熱湯,就會使微量的三聚氰胺釋出,溫 度愈高,釋出量愈多,長期暴露,可能提高罹患腎臟結石、輸尿管結石風險,對人體有害。

- 8. 在三聚氰胺分子中,兩種 N 原子 (a,b) 分別為何種混成軌域?

 - (A) (sp^2, sp^2) (B) (sp^3, sp^2) (C) (sp^3, sp) (D) (sp^2, sp^3)
- (E) $(sp \cdot sp^2)$

- 9. 在三聚氰胺分子中,其σ鍵與π鍵的數目各為何?
 - (A) 15 個 σ 鍵、3 個 π 鍵
 - (B) 16 個 σ 鍵、3 個 π 鍵
 - (C) 14 個 σ 鍵、2 個 π 鍵
 - (D) 14 個 σ 鍵、3 個 π 鍵
 - (E) 12 個 σ 鍵、4 個 π 鍵
- 10. 下列現象可用氫鍵來解釋的有幾種?用水結成冰體積變大; ②丙三醇的黏滯性比丙酮高; 例氫氧化鈉易溶於水;(T)乙醇的沸點高於甲醚;(成)正戊烷的沸點高於新戊烷;(C)酒精可以 和水完全互溶
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5
 - (E) 6
- 11. 下列各粒子的基態電子組態中,何者錯誤?
 - (A) Mg^{2+} : $1s^22s^22p^6$
 - (B) Se^{3+} : $1s^22s^22p^63s^23p^6$
 - (C) $\operatorname{Cr} : 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
 - (D) Cu^{2+} : $1s^22s^22p^63s^23p^63d^74s^2$
 - (E) Zn^{2+} : $1s^22s^22p^63s^23p^63d^{10}$
- 12. 設計氣體逸散速率實驗如下,將光纖插入軟木塞中,並讓光纖穿 透出軟木塞底部。之後將軟木塞緊塞在一個有刻度的圓柱管頂端, 再將圓柱管固定在一大燒杯中,並在燒杯內盛入水,整個裝置如 圖 5 所示。將氣體灌入圓柱管內後,管中的水會被所充入的氣體 排開,但若停止充氣,氣體可從光纖中逸出,因此管內的水面會 因而緩慢回復至原位置。對不同氣體進行實驗,記錄水面回復至 原處所需的時間。現將氦氣(He)充入圓柱管後,水面從刻度0mL 處上升至 10 mL 處需 20 s。試預測在相同實驗條件下,甲烷氣體 (CH₄) 充入圓柱管後,水面從刻度 0 mL 處上升至 10 mL 處約 需要多少時間?

- (A) 20 s
- (B) 40 s
- (C) 80 s
- (D) 160 s
- (E) 320 s

13. 有一未知的半電池(甲),某生將半電池(甲)與 $Ag \mid AgNO_3$ (1.0 M)連接後,可產生 0.46 伏特的電壓。若將半電池(甲)與 $Zn \mid ZnSO_4$ (1.0 M)連接,則可產生 1.10 伏特的電壓。已知銀與鋅的標準還原電位如下所示:

$$Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}$$
 $E^{\circ} = -0.76$ 伏特

 $Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$ $E^{\circ} = 0.80$ 伏特

試問該半電池 (甲) 若與 H_2 (1.0 atm) | HCl (1.0 M) 半電池連接,組成一電池,關於所得電池的敘述,哪一項錯誤?

- (A)此電池電壓約為 0.34 伏特
- (B)氫半電池為此電池的負極
- (C)半電池(甲)為此電池的陰極
- (D)此電池電流由氫半電池流向半電池(甲)
- (E)半電池(甲) 進行還原反應
- 14. H₂O_(f)、Cr₂O₇²⁻(aq)、Cl_{2(g)}的標準還原電位分別為:

$$2H_2O_{(\ell)} + 2e^- \rightarrow H_{2(g)} + 2OH_{(aq)}^ E^\circ = -0.83$$
 伏特

$$Cl_{2(g)} + 2e^- \rightarrow 2Cl_{(aq)}$$
 $E^\circ = 1.36$ 伏特

若各物質在標準狀態下進行上述各反應或逆反應,則下列敘述,哪一項正確?

- (A)氧化力的強弱順序為 $Cl_{2(g)} > Cr_2O_7^{2-}$ (aq) $> H_2O_{(\ell)}$
- (B)氧化力的強弱順序為 $H_2O_{(\ell)} > Cr_2O_7^{2-}$ (aq) $> Cl_{2(g)}$
- (C)氧化力的強弱順序為 $Cr_2O_7^{2-}$ (aq) $>H_2O_{(\ell)}>Cl_{2(g)}$
- (D) 還原力的強弱順序為 $H_{2(g)} > Cl^{-}_{(aq)} > Cr^{3+}_{(aq)}$
- (E) 還原力的強弱順序為 $Cr^{3+}_{(aq)} > Cl^{-}_{(aq)} > H_{2(g)}$
- 15. 三個串聯的電解槽,甲電解槽盛裝 Cu(NO₃)_{2(aq)},乙電解槽盛裝 Zn(NO₃)₂、丙電解槽盛裝 Ni(NO₃)_{2(aq)},分別以鉑電極通以電流 5 安培,歷時 32 分 10 秒,則在陰極析出金屬質量大 小順序,何者正確?

(A)丙>乙>甲

(B)甲>乙>丙

(C)乙>丙>甲

(D)丙>甲>乙

(E)乙>甲>丙

16. 室溫下,濃度均為 $0.1\,M$ 的甲、乙、丙三種單質子酸,甲的 $[H^+]=1.6\times10^{-3}\,M$,乙的 K_a 為 1.6×10^{-4} ,丙的 pH 值為 2.6。甲、乙、丙三種酸之解離百分率大小關係為何?

(A)甲>乙>丙

(B)丙>乙>甲

(C)乙>甲>丙

(D)乙>丙>甲

(E)丙>甲>乙

- 17. 已知下列兩個反應平衡常數皆大於 1:
 - (1) $CH_3COOH_{(aq)} + HS^-_{(aq)} \rightleftharpoons CH_3COO^-_{(aq)} + H_2S_{(aq)}$
 - (2) $H_3PO_{4(aq)} + CH_3COO_{(aq)} \Rightarrow H_2PO_{4(aq)} + CH_3COOH_{(aq)}$

則相同濃度的闸 CH_3COOH 、(Z) H_3PO_4 、(R) H_2S 水溶液之 $[H^+]$ 大小順序為何?

- (A)(用) > (Z) > (丙)
- (B)(乙) > (甲) > (丙)
- (C)(乙) > (丙) > (甲)
- (D)(丙) > (乙) > (甲)
- (E)(丙)>(甲)>(乙)
- 18. 淡水蟹成長必須經過脫殼才能長大,脫殼後需要大量的鈣質,使新殼鈣化變硬。在淡水環境中的鈣離子來自於天然水對岩石的淋溶,若該地區屬碳酸鈣鹽類的地質,今取 $10\,L$ 的河水(含 $2\,kg$ 碳酸鈣岩鹽),經分析水中 Ca^{2+} 含量為 $20\,ppm$,試求碳酸鈣溶度積常數(K_{sp})?
 - (A) 4×10^{-4}
 - (B) 4×10^{-6}
 - (C) 2.5×10⁻⁷
 - (D) 4×10⁻⁸
 - (E) 1.25×10^{-10}
- 19. 下列各反應已達平衡狀態,何者會在溫度固定、反應容器體積減半時,平衡系統遭受破壞, 反應會向左移動?
 - (A) $CO_{(g)} + H_{2(g)} \rightleftharpoons C_{(s)} + H_2O_{(g)}$
 - $\text{(B) }SO_{2(g)} + NO_{2(g)} \rightleftharpoons SO_{3(g)} + NO_{(g)}$
 - (C) $CaO_{(s)} + 3C_{(s)} \rightleftharpoons CaC_{2(s)} + CO_{(g)}$
 - $(D) CO_{(g)} + Cl_{2(g)} \rightleftharpoons COCl_{2(g)}$
 - $\text{(E) CO}_{2(g)} + \text{NaOH}_{(s)} \rightleftharpoons \text{NaHCO}_{3(s)}$
- 20. 下列是在固定溫度下,利用目視比色法測定平衡常數的實驗,藥品 A 為 $0.2\,\mathrm{M}$ 黃褐色 $\mathrm{Fe(NO_3)_3}$ 溶液,藥品 B 為 $2\times10^{-3}\,\mathrm{M}$ 無色 KSCN 溶液。

實驗步驟如下:

- (1) 取 5 mL A 溶液與 5 mL B 溶液混合置入 1 號平底試管當作完全反應的標準溶液。
- (2) 以吸量管吸取 10 mL A 溶液置於錐形瓶中,並加水稀釋成 25 mL,標示為 C 溶液。
- (3) 取 5 mL C 溶液與 5 mL B 溶液混合置入 2 號平底試管。
- (4) 用黑紙包住 1、2 號試管周圍,併立在比色燈源上,眼睛垂直向下目視溶液顏色,用吸管吸取 1 號試管溶液於小燒杯中,至兩試管顏色深淺相同時,其液面高度比為 3:4。
- 有關本實驗之敘述,何者正確?
- (A)標準溶液中, Fe3+ 為限量試劑
- (B)標準溶液中,形成血紅色 $[Fe(SCN)_2^+] = 1 \times 10^{-3} M$
- (C) C 溶液中, [Fe³⁺]=0.008 M
- (D) 2 號試管血紅色物質平衡濃度為 7.5×10⁻⁴ M
- (E)反應平衡常數為 72.4

二、多選題(占20分)

說明:第21.題至第25.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得4分; 答錯1個選項者,得2.4分;答錯2個選項者,得0.8分;答錯多於2個選項或所有選 項均未作答者,該題以零分計算。

- 21. 具有放射性的 92U 為已知天然元素中最大的原子序,週期表中鈾之後所列的元素皆為人造元素,稱為超鈾元素。根據元素的週期性,推斷並預測下列有關超鈾元素性質的敘述,哪些正確?
 - (A)第七週期最後一個超鈾元素的原子序為 118
 - (B)鹼土金屬的第一個超鈾元素位於第七週期
 - (C)超鈾元素的性質均與鈾相似
 - (D)超鈾元素均不穩定而具有放射性,這是因為價電子不穩定所造成
 - (E)原子序 115 的超鈾元素是第 15 族的元素
- 22. 有關 SO₂、SO₃、SO₃² 及 SO₄² 特性的比較,下列哪些正確?
 - (A) 鍵角由大而小的順序為 SO₂ > SO₃ > SO₄²⁻ > SO₃²
 - (B) S-O 鍵長由大而小的順序為 SO₄²⁻>SO₃>SO₂
 - (C) S-O 鍵能由大而小的順序為 SO₃²⁻>SO₂>SO₃
 - (D)具有共振結構的為 SO₂ 及 SO₃
 - (E)組成原子皆在同一平面的為 SO32- 及 SO42-
- 23. 以過錳酸鉀溶液測定未知濃度之亞鐵離子溶液實驗中,其滴定反應式如下:

 $MnO_4^-_{(aq)} + Fe^{2+}_{(aq)} + H^+_{(aq)} \rightarrow Mn^{2+}_{(aq)} + Fe^{3+}_{(aq)} + H_2O_{(\ell)}$ (未平衡)

滴定前,會先用草酸鈉標定過錳酸鉀溶液的濃度,再以標定後的過錳酸鉀溶液測定未知試樣中亞鐵離子的含量。下列有關該實驗的敘述,哪些正確?

- (A)以草酸鈉標定過錳酸鉀溶液的滴定過程中,需加熱草酸鈉溶液溫度至 60 ℃以上,以增快 反應;滴定亞鐵離子溶液時,則在室溫下進行即可
- (B)過錳酸鉀溶液與亞鐵離子的反應式中,平衡後最簡係數和為28
- (C)標定過程中,過錳酸鉀為氧化劑,草酸鈉為還原劑
- (D)滴定前,加入 0.5 M 硫酸溶液以保持溶液酸性,通常亦可以用 1 M 的 HCl(ag) 取代
- (E)以標定後的過錳酸鉀溶液滴定亞鐵離子溶液,至溶液淡紫色不再出現,即為滴定終點

24. 室溫下,甲、乙、丙三容器以細管連接(細管體積可忽 略),在關閉活栓下,分別充入H₂、N₂、CH₄氣體產生 壓力如圖 6 所示。現打開活栓讓氣體擴散達平衡後,下 列敘述哪些正確?

- (A)氣體擴散達平衡後,各瓶之壓力皆為 2.25 atm
- (B)氣體擴散達平衡後,甲、乙、丙三瓶之壓力比為4:3:1
- (C)氣體擴散達平衡後, N2 在甲、乙、丙三瓶中分壓比為 1:1:1
- (D)氣體擴散達平衡後, CH4 在甲、乙、丙三瓶中莫耳數比為 4:3:1
- (E)在未打開活栓前,甲、乙、丙三瓶之氣體莫耳數比為4:1:1
- 25.27 ℃ 在固定體積的密閉容器內,置入氣體物質後會反應生成 氣體產物,如圖7表示反應物與產物的壓力隨反應時間的變 化關係,下列哪些敘述正確?

- (B)化學反應式: 4Y+Z→2X
- (C) X 平衡濃度: 8.1×10⁻³ M
- (D)反應的壓力平衡常數 $K_p = 6.4 \times 10^{-3}$ atm³
- (E)反應的壓力平衡常數 (Kp) 與濃度平衡常數 (Kc) 比值大於 1

第貳部分:非選擇題(占20分)

- 說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明題號(一、二)與 子題號(1、2……),作答時不必抄題,計算題必須寫出計算過程,最後答案應連同 單位畫線標出。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一 子題配分標於題末。
- -、以 0.2 M的 NaOH 水溶液滴定 BCl 50 mL的水溶液,其 pH值 變化如圖 8, N 點為當量點,試求下列各項問題: (B+

鹼 BOH 的陽離子, $K_b = \frac{[B^+][OH^-]}{[BOH]}$)

- 1. BOH 水溶液之 Kb 值為何? (4分)
- 2. 未滴定前,被滴定水溶液之pH值為何?(3分)
- 3. 當 NaOH_(aq) 滴入 40 mL 時,被滴定水溶液中 [H] 為若干 M? (3分)

- 二、秒錶反應或稱碘鐘反應,為探究反應速率的經典實驗。其實驗操作如下:
 - 【步驟 1】取 0.428 g KIO₃ 加蒸餾水配成 100 mL 之溶液(標示為 A 溶液)。 另取 0.190 g Na₂S₂O₅、0.5 mL 0.10 M H₂SO_{4(aq)} 及 0.40 g 澱粉加蒸餾水配成 100 mL 之溶液(標示為 B 溶液)。(式量:KIO₃=214)
 - 【步驟 2】依表 1 的成分混合,並記錄溶液由無色變為藍色所需的時間,實驗結果得到的數據如下:

-		

試管編號	A 溶液 (mL)	蒸餾水 (mL)	B 溶液 (mL)	反應時間 (s)
甲	2.0	8.0	10.0	無法變色
Z	4.0	6.0	10.0	40
丙	6.0	4.0	10.0	27
丁	8.0	2.0	10.0	20
戊	10.0	0.0	10.0	16

根據上述實驗數據回答下列問題:

- 1. 寫出 $Na_2S_2O_5$ 固體與水的反應式。 (3分)
- 2. 在【步驟 2】中,丙試管 [HSO₃] 初濃度。(3分)
- 3. 試管甲為何無法變色?(2分)
- 4. 利用【步驟 2】數據,推出反應速率對於 [IO₃]級數為何? (2分)

臺北區 106 學年度第二學期 指定科目第一次模擬考試

化 學考科參考答案暨 詳

版權所有·翻印必究

化學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(C)	(C)	(C)	(D)	(D)	(C)	(C)	(B)	(A)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(C)	(D)	(B)	(D)	(A)	(E)	(D)	(B)	(C)
題號	19.	20.	21.	22.	23.	24.	25.		
答案	(C)	(D)	(A)(E)	(B)(D)	(A)(C)	(A)(C)(D)(E)	(C)(E)		

第壹部分:選擇題

一、單選題

1. (C)

出處:基礎化學(二) 化學與化工

目標:理解化學資料的能力; 化學計算的能力

內容:了解原子使用效率的概念

解析: OF

主產物質量 反應物總質量 ×100%=原子使用效率

$$\frac{180}{138+102} \times 100\% = 75\%$$

2. (C)

出處:基礎化學(一) 化學反應

目標: 化學計算的能力

內容: 化學計量與定比定律(定組成)

解析:因通過無水過氯酸鎂會吸收水

水為 14.4 克

其中氫占了 $14.4 \times \frac{2}{18} = 1.6$ (克)

設硫莫耳數為x

原 H₂S 中, H 原子莫耳數: S 原子莫耳數

為 2:
$$1 = \frac{1.6}{1}$$
: $x \Rightarrow x = 0.8$ (莫耳)

故假設 SO2 占了 y 克

$$\frac{y}{64} + \frac{68.4 - 14.4 - y}{80} = 0.8 \Rightarrow y = 40 \text{ (克)}$$

3. (C)

出處:基礎化學(二) 有機化合物

目標: 化學計算的能力 內容: 了解皂化反應

解析:係數比=莫耳數比

$$1:3=\frac{1}{x}:\frac{0.24}{56} \Rightarrow x=700$$

4. Œ

出處:基礎化學(一) 化學反應

目標:理解化學資料的能力:應用化學原理解決問

題的能力

內容:了解赫斯定律

解析:

$$\begin{split} &H_2O_{(\ell)} + \frac{1}{2}\,O_{2(g)} \!\to H_2O_{2(\ell)} \;\; \Delta H \!=\! 98.0 \; kJ \\ &+ H_{2(g)} \;\; + \frac{1}{2}\,O_{2(g)} \!\to H_2O_{(\ell)} \;\; \Delta H \!=\! -285.8 \; kJ \\ &\frac{}{H_{2(g)} \;\; + \;\; O_{2(g)} \!\to H_2O_{2(\ell)} \;\; \Delta H \!=\! -187.8 \; kJ} \end{split}$$

5. (D

出處:基礎化學(二) 有機化合物

目標:理解化學資料的能力;應用化學原理解決問

題的能力

內容:了解有機結構式及推論其分子式

解析:有 17 個碳,故最大可能分子式為 $C_{17}H_{37}NO_3$,

因含 4 個雙鍵及 5 個環,故少 18 個氫,分子

式為 C₁₇H₁₉NO₃。

6. (C)

出處:選修化學(上) 原子構造

目標:應用化學原理解決問題的能力

內容:了解氫原子光譜

解析:巴耳末光譜為可見光譜, λ=486.1 nm 為可

見光,故必為 $n=x \rightarrow n=2$, x>2

$$\frac{1}{486.1} = 1.097 \times 10^{-2} \times (\frac{1}{2^2} - \frac{1}{x^2}) \Rightarrow x = 4$$

7. (C)

出處:選修化學(上) 原子構造

目標:分析、歸納、演繹及創造的能力

內容:了解原子及離子半徑、游離能

解析: (A) 電子組態皆為 1s22s2p63s23p6。

(B) 等電子數,質子數少者半徑大,半徑大小

為 $S^{2-}>Cl^->Ar>K^+>Ca^{2+}$ 。

 $\langle C \rangle$ 一般而言, $IE_3 > IE_2 > IE_1 >$ 陰離子游離能, 游離能應為 $Ca^{2+} > K^+ > Ar > Cl^- > S^{2-}$ 。

(D) 離子鍵
$$\propto \frac{Q_1 \times Q_2}{r_+ + r_-} \begin{cases} CaS : Ca^{2+} \cdots S^{2-} \\ KCl : K^+ \cdots Cl^- \end{cases}$$

CaS 電荷乘積大,r++r- 比較小

故離子鍵強,熔點高於 KCI。

(E) 價殼層為最外層,第三層,即 M 層。

8. (B)

出處:選修化學(上) 化學鍵結

目標:應用化學原理解決問題的能力

內容:了解混成軌域

解析: H = N C $3bp + 1lp \Rightarrow sp^3$ H C C $2bp + 1lp \Rightarrow sp^2$ N D

9. (A)

出處:選修化學(上) 化學鍵結

目標:應用化學原理解決問題的能力

內容:了解σ鍵及π鍵的意義

解析:單鍵為σ鍵;雙鍵為σ鍵+π鍵。

10. (C)

出處:選修化學(上) 化學鍵結

目標:了解化學與生活之關係;應用化學原理解決

問題的能力

內容:了解氫鍵如何形成及性質

解析:(甲)、(乙)、(丁)、(己)皆是受氫鍵影響。

11. (D)

出處:選修化學(上) 原子構造

目標:基本的化學規則、學說及定律

內容:了解電子組態

解析: (D) Cu²⁺: 1s²2s²2p⁶3s²3p⁶3d⁹。

12. (B)

出處:基礎化學(三) 氣體

目標:基本的化學規則、學說及定律

內容:了解擴散定律

解析:依據格雷姆擴散定律

$$\frac{t_1}{t_2} = \frac{\frac{V_1}{r_1}}{\frac{V_2}{r_2}} = \frac{\sqrt{\frac{3RT}{M_1}}}{\sqrt{\frac{3RT}{M_2}}} , \not\equiv V_1 = V_2 = 10 \text{ mL}$$

$$\therefore \frac{t_1}{t_2} = \frac{\sqrt{M_1}}{\sqrt{M_2}} \Rightarrow \frac{t_1}{20} = \frac{\sqrt{16}}{\sqrt{4}} \Rightarrow t_1 = 40 \text{ (s)}$$

故選(B)

13. (D)

出處:選修化學(上) 氧化還原反應

目標:基本的化學規則、學說及定律

內容:了解半電池電位

解析: (A) 因半電池(甲)與 Ag | AgNO₃連接,可 產生 0.46 伏特電壓

半電池(甲)的還原電位為 0.34 伏特, 氫半電池的還原電位為 0.0 伏特,故此電

池電壓約為 0.34 伏特。

(B) 氫半電池為此電池的負極,亦為陽極,進 行氧化反應。

(C)(E) 半電池(甲)為此電池的陰極,亦為正極,進行還原反應。

(D) 電池電流由正極流向負極,即由半電池 (甲)流向氫半電池。

14. (A)

出處:選修化學(上) 氧化還原反應

目標:應用化學原理解決問題的能力

內容:了解氧化劑及還原劑強弱關係

解析: (A)(B)(C) 氧化力愈強,本身愈易還原,還原電位值愈大,故順序為 $Cl_{2(g)} > Cr_2O_7^{2-}_{(aq)}$ > $H_2O_{(2)}$ °

(D)(E) 還原力愈強,本身愈易氧化,還原電位 值愈小,故順序為 $H_{2(g)} > Cr^{3}$ (aq) > CI (aq)

15. (E)

出處:選修化學(上) 氧化還原反應

目標: 化學計算的能力

內容:了解法拉第電解定律

解析:(1) 根據法拉第電解定律,通等量電量,電解 不同物質時,各電極析出之質量與該物質 之當量成正比,即各電極析出物質之當量

數相等。而當量數=<u></u>莫耳質量 電子轉移數

(2) 各電解槽陰極析出質量,甲:乙:丙= $\frac{63.5}{2}:\frac{65.4}{2}:\frac{58.7}{2}$,故析出金屬質量: \mathbb{Z} >甲>丙。

16. (D)

出處:選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:理解化學資料的能力 內容:了解弱酸解離百分率

解析:甲:解離百分率 $\alpha_{\text{F}} = \frac{1.6 \times 10^{-3}}{0.1} \times 100\% = 1.6\%$ $Z: [H^+] = \sqrt{K_a \cdot C_0} = \sqrt{1.6 \times 10^{-4} \times 0.1}$ $= 4 \times 10^{-3} \text{ (M)}$ $\alpha_Z = \frac{4 \times 10^{-3}}{0.1} \times 100\% = 4\%$

丙:pH=2.6

$$-\log[H^{+}]=2.6$$

$$\log[H^{+}]=-2-0.6=\log 10^{-2}-\log 4$$

$$=\log \frac{1}{4} \times 10^{-2}$$

$$\Rightarrow [H^{+}]=2.5 \times 10^{-3} \text{ (M)}$$

$$\alpha_{\text{PS}} = \frac{2.5 \times 10^{-3}}{0.1} \times 100\% = 2.5\%$$

解離百分率大小:乙>丙>甲

17. (B)

出處:基礎化學(三) 化學平衡;

選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:分析、歸納、演繹及創造的能力;理解化學 資料的能力 內容:了解平衡常數意義與水溶液中 [H⁺] 大小之相關性

解析: :: Kc>1表示向右反應趨勢大

由(1)式知酸性強度:CH₃COOH>H₂S 由(2)式知酸性強度:H₃PO₄>CH₃COOH ∴酸性強度:H₃PO₄>CH₃COOH>H₂S 解離百分率:H₃PO₄>CH₃COOH>H₂S

[H⁺]:(Z)>(甲)>(丙)

18. (C)

出處:基礎化學(三) 化學平衡

目標:了解化學與生活之關係:化學計算的能力

內容:溶度積常數概念

解析:
$$[Ca^{2^{+}}]=20 \text{ ppm} = \frac{20 \text{ mg } Ca^{2^{+}}}{1 \text{ L}}$$

$$= \frac{\frac{0.02}{40} \text{ mol } Ca^{2^{+}}}{1 \text{ L}}$$

$$= \frac{5 \times 10^{-4} \text{ mol } Ca^{2^{+}}}{1 \text{ L}}$$

$$= 5 \times 10^{-4} \text{ M}$$

$$CaCO_{3(s)} \rightleftharpoons Ca^{2^{+}}_{(aq)} + CO_{3}^{2^{-}}_{(aq)}$$

$$5 \times 10^{-4} \quad 5 \times 10^{-4}$$

$$K_{sp} = [Ca^{2^{+}}][CO_{3}^{2^{-}}] = (5 \times 10^{-4}) \times (5 \times 10^{-4})$$

$$= 2.5 \times 10^{-7}$$

19. (C)

出處:基礎化學(三) 化學平衡

目標:理解化學資料的能力

內容:勒沙特列原理:壓力對平衡狀態的影響

解析:體積減少 → 總壓變大 → 平衡由氣體係數總

和多往少的方向移動

/	反應式左邊氣 體係數總和	反應式右邊氣 體係數總和	反應方向
(A)	2	1	向右
(B)	2	2	不移動
(C)	0	1	向左
(D)	2	1	向右
(E)	1	0	向右

20. (D)

出處:基礎化學(三) 實驗 平衡常數的測量

目標: 化學實驗之觀察、記錄、分析及解釋能力

內容:平衡常數的概念

解析:(A) SCN 為限量試劑。

(B)
$$Fe^{3+} + SCN \Rightarrow FeSCN^{2-}$$

初 0.1 1×10^{-3} 0
反應 $-1 \times 10^{-3} - 1 \times 10^{-3} + 1 \times 10^{-3}$
0.099 0 $1 \times 10^{-3} M$
 $= C_1$
 $= [FeSCN^{2+}]$

(C) C 溶液 [
$$Fe^{3+}$$
] = $\frac{0.2 \times 10}{25}$ = 0.08 (M)

①
$$C_1h_1 = C_2h_2$$

 $(1\times10^{-3}) \times 3 = C_2\times 4$
 $\Rightarrow C_2 = 7.5\times10^{-4} \text{ (M)} = \text{[FeSCN}^{2+}\text{] (integral})$

(E)
$$Fe^{3+} + SCN^{-} \rightleftharpoons FeSCN^{2+}$$

初 0.04 1×10^{-3} 0 $\boxed{DE -7.5 \times 10^{-4} -7.5 \times 10^{-4} +7.5 \times 10^{-4}}$
 $3.925 \times 10^{-2} 2.5 \times 10^{-4} 7.5 \times 10^{-4}$

$$K_{c} = \frac{7.5 \times 10^{-4}}{(3.925 \times 10^{-2}) \times (2.5 \times 10^{-4})}$$
$$= \frac{300}{3.925}$$
$$= 76.4$$

二、多選題

21. (A)(E)

出處:基礎化學(一) 原子結構與性質

目標:分析、歸納、演繹及創造的能力

內容:原子結構與元素性質

解析: (A) 2+8+8+18+18+32+32=118,原子序 應為 118。

- (B) 第七週期的鹼土金屬原子序為 88,並無超 過 92。
- (C) 超鈾元素的性質與鈾不同,而與各族元素 相似。
- (D) 放射性是因為原子核不穩定所造成,與價電子無關。
- (E) 第七週期最後一個超鈾元素的原子序為 118,推論第七週期第15族的元素,原子 序為115。

22. (B)(D)

出處:選修化學(上) 化學鍵結

目標:分析、歸納、演繹及創造的能力;應用化學

原理解決問題的能力

內容:了解混成軌域及分子鍵角、鍵長

解析:

31 4/1	***	O	Γ :: 1 ²⁻	- O 74			
結構式	0 0 <120°	o o	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$				
S—O 鍵級	$1\frac{1}{2}$	$=120^{\circ}$ $1\frac{1}{2}$	<109.5°	=109.5°			
S—O 鍵長	2	$SO_3^{2-} = SO_4^{2-} > SO_3 > SO_2$					
S—O 鍵能	J.	$SO_2 > SO_3 > SO_3^{2-} = SO_4^{2-}$					
S—O 鍵角		SO ₃ >5	$SO_2 > SO_4^{2-} >$	> SO ₃ ²⁻			

- (D) SO_2 為 $1\frac{1}{2}$ 鍵, O_3 為 $1\frac{1}{3}$ 鍵,具有共振結構。
- (E) SO_3^{2-} 為三角錐形; SO_4^{2-} 為四面體形, 皆不是平面分子。

< 23. (A)(C)

出處:選修化學(上) 實驗 氧化還原滴定

目標: 化學實驗之觀察、記錄、分析及解釋能力

內容:了解氧化還原滴定

解析:(A) 氧化草酸鈉產物為 CO_2 ,需斷鍵,活化能 較高,需加熱以增快反應,反應式為 $2MnO_4^- + 5C_2O_4^{2^-} + 16H^+ \rightarrow 2Mn^{2^+} + 10CO_2 + 8H_2O$ 。

- (B) 過錳酸鉀溶液與亞鐵離子的反應式為 $MnO_{4-(aq)}^{-}+5Fe^{2+}_{(aq)}+8H^{+}_{(aq)}\rightarrow Mn^{2+}_{(aq)}+5Fe^{3+}_{(aq)}+4H_{2}O_{(e)}$,平衡後最簡係數和為 24。
 - (D) 加入 HCl_(aq) 會氧化成 Cl_{2(g)},增加過錳酸 鉀溶液用量,影響滴定結果,不可用來取 代硫酸溶液。
 - (E) 滴定至溶液淡紫色不再消失,始為滴定終 點。

24. (A)(C)(D)(E)

出處:基礎化學(三) 氣體

目標:應用化學原理解決問題的能力

內容:了解 PV = nRT 及道耳頓分壓定律

解析:(A) 氣體擴散達平衡後,各瓶之壓力皆相等, $P{=}3{\times}\frac{4}{8}{+}1{\times}\frac{3}{8}{+}3{\times}\frac{1}{8}{=}2.25~(atm)$

- (B) 氣體擴散達平衡後,甲、乙、丙三瓶之壓 力比為1:1:1。
- (C) 氣體擴散達平衡後, N₂ 均勻分布, 故分 壓比為 1:1:1。
- (D) 氣體擴散達平衡後,各氣體在甲、乙、丙 三瓶中莫耳數與三瓶體積成正比,皆為4: 3:1。
- (E) 在未打開活栓前,依據 PV=nRT,甲、乙、 丙三瓶之氣體莫耳數比為 3×4:1×3:3×1= 4:1:1。

25. (C)(E)

出處:基礎化學(一) 化學反應;

基礎化學(三) 氣體、化學反應速率、化學 平衡

目標:理解化學資料的能力;分析、歸納、演繹及 創造的能力

內容:反應速率定義;理想氣體方程式應用;壓力 平衡常數 K_p 及濃度平衡常數 K_c

解析: (A)
$$\frac{\Delta P_Y}{\Delta t} = \frac{0.4 \text{ atm}}{20 \text{ s}} = 0.02 \text{ atm/s}$$

(B)
$$2X \rightarrow 4Y + Z$$

(C)
$$PV = nRT \Rightarrow \frac{n}{V} = \frac{P}{RT} = \frac{0.2}{0.082 \times 300}$$

= 8.1×10⁻³ (M)

(D)
$$K_p = \frac{P_Y^4 \cdot P_Z^1}{P_X^2} = \frac{(0.4)^4 \times 0.1}{(0.2)^2}$$

= 6.4×10^{-2} (atm³)

(E)
$$K_p = K_c (RT)^{(4+1)-2} = K_c (RT)^3$$

 $\therefore \frac{K_p}{K_c} = (RT)^3 > 1$

第貳部分:非選擇題

 $-\cdot 1. 10^{-7}$

2. 3.85

3. 2.5×10^{-8}

出處: 選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:理解化學資料的能力:分析、歸納、演繹及

創造的能力

內容:酸鹼滴定曲線圖;弱酸、弱鹼水溶液平衡常

數;測驗 pH 值概念;緩衝溶液

解析:1. 達當量點 V_{NaOH}=50 mL

$$: B^+ + OH^- \rightarrow BOH$$

...B 莫耳數=OH 莫耳數

$$[\mathrm{BCI}] \times \frac{50}{1000} = 0.2 \times \frac{50}{1000} \Rightarrow [\mathrm{BCI}] = 0.2 \, (\mathrm{\,M\,})$$

達當量點 pH=10 ⇒ [OH⁻]=10⁻⁴ M

BOH
$$\rightleftharpoons$$
 B⁺ + OH⁻
初 0.1 0 0
反應 -10^{-4} + 10^{-4} + 10^{-4}
0.1 10^{-4} 10^{-4}

$$K_b = \frac{10^{-4} \times 10^{-4}}{0.1} = 10^{-7}$$

2.
$$B^+ + H_2O \rightleftharpoons BOH + H^+$$
 初 0.2 0 0

$$\frac{\sum \mathbb{E} -x +x + x}{0.2-x}$$

$$K_a' = \frac{K_w}{K_b} = \frac{10^{-14}}{10^{-7}} = 10^{-7}$$

$$\frac{x^2}{0.2 - x} = 10^{-7} \Rightarrow x = \sqrt{2} \times 10^{-4}$$

$$pH\!=\!4-\frac{1}{2}\log 2\!=\!4-\frac{1}{2}\!\times\!0.3\!=\!3.85$$

3.
$$B^+ + OH^- \rightarrow BOH$$

0.2×50 0.2×40

$$[OH^{-}] = \frac{[BOH]}{[B^{+}]} \times K_b = \frac{\frac{8}{90}}{\frac{2}{90}} \times 10^{-7}$$
$$= 4 \times 10^{-7} (M)$$

$$[H^{+}] = \frac{1 \times 10^{-14}}{4 \times 10^{-7}} = 2.5 \times 10^{-8} \text{ (M)}$$

- 二、1. $Na_2S_2O_5 + H_2O \rightarrow 2NaHSO_3$ (或 $S_2O_5^{2-} + H_2O \rightarrow 2HSO_3$))
 - 2. 0.01 M
 - 3. 因 $\frac{[IO_3^-]}{[HSO_3^-]}$ 並無超過 $\frac{1}{3}$
 - 4. 一級

出處:基礎化學(三) 化學反應速率、實驗 秒錶 反應

目標: 化學實驗之觀察、記錄、分析及解釋能力

內容:了解秒錶反應 解析:2. 原本B溶液

[HSO₃⁻] =
$$\frac{0.190}{190}$$
 ×2=0.02 (M)

但配製丙試管時,B 溶液只取 10.0~mL 而 總體積為 20.0~mL

故濃度為
$$\frac{0.02 \text{ M} \times 10.0 \text{ mL}}{20.0 \text{ mL}} = 0.01 \text{ M}$$

等體積混合,濃度減半

3.
$$IO_3^- + 3HSO_3^- \rightarrow I^- + 3SO_4^{2^-} + 3H^+$$
因 $[IO_3^-] = \frac{0.428}{0.10} = 0.02 \, (M)$ 濃度相同
 $[HSO_3^-] = 0.02 \, M$

故體積比要 $>\frac{1}{3}$

才可能使得 IO3 過量而產生 I2

 因丁[IO₃]濃度為乙[IO₃]濃度的2倍 但反應時間為一半,速率為2倍 故r=k[IO₃]¹為一級反應

※非選擇題評分標準

- 一、1. 全對才給分
 - 2. 答案介於 3.8 ~ 3.9 就給分
 - 3. 全對才給分
- 二、1. 全對才給分
 - 2. 全對才給分
 - 3. 寫 [IO_3] 不足量給 1 分,有寫 $\frac{[IO_3^-]}{[HSO_3^-]}$ 並無超過 $\frac{1}{3}$ 給 2 分
 - 4. 全對才給分