T 1/3, AB/1

1/3,AB/1

DIALOG(R) File 351: Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

007858792

WPI Acc No: 1989-123904/198917

XRAM Acc No: C89-054910

Membrane capsule enclosing liq. phase contg. magnetic particles - allows contents to be mixed when fluctuating field is applied, useful for cell culture and metabolites prodn.

Patent Assignee: HOECHST AG (FARH)

Inventor: RUPPEL D

Number of Countries: 012 Number of Patents: 006

Patent Family:

Patent No Kind Date Applicat No Kind Date Week A 19890426 EP 88117375 A 19881019 198917 B EP 313008 DE 3735397 A 19890503 DE 3735397 Α 19871020 198919 DK 8805815 A 19890421 198926 A 19890602 JP 88261683 JP 1141594 A 19881019 198928 B 19910508 EP 313008 199119 DE 3862739 G 19910613 199125

Priority Applications (No Type Date): DE 3735397 A 19871020

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 313008 A G 6

Designated States (Regional): AT BE CH DE FR GB IT LI NL SE

EP 313008 B

Designated States (Regional): AT BE CH DE FR GB IT LI NL SE

Abstract (Basic): EP 313008 A

Membrane capsule comprises a spherical semipermeable membrane enclosing an immobile liq. phase which (new feature) contains magnetic particles.

The immobile phase also contains enzymes, living cells or microorganisms, esp. hybridomas, and the magnetic particles contain Fe, Ni and/or Co, esp. they are of haematite or magnetite. The membrane consists of a polysaccharide, crosslinked with polyvalent ions, or is prepd. from a polyacid and polybase.

USE/ADVANTAGE - The capsules are useful for culture of microorganisms and cells and in prepn. of products of biological systems (e.g. microorganisms, cells, biocatalysts or enzymes). The presence of the magnetic particles allows the capsule contents to be mixed by application of a fluctuating magnetic field, so that mass transport within the capsule is improved. The entire capsule can also be moved or held fixed, as required, using a magnetic field.

0/1

Abstract (Equivalent): EP 313008 B

Membrane capsule comprises a spherical semipermeable membrane enclosing an immobile liq. phase which (new feature) contains magnetic particles.

The immobile phase also contains enzymes, living cells or microorganisms, esp. hybridomas, and the magnetic particles contain Fe, Ni and/or Co, esp. they are of haematite or magnetite. The membrane consists of a polysaccharide, crosslinked with polyvalent ions, or is prepd. from a polyacid and polybase.

USE/ADVANTAGE - The capsules are useful for culture of microorganisms and cells and in prepn. of products of biological systems (e.g. microorganisms, cells, biocatalysts or enzymes). The presence of the magnetic particles allows the capsule contents to be mixed by application of a fluctuating magnetic field, so that mass transport within the capsule is improved. The entire capsule can also

http://www.dialogclassic.com/main.vmgw

08/03/2004

be moved or held fix as required, using a magnetic f. (6p) Dwg.No.0/1)

(1) Veröffentlichungsnummer:

0 313 008 A3

(2)

10101

وه در داني. از کارده د

31.94.34

عاملوا والمراد

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 88117375.1

(9) Int. Cl.4: B01J 13/02 , C12N 5/00

- 2 Anmeldetag: 19.10.88
- Priorität: 20.10.87 DE 3735397
- Veröffentlichungstag der Anmeldung: 26.04.89 Patentblatt 89/17
- Benannte Vertragsstaaten:

 AT BE CH DE FR GB IT LI NL SE
- Veröffentlichungstag des später ver öffentlichten Recherchenberichts: 20.09.89 Patentblatt 89/38
- Anmelder: HOECHST AKTIENGESELLSCHAFT
 Postfach 80 03 20
 D-6230 Frankfurt am Main 80(DE)
- Erfinder: Rüppel, Diether, Dr.
 Karl-König-Weg 1
 D-6230 Frankfurt am Main 80(DE)
- Magnetische Membrankapseln und ihre Verwendung.
- (9) Membrankapseln werden in ihrer flüssigen Phase mit einem Gehalt an magnetischen Partikeln versehen, um mittels eines fluktuierenden Magnetfeldes den Kapselinhalt durchmischen zu können.

EP 0 313 008 A3

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 88 11 7375

	' 	GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgebl	ents mit Angabe, soweit erforderlich, ichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	US-A-4 335 094 (KI * Zusammenfassung; 26-48; Spalte 1, Zo Zeile 18; Spalte 2; Ansprüche *	Spalte 1, Zeilen eile 66 - Spalte 2,	1-13	B 01 J 13/02 C 12 N 5/00
	US-A-4 612 247 (MY * Zusammenfassung, 56-64; Spalte 6, Ze Zeile 21; Ansprüche	eile 66 - Spalte 7.	1-13	
	WO-A-8 100 575 (BE * Zusammenfassung; Seite 5, Zeile 19; Ansprüche *	EROLKEMI AB) Seite 4, Zeile 34 - Seite 5, Beispiel 1,	1-13	• .
A	WO-A-8 200 660 (CC * insgesamt *	DRNING CLASS WORKS)	1-13	
.	IDROCARBURI) * Seite 5, Zeilen 1 11 - Seite 8, Zeile	N.I. ENTE NAZIONALE -4; Seite 7, Zeile 13; Seite 9, Zeilen en 16-21; Ansprüche	1-13	RECHERCHIERTE SACHGEBIETE (Int. Cl.4) C 12 N 11/00 C 12 N 5/00 C 12 N 13/00
- }	EP-A-0 152 898 (MAINSTITUTE OF TECHNO * insgesamt * 	SSACHUSETTS OLOGY)	1-13	
	tiegende Recherchenbericht wurd Becherchenort RLIN	de für alle Patentansprüche erstellt Abschlußdatum der Recherche 18-05-1989	JULI	Profeer A P.
X: von Y: von ande A: tech	ATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kate nologischer Hintergrund tschriftliche Offenharung schenliteratur	DOKUMENTE T: der Erfindung E: älteres Paten tet nach dem An g mit einer D: in der Anmel gorie L: aus andern G	g zugrunde liegende i dokument, das jedoc meldedatum veröffen dung angeführtes Do ründen angeführtes l	Theorien oder Grundsätze ch erst am oder

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselhen Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

पुरुक्तिकी जार जिल्ला सन्दर्भ

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentlokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

11 Veröffentlichungsnummer:

0 313 008 A2

12)

gi qirada

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88117375.1

(1) Int. Cl.4: B01J 13/02 , C12N 5/00

- 2 Anmeldetag: 19.10.88
- Priorität: 20.10.87 DE 3735397
- (3) Veröffentlichungstag der Anmeldung: 26.04.89 Patentblatt 89/17
- Benannte Vertragsstaaten:
 AT BE CH DE FR GB IT LI NL SE
- Anmelder: HOECHST AKTIENGESELLSCHAFT
 Postfach 80 03 20
 D-6230 Frankfurt am Main 80(DE)
- Erfinder: Rüppel, Diether, Dr.
 Karl-König-Weg 1
 D-6230 Frankfurt am Main 80(DE)
- Magnetische Membrankapsein und ihre Verwendung.
- Membrankapseln werden in ihrer flüssigen Phase mit einem Gehalt an magnetischen Partikeln versehen, um mittels eines fluktuierenden Magnetfeldes den Kapselinhalt durchmischen zu können.

EP 0 313 008 A2

Xerox Copy Centre

Magnetische Membrankapseln und ihre Verwendung

20

30

Die vorliegende Erfindung betrifft magnetische Membrankapseln.

Die Benutzung von Membrankapseln hat in der Biotechnik zunehmend Bedeutung zur Aufzucht von Zellen und Mikroorganismen, insbesondere von nicht adhärenten Zellen, erlangt (vgl. US-PS 4 409 331, EP-A 0 152 898). Auch über die Verkapselung von biologischen Teilsystemen, z.B. von Enzymen wird berichtet. Bei den genannten Verfahren werden die biologischen Systeme (i.e. Zellen, Mikroorganismen, Biokatalysatoren etc.) in einer geeigneten Flüssigkeit suspendiert, die u.a. eine Komponente I enthält, die mit einer Komponente II zu einer semipermeablen biokompatiblen Membran reagieren kann. Die genannte Zellsuspension wird in Tropfenform überführt - wobei die Tropfen eine definierte Größe haben sollten - und mit einer Flüssigkeit, die die Komponente II enthält, in Kontakt gebracht. Dies führt zur Umhüllung der gebildeten Tropfen mit einer dünnen Membran.

Die erhaltenen Membrankapseln werden nun zur Anzucht bzw. Kultivierung der eingeschlossenen biologischen Systeme auf unterschiedliche Weise weiterbehandelt, u.a. werden sie mit einer Nährlösung in Kontakt gebracht, die durch die semipermeable Membran der Membrankapsel diffundiert und somit die Nährstoffversorgung der biologischen Systeme gewährleistet. Diese Art der Nährstoffversorgung birgt aber ein Problem, das mit der Größe der Jeweiligen Membrankapsel zusammenhängt; ab einer bestimmten Größe der Kapsel diffundiert nicht mehr genügend Nährstoff in die Kapseln, alle biologischen Systeme, insbesondere die im Bereich des Mittelpunktes der Kapsel, mit Nährstoff zu versorgen, so daß ein Teil der biologischen Systeme nicht mehr wachsen kann oder sogar abstirbt (vgl. R.G. Rupp in Large-Scale Mammalian Cell Culture, Editors J. Feder und W. R. Tolbert, Academic Press, S. 19 - S. 37 (1985)). Das beschriebene Problem läßt sich auch nicht lösen, indem die Kapseln nebst Nährlösung bewegt werden, z.B. durch Rühren, weil dadurch die Diffusionsverhältnisse innerhalb der Kapsel kaum verändert werden. Aus den vorbeschriebenen Gründen sollten die Durchmesser herkömmlicher Membrankapseln nicht größer als 200 bis 300 um sein (vgl. vorerwähnten Artikel von R.G. Rupp). Um die Kultivierung von biologischen Systemen wirtschaftlich zu betreiben, ist es aber von Vorteil, größere Membrankapseln zu verwenden; die Herstellung größerer Membrankapseln, z.B. mit einen Durchmesser von mehreren Millimetern ist problemlos.

Aus den beschriebenen Gründen wäre es also

wünschenswert, Mikrokapseln derart zu gestalten, daß in ihrem Innenraum ein verbesserter Nährstofftransport stattfinden kann. Diese Aufgabe wird erfindungsgemäß gelöst, indem die Membrankapseln in ihrer flüssigen Phase (Immobilisat) magnetische Partikeln enthalten, die über ein von außen angelegtes fluktuierendes Magnetfeld bewegt werden können und somit eine Möglichkeit geschaffen wird, innerhalb der Membrankapseln Flüssigkeitsbewegung zu erzeugen, die auch den Stofftransport innerhalb der Membrankapsel erhöht. Durch die Bewegung der magnetischen Partikeln werden die in der Membrankapsel miteingeschlossenen biologischen Systeme nicht geschädigt, was überraschend ist, weil man erwarten mußte, daß die magnetischen Partikeln bei ihrer Bewegung die Zellwände der biologischen Systeme zerstören.

i a

Die vorliegende Erfindung betrifft daher Membrankapseln, bestehend aus einer kugelförmigen, semipermeablen Membran, durch die eine immobile flüssige Phase eingeschlossen ist, die dadurch gekennzeichnet sind, daß die immobile flüssige-Phase magnetische Partikeln enthält. Mit dem Begriff "magnetische Partikeln" sind in diesem Zusammenhang insbesondere ferromagnetische Partikein gemeint. Neben dem gegenüber anderen Membrankapseln verbesserten Stofftransport innerhalb der Kapseln haben die erfindungsgemäßen Membrankapseln noch weitere Vorteile, die hauptsächlich durch die Möglichkeit begründet sind, die gesamte Kapsel durch Anlegen eines äußeren Magnetfeldes zu bewegen bzw. zu fixieren. Diese Vorteile sind bereits von anderen Partikeln bekannt, die ferromagnetische Kristallite enthalten, sich aber von den erfindungsgemäßen Membrankapseln durch ihre quasi Festkörperstruktur ohne flüssige Phase unterscheiden (vgl. DE-OS 34 44 939, EP-B 0 016 552 und EP-A 0 206 077).

Mit den erfindungsgemäßen Membrankapseln können fast beliebige Stoffe zusammen mit den magnetischen Partikeln enkapsuliert werden. Bevorzugt ist die Enkapsulierung von biologisch aktivem Material wie z.B. lebenden Zellen, Mikroorganismen. Enzymen, Hormonen, Antikörpern und/oder Biokatalysatoren, jeweils in einem geeigneten Medium. Besonders bevorzugt sind antikörperproduzierende Zellen wie z.B. Hybridomazellen, Pflanzenzellen wie z.B. Nutzpflanzenzellen, Bakterienzellen wie z.B. E. coli und Milchsäurebakterien, Streptomyceten, Pilze wie z.B. Penicillinium und Aspergillus und Hefen wie z.B. Weinhefe.

Weiterhin werden Flüssigkeiten mitenkapsuliert, in denen die biologisch aktiven Materialien suspendiert bzw. gelöst sind. Diese Stoffe stammen z.B. aus der Gruppe der Lösungsmittel, wie z.B. Was-

20

30

35

45

50

55

ser oder Glycerin, denen ggf. noch Zusatzstoffe wie z.B. Nähmittel und Spurenelemente etc. zugegeben worden sind.

Die magnetischen Partikeln können aus unterschiedlichen Materialien bestehen. Sie sollten in der Flüssigkeit, in der die zu enkapsulierenden Substanzen suspendiert bzw. gelöst werden, weitgehend unlöslich sein und sie sollten mit den Substanzen verträglich sein; d.h. Z.B. für lebende Zellen und Mikroorganismen sollten sie nicht toxisch sein. Bevorzugt sind Verbindungen, die Eisen, Kobalt oder Nickel enthalten. Besonders bevorzugt sind die Eisenoxide Hämatit und Magnetit, die auf literaturbekannte Weise hergestellt werden können (vgl. z.B. Ullmanns Encyklopädie der technischen Chemie, 3. Aufl.6. Band, S. 420 ff., Urban & Schwarzenberg, München, Berlin (1955)) und auch Handelspräparate sind, wie Z.B. das Produkt Bayferrox 8600 der Firma Bayer AG, Leverkusen.

Die Größe der zu enkapsulierenden magnetischen Partikeln kann einen weiten Bereich überstreichen. Bevorzugt sind Partikeln mit einem maximalen Durchmesser zwischen ca. 0,01 und 15 μ m, besonders bevorzugt zwischen ca. 0,05 und 10 μ m, insbesondere zwischen ca. 0,1 und 2 μ m. Die Partikeln mit den jeweiligen Größenverteilungen kann man z.B. durch "fraktioniertes Sieben" mit entsprechenden Sieben, erhalten.

1981/

Es ist sinnvoll, die Membrankapseln mit einem definierten Gewichtsanteil an magnetischen Partikeln zu versehen. Vorteilhaft ist ein gewichtsprozentualer Anteil an der Kapsel von ca. 0,01 bis 5 %, besonders vorteilhaft von ca. 0,02 bis 3 %, insbesondere von ca. 0,03 bis 1 %. Ein hoher prozentualer Anteil an magnetischen Partikeln hat den Vorteil, daß die Membrankapseln besonders leicht mit Magnetfeldern bewegt bzw. fixiert werden können und daß die Sedimentation der Membrankapseln aufgrund ihres hohen spezifischen Gewichts besonders leicht erfolgt. Der Nachteil eines hohen Gehalts an magnetischem Material liegt in der starken mechanischen Belastung der Kapselmembran durch die auftretenden Gravitations- und Magnetkräfte.

Die Membrankapseln, die erfindungsgemäß mit den magnetischen Partikeln ausgestattet werden, können eine Größe haben, die über einen weiten Bereich variiert. Besonders geeignet sind Kapseln mit einem Durchmesser zwischen ca. 0,05 und 7 mm, insbesondere zwischen 0,1 und 5 mm. Besonders bevorzugt ist ein Kapseldurchmesser zwischen ca. 0,5 und 3 mm.

Die Membran der Kapseln, die erfindungsgemäß mit magnetischen Partikeln ausgestattet werden, kann auf unterschiedliche Weise hergestellt werden. Bevorzugt ist eine Verkapselung, wie in der EP-A 0 173 915 beschrieben, auf der Basis von Polysacchariden, die durch Inkontaktbringen mit

mehrwertigen lonen vernetzt werden; besonders bevorzugt ist eine Verkapselung aus Alginat, das durch Calcium vernetzt ist. Ein anderes bevorzugtes Verkapselungsmaterial besteht aus Polyelektrolytkomplexen, wie z.B. in der deutschen Anmeldung mit dem Aktenzeichen P 37 29 434 beschrieben. Bei diesem Membranmaterial wird eine Polysäure zusammen mit dem zu verkapselnden Material vertropft und der entstehende Tropfen wird mit einer Polybase in Kontakt gebracht, wobei die Membran sich ausbildet. Besonders bevorzugte Polysäuren sind z.B. Alginat, Carrageen, Carboxymethylcellulose oder Xanthan. Besonders geeignete Polybasen sind z.B. Allyl--und Methallylamine, N-vinylimidazol und N-Vinylmethylimidazol, die gegebenenfalls auch noch durch Kopolymere, wie z.B. N-Vinylpyrrolidon, verknüpft sein können. Weitere bevorzugte Polysäuren und -basen sind diejenigen, die auf Acrylbasis aufgebaut sind, wie z.B. in der EP-A 0 188 309 beschrieben.

Die eigentliche Herstellung der Membrankapseln erfolgt, wie bereits erläutert, indem die zu verkapselnde Flüssigkeit, in der der aktive Stoff und die magnetischen Partikeln suspendiert bzw. gelöst sind, vertropft wird und anschließend durch die Einwirkung einer zweiten Komponente die Kapselmembran gebildet wird. Zur Vertropfung der jeweiligen Suspension können beliebige bekannte Vertropfungseinrichtungen benutzt werden. Zu bevorzugen ist eine Vertropfungseinrichtung, bei der die zu vertropfende Suspension aus einer Kapillare austritt, während an der Kapillaröffnung ein umhüllender Gasstrom in Richtung der Kapillaröffnung strömt, der die Tropfen abdrückt. Eine derartige Vertropfungseinrichtung ist in F. Lim "Biomedical Applications of Microencapsulation", CRC Press, 1984, beschrieben.

Die Manipulation der erfindungsgemäß magnetische Partikeln enthaltenden Membrankapseln mittels Magnetfelder kann auf unterschiedliche Weise erfolgen. Die weitaus wichtigste Manipulation, das Rühren innerhalb der Kapsel, kann durchgeführt werden, indem ein fluktuierendes Magnetfeld angelegt wird, z.B. durch Einsatz eines Magnetrührers. Die optimale Stärke und Frequenz des jeweiligen Magnetfeldes ist von der Größe der Membrankapseln, von der Größe der magnetischen Partikeln und von der Konzentration der magnetischen Partikeln abhängig. Die optimale Fluktuationsfrequenz ist für die jeweiligen Arbeitsbedingungen empirisch zu ermitteln, was problemlos mittels mikroskopischer Beobachtung möglich ist. Unterhalb einer kritischen Grenzfrequenz drehen sich die Partikeln im Inneren der Kapsel und sorgen für eine gute Durchmischung. Bei genügend großer Viskosität im Inneren der Kapsel führen diese dann noch eine Eigendrehung aus, was auf schonende Weise die Entstehung einer Diffusionsverarmungsschicht au-

10

15

25

30

35

40

45

50

55

Berhalb der Membrankapseln verhindert.

Weiterhin bietet der Magnetismus der Kapseln als Gesamtheit die Möglichkeit, die Kapseln durch Anlegen eines Magnetfeldes zu bewegen oder zu fixieren. Besonders bewährt hat sich die Möglichkeit, die - durch den Gehalt an Teilchen hoher Dichte ohnehin schon beschleunigte - Sedimentation der Membrankapseln zu verstärken, indem am jeweiligen Gefäßboden ein Magnetfeld angelegt wird. Ein Wechsel des Nährmediums sowie Wasch- und Spülvorgänge werden durch diese Maßnahme erleichtert. Eine weitere Manipulationsmöglichkeit ist dadurch gegeben, daß die magnetischen Membrankapseln durch die Einwirkung von Magnetfeldern bewegt werden können - z.B. mit einem magnetischen Transportband - was die Durchführung automatisierter Prozesse erleichtern

Die erfindungsgemäßen Membrankapseln mit einem Gehalt an magnetischen Partikeln können - wie bereits angedeutet vielfältig verwendet werden. Z.B. eignen sie sich zur Aufzucht und zur Kultivierung von lebenden biologischen Systemen wie z.B. Mikroorganismen oder Zellen. Eine andere mögliche Anwendung ist die Herstellung von Produkten mittels biologisch aktiver Systeme und Verbindungen, wie z.B. mittels Mikroorganismen, Zellen, Enzymen, Biokatalysatoren usw.

Durch die nachfolgenden Beispiele soll die Erfindung näher erläutert werden.

Beispiel 1

Hybridomazellen liegen in Dulbeccos Medium mit foetalem Kälberserum vor. Sie werden 1:3 mit einer 1,1 %igen Methylcellulose (®Culminal 12000, Hersteller Fa. Henkel KGaA Düsseldorf) in physiologischer Kochsalzlösung gemischt. Die Methylcelluloselösung enthält 0,3 Gew.-% Hämatit (Bayferrox 8610) und 1,5 Gew.-% CaCl₂.

Die Vertropfung erfolgt über eine spezielle Vertropfungseinrichtung, bei der die erhaltene Suspension durch eine Kapillare mit einem Durchmesser von 0,7 mm gepreßt wird und an deren Öffnung die Tropfen von einem koaxial strömenden Luftstrom abgedrückt werden.

Die Tropfen fallen in eine physiologische Kochsalzlösung mit 0,7% Alginat. Wegen der erhöhten Dichte passieren die Tropfen ohne Probleme die Grenzfläche zur Luft und werden durch Rühren in das Reaktionsvolumen geschafft. Das ausdiffundierende Calzium komplexiert mit Alginat zu einer Membrankapsel von etwa 4 mm Durchmesser. Es schließen sich noch Waschvorgänge in physiologischer Kochsalzlösung und in einer 2 %igen CaCl2-Lösung an. Die Kapseln sedimentieren stets sehr schnell, insbesondere bei Einwirkung eines Ma-

gnetfeldes am Gefäßboden. Schließlich werden sie in Dulbeccos Nährmedium überführt.

Die wie zuvor beschrieben hergestellten Kapseln können durch einen Magneten leicht festgehalten werden, was den Wechsel des verbrauchten Mediums sehr erleichtert. Ein Magnetfeld richtet die magnetischen Partikeln im Inneren der Kapsel aus (s. Photo), so daß über einen Magnetrührer auch das Innere der Kapsel bewegt werden kann.

Beispiel 2

Eine Suspension von Hybridomazellen wird mit einer 4 %igen Carrageenlösung (Hersteller Fa. Sigma Chemie GmbH, München) in Dulbecco's Medium 1:1 (Massenverhältnis) verdünnt. Der Suspension werden 0,1 % Hämatit (Bayferrox 8600) zugesetzt. Die Zellsuspension wird wie in Beispiel 1 beschrieben vertropft, wobei eine Kapillare mit 0,14 mm Durchmesser verwendet wird. Die Tropfen fal-2 in eine %ige Lösung eines len Vinylmethylimidazol-Vinylpyrrolidon-Kopolymeren, das wie folgt hergestellt wird:

In einem 4 Liter-Glaskolben werden 1443 g (10 Mol) 1-Vinyl-3-methylimidazoliumchlorid und 56 g (0,5 Mol) 1-Vinyl-2-pyrrolidon in 3,8 l Wasser gelöst, das 38 g Kaliumperoxodisulfat als Initiator enthält. Der Ansatz wird 6 Stunden bei 60°C unter Stickstoff polymerisiert. Man erhält eine klare gelbbraune 40 %ige Lösung mit neutralem pH-Wert. Der K-Wert beträgt 60.

Die wie zuvor beschrieben hergestellten Kapseln haben einen Durchmesser von $600~\mu m$.

Beispiel 3

Die nach Beispiel 2 hergestellten Kapseln werden 15 Tage in Dulbecco's Nährlösung kultiviert. Während dieser 15 Tage werden die Kapseln durch ein fluktuierendes Magnetfeld, das durch einen Magnetrührer erzeugt wird, beeinflußt. Die von den Hybridomazellen produzierten Antikörper können aus der entnommenen Kulturlösung isoliert werden. Die Syntheseleistung für monoklonale Antikörper ist nach 6 Tagen 200 ng Immunglobulin pro Kapsel und Tag.

· Ansprüche

 Membrankapseln bestehend aus einer kugelförmigen semipermeablen Membran durch die eine immobile flüssige Phase eingeschlossen ist, dadurch gekennzeichnet, daß die immobile flüssige Phase magnetische Partikel enthält.

- Membrankapseln nach Anspruch 1, dadurch gekennzeichnet, daß die immobile Phase Enzyme, lebende Zellen oder Mikroorganismen, insbesondere Hybridomazellen enthält.
- 3. Membrankapseln nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die magnetischen Partikeln die chemischen Elemente Eisen und/oder Nickel und/oder Kobalt enthalten.
- 4. Membrankapseln nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die magnetischen Partikeln aus Hämatit oder Magnetit bestehen.
- 5. Membrankapseln nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die maximalen Partikeldurchmesser der magnetischen Partikeln ca. 0,01 bis 15 µm betragen.
- 6. Membrankapseln nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der gewichtsprozentuale Anteil der magnetischen Partikeln an der Kapsel mit Inhalt zwischen ca. 0,01 und 5 % liegt.
- 7. Membrankapseln nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ihr Durchmesser zwischen ca. 0,05 und 7 mm liegt.
- 8. Membrankapseln nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Membranmaterial aus Polysacchariden besteht, die durch mehrwertige lonen vernetzt werden.
- 9. Membrankapseln nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Membranmaterial durch die Reaktion mindestens einer Polysäure mit mindestens einer Polybase gebildet wird.
- 10. Membrankapseln nach Anspruch 9, dadurch gekennzeichnet, daß als Polysäuren Polysacharide und als Polybasen Polymere auf Polyvinylbasis, insbesondere Allylamin, Methallylamin, N-Vinylimidazol und N-Vinylmethylimidazol, die mit weiteren Kopolymeren verknüpft sein können, verwendet werden.
- 11. Membrankapseln nach Anspruch 9, dadurch gekennzeichnet, daß als Polysäuren und Polybasen solche auf Acrylbasis verwendet werden.
- 12. Verwendung von Membrankapseln gemäß einem oder mehreren der Ansprüche 1 11 zur Aufzucht oder Kultivierung von Mikroorganismen oder Zellkulturen.
- 13. Verwendung von Membrankapseln gemäß einem oder mehreren der Ansprüche 1 11 zur Herstellung von Produkten mittels Mikroorganismen, Zellen, Biokatalysatoren oder Enzymen.

5

10

15

30

__

..

45

50

55

1.4175

Mikrokapseln, hergestellt nach Beispiel 1, Hämatit im Inneren der Kapsel wird im Magnetfeld eines Magnetrührerkernes ausgerichtet.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.