Melanoma Lesion Classifier

Lingting Shi Dennis Yuan

2018 May 10
Introduction to Data Science

Melanoma detection: benign or malignant?

Slide show: Melanoma pictures to help identify skin cancer

If undetected:

- → Late stage Melanoma can spread to organs
- \rightarrow Poor prognosis (95% \rightarrow 19% survival)

Image segmentation and Feature Extraction

Classifiers

	Classificati on Tree	Logistic Regression	K-Nearest Neighbor	Support Vector Machine	Random Forest	Adaboosting Classification Tree
Optimized Parameter	Tree Depth	L2 Regularization	None (Should be K)	Type of Kernel-rbf& Penalty Parameter	# of tree and # of features	# of trees &tree depths
Avg AUC 10 Fold Cross Validation	0.667	0.70	0.747	0.805	0.78	0.806

Top 3 important features of Logistic Regression:

- area,
- 2nd eigen value of inertia tension of the mole
- perimeter

Random Forest:

- Min intensity in the mole,
- Variance in the mole
- STD of whole image

Combination of weak classifiers

6 weak classifers

Split data in to testing and training

Training 6 classifers

Test all data

Test the whole dataset with 6 weak classifiers

Output the possibility of being maglignant from 6 calssifers

6 Strong Classifiers

Use the possiblity from 6 classes as feature to train and test y classifers

Tried on all 6 classifers again- All very strong classifers with AUC close to 1 Prediction

Run all feautues through 6 week classifers for possibity output

Predict with possibility on strong classifers

Transfer learning with InceptionV3

- Trained on ImageNet
 - (1.2 million images/1000 classes/weeks on multiple GPUs)
- Feature extractor + initialization weights

Transfer learning: Image augmentation

- Unbalanced dataset
 - 15 thousand images
 - 80/20
- Increase
 - Dataset size
 - Generalizability
- Example transformations: Pixel color jitter, rotation, shearing, random cropping, horizontal flipping, stretching, lens correction.

Visit the sites

Notebooks

Future Works

Pros and Cons