

Figure 1

; GAP of: W0h051-7.Seq check: 6926 from: 1 to: 52

seq of dicamba induced band w0c0 51.7

to: Cjlpi81r.Seg check: 2737 from: 1 to: 714

Symbol comparison table: Gencoredisk: [Gcgcore.Data.Rundata]Nwsgapdna.Cmp CompCheck: 8760

Gap Weight: 50 Average Match: 10.000

Length Weight: 3 Average Mismatch: 0.000

Quality: 520 Length: 714

Percent Identity: 100.000 Gaps: Percent Similarity: 100.000 Ratio: 10.000

Match display thresholds for the alignment(s):

didisplay differential tot diff a

.. ።

... .. W0h051-7.Seg x Cjlpi81r.Seg..

50 26gctagcgccgtgaccacgcacat CGATCGAAGTGGGTGTGTCAGCTAGCTAGCTGCGCCGTGACCACGCACAT

gaccgcagtgcgcgcggggctgatca..... 27

GACCGCAGTGCGCCGCGCGCTGATCAAGGGAAAGTGATCGGATGGAGCTG 100

51

I Dicamba treated anthers 1
I Dicamba treated anthers 2
I Dichlormid treated anthers
I Non-treated anthers
I Dicamba treated tassel

I Dicamba treated tassel

I Dicamba treated whorl leaf

Figure 4

recessors and

MELELGLAPPNPHQPLAAAAEFVGLLSSSAGSCGNKRVLGDAFGAAKAAT 50 atelrlgl.pgiteeeekkiihgssvvknnnkr36	NLS . CARRRS 100 : syrkns 84	GNQQD 145 : :tige 133		krlri 176	
	. DOMAIN II. NLS LPLFVCEDGDGGGGDRDRDGVVDHEQQSNNVPRKKRLVGWPPVKCARRRS :	. DOMAIN III	. DOMAIN IV. HAEDEVVVSHERRRHPYVVTYEDGEGDWLLVGDDVPWEVFVKSVKRLKI	seregykgseyaptyedkdgdwmlvg.dvpwdmfvtsckrlri A 197	
KK1 1ngssvvk.	.DOM DHEQQSNNVPR .vesssaappa	GGGYVKVKLEGVPIGRKVDVSIHGSYQELLRTLESMFP $ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $ ggifvkvsmdgapylrkidlrvyggysellkaletmfk β	. DOM EDGEGDWLLVG	edkdgdwmlvg	
elrlgl.pgiteeeekkiihgssvvknnnkr.	GGGDRDRDGVV : Siskvtndehi	.DO KVKLEGVPIGR :: kvsmdgapylr β	RRRRHPYVVTY	yapty 197	gv 189
telrigi.pg.	LPLFVCEDGDG : qlpqtseesv	$\frac{\cdot}{ \cdot } \cdot \frac{CGGG\underline{YV}}{ \cdot }$	· IAEDEVVVSHE: 	yseregykgse LA	: mkgteakglgcgv
1 mefkat	51 I 35	101		134 3	177 r
PS-IAA4/5					

			Ms45	.PI81	Actin
		#8@8#35 Ø-E∩	Ž.	3.5	
	fei	∪∃-IIN e≤483 e#			3
Ę.	fe t ile	U∃-p854286#	ě	1	1
icamba		hiM-p.e11988e#		i E	
<u> </u>	sterie	əlhəta 0£4836#			
_1	a	əlhəta 214806#	s *		
þ	aje a.	ıtrılı U∃ 84483 6# 			
hats	ətini	1 alhata S24886#			

Figure 6

Figure 7

Figure 8

GAP of: Czaal47.Seq check: 446 from: 1 to: 1214 to: Axiglcomplete.Con check: 928 from: 1 to: 3123	
Symbol comparison table: Gencoredisk:[Gcgcore.Data.Rundata]Nwsgapdna.Cmp CompCheck: 8760	
Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: 0.000	
Quality: 10871 Length: 3123 Ratio: 8.955 Gaps: 3 Percent Similarity: 100.000 Percent Identity: 100.000	
<pre>Match display thresholds for the alignment(s):</pre>	
Czaal47.Seq x Axiglcomplete.Con May 11, 2000 12:05	
	12
1101 CGCGTCACTCACGGGTAGCTCATGGTCGAGCGTAGCATGCAGGAACTTAT	1150
13 TTGCCGTGCGCTCCCAGGTCTCCGCTCGCGTGCCTTCCAGTCTGTCT	
	1250
113 CCGTGACCACGCACATGACCGCAGTGCGCGGGGCTGATCAAGGGAAAG	162
1251 CCGTGACCACGCACATGACCGCAGTGCGCGGGGCTGATCAAGGGAAAG	1300
163 TGATCGGATGGAGCTGGAGCTCGGGCTCGCGCCGAACCCGCATCAGC	212
1301 TGATCGGATGGAGCTGGAGCTCGGGCTCGCCGCCGAACCCGCATCAGC	1350
213 CGCTGGCTGCCGCCGAGTTCGTCGGTCTCCTCAGCAGCTCGGCTGGC	262
1351 CGCTGGCTGCCGCCGAGTTCGTCGGTCTCCTCAGCAGCTCGGCTGGC	1400
263 TCGTGCGGGAACAAGAGGGTTCTCGGCGACGCGTTCGGGGCCGCCAAGGC	312
1401 TCGTGCGGAACAAGAGGGTTCTCGGCGACGCGTTCGGGGCCGCCAAGGC	1450
313 GGCCACGCTTCCGCTCTTCGTCTGCGAGGATGGCGACGGAGGCGGCGGCG	362
1451 GGCCACGCTTCCGCTCTTCGTCTGCGAGGATGGCGACGGAGGCGGCGGCG	1500

363	ACCGCGACCGCGACGGCGTCGTCGACCATGAACAGCAAAGCAACAA	408
1501	ACCGCGACCGCGTCGTCGACCATGAACAGCAAAGCAACAAGTGA	1550
	• • •	
409		431
1601		1650
432	TGGGGTGGCCGCGTGAAGTGCGCGCGTAGCTGCGCGGCGGG	481
1651	TGGGGTGGCCGCTGAAGTGCGCGCGTAGCCTAGCTGCGGCGGG	1700
482	TACGTGAAGGTGAAGCTGGAAGGGTGCCCATCGGGCGGAAGGTGGACGT	531
1701		1750
532	GTCCATCCACGGCTCGTACCAGGAGCTGCTCCGCACGCTCGAGAGCATGT	581
-	GTCCATCCACGGCTCGTACCAGGAGCTGCTCCGCACGCTCGAGAGCATGT	
	TCCCTTCGGGTAACCAACA	
1801	${\tt TCCCTTCGGGTAACCAACAAGGTGCGTACGTTCCCGGGCCGGCGAGCC}.$	1850
601		602
1951	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000
1951 603	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 652
1951 603 2001	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG	2000 652 2050
1951 603 2001 653 2051	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100
1951 603 2001 653 2051 703	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720
1951 603 2001 653 2051 703	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150
1951 603 2001 653 2051 703 2101	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGGCGCCGCCGTCGCCAT	2000 652 2050 702 2100 720 2150 739 2250

790	$\tt GTGTGGTCCGTCTCACCAGGATCGGAGCAGTGTAGTACTCCTGGGCGTCA$	839
2301		2350
840	TCTGCGTAATAACGTTGTTCTGTCCTGTGTGCCCGTAGCAGTACGTAC	889
2351	TCTGCGTAATAACGTTGTTCTGTCCTGTGTGCCCGTAGCAGTACGTAC	2400
890	GTCCTATAGTAAGCTAGCTTTATGGGGTGCTTCAGCTTTCAGAGCATGAC	939
2401		2450
940	GAAAGCACTGATTAGCTGCTGTCATCACATTTGGTTCGTCTTTGTGTCGT	989
2451		2500
990	ACGGTATCGCTGGCGTCAGTGTCGCGGCAGCCTAGGTGATCTAAGCATAC	1039
2501		2550
1040	TTACTATCTCAAGTTACTTTTGGTTTCCTGAGCTTGCATGGTAATTCATA	1089
2551		2600
1090	TACCOTATICCTCTCTCTCTCCCCCCTTCCTCTTTTCCCCTCTCTCTCT	1139
2601		2650
1140	TCACCGGACCCGATGGAATTTATCAAATCCAGTGTAAAATACTATTTAAC	1189
2651		2700
1190	ACTGTTCATCAATATATTTGATTTC	1214
2701		2750

Figure 10. Representative polynucleotides and polypeptides of the present invention.

Experiment	Control	Ubi:LEC1	Axig1:LEC1
#1 3938.37	15%	63%	44%
#2 3938.79	4%	17%	20%
#3 3938.78	16%	17%	38%
#4 3938.34	2%	14%	13%

Figure 11. Transformation frequencies by LEC1 with two different promoters. Transformation frequencies were based on the percentage of plated embryos with one or more GFP positive/Bialaphos resistant colonies. All embryos were shot with Ubi:moPAT~GFP (a construct conferring Bialaphos resistance and GFP fluorescence) along with a LEC1 construct or a control DNA.