INTRODUCTION II

1 Introduction II

Theorem 1.1 (Lagrange). Let $\varphi = \varphi(x_1, \ldots, x_n)$ and

$$\operatorname{orb}(\varphi) = \left\{ \varphi^{\omega} = \varphi(x_{\omega(1)}, \dots, x_{\omega(n)}) \mid \omega \in S_n \right\}.$$

Then y_1, \ldots, y_k are roots of some polynomial with degree $\leq k$ whose coefficients depend on elementary symmetric polynomials $\sigma_1, \ldots, \sigma_n$ in a polynomial way.

Theorem 1.2 (Lagrange). Let $\varphi, \psi \in K[x_1, \dots, x_n]$ and $G_{\varphi} = \{\omega \in S_n \mid \varphi^{\omega} = \varphi\} \leq G_{\psi}$. Then $\psi = R(\varphi)$ where R is a rational function whose coefficients are symmetric functions on x_1, \dots, x_n .

Definition 1 (Group action). Let G be a group and X be a set. The (left) group action of G on X is the $map \cdot : G \times X \to X$ such that

1. $e_G \cdot x = x$, $\forall x \in X$

2.
$$g \cdot (h \cdot x) = (g \cdot h) \cdot x$$
, $\forall x \in X, \forall g, h \in G$

Definition 2 (Orbit). Let G be a group, X be a set, and $x \in X$. Then we define the orbit of x, $G \cdot x = orb(x)$, as $\{g \cdot x \mid g \in G\}$. Moreover, $orb(x) \subseteq X$.

Definition 3 (Stabilizer). Let G be a group, X be a set, and $x \in X$. Then we define <u>the stabilizer</u> of x, stab(x), as $\{g \in G \mid g \cdot x = g\}$. Moreover, $stab(x) \leq G$.

Theorem 1.3. Let G be a finite group that acts on X. Then for all $x \in X$, $|\operatorname{orb}(x)| \cdot |\operatorname{stab}(x)| = |G|$.

Definition 4 (Polynomial ring). Let R be a commutative ring. Then the ring of polynomials with coefficients in R is

$$R[t] = \left\{ \sum_{i=0}^{n} c_i t^i : n \in \mathbb{Z}_+, c_i \in R \right\}$$