

درس سیگنال و سیستم ها

تمرین کامپیوتری <u>1</u>

مهلت تحویل : 28 آبان استاد : دکتر اخایی

سر فصل مطالب

2	سوال 1 : رسم توابع گسسته زمان
	سوال 2 : پاسخ ضربه و پله سیستم گسسته زمان
	سوال 3 : پاسخ سیستم گسسته زمان
	سوال 4 : كانولوشن
	😄 كانولوشن گسسته زمان
	(Convoluion)
	ک دیکانولوشن (Deconvolution)
4	🗢 كانولوشن پيوسته زمان
4	🖒 بخش اول
4	پ بخش دوم
5	لل بخش سوم
C	وكالترات والمراز

سوال 1:

. تابع گسسته زمان $x[n] = A \cos[2\pi kn]$ را در نظر بگیرید که $x[n] = A \cos[2\pi kn]$ میباشد

 $: (T \rightarrow Sample \ period)$ رسم کنید (stem را به کمک stem رسم کنید) توابع زیر را به کمک

A.
$$y[n] = \frac{1}{T}(x[n+1] - x[n])$$

B.
$$y[n] = \frac{1}{2T}(x[n+1] - x[n-1])$$

C.
$$y[n] = \frac{1}{T^2}(x[n+1] - 2x[n] + x[n-1])$$

D.
$$y[n] = 0.1x[n-2] + 0.2x[n-1] + 0.4x[n] + 0.2x[n+1] + 0.1x[n+2]$$

با افزایش تعداد Sample ها (n) برای هر یک از موارد بالا ، y[n] بدست آمده را با x[n] اولیه مقایسه و تحلیل کنید .

سوال 2:

برای هر یک از سیستم های آورده شده در زیر:

الف) پاسخ ضربه و پله را هم بصورت تحلیلی و هم در پایتون بدست آورده و رسم کنید :

A.
$$\frac{1}{2}(x[n] + x[n-1])$$

B.
$$x[n+1] - x[n]$$

c.
$$x[n+1] - 2x[n] + x[n-1]$$

D.
$$\sum_{m=0}^{19} \cos\left(\frac{\pi m}{10}\right) x[n-m]$$

x[n] می توانید از $\sum_{m_d=0}^{m_u=\infty} x[n-m]$ استفاده کنید . برای آنکه x[n] می توانید از x[n] استفاده کنید . برای آنکه نتایج قابل رسم باشد ، x[n] n و x[n] و x[n] و x[n] استفاده کنید .

ب) تغییرات ایجاد شده در پاسخ پله ، به ازای 5,15,20 $m_u=5,15,20$ را برای هر سیستم داده شده رسم کنید و با استفاده از آن , رفتار آن را برای $m_u=\infty$ پیشبینی کنید .

سوال 3:

دو سیگنال گسسته زمان x[n] و x[n] در زیر رسم شده اند . که x[n] سیگنال ورودی و x[n] پاسخ ضربهی سیستم میباشد.

شكل 1-3: ورودى و پاسخ ضربه سيستم LTI

- الف n با تقسیم بندی n به بازههای مناسب ، ابتدا پاسخ کلی سیستم را بصورت پارامتری حساب کنید.
- ب سپس برای هر حالت(بازه انتخابی برای n) ، پاسخ سیستم را رسم کرده و در نهایت پاسخ کلی سیستم را رسم کنید . (

سوال 4:

كلي كسسته زمان

Convolution

در این قسمت میخواهیم با تعریفی که برای کانولوشن گسسته زمان داریم ، $y[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k]$ ، تابعی بنویسیم که با گرفتن دو آرایه ورودی x[n] و x[n] و y[n] ، y[n] را به عنوان خروجی برگرداند .

را به y[n] و [n] و [n] و [n] و سپس سه سیگنال [n] و پاسخ ضربه سوال [n] ، محاسبه کنید و سپس سه سیگنال [n] و [n] و [n] و [n] دمک Stem و [n] و [n

- ب) به کمک تابع آماده پایتون (signal. convolve) ، کانولوشن بالا را حساب کرده و با جواب بدست آمده از بخش الف مقایسه کنید.
 - 📆) در مورد قسمت 'mode' در تابع signal.convolve تحقیق کنید و حالت های مختلف را برسی کنید .

Deconvolution

در این قسمت می خواهیم بر عکس قسمت قبل عمل کنیم . یعنی سیگنال خروجی و یکی از دو سگینال x[n] یا n[n] را معلوم فرض می کنیم و به دنبال سیگنال سوم هستیم .

- الف) مانند بند الف قسمت قبل ، تابعی بنویسید که اینبار خروجی و یکی از دو سیگنال ورودی را بگیرد و دیگری را برگرداند. (* راهنمایی : می توانید روابط را به صورت ماتریسی پیاده سازی کنید)
 - (-) آیا خروجی بدست آمده مانند قسمت (-) توضیح دهید
 - ج) به كمك تابع آمده پايتون (signal.deconvolve) ، نتايج را با بخش الف مقايسه كنيد .
 - لل بیوسته زمان
 - 1. دو سیگنال داده شده در روبرو را در نظر بگیرید:

$$\begin{cases} x(t) = e^{-\alpha t} u(t), a > 0 \\ h(t) = u(t) \end{cases}$$

الف) به کمک هر دو تابع آماده np.convolve و signal.convolve ، کانولوشن بین سیگنال ورودی و پاسخ ضربه را پیدا کنید و به کمک plot رسم کنید . ('same' را روی 'same' قرار دهید) . آیا این دو روش تفاوتی دارند ؟

- ب) سیگنال خروجی را بصورت تحلیلی نیز بدست آورید .
- آیا سیگنال پیوسته بدست آمده با جواب حاصل از روش تحلیلی یکسان است ؟ اگر نه ، سیگنال بدست آمده را با
 تغییراتی اصلاح کنید .
 - در شکل زیر داده شدهاند : h(t) و x(t) در شکل در داده شدهاند

شكل 1-2-4: ورودى و پاسخ ضربه سيستم LTI

- الف) پاسخ سیستم را به ازای دو سیگنال داده شده بصورت تحلیلی حساب کنید .
- به کمک تابع های ذکر شده $\chi(t)$ ، np.piecewise با به کمک تابع های ذکر شده $\chi(t)$ ، np.piecewise با به کمک تابع های ذکر شده رسم کنید و با مقدار تحلیلی مقایسه کنید .

3. در این قسمت میخواهیم تاثیر کانوالو کردن قطار ضربه (Impulse train) در سیگنال آورده شده در زیر را تحلیل کنیم :

شكل 2-2-4: ورودى سيستم LTI

الف) در ابتدا به کمک تابع unit_impulse ، تابعی بنویسید که قطاری از ضربه با دوره تناوب \underline{T} و به طول \underline{n} تولید کند .

. مقدار مرزی T ، که از روی خروجی سیستم بتوان سیگنال اولیه (x(t)) را بازیابی کرد را پیدا کنید (

. خروجی سیستم را به ازای مقادیر مختلف T رسم کرده و تفاوت را توجیه کنید T

نكات تحويل:

- 1. زدن پروژه در IDE های مختلف (..., Pycharm , jupyter , colab) به شرط استفاده از زبان التون مجاز است . پیشنهاد می شود که در Jupyter و یا Colab کد های خود را بزنید که قابلیت Markdown کردن هم داشته باشید .
- در صورت استفاده از هر تابع آماده به غیر موارد ذکر شده در پروژه ، آن را در گزارش کار خود ذکر
 کنید.
- 3. هر کدام از سوال ها در فایل های جداگانه ipynb. یا py. زده شود و اسم آن فایل را مطابق صورت سوال قرار دهید و در نهایت بصورت فایل zip به فرمت CA_num-Last_name-std_num در صفحه درس آپلود کنید .
- 4. تمامی شکل های خروجی خواسته شده در هر سوال را با زیرنویس مربوط به آن سوال (به شکل های در صورت پروژه دقت کنید) مشخص کرده و در گزارش خود قرار دهید.
- 5. هدف از تمرین های کامپیوتری کمک به یادگیری شماست. بنابراین در صورت مشابهت بیش از حد در بخش های پروژه ، از شما نمره کسر خواهد شد .
- 6. در صورتی که نسبت به پروژه سوال یا ابهامی داشتید ، از طریق ایمیل <u>sh.vassef@ut.ac.ir</u> یا در گروه تلگرامی با من در ارتباط باشید.

موفق باشيد .