

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-444-7270 Fax: +82-31-444-7271

http://www.ltalab.com

Dates of Tests: July 4 ~ July 21, 2016 Test Report S/N: LR500111607E Test Site: LTA CO., LTD.

RF TEST REPORT

FCC ID IC APPLICANT VSOTPD-8424 9680A-TPD-8424 YEONHWA M TECH CO.,LTD

Device Category : Private Land Mobile Radio Service

Manufacturing Description : UHF Transceiver

Manufacturer : YEONHWA M TECH CO.,LTD

Trade name : X Radio
Model name : TPD-8424

Variant Model : TPD-8424BK, TPD-8424BE, TPD-8424OR,

XD-400U, XD-100U, XD-4000D

Serial number : Identical prototype

FCC Rule Part(s) : §2, §90

IC Rule Part(s) RSS-Gen Issue 3, RSS-119 Issue 11

Frequency Range : $FCC: 410 \sim 470 \text{ MHz}$

IC : $410 \sim 430 \text{ MHz}$ and $450 \sim 470 \text{ MHz}$

RF Output Power : 3 W

Channel Separation : 12.5kHz

Emission Designators: : 11K0F3E, 7K60FXD, 7K60FXE

Data of issue : July 21, 2016

This test report is issued under the authority of:

The test was supervised by:

DE

Hee-Cheon Kwon, Test Engineer

Yong-Cheol Wang, Manager

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TEST RESULTS	6
3.2.1 RF EXPOSURE	6
3.2.2 RF OUTPUT POWER	7
3.2.3 MODULATION CHARACTERISTIC	8
3.2.4 OCCUPIED BANDWIDTH & EMISSION MASK	12
3.2.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
3.2.6 RADIATED SPURIOUS EMISSIONS	21
3.2.7 FREQUENCY STABILITY	23
3.2.8 TRANSIENT FREQUENCY BEHAVIOR	26
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	27

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2016-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	610755	2017-04-21	FCC filing
FCC	U.S.A	649054	2017-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2017-06-21	VCCI registration
VCCI	JAPAN	T-2009	2016-12-23	VCCI registration
VCCI	JAPAN	G-563	2018-12-13	VCCI registration
IC	CANADA	5799A-1	UPDATING	IC filing
KOLAS	KOREA	NO.551	2017-01-08	KOLAS accredited Lab.

2. Information about test item

2-1 Client & Manufacturer

Company name : YEONHWA M TECH CO.,LTD

Address : 36, Jeonpa-ro 44beon-gil Manan-gu, Anyang-si, Gyeonggi-do, Korea

TEL / FAX : +82-31-444-7270 / +82-31-444-7271

2-2 Equipment Under Test (EUT)

Trade name : X Radio Model name : TPD-8424

Variant Model : TPD-8424BK, TPD-8424BE, TPD-8424OR, XD-400U

Date of receipt : July 21, 2016

EUT condition : Identical prototype Frequency Range : $410 \sim 470 \text{ MHz}$

RF output power : 3 W

Channel Separation : 12.5 kHz

Power Source : DC 3.7 V by battery (Li-ion)

Firmware version : V1.0

2-3 Tested frequency

	LOW	MID	HIGH	
Frequency (MHz)	410.0125	440.0125	469.7000	

The time division multiple access (TDMA) mode of operation provides two voice paths in a 12.5 kHz channel bandwidth and a data rate of 9600 bits per second bits per second in a channel bandwidth of 12.5 kHz. This is equivalent to one voice path per 6.25 kHz of channel bandwidth and 4800 bits per second or greater in a 6.25 kHz channel bandwidth. The SLR 5700 conforms to the spectrum efficiency requirements of FCC rule § 90.203 (j) (5).

3. Test Report

3.1 Summary of tests

FCC Rules	Description of Test	Results						
§1.1307(b); §2.1093	RF Exposure	С						
§2.1046; §90.205	RF Output Power	С						
§2.1047; §90.207	Modulation Characteristic	С						
\$2.1049; \$90.209; \$90.210	Occupied Bandwidth & Emission Mask	С						
§2.1051; §90.210	Spurious Emission at Antenna Terminal	С						
§2.1053; §90.210	Spurious Radiated Emissions	С						
§2.1055; §90.213	Frequency Stability	С						
§90.214	Transient Frequency Behavior	С						
<u>Note 1</u> : C=Complies NO	Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable							
<i>Note 2</i> : The data in this test report are traceable to the national or international standards.								

The sample was tested according to the following specification:

- FCC Part2, Part 90
- ANCI C 63.4-2014
- TIA/EIA-603-D

3.2 TEST RESULTS

3.2.1 RF EXPOSURE

Applicable Standard:

According to FCC \$1.1307(b) and \$2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Result: Complies

Please refer to SAR Report Number : LR500111607C

3.2.2 RF OUTPUT POWER

Applicable Standard: FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The spectrum analyzer is setting:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Sweep = auto

VBW = 300 kHz Detector function = peak

Trace = max hold

Test Result: Compliance.

Measurement Data: Transmitting

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (w)	Result
	12.5	410.0125	3 W	34.19	2.62	Pass
Analog	12.5	440.0125	3 W	34.59	2.88	Pass
	12.5	469.7000	3 W	34.05	2.54	Pass
	12.5	410.0125	3 W	34.10	2.57	Pass
Digital	12.5	440.0125	3 W	34.59	2.29	Pass
	12.5	469.7000	3 W	34.08	2.56	Pass

Note: The rated Power is 3 W. The limit of the high output power is $2 \text{ W} \sim 4 \text{ W}$

3.2.3 MODULATION CHARACTERISTIC

Applicable Standard: FCC§2.1047and §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Procedure

Test Method: TIA-603-D 2.2.3

Test Result: Compliance.

Measurement Data: Analog Modulation

(Carrier Frequency: 440.0125 MHz, Channel Separation: 12.5 kHz)

Audio Input	Frequency Deviation (kHz)					
Level [dB]	@ 300 Hz	@ 1 kHz	@ 3 kHz	[kHz]		
20.0	2.237	2.462	1.930	2.5		
15.0	2.232	2.451	1.939	2.5		
10.0	2.205	2.455	1.937	2.5		
5.0	2.137	2.462	1.880	2.5		
0.0	2.078	2.439	1.930	2.5		
-5.0	1.625	2.273	1.901	2.5		
-10.0	1.173	2.083	1.747	2.5		
-15.0	0.594	1.711	1.202	2.5		
-20.0	0.342	1.584	0.681	2.5		

Deviation Limiting

Measurement Data: Audio Frequency Response

(Carrier Frequency: 440.0125 MHz, Channel Separation: 12.5 kHz)

Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.69
400	-7.83
500	-5.81
600	-4.76
700	-3.17
800	-2.25
900	-1.29
1000	-0.21
1200	1.54
1400	3.14
1600	4.55
1800	5.83
2000	6.79
2100	7.14
2200	7.39
2300	7.52
2400	7.50
2500	7.40
2600	7.12
2700	6.70
2800	5.87
2900	4.92
3000	3.92

Audio Frequency Response

Measurement Data: Audio Frequency low pass filter response

(Carrier Frequency: 440.0125 MHz, Channel Separation: 12.5 kHz)

(carrier frequency : 440.0125 Willz, Chaimer Separation : 12.5 Kitz)									
Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)							
1.0	0.0	/							
3.0	-43.1	0.0							
4.0	-55.2	-12.5							
5.0	-71.0	-22.2							
6.0	-74.4	-30.1							
7.0	-73.0	-36.8							
8.0	-72.3	-42.6							
9.0	-73.8	-47.7							
10.0	-71.8	-52.3							
12.0	-72.4	-60.2							
14.0	-83.0	-66.9							
16.0	-89.1	-72.7							
18.0	-87.2	-77.8							
20.0	-91.8	-82.4							

Deviation Limiting

3.2.4 OCCUPIED BANDWIDTH EMISSION MASK

Applicable Standard: FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- For any frequency removed from the center of the authorized bandwidth fo to 5.625 kHz removed from fo, 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (fd –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(f_d -3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its

bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Result: Compliance.

Measurement Data: Transmitting

Modulation	Frequency (MHz)	Channel Space (kHz)	Power Level	99%Occupied Bandwidth (kHz)	26dB Emissions Bandwidth (kHz)	FCC Limit (kHz)
Analog	440.0125	12.5	3 W	6.16	9.15	11.25
Digital	440.0125	12.5	3 W	7.67	9.91	11.25

Analog Modulation:

99% Occupied Bandwidth

26 dB Emissions Bandwidth 12.5 kHz, 440.0125 MHz (3 W)

Emission Mask D with 5 W 12.5 kHz, 435.0125 MHz

Digital Modulation:

99% Occupied Bandwidth

26 dB Emissions Bandwidth 12.5 kHz, 440.0125 MHz (3 W)

Emission Mask D with 5 W 12.5 kHz, 440.0125 MHz

3.2.5 SPURIOUS EMISSIONS AT ANTENNA

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d 2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ((f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth fo to 3.0 kHz removed from fo: Zero dB.
- 2)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(f_d -3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.

The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under

test, an alternate procedure may be used provided prior Commission approval is obtained.

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1 GHz, and 1 MHz for above 1 GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Result: Compliance.

Modulation	Frequency (MHz)	Channel Space (kHz)	Maximum Conducted Spurious Emissions Below 1 GHz		Maximum Spurious Above	FCC Limit		
Analog	440.0125	12.5	Frequency (MHz)	Results (dBm)	Frequency (MHz)	Results (dBm)	-20 dBm	
			880.00	-32.00	5953.00	-23.78		
Digital	440.0125	12.5	Frequency (MHz)	Results (dBm)	Frequency (MHz)	Results (dBm)	-20 dBm	
			880.00	-31.78	5555.00	-25.66		

Analog Modulation:

30 MHz - 1 GHz, Spacing Channel 12.5 kHz, 440.0125 MHz

 $1~\mathrm{GHz}-6~\mathrm{GHz},$ Spacing Channel 12.5 kHz, 440.0125 MHz

Digital Modulation:

 $30~\mathrm{MHz} - 1~\mathrm{GHz}$, Spacing Channel 12.5 kHz, 440.0125 MHz

1 GHz – 6 GHz, Spacing Channel 12.5 kHz, 440.0125 MHz

Ref. No.: LR500111607E

3.2.6 RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10, 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =50+10 Log₁₀ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Spurious attenuation limit in dB =55+10 Log₁₀ (power out in Watts) for EUT with a 6.25 kHz channel bandwidth.

Test Result: Compliance.

Measurement Data: Transmitting

30 MHz - 2GHz

E	Receiver Turn		Rx Antenna		Substituted			Absolute	FCCp	art90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	Analog Modulation 440.0125 MHz, Channel Spacing 12.5 KHz									
920.24	44.05	33	2.1	Н	-46.71	0.81	0	-47.52	-20	27.52
920.24	41.11	280	2.2	V	-40.05	0.81	0	-40.86	-20	20.86
1409.12	61.03	30	2.0	Н	-38.1	1.15	6.40	-32.85	-20	12.85
1409.12	59.68	261	2.3	V	-50.4	1.15	6.40	-45.15	-20	25.15

1898.28	52.79	100	1.9	Н	-50.08	1.41	7.8	-43.69	-20	23.69	
1898.28	50.82	223	1.8	V	-48.77	1.41	7.8	-42.38	-20	22.38	
	Digital Modulation 440.0125 MHz, Channel Spacing 12.5 KHz										
960.24	43.89	35	2.1	Н	-48.77	0.81	0	-49.58	-20	29.58	
960.24	42.70	180	2.0	V	-42.12	0.81	0	-42.93	-20	22.93	
1409.12	60.80	296	2.2	Н	-38.6	1.15	6.40	-33.35	-20	13.35	
1409.12	58.41	91	1.4	V	-51.5	1.15	6.40	-46.25	-20	26.25	
1898.28	64.05	188	2.0	Н	-51.22	1.41	7.8	-44.83	-20	24.83	
1898.28	61.14	124	2.1	V	-48.09	1.41	7.8	-41.70	-20	21.70	

Note: Absolute Level = SG Level-Cable loss + Antenna Gain

 $Margin = Limit - Absolute\ Level$

3.2.7 FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

For Analog Modulation

Reference Frequency : 440.0125 MHz, Limit : ±2.5 ppm, 12.5 kHz						
Test Env	Test Environment		with Time Elapsed			
Temperature (°C)	Power Supplied (V_{DC})	Measured Frequency (MHz)	Frequency Error (ppm)			
Frequency Stability versus Input Temperature						
50	3.7	440.012522	0.049			
40	3.7	440.012516	0.036			
30	3.7	440.012511	0.024			
20	3.7	440.012509	0.020			
10	3.7	440.012514	0.031			
0	3.7	440.012498	-0.004			
-10	3.7	440.012499	-0.002			
-20	3.7	440.012517	0.038			
-30	3.7	440.012519	0.042			
Frequency Stability versus Input Voltage						
20	3.1	440.012524	0.053			

For Digital Modulation

Refe	rence Frequency : 440.0125 N	1Hz, Limit: ±2.5 ppm, 1	2.5 kHz				
Test En	Test Environment		Frequency Measure with Time Elapsed				
Temperature $({}^{\circ}\!$	Power Supplied (V_{DC})	Measured Frequency (MHz)	Frequency Error (ppm)				
	Frequency Stability versus Input Temperature						
50	3.7	440.012512	0.027				
40	3.7	440.012521	0.047				
30	3.7	440.012489	-0.024				
20	3.7	440.012506	0.013				
10	3.7	440.012503	0.007				
0	3.7	440.012492	-0.018				
-10	3.7	440.012489	-0.024				
-20	3.7	440.012507	0.016				
-30	3.7	440.012509	0.020				
	Frequency Stability versus Input Voltage						
20	3.1	440.012514	0.031				

3.2.8 TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100 dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P_0 .
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15 ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Measurement Data: Transmitting

Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
12.5	10 (t1)	<+/- 12.5 kHz	
	25 (t2)	<+/- 6.25 kHz	Compliance
	10 (t3)	<+/- 12.5 kHz	

Please refer to the following plots.

Channel Spacing 12.5 kHz

Trun ON

Trun OFF

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2016-03-22
2	Signal Generator (~ 3.2 GHz)	8648C	3623A02597	HP	1 year	2016-03-21
3	SYNTHESIZED CW GENERATOR	83711B	US34490456	НР	1 year	2016-03-21
4	Attenuator (3 dB)	8491A	37822	НР	1 year	2015-09-14
5	Attenuator (10 dB)	8491A	63196	НР	1 year	2015-09-14
6	Test Receiver (~ 30 MHz)	ESHS10	828404/009	R&S	1 year	2016-03-21
7	EMI Test Receiver (~ 7 GHz)	ESCI7	100722	R&S	1 year	2015-09-15
8	RF Amplifier (~ 1.3 GHz)	8447D OPT 010	2944A07684	НР	1 year	2015-09-14
9	RF Amplifier (1 \sim 26.5 GHz)	8449B	3008A02126	HP	1 year	2016-03-22
10	Horn Antenna (1 ~ 18 GHz)	3115	00114105	ETS	1 year	2016-04-21
11	DRG Horn (Small)	3116B	81109	ETS-Lindgren	1 year	2016-02-26
12	DRG Horn (Small)	3116B	133350	ETS-Lindgren	1 year	2016-02-26
13	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2015-04-21
14	Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2015-09-14
15	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
16	Power Divider	11636A	06243	НР	1 year	2015-09-14
17	DC Power Supply	6674A	3637A01657	Agilent	-	-
18	Frequency Counter	5342A	2826A12411	НР	1 year	2016-03-21
19	Power Meter	EPM-441A	GB32481702	НР	1 year	2016-03-22
20	Power Sensor	8481A	3318A94972	НР	1 year	2016-01-05
21	Audio Analyzer	8903B	3729A18901	НР	1 year	2015-09-14
22	Modulation Analyzer	8901B	3749A05878	HP	1 year	2015-09-15
23	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2015-09-14
24	Stop Watch	HS-3	812Q08R	CASIO	2 year	2016-03-22
25	LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2015-09-14
26	Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2016-03-21
27	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2016-03-21
28	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2016-03-21
29	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2016-03-21
30	Active Loop Antenna	FMZB1519	1519-031	SCHWARZBECK	2 year	2016-01-12
31	OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2016-03-22
32	Signal Generator(100 kHz ~ 40 GHz)	SMB100A	177621	R&S	1 year	2016-03-22
33	Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2016-03-22