유전체 정보 품종 분류

1. Data set

- 출처: https://dacon.io/competitions/official/236035/data

- 구성 : 해당 페이지의 Dataset Info. 참고

Dataset Info.

- **train.csv [파일]** id : 개체 고유 ID

개체정보

■ father : 개체의 가계 고유 번호 (0 : Unknown)

■ mother : 개체의 모계 고유 번호 (0 : Unknown)

■ gender: 개체 성별 (0: Unknown, 1: female, 2: male)

■ trait : 개체 표현형 정보

■ 15개의 SNP 정보: SNP_01 ~ SNP_15

■ class : 개체의 품종 (A,B,C)

- **test.csv [파일]** id : 개체 샘플 별 고유 ID

개체정보

■ father : 개체의 가계 고유 번호 (0 : Unknown)

■ mother : 개체의 모계 고유 번호 (0 : Unknown)

■ gender: 개체 성별 (0: Unknown, 1: female, 2: male)

■ trait : 개체 표현형 정보

■ 15개의 SNP 정보: SNP_01 ~ SNP_15

snp_info.csv [파일] 15개의 SNP 세부 정보

■ name : SNP 명

■ chrom : 염색체 정보

■ cm : Genetic distance

■ pos: 각 마커의 유전체상 위치 정보

2. Development

- 목표
 - 1) DACON 10%안에 들기(이름에 색깔 칠해지기)
 - 2) 데이터 처리 여러 방법으로 해보기(데이터 처리 연습)
 - SNP의 특징 반영하기
- 프로젝트 소스 : 프로젝트2.유전체정부품종분류.ipynb
- 개발 환경

Jupyter notebook

모듈 Version	Package	Version
	jupyter	1.0.0
	notebook	6.4.8
	keras	2.11.0
	matplotlib	3.5.1
	numpy	1.21.5
	pandas	1.4.2
	Python	3.9.12
	pip	21.2.4
	tensorflow	2.11.0

<데이터 분석 시각화>

각 SNP에서 서열이 차지하는 정도 시각화

train_data

상관관계 시각화

0.05	0.05
AA 0.65 0.65	0.65
AG 0.31 0.31	0.31
C A 0.2 0.2	0.2
C C 0.017 0.017	0.017
G A 0.081 0.081	0.081
G G 0.76 0.76	0.76
SNP_01 0.54 0.54	0.48
SNP_02 0.63 0.63	0.63
SNP_03 0.4 0.4	0.42
SNP_04 0.68 0.68	0.69
SNP_05 0.21 0.21	0.22
SNP_06 0.059 0.47	0.036
SNP_07 0.33 0.67	0.51
SNP_08 0.11 0.33	0.14
SNP_09 0.64 0.64	0.65
SNP_10 0.35 0.35	0.33
SNP_11 0.42 0.65	0.36
SNP_12 0.64 0.64	0.59
SNP_13 0.31 0.31	0.32
SNP_14 0.49 0.49	0.48
SNP_15 0.41 0.41	0.43
class 1 1	1
father	
gender	
mother	
trait 0.83 0.83	0.83
label_count_rank labelencoding*distance	

Label_count_rank : 각 SNP의 서열 labeling을 각 SNP에서 차지하는 count순위로 대체 후 correlation 확인

Labelencoding*distance : 각 SNP의 서열 lableing을 sklearn의 labelencoder로 대체 후 snp_info의 genetic distance 값을 곱해서 genetic distance크기를 데이터에 반영 후 correlation확인

Label_rank*count : 각 SNP의 서열 labeling을 각 SNP에서 차지하는 count순위로 대체 후 각 SNP에서 서열의 실제 count값을 곱한 후 correlation 확인