Claims

1. A 2H-benzotriazole compound of the formula

$$Ar^{1} = N N - Y^{3}$$

$$(I),$$

$$Ar^{1} = N N - Y^{1} - N N - Ar^{2}$$

$$(II),$$

Y¹ is a divalent linking group, and

 Y^3 is C_1 - C_{25} alkyl, especially C_1 - C_4 alkyl, aryl or heteroaryl, which can optionally be substituted, especially C_6 - C_{30} aryl, or C_2 - C_{26} heteroaryl, which can optionally be substituted.

$$Ar^1$$
 N and Ar^2 N N

are independently of each other a group of

formula

5

10

15

20

$$A^{22}$$
 A^{21}
 A^{23}
 A^{21}
 A^{15}
 A^{16}
 A^{17}
 A^{18}
 A^{12}
 A^{14}
 A^{18}
 A^{15}
 A^{17}
 A^{18}
 A^{18}
 A^{15}
 A^{17}
 A^{18}
 A^{18}
 A^{15}
 A^{18}
 A^{19}
 A

A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, Ā¹⁶, A¹⁷ and A¹⁸ are independently of each other H, halogen, especially fluorine, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, -NR²⁵R²⁶, C₁-C₂₄alkylthio, -PR³²R³², C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl which is substituted by G, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-

15

20

25

C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl; C2-C20heteroaryl, C2-C20heteroaryl which is substituted by G, fluorine, C1-C24alkyl, C5-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl; C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C24alkoxy which is substituted by E and/or interrupted by D, C7-C25aralkyl, C7-C25aralkyl, which is substituted by G, C7-C25aralkoxy, C7-C25aralkoxy which is substituted by G, or -CO-R28, or

A²² and A²³ or A¹¹ and A²³ are a group

two groups A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} and A^{18} , which are neighbouring to each

$$A^{31}$$
 A^{32}
 A^{33}
 A^{34}
 A^{33}
 A^{34}
 A^{35}
 A^{35}

10 other, are a group

, wherein A³¹, A³², A³³, A³⁴, A³⁵ and A³⁶ are independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C5-C12cycloalkyl, C5-C12cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C2-C20heteroaryl which is substituted by G, C2-C24alkenyl, C2-C24alkynyl, C1-C24alkoxy, C1-C24alkoxy which is substituted by E and/or interrupted by D, C7-C25aralkyl, C7-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸, wherein preferably at least one of the substituents A²¹, A^{22} , A^{23} , A^{24} , A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} and A^{18} is C_6 - C_{24} aryl which is substituted by fluorine, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_{24} perfluoroalkyl, C_6 -C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl; or C₂-C₂₆heteroaryl, especially thiophenyl, pyrrolyl, furanyl, benzoxazolyl, or benzothiazolyl, which is substituted by fluorine, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 -C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, or a group of formula

10

15

20

25

wherein X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶, and X⁸⁷ are independently of each other E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₆-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, -NR²⁵R²⁶, C₁-C₂₄alkylthio, -PR³² R³², C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl which is substituted by G, fluorine, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl; C₂-C₂₄alkenyl, C₅-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl; C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, Which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸, or

two groups X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} , and X^{87} ,

10

25

 C_{25} aralkyl, which is substituted by G, C_7 - C_{25} aralkoxy, C_7 - C_{25} aralkoxy which is substituted by G, or -CO- \mathbb{R}^{28} ,

 E^{2} is $-CR^{23}=CR^{24}$ -, especially $-CX^{68}X^{69}$ -,

 E^2 is $-SiR^{30}R^{31}$ -; $-POR^{32}$ -; especially -S-, -O-, or -NR²⁵-, wherein R^{25} is C_1 - C_{24} alkyl, or C_6 - C_{10} aryl,

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 – C_{18} alkyl, C_1 – C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 – C_{24} aryl, C_8 – C_{24} aryl which is substituted by G, C_2 – C_{20} heteroaryl, C_2 – C_{20} heteroaryl which is substituted by G, C_2 - C_{24} alkynyl, C_1 – C_2 4alkoxy, C_1 – C_2 4alkoxy which is substituted by E and/or interrupted by D, or C_7 – C_{25} aralkyl, or

 X^{78} and X^{79} , and/or X^{88} and X^{89} form a ring, especially a five- or six-membered ring, or

X⁶⁸ and X⁷⁰, X⁶⁹ and X⁷³, X⁷⁷ and X⁷⁸ and/or X⁸⁴ and X⁸⁹ are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -

C≡C-; and

15 E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen;

G is E, or C1-C24alkyl, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is

20 interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

15

20

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

5 2. A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, especially A¹², A²¹

$$X^{41}$$
 X^{42} X^{46} X^{47} X^{50} X^{51} X^{52} X^{45} X^{48} X^{49} X^{54} X^{53}

and/or A²³, are a group of formula

 X^{57} X^{58} X^{61} X^{62} X^{67} X^{66} , wherein X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{68} and X^{67} are independently of each other H, fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, C₁-C₂₄alkyl, which is optionally substituted by E and/or interrupted by D, C₁-C₂₄alkenyl, which is optionally substituted by E, C₅-C₁₂cycloalkyl, which is optionally substituted by G, C₆-C₁₈aryl, which is optionally substituted by G, C₁-C₂₄alkoxy, which is optionally substituted by G, C₁-C₂₄alkoxy, which is optionally substituted by G, C₇-C₁₈arylakoxy, which is optionally substituted by G, C₇-C₁₈arylakoxy, which is optionally substituted by G, C₇-C₂₄alkylthio, which is optionally substituted by G, Or C₆-C₁₈aralkyl, which is optionally substituted by G, Or

two groups X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} , which are neighbouring to each other,

are a group A^{93} , or A^{91} , A^{97} , wherein A^{90} , A^{91} , A^{92} , A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which

10

is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, wherein R²⁵, R²⁶ and R²⁸, D, E and G are as defined in claim 2 and preferably at least one of the substituents X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷ is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl.

3. A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, especially A¹² and/or A²³ are a group of formula

wherein

20 X⁶⁸, X⁶⁹, X⁷⁸, X⁷⁹, X⁸⁸ and X⁸⁹ are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms, X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶ and X⁸⁷ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, wherein R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, and R²⁷ is C₁-C₂₄alkyl, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$ or $-N$ and

 E^2 is -S-, -O-, or -NR²⁵-, wherein R²⁵ is C₁-C₂₄alkyl, or C₆-C₁₀aryl.

A 2H-benzotriazole compound according to claim 1, wherein 5 4.

Y3 is a group of formula

10

15

20

, wherein

 $\mathsf{R}^{41},\,\mathsf{R}^{42},\,\mathsf{R}^{43},\,\mathsf{R}^{44},\,\mathsf{R}^{45},\,\mathsf{R}^{46},\,\mathsf{R}^{47},\,\mathsf{R}^{48},\,\mathsf{R}^{49},\,\mathsf{R}^{50},\,\mathsf{R}^{51},\,\mathsf{R}^{52},\,\mathsf{R}^{53},\,\mathsf{R}^{54},\,\mathsf{R}^{55},\,\mathsf{R}^{56},\,\mathsf{R}^{57},\,\mathsf{R}^{58},\,\mathsf{R}^{59}$ R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R83, R84, R85, R86, and R87 are independently of each other H, fluorine, C1-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, -NR²⁵R²⁶, C₁-C24alkyl, which is optionally substituted by E and/or interrupted by D, C1-C24alkenyl, which is optionally substituted by E, C₅-C₁₂cycloalkyl, which is optionally substituted by G, C5-C12cycloalkoxy, which is optionally substituted by G, C6-C18aryl, which is optionally substituted by G, C₁-C₂₄alkoxy, which is optionally substituted by E and/or interrupted by D, C_6 - C_{18} aryloxy, which is optionally substituted by G, C_7 - C_{18} arylalkoxy, which is optionally substituted by G, C1-C24alkylthio, which is optionally substituted by E and/or interrupted by D, C2-C20heteroaryl which is substituted by G, or C6-C18 aralkyl, which is optionally substituted by G, or

10

15

20

R⁴³, R⁶⁵ or R⁵² are a group of formula

two groups R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , and R^{87} , which are neighbouring to each other, are a group

, wherein A⁹⁰, A⁹¹, A⁹², A⁹³, A⁹⁴, A⁹⁵, A⁹⁶ and A⁹⁷ are

independently of each other H, halogen, especially fluorine, -NR 25 R 26 , hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR 25 -, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R 28 ,

R⁶⁸, R⁶⁹, R⁷⁸, R⁷⁹, R⁸⁸ and R⁸⁹ are independently of each other C₁-C₁₈ alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl, or

R⁶⁸ and R⁶⁹, R⁷⁸ and R⁷⁹, and/or R⁸⁸ and R⁸⁹ form a ring, especially a five- or sixmembered ring, or

 R^{68} and $R^{70},\,R^{69}$ and $R^{73},\,R^{77}$ and R^{78} and/or R^{84} and R^{89} are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C=C-; and

25 E is -OR²⁹; -SR²⁹; -NR²⁵R²⁸; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; G is E, or C₁-C₂₄alkyl; wherein

10

15

20

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-; or

$$-\mathbf{v}$$

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$ $-N$

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by $-O_1$.

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or

R⁴³, or R⁵² are a group of formula R⁷¹

$$R^{70'} = R^{73'} = R^{73'} = R^{73'} = R^{74'} = R^{72'} = R^{76'} = R^{75'} = R^{7$$

 $R^{68'}$ and $R^{69'}$ are independently of each other C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms,

 $R^{70'}$, $R^{71'}$, $R^{72'}$, $R^{73'}$, $R^{74'}$, $R^{75'}$ and $R^{76'}$ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR^{25'}R^{26'}, -CONR^{25'}R^{26'}, or -COOR^{27'}.

 $R^{25'}$ and $R^{26'}$ are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, and $R^{27'}$ is C_1 - C_{24} alkyl; and

 $E^{1'}$ is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl.

5. A 2H-benzotriazole compound to claim 1, wherein Y1 is a group of formula

10

15

20

$$\begin{bmatrix} R^7 & R^7 & R^8 & R^7 & R^6 & R^7 & R^6 & R^7 & R^{14} & R^{15} & R^{14} & R^{15} & R^{15} & R^{16} & R^{16$$

A⁹⁰
A⁹¹
A⁹²

 $R^{6'}$ and $R^{7'}$ have the meaning of R^6 , or together form a group A^{50} , wherein A^{90} , A^{91} , A^{92} , and A^{93} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 -perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR 25 -, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_2 -aryl, C_6 - C_2 -aryl which is substituted by G, C_2 - C_2 0-heteroaryl, C_2 - C_2 0-heteroaryl which is substituted by E and/or interrupted by C_2 - C_2 -alkoxy, C_1 - C_2 -alkoxy, C_1 - C_2 -alkoxy which is substituted by E and/or interrupted by

20

25

D, C_7 - C_{25} aralkyl, C_7 - C_{25} aralkyl, which is substituted by G, C_7 - C_{25} aralkoxy which is substituted by E, or -CO- \mathbb{R}^{28} ,

 R^8 is C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{24} alkenyl, C_2 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R⁹ and R¹⁰ form a ring, especially a five- or six-membered ring,
R¹⁴ and R¹⁵ are independently of each other H, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, or C₂-C₂₀heteroaryl which is substituted by G,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or
C=C-, G is E, or C₁-C₂₄alkyl, and

E is $-OR^{29}$, $-SR^{29}$, $-NR^{25}R^{26}$, $-COR^{28}$, $-COR^{27}$, $-CONR^{25}R^{26}$, -CN, $-OCOOR^{27}$, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -0-, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
, or $-N$, or

 R^{27} and R^{28} are independently of each other H, C_6 – C_{18} aryl, C_6 – C_{18} aryl which is substituted by C_1 – C_{24} alkyl, or C_1 – C_{24} alkyl, or C_1 – C_{24} alkyl, or C_1 – C_{24} alkyl which is interrupted by –O-,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkyl, or C_1 - C_2 4alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

10

15

20

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

6. A 2H-benzotriazole compound to claim 1, wherein the 2H-benzotriazole compound is a compound of formula

$$A^{21} \qquad A^{21} \qquad A^{16} \qquad A^{18} \qquad A^{18} \qquad A^{23} \qquad A^{11} \qquad A^{18} \qquad A^{11} \qquad A^{11} \qquad A^{12} \qquad A^{12} \qquad A^{14} \qquad A^{12} \qquad A^{13} \qquad A^{14} \qquad A^{12} \qquad A^{13} \qquad A^{14} \qquad A^{15} \qquad A$$

(Id), wherein A¹² or A²³ are a group of formula

$$X^{41}$$
 X^{42} X^{46} X^{47} X^{50} X^{51} X^{55} X^{56} X^{59} X^{60} X^{63} X^{64} X^{48} X^{48} X^{49} X^{54} X^{53} X^{57} X^{58} X^{61} X^{62} X^{67} X^{66} . wherein

 X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other are independently of each other H, CN, fluorine, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_1 - C_2 4haloalkyl, C_6 - C_{10} aryl, which can optionally be substituted by one, or more C_1 - C_8 alkyl, or C_1 - C_8 alkoxy groups; C_1 - C_2 4alkoxy, C_1 - C_2 4alkylthio, -NR 25 R 26 , -CONR 25 R 26 , or -COOR 27 , or two groups X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} , which are neighbouring to each other,

are a group , or , wherein preferably at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, or A¹² and A²³ are a group of formula

wherein

5

15

20

X⁶⁸, X⁶⁹, X⁷⁸, X⁷⁹, X⁸⁸ and X⁸⁹ are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms, X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶ and X⁸⁷ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, which can optionally be substituted by one, or more C₁-C₈alkyl, or C₁-C₈alkoxy groups; C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

E² is -S-, -O-, or -NR²⁵-, wherein R²⁵ is C₁-C₂₄alkyl, or C₆-C₁₀aryl,

A²¹, A²² and A²⁴ are independently of each other hydrogen, halogen, especially fluorine,

C₁-C₂₄alkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, which can optionally be substituted by one, or more C₁-C₈alkyl, or C₁-C₈alkoxy groups; -NR²⁵R²⁶, -CONR²⁵R²⁶,

or -COOR²⁷, or C₂-C₁₀heteroaryl, especially a group of formula

A²² and A²³ or A¹¹ and A²³ are a group of formula

A¹¹, A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷, and A¹⁸ are independently of each other H, CN, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₁-C₂₄haloalkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, R²⁷ is C₁-C₂₄alkyl, and

Y³ is a group of formula

$$R^{70}$$
 E^1 R^{73} R^{74} R^{72} R^{76} R^{75} or R^{71} R^{72} R^{76} R^{75} , wherein

 R^{41} is hydrogen, C_1 - C_{24} alkoxy, or -OC₇- C_{18} aralkyl, R^{42} is hydrogen, or C_1 - C_{24} alkyl,

R⁴³ is hydrogen, halogen, -CONR²⁵R²⁶, -COOR²⁷,

especially ,
$$R^{70}$$
 , R^{68} , R^{69} , R^{73} , R^{70} , R^{71} , R^{72} , R^{74} , R^{72} , R^{75} , R^{75}

A^{11'}, A^{12'}, A^{13'}, and A^{14'} are independently of each other H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, E¹ is -S-, -O-, or -NR²⁵-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl, R¹¹⁰ is H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or

, wherein

15 R⁴⁴ is hydrogen, or C₁-C₂₄alkyl,

15

20

R⁴⁵ is hydrogen, or C₁-C₂₄alkyl,

R⁶⁸ and R⁶⁹ are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms,

 R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{90} , R^{91} , R^{92} , and R^{93} are independently of each other H, CN, C_1 - C_{24} alkyl, C_6 - C_{10} aryl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, -NR 25 R 26 , -CONR 25 R 26 , or -COOR²⁷,

R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, and R²⁷ is C₁-C₂₄alkyl.

A 2H-benzotriazole compound according to claim 1, wherein the 2H-benzotriazole 10 7. compound is a compound of formula

compound is a compound or formula
$$A^{41} = A^{41} = A^{$$

. wherein X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other are independently of each other H, fluorine, CN, C1-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C1-C24haloalkyl, C6-C10aryl, which can optionally be substituted by one, or more C₁-C₈alkyl, or C₁-C₈alkoxy groups;

10

15

20

25

 C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or two groups X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷, which are neighbouring to each other,

are a group , or , wherein preferably at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, or A⁴³ or A⁵² are a group of formula

wherein

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} and X^{87} are independently of each other H, CN, C_1 - C_{24} alkyl, C_6 - C_{10} aryl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, E^2 is -S-, -O-, or -NR²⁵-,

A⁴¹, A⁴² and A⁴⁴ are independently of each other hydrogen, halogen, C₁-C₂₄alkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-

$$C_{10}$$
heteroaryl, especially a group of formula or , or

 A^{51} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} and A^{60} are independently of each other H, fluorine, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein E¹ is O, S, or -NR²⁵-

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl,

or R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$ $-N$ or

R²⁷ is C₁-C₂₄alkyl, and

5

10

15

Y1 is a group of formula

, wherein R^6 is C_1 - C_{24} alkoxy, or -O- C_7 - C_{25} aralkyl, R^7 is H, or C_1 - C_{24} alkyl, R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, and $R^{25'}$ is C_1 - C_{24} alkyl, or C_6 - C_{10} aryl.

10

8. A 2H-benzotriazole compound according to claim 1, wherein the 2H-benzotriazole is a compound of formula

$$A^{23} \longrightarrow N \longrightarrow A^{23}$$

$$A^{23} \longrightarrow A^{23}$$

 R^{102} is $\mathsf{C}_1\text{-}\mathsf{C}_{24}$ alkyl, especially $\mathsf{C}_1\text{-}\mathsf{C}_{12}$ alkyl, in particular H, A^{23} is a group of formula

10

or
$$X^{65}$$
, X^{65} , X

 C_{24} alkyl, especially C_1 - C_{12} alkyl, very especially tert-butyl, or , wherein X^{51} , X^{52} , X^{53} , X^{63} , X^{64} , X^{65} and X^{66} are independently of each other fluorine, C_{1-} C_{24} alkyl, especially C_1 - C_{12} alkyl, very especially tert-butyl, C_5 - C_{12} cycloalkyl, especially cyclohexyl, which can optionally be substituted by one, or two C_1 - C_8 alkyl groups, or 1-adamantyl, C_1 - C_{24} perfluoroalkyl, especially C_1 - C_{12} perfluoroalkyl, such as CF_3 , C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, $NR^{25}R^{26}$, wherein R^{25} and R^{26} are C_6 - C_{14} aryl, especially phenyl, which can be substituted by one, or two C_1 - C_{24} alkyl groups, or R^{25} and R^{26} together form a five or six membered heterocyclic ring, especially

, or a compound of formula , or a compound of formula (IVa), especially
$$A^{12}$$
 (IVb), or A^{12} (IVc), wherein Y^3 is as defined above, or is , and

$$\mathsf{A}^{12} \text{ is } \mathsf{NR}^{25} \mathsf{R}^{26}, \qquad \mathsf{Ph} \qquad \mathsf{Ph} \qquad \mathsf{Ph} \qquad \mathsf{N} \qquad \mathsf{Ph} \qquad \mathsf{N} \qquad \mathsf{N} \qquad \mathsf{Ph} \qquad \mathsf{N} \qquad \mathsf{$$

, or , wherein R^{26} and R^{26} are C_6 - C_{14} aryl, especially phenyl, 1-naphthyl, 2-naphthyl, which can optionally be substituted by one, or two C_1 - C_8 alkyl groups, or C_1 - C_8 alkoxy groups, or

a compound of formula IVa, IVb, or IVc, wherein A¹² is

, and
$$Y^3$$
 is is

a compound of formula

5

10

and A^{23'} are independently of each other a group of formula

a compound of formula Ia, Ib, Ic, or Id, especially , wherein
$$A^{12}$$
 is H, a group of formula , or , or , or , wherein X^{43} is C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, Y^3 is a

9. A 2H-benzotriazole compound according to claim 8, wherein the 2H-benzotriazole is a compound of formula

, wherein R^{70} is $C_1\text{-}C_{24}\text{alkyl},$ especially $C_1\text{-}$

10 (IIa), very especially

group of formula

C₂₄alkoxy.

5

 C_{24} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, and R^{25} is C_1 - C_{24} alkyl, especially C_4 - C_{12} alkyl.

- 10. An electroluminescent device, comprising a 2H-benzotriazole compound according to any of claims 1 to 9.
- 10 11. The electroluminescent device according to claim 10, wherein the electroluminescent device comprises in this order
 - (a) an anode

5

15

20

- (b) a hole injecting layer and/or a hole transporting layer
- (c) a light-emitting layer
- (d) optionally an electron transporting layer and
- (e) a cathode.
- 12. The electroluminescent device according to claim 11, wherein the 2H-benzotriazole compound forms the light-emitting layer.
- 13. Use of the 2H-benzotriazole compounds according to any of claims 1 to 9 for electrophotographic photoreceptors, photoelectric converters, solar cells, image sensors, dye lasers and electroluminescent devices.