Mobile Communication DSSS and FHSS intermediate presentation

Group 6

October 29, 2014

Spread Spectrum

- Transmitting finite sequences requires a frequency band
- Spreading this band makes transmission more robust
- Use spreading schemes, that allows using the frequency band for concurrent transmission

Spread Spectrum

- Transmitting finite sequences requires a frequency band
- Spreading this band makes transmission more robust
- Use spreading schemes, that allows using the frequency band for concurrent transmission

Spread Spectrum

- Transmitting finite sequences requires a frequency band
- Spreading this band makes transmission more robust
- Use spreading schemes, that allows using the frequency band for concurrent transmission

- Let the data $d_t \in \{-1, 1\}^n$ be $d_t = [1, -1]$
- Signal bandwidth R_s

- Let the data $d_t \in \{-1, 1\}^n$ be $d_t = [1, -1]$
- Signal bandwidth R_s

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Point-wise multiply the data with chip sequence. $t_x = d_t p_n$
- Bandwidth of transmitted signal is R_c , the chip sequence's bandwidth.
- For transmission apply some phase modulation

- Point-wise multiply the data with chip sequence. $t_x = d_t p_n$
- Bandwidth of transmitted signal is *R_c*, the chip sequence's bandwidth.
- For transmission apply some phase modulation

- Point-wise multiply the data with chip sequence. $t_x = d_t p_n$
- Bandwidth of transmitted signal is *R_c*, the chip sequence's bandwidth.
- For transmission apply some phase modulation

• Point-wise multiply the signal with chip sequence.

$$d_r = t_x p_n = d_t p_n p_n = d_t$$

• This returns the original data since $p_n p_n = [0, 0, ...]$

- Point-wise multiply the signal with chip sequence. $d_r = t_x p_n = d_t p_n p_n = d_t$
- This returns the original data since $p_n p_n = [0, 0, ...]$

Narrow-band Interference

- Narrowband interference is spread in the despreading part
- Remember: spreading and despreading is the same operation
- Does not lower the SNR too much

Narrow-band Interference

- Narrowband interference is spread in the despreading part
- Remember: spreading and despreading is the same operation
- Does not lower the SNR too much

Broad-band Interference

- Despreading does not change the broad-band noise, it is uncorrelated with p_n . It's bandwidth remains the same.
- Can affect the SNR
- Transmissions of other users are received as broadband noise

Broad-band Interference

- Despreading does not change the broad-band noise, it is uncorrelated with p_n . It's bandwidth remains the same.
- Can affect the SNR.
- Transmissions of other users are received as broadband noise

Broad-band Interference

- Despreading does not change the broad-band noise, it is uncorrelated with p_n . It's bandwidth remains the same.
- Can affect the SNR.
- Transmissions of other users are received as broadband noise

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{i_j} according to chip pattern and hop to next frequency $f_{i_{i+1}}$ after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

Frequency Hopping Spread Spectrum

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{i_j} according to chip pattern and hop to next frequency $f_{i_{i+1}}$ after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{ij} according to chip pattern and hop to next frequency f_{i+1} after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{ij} according to chip pattern and hop to next frequency f_{ij+1} after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{ij} according to chip pattern and hop to next frequency f_{ij+1} after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

FHSS Example

FHSS Example

FHSS Example

FHSS Example

FHSS Example

- Robust with *narrow-band* interference, since transmission remains only for a few symbols on on frequency
- Problems with broad-band interference remain
- Other users will be perceived as narrow-band interference

- Robust with *narrow-band* interference, since transmission remains only for a few symbols on on frequency
- Problems with *broad-band* interference remain
- Other users will be perceived as narrow-band interference

- Robust with *narrow-band* interference, since transmission remains only for a few symbols on on frequency
- Problems with *broad-band* interference remain
- Other users will be perceived as narrow-band interference

DSSS ●○

DSSS

- First
- Second
- third

DSSS

- First
- Second
- third

DSSS

- First
- Second
- third

Some other frame

some test
Some more text

Some other frame

some test
Some more text
Some other text

