

# Circuitos combinacionales aritméticos (Parte II)

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid



#### **Contenidos**

- 1. Circuitos sumadores y restadores
  - > Sumadores con propagación de acarreo serie
    - Semisumador. Sumador total. Sumador de n bits con acarreo serie
  - Sumadores con acarreo anticipado
  - Sumador/Restador en complemento a 2
- 2. Circuitos de multiplicación
  - Circuito multiplicador básico
- 3. Unidades Aritmético-Lógicas (ALUs)
  - Concepto de ALU



# Circuitos sumadores y restadores



# Sumador con propagación de acarreo serie.

#### Suma decimal y binaria



Operandos: n bits

Resultado: **n+1 bits** 



# Sumador con propagación de acarreo serie. **Semisumador**



# Sumador con propagación de acarreo serie. Sumador completo



# Sumador con propagación de acarreo serie. Sumador completo



# Sumador con propagación de acarreo serie. Sumador completo



# Sumador con propagación de acarreo serie. Sumador de varios bits



# Sumador con propagación de acarreo serie. Sumador de varios bits





# Sumador con acarreo anticipado.





## Sumador con acarreo anticipado.





### Complemento a 2

- Números positivos
- Números negativos

















**Ejercicio** 





# **Unidad Aritmético-Lógica**





# **Unidad Aritmético-Lógica**

Combinacional

Bloque para la realización de operaciones aritmético-lógicas:

- Suma
  - A + B
- Resta
  - A-B
- Complemento a 2
  - B
- Comparación
  - A > B
  - A < B
  - A = B



➤ Desplazamiento a la derechaSHR (A) →

- Operaciones lógicas (bit a bit)
- > AND
- > OR
- > XOR
- > XNOR
- > NOT





#### Referencias

- "Circuitos y Sistemas Digitales". J. E. García Sánchez, D. G. Tomás, M. Martínez Iniesta. Ed. **Tebar-Flores**
- "Electrónica Digital", L. Cuesta, E. Gil, F. Remiro, McGraw-Hill
- "Fundamentos de Sistemas Digitales", T.L Floyd, Prentice-Hall

19



#### **Extra**



5x6



- > Operandos: **n bits** 
  - Resultado: 2\*n bits

8

15d

30

40

5x8 desplazado a izqda 1 p.

6x1 desplazado a izqda 1 p.

8x1 desplazado a izqda 2 p.



Binario

A \* B = A \* 
$$(b_{n-1}*2^{n-1}+b_{n-2}*2^{n-2}+...+b_1*2^1+b_0*2^0$$

ii '1s' o '0s' !!

La multiplicación binaria de dos números A (m bits) y B (n bits) consiste en una suma de tantos elementos como bits tenga B (n). Cada elemento i es el número A desplazado a la izquierda i veces si el peso correspondiente de B vale '1'. En caso contrario el elemento i es '0'.



















