

Bouteille pleine d'air ...n moles d'air - V_b

Air qui se trouve dans la bouteille... n moles.

$$p_f = p_a = 1 \text{ bar.}$$

 $T_f = ?$
 $V_f = V_b$

1. Relations entre c_V , c_p , γ , et R ou r pour un gaz parfait

On donne $c_p = 1000 \text{ J K}^{-1} \text{ kg}^{-1}$ et $r_i = 287 \text{ J K}^{-1} \text{ kg}^{-1}$. Quelle valeur doit-on attribuer à c_V et à γ ?

- On remarque que les grandeurs sont des grandeurs massiques et on utilise donc la constante spécifique des gaz parfaits.
- $c_p = c_V + r_i$...et donc $c_V = c_p r_i = 1000 287 = 713 J K^{-1} kg^{-1}$.
- $\gamma = c_p/c_V = 1000/713 = 1,402.$
- ... γ est t**oujours** supérieur à 1.
- ... γ est de l'ordre de 1,2 1,4.

On donne $c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$. Quelle valeur doit-on attribuer à c_p et à γ ?

- On remarque que les grandeurs sont des grandeurs molaires et on utilise donc la constante universelle des gaz parfaits.
- $c_p = c_V + R = 21 + 8,314 = 29,314 \text{ J mol}^{-1} \text{ K}^{-1}$.
- $\gamma = c_p/c_V = 29,314/21 = 1,396.$
- ... y est toujours supérieur à 1.
- ... γ est de l'ordre de 1,2 1,4.

2. Remplissage d'un récipient initialement vide

Un récipient de 100 litres a été initialement vidé à l'aide d'une pompe à vide. Un robinet permet de faire rentrer progressivement de l'air atmosphérique à 300 K et 1 bar.

Les parois du récipient sont adiabatiques et on donne $\gamma = c_p/c_V = 1,4$.

Quelle sera la température de l'air dans la bouteille lorsque sa pression sera égale à celle de l'atmosphère ?

Système: air qui va entrer dans la bouteille.

Système à l'état final :

Bouteille pleine d'air ...n moles d'air - V_b

Air qui se trouve dans la bouteille...

n moles.

$$p_f = p_a = 1 \text{ bar.}$$

 $T_f = ?$
 $V_f = V_b$

Transformation: pression extérieure constante, adiabatique mais pas quasistatique.

Inconnues: n, T_f et V_i.

Équations:

- Équation des gaz parfaits à l'état initial et à l'état final.
- Équation du premier principe.

2. Remplissage d'un récipient initialement vide

Système: air qui va entrer dans la bouteille.

Système à l'état final :

Bouteille pleine d'air ...n moles d'air - V_b

Air qui se trouve dans la bouteille...

n moles.

 $p_f = p_a = 1 \text{ bar.}$ $T_f = ?$

 $V_f = V_b$

Transformation: pression extérieure constante, adiabatique mais pas quasistatique.

Inconnues: n, T_f et V_i.

Équations

- Équation des gaz parfaits à l'état initial et à l'état final :
 - $V_i = nRT_i/p_i + V_b = nRT_a/p_a + V_b$.
 - $V_b = nRT_f/p_a$.
- Équation du premier principe :
 - $\Delta U = nc_V \Delta T = W_p \dots$ car la transformation est adiabatique.
 - ... avec $W_p = \int_{\text{état initial}}^{\text{état final}} -p_{\text{ext}}.dV$.

2. Remplissage d'un récipient initialement vide

Système: air qui va entrer dans la bouteille.

Système à l'état final :

Bouteille pleine d'air ...n moles d'air - V_b

Air qui se trouve dans la bouteille...

n moles.

$$p_f = p_a = 1 \text{ bar.}$$

 $T_f = ?$

$$V_f = V_b$$

Équations

- Équation des gaz parfaits à l'état initial et à l'état final :
 - $V_i = nRT_i/p_i + V_b = nRT_a/p_a + V_b$.
 - $V_b = nRT_f/p_a$.
- Équation du premier principe :
 - $\Delta U = nc_V \Delta T = W_p \dots$ car la transformation est adiabatique.
 - ... avec $W_p = \int_{\text{état initial}}^{\text{état final}} -p_{\text{ext}}.dV.$

$$\begin{aligned} nc_V(T_f - T_i) &= -p_a(V_f - V_i) & \rightarrow nc_V(T_f - T_a) &= -p_a\left(V_b - nR\frac{T_a}{p_a} - V_b\right) & \rightarrow nc_V(T_f - T_a) &= nRT_a \\ (R + c_V)T_a &= c_VT_f & \rightarrow T_f = \frac{c_p}{c_V}T_a &= \gamma T_a \end{aligned}$$

Application numérique : $T_f = 1.4 \times 300 = 420 \text{ K}$

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

- a) Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.
- b) Le gaz est détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres puis chauffé à volume constant jusqu'à 100°C. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

Système: la mole de gaz qui subit deux transformations, a1 et a2.

Transformation a1: apport de chaleur isovolume de 25°C à 100°C.

$$Q = nc_v \Delta T = 1 \times 21 \times 75 = 1575 J.$$

$$\Delta U = nc_V \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

... et $W_p = 0$ J, soit parce que dV = 0, soit (aussi) parce que $W_p = \Delta U - Q$.

Transformation a2: détente isotherme quasistatique de $V_i = 10 L à V_f = 50 L à T = 100°C$.

On ne sait pas calculer directement Q: l'apport de chaleur n'est ni isovolume, ni isobare.

On sait calculer $\Delta U = nc_v \Delta T = 0$ J.

On sait calculer W_n:

$$W_p = \int_{V_i}^{V_f} -p_{ext}. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -p. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -nRT \frac{dV}{V} \quad \Rightarrow W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right)$$

Cas général Transformation quasistatique Gaz parfait Transformation isotherme

3. Transformations équivalentes

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

a) Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

Système: la mole de gaz qui subit deux transformations, a1 et a2.

Transformation a1: apport de chaleur isovolume de 25°C à 100°C.

$$Q = nc_V \Delta T = 1 \times 21 \times 75 = 1575 J.$$

$$\Delta U = nc_V \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

... et $W_p = 0$ J, soit parce que dV = 0, soit (aussi) parce que $W_p = \Delta U - Q$.

Transformation a2: détente isotherme quasistatique de $V_i = 10 \text{ L}$ à $V_f = 50 \text{ L}$ à $T = 100^{\circ}\text{C}$.

On ne sait pas calculer directement Q: l'apport de chaleur n'est ni isovolume, ni isobare.

On sait calculer $\Delta U = nc_V \Delta T = 0$ J.

On sait calculer W_p:

$$W_p = \int_{V_i}^{V_f} -p_{\rm ext}.\,dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -p.\,dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -nRT\frac{dV}{V} \quad \Rightarrow W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right).$$

Application numérique :
$$W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right) = -1 \times 8,314 \times 373,15 \times \ln\left(\frac{50}{10}\right) = -4993,1$$
 J.

On peut maintenant déterminer $Q = \Delta U - W_p = 4993,1 J.$

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

a) Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

Système: la mole de gaz qui subit deux transformations, a1 et a2.

Transformation a1: apport de chaleur isovolume de 25°C à 100°C.

$$Q = nc_V \Delta T = 1 \times 21 \times 75 = 1575 J.$$

$$\Delta U = nc_V \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

... et $W_p = 0$ J, soit parce que dV = 0, soit (aussi) parce que $W_p = \Delta U - Q$.

Transformation a2: détente isotherme quasistatique de $V_i = 10 \text{ L}$ à $V_f = 50 \text{ L}$ à $T = 100^{\circ}\text{C}$.

On ne sait pas calculer directement Q: l'apport de chaleur n'est ni isovolume, ni isobare.

On sait calculer $\Delta U = nc_v \Delta T = 0$ J.

On sait calculer W_n:

$$W_p = \int_{V_i}^{V_f} -p_{ext}. dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -p. dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -nRT \frac{dV}{V} \quad \Rightarrow W_p = -nRT \times ln \left(\frac{V_f}{V_i}\right).$$

Application numérique : $W_p = -nRT \times ln\left(\frac{V_f}{V_i}\right) = -1 \times 8,314 \times 373,15 \times ln\left(\frac{50}{10}\right) = -4993,1 \text{ J}.$

On peut maintenant déterminer $Q = \Delta U - W_p = 4993,1 \text{ J}.$

Pour l'ensemble de la transformation a = a1 + a2 :

$$Q(a) = Q(a1) + Q(a2) = 1575 + 4993,1 = 6568,1 J.$$

$$W_p(a) = W_p(a1) + W_p(a2) = 0 - 4993,1 = -4993,1 J.$$

$$\Delta U(a) = \Delta U(a1) + \Delta U(a2) = 1575 + 0 = 1575$$
 J.

... et on vérifie bien que $\Delta U(a) = W_p(a) + Q(a)$.

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

Le gaz est détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres puis chauffé à volume constant jusqu'à 100°C. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz...

Système: la mole de gaz qui subit deux transformations, b1 et b2.

Transformation b1: détente isotherme quasistatique de $V_i = 10 \text{ L}$ à $V_f = 50 \text{ L}$ à $T = 25^{\circ}\text{C}$.

On ne sait pas calculer directement Q: l'apport de chaleur n'est ni isovolume, ni isobare.

On sait calculer $\Delta U = nc_V \Delta T = 0$ J.

On sait calculer W_n:

$$W_p = \int_{V_i}^{V_f} -p_{ext}. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -p. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -nRT \frac{dV}{V} \quad \Rightarrow W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right)$$

Cas général

Transformation quasistatique Gaz parfait

Transformation isotherme

Application numérique :
$$W_p = -nRT \times ln\left(\frac{V_f}{V_i}\right) = -1 \times 8,314 \times 298,15 \times ln\left(\frac{50}{10}\right) = -3989,5$$
 J.

On peut maintenant déterminer $Q = \Delta U - W_p = 3989,5 J$.

3. Transformations équivalentes

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

b) Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

Système: la mole de gaz qui subit deux transformations, b1 et b2.

Transformation b1: détente isotherme quasistatique de $V_i = 10 \text{ L}$ à $V_f = 50 \text{ L}$ à $T = 25^{\circ}\text{C}$.

On ne sait pas calculer directement Q: l'apport de chaleur n'est ni isovolume, ni isobare.

On sait calculer $\Delta U = nc_V \Delta T = 0$ J.

On sait calculer W_n:

$$W_p = \int_{V_i}^{V_f} -p_{ext}. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -p. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -nRT \frac{dV}{V} \quad \Rightarrow W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right)$$

Application numérique :
$$W_p = -nRT \times ln\left(\frac{V_f}{V_i}\right) = -1 \times 8,314 \times 298,15 \times ln\left(\frac{50}{10}\right) = -3989,5$$
 J.

On peut maintenant déterminer $Q = \Delta U - W_p = 3989,5 J$.

Transformation b2: apport de chaleur isovolume de 25°C à 100°C.

$$Q = nc_V \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

$$\Delta U = nc_V \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

... et $W_p=0$ J, soit parce que dV=0, soit (aussi) parce que $W_p=\Delta U-Q$.

3. Transformations équivalentes

Une mole d'oxygène ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes :

b) Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasistatique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

Système: la mole de gaz qui subit deux transformations, b1 et b2.

Transformation b1: détente isotherme quasistatique de $V_i = 10 \text{ L à } V_f = 50 \text{ L à T} = 25^{\circ}\text{C}$.

On ne sait pas calculer directement Q: l'apport de chaleur n'est ni isovolume, ni isobare.

On sait calculer $\Delta U = nc_V \Delta T = 0$ J.

On sait calculer W_D:

$$W_p = \int_{V_i}^{V_f} -p_{ext}. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -p. \, dV \quad \Rightarrow W_p = \int_{V_i}^{V_f} -nRT \frac{dV}{V} \quad \Rightarrow W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right)$$

 $\textbf{Application numérique}: W_p = -nRT \times \ln\left(\frac{V_f}{V_i}\right) = -1 \times 8,314 \times 298,15 \times \ln\left(\frac{50}{10}\right) = -3989,5 \text{ J}.$

On peut maintenant déterminer $Q = \Delta U - W_p = 3989,5 \text{ J.}$

Transformation b2: apport de chaleur isovolume de 25°C à 100°C.

$$Q = nc_V \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

$$\Delta U = nc_v \Delta T = 1 \times 21 \times 75 = 1575 \text{ J}.$$

... et $W_p = 0$ J, soit parce que dV = 0, soit (aussi) parce que $W_p = \Delta U - Q$.

Pour l'ensemble de la transformation b = b1 + b2 :

$$Q(b) = Q(b1) + Q(b2) = 3989.5 + 1575 = 5564.5 J.$$

$$W_p(b) = W_p(b1) + W_p(b2) = -3989,5 + 0 = -3989,5 J.$$

$$\Delta U(b) = \Delta U(b1) + \Delta U(b2) = 0 + 1575 = 1575$$
 J.

... et on vérifie bien que $\Delta U(b) = W_p(b) + Q(b)$... Ainsi que $\Delta U(b) = \Delta U(a)$

Bouteille pleine d'air ...n moles d'air - V_b

Air qui se trouve dans la bouteille... n moles.

$$p_f = p_a = 1 \text{ bar.}$$

 $T_f = ?$
 $V_f = V_b$