

CHEMISTRY Chapter 21

ÁTOMO DE CARBONO

QUÍMICA ORGÁNICA

Denominada también química de los compuestos de carbono debido a que en ella se estudia a todos aquellos compuestos de carbono naturales o sintetizados en laboratorio.

Compuestos tales como el CO, CO_2 , CN^- , CNO^- , CO_3^{2-} , aunque presentan carbono, no son compuestos orgánicos, son inorgánicos.

Ejm:

- *CO₂
- *CO
- *H₂CO₃
- *HCN
- *NH₄CNO

ANTECEDENTES

Jacob Berzelius propuso la teoría vitalista. Creyó que solo los seres vivos producían compuestos orgánicos debido a una "fuerza vital"

Luego, en 1828, Friedrich Wöhler sintetizó por primera vez un compuesto orgánico (urea) a partir de uno inorgánico (cianato de amonio)

COMPUESTOS ORGÁNICOS

- Tiene dos grupos de elementos.
 - Organògenos: C, H, O, N Secundarios: P, S, F, I, Br
- Son compuestos covalentes.
- No soportan altas temperaturas, son termolábiles.
- · En general son poco solubles en agua, pero sí en solventes orgánicos (bencina, acetona, tetra-cloruro de carbono).
- En general no conducen la electricidad.
- Son usados como combustibles.
- Presentan isómeros, compuestos con la misma fórmula global con distintas propiedades.

Propiedades del átomo de carbono

Tetravalencia

En compuestos orgánicos presenta cuat pares enlazantes.

Covalenci

<u>a</u>

Autosaturación:

Los atomos de carbono se unen entre ellos mismos generando cadenas carbonadas.

Las diferentes hibridaciones que presenta el carbono son

Hibridación	Formada por	Forma en el espacio	Ángulos	Tipos de enlaces C-C	Grupo represen- tativo
sp ³	un orbital "s" y tres orbitales "p"	Tetraédrica	109*	sencillos	alcanos
sp ²	un orbital "s" y dos orbitales "p"	Trigonal -planar	120*	dobles	alquenos
sp	un orbital "s" y un orbital "p"	Lineal HC=CH	180*	triples	alquinos

$$-\overset{sp^{3}}{C} - \overset{l}{C} \overset{sp^{3}}{-} \qquad -\overset{sp^{2}}{C} = \overset{l}{C} \overset{sp^{2}}{-} \qquad -\overset{sp}{C} \equiv \overset{sp}{C} -$$

Enlace Simple

Enlace Doble

Enlace Triple

$$=C=$$

TIPOS DE ENLACE:

CATEGORIA DE CARBONOS:

Obs: Solo para carbonos saturados

Indique el número de carbonos con hibridación sp³, sp² y sp (en ese orden).

Resolución:

$$\begin{array}{c|c} \mathbf{CH_3} \\ & & \\ \mathbf{CH_2} - \mathbf{C} - \mathbf{CH_2} - \mathbf{C} - \mathbf{CH_3} \\ & & \\ \mathbf{CH_2} & \mathbf{CH_2} & \mathbf{CH_3} - \mathbf{C} - \mathbf{C} \equiv \mathbf{CH} \\ \mathbf{CH_2} & & \\ \mathbf{CH_3} & & \\ \mathbf{CH} & & \\ \mathbf{CH}_3 & & \\ \mathbf{CH} & & \\ \mathbf{CH}_3 & & \\ \mathbf{CH} & & \\ \mathbf{CH}_2 & & \\ \mathbf{CH}_3 & & \\ \mathbf{CH} & & \\ \mathbf{CH}_3 &$$

$$\triangle$$
 sp²= 4

$$sp^3 = 9$$

Rpta 9; 4 y 3

Indique el número de carbonos con hibridación sp³, sp² y sp (en ese orden).

Resolución:

$$sp^{3} = 8$$

Rpta

8; 6 y 3

Indique verdadero (V) o falso (F), según corresponda.

Resolución:

 Todos los compuestos orgánicos son insolubles en agua.

• El carbono hibridizado en sp² es lineal.

La tetravalencia del carbono le permite formar 4 enlaces covalentes estables.

Indique verdadero (V) o falso (F), según corresponda.

Resolución:

- Los compuestos orgánicos son resistentes al calor.
- La autosaturación del carbono permite la formación de (V) cadenas carbonadas.
- El carbono hibridizado en sp es lineal con ángulo de (V)

 180°

Para la fórmula mostrada.

$$\begin{array}{ccc} \mathrm{CH_3} & \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ \mathrm{CH_3} & \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ \mathrm{CH_3} - \mathrm{C} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_3} \\ \mathrm{CH} = \mathrm{CH} - \mathrm{C} \equiv \mathrm{CH} \end{array}$$

Determine el valor de $Q = \frac{A+B}{C-D}$ siendo

A: número de carbonos primarios.

B: número de carbonos secundarios.

C: número de carbonos terciarios.

D: número de carbonos cuaternarios.

Resolución:

$$Q = \frac{A + B}{C - D}$$
 $Q = \frac{5 + 2}{2 - 1}$ $Q = 7$

Los cicloalquenos son hidrocarburos cuyas cadenas se encuentran cerradas y cuentan con uno o más dobles enlaces covalente. En la molécula que se muestra a continuación, determine el número de enlaces sigma (σ) y pi (π).

Tipo	σ	π
Cantidad	21	3

7

La química orgánica abarca el estudio de un gran número de sustancias formadas por carbono, hidrógeno, oxígeno y nitrógeno, que dan lugar a diversas funciones orgánicas como hidrocarburo, alcohol, aldehído, ácidos carboxílico, amina, etc. Los compuestos orgánicos se pueden reconocer por presentar propiedades comunes a todos ellos como ser termolábiles (descomponerse con la temperatura) y disolverse en solventes orgánicos.

Indique la secuencia correcta de verdadero (V) o falso (F) con respecto a las características de los compuestos orgánicos.

- a. Son moleculares y presentan enlaces covalentes. (v
- b. Pueden ser sólidos, líquidos o gaseosos. (F)
- c. Sus propiedades químicas dependen del grupo funcional característico. (V)

