Comparação de tecnicas de regressão Qualidade do Vinho



por Leonardo Reneres dos Santos





### Introdução

Neste projeto, buscou-se realizar uma análise comparativa de modelos de regressão aplicados ao \*Wine Quality Dataset\* da UCI Machine Learning Repository, que contém dados físico-químicos de vinhos. Utilizaram-se métricas de desempenho, como erro quadrático médio (MSE), erro absoluto médio (MAE) e coeficiente de determinação (R²), para avaliar a precisão dos modelos e identificar o mais adequado para prever de forma precisa a qualidade dos vinhos.

### Introdução

O trabalho se estrutura nos seguintes objetivos:

- 1. Avaliar a precisão de modelos de regressão, incluindo Regressão Linear, SVR, Random Forest e técnicas de Boosting, para prever a qualidade do vinho.
- 2. Comparar e interpretar as métricas de desempenho dos modelos.
- 3. Identificar vantagens e limitações de cada modelo em termos de complexidade, interpretabilidade e sensibilidade a ruídos e \*outliers\*.
- 4. Dada as características da base de dados utilizada, explorar os impactos provenientes do tamanho da base de dados utilizada em cada um dos algoritmos.



### Trabalhos relacionados

#### Trabalho principal (original e base outras sitações):

Cortez, P., Antonio Luíz Cerdeira, Fernando Almeida, Telmo Matos and José Reis. "Modeling wine preferences by data mining from physicochemical properties." Decis. Support Syst. 47 (2009): 547-553.

https://www.semanticscholar.org/paper/Modeling-wine-preferences-by-data-mining-from-Cortez-Cerdeira/bf15a0ccc14ac1deb5cea570c870389c16be019c?utm\_source=direct\_link

#### Outros trabalhos (usam o trabalho original como citação):

- Angus, D. C.. "Modeling Wine Quality from Physicochemical Properties." (2019).
  - https://www.semanticscholar.org/paper/Modeling-Wine-Quality-from-Physicochemical-Angus/f9c457828e4e26ab2ae6f0f9a4cea66c98767df6?utm\_source=direct\_link
- Agyemang, Perpetual O.. "Modeling the Preference of Wine Quality Using Logistic Regression Techniques Based on Physicochemical Properties." (2010).
  - https://www.semanticscholar.org/paper/Modeling-the-Preference-of-Wine-Quality-Using-Based-Agyemang/a5c6f899b1ac4b57805102252be02ddc8ec2b5c2?utm\_source=direct\_link
- Nebot, Àngela, Francisco Mugica and Antoni Escobet. "Modeling Wine Preferences from Physicochemical Properties using Fuzzy Techniques." International Conference on Simulation and Modeling Methodologies, Technologies and Applications (2015).
  - o <a href="https://www.semanticscholar.org/paper/Modeling-Wine-Preferences-from-Physicochemical-Nebot-Mugica/e7c34d5b766df595105a9732355bb7dfb0f1dada?utm">https://www.semanticscholar.org/paper/Modeling-Wine-Preferences-from-Physicochemical-Nebot-Mugica/e7c34d5b766df595105a9732355bb7dfb0f1dada?utm</a> source=direct link



### Fundamentos

O projeto utiliza o \*Wine Quality Dataset\* do repositório da UCI Machine Learning, que contém 6497 amostras, sendo 1599 de vinhos tintos e 4898 de vinhos brancos. Cada amostra é caracterizada por 11 variáveis físico-químicas (como acidez, teor alcoólico e pH) e uma variável de saída que representa a qualidade do vinho em uma escala de 0 a 10.

A implementação foi realizada em Python, utilizando bibliotecas como scikit-learn, pandas, numpy e matplotlib para visualização dos resultados.

### Apresentação da Base de Dados

Base de dados Wine Quality - contém informações sobre a qualidade do vinho.

| Variável             | Descrição                          |
|----------------------|------------------------------------|
| fixed acidity        | Acidez fixa do vinho.              |
| volatile acidity     | Acidez volátil do vinho.           |
| citric acid          | Ácido cítrico do vinho.            |
| residual sugar       | Açúcar residual no vinho.          |
| chlorides            | Cloreto no vinho.                  |
| free sulfur dioxide  | Dióxido de enxofre livre no vinho. |
| total sulfur dioxide | Dióxido de enxofre total no vinho. |
| density              | Densidade do vinho.                |
| рН                   | pH do vinho.                       |
| sulphates            | Sulfato no vinho.                  |
| alcohol              | Teor alcoólico do vinho.           |
| quality              | Nota de qualidade do vinho.        |



### Fundamentos

Para avaliar o desempenho dos modelos de regressão aplicados, são usadas métricas como:

- \*\*Erro Quadrático Médio (MSE)\*\*: mede o erro médio ao quadrado entre as previsões e valores reais.
- \*\*Erro Absoluto Médio (MAE)\*\*: indica a magnitude média do erro entre previsões e valores observados.
- \*\*Coeficiente de Determinação (R²)\*\*: indica a proporção da variabilidade explicada pelo modelo.
- Time: medida de tempo usava para comparação entre os algoritmos





### Fundamentos

Em busca de melhores comparações além das implementações dos algoritmos em sua forma pura, foram realizados testes com:

Tunning dos melhores modelos em busca da melhor eficacia de resulatdos

Validação cruzada \*k-fold\* com k=5, dividindo os dados em cinco partes para uma avaliação mais estável e menos sujeita a \*overfitting\*.

Implementação com Modelos híbridos regressão:

Os modelos são:

Aqui estão algumas combinações que usaremos:

- Random Forest + Gradient Boosting (meta: Linear Regression)
- .. Random Forest + Gradient Boosting (meta: Ridge Regression)
- 1. Random Forest + AdaBoost (meta: Linear Regression)
- Gradient Boosting + AdaBoost (meta: Ridge Regression)

### Metodologia

Definição do objetivo/Seleção dos dados/Limpeza dos dados.

Aplicação das técnicas de mineração.

Avaliação/Comparação dos resultados obtidos.

Objetivo: Avaliação e análise comparativa e detalhada quanto ao desempenho de diversos modelos de regressão aplicados à predição da qualidade de vinhos.

Seleção da base de dados :
\*Wine Quality Dataset\* devida a
sua característica de subdivisão :
6497 amostras, sendo 1599 de
vinhos tintos e 4898 de vinhos
brancos.

Foram implementadas 4 formas de aplicação de técnicas :

- Algoritmos puros.
- Tunning dos melhores modelos.
- Croos Validation
- Modelos Hibridos.

Os resultados de cada fase – teste inicial, tuning, validação cruzada e Modelos Hibridos – foram comparados usando MSE, MAE, R² e TIME, identificando o modelo com melhor desempenho geral e o impacto das etapas de otimização e validação.

### Metodologia

Implementação e Teste Inicial

Otimização (Tuning) dos Melhores Modelos

Validação Cruzada

Implemetação de Modelos Hibridos

Foram implementados e testados os modelos de Regressão Linear, Random Forest, Gradient Boosting e Suporte a Vetores de Regressão (SVR) com parâmetros padrão, aplicados separadamente nas bases de vinhos tintos e brancos. Avaliamos o desempenho inicial com as métricas MSE, MAE, R<sup>2</sup> e o tempo de execução (TIME).

Após os testes iniciais, foram selecionados os três modelos com melhor desempenho (Random Forest, Gradient Boosting e SVR) para otimização por tuning de hiperparâmetros, usando grid search e random search. Os modelos otimizados foram então comparados com seus resultados iniciais.

Para avaliar a robustez dos modelos, aplicamos validação cruzada k-fold com k=5, o que permitiu uma média de desempenho mais confiável e minimizou o overfitting. Os resultados da validação foram comparados com os das etapas anteriores.

Com o objetivo
complementar a análise
realizada, foi proposto o
adicionamento de
modelos de regressão
híbridos para teste e
treinamento, em busca
de resultados melhores
que os modelos puros





### Pré-Processamento e Limpeza dos Dados

Preparar os dados para a análise de regressão.

1 Alteração do tipo dos dados

Com a importação, foi necessária a alteração do tipo dos dados de objeto para real (float) Verificação de valores faltantes

Não foi necessária a exclusão de valores faltantes

Remoção de outliers

Converter dados para o formato adequado para a análise

### Remoção de outiers

#### **Antes**





### Remoção de outiers

#### Depois





# Normalização/Escalonamento de Variáveis numéricas

| $\rightarrow$ | Da                    | dos normalizad                                                           | los DF1:                               | :                                                        |                                                |                                                                     |                                                                        |                                                                       |   | _  |                       |                                                                     | tt pr                                      |                                                          |                                                                       |                                                                     |                                                                        |                                                                       |   |
|---------------|-----------------------|--------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|---|----|-----------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|---|
|               | 1<br>2<br>3<br>4<br>5 | fixed acidit<br>0.269231<br>0.307692<br>0.307692<br>0.634615<br>0.269231 | 2                                      | 0.397260<br>0.520548<br>0.438356<br>0.109589<br>0.397260 | 0.0000<br>0.0000<br>0.0526<br>0.7368<br>0.0000 | 00<br>00<br>32<br>42                                                | dual sugar<br>0.272727<br>0.909091<br>0.636364<br>0.272727<br>0.272727 | chlorides<br>0.066318<br>0.104712<br>0.094241<br>0.064572<br>0.066318 | \ | ±* | 1<br>2<br>3<br>4<br>5 | 0.26<br>0.30                                                        | idity vo:<br>9231<br>7692<br>7692<br>4615  | 0.397260<br>0.520548<br>0.438356<br>0.109589<br>0.397260 | citric a<br>0.0000<br>0.0000<br>0.0526<br>0.7368<br>0.0000            | 00<br>00<br>32<br>42                                                | dual sugar<br>0.272727<br>0.909091<br>0.636364<br>0.272727<br>0.272727 | chlorides<br>0.066318<br>0.104712<br>0.094241<br>0.064572<br>0.066318 | \ |
|               | 1<br>2<br>3<br>4<br>5 | free sulfur d                                                            | 0.40<br>0.96<br>0.56<br>0.64<br>0.40   | total sulfu                                              | 0.388889<br>0.847222<br>0.666667<br>0.750000   | density<br>0.685039<br>0.586614<br>0.606299<br>0.704724<br>0.685039 | 0.625000<br>0.326923<br>0.384615<br>0.288462                           | sulphates<br>0.182540<br>0.277778<br>0.253968<br>0.198413<br>0.182540 | \ |    | 1<br>2<br>3<br>4<br>5 | free sulf                                                           | ur dioxide<br>0.46<br>0.96<br>0.56<br>0.64 | )<br>5<br>5                                              | r dioxide<br>0.388889<br>0.847222<br>0.666667<br>0.750000<br>0.388889 | density<br>0.685039<br>0.586614<br>0.606299<br>0.704724<br>0.685039 | 0.625000<br>0.326923<br>0.384615<br>0.288462                           | sulphates<br>0.182540<br>0.277778<br>0.253968<br>0.198413<br>0.182540 |   |
|               | 2<br>3<br>4           | alcohol qua<br>0.178571<br>0.250000<br>0.250000<br>0.250000<br>0.178571  | 0.4<br>0.4<br>0.4<br>0.4<br>0.6<br>0.4 |                                                          |                                                |                                                                     |                                                                        |                                                                       |   |    | 2<br>3<br>4           | alcohol<br>0.178571<br>0.250000<br>0.250000<br>0.250000<br>0.178571 | quality<br>0.4<br>0.4<br>0.4<br>0.6<br>0.4 |                                                          |                                                                       |                                                                     |                                                                        |                                                                       |   |

### Aplicação de Técnicas de Regressão Iniciais

| Resultados para df1: |          |          |          |          |  |  |  |  |
|----------------------|----------|----------|----------|----------|--|--|--|--|
|                      | MSE      | MAE      | R2       | Time     |  |  |  |  |
| Linear Regression    | 0.015127 | 0.099742 | 0.471607 | 0.027801 |  |  |  |  |
| SVR                  | 0.015227 | 0.100440 | 0.468109 | 0.071398 |  |  |  |  |
| Random Forest        | 0.013461 | 0.084473 | 0.529821 | 0.542246 |  |  |  |  |
| Gradient Boosting    | 0.015179 | 0.095235 | 0.469785 | 0.226127 |  |  |  |  |
| Resultados para df   | 2:       |          |          |          |  |  |  |  |
|                      | MSE      | MAE      | R2       | Time     |  |  |  |  |
| Linear Regression    | 0.016421 | 0.101326 | 0.303542 | 0.005392 |  |  |  |  |
| SVR                  | 0.014714 | 0.096663 | 0.375961 | 0.376163 |  |  |  |  |
| Random Forest        | 0.011536 | 0.076035 | 0.510738 | 2.041423 |  |  |  |  |
| Gradient Boosting    | 0.014849 | 0.094340 | 0.370217 | 0.629812 |  |  |  |  |

#### Análise dos resultados iniciais

#### Base de dados do vinho tinto = df1

Para primeira base de dados o modelo que apresentou melhor desempenho foi a **Random Forest**, uma vez que esta teve os **menores valores** de MSE(Erro Quadrático Médio) e MAE (erro médio absoluto) e um maior valor de R2 (Coeficiente de Determinação)

#### Base de dados do vinho branco = df2

Também para segunda base de dados o modelo que apresentou melhor desempenho foi a **Random Forest**, uma vez que esta teve os **menores valores** de MSE(Erro Quadrático Médio) e MAE (erro médio absoluto) e um **maior valor** de R2 (Coeficiente de Determinação)

Portanto em situações normais o Modelo Random forest se mostra mais eficiente e ambas as situações

# Aplicação de Técnicas de Regressão Iniciais



DF1 = Base de dados Vinho Tinto DF2 = Base de dados Vinho Branco



### Aplicação de Técnicas de

# Regressão Iniciais





#### Análise dos resultados após a tunagem

#### Base de dados do vinho tinto = df1

Para primeira base de dados o modelo que apresentou melhor desempenho foi a **Random Forest**, uma vez que esta teve os **menores valores** de MSE(Erro Quadrático Médio) e MAE (erro médio absoluto) e um **maior valor de R2** (Coeficiente de Determinação)

Todavia devido a seu **alto tempo** de treinamento e teste ser longo, em aplicações em que o tempo de execução seja um fator importante indicado seria o **SRV com Tunagem** 

#### Base de dados do vinho branco = df2

Já para segunda base de dados o modelo que apresentou melhor desempenho foi a **Random Forest**, com uma leve vantagem sobre o Gradient Boostion uma vez que esta teve os **menores valores** de MSE(Erro Quadrático Médio) e MAE (erro médio absoluto) e um **maior valor de R2** (Coeficiente de Determinação)

Todavia este sofre o mesmo problema do Random Forest quando ao seu tempo de execução, sendo extremamente lento.

Portanto é necessária interpretação do utilizador da ferramenta para determinar qual o melhor algoritmo que pode ser aplicado para seu objetivo.

### Tunagem dos Parâmetros

Assim como específicado, foram escolhidos os modelos de SVR, Random Forest e Gradient Boosting para a avaliação da tunagem de parâmetros

| Modelo                   | Melhor Modelo                                            | MSE                 | MAE                 | R²                                | Tempo (s)                  |
|--------------------------|----------------------------------------------------------|---------------------|---------------------|-----------------------------------|----------------------------|
| SVR                      | SVR(C=10, kernel='linear')                               | 0.015443            | 0.101737            | 0.460562                          | 3.032590                   |
| Random Forest            | DecisionTreeRegressor(max_features=1.0, random_state=42) | 0.013358            | 0.084333            | 0.533409                          | 12.062052                  |
| Gradient Boosting        | DecisionTreeRegressor(criterion='friedman_mse')          | 0.015194            | 0.099294            | 0.469265                          | 22.042699                  |
| esultados após           | s tunagem para df2:                                      | _                   | _                   | _                                 | _                          |
| esultados após<br>Modelo | s tunagem para df2:  Melhor Modelo                       | MSE                 | MAE                 | R²                                | Tempo (s)                  |
|                          | •                                                        | <b>MSE</b> 0.014714 | <b>MAE</b> 0.096663 | <b>R</b> <sup>2</sup><br>0.375961 | <b>Tempo (s)</b> 10.095348 |
| Modelo                   | Melhor Modelo                                            |                     |                     |                                   |                            |

### Aplicação de Técnicas de Regressão:

# Tunning

DF1 = Base de dados Vinho Tinto
DF2 = Base de dados Vinho Branco





### Aplicação de Técnicas de Regressão :

### Tunning





### Modelo de Técnicas de Regressão: Cross Validation



#### Base de dados do vinho tinto = df1

Para primeira base de dados o modelo que apresentou melhor desempenho foi a **Random Forest**, uma vez que esta teve os menores valores de MSE(Erro Quadrático Médio) e MAE (erro médio absoluto) e um maior valor de R2 (Coeficiente de Determinação)

#### Base de dados do vinho branco = df2

Do mesmo modo para segunda base de dados o modelo que apresentou melhor desempenho foi a **Random Forest**, uma vez que esta teve os menores valores de MSE(Erro Quadrático Médio) e MAE (erro médio absoluto) e um maior valor de R2 (Coeficiente de Determinação)

### Aplicação de Técnicas de Regressão: Cross





DF1 = Base de dados Vinho Tinto



## Aplicação de de Regressão Logística: Cross

Validation





### Aplicação de de Regressão Logística: Cross

### Validation



DF2 = Base de dados Vinho Branco





### Aplicação de Técnicas de Regressão: Cross





Modelo de Técnicas de Regressão: Modelos Hibridos

| Model           | Wine Type | MSE      | MAE      | R2       | Time      |
|-----------------|-----------|----------|----------|----------|-----------|
| Stacked Model 1 | Red       | 0.014646 | 0.090945 | 0.461022 | 3.980490  |
| Stacked Model 1 | White     | 0.012578 | 0.079236 | 0.460960 | 13.361454 |
| Stacked Model 2 | Red       | 0.014936 | 0.094623 | 0.450322 | 3.430535  |
| Stacked Model 2 | White     | 0.012657 | 0.081220 | 0.457584 | 13.326817 |
| Stacked Model 3 | Red       | 0.014711 | 0.090439 | 0.458634 | 3.658929  |
| Stacked Model 3 | White     | 0.012577 | 0.079201 | 0.461015 | 13.982182 |
| Stacked Model 4 | Red       | 0.015932 | 0.100660 | 0.413699 | 3.068662  |
| Stacked Model 4 | White     | 0.014805 | 0.094994 | 0.365542 | 6.474205  |

Stacked Model 1: Random Forest + Gradient Boosting (meta: Linear Regression)

Stacked Model 2: Random Forest + Gradient Boosting (meta: Ridge Regression)

Stacked Model 3: Random Forest + AdaBoost (meta: Linear Regression)

Stacked Model 4: Gradient Boosting + AdaBoost (meta: Ridge Regression)

#### 1. Eficácia dos Modelos (MSE, MAE, R²)

Stacked Model 1 e Stacked Model 3 são os mais precisos para ambos os tipos de vinho.

Para **vinhos tintos**, **Stacked Model 1** apresentou ligeiramente menor MSE (0.0146 vs 0.0147) e R<sup>2</sup> levemente maior (0.461 vs 0.458) do que Stacked Model 3.

Para **vinhos brancos**, Stacked Model 1 e Stacked Model 3 tiveram desempenho praticamente idêntico em MSE (0.0126) e R<sup>2</sup> (~0.461). Stacked Model 4 teve o **pior desempenho** para ambos os tipos de vinho, com MSE e MAE mais altos e R<sup>2</sup> mais baixos, indicando baixa capacidade de previsão.

Conclusão de Eficácia: Stacked Model 1 e Stacked Model 3 são os melhores em precisão para ambos os vinhos.

#### 2. Tempo de Execução

**Stacked Model 4 foi o mais rápido** para ambos os tipos de vinho (3.07 s para tintos e 6.47 s para brancos) mas com precisão inferior. Stacked Model 1 e Stacked Model 3 **foram mais lentos para vinhos brancos** (~13 segundos) e moderados para vinhos tintos (3.4–4 segundos).

Conclusão de Tempo: Stacked Model 4 é mais rápido, mas sacrifica precisão; Stacked Model 1 e Stacked Model 3 são moderados para vinhos tintos, mas consideravelmente mais lentos para brancos.

### Modelo de Técnicas de Regressão: Modelos Hibridos



### Modelo de Técnicas de Regressão: Modelos Hibridos



### Comparação dos Resultados Obtidos

#### Aplicação dos algoritmos puros:

#### Resultados para df1:

| Modelo            | MSE      | MAE      | R²       | Tempo (s) |
|-------------------|----------|----------|----------|-----------|
| Linear Regression | 0.015127 | 0.099742 | 0.471607 | 0.036982  |
| SVR               | 0.015227 | 0.100440 | 0.468109 | 0.071032  |
| Random Forest     | 0.013461 | 0.084473 | 0.529821 | 0.518728  |
| Gradient Boosting | 0.015179 | 0.095235 | 0.469785 | 0.222424  |

#### Resultados para df2:

| Modelo            | MSE      | MAE      | R²       | Tempo (s) |
|-------------------|----------|----------|----------|-----------|
| Linear Regression | 0.016421 | 0.101326 | 0.303542 | 0.006713  |
| SVR               | 0.014714 | 0.096663 | 0.375961 | 0.392594  |
| Random Forest     | 0.011536 | 0.076035 | 0.510738 | 2.027817  |
| Gradient Boosting | 0.014849 | 0.094340 | 0.370217 | 0.626956  |

#### **COM TUNING**

#### Resultados após tunagem para df1:

| Modelo            | Melhor Modelo                                            | MSE      | MAE      | R²       | Tempo (s) |
|-------------------|----------------------------------------------------------|----------|----------|----------|-----------|
| SVR               | SVR(C=10, kernel='linear')                               | 0.015443 | 0.101737 | 0.460562 | 3.032590  |
| Random Forest     | DecisionTreeRegressor(max_features=1.0, random_state=42) | 0.013358 | 0.084333 | 0.533409 | 12.062052 |
| Gradient Boosting | DecisionTreeRegressor(criterion='friedman_mse')          | 0.015194 | 0.099294 | 0.469265 | 22.042699 |

#### Resultados após tunagem para df2:

| Modelo            | Melhor Modelo                                            | MSE      | MAE      | R²       | Tempo (s) |
|-------------------|----------------------------------------------------------|----------|----------|----------|-----------|
| SVR               | SVR(C=1)                                                 | 0.014714 | 0.096663 | 0.375961 | 10.095348 |
| Random Forest     | DecisionTreeRegressor(max_features=1.0, random_state=42) | 0.011468 | 0.075741 | 0.513625 | 41.716616 |
| Gradient Boosting | DecisionTreeRegressor(criterion='friedman_mse')          | 0.011551 | 0.074339 | 0.510099 | 64.207976 |

#### Com Cross-Validation

#### **Resultados para Vinhos Tintos:**

| Modelo            | MSE      | MAE      | R²       | Tempo (s) |
|-------------------|----------|----------|----------|-----------|
| Linear Regression | 0.015127 | 0.099742 | 0.471607 | 0.003212  |
| SVR               | 0.014842 | 0.095313 | 0.481579 | 0.072047  |
| Random Forest     | 0.013498 | 0.084495 | 0.528524 | 0.855595  |
| Gradient Boosting | 0.015037 | 0.094842 | 0.474761 | 0.430642  |

#### **Resultados para Vinhos Brancos:**

| Modelo            | MSE      | MAE      | R²       | Tempo (s) |
|-------------------|----------|----------|----------|-----------|
| Linear Regression | 0.016421 | 0.101326 | 0.303542 | 0.002931  |
| SVR               | 0.014287 | 0.093991 | 0.394056 | 0.879670  |
| Random Forest     | 0.011528 | 0.076149 | 0.511091 | 3.132886  |
| Gradient Boosting | 0.014840 | 0.094284 | 0.370607 | 0.634997  |

| Model           | Wine Type | MSE      | MAE      | R2       | Time      |
|-----------------|-----------|----------|----------|----------|-----------|
| Stacked Model 1 | Red       | 0.014646 | 0.090945 | 0.461022 | 3.980490  |
| Stacked Model 1 | White     | 0.012578 | 0.079236 | 0.460960 | 13.361454 |
| Stacked Model 2 | Red       | 0.014936 | 0.094623 | 0.450322 | 3.430535  |
| Stacked Model 2 | White     | 0.012657 | 0.081220 | 0.457584 | 13.326817 |
| Stacked Model 3 | Red       | 0.014711 | 0.090439 | 0.458634 | 3.658929  |
| Stacked Model 3 | White     | 0.012577 | 0.079201 | 0.461015 | 13.982182 |
| Stacked Model 4 | Red       | 0.015932 | 0.100660 | 0.413699 | 3.068662  |
| Stacked Model 4 | White     | 0.014805 | 0.094994 | 0.365542 | 6.474205  |

### Comparação dos Resultados Obtidos

Na análise dos modelos **Regressão Linear**, **SVR**, **Random Forest**, **Gradient Boosting** e **modelos híbridos (stacking)**, com base nas métricas **MSE**, **MAE**, **R**<sup>2</sup> e **Tempo de Execução**, observamos o desempenho em duas bases de dados de tamanhos distintos:

- df1: conjunto menor, com 1600 instâncias;
- df2: conjunto maior, com 4899 instâncias.

#### Comparação dos Resultados:

#### Modelos Padrões sem Tunagem

- No **df1**, **Random Forest** e **Gradient Boosting** alcançaram melhores resultados em MSE e R<sup>2</sup> em relação à **Regressão Linear** e ao **SVR**, mas com maior custo computacional.
- No **df2**, **Random Forest** novamente se destacou em precisão, com um tempo de execução bem maior, seguido pelo **Gradient Boosting**.

#### **Modelos com Tunagem**

A tunagem permitiu melhorias significativas para todos os modelos, com **Random Forest** e **Gradient Boosting** apresentando melhor desempenho em precisão em ambos os conjuntos de dados, mas com aumentos expressivos nos tempos de execução, especialmente para o **Random Forest** no df2.

### Comparação dos Resultados Obtidos

#### **Resultados com Cross-Validation**

Com **Cross-Validation**, **Random Forest** e **Gradient Boosting** continuaram com valores superiores de precisão. Embora o custo computacional tenha sido otimizado, ainda foi consideravelmente maior que o da **Regressão Linear**.

#### **Modelos Híbridos (Stacking)**

A introdução de modelos híbridos de empilhamento (*stacked models*) buscou melhorar a robustez e a precisão combinando modelos base:

- Stacked Model 1 e Stacked Model 3 apresentaram os melhores valores de MSE e R<sup>2</sup> para ambos os tipos de vinho, mantendo-se entre os modelos com melhores resultados de precisão, especialmente em relação ao MSE e MAE.
- Comparado aos modelos individuais, os modelos híbridos mostraram-se competitivos e com menor custo computacional que o Random Forest no conjunto maior (df2), com tempos de execução entre 3 a 13 segundos, tornando-os opções de precisão e desempenho relativamente equilibrados.
- **Stacked Model 4** obteve o menor desempenho, especialmente em vinhos brancos, com menor R<sup>2</sup> e um MSE mais alto em comparação aos outros modelos híbridos.

### Conclusão

#### Modelo de Melhor Desempenho:

Entre os modelos testados, **Random Forest** permaneceu como o modelo com maior precisão em termos de MSE e R<sup>2</sup>, tanto para df1 quanto df2. No entanto, os modelos híbridos **Stacked Model 1 e 3** destacaram-se por oferecer um desempenho competitivo com menor custo computacional.

#### Impacto do Tamanho da Base:

O tempo de execução aumentou substancialmente para **Random Forest e Gradient Boosting** com o aumento do tamanho do conjunto de dados. Os modelos híbridos mantiveram uma relação de custo-benefício mais vantajosa no conjunto maior.

### **Custo Computacional:**

**Regressão Linear contínua como a opção mais rápida**, enquanto Random Forest apresenta o maior custo computacional. Os modelos híbridos proporcionaram um equilíbrio entre desempenho e custo, adequados para cenários que demandam boa precisão sem sacrificar tanto o tempo de execução.

### Recomendação Final:

Para precisão máxima em ambas as bases, Random Forest com tunagem é o modelo recomendado. No entanto, para um compromisso entre precisão e tempo de execução, Stacked Model 1 e Stacked Model 3 são opções muito viáveis, especialmente em contextos com grandes volumes de dados.

# 10% 10% 20% 10% 40 13 50 10

### Referências:

ALMEIDA, H. M. de. Análise de regressão linear múltipla com estudo relacionado a horas de máquinas paradas na linha de produção de uma indústria de calçados. 2014. Trabalho de Conclusão de Curso (Graduação em Estatística) – Universidade Estadual da Paraíba, Centro de Ciências e Tecnologia, Campina Grande, 2014. Disponível em: <a href="https://dspace.bc.uepb.edu.br/jspui/bitstream/123456789/5167/1/PDF%20-%20Humberto%20Moreira%20de%20Almeida.pdf">https://dspace.bc.uepb.edu.br/jspui/bitstream/123456789/5167/1/PDF%20-%20Humberto%20Moreira%20de%20Almeida.pdf</a>

. Acesso em: 25 outubro. 2024. DOI: https://doi.org/10.24432/C56S3T.

CORTEZ, Paulo; CERDEIRA, A.; ALMEIDA, F.; MATOS, T.; REIS, J. Wine Quality. 2009. UCI Machine Learning Repository. DOI: <a href="https://doi.org/10.24432/C56S3T">https://doi.org/10.24432/C56S3T</a>.

DOSUALDO, D. G. Investigação de regressão no processo de mineração de dados. 2003. Dissertação (Mestrado em Ciências Matemáticas e de Computação) — Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2003. Disponível em: <a href="https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12112014-101732/pt-br.php">https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12112014-101732/pt-br.php</a>

. Acesso em: 25 out. 2024.

LOVATO, M.; WAGNER, R. Avaliação da qualidade dos vinhos de mesa suave por análises físico-químicas. Cadernos da Escola de Saúde, Curitiba, v. 2, n. 8, 2017. Disponível em:

https://portaldeperiodicos.unibrasil.com.br/index.php/cadernossaude/article/view/2365/1937

. Acesso em: 26 out. 2024.