

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC159419

1 of 77 Page:

FCC Radio Test Report FCC ID: 2ABES-KR7013

Original Grant

Report No. TB-FCC159419

Pathway Innovations and Technologies, Inc **Applicant**

Equipment Under Test (EUT)

EUT Name G-BOOK

Model No. KR7013

Series Model No. KR0512, G-BOOK, G1300

Brand Name HoverCam

Receipt Date 2018-04-14

2018-04-15 to 2018-04-21 **Test Date**

Issue Date 2018-04-23

FCC Part 15, Subpart C (15.247:2017) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Jason Xu

Ivan Su

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 77

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	16
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21

Page: 3 of 77

	8.2 Test Setup	21
	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	28
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	48
ATT	ACHMENT D BANDWIDTH TEST DATA	63
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	69
ΔΤΤ	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	72

Page: 4 of 77

Revision History

Report No.	Version	Description	Issued Date
TB-FCC159419	Rev.01	Initial issue of report	2018-04-23
THE PARTY OF THE P			Tuna Tuna
3		TOTAL COLUMN	113
MODE		THE PARTY OF THE P	4033
1000	100	at a carrier	6000
The state of the s			THE PROPERTY OF
			William I
4000			TODA
	The same		

Page: 5 of 77

1. General Information about EUT

1.1 Client Information

Applicant	:	Pathway Innovations and Technologies, Inc		
Address	:	85 Pacific Heights Blvd., Suite 100, San Diego, CA 92121, USA		
Manufacturer	03	ShenZhen Kerun Visual Technology Co., LTD		
Address		AUnit A, F/11, Bldg.1, Senyang Electronic Technology Park, Tianliao Community, Guangming High Tech Zone, Guangming New District, Shenzhen, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		G-BOOK			
Models No.	:	KR7013, KR0512, G-B	OOK, G1300		
Model Difference	•		dentical in the same PCB, layout and electrical ace is appearance color.		
	d.	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz		
ا مر دوا		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)		
TODY		RF Output Power:	802.11b: 8.96dBm 802.11g:8.83 dBm 802.11n (HT20): 8.83dBm		
Product	ŀ	Antenna Gain:	4.5dBi FPC Antenna		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
TOR		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Supply		DC Voltage Supply from DC Voltage supplied by	m AC/DC Adapter(K-E30502000U1). / Li-ion battery.		
Power Rating		AC/DC Adapter: Input: 100~240V/50~60 Output: 5V 2A DC 3.7V by 7000mAh	OHz 0.35A(Max)		
Software Version		Q410801620180409			
Hardware Version	1	V2.0	TO BE		
Connecting I/O Port(S)	•	Please refer to the Use	er's Manual		

Page: 6 of 77

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note:CH 01~CH 1	for 802.11b/g/n(HT2	0)			

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

USB Charging Mode

TX Mode

Page: 7 of 77

1.4 Description of Support Units

	_							
	Equipment Information							
Name	Name Model FCC ID/VOC Manufacturer Used "√"							
Adapter	K-E30502000U1			\checkmark				
		Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note				
Cable 1	NO	NO	1.2M	The same				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	USB Charging with TX B Mode			

For Radiated Test				
Final Test Mode Description				
Mode 2 TX Mode B Mode Channel 01/06/11				
Mode 3 TX Mode G Mode Channel 01/06/11				
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 77

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	THE PARTY OF THE P	N/A	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Padiated Emission	Level Accuracy:	. 4 60 dB
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Padiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	±4.20 dB
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 77

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 77

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2						
Standa	rd Section	Test Item	Judgment	Remark		
FCC	IC	1000 110111	ouaginone	Ttoman		
15.203	1	Antenna Requirement	PASS	N/A		
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A		
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A		
15.247(a)(2)	RSS 247	6dB Bandwidth	PASS	N/A		
10:247 (4)(2)	5.2 (1)	Odb Dandwidth				
15.247(b)	RSS 247	Peak Output Power	PASS	N/A		
10.2 17 (8)	5.4 (4)	Tour output Fower				
15.247(e)	RSS 247	Power Spectral Density	PASS	N/A		
13.247 (6)	5.2 (2)	Tower Spectral Density				
15.247(d)	RSS 247	Band Edge PASS	DASS	N/A		
15.247 (d)	5.5		FASS	IN/A		
15.247(d)&	RSS 247	Transmitter Radiated Spurious	PASS	N/A		
15.209	5.5	Emission				

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 77

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 20, 2017	Jul. 19, 2018
Radiation Emission	on Test				-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.25, 2017	Mar. 24, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.24, 2017	Mar. 23, 2018
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.24, 2017	Mar. 23, 2018
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2017	Jul. 02, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.25, 2017	Mar. 24, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
NE FUWEI SEIISUI	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 12 of 77

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Transport (MIN)	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 77

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 77

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)			
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 15 of 77

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 77

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 77

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 77

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 77

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 77

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC P	art 15 Subpart C(15.247)/	RSS-210
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 77

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Pai	t 15 Subpart C(15.247)/RS	SS-210
Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 77

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FC	CC Part 15 Subpart C(15.2	47)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 77

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 4.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type	
Tip 1	⊠Permanent attached antenna	QU)
a During	Unique connector antenna	
	☐Professional installation antenna	MILE

Page: 24 of 77

Attachment A-- Conducted Emission Test Data

Page: 25 of 77

Ιī	emr	perature:	25 ℃		F	Relative Hui	miditv:	55%	
		Voltage:	AC 12	20V/60 Hz	30		177		DATE
7	erm	ninal:	Neutr	al		10	67	TI39	
T	est	Mode:	Charg	ging with TX	(B Mode		a v		TO THE
F	Rem	ark:	Only	worse case	is reported			a V	
	30	dBuV	0.5		MHz)		Mary Mary Mary Mary Mary Mary Mary Mary	OP: AVG:	peak AVG
-	No.	Mk. F	req.	Reading Level	Correct Factor	Measure ment	- Limit	Over	
1		N	ИHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1	0.5	5380	29.01	9.58	38.59	56.00	-17.41	QP
	2	0.5	5380	18.95	9.58	28.53	46.00	-17.47	AVG
1	3	* 0.6	6419	36.00	9.59	45.59	56.00	-10.41	QP
	4	0.6	6419	22.75	9.59	32.34	46.00	-13.66	AVG
-	5	1.3	3060	22.26	9.60	31.86	56.00	-24.14	QP
	6	1.3	3060	5.90	9.60	15.50	46.00	-30.50	AVG
	7	2.4	1660	24.59	9.64	34.23	56.00	-21.77	QP
-	8	2.4	1660	11.50	9.64	21.14	46.00	-24.86	AVG
-	9	4.1	1260	23.51	9.74	33.25	56.00	-22.75	QP
1	10	4.1	1260	8.19	9.74	17.93	46.00	-28.07	AVG
-	11	13.6	6460	18.95	10.51	29.46	60.00	-30.54	QP
	12	13.6	6460	3.85	10.51	14.36	50.00	-35.64	AVG
Ŀ	Emis	ssion Leve	l= Read	Level+ Co	rrect Facto	r			

26 of 77 Page:

Page: 27 of 77

Page: 28 of 77

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Гетр				$\Delta \Delta L$								
	Volta	ge:	AC 1			Hz				_ (1115	
Ant. F	Pol.		Horiz	11.70				Millian				
Test I	Mode	:	TX E	Mo	de 2	2412	MHz		MILL			X W
Rema	ark:		Only	wor	se c	ase i	is reported			6	11/2	9
80.0	dBuV/m	1										
										FCC 15 C	3M Rad	liation
											Margir	n-6 dB
_									2		3	4 X
30								1 X	X		, *	
30								A Property Company	White the work of the second	M. L.	Lillian	Maria La Carrella
-					atra .		lu Lud	AMP T		MAN	Mu dane	
					11111111							
					M	k l	Mary Jakob Laurah Patrice					
del	MANUAL	ш	Ju/N	I J. W	/WW	Amaria	Jan					
dko	ndfothol _l Managles,	المرميها/4	W.MANIN VAN	de chapital		Amhra	The Marketine					
diede	nderni _{je Alle} je	dhannagald/N	MANA VAPA	hrujaji ju		MANALAN	THE MANIPULATION					
) by the	ndroro _{l/Madde}	Aller Sagradi Vaj	MANA LAN	hrojan ^{ik}		MANALA	John John Marine					
20				HVAN		Madera			200 400	Egg	C00 7	90 100
				70 8	30		(MHz)		300 400	500	600 7	00 100
20 30.00	00 4	0 50	60	Re	ead	ing	(MHz)	Measure	-			00 100
20 30.00		0 50		Re	30	ing	(MHz)				600 7	00 100
20 30.00	00 4	o 50	60	Re	ead	ing	(MHz)	Measure	-	C		00 100 Detec
30.00 No.	00 4	o 50	eq.	Re	ead	ing el	(MHz) Correct Factor	Measure ment	Limit	C)ver	Detec
20 30.00 No.	00 4	0 50 Fr	eq. Hz	Re L	ead _eve	ing el V	(MHz) Correct Factor dB/m	Measure ment dBuV/m	Limit	C m)ver dB	Detec
20 30.00 No.	00 4	Fr M 225.3	eq. Hz 3080	Re L	ead _eve dBu\	ing el v	(MHz) Correct Factor dB/m -18.31	Measure ment dBuV/m 32.55	Limit dBuV/r 46.00	C n -1	over dB 13.45	Detec
No.	00 4	Fr M 225.3	eq. Hz 3080 3672	5 5	ead Leve dBu\ 50.8	ing el V 86 84	Correct Factor dB/m -18.31 -15.92	Measure ment dBuV/m 32.55 35.72	Limit dBuV/r 46.00	C m -1	over dB 13.45	Detec
No.	00 4	Fr M 225.3 300.3 661.7	eq. Hz 3080 3672 1505 3453	5 5 4	eadi Leve dBu\ 50.8 51.6 14.3	ing el v 86 84 84	(MHz) Correct Factor dB/m -18.31 -15.92 -7.16 -5.45	Measure ment dBuV/m 32.55 35.72 37.18	Limit dBuV/r 46.00 46.00 46.00	C = 1	over dB 13.45 10.28 8.82 8.57	Detec QF QF
No. 1 2 3 4	00 4 Mk.	Fr M 225.3 300.3	eq. Hz 3080 3672 1505 3453	5 5 4	ead Leve dBu\ 50.8	ing el v 86 84 88	(MHz) Correct Factor dB/m -18.31 -15.92 -7.16 -5.45 -5.25	Measure ment dBuV/m 32.55 35.72 37.18 37.43	Limit dBuV/r 46.00 46.00	C C C C C C C C C C C C C C C C C C C	over dB 13.45 10.28 8.82	Detection Of the Control of the Cont
-20 30.00	00 4 Mk.	Fr M 225.3 300.3 661.7 782.3	eq. Hz 3080 3672 1505 3453	5 5 4	eadi Leve dBu\ 50.8 51.6 14.3 12.8	ing el v 86 84 88	(MHz) Correct Factor dB/m -18.31 -15.92 -7.16 -5.45	Measure ment dBuV/m 32.55 35.72 37.18 37.43 40.95	Limit dBuV/r 46.00 46.00 46.00 46.00	C C C C C C C C C C C C C C C C C C C	over dB 13.45 10.28 8.82 8.57 5.05	Detec QF QF QF

Page: 29 of 77

	nper	ature:	25	${\mathbb C}$	R	Relative Hum	idity: 5	5%	
Tes	t Vo	ltage:	AC	120V/60 Hz	N. T.		المكانيا		
Ant	t. Po	l.	Ver	tical		28	GU	1,30	
Tes	t Mo	de:	TX	B Mode 2412	2MHz		I W		MIL
Rer	mark	:	On	ly worse case	e is reported			a W	
80.0) dBu	V/m							
							FC	C 15C3M Radia	
30			D uta	1	Las Maria	3 3 AMARINA MA	ama A	5 ×	6 X
	tumber u kt	humpypp y programmy	They have been	LEPAN TO THE PROPERTY OF THE P	John John Ton				
L									
L	1.000	40	50 60	70 80	(MHz)	300	400	500 600 70	0 1000.0
30	.000 lo. N		50 60 Freq.	70 80 Reading Level	(MHz) Correct Factor	Measure- ment	400 Limit	500 600 70 Over	0 1000.0
30		Лk. Г		Reading	Correct	Measure-			
30 N		Лk. Г	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
30 N		/lk.	Freq. MHz	Reading Level dBuV	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over	Detecto
N 1 2		/lk. F 82 163	Freq. MHz .6482	Reading Level dBuV 49.92	Correct Factor dB/m -22.59	Measure- ment dBuV/m 27.33	Limit dBuV/m 40.00	Over dB -12.67	Detecto
N 1 2 3		/lk. F 82 163 254	Freq. MHz .6482 3.7550	Reading Level dBuV 49.92 45.84	Correct Factor dB/m -22.59 -20.03	Measure- ment dBuV/m 27.33 25.81	Limit dBuV/m 40.00 43.50	Over dB -12.67 -17.69	Detecto QP QP
N 1 2 3 4		/lk. F 82 163 254 451	Freq. MHz .6482 3.7550 4.7284	Reading Level dBuV 49.92 45.84 43.71 46.76	Correct Factor dB/m -22.59 -20.03 -16.96 -11.48	Measure- ment dBuV/m 27.33 25.81 26.75 35.28	Limit dBuV/m 40.00 43.50 46.00 46.00	Over dB -12.67 -17.69 -19.25 -10.72	Detecto QP QP QP
		/lk. F 82 163 254 451 541	Freq. MHz .6482 3.7550	Reading Level dBuV 49.92 45.84 43.71	Correct Factor dB/m -22.59 -20.03 -16.96	Measure- ment dBuV/m 27.33 25.81 26.75	Limit dBuV/m 40.00 43.50 46.00	Over dB -12.67 -17.69 -19.25	Detecto QP QP QP

Page: 30 of 77

Above 1GHz

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	Million				
Ant. Pol.	Horizontal					
Test Mode:	TX B Mode 2412MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed					
	limit.	3				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.844	44.99	13.56	58.55	74.00	-15.45	peak
2	*	4823.922	32.86	13.56	46.42	54.00	-7.58	AVG

Page: 31 of 77

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2412MHz	TX B Mode 2412MHz					
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB	below the				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.997	44.78	13.56	58.34	74.00	-15.66	peak
2	*	4824.048	32.79	13.56	46.35	54.00	-7.65	AVG

Page: 32 of 77

Temperatur	e: 25 °C	Relative Humidity:	55%				
Test Voltage	e: DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2437MH	z					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100 0 ID-1/1-							

No.		Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4873.931	34.60	13.86	48.46	54.00	-5.54	AVG
2		,	4874.384	45.84	13.86	59.70	74.00	-14.30	peak

Page: 33 of 77

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.700	44.95	13.86	58.81	74.00	-15.19	peak
2	*	4873.949	33.56	13.86	47.42	54.00	-6.58	AVG

Page: 34 of 77

Ten	nperature:	25 ℃	Relative Humidity:	55%			
Tes	t Voltage:	DC 3.7V	THE				
Ant	t. Pol.	Horizontal					
Tes	t Mode:	TX B Mode 2462MHz					
Rer	Remark: No report for the emission which more than 10 dB below the prescribed limit.						
100.0) dBuV/m						

No.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.970	34.67	14.15	48.82	54.00	-5.18	AVG
2		4924.057	46.12	14.15	60.27	74.00	-13.73	peak

Page: 35 of 77

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX B Mode 2462MHz	TX B Mode 2462MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							
100.0 dBuV/m							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.877	44.36	14.15	58.51	74.00	-15.49	peak
2	*	4923.970	32.21	14.15	46.36	54.00	-7.64	AVG

Page: 36 of 77

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2412MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
100.0 dBuV/m						

No	ь. М	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.287	30.78	13.56	44.34	54.00	-9.66	AVG
2		4823.735	42.64	13.56	56.20	74.00	-17.80	peak

Page: 37 of 77

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	Militia	
Ant. Pol.	Vertical	31 - 6	
Test Mode:	TX G Mode 2412MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the

No	. Mk	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.657	43.33	13.56	56.89	74.00	-17.11	peak
2	*	4823.657	31.09	13.56	44.65	54.00	-9.35	AVG

Page: 38 of 77

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX G Mode 2437M	Hz				
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.					
100.0 dBuV/m						

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.257	42.45	13.86	56.31	74.00	-17.69	peak
2	*	4873.951	30.29	13.86	44.15	54.00	-9.85	AVG

Page: 39 of 77

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	Militar	
Ant. Pol.	Vertical	31 - 6	
Test Mode:	TX G Mode 2437MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the
100.0 10.44			

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.542	42.91	13.86	56.77	74.00	-17.23	peak
2	*	4873.921	30.43	13.86	44.29	54.00	-9.71	AVG

Page: 40 of 77

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2462MHz					
Remark:	No report for the emission prescribed limit.	No report for the emission which more than 10 dB below the				
100.0 40.377-						

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.540	30.09	14.15	44.24	54.00	-9.76	AVG
2		4923.870	42.22	14.15	56.37	74.00	-17.63	peak

Page: 41 of 77

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	Militia	1			
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX G Mode 2462MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
100.0 ID VI						

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.120	30.09	14.15	44.24	54.00	-9.76	AVG
2	*	4923.630	52.82	14.15	66.97	74.00	-7.03	peak

Page: 42 of 77

-			
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		The state of the s
Test Mode:	TX N(HT20) Mod	e 2412MHz	
Remark:	No report for the prescribed limit.	emission which more than 10 dB	3 below the
100.0 dBuV/m			

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.180	42.26	13.56	55.82	74.00	-18.18	peak
2	*	4823.270	30.08	13.56	43.64	54.00	-10.36	AVG

Page: 43 of 77

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2412M	lHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.390	42.16	13.56	55.72	74.00	-18.28	peak
2	*	4823.480	29.96	13.56	43.52	54.00	-10.48	AVG

Page: 44 of 77

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT20) Mode 24	137MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
400.0 10.111							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.346	42.52	13.86	56.38	74.00	-17.62	peak
2	*	4874.807	30.61	13.86	44.47	54.00	-9.53	AVG

Page: 45 of 77

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode 2437N	ИНz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.259	29.45	13.86	43.31	54.00	-10.69	AVG
2		4874.697	41.88	13.86	55.74	74.00	-18.26	peak

Page: 46 of 77

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT20) Mode 246	2MHz					
Remark:	No report for the emiss prescribed limit.	on which more than 10 dB	below the				
100 0 dRuV/m							

No.	. Mk	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.412	29.63	14.15	43.78	54.00	-10.22	AVG
2		4923.663	41.20	14.15	55.35	74.00	-18.65	peak

Page: 47 of 77

-							
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	Militar					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode 2462MH	z					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
400.0 10.111							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.660	41.57	14.15	55.72	74.00	-18.28	peak
2	*	4923.750	29.66	14.15	43.81	54.00	-10.19	AVG

Page: 48 of 77

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 49 of 77

Page: 50 of 77

Page: 51 of 77

Page: 52 of 77

Page: 53 of 77

Page: 54 of 77

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2468.600	92.63	1.11	93.74	Fundamental F	requency	peak
2	*	2469.100	83.64	1.11	84.75	Fundamental F	requency	AVG
3		2483.500	47.83	1.17	49.00	74.00	-25.00	peak
4		2483.500	32.84	1.17	34.01	54.00	-19.99	AVG

Page: 55 of 77

Page: 56 of 77

Page: 57 of 77

Page: 58 of 77

Page: 59 of 77

Report No.: TB-FCC159419 Page: 60 of 77

(2) Conducted Test

61 of 77 Page:

62 of 77 Page:

Page: 63 of 77

Attachment D-- Bandwidth Test Data

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Test Mode:	TX 802.11B Mode							
Channel frequenc	y 6dB Bandwidth	99% Bandwidth	Limit					
(MHz)	(MHz)	(MHz)	(MHz)					
2412	9.506	13.935						
2437	9.592	2 14.410						
2462	9.589	14.279						
	000 (47) W. J.							

802.11B Mode

Page: 64 of 77

802.11B Mode

Page: 65 of 77

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.11G Mode		
Channel frequency 6dB Bandwidth		dwidth 99% Bandwidth	Limit
(MHz)	(MH	z) (MHz)	(MHz)
2412	16.5	16.411	
2437	16.5	16.510	>=0.5
2462	16.4	7 16.488	
		*	

802.11G Mode

Page: 66 of 77

802.11G Mode

Page: 67 of 77

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.11N(HT20) Mode		
Channel frequence	ency 6dB Bandwidth 99% Bandwidth Limit		Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	17.73	17.589	
2437	17.73	17.686	>=0.5
2462	17.69	17.643	
002 44N/JT20) Mode			

802.11N(HT20) Mode

Page: 68 of 77

802.11N(HT20) Mode

Page: 69 of 77

Attachment E-- Peak Output Power Test Data

Test Condition	ns:	Continuous Transmitting Mode				
Temperature:		25 ℃		Relative Humidit	ty:	55%
Test Voltage:		DC 3.7V	MD			
Mode	С	hannel frequency (MHz)	Te	st Result (dBm)		Limit (dBm)
		2412		8.87		
802.11b		2437		8.96		
		2462		8.41		
		2412		8.49		
802.11g		2437		8.83		30
		2462		8.29		
802.11n (HT20)		2412		8.36		
		2437		8.83		
		2462		8.37		
Result: PASS						

Duty Cycle			
Mode	Channel frequency (MHz)	Test Result	
	2412		
802.11b	2437		
	2462		
802.11g	2412		
	2437	>98%	
	2462		
802.11n (HT20)	2412		
	2437		
	2462		

Page: 70 of 77

802.11 G Mode 2437 MHz

Page: 71 of 77

Page: 72 of 77

Attachment F-- Power Spectral Density Test Data

Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	DC 3.7V			7:39
Test Mode:	TX 802.11B Mode			
Channel Freque	Channel Frequency Power Density		ensity	Limit
(MHz)		(dBm/3 kHz) (dBm/3 kHz		(dBm/3 kHz)
2412		-21.2	49	
2437		-21.202		8
2462		-21.5	70	

802.11B Mode

Page: 73 of 77

802.11B Mode

Page: 74 of 77

Temperature:	25 ℃	Temperature:	25 ℃
Test Voltage:	DC 3.7V	CHILD ST	
Toot Mode.	TV 000 11C Made		E 1 E W

Test Mode: TX 802.11G Mode

Channel Frequency	Power Density	Limit
(MHz)	(dBm/3 kHz)	(dBm/3 kHz)
2412	-25.021	
2437	-24.225	8
2462	-24.187	

802.11G Mode

Page: 75 of 77

802.11G Mode

2462

Report No.: TB-FCC159419

Page: 76 of 77

Temperature:	25 ℃		Temperature:	25 ℃
Test Voltage:	DC 3.7V			
Test Mode:	TX 802.11N(HT20) Mode			
Channel Frequency		Power Dei	nsity	Limit
(MHz)		(dBm/3 k	Hz)	(dBm/3 kHz)
2412		-25.147	7	
2437		-24.056	6	8

-24.354 **802.11N(HT20) Mode**

Page: 77 of 77

----END OF REPORT----