Signal

Transmission, compression et protection des données numériques

William Puech

Plan

Historique

- I) Les réseaux
- II) Concepts des télécommunications.
- III) Le réseau de télécommunication
- IV) Compression
- V) Cryptage

Quelques dates importantes

- 1979 : Transmission de données simples
- 1980 : Première spécification Ethernet
- 1982 : Les PC partagent les ressources grâce à leur propre puissance de traitement
- 1986 : Apparition des serveurs de fichiers
- 1988 : Services de traitement réparti
- 1989 : Mise en oeuvre de routeurs
- 1990 : Interconnexions de réseaux multiprotocoles

Les années 60-70

- pas de protocole, topologie en étoile
- Système central, Terminaux passifs

Les années 80

- Apparition du PC (Personnal Computer)
 - ☐ De nombreux besoins informatiques sont satisfaits sans faire appel à des structures centralisées (mainframe).
 - ☐ Progression d'une informatique indépendante.
- Le rôle de la gestion centralisée diminue.

Les années 90

- Les réseaux locaux
- La normalisation
- Terminaux intelligents
 - ☐ (PC, Station de travail,
 - Mac)

- Hiérarchiques (Client/Serveur)
- Egal à égal
- Systèmes ouverts
 - Environnements hétérogènes

I) Les réseaux

- A) Eléments des réseaux, B) Buts d'un réseau
- C) Supports : des caractéristiques au choix
- D) Codage de l'information
- E) Modes de transmission
- F) Synchronisation entre émetteur et récepteur
- G) Les erreurs, H) Fenêtrage, I) Contrôle de flux
- K) Mode connecté, L) Mode non connecté
- M) Les couches, N) Adressage et nommage

Plan du cours

- ☐ Objets matériels :
 - → Applications : <u>Services</u> : telnet, ftp, nfs, messagerie, partage d'imprimante, ...
 - → Ordinateurs : <u>Stations</u> : PC, stations de travail, terminaux, périphériques, ...
 - → <u>Coupleurs</u>: asynchrone, synchrone, Ethernet, ...
 - → <u>Adaptateurs</u>: modem, transceiver, ...

☐ Objets matériels :

- → Liens : <u>Support</u> : paire torsadée, câble coaxial, fibre optique, ondes hertziennes. Domaine privé ou public (opérateur France Telecom).
- → Boites pour connecter ou interconnecter les liaisons
 : nœuds, routeurs, commutateurs, répéteurs, ...

☐ Langages : Protocole :

 → Pour que chaque élément puisse dialoguer avec son homologue. A tout "niveau" : signaux électriques, bytes, trames (groupe de bytes), ..., fonctions dans les applications.

☐ Lois internationales : Normes et Standards :

Pour assurer la possible hétérogénéité des éléments, la pérennité et l'ouverture.

- Pour que M. SUN puisse discuter avec M. IBM; M.
 WELLFLEET avec M. CISCO, ...
- Pour que l'achat fait aujourd'hui serve longtemps, même si le fabricant disparaît.
- Pour que chacun puisse communiquer avec d'autres personnes.

I) B) Buts d'un réseau

- ☐ Echanges entre personnes
 - Messagerie, news, Internet, tranfert de fichiers, accès à des bases de données (bibliothèques).
- ☐ Partage d'équipements (souvent coûteux)
 - Imprimantes, disques, super calculateurs, ...
- ☐ Terme réseau très vague

I) C) Supports: des caractéristiques au choix

- ☐ Coût : matériau, pose, connectique
- ☐ Bande passante:

Quantité d'information que l'on peut faire passer pendant un certain temps (débit max. théorique).

I) C) Supports: des caractéristiques au choix

☐ Atténuation :

Longueur maximale entre 2 éléments actifs.

- ☐ Sensibilité aux attaques extérieures :
 - → Attaques physiques : pluie, rats, foudre, étirements.
 - → Bruits: perturbations électromagnétique, ...

I) D) Codage de l'information

- □ Texte dans une langue (alphabet),
- \square ASCII-EBCDIC: 1 lettre = 1 octet,
- □ Paquets,
- □ 8 bits ou 7 bits + parité ou 4B/5B,
- ☐ Signaux sur le support,
- □ niveaux et changements de niveaux.

I) E) Modes de transmission

- ☐ Bits: signaux sur le support.
- ☐ Bande de base : représentation directe des bits
 - \rightarrow Ethernet : code Manchester : 0 front \nearrow , 1 front \searrow .
 - → Affaiblissement rapide du signal, très sensible aux bruits : <u>réseaux locaux</u>.
 - → Synchronisation des 2 bouts en rajoutant des bits.

I) E) Modes de transmission

- ☐ Analogique : modem et porteuse
 - → Modulation en fréquence, amplitude ou en phase d'un signal porteur (souvent sinusoïdal).
 - → Moins d'affaiblissement et moins sensible au bruit : réseaux étendus.

I) F) Synchronisation entre émetteur et récepteur

- ☐ Synchrone : horloge transmise avec les données.
- ☐ Asynchrone : devant chaque éléments de données, on ajoute un groupe de bits pour l'échantillonnage.
 - \rightarrow 01010101 ...
 - \rightarrow Bits start dans asynchrone V24.

L'information reçue doit être identique à l'information émise (but d'un "bon" réseau).

Le signal peut être modifié, des bits ou octets perdus durant le transfert de l'information : erreurs.

Il faut les détecter et les corriger.

Détection d'une modification

- → L'émetteur rajoute des bits, fonction des données qu'il transmet.
- → Le récepteur recalcule la fonction et vérifie.
- \rightarrow Exemple :
 - Echo pour un terminal
 - Le bit de parité en liaison asynchrone
 - Le CRC (Cyclic Redundancy Check) : le reste d'une division des bits de données, supposés être les coefficients d'un polynôme, par un polynôme générateur.

- ☐ Détection d'une perte (d'un paquet)
 - Besoin de numérotation, ajoutée par l'émetteur et vérifiée par le récepteur.
- ☐ Détection d'un mauvais ordre d'arrivée

réseaux maillés: numérotation.

☐ Correction d'erreur

- → Souvent retransmission avec un protocole.
- → L'émetteur attend que le destinataire indique s'il a reçu correctement l'information : accusé de réception (ACK NACK).
- → Si perte : pas d'accusé de réception.
- → Réémission après un certains temps.
- → Problème : choix de la valeur de time-out (fixe ou variable).

Certaines parties font de la détection d'erreur, mais pas de la correction (Ethernet, IP, UDP).

I) H) Fenêtrage

- ☐ L'émetteur attend un accusé de réception après chaque envoi : perte de temps du au transfert et au traitement.
- ☐ L'émetteur anticipe : il envoie jusqu'à *n* éléments sans recevoir de ACK (*n* : taille de la fenêtre).
 - → Kermit : pas d'anticipation.
 - → X25 : fenêtre = nbre de paquets (fixe : paramètre de l'abonnement Transpac).
 - → TCP: fenêtre = nbre d'octets (variable : spécifié par le récepteur à chaque ACK).

I) H) Fenêtrage

☐ Un ACK accuse réception de plusieurs éléments d'information.

☐ Primordial dans les transferts de fichiers.

I) I) Contrôle de flux

☐ Flot d'arrivée trop rapide pour le récepteur ou pour les nœuds intermédiaires.

Plus de place dans les buffers d'entrée.

- ☐ Quand fenêtrage : résolu par l'émetteur.
- ☐ Asynchrone : XON XOFF
- ☐ ICMP : Source Quench.

I) J) Partager le réseau

- ☐ Pour des raisons d'économie.
- ☐ Multiplexer chaque lien entre 2 nœuds adjacents : multiplexage en fréquence, temporel, statistique.
- ☐ De bout en bout :
 - → Création d'un chemin à chaque dialogue (session) en mode connecté.
 - → Adresse du destinataire ajoutée à chaque élément d'information en mode non connecté.

I) K) Mode connecté (CONS)

- ☐ En début de chaque session : création d'un chemin virtuel (CV) entre les deux protagonistes (X25 paquet d'appel).
- ☐ Chaque nœud réserve les ressources nécessaires à la session.
- ☐ Dans chaque élément d'information : numéro du CV.
- ☐ Fin de session :chaque nœud est averti.
- ☐ Exemple: téléphone, X25, ATM.

I) L) Mode non connecté (CLNS)

- ☐ Chaque élément d'information (datagramme) qui circule contient l'adresse du destinataire et de l'émetteur.
- ☐ Les nœuds (routeurs) dispatchent à la volée : il faut trouver le bon chemin rapidement (but du routage).
- ☐ Exemple : IP.

Entre les deux modes, la solution du futur n'est pas trouvée.

I) M) Les couches

- ☐ Modèle de référence : OSI (Open system Interconnection).
- ☐ Architecture qui permet de développer et d'acheter chaque brique séparément.
- ☐ Pédagogique.
- ☐ Chaque couche:
 - Reçoit les données de la couche supérieure.
 - Assure certaines fonctions.
 - Transmet les données à la couche inférieure.
 - Dialogue avec son homologue en face avec un protocole.

I) M) Les couches

- 7 : application : X400, telnet
- 6 : présentation : ASN1
- 5 : session : conversation
- 4 : transport : de bout en bout : TCP
- 3 : réseau : entre les nœuds : IP
- 2 : liaison : adaptation au lien : Ethernet, X25, FDDI
- 1 : physique : bits signaux

Chaque couche peut (presque) utiliser n'importe quel type de couche inférieure : IP sur Ethernet, X25-2, FDDI sans modifier IP, Ethernet sur paire torsadée, câble coaxial, fibre optique.

I) M) Les couches

- ☐ Chaque couche ajoute un entête et un identificateur de la couche supérieur
- ☐ Beaucoup de couches possèdent leur adresse :
 - \rightarrow port-application,
 - $\rightarrow @$ IP,
 - $\rightarrow @$ Ethernet
- ☐ Chaque fonction d'un réseau est réalisé par une couche :
 - \rightarrow détection d'erreur : 2-3-4,
 - \rightarrow correction d'erreur : 3-4,
 - \rightarrow contrôle de flux : 2-3-4-7,
 - \rightarrow fenêtre : 3-4, routage : 3

I) N) Adressage et nommage

- ☐ But : identifier un objet réseau
- ☐ Adresse liée à la géographie
 - → numéro IP,
 - → numéro de téléphone,
 - \rightarrow X25.
- □ Nom lié à la fonction ou l'identité (personne)
 - \rightarrow nom propre,
 - → nom du service rendu par l'objet.
- □ Problèmes : unicité et gestion

II) Concepts télécom.

- 1) L 'information
 - ☐ Quantification, Forme.
- 2) Le codage
 - ☐ Téléinformatique, Télécommunication et télédiffusion.
- 3) La transmission
 - ☐ Série ou parallèle, Modes de transmission, Dialogue et sens de transmission, Cadence, Contrôle, Optimisation.

 Plan du cours

II) Concepts télécom.

1. L'information subit des manipulations et des transformations avant d'être délivrée à son destinataire : codage et transmission.

De nature <u>analogique</u> (source continue) ou <u>numérique</u> (source discrète) et <u>forme</u> déterminée : <u>quantification</u> pour réseau adapté en :

- □ <u>transmission</u> et
- □ commutation.

II) Concepts télécom.

1.1 Quantification

Le message i (source discrète) a une valence n:

 \square n = 2, message binaire

 \square n = 10, chiffre décimal

La quantité d'information H_i est fonction de n:

 $\square H_i = \log_2 n \text{ (en bits)}$

Ex : Une image TV, avec une résolution de 256 niveaux de gris par pixel fournit une quantité d'information de 8 bits/pixel (utilisé pour le codage).

Plan du cours

<u>1.2 Forme</u>

- L 'information a diverses formes (origine et traitements):
 - □ texte (alphabet fini),
 - □ données ou informations numériques codées,
 - \square images fixes (noir et blanc),
 - ☐ images fixes (couleur),
 - □ séquences d'images,
 - □ musique,
 - □ voix humaine et parole.
- Largeur de bande \rightarrow 10 Mhz (analogiques)
- Débits numériques → 100 Mbit/s (numériques)

2. Le codage

Dans la chaîne de transmission le codage a pour rôle :

- □ transformation et adaptation à la source qui convertit l'information en signal depuis un signal électrique ou optique.
- ☐ Adaptation au canal de communication
- ☐ Capteurs ou transducteurs :
 - → microphone : des ondes acoustiques en signal audio (téléphonique ou radiophonique). Opération inverse par l'ecouteur ou haut parleur.
 - → Caméra et poste de télévision : image de la scéne en signal vidéo.
 - → Terminal informatique : clavier-écran.

2. 1 Téléinformatique

Signal numérique à 2 états pour transmettre l'alphabet (maj. et min.), chiffres décimaux, opérateurs arithmétiques et logiques et ponctuation ≈ 100 caractères.

Chaque code attribue une combinaison binaire par caractère.

- ☐ CCITT n°2 (Télex): 5 bits = 32 caractères
- ☐ CCITT n° 5 code ISO: 7 bits = tout + 30 commandes ∈ code ASCII
- ☐ EBCDIC (IBM) : 8 bits = 256 caractères

CCITT: Comité Consultatif International Télégraphique et Téléphonique.

ISO: International Standard Organisation

ASCII: American Standard Code for Information Interchange

EBCDIC: Extended Binary Coded Decimal Interchange Code

<u>Codage en bande de base</u> : substitution du signal original par un autre signal dont le spectre de fréquence est adapté à la communication

- ☐ Code biphase "Manchester" et "différentiel
- □ code de Miller, code bipolaire, code HDB3, ...

<u>Téléinformatique</u>: Les signaux se rapportant à l'image et au son sont analogiques. Transmissions en analogique (modulation) ou numérique.

- ☐ Codage par modulation (amplitude, fréquence ou phase)
- ☐ Codage par numérisation
 - \rightarrow Echantillonnage: Shannon $Fe \ge 2 Fmax$
 - ightharpoonup Quantification/codage : amplitude des échantillons quantifié puis codée en numérique sur n bits (avec polarité). Si D est la dynamique du signal : $n \geq log_2 D$
- \square Débit du signal numérisé : $C \ge n \ Fe$ (bit/s)

signal téléphonique:

- Fmax $< 4kHz \rightarrow$ echantillon toutes les 125 ms
- $1 < D < 4000 \rightarrow 12$ bits en quantification
- codage/compression 12 bits \rightarrow 8 bits

☐ Débit numérique de 64 kbit/s

- Signal et réseau analogiques transmission d'images et son : <u>bande passante</u>
- Signal et réseau numériques Réseau Numérique à Intégration de Services + liaison locale
- Signal analogique et réseau numérique numérisation du signal en émission
- Signal numérique et réseau analogique téléinformatique : modulation du signal en émission

3.1 Techniques de transmission

- L'échange d'information s'effectue selon deux techniques :
 - □ transmission série : les bits d 'un mot sont transmis successivement. Un seul fil.
 - \rightarrow Temps de transmission = nT
 - → interface RS232 : 9600 bits pour 20 m
 - ☐ Transmission parallèle : tous les bits du mot sont transmis simultanément. *n* fils.
 - \rightarrow Temps de transmission = T
 - → utilisé à l'intérieur d'un système de traitement.

3.2 Modes de transmission

- L'émission s'effectue selon deux modes :
 - ☐ Transmission synchrone :
 - → bits calés sur une horloge : cadence
 - → par blocs ou paquets de caractères avec des fanions
 - → débit élévé
 - ☐ Transmission asynchrone :
 - → caractère par caractère avec bits particuliers (START et STOP)
 - → instant d'émission arbitraire

3.3 Dialogue et sens de transmission

3.3 Dialogue et sens de transmission

3.4 Cadence de transmission

- □ Capacité d'un canal : quantité d'information qu'un canal peut transporter par unités de temps (bit/s).
- \square Bande passante BP: spectre de fréquence toléré par le canal (filtre).
 - \rightarrow Rapidité de modulation $R \le 2$ BP en bauds
- \square Débit de transmission D: pour un signal de valence n ayant une vitesse de modulation de 2 BP échantillons par seconde :

 $D \le 2 BP$. $log_2 n$ en bit/s

3.4 Cadence de transmission

Capacité d'un canal: pour que D 7, soit BP 7, soit n 7.

- \rightarrow BP ?
- \rightarrow Si n \nearrow alors l'amplitude \searrow et se rapproche de N_0 :

$$n = \sqrt{1 + \frac{S}{N_0}}$$

S puissance du signal utile, N du bruit.

→ Loi de Shannon concernant le débit maximal :

capacité de transmission

$$C = BP \log_2 \left(1 + \frac{S}{N_0} \right)$$

3.4 Canal Téléphonique

 \square BP = 300 à 3400 Hz

 $\Box 100 < S/N < 1000$

 \Box R \leq 6200 bauds

□...

3.5 Sécurisation de la transmission

- ☐ S 'assurer que l 'information reçue est bien l'information transmise
- ☐ Taux d'erreur binaire:

TEB = (nbre de bits erronés) / (nbre de bits transmis)

 \square Soit n le nombre de bits du message alors la probabilité de transmission sans erreur : $P = (1 - TEB)^n$

 $Ex : TEB = 10^{-4}$, message de 1024 octets : P = 44%

Il faut contrôler les transmissions : clés de contrôle

3.5 Clés de contrôle

- ☐ bit de parité : VRC (Vertical Redundancy Check) avec une efficacité entre 50% et 60%
- □ caractère de parité : Contrôle LRC (Longitudinal Redundancy Check) une efficacité de 95%.
- ☐ Combinaison VRC/LRC
- ☐ envoi de la même trame en plusieurs exemplaires
- ☐ Clés de contrôle de 2 à 4 octets : code calculé par division polynomiale appliqué au bloc à transmettre : contrôle de redondance cyclique CRC (Cyclic Redundancy Check). Une efficacité de 100%.

3.5 Efficacité

☐ Taux de transfert des informations :

TTI = (Nbre de bits utiles) / (Durée de transmission)

☐ Rendement du support = TTI / Débit nominal du support

3.6 Optimisation de la transmission

Informations transmises : bit, caractère ou bloc (trame, paquet, message) de caractères.

Optimisation des transmissions:

☐ diminution de la quantité d'information sans modifier le contenu sémantique (compression)

□ améliorer les liens : concentration et multiplexage

3.6 Multiplexage et concentration

support télécom : débit nominal de 9600 bits/s

- <u>Multiplexeur</u>: Informations bas débit en // en entrée 4 canaux 2400 bits/s sur le canal haut débit en sortie : efficacité de 100%.
- Concentrateur : plusieurs entrées sur une sortie traitement et stockage des informations
 □ plusieurs voies d'entrée peuvent avoir le débit de la sortie : efficacité pouvant atteindre 300 à 400%

3.6 Multiplexage et concentration

• Multiplexage fréquentiel :

partage de la BP en canaux à bande étroite : support coaxial de 400 Mhz partagé en 40 canaux de télévision de 10 Mhz. Transmission large bande

• Multiplexage temporel:

découpe d'une trame de durée déterminée en plusieurs intervalles de temps élémentaires (IT). Transmission numérique

Compression:

- parole et son téléphonique :
 - ☐ 64 kbit/s à 8 kbit/s pour radio mobile GSM (Global System for Mobile communication).
 - ☐ Qualité supérieure :
 - \rightarrow BP = 7 kHz : débit de 16 kbit/s.
 - → Bande audio complète (20 kHz) : 96 kbit/s
- image:
 - ☐ visiophone sur RNIS : plusieurs canaux 64 kbit/s

Compression:

- image:
 - ☐ stockage disque audio images fixes et animées
 - → Norme JPEG (Joint Picture Element Group)
 - → MPEG1 (Moving Picture Element Group) : débit de 2 Mbit/s (standard VHS magnétoscope)
 - → MPEG2 : télévision numérique 6 Mbit/s (PAL SECAM)
- Texte:
 - □ codage de la longueur en ligne
 - □ codage de Huffman

3.6 Confidentialité:

- transformation d'un texte clair en texte secret : cryptographie
- technique d'authentification avec mot de passe :
 - □ algorithme sur les signatures
 - □ authentification par la parole
 - □ reconnaissance d'écriture

3.6 Système de cryptographie :

- 1) L'organisation du réseau
 - ☐ Mise en communication,
 - □ Numérotation et adressage.
- 2) La fonction commutation
 - ☐ Aiguillage,
 - ☐ Trafic téléphonique,
 - ☐ Efficacité.

- 1. Organisation du réseau
 - ☐ Transport de la parole, données informatiques et images.
 - ☐ Réseau téléphonique : ensemble complexe de transmissions et commutations gérés par un opérateur public ou privé.
 - ☐ L'utilisateur communique avec des abonnés : locale, régionale, nationale ou internationale.
 - → Une ligne d'abonné : 2 fils
 - → circuits entre les autocommutateurs : 4 fils

1. Organisation à trois niveaux : ZAA, ZTS, ZTP

2. La fonction commutation

autocommutateur : aiguillage des communications et concentration du trafic.

- ☐ Connexion ou mise en relation des abonnés et des circuits
- ☐ Relation entre les joncteurs
- ☐ Commande ou contrôle général des opérations

2.1 Aiguillage

2.1 Mise en relation

Etablissement, communication et libération

2.1 Trafic téléphonique

- Soient 2 sites de commutation A et B connectés par un faisceau de *n* circuits.
- Valeur de *n* ? Fonction du trafic de pointe.
- Soit N(t) le nombre de circuits occupés à 1 'instant t, le volume de trafic pendant un temps T:

$$V (t) = \int_{0}^{T} N (t) dt$$

en secondes

2.1 Trafic téléphonique

• L'intensité du trafic (en erlang ou %):

$$I(t) = \frac{1}{T} \int_{0}^{T} N(t)dt$$

- ligne principale résidentielle 0.03 < I(t) < 0.15
- ligne principale professionnelle 0.3 < I(t) < 0.8

2.1 Trafic téléphonique

- 5 circuits : C1 : 35/60 = 0.58 erlang; C2 : 40/60 = 0.67 erlang; C3 : 35/60 = 0.58 erlang; C4 : 30/60 = 0.5 erlang; C5 : 25/60 = 0.41 erlang.
- Trafic de 2.75 erlang, nbre de com. = 12, volume de trafic = 165 mn, durée moyenne = 14 mn

2.1 Efficacité de trafic

IV) Les techniques réseaux

- A) Liaison point à point
- B) Liaison multipoint
- C) Réseau
 - C.1) Efficacité d'une liaison, C.2) Services réseaux,
 - C.3) Accès aux réseaux, C.4) Fragmentation et réassemblage, C.5) Techniques de commutation, C.6) Commutation de paquets, C.7) Contrôle de congestion, C.8) Contrôle de routage, C.8) Adressage

Plan du cours

IV) Les techniques réseaux

- Réseau = liens + nœuds interconnectés
- l'interfonctionnement interne du réseau
 - ☐ mise en œuvre de fonctions de communication qui relèvent des techniques réseaux.

- Aux extrémités de la liaison : un terminal ETTD
 - → émetteur : source de données
 - → récepteur : collecteur de données

- Aux extrémités de la liaison : un terminal ETTD
- Entre ligne de transmission et terminaux : une ETCD
- dialogue Contrôleur et modem est assuré par l'interface ETTD/ETCD

- 1) ETTD : Equipement Terminal de Traitement de Données ou DTE (Data Terminal Equipment)
 - ☐ Permet à l'utilisateur de dialoguer avec le système
 - ☐ Dispose d'un contrôleur de communication
- ETTD varie en fonction de l'application
 - ☐ Débit binaire,
 - □ Réseau,
 - □ Nature du terminal.

- 1) ETTD: Exemples d'application:
 - ☐ Courrier electronique (terminaux de telex, télécopie, messagerie).
 - ☐ Télématique (vidéotex, station voix-données, station multimédia).
 - ☐ Téléinformatique professionnelle (terminaux utilisateur, télétype et clavier écran).

2) ETCD : Equipement Terminal de Circuit de Données ou DCE (Data Communication Equipement).

□ 2 rôles :

- → adaptation du canal,
- → Interface et contrôle des signaux de jonction ETTD/ETCD

☐Un adaptateur permettant le raccordement des ETTD aux réseaux.

- 2) ETCD : exemples selon le type de réseau et nature de la transmission :
 - ☐ Adaptateurs de terminaux (des cartes type PC à insérer ou externes) :
 - → pré-RNIS : interface R : interface audio, V24, X21, X25.
 - \rightarrow RNIS : interface S.
 - ☐ Adaptateurs ou codeurs en bande de base :
 - \rightarrow liaisons locales à courte distance ($\leq 50 \text{ km}$)
 - → débit > 10 Mbit/s pour réseaux locaux
 - → support : paire métallique, coaxiaux, fibre optique.

- 2) ETCD : exemples selon le type de réseau et nature de la transmission :
 - □ codeurs par transposition de fréquence ou modem
 - → transmission analogique sur longue distance
 - → exemple : modem de la série V (de 300 bit/s à 72 Kbit/s)
 - débit, mode synchrone/asynchrone,
 - dialogue half ou full duplex,
 - qualité du support, technique de modulation,
 - bande passante utilisée, technique de compression,
 - nature de l'interface ETTD/ETCD
 - → V32 (9600 bit/s), V32 bis (14400 bit/s)
 - → V34 (28800 bit/s), V34 + (33600 bit/s), V90 (56kbits/s)

IV) B) Liaison multipoint

Liaison point à point : taux d'activité faible

- ligne multipoint.
 - □ La station primaire contrôle le dialogue : les stations secondaires ne peuvent émettre ou recevoir sans ordre ou invitation (polling, selecting).
 - ☐ Adressage hiérarchique par la station primaire :
 - → adresse de la ligne multipoint,
 - → adresse du contrôleur de grappes de terminaux,
 - → adresse de l'équipement dépendant du contrôleur.

IV) B) Liaison multipoint

- But : mise en commun de ressources onéreuses □ discipline de partage.
- Réseau dimensionné pour tenir compte de la charge maximale sur une période donnée.
- Utilisateur: communication des informations.
- Exploitant:
 - □ assurer cette communication
 - ☐ facturation.

- Fonctions importantes du réseau :
 - □ conversion des messages utilisateur en paquets,
 - □ adressage des paquets,
 - □ routage des paquets,
 - □ régulation du trafic.

- 1) Efficacité d'une liaison réseau
 - ☐ Contrôle de l'intégrité des données : accuser à l'émetteur réception ou non du message.
 - ☐ Message d'information de A -> B :
 - \square *T* : tps d'attente avant envoi du prochain message :
 - $\rightarrow T_I$: transmission du message d'information de A \square B
 - $\rightarrow T_2$: traitement du message d'information en B
 - $\rightarrow T_3$: transmission du message de supervision de B \square A
 - $\rightarrow T_4$: traitement du message de supervision en A
 - $\rightarrow 2~T_P$: temps de propagation aller/retour.

1) Efficacité d'une liaison réseau

$$\Box T = T_1 + T_2 + T_3 + T_4 + 2 T_P \approx T_1 + 2 T_P$$

$$\square$$
 Efficacité : E = $T_1 / T = 1 / (1+2a)$ avec $a = T_p / T_1$

- \rightarrow réseau LAN (Ethernet) a \rightarrow 0 \square E \rightarrow 1
- \rightarrow réseau satellite $a >> 1 \square E \rightarrow 0$: émission continue
- ☐ Amélioration de l'efficacité par émission anticipée.
- ☐ Mécanisme de fenêtrage adopté par tous les protocoles de communication.
- ☐ Si erreur, la trame erronée est retransmise. L'efficacité est divisée par le nombre de trame retransmise.

2) Services réseaux

Critère	unité	Réseau local LAN(Ethernet)	Réseau étend WAN (satelli	
distance	km	1	36 000	
débit	bit/s	10, 100 M	64 K	
taille de message	octet	plusieurs milliers	256	
efficacité	0/0	100	5	
longueur de données	bits	25	10 000	
service réseau		non connecté	connecté	
exemple de standard		IEEE802-3	X25	
Puech William	<u>Université Montpellier</u>			<u>8</u>

- 2) Services réseaux
 - ☐ Mode connecté (réseaux RTC, RNIS, X25)
 - → transfert de l'information de façon sûre : contrôle d'erreurs, de flux et de séquencement des paquets, établissement et libération de la connexion.
 - → adressage site destination dans le paquet d'établissement.
 - ☐ Mode non connecté (IP Internet, interconnexion de réseaux locaux)
 - → services réseaux réduits
 - → adressage site destination dans chaque paquet (datagramme).
 - → Se généralise car la qualité de la transmission 7.

- 3) Accès aux réseaux
- En émission :
 - ☐ une série d'encapsulation des données et entêtes correspondant aux différentes couches de protocoles traversées.
- Entêtes:
 - ☐ décapsulés définitivement à l'extrémité de destination
 - ☐ décapsulés pour analyse puis recapsulés pour une nouvelle émission : lors d'un transit dans un nœud de commutation.

3) Accès aux réseaux

3) Accès aux réseaux

Exemple

- □ 1 tps d'encapsulation/décapsulation : 1 ms
- □ taille trame : 256 octets
- ☐ débit ligne d'accès : 9600 bit/s
- □ temps de transit réseau : 200 ms
- temps de transit d'un fragment de bout en bout = 633 ms (6x1 + 200 + 2x256x8x1000/9600)

$$(= 6 \text{ tt} + 2 \text{ tp} + T1 + T3)$$

- 4) Fragmentation et réassemblage
- message émis de taille variable
 - → long : fragmentation en paquets
 - → court : groupage (réassemblage) de messages
- Pour l'optimisation du taux d'utilisation des lignes réseaux.

- 4) Fragmentation et réassemblage : Exemple
 - □ 3 liens identiques en cascade (liens + nœuds)
 - □ **Hyp** :
 - \rightarrow Ts = 0 (tps de stockage dans un nœud)
 - → pas d'erreur (pas réémission)

- 4) Fragmentation et réassemblage : Exemple
- T: temps de transition sur un lien d'un message

N liaisons : tps de transit du $message = N \times T$

message divisé en P paquets
 tps de transit d'un paquet = T/P

tps de transit du message fragmenté = $T + (N-1) \times T/P$

- 5) Technique de commutation
- Réseau = des lignes (circuits) + des commutateurs (nœuds)
- Connexion Réseau :
 - □ ponctuelle (services commutés)
 - ☐ permanente (services spécialisés)
- techniques de commutation : circuits/message/paquets

5) Technique de commutation

- commutation de circuits
 - → chaque commutateur choisit 1 circuit parmi n circuits.
 - → dès que le chemin physique est établi : transmission de l'information.
 - → taux d'activité faible.
- Commutation de messages
 - → une succession de lignes et de nœuds de stockage et commutation.
 - → le message est stocké dans chacun des nœuds avant d'être relayé.
 - → bonne utilisation des circuits mais lent.
- Commutation de paquets
 - → message découpé en paquets combinant cc et cm.
 - → un nœud : multiplexage : rapide et performant.

- 6) Réseaux à commutation de paquets
 - → circuit virtuel (service en mode connecté)
 - → datagramme (service en mode non connecté)
 - ☐ Service en mode connecté

le circuit virtuel associe aux 2 extrémités des voies logiques afin de constituer des :

- CVP : circuit virtuel permanent
- CVC : circuit virtuel commuté

Ex: Transpac

- 6) Réseaux à commutation de paquets
 - ☐ Service en mode non connecté
 - → mise en relation 2 utilisateurs de bout en bout
 - → service non fiable car pas de contrôle de flux, d'erreur, de séquencement, ...)

Ex : réseau Arpanet (USA) à base du protocole réseau IP.

- ☐ Autres techniques de commutation
 - → commutation de trames (réseau à relais de trames)
 - → commutation de cellules (ATM Asynchronous Transfert Mode)

Basé sur des Réseaux physiques fiables et haut débit

7) Contrôle de congestion

- * zone 1 : niveau de service correct
- * zone 2 : blocage du réseau.

Dépassement de la capacité de saturation

```
Réseau = liens + nœuds
(éléments passifs, (éléments actifs, processus
débit fixe) réalisant commutation + routage)
```

Commutateur de paquets (nœuds)

- ☐ Si dimension file d'attente en sortie > taille mémoire
 - → <u>purge</u> des paquets en excès
 - → limiter les paquets perdus

7) Contrôle de congestion : Exemple :

Hyp: nœud A bloqué

- \square B réemet son paquet une 2^{nde} fois, etc
- ☐ B immobilise son buffer (stockage du pâque rejeté par A)
- ☐ B ne peut pas libérer son buffer pour un autre paquet venant de C
- ☐ C immobilise son buffer, ..., etc
- ☐ Propagation à rebours des blocages de nœuds : interblocage (deadlock).

Congestion: 2 causes:

- ☐ dimensionnement inadapté des buffers,
- ☐ traffic offert trop proche du seuil de saturation du nœud.

- 7) Congestion : solution :
 - → réduire le nombre de paquet
 - ☐ Limitation du nombre de paquets
 - → imposer un nbre max de paquets à chaque nœud d'entrée du réseau (sinon rejet).
 - → Simple mais considère que tous les nœuds traitent un trafic équivalent.
 - ☐ Meilleur utilisation des ressources
 - → 7 taille mémoire du nœud.
 - → partage entre les lignes de sortie de la mémoire.
 - → pb : lignes à faibles trafic défavorisé en cas de congestion.

- 7) Congestion: solution:
 - ☐ Contrôle de flux (entre 2 nœuds adjacents)
 - → émission que si autorisation du récepteur.
 - → limitation du nombre de paquets en transit.
 - ☐ Réservation des tampons
 - → service à circuit virtuel : chemin établi grâce au paquet d'appel + affectation des ressources.
 - → Rejet des appels sans ressources réservées.
 - ☐ Autres
 - → limitation durée de vie des paquets.
 - → contrôle débit d'accès.

8) Contrôle de routage

Une fois l'adressage connu

- but : traverser le meilleur chemin pour la transmission de paquets.
- moyens : algorithme de routage à base de tables dans les nœuds.

☐ Algorithmes non adaptatifs et algorithmes adaptatifs.

8) Contrôle de routage : routage non adaptatif défini de façon statique (indépendamment de l'état du trafic) □ simple mais sans souplesse.

Exemple 1: routage fixe : table remplie par le concepteur, 1 critère de performance privilégié (ex : vitesse), des mises a jour (si changement de config. du réseau : défaillance, nouvel abonné).

Destination	Nœud
	Adjacent
В	В
C	C
D	В
E	C

Table de routage en A

8) Contrôle de routage : routage non adaptatif

Exemple 2 : routage aléatoire

chaque nœud retransmet le paquet reçu à tous les autres adjacents (sauf à celui émetteur).

Très simple, intéressant si trafic total faible.

Contrôle de routage : routage adaptatif

- □ adaptation dynamique aux variations (topologie et trafic) réseau.
- □ un échange d'info. (tables de routage) entre les nœuds.
- □ pb : un trafic de gestion s'ajoutant au trafic utile.
- □ pb : infos de gestion subissent les retards dus au transit.

- 8) Contrôle de routage : routage adaptatif
- Algo. basés sur le vecteur de distance
 - □ distance exprimée en nombre de sauts (un commutateur ou un routeur entre deux liaisons).
 - ☐ Ex : RIP : Routing Information Protocol (env. TCP/IP)
 - ☐ Chaque routeur a une table de routage adressée toutes les 30 s aux routeurs voisins.
 - ☐ Table précisant pour chaque destinataire le nombre de sauts pour l'atteindre.
 - ☐ Chemin retenu : celui contenant le moins de saut.
 - ☐ Convergence assez longue.
 - ☐ Ex : IGRP de Cisco avec env. IP : cycle toutes les 90 s.

- 8) Contrôle de routage : routage adaptatif
- Algo. basés sur l'état des liaisons
 - □ un poids associé à chaque liaison
 - □ chaque routeur n'envoie à ses voisins :
 - → que la description des liaisons qu'il maintient avec eux,
 - → que s'il y a eu un changement.

- 8) Algo. basés sur l'état des liaisons
 - \square Ex : OSPF : open shortest path first
 - → un routeur transmet à tous les autres un paquet décrivant ses liaisons locales afféctées d'un poids
 - → l'administrateur fixe le poids (critères : flux, support, débit, coût, ...)
 - → seule la description de la modification intervenue est transmise
 - → limitation du trafic de gestion
 - ☐ Agir sur le poids de la liaison permet d'agir sur le transfert de flux :
 - ☐ Ex: liaison satellite
 - → poids faible pour du trafic batch
 - → poids fort pour du trafic interactif

9) Adressage

- Un processus utilisateur au sein d'un équipement d'extrémité est connecté au réseau afin de communiquer avec un autre processus à l'autre extrémité
- Processus, équipement et réseau sont à identifier et à adresser à chaque extrémité
- <u>Adressage hiérarchique</u> : par le CCITT (X121 téléinformatique)

14 chiffres:

- ☐ 3 pour le pays où se trouve le réseau
- ☐ 1 pour le réseau dans le pays
- □ 10 pour l'adresse de l'équipement et le port auquel le processus est connecté.

- 9) Adressage
- Adressage global:
 - ☐ par l'ISO (IS 8348 : réseaux locaux)
 - □ avantage:
 - → unicité de l'adresse pour tout équipement connecté
 - □ inconvénients :
 - → complication du routage
 - → gestion globale centralisée

- 9) Adressage
- Compromis:

TCP/IP

- □ adressage hiérarchique et
- ☐ adressage global pour les ports (sockets)

adressage téléphonique des services publics (pompiers, police, ...)

☐ le numéro est inchangé quel que soit la zone géographique

TCP/IP: Bibliographie

- Réseaux, télématique et PC. J. Terrasson. Ed. Armand Colin, 1992.
- TCP/IP Administration de réseau. C. Hung,
 E. Dumas. Ed. O'Reilly, 1998.
- Télécoms et réseaux. Communications d'entreprise. M. Maiman. Ed. Masson, 1997.