1 Background

2 Model

2.1 Data Generating Process

In this model, pictures were modeled as a function (light strength) on R^2 , particularly in the primary model, pictures were modeled as square with light strength 1 and centered at its known position on unit square, x_i and y_i with a common width d defined as distance from center to one edge. The picture i was a function:

$$f_i(x,y) = \begin{cases} 1 & |x - x_i| \le d \text{ and } |y - y_i| \le d \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Perception center was modeled as a Gaussian kernel using 3 parameters, 1) position on x axis, $x_c \in [0,1]$, 2) position on y axis $y_c \in [0,1]$ and 3) concentration bandwidth $\gamma > 0$. Note this kernel as $p_{\theta}(x,y)$ in which $\theta = (x_c, y_c, \gamma)$:

$$p_{\theta}(x,y) = \frac{1}{2\pi\gamma^2} exp(-\frac{(x-x_c)^2 + (y-y_c)^2}{2\gamma^2})$$
 (2)

The expected response of the neuron network Y_i was model as expectation of picture f_i times some amplitude a and add some Gaussian noise:

$$Y_i = a \int f_i(x, y) p_{\theta}(x, y) dx dy + \epsilon_i$$
(3)

in which $\epsilon_i \sim N(0, \sigma^2)$ i.i.d.

Amplitude a corresponds to the expected response when picture is infinitely large. Note that we can scale a and f_i at the same time without changing EY_i , thus we need to specify some convention on f_i , e.g. $\max_{x,y} f_i(x,y) = 1$.

As a summary, there are 5 parameters in this primary model, 1)-2) $(x_c, y_c) \in [0, 1] \times [0, 1]$: the center of perception 3) γ : bandwidth of perception kernel, 4) a > 0: amplitude of signal and 5) $\sigma > 0$ standard deviation of noise.

Data has three parts 1)-2) $(x_i, y_i) \in [0, 1] \times [0, 1]$: center of picture 3) d > 0 common width of the picture.

2.2 Reconstruction

We take a Bayesian approach. Reconstruction means sample from the posterior of the parameters. (x_c, y_c) had a uniform prior on unit square, γ had an improper uniform prior on $[0, \infty)$, a had an improper uniform prior on $[0, \infty)$, σ had a conjugate prior of inverse Gamma with parameter $\alpha = 1$, $\beta = 1$.

Markov chain Monte Carlo method was used to sample from the posterior, all parameters except σ was sampled using MH algorithm with a normal random walk proposal, while σ was updated using conjugation.

mean response

0.0 0.4 0.8

0.4

8.0

bandwidth

Figure 1: Image width 0.1

3 Primary result

0.0

Below simulation was done using $(x_c, y_c) = (0.3, 0.5)$ (red square), bandwidth $\gamma = 0.2$, amplitude a = 10, noise standard deviation $\sigma = 0.3$. Picture was put in grids on 0, 1 depends on the width of pictures. Each experiment had 5 repeats (i.e. pictures were put on each grid 5 times independently).

Black dots showed 500 posterior sample on the center, density plot showed the posterior distribution estimated for bandwidth γ . Background map showed the mean response of 5 repeats.

bandwidth

Figure 2: Image width 0.25

bandwidth

Figure 3: Image width 0.5

bandwidth

Figure 4: Image width 1