步进式电动机

一、前言

步进电机 是将电脉冲信号转变为角位移或 线位移的开环控制元件 。在非超载的情况下,电机的转速、停止的位 置只取决于脉冲信号的频率和 脉冲数,而不受负载变化的影响,即给 电机加一个脉冲信号,电机则转 过一个步距角。 这一线性关系 的存在,加上步进电机 只有周期性的误差而无累积误差 等特点。使得在速度、位置等控制领域用步进电机来 控制变的非常的简单。

二、感应 子式步进电机工作原理

(一)反 应式步进电机原理

由于反应 式步进电机工作原理比较简单。 下面先叙述 三相 反应式步进电 机原理。

1、结构:

电机转子均匀 分布着很多小齿,定子齿 有三个励磁绕阻,其几何 轴线依次分别与转子齿轴线错开 0、1/3 て、2/3 て,(相邻两转子齿轴线间的距离为 齿距以て表示),即 A 与齿 1 相对齐, B 与齿 2 向右错开 1/3 て, C 与齿 3 向右错开 2/3 て, A 与齿 5 就是齿 1)

2、旋转:

如 A 相通电, B,C 相不通电 时,由于磁场作 用,齿 1 与 A 对齐,(转子不受任何力以下均同)。如 B 相通电 ,A,C 相不通电时,齿 2 应与 B 对齐,此时转子向右移过 1/3 て,此时齿 3 与 C 偏移为 1/3 て,齿 4 与 A 偏移(て -1/3 て) =2/3 て。如 C 相 通电, A,B 相不 通电,齿 3 应与 C 对齐,此时转子 又向右移过 1/3 て,此时齿 4 与 A 偏移为 1/3 て对齐。如 A 相通电, B,C 相不通电,齿 4 与 A 对齐,转子又向右移过 1/3 て这样经过 A、B、C、A 分别通电状态,齿 4 (即齿 1 前一齿)移到 A 相,电机转子向右 转过一个齿距,如果不断地按 A,B,C,A…… 通电,电机就反转。

由此可见 : 电机的位置和速度由导电次 数(脉冲数)和频率成一一 对应关系。而 方向由导电顺 序决定。

不过,出于对力矩、平稳、噪音及减少角 度等方面考虑。往往采用 A-AB-B-BC C-CA-A 这种 导电状态,这样将原来每步 1/3 て改变为 1/6 て。甚至于通过二相 电流不同的组合 ,使其 1/3 て变为 1/12 て ,1/24 て ,这就是 电机细分驱 动的基本理论依据。 不难推出:电机定子上有 m 相励磁绕阻,其轴线分别与转子 齿轴线偏移 1/m,2/m…… (m -1)/m,1 。并且导电按一 定的相序电机就能正反转被控制 — 这是步进电机旋转的物理条 件。只要符合这一条件我们 理论上可以制造任何相的步进电 机,出于成本等多方面考 虑,市场上一般以 二、三、四、 五相 为多。

3、力矩:

电机一旦 通电,在定转子间将产生磁场(磁通量)当转子与定 子错开一定角度产生力 F与(d/d)成正比 S 其磁通量 =Br*S Br 为磁密, S 为导磁面积 F与 L*D*Br 成正比 L 为铁芯有效长度, D 为转子直径 Br=N·I/R N·I 为励磁绕阻安匝 数(电流乘匝数) R 为磁阻。

力矩 =力*半径

力矩与电 机有效体积 *安匝数 *磁密 成正比 (只考虑线性状态)因此,电机 有效体积越大,励 磁安匝数越大,定转子间气隙越 小,电机力矩越大,反之亦然 。

(二)感 应子式步进电机

1、特点:

感应子式 步进电机与传统的反应式步进电 机相比,结构上转子加有永 磁体,以提供软磁材料的 工作点,而定子激磁只 需提供变化的磁场而不必提供磁 材料工作点的耗能,因 此该电机效率高,电流 小,发热低。因 永磁体的存在,该电机 具有较强的反电势,其自身阻 尼作用比较好,使其在运转过程 中比较平稳、噪音低、低频振 动小。

感应子式 步进电机某种程度上可以看作是 低速同步电机。 一个四 相电机可以作四相运行,也可以作二相 运行。(必须采用双极电压驱动),而反应式电机则不能如此例如:四相, 八相运行(A-AB-B-BC-C-CD-D-DA-A) 完全可以采用二相八拍运行方式 .不难发现其条件为 C=,D=.

一个二相 电机的内部绕组与四相电机完全 一致,小功率电机一般直接接 为二相,而功率大一点 的电机,为了方便使用,灵活改变电机的动态 特点,往往将其外部接线 为八根引线(四相),这样使用时,既可以作 四相电机使用,可以作 二相电机绕组串 联或并联使用 。

2、分类

感应子式 步进电机以相数可分为:二相电机、 三相电机、 四相电机、 五相电机等 。以机座号(电 机外径)可分为: 42BYG(BYG 为感应子式步 进电机代号)、 57BYG、86BYG、110BYG、(国际标准),而像 70BYG、90BYG、130BYG 等均为 国内 三、驱动 控制系统组成

使用、控制步进电 机必须由环形脉冲,功率放大等组成 的控制系统,其方框图如下:

1、脉冲信号的产生。

脉冲信号 一般由单片机或 CPU 产生 , 一般脉冲信号的占空比为 0.3-0.4 左右 , 电机转速越高 , 占空比则越大。

2、信号分配

我厂生产 的感应子式步进电机以二、四相电机为主,二相电机工 作方式有二相四 拍和二相八拍 二种,具体分配如下:二相四拍 为,步距角为 1.8 度;二相八拍为 ,步距角为 0.9 度。四相电机工作方式 也有二种,四相四拍为 AB-BC-CD-DA-AB, 步距角为 1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为 0.9 度)。

3、功率放大

功率放大 是驱动系统最为重要的部分 。步进电机在一定转速下的 转矩取决于它的 动态平均电流 而非静态电流(而样本上的电流均为静 态电流)。平均电流越大电机力 矩越大,要达到平均电流大这就需要驱动 系统尽量克服电机的反电势 。因而不同的场合采取不同的 的驱动方式,到目前为止, 驱动方式一般有以下几种:恒 压、恒压串电阻、高低压驱 动、恒流、细分数等 。

为尽量提 高电机的动态性能,将信号分配 、功率放大组成步进电机的驱 动电源。 我厂生产的 SH 系列二相恒流斩波驱动电源与单 片机及电机接线图如下:

说明:

CP 接 CPU 脉冲信号(负信号,低电平有效)

OPTO 接 CPU+5V

FREE 脱机,与 CPU 地线相接,驱动电源不 工作

DIR 方向控制,与 CPU 地线相接, 电机反转

VCC 直 流电源正端

GND 直流电源负端

A 接电机引出 线红线

接电机引 出线绿线

B 接电机引出 线黄线

接电机引出线蓝线 步进电机一经定型, 其性能取决于电机的驱动电源 。步进电机转速越高,力距越大 则要求电机的电流越大,驱动电源的 电压越高。电压对力矩影响如下:

4、细分驱动器

在步进电 机步距角不能满足使用的条件下 ,可采用细分驱动器来驱动步 进电机 ,细分驱动器的 原理是通过改变相邻 (A , B) 电流的大小 ,以改变合成磁场的夹角来 控制步进电机 运转的。

四、步进 电机的应用

(一)步 进电机的选择

步进电机 有步距角(涉及到相数)、静转矩 、及电流三大要素组成 。一旦三大要素确定,步进 电机的型号便确定下来了。

1、步距角的选择

电机的步 距角取决于负载精度的要求,将负载的 最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步 进电机的步距角一般有 0.36 度/0.72 度(五相电机)、0.9 度/1.8 度(二、四相电机)、 1.5 度/3 度 (三相电机) 等。

2、静力矩的选择

步进电机 的动态力矩一下子很难确定 ,我们往往先确定电机的静力矩 。静力矩选择的依据是电 机工作的负载,而负载可分 为惯性负载和摩擦负载二种 。单一的惯性负载和单一的摩 擦负载是不存在的。直接起动时 (一般由低速)时二种负载均 要考虑,加速起动时主 要考虑惯性负载,恒速运行进只要考虑 摩擦负载。一般情况下,静力矩应为摩擦负载的 2-3 倍内好,静力矩 一旦选定,电机的机座及长度便 能确定下来(几何尺寸)

3、电流的选择

静力矩一 样的电机,由于电流参数不同,其运行特性差 别很大,可依据矩频特性 曲线图,判断 电机的电流(参考驱动电源、及 驱动电压)

4、力矩与功率换算

步进电机 一般在较大范围内调速使用、其 功率是变化的,一般只用力矩 来衡量,力矩与功率换 算如下:

P = M = 2 n/60 P = 2 nM/60

矩单位为牛顿 米

P=2 fM/400(半步工作)

其中 f 为每秒 脉冲数(简称 PPS)

- (二)、应用中的注意点
- 1、步进电机应用于低速场合 --- 每分钟转速不超过 1000 转 , (0.9 度时 6666PP S) , 最好在 1000-3000PPS(0.9 度) 间使用 , 可通过减速装置使其在此间 工作 , 此时 电机工作效率 高 , 噪音低。
 - 2、步进电机最好不使用整步状 态,整步状态时振动大。
- 3、由于历史原因 , 只有标称为 12V 电压 的电机使用 12V 外 , 其 他电机的电压值不是驱动电压 伏值 , 可根据驱动器选择驱动 电压(建议: 57BYG 采用直流 24V-36 V , 86BYG 采用直流 50V,110BYG 采用高于直流 80V) , 当然 12 伏的电压除 12V 恒压驱动外也 可以采用其他驱动电源 , 不过 要考虑温升。
 - 4、转动惯量大的负载应选择大 机座号电机。
- 5、电机在较高速或大惯量负载 时,一般不在工作速度起动,而 采用逐渐升频提速,一电机不 失步,二可以减少噪音同时可以 提高停止的定位精度。
- 6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决 ,也可以采用 5 相电机,不过其整个系 统的价格较贵,生产厂家少,其 被淘汰的说法是外行话。

- 7、电机不应在振动区内工作, 如若必须可通过改变电压、电流 或加一些阻尼的解决。
 - 8、电机在 600PPS (0.9 度)以下工作,应采 用小电流、大电感、低电压来驱动

9、应

步进电机 14 问

1. 什么是步进电机 ?

步进电机 是一种将电脉冲转化为角位移的 执行机构。通俗一点讲 : 当步进驱动器接收到一个脉 冲信号,它就驱动步进电机 按设定的方向转动一个固定的角 度(及步进角)。您 可以通过控制脉冲个数来控制角 位移量,从而达到准确定位的 目的;同时您可以通过控制 脉冲频率来控制电机转动的速度 和加速度,从而达到调速的目 的。

2. 步进电机分哪几种 ?

步进电机 分三种:永磁式(PM),反应 式(VR)和混合 式(HB)

永磁式步 进一般为两相,转矩和体积较小 , 步进角一般为 7.5 度 或 15 度;

反应式步 进一般为三相,可实现 大转矩输出,步进角一 般为 1.5 度,但噪声和振动都很大。在 欧美等发达国家 80 年代已被 淘汰;混合式步进是指混合了永 磁式和反应式的优点。 它又分为两相和五相: 两相步 进角一般为 1.8 度而五相步进角一般为 0.72 度。这种步进电机的应用最为广 泛。

3. 什么是保持转矩 (HOLDING TORQUE) ?

保持转矩(HOLDING TORQUE)是指步进电机通电但 没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之 一,通常步进电机在低速时 的力矩接近保持转矩。由 于步进电机的输出力矩随速度的 增大而不断衰减,输出功率 也随速度的增大而变化,所以保持转矩 就成为了衡量步进电机最重要 的参数之一。比如,当人们说 2 N.m 的步进电机,在没有特殊说明的情况下是指 保持转矩为 2N.m 的步进电机。

4. 什么是 DETENT TORQUE?

DETENT TORQUE 是指步进电机没有通电的 情况下,定子锁住转子的力矩。

DETENT TORQUE 在国内没有统一的翻译方 式,容易使大家产生误解; 由于反应式步进电机 的转子不是永磁材料,所以它没有 DETENT TORQUE。

- 5. 步进电机精度为多 少?是否累积 ?
- 一般步进 电机的精度为步进角的 3-5% ,且不累积。
- 6. 步进电机的外表温 度允许达到多少 ?

步进电机 温度过高首先会使电机的磁性材 料退磁,从而导致力矩下降乃 至于失步,因此电机 外表允许的最高温度应取决于不 同电机磁性材料的退磁点;一 般来讲,磁性材料的退 磁点都在摄氏 130 度以上,有的甚至高达摄氏 200 度以上,所以步进电机外表温度 在摄氏 80-90 度完全正常。

7. 为什么步进电机的 力矩会随转速的升高而下降 ?

当步进电 机转动时,电机各相绕组的电感将形成 一个反向电动势;频率越高,反向电动势越大。在它的作用下 ,电机随频率(或速度)的增大而相电流减小 ,从而导致力矩下降。

8. 为什么步进电机低 速时可以正常运转 ,但若高于一定速度就无法启动 ,并伴有啸叫声 ?

步进电机 有一个技术参数:空载启动 频率,即步进电机在空载情 况下能够正常启动的脉冲频率 ,如果脉冲频率高于该值,电机 不能正常启动,可能发生丢步 或堵转。在有负载的情 况下,启动频率应更低。如果要使电机达到高 速转动,脉冲频率应该有加速过程,即启动频率 较低,然后按一定加速度升到所希望 的高频(电机转速从低速升到高速)。

- 9. 如何克服两相混合 式步进电机在低速运转时的振 动和噪声 ? 步进电机 低速转动时振动和噪声大是其固 有的缺点,一般可采用以下方 案来克服:
 - A. 如步进电机正好工作在共振区, 可通过改变减速比等机械传动 避开共振区;
 - B. 采用带有细分功能的驱动器,这是最常用的、最简便的方法;
 - C. 换成步 距角更小的步进电机,如三相或 五相步进电机;
 - D.换成交 流伺服电机,几乎可以完全克服 震动和噪声,但成本较高;
 - E. 在电机轴上加磁性阻尼器,市场 上已有这种产品,但机械结构 改变较大。
 - 10. 细分驱 动器的细分数是否能代表精度 ?

步进电机 的细分技术实质上是一种电子阻 尼技术(请参考有关文献),其主要目的是减弱或消 除步进电机的低频振动 ,提高电机的运转精度只是细分 技术的一个附带功能。比如对 于步进角为 1.8°的两相混合式步进 电机,如果细分驱动器的细分数 设置为 4,那么电机的运转分辨率为每 个脉冲 0.45°,电机 的精度能否达到或接近 0.45°,还取决于细分 驱动器的细分电流控制精度等其 它因素。不同厂家的细 分驱动器精度可能差别很大; 细分数越大精度越难控制。

11. 四相混 合式步进电机与驱动器的串联接 法和并联接法有什么区别 ? 四相混合 式步进电机一般由两相驱动器来 驱动,因此,连接时可 以采用串联接法或并联接法将 四相电机接成两相使用。串 联接法一般在电机转速较的场合 使用,此时需要的驱动器 输出电流为电机相电流的 0.7 倍,因而电机发热小;并 联接法一般在电机转速较高的 场合使用(又称高速接法),所需要的驱动器输出电流 为电机相电流的 1.4 倍,因而电机发热 较大。

12. 如何确 定步进电机驱动器的直流供电电 源?

A. 电压的确定:混合式步进电机驱 动器的供电电源电压一般是一 个较宽的范围 (比如 IM483 的 供电电压为 12 ~ 48VDC),电源电压通常根据电机 的工作转速和响应要求来选择。如果电 机工作转速较高或响应要求较 快,那么电压取值也高,但注意电源电压的纹 波不能超过驱动器的最大输入电 压,否则可能损坏驱动器。

B. 电流的确定:供电电源电流一般 根据驱动器的输出相电流 I 来确定 。如果采用线性电源,电 源电流一般可取 I 的 1.1 ~ 1.3 倍;如果采用 开关电源,电源电流一般可取 I 的 1.5 ~ 2.0 倍。

13. 混合式 步进电机驱动器的脱机信号 FREE 一般在什么情况下使用 ? 当脱机信号 FREE 为低电平时, 驱动器 输出到电机的电流被切断 ,电机转子处于自由状态(脱机状态)。在有些自动化 设备中,如果在驱动器不断电 的情况下要求直接转动电机轴(手 动方式),就可以将 FREE 信号置低,使电机 脱机,进行手动操作或调节。手动 完成后,再将 FREE 信号置高,以继 续自动控制。

14. 如果用 简单的方法调整两相步进电机通 电后的转动方向 ? 只需将电 机与驱动器接线的 A+和 A-(或者 B+和 B-)对调即可。

关于驱动 器的细分原理及一些相关说明(转载)

在国外,对于步进系统,主要采用二相混 合式步进电机及相应的细分驱 动器。但在国内,广大用户对 细分 "还不是特别了解,有的只是认为 ,细分是为了提高精

度,其实不然,细分主要是改善电机 的运行性能,现说明如下:步进电机的细分控制是由驱动 器精确控制步进电机的相电流来 实现的,以二相电机为例 ,假如电机的额定相电流为 3A ,如果使用常规驱动器(如常用 的恒流斩波方式)驱动该电机, 电机每运行一步 ,其绕组内的电流将从 0 突变为 3A 或从 3A 突变到 0 ,相电流 的巨大变化,必然会 引起电机运行的振动和噪音。如 果使用细分驱动器,在 10 细分的状态下驱动该电机,电机每 运行一微步,其绕组内的电流变化只有 0.3A 而不是 3A ,且电流是以正弦曲 线规律变化,这样就大大的改善了电机 的振动和噪音,因此,在性能上的优点才是细 分的真正优点。由于细分驱 动器要精确控制电机的相电流 ,所以对驱动器要有相当高 的技术要求和工艺要求,成本亦会较高。注意,国内有 一些驱动器采用平滑 "来取代细分,有的亦称为细 分,但这不是真正的细分,望广 大用户一定要分清两者的本质不 同:

- 1. "平滑"并不精 确控制电机的相电流,只是 把电流的变化率变缓一些 , 所以"平滑"并不产生微步,而细分的微步是 可以用来精确定位的。
- 2. 电机的相电流被平滑后,会 引起电机力矩的下降,而细分控 制不但不会引起电机力矩的下 降,相反,力矩会有所增加。

俺是步进 不仅新手,俺也来贴。

1. 什么是步进电机 ?

步进电机 是一种将电脉冲转化为角位移的 执行机构。通俗一点讲 : 当步进驱动器接收到一个脉 冲信号,它就驱动步进电机 按设定的方向转动一个固定的角 度(及步进角)。您 可以通过控制脉冲个数来控制角 位移量,从而达到准确定位的 目的;同时您可以通过控制 脉冲频率来控制电机转动的速度 和加速度,从而达到调速的目 的。

2. 步进电机分哪几种 ?

步进电机 分三种:永磁式(PM),反应 式(VR)和混合 式(HB) 永磁式步 进一般为两相,转矩和体积较小,步进角一般为 7.5 度 或 15 度;

反应式步 进一般为三相,可实现 大转矩输出,步进角一 般为 1.5 度,但噪声和振动都很大。在 欧美等发达国家 80 年代已被 淘汰;混合式步进是指混合了永 磁式和反应式的优点。 它又分为两相和五相: 两相步 进角一般为 1.8 度而五相步进角一般为 0.72 度。这种步进电机的应用最为广 泛。

3. 什么是保持转矩 (HOLDING TORQUE) ?

保持转矩(HOLDING TORQUE)是指步进电机通电但 没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之 一,通常步进电机在低速时 的力矩接近保持转矩。由于步进电机的输出力矩随速度的 增大而不断衰减,输出功率 也随速度的增大而变化,所以保持转矩 就成为了衡量步进电机最重要 的参数之一。比如,当人们说 2 N.m 的步进电机,在没有特殊说明的情况下是指 保持转矩为 2N.m 的步进电机。

4. 什么是 DETENT TORQUE?

DETENT TORQUE 是指步进电机没有通电的 情况下,定子锁住转子的力矩。

DETENT TORQUE 在国内没有统一的翻译方 式,容易使大家产生误解; 由于反应式步进电机 的转子不是永磁材料,所以它没有 DETENT TORQUE。

- 5. 步进电机精度为多 少?是否累积 ?
- 一般步进 电机的精度为步进角的 3-5% ,且不累积。
- 6. 步进电机的外表温 度允许达到多少 ?

步进电机 温度过高首先会使电机的磁性材 料退磁,从而导致力矩下降乃 至于失步,因此电机 外表允许的最高温度应取决于不 同电机磁性材料的退磁点;一 般来讲,磁性材料的退 磁点都在摄氏 130 度以上,有的甚至高达摄氏 200 度以上,所以步进电机外表温度 在摄氏 80-90 度完全正常。

7. 为什么步进电机的 力矩会随转速的升高而下降 ?

当步进电 机转动时,电机各相绕组的电感将形成 一个反向电动势;频率越高,反向电动势越大。在它的作用下 ,电机随频率(或速度)的增大而相电流减小 ,从而导致力矩下降。

8. 为什么步进电机低 速时可以正常运转 ,但若高于一定速度就无法启动 ,并伴有啸叫声 ?

步进电机 有一个技术参数:空载启动 频率,即步进电机在空载情 况下能够正常启动的脉冲频率 ,如果脉冲频率高于该值,电机 不能正常启动,可能发生丢步 或堵转。在有负载的情 况下,启动频率应更低。如果要使电机达到高 速转动,脉冲频率应该有加速过程,即启动频率 较低,然后按一定加速度升到所希望 的高频(电机转速从低速升到高速)。

- 9. 如何克服两相混合 式步进电机在低速运转时的振 动和噪声 ? 步进电机 低速转动时振动和噪声大是其固 有的缺点,一般可采用以下方 案来克服:
 - A. 如步进电机正好工作在共振区, 可通过改变减速比等机械传动 避开共振区;
 - B. 采用带有细分功能的驱动器,这 是最常用的、最简便的方法;
 - C. 换成步 距角更小的步进电机, 如三相或 五相步进电机;

- D.换成交 流伺服电机,几乎可以完全克服 震动和噪声,但成本较高;
- E. 在电机轴上加磁性阻尼器,市场 上已有这种产品,但机械结构 改变较大。
- 10. 细分驱 动器的细分数是否能代表精度 ?

步进电机 的细分技术实质上是一种电子阻 尼技术(请参考有关文献),其主要目的是减弱或消 除步进电机的低频振动 ,提高电机的运转精度只是细分 技术的一个附带功能。比如对 于步进角为 1.8°的两相混合式步进 电机,如果细分驱动器的细分数 设置为 4,那么电机的运转分辨率为每 个脉冲 0.45°,电机 的精度能否达到或接近 0.45°,还取决于细分 驱动器的细分电流控制精度等其 它因素。不同厂家的细 分驱动器精度可能差别很大; 细分数越大精度越难控制。

11. 四相混 合式步进电机与驱动器的串联接 法和并联接法有什么区别 ?

四相混合 式步进电机一般由两相驱动器来 驱动,因此,连接时可 以采用串联接法 或并联接法将 四相电机接成两相使用。串 联接法一般在电机转速较的场合 使用,此时需要的驱动器 输出电流为电机相电流的 0.7 倍,因而电机发热小;并 联接法一般在电机转速较高的 场合使用(又称高速接法),所需要的驱动器输出电流 为电机相电流的 1.4 倍,因而电机发热 较大。

12. 如何确 定步进电机驱动器的直流供电电 源?

A. 电压的确定:混合式步进电机驱 动器的供电电源电压一般是一 个较宽的范围 (比如 IM483 的 供电电压为 12 ~ 48VDC),电源电压通常根据电机 的工作转速和响应要求来选择。如果电 机工作转速较高或响应要求较 快,那么电压取值也高,但注意电源电压的纹 波不能超过驱动器的最大输入电 压,否则可能损坏驱动器。

B. 电流的确定:供电电源电流一般 根据驱动器的输出相电流 I 来确定 。如果采用线性电源,电 源电流一般可取 I 的 1.1 ~ 1.3 倍;如果采用 开关电源,电源电流一般可取 I 的 1.5 ~ 2.0 倍。

13. 混合式 步进电机驱动器的脱机信号 FREE 一 般在什么情况下使用 ?

当脱机信号 FREE 为低电平时, 驱动器 输出到电机的电流被切断 ,电机转子处于自由状态(脱机状态)。在有些自动化 设备中,如果在驱动器不断电 的情况下要求直接转动电机轴(手 动方式),就可以将 FREE 信号置低,使电机 脱机,进行手动操作或调节。手动 完成后,再将 FREE 信号置高,以继 续自动控制。

14. 如果用 简单的方法调整两相步进电机通 电后的转动方向 ?

只需将电 机与驱动器接线的 A+和 A-(或者 B+和 B-)对调即可。

虽然步进 电机已被广泛地应用,但步 进电机并不能象普通的直流电机 ,交流电机 在常规下使用 。它必须由双环形脉冲信号、功 率驱动电路等组成控制系统方 可使用。因此用好步进 电机却非易事,它涉及到机械、 电机、电子及计算机等许多专 业知识。

目前,生产步进电机的厂家的 确不少,但具有专业技术人员, 能够自行开发,研制的厂家却非 常少,大部分的厂家只一、二十人,连最基本的设备都没 有。仅仅处于一种盲目的仿 制阶段。 这就给用户在产 品选型、 使用中造成许 多麻烦。 签于上述情况 ,

我们决定以广 泛的感应子式步进电机为例 。叙述其基本工作原理。望 能对广大用户在选型、使用、 及整机改进时有所帮助。

- 一、感应 子式步进电机工作原理
- 1)、反应式步进电机原理

由于反应 式步进电机工作原理比较简单。 下面先叙述三相反应式步进电 机原理。

1、结构:

电机转子 均匀分布着很多小齿,定子 齿有三个励磁绕阻,其几何 轴线依次分别与 转子齿轴线错 开。

0、1/3 て、2/3 て,(相邻两转子齿轴线间 的距离为齿距以て表示),即 A 与齿 1相对齐 ,B 与齿 2 向右错开 1/3 て,C 与齿 3 向右错开 2/3 て,A'与齿 5 相对 齐,(A'就是 A,齿 5 就是齿 1)下 面是定转子的展开图:

2、旋转:

如 A 相通电 , B , C 相不通电 时 , 由于磁场作 用 , 齿 1 与 A 对齐 , (转子不受任何力以下均同)。

如 B 相通电 , A , C 相不 通电时 , 齿 2 应与 B 对齐 , 此时转子向右移过 1/3 て , 此时齿 3 与 C 偏移为 1/3 て , 齿 4 与 A 偏移 (て -1/3 て) =2/3 て。

如 C 相 通电 , A , B 相不 通电 , 齿 3 应与 C 对齐 , 此时转子 又向右移过 1/3 て , 此时齿 4 与 A 偏移为 1/3 て 对齐。

如 A 相通电 , B , C 相不 通电 , 齿 4 与 A 对齐 , 转子 又向右移过 1/3 て 这样经过 A、B、C、A 分别通电状态 , 齿 4 (即齿 1 前一齿)移到 A 相 , 电机转子向右转过一 个齿距 , 如果不断地按 A , B , C , A 通电 , 电机就每步(每脉冲) 1/3 て ,向右 旋转。如按 A , C , B , A 通电 , 电 机就反转。

由此可见 : 电机的位置和速度由导电次 数(脉冲数)和频率成一一 对应关系。而 方向由导电顺 序决定。

不过,出 于对力矩、平稳、噪音及减少角 度等方面考虑。往往采用 A-AB-B-BC - C-CA-A 这种 导电状态,这样将原来每步 1/3 て改变为 1/6 て。甚至于通过二相 电流不同的组合 ,使其 1/3 て变为 1/12 て ,1/24 て ,这就是电机细分驱 动的基本理论依据。

不难推出 : 电机定子上有 m 相励磁绕阻,其轴线分 别与转子齿轴线偏移 1/m,2/m.... (m -1)/m,1 。并且导电按一定 的相序电机就能正反转被控制 —— 这是步进电机旋转的物理条件 。只要符合这一条件我们理 论上可以制造任何相的步进电机 ,出于成本等多方面考虑 ,市场上一般以二、三、四、五 相为多。

3、力矩:

电机一旦 通电,在定转子间将产生磁场(磁通量) 当转子与定 子错开一定角度产生力 F与(d/d)成正比

其磁通量 =Br*S

Br 为磁密 , S 为导磁面积

F 与 L*D*Br 成正比

L 为铁芯 有效长度, D 为转子 直径

Br=N · I/R

N·I 为 励磁绕阻安匝数(电流乘匝数) R 为磁阻。

力矩 =力*半径

力矩与电 机有效体积 *安匝数 *磁密 成正比 (只考虑线性状态)

因此 ,电机有效体积越大 , 励 磁安匝数越大 , 定转子间 气隙越小 , 电机力矩越大 , 反之亦然。

(二)感 应子式步进电机

1、特点:

感应子式 步进电机与传统的反应式步进电 机相比,结构上转子加有永 磁体,以提供软磁材料的 工作点,而定子激磁只 需提供变化的磁场而不必提供磁 材料工作点的耗能,因 此该电机效率高,电流 小,发热低。因 永磁体的存在,该电机 具有较强的反电势,其自身阻 尼作用比较好,使其在运转过程 中比较平稳、噪音低、低频振 动小。

感应子式 步进电机某种程度上可以看作是 低速同步电机。 一个四 相电机可以作四相运行,也可以作二相 运行。(必须采用双极电压驱动),而反应式电机则不能如此例如:四相, 八相运行(A-AB-B-BC-C-CD-D-DA-A) 完全可以采用二相八拍运行方式.

一个二相 电机的内部绕组与四相电机完全 一致,小功率电机一般直接接 为二相,而功率大一点 的电机,为了方便使用,灵活改变电机的动态 特点,往往将其外部接线 为八根引线(四相),这样使用时,既可以作 四相电机使用,可以作 二相电机绕组串 联或并联使用 。

2、分类

感应子式 步进电机以相数可分为:二相电机、 三相电机、 四相电机、 五相电机等 。以机座号(电 机外径)可分为: 42BYG(BYG 为感应子式步 进电机代号)、 57BYG、86BYG、110BYG、(国际标准),而像 70BYG、90BYG、130BYG 等均为 国内标准。

3、步进电机的静态指标术语

相数:产 生不同对极 N、S 磁场的激磁线圈 对数。常用 m 表示。

拍数:完成一个磁 场周期性变化所需脉冲数或导 电状态用 n 表示,或指电机转过一个齿距角所 需脉冲数,以四相电机为例,有 四相四拍运行方式即 AB-BC-CD-DA-AB, 四相八拍运行方 式即 A-AB-B-BC-C-CD-D-DA-A.

步距角:对应一个 脉冲信号,电机转子转过的角位移用 表示。 =360 度(转子齿数 J*运行拍数),以常规二、四相, 转子齿为 50 齿电机为例。四 拍运行时步距角为 =360 度/(50*4)=1.8 度(俗称整步),八拍 运行时步距角为 =360 度/(50*8) =0.9 度(俗称半步)。

定位转矩:电机在 不通电状态下,电机转子自身的锁定 力矩(由磁场齿形的谐波以及机械误差 造成的)

静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。 此力矩是衡量 电机体积(几何尺寸)的标准, 与驱动电压及驱动电源等无关。。

虽然静转 矩与电磁激磁安匝数成正比 ,与定齿转子间的气隙有关 ,但过份采用减小气隙 ,增加激磁安匝来提高静力 矩是不可取的 , 这 样会造成电机的发热及机械噪音 。

4、步进电机动态指标及术语:

1、步距角精度:

步进电机 每转过一个步距角的实际值与理 论值的误差。用百分比表示: 误差 /步距角 *100%。不同运行拍数其 值不同 , 四拍运行时应在 5% 之内 , 八拍运行时 应在 15%以内。

2、失步:

电机运转 时运转的步数,不等于理论上的 步数。称之为失步。

3、失调角:

转子齿轴 线偏移定子齿轴线的角度,电机运转必存在失调角,由 失调角产生的误差,采用细分 驱动是不能解决的。

4、最大空载起动频率:

电机在某 种驱动形式、电压及额定电流下,在不加负载 的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:

电机在某 种驱动形式,电压及额定电流下 , 电机不带负载的最高转速频 率。

6、运行矩频特性:电机在某种 测试条件下测得运行中输出力矩 与频率关系的曲线称为运行矩 频特性,这是电机诸 多动态曲线中最重要的 ,也是电机选择的根本依据如下图所示:

其它特性 还有惯频特性、起动频率特性等 。

电机一旦 选定,电机的静力矩确定,而动态力矩却不然,电机的 动态力矩取决于电机运行时的 平均电流(而非静态电 流),平均电流 越大,电机输出力矩越 大,即电机的频率特性 越硬。

其中,曲线 3 电 流最大、或电压最高 ;曲线 1 电流最小、或电压最低,曲 线与负载的交点为负 载的最大速度点。

要使平均 电流大,尽可能提高驱动电压, 使采用小电感大电流的电机。

7、电机的共振点:

步进电机 均有固定的共振区域,二、四相感应子式 步进电机的共振区一般在 180-250pps 之间(步距角 1.8 度)或在 400pps 左右(步 距角为 0.9 度),电机驱动电压越高,电机 电流越大,负载越轻,电机体积 越小,则共振区向上偏移,反 之亦然,为使电机输出 电矩大,不失步和整个系统 的噪音降低,一般工作点均 应偏移共振区较多。

8、电机正反转控制:

当电机绕 组通电时序为 AB-BC-CD-DA 时为正转,通电时序为 DA-CA-BC-AB 时为反转。

(二)感 应子式步进电机

1、特点:

感应子式 步进电机与传统的反应式步进电 机相比,结构上转子加有永 磁体,以提供软磁材料的 工作点,而定子激磁只 需提供变化的磁场而不必提供磁 材料工作点的耗能,因 此该电机效率高,电流 小,发热低。因 永磁体的存在,该电机 具有较强的反电势,其自身阻 尼作用比较好,使其在运转过程 中比较平稳、噪音低、低频振 动小。

感应子式 步进电机某种程度上可以看作是 低速同步电机。 一个四 相电机可以作四相运行,也可以作二相 运行。(必须采用双极电压驱动),而反应式电机则不能如此 。 例如:四相 , 八相运行 (A-AB-B-BC-C-CD-D-DA-A) 完全可以采用二相八拍运行方式 .不难发现其条件为 C= ,D=

?

?.

一个二相 电机的内部绕组与四相电机完全 一致,小功率电机一般直接接 为二相,而功率大一点 的电机,为了方便使用,灵活改变电机的动态 特点,往往将其外部接线 为八根引线(四相),这样使用时,既可以作 四相电机使用,可以作 二相电机绕组串 联或并联使用 。

2、分类

感应子式 步进电机以相数可分为:二相电机、 三相电机、 四相电机、 五相电机等 。以机座号(电 机外径)可分为: 42BYG(BYG 为感应子式步 进电机代号)、 57BYG、86BYG、110BYG、(国际标准),而像 70BYG、90BYG、130BYG 等均为 国内标准。

3、步进电机的静态指标术语

相数:产 生不同对极 N、S 磁场的激磁线圈 对数。常用 m 表示。

拍数:完成一个磁 场周期性变化所需脉冲数或导 电状态用 n 表示,或指电机转过一个齿距角所 需脉冲数,以四相电机为例,有 四相四拍运行方式即 AB-BC-CD-DA-AB, 四相八拍运行方 式即 A-AB-B-BC-C-CD-D-DA-A.

步距角:对应一个 脉冲信号,电机转子转过的角位移用 表示。 =360 度(转子齿数 J*运行拍数),以常规二、四相, 转子齿为 50 齿电机为例。四 拍运行时步距角为 =360 度/(50*4)=1.8 度(俗称整步),八拍 运行时步距角为 =360 度/(50*8) =0.9 度(俗称半步)。

定位转矩:电机在 不通电状态下,电机转子自身的锁定 力矩(由磁场齿形的谐波以及机械误差 造成的)

静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。 此力矩是衡量 电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。。 虽然静转 矩与电磁激磁安匝数成正比 ,与定齿转子间的气隙有关 ,但过份采用减小气隙 ,增加激磁安匝来提高静力 矩是不可取的 , 这 样会造成电机的发热及机械噪音 。

4、步进电机动态指标及术语:

1、步距角精度:

步进电机 每转过一个步距角的实际值与理 论值的误差。用百分比表示: 误差 /步距角 *100%。不同运行拍数其 值不同,四拍运行时应在 5%之内,八拍运行时 应在 15%以内。

2、失步:

电机运转 时运转的步数,不等于理论上的 步数。称之为失步。

3、失调角:

转子齿轴 线偏移定子齿轴线的角度,电机运转必存在失调角,由 失调角产生的误差,采用细分 驱动是不能解决的。

4、最大空载起动频率:

电机在某 种驱动形式、电压及额定电流下,在不加负载 的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:

电机在某 种驱动形式,电压及额定电流下 , 电机不带负载的最高转速频 率。

6、运行矩频特性:电机在某种 测试条件下测得运行中输出力矩 与频率关系的曲 线称为运行矩 频特性,这是电机诸 多动态曲线中最重要的 ,也是电机选择的根本依据 。 其它特性 还有惯频特性、起动频率特性等 。

机一旦选 定,电机的静力矩确定,而动态力矩却不然,电机的动 态力矩取决于电机运行时的平 均电流(而非静态电流),平均电流越 大,电机输出力矩越大 ,即电机的频率特性越 硬。

如下图所 示:

其中,曲线 3 电 流最大、或电压最高 ;曲线 1 电流最小、或电压最低,曲 线与负载的交点为负 载的最大速度点。

要使平均 电流大,尽可能提高驱动电压, 使采用小电感大电流的电机。

7、电机的共振点:

步进电机 均有固定的共振区域,二、四相感应子式 步进电机的共振区一般在 180-250pps 之间(步距角 1.8 度)或在 400pps 左右(步 距角为 0.9 度),电机驱动电压越高,电机 电流越大,负载越轻,电机体积 越小,则共振区向上偏移,反 之亦然,为使电机输出 电矩大,不失步和整个系统 的噪音降低,一般工作点均 应偏移共振区较多。

8、电机正反转控制:

当电机绕 组通电时序为 AB-BC-CD-DA 时为正转,通电时序为 DA-CA-BC-AB 时为反转。

三、驱动 控制系统组成

使用、控制步进电 机必须由环形脉冲,功率放大等组成 的控制系统,其方框图如下:

1、脉冲信号的产生。

脉冲信号 一般由单片机或 CPU 产生 , 一般脉冲信号的占空比为 0.3-0.4 左右 , 电机转速越高 , 占空比则越大。

2、信号分配

我厂生产的感应子式步进电机以二、四相电机为主,二相电机工 作方式有二相四拍和二相八拍 二种,具体分配如下:二相四拍为 ,步 距角为 1.8 度;二相八拍为 ,步距角为 0.9 度。四相电机工作方式 也有二种,四相四拍为 AB-BC-CD-DA-AB, 步距角为 1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为 0.9 度)。

3、功率放大

功率放大 是驱动系统最为重要的部分 。步进电机在一定转速下的 转矩取决于它的 动态平均电流 而非静态电流(而样本上的电流均为静 态电流)。平均电流越大电机力 矩越大,要达到平均电流大这就需要驱动 系统尽量克服电机的反电势 。因而不同的场合采取不同的 的驱动方式,到目前为止,驱动方式一般有以下几种:恒 压、恒压串电阻、高低压驱 动、恒流、细分数等。

为尽量提 高电机的动态性能,将信号分配 、功率放大组成步进电机的驱 动电源。 我厂生产的 SH 系列二相恒流斩波驱动电源与单 片机及电机接线图如下:

说明:

CP 接 CPU 脉冲信号(负信号,低电平有效)

OPTO 接 CPU+5V

FREE 脱机,与 CPU 地线相接,驱动电源不 工作

DIR 方向控制,与 CPU 地线相接, 电机反转

VCC 直流电源正端

GND 直流电源负端

步进电机 一经定型,其性能取决于电机的驱动电 源。步进电机转速越高,力距越大则要求电机 的电流越大,驱动电源的电压越 高。电压对力矩影响如下:

4、细分驱动器

在步进电 机步距角不能满足使用的条件下 ,可采用细分驱动器来驱动步 进电机,细分驱动器的 原理是通过改变相邻(A,B)电流的大小 ,以改变合成磁场的夹角来 控制步进电机 运转的。

四、步进 电机的应用

(一)步 进电机的选择

步进电机 有步距角(涉及到相数)、静转矩 、及电流三大要素组成 。一旦三大要素确定,步进 电机的型号便确定下来了。

1、步距角的选择

电机的步距角 取决于负载精度的要求,将负载的最小 分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速) 。电机的步距角应等于或小于此角度 。

目前市场上步 进电机的步距角一般有 0.36 度 /0.72 度 (五相电机)、0.9 度 /1.8 度 (二、四相电机)、 1.5 度 /3 度 (三相电机) 等。

步进电动机的工作原理及驱动方法

关键词: 步进电动机 工业控制

步进电动机 是一种将电脉冲信号转换成角位移或线位移的机电元件。 步进电动机 的输入量是脉冲序列,输出量则为相应的增量位移或步进运动。 正常运动情况下, 它每转一周具有固定的步数; 做连续步进运动时, 其旋转转速与输入脉冲的频率保持严格的对应关系, 不受电压波动和负载变化的影响。 由于步进电动机 能直接接受数字量的控制, 所以特别适宜采用微机进行控制。

1. 步进电动机 的种类

目前常用的有三种 步进电动机 :

- (1) 反应式 步进电动机 (VR)。反应式 步进电动机 结构简单,生产成本低,步距角小;但动态性能差。
 - (2) 永磁式 步进电动机 (PM)。永磁式 步进电动机 出力大,动态性能好;但步距角大。
- (3) 混合式 步进电动机 (HB)。混合式 步进电动机 综合了反应式、永磁式 步进电动机 两者的优点,它的步距角小,出力大,动态性能好,是目前性能最高的 步进电动机 。它有时也称作永磁感应子式 步进电动机 。

2. 步进电动机 的工作原理

图 1 三相反应式 步进电动机 的结构示意图

1—— 定子 2—— 转子 3—— 定子绕组 {{分页}}

图 1 是最常见的三相反应式 步进电动机 的剖面示意图。电机的定子上有六个均匀分布 的磁极,其夹角是 60o。各磁极上套有线圈,按图 1 连成 A、B、C 三相绕组。转子上均匀 小齿 , <mark>且定子和转子的齿距和齿宽均相同。</mark> 由于定子和转子的小齿数目分别是 30 和 40 , 其 比值是一分数,这就产生了所谓的齿错<mark>位的情况</mark>。若以 A 相磁极小齿和转子的小齿对齐, C 极下的磁阻比 A 磁极下的磁阻大。若给 B 相通电, B 相绕组产生定子磁场, 其磁力线穿 越 B 相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转<mark>矩(磁阻转矩)的作</mark> 用而转动,直到 B 磁极上的齿与转子齿对齐,恰好转子转过 3o;此时 A、C 磁极下的齿又 分别与转子齿错开三分之一齿距。接着停止对 B 相绕组通电,而改为 C 相绕组通电,同理 受反应转矩的作用,转子按顺时针方向再转过 30。依次类推,当三相绕组按 ABCA 顺序循环通电时,转子会按顺时针方向,以每个通电脉冲转动 3o 的规律步进式转动起来。 若改变通电顺序,按 A C B A 顺序循环通电,则转子就按逆时针方向以每个通电脉冲 转动 3o 的规律转动。因为每一瞬间只有一相绕组通电,并且按三种通电状态循环通电,故 称为<mark>单三拍运行方式。</mark>单三拍运行时的步矩角 b为 30φ??。三相 步进电动机 还有两种通 电方式,它们分别是双三拍运行,即按 AB BC CA AB 顺序循环通电的方式,以及单、 双六拍运行,即按 A AB B BC C CA A 顺序循环通电的方式。六拍运行时的步矩 角将减小一半。反应式 步进电动机 的步距角可按下式计算:

b=3600/NEr (1)

式中 Er—— 转子齿数;

N—— 运行拍数 , N=km , m 为 步进电动机 的绕组相数 , k=1 或 2。

3. 步进电动机 的驱动方法

步进电动机 不能直接接到工频交流或直流电源上工作, 而必须使用专用的 步进电动机 驱动器,如图 2 所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。图中点划 线所包围的二个单元可以用微机控制来实现。 驱动单元与 步进电动机 直接耦合, 也可理解成步进电动机 微机控制器的功率接口,这里予以简单介绍。

图 2 步进电动机 驱动控制器

1. 单电压功率驱动接口

实用电路如图 3 所示。在电机绕组回路中串有电阻 R_s ,使电机回路时间常数减小,高频时电机能产生较大的电磁转矩, 还能缓解电机的低频共振现象, 但它引起附加的损耗。 般情况下,简单单电压驱动线路中, R_s 是不可缺少的。 R_s 对步进电动机 单步响应的改善如图 R_s 3(b)。 {{分页}}

图 3 单电压功率驱动接口及单步响应曲线

图 4 双电压功率驱动接口

2. 双电压功率驱动接口

双电压驱动的功率接口如图 4 所示。双电压驱动的基本思路是在较低(低频段)用较低的电压 U_L 驱动,而在高速(高频段)时用较高的电压 U_H 驱动。这种功率接口需要两个控制信号 , U_h 为高压有效控制信号 , U_h 为脉冲调宽驱动控制信号。图中 , 功率管 U_H 和二极管 U_L 为成电源转换电路。当 U_H 低电平 , U_H 关断 , U_L 正偏置 , 低电压 U_L 对绕组供电。反之 U_H 高电平 , U_H 导通 , U_L 反偏 , 高电压 U_H 对绕组供电。这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。

3. 高低压功率驱动接口

图 5 高低压功率驱动接口

高低压功率驱动接口如图 5 所示。高低压驱动的设计思想是,不论电机工作频率如何,均利用高电压 U_H 供电来提高导通相绕组的电流前沿,而在前沿过后,用低电压 U_L 来维持绕组的电流。这一作用同样改善了驱动器的高频性能,而且不必再串联电阻 R_s ,消除了附加损耗。高低压驱动功率接口也有两个输入控制信号 U_h 和 U_I ,它们应保持同步,且前沿在同一时刻跳变,如图 5 所示。图中,高压管 VT_H 的导通时间 t_I 不能太大,也不能太小,太大时,电机电流过载;太小时,动态性能改善不明显。一般可取 1~3ms。(当这个数值与电机的电气时间常数相当时比较合适)。 {{分页}}

4. 斩波恒流功率驱动接口??

恒流驱动的设计思想是, 设法使导通相绕组的电流不论在锁定、 低频、 高频工作时均保持固定数值。使电机具有恒转矩输出特性。这是目前使用较多、效果较好的一种功率接口。图 6 是斩波恒流功率接口原理图。图中 R 是一个用于电流采样的小阻值电阻,称为采样电阻。当电流不大时, VT 1 和 VT 2 同时受控于走步脉冲,当电流超过恒流给定的数值, VT 2 被封锁,电源 U 被切除。由于电机绕组具有较大电感,此时靠二极管 VD 续流,维持绕组电流,电机靠消耗电感中的磁场能量产生出力。 此时电流将按指数曲线衰减, 同样电流采样值将减小。当电流小于恒流给定的数值, VT 2 导通,电源再次接通。如此反复,电机绕组电流就稳定在由给定电平所决定的数值上,形成小小的锯齿波,如图 6 所示。

图 6 斩波恒流功率驱动接口

新波恒流功率驱动接口也有两个输入控制信号,其中 u₁是数字脉冲, u₂是模拟信号。 这种功率接口的特点是: 高频响应大大提高, 接近恒转矩输出特性, 共振现象消除, 但线路较复杂。目前已有相应的集成功率模块可供采用。

5. 升频升压功率驱动接口

为了进一步提高驱动系统的高频响应, 可采用升频升压功率驱动接口。 这种接口对绕组提供的电压与电机的运行频率成线性关系。 它的主回路实际上是一个开关稳压电源, 利用频率-电压变换器,将驱动脉冲的频率转换成直流电平,并用此电平去控制开关稳压电源的输入,这就构成了具有频率反馈的功率驱动接口。

6.集成功率驱动接口

目前已有多种用于小功率 步进电动机 的集成功率驱动接口电路可供选用。

L298 芯片是一种 H 桥式驱动器 ,它设计成接受标准 TTL 逻辑电平信号 ,可用来驱动电感性负载。 H 桥可承受 46V 电压 ,相电流高达 2.5A。L298(或 XQ298 ,SGS298) 的逻辑电路使用 5V 电源 ,功放级使用 5~46V 电压 ,下桥发射极均单独引出 ,以便接入电流取样电阻。L298(等)采用 15 脚双列直插小瓦数式封装 ,工业品等级。它的内部结构如图 7 所示。 H 桥驱动的主要特点是能够对电机绕组进行正、反两个方向通电。 L298 特别适用于对二相或四相 步进电动机 的驱动。 {{分页}}

图 7 L298 原理框图

与 L298 类似的电路还有 TER 公司的 3717,它是单 H 桥电路。 SGS 公司的 SG3635则是单桥臂电路, IR 公司的 IR2130则是三相桥电路, Allegro 公司则有 A2916、A3953 等小功率驱动模块。

图 8 是使用 L297(环形分配器专用芯片)和 L298 构成的具有恒流斩波功能的 步进电动机驱动系统。

图 8 专用芯片构成的步进电动驱动系统

四相步进电机的原理

步进电机的工作原理

该步进电机为一四相步进电机 , 采用单极性直流电源供电。 只要对步进电机的各相绕组按合适的时序通电 , 就能使步进电机步进转动。 图 1 是该四相反应式步进电机工作原理示意图。

图 1 四相步进电机步进示意图

开始时,开关 SB接通电源, SA SC SD断开, B相磁极和转子 0、3号齿对齐, 同时,转子的 1、4号齿就和 C D相绕组磁极产生错齿, 2、5号齿就和 D A相绕组磁极产生错齿。

当开关 SC接通电源, SB、 SA、 SD断开时,由于 C相绕组的磁力线和 1、4号齿之间磁力线的作用,使转子转动, 1、4号齿和 C相绕组的磁极对齐。而 0、3号齿和 A、B相绕组产生错齿, 2、5号齿就和 A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着 A、B、C、D方向转动。四相步进电机按照通电顺序的不同, 可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等, 但单四拍的转动力矩小。 八拍工作方式的步距角是单四拍与双四拍的一半, 因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图 2.a、b、c 所示:

a. 单四拍 b. 双四拍 c 八拍图 2. 步进电机工作时序波形图以下是单四拍程序源代码!

C51 程序代码为:

```
代码一
#include <AT89X51.h>

static unsigned int count;
static unsigned int endcount;

void delay();

void main(void)
{
  count = 0;
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 0;
```

```
EA = 1; // 允许 CPU中断
TMOD = 0x11; // 设定时器 0 和 1 为 16 位模式 1
ET0 = 1; // 定时器 0 中断允许
```

```
TH0 = 0xFC;
TL0 = 0x18;
                 设定时每隔 1ms 中断一次
          //
                   开始计数
TR0 = 1;
          //
startrun:
P1_3 = 0;
P1_0 = 1;
delay();
P1_0 = 0;
P1_1 = 1;
delay();
P1_1 = 0;
P1_2 = 1;
delay();
P1_2 = 0;
P1_3 = 1;
delay();
goto startrun;
// 定时器 0 中断处理
void timeint(void) interrupt 1
TH0=0xFC;
          设定时每隔 1ms 中断一次
TL0=0x18; //
count++;
void delay()
endcount=2;
count=0;
do{}while(count<endcount);</pre>
}
   将上面的程序编译,用 ISP 下载线下载至单片机运行,步进电机便转动起来了,初步告捷!
   不过,上面的程序还只是实现了步进电机的初步控制, 速度和方向的控制还不够灵活,
                                                                     另外,
由于没有利用步进电机内线圈之间的"中间状态",步进电机的步进角度为 18度。所以,我将
程序代码改进了一下,如下:
代码二
#include <AT89X51.h>
```

```
static unsigned int count;
static int step_index;
void delay(unsigned int endcount);
void gorun(bit turn, unsigned int speedlevel);
void main(void)
{
count = 0;
step\_index = 0;
P1_0 = 0;
P1_1 = 0;
P1_2 = 0;
P1_3 = 0;
                         允许 CPU中断
EA = 1;
             //
TMOD = 0x11; // 设定时器 0 和 1 为 16 位模式 1
ET0 = 1;
          //
                         定时器 0 中断允许
TH0 = 0xFE;
TL0 = 0x0C; //
                设定时每隔 0.5ms 中断一次
                      开始计数
TR0 = 1;
         //
do{
  gorun(1,60);
}while(1);
}
// 定时器 0 中断处理
void timeint(void) interrupt 1
TH0=0xFE;
TL0=0x0C; //
             设定时每隔 0.5ms 中断一次
count++;
}
void delay(unsigned int endcount)
count=0;
do{}while(count<endcount);</pre>
}
void gorun(bit turn,unsigned int speedlevel)
{
```

```
switch(step_index)
{
case 0:
  P1_0 = 1;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 0;
  break;
case 1:
  P1_0 = 1;
  P1_1 = 1;
  P1_2 = 0;
  P1_3 = 0;
  break;
case 2:
  P1_0 = 0;
  P1_1 = 1;
  P1_2 = 0;
  P1_3 = 0;
  break;
case 3:
  P1_0 = 0;
  P1_1 = 1;
  P1_2 = 1;
  P1_3 = 0;
  break;
case 4:
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 1;
  P1_3 = 0;
  break;
case 5:
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 1;
  P1_3 = 1;
  break;
case 6:
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 1;
  break;
```

```
case 7:
  P1_0 = 1;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 1;
delay(speedlevel);
if (turn==0)
  step_index++;
  if (step_index>7)
   step_index=0;
}
else
  step_index--;
  if (step_index<0)
   step_index=7;
}
```

改进的代码能实现速度和方向的控制,而且,通过 step_index 静态全局变量能"记住"步进电机的步进位置,下次调用 gorun ()函数时则可直接从上次步进位置继续转动,从而实现精确步进;另外,由于利用了步进电机内线圈之间的"中间状态",步进角度减小了一半,只为 9度,低速运转也相对稳定一些了。

但是 ,在代码二中 , 步进电机的运转控制是在主函数中 ,如果程序还需执行其它任务 ,则有可能使步进电机的运转收到影响 , 另外还有其它方面的不便 , 总之不是很完美的控制。 所以我又将代码再次改进:

代码三

```
#include <AT89X51.h>

static unsigned int count; // 计数
static int step_index; // 步进索引数,值为 0 - 7

static bit turn; // 步进电机转动方向
static bit stop_flag; // 步进电机停止标志
static int speedlevel; // 步进电机转速参数,数值越大速度越慢,最小值为 1,速度最快
static int spcount; // 步进电机转速参数计数
```

```
延时函数,延时为 endcount*0.5 毫秒
void delay(unsigned int endcount); //
void gorun();
               //
                           步进电机控制步进函数
void main(void)
{
count = 0;
step\_index = 0;
spcount = 0;
stop_flag = 0;
P1_0 = 0;
P1_1 = 0;
P1_2 = 0;
P1_3 = 0;
                       允许 CPU中断
EA = 1;
            //
               设定时器 0 和 1 为 16 位模式 1
TMOD = 0x11; //
                       定时器 0 中断允许
          //
ET0 = 1;
TH0 = 0xFE;
TL0 = 0x0C; //
                 设定时每隔 0.5ms 中断一次
                     开始计数
TR0 = 1;
          //
turn = 0;
speedlevel = 2;
delay(10000);
speedlevel = 1;
do{
  speedlevel = 2;
  delay(10000);
  speedlevel = 1;
  delay(10000);
  stop_flag=1;
  delay(10000);
  stop_flag=0;
}while(1);
}
// 定时器 0 中断处理
void timeint(void) interrupt 1
{
TH0=0xFE;
```

TL0=0x0C; // 设定时每隔 0.5ms 中断一次

```
count++;
spcount--;
if(spcount<=0)
  spcount = speedlevel;
  gorun();
}
void delay(unsigned int endcount)
count=0;
do{}while(count<endcount);</pre>
}
void gorun()
if (stop_flag==1)
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 0;
  return;
switch(step_index)
case 0: //0
  P1_0 = 1;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 0;
  break;
case 1: //0 、 1
  P1_0 = 1;
  P1_1 = 1;
  P1_2 = 0;
  P1_3 = 0;
  break;
case 2: //1
  P1_0 = 0;
  P1_1 = 1;
```

```
P1_2 = 0;
  P1_3 = 0;
  break;
case 3: //1
           、2
  P1_0 = 0;
  P1_1 = 1;
  P1_2 = 1;
  P1_3 = 0;
  break;
case 4: //2
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 1;
  P1_3 = 0;
  break;
case 5: //2
           、3
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 1;
  P1_3 = 1;
  break;
case 6: //3
  P1_0 = 0;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 1;
  break;
case 7: //3
  P1_0 = 1;
  P1_1 = 0;
  P1_2 = 0;
  P1_3 = 1;
if (turn==0)
  step_index++;
  if (step_index>7)
   step_index=0;
}
else
  step_index--;
  if (step_index<0)
```

```
step_index=7;
}
```

在代码三中, 我将步进电机的运转控制放在时间中断函数之中, 这样主函数就能很方便的加入其它任务的执行, 而对步进电机的运转不产生影响。 在此代码中, 不但实现了步进电机的转速和转向的控制,另外还加了一个停止的功能,呵呵,这肯定是需要的。

步进电机从静止到高速转动需要一个加速的过程, 否则电机很容易被"卡住",代码一、 二实现加速不是很方便, 而在代码三中, 加速则很容易了。 在此代码中, 当转速参数 speedlevel 为 2 时,可以算出,此时步进电机的转速为 1500RPM,而当转速参数 speedlevel 1 时,转速为 3000RPM。当步进电机停止,如果直接将 speedlevel 设为 1,此时步进电机将被"卡住",而如果先把 speedlevel 设为 2,让电机以 1500RPM的转速转起来,几秒种后,再把 speedlevel 设为 1,此时电机就能以 3000RPM的转速高速转动,这就是"加速"的效果。

在此电路中,考虑到电流的缘故, 我用的 NPN三极管是 S8050,它的电流最大可达 1500mA,而在实际运转中,我用万用表测了一下,当转速为 1500RPM时,步进电机的电流只有 90mA左右,电机发热量较小,当转速为 60RPM时,步进电机的电流为 200mA左右,电机发热量较大,所以 NPN 三极管也可以选用 9013,对于电机发热量大的问题,可加一个 10 欧到 20 欧的限流电阻,不过这样步进电机的功率将会变小

四相步进电机原理图

本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。

1. 步进电机的工作原理

该步进电机为一四相步进电机, 采用单极性直流电源供电。 只要对步进电机的各相绕组按合适的时序通电, 就能使步进电机步进转动。 图 1 是该四相反应式步进电机工作原理示意图。

图 1 四相步进电机步进示意图

开始时,开关 SB接通电源, SA SC SD断开, B相磁极和转子 Q 3号齿对齐,同时,转子的 1、4号齿就和 C D相 绕组磁极产生错齿, 2、5号齿就和 D A相绕组磁极产生错齿。

当开关 SC接通电源 , SB、SA、SD断开时 , 由于 C相绕组的磁力线和 1、4号齿之间磁力线的作用 , 使转子转动 , 1、4号齿和 C相绕组的磁极对齐。而 0、3号齿和 A、B相绕组产生错齿 , 2、5号齿就和 A、D相绕组磁极产生错齿。依次类推 , A、B、C、D四相绕组轮流供电 , 则转子会沿着 A、B、C、D方向转动。

四相步进电机按照通电顺序的不同, 可分为单四拍、双四拍、八拍三种工作方式。 单四拍与双四拍的步距角相等, 但单四拍的转动力矩小。 八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图 2.a 、b、c 所示:

图 2. 步进电机工作时序波形图

2. 基于 AT89C2051的步进电机驱动器系统电路原理

图 3 步进电机驱动器系统电路原理图

AT89C2051将控制脉冲从 P1 口的 P1.4~P1.7 输出,经 74LS14 反相后进入 9014,经 9014 放大后控制光电开关,光电隔离后,由功率管 TIP122 将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。 使步进电机随着不同的脉冲信号分别作正转、 反转、加速、减速和停止等动作。图中 L1 为步进电机的一相绕组。 AT89C2051选用频率 22MHz的晶振,选用较高晶振的目的是为了在方式 2 下尽量减小 AT89C2051对上位机脉冲信号周期的影响。

图 3 中的 RL1~RL4为绕组内阻 , 50 电阻是一外接电阻 , 起限流作用 , 也是一个改善回路时间常数的元件。 D1~D4为续流二极管 , 使电机绕组产生的反电动势通过续流二极管 (D1~D4) 而衰减掉 , 从而保护了功率管 TIP122 不受损坏。

在 50 外接电阻上并联一个 200 µ F电容,可以改善注入步进电机绕组的电流脉冲前沿,提高了步进电机的高频性能。与续流二极管串联的 200 电阻可减小回路的放电时间常数,使绕组中电流脉冲的后沿变陡,电流下降时间变小,也起到提高高频工作性能的作用。

3. 软件设计

该驱动器根据拨码开关 KX、KY的不同组合有三种工作方式供选择:

方式 1 为中断方式: P3.5(INT1) 为步进脉冲输入端, P3.7 为正反转脉冲输入端。上位机(PC 机或单片机)与驱动器仅以 2 条线相连。

方式 2 为串行通讯方式:上位机 (PC 机或单片机)将控制命令发送给驱动器,驱动器根据控制命令自行完成有关控制过程。

方式 3 为拨码开关控制方式:通过 K1~K5的不同组合,直接控制步进电机。

当上电或按下复位键 KR后, AT89C2051先检测拨码开关 KX KY的状态, 根据 KX KY 的不同组合,进入不同的工作方式。以下给出方式 1 的程序流程框图与源程序。

在程序的编制中, 要特别注意步进电机在换向时的处理。 为使步进电机在换向时能平滑过渡,不至于产生错步, 应在每一步中设置标志位。 其中 20H 单元的各位为步进电机正转标志位;21H 单元各位为反转标志位。在正转时,不仅给正转标志位赋值,也同时给反转标志位赋值;在反转时也如此。这样,当步进电机换向时,就可以上一次的位置作为起点反向运动,避免了电机换向时产生错步。

图 4 方式 1 程序框图

方式 1 源程序:

MOV 20H,#00H ;20H 单元置初值,电机正转位置指针

MOV 21H,#00H ;21H 单元置初值,电机反转位置指针

MOV P1,#0C0H;P1 口置初值,防止电机上电短路

MOV TMOD,#60H;T1计数器置初值 ,开中断

MOV TL1,#0FFH

MOV TH1,#0FFH
SETB ET1
SETB EA
SETB TR1
SJMP \$
;*********** 计数器 1 中断程序 **********
IT1P: JB P3.7,FAN; 电机正、反转指针
;*************************************
JB 00H,LOOP0
JB 01H,LOOP1
JB 02H,LOOP2
JB 03H,LOOP3
JB 04H,LOOP4
JB 05H,LOOP5
JB 06H,LOOP6
JB 07H,LOOP7
LOOP0: MOV P1,#0D0H
MOV 20H,#02H
MOV 21H,#40H
AJMP QUIT
LOOP1: MOV P1,#090H
MOV 20H,#04H
MOV 21H,#20H

AJMP QUIT

MOV 20H,#08H MOV 21H,#10H AJMP QUIT LOOP3: MOV P1,#030H MOV 20H,#10H MOV 21H,#08H AJMP QUIT LOOP4: MOV P1,#070H MOV 20H,#20H MOV 21H,#04H AJMP QUIT LOOP5: MOV P1,#060H MOV 20H,#40H MOV 21H,#02H AJMP QUIT LOOP6: MOV P1,#0E0H MOV 20H,#80H

AJMP QUIT

MOV 21H,#01H

LOOP7: MOV P1,#0C0H

LOOP2: MOV P1,#0B0H

MOV; 20H,#01H

MOV 21H,#80H

AJMP QUIT

FAN: JB 08H,LOOQ0 JB 09H,LOOQ1 JB 0AH,LOOQ2 JB 0BH,LOOQ3 JB 0CH,LOOQ4 JB 0DH,LOOQ5 JB 0EH,LOOQ6 JB 0FH,LOOQ7 LOOQ0: MOV P1,#0A0H MOV 21H,#02H MOV 20H,#40H AJMP QUIT LOOQ1: MOV P1,#0E0H MOV 21H,#04H MOV 20H,#20H AJMP QUIT LOOQ2: MOV P1,#0C0H MOV 21H,#08H MOV 20H,#10H AJMP QUIT

LOOQ3: MOV P1,#0D0H

MOV 21H,#10H

MOV 20H,#08H

AJMP QUIT LOOQ4: MOV P1,#050H MOV 21H,#20H MOV 20H,#04H AJMP QUIT LOOQ5: MOV P1,#070H MOV 21H,#40H MOV 20H,#02H AJMP QUIT LOOQ6: MOV P1,#030H MOV 21H,#80H MOV 20H,#01H AJMP QUIT LOOQ7: MOV P1,#0B0H MOV 21H,#01H MOV 20H,#80H **QUIT: RETI**

END

4. 结论

该驱动器经实验验证能驱动 0.5N.m 的步进电机。将驱动部分的电阻、电容及续流二极管的有关参数加以调整,可驱动 1.2N.m 的步进电机。该驱动器电路简单可靠,结构紧凑,对于 I/O 口线与单片机资源紧张的系统来说特别适用。

一)实验目的

了解步进电动机的基本结构和工作原理;

掌握步进电机驱动程序的设计方法;

掌握步进电动机速度调节、方向控制技术;

了解步进电动机的各项基本参数对电机运行的影响;

熟悉DRLab实验室的操作方法

二)实验仪器设备

DRVI/DRLink可重组虚拟仪器和计算机控制平台

电机运动控制系统

计算机

打印机

三)实验原理

当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如 和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径 ,转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促 旋转的原因。

步进电动机又称为脉冲电机,它能将电脉冲转换为相应的角位直线位移

机定子绕组的通电状态每改变一次,转子转一个确定的角度,为步进电动机的

。它与定子绕组的相数 m 转子的齿数 z、通电方式 k 有关,可用下式表示

$$\alpha = 360^{\circ}/mkz$$

从图 1 所示,进步电机以四相单四拍方式正转时,按 A B C D次序通电电

机定子绕组通电状态的改变速度越快,其转子旋转的速度越快,即通电状态的 率越高,转子的转速越高。

图 1 进步电机四相单四拍式绕组通电方式

四相步进电动机以四相单四拍(a)、四相双四拍(b)、四相八拍(c) 方式工

脉冲分配表

a 四相单四拍脉冲分配表 · · · · · · b 四相双四拍脉冲分配表 →

Đ.	Αo	B₽	C.	Dø	6	. 0	Ao	В₽	C+	Dφ
N₽	10	00	00	00	43	⁺ N↔	10	10	00	00
N+1+	00	10	00	00	+2	* N+1₽	00	10	10	00
N+2+	0.0	00	10	00	40	N+20	00	00	10	10
N+3+	00	0+2	0.0	10		N+3.0	10	00	0+2	10

43	A↔	B₽	Co	D⇔
N↔	1+2	0₽	042	00
N+1₽	1↔	1€	0+2	0+2
N+2₽	0₽	1↔	0↔	00
N+3₽	0€	1€	1₽	0+0
N+3₽	0₽	1₽	1₽	040
N+4₽	00	0₽	10	042
N+5₽	00	0↔	1₽	10
N+6₽	0€	0€	043	1₽
N+7₽	1₽	0.0	0+2	10

步进电动机的自锁功能是指若某一相一直通直流电时,则电机可以保持在

置上实现停车时转子定位

运动控制实验台由运动控制卡、步进电机、直流电机、涡轮涡杆机构、光

、转速测量传感器、直线位移标尺和位移测量装置构成。可完成步进电机控制

电机控制、转速测量、位移及负载效应测量、 PI 及 PID 调节等实验内容。步进

型号为42BYGH107 为 4 相电机。如图 2 所示:

四)实验内容及步骤

步进电机运行速度调节实验:运行方式选择"连续驱动",驱动类型选择"四拍"方式,脉冲间隔选择范围 3~15ms,(由于步进电机的设计原因,当脉冲2ms时,四相单四拍方式不能正常工作。)选择 3ms,点"电机驱动"按钮,电机工作;再选择6ms,并点"电机驱动"按钮,使步进电机旋转,观察运行时的速度应比前一次的速度低一半。 若选择更长的时间间隔如 12ms,则可观察的运行速度明显降低。终止电机运行请在运行方式中选择"停止保持"或"停持"。

运行方向控制实验:运行方式选择"连续驱动",驱动类型选择"四相单四拍,脉冲间隔选择 5ms,方向选择"正向驱动",

"电机驱动"按钮,使步进电机正向旋转;方向选择"反向驱动",点"电机驱

钮,使步进电机反向旋转;

步进电机的自锁实验:运行方式选择"停止保持", 其它参数不变 ,点"电机驱 钮。可以使步进电机某相通电 , 处于"自锁"状态。 此时 ,用手转动电机的皮 以感到转动比较困难。

步进电机的步距角演示:运行方式选择"单步驱动",点"电机驱动"按钮。一次"电机驱动"按钮,步进电机旋转一个角度,这个角度就是步距角。对于台步距角为 1.8o。

五)思考题

简述步进电机的速度调节和方向控制原理。

简述步进电机的四相八拍工作方式的优、缺点。

图1 是四相单四拍方式的时序图,请画出四相双四拍方式的时序图。

增加步进电动机的通电相数,对启动转矩有什么影响?

将通电频率增加会对步进电动机有什么影响?