Ellipsoid Algorithm

Siddharth Bhat 20161105

Abstract—We motivate the Ellipsoid algorithm, discuss its original theoretical importance, and remark on its practical efficiency.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The ellipsoid algorithm was discovered in Naum Z. Shor. Later, Leonid Genrikhovich Khachiyan proved that the algorithm runs in polynomial time. This was a breakthrough in the theory of linear programming, which proved that solving LP's is in PTIME.

II. DESCRIPTION THE ALGORITHM: CHECKING FOR NON-EMPTINESS

III. USING NON-EMPTINESS TO SOLVE LP'S

So far, all we can do using the ellipsoid algorithm is to check if some system of equations $Ax \leq b$ is *non-empty*. In other words, we can check the non-emptiness of a given polyhedron. Here, we will describe how to use this to solve *optimisation problems*.

Consider a linear program and its dual:

$$\begin{split} x, c \in \mathbb{R}^{n \times 1} \quad A \in \mathbb{R}^{m \times n} \quad b, y \in \mathbb{R}^{m \times 1} \\ P_{primal} &\equiv \underset{x}{\text{maximise}} \ c^T x \ \text{subject to} \ Ax = b \\ P_{dual} &\equiv \underset{y}{\text{minimise}} \ b^T y \ \text{subject to} \ A^T y \geq c \end{split}$$

Let x^* be the optimal value of x for P_{primal} , and y^* be the optimal value of y for P_{dual} . From strong duality, we know that the value of $c^T x^* = b^T y^*$.

So, we can create a *combined* linear program, whose feasibility will force us to provide a point such that $c^Tx = b^Ty$. That is, we create a new polyhedra Q defined by the equations:

$$Ax \le b \quad A^T y \ge c \quad c^T x = b^T y$$

Now, if a feasible point $(x_0, y_0) \in Q$, then it must be the case that $Ax_0 = b$, $A^Ty_0 \ge c$, and $c^Tx_0 = b^Ty_0$. At this point, strong duality tells us that $(x_0, y_0) = (x^*, y^*)$.

Hence, we can find the optimal value of the linear program by evaluating $c^T x_0$.

Thus, the ellipsoid algorithm can be used to solve for the optimality of a linear program, by starting from a nonemptiness check! This is beautiful, and proves a deep result of LP's: A certificate of non-emptiness is as good as a ceritificate of optimality.