TIPE 25/26 - Cycles et Boucles

Méthode des tableaux : Optimisation pour des formules de la forme (?)

GIL Dorian

Sommaire

- Présentation Méthode
- Exemple d'Application
- 3 Implémentation en OCaml
- Objectifs futurs

Présentation

On souhaite prouver une formule dans la logique propositionelle :

Definition (Méthode des tableaux)

Méthode par laquelle on prouve une assertion B ayant pour hypothèse (A_n) en montrant que $\{A_1,\ldots,A_n,\neg B\}$ est insatisfaisable (Cela revient à montrer qu'une implication est vraie car sa négation ne peut être vraie).

Présentation

On souhaite prouver une formule dans la logique propositionelle :

Definition (Méthode des tableaux)

Méthode par laquelle on prouve une assertion B ayant pour hypothèse (A_n) en montrant que $\{A_1,\ldots,A_n,\neg B\}$ est insatisfaisable (Cela revient à montrer qu'une implication est vraie car sa négation ne peut être vraie).

- On place $\neg \phi$ et ses hypothèses dans la racine.
- On applique des règles (R_x) à chaque formule en bout d'arbre qui sont developpables
- Si on trouve a et $\neg a$ dans l'arbre (un *cycle*), alors ϕ est vrai

Présentation

On souhaite prouver une formule dans la logique propositionelle :

Definition (Méthode des tableaux)

Méthode par laquelle on prouve une assertion B ayant pour hypothèse (A_n) en montrant que $\{A_1, \ldots, A_n, \neg B\}$ est insatisfaisable (Cela revient à montrer qu'une implication est vraie car sa négation ne peut être vraie).

- On place $\neg \phi$ et ses hypothèses dans la racine.
- On applique des règles (R_x) à chaque formule en bout d'arbre qui sont developpables
- Si on trouve a et $\neg a$ dans l'arbre (un cycle), alors ϕ est vrai

Formule:
$$a \Rightarrow (b \Rightarrow a)$$

$$\neg(a\Rightarrow(b\Rightarrow a))$$

Formule: $a \Rightarrow (b \Rightarrow a)$

Formule: $a \Rightarrow (b \Rightarrow a)$

Formule: $a \Rightarrow (b \Rightarrow a)$

Implémentation

Le code

Mon but sur le long terme

■ Implémenter les tableaux en logique propositionelle

Mon but sur le long terme

- Implémenter les tableaux en logique propositionelle
- Trouver et prouver des optimisations pour les formules (?)

Mon but sur le long terme

- Implémenter les tableaux en logique propositionelle
- Trouver et prouver des optimisations pour les formules (?)
- Implémenter et commenter les résultats de l'optimisation

Mon but sur le long terme

- Implémenter les tableaux en logique propositionelle
- Trouver et prouver des optimisations pour les formules (?)
- Implémenter et commenter les résultats de l'optimisation
- Faire de même cette méthode en logique du première ordre OU continuer à trouver des optimisations dans la logique propositionelle

Mon but sur le long terme

- Implémenter les tableaux en logique propositionelle
- Trouver et prouver des optimisations pour les formules (?)
- Implémenter et commenter les résultats de l'optimisation
- Faire de même cette méthode en logique du première ordre OU continuer à trouver des optimisations dans la logique propositionelle

Sur le court terme :

One

Mon but sur le long terme

- Implémenter les tableaux en logique propositionelle
- Trouver et prouver des optimisations pour les formules (?)
- Implémenter et commenter les résultats de l'optimisation
- Faire de même cette méthode en logique du première ordre OU continuer à trouver des optimisations dans la logique propositionelle

- One
- Two