SEQUENCE LISTING

	<110> 1	Bristol-Myers Squibb Company	
	<120> HGPRBM	POLYNUCLEOTIDE ENCODING A NOVEL HUMAN G-PROTEIN COUPLED RECEPT Y25, EXPRESSED HIGHLY IN IMMUNE-RELATED TISSUES	OR,
	<130>	D0126 NP	
	<150> <151>	US 60/270,134 2001-02-21	
	<150> <151>	US 60/278,952 2001-03-27	
	<160>	69	
	<170>	PatentIn version 3.0	
	<210> <211> <212> <213>	1 1567 DNA homo sapiens	
ì	<220> <221> <222>	CDS (537)(1523)	
	<400>	1	
1100		gtcc gataattact aagtacaggg tcccaaatta gaatctattc caacttaaag	60
6			120
- Print			180
	gtgtgtt	ttot ttgtgtgtat gtatgtatte aggtatatgt gtatageett agetaggaga	240
	caattct	tagt ttatctaaag gottatttga goodtttoto aogttoattt attttattta	300
	ataagca	atta tatatoaggt attattoaaa gototttaga aatotttaga catattaaco	360
	catataa	atto tottototat agggaataga tatgattatt attgotattt tatggatgat	420
	gaagctt	ttot aaacatgtta tagocagtaa gtgttactat tototoatto otatototgt	480
	tctatct	ttgt tootocagat aatgtgatac tatgtggagg tttotgacca cagaga atg Met 1	539
	tcc ago Ser Ser	c act ctt ggc cac aac atg gaa tct cct cat cac act gat gtt r Thr Leu Gly His Asn Met Glu Ser Pro His His Thr Asp Val 5 10 15	587
	gac cct Asp Pro	t tot gto tto tto otc otg ggo ato coa ggt otg gaa caa ttt > Ser Val Phe Phe Leu Leu Gly Ile Pro Gly Leu Glu Gln Phe 20 30	635

		cat His	ttg Leu 35	tgg Trp	ctc Leu	tca Ser	ctc Leu	cct Pro 40	gtg Val	tgt Cys	ggc	tta Leu	ggc Gly 45	aca Thr	gcc Ala	aca Thr	att Ile	683
		gtg Val 50	ggc Gly	aat Asn	ata Ile	act Thr	att Ile 55	ctg Leu	gtt Val	gtt Val	gtt Val	gcc Ala 60	act Thr	gaa Glu	cca Pro	gtc Val	ttg Leu 65	731
		cac His	aag Lys	cct Pro	gtg Val	tac Tyr 70	ctt Leu	ttt Phe	ctg Leu	tgc Cys	atg Met 75	ctc Leu	tca Ser	acc Thr	atc Ile	gac Asp 80	ttg Leu	779
		gct Ala	gcc Ala	tct Ser	gtc Val 85	tcc Ser	aca Thr	gtt Val	ccc Pro	aag Lys 90	cta Leu	ctg Leu	gct Ala	atc Ile	ttc Phe 95	tgg Trp	tgt Cys	827
		gga Gly	gcc Ala	gga Gly 100	cat His	ata Ile	tct Ser	gcc Ala	tct Ser 105	gcc Ala	tgc Cys	ctg Leu	gca Ala	cat His 110	atg Met	ttc Phe	ttc Phe	875
		att Ile	cat His 115	gcc Ala	ttc Phe	tgc Cys	atg Met	atg Met 120	gag Glu	tcc Ser	act Thr	gtg Val	cta Leu 125	ctg Leu	gcc Ala	atg Met	gcc Ala	923
	A Company	ttt Phe 130	gat Asp	cgc Arg	tac Tyr	gtg Val	gcc Ala 135	atc Ile	tgc Cys	cac His	cca Pro	ctc Leu 140	cgc Arg	tat Tyr	gcc Ala	aca Thr	atc Ile 145	971
		ctc Leu	act Thr	gac Asp	acc Thr	atc Ile 150	att Ile	gcc Ala	cac His	ata Ile	ggg Gly 155	gtg Val	gca Ala	gct Ala	gta Val	gtg Val 160	cga Arg	1019
		ggc Gly	tcc Ser	ctg Leu	ctc Leu 165	atg Met	ctc Leu	cca Pro	tgt Cys	ccc Pro 170	ttc Phe	ttt Phe	att Ile	ggg Gly	cgt Arg 175	ttg Leu	aac Asn	1067
		ttc Phe	tgc Cys	caa Gln 180	agc Ser	cat His	gtg Val	atc Ile	cta Leu 185	cac His	acg Thr	tac Tyr	tgt Cys	gag Glu 190	cac His	atg Met	gct Ala	1115
		gtg Val	gtg Val 195	aag Lys	ctg Leu	gcc Ala	tgt Cys	gga Gly 200	gac Asp	acc Thr	agg Arg	cct Pro	aac Asn 205	cgt Arg	gtg Val	tat Tyr	Gly ggg	1163
		ctg Leu 210	aca Thr	gct Ala	gca Ala	ctg Leu	ttg Leu 215	gtc Val	att Ile	ggg Gly	gtt Val	gac Asp 220	ttg Leu	ttt Phe	tgc Cys	att Ile	ggt Gly 225	1211
		ctc Leu	tcc Ser	tat Tyr	gcc Ala	cta Leu 230	att Ile	gca Ala	caa Gln	gct Ala	gtc Val 235	ctt Leu	ege Arg	ctc Leu	tca Ser	tcc Ser 240	cat His	1259
		gaa Glu	gct Ala	cgg Arg	tcc Ser 245	aag Lys	gcc Ala	cta Leu	Gly	acc Thr 250	tgt Cys	ggt Gly	tcc Ser	cat His	gtc Val 255	tgt Cys	gtc Val	1307
		atc	ctc	atc	tct	tat	aca	cca	gcc	ctc	ttc	tcc	ttt	ttt	aca	cac	cgc	1355

	Ile	Leu	260	Ser	Tyr	Thr	Pro	Ala 265	Leu	Phe	Ser	Phe	Phe 270	Thr	His	Arg	
	ttt Phe	ggc Gly 275	His	cac	gtt Val	cca Pro	gtc Val 280	cat His	att Ile	cac	att Ile	ctt Leu 285	ttg Leu	gcc Ala	aat Asn	gtt Val	1403
	tat Tyr 290	Leu	ctt Leu	ttg Leu	cca Pro	cct Pro 295	gct Ala	ctt Leu	aat Asn	cct	gtg Val 300	gta Val	tat Tyr	gga Gly	gtt Val	aag Lys 305	1451
	acc Thr	aaa Lys	cag Gln	atc Ile	cgt Arg 310	aaa Lys	aga Arg	gtt Val	gtc Val	agg Arg 315	gtg Val	ttt Phe	caa Gln	agt Ser	ggg Gly 320	cag Gln	1499
	Gly	atg Met	ggc Gly	atc Ile 325	aag Lys	gca Ala	tct Ser	gag Glu	tga	ccct	gga	gtata	agag	gg a	ctta	atcca	1553
100	aaa	aaaa	aaa .	aaaa													1567
IJ	<21: <21: <21: <21: <40:	1> 2> 3> 1	2 329 PRT homo 2	sap:	iens												
114	Met 1	Ser	Ser	Thr	Leu 5	Gly	His	Asn	Met	Glu 10	Ser	Pro	His	His	Thr 15	Asp	
ľ.	Val	Asp	Pro	Ser 20	Val	Phe	Phe	Leu	Leu 25	Gly	Ile	Pro	Gly	Leu 30	Glu	Gln	
	Phe	His	Leu 35	Trp	Leu	Ser	Leu	Pro 40	Val	Cys	Gly	Leu	Gly 45	Thr	Ala	Thr	
	Ile	Val 50	Gly	Asn	Ile	Thr	Ile 55	Leu	Val	Val	Val	Ala 60	Thr	Glu	Pro	Val	
	Leu 65	His	Lys	Pro	Val	Tyr 70	Leu	Phe	Leu	Cys	Met 75	Leu	Ser	Thr	Ile	Asp 80	
	Leu	Ala	Ala	Ser	Val 85	Ser	Thr	Val	Pro	Lys 90	Leu	Leu	Ala	Ile	Phe 95	Trp	
	Cys	Gly	Ala	Gly 100	His	Ile	Ser		Ser 105	Ala	Cys	Leu	Ala	His 110	Met	Phe	

Phe Ile His Ala Phe Cys Met Met Glu Ser Thr Val Leu Leu Ala Met 115 \$120\$

Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg Tyr Ala Thr 130 135 140

Ile Leu Thr Asp Thr Ile Ile Ala His Ile Gly Val Ala Ala Val Val 145 150 150 160

Arg Gly Ser Leu Leu Met Leu Pro Cys Pro Phe Phe Ile Gly Arg Leu 165 $$170\$

Ala Val Val Lys Leu Ala Cys Gly Asp Thr Arg Pro Asn Arg Val Tyr 195 200 205

Gly Leu Thr Ala Ala Leu Leu Val Ile Gly Val Asp Leu Phe Cys Ile 210 215 220

Gly Leu Ser Tyr Ala Leu Ile Ala Gln Ala Val Leu Arg Leu Ser Ser 225 \$230\$ 235 \$240\$

His Glu Ala Arg Ser Lys Ala Leu Gly Thr Cys Gly Ser His Val Cys $245 \hspace{1cm} 250 \hspace{1cm} 255$

Val Ile Leu Ile Ser Tyr Thr Pro Ala Leu Phe Ser Phe Phe Thr His $260 \hspace{1cm} 265 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Arg Phe Gly His His Val Pro Val His Ile His Ile Leu Leu Ala Asn 275 280 285

Val Tyr Leu Leu Pro Pro Ala Leu Asn Pro Val Val Tyr Gly Val $290 \hspace{1cm} 295 \hspace{1cm} 300 \hspace{1cm}$

Lys Thr Lys Gln Ile Arg Lys Arg Val Val Arg Val Phe Gln Ser Gly 305 \$310\$

Gln Gly Met Gly Ile Lys Ala Ser Glu 325

<210> 3

- <211> 320
- <212> PRT
- <213> Rattus norvegicus

<400> 3

- Met Ser Ser Cys Asn Phe Thr His Ala Thr Phe Met Leu Ile Gly Ile 1 $$ 10 $$ 15
- Pro Gly Leu Glu Glu Ala His Phe Trp Phe Gly Phe Pro Leu Leu Ser 20 25 30
- Met Tyr Ala Val Ala Leu Phe Gly Asn Cys Ile Val Val Phe Ile Val 35 40 45
- Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met 50 55 60
- Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile 65 70 75 80
- Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Thr Phe Asp Ala Cys 85 90 95
- Leu Ala Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr
- Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro
- Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Val Gln Ile Gly
- Met Val Ala Leu Val Arg Gly Ser Leu Phe Phe Phe Pro Leu Pro Leu 145 150 155 160
- Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser
- Tyr Cys Val His Gln Asp Val Met Lys Leu Ala Tyr Thr Asp Thr Leu 180 185 190
- Pro Asn Val Val Tyr Gly Leu Thr Ala Ile Leu Leu Val Met Gly Val $195 \hspace{1cm} 200 \hspace{1cm} 205 \hspace{1cm}$
- Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Ala Val $210 \ \ 215 \ \ 220$
- Leu Gln Leu Pro Ser Lys Ser Glu Arg Ala Lys Ala Phe Gly Thr Cys 225 230 235 240
- Val Ser His Ile Gly Val Val Leu Ala Phe Tyr Val Pro Leu Ile Gly $245 \hspace{1cm} 250 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$
- Leu Ser Val Val His Arg Phe Gly Asn Ser Leu Asp Pro Ile Val His $260 \hspace{1cm} 265 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

- Val Leu Met Gly Asp Val Tyr Leu Leu Leu Pro Pro Val Ile Asn Pro 275 280 285
- Ile Ile Tyr Gly Ala Lys Thr Lys Gln Ile Arg Thr Arg Val Leu Ala 290 295 300
- Met Phe Lys Ile Ser Cys Asp Lys Asp Ile Glu Ala Gly Gly Asn Thr 305 310 315
- <210> 4
- <211> 320
- <212> PRT
- <213> homo sapiens
- <400> 4
- Met Ser Ser Cys Asn Phe Thr His Ala Thr Phe Val Leu Ile Gly Ile 1 $$ $$ $$ $$
- Pro Gly Leu Glu Lys Ala His Phe Trp Val Gly Phe Pro Leu Leu Ser 20 25 30
- Met Tyr Val Val Ala Met Phe Gly Asn Cys Ile Val Val Phe Ile Val 35 40 45
- Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met 50 55 60
- Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile 65 70 75 80
- Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Ser Phe Glu Ala Cys 85 90 95
- Leu Thr Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr
- Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro
- Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Ala Gln Ile Gly 130 135
- Ile Val Ala Val Val Arg Gly Ser Leu Phe Phe Phe Pro Leu Pro Leu 145 150 155 160
- Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser 165 170 175
- Tyr Cys Val His Gln Asp Val Met Lys Leu Ala Tyr Ala Asp Thr Leu 180 185 190
- Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Thr Val $210 \ \ \, 215 \ \ \, 220 \ \ \,$

- Leu Gln Leu Pro Ser Lys Ser Glu Arg Ala Lys Ala Phe Gly Thr Cys 225 230 235 240
- Val Ser His Ile Gly Val Val Leu Ala Phe Tyr Val Pro Leu Ile Gly 245 250 255
- Leu Ser Val Val His Arg Phe Gly Asn Ser Leu His Pro Ile Val Arg $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$
- Val Val Met Gly Asp Ile Tyr Leu Leu Pro Pro Val Ile Asn Pro 275 280 285
- Ile Ile Tyr Gly Ala Lys Thr Lys Gln Ile Arg Thr Arg Val Leu Ala 290 295 300
- Met Phe Lys Ile Ser Cys Asp Lys Asp Leu Gln Ala Val Gly Gly Lys 305 310 315
- <210> 5
- <211> 318 <212> PRT
- <213> homo sapiens
- <400> 5
- Met Ser Asp Ser Asn Leu Ser Asp Asn His Leu Pro Asp Thr Phe Phe 1 $$ 10 $$ 15
- Leu Thr Gly Ile Pro Gly Leu Glu Ala Ala His Phe Trp Ile Ala Ile 20 25 30
- Pro Phe Cys Ala Met Tyr Leu Val Ala Leu Val Gly Asn Ala Ala Leu 35 40 45
 - Ile Leu Val Ile Ala Met Asp Asn Ala Leu His Ala Pro Met Tyr Leu 50 55 60
- Phe Leu Cys Leu Leu Ser Leu Thr Asp Leu Ala Leu Ser Ser Thr Thr 65 70 80
- Val Pro Lys Met Leu Ala Ile Leu Trp Leu His Ala Gly Glu Ile Ser 85 90 95
- Phe Gly Gly Cys Leu Ala Gln Met Phe Cys Val His Ser Ile Tyr Ala 100 105 110
- Leu Glu Ser Ser Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala 115 120 125
- Ile Cys Asn Pro Leu Arg Tyr Thr Thr Ile Leu Asn His Ala Val Ile 130 135 140
- Pro Phe Ile Phe Leu Leu Arg Arg Leu Pro Tyr Cys Gly His Arg Val

165 170 175

Met Thr His Thr Tyr Cys Glu His Met Gly Ile Ala Arg Leu Ala Cys 180 185 190

Ala Asn Ile Thr Val Asn Ile Val Tyr Gly Leu Thr Val Ala Leu Leu 195 200 205

Ala Met Gly Leu Asp Ser Ile Leu Ile Ala Ile Ser Tyr Gly Phe Ile 210 215 220

Leu His Ala Val Phe His Leu Pro Ser His Asp Ala Gln His Lys Ala 225 230 235

Leu Ser Thr Cys Gly Ser His Ile Gly Ile Ile Leu Val Phe Tyr Ile 245 250 255

Pro Ala Phe Phe Ser Phe Leu Thr His Arg Phe Gly His His Glu Val

Pro Lys His Val His Ile Phe Leu Ala Asn Leu Tyr Val Leu Val Pro

Pro Val Leu Asn Pro Ile Leu Tyr Gly Ala Arg Thr Lys Glu Ile Arg 290 295 300

Ser Arg Leu Leu Lys Leu Leu His Leu Gly Lys Thr Ser Ile

<210> 6 <211> 314

<211> 314 <212> PRT

<213> Mus musculus

<400> 6

Met Ala Gly Asn Ala Thr His His Ile Ala Ser Phe Phe Leu Val Gly

Ile Pro Gly Leu Glu Asn Phe His Cys Trp Ile Gly Ile Pro Val Cys 20 25 30

Leu Leu Phe Ala Leu Thr Leu Leu Gly Asn Ser Ile Ile Leu Thr Thr $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Met Leu Ala Met Asn Asp Met Cys Leu Thr Cys Ser Thr Ala Leu Lys 65 70 75 80

Met Leu Gly Ile Phe Trp Phe Asp Glu His Trp Ile Asn Phe Asp Ala 85 90 95

Ala	Ile	Leu 115	Val	Ala	Met	Ala	Phe 120	Asp	Arg	Phe	Val	Ala 125	Ile	Cys	Ile		
Pro	Leu 130	His	Tyr	Thr	Ser	Ile 135	Leu	Thr	Met	Pro	Met 140	Val	Ile	Lys	Ile		
Gly 145	Leu	Val	Gly	Leu	Gly 150	Arg	Ala	Ile	Leu	Met 155	Ile	Met	Pro	Cys	Pro 160		
Leu	Leu	Ile	Lys	Arg 165	Leu	Leu	Tyr	Tyr	Thr 170	Lys	Tyr	Val	Ile	His 175	His		
Ala	Tyr	Cys	Glu 180	His	Met	Ala	Val	Val 185	Lys	Met	Ala	Ser	Gly 190	Asn	Thr		
Gln	Val	Asn 195	Arg	Ile	Tyr	Gly	Ile 200	Leu	Val	Ala	Leu	Ser 205	Val	Thr	Ile		
Phe	Asp 210	Leu	Gly	Leu	Ile	Val 215	Thr	Ser	Tyr	Ile	Lys 220	Ile	Leu	Gln	Ala		
Val 225	Phe	Arg	Leu	Ser	Ser 230	Gln	Asn	Ala	Arg	Ser 235	Lys	Ala	Leu	Gly	Thr 240		
Cys	Val	Ala	His	Va1 245	Cys	Thr	Ile	Leu	Ala 250	Phe	Tyr	Thr	Pro	Ala 255	Leu		
Phe	Ser	Phe	Leu 260	Thr	His	Arg	Phe	Gly 265	Lys	Asn	Val	Pro	Ala 270	Ser	Ile		
His	Ile	Ile 275	Phe	Ala	Ile	Leu	Tyr 280	Leu	Leu	Va1	Ser	Pro 285	Thr	Val	Asn		
Pro	Leu 290	Val	Tyr	Gly	Ala	Lys 295	Thr	Lys	Gln	Ile	Arg 300	Asp	Arg	Val	Val		
Ser 305	Leu	Leu	Phe	Ser	Gln 310	Lys	Gln	Lys	Phe								
<210 <211 <212 <213	> 8	ONA	sapi	.ens													
<400 tgca			rtcaa	cccc	a at	gaco	aaca	gtg	rcago	tgt	cago	ccat	ac a	caco	gttag	6	50
gcct	ggtg	tc t	ccac	aggo	c											8	30
<210 <211 <212 <213	> 2 > D	0 NA	sapi	ens													
<400 gcca	> 8 tgtg		ctac	acac	:g											2	0 !

```
<210> 9
 <211> 20
 <212> DNA
 <213> homo sapiens
<400> 9
cacagacatg ggaaccacag
                                                                     20
<210> 10
<211> 24
<212> PRT
<213> homo sapiens
<400> 10
Leu Trp Leu Ser Leu Pro Val Cys Gly Leu Gly Thr Ala Thr Ile Val
Gly Asn Ile Thr Ile Leu Val Val
           20
<210> 11
<211> 26
<212> PRT
<213> homo sapiens
<400> 11
Leu Phe Leu Cys Met Leu Ser Thr Ile Asp Leu Ala Ala Ser Val Ser
Thr Val Pro Lys Leu Leu Ala Ile Phe Trp
<210> 12
<211> 19
<212> PRT
<213> homo sapiens
<400> 12
Phe Phe Ile His Ala Phe Cys Met Met Glu Ser Thr Val Leu Leu Ala
                                   10
Met Ala Phe
<210> 13
<211> 21
<212> PRT
<213> homo sapiens
<400> 13
```

```
Ile Gly Val Ala Ala Val Val Arg Gly Ser Leu Leu Met Leu Pro Cys
Pro Phe Phe Ile Gly
            20
<210> 14
<211> 25
<212> PRT
<213> homo sapiens
<400> 14
Ala Ala Leu Leu Val Ile Gly Val Asp Leu Phe Cys Ile Gly Leu Ser
Tyr Ala Leu Ile Ala Gln Ala Val Leu
           20
<210> 15
<211> 25
<212> PRT
<213> homo sapiens
<400> 15
Ala Leu Gly Thr Cys Gly Ser His Val Cys Val Ile Leu Ile Ser Tyr
Thr Pro Ala Leu Phe Ser Phe Phe Thr
           20
<210> 16
<211> 27
<212> PRT
<213> homo sapiens
<400> 16
Val Pro Val His Ile His Ile Leu Leu Ala Asn Val Tyr Leu Leu Leu
Pro Pro Ala Leu Asn Pro Val Val Tyr Gly Val
<210> 17
<211> 14
<212> PRT
<213> homo sapiens
<400> 17
Ala Thr Ile Val Gly Asn Ile Thr Ile Leu Val Val Val Ala
<210> 18
<211> 13
```

```
<212> PRT
<213> homo sapiens
<400> 18
Leu Phe Ser Phe Phe Thr His Arg Phe Gly His His Val
<210> 19
<211> 14
<212> PRT
<213> homo sapiens
<400> 19
Val Arg Val Phe Gln Ser Gly Gln Gly Met Gly Ile Lys Ala
<210> 20
<211> 27
<212> PRT
<213> homo sapiens
<400> 20
His Ala Phe Cys Met Met Glu Ser Thr Val Leu Leu Ala Met Ala Phe
Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg
<210> 21
<211> 17
<212> PRT
<213> homo sapiens
<400> 21
Lys Leu Leu Ala Ile Phe Trp Cys Gly Ala Gly His Ile Ser Ala Ser
Ala
<210> 22
<211> 8
<212> PRT
<213> bacteriophage T7
<400> 22
Asp Tyr Lys Asp Asp Asp Lys
<210> 23
<211> 733
<212> DNA
```

U

IU IU

atgtccagca ctcttggcca caac

<213> homo sapiens <400> 23 gggatccgga gcccaaatct tctgacaaaa ctcacacatg cccaccgtgc ccagcacctg 60 aattogaggg tgcaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 120 totecoggac tootgaggte acatgogtgg tggtggacgt aagccacgaa gaccctgagg 180 tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg 240 aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 300 ggctgaatgg caaggagtac aagtgcaagg totocaacaa agccctccca acccccatcg 360 agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accetgccc 420 catcooggga tgagctgacc aagaaccagg tcagcctgac ctgcctggtc aaaggcttct 480 atccaagega categoogtg gagtgggaga gcaatgggea geeggagaac aactacaaga 540 ccacgcetec egtgetggae teegaegget cettetteet etacagcaag etcacegtgg 600 acaagagcag gtggcagcag gggaacgtct totcatgctc cqtqatqcat qaqqctctqc 660 acaaccacta cacgcagaag agceteteee tgteteeggg taaatgagtg egaeggeege 720 gactctagag gat 733 <210> 24 <211> 24 <212> DNA <213> Homo sapiens <400> 24 gttgccactg aaccagtctt gcac 24 <210> 25 <211> 25 <212> DNA <213> Homo sapiens <400> 25 ctcagatgcc ttgatgccca ttccc 25 <210> 26 <211> 24 <212> DNA <213> Homo sapiens <400> 26

```
<210> 27
 <211> 20
 <212> DNA
 <213> Homo sapiens
 <400> 27
 gtgatggcca aagcggtgtg
                                                                                20
 <210> 28
 <211> 23
<212> DNA
 <213> Homo sapiens
 <400> 28
 caggtgcagc tggtgcagtc tgg
                                                                                23
<210> 29
<211> 23
<212> DNA
<213> Homo sapiens
<400> 29
caggtcaact taagggagte tgg
                                                                                23
<210> 30
<211> 23
<212> DNA
<213> Homo sapiens
<400> 30
gaggtgcagc tggtggagtc tgg
                                                                                23
<210> 31
<211> 23
<212> DNA
<213> Homo sapiens
<400> 31
caggtgcagc tgcaggagtc ggg
                                                                                23
<210> 32
<211> 23
<212> DNA
<213> Homo sapiens
<400> 32
gaggtgcagc tgttqcagtc tqc
                                                                                23
<210> 33
<211> 23
<212> DNA
```

	<213>	Homo sapiens		
	<400>	33		
	caggta	cage tgcagcagte	agg	2:
	<210>	34		
	<211> <212>			
		Homo sapiens		
	<400> tgagga	34 gacg gtgaccaggg	tacc	24
		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	<210>	35		
	<211>	24		
Li	<212>			
min min	<213>	Homo sapiens		
(m)	<400>			
(1)	tgaaga	gacg gtgaccattg	tocc	24
ladi ladi				
100	<210>	36		
	<211> <212>	24		
81	<213>	DNA Homo sapiens		
100				
IU	<400>	36		_
11	tgagga	gacg gtgaccaggg	ttee	24
50.5 60.5				
	<210> <211>	37 24		
	<211>			
		Homo sapiens		
	<400>	37		
		gacg gtgaccgtgg	teec	24
	<210>	38		
	<211>	23		
	<212>			
	<213>	Homo sapiens		
	<400>	38		
	gacato	saga tgacccagtc	tee	23
	4010b	20		
	<210> <211>	39 23		
		DNA		
	<213>	Homo sapiens		
	<400>	39		
	~ 4 O O >	33		

	gatgttgtga tgactcagtc tcc	23
	<210> 40 <211> 23 <212> DNA <213> Homo sapiens	
	<400> 40 gatattgtga tgactcagtc tcc	23
	<210> 41 <211> 23 <212> DNA <213> Homo sapiens	
		23
	2105 42 	
171 151	400> 42 gacatogtga tgaccoagto too	23
	j <210> 43	
10	<pre>400> 43 gaaacgacac tcacgcagtc tcc</pre>	23
	<210> 44 <211> 23 <212> DNA <213> Homo sapiens	
	<400> 44 gaaattgtgc tgactcagtc tcc	23
	<210> 45 <211> 23 <212> DNA <213> Homo sapiens	
	<400> 45 cagtotgtgt tgacgoagoc goo	23

```
<210> 46
<211> 23
<212> DNA
<213> Homo sapiens
<400> 46
cagtetgeec tgactcagec tge
                                                                       23
<210> 47
<211> 23
<212> DNA
<213> Homo sapiens
<400> 47
tectatgtge tgacteagee acc
                                                                       23
<210> 48
<211> 23
<212> DNA
<213> Homo sapiens
<400> 48
tettetgage tgaetcagga eee
                                                                       23
<210> 49
<211> 23
<212> DNA
<213> Homo sapiens
<400> 49
cacgttatac tgactcaacc gcc
                                                                       23
<210> 50
<211> 23
<212> DNA
<213> Homo sapiens
<400> 50
caggetgtge teactcagee gte
                                                                       23
<210> 51
<211> 23
<212> DNA
<213> Homo sapiens
<400> 51
aattttatgc tgactcagcc cca
                                                                      23
<210> 52
<211> 24
<212> DNA
```

DCEIVY

179

	<213> Homo sapiens	
	<400> 52 acgtttgatt tocaccttgg tocc	24
	<210> 53 <211> 24 <212> DNA <213> Homo sapiens	
	<400> 53 acgtttgate tocagettgg teec	24
	<210> 54 <211> 24 <212> DNA <213> Homo sapiens	
Ö	<400> 54 acgtttgata tocactttgg tocc	24
	<210> 55 <211> 24 <212> DNA <213> Homo sapiens	
10	<400> 55 acgtttgate tecacettgg tece	24
and and	<210> 56 <211> 24 <212> DNA <213> Homo sapiens	
	<400> 56 acgtttaatc tocagtogtg tocc	24
	<210> 57 <211> 23 <212> DNA <213> Homo sapiens	
	<400> 57 cagtctgtgt tgacgcagcc gcc	23
	<210> 58 <211> 23 <212> DNA <213> Homo sapiens	
	<400> 58	

	cagtet	gccc tgactcagcc t	ege		23
	<210> <211> <212> <213>	59 23 DNA Homo sapiens			
	<400> tcctat	59 gtgc tgactcagcc a	icc		23
	<210> <211> <212> <213>	60 23 DNA Homo sapiens			
Sanda Or.	<400> tettet	60 gage tgaeteagga e	ecc		23
there is that had	<210> <211> <212> <213>	61 23 DNA Homo sapiens			
tang Hoot been a	<400> cacgtt	61 atac tgactcaacc g	ree		23
and the state of	<210> <211> <212> <213>	62 23 DNA Homo sapiens			
and the second	<400> caggct	62 gtgc tcactcagcc g	tc		23
	<210> <211> <212> <213>	63 23 DNA Homo sapiens			
	<400>	63 atgc tgactcagcc c	ca ·		23
	<210> <211> <212> <213>	64 36 DNA Homo sapiens			
	<400> gtcccc	64 mage ttgcaccatg t	ecageaete ttggee		36

<210> <211>	65 27	
	DNA	
<213>	Homo sapiens	
<400>	65	
cgggat	ccta ctcagatgcc ttgatgc	27
.07.0.		
<210> <211>	66 51	
<212>		
<213>	Homo sapiens	
<400>	66	
cgggat	ccta cttgtcgtcg tcgtccttgt agtcctcaga tgccttgatg c	51
<210>		
<211> <212>	21	
	Homo sapiens	
<400>	67	
		21
<210>	68	
<211>	21	
<212>		
(213)	Homo sapiens	
<400>		
agtcaa	cccc aatgaccaac a	21
<210> <211>		
<211>		
<213>	Homo sapiens	
<400>	69	
~= 00/		

The state of the s

tgcagctgtc agcccataca cacg