Multiplexing: "Resource Sharing"

EE450: Introduction to Computer Networks

Professor A. Zahid

Multiplexing

 Multiplexing is a resource sharing process allowing information from several information sources to be aggregated onto a single, high-speed link

Categories of Multiplexing

Frequency Division Multiplexing

- Useful bandwidth of medium exceeds required bandwidth of channel
- In FDM, each signal is modulated to a different carrier frequency
- Carrier frequencies separated so signals do not overlap (guard bands), example: Broadcast Radio

FDM Process

Example: FDM of Voice Signals

Time Division Multiplexing (TDM)

Synchronous TDM

- Data rate of medium exceeds data rate of digital signal to be transmitted
- Multiple digital signals interleaved in time
- May be at bit level or block of bits
- Time slots pre-assigned to sources and fixed
- Time slots allocated even if source is idle
- Time slots do not have to be evenly distributed amongst sources

Synchronous TDM (Cont.)

In synchronous TDM, the data rate of the link is *n* times faster, and the unit duration is *n* times shorter.

Synchronous TDM (Cont.)

Empty Time Slots

Empty TS can't be used by other Sources ⇒ Waste of Bandwidth

Multilevel Multiplexing

Multiple-Slot Multiplexing

Example

Digital Carrier Hierarchy (US)

- US system based on DS-1 format
- Multiplexes 24 channels
- Each frame has 8 bits per channel plus one framing bit \Rightarrow 193 bits/frame. Frame Duration is 125µseconds

T1 illustrated

T-1: $8000 \text{ frames/s} = 8000 \times 193 \text{ bps} = 1.544 \text{ Mbps}$

Digital Hierarchy (US)

Service	Line	Rate (Mbps)	Voice Channels
DS-1	T-1	1.544	24
DS-2	T-2	6.312	96
DS-3	T-3	44.736	672
DS-4	T-4	274.176	4032

Line	Rate (Mbps)	Voice Channels
E-1	2.048	30
E-2	8.448	120
E-3	34.368	480
E-4	139.264	1920

Statistical (Asynchronous) TDM

- In Synchronous TDM many slots are wasted
- Statistical TDM allocates time slots dynamically, i.e. based on demand
- Every Slot has to start with a header identifying the device (address)
- Multiplexer scans input lines and collects data until frame full
- Data rate on line lower than aggregate rates of input lines

Synchronous vs. Statistical

a. Synchronous TDM

b. Statistical TDM

Performance of Statistical TDM

of Inputs = 10
Rate of each input (active) = 1000 bps
% of time a source is active = 50%
Case 1: Multiplexer capacity = 5000 bps
Case 2: Multiplexer capacity = 7000 bps

	Capacity = 5000 bps		Capacity = 7000 bps	
Input	Output	Backlog	Output	Backlog
6	5	1	6	0
9	5	5	7	2
3	5	3	5	0
7	5	5	7	0
2	5	2	2	0
2	4	0	2	0
2	2	0	2	0
3	3	0	3	0
4	4	0	4	0
6	5	1	6	0
1	2	0	1	0
10	5	5	7	3
7	5	7	7	3
5	5	7	7	1
8	5	10	7	2
3 ISC Zahi	5	8	5	20

EE450, USC, Zahid

Conclusions

- TDM Guarantees the User a bandwidth but on the contrary wastes valuable carrier capacity. Suitable for streamy type traffic like voice (digitized)
- STDM Utilizes unused time slots. Suitable for Bursty-type traffic such as data
 - More efficient use of capacity
 - When times are busy, user suffers delay

Wave-Length Division Multiplexing

Prisms in wavelength-division multiplexing and de-multiplexing

Access Technologies

- Dial-up: 56 Kbps Modems
- ADSL: Asymmetric Digital Subscriber Line
- Broadband Cable Access
- Wireless Access
- Dedicate Access (T1 or T3, Business lines)

Dial-up Telephone Line Bandwidth

Dial-up (Asymmetric 56 Kbps)

DSL Technologies

- Digital Subscriber Line is a technology that can provide Internet Access and Plain Old Telephone Services (POTS) over the existing single twisted pair telephone lines. It <u>may</u> also be able to deliver Video-on-Demand
- DSL is deployed by the telephone companies
- Multiple Flavors of DSL include:
 - ADSL: Asymmetric DSL (most suitable for residential access)
 - HDSL: High Data Rate DSL
 - IDSL: ISDN DSL
 - SDSL: Symmetric DSL
 - VDSL: Very High Data Rate DSL

ADSL

- Asymmetrical DSL was developed at BellCore in 1989. BellCore is currently Telcordia Tech. Inc.
- Asymmetric in the sense that the Downstream and the Upstream capabilities are not the same. It was designed to match the flow of data to and from the Internet
 - Downstream bandwidth supports up to ~ 8 Mbps
 - Upstream bandwidth supports up to ~ 1.5 Mbps
- Distance requirement between residence and the CO is ~ 18,000 ft (~ 5.5 km), the closer, the better, the higher

ADSL Bandwidth Allocations

The bandwidth of the twisted pair copper wire is divided, using FDM (Frequency Division Multiplexing) into 3 non-overlapping sub-bands

ADSL Architecture

U/L and D/L ADSL

ADSL Technology (too much detail!)

Customer Premises Installation

- · Most common installation approach, customer installable
- · Requires "Miniatures" LPFs between the POTS device and the wall jack

Problems with ADSL

- Phone wires attenuate and distort voice signals.
 - To equalize the lines over the frequency range for voice communications (0~4KHz), the telephone companies install inductors (loading coils) in their longer lines to improve voice communications.
 - The price is that high speed data will suffer
 - Need to remove those loading coils
- Signal dispersion and Inter-Symbol interference at high data rates
- POTS and ADSL interference
- Echoes due to un-terminated taps
- Near-end and far-end cross talks

Cable Access

- Based on (residential) cable television (CATV) technology
 - 80~100 million homes are "Passed" by CATV in USA
- Provide for Integrated Services
 - Data
 - TV Broadcasting (Analog & Digital), VoD
 - Audio (music, voice)
- Asymmetric Bandwidth Allocation
 - High-speed D/L
 - Low-speed U/L
- Always ON!

Traditional Cable TV Network

Hybrid/Fiber Cable (HFC)

One-way HFC Architecture

Cable Bandwidth Allocations

- Currently, the band from 54MHz to 550 MHz is used for Analog TV broadcasting
 * Each Analog Channel is 6 MHz wide ⇒ 80~85 Channels
- · D/L Channels in the band 600~750 MHz band is used for Internet Data and VoD
 - * Each Digital Channel is 6 MHz wide. Data is Modulated using 64-QAM
 - * Each Channel can support 6 bps/Hz \Rightarrow Each Channel can support \sim 36 Mbps
 - * With FEC and Channel Separation, each Channel can support 27~30 Mbps
- · U/L Channels in the band 5~42 MHz band is used for Data/Voice/VoIP
 - * Each Digital Channel is 2 MHz wide. Data is Modulated using QPSK
 - * Each Channel can support 2 bps/Hz \Rightarrow Each Channel can support \sim 4 Mbps
 - * U/L Channels are shared. Users may compete for the same Channel

Two-Way Cable Access

