CS201

MATHEMATICS FOR COMPUTER SCIENCE I

Lecture 13

PIGEON HOLE PRINCIPLE

If n + 1 objects are kept in n boxes then at least one box has more than one object.

• Obvious statement, but has non-obvious applications.

- Given any n+1 numbers from the set $[1,2n]=\{1,2,\ldots,2n\}$, there exists one number that is a multiple of another.
 - ▶ Represent any number m from the set [1, 2n] as $m = 2^k s$ where s is odd.
 - ► Clearly, $s \in \{1, 3, 5, \dots, 2n 1\}$.
 - ▶ There are exactly *n* possibilities for *s*.
 - ▶ By Pigeon Hole Principle, given n + 1 numbers from [1, 2n], at least two will have the same s.
 - ▶ One of these numbers is a multiple of other.

- Let A be a finite set with partial order \leq defined on A and $|A| \geq n^2 + 1$. Then A has either a chain of size n + 1 or an antichain of size n + 1.
- An antichain is a subset of A such that no two elements of the subset are related.
 - ▶ Suppose the size of largest chain of *A* is *k*.
 - ▶ Let $B_1 \subseteq A$ be the set of all minimal elements of A.
 - ▶ Set B_1 is clearly an antichain and also a maximal one.

Proof continued...

- Now consider the set $A \setminus B_1$ and let B_2 be the set of all minimal elements of $A \setminus B_1$.
- ▶ Set B_2 is also a maximal antichain.
- ► Continuing this way, suppose we get antichains B_1 , B_2 , ..., B_r and $A = \bigcup_{i=1}^r B_i$.
- ► Consider a maximal chain *C* of *A*.
- ▶ The smallest element of C will be in B_1 , next smallest in B_2 , and so on.
- ▶ Hence, elements of *C* will be present in first | *C* | antichains.

- Proof continued...
 - ▶ Since the longest chain of A has size k by assumption, r = k.
 - ▶ Therefore, A is a union of k disjoint antichains.
 - ▶ By Pigeon Hole Principle, at least one antichain has size

$$\geq \frac{n^2+1}{k}.$$

▶ Hence, either $k \ge n+1$ or $\frac{n^2+1}{k} \ge n+1$.

Two Versions

RAMSEY THEOREM FOR GRAPHS

For any $c, n_1, n_2, \ldots, n_c \ge 1$, there exists a number $N(n_1, n_2, \ldots, n_c) > 0$ such that for any set X with $|X| \ge N(n_1, n_2, \ldots, n_c)$, and any mapping $f: X \times X \mapsto \{1, 2, \ldots, c\}$, there exists a $\tilde{c}, 1 \le \tilde{c} \le c$ and subset $Y \subseteq X$, $|Y| = n_{\tilde{c}}$, with $f(Y \times Y) = \tilde{c}$.

RAMSEY THEOREM GENERAL FORM

For any $c, n_1, n_2, \ldots, n_c, k \ge 1$, there exists a number $N(n_1, n_2, \ldots, n_c, k) > 0$ such that for any set X with $|X| \ge N(n_1, n_2, \ldots, n_c, k)$, and any mapping $f: X^k \mapsto \{1, 2, \ldots, c\}$, there exists a \tilde{c} , $1 \le \tilde{c} \le c$ and a subset $Y \subseteq X$, $|Y| = n_{\tilde{c}}$, with $f(Y^k) = \tilde{c}$.

APPLICATIONS

- Non-trivial generalization of Pigeon Hole Principle $(n_1 = 2 = n_2 = \cdots = n_c, k = 1)$.
- Any group of six persons either has three mutual acquaintances, or three mutual strangers (c = 2, $n_1 = 3 = n_2$, k = 2).
- Schur's Theorem: for any m > 1, there exists a number N such that for any prime $p \ge N$, equation $x^m + y^m = z^m \mod p$ has a solution.
- Erdos-Szekeres Theorem: for any $m \ge 4$, there exists a number N such that given any N points on a place with no three points on a line, there exists a convex polygon of m points.

APPLICATIONS

- Schur's Theorem: to be done later in the course.
- Erdos-Szekeres Theorem: Choose c=2, $n_1=m$, $n_2=5$, k=4 and N=N(m,5,4) in the General Form.
 - Consider a set X of N points on the plane with no three points on a line.
 - ▶ Define coloring of X^4 as: $f(p_1, p_2, p_3, p_4) = 1$ if the four points make a convex polygon, 2 otherwise.

APPLICATIONS

- Proof of Erdos-Szekeres Theorem:
 - ▶ By the Ramsey Theorem, there exists a set $Y \subseteq X$, such that |Y| = m and $f(Y^4) = 1$, or |Y| = 5 and $f(Y^4) = 2$.
 - Second is not possible since four out of any five points of X make a convex polygon.
 - ► So there are *m* points such that any four of them make a convex polygon.
 - ▶ Then all *m* points must make a convex polygon.