[SIMAX] Block Crout Factorizations: An example:

4 0.5

0.9

6 2.3

0

0

0

0

where no entry has been rounded to 0.

Step 3. Back permute:

Alternative: An extra step after 2:

Step 2. Block Crout Factor:

$$\mathbf{Y} = (\mathbf{L}_{\mathbf{Y}} + \mathbf{D}_{\mathbf{Y}})\mathbf{D}_{\mathbf{Y}}^{-1}(\mathbf{L}_{\mathbf{Y}} + \mathbf{D}_{\mathbf{Y}})^{\mathrm{T}} \qquad \text{(Block Crout Factored Form)}$$

$$\downarrow \text{ with } \mathbf{L}_{\mathbf{Y}} \text{ resp. } \mathbf{D}_{\mathbf{Y}}$$

Γ	0	0	0	0	0	0	0	0	0]	2	4	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0		4	0	0	0	0	0	0	0	0
	-1	-1	0	0	0	0	0	0	0	,	0	0	1.6	4	0	0	0	0	0
	0	0	0	0	0	0	0	0	0		0	0	4	0	0	0	0	0	0
	0	0	-1	-1	0	0	0	0	0		0	0	0	0	1.6	4	0	0	0
	0	0	0	0	0	0	0	0	0		0	0	0	0	4	0	0	0	0
	0	1	0.1	2	-0.7	3	0	0	0		0	0	0	0	0	0	4.3	0	0
	0	4	0.5	5	0.9	6	2.3	0	0		0	0	0	0	0	0	0	5.1	0
L	0	7	0.9	8	1.4	9	5.0	3.2	0		0	0	0	0	0	0	0	0	5.2

Step 2b. Block diagonal \rightarrow Diagonal:

Note that each step $\mathbf{S}_k := \mathbf{S}_k - (\mathbf{L}_k + \mathbf{D}_k) \mathbf{D}_k^{-1} (\mathbf{D}_k + \mathbf{U}_k)$ where

$$(\mathbf{L}_k + \mathbf{D}_k)\mathbf{D}_k^{-1}(\mathbf{D}_k + \mathbf{U}_k) = [\mathbf{D}_k; \mathbf{L}_k]\mathbf{D}_k^{-1}[\mathbf{D}_k, \mathbf{U}_k]$$

If each diagonal block \mathbf{D}_k can be factored:

$$\mathbf{D}_k = (d_k + u_k)d_k^{-1}(l_k + d_k) \implies \mathbf{D}_k^{-1} = (d_k + u_k)^{-1}d_k(l_k + d_k)^{-1}$$

then

$$\begin{array}{lcl} (\mathbf{L}_k + \mathbf{D}_k) \mathbf{D}_k^{-1} (\mathbf{D}_k + \mathbf{U}_k) & = & [\mathbf{D}_k; \mathbf{L}_k] \mathbf{D}_k^{-1} [\mathbf{D}_k, \mathbf{U}_k] \\ & = & [(l_k + d_k) d_k^{-1} (d_k + u_k); L] (d_k + u_k)^{-1} d_k (l_k + d_k)^{-1} [(l_k + d_k) d_k^{-1} (d_k + u_k), U] \\ & = & [(l_k + d_k); L (d_k + u_k)^{-1} d_k] d_k^{-1} d_k (l_k + d_k)^{-1} [(l_k + d_k) d_k^{-1} (d_k + u_k), U] \\ & = & [(l_k + d_k); L (d_k + u_k)^{-1} d_k] d_k^{-1} [(d_k + u_k), d_k (l_k + d_k)^{-1} U]. \end{array}$$

leads to a **new** LDU type factorization

$$\mathbf{Y} = (\hat{\mathbf{L}} + \hat{\mathbf{D}})\hat{\mathbf{D}}^{-1}(\hat{\mathbf{D}} + \hat{\mathbf{U}})$$

where \mathbf{L},\mathbf{U} are strictly lower respectively upper triangular and where \mathbf{D} is diagonal (not anylonger block-diagonal).

Our Constrained Factored Form is an element of family 10 (from [DGSW] Table4.2):

- 1. C = 0
- 2. $[\mathbf{L}_{13}; \mathbf{L}_{23}] = \mathbf{B}^{\mathrm{T}}$
- 3. All non-zero blocks of ${\bf L}$ correctly positioned
- 4. $\mathbf{L}_{31} = \mathbf{D}_{31}^{-\mathrm{T}}$.

The Block Crout Factorization is a straight forward simple recursive process. However, proper termination (existence of factors $\mathbf{L}_{\mathbf{Y}}$ and $\mathbf{D}_{\mathbf{Y}}$) depends on properties of \mathbf{A} and \mathbf{B} . Paper [LAA] only does:

- 1. Step 2b. An existence proof for the Crout block Factorization Step 2 for
 - A symmetric positive definite
 - B lower trapezoidal and
 - B of maximal rank

The obtained Crout block Factorization can not be used for the construction of a (inexact) preconditioner because related ${\bf L}$ does not contain blocks together form ${\bf B}$:

$$\mathbf{B} = \begin{bmatrix} 4 & 0 & 0 & 1 & 4 & 7 \\ -1 & 4 & 0 & 2 & 5 & 8 \\ 0 & -1 & 4 & 3 & 6 & 9 \end{bmatrix} \rightarrow \mathbf{L_X} + \mathbf{D_X} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\ \hline 0 & 0.2 & -0.4 & 4.8 & 0 & 0 & 1 & 2.2 & 3.6 \\ 0 & 1 & 1.5 & 3.1 & 5.0 & 0 & 4 & 6 & 7.5 \\ 0 & 1.8 & 2.4 & 6.2 & 2.7 & 4.5 & 7 & 9.8 & 11.4 \\ \hline 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

But it is an efficient factorization because $tril(A_{11})$ is an unaltered part of L.

Paper [SIMAX] introduces several novelties:

- 1. Step 2b. A (required!) different existence proof for the Crout block Factorization Step 2 for
 - A symmetric positive definite
 - B upper trapezoidal and
 - B of maximal rank
- 2. Step 3. Modified Incomplete Block Factorization
- 3. Step 3a. Such that existence can be proven

- 4. Step 3b. And such that the factorization $(\mathbf{L}_{\mathbf{X}} + \mathbf{D}_{\mathbf{X}})\mathbf{D}_{\mathbf{X}}^{-1}(\mathbf{L}_{\mathbf{X}} + \mathbf{D}_{\mathbf{X}})^{\mathrm{T}}$ is a constrained preconditioner.
- 5. Step 4. Comparison against an existing method

Suddenly we have an algorithm which generates an exact factorization member of family 10 – and in addition an inexact preconditioner.

[SIMAX] and [LAA] papers both set up the Block Crout factorization. Apart from that [SIMAX] is not related to [LAA] but as mentioned based on ideas by [SHILDERS] who presents an algorithm to calculate a constrained factored form preconditioner.

[SIMAX] opens the road for the construction of algorithms for various incomplete constrained factored form preconditioners. And: Solution of systems $\mathbf{X}\mathbf{u} = \mathbf{b}$ can be done very efficiently with the use of $(\mathbf{L}_{\mathbf{Y}} + \mathbf{D}_{\mathbf{Y}})\mathbf{D}_{\mathbf{Y}}^{-1}(\mathbf{L}_{\mathbf{Y}} + \mathbf{D}_{\mathbf{Y}})^{\mathrm{T}}(\mathbf{P}^{\mathrm{T}}\mathbf{u}) = \mathbf{P}^{\mathrm{T}}\mathbf{b}$.