3.6 コンビネータ理論

ラムダ計算の別の形式化である**コンビネータ理論**(combinatory logic)という体系を導入する。束縛変数を使わずに、次の 3 つの定数記号を導入して、 λ 抽象と同等な仕組みを実現する。

$$\mathbf{I} \equiv \lambda x.x$$

$$\mathbf{K} \equiv \lambda xy.x$$

$$\mathbf{S} \equiv \lambda xyz.xz(yz)$$

定義 3.12. :

- 1. コンビネータ理論が扱う式 **CL 式** (CL-term) を次のように定義する.
 - (a) 変数は CL 式である.
 - (b) **I, K, S** は CL 式である.
 - (c) P と Q が CL 式ならば,(PQ) は CL 式である.
- 2. CL 式間の等式を次の形式体系 CL で定義する.

$$\begin{split} \mathbf{I}P &= P & \mathbf{K}PQ &= P & \mathbf{S}PQR &= PR(QR) \\ \frac{P &= Q}{PR &= QR} & \frac{P &= Q}{RP &= RQ} \\ P &= P & \frac{P &= Q}{P &= R} & \frac{P &= Q}{Q &= P} \end{split}$$

CL 式 P と Q について、上の形式体系から P=Q が導出可能なとき、 $CL \vdash P=Q$ と書く.

定義 3.13. コンビネータ理論における簡約を定義する.

1. CL 式間の二項関係 \rightarrow_w を 次のように定義する.

$$\begin{split} \mathbf{I}P \to_w P & \mathbf{K}PQ \to_w P \\ P \to_w Q \ \Rightarrow \ PR \to_w QR \\ P \to_w Q \ \Rightarrow \ RP \to_w RQ \end{split}$$

2. $P \equiv P_0 \rightarrow_w P_1 \rightarrow_w P_1 \rightarrow_w \cdots \rightarrow_w P_n \equiv Q \ (n \geq 0)$ のとぎ $P \rightarrow_w Q$.

 $P \longrightarrow_w Q$: P は Q に弱簡約 (weak reduction) される.

 $P \to_w Q$: P は Q に 1ステップで弱簡約される.

3. CL 式間の二項関係 \leftrightarrow_w を

$$P \leftrightarrow_w Q \Leftrightarrow P \rightarrow_w Q$$
 あるいは $Q \rightarrow_w P$

と定義し,

$$P \equiv P_0 \leftrightarrow_w P_1 \leftrightarrow_w \dots \leftrightarrow_w P_n \equiv Q \quad (n \ge 0)$$

のとき、 $P =_w Q$ と定義する.

• ラムダ計算と同様に、次の関係が成り立つ。

$$\mathbf{CL} \vdash P = Q \iff P =_w Q$$

3.6.1 コンビネータ理論における λ 抽象の仕組み

定義 3.14. CL 式 P と変数 x について、CL 式 $\lambda^* x.P$ を P の構造に関する帰納法で定義する。

$$\lambda^* x. x \equiv \mathbf{I}$$

例:

$$\lambda^* x. (\lambda^* y. xy) \equiv \lambda^* x. \mathbf{S}(\lambda^* y. x) (\lambda^* y. y)$$

$$\equiv \lambda^* x. \mathbf{S}(\mathbf{K} x) \mathbf{I}$$

$$\equiv \mathbf{S}(\mathbf{S}(\lambda^* x. \mathbf{S}) (\mathbf{S}(\lambda^* x. \mathbf{K}) (\lambda^* x. x))) (\lambda^* x. \mathbf{I})$$

$$\equiv \mathbf{S}(\mathbf{S}(\mathbf{K} \mathbf{S}) (\mathbf{S}(\mathbf{K} \mathbf{K}) \mathbf{I})) (\mathbf{K} \mathbf{I})$$

次の命題は、 $\lambda^* x$ が λ 抽象と同等な働きをすることを示している。

命題 3.6. $(\lambda^* x. P)Q \to_w P[x := Q]$

証明: P の構造に関する帰納法による.

(場合 1) $P \equiv x \text{ のとき}$,

$$(\lambda^* x. P)Q \equiv \mathbf{I}Q \to_w Q \equiv P[x := Q]$$

(場合 2) x が P に含まれないとき、

$$(\lambda^* x. P)Q \equiv \mathbf{K} PQ \to_w P \equiv P[x := Q]$$

(場合 3) $P \equiv P_1 P_2$ で x が P に含まれるとき,

$$(\lambda^* x. P)Q \equiv \mathbf{S}(\lambda^* x. P_1)(\lambda^* x. P_2)Q$$

$$\to_w (\lambda^* x. P_1)Q((\lambda^* x. P_2)Q)$$

$$\to_w P_1[x := Q]P_2[x := Q]$$

$$\equiv P[x := Q]$$

• 定義 3.14 において、 $\lambda^* x.x \equiv \mathbf{I}$ の代わりに、 $\lambda^* x.x \equiv \mathbf{SKK}$ といても、命題 3.6 が成り立つ。

$$\mathbf{SKK}P \to_w \mathbf{K}P(\mathbf{K}P) \to_w P$$

3.6.2 ラムダ計算とコンビネータ理論

 λ 式から CL 式と、CL 式から λ 式への変換を定義する.

定義 3.15. 1. λ 式 M について、CL 式 M_{CL} を M の構造に関する帰納法で定義する。

$$x_{CL} \equiv x$$
 $(MN)_{CL} \equiv M_{CL}N_{CL}$ $(\lambda x.M)_{CL} \equiv \lambda^* x.M_{CL}$

2. CL 式 P について、 λ 式 P_{λ} を P の構造に関する帰納法で定義する.

$$\mathbf{I}_{\lambda} \equiv \lambda x.x$$
 $\mathbf{K}_{\lambda} \equiv \lambda xy.x$ $\mathbf{S}_{\lambda} \equiv \lambda xyz.xz(yz)$ $x_{\lambda} \equiv x$ $(PQ)_{\lambda} \equiv P_{\lambda}Q_{\lambda}$

- 上記の変換を用いて、次が成り立てば、ラムダ計算とコンビネータ理論は本質的に同じである.
 - 1. $\lambda \vdash M = N \Leftrightarrow \mathbf{CL} \vdash M_{CL} = N_{CL}$
 - 2. $\mathbf{CL} \vdash P = Q \iff \lambda \vdash P_{\lambda} = Q_{\lambda}$
- 上記の式で、 $1 の \Rightarrow 2 0 \Leftarrow が成り立たない。例:$

1
$$\mathbf{O}$$
 \Rightarrow : $M \equiv \lambda x.(\lambda y.y)x$, $N \equiv \lambda y.y$ のとき,

 $\lambda \vdash M = N$ は成り立つが、 $M_{CL} \equiv \lambda^* x. \mathbf{I} x \equiv \mathbf{S}(\mathbf{K} \mathbf{I}) \mathbf{I}$ 、 $N_{CL} \equiv \mathbf{I}$ なので、 $\mathbf{CL} \vdash M_{CL} \neq N_{CL}$

2 $\phi \Leftarrow : P \equiv S(KI)I, Q \equiv I$ のとき,

 $\lambda \vdash P_{\lambda} = Q_{\lambda}$ は成り立つが、 $\mathbf{CL} \vdash P = Q$ は成り立たない.

 \Downarrow

ラムダ計算の体系 λ の ξ 規則 $(M=N \Rightarrow \lambda x.M = \lambda x.N)$ に対応する規則がコンビネータ理論にない $(P=Q \Rightarrow \lambda^* x.P = \lambda^* x.Q)$

定義 3.16. 次の CL 式を**関数的** (functional) であると呼ぶ

I, K, S, KP, SP, SPQ

コンビネータ理論 CL に次の ζ_{β} 規則を加えた体系を CL + (ζ_{β}) で表す.

$$(\zeta_{\beta})\frac{Px = Qx}{P = Q}$$

- xは、PやQに含まれない。
- $P \, \in \, Q$ は関数的な CL 式 (λ 式に直した場合に, $\lambda x.-$ に β 変換可能).

3.6.3 CL + (ζ_{β}) とラムダ計算の体系

次の定理は、 $\mathbf{CL} + (\zeta_{\beta})$ とラムダ計算の体系が同等であることを示す.

定理 3.4. 1. $\lambda \vdash (M_{CL})_{\lambda} = M$ (実際 $(M_{CL})_{\lambda}) \longrightarrow_{\beta} M$)

2.
$$\mathbf{CL} + (\zeta_{\beta}) \vdash (P_{\lambda})_{CL} = P$$

3.
$$\lambda \vdash M = N \Leftrightarrow \mathbf{CL} + (\zeta_{\beta}) \vdash M_{CL} = N_{CL}$$

4.
$$\mathbf{CL} + (\zeta_{\beta}) \vdash P = Q \iff \lambda \vdash P_{\lambda} = Q_{\lambda}$$

証明:

- 1. Mの構造に関する帰納法.
- 2. P の構造に関する帰納法.

 $P \equiv P_1 P_2$ **のとき** : 仮定から明らか.

$$P \equiv \mathbf{K}$$
 のとき : $(\mathbf{K}_{\lambda})_{CL} \equiv (\lambda xy.x)_{CL} \equiv \lambda^* x.\mathbf{K} x \equiv \mathbf{S}(\mathbf{K}\mathbf{K})\mathbf{I}$ なので,

$$(\mathbf{K}_{\lambda})_{CL}x \equiv \mathbf{S}(\mathbf{K}\mathbf{K})\mathbf{I}x = \mathbf{K}\mathbf{K}x(\mathbf{I}x) = \mathbf{K}x$$

ここで、 $(\mathbf{K}_{\lambda})_{CL}$ と \mathbf{K} は両方とも関数的. 規則 (ζ_{β}) から、 $(\mathbf{K}_{\lambda})_{CL} = \mathbf{K}$. $P \equiv \mathbf{S}$, $P \equiv \mathbf{I}$ も同様.

 $3 \mathbf{o} (\Rightarrow)$ $\lambda \vdash M = N$ の導出関する帰納法.

$$M=N$$
 が公理(eta)である場合 : $M\equiv (\lambda x.M_1)M_2=M_1[x:=M_2]\equiv N$

命題 3.6 から, $M_{CL} \equiv (\lambda^* x.(M_1)_{CL})(M_2)_{CL} = (M_1)_{CL}[x := (M_2)_{CL}].$

一般に、 $X_{CL}[x:=Y_{CL}] \equiv (X[x:=Y])_{CL}$ なので、 $(M_1)_{CL}[x:=(M_2)_{CL}] = (M_1[x:=M_2])_{CL}$.

M=N が公理 (ξ) である場合 : $\frac{M'=N'}{M=\lambda_T M'}$ の場合を考える(他の場合は明らか).

帰納法の仮定から、 $\mathbf{CL} + (\zeta_{\beta}) \vdash M'_{CL} = N'_{CL}$.

命題 3.6 から、 $\mathbf{CL} + (\zeta_{\beta}) \vdash (\lambda^* x. M'_{CL}) x = (\lambda^* x. N'_{CL}) x$

ここで、 $\lambda^* x. M'_{CL}$ と $\lambda^* x. N'_{CL}$ は、変数 x を含まず($\lambda^* x. - \sigma$ 定義)、関数的なので、規則 (ζ_{β}) から、

$$\mathbf{CL} + (\zeta_{\beta}) \vdash \lambda^* x. M'_{CL} = \lambda^* x. N'_{CL}$$

 $M_{CL} \equiv \lambda^* x. M_{CL}'$ \mathcal{C} , $N_{CL} \equiv \lambda^* x. N_{CL}'$ \mathcal{C} $\mathcal{C$

4 σ (\Rightarrow) $\operatorname{CL} + (\zeta_{\beta}) \vdash P = Q$ の導出に関する帰納法.

P=Q が K に関する公理である場合 : $P\equiv KQR=Q$.

 λ において,

$$P_{\lambda} \equiv (\lambda x y. x) Q_{\lambda} P_{\lambda} = Q_{\lambda}$$

他の場合も同様.

3の (\Leftarrow) $CL + (\zeta_{\beta}) \vdash M_{CL} = N_{CL}$ と仮定すると、 $4 \circ (\Rightarrow)$ から、

$$\lambda \vdash (M_{CL})_{\lambda} = (N_{CL})_{\lambda}$$

$$\lambda \vdash M = N$$

4**の**(\Leftarrow) $\lambda \vdash P_{\lambda} = Q_{\lambda}$ と仮定すると、3の(\Rightarrow) から、

$$\mathbf{CL} + (\zeta_{\beta}) \vdash (P_{\lambda})_{CL} = (Q_{\lambda})_{CL}$$

2から、 $\mathbf{CL} + (\zeta_{\beta})$ で $(P_{\lambda})_{CL} = P$ と $(Q_{\lambda})_{CL} = Q$ なので、

$$\mathbf{CL} + (\zeta_{\beta}) \vdash P = Q$$

3.7 外延的ラムダ計算

外延性 :同じ定義域と地域をもつ関数 f と g について,定義域のすべての要素 a について,f(a)=g(a) が成り立つとき,f と g は同じ関数。

 $\lambda + (ext)$ 体系 :

$$(\text{ext}) \frac{Mx = Nx}{M = N}$$
 (ただし, $x \notin \text{FV}(M) \cup \text{FV}(N)$)

 $\lambda + (\eta)$ 体系 :

$$(\eta)\lambda x.Mx = M \ (\text{ttil}, \ x \notin \text{FV}(M))$$

命題 3.7. $\lambda + (ext) \vdash M = N \Leftrightarrow \lambda + (\eta) \vdash M = N$

証明:

 \Rightarrow : $x \notin FV(M)$ とすると、 $\lambda + (ext) \vdash (\lambda x.Mx)x = Mx$ なので、

規則 (ext) によって、 $\lambda + (ext) \vdash \lambda x. Mx = M$.

 \Leftarrow : $\lambda + (\eta) \vdash Mx = Nx \ (x \notin FV(M) \cup FV(N))$ とすると、規則 ξ によって、

$$\lambda + (\eta) \vdash \lambda x. Mx = \lambda x. Nx$$

公理 (η) を用いて、 $\lambda + (\eta) \vdash M = N$ を得る.

注 : 公理 (η) は、体系 λ において成り立たない。 \Rightarrow 外延的ラムダ計算(体系 $\lambda + (\eta)$) 例 : $\lambda \vdash \lambda x.zx \neq z$