Determinación de Máximos, Mínimos y Puntos de Silla para Funciones de Varias Variables

Para Funciones de 2 Variables f(x,y)

- 1. Encontrar Puntos Críticos:
 - Calcula las derivadas parciales de la función respecto a x y y, es decir, f_x y f_y .
 - Encuentra los puntos críticos resolviendo el sistema de ecuaciones $f_x=0$ y $f_y=0$.
 - 2. Calcular la Matriz Hessiana:
 - La matriz Hessiana es una matriz de segundas derivadas:

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$

- Calcula f_{xx} , f_{yy} y f_{xy} para cada punto crítico.
- 3. Clasificación usando el Determinante de la Hessiana:
- Calcula el determinante de la matriz Hessiana: $D = f_{xx}f_{yy} (f_{xy})^2$.
- Clasificación de los puntos:
 - Mínimo Local: Si D > 0 y $f_{xx} > 0$.
 - Máximo Local: Si D > 0 y $f_{xx} < 0$.
 - Punto de Silla: Si D < 0.
 - Indeterminado: Si D = 0, se requieren métodos adicionales.

Para Funciones de 3 Variables f(x, y, z)

- 1. Encontrar Puntos Críticos:
 - Calcula las derivadas parciales f_x , f_y y f_z .

- Encuentra los puntos donde $f_x = 0$, $f_y = 0$ y $f_z = 0$ se cumplen al mismo tiempo.
- 2. Calcular la Matriz Hessiana:
- La matriz Hessiana será de 3×3 :

$$H = \begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}$$

- Evalúa todas las segundas derivadas parciales en los puntos críticos para construir la matriz Hessiana.
- 3. Clasificación usando Autovalores o Menores Principales:
- Clasifica los puntos críticos basándote en los autovalores de la matriz Hessiana:
 - Mínimo Local: Si todos los autovalores son positivos.
 - Máximo Local: Si todos los autovalores son negativos.
 - Punto de Silla: Si los autovalores tienen signos mixtos.

Clasificación de los Puntos Críticos

Los puntos críticos se clasifican según los determinantes:

- Mínimo local: Si $D_1 > 0$, $D_2 > 0$, y $D_3 > 0$.
- Máximo local: Si $D_1 < 0, D_2 > 0, y D_3 < 0.$
- Punto de silla: Si alguno de los determinantes D_1 , D_2 , o D_3 tiene un signo diferente de los demás:
 - Si $D_1 > 0$ y $D_2 < 0$.
 - Si $D_1 < 0$ y $D_2 > 0$.
 - O si D_3 tiene signos mixtos.

Además:

• Si alguno de los determinantes es 0, entonces el criterio no es concluyente:

$$-D_1 = 0 \text{ o } D_2 = 0 \text{ o } D_3 = 0.$$

- Si algún determinante par es negativo, entonces el punto crítico es un punto silla:
 - $-D_2 < 0.$

• Si todos los determinantes son positivos, entonces el punto crítico es un punto mínimo relativo:

$$-D_1 > 0, D_2 > 0, D_3 > 0.$$

• Si los determinantes pares son positivos y los impares son negativos, entonces el criterio es un punto silla de máximo relativo:

$$-D_1 < 0, D_2 > 0, D_3 < 0.$$

Para Funciones con Más de 3 Variables

1. Puntos Críticos:

• Deriva la función respecto a cada variable y encuentra los puntos donde todas las derivadas parciales son cero.

2. Matriz Hessiana:

• La matriz Hessiana tendrá dimensión $n \times n$ para una función de n variables.

3. Clasificación:

• La clasificación de los puntos se realiza mediante los autovalores de la matriz Hessiana o analizando los menores principales:

- Mínimo Local: Todos los autovalores son positivos.

- Máximo Local: Todos los autovalores son negativos.

- Punto de Silla: Autovalores con signos mixtos.