1

Assignment 1

AI1110: Probability and Random Variables Indian Institute of Technology Hyderabad

CS22BTECH11046

P. Yasaswini

10.15.1.25: Question. Which of the following arguments are correct and which are not correct? Give reasons for your answer.

- 1) If two coins are tossed simultaneously, there are three possible outcomes two heads, two tails, or one of each. Therefore, for each of these outcomes, the probability is $\frac{1}{3}$.
- 2) If a die is thrown, there are two possible outcomes an odd number or an even number. Therefore, the probability of getting an odd number is $\frac{1}{2}$.

Solution:

1) X is a random variable which denotes the number of heads obtained when n coins are tossed simultaneously,p = probability of getting head.

$$X \sim \text{Bin}(n, p)$$
 (1)

then,

$$p_X(r) = {}^{n}C_r p^r (1 - p)^{n - r}$$
 (2)

Here n = 2 and $p = \frac{1}{2}$,

$$p_X(1) = {}^{2}C_1 \times \frac{1}{2^2} = \frac{1}{2}$$
 (3)

Therefore,

0:	Getting two tails	$p_X(0)=0.25$
1:	Getting one of each	$p_X(1)=0.50$
2:	Getting two heads	$p_X(2)=0.25$

Reason: For X=1, it contains two mutually exclusive events (H, T), (T, H). Therefore, the probability of getting one of each is $\frac{1}{2}$ and not $\frac{1}{3}$. So, the above statement is incorrect.

2) Here, X is a random variable which denotes the number of success in getting odd number. Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$, Probability of getting each number= $\frac{1}{6}$

$$X = \begin{cases} 0 & \text{if no success,} \\ 1 & \text{if success.} \end{cases}$$

$$p_X(1) = \Pr(1) + \Pr(3) + \Pr(5)$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$= \frac{3}{6}$$

$$= 0.5$$

0:	Getting even number	$p_X(0)=0.50$
1:	Getting odd number	$p_X(1)=0.50$

Reason: Event of getting an odd number and Event of getting an even number are equally likely and they together forms an exhaustive event. Hence,

$$p_X(0) = \frac{1}{2} \tag{4}$$

$$p_X(1) = \frac{1}{2} (5)$$

So the above statement is correct.