Anatomical analysis with Freesurfer

31082024

WhatsApp group

https://chat.whatsapp.co m/L5qwsHRiBkZ8Z0PfiOh pSb

Neurolmaging Workshop IIITH BCCL

WhatsApp group

Outline

- What is Freesurfer?
- Recap Freesurfer terms
- Recon-all
 - Components of each step in recon-all and it's output
- Exploring ROI-based summary of cortical thickness or gray matter volumes
- Statistical comparisons between CN vs AD

What is Freesurfer?

Inflation Curvature Surface ROI

Group analysis

Copyright: Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki

Cortex

• Gyri and Sulci of the Brain

Reconstructs cortical surface from a 3D volume

Vertex (pl. vertices) Vertex (pl. vertices)

recon-all

Reconstructs cortical surface from a 3D volume

Volume Thickness Area Vertex (pl. vertices)

recon-all

Inflated brain for better visualization

freeview

Gyrus – Green Sulcus - Red

Grey Matter differences – Blue

The output files of recon-all

T1 weighted Input

Skull stripping

brainmask.mgz
Unique to
Freesurfer

The Output of Recon-all

Skull stripping

Volume labelling

aseg.mgz

Surface and thickness estimates orig.mgz white.mgz Grey pial.mgz Matter **Thickness**

The output of recon-all

Inflated (lh and rh)

Spherical registration

Lh.sphere Rh.sphere

Lh.sphere.reg Rh.sphere.reg

\$SUBJECTS_DIR/fsaverage; 40 subjects

Cortical Surface Segmentation

Spherical Atlas based on Manual Labeling

\$SUBJECTS_DIR/label/ {lh,rh}.aparc.annot

Fine-tune based on individual anatomy

Map to Individual Thru Spherical Reg

Surface parcellations and Segmentations

Desikan RS, ..., Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006

Copyright: Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation

Freesurfer anatomical processing command

Set path to freesurfer installation

Then try "recon-all"

Fully Automated Reconstruction

Copyright: Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation

Freesurfer output variable

"\$SUBJECTS_DIR"

Fully Automated Reconstruction

Copyright: Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation

Fully Automated Reconstruction

Copyright: Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation

Fully-Automated Directive

-autorecon1	process steps 1-5 (see below)
-autorecon2	process steps 6-23
	after autorecon2, check final surfaces:
	a. if wm edit was required, then run -autorecon2-wm
	b. if control points added, then run -autorecon2-cp
	c. if edits made to correct pial, then run -autorecon2-pial
	d. proceed to run -autorecon3
-autorecon2-cp	process stages 12-23 (uses -f w/ mri_normalize, -keep w/ mri_seg
-autorecon2-wm	process stages 15-23
-autorecon2-pial	process stages 21-23
-autorecon3	process stages 24-31
-hemi ?h	just do lh or rh (default is to do both)

Autorecon Processing Stages (see -autorecon# flags above):

- 1. Motion Correction and Conform
- 2. NU (Non-Uniform intensity normalization)
- 3. Talairach transform computation
- 4. Intensity Normalization 1
- 5. Skull Strip
- 6. EM Register (linear volumetric registration)
- 7. CA Intensity Normalization
- 8. CA Non-linear Volumetric Registration
- 9. Remove Neck
- 10. LTA with Skull
- 11. CA Label (Volumetric Labeling, ie Aseg) and Statistics
- 12. Intensity Normalization 2 (start here for control points)
- 13. White matter segmentation
- 14. Edit WM With ASeq
- 15. Fill (start here for wm edits)
- 16. Tessellation (begins per-hemisphere operations)
- 17. Smooth1
- 18. Inflate1
- 19. QSphere
- 20. Automatic Topology Fixer
- 21. Final Surfs (start here for brain edits for pial surf)
- 22. Smooth2
- 23. Inflate2
- 24. Spherical Mapping
- 25. Spherical Registration
- 26. Spherical Registration, Contralateral hemisphere
- 27. Map average curvature to subject
- 28. Cortical Parcellation Desikan_Killiany and Christophe (Labeling)
- 29. Cortical Parcellation Statistics
- 30. Cortical Ribbon Mask
- 31. Cortical Parcellation mapping to Aseg

recon-all –i file.nii –subject bert

Upon successful completion of recon-all

#@#%# recon-all-run-time-hours 10.529

recon-all -s 011 S 4075 tp0 finished without error at Fri Aug 6 00:43:21 IST 2021

Upon successful completion of recon-all

Copyright: Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation

Viewing volumes with Freeview

set \$SUBJECTS_DIR"

```
freeview -v \
011_S_4075_tp0/mri/T1.mgz \
011_S_4075_tp0/mri/wm.mgz \
011_S_4075_tp0/mri/brainmask.mgz \
011_S_4075_tp0/mri/aseg.mgz:colormap=lut:opacity=0.2 \
-f 011_S_4075_tp0/surf/lh.white:edgecolor=blue \
011_S_4075_tp0/surf/lh.pial:edgecolor=red \
011_S_4075_tp0/surf/rh.white:edgecolor=blue \
011_S_4075_tp0/surf/rh.pial:edgecolor=red
```

https://surfer.nmr.mgh.ha rvard.edu/fswiki/FsTutori al/OutputData_freeview

Upon successful completion of recon-all

Upon successful completion of recon-all

Viewing surface atlases with freeview

set \$SUBJECTS_DIR"

```
freeview -f
011_S_4075_tp0/surf/lh.pial:annot=aparc.annot:name=pial_a
parc:visible=0 \
011_S_4075_tp0/surf/lh.pial:annot=aparc.a2009s.annot:nam
e=pial_aparc_des:visible=0 \
011_S_4075_tp0/surf/lh.inflated:overlay=lh.thickness:overlay
_threshold=0.1,3::name=inflated_thickness:visible=0 \
011_S_4075_tp0/surf/lh.inflated:visible=0 \
011_S_4075_tp0/surf/lh.white:visible=0 \
011_S_4075_tp0/surf/lh.pial \
--viewport 3d
```

https://surfer.nmr.mgh.ha rvard.edu/fswiki/FsTutori al/OutputData freeview

Upon successful completion of recon-all

- aseg.stats -- subcortical volumetric stats
- wmparc.stats -- white matter segmentation volumetric stats
- lh/rh.aparc.stats -- left/right hemi Desikan Killiany surface atlas
- lh/rh.aparc.a2009.stats -- left/right hemi Destrieux

ROI summaries – stats folder

```
Index SegId NVoxels Volume_mm3 StructName
                                                    Mean StdDev Min
                                                                     Max Range
               7553.6
                      Left-Lateral-Ventricle
                                                    29.2 12.5 11.0
                                                                    91.0 80.0
        7230
                311.1 Left-Inf-Lat-Vent
         267
                                                    51.3 11.5 14.0
                                                                    84.0 70.0
     7 10858
             11506.0 Left-Cerebellum-White-Matter
                                                    86.8 6.7 24.0 106.0 82.0
     8 50468
              50270.0 Left-Cerebellum-Cortex
                                                    63.6 11.0 5.0 95.0 90.0
             6379.0 Left-Thalamus-Proper
    10 6625
                                                    91.6 8.8 40.0 111.0 71.0
    11 3335
              3407.1 Left-Caudate
                                                    81.2 7.1 50.0 100.0 50.0
    12 4369
              4385.7 Left-Putamen
                                                          5.2 57.0 106.0 49.0
                                                    98.7 3.9 65.0 112.0 47.0
       1943
              1923.6 Left-Pallidum
    16 17918
             17745.1 Brain-Stem
                                                    85.7 10.5 25.0 108.0 83.0
12
                                                    71.1 7.7 26.0 101.0 75.0
    17 4014
               3842.1
                       Left-Hippocampus
        1598
               1559.4
                       Left-Amygdala
                                                    72.8 6.4 27.0 97.0 70.0
```

Routines to generate spread sheets for multiple subjects

- asegstats2table --help
- aparcstats2table --help

Alzheimer's Disease Neuroimaging Initiative

Petersen RC, ..,Toga AW, Trojanowski JQ, Weiner MW. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010 Jan 19;74(3):201-9.

This session

ADNI

- Baseline visit
- Number of subjects: 98
- Age matched: 75/73 (CN/AD)
- o Gender: M/F (45/53)
- Cognitively Normal: 51 -- M/F (21/30)
- Alzheimer's Disease: 47 M/F (24/23)
- MMSE: 19-30
 - Severe cognitive impairment: 0-17
 - Mild cognitive impairment: 18-23
 - No cognitive impairment: 24-30

