Simplificação de Expressões Booleanas

Prof. José Roberto Bezerra

Agenda

- Teorema de De Morgan
- Simplificação de Expressões
 - Soma de Produtos
 - Produto de Somas

Teorema de De Morgan

Primeiro

•
$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$

Segundo

$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

Demonstração

Α	В	$\overline{A \cdot B}$	$\bar{A} + \bar{B}$
0	0	?	?
0	1	?	?
1	0	?	?
1	1	?	?

Α	В	$\overline{A+B}$	$ar{A}\cdotar{B}$
0	0	?	?
0	1	?	?
1	0	?	?
1	1	?	?

Demonstração

Α	В	$\overline{A \cdot B}$	$\bar{A} + \bar{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Α	В	$\overline{A+B}$	$ar{A}\cdotar{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Simplificação de Expressões

 Dada uma função Booleana, descrita por sua tabela verdade, simplificar ou derivar essa expressão é encontrar uma equação que a descreva.

Descrevendo uma função Booleana

- Pode-se definir uma função booleana descrevendo-se todas as situações em que a função vale 1 ou todas as situações que a função vale 0
- Há duas formas de fazer essa descrição:
 - Soma de Produtos (SDP)
 - Produto de Somas (PDS)
- Utilizando-se um dos métodos é possível descrever completamente uma função Booleana

Soma de Produtos

Α	В	С	mintermo
0	0	0	$ar{A}\cdotar{B}\cdotar{C}$
0	0	1	$ar{A}\cdotar{B}\cdot C$
0	1	0	$ar{A} \cdot B \cdot ar{C}$
0	1	1	$ar{A} \cdot B \cdot C$
1	0	0	$A \cdot ar{B} \cdot ar{C}$
1	0	1	$A \cdot \bar{B} \cdot C$
1	1	0	$A \cdot B \cdot \bar{C}$
1	1	1	$A \cdot B \cdot C$

Soma de Produtos

- Cada termo produto construído conforme a regra anteriormente descrita é denominado mintermo (ou minitermo)
- Para um dado mintermo, se substituirmos os valores das variáveis associadas, obteremos 1.
- Porém, se substituirmos nesse mesmo mintermo quaisquer outras combinações de valores, obteremos 0
- Dessa forma, se quisermos encontrar a equação para uma função a partir de sua tabela verdade, basta montarmos um OU entre os mintermos associados aos 1s da função

- Quais os valores de (A, B, C) em que F vale 1?
- Quais os mintermos associados?

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- Quais os valores de (A, B, C) em que F vale 1?
 - (0 1 0), (0 1 1), (1 0 1) e (1 1 0)
- Quais os mintermos associados?

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

 Quais os valores de (A, B, C) em que F vale 1?

 Quais os mintermos associados?

$$ar{A} \cdot B \cdot ar{C} \qquad A \cdot ar{B} \cdot C \\ ar{A} \cdot B \cdot C \qquad A \cdot B \cdot ar{C}$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- Quais os valores de (A, B, C) em que F vale 1?
 - (0 1 0), (0 1 1), (1 0 1) e (1 1 0)
- Quais os mintermos associados?

$$ar{A} \cdot B \cdot ar{C} \qquad A \cdot ar{B} \cdot C \ ar{A} \cdot B \cdot C \qquad A \cdot B \cdot ar{C}$$

Logo F é expressa por:

$$F = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Produto de Somas

Α	В	С	maxtermo
0	0	0	A+B+C
0	0	1	$A+B+\bar{C}$
0	1	0	$A + \bar{B} + C$
0	1	1	$A + \bar{B} + \bar{C}$
1	0	0	$\bar{A} + B + C$
1	0	1	$\bar{A} + B + \bar{C}$
1	1	0	$\bar{A} + \bar{B} + C$
1	1	1	$\bar{A} + \bar{B} + \bar{C}$

Produto de Somas

- Método Dual a SdP
- Cada termo soma construído conforme a regra anteriormente descrita é denominado maxtermo
- Para um dado maxtermo, se substituirmos os valores das variáveis associadas, obteremos 0.
- Porém, se substituirmos nesse mesmo maxtermo quaisquer outras combinações de valores, obteremos 1
- Dessa forma, se quisermos encontrar a equação para uma função a partir de sua tabela verdade, basta montarmos um E entre os maxtermos associados aos 0s da função

- Quais os valores de (A, B, C) em que F vale 0?
- Quais os maxtermos associados?

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- Quais os valores de (A, B, C) em que F vale 0?
 - (000), (001), (100) e (111)
- Quais os maxtermos associados?

$$A + B + C$$
 $A + B + \bar{C}$
 $\bar{A} + B + C$ $\bar{A} + \bar{B} + \bar{C}$

Logo F é expressa por:

Α	В	С	F
0	0	O	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$F = (A + B + C) \cdot (A + B + \bar{C}) \cdot (\bar{A} + B + C) \cdot (\bar{A} + \bar{B} + \bar{C})$$

Exercícios

1. Aplicar o Teorema de De Morgan nos seguintes casos a seguir.

$$\overline{A(B+C)}$$

$$\overline{A(B+C)}$$
 $\overline{(\overline{AB+CD})\cdot E}$

$$\overline{AB + CD \cdot E}$$