

Data Driven Engineering I: Machine Learning for Dynamical Systems

Introduction to Generative Learning: Autoencoders

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

- * Supervised learning ____ Classification Regression
- # Ursupervised learning > Clustering > Dim. Reduction
 - + Deep Learning + Time Series
 Analysis

Models we have discussed so far ...

[x] } Learn a function to map
$$[x] \rightarrow y$$
 } Discriminative models,

$$\Rightarrow [x] (x)$$

Unsupervised learning \Rightarrow Feature \Rightarrow Extraction \Rightarrow Extraction \Rightarrow Extraction \Rightarrow Promising \Leftarrow [X] \Rightarrow Promising \Rightarrow available,

$$\Rightarrow$$

UL -> Generative Models:

- * model tells how [X] is formed at the beginning
- * It is probabilistic in nature

 - * StyleGAN

 * GPT language model

 * Vertual training (RL)

UL -> Generative Models:

2014

2015

2016

2017

UL -> Generative Models:

* It is probabilistic in nature

How does it work?

or we have a dataset X.

we assume that it is generated according to a rule p

Model minics p to create new points.

Model should not reproduce what it has seen.

How does it work?

- ① Sample space: Values an observation con take x = [....]
- 2 Probability Density Function: function maps X in sample space; PDF = [0, 1] it is well-defined \Longrightarrow SPDF = 1-0
- 3 Parametric Modeling: $p_{\theta}(\theta_{1},\theta_{2},\theta_{3}) \longrightarrow true p$ $fend(\theta_{i}) \Longrightarrow \text{maximum likelihood estimation},$

How does it work?

 \mathcal{D} we have a dataset X.

we assume that it is generated according to a rule p

Model minics p to create new points.

Model should not reproduce what it has seen.

how can we infer the rules (po) from data?

Representation Learning

Representation Learning

[X]
$$\Longrightarrow$$
 [X'] } latest space \Longrightarrow learn $\rho_{\theta} \Longrightarrow$ learn $\rho_{\theta} \Longrightarrow$ learn ρ_{θ}

Representation Learning

[X]
$$\Longrightarrow$$
 [X'] } latest space \Longrightarrow learn $\rho_{\theta} \Rightarrow$ learn ρ_{θ} igh dPm. (M) | low dPm. space (M')

69/

$$\mathcal{R}_0 = ' circle,$$

$$\mathcal{U}_1 = (G_0, G_1, G_2, ... G_N)$$

Perception in chess, 1973

$$[x] \rightarrow \emptyset \langle$$

 $\Rightarrow \rho_{\theta} = \phi_{t}$

Autoencoders:

- * unsupervised approch
- * Obj : lower dim representation (higher?)

D Reconstructed X"

- O By-product ⇒ X'
- Cost : $\|X'' X\|^2$ function

Autoencoders:

 $(M) \longrightarrow (M') \longrightarrow (M)$

- * Use cases:
- I Dimensionality Reduction
- A Anomaly detection

- * Use cases:
- I Forecasting ~ generalive
- I Sparse Representation
- Denoising dataset
- D"Interpolator,
- D Unsupervised pre-training
- D' "Generative Model, (+ pdf)

Base model: Under-complete linear AE

- - S ≈ PCA
- * Symmetrical N M' M layer (s)

- Many layers => Deep Antoenco der
- * Good for large [X] with high M.
- * can be used for outlier detection

Today's Agenda

Basic Steps to Follow =

- o.) Understand the business/task-
- 1.) Understand the data.
- 2.) Explore & prepare the data.
- 3.) Shortlist candidate models.
- 4.) Training the model

 5.) Evaluate the model predictions
- 6.) "Serve, the model ?

#0 Understanding the task

- □ Problem: Manufacturing error in a production line
- Modified sensory input: 28 variables including sensory input
- □ 280,000 instances, where only a small fraction (~500) of products are defective.
- ☐ Heuristic: <0.5% is defective

A similar example for you:

"Bosch Production Line Performance Reduce manufacturing failures"

#1 Understanding the data

- ☐ Check the data source: understand what the data refers to
- □ Objective: understand the characteristics of the data
- □ Look at the feature columns:
 - □ Any missing values?
 - Any features with NaN values?
 - Uniqueness of the dataset? ("cardinality")

11.01.2022

23	S23	284807	non-null	float64				
24	S24	284807	non-null	float64				
25	S25	284807	non-null	float64				
26	S26	284807	non-null	float64				
27	S27	284807	non-null	float64				
28	S28	284807	non-nul	float64				
29	Class	284807	non-nul <mark>l</mark>	object				
dtypes: float64(29), object (1)								

memory usage: 65.2+ MB

time: 54.5 ms

		Time	s1	S2	s3	S4	s5	86	
	count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	
	mean	94813.859575	1.758743e-12	-8.252298e-13	-9.636929e-13	8.316157e-13	1.591952e-13	4.247354e-13	
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	
	75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	
	time:	447 ms							

#2 Exploring the data

- □ Objective: generate a data quality report
- ☐ Using standard statistical measures of central tendency and variation
 - □ tabular data and visual plots
 - ☐ mean, mode, and median
 - standard deviation and percentiles
 - □ bars, histograms, box and violin plots
- ✓ Missing values,
- ✓ Irregular cardinality problems,
 - 1 or comparably small
- ✓ Outliers
 - invalid outliers and valid outliers

#2 Exporing the data: Correlation Matrix

☐ Shows the correlation between each pair of features

$$Cov(a,b) = \frac{1}{n-1} \sum_{i=1}^{n} \left[(a_i - \overline{a}) \times (b_i - \overline{b}) \right]$$
Features

Features

Mean

mean

□ Normalized form of "covariance"

$$Corr(a,b) = \frac{Cov(a,b)}{SD(a) \times SD(b)}$$

$$\frac{1}{SD(a) \times SD(b)}$$
* Normalized * Dimensionless Easy to interpret

□ Ranges between -1 and +1

#2 Preparing the Data

□ Clustering >> unsupervised >> training & test split not needed

☐ We will use it to **reduce the volume of the data** when needed:

#5 Evaluating the Results: Reconstruction error

* loss =
$$\sum_{m=1}^{M} (\chi - \chi')^2 \Rightarrow N$$

Normalization:

* loss' = $\frac{loss - min(loss)}{max(loss) - min(loss)} \Rightarrow [0, 1]$

Interpretation:

* loss' > 0 >> Regular Product
loss' >> 1 >> Anomaly, defective

#5 Evaluation of the predictions

Precision Recall Curve (for imbalanced data)

- Precision captures how often, when a model makes a positive prediction, this prediction turns out to be correct.
- Recall tells us how confident we can be that all the instances with the positive target level have been found by the model.

colab

Sparse Autoencoders:

● ⇒non-zero eleneuts

24

Data Driver Model Discovery.

$$\begin{aligned}
\dot{a} &= ax - bxy^2 + \beta_i \\
\dot{y} &= cy^2 + \beta_i \\
\text{Linear } \dot{z} &= axy + \sin\beta_i \end{aligned}$$
Regionar

sparse matrix

$$\dot{z}_1 = -0.85z_2$$

$$\dot{z}_2 = 0.97z_1$$

(c) Nonlinear pendulum

$$\ddot{z} = -0.99 \sin z$$

Sparse Autoencoders:

Modify the cost function to enforce sparse "neurons,.

Ly ly regularization

Sigmoid activation functions

→ large encoders

simpler tools

(1) have a target sparsity.

(ii) measure actual sparsity

(iii) Give penalty

Check average neuron activity in batch.

[KL D?vergence]

Add sparsity loss to total loss.

colab

De-noising your Data:

- D PIV Measurements
- □ Simulation data => FTLE -

O " Clean data , is needed.

Obj: Learn to clean the data from noise.

colab

Interpolation Tool2

colab

Unsupervised Pretraining

colab

Additional Notes

Dim. Reduction:

Computational —preprocessingFeature Extraction

~ pattern recognition~

Visualization

Idea:

•
$$product = \sum_{i=1}^{K} process_i$$

· Features m is correlated to K steps in the production line;

Idea:

Interpretting Patterns

- of logical steps;
- Logical steps => "Regular product,"
- * Failure at some > Defect "

(A.I.

"Outlier Detection, Something is wrong here.,

APM > Learn enough to detect outliers;