Tutoriumsblatt 15 zu Mathematik III (Physik) / Sammlung einiger alter Klausuraufgaben

Aufgabe 1: (10 Punkte)

Zeige, daß

$$f:]0, \infty[\times \mathbb{R} \to \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{x^2} + e^y \\ \sin(x) - y^3 \\ x \end{pmatrix}$$

in jedem Punkt von $]0, \infty[\times \mathbb{R}$ differenzierbar ist und bestimme die Ableitung.

Aufgabe 2: (10 Punkte)

Es sei X ein reeller Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Zeige, daß

$$\phi: X \to [0, \infty[\\ x \mapsto ||x||^2$$

differenzierbar ist und bestimme die Ableitung.

Aufgabe 3: (8 Punkte)

Zeige, daß

$$f: \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1\} \rightarrow \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{z}{1 - x^2 - y^2} \\ e^{-x^2 + y^2 - z^2} \end{pmatrix}$$

stetig differenzierbar ist und bestimme die Ableitung.

Aufgabe 4: (12 Punkte)

Versehe $C([0,1],\mathbb{R})$ mit der Supremumsnorm $\|\cdot\|_{\infty}$ und zeige, daß die Abbildung

$$\begin{array}{ccc} T: C([0,1],\mathbb{R}) & \to & C([0,1],\mathbb{R}) \\ f & \mapsto & e^{-f} \end{array}$$

differenzierbar ist und berechne die Ableitung.

Aufgabe 5: (12 Punkte)

Entscheide (jeweils mit einer kurzen Begründung), welche der folgenden Aussagen wahr oder falsch sind:

- a) Es sei X ein hausdorffscher topologischer Raum, $K \subseteq X$ kompakt und $\mu : \mathcal{B}(X) \to [0, \infty]$ ein Borelmaß auf X, dann ist die charakterische Funktion $\mathbf{1}_K \mu$ -integrierbar.
- b) Es sei $X = \{\emptyset, \{\bullet\}, \{\bullet\}, \{\bullet\}, \{\bullet\}, X\}$ eine σ -Algebra auf X.
- c) Es sei $(X, \|\cdot\|)$ ein Banachraum und $(x_n)_{n\in\mathbb{N}}$ eine Folge in X mit Grenzwert $x = \lim_{n\to\infty} x_n$. Dann ist $A := \{x_n : n \in \mathbb{N}\}$ eine relativ kompakte Teilmenge von X.
- d) $f: \mathbb{R}^2 \to \mathbb{R}$ hat in $[-1, 1] \times [-1, 1]$ (mindestens) eine Nullstelle. $(x, y) \mapsto \frac{y x}{1 + x^2 + y^2} + \frac{1}{3}$

Aufgabe 6: (15 Punkte) Es sei $\mathcal{B}(\mathbb{R})$ die Borel σ -Algebra auf \mathbb{R} und $\lambda : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ das Borelmaß.

a) Zeige, daß

$$v: \mathcal{B}(\mathbb{R}) \to [0, \infty]$$

$$A \mapsto \int_{A} \frac{|x|}{1 + x^2} d\lambda(x)$$

ein Maß auf $\mathcal{B}(\mathbb{R})$ definiert.

b) Es sei
$$g_n: \mathbb{R} \to \mathbb{R}$$
 . Zeige, daß $\lim_{n \to \infty} \int_{\mathbb{R}} g_n(x) d\lambda(x)$ existiert und
$$x \mapsto \frac{|x|}{(1+x^2)(1+x^{2n})}$$
 $\lim_{n \to \infty} \int_{\mathbb{R}} g_n(x) d\lambda(x) = v(]-1,1[) = \ln 2$

gilt.