

PRÁCTICA 4

Vadim Budagov Willow Maui García

Tabla de contenido

Primera modificación (tamaño de la población)	4
50 individuos	4
150 individuos	5
200 individuos	6
Segunda modificación (número de generaciones)	7
40 generaciones	7
60 generaciones	8
80 generaciones	9
Conclusiones y configuración final para el archivo 4	
Ilustración 1: Prueba base archivo 1	_
Ilustración 2: Prueba base archivo 2	
Ilustración 3: Prueba base archivo 4	
Ilustración 4: Prueba base archivo 3Ilustración 5: Prueba base archivo 5	
Ilustración 6: Prueba 50 individuos archivo 5	
Ilustración 7: Prueba 50 individuos archivo 4	
Ilustración 8: Prueba 50 individuos archivo 3	
Ilustración 9: Prueba 50 individuos archivo 2	
Ilustración 10: Prueba 50 individuos archivo 1	
Ilustración 11: Prueba 150 individuos archivo 4	
Ilustración 12: Prueba 150 individuos archivo 2	5
Ilustración 13: Prueba 150 individuos archivo 3	5
Ilustración 14: Prueba 150 individuos archivo 1	5
Ilustración 15: Prueba 150 individuos archivo 5	5
Ilustración 16: Prueba 200 individuos archivo 5	
Ilustración 17: Prueba 200 individuos archivo 4	
Ilustración 18: Prueba 200 individuos archivo 3	
Ilustración 19: Prueba 200 individuos archivo 2	
Ilustración 20: Prueba 200 individuos archivo 1	
Ilustración 21: Prueba 40 generaciones archivo 4	
Ilustración 22: Prueba 40 generaciones archivo 3	
Ilustración 23: Prueba 40 generaciones archivo 2	
Ilustración 24: Prueba 40 generaciones archivo 1	
Ilustración 25: Prueba 40 generaciones archivo 5	
Ilustración 26: Prueba 60 generaciones archivo 3	
Illustración 27: Prueba 60 generaciones archivo 4	
Illustración 28: Prueba 60 generaciones archivo 2	
Ilustración 29: Prueba 60 generaciones archivo 1	
111311 ACCUL NA CIUEUA OU PENELACIONES ALCHVO)	

Ilustración 31: Prueba 40 generaciones archivo 3	9
Ilustración 32: Prueba 40 generaciones archivo 2	9
Ilustración 33: Prueba 80 generaciones archivo 1	9
Ilustración 34: Prueba 40 generaciones archivo 4	9
Ilustración 35: Prueba 40 generaciones archivo 5	9
Ilustración 36:Resultado óptimo	10
Ilustración 37: Resultado optimo 2	10
·	

Experimento base

Para el experimento base hemos utilizado los siguientes parametros y consideraciones:

- Los individuos representan que coche ha hecho cada uno de los viajes, teniendo tantas posiciones como viajes y para cada una de ellas el identificador del vehículo.
- La función de evaluación simulará los viajes ordenandolos en base a su orden de inicio teniendo en centa la distnacia recorrida y el bonus de tiempo en caso de haberle.
- El método de cruce es cxTwoPoint
- El método de mutación es mutShuffleIndexes con probabilidad de 0,2
- El método de selección es selTournament entre 3
- La población es de 100 individuos
- Una probabilidad de cruce de 0,5 y de mutación de 0,2
- Y 30 generaciones a completar

Las estadisticas de mínimo, máximo y medio para los distintos ficheros han sido:

Ilustración 1: Prueba base archivo 1

Ilustración 2: Prueba base archivo 2

Ilustración 4: Prueba base archivo 3

Ilustración 3: Prueba base archivo 4

Como podemos observar el primer archivo no ha habido casi mejora a partir de las primeras generaciones, sin embargo, el resto parece que pueden mejorar un poco más a pesar de que en el tercero sí parece haberse estabilizado así.

Ilustración 5: Prueba base archivo 5

Primera modificación (tamaño de la población)

El primer parámetro que trataremos de modificar será el tamaño de la población dándole los valores de 100, 150 y 200 individuos.

50 individuos

Las estadísticas son:

Ilustración 10: Prueba 50 individuos archivo 1

Ilustración 9: Prueba 50 individuos archivo 2

Ilustración 8: Prueba 50 individuos archivo 3

Ilustración 7: Prueba 50 individuos archivo 4

Ilustración 6: Prueba 50 individuos archivo 5

En los dos primeros archivos parece haber mejorado ligeramente, pero en el resto sin embargo ha empeorado.

150 individuos

Las estadísticas son:

Ilustración 14: Prueba 150 individuos archivo 1

Ilustración 12: Prueba 150 individuos archivo 2

Ilustración 13: Prueba 150 individuos archivo 3

Ilustración 11: Prueba 150 individuos archivo 4

pero en las dos últimas son peores que en el experimento inicial.

experimentos anteriores en las primeras,

Los resultados son mejores que los dos

Ilustración 15: Prueba 150 individuos archivo 5

200 individuos

Las estadísticas son:

Ilustración 20: Prueba 200 individuos archivo 1

Ilustración 19: Prueba 200 individuos archivo 2

Ilustración 18: Prueba 200 individuos archivo 3

Ilustración 17: Prueba 200 individuos archivo 4

Se obtiene una mejora en todos los archivos.

Ilustración 16: Prueba 200 individuos archivo 5

Segunda modificación (número de generaciones)

Ahora trataremos de ver como varían los resultados para una población de 50 individuos haciendo variaciones sobre el número de generaciones del algoritmo.

40 generaciones

Las estadísticas son:

Ilustración 24: Prueba 40 generaciones archivo 1

Ilustración 22: Prueba 40 generaciones archivo 3

Ilustración 21: Prueba 40 generaciones archivo 4

Quitando el primer archivo que es bastante poco mejorable al ser tan simple, en el resto hay mejores estadísticas.

Ilustración 25: Prueba 40 generaciones archivo 5

60 generaciones

Las estadísticas son:

Ilustración 29: Prueba 60 generaciones archivo 1

Ilustración 28: Prueba 60 generaciones archivo 2

Ilustración 26: Prueba 60 generaciones archivo 3

Ilustración 27: Prueba 60 generaciones archivo 4

Quitando el segundo archivo ha habido una gran mejora en todos los archivos excepto en el último.

Ilustración 30: Prueba 60 generaciones archivo 5

80 generaciones

La estadísticas:

Ilustración 33: Prueba 80 generaciones archivo 1

Ilustración 31: Prueba 40 generaciones archivo 3

5200000 -5000000 -4800000 -4400000 -4200000 -4000000 -0 10 20 30 40 50 60 70 80

Ilustración 32: Prueba 40 generaciones archivo 2

Ilustración 34: Prueba 40 generaciones archivo 4

Ha mejorado en todos los experimentos excepto en el último.

Ilustración 35: Prueba 40 generaciones archivo 5

Conclusiones y configuración final para el archivo 4

Los resultados obtenidos nos muestran que variar los distintos parámetros pueden ayudar a obtener unas mejores o peores soluciones y que unos mismos parámetros pueden ser muy adecuados para un problema concreto, pero no para otro. Por eso y viendo las distintas pruebas realizadas consideramos que para el archivo d la población que mejor se adapta dentro de nuestras pruebas es la de 200 individuos y con 80 generaciones, a continuación, haremos la prueba de estos parámetros combinados.

Ilustración 36:Resultado óptimo

Como podemos ver, ha obtenido los mejores resultados hasta el momento, llegando a un fitness de 5.4, si bien no ha habido mejoras desde la generación 50 en el máximo ni prácticamente en el resto, vamos a probar a reducir las generaciones a 50.

Ilustración 37: Resultado optimo 2

Los resultados han mejorado, y además ha tardado menos, sin embargo, no parece haberse estancado así que subiremos a 60 generaciones de nuevo para comprobar si puede mejorar más. Tras la prueba los resultados han salido peores que en el caso anterior.