

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

•		

HANDBOOK

OŁ

DOUBLE STARS.

liety, ce Galerane

Harage Strain

OUBLE STARS.

•

 $\frac{\partial \mathcal{M}}{\partial x} = \frac{\partial \mathcal{M}}{\partial x} \frac{\partial \mathcal{M}}{\partial x} = \frac{\partial \mathcal{M}}{\partial x} \frac{\partial \mathcal{M}}{\partial x} \frac{\partial \mathcal{M}}{\partial x} = \frac{\partial \mathcal{M}}{\partial x} \frac{\partial \mathcal{M}}{\partial x} = \frac{\partial \mathcal{M}}{\partial$

The second second

- 1

 MOSCOPY, M. C. CONSTRUCTOR OF SOCI MARKET JAMES M. W. L. ON MARKET AND

Francisco Control (1997) State (1997)
 Francisco Control (1997) State (1997)
 Francisco Control (1997) State (1997)
 Francisco Control (1997)
 Francisco Control (1997)
 Francisco Control (1997)
 Francisco Control (1997)

| Condo | 1 M A (M I I I A N | C | C | β , | 187 | .

٠.

. ..

•

Α

HANDBOOK

OF

DOUBLE STARS,

WITH A

CATALOGUE OF TWELVE HUNDRED DOUBLE STARS AND EXTENSIVE LISTS OF MEASURES.

With additional Notes bringing the Measures up to 1879.

FOR THE USE OF AMATEURS.

BY

EDWD. CROSSLEY, F.R.A.S.; JOSEPH GLEDHILL, F.R.A.S., AND JAMES M. WILSON, M.A., F.R.A.S.

"The subject has already proved so extensive, and still promises so rich a harvest to those who are inclined to be diligent in the pursuit, that I cannot help inviting every lover of astronomy to join with me in observations that must inevitably lead to new discoveries."—SIR WM. HERSCHEL.

"Stellæ fixæ, quæ in cœlo conspiciuntur, sunt aut soles simplices, qualis sol noster, aut systemata ex binis vel interdum pluribus solibus peculiari nexu physico inter se junctis composita. Stellarum simplicium numerus est quidem major, at vero non nisi ter vel fortasse bis tantum major quam systematum compositorum."—X.

Fondon:

MACMILLAN & CO.

1879.

628=1

geft of Bohiman Circle.
ASTRONOMY DEPT.

TO WIND AIMROTILAD

PREFACE.

THIS work has arisen out of our own wants as students of that branch of astronomy which deals with Double Stars, and it is on this account that we think it will be useful to others who are occupied in the same work. There does not exist any M book which gives information sufficiently detailed to be of value to any one who seriously takes up this study. He must hunt through scores and hundreds of volumes if he wishes to get an accurate and complete list of the previous measures of any particular double star. These measures are scattered up and down the astronomical periodicals of all nations. wishes to know with what instruments, with what apertures, and what micrometers these measures were taken, a fresh research awaits him. And if he proceeds to attempt an orbit, he will fail, unless he is a tolerably expert mathematician, from want of sufficient guidance and detail in the various mathematical papers and pamphlets that have been devoted to this subject.

This branch of astronomy is peculiarly suitable to amateurs. It does not require long previous training; it does not demand unintermittent and severe work, nor the resources of a permanent observatory and staff. All it needs is a good telescope, a good eye, some patience, much conscientiousness, and—more than all—such an amount of guidance and co-

alinia de dela ela K Kappe ×ι A time. P Ri v Upil. & Johi x Chi 4 Psi w olive

vi PREFACE.

operation as shall convince the amateur that his work is not useless, but that he is really contributing something, however small, to astronomical knowledge. And the construction of double-star orbits has always had a fascination for amateurs from the days of Admiral Smyth and γ Virginis to the present time; and it is perhaps the only branch of mathematical astronomy which is quite within the range of unprofessional mathematicians.

We venture to hope that this book will be of use in guiding amateurs in their work,—in pointing out what stars are of especial interest, what stars have had few or conflicting measures taken of them, at what times observations of certain stars are especially needful, and what stars have been so frequently and satisfactorily measured that for the present they need no attention. This sort of information has become a necessity owing to the extension of the subject and the number of observers. The Herschels, the elder Struve, and Mädler, might with equal advantage measure every double star they saw; but later observers must select their objects if they do not wish much of their work to be wasted. And so we find that Otto Struve, and Dawes, and Secchi, and others, have chosen stars that were certainly or probably of interest as subjects for their own work.

There has probably been no time in which so much work has been done in measuring double stars as during the last six or seven years. They have witnessed Burnham's lists of new double stars, which testify so highly to his telescope, his eye, his climate, and his industry; Otto Struve's two important volumes on his father's and his own double stars; Dembowski's lists in the Astronomische Nachrichten; Dunér's valuable volume of observations made at Lund; in America,

vii

the work of Hall, Stone, etc.; and in our own country, that of Knott and others.

The recalculation of orbits, also, is occupying much attention, both among foreign astronomers and at home; and every year will enable this to be done with greater accuracy, and to be attempted for a greater number of stars.

This work, then, consists of four parts. The first part is historical, and descriptive of instruments and methods; the second is mathematical; the third part contains lists of measures of the most interesting double and multiple stars, with historical notes on those which are of special interest; the fourth part is bibliographical.

In Part I., Chapter I. contains a historical introduction by Mr. Gledhill. Chapter II. is on the equatorial and the observatory, by Mr. Crossley; Chapter III. is an account of the equatorials which have been used by double-star observers, by Mr. Gledhill; Chapter IV. on micrometers, by Mr. Crossley; and Chapter V. on methods of observing, by Mr. Gledhill.

In Part II., Chapters I. and II. give a detailed account, with a fully worked example, of determining an orbit and an ephemeris by a purely graphical construction, founded on Herschel's and Thiele's methods, with some fresh extensions, by Mr. Wilson. Dr. Doberck, who has had very great experience in double-star calculations, has contributed Chapter III., giving an example of the application of analysis to a double-star orbit already approximately known by graphical methods, and shows how greater accuracy may be obtained by it; and Mr. Wilson gives Chapter IV. on the relative rectilinear motion of double stars; Chapter V. on the effects of proper motion and parallactic motion; and Chapter VI. on

the mode of combining observations, and determining their weight.

Part III. contains a catalogue of double stars selected as of special interest, with a list of all accessible measures, and notes, etc., by Mr. Gledhill.

Finally, Part IV. contains the bibliography of the whole subject, and is due to Mr. Gledhill.

We may, perhaps, venture to say a word or two on the importance of this part of astronomy. It can scarcely fail to happen that accurate measures of double stars, especially when combined with a study of proper motion, will give in the future some sounder knowledge of the structure of the heavens. The calculation of double-star orbits, and the comparison of observed and calculated places, will bring out not only errors in the observations or of the computer, but the existence of forces that had been unsuspected. Resisting media and the laws of their condensation, unseen companions, and possibly new laws of force, may be discovered. And these investigations must throw light on the origin of these double and multiple systems, and thus indirectly on our own solar system.

Again; if the difference of the linear velocities of the components of a binary system can be directly ascertained by the spectroscope, this fact, combined with a good knowledge of the orbit and of the period of revolution, and of the apparent mean angular distance, will lead to a knowledge of the parallax of the system, and therefore also to a knowledge of their mass.

At present we cannot see the significance of all that has been discovered: for example, the fact that the orbits hitherto computed are all elliptical, and very nearly all of large eccentricity, is too uniform to be an accident, and yet it is too isolated a fact to build theories on with safety. It does, however, seem to prove that these are genuine systems ab initio, and are not formed by the fortuitous approximation of single stars.

Nor, again, have we found the reason why the type of triple stars, such as μ Herculis, γ Andromedæ, ζ Cancri, μ Boötis a bright primary and a faint binary companion-should be so common. When, further, we come to examine into the colours of binaries, we cannot yet see to what previous stage in their history is owing the absence of red stars in these systems, and the frequency of other colours which in their turn are rare in solitary stars. Spectroscopic observation will doubtless add some information on the point of fact, but will only remove the difficulty one stage further on. Again. the phenomenon of variable and temporary stars has always suggested the notion of a revolving dark companion. This may need further examination, and light may be thrown on the subject from tracing the gradual development of binary systems. In a word, the further study of binaries will help our successors to know what is the development-order of star systems and planetary systems.

The present work, therefore, is intended to facilitate the labours of future students of sidereal astronomy, by supplying the materials for the study of double stars in a convenient form, and as complete (so far as it is intended to go) as our utmost pains could make it.

The distribution of double stars has not been investigated, and it is perhaps at present premature to attempt it until more is known about them in both hemispheres; but there are already plain indications that it is not entirely fortuitous. A knowledge of their distribution will scarcely fail to throw light on the great problem of the structure of the sidereal universe.

Similarly, it will be observed that we devote no chapters to the variability of colour or intensity in the components of double stars. We have been debarred from this branch of the subject by want of time, by the badness of our climate, and by the unsuitability of our instruments. It is to be hoped that this work will be taken up by some one else. Small telescopes, and especially small reflectors, are well suited to the examination of colour; but if possible a careful spectroscopic examination of each star should be made. We have, however, provided in the bibliographical part of the book some references to the chief works and papers on this subject.

We therefore commend this study to amateurs. They may be encouraged by the thought that, with few exceptions, all the great workers in this branch of astronomy have been amateurs; and be stimulated to exertion by the thought that observations made now will certainly be of value to their successors. The stars will not stand still. How can we be idle, and let slip the time for observations, which, if not made now, can never be made hereafter?

BERMERSIDE, September, 1879.

CONTENTS.

PART I.

HISTORICAL, AND DESCRIPTIVE OF INSTRUMENTS AND METHODS.

	AGE
Historical Introduction—Early Observations—Discovery of Binary Stars—The great Observers and their Work	1
CHAPTER II. The Equatorial: its construction and adjustments—The Clock— Observing Chairs—The Observatory	1 [
CHAPTER III. Some account of the Equatorials which have been used by Double- Star Observers	31
CHAPTER IV. The Micrometer—Construction—Methods of testing it and for finding the value of one revolution of the screw	50
CHAPTER V. Methods of observing Double Stars—Measurement of Angle and Distance — Special Methods — Dawes's Prism — Occasional Methods—A set of Measures—Specimen Forms of Registry—Weights—Contracted Apertures—Precautions and Hints.	, 64
PART II.	
ON THE CALCULATION OF THE ORBIT OF A BINARY STAR.	
CHAPTER I.	
Introduction—Statement of Problem—Method of Solution adopted —Preparing the Observations for Use—Reduction to a Selected Epoch—Drawing of the Interpolating Curve—Smoothing the Curve—Employment of Measures of Distance—Drawing the Apparent Ellipse—Determination of the real Ellipse	84

CH Example of an Orbit worked by	APTE a Gra		Meth	od				PAGE 106
Cu	r a dat	- 						
Dr. Doberck's Example of an (CR III.		naly	tical N	l etho	ods	118
CH	IAPTE	ER IV.						
On Relative Rectilinear Motion	٠.	•	•	•	•	•	•	134
CI	HAPTI	ER V.						
On the Effect of Proper Mot							red	
Position Angles and Distar	nce of a	an Opti	cally	Do	uble S	tar	•	139
CH	IAPTI	ER VI.						
On the Errors of Observation a	nd the	Combi	natio	n of	Obse	rvatio	ns	144
P	ART	III.						
THE CATALO	GUE .	AND :	MEA	SU	RES.			
Introductory Remarks .			•					151
A Catalogue of Binary and	other	Doubl	le St	ars	desei	ving	of	•
attention	•	•	•	•	•	•	•	152
Lists of Measures, with Histori	cal No	tes, etc	• •	•	•	•	•	175
Supplementary List of Measure Appendix	es .	•	•	•	•	•	•	405
Appendix		•	•	•	•		•	41 I
Additional Notes to Measures	•	•	•	•	•	•	•	
Binary Stars classified .		•		:	• • •	•	•	418
Note on Systematic Errors in								
of Double Stars	•	•	•	•	•	•	•	420
P	ART	IV.						
вів	LIOG	RAPH	Y.					
	LIST	1.						
Some of the most important W			ers or	a Do	uble S	Stars		425
	LIST	· B.						
Some Papers on the Micromete	er .	•	•	•	•	•		449
	LIST	<i>C</i> .						
Some Papers on the Colours of	Doub	le Stars	•	•	•	•	•	457
ADDITIONAL NOTES								450

LIST OF ILLUSTRATIONS.

Bermerside, Halifax. (Fr		tiece.)				PAGE
Temple Observatory, Rug	Dy	•	•			. I
The Bermerside Equatoria	น้					. 10
Observing Chairs .		•	•	•		. 28, 29
Bermerside Observatory						. 30
Parallel-wire Micrometer	•		•	•	•	. 51

LIST OF PLATES.

				racin	g page
Map of the Pleiades					56
Interpolating Curves of Castor .				•	112
Graphical Construction of Orbit of Castor					116
Interpolating Curve of 61 Cygni .					138
Looped Curve of Cancri $\frac{A+B}{2}$ and C	•	•	•	•	248

DIAGRAMS.

	DIAGK	WM:	э.			
Inverted field of telescop	e, showing	how	position	angles	are	PAGE
registered .						66
Curve on Millimetre paper	·		•			95
Apparent Orbit of Σ. 60						180
Σ. 73						183
Σ. 119	6.					247
E. 135						259
Σ. 142	4.					262
E. 151	6.					269
Z. 152	3 .					270
Σ. 167						281
Σ. 168					-	286
Σ. 172				-		287
Σ. 175		•	•	•	•	290
Σ. 188					·	303
Σ. 193		•	•	•	•	308
Σ. 193	Ŕ	•	•	•	•	312
Σ. 199	8 .	•	•	•	•	320
Σ. 203		•	•	•	•	324
Σ. 205		•	•	•	•	
Σ. 203 Σ. 212		•	•	•	•	328
Σ. 217		•	•	•	•	335
Σ. 21/ Σ. 227	· ·	•	•	•	•	343
		•	•	•	•	349
Σ. 238		•	•	•	•	359
Σ. 238		•	•	•	•	360
Σ. 257	9 .	•	•	•	•	371
Σ. 306			•	•		403

ERRATA.

- Page 154. No 100. The Dec. should be 28° 55'; see also No. 100 in the "Measures," p. 202.
 - 154. No. 116. For the magnitudes, read 6, 7.
 - 163. No. 524. The Dec. is 2° 15'.
 - 163. Line 1, read, ξ Scorpii.
 - 165. The Ref. No. 623 is given twice; the second should be 624.
 - 275. The formulæ given are Doberck's modified by Dunér.

Doberck's formulæ are

P =
$$81^{\circ} \cdot 25 - 0^{\circ} \cdot 567 (t - 1850) + 0^{\circ} \cdot 0057 (t - 1850)^2$$
.
 $\Delta = 2'' \cdot 47 + 0'' \cdot 013 (t - 1850)$.

- 373. W. and S.'s positions of 3 Cygni should be 339.1, 335.8. And in the diagram, 1875 should be at the other end of the curve.
- 406. Line 34. The date of De.'s measure (38°9, 0"85) is 1867'9.
- 407. Line 22. The measure of h. 4649 in 1837'5 was also by H₂.

The plate facing p. 248, illustrating the looped path of ζ Cancri $\left(\frac{A+B}{2}\right)$ and C, is taken from the *Observations de Foulkova*, vol. ix.

DOUBLE STARS.

PART I.

CHAPTER I.

HISTORICAL INTRODUCTION.

THE history of double-star astronomy begins with the year 1779, a year for ever memorable as that in which the greatest of observers began the investigations which created a new department of observational astronomy.

The results of the occasional attention or astronomers to this class of observation prior to the time of Herschel were small indeed. Riccioli, about the middle of the seventeenth century, saw that ζ Ursæ Majoris was double, and Kirsch also noted the same fact in 1700. Huyghens saw θ Orionis as a quadruple star in 1656; in 1664 Hooke first saw γ Arietis as a double star and a Centauri appears to have been the fourth double star which yielded to the power of the telescope, as Feuillée is said to have discovered it in 1709 at Lima. Bradley separated γ Virginis in 1718, and both Messier and Cassini watched the occultation of the components by the moon.* Castor was found to be a double star in 1719, 61 Cygni in 1753, β Cygni in 1755; then followed γ Andromedæ, ϵ Lyræ, 70 Ophiuchi, ζ Cancri, β Scorpii, ξ Ursæ Majoris, etc. Pigott discovered three in 1779.† Nor must

^{*} See the *Histoire de l'Académie Royale des Sciences*, for the years 1678 1720, 1774.

⁺ Phil. Trans., vol. lxxi.

the numerous wide pairs detected by Christian Mayer pass unnoticed. This industrious observer, working at Mannheim with an eight-feet mural quadrant by Bird and a power of about 60 to 80, observed and catalogued a considerable number of stars with Comites.* A short extract from his book † will give a good idea of the character of the objects and his mode of observation:—

±777•	Stella cum comite.	Gradus lucis.	Differe	Differentia Ascensionis rectæ.		Differentia Declinationis.		
, , 6	Comes Aldebaran Comes Electra Comes Algol	8.9 Teles. 8	0° 0	2' 0 2	14"·2 8 49 ·5	o° 0 0	12' 0 9	29" 32 5 9 5

At the end of the volume a table of the new pairs discovered by him (72 in number) is given; among them are the following:—

	Mag.	Differentia in R.A.	Differentia Declinationis.	Dist.
		sec.	"	"
y Andromedæ	2, 6	0.92	5.8	15.5
Castor	1, 6	0.92	5.8	11.0
Cancri	7, 8	0.0	7.7	7.7
y Virginis	5, 5	0.2	6.3	9.9
Herculis		0.23	4.º	8.9 6.9
Lyræ	3, 7 6, 8	0.5	3.0	4.2
6 Cygni	3, 7	2.06	19.9	36.6

In 1777, Maskelyne, in a letter to Mayer, says that he saw a Herculis double in August 1777, magnitudes 3 and 6, the preceding star being the fainter, and that the distance of the centres was 7". Mayer also wrote two other papers on this subject.‡

To return. It was in 1779 that Sir William Herschel began to direct his wonderful energy to the observation of double

^{*} Mayer says that Flamsteed first used the word comes for the smaller star of a pair.

[†] See his work, De novis in calo sidereo Phanomenis, etc., 1779.

^{‡ &}quot;De centum stellarum fixarum comitibus, eorumque insigni usu ad determinandum motum proprium fixarum;" and "De miris fixarum comitumque mutationibus a me observatis a tempore cel. Flamsteedii."

stars; and his famous paper is so interesting, and so fully exhibits the state of this department at the time he wrote, that a short account of it may here with propriety be given.

The great historical problem of finding stellar parallax had presented itself to him, and with his usual ardour he set himself the task of grappling with all its difficulties. After noticing Galileo's method, and the previous attempts to carry it out by Hooke, Flamsteed, Molineux, and Bradley, and pointing out the cause of their failure, he proceeds to describe his own method, viz., to measure the position angle of two stars of unequal magnitudes at two opposite points of the earth's orbit. He states the essential conditions to be, (1) that the stars be near each other; (2) that their magnitudes be very unequal. He then criticises the attempt made by Dr. Long, and points out the causes of his want of success, viz., unsuitable double stars, and want of adequate optical power. (Dr. Long had chosen y Arietis, Castor, y Virginis, etc., and his magnifying power did not exceed His own method is then shown to be independent of refraction, nutation, precession, change of obliquity of the ecliptic, and aberration. The highest possible power is to be used; and a figure showing a Lyræ under powers from 460 to 6450 is given. Having fully satisfied himself that the method was sound and practicable, the next step was the selection of suitable pairs of stars. And here his own noble words may fitly be quoted:-

"I resolved to examine every star in the heavens with the utmost attention, and a very high power, that I might collect such materials for this research as would enable me to fix my observations on those that would best answer my end. The subject has already proved so extensive, and still promises so rich a harvest to those who are inclined to be diligent in the pursuit, that I cannot help inviting every lover of astronomy to join with me in observations that must inevitably lead to new discoveries."—Phil. Trans., vol. lxxii.

It was in this spirit, and with this glowing enthusiasm, that Herschel began those sweeps and measures which have added so much to our knowledge of the sidereal universe.

A full description of his method of finding the position angle and distance apart of the components of a double star, statements respecting the accuracy of his estimations and micrometric measures, etc., are then given. Then comes the catalogue of his discoveries. The pairs given number 269, and they are arranged in six classes, according to distance: Class I., close pairs requiring "indeed a very superior telescope, the utmost clearness of air," etc. II., those suitable for "very delicate measures of the micrometer." III., from 5" to 15". IV., from 15" to 30". V., from 30" to 1'. VI., from I' to 2'.*

Of these 269 objects, 227 were new, 9 were known before Mayer's time, and 33 were known to Mayer and other observers. A single extract will show the form and character of the information given respecting these stars:—

" 16. 7 Coronæ borealis, Fl. 2.

"Sept. 9.—Double. A little unequal. They are whitish stars. They seem in contact with 227, and though I can see them with this power, I should certainly not have discovered them with it; with 400, less than $\frac{1}{4}$ diameter; with 932, fairly separated, and the interval a little larger than with 460. I saw them also with 2010, but they are so close that this power is too much for them, at least when the altitude of the stars is not very considerable; with 460 they are as fine a miniature of ϵ Bootis as that is of α Geminorum. Position 59° 19' n following." †

In 1803 appeared Herschel's celebrated paper announcing the discovery of *binary* stars, and this was followed in 1822 by a list of 145 new double stars.

^{*} Herschel's first measure of a double star is said to have been that of the trapezium in Orion.

⁺ Phil. Trans., 1782.

During the first twenty years of this century, notwith-standing the splendour of the discoveries above described, double stars were but little observed. No doubt the principal cause was the want of instruments of suitable power and construction. In 1816 Sir John Herschel began to review the double stars discovered by his father, and was soon joined by Sir James South. For a list of his papers containing measures, etc., see List A, Part IV. For this distinguished observer, double-star measurement ever possessed a charm; and from time to time, all through his long life, catalogues, measures, etc., were contributed by him to the Memoirs of the Royal Astronomical Society. Valuable results were also obtained during Sir John's stay at the Cape of Good Hope; and just before his lamented death he was busy at work on a general catalogue of double stars.

Two years before the reviews began at Slough, Friedrich Georg Wilhelm Struve, in the distant and ill-furnished observatory of Dorpat, was turning his attention in the same direction. Although an 8 feet transit by Dollond, and a 5 feet telescope by Troughton (power 126), were the only instruments at his command, he began to observe the positions, and occasionally to measure the position-angles and distances, of double stars. These results are to be found in the early volumes of the Dorpat observations. And in order to facilitate the study of this subject, he published in 1820 the places of double stars. In 1821 the fine Ertel Circle was received. and in 1824 the famous Fraunhofer refractor was added. Then began the great survey of the heavens between the pole and 15° of south declination, for the purpose of discovering new double stars, and the formation of a general catalogue of them. From 1824 to 1835 Struve and his assistants devoted themselves almost entirely to the execution of this noble scheme, and in 1837 appeared the results in the magnificent work entitled Mensuræ Micrometricæ Stellarum duplicium et multiplicium. Nor did double stars

lose their attractiveness at the observatory of Dorpat after the conclusion of this vast undertaking. In 1839 the splendid observatory at Poulkova was established, and in 1861, on the resignation of his father, the directorship was placed in the hands of Otto Struve. From year to year careful and systematic measures have been made up to the present time, and the latest publication of the distinguished son of the great Struve is a noble series in two volumes of measures of the most important double stars.

Here, too, must be mentioned the labours of Admiral Smyth. With an 8 feet equatorial, this excellent observer measured 680 stars between 1830 and 1843, and the results were published in 1844, under the title Cycle of Celestial Objects. In 1860, the Speculum Hartwellianum, containing later measures, etc., was published.

Mädler, observing with the Dorpat refractor, measured a large number of double stars between the years 1834 and 1845, and published the results in 1847, in an elaborate work entitled *Untersuchungen über die Fixstern-systeme*. In this fine work are given extensive lists of double stars having probable direct motion, probable retrograde motion, and certain motion; chapters dealing with the orbits of the most important binaries; very complete lists of measures; a chapter on the combinations of double stars to form "higher systems," etc., etc.

Between 1830 and 1868 Dawes communicated many important lists of measures and papers on double stars to the Royal Astronomical Society. His great catalogue was, however, not published till 1867. This work is enriched by the addition of valuable introductions, notes, and lists of measures made by previous observers.

Valuable measures were made at Lord Wrottesley's observatory between the years 1843 and 1860.

Powell and Jacob, at Madras, made many useful measures, the former from 1853 to 1862, and the latter from 1853 to 1857.

The Baron Dembowski began his fine series of measures in the year 1852 at Naples. He proposed to measure all the Dorpat "lucidæ" within the reach of his instrument. This important undertaking he successfully accomplished between the years 1852 and 1858; and a more valuable contribution to this department has rarely been made. In 1862 he resumed the examination of those Dorpat stars which exhibited changes in angle or distance; and the careful measurement of the great binaries has been continued up to the present time. The last review also included the measurement of a large number of the double stars discovered at Poulkova.

Secchi, in the years 1856 to 1859, paid considerable attention to double stars, and in 1860 appeared his Catalogo di 1321* stelle Doppie misurate col grande equatoriale di Merz all' osservatorio del Collegio Romano. Some years later he also published Serie seconda delle misure micrométriche, fatte all' equatoriale di Merz del Collegio Romano, dal 1863 al 1866 inclusive, stelle doppie e Nebulose dal P. A. Secchi.

In 1861, the late Rev. R. Main, Radcliffe Observer, began to observe a selected list of double stars. These observations have been published from year to year in the volumes issued by the observatory up to the present time. They have all been made with the Heliometer.

At Mr. Barclay's observatory the measurement of double stars has always held a prominent place in the work of the observers Mr. Romberg and Mr. Talmage.

Dunér, at the Lund Observatory, issued a volume of double star measures in 1876. It contains his results from 1867 to 1875, and is a valuable addition to the works on double-star astronomy.

Mr. O. Stone and his assistants at the Cincinnati Observatory have for some time paid special attention to double stars, and several lists of measures have already been published.

[•] The number is really 1221.

Mr. Burnham, of Chicago, has published no less than nine catalogues of double stars, his own discoveries, since 1871: all these objects have also had their positions and distances either measured or estimated by this most industrious observer.

Dr. William Doberck, at Markree Observatory, has taken up this branch of astronomy with great spirit and success. For some of the results of his labours see List A.

Professor Pritchard, of the new Oxford University Observatory, assisted by Messrs. Plummer and Jenkins, is making careful measures of the principal binaries, and is also engaged in a re-investigation of their orbits, by a method possessing some new features, and which seems to yield good results.

M. Camille Flammarion has devoted himself with great ardour to double-star investigations: his catalogue of important objects, with lists of measures, will shortly be published.

This subject has always attracted the attention of patrons and wealthy amateurs, and the names of Lord Wrottesley, George Bishop, Esq., J. G. Barclay, Esq., Colonel Cooper, Edward Crossley, Esq., Isaac Fletcher, Esq., M.P., and G. Knott, Esq., must here be mentioned as deserving of special praise for the spirited manner in which they have established and supported observatories for the prosecution of this class of observation.

Lastly, compilers of useful catalogues of binary stars and the writers of handbooks must not be forgotten: among the former, Mr. A. Brothers, F.R.A.S., and among the latter the Rev. W. A. Darby, M.A., and, above all, the Rev. T. W. Webb, M.A., deserve especial mention.

Measures by the following observers and others have also been published: Auwers, Bessel, Bond, Brünnow, Challis, Dunlop, Ellery, Encke, Engelmann, Ferrari, Fletcher, Galle, Gledhill, Hall, Hind, Holden, Jacob, Kaiser, Knott, Lassell, Maclear, Miller, Mitchell, Morton, Newcomb, Nobile, Powell, Schiaparelli, Seabroke, Spörer, Waldo, Wilson.

.

.

THE BERMERSIDE EQUATORIAL.

CHAPTER II.

THE EQUATORIAL: ITS CONSTRUCTION AND ADJUSTMENTS.

IN making a few remarks upon the instruments required by double-star observers, it is not our intention to give an exhaustive description, but rather to confine ourselves to a few points which may serve as some guide to the amateur who wishes to provide himself with these instruments, or who, being already equipped, desires to set to work with confidence.

It is first of all necessary to be furnished with a good refractor or reflector, equatorially mounted, of sufficient aperture, and driven by clockwork. And we do not hesitate to say that we much prefer a refractor, as being more stable in its adjustments, less disturbed by atmospheric conditions, and more durable in its optical surfaces,—conditions which seem to us to do more than counterbalance any advantages arising from the smallness of the star discs, and the absence of colour obtained from good reflecting telescopes.

We will assume that an equatorially mounted refractor is chosen. This should be of not less than six inches aperture, in order to be generally useful. An aperture of eight or nine inches would be a liberal and handsome provision. Good work may be done on some stars with smaller apertures, but we are afraid they would cause disappointment by their limited power.

To obtain a good instrument, it is best to secure the services of a first-class maker, who has made large equatorials his speciality. Among English makers it is hardly necessary to mention such names as those of Messrs. Troughton and

Simms of London, T. Cooke and Sons of York, and Mr. Howard Grubb of Dublin, whose well-known achievements speak for themselves.

We will now take up the different parts of the equatorial, beginning with the object glass. This requires the greatest possible amount of skill and patience in its construction, and great care should be exercised in its selection by the employment of suitable tests.

After examining the lenses in their cell by transmitted light, to discover any flaws of serious magnitude (for minute sandholes and bubbles are not serious), and then looking at its two outer surfaces by reflected light to see if the polish is uniform and good, replace the object glass in the tube and turn it upon some elevated object, as a church spire or chimney with a bright sky background. Focus carefully with a low power, and if the outlines are sharply defined and free from colour, the probability is that the glass is fairly achromatic. To render this test more severe, Stokes recommended that half the object glass should be covered by a semicircular piece of cardboard.

For the next test the instrument must be directed to the sky at night, and some patience and judgment will be needed in selecting a night suitable for the work. Examine the moon or any of the larger planets at an elevation of not less than 30° above the horizon, the higher the better; and if there be sharpness of outline, distinctness of detail, and absence of vibration, the night is one suitable for the purpose. Now turn to stars of different magnitudes, as near the zenith as may be, using a high power; and if clean round discs are obtained, free from wings and stray light, the result is so far satisfactory. Next examine the rings which surround the central small disc, when the eyepiece is moved a little within and without the focus. If the rings are circular, and each of uniform brightness all round, and sharply distinct from one another, the lens may be considered well centered and corrected. If the glass should fail

under this test, it must be carefully adjusted by the centering screws. It is, of course, best to have this done by the maker before the instrument leaves his workshop.

The central portion of the glass may now be covered with a disc of paper whose diameter is two-thirds of that of the aperture. Focus sharply on a star; remove the disc, and cover up the outer portion of the object glass with a diaphragm whose aperture is also two-thirds of that of the glass. If the focus remains unaltered, the figure is good.

The tests for separating and illuminating power may next be applied. Close double stars and minute points of light will supply the means. This can only be effectually done on the finest nights.

For lists of test objects and valuable information on these and other cognate matters, the excellent little book by the Rev. T. W. Webb, *Celestial Objects for Common Telescopes*, should be consulted.

It is scarcely necessary to discuss at length the merits of the different forms of mounting of the equatorial. The German form of mounting is now almost universally adopted, and with modern excellence of manufacture it may be considered quite equal in steadiness to the old English form.

The essential points are rigidity, strength, durability, and accuracy, facility, and permanence of adjustment. The tube is often made of sheet brass; sheet iron is lighter, cheaper, and more durable. The declination axis and polar axis should have plenty of bearing surface, and be of ample strength. The weight upon the polar axis should be relieved by friction rollers. The declination and hour circles should read by opposite verniers to 10" or 20" of arc, and 1 or 2 seconds of time respectively. The declination circle may be placed next to the telescope tube, so as to be read off conveniently by a reader from the eye-end, suitable illumination being provided. The hour circle should be moveable, and the telescope should have a clamp and slow

motion in declination. The clockwork should be strong and powerful, a weak clock being one of the commonest defects of equatorials. Slow motion is also required in right ascension, and it is usually obtained by means of differential wheels in connection with the driving clock, an endless cord being brought to the eye-end. The tangent screw of the driving arc should be capable of perfect adjustment, and should not have to be removed from the arc for the purpose of releasing the telescope from the clockwork. This should be done by a clamp on the polar axis. The lamp for illuminating the micrometer is best placed at the end of the declination axis, away from the telescope, the axis being perforated for the light to pass through into the tube, whence it is reflected at right angles to the eye-end, either by a reflector just outside the cone of rays, or by a tiny reflector say one-eighth of an inch in diameter, in the centre of the cone, and carried by an arm in such a manner that it can be moved to one side at pleasure. The first plan is perhaps the least objectionable; the latter is, however, adopted by Mr. Grubb. In Messrs. Cooke's form of mounting, the whole instrument is carried upon a heavy central iron pillar, which takes up less space in the observatory than any other form, and does not interfere with the observing chair in any position of the instrument. The base of the pillar being turned true in the lathe, is also easily bedded in the foundation-stone.

The following principal adjustments should be provided for, viz., (I) the polar axis in altitude; (2) the whole instrument in azimuth; (3) the eye-end for collimation; (4) the verniers of both circles for index errors.

The declination axis is commonly set by the maker at right angles to the polar axis. When the bearing surfaces of this axis are not equidistant from the polar axis, or bear unequal weights, there may be a tendency to unequal wear, and therefore to change of inclination, unless the bearing surfaces are proportional to the weights they carry.

Before erecting the equatorial it will be well to see that the stand is carefully marked with a north and south point by the maker, and that a meridian line be drawn through the centre of the foundation-stone to the walls of the observatory. After preparing and levelling the stone, it is now easy to set the instrument to the meridian line approximately, or at least within the limits of the adjusting screws in azimuth.

We must now determine the following errors of the instrument, and make the necessary corrections:—

- 1. Error of altitude of the polar axis.
- 2. Index error of the declination circle.
- 3. Error of collimation, or deviation of perpendicularity of telescope to the declination axis.
- 4. Error of azimuth, or deviation of the polar axis from the plane of the meridian.
- 5. Index error of the hour circle.
- 6. Error of the declination axis from true perpendicularity to the polar axis.

No. 1 and No. 2 are determined by the same set of observations. Bring the telescope approximately into the plane of the meridian, say on the west side of the polar axis: put in the wire micrometer with a low power, and bring one of the moveable webs into the centre of the field of view approximately. Make a star run along the web by means of the slow motion in declination: move the micrometer through 180°, and if the star will not now run along the web from side to side of the field, bring the web half-way towards the star by turning the micrometer screw, and then set the star on the web by the slow motion in declination. Again, turn the micrometer through 180°, and if the star now travels along the web, the latter passes through the centre of the field of view, or the centre of rotation of the position circle of the micrometer.

Now set the centered web on a bright star south of the zenith near the meridian whose position is given in the

Nautical Almanac. Clamp in declination and read off the declination circle. Unclamp, swing the telescope over to the east side (being careful not to disturb the micrometer), set on the star again, clamp, and read off as before. If the star has north declination, the correction for refraction is subtracted from the readings; if the star be south of the equator, add the refraction correction. If the star has north declination, and half the sum of the two readings corrected for refraction be greater than the true declination as given in the Almanac, the north pole of the instrument is too high; if less, the pole is too low. If the star is south of the equator, and the result be too great, the pole is too low; if too small, the pole is too high.

Half the difference between the two readings in either case is the index error of the declination circle. The following example will illustrate this:—

Jan. 28, 1878. Aldebaran was placed on the centered web.

Dec. Circle.				
Telescope West, 16° $17'$ $0''$ 16° $17'$ $0''$ mean				
Telescope East, 16° 16′ 40″ mean	16°	16′	20"	N.
Sum	32°	33′	20"	
Half sum Correction for refraction	16°	16'	40" 44"	
Observed declination True declination	16°	15' 15'	56" 53"	
Error of altitude of polar axis, too	high		3"	

The correction for refraction is obtained thus:—

Approximate altitude	•••	•••	4	52° 34′
North declination of star				
Colat. of place				

The *mean* refraction is sufficiently correct for our purpose. A mean refraction table is to be found in all collections of mathematical tables, and in many astronomical handbooks.

3. If the polar axis is not far from the plane of the meridian, the error of collimation,—that is, the deviation of the telescope from perpendicularity to the declination axis,can easily be determined as accurately as the hour circle will admit of. Thus: place the telescope on the west side, and near both the meridian and the equator. The micrometer having been undisturbed, turn it throug hooo: the centered web now points to the pole. Set the telescope a little in advance of the nearest bright star, and note by the sidereal clock the time of transit across the web. Read off the hour circle: throw the telescope over to the east side, transit the same star, and read off as before. If the difference between the transit times be greater than that of the hour circle readings, the angle formed by the telescope and the declination axis is too great towards the eye-end, and the eye-end must be moved towards the declination axis. If the difference of the transits is less, the angle is too small, and the eyepiece must be moved away from the declination axis. Half the difference between the interval by the clock and that by the circle is the error.

The following example will exhibit the method of proceeding in this case:—

Jan. 28, 1878. 8 Orionis. Dec., 0° 23' 28".

0, 10,00	····			,	,		
			Clock,		C	Circle.	
			$\sim\sim$		\sim	~	
			м.	s.	M.	5.	
Telescope V	Vest	•••	20	26	25	32	
" E	ast	•••	23	45	28	40	
			3	19	3	8	

Half the difference, $5.5s. \times cos. 23' 28'' = error required.$

As the clock interval is the greater, the eye-end must be moved towards the declination axis so as to diminish the angle between the telescope and the declination axis.

4. The error of azimuth is not so easily determined as the

previous errors, on account of the difficulty in correcting for the effect of refraction. This can be done by calculation, as is fully explained in Loomis's Astronomy, Arts. 32, 145; but it can also be done quite effectively, and much more readily, by the following method. Centre the web of the micrometer, set the telescope to the true declination of a Greenwich star about six hours east or west of the meridian, and from 30° to 60° in altitude. Sweep to the star in right ascension with the finder, and if the star is some distance from the centre of the field, move the telescope in azimuth until it passes a little below the centre of the field. Now take a small clinometer. (which can be readily constructed with a piece of hard wood, a semicircular protractor, and a small plumb-line,) and place it on the telescope; read off the altitude to the nearest degree. Rotate the micrometer until the fixed wires are approximately in the vertical plane. Find the mean refraction for the observed altitude from the Table of Refractions. Now bring the web that is not centered below the centered one by a distance equal to the angle of refraction. Set in azimuth so that the star will pass through the intersection of the lower web and the fixed wires of the micrometer. Repeat the operation on a star in the opposite quarter of the heavens; and if this star also comes to the corresponding intersection the polar axis is in the plane of the meridian.

If the micrometer screw have 100 threads to the inch, and the focal length of the object-glass be measured from its centre, the angular value of one revolution of the screw will be known well enough for the above purpose. (See the chapter on the Micrometer.)

5. The index error of the hour circle can only be determined by an independent observation for time, unless the declination axis is provided with a striding level for the purpose of rendering it horizontal, or truly east and west. In this latter case, all that is necessary after levelling is to set any division of the hour circle at the index point of the vernier which moves with the telescope, then adjust the index point of the fixed vernier to the same division, and this will be the south reading. It is, however, still more convenient, when it can be done, to set the fixed vernier east or west according as the Observatory is west or east, by the difference in time between the longitude of the Observatory and Greenwich: this will save the trouble of always having to add or subtract this quantity from the right ascension of a star when setting the telescope by the circles. If the declination axis is not provided with a level, which is seldom the case, as it is not indeed necessary, then sidereal time must be obtained from occultations of stars by the moon, from Greenwich time when telegraphed to the nearest post-office or railway station, by Dent's Dipleidoscope; or, best of all, from a small transit instrument of about two inches' aperture; for such an instrument will give the time to the tenth of a second, and help to make the Observatory complete and independent.

The telescope can now be brought into the meridian by a star at the time of transit, and the fixed vernier set as before.

6. The error of the declination axis from true perpendicularity to the polar axis should be so small as to fall within the error of the setting of the instrument. It is not usual to provide an adjustment for this error, as such would tend to weaken the construction of the instrument. It should, however, be determined by the following method:—

Set the telescope on a star of not less than 40° north declination, and near the meridian; transit, read off the hour circle, and reverse the position of the telescope, as in the third adjustment. If there be no difference between the intervals, there is no error in the inclination of the declination axis to the polar axis: *i.e.*, it is at right angles to it. If, however, the interval by the clock be greater than that on the hour circle, the declination axis towards the telescope is at too great an angle with the polar axis,—and vice versâ. Half the

difference of the intervals (expressed in arc) divided by the tangent of the star's declination gives the error of inclination required.

The whole of these six adjustments should be repeated several times, and also from time to time, as they are liable to change.

As the errors mutually affect each other, the second set of observations will be more accurate than the first, and should be made with greater care.

Having completed the adjustments of our equatorial, we are now ready to set the telescope upon any object in the heavens which we may wish to observe, whose right ascension and declination are given in our catalogues. First, set the telescope in declination, and then set the moveable hour circle to the right ascension of the object by the fixed vernier (with no correction for longitude if the fixed vernier is put to the Greenwich meridian, as above recommended). Now sweep the telescope in right ascension until the upper vernier comes to sidereal time by the clock, and the object will be in the field of view.

It will now be desirable to determine, approximately, the focal length of the object-glass, the angular value of the field of view with each eyepiece, and the magnifying powers of the eyepieces. The makers usually furnish the first and last of these, but it is well for the observer to ascertain these values for himself with some care.

Firstly: to find the focal length of the object-glass. This is not a very easy matter, owing to the difficulty of finding the optical centre of the glass. According to Troughton, "the measure should commence from the interior part of the convex lens, at a distance from its exterior surface equal to one-fifth of the thickness of the double compound object-glass." (See Pearson, p. 19.) This point can of course be readily found by first ascertaining the thickness of the lens. A long, stout straight-edge, placed on the tube of the tele-

scope and made level, will enable the observer to find the distance between the object end of the tube and the webs of the micrometer adjusted to stellar focus. A plumb-line gives the two points very quickly and accurately. If the telescope be not a large one, the following method will give good results: focus on a terrestrial object at a well-measured distance, and mark the draw-tube; then focus on the sun, and again mark the tube; then the formula

$$\mathbf{F} = \frac{\mathbf{D.} \; (\mathbf{F'} - \mathbf{F})}{\mathbf{F}}$$

where F = the length of the solar focus required, F' the length of the conjugate focus obtained from the terrestrial object, and D the distance of the object. Of course, the distance between the two marks on the draw-tube should be measured very carefully by means of a finely divided rule and a pair of compasses. The distance between the telescope and the terrestrial mark must be measured from the object-glass.

Again; the focal length may be accurately determined as follows: find the value in arc of say 50 revolutions of the micrometer screw. This will of course be readily done by separating the webs 50 revolutions, transiting a star near the equator (or, better, a star not far from the pole), and reducing the observed interval by multiplying it by the cosine of the star's declination, and by 15. Next, measure with great accuracy the linear value of the space between the webs,* then the proportion

2 tan ½ the arc: radius:: linear value: focal length will give the required quantity.

Secondly: to find the angular value of the field of view of the several eyepieces when in the telescope. This is easily done. Allow a star very near the equator to transit the field centrally, and convert the observed sidereal time into arc. If a chronometer or mean-time clock be used, the mean-

^{*} The practical optician can do this with very great accuracy.

time interval must, of course, be converted into its equivalent sidereal interval, and then the arcual value found from the table. (See Loomis's Astronomy, p. 363.) Do this with each eyepiece. The angular value of negative eyepieces may also be found thus: as the field of view of a telescope depends partly on the focal length of the object-glass, and partly on the diameter of the diaphragm placed at its focus, the following formula will give it: F is the focal length of the object-glass, and d the diameter of the diaphragm of the eyepiece, both in inches:—

$$\frac{d}{F \sin 1''}$$

This is Delambre's formula.*

Thirdly: the magnifying powers of the eyepieces have to be found. One of the following methods may be chosen.

- I. Measure the small illuminated circle seen in front of the eyepiece (which is the image of the object-glass), by means of the Dynameter. Then, the aperture of the object-glass is to the diameter of its image at the focus seen through the eyepiece in the ratio of the focal length of the object-glass to that of the eyepiece. That is, the diameter of the object-glass divided by that of the small image gives the magnifying power. The small image may, of course, be measured without the aid of the Dynameter, by means of a finely divided scale. Or the "Berthon Power-gauge" † may be used.
- 2. In the case of small telescopes the powers may be conveniently found by means of a piece of white paper, say one inch long, on a black ground, fixed at a known distance from
- * To take Pearson's example: let the focal length of the object-glass be 3.5 ft., and the diameter of the diaphragm of a negative eyepiece 0.3 in.: then $42 \times 000004848 = 000203616$, and $\frac{0.3}{000003616} = 1473'' = 24'33''$.
- † The Rev. T. W. Webb (Celestial Objects, p. 7) speaks highly of this little instrument, which he says may be purchased for 7s. 6d. of Mr. Tuck, watch-maker, Romsey.

the object-glass, a staff divided to inches being also placed near the paper. On looking through the telescope at the paper with one eye, and at the staff with the other at the same time, the number of inches on the latter covered by the paper will be seen, and the power at once found for that distance. From this terrestrial power, P', the stellar power P is obtained from the following formula, F being the stellar focal length and F' the terrestrial:—

$$P = \frac{F \times P'}{F'}.$$

3. The following method is convenient. Place a staff divided into feet and inches against a wall in a vertical position; at a distance of three or four feet from the staff, hold the eyepiece to the eye, and, looking through it with one eye, and at the staff with the other eye, note how many feet and inches are contained in the diameter of the field of the eyepiece. For example, let the distance from the staff be 48 inches, and the observed diameter of the field 40 inches; then the tangent of half the angle $=\frac{\infty}{48}=0.416$, and the angle is 45° 14′, or 162840 seconds of arc. Now if the angular aperture of the telescope with this eyepiece be 33 sidereal seconds (found by transiting, centrally, a star very near the equator), or 495 seconds of arc, we have

Magnifying power =
$$\frac{\text{angular subtense}}{\text{angular diameter}} = \frac{162840}{495} = 329.$$

4 Valz's method is useful for small telescopes. Turn the telescope towards any celestial object of known angular magnitude, say the sun, whose angular diameter is given in the Nautical Almanac, page II, of each month. Let the image be received on a screen kept at right angles to the tube, and having a line nicely divided into inches and tenths marked on it. Observe the horizontal diameter in inches and tenths of the image on the screen. Then if a be the sun's true diameter, A the angular diameter of the image on the screen.

and D the distance between the middle of the eye-piece and the screen, then we have

$$\tan \frac{1}{4} A = \frac{\frac{1}{2} d}{D},$$

and the magnifying power
$$-\frac{\tan \frac{1}{2} A}{\tan \frac{1}{2} a} - \frac{d}{2 D \tan \frac{1}{2} a}$$
.

The measure of the image should be made when the sun is in the centre of the field of view.

The thickness of the webs of the micrometer may be found by bringing one up to a fixed web until the bright space between the two is estimated to be equal to the thickness of the web which is moved: read off the divided head, and then carry the web into contact with the fixed web. Read off again. Repeat five or ten times. Take the mean value, and convert it into arc.

The following information, drawn up in a tabular form, may, for convenient reference, be pasted inside the box containing the eyepieces: focal lengths of telescope and finder; angular value, in arc, of the field of view of each eyepiece of telescope and finder; magnifying powers of the eyepieces; value in arc of one revolution of the micrometer screen, and a table for taking out at sight the arcual value of revolutions and parts; the thickness, in arc, of the webs of the micrometer.

For fuller information on these and other matters, the following works may be consulted: Loomis's Practical Astronomy, published by Harper and Brothers, New York. (This work is essential.) Webb's Celestial Objects for Common Telescopes. Pearson's Practical Astronomy. Chauvenet's Practical and Spherical Astronomy (London, Trübner and Co.); and Brünnow's Spherical Astronomy (Asher and Co., London). The Nautical Almanac for the current year, a collection of mathematical tables (such as Hutton's or Chambers's), and a good Star Atlas, are of course necessary.

THE CLOCK.

A common well-made clock, if the pendulum be properly constructed and suspended, is all that is necessary for doublestar observers. The piece supporting the pendulum should, of course, be very firm, and securely fastened to a good wall. The pendulum rod, 46 in. long, may be made of wellseasoned white deal soaked in melted paraffin, and $\frac{3}{8}$ in. in diameter; the bob should be of lead, and cylindrical, its length (for a seconds pendulum) being, say, 14:3 in., diameter $1\frac{3}{4}$ in. with a hole a little more than $\frac{3}{8}$ in. in diameter for the rod to pass through. The bob should be supported on the rod by means of a stout nut and screw, the latter having not more than thirty threads to the inch. A leaden bob of these dimensions would weigh about 13½ lb., which is found in practice to be a suitable weight. Such a clock, beating seconds audibly, would keep its rate unchanged for a few hours, and would meet all the requirements of double-star work. The rate would be obtained with the aid of a small transit instrument, or the equatorial itself, if well adjusted; or the finder of the latter instrument might be used for this purpose. The rate should be small, and a losing rate, in order that the correction which becomes necessary from time to time may be made by putting the minute hand of the clock forward. If the clock be losing, say, ten or twenty seconds per day, the bob may be readily put near its true place by means of the nut under it, with the aid of the following formula:---

Change in one day = 43200 $\frac{L}{l}$ seconds, where L is the breadth of one thread of the adjusting screw, and l is the length of the seconds pendulum; from this the effect of one turn of the nut on the clock's rate is obtained. Or, to put it in a still simpler way: if n be the number of turns of the screw in 1 inch, then $L = \frac{1}{n}$, l = 39.138; and the change in seconds for one turn of the screw $= \frac{43200}{n \times 30.138} = \frac{1103}{n}$.

Assuming that the losing rate has been reduced to, say, two seconds per day, and that it is desired to make it about half a second, either of the following methods may be adopted:—

- (a) Place a small sliding metal collar on the rod, its weight being about 1000th of that of the pendulum (bob and rod). At first this collar should be placed about 9 inches from the spring, and then gradually pushed downwards until the rate is what is desired.
- (b) Let the sliding collar take the form of a cup into which small shot may be put, and let it be *fixed* to the rod at $19\frac{1}{3}$ inches from the spring.

By trial the effect of one shot or of any number may be found, and the necessary change in the rate effected very readily.

The following extract from Baily's paper, in the *Memoirs* of the Royal Astronomical Society, vol. i., will be interesting in this relation.

tilis relation.		
Distance from axis in inches.	Variation in the rate per day.	Difference.
I 2	Sec. + 1.08 2.10	Sec. + 1.02
3 4 5 6	3°07 3°98 4°83	o.82
6 7 8	5 [.] 6 ₂ 6·36 7 [.] 04	oʻ79 oʻ74 oʻ68 oʻ63
10 11	7·67 8·23 8·74	0.21 0.20
12 13 14	9 ·20 9·60 9·94	oʻ46 oʻ40 oʻ34 oʻ28
15 16 17	10°22 10°45 10°62	0'17 0'17 0'11
18 19 20	10.43 10.43	-0.00 0.00 +0.00
21 22 23	10.42 10.42	0'11 0'17 0'23
24	+ 10'22	•

If the pendulum is found to go slower in warm weather and faster in cold, it is under-compensated, and more mercury should be put into the cylinder; if faster in warm and slower in cold weather, mercury must be taken away, the quantity in each case being found by trial.

Valuable information may be found in Baily's paper above referred to, in those by Bloxam ("Monthly Notices," vols. xiii. and xviii.), and in Denison's excellent "Clocks and Locks" (Adam and Charles Black, Edinburgh).

OBSERVING CHAIRS.

As the work of the double-star observer is laborious, and often protracted, it is essential that he should be in a comfortable position for his work.

Ordinary chairs and steps are quite insufficient for this purpose, though they often constitute the sole furniture of an observatory.

A special chair is required which will support the observer from head to foot, in any position of the telescope; such is Dawes's chair (see Figs. 1 and 2). We have used it for several years, and should not like to be without it. It consists of a horizontal wooden frame on castors, 6 feet by 2 feet 4 inches, well braced to an upper frame, and inclined at an angle of 35° from top to bottom; upon this upper frame is a sliding piece, carrying the seat which is nearly horizontal. The sliding piece is held at any point by a stout catch in a perforated iron plate on one side. The seat is 2 feet by 1 foot, and is padded; the back is also padded, and it is so hinged to the seat that it can be raised to any position by means of a handle on the left-hand side, and then clamped to an arc on the right-hand side of the observer: this padded back is 2 feet by 2 feet 9 inches. It may thus

Fig. 1.

FIG. 2.

be raised and clamped at any angle without leaving the chair. Dawes used a rack for supporting the back, but the clamp is more convenient. An arm is also attached to the chair on the right-hand side; this can be set at any angle by means of a notched arc, catch rod, and handle; and it makes an excellent rest for the right arm. An iron hook on the left-hand side of the chair carries a reading lamp.

Fig. 3. (A Chair for occasional use.)

THE OBSERVATORY.

The best form of Observatory is a square room with cylindrical dome. The corners of the room are always useful, if not necessary, for tables, shelves, chairs, etc.; and the cylindrical dome is manifestly more easily constructed than the spherical form. The shutters work horizontally, and are less liable to stick than curved shutters. Sufficient slope should be given to the roof to throw off a heavy fall of rain, and the top at least may be covered with thin sheet

copper well painted. The conical form of roof is very effective, and also very cheap.

The Transit Instrument will require a small room, say 12 feet square, or rather less.

A Computing Room, on the north side of the Observatory, may be added, and this may be provided with a stove and chimney for heating the hot-water apparatus by means of which the observing rooms are kept dry in wet and cold

MR. EDWARD CROSSLEY'S OBSERVATORY, BERMERSIDE.

weather. The hot water must of course be turned off some time before the work of observation begins.

Four windows, north, east, south, and west, are of great use in ventilating the Observatory, and in rapidly reducing the temperature inside as nearly as possible to that outside, so as to avoid currents of heated air, which are so detrimental to optical definition.

CHAPTER III.

SOME ACCOUNT OF THE EQUATORIALS WHICH HAVE BEEN USED BY DOUBLE-STAR OBSERVERS.

AUWERS. (See KONIGSBERG.)

BARCLAY. (See LEYTON.)

BEDFORD.

The mounting of the $8\frac{1}{2}$ ft. equatorial was by Dollond, the Sisson form being used. The object-glass had a diameter of 5.9 in., and was purchased in Paris by Sir James South. Tulley worked it. "It is considered by Captain Smyth to be the finest specimen of that eminent optician's skill, and will bear, with distinctness, a magnifying power of 1200."

The declination and hour circles had a diameter of 3 ft.: the former read to 10". The negative powers were 22 to 1200, six of the highest being single convex lenses fitted in a polycratic wheel. The powers of the parallel-wire micrometer ranged from 62 to 850. The finder had an aperture of 1.6 in.

The driving clock was invented by Mr. Sheepshanks, and had a steam-engine governor and absorbing wheel. It worked very well.—Monthly Notices, R. A. S., vol. i., and the Celestial Cycle.

Observer: Admiral Smyth.

BERLIN.

The refractor at this Observatory is similar to the famous Dorpat telescope in all essential respects.

Observers: Encke, Galle, Winnecke.

BERMERSIDE (Halifax).

Mr. Edward Crossley mounted his $9\frac{1}{3}$ in. Cooke equatorial refractor in 1867. Its focal length is 148.5 in. The style of mounting is German. The diameter of the declination and hour circles are respectively $23\frac{1}{2}$ in. and $12\frac{1}{2}$ in., and they read to 10" and 2 sec.

The lamp, which gives a bright field to the micrometer, swings at the end of the perforated declination axis.

The aperture, and amount and colour of the light for the bright field, are regulated from the eye-end by means of rods, and a rod and cords at the same end give the observer full control over the motion of the instrument in right ascension and declination.

The finder has an aperture of $2\frac{1}{2}$ in., and a focal length of 2 ft. 4 in.

The negative eyepieces are ten in number: powers, 60 to 1000.

There are three micrometers, two filar and a double-image. The double-image and one of the filar micrometers are by Simms, and the other filar by Cooke. The eyepieces for these instruments are, in all, seventeen in number, and the powers range from 100 to 1200. The new filar micrometer by Simms is divided on the face: diameter of circle $4\frac{1}{2}$ in.

The driving clock is by Grubb of Dublin.

Observers: Crossley and Gledhill.

BESSEL. (See KONIGSBERG.)

BOND. (See CAMBRIDGE, U.S.)

BONN.

The heliometer of this observatory has an aperture of 6 in.

The driving clock works "remarkably well," and its

construction is similar to that of the Poulkova refractor

—Memoirs of R. A. S., vol. xx.

Brünnow. (See Dunsink.)

BURNHAM. (See CHICAGO.)

CAMBRIDGE (Northumberland equatorial).

English mounting: the tube is square, and of deal. Object-glass by Cauchoix, $11\frac{1}{2}$ in. aperture, and $10\frac{1}{3}$ ft. focal length; it was received in 1834. Hour circle $5\frac{1}{2}$ ft. in diameter, and reads to 1 sec. The circles were graduated by Simms.—Main's An Account of the Observatories in and about London.

Declination axis, 5 ft. $8\frac{1}{2}$ in. long. Finder, $2\frac{3}{4}$ in. aperture, and $28\frac{1}{2}$ in. focal length. The declination is obtained by means of divided rods. For a full account, with elaborate drawings, see Airy's account of the instrument.—Account of the Northumberland Equatorial and Dome.

Observer: Challis.

CAMBRIDGE (U. S.)

This instrument is of the same style of mounting, size, and by the same maker, as the Poulkova refractor. Focal length 22 ft. 8 in., aperture 15 in. "No colour except a purple tinge round very bright objects, such as the Moon and Venus."—Monthly Notices of R. A. S., vol. viii.

Observers: Bond and Waldo.

CAPE OF GOOD HOPE.

Prior to 1847 the equatorial was a 46 in. by Dollond, aperture 3½ in. There were four micrometers, viz., a spider-line position, an annular, and two rock-crystal. A flat-wire position micrometer was added subsequently. In 1849 the equatorial by Merz was mounted; aperture nearly 7 in., focal length 8½ ft. The tube is of wood, veneered with mahogany.

The declination circle is 12½ in. in diameter, and reads to 10″, and the hour circle has a diameter of 9.6 in., and reads to 4 sec. The Huyghenian eyepieces have powers 86, 128, 200, 302. and 458. Those of the micrometer, 123, 161, 273, 347, and 464. The power of the double annular micrometer is 64. The divided circle of the position micrometer is 4 in. in diameter, is divided to 15′, and reads to 1′: the total range of the screw is 60 revolutions. One head only is divided.

Observer: Maclear.

CHALLIS. (See CAMBRIDGE.)

CHICAGO.

Mr. Burnham has made most of his discoveries with his 6 in. refractor by Alvan Clark. He has also used the fine 18½ in. Clark refractor of the Dearborn Observatory, the 26 in. of the Washington Observatory, and the 94 inch of the Dartmouth College Observatory.

CINCINNATI. (U. S.)

The object-glass was purchased in 1842; it was begun by Fraunhofer, and finished by Merz and Mahler. Dr. Lamont pronounced it "one of the best ever manufactured." Aperture 11 in., focal length 17 ft. Diameter of hour circle 16 in., of the declination circle 26 in. The powers range from 100 to 1400. The stand is of iron, and is filled with sand. The driving clock is by Clark and Sons, and is good.—Loomis's Recent Progress of Astronomy, and the Cincinnati Observations.

Observers: Mitchell, Stone, Howe, and Upton.

CROSSLEY. (See BERMERSIDE.)

CUCKFIELD.

Mr. Knott's equatorial was mounted at Woodcroft, Cuckfield, and the measures lately published were made there between 1860 and 1873. The object-glass has

a clear aperture of $7\frac{1}{3}$ in., a focal length of 110 $\frac{1}{2}$ in., and it was made by Messrs. Alvan Clark and Sons. The filar micrometer was made by Dollond; diameter of position circle $3\frac{1}{2}$ in.; it reads to tenths of a degree. The powers of the seven eyepieces range from 115 to 515.

DAWES (Rev. W. R.)

In 1831 this distinguished observer erected a 5 ft. achromatic at Ormskirk in Lancashire. It was by Dollond, and the mounting was like that of Smyth's refractor. The aperture was 3½ in.; the circles 2 ft. in diameter; the powers used, 225, 285, and 625.—Memoirs of the R. A. S., vols. iv. and v.

The Newtonian reflector, the mirrors of which were presented to Dawes by Sir John Herschel, was mounted by Dollond, and applied to the polar axis of the 5 ft. telescope. Focal length about 7 ft., aperture 61 in. This instrument was used between 1834 and 1839, but not much.—Memoirs of the R. A. S., vol. xix.

In 1845 the Merz and Mahler equatorial was mounted at Cranbrook in Kent. The style of mounting was that of the great Dorpat refractor. The focal length was $8\frac{1}{2}$ ft., and the clear aperture $6\frac{1}{2}$ in. The object-glass was of first-rate quality. The hour circle read to 4 sec., and the declination circle to 10". Driving clock extremely steady and uniform.—Memoirs of the R. A. S., vol. xvi.

In 1859 the equatorial by Alvan Clark and Sons (now at the Temple Observatory, Rugby), was mounted at Haddenham (Hopefield Observatory), in Bucks. The glass was cast by Chance and Co. Aperture 8½ in., focal length 110 in. The figure is excellent to the circumference, and the dispersion "but a little over-corrected."

The finder has an aperture of 2 in. The micrometer was a parallel-wire by Dollond. Driving clock: this is

very good. Bond's spring governor renders the action very smooth.—Memoirs of the R. A. S., vol. xx.

Dawes's micrometer by Merz and Son was made in 1846. It was a parallel-wire, and was used with the $8\frac{1}{2}$ ft. telescope. Powers 120, 155, 260, 322, 435, 572, and 690. His Amici micrometer was presented to him by Sir John Herschel: it was a double-image, and had but one power (1000 on the 20 ft. reflector). Dawes added three new eyepieces, which, on the $8\frac{1}{2}$ ft. refractor, were 212, 360, and 508.

DEMBOWSKI (Baron).

This eminent double-star observer used an excellent dialyte by Plössl 5 ft. focal length and 5 in. aperture equatorially mounted, from 1852 to 1862. The power generally used was about 300. It was not provided with a driving clock.

In 1862 the refractor by Merz was erected. Its aperture is $7\frac{1}{2}$ in. The object-glass is a fine one, and the powers range from 100 to 720. The driving clock is moderately good.—Ast. Nachr., vols. xlii. and lxii.

DOBERCK. (See MARKREE.)

DORPAT.

This noble instrument was erected in 1825. It was the work of Fraunhofer. The tube was of deal overlaid with mahogany, and the framework of the stand was of oak inlaid with mahogany and polished. The polar axis was 39 in. long. Aperture of the object-glass 96 in.; focal length 14 ft. The hour circle, with a diameter of 13 in., was divided to minutes, and read to 2 sec.; and the declination circle, with a diam. of 19 in., was divided to 10 min and read to 10 sec. Powers 86, 133, 198, 254, 420, 532, 682, 848, 1150, and 1500. The finder had an aperture of 24 in., and focal length of 30 in. The driving clock kept a star in the centre of the field when a power of

700 was used.—Memoirs of R. A. S., vols. ii. and xxxvi. Pearson's Astronomy.

Observers: Σ , $O.\Sigma$, and Mä.

DUNER. (See LUND.)

DUNLOP.

Equatorial refractor, focal length 46 in. Micrometers, a parallel-wire and an Amici's double-image.

DUNSINK.

The object-glass is the work of Cauchoix: aperture 12 in.; focal length 19 ft. The mounting was by Thomas Grubb.

ELCHIES.

The Elchies equatorial was mounted about 1850, by Mr. J. W. Grant, at Elchies, in Scotland. The German form was adopted. One portion of the stand weighed 11 tons. Messrs. Ransome and May made the stand, and the object-glass was by Ross. The aperture was 11 in., and the focal length 16 ft. The axes were 5 ft. long, and 6 in. in diameter. The circles had a diameter of 30 in., and were 1 in. thick. The eyepieces were twenty-three in number. The parallel-wire micrometer had two eyepieces, and one of the three finders had a focal length of 5 ft.

ENCKÉ. (See BERLIN.)

ENGELMANN. (See LEIPSIC.)

FERRARI. (See ROME.)

FLAMMARION. (See PARIS.)

FLETCHER. (See TARN BANK.)

GALLE. (See BERLIN.)

GLEDHILL. (See BERMERSIDE.)

GREENWICH.

In 1838 the Sheepshanks equatorial was mounted. Grubb of Dublin supplied the stand, which was of the

German form. The object-glass was by Cauchoix: aperture 6.7 in.; focal length, 8 ft. 2 in. Its definition was found to be good, the principal defects being outstanding colour, and a diffusion of light from brilliant objects. Negative eyepieces, a wire micrometer, a comet eyepiece, and a double-image micrometer were provided. The driving clock was regulated by governor balls at the ends of a horizontal arm on a vertical spindle. When a certain velocity had been acquired, projections on the balls rubbed against a fixed horizontal ring.

The mounting of the great equatorial is in the English style, and was executed by Simms. Messrs. Ransome and Sims made the engineers' work. The object-glass, by Merz and Son, has an aperture of 12½ in., and a focal length of 16 ft. 6 in., and it is a very fine one. The hour circle is 6 ft. in diameter, and the declination circle 5 ft. The driving clock is in the ground floor story, and the power is given by a flow of water acting through a turbine, the spindle of which passes up to the instrument. A Siemens' chronometric governor regulates the supply of water to the turbine. A Barker's mill drives the hour circle, and the regulation is obtained by a conical pendulum, Siemens' chronometric governor, and a spade dipping into a trough of water.—Greenwich Observations, 1864.

HALL. (See WASHINGTON.)

HARTNUP. (See LIVERPOOL.)

HERSCHEL (Sir William).

The gigantic reflector was erected in 1787, at Slough. Two concentric circles of brickwork, 42 ft. and 21 ft. in diameter, battened from a breadth of 2 ft. 3 in. at the bottom, to 1 ft. 2 in. at the top, and capped with

[•] In the "Monthly Notices" the aperture is always given 123 in. See vol. xxxvi.

paving-stones 12½ in. wide and 3 in. thick, formed the foundation. A vertical beam 12½ in. wide was fastened in the centre, and around this the whole framework had its circular motion in azimuth.

The tube was of iron, 39 ft. 4 in. long, and 4 ft. 10 in. in diameter. The speculum was of tin and copper; its weight 1050 lb., and diameter 4 ft. The power used seldom exceeded 200.—Pearson's Astronomy. See also Phil. Trans., vol. lxxxv., for a full description.

HERSCHEL (Sir John).

The 20 ft. reflector was constructed in 1820, by Sir William and his son. The mirrors were fine, diameter 18 in., and focal length 20 ft. With the whole aperture, powers 150 to 160 were ordinarily used, the eyepiece being a single lens of $1\frac{1}{2}$ in. focus.—*Memoirs R. A. S.*, vol. ii.

The reflector used at the Cape by Sir John was the 20 ft. The three mirrors were all fine; aperture 18½ in. The 7 ft. refractor, aperture 5 in., was also used.—Cape Observations.

HIND. (See REGENT'S PARK.)

Howe. (See CINCINNATI.)

JACOB. (See MADRAS.)

JENKINS. (See OXFORD UNIVERSITY.)

KAISER. (See LEYDEN.)

KONIGSBERG.

The famous heliometer of this Observatory is mounted like the great refractor of Poulkova. The focal length is 8 ft. 6 in., and the aperture 6½ in., and a distance of 1° 52′ can be measured. It was begun in 1824, by Fraunhofer, and mounted in 1829. The position circle at the object-glass has four verniers, and reads to minutes. For ordinary use there are five eyepieces: powers, 45

91, 115, 179, 290. A circle micrometer of the Fraunhofer kind has a power of 65. The ring micrometer and net micrometer have powers of 66, 92, and 165.—Ast. Nachr., vol. viii.

Observers: Bessel, Anwers, Peters, Luther, and Schlüter.

LASSELL.

In 1841 the Newtonian reflector, 9 in. aperture and 112 in. focal length, was erected at Starfield, near Liverpool. The declination circle was divided to 15', and read to 30". The hour circle was of the same size, and read to 2 sec. The diameter of the circles was about 2 st.

In 1848, the 20 ft. equatorial was mounted. The tube was of sheet iron, $\frac{1}{10}$ in. thick, and was 20 ft. long, and 25 in. diameter; its weight was 594 lb. The diameter of the speculum was 2 ft., and its weight 370 lb. The finder was a Newtonian reflector, aperture 4.2 in., focal length 42 in., power 27.—Memoirs of the R. A. S., vols. xii., xviii., and xxxvi.

The two 4 ft. specula were constructed and mounted in 1859 and 1860; their focal lengths were 441.8 and 448.1 in.; length of tube 37 ft. The mounting was equatorial, and the motion in right ascension was given by an assistant.

LEIPSIC.

The mounting was by Pistor and Martins, and the optical part by Steinheil. Aperture, 8 Paris inches; focal length 12 ft.; powers, 72, 96, 144, 192, 288, 432, 576, and 720.

Observer: Engelmann.

LEYDEN.

The Leyden refractor is of Munich make. Aperture, 6 in.; focal length, 8 ft.

Observer: Kaiser.

LEYTON.

The 10 in. equatorial refractor, focal length 12 ft., by Cooke, was erected at Leyton in 1860, by J. Gurney Barclay, Esq. The mounting is in the German style. The polar axis is 4 ft. 2 in. long, and the declination axis 3 ft. 2 in. The declination circle is 2 ft. in diameter, and reads to 10"; and the hour circle is 13 in. in diameter, and reads to 2 sec.

The finder has an aperture of 3 in., and a focal length of 3 ft.

The driving clock is regulated by a double conical pendulum.

Observers: Romberg and Talmage.

LIVERPOOL.

This fine refractor was mounted in 1848. The mounting is a modified English form; the optical parts were by Simms, and the engineer's work by Messrs. Maudslay and Field. The object-glass, which is a very fine one, was by Merz; its aperture is $8\frac{1}{2}$ in., and focal length 12 ft. The hour circle has a diameter of 4 ft., reads to 0.1 sec., and has two microscopes. The declination circle has the same diameter, and reads to 1".0. There are six negative eyepieces (powers, 90 to 1100), and the two micrometers (filar and double-image) have powers 150 to 600. The driving clock was made by Simms, and drives fairly.

Observer: Hartnup.

LUND.

The instrument used by Dr. Dunér was mounted at the observatory of Lund in 1867. The tube and object-glass are by G. and S. Merz, of Munich. The rest of the mounting and the micrometer are by M. Emile Jünger of Copenhagen. The style of mounting is modified German. The object-glass is a very fine one; its aperture

is 9.6 in., and the focal length 14 ft. The diameter of the declination circle is 21.2 in., and reads to 2"; and the hour circle, with a diameter of 19.6 in., reads to 0.2 sec., and, by microscopes, to 0.02 sec. The micrometer is a filar. The driving clock is a good one, the regulator being the invention of Professor Holten of Copenhagen.

MACLEAR. (See CAPE OF GOOD HOPE.)

MÄDLER. (See DORPAT.)

MADRAS.

The 4 in. equatorial was made by Simms, in the German style; focal length 63.2 in. The circles were for finding only, and read to minutes of space and seconds of time.

The micrometer was a parallel wire; powers used 170 and 280. The spurious discs of stars were "sharp and round, but rather large."—Memoirs of the R. A. S., vols. xxv. and xxxii.

The Lerebours and Sécretan equatorial had an aperture of 6.3 in., and a focal length of 89 in. A second object-glass was furnished by them in 1852, which proved good, but not perfect.—Memoirs of the R. A. S., vol. xvii.

Observers: Jacob and Powell.

MAIN. (See OXFORD.)

MARKREE OBSERVATORY.

This equatorial was mounted in 1834, at Collooney, County Sligo, by the late Mr. E. J. Cooper. The German style was adopted, and the cast-iron stand was placed on limestone blocks.

The object-glass was the work of Cauchoix. It is not a very good one. Aperture $13\frac{1}{2}$ in.; focal length $25\frac{1}{2}$ ft. The diameter of the declination circle is 1 ft. 9 in.; it is divided to $\frac{1}{4}$ °. The diameter of the hour circle is 30 in.; it is divided to minutes.

The micrometer is of Munich make, and very good:

powers, 100, 200, 300, 400, 500, 600, and 800. The position circle is $4\frac{1}{2}$ in. in diameter, and reads to 1'. The driving clock is a rough machine.—See Astr. Nachr., No. 2187.

Observer: Doberck.

MILAN.

The mounting is in the German style: both mounting and object-glass are the work of Merz and Mahler. The object-glass is a good one; its aperture is 9.5 in., and focal length 10 ft. 7.9 in. The diameter of the hour circle is 11 in., that of the declination circle 15.7 in. The negative eyepieces furnish the following powers: 67, 95, 155, 223, 322, 468. The filar micrometer was made by Merz: the powers are 87, 144, 210, 322, 417, 500, and 690; those generally used for double-star measurements are 322 to 690.

The driving clock, by Merz, is not a good one; it has a conical pendulum.—Ast. Nachr., vol. lxxxix.

Observer: Schiaparelli.

MILLER. (See WHITEHAVEN.)

MITCHELL. (See NANTUCKET.)

MITCHELL. (See CINCINNATI.)

MORTON. (See WROTTESLEY.)

NANTUCKET (U. S.)

Miss Mitchell's telescope was a 5 in. refractor by Alvan Clark.

NAPLES.

Aperture 5½ in.: focal length 7½ ft.: powers used 268 and 362.

Observer: Nobile.

NEWCOMB. (See WASHINGTON.)

NOBILE. (See NAPLES.)

OXFORD (Radcliffe Observatory).

The mounting of the Oxford heliometer was designed and executed by Messrs. Repsold, and differs from the ordinary German equatorial. Aperture 7.5 in.; focal length 10.5 ft. The polar axis is $42\frac{1}{2}$ in. long; diameter at upper pivot $4\frac{3}{4}$ in., and 3.85 in. at the lower. It is of steel, and the pivots turn in collars of bell-metal. It is perforated 2.1 in. throughout.

The declination axis is 434 in. long, 5 in. diameter in centre, 43 in. at the pivots. It is of steel, and perforated throughout, the bore being 19 in. The tube is of hammered brass; diameter at object-end 13 in., at the eye-end 92 in. The position circle is 227 in. in diameter. The hour circle is at the north end of the polar axis, has a diameter of 338 in., is graduated to 1 min., and reads to 02 sec. The declination circle has a diameter of 343 in., is graduated to 4', and reads to 1". The driving clock is governed by centrifugal balls, and the instrument is moved by a weight of about 30 lb.—Radcliffe Obs., vol. xi.

Observer: Main.

OXFORD (University).

The equatorial refractor is by Grubb; aperture 12½ in.; focal length 176 in. The declination circle has a diameter of 30 in. There are two filar micrometers, and a double-image. The driving clock is not faultless.—Monthly Notices, vol. xxxvi.

Observers: Plummer and Jenkins.

PARIS.

The instrument used by Flammarion is one of the equatorials of the Paris Observatory. The object-glass is by Lerebours, and has a diameter of about 15 in., and a focal length of 29 ft. It is not a very good one, and a diaphragm is therefore generally used. The hour circle has a diameter of 25 in., and reads to 1'. The

declination circle is divided to 5', and has a diameter of about 5 ft. The parallel-line micrometer is by Brunner, and the powers generally used are 300 and 400. The driving clock is also by Brunner, and has a Foucault regulator.

Plummer, (See Oxford University.)

Poulkova.

A very fine instrument was mounted at this Observatory by Merz and Mahler. The weight of the instrument is 7000 lb.; the clear aperture 15 in., and the focal length 22.5 ft. The driving clock is regulated by the friction of centrifugal balls against the interior of a conical box. There are 6 negative eyepieces, powers 152 to 1218; 21 positive eyepieces, powers up to 2000.

Observer: $O.\Sigma$.

POWELL. (See MADRAS.)

REGENT'S PARK.

In 1836 G. Bishop, Esq., erected an observatory in Regent's Park, London. The equatorial was by Dollond, and the mounting English in form. The tube was of brass, and painted. The aperture of the object-glass was 7 in., and its focal length 10\frac{2}{3} ft. The hour and declination circles were of brass, and 3 ft. in diameter, the former being divided to minutes and read off to seconds, and the latter divided to 10' and read off to 10".

The eyepieces gave the following powers: 45, 70, 108, 200, 320, 460, 700, and 800, and a polycratic wheel carried six of them.

The prismatic crystal micrometer was by Dollond, powers 185, 350, and 520; the parallel-wire was also by Dollond, powers 63, 105, 185, 320, 420, 600; also 190 and 300.

The driving clock was by Dollond: it was driven by a powerful spring, and regulated by two fans, and was

found to work "extremely well."—Bishop's Astr. Obs., 1852.

Observers: Dawes and Hind.

ROMBERG. (See LEYTON.)

ROME.

This fine instrument is mounted like the great Dorpat refractor.

Aperture 9.6 in.; focal length 14.2 ft.

Driving clock, very good. "The rate of the regulating part of this instrument is controlled by the friction of two small brass balls against the sides of a conical box."—

Monthly Notices of the R. A. S., vol. xvi.

Observers: Secchi and Ferrari.

RUGBY. (See DAWES.)

Observers: Wilson, Seabroke, and A. Percy Smith.

SCHIAPARELLI. (See MILAN.)

SEABROKE. (See RUGBY.)

SECCHI. (See ROME.)

SMITH. (See RUGBY.)

SMYTH. (See BEDFORD.)

SOUTH.

The 5 ft. equatorial was erected in 1797 in London. "The whole scheme of its fabric was cast by the late Captain Huddart, many years a worthy Fellow of this Society. All the tinned iron-work was made under the direction and inspection of the same able engineer." The brass-work was made by J. and E. Troughton, and the whole instrument was completed in 1797. The excellent object-glass of 3\frac{3}{2} in aperture was by P. and J. Dollond. The powers used were 68, 116, 133, 240, 303, 381. That most used was 133, the others being double eyepieces. In some few cases a single lens, power 578,

was used. The diameter of the declination circle was 4 ft.—Phil. Trans., 1824, Part iii.

The 7 ft. equatorial had an aperture of 5 inches, and was, at the time it was made, the *chef-d'œuvre* of Tulley. "In distinctness under high magnifying powers, it is probably excelled by no refractor existing." The ordinary observing power was 179; occasionally, 105 and 273 were used.—*Phil. Trans.*, 1824, Part iii.

The 20 ft. refractor was mounted in 1829, at Kensington. The glass was by Cauchoix, and had a clear aperture of 11\frac{3}{2} in.—Monthly Notices, vol. i.

STONE. (See CINCINNATI.)
STRUVE and OTTO STRUVE. (See POULKOVA.)
TALMAGE. (See LEYTON.)

TARN BANK.

Mr. Fletcher's equatorial was erected at Tarn Bank in 1860. The optical part was by Cooke, and the stand was made under the direction of Mr. Fletcher. The Sisson polar axis was used in the mounting. The object-glass has a diameter of 9½ in., and a focal length of 12½ ft. The declination circle has a diameter of 42 in., and reads to 1"; the hour circle is of the same size. The driving clock had 22½ lb. as a driving weight, and worked very well.

Mr. Fletcher's small equatorial, by Cooke, was mounted in the German style; aperture, 4'14 in.; focal length, 6 ft. This mounting was that used by Dollond, with a long polar axis. This axis was of mahogany, 9 ft. long, 9 in. square in the middle, and 7 in. square at the ends. The hour circle was 20 in. in diameter, read to 2 sec., and was loose on the polar axis. The declination circle had a diameter of 20 in. also, and read to 10". Powers, 50, 100, 160, 230, 300, 420, and 600, with the parallel-wire micrometer. The power generally used for double-star work

was 300. The driving clock was a very elegant instrument and worked very well. The governor was like that used in steam engines.—Monthly Notices of R. A. S., vols. x., xx., xxv.; Memoirs of the R. A. S., vol. xxii.

UPTON. (See CINCINNATI.)

WALDO. (See CAMBRIDGE, U.S.)

WASHINGTON. (The Great Refractor.)

This magnificent instrument has an aperture of 26 in. and a focal length of 390 in. The glass was by Chance, and Messrs, Alvan Clark and Sons were the makers of this noble lens. It was finished in 1872. The mounting is in the German style. The negative eyepieces are four in number, powers 155 to 1360. The positive eyepieces are sixteen in number, powers 173 to 1802. The tube is of steel, $\frac{1}{16}$ in. in thickness near the ends and 1 in the middle. Length 32 ft.; diameter of the middle one-third about 31 in. The object-glass is composed of an equi-convex front lens of crown-glass and a nearly plano-concave flint lens: thickness of the objective at the centre about 2.87 in. The glasses are free from all hurtful rings and striæ, and are of nearly perfect figure. There are three micrometers, two filar and one double-image. There are two finders, apertures 2 in. and 5 in. The driving clock was invented by Professor Newcomb: with careful attention to the oiling, etc., it works satisfactorily.—Instruments and Publications of the United States Naval Observatory, Washington, 1845-76.

The smaller instrument was made by Merz and Mahler. Aperture 9.6 in., focal length 14 ft. 3 in. The object-glass was under-corrected for colour, and in 1862 it was refigured by Messrs. Clark and Sons: the focal length was increased about one inch, and the glass corrected for defective achromatism; the definition also was improved. The flint disc is not perfect. Hour circle 15 in.,

and declination circle 21 in. diameter. Finder 2.6 in. aperture, and 32 in. focal length. Micrometer, a repeating filar, by Fraunhofer. The driving clock is regulated by a Fraunhofer centrifugal pendulum, but it is scarcely powerful enough. There are eight eyepieces, powers 90 to 899.—Washington Observations, 1865.

Observers: Newcomb, Hall, and Holden.

WHITEHAVEN.

In 1850 Mr. J. F. Miller, of Whitehaven, began his double-star measurements. The instrument was a very good equatorial refractor by Cooke, the mounting in the German style, and of the same size as Mr. Fletcher's instrument. The micrometer was by Simms, and proved to be a very good one. Diameter of position circle 5 in.; power generally used 300. The clock-work, too, was good.—Memoirs of the R. A. S., vol. xxii.; Astr. Nachr., vol. xxxiii.

WROTTESLEY.

English mounting: polar axis of four mahogany planks 14 ft. 3 in. long and 10 in. square in the middle; pivots of bell-metal. Focal length 10 ft. 9 in.; aperture $7\frac{3}{4}$ in.; flint glass by Guinand; crown by Dollond. Mounted at Wrottesley, Staffordshire, in 1843. Declination and hour circles each 3 ft. in diameter: verniers read to 10" and 1 sec.

Parallel-wire micrometer: position circle 4 in. diameter, reads to 6'; powers used 450 and 320, and 600 and 820, occasionally. Driving clock not satisfactory.—*Memoirs R. A. S.*, vols. xxiii. and xxix.

Observer: Morton.

CHAPTER IV.

THE MICROMETER.

THE parallel-wire micrometer is par excellence the instrument of the double-star observer. Though used for many other purposes, it is specially adapted to his work, and has not been superseded by any other form of micrometer.*

It consists of the following parts: first, a stout brass tube or adapter fitting into the eyepiece end of the telescope, and carrying at its outer end a position circle divided from oo to 360° in the direction contrary to the figures on a watch dial, and read off by two opposite verniers to tenths or twentieths of a degree; it is also provided with clamp and slow motion. The moveable vernier plate has attached to it the micrometer box, which is generally 5 to 6 inches long, 11/2 to 2 inches wide, and 1 inch deep. The micrometer screws enter the box at each end, their divided and milled heads being outside. The screws, of a hundred threads to the inch, enter their respective frames, which fit nicely within the box, and move parallel to one another like two tuningforks, one just small enough to work within the other. Across these frames, in the centre of the field, are stretched the fine webs at right angles to the direction of the screws. To prevent slack, the two frames are pushed towards one

^{*} There are many other forms of micrometer, the most important being Airy's and Amici's, both double-image micrometers. The former consists of a positive eyepiece containing four lenses, the third from the eye being concave and divided into two halves, and each half carried by its own screw. Amici's double-image micrometer consists of two prisms, and has been used by Dawes and Doberck. It is considered the best of the kind.

another by spiral springs, thus bringing the inner heads of the screws against the ends of the box. These heads are often made square with the shaft of the screw; but they are much better made spherical, so as to fit into conical bearings at the ends of the box. A flat comb plate is placed over the moveable frames across the open centre, with a fine-toothed comb cut so as to form a chord to the circle of the field of view at right angles to the moveable webs. This comb plate carries two stout parallel wires (called *position wires*), about 12" apart, across the centre of the field, and at right angles to the moveable webs and parallel to the comb. The eyepieces are attached

Fig. 3. (Parallel-wire Micrometer.)*

outside the box to a sliding-piece, moved by a screw for centering over the webs in the direction of their motion. The webs, position wires, and comb should be clearly defined with a high power at the same time. The eyepieces should as much as possible slide into the same adapter, to save screwing and unscrewing.

* One reading lens is removed to show the slow-motion clamp.

It is usual to insert in the stout brass tube or adapter, close to the position circle, a thin ivory ring with openings all round through the adapter, to admit light for the purpose of giving dark ground illumination to the webs. English makers usually furnish both screws with heads divided into a hundred parts, and figured 0, 10, 20, etc., so as to give an increasing reading when the webs are moved towards the heads or against the spiral springs. Observations are always taken by setting the screw in this direction, as it is found in practice to give the best results. German makers divide only one of the heads, and simply use the other screw for setting in different parts of the field. It is desirable that both screws should have easy play through not less than fifty revolutions. A divided head to one of the screws is quite sufficient, and for distinction we will call this the micrometer screw, and the other the setting screw.*

We have now to determine the value of the revolutions of the micrometer-screw in seconds of arc, and for this purpose we can make the setting screw and its moveable frame an efficient auxiliary. Let the comb be divided in such a manner that every fifth notch is a longer one, and each tenth notch numbered by small holes—one, two, three, etc., counting from the notch nearest to the setting screw as Zero. Let the following webs be placed on the moveable frame of the setting-screw: No. 1, at Zero; No. 2, at 1775 revolutions; No. 3, at 1825; No. 4, at 190; No. 5, at 200; No. 6, at 250 (in the centre); and No. 7, at 500. On the micrometer screw but one fine web is needed, and it is placed in the centre of its moveable frame: let us call this web No. 8.

We are now in a position to step the micrometer screw throughout its whole length with great ease and accuracy,

^{*} These are marked A and B, respectively, in Figure 3, and are held simply by friction, so as to admit of being set to any reading.

viz., at every five revolutions by webs No. 5 and No. 6; at every single revolution by webs No. 4 and No. 5; at every half revolution by webs No. 2 and No. 3; and also at every quarter revolution by webs No. 3 and No. 4.

It will probably suffice to test only the ten central revolutions for parts of a revolution. Use a high power and good illumination. The operation may be thus described. Bring No. 5 to Zero and No. 8 beyond Zero: the latter must now be brought carefully just into contact with No. 5, first on one side and then on the other, the head being read off to tenths of a division each time. No. 8 must now be brought up to No. 6 in precisely the same way, and this will complete the first step of five divisions. No. 5 must now be brought to five revolutions, and No. 8 set as before, first on No. 5 and then on No. 6; and this will be the second step: carry on this process throughout the fifty revolutions. Repeat this several times, and the mean readings of each step will give the comparative value of each five revolutions with great accuracy. Each group of five revolutions must now be tested in precisely the same way for each single revolution, by means of webs No. 4 and No. 5; and each of the ten central revolutions for parts of a revolution with webs Nos. 2, 3, and Nos. 3, 4. It is, of course, impossible for webs Nos. 1 to 7 to be placed absolutely at the distances named; but the exact distance will be determined by the observations and the proper allowances made in the computations.

Having thus obtained by the most accurate as well as the most convenient method the comparative value of the different parts of the screw, it now only remains to convert these values into seconds of arc. This is done by transits of a slow moving star from web No. 1 to web No. 7, the distance being fifty revolutions of the screw. The best stars for this purpose are a, β , and δ Ursæ Minoris, whose places are given in the Nautical Almanac.

If the telescope used has, say, 6 in. aperture and 9 ft. focal

length, the value of the fifty revolutions will be 95493 \pm seconds of arc. This, at the equator, is equal to 63.662 seconds of time, or I'' = 0.066 seconds of time: but if we multiply 0.066 by the secants of the declinations of β , δ , and α Ursæ Minoris respectively, we get 0.2518, I.127, and 2.859 seconds of time. Now as it is difficult to take a single transit with greater accuracy than 0.25 sec., the advantage of a slow star is at once apparent. If, for instance, the transit of δ Ursæ Minoris be taken to 0.5 sec. by a single observation, the value of the screw will be obtained with an accuracy of I in 2000; but as one observation cannot be relied on, a large number of transits of different stars should be taken, and in this way an accuracy of I in 5000, or even of I in 10,000, can be secured.

It is usual to express the value of the screw in seconds of arc for one revolution; and if an auxiliary table be constructed giving the value of parts of a revolution, any measured distance can be readily converted into arc.

The effect of change of temperature on the screw is so small that it may be entirely neglected. The effect of refraction, however, cannot be so disregarded when the above transits are observed out of the meridian; and the following is a simple and convenient mode of dealing with this, since it enables the observer to transit, when away from the meridian, and to correct his results at once if the altitude be not less than about 20°. Find the altitude of the object to the nearest degree or half-degree by the clinometer. Observe the transit as above and read off the position circle; then bring the micrometer box into a vertical position by means of the plumb-line of the clinometer. Read off the position circle, and the difference between the readings will give the angle with the vertical, or the parallactic angle. The full effect of mean refraction on the position of the star, supposing the transit to be in a vertical plane, must now be multiplied by the cosine of the angle with the vertical, and this will give the correction for refraction in seconds of arc. It is always subtractive in the case of transits. The interval of transit must now be multiplied by the cosine of the declination to reduce it to the equatorial value, and then converted into seconds of arc. The correction for refraction must now be added. This method is also applicable to correct the measures of low wide double stars: in this case the correction is always additive.

The correction for curvature of path must be applied in observations of a and δ Ursæ Minoris, but for β it is insensible. Convert the observed interval into arc. Then twice the sine of half the arc thus obtained, divided by the arc expressed in terms of the radius, will give the factor by which the observed interval must be multiplied to reduce it to the true value. Dembowski preferred β to δ as requiring no correction for curvature, and taking less time to observe, and so lessening the chance of instrumental disturbance during transit.

The micrometer screw may also be tested by two terrestrial marks, and the angular value determined if the distance of the marks from the object-glass be ascertained; but the definition so near the surface of the earth will rarely be found good enough for this kind of observation.

A powerful theodolite may also be used for this purpose, the two telescopes being turned towards each other, and the angular distance of the webs read off on the horizontal circle

If the micrometer will include the sun's disc, its value may be obtained from the sun's diameter. In this case the horizontal diameter should be measured. If the vertical diameter be taken, the sun should have a considerable altitude, and the correction for refraction must, of course, be applied. The sun's semi-diameter for noon of each day will be found in the Nautical Almanac on page II of each month.

Some observers make use of the pairs of stars in the Pleiades whose places were determined by Bessel with the greatest care. The following pairs, consisting as they do of small stars of nearly the same magnitude, will be found very useful for this purpose; and to aid in their ready identification a rough map is also given.

Name.	Mag.	R. A. (1880).	I)ec. (:	188o).
k (Asterope) 1	. 7.8 . 7.8 . 8.9 . 4.5 . 5.6 . 8	54 41 43 54 46 55 30 55 31 33 55 39 41	21'19 28'33 24'66 58'88 22'16 40'46 53'56 8'23 19'06 30'40	24 23 23 24 23	10 9 49 48 41 46 1 0 52 51	46.84 12.01 15.83 57.27 11.53 11.68 45.54 52.12 41.55 5.57

From the formula $r = \sqrt{(\Delta \delta)^2 + (\Delta a)^2 \cos^2 mean \delta}$ we find the following distances for the four pairs k1; 8, 9; 31, 32; 35, 36:—

	Diff. of R. A. (\(\alpha\) a).	Diff. of Dec. (Δ δ).	Distance,
k 1	127 ["] 14	94. ⁴ 83	149 ⁴ 92
8, 9	34 ⁻²²	18·56	36 ² 39
31, 32	74 ⁻⁶ 7	53·42	86 ² 64
35, 36	131 ⁻ 48	95·98	153 ² 86

In order that the observer may be able to check the preceding results and also to select other pairs for special purposes, the following extract from Bessel's work (Astronomische Untersuchungen, Erster Band) is given:—

. 21

The Phiades

כדיורת הלעי.

			,
,			

, ma X	Mag	R. A. 1840	Pre	Precession.	Proper	Dec 1840	Prec	Precession.	Proper
			Annual.	Sec. change.	Motion.		Annual.	Sec. change.	Motion.
				,	;			,	
Anon. 1 .	∞	53 59 14.52	83.119	+ 0.270	:		762.11	- 0.423	•
	6	-	53.139	+ 0.270		*	11.782	- 0.454	
21 k (Asterope)	4.8	ĸ	53.305		150.0+	24 2 56.40	192.11	- 0.425	150.0 -
22]	%	7 56.33	53.300			-	154.11	- 0.425	- 0.054
Anon. 8 .	6.8	86.98 oI	53.192	+ 0.271		23 41 26.35	11.737	- 0.425	
6 1	6.8	11 31.24	161.83	+ 0.220			11.734	- 0.425	
2 1	∞		53.198	+ 0.569			11.659	- 0.426	
24 p	2.8		161.83	692.0 +	110.0+	36 55.12	11.657	- 0.427	
Anon. 21.	6.8		53.377	+ 0.273		6	11.653	0.428	
1 23.	6.8		53.046	+ 0.265			11.648	- 0.425	
	3.4	26 46.72	161.83	4 0.268	170.0 +	36 16.91	11.648	- 0.427	890.0 -
	4.5		53.212	·99z.o +	+ 0.013		11.528	0.456	<i>LL</i> 0.0 –
28 h (Pleione)	9.5	55 10.82	53.241	40.567	40.00	38 30.60	11.527	624.0 -	- 0.085
Anon. 31.	∞	56 20.32		692.0 +			11.521	- 0.430	
%	∞	57 35.11		692.0 +			515.11	- 0.430	
. 35.	6	55 3 47.46	53.500				11.485	- 0.430	
· 30.	6	5 59.14	53.585	40.567			11.475	- 0.430	
						1			

The following table from Σ 's Mensuræ Micrometricæ will give a good idea of the accuracy of the work done with the parallel wire micrometer [e] is the probable error of a single distance, and f of a single measured angle].

A. Table of the probable Errors of single measures of Z.'s lucidæ, i.e., those whose companions are not below the 8th magnitude.

Class.	Mean Distance.	No. of Stars.	No. of Measures.	e	f	
I. II. III. IV. V. VI. VII. VIII.	0'70 1'48 3'08 5'62 9'79 13'94 19'38 28'19	44 111 128 119 51 46 48 48	176 447 563 469 222 199 184 178	0'074 '086 '099 '116 '127 '127 '145	2 30.9 1 52.4 1 8.2 0 48.9 0 30.2 0 23.9 0 18.3 0 14.9	

B. TABLE of the probable Errors of single measures of Z.'s reliquæ, i.e., those whose companions are between the 8th and 11th magnitudes.

Class.	Mean Distance.	No. of Stars.	No. of Measures.	e	f	
I. II. III. IV. V. VI. VII. & VIII.	0°75 1°54 2°93 5°82 10°00 13°88 22°60	28 186 383 426 278 161 383	94 642 1299 1428 783 455	0.087 109 122 156 184 201	2 27.0 2 1.9 1 29.5 1 7.1 0 47.1 0 38.7 0 27.0	

C. TABLE of the probable Errors of single measures of Stars, the companions of which are below the 11th magnitude.

Class,	Mean Distance,	No. of Stars.	No. of Measures.	e	f
II. & III. IV. V. VI. VII. & VIII.	2'59 5'92 10'46 14'19 21'93	14 17 22 11	49 55 59 37 35	o."76 -221 -362 -376 -371	2 27.8 2 2.1 1 20.7 0 59.6 0 55.6

Dr. Dunér, of Lund, gives the following results for the value of his micrometer: they were obtained from transits of Polaris:—

The Baron Dembowski made a very elaborate investigation of his micrometer in 1873. He used star transits, terrestrial marks, and auxiliary webs or types, as he calls them, in the micrometer. The following extracts exhibit some of his results:—

Libres means that all the transits taken on any given day are observed with the telescope in the same position with respect to the meridian, E. or W., the time of observation being any whatever within three hours of the meridian passage of the star.

Conditionnés means transits observed with the instrument alternately E. and W. of the meridian, at the same culmination, the same number of observations being made on each side.

The values of the entire scale, and the probable errors are as follows:—

	Sets.		Inter- vals.		Probable error.	
Ursæ Minoris	10 7 10 7	libres ,,, conditionnés	84 60 80 84	50 rev. = 1054.484 .874 .384 .836	r±0'170 '198 '150 '292	T centig. + 28.4 + 0.4 + 30.4 - 0.8
Ursæ Minoris By Gauss' method	10 14 18	double sets	80 28 	•836 •486 •942 •375	·209 ·311 ·780	+17.6 +21.2 +12.7

And by the method of least squares he deduces the following results:—

Value of the 50 rev. = $1054'' \cdot 578 - (T - 19^{\circ} \cdot 72)$. 0.01420. Probable error of the coefficient of $(T - 19^{\circ} \cdot 72) = 0.00295$.

Hence it is inferred that the absolute value of the entire scale is known within the limits \pm 0".06.

The next table enables us to see the result of his examination of each 5 rev. of the scale, four different methods being used:—

Methods used.	Rev. o to 5.	Rev. 5 to 10.
Polaris: 13 transits (libres) 8 U. Minoris: 14,, (condit.) Terrestrial marks, 14 measures Types, 15 measures Mean Value of 1 rev The results from Polaris which are underlined in the tables are excluded from the means.	105":247 r. = 0":16 '382 r. = '10 '397 r. = '06 105":342 21":068	105".662 r. = 0".21 105".453 r. = .21 .444 r. = .08 .372 r. = .07 105".423 .21".085

Rev. 10 to 15.	Rev. 15 to 20.	Rev. 20 to 25.	Rev. 25 to 30.
105":573 r. = 0":29	105"475 r. = 0":28	105"·358 r. = 0"·29	105"'498 r. = 0"'35
105":382 r. = :15	'468 r. = '18	'297 r. = '26	'536 r. = '18
'401 r. = :12	'404 r. = '10	'381 r. = '09	'380 r. = '08
'390 r. = :03	'423 r. = '07	'388 r. = '07	'457 r. = '04
105"·391	105′ ·442	105 ·356	105″·468
21"·078	21″·088		21″·094

Rev. 30 to 35.	Rev. 35 to 40.	Rev. 40 to 45.	Rev. 45 to 50.
105"459 r. = 0"·34 '348 r. = '29 '436 r. = '11 '438 r. = '06	105".607 r. = 0".34 '536 r. = 0".27 '484 r. = '09 '499 r. = '05	105".826 r. = 0".22 105".690 r. = '32 '670 r. = '08 '655 r. = '06	105".655 r. = 0".20 .632 r. = .07 .590 r = .05
105"·420 21"·084	105"·506	105"·672 21"·134	105″·626 21″·125

These results present, on the whole, an increasing value from 0 to 50 revolutions; a minimum value appears at 20 to 25, and the maximum is reached at 40 to 45. The probable error of one measure does not exceed 0"07.

Then the value of each of the ten central revolutions (20 to 30) is given, by two different methods:—

Method.	Rev. 20 to 21.	Rev. 21 to 22.
Terrestrial mark: 50 measures Types: 13 measures		21"'070 r. = 0"'05 '079 r. = '01
Mean	21"'070	21"074

Rev. 22 to 23.	Rev. 23 to 24.	Rev. 24 to 25.	Rev. 25 to 26.
21"079 r. = 0"05 076 r. = 01	21"'066 r. = 0"'05 '082 r. = '01	21"'085 r. = 0"'05 '081 r. = '01	21"'083 r. = 0"'05 '088 r. = '01
21"'077	21"'074	21"'083	21"'085

Rev. 26 to 27.	Rev. 27 to 28.	Rev. 28 to 29.	Rev. 29 to 30.
21"'080 r. = '05 '090 r. = '02	21"'086 r. = 0"'04 '095 r. = .02	21"'099 r. = 0"'05 '100 r. = '02	21":117 r. = 0" 05 '092 r. = '02
21″′085	21".090	21"'099	21"'104

Here, as in the preceding results, the mean values increase on the whole from 20 to 30; and De. finds that the probable error of one measure does not exceed 0"05.

Résumé of the mean values of each quarter of the ten central revolutions in the seven different series, and the probable error of one measure:—

Series.	ıst Qı	ıarter.	2nd Quarter.		3rd Q1	uarter.	4th Quarter.		
I. II. IV. V. VI. VII.	5"'005 '301 '111 '143 '195 '281 '325	0"·120 ·107 ·110 ·079 ·064 ·097 ·008	5"·175 ·214 ·185 ·195 ·164 ·139 ·194	o":093 :059 :085 :049 :090 :043 :024	5"·513 '733 '356 '277 '298 '270 '199	o":088 :099 :036 :047 :076 :063	5" · 390 · 336 · 432 · 469 · 426 · 394 · 366	o":089 :088 :070 :045 :108 :062 :026	

Series.	4th Q	uarter.	3rd Quarter.		2nd Q	uarter.	1st Quarter.		
I. II. III. IV. V. VI. VII.	4"'.907 5 '115 4 '920 '876 5 '086 '309 '276	0"·144 ·126 ·076 ·049 ·114 ·121 ·022	5"·149 ·197 ·351 ·308 ·144 ·268 ·241	.089	5"·263 ·644 ·266 ·332 ·544 ·315 ·562	0"·141 ·104 ·081 ·069 ·060 ·048 ·029	5"·764 ·127 ·547 ·567 ·299 ·192 ·004	o"·180 '053 '165 '069 '174 '146	

The objects used in obtaining the series I. to VII. were as follows:—For I., II., double distances of 5 Lyræ; for III., IV., V., double distances of two terrestrial discs; for VI. double distances of μ Draconis; and for VII. the distance between two auxiliary webs in the micrometer.

Taking the mean of the values for each quarter of a revolution obtained by the positive and negative movements of the screw, the following results for each series are found:—

	Mean of the	ne values for	each Quarte	er.
I. II. IV. V. VI. VII.	5"·384 ·214 ·329 ·355 ·247 ·236 ·164	5"·219 ·429 ·225 ·263 ·359 ·227 ·378	5"'331 '215 '353 '292 '221 '269 '220	5"·148

The means of these series for each quarter are 5"276, 5"272, 5"233.

Dineie	ence between the r	nd the mean value		A A KEVOIULIOII
I.	+ 0".113	- 0".052	+ 0" 060 - 056 + 082	- o"·123
II.	- *057	+ '158	– 105 6	— •046
III.	+ '058	- ·046	+ '082	- 095
IV.	+ '084	- '008	+ *021	- 1099
v.	- '024	+ 088	− . 020	- 2015
VI.	– .035	- '044	- '002	+ '08ō
VII.	- '017	+ '107	- '051	+ .020

In making the seven series of measures, the micrometer was removed from the telescope after each series.

Remarking on the whole investigation, De. is led to the following conclusions:—

- I. The values of the four quarters of a revolution are not equal inter se.
- 2. Greater inequalities still are found between the + and readings.
- 3. These inequalities do not depend on any defect in the division of the head.

The micrometer used at Bermerside Observatory (see the illustration, p. 51), was made by Mr. Simms last spring. It is a beautiful instrument, and a very careful examination of the screw by Dembowski's method (see p. 59) has shown that it may be regarded as perfect, at least for the purpose of double-star measurement.

From upwards of 200 transits of stars the value of 1 rev. was found to be 13''.8372, with a probable error $\pm 0''.004$.

The screw (marked A in the illustration) which is the one used in measuring double stars, was tested with the following satisfactory results:—

- 1. From ten careful settings of the micrometer web close to one of the fixed webs, it was found that the probable error of the mean was $\pm 0^{\circ}$.003, and the probable error of one setting $\pm 0^{\circ}$.014.
- 2. Careful stepping of the screw by 5 revolutions at a time showed the following differences from the mean value of eight sets of determinations: +0"·014, +0"·003, -0"·006, 0.0, -0"·008, +0"·004, +0"·004, -0"·001, +0"·005, -0"·005.
- 3. The ten central revolutions were then stepped singly, and the differences from the mean result were: $-0''\cdot014$, $+0''\cdot001$, $+0''\cdot001$, $-0''\cdot005$, $-0''\cdot004$, $-0''\cdot007$, $-0''\cdot005$, $+0''\cdot021$, $-0''\cdot012$, $+0''\cdot007$.
- 4. Each half revolution of the ten central ones was then measured five times, and the greatest difference from the mean result was +0**04.
- 5. Lastly, each quarter of the six central revolutions was stepped four times; the greatest difference between the mean of the whole and the means of the several quarters did not exceed 0":02.

These results therefore show that there is no appreciable change of value in the different parts of the screw, and that there is no sensible eccentricity in its mounting.

The webs used for double-star work, No. 6 and No. 8, were measured, and the thicknesses found to be 0":415 and 0":372.

CHAPTER V.

METHODS OF OBSERVING, ETC.

IT is here proposed to give a somewhat full account of the methods of observing the positions and distances of double stars. The subject will be treated under the following heads:—

- 1. Methods of observing angles and distances.
 - (a) The methods adopted by Sir Wm. and Sir John Herschel.
 - (b) The methods used by Dawes and Dembowski in the measurement of angles: Dawes' prism.
 - (c) Special methods for very close stars.
 - (d) Methods which may be occasionally used.
- 2. The number of measures of angle and distance required to form a set, or complete observation, with an example.
- 3. Specimens of Forms of Registry.
- 4. Weights.
- 5. On contracted apertures.
- 6. Best time for observing: weather, etc.
- 7. Precautions to be used while observing.

(1) METHODS OF OBSERVING.

(a) The method Sir William Herschel adopted will be best given in his own words: "The distances of the stars are given several different ways. Those that are estimated by the diameter can hardly be liable to an error of so much as

one quarter of a second; but here must be remembered what I have before remarked on the comparative appearance of the diameters of stars in different instruments. Those that are measured by the micrometer, I fear, may be liable to an error of almost a whole second; and if not measured with the utmost care, to near 2". This is, however, to be understood only of single measures; for the distance of many of them that have been measured very often in the course of two years' observations can hardly differ so much as half a second from truth, when a proper mean of all the measures is taken. As I always make the wires of my micrometer outward tangents to the apparent diameter of the stars, all the measures must be understood to include both their diameters; so that we are to deduct the two semi-diameters of the stars if we would have the distance of their centres. What I have said concerns only the wire micrometers, for my last new micrometer is of such a construction that it immediately gives the distance of the centres; and its measures, as far as in a few months I have been able to find out, may be relied on to about one-tenth of a second, when a mean of three observations is taken. When I have added inaccurate, we may expect an error of 3" or 4". Exactly estimated may be taken to be true to about one-eighth part of the whole distance; but only estimated, or about, etc., is in some respect quite undetermined; for it is hardly to be conceived how little we are able to judge of distances when, by constantly changing the powers of the instrument, we are, as it were, left without any guide at all. I should not forget to add that the measure of stars, when one is extremely small, must claim a greater indulgence than the rest, on account of the difficulty of seeing the wires when the field of view cannot be sufficiently enlightened.

"The angle of position of the stars I have only given with regard to the parallel of declination, to be reduced to that with the ecliptic as occasion may require. The measures always suppose the large star to be the standard, and the situation of the small one is described accordingly. Thus, in Fig. 4, A B represents the apparent diurnal motion of a star in the direction of the parallel of declination A B; and the small star is said to be south preceding at mn, north pre-

ceding at op, south following at qr, and north following at st. The measure of these angles, I believe, may be relied on

to 2°, or at most 3°, except when mentioned *inaccurate*, where an error amounting to 5° may possibly take place. In mere

estimations of the angle without any wires at all, an error may amount to at least 10°, when the stars are near each other."*

The foregoing diagram will make this method of registering the position angles quite clear. The innermost circle represents the inverted field of view; the four quadrants are indicated by nf, sf, sp, np, and the angle is given by the position circle: e.g., in the case supposed in the figure the position would be entered as 45° nf. The outer circles exhibit the method first suggested by Sir John Herschel, and now in universal use. In this the quadrants are dispensed with, the zero of the position circle is at the north point, and the circle is read all round to 360° in the direction N.E.S.W.; hence, according to this method, the above angle would be registered as 45° simply.

For distances, the methods used by Sir John Herschel and the later observers are identical.

(b) To measure accurately the position angle of a double star would seem at first sight to be a sufficiently simple process. Experience, however, has shown that in many cases it is most difficult. A glance at the measures of some double stars by different practised and eminent observers at the same epoch is quite enough to exhibit this fact in a striking way; and a comparison of the individual measures of the same star on the same night by one and the same observer and instrument, abundantly confirms it. Some of the disturbing causes are obvious enough; but even when the stars do not differ greatly in magnitude or brightness, and when the sky is clear and the air still, these discrepant measures still present themselves. And in the case of close and unequal pairs, "the eye, often at the very first glimpse, acquires a prejudiced bias." (H2.) "When such stars are between the wires, the eye may unconsciously be directed to the edge of one wire rather than of

^{*} Subsequent and more accurate measures show that Sir William's measures were liable to much greater errors than he here anticipates.

the other; "there is a tendency to place one of the double wires nearly in the direction of a tangent to the discs of moderately unequal stars." (H₁.) Further, we are told that there is a tendency in the eye to "accommodate its judgment to the position of the wires" before they are brought up to correct parallelism with the line joining the centres of the star discs.

Nor is this all. Not only have we to get rid of widely discrepant results, we must also be on our guard against accordant measures. This latter difficulty is often a very considerable one. However, as we are here rather concerned with the methods by which these tendencies are to be destroyed or counteracted, we proceed to describe those used by the most successful observers of double stars:—

- By repeated small movements of the wires in the same direction till the eye is quite satisfied.
- 2. By bringing up the wires alternately from opposite sides of the true direction. If three or more measures be made both ways, the mean result will probably be near the truth.
- 3. By a succession of small movements of the wires, the eye being removed from the telescope for a moment after each alteration.

Whichever method be adopted, it will always be well to rest the eye a little, and to carry the webs some degrees away from the last position obtained, after each reading.*

When the stars are so faint that only very little arti-

* "It will occasionally happen that, after taking two or three very coincident angles, on recommencing after some slight interruption, a sudden difference of two or three degrees will occur, and a new set of angles, agreeing well *inter se*, but differing from the former, will be obtained. In such a case it is most probable that the one or other result has been affected by some bias of the kind above alluded to; and, as it is highly necessary to ascertain which it is, the following method of trying such rival measures against each other will often be found serviceable. Suppose the two measures at issue were 63° and 65°, each being a mean of three or four pretty coincident ficial light can be used, it is still possible to obtain useful angles by employing the method of *oblique vision*. The illumination is gradually increased until the webs are just well seen; and the eye is then directed, *not* to the star, but to another part of the field. "In this way, a faint star in the neighbourhood of a large one will often become very conspicuous." (H_{\bullet})

Before concluding these remarks on the measurement of position angles, some account of Dawes's prism should be given. This distinguished observer, soon after he began to measure double stars in 1830, discovered a tendency in his own eye to "obtain a different result in position when the line joining the centres of the stars was nearly parallel to the line joining the centres of the eyes, from that which was obtained when these lines were nearly perpendicular to each other: and a still more decided difference was found to prevail when those lines formed a very oblique angle." He entirely overcame the difficulty by simply fixing a small prism to the eyepiece between it and the eye. By this means any double star can be placed in any desired position with respect to the horizon; and it was the uniform practice of this great observer to confine himself entirely to the vertical and horizontal positions. Dembowski and Struve always observed with the head vertical. $O.\Sigma$, also, after accumulating a vast mass of measures, became aware of an error resulting from obliquity of position, and undertook a laborious series of measures of artificial double stars,

measures. As it is probable that one is decidedly right, and the other decidedly wrong, and as their difference is 2°, let the micrometer be set to 61° and 67°, one or the other of these being necessarily 4° in error, will be violently offensive, while the other will be affected only by an error which experience has already shown may be borne without detection in the particular star in question. Thus the false results will be made evident; and, in assigning weights to the measures, this must be taken into consideration as materially diminishing the influence due to it."—Sir John Herschel, in Memoirs of the Royal Astronomical Society, vol. v.

partly for the purpose of ascertaining the amount and law of this error; and in his measures lately published both the observed and corrected angles and distances are given. The objections to the prism on the score of loss of light and impaired definition were regarded by Dawes, after nearly forty years' use of it, as quite unfounded. It is obvious, too, that the comfort of the observer, and therefore, to some extent, the accuracy of the measures, will be considerably increased by this simple apparatus.

Of the extreme difficulty which attends attempts made to obtain accurate measures of distance of close and unequal double stars, nothing need here be said. So keenly was this felt by the late Sir John Herschel, that he devised a method of obtaining the elements of the orbit of certain double stars from the measured angles alone, the measured distances being used collectively for finding the value in seconds of space of the scale used in the construction. Extreme care, much practice, a good sky, patient repetition on different nights, the destruction of bias by removing the eye from the instrument for a few moments, and carrying the web far away from the last setting after each measure,—these and such like precautions naturally suggest themselves to the observer.

- (c) In the case of close pairs, the following suggestions, if carefully carried out, will often be found of use:—
 - I. Place one star centrally over a web, and note the change of form which the disc undergoes, e.g., if it becomes elliptical in shape, place the other web so as to produce the same effect on the other star.
 - 2. When the distance is less than one second, the two following methods will frequently give valuable results.

Place the inner edges of the webs at a distance apart as nearly as possible equal to that which separates the two stars, using a high power; bring the stars close up to the webs, and compare the two spaces; correct, if necessary, and then read off the divided head of the micrometer. Repeat this from six to ten times; then, the reading when the webs are just in contact, together with the readings given by the above settings, will furnish the means for deducing the distance of the stars with considerable accuracy.

A better method, however, is that of first placing the threads a certain known distance apart, say I", bringing the discs between them, and trying to estimate and express in numbers the ratio between the distance of the discs apart and the distance of I". Make several or many estimations; then, the distance between the threads being known, the true distance of the discs is readily deduced from the ratios. These two methods were used by Struve. Baron Dembowski takes one measure by estimation, then one with the webs, and places great confidence in the mean of the two.

This will be a suitable place for a few words on the Barlow lens. It was frequently used by Dawes, and he thus sums up its advantages:—

- I. The diameter of the micrometer threads subtends only about half the angle.
- 2. The moveable parallel threads are both as nearly in focus, with double the magnifying power.
- 3. The value of the micrometer divisions with the lens is only about half of its amount without it: hence a proportionably fine motion in the measurement of distance.
- 4. With any given power the threads are distinct to a much greater distance from the centre of the field.
- (d) The method of oblique transits described by Sir John Herschel may be noticed (see the "Cape Observations," p. 247). "If p be the polar distance of a double star; θ its

measured angle of position; a the angle of position of an oblique wire across which both stars are allowed to transit by their diurnal motion; Δ the interval of their transits across it in seconds of time,—then will the distance of the stars from each other be given by the formula

$$\delta = \frac{15 \Delta \sin p \cos a}{\sin (a - \theta)}.$$

Convenient values of a are 100°, or 110°, or (on the other side of the vertical) 260° or 250°. The inclination of the oblique wire ought to be towards the opposite side of the meridian to that of the line joining the two stars. In situations not remote from the pole, a high degree of precision is attainable by this method."

Lastly, it is sometimes convenient, especially when the distance is very great, to measure differences of declination, and then to compute the distances of the components from them and the angles of position.

2. NUMBER OF MEASURES.

As regards the number of measures of position and distance which should be taken of a star on the same night, the practice of eminent observers differs. However, it is quite certain that at least three of the angle, and three double measures of the distance, should be taken. Six of angle and twelve of distance (six double measures) would be much better. On the other hand, it is better to measure the same object on two different nights, than to make a large number of measures on one night only. Of course the importance of the star and the quality of the night will also affect the number of measures taken. Sir John Herschel usually made ten of angle and ten of distance: Dembowski, four of angle

and four double measures of distance: Wrottesley, ten of position and ten of distance. Dr. Doberck four of angle and one double distance.

The making of a complete observation of the position and distance of a double star may be thus described. After lighting the lamp which illuminates the field, and turning on the red or blue glass,* the micrometer is pushed into the tube, adjusted to distinct vision of webs and star, and the position circle set to zero. With eye on the star, the micrometer is then turned bodily until the star runs along one of the distance webs (which has been placed near the middle of the comb), from side to side of the field. The thick position webs, now coinciding with the meridian, are then moved until the stars lie between them. Then, if Dawes's practice be followed, let the webs be brought up to true parallelism with the imaginary line joining the centre of the stars by a succession of small changes, the eye being removed from the telescope for a moment after each change. Read off the circle, and repeat from four to ten times. If the method of Dembowski be preferred, the webs will be brought up alternately from opposite sides of the true direction, the same number of measures being made in each direction. The webs should be moved away some distance each time, so that the eye may be freed from any bias.

If the circle be not set to zero at the outset, the necessary correction must of course be applied to each reading when the set is complete.

It is well to examine the zero reading of the circle after the measurement of each star, to avoid errors from accidental derangement. To take an example, let the star run along

^{* &}quot;The colour I employ is that afforded by a brown-red glass of the Claude-Lorraine kind, which throws a strong sunshine glow over a landscape, almost verging to orange. A fuller red is even yet superior for distinct definition of wires."—Herschel, in Memoirs of R. A. S., vol. v. Dembowski and Doberck prefer Cinnabar red glass.

the equatorial wire at 91° 30′ by the position circle: then will — 1°.5 be zero correction. If five readings be now taken, the operation of reduction will be as follows:—

For the distance:—Let us suppose that the companion is to the right of the principal star and the micrometer set to measure position. Fix one web, and place it on the centre of the principal star: now move the free web to the right until it bisects the companion star and read off the head. Carry the free web to the left of the fixed one, and bring the companion to the left until it is bisected by the latter; place the free web on the principal star; and again read off. Repeat this double measure, bringing the web up in the same direction as before, i.e., from left to right, from four to ten times, reading off the divided head each time.

To take an example as before: As the divided head is held on the axis of the screw by friction only, it may be set approximately to zero, when the moveable and fixed webs are superposed. Suppose this to be done, then the following observation will illustrate the method:—

The sum of these eight readings is 148.2, and the mean is d 18.52.

It still remains to convert these parts into seconds of arc. This is most readily done by means of a short table from which the values can be taken out at once.

Such a table may be thus constructed, supposing 13'227 = 1'. The first column gives the divisions and the others the tenths.

Div.	.0	'1	.3	.3	-'4	·5	.6	•7	-8	.9
0 I 2	°0 °075 °151	°007 °083 °158	.015 .000 .166	'022 '097 '173	.030 .102	°037 °112 °189	.045 .120 .196	.052 .128 .204	.060 .135	.067 .144 .219
	etc.		etc.		etc.	,	etc.		etc.	

Here 2.3 = 0.173 at once from the table.

3. Forms of Registry.

The importance of having ready a supply of forms for the entry of measures need not be here insisted on. Annexe are copies of those used by Sir John Herschel, Smyth, and Wilson.

Sir John Herschel's Form.

REGISTRY OF THE MICROMETRIC MEASURES OF DOUBLE STARS.

Number for Reference.	N.P.D.	Declination.	Right Ascension.	
No		·		
Instrument used.		Date.	Star's Name.	
	18 - 18	(Dec. of year.)		
Diagram.)uadrant.	Magnitudes.	Colours.
Face to	Micrometer r	eads		

FORM OF REGISTRY OF THE MICROMETRIC MEASURES OF DOUBLE STARS-continued.

Po	osition.				1	Distance				Remarks.
Power.	·	W	Power.	.B. The + and - readings to be taken alternately.	++++	Rev.	Pts.	Dec.	ข	
Mean Z =	irection nfsp		Mean Div. Parts Secon N.B.—	by	en or	aly positizero mu	ive re			Sky Wind Steadiness Definition of Star Dist. from Merid. General Judgment of Obs. Dist.
7	.cn ::: in:		and th	e d	ívisi	on by 2	omitt	ed.	_	Observer.
		istan	+	_			Circl f Ea ad of	clock le: ust, — n to 2	+ 2 - if 4 h.	West;) always }
Mean ∴ Zero for d	istance Z =	_	+	<u>-</u>	_	Declin + I	Vortl	ı, —	Sou	
To be used on	ly in case opposite taken.	read	lings are	not	-	True l	Decli	inatio	n	

Admiral Smyth's Form.

Micrometric Measures of Double Stars, at Bedford, with the $8\frac{1}{4}$ Feet Refractor.

Star	s Name.	Right	Ascension, 1830	٥.	Declination, 1830.			
Di	agram.		Quadrant.		Magnitudes. Colours. A = B = C = D =			
Position.		1	Distance.		Remarks.			
Power. Mean Z =		Mean Headings to be taken alternatedy.		Dec. w	Sky Wind Steadiness Definition of Star			
-		Div. by	2		Face to Dist. from Merid.			
=		Parts	=		General (Pos. Judgment {			
from # in d	irection nfsp	Seconds	_		of Obs. Dist.			
	Zero of Position.				Date.			
Star runs alor torial wire	ng the equa-	o 1	18 = 18	•	(Decade of the year.)			

The Rugby Form.

TEMPLE OBSERVATORY.

DOUBLE STARS. R. A. DECL.	87
R. A. DECL.	
Magnitudes.	
Position. Distance	
Zero. Direct. Indirect. ½ Dif	œ
Readings.	и.
Position =	
Distance -	

4. WEIGHTS.

Several practised observers have accustomed themselves to assign weights to every position and distance. Sir John Herschel, for example, gives the following account of his mode of doing this. "Although it is impracticable to estimate correctly in numbers the goodness of a measure, yet such is the powerful influence of atmospheric circumstances on this very delicate class of observations, as to render it imperatively necessary either to observe only on those rare nights when that cause of error does not exist, or to multiply observations on inferior nights, and reject, freely, all which exhibit great deviations, or which do not give satisfaction at the time. If this be not done, the greatest confusion will arise. The assignment of a weight to each measure, according to the best judgment the observer can form, offers a middle course, free from the objectionable point of arbitrary

rejection, and admitting a multiplication of observations on different nights, which is, indeed, quite indispensable for coming at the truth in all the more difficult cases. The scale I have adopted is from I to IO; I applying to the worst possible measurement in the most unfavourable circumstances, and IO to the most perfect which can be had in the most favourable." In casting up the mean of a set of measures, if the weights were pretty equal the arithmetical mean was adopted: if the weights differed much, the mean was found by the rule for finding the centre of gravity of a number of weights.—Sir John Herschel, in Memoirs of the R. A. S., vol. v.

It will be understood that the assignment of the weight must precede the reading of the circle or divided head. Dembowski began to use Sir John Herschel's method in 1854.

Dawes followed Sir John Herschel's plan after 1831. He observes: "Scarcely any liberty has been taken in the rejection of observations considered tolerably satisfactory at the time. Occasionally the micrometer has been set to a suspected reading, and a re-examination instituted. If not found decidedly bad, it has been suffered to remain; if otherwise, another completely detached observation has been taken. If this last differed widely from the suspected one, and nearly coincided with the rest, it has been taken in its stead; if not, both the suspected measure and that taken to prove it have formed part of the set."

Wrottesley computed the probable errors and weights by the usual formula prior to 1857. After that year a more elaborate method was adopted: see *Proceedings of R. S.*, vol. x.

Secchi assigned weights (I to 5) according to the agreement among the individual measures of the set; 5 was the highest and I denoted an approximate result.

For a fuller treatment of this subject, see page 144.

5. CONTRACTED APERTURES.

Sir John Herschel was probably the first observer who made constant use of these contrivances. In 1831 he has the following remark in the notes to his measures: "The action of a telescope is often surprisingly improved by stopping out the central rays, by a round disc from a fifth to a sixth of the diameter of the object-glass, which should be well sheltered."*

In 1834 Dawes wrote: "The use of a central disc on the object-glass having been suggested to me by Sir John Herschel, for the purpose of diminishing the images of the stars, I have frequently employed one from an inch to an inch and eight-tenths in diameter. The effect is decidedly good on the stars themselves, if not too faint to bear the loss of light. The separating power of the telescope is increased; but the concentric rings accompanying bright stars are multiplied, and rendered more luminous, and are also thrown further from the disc. Hence small stars may often be obscured or distorted by the ring passing through them." In the introduction to his last great catalogue, this eminent observer again takes up the use of apertures. His long experience enabled him to speak with much confidence, and the following is a summary of the contents of the chapter. He seldom used the central round disc before the object-glass, because it increased the number and brightness of the rings, and caused the rings to hide faint companions of bright stars and elongate the discs of nearly equal stars; -- a perforated whole aperture was used with great advantage, and the "perforated cardboard used for making the Berlin-wool work is very suitable for bright stars." For fainter stars, a piece of cardboard covering the whole object-glass and pierced with holes in concentric circles may be used. These contrivances reduce the size of the discs and the brightness of the rings. The concentric prismatic rings produced are so distant as not usually to interfere with companion

^{* &}quot;Sheltered:" i.e., provided with a dew-cap of ample length, blackened inside.

stars. Angular apertures were used by Sir John Herschel, especially the inscribed triangle for destroying the rings round bright stars; but the rays often obliterate or distort the small companion star. Dawes recommends the inscribed hexagon. In order to destroy the tendency of discs to become triangular, "especially when the wind is in the cast or south-east," he recommends "cutting off three equidistant segments from the whole aperture of the object-glass, the base of each of which is the chord of 60°. Then, the chords being placed so as to coincide in position with the angles of the telescopic inverted image, those angles will be reduced by the larger circular aperture between the segments, and a fairly round image will be substituted for the triangular one."

"A smaller aperture may sometimes show a very delicate and close companion to a bright star, when a larger aperture fails to do it."

The following table, from Dawes, may be of use in enabling the observer to form a correct estimate of the separating power of his object-glass:—

Aperture	Least	Aperture	Least	Aperture	Least	
in	separable	in	separable	in	separable	
inches.	distance.	inches.	distance.	inches.	distance.	
1.0 1.6 2.0 2.25 2.75 3.0 3.5 3.8	4'56 2'85 2'28 2'03 1'82 1'66 1'52 1'30	4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0	1°14 1°01 0°91 0°83 0°76 0°70 0°65 0°61	8·5 9 0 9·5 10·0 12·0 20·0 25·0 30·0	0'536 0'507 0'480 0'456 0'380 0'304 0'228 0'182	

6. BEST TIME FOR OBSERVING, ETC.

The state of the atmosphere during double-star observation should always be described in the note-book. Secchi indicates the state of the sky by means of the initial letter of the words signifying very fine, good, middling, and bad. He considers the night very fine when distances under I can be

readily measured, the discs being sharp and clear; good, when distances from 1" to 2" can be dealt with, the discs being less sharp than in the preceding; middling, when the discs are badly defined and unsteady; bad, when discs 3" apart cannot be clearly separated. Some observers express these conditions by numbers. From the experience of Dawes and Struve it would seem also to be worth while noting the direction of the wind. Both these practised observers frequently found that easterly winds were associated with triangular discs.

As regards the best time for observing, perhaps not much can be said, so much depends on local circumstances. Sir John Herschel, in the south of England, found that "the best time for astronomical observation, and especially for these measurements, is between midnight and sunrise. In the long nights of winter, it is true, distinct vision often comes on an hour or two before midnight, and in all seasons occasionally, of course, much earlier." He then notes the unsteadiness of the discs as morning twilight comes on, and uses the following descriptive terms in his notes: "twirling," "moulding," "convulsed," "twitchings," "wrinkled," "burred," "glimmering." "The rarest of all states of the atmosphere is that in which the rings are destroyed and the stars are seen perfectly round and tranquil."

In conclusion, Sir John's experience with respect to the action of dew and the use of the dew-cap is worthy of note. "The least dew on the object-glass must be most carefully avoided, as it produces a singular contortion in the stars, which I have usually termed wrinkling; the discs are much diminished, the rings multiplied and rendered narrower, and are kept in constant motion; and a material change of the apparent angle of position is often produced by the displacement of their centres." The remedy he found to be a tube of tinned iron about 20 in. long, bright without and blackened within, and fixed on the object end of the telescope. (This was for his 7 ft. refractor.)

7. PRECAUTIONS.

The following precautions and hints may be of use to a mateur observers. They are drawn from the experience of such observers as Σ_n , H., Da., De., and Se.:—

- I. At the outset it must be remarked that the observatory (doors, windows, slit, and ventilators) should be thrown open at least an hour before observation begins, in order to reduce the temperature of the room to that of the external air.
- 2. If the definition be bad and the motion great, it is useless to attempt the measurement of double stars. In short, if a power of at least 300 cannot be used, the results cannot generally be of any value.
- Very bright stars should be measured in daylight or twilight.
- 4. The observations should be made near the meridian if possible.
- 5. The observer should be in an easy position,—the prism effectually secures this; and the driving clock ought to go smoothly.
- 6. The bright-field should be used almost exclusively—red and blue colours are most in use.
- 7. Use the highest powers possible, and always the same powers.
- 8. A moderate number of measures of an object on each of two nights is better than a large number on one night.
- 9. Use printed forms.
- Enter date, hour, weather, and distance from meridian, before observation begins.
- II. Notes on definition, general impression as to the value of each measure or each set, etc., cannot well be too copious.
- 12. In all doubtful cases make a sketch, and add full description.

PART II.

CHAPTER I.

ON THE CALCULATION OF THE ORBIT OF A BINARY STAR.

INTRODUCTION.

In his Lettres Cosmologiques, first published in 1761, the astronomer Lambert has the following remarkable words: "By observing the groups in which the stars are very much condensed, we may, perhaps, be enabled to ascertain whether there are not fixed stars which revolve in sufficiently short periods of time around their common centre of gravity." At the time these words were written, not more than from forty to fifty double stars were known to astronomers. In 1784 (see Phil. Trans., vol. lxxiv., p. 477), about four years after Sir William Herschel began his famous discoveries of double stars, Michell wrote: "It is not improbable that a few years will inform us that amid the great number of double stars, triple stars, etc., observed by Herschel, there are some which form veritable systems of bodies revolving about one another." And again, in an earlier paper, (Phil. Trans., 1767, vol. lii.,) Michell writes: "If, however, it should hereafter be found that any of the stars have others revolving about them, for no satellites shining by a borrowed light could possibly be visible, we should then have the means of discovering the proportion between the light of the sun and the light of those stars, relatively to their respective quantities of matter." Maupertuis, Cassini, and no doubt other thoughtful astronomers in the early part of the eighteenth century, speculated on the existence of siderial systems, but

none with such clearness as did Christian Mayer of Mannheim. This diligent observer studied the proper motions of many bright stars by means of the small Comites he discovered near them, and speculated on binary systems, elliptical orbits, the origin of new stars, variables, a central sun (?), etc.* The actual discovery, however, of pairs of stars physically connected and in orbital motion was reserved for Sir William Herschel. In the year 1779 he began to sweep the northern heavens in search of double stars, and in his first catalogue, presented to the Royal Society in 1782, gave descriptions and measures of 269 of these objects. twenty-five years after the conclusion of these sweeps for double stars, he carefully remeasured the angles and distances. The observed changes in angle and distance formed the subject of his great paper, " Accounts of the changes that have happened during the last twenty-five years, in the relative position of double stars; with an investigation of the cause to which they are owing." (Phil. Trans., 1803, Part ii.) In this paper he showed that "many of them are not merely double in appearance, but must be allowed to be real binary combinations of two stars, intimately held together by the bond of mutual attraction." And Castor is the star whose changes he first submits to examination. Indeed this splendid object seems to have commanded much of his attention for years before the publication of his famous discovery of binary stars; for Sir John Herschel says of this star that its "unequivocal angular motion seems to have first impressed on my father's mind a full conviction of the reality of his long-cherished views on the subject of binary stars."-Memoirs of R. A. S., vol. v., p. 196. Here too it is worth while noting that in 1798 Dr. Hornsby, reflecting on the well-marked proper motion of Castor, and the fact that the distance of the components had not changed for twenty years, drew the inference that both stars were moving with

^{*} See his Gruendliche Vertheidigung, etc., 1777.

the same velocity and in the same direction, but quite failed to see that these facts supplied unequivocal evidence of physical connexion.*

In this way Sir William Herschel detected about fifty binaries. Since his time the list has been largely extended, and the researches of Struve, Mädler, and others brought the number up to about six hundred.

In the paper above referred to, rough guesses at the periods of revolution of some of the binaries were made by Herschel; e.g., he assigned a period of about 342 years to Castor. It was reserved, however, for his distinguished son, Sir John, to grapple successfully with the interesting problem of finding by a graphical method the orbit which one star describes relatively to the other. If S represent the principal star, to which the motion of the companion is

referred, and if at successive epochs the positions of the latter have been observed to be as in the figure, S₁, S₂, S₃, S₄, S₅, it is plain that, assuming that the observations are sufficiently nume-

rous and accurate, a curve can be drawn through them which will represent the orbit. The positions thus marked down will not always form part of an ellipse; they may lie in a straight line. For instance, the charted positions of the companions of Vega, Σ 1263, and Σ 1516, appear to be well represented by straight lines; while γ Virginis, Castor, ξ Ursæ Majoris, certainly move in elliptic orbits. It is possible, too, that the path may be some other curve, the knowledge of which will in its turn throw light on the forces and conditions which obtain in these sidereal systems.

To describe a method by which the elements of the orbit of a binary star may be obtained without the aid of the higher departments of mathematics, is the object of the present section.

^{*} See Grant's History of Physical Astronomy, p. 559.

STATEMENT OF THE PROBLEM.

From the observations of angle and distance at given cpochs, to draw the apparent orbit which one star describes relatively to the other, and thence to determine the elements of the true orbit, and to construct an ephemeris.

The first part of the problem consists, then, in a careful study of the observations to determine their relative value, and in so arranging them as to obtain the apparent orbit. A little explanation will here be necessary. The orbit, or portion of it seen by us, is the apparent orbit: it is the projection on the background of the heavens of the true orbit, i.e., the projection of the true orbit on a plane at right angles to the line of sight. Suppose, for example, the plane of the true orbit to be at right angles to the line of sight, then will the revolving star be seen to describe an elliptic path round the primary star in the focus, and the true and apparent orbits will coincide. If the plane of the orbit pass through the earth, and present its edge to the observer, the revolving star will appear to recede from, approach, occult, or be occulted by, and again recede from, the star in the focus of the ellipse. The plane of the orbit, again, may be but a little inclined to the line of sight, and then the companion will appear to pass a little below and above the principal star. In one word, the plane may have any inclination to the visual ray, and the projection will present corresponding phenomena. Hence, a circular or elliptic orbit, if its plane were oblique to the line of sight, would be projected into an ellipse; if the plane passed through the earth, the projection would be a straight line; and an elliptic orbit might be so situated as to have a circle for its projection.

The history of binary stars already furnishes us with illustrations on this point. Take the star ζ Herculis, discovered to be double by Herschel in July 1782. On looking at this object in October 1795, it was still seen double. Soon after the companion disappeared. During 1821, 1822, 1823, and

1825, the utmost endeavours of Herschel and Struve failed to elongate it. Encke caught it double in 1826. Of this phenomenon Herschel says: "My observations of this star furnish us with a phenomenon which is new in astronomy; it is the occultation of one star by another." Here then is an example of the orbital plane being in the line of sight. The period of this binary is about thirty-five years.

Once more: γ Virginis is already a famous binary. It was known as a double star in the seventeenth century. Herschel found the distance 5".7 in 1780; in 1831 it was 2".0. In 1836 Herschel wrote: " γ Virginis, at this time, is to all appearance a single star." About 1837 it again separated, and the distance is now nearly 5".

42 Comæ is a fine example of a binary, the plane of whose orbit coincides with the visual ray.*

Perhaps the accompanying figure will help to render this

quite clear. Let C C' be the direction of the line of sight, A B G

B the real ellipse whose focus is S and centre C. Then will its projection on a plane at right angles to the line of sight be the ellipse A' B' G'. And it will be observed that S', the projection of S, does not coincide with the focus F. The principal star, therefore, will not in

general occupy the focus of the apparent ellipse, but will be displaced into some other position.

In many binary stars the observations do not yet extend over a sufficiently long period to enable us to compute any

* Examples.—In Σ 186, 1967, 2737 (AB) the plane of the apparent orbit coincides very nearly with the visual ray. The apparent orbit is nearly circular in Σ 1037, 1126, and λ Ophiuchi; the orbit is extremely elongated in Σ 1516 (AC), 1909, and 2822. In Σ 1348, either the position of A in the apparent orbit is very eccentric, or the plane of the orbit is greatly inclined to the visual ray.

satisfactory orbit. In some, the portion of the orbit traversed since observations were commenced does not include any of the critical points; while in yet other cases complete revolutions have been made since the date of the discovery of the stars. Of this last class, ξ Ursæ Majoris, period about sixtyone years, η Coronæ Borealis, period about forty-two years, and ζ Herculis, period about thirty-four years, may be given as examples.*

The next part of the problem consists in determining the real from the apparent orbit, and the position occupied in the apparent orbit by the principal star. And when all this has been done satisfactorily we are in a position to put our orbit to the test by the construction of an ephemeris, i.e., a series of computed positions and distances for the epochs of past and future observations. And if the computed quantities fairly agree with the measures made in past years, we must then proceed to compute positions and distances for future years at intervals of from a quarter of a year in the case of stars having rapid motion, to five or ten years in cases where the period extends over centuries.

That it is quite possible, however, for an ephemeris to represent all past observations in a satisfactory way, and yet to fail completely when it comes to be compared with future measures, will be evident on a little reflection. The subjoined table, however, will bring out the fact very clearly:—

		Posi	tion.	01	No. of
	Epoch.	Computed. Observed.		Observer.	Nights.
i	1848°0 1850°0	239°0 234°4	249 [.] 16	Dawes.	7
	18520	227.3	246·39	•	1
	1854 o 1855 o	212.6 195.5	246.51	,,	7
	1856.0	164.4	245 [.] 44	Dembowski.	7

The computed places are from an ephemeris for Castor con-

^{*} In OS 208 and 298 it is probable that we shall soon be in a position to attempt the computation of the elements of the orbits.

structed by Sir John Herschel from an orbit which he published in 1832. The observations used by him extended from 1719 to 1831. The observed places are put by the side for comparison.

The small number of observations at the disposal of the computer, and the very small portion of the orbit dealt with, must, of course, be here remembered. Yet this orbit represented the previous measures very fairly indeed.

Even when a star has been measured by skilful observers during more than an entire revolution, it is not always an easy matter to obtain elements which will furnish materials for a good ephemeris. Take & Ursæ Majoris as an example. Its duplicity was discovered by Sir William Herschel in 1780; the companion was then not far from its apastron; the periastron was reached in 1816, and again in 1876, and hence its period is about sixty years. Now in 1872 Dr. Ball gave a set of elements, and an ephemeris furnishing positions up to 1878.75. The subjoined table will show how far the predicted positions agree with recent measures.

Epoch,	Pos	ition.	
Epocn,	Computed.	Measured.	
1872.50	22.4	19:39	in 1872:32, by Dembowskí.
1872.75	17.5	- 07	
1873.00	12.2		•
1873.25	7.3	358.91	in 1873'33, ,, ,,
1873.20	2.2		
1873.75	357.2		
1874.00	352.1		
1874.25	347.0	333.63	in 1874 [.] 35, " "
1874.20	342.2		
1874.75	337.6	i	
1875.00	333.5	_	
1875.25	329.0	317.56	in 1875 [.] 27, ", ",
1875.20	325'1		
1875.75	321.4	_	
1876.25	314.7	304.8	in 1876·30, " "
1877.25	303.5	294.9	in 1877 [.] 26, " "
1878.00	296.1	ł	
1878.25	293.9	_	
1878.20	291.8	285.2	in 1878.45, by Wilson.

The agreement here is of course not satisfactory.

METHODS OF SOLUTION ADOPTED.

The first part of the problem—that is, the determination of the most probable apparent orbit—may be best solved by the methods given by Sir John Herschel ('Memoirs of the Royal Astronomical Society,' vols. v. and xviii.), with some slight additions. We shall give a brief explanation of it, but the method will be best understood by working through an example.

To pass from the apparent to the real orbit is a geometrical problem of considerable difficulty. Fine analytical solutions of it have been given by Savary ('Connaissance des Temps pour l'an 1830 et 1832'), Sir John Herschel ('Memoirs of the Royal Astronomical Society,' vol. v.), Encke ('Ueber die Berechnung der Bahnen der Doppelsterne, Berliner Astr. Jahrbuch für 1832'), Villarceau ('Méthode pour calculer les orbites relatives des étoiles doubles.' 'Connaissance des Temps pour l'an 1852 et 1877'), and Klinkerfues ('Ueber eine neue Methode die Bahnen der Doppelsterne zu berechnen.' Gottingen, 1855). Purely geometrical solutions have been given by Thiele ('Ast. Nachrichten,' No. 1227, vol. lii.), and by the writer ('Monthly Notices,' vol. xxxiii., p. 375). Of these, Thiele's is by far the most elegant, and it is the one we shall here adopt. The construction of an ephemeris, and the comparison of the observed with the calculated places, is essential for the completion of the problem. This will be effected in the present paper by a graphical method.

It must, however, be understood that the graphical method is only introductory, and that subsequent analytical methods are necessary in order to correct the elements, and attain the highest degree of accuracy that the observations permit of.

TO PREPARE THE OBSERVATIONS FOR USE.

Some of the earlier measures of position and distance have

to be deduced from the differences of right ascension and

declination observed by Bradley, Piazzi, Lalande, and others. The process is as follows:—

Let S, S' be the two stars, whose right ascension and declination are a, δ , and $a + \Delta a$, $\delta + \Delta \delta$ respectively, S being the principal star.

Let Δa , $\Delta \delta$ be expressed in seconds of arc: then if P is the pole, PSQ, PS'Q' declination circles meeting the equator

in Q, Q', and S H is an arc of a small circle parallel to Q Q', Q Q' = Δa , S' H = $\Delta \delta$.

Let $PSS' = \theta$, $SS' = \rho$, the position and distance required to be calculated from Δa , $\Delta \delta$ observed.

Then
$$\tan \theta = \tan SS'H = \frac{SH}{S'H} = \frac{\Delta a \cos \delta}{\Delta \delta}$$
 (i.),

and
$$\rho = \Delta \delta$$
 sec. θ , (ii.),

from which θ and ρ may be obtained.

It must be observed that since θ is always measured in the direction n, f, s, p, if Δa is positive, that value of θ between 0° and 180°, which satisfies (i.) must be chosen; and if Δa is negative, the value between 180° and 360°. ρ is always positive.

Further, if Δa , $\Delta \delta$ are observed with assigned limits of error, it is advisable to ascertain what are the corresponding limits of error in θ and ρ , by substituting in succession those values of Δa , $\Delta \delta$ which give the greatest and least values to θ and ρ .

Throughout the whole of the working of this problem it is advisable to have angles expressed in degrees and decimals of a degree.

REDUCTION TO A SELECTED EPOCH.

In all cases before observations made at different times can be combined, the effect of precession on the angle of position must be eliminated. For it must be remembered that angles of position are measured from the great circle which passes through the star and the pole, and that in consequence of precession the pole is constantly shifting its place, having a slow retrograde motion round the pole of the ecliptic. Hence the position that this circle occupies at some selected epoch must be taken as the zero of position, and all observations must be referred to it.

The subjoined figure will show how the effect of this motion of the pole on the angle of position of any star can be computed.

Let E be the pole of the ecliptic; P, P' positions of the pole at an interval of a year; T the intersection of equator and ecliptic, from which the right ascension is reckoned; S S' a double star in right ascension a° and declination δ° . Draw the circles P S, P' S; then P S P' is the $\Delta \theta$ required.

Since TE, TP are quadrants, TPE is a right angle, and therefore P' lies on TP. Draw P'p perpendicular to SP.

Then P P' is known from the constant of precession to be for the year 1850, and very approximately for any other year, $20^{\circ}.0564 = 0^{\circ}.0055712$;

and $P'p = PP' \sin P' Pp = PP' \sin a;$ also $P'p = \Delta \theta \cos \delta$, as in the last section. $\therefore \Delta \theta \cos \delta = P' P \sin a;$ and $\Delta \theta = 0^{\circ} \cdot 0055712 \sin a \sec \delta.$

The exact formula is $\{20''0564 - 0''000097(t - 1850)\} \sin a$ sec δ .

It appears further that the effect of precession is to increase the angle of position in the case chosen. Hence, in order to bring up to a certain date old observations of position taken t years before that date, we must add to those angles of position the quantity $0^{\circ}\cdot0055712 \sin a \sec \delta \times t$. It is plain that this will be + for values of a from 0° to 180° , or from 0^{h} to 12^{h} and — for values from 180° to 360° , or from 12^{h} to 24^{h} .

EXAMPLE.—Dawes in the year 1831'34 observed the angle of position of η Coronæ Borealis in right ascension 15^h 18^m 14^s, and declination 30° 43′ 31″, to be 50° 46. Reduce this to the epoch 1880.

Converting the right ascension into degrees, it becomes 229° 35′ 30″. Hence $\Delta\theta = 0^{\circ}.0055712$ sin 229° 35′ 30″ sec 30° 43′ 31″ × 48.66 = $-0^{\circ}.2292$; and the corrected angle is therefore 50°.23.

DRAWING OF THE INTERPOLATING CURVE.

When a table has been thus constructed, giving, for some selected epoch, the angles of position and distances at a number of dates, the next problem is how to use this mass of materials. It will be at once obvious that the observations are not very harmonious, but that there are serious discrepancies not only between different observers, but between the same observer and himself. And if the points were simply charted out according to the observed positions and distances, they would not lie on a curve, but on a broad irregular band.

Sir John Herschel was the first to suggest (Mem. R. A. S., vol. v.) a graphical method of obtaining the positions at any

selected epochs with a high degree of accuracy; a method which necessarily gives no weight to exceptionally bad observations, and makes use of all the good observations, both before and after any epoch, to determine the angle at that epoch.

Take a sheet of paper ruled in fine squares,—that called millimetre paper * is the best,—and let the divisions running horizontally, suppose, represent angles, each division standing for a tenth of a degree, and the divisions running vertically represent years, each division standing for a tenth of a year.

On this convention a dot on the chart represents a single observation.

The subjoined chart therefore represents the following table of observations,

t.	θ.
1870.23	210.02
1870:38	209.95
1870.40	210.30
1870.25	212.38
1871.08	211.10
1871.34	212.08
1871.41	212.08
1872.10	214.62
1872.19	214.44
1872.30	213.51

and the curve drawn among them cannot be very far from the truth, and is influenced by all the observations except the two outlying ones, which are obviously bad.

By this means we can obtain more accurate estimates of what the angle would be at any assigned date, or what is more used, of the date at which the angle would have an assigned value, than we can from the observations directly.

For example, from the diagram we see that in 1870'00 the

^{*} Millimetre paper may be got at Messrs. Williams and Norgate's.

angle would have been 209.5, and that the angle was 213 at the time 1871.71.

All the measures, therefore, of position of the star must be charted, and the 'interpolating curve,' as Herschel calls it, must be drawn among them. This is a matter of the highest importance. The curve must be smooth and flowing. It may have points of contrary flexure, but it can have no abrupt changes of curvature.*

When the curve has been drawn, note the time indicated by it at which the angle had in succession a series of values, proceeding by some common difference, say of 2°, or of 5°, and construct a first table of interpolated angles and dates.

Let the subjoined table be a specimen:

	<i>θ</i> °.	t.	
	70	1837.34	
	75	1839.90	
•	80	1842.12	
	85	1844.25	
	90	1846.08	
	95	1847.74	

SMOOTHING THE CURVE.

The next process is to 'smooth' the curve by an arithmetical examination of this table.

Let Δt represent the result of subtracting any one number in column 2 from the number below it, and let the series of numbers so obtained be arranged in a column to the right of the column of t.

Similarly, let $\Delta^2 t$ be the differences between the numbers in the column of $\Delta^2 t$, and be placed in a column to the right; and $\Delta^2 t$ be the differences of $\Delta^2 t$.

^{*} A point of contrary flexure indicates a point where the line drawn to the principal star is normal to the apparent orbit of the star.

The table will then be as follows:

It is plain from this that the numbers are not quite right, that is, that the curve has not been drawn quite smoothly, or that some of the values of t have not been quite correctly estimated. For if they were, then the differences in each column ought to proceed regularly, and not show irregular and abrupt changes, as this series does, in the second and third differences.

It is necessary, therefore, to make slight changes in the second column such as will bring the difference columns into more perfect adjustment. To do this is not very easy, and requires patience. The following considerations may help in the process. The column of $\Delta^3 t$ is on the whole +, and therefore the column of $\Delta^2 t$ ought to have its terms, which are negative, continually decreasing in absolute magnitude. The '99 is therefore, too small, and the '30 too large. These can be changed in the right direction by increasing the 2'122 or diminishing the 2'13, and these in their turn make changes in the first column.

After successive attempts, we obtain the following result:

θ°	t.	Δt . $\Delta^2 t$.	$\Delta^3 t$.	
70	1837.35	2.25		
75	1839.87	2.5053		
80	1842.16	2.0755	.01	
85	1844.23	1.8651	.01	
90	1846.09	1.6551	.00	
95	1847.74			_

By comparing this with the previous table, it will be seen that none of the dates have been altered more than '04 of a year, which would be represented on the chart by an almost imperceptible space.

The values of t so obtained may therefore be regarded as a still closer approximation to the truth than those obtained directly from the graphical process, and d fortiori than those obtained by direct observation. All small errors arising from imperfect drawing of the curve, or wrong estimation of the decimals, have been got rid of. But it must not be forgotten that these values are still liable to be affected by serious errors of judgment in drawing the curve, or by errors of single observations when the curve depends on single observations. The curve may be smooth, and yet not the right curve. Errors of this kind cannot be detected at the present stage of the problem, but will be revealed later on.

EMPLOYMENT OF MEASURES OF DISTANCE.

In a precisely similar manner all the measures of distance should be charted on millimetre paper, and interpolated distances obtained, at equal intervals of time, and the distance curve 'smoothed.' The errors in observation of distance often bear a large ratio to the distance itself, and the interpolated distances are far more trustworthy than any individual measures.

If now a series of corresponding values of r, θ is found, and charted, these points will give a general indication of the nature of the curve. They will, for example, indicate whether the orbit is likely to be rectilinear or elliptical, and whether a sufficient portion of it has been described to make it worth while to attempt the computation. But in many cases it will be found that the points so obtained do not lie tolerably well on a curve, and that there will be liability to large error in attempting to draw a curve among them. This arises from the almost unavoidable error in the measurement of

distances. Sir John Herschel, therefore, devised a method by which the *relative* distances could be obtained from the measurements of position alone, and this we now proceed to describe.

Determination of distance from the interpolating curve for angles of position.

If A C E is an ellipse, S the focus, it follows from Kepler's second law that equal areas are described in equal times, that the rate of change of angular position is much more rapid in some part of the orbit than in others.

FIG. 11.

Let A S B, C S D, E S F, be equal areas; then they would be described in the same time, and hence the change of position angle in that time would be A S B in one part of the orbit, C S D in another, and E S F in a third. And conversely, if the change of angle is greater at one part of the orbit than at another, it follows that the distance must be less, and less to such an amount as to make the areas described in equal times equal.

If r be the distance at any time, $\Delta \theta$ the small angle described in the time Δt , it follows that $\frac{1}{2} r^2 \Delta \theta$ is the area described in that time; and therefore that the limit of $r^2 \frac{\Delta \theta}{\Delta t}$ must be constant at all parts of the orbit; and therefore that r^2 varies as limit of $\frac{\Delta t}{\Delta \theta}$.

But from the table given above (p. 96) $\Delta \theta$ is constant, and Δt can be got by subtraction, and the limit of $\frac{\Delta t}{\Delta \theta}$ may be got either from the formula

$$\frac{\Delta t}{\Delta \theta} = \frac{1}{\Delta \theta} \left(\frac{\Delta t}{1} - \frac{\Delta t}{2} + \frac{\Delta^2 t}{3} - \cdot \cdot \cdot \right)$$

or, very approximately, by taking half the sum of the differences of the times that precede and follow the date selected.

For example, referring to the previous table, $\Delta \theta = 5^{\circ}$, and when $\theta = 80^{\circ}$, by the first formula

$$r^2 \propto \frac{1}{5} \left(\frac{2.07}{1} + \frac{.21}{2} + \frac{.00}{3} \right) = .435,$$

and by the second formula

$$r^2 \propto \frac{\frac{1}{2}(2.29 + 2.07)}{5} = .436;$$

when the angle is 70°, $\frac{\Delta t}{\Delta \theta} = \frac{1}{5} \left(\frac{2.52}{1} + \frac{.23}{2} + \frac{.01}{3} \right) = .527$, and therefore the values of r at 80° and 70° are as $\sqrt{436}$: $\sqrt{527}$, or as 2088: 2295.

In this manner relative values of r are obtained for all the values of θ in the previous table, at intervals of 5° or 10° , and these will be in general more accurate than those obtained from direct measurement, as they depend on measures of position alone.

In order to compare with seconds of arc the unknown unit in terms of which these values of r are expressed, it will be necessary to take the whole series of values of r obtained in seconds at suitable points from its own interpolating curve, and the whole series obtained in the unknown scale from the formula above given, and compare the sums of the two series. Thus will be obtained the relative value of the two units to a high degree of approximation. Take the following values as an illustration:—

t.			7.				🛩 on scale.			
1830			•••	4.50				125.00		
1835	•••	•••	•••	4.62	•••	•••	•••	127.60		
1840	•••	•••	•••	4.75	•••	•••	•••	131.40		
	S	ums		13.87				384.00		

Here 13".87 are equal to 384.0 scale divisions, and therefore 1 scale division corresponds to 0".03612.

It will further be worth while to reduce to seconds each of the values of r, and chart them along with the interpolating curve which furnished the direct values of r, in order to see how far the calculated and observed values agree. A discrepancy, systematically recurring between them, may lead, as in Otto Struve's recent investigation of the orbit of the distant companion of ζ Cancri, to some novel and remarkable conclusions. (See Observations de Poulkova, vol. ix., and the Comptes Rendus de l'Académie de Paris, vol. lxxix., p. 1463.)

TO DRAW THE APPARENT ELLIPSE.

It may now be assumed that we have the values of r for a series of values of θ differing by 5°. Let these be converted into x and y by the formulæ $x = r \cos \theta$, $y = r \sin \theta$, and the points charted on the millimetre paper. They will be found to lie on a curve; and if a sufficient portion of the orbit has been described, the curve will be sensibly an ellipse. And here it may be observed that these points furnish the best possible test of the skill with which our final interpolating curve has been drawn; for if any point or points lie out of the curve we must at once redraw that part of the interpolating Assuming that the correction has been made, the ellipse passing through the points may now be found either by the graphical or analytical methods. If the former be adopted, an ellipsograph, or a piece of string and two drawing pins, with a little patience, will suffice for this purpose. line once drawn in pencil should be carefully inked in with a fine pen. This is the apparent ellipse. No care must here be spared in drawing the best possible ellipse, and drawing a fine line. With a pair of compasses we may now at once measure off the maximum and minimum apparent distances, and obtain directly the angles at which they occur. The larger star A occupies the projected focus of the real ellipse.

DETERMINATION OF THE REAL ELLIPSE: THIELE'S METHOD.

We must next proceed to the method of determining the real ellipse from the apparent one, and in doing this we shall follow Thiele's method, and give a geometrical proof of the elegant theorem he employs.

The problem is this:—Given an ellipse and a point in it which is not the focus, it is required to find the position and magnitude of the ellipse whose projection is the given ellipse, and the projection of its focus the given point.

The determination of the position and magnitude of the ellipse requires the determination of five elements, viz.,

- (1) The angle a that the line of intersection of the two planes, or line of nodes, makes with a fixed line.
- (2) i the angle of inclination of the planes.
- (3) e the eccentricity of the ellipse.
- (4) a the semi-axis major of the ellipse.
- (5) λ the angle between the line of nodes and the line of apsides, or the line to periastre.

The solution depends on the following geometrical property of the ellipse:—

Let PSQ be any focal chord of an ellipse; MXN the

FIG. 12.

corresponding directrix; PM, QN perpendiculars to the directrix; PK, QH perpendiculars to the axis major; SL the semi latus rectum, and LR perpendicular to

the directrix. Then, by similar triangles, HS:SK::SQ:SP, and by the property of the ellipse SQ:SP::QN:PM;

therefore QN:PM::HS:SK

$$:: LR - QN : PM - LR;$$

that is, QN, LR, PM are in harmonic progression; but QN, LR, PM are respectively proportional to SQ, SL, SP; therefore the harmonic mean of SQ and SP is constant.

And if along the chord PSQ a point Y be taken, so that SY is the harmonic mean between SP, SQ, the locus of Y would be a circle of which S would be the centre, and SL the radius.

If now the ellipse and this harmonic circle (as it may be called) be projected on a plane inclined to their own, the circle will be projected into an ellipse, the direction of whose

major axis gives the line of intersection of the two planes, and the ratio of whose semi-axes is the cosine of the inclination of the planes.

Conversely, if the harmonic ellipse be drawn, by taking, arithmetically or graphically, the harmonic means between the segments of a number of chords through the projected focus in the apparent ellipse, it follows that its major axis is equal to the latus rectum of the true ellipse; that its major axis is in the direction of the line of nodes; and that the ratio of its minor to its major axis is the cosine of the angle of inclination of the plane of the real ellipse to the plane of the apparent ellipse.

Further, if C is the centre (Fig. 13), S C A' is the projection of the major axis; and $\frac{CS}{CA} = e$, the eccentricity of the real ellipse, this ratio being unaltered by projection. Hence we find in succession a, i.e. the angle which the line of nodes makes with the axis of x, the meridian through the star; i, the inclination, from the condition $\cos i = \frac{S}{Sa}$, Sa and Sb being the major and minor axes of the harmonic ellipse; $e = \frac{CS}{AC}$; and $a = \frac{L}{L-C} = \frac{Sa}{L-C}$, L being the semi latus rectum.

Finally, λ , i.e. the angle the line to the periastron makes with the line of nodes, is found as follows:—

Let λ' be the angle X S C, $\lambda' - \Omega$ the angle A' S a in the annexed figure where A' is the projected periastron, and therefore known. λ is the angle A S a which is required.

Draw A' N, A N perpendicular to S a.

Then
$$\tan \lambda = \frac{AN}{SN} = \frac{AN}{A'N} \times \frac{A'N}{SN} = \sec i \tan (\lambda - \Omega),$$

and therefore λ is known.

S C N

FIG. 13.

To construct the ephemeris graphically, it is necessary to divide the ellipse into equal sectorial areas by radii drawn from the focus. This may be accomplished as follows:—

Let A P A' be an ellipse (Fig. 14), P any point in it, S the focus, C the centre; A Q A' the auxiliary circle, Q P N an ordinate through P.

Let e be the eccentricity, a, b the semi-axes of the ellipse, T the periodic time for the whole orbit. Then if t be the time taken in describing the area ASP from perihelion to the point P,

$$\frac{t}{T} = \frac{ASP}{Tab} = \frac{ASQ}{Ta^2} = \frac{ACQ - SCQ}{Ta^2};$$

and therefore if u is the circular measure of ACQ,

$$\frac{t}{T} = \frac{\frac{1}{2}ua^{\alpha} - \frac{1}{2}aea\sin u}{\pi a^{\alpha}} = \frac{u - e\sin u}{2\pi}.$$

In order, therefore, to divide the area by focal radii into equal

intervals, values must be given to $u - e \sin u$ in arithmetical progression.

Let ABA' be the semicircle described on the major axis of the ellipse as diameter, S the focus of the ellipse.

Divide the arc B A' into any number of equal parts, say of 10° each. Draw the tangent at B, and mark off along it from B parts equal to the arcs of 10°, 20°, . . . 90°.

Through the points of division of the arc draw lines parallel

to C X, and through the points of division of the tangent at B draw lines parallel to C B, thus determining a number of points $V_1 V_2$.., and through these points draw a curve B V X. We will call this the ephemeris curve.

If now P is any point on the ellipse, Q the corresponding point on the auxiliary circle, V the corresponding point on the ephemeris curve, Q V being parallel to C X, C X' equal to C X, A C Q = u. Then if V N is parallel to C B, X' N = au. Join S B, draw V H parallel to S B, and join C Q. Since $\frac{H N}{V N} = \frac{S C}{C B} = e$, and $\frac{V N}{C Q} = \sin u$, therefore H N = $ae \sin u$, and therefore X' H = $a(u - e \sin u)$.

Hence $2\frac{X'H}{X'X} = \frac{t}{T}$, and therefore the position P in the orbit can be at once found corresponding to any time t, and conversely the time t can be found corresponding to any position P in the orbit, by simply drawing parallel lines.

Lastly, this method can be adapted to the further problem of dividing an ellipse into equal areas by lines from any point which is not the focus. To do this, instead of the auxiliary circle, an auxiliary ellipse must be taken, which will be similar and similarly situated to Thiele's harmonic ellipse.

The working of this will be readily understood from the example annexed.

* This problem can also be approximately solved with equal accuracy by mechanical means. The latest and best method is that given by Professor Bruhns in the Vierteljahrschrift der Astronomischen Gesellschaft 1875, Heft. 4. For an improved form of this apparatus, also by Professor Bruhns, see Heft. 4, 1877. Dr. Doberck, however, prefers to use the tables he has published in the Ast. Nachrichten.

CHAPTER II.

EXAMPLE OF AN ORBIT WORKED BY A GRAPHICAL METHOD.

FOR this method we shall select Castor, as a double star of great historical interest, and sufficiently brilliant and widely separated to be within the reach of all telescopes that are likely to be used by amateurs. The orbit has been frequently computed before, both by graphical and analytical methods, and a comparison of the results arrived at is very instructive as showing the difficulty and uncertainty in problems of this nature, when the portion of the orbit described bears a small ratio to the whole.

Table I. gives in chronological order the observations arranged as follows. In column 1, headed t, is the date of the observation; in column 2, the observed angle, headed θ' ; in column 3, the angle corrected for precession up to the year 1880, headed θ ; in column 4, the number of nights of observation, an important element in estimating the weight to be assigned to an observation; in column 5, headed r, the observed distance; in column 6, the number of nights; and, lastly, in column 7 the initials of the observer.*

^{*} For explanation of the initials see Part III.

AN ORBIT WORKED BY A GRAPHICAL METHOD. 107

Table I.—Castor. Angles and Distances: Angles reduced to 1880. R. A. 1880. $7^h \ 26^m \ 57^s = 111^o \ 44' \ 15''$. Dec. $32^o \ 9' \ 10''$.

Correction = 0° : $0.0055 \sin \alpha \sec \delta$ per annum = 0° : 0.006.

 Con	rection = 0°	70055 sin α s	ec o per	annum =	0°'006.	
	•	0	No. of Nights.	•	Obs erver	_
1719:84	355 [.] 88	356.85			Br. and P.	
1759.80			•••			
	323.78	324.20	•••	•••	Br. and M.	
1779.85	302.78	303.40		•••	H ₁ .	
1780.43				5.29	"	
1783 46	293.05	293 [.] 64	•••	, ***	1 "	
1791.12	292.95	293.20			,,	
1792.16	297:27	297.81			1 ,,	
1795.95	283.88	284.40			,,	
1800.27	284.32	284 [.] 81			,,	
1802 08	282.77	283.25			,,	
1803.19	280.55	281.03			,,	
1814.83	272.87	273.27	l I		Σ.	
1816.97	270.00	270.39			H ₂ .	
1819.10	269.60	269 97		5.48	Σ.	
1820.34	268.99	269.35				
1821.31	267.12	267.47			H, and So.	
1822.01	266.81	267.16	•••		Σ.	
1822.10	20001	20, 10		5.36	H, and So.	
1823.11	264.98	265'32		3 30	1 - 1	
1823.32	204 90	205 32		4 197	Σ. "	
1825.54	262:20	262.62		4.41	So.	
1826.55	263.30	263.63		4:77		
	262.54	262.87	5	4.40	Σ.	
1827.28	262.32	262.64	4	4.43	22	
1828.69	261.87	262.18		4.64	H ₂ .	
1828.89	261.10	261.41	•••	4.36	Σ.	
1829.88	260.97	261.58		4.2	H ₂ ,	
1830.25	259.02	259.32		4.68	_,,	
1831.06	259.38	259.68		4.73	Be.	
1831.11	259.62	259.92		5.16	H ₂ .	
1831.55	258.15	258.45	.,.	4.22	Da.	
1831.31	259.58	259.88	• • • • •	4.46	Σ.	
1831.91	259.35	259.64	8	4'74	H _p	
1832.13	258.42	258.71	14	4.41	Da.	
1832.86	257.72	258.01		4.525	Σ.	
1833'10	256.73	257.01		4.89	H.	
1835.33	255.48	255·75	l l	4.73	En. and Ga.	
1836.88	256.12	256.38		5.28	Σ.	
1838.34	254.40	254.65		4.81	Ga.	
1839.35	253.73	253.98	:::	5.50	Ka.	
1840.06	253.97	254.51	l í	4.41	Da.	
1840.18	254.10	254.34	•••	4'94	Mä.	
1841.11	252.82	253.06		4.89	Da.	
1842.25	252.38				1	
1843.12	251.71	252.61		4.91 4.87	Ηi.	
1845.93	249.80	251'94		401	Ja.	
1846.34		250.01		r:80	Hi.	
	250.38	250.58	l ··:	5.89		
1846.73	249.46	249.66	4		Da.	
1847.25	249.85	250.05	5	5.014	w. с. в.	
1848.18	249.20	250.39	9 2	5.008		
1848.28	249.54	249.73		5.20	Da.	
1849.32	24 8·97	249.16	4	5.027	Ft.	

TABLE I .- continued.

t .	e ^r	•	No. of Nights.	r	Observer.
1851 04	248°67	248 ⁹ 85	6	5'074	Da.
1851.51	248.11	248.50	10	5.068	Σ.
1851.88	247.65	247.82	1 - 1	5.044	Mi.
1852'04	247.97	248.14	6	5.075	Ft.
1852.50	246.39	246.26	i	5.040	Da.
1852.20	246.13	246.50	14	4.821	Mä.
1853.02	247'32	247.49		5.083	Ja.
1853.13	245.87	246.03	3 3	5.122	Da.
1853.34	246.56	246.42	9	4.93I	Mä.
1854.53	246.51	246·37	2	5.098	Da.
1854.38		244.87	18	3 090 4 945	Mä.
	244.72		23		De.
1854.87	245.49	245.64		5.442 4.848	Mä.
1855.31	243.61	243.76	3		Se.
1855.82	245.13	245.28	7	5:368	De.
1856.50	245 44	245.28	7 6	5.142	Mä.
1856.35	243.78	243.92		4.875	Ma. Ia.
1856.73	245.21	245.65	4	5.172	J
1857:34	244.25	244.39	4	5.382 4.888	Da.
1857:36	242.90	243'04	7		Mä.
1857.77	245.19	245'32	3	5.336	Ja.
1858.26	244'42	244.55	2	5.508	Mo.
1858.37	244.13	244.56	7	4.963	Mä.
1859.26	243.88	244'01	2	5.126	Mo.
1859.36	242.70	242.82	11	5.081	Mä.
1859.98	243.62	243'74	2	5.378	Mo.
1860.22	242.77	242.89	3	5:395	Da.
1863.02	242.75	242.87	II	5.237	Ro.
1863.03	241.66	241.78	14	2.381	De.
1864.60	241.23	241.88	10	5.28	Da.
1866 02	241.07	241'15	14	5.384	De.
1870.32	239.7	239.76	I	5.22	Gl.
1870.68	239'34	239'40	5	5.488	De.
1871.59	237.9	237.95	2	5.64	Gl.
1872.00	236.4	236.45	I	5.73	_,,
1872.39	237.8	237.85	2	5.9	W. and S.
1873'24	237.9	237'94	1	5 6	,,
1873.29	236.3	236.34	I	5.62	Gl.
1873.78	236.92	236.96	8	5.222	De.
1874 10	236.6	236 63	7	5.7	Gl.
1874.13	236.9	236.93	2	5.6	W. and S.
1875.66	236.2	236.22	15	5.2	Gl.

These angles and distances are all charted on the millimetre paper as before described, and the result is shown in Plate I., in which each dot corresponds to an observation. A curve is then drawn as smoothly as may be among the points of observation. The first curve that was so drawn had to be abandoned, but the points at which it crossed the principal lines are shown by fine lines, which are in fact portions of the curve.

AN ORBIT WORKED BY A GRAPHICAL METHOD. 109

The first table of interpolated angles and epochs was as follows:—

TABLE II .- FIRST TABLE OF INTERPOLATED ANGLES AND EPOCHS.

	 -						
	0	t	Δŧ	$\frac{\Delta t}{\Delta \theta}$	$r = 100 \times \sqrt{\frac{\Delta}{\Delta}t}$	x	y
	355	1723.8					
	350	1729.7	5'9} 5'7	1.16	107.7	106.00	18.40
	345	1735'4					
l	340	1740.9	5.2}	1.08	103'7	97.65	35.24
1	335	1746.2	ļ				
	330	1751.4	5'2	1.03	101.2	87.90	50.74
	325	1756.5	l				
1	320	1761.7	5.5	1.04	102.0	78.11	65.24
	315	1766.9	5.2)				
	310	1772'1	5'2	1.02	102.2	65.86	78:49
	305	1777.4	2.3)		•		
	300	1782.7	5.4	1.07	103.4	51.72	89.28
	295	1788-1	1				
	290	1793.6	5.6	1.11	105'4	36.04	99.00
	285	1799.2	1				
	280	1804.9	5'7	1.12	107.2	18.63	105.60
	275	1810.4	5.8)				
	270	1816.9	6.6	1.58	113.1		113.10
	265	1823.2	l				
	260	1830.6	7.1	1.49	122.1	21.76	123'40
	255	1838.4	8.7)				
	250	1847'1	9.6	1.83	132.3	46:27	127'10
	245	1856.4	10.6)				
	240	1867:3	11.7	2.53	149'4	74.67	130.90
	235	1879 0	11 /				

From these values of r are obtained values of $r\cos\theta$ and $r\sin\theta$, and the corresponding points charted on millimetre paper, where they are indicated by the small crosses near the curve in Plate II., the values of x being taken horizontally, and those of y vertically.

It is at once seen that these points do not lie truly on any smooth curve, and hence it is inferred that the interpolating curve is wrong. It is necessary, therefore, to redraw the interpolating curve, and it is advisable, in order to save time and trouble, not to do this at random, but to ascertain from the errors of the points found on the erroneous curve, both the nature and as far as possible the amount of the modification required in the various parts of the interpolating curve. This may be done as follows.

If a curve be conceived as drawn through the extreme points and fairly among the others, it will leave the points corresponding to the angles 300°, 310°, 320° outside the curve; but those corresponding to 260° and 270° and 280° inside the curve. Hence the distance ought to be diminished in the neighbourhood of 310°, and increased in the neighbourhood of 270°. Also a simple measurement with compasses will show in what ratio the distances at these points ought to be respectively diminished and increased. But the distance varies as $\sqrt{\Delta t}$, and therefore the ratio in which Δt ought to be diminished or increased becomes known.

Hence the differences (Δt) in the neighbourhood of 300°, 310°, 320° were changed from 5·3, 5·3, 5·2, 5·2, to 5·2, 5·1, 5·1, 5·1; and those in the neighbourhood of 260, 270, 280 were changed from 7·1, 6·6, 6·2, 5·8, to 7·7, 6·8, 6·4, 6·0, and the whole table reconstructed as follows.

AN ORBIT WORKED BY A GRAPHICAL METHOD. III

TABLE III.—SECOND INTERPOLATING CURVE.

	ŧ	Δŧ	$\frac{\Delta t}{\Delta \theta}$	r	x	y	
360	1717'1	6.5					
355	1723'3		l				
350	1729'2	5'9}	1.19		106.00	18.40	
345	1734.9	5.2)					
340	1740'4	2.3	1.08		97.65	35.24	
335	1745.7	5.5)					
330	1750-9	5.2	1.04		88.32	50.08	
325	1756-1	2.1)					
320	1761.3	2.1	I '02		77:36	64.92	
315	1766.3	2.1)					
310	1771.4	5.1	1'02		64.92	77:36	
305	1776.5	5.5)					
300	1781.7	2.3	1.02		51.53	88.74	
395	1787.0	5.4)					
290	1792.4	5.6	1.10		35.87	98.25	
285	1798.0	5.8)				1	
280	1803.8	6.0	1.18		18.86	107.00	
275	1809.8	6.4)		1			
270	1816.5	6.8	1.32			114'90	
265	1823.0	7.7}					
260	1830.4	8.0}	1.24		21.76	123'40	
255	1838.7	8.7)					
250	1847.4	9.6	1.83		46.38	127'40	
245	1857.0	10.6)					
240	1867.6	11.6	2.33		74.20	129'00	
 235	1879:2						

When these points are charted, they are found to lie satisfactorily on a curve. If they again failed to do so, a third interpolating curve would have had to be drawn. By proceeding to two decimals, and using the second column of differences, slightly more exact results could be obtained.

The next operation is to complete the ellipse of which the curve so found forms a part. This part of the problem requires much patience and some sagacity. Either an ellipsograph or a piece of string and two drawing pins may be used, and at last by methods of trial and error an ellipse is found which approximately passes through all the points. No pains should be spared here to make the ellipse pass as exactly as possible through the points. It must be remembered that a very slight alteration in the position of the foci and the length of the major axis will seriously affect the area of the curve, and hence the periodic time in the orbit we shall obtain. In cases like the orbit of Castor, when only a small portion of the orbit has been described, it is impossible to ascertain the apparent ellipse exactly, and hence the periods hitherto obtained by different computers differ seriously.

In the figure, Plate II., C is the centre of the apparent ellipse, and the part of it hitherto described is that part where the dots are seen and the dates are marked.

By inspection of this curve several facts are at once obtained. If A is the principal star, from axes through which the coordinates have been laid out, A must be the projection of the focus of the real ellipse; and C being the centre of the apparent ellipse, must also be the projection of the centre of the real ellipse. Hence A C produced both ways must be the projection of the major axis of the real ellipse.

If this cut the apparent ellipse in N, N must be the projection of the periastron, at an angle of about 338° 30', which from the interpolating curve corresponds to a date of 1742'I.

Further, the ratio CA: CN being unaltered by the projection will give the eccentricity of the *real* ellipse. Measuring

To face P. 112. 300 RRO

	•	
		!
		!
		1

these distances with the compasses and computing the ratio it is found that $e = 38 \dots$

Again, it appears that the nearest approach of B to A was at the angle 314, or at the time 1767.3 at the point U: this distance on the millimetre scale is about 100. Similarly, the greatest apparent distance on the same scale will be about 233.6.

In order to ascertain what these distances are in seconds of arc, it will be necessary to make a table of the observed distances, obtained by interpolation at selected epochs from the distance curve (Plate I.), and compare them with the distances on the millimetre scale obtained from the apparent ellipse at corresponding angles.

TABLE IV.

ŧ.				r.	" on scale.		
1830				4 ["] .50	 		125.6
1835				4.62	 •••		127.6
1840		•••		4.75	 		131.4
1845	•••			4.89	 		134.2
1850				5.03	 		137.5
1855				5.14	 		140.2
1860				5.25	 •••		144.2
1865				5.38	 •••		147.2
1870		•••		5.25	 •••	•••	1500
	Sums		45"*07				1238'2 divisions.

Hence the least distance was 3".64, and the greatest distance will be 8".50, at an angle of 174°, at the point V.

The next part of the problem consists in the construction of Thiele's ellipse.

The axis of x is cut by the ellipse at distances III'8 and 233'0 from A. The harmonic mean between these is 151'1. Lay out this distance along this axis in both directions from A, so obtaining the points I, 2. Similarly, from the intercepts on the axis of y obtain their harmonic mean, and the points 3, 4. Two more points can easily be obtained by drawing a

chord through A which is bisected in A. The extremities of this chord will plainly be points on Thiele's ellipse.

Construct an ellipse to pass accurately through these six points, A being of course the centre of this ellipse. Draw the axes Aa, Ab of this ellipse, and find its foci f, f. Then by Thiele's theorem the ratio Ab: bf is $\cos \gamma$, where γ is the inclination of the plane of the real orbit to the plane on which we see it projected—that is, to the plane perpendicular to the line of sight.

Hence γ is found to be 32° 15′.

The direction of the major axis of this ellipse is that of the line of nodes. This is found by a protractor or scale of chords. Hence $\alpha = 28^{\circ}$ 15'.

The elements of the orbit so far obtained are

e = .38 $\gamma = 32^{\circ} 15'$ $\Omega = 28^{\circ} 15'$ $T = 1742^{\circ} 1.$

To obtain the period some further construction is required. Draw through C lines DC, EC parallel to the axes of Thiele's ellipse: these will be the directions of the axes of the ellipse which is the projection of the auxiliary circle. The ratio of the axes of this ellipse will be of course the same as that of the axes of Thiele's ellipse, and the magnitudes of the axes can be found from the consideration that CN and AM are radii drawn, one in each, in the same direction relative to the axes, and therefore have the same ratio as the axes. Hence if the proportions

AM:CN::Aa:CD and AM:CN::Ab:CE

are worked out, C D and C E will be the semi-axes required. Let this ellipse be drawn; we will call it the auxiliary

ellipse.

Draw CT, CT' parallel to the projection of the latus rectum of the real ellipse to meet the auxiliary ellipse in T, T', and draw through T, T' lines parallel to C M.

Measure off TY, T'Y' along these lines, the length being found by the proportion $1:\frac{1}{2}\pi::CN:TY$.

Divide TY, T'Y' into nine equal parts, the points of division being numbered 1, 2... 8 in the figure; and draw lines through them parallel to TCT'.

From a table of sines, and the known length of CT, compute CT sin 10°, and mark off this length along the line I, I, measuring from the central line CX on both sides of it, thus obtaining $G_1 K_1$, $G_1 K_1' = CT \sin 10^\circ$.

Similarly, lay off $G_2 K_2 = C T \sin 20^\circ$; $G_2 K_3 = C T \sin 30^\circ$, etc. And through the points so determined draw the curve $X K_1 K_2 \dots T$. We will call this the ephemeris curve. This is the *projection* of the curve of sines.* Join A T, A T'.

Then, as was before shown, if through any point P on the apparent ellipse P Q be drawn parallel to C T to meet the auxiliary ellipse in Q, and Q O be drawn parallel to C M to meet the ephemeris curve in O; O H be drawn parallel to A T to meet C M in H; as P moves with its orbital motion in the apparent ellipse, H will move uniformly along the line X'C X.

Select two positions of P whose epoch is known, as at the first and last of the points interpolated, for which the times were 1867.6 and 1729.2 respectively, giving an interval of 138.4 years. Measure H X = 132, H' X = 15, X X' = 522. Then by the proportion

HX + H'X : 2XX' :: 1384 years : period, we find the period to be 9829 years.

To construct an ephemeris, divide CX into any number of equal portions, and determine as before the points on the apparent ellipse corresponding to each point of division.

To find the angle at any required date, say 1880, proceed as follows. Since 1880 - 1867.6 = 12.4 years; and since 1044 divisions correspond to 982.9 years, 12.4 years correspond to

^{*} The curve of sines was first suggested, we believe, by Professor Adams,

13'I divisions. Take H h = 13'I, and determine by the same construction the point marked 1880. The angle is found by the protractor to be 234° . In the same manner the angle in the year 1890 is found to be 231'5. In the same manner the date of maximum distance will be found to be A.D. 2147'2.

We have still to determine the major axis (a) of the real ellipse, and the position of the periastron (λ) on the orbit.

Since the major axis of Thiele's ellipse is the latus rectum of the real ellipse, as before shown, and the eccentricity e of the real ellipse has been found,

$$a = \frac{l}{1 - e^{t}} = \frac{157}{1 - (38)^2} = 183.4$$
 divisions,

and this reduced to seconds by the equivalence in p. 113, gives us $a = 6^{\circ}.67$.

Lastly, $\tan \lambda = \tan (\lambda' - \omega)$ sec *i*, where $\lambda' =$ the angle that the projection of the axis major makes with the initial line.

This gives $\lambda = 305^{\circ}$ 10'.

Hence our elements are as follows:-

Semi-axis major $a = 6^{\prime\prime}\cdot 67$. Eccentricity $e = \cdot 38$. Position of node $\Omega = 28^{\circ}\cdot 15'$. Inclination $i = 32^{\circ}\cdot 15'$. Position of periastron $\lambda = 305^{\circ}\cdot 10'$. Period in years $P = 982^{\circ}$ years. Periastral passage A.D. $T = 1742^{\circ}\cdot 1$.

It will be interesting to compare these with the elements obtained by a rigorous analytical investigation by Thiele, in Ast. Nach., vol. lii., No. 1227.

THIELE'S ELEMENTS.

a = 7.5375. e = 0.34382. $a = 31^{\circ} 58^{\circ}$ 0. $a = 42^{\circ} 5^{\circ}$ 4. $a = 294^{\circ}$ 6. a = 996.856. a = 1750.3267.

HO VIMU AMMONIJAŠ

AN ORBIT WORKED BY A GRAPHICAL METHOD. 117

Since our graphical solution was finished in 1875, Dr. Doberck has also computed the orbit, and gives

DOBERCK'S ELEMENTS.

a = 7.43.

e - 0.329.

& = 27° 46'.

 $\lambda = 297.13.$

P = 1001'2.

T = 1749'75.

CHAPTER III.

AN ORBIT WORKED BY ANALYTICAL METHODS.

THE following example, in which the orbit of σ Coronæ is worked out, will illustrate the application of analysis to the subject of double-star orbits. It possesses some independent interest on account of the discrepancy among the orbits hitherto published, which will be seen from the subjoined table. The method presupposes an orbit obtained approximately by graphical methods, and shows how greater exactness can be obtained in the elements. No further acquaintance with analysis is necessary than that of the elements of the differential calculus.

On a Determination of Elements of σ Coronæ (1877).

Herschel discovered in 1781 that σ Coronæ was double, and in 1802 he recognized its binary character. The motion is direct. The distance was small when first observed, but afterwards it increased rapidly, thus rendering the measures surer and easier. A re-determination of the elements, in which these later observations were taken into account, seemed to me likely to decide upon the question of the period, about which astronomers hitherto did not agree, as can be seen from the following table:—

T	Node.	λ	γ	P	a	•	Authority.
1835.60 1826.60 1826.48 1829.70 1831.17	138 ó 25 7 21 3 3 8 1 57	7 18 64 38 69 24 96 53 101 57	29 29 25 39 45 6 46 47	yrs. 286.60 608.45 736.88 240.00 195.12	3.68 3.92 5.19 2.94 2.72	o·6112 o·6998 o·7256 o·3887 o·3088	J. Herschel. Mädler. Hind. E. B. Powell. Jacob.

I tried first to determine the elements by Sir J. Herschel's method (*Memoirs of the Royal Astronomical Society*, vol. v.) A first attempt with an ellipse corresponding to a moderate period failed to represent the observations; and I subsequently obtained the following orbit by the aid of ninety-eight annual means of angles and distances:—

FIRST ELEMENTS OF σ CORONÆ.

T				 1828.91.
N	ode			 6° 43′.
λ	•••			 89° 17′,
γ				 29° 40 .
ø		•••	•••	 843.20 years.
a			•••	 6″ ⁺ 001.
e				 0.7502.

The comparison of the angles of position, and the distances calculated from these elements with those given by the measures, has been published in the *Astronomische Nachrichten*, No. 2037.

I collected afterwards eighteen more annual means, partly in the library of the Royal Irish Academy in Dublin, partly they were communicated to me by Messrs. Wilson and Gledhill, and Dr. Dunér, of the Lund Observatory, Sweden. The comparison with all these measures proved the calculated angles to be a couple of degrees too small at the first epochs, about as much too large in 1830, and again too small at the present time. The corrections were graphically determined, and, when applied to the calculated angles, furnished new angles of position, from which the distances according to Herschel's method were deduced, and from these the second system of elements was calculated.

SECOND ELEMENTS OF & CORONAL

Т			•••	1826.69.
Nod	e			26° 10′.
λ				62° 14′.
γ			•••	35° 8′.
φ		•••	•••	829'40 years
				0.2463

The apparent ellipse was very like the former one, but this time it was possible to lay it nearly through all the points. I thought, therefore, that I had hit the right orbit this time; but the subsequent comparison with observation showed that the angles from 1825 to 1870 came several degrees short of the measures, though the agreement elsewhere was close. All the angles but for a short interval being represented, I thought that I had better correct the elements by Klinkerfues's method. This method requires six angles of position to be given, from which the six elements are deduced, the axis major being afterwards calculated from the observed distances. Sir W. Herschel's two epochs furnished the first two normal places; the angles measured between 1819 and 1828 the third; the unrepresented measures 1830—1839 the fourth. The fifth place was obtained from the measures 1839—1868 inclusive, as it was in this instance allowable to consider the deviation proportional to the time during this long interval, the difference between the observed and calculated angle being nearly constant through-The sixth normal place had been previously used to deduce epoch and period of the systems given above. It was determined on Gledhill's, Wilson's, Dunér's, Dembowski's, and Schiaparelli's measures only. Mädler's epochs of 1836:47 and 1842'73 were excluded, as also some of Talmage's measures and Copeland's for 1873:40.

SIX NORMAL PLACES FOR G CORONAE.

~						
I.			1781 .79		•••	θ° - 347°.53
II.	•••		1802.74	•••		11°.40
III.		•••	1825.00		•••	77°·67
IV.	•••	•••	1835.00			128°-20
v.	•••	•••	1855.00		•••	179°.73
VI.		•••	1872.11	•••	•••	19 7° ·37

There is a well-known proposition which says that when a triangle is orthogonally projected on a plane, the area of the triangle in the projection is equal to the area of the real triangle multiplied by the cosine of the angle between the planes ($\cos \gamma$). Now as the apparent orbit of a double star is the orthogonal projection of the real orbit, areas between the principal star and two places of the companion in the one orbit are in a constant ratio to the corresponding ones in the other, as,

$$\frac{r}{r^{t}}\frac{\sin(v-v^{t})}{\sin(v^{t}-v^{v})} = \frac{\rho}{\rho^{t}}\frac{\sin(\theta-\theta^{t})}{\sin(\theta^{t}-\theta^{v})}, \text{ and}$$

$$\frac{r}{r^{t}}\frac{\sin(v-v^{t})}{\sin(v^{t}-v^{v})} = \frac{\rho}{\rho^{t}}\frac{\rho^{t}}{\sin(\theta-\theta^{t})}, \frac{1}{\rho^{t}}\frac{1}{\sin(\theta^{t}-\theta^{v})},$$

where r, r^{i} , etc., are the radii vectores corresponding to ρ , ρ , etc., the distances, and the angles of position θ , θ , etc., to the true anomalies v, v, etc.

Dividing the first equation by the second, we obtain

$$\frac{\sin(\upsilon^{l}-\upsilon)\sin(\upsilon^{ll}-\upsilon^{v})}{\sin(\upsilon^{l}-\upsilon)\sin(\upsilon^{l}-\upsilon^{v})} = \frac{\sin(\theta^{l}-\theta)\sin(\theta^{ll}\theta^{v})}{\sin(\theta^{ll}-\theta)\sin(\theta^{l}-\theta^{v})}.$$

If we write successively v^{μ} , θ^{μ} and v^{ν} , θ^{ν} in the place of v^{μ} , θ^{μ} in this equation, we obtain the two equations

$$\frac{\sin (v^{l} - v) \sin (v^{ll} - v^{v})}{\sin (v^{ll} - v) \sin (v^{l} - v^{v})} = \frac{\sin (\theta^{l} - \theta) \sin (\theta^{ll} - \theta^{v})}{\sin (\theta^{ll} - \theta) \sin (\theta^{l} - \theta^{v})} \text{ and }$$

$$\frac{\sin (v^{l} - v) \sin (v^{l} - v^{v})}{\sin (v^{l} - v) \sin (v^{l} - v^{v})} = \frac{\sin (\theta^{l} - \theta) \sin (\theta^{l} - \theta^{v})}{\sin (\theta^{l} - \theta) \sin (\theta^{l} - \theta^{v})}.$$

The right side of the three equations contains nothing but the angles of the normal places; substituting their values, we obtain the equations as follows:—

$$\frac{\sin (v^{l} - v) \sin (v^{li} - v^{v})}{\sin (v^{li} - v) \sin (v^{l} - v^{v})} = a.$$

$$\frac{\sin (v^{l} - v) \sin (v^{lii} - v^{v})}{\sin (v^{lii} - v) \sin (v^{l} - v^{v})} = \beta.$$

$$\frac{\sin (v^{l} - v) \sin (v^{l} - v^{v})}{\sin (v^{l} - v) \sin (v^{l} - v^{v})} = \gamma.$$

The true anomalies being functions of the eccentricity, epoch, and period, it is theoretically possible to obtain these three elements from the three equations. The peculiarity of the method we shall follow is that it furnishes equations from which the elements fixing the plane of the orbit (node and inclination), and the position of the ellipse in the plane (λ) , have been eliminated. It would, however, be very difficult directly to obtain the three elements—e, P, T,—from the

above equations; but these equations are useful, when we, as in the present case, have already arrived at a very near approximation to the elements, which we want to advance further by representing by the orbit strictly the six angles of position. Instead of the elements e, P, and T, it is a slight improvement to substitute the annual mean motion for the period: $\mu = \frac{360^{\circ}}{P}$, and the mean anomaly M_{\circ} corresponding to the epoch of periastron-passage in the provisional orbit, e is obtained in degrees, from which its value in the usual form is computed by dividing by the number of degrees in the unit of circular measure—57°-296.

We calculate, firstly, the true anomalies, and hence a, β , and γ , with the provisional elements,—that is, with $M_0 = 0$. Secondly, we calculate the same quantities with the same e and μ , but $M_0 = + 1^{\circ}$. Thirdly, with the same e, $M_0 = 0$, but adding to the mean motion a fifth of its value: $\mu' = 1.2 \mu$. Fourthly, with $M_0 = 0$, the original mean annual motion μ , but with another eccentricity, e' = e + 0.01. By a comparison of the results obtained by the three last calculations with that from the first hypothesis, we get to know what influence any variation of the elements has on the three qualities a, β , and γ , that we are trying to represent,—that is, we learn their partial differential coefficients. The difference between Mo in the two first hypotheses divided into the corresponding variations of a, β , and γ , give $\frac{da}{dM_0}$, $\frac{d\beta}{dM_0}$, and $\frac{d\gamma}{dM}$. The difference $\mu' - \mu$, divided into the corresponding variations of α , β , and γ , give $\frac{d\alpha}{d\mu}$, $\frac{d\beta}{d\mu}$, and $\frac{d\gamma}{d\mu}$. Finally, the difference e' - e divided into the corresponding variations of α , β , and γ , give $\frac{d\alpha}{ds}$, $\frac{d\beta}{ds}$, and $\frac{d\gamma}{ds}$.

If we now denote by a', β' , and γ' the values corresponding to the first hypothesis, and by a, β , and γ the values calculated from the position angles, we obtain by Taylor's formula,—

$$\alpha' + \frac{d\alpha}{dM_o} \Delta M_o + \frac{d\alpha}{d\mu} \Delta \mu + \frac{d\alpha}{d\epsilon} \Delta \epsilon = \alpha.$$

$$\beta' + \frac{d\beta}{dM_o} \Delta M_o + \frac{d\beta}{d\mu} \Delta \mu + \frac{d\beta}{d\epsilon} \Delta \epsilon = \beta.$$

$$\gamma' + \frac{d\gamma}{dM_o} \Delta M_o + \frac{d\gamma}{d\mu} \Delta \mu + \frac{d\gamma}{d\epsilon} \Delta \epsilon = \gamma.$$

From which are easily obtained the corrections ΔM_o , $\Delta \mu$, and Δe , to be applied to the values in the provisional elements in order to be able to represent the six position angles of the normal places.

Professor Klinkerfues indicates further several processes, which must reduce the amount of work required in the computation of the single hypotheses. The true anomalies are calculated from the three elements by the following wellknown formulæ,---

$$u - e \sin u = M_0 + \mu t,$$

$$tan \frac{1}{2}v = \sqrt{\frac{1+e}{1-e}} tan \frac{1}{2}u,$$

where u are the eccentric anomalies, t the time since the epoch, and e is expressed in the first equation in degrees in the second in absolute measure. From these are obtained the differential coefficients of the eccentric anomaly with respect to the mean anomaly,-

$$\frac{1}{1-e\cos u^{i}}, \frac{1}{1-e\cos u^{ii}}, \frac{1}{1-e\cos u^{ii}}, \text{ etc.}$$

The eccentric anomalies of the second hypothesis are obtained from those of the first by multiplying the alteration of the mean anomaly, here + 1°, by these differential coefficients. The eccentric anomalies of the third hypothesis are obtained by multiplication of the same coefficients by the corresponding alterations of the mean anomalies. Those of the fourth hypothesis are obtained by multiplying the variation of the eccentricity expressed in degrees by the differential coefficients of the eccentric anomaly with respect to the eccentricity:-

$$\frac{\sin u^{l}}{1 - e \cos u^{l}} \cdot \frac{\sin u^{ll}}{1 - e \cos u^{ll}} \cdot \frac{\sin u^{ll}}{1 - e \cos u^{ll}} \cdot \frac{\sin u^{l}}{1 - e \cos^{-1}v}, \text{ etc.}$$

The products are in all cases to be added to the eccentric anomalies of the first hypothesis. The true anomalies are then obtained from the eccentric, by the formula given above.

The results of these calculations in case of σ Coronæ were as follows:—

e 0.7463 0.7463 0.7563	-
μ 0.4340 0.4340 0.7463 0.75208 0.4340 0.7463 0.7763 0.7763 0.7763 0.7763 0.7763 0.7750 μ 305 52 307 38 298 56 305 31 325 12 327 47 319 49 324 357 9 1 5 356 34 357 14 35 12 40 39 25 41 47 45 12 40 40 54 33 56 19 61 31 55 ψ 253 26 255 34 245 45 251 28 28 28 272 20 278 21 352 32 2 504 351 0 352 37 21 43 56 41 35 37 21 43 56 27 90 44 95 3 89	
e 0.7463 0.7463 0.7563 u 305 52 307 38 298 56 305 u ¹ 325 12 327 47 319 49 324 u ¹ 357 9 1 5 356 34 357 u ¹ 39 25 41 47 45 12 40 u ¹ 54 33 56 19 61 31 55 v 253 26 255 34 245 45 251 v ¹ 281 8 285 42 272 20 278 v ¹ 352 32 2 50½ 351 0 352 v ¹ 35 21 43 56 41 35 37 v ¹ 86 27 90 4½ 95 3 89	
u 305 52 307 38 298 56 305 u ¹ 325 12 327 47 319 49 324 u ¹ 357 9 1 5 356 34 357 u ¹ 13 51 17 29 16 28 14 u ¹ 39 25 41 47 45 12 40 u ² 54 33 56 19 61 31 55 v 253 26 255 34 245 45 251 v ¹ 281 8 285 42 272 20 278 v ¹ 352 32 2 50½ 351 0 352 v ¹ 35 21 43 56 41 35 37 v ¹ 86 27 90 4½ 95 3 89	
ul 325 12 327 47 319 49 324 ul 357 9 1 5 356 34 357 ul 13 51 17 29 16 28 14 ulv 39 25 41 47 45 12 40 uv 54 33 56 19 61 31 55 v 253 26 255 34 245 45 251 vl 281 8 285 42 272 20 278 vl 352 32 2 50l 351 0 352 vl 35 21 43 56 41 35 37 vl 86 27 90 41 95 3 89	' 3
ull 357 9 1 5 356 34 357 ull 13 51 17 29 16 28 14 ulv 39 25 41 47 45 12 40 uv 54 33 56 19 61 31 55 v 253 26 255 34 245 45 251 vl 281 8 285 42 272 20 278 vl 352 32 2 501 351 0 352 vl 35 21 43 56 41 35 37 vlv 86 27 90 41 95 3 89	22
um 13 51 17 29 16 28 14 ulv 39 25 41 47 45 12 40 uv 54 33 56 19 61 31 55 v 253 26 255 34 245 45 251 vl 281 8 285 42 272 20 278 vl 352 32 2501 351 0 352 vl 35 21 43 56 41 35 37 vlv 86 27 90 41 95 3 89	2
ut 39 25 41 47 45 12 40 u 54 33 56 19 61 31 55 u 253 26 255 34 245 45 251 u 281 8 285 42 272 20 278 u 352 32 2 501 351 0 352 u 35 21 43 56 41 35 37 u 86 27 90 41 95 3 89	21
u* 54 33 56 19 61 31 55 u* 253 26 255 34 245 45 251 u* 281 8 285 42 272 20 278 u* 352 32 2 501 351 0 352 u* 35 21 43 56 41 35 37 u* 86 27 90 41 95 3 89	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <u>-</u> -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I4 25∤
$v^{\text{m}} = 35 21 43 56 41 35 37$	-33 3
ply 86 27 90 41 95 3 89	ე 20∤
	5
1 10/ 3 109 0 114 43 109	151
	201
β -6.941 -14.600 -2.750 $-4.$	145

The constants calculated from the observed position angles are—

$$\alpha = -3.382$$
, $\beta = -5.739$, and $\gamma = +5.580$.

Thus we obtain the equations

$$-4.331 \Delta M_0 + 3.140 \Delta \mu + 1.954 \Delta e = +0.773$$

 $-7.660 \Delta M_0 + 4.191 \Delta \mu + 2.796 \Delta e = +1.202$
 $+3.950 \Delta M_0 - 6.235 \Delta \mu - 4.311 \Delta e = -1.464$;

from which

$$\Delta M_0 = -0^{\circ}.051$$
, $\Delta \mu = -0^{\circ}.0683 \times 0^{\circ}.0868$, $\Delta e = 0.39 \times 0.001$;
Or $T = 1826.81$, $\mu = 0^{\circ}.4281$, $e = 0.7502$;
with which we get

$$u 305^{\circ} 53$$
, $325^{\circ} 8$, $356^{\circ} 53'$, $13^{\circ} 38'$, $39^{\circ} 18'$, $54^{\circ} 16'$.
 $v 252^{\circ} 59'$, $280^{\circ} 33'$, $356^{\circ} 27'$, $35^{\circ} 6'$, $86^{\circ} 46'$, $107^{\circ} 12'$.
 $\alpha = -3.720$, $\beta = -6.193$, $\gamma = +5.805$.

It has already been remarked that there hitherto existed some uncertainty as to the period of revolution of this system, and that I was by my first investigation led to consider the large period pretty well established. The possibility of fixing separately the eccentricity and period appears by an inspection of the three equations above, as the coefficients of $\Delta\mu$ and Δe , are not proportional; but they are not far from it, and if the measures employed embraced a shorter time than ninety-five years, they would be more nearly so, and it is therefore no wonder that we hitherto were in doubt about the orbit. In reality, a great number of different orbits, corresponding to every value of the eccentricity varying within wide limits, would have been obtained, if the elements had been represented as linear functions of the eccentricity.

The values of a, β , and γ , finally obtained, are far from those deduced from the observations. The differential coefficients employed in the calculation of the hypotheses may not be without influence hereupon, notwithstanding that the variations of the elements were small enough. But the disagreement arises principally from the circumstance that the higher orders of the differential coefficients of a, β , and γ with respect to the elements are not to be neglected, which has been supposed by confining ourselves to the first term of Taylor's series.

To represent α , β , and γ better, I extrapolated between the last values of the three elements and those of the first hypothesis. Thus I obtained

```
T = 1826.85, \mu = 0^{\circ}.4264, e = 0^{\circ}.7513.

\# 305^{\circ}.55', 325^{\circ}.5', 3^{\circ}.10', 13^{\circ}.32', 39^{\circ}.12', 54^{\circ}.14'.

\# 252^{\circ}.52', 280^{\circ}.18', 351^{\circ}.37', 34^{\circ}.57', 86^{\circ}.45, 107^{\circ}.18'.

\alpha = -3.425, \beta = -5.861, \gamma = +5.530.
```

I substituted now these α , β , γ , for α' , β' , γ' , in the equations, which then turn out as follows:—

```
-4.33 \Delta M_0 + 3.14 \Delta \mu + 1.95 \Delta e = +0.043.

-7.66 , +4.19 , +2.80 , = +0.122.

+3.95 , -6.24 , -4.31 , = +0.050.
```

From which we obtain

```
\Delta M = -0^{\circ}032, \Delta \mu = -0^{\circ}049 × 0^{\circ}0868, \Delta e = +0^{\circ}02 × 0^{\circ}01.

T \sim 1826^{\circ}93, \mu = 0^{\circ}4227 , e \sim 0^{\circ}7515.

u = 306^{\circ} 10', 325° 43', 3° 17', 13° 24', 38° 54', 53° 52'.

v = 253^{\circ} 9', 280° 31', 351° 18', 34° 38', 86° 18', 106° 53'.

\alpha = -3.778, \beta = -6.340, \gamma = +6.405.
```

This very erroneous result shows that the coefficients, deduced for correction of the original elements, cannot be used strictly speaking for rectifying the new elements. The corrections which resulted from T and e are however so small, that no new approximation appears necessary. I therefore retained them, and calculated a, β , and γ with the former value of μ ,—that is, $\mu = 0^{\circ}4264$.—The numbers obtained were the following:—

T = 1826.93,
$$\mu$$
 = 0°.4264, e = 0.7515.
 μ 305°51′, 324°59′, 356°43′, 13°27′, 39°9′, 54°11′.
 ν 252°46, 280°5′, 351°18′, 34°45½′, 86°42′, 107°15½.
 α = -3.341, β = -5.691, γ = +5.357.

This result was then compared with the result from the same values of T and e, but $\mu = 0^{\circ}.4227$. Denoting the constants calculated with $\mu = 0^{\circ}.4264$ by a_1 , β_1 , and γ_1 , those calculated with μ 0° 4227 by a_2 , β_2 , and γ_2 , and those calculated from the observed position angles a, β , and γ , we obtain the following three equations for the determination of the correction to be applied to $u = 0^{\circ}.4264$ in terms of the difference between the two mean motions:—

$$(\alpha_3 - \alpha_1) \Delta \mu = \alpha - \alpha_1$$
, $(\beta_3 - \beta_1) \Delta \mu = \beta - \beta_1 (\gamma_2 - \gamma_1) \Delta \mu = \gamma - \gamma_1$.
These equations in the present case are—

 $437 \,\Delta\mu - 41 = 0$, $649 \,\Delta\mu - 48 = 0$, $1048 \,\Delta\mu - 223 = 0$; from these it follows, according to the method of least squares, that $\Delta\mu = + 0^{\circ}.22 \times - 0^{\circ}.0037 = - 0^{\circ}.00082$. This correction is applied to $\mu = 0^{\circ}.4267$, and gives the following result. The errors still left behind correspond to errors of the normal places, which are far within their probable errors:—

T = 1826 93,
$$\mu$$
 = 0°.4256, e = 0°.7515.
 μ 305° 56′, 325° 1′, 356° 42½′, 13° 27½′, 39° 4′, 54° 7.
 ν 252° 52′, 280° 10′, 351° 17′, 34° 47′, 86° 34′, 107° 12′.
 a = -3.406, β = -5.790, γ = +5.574.

These, the so-called phoronomical elements, thus fixed, it remains to settle the position of the ellipse. Professor Klinkerfues uses three of the true anomalies and the corresponding observed position angles, applying at last a small correction to the node to represent better all the six normal places. calculates the longitude of the node by eliminating λ and γ from three equations (which are obtained from a rectangular spherical triangle) of the form

$$tan(\theta - \Omega) - \cos \gamma tan(v + \lambda);$$

 λ and γ are subsequently obtained from the equations, first γ , and then y. The formulæ are however complicated, and differential equations to correct assumed values of the three elements now in question may be preferred to the direct solution of the above equations, whereby besides, by application of the method of least squares, more than three places may be used. The equations obtained from differentiation of the last equation are of the form-

$$\Delta\theta = \Lambda\Omega + \cos\gamma \frac{\cos^2(\theta - \Omega)}{\cos^2(\nu + \lambda)} \Delta\lambda - \frac{1}{2} \tan\gamma \sin 2(\theta - \Omega) \Delta\gamma.$$

It is, however, still better to calculate the differential coefficients by variation of the elements in the equation. We assume values of Ω , γ , and λ , which are as exact as possible, and calculate with those from the true anomalies v, given by the previous investigations, the respective angles of position θ . Altering then γ with a suitable quantity, we again calculate the angles of position. The differences between the two values of these divided with the difference between the inclinations are the differential coefficients of the angles with respect to the inclination $\frac{d\theta}{dx}$. Similarly, the differential coefficients of the angles with respect to $\lambda : \frac{d\lambda}{d\theta}$ are calculated, varying λ a certain quantity. We have, of course, $\frac{d\theta}{d\Omega} = 1$, and the equations of condition are as follows:-

$$\theta'' + \frac{d \theta'}{d \Omega} \Delta \Omega + \frac{d \theta'}{d \gamma} \Delta \gamma + \frac{d \theta'}{d \lambda} \Delta \lambda = \theta,$$

$$\theta_1 + \frac{d \theta_1'}{d \Omega} \Delta \Omega + \frac{d \theta_1'}{d \gamma} \Delta \gamma + \frac{d \theta_1'}{d \lambda} \Delta \lambda = \theta_1,$$

where θ , θ_1 , etc., are given by the normal places. θ' , θ'_1 , etc. are obtained with the assumed ω , λ , and γ .

The equations in the present instance are as follows:—

$$\Delta \Omega + 0.98 \Delta \lambda + 0.31 \Delta \gamma - 1^{\circ}.18 = 0$$

,, $+ 0.86$,, $+ 0.15$,, $- 0^{\circ}.20 = 0$

,, $+ 1.05$,, $- 0.32$,, $- 2^{\circ}.75 = 0$

,, $+ 1.18$,, $+ 0.12$,, $- 3^{\circ}.35 = 0$

,, $+ 0.90$,, $+ 0.25$,, $- 0^{\circ}.50 = 0$

,, $+ 0.85$,, $+ 0.08$,, $- 0^{\circ}.18 = 0$

On further consideration, I however preferred to take the mean of the third and fourth equation, and combining this with the two last equations to deduce the three corrections. It must be remembered that Herschel's two epochs are not thereby excluded, for they helped to determine a, β , and γ , and in consequence the true anomalies used for calculating the position of the ellipse. Applying the resulting corrections to the assumed values of the three elements, we have the third system.

THIRD ELEMENTS OF σ CORONÆ.

The formulæ for calculating an ephemeris from these elements are:—

$$u - 43^{\circ} \cdot 05 \sin u = 0^{\circ} \cdot 4255 (t - 1826 \cdot 93).$$

$$tan \frac{1}{2}v = \sqrt{\frac{1+e}{1-e}} tan \frac{1}{2}u = \sqrt{\frac{17515}{0.2485}} tan \frac{1}{2}u = 2.655 tan \frac{1}{2}u.$$

$$tan (\theta_{c} - 16^{\circ} 27) = \cos \gamma tan (v + 73^{\circ}51') = 0.8486 tan (v + 73^{\circ}51')$$

$$\rho = r \frac{\cos (v + \lambda)}{\cos (\theta - \Omega)} = a (1 - \epsilon \cos u) \frac{\cos (v + \lambda)}{\cos (\theta - \Omega)} = 5'' \cdot 885 (1 - 0.7515)$$

$$\cos u) \frac{\cos (v + 73^{\circ}51')}{\cos (\theta - 16^{\circ}27)}.$$

The half axis major was determined from the measured distances by dividing them by $(\mathbf{I} - e \cos u) \frac{\cos (v + \lambda)}{\cos (\theta - \omega)}$.

The six normal angles of position were represented as follows,—always observation minus calculation:—

$$+ 12'$$
, $+ 2'$, $- 8'$, $+ 5$, $+ 5'$, $+ 2'$.

Had a correction been applied to the node, the square sum of these errors could have been diminished, but as then the errors in the last places, which are the most certain, would have been increased, nothing would be gained. At any rate, the errors above are far below the errors of the normal places.

The above elements were now compared with all the observations which I had at my disposal. This comparison has been published in the *Astronomische Nachrichten*, vol. lxxxviii., No. 2103.

We have as yet seen but a small part of the ellipse described, but this part of the orbit has of course been so much the more observed, and so much the nearer are the measures lying to each other. Much more uncertainty must, however, always prevail about these slow-moving systems than about those of quicker revolution, apart from other considerations, at least because the angle changes so little in one observer's lifetime, that systematic corrections cannot so easily be expressed in laws. Engelmann has made extensive investigations on that part of the correction, which is constant for all the position angles measured by the same observer, in analogy with corrections to be applied to right ascensions and declinations in star catalogues. These corrections must, however, vary more or less with the time, as is the case with meridian observations. Exactly determined orbits of many double stars are wanted for the satisfactory solution of these different ques-Even before we may hope to lay the orbits down definitely, they will be of use in this respect.

The last-mentioned comparison showed large systematical errors in the angles and distances of σ Coronæ. Mädler's

angles are decidedly too large. His first angles, when the position was very oblique, are much too large; his later angles, when the position went through 180°, are about right, and then the correction changes in sign. His distances are also too large, but the correction is likewise diminishing, and disappears at the end of the series. Dunér's and Kaiser's distances, on the other hand, are too small, which is a much more remarkable feature. All these distances were excluded in the above determination of the axis major.

When I had come so far in the calculation, I got for the first time the series of measures at my disposal which has been made by M. O. Struve with the large refractor in Pulkowa: the comparison of these measures with the last elements showed deviations similar to Mädler's. This shows that the corrections O. Struve has applied to his observations, after measures made on artificial objects, do not render his measures faultless.

It will be remembered that Mädler's evidently faulty angles were introduced with as much weight in the derivation of the normal places as all the others. This is a cause of the small systematical deviations of the measures from the ephemeris calculated after the last elements. I therefore now excluded Mädler's, O. Struve's, Galle's, Main's, and Talmage's angles, and Kaiser's first angles. The rest of the observations indicated that the normal place for 1835 should be diminished about a degree; the place for 1855 diminished a few minutes. Such corrections were applied, and then α , λ and γ anew calculated from the six normal places. Supposing node = 16° 27' $\lambda = 73^{\circ}$ 51', and $\gamma = 31^{\circ}$ 56', and varying λ and γ a degree respectively, the equations of condition are as follows:—

```
\Delta \Omega + 0.92, \Delta \lambda + 0.27, \Delta \gamma - 0.20 = 0

,, + 0.85 ,, + 0.05 ,, - 0.03 = 0

,, + 1.12 ,, - 0.27 ,, + 0.13 = 0

,, + 1.13 ,, + 0.22 ,, + 0.92 = 0

,, + 0.90 ,, + 0.15 ,, + 0.07 = 0

,, + 0.85 ,, + 0.00 ,, - 0.04 = 0.
```

Allowing double weight to the two last equations, I obtained by the method of least squares the following normal equations:—

$$+8.00 \Delta \Omega$$
, $+7.52 \Delta \lambda +0.57 \Delta \gamma +0.88 -0$
 $+7.52 ,, +7.16 ,, +0.51 ,, +1.02 =0$
 $+0.57 ,, +0.51 ,, +0.25 ,, +0.13 -0.$

After elimination of $\Delta \omega$ from these equations, we obtain

$$\Delta\lambda = -2^{\circ}.25$$
, and $\Delta\gamma = -0^{\circ}.57$.

Substituting these values in the four last equations of condition, we obtain $\Delta \Omega = + 2^{\circ}\cdot 14$, by taking the mean of the resulting four values of this quantity.—The final comparison of the elements, with all the measures (except those excluded), showed that the representation of the angles could be still further improved by diminishing the longitude of the node by $0^{\circ}\cdot 24$.

These changes in the position of the ellipse were of no appreciable influence on the calculated distances, which came out about a hundredth of a second of arc larger in 1830: in 1835 there was no difference from those previously deduced. From 1840 to 1860 they were a hundredth of a second smaller than by the last orbit; afterwards there was no difference.

DEFINITIVE ELEMENTS OF \(\sigma \) CORONÆ BOREALIS.

T 1826'93. Node 18° 21 . λ 71 36. γ 31,22'. P 845''''-86. a 5° 885. e 0'7515

COMPARISON OF THE LAST ELEMENTS OF σ CORONÆ, WITH OBSERVATIONS.

Observer.	No	Epoch.	θ,	θ.	θ ₀- θ ∘	P ₀	ρο	рогре
V. Herschel	1	1781.40	347.5	347.0	+ 0.2			
V Herschel V. Struve	2	1802'74	347.5	11 3 53 8	+ 0.3	ŀ		1
V. Struve	3	1819.63	48°0	53'Š	_ 5·8	l		ı
Terschel & South	4	1831.30	65.3	60.5	+ 4.8	"	, ,	٠,
Terschel & South	5	1823'47	72.9	70 I	+ 2.8	1'45	1 '34 1 '28	+ 0
outh		1825 44	77.5	79.5	- 3.0	1.48		+ 0"
V. Struve	8	1827 02	96.3 96.5	87:5	+ 1.8	1,31	1 '27	+00
Herschel	و ا	1828.20	90.5	93.7	+ 2.8	ŀ		
V. Struve	10	1830,11	92.1	95.2	- 3'I			
. Herschel	111	1830,58	104 9 105 1	103 5	+ 14	I,33	1.27	- 03
Dawes	12	1830 52	107.3	104'4	+ 0.7	1 22	1.34	- 01
myth	13	1 -820:-6	107.6	100.0	+ 0.7	1,30	1.58	+ 0
Dawes	14	1831,34	111.2	109 9	+ 1.6	1.22	1,50	+ 0
. Herschel	15	1831.36	108.8	110,1	- 1·3	1.38	1,50	+00
myth	16	1832'37	114'9	115'1	- 0.3	1'40	1,30	+ 0
. Herschel	17	1832 52 1832 55	113.6	115.0	- 2'3	1'07	1.31	- 0
Dawes		1832.55	115'4 118'8	115.0	- 2 3 - 0 6			
V. Struve	19	1833,00	118.8	118,5	+ 0.6	1,30	1,31	- 00
. Herschel	20	1833.56	110.0	119.2	+ 0.4	1,30	1,35	+ 0'0
awes	21	1833.56		120'0	+ 0.6	1,30	1,35	- 01
myth	22	1833.28	120'7	131,0	- 0.3	1,50	1,34	- o*:
Dawes Smyth	23	1834 55	1256	125.2	+0.1			
	24	1835.20	130'9	129.7	+ 1.2	1 40	1,30	+ 0.0
v. Struve Iādler	25 26	1835-50 1836 47	130 5	129'7	+ 0.8	1,31	1,30	- 0.0
V. Struve	27	1836.20	138 5	133.7	+ 4.8			
Dawes	28	1837.47	134 7 136 8	134.2	+ 0.2	I 43	1'42	+ 0.0
V. Struve	29	1837.55	140'0	1370	- 0·8 + 2·0			.,
V. Struve V. Struve	30	1838.45	143'4	141.3	+ 2'1	1'42 1'48	1'45 1'49	- 0.0
ialle	31	1839.23	143 4 147 8	145'1	+ 2.7	1.52	I 49	- 00
Dawes	32	1830'53	144.3	145 I	T 27	1.60	1.55	+ 00
myth	33	1839'53 1839'67	145 1	145.6	- 0.2	1.60	1.20	+ 00
)awes	34	1840 57	147'9	148'5	- 0.6	1.66	1.61	+ 00
Struve	35	1840'57 1840'82	150 2	149'3	+0.0		1.01	- 00
awes	36	1841 48	150'3	151.3	- 1.0	1.24 1.66	1.66	0.0
fä dler	37	1841 56	152'3	TET'E	+ 0.8	1°60	1.66	- 0'0
aiser	38	1841.66	148.8	151.8	- 3°o	1'57	1'67	- 0'1
fädler	39	1842 31	156'4	153'7	+ 2.7	1.21 1.81	1'70	+ 0"
)awes	40	1842:37	153,3	153'9	- 0.6		-	_
lädler	4I	1 1842 73	157 6	154 9 156 6	+ 2.7	1.84	1.43	+ 0,
myth Dawes	42	1843 35 1843 47	155.0	156.6	- 0.7	1,80	I '75	+01
	43	1843 47	156.5	156'9	- 0'4	1.77	1.40	+03
ladier	44	1843.51 1843.68	157°3 156°3	157'0	+ 0 3	1 89	1.77	+ 0
fädler	45 46	1844'40	150.3	157.5	- I.3	1.66	1.41	- 0
fain	47	1844.45	160.6	159 4	+ 1.3	2.02	1.81	+ 0"
fädler	48	1845.57	157 I 163 O	159.5	- 2'4			
acob	49	1845 51 1846 21	162.0	162'0	+ 1.0	2.03	1.87	+ 0
lind	50	1846'32	162.8	163.7	- 1.1 - 1.4	2'25	1.01	+ 0
fädler	51	1846'32 1846'46	165.1	163 9 164 2	+ 0.0	2.02	1.02	+ 0,
myth	52	1846.60	162'4	164.5	- 2,1	2'00	1,03	+00
). Struve	53	1847'02	168.4	165.3	+ 3.4		1.95	-0
Dawes	54	1847 44	166.0	165°3 166°4	- 0.4	1.4 1.88	1.07	- 0
fädler	55	1847 44	166.6	166'4	+ 0,3	3,10	1.97	+ 0.
lädler	56	1848.41	168.4	168.3	+ 0,1	2'40	2 03	+ 0'
Dawes	57	1848 53	168.6	168.6	0,0	1.00	2.04	- 0
Dawes	58	1849 45	170'1	170'4	- o'3	2,00	2.00	0.
). Struve). Struve	59	1849 49	172.0	170 4	+ 1.6	1.92	3,10	- 0.
	60 61	1850.23	168.0	172 3	- 3'4	1,00	3.19	- 0,
letcher	62	1850.40	173.0	172 7 173 6	+ 0.8	2.53	2'17	+ 0.0
fädler	63	1851.22	174'4	173.0	+ 0.8	2 32	2,51	+ 0
Dawes	64	1851.42 1851.42	175.5	1 173.7	+ 1.8	2 34	3,31	+ 0
). Struve	65	1851 63	173.8	174.0	- 0.3	2.26	2,33	+ 0.0
fädler	66	1851 76	173'4	174.3	- 0.9	2.00	2.53	- 0,1
myth	67	1852.25	176.8	174.5	+ 1.4	2 44	2 24	+ 0.3
Miller	68	1852.31	176.5	175'4	+ 10		2.30	+ 0'1
fädler	69	1852.60	177.5	175 5	+ 1.6	2.38	3.30	+ 0,1
). Struve	70	1852.63	173'3		- 2·6	2'39	3,38	- 0.3
acob	71	1853'14	177'9	175 9	+ 1.1	2.18	5,30	- 0'1
Powell	72	1853'35	175.2	177.1	- 1.0		* 5°	- 0.
Mådler	73	1853.98	177'7	177'2	+ 0.5	2'46	2'32	+ 0"
Dawes	74	1 0-5.5	177'9	177.6	+ 0.3	2.30	2'34	+00

AN ORBIT WORKED BY ANALYTICAL METHODS. 133

COMPARISON OF THE LAST ELEMENTS, ETC .- continued.

Observer.		No.	Epoch.	θο	θ.	θο-θ	ρο	ρο	ρο-ρο
O. Strave		75 76	1853'66	175.6	177.6	- 2.0	2'17	2'34	+ 0'31
Mådler		70	1853'77 1854'05	178.8	178'3	+ 0'9	2.62 2.62	2'34	- 0.13
Jacob Dawes		77 78	1854.56	177 [.] 9 178.5	170 3	- o'5	2.36	2°35 2°38	- o'12
O. Struve	::	70	1854 66	170'0	179'1	- 0.x	2'24	2.38	- 0,14
Morton		79 80	1854'07	1785	179'1	- 06	2,53	2:38	- 0.16
Mådler		81	1854 70 1854 86	179'4	179.3	+ 0.3	2.21	2:38	+ 0.13
Dembowski	••	82	1854'80 1855'48	180.1	179'4 180'3	+ 0'4	2 37 2 43	2'40 2'43	0.00
Dawes Winnecke		83 84	1855 40	181.6	180.4	+ 1,3	2.49	2.43	+ 0.06
Secchi	::	85	1855'54 1855'59	180,1	180'5	- 0'4	2.32	3'44	- 0,13
O. Struve		86	THEE DT	179'1	180'5	- 1'4	2.29	2'44	- 0,12
Mädler		8 ₇ 88	1855 78 1856 39 1856 42 1856 43	181.8	180'7 181'6	+ 1 1	2 64	2'45 2'48	+ 0.04
Winnecke			1850.39	182'8	181.0	+ 1.5	2.23	2'48	+ 0.31
Dembowski Secchi		89 90	1850 42	181'8 182'4	181.6	+ o'2 + o'8	2 46	2.48	- 0.03
O. Struve	::	91	1856.57	170'0	181.8	- 1.0	2'46	2'49	- 0'03
acob	:: 1	92	1856.23 1856.23	179'9	183,0	- 0'7	2'53 2'46	2.20	+ 0.03
Mädler		93	1857.62 1857.62	183.3	185.0	+04		2 54	- 0.09
ecchi		94	1857.62	183.9 183.3	183.1	+ 0.5	2'43	2.25	- 0,03 - 0,13
acob	••	95 96	1857.66 1858.01	181.0 183.1	183.6	- 1,4 - 1,4	2'53 2'51	2.22 2.28	- 0.03
o. Struve	::	90	1858.30	184.0	183 9	+ 0.1	2.22	2.28	- 0,01
Dembowski	::	97 98	1858.50	183 2	184 0	– 08	3.00	2.28	+008
Mädler		99	1858 54	183.6	184.3	- e [.] 7	2.64	3.20	+ 0'09
Morton		100	1859*34	184'9 186'1	185'2	- o 3	2'70	2.64	+ 0.00
D. Struve	••	101	1859 94	180.1	185'9 186'4	+ 0.3	2.2 2.41	2.67 2.40	+ 0.01
Dawes	••	102	1860.36	185'5 187'4		- 0.3 - 0.0	2.69	2.76	- 0.01
O. Struve O. Struve	::	104	1861 '58 1862 '76	189.1	187 . 2	+ 0,1	2'77	2*82	- 0.05
Dembowski	::	105	1863.00	100,1	189'3	+ 0.8	2.76	2.84	- 0.08
O. Struve]	106	1803.00	188.3	189.0	- 1.7	2.77	3.86	- 0.00
Engelmann		107	1864 45	190'5	190'7	- 0,3	3,11	2.01	+ 0'20
Dembowski]	108	1864 95	101,0	191'2	o'0 + o'4	2'79	2'93 2'95	- 0.01
O. Struve Dawes		109	1865.36	191.2	191.6	- 0,1	2'94 3'08	3.02	+ 0'13
Engelmann	::	111	1865 38 1865 39 1865 72 1865 81	102.4	101.6	+ 1,1	2'96	2.95	+ 0.01
Talmage	.: 1	112	1865.72	189 I	191,0	- 2.8			
Secchi		113	1865.81	192.5	192 0	+ 0.2	2.08	3,08	0'00
Talmage		114	1800 43	189.5	192.6	- 3'4	3.73	3,03	- 0.03
O. Struve		115	1866.68	193,0 193,0	192.8	+ 0.3	3,00	3 03	- 0.14
Kaiser Dembowski	::	116	1866'02	193.3	193.0	+ 0'2	3.80	3.04	- 0'15
Main .:	::	118	1867°37 1868°42	192.1	103'4	- 1.3 - 1.3	3.00	3.02	- 0.07
Dunér		119	1868 42	104'0	194'3 194'4	+ 0.6	3'07	3,11	- 0.01
Brünnow		120	1868*55	194,1	194 4	- o'3	3,11	3,15	- 0'14
O. Struve		121	1868.28 1868.88	194'7 195'7	194'4	+ 1.0	5.08	3'12 3'14	- 0,12
Dembowski Talmage		122	1868.93	1957	194'7 194'8	- o'3	3.Q1 3.00	3'14	+ 0'47
Dunér	::	124	1860.63	1950	195.3	- o 3	3.00	3,12	- 0.12
Gledhill	::	125	1870.32	1968	195'9	+ 0'9	3'35	3,30	+ 0.12
Dembowski		126	1870'95	197'1	196.4	+ 0'7	3,00	3 23	- 0'14 - 0'14
Dunér		127	1871 35	196.6	196.7	- o.i	3,12	3°25	+ 0'02
Gledhill	. 1	128	1871'45 1871'51	196 5 194 3	196.8	- 0 3 - 2 5	3.28 3.21	3 26	+ 0'25
Wilson Talmage		129 130	1871.86	197.3	197 1	± 0.3	3.33	3.58	+ 0.04
Coneland	::	131	1872'28	196.2	107'5	- 1,0	3 3-	J = -	
Copeland Wilson		132	1872'53	197'7	197°5	+ o.1	3'25	3,31 3,31	- 0.00
O. Struve		133	1872'57	195 3	197°7 197°9 198°3	— 2°4	3°26	3,31	- 0.02 - 0.02
Dembowski		134	1872 90	1,861	197.9	+ 0.3	3,13	3.33	- 0 21
Copeland Wilson	••	135	1873'40	196.7	198.3	+ o'1	3'14	3'35	- 0'21
O. Struve	::	136 137	1873 42	198.4	198.4	- 08	3.12	3.36	- o'21
Gledhill		138	1873'56	1 -08.0	198.2	+ 0'4	3.40	3'37	+ 0.03
Copeland		139	1874 33	198.8	198.0	- 0,1			- o'os
Gledhill	••	140	1874 41 1874 61	108.3	100,0	- o·8	3,35	3'40	- 0.02
O. Struve	••	141	1874'61	199.8	199,1	+ 0.7	3'41 3'28	3'4I 3'42	- 0'14
Dembowski Schionorelli	••	142	1874 90	198.6	199'3	- 0.0 - 0.1	3 34	3'44	- 0.10
Schiaparelli Dunér	••	143 144	1875 54	199.7	199 7	- 0.1	3,50	3.45	- 0.16
Gledhill	••	145	1874 90 1875 46 1875 54 1875 56	200'0	199.8	+ o.5	3.58	3'45	- 0'17
Nobile		145 146	1075 05	200.6	199'9	+ 0.7	3'74	3'45	+ 0.33
Doberck Gledhill	••	147	1875:29	199'3	200'3	- 10		2.50	- 0'22
Gledhill		1 7/X	1876.48	1 200'0	200'4	+ 0.3	3.58	3.20	

CHAPTER IV.

ON RELATIVE RECTILINEAR MOTION.

WHEN two stars happen to lie nearly in the same visual line, but one far behind the other, they are said to be optically double, and not to form a binary system. In this case, if one or both are affected with any proper motion, they will appear to change their relative position both in angle and distance, and the list of changing measures will resemble that of a binary system. But since it may be assumed that their proper motions are approximately uniform and rectilinear, it will follow that their relative motion will also be uniform and rectilinear; and hence that when a series of points is charted as before, they will lie approximately on a straight line.

No difficulty will be found in the graphical construction for this straight line, and it is not necessary to give an example. The processes will be as follows. Correct all the observed angles for precession, and chart them as before, thus obtaining interpolated angles for every five or ten degrees. Chart all the distances, and obtain interpolated distances corresponding to the same angles. It will be convenient to convert these coordinates r, θ into rectangular coordinates x, y by the usual formulæ $x = r \cos \theta$, $y = r \sin \theta$, referring to the adopted meridian as one of the axes, and then to draw a straight line passing among the points. By observing the times at which the star occupied certain points on this line, it is easy to ascertain what position it would occupy at any

intermediate or any later time, and to ascertain by the protractor and compasses what its angle of position and distance would be at that time, and thus either to compare former observed positions with those which would have resulted from uniform movement in the straight line so found, or to construct an ephemeris for future years.

But the analysis of this problem is not at all beyond the reach of non-mathematical amateurs, and we shall therefore give a specimen of the more exact analytical handling of this problem in the case of 61 Cygni.*

In this case the problem is one of great interest. The two stars have very large proper motions nearly identical both in direction and in amount. That of one is given by W. Struve as $517'' \pm 10''$ per century in the direction $51^{\circ}16' \pm 1^{\circ}$, and that of the other as $509'' \pm 10''$ in the direction $53^{\circ}38' \pm 1^{\circ}$. The probability of a physical connection between these two stars is almost incalculably great. Struve has expressed it arithmetically, and illustrates it by saying that the physical connection between the components of 61 Cygni is more than a hundred thousand times more probable than that, after an experience of more than five thousand years, the sun will rise on the morrow.

But if they were physically connected, the relative motion would not be rectilinear, but orbital, from their mutual attraction; and it becomes, therefore, a matter of some importance to examine accurately into their relative motion. What is certain is that hitherto the motion has deviated extremely little from a straight line.

The observations are charted on millimetre paper (see Plate III.), and curves drawn among the dots as before explained, and the interpolated angles and distances read off as in Table I. and converted into x and y.

^{*} See Monthly Notices, vol. xxxv. p. 323 (1875). This chapter was written in 1876.

TABLE II.

t.	θ.	<i>r</i> .	r cos θ.	Δχ.	r sin θ.	
1820 1825 1830 1835 1840 1845 1850 1860 1865 1870	82·7 86·4 89·9 93·3 96·5 99·6 102·6 105·5 108·2 110·8 113·3 115·7	15·15 '35 '60 '90 16·23 '60 17·00 '43 '89 18·38 '91 19·49	1'9250 + 0'9638 + 0'0272 - 0'9157 - 1'8373 - 2'7683 - 3'7084 - 4'6579 - 5'5776 - 6'5268 - 7'4797 - 8'4520	'9612 '9366 '9429 '9216 '9310 '9401 '9495 '9197 '9492 '9529 '9723	15'027 15'320 15'599 15'874 16'125 16'367 16'590 16'796 16'995 17'182 17'368 17'562	*293 *279 *275 *251 *242 *223 *206 *199 *187 *186 *194

In this case, however, it is plain from the columns of differences that these points do not lie on a straight line; for then the differences of the two columns would vary together. In fact, the differences in the column Δx are nearly uniform, while those in Δy steadily decrease; and thus indicate a curve slightly concave to the origin.

A little consideration, however, will show that this orbit cannot be elliptical. Taking the early observations into account, the companion has described about 80°, and yet has scarcely deviated from a rectilinear path. It is almost certain that the relative path is of a hyperbolic nature. It is given approximately, so far as at present described, in Fig. 16.

But if we wish to proceed with the problem in the case of any star, let us assume $p = r \cos(\theta - a)$ as the equation to the required line, p and a being the elements to be determined.

No values of a and p can be found which will exactly satisfy the twelve derived equations, and the equations must therefore be combined by the method of least squares, so as to give the most probable straight line.

Let the equation be written

in the form $x \frac{\cos a}{p} + y \frac{\sin a}{p} - 1 = 0$. Then when the values of x and y for any of the selected points are substituted, we shall have $x_1 \frac{\cos a}{p} + y_1 \frac{\sin a}{p} - 1 = e_1$, where e_1 is the error.

Geometrically, e_1 is the intercept made on the line by parallels to the axes through any point P, and is therefore proportional to the perpendicular from P.

Let the series of twelve equations be thus formed; and let the first equation be multiplied by x_1 , giving

$$x_1^2 \frac{\cos a}{p} + x_1 y_1 \frac{\sin a}{p} - x_1 = e_1 x_1;$$

and the second equation be multiplied by x_2 , giving

$$x_2^2 \frac{\cos \alpha}{\rho} + x_2 y_2 \frac{\sin \alpha}{\rho} - x_2 = \epsilon_2 x_2;$$

and so on, and let all these equations be added together, giving

$$\Sigma (x_1^{x_1}) \frac{\cos \alpha}{p} + \Sigma (x_1 y_1) \frac{\sin \alpha}{p} - \Sigma (x_1) = \Sigma (\epsilon_1 x_1) \quad (A).$$

Similarly, by multiplying the equations by y_1 , y_2 , etc., respectively, and adding, we shall obtain

$$\Sigma (x_1 y_1) \frac{\cos \alpha}{p} + \Sigma (y_1^s) \frac{\sin \alpha}{p} - \Sigma (y_1) = \Sigma (\epsilon_1 y_1) \quad (B).$$

Now the method of least squares shows that on the assumption that all the twelve equations are to have equal weight, the most probable result will be obtained, or in this case that a line will be found such that the sum of the squares of the perpendiculars from the points on the line will be a minimum, by taking Σ $(e_1 x_1) = 0$, and Σ $(e_1 y_1) = 0$.

Hence our final equations for determining $\frac{\cos \alpha}{p}$, $\frac{\sin \alpha}{\theta}$ are

$$\Sigma (x_1)^2 \frac{\cos \alpha}{p} - \Sigma (x_1 y_1) \frac{\sin \alpha}{p} - \Sigma (x_1) = 0$$

$$\Sigma (x_1 y_1) \frac{\cos \alpha}{p} - \Sigma (y_1^x) \frac{\sin \alpha}{p} - \Sigma (y_1) = 0.$$

Solving these, we at once obtain

$$\tan \alpha = \frac{\sum (x_1^2) \sum (y_1) - \sum (x_1 y_1) \sum (x_1)}{\sum (y_1)^2 \sum (x_1) - \sum (x_1 y_1) \sum (y_1)} = \frac{m}{n};$$

and $p^2 = \frac{\sum (x_1^2) \sum (y_1^2) - \{\sum (x_1 y_1)\}^2}{m^2 + n^2} = \frac{\sum (x_1^2) \sum (y_1^2) - (\sum x_1 y_1)^2}{n^2} \cos^2 \alpha$; and the equation to the straight line required is $p = r \cos (\theta - a)$.

Let the epoch at which the distance was a minimum be T. This can be approximately determined from the interpolating curve, by noting the time that corresponds to the angle a. But the correctness of this result would depend on the correctness of the curve at that point alone, and would not utilise other observations. We therefore proceed as follows. If θ_1 is the value of θ at the time t, p tan $(\theta_1 - a) = m (t_1 - T)$; therefore $m (t - T) = c_1$ where $c_1 = p$ tan $(\theta_1 - a)$.

Obtain a series of equations of this type corresponding to all the points on the interpolating curve. It is required to combine them so as to obtain the most probable values of m and T.

For T write $T_1 + \tau$ where T_1 is an approximate value of T, and τ is small, and for $t_1 - T_1$ write k_1 , and for $m \tau$ write s; so that

$$m k_1 - z - c_1$$

 $m k_2 - z = c_2$
= a series of *n* equations.

Treating these as before, we shall obtain the two equations for m and z

and
$$m \Sigma_1 (k_1^2) - z \Sigma (k_1) = \Sigma_1 (c_1 k_1),$$
$$m \Sigma_1 (k_1) - n z = \Sigma_1 (c_1),$$

the solution of which only requires the formation of the quantities

$$\Sigma$$
 (k_1) , Σ (c_1) , Σ $(c_1 k_1)$ and Σ (k_1^2) .

CHAPTER V.

ON THE EFFECT OF PROPER MOTION AND PARALLAX ON THE OBSERVED POSITION ANGLES AND DISTANCE OF AN OPTICALLY DOUBLE STAR.

IF a pair of stars is only optically double, and one is moving relatively to the other, it is plain that there will be a change in position angle and distance due to this cause.

If the near one is sufficiently near our system to have an appreciable parallax, it has long been seen that the circumstances were favourable for the determination of the parallax. The *proper motion* of either of the stars will of course complicate the result, and we proceed to show how in the first place by a preliminary examination the measures may be studied in order to see whether they show any trace of such parallax; and then how they may be submitted to rigorous calculation for the purpose of ascertaining its amount.

It is well known that the annual motion of the earth would cause the nearer star to revolve, apparently, in an ellipse round its position as seen from the sun, the form of the ellipse being that which the earth's orbit would assume if seen from the star; that the ratio of the axes would S be the sine of the latitude of the star, and that the major axis would be the annual parallax.

Further, the proper motion of either or both stars would cause one to move relatively to the other in a straight line. If both causes are in operation, the motions of the stars will be combined.

Accidental errors being as far as possible got rid of by the graphical methods already described and illustrated, and the

position angles and distances for intervals of, say, twenty days, having been obtained from the interpolating curve

• S

(supposed to embody the observations of some years, and taken at all times of the year), the charted positions will

• 5

lie approximately in a straight line; and if the deviations from it show no law, then it is not worth while proceeding further. But if it is found that the points lie alternately on one side and on the other of that straight line, and that the total period is one year, then we have clear indications of a measurable parallax.

The graphical proceeding will be as follows: by comparing the positions at intervals of as large an integral number of years as may be, and using all the measures available, first determine what the proper motion is. Then chart over again the positions that would have been occupied by the star if proper motion had not affected it: the resulting points ought to lie in an ellipse whose axis major is in a position six hours distant from the longitude of the star, and the ratio of whose axes is the sine of the latitude of the star. The major axis itself is the parallax sought. The preceding diagrams may help to make this clear: No. I exhibits the effect of annual parallax only; No. 2 of proper motion only; and No. 3 the effect of both com-

bined. When this has been done graphically, it may be thought worth while to proceed further with the rigorous calculation as follows:

Let S be the principal star, σ the companion, at distance D", and let S' be the position of the principal star after the lapse of a year, in consequence of its proper motion, M S' = $d\delta$ in declination, and S M = $d\alpha$ cos δ in R. A, expressed in seconds of arc, δ being the declination.

Then the change in position angle is $-S \sigma S'$.

FIG. 17.

Let the position angle N S σ be θ , and let E S S' = ϕ . Here tan $\phi = \frac{d\delta}{\delta a \cos \delta}$, which determines ϕ . (< 180°),

and $S \sigma S' = \frac{180 \times S S' \sin S' S \sigma}{\pi \times \sigma S'}$ in degrees, $= \frac{57.3 \times d \alpha \cos \delta \sec \phi \cos (\theta + \phi)}{D}$ in degrees, $\therefore d \theta = -m d \alpha.$ (1)

and d D, the change in distance, = - S N, $\therefore d D = - S S' \sin (\theta + \phi).$

$$\therefore a D = -55 \sin (\theta + \varphi). \tag{2}$$
equations completely determine the change in and

These equations completely determine the change in angle and distance due to proper motion.

There will also be a change of position due to parallax, or rather to the difference of parallaxes of the two stars, and the investigation of this is of some importance, as it may lead to the determination of the parallaxes of some stars. It will be remembered that it was with this view that the examination of double stars was first entered upon by Sir William Herschel.

If S be the sun, Σ a star, E the earth moving in the ecliptic, then the apparent path of the star on the background of the heavens will be a small ellipse, whose major axis is parallel to the ecliptic, and whose minor axis is perpendicular to it, and parallel to the circle of latitude.

Now let C be the place of the star as viewed from the sun,

P Q R T the ellipse described in consequence of parallax, L L the circle of latitude, Q the position of the star when the longitudes of the earth and the star are the same, T where they differ by 180°, σ the smaller star supposed to have

no parallax, C' the position of the star when the time is t, and the longitude of the earth is L; then C σ C' is the change in the angle of position due to parallax.

Then we have, R being the radius factor of the earth at the time t, x the constant of parallax for the star at the earth's mean distance taken as unity, λ the latitude,

$$CR = R.x$$
, $CT = R.x \sin \lambda$;

therefore if Z' is the apparent position in degrees at the time t, Z the mean position, as viewed from C, D the distance of $C \sigma$ in seconds, X the angle $\sigma C C'$,

 $Z' = Z - \frac{57.3 \text{ C C sin X}}{D}$, C C' being expressed in seconds of

arc, or
$$Z' = Z - \frac{57.3 \, \rho. \, x. \sin X}{D}$$
 (3)

where ρ is the elliptic radius at the time t; and ρ and X are calculated as follows:—

If L, l are the longitudes of the earth and the star at the time t, I the angle L C C', A the angle L C N,

Then from the figure it is plain that

$$\cos I = \frac{C m}{C^{l} m} - \frac{E M \sin \lambda}{S m} - \cot (L - l) \sin \lambda; \qquad (4)$$

and then
$$\rho = R \sin (L - l) \operatorname{cosec} I$$
, (5)

and
$$X = Z + I - A$$

$$= Z' + I - A, \text{ very nearly,}$$
 (6)

or
$$360 - (Z' + I + A)$$
,

and A is computed from the triangle EPC, E being the pole of the ecliptic, P the pole, C the star, by the formula

$$\cos A = \frac{\cos E P - \cos E C \cos P C}{\sin E C \sin P C}$$

$$= \frac{\cos \omega - \sin \lambda \sin \delta}{\cos \lambda \cos \delta} \qquad (7)$$
or by
$$\cos \frac{A}{2} = \frac{\sqrt{\sin S \sin (S - \omega)}}{\cos \lambda \cos \delta} \qquad (8)$$
where $S = \lambda (E C + C P + E P)$

where $S = \frac{1}{2}$ (E C+C P+E P).

We compute therefore A by formula (8) or (7), which give no ambiguity, since A is < 180°;

I by (4), I being in the same quadrant as L-l;

 ρ by (5), and X by (6);

and substituting in (3) we get an equation of the form Z' =Z + nx.

If a series of such observations is taken, they can be combined so as to give values of Z and x.

But in practice the proper motion will be involved with the parallactic motion, and the constants may be determined together as follows:-

Let
$$Z' = Z + nx - m(t - T) da$$

where t is the time,

T a fixed epoch,

m the constant determined above by (1),

x the unknown constant of parallax,

Z the position angle at the time T.

Z' the position angle at the time t.

It will be convenient to subtract from Z' the integral number of degrees z in it, and the same from Z, and put $Z - z = \zeta$, and if the weight of an observation or group of observations be w, we obtain a series of equations of the type

$$w\zeta + wnx - w\mu da = wa,$$

which must be solved by the method of least squares for ξ , x, and d a.

This was done by Jacob for the star a Herculis, and he arrived at a parallax 0".06, the proper motion being so small as to be neglected.

CHAPTER VI.

ON THE ERRORS OF OBSERVATION AND THE COMBINATION OF OBSERVATIONS.

FOR the general treatment of this subject we must refer the reader to Airy's *Theory of Errors of Observation*; but an example or two may be given here of the application of the theory to the Observations of Double Stars.

Suppose the following series of measures of position was taken by one observer on one night: 211.8, 213.2, 209.9, 212.0, 212.5, 211.9, 210.8, 212.1. We require to know what is the most probable result of these measures, and within what limits it may be relied upon.

The most probable result is shown to be the arithmetical mean, which is easily found to be in this case 211.77.

Make a list of the separate errors of each of the observations from this mean, distinguishing between those in which the observation is in excess of the mean, from those in which it is less than the mean. In this case the errors are + .03, + .13, - .187, + .23, + .73, + .13, - .97, + .33.

Take the mean of the + errors '48, and the mean of the - errors, 1'42; and, finally, take the mean of these '95.

This is a numerical quantity, without sign, and is a measure of the goodness of the measures. It is called the "mean error," and furnishes a ready means of comparing the value of the observations taken on one night, or with one instrument, from those taken on another night, or with a different instrument. It further gives a means of comparing the measures of one observer with those of another. Thus if another observer, on the same evening, with the same telescope, took the following

six readings, 212'3, 212'7, 211'5, 211'2, 211'9, 212'1, it will be found that the mean of the errors is '42, and the most probable result is 211'95. This, however, does not show the *probable error*. This expression must not be taken to mean the error which is more probable than any other error, but the limit within which, on either side of the arithmetical mean, it is *probable* that the truth lies.

This is got by the formula, (Airy, § 60) probable error of the arithmetical mean = $0.6745 \sqrt{\frac{\text{Sums of squares of apparent errors}}{n. (n-1)}}$, n being the number of the observations.

To take the first set of readings, the apparent errors of which were given above, the sum of their squares is 7.1952; and n is 8, whence the probable error of the mean = .24. In the second case the probable error will be found to be .15.

The next question is how to combine the observations made by these two observers so as to get the most probable result.

Let $\frac{1}{(probable error of mean)^2}$ be called the "theoretical weight," or w.

Then in the first case $w_2 = \frac{1}{(.24)^3} = 17$, and in the second case $w_2 = \frac{1}{(.15)^3} = 44$; and the most probable result is shown to be $\frac{17 \times 211.77 + 44 \times 211.95}{17 + 44} = 211.90,$

and the theoretical weight of the result is 17 + 44 = 61, and probable error of result = $\sqrt{\frac{1}{61}}$ = ·13.

Generally, if a, b, c, \ldots are successive results, whose theoretical weights are $w_1, w_2, w_3 \ldots$ the most probable result is $\frac{w_1 a + w_2 b + w_3 c \ldots}{w_1 + w_2 + w_3 \ldots}$, with theoretical weight $w_1 + w_2 + w_3 + \ldots$ + ..., and probable error $\sqrt{\frac{1}{w_1 + w_2 + w_3 + \ldots}}$.

It must be observed that this method assumes that the observations are really *independent* of one another and very numerous; and these conditions are not easily observed in double-star measures. No one who has long observed double

stars will have failed to notice that the readings taken on a single night tend to confirm one another, and yet may differ appreciably from those taken on another night. They may be taken with all honesty of purpose, yet the later readings are not strictly independent, but tend to confirm the early readings. Hence it is much more valuable work to take a moderate number of readings on several nights than to take very many readings on a single night. And it is not worth while to apply these methods of calculating the most probable result and the probable error to the observations of one night, but to the separate results of many nights, with the view of determining as accurately as may be one place for the year, and the weight to be attached to it.

The most useful form in which observations could be published would be to give the number of nights of observation, the resulting position, and the theoretical weight, the last number being thus not an arbitrary number assigned by guess,* but one which arises directly from the observations, and is referred to the same unit by all observers; a weight I assigned to an observation of position meaning a probable error of I° , and generally a weight w indicating a probable error of $\frac{1}{\sqrt{w}}$ degrees.

So in determinations of distance the same elements should be given, and a theoretical weight w would indicate a probable error of $\frac{1}{\sqrt{2n}}$ seconds.

It may be observed that the theoretical weight of a result varies inversely as the square of the probable error of that result: now it is also true † that the probable error of the arithmetical mean of a number of equally good observations varies inversely as the square root of the number of observations. Hence the theoretical weight of a number of independent equally good observations varies directly, in the

case of any particular observer, as the number of observations.

This confirms what was said above of the importance of observing the same star on many nights.

Hence, finally, it is possible to determine exactly the weight to be assigned to a given series of measures of a star by an observer A. It will consist of the product of two numbers, one of which is the number of nights of observation of that star, and the other is his "theoretical weight," or the mean of as large a number as may be of the theoretical weights obtained, as above explained, from his observations on stars of similar magnitudes and distances.

It is necessary to say similar magnitudes and distances, as the probable errors of an observer in measuring such stars as γ^2 Andromedæ, δ Cygni, and Castor will be very different, and therefore the theoretical weights of such observations will be very different.

PART III. THE CATALOGUE AND MEASURES.

THE CATALOGUE.

INTRODUCTION.

THIS Catalogue gives the places, etc., of the selected list of stars. Great care has been taken in the selection; and, for the most part, the stars will be found to be those which are either binary, probably binary, those in which certain change has taken place, or those deserving of at least occasional careful measurement on other grounds.

The R. A., Dec., and Magnitudes, are approximate. Column 6 gives Struve's and Otto Struve's numbers, the latter being placed in brackets. Column 7 gives the number in Herschel's great Catalogue (Mem. R. A. S., vol. xl.) Column 8 gives, roughly, the apparent arc described by the star since its discovery. Column 9 the probable character of the object. In this column the following initial letters are used: B (binary); PB (probable binary); PM (proper motion); RM (rectilinear motion); CC (certain change); PC (probable change).

The stars are taken chiefly from the great works of Σ , $O.\Sigma$, H_1 , and H_2 . It was our original intention to include a large number of Mr. Burnham's discoveries; owing, however, to the difficulty in selection, the extreme faintness of many of these objects, and the consideration that, as a rule, well-known stars only are suitable for the amateur, we have omitted them. For the convenience, however, of those observers who, having sufficient skill, patience, and instrumental power, may desire to assist Mr. Burnham in obtaining thoroughly reliable measures of his recently discovered pairs, we have appended to our Catalogue a selection from his published lists.

In conclusion, we have to acknowledge much kind help in the form of suggestions, measures, and lists of stars in certain or probable motion; and our best thanks are offered to Mr. Burnham, Dr. Doberck, M. Flammarion, and Mr. Ormond Stone.

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Y's No.	H ₂ 's No.	Arc.	Char- acter.
1 2 3 4 5	a Andromedæ Cephei 316 B h. 1007 Cephei 318 B	h. m. 0 1'5 2'2 2.7 7'4 9'4	-\$ 12 28 36 79 3 26 20 76 17	8, 10 2, 11 2 6, 6 7, 8, 9 7, 7	3063 2 [2] 13	10308 2 35 48	8 10 300? 12 24	PB PM B PB
6 7 8 9	Andr. 69 B H ₁ V. 85	10.4 11.3 12.5 13.1	35 48 -0 21 25 28 37 28 66 20	7, 8 7, 10 7, 8 7'4, 9'5 7, 8, 9	[4] 23 24 [6]	59 66 72 93	34 8 5 3	B RM PC RM PC
11 12 13 14 15	42 Piscium Cass. 49 B 49 Piscium λ Cass.	15 16·2 21 24·6 25·1	65 49 12 49 49 20 15 23 53 52	7, 8, 10 7, 11 7, 9 7, 11 6, 6	[7] 27 30 32 [12]	96 103 127 156 162	7 4 3 13	PC RM RM RM PB
16 17 18 19 20	51 Piscium h. 1041	25 26:2 31:9 33 34:7	36 16 6 17 40 20 48 42 -7 53	8, 11 5, 9 8, 9 6, 11 7, 10	[13] 36 44 [16] 49	164 176 215 218 233	6	PC PC CC PC CC
21 22 23 24 25	P. O. 181 7 Cass.	36 37 37'5 41'2 41'8	3 3 ² 36 55 45 35 50 47 57 11	7, 9 8, 11 8, 9 7, 8 4, 8	[18] [19] 52 59 60	242 249 251 281 283	20 3 10 8 88	B PC B B
26 27 28 29 30	λ Toucanæ	43 [.] 9 44 [.] 5 45 [.] 9 47 [.] 8 47 [.] 9	11 11 40 33 9 57 -70 9 83 2	8, 11 9, 10 8, 9 7, 8 9, 10	63 64 67 69	295 297 305 318 307	26 12 10 11	R M PC PB PB CC
31 32 33 34 35	66 Piscium Andr. 36 B So. 390 P. O. 251	48 48 49 52·2 53·2	18 32 22 58 8 44 -16 20 0 8	6, 7 6, 7 8, 9 7, 7 7, 8	[20] 73 74 80	316 319 320 338 344	24 50 54 17	PB B PC PB CC
36 37 38 39 40	ψ¹ Piscium Ceti 160 B	56 58.7 59.1 1	46 44 -6 7 14 44 20 50 -2 24	7, 8 8, 9 8, 8 5, 5 7, 8	[21] 86 87 88 91	354 373 377 378 393	4 20 2 6	PC CC PC B PB
41 42 43 44 45	φ Andr. ζ Piscium	3 7.5 8 7.9	46 36 6 56 80 16 -8 18 48 24	5, 6 4°2, 5°3 7, 8 8, 10 7, 8	[515] 100 [28] 101 102	435 430 439 453	42 4 10 10	B PB CC CC
46		1 12	63 16	9, 10	109	460	2	PC

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	X's No.	H _a 's No.	Arc.	Character.
47 48 49 50	Polaris 42 Ceti h. 2036 \$\psi\$ Cass.	h. m. 1 13.7 13.6 14 17.4	88 40 -1 9 -16 25 67 30	2, 9 6, 7 7, 7 4, 9	93 113	400 474 478 490	0 10 27 2	PB CC B PB
51 52 53 54 55		20.6 20.7 20.8 25.6 25.9	82 44 2 55 -0 46 16 21 35 14	8, 9 8, 9 8, 10 7, 10 7, 10	118 122 125 132 133	502 514 515 542 543	8 5 43 34 6	CC PC RM PM PB
56 57 58 59 60	P. I. 107 100 Piscium P. I. 123 P. I. 127	27 28·5 30 29·7 30·6	7 36 11 57 58 3 7 2 -30 31	7, 11 6·9, 8 7, 8 7, 7 6, 7	[31] 136 [33] 138	548 560 564 568 573	10 8	PC PC PC PB PC
61 62 63 64 65	6 Eridani	33.5 35.8 35.2 36 36	14 38 - 11 55 - 56 49 55 16 80 18	8, 8 5, 7 6, 6 7, 10 7, 7	[35] [34]	588 611 612 606 592	16 4 106 6 5	R M B C C P C
66 67 68 69 70	γ Arietis P. I. 209	39·8 44·4 47 48·3 49·7	32 34 20 31 18 42 28 13 1 15	8, 9 4, 4	158 175 180 183 186	637 677 694 704 714	18 48 2 20	PB RM PC PB B
71 72 73 74 75	α Piscium γ Andromedæ	51 52·9 54 55·8 56·5	74 55 20 26 34 42 2 11 41 46	7, 8 3, 4	185 196 197 202 [38]	710 738 740 753 755	10 13 25	PB CC RM PB B
76 77 78 79 80		56.8 2 2.5 3 . 5.4 6.4	25 22 61 44 19 46 29 44 46 55	8, 8 8, 9	208 216 221 227 228	761 789 799 814 818	14 2 4 9 50	B PC PC PC
81 82 83 84 85		7 7.7 8.7 9.3	-2 57 29 50 60 48 51 55 23 19	6, 8 7, 7 8, 9 8, 9 8, 8	231 232 234 236 240	821 826 827 836 852	4 4 8 2	PC PB PC PC
86 87 88 89 90	o Ceti	13·3 12·7 14 16·6 19·2	-3 32 44 2 37 57 60 59 66 51	-, 9 7, 9 8, 9 7, 8 4, 7	249 [40] 257 262	876 880 892 906	48 2 3 26 25	R M P B P C B
91 92		21.1	29 22 68 47	7, 10 8, 9	269 278	925 949	20? 8	P B P B

Re No	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Y's No.	H ₂ 's No.	Arc.	Char- acter.
93 94 95		h. m. 2 32 34 35	- 11 54 26 6 42 10	8, 11 7, 9 8, 9	288 [43] [44]	984 990 995	11 29 4	CC PB PC
96 97 98 99 100	84 Ceti θ Persei γ Ceti	35·5 35·1 35·9 37·5	56 31 -1 12 48 43 2 44 38 55	9, 12 6, 9 4, 10 3, 7 8, 8	293 295 296 299 300	1003 09 10 19 20	13 10 8 7 14	CC B B PB
101 102 103 104 105	Arietis 114 B π Arietis Persei 85 B	40.6 42.2 44.1 44.3 48	18 52 16 58 72 24 52 30 26 24	7, 8 5, 8, 10 7, 8, 9 7, 7 8, 10	305 311 312 314 326	36 47 44 53 80	12 18 8 20	CC CC PB B
106 107 108 109 110	e Arietis P. I. 230 Persei 104 B	49 52'3 53 54 54'1	44 2 20 51 6 10 17 32 31 56	8, 9 6, 6 8, 8 7, 10 6, 8	328 333 334 [49] 336	84 98 1104 08 09	4 10 8 6	RM PB PC PC CC
111 112 113 114 115	52 Arietis 12 Eridani	58 3 0.7 1 4.6 6.9	24 47 71 6 7 56 83 34 -29 27	6, 6 7, 7 9, 9 8, 9 4, 7	346 [50] 355 343	1129 32 47 28 77	20 6	PC PB PB RM PB
116 117 118 119 120	P. III. 1	7 7.8 10 14 15.3	65 13 0 18 38 11 18 45 8 20	9, 10 8, 8 7, 8 8, 9	[52] 367 [53] 377 380	67 79 88 1210 22	20 35 20 6 20	PB PB PC PB
121 122 123 124 125	P. III. 46 h. 1135	16.4 20 20.5 21 24.3	20 33 50 I 58 57 67 II 19 22	7, 9 8, 9 7, 8 7, 8 8, 8	381 388 389 [54] 403	24 40 42 39 71	6 103? 5	PB PB PC PC PB
126 127 128 129 130	7 Tauri P. III. 98	24.7 25.2 27.3 27.6 30.6	-4 41 59 38 24 4 19 25 0 12	8, 8 7, 8 7, 7 8, 8 6, 8	408 400 412 414 422	79 70 88 91 1308	7 13 28 5 15	CC PB B PC B
131 132 133 134 135	H ₁ . II. 52	32.2 36.1 36 40.1	33 44 -13 0 38 0 7 31 37 58	7, 7 7, 8 7, 8 7, 10 8, 9	425 436 434 [61] 447	18 37 38 43 70	2 2 2 3	PC RM RM PB RM
136 137 138	Atlas Pleiad. P. III. 170	42 43.1 3 43.6	23 39 25 13 29 17	5, 8 6, 7 8, 11	453 [65] 459	81 92 96	78? 7	P B B C C

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Z's No.	H ₂ 's No.	Arc.	Char- acter.
139 140	32 Eridani Camel. 9 Hev.	h. m. 3 48·2 47	-3 ig 60 45		470 [67]	1436 09	°	P C P C
141 142	Cephei 49 Hev.	50 56·2	80 22 39 8	8, 10	460 483	o6 70 83	37	B PB
143 144 145	h. 671 P. III. 242 P. III. 249	59 59 4 I	33 37 40 17	7,8	[71] [531] [72]	86 1500	2	PC B PC
146 147 148 149 150	H ₁ N. 17	1.7 6 7.8 9.8	22 47 9 20 58 29 -7 47 22 29	8, 8 7, 8 4, 9	494 [74] 511 518 520	06 21 28 53 56	27 190 2	PC PB? B B
151 152 153 154 155	55 Tauri P. IV. 46 Tauri 230 B 56 Persei	13 16·8 17 16·9	16 14 42 9 11 9 33 49	7, 7 7, 8 6, 9	[79] [80] 535 [81] [82]	71 82 1600 1595 1602	23 4 13 3 35	PB PC PB PC PB
156 157 158 159 160	80 Tauri a Tauri	20 23'3 28 29 29'5	-1 41 15 23 48 16 16 16 19 14	6, 9 7, 10 1, 11 ²	547 554 [85] 567	31 48 77	12	? B P B P M P B
161 162 163 164 165	2 Camel. Aurigæ 4 B	30°4 31°1 34°1 38°5 48	53 15 26 43 37 17 5 4	6, 6 8, 8 8, 8	566 572 577 589 [90]	87 1703 15 48 1819	15 8 19 7 2	B CC CC CC PC
166 167 168 169 170	P. IV. 207 P. IV. 258	49 50 51.9 52.1 53.1	73 53 3 0 1 28 50 1	7,8 8,8 5,9,9	[89] [91] 622 619 615	1803 34 49 42 31	200? 2 10 9	B PC PB CC PC
171 172 173 174 175	5 Aurigæ P. IV. 288 14 i Orionis	52 54.1 58.4 59.3 5 1.3	39 1 4 5 19 38 22 56 8 20	7, 9 7, 7 6, 8	[92] [93] [95] [97] [98]	44 62 97 1903 23	3 9 49	PC PC PB B
176 177 178 179 180	Camel. 19 Hev. h. 693	2°1 2°8 3 3 4°2	37 9 79 2 83 18 8 1 -7 12	5, 8 8, 11 7, 10	644 634 629 [100] 651	25 1892 71 1941 47	6 9 15 6 36	PC RM CC CC RM
181 182 183 184	14 Aurigæ λ Aurigæj	6.7 7 10.6 5 12.9	-12 1 32 33 40 6 64 38	5, 7	655 653 676	62 61 91 2001	21 10	PC PC RM PB

Ref. No.	Name of Star.	R. A. 1800.	Dec. 1800.	Mag.	Z's No.	H ₂ 's No.	Arc.	Char- acter.
185		h. m. 5 13	63 í6	8, 8	677	2005	ı,	РВ
186 187 188 189 190	P. V. 70 111 Tauri 7 Orionis	14 16.6 16.8 17.4 18.4	46 54 24 51 -24 54 17 16 -2 31	7, 11 8, 8 6, 10, 10 6, 9 4, 5	[104] 694	24 50 61 60 71	4 7 4	CC PB PC RM PB
191 192 193 194 195	115 Tauri	20 20.2 21.8 21.9 22.4	17 51 2 50 41 10 25 3 29 30	6, 11 7, 9 8, 9 6, 7 7, 9	[107] 712 715 716 719	86 91 97 2103 05	3 13 3 5 7	PC PB B CC
196 197 198 199 200	32 Orionis Tauri 380 B	22 24'4 25 27 29'2	18 16 5 51 44 42 -6 35 21 56	7, 10 5, 7 8, 9 8, 9 7, 8	[108] 728 727 735 742	09 33 29 49 65	28 28	PC PB PC? RM PB
201 202 203 204 205	 θ¹ Orionis h. 3278 	29 29'9 31'6 33 34	-5 30 26 53 37 53 12 57 16 10	7, 8, 5 6, 11, 11 7, 7 7, 8 7, 11 7, 9	748 749 [112] [113] [114]	78 82 90 2213	10 17 6 2 4	PC PB PB PC PC
206 207 208 209 210	ζ Orionis	34.7 37 37.6 40	-2 0 62 45 15 2 30 31 7 57	2, 6 7, 8 7, 8 7, 10 7, 8	774 3115 [115] [117] [119]	35 37 57 75 90	4 5 11	PC PC PB PC PC
211 212 213 214 215	So. 503 θ Aurigæ	49'1 51'5 52 55'9	13 56 37 12 12 49 22 29 27 39	7, 9, 8 3, 11, 11 6, 8 7, 9 8, 9, 11	[124] [125] 830	2351 70 76 79 2401	16 4 66 4 5	R M R M B P C P C
216 217 218 219 220	h. 3823	56 59 59.8 6 0	-31 4 36 16 10 48 37 59 21 19	9, 9 7, 10 9, 9 7, 10 7, 10	[131] 840 [132] [133]	12 23 32 28 39	10 10 4 7	PB PC PC PB
221 222 223 224 225	Lacaille 2145	1.7 2.5 3.2 4 10.2	-48 27 11 41 5 40 30 46 62 28	8, 8 8, 8 8, 8 8, 8, 8	853 859 861 878	70 62 75 2518	25 10 2	PB RM CC CC RM
226 227 228 229	4 Lyncis Monoc. 33 B	11 15'9 20 6 23	59 26 -11 42 15 36 -6 57	6, 8 6, 10 7, 10 5, 6, 6	881 3116 [140] 919	27 88 2611 50	6 5 4 2	B CC PC PC

Ref. No.	Name of Stars.	R. A. 1800.	Dec 1800		Mag.	∑'s No.	He's No.	Arc.	Char- acter.
230		h. m. 6 23	°7	íı	7, 11	[142]	2654	•	PC
231 232 233 234 235	Aurigæ 229 B	24 24'3 27 27'5 29	17 52 37 14 52	33 9 50 24	7, 10 7, 8 7, 11 8, 8 8, 9	[143] 918 [148] 932 935	58 47 86 95 2700	9 5 7	PC PB PC B
236 237 238 239 240		29 30·2 30·3 32 34·4	27 41 23 41 10	23 41 19 5 0	6, 9 7, 8 8, 9 7, 8 6, 9, 11	[149] 941 943 945 950	7 10 17 30 55	34 4 19 9 4	B PB RM PB PB
241 242 243 244 245	12 Lyncis	34 35'4 35'6 36 38	9 -7 59 40 24	49 52 34 46 48	9, 9 9, 9, 9 5, 6, 7 7, 8 7, 10	3117 955 948 [154] [155]	57 70 49 66 85	6 5 45 5 2	CC PB B RM PC
246 247 248 249 250	Sirius 14 Lyncis 15 Lyncis	39'7 40'4 41'5 42'5 46'9	-16 18 0 59 58	32 20 29 35 35	1, 8 6, 7 7, 8 6, 7 5, 6	[156] [157] 963 [159]	99 2795 2811 02 51	30 15 13 16 34	B PB PB PB
251 252 253 254 255	38 Geminorum μ Canis Maj. P. VI. 301	47'3 50'6 53'4 54 56'1	13 -13 54 11 52	20 53 21 58 56	5, 8 5, 8 7, 9, 9 7, 8 7, 7	982 997 1001 [163] 1009	72 99 2907 26 27	16 6 3 10	B CC PC PC CC
256 257 258 259 260	Lacaille 2640 45 • Geminorum P. VII. 52	7 1'2 1'5 5'4 8	-59 16 27 -8	0 8 26 43 31	6, 7 5, 14 7, 7 8, 10 7, 7	[165] 1037 49 [170]	3003 2985 11 40 68	5 41 18 10 7	PB PB PB PB
261 262 263 264 265	δ Geminorum	13 14'3 14'4 15 17	22 0 45 4 21	12 38 14 17 41	3, 8 8, 8 8, 10 9, 9 8, 8	1066 74 71 76 81	84 3103 3092 3107 21	11 24 10 8	PB PB CC PB
266 267 268 269 270	Castor	19 21 21'1 24 27	31 50 50 -14 32	52 13 14 44 9	7, 10 8, 9 8, 8 7, 8 3, 4, 9	[171] 1091 93 1104 10	3138 58 61 3214 28	3 25 22 130	PC PC PB PB
271 272 273 274	Procyon	27 29·1 32 7 33	31 76 0	12 1 47 33	6, 7 8, 10 7, 9 1, 11, 8,	[175] 1107 [176]	34 18 89 91	10 4	PC PB PC
•	1	1	1		9, 7	H '		I	I

Ref. No.	Name of Star.	R. A 1800.	Dec. 1880	Mag.	Σ's No.	H ₂ 's No.	Arc.	Char- acter.
275	P. VII. 170	h. m. 7 33'7	š 3 0	7, 7	1126	3297	2̈̈ ₇	В
276 277 278	κ Geminorum	34 36·2 37·2	37 44 -3 14 24 41	7, 8 8, 9 4, 8	[177] 1132 [179]	93 3315 21	11 7	PB RM CC
279	Pollux	37.2	28 19	1, 11, 12,		29	7	P M
280		42	65 13	7, 11	1136	40	4	cc
281 282 283 284 285		41.6 46 48.5 51 56	13 43 3 42 -2 28 1 27 26 37	8, 10 7, 7 8, 8 7, 7 7, 8	42 [182] 1157 [185] [186]	54 3404 20 41 82	19 7 10	RM PC PB B
286 287 288 289 290	11 Cancri Lyncis 85 B	56.1 56.2 58.1 8 1.2 2	4 30 33 24 12 25 27 50 32 36	8, 9 7, 7 8, 8 7, 10 7, 8	1175 [187] 1179 86 87	88 85 3501 28 33	13 21 18	PB RM PB PB
291 292 293 294 295	ζ Cancri γ Argûs P. VIII. 13 φ² Cancri	5.3 5.8 7 15.2 20	18 I -46 58 II I3 -I I3 27 I9	5, 6, 5 2, 5, 8 8, 10 7, 8 6, 6	96 1202 16 23	57 74 72 3646 80	6 10 42	B CC PB. B CC
296 297 298 299 300	v ¹ Cancri h. 447 s Hydræ	19.5 19.5 21 37.1 40.4	24 56 -40 36 33 57 42 8 6 52	6, 7 8, 8 7, 11 7, 8 4, 8	24 [193] 1263 73	81 78 96 3832 68	16 25	PB PB PC PM B
301 302 303 304 305	σ ⁹ Cancri ι Ursæ Maj.	41'4 44'4 44'9 47 51	0 28 71 16 12 35 31 2 48 31	8, 9 7, 7 8, 10 6, 6 3, 10	81 80 87 1291 [196]	77 79 39°7 20 43	11 9 14	RM PB PB PC B
306 307 308 309 310	σ² Ursæ Maj.	51.8 54.6 59.8 9 1.9 2.5	35 25 15 45 67 37 -6 39 70 28	8, 9 9, 9 5, 8 8, 11, 10 8, 9	1296 1300 06 16 13	47 70 89 4021 08	5 7 38 10 2	PB CC B CC PB
311 312 313 314 315	Lalande 18289 38 Lyncis	6.2 9.6 10.4 11	53 13 -0 44 29 7 35 52 37 19	7, 7 8, 8 7, 8 7, 7 4, 7	21 29 3121 1333 34	46 78 83 84 87	7 2 3 6	R M R M B PC PB
316 317 318 319	37 Lyncis Lyncis 157 B	12 13.4 16.6 9 16.8	51 46 38 42 52 5 28 24	6, 10 7, 7 7, 8 7, 9	[199] 1338 [200] [201]	95 4161 23 28	25 3 4	PC B PB PB

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	E's No.	H ₂ 's No.	Arc.	Char- acter.
320	21 Ursæ Maj.	h. m. 9 17	° ′ ′ 54 32	7, 8	1346	4126	0	PC
321 322 323 324 325	Hydræ 116 B ω Leonis Hydræ 134 B Leonis Min. 30 B P. IX. 161	18·2 22 25 34 37·2	6 52 9 35 2 0 39 30 3 11	7, 7 6, 7 7, 8 7, 8 8, 11	48 56 65 74 77	39 65 90 4231 53	23 4	B B CC PB PB
326 327 328 329 330	υ Ursæ Maj. φ Ursæ Maj.	42 43'4 44 45'5 45'6	59 36 17 7 54 37 27 33 69 28	4, 12 8, 11 5, 6 8, 9 8, 8	[521] 1385 [208] 1389 86	78 94 90 4305 42 97	9 111 13 5	B PB B PB PB
331 332 333 334 335	8 Sextantis A. C. 5 P. X. 23	46.6 55.1 59 106 9.7	-7 32 46 57 31 40 28 1 18 20	6, 6 7, 8 8, 9 8, 9 7, 7	[210] 1406 [213] [215]	4314 59 87 4429 49	240 3 8 2 37	B PB PB PC B
336 337 338 339 340	39 Leonis 7 Leonis Leonis 145 B	10.6 12.6 13.4 14.2 16.3	23 42 21 10 20 27 7 2 15 57	6, 11 8, 9 2, 3 8, 8, 9 7, 10	[523] 1423 24 26 [216]	53 67 69 77 86	5 23 40 16 17	B P B B C C
341 342 343 344 345	P. X. 58	18.4 18.4 20 21 22	25 14 53 14 17 50 4 10 51 36	8, 8 7, 8 7, 8 7, 9 7, 10	1429 28 [217] [218] [219]	4501 4497 4513 22 26	10 4 1	PB PB PC PC
346 347 348 349 350	49 Leonis	23.5 26.6 28.7 30 32.5	21 25 -0 15 9 17 60 46 6 21	8, 8 9, 12 6, 9 7, 11 7, 8	1439 45 50 [222] 1457	36 56 75 84 4606	9 8 5 27	PB PB PC PC PB
351 352 353 354 355	P. X. 128	33'4 33 35 36'2 41	9 28 19 52 11 21 45 15 13 36	7, 9 7, 10 7, 8 8, 9 8, 8	[224] [225] [227] 1465	12 13 26 28 69	19 8 10 1	PB PC PC PB PC
356 357 358 359 360	54 Leonis	40.7 43.1 48 48 49.1	23 12 41 44 52 45 21 24 25 23	7, 8 7, 7 7, 9 8, 11 5, 7	[228] [229] 1486 [230] 1487	71 90 4714 17 19	18 12 2 7 5	CC PB CC PC CC
361 362 363 364 365	[539] - A C	53 ⁹ 59 ² 11 4 ¹ 7'4 7'4	-2 51 4 17 66 46 74 7 20 47	8, 8 7, 7 8, 10 7, 7, 10 7, 7	1500 04 14 16 17	54 82 4820 33 34	13 8 10 3	PB PB PB B

	<u>-</u>					_			
Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.		Mag.	Z's No.	H ₃ 's No.	Arc.	Char- acter.
366 367 368 369 370	P. XI. 14	h. m. 118 11 11.8 12.7 15.5	38 67 32 14 18	14 21 13 56 51	7, 8 7, 10 4, 5 7, 8 8, 11	[232] [233] 1523 27 34	4839 57 60 65 85	3 5 6	PC PC B PB CC
371 372 373 374 375	ι Leonis 57 Ursæ Maj. τ Leonis	17.6 22.6 21.8 24.3 23.8	11 40 3 41 61	12 0 31 58 45	4, 7 5, 8 5, 7 7, 7 6, 7	36 43 [234] [235]	96 4924 19 34 42	30 8 7 105 107	B RM B B
376 377 378 379 380	90 Leonis P. XI. 111	28·5 29 30 30 32·5	17 67 56 28 41	28 0 48 27 48	6, 7, 8 7, 11 7, 8 6, 7 7, 9	1552 [236] 1553 55 [237]	70 73 76 78 5000	4 4 3 4 15	R M PC PC PB PB
381 382 383 384 385	2 Comæ Ber.	53.6 56.1 57.4 58 59.4	54 73 —1 22 69	5 2 47 8 2 0	8, 9 8, 9 8, 8 6, 7 7, 7	[243] 1588 93 96 3123	5126 41 49 53 67	18 8	PB CC PB PC PB
386 387 388 389 390	Virginis 59 B	12 1°1 3°2 4°7 5°5 18°1	69 -11 40 36 54	45 11 34 45 49	7, 9 6, 9, 8 6, 7 8, 8 7, 8, 11	1602 04 06 07 [249]	77 88 96 5205 91	3 7 6 4	CC PB PB CC PC
391 392 393 394 395	Comæ 68 B	18·4 18 18·6 19·9 21·2	26 43 38 -62 27	15 45 24 34 42	7, 8 8, 8 10, 10 1, 2, 6 8, 9	1639 [250] 1641 43	93 95 96 98 5305	17 9 11 2 17	PB PC RM B
396 397 398 399 400	Virginis 191 B	21'3 23 24'5 29 30	8 32 10 8 12	3 2 23 6 4	9, 9 7, 9 7, 8 8, 10, 8 8, 8	44 [251] 1647 58 61	07 13 19 41 50	28 16 9	CC PB B PB CC
401 402 403 404 405	γ Centauri Corvi 58 B γ Virginis	31.3 32.1 34.9 35 35.6	21 -10 -48 -12 -0	52 51 18 21 47	8, 9 8,9,11,11 4, 4 6, 6 3, 3	63 64 69 70	54 58 70 73 77	8 20 17 300	PB RM B CC B
406 407 408 409 410	35 Comæ Ber. h. 2625 Lalande 24180	39 ⁴ 47 ⁴ 50 ³ 51 53 ¹	15 21 -0 46 8	54 18 16 33	6, 7 5, 8, 9 7, 8 7, 8 8, 11	78 87 [256] [257] 1703	5401 30 45 52 64	10 40 17	RM B PB PC CC
411		12 55'3	16	31	8, 10	07	77	3	cc

Ref. No.	Name of Star.	R. A. 1880,	Dec 1880		Mag.	Σ's No.	H ₂ 's No.	Arc.	Char- acter.
412 413 414 415	Comæ Ber. 179 B 42 Comæ Ber.	h. m. 56.5 13 1.8 2 4.1	14 27 16 18	7 35 8	8, 9 8, 8 8, 9 6, 6	1711 [260] 1722 28	5483 5514 15 23	°7 4 7	PB PC CC B
416 417 418 419 420	₹ Ursæ Maj.	6·4 14·6 18 19·1	32 3 2 55 10	43 34 2 33 5	7, 7 7, 8 7, 8 2, 4 8, 10	[261] 1734 42 44 46	35 70 90 96 5608	9 5 5 5	B PB PC B
421 422 423 424 425	P. XIII. 127 25 Canum Ven. Smyth 488	22.6 27 28.2 32 32.3	16 35 0 36 28	21 31 18 54 56	7, 8 6, 7 8, 9 6, 8 9, 10	[266] [269] 1757 68	35 39 73 5674	9 39 55 82 4	PB PB B PB
426 427 428 429 430	o Virginis	33.5 34.9 36.8 37 40.2	70 20 46 4	23 33 50 9 43	8, 8 6, 9 8, 8 6, 8 8, 8	71 72 76 77 81	88 91 5706 04 26	6 12 10 20	PB CC PC B
431 432 433 434 435	τ Boötis P. XIII. 238 P. XIII. 242	41.6 43.6 48.6 49 50	18 27 - 7 30 5	3 35 28 29 50	5, 11 7, 8 7, 8 7, 10 7, 8	[270] 1785 88 [272] [273]	37 54 89 97 5803	6 34 20 7 5	B PB PB PB
436 437 438 439 440	ΟΣ 277	14 4·7 7 7 7 7 7 7.4	27 29 44 60 5	10 17 46 58 58	8, 9 8, 8, 9 7, 8 7, 11 8, 8	1808 12 [278] [280]	80 94 97 5902 5895	8 10 26 4 3	PB PB PC PB
441 442 443 444 445	P. XIV. 20 κ Boötis	9.3 9.1 8 8	12 29 55 52 3	34 40 53 21 41	7, 9 7, 7 8, 9 5, 7 8, 8	[279] 1816 20 21 19	98 5904 13 12 07	3 3 17 4 65	PC PB PB B
446 447 448 449 450	Boötis 121 B	10'7 11'9 13 14 15'9	20 57 4 9 49	41 14 27 8 3	7, 8 8, 10 9, 9 7, 11 7, 7	25 30 32 [281] 1834	22 33 34 44 54	12 19 10 9	CC PB PC PC RM
451 452 453 454 455	P. XIV. 70	18·2 21·6 22·2 28 29	-11 4 -9 49 36	7 14 40 44 6	7, 9 9, 9 8, 10 7, 11 7, 8	37 42 47 [283] 1858	64 87 94 6037 40	17 4 8 4	B PB RM PC PC
456 457	a Centauri	31·8 14 34	-60 52	20	I, 2 7, 7	63	47 62	15	B P B

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Y's No.	H ₂ 's No.	Arc.	Char- acter
458 459 460	π Boötis β Boötis	h. m. 1435'1 35'4 35'9	16 56 14 14 10 2	5, 6 4, 4 8, 8	1864 65 66	6066 69 72	9 3	PB PB PB
461 462 463 464 465	e Boötis	36·1 37·5 40 39·7 40·4	49 15 51 55 -6 53 27 35 10 10	7, 11 7, 7 8, 8 3, 6 8, 9	[284] 1871 76 77 79	77 88 99 6101 06	4 6 10 24	CC B B PB
466 467 468 469 470	P. XIV. 182 & Boötis	41 42·9 45·8 47·1 47·7	42 53 6 27 19 36 45 25 16 12	7, 8 7, 7 5, 7 7, 7 6, 7	[285] 1883 88 [287] [288]	15 24 46 59 61	19 13 100 27 28	PB PB B B
471 472 473 474 475	Boötis 342 B i Boötis P. XIV. 279	50°2 51 56 59°8 15 1°8	29 58 32 46 31 51 48 7 9 41	8, 10 6, 10 8, 9 5, 6 7, 7	1893 [289] 1901 09 10	81 77 6212 37 45	10 8 3 10 7	CC CC CC B PB
476 477 478 479 480		10 10.4 10.4 10.2	-4 26 56 30 38 45 37 16 -7 50	8, 8 7, 11 6, 8 7, 9 8, 9	3091 [294] 1926 [295] 1925	6302 07 10 11	4 4 4 8 3	PB PC PB PB PB
481 482 483 484 485	5 Serpentis Cor. Bor. 1 B 7 Cor. Bor.	13 13'2 14'5 16'4 18'2	2 14 44 14 27 16 -1 6 30 43	5, 10 8, 8 6, 6 8, 9 5, 6	1930 34 32 3093 1937	27 36 31 48 62	3 8 30 3	B PB PB CC B
486 487 488 489 490	P. XV. 74	20 21.8 22.2 29.1 29	37 46 6 31 44 26 10 56 42 13	7, 7 7, 8 7, 9 3, 4 8, 9	38 44 [296] 1954 56	71 82 88 6426 30	220 7 10 38	B PB CC B
491 492 493 494 495		30 30·2 30·3 31·7 32	25 25 13 19 43 57 40 13 64 15	7, 11 8, 9 9, 9 7, 7, 7 7, 9	[297] 1957 61 [298] [299]	32 34 40 46 53	8 9 130 3	CC PB CC B
496 497 498 499 500	ζ Cor. Bor. γ Cor. Bor. π ² Ursæ Min.	34°9 37°7 46 46°2 48°1	37 I 26 4I 35 5I 80 22 53 I6	4, 5 4, 7 9, 11 7, 8 6, 8	1965 67 83 89 84	65 69 6523 47 34	4	RM B PC PB PC
501 502 503	Н ₁ П. 85 Н ₁ V. 126	49 [.] 7 54 15 55 [.] 2	-1 49 17 43 13 27	7, 8 8, 8 7, 8	85 93 [303]	35 66 75	18 23	PB CC PB

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Z's No.	H 's No.	Arc.	Char- acter.
504 505	S	h. m. 57.8 16 •	-ii 2 13 39	5, 5, 7 7, 8	1998	6582 99	°	ВСС
506 507 508 509 510	* Herculis * Scorpii 49 Serpentis	2.6 3.5 5 7.7 7	17 22 83 58 -19 9 13 51 34 43	5, 6 7, 8 4, 7, 7, 8 7, 7 7, 9	10 34 21 [306]	6610 63 34 35	5 3 37 5	PB PC PB B
511 512 513 514 515	σ Cor. Bor.	7.8 8.6 8.9 10.2	26 59 5 50 7 40 34 10 41 56	6, 10 8, 9 8, 9 5, 6 7, 8	2022 23 26 32 [309]	40 41 45 54 81	9 7 22 220 5	CC PB PB B
516 517 518 519 520	η Drac. Drac. 99 B Antares	20 21 21 22 22 22	37 19 38 13 61 47 61 58 -26 10	8, 8 8, 10 2, 8 6, 7 1, 8	2044 [310] [312] 2054	6702 09 24 23 07	2 4 2 7 4	PB PC PC CC B
521 522 523 524 525	Herc. 71 B λ Ophiuchi	22.6 23 23.6 24.9 29	21 10 26 15 18 40 1 15 40 21	7, 10 6, 7 7, 7 4, 6 7, 8	[311] 2049 52 55 [313]	16 18 22 27 53	7 3 8 110 10	R M P C B B P B
526 527 528 529 530		36·8 39 40·3 40·5 45·3	31 49 23 44 43 42 35 57 1 25	3, 6 7, 7, 11 8, 8 8, 9 6, 8	2084 94 97 [315]	99 6816 23 40	5 17 5 10	B CC B PB PB
531 532 533 534 535	Herc. 167 B	45°4 47°1 49 51 52°5	9 37 28 52 44 36 14 18 4 10	7, 8 6, 8 7, 12 7, 9 8, 8	2106 07 [317] [318] 3107	42 47 60 63 67	15 62 10 3 5	PB B CC PC PB
536 537 538 539 540	20 Drac. P. XVI. 270 Herc. 210 B	54 55.8 56.2 1.6	14 29 65 13 8 37 28 15 47 8	8, 9 6, 7 6, 7 6, 9 7, 10	[321] 2118 14 2120 [323]	79 95 88 6910 24	4 16 140 5	B B B C C
541 542 543 544 545	μ Drac. 36 Ophiuchi α Herculis	2·9 3 7 8 9·1	54 38 31 23 21 22 -26 25 14 32	5, 5 6, 11 7, 8 4, 6 3, 6	2130 [324] 2135 2140	35 33 45 46 58	60 2 5 23	PB PC CC B
546 547 548 549	δ Herculis	10°1 11°8 14°8 1719°5	24 59 26 43 49 26 37 15	3, 8 8, 9 8, 9 4, 5	3127 2145 53 61	68 73 95 7016	20 5 8 11	PB RM PB B

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Σ's No.	H ₂ 's No.	Ar.	Char acter.
550	Herc. 281 B	h. m. 1721.6	° 34	7, 8	2165	7028	8	P B
551 552 553 554 555	Ophiuchi 221 B P. XVII. 135 P. XVII. 163	22.6 24.7 26 29 30.9	-9 54 -0 58 2 55 6 6 21 4	7, 7 6, 6 7, 9 7, 10 6, 9	71 73 [331] 2185 90	32 40 53 62 76	5 6 8 4 10	B B PC CC
556 557 558 559 560	Herc. 315 B	35.4 36.4 37.5 39 39.5	29 18 55 49 41 43 2 38 63 44	7, 10 7, 8 7, 8 5, 6 6, 8	92 99 2203 02 18	88 7104 08 10 37	10 15 8	CC PB B
561 562 563 564 565	Herc. 331 B μ Herc.—A.C. 7 P. XVII. 260	40.3 40.4 40.6 41.8 44.8	31 11 17 46 17 45 27 48 7 17	7, 8 8, 9 6, 8 4, 9, 10 7, 8	13 05 15 20 [337]	31 28 30 42 61	10 10 174 10	B B B
566 567 568 569 570	r Ophiuchi	46.5 56.5 57.7 57.8 58	15 21 -8 11 52 51 40 11 25 22	7, 7 5, 6 7, 8 8, 8 8, 9	[338] 2262 71 67 68	77 7245 67 62 64	17 150 7 6 2	B B P B B C C
571 572 573 574 575	70 Ophiuchi Herc. 401 B 72 Ophiuchi	59'4 18 0 1 1.6	2 33 39 21 48 27 56 26 9 33	4, 6 9, 9 6, 8 7, 7, 8 4, 8	72 75 77 78 [342]	73 81 88 97 92	13 3	B PB CC PC
576 577 578 579 580	73 Ophiuchi Herc. 417 B	3.6 4 4.8 7 7.3	3 58 49 41 16 27 5 47 27 37	6, 7 7, 11 6, 7 7, 10 8, 8	2281 [344] 89 [345] 2292	7309 23 22 31 35	18 7 10	B CC PB PC PC
581 582 583 584 585	L 33731	8·4 12·2 13·6 17	0 9 83 54 -8 2 11 23 7 10	7, 8 7, 8 7, 9 9, 10 7, 11	94 [349] 2303 11 [347]	40 7417 70 88 98	7 8 14 6 8	PB PB CC CC
586 587 588 589 590	Herc. 452 B d Serpentis 39 Drac.	20.2 20.6 21 20.2	27 20 25 56 0 7 48 42 58 44	7, 8 8, 10 6, 8 7, 8 5, 8	2315 18 16 [351] 2323	7406 12 10 23 25	24 8 15 9	B C C P C B C C
591 592 593 594 595	φ Drac. L 34438	24 25.7 29.6 30 1830.4	71 17 13 6 4 50 11 37 20 59	5, 6 7, 9 6, 8 7, 7 8, 10	[353] 2330 42 [357] 2345	43 44 71 75 77	16 4 3 19	CC CC B PB

	,	,			,	.,	,	ti.	
Ref. No.	Name of Star.	R. A. 1880.	De 188		Mag.	Ys No.	H ₂ 's No.	Arc.	Char- acter.
596 597 598 599 600	P. XVIII. 132 a Lyræ	h. m. 18 30.5 30.5 31 32.8 33	16 7 23 38 4	54 26 31 40 45	7, 7 7, 9 7, 7 1, 10 6, 10	[358] 2346 [359] [360]	7479 81 80 7501 92	24 7 8 39	PB RM PB PM PC
601 602 603 604 605	Tauri Pon. 75 B	33.6 35.9 38.4 40.4	28 30 67 5 39	36 11 0 23 33	8, 9 7, 7, 8 8, 8 6, 7 5, 6	2356 67 84 75 82	05 23 63 51 64	9 10 25 3 18	B PB B PB
606 607 608 609 610	€ Lyræ	40.4 40.9 42.8 43 43.5	39 59 10 77 16	29 25 38 33 7	5, 5 8, 9 8, 11 7, 8 8, 11	83 98 96 [363] 2400	66 99 93 36 7604	30 10 82 1 69	B RM RM PC CC
611 612 613 614 615	o Drac. Lyræ 91 B	44°1 46 48 49°4 50	10 13 25 59 33	32 23 12 14 48	8, 8 8, 9 7, 10 5, 7 5, 10, 7	02 09 [364] 2420 [525]	09 25 40 60 59	18 10 21 4	B PC PB RM PB
616 617 618 619 620	OE 365 11 Aquilæ H ₁ I. 58 P. XVIII. 287	52 52·2 53·5 54 55·5	44 25 13 36 58	4 56 28 16 4	7, 8, 11 7, 8 6, 9 8, 10 7, 8	3130 2422 24 29 38	7670 71 75 89 7709	10 20 52	B B R M P C B
621 622 623 625	P. XVIII. 274	56.2 56.6 58.1 58 19 1.2	-0 19 31 16 30	53 0 13 48 15	9, 9, 10 8, 8 8, 9 8, 9 8, 9	34 37 41 42 54	02 06 23 21 52	27 14 10	B B PB CC PB
626 627 628 629 630	L 35821 Cygni 4 B	1.6 1.8 3.6 5 5.9	38 21 11 7 55	21 59 41 56 8	8, 8 7, 8 8, 10 8, 11 7, 8, 9	56 55 64 71 79	56 53 68 87 7806	6 40 6 6 20	RM PB CC CC B
631 632 633 634 635	Cygni 6 B	7'I 9 9 10'5 11'4	38 18 49 15 28	35 52 37 57 4	8, 8, 9 7, 9 6, 6 7, 8 8, 9	81 84 86 [368] 2491	10 19 28 42 54	36 6 3 18 16	B PB PB PB
636 637 638 639 640	P. XIX. 108 P. XIX. 128	15.6 16.8 20 19.9 21	62 67 21 46 19	59 28 17 59 39	7, 8 9, 11 8, 9 7, 9, 10 5, 10	2509 14 15 [372] 2521	7908 22 26 37 46	8 39 4 10 4	B CC RM B CC
641		9 21.6	25	15	8, 8	24	54	3	СС

Ref. No.	Name of Star.	R. A. 1880.	Dec 1880	: 	Mag,	I's No	H ₂ 's No.	Arc.	Char
642 643 644 645	Cygni 22 B P. XIX. 185	h. m. 19 21 6 27 30 2 31	27 36 -10 33	5 27 42 57	7, 7 8, 8, 9 8, 10 7, 10	2525 38 41 [376]	7958 8006 24 35	20 3 13 5	B CC CC PC
646 647 648 649 650	χ Aquilæ	31°3 32 32 34°3 36°9	8 35 40 21	3 22 44 59 33	8, 10, 11 8, 8, 9 7, 9 7, 8 6, 7	2544 [377] [378] 2556 [380]	37 51 61 79 96	13 13 4 25 5	PB PC PB PC
651 652 653 654 655	ð Cygni	38·8 39·1 41 41·2 42	40 62 33 44 40	26 23 20 50 16	7, 8 8, 8 8, 8 3, 8 7, 10	[383] 2574 76 79 [385]	8123 39 46 53 61	2 10 22 96 4	PB B B PC
656 657 658 659 660	# Aquilæ a Aquilæ	43 44 44·2 44·9 47	36 35 8 25	31 51 0 33 33	6, 7 8, 8 7, 8	2583 [386] [387] [388]	68 77 79 8205	106 23	PC PC B PM PC
661 662 663 664 665	Aquilæ 192 B ε Drac. β Aquilæ Cygni 116 B	48·5 48·6 49 53·9 54	14 69 6 32 41	59 58 6 57 56	7, 9 4, 7 3, 11 7, 8 7, 9, 9	2596 2603 [532] 06 07	19 40 28 68 74	10 30 8 2 15	PB PB PB PB
666 667 668 669 670	16 h Vulpec.	54 56.9 57 20 2 3.2	44 24 47 4 63	4 36 56 26 33	7, 8 6, 6 8, 8, 12 9, 11 6, 10	[393] [395] 2619 27 40	77 96 8313 50 86	1 16 6	PC PB PC PC
671 672 673 674 675	6 Sagittæ	4.6 5.3 5.9 6.2 7	20 -4 3 43 61	33 56 27 37 43	6, 8, 7 8, 9 7, 11 7, 8 7, 8	37 36 41 [400] 2652	82 88 99 8411 39	1 67 7	B CC PC PB PB
676 677 671 679 680	Aquilæ 241 B	7.6 8 10 10.5	31 -6 41 52 32	43 25 45 45 52	8, 9 7, 9 7, 7, 9 7, 9, 10 8, 9	49 46 [403] 2658 [405]	28 25 55 57 92	8	CC PB CC PB
681 682 683 684 685	P. XX. 177, 178 Vulpec. 94 B	25.5 26.8 27.5 31.2 31.9	10 25 5 14 14	51 24 2 19	7, 7, 8 6, 8 8, 8 8, 8, 7 3, 4, 11	2690 2695 96 2703 04	8600 21 24 56 63	17 8 25	CC PC B CC B
686 687	κ Delphini	33.3	9 38	40 13	5, 11 7, 9	[533] 2708	74 91	40 30	RM RM

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Σ's No.	H ₂ 's No.	Arc.	Char- acter.
688 689 690		h. m. 20 35°1 38°3 40°6	40 9 45 25 15 28	6, 7, 8 7, 10 7, 8	[410] [411] 2725	8703 40 51	5 18 12	PB CC B
691 692 693 694 695	52 Cygni γ Delphini λ Cygni 4 Aquarii	41 41·8 42·5 43 45·1	30 17 15 42 36 3 41 59 -6 4	4, 9 4, 5 5, 6 7, 8 6, 7	26 27 [413] [414] 2729	55 57 73 76 84	4 9 36 170	PC B PC B
696 697 698 699 700		47°7 48 48°3 49°9 50	43 19 28 41 12 39 32 15 40 15	8, 8 7, 8, 9 8, 9 7, 7 7, 11	[416] [417] 2734 [418] [420]	8811 10 12 23 25	6 4 10 8 4	PB CC PB PC
701 702 703 704 705	e Equulei P. XX. 429 P. XX. 440	51 53·1 54 54·6 56	44 42 3 50 15 6 50 0 48 13	7, 9 6, 6, 7 7, 9 6, 7 7, 10, 11	[422] 2737 [424] 2741 [425]	31 39 44 50 61	3 10	PC B PB B PC
706 707 708 709 710	61 Cygni	57 57 58.7 21 1.4 1.9	38 47 3 3 38 7 33 39	6, 7 8, 9 8, 9 5, 6 7, 8	2744 46 49 58 60	60 68 76 98 8902	20 10 23 81	PB B B PM
711 712 713 714 715	P. XXI. 1 8 Equulei P. XXI. 50	8·6 9·3 9·5 9·7	29 43 9 28 28 35 -1 44 40 39	6, 8 4, 5, 10 8, 8 8, 11 7, 7	62 77 79 78 [432]	17 59 65 .63 76	2 54 4 2 8	CC B CC CC? B
716 717 718 719 720	r Cygni A. C. 19	10.0 11.4 15.4 15.9 20.9	37 32 63 57 2 23 31 56 13 10	6, 8 7, 7 7, 8 6, 7 7, 8	[435] [437] 2797	8998 9016 21 59	24 12 7 13 3	B B PC PB PC
721 722 723 724 725	Pegasi 20 B Pegasi 29 B µ Cygni	22°I 23 27°I 38°9	79 50 10 34 33 17 20 11 28 12	7, 8 7, 7 8, 8 7, 8 4, 5	2801 99 02 04 2822	87 72 9104 07 9210	10 20 2 15	B B P C B
726 727 728 729 730	R Pegasi Cephei 147 B	39°2 40°9 42°9 43°5 48	25 6 0 18 82 23 2 50 55 14	4, 11 8, 8 8, 9 8, 9, 9 6, 7	24 25 37 28 40	13 26 73 40 94	7 11 19 3 3	CC B B PB PC
731 732 733		51 52·1 21 52·6	51 59 19 40 59 14	8, 8 8, 11 7, 9	[456] 2849 [458]	9328 33 42	5	PB PB PB

Ref. No.	Name of Star.	R. A. 1880.	De 188		Mag.	Z's No.	H ₂ 's No.	Arc.	Char- acter.
734 735	€ Cephei	h. m. 59'4 22 0'3	6° 64	16 2	8, 9 5, 7	2860 63	9391 9403	° 4	C C
736 737 738 739 740	P. XXII. 11, 12 Pegasi 148 B	1°1 4 4°5 7 8°5	69 13 58 49 7	38 9 42 37	8, 9 7, 11 8, 8, 8 7, 11	65 [463] 2872 [465] 2878	16 29 42 61 66	8 6 10	R M P C B P C P C
741 742 743 744 745	P. XXII. 33 33 Pegasi Aquarii	8·5 15·1 15 17·9 22·6	16 24 34 20 -0	23 36 21 31 14 38	6, 8 6, 10 8. 10 7, 9 6, 9, 8 4, 4	77 95 [469] 2900	69 9516 18 39	5 40 22 2 3 45	R M P B C C B
746 747 748 749 750	37 Pegasi	22·5 23·9 26·5 27·4 29·5	22 3 6 20 69	55 49 48 33 17	8, 9 6, 7 8, 9 9, 10 7, 7	10 12 2915 19 24	81 93 9614 20 46	3 4 10 6	PC B CC CC B
751 752 753 754 755		33°1 36°1 40°1 40°1	-13 20 45 18 38	14 48 22 37 51	8, 8 8, 9 7, 11 7, 10 7, 9	28 34 [477] 2941 42	70 9703 20 31 36	8 20 26 3 3	CC B RM CC CC
756 757 758 759 760	τ' Aquarii P. XXII. 219	41.3 41.6 42 44.9 48	-14 -4 77 67 82	41 51 53 56 31	6, 9 7, 7, 8 7, 9 7, 7 5, 10	43 44 [481] 2947 [482]	40 41 57 71 9815	5 10 2 17	CC B PC B
761 762 763 764 765	H ₁ N. 15 E. 2966 rej. 52 Pegasi	50.9 52.5 53.2 23.1.6	-3 8 72 11 5	53 43 12 5 57	6, 10 7, 7 7, 8, 11 6, 8 8, 10, 9	2959 [536] [484] [483] 2976	18 32 43 40 9901	5 180 28 18	CC B B CC
766 767 768 769 770	# Cephei 94 Aquarii o Cephei	4'I 5 12'8 13'7 15'4	74 56 - 14 67 34	44 47 7 27 47	5, 7 7, 9 5, 7 5, 8 8, 9	[489] [490] 2998 3001 06	29 33 82 93 10004	53 7 6 22 10	B PB B PB
771 772 773 774 775	P. XXIII. 69 P. XXIII. 100, 101	17 17.5 19 24 31.8	19 -9 56 57 43	54 7 52 53 46	6, 9 7, 8 7, 7 5, 7, 9, 10 6, 7	07 08 [495] [496] [500]	15 20 26 69 117	18	PC RM PC CC B
776 777 778 779	H ₁ П. 24 : So. 356	39·8 40 40·4 23 41	- 19 59 61 27	21 48 59 45	6, 7 7, 8, 9 9, 9 7, 10	3037 38 39	170	16 4 3	CC PC CC CC

Ref. No.	Name of Star.	R. A. 1880.	Dec 1886		Mag.	Σ's No.	H ₂ 's No.	Arc.	Char- acter.
780		h. m. 23 43	6 ₄	13	7, 7, 8	[507]	10185	ı̃6	В
781 782 783 784 785	h. 1911 Andromedæ 37 B B. A. C. 8350 L. 47206	45 50·2 53·4 55·9 58·5	41 -10 33 26 33	25 10 4 27 36	7, 8, 9 8, 8 6, 6 6, 9 7, 7, 9	[510] 3046 50	200 235 258 291	13 10 20 28 7	B B P B P M B
786		59.9	57	46	7, 8	62	304	340	В

SUPPLEMENTARY LISTS.

A.

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	Σ's No.	H ₂ 's No.	Arc.	Char- acter.
787 788 789 79 0		h. m. 0 25.5 37.3 1 37.4 42.6	-2 43 16 42 39 21 -2 2	9, 9 8, 9½ 8, 10 8½, 8½	35 51 149 171	167 250 618 666	° 1 4 10 2	C C P B P B C C
791 792 793 794 795		55°2 2 14°8 48°2 3 4°5 10°3	80 56 23 5 33 59 36 46 46 35	7, 9 8, 10 8, 10 8, 8 8, 8	[37] ²⁵⁴ 325 360 371	734 883 1078 1155 92	9 10 27 7	PB CC PB
796 797 798 799 800		44 ^{.2} 4 I 8·5 14·1 16·2	-38 o 39 51 29 42 55 22 -4 58	5, 5 8, 10 7, 9 7, 8 8, 9	3114 [78] 531 536	1408 94 1540 92 97	3 11 6 4 11	R M P B P B P B P B
801 802 803 804 805	Bu. 320	34.5 40.2 51.5 5 20.8 23.1	22 30 -12 10 13 46 69 34 -20 51	9, 11 8, 10 8, 9 7, 9 1 3, 11	579 596 620 704	1720 64 1845 2066	5 7 7 2 23	C C C C P B C C B
806 807 808 809 810		36·5 38·8 47·7 52·8 6 8·6	-0 I 2I I6 36 55 -1 20 30 I0	8, 8 8, 8 7, 8 8, 9 9, 10	782 787 [122] 826 879	2249 64 2333 84	I 20 I3 4	R M P B B P B C C
811 812 813 814 815	P. VI. 105	18·3 20·6 32 44·8 49·6	22 31 0 32 28 22 39 1 25 7	7, 9 8, 9 6, 8 7, 10 8, 9	[139] 910 [152] 974 991	2600 27 2734 2832 84	5 6 8 6	PB PB CC PB
816 817		7 7.5 7.8	15 59 14 46	7, 10 9, 12	1047 46	3033 36	3	C C

Ref. No.	Name of Star.	R. A. 1800.	Dec. 18°0.	Mag.	I's No.	H ₂ 's No.	Arc.	Char- acter.
818 819 820		h. m. 7 12 1 53 8 8 11 5	73 19 23 55 6 50	61, 81 6, 101 9, 111	1051 1171 1213	3043 3464 3625	8 3	PB PB CC
821 822 823 824 825		21.6 23.8 27.7 44.5 9 13.7	17 15 55 46 2 10 21 20 5 31	8, 10 7, 8 8, 10 9, 9 1 9, 9	30 34 43 85 1343	3704 18 59 3899 4109	2 2 4 2 2	C C C C P B C C C C
826 827 828 829 830	So. 621	56·8 1043·2 11 3·9 26·3 57·3	56 4 -3 23 66 40 25 0 42 3	7, 8 7, 8 7, 7, 7, 8 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	1402 76 1549 94	4370 4693 4953 5148	2 8 13 4	C C P B R M C C C C
831 832 833 834 835	γ Crucis P. XII. 196 h. 4649	12 9.9 24.5 45.1 13.23.1 14 0.6	6 18 -56 27 -9 41 76 36 -59 9	9, 10 2, 5 7, 9 8, 8 8 ₁ , 8 ₁	82 [267]	5237 5317 5416 5624 5845	16 2 2 2	PB CC RM PB PC
836 837 838 839 840	H ₁ N. 115 H ₁ V. 9 So. 184	39.1 11.9 2.0 3.1	21 46 37 19 51 55 -1 41 -24 56	8, 9 8, 8, 11 5, 71 5, 91 51, 9	1804 [276] 3124 1846	65 68 5932 93	8 8 4	PB PB B? PB CC
841 842 843 844 845	P. XIV. 212 π Lupi π' Ursæ min.	50.5 56.9 15 0.1 36.2 36.5	-20 52 -46 35 34 56 -14 48 80 51	5½, 6½ 5, 5 8, 9 8, 10 6, 7	1908 3095 1972	6172 6210 35 6468 90	20 6 6 12 4	B PB PB CC
846 847 848 849 850		51.1 58 16 6.6 19.3 25.5	12 50 59 15 14 52 1 31 -6 47	7½, 8 7½, 9 8, 8 7, 10 8, 8	88 2006 17 41 3105	6544 96 6627 97 6729	6 3 3 6	PB PB PC CC
851 852 853 854 855	P. XVII. 94	34.4 38.4 41.1 17.17.8 19.1	38 34 25 22 2 17 -0 43 15 43	8, 12 8, 11 6, 9 8, 9 5, 10	2080 89 96 2156 00	92 6811 22 7005 14	1 6 3 4 5	C C PB PC PB CC
856 857 858 859 860	A. C. 9 h. 5014	19.5 49.9 59 18 2.2 4.3	42 16 29 50 -43 24 19 38 0 31	9, 9 8, 9 6, 6 7, 8 7, 10	63 [524] 2286	7203 57 73 ¹ 5	6 66 18 7	PC PC B PB
861 862 863 864	η Serpentis A. C. 11 Bu. 134	15°1 15°6 18°7 22	-2 55 22 45 -1 39 46 49	3, 12 7, 10 7, 7 8, 10	2310	81 87 96	32 4 6 7	RM CC PB? PB

Ref. No.	Name of Star.	R. A. 1880.	Dec. 1880.	Mag.	I's No.	H ₂ 's No.	Arc.	Char- acter.
865	γ Cor. Aust.	h. m. 18 58 ^{.3}	- 37 í4	51, 51		7714	144	В
866 867 868 869 870	17 Lýræ h. 5113 h. 5114	19 2.9 10.2 11.1 17.5 18.1	32 18 19 49 27 14 -29 32 -54 34	6, 10 8½, 10 7, 7 6, 9 6, 11, 7	2461 88 [371]	62 7835 51 7900 7897	10 10 5 48 129?	PB PB CC CC
871 872 873 874 875	Da. 10	29·3 31·8 35·8 42·8 43·6	17 51 61 47 63 33 23 57 18 51	7, 9 8, 9 8, 10 8, 9 6, 9	[375] 2553 64 85	8019 8065 8105 69 75	24 13 9 6 8?	PB PB CC PB B
876 877 878 879 880	h. 2904 A. C. 16	47°1 52°9 53°9 55°5 5 9	-24 14 26 56 41 56 6 36 35 41	6, 10 7, 8 7, 9, 9 8, 9 7, 8	[392] 2612 24	94 8257 74 82 8325	32 7 20 3	RM PB B CC PB
881 882 883 884 885	Cygni 172 B Cygni 176 B	59.5 20 128 13.9 15.9 15.9	30 12 10 37 40 21 44 59 39 1	8, 8 8, 11 6½, 9 7, 8 7, 9	2626 62 66 [406] 2668	28 8472 93 8516 12	10 3 7 24 5	PB PB PB B
886 887 888 889 890	Delphini 43 B P. XX. 324 Bu. 269	17·1 17·2 39·2 43·1 58·6	12 57 12 57 11 53 25 57 7 19	8, 9 9, 10 6, 8 8, 10 8, 11	73 74 2723 28	19 20 8742 75	6 7 18	PB CC PB CC CC
891 892 893 894 895	Cephei 83 B Bu. 368 H ₁ I. 47 θ Indi	58·8 21 1 2·4 5·7 11·3	56 12 -8 43 4 40 -15 31 -53 57	6, 7 7, 8 7, 8 8, 8 5, 9	51 [527]	8884 8932 74	4 6 207 33 14	PB PB PB CC
896 897 898 899 900	B. A. C. 7578	33.7 40.5 46 47.9 50.1	20 IO -47 5I 8 3I 63 28 45 I3	8, 8½ 6, 10 7, 10 8, 11 8, 10	[445] 2833 42 46	9158 9217 60 98 9308	6 6 4 11 7	PB CC CC PB CC
901 902 903 904 905	P. XXII. 93, 94 Cephei 241 B	51 '9 22 9 '1 20 37 '9 46 '7	-4 4 28 57 -17 21 46 30 61 4	8, 8 7, 8 64, 64 7, 7 6, 7	47 81 [476] 2950	25 9474 9560 9715 88	12 8 7 7	PB PB CC B PB
906 907 908 909 910		23 1.5 7.2 41.7 51.8 59.5	60 47 19 20 16 25 56 43 17 25	7, 11 8½, 10 7, 8, 8 9, 9, 12 8½, 8½	77 89 3041 47 60	9905 44 10180 247 297	11 6 3 8 5	PB PB PB PB

B.MR. S. W. BURNHAM'S STARS.

Ref. No.	Bu.'s No.	R. A. 1880.	Dec. 1880.	Mag.	P.	D.	Date.	Remarks.
911 912 913 914 915	394 233 302 396 397	h. m. 0 24.2 49.1 51.9 56.2 1 0.9	46 52 -18 6 20 45 60 26 46 12	8, 8 8, 9 7, 8 6, 11 8, 10]	300 90 94 85 160	" 1 '2 0'7 1 10	1800 + 76 74 74 76 76	Extremely difficult.
916 917 918 919 920	303 398 83 400 308	3°1 4°9 2 39°9 3 5°1 32°1	23 9 47 10 -5 28 -4 16 -8 3	71, 8 8, 8 71, 10 7, 111 81, 91	286 60 123 45 320	0.6 2 1.3 12	74 76 72 76 74	
921 922 923 924 925	401 87 402 403 184	44°2 4 15°3 17 19°3 22°5	-1 52 20 32 -1 33 -2 20 -21 46	7, 11 51, 92 81, 101 7, 81 7, 8	260 171 75 100'3 270	4 2'1 5 2'0 1'2	76 73 76 76 76	Very beautitul. De.'s measures.
926 927 928 929 930	186 312 316 404 319	40°2 42°6 46°8 49°8 5 21°2	-7 12 -21 1 -5 29 8 58 -20 49	8, 10 8, 9½ 8, 8 9, 9½ 7½, 10½	180 330 180 113'4 225	1.7 2 1.2 1.5 4	73 75 75 76 74	De.'s measures.
931 932 933 934 935	405 406 16 323 97	42'3 43 55'7 6 8'7 18'5	-13 34 -13 28 -10 36 -1 41 -1 21	8½, 11 9, 12 5½, 10 8, 9 7½, 9	150 260 356 90 257	10 8 1.8 1.7	76 76 71 75 73	Kn.'s measures. Exquisite.
936 937 938 939 940	194 326 329 197 330	28·1 49·9 7 4·1 7	38 6 2 28 -16 2 -6 57 -0 41	8, 8½ 8, 8½ 6, 10½ 8, 10 8½, 9	283 60 95 150 220	I 1.5 12 12 1.5 1 1.5	74 75 75 74 75	
941 942 943	199 198 333 203	19 [.] 9 20 [.] 6 57 [.] 4	-20 56 -20 43 -22 1 -27 14	7, 9 8, 11 71, 9 81 7, 10	19 212 40 60 246	3.2 30 5	74 74 75 75 74	A B. A C.
945 946 947 948 949 950	206 207 407 408 409 410	8 30°3 33°7 45°8 48°9 54°9 9 4°5	-24 42 -19 19 -6 20 63 54 -8 43 -25 19	8, 9 61, 11 8, 10 7, 10 8, 10 7, 9	99 160 350 180 160	1.2 6 2 10 1.2	74 76 76 76 76	A splendid pair.
951 952 953 954 955	212 214 217 218	10°2 35°9 10 1°2 1°6 15°9	-7 51 -17 56 -24 8 -19 7	7, 9 7, 11 7, 7, 2 8, 8	218 264 273 109 193	1.2 2.5 1.5 1	74 74 74 74 74	

						_		
Ref. No.	Bu.'s No.	R. A. 1880.	Dec. 1880.	Mag.	P.	D.	Date.	Remarks.
956 957 958 959 960	411 220 412 343 348	h. m. 10 30.4 11 6.5 12 2.2 13 45.1 14 55.6	-26 "3 -17 51 -17 55 -31 1 0 20	7, 9 6, 6 8, 9°5 6, 8½ 6, 6	310 148 160 120 130	1'3 0'5 1'3 0'5	1800 + 76 74 76 75 75	Very fine.
961 962 963 964 965	350 227 32 36 417	15 8·5 12·1 14·4 45·8 17 52·2	-27 9 -23 50 I II -24 56 39 27	61, 8 7, 101 51, 13 51, 10 8, 91	170 184 30 270 270	1.3 1.7 3 1.5	75 74 72 71 76	Very fine. [difficult. Splendid, but very Very beautiful.
966 967 968 969 970	418 419 56 57 63	18 1.5 25.7 19 58.2 59.4 20 24.1	64 26 -7 55 -4 41 15 8 10 28	81, 111 8, 91 71, 10 7, 15 6, 11	240 40 180 140 340	10 1.2 2 2 0.7	76 76 71 72 72	Fine pair. [cult. Fine, but very diffi- Very difficult in- [deed.
971 972 973 974 975	65 66 67 68 69	41'4 42'5 45'2 55'3 56'7	5 32 26 58 30 26 49 43 21 7	6, 10 8, 8 7, 111 812, 9 8, 9	195 160 290 170 350	1.2 1.2 1.2	71 72 71 72 72	[cult.] Beautiful, but diffi-
976 977 978 979 980	472 70 473 71 72	57°2 58°4 21 1°4 4 23	61 23 11 31 -10 42 9 37 -5 58	81, 81 8 10, 10 9, 10 5, 16 9, 12	6 235 110 115 10 50	0.6 70 2.0 1.7 25 2	77 71 71 77 71 71 72	A and B C. B and C. A C.
981 982 983 984 985	73 74 372 75 474	24.7 29.2 35.8 49.2 22 I	-6 8 20 49 51 1 10 16 60 25	3, 16 6½, 10 8, 10½ 8, 9 8½, 12	180 315 360 30 360	35 1.4 1.2 10	77 71 75 72 76	
986 987 988 989 990	375 475 376 476 477	4°5 6°2 8°1 8°7 10°5	50 11 -8 36 59 30 30 48 30 49	8, 9 7½, 11 7½, 11½ 9½, 10 9, 11	330 240 150 93 46	1 1.5 3 2.6 6.4	75 76 75 76 76	
991 992 993 994 995	377 378 379 76 77	11.4 12.8 16 22.9 27.3	54 4 60 16 53 13 -0 52 -2 27	8, 10 10½ 8½, 9 8½, 9 8½, 12 8, 10	65 30 90 330 335 210 225	60 3 4 1 1.5 2	75 75 75 75 72 72	A B. B C. A B. A C.
996 997 998 999 1000	381 80 81 279 482	27.4 23 12.2 28.5 36.5 55.7	32 47 4 42 -12 18 -15 12 62 39	8, 10½ 8½, 9 8, 12 5, 12 8½, 10	210 300 20 90 360 150	1.2 1 1.2 3 4	75 72 72 74 77	Very difficult. A B. A C.

ABBREVIATIONS USED IN THE MEASURES, ETC.

Auwers	•	Au.	Luther	•	Lu.
Bessel		. Ве.	Mädler	-	Mä.
Brünnow		. Br.	Main		M.
Burnham		. Bu.	Miller		Mi.
			Mitchell (Prof.)	•	Mit.
Challis .		. Ch.	Morton.	•	Mo.
Cincinnati Ol	oservations	s C.O.		•	2101
_		_	Nobile		No.
Dawes .	•	. <u>D</u> a.			
Dembowski	•	. De.	Otto Struve .		0.Σ.
Doberck	•	. Dob.			
Dunér .		. Du.	Plummer .	•	Pl.
Durham Obs	ervations	. D.O.	Powell	•	Po.
T211		121	Romberg .		Ro.
Ellery .	•	. El.	Komberg .	•	Ko.
Engelmann	•	. Eng.	Cabia namalii		Schi.
Ferrari .		. Fer.	Schiaparelli . Seabroke .	•	
Flammarion	. •	. rer. . Fl.		•	S.
Fletcher	•	. Fl. . Flt.	Secchi	•	Se.
r letcher	•	. Fit.	Smyth	•	Sm.
Gledhill		. Gl.	South	•	So.
Greenwich O	hservation		Spörer	•	Sp.
Greenwich	DSCI VALIDII:	s U .U.	Struve	•	Σ.
Herschel, Sin	Wm.	. H ₁ .			
Herschel, Sir		. H.	Talmage .	•	Ta.
Hind .	,	. Hi.	l <u></u> .		
	•		Vogel	•	Vo.
Jacob .		. Ja.			
•			Wilson	•	w.
Kaiser.	•	. Ka.	Winnecke .	. •	Wi.
Knott .	•	. Kn.	Washington Obs	ervations	w.o.

M.M. = Mensuræ Micrometricæ.
M. = Magnitude.
h. = H₂.
A. C. = Alvan Clark.
Mem. R. A. S. = Memoirs of the

Royal Astronomical Society.

L. = Lalande. P.M. = Positiones Mediæ.

P. A. C. = British Association Catalogue.

P. Piazzi.

MEASURES.

THE following measures have been compiled with great care, and the originals have been consulted where possible. Some, however, have been given on the authority of H², Mä., Da., and Fl.

The first column gives the position angle (P.); the second the number of observations or nights (e.g. 14 or 2n.); the third gives the distance, and the fourth the date.

Where the angles and distances are the result of two or more nights' work, they are the arithmetical means. In the case of O. \(\Sigma\). 's measures the arithmetical means of the "corrected" angles and distances have been given.

The whole of the measures by any observer are given at once under the proper initials, and both these groups and the individual results are placed in chronological order. This arrangement has been found convenient in compilation, and it exhibits at a glance the whole of the work of each contributor.

The diagrams are not all drawn to one scale; but a scale of equal parts will at once show the value of 1".

1	Σ.	306	33.		
R. A.		Dec. 5° 12'		M. 8·3, 10·2	
	C	A, yello	wish.		
Slow retrograde motion. Probably a binary.					
Σ. Mä.	232.9	3n. 1n.	1.78 1.85 .84 .80	1831·50 45·86 64·84	
De.	223.7 224.4	3n.	1.85	64·84 5·55	
C. O.	221.4	3n.	.80	77.86	
$\overline{2}$	a A	NDROI	EDÆ.		
R. A. Dec. o ^h 2·2 ^m 28° 36			M. 2, 11.2		

C. A, white.

Rectilinear motion. The proper motion of a in R. A. is + 0° 013, and in Dec + 0" 13.

H₁ 280°6 | In. | 55"7 | 1781°96

H,	280°6	ın.	ı 55 [%] 7	1781'96
Da.	264.2		66.27	1830.68
Sm.	267.1		65.9	4.64
	266.9		64.8	7.74
Σ.	.8		'94	6.38
Ο. Σ.	269.4		66.92	51.93
De.	270'7		69.2	66.68
G 1.	269.8	ın.		76.07
Fl.	271.0	In.	71.1	7.08

3	Σ. 2.	
R. A.	Dec.	M.
Oh 2.7m	79° 3′	6.3, 6.6
C. A. vell	ow: B. deeper	vellow.

This difficult double star was discovered by Σ . in 1828, and the steady change in

angle and distance has secured for it the careful attention of observers. Σ ., H_9 , Da., Se., Demb., and others have measured it. H_9 says, "Charmingly divided with 320. The discs like two grains of mustard-seed separated by one-third of the diameter of either." In 1839 Dawes could not separate the pair, and in 1866 Secchi describes it as "ovale." Between 1828 and 1866 the change in angle amounted to about 20°, but owing to the extreme closeness of the stars it is difficult to detect in the measures the acceleration of angular velocity due to the decrease of distance. "If the measures in 1858 and 1869 are correct, the two stars have already passed their apparent periastre." (0. Σ in 1877.)

			"	
Σ.	342.2	In.	0.72	1828:22
	343'4	,,	'84	.27
	339.3	,,	'94	32.50
	337'5	,,	.40	'24
_	344'8	,,	.85	3°34
H,	339'7	,,	2	0.31
Da.	336.1	3	0.2	9.67
Ο.Σ.	338.4	3n.	743	40.26
	334'9	6n.	.222	8.22
	329.3	Ion.	'443	58.20
		1	simple	69.17
Mä.	3,4°3	In.	0.80	41'42
	336.6	,,	.22	. 45
	337'9	,,	! •6 <i>a</i>	.64
	332.7	,,	.65	2.45
	336.4	,,	.62	-81
	338.8	٠,,	.22 .62	3.58
	343'5	٠,,	.65	.31
	331.4	,,	'60	5.15
_	335.2	,,	·60	14
Se.	324.9	2n.	.38 -	57.52
_	136.8	,,	'25	66.95
De.		In.	single	3.6
	295.2	,,	0.38	5'7
_	_	8	single	7.0
Ta.	295.6		0.30	5.76
Du.	325.0	In.	elongd.	9.03
	331.0	,,	,,	·75
	334.0	,,	,,	75.71
₩.			,,	2.92
Fl.			,,	6.85
Dob.	315.8	3		7.82

4		_
4	Ο.Σ.	2.

R. A. Dec. M. ch 7'4^m 26° 20′ A 6'9, B 8'3, C 9'6

This is h. 1007. A slow retrograde movement in A B. Probably a binary.

		AB.		
Ο.Σ.	21.2	In.	0.43 83	1844.83
	65.3	,,		50.03
	57.0	,,	·82	.99
	53'8		.78	2.67

O.Σ. Se. De. Du.	51°9 43'8 51'4 47'4 44'8	2n. 3n.	0.79 -88 -67 -5 -72	1857°71 74°71 58°43 66°64 9°78
$\frac{\mathbf{A} \mathbf{B}}{2}$ and \mathbf{C} .				
O.Σ. Ro. De. Du.	226·2 224·2 225·3	5n. In. 3n. 2n.	17.77 -58 -51 -77	14.52 62.86 6.64 9.72

5 Σ. 13.

318 (B) CEPHEL.

R. A.	Dec.		M.	
о _р 9.4 _ш	76° 17′		6.6, 7	I
C. Σ. white.	yellowish white.	Se.	and De	<u>.</u>

A very difficult object. In 1830, H₂ says, "With 320 and full aperture, both discs seen with a momentary hair-breadth separation." Struve calls it "oblonga, exacqualibus." In 1828 Σ could not divide it, but he did so in 1822.

it, but he did so in 1832.

"The diminution of the angle is evident.

The positions of Σ are probably subject to considerable systematic errors. A small increase in the distance appears probable."

—(Ο.Σ. in 1877.)

(,		
Σ.	126.7	In.	o"54	1828:22
	129.5	,,	.5	32.50
	125.7	,,	.54	2.24
	114'2	,,	.55	3'34
	124.8	In.	'4	6.68
	116.9	٠,,	•5	*69
	117.6	,,	·5 ·4	'70
H,	311.8	٠,,	1	0.31
ο. Σ.	125.2	3n.	0.64	40.28 8.22
	116.6	6n.	·57	8.33
	105.9	IOn.	.27 .20	58.20
	101.9	3n.	'73	71.23
Mä.	119.9	12n.	·54	43.50
De.	101.9	4n.		55.29
	105.9	3n.		8.26
	103.3	,,	•••	62.76
	.9	2n.		3.32
	.0	In.		4.69
	104.0	,,	0.5 .6 .47 .58 .69	5 93
	100.0	,,	•6	9.21
	96.2	,,	'47	74.82
_	97:2	,,	•58	5 [.] 7 ^I
Se.	102.5	2n.	'69	57.52
	103.2	,,	, 3°	66.95
W. & S.	.I	" 9 7 6	•5	72.2
	0.4	7		3.3
<u>G</u> 1.	101.0	6	o·5 ·47	16.
Fer.	93.1		·47	4.82
Dob.	181.7	3	•••	7.82

ദ 0.Σ. 4.

R	١.	A.
O _p	I	0.4

Dec.

M. 7'4, 8'1

Certain retrograde motion. Probably a binary.

Ο. Σ.	20 6.7	2 n.	0.59	1845.26
	187.5	4n.	.22	54.01
	172.7	2n.	•56	61.66
Mä,	178.0	ın.	elongd.	51.75
De.	29°5 184°7	3n.	oʻ25 elong ^d .	·76 66·88
	358.8		٠,,	9.61

Σ. 23.

Dec. -0° 21'

M. 7.6, 9.9

C. yellowish. Both angle and distance have decreased.

The formulæ given in the M. M. by Σ . no longer satisfy the observations. From the observations by Σ ., Da., O. Σ ., and De., the following are deduced :-

$$\Delta A = -o''\cdot 48 - o''\cdot 030 (T - 1850\cdot 0),$$

 $\Delta D = +11''\cdot 40 - o''\cdot 110 (T - 1850\cdot 0),$

and the comparison of the observed and computed quantities is very satisfactory.- $(0.\Sigma. \text{ in } 1877.)$

Da. 359.7 6n. 12.87 36.24 358.8 3n. 12.25 42.18 356.9 1n. 10.98 54.20 Ka. 359.1 8n. 12.04 42.48 1.2 9n. 11.86 3.98 Mä. 359.9 4n. 12.13 91 0.Σ. 357.9 2n. 12.01 46.24 1.2 13 91.46.24 1.3 10.72 58.00 0.Σ. 357.9 2n. 12.01 46.24 1.1 1.2 9.44 67.88 11.00 54.35 11. 10.68 54.94 11.00 54.35 11. 10.68 54.94 11.00 54.35 11. 10.68 54.94 11.00 54.35 11. 10.68 54.94 11.00 54.35 11. 10.68 54.94 11.00 54.35 11. 10.68 54.94 11.00 54.35 11. 10.68 54.94 11.00 68 54.94 1	Σ.	I '2	3n.	13.67	1828.52
Da. 358·8 3n. 12·25 42·18 356·9 1n. 10·98 54·00 Ka. 359·1 9n. 12·04 42·48 1·2 9n. 11·86 3·98 Mä. 359·9 4n. 12·13 91 0.Σ. 357·9 2n. 12·01 46·24 "4 " 11·00 54·35 355·5 1n. 10·68 54·94 355·5 5n. 9·46 67·88 Mo. 355·5 1n. 10·68 54·94 356·7 9·87 6·96 355·0 6n. 9·85 63·33 Ta. 354·5 6 5·70 355·0 6 9·85 Ta. 355·0 6 9·85 W. & S. 352·8 4 3·86 353·9 6 8·84 9·72 351·6 72 71·78 W. & S. 352·8 4 3·86 353·9 2 86 9·86 696 G1. 353·4 4 3·91 Dob. 348·7 2n. 3·6·89 P1. 351·6 4n. 8·2 7·46		359'7	бn.	12.87	36.54
Ka. 356'9 In. 10'98 54'00 I'2 9n. 11'86 3'98 Mä. 359'9 4n. 12'13 '91 355'4 ,, 10'72 58'00 0.Σ. 357'9 2n. 12'01 46'24 Mo. 353'2 ,, 9'44 67'88 Mo. 355'5 In. 10'68 54'94 355'0 6n. 9'85 63'33 Ta. 355'0 6n. 9'85 63'33 Ta. 355'0 6 5'70 353'9 6 8'84 9'72 351'6 6 '72 71'78 W. & S. 352'8 4 3'86 352'8 9 6'96 6'95 Gl. 353'4 4 3'91 Dob. 353'4 4 3'91 Dob. 351'6 4n. 8'2 7'46	Da.	358.8	3n.	12.22	
1 '2 9n. 11 '86 3'98 359'9 4n. 12'13 91 355'4 ,, 10'72 58'00 0.Σ. 357'9 2n. 12'01 46'24 11'00 54'35 353'2 ,, 9'44 67'88 353'2 ,, 87 6'96 0. 355'5 1n. 10'68 54'94 356'7 , 87 6'96 0. 355'0 6n. 9'85 63'33 7a. 354'5 4 5'70 353'9 6 8'84 9'72 351'6 6 '72 71'78 0. 353'8 4 3'86 01. 352'8 9 6'96 6'95 01. 353'4 4 3'91 00b. 348'7 2n. 6'89 Pl. 351'6 4n. 8'2 7'46		356.9		10.08	54.00
1 '2 9n. 11 '86 3'98 359'9 4n. 12'13 91 355'4 ,, 10'72 58'00 0.Σ. 357'9 2n. 12'01 46'24 11'00 54'35 353'2 ,, 9'44 67'88 353'2 ,, 87 6'96 0. 355'5 1n. 10'68 54'94 356'7 , 87 6'96 0. 355'0 6n. 9'85 63'33 7a. 354'5 4 5'70 353'9 6 8'84 9'72 351'6 6 '72 71'78 0. 353'8 4 3'86 01. 352'8 9 6'96 6'95 01. 353'4 4 3'91 00b. 348'7 2n. 6'89 Pl. 351'6 4n. 8'2 7'46	Ka.	359.1	8n.		42.48
355 '4		1.5	9n.	11.86	3.98
0.Σ. 357'9 '4 '7, 11'00 '54'35 353'2 '80. 355'5 '10. 10'68 54'94 67'88 356'7 De. 355'0 60. 9'85 63'33 Ta. 354'5 4 5'70 355'0 6 76 353'9 6 8'84 9'72 351'6 6 '72 71'78 W. & 8. 352'8 4 3'86 353'9 6 8'84 9'72 351'6 6 '72 71'78 W. & 8. 352'8 4 3'86 353'9 6 8'96 6 '96 6 '96 6 '95 100 353'4 100 348'7 20. 351'6 100 351'6 40. 353'4 100 351'6 41. 8'2 7'46	₩ä,	359.9	4n.		
Mo. 355.5 In. 10.68 54.35 Mo. 355.5 In. 10.68 54.94 356.7 87 6.96 De. 355.0 6n. 9.85 63.33 Ta. 354.5 4 5.70 355.0 6 76 355.0 6 76 353.9 6 8.84 9.72 351.6 6 72 71.78 W. & S. 352.8 4 3.86 352.8 4 3.86 2 5 8.9 4.91 352.8 9 6.96 6.95 Gl. 353.4 4 3.91 Dob. 348.7 2n 6.89 Pl. 351.6 4n. 8.2 7.46		355.4	,,	10.42	
Mo. 353.2 ", 9'44 67'88 Mo. 355.5 In. 10'68 54'94 356'7 ", 87 6'96 De. 355.0 6n. 9'85 63'33 Ta. 354'5 4 5'70 353'9 6 8'84 9'72 351'6 6 '72 71'78 W. & S. 352'8 4 3'86 352'8 9 6'96 6'95 Gl. 353'4 4 3'91 Dob. 348'7 2n 6'89 Pl. 351'6 4n. 8'2 7'46	Ο. Σ.	357'9	2n.		
Mo. 355.5 In. 10.68 54.94 356.7 87 6.96 De. 355.0 6n. 9.85 63.33 Ta. 354.5 6 5.70 355.0 6 5.70 355.0 6 76 353.9 6 8.84 9.72 351.6 6 386 352.8 4 3.86 353.9 2 86 352.8 9 6.96 6.95 Gl. 353.4 4 3.91 Dob. 348.7 2n 6.89 Pl. 351.6 4n. 8.2 7.46		'4	,,	11,00	
M. & 8. 352.8 4 353.9 6 353.9 2 86 353.9 2 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 87 86 86 86 86 86 86 86 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 86 87 87 86 87 87 87 86 87		353.5	٠,,		67.88
De. 355 o 6n. 9.85 63.33 Ta. 354.5 4 5.70 355 o 6 76 355 o 6 76 353 o 6 776 353 o 6 776 353 o 6 772 351 o 6 38.84 9.72 352.8 4 3.86 353.9 2 86 352.8 9 6.96 6.95 01 353.4 4 3.91 Dob. 348.7 2n 6.89 Pl. 351 o 4n. 8.2 7.46	Mo.	355.2	In.	10.68	
Ta. 354'5 4 5'70 355'0 6 '76 353'9 6 8'84 9'72 351'6 6 '72 71'78 W. & S. 352'8 4 3'86 2 5 8'9 4'91 352'8 9 6'96 6'95 Gl. 353'4 4 3'91 Dob. 348'7 2n 6'89 Pl. 351 6 4n. 8'2 7'46	_	356.4		.87	6.96
355.0 6 76 353.9 6 8.84 9.72 351.6 6 3.86 352.8 4 3.86 353.9 2 86 -2 5 8.9 4.91 352.8 9 6.96 6.95 G1 353.4 4 3.91 Dob. 348.7 2n 6.89 P1 351.6 4n. 8.2 7.46		355.0	6n.	9.85	
353'9 6 8'84 9'72 351'6 6 '72 71'78 W. & 8. 352'8 4 3'86 353'9 2 '86 4'91 352'8 9 6'96 6'95 61 353'4 4 3'91 Dob. 348'7 2n 6'89 Pl. 351 6 4n. 8'2 7'46	Ta.				
W. & S. 352.8 4 3.86 353.9 2 86 2 5 8.9 4.91 352.8 9 6.96 6.95 Gl. 353.4 4 3.91 Dob. 348.7 2n 6.89 Pl. 351.6 4n. 8.2 7.46					
W. & 8. 352 8 4 3 86 353 9 2 86 					
353'9 2 '86 2 5 8'9 4'91 352'8 9 6'96 6'95 GL 353'4 4 3'91 Dob. 348'7 2n 6'89 PL 351 6 4n. 8'2 7'46		351.6	6	.72	71.78
2 5 8.9 4.91 352.8 9 6.96 6.95 GL 353.4 4 3.91 Dob. 348.7 2n 6.89 PL 351.6 4n. 8.2 7.46	W. & S.			•••	
352 8 9 6 96 6 95 GL 353 4 4 3 91 Dob. 348 7 2n 6 89 PL 351 6 4n. 8 2 7 46					
Dob. 348.7 2n 6.89 Pl. 351.6 4n. 8.2 7.46			5		
Dob. 348.7 2n 6.89 Pl. 351.6 4n. 8.2 7.46		352.8		6.96	
Pl 351 6 4n. 8.2 7.46		353.4		•••	3.51
					
U.U. 350'3 3n. 7'92 '83		351 6			7.46
	U.U.	350.3	3n.	7.92	1 .83

8 Σ. 24.

69 (B) ANDROMEDE.

Oh 12.2m

Dec. 25° 28′

M. 7, 8

C. white.

The angle is unchanged, but the distance slowly diminishes.

			"	
Σ.	248.4	4n.	5.20	1831.11
Da.	246.2	3	• • • •	46.76
De.	247°I	3 8n.	5.55	53.05
8e.	.2	4n.	°05	6.85
Mo.	•5	2n.	.06	8.41
Ta.	250.5	· 4	•••	65'70
	248.5	6	5.51	.76
	.7		·	9.28
	247 '3	5	5.98	.72
Du.	250.8	4n.	4.84	70.39
Fer.	249°I		5.22	2.95
Gl.	247'9	4	•	3.91

H, V. 85.

R. A. Op 13.1m 37° 28'

M. 7'4, 9'5

C. white.

Rapid increase of distance. Rectilinear

H ₁ .	10.6	I		1783'04
8ο. Ο.Σ. Fl.	13·2 15·4 ·1	In.	30.45 45.31 53.35 62.5	1783.04 .63 1824.91 51.99 77.13

10 0.Σ. 6.

66° 20' A 7'2, B 8'2, C 9'5 Σ. 26 rej.

In A B the angle has probably diminished, and the distance between $\frac{A+B}{A}$ and C.

AB. 4n.

0.Σ 143'9 135'3 133'9 1849'64 Mä, 55 5 7 In. 51.46 77 De. 3n.

A+B and C.

Ο.Σ. 114.8 4n. 13.49 Mä, 115.6 In. •46 -8 •56 ,, Ro. De. 3n. 114'1

11).Σ.	7.		Σ.	108.3	2n. 3n.	13
R. A			М		Sm.	106.8	2n.	15
Oh 15	ª 65° ₄	19 B C		8, c 9 [.] 8	Mä. De.	107.2	In. 2n.	14
Ο. Σ.	97°6	In.	,,	1846·74 7·91	0.Σ. W. & S. Gl.	106.8	3n. 3 4	
Mä,	106.7	,,	·3	51.22 2.31				
De.	Too close f	• • •			15	0	.Σ.	12
0.Σ.	76.3	A B 2n.		47:23	R. A oh 25		De 53°	
<u></u>	•	Σ. 2'	 7		of λ , $+$	in direct 0°003 in l formulæ	R. A. a	
R. 0 ^h 10	A.	D	ec.	M. 6•3, 10·7	18 P	355·27 Δ = 130°·7	-0"·4 + 0°·5	8. 5 (<i>t</i>
0- 10		very y	49' ellow.	6-3, 10-γ	Ο.Σ.	299°2	In.	•
proba	tilinear m bly due to	the pro	oper mot	ion of the		295°5 127°2 305°3	,, ,,	
•	pal star.			•		131.3	",	
Σ.	344.℃ 340:7	3n. In.	30.50	1829:50		310.0 130.1	,,	1
£m.	'I	,,	.01	.89	wä	312.0	,, 2n	

Σ.	344.0	3n.	31.67	1829.50
	340'7	Ĭn.	30'20	51.80
	·i	,,	10.	89
ßm.	341'5		.2	33.95
Mä.	- 8	4n.	31.84	44.56
De.	338.0		29.73	63.85
Ο.Σ.	·o	ın.	30'14	5.87
	9	,,	'02	9.93
G 1.	.1	3	29.	73.89
Fl.	337.9	In.	28.5	7.08

13	Σ. 30.	
R. A.	Dec.	M.
0 ^h 21 ^m	49° 20'	6·8, 8·7

C. A, white; B, ash.

Change in angle and distance.

Σ.	295.8	3n.	21.53	1831.51
Mä.	296.6	In.	20.45	45.08
W. & S.	299.8	4	18.43	.93

14. Σ. 32.

49 PISCIUM.

R. A. Dec. 15° 23' M. Oh 24 6m 6.8, 10.6

The evident change is explained by the proper motion of the principal star.—(O. 2. in 1877.)

_	ç	_	. "	1-0
Σ.	108.3	2n.	13'43	1829.24
	107.6	3n.	.84	32.90
	106.8	2n.	15.48	51.84
Sm.	109.2		.0	35.87
Mä,	107.2	In.	14.87	44.01
De.	106.2	2n.	16.12	63.92
Ο.Σ.	105.8	3n.	'73	9.91
W. & S.	106.6	3	•6	73.93
Gl.	•8	4	1 '4	1 '94

. 12. Dec.

otion. Proper motion A. and + o" o2 in P. D.

5.6, 5.9

0″•48. °·55 (1—1860°0).

	- 130 /	1 0 33	(* .00	٠,٠
Ο.Σ.	299.2	In.	•••	1843.14
	303.7	,,	0.48	4.84
	295.5	,,	*54	5.16
	127.2	,,	•56	6.11
	305.5	,,	'49	7.13
	131.3	,,	•53	21.13
	129.1	,,	'44	119
	310.0	,,		4.67
	315.0	,,	·52 ·65	70'18
Mä.	122.3	2n.	'33	45'73
	·ŏ	4n.	.29	51.00
	140'3	In.		3'24
Da.	115.9	2n.	0.24	4:30
Se.	124.8	In.	.25	9.01
De.	133.1	6n.		66.37
	134'3	1	0.38	9.39
	138.7	2n.	elong.	70.69
	133.0	2n.	0.2	1.58
	136.8	ın.	obl.	2.61
	324'I	In.	elong.	3.69
	134'3	In.	0.28	5 63
	318.7	In.	-57	7.03
Du.	142.1	4n.	'49	5.80
W. & S.	140.4	7	1 .5	-92

16 ο.Σ. 13.

R. A. Dec. 36° 16' Oh 25m 7.8, 10.9

Probably a slight change in both angle and distance. There is a star of the 1011 mag. at a distance of 41" (De.)

		AB.		
O.Σ. De.	133.5 131.1	4n. 3n.	.39 6.19	1850.06 66.63
		A C.		
De.	180.0	2n.	41.53	66.19

				MEA
17		Σ. 3	6.	
R. A.		De	c.	M.
ор 56.5	m.	6°	17'	5, 9
	C. A.	white	; B, ash.	
has prob	icult sta ably dec	r to o	bserve. Mädle	The angle or gives the
H,	89.4		22.48	1783.63
Σ.	82.9	In.		1820.96
		In.	27.44	2.22
H & 0.	.3	3n.	42	33.50
H, & 80. Mä.	81.0	24	25·87 28·25	22.87
	80.4	2n. In,	28.25	52.86 3.04
	81.0	In.	27:04	3.85
	·6	In.	.51	3.85 8.04
Be.	82.4	In.	29	8.04
Eng.	81.8	In.	.47	64.94
W. & S.	82.7	5n.	28.4	73.86
 18		. 4	1	
R. A.	1	De 40° 2		M. 8, 9
5-7				٠, ۶
D:4		yellov		
distance.	anguar	motic	n and	increase of
Du.'s fo	ormulæ :	are		
Δ=	8"·24 ±	u,,.uss	7 (1 - 18	co:0)
P=2	8″°34 + 2618°6 +	0°.139	(t-185)	oo).
Σ.	258.8	3n.	7:86	1829.82
	260'4	2n.	10.32	30.19
	259.0	2n.	7:34 8:74	45.69
	262.2	2n,	8.74	57.93
	263.2	6n.	.66	65.00
	262°3	In. 7n.	•76 •80	70°09
	264.2	4n.	9.1	2.64
	263.0	4	9.6	4.86
~ 1	265.4	8	8.8	6.95
0 1.	264.6	4	.9	3.91
	-			
19	O	.Σ. 1	3.	
R. A.		Dec		М.

H., Mä., Se., De., O. E., Du., W. & S.	260.4 259.0 262.2 263.2 265.0 264.2	2n. 2n. 2n. 6n. 1n. 7n.	7.34 8.74 .66 .76 .80	30°16 45°69 57°93 65°09 6°92 70°09 2°64	R. A. ο ^h 37 [·] 5 ^m Σ. Μä.		Dec. 45° 35 yellow 3n.	; ′	M. 8, 9
G1.	263.0 264.6	8 4	9.6 8.8 .9	4·86 6·95 3·91	De.	19.0 18.4 19.3 14.6	In. ,, ,, ,,	1 '36 '06 '28	45.08 63.97 .87 8.88 70.06 7.87
19 R. A.		.Σ.] Dec	:	М.	24	Σ	. 58) .	
о 33	C	48° 4 5. yello	w.	6.3, 10.8	R. A. oh 41'2 ^m	_	Dec. 50° 4	7'	M. 7, 8
The di	stance h	as prob	ably dim	inished.		C.	very w	hite.	
O. E. Mä. De.	25.6 .6 26.7 24.9	3n. In. 3n.	14.76 15.39 14.24	1845 [.] 92 49 [.] 28 52 [.] 84 67 [.] 09	gives— 1855	· 42 Δ	=2".2		tion. Du.

	20				
)	R. A.		. De	c. 53'	M. 6·5, 10
	,			white.	3,
le he out	E. Mä. De. Ta. C.O.	321.4 320.4 319.6 304.4 320.5	3n. In. 3n. 5 4n.	4.49 .93 5.24 .82	1830'92 44'05 65'18 71'78 7'80
	21	O	.Σ.]	8.	
; ;	R. A. oh 36 ⁿ		Dec 3°3	2. 2'	M. 7'4, 9'5
	Ο.Σ.	Probab	le direc	t motion	i. 1845'70
•	Se. De.	94.7 99.8 106.5	", 3n.	'34 '13	8.21 8.21 8.21
_	22	0	.Σ. 1	Ω.	
	R. A.		Dec		М.
	Oh 37 ^m	Probable	36° 5		7.8, 10.7 e.
of	O.Σ. Mä. De.	117.3 293.0 114.4	3n. 3n.	9·56 9·74	1847·22 5·85 66·60
	23	2	Σ. 52	2.	
	R. A. Oh 37.5	m	Dec.	; ;	M. 8, 9
			yellow	ish.	
	Σ. Mä. De.	25.8 24.8 19.0 18.4	3n. I In.	1.42 .70 	1831'44 45'08 63'97 '87
-		19·3 14·6 17·9	,, ,,	°06 °28 °33	8·88 70·06 7·87
	24	2	£. 58	9.	
8	R. A. 0 ^h 41'2 ^m		Dec 50° 4	7'	M. 7, 8
Ì		C.	very w	hite.	

H ₁ .	140.2	In.	2±	1783.34
Bo.	147.6	3n.	2.22	1825.14
Da.	148.2		.32	30.48
Σ.	144.9	4n.	.19	2.33
Sm.	147'2		.3	2.33
	146.8		'4	6.94
₩ä,	.0	3n.	'4 '20	45'34
	•5	,,	*24	51.2
	٠ğ	,,	•05	6.40
	٠٢ ا	2n.	'49	61.80
Mit.	. 4	6	•25	47.63
De.	·4 147·8	In.		56.76
	'4		2.03	67.98
8e.	146.5	3n.	12	58.58
Mo.	147.7	2n.	17	.66
Du.	148'1	8n.	'2 I	71.94
W. & S.	149'0	4	'14	3.83
G 1.	148.5	4		.89

25 Σ. **60**.

" CASSIOPELE.

R. A. Dec. M. ο^h 41.8^m 57° 11' 4, 7.6 C. Σ. A, yellow; B, purple.

H₁. "3. 7 Cassiopeiæ, Fl. 24.

cingulo.

"Aug. 17, [1779].—Double. Very unequal. L. fine W.; S. fine garnet; both beautiful colours. Distance 11"'275 mean measure. Position 27° 56" n. following."

measure. Position 27° 56' n. following."

Again, he says (*Phil. Trans.*, 1804),
"The situation of the two stars of this beautiful double star, June 14, 1782, was 27° 56' north following; and, Feb. 11,

1803. it was 19° 14'; which gives a change of 8° 42' in 20 years and 242 days. This arises probably from a real motion of 7 in space; for parallax would have had a contrary effect.'

And H₂ (Fhil. Trans., 1824, part ii.,) remarks that "The changes, both in position and distance, of this remarkable star, have been regularly progressive." He gives measures from 1779 to 1821, points out that \(\Sigma\).'s position for 1814 is not reliable, and finds the angular motion to be 0.5133° per annum in the direction \(n \int \mathcal{p}\), and the period probably about 700 years. He observes, "A connection between these stars cannot be doubted, as they have a common proper motion of nearly 2" per annum. The distance having diminished almost 3", the apparent orbit is evidently elliptic."

H, having predicted that the small star would probably be on the parallel in 1835, Sm. "carefully watched, both before and after, and saw the prediction verified." Sm. further remarks that "The lapse of 40 years after H.'s measure gives a mean velocity of +0'45° per annum, and the 23 years since elapsed +0'70°, while the distance may be regarded as but little

altered."

Da. gives measures from 1831 to 1854 (Mem. R. A. S., vol. xxxv.), and observes that the proper motions in R. A. and N. P. D. applied to the larger star would have diminished the angle and distance, supposing the smaller star to be at rest.

The diminution in the distance, and the consequent increase in the angular velocity of this star, are well exhibited by the long list of measures. It may be observed, too that the proper motion of η is unusually great, Argelander giving it as + 1.97'' in R. A. and -0.495'' in D. (For some interesting remarks and results, see Mädler's Die Fixstern-Systeme.)

Mädler was of opinion that the brightness of the principal star is a constant source of error in the measures of distance, and was but little satisfied with his own results. He thought that the companion probably passed its aphelion between 1780 and 1803, and that the distance would sink to 2" or 3" about 1860.

Orbit.—The following are the more recent elements:—

Doberck, 1876, gives: Grüber in 1876:

 $T = 1909 \cdot 24$ $\Omega = 39^{\circ} 57'$ $\pi - \Omega = 223 \cdot 20$ $i = 53 \cdot 50$ $i = 6 \cdot 5763$ $a = 9^{\circ} 83''$ $P = 222 \cdot 435 \text{ yrs.}$ $T = 1901 \cdot 25$ $\Omega = 33^{\circ} 20'$ $\pi = 229 \cdot 27$ $i = 48 \cdot 18$ $\epsilon = 0^{\circ} 5763$ $\alpha = 8^{\circ} 639''$ $P = 195^{\circ} 235 \text{ yrs.}$

Grüber made use of all measures from

	hose in 1	1875 : 1	is norma	l positions		•			_
are—		780 58	.00			140.8	,,	5'94	1872.18
			.03			144.6	3n.	.68	3.23
			25		Mä.	148.6 96.4	2n. 4n.	°58 9° 24	41.22
		340 94	.'99			98.3	2n.	8.75	2.39
		60 117				100.1	6n.	.58	4.26
		380 156	_			101.9	7n.	.46	5.39
And with	h O.Σ.'s	paralla	x, 0″15	4, he finds		1.1		.28	6.67
				1.63 times		2·7 6·5		°26 °02	7'42 50'80
56.10 tin				najor axis		6.9	20n.	7.72	1.46
				following		8.6	15n.	.64	2.67
elements		-,				110.1	•	·57	3.50
		924.78			1	112.7		.25	.30
	ω = 2.	45°9	•			111.8		.60	4.80
			u. 1850 d)		111.0		.77	5.87
	i=6	o 5 ·6268			1	114.3		.07	8.2
		-2°041	I		_	115.7		6.96	9.26
		o"·68	_			119.0	14n.	7.00	61.91
	P = I	76°37 y	rs.		D.O.	104.0		8.82	47.08
He re				cists much	Mi.	101.4		:59	7.6
uncertair	aty in the	e eleme	nts of thi	s system.	Mit.	101.3	6	·12	51.62
				Ţ.	Ja.	102.2	26	.16	50.87
\mathbf{H}_{1} .	0	1	11.09	1779.8	""	106.4	15	·04	1.88
-		I	'46	80.2		107.9	10	7:98	2.75
	60.8		•••	2.4		100.0	10	.91	3,13
~	70.6		10.68	1803.1	Batama	:7	22	8.01	.98
Σ.	81.1	In.	25	20.10 20.10	Peters.	.6	4n	7·87	.93
	87.6	5n.	9.78	32.05		112.8	4n. 3n.	·83	4 77 5 08
	91.5	3n.	.52	5.56	1	114.5	4n.	'40	6.28
	92.1	4n.	.39	6.74	ĺ	•.5	in.	.30	7.11
H, & 30.	82.8	7	8.8	21.9	j	112.8	3n.	.18	7.82
	83.1	42	9.90	5.48 8.9		.8	4n.	•26	8.46
Be.	86.4 2	2 5n.	10.06	30.42		122.6 131.3	8n. 11n.	.04 6.01	3'48
20.	89.6	3	9.80	4.76		124.2	2n,	.80	4.10
Sm.	87.8		·8	16.0		·- - 6	7n.	.78	7.71
	88.3		•9	1.92		126.3	IOn.	.67	2.21
	.9		.9	3.74		129.3	13n.	•56	7.16
	90.9		.7 .4	5.50 6.81		132.4	5n.	.30	8.22
	92°0		'4	43.19		134'I 135'4	7n.	·19	9.68 70.52
	101.2		8.3	6.73		137.2	,	•09	1.26
	110.6		7.7	54.17		139.1	бn.	5.97	2.62
Da.	88.6	2n.	9'74	32.87		140'7	7n.	7,7	3.65
	95.7	In.	:33	41.80		142.5	22	.83	4.63
Encke,	109.6	"	7.91 9.64	54.00 37.62		146.3	6n.	·67	5.60
Galle.	92.2	,,	.47	8.68	Mo.	149.9 111.0	13n.	.57 8·12	54.95
Ka.	95.81	9n.	8.98	40.43		112'4		7.80	5.96
G.O.	96.4	31	•96	'44		117.3	2n.	.08	9.94
Ο.Σ.	98.1	3n.	9.21	1.34	Wi.	110.9	2n.	'94	5.52
	101.4	5n.	8.48 26	7:40 9:66	Se.	112.5	-	.90	5.79
	104.0	4n. 3n.	*03	51.84		·8 127·7	3n. 4n.	·86 6·79	7°15 66·86
	112.0	311. 4n.	7.97	4.26	Lu.	117.5	411.	8.35	56.22
	114'1	2n.	`57	7.22		123.6		7.12	63.18
	119.8	**	.17	60.68	Po.	109.4		··60	53'94
	132.6	,,	6:44	6.23	1	111.2		.22	4'94
	9	3n.	·42 ·28	8.53		112.2 116.6		·60 ·02	5.92
	136.2	2n.	20	, , , 10	-	1100	•	02	9.72

R. A. oh 43'9'a

Dec. 11° 11'

C. yellow.

_			_#		Recti	linear mo	otion.	The sma	ıller star is
Po.	118.3	1	6.99	1860.97	at rest.				
A	120.6	i	'7	1.95	l .				1 = 0 = = = =
Au.	115.8	5n.	7:37	-58	Σ.	195.2	4n.	11.43	1832.41
¥,	118.1	In.	6.44	82	Mä.	199.9	"	12.25	45 47
	129'9	,,	.31	7.65	De.	214.8	"	13.63	64.10
	132.4	,,	12	9.67		218.6	_	14.65.	72.69
	143'9	>9	5'94	72.77	W. & S.	221.5	6	13.0	4.93
_	146'1	,,	.78	5.78	l				
Ro.	119.1	6	7.01	62.86					
	121.4	6	.29	'90	27	•	ε. 64	4	
	122'9	2	6.89	3'04	41	4	4. 0	±.	
	•5	6	87	°06	R. A		De	c.	M.
	121.0	4	7.00	12	Ob 44		40°		9.5. 6.
Kn.	125'3	10	6.73	5.69			_		
	126.4	6	.74	.69		listance h			ninished.
	125.2	6	.77	'70	Duné	r's formul	æ are–	-	
	137.7		.10	72.65	Ι Δ-	= 3":39-	0":11 (t-1848	205).
	138.0	5 5				8.05 P			-37.
	1300	ايا	·13	·65	,			_	-0-0-0
		5	.11	•66	Σ.	270.7	In.	3.64	1828-85
Ta.	137.7				l	272.5	2n.	.54	31.43
-0,	123.9	2n.	.43 .38	65:73	Mä.	274.2	,,	.31	45.16
	124.6	3n.		6.63	1	272.0	In.	'45	8.07
	.3	In.	'2I	8.89	Se.	273.2	,,	.58	58.89
	·8	,,	•58	9.72	Du.		,,	.22	70.73
	° 4	,,	.32	72.86	1	272.5	,,	'14	1 09
	141.5	,,	5.06	3.86 6.86			•		-
_	149'3	,.	4.72	6.86					
Du.	131.8	5n.	6.30	68.37	l				
	135.5	4n.	·07	9.93	28	1	e. 6'	7.	
	140.2	7n.	1.59	72.20		•		• •	
	144.9	In.	5.72	4.22	R. A		De	c.	M.
	146.7	Ion.	67	5·51 68 84	oh 45	Om.	9° 5	 : 7'	8·3, 9
Br.	131.2	3n.	6.35	68 84	1 43				٠ ٦, ١
G 1.	135.7	5	-15	70.65	l	Cha	nge in :	angle.	
-	135.7 8	ເ	.13	7.70	Σ.	13.0	3n.	1.28	1830.01
	136.0	₹	.0	1 .80	Nä.	12.7	4	.82	43.32
	137.6	{	.07	1.6	De.	7.2	In.	9	63.88
	138.3	1	.0'	1.8	1 20.	.5	1	2.11	6.67
	143.1	5 5 5 5 6	1 .1	3.21	1		"	1.76	
	143 1 8	}	5.8		1	.9	,,		7.63
	_			.73 .81	P	1.6 2.3	,,	.69	70.41
	144.3	7	•••		Fer.	1.0	I	l .80	3.94
	147'5	4n.	-:-	5.69					
	.9	5n.	5.6	6.37					
	149.9	7n.	•••	7.41	20) ጥ/	חזור	ANÆ	
	123.3	6n.		8.67	29	λ Τ		14 V.	•
W. & 8.	140.9	8		1.93	R. A		De	·c.	M.
		i '	6.0	2.01	oh 47	Qm.	- 70		7, 8
	142.3	7		3.06	4/3	.	- /	, ,	1, 0
	144'7	7	6.55	.83	1	Pm	bably b	inary.	
	•••		.64	.83	1	110	Jany L	·	
			.53	.83	Dunlop.	. 71.6	ı		1826.80
	146'0	6	5.8	4.90	H.	76.8	1	20	34.84
	123.2	14	.32			78.5	1	.46	E.03
No.	143.6		32	7.95 3.98	1	80·8	1	22.25	6.73
Dob.		2n.	1		1	•6		20.64	7.73
200.	147.8		r	5.93		v	1	, ac 34	7.74
	150.5	5n.	5.7	7.76					
					20		Σ. 6	0	
26		Σ. 63	3.		30	•	4. U	⊍ .	
			-		R. A	١.	D		M.
R. A.		Dec		М.	Oh 47		83°	2′	8.5, 9.
Op 43.0	TO SECOND	11°	11'	8·c 11					

Certain change in angle and distance, but the nature of it is uncertain.

_	۰.		"	_
∑ .	359.8	2n.	21.44	1832.53
Mä,	2.3		22.06	47'30
De.	6.6	,,	'42	64'02
G1.	8.0	I	'4	74'90
₩. & S.	10.0	3	4	4'93

C. A, yellowish white; B, bluish white.

Direct motion.

Ο.Σ.	72'7	4n.	0.618	
	59.8	3n.	667	00 34
Se.	78.8	In.	elongd.	57.84
	56°0 l	,,	0.32	8.00
	58.0	,,	con-	9.0 1
_	l		tact.	_
De.	84'1	4n.	obl.	5.88
	48.7	3n.		66.85
	26.6	In.	obl.	70'71
	50.0	,,		1.65
	36.9	,,		2.67
	45'1	,,		4.68
	31.1	,,		5.65
	15.5	,,	0.33	7.87

Discovered by H₁ in 1830, this star has been assiduously watched by observers, Dawes alone having measured it on no less than forty nights.

 H_2 (Mem. R. A. S., vol. v.) writes: "A miniature of η Coronæ. In glimpses, the two discs may be discerned in contact." "Very close; in contact; twits much. Difficult measures." Smyth (Cycle, p. 21,) says: "This beautiful golden pair is very difficult." He used 600 with a central disc on the object-glass with advantage. From his own and H.'s measures he inferred that "there is a decided direct orbital motion."

The increase in the distance accords per-

fectly with the manifest diminution in the angular movement. The distance appears already to have attained its maximum. (0. \(\Sigma\). in 1877.)

Doberck gives the following elements:-

$$r = 1798.80$$

Node = 57° 54'
 $\lambda = 142.19$
 $\gamma = 41.39$
 $\epsilon = 0.6537$
P = 349'1 yrs.
 $\alpha = 1''.54$.

Dr. Dunér has deduced the following formulæ:—

 $\Delta \sin P = -0''\cdot48 + 0''\cdot0130(t-1854\cdot42) + 0''\cdot000235(t-1854\cdot42)^2.$ $\Delta \cos P = +1''\cdot11 + 0''\cdot0180(t-1854\cdot42) - 0''\cdot000361(t-1854\cdot42)^2.$

And on comparing these with the observations from 1830 to 1875, he finds very satisfactory agreement.

H.	305°0	2n. 1	0.849	1830.73
•	308.6	4n.	775	1.79
Σ.	307.8	3n.	*847	2'14
	320'4	,,	937	6.90
8m.	315.7	.,	I.I	5.92
	318.5		.I	9.77
	332.9		•0	43.13
_	335.8		•3	52.83
Da.	317.8	3n.	'092	39.79
	319.3	5n.	.080	40.98
	321.5	3n.	102	1.87
	322.9	2n.	.007	2'94
	324.2	4n.	1117	3.88
	321.4	2n.	•••	.99
	328.9	5n.	1.150	6.93
		In.	124	.96
	329:3	2n.		7:92
	6.	In.	1.552	.93
	3320	"	173	50.81 3.84
	334.2	2n.	·078 ·218	3.87
	336.2	,,	170	.90
	334'4 335'8	,, In.	.227	4.75
	340.5	2n.	.189	9.83
Mä.	324.7	6n.	192	41.29
	325.8	2n.	1047	2:77
	329.0	In.	264	6.99
	3-3-6	3n.	219	7.90
	334.0	"	'402	51.00
	336.2	,,	.280	3.87
	٠,	,,	•367	5.29
	340.3	5n.	.392	7.75
	.1	,,	'336	8 04
Ο.Σ.	324.5	3n.	.303	41.64
	328.6	In.	'210	6.78
	335.9	3n.	*333	54.40
	344'4	In.	'360	61.24
Ka.	323'4	3n.	0.99	42.34
	350.0		1.22	67.03
Mit.	330'2	6	1.02	47.70
Flt.	336.4	34	1.15	21.93
Ja.	338.0	1 15	1.26	3.96

	0		, ,,		
Mo.	340°I	24	1.52	1854.91	Σ. 301.2 2n. 2.96 1829.83
De,	335'3	4 n.	2	5.25	303.3 In. 3.19 32.86
	336.3	5n.	.16	6.46	Mä. 302'4 3n. '15 43'59
	344.0	,,	.13	62.78	8e. 304.9 2n. 13 56.89
	.3	4n.	'14	3.83	
	345°0	,,	.22	4.74	
	373.7	5n.	'21	5.64	34 so. 390.
	350.4	ın.	.31	8.65	34 30. 380.
	349.2		.31	9.65	1
		2n.	.32	70.32	R. A. Dec. M.
	350.1			1.62	o ^h 52'2 ^m - 16° 20′ 7, 7'2
	352'4	"	'40		
	:5	"	:34	2.65	This pair was discovered by South in
	.5	"	.35 .26	3.68	1824. The angle has increased consider-
	354.4	3n.		4.80	ably, and the distance has diminished.
	355.7	2n.	25	5.62	80. 32·3 16 7·78 1824·90
Terra	356.5	5n.	'34	7:27	H ₂ . 1 6.67 35.74
Wi.	344.5	In.	.30	56.09	7 65 7.80
Se.	339.5	3n.	'202	7:27	8e. 86·8 . '43 55·95
	349'5	In.	'314	66.05	C.O. 214'9 3n. 33 77'79
M.	329.0	,,	.10	1.80	0.0. 2149 31. 33 7/19
Eng.	348'4	2n.	'62	2.11	
Kn.	344.8	5	'323	.67	
	•9	7	.393	.69	35 ∑. 80.
	٠6	6	.322	.40	
Ta.	347.0	3n.	.07	73 6·83	P. O. 251 PISCIUM.
•	344'2	īn.	.38	6.83	R. A. Dec. M.
	349'5	,,		9.72	
	347.4	,,	I '24	9.72 72.86	oh 53°2° 7, 8°2
	351.6	,,	'29	3.86	C. S. and De., yellow, blue. South,
	8۰	,,	.03	ĕ·86	"small, blue."
Br.	350.7	8	.57	68.76	1
G1.	349.9	5	'2'	70'14	A wide pair, first measured, probably, by
	350.5	5	.3	.60	South. Piazzi noted the duplicity of this
	352.7	5 5	'2	1.60	star: "Duplex, comes 9 magnitudinis
	354.0	5	'4	3.91	præcedit I" temporis parumper ad boream."
	356.3	3n.	.37	5.24	South measured it at Passy. "Double;
	354.8	In.		6.07	9th and 10th magnitudes; small, blue:
	355.4	6n.	1	7.62	24° 43′ n. p. 19" 206; 5 obs. Oct. 25, 1824
	357.2	2n.	•••	8.45	extremely difficult."
W. & 8.			1.36	2.03	Smith (Cycle, p. 23), "A neat double
W. W D.	00 0	4		-88	star bearing both illumination and high
	355.0	7	114	-88	magnifying power." He observes that
	354.1	4	.50		Piazzi assigns it to Pisces, but that it should
	323.1	7	34	3.81	be placed in the Whale; and, from a com-
	355.0 326.0	5	.43 .38	4 93	parison of his own measures with those of
	3500		'38	.94	South, he infers a direct orbital motion of
	358.6	4	•28	6.95	0°.4 per annum.
70	.8	12	.33	7'94	O.Σ. finds that the observations from
Du.	356.1	5n.	•36	5.40	1831 to 1868 are exactly represented by the
W .0.	3.1	ın.	.39	'97	formulæ
	0'4	,,	'27	.98	$e = 18'' \cdot 924 + 0'' \cdot 040 (T - 1850'0).$
	356'4	,,	'24	6.00	
	355'7	,,	'46	.00	$P = 305^{\circ} \cdot 08 + 0^{\circ} \cdot 31 (T - 1850^{\circ}).$
Dak	357.0	,,	.15	.01	Engelmann's formulæ are
Dob.	329.1	5n.	•••	·08	$P = 299^{\circ}.82 + 0^{\circ}.3066 (t - 1833.34)$
a	354'9	4n.	1.12	*75	$\Delta = 18'' \cdot 264 + 0'' \cdot 04143 (t - 1833 \cdot 34)$
8p.	355.8		.28	7.02	Δ = 18 204 + 0 04143 (1-1033 34).
Schi.	δ.	In.	·275	.oı	And Dr. Dunér gives
Pl.	358.2	4n.	. 49	.19	$\Delta = 19'' \cdot 33 + 0'' \cdot 0332 (t - 1866 \circ).$
					$P = 310^{\circ} \circ + 0^{\circ} \cdot 308 \ (\ell - 1866^{\circ}).$
33	5	. 74	L.		
					Σ. 296.7 1822.29
R. A.		De		М.	'9 In 4'99
о ^ь 49 ^ж		8° 4		8, 9	299.5 3n 31.53
	•	C. whit	e.		300.6 " 18.38 2.83

	_			
8 0.	296°.5	3n.	18 [.] 87	1825.17
8m.	299.8	3	4	32.08
•	301.8		1 -2	8.03
	302.1	1	·5 ·8	52.81
Mä.	303.8	2n.	17.87	42.78
	304.I	In.	18.61	4 94
	305.2	2n.	.52	53.09
	306.3	In.	19.05	8.01
Ο. Σ.	302.4	2n.	18.69	42.84
	305.2	,,	10.01	51.22
	311.0	,,	.60	68.42
Ka.	303.8	9n.	17.85	43.10
De.	307.3	In.	18.80	55.99
	J-7.1	,,	•63	6.03
	306.2	",	-93	.62
	308.9	2n.	19'41	62.84
	309.1	٠,,	.39	3.80
Ja.	307.4	"	'07	57:95
Eng.	308.8	ł	'78	62.97
•	310.2	2n.	*54	5.03
Du.	و. ر	In.	.62	8.84
	311.3	3n.	.69	9.71
	• • •	In.	'73	70.73
M.	310.1		.21	69.78
	311'4	In.	20.10	70.77
W. & S.	312.9	8	1.	1.85
	311.6	4	19.7	.90
	.7	4	. 9	2.00
	.8	7	18.4	·88
	.9	3 6	20.3	3.81
	312.9	6	.0	4'93
	.9	6	.31	.73
a 1	313.7	3	•••	6.92
G1.	311.0	5		3.01
F 1.	313.3	In.	20.9	7.06
36	0	.Σ. 2	21.	
.		_		3.6
R. A.	,	De	ec.	М.

36	О.		
R. A. o ^h 56 ^m	1	Dec. [46° 44'	M. 7, 8
Mä. Ο.Σ. He.	45°I	4n. 0.97 4n. 58 Oblong?	1845.68 47.84 64.7 5.7

37	Σ. 86.	
R. A. oh 58·7 ^m	Dec. - 6° 7'	M. 8, 8 [.] 7
	C. white.	

Σ. early recognized the angular change, and the measures since made confirm it. The distance may have increased slightly.

H ₁ .	180.6	1	14.83	1783.08
Σ.	173.8	In.	12.01	1822.03
	171.8	,,	.0	9.90
	. 3	,,	12	30.92
	0.0	,,	*25	5.82
	160.4	3n.	.11	I 6⋅<8

			,,	
Bo.	172.7	4n.	12.89	1824.89
Da.	167.6		.21	41.61
De.	•6	4n.	·51 ·64	3.29
	162.9	3n.	•64	63'47
Ka.	169.9	7n.	'22	43.29
Μä.	167'3	3n.	•36	.55
	164.0	2n.	•76	53.09
	162.5	In.	•••	8.01
Ο.Σ.	167.8	2n.	12.34	43.85
_	163.0	In.	•65	66.92
Ta.	.2	4 6	•••	5.40
	.5		11.67	·78 6·84
	161.7 8	4 5	·82	
		5	•••	8.84
	.6		•••	9.72
	160.0	5	11.26	72.77
	161.8	In.	12.38	3.86
	.5	In.	11.21	6.89
W. & 8.	163.4	4	12.6	3.93
•	1.6	15	·5	6.23
G1.	161.9	4		3.83
C.O.	. 4	In.	74	5.87
D.L	160.3	5n.	.74 .84 .50	7.81
Dob.	158.9	2n.	:50	6.95
Pl.	190.1	3n.	·65	'94

38	Σ	£. 87	7.	
R. A Oh 59	A. · _I m	Dec 14°		M. 8·5, 8·5
	C.	yellow	ish.	
Σ. H ₂ . Mä.	193'0 195'1 '9 198'1 '9	3n. 3n. 1n. 2n.	6·56 9·14 6·55 ·88 7·10	1829°85 30°33 43°89 7°95 51°00 2°87 3°08
Se.	198.7	2n. In.	6·79 ·65	7:46 66:05
G1.	195.8	3		74.03

ψ' PISCIUM. Dec. M.

Σ. 88.

39

20° 50' . 4.9, 2 C. white.

A probable increase in distance.

Müdler gives the proper motion as +5".7 in R. A., and -2".3 in Dec.; Σ . gives +7".6 and -3".5.

This physical pair is easy of observation, and yet the measures are very discordant.

\mathbf{H}_{1} . Σ .	-6		27.50	1832.11
Σ.	160.3	4n.		1832.11
	159.8	ın.	.61	51.80
Μä,	160.2	,,	30.56	36.50
	159.7		29.81	44.01

Mä.	160.3	,, .	30°53 29°83	1845.08	42	2,	. 10	0	
	161.8	"	•••	6·74 50·96				_	
	1600	"	29°50	'97 '99		4	PISCI	U ML.	
	159.0	٠,	29.78	4.98	R. A.	a	Dec. 6° 56	,	M. 4'2, 5'3
	160°4	"	29.69 30.34	6·98 7·90	- /3				47))
Se.	-8	,,	30.13	•95	Probal	_	C. whi		al motion
Ro.	161. 3	,, 4	29'43	8.04 65.40	manifests	itself.	The p	proper m	otion, ac-
Du.	159.9	in.	.95	9:08	cording Σ. gives	to Mäd! + 14"'1.	ler, is 5".	+ 12"0,	, — 7"·2 ; Argelander
Ta.	161.3	,, 5 6	30.01	74.91	+ 17" 1	and —	B″·6.	Mädler	found the
	160.5	6 3	31.0	·91	changes	-	-	78 (<i>t</i> – 18	ter : n)
				74	Δ=	23".450.			
40		٤. 9	1.		1	_	t Obsei	vations,	
R. A.		Dec - 2°	c.	М.	H ₁ . H ₂ & 80.	67°4	In. 2n.	22.17	1821.02
1- 1-	C ve		24 white.	6.7, 7.5	Σ.	65.6	In.	23.33	3.87
Proba	bly binar		winte.			63.7 64.0	5n. In.	·45 ·60	2.83
Η, Σ.	328.5	,	3.63	1830.67	Mä.	63.0	2n.	.31	41.65
Σ.	.8	3n.	.86	1.89		64'I	In. 3n.	23.55 53.65	2.04
Mä,	325.2 324.0	2n	'77 '35 '86	7.49 42.85	Flt. Du.	·9 ·7	2 9	.32	71.67 71.67
	322'3	,, 4n.	·86 ·65	53.08 53.08	W. & S.	.,	3n. 3	24.7	3.89
D.	.9	in.		8.00					
De.	323°2	3n. In.	3.69	4.77 63.88	43	0	Σ. 2	22	
	.3	,,	4.06	6.68	10	O.	. <i>4</i> . 2	٠.	
	324.2	"	3'72 4'02	7:66	R.A.		Dec 80° 1		M. 7, ⁸ '5
Wi. Se.	323·6	6 4n.		56.09	Ο.Σ.	324'3	3n.	0.22	1847'5
	321.3	2n.	5.24 3.84	66.51	De.	313.4	In.	.7	65 93
¥.	323°2	ın.	*66 4*62	5.80 73.96		317.2	99 94	92 wedge	7.61 8.65
Fer.	322.8	"	3.98	.01		3-7 5 1	,,,		
W. & S.	321.4	4 5	3.8	.81 4.63	44	₹	. 10	1	
G 1.	.I	4	4'0	•93	44	2	. 10	ν.	
C.O.	320'7 324'0	1n. 3n.	3.9	3.93 5.97	R. A		Dec. -8° 1		M.
	321.3	4n.	3.92	7.81	1 79		o i		7.5, 9.8
41	0.	Σ. ξ	515.		Probal	oly an op			
R. A.		Dec	<u>.</u>	M.	H ₁ .	222.6		19:50	1782.87
Ih 3m		46° 3	36′	4'9, 6'5	So.	333 [.] 6	2n.	'60 '89	3.65 1825.30
	С. а, у	ellow;	B, green	l .	Η ₂ . Σ.	345°0	711		9.67
A bin	•		•		1	340.8	3n. In.	51.33	45.89
Ο.Σ.	303.9	4n. 3n.	0.232	1851.51	Mä.	332.5	2n.	21.24 48.32	53.09 65.80
	302.6	2n.	'560	64.70	De.	340'2		20.25	8.20
De.	267.2	ID.	obl.	75°14 65'97	W. & S.	341.2 340.8	2n. In.	22.30	74.90
			single		G1.	342.3	2n.	.3	-88

R. A. Dec. M. 1^h 11^m 48° 24′ A 7, B 8·2, C 8·4, D 10·8

C. white.

A B and A C unchanged. Slight change in A D, both in angle and distance, appears certain; probably due to the proper motion of the triple system, D being fixed.

AB.

Σ. Mä. O.Σ. De.	305.4 303.6 303.6	4n. In. 4n. 4n.	0°57 '5 .65 wedged	1834-25 53:08 3:14 64:89			
$\frac{\mathbf{A} + \mathbf{B}}{2}$ and \mathbf{C} .							

46 Σ. **109**.

Ih I2m		9, 10		
Σ. Mä	10.5	4n.	7:02	1832.72

3n. 6.96

68.82

47 Σ. 93.

8.6

Du,

a URSE MINORIS (POLARIS).

R. A.	Dec.	M.
1h 13.7m	8 8° 40′	2, 9

C. A, yellow; B, white.

0. Σ , after applying the precession correction to the measures of Σ in 1834'14, finds the angle 212°:24 for the mean epoch of his own observation. The differences -o''220 and - 1° 16 leaves it still uncertain whether any change has taken place in this system,

H ₁ .	1	19	1779.8
		17	81.6
203 .3			9
		•••	2.4
208.3	1	•••	1802.1
H, & So. · §	6n.	18.4	23.06

Sm.	209.9	1	18.4	1830.78
Σ.	210'0	ın.	27	34'14
Mä.	209'3	,,	19.1	41.46
	210.2	2n.	18.67	2.33
	208.9	In.	.39	6.53
8e.	212'4	,,	'44	59.95
0.Σ.	.7	2n.	•56	61.33
	213.3	In.	'44	8.25
	214.6	,,	.22	72.19
	213.7	,,,	•36	5.18
De.	211.6		'26	62.30
Du.	212'4	7n.	.54	70.90
G 1.	•9	ın.	'7	3'94
Fl.	213.3	"	.62	7.31

48 Σ. 113. R. A. Dec. M. 1^h 13.6^m 1° 9′ 6.2, 7.2

C. Z., De., and Se., white.

This star was measured by Σ . in 1829. It is a difficult object, and great discrepancies are found in the recorded observations. The positions given by Da. in 1841 and 1842 are 330°.77, 332°.32, 331°43, 337°.23, 334°.32, 338°.30, 339°.06, 338°.02, each being the mean of five or six observations on different nights.

Sm. (Cycle, p. 34,) says: "A beautiful object, but very difficult to measure in distance. It seems to have a direct angular movement, to the amount of about 0° 7 per annum; but this requires verification."

Da. thought that the discrepancies were probably due to the closeness and oblique position of the stars, and remarks that it is "still uncertain whether any real change has occurred."

Sm. (Spec. Hart., p. 220): "I think the angular motion in orbit is now clearly proved."

Se.: "The motion in angle appears certain, though slow." "A feeble angular movement" (0.2., 1877).

Σ.	333.6	4n.	I '245	1831.61
	334'3	3n.	177	6.91
H ₂ .	325.6	"		1.81
8m.	332.6		1.3	4.84
	344.6	i	.3	57.97
Da.	331.4	3n.	'014	42.64
	335.6	2n.	185	3.86
	338.4	3n.	164	54.21
Ο.Σ.	.1	2n.	'355	44'72
mä.	343'9	2n.	'39	53.09
	345.7	In.	·57	8.01
	340'0	2n.	•36	42.75
	338.9	,,	.16	5.04
Se.	339'7	4n.	.160	56.48
	346'9	in.	.48	66.07
Ta.	338.4	2n.	14	5.43
	339.0	In.	115	5.4 6.84
	342'3			76.86

_	•		. "	
De.	343'3	2n.	1.1	1855.89
	. 4	,,	.12	56.13
	' 4	4n.	•••	62.80
	342'3	2n.	'27	63.43
Ja.	340.2	18	*45	56.48
Fer.	346.2	In.	406	72.95
X.	357.6	١,,	0.00	61.90
W. & S.	346.5	4	1.35	72.07
	9.5		'24	3.01
	350.7	4 3 8	•63	.8ı
	348.0	8	°45	4'93
G1.	350.2	4		4'94
W.O.	351.9	ın.	.5 .24	6.06
	99-70	"	'06	.08
C.O.	349'7	In.	.19	6.49
	347.5	4n.	46	7:79
Schi.	348.7	1 1	.38	10.
8p.	.8	,,	.38	'02
Dob.	346.3	"	• 2 9	6.87
Pl.		3n.	·38	
	349'3	, ,,	30	7:37

49 h. 2036.

Dec. - 16° 25' M. Ih 14m 7, 7

Rapid change in angle since 1870. Probably a binary.

H ₃ .	53.0	In.	2土	1830.79
	38·I	,,	1.52	5'72
	38.1	,,	1.52 82	6.96
Ja.	36.1	,,	.57	57.97
De.	26.2			74.67
	·6		·45 ·63	5.62
C.O.	24.0	4n.		5.04
	26.4	in.	1.64	6.78
	29.8	,,	1.64	79
	26·0	4n.	. '39	7.76
Sp.	•6	In.	· ·5í	10.

50 Σ. 117.

R. A. Dec. M. Ih 17.4m 67° 30' A 4, B 9'5, C IO

C. A, very yellow.

A B probably an optical pair. B C probably binary. The magnitude of A is variously given: e.g., Se. 4; Σ. 4.4, 4.5; Heis 5.0; Fl. 4.7.

AB.

H ₁ .	100.5		33'4	1782.63
Bo.	101.3	In.	3	1823.50
Mä.	103.3		30.2	30.87
	104'4	2n.	'24	44'33
	. 5		•36	5.23
	106.9	In.	29.9	50.43
	105.7	2n.	30.50	2.84

Σ.	101.8	5n.	32.5	1831.04	
Sm.	102.1	-	31.9	6.58	
Da,	•7	In.		9'74	
ŀ	104.9	,,	30.22	54.07	
Mit.	102.8	In.	·32	47.67	
Se,	104'9	2n.	29.6	58.82	
M.	103.5	In.	27.73	62.71	
De.	102.1	3n.	29.74	5.20	
W. & S.	.5	2	8.	73.83	
Fer.	106.0	ın.	28.49	4.83	
Dob.	105'4	2n.	•••	5.92	
	106.2	5n.	28.13	6.53	
Fl.	105.4	In.	29.5	7'12	
	• • •				
		BC	,		
Σ.	253'3	4n.	3.01	31.04	
	252.0		2.93	2.58	
Sm.	•6		•	6.58	
Da.	253.1	In.		9.74	
	255'4	,,	3.52	54.07	
Mä,	251.8	ın.	.16	44'33	
Mit.	253'3	ın.	.28	7.63	
	.0	,,	*25	'67	
Se.	256.4	2n.	2.52	58.82	
De.	255.3	3n.	·82	65.20	
W. & 8.	-8	6	3006	73.83	
Fer,	257.2	In.	.11	4.83	
Dob.	.0	3n.	•••	6.13	
Fl.	256.1	In.	2.9	7'34	
A.C.					
De.	108.0		26.96	65.88	

51 Σ. 118.

M. R. A. Dec. 82° 44' Ih 20.6m 8.5, 9.4

Probable change in angle and distance.

61.5		12	1830.00
62.0 60.8 69.9	4n. 2n.	10.75	2'49, 45'10 63'71
	61.5 62.0 60.8 69.9	61.5 4n. 60.8 2n. 69.9	61.5 4n. 12 62.0 4n. 10.75 60.8 2n. 52 69.9 11.18

52 Σ. 122.

Dec. R. A. M. 2° 55' Ih 20.7m 8, 9

C. A, very white; B, blue.

Probable change in angle and distance.

		-	_	
H,	334.2	1 1	•••	1831.81
Η. Σ.	332.8	3n.	5.79	3.26
So.	326.6	2n.	95	57.97
	328.5	In.	•60	6605
mä,	333.6	2n.	97	43'49
	331.2	In.	'44	5800
W. & S.	320.3	2m.	6.3	72.87

53 Σ. 125.

R. A. Ih 20.8m

Dec. -0° 46′

M. 8, 10.3

C. white.

On reducing his observations for the effect of precession, converting the results into rectangular coordinates, and treating them by the method of least squares, O. S. obtains the following formulæ:

$$\Delta A = +4".323 \pm 0".040 - (0".2910 \pm 0".0037) (T - 1850.0)$$
 $\Delta D = +19.994 \pm 0.040 + (0.3501 \pm 0.0037) (T - 1850.0)$.

The motion is thus rectilinear. The small star is at rest. (See the P. M., p. ccxxiv.)

Σ.	37°3	In.	15.82	1829:90
٠.	3/ 3	****	15.02	
	36.3	,,	16.96	30.92
	35.9	,,	17.2	2.79
	30 ·2	"	16.91	3.52
	'9	,,	17.09	5.85
	29.2	,,	.16	•96
	27:3	4n.	'20	6.62
	21.5	3n.	18.58	42.78
	18.7	In.	·92 ·89	4.05
	٠7	,,	·89	5.04
Ο. Σ.	19.3	2n.	19.02	3.00
	8.6	٠,,	21.32	52.91
Mä,	9.8	In.	.30	3.09
De.	1.6	3n.	24.45 .81	62.94
	0.2	4n.	.81	3.81
W. & 8.	356.3	4n. 2		73.87
	354.8	3	30.3	4'93
	.8	3 3	30.3	.95
	352.7	4		6.95
Fl.	353.3	ın.	28.8	7.08
C. O.	352.9	2n.	30'74	7.08
	JJ- J		, 5 17	

54 Σ. 132.

R. A. Ih 25.6m

Dec. 16° 21' M.

C. A, yellow.

The proper motion of the principal star explains the observed changes, (See the P. M., p. ccxxv.)

Η ₁ . Σ.	27.7	In.	16	1783.63
Σ.	5.4		24.22	1829.87
	359.2	In.	28.87	51.80
Mä.	0.3		'26	47'10
	359.7	,,	.25	21.01
	0.1	,,	'43	2.10
	358.2	2n.	30.89	8.11
Ο.Σ.	359.0	In.	28.88	1.82
	3558	,,	32.43	68.61
De.	356.5	1	30,33	3.84
W. & S.	.0	In.		73.89
Fl.	353.6	۱ ",	34.0	7.08

55 Σ. 133.

R. A. Ip 52.0m

Dec. 35° 14'

A 7, B 10'5, C 11'2, D 11'6

C. A, yellow.

In A B a small increase in angle. A C and A D a decrease in distance.

AB.

	٥		,,			
Σ. Mä.	179.1	3n.	2.99	1833.04		
Mä,	185.6	In.	2.6	43'97		
	189.5	2n.	.7	5.65		
	187.7	In.	•••	7.07		
	189.4		•••	51.18		
	190'0	2n.	2.86	2.84		
	189.8	ın.	•••	3.78		
De.	185.3	5n.	2.87	63.59		
W. & S.	.0	in.	3.04	73.89		
	182.0	,,		4.93		
CD.						

		U D)	
Σ.	346.2	3n.	4.76	33.04
Mä.	351.7	In.	5.22	45'18
	347.6	,,	'20	•64
	348°I	,,	-58	7.07
W. & 8.	351.2	4	4'75	73.89
	• • •	2		4.04

A C.

Σ. Mä.	199°5	3n.	29'08	33°04 47°07
De.	197.9	4n.	27:30	63.76
W. & S.	193.9	2	i I	74.93

AD.

Σ. De.	193.3		4n.	33.8		33.04 63.76
-----------	-------	--	-----	------	--	----------------

AE.

₩. & S.	1.0	I		73.89
	0.3	2		4'93

EF.

W. & S.	300.0	I	•••	73.89
W. & S.	.7	2	•••	4.93

ο.Σ. 31. 56

P. I. 107.

M.

Dec. 7° 36'

The change in angle and distance is very small.

Ο.Σ.	84'9	4n.	4°04	1850.03
De.	81'4	In.	°05	
	83.8	"	'13 '12	65.88

57	Σ.	136.
- .		

100 PISCIUM.

R. A. Dec. M. 11° 57′ 6'9, 8

C. white.

The proper motion, according to Mädler, is $-4'''\cdot 2$, $-0''\cdot 1$; and Σ . has $-4''\cdot 4$, $+1''\cdot 9$. The former observer gives the following formulæ:—

 $\phi = 78^{\circ} 41' \cdot 3 - 7' \cdot 059 (t - 1826 \cdot 54).$ $\Delta = 15'' \cdot 830.$

		-	_	
H ₁ .	85°0	In.	15.87	1783.59
H, & 80.	80'4	,,	16.05	1821.01
-	79'9		15.79	3.00
Σ.	78.7	ın.	16.16	8.82
	.9	,,	15.61	9.81
	.9	,,	16.31	30.93
	79°I	,,	'02	1.63
	78.6	,,	'04	5.85
Mä.	.4 .6	3n.	15.12	41.40
		,,	.33	2.82
	•8	In.	.36	3.81
	77.6	,,	.60	5.03
Ο.Σ.	79.1	5n.	16.12	4.28
Ta.	78.09	ın.	.31	65.78
	79.60	,,		7:04
	• o 6	**	15.48	72.77
_	.50	,,	•••	6.86
Du.	78.8	4 n.	15.96	69.07
W. & 8.	79.2	5	16.4	73.89

58 O.∑. 33. R. A. Dec. M. 1^h 30^m 58° 3′ 7'2, 8'3

A probable increase in the distance.

(), Σ, Mä, De,	74'4 '9 '9 75'1	3n. 2n. In.	24.26 .28 .49 .69	1846·80 51·76 65·57 6·54 7·62
	.I 1	,,	1 78	7 02

59 Σ. 138.

P. I. 123 PISCIUM.

R. A. Dec. M.
1^h 29'7^m 7° 2' 7'3, 7'5
C. A, white; B, yellowish."

H₁. (Mem. R. A. S., vol. i., p. 166):—
"Oct. 21, 1792. Double, a pretty object, a little unequal, less than a diameter asunder."

"Oct. 5, 1801. A beautiful minute object with 400."

Da. (Mem. R. A. S., vol. xxxv. p. 309): "Though the results of my observations of this star do not run very smoothly,

there can be no doubt of its binary character."

Sm. (Spec. Hart., p. 221): "Though the above measures do not confirm the motion in this beautiful star, I have no doubt of its binarity."

Se. (Catalogo di stelle doppie, p. 22). The measures made by Secchi in 1857 and 1858 seem to him to indicate increase of angle.

The angle has increased $(0.\Sigma., 1877)$.

	•	A B		
H ₁ .	10°±			1801'94
Σ.	20'0	3n.	1.46	30.53
8m.	19.8	l	-5	2.86
	26 ·9	[<u>'4</u>	43'10
-	.3		.5	23.91
Da.	24 · I	I3n.	*40	41.24 53.81
	29.3	3n.		4.09
ο.Σ.	212.0	2n. In.	.67	41.70
0.2.		1	•63	5.73
	31.2	,,	-66	56.43
wā.	24.6	2n.	.53	42.75
	23.1	,,	.20	3.20
	26.2	",	44	5.03
	25.7	In.	.53	50.00
	166.6	,,		8.04
De.	209'7	4n.	.3	5.89
	207.2	2n.	.2	6.74
	28.3	5n.	•66	62.87
	29'4	3n.	.21	3.96
	32'2	In.	.58	6.62
	212.4	,,	.55	70.71
	'2	,,	·53 ·38	2.69
	31.4	,,	38	6.07
8e.	29 .1	3n.	·46	57:89
	32.5	In.	.85	66.07
M.	30.4	"	'24	2.03
Ta.	28.5	2n. In.	:53	5.74 6.84
	26 .4		'74	7:04
	32·6	"		72.77
W. & S.	31.0	4	'42	2.07
W. W 5.	32.9	4	14	3.01
	33.5	7	.36	18.
	29.9	7	.59	4.95
	30.5	4	·66	95
G 1.	33.1	4	.3	3.04
W.O.	34.1	In.	.21	5.08
	32.1	,,	•38	6.00
	34.5	,,	.27	109
Dob.	29.2	5n.	•••	*39
	30.8	In.	·34	7.91
Sohi.	212.0	,,	46	.05
Sp.	32.1		.46	.02
Pl.	30.1	3n.	•46	.32
	A	B and	C.	
W.O.	62.3	In.	22.2	75 93
-	63.4	,,	·ŏ	75 93 6 00
		A C		
W. & S.	70.7	2	1	74'95
··· · · · · · · · · · · · · · · · · ·	70 [.] 7	4	77.31	14.95
	•	, ,	. 11 32	. 73

60 p. i. 127.

R. A. Dec. M. 1^h 30.6^m -30° 31' 6, 7

Perhaps the angle has increased a few degrees.

H ₂ .	75.8		3.65	1836·64 7·80 46·35
Ja.	82.8	2n.	2.8	46.35

61 Σ. 142.

R. A. 1h 33'5m

Dec. 14° 38′ M. 8·2, 8·4

C. white.

The relative movement has been in a straight line hitherto. Σ gives the following formulæ:—

$$\Delta A = -(17".770 \pm 0".021) + (0".219 \pm 0".003) (T - 1840`13).$$

$$\Delta D = +(17".055 \pm 0".021) - (0".039 \pm 0.003) (T - 1840`13).$$

To the proper motion of the smaller star the changes are probably due. (See the P. M., p. ccxxv.)

Σ.	310.0	In.	26.86	1828.82
	311.1	,,	•88	29.81
	310.8	,,	'20	.93
	313.0	,,	25.53	35.85
	312'3	,,	·48	~.96°
	313.1	3n.	129	6.90
	317.4	Ĭn.	22.24	51.88
Ο. Σ.	313'4	,,	24 84	39.95
	314'0	,,	35	41.70
	315.7	5,	23.24	5.74
	324.6	,,	19.22	68.77
_	325.5	,,	'46	'94
Ka.	314.1	,,	23.75	41.99
	323.0		19.44	67:05
Mä.	314.4	ın.	23'57	42.78
	. 9	2n.	*54	5.03
_	318.5	In.	22.23	21.01
Se.	319.7	In.	21.46	8.04
De.	321.8		20,33	63:34
W. & S.	327.5	3 6	19.0	73.87
	.6	6	17.7	6.95
Fl.	326.8	In.	18.2	7:08

62 Σ. 147.

R. A. Dec. M. -11° 55′ 5'3, 6'9

Probably a small change in the distance. The two stars have a common proper motion.

Σ. Gives +0. 030 in R. A., and +6". 390 in P. D.

_	م ه		"	
Σ.	86°o ∤		3.23	1822:30
	87·2 88·1	5n.	4.01	31.90
	88·1	In.	.30	51.88
So.	89.6	2n.	19	23.97
H,	86.1		.30	9.67
-	89∙0	,	6.0	30.80
	86·5		4.27	1.81
	9	1	.65	7.80
Da.	87.5		3.92	6.97
Mä.	2	ın.	•••	44.91
Se.	88.5	3n.	3.62	55.89
Mo.	89.6	10	.78	6.97
De.	88.2	In.	4'04	7.81
C.O.	86.2	3n.	.00	77.87

63 6 ERIDANI.

R. A. 1h 35'2m Dec. - 56° 49' M. 6, 6

Change in angle and distance.

Dr. Doberck has lately published the following elements:—

Dunlop	343°I	1 1	2.2	1825.96
H ₂ . Ja.	302.3		3.65	
Ja.	276.0		4.16	35.03 45.88
	.2		.32	6·35
	270'0		•••	9.82
	268.7		•••	50.80
	266.4		4'30	1.49
	264.8		4°30 °14	2.76
	261.1	18	.70	6.09
_	258.1	18	•70 •49	7.96
Po.	263.5	9n.		3.96
	253'4	6n.	4·86 5·0	61.03
El.	237.3	1	5.0	77.03

64 o.Σ. 35.

R. A. 1^h 36^m Dec. 55° 16' M. 7, 10

Retrograde motion in angle, and increase in distance, are pretty certain.

H ₂ .	114'1		9	1831.20
Sm.	120'0		10.0	5.74
Ο.Σ.	·1	In.	9.8	44.91
	112'0	,,	.81	7.59
	114'2	"	.91	50.13
Mä.	118.9	4	'54	48.20
	111'4	2n.	·51	51.76
De.	109.2	3n.	10'24	66.28
	108.6		.20	0.32

bable.

65	O	.Σ. 3	4.		
R. 1 ^h 3	A. 6 ^m	Dec 80°	:. •8′ ·	M. . 7'3, 7'5	
• 3		C. whit		. 1 35 1 3	
Probably a small increase in the angle.					
0.Σ.	113.7	3n.	0.603	1847:57	
De.	115.4	In.	obl.	6.61	
	125.7	,,	,,	8.65	
66	Σ	. 15	8.		
R. A.		Dec	: ,	M.	
In 39.8	m n chance	32° (8·3, 8·8 distance.	
Probably	a binary	, u.	-6.0		
H ₃ .	239.5		.2 1.0	1828·64 31·79	
Σ. Mà	• •2	3n. 2n.	2.13 19	3'11 45 11	
M.N.	250.7	In.	.18	50.41	
	255.2	2n. In.		1'17	
Se.	253.6	In. 2n.	2.93 .48	79 5.86 7.90	
De.	254.5	In.	.99	05'87	
	256·5 255·8	"	.12	6·57 7·68	
O. Σ. W. & S.	260'8	,, 4	·19	9.95 73.89	
G1.	257.5 256.7	4	1.9	89	
67	Σ	. 17	5.		
R. A.		Dec	. ,	M.	
Ib 44.4		20° (8, 9	
An ins	tance of			motion.	
H ₁ .	293.2		4.8	1783.58	
Σ. Mä.	327.9 334.0	4n. 2n.	10.43	1830°22 44°06	
	332·8 336·3	"	.93 12:44	5°97	
De.	339.3	"	13.27	3.08 63.89	
Gl.	341.8	_	14 土	74.01 6.94	
W. & S.	343.2	6	.62	0.94	
68	Σ	. 18	O.		
	•	ARIET	TIS.		
R. A.	1	Dec. 18° 42		M. 4'2, 4'4	
Small bable	change i	n angle	and dis	tance pro-	

Dr. Dunér gives $\Delta = 8".68 - 0".01 (t-1850.0).$ P=359°·1. 1848.91 1750 Ħ₁. 2n. 1780.3 1802.3 179.2 In. 16.81 H,. 177'4 ... 22.88 178.7 Зn. **0.11** 8.63 30.84 359.9 7n. Σ. 358.5 In. 45 51.2 30.93 ĭ 78·9 96' Be. 4n. ·82 41.78 Mä. .3 ,, ٠5 I 3n. 9.11 3.4 179.9 50.97 2n, •53 180.2 In. 2.II 358.7 8 3n. .40 8.02 6 8.98 46.95 Da. 8 ·62 7.93 •2 Mit. ·84 7.65 3n. 357.0 ·60 51.82 356.4 In. 0.Σ. 70'18 ·45 179'4 ,, ·7I 53'47 De. 359.3 4n. 7.87 Wi. 34 48 179'3 4 62.54 4 4.80 9 **'49** 358·8 2.04 Ro. In. .79 .62 4n. 3'49 359.6 ·54 5.75 6.94 Ta. ۰. 2n. 358.9 9.17 8.41 71.47 Du. 6n. ٠ġ 5.92 7.89 Dob. 359.1 2n. 358·6 8.32 3n. Σ. 183. 69 Dec. M. R. A. 28° 13' A 7'5, B 8'2, C 8'8 Ih 48.3m In A B there has been a diminution in the angle. A C seems unchanged. A B is probably binary. AВ. Σ. 25.6 3n. 0.22 1833.15 0.Σ. 31.0 ·70 ·66 41.40 In. 5.73 56.73 24.8 ,, 12'7 .73 ,, .70 .6 8.6 7.67 ,, 44.91 Mä. 26.5 ,, De. 9.<u>ĭ</u> 2n. oval 64'04 74'02 Gl. 2± 1 0.22 and C. Η, Σ. Ο.Σ. 163.4 5:07 :68 28.75 ٠7 5n. 32.31 .86 •5 īn. 41.70 5.73 56.73 164'9 •63 ,, 68. ,, ·58 ·78 ·67 162.3 7.67 Mä. 44'48 165.4 2n. De. .7 .7 64'04 ,, Gl. 2 ·70 74.01

70 Σ. 186.

P. I. 209 PISCIUM.

R. A.	Dec.	М.
1h 49.7m	1° 15′	7.5 2.5
	Cwhite	

H₂ (Mem. R. A. S., vol. v., p. 56): "In contact. A division seen by glimpses. Like 7 Coronæ."

And in vol. viii., p. 39, he says: "Very clear and difficult, but less than 7 Coronæ. Well separated, and black divisions well seen."

Da. (Mem. R. A. S., vol. xxxv., p. 473):

"There can be no doubt that this double star, discovered by Σ, is a binary system."

He remarks that although it was probably not single in 1851, it was probably so in 1863.

The distance has clearly diminished. The apparent orbit probably coincides very nearly with the visual ray. $(0.\Sigma, 1877.)$

The common proper motion is $+ o'' \cdot \infty$ in R. A., and $+ o'' \cdot 22$ in P. D. (Σ)

	0		"	
Σ.	64 [°] 7	4n.	1.53	1831.15
	61.3	In.	0.64	41.40
			single	51.81
H,	56.9	1	1.53	30.66
-	•4	2n.	0.96	1.80
Sm.	62.9	1	1.2	3.83
0.Σ.	242.8	In.	1.11	41'70
	68.2	,,	0.82	6.11
De.	252.8	3n.	oblong	55.89
	258.8	In.	,,	7.03
Se.	87·0		0.4	7.92
	83.0	In	contact	9.84
	85°0		0.3	63.85
	96.0			6.02
Da.	81.0		0.2	59.81
	85.1		0.3	63.85
W. & S.		ess that		73.93
Schi.	_	single	- 3	6.99
•				- ,,,

71 S. 185.

R. A.	Dec.	Μ.
1p 21m	74°55′	7, 8.5

Probable diminution of the angle and increase in the distance. Probably a binary.

Σ.	40'3	3n.	1.39	1831.95
	34.9	,,	-38	6.41
Mä,	36.5		1.31	39.54
	35.8	In.	.25	44'33
_	31.0	3n.	.26	52.20
Se.	30.2	2n.	1.48	7'94
Ο.Σ.	33.8	In.	1.49	72.31
GĻ	20.0	I	1.2	4.00

72 \Sigma . 196.

R. A. Dec. M.

1b 52.9^m 20° 26′ A 9, B 11, C 10, D 6.5

A B is probably unchanged: the distance between A C has diminished, while that between A D has considerably increased.

AB.

	0 .				
Σ.	55.5	3n.	2.37	1832.42	
Sm.	53.0	-	.2	4.99	
Mä.	54.6	In.	'4	45.04	
Da.	53.7		.22	62.93	
De.	60.7	In.	•••	4.73	
	54·5 56·8	,,	2.54	7.70	
	56.8	,,	.11	8.67	
Kn.	50.0 l	,,	.2	2.95	

AC.

			•	
Σ.	167.4	3n.	39.46	32.42
Sm.	165.0		40'0	4.99
Da.	·6		36.2	62.93
Kn.	166.3	In.	37:36	2.95
De.	.5	,,	36.53	3'99
	.1	,,	35.01	7.70
	.3	,,	36.06	8:67

AD.

Sm. Da.	359°2		165°0 182°5 183°6	34'99 62'93
Kn.	0.8	In.	183.6	2.95

73 Σ. 197.

R. A.	Dec.	M.
1h 54m	34° 42′	7:3, 8:3
	C white	

The changes are due to the proper motion of the larger star.

Σ.	233.6	3n.	18.33	1833'48
Sm.	.6		3	'70
Mä.	242.9		20.07	47.12
	232.2	2n.	'48	51.12
	'4	In.	'95	2.84
	.8	,,	198	3.00
	236· 6	,,	'40	.83
	234'1	,,	.53	5.83
De.	233.2	5n.	21.67	64.79
G 1.	.0	2	22.1	73.96

74 Σ. 202.

a PISCIUM.

R. A.		Dec.
1 _p 22.8 _m		2° 11′
	M	

2.8, 3.9 (Σ.); 4, 6 (Da.); De. 4, 5.3 C. Σ. A, greenish white; B blue; Da. very white, white.

.94	0				
Both stars probably vary both in colour and brightness.	H, & 8	o. 335.8	5 7	5 [°] 401 '448	1821-89
H ₁ (Phil. Trans., vol. lxxii., p. 217):	Σ.	336.9	3	3.94	.96
"a Piscium, Fl. ultima. In nodo duorum		335.7	5n.	.63	31.16
linorum. Oct. 19.—Double, cousiderably	Be.	333.0		77	0.93
unequal. Both W. With 222, not quite		335.7	1	64	1.10
2 diameters of L; with 460, about 3 dia-	1	332.0	ł	·76	4.85
meters of L. Distance 5"123 mean mea-	ŀ	333.0		.64	40.03
sure. Position 67° 23' n.p." This was in	Da.	332.1	5n.	756	32.88
1779.	i	330.1	In.	479	42.95
H ₁ (Phil. Trans., 1804, part i., p. 384):		۰۰	,,		6.92
"The position of the stars Oct. 19th, 1781,	ŀ	328.1	2n.	3'420	53.99
was 67° 23' n.p.; and by a mean of 3 mea-	Sm.	334'7		6	34.92
sures, taken Jan. 28 and Feb. 4, 1802, it	₩ä.	331.0	3n.	·8o	41.64
was 63° o'. This gives a change of 4° 23'	l	332.0	5n.	'4	2.8
in 20 years and 105 days. The parallactic		331.5	4n.	'5	4°5
motion of a will account for the alteration,	l	.ı	2n.	'4	500
unless a proper motion should hereafter lead	1	329.7	,,	14	52.13
to a different conclusion, which, from the	1_	328.4	4n.	.38	8.13
insulated situation of this double star, is not	Ja.	333.0	3	4'04	42.64
improbable."	l	330.5	15	.50	5.84
H ₂ and So. (Phil. Trans., 1824, part iii.,		329.3		3.28	51.56
p. 47): "A beautiful double star; nearly		333.5		49	1.94
equal. This star has undergone no appreci-	i	328'4	15	48	2.00
able change." H, thinks that Σ .'s measure,		327.8	3n.	'22	3.96
70° 48' n.p., 1819'9 (see Additamenta, p.		(-0	2n.	'20	6.45
182,) is too large, and in quoting H_1 's first		326.8	24	29	7:94
measure gives the date 1781-99.	Mo.	.9	19	.13	8.12
Sm. (Cycle, p. 49). He observes that H	 0.	331.1	30	.63	44.07
was led to suppose a retrograde motion, and	D.O.	326.8	12	.21	58.70
adds, "All the subsequent observations,	Mit.	329.5	In. 2n.	.73 .08	47'10 '68
however, of H_2 , So., Da., Σ ., and myself prove the fixity of these stars."	Flt.	'4 '4	6n.	40	
Da. (Mem. R. A. S., vol. xxxv., p. 310).		•5	On.	.22	51.75 3.94
He says that his later observations compared	0.Σ.	330.4	3n.	557	1.87
with his Ormskirk results indicate a slow	· · · · ·	325.0	In.	2.980	70'18
diminution of angle. and that a slight dimi-	De.	327.5	6n.	3.59	54.58
nution of distance is possible. He also		329.4	2n.	3.79	5.06
remarks that the obliquity of position re-		328.4	ın.	·40	6.62
quires special care.		327 1	,,	71	7.61
Se. (Catalogo di stelle doppie, p. 47) thinks		326.8	2n.	-51	8.63
the motion in angle is certain, but that in		325.7	,,	•2	63.76
distance doubtful. The colours of the stars		326.6	3n.	.04	4'08
he suspects of change.		325'7	2n.	17	5.2
The movements proceed very slowly. It		.7	3n.	.11	6.26
is, however, certain that both the angle and		.1	In.	2.96	7·61
distance have changed. (0.Σ., 1877.)		.2	,,	3.15	8·0 7
The proper motion in R. A. is + 0° 009,		.7	,,	*34	·6 <u>5</u>
and — o" or in N. P. D.		.7	,,	12	9 66
Dunér (Mesures Micrométriques, p. 171):		.2	,,	12	70.76
On making a graphical construction of the		•0	,,	'21	1.64
angles and distances, he found that both		.7	,,	.23	2.67
diminish, but the latter more rapidly and		:7	"	.12	4.68
the former more slowly than according to	WHT2	.0	"	.04	5.08
the time; that this is contrary to nature,	Wi.	331.2	2n.	'4I	56.09
and most probably due to accidental errors	Se. Au.	327.8	3n.	352	.16
of observation; and that the following	M.	.9	Tn	.20	91.18
formula represents the observations fairly well.	- .	329.6	In.	.12	8.81 .00
1		323.2	"	.06 .13	72.78
$P = 330^{\circ} \cdot 3 - 0^{\circ} \cdot 290 \ (/ - 1850 \cdot 0) - 0^{\circ} \cdot 00113$		324'3 323'2	"	.09	4.79
$(l-1850.0)^2$.		322.6	"	.09	4.73
		7.7	4n.	.27	5.46
H ₁ 337.4 1781.8	Ro.	324.9	211.	.30	62.92
333.0 1802.8		325.3	,,	.17	3'54
•				•	

_	•		"	
Kn.	327'1	In.	3.077	1864.01
	325.7 328.5	3n.	'237	5.47
Eng.	328.5	,,	'35	*08
Ta.	·9	2n.	48	.76
	• 9	In.	'41	6.84
	325.6	,,	.38	7 0·86
	324.8	,,	10	1.48
	325.7	,,	.06	2.77
Du.	• 4	In.	.00	68.84
	326·i	2n.	.ı	71.32
	325.6	,,	2.79	2.18
W. & S.	324.4	4	.3	.07
	• • • •	3	.16	3.63
	325.0	4	.11	4.01
G1.	323.0	4 6	3.2	3.74
-	324.2	3	.2	.93
	325.3	2		4.03
Dob.	327.5	In.		5.99
	325.5	6n.	3.77	6.09
	324.3	3n.	.23	7.83
W.O.	322.1	In.	'15	6.03
	2	l	'10	.03
Schi.	324.0	"	*084	7.04
Sp.	, O	"	*084 *08	.05
Pl.	325.9	5n.	.00	.18
	J-3 9	, ,,,,,	, ~~	, 10

75 Σ . 205 and 0. Σ . 38.

M. 3, 5, 6* Dec. R. A. 1p 26.2m 41° 46'

C. golden, blue. †

The duplicity of B was discovered by $0.\Sigma$. in 1842, and the following is the account given by Sm. in the Cycle, p. 50. After expressing his conviction that γ_1 Andromedæ (Σ . 205; H_1 , iii. 5) is not a binary system, he says: "Since the above was written, Mr. Baily put into my hand a letter which he had received from M. Struve in Oct., 1842, announcing the unlooked-for tidings that he had detected y Andromedæ to be

* MAGNITUDES.—O.Z., in the Pulkowa observations always make the n.p. star the smaller. Da. had never the slightest doubt about the s.f. star being the smaller, by at least half a magnitude. On the other hand, the discoverer says the more he looks at the star the more astonished he is that any one could place the smaller star in the n.p. quadrant.

quadrant.

† COLOURS.—H₁ gives Y₁ (H₁, iii, 5), "reddish white, and fine light sky-blue, inclining to green."

H2 and So. call the large star orange, and the smaller emerald green, while, in the Mem. R. A. S., vol. vi., p. 8, the larger is called yellow, and the smaller pale blue, by H₂.

De. gridden and blue.

De., golden and blue

De., golden and blue.
Se., yellow and green.
Sm., orange and emerald green.
The components of the smaller star (y2) are registered pale yellow and small blue by Sm., clear blue by De., while Da. uses the following expressions: "both blue;" "both pale green, precisely the same tint." "A, green; B, deeper green." Very pale yellow, blue;" "greenish yellow, bluish green."

triple, and that the companion is composed of two stars of equal size, separated by an interval of less than 0"5." Sm. at once sent the news to Da., who readily elongated the star in the direction s.f. and n.f., "making it look like a dumpish egg." Sm. also re-ceived a letter from Challis, who could "easily recognise the small star as being double," and also thought the components unequal.

In 1843, Sm., at Hartwell, "fairly saw that the comes was not round, but elongated, in a direction n.p. and s.f. It was, however, so slightly oval, that, but for M. Struve's unexpected announcement, I must assuredly have overlooked it."

Da. (Mem. R. A. S., vol. xxxv., p. 311) found that his measures indicated "on the whole a decrease in the angle.

0.Σ. (Catalogue Revu et Corrigé, 1850.) says that the Pulkowa observations from 1842 to 1850 indicate no perceptible change in the position of the close stars.

Se. gives no measures in his catalogue (1860), but in the second series he says that the companion was elongated, but not separated.

The progressive diminution of the angle is manifest, and an augmentation in the distance is probable. (0.Σ., 1877.)

A B. -No change in the relative position of this pair since its discovery in 1777 by C. Mayer. The proper motion of A is + 0"004 in R. A., and + 0"04 in N. P. D.

It is worthy of passing notice that neither Messier in 1764 nor Mayer in 1776 observed the duplicity of A.

B C.—Duner gives the following formulæ :-

$$\Delta = 0^{\circ}.56 + 0^{\circ}.07 (t - 1855.0.$$

 $P = 112^{\circ}.5 - 0^{\circ}.32 (t - 1860.0) + 0^{\circ}.0038 (t - 1860.0)^{2}.$

The distance formula rests entirely on O. Σ.'s measures; and Dunér thinks the following is better than the one given above.

$$\Delta = 0^{\prime\prime}.50 + 0^{\prime\prime}.07 (t - 1855).$$

He observes that the errors in the measured angles of position are enormous.

$$A$$
 and $\frac{B+C}{2}$

		_	"	_
Σ.	62.4	6n.	10.33	1830.03
Da.	64.0	3n.	.62	2'94
	•2	ın.	'47	2.94 63.86
Ch.	63.9	,,	.61	41.95
	•5	,,	.35	2.92
	62.9	,,	'49	3.15
Μä.	63.0	4n.	*o8	.2
	62.4	In.	'02	2.1
	61.9	8n.	9.83	51.12
	62.6	3n.	.80	3.22

	. 0		. "		ſ	•		,	
Mä,	62°1	In.	9.94	1854.25	Ch.	100'2	In.	ı	1842.84
	•8	,,	'60	5.01		112'5	,,	0.12	84
	' 4	,,	-88	6.19		115.1	",	.31	3.31
	4	2n.	.63	7.23	Sm.	120'0	l "	•5	.33
	61.4	,,	.40	8.55	0.Σ.	125'5	3n.	· 4 7	1 .55
Ο.Σ.	63.0	In.	10.22	42.72		117.9	5n.	-52	7.13
	62.3	,,	'40	4·84 8·13	Į.	114'9	4n.	.47	9.69
	64°1	٠,,	•58	8.13	i	113.0	3n.	-67	56.84
	63.5	,,	'21	9.22	ł	100.0	"	.70	66.51
	.0	٠,,	'30	20.19	i	106.9	,,	.63	9.84
	62.8	٠,,	'42	4'20	l	105.4	5n.	•63	73.17
	.9	٠,,	'43	7'23	Mä.	116.9	4n.	.39	45.15
	· ź	,,	'62	6.10		۰٤	1 .	46	51.19
	64.6	,,	.25	64.51		115.3	5n.	47	2.82
	.3	,,	.57	6.51		116.2	J	'45	6.50
	63.7	,,	'41	8.30		114'9	l	47	7.05
	65.2	,,	.20	9'17		115.7	l	45	'24
	63.8	,,	.23	70.18		116.9	ł		8.23
	.3	,,	11.	2.18	ľ	115.5		•5	62.22
	64 [.] 4 63 [.] 8	,,	'46	3.13	Mit.	111.3	7n.	.43	46.66
	63.8	,,	'41	5'14	Ja.	3	6	-5	52.78
Mit.	62.5	,,		46.65		106.8	18	1 3	3.94
D.O.	64.7	,,	10.50	'92		116.4	In.	-3	6.13
Ja.	61.4	5	.38	53.92		113.0	2n.		8.06
De.	63.2	3n.	.47	4.84	De.	92.7		oblong	4.81
	'2	2n.	.20	5'09		280.0	ł	wedgd.	·83
	•5	3n.	'21	-89	1	270.8	1	"cas .	.88
	64.4	in.	'45	6.26	İ	274.0	2n.		5.09
	63.2	3n.	'43	62.80	•	278.4	4n.	1	.85
	62.7	٠,,	40	3.15	l	281.2	In.	1	6.26
Wi.	63.4	2n.	'34	56 22	1	107'4	3n.	1	62.77
X.	62.4	In.	9.28	61.85	1	107.4	4n.	i .	3.31
	63·i	,,	10.51	2.41	}	100.1	In.		4.22
	60.6	,,	.02	9.77	ł	104.8	6n.	0.2	5.81
	63.6	2n.	.05	72.77	1	106.6	In.	o'5 wedg ^d .	6.71
	•5	,,	9.86	-78		107.2	,,	0.25	7.60
	66.4	,,	10.38	3.78	Wi.	121.2	2n.	'41	56.21
	64.9	5n.	57	5.76	Se.	109.7	6n.	47	.90
Bo.	62.6	In.	.33	63.13	1	108.2	In.	45	8.99
Eng.	63.8	2n.	.18	4'14	Ro.	107:3	5n.	.6	63.49
Kn.	. 4	4n.	'36	5.67		.3	In.	.64	4.03
Ta.	62.7	ın.	·47	.82	Kn.	ő	4n.		5.67
	61.1	٠,,	'56	6.23	l	101.3	in.	·59	72.67
	62.6	,,	12	71.78	Ta.	106.3	2n.	•58	65.76
W. & S.	64.5	4	45	2.03		104.5	ın.	·58 ·64	6.84
	'4	2	.20	3.81	Du.	103.0	In.	•68	8.68
G1.	63.9	4	.5	.94		112.0	4n.	.58	9.39
	64.0	7	.3	4.93	i	106.0	2n.	·63	70.12
	·8	4	.0	7.94		111.3	,,	-63	1.10
Du.	62.8	12n.	.00	1.33	1	113.7	,,	1.69	2.13
W .0.	.4 .6	٠,,	.26	5.96	i	110.1	,,	-65	.32
Schi.	•6	٠,,	.10	7.11		109'2	In.	.61	3.15
						108.0	,,	.62	4'17
					Br.	6.101	6n.	•69	68.82
		ВC			W. & S.	87.7	4		72.03
	•				l	95.9	10	•5	3.81
Σ.	126.6	In.	0.21	1842.72	I	105.4	6		6.79
Da.	125.8	In.		83	G1.	93.9	3	46	3.94
	111.3	4n.	'47 '62	7.82	1	98.7	5		4.93
	108.2	,,	'55	53.79	I	102.4	4	·56 ·84	7.94
	112.0	ın.	.22 .60	4.75	W.0.		ın.	.53	4.00
	108.7	5n.	'53	4'75 9'81	İ	101.8	5n.	1.4	7.10
	107.7	ín.	·58	63.86	Schi.	104'1	in.	'4 '48	'05
	106.9	,,	.53 .58	5.68	Dob.	103.9	١,,		71
	-	,		-					

76 Σ. 208.

R. A. 1h 56.8m

Dec. 25° 22'

M. 6.2, 8.4

C. A, yellow; B, ash.

The common proper motion is $+0^{\circ}$.013 in R. A., and $+0^{\circ}$.03 in N. P. D.

Dunér's formulæ are

 $\Delta = 1^{\circ}.68 - 0^{\circ}.015 \ (t - 1850.0).$ $P = 30^{\circ}.5 + 0^{\circ}.37 \ (t - 1850.0) + 0^{\circ}.00325 \ (t - 1850.0)^{2}.$

	25.6		"	
H _r	25.6		2.13	1830.49
	26.0		.00	2.80
Σ.	25.5	4n.	1,98	3.02
Da.	27.8		2.0	'36
	30.1	3n.	•••	47.90
	•••	In.	1.43	9.00
	30.4	2n.	·84	53.92
Sm.	26.8		2.5	38.66
Mä,	30.5	3n.	1.60	42.77
	28.8	In.	.75	4.15
	30.4	,,	.78	5.09
	32.6		*54	20.99
	34'7	ın.	42	2.10
	31.6		.60	6.51
	36.1		.28	62.85
СЪ.	32'1	In.	•65	44.91
Ο. Σ.	29.6	,,	.60	51.76
De.	34'I	3n.	'3	6.72
	33.9	6n.	'43	63.07
	36.3	In.	•••	6.68
	41'2	,,	1.36	7.65
	•6	,,	.32	9.67
	44°I	,,	.45	71.59
	41.8	,,	'21	4'71
	46.1	,,	.29	6.24
Se.	34'4	3n.	·64	56.98
	38.1	In.	.21	66.06
Eng.	40.6	,,	.90	5.01
Du.	30.0	5n.	'41	71.45
W. & S.	42.0	2n.	'44	2.46
	40'1	In.	.32	3 .93
G 1.	30.0	4	'4	4.93
Bob.	41'I	4n.	.27	7.86
	43.0	In.	.19	8.08
	- '			

Σ. 216.

2h 2.5m

Dec. 61° 44'

M. 7.7, 8.2

C. yellow.

270°5 265°0 268°8 o:59 :75 :7 1831.53 3n. Mä. īn. 41.20 0.Σ. 3n. 51.05 Se. 262'4 .43 .6 ,, De. 266.5

Σ. 221. 78

R. A. 2h 3m

Dec. 19° 46'

M. 7.7, 8.9, 12

C. yellowish.

AB.

_	•		_#/ _	
\mathbf{H}_{1} .	145'7	[8.08	1783.13
Σ.	150.5	1	•64	1822.06
	145'7	4n.	'44	31.36
	.5	3n.	'38	6.91
H, & So.	1.00.1	In.	·38 ·64	22.06
_	148.8	,,	'95	4.87
Da.	143.2	7n.	*43	42'33
	.I	2n.	.12	3'41
	144'1	4n.	. 46	54.20
Mä.	147.2		7.91	44 49
M o.	144.6	50	8.34	55.45
Wi.	148'1	In.	95	6.09
Se.	143'1	2n.	'34	7.41
Ta.	144'4	 , ,	·ši	65.76
	' 4	In.	.79	71.78
		A C	•	•
Wi.	226.5	In.	61.0	56.09

79 Σ. 227.

. TRIANGULI.

R. A. Dec. M. 29° 44′ 2h 5'4m 5, 6.4

C. A, yellow; B, blue.

Dunér gives

1847.21 $\Delta = 3''.58$. $P = 77^{\circ}.4 - 0^{\circ}.0775 (t - 1847.12)$.

85.6 | In. | ... | 1781.77

4.	79.1	I	3.02	1021.03
	77'9	5n.	·60	30.97
	77.9 80.5	3n.	•68	6.73
H, & So.	78·0	In.	·88	21.94
H ₂ .	74'0		•••	2.11
	77'9		. 60	30.95
8m.	78·í		·60	0.01
	77.9		.3	4'17
	78.8		·3 ·5 ·60	8.99
	• 5		.2	57:95
Mä.	79.0		•60	32.84
	77.5	In.	·57 ·44	41.77
	78·ĭ	2n.	'44	7.22
	77'I	In.	'51	52.25
	76.0		.55 .41	6.83
	75.4		'41	61.87
Da.	79.0		•68	32.94
Ka.	77'1		·48	40.02
Mo.	77'I 78'8	40	·82	53.2
De.	76·9	бn.	.91	4.81
Se.	• • •	3n.	•56	5.89
Ro.	77.6 78.0	3	4.38	62.90
	78.0	11	.05	3.38

Eng.	80.2	ın.	4.04	1865.12
Du. Fer.	76·9	2n.	3°25 '87	1865°12 70°55 2°93 7°85
Dob.	75.6	5n.	-86	7.85

259 ANDROMEDÆ.

C. Σ ., De., and Se., white.

The angular motion is decided. The distance does not appear to have changed, unless we suppose that a maximum was reached about 1842, and that it has diminished since. $(0.\Sigma, 1877.)$

Dunér gives

$$\begin{array}{lll} \Lambda \sin. P = -1'' \cdot 059 + 0'' \cdot 01215 & (t - 1852 \cdot 0) \\ & + 0'' \cdot 000641 & (t - 1852 \cdot 0)^2. \\ \Lambda \cos. P = +0'' \cdot 173 + 4'' \cdot 01243 & (t - 1852 \cdot 0) \\ & - 0'' \cdot 000169 & (t - 1852 \cdot 0)^2. \end{array}$$

The comparison with the measures is fairly satisfactory. From these formulæ it appears that the maximum distance was reached about 1847, that the star is rapidly hastening to its minimum distance, and that it will soon become excessively difficult. (Du.)

Σ.	264.0	In.	1.08	1829.16
	262.3	۱,, ۱	'22	31.75
	258.8	,,	'14	2.03
	263'3	,,	0.93	'20
	262.4	١,, ١	1.03	12'
Ο. Σ.	274'7	2n.	.32	41.04
	299.6	In.	o. <u>8</u> 6	70.18
Μä.	280'2	6	1.11	52.19
	284 · I	In.	0.0	7.21
De.	281 '0	2n.	1.0	6.76
	.I	,,	.0	6.76
	286.4	,,	0.42	62.79
	.2	,,	I.I	3.11
	291.6	3n.	0.92	6.07
	304'4	4n.	'64	73.81
	314.9	١,,	.25	6.89
Se.	286.1	3n.	•99	7.62
Du.	299.5	4n	.71	69.48
	311.4	3n.	.22	75'20
W. & S.	308.7	4n.		2'04
	309.0	3n.	.77	3.93
G1,	307.3	2n.	•6	4.94

81	Σ. 231.	
R. A. 2 ^h 7 ^m	Dec. - 2° 57'	M. 6, 78
•	C. yellowish blue.	. •

Rapid common proper motion.

Σ.	229.2	8n.	15.47	1834.19
Ο. Σ.	• • •	6n.	.55	52.50
ĭä.	230.5	2n.	'09	3.00
	229'0	,,	14'73	8.11
De.	.2	5n.	15.36	4.83
Wi.	228.4		*35	7.87
Ta.	-8	2n.	'43	65.77
W. & S.	230.4	3	6.0	73'94
C.O.	۰6	4n.	5.86	7.79
Dob.	229.8	2n.	l	6.07

82 Σ. 232. R. A. Dec. M. 2^h 7.7^m 29° 50′ 7.5, 7.5 C. very white.

Dunér has the following formulæ:— $1848.69. \Delta = 6.49.$ P = 246.8 + 0.075 (t - 1848.69).

Σ.	244°I		•••	1821.00
			6.41	2.86
	245.5	3n.	•56	32.03
Mä.	246.4	,,	45	43.67
Ο.Σ.;	65'4	In.	•6	51.82
Se.	246.8	3n.	.26	5.08
De	247.2	ın.	49	6.83
Mo.	245.2	2n.	.30	7.96
Ta.	246.4	In.	*27	65.84
Du.	248 '4	2n.	'41	9.86

83	Σ. 234.				
R. A	A. 7 [™]	Dec. 60° 48'			
2 ^h 8·7 ^m 60° 48' 7·8, 8·7 C. white.					
Σ. Mä.	239.2	Зn.	0.84 .82	1831.22 45.65	
Ο.Σ.	235.6 231.4	3n. 2n.	*87 *83	52.20 46.98	
Se. De.	231.4	3n.	·62 ·70	57.91 63.45	

	220.4	5n.	·6	71.53
84	Σ	. 23	6.	
R. A	m	Dec 51°		M. 8·5, 9·3
Σ. Mä.	259°0 260°8	3n. In.	o:81 '76	1831·87 45·23
0.Σ.	258·2 257·9	2n. In.	1.07	7'32
Se.	258.8	••	0.2	57'02

Σ. 240. 85

R. A. Dec. M. 2h 10m 23° 10' 7.7, 8.2 C. white.

Dunér's formulæ are-

1854.50.
$$\Delta = 4^{".73}$$
.
P = 49°.7 + 0°.053 (t - 1853.50).

Σ.	. 48°0	3n.	4.71	1832'19
Mä.	50.7	ın.	4.41 2.03	44'04
Ta.	49.2	,,	4°73 °46	65.84
Du.	21.1	5n.	•46	72.21

86 o CETI.

Dec. M. 3° 32′ 2h 13.3m 2'5 to 9'5, 9'5

The period of A is about 331 days: maximum, Dec. 19, 1876; minimum, July

23, 1877.

The proper motion of A is - 0* 003 in R. A., and + o" 23 in N. P. D.

Rectilinear motion.

Cassini.	130.4	1	119	1683
H ₁ .			110	1779
_	•••		110	80
	92·5 88·6		114	82*
Σ.	88.6		115	1819.96
	•••		115	24.63
8 0.	88.6			1.00
Sm.	.9		116.0	31.03
Ο.Σ.	85.2		115.6	21.99
Po.	84.9	24	117.9	6.07
	•6	24 50	I.	9.96
Fl.	82.3	ın.	118.3	77.12

87 Σ. 249.

R. A. Dec. M. 440 2 2b I2.7m 7, 9 C. A, very white; B, ash.

2.58 1831.11 Σ. Mä 154'7 3n. 5[.]74 45[.]17 192'3 39 188.8 2n. 55 51.69 192.2 ., 189.4 5.87 In. 62·54 57·89 191'4 2.38 2n. Se. 187.9 .13 ,, 69.08 Ο.Σ. 192'2 47 Du. 191.9 7n. **'2**9 73.13

* Oct. 19, 1779. Distance, 1' 50'''468. Dec. 5, 1779. Distance, 1' 52'''812, and 1' 50'''625. Jan. 4, 1780. Distance, 1' 44'''687. Sept. 8, 178c. Distance, 1' 50'' 625. Sept. 30, 1780. Distance, 1' 50''.
Sept. 30, 1780. Distance, 1' 50''.
Distance, 1' 50''.
Distance, 1' 50''.

Aug. 25, 1782. Distance, 1' 50''.
Oct. 28, 1781. Distance, 1' 47" 54"'.
Aug. 25, 1782. Distance, 1' 54" 36"'.

88 0.Σ. 40.

R. A.		Dec	M.	
2 ^h 14 ^m		37° 5	7·8, 8·6	
O. Z.	56°0	6n.	o"59	1850·64
Mä.	54'7	2	"25	48·75
De.	53'4	3n.		67·57

89 Σ. 257.

R. A.	Dec.	M.
3 _p 16.9 _m	60° 59′	7'2, 7'7

C. 2. yellowish white.

Considerable direct movement. distance has perhaps diminished a little, and this seems confirmed by the recent more rapid change in angle. (O.Σ., 1877.) Dunér observes that there are enormous discordances in the angles. He gives

$$\Delta = 0^{\prime\prime}\cdot47 - 0^{\prime\prime}\cdot008 (t - 1850\cdot0).$$

Σ.	170.8	In.	0.60	1829.16
	162.1	,,	.21	30.55
	161.9	,,	·51 ·69	2.30
	169.5	2n.	.65	6.59
Mä.	171.6	In.	.22	41.20
	186.6	6	.2	51.76
	183.9	4	.22 .22 .61	2.31
	180.0	In.	.2	6.51
Ο.Σ.	172.3	2n.	.61	46.98
	190.8	In.	152	70'18
Se.	183.3	2n.	.40	57.48
De.	.2	,,	obl.	63.13
Du.	186.3	,,	0.58	9:37

90 Σ 262.

. CASSIOPEÆ

Dec. R. A. M. 66° 51' 2h 19.2m 4.2, 7.1, 8.1

C. Σ. A, yellow; B, blue; C. blue.

Dawes says, "This star is P. II. 72, and B. A. C. 744; but it is not Fl. 55 Cass., as H₁ supposed it to be."

H₁, Phil. Trans., vol. lxxii., p. 219.—
"Aug. 17, 1779. Double, extremely unequal, L.W.; S, bluish r. Distance 7"5 single measure. Position 10° 37' s.f." And he adds in a note "In a future collection. he adds, in a note, "In a future collection this will be found as a treble star of the 1st class; the larger star having a small one

Preceding, easily seen with 460 and 932."

H₁, Phil. Trans., vol. lxvv., p. 645.—

"Treble 20° 30' n.p. 1782 and 1783."

H₁, Mem. R. A. S., vol. i., p. 173.—

"No. 65, Nov. 4, 1788, double of the 2nd class. Very unequal."

The distant star is independent of the system of θ Persei.

	•		"	
H ₁ .	290'0	In.	13.25	1782'64
Η,. Σ.	292'4	ı	16.0	1830.50
	294.6	3n.	15.40	2.50
Mä.	296.2	4	15'79	52.26
Ο.Σ.	296.8	3n.	16.02	3.09
	297.9	2n.	'32	72'06
De.	296'4	2n.	16.37	62.97
Da.	• •	1	16.34	4.36
W. & 8.	·ó	3	16.2	73'93
	215.3	3	A C	*93
	19.9	Ī	A D	•93

The distant star.

 H_1 , in 1782, observed a small star about 1' south of θ Persei.

8m. Ο.Σ.	219.0 210.5 .6 211.3 215.6	27.0? 66.14 .08 .11 68.17	1833.65 51.88 2.71 4.67 69.95
	215.0	1 08 17	09'95

99 S. 299.

R. A.	Dec.	M.
2h 37.1m	2° 44′	3.2, 2

C. A, yellow; B, blue.

Common proper motion, - 0° 011 in R. A., and + 0"10 in N. P. D.

14. 22.,	and T o	19 111 1	1. 1. D.	
Σ.	283.5	1	2.83	1825.43
	287.4	5n.	'59	32.48
	289.2	2n.	'67	6.74
	286.I	In.	.61	41'70
H ₂ .	280'7		2.28	28.69
_	.7	1	3.74	31.70
Sm.	289.0		2.6	·8s
	286.8		.72	l €'80
	288 .8		•8	8.92
	285.7		•6	43'16
	289 1		.69 .6	55'09
Da,	286.1		.69	33'90
	287.6		'7	6 98
	· •9			7.88
	288.0	IIn.	2.72	41.65
	285.5	5n.	•65	2.99
	289.2	IIn.	.77	9.08
Mä.	28 8 °7		.41 .61	38.90
	291.6	15	·84	41.37
	289.5	15 6	·77	7.12
	289.8	12	3.12	52.11
	292.0	3n.	7	8.07
Flt.	289.2	35	. 75	1,00
Ja.	291.0	ın.	.7	3.06
Ο.Σ.	287.3	8n.	.92	.00
De.	287.5	6n.	2.9	5.06
Se.	288.3	5n.	.41	6.14
X.	289.1	_	.78	62.04
Ta.	290.6	6		5.84 8.82
	295.5	7 5	2.33	8.82
	297.9	5		72.86

Br. Dob.	292.5	20.	2"91	68·80 75·98
Sp.	291'4 290'9	6n.	3.40 2.82	6 08 7 08
Pl.	291'1	3n.	73	7.31

100 Σ. 300.

R. A.	Dec.	M.
2h 37.5m	3 8° 55′	8, 84
	C. white.	

Probable binary.

Σ.	299.5	2n.	2.01	1832.80 43.62 65.89
Mä.	- 1	3n.	3.11	43.62
Ta.	304.3	4	2.21	65.89
P 1.	299.9	3n.	.79	77.02

101 Σ. 305.

114 ARIETIS.

R. A.	Dec.	M.		
2h 40.6m	18° 52′	7:3, 8:2		
_				

C. Z., "certainly yellow"; Da., "both white;" Se., "white."

H₂, in 1830, says: "Beautifully separated with the whole aperture [20 ft. reflector]. Measure excellent; taken with 320 and 12 inches. 320°4, 1½"."

Da. (Mem. R. A. S., vol. xxxv., p. 314):

"The angle of position of these stars is slowly varying in a retrograde direction." A very decided increase of distance has also occurred.

Se. (p.23) says, "the motion appears secure and noteworthy."

An increase in the distance and a diminution in the angle are shown by the measures. $(0, \Sigma_n, 1877.)$

(0.2.,	1877.)			
Σ.	331.8	In.	1'42	1829.81
	333.2	,,	·67	'90
	327.3	,,	.67	33'14
Da.	324.7	6n.	96	41'94
	326.2	In.	. 93	2.01
	325.7	,,	16.	3.01
	324.6	2n.		4.03
	.6	٠,,	2.19	7.48
	-8	In.	.27	8.94
	322.2	,,	'32	51.99
	.4	4n.	.33	3.00
	321.8	In.	.26	4.84
0.Σ.	325.1	,,	1.96	41.70
	324.3	,,	2.11	5.73
De.	322·I	3n.	1.0	56.77
	321.8	,,	2.23	62.83
	•8	2n.	.21	3'49
Se.	322.5	2n.	2.26	57.89
Ta.	321.3	4	2.46	65.89
	316.6	4 6	1.98	72.86

2.08 1830.10

44'33 57'67 66'42

57.95 62.23

72·31 4·58

31.75 71.75 3.48

M. 7, 7[°]5

1782.63 1804.18 25.40 30.20 27.21

30.55

2'20 '22 41'44 54'67 72'18

52.26 5.13 7.62

M. 7'5, 9'7 | 1831'46 | 44'44 | 60'32

> M. 8·5, 9

2n. | 27.06 | 1832.18 1n. | 25.71 | 45.63

Br.	201.2		2"73	0400	1		A B	
₩. & 8.	321.3	4	273	1868·78 72·04	-	10.3		, ,,
	320'I	4	83	7'09	Η. Σ.	13.9	5n.	3.29
Fer.	-6	3	.6	3'94	Mä.	15.6	3	71
Dob.	317·5	6n.	77	3°94 6°06	De.	16.1	In.	54
	317.8	ın.	3.29	7.88	Se.	18.1	2n.	·26
Schi. Sp.	318.7	In.	2.75	·07	X.	8.9	2	37
Pl.	320.0	3n.	72	-33	Ο.Σ.	22.4	2n.	.3
					Du.	19.5	7n.	.10
100		- 01	_				A C	
102	Σ	. 31	.1.		乏.	127'0	2n.	42.32
R. A.		Dec.		M.	Du.	128.0	3n.	4
2h 42.3m		6° 58′	4'9	, 8'4, 10'2	0. Z .	128	"	.32
Certai	n direct	motion	in A R					
		AB			104	5	. 31	4
Hī.	100.1	8n.	1	1782.82	AU E			_
Σ.	110.6	In.	3.06	1829'89		P:	ersei	85.
	118.3	,,	'40	31.11	R. A.		Dec	
	119.7	"	'25 '40	2.79 .86	2h 44'3	; "	52° 3	lo,
_	120.4	"	.31	4.92			C. whit	te.
Da. Mä.	.7	"	3.24	48.97	Proba	ıbly a bir	ary.	
	.6 122.5	6	2.84	50.26 1.04	H ₁ .	278.4	In.	
	119.3	18	3.56	2.11	So.	290.2 291.1	,,	
	117.5	4	3.36	7.93 6.77	H,	292.0		1'32
So.,	128.6	3n.	2.94	73.13	Σ.	Ι,	,,	'35
0.Σ.	126.6	In.	3.19	65.92		294.2 298.0	"	.22.
G1.	121.2	5 3	.2	0.01		297.2	"	33
	2.2		۰0	02	0.Σ.]	•0	2n.	.71
		A C	•	OO-		300.2 300.2	In.	·63
Η ι. Σ.	109.3	ın.	24'43	1782.82	₩ä.	297.9	4	.56
	110.8	,,	25.11	31.11	De.	295.8	3n.	sepd.
	109.8	,,	.69	2.79	Se.	300.2	,,	1.46
	109.2	"	'73 '44	86 3 86		1	•	1
	110.2	"	24.94	4 95				
0.Σ.	·6	,,	25.13	65.92	105	Σ,	. 32	6.
	0 (,,	'57	73.13	TD .			
					R. A 2 ^h 48 ^t	n	Dec 26° :	c. 24'
103	5	E. 31	2.			_		. •
					Σ. Mä.	216'I 215'2	2n.	6.03
R. A.		Dec		_M.	Ο. Σ.	217.4	",	8.61
2º 44'I	_	72°	24	7, 8, 9				
	(C. whi	te.		100			
	n change				106	Σ	. 32	ið.
	gives, fo				R. A		De	
Δ-	- 3″.39 -	- 0"01	4 (# - 1	850.0),	2h 49		44°	
	• 16°·3 +	r 0"13	(1 - 18	50.0);			C. whi	te.
and for A	A.С,							

Σ. Mä. 299'3 | 298'6 |

 $^{1851.75}\Delta = 42''.37,$ P = $^{127^{\circ}.52} + ^{\circ}.026(t - ^{1851.75}).$

107	Σ. 333.
	s ARIETIS.

R. A. Dec. M. 2^h 52·3^m 20° 51′ 5·7, 6

C. Z. and De., white.

Σ. first measured this object in 1827. He was led to think that the components are variable, but was struck by the fact that the difference of the magnitudes of the two stars always remained the same, viz., from 0 to 0 5 of the scale.

H, measured it in 1830. He says, "seen double with 320. Measured with 480; but measure not good, the illuminating lamp having gone out. 195° \(\frac{1}{2}\)"."

Mä. measured it from 1841 to 1845, and thought that the distance had probably increased.

Sm. (Cycle, p. 74). An increase of angle had, however, become so apparent to him in 1839, that he watched it at Hartwell, and was soon pretty sure that the companion had "a direct orbital motion"; and taking this at 0°85 per annum, he thought "its revolution may be made in four centuries, at most." He adds, "If we may place dependence on the observations as to the slight increase of distance, it will probably still widen for a few years longer, until the satellite shall have doubled the southern point of its course, which now seems to be on an ellipse shooting out from 2 in the miscrometric direction of 210°, with a major axis about thrice the length of its minor."

Da. on examining his own observations, extending over 14 years, found "a decided increase of distance, with no perceptible variation of angle."

Dunér's formulæ are-

 $\begin{array}{lll} \Delta &=& o''.85 + o''.0136 \ (t - 1850.0). \\ P &=& 196^{\circ}.70 + o^{\circ}.210 \ (t - 1850.0) \\ - o^{\circ}.0043 \ (t - 1850.0)^{2} + o^{\circ}.00007 \\ \ (t - 1850.0)^{2}. \end{array}$

These were obtained by the graphical method, aided by calculation. The coefficients are still very uncertain.

186.4	In.		1827.61
191.1	,,		29.21
189.1			32.13
188.9		'6 0	14
195.0		.7	1.10
193.5		.5	5.08
		-8	0.52
199.6		.9	43.18
200'I		1.0	53.08
194'3		0.21	40.03
196.2	3n.	.76	1.75
ا 3 ا	_	78	3.61
	189°1 188°9 195°0 193°5 195°7 199°6 200°1	191'1 ,, 189'1 ,, 195'0 ,, 193'5 ,, 195'7 ,, 199'6 ,,	191'1 ,, '57 189'1 ,, '51 188'9 ,, '60 195'0 ,7 193'5 , '5 195'7 ,8 199'6 ,9 200'1 ,1'0 194'3 ,0'71 196'2 3n. '76

	0		"	_
Mä.	197'9	2n.	0.81	1847'12
	198.1	i	•84	9.96
			.90	52.72
	.7		-	54 /*
	200'I	-	*95	3.00
	198.2		•99	6.08
	201'2		1'02	*21
	20.2		06	808
	198.3			
	200.2 196.22	i	.10	62.39
Da.	106.33	In.	•••	40.00
	195.69	2n.	0'84	1.45
	195 09		-60	
	194'47	3n.	•69	2.10
	200'43	In.		3.01
	198.30	,,	•••	4.00
	100.02		0.52	6.91
	195.97	"	0 83	
	.01	5n.	*84	7.62
	196.32	In.	'99	9.00
	195.55	,,	1.01	53.99
0.Σ.	493.33		0.88	41.70
0.4.	203.9	In.		41 /0
	196.1	2n.	∙86	2 .51
	.9	In.	.75 .77	6.14
	192.3		.77	7.19
		,,		6
	195.0	2n.	.4. .86	8.51
	201.0	In.	·86	9'14
Mit.	196.3	6	0.60	6.77
Ja.	.15	5n.	1.08	£2:40
.	13			53 49
		4n.	-08	.68
De.	201'1	ın.	wedge	4.81
	205'3			83
		"		'92
	202.3 203.3	"	•••	
	202'9	"	•••	·97
	203.2	,,	•••	5.13
	206'1	2n.	1.0	85
	200 1		1.0	6.36
	197.3	3n.		
	194.5	2n.	0.7	62.81
	. 8	3n.	0.8	3.15
	196.5	In.	1.11	5.93
		***		2.73
	197'4	"	.04	7.14
	199.3	,,	'08	8 66
	198.3		0.58	70.76
Mo.	-30.3	,,	0.08	5603
	_ 3		0.90	30 03
Se.	196.73	3n.	0.87	-57
	201'1	In.	1.00	66.07
Ta.	199'0	6		5.41
	192.4		1.38	6.86
	192 4	5 7		
	198.8		.02	72.86
Kn.	198.3	4n.	1.052	66.69
Br.	196.7	3r.	1'34	8.78
Du.	199.0	In.	1.03	75
, <i>2</i> -u.	1990	1		
Ī	198.4	2n.	703	9.18
i	199.9	ın.	17	71.12
l	198.7	2n.	12	71·17 2·18
l	100.8	1	.09	4.17
ĺ	199 0	,,		1 2.1/
l	200'0	,,	'14	5.18
G1.	198.0	ın.	170	0.65
	9.7	2	707	3.94
W. & 8	106.2		1.56	1.95
W. S. D		4		1 93
1	200'5	5	.5	2.17
1	198.7	12	'69	1 .86
1	7:5	9	.10	'92
1	/ 5	١,٠	1	
l .	200.2 1.5	4	'44	3.14
1	1.5	7	.23	509
1	0.7	4 7 6	.36	700
W.O.	200.7	2n.	1.52	606
W.U.		1	1.2	
,	•6	١,,	1 'I 8	1 '06

W.O. Dob. Schi. Sp.	201.8 204.6 198.1 197.6	2n. % 8n. In.	1°14 °20 °52 °169 °17	1876 06 112 09 7.06 07
108	Σ,	. 33	4 .	
R. A. 2 ^h 53 ⁿ	1	Dec 6° 1	o'	M. 7·7, 8·2
Σ. Mä. Ο.Σ. Se.	322.8 325.2 314.7 322.5	3n. In. 2n. 3n.	1.26 .28 .22 .22	1830·94 42·97 9·84 57·02
109	С	.Σ. 4	. 9.	
R. A. 2 ^h 54 ^m		Dec.	2'	M. 7, 10
O.Σ. Mä. Se.	71'1 65'2 '6	4n. I 3n.	1.71 .2 .76	1846·80 52·1 66·24
110	Σ	. 33	6	
R. A. 2 ^h 54'	ī, m	Dec 31°	56	M. 6·5, 8
	_			gmented.
Σ. Mä .	1.2 1.2	3n. In.	.61 8.19	1831.17
Se. De.	·2 ·8	2n.	.35 .34	58.03
0.Σ.	.3	In.	·83	68.77
111	Σ	. 34	6 .	
R. A. 2 ^h 58 ^m	;	Dec. 24° 47′	,	M. 6, 6, 10 [.] 8
		AB.		
Σ. Mä.	265·8 266·6	6n. 2n.	°73 '45	1834.48
Ο.Σ. Kn .	84.2	3n.	'79	3.36 66.51
Du.	269·5	2n. 6n.	·79 ·64	72.26
		B and	d C.	
Σ. 0.Σ.	356.2	4n. In.	5.55	33.70
Du.	355.0 325.0	4n.	.53 .14	72.68
112	o	.Σ. ξ	50.	

Dec. 71° 6'

C. white.

Probably binary.

1876 ° 06 ° 12 ° 09 7 ° 06 ° 07	Mä. 3	32.5 2n. 28.2 ,, 16.1 In. 56.4	0.88 .85 .11 0.85 1.56 1.10	1847.22 50.22 75.33 42.30 51.77 67.40
M. 7'7, 8'2 (830'94 42'97 9'84	113 R. A. 3 ^h 1 ^m	Dec 7° 5 C. wh	c. 6' 	M. 8·7, 9·5
57.02	Mä, I.	48·8 5n. 49·6 2n. 42·8 ,,	2.75	1832·52 43·47 57·11
M. 7, 10	114 R. A.	_	43. ec.	М.
1846·80 52·1 66·24	3 ^h 4.6 ^m		34'	8, 9
M. 6·5, 8	Η ₂ 3 Σ. 3 Μä. 3	26.2 25.4 3n. 26.1 1n. 25.2	20 22.66 23.8 24.95	1830°50 2°60 44°34 65°00
nented. 1831:17	115		55.	
44.95 58.03		12 ERII	DANI. Dec. 9° 27'	М.
68.77	R. A. 3 ^h 6 [·] 9 ^m H _m 3	- 2		4, 7 1835:86
M.	3 ^h 6·9 ^m H ₃ . 3 Ja. 3 Bu.	- 20 06·1 1n. 09·6 21 16·9 3n.		4, 7 1835·86 47·00 56·16 74·80 7·81
68:77	3 ^h 6·9 ^m H ₃ . 3 Ja. 3 Bu.	- 20 06.1 In. 09.6 21 16.9 3n. Ο.Σ.	3 4.09 3.31 2.3 .56	1835.86 47.00 56.16 74.80
M. 6, 10·8	3 ^h 6·9 ^m H ₂ . 3 Ja. 3 Bu. C.O. 3	O. Z. P. III D 65°	3 4'09 3'31 2'3 '56 52. L. I. ec. 13'	1835.86 47.00 56.16 74.80
M. 6, 10·8 1834·48 41·87 3·36 66·21 72·26	3 ^h 6·9 ^m H ₂ . 3 Ja. 3 Bu. 6.0. 3 116 R. A. 3 ^h 7 ^m Retrograunchanged	06'1 In. 10'9 21 21 3n. O.∑. P. III D 65° C. while angular Probably	3 4'09 3'31 2'3 '56 52. I. I. ec. 13' nite. motion. binary.	1835:86 47:00 56:16 74:80 7:81 M. 6:4, 7
M. 6, 10·8 1834·48 41·87 3·36 66·21	3h 6·9m H ₂ . 3 Ja. 3 Bu. 6.0. 3 116 R. A. 3h 7m Retrograunchanged Mä. 1 O.Z. 1	06°1 1n. 09°6 21 16°9 3n. O.∑. P. III D 65° C. while angular	3 4'09 3'31 2'3 '56 52. L. I. ec. 13' nite. motion.	1835·86 47·00 56·16 74·80 7·81 M. 6·4, 7

117	Σ	. 36	37.		Σ.	93 [°] .7		°75 82	1827.16
R. A		De	•	M.	Sm.	91 °0 87 °6	4n.	·82 ·8	30'16
3h 7.8		00 1		8, 8	Mä.	88.0	In.		41.79
Certain	indirect i	notion	: probab	ly binary.		93.I	,,	·5	2.65
Σ.	281.5		1.06		0.Σ.	91.1	2n.	·94	3.41
2.	99.7	In.	0.87	32,11	100				
	103.3	"	.92	3'14	122	Σ	. 38	8 .	
0.Σ. M ä.	273.9 95.8	"	.91	41.70	R. A	L_	Dec	1	M.
	98'3	2n.	.5 .52	2.89	3h 20		50°		8.2, 9.2
Se.	266.2	In.	*89	57.12	1		C. whit	· c .	
De. W. & S.	257'I 246'7	6n. 6	0.73	72.21	Proh	ably a bin			
	240 / (1 0 73	1 /2 31	Σ.	108.0	in.	2.93	1828-20
110		۲ ۱	59		~ .	110.8	,,	-78 -78	32.12
118	U	.Σ. ξ	ევ.			111.3	,,	3.02	5.18
R. A.		De		М.	Mä.	208.9	,,	2.82	45.64
3h 10m		38°		7.2, 8	100				
Ο. Σ.	271'3 274'9	In.	0.72	1844·89 6·09	123	Σ	. 38	9.	
	265.0	"		64.51	R. A		Dec		М.
Mä,	95.0	In.	0.7	51.77	3h 20		58°	 57'	7, 8
De.	261.6	4n.	0.88 -82	68·18 74·02		C. A, w			-
	#3/ Y 1		1 02	74 02	Duné	r's formu			ll.
119	~	9F	717		Dune				
_		. 37	-		P.	= 64°1 +	- 0° 125	= 2"'71 (t - 1	8500).
R. A. 3 ^h 14 ^m		18° 4		M.	Σ.	61.8			
				8.3, 8.7	Da.	7	4n.	2.81 .23	1831 00
Σ. Ο. Σ.	115'4	3n.	1013	1831.66 46.13		62.7		.71	7.04
Mä.	120.6	"	0.92	3.10	Mä	-7		.82	54.75
De.	117.5	In.	.7	7.91		63·5	3n. In.	.78 	43'77 52'22
<i>D</i> 0.	120.7		1.03	68.99	_	74'4		.81	61.53
100	-	00	20		De. Mo.	64.5	In.	·6 ·77	57.96 9.86
120	2,	. 38	SO .		Se.	67.3	2n.	·85	9.00
R. A.		Dec		М.	Du.	66.9	4n.	'4	72.66
3 _p 12.3		8° :	20′	8.3, 9.3	G1.	63.3	In.	٠7	3*94
	bly binar			1 = 0 = 1	101				
Σ. M ä.	90'I	3n. In.	0.8	1831.62 43.97	124	0	.Σ. 5	4 .	
	- 5	,,	•6	4'13	R. A		Dec	•	M.
	84°2 87°2	,,	1.02	5.04 .08	3h 21	m	67°	11'	7.2, 8.5
	78.2	"	'12 '11	58.11	H,	252.7			1829
Se.	86.8	,,	.12	.03	0.Σ.	352.7 354.5	4n.	25 ^{.8} 2	5008
De. W. & S.	75'9	7.0	·2 ·26	64.00	Mä,	174.6	In.	.71	52.26
W. W. D.	73°5 75°4	In.		73.93 4.00	De.	355.2	3n.	413	66-74
	.3	,,	1.3	.00					
	70.1	,,	٠	7.09	125	2,	. 40	2	
101			-		120	4	. +0	J.	
121	Σ.	. 38	51.		R. A		Dec.		M.
R. A.		Dec	• .	M.	3h 24';		19° 22		8.5, 8.2
3h 16.4		20°	33′	7, 8.7			C. whit	e.	
Probal	bly binary	7.			Proba	ibly a bina	RTY.		

	- ° .		. "	
H ₁ .	172.8		•••	1783.02
Σ.	181.4	3n.	2.01	1829.76
H ₂ .	178.5		2 ±	30.20
Mä.	180.9	2n.	3.56	43.14
Se.	176.7	,,	2.93	57.11
De.	178.0		-89	65.48
G1.	•o l	In.	•9	74.2

126	Σ	. 4 0	8.	
R. A. 3 ^h 24'7 ^m		Dec - 4°	M. 8, 8·2	
Σ.	346·I 348·5	In. ,,	1'47 '38 '26	1829 '90 32 '86 3'14
0, Σ, Mä, Se, De,	342.2 346.7 338.2 4	,, 2n.	*62 *15 *24 *25	41'70 4'13 57'10 64'00
W. & S.	339°2 160°8 159°8	5 5 4	'44 '43 '4	73°93 4°00 3°93
C.O. Dob.	336·4 198·7 156·5	2n. In. ,,	°34 0°95 	7.86 6.13 7.91

127	Σ. 400.	
R. A.	Dec.	M.
R. A. 3 ^h 25 ^{2m}	59° 38′	7, 8

Certain change in angle and distance. Probably a binary.

Σ.	283.0	ın.	1.64	1827:27
	281.7	,,	.20	31.52
	283.0	"	'44	.30
H,	276'9		2.24	0.40
Mä.	284.5		1.32	6.14
	288.5	2n.	.08	45'45
ο.Σ.	291.3	In.	•65	1.51
	285.3	,,	*35	8.31
	286.3	,,	.35 .36	54.67
	293'4	,,	.00	62.23
Se.	286.2	2n.	.05	57.96
De.	293.6	3n.	.11	67.41
G 1.	2950	In.	.3	73.96

128 Σ. 412.

7 TAURI.

Dec. 24° 4' 6.6, 6.7, 10 3h 27.3m

C. Z., A and B yellowish; Se., white; -Sm., A white, B pale yellow, C bluish.

This is a triple star, but H_1 did not see that A was double. H_2 and So. measured A C in 1821, without detecting the duplicity of A, their attention being no doubt drawn away by the extreme faintness of C. Z. in 1827 found that A was double.

Mädler measured it from 1841 to 1845;

he remarked on its difficulty, and thought that after ten or fifteen years it would cease to be separable.

Smyth calls it a "fine and very difficult object," and says, "Now the first two epochs exhibited so great an orbital change, in less than forty years, as to excite much attention; but the accordance of those of Σ . and myself indicate some error of observation or entry. In this conclusion, however, E.'s angle for 1821 95, in the Dorpat observations, is rejected; since it must be deemed rather an essay than a conclusive measurement."

Dawes (Mem. R. A. S., vol. xxxv., p. 316,) thinks that the decrease of angle continues in the close pair, and that the distance

remains nearly the same.

Secchi in 1857 regarded the motion both

in angle and distance as certain.

In A B there is decided change both in angle and distance. E. (P. M., p. ccxxvi.) thought that the relative movement of C was explained by the proper motion of A B. This is probably not the fact. $(0.\Sigma., 1877.)$

AB.

	•		"	
Σ.	271°0	In.	ი ივ	1827'16
	272.8	,,	•64	9.31
	274'7	,,	.67	31.55
	266.5	,,	·84	2.14
	264.9	,,	•68	119
	263.4	,,	.62	6.74
	266'4	,,	·57	7.05
Н,.	257.7		•••	1.81
Sm.	2650		.7	3.51
Mä,	•5		*55	9.70
	264.6	In.	.22	41.79
	254.6	,,	.4	6.84
	258.2	٠,,	'4	7'12
	257.6	,,	'4	50.96
	256.7	Ion.	'4	1.19
	.1	In.	•••	2.10
	252.9	3n.	' 4	3.88
	255.2	In.	'4	4.85
	253.3	,,	'4	۲۰ ا
	252.7	,,	'4	ğ.19
	259'1	,,	.3	7.06
	263.1	3n.		8.11
Da.	'4		٠6	41.96
	259.9		.65	6.91
Ο.Σ.	262.3	In.	.76	1.40
	267.4	2n.	·74	2.51
	263.7	In.	.61	50.18
_	24 I ' I	,,	oblong	73.13
8e.	256.8	3n.	0.420	56.32
De.	72.0	In.		62.72
_	71.5	2n.		3'40
Kn.	60.8	ın.	.22	4.93
Ta.	261.9	,,		5.41
W. & S.	227.0	7		72'14
	239.7	15	'4	3.14
	254'I	4	1	4.01
G1.	232.0	3	4 '4	3.94

$\frac{\mathbf{A} \mathbf{B}}{2}$	and	C.
-----------------------------------	-----	----

_	0 .		"	
\mathbf{H}_{1} .	66°8	1	20'0	1783.13
Σ.	63.2	In.	22.22	1827.16
	.2	,,	.38	32.16
	62.8	,,	.76	81.
	٠6	,,	•24	.19
So.	56.1		21.02	21.97
Sm.	Ğ1.Θ		'-8"	33.51
Mä.	60.3	ın.	22.20	41.49
Ο.Σ.	61.2	,,	.16	51.81
	60.4	,,	.07	69.10
	61.9	,,	.02	72.95
_	59.2	,,	12	3.13
Se.	60.1	2n.		55.99
De.	61.13	3n.	22.01	63.18
Kn.	64.8 64.8	ın.	·8 ₇	4.93
Ta.	64.8	,,		5.41
W. & S.	6i·1	2		72'17
	60.2	4 1	3.2	•86
	.2	I		'92
	.5 .9 .3	3 5 2		3.14
	•3	5	2.3	.93
	•6	2	·š	4.00

129 Σ. 414.

R. A.	Dec.	M.
3h 27.6m	19° 25′	8, 8
	C. white.	

Σ. Da.	185.6	3n.	7.1	1829.76
De.	184.6	In.	7:15	57.89
Mä.	5	,,	.55	43'14
Mo.	185.3	,,	.33	58·04 8·81
8e.	184.5	3n.	:37 :18	6.68
Ta. M.	180'9	In.		65.92
Fer.	182.1	1	·25 ·17	73.06

130 Σ. 422.

P. III., 98 ERIDANI.

R. A. Dec. M. 3^h 30·6^m 0° 12′ 6, 8·2

C. Z., deep yellow, blue; Se., yellow, blue; Sm., yellow, pale blue.

H₁, III. 45, *Phil. Trans.*, vol. lxxii., p. 220: "In constellation Tauri, near Fl. 10. Oct. 22. 1781. Double. It is near the star sub pede et scapula dextra. Extremely unequal. L. pale r.; S. d. Position, 35° 23' s.p."

35° 33' s.p."

Smyth says, "This is 45°, H, III., who by measures in 1781'83 made the position angle 234° 27'; but H. informs us, that by a MS. note he finds it declared that the

observation is too small by 6° or 8°. Hence the first measures for future reference must be those of So., No. 421.

be those of So., No. 431.

225° 12' 5".812 1824.02.

Mädler (Die. Fixst. Sys. p. 95) asks whether the companion passed its aphelion about 1833.

Secchi (p. 78) says, "Motion certain." Direct motion certain.—(0.Σ., 1877.)

Dunér gives-

 $P = 239^{\circ}.5 + 0^{\circ}.27 (t - 1860 \circ).$

_	•		"	
H ₁ .	227.5	ı		1781 8
Σ.	226. 5	1	5.4	22.08
	232.8	In.	6.18	32'14
	•6	٠,,	'12	'98
_	231.3	٠,,	.00	3.14
go.	225.3		5.28	24.38
H,	231.5	l	7 ±	30.50
Sm.	·8		5.9	4.63
	255.9	ŀ	6.0	45.81
Mä,	235.3	In.	5'64	2.04
	236.7	,,	•••	5.09
_	239.5	l	5.69	54.16
Da.	233.7			46.72
Ο.Σ.	238.8	In.	6.24	21.88
_	239.8	٠,,	'26	65.92
Se.	237.3	3n.	'37	57.06
Ta.	240.6	In.	'45	65.92
De.	238.6	2n,	'02	57.87
	240'0	5n.	.56	64.86
X.	234.0		5.89	1.93
_	237.2	In.	.71	6.10
Du.	239.5	2n.	6.58	8.84
	242.3	In.	.53	9.13
	243'9	-,,	.63	73'15
	246.6	,,	·6o	4.09
	.I	,,	'40	5.95
VIII A. 61	243°I	"	'43	6.09
W. & S.	241.3	4	5.9 6.2	1.95
	.5	5		.86
	.3	5 5 7	.3	3.93
G1.	242.0	7	'41	7:09
Pl.	240.0	3	.4	3.94
	242.9	3n.	2.91	7.00
Dob.	244.2	2n.		.86

131 Σ. 425.

R. A. Dec. M. 3^h 32·5^m 33° 44′ 7.3, 7.3

C. very white.

Dunér's formulæ are—

 $\Delta = 2^{\prime\prime} \cdot 83 - 0^{\prime\prime} \cdot 0125 \ (t - 1850).$ P = 102° · 5 - 0° · 07 \ (t - 1850).

	•		-,-
H ₁ .	98.2	1	1783.00
8o.	103.7	3.43	1823.00
Н,	100 ±	2	6'90
	103.4	·89	30.97
	102'2	3.22	1 .87

	_			
Σ.	104.6	3n.	2.87	1830.16
Da.	102 9		.99	.82
	· 8		3.03	40.80
	101.7		2.81	8.13
	102.7		•••	.66
	•••		2.86	9.98
	1020		.72	54.03
ĭä.	103.7		3.10	37:09
	.9	In.	.39	41.79
	102.6		14	4.01
	101.0	2n.	•0	2.11
	102.7	3n.	2.93	51.37
	•5	In.	'94	2.18
	101.8	,,	.70 .89	7.21
_	.0			62.23
De.	102.2	2n.	.27	54.86
	100.8	1	.61	68.79
Se.	6.101	3n.	∙8	57.64
Yo.	.3		71	8.13
¥.	103.9		•62	64.53
Ta.	101.0	In.	.78	5.93
6 1.	98.7	,,	•••	73.94
Du.	101.8	4n.	2.33	4.28
W. & S.	98.9	In.	52	7:09
	99.2	,,	.44 .61	.12
	•3	۱ ,,	101	.16

132 Σ. **43**6.

R. A. Dec. M. 7, 8.2

Rectilinear motion. Probably an optical pair.

Dunér has

$$\Delta = 31''.70 + 0''.096 (t - 1850.0).$$

P = 233°·1 + 0°·043 (t - 1850.0).

Σ. Mä.	232.4	4n. In.	30.22	1832.21
De. Du. C.O. Fl.	233'4 234'I '5	3n. In. In.	32.98 33.53 34.9 34.1	64.04 8.94 77.87 08

133 Σ. 434.

R. A. Dec. M. 3^h 36·1^m 38° 0′ 7, 7·8

Rectilinear motion. Probably an optical pair.

Dunér has

 $\Delta = 29'' \cdot 00 + 0'' \cdot 0335 (t - 1848 \cdot 0).$ P = 87° \cdot 70 - 0° \cdot 029 (t - 1848 \cdot 0).

80. Σ. De, Du, W. & S,	88.4 2 87.2 1	3n. 5n. ,,	28 43 34 29 55 71 30 23	1824.00 30.59 65.13 8.69
W. & S.	•	ın.	30.53	77'15
	'4	,,	.22	.16

134 Ο.Σ. 61. R. A. Dec. M. 7° 31′ 7, 10

In 1844, O.Z. once suspected duplicity, magnitudes 7, 10; distance 1"2; but on the whole was inclined to regard the star as single, and therefore rejected it from his list. De. in 1867 gave the distance 1"93, and magnitudes 7'2, 10; and in 1875 Romberg readily saw the companion with the meridian circle at Poulkova.

Ο.Σ.	°		obľ. ?	1842.93 4.91 67.03
De.	125.8	3 n.	1.03	67.03
		3	- 73	1 9/93

135 Σ. 447.

R. A. Dec. M. 7.8, 9

Change in angle and distance $(0.\Sigma.$ 1877). Rectilinear motion.

Σ.	179.2		26.2	1828-15
	178.3	Зn.	.46	30.29
	176'7	2n.	'62	6.11
ĭä.	173'7	In.	27.26	45.85
	174.8	,,	•••	51.12
	175.8	,,	27.48	2.18
	177.0	,,	28.95	7.21
Ο.Σ.	175.0	,,	26.91	0.60
De.	173.2	,,	.91	62.97
	.I	,,	'97	3.11
	172.6	,,	27.35	7.83
	171.6	,,	1 '14	73.72

136 Σ. 453.

R. A. Dec. M. 3^h 42^m 23° 39′ 5, 8

This star has not been seen double since 1830. Mä. looked for it more than twenty times in the years 1840 to 1857, but saw no trace of the companion. On the 11th of Jan., 1876, while observing an occultation of the Pleiades by the Moon, M. Hartwig, of the Strasbourg Observatory, noted that the disappearance of Atlas was not instantaneous.

Σ.	107.5	In.	0.49	1827.16
	29.2	,,	. 35	30.52
	1	,,	Single	1.53
Mä,		,,	,,	41.79
	- 1	,,	,,	199

137 ο.Σ. 65

R. A. Dec. M. 3ⁿ 43'1^m 25° 13' 6'5, 6'8

A system	probably in	rapid cha	nge. An
occultation	in 1865?	Special	attention
should be di	rected to th	is object.	

0.Σ. Da.	209'2	4n.	0.74	1846.16
Mä,	202.9 204.3	2n.	-66	47·88 52·14
Se.	201'4	2n.	1.04	9.05
De.	195.		elongd. single	65.93
Du.			,,	71.18
	29.		elongd.	4'17

138 Σ. 459.

R. A.		Dec.		M.
3 ^h 43.6 ^m		29° 17'		7·8, 10';
Σ.	318·3	3n.	12.84	1831°38
Mä.	'4	In.	.88	45°00
De.	325·2	3n.	15.1	66°81

139 Σ. 470.

R. A.	Dec.	M.
R. A. 3 ^h 48'2 ^m	—3° 19′	4, 6

C. A yellow, B blue.

Η ₁ . Σ.	343'4		4'32	1781 81
Σ.	346.2	In.	6.72	1833'14
	347.6	2n.	.68	.12
Μä.	348.1	In.	·75	44'15
	.1	2n.	'62	5.06
Ro.	346.8	4	7'14	63.11
Ta.	345.5	In.	5.99	5.92
	342'6	,,	.80	71.78
	346.2	,,	6.9	2.97
Du.	.7	2n.	•66	0.64
W. & S.	347.2	4	-8	3.93
C.O.	.3	2n.	.77	7.90

140 o.Σ. 67.

R. 3 ^h	A. 47 ^m	T. A. or	Dec. 60° 4	5' B, green	M. 5, 8 ²
Ο. Σ. De.			-		1847.18

141 Σ. 460.

49 CEPHEI.

R. A.	Dec.	M.
3 ^h 50 ^m	80° 22'	5'2, 6
C. Σ. A. y	ellow, B. bluish; Se.	both white

C. Σ . A. yellow, B. bluish; Se. both white. Secchi (p. 7) says that the motion in De.

angle is certain. Dembowski, "Cephei 49. Couple toujours difficile."
Certain change in angle. (Ο.Σ., 1877.)

Certai	•	ur ang		2., 10//.,
Σ.	348°.5	In.	o88	1828:27
	350.6	,,	·80	*29
	354°I	,,	'94	32.28
	355.5	,,	'96	.29
1	354'4	,,	·86	3'34
	355.8	3n.	·86	6.45
Mä.	356.4		·87	6.76
	0.1	In.	·8	42.53
	1.6	,,	.85	4°33
	4.7	2n.	.90	5.32
Ο.Σ.	359.22	4n.	. 74	0.36
	3.0	In.	'73	6.30
	1.3	,,	.40	9.53
	2.3	"	.72	50.56
	18.8	,,	'97	7:29
	22.4	,.	.76	64.43
_	22.7	,,	.79	6.49
Se.	10.49	2n.	.72	57.90
De.	7.79	,,		5.19
	8.6	3n.	1.0	671
	15.6	4n.	0.8	62.85
	•5	3n.	-8	3708
	19.5	In.	1.00	5'97
	21.3	,,	0.85	7.68
	23.7	,•	·86	8.65
	25.4	,,		9.74
	26.6	,,	1.15	72 68
	7	,,	0.83	3.00
	27.6	,,	·87	4.18
	30.8	,,	·89 ·68	-83
W. & S.	29.9	6		571
W. & S.	24'4		7	2.02
	25.7	7	·66	3'24
	27.4	4		25
	28.9	4	.75 .86	.29
G1.	25'1	5	- 60	2.10
GI.	27:3	5 3 3	·6 ·8	3'94
Dob.	29:3	3		4'12 6'12
טטע.	27.5	4n.		0.13

142 Σ. 483.

			-	
R. A	·2 ^m	Dec.		M. 8, 9 ⁻ 5
Σ. Η,. Mä. De.	11.6 10.0 5.6 4.0 0.4	3n. 2n. 1n. 5n.	2·8 3·43· ·47 2·5 1·67	1830°52 1°80 45°17 53°23 64°64

143 ο.Σ. 71.

OF.	•).4.	(I.	
R. A. 3 ^h 59 ^m		Dec		M.
3 ^h 59 ^m		33°		7. 9
.Σ.	206.4	2n.	0.98	1846.44
ľä.		,, }	could not	52.18
e.	202.8	3n. `	1.08	67:05

144 ο.Σ. 531.

R. A. Dec. M. 3^h 59^m 37° 46′ 6·5, 8·2

The small star partakes in the rapid proper motion of the principal star, the direction and amount of motion being almost identical with that of 50 Persei, which is about 12' distant. These stars deserve special attention. (0.2.)

0.Σ.	148.5	2n.	3.47	3.18
	146.7	In.		3.18
	151.7	,,	°45 2°88	9.12
	142.4	,,	2.88	70.5

145 ο.Σ. 72.

R. A.			Dec.		M.
4 ^h I ^m			17° 1		6, 9 [.] 2
Mä. Ο. Σ. De. Pl.		325.3 325.3 329.6	In. 5n. 3n. 2n.	4°49 4°37 '97	1845 96 54 51 67 44 76 81

146 Σ. 494.

R. A. Dec. M. 4^h 1'7^m 22° 47′ 8, 8

C. very white.

Dunér has,

 $P = 187^{\circ}.6 - 0^{\circ}.100 (t - 1852.51).$

	•		•	
H ₁ .		I	4" to 8"	1784.88
8o.	185.9	In.	6.30	1825.79
Σ.	191.0	,,	5.00	8.19
	190'2	,,	'06	31.18
	188.4	,,	'09	3.19
Da.	•••		11.	41.98
	186.4	ĺ		3.13
	.7		5.00	8.13
	187.0	ŀ	.20	60.08
Mä,	188.3	In.	*37	44.08
Hi,	187.9		·10	5 78
	186.8		•••	6.74
Mo.	187.4		5.00	56.05
De.	186.0		115	6.78
Se.	187.5		'IQ	7:39
Ta,	185.8	In.	·6ś	65.95 8.98
	184.6	,,	•52	8.98
	187.9	,,		9.13
	·6	,,	.51 4.89	72.97
Du.	186.0	2n.	·8 ₃	0.64

147 ο.Σ. 74.

R. A. 4 ^h 6 ^m		Dec 9° 20		M. 8, 8·5
0.Σ. Se. De.	270'I	In.	o·53 single	1849·16 57·05 65

148 Σ. 511.

R. A. Dec. M. 4^h 7.8^m 58° 29′ 7.5, 8

C. Σ . both white. Se. A, white, yellow; B, white, bluish. De. both white.

Se. thought that the motion was certain. In 1863 De. found it "extremely difficult."

Rapid angular motion. The distance seems unchanged; but the acceleration of the angular motion since 1845 leads to the conclusion that the distance has been much less than before. (O.Z., 1877.)

	• _		"	
Σ.	323.6	In.	0.22	1827:26
	319.5	,,	'46	8.29
	316.4	٠,,	•63	31.52
	320.8	,,	. 54	'30
Ο.Σ.	317.3	,,	•68	41.51
	314'3	,,	.62	6.01
	316.9	۱ ,, ا	•65	8.31
	294'3	,,	·6o	70.25
mä.	320'7	3n.	•46	43.30
Se.	302.0	2n.	'4	58.02
De.	293.0			63.37
	296.2		•••	4.08
W. & S.	-		failed	73.25
		i :	,,	5.09

149 Σ. 518.

40 KRIDANI.

R. A. Dec. 4^h 9.8^m — 7° 47'

A 4, B 9, C 10'8, D 12, E 11'4.

A remarkable ternary system: common proper motion - 2"17 in R. A., and + 3"45 in N. P. D.

A B. Σ . (see M. M., p. 275) showed that A and B have a common proper motion, and that the distance was slowly diminishing. On reducing the observations from 1825 to 1871 to the equinox of 1850, and freeing them from the effects of refraction, O. \(\Sigma\). finds a general confirmation of the diminution of distance, and that since 1855 the change has been almost inappreciable. This may be explained by the accidental errors in the measures, or, more probably, by the disturbing effect of the third star C: for B and C evidently revolve about A, the motion being retrograde.

B C. H₁ discovered C in 1783 13. It

B C. H₁ discovered C in 1783·13. It was seen by Σ. in 1825, but with great difficulty; and in 1835 and 1836 he could find no trace of it. In 1850, O.Σ. began to observe this system, and always saw C without difficulty. The distance appears to have attained its maximum since 1850, and we may therefore soon expect to find the

object very difficult. Since their discovery, that is in 92 years, the two stars have described 190° about their common centre of gravity. An examination of the measures shows that the period is about 200 years, that the apparent orbit of C about B is very oblong, and that the passage between 1825 and 1850 was not a perfect occultation. The minimum distance was probably reached about 1835, and hence Σ.'s difficulty above mentioned. (0.2., 1877.)

The small stars D and E do not belong AB.

to the system.

				1
н.	107.5	1	89"±	1783.13
H ₁ .	10/3	1	09 1	1824.90
So.	.9]	84.73	1024 90
Σ.	.2	2n.	85.32	5.02
	.3	4n.	83'48	36.04
Sm.	-6	' 1	9	27.09
		1		
Ο.Σ.	106.3	2n.	82.53	50.94
	105.9	,,	.19	1.49
	106.0	3n.	81.93	3.64
	105.8	īn.	82.33	4'79
			81.72	6.8ó l
		"	01 /2	
	-8	,,	82.04	7.82
	•6	2n.	81.48	64.84
	.7	,,	.72	5.89
	⁄8	in.	.83	9.10
	- 1		.67	72.18
	.8	,,		
	- 1	,,	82.14	4.10
Se.	106.3	3n.	.22	56.38
De.	105.8	-	.17	63.47
Wi.	•6	2n.	81.48	4.85
Kn.	106.0			71.99
		In.	80.77	71 99
Fl.	104.7		81.2	7.12
W. & S.	106.7	2	82.2	'94
			-	
		ВC		
\mathbf{H}_{1} .	326.7	In.	4.08	1783.13
Σ .	287	1	4 00	1,03.13
۷		,,		1825.13
Ο.Σ.	156.6	2n.	3.56	50'94
	1550	,,	.87	1.49
	.4	3n.	'93	3.64
				1 4 02
				3.04
	•3	In.	4.13	4.79
	.3 152.9		4.13	4.79 6.80
	.3 152'9 153'0	In.	4°13 °51 °40	4.79 6.80 7.82
	.3 152.9	In.	4.13	4.79 6.80 7.82 64.84
	152.9 153.0 147.6	In. ,, ,, 2n.	4°13 °51 °40	4.79 6.80 7.82 64.84
	.3 152.9 153.0 147.6 143.8	In. ,, ,, 2n.	4.13 -51 -40 -45 -26	4·79 6·80 7·82 64·84 5·89
	152.9 153.0 147.6 143.8 140.4	In. ,, 2n. ,, In.	4.13 .51 .40 .45 .26	4.79 6.80 7.82 64.84 5.89 9.10
	152.9 153.0 147.6 143.8 140.4	In. ,, 2n. ,, In. 2n.	4.13 .51 .40 .45 .26 .46	4.79 6.80 7.82 64.84 5.89 9.10 72.56
	152.9 153.0 147.6 143.8 140.4 .6	In. ,, 2n. ,, In.	4.13 .51 .40 .45 .26 .46 .62	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99
	152.9 153.0 147.6 143.8 140.4 .6	In. ,, 2n. ,, In. 2n.	4·13 ·40 ·45 ·26 ·46 ·62 ·27 ·99	4.79 6.80 7.82 64.84 5.89 9.10 72.56
	.3 152.9 153.0 147.6 143.8 140.4 .6 133.9 135.7	In. ,, 2n. ,, In. 2n. In.	4·13 ·40 ·45 ·26 ·46 ·62 ·27 ·99	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10
Da.	.3 152.9 153.0 147.6 143.8 140.4 .6 133.9 135.7 138.1	In. ,, 2n. ,, In. 2n. In.	4'13 '51 '40 '45 '26 '46 '62 '27 '99 3'80	4·79 6·80 7·82 64·84 5·89 9·10 72·56 3·99 4·10 5·14
Da. Wi	.3 152.9 153.0 147.6 143.8 140.4 .6 133.9 135.7 138.1 160.0	In. ,, 2n. ,, In. 2n. ,, ,, ,, ,, ,, ,,	4.13 .51 .40 .45 .26 .46 .62 .27 .99 3.80 3 ±	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06
Wi.	152'9 153'0 147'6 143'8 140'4 '6 133'9 135'7 138'1 160'0 147'6	In. ,, ,, ,, In. 2n. Ib. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4.13 .51 .40 .45 .26 .46 .62 .27 .99 3.80 3 ± 4.45	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80
W i. C.O.	152.9 153.0 147.6 143.8 140.4 133.9 135.7 138.1 160.0 147.6 127.5	In. ,, 2n. ,, In. 2n. ,, ,, ,, ,, ,, ,,	4·13 ·51 ·40 ·45 ·26 ·46 ·62 ·27 ·99 3·80 3 ± 4·45 ·36	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84
Wi.	152.9 153.0 147.6 143.8 140.4 .6 133.9 135.7 138.1 160.0 147.6	In. ,, ,, ,, In. 2n. Ib. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4.13 .51 .40 .45 .26 .46 .62 .27 .99 3.80 3 ± 4.45	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80
W i. C.O.	152.9 153.0 147.6 143.8 140.4 133.9 135.7 138.1 160.0 147.6 127.5	In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4'13 '51 '40 '45 '46 '62 '27 '99 3'80 3 ± 4'45 '36 2 ±	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84
Wi. C.O. Fl.	152'9 153'0 147'6 143'8 140'4 6 133'9 135'7 138'7 160'0 147'6 127'5 120'0	In. ,, ,, ,, In. 2n. Ib. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4·13 ·51 ·40 ·45 ·26 ·62 ·27 ·99 3·8 ± 4·45 ·36 2 ±	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84
W i. C.O.	152'9 153'0 147'6 143'8 140'4 6 133'9 135'7 138'7 160'0 147'6 127'5 120'0	In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4·13 ·51 ·40 ·45 ·26 ·62 ·27 ·99 3·8 ± 4·45 ·36 2 ±	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84
Wi. C.O. Fl.	.3 152'9 153'9 147'6 143'8 140'4 .6 133'9 135'7 138'1 160'0 147'6 127'5 120'0	In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4'13 '51 '40 '45 '26 '46 '62 '27 '99 3'80 3 ± 4'45 '36 2 ±	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84 -12
Wi. C.O. Fl. Wi.	152'9 153'0 147'6 143'8 140'4 6 133'9 135'7 138'7 160'0 147'6 127'5 120'0	In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4·13 ·51 ·40 ·45 ·26 ·62 ·27 ·99 3·8 ± 4·45 ·36 2 ±	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84
Wi. C.O. Fl. Wi.	.3 152'9 153'9 147'6 143'8 140'4 .6 133'9 135'7 138'1 160'0 147'6 127'5 120'0	In. ,, 2n. In. 2n. In. 3n. A D	4'13 '51 '40 '45 '26 '46 '62 '27 '99 3'80 3 ± 4'45 '36 2 ± 1.	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84 -12
Wi. C.O. Fl. Wi. Fl.	152'9 153'9 154'6 147'6 143'8 140'4 133'9 135'7 138'1 160'0 147'6 127'5 120'0	In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4'13 '51 '40 '45 '26 '46 '62 '27 '99 3'80 3 ± 4'45 '36 2 ± 0.	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84 -12
Wi. C.O. Fl. Wi. Fl.	.3 152'9 153'9 147'6 143'8 140'4 .6 133'9 135'7 138'1 160'0 147'5 120'0 185'0 148'0	In. ,, 2n. In. 2n. In. 3n. A D	4'13 '51 '40 '45 '26 '46 '62 '27 '99 3'80 3 ± 4'45 '36 2 ± 175'85 37'2	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84 77.12
Wi. C.O. Fl. Wi. Fl.	152'9 153'9 154'6 147'6 143'8 140'4 133'9 135'7 138'1 160'0 147'6 127'5 120'0	In. ,, 2n. In. 2n. In. 3n. A D	4'13 '51 '40 '45 '26 '46 '62 '27 '99 3'80 3 ± 4'45 '36 2 ± 0.	4.79 6.80 7.82 64.84 5.89 9.10 72.56 3.99 4.10 5.14 51.06 64.80 77.84 -12

150	Σ.	520).		
R. A. 4 ^h 11'1 ^m	:	Dec. 22° 29'		M. 8, 8	}
	C	white.	•		
Σ. Da. Mä. Ο.Σ. Wi. Se. De.	101.8 99.0 102.9 97.6 102.7 99.4 110.5 102.9 106.3	5n. In. 3n. 2n. ,,	o'88 ·87 ·97 ·45 1·18 o·96 ·89 ·63 ·9	1834 16 41 5 54 1 41 7 4 0 1 9 56 2 7 1 68 0	2 3 9 8 6 0
151	Ο.	Σ. 7	9.		
R. A. 4 ^h 13 ^m	16	ec. ° 14'	7	M. 9, 7, 8	8
	C. A, w	hite; B	, ashy.		
Rapid O. Z. Mä Se. De.	change ii 24.3 25.2 27.4 32.5 47.1	2n. 2n. ,, In. 4n.	0.76 .32 .35 .98 .64	1846 0 8 5 52 0 9 0 67 2	6 9 5
152	О.	Σ. 8	0.		
R. A. 4 ^h 15 ^m		Dec.	y '	M. 6-5,	
Ο.Σ. De.	188·6 184·6	5n. 4n.	o·52 ·5	1848°4 67°9	4
153	Σ.	53	 5.		
	23	o TAU	RI.		
R. A. 4 ^h 16·8 ⁿ	a	Dec.	;	M. 6·7,	
	, yellowi	white.			
the dista Se. (certain.	s (<i>Mem. I</i>) t the anglance is un p. 24). The dis rograde r	changed The national tance h	1. notion as dimi	in angle nished.	is

1829.19

32.28

3.14

ī 86

1.96

2n.

ın.

,,

5n. 9n.

Σ.

Dá.

355.0

353'4

352.2

345.2

	•		"	
Da.	344 6	2n.	I '92	1847'04
	343.6	In.	•85	8.13
	342.7	3n.	•••	54.59
	•••	2n.	2.06	.82
0.Σ.	348·0	In.	.08	1.40
	346.8	,,	1'97	2.51
	340'7	۱,, ا	2.03	72.18
Mä.	351.3	١,,	1.76	44'12
8e.	3450	2n.	·54	56.2
Ta.	341.8	In.	2.12	65.95
	343.6	,,	•••	9.08
_	344.8	٠,,	•••	72.14
De.	343.0	2n	1'4	56.82
	342.2	3n	.74	62.90
	341.8	2n	.73	3.11
Mo.	346.0	,,	•6	0.03
W. & S.	340.0	6	'95	72.08
	339.5	4	2.09	3'14
	340°I	4	1.41	'93
	339.7	9	.66	.13
	341.9	5 5	•••	5.18
	339.3	5	.75	.19
~1	338.4	4	2.01	7:09
G1.	339.7	5	1.8	3.94
W.0 .	338.4	In.	71	9.11
	'4	,,	•68	.11
a _	340.8	,,	.78	'12
Sp.	335.6		.72	7'16
Schi.	5	,,	'72	.16
Dob.	336.7	2n.	•56	.89
	•9	In.	•65	8.08

154 ο.Σ. 81.

R. A.	Dec.			M.
4 ^h 17 ^m	33° 40′			6, 8·8
0.Σ.	53.0	4n.	4.49	1847.86
Mä.	235.1	In.	13	52.18
De.	50.4	3n.	37	66.77

155 ο.Σ. 82.

R. A.	Dec.	M.
4 ^h 16.9 ^m	14° 46′	7, 9

Rapid change in angle.

0.Σ.	230.4	2n.	1 '04	1848.66
Mä.	231.7	ın.	0.0	45'96
De.	195.9	3n.	0.04	66.73

156 Σ. 547.

R. A.		De		M.	
4 ^h 20	pos.	—1°	4I'	8.5, 11.5	
Σ. Mä	344'3	3n.	4.5	1831.39	

157 Σ. 554.

So TAURI.

	SO TAURI.	
R. A. 4 ^h 23'3 ^m	Dec. 15° 23'	M. 6·5, 9
	C. vellow	

The distance has probably decreased. The common proper motion is + 0":061 in R. A., and - 0":003 in N. P. D. The measures are very discordant, but this may be explained by the faintness and closeness of the stars, and the nebulous character of the smaller.

	_			
Σ.	12.0	4n.	1"73	1831.18
Sm.	13.9	•	.6	2.16
	11.0		·6 ·4 ·6 ·8	7:22
	13.9		·Ġ	9.16
	15.5		•8	43.11
Da.	9.8		·5	36.96
	•••		•66	40'10
	12.2		•••	3.09
	10.6		1'41	59.15
Mä,	18.4	In.	45	44'17
	•6	2n.	.66	5.09
	31.3	,,	.33	51.09
	24.3	In.	•29	2.12
	22.5	,,	•••	3.92
	20.6	,,	I '24	4.12
	21.3	,,	`37	5.50
	18.9	,,	•••	7.95
	21'4	,,	1.31	8.51
Ο.Σ.	8.4	In.	.61	1.82
_	in co	ntact.		72.18
Ja.	10.3	·	1.20	53.14
	6.9	IO	'44	6.58
_	7.7	11	•56	8.09
De.	10.2		.23	63.10
W. & S.	14.7	6	•29	70.07

158 ο.Σ. 85.

R. A.		Dec.		M.	
4 ^h 28 ^m		48° 10'		7.5, 10	
O.Σ. De.	23.65	2n. 4n.	1.07	1846.70	

159 a TAURI.

R. A.	Dec.	М.
4h 29m	16° 16′	1, 11.2

C. A, pale rose tint; B, sky blue (Sm.)

This beautiful star has been observed for more than 2000 years. It has been called by various names, e.g., "The Hindmost," "Stella dominatrix," "The Bull's-eye," etc. Tycho considered it to be 125 times the size of our earth, while Ricciolus worked it up

to 2810 times that magnitude." (Sm.) "Its ruddy aspect has long been noted, and old Leonard Digges, in his Prognostication Everlasting, 1555, pronounces that it is "ever a meate rodde." (Sm.) "I have repeatedly seen it apparently projected on the disc of the moon, even to an amount of nearly three seconds of time, at the instant of immersion, when occulted by that body. The phenomenon seems to be owing to the greater proportionate refrangibility of the white lunar light, than that of the red light of the star, elevating her apparent disc at the time and point of contact." (Sm.) The proper motion of this fine star has been variously estimated :- Piazzi, + 0"'04, -0":21; Argelander, +0":08, -0":17; Bessel, +0":12, -0":15, in R. A. and Dec. respectively. The B. A. C. gives +0":008 in R. A. and +0":15 in N. P. D.

The position angle is about 36°, and the distance has changed from 95" to 114" since 1781.

Mr. Burnham has lately discovered with the 181-inch refractor of the Dearborn Observatory an exceedingly faint companion to this bright star: distance about 30".5.

H ₁ .	37°0		l 95	1781.96
•	35.1		'	1802'10
So.	36.2		90	25'04
Σ.	· •		109	36.06
Sm.	35.9		107.9	98
Ο. Σ.	.5		111.6	51.40
De.			112.7	63.37
Gl.	34°I 35°6	In.	110.0∓	76.07
F1.	.5	,,	114'5	7.06
Bu.	.2	,,	113.9	.9

Mr. Burnham gives the following measures of his new companion to this star:-

111.6	In.	30.16	1877:83
103.3	,,	·61	1 .86
112.1	٠,,	.27	1 199

Σ. 567. 160

R. A.		Dec.			М.		
4h 29.5	n		190	L	4′	8.5,	9
		C.	yel	low	7.		
п.		•				1 - 0	. 0

		•		
Σ.	302.9	3n.	1.43	63.95
Mä.	.9		.43	43.80
De.	313.7		.68	63.95

Σ. 566. 161

2 CAMELOPARDI.

R. A.	Dec.	M.
4 ^h 30.4 ^m	53° 15′	5, 7.4

C. Z. A, yellow; B, bluish; Se. A, yellow B, blue; Sm. A, yellow; B, pale blue De. A, blue; B, ashy.

Dawes (Mem. R. A. S., vol. viii, p. 78) "This star should be watched as it may be opening. "Z. recorded if Smyth (p. 105).

'Vicinæ'; but it is certainly wider and easier of measurement than those usually so classed by him."

Certain retrograde motion. Distance probably unchanged. (0.Σ., 1877.)

The common proper motion is + 0 002 in R. A., and + o" 11 N. P. D.

Σ.	311.4	4n.	1.58	1829.79
H.	308.3	•	2.0	30 80
H. Mä.	309.5	rn.	1.26	4 96
	305.3	2n.	·47	45.29
	306.9	2n.	'4 I	51.84
	302.7	,,	.20	2.26
	303.2	,,	*39	5.52
Sm.	307.9		•9	34'49
	308.7		.7	6.58
	307.2		•5	47.21
Ο.Σ.	304.6	3n.	·5 ·61	6.44
	302'4	In.	-63	51.29
	295.3	,,	.70	66.24
	296.7		.70	71'26
Ja.	303.7	10	*94	53.19
De.	301.9	3n.	•••	4'95
	302.7	,,	•••	509
	306.3	2n.	7.5	-89
	304'2	In.	1.6	56.30
	298.8	2n.	.87	62.83
	300.0	ın.	'50	4.07
Se.	• • • •	2n.	.73	58.92
W. & S.	294.3	5	'54	75.09

162 Σ. 572.

R. A.	Dec.	M.
4h 31.1m	26° 42′	6.5, 6.5
	C. yellowish.	

Dunér's formulæ are

$$P = \frac{1852 \cdot 17}{207} \cdot 8 - 0^{\circ} \cdot 146 (t - 1850 \circ).$$

$$213 \cdot 5 \mid 2^{\circ} \cdot 6 \mid 1822 \cdot 2 \mid 1822 \cdot 2 \mid 1823 \cdot 2$$

$\mathbf{P} = \mathbf{r}$	$P = 207^{\circ}.8 - 0^{\circ}.146 (t - 1850.0).$				
Σ.	213.5		2.69	1822'27	
	210.3	3n.	3.12	30.26	
H, & 80.	209'I	'	.92	23'97	
H,	208.8	1 1	.4	32'30	
Da.	210.6		·4 ·6	6.97	
Mä.	.I	In.	.79	43'14	
	206.2	,,	.62	58.23	
De.	207.2		·60	675	
	204'9		*35	68.29	
Se.	206'0	3n.	'47	5701	
Mo.	•4	2n.	·43	ેજ	
Du.	204.7	"	'40	71 63	
W. & B.	7		•56	3.00	
Gl.	•2		·4 ·6	4'04	
	205'2		−6	10.5	

163 Σ. 577.

R. A.	Dec.	M.
4h 34'Im	37° 17′	7'7, 7'7
C. 2. white.	Se. white.	De. white.

Secchi (p. 24) says there is "a very small motion in angle."

Certain change in angle, retrograde; distance unchanged. (0.2., 1877.)

			" -	_
Σ.	278°7	3n.	1.58	1829:57
н,	272.2		·5 ·68	32.60
Σ. Η, Ο.Σ.	91.2	In.	·68	41.40
	30.I	,,	.79	6.11
	79'3	,,	•53	70.25
	80.3	,,	.70	1.56
Se.	87:99	3n.	.53 .70 .63	57.66
Mä.	274'2	_	•64	35.81
	267.7	In.	83	45'17
	.3	2n.	.61	52.18
	.I	In.	.67	1'04
	265°I	,,	.90	4.85
	266.5	,,	•66	5.50
_	264 · 6	,,	.92	7.21
De.	85.1	,,	·5 ·4	6.93
	_ '3	2 n.	'4	8.42
	84.6	3n.	.59	62.88
	.8	in.		3.89
W. & S.	260.9	4	I'43	73'93
	258.6	4	·50 ·62	'95
	.9	4		99
	84.7	10	. 47	2.16
	2·I	3	*24	5.00
~1	2.2	_	•36	.18
G 1.	260.9	In.	35	3.94
D-1	259.7	,,	4	5.90 7.88
Dob.	83·17 76·55	2n.	·42 ·65	7.88
	76.22	In.	1 .65	8.08

164 Σ. 589.

R. A.	Dec.	M.
4h 38.5m	5° 4′	8, 8
	C. yellowish white.	

Σ.	310.9	3n.	4'47	1831.39
Mä.	.7	2n.	'41	43'09
Da.	311.3		•••	6.73
De.	302.8		.39	63.04
M.	295.2		•65	5.02
Ta.	306.6	In.	.82	6.04
G 1.	303.2	,,	'44	73.98

165 ο.Σ. 90.

R. A. 4 ^h 48 ^m		Dec. 8° 24		M. 7, 9
0.Σ. Mä .	343'9 352'9	2n.	2.06 1.8	1845.50
De.	355°3 345°6	In. 4n.	·8 ·85	52.09 66.98

166 ο.Σ. 89.

R. A.	Dec.	M.
4 ^h 49 ^m	73° 53′	6.2, 7.5

From the measures of 0.2. and De. it appears probable that the periastron passage occurred about 1870.

O.Σ. 305.9 5n. 0.45 1848 De. 104.23 oblong 69	O.Σ. De,	305.9 104.53	5n. j	o"45 ong	1848
--	-------------	-----------------	-------	-------------	------

167 0.5. 91.

,	U.Z. U.	
R. A.	Dec.	M.
4h 50m	3° oʻ	7, 7.5

Perhaps one of the stars is a variable.

ο.Σ.	62.8	3n.	0.77	1851.85
De.	62·8 240·9	,,	٦ '7	66.61

168 Σ. 622.

R. A. 4 ^h 51.9		Dec. 1° 28'		M. 8·2, 8·2	
H,.	185.1			1783.06	
Σ.	179'9	3n.	2.64	1832.09	
H,	182.0	-		29.88	
Sm.	180'4		2.4	33.92	
Da.	175'9		•36	40'12	
Mä,	181.1	,,	'94	2.20	
	179.8	In.	.93	3.14	
	183.6	,,	•••	5.11	
	174.9	,,	2.77	58.10	
Ο.Σ.	176.83	3n.	.78	46'02	
Se.	4	2n.	'41	58.08	
De.	• •		'45	66.90	
G1.	173'2		'7	76.07	

169 S. 619.

R. A.	Dec.	M.
4h 52'Im	50° 5′	8.7, 8.7
	C -hita	

C. white

Σ.	106.0	3n.	5.41	1830°23 45°67 52°26 66°90
Mä,	100.1	,,	5.41 .63 .25	45.67
	110.2	In.	.25	25.50
De.	112.1		.05	1 66.90

170 Σ. 615.

R. A.	Dec.	M.
4 ^h 53'1 ^m	73° 25'	8, 9 [.] 8
. 50		

Probable increase in the angle. (0.Σ., 1877.)
Σ. 337 1 | 3n. | 1.26 | 1831.9

Z.	33/ 1	J	. 20	203. 3
K ä	.8	In.	0.8	44'34 66'81
De.	345'9	3n.	1'40	66.81
Ο. Σ.	346.0	In.	4 1	73'35

171	Ο.Σ.	92.	
R. A. 4 ^h 52 ^m	3	Dec. 9° 13'	M. 6, 9 [.] 7
Da. O.Σ. Mä. De.	226·3 I	n. 2'9 n. 77 n. 5 o, 66 n. 8	8 49'09 5 52'18 5 '26
172	Ο.Σ.	93.	
R. A. 4 ^h 54'I		Dec. \$°55'	M. 7.5, 9
Mä. O.Σ. De.	65.6 2	n. 0.82 n. 1.33 n. 07	47.18
173	Ο.Σ.	95.	
R. A. 4 ^h 58 [.] 4		Dec. ° 38′	M. 6.6, 7.2
_		white.	
	obable incre	ase of dis	tance.
0.Σ. Mä.	347.6 i	n. 0.5	52.09
De.		n. 77	63.54

De.	340.4 340.4 338.5	3n. 3n.	.77 .5	63.24 6.97
174	0	Σ. 9	7.	
R. A. 4 ^h 59'3 ^t	n	Dec. 22° 5	6'	M. 6, 7 [.] 8

C A, yellow.

Between 1848 and 1861 O.Z.'s observations show no trace of angular change. Yet, in 1846, the two stars were so close, that no separation could be effected by him. Probably one star occulted the other about 1844.

Ο.Σ.	248	round oblong	1844.91 6.19
D.	159.4	In. 0.53	61.20
De.		elongated	6
		single	وا

175 o.Σ. 98.

14 i ORIONIS.

R. A. Dec. M 5^h 1'3^m 8° 20′ 6, 6·8 Rapid retrograde orbital motion. Dunér gives

 $1859^{\circ}08 \quad \Delta = 1^{"}\cdot 14.$ P=237°·1-1°·206 (t-1860°0).

	۰,		,	
		n. 1.	14 1844	.23
24		n. o.	98 9	`22
2	37.80	,, 1.		.55
2:	24.13 3	n.	09 70	·S7
Mä. 2	58.8ັ ĭ	n	. 44	05
24	15'4	,, .	52	15
Da.		,, 1.		. I I
24	40.9	,, .	29 54	·82
De. 2	34.0		25 65	98
2	32.1	•	28 7	15
2	28.2	1	05 8	14
Du. 22	24.6 2	n. 1	oo 9	19
21	11'9 .	,, :	22 76	.18
8p. 20	9.9	′ l o•	98 ; 7	.18

176 Σ. 644.

R. A.	Dec.	М.
2,1 m	37° 9′	6.7, 7

Probable change in angle.

Σ.	219.2	3n.	1.61	1828.60
Mä	223.7	2n.	.25	45'18
	.3	In.	.73	51 04
	224°I	,,	.64	2.18
	240'7	,,	.20	7.24
Ο.Σ.	219.6	,,	•••	41.53
	223.8	,,	1.79	.70
	227.7	,,	.92	2.21
_	224'I	,,	.28	69.24
Du.	219·I	6n.	•46 •66	71.98
W. & S.	41.6	4		4.09
	220.2	4	•60	5.09
	221.9	4	. 79	6.13
Dob	222'I	2n.	·68	7.90
	ı.	In.	.71	8.08

177 Σ. 634.

R. A.	Dec.	M.
5 ^h 2.8 ^m	79° 4′	4.2, 1.9

0.2. finds that the following formulæ represent the observations:—

Argelander (Bonn Observations, vol. vii.) gives the annual proper motion of the principal star, — 0° 0365 in R. A. and + 0° 141 in Dec. The above formulæ assign the following values as the apparent proper motion of the smaller star, + 0° 0170 in R. A. and — 0°.163 in Dec. These are nearly equal in amount, but in opposite directions. See also the Bulletin de l'Académie de St. Pétersbourg, vol. v. In

vol. xix. of this work 0.Σ. has the following remarks:-

"The distance will be 9":2 in 1932 if there is no physical connection: if there is true orbital motion, it will be discovered in ten or twenty years if good observations are made."

	.0		"	_
So.	346°4	1	37 01	1825'10
Σ.	348.3	In.	. 24.20	31.30
	•3	,,	.64	2.18
	·õ	,,	'46	.81
	349.2	,,	33.47	6.18
	348.9	,,	'46	.51
	.7 .8	,,	.72	.22
Sm.	•8		34°I	3.16
	349°I	l	33.8	6.52
Mä.	350.1	2n.	30.54	45'35
De.	353.I	3n.	26.24	58.33
	355.0	5n.	24.63	63.12
	356.5	,,	23.65	6.13
0.Σ.	357.7	In.	•06	8.25
	358.0	,,	22.21	70:35
	359.4	٠,,	21.67	3.32
W. & S.	0.1	3	.30	5.09
Fl.	1.4	In.	20.59	.37

178 Σ. 629.

R. A. 5^h 3^m

Dec. 83° 18'

M. 8.2, 11.2

Certain change in angle and distance.

Σ.	342.2	In.	13.02	1832.29
	340'3	,,	.71	.30
	343.0	,,	.08	3.53
	342.7	,,	12.80	.25
Mä.	348.4	,,	'73	45.32
De.	355.2	3n.	'04	67:48
0.Σ.	357.6	In.	4.23	73.35
W. & S.	359.2	1 3	3.80	l 75°09

179	Ο.Σ. 100.			
R. A. 5 ^h 3 ^m		De 8 °		M. 7, 9 [.] 8
0.Σ.	247 °O 244 °2	In.	4.57	1845°17 8°13
De.	250.5 253.3 249.8	,, ,, 3n.	.20 .26	52.22 71.18 67.45
	-47	J-44		1 -7 73

180	Σ. 651.	
R. A. 5 ^h 4 ^{·2m}	Dec. —7° 14'	М. 8, 10
]	Rectilinear motion.	

Σ.	101.4	2n.	18.01	1829.67
H, Mä	.0		10.2	30.30
Ma.	83.2	2n.	11.08	44.2
	82.6	In.	'49	5.19
_	88.4	2n.	12.40	28.10
De.	64.7		14.1	65.58
W. & S.	56.8	6	16.92	77'94
C. O.	55.2	In.	.54	.95

181	Σ	65	55.			
R. A. 5 ^h 6.7		De — 12		M. 4'2, 10'5		
	C. A, greenish.					
\mathbf{H}_{1} .	359.3		12.33	1783°06 85°08		
Σ.	338·1 337·6	6n.	13.1	1829.05		
	337 6	011.	.81	52.5		
8m.	336.9		150	36.93		
Mä.	337'7	2n.	12.60	3.26		
Mo.	335'4	10	13.46	56.08		
	337.7	6	12.76	7.08		
G 1.	.3	In.	14 ±	76.07		

182 **S.** 653.

> Dec. 32° 33'

M. 5, 7.2

C. A, greenish; B, bluish white.

For A C, Dunér gives

 $\Delta = 12'' \cdot 16 - 0'' \cdot 020 (t - 1850 \cdot 0).$ P = 345° \cdot 11 + 0° \cdot 14 (t - 1850 \cdot 0).

AB.

		42 w,		
\mathbf{H}_{1} .	232.6	ì	16.13	1781.83
H, & 80.	225.6		14.61	1822.09
Σ.	226.0	In.	.62	9.23
	224.7	,,	.67	30.52
	225.7	,,	•67	2.18
Sm.	224.5		13.2	·81
Mä.	225.0	2n.	.91	42.26
	ı.	In.	· é 7	4.26
	224.6	۱,,	.22	5.51
	.ı	3n.	'45	21.10
	.1	In.	.85	5.30
	•3	2n.	1 150	7.28
	225.1	In.	·65	8.27
Da.	.8	2n.	14'91	47.78
Ro.	226.3	2n.	53	63.09
Ta.	223.6	In.	.53 .86	8.91
	226'9	5	'70	72.31
Du.	'2	3n.	•65	1.85
W. & S.	•7	2n.	15.08	5.13
	228°0	5		6.13
	226.3	4	14'94 '99 '8	7.15
	225.8	4	.99	.18
P1.	ı.	3n.	•8	6.69

218	•	DOUBLE
	A C.	1
E. 342'2 Ta. 348'1 W. & S. 349'2 348'2	i in. 13'31 2n. 11'79 i in. 13	66.04
183 λ	A URIGÆ	
R. A. 5 ^h 10 ^{·6} ^m	Dec. 40° o'	M. 5·2, 8·7
The motion + 0° 047 in R.	is rectilinear: pro A., and + o" 66	in N. P. D.
80. 34' 8m. 30': Σ. 29'0 Ο.Σ. 22': Fl. 13'	2 8 0 103.5 7 109.7	1825·10 35·88 6·21 52·14 77·13
184	Σ. 676.	
R. A. 5 ^h 12 [·] 9 ^m	Dec. 64° 38′	M. 7'5, 8'5
Certain cha	C. white. .nge in angle and	distance.
0.Σ. 2713 2803 2783 2713	6	2.29 42.84 5.32 6.30 7.34 9.27
274°c 269° 273° De. 276°c	7 ,, I'10 I ,, '02	71.30
185	Σ. 677.	
R. A. 5 ^h 13 ^m	Dec. 63° 16' C. very white.	M. 7.7, 8
Σ. 279 [.]	8 In. 1.83 0 ,, .48	
282* 274* Mä. 278* 0.Σ. 273* 278* 268* 269* 262*	7	3°14 44°34 5°32 6°30 9°27 51°27
	'I ,, '67	2.31

186	O .:	Σ. 10)4 .	
R. A. 5 ^h 14 ^r		Dec 46° !	54'	M. 7, 11
Ο. Σ.	189.8	In.	15.73 .83	1846-85 7:20
Mä. De.	191.2 190.2 191.0	;, ;, 3n.	16.29 16.64	51.27 2.36 66.81
187	Σ	. 69	4 .	
R. A. 5 ^h 16·6	j m	Dec 24°	c. 51'	M. 8 ·2, 8·2
Σ.	6.9	C. whit In.	1'34	1827.16
Da,	3.3	"	·32 ·37 ·20	8.19 33.19 41.80
0.Σ.	357.7 358.5 359.9	3n. 2n. In.	*33 *44	3.20 6.00
Mä.	3.9 3.6.2	"	*41 *3	7°16 3°14
	358·2 357·5 6·0	,, ,, 2n.	°4 °3 °39	4'9I 5'2I 52'16
	·6 5·3 ·7	'n.	·52 ·37	3.12 2.51
Wi. Se.	185·8 359·8	,, 2n. In.	·20 ·27 ·30	6.50 2.15
Ta.	359·6	6	.59	72°14
G1. ₩. & 8. P1.	358.0 4.2 0.7	In. 8 2n.	1'4 '24 '24	3.98 4.10 7.08
188	h.	378	52 .	
R. A 5 ^h 16'		De 24	c. ° 54′	M. 6, 10, 10
H _r . C. O.	100 ±	AB.	4	1835 05
C. O.	105.0	In.	3 33	77 03
H _r	<u> </u>			35 05
189	111	TAU	URI.	
R. A 5 ^h 177	4 ^m		16'	M. 6, 9
R. A.,	and -o"	otion o o4 in N	N. P. D.	
H ₁ . So. Sm.	273.8 271.3 .2		50.4 61.33 63.0	1783°16 1825°06 32°95

	ο.	"	
Σ.	° 1	65.70	1839.95
Ο.Σ.	.4	68.58	1839°95 52°12 62°11
X.	272.9	72.91	62.11
Fl.	271.5	75.2	77'13

190 η ORIONIS.

Dec. R. A. M. 5h 18.4m -2° 31′ 4, 5

C. white, purplish white.

H₁, in *Phil. Trans.*, vol. lxxv., p. 225, has "vi. 67, Fl. 28, η Orionis, double 35° 12' n.f." H₁, therefore, did not observe the duplicity of the larger star. Dawes, on the 15th Jan., 1848, discovered that it was double, using 41 in. of his 62 in. refractor. He thinks the distance may have slightly increased since 1848. (Mem. R. A. S., vol. xxxv., p. 323.)

The proper motion of the principal star

is $+o^{5}\cos^{2}$ in R. A., and $+o^{7}\cos^{2}$ in N. P. D.

H ₁ .	single				
Σ.	single				
Da.	88.7	In.	0'94	1848-11	
	- 6	9n.	0.93	'20	
_	86.3	4n.	1.08	51.69	
Ja.	87.0	14	1.02	3.15	
_	83.7	10	0.72	. '99	
Kn.	87.6	5	0.98	63.15	
	89.6	10	.00	.13	
	88.4	5 8	1.08	6.06	
	89.8		*02	'94	
	.2	4	.03	71.99	
Du.	88∙o	In.	0.84	69.19	
	.3	2n.	.89	71.53	
	87.1	In.	'84	2.18	
	83.8	"	.85	3.55	
	87.7	2n.	.97	4.12	
TT 4.0	85.1	In.	*94	5.12	
W. & S.	83.1	8	1.53	2.01	
	87.6	8	.30	*04	
	86.9	2	*3	.92	
	85.2	4	37 37 30	3.04	
70-	. 3	4	-30	.93	
De.	84.7	_	'02	'69	
G 1.	85.1	4	:34	'94	
	86.2	4 5 3 7 6n.	.0	.99	
	87.3	3		4.09	
	88.5	3	1.0	.10	
	84.0	7		.11	
	85·8 88·o	on.	1.52	12	
	86.3	3 3 5 2n.	1-25	.19	
	ou 3	3			
	0.3	2	1.3	8.05	
	85.7 82.4	in.	I '20	0.05	
W.O.	83.8		1.20	6.13 6.19	
W.U.	.8	"		013	
	85.7	"	'11 '02	.13	
Schi.	81.8	"	0.96		
C.O.	82.6	3n.	.97	7 [.] 19	
Dob.	87.3	In.	1.13	8.08	
	. 4/3	1 -11.	,	, 500	

191	~ 4	107.
IMI	(1)	1117
TOT	V.2.	

Dec. M. 17° 51' 5h 20m 6, 10.8

O. E. found a third star C closer and fainter than B. Angle B A C = 30°.

	۰		"	
Ο.Σ.	304'1	In.	9.93	1847.25
	36.4	,,	10.20	9.16
	34.5	,,	9.92	52.22
De.	3.6	3n.	··89	1847°25 9°16 52°22 67°93

192 Σ. 712.

R. A. Dec. M. 5h 20.2m 2° 50′ 7, 9

C. very white.

\mathbf{H}_{1} .	40.3	1 1	2 to 4	1782.77
	46·6		,,	3.02
_	45.5		,,	1802.06
So.	49.8		3.39	25.10
Σ.	45'4	3n.	.08	31.19
Mä.	.1	In.	2.85	44'12
	55'4	,,	.83	21.18
_	54.5	2n.	.93	2.18
De.	.7		·89	64'14
W. & S.	53.6	5	3.33	74'10
Pl.	26.1	2n.	.17	7.08
Dob.	54.6	In.	*04	.91
	55.5	2n.	2.00	8.06

193 Σ. 715.

Dec. M. 5h 21.8m 41° 10' 8.2, 8.9

C. very white.

Σ.	206'0	4 n.	0.92	1831'47
Mä,	202'3		·86	45'49
Ο.Σ.	201.2	ın.	·85	8.33
	208.5	,,	1.03	70.25
De.	200.6		0.01	67.78
6 1.	202.7	,,	1.1	76.07

194 Σ. 716.

Dec. R. A. M. 5h 21'9m 25° 3′ 5.8, 6.6

C. A, white; B, bluish white.

The common proper motion is + 0 005 in R. A., and + o" o7 in N. P. D. (B.A.C.)

Dunér gives-

1856.22. $\Delta = 4''.92.$ $P = 1980.0 + 0^{\circ}.079 (t - 1850.0).$

	0_		"	
H ₁ .	192.8	1	4.21	1783.74
H,	195.0		•••	1817.20
So.	194'0			21.97
Σ.	196.8	5n.	4.89	9.63
Be.	195'4	4n.	5.1	30.81
Da.	196.3	 -	.12	2.87
	-3.3			45.87
Sm.	195.2		5.3	33.48
	.6		3.3	8.91
	197.4			58.10
Mä,		In.	.5	
	.5		4.98	43'14
	199.3	"	5.16	5.51
	198.3	!	. 07	4:17
	197.8	4n.	.19	51.22
	•5	2n.	.16	2.12
	ı.	,,	.io	5.22
	-8		4.89	8.98
Ο.Σ.	.3	In.	.84	1.85
De.	200.2	1	'95	2.19
	197.5	1	.78	4.85
	198.7		.71	68.98
Se.	197.7	2n.	5.10	56.60
™ o.	•6	10	4.98	7:07
M.	196.3		.74	62.90
Ro.	'4	2n.	5°I	.91
	198.8	3n.	.06	3.11
Ta.	196.0	In.	4.72	6.17
Du.	199.8	6n.	.91	71.32
G1.	201'4	In.	∙8⁻	3.98
W. & S.	200'I	4	50	4.10
		• •		. 4

195	Σ.	719.
-----	----	------

R. A. Dec. M. 5^h 22'4^m 29° 30′ A 7, B 9'5, C 8'9

C. A, very yellow.

In A B the distance has increased; in A C it has diminished; while the angle has probably increased in both pairs.

		AB.		
Σ.	326.5	4n.	o 68	1833.47
Da.	328.0	In.	.01	42'13
Ο.Σ.	.5	,,,	.79	7.20
	331.4	٠,	1.50	70.22
De.	329.6		0.99	68.88
		A C.	1	
\mathbf{H}_{1} .	344'9		16.03	1782.98
	345 ±		٠	90.86
Bo.	321.0	2n.	15.45	1825.17
Σ.	.5	6n.	14.83	33°34
Da.	•8	In.	15.50	42.13
0.Σ.	•9	,,	14.96	7:20
_	35 2 °7	,,	15.51	70.25
De.	321.0	\	.07	67.12
Ta.	344.8	In.	.19	6.04
	352.1	,,	14.40	74.18

Ο.Σ. 108.

Dec.

18° 16'

196

R. A.

5h 22m

Ο.Σ.	138.1	In.	3.64 .61	1847°25 9°16 52°22 68°01
De.	133.0	3n.	·52 ·43	52.22 68.01

197 Σ. 728.

R. A. Dec. M. 5^h 24'4^m 5° 51' 5'2, 6'7

C. yellowish.

The observations are very discordant. In spite of this, however, a diminution in angle and distance is beyond a doubt.

Dunér has

217.8

216.5

203.2

214.2

200'0

204'0

 \mathbf{H}_1

80.

Η,. Σ.

Du.

Gl.

M.

7, 10'5

Dob.

193.6

198.2

190'0

 $\Delta = 0^{\circ}.75 - 0^{\circ}.0184 \ (t - 1850.0).$ $P = 201^{\circ}.5 - 0^{\circ}.255 \ (t - 1850.0) - 0^{\circ}.00439 \ (t - 1850.0)^{2}.$

ın.

ın.

I to 2 | 1782.05

1.30

92

·O4

0.00

1802.06

22'IO

30.18

0.51

I :2I

73.41

4'10

6.24

14

	205.2	,,	I.55	*21
	- 8	,,	0.01	*23
	207.7		1.04	3.96
Sm.	205'4		1.0	1.13
	206.2		.0	9.20
Mä.	205.0	In.	1.54	41.50
	203.6		0.08	3.96
	206'0	,,		4.11
	202.7		0.76	51.80
	203.1	2n.	.73	2.16
	202'3	In.		7.21
0.Σ.	218'1	2n.	0.06	41.55
	212.8	In.	·88	2.55
	219.2	٠,,	.74	5.23
	215.9	,,	.74	6.53
	205.8	,,	.75	8.51
	210.9	2n.	.77 .68	9.53
	207.4	In.	•68	61.50
	. 4	,,	•84	3.51
	185.3	٠,,		4.51
	195.5	,,	0.79	6.51
	189.6	,,	77	8.31
	202'4	,,	•56	9.51
	196.5	,,	.76	70.31
	190.1	٠,,	*57	3.54
	188.3	,,	1 '62	2.19
Da.	205'1	3n.	0.89	44 94
Ja.	202'4	2n.	1.41	53'43
ße.	203.6	,,	'44	7.67
De	105.5	f n	1	62:22

ξn.

2

3

198	Σ	. 72	7.	
R. A. 5 ^h 25 ^m		De 44°	M. 8, 9 [.] 5	
	C.	. A, yel	low.	
Dunér 18 P	has 355°25. = 59°°5 -	Δ = 2' + 0°10 (*20. t—1850	o).
Σ.	56.7 61.7	3n. In.	2°18	1830 [.] 89
1	62.2	,,	.08	5°20 52°26
M ä. Du.	60.7	2n. 5n.	.55 .12	71.49

735

Dec. M. R. A. —6° 35' 8.2, 9 5h 27m C. white.

Rectilinear motion.

Σ. Mä.	355°2	2n.	30.05	1831.15 47.23 51.20 66.72 77.13
D-	.2	In.	.51	51.50
De. Fl.	353 [.] 6	In.	38.02	77.13

Σ. 742. 200

Certain direct motion.

R. A.	Dec.	M.
5 ^h 29.2 ^m	21° 56′	7.2, 7.8

C. yellowish white.

H ₁ .	233.6	In.		1782.86
Σ.	246.3			1822.25
	247'1	In.	3.18	28.19
	244.3	,,	.54	31.55
	247'4	,,	'22	'25
	251'1	2n.	•32	7.10
So.	248.3		2.97	26.10
H _r .	246.9		3.40	9.91
ο.Σ.	251.0	In.	56	46.09
	250.8	 ,,	•56	7.16
	253.7	,,	•28	9'24
	252.7	,,	'41	50.19
	256°I	٠,,	'34	70.25
Da.	249.7	4n.	.27	42.01
	251.3	٠,,	•26	52.64
Se.	252.5	2n.	'21	6.20
Mä,	249.7	In.	. 47	41.52
	.7	,,	.27	4.91
	252.9	;,	80	5.51
	.4	4n.	'40	52'16
	ı.	īn.	'33	5.51
	250.9	١,, ١	*03	7.21
Mo.	'4	10	'5 1	8.45
M.	251.7	1	·46	63.53

	0		,	
Ta,	256°.3	In.	3.62	1866.09
	257.2	,,	.73	7.19
	258.1	,,	.93	8.96
	255.8	,,	•66	72.14
	256.6	١,,	.62	.18
	257'1	,,	*35	4.18
De.	251.7	4n.	·35 ·67	55.16
W. & S.	255'9	4	.36	73.93
	•6	4	.31	.99
G 1.	.I	4	'4	'94
	256.6	4	'2	.98
P1.	254'4	4n.	.16	7.11
Dob.	256.1	7n.	٠	6.06
	-			

201 Σ. 748.

91 ORIONIS.

A 7, B 8, C 4'7, D 6'3, E 11'3, F 11'3.

O.Σ. thinks that one of the two stars E, F is variable; and that E and F should be No. 10 of Σ.'s scale of magnitude. (See his Memoir on the Great Orion Nebula.)

After a very careful discussion of the measures of these stars, 0.2. comes to the conclusion that probably no considerable changes have taken place since the earliest observations. He thinks that the changes in angle indicated by the measures of A E and AF are not real, but owe their existence to the difficulty of the objects. It is possible, however, that the angle and distance in AF have both increased.

"From the foregoing observations it may be gathered that in all probability not only the stars of the trapezium, but also many in the neighbourhood, are physically connected with the nebula. This is esconnected with the nebula. pecially true of the groups, which, to the naked eye, form ι , θ , c, Orionis. For we see that each of these groups is accompanied by a nebula." (Bond.)

AB. H1. 8.78 1776.87 Σ. 30.8 9.08 1820.26 31.6 8.49 31.18 •6 6.12 **.**74 Mä •53 42'14 32.3 5.16 31.7 79 53.51 35.6 In. 33'4 8.62 4°17 8°11 2n. 31.0 In. .23 **.**74 72.19 32.0 In. 30.8 5.19 ٠48 ,, 7.95 C.O. 59'4

	0	A C			ı		D C.		
Η ₁ . Σ.		ı O	12.81	1776.87	H,.	1	D 0.	15.21	1776.87
Σ.	134'0		.62	1820.26	Σ.	240.2		13.70	1820.56
	131.0	l.	13.08	31.18	ļ	.5		.09	31.18
So.	5		,00	6.12	l _	.3		'34	6.12
Mä.	130.8		45	24.28	80.	.I		13.28	24.58
ma,	132 · 5	ļ	12.99	42'14	Mä.	'4		12.95	42.14
	13.3	In.	1	53.51 2.19	l	·3 ·3 •7	In.	13.51	5.16
	131.3	2n.	12.70	4.17		3	2n.		53.51
	130.2	In.	75	4.11	ł	.9	In.	13.41	4.11 8.11
0.Σ.	132.2	,,	13.30	8.23	0.Σ.	.3	,,	13.62	8.23
	133.5	,,	.31	66.19		243.2	",	'40	66.19
	.3	,,	'44	9.21	i	241'2	",	*33	9.21
	131.3	,,	'22	72.19	1	• 5	,,	:33 :48	72.19
	9	,,	12.99	5.19		242.6	۱,,	*20	1 2.19
C.O.	309.9	,,,	• •••	7.95			ΑE	_	
		A D	١.		Σ.	353.6	7n.	3.86	1832.23
Σ.	05.5			1-9	Da.	352.2	2n.	3.82	41 92
2.	95°5 7		21.12	1820.26	Mä,	355.0	In.		2.18
	•4		'37 '41	9.12 31.18		354.8	٠,,	3.68	4.91
Mä.	96.5		20.99	42.14	Ja.	352.0	2n.	3.98	53.03
	95.3		51.53	5.16	0.Σ.	353.1	In.	4.81	7.82
	,	In.		53.51		351.0	,,	.10	8.23
	.1	2n.	21.38	4.17		349.5	2n.	.13	61.51
	9 6.9	In.	.16	.11	1	352.2	In.	:29	9.51
Ο.Σ.	95.1	In.	21.41	69.21	Ta.	347.6	in.	17	66.00
	.2	,,	'43	72.19	14.	352.2		3.32	16
C.O.	.2	,,	'35	5.19		JJ~ ~	· _"_		
0.0.	94.2	In.		7.95	l _		, Be		
		BC			Σ.	233.4	3n.	1	1832.53
Σ.	165.0	i	17'1	1820.26	İ		C F	,	
	161.1	1	16.74	31.18	Da.	127.3	3n.	2.79	1842.33
	162.1		·85 ·68	6.12	l	124.5	In.	4'11	7'04
8o.	165.0	l		24.28	0.Σ.	127.0	,,	3.38	3.14
Mä.	162.5	ŀ	.75 .78	42.14		124.8	,,	.19	20.18
	.60:5		.78	5.16		132.3	,,	'73	6.80
	163°2	In. 2n.	16.65	53.51		128.0	,,	*93	7:21 -82
	162.3	In.	. 30	4 ^{.17}		129·8 125·8	,,	4'43	61.30
0.Σ.	164.3	In.	17.10	8.23	l	128.3	"	3.95	'23
·	163.4	,,	.07	66.19	ł	131.0	"	71	0.51
	164.4	;;	16.71	9.51	1	1320	"	.94	72.19
	162.8	,,		72.19	Ja.	123'4	2n.	3.26	53'02
	163.0	٠,,	.79 .80	5.19		• •	A TH	_	
C.O.	342.2	۱,,	i	7.95	H,		AF.		1 * 8 26 * 50 *
		TO E	,		Da.	117'1 126'6	2n.	3.13 [3]	1836.20
**		DB			0.Σ.	125.0	"	3.58	43.21 46.66
H ₁ .	***		20.39	1776.87		128.8	5n.	.92	58.85
۵.	301.0		19.08	1820.26	ļ	131.2	2n.	· 8 2	7070
	299°1		26	31.18	.			٠	
Mä.	300.2	1	18.90	6·15 42·14	•	The C.O. o	bservatio Aa 116°	ns also giv	re
	299.8		19'04	5.16		i	Cc 3510 c	95.	•
	298.6	,,	-,	53.51	l				
	299.6	2n.	19.04	4.12	202				
	•3	In.	.18	4·17 8·11	202	Σ	. 74	9.	
ο.Σ.	300.0	,,	.33	72.19	R. A		De		M.
	4	,,	.26	5.19	5h 29		26°	c. 52'	м. 7 ⁻ 1, 7 ⁻ 2
C.O.	299.6	٠,,	١	7.95	"-9	•	very w		, -, , -
* †	This is B C This is A D	in the C	O. observ	ations. ations.	Dire	ct motion.	very w	1111 C •	

[†] This is A D in the C.O. observations.

•	0	·	"	La Camera C	Î		A B		
Σ.	23.4	In.	0.40	1827:26	H,.	В	not see	en	1782
	.9	"	·72 ·60	8.19	Σ.	147.8			1821.54
	21.2 25.0	,,	•66	31.53		151.3	6n.	2.32	31.55
Mä	18.0	,,	.77	44'04	ł	150.2	5n.	'47	4.93
ο.Σ.	23.0	In.	.84	6.09			,,	1 .22	6.55
•. _ .	16.3	,,	·61	22	H ₂ .	151°3 149°8		'73	22.13
	19.8	",	.70	7:20	l	.8		'62	32.11
	17'0	,,	.80	9.24	Be.	148.3	ın.	'76	0.93
De.	191.8	3n.	•6	56.76	!		"	.68	1.59
_	186.4	5n.	.6	62.98	D -	148.3	4n.	.70	2:30
<u>Se.</u>	190'4	In.	·63	57.11	Da.	:4		3.00	2.26
Ro.	186.9		•8	64.30	l	146.6		2.67	5.27
		_				148.4		·57	2.03
					(7		.63	7.84
203	Ω	Σ. 1	12			· 7		-64	23.13
200	•	·4· 1.	L 21·			149.2		'48	4.17
R. A		De	c.	M.	Sm.	148.8		1 .5	39.19
2p 31.6		37°.		7.3, 8		149'4		1.5	46.16
			-		Mä.	6	2n.	.39	1.24
ο.Σ.	80.8	In.	0.22	1846.19	1	-8	In.	47	3.42
	89.0	,,	.69	7.22	1	152.1	,,	•65	4"22
Mä	85.8	,,	.67	52.26	}	148.3	3n.	:57	5.20
De.	90.6	"	45	2.27	ł	:5	In.	43	51.25
20.	79.8	3n.	elongd.	67.43	l	I.	20	'46	.96
						147·8 149·6	3n. 2n.	'46 '38	6.81 5.10
						149 0	In.	-65	7.21
204	0	.Σ. 1	13.			150.0	2n.	'24	8.22
					l	146.5		.19	9.17
Ŗ. A	•	De	C.	М.	1	151.7		•6ó	62.51
5 ^h 33 ⁿ	D	12°	57'	7, 10'7	Flt.	149.6	2n.	.64	51.11
0.Σ.	28.4	fn.	10.13	1843'19	Ja.	152'1	,,	•64	.18
0.2.	27.7		'16	9.22	i	149'9	4n.	*29	3.18
	-, ,	"	15	20.10		151.6	,,	'32	'77
De.	29.0	3n.	9.84	67.91		148.9	2n.	·32 ·66	4'06
	•				Ο.Σ. Mi.	154.6	16	1	2.06
					Mo.	149°0 151°0	30	3.06	4.12
005	^	e 1-	1 4		De.	.31.0		2.45	
205	U.	Σ. 1.	L 4 .		Wi.	152.0	2n.		4.26 6.31
		-		3.5	Se.	150.0	,,	2.45	7.10
R. A		De		М.	Ta.	152'4	3n.	·86	66.13
5 ^h 34 ⁿ	•	16°	10.	7:3, 9:5		154.4	In.		8.98
ο. Σ.	273'9	In.	2'70	1844.90		152.2	,,		9.00
	275.9	,,	-,99	7.16	_	.8	,,	3.32	77.07
	276.4	,,,	3.12	9.22	Du.	153.8	9 n.	2.58	2.13
De.	279.5	3n.	2.79	67.95	W. & S.	1.	2n.	.51	4.12
	-				Sp.	151.7		·56 ·38	5°24 7°19
					Dob.	.5 157:2	In.		.91
000	_	·				154.4	3n.	2:37	8.07
206	2	. 77	4.		ļ	-54-4	J	- 37	,
R. A		Dec.		M.					
5 ^h 34"		— 2° 0	,	2, 5.7, 10			A C	į	
C.	A, yello	w; B, 1	eddish o	live.		.		60	
7.7 :-	. 1700 1	d n-4 -	aa sha fa	int sta-	H ₁ . So.	7.0		60	1781.77 1822.61
	1 1792, di				8m.	-8		56°0	39.19
R. A.	and $+ o''$	'03 in 1	v. p. n	0°'002 in	W. & .	0.2	6	59.7	74.14
				th in AB	Fl.	9.3		60.3	7:17
	A C				Dob.	·.2	2n.		8.07
			•	•					-

Σ	. 311	5.	
n	D		
	Dec 62° 4	15'	M. 6·7, 7·8
C. A, wh		-	
	nd angle		iminish e d.
34.2 30.2 20.0	3n. 2n. In.	·52 ·50 ·37	1831.63 45.92 -32 6.30 9.27
28.3	3n.	·37 ·48	72·31 66·83
Ο.	Σ. 11	.5.	
6m	Dec 15°	2'	M. 7, 8
		B, olive	•
119.6	In.	0.79	1844.90
123'0	"	70	9.53 9.53
121.6	,,	·8 2	50.92 67.90
1230	3 1		- 0, 90
Ο.	Σ. 11	.7 .	
<u>.</u>	Dec 30° 3	I'	M. 7, 9 [.] 7
30.0	in.	11.98	1845.22 6.85
29.0	,,	11.79	50°19 2°27
29.9	3n.	11.21	67.25
0.	Σ. 11	.9.	
ı	Dec 7° 5	7'	M. 7·5, 8·3
309.3	In.	0'74	1845.22
208.1		·57	8·23 52·22 67·56
S	o. 5 0	3.	
_ :	Dec.		M.
		A 7, a in A F	в 9, с 8
	35.6 34.5 30.7 29.9 31.6 28.3 4 O. 6m C. A, bly a bin 119.6 123.6 127.7 121.6 123.0 O. 28.9 30.0 29.9 O. 30.2 29.9	35.6 3n. 34.5 2n. 30.7 1n. 29.9 31.6 3n. O. \(\Sigma\). 11 Dec 15° C. A, yellow; bly a binary. 119.6 1n. 123.7 3n. O. \(\Sigma\). 127.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "121.6 "123.7 "123	35.6 3n. 1.68 34.5 2n. 52 30.7 1n. 50 29.9 37 31.6 48 28.3 37 4 3n. 48 O.S. 115. Dec. 15° 2' C. A, yellow; B, olive bly a binary. 119.6 1n. 0.79 123.6 72 121.6 82 123.0 3n. 87 O.S. 117. Dec. 30° 31' C. A, golden. 28.9 1n. 11.98 30.0 12.00 29.0 11.79 30.2 11.71 O.S. 119. Dec. 7° 57' 309.3 In. 0.74 304.3 57 316.7 3n. 50.

İ		A D		
So. De.	134°1 120°3 119°7 118°8	8	795 123 176	1825.07 73.79 4.21 5.21
Fl.	112.3	In. 5	·72	7.80
So. De. Fl.	337'3 335'8 '7	23	1.26 0.04 1.6	75°21 7.80
212	θ A	URIG	Æ.	
R. A 5 ^h 51'!		Dec. 37° 12'		M. 3, 11, 11
B and of A is	C are fix		prop	er motion
		AB.		
H ₁ .	286°0	35	±	1782.68
Sm.	289.0	30	•	1832.64
Ο.Σ.	290'9		.29	52.12
		A C.		_
H ₁ .	150 ±	0		1780'74
So,	352.2	12	4.46	1823.17
Ο.Σ.	350.7	12	3.42	40.16
	.3	12	5.10	52.16
213	O .:	Σ. 124		
R. A. 5 ^h 52 ⁿ	n.	Dec. 12° 49'		M. 6, 7 [.] 8
5 ^h 52 ⁿ	n.	12° 49′	3.25 (6, 7.8
5 ^h 52 ⁿ If the correct.	observat	12° 49' ion of 187; han 66° c	3°25 (of the	6, 7.8 (0.Σ.) be
5 ^h 52 ⁿ If the correct, orbit have	observat no less t ve been d	12° 49' ion of 187; han 66° d escribed in	28 y	6, 7.8 (0.Σ.) be apparent ears.
5 ^h 52 ⁿ If the correct.	observat no less t ve been d 308.7	12° 49' ion of 187; han 66° d escribed in	. 28 y '53 ≀	6, 7.8 (0.Σ.) be apparent ears, 1845.22
5 ^h 52 ⁿ If the correct, orbit have	observat no less t ve been d 308.7	12° 49' ion of 187; han 66° d escribed in	28 y 36	6, 7.8 (0.Σ.) be apparent ears, 1845.22 6.22
5 ^h 52 ⁿ If the correct, orbit has 0.Σ.	observation less to the been displayed a 308.7 a 311.0 a 242.2	ion of 187; han 66° c escribed in In. O	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears, 1845.22 6.22
5 ^h 52 ⁿ If the correct, orbit have	observat no less t ve been d 308.7	ion of 187; han 66° c escribed in In. O	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears, 1845.22
5 ^h 52 ⁿ If the correct, orbit has 0.Σ.	observation less to the been displayed a 308.7 a 311.0 a 242.2	ion of 187; han 66° c escribed in In. O wedged	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears, 1845.22 6.22
5 ^h 52 ⁿ If the correct, orbit has 0. Σ. De. 214	observat no less t ve been d 308.7 311.0 242.2 324.0	12° 49' ion of 187; han 66° c escribed in In. 0 " wedgec 2. 125	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears, 1845.22 6.22 73.25 65
5h 52n If the correct, orbit has 0. \(\Sigma\).	observat no less t ve been d 308.7 311.0 242.2 324.0	12° 49' ion of 187; han 66° c escribed in In. 0 " wedgec 2. 125	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65
5h 52n If the correct, orbit has 0. \(\mathcal{\Sigma}\). De. 214 R. A.	observat no less t ve been d 308.7 311.0 242.2 324.0	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedgee Σ. 125 Dec. 22° 29'	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears, 1845.22 6.22 73.25 65
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n	observation less two been di 308.7 311.0 242.2 324.0	12° 49' ion of 187; han 66° c escribed in In. 0 " wedgec 2. 125	28 y 36 66	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65
5h 52n If the correct, orbit has 0. \(\mathcal{\Sigma}\). De. 214 R. A.	observation less two been di 308.7 311.0 242.2 324.0	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedgec Σ. 125 Dec. 22° 29' C. red. In. I	28 y :53 :36 :66 1	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n	observation less two been d 308.7 311.0 242.2 324.0 O.2 357.5 360.7	12° 49' ion of 187; han 66° c escribed in In. 0 " wedge Σ. 125 Dec. 22° 29' C. red. In. 1	28 y 36 36 66 1	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ.	observation less to the been dispersed as 308.7 311.0 242.2 324.0 O.2 357.5 360.7 353.5	12° 49' ion of 187; han 66° c escribed in In. 0 " wedge Σ. 125 Dec. 22° 29' C. red. In. 1	28 y 36 36 66 1	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ.	observation less to the been dispersion of the servation	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedgec 22° 29' C. red. In. I "" "" ""	28 y 36 36 1 1 68 1	6, 7.8 (0.Σ.) be apparent ears. 1845:22 6:22 73:25 65 M. 7, 8:5 1844:90 6:19 52:22 44:21
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ.	observation less to the been dispersed as 308.7 311.0 242.2 324.0 O.2 357.5 360.7 353.5	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedgec 22° 29' C. red. In. I "" "" ""	28 y 36 36 66 1	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5
5h 52 ⁿ If the correct, orbit have 0.Σ. De. 214 R. A. 5h 52 ⁿ 0.Σ. Mä. De.	observation less to two been dispersion of the servation	12° 49' ion of 187; han 66° c escribed in In. 0 "wedgec E. 125 Dec. 22° 29' C. red. In. I "" "" "" "" "" "" "" "" ""	28 y 36 36 1 1 68 1	6, 7.8 (0.Σ.) be apparent ears. 1845:22 6:22 73:25 65 M. 7, 8:5 1844:90 6:19 52:22 44:21
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ. Mä. De.	observation less to two been dispersion of the servation	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedgec 22° 29' C. red. In. I "" "" ""	28 y 36 36 1 1 68 1	6, 7.8 (0.Σ.) be apparent ears. 1845:22 6:22 73:25 65 M. 7, 8:5 1844:90 6:19 52:22 44:21
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ. Mä. De. 215 R. A. A.	observation less to two been dispersed on the servation of the servation o	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedged	28 y	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5 1844.90 6.19 52.22 44.21 67.59 M.
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ. Mä. De.	observation less to two been dispersed on the servation of the servation o	12° 49' ion of 187; han 66° c escribed in In. 0 " wedgec 22° 29' C. red. In. I " " " " " " " " " " " " " " " " " " "	28 y	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5 1844.90 6.19 52.22 44.21 67.59 M.
5h 52n If the correct, orbit have 0. Σ. De. 214 R. A. 5h 52n 0. Σ. Mä. De. 215 R. A. A.	observation less to the been dispersion of the servation	12° 49' ion of 187; han 66° c escribed in In. 0 "" wedged	28 y	6, 7.8 (0.Σ.) be apparent ears. 1845.22 6.22 73.25 65 M. 7, 8.5 1844.90 6.19 52.22 44.21 67.59

A B

In A B there has been a slight increase in the angle, and the distance has probably diminished.

Dunér has

 $P = 251^{\circ}.4 + 0^{\circ}.10 (t - 1850^{\circ}).$

AB.

Σ.	249.6	3n.	12.82	1830.24
Mä.	250'1	In.	'37	45.00
Du.	253.2	3n.	.60	45'00 68'48
	254.2	In.	13	72.09
W. & S.	-8	4	T	7'18
		A C	!	

Σ. Du.	187.7 8	3n. 2n.	25.21	1831.26
Σ. Du. W. & S.	189.5	3		72.13

216 h. 3823.

R. A.		Dec	M.	
5" 55'9"		— 31°	9, 9	
H,. C.O.	131.7	6 In.	3.85	1835.47 77.13

217 Ο.Σ. 131.

R. A.	Dec.	M.
5 ^h 59 ^m	36° 16'	7, 10 [.] 2
	C. A, blue.	

Ο.Σ.	277'3	In.	•••	1846'19
De.	272.5 282.5	,, 3n.	ı ·56	1846·19 8·21 66·85

218 Σ. 840.

R. A. '	Dec.	М.
5" 59'8"	10° 48'	а 6, в 8, с 9
	C. A, yellow.	

Probable angular change in B C.

AB.

Má. 0.Σ.	246°2 247°5	2n.	20.22	1843'10
Se. De.	"·ĭ ·4	In. 3n.	21.58	1843'10 7'72 57'11 66'68

BC.

Σ.	183.2	3n.	0,01	1830.89
Mä.	181.0	In.	•••	44'20
0.Σ.	179'4	2n.	0'92	7.72
Se.	181.2	,,	.22	57.12
De.	172.6	3n.	'97	66.73

219 Ο.Σ. 132.

R. A.	Dec.	М.
6 ^b 0 ^m	37° 59' C. A. white.	6.8, 10
	o,	

	•		. "_	
0.Σ.	313.95	2n.	1.28	1847'20
De.	313.95 313.63	2n	.64	67.61
	310 03 1	3	, 04	, 0,01

220 Ο.Σ. 133.

R. A. 6 ^h 1 ^m		De-		M. 6'9, 10'1	
0.Σ.	35.0	ın.	2.97	1844.00	
	36.7	,,	3.06	6.23	
	28.9	,,	•••	52.26	
_	31.1	,,	3.50	70.25	
De.	30.2	3n.	2.99	67.95	

LACAILLE 2145. 221

R. A.	Dec.	M.
6 _р т.2 _ш	— 48° 27′	8, 8

The angle has increased, and the distance diminished.

Dp.	329.0	1	3.0	1826.00
H,	342.2		ੱ.86	35.03
-	343'5			6.88
Ja.	348.5		3.55	46.94
	353.1		2.49	51.09
	350.7		82	2.73
	351.2		.57	4'00
	354°I	2n.	.30	6.48
	355.1	,,	.19	7.54
	354.7	In.	181.	8.17

222 Σ. 853.

R. A.	Dec.	M.	
6h 2.2m	11° 41'	7.8, 8.3	
	. • .		

Rectilinear motion.

Σ.	339'7	2n.	24.09	1829.19
	340.8	In.	10'	33.10
Mä,	343'3		25.90	47'12
	345℃		.83	54'17
	346.2		26.01	8.11
Eng.	347.8		27.13	63.84
De.	346'9		26.12	4.21

223 Σ. 859.

R. A. 6 ^b 3'2 ^m		De 5° 4		M. 8, 8 [.] 5	
Σ.	249'5 248'5	In.	31.18	1828.20	
	248.5	,,	•66	31.50	
Mä.	•6	,,	32.02	45'19	
Eng.	·4 \		34.01	63.17	

224	Σ. 861.		229	Σ	. 91	9.	
R. A. 6 ^h 4 ^m	30° 46′ A 7.8, B		R. A. 6 ^h 23 ^m	-	Dec. 6° 57'		М. в 5°5, с 6
	ly no change in BC. e distance has diminish			(C. white	e.	
2				•	AB.	"	
Mä.	BC. 318'2 4n. 1'58 322'4 2n. '59 324'5 In. '92	1830.95 44.58 1.53	Σ. Mä.	130.0 131.3 .8 135.0	3n. 2n. 3n. 2n.	.31 .18	1831 '23 42 '21 3 '12 4 '41 5 '16
	322.6 ,, '74	2.51 2.50		131.3	7n. A.C.	-	, , , ,
	321.8 2n. .66	70.26	Σ.	122.9	3n.	9.49	1831.23
	\mathbf{A} and $\mathbf{B} + \mathbf{C}$.		Mä.	124.6 123.8	2n. 3n.	·67 ·97	3.13
Σ. 0.Σ.	14.6 3n. 67.14 15.4 2n. 66.97	44.55		125'3 O	2n. 7n.	.43 .85	4.4I 5.16
	.8 ", .55	70.26			B C		
225	Σ. 878.		Σ. Mä.	101.7 103.2	3n. 2n.	2·46 ·56	1831.53
	_	М.		.5	3n.	.73	3.15
R. A. 6 ^h 10'2 ^m		7.5, 11		105°2 102°4	2n. 7n.	.47 .49	5.16
Rectili	C. A, yellow.		020		Σ. 14	10	
Σ.	311.7 2n. 16.19	,	230	U.			
	317.5 3n. 17.07	65.35	R. A 6h 23	m	Dec.		M. 7, 10
226	Σ. 881.		Σ. De.	353.2 353.2	2n. 3n.	8·56	1848 ⁻⁷¹ 67 ⁻⁷⁴
R. A. 6 ^h 11 ^m	3,	M. 6·4, 7·6	231	o	.Σ. 1		
Σ.	C. white.	1830.58	R. A 6h 24	i.	Dec.		M. 68, 9
Mä. Ο. Σ.	89.9 3n. 85 95.6 14n. 87	42°26 7°52	0 24		. A, ye		, ,
			0.Σ.	105.4	In.	7:30	1844.90
227	Σ. 3116.			104°3	",	'74	9.19
	m — II° 42′		De.	103.1	3n.	·86 ·88	7:29
Certaii S.	n change in angle and o		232		Σ. 9	18	
De.	24.0 3.86	64.73	202			29 (B).	
228	ο.Σ. 140.		R. A	4.	Dec		М.
R. A.	Dec.	M.	6 ^h 24	.3 _m	(2° 3	_	6.7, 7
6h 20m	15° 36′	7, 9'5	1	dr cives	C. wh	ite.	
ο.Σ.	C. A, blue.	1847.22	ł	ér gives 1850:8	ο. Δ	= 4"·48.	
De.	119.6 4n. 3.04		P -	= 324°·3	+ 0°°	II (t -	,(o ^o 0281

Σ.	318°8	4n.	4.18	1821.03	G1.	331.6	6 2.2	6 1.82
	316.6	2n.	5.09	2.52	W.O.	332.6	In.	' ' ! '
	322.4	3n.	4.45	9.26		331.2	,, '2	_
8 0.	319.4	,,	5.22	5.16	1	334.3	" 3	1 3
H. Mä.	324.7	2n.	4'45	9.99	Pl.	330.8	2n. 0	I
Mä.	325°I	,,	.70	43.26	Dob.	331.2	", Т	
	324.6		.61	4.88	l		,	•
	323.3	,,	.54	5.29				
	325.4	,,	•56	6.08	235	Σ	935.	
	323.9	3n.	'42	52.58				
Da.	.8	"	20	5.27	R. A.		Dec.	M.
Da. De.	.5	20.	·60	2:39	6h 29	m.	52° 24'	8.2, 9
Se.	325.6	in.	·56	6.12	1		C. white.	
Mo.	324.2	2n.	.20	9'34	1_			
Eng.	325.3	4n.	.84	65.46	Σ.	322.5		1 '1829.58
Du.	327.1	7n.	.31	71.29	₩ä.	323.4	2n. '5	5 44°24
Gl.	328.5	ın.	·š	4.11				
					236	0.3	£. 149.	
200		_ 4	40		200	0.2	4. 148.	
233	O.	Σ. 14	1 8.		R. A		Dec.	M.
		-			6h 291		27° 23′	6·5, 9
R. A		Dec.	,	М.	1			
6h 27m	•	37° 9	7	7'1, 10'8	A diff	icult obje	ect. Rapid an	gular motion.
	C.	A, gol	den.		Ο.Σ.	350'73	3n. 0'5	3 1848.23
0.Σ.	77.15		2.24	1849.24	De.	316.22	,,	68.33
De.	72.87			67.95				
	,,	J	ر.	0/ 93	000	_	. 041	
					237	2	£ 941 .	
234	Σ	. 93	2.		D A		Dec.	М.
			_		R. A		41° 41'	7, 8
R. A.		Dec.		М.	0 30	•	4. 4.	7, 0
6 ^b 27:	5™	14° 5	jo'	8·2, 8·3	C. A,	bluish w	hite; B, purp	olish white.
	C 5	and Ca	., white.		H ₁ .	76°0		1783.21
			-		So.	85.1	1.6	
				(v., p. 329)	H,	77.5		1 2.00
				The mea-	Σ.	··.6	4n. 1.9	5 30.29
				is opinion.	Mä.	79'7	in. 6	
	64) agr				Ο. Σ.	82.3	5n. 2'1:	
	Change v	ery sin	an, n an	•	Se.	80.4	2n. 1.9	
Σ.	342.4	In.	2.25	1828.24	G1.	.9	In. 2.0	
	341.8	,,	'44	30.55	GI.	•2	,, ' '2	76.09
H.,	340'9	,,	.35	3.14				
т,	346°1 337°8		2 ±	0.18 0.18	238	2,	. 943.	
Mä.	33/ 3	2n.	-62	44.13	200	~	. 040.	
	.4	In.	71	2.51	R. A.	,	Dec.	M.
	336.8		.56	51.12	6h 30.3		23° 19'	8.5, 9
	335.9		.71	2.51			a	• •
Da.	334'5		'43	48.19		,	C. white.	
	332.1		.26	5 9.12	Σ.	165.9	2n. 15'4	5 1829.74
0.	.3		*26	63.41	Mä.	152.7	,, 16.40	
Se.	333'2		°04	57.16	The Control	153.8 148.5	in	5.22
De.	333.2	3n.	.32 .28	3°18	De.	148.2	1 18.0	0 64.67
~ 0.	332.1	In.	'20	4.10				
0.Σ.	334.2	,,	.36	8.51	239	2,	. 94 5.	
	331.0	5	.29	72.13	200	4	. 0 10.	
W. & S.				3.93	R. A.		Dec.	M.
W. & S.	.8	3	'14				D.C.	444.
	.8 .8	3	.30	4'13			41° 5'	7.1, 8
W. & S.	o. 6.	4	.30 .52	4'13 3'94	6h 32m		41° 5′	7.1, 8
	.8 .8		'30	4'13				7.1, 8

The direction in 1841'23 appears to be 10° in error. It is probable that Σ .'s measures are also similarly erroneous.- $(0,\Sigma_{\cdot})$

Dunér's formulæ are

1849.45.
$$\Delta = 0^{\circ}.96$$
.
P = 256°.3 + 0°.376 (t-1856.0).

Σ.	249'0	6n.	1.02	1830.77
Mä.	251.2		.0	5.38
	2560	3n.	0.88	44.62
	254.2	īn.	·86	5.29
	260.8	2n.	1.00	51.75
	257.4	,,	0.92	5.76
ο.Σ.	258.6	6n.	1.11	49.59
De.	256.7	2 n.	0.85	56.88
	257.4	ın.	.82	65.38
Se.	258.9	2n.	-85	57:27
Du.	265.2	3n.	.84	72.87
	•	_		

S. 950. 240

R. A. Dec. M. 10° 0' 6, 8.8, 11.2 6h 34'4m

C. A, green; B, blue.

AB.

Σ.	208.6	6n.	2.77	1832.22
	.3	ın.	.81	6.12
Sm.	206.2		.2	5.13
Da.	209'3		3.07	42'19
Mä.	212.3	In.	.13	3'14
	210.5	,,	2.63	4.55
	209'3	,,	·86 ·98	5.55
	212.6		.98	21.13
	•3		3.51	2.18
ο.Σ.	.3 211.6	In.	.06	66.51
De.	.0		'02	8.74
Ta.	203'I		2.68	.99
	205'1		.62	72'14
W. & S.	210.8		•8	3.25
G1 .	.9	l	3.0	'53

A C.

Σ. 8m.	12.0	3n.	16.28 12.0	2.13 31.23
Mä. Ο. Σ.	13.3	ın.	·89 16·67	43 [.] 14
De.	~ 9		'21	8.74

Σ. 3117. 241

R. A.		Dec.		M.	
6 ^h 34 ^m		9° 49'		8·9, 9·4	
Σ.	93.7	4n.	0.62	1832'70	
Mä.	88.3	In.	.40	45'96	
O.Σ.	87.5	5n.	1.01	63'22	

242 **2.** 955.

M. R. A. -7° 52′ A 8.7, B 9, C 8.5 6h 35'4m C. white.

AB.

Σ.	272.6	4n.	0.88	1830.65
	266.5	In.	.89	6.19
Se.	276.3	,,	1.09	57'12
De.	267.4		.0	69.20
		A C.	1	
	188±		11.2∓	fixed.

Σ. 948. 243

12 LYNCIS.

Dec. R. A. 6^в 35.6^т 59° 34' 5.2, 6.1, 7.4

C. Z., A B, yellowish white; c, bluish.

"This curious object, of which A and C are Piazzi's 185 and 184 of Hora VI.,

was discovered to be triple in 1780, and registered 6 H₁ I. and 22 H₁ III." (Smyth.)

H₁ writes: "Oct. 3, 1780. A curious treble star. Two nearest pretty unequal. L. w; S. w, inclining to rose-colour. With 227, about diameter; with 460, full diameter of s. Position 88° 37' s.p. The 1st and 3rd considerably unequal; and and 3rd pretty unequal. The 3rd pale red. Distance from 1st, 9" 23"; too difficult to be extremely exact. Position with regard to the 1st, 32° 33' n.p." (Phil. Trans., vol. lxxii., p. 215.) The 1st and 3rd are AC; the close pair AB.

H, and So. (Phil. Trans., 1824. pt. 2. p. 95.) "Triple; A of 7th mag., B of 71. C of 9th mag. The distant star C is

decidedly blue.

"The position of the nearer star has sustained a remarkable change, while that of the more distant has scarcely altered. This star, therefore, deserves particular attention."

He then remarks that if the observed angular motion should continue uniform, "the lapse of 57 years will bring the three stars into one straight line, and in 646 year. a complete revolution will have been performed." This was written in 1823.

H. (Phil. Trans., pt. i., 1826, p. 318.) writes: "There is a considerable change in the position of the close star since the At that time the angle was year 1823. 68° 39' s.f. Hence it appears that the small star has continued its motion in the direction there assigned to it; and, if we may confide sufficiently in both data, with an accelerated velocity, for the computed motion corresponding to an interval of 2.0 years, would be $-1^{\circ}.148$, whereas the observations make it $-4^{\circ}.18$ or $-4^{\circ}.3$. Meanwhile, the direction of the motion is as predicted, and we may therefore regard the reality of this star's rotation as fully confirmed."

Sm. (Cycle, p. 156) remarks the fixity of C, and says that a rough geometrical cast of the close pair gives "an annus magnus of nearly seven of our centuries."

Dawes (Mem. R. A. S., vol. xxxv., p. 330)

says, "evidently binary."

A B.				
H ₁ .	181,3		"	1780'76
H, & So.	158.6	In.	2.29	1823.58
80.	154.3	4n.	2 59 52	5.52
H ₂ .		3n.	1.76	30°24
	157.2	2n.	67	1.10
Da.	*33.8	3n.	•	1 62
24.	.3	2n.	1.64	3.13
	149.5	In.	75	6.97
	148.4	2n.	72	41.50
	143.3	In.	·68	8.22
Σ.	153.7	5n.		31.10
Sm.	154.3	J	.53 .6	2.96
	149.5		•6	9:27
	143.7		•5	52.96
G .0.	121.9	12	'42	40.28
ο. Σ.	152.7	3n.	•76	0.31
	153.6	In.	.58	1.50
	148.4	,,	·63	5.25
	149.2	,,	•66	6.30
	146.3	2n.	.57	7'34 8'32
	.3	3n.	62	8.32
	•3	,,	.57	9.31
	147.8	2n.	•56	50.39
	146.7	,,	.72	1.58
	143.9	,,	.25	2.33
	° 4	In.	. 59	3.35
	142.3	,,	·52	5.35
	143.9	,,	.74	9.35
	6-6	,,	72	60.30
	138.8	,,,	*84	7:31
	137.2	2n.	.75 .66	8.31
	136.9	"	-84	9.32
	132.6	1		70.32
Ch.	148.6	3n.	77	2°30 42°25
Mä.		_	·51	2.5
	.5 149.4	2n.	'31	3.50
	147.2	4n.	.59	4.40
	145.4	2n,	.90	5.15
	146.4	ion.	160	6.18
	٠٠	2n,	*54	7:25
	144.8	,,	•56	8.32
	142.6	3n.	.65	51.13
Ka,	147.0	-	•63	43.10
	141.2		·6ŏ	66.31
Mo.	142.0	30	.87	54.51
	140'3	12	-55	8.25
				_

De.	141.4	1	"	
20,	140.7	In. 3n.	•••	5°18 5'18
	142.2	2n.	1.8	90
	143.0	,,	.55	6.44
	140'0	In.	.70	62'74
Se.	138.1	3n.	.72 .68	3°15 57°20
Ta.	142°3	In.	-08 2:04	66.09
	134.3	,,	1.34	74.18
M,	134·3 136·3	",	·53 ·84	68.31
W. & S.	131.4	4		72.08
	135.7	4	.27	3.19
	134.6 135.8	5 2	•56	·24 ·25
	133.3	2	•••	.25
	-33.3	3	1.7	'29
G1.	134.0	3 3 5	41	4.13
Dob.	130.1	7n.	•••	6.10
		A C.		
H ₁ .	302.2	In.	[9:38] 8:67	1782'34
Σ. 0.Σ.	304'2 305'I	5n. 3n.	8.67 .83	1831'10 40'31
0.2.	303.I	In.	'7 I	5.33
	305.8	2 n.	•46	5°32 7°34
	7 304 9	3n.	·55 ·63	8.32
	304'9	,,	·63	9°31
	302.3	2n.	.62	1.58
	304.8	"		2.33
	.8	In.	·59 ·75	2.33 5.32 9.35
	305.2	,,	'70	9.35
	306.4 304.1	,,	.76	60.30 7.31 8.31
	300.I	,, 2n,	*90 *§5	8.31
	305.0 304.4 306.0	,,	.61	9.33
1	304.4	In.	.73	9°33
G.O.	158.5 300.0	,,	.50	2.30
Ch.	304.0	27 3n.	9.42 8.74	40°42 2°25
De.	306.8	In.	34	54°QI
ļ	•6	3n.	·34 ·38	5.18
Ì	.6	2n.	·\$5 ·80	.90
	305.2	,, Tn	*80	56.44 62.74
1	•9	In. 3n.	•63	3.12
M.	303.9	In.	'97	2.31
	305.2	,,	9.11	70.25
Ta. W. & S.	307.0	8	8:58	70.08 70.08
W. W.	307.9	4	7:2	3.19
	305.8	5 2	7·2 8·76	*24
	307.7			.25
	306.2 304.2	3	8.6	°25
G1.	306.0	3 3 3		4.10
	'4	3	·5 ·7	13
Dob.	305.4	7n.	1	6.10
244	O	.Σ. 1	54 .	
R. A	••	Dec.		M.
6h 36	m	40° 4	6′	6.7, 8.4

C. A, golden; B, purple.

After reducing the angles to the equinox of 1850, and deducing the rectangular coordinates, O.Z. finds the following formulæ for rectilinear motion:—

$$\Delta A = +20" \cdot 046 \pm 0" \cdot 015 + (0" \cdot 0324 \pm 0" \cdot 0010) (t - 1850);$$

$$\Delta D = -21 \cdot 704 \pm 0 \cdot 015 + (0 \cdot 1421 \pm 0 \cdot 0010) (t - 1850);$$

and these when compared with the observations are satisfactory.

0.Σ.	136.65	2n.	30.41	1846·76 8·76 61·26 9·28
••	.35	,,	28	8.76
	133.20	In.	29.28	61.26
	131.45	2n.	28.77	9*28
De.	.73	3n.	.77	7.91

245 o.Σ. 155.

0.Σ.	262.2	ın.	15.50	1847.23
	.3	**	15°20 14°82 °86	8.31
	ı.	,,	.86	9.24
_	261.7	,,	.76 15.36	73.24
De.	260'4	3n.	15.36	67.86

246 a CANIS MAJORIS.

(SIRIUS.)

C. A, brilliant white; B, deep yellow.

This magnificent star, the brightest in the heavens, has for thousands of years attracted the attention of mankind. Of all the stellar host Sirius stood first in the influences for good and for evil which these bodies were supposed to exercise over the earth and its inhabitants. A lively and interesting account of these and other such matters will be found in Smyth's Celestial Cycle.

Such being the brightness of this star, it is not surprising that it suggested to astronomers many speculations respecting the magnitude, distance, and relative brightness of the stars. Long before the days of accurate telescopic measures, attempts were made to estimate the apparent diameter of Sirius. Maginus made it 10', Kepler 4', Tycho 2', Ricciolus 18". Passing by the curious results obtained from such estimates as these, and also from other erroneous assumptions,

we reach the times of Hevelius, who made the diameter of Sirius to be 6° 21", of J. Cassini in 1717, who regarded 5" as the most correct value, and of Michell near the end of the 18th century, who considered that 0" 02 was too large for Sirius. Naturally the subject had a special attraction for our great observer Sir Wm. Herschel, and he did not fail to use the vast optical powers his genius had created in an attempt to solve this great question. But his success was not complete: in fact, the causes which determine the size of the telescopic disc of a star were far from being understood in Herschel's day. He found that a Lytze had a diameter of 0" 3553, a value which, as he himself suspected, probably differs widely from the truth.*

The dazziing splendour of Sirius, too, early led speculative astronomers to attempt estimates of its distance, on the ground that the brightest star is most probably the nearest to the earth. Gregory, Huyghens, Chésaux, Lambert, Michell, Olbers, and others made attempts in this direction, the general result being that the parallax of Sirius was less than 0"5. Wollaston by means of photometric methods deduced a parallax of 1"8. Hooke was, however, the first who employed the telescope in observations for the purpose of detecting the annual parallax of the fixed stars. Then followed Bradley, Herschel, Piazzi (who found 4" as the value of the parallax of Sirius), Brinkley, Pond, Struve, Bessel, etc., etc.

Again, when exact meridional observations were made possible by the rapid progress of practical astronomy, the proper motion of the stars demanded the careful consideration of astronomers. Halley was the first to note the fact of stellar proper motion, and was led to it by a comparison of the places of Sirius and other stars in ancient and modern catalogues. J. Cassini, Bradley, Mayer, Herschel, Maskelyne, Bessel, Argelander, O.Z., Henderson, Maclear, Main, Peters, and others have contributed to our knowledge of this subject.

The following are some of the values of the proper motion assigned to Sirius:—

A careful study of the path followed by Sirius led to the discovery of the fact that it was far from being a straight line; that the apparent path was, in fact, an irregular sinuous line. Bessel found that the irregularity of the proper motion in R. A. was

^{*} Tycho estimated the apparent diameters of stars of the second magnitude at r' 30"; those of the third at $r\frac{1}{2}$; those of the fourth at $\frac{3}{4}$.

^{*} Chacornac in 1864, operating on the disc of Sirius by means of a prismatic telescope, found no perceptible diameter whatever.

very sensible between 1755 and 1844. The earliest suspicion of want of constancy was obtained in 1834. Recent observations have confirmed this, and the periodicity of the changes both in R. A. and N. P. D. has been established.—See Monthly Notices, vol. vi., p. 156, and vol. xx., p. 20. To account for this, Bessel in 1844 suggested the existence of an invisible perturbing body belonging to the system of Sirius, and in 1851 Peters, adopting this hypothesis, calculated the theoretical orbit which would satisfy the observations: he found

Passage through lower apsis ... 1791'431
Mean annual motion 7°'1875
Period... 50'm'01
Eccentricity 0'7994.*

In Sept. 1861 Safford sent to Brünnow an investigation of the perturbations of Sirius: in this paper he announced the angle of position of the centre of gravity with respect to the invisible mass: he gave for 1862'1, 83°8; yearly diminution, 1°4. Scarcely four months after this determination was arrived at, Mr. Alvan Clark, using his 181 in. refractor, discovered a close companion to the bright star. The question now arose as to the identity of the new companion and Bessel's invisible disturbing body. Numerous and careful measures were made. Auwers computed the orbit, and gave the following table containing the values obtained from the elements for the quantities. D = distance of Sirius from the centre of gravity, d =distance of the hypothetical companion, assuming its mass to be in the ratio of 1:205 to that of Sirius, and P - the position angle of Sirius in its orbit + 180°

	D.	d.	P.
1861.0	3.129	9.64	87 [°] .86
2.0	.255	•93	85.81
3.0	*339	10.18	83.86
4.0	412	. 41	82.01
5.0	475	·6o	80.53
6.0	1525	'75	78·50
7.0	.567	•88	76.86

The last elements by this distinguished astronomer are as follows:—

T = 1843.275. $\Omega = 61^{\circ} 57^{\circ} 8$. $\alpha = 18 54.5$. i = 47 8.7. $\epsilon = 0.6148$. $a = 2^{\circ}.331$. P = 49.399 years.

From these the minimum distance (2"'31,

In 1864 Auwers recomputed this orbit, and found the following results:—

angle 302° '5 in 1841'84), the maximum distance (11"'23, angle 71° '7, in 1870'13), and the following ephemeris are obtained:—

	_ 0	"
1862.0	85°4	10.10
5.0	79.9	.78
8.0	75.0	11.12
71.0	70.3	'20
4.0	65.2	10.92
6.0	62.1	.29
8.0	58.4	105
80.0	54.5	9'33

On comparing these with the measures observed since 1862, it will be seen that they

do not agree at all well.

0.2., in 1864, communicated a paper to the *Monthly Notices*. He says, "According to Mr. Safford's computations, the hypothesis that the small star is in no physical connection with Sirius, and has for itself no sensible proper motion, demands for the same time

while the hypothesis that the small star was identical with Bessel's obscure body, would imply a feeble diminution of distance, and also a diminution (but only of 1°4) in the angle of position for the same interval." The writer remarks that he does not regard the hypothesis of accidental juxtaposition as well established; that the fact of Sir Wm. Herschel not having seen the companion strengthens his view; that its light is probably variable, for in 1863 it was estimated as of the eighth magnitude, and in 1864 (March 28) it was easily seen a few minutes after sunset, when other stars of the ninth magnitude could only be seen with difficulty at greater altitudes. On the whole, he is disposed to attribute much of the uncertainty attending the measures to the existence of systematic errors in the observations.

Dunér gives the following formula for obtaining the corrections required by Auwers' ephemeris to bring the computed and observed angles into harmony:—

$$d P = -5^{\circ} \cdot 0 - 0^{\circ} \cdot 48 (t - 1869 \cdot 0) + 0^{\circ} \cdot 03 (t - 1869 \cdot 0)^{2}.$$

He observes also that some of the measures are certainly faulty, and appear to have been made with bright wires in a dark field, a practice which he condemns in double-star measures of distance; and he recommends that the observations of the star be made either just before or soon after sunset.

STARS NEAR SIRIUS.

PIAZZI at the end of the last century observed a small star near Sirius; he wrote, "alia 8º magnit. præcedit, 3" temporis, 3' ad Boream."

SMYTH (Cycle, p. 158) records a distant star of the tenth magnitude and of a deep yellow colour, distance 150", angle 45°.

GOLDSCHMIDT (see Monthly Notices, vol. xxiii., 1863) in 1863 announced his discovery of five new stars near Sirius; the telescope used had an aperture of 4 inches, and all the stars lay between 15" and 1' from the bright star. Dawes readily saw the star d, but failed to detect the others.

ALVAN CLARK'S comes.

MARTH, at Malta, observing with Lassell's fine reflector, remarked, 1865, Jan. 13, a star considerably nearer to Sirius than d. SECCHI in 1865 records having seen a faint star at a distance of about 44".

In 1872 Messrs. Ellery, Le Sueur, and MacGeorge, observing with the Melbourne reflector, saw eight small stars near Sirius.

CLARK'S Companion.

A B.				
A.C.	85°±	ı	110"±	1862'08
Bond	84.6	l	10.07	19
	82.8	j		3.52
	76.0	1	9.0	5.26
Ch.	85°0	1	10.42	2.53
Lastell	83.0	In.		.28
	8ŏ.3	,,	9.23	4.12
	.1	,,	.67	'21
Ο.Σ.	82.2	2n.	10'14	3.51
	76·š	,,	.92	4.55
	77.2	,,	.60	5.50
	.2	,,	'60	.51
	75.5	,,	*93	6.50
M	72'1	,,	.98	7.22
Chacorn	4 0 4 10		•••	2.3
Rutherfr	81.5		•••	.2
Mit.				3·1
ALLE.	78.5		10.2	
	79.6		.9	*15 *20
Da.	84.9	In.	'4 '00	'2 3
Wi.	79.7			·24
Marth	79.7	3n.	10.60	14
Se.	88.4	In.	7.62	.15
		9n.	9.59	5.55
	75.2	3n.	10.10	6.58
	65.9	,,	.75	71'16
Tietjen	76·8	,,		65.25
_	73.8	In.	10.92	6.50
Bruhns		,,	.74	'20
_	69.5	5n.	11.35	8:24
Br.	74'7	4n.	•26	9.10
F örster	77.9	2n.	10.48	5.22
7 .	72.3	,,	•••	7:24
₹o,	73.6 76.9	3n.	11.53	9.15
Eng	70.9	In.	9.0	5.26
	71.6	5n.	10.95	8 ·26

	0		. "	_
Σ.	73 .7	In.	10.49	1865'24
	.3	,,	12.91	'70
Kn.	77'1	2n.	10.43	608
W.O.*	74.3	3n.	10'21	-23
	.3	2n.	.65	*25
	62.7	IIn.	11.22	72.24
	58·0	٠,,	'39	4'17
	56.3	,,	'47	5.53
	52.8	5	'35	7.17
	53'4	5	10.02	.25
Tuttle	78.5	In,	'34	66.36
Du.	68.7	٠,,	11.17	9.20
	64°I	2n,	10.92	71.22
	59·8 60·8	,,	11.0	2.18
	60.8	4n.	10.22	3.55
	57°I	,,	.73	5.10
Pechüle	60.1	3n.	12'10	1 '25
W. & S.	65·0	3	11.50	3'93
Bu.	53.5	5n.	1071	7.93
	21.1	3n.	·06	803

SMYTH's Companion.

45.0 | 150 |1835.80

GOLDSCHMIDT'S Companion, d.

		A D		
Marth	164.6] I	120 ±	1865 03
_	163.9	3		.03
Bu.	128.9	·	104'24	77.87
	. *5		102.99	_ ~99
Pritchet	.4	5n.	103.1	8.51
G1.	φ.	In.	l	4.12

SECCHI'S Companion. 169.8 | In. | 44.26 | 1865.06

Marth's Companion.

		A C		
Marth	126.6	I	1	1865 703
	1270	2	i	.03
Hall	114'9	In.	72709	77'16
Bu.	113.2	,,		-87
	115.1	,,	71 75	_ '99
	112.3	,,	12	8.30
Pritchet	t 114.3	4n.	69.52	31
Pritchet		4n.	69.25	

247 o.Σ. 156.

R. A. 6 ^h 40'4 ^m		Dec. 18° 20'		M. 6 ⁻ 5, 7.	
0.Σ.	347.0	In.	0.38	1843.26	
	339.3	,,	*33	4.36	
	345.6	,,	*49	5.53	
	338.2	,,	'49	7.55	
_	327.2	,,	.21	73.5	
De.	324.2		•••	67.35	

By Messrs. Holden, Hall, Newcomb, Skinner, Eastman.

·	
R. A. Dec. M 6 ^h 41.5 ^m 0° 29' 7.5	
C. white.	
O.Z. 12°7 In. 0"76 1847	
2'4 ,, '66 48'	25
357.2 , 73 70.	
De. 354.8 3n 68.	
W.0. 55.0 2n. 11.50 76.	
51.1 " 10.01 8.	I
C.O. 53'1 11'20 7'	I
Bu. 50.7 10n. 10.44 9.	

249 Σ. 963.

14 LYNCIS.

R. A. Dec. M. 6^h 42[·]5^m 59° 35′ 5[·]9, 7[·]1
C. A, golden; B, purple.

Probably a slight change both in angle and distance.

Η <u>.</u> Σ.	48°0	1		1830.18
Σ.	51.2	7n.	0.89	- 88
Sm.	50.0	· ·	1.0	3.31
Mä,	53.5		0.86	3'31 8'41
	.3	3n.	.95	42.26
	54 6	2n.	. 79	3.34
	55.6 .6	3n.	.77	4.31
		2n.	.75	5'19 8'24
0. Z .	.2	I4n.	'79	
Se.	56· 6	3n.	•76	57:20
De.	59.2	1	•70	63.44
W. & S.	62.3	In.	•63	73'24
0 1.	63.2	,,	79 76 70 63 5	4.13
	64.1	,,	.7	2.10

250 0.Σ. 159.

15 LYNCIS.

R. A. Dec. M. 6h 46·9m 58° 35′ 5·1, 6·2

C. A, yellow; B, golden; De., A, golden; B, blue.

So far the angular change has been very uniform. It may have slackened a little of late, and the distance appears to have increased since 1850. $(0.\Sigma)$

In 1868 De. observed the partial superposition of the discs, the golden image of the larger star covering a portion of the azure blue disc of the smaller.

The common proper motion is +0° 004 in R. A., and +0° 18 in N. P. D.

ο.Σ.	323.45	4n.	0.23	1844.04
	325.67 327.88	3n.	o:53	6.33
		5n.	*43	8.72
	332.02	4n.	·45	50'79

0.Σ.	331.17	3n.	0.47	1852.66
	340'45	2n.	°45	5.32
	341.22	3n.	°49	9'34 61'84
	344'40	2n.	•57	
	348.67	3n.	.20	7.98
	354.97	,,	•58	9.67
	356.37	,,	.21	72.66
	357 03	2n.	•56	5.68
Mä.	336.6		.32	51.42
De.	354'9		ntact	66.87
		single		8.26

251 Σ. 982.

38 GEMINORUM.

R. A. Dec. M. 5'4, 7'7

C. Σ ., A, yellowish; B, bluish.

"The colours so marked, that they cannot be entirely imputed to the illusory effect of contrast." (Smyth.)

This beautiful object was discovered by H₁.

He says (*Phil. Trans.*, 1804, p. 384): "The position, Oct. 2, 1782, was 89° 54' s.f.; and April 6, 1802, it was 86° 6' s.p., which gives a change of 4° in 19 years and 186 days. This cannot be ascribed to parallactic motion."

H₂ and So. (Phil. Trans., 1824, part ii., p. 98): "Extremely unequal, large, white: small, bluish. The measures of this star would be attended with excessive difficulty, except in such a night as the present; it is one of rare occurrence. Moon nearly full. Small star appears a beautiful point; large one quite free from bur or flare." Again, he writes: "This star to-night admirably defined; the measures were gotten with a power of 133, with the greatest facility. With regard to the angle, a slight change may still be suspected, but the diminution of distance is not to be doubted, even should the rejected observations of March 19 [March 19, 1821, 86° 47' s.f., 6".698] be the true ones."

Dawes (Mem. R. A. S., vol. viii., p. 70) writes: "The measures of this beautiful object point to a continued change in angle, though that in distance is not so strongly confirmed."

Smyth (Cycle, p. 165): "From a comparison of all the measures, a slight but constant diminution in the angle may be inferred." He also adds that the measures of H₁, H₂ and S., \(\mathcal{\mathcal{Z}}\), and Dawes, "suggest a retrograde slow motion of — 0° 16 per annum; and the distance appearing stationary, hints a period of upwards of 2000 years."

Dawes (Mem. R.A.S., vol. xxxv., p. 331) thinks that a slow diminution of angle is

well established; but that the diminution of distance is doubtful.

Secchi says: "The diminution in angle continues; the distance increases."

H₁'s distance is probably much too great (1782, 7" 95). Retrograde motion. The distance appears to have increased since 1850.

The common proper motion is + o" o4 in R. A., and + o" o6 in N. P. D.

Dunér gives

 $\Delta = 6^{\prime\prime}$ 03 + 0^{\cdot'} 01 (t-1850.0). P = 169°.5 - 0°.225 (t-1850.0).

₩	179.9			
\mathbf{H}_{1} .	179.9		7″80	1781.99
TT 4.0	176.1			1802.26
H, & 80.	174.4	3n.	5.25	22.67
_	.5	Ì	7 ±	32.50
Σ.	٠8	5n.	5.73	29.24
Da.	172.4	In.	'94	32.92
	171.9	,,	.79	6.17
	169.2	3n.	6.02	41.59
	3	In.	'09	3.12
_	168.0	2n.	.00	51.45
Sm.	171.8		.0	36.10
	170'7		5.8	9.17
	171.8		6.0	43'20
	169.6	i i	•0	8.22
Mä.	171.8	2n.	.20	1.27
	170'3	In.	'16	2.31
	169.6	,,	'20	3.06
	171.2	2n,	'21	4.09
	169.2	,,	.38	5.51
Mo.	171.6	•	.16	.23
	168.4		٠٥	54.46
Ja.	169.8	,,	`22	46.27
	168.0	10	.00	21.10
	169.5	10	5.08	2.77
Ο.Σ.	166.5	In.	.74	1.85
	168.0	,,	.78	64.30
	167.0	,,	6.17	8.31
	164.8	,,		9.53
	165.9	,,	6.56	'24
	164.2	,,	.08	70.22
	167.5	",	'14	3.56
Po.	169.0	2n.	5.84	54.65
	165.3	5n.	.07	61.15
De.	168.3	7n.	6.07	54.46
	167.5	ın.	5.73	5.97
	, 3	2n.	.83	6.51
	166.3	3n.	6.13	62.92
	.3	2n.	'14	3.12
Se.	169.3	2n,	14	56.11
M.	167.8	,,	5.95	63.14
	166.1	,,	6.19	70.5
	'4	,,	·16	1.51
	163.7	,,	.00	2'14
Schi.	164.2	,,	.28	5.53
Ta.	165.0	",	5.40	66.00
*	.2	",	.82	.16
	164.0	",	6.81	70.35
	165.7	",	.67	2.14
	.3	",	47	-98
	166.I	2n.		4.17
			• •••	7 -/

Du.	165°0 '3	3n.	6°16 '42 '29	1870.12
W. & S.	•3	3n. 5 6 6 2 5	'42	2.13
	٠7	6	•29	.08
	100 2	6	1	-12
	.3	2	5.7	3.16
	165 [.] 1 7	5	5.7 6.5 .31 .10	4.13
_	.7	4	.31	17
Ta,	159.4	In.	'10	5°24 6°09
8p.	164 3		•28	5.24
Dob.	·I.	8n.		6.09
<u>G1.</u>	162·8	8n. 5	6.5	.10
W .0.	162.8	In.	42	.10
	164·3 162·8	,,	'34	11.
	165.3	,,	.42	.15
	162.8	,,	.32	:13
Pl.	·8	4n.	6·2 ·4·2 ·3·4 ·4·2 ·3·2 ·37	74

252 Σ. 997.

μ CANIS MAJORIS.

C. A, yellow; B, blue.

The proper motion of this star is o'coo in R. A., and + o ot in N. P. D.

Σ.	343'5	3n.	3.55	1831 20
Sm.	342'9		•5	4.12
	338.8	l	.0	50.79
Mä,	340.8	2n.	.13	44.17
Ja.	338.5	1	2.97	6.12
	335'9		-84	7.10
	338.1	11	•66	58.08
Flt.	۰٥	25	•95	2.60
	337.5	•	· 8 6	6.24
Se.	338.9	3n.	.98	'47
De.	336·6	"	.96	7.94
	337.2		76	64.09
M.	329.4		90	3.16
G 1.	342.7	In.	.28	4'13
W. & S.	343.2	,,	'4	2.14
	341.5	,,	.33	4'13
	343.9	",	75	5.19
C.O.	339.9	"	3.14	77.19
Dob.	342.5		2.23	808
	ے مہر	. ,,	- 23	1 000

253 Σ. 1001.

R. A.	Dec.	M.	
6 ^h 53'4 ^m	54° 21'	7'1, 8'7, 9	
	C. golden.		

Η ₂ . Σ. Μä.	58 ·2 63·9	In. 5n. In.	10'04 8'9 '89	1830°00 1°48 43°22
O.Σ. Du.	64.6	2n.	9.20	58.29
Du.	65.3	. ,,	8792	1 73'52

		A C	•	
Σ. Mä. O.Σ. Du.	354.8 358.8 0.3 359.4	5n. In. 2n.	1.65 2.05 1.87 66	1831.48 45.29 58.29 73.45

254	ο.Σ. 163.	
R. A. 6 ^h 54 ^m	Dec. 11° 58'	M. 7·2, 8·5
Ο.Σ. De.	320.7 3n. 0.57	1848·57 67·40

255	Σ. 1009.	
R. A. 6 ^h 56'1 ^m	Dec. 52° 56'	M. 6 [.] 7, 6 [.] 8
	C. very white.	

Dunér gives

256 LACAILLE 2640.

R. A. 7 ^h 1·2 ^m		Dec. -59° o'	M. 6, 7
H ₃ .	73°5	2.8	1835.03
Ja.	78·1	2.06	38·11 47·24

257	ο.Σ. 165.	
R. A.	Dec.	M.
7 ^h 1.2 ^m	16° 8′	5, 10.7
	C. A, golden.	
Rapid cha	ange in angle and dis	stance.

0.Σ.	130.40 119.35 89.40	2n.	3 ^{.8} 7 -33 2.89	1847·22 56·74 70·24
		••	, ,	, , ,

258 Σ. 1037.

R. A.	Dec.	М.
7 ^h 5'4 ^m	27° 26′	7'1, 7'1

The North Star is perhaps the smaller. C. Σ. yellowish; Se. white; De. white.

Dawes (Mem. R. A. S., vol. xxxv.. p. 332) thinks there is evidence of slow diminution of angle, and that the distance is unchanged.

Mädler (Die Fixst. Sys., p. 256,) after remarking the favourable position, brightness, etc., of this pair, and that they can be seen in bright twilight and even before sunset, proceeds to say that the observations indicate a double motion of the star, if the other be assumed to be at rest, and the existence of a third invisible star. From eight normal sets of observations he deduced a period of 16 years. As the point round which the star travels is invisible, he thinks that one of the stars may be found double, and that the year 1855 will probably be favourable for the discovery of the duplicity.

0.2. Retrograde motion: distance unchanged. The orbit is perhaps nearly circular.

Dunér gives

1855.76.
$$\Delta = 1^{"}.29$$
.
P = 324°.7 - 0°.316 (t - 1850.0).

1.	- 344 /	-0 310	(1-102	00).
Σ.	337.8	2n.	I '24	1827:28
	332.6	6n.	.32	30'42
	327.4	3n.	.11	6.56
ο.Σ.	148.8	,,	'21	40.27
	150.1	ın.	'41	5.55
	327.3	,,	.27	50.56
	323'1	,,	.53	67.24
	324'3	,,	'14	8.51
	140'9	,,	.11	9'24
	319.3	3n.	.35	70.24
Mä,	331.1	•	.33	41.80
	324'3		'37	52.36
	323.0		'29	2.21
	۰.		29	.66
	324'0		37	9.22
	322'4		'45	60.22
Da.	326.8	In.	'22	43.17
	324.6	٠,,	*32	8.17
Ka.	325'2	8n.	'35	3.50
	317.7		.07	67.21
De.	320.8	6n.		55.30
	ı.	2n.	.1	6.12
	318.1	4n.	.52	63.50
Mo.	325.0	20	'35	0.11
X.	312.5	ın.	.52	.25
	302.1	,,	•35	1.22
W. & S.	316.9	7	'40	72°16

W. & S. 315.5 3 " 1872.92	Mä	199.4	12n.	7.07	1856-07
W. & B. 315'5 3 1872'92		200.6		.00	7:21
G1. '6 5 3 4'13		199.7	.	.27	8.31
Du. 319.4 3n. 35 1.92		- '4	3n.	.16	60.90
		200.6		*22	46.20
W.0. 308.8 In. 34 6.15		201.2	18	117	57.65
		203.2	9n.	7°08 6°89	4.03
Pl. 312'3 3n. '36 7'13		199'1	4n. 3n.	7.16	6.11
	- Eng.	201.7	"	, 21	65.13
259 Σ. 1049.	Ta.	.3	In.	6.65	609
200 2. 1040.	Du.	203.0	5n.	7'04	71.46
R. A. Dec. M.	W. & S.	204'0	7	6.74	2.17
7 ^h 8 ^m -8° 43′ 8, 9°8	3	.0	2	•••	.18
		203.7	7	7.2	3.14
C. yellowish white.		204'3	4	.1	4:14
Σ . 34.9 3n. 3.63 1830.53		202.9	4 In.	12	6.55
De. 42.8 .50 67.71		204.7 203.8		7'14	3·26 4·29
G1. 460 In. 40 74.18	Gl.	204.0	,, 2	6.9	709
	- 8p.	202.0	_	.92	5.5
260 ο.Σ. 170 .	Dob.	205.4	In.		.99
200 0.2. 170.		201.8	5n.	•••	6.05
P. VII. 52.		203.4	2n.		.55
	İ	204.2	ın.	6.41	7.91
R. A. Dec. M.	İ	.3 1	2n.	7:37	809
7 ^h 11·2 ^m 9° 31′ 7·5, 7	·5 ——				
C. yellow.	262	Σ.	107	74.	
0.77					
	. 1 _		_		
O.Σ. 133.0 2n. 0.96 1844.79		_	Dec	~	M.
132.0 " 1.00 49.5	7h 14:3h		Dec o° 3	:. 8'	M. 7·8, 8·2
132'0 ,, 1'06 49'25 120'6 In. '21 73'24	7 ^h 14·3 ⁿ Σ.		Dec o° 3 3n.	8' 0:57	
132.0 ,, 1.06 49.25 120.6 in. 21 73.22 Mä. 134.1 ,, 0.99 46.24 127.8 2n. 1.08 52.72	7 ^h 14·3 ⁿ Σ.	115'3	o° 3	9.22 0.22 0.22	7.8, 8.2 1831.54 52.25
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 Mä. 134.1 ,, 0.99 46.24 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13	7 ^h 14·3 ⁿ Σ. Ο.Σ.	115'3 129'4 139'2	o° 3 3n.	9°57 •61 •64	7.8, 8.2 1831.54 52.25 69.24
132.0 ,, 1.06 49.25 120.6 in. 21 73.22 Mä. 134.1 ,, 0.99 46.24 127.8 2n. 1.08 52.72	7 ^h 14·3 ⁿ Σ. Ο.Σ.	115'3 129'4 139'2 138'6	o° 3 3n. In.	9°57 °61 °64 °62	7.8, 8.2 1831.54 52.25 69.24 70.22
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.24 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13	7 ^h 14·3 ⁿ Σ. Ο.Σ.	115'3 129'4 139'2 138'6 140'5	o° 3 3n. In.	0°57 °61 °64 °62 °60	7.8, 8.2 1831.54 52.25 69.24 70.22
132·0 ,, 1·06 49·25 120·6 In. '21 73·24 Mä. 134·1 ,, 0·99 46·24 127·8 2n. 1·08 52·72 De. 121·6 3n. '29 67·13 Du4 2n. '05 72·70	7 ^h 14'3" E. O.E.	115'3 129'4 139'2 138'6 140'5 135'8	o° 3 3n. In. ",	0°57 -61 -64 -62 -60	7'8, 8'2 1831'54 52'25 69'24 70'22 '24 63'15
132·0 ,, 1·06 49·25 120·6 In. '21 73·24 Mä. 134·1 ,, 0·99 46·24 127·8 2n. 1·08 52·72 De. 121·6 3n. '29 67·13 Du4 2n. '05 72·70	7 ^h 14·3 ⁿ Σ. Ο.Σ.	115'3 129'4 139'2 138'6 140'5 135'8 134'2	o° 3 3n. in. ,,, ,,, 4n.	64 64 62 60 	7'8, 8'2 1831'54 52'25 69'24 70'22 -24 63'15 74'14
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.24 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 05 72.70	7 ^h 14'3" E. O. E. De. W. & S.	115'3 129'4 139'2 138'6 140'5 135'8	o° 3 3n. In. ",	0°57 -61 -64 -62 -60	7'8, 8'2 1831'54 52'25 69'24 70'22 '24 63'15
132·0 ,, 1·06 49·25 120·6 In. '21 73·24 Mä. 134·1 ,, 0·99 46·24 127·8 2n. 1·08 52·72 De. 121·6 3n. '29 67·13 Du4 2n. '05 72·70	7 ^h 14·3 ⁿ 2. O. E. O. E. W. & S. Gl.	115'3 129'4 139'2 138'6 140'5 135'8 134'2	o° 3 3n. In. ''' 4n. 7	0°57 61 64 62 60 0°85	7'8, 8'2 1831'54 52'25 69'24 70'22 -24 63'15 74'14
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.24 127.8 2n. 1.08 52.72 121.6 3n. 29 67.13 121.6 2n. 05 72.76 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M.	7 ^h 14'3" E. O. E. De. W. & S.	115'3 129'4 139'2 138'6 140'5 135'8 134'2	o° 3 3n. in. ,,, ,,, 4n.	0°57 61 64 62 60 0°85	7'8, 8'2 1831'54 52'25 69'24 70'22 -24 63'15 74'14
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 0.5 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM.	7 ^h 14·3 ^s 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 263	115'3 129'4 139'2 138'6 140'5 135'8 134'2	o° 3 3n. 1n. 4n. 7 5	0°57 61 64 62 60 0°85	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 0.5 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3.2, 8	7 ^h 14·3 ⁿ 7. 0. Σ. 0. Σ. De. W. & S. Gl. 263 R. A.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5	o° 3 3n. In. 7 5	0'57 '61 '64 '62 '60 0'85 '87	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M.
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 05 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3.2, 8 Certain change in angle.	7 ^h 14·3 ⁿ 7.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5	o° 3 3n. in. 7 5 10 Dec. 45° 14	0°57 °61 °64 °62 °60 0°85 °87	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 05 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3.2, 8 Certain change in angle. Dunér has	7 ^h 14·3 ^s E. O. E. Q.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5	o° 3 3n. in. ,,, 4n. 7 5 Dec. 45° 14 angle a	0°57 °61 °64 °62 °60 0°85 °87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 05 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3.2, 8 Certain change in angle. Dunér has 1854.53. \(\Delta=7''.15\).	7 ^h 14'3 ⁿ 2. De. W. & S. Gl. 263 R. A. 7 ^h 14'4 ⁿ Ch	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5	o° 3 3n. in. ,,, 4n. 7 5 10 Dec. 45° 14 angle a 2n.	0°57 °61 °62 °60 0°85 °87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 05 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3.2, 8 Certain change in angle. Dunér has	7 ^h 14·3 ⁿ 2. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ⁿ Ch E. De.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n.	0°57 61 64 62 60 0°85 87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73 67-30
132.0 ,, 1.06 49.25 120.6 In	7 ^h 14·3 ^a Σ. Ο. Σ. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ^a Ch Σ. De. Ο. Σ.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5	o° 3 3n. In. 7 4n. 7 5 Dec. 45° 14 angle a 2n. 3n.	0°57 °61 °62 °60 0°85 °87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73
132.0 ,, 1.06 49.25 120.6 In. 21 73.24 134.1 ,, 0.99 46.22 127.8 2n. 1.08 52.72 De. 121.6 3n. 29 67.13 Du4 2n. 05 72.70 261 \(\Sigma\). 1066. \(\delta\) GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3.2, 8 Certain change in angle. Dunér has 1854.53. \(\Delta=7''.15\).	7 ^h 14·3 ⁿ 2. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ⁿ Ch E. De. O. E.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5 2 annge in 357'3 5'0 7'7	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n. In.	0°57 °61 °64 °62 °60 0°85 °87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73 67-30
132·0 ,, 1·06 49·25 120·6 In. 21 73·24 Mä. 134·1 ,, 0·99 46·24 127·8 2n. 1·08 52·72 De. 121·6 3n. 29 67·13 Du4 2n. 0·5 72·70 261 Σ. 1066. δ GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3'2, 8 Certain change in angle. Dunér has 1854·53. Δ=7″·15. P=199°·8 + 0°·155 (ℓ-1850·0). H ₁ . 193·7 4n 1797·55 80. 195·4 In. 7·25 1822·12 Σ. 196·9 4n. 1·14 9·72	7 ^h 14'3" 2. 0. Σ. De. W. & S. Gl. 263 R. A. 7 ^h 14'4" Ch 2. De. 0. Σ.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5 2 annge in 357'3 5'0 7'7	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n. In.	0°57 °61 °64 °62 °60 0°85 °87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73 67-30
132·0 ,, 1·06 49·25 120·6 In. '21 73·24 Mä. 134·1 ,, 0·99 46·22 127·8 2n. 1·08 52·72 De. 121·6 3n. '29 67·13 Du4 2n. '05 72·70 261 Σ. 1066. δ GEMINORUM. R. A. Dec. M. 7h 13m 22° 12′ 3·2, 8 Certain change in angle. Dunér has 1854·53. Δ=7"·15. P=199°·8 + 0°·155 (ξ-1850·0). H ₁ . 193·7 4n 1797·5; So. 195·4 In. 7·25 1822·12 Σ. 196·9 4n. '14 9·70 Da. '9 '13 3/12	7 ^h 14·3 ⁿ 2. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ⁿ Ch E. De. 0. E. 264	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5 2 annge in 357'3 5'0 7'7	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n. In.	0°57 61 64 62 60 0°85 87 71.	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73 67-30 74-29
132·0	7 ^h 14·3 ^a Σ. Ο.Σ. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ^a Ch Σ. De. Ο.Σ. 264 R. A. R. A.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5 2 2 35'0 7'7	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n. In.	8' 0'57 -61 -64 -62 -60 0'85 -87 71. // dista	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nce. 1829-73 67-30 74-29 M.
132·0	7 ^h 14·3 ^a Σ. Ο.Σ. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ^a Ch Σ. De. Ο.Σ. 264 R. A. R. A.	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5 2 2 35'0 7'7	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n. In.	8' 0'57 -61 -64 -62 -60 0'85 -87 71. // dista	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nnce. 1829-73 67-30 74-29
132·0	7 ^h 14·3 ⁿ 2. De. W. & S. Gl. 263 R. A. 7 ^h 14·4 ⁿ Ch 2. De. 0. E. 264 R. A. 7 ^h 15 ^m	115'3 129'4 139'2 138'6 140'5 135'8 134'2 '5 2 2 35'3 5'0 7'7	o° 3 3n. In. 7 4n. 7 5 10 Dec. 45° 14 angle a 2n. 3n. In.	0°57 -61 -64 -62 -60 0°85 -87 71. 15°52 -87 16°18	7-8, 8-2 1831-54 52-25 69-24 70-22 -24 63-15 74-14 -17 M. 8-2, 10-2 nce. 1829-73 67-30 74-29 M.

,, 2n. In.

				MEAS
 265	Σ	. 10	81.	
R. A. 7 ^h 17 ^m	(Dec. 21° 4 C. white	ı'	M. 7·5, 8·5
E. Mä. Se. De.	216°1 220°1 222°9 224°6	3n. In.	"33 "34 "58 "40	1828*93 36*76 56*11 67*83
266	0.3	Σ. 17	<u>'</u> 1.	
R. A. 7 ^h 19 ⁿ		Dec 31° 5	; 2 ′	M. 7, 9 [.] 9
0.Σ. De.	129.9 126.4	5n. 4n.	0.64	70°03 70°03
267	Σ.	108	91.	
R. A. 7 ^h 21 ^m The diperhaps 1 E. 0. E.	stance h	Dec 50° 1 as proba has din In.	3' ibly incr	M. 8·2, 8·7 eased, and l. 1828·32 30·25 43·31 9·76 68·80
268	Σ.	108	93.	
R. A. 7 ^h 21 1	110	De 50° irect me	14'	M. 8·2, 8·2
Η. Σ. Ο.Σ.	94'I 96'4 106'5 107'8 103'3 105'I 108'9 107'9 121'8 110'0	3n. In. "" ""	0.57 0.88 .70 .67 .75 .65 .79	1830'40 1'94 40'32 2'32 5'32 6'33 8'25 51'28 69'31 3'43
269	Σ	. 110)4 .	
R. A. 7 ^h 24 ⁿ	a	Dec -14° C. whi	44′	M. 6·7, 8·3
H ₁ . Σ.	292.4	3n.	2 ±	1795.22

312.3

ın.

'21

64.20

270 Σ. 1110.

CASTOR. R. A. Dec. 32° 1' 7h 27m 3, 3.5, 11*

C. H₁, both white; Σ ., both greenish; Sm., A, bright white; B, pale white; C, dusky.

Of this beautiful object H, says, "The largest and finest of all the double stars in our hemisphere, and that whose unequivocal angular motion first impressed on my father's mind a full conviction of the reality of his long-cherished views on the subject of binary stars."

It is marked with a t in H₁'s catalogue, indicating that it had been observed by "different astronomers before Mr. Mayer.

EARLY HISTORY.

BRADLEY AND POUND'S OBSERVATIONS.

" 1718. March 25.—The direction of the double star (Castor, or) a of Gemini was parallel to a line through Pollux (or β), which left k to the westward, as also g tending to near the middle between g and I of Gemini.

"1719. March 30.—The direction of the double star a of Gemini was so nearly parallel to a line through κ and σ of *Gemini*, that, after many trials, we could scarce determine on which side of σ the line from κ parallel to the line of their direction tended; if on either, it was towards β . This observation was made when the air was still, and with the 41-inch eyeglass, which made the stars appear a good distance from each other.

"1722. October 1.—A line through the double star a of Gemini was parallel to another drawn through β and κ . southernmost star is brightest." (Rigaud's Miscellaneous Works of Bradley, Oxford,

1836.)
These observations and the method adopted by Bradley are fully discussed by H₂ in the Mem. R. A. S., vol. v.. p. 23, et seq., and he shows that a correction amounting to 2° 43' should be applied to the angles subtractively. The corrected the angles subtractively. The corrected angles then become 352° 28 in 1718'23, 355° 68 in 1719'24, 359° 88 in 1722'75.

Then comes the observation by Bradley

and Maskelyne in 1759.80, giving as the angle 326°50. (H₁, in *Phil. Trans.* 1802.)

H1: "Feb. 28, 1781.—I saw with one eye the projection of the stars upon a wall at a distance of about six or seven feet, where they seemed to take up a space not less than four or five inches. I shall endeavour to construct a micrometer, from this

* Dawes observes that Se. has placed the smaller star in the n.f. quadrant five times, and that he suspects a variability of relative brilliancy. hint, which may serve to measure such very

small intervals exactly."

H₁ (Phil. Trans., vol. lxxii., p 216). "April 8, 1778.—Double. A little unequal. Both W. The vacancy between the two stars, with a power of 146, is one diameter of S; with 222, a little more than one diameter of S; with 227, 1½ diameter of S; with 460, near two diameters of L; with 754, two diameters of L; with 932, full two diameters of L; with 1536, very fine and distinct, three diameters of L; with 3168, the interval extremely large, and still pretty distinct. Distance by the micrometer 5"156. Position 32° 47' n.p. These are all a mean of the last two years' observations, except the first with 146."

In the *Phil. Trans.* for 1803, p. 339, H₁ announces his famous discovery of binary systems, and Castor is the one he first subjects to examination. He says, "I shall therefore now proceed to give an account of a series of observations on double stars, comprehending a period of about 25 years, which, if I am not mistaken, will go to prove that many of them are not merely double in appearance, but must be allowed to be real binary combinations of two stars, intimately held together by the bond of

mutual attraction."

THE ORBIT.—As early as 1803 H₁ gave his speculations on this subject to the world. His results were, of course, merely intended as rough approximations. He found that between the years 1778 and 1803 the distance had not changed, but that the angle had diminished from 32° 47′ n.p. to 10° 53′ n.p. At great length he shows that orbital motion alone could account for this change. Taking the annual angular motion as 56′ 18, he computes the position for the epochs of the observations, and an extract showing

the results is here given :-

Times of observations.	Observed angles.	Calculated angles.
Nov. 5, 1779	32° 47′	32° 47′
Mar. 26, 1800	18 8	13 41
Jan. 10, 1802	10 53	12 I
Mar. 27, 1803	10 53	10 53

Using an observation of position by Dr. Bradley in 1759, a mean motion of 1° 3'·I was obtained, and this was found to give a still closer agreement between the observed and computed positions. From the arc described in 43 years and 142 days, viz., 45° 39', he inferred a period of about 342 years and 2 months.

H, and So. took up the subject in 1821, and H₂, after a careful study of all the observations up to 1822, found that the mean angular velocity was 0°965. He used the observations of Bradley and Maskelyne in 1759'8, taking the angle as 56°5 n.p., and gave equal weights to all. The

results he arrived at may be thus stated: the orbit is elliptical, and nearly at right angles to the line of sight: there has been a sensible retardation of the angular velocity since 1780. (*Phil. Trans.* 1824, part ii., p. 103.)

Returning to the subject in 1825, H₁ found that the observations made since 1823 confirmed his previous speculations. (Phil.

Trans. 1826, p. 320.)

But it was not till 1832 that this distinguished astronomer fairly grappled with the orbit of this star. In that year his famous paper "On the Investigations of the Orbits of Revolving Double Stars" appeared. (Mem. R. A. S., vol. v., p. 171.)

His first example was γ Virginis, and Castor was the second. The sections on the latter may be thus summarized. The positions from the observations in 1759 and 1802 are perplexing: taking them as 320° 20′ and 383° 15′ respectively, the interpolating curve becomes a straight line, and the orbit a circle, with a uniform angular velocity of -0° 8745 per annum. He decides at last on the following:—1718'20, 160° 52′; 1756'00, 144° 22′: 1781'09, 130° 44′; 1803'20, 120° 10′: taking up Σ .'s angles in 1819, 1820, 1822, and 1825, and also those by himself, South, and Dawes, down to 1831, he submits them to the graphical process. The final results are as follows:—

APPARENT ELLIPSE.

IIII ACMII ESEIISE	
Major semi-axis	5" [*] 34 53 [°] 53
Position of major axis Minor semi-axis	
Farthest maximum of distance	2"·72 6"·67
Position thereof	29° 5′
Nearest maximum of distance	5″′′03
Position thereof	270° 30'
Farthest minimum of distance Position thereof	4″*66 313° 5′
	0".66
Position thereof	147° 20′

REAL ELLIPSE.

Major semi-axis	$a = 8'' \circ 86$
Excentricity	e = 0.75820
Position of perihelion	# = 169° 10
Inclination	
Position of node	
Distance of perihelion	•
from node on orbit	$\lambda = 262^{\circ} 31'$
Period in years	
	$* = -1^{\circ}.424$
Perihelion passage	T = 1855.83

On comparing the angles observed, up to 1833, with the computed angles a fair agreement was found. The following is the ephemeris from 1833 to 1856. For comparison, the observed angles and distances are given.

t	θ	ρ
1833.0	257° 10′	4".82
36∙o	254 22	.65
39.0	251 21	·37
42.0	248 I	.19
45.0	244 7	3 .82
48°0	239 3	.37
5 0℃	234 25	2 '91
52.0	227 19	.18
54.0	212 36	ı .36
5 6℃	164 24	o . <u>6</u> 8

Obse	rved		
Angle.	Distance.	Date.	Observer.
256 ⁸ .73	4" 89	1833.10	H.
12	5 '28	36.88	E. & G.
253 '73	'20	9:35	G.
252 '38	4 '91	42.25	Da.
249 80	•••	5.63	Н1.
*20	5 '008	8.18	Da.
248 '11	.068	51.51	**
246 '39	.070	2.50	,,
'2 I	.098	4'23	,,
245 '44	145	6.50	De.

In 1842 (Ast. Nach., No. 452, vol. xix.) appeared the following elements by Mädler:

a	7 ″·008.	λ	87° 37′.
e	0 '79725.	P	232yrs.124.
γ	70° 58′.	T	1913.90.
æ	23 5'.	12	

In 1845 Mr. Hind computed a set of elements. All known observations between 1718 and 1845 were used, and the method adopted was the graphical. In 1846 Captain Jacob obtained a set, and the two are here exhibited together:—

Hind in 1845.	Jacob in 1846.
T 1699.26	
T 1699.26	1703'30
S II 24	10 0
λ 355 41	0 0
γ 43 I4	43 17
e 0'2405	0'300
m - 34'·163	-0°.5512
a 6" 300	6":30
P 632 ⁷⁷¹ ·27	653 ^{ym} ·1

On these Mr. Hind remarks, "The period of revolution of this star appears, therefore, to be very much longer than was formerly supposed, and the eccentricity, instead of being large, is possibly not greater than 0'25."

The next attempt to deal with this hitherto intractable star was by Mädler (see Untersuchungen über die Fixstern-Systeme, 1847, p. 233). The observations made use of

extended from 1719.84 to 1847.19. The elements are.

nns are,—

T 1688·28.

n — 41'-55654.

e 0'21938.

Ω 10° 45'-6 (Æq. 1845·0).

λ 16 1'-7.

γ 41 46'-7.

P 519⁷⁰·77.

Mädler also gives an ephemeris, of which the following is an extract. Appended are the measured angles and distances for comparison:—

	Angle.	Distance.
1845	250° 0'1'	4".849
50	246 54	955
55	243 49	5 °C64
6 0	240 55'4	177
65	238 9.2	'291
70	235 29.6	406
MEASURED	ANGLES AND	DISTANCES.
Angle.		Date, Observer.
249.8	18.	45'95 H ₁ .
248.97	5"'027	49'32 Da.
243.61	4 '848	55'31 M.
242.77		60 ² 2 Da.
241'45		65.31 ,,

There is very satisfactory agreement between the computed and observed angles and distances all the way down from 1719 till the year 1845 is reached, when a divergence is manifest. In 1855'82 Secchi gives 245°13, and in 1856'20 Dembowski has 245°44. In 1870 the following measures may be given for comparison:—

De. 239°:34 5":488
Ta. 240 51 5 650
Gl. 239 7 5 57

The next orbit was that deduced by Thiele, and given in the Ast. Nach., vol. lii., No. 1227. His elements are,—

T 1750:226.

T 1750°326.
P 9967"·85.
n - 21'′6685.
ε 0°34382.
a 7''5375.
λ 294° 0' 8.
γ 42 5' 4.
β 31 58' 0 (for 1850).

Thiele also gives, for comparison, the results for every two years from 1848 to 1880, as deduced from his own and other elements. Subjoined is an extract from this table:—

OBSERVED ANGLES AND DISTANCES.

							· CLEO
	Thiele's Orbit.	Mådler's.	Hind's.	248° ·29	5"'068	1851.21	Da.
	0 "	Q #		245 '58	145	56'20	De.
1850	248.47 5.215		246.19 2.193	242 .89	'395	60.33	Da.
1856			242 74 347	241 '15	'384	66.03	De.
1860			240.22 .421	239 '76	°57	70'32	G1.
	240.83 .674	237:50 '477	237.41 .607	236 '22	•5	75.66	,,
	239.12 .486		235'41 '711	234 '2	.28	76.70	ři.
		232.26 .200	232.55 .867	•9	•••	77:31	Dob.
1880	235.10 6.063	230.27 .789	230.73 .970	235	.35	78.11	"

For further comparison, the observed
angles, corrected for precession to 1880, from
1850 to 1875, are given in the last columns,
together with the observed distances. The
agreement between Thiele's angles and those
observed is remarkably good, but the dis-
tances are not so accordant, and the differ-
ence is becoming greater.

A careful comparison of Thiele's elements with the observed angles and distances up to 1875 has led Du. to regard 7" 119 as the most probable value of a.

In 1877 Wilson obtained the following elements by the graphical method:-

> a = 6".67 e = 0 ·38 & = 28° 15' - 32 15 - 305 10 = 982.9 years - 1742'1.

Lastly, Doberck (see Ast. Nach., vol. cxi., No. 8) gives these as provisional elements:

> $\Omega = 27^{\circ} 46'$ **- 297 13** 44 33 — 0°3292 = 1001 jus. 21 - 1749'75 = 7":43 (Æq. 1850).

A B. The measures of the last six years appear to indicate that about 1872 the distance reached its maximum; if so, we may expect it to diminish sensibly ere long.

A C. After reducing the angles for A C to those for $\frac{A + B}{2}$ and C, a change in distance to the amount of about o" 2 and 1° in angle appears between 1835 and 1869. The measure by Σ . in 1829 was probably over-weighted by him when discussing the changes in this pair (see P. M., p. ccxii); and it is probable too that an accumulation of accidental errors of considerable magnitude exists in the Pulkowa measures from 1851 to 1853. At present the real character of the changes cannot be ascertained. (0.2.)

The proper motion of Castor is - 0 'OI3 in R. A., and + o" o8 in N. P. D.

	AD		
302.78	I	5.31	1779.84
293.05	I	7.78	83.63
292.95	1	4.69	91.14
297.27	I	5.00	2.12
283.88	I	'43	5.92
288.13	1	·53*	1800'23
280.21	I]	.30
277.97	I	ì	1.99
280.88	1	ı	2.03
47	I	l	1 .06
	302'78 293'05 292'95 297'27 283'88 288'13 280'51 277'97 280'88	302 ⁷⁸ I 293 ⁷⁰⁵ I 292 ⁹⁵ I 297 ²⁷ I 283 ⁸⁸ I 288 ¹³ I 280 ⁵ I I 277 ⁹⁷ I	293'05 I '78 292'95 I 4'69 297'27 I 5'00 283'88 I '43 288'13 I '53* 280'51 I 277'97 I

The dates of the distances are 1779'84, 1779'92,

1780'06, 1780'26, 1781'14, 1781'16.

₩	291.62		"	-0
H ₁ .	291.02	I		1802.12
	283.00	1 2		3.11
	275.49 277.88	î		3.11
	284.20	3		.23
	280.88	2		.53
H, & So.	0.0 ∣	_	•••	16.97
•	267'12	24	•••	21.31
	264.08	26	•••	3.11
	.65	37	•••	2.10
_	263.3	42	4.76	5.53
Σ.	262.24	5n.	40	6.55
	261 10	4n.	'41	7°28 8°89
	259.58	5n.	'35 '46	27:27
	257.72	4n.	·52	31.31 2.86
	255.48	5n.	•72	2.33
	224.33	3n.	.73 .78	5:33 8:34
H _r .	254.33 261.86	J	•64	28.60
•	260.06		.52	o.88
	259.01			30.2
	•••		4.68	.00
	259.61		•••	1.11
			5.19	.19
70.	258.15		4:57	.22
Be.	259.7 260.0	4n.	7	0'41
	259.6	In. 2n.	.73 .54	1.30
	239.0	In.	72	40
Da.	258.42	14n.		2.13
	-3- 4-	ion.	4.40	17
	•••	6n.	4°70 '78	3.14
	258.1	I 2n.		15 4.08
	257.23	3n.	•••	4.08
	•••	2n.	4 ^{.85}	.13
	255.73	3n.	.83	6.36
	254.95	4n.	-87	8.21
	252·38	5n. 6n.	.61 .63	40.50 5.01
	252 30	4n.	.87	3.19
	251.72 249.85	5n.	2.01	7.25
	.24	2n.	14	7°25 8°13
	.16	7n.	4'07	'24
	248.97	4n.	502	9.32
	.11	ion.	'06	51.51
	24 6'39	In.	'07	2.50
	245 87 246 2	3n.	.12	3.13
	246 2	7n.	.09	4.53
	244.25	4n.	·38	7:34
	242.77 *08	3n.	39	60.55
	.11	"	'45 '49	3.34
	241.49	2n.	76	3.21 4.30 2.31
	45	,,	.67	31
Sm.	256.3	Ι ″	7.8	34'24
_	255.5	1		8.33 8.31
	254.9		-8	
. ۔ ۔ ا	252'3	ł	.9	43.13
Encke 4	256.1	In.	•28	36.88
Galle.		ł	'20	1 -
Ka.	253 [.] 7	7n.		9.35 40.06
	255.0	7n. 6n.	4.41 -86	1.32
1	253.8	8n.	69	2.37
l	-33 9			- 31

	•		,		f	0		"	
0.Σ.	254.9	7n.	5.02	1840:30	Se.	245.2	In.	5:39	1856.27
	253.8	4	4'99	2.78	ł	244.5	,,	.36	.31
	250°I	5	5.03	4.28	1	246.4	,,	.31	'34
	24 9'4	6	.07	5'79	Schmie	lt		·31 ·85	
	7		.06	7:93	Mo.	244.4	12	'21	5 8
	248.9	4	.18	9.58	1	243 [.] 9	20	.16	9
	.2	3	'00	50°27			24	.38	9
	247.0 246.2	4	'24		Po.	.2	20	.12	9
		3	*27	2.30	M.	241.7 240.8	35	'29	61
	245'3 246'0	3	'44 '22	3°29 4°94	 .	240'8	In.	.21	1.13
	244'7	3	.33 .41	7:27	İ	236.4 248.1	,,	.31	.18
	242.0	3	.44	8.96	i	241.8	"	.53	:29
	243.6	3	.49	60.56	į	242.5	"	°06	92
	241'9	4	'41	1.87		241.7	**	46 18	2.31 '94
	242.4	3	45	4.28		-45	,,	.28	3.13
	241'0	4	44	6.78	ì	239.0	"	.35	114
	238.9	3	•54	8.27		.3	,,	.48	64'23
	.I	4	·55 ·68	9.76		240'7	,,	•66	70.26
	.2	3 5		71.57		.0	,,	.26	1.25
	236.3	5	•62	2.88		239.5	,,	'40	.26
-	238.0	3	'49	4.58	i	238.4	,,	6.30	4.19
Ch.	250.2	3n.	.13	41.13	70.0	237.4	2n.	5.85	5.16
Mä.	249.0	In.	4.92 .88	4.52	Ro.	245'I	4 6	.27	62.80
	252.8 •1	5n. 6n.	79	1,11		244.3		·47	18.
	245.8	9n.	82	2.30		243'4 '8	6 6	:30	.86
	246 .3	5n.	.81	52°34 '66	}	242°I		·67 ·66	.86
	-40.3	9n.	'93	2.34		243.0	4 6		3.08
	244.7	18n.	'94	4.38		241.8	4	.54 .60	,10
	243.6	3n.	-84	5.31		8	4	.22	13
	7	бn.	-87	6.32 2.31	l	242'2	4	70	17
	242.9	7n.	*88	7:36	İ	239.9		.65	25
	244°I	,,	. 96	8.37	_	242.3	4 6	'46	.25
	242.7	IIn.	5.08	9:36	Mit.	241 0			'21
Hi.	249.8	IIn.	•••	45.92	l _	242.7	_	5.6	'21
D 0	5	4n.	•••	6.73	Eng.	.8	6n.	.25	4.16
D.O.	248.0	 	-::-	6:40	Kn.	240.6	5	· 4 8	.78
	251.3	ŀ	5'46 '38	'91 7'07		239 [.] 7	10	'41	.90
Bond.	251 3 249.7	l	.1	8.30		238.8	7	43	5.02
Dona.	-49 7	1		.26		240'4	7	.60	-87
	248 [.] 7	ľ	.3 .2	.30	1	237.0	7	.72 .70	6.03
Johnson	D. 245'7	7	5.02	50.51		236.2		75	2.03
Ja,	248.3	20	• • • • • • • • • • • • • • • • • • • •	•66	Ta.	243.2	4 6		66.00
	247.9	30	2.11	1.24		•••			'14
	.3	15	.08	3.04		24 0.6	5	.57 .32	·16
	·3	11	*24	4.03		•••		.22	'20
X i,		32	.04	, 1.88	1	•••		'44	7:08
De.	244.6	5n.	.42 .60	3.31		242.9	5	.59	
	245°4 246°2	6n.	36	4.31 2.14	l	.9	58		.27
		7n.	.16	6.19	1	24 0.5 '9	6	5.65	70:35
	245°5 241°6	6n.	'37	62.74		.7	6		1.33
		8n.	'40	3.24	1		2n.	.21	2°17 4°16
	.2 .0	14n.	.38	6.03	Br.	235 .9	,,	71	69.16
	230.7	3n.	.45	70.30	Du.	239°2	8'n.	.38	38
	238.7	2n.	*54	1.52		238.7	gn.	.49	70'79
	237.8	. ,,	'40	2.22		' 4	бn.	.55	3.67
_	.3	3n.	.67	3.59		237 °O	Ion.	·55 ·60	5.33
Se.	63.8	In.	.19	55'14	G 1.	239.7	4	:57 :6	0 32
	.8	,,	'26	'14	1	0,	5	•6	1.51
	66.3	"	:50	6.24	İ	236.9	5	•69	.98
	65.6	' ,,	'53	1 0 24	ı	'4	1 4	73 ا	2.00

	٥		11	
G 1.	236°3	12	5.62	1873.29
	.0	3	6.0	4.03
	•8	3 3 2	5.8	*04
	237.2	2	•6	*05
	235.9	4	6.1	.09
	•••	1	5.2	14
	•••		-5	.11
	237.0	2		.29
W. & S.	.3	7	.8	2.30
	238.2	5	•••	.26
	و. آ	4		.27
	237.7	4	6.1	.38
	·0		•••	·86
	.9	7 5	5.6	3.54
	236.9	4	7.5	4.13
	237.0	6	7	14
	239.0	4	l	3.58
	235.9	4	•••	6.53
	234'2	4		.35
Fer.	237.5		5.86	3.14
De.	236·0	3n.	.54	5.25
Sohi.	235.2	In.	.28	.26
	234.6	٠,,	.53	7.17
Dob.	236'4	;;		5.99
	234.7	IIn.	5.78	6.13
	4	2n.	.59	7:30
	235'i		.55	8.11 2.30
Do.	234.8	12		6.13
	.9	2		7.31
P1.	•2	7n.	5.28	6.70
Sp.	•6	'	.53	7
-		•	, ,,	
		A C.		
Se.	161.6		70'2	1823
Σ.	162.4		72.8	29
		7n.	7-5	35
Sm.	·\$,	و٠.	33
	-8		73.1	
	.2		72.4	7 8
	٠6		73.0	43
Ο.Σ.		5n.	72.29	1.87
	.5	"	.52	8.86
	163.0		'43	52.27
	.1	"	.81	60.07
	.5		.93	9.06
Flt.	.1	,,	. 1	52
Se.	161.3		73.0	38
De.	163.2		72.8	62
Fl.	-2.3		73.2	77
-	3	'	. , 5 -	. ,,

271 o.s. 175.

R. A. Dec. M. 7^h 27^m 31° 12′ 6, 6·6

C. yellow.

The distance has probably increased.

0.Σ. 333.83 12n. 0.46 1847.60 67.92

272	Σ.	110	7.	
R. A. 7 ^h 29 1		Dec. 76°	.	М . 8, 10
Σ. Mä.	200°5 201°8	3n. In.	1 ^{"2} 7 '78	1832-64 45 ⁻² 5
273	0.2	. 17	6 .	
R. A. 7 ^h 32 ^m	•	Dec.	7	M. 7'3, 9'3
	С	. white	·•	
Ο.Σ.	207.5	In.	1.64 .44	1848·24 50·28 67·24 8·07
De.	214.3	3n.	·66	8.07

274 PROCYON.

R. A. Dec. 7^h 33^m 5° 33°

C. A, yellowish to white; B, orange.

Magnitudes.—Procyon is variously estimated: it was rated of the 1st by Hevelius, of the 2nd by Tycho, and at 1½ by Sm. Smyth estimated the companion seen by him as an 8th magnitude star: Barclay's is of the 11th, Secchi's of the 7th, Flamsteed's of the 7th; those first measured by Powell about the 8th; and the three discovered at Washington are of the 10th magnitude.

Companions.—Flamsteed in 1692, and Christian Mayer in 1777, observed a star of the 7th magnitude. The distance was about 600" at the latter date. Powell and Flammarion have made measures of it. It is G in list of measures; it is H₁ I. 23 and Z. 1126.

Sm. in 1833 found a star of the 8th magnitude at a distance of 145" and angle of 85°. "In 1848, Mr. Bond, of the Cambridge U.S. Observatory, announced that the small star was 'missing.' In 1850, I saw and measured the position of the companion with ease, and estimated it as of the 9th magnitude. My measures gave this result: 1850'17, position 84°3. During the spring of this year I have looked most carefully for this small star with my 6-four achromatic, but I have never obtained a trace of its existence." (Fletcher, in 1853.) Smyth himself and Dawes also failed to recover the missing star in 1858; but Dawes detected a minute star 48" ± distant

from Procyon, and having a position angle of 285°±. This appears to have been the small star discovered by Mr. J. Gurney Barclay in 1856, of which he communicated an account to the R. A. Society in 1863. Mr. Barclay's star was measured by Mr. Romberg on the 17th of March, 1863: position 2016'23 distance of 1828.

position 295°·3, distance 45"·8.

Secchi in 1856 found a 7th magnitude star in the following place: position angle 83°·6, distance 33"·16. No other measures

of this object are known to us.

In 1873 O. E. thought he had detected a close companion to this bright star. Familiar with the star (having observed it yearly for more than twenty years), second to no living astronomer as an observer of double stars, ever on the watch in such cases for false images, the utmost confidence was felt in the reality of this discovery. Special interest too attached to this new companion; for it might prove to be the disturbing body Auwers and others supposed to be the cause of the irregularities in the proper motion of Procyon. Hence the extreme care used in testing the reality of the phenomena by changing eyepieces, reversing the telescope, placing the image in different parts of the field, and calling in the aid of assistants. Careful measures were made on every favourable opportunity, and transmitted to Dr. Auwers, who re-examined his computations, and predicted that the star, if really the disturbing body his theory required, would in March 1874 (when the star would again be visible), have a position angle of 97°. In this case Procyon would have to be regarded as having a mass eighty times that of the sun, and the companion itself would have a mass equal to seven times that of the sun. March 1874 proved very unsuitable for delicate astronomical measurements: however, one glimpse was obtained on the 21st: both 0.2. and his assistant saw the companion, and the position angle was 95°! Several confirmatory observations were made in April; other Russian astronomers could see the companion; Mr. Talmage saw it and measured it. But, strange to say, the measured it. But, strange to say, the American astronomers at Washington, using the magnificent 26-inch refractor, although they examined the vicinity of the bright star on many fine nights during the years 1873, 1874, and 1876, could never obtain a glimpse of the new companion. In conclusion, the distinguished Poulkova astronomer himself announced that the point of light which he had taken for a star was an optical illusion or "ghost."

The American observers (Messrs. Holden, Clark, Watson, Peters, Newcomb, Hall, and Todd) did more than this; during their scrutiny of the vicinity of Procyon they discovered at least three close com-

panions, A, B, C, and suspected the existence of one or two more (see the Measures). One was strongly suspected at a distance of 10", and an angle of 320° to 330°.

Like Sirius, Procyon presents remarkable irregularities in its proper motion. Auwers investigated this case in 1861: he found that a body moving round Procyon in a circular orbit situated at right angles to the line of sight, and having a distance of 1"2 from the centre of gravity, would explain the observed phenomena; and he gave the following elements of this orbit:—

Epoch of least distance in R. A. 1795: 568

Annual motion - - 90: 00634

Period - - 3971: 972

Radius of orbit - 1" 0525.

This eminent astronomer on receiving O.E.'s measures of the supposed new star in 1873 proceeded to re-determine the proper motion of Procyon, but did not find that his results and the observations agreed well: these last elements were—

Epoch of minimum R. A. - 1795'629
Annual motion - - - 98'02993
Period - - - - 39⁷⁰'866
Radius of orbit - - 0"'9805.

The proper motion of Procyon is thus given:—

Piazzi:

- o"'71 in R. A., and - o"'98 in Dec.

- 0":63 in R. A., and - 1":05 in Dec. Argelander:

-0":69 in R. A., and -1":05 in Dec.

In conclusion, it appears that none of the small stars hitherto seen near this fine star partake in its proper motion, those discovered at Washington excepted.

PROCYON and A.

83.6 | In. | 33.16 | 1856.16

PROCYON and D.

Da.	285	48	1858'11
Ro.	294.9	45.8	63'22
Lassell.	296	44.6	64'17
Fl.	311.8	40	77'17

SMYTH'S Companion.

85 | 1,145 |

PROCYON and E.

Po.	83 [°] .8		326.6	1855.91
Fl.	80.2	35 In.	332.5	1855.91 60.81 77.17
	a close do			

PROCYON and F.

Po.	282'1	1	384.3	1855.94
F1.	-9 286:4	35 In.	371.3	1855'94 60'83 77.17

PROCYON and Flamsteed's Companion.

Fl.	116		588	1692
C. Mayer	301.		610	1777
Po.	99 . 7	25	643	1860
Fl.	96.8	In.	652	1877

275 Σ. 1126.

P. VII. 170.

R. A.	Dec.	М.	
7 ^h 32.7 ^m	5° 30′	7.2, 7.5	

The apparent orbit is probably nearly circular.

H1: "Nov. 21, 1781.—The nearest of all double stars I have yet seen: in perfect contact with 460; nor can I get a glimpse of any separation. The morning not so fine as I could wish, therefore I still doubt the reality of this appearance till more confirmed.—Double. I saw it had changed the direction of position to the horizon in about an hour's time, as it should: this looks not like a deception of the telescope.

"Nov. 28, 1781.—Not open with 460. 12h, the air very fine; with 278, 1 of a diameter."

117°3 127'8 1781'91 Ħ,. In. 1823'13 Bo. 26.18 H, 130.4 1'40 30'04 123'0 41 1320 •46 29'43 Σ. IIn. 30.00 50.26 .53 133.9 32.10 Da. 3n. 3.22 132.9 Sm. 42.51 0.Σ. 140'3 In. 50 6.39 137'1 37 7:25 .37 1390 ,, 8.24 136.6 .27 ,, .03 9:27 ,, 138.5 .13 50.56 ,, 1.56 137.8 41 ,, 2.22 •2 •27 ,, 7:27 **.**49 135.9 ,, ·51 60.5 143'9 ,, 1'25

,,

142'4

٥.,		"	
136.8	In.	1.53	1864.26
139.9	,,	.35	7:27
144.5	,,	.25	70'24
142.6	,,	•23	3'24
145.8	,,	'24	'24
138.2		.20	51.19
140.8		'64	2.53
138.8		*53	4.19
141.1	1	46	5'24
136.0	12		6.24
	18		9.91
	4n.		6.64
	'		61.03
	ın.		6.00
			7.09
		0.03	74.23
	"		67.21
	4		74'17
			6.55
	6		4.17
120.8	•		5.31
139 0	'		. 33.
	136°8 139°9 144°2 142°6 145°8 138°2 140°8 138°8 141°1 136°9 140°0 137°3 138°7 -4 144°5 138°7 -4 140°2 139°9 143°6 139°8	139'9 144'2 142'6 145'8 138'2 140'8 138'8 141'1 136'9 140'0 18 137'3 140'0 18 137'3 138'4 144'1 111. 15 138'7 140'2 4 140'2 4 139'9 4 143'6	136.8 In. 1'23 139'9 " '32 144'2 " '25 145.8 " '24 138'2 '50 '64 138'8 '46 '53 141'1 18 '27 137'3 4n. '27 138'4 11. '99 144'1 In. 0'99 '4 14'15 " 138'7 " 0'92 '4 140'2 4 '45 140'2 4 '45 '59 143'6 6 '41

ο.Σ. 177. 276

R. A. 7 ^h 34 ^m			Dec. 37° 44′	M. 7·5, 8·5
	_			

Rapid change in angle.

Ο.Σ.	149'9 138'9 127'4	3n.	0.27	1845 60
De.	130 9	3n.		68.65

277 Σ. 1132.

	R. A.]	Dec.	М.	
	7h 36.5m	-	3° 14′	8.1, 8.7	
		C. w	hite.		
١,	H	246'0	1 18.22	11782702	

	(. whit	e.	
H ,.	246.0		18:32	178303
Н ₁ . 80.	238.1		19.88	1825 03
Σ.	.2	2n.	*32	'08
	237.4	,,	.19	33'72
	•2		'41	6.19
Mä,	236.4		.10	47.23
De	.5	1	.25	67.46
W. & S.	235'7	ın.	20.6	74'18
G 1.	.9	l ,,	88.	.18

278 ο.Σ. 179.

E GEMINORUM.

R. A.	Dec.	M.
7 ^h 37.2 ^m	24° 41′	4, 8.5

De. suspects that the light of the companion is variable; but it is probable that Σ.'s estimate in 1828 was influenced by the bright field which he used.

	• .		. ".	
H,	230±		[5±	1826.50
Σ.	229.62	In.	6.19	28.27
Da.	228.9	2n.	'2Í	36.68
8m.	231.9		.0	8.98
	232.3		5.8	51.51
Ο.Σ.	231.3	In.	6.22	43.30
	.2	,,	.38	4.56
	232.8	,,	.11	5.52
	•	,,	'07	8.24
	233.3	,,	.36	57.28
	237'3	īn.	.30	64.24
	234.8	,,	.51	73.26
Mä.	231.1		7'24	46.24
Ta.	233.1	In.	6.23	66.29
De.	·10	3n.	.36	'73
Du.	235.7	7n.	•39	74.06
G1.	232±	In.		6.11

279 POLLUX.

R. A. Dec. M.
7^h 37^{·2^m} 28° 19′ A 2, B 11, C 12, D 10.
C. A, yellow.

A perspective group.

H, and So. do not appear to have seen C. Is it a variable?

AB.

H.	65.2	110.7	1781.90
8o.	66.4	132.3	1825.10
8m.	.9	130.0	32.31
F1.	72.1	175.0	77.08
	A	. C.	
Fl.		:	
E1,	90'4	205.2	77.08
		D.	
\mathbf{H}_{1} .	74'I	160.7	1781.90
8o.	72.7	198.0	1825.10
8m.	73.6	202.7	32.31
Σ.	.6	203.8	6.56
Ο. Σ.	74'4	213.2	50.41
De.	.9	222.2	65.31
Fl.	75.2	228.9	77.08

280 Σ. 1136.

R. A.	Dec.	M.	
7 ^h 42 ^m	65° 13′	7:3,	11
Dani.	_b		

Rapid change in distance.

Σ.	248.53	3n.	11.61	1830.65
0.Σ.	247.5	In.	10.81	46.52
	246.4	,,	9.58	7:34
	243.8	,,	9.28	68.30
	244'9	,,	.21	9.32

281 Σ. 1142.

R. A. Dec. M. 7^h 41^{·6m} 13° 43′ 8, 10·4 C. A, yellowish.

Rectilinear motion.

Σ.	275 [°] 8	4n.	24.36	1829'47
H, Mä	272.0		40.	32.30
	267.6		22.93	47.22
De.	262.0	}	.83	63.41
<u>G1</u> .	259°I	In.	23'4	74'17
W. & S.	258.1	۱,,	22.8	17

282 o.Σ. 182.

R. A. 7 ^h 46 ^m	Dec. 3° 42′			М.	
7- 40-		5 4	2	7, 7.5	
Ο.Σ.	47'5	2n.	1.08	1844.28	
	51.7	In.	.09	7.25	
	46.6	,,	0.99	50.58	
	44.6	,,	1.55	61.25	
_	.0	,,	.10	73.54	
De.	39.83	3n.	.23	67.00	

283 Σ. 1157.

R. A.	Dec.	М.
7 ^h 48·5 ^m	— 2° 28′	Σ. 8, 8
	C. white.	

Secchi (p. 26) says "certain retrograde motion."

Σ.	267.2	3n.	1.29	1831.20
Se.	256·4	,,	'30	56.47
	254'5	In.	'41	65.87
De	. 4	3n.	•2	57.91
	76.4	In,	•••	62.93
	256.7	3n.	1.59	3.19
W. & S.	257'7	4	.00	72.17
	256.2	2	•••	14
G 1.	257.2	In.	0.88	4.13

284 ο.Σ. 185.

R. A. Dec. M. 7^h 51'^m 1° 27' 6.8, 7

A mutual eclipse has probably taken place since 1855.

Ο.Σ.	15.3	In.	oblong	1844.26
	23.6	,,	0.33	.30
	·4	,,	·46	50.58
	198	,,	ople.	61.25
	240	,,	,,	9'24
	•••	,,	single	70.24
_	•••	,,	,,	3'24
Se.	265	,,		55.58
Da			sinole	166

285	0.	Σ. 186.	
R. A 7 ^h 56		Dec. 26° 37'	M. 7'5, 8'2
	•	C. white.	
0.Σ.	75 [°] 2 74°0	3n. 0.8 1n. 7	2 9.26
Mä, De. Du.	70°9 81°0 72°4 78°7	,, 77. 3n. 8 2n. 6	67.93
286	Σ.	1175.	
R. A 7 ^h 56·	1 ^m	Dec. 4° 30′	M. 7 ^{.8} , 9 [.] 7
_		lowish, bluish	
Z. H ₂ . De.	204.6 206.7 217.8	5n. 2.37 1.5 2.07	.80
287	0.3	£. 187.	
R. A 7 ^h 56'	5 ^m	Dec. 33° 24'	M. 6·7, 7·5
7 ^h 56: Secch to some	i's measur other star	33° 24′ re in 1855 pro	
7 ^h 56·	i's measur other star 306.9 299.2 293.7	33° 24′ re in 1855 pro . 4n. 0'46 .,, 35 2n. 43	6·7, 7·5 obably refers 1844·02
7 ^h 56: Secch to some	i's measur other star 306'9 299'2	33° 24′ re in 1855 pro . 4n. 0'46	6.7, 7.5 obably refers 6 1844.02 48.82 58.28 71.31
7 ^h 56·g Secch to some O.Σ.	i's measur other star 306.9 299.2 293.7 285.6 250.4 286.2	33° 24′ re in 1855 pro 4n. 0'46 ,,, 35 2n. 43 ,,, 52 1n. 85	6.7, 7.5 obably refers 1844.02
7 ^h 56'; Secch to some 0. Z. 8e. De. 288 R. A. 7 ^h 58';	i's measur other star 306.9 299.2 293.7 285.6 250.4 286.2	33° 24′ re in 1855 pro- 4n. 0'46 ,,,, 33 2n. '43 , 75 1n. 85 3n. 1179. Dec. 12° 25′	6.7, 7.5 obably refers 1844.02
7 ^h 56': Secch to some 0. Z. 8e. De. 288 R. A. 7 ^h 58': Rectil	i's measur other star 306.9 299.2 293.7 285.6 250.4 286.2	33° 24′ re in 1855 pro- 4n. 0'46 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.7, 7.5 obably refers 1844.02
7 ^h 56'; Secch to some 0. Z. 8e. De. 288 R. A. 7 ^h 58';	i's measur other star 306.9 299.2 293.7 285.6 250.4 286.2	33° 24′ re in 1855 pro- 4n. 0'46 ,,,, 33 2n. '43 , 75 1n. 85 3n. 1179. Dec. 12° 25′	6·7, 7·5 obably refers i 1844·02 48·82 58·28 71·31 55·28 68·32 M. 8·5, 8·5

II CANCRI.

5n.

Dec.

27° 50'

3.18

•2

•27

3.02

M.

7'1, 10'4

39.70

40'12

66.10

74.23

1828:26

R. A.

8h 1.5m

218.8

211.5

206'4

219'1

Σ.

Sm.

Da.

Ta.

290 S. 1187.

85 LYNCIS.

R. A. Dec. M. 32° 36′ 7°1, 8

C. white.

Certain retrograde motion. Dunér gives

> 1855.00. $\Delta = 1^{".79}$. P = 62°.6 - 0°.432 (t - 1850.0).

_			٠.	•
Σ. H _r .	71°0	5n.	1.61	1829.50
H.	70.9	In.	'45	30.18
	81.0	,,	2.09	'97
Mä.	68.7	1	1.63	769
	66·6	5n.	.63	43.55
	61.9	,,	18.	51.12
	62.6	In.	2.53	2.52
	69:7	2n.	1.74	5.32
	74'7	In.	.81	8:29
	29.1	,,	'20	9.14
	56.5	3n.	.96	60.35
Mo.	.7	2n.	.82	59.14
	55.2 55.2	,,,	.83	60.58
0.Σ.	68.1	In.	·8 ₇	42.30
	67.3	,,	.92	6.59
	56.4	,,	2.11	61.19
	55.6	,,	.00	4.30
	52.0	,,,	*07	9.31
	55.6	,,,	1.97	71'30 3'31
D.	52.4	"	.88	3 31
De.	58.9	In.	6	55.99 6.14
	_	3n.	0	7.09
	59.4	In.	•5	62.85
	56·1	"	.82	3.51
Se.	61.6	5n. 2n.	75	58.31
Eng.	58.5	4n.,	2.03	65.49
Du.	53.6	3n.	1.75	71.5
W. & S.	54.3	5	2.14	2.32
	3.2	4	1.95	.30
G1.	52.7	5	.92	4'13
Schi.	50.8	in.	2.53	5.30
Sp.	20.0		.22	5:30
Dob.	53.1	In.	· !	8.11 8.30

291 Σ. 1196.

ζ CANCRI.

R. A. Dec. M. 8h 5'3m 18" 1' A 5, B 5'7, C 5'5

C. H₁, A, pale red or red; B, pale red or red; C, pale red. Z., A, yellower than C; B, yellower than A and C. De. always saw all white till 1864. He remarked a change in the colour of C more than eight times in 1864 and 1865; he noted it as more or less "jaunâtre et olivâtre."

H₁, "Nov. 21, 1781.—If I do not see extremely ill this morning (4 a.m.), the large star consists of two." "Feb. 7, 1802.—After long looking, I cannot see the small star sufficiently well to measure its position."

H₁ (Phil. Trans., vol. lxxii., p. 219), "'s Cancri, Fl. 16, Nov. 21, 1781.—A most minute treble star. It will at first sight appear as only a double star, but with proper attention, and under favourable circumstances, the preceding of them will be found to consist of two stars, which are considerably unequal. The largest of these is larger than the single star; and the least of the two is less than the single star. The 1st and 2nd (in order of mag.) pretty unequal. The 2nd and 3rd pretty unequal. The two nearest both pale r. or r. With 278, but just separated; with 460, 4 diameter of S. Position 86° 22' n.f."

r. With 278, but just separated; with 460, diameter of S. Position 86° 32' n.f."

Writing in the Phil. Trans. for 1804, H₁ observes, "The change is 9° 57' in 20 years and 78 days; and may be ascribed to a parallactic motion of the large star, which is in favour of the observed alteration."

H₁'s measure of A C, on the 5th of April, 1780, was "Distance, 8" o46 mean measure. Position, 88° 16' sp." And the star is marked as one of those doubles known

to astronomers before Mayer.

H, on the 21st of Feb. 1822, wrote, "Double; pretty unequal; is not to be seen triple, although beautifully defined and round." Ten measures of distance gave a mean value 6".241. "In 40.25 years, then, the change of angle amounts to 23° 42', which is at the mean rate of -0°.5813 per annum, in the direction n.p.s.f.

or retrograde. The change of position has also been accompanied with a considerable diminution of distance; and further observations must decide whether this is the result of rectilinear or orbital motion. If the former, the minimum distance will be attained in about 40 years from the present time, and the change during that period much less rapid than heretofore. On the other hand, an orbital motion will be indicated by the distance continuing to diminish beyond that limit, and probably too by an acceleration in the angular motion."

So. (Phil. Trans. 1826, part i., p. 332) gives measures of the close pair. "April 3, 1825, 31° 21' n.f. 7 observations: 0" 887

5 observations. Difficult."

"I see the large star unquestionably elongated. At the time of perceiving the star elongated I was unaware that it had been observed by Sir W. Herschel as a close double star, as also that Mr. Herschel and myself, when we observed it in England as double of the 3rd class, had noted that 'it is not to be seen triple, although beautifully defined and round.'"

H, adds, "This star presents the hitherto unique combination of three individuals. forming, if not a system connected by the agency of attractive forces, at least one in which all the parts are in a state of relative motion." He then examines the measures in confirmation of these remarks; and concludes, "If this be really a Ternary system connected by the mutual attraction of its parts, its perturbations will present one of the most intricate problems in physical astronomy. The difficulty will not be diminished by the circumstance of the rotations of the two small stars about the large one being (apparently at least) performed in opposite directions, being the reverse of what obtains in our planetary system, or by that of the deviations of the relative angular velocities from Kepler's law, being such as to indicate either great masses in all the three bodies, great excentricities in their orbits, or a different law of gravity from what obtains in our system."

In the Mem. R. A. S., vol. v., p. 30, H, returned to this subject. Finding that his latest measures indicated a retrograde movement of $-6^{\circ}.505$ per annum, (that given in 1826 being $+1^{\circ}.254$ per annum, and direct,) he collects the measures by Σ and Dawes, which also show that the motion was retrograde. Hence he is led "to assign the end of March 1873 as the time when it will have completed an entire revolution since the epoch of my father's first observations, in a periodic time of 55.24 vers."

time of 55'34 years."

He adds, "' Ursse has hitherto afforded the only example of a double star of which

the bimestral motion can be distinctly perceived and measured. It is now no longer a solitary instance." H, also points out "the remarkable difficulties in the way of any fair statement of the history of the position of this star [i.e. A C]. Most of the measures have been taken from the point of bisection of the close double star, seen as one or elongated; some few directly from the larger."

On the whole, H, is greatly puzzled, and fears that "mistakes have been committed which it is now impossible to rectify or

allow for."

Dawes (Mem. R. A. S., vol. v., p. 136) gives his measures in 1831. He says, after examining the previous observations, that it "would appear as if the motion has been performed in a direct sense, or n.f.s.p., for perhaps 30 or 40 years; and that the star B had then come to a stand, or appeared to do so, faced about, and is now proceeding in the opposite direction." The only explanation which offers itself to his mind is that B has performed almost an entire revolution in a retrograde sense, in the 49 years elapsed since H₁'s measures. The stars, too, differing but little in size, might lead to an error in placing the f. one as the p.

As to C, his observations corroborate the presumed motion of this star in direction, and indicate a considerable acceleration

since 1825.

H₂ (Mem. R. A. S., vol. vi., p. 27). "The motion of this star is steadily continued, and its binary nature and rapid retrograde motion must henceforth be considered as established beyond all possibility of doubt." [A B.]

Dawes in 1831-2-3, speaking of his measures, says, "just separated," "neatly separated." "A C somewhat difficult from the position of B with respect to A."

And in the Mem. R. A. S., vol. xxxv., p. 337, after giving measures from 1831 to 1854, he writes that more than a complete revolution has been made by B since 1781, that the motion has been accelerated within the last ten years, and that the distance has diminished. He also says that the motion of C is orbital, but incomparably slower than that of B, and that its period is from 600 to 700 years.

Mädler in 1848 computed an orbit :-

P =
$$58^{\circ}2708$$
 years
P. passage = $1816^{\circ}687$
P. from node = 133° o' 7
 $8 = 33$ 34 '3
 $i = 24$ 0 '4
 $e = 0''$ '44385.

In 1855 Winnecke published the following elements of A B:—

P. passage = 1815'53
P = 58'94 years

$$\emptyset$$
 = 180'23' (1855'0)
 $\pi - \emptyset$ = 141'54
 i = 48'36
 ϕ = 14'50
 α = 1"'030.

0.Σ. has also computed the orbit of this pair: he gives—

$$T_0 = 1869.3$$

 $\omega = 199.5$
 $\omega = 109.5$
 $i = 20.7$
 $i = 0.353$
 $\mu = -5.77$
 $P = 62.4$ years
 $\alpha = 0.908$.

On these Du. observes that the distances are in general too large.

Du. has compared the elements with the latest observations. The following selection will show the excellence of 0.Σ.'s orbit:—

For AC the following formulæ were deduced by 0.2.:—

$$P = 155^{\circ} \cdot 00 - 0^{\circ} \cdot 50 \ (\ell - 1831 \cdot 3) \\ - 3^{\circ} \cdot 04 \sin 18^{\circ} \ (\ell - 1831 \cdot 3).$$

$$\Delta = 5'' \cdot 50 + 0'' \cdot 20 \cos . \ 18^{\circ} \ (\ell - 1831 \cdot 3).$$

In 1871 Mr. W. E. Plummer made a new determination of the orbit, employing the elements given by Dr. Winnecke:—

Periastron passage	1872'44
Period	58·23 years
ω	150° 17′.4
Long. of periastron	171 46 8
Inclination	36 14 4
Excentricity	0.30230, $\phi = 17^{\circ}35'.8$
Mean motion	2′.56930
Mean distance	0″•908

Mr. Plummer also computed the following ephemeris:—

Angle	Distance.
	0" 65
187 22	*64
177 30	-62
	•60
156 5	•58
144 7	•56
	177 30 167 8 156 5

A B. The maximum distance was reached about 1871. The influence of the third

g CANCRI.

1847:33 8:30 9:32

1.58 20.50

2.32

0.06

.94 1.02

0.89

554332

ο.Σ.

342.2

337.6 336.1 332.8

327.5

321.7

star is at once revealed by an examination of the measures of AB at different periods.

 $\frac{A+B}{A+B}$ and C. On computing a table of the annual means from 1840 to 1874, great anomalies are found both in the

great a	nomalies	are fo	ound bo	th in the	1	321.7	2	0.89	2:32
angles a	des and distances—anomalies which it					319.8	2	97	2.30 2.30
is impossible to attribute solely to errors					İ	310.5	3	91	7.27
of obser				themselves	1	298.4	3	.97 .98	8.28
				l so as to	l	295·5 286·5	2	.91	9.30
	the D					281.3	2	.84	60.52
				problem of		275.3	3	.87	1.52
				llysis does	1	267.5	2	74	2'31
				ion. $(0, \Sigma)$		253.3	2	72	4.30
				l <i>cadémie de</i>	1	237.8	I	.70	6.27
showing	vol. lxxi	110116 a1	id loons	A diagram ed path of		214.7	2	72	8.58
				ol. of the		198.4	2	'62	9.32
	a Observ		9 1	or. or the		186.3	4	.66	70.28
	u 0 55001				i	171'3	3	.59	1.31
		A B				162.9	3	•58	2.31
_	۰	A D	, ,,	_		152.0	3	61	3.58
H ₁ .	3.4		•••	1781.9	l	144'4	3	'63	4.58
8 0.	57.9		1.0	1825.52	Ch.	120.1	3n.	5.23	41.52
Σ.	.6	3n.	14	6.55		146.8	In.	4.80	2'15
	38.4	2n.	°04	8.80		145.2	2),	.82	4.03 1.31
	29.8	6n.	'04	31.58	Mä,	1.0	6n.	1.02	2.56
	27.5	4n.	.12	2.58		358.5	,,	.07 .06	52.52
	22'1	3n.	14	3:27		325.8	8n.	•05	3.52
	18.4	2n.	.13	5.27	İ	324.7 318.6	ion.	*07	4.52
	20.2	5n.	.13	6.27	[310.6	4n.	-06	5.56
H.	15.3	3n.	.10		İ	307.5	2n.	0.00	6.58
	35.6 27.5		.5.	0'45 2'25	!	304.2	3n.	.96	7:29
Da.	30.7	3n.	.09	1.30	Ī	297.5	"	1.09	8.20
	27.0	7		2.13		294.9	8'n.	0.02	9.26
	26.2	ģ	1.10	3.51	Ja.	349.4		1.03	45.83
	16.1			6.68		346.5		'20	6.00
	4.3	4 8	1.10	40.50		322.0	15	.22	53.19
	4'3 0'8	5 6	17	1.16		317.2	10	-15	_ '94
	356.2	6	.18	2.33		306.3		'21	6.50
	355.0	8	12	3.18	l	299'7		'14	7.88
	338.2	I	.02	8.13	Bond.	342.7		.0	48.25
	.1	6	.06	'24	Flt.	333.2	24	ı.	21.18
	334.2	5 7 3	.11	9.29		329.0	12	.0	2.16
	327.9	7	.01	51.25		321.0	12	-blane	3.30
	324.4	3	•05	2.53	De.	308.9	In.	oblong sepd.	*.88
	312.3	3	0.97	4.50		309'0	",	sep	2.10
	281.0	1	.70 .66	60.56		306.4	5n. In.	1.0	3.87
	262.2	2n.	.70	3.52		302.5	8n.	0.	6.58
	253'I 243'4	3	·63	4.59		299.2	In.	.0	7:09
5m.	28.3	3	.3	32.53 2.30		293.8			'.84
-	12.8		.3	7.11		294.2	6n.		8.23
	5.5		.3	9.32		265.7	3n.		62.85
	355.1		.2	43.11		261.0	14n.	0.68	3.30
Ka.	9.9.1		.25	0.12		254'4	jn.	•6	4.11
_			.27	3.15		256.9	2n.	•5	3.93
0.Z.	7:5	7n.	.99	0.50		255'1	9n.	·5	4.59
	359.3	4	1.29	2.29		245'4	IIn.	'5	5.22
	354.2	3	·16	3.30		238.4	9n.	•5	6.19
	350.3	4 1	.16	4.58		224'4	7n.		7.22
	347.9	3 3	0.92	5.31		211.4	,,	0.2	8.30
	344.8	3	'95	6.59		185.2	9n.		70.25

	•		,,		,	۰		_11	
De.	175.2	6n.	ı	1801.19	Σ.	145'1	2n.		1855:27
	162.8	7n.		2.53		150.1	5n.	5.35	.31
	150.3	IOn.	0.2	3.19	l	148.9	3n.	.62	36.27
	144.2	2n.	74	.86	Da.	120.3	In.	.25	31.30
	139.6	6n.	75	4.59	[148.8	4n.	.59	2.18
	128.0	7n.	.72	5.18	ĺ	147'1	In.	`44	-87
Mo.	309.4	12	1.12	56.24		145.6	6n.	4.96	41.07
Kn.	268·I	In.	0.69	63.13	Ì	146.4	2n.	104	
	240.8	3n.	.63	5.36	L	-4-7		.88	3°22 8°14
	234.0	4n.	.79	6.56		140.4	In.	5'04	54.07
	228.2	in.	65	'94	Sm.	149'4		.4	32.53
	166.4	2n.	•6	72.11		147.1		.4 4.8	4.36
Ro.	267'3	ın.	.95	63.25		148.3		5.2	5.58
Ta.	231.5	,,	72	6·38	ł	146.9		.4	7.11
Da.	203.6	4n.	.46	9:37	Ο.Σ.	147.0	7n.	4.92	40.30
	188.3	Зn.	'41	70.30		η.	4n.	⁻. 68	2.29
	178.2	,,	·53 ·66	1.30	ì	149'4	3n.	.77	3.29
	163'3 142'8	2n.	·66	2.33	i	··i	4n.	·77 ·87	4.27
		,,	.59	4'29		150.3	3n.	·81	5.30
	129'4	5n.	.57 .2	5.33	i	149'2	,,	'92	6.59
G 1.	185·i	6	.2	0'32 '80	1	148 4	5n.	·98	7.24
	177.0	5	•••	·8o	l .	147'1	,,	.97	8.29
	176.3	5	0.3	1.51	Ì	145.9	4n.	.93	9.31
	173.9	5	'2	'32	ř .	146.6	3n.	.92	50.59
	160.2 8	5 5 5 6 6	'5	2.00		143.6	,,	5.02	I '27
		6	.2	.10		.I	2n.	4'95	2.35
	154.7		.5 .5	3.33	1	140.6	,,	.99	3.30
	144.0	5		'94	ł	141.5	3n.	.99	2.31
	141.1	4	'4	4.10	l	I.	"	5.04	7.27
D-	139.5	4	, '5	.16	1	142.6	In.	'02	8.58
Br,	177'7		elongd.	1.50	1	144.6	2n.	.06	9.19
	175.0		,,	2.19	Į.	.I	"	.06	60'27
W. & S.	168.6		0.41	3:14	l	1450	3n.	14	1'37
w. w.b.	169.3	4	78	2.18	f	144'2	In.	4.92	2:33
	165.2	3 6	·63	119	1	143.9	"	2.11	4.30
	150.9	25	0.2	25		141'4	,,	•••	6·27 8·28
	141.5	25 5	٠.ي	3°22 4°17	į	138.4	2n.	•••	70.32
	142.5	4	·5 ·67	4:17	Ch.	137.1	4n. 2n.	T:07	41.55
	140.6	3		20	U	1.1	In.	1.07	2.12
	133.4	4	-80	5.26	l	3540		0.92	4.09
	-33.6	9	'75	.32	Ka.	144.8	"	4.43	2:35
5 p.	130'4	,	.69	.26		1460		4 [.] 72 ·81	
-	108.5		-82	7:18	ł	137.9		5'41	3°33 66°28
Dob.	I22'I	8n.		6.51	Ja.	148.0		4.85	45.83
	108.4	3n.	0.99			147'5		1.85	45 ^{.8} 3 600
	104'1	In.	.73 .81	7°24 8°08	1	142.1	15	.89	53.19
P 1.	110.3	3n.	·8ī	7:23	1	1400	15 8	' 94	, šež
Sehi.	130.3	īn.	.69	*25 *18	ļ	141.2		·95	6.30
	108.1	,,	18.	.18		•9		'94	7.88
					Bond.	149.3		.6	48.25
		A C	•		Flt.	143'7	20	۰8	52'49
T. Kaye	r 205.4	1	3.3	1756	· Mo.	.2	18	5.23	3.53
C. Maye	180.0		7.7 8.0	1778 1781	Po.	141.9	68	•••	4'27
H ₁ . H ₂ & So.	181.7		8.0	1781	De.	139.9	ID.	.56	-88
H, & 50.	171.8			1802.11	1	140.8	4n. r	·56 ·63	5'17
	128.3	12	6.54	22.14]	•	In.	·6 3	.87
	159.7	15	.19	4.53	1	.3	5n.	•36	6.43
•	157.9	27	5'43	5.27		141.0	In.	'2 I	7.81
Σ.	154.6	3n.	.30	26.32]	139.5	4n.	.30	8.23
	151.4	6n.	.31	8.99	1	140'2	"	·59	62.88
	148·6 ·6		.40	31.58	1	.8	5n.	-38	3.18
	147.6	4n.	·52	2.58	ŀ	I.	in.	:35	4'99
	14/0	3n.	'47	3.52	,	139.6	4n. i	'49	5.20

			"			•			
De.	138.3	7n.	5.28	1866.84	H.	158.2		۱	1822'14
	137.0	4n.	.54	8.23	•	159.4			4.49
	134.6	3n.	·éi	70'21	İ	.2			30.51
	.1	,,	.61	1.12		154.2		12	2.50
	133.5	,,	. 46	2.53	Σ.	159.0	3n.	5.40	26.56
	132.8	,,	'40	3.55		156.3	,,,	·54 ·67	8.99
	.7 .6	In.	.40	.88	1	153.5	6n.	*67	31.58
		2n.	.21	4.19		. 4	4n.	.84	2.58
a .	131.6	4n.	'40	5.14		152.5	3n.	82	3.52
Se.	.2	3n.	4.93 .85	55.19		150.1	2n.	.67	5.31
	.7 142·8	2n.		6.5		148.9	3n.	:63	6.39
	142.9	5n. 2n.	.99	7:29		150.2		·31 ·48	2.20
	140.4		5°47 '62	65.23	1	152.0		.31	3.30
M.	141.8	ın.	5.41	1.30	1	121.3		'42	4.58
	.4.	,,	3.44	72.11	1	.2.3		.30	
Ro.	-₹	2n.	.39 .62	3.18	1	150.6		.39	5.31 6.52
W.O.	137'4	5	4.25	63	0.Σ.	٠, ۲	7n.	.30	0.50
Ka.	143.9	,,	1.23	1 .13		.7	4n.	'48	2.29
Ta.	.0	,,	.53	7.08		152.0	3n.	.31	3.30
	138.9	In.	'43	72'17	ł	121.3	4n.	'42	4.58
_	135.8	,,		4'23	İ	7	3n.	'29	5.31
Du.	137.7	2n.	.25	69:37	i i	150.6	,,	.38	
W. & S.	132'1	In.	'78	75:33		149.6	5n.	'42	7:33
w. « D.	- 33 -	I	:87	2.18		1480	"	:56	8.30
	.3	I 2	·63 ·85	*19 *25	1	147.0	4n.	:56	9.32
	131.3 131.3	14	43	3.55		143.9	3n.	'54 '73	1.58
	3 3 *0	2		4.17	1	143 9	,, 2n.	.56	2.35
	.2	2	•••	7.17	i	140.4	"	.56	3.30
	131.2	4	.72	5.26		.4.4	3n.	.54	2.31
	7.7		•53	.27		139.6	,,	1 '50	7.27
& 1.	132.7	6	2.1	4'10	1	140.2	In.	·šo	8.28
	133.0	5	7.	.16	1	142.2	2n.	'43	9.30
Schi.	130.4	In.	.38	5.5		•	,,	*42	60'27
	•6	,,	.20	7.18	i	.3	3n.	'44	1.52
Pl.	.7	2n.	4'95	'20	1	141.0	In.	.30	2'31
		BC				6	2n.	.30	4.30
ο. Σ.	153'5	3n.		1844.28		138.1	In. 2n.	·56	8.58
J. 2.	152.0	2n.		2.30		.30.1		61	9.32
	149.0	5n.	6.12	8.29		134.7	4n.	.69	70.58
	148°1	4n.	119	9.31		34.7	3n.	·6í	1.31
	147.2	3n.	.16	50.59	1	133.2	,,	'63	2.31
	144'3	,,	'39	1.52	ł	135.0	,,	.39	3.58
	142.5	2n.	117	2.35	1_	133.8	,,	'43	4.58
	139.8	,,,	'13	3.30	Sm.	148.2		.1	39.32
	4	3n.	709	5.31	İ	147.2		.0	47'11
	138.1	"	5.97 .08	7°27 8°28	.	·4 •8		ď	7:28
	139.8	In. 2n.	.82	9,10	Ja. De.			F::-	6.39
	.39.0	l .	.78	60.52	D 0.	140.7		5:39	55·18
	•7	3n.	·74	1.32		139.6		35	8.12
	137.8	In.	*74 *66	2:33	1	140.6	gn.	.15 .48	63.05
	138.1	,,	.31	4.30	1	139.7	5n.	'47	5:17
	134'9	,,		6.52	Ī	137.8	•	·58	7.26
	133.8	2n.	•••	8.58		134.5			70.21
	132.4	4n.	•••	70.32		1.		.60	1.23
	A	+ B				133.5		46	2.53
		+B _a	nd C.		1	132.8		'40	3.53
				1 - 0		.7		:57	4.09
5 0.	1612	Į	•••	1820.50	M.			'4	61.30
	163.3	- 1	•••	1.07	Eng.	141.8		'41 '49	4.31
	10372	ı	•••	5'27	448.	5 1		49	1 + 3*

Du.	135°ì	8n.	5.47	1870.70
	133.5	7n.	.46	5 02
Br.	132.7	,	*54	1.19
	133.3		'46	2.16
W. & S.	132'0		¹6₄	3.40
	131.6	1	.63	5.27
G 1.	·4	In.	.39	5.17
	127.7	,,	•2	6.22
Sp.	130.4	"	•38	5.25
•	-56	1	27	7.18
Dob.	131.2	ın.	-,	5.99
	-39	6n.		6.50
	127.5	4n.	5.62	7:26
	132.0	In.	5.62 .48	8.08
	1320	111.	40	0 00

292 γ ARGÛS.

R. A. Dec. M. 8^h 5.8^m -46° 58′ A 2, B 5, C 8

Certain change in the angle of A B.

AB.

	_		
H,	220.7 219.6 214.8	41.19	1835.03
	219'6	12	.18
El.	214.8	42.2	77.03
	Æ	r G	
H. El	1516	62.4	35.10
EI.	.1	.6	77.03

293 Σ. 1202.

P. VIII. 13.

R. A. Dec. M. 8th 7th 11° 13′ 7'7, 9'8

C. white.

Σ. discovered this double star, and was led to think it a binary from the results of his own measures. A subsequent set, however, seemed not to confirm this opinion.

Dawes (Mem. R. A. S., vol. xxxv., p. 339) thinks that the obliquity of direction may partly account for the discrepancies in the measures.

 $0.\Sigma$. thinks that a retrograde movement is very probable.

Duner gives

$$P = 331^{\circ}.9 - 0^{\circ}.220 (t - 1850.0).$$

1 - 331 9 - 0 220 (1 - 1050 0).					
Σ	335'9	3n.	2.32	1829.55	
	337.4	In.	•28	36.19	
.8m.	338.0		•5	2.27	
Mä,	333.6	2n.	.57	44.51	
	332.2	3n.	•36	8.31	
	.1	2n.	.27	51.53	
	329.2	,,	.52	2.27	
Da.	328.5	In.	.21	48.24	
Se.	325.2	,,	.07	56.17	
	331.0	In.	'10	65.28	

De.			"	1863.11
של.	327'4	2n.	2.2	1903.11
Ο.Σ.	328.4	In.	·64	9.24
l _	324.6	,,	*35	75.57
Du.	328.1	4n.	*34	3.19
W. & S.	326.2	3	.1	*22
	•6	2	. 00	*24
	324.2	6	.09	4'14
	328.9	9	1.9	2.58
	324'9	5	2.12	5.58
Gl.	325.2	5	.1	4.10

294 Σ. 1216.

R. A.	Dec.	М.
8p 12.5m	-1° 13'	7.5, 8.2

Rapid change in angle.

Σ.	109.2	In.	0.23	1825.50
	115.5	4n.	48	31.54
Ο. Σ.	142'0	ın.	'54	51.57
	136.9	,,	'44	-28
Se.	149'9] ,,	•••	7 34
De.	121.1	7n.	•••	63.35
W. & S.	1700	est.	•••	73.19
	168.2	2	0.4	'24
	166.5	3	•••	5.52
	164.8	4 6	•••	*28
G 1.	167.0	6	0.2	4.18

295 S. 1223.

φ² CANCRI.

R. A. Dec. M. 8^h 20^m 27° 19′ 6, 6·5

Dunér's formulæ are

$$P = 213^{\circ}.7 - 0^{\circ}.07 (t - 1850.0).$$

н,.	33'3	ın.	•••	1783'00
Σ.		4n.	4.28	1820'17
	207.8	In.	3.89	2.53
	212.0	7n.	4.26 .85	9.45
	214'3	2n.	·82	38.34
H, & 8d.	211'2	4n.	2.21	22.48
Bm.	212.2		4.8	33.52
Da.	•6	In.	.95	40'15
Mä.	214'4	3n.	.99	53.59
Mo.	213.3	,,	-88	4.54
De.	215'4	7n.	.90	'46
8e.	214'3	3n.	.73	6.50
Ka.	.1	Šn.	.71	66.24
Du.	215'1	,,	.75	73.10
Ο.Σ.	35.0	in.	5.01	4.27

296 Σ. 1224.

pI CANCRI.

R. A.	Dec.	M.	
8p 19.2m	24° 56′	6, 7'1	

-		
Du	ıėr	gives

1849.52. $\Delta = 5".89.$ P = 39°.6 + 0°.10 (t - 1850.0).

**	. 0	•		0
H ₁ .	57 [°] 2		5.2	1783.07
Σ.	34'5	7n.	6.58	1820.60
	37.4	4n.	5.48	2.18
	.3	9n.	.84	30.76
	.5		'9 i	40'24
5 0.	-8	ın.	6.02	22.13
	.*5	5n.	.74	5.26
H,	38.4	3n.	.47	30.18
-	3.4	2n.	.04	1.07
Sm.	37.9		·o	17
	38.6	1		7.26
	40.1		5.7 8	43.18
Da.	40 1	ا		0.88
Da.	38.3	4n.	6:24	
	39.8	2n.	5.87	3.12
^ =	.9	4n.	6.03	9'54
0.Σ.	40.0	3n.	'27	0'24
	36.8	In.	.11	4.58
	37.2	,,	5.98	6.30
	38∙0	٠,,	191	9.32
	.7	,,	*99	51.58
	•3	,,	6.02	3.30
	39.0	,,	*02	7.26
	41.0	''	.03	62.29
Mä.	39.2		2.03	42.32
	.1	IOn.	.83	4 03
	.4		•6ŏ	5.98
	40.5	5n.	.73	51.12
	·2	3n.	.95	2.02
	39.5	J	.63	5'24
•	40.7		.59	6:27
	38.3	Į I	.76	7:20
	39.5		.58	7.29 8.10
	39.2	2n.	6.50	61.33
Mo.	40.6		5.60	52.52
	40.0	3n.	9.06	4.16
De.	ō	5n.	5.81	4.89
Se.	41.5			6.50
M.	40.3	4n.	6.0 6.0	62.11
Bo.	38.6	In.		
Eng.		"	5.89	3'14
Ta.	41.0	5n.	.95	5.41
±8.	39.4	In.	6.04	6.10
Ka.	40.2	,,	.13	9:38
Du.	•	5n.	5.65	6.24
JU.	42°I	3n.	.74	9.24
61	43'2	2n.	·79	74'17
G 1.	41.5	In.	•••	.18
W. & S.	•6	۱ " ا	•9	l .18

297	h. 4087.	
R. A.	Dec.	M.
8 ^h 19.5 ^m	- 40° 36′	7·8,

8

Probably a binary.

H,	146.6		I	1837.15
Ja,	146·6 147·5 134·9	12	0.83 1.42	1837°15 8°08 58°20

R. A. Dec. M. 8^h 21^m 33° 57′ 7, 11 C. yellowish.

0.Σ.	297°1	In.	14"14	1844:30
	293.9	,,	36	8.22
	294.6	,,	17	50.56
	.6	,,	12	61.26
De.	295 [.] 6	3n.	13.64	8.11

299 S. 1263.

R. A.	Dec.	M.	
8µ 37.1m	42° 8′	7.6, 8.2	

On reducing the angles of position to the equinox of 1850, O. 2. finds twelve relations, and on converting them into rectangular coordinates and treating them by the method of least squares, he obtains

 $\Delta A = (+ 5".503 \pm 0".032) + (0".2646 \pm 0".0024) (t - 1850.0).$

 $\Delta D = (+ 19.054 \pm 0.016) + (0.6554 \pm 0.0012) (t - 1850).$

Uniform rectilinear motion perfectly satisfies the Δ D. In the Δ A the differences are less satisfactory. He thinks it probable that Σ ,'s measures contain systematic errors.

			•	
Σ.	359.0	In.	4.86	1828:36
	4'1	>>	5'43	9.46
	.9	,,	7.08	31.31
	7:3 8:0	,,	'46	2.33
		,,	_ '97	3.59
	'4	,,	8.93	4.36
	9.3	,,	9.29	5.32
	10.3	,,	10.34	6.42
	11.8	,,	'47	7.06
		,,	11.63	8:34
	12'4	,,	12.88	40.52
O. E .	14.8	4n.	13.02	*28
	14.8	,,	16.20	5.08
	15.4	,,	18.89	8·8o
	·6	,,	20.26	51.05
	16.2	,,	22.64	4'07
	17.8	2n.	27.06	60.27
_	18.9	3n.	34'35	70.63
Da.	13.5		14.28	41.33
_	17.1		22.47	54.13
Ka.	15.2		14.29	42.69
Flt.	16.6	22	20.84	52.12
	17.1	22	21.55	3'19
Mo.	16.4	30	22.20	4'22
_	18.3	20	26.74	60.08
De.	17.0		23'04	55.37
	18.3		29.13	63.38
X.	16.8	In.	.72	4.30
Ta.	19.0	,,	31.54	6.10
	21.6	,,	····	70.03
_	19.6	,,	36.01	6.56
Du,	18.7	3n.	35.13	1.01

254				DOUBLE	STARS	•			
W. & S.	18.4	4	,,	1872.25	Ka,	203.0	7n.	3.13	1842.36
	.2	14	35.6	.30	0.Σ.	203.2	20.	.20	3.31
	.1	3		3.19		208.5	3n.	.27	8.97
	∙8	5	37'15	5.37		211'0	,,	'43	61 62
Gl.	19.0	1	••••	4.72	_	217.5	,,	'44	8.88
Sp.	18.6		37'44	5.52	Ja.	203.6		74	46.50
Dob.	.6	2n.	-0	6.13		209'I	9	.33	53*24
Pl.	.9	"	38:57	.36		.6	10	'26	.99
Fl.	-0	1	.9	7:25	Mo.	212.7	3n. 1n.	·69	7·39 2·27
						و.سو	3n.	*04	4.58
200	~	127	70			\$10.6	2n.	42	8.30
300	4.	12 (3 .		De.	211.3	In.	.74	4.92
		HYDR	æ			.9	5n.	'44	5.51
	•	4.22				210.9	2n.	'24	6.12
R	A.	Dec		М.		211'3	In.	65	7.08
8h 40	'4 ^m	6° 5	2'	3.8, 7.8		213.0	"	:53	62 92
	C. A. 3	rellow:	B, blue			216.3 212.8	3n.	45	9.50
T. 1.						217.0	9n. In.	.44 .36	8.25
				autiful star		218.4	2n.	.26	70.52
	Wm. Her		ie scruti	nizing eye			In.	.32	1.17
			no doub	t about the		217·5 ·8	,,	.45	3.53
motion.	, F.	4/			_	218.2	,,	'40	5.58
	at the rec	quest of	Dawes,	examined	Se,	210.0	4n.	*33	§6.19
this obj	ect and	though	that t	he angular	D -	215.6	In.	48	65.27
motion	was abou	t + 0°	8 per aı	ınum, " or	P o. ₩.0.	213.5	15	.06	1.52
a circui	t of 41 ce	nturies.			X.	199.3	2 In.	.32	63
				rtially sup-		210.I		·40 	70.26
•		mpressi awes.)	OH OL M	diminution		216.2	"	3.29	1.53
of distar	ni says the		n is orbi	al.		215.6	,,	.37	*23
				ed that A	Eng.	2 16.8	3n.	'41	65.18
	ong in th				Ta,	204'7	3n.	*87	6.10
The	common	proper	motion i	s - 0° 013		207'2	In.	-68	7.20
in R. A	., and +	0" 04 i	n N. P.	D.		216.8	79	2.04	74.23
Duné	r gives I	853.39	Δ = 3′′	34 for the	W. & S.	217.6 216.2	"	3.58	2.10
distance	e; and to	r the a	ngie, P	= 206°·5		219.3	5	·18	3.19
-	43 (t — 1					,3	Ĭ		.19
Σ.	192.4	3n.	3.31	1825.23		216.7	6	3.33	4.18
	198.3 198.9	**	'14 '16	31.58 2.58		221.2	7	·47	5.33
	.6	"	.50	6:27		216.5	3	'4	4.03
	200.8	2n.	.39	40.30	Du. Schi.	219.3	5n.	20	5.58
Da.	195.2	In.	4'34	31.13	Sp.	217.9	In.	.31	29
	197.6	2n.	.26	2.30	Dob.	219'2 9	In.	.31	·29
	199.1	ın.	3.65	4.00		,-	gn.	:::	6.30
	197.9	-22		7:23	Pl,	216.7	2n.	3.67	73
	201.6	16n.	3:50	3.31 3.31					
	203·5 203·5	3n. In.	'42 '42	8.14					
	206.7	3n.	.50	.83	301	Σ	. 128	31.	
	208.5	In.	'43	51.35		_			
Sm.	198.4		'4	37.11	R. A.		Dec		M.
	199.1	-	·5	9:22	8h 41'4	-	0° 28	3'	7:3, 8:3
~	203.5			43'14				_	
Ch.	197.8	In.	.44 .82	3.17			appears	to be	rectilinear
	202.2 200.0	"	2.83	4.16	hitherto	•			
Mä.	203.0	7n.	3.35	2.64	Σ.	329.6	5n.	25'02	1833.48
	209'I	4n.	3.37	52.30	H.	328.6		25±	3.30
	208.3	"	.28	6.25	Mä.	326.7	1	27.12	47.23
	212.4	2n.	104	7:29	De.	323.8		29.47	64.20
	210.4	IIn.	.39	60.58	Fl.	321.9	In,	31.10	77.31

				MEAS		
302	Σ.	128	30.			
R. A. 8h 44'4m		Dec 71° 1		M. 7'5, 7'6		
The an	C. yellowish. The angle has increased and the distance has diminished.					
H, & So. E. Mä. Mo. De.	31°2 34°0 33°9 36°0 37°5 36°2 37°5 40°1	2n. 4n. 1n. 3n. 3n.	8.75 7.43 .42 6.61 .51 .67 .51	1823:33 31:90 43:05 52:13 64:71 56:27 64:71 73:83		
303	Σ.	128	 37.			
R. A. 8 ^h 44'9 ⁿ Probab	a oly a bin	Dec 12° ; ary.		M. 8, 10·3		
Σ. De.	95°0	3n.	1°41 •86	63.50 63.50		

304 Σ. 1291.

R. A. Dec. M. 8h 47^m 31° 2′ 5'9, 6'4

Dunér's formulæ are

1850.50. $\Delta = 1''.42$. $P = 334^{\circ}.1 - 0^{\circ}.06 \ (t - 1850.0)$.

H ₁ .	338.3	In.	·	1782.28
H, & 30	. 340'2	,,	1.89	1822'14
Σ.	333.3	5n.	.21	9.71
Mä,	335 4	,,	'47	42.90
Ο.Σ.	332.8	2n.	'41	5.28
	.3	In.	•28	7:36
	·I	,,	.13	7:36 8:30
	.0	,,	·24	9.32
	•5	,,	*53	53.30
	335.5	,,	'42	9.30
	334.0	,,	.20	60.38
	.0	, .	°47	'29
De.	331.0	2n.	•2	56.19
Se,	333.8	3n.	*34	27
Mo.	336.6	2n.	'40	7:29
_	334.9	3n.	*29	60.12
Du.	332.2	4n.	'43	71.03

305 o.Σ. 196.

. URSE MAJORIS.

R. A.	Dec.	M.
8h 51m	48° 31′	3.1, 10.3
Orbital	motion has dist	inctly shown
itself. Th	e common proper	motion of this

system is no less than -0° 047 in R. A., and $+0^{\circ}$ 28 in N. P. D.

	٥		"	
H,	348.8			1831'71
Sm.	.0		12.0	9'12
Ch.	350.0	In.	10.68	41'19
Ο.Σ.	351.8	4n.	'69	5.27
	.8	5n.	'54	51.68
	355.0	In.	.18	61'24
	356.9	2n.	9.78	71.80
Xä.	350.7		10'14	52.27
De.	357.1		9.72	69.38

306 S. 1296.

R. A. Dec. M. 8h 51'8n 35° 25' 8'5, 9

Probably a binary. Dunér has

> $\Delta = 2''.59 - 0''.0128 (t-1850.0).$ P = 73°.7 + 0°.136 (t-1850.0).

Σ. Mä,	71.2	3n. 2n.	2.83 .67	1831 59 44 27 71 26
Du.	76.6	,,	.31	71.26

307 Σ. 1300.

R. A. Dec. M. 8h 54 6m 15° 45′ 8 7, 8 8 C. yellow.

Σ.	210.0	3n.	4'11	1830.19
H ₇ . Se.	211'0	_	2	2.30
Se.	204'2	3n.	4.67	56.28
	.2		•98	65.27
0.Σ.	24.6	In.	•68	6.58
	203.3	,,	•86	8.29
	202.4	,,	.79	70.28
W. & S.	203'4	4 6	-83	4.18
	' 4	6	'5	.18
G1.	204.0	4	·5 ·6	.18

308 _{2.} 1306.

R. A. Dec. M. 8^h 59·8^m 67° 37′ 5, 8·2

The diminution in distance and increase in angular movement have been marked since 1850.

The apparent orbit is probably considerably elongated.

The proper motion of A is -0.005 in R. A., and +0.11 in N. P. D.

H ₁ .	283 0	In.	[7'93]	1783.68
Η ₁ . Η ₂ . Σ.	263.3 263.3	5n.	5°0	1783·68 1832·10 '99
8m.	262.4	J	5.0	5.32

	0		**	
Ο.Σ.	260°3	2n.	4.20	1840'34
	•6	In.	'24	6.37
	257.5	,,	3.89	21.39
	55	,,	71	4.37
	249.5	,,	.17	66.42
	246.8	",	.16	72.41
Da.	262.8	2n.	4.46	41.50
24,	258.2		3.03	51.58
Ka.	261.6	"	4.36	42.49
			3.61	
M o.	258.3	30		54.56
Se.	257.2	3n.	'41	6.34
De.	253'5	Šn.	.22	63.19
	252.6	,,	*22	5.81
	247'5	3n.	2.88	71.2
	245.2	2n.	.68	5.51
Ta.	261.8		3.21	66.10
	258.1		2.76	71.39
W. & S.	249.5	4	·85	2.58
	246.7	4	3.02	.30
	249.8	4	.20	3.24
	246.8	4	.30	.29
G 1.	247'2	5	2.9	4.18

309 Σ. 1316.

R. A. Dec. M. 9^h 1.9^m -6° 39′ A8.2, B11.5, C10.5

C. white.

Certain change, but of uncertain nature.

AB.					
Σ.	146.3	3n.	6.78	1832.88	
Se.	139.6	In.	5.79	57.26	
	138.9	,,	6.94	65.19	
De.	'4		·7 <u>4</u>	4.84	
W. & S.	139.7	ın.	.18	74'17	
C.O.	.8		7:38	7.18	
		A C			
Σ.	153'1	3n.	13.02	32.88	
Se.	156.5	īn.	11.58	57.26	
	153.9	,,	10.02	65.19	
De.	158.7		.08	4.84	
W. & S.	157.8	In.	9.2	74'17	
G 1.	155.0	,,		4.18	
C.O.	163.2	,,	9.06	l 7 [.] 18	
B C.					
C.O.	28.7	ın.	4.50	77'18	

310 S. 1313.

R. A. Dec. M. 9^h 2'5^m 70° 28′ 8'5, 8'7

The angle has probably increased.

	_	-	•	
Σ.	240.8	3n.	0.84	1832·39 45·84 66·74
Ο.Σ.	242.2	4n.	·8 ₇	45.84
De.	50.2		1.0	66'74

311	Σ. 1321.	
R. A.	Dec.	M.

R. A. Dec. M. 9^h 6·5^m 53° 13′ 7.4, 7.4

The distance is probably unchanged.

The proper motion of A is probably large.

Dunér has

$$\Delta = 19''.87 - 0''.01 (\ell - 1850.0).$$

P = 52°.4 + 0°.24 ($\ell - 1850.0$).

Σ.	43.8	In.	1	1820'92
		IIn.	21.13	2.07
	48°1	3n.	20'14	31.35
	• •9	,,	19.93	5.73
So.	45.8	5n.	20.80	24.46
H,	51.2	•	.0	31.40
Ο.Σ.	50.2	3n.	'17	40.32
	52.2	4n.	'00	8.57
Da.	50.8	5n.	.22	2.89
	51.8		19.87	8.29
Mä,	•4	2n.	20'10	6.29
	53.0	In.	19'47	51.09
	ď	2n.	'23	2.42
	54°9	In.	.91	8.38
	52.3	,,	.38	61.67
De.	55.7	5n.	'74	3.15
X.	53'4	-	'33	'25
Ta.	•••	In.	20'23	6.35
	56.5	٠,,	19.63	7.23
	58.0	2n.	20'17	71.39
	55.0	In.	19.92	2.18
	57.0	,,	20.59	4.53
G 1.	.0	,,	•	.22
Dob.	58.4	,,	١	6.07

312 _{2.} 1329.

R. A. 9 ^h 9 ^{·6} ^m		Dec. -0° 44′			M. 8·3, 8·5
		C	. wh	ite.	
4	60.0			1 02.68	1.822.01

Σ.	65.5	4n.	27.68	1831.51			
Eng. De.	67:4 3		24.26 23.73	1831.51 4.56 63.55 4.76			

313 **S.** 3121.

R. A. Dec. M. 9^h 10.7^m 29° 7′ 7.5, 7.8

The orbit of this system was computed in 1866 by Fritsche from the observations between 1831 and 1864. The predicted places for 1874 are, however, far from representing the observations. O.Z. explains

this by saying that the distances were not corrected for systematic errors, and he predicts that the star will be single in 1877. The period is about 39 years.

Fritsche's latest elements are-

(1)	(2)
$\Omega = 19^{\circ} 56' \cdot 4$	23°.5
w = 143 17 ℃	141 6
e = 0.3471	0.3722
$\mu = +9.188$	+ 8.862
# = 52° 23' 0	54.11
$a = 0^{\prime\prime}.696$	0".715
P = 39ли-18	40.62
Epoch 1850.0	1850.0.

The elements in (2) are based on the same observations with O.E.'s corrections applied. According to this system of elements Dunér finds that the distance in 1878 would be 0":49; but the star was oblong in 1874.

	•		"-	_
Σ.	20.0	In.	o"85	1832.31
	239°I	3n.	elongd.	40.32
	190.5	ın.	,,	4.28
	5.0	,,	1.52	•30
	18.8		0'48	6.59
	210.7		'45	7'34 8'25
	29.6		'44	8.25
	34.4		'41	9.32
Ο, Σ.		In.	oblong?	0.58
	246	,,	ob.&sep.	.32
	243.5	,,	0.40	*35
	198.4	,,	oblong	4.56
	8.5	,,	0.33	.30
	27.6	,,	.55	6.39
	214'2	,,	. 54	7:34
	33.0	,,	'53	8.25
	43'3	,,	'48	9.35
	228.6	,,	'42	50.30
	59.7	,,	.33	1.56
	Certainly do	ouble		61.39
	8.9	,,	0.67	.30
	13.0	,,	'71	4.30
	29.5	,,	.78	8.29
	23.8	,,	1.85	.30
	2 6.1	,,	·88	9.31
	35.3	,,	.82	71.58
	215'4	,,	.76	.31
	36.4	,,	-68	2.31
	40.4	,,	.64	4.58
	53.0	,,	43	.28
	250.1	,,	oblong	5.29
De.	14.8		0.4	63.11
	19.6		.68	6.23
	21.3		'7	7:26
	-8		'7	8.25
	27.6			9.85
	32.6		0.6	71.51
	210.2		elongd.	2.53
	213.9		,,	3.38
	214.9		,,	4.31
	251.9		٠,,	2.31
G 1.	210.4	5	0.2	0.44

G 1.	212.7	4	0.5	1871'21
Du.	214.5	4 2n.	·5 ·65	3.40
	209.3 208.2	3n. In.	.75 .68	2.09
Sp.	225.0	2n. In.	.3 .2	4°24 5°20
- ę.	245°2	İ	·3 ·35	7.18

314 S. 1333.

R. A.	Dec.	M.
∂_p 11 ₂σ	35° 52′	6.6, 6.9

Dunér gives

$$1853.82.$$
 $\Delta = 1''.49.$ $P = 41^{\circ}.7 + 0^{\circ}.10 (t - 1850.0).$

Η ₁ . Σ. Η ₁ . Μä.	38.6		•••	1782.86
Σ.	39'4	4n.	1'42	1828.59
H,	40.2	3n.	.38	31.13
Mä,	42.6	5n.	'46	45.21
	.2	6n.	·57 ·38 ·633	23.13
	.5 .9	2n.	.38	9.83
Ο.Σ.		6n.	.633	0.13
Se.	43.6	2n.	.43 .78	6.32
_	'4	In.	.78	65.19
De.	41.2	,,	.3	57'92
	43'0		.3	66'46
X o.	39.2	3n.	'44	59'27
Eng.	45'3	4n.	'44 '65	65.22
Du.	41.4	,,	'45	72.24

315 S. 1334.

R. A.	Dec.	M.
9h 11.4m	37° 19′	4, 6.7

C. A, white; B, blue.

The common proper motion is -0° 007 in R. A., and +0''04 in N. P. D. Dunér has

$$\Delta = 2^{\prime\prime} \cdot 80$$
.
P=240°·4 - 0°·05 (t -1850·0).

H ₁ .	244.5	In.		1780'90
H, & So.	242'7	4n.	2.89	1822.46
Σ.	240'2	6n.	.69	9.17
	.7	In.	.70	52.00
Sm.	241.6	1	٠8	32.35
H _p . Mä,	239'2		.2	2.40
Mä,	240.8	5n.	·97	43.30
	. '9	•	·47	7.19
	241.7		.62	54.30
	240.6	ŀ	.46	6.44
	'4	İ	l	7.43
	239.5	2n.	·84	9.83
De.	241'5	3n.	3.0	2.19
	239'1	-	2.80	66.26
Se.	241'5	4n.	•84	57.36
Mo.	238.3	2n.	oi l	0.16

_									
	• .		"		l _	0		<i>m</i> _	
Re.	2390	In.	2'90	1862.13	Se.	137'1	2n.	1.63	1856.31
Ta.	·0	L	· Ś 9	6.19	Eng.	143.2	3n.	2.00	65'31
Du.		,,,							
	240.8	2n.	°49	71.25	Kn.	142.2	2n.	1.4.1	47
W. & S	. 238.8	In.	·82	3.10	Ta.	143'4	,,	•66	6-67
G 1.	·6		92	4.18		142.6	in.	•58	71.40
 .	0 1	,,	92	4 10	1	•	14.	20	
					1 .	141.5	,,	•••	2.18
				•	1 '	145'2	,,	1'24	4'23
316	Λ.	Σ. 18	\mathbf{a}		i			•	
OTO	U.	<i>2</i> , 18	9 0 .		1	142.9	,,	•••	5.18
					1	150.0	2n.	1.56	6.34
R. A	١.	Dec.		М.	Du.	149.0		-66	1'24
9 ^h 12		1° 46'			 .			_	
9- 12	_ :	1 40		6.1, 10.5		151.8	4n.	-63	6.29
		_			W. & S.	145.8	4	·87	2.27
The	distance h	as prob	ably dim	inished.	=		4 8		
						147'7		. 46	3.19
Ο.Σ.	116.48	45 1	F 1 P 4	1 7 8 4 7 100	1	•6	2	•••	.23
		4n.		1847:02		•8	6	1.24	4.17
De.	117'17	3n.	.32	68.11	l .	-		- 3/	
		•	•	•	l	150.0	4	.73	5'27
					i .	• • • •	4	·55 ·78	'29
015	_	100	`		l	O		.≍ĕ	6.26
317	Σ.	133	SH.			_	5		
					G1.	147.0	4	7	4.18
					5p.	149'3		.76	5.33
	15	LYN(CIB.					1,0	
-				3.0	Sohi.	.3	In.	.76	.33
R. A.		Dec		М.	Dob.	•6	5n.	2.13	6.31
9 _p 13.4	m.	38° 4	L2'	7, 7:2	ł		•	•	
<i>></i> -3 -		•	•	1, 1 -					
	(C. whit	e.		i				
17	. 41		-4	.0	910	•	Σ. 20	\sim	
ron 1	n the mea	sures D	etween	1827 and	318	U.	4. 2 (<i>J</i> U.	
1833. 3	E. suspecte	d a slo	w direct	motion.	[
53, 7		h. m	otion is	oortoin	R. A.		Dec.		M.
	p. 27) say					_	השלבי		
Ο.Σ.	A grad	ual ang	gular ch	ange, the	9 16.6	-	52° 5	7	6.7, 8.4
				the ap-	1		•		
					Slow	direct mo	ntion		
		nererore	e, proba	bly nearly	510# 1	ance in	MOII.		
circular					Mä.	334'4	4n.	1.39	1845.64
Dane	r's formul	-				337 7			
Dun	.i s ioimui	~ 200				337.2	2n.	.23	51.34
	1854	ro A :	- 1"·67.		Ι Ο.Σ.	335.5	5n.	.41	47.09
-	1054				Da.	338.2	īn.	-56	8.28
P=	- 133°·i +	0.022	7 (1 – 18	50°0).				30	
_		_			I	333'7	,,	•••	60.25
Σ.	121'1	5n.	1.46	1829.53	De.	338.3	3n.	1'34	7.60
	119.4	2n.	2'51	30.52	Du.				71.36
				30.23	Du.	•5	2n.	'54	1 /1 30
	116.4	In.	1.43	2.10	1				
Mä.	127'1		.40	8.10					
					1	_	_ ^	~-	
		6n		42.43					
	130.3	6n.	•66	43'42	1319	O.	2. ZI	. 21.	
	130.3	6n. 2n.	·66 ·80	51'04	319	O.	Σ. 20	JI.	
 ,	130.3	2n.	·66 ·80	51'04				JI.	
	130'3 132'7 134'8	2n. 5n.	•66 •80 •70	51.04 2.78	319 R. A.		Dec.		M.
 -	130·3 132·7 134·8 135·5	2n. 5n.	.66 .80 .70	51.04 2.78 4.78	R. A.		Dec.		
	130·3 132·7 134·8 135·5 140·5	2n. 5n. ,, 2n.	·66 ·80 ·70 ·71 ·61	51.04 2.78 4.78 9.83	R. A.				7.5, 9
Ο.Σ.	130·3 132·7 134·8 135·5	2n. 5n. ,, 2n.	.66 .80 .70	51.04 2.78 4.78 9.83	R. A.		Dec.		
	130·3 132·7 134·8 135·5 140·5 128·1	2n. 5n. 2n. 4n.	·66 ·80 ·70 ·71 ·61 ·82	51.04 2.78 4.78 9.83 40.33	R. A.	• • 236·3 ∣	Dec.	1' I:24	7'5, 9 1843'25
	130·3 132·7 134·8 135·5 140·5 128·1 130·2	2n. 5n. ,, 2n.	·66 ·80 ·70 ·71 ·61 ·82 ·89	51.04 2.78 4.78 9.83 40.33 2.30	R. A.	236·3 230·3	Dec.	1' 1'24 '33	7'5, 9 1843'25 6'32
	130·3 132·7 134·8 135·5 140·5 128·1	2n. 5n. 2n. 4n.	*66 *80 *70 *71 *61 *82 *89 *58	51.04 2.78 4.78 9.83 40.33	R. A. 9 ^h 16·8 Mä ,	• • 236·3 ∣	Dec. 28° 24	1' 1'24 '33 '47	7'5, 9 1843'25 6'32 7'41
	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2	2n. 5n. 7, 2n. 4n. In.	·66 ·80 ·70 ·71 ·61 ·82 ·89	2.78 4.78 9.83 40.33 2.30 7.36	R. A. 9 ^h 16·8 Mä ,	236·3 230·3 229·9	Dec. 28° 24	1' 1'24 '33 '47	7'5, 9 1843'25 6'32 7'41
	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5	2n. 5n. 2n. 4n. 1n.	.66 .80 .70 .71 .61 .82 .89	2.78 4.78 9.83 40.33 2.30 7.36 54.25	R. A. 9 ^h 16·8 Mä. Ο.Σ.	236·3 230·3 229·9 233·4	Dec. 28° 22	1' 1'24 '33 '47	7'5, 9 1843'25 6'32 7'41 52'43
	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 135·4	2n. 5n. 7, 2n. 4n. In.	·66 ·80 ·70 ·71 ·61 ·82 ·89 ·58 ·66 ·82	51 '04 2'78 4'78 9'83 40'33 2'30 7'36 54'25	R. A. 9 ^h 16·8 Mä ,	236·3 230·3 229·9	Dec. 28° 24	1' 1'24 '33	7'5, 9 1843'25 6'32 7'41
	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5	2n. 5n. 2n. 4n. 1n.	.66 .80 .70 .71 .61 .82 .89	2.78 4.78 9.83 40.33 2.30 7.36 54.25	R. A. 9 ^h 16·8 Mä. Ο.Σ.	236·3 230·3 229·9 233·4	Dec. 28° 22	1' 1'24 '33 '47	7'5, 9 1843'25 6'32 7'41 52'43
	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 135·4 142·4	2n. 5n. 7, 2n. 4n. In. 7,	·66 ·80 ·70 ·71 ·61 ·82 ·89 ·58 ·66 ·82 ·84	2'78 4'78 9'83 40'33 2'30 7'36 54'25 '26 68'34	R. A. 9 ^h 16·8 Mä. Ο.Σ.	236·3 230·3 229·9 233·4	Dec. 28° 22	1' 1'24 '33 '47	7'5, 9 1843'25 6'32 7'41 52'43
ο,Σ.	130·3 132·7 134·8 135·5 140·5 140·5 140·5 140·2 128·1 130·2 128·2 134·5 142·4 142·4	2n. 5n. 2n. 4n. In.	*66 *80 *70 *71 *61 *82 *89 *58 *66 *82 *84 *72	2.78 4.78 9.83 40.33 2.30 7.36 54.25 68.34 73.31	R. A. 9 ^h 16·8 Mä. O. Z. De.	236·3 230·3 229·9 233·4 229·2	Dec. 28° 22	1' 24 33 47 45 48	7'5, 9 1843'25 6'32 7'41 52'43
	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 135·4 142·4	2n. 5n. 7, 2n. 4n. In. 7,	.66 .80 .70 .71 .61 .82 .89 .66 .82 .84 .72	2'78 4'78 9'83 40'33 2'30 7'36 54'25 '26 68'34	R. A. 9 ^h 16·8 Mä. O. Z. De.	236·3 230·3 229·9 233·4	Dec. 28° 22	1' 24 33 47 45 48	7'5, 9 1843'25 6'32 7'41 52'43
ο,Σ.	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 135·4 142·4 149·8 125·9	2n. 5n. ,,, 2n. 4n. In. ,,,	.66 .80 .70 .71 .61 .82 .89 .66 .82 .84 .72	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 68.34 73.31 41.23	R. A. 9 ^h 16·8 Mä. Ο.Σ.	236·3 230·3 229·9 233·4 229·2	Dec. 28° 24	1' 24 33 47 45 48	7'5, 9 1843'25 6'32 7'41 52'43
ο,Σ.	130·3 132·7 134·8 135·5 140·5 140·5 140·5 140·2 128·1 130·2 128·2 134·5 142·4 142·4	2n. 5n. 7, 2n. 4n. In. 7, 7, 7, 3n.	·66 ·80 ·70 ·71 ·61 ·82 ·89 ·58 ·66 ·82 ·84 ·72 ·75 ·72	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 7.31 41.23 2.23	R. A. 9 ^h 16·8 Mä. O. Z. De.	236·3 230·3 229·9 233·4 229·2	Dec. 28° 22 6n. 3n.	1' 24 33 47 45 48	7'5, 9 1843'25 6'32 7'41 52'43 67'72
ο,Σ.	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 134·5 142·4 149·8 125·9 127·3	2n. 5n. 7, 2n. 4n. In. 7, 7, 3n.	.66 .80 .70 .71 .61 .82 .58 .66 .82 .72 .75 .772 .66	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 26 68.34 73.31 41.23 2.23	R. A. 9 ^h 16·8 Mä. O. Z. De.	236·3 230·3 229·9 233·4 229·2	Dec. 28° 22 6n. 3n.	1' 24 33 47 45 48	7'5, 9 1843'25 6'32 7'41 52'43 67'72
ο,Σ.	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 135·4 142·4 149·8 125·9	2n. 5n. 7, 2n. 4n. 1n. 7, 7, 7, 7, 7, 3n.	.66 .80 .70 .61 .82 .89 .58 .66 .82 .72 .75 .75 .66	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 26 68.34 73.31 41.23 2.23 3.17 8.17	R. A. 9 ^h 16·8 Mä. 0. E. De. 320	236·3 230·3 229·9 233·4 229·2 ∑.	Dec. 28° 22 6n. 3n.	1'24 '33 '47 '45 '48 L6.	7'5, 9 1843'25 6'32 7'41 52'43 67'72
ο,Σ.	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 135·4 142·4 149·8 125·9 127·3 -7 131·8	2n. 5n. 7, 2n. 4n. 1n. 7, 7, 3n. 7, 1n. 3n.	.66 .80 .70 .61 .82 .89 .58 .66 .82 .72 .75 .75 .66	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 26 68.34 73.31 41.23 2.23 3.17 8.17	R. A. 9 ^h 16·8 Mä. 0. E. De. 320	236·3 230·3 229·9 233·4 229·2 ∑.	Dec. 28° 22 6n. 3n.	1'24 '33 '47 '45 '48 L6.	7'5, 9 1843'25 6'32 7'41 52'43 67'72
ο,Σ.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 149·8 125·9 127·3 77 131·8	2n. 5n. ,, 2n. 4n. In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	·66 ·80 ·70 ·61 ·82 ·89 ·58 ·62 ·72 ·75 ·75 ·76 ·66 ·69	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 73.31 41.23 2.23 3.17 50.12	R. A. 9 ^h 16·8 Mä. 0. E. De. 320 R. A.	236·3 230·3 229·2 233·4 229·2 ∑.	Dec. 28° 22 6n. 3n. 134	1'24 '33 '47 '45 '48 16.	7'5, 9 1843'25 6'32 7'41 52'43 67'72
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 142·9 125·9 127·3 131·8	2n. 5n. ,, 2n. 4n. In. ,, 3n. 3n. 2n. 5n.	·66 ·80 ·70 ·61 ·82 ·88 ·66 ·82 ·75 ·72 ·66 ·69 ·65	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 7.331 41.23 2.23 3.17 8.17 50.12 4.20	R. A. 9 ^h 16·8 Mä. 0. E. De. 320	236·3 230·3 229·2 233·4 229·2 ∑.	Dec. 28° 22 6n. 3n.	1'24 '33 '47 '45 '48 16.	7'5, 9 1843'25 6'32 7'41 52'43 67'72
ο,Σ.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 149·8 125·9 127·3 77 131·8	2n. 5n. ,, 2n. 4n. In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	·66 ·80 ·70 ·61 ·82 ·89 ·58 ·62 ·72 ·75 ·75 ·76 ·66 ·69	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 73.31 41.23 2.23 3.17 50.12	R. A. 9 ^h 16·8 Mä. 0. E. De. 320 R. A.	236·3 230·3 220·9 233·4 220·2 21 UE	Dec. 28° 22 6n. 3n. 134 888 M. Dec. 54° 3	1'24 33 47 45 48 16. AJORIS	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8
0.Σ. Da.	130·3 132·7 134·8 135·5 140·5 128·1 130·2 128·2 134·5 142·4 149·8 125·9 127·3 131·8 134·6 137·0	2n. 5n. ,,, 2n. 4n. In. ,,, ,,, 3n. ,,, 1n. 3n. 4n.	·66 ·80 ·70 ·61 ·82 ·88 ·66 ·82 ·84 ·75 ·75 ·66 ·66 ·69 ·65 ·92	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 26 68.34 73.31 41.23 3.17 8.17 50.12 4.20 24	R. A. 9 ^h 16·8 Mä. 0. E. De. 320 R. A.	236·3 230·3 220·9 233·4 220·2 21 UE	Dec. 28° 22 6n. 3n. 134 888 M. Dec. 54° 3	1'24 '33 '47 '45 '48 16.	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8
0.Σ. Da.	130·3 132·7 134·8 135·5 140·5 128·1 128·2 134·5 135·4 142·8 125·9 127·3 131·8 134·6 137·0 135·7	2n. 5n. 7, 2n. 4n. 1n. 7, 3n. 2n. 5n. 4n. 3n.	·66 ·80 ·71 ·61 ·82 ·88 ·66 ·82 ·72 ·75 ·76 ·66 ·69 ·69 ·69 ·69	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 26 68.34 73.31 41.23 3.17 8.17 50.12 4.20	R. A. 9 ^h 16·8 Mä. O. E. De. 320 R. A. 9 ^h 17 ^h	236·3 230·3 229·9 233·4 229·2 21 UE	Dec. 28° 22 6n. 3n. 134 888 M. Dec. 54° 3	1' 1'24 33 '47 '45 '48 48 48 L6. AJORIS.	7'5, 9 1843'25 6'32 7'41 52'43 67'72
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 142·9 125·9 127·3 131·8 137·0 135·7 135·7	2n. 5n. ,,, 2n. 4n. In. ,,, ,,, 3n. ,,, 1n. 3n. 4n.	-66 -80 -70 -61 -82 -88 -66 -82 -75 -72 -66 -66 -65 -92 -12	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 73.31 41.23 2.23 3.17 8.17 50.12 4.20 .24 5.20	R. A. 9 ^h 16·8 Mä. 0. E. De. 320 R. A.	236·3 230·3 220·9 233·4 229·2 21 UE	Dec. 28° 22 6n. 3n. 134 888 M. Dec. 54° 3	1'24 33 47 45 48 16. AJORIS	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 142·9 125·9 127·3 131·8 137·0 135·7 135·7	2n. 5n. 7, 2n. 4n. 1n. 7, 3n. 2n. 5n. 4n. 3n.	.66 .80 .70 .61 .82 .89 .58 .66 .82 .84 .75 .752 .66 .66 .69 .65 .92 1.25	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 73.31 41.23 2.23 3.17 8.17 50.12 4.20 .24 5.20	R. A. 9 ^h 16·8 Mä. O. E. De. 320 R. A. 9 ^h 17 ^h	236·3 230·3 220·9 233·4 229·2 21 UE	Dec. 28° 22 6n. 3n. 134 888 M. Dec. 54° 3	1' 1'24 33 '47 '45 '48 48 48 L6. AJORIS.	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 142·9 125·9 127·3 131·8 135·6 137·0 135·6 138·6	2n. 5n. 72n. 4n. 1n. 77 3n. 77 1n. 3n. 4n. 3n. 4n.	.66 .80 .70 .61 .82 .89 .58 .66 .82 .84 .75 .752 .66 .66 .69 .65 .92 1.25	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 .26 68.34 73.31 41.23 2.23 3.17 8.17 50.12 4.20 .24 5.20 6.04	R. A. 9 ^h 16·8 Mä. 0. Σ. De. 320 R. A. 9 ^h 17 ^h H ₁ .	236·3 230·3 229·9 233·4 229·2 21 UE C. A, 3 306·7 317·6	Dec. 28° 22 6n. 3n. 134 SEE M. Dec 54° 3 white;	1' 1'24 33 '47 '45 '48 48 48 48 48 48 48 48 48 48 48 48 48 4	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 128·2 134·5 135·4 142·4 149·8 125·9 127·3 131·8 137·0 135·7 138·6 -8	2n. 5n. 7, 2n. 4n. In. 7, 3n. 2n. 5n. 4n. 3n. 1n. 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	-66 -80 -70 -61 -82 -89 -58 -66 -82 -84 -75 -66 -66 -69 -65 -92 1-2 -73	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 -26 68.34 73.31 41.23 2.23 3.17 8.17 50.12 4.20 -24 5.20 91 6.04 62.85	R. A. 9h 16.8 Mä. O. E. De. 320 R. A. 9h 17h H. & 80	236·3 230·3 229·9 233·4 229·2 21 UE C. A, 3 306·7 317·6 309·0	Dec. 28° 22 6n. 3n. 134 888 M. Dec. 54° 3	1' 1'24 33 '47 '45 '48 48 48 L6. AJORIS.	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8 1782'87 1802'39 22'12
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 128·2 134·5 135·4 142·4 149·8 125·9 127·3 131·8 137·0 135·7 138·6 -8	2n. 5n. 72n. 4n. 1n. 77 3n. 77 1n. 3n. 4n. 3n. 4n.	-66 -80 -70 -61 -82 -89 -58 -66 -82 -72 -66 -66 -69 -65 -92 -92 -93 -93	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 68.34 73.31 41.23 3.17 8.17 50.12 4.20 91 60.4 62.85 3.15	R. A. 9 ^h 16·8 Mä. 0. Σ. De. 320 R. A. 9 ^h 17 ^h H ₁ .	236·3 230·3 229·9 233·4 229·2 21 UE C. A, 3 306·7 317·6	Dec. 28° 22 6n. 3n. 134 SEE M. Dec 54° 3 white;	1'24 33 47 45 48 48 AJORIS 2' B, bluish	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 134·5 135·4 142·4 142·9 125·9 127·3 131·8 135·6 137·0 135·6 138·6	2n. 5n. ,,, 2n. 4n. ,,, 3n. ,,, in. 3n. 2n. 4n. 3n. in. ,,, 3n. in.	-66 -80 -70 -61 -82 -89 -58 -66 -82 -72 -66 -66 -69 -65 -92 -92 -93 -93	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 68.34 73.31 41.23 3.17 8.17 50.12 4.20 91 60.4 62.85 3.15	R. A. 9h 16.8 Mä. O. E. De. 320 R. A. 9h 17h H. & 80	236·3 230·3 229·9 233·4 229·2 \$\sum_{\text{3}}\$ C. A, \\ 306·7 317·6 309·0 0	Dec. 28° 22 6n. 3n. 134 SEE M. Dec 54° 3 white;	1'24 33 47 45 48 48 AJORIS 2' B, bluish	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8 1782'87 1802'39 22'12 12
0.Σ. Da.	130·3 132·7 134·8 135·5 128·1 130·2 128·2 128·2 128·2 134·5 135·4 142·4 149·8 125·9 127·3 131·8 137·0 135·7 138·6 -8	2n. 5n. 7, 2n. 4n. In. 7, 3n. 2n. 5n. 4n. 3n. 1n. 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	-66 -80 -70 -61 -82 -89 -58 -66 -82 -84 -75 -66 -66 -69 -65 -92 1-2 -73	51.04 2.78 4.78 9.83 40.33 2.30 7.36 54.25 -26 68.34 73.31 41.23 2.23 3.17 8.17 50.12 4.20 -24 5.20 91 6.04 62.85	R. A. 9h 16.8 Mä. O. E. De. 320 R. A. 9h 17h H. & 80	236·3 230·3 229·9 233·4 229·2 21 UE C. A, 3 306·7 317·6 309·0	Dec. 28° 22 6n. 3n. 134 SEE M. Dec 54° 3 white;	1' 1'24 33 '47 '45 '48 48 48 48 48 48 48 48 48 48 48 48 48 4	7'5, 9 1843'25 6'32 7'41 52'43 67'72 M. 7, 8 1782'87 1802'39 22'12

	•		"	
Mä.	310.3	7n.	5.65	1842.57
	.3	2n.	.95	21.11
_	.8	,,	'94	6.29
De.	311.0	In.	· 48	5.99
8e.	310.3	3n.	.80	6.98
Mo.	.7	,,	.81	8.18
Du.	312.7	2n.	.21	71.69
G1.	·o	ın.	.3	4.26

321 Σ. 1348.

116 (B) HYDRE.

Slow angular change. The distance has probably increased.

Σ. 334'3 4n. 1'09 18 331'3 Ο.Σ. '1 In. '07 325'4 ", '21	31.02 40.38 5.31 8.25 64.30 8.29
O. Σ. 1 In. 07 325/4 ,, 21 -8 ,, 64 149/3 ,, 67 Se. 327/7 2n. 41 De. 328/1 ,, 66 W. & S. 323/8 5 ,78 325/3 4 61 326/1 4 770	40.38 5.31 8.25 64.30
O. E. 'I In. '07 325'4 " '21 '8 ", '64 149'3 " '67 Se. 327'7 2n. '41 De. 328'1 ", '66 W. & S. 323'8 5 78 325'3 4 61 326'1 4 '70	5.31 8.25 64.30
325'4 ,, '21	64:30
Se. 327'7 2n. '41 De. 328'1 ,, '66 W. & S. 323'8 5 '78 325'3 4 '61 326'1 4 '70	64:30
Se. 327'7 2n. '41 '66 W. & S. 323'8 5 '78 325'3 4 661 326'1 4 '70	8.00
De. 328'1 ,, '66 W. & S. 323'8 5 '78 325'3 4 '61 326'1 4 '70	0 29
W. & S. 323'8 5 78 325'3 4 61 326'1 4 70	56.4
W. & S. 323'8 5 78 325'3 4 61 326'1 4 70	63.12
325'3 4 '61 326'1 4 '70	72'19
326'1 4 '70	• 26
.I 2 .7 2 II .60	3.55
2 11 60	.24
	4.16
324°3 4 '8ó	6·28
9 4	.29
G1. 326.0 In. 1.6	4.18
8p. 323'2 '70	7.19
Dob. 325.3 2n. 45	.31

322 \(\Sigma\) 1356.

LEONIS.

C. A, yellow; B, yellower.

This very difficult double star was discovered by H₁ in 1781, and he early suspected that these two stars were receding from each other, and subsequent observations confirmed his suspicion. "On the 21st of April, 1795, they were ½ diam. of the small star asunder. Feb. 5, 18c4, with a power of 527, the vacancy between them was nearly I diam. of the small one." Between Nov. 13, 1782, and Feb. 4, 1802, the angle had changed 19° 59′, "probably owing to a real motion of \(\omega \) Leonis, for the effect of a parallactic motion would have shown itself in a contrary alteration of the angle of position."

shown itself in a contrary alteration of the angle of position." (Phil. Trans. 1804.)
So. (Phil. Trans. 1826, p. 154). A power of 420 with refractor by Lerebours, 8% inches aperture and 11 ft. focus, at the Royal Observatory, Paris, separated the small star "½ a diam. of the large star; with 560, ½ of a diam.; with each power the stars are admirably defined, and as round as possible." This was on March 15, 1825. H, adds, "There can be little doubt, therefore, that this very curious double star is entitled to a place among revolving stars or Binary systems."

Neither H, nor So. could get measures of distance; they could only wedge it.

Dawes in 1831 says, "decidedly elongated."

0.2. It is evident that the distances in 1840 and 1842 were estimated by me much too great.

Madler's elements, from observations to 1846, are

T = 1843'408 Ω = 159' 50' 5 λ = 120' 27' 5 i = 50' 38' 2 ϵ = 0'62564 = sin. 38' 43' 8 m = 183' 711 a = 0''8503 n' = 0''03544 P = 117'577 years;

while those from observations extending to 1841 are

Perihelion passage
Mean annual motion
Node
Perihelion from node
Inclination
Excentricity
Semi-axis major
Period

1849'76
+261''72
135° 11'
185 27
46 34
54 34
52 54338
52 533 years.

Klinkerfues, in 1858, gave the following elements:—

i	Node.	γ	λ		P	Т	_ a
II.	111° 51′	57° 14′	217° 22′	0°3605	133 ^{yrs} ·35	1876'44	0" 703
	169 12	60 13	84 10	°7225	227 ·77	41'40	I 307
	162 13	54 25	107 9	°6286	142 ·41	43'39	I 092

Doberck in 1876 published the following as "definitive until further observations under the now more favourable circumstances have been taken ":--

Node 148° 46' 121 0.2360 110.82 years 1841 ·Ś1.

On these Dunér remarks that they are probably in better agreement with the observations than any preceding elements.

			•	
H,	110,0	1		1783.26
	130.9		•••	1804.09
Σ.	153.9	5n.	0.92	25.21
	163.4	2n.	.51	32.25
	172.8	3n.	.44	3.29
	173.9	-		5:24
	358.7	,,	•••	5'34 6'28
	180.0	,,	•••	8.33
So.	154'2	6	•••	26.11
Sm.	180.0		0.2	32.11
Date.	130 0	*01	ind	4.52
	355.0		gated	9.33
	333.0	Cao	0.3	43.14
Ο.Σ.	193°0 247°5	2n.	49	0.50
0.2.	302.3	4n.	41	3.31
	316.8	2n.		3.30 3.30
	310.0	ľ	:37 :48	4.50
	321.0 350.0	3n.	44	2.31
	322.9	2n.	44	6.30
	328.8	1	.53	7:33
	320 0	,, 4D	·43	8.32
	331.8 335.1	4n. 3n.		0.32
	331.0		.43 .48	9.32 50.63
	335.8	"	·46	2.66
	339°0 348°7	,, 2n.	·47	5.35
	358.1	In.	·52	7.28
	6.7	2n.	.60	9.30
	10.5		.62	60.58
	11.0	"	.26	1.58
		"	.25	4.30
	29.2	in.		8.63
	44'2	3n. 2n.	·55 ·58	70.28
	53 [.] 6	1	.57	1.30
	58.8	3n. 2n.	.52	2.31
	63.6			3.96
Da.	354.5	3n.	.29	41.18
De.	354·5 300·6	3	•••	2.36
	299.0	2	0.45	3.12
	347.1		.6	54.17
	345.7	3	.23	26
Mä.	280.5	3	-85	43'14
 ,	330.0			6.58
	338.4			7:24
	337.1			8.33
	342.2			51.54
	350.0	4n.	0.47	2.30
	346.5	4	.35	3.36
	351.9		33	4.31
	359.3			5.28
	323.2	1	0.36	6.42
		•	- 55	, - 4-

Ja.	343.3	2n.	0.45	1853.18
	350.0	,,	. 4	'96
	2.3		'4	6.53
	5.2		•5	7:98
	4.6		'4	8.10
Se.	0.0	5n.	•••	5.29
	2.3	,,	0.32	7.86
	32.9	ID.	.30	66.30
Wi.	6.2		٠٠٠ ا	55*34
Mo.	355		igated	7:29
		ro	8.29	
De.	30.0	ın.	wedg4.	65.25
	25.7	,,	,,	8.13
	52.4	**	,,	70.12
	51.2	,,	,,	1.13
	53.9	,,	,,	2.30
	60.3	4n.	in contact	3.42
	64.6	5n.	0.46	5 25
Eng.	23.0	2n.	.20	65.67
	33.7	ĺ	·57	7:34
Du.	37.9	2n.	.27	70°33 1°31 5°33
	42.7	In.	.3	1.31
	66.7	5n.	'42	2.31
W. & S.	65.3	4	.57	2.19
	67.3	5 2	'4	.19
	53.8		•••	3.53
	58.2	2		.23
	74'7	5	0.2	6.56
	72.3	4	I .	*29
G 1.	57.0	3	'4	3.59
Schi.	62.7	In.	'49	5.52
8p.	٠7		'49	.26
Dob.	52.6	3n.	•••	6.53
	73.0	,,	0.21	7.21
Pl.	71.3	5n.	'54	'21

323 Σ. 1365.

134 (B) HYDRÆ,

R. A.	Dec.	M.
9 ^h 25 ^m	2° 0'	7, 8
C. A. yel	lowish; B, bluish	white.

So.	164.3	1	3.76	1825'11
Σ.	163.0	In.	.17	-28
	164.3	,,	.03	8:27
	162.0	"	.00	31.50
	.0	,,	.13	5.26
mä.	161.2	2n.	.25	42.5
	.7	,,	.33	3.55
	163.3	In.	'41	5'13

324 Σ. 1374.

30 (B) LEONIS MINORIS

	M.
a 39° 30′	7, 83
0	

Dunér gives

$$P = {}^{1855.72}_{277} \cdot 8 + o^{\circ} \cdot {}^{25}_{15} (t - {}^{1850.0}_{150.0}).$$

Η ₁ .	261°5	In.		1783.06
	274.7	3n.	3.31	1828.34
H. Mä.	273'5	"	.79	30.51
	274'9	in.	.77	44'27
Mo.	275.0	2n.	*35	52.58
	277.7	6n.	·54	2.30
n-	279.0	2n.	. 43	6.15
Du.	284°I	7n.	.II	72.81

325 Σ. 1377.

P. IX. 161 SEXTANTIS.

R. A.	Dec.	M.
9 ^h 37.2 ^m	3° 11′	7'9, 11
_		_

C. A, yellowish; B, blue.

The change in angle between 1830 and 1868 amounts to about 4°, that in distance to about 0"'3. Secchi's measure in 1856 appears to be so seriously in error that one is led to suppose it refers to another system. (O.Z.)

Σ.	142.2	4n.	3.31	1830.24
Mä.	140.6		.37	6.41
_	137.8		.22	47'30
Se.	129'4	In.	12	56.58
0.Σ.	145.9	,,	.75	68.29
W. & S.	136.8	,, l	•••	73.54

326 o.s. 521.

v URSÆ MAJORIS.

R. A.	Dec.	M.
9h 42m	59° 36′	4.2, 11.8
	C vellowish	

The two stars have a considerable common proper motion.

0.Σ. 295.3 | 7n. | 11.32 | 1855.58

327 **S.** 1385.

R. A. 9 ^h 43'4		Dec. 17° 7		M. 8·5, 10·7
Σ. Mä. De.	356.6 351.0	3n. 2n.	1.53	1829.94 42.18 63.23

328 o.s. 208.

o URSE MAJORIS.

R. A. Dec. 9^h 44^m 54° 37'

Magnitudes.—O.Z., 5, 5'6; Mädler, 5, 5;

Dawes, 5½, 5½. Secchi "estimated the diameters as 4:5."

Dawes was sure that the star in the n.f. quadrant was the smaller.

One of $0.\Sigma$'s discoveries. Mädler, with the observations from 1845 to 1851 before him, thought that a direct motion had been maintained, and that the distance had decreased since 1843. Dawes, too, was of opinion that there was a slow increase of angle; and after he had received all $0.\Sigma$'s measures, he was convinced of the binarity of the star. $0.\Sigma$, writing in 1875, suspects a feeble increase in the distance between 1873 and 1875, and observes that if this he so the periastre has been passed, and the elements of the orbit may soon be calculated with success.

	٥			
Ο.Σ.	8,0	4n.	o"48	1843'11
	10.2	,,	•36	7.65
	14'9	3n.	'33	50.39
	.9	4n.	.32	1.90
	18.3	,,	•36	3.64
	36.2	5n.	•38	3.64 8.80
	47.9	3n.	33 32 36 38 37	61.74
	47'9 48'3	2n.	'25	5.42
	77.Ğ	,,	•23	72.42
	96.6	3n.	oblong	3.45
	115.0	2n.	,,	5.47
Da.	25.9	5	0.4	54.58
Mä.	193.8	3n.	-4	46.01
	196.8	2n.	·7	7.41
	207.5	4n.	'3 '31 '24 '3	51.39
	209.7	1 -	1 .24	2.40
Se.	30.6	In.	1.24	7:34
Kn.	30 0	1.1.	3	66:40
Du.	45 9	-2-1		66.40
Du.	40	ODI	ong	9'37
	44	1	,	'43
	45°9 46 44 80 83		,,	70.42
W	8 3		ong?	43
W. & S.	•••	Sir	ıgle	3.54

329 S. 1389.

R. A.	Dec.	M.	
9h 45.2m	27° 33′	8, 9	
	C. vellowish.		

Σ. Mä. De.	329°2 327°2	3n.	1.67 .64	1830.61 43.19 63.66
D 0.	310 / 1		99	1 03 00

330 S. 1386.

R. A.	Dec.	M.
9h 45.6m	69° 28′	8.2, 8.2

This star is in the Nebula Messier 81. Very slow retrograde motion.

H ₂ .	302.3		1"5	1831.10
Σ.	296.0	3n.	.98	32.11
Mä.	293.1	2n.	·8 ₄	42.69
	291.3	In.	.23	2.31
Ο.Σ.	115.8	5n.	2.01	.93
Kn.	295.7	In.	1.61	64.10
De.	294.2		-89	9.15
G 1.	291.4	In.		70'12

331 8 SEXTANTIS.

R. A.	Dec.	M.
9h 46.6m	-7° 32′	6, 6·5

A star first seen double by Mr. Alvan Clark when observing with one of his earliest glasses 4\frac{3}{2} in. aperture in 1854. Dawes had a strong impression that this star would prove a binary.

Da.	20.1	5	0.6	1854.17
	38.2	3	.5	60'34
W. & S. De.		sing	gle? gated	72.19
	169.0		,	5.30

332 o.s. 210.

R. A.	Dec.	М.	
ծր 22.1ա	46° 57′	7.5, 8.3	
Very clow	retrograde motion		

Very slow retrograde motion.

Ο.Σ.	270.6	3n.	0.93	1845'27
Mä.	278°I		·8 ⁻	3.31
	269.5		.7	5'43
	272.0		-8	6.32
	268.3		۰8	7.41
	267.7	8n.	.75	8.38
De.	.5	3n.	'8ŏ	68.57
Du.	271.9	2n.	·84	70.80

333 Σ. 1406.

R. A. 9 ^h 59 ^m		Dec. 31° 40'				
9 59		-	•	8, 8.7		
Σ.	228.3	3n.	1'14	1830.27		
Mä.	231.6	2n.	0.06	44.58		
0.Σ.	236°0	3n.	1.51	5.60		

334 ο.Σ. **213**.

R. A 10 ^h 6 ⁱ		Dec. 28° 1'	M. 7 [.] 8, 9 [.] 5		
0.Σ.	117.7	In.	0.87	1843.30	
	121.6	١,, ١	·96	4.26	
	115.3	,,	1.03	8.25	
	114.7	١,,	.19	60.59	
	107'0	,,	0.93	71.28	
_	112.1	,,	'9 9	4.58	
De.	113.3	3n.	1.11	67.83	

335 o.z. 215.

R. A. Dec. M. 18° 20′ 7, 7'2

The distance has increased, and this has been accompanied by a considerable diminution in the angular movement.

			,,	
0.Σ.	266.21	4n.	0.47	1844.24
	258.50	2 n.	'45	8.32
	254.25	4n.	·45 ·48	51'34
	243.40	2n.	.60	60.30
	233.60	зn.	74	7.20
	231.20	2n.	-68	9.78
	229.15	,,	'82	75.SI
Mä.	257.8		.30	49.04
Se.	243.5	In.	'47	57'34
De.	233.6	3n.	74	67:20
Sp.	223.4		·63	75'32

336 o.Σ. 523.

39 LEONIS.

R. A.	Dec.	М.		
10p 10.0m	23° 42′	5.8, 11.4		

The companion is probably variable.

The two stars have a large common proper motion: it amounts to -0'':44 in R. A., and +0'':08 in N. P. D.

0.Σ.	295.65	4n.	6.73	1851.56
Da. De.	298.05 295.55 300.33	2n. In. 3n.		54.58

337 S. 1423.

R. A.	Dec.	М.
10 ^h 12.6 ^m	21° 10′	8.6, 9.3

C. yellowish.

Probably a binary.

,,							
Σ. Se. De.	99'3 76'8 '8	6n. 1n.	1'12 0'40 1'27	1830.04 56.58 65.53			

338 S. 1424.

Y LEONIS.

R. A.	Dec.	M.	
10h 13.4m	20° 27′	2, 3.5	

C. E., A, golden; B, greenish red; H., "white, white with a little pale red"; H., and So., "both reddish"; Sm., "bright orange, greenish yellow."

This beautiful double star was discovered by H₁ in 1782. In his famous paper (*Phil. Trans.* 1803) he examines the motion at length: he finds that the change in 21 years and 38 days amount to 13° 58', and thence infers a rough period of 1200 years, and that the changes must be ascribed to orbital motion. "The result of a great number of observations on the vacancy between the two stars made with the magnifying powers of 278, 460, 651, 840, 932, 1504, 2010, 2589, 3168, 4294, 5489, and 6652, is that with the standard power and aperture of the 7 feet telescope, the interval in 1782 was 1 of a diameter of the small star, and is now 1. With the same telescope, and a power of 2010, it was formerly of a diameter of the small star, and is now full one diameter. In the years 1795, 1796, and 1798 the interval was found to have gradually increased, and all observations conspire to prove that the stars are a diameter of the small one farther asunder than they were formerly. The proportion of the diameter of γ to that of x [the companion] I have, by many observations, estimated as 5 to 4."

H, wrote, in 1824: "There can be no doubt of the motion of y Leonis, though it is probably less rapid than supposed by Sir That no mistake in the W. Herschel. quadrant (n.f. for s.f.) was made in the observations made in the years 1782-3 is proved by the diagrams made at the time." "The mean annual motion from the most distant observations comes out + 0° 30, direct, or in the direction n.f.s.p." In 1826 H. adds, "The present observations, therefore, confirm this motion fully in point of reality and direction, but indicate an acceleration which (considering the number of observations) may have some claim to probability. The distances disagree more than might have been expected."

Mädler paid much attention to this fine star, and was strongly impressed with the idea that measures of it made after sunset were very likely to be erroneous. strongly recommended that this star should always be observed in full sunshine.

The slow increase in the angle was noted by all the great observers, Σ ., Sm., Da., Mä., etc.

O.E. The distance has augmented con-

siderably, with a corresponding diminution of the angular movement; for the change in angle per annum between 1782 and 1828 was 0°41, and but 0°28 between 1828 and 1872.

For some account of the distant star see Lists of Measures; it is of the 7th magnitude. Whether or not it forms with γ a Ternary system the measures are insufficient to show.

The proper motion is thus given :-

Piazzi, R.A. + 0.35 Dec. - 0.20 Argelander + 0.30

Doberck has published the following elements :-

	1876.	1879.
T	1741'11	1741.00
Node	i 11° 50′	111° 34′
λ	194 22	195 22
γ	43 49	43 6
e	0.7390	0'7327
P	402.62 yrs.	407'04 yrs.
a	2″ 00.	1"'98.

H₁. Feb. 16, 1782: 7° 37' n.f. April 18, 1783: 5 24 n.f. Jan. 24, 1800: 3 15 75.

Feb. 19, 1800: 5 33 45; the measure is too open:—3° 22′5; this is better, but still open enough. Mch. 26, 1800: 3° 46' 8. Jan. 22, 1802: 6 4 s.f. Feb. 10, 1803: 3 33 s.f. Mch. 22, 1803: 6 34 s.f.,and 6° 31' s.f.

	_	A B	. "	
H, & 80.	98°4	3n.	3.24	1822.24
	101.3	бn.	2.2 i	5.30
	102.4	,,	3.03	30.58
	104.5	ın.	2.65	3.55
Σ.	102'0	6n.	°45	28.14
	103'2	5n.	48	31.34
	·4	,,	.20	2.75
	104.9	,,	•56	5.16
Da.	10i.8	3n.	54	ō·39
	102.8	5n.	•52	1,33
	.9	5n. 8n.	·64	2.31
	103.7	3n.	•64	3.18
	102.8	,,	•84	40'29
	106.3	2n.	50 56 54 52 64 64 83 72	1.53
	•5	,,	.72	2.33
		,,	*85	3.26
	107°4 8	,,	*80	7:28
	108.1	5n.	·82 ·80	8.46
	.7	2n.	.80	51.87
	109.7	3n.	·84	4'37
	.2	2n.	3°12 '09	9:37
	110.3	5n.	°109	60.37
	·ĭ	In.	10.	4.20
	.3	3n.	'17	5:37
Sm.	103.5		2.6	31·36
	104'9		•5	6.42

	•		,,					,,	
6m.	106.0	1	2.6	1839:23	De.	109.9	5n.	3.14	1856.19
	107.2		8	43.18		.3	2n.	3.91	6278
Encke.	100.6	2	3.56	37.19		•3	9n.	·8 4	3.32
	104'2	4	·54	8.33		110.3	7n.	.99	6'90
0-	105.8	12	2.00	9'34		111.2	2n.	3.00	8.37
Ga. Ka.	107.6	6n.	.80 .66.	9:36		110.6	3n.	'12 '13	70.27
24.	107.0	1	.96	40.12 1.32		-8	4n. 3n.	.12	2.34
	107.1	8n.	.72	2.32	ļ	111.5	2n.	.59	3.52
	109.7	7n.	.97		1	•6	4n.	14	5.27
	110.3	•	3.11	3°33 66°28	Se.	108.1	,,	•oŚ	55:35
Ο. Σ.	107.5	5n.	2.83	40.32		110.3	5n.	2.97	675
		,,	.81	1.40	1	108.1	4n.	3:05	8 87
	106.9	In.	.21	2.43	Wi.	110.3	3n.	.18	65.04
	107'1	2n. In.	.74 .81	4.31	W.L.	.6 111.1		°07 2·87	55'29 6'29
	108.2	2n.	*70	5.35 6.34	Au	100.6	1	3.32	61.35
	.00	3n.	.79 .81	1 7.32	Po.	108.7	30	3 33 22	54.13
		4n.	•66	8.36		100.8		•••	5.10
	107·5 106·8	3n.	.79 .88	9.35	ļ	108.8	43 60	3.35	61.13
	107'3	In.		50.33	X.	107:3	In.	.10	2.32
		,,	.74	2.37	Ì	110.0	,,	.16	7°34 8°39
	107'7	,,	.85	5:32		6.111	"	:55	8'39
	113.1	"	3.03	7:28 8:38	ļ	113.6	"	·53 ·56	71.23 .44
	110.4	,,,	3.12	9.35		113.3	"	•69	4.35
		"	.24	60.33	1	111.8	3n.	.20	5.16
	110.8	3n.	*04	1.36	Re.	109.6	2n.	.24	63.31
	111.5	2n.	•05	2:36		·7		.25	·2I
	110.5	In.	. 35	6.36	Eng.	112.0	3n.	'39	4.31
	113.0	2n.	.12	8.36		111.2		'24	5.42
	111'2	In. 2n.	.12 .50	70:35	Kn.	110.2	3n.	'21	6·21 71·38
	.3	In.	20	1'34 4'42	Ta.	112.7	2n.	°38	66.27
Ch.	102.0	,,,	2.76	41.50	1	108.4	In.	17	
	105.4	",	-85	2.58	l	111.6	,,	.16	7 ^{.2} 3
	100.1	,,	-87	4.25	1	110'4	2n.	'97	70:32
Mä.	102.1	8n.	.78	1.56	1	108.6	3n.	4.23 2.62	1.38
	9	4n.	'77	2.53		109.5	In.		4.35
	107'1	5n.	78	6.27	7	112.0		.93	6.34
	.7 108.0	Ion. 8n.	'64	8·39 51·28	Du.	111.5	IIn. 4n.	3.10 86.	69·39
	.9	3n.	.74 .81	3.82		112.3	8n.	3.08	1.44
	107.9	16n.	78	4.48	i	3	,,	3.14	2.44
	108.7	9n.	-88	6.51		113.5	3n.	~o6	4.12
	.7	,,	.67	7'34		'4	6n.	.10	5.46
	.7	I2n.	*94	8.38	G1.	110.4	5	.11	0.30
Ja.	.9 105.6	9n.	.92	9.34	İ	113.0	6	.1	1.32
Ja.	107.8	10	.90	45.80	1	110.0		•	3.30
	108.4	10	3.07	53.22		112.6	5 5 4	3.7	4.15
	109.6	3n.	2.02	6.49	W. & S.		3	7.78	1.48
	·o	,,	3.09	7.76		112.6	4	•36	2.19
Hi.	107.4			45.89		·5	4 5	1.50	3.53
D.O.	101.1	1	3.40	7.22			4	'43	4.30
B	111.2	1	2.96	.26		110.3	8	'04	3.53
Bond. Flt.	108.3	1	.84	8.27		111.8		•••	.25
£ 44.	4	25 38	3 00	20.01	Sp.	110,0	5	3.38	6·25
Mo.	105.6	20	3.00	3.51	Sehi.	110.9	In.	1 · • • • • • • • • • • • • • • • • • •	3.29
	108.8	30	.05	5'34	Dob.	112.2	7n.	84	6.19
_	110.1	20	107	60.13	1	111.1	8n.	.63	7:23
De.	108.1	6n.	2.94	54.36	P1.	.8	2n.	.21	6.45
	1096	! 5n.	3.03	5.23	F1,	112.0	In.	1 .30	7.41

H ₁ .	295°2		1111	1782
Be.	300°0		196.5	83 1825
Se.	293.6	In.	215.0	5 6
Po.	·o	" 10	217.8	59 61
Fl.	292.8		229.3	77*

339 S. 1426.

145 (B) **LEONIS.**

R. A. Dec. M. 10^h 14^{2m} 7° 2′ A 7'8, B 8'3, C 9'3

C. A and B, yellowish.

Σ. discovered the duplicity of the larger star.

Se. says "the motion in angle appears certain"; but Dawes, writing in 1867, observes, "The measures at different epochs scarcely decide the question of relative motion in the close pair; the discordances being rather unusually large even for so difficult an object." He also says, "There seems to be no doubt of the fixity of the small distant star with respect to the close pair."

A B. The distance appears to have increased about 0°1, and the angle about 4°, between 1833 and 1847. (0.2.)

 $\frac{A+B}{2}$ and C. Here also there has been an increase in the distance.

AB. Σ. 256.7 3n. 0.63 1832.36 267.2 In. ٠8 6.58 0.Σ. 262.6 3n. .77 .88 40:30 263.7 68.29 ın. Mã. 262.0 3n. .22 42'25 Da. .73 .88 257.7 .30 54.16 263.3 Se. 271.8 ·65 ·78 6.25 3n. De. 269.7 69'15 W. & S. single? could not divide it 74.31 278.3 2 6.56 W.O. .35 .36 276.3 In. 0.72 277.6 ·60 Bob. 274'0 Зn. A C.

⁹ This star was also observed by Flamsteed in 1691, T. Mayer in 1755, and C. Mayer in 1777, the differences of R. A. being, respectively, 2, 4, 475 seconds.

7

3n.

6.72

7'43

.20

1782.13

1821.10

32.55

6:28

5.0

9.8

8.5

·I

A 10	8 ⁹ .3			
Ο.Σ.	9.3	3n.	7.83	1840'30
_	12.0	In	-88	68.29
Da.	9'4		•••	52.33
Se.	9'4 4'8	2n.	7.68	6.25
De.	9.7		.57	67'17
Ta.	11.3	In.	79	71.36
	8.28	,,	·88	6.34
G1.	0.11	2	8.0	4'22
W .0.	9.3	ın.	7.81	6.35
	10.2	,,	8.03	.36
W. & S.	9	3	*25	.26
	.7	2	7.78	.29
Dob.	7.8	4n.	9.17	'24

340 o.z. 216.

R. A. 10 ^h 16'3 ^m		Dec. 15° 57'		M. 7, 10'
0.Σ.	167.9	3n.	2.06	1845.62
De.	151.1 120.6 121.0	**	1.66	73°29 66°89

341 Σ. 1429.

R. A. 10 ^h 18'4 ^m		Dec. 25° 14'		M. 8·3, 8·3	
Σ.	272.2	3n.	1.48	1827:29	
	267.4	_	.58	33.26	
H _r .	270'0		1	2.30	
Da.	265.8		'37	49.76	
De.	263'2		.00	66.55	
₩. & S.	.3	In.	0.92	73.24	
	e	longated	i	4.51	
G 1.	262.5	In.	•••	3.30	

342 S. 1428.

R. A. Dec. M. 10^h 18·4^m 53° 14′ 7·5, 7·8

C. white.

Dunér's formulæ are

 $\Delta = 3'' \cdot 68 - 0'' \cdot 015 (t - 1850 \cdot 0).$ $P = 85^{\circ} \cdot 7 + 0^{\circ} \cdot 102 (t - 1850 \cdot 0) + 0^{\circ} \cdot 0004 (t - 1850 \cdot 0)^{\circ}.$

Η _r . Σ.	83.7	2n.	4'10	1830.60
Σ.	84'3	3n.	3.84	1.69
Sm.	85.0	_	•6	2.49
Μä.	86.4	2n.	.9 9	44.51
De.	85.5	In.	•69	58.00
Se.	86.6	2n.	.7 5	'44
Mo.	'2	,,	'42	9.27
Du.	88.3	4n.	•36	71'32

				040		1 4 5	^	
343	ο.Σ. 2	17.		348		1 4 5		
R. A.	Dec 17° 5	: o'	M. 7·3, 7·8		49	LEON		
	o .	"	1844:27	R. A. 10h 287	m	Dec.		M. 6, 8·7
1	150'4 2n. 143'5 In.	o:49 :55	.31	Σ.	161°0	2n. i	,,	1825.31
	149'3 ,, 151'8 ,,	·50	8·33 75·33	2.	٠,		.39	30.76
De.	148·1 3n.	.82	67.24		160.2	2n.	·37 ·49	2.31 3.20
344	ο.Σ. 2	18		Mä,	159.5	ļ	°54 °59	7'47 42'29
		10.	3.6		·4 ·6		.73 .75	51.56 2.59
R. A. 10 ^h 21 ^m	Dec. 4° 10	o '	M. 7'3, 9'2	Sm.	158.1	1	.5	38·37 55·29
ο.Σ.	66·7 2n.	1.54	1844.29	ο. Σ.	159.0		. 97	2.00
	63'I In.	·21	8.31	Da. Se.	155.3	2n.	·60 '3	4°28 6'74
	61.8 ,,	·23	4·31 8·29	M. Ta.	169.8 154.9	In.		63.19
Se.	59.1 "	0.01	57°34 67°28		160.5	,,	1.97	7.23
De.	•9 3n.	98	1 67.28	G1.	156·6	"	2·29	76°34 4°70
345	ο.Σ. 2	19		W. & S.	•	,,	. 54	.50
	Dec.	10.	М.	349		. 22	2.	
R. A. 10 ^h 22 ^m	51° 36′	,	7, 10.3			De		M.
Ο.Σ.	299'2 In.	13'22	1844.31	R. 10 ^h 3		60°	46′	6.7, 10.7
:	297.6 ,,	'15 '25	8.39	Ο.Σ. De .	340°3	3n. 4n.	4·56	1847.72 68.70
De.	·3 3n.	12.78	67.93		343.3			
346	Σ. 143	39.		350	Σ.	148	57.	
R. A.	Dec		М.	R. A		Dec	•.	M.
10h 23.2m	21°		8, 8.5	10h 32	-	6° 21		7.4, 8.4
	131'4 3n.	2.03	1829'26			hitish y		io beword
H ₃ . Da.	129'2 'O In.	I	31.30 40.29	doubt;	" and Da	wes ob	serves tl	e is beyond nat there is
Se. Ts.	123'4 2n. 124'3 In.	1.98	56·78 66·37	but littl	e doubt o	f its bin	arity.	
	122.3	2.33	71.36	Σ.	302.0 305.0	4n. 3n.	0.41 .42	1829.55
Ο.Σ.	121.0 ,,	1.52	4.32 68.29		319.1 310.1	In.	11.01	64°30 8°29
De. Gl.	122.2 4n. 121.0 In.	2.0	74.22	Mä.	315.0	,, 5n.	0.69	71.31 42.51
W. & S.	122.3 2	1.96	5.527	A.	3 04.0	In.	•66	6.30
	1.0 4	1 02	.30		312'4 311'2	3n. 4n.	·84 ·99	2.39
347	Σ. 14	45 .			310.1	2n. 4n.	97	3.29
R. A.	De	ec.	М.	Da.	302.7	2n.	0.93	0.78
10h 26.6r		15'	8.8, 11.8	Se. De.	307 5 304 6	5n. 4n.	1.0	8.30
	C. A, yell	owish.		W. & 8	309.8	3n.	0.01	63.50
Σ.	167.4 3n.	2'42	1827·58 64·87		316.1	3 4	1.36	3.5
De.	159'4							

				MEAS
W. & S. Gl. Schi. Sp. Dob.	313.6 315.3 314.2 311.9 9 312.0 316.6 314.5	5 7 5 4 In. 2n.	1'20 12 17 0 18 18 	1875 28 '32 6'34 3'20 5'36 '37 6'31 7'21
351	0.2	Σ. 22	4 .	
R. A. 10 ^h 33'4	m.	Dec.	8'	M. 7'2, 9'2
Retrog have incr				ance may
Mä. Se. De.	352.6 348.8 328.4 336.8 15.6 13.6 339.3	"	wedg ^d . 0:48 :59 :59 :55 :22 elong ^d .	1844'31 51'27 61'26 71'31 2'31 48'29 57'34 67'32
352	Ο.Σ	£ 2 2	5 .	
R. A. 10 ^h 33 ^w	, ,	Dec. 19° 52'		M. 7·5, 9·8
O.Σ.	351.3 350.8 349.2 350.3 351.2 7	2n. In. '', '', 3n.	6·57 ·62 ·64 ·51 ·41 ·08	1844·30 5·28 8·31 9·32 75·33 67·26
353	0.2	£. 2 2	27 .	
R. A. 10 ^h 35 ^m		Dec.	,	M. 7·5, 8·5
O.Σ. De.	326.4 .7 334.1	2n, In. 3n.	0'54 '51	1844°30 8°33 67°38
354	Σ.	146	5.	
R. A. 10 ^h 36·2 ⁿ Dunér		Dec. 45° 15 6. Δ= 0°·1 (<i>t</i> -		M. 8·5, 8·8

14'4 | 3n. | 2'24 | 1829'32 7'3 | ,, | '15 | 44'59 11'2 | 6n. | '39 | 71'13

A	ORES.				207
3	355	Σ.	14'	72.	
))	R. A		Dec 13° 3	:. 36'	M. 7·8, 8 5
7 !	The d	listance h	as incre	eased con	nsiderably.
-	Σ. Ο.Σ.	39°.5	3n. 2n. In.	33.74 34.36 .62	1828·55 40·33 2·32
•2	De.	38·8 39·1 38·6	", 6n.	35.81 .11	6·33 9·32 64·57
ıy	356	Ο.	Σ. 2	28.	
,	R. A.		Dec 23°	i. I 2'	M. 7·2, 8·1
	Ο.Σ.	203'3 179'6 192'4	2n. In	o'53 '43 '33	1844·30 8·24 50·38
	De. Sp.	201.7 199.1 13.2	In. 3n.	·63 ·37	71.31 75.35
	357	O.2	Σ. 22	 29.	
8	R. A. 10 ^h 43'1	m.	Dec.	4'	M. 6·7, 7·1
			C. whi	te.	
	0.Σ.	347.0 344.2	5n. 4n.	o·68 ·78	1846.65 59.84
	Mä. Da.	350·2 347·3	2n. In.	·80 ·92	45'42 9'27
-	De. Du.	338.3	3n. 4n.	·78 ·78	66.95
5	358	Σ.	148	16 .	·····
	R. A. 10h 48m		Dec. 52° 45	,	M. 7·5, 8·8
-	Σ. Mä.	104.2	2n. In.	28·32	1831.38 40.40
8	359	O.:	Σ. 23	30.	
	R. A. 10 ^h 48 ⁿ		Dec. 21° 24	ı'	M. 7'7, 11'2
	O. Z .	3.2	In.	8.90 .29	1844*30 5:28
	De.	4.7	3n.	*45 *30	51.27 67.27

360 Σ. 1487.

54 LEONIS.

R. A.	Dec.	M.
10h 49.1m	2 5° 23′	5, 7

Slow increase in angle and distance.
The proper motion of A is — 0 002 in R. A., and 0 00 in N. P. D.
Dunér has

1850.02. $\Delta = 6^{"}.20$. P = 103.7 + 0.064 (t - 1850.0).

	0		,,	
H ₁ .	99.2	In.	<i></i>	1782.13
	100.6	٠,,	•••	1802'10
H, & 80.	98.3	2n.	7.02	21.68
Σ.	103.2	4n.	• • • •	17
	•••	14n.	6.30	·6o
_	102.8	4n.	.17	30.32
6m.	'5		.5 .2	2.56
_	103.8		.2	9.33
Da.	103.8	2n.	.22	40.30
	.8	4n.	.26	50.19
Ο. Σ.	.2	,,	'34	40.61
	104.3	6n.	.51	7.68
	.6	5n.	'40	60.34
ĭä,	.3	,,	'02	43.78
	103.9	2n.	.11	51.52
	.0	ion.	'34	3.85
70.0	104.4	4n.	·03	61.14
De.	103.3	,,	'24	52.52
Mo.	.8	In.	5.48	5'94
S e.	102.2	3n.	6.34	4.52
Ro.	104.3	۰,, ا	.33	6.29
Ta.	103.8	In.	.35	63.12
18.		2n.	'43	6.33
	103.6	In.	-28	7.23
	105.4	,,,	.81	8.31
Du.	103.2	2n.	7.05	70.33
W. & S.	100.1	**	2.90	69.27
W. & D.	105.4	4	6.3	73'24
G 1.	.0	6	0.	4.50
8p.	104.6	In.	.5	.51
Dob.	·5	١	*25	5.33
200.	-9	4n.	.20	7:32

361 **S.** 1500.

R. A. Dec. M. 10^h 53'9^m -2° 51' 7'6, 8'2

C. white.
The distance has increased, and the angle has diminished.

Σ.	330.9	2n.	1.06	1825.22
0.Σ.	321.4	4n. 2n.	0.96	32.09 40.30
	317.3	In.	-53	71.31

Da.	0		,,,	1.0
De.	317.1		0.91	1841.50
	315.8		1.12	60.34
Mä,	322.9		.06	42.54
So.	318.3	3n.	.02	56.58
Ta.	314'4	In.	·05 ·46	67:23
	319.2	,,	2'09	76.34
W. & 8.	313.8	3	1.32	3-23
	315.4	3 5 1	.39	*24
	314.1	I	'40	4.55
	317.1	4	.27	5.58
	316.9		•••	.29
	315.6	7 5 5	'34	6.34
	316.5	5	31	36
G1 .	314.5	5	'42	4.55
8 p.	313.5		'41	5-37
Dob.	324'I	2n.	.76	6.31

362 Σ. 1504.

R. A. Dec. M. 10^h 59'2^m 4° 17' 7'5, 7'6

The relative brightness of the two stars is probably variable. Other observers have always noted the following star as either of equal or of greater magnitude than the preceding. Our measures between 1845 and 1848 are decisive as to the superiority of the preceding star. $(0.\Sigma.)$

Σ.	275.6	j 5n.	1.07	1829.13
Sm.	280.0		.3	36.59
Mä,	279'0	1	0.92	42.27
Ο.Σ.	278·I	3n.	1.02	54 99
De.	283'4	5n.	.11	66.67
W. & 8.	284.5	7	.19	74.53
	7	10	'14	23
	286.4	4	.08	5.58
	285.5	4	12	29
	286.7	4		6.34
G 1.	283.9	4	1.3	4.22
Sp.	286.3	'	.16	5-37

363 S. 1514.

R. A.		Dec.	6′	M.
11h 4'1m		66° 4		8·5, 10
Σ. Mä. De.	334°9 336°6 344°0	4n. 2n.	1.12 .03	1832°92 45°55 66°70

364 Σ. 1516.

R. A.	Dec.	M.
11h 7.4m	74° 7′	7, 7'5, 10
C. Σ., vellowis	h. ashv vellow	: Se. and De.

white.

Σ. states that the first observation of this star is found in the Mem. Acad. Parisiensis 1790, p. 389. He thinks that South's distance is probably not very accurate, and that the motion is probably orbital.

Se. found that the graphical construction gives a straight line for the apparent orbit with minimum distance about 1853.

O.Σ. in 1858 discovered a third star near A. Finding that the latest measures of A B depart widely from the rectilinear path deduced by Σ. (see P. M., p. ccxxviii.), the investigation was repeated with the following results:—

$$\Delta A = -1$$
":318 + 0":4070 (T - 1850:0).
 $\Delta D = -2$ ":914 - 0":1077 (T - 1850:0).

According to these the minimum distance $2^{\prime\prime\prime}$ 48 was reached in 1854.8, and the angle was 14° 50′, and on the whole the observations are well represented. The difference between the formulæ of Σ , and $0.\Sigma$, is probably due to application of the systematic corrections. The star B is therefore fixed, and has no physical relation with A. The star C, on the contrary, participates in the large proper motion of A.

A.B.				
Σ.	298°6	∓15°	29.26	1790.21*
	-900	T *3	14.55	1823.92
	298.7	2n.	9.93	31.24
	299.3		56	2.84
	77.7	,,	25	3.46
	300.9	"	8.94	4'43
	301.6	4n.	'42	5.26
	302.6	Śn.	.13	6.64
	304.0	3n.	7.78	7.61
So.	296.2	J	12.48	24.58
H,	301.0		12	31.40
•	300.0		9.85	3.56
Ο.Σ.	308.3	3n.	6.66	40.45
	310.6	2n.	17	1.92
	322.8	,,	4.17	6.94
	329.6	",	3.37	8.94
	341.7	,,	2.97	50.93
	22.5	în.	.32	5.47
	48.0	3n.	•96	8.87
	64'4	2n.	3.70	61.33
	76·9	,,	5.18	5.43
	81.5	,,	6.30	5:43 8:58
	86·o	3n.	7.90	72.54
Ka.	312.6	•	5.53	43.65
De.	8.3	6n.	2.70	54.55
	16.1	٠,,	·81	54°55 5°14
	23.7	In.		.99
	26 .0	3n.	2.66	6.16
	44'2	5n.	.87	8.29
	68.6	In.	4.03	62.95
	70.2	3n.	.18	3.48
Mo.	6.8	30	2.49	54.56
	56.2	26	3.52	60.51
Se.	29.5		2.61	56.59
M.	71.4	In.	4'43	64.44
	256.9	,,	5.48	7.27
12	258.6	,,	6.18	8.40
Eng. Du.	80.3	3n.	5.29	6.50
Du.	78.5	ın.	.58	7.78
	82·9 86·8	4n.	6.49	9.21
	80.9	2n.	7.02	70:46
	87.3	In.	.32 8.81	1.49
W. & S.	90.2	3n.		5'54
₩. ₩.	269°I	4	7.6 .8	2:30
	89.6	5	8.81	3.25
G 1.	270°5	4	0.1 0.91	5.28
F1.	91.0	4 In.	.2	4'13
- 	92 0	144.	3	7:37

A C.

ο.Σ.	294°I	3n. 2n.	.06 8.18	1858.87
	29/0	3n.	7:73	6.49
Du,	299.4	2n.	·48	72°54 5°54

^{*} Lalandius.

⁺ X. from six observations with the transit instrument.

1821.

Σ. 1517. 365

Dec. R. A. 20° 47′ IIh 7'4m

Magnitudes. -7'3, 7'3. Se. 7'5, 7'7.

The variability of the relative hrightness was suspected by Σ ., and the observations of his distinguished son confirm the suspicion. Σ. and Se. generally noted the following star as the brighter; $0.\Sigma$, on the contrary, has invariably regarded it as the fainter of the two.

The common proper motion $fis - o'' \cdot 377$ in R.A., and $+ o'' \cdot 16$ in N. P. D.

Dunér has obtained the for-

 $\Delta = 0^{\prime\prime} \cdot 89 - 0^{\prime\prime} \cdot 013 (t - 1850 \cdot 0).$ 1849'94. P = 287°'3.

	•		"	
Σ.	108.4	8n.	1,08	1832.50
	286 4	In.	'06	52.53
H,	288 o	,,	.19	30.54
•	289.3	,,	0.81	1.02
Sm.	288.6	,,	1.5	3.31
Da.	.9		'09	40.30
	283.6	In.	0.01	54.12
Ο.Σ.	108.8	,,	'93	45.31
	104'8	,,	.81	.35
	100,3	,,	·88	71.25
Se.	287.4	3n.	.78	56.98
De.	285.0	2n.	elong4.	7.97
Du.	287:3	5n.	0.29	69:39
	288.8	In.	'64	72.40
	286.8	,,	.28	5.50
Ta.	284.3	,,		2.40
G 1.	283.5	4		4.55
W. & 8.	105.1	4	0.83	5.28
	6.0	4	.7 5	6.34
Sp.	284.0		•67	5.39
Dob.	104.2	In.	•••	6.30
	.8	3n.	0.91	7.26

ο.Σ. 232 366

R. A.		Dec.		M.
11h 8m		38° 14'		7, 7 [.] 8
O.Σ.	23 ⁹ ·1	5n.	0.72	1849 '93
Mä.	237·0	4n.	.55	47 '05
De.	234·0	3n.	.6	67 '66
Du.	235·5	6n.	.56	74 '49

ο.Σ. 233. 367

R. A.		Dec. 67° 21'		M. 6 [.] 9, 9 [.] 8	
Ο.Σ.	334·72	4n.	4.98	1849·87	
De .	337·67	3n.		68·59	

368 Σ. 1523.

¿ URSÆ MAJORIS.

M.

Dec. 32° 13' 7'3. 8'2 11p 11.8m 183 1856.

> ò. This remarkable pair was discovered by H₁ in 1780. He writes, "1780, May 2nd. A fine double star, nearly of equal magnitudes, and # of a diameter asunder; exactly estimated. May 21. Unequal stars; very bright; one diameter of the large star asunder. But the air is rather tremulous.

A little wind. Feb. 4, 1802. 7° 31' s.f.; very accurate. Jan. 29, 1804. 2° 38' s.f."
In his review (*Phil. Trans.* 1804, p. 363) H, says: "This double star has undergone a very extraordinary change in the angle of position. Dec. 29, 1781, the smallest of the two stars was 53° 47' s.f.; Feb. 4, 1802, it was 7° 31'; and, Jan. 29, 1804, the position was only 2° 38'. This gives a motion of 51° 9' for 22 years 41 days, and amounts to 2° 19' per year." And he proceeds to point out the possible causes of these changes.

H. (Phil. Trans. 1824, p. 146) writes, "The position and dates here given (11° 33" s.p., 1823.29; 2".809, 1823.19,—means of 58 and 20 measures respectively), as well as the distance, are all derived on the supposition of each measure being independent of all the rest, and all equally good. angle thus obtained from no less than 58 measures, with its corresponding mean date. will serve for an epoch in which the computer, at some future period, may rely with confidence in any investigation relative to the orbit of this star. A double star in which the two stars are nearly equal, connected undoubtedly in a binary system by their mutual gravitation, and revolving round their common centre of gravity, with a motion so rapid as to admit of being traced and measured from month to month, must be allowed to be a phenomenon of no common interest, and deserving every attention,

both from the practical and theoretical astronomer." And he further observes that the observations "indicate a remarkable alteration in its velocity, which can only be accounted for by supposing the relative orbit to be one of great ellipticity." And in the *Memoirs of the R. A. S.*, vol. v., p. 34, he adds, "In the interval from 1839 to 1841 we may now securely predict that this star will have completed a full revolution from the epoch of the first measurement of its position in 1781, having occupied therein a periodic time of about 59 years."

In 1830 Savary's elements appeared in

In 1830 Savary's elements appeared in the *Connaissance des Tems*; they are as follows:—

 $a = 3^{n}.857$ a = 0.4164 $\pi = 304^{0}.58'$ 8 = 95.22 $\gamma = 59.40$ $\lambda = 131.38$ P = 58.2625 years $\pi = -6^{0.1786}$ $\tau = 1817.25.$

H₂ published the following in 1832; they were obtained by means of his graphical process:—

APPARENT ELLIPSE.

Major semi-axis'			3"'169
Position thereof	•••	•••	281° 20'
Minor semi-axis	•••	•••	1".756
Greatest maximum o	f distanc	ce	4 '101
Position thereof	•••	•••	110° 0′
Least minimum	•••	•••	2":338
Position thereof	•••	•••	257° 35′
Greatest minimum	•••	•••	2"'119
Position thereof	•••	•••	206° 0′
Least minimum	•••	•••	1" 059
Position thereof	•••	•••	o° 40′.

REAL ELLIPSE.

Major semi-axis	•••	a	= 3"·278
Excentricity		e	= O'3777

Position of perihelion	T	= 307° 20'
,, node		- 97 47
Inclination	γ	- 56 6
Angle between major		•
axis and line of nodes	λ	= 134° 22'
Period	P	= 60'72 years
Mean motion	72	= -5°.0280
Perihelion passage	7	– 1816.73.

Savary's orbit represented the observations very well; Sir John's not so well, as he himself points out and explains.

Mädler, making use of the observations to 1847, arrived at the following elements:

Period = 61.30 years

$$\Omega = 96^{\circ} 21^{\circ} 9$$

 $i = 50 55^{\circ} 4$
 $\lambda = 132 28^{\circ} 7$
 $\phi = 23 48^{\circ} 7$
 $\tau = 1817^{\circ} 102^{\circ} 8$

These also satisfied the observed angles and distances very well on the whole.

Villarceau computed an orbit for this star and obtained the following results:-

$$a = 2^{\circ} \cdot 439$$
 $e = 0 \cdot 43148$
 $a = 95^{\circ} \cdot 83$
 $\gamma = 52 \cdot 82$
 $\lambda = 128 \cdot 95$
 $P = 61 \cdot 576$ years
 $e = 1816 \cdot 86$.

And Captain Jacob :-

$$\epsilon = 1816.66$$

 $\Omega = 96^{\circ}$ 6'
 $\lambda = 129$ 28
 $\gamma = 53$ 52
 $\epsilon = 0.4116$
 $P = 61.175$ years
 $a = 2''.82$.

The following extract from Dr. Ball's paper will show the relative value of some of the above orbits:—

1		Sav	ary.	H2.		Mädler.		Villarceau.	
Epoch.	Observed position.	Calc ^d · position.	Differ- ence.	Calc ^d · position.	Differ- ence.	Calc ^d · position.	Differ- ence.	Calc ⁴ position.	Differ- ence.
1781'97 1840'29 52'13 63'23 68'30 72'28	143.78 150.85 122.28 96.66 77.50 24.19	143.89 143.65 112.84 90.92 72.02 20.57	+0°11 -7°20 -9°44 -5°74 -5°48 -3°62	140°08 148°92 116°22 92°85 75°27 41°62	-3.70 -1.93 -6.06 -3.81 -2.23 +17.43	14.85 153.80 121.37 98.54 83.02 57.19	-0.93 +2.95 -0.91 +1.88 +5.52 +33.00	144°12 155°48 122°22 98°48 84°02 62°10	+0°34 +4°63 -0°06 +1°82 +6°52 +37°91

^{*} Mādler also published the following elements: $\alpha = x''/4\tau$, $\epsilon = 0.4130$, $\Omega = 98^{2.9}\tau$, $\gamma = 54^{2.9}\tau$, $\lambda = 130^{9.9}$ 80, P = 6.746, years, ϵ 1816/4; these were obtained from the measures made up to 1843.

This eminent astronomer, using the measures made up to 1836, computed the following elements:— $\epsilon=1816$ 95, $\Omega=95^\circ$, $\lambda=129^\circ$ 41', $\gamma=52^\circ$ 16', $\epsilon=0^\circ$ 4338, $P=60^\circ$ 4396, $\alpha=2^\circ$ 396.

On this Dr. Ball observes that Savary's elements represent the observations up to 1825 very well, and then begin to fail. Sir John's. although but a first approximation, present no violent differences till 1872,-a point where both Mädler's and Villarceau's also fail.

Dr. Ball's elements are,

a = 2''.591e = 0.3786 $\Omega = 103^{\circ}.6$ = 53 ·1 = 135 ·3 = 59 ·88 years = 6° 012 $\epsilon = 1816.405$.

A short extract from his Table VI. will exhibit the results when these elements and the observations are compared:

Epoch.	Observed position.	Computed position.	Difference.	Observer.
1781 '97	143.78	147°37	+ 3.59	H ₁ . ,,, H, and So. Da. ,,, Mi. De. Br.
1802 '09	97.52	98°53	+ 1.01	
23 '29	258.75	259°20	+ 0.75	
32 '27	196.72	195°13	- 1.59	
40 '29	150.85	152°95	+ 1.10	
52 '13	122.28	120°87	- 1.41	
63 '23	96.66	94°87	- 1.79	
72 '28	24.19	26°47	+ 2.28	

Dr. Ball also gives an ephemeris showing the position angle at intervals of three months from 1872.50 to 1878.75, and says, "The greatest velocity of change in the angular position occurs about 1873'25. At this date the rate will be fully 20° per annum. The periastron passage takes place about 1876 28; thus the period included in the ephemeris contains the most critical part of the entire orbit." A portion of the ephemeris is here given, together with the observed positions by De. up to 1877:-

Fresh	ch. Computed position.	Observed position.		Epoch.	Computed	Observed	l position.
Epoch.		Date.	Epoca.	position.	Angle.	Date	
1872 [.] 50	22.4 17.2	19.39	1800+ 72°32	1875.75 76.00	32Î'4 317'9		1800+
73.00 25 50	12.5 7.3 2.2	358.9	73'33	.25 .50 .75	314.7 311.6 308.6	304.8	76:30
75 74:00 25 50	357°2 352°1 347°0 342°2	333.6	74°35	77:00 :25 :50 :75	305.8 303.2 300.7 298.4	294'9	77:26
75 75:00 •25 •50	337.6 333.5 329.0 325.1	317.5	75.27	78.00 •25 •50 •75	296°1 293°9 291°8 289°7		

Dunér, in 1876, computed a set of elements: he gives

 $\tau = 1875.29$ $\omega = 234° 3'$ $\approx = 101.5$ (Equ. 1850.0)

i = 56.9e = 0.3952

 $\mu = -5.9215$

 $a = 2'' \cdot 549$ P = 60.79 years.

A table is also given comparing the observed and computed quantities from 1781 96 to 1876.48. How well the agreement is maintained all through this period the following selection will show :-

1840'29

1.51

2'27

3.58

7:30

8.13

.19

9:30

51.31

2:38

4.36

34

Date.	Δ	P	dΔ	d P	Observer.
1781.96		143.8		- i°4	H ₁ .
1820.13	,,	276.4	,,,	+4.6	Σ.
31.22	1,00	201 1	+ 0.31	- 2.6	H ₂ .
40.25	2.08	152.4	- 0.13	- 1.8	Ka.
50.30	3.38	124.3	+ 0.43	- 1.0	Ja.
60.08	3°38 2°84	105.3	- 0.06	+ 0'7	Мo.
70.33	1.32	57.2	+ 0.00	0.0	Gl.
72.24	1.00	22.1	+ 0.13	- 2.6	W. and S.
73'33	o.∂8	358.9	+ 0.00	+ 0.2	De.
73'42	0.85	358.4	- 0.04	+ 2.2	Du.
74'13	1.00	338.4	+ 0.02	- 1.5	Gl.
74'35	1 '02	333.6	+ 0.04	- 1.7	De.
75.27	1.00	317.6	- 0.04	- 14	,,
75.45	1.08	316.4	- o o ś	+ 0.i	Du.
76.48	1.31	303.8	0'04	+ 0.3	,,

Da.

Sm.

150.8

147'9

144'7

142'1

131.6

129.5

126.6

122.0

119'9

115.8

196'9

5n.

4n.

,,

7n.

ın.

,,

,,

3n.

Şn.

2n.

In.

3n.

'94

3.01

2.98

...

2.95

1,0

Dunér observes that his elements are intended merely to represent tolerably well the existing observations, and to give the normal places, and that we must will about 1880 before correct elements can be obtained.

The most recent elements of this interesting star are those published in No. I. of the observations of the *University Observatory*, Oxford; they are as follows:—

T = 1875.26P = 60.80 years $\Omega = 100^{\circ} 13'$ $\gamma = 56$ 40 $\lambda = 235$ 0 $\epsilon = 0.41590$ $\alpha = 2.7580$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	J~ -	~			-2- 2		, - ,	3
H ₁ . 143.7 In 1781.97 156.9 0 9.23 97.5 , 1802.09 143.2 3 43.16 92.6 , 4.08 Rncke. 168.5 9 48 37.31 H ₂ & So. 258.4 58 2.81 23.29 166.8 17 56 49 244.5 55 44 5.22 157.9 4 1.89 9.46 224.5 0 8.39 Galle. 9 89 .47 212.3 0 30.20 Ka. 152.2 7n. 2.08 40.25 201.1 4n. 1.90 1.25 145.1 7 2.50 189.8 206 3.14 140.2 555 3.60 Σ. 238.7 3n. 1.74 26.20 87.8 08 66.45 228.2 4n. 71 7.27 29.7 1.00 72.09 213.5 7n. 67 9.35 0.Σ. 153.6 6n. 2.28 40.40 220.38 5n. 70 31.44 150.5 , 22.8 40.40 195.9 ,, 75 2.41 147.5 4n. 34 2.40 195.9 ,, 76 3.84 140.4 3n. 45 4.34 180.1 ,, 76 3.84 140.4 3n. 45 4.34 180.1 ,, 76 5.41 138.1 2n. 51 5.46 171.2 4n. 97 6.44 137.2 4n. 56 6.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 In. 29 40.44 127.6 4n. 78 9.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 In. 29 40.44 127.6 4n. 78 9.37 169.7 17n. 98 13.4 120.6 4n. 75 50.39 1990 17n. 98 13.4 120.6 4n. 75 2.40 189.8 4n. 98 3.23 115.9 ,, 90 4.38		λ =		0		l .	180.5		'9	5:37
H ₁ . 143.7 In 1781.97 156.9 0 9.23 97.5 , 1802.09 143.2 3 43.16 92.6 , 4.08 Rncke. 168.5 9 48 37.31 H ₂ & So. 258.4 58 2.81 23.29 166.8 17 56 49 244.5 55 44 5.22 157.9 4 1.89 9.46 224.5 0 8.39 Galle. 9 89 .47 212.3 0 30.20 Ka. 152.2 7n. 2.08 40.25 201.1 4n. 1.90 1.25 145.1 7 2.50 189.8 206 3.14 140.2 555 3.60 Σ. 238.7 3n. 1.74 26.20 87.8 08 66.45 228.2 4n. 71 7.27 29.7 1.00 72.09 213.5 7n. 67 9.35 0.Σ. 153.6 6n. 2.28 40.40 220.38 5n. 70 31.44 150.5 , 22.8 40.40 195.9 ,, 75 2.41 147.5 4n. 34 2.40 195.9 ,, 76 3.84 140.4 3n. 45 4.34 180.1 ,, 76 3.84 140.4 3n. 45 4.34 180.1 ,, 76 5.41 138.1 2n. 51 5.46 171.2 4n. 97 6.44 137.2 4n. 56 6.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 In. 29 40.44 127.6 4n. 78 9.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 In. 29 40.44 127.6 4n. 78 9.37 169.7 17n. 98 13.4 120.6 4n. 75 50.39 1990 17n. 98 13.4 120.6 4n. 75 2.40 189.8 4n. 98 3.23 115.9 ,, 90 4.38		e =	= 0'4159	90		I	170.9		-8	6.33
H ₁ . 143.7 In 1781.97 156.9 0 9.23 143.2 3 43.16 92.6 7, 4.08 Encke. 168.5 9 48 37.31 H ₂ & So. 258.4 58 2.81 23.29 166.8 17 56 6.49 244.5 55 44 5.22 157.9 4 1.89 9.46 224.5 0 8.79 Encke. 152.2 7n. 2.08 40.25 212.3 0 30.20 Ea. 152.2 7n. 2.08 40.25 201.1 4n. 1.90 1.25 145.1 7 2.50 28.8 2.06 3.14 26.20 87.8 0.8 66.45 228.2 4n. 71 7.27 29.7 1.00 72.09 213.5 7n. 67 9.35 0.Σ. 153.6 6n. 2.28 40.40 223.8 5n. 70 31.44 150.5 7, 22.2 1.40 195.9 7, 75 2.41 147.4 4n. 3n. 45 4.34 180.1 7, 76 5.41 138.1 2n. 51 5.46 171.2 4n. 97 6.44 137.2 4n. 56 6.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 130.0 5n. 66 8.41 1.60.3 9n. 2.26 8.43 1.20.6 4n. 778 9.37 1.20.9 5n. 66 8.41 1.20.6 4n. 775 2.40 1.20.9 5n. 66 8.41 1.20.6 4n. 775 2.40 1.20.9 5n. 66 8.41 1.20.6 4n. 775 2.40 1.20.9 5n. 60.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3		a =	= 2".580	D.		1	165.5		·8	7.28
H ₁ . 143.7 In. 1781.97 156.9 3 43.16 1781.97 143.2 3 43.16 4.08 4.08 168.5 9			_			1	160.2		2'1	8.48
97.5	H ₁ .		In.			1	156.9		.0	
H ₂ & So. 258'4 58 2'81 23'29 166'8 17 '56 '49 9'46 244'5 55 '44 5'22 157'9 4 1'89 9'46 224'5 '0 8'39 Galle. '9 '89 '47 212'3 '0 30'20 Ka. 152'2 7n. 2'08 40'25 201'1 4n. 1'90 1'25 145'1 '7 2'55 3'60 E. 238'7 3n. 1'74 26'20 87'8 '08 66'45 228'2 4n. '71 7'27 29'7 1'00 72'09 213'5 7n. '67 9'35 0.Σ. 153'6 6n. 2'28 40'40 203'8 5n. '70 31'44 150'5 " '22 1'40 195'9 " '75 2'41 147'4 3n. '45 4'34 180'1 " '76 5'41 138'1 2n. '51 5'4 171'2 4n. '97 <td< th=""><th>-</th><th></th><th>,,</th><th>•••</th><th>1802'09</th><th>1</th><th>143'2</th><th></th><th>'3</th><th>43'16</th></td<>	-		,,	•••	1802'09	1	143'2		'3	43'16
H ₂ & So. 258'4 58 2'81 23'29 166'8 17 '56 '49 9'46 244'5 55 '44 5'22 157'9 4 1'89 9'46 224'5 '0 8'39 Galle. '9 '89 '47 212'3 '0 30'20 Ka. 152'2 7n. 2'08 40'25 201'1 4n. 1'90 1'25 145'1 '7 2'55 3'60 E. 238'7 3n. 1'74 26'20 87'8 '08 66'45 228'2 4n. '71 7'27 29'7 1'00 72'09 213'5 7n. '67 9'35 0.Σ. 153'6 6n. 2'28 40'40 203'8 5n. '70 31'44 150'5 " '22 1'40 195'9 " '75 2'41 147'4 3n. '45 4'34 180'1 " '76 5'41 138'1 2n. '51 5'4 171'2 4n. '97 <td< th=""><th></th><th>92.6</th><th>,,</th><th></th><th>4.08</th><th>Encke.</th><th>168.2</th><th>9</th><th>·48</th><th>37.31</th></td<>		92.6	,,		4.08	Encke.	168.2	9	·48	37.31
244 '5 55 '44 5'22 157'9 4 1'89 9'46 224 '5 '0 8'39 Galle. '9 '89 '47 212 '3 '0 30'20 Ka. 152'2 7n. 2'08 40'25 201 '1 4n. 1'90 1'25 145'1 '7 2'50 189 '8 2'06 3'14 140'2 '55 3'60 66'45 228 '2 4n. '71 7'27 29'7 1'00 72'09 223 '5 7n. '67 9'35 0.Σ. 153'6 6n. 2'28 40'40 203 '8 5n. '70 31'44 150'5 "'22 1'40 195 '9 "'75 2'41 147'5 4n. '34 2'40 188 '4 "'76 3'84 140'4 3n. '45 4'34 180'1 "'76 5'41 138'1 2n. '51 5'46 171'2 4n.	H, & 80	D. 258 [.] 4	58	2.81	23.29		166.8	17	.26	.49
212'3	•			'44	5.53	1	157.9	4	1.89	9.46
212'3		224.5		.0	8.39		.9			·47
Σ. 2387 3n. 1'74 26'20 87.8 '08 66'45 228'2 4n. '71 7'27 29'7 1'00 213'5 7n. '67 9'35 O.Σ. 153'6 6n. 2'28 40'40 203'8 5n. '70 31'44 150'5 ,, '22 1'40 195'9 ,, '75 2'41 147'5 4n. '34 2'40 188'4 ,, '76 3'84 140'4 3n. '45 4'34 180'1 ,, '76 5'41 138'1 2n. '51 5'46 171'2 4n. '97 6'44 137'2 4n. '56 6'37 165'3 3n. '92 7'47 133'1 3n. '61 7'41 160'3 9n. 2'26 8'43 130'0 5n. '66 8'41 In. '29 40'44 127'6 4n. '78 9'37 Be. 203'1 1'85 30'86 124'1 ,, '67 50'39 199'0 '93 1'39 122'9 5n. '80 1'41 Da. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 189'8 4n. '98 3'23 115'9 ,, '90 4'38		212.3		•0	30.50	Ka.	152.2	7n.		40.25
Σ. 238.7 3n. 1.74 26.20 87.8 70.8 66.45 228.2 4n. 71 7.27 29.77 1.00 72.09 213.5 7n. 67 9.35 0.Σ. 153.6 6n. 2.28 40.40 203.8 5n. 70 31.44 150.5 ,, 22 1.40 195.9 ,, 75 2.41 147.5 4n. 34 2.40 188.4 ,, 76 3.84 140.4 3n. 45.5 4.34 180.1 ,, 76 5.41 138.1 2n. 51 5.46 171.2 4n. 97 6.44 137.2 4n. 56 6.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 In. 29 40.44 127.6 4n. 78 9.37 Be. 203.1 1.85 30.86 124.1 ,, 67 50.39 1990 93 1.39 122.9 5n. 80 1.41 Da. 201.9 17n. 98 1.34 120.6 4n. 75 2.40 189.8 4n. 98 3.23 115.9 ,, 90 4.38			4n.	1.00	1.52		145'I			2.20
Σ. 238.7 3n. 1.74 26.20 87.8 70.8 66.45 228.2 4n. 71 7.27 29.7 1.00 72.09 213.5 7n. 67 9.35 0.Σ. 153.6 6n. 2.28 40.40 203.8 5n. 70 31.44 150.5 ,, 22 11.40 195.9 ,, 75 2.41 147.5 4n. 34 2.40 188.4 ,, 76 3.84 140.4 3n. 45 4.34 180.1 ,, 76 5.41 138.1 2n. 51 5.46 171.2 4n. 97 6.44 137.2 4n. 56 6.37 165.3 3n. 92 7.47 133.1 3n. 61 7.41 160.3 9n. 2.26 8.43 130.0 5n. 66 8.41 In. 29 40.44 127.6 4n. 78 9.37 Be. 203.1 1.85 30.86 124.1 ,, 67 50.39 1990 93 1.39 122.9 5n. 80 1.41 Da. 201.9 17n. 98 1.34 120.6 4n. 75 2.40 189.8 4n. 98 3.23 115.9 ,, 90 4.38		189.8		2'06	3.14	l	140'2		.55	3.60
228'2 4n. '71 7'27 29'7 1'00 72'09 213'5 7n. '67 9'35 0.Σ. 153'6 6n. 2'28 40'40 203'8 5n. '70 31'44 150'5 4n. '34 2'40 195'9 ,, '75 2'41 147'5 4n. '34 2'40 188'4 ,, '76 3'84 140'4 3n. '45 4'34 180'1 ,, '76 5'41 138'1 2n. '51 5'46 171'2 4n. '97 6'44 137'2 4n. '56 6'37 165'3 3n. '92 7'47 133'1 3n. '61 7'41 160'3 9n. 2'26 8'43 130'0 5n. '66 8'41 In. '29 40'44 127'6 4n. '78 9'37 Be. 203'1 1'85 30'86 124'1 ,, '67 50'39 199'0 '93 1'39 122'9 5n. '80 1'41 Da. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 189'8 4n. '98 3'23 115'9 ,, '90 4'38	Σ.	238.7	3n.	1.24	26.50	ļ	87.8		.08	66.45
203.8 5n. '70 31.44 150.5 ,, '22 11.40 195.9 ,, '75 2.41 147.5 4n. '34 2.40 188.4 ,, '76 3.84 140.4 3n. '45 4.34 180.1 ,, '76 5.41 138.1 2n. '51 5.46 171.2 4n. '97 6.44 137.2 4n. '56 6.37 165.3 3n. '92 7.47 133.1 3n. '61 7.41 160.3 9n. 2.26 8.43 130.0 5n. '66 8.41 In. '29 40.44 127.6 4n. '78 9.37 Be. 203.1 1.85 30.86 124.1 ,, '67 50.39 199.0 '93 1.39 122.9 5n. '80 1.41 Da. 201.9 17n. '98 1.34 120.6 4n. '75 2.40 196.7 10n. '76 2.27 119.0 ,, '88 3.40 189.8 4n. '98 3.23 115.9 ,, '90 4.38		228.3	4n.		7:27	ľ		_	1.00	72.09
203'8 5n. '70 31'44 150'5 , '22 1'40 185'9 ,, '75 2'41 147'5 4n. '34 2'40 188'4 ,, '76 3'84 140'4 3n. '45 4'34 180'1 ,, '76 5'41 138'1 2n. '51 5'46 171'2 4n. '97 6'44 137'2 4n. '56 6'37 165'3 3n. '92 7'47 133'1 3n. '61 7'41 160'3 9n. 2'26 8'43 130'0 5n. '66 8'41 In. '29 40'44 127'6 4n. '78 9'37 Be. 203'1 1'85 30'86 124'1 ,, '67 50'39 199'0 '93 1'39 122'9 5n. '80 1'41 Da. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 196'7 10n. '76 2'27 119'0 ,, '88 3'40 189'8 4n. '98 3'23 115'9 ,, '90 4'38		213.2	7n.		9.35	Ο.Σ.		6n.		
195'9 ", '75 2'41 147'5 4n. '34 2'40 188'4 ", '76 3'84 140'4 3n. '45 4'34 180'1 ", '76 5'41 138'1 2n. '51 5'46 171'2 4n. '97 6'44 137'2 4n. '56 6'37 165'3 3n. '92 7'47 133'1 3n. '61 7'41 160'3 9n. 2'26 8'43 130'0 5n. '66 8'41 In. '29 40'44 127'6 4n. '78 9'37 Be. 203'1 1'85 30'86 124'1 ", '67 50'39 199'0 "93 1'39 122'9 5n. '80 1'41 Ds. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 196'7 10n. '76 2'27 119'0 ", '88 3'40 189'8 4n. '98 3'23 115'9 ", '90 4'38		203.8	5n.				150.2	,,		
188.4 "," "76 3.84 140.4 3n. '45 4.34 180.1 "," "76 5.41 138.1 2n. '51 5.46 171.2 4n. "97 6.44 137.2 4n. '56 6.37 165.3 3n. "92 7'47 133.1 3n. '61 7'41 160.3 9n. 2'26 8'43 130.0 5n. '66 8'41 In. '29 40'44 127.6 4n. '78 9'37 Be. 203.1 1'85 30'86 124.1 ", '67 50'39 199.0 '93 1'39 122.9 5n. '80 1'41 Da. 201.9 17n. '98 1'34 120.6 4n. '75 2'40 196.7 10n. '76 2'27 119.0 ", '88 3'40 189.8 4n. '98 3'23 115.9 ", '90 4'38		195.9	,,	.75	2.41	}	147'5	4n.		2.40
180·1 "76 5'41 138'1 2n. '51 5'46 171·2 4n. '97 6'44 137'2 4n. '56 6'37 165·3 3n. '92 7'47 133'1 3n. '61 7'41 160·3 9n. 2'26 8'43 130'0 5n. '66 8'41 In. '29 40'44 127'6 4n. '78 9'37 Be. 203'1 1'85 30'86 124'1 "67 50'39 199'0 '93 1'39 122'9 5n. '80 1'41 Da. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 196'7 10n. '76 2'27 119'0 "88 3'40 189'8 4n. '98 3'23 115'9 "90 4'38		188.4	,,	.76	3.84	1	140.4		. 45	
171 2 4n. '97 6'44 137'2 4n. '56 6'37 165'3 3n. '92 7'47 133'1 3n. '61 7'41 160'3 9n. 2'26 8'43 130'0 5n. '66 8'41 In. '29 40'44 127'6 4n. '78 9'37 Be. 203'1 1'85 30'86 124'1 ,, '67 50'39 199'0 '93 1'39 122'9 5n. '80 1'41 Da. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 196'7 10n. '76 2'27 119'0 ,, '88 3'40 189'8 4n. '98 3'23 115'9 ,, '90 4'38		180.1	,,	·76	5.41	}	138.1	2n.	.21	
160·3 9n. 2·26 8·43 130·0 5n. '66 8·41 Be. 203·1 1·85 30·86 124·1 ,, '67 50·39 199·0 '93 1·39 122·9 5n. '80 1·41 Da. 201·9 17n. '98 1·34 120·6 4n. '75 2·40 189·8 4n. '98 3·23 115·9 ,, '90 4·38		171.2	4n.		6.44	1	137.2		•56	
Be. 203'1		165.3	3n.		7.47	1			.61	7.41
Be. 203'I 1'85 30'86 124'I ,, '67 50'39 199'o '93 1'39 122'9 5n. '80 1'41 Da. 201'9 17n. '98 1'34 120'6 4n. '75 2'40 196'7 10n. '76 2'27 119'0 ,, '88 3'40 189'8 4n. '98 3'23 115'9 ,, '90 4'38		160.3	9n.		8.43	1			'66	
199.0			In.	.59	40.44	i		4n.	.78	
Da. 201 9 17n. '98 1'34 120 6 4n. '75 2'40 196 7 10n. '76 2'27 119 0 ,, '88 3'40 189 8 4n. '98 3'23 115 9 ,, '90 4'38	Be.			1.85	30.86	1			.67	
196.7 10n. '76 2.27 119.0 ,, '88 3.40 189.8 4n. '98 3.23 115.9 ,, '90 4.38				•93		1				
189.8 4n. 98 3.23 115.9 ,, 90 4.38	Da.			.98		1		4n.	.75	
		196.7	IOn.	.76		1		,,		
				-98	3.53				.90	4.38
		171.3	In.	.92	6.58	1	.5	3n.	1 .85	5.44

	۰			,		۰		,,	
Ο.Σ.	110.5	3n.	2.96	1857.46	Se.	114.3	In.	2.96	1855:29
·	108.0	,,	-96	8.39		113.9	4n.	3.13	6.56
	104.9	5n.	.84	9:57		109.7	2n.	.11	7:36
	101.1	4n.	.69	61.40		89.9	In.	2.23	65.21
	. 99'3	,,	.62	2.39		86.5	,,	.56	6.31
	95.7	2n.	.22	3.46	Au.	100'4		3.03	1.26
	94'2	3n.	.33	4.42	Ro,	95.2	In.	2.79	3.14
	85.4	,,	'II'	6.40		93.3 87.2	,,	.29	-50
	81.0	2n.	1.91	7°47 8°42	M.	87.2	In.	.60	-19
	72.6	4n.	.63			91.6	,,	.62	.51
	59.2	,,	.32	70.18	_	77.0	6n.	1.22	8.39
	45'7 17'8	2n.	12	1'40	Eng.	95.8		2.28	4.16
	17.8	3n.	0.06	2.41	-	91.4	19n.	'44	5.15
	358.4	5n.	•96	3'43	Ta.	82.5 83.0	5n.	.72	6.23
Ch.	338.1	3n.	1,03	4'41			In. 2n.		7°23 8°23
UII.	150.6	2n.	2.45	41.19 5.30		79'I	in.	2.49	
	139.3	in.	.21 .23	4°25		66.2		•••	70.32
Mä.	150.5	7n.	'44	1.50		68.0	2n.	1.58	2.35
	146.9	4n.	'41	2'24		335.6		1 20	4.53
	122.1	on.	3.05	51.78		334.2	in.	1.64	6:34
	120.8	6n.	2.42	2.35	Du.	334·5 68·6	ıın.	'29	69:40
	118.8	13n.	93	3.35		53.8	gn.	·16	70'43
	116.3	14n.	·89	4.37		40.0	IÍn.	0.08	1.47
	115.7	2n.	·87	5'44	[16.6	I4n.	.91	2.46
	112.7	13n.	'97	6.42	1	358.4	In.	· 8 5	3.42
	109.7	8n.	.75	7.43		332.1	4n.	.03	4'45
		5n.	.92	8.42		316.4	I4n.	1.08	5'45
	106.1	3n.	'97	9:37	G 1.	59.3	5 6	'4	0.53
	99.9	4n.	.90	62.35	1	55.I		.3	'44
D.O.	131.1	ì	3'12	47'11		50.8	5	3	1.13
D d	127.3		2.78	12	1	44.6	5	I.	.50
Bond.	128.6	l	.7	8.45	1	32.0 39.4	5	.0	2.00
Ja.	124.5	10	3 ^{.1}	'45 50'30		356·o	١		
J.	120.0	5	.01	3.30		342.5	3	0.8	3.20
	119.4	10	.01	3.19	l	343.0	3	7	-93
	117.0	10	.11	.93	1	338.0	5 5 3 5	1.0	4.13
Flt.	123.1	6n.	2.83	1.19		339.0	{	0.8	-13
	119.8	,,	'92	2.20		338.3	5	1.5	.13
	118.9	١ ,, ١	•98	3.53	W. & B.	43.9	4	.1	1.48
Mi.	122.3	56	·89	2.13	1	23°I	7	*04	2'13
	¥.811	32	3.01	3.19		22.9	14	0.92	1 17
Mo.	117.7	3n.	2.90	2'34	1	. 23.0	6	1.19	'20
	108.1		·85	8.50		•3	4	0.01	'20
_	105.3	2n.	.84	60.08	1	20.3	3		'24
De.	116.2	7n.	3.16	54.64	ł	19.7	4	1.18	:33 :38
	115.4	5n.	'19	6.34	1	22.2	4	'07	3.53
	108.6	7u.		7:80		23.9	23	0.90	3.22
	.00.0	5n.	3.14	7.89 8.25	i	338.0 329.6	9	0.03	4.12
	98.1	3n.	2.81	62.85	1	334.2	2		23
	96.4	16n.	.20	3.59		317.6	4	1.30	5.58
	93.6	ion.	27	4:37		316.9	5	.22	29
	90.1	9n.	18	5:32		318.0	5	.31	·32
	86.7	ion.	.06	6.30		316.3	10		'43
	82.3	8n.	1.00	7.31		304.9	4	1.29	6.34
	77.5	,,	.73	8·30		306.4	9	'45	36
	57'7	9n.	.39	70.24	1	305.5	6	.30	-37
	47.7	8n.	'20	1.55		294°I	6	'47	7:39
	19.3	ion.	.07	2.35		.7	7	.29	.40
	358.9	22	0.97	3.33	D c-	2 95.0	7	.20	'41
	333.6	6n.	1.01	4:35	Fer.	15.4	1	0.92	2.47
	317.2	8n.	1 '09	5.52	ı	337.0	ı	1 '47	4.50

Kn.	29°6	3n.	1.08	1872.08
	16.8	,,	.11	'44
Schi.	317.5	ın.	.31	5.30
Sp.	.4	1	.31	.31
Dob.	311.7	In.	•••	.99
	306.3	13n.	1.43	6.27
	304.5	IOn.	. 74	7.26
Pl.	301.5	5n.	.25	6.46
	297 °O	7n.	. '57	7.20

Σ. 1527. 369

LEONIS 339 (B).

C. yellow, blue.

A appears to be variable: its magnitude is thus given: South, 8; Dawes, 8, 7.2; Σ., 8, 6.9; Du., 6.5, 6. Certain change.

Dunér has the following formulæ:

1851 °01.
$$\Delta = 3''$$
 '79. $P = 11^{\circ} \cdot 8 + 0^{\circ} \cdot 09 \ (t - 1850 \cdot 0)$.

Σ.	9.7	in.	3.73	1822:20
	10.5	٠,,	3.73 .88	9.30
So.	·4	3n.	4.93	4.60
Da.	.2	īn.	.00	40.60
	11.2	,,	3.90	54.57
Mä.	10.4	,.	4'10	44.27
Mo.	11.6	,,	3.93	55.40
8e.	12.3	2n.	.74	6.40
De.	13.3	3n.	.99	8.16
Ta.	12.8	2n.	*68	66.58
	15.3	In.	*24 *05	7.24
	14.5	,,	*05	72.40
	10.9	,,	.16	4.35
	14.0	,,	.08	6.36
Du.	. 4	4n.	:43 :48	5.30
Pl.	11.4	3n.	48	6.22

Σ. 1534. 370

R. A.		· Dec.		М.		
11p 12.2m		18° 5	ı'	8, 11.2		
Σ.	342.2	2n.	4'79	1828.24		
	339.0	,,	.88	33.58		
Se.	332.5	ın.	.08	56.30		
De.	330.6	4n.	.74	64.76		
Ο. Σ.	.9	In.	5.13	70'30		
W. & B.	335.8	5	3.91	4.53		
	3.6	5	•••	'24		
	4.2	5 5 3 2	•••	6.35		
G 1.	336.5	2	4.5	4.13		

371 Σ. 1536.

L LEONIS.

Dec. R. A. 11h 17.6m 11° 12' Magnitudes.—Σ. 3'9, 7'1. Sm. 4, 7'5. Se. 4'2, 8'5. De. 4'8, 7'9.

C. E., A, yellowish; B, blue.

One of Σ .'s discoveries. He found the angular motion indirect, and by the method of least squares obtained for the angle

$$\omega = 92^{\circ} \cdot 38 - 0^{\circ} \cdot 834 (t - 1832 \cdot 01).$$

Smyth and Dawes assert its binary character.

Of late years the angle has not changed, and this accords with the increase in the distance. (O. E.)

The common proper motion is $+0^{\prime\prime}$ 133 in R. H., and $+0^{\prime\prime}$ 028 in N. P. D. (2.) Main gives + 0":007, + 0":07 in R. A. and N. P. D. respectively.

 $\Delta = 2^{\circ} \cdot 45 + 0^{\circ} \cdot 01 \quad (t - 1855 \cdot 0).$ $P = 78^{\circ} \cdot 9 - 0^{\circ} \cdot 526 \quad (t - 1855 \cdot 0) + 0^{\circ} \cdot 0021 \quad (t - 1855 \cdot 0).$

Σ.	97.0	2n.	2 29	1827.81
	93.0	4n.	1.99	30.62
	90'4	3n.	2'17	3'34
	'3	,,	40	5.33
	·I	In.	'41	7:39
Da.	91.8	,,	'44	4.00
	87.6	3n.	'44	40.29
	86.8	7n.	.25	1.59
	85.3	4n.	45	2.27
	83.6	,,	.63	3127
	83.6	2n.	`47	7.72
	81.6	,,	64	9.29
	80.6	3n.	.61	51.25
	79.5	2n.	·55 ·68	4.38
	76.0	In.	.68	60.59
	72.1	,,	. 80	5.40
Sm.	90:5		'4	36.40
	87.7		'4	9.32
	86.0		:5	43.38
ο. Σ.	81.3		·5 ·5 ·67	53.29
0.2.	91.0	3n.	.07	40.29
	92.3	ın.	.22	1.40
	87.5	"	'4 9	2'34
	86.3	2n.	.29	7:36
	83.1	In.	'23	9.36
	78.9	,,	'42	51·37 2·37
	80.8	"	.40	2.37
	75.3	,,	.70 .70	8.38
	76.6	"	-58	61.42
	70.0	"	·58 ·80	2.39
	3	"	.66	6.36
Ch.	86.9	,, 2n.	41	8·36 41·23
	89.3	In.	.61	2.32
	87.4	2n.	·84	4.32
	-/ T	(~ ~ ~	4 20

20"			"	_	_	•		"	
Mä.	86°6	5n.	2.29	1841.32	Fer.	73.2	'	2.01	1873.58
	.3	4n.	.27	2.22	Du.	70.6	4n.	.28	5.31
	82.8	5n.	.31	6.31	Sp.	68.1	•	73	.32
	81.3	8n.	.35	7:35	Schi.	٠,	In.	73	.32
	80.0	4n.	.47	51.58	Dob.	69.6	l .	,,,	99
	79.0	7n.	.42	2.38	1	65.7	8n.	2.88	6.27
	78.9	8n.	.70	3.34	l .	64.2	4n.	.82	7:23
	, , , š	6n.			W.O.		I -		
	76.1	7n.	:53 :48	4:37	W.G.	70.3	"	73 81	6.29
	,		40	6.37	P1.	69.4	"		.31
	75'1	4n.	38	7'37 8'35		67.7	3n.	·86	, 7.10
Ka,	88·2	2n.	46		l				
A.		5n.	.30	42.59					
T.	71.2	"	.75 •34	66.32	372	2,	154	เฉ	
Ja.	81.5			48.30	0.2	4.	10.	EQ.	
	79'7	10	'44 '63	53.50		TIE	0 P W	AJORIS	
	78.7	11	•63	'96	i	57 UE		D' OPTO	•
	76.6		*64	8.51	R. A		Dec		M.
Mo.	83.5	2n.	.71	3.32	IIp 55.		40°		
Flt.	81.7		139	5.27	11 22	0-	40	,	5°2 , 8°2
De.	80.4	In.	•2	95	D:			. n	
	78.6	2n.	.48	6.25		probably			es notes it
	79.4	ın.	• 5	7.08	as of the	e 9th ma _l	g., Sou	th as of	the 10th,
	76.4	3n.	·5	8.34	and H ₁	saw it as	a mere	point of	light.
	.,	7n.	.21	63.53	The	common	secular	proper	motion is
	74.9	9n.		6.08	-7 ".2	and $+2''$	·4. (Σ	.)	
		2n.	:56	8.24	Duné	r has the	followi	ng formu	ulæ:
	73'3		.55 .53		1				
	71.7	"	53	70:26	١,	1851.7	77. A	= 5" 40.	
		"	*54	I '24	1 -	0.00 = 10	-0 -11	(1-193)	9.0).
	70.6	In.	·54 ·66	2.52	H ₁ .	1	•	1	
	.1	,,	.66	3.55	H ₁ .	14'4	In.	06	178370
	71.1	• ,,	.57	4.55	80.	10.3	2n.	5.86	1825-25
_	70°I	2n.	'54	5.19	Σ.	.7	6n.	'37	31.91
Se.	76.4	5n.	.26	56.56	1 _	7.2		°43	48.24
Po.	74.2	-		61.18	Sm.	5.9		.9	35.42
M.	73.9	In.	.72	2.22	1 _	8.3		•5	46.38
	72.8	,,	75	7:27	Ja,			.5 .26	.32
	• 8	,,	.84	8.40		6.8	2n.	· 2 6	53.54
	75'9	,,	-88	71.27	Da.	7.2		.25	48.70
	67.6		3.08	5.36	Mä.	.6	In.	·52 ·61	51.27
Eng.	76.8	5n.	3.92	65.70		9.5	,,	4.89	8.43
Ta.	75.8	3n.	.91	6.58	Mo.	6.0	,,	5.38	7:28
	76.8	In.	.91	7:24	Se.	.2	2 n.	.16	.89
	70.8		3.06	8.21	De.	5.2		'42	8.16
	78.9	,,			M.	355.6	in.	4.2	
	70.9	"	2.85	9.19	Du.	333.8	5n.		64.43
		2n.	•••	71.37	G1.	6.2		5.46	73.05
	77.0	"	2.41	2.41	Sp.	5.3	In.		4.29
	76.6	In.	'46	4.35	Fl.	5.3	•	5.62	5.33
	69.3	"	'46	6.36	FI.	2 '	ın.	-80	7.41
Br.	74'0	2	.73 .6	69.24	l				
G 1.	71.7	4	'6	70.44					
	72.0	4	•5	1.35	373	τ 1	LEOI	211	
	71.5	2	'7	3.59	0.0	• -		120.	
	67 ·o	5	.5 .7 .7 .7	4.10	R. A		D		27
	•5	3	.7	12	II ^h 21		Dec	/	М.
	71.0	Ğ.	·7 ·69	.13	11- 21	0-	3° 3	II.	5, 7
	68.o	5	.60	17	The	Droner b		s _ :_	
W, & S.	70'3	š	3.5	2.27					- 0° 1001 in
•	71.0	7	J	35	к. л.,	and + o"	'02 In 1	v. r. b.	•
	70'I	5 3 6 5 7 4	2.57	3,19	H ₁ .	165.3		00	1782.28
	/~. _E	4	~ 3/		8o.	169.8		90	
•	68.8	4 6	.4. .81	23	Be.	166.0		95.2	1823
	69.8	E		'25 4'22	Σ.			96.9	25
	68.5	5 4 8	·71			169.6	j	94.7	34 '94
		4	77	5.58	Se.	252.2		42	59.51
	70.2	6	·69 ·62	6.35	Eng.	171.7	_	93.4	63.56
	2	o i	02	.36	Fl.	172.2	In.	92.2	77'42

374 0.Σ. 234.

R. A.	Dec.	M.
11 ^h 24'3 ^m	41° 58'	7, 7 [.] 4
	. •	,,,,

C. white.

Very distinct orbital motion.

			"	
ο.Σ.	177.4	3n.	0.42	1844.66
	188.9	,,	.37	8.66
	200.3	,,	.31	52.00
	2 43	2n.	oblong	8.88
	257	3n.	,, "	61.35
		In.	simple	6.49
_	282	۱,,	oblong	70.46
De.		elong	gated	66.50
		•	•	

375 Ο.Σ. 235.

R. A.	Dec.	M.
11p 23.8m	61° 45′	6, 7.3

C. A, yellow; B, red.

Since 1856 the distance has increased considerably, and the angular motion has diminished in a corresponding degree.

Ο.Σ.	2 93°0	2n.	0.60	1844.90
	311.3	,,	.55	6.94
	318.6	,,	.22	6.94 9.89
	327.9	,,	'54	51.42
	331.2	,,	.22	2.04
	348.7	3n.	·52 ·68	6.21
	358.7	2n.		8.92
	15.6	3n.	•68	61.74
	29.3	2n.	.81	5.46
_	40.5	,,	·99 ·84	71.23
De.	38.2	l	·84	68.59

376 Σ. 1552.

R. A. 11h 28.5m Dec.

M. 17° 28' 6, 7.3, 8.5

A B, probably binary. In A C, rectilinear motion. A D

		A B	•	
H ₁ .	208.8	í	١	1782:28
•	210'0			1802.18
8o.	208.9	l	4.45	22.27
Σ.	209'4		3.01	9'94
Σ, H, Mä,	207:3	5n.	3	32.40
Mä.	210'9		.13	4.24
	211.0		.18	54.50
	.3		2.89	6.36
	210.6		3.55	7:37
8m.	209'I		• 5	35.38
Mo.	.5	20	.10	46.40
	208.9	30	.10	8.32
	•	20	.18	54'37
	209.6	60	'4 6	5.31

T .	0_		"	_
Da.	210.8		3.03	1851.30
X.	208.8	In.	3.03	61.33
Ro.	212.3	,,	.31	3.12
8e.	214'1		·š5	
Ta.	213.1	In.	4.14	5.33
~ 1	210.8	,,	3.28	70.32
<u>G1</u> .	211.7	,,	.2	4'24
W. & S.	.I		• 25	24
		A C		
H ₁ ,	234.9		1	1782:28
	.3		53.72	3.29
Bo.	233.3		53.72	1822:27

		A C	,	
H ₁ .	234.9	l		1782.28
So. Sm. Se. W. & S. Gl.	233·3 ·9 234·5 235·4 234·0	In.	53.72 60.75 58.8 63.33 	3°29 1822°27 35°38 65°33 74°23 5°20

377 ο.Σ. 236.

R. A.		Dec.		M.
11h 29 ^m		67° o'		7'5, II
O.Σ. De.	209'2	3n. In.	2:33	1847.00

378 Σ. 1553.

R.	A.	Dec.	M,
IIp	30m	56° 48′	7'3, 7'8

Probable change. Dunér gives

1851'37. $\Delta = 5''$ 40. P=170°'7-0°'044 (t-1850'0).

Σ.	171.2	3n.	5:34	1832.58
Mä,	170'2	2n.	45	44.38
Da.	171.3	In.	-38	51.59
De.	170'4	,,	.38	8.01
Mo.	4	2n.	.30	9.25
Ο.Σ.	168.3	,,	•56	65.86
Du.	169.5	4n.	.21	75'30
Pl.	.1	2n.	.66	6.94

379 Σ. 1555.

R. A. Dec. M 11h 30m 28° 27' 6.4, 6.8

A B, probably binary. Of A C no other measures but Smyth's are known.

Dunér gives

 $\Delta = 0".98 - 0".115 (t - 1850.0).$ $P = 341^{\circ}.7 + 0^{\circ}.15 (t - 1850.0).$

AB.

Σ.	339.3	5n.	1 '24	1829'12
H ₂ . Da.	338.0	In.	•••	30.56
Da.	340.3	,,	. 45	2.24
Sm.	.1		.4	4.31

Mä. Se. De. Mo. Eng. Du. Gl. W. & S.	341'4 338'1 338'1 343'3 342'0 339'0 0 338'6 342'8 343'7 345'9 343'8 342'8 343'7	In. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	0'93 1'05 0'86 '79 '70 '67 '94 1'0 '14 0'92 '78 1'0 '77 '74 '75	1841 · 41 2 · 34 6 · 37 9 · 36 66 · 42 8 · 36 42 · 96 55 · 95 6 · 09 9 · 35 65 · 75 70 · 06 4 · 29 5 · 28 · 30 6 · 35 5 · 37 7 · 33
5m.	145'0	1	17.0	34'31
380	O .2	Σ. 23	37 .	
R. A.	m	Dec.	:. 48′	M. 7'4, 9
If Mä	dler's an	gle is conted to	orrect, ti	he angular 28 years.
0.Σ.	287.0	4n.	0.74	1845.82
Mä. De. Sp.	274.8 113.2 272.0 277.0	3n. 3n.	·92 ·64 1·08 ·02	61.68 47.40 67.94 75.36
381	0.2	Σ. 24	1 3.	
R. A. 11h 53.6		Dec. 54° 5		M. 7·8, 8·8
If Maapparent years.	dler's an	gle be o ave bee	orrect, i n descri	18° of the bed in 21
O.E. Mä. De.	10°9 26°6 8°9	3n. 3n.	0.71 .42 .90	1846°04 °41 67°96
382	Σ.	158	8.	
R. A. 11h 56		Dec 73° 4	Z'	M. 8·5, 8·7
Σ. Mä. De.	60·7 ·1 57·6	2n.	16.49 .33 15.30	1831 ·59 45 ·55 63 ·56
383	Σ.	159	3.	
R. A.		Dec.	17′	M. 8 8·3

Σ. Mä,	18 [°] ·2	3n.	1 ["] 43 '54 '89	1829°26 37°45
5e.	28·5 26·6	In.	.89 .89	47°30 56°39
384	Σ.	159	6.	
R. A		Dec. 22° 8	"	M . 6, 7'5
formula	ion doubt e: 1854. = 239.7 -	79. A:	= 3".65.	
		_	-	
H	242'3	In.	•••	
Η ₁ . Σ.	242'3 239'9	In.	3.82	1827.28
Η ₁ . Σ.	239 9 242 6		3.82 .60	1827.28
Η ₁ . Σ.	239°9 242°6 240°2	,,	3.82 60 77	9°30 8°23 9°30
Σ.	239 9 242 6 240 2 239 8	" "	3.82 60 77 73	1827°28 8°23 9°30 33°37
Η ₁ . Σ. Μä.	239.9 242.6 240.2 239.8 239.1	2) 2) 2) 27 27	3.82 60 77 73 76	1827.28 8.23 9.30 33.37 41.32
Σ.	239 9 242 6 240 2 239 8 239 1	,, ,, ,, ,, 2n.	3·82 ·60 ·77 ·73 ·76 ·61	1827.28 8.23 9.30 33.37 41.32 2.23
Σ.	239.9 242.6 240.2 239.8 239.1 .6 238.9	" " " " " " 2n.	3.82 -60 -77 -73 -76 -61	1827.28 8.23 9.30 33.37 41.32 2.23 3.33
Σ. Mä.	239 9 242 6 240 2 239 8 239 1	;; ;; ;; ;; 2n.	3.82 -60 -77 -73 -76 -61 -47 -89	1827.28 8.23 9.30 33.37 41.32 2.23 3.33 4.38
Σ.	239.9 242.6 240.2 239.8 239.1 .6 238.9 239.6	,, ,, ,, 2n, ,,	3.82 -60 -77 -73 -76 -61	1827 28 8 23 9 30 33 37 41 32 2 23 3 33 4 38 55 33
Σ. Mä.	239 9 242 6 240 2 239 8 239 1 6 238 9 239 6	,, ,, ,, 2n. ,, 3n. 9n.	3.82 -60 -77 -73 -76 -61 -47 -89 -92 -72	1827 28 8 23 9 30 33 37 41 32 2 23 3 33 4 38 5 5 33 9 27 6 96
Σ. Mä. Mo.	239.9 242.6 240.2 239.8 239.1 .6 238.9 239.6	,, ,, ,, 2n, ,,	3.82 .60 .77 .73 .76 .61 .47 .89	1827 28 8 23 9 30 33 37 41 32 2 23 3 33 4 38 5 5 33 9 27 6 96 8 97
Σ. Mä. Mo. Se. De. Du.	239 9 242 6 240 2 239 8 239 1 238 9 239 6 238 5 239 5 240 0 239 5	,, ,, ,, 2n. ,, 3n. 9n.	3.82 -60 -77 -73 -76 -61 -47 -89 -92 -72 -76 -84	1827 28 8 23 9 30 33 37 41 32 2 23 3 33 4 38 55 33 9 27 6 96 8 97
Σ. Mä. Mo. Se. De.	239 9 242 6 240 2 239 8 239 1 238 9 239 6 238 5 239 5 240 0 239 5	,, ,, ,, ,, 2n. ,, 3n. 9n. 3n.	3.82 .60 .77 .73 .76 .61 .47 .89 .92 .72 .76 .84	1827 28 8 23 9 30 33 37 41 32 2 23 3 33 4 38 5 5 33 9 27 6 96 8 97

R. A. Dec. M. 11^h 59'4^m 69° 20' 7. 7

A very difficult object in 1832. Since 1851 there has been no trace of the companion.

Σ.	289.7	4n.	0.3	1832.50
ο. Σ.	79	īn.	oblong	40'42
	27 I	,,	,,,	*45
	88.7	,,	0'44	1'41
	231		oblong	51.44
	· 1		single	8.44
	İ		,,	61.56
	i		, ,,	2.39
	1		,,	8.26
De.	1		,,	2.95

386 S. 1602.

R. A.		Dec.		M.	
12 ^h 1'1 ^m		69° 45'		7'5, 9	
Σ. Mä.	179.8	2n.	13.00	1831.56	

387 Σ. 1604.

VIRGINIS 59 (B).

In AB the distance may have decreased slightly since 1831: the angle appears to diminish very slowly.

C is in motion, rectilinear and uniform; and Dunér gives the following formulæ:

$$\Delta \sin P = +52''05 - 0'' \cdot 3074 (t - 1850'0);$$

 $\Delta \cos P = -5'' \cdot 20 + 3'' \cdot 0995 (t - 1850'0);$
whence it appears that the minimum distance, 10'', will be reached in A.D. 2008.

AB.

Σ. Mä. Se.	93°3 94°8 92°8	3n. In.	11.08	1821 '95 44'35
De. Du. Fl.	92.7 91.6 91.5	2n. In.	75 16 46 6	56.40 64.19 9.85 77.40

A C.

Σ. 8e. De. Du.	96·9 95·2 94·8 '0	3n. In. 2n.	58.00 50.38 47.85 46.04 41.9	31.95 56.40 64.19 9.85
F 1.	93.1	Iñ.	41.0	77.40

388 _{2.} 1608.

R. A.	Dec.	M.	
12h 4.7m	40° 34′	6.3, 4	

The angle diminishes slowly. Probably binary.

Duner gives the following formulæ:

389 S. 1607.

R. A.	Dec.	М.
12h 5.5m	36° 45′	7.8, 8.3

Considerable change both in angle and distance.

Σ.	350.3	3 n .	33.07	1830.99 45.35 6.42 68.36
υ.Σ.	352.2	In.	32.43	45.35
	.3	,,	'42	6.42
	356.1	••	31.22	68:36

Mä. De. Gl. W. & S.	352.7 355.0 0 357.2	2n. 2 6	32.0 31.32 32.0	1847:27 63:31 74:30 6:48
W. C. D.	357'2	0	30.22	6.48

390 o.s. 249.

R. A		Dec. 54° 49′	•	M. ··2, 8, 11·2
Ο.Σ. De.	308.0 311.4 312.1	5n. 3n.	-	1853·19 68·04 72·46
	A-	-B	~	

$\frac{A+B}{2}$ and C.

391 Σ. 1639.

COMZ 68 (B).

R. A.	Dec.	М.	
12h 18.4m	26° 15′	6.7, 2.9	

The distance has diminished considerably. Probably binary.

Σ.	290'9	бn.	1.18	1831'40
Ο.Σ.	293.2	In.	0.98	41.39
	289.8	2n.	1.13	2.36
	288.7	In.	'20	4.34
	•	,,	0.93	55.32
_	279.8	,,	.73	70.31
Se.	285.8	2n.	-85	56.00
Sp.	273'1		4	75.39

392 o.s. 250.

R. A.		Dec.		M.
12 ^h 18 ^m		43° 45′		7.7, 8
O. Σ. De.	330.7	3n.	0.44	1845'98

393 Σ. 1641.

R. A.	Dec.	M.
12 ^h 19.6 ^m	38° 24′	10, 10

Rectilinear motion.

H,.	53.4		4	1830,40
Σ.	50.4	2n.	6.14	1.38
De.	42.3		7.73	67.59

394 a CRUCIS.

R. A.	Dec.	M.
12h 19.9m	-62° 34'	1.5, 2, 6

395

Proper motion of A₁ - 0 000 in R. A., and + o" 02 in N. P. D.

AB form a binary system, while AC are probably an optical double-star.

A B.						
H,.	121°6		5.26	1834.39		
	.0	1	i '75	5.50		
	120.8		.75 .61	6.19		
	•		.25 .96	7.18		
	.0	1	96	8.08		
Ja.	.4 117.6		.74	47.10		
	117.6	11	4.77	58.30		
Po.	120		5.7	61.18		
	118.2	40	4 98	61.18		
		A C				
H,	201.2	ĺ	92.4 89.9	35.27		
	.9		89.9	7:30		
Ja.	202 Ó	ł	8g.	47.25		
	'2	2	90	58.50		
Ja.		2		58.20		

R. A.	Dec.	M.
12h 21.2m	27° 42′	8, 8.3
Probably	binary.	
		1-0

Σ. 1643.

Σ.	71°2	5n.	1.95	1830·36
H _j .	66°2		2.0	2·35
De.	54°4		1.49	64·75

Σ. 1644. 396 R. A. Dec. 12h 21.3m 8.7, 9.2

The distance has probably diminished.

Σ. De.	248·6 247·0 •0	3n.	21.82 .08 20.88	1827·55 67·89 70·31
_	 			

Ο.Σ. 251. 397

R. A. Dec. M. 32° 2' 12h 23m 7'4, 9'1

Extraordinary discrepancies are presented by the measures of this difficult star.

Ο.Σ.	128.35	2n.	0'42	1843.77
	132.02	,,	'33	9.88
De.	156.22	,,	single obl	52.42
	149?		obl. ?	8

Σ. 1647. 398

191 (B) VIRGINIS.

R. A. Dec. 10° 23' 12h 24.5m

Magnitudes.—Σ., 7.5, 7.8. Se., 7.5, 7.6. De., 7.5, 8.2. "The relative brightness is undoubtedly variable." $(\Sigma.)$

C. Z. and Se., "white."

 Σ . discovered the duplicity of this star, $\int 0.\Sigma$.

and also, from five years' observations, suspected direct motion. In 1836, however, he saw cause for changing his opinion.

Dawes' observations in 1840 "showed that the variation of angle continued in the same direction, accompanied possibly by a slight increase of distance."

Secchi says that "direct motion is undoubted."

With an increase of distance there has probably been a diminution in the angular motion. Secchi's distance is too small. $(0,\Sigma_{\cdot})$

` .			*	
Σ.	198.6	2n.	1.22	1828.36
	202.8	3n.	.13	9°37
•	203.2	In.	.19	32.34
	205.2	,,	.51	3.34
	204'I	2n.	.24	6.32
H ₂ . Mä.	198.6		•••	0.34
Mä.	204.3		1.50	5.06
	214'3	i	.32	51.27
_	212.3		26	2.31
Ο.Σ.	213.2	2n.	.20	40.32
	.9	In.	46	6.37
	217.6	,,	•57	61.24
_	.6		.65	74.58
Da.	2~7.0	In.	.27	40.31
	212.I	2n.	17	8.43
	210.9	In.	:36	54°37 5°81
De.	214'2		.3	5 01
Se,	212.9	3n.	:39	63.24
86. 12	211.6	2n.	.19	56.36
Eng. W. & S.	218°0	_	.58	64.31
W. & D.		5	'42 '15	73.36
	214'2		.28	2.50
	217°2 216°9	3	·08	.30
G 1.	215.7	5 4 3	.2	4.34
Fer.	209'I	3	.44	7.23
Sp.	216.5		.30	2.31
₩.o.	214'1	In.	.33	6.35
	215.8		.19	39
	220.3	"	.28	-39
Dob.	216.3	,, 3n.		6.24
•	214.4	2n.	1.22	7.22
			- 55	

Σ. 1658. 399

M. Dec. 12h 29m **л 8**, в 9[.]8, с 8 Probably binary.

		AB.		
Σ.	341'5	3n.	2'02	1830.64
Se.	348.8	2n.	1.00	56.90
De.	349'1		2'24	69.08
Ο. Σ.	350.6	In.	'37	70.31
W. & S.	352.0	8	1.97	4.29
	.4	5	2.18	.30
G1.	•	3	.1	'34
Dob.	340'2	In.	.27	7.26
	•	. ~		

257.6 | In. | 10.88 | 70.31

400 Σ. 1661.							
R. A. 12 ^h 30 ^m		Dec. 12° 4		M. 8·5, 8·5			
Σ. Mä.	226°0 228°2 221°1		2.26 .63	1828.67 43.33 4.24			
8e. De. Ο.Σ.	227·3 234·4 232·6	2n.	'42 '62 '41 '7	56·85 66·84 70·30			

401 Σ. 1663. R. A. Dec. M. 210 52 12h 31.2m 7.8, 8.7 0.81 1830.38 117.2 3n. Mä. 119.7 .55 .64 42'33 4[.]32 0.Σ. 124'1 4n. 72 Da. 112'4 .91 52.22 7:34 68:55 Se, 118.0 40 110.4 74[.]31 5^{.8}3 100.3 In. 111.1 ,, G1. 100.8 4.36 Dob. 95.2 In. 7:30

402 Σ. 1664.

R. A. Dec. M. 12^h 32·1^m - 10° 51′ 7·7, 8·8, 11, 11 C. A, yellow; B, blue.

Rectilinear motion.

Σ.	271.6	3n.	17'10	1830.23
De.	254.7		19.44	
G1. W. & S.	253.2	In.	•••	74'26
W. G. D.	252.7	,,		1 .30

403 γ CENTAURI.

R. A. Dec. M. 12^h 34'9^m -48° 18' 4, 4

A binary system.

Common proper motion -0^{4} :022 in R. A., and +0':03 in N. P. D.

•	•			
H,.	351.6	1	0.8	1835.38
•	357.4		-8	6.38
	1.9		1.0	7.14
Ja.	20.6		0.2	56.50
	13.7	15	1.1	7.97
Po.	12'8	27		60.68
El.	8.2	70	1.3	76.63

404 Σ. 1669.

CORVI 58 (B).

R. A. 12 ^h 35 ^m			M. 6, 6 [.] 5		
Σ. H ,	298·9 301·4 302·6	3n.	5.44 6.50 9.2 7.38	1828.66 30.26 1.30 7.31	
8m. 8e. M .		301.2 305.4 306.9	4n.	5.4 .78 .95	\$6.23 63.30

405 Σ. 1670.

y VIRGINIS.

R. A. Dec. M. -0° 47′ 3, 3
C. yellowish.

Da. 172 8 In. 3"22 185440 O.E. 163 3 3 4"44 187077 1712 4n. 36 533 1599 3 64 170 1 7n. 58 7.35 1699 6n. 56 42 1688 8n. 68 845 1688 8n. 68 845 1665 1 94 40. 330 1746 2n. 166 2243 166 5 1 94 410 444 22 6n. 25 6n. 25 339 165 1 166 5 1 94 404 22 6n. 25 339 164 0 7n. 37 542 1720 8n. 44 4 4 29 166 27 3 3 344 1770 8n. 44 4 3 30 1746 2n. 41 5 545 1714 1 2 2 240 1717 6n. 59 638 174 0 7n. 37 542 1720 8n. 44 4 3 30 1746 2n. 41 5 545 167 7 7 94 6 6 70 177 6n. 59 6 38 1698 8n. 749 164 0 7n. 37 542 1720 8n. 44 4 3 30 1698 8n. 749 164 0 7n. 37 542 1720 8n. 44 4 3 30 1698 8n. 749 174 1 2 2 240 1717 6n. 59 6 38 1698 8n. 749 175 1 50 0 5 5 540 1717 6n. 59 6 38 199 1698 8n. 749 8n		_					_			
171 2	Da.	172.8	ın.	3.22	1854.40	ι Ο.Σ.	163.3	3	4.44	1870-77
1		171.2	1	.36			159.9			
170-1 7n. 588 7-35 34 3 86 4-41		٠.		.30	.46	1			54	
169 60. 56				.58	7:35		.4		∙86	
166'5		169.9		'56	'42	Mä.				
2 5n. 77 946 176'4 4n. 3'30 51'96 165'4 4n. 4'10 4'44 72 6n. 25 3'39 164'0 7n. 37 5'42 172'0 8n. 4'4 4'3 31'38 174'0 2n. 4'10 4'44 170'2 8n. 4'4 4'3 627 33'34 170'2 9n. 59 74 45'5 0'8 4'39 169'8 2n. 4'00 8'37 15'0 5'5 5'40 19 9n. 3'88 93'3 15'0 15'0 15'5 169'8 2n. 4'00 8'37 15'0 15'0 15'5 169'8 2n. 4'00 8'37 15'0 15'0 15'5 180'7 10. 200'9 2n. 1'42 41'19 1910 1910 109'2 10. 3'88 93'3 338'6 11'7 6n. 59 3'30 338'6 11'7 6n. 59 3'30 338'6 11'7 6n. 59 3'30 338'6 11'7 6n. 59 3'30 185'4 2'1 5'34 182'9 10. 2'05 3'30 185'4 2'1 5'34 182'9 120 4'34 179'5 3'8 8'36 191'0 193'2 18'4 179'5 3'8 8'36 191'0 193'2 18'3 179'5 3'8 8'36 191'0 193'2 18'3 170'6 4 5'40 195'2 190'8 193'3 170'6 5 7'41 180'2 190'3 18'3 18'3 170'6 5 7'41 180'2 190'3 18'3 18'4 179'5 10. 6'5 4'8 180'0 190'2 18'3 170'6 5 7'41 180'2 190'3 18'3 18'4 170'6 5 7'41 180'2 190'3 18'4 170'6 5 7'41 180'2 190'3 18'4 170'6 5 7'41 180'2 190'3 18'4 170'6 5 7'41 180'2 190'3 18'4 170'6 5 7'41 180'2 190'3 18'4 170'6 6'5 4'8 180'0 190'3 18'4 170'6 7'2 3'35 190'8 13'3 18'4 170'6 7'2 3'35 190'8 13'3 18'4 170'6 7'2 3'35 180'7 18'4 18'4 170'6 7'2 7'38 17'78 19'9 13'30 3'6 170'6 7'2 7'38 17'78 19'9 10'9 10'9 117'5 7'0 8'8 8'39 17'78 11'9 11'9 117'5 7'0 8'44 180'9 10'9 10'9 10'9 117'5 7'0 7'42 17'78 11'9 11'9 117'5 7'0 7'42 17'78 11'9 11'9 117'5 7'0 7'44 160 150'9 148'5 2 2'23 5'46 17'79 11 10'9 11'9 150'2 10'3 10'9 10'9 10'9 10'9 10'9 170'1 1			8n.		8.45	1		IOn.	.28	2.51
8m			5n.	.77	9.46				3.30	
8m 74 9 16 4 10 4 44 2 2 0n. 42 33 39			,,	'94	62.03	1				
### 74-9				4'10		1				
7114	•		7n.	37						4.39
627	5M									5.42
45'5									.59	6.38
150			1	3				-		7.42
round										8.37
10			1	_		m	- 1			9'37
blotty		rouna	1			UII.		zn,		
350 9		hlottm	ļ	1	115					2.35
348'6					25				2 05	3 30
265'4 0'6 7'21 199'2 1, 64 34 34 34 34 34 34 34		350 9	i	1	30	a n			7.60	
235.7			Ì			u.u.		-		
192 8					8.28					
101-6						1				34
185 4									2:08	
181-8			1		5.34					3 39
179.5					7'41					6.36
175.5					8:36		101.0			38
171'6										
171'6		173'9	ł	3.2			100.8			
Encke. 113'9 In 36'59 180'7 ,, '65 8'42 175'3 10 7'19 174'4 ,, '90 9'40 83'8 3n. 0'77 '38 180'7 ,, '96 '41 49'0 4n. '70 8'46 179'9 ,, 30'2 50'46 30'3 1n. '93 9'24 182'9 ,, 2'82 '47 36'1 4n. 1'37 '36 178'1 ,, '98 4'8 48 180'0 ,, '96 '48 182'9 ,, 2'82 '47 36'1 4n. 1'37 '36 178'1 ,, '98 4'8 48 180'0 ,, '96 '50 Ea. 2'19 '30 40'26 179'1 ,, '98 1'34 14'5 '76 2'82 175'3 ,, 3'09 '36 345'9 5n. 4'01 66'46 174'3 ,, '05 37 0.Σ. 211'6 5n. 1'42 40'45 179'1 1 1'19 2'42 2'22'4 4 '63 1'41 1886'1 1 1'16 50 184'5 2 2'23 5'46 175'8 1 '32 3'38 182'9 2 '35 6'38 178'9 1 '29 3'38 182'9 2 '35 6'38 178'9 1 '29 3'38 182'9 2 '35 6'38 178'9 1 '29 3'38 182'9 2 '35 6'38 178'9 1 '29 3'38 172'9 2 '64 9'41 169'1 2 '54 6'28 175'3 173'0 '49 '39 172'9 2 '64 9'41 169'1 10 '40 5'37 179'1 3 '54 8'43 173 10 '49 '39 172'9 2 '64 9'41 169'1 10 '56 '95 172'0 4 '31'3 3'40 173'1 10 '56 '95 172'0 4 '36 5'18 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '90 8'46 170'2 2 '67 8'44 168 10 '79 '47 169'2 2 '67 8'44 170 '25 4'18 9'39 160'9 166'9 4 '93 61'15 175'4 15 3'12 52'24 166'9 2 '97 2'40 173'2 10 '12 3'24 10 '12 3'24 166'9 2 '97 2'40 170'5 4n. '44 6'10 '66 '91 166'0 4 '79 3'46'5 44'2 170'5 4n. '44 6'10 '66'91 166'0 2 '29 6'42 170'6 5n. '50 57'66 5n. '50 57'66'		171.6	1	1					1.36	
Encke. 113'9 In 36'59 180'7 ,, '70 '42 117'5 ,, 7'19 174'4 ,, '90 9'40 83'8 3n. 0'77 '38 176'6 ,, '96 '41 74'3 10n. '65 '48 180'0 ,, '90 3'02 49'0 4n. '70 8'46 179'9 ,, 30'2 50'46 30'3 1n. '93 9'24 182'9 ,, 2'82 47 36'1 4n. 1'37 '36 178'1 ,, '98 '48 Galle. 35'5 29 39'35 177'8 ,, '96 '50 Ra. 27'9 30 40'26 179'1 ,, '98 1'34 14'5 76 2'82 175'3 ,, '30'9 36 0.Σ. 211'6 5n. 1'42 40'45 179'1 1 19 2'42 202'4 4 '63 1'41 186'1 1 16 '50 184'5 2 2'23 5'46 175'8 1 '32 3'38 182'9 2 '35 6'38 178'9 1 '29 '38 182'9 2 '35 6'38 178'9 1 '29 '38 179'1 3 '54 8'43 173 10 '49 5'37 179'1 3 '54 8'43 173 10 '49 5'37 179'1 3 '54 8'43 173 10 '49 5'37 179'2 4 '73 50'39 171 10 '81 '93 172'9 2 '64 9'41 169 12 '54 6'28 175'2 4 '73 50'39 171 10 '81 '93 172'0 4 3'13 3'40 173 10 '61 '98 172'0 4 3'13 3'40 173 10 '69 12 '54 6'28 170'2 2 '63 7'44 168 10 '90 8'46 170'2 2 '63 7'44 15 3'12 52'24 165'9 2 '97 2'40 173'2 10 '12 3'24 165'9 2 '97 2'40 173'2 10 '12 3'24 165'0 3 4'05 4'42 170'5 4n. '44 6'10		170.6		1 .5	7'41		180.3		·6s	8.42
Series 113'9 11. 36'59 180'7 '55 '52 9'40 83'8 3n. 0'77 '38 176'6 '90 '41 176'6 '90 '43 49'0 4n. '70 8'46 179'9 3'02 50'46 30'3 1n. '93 9'24 182'9 2'82 '47 4n. 137 '36 177'8 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 48 180'0 '98 '48 182'9 '98 '48 48 182'9 '98 '48 48 180'0 '98 '48 182'9 '98 '48 182'9 '98 '48 182'9 '98 '48 182'9 '98 134 180'1 '177'8 '98 134 184'5 2 2'23 5'46 175'3 '95 33'38 182'9 2 '35 6'38 178'9 1 '29 38 182'9 2 '35 6'38 178'9 1 '29 38 182'9 2 '35 6'38 178'9 1 '29 38 179'1 3 '54 8'43 173 10 '49 5'37 179'1 3 '54 8'43 173 10 '49 5'37 179'1 3 '54 8'43 173 10 '49 5'37 179'1 3 '54 8'43 173 10 '49 5'37 179'1 3 '54 8'43 173 10 '49 5'37 179'1 10 '81 '93 172'0 4 '31'3 3'40 171 10 '81 '93 172'0 4 '31'3 3'40 171 10 '59 '94 170'2 2 '63 7'44 168 10 '79 '47 169'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 168 10 '79 18 168 10 '79 47 169'2 2 '67 8'44 170 25 4'18 9'39 166'9 4 '93 61'15 175'4 15 3'12 52'24 165'0 2 '90 3'46 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0 2 '29 6'42 170'5 4n. 44 6'10 166'0		169.9		• 8	8.39			i .	•70	
117'5	Encke.		In.		36.29	1	180.4			52
83.8 3n. 0.77 38 176.6 ,, 96 41 74.3 10n. 65 48 18000 ,, 302 50.46 303 1n. 93 9.24 182.9 ,, 2.82 47 36.1 4n. 1.37 36 178.1 ,, 98 48 48 35.5 22.9 39.35 177.8 ,, 96 50 50 48 48 179.9 ,, 30.2 50.46 179.9 ,, 30.2 50.46 179.9 ,, 30.2 50.46 179.1 ,, 98 48 48 179.9 ,, 98 48 1.34 179.9 ,, 98 1.34 179.1 ,, 98 179.1 ,, 98 1.34 179.1 ,, 98 1.34 179.1 ,, 98 1.34 179.1 ,, 98 17		117.2	,,		7.19		174'4	ı		9.40
74.3 Ion. 65		83.8		0.77		1	176.6	,,	•96	'41
30°3 1n. '93 9'24 182°9 ", 2'82 '47 '98 '48 '48 '35° '30 40°26 179°1 ", '98 1°34 141°5 ", '96 '30 345°9 5n. 4°01 66°46 174°3 ", '05 33°39 36° 37°1 4 '86 2'41 173°8 1 '24 '50 184°5 2 2'23 5°46 175°8 1 '32 3'38 182°9 2 '35 6°38 175°8 1 '29 '38 182°9 2 '35 6°38 1778°9 1 '29 '38 172°9 2 '64 9'41 169 12 '54 6°28 175°3 3 '39 172°9 2 '64 9'41 174 10 '40 5°37 179°1 3 '54 8'43 173 10 '49 6°38 175°2 4 '73 50°39 171 10 '81 '93 172°0 4 3°13 3'40 171 10 '56 '95 172°0 4 3°13 3'40 171 10 '56 '95 171°0 4 3°36 5°18 168 10 '79 '94 166°9 2 '63 7°44 168 10 '79 '47 169°2 2 '63 7°44 168 10 '79 '47 169°2 2 '67 8'44 170 25 4°18 9°39 166°9 4 '93 61°15 175°4 15 3°12 52°24 165°0 2 '97 2'40 173°2 10 '12 3°24 165°0 2 '97 2'40 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°6 4n. '44 6°10 166°0 2 '29 6'42 170°6 4n. '4		74'3	IOn.	.65		1	180.0	1	190	'43
30°3 1n. '93 9'24 182°9 ", 2'82 '47 '98 '48 '48 '35° '30 40°26 179°1 ", '98 1°34 141°5 ", '96 '30 345°9 5n. 4°01 66°46 174°3 ", '05 33°39 36° 37°1 4 '86 2'41 173°8 1 '24 '50 184°5 2 2'23 5°46 175°8 1 '32 3'38 182°9 2 '35 6°38 175°8 1 '29 '38 182°9 2 '35 6°38 1778°9 1 '29 '38 172°9 2 '64 9'41 169 12 '54 6°28 175°3 3 '39 172°9 2 '64 9'41 174 10 '40 5°37 179°1 3 '54 8'43 173 10 '49 6°38 175°2 4 '73 50°39 171 10 '81 '93 172°0 4 3°13 3'40 171 10 '56 '95 172°0 4 3°13 3'40 171 10 '56 '95 171°0 4 3°36 5°18 168 10 '79 '94 166°9 2 '63 7°44 168 10 '79 '47 169°2 2 '63 7°44 168 10 '79 '47 169°2 2 '67 8'44 170 25 4°18 9°39 166°9 4 '93 61°15 175°4 15 3°12 52°24 165°0 2 '97 2'40 173°2 10 '12 3°24 165°0 2 '97 2'40 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°5 4n. '44 6°10 166°0 2 '29 6'42 170°6 4n. '44 6°10 166°0 2 '29 6'42 170°6 4n. '4		49°0	4n.		8:46			,,		
Galle. 35.5 ka. '29 (30) 39.35 (26) 177.8 (76) '96 (75) '50 (76) '50 (76) '282 (175.3) '175.3 (76) '36 (174.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '36 (37.3) '37 (37.3) '37 (37.3) '37 (37.3) '37 (37.3) '37 (37.3) '37 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '38 (37.3) '39 (37.3) '38 (37.3) '38 (37.3) '39 (37.3)		30.3	ın.	.93				,,		'47
Ra. 27 9 30 40 26 179 1 98 1 34 14 5 '76 2 82 175 3 309 36 345 9 5n. 401 66 46 174 3 05 37 0.Σ. 211 6 5n. 1 42 40 45 179 1 1 19 2 42 202 4 4 63 1 41 186 1 1 16 '50 197 1 4 '86 2 41 173 8 1 24 '50 184 5 2 2 23 5 46 175 8 1 32 338 182 9 2 35 6 38 178 9 1 29 '38 179 1 3 '54 8 43 173 10 '49 '39 179 1 3 '54 8 43 173 10 '49 '39 172 9 2 '64 941 169 12 '54 628 175 2 4 '73 50 39 171	A		4n.	1.32		1		,,		'48
14.5 76 2.82 175.3 7309 36 345.9 5n. 4 o				'29	39.35			,,		
0.Σ. 211.6 5n. 4.01 66.46 174.3 ,, '05 37 211.6 5n. 1.42 40.45 179.1 1 .19 2.42 202.4 4 '63 1.41 186.1 1 .16 '50 184.5 2 2.23 5.46 175.8 1 .24 .50 184.5 2 2.35 6.38 178.9 1 .29 .38 182.9 2 '35 6.38 178.9 1 .29 .38 182.9 2 '35 6.38 178.9 1 .29 .38 179.1 3 '54 8.43 173 10 .49 .39 179.1 3 '54 8.43 173 10 .49 .39 172.9 2 '64 9.41 169 12 .54 6.28 175.2 4 '73 50.39 171 10 .81 .93 173.0 3 '87 1.41 174 10 .56 .95 172.0 4 3.13 3.40 173 10 .56 .95 172.0 4 3.13 3.40 173 10 .56 .95 172.0 4 3.13 3.40 173 10 .56 .95 171.6 4 .36 5.18 168 10 .90 8.46 170.2 2 '63 7.44 168 10 .90 8.46 170.2 2 '67 8.44 170 25 4.18 9.39 166.9 4 '93 61.15 175.4 15 3.12 52.24 165.0 3 40.5 4.42 170.5 4n44 6.10 165.0 3 40.5 4.42 170.5 4n44 6.10 165.0 3 40.5 4.42 170.5 5n50 57.66	Ka.			.30		•		,,		
O.Σ. 211.6 5n. 1.42 40.45 179.1 1 .19 2.42 202.4 4 63 1.41 186.1 1 .16 .50 197.1 4 86 2.41 173.8 1 .24 .50 184.5 2 2.23 5.46 175.8 1 .32 3.38 182.9 2 .35 6.38 178.9 1 .29 .38 179.1 3 .54 8.43 173 10 .49 .33 172.9 2 .64 9.41 1.69 12 .54 6.28 175.2 4 .73 50.39 171 10 .81 .93 173.0 3 .87 1.41 174 10 .59 .94 172.0 4 3.13 3.40 173 10 .61 .98 171.6 4 3.36 5.18 168 10								,,		
202'4	A 30	345.9				į				37
197'1 4 '86 2'41 173'8 1 '24 '50 184'5 2 2'23 5'46 175'8 1 '32 3'38 182'9 2 '35 6'38 178'9 1 '29 '38 '5 3 '39 7'42 174 10 '40 5'37 179'1 3 '54 8'43 173 10 '49 '39 172'9 2 '64 9'41 169 12 '54 6'28 175'2 4 '73 50'39 171 10 '81 '93 173'0 3 '87 1'41 174 10 '56 '95 172'0 4 3'13 3'40 173 10 '61 '98 171'6 4 '36 5'18 168 10 '90 8'46 170'2 2 '67 8'44 170 25 4'18 <t< td=""><td>0.2.</td><td></td><td></td><td></td><td></td><td></td><td>179'1</td><td></td><td></td><td></td></t<>	0.2.						179'1			
184.5 2 2.23 5.46 175.8 1 .32 3.38 182.9 2 .35 6.38 178.9 1 .29 .38 .5 3 .39 7.42 174 10 .49 .38 .179.1 3 .54 8.43 173 10 .49 .39 .172.9 2 .64 .941 .169 12 .54 .628 .175.2 4 .73 .50.39 .171 10 .81 .93 .173.0 3 .87 .141 .174 10 .56 .95 .172.0 4 .313 .340 .173 .10 .61 .98 .171.6 4 .36 .518 .168 .10 .90 .846 .170.2 .2 .63 .744 .168 .10 .90 .846 .170.2 .2 .67 .844 .170 .2	•			103		İ				
182'9 2 '35 6'38 178'9 1 '29 '38 '5 3 '39 7'42 174 10 '40 5'37 179'1 3 '54 8'43 173 10 '49 '39 172'9 2 '64 9'41 169 12 '54 6'28 175'2 4 '73 50'39 171 10 '81 '93 173'0 3 '87 1'41 174 10 '59 '94 172'0 4 3'13 3'40 173 10 '61 '98 171'6 4 '36 5'18 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '79 '47 169'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>173.0</td><td></td><td></td><td>30</td></t<>						1	173.0			30
'5 3 '39 7'42 174 10 '40 5'37 179'1 3 '54 8'43 173 10 '49 '39 172'9 2 '64 9'41 169 12 '54 6'28 175'2 4 '73 50'39 171 10 '81 '93 173'0 3 '87 1'41 174 10 '59 '94 '0 3 '99 2'43 174 10 '56 '95 172'0 4 3'13 3'40 173 10 '61 '98 171'6 4 '36 5'18 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '79 '47 169'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. 2'				2 23		1	1/5 0			3.35
179'I 3 '54 8'43 173 10 '49 '39 172'9 2 '64 9'4I 169 12 '54 6'28 175'2 4 '73 50'39 17I 10 '8I '93 173'0 3 '87 1'4I 174 10 '56 '95 172'0 4 3'13 3'40 173 10 '6I '98 171'6 4 '36 5'18 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '79 '47 169'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 167'3 2 '90 3'46 '0 10				35	0 30					5.27
172'9 2 '64 9'41 169 12 '54 6'28 175'2 4 '73 50'39 171 10 '81 '93 173'0 3 '87 1'41 174 10 '59 '94 '0 3 '99 2'43 174 10 '56 '95 172'0 4 3'13 3'40 173 10 '61 '98 171'6 4 '36 5'18 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '90 8'46 170'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 167'3 2 '90 3'46 '0 10			١١	39	8:42		172			
175 2 4 '73 50 39 171 10 '81 '93 173'0 3 '87 1'41 174 10 '56 '95 172'0 4 3'13 3'40 173 10 '61 '98 170'2 2 '63 7'44 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '90 8'46 170'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 165'9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'5 4n. '44 6'10		172'0	3	64			160		1 .54	
173 ° 0 3 '87				'72					-87	
'O 3 '99 2'43 174 10 '56 '95 172'0 4 3'13 3'40 173 10 '61 '98 171'6 4 '36 5'18 168 10 '90 8'46 170'2 2 '63 7'44 168 10 '79 '47 169'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 165'9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'5 5n.<			2	1 .87					.20	
171.6 4 '36 5.18 168 10 '90 8.46 170.2 2 '63 7.44 168 10 '90 8.46 169.2 2 '67 8.44 170 25 4.18 9.39 167.9 3 '76 9.38 47.94 179.9 1n. 2.88 47.94 166.9 4 '93 61.15 175.4 15 3.12 52.24 165.9 2 '97 2.40 173.2 10 '12 3.24 167.3 2 '90 3.46 '0 10 '06 '91 165.0 3 4.05 4.42 170.5 4n. '44 6.10 164.0 2 '29 6.42 170.5 5n. '50 57.96		-73.0	3	.00		1		1	·š6	-65
171.6 4 '36 5.18 168 10 '90 8.46 170.2 2 '63 7.44 168 10 '90 8.46 169.2 2 '67 8.44 170 25 4.18 9.39 167.9 3 '76 9.38 47.94 179.9 1n. 2.88 47.94 166.9 4 '93 61.15 175.4 15 3.12 52.24 165.9 2 '97 2.40 173.2 10 '12 3.24 167.3 2 '90 3.46 '0 10 '06 '91 165.0 3 4.05 4.42 170.5 4n. '44 6.10 164.0 2 '29 6.42 170.5 5n. '50 57.96			4	3.13					.61	•ó8
170°2 2 '63 7'44 168 10 '79 '47 169°2 2 '67 8'44 170 25 4'18 9'39 167°9 3 '76 9'38 Ja. 179'9 1n. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 165'9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'5 5n. '50 57'96		171.6		.36	5.18		168	10	.90	8.46
169'2 2 '67 8'44 170 25 4'18 9'39 167'9 3 '76 9'38 Ja. 179'9 1n. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 165'9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'5 5n. '50 57'96				.63	7.44	1	168	10	'79	
167'9 3 '76 9'38 Ja. 179'9 In. 2'88 47'94 166'9 4 '93 61'15 175'4 15 3'12 52'24 165'9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'6 5n. '50 57'96		169'2	2	.67	8.44	1_	170	25	4'18	
166.9 4 '93 61.15 175.4 15 3'12 52'24 165.9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'6 5n. '50 57'06		167.9	3		9.38	Ja.		ın.	2.88	
165'9 2 '97 2'40 173'2 10 '12 3'24 167'3 2 '90 3'46 '0 10 '06 '91 165'0 3 4'05 4'42 170'5 4n. '44 6'10 164'0 2 '29 6'42 170'5 5n. '50 57'96		166.9	4	'93	61.12	1	175.4			
165 0 3 4 05 4 42 170 5 4n. 44 6 10 164 0 2 29 6 42 170 6 5n. 50 57 96		165.9	1 .				173.5			
164'0 2 '29 6'42 170'6 5n. '50 57'96		167.3	1			1				
164'0 2 '29 6'42 170'6 5n. '50 57'96		165.0	3							
103 2 2 1 30 1 8 44 1 178 0 1 9 1 2 9 1 60 30		164.0							.50	57:90
		103.5	2	.30	8.44	1	178.0	9	1 2.9	1 00.30

v _	0		"		1 _	۰		. "	
Ja.	177.7	10	3 12	1861.19	Se.	172.2	5n.	3.37	6.38
Bond.	179'2	i	2·5 ·7	48.45	İ	171.6	бn.	'54	6.38
	181.6	l	.7	45	i	170.7	7n.	73	7:39
	179.8	İ	3.0	9'45		172.0	3n.	.61	8.40
X .	7		.0	*45 8*48	l	169.4	,,	.91	9'44
■.	180.2	2n.	2.60			ell 172.9	l	·58	7.40
	177.0	3n.	.92	9.42	Kh.	169.2	2n.	4.02	60.44
	179.6 176.3	4n.	'94	50.48		165.3	,,	.27	4'44
		3n.	3.04	1.36	1	164.3	3n.	'33	5'45 71'38
	179.7	2n.	.19	2.48		159.7 161.4	"	.49 .82	71.38
	177.3 166.2	In.	.30 4.11	3.38	Mit.	101.4	In.	l	2'40
	169.0		•06	27	A110.	171.9	In.	•••	61.44
	167.7	27	3.69	27		167.6 167.6	,,	•••	'46
	168.3	"	4.00	29	Ro.	165.1	2n.		2.45
	166.2	4n.	1.0	2.38	Eng.	346.3	9n.	.33	3°27 5°14
	··š	In.	12	3.51		166.3		.01	14
	168.4	,,	'02	.25	Ta.		In.	.07	6.51
	164°Ġ	,,,	'05	.30			,,	37	.31
	167.3	,,	.30	4.39		163.4	",		.48
	164.1	,,	'24	41		162.8	,, .	5°15 °28	7:24
	165.5	4n.	•28	5.36	1	160.2	,,	'05	8.26
	.2	2n.	*34	5°36 6°44		159.5	,,	.33	9.25
	161.4	6n.	'42	7:38	1	159·5 158·6	,,		70:39
	160.8	7n.	.63	8.42	1	163.1	2n.	4'76	1.38
	.0	In.	.85	9'49	l	158.6	In.	.80	2.37
	159.3	,,,	*49 *89	'49	l	159.3	,,	5'39	4'32
	160.1	,,	.89	.20	l _	.6	,,	•••	6.36
	.2	3n.	.70	70:36	Du.	341.8	17n.	4.43 58	69.98
	·5	,,,	:79	'40	į	1.	,,	.58	72.13
	161.5	In.	.44 .56	1.33	Br.	339.1	14n.	•66	5'14
	160.8 160.8	"	.59	:34	Gl.	164'9	2	:77	69.22
	9	"	49	*34 *36	Gi.	163°2	7	.7 .6	70.22
	161.0	"	60	37		.3	5 5	.,	'44
	159.9	2n.	.72	2.39		.0	ا ي	.7 .6	1.33
	160.9	In.	.91	'45	ł	161.0	5 5	5.0	.41 .85
	•2	5n.	· 8 7	3.40	1	159.7	2	4.4	2.30
	158.4	бn.	5.33	4.33		4	5 5	7.7	3.35
	159.7 176.6	,,	.09	5.29	1	160.0	3	·6	3.50
Flt.		,,	2.94	50.36		'Ο	3	5.0	4.00
	175.9	,,	3.04	1'40		.9	IO	.16	.53
	.4	5n.	'14	2.42		158.5	4n.	4.86	5.22
T	174'5	6n.	.18	3.33		.2	13n.	.78	6.27
DATING	1 p . 176.4		2.01	0.30		·5	2n.	•••	7.07
Mi.	178.6		.88	.30			In.	5.00	9:35
ALI.	175.9	15 48	3'04 '12	1'47	W. & S.		6	.30	1.32
	174.9	56	10	2.26		159.2	6	'40	'40
De.	353.6	7n.	26	3°27 54°46	l	162.2 161.6	5 10	•59	2,30
- ••	171.5	4n.	.22	2.19		162.6	8	•••	.33 .38
	170.6	5n.	.53	6.52	İ	161.0	8	 4'9	3.53
	169.5	In.	.55 .58 .79	7.09	l	8		5.0	4.30
	348.5	6n.	79	8.34	ŀ	160.4	7	'02	.31
	345.9	18n.	4.08	63.33		340.2	5	4'97	2.30
	164.9	8n.	.09	63·33 4·28	Lindste		3n.	7.96	3.69
	344.2	9n.	.18	5.26	Schi.	339.5	In.	·91	5.37
	163.6	13n.	.23	7.05	Sp.			·91	*37
	-6-4	6n.	.31	8.58		.0		.84	6.45 .38
	162.6	,,	.61	70.25	C.O.	159.8	4n.	5.30	'38
	161.7	5n.	•64	1.56	W .	158.1	8n.	.19	7:30
	160.3	"	:54	2:37	W .0.	160.0	In.	.12	6.39
		,,	·64	73'34	i	159.9	,,	*24	'41
	159.9 159.9	3n.	.65 .84	4·35 5·28	l	160.8	,,	.08	'41
	*20 A	5n.	1 04	1 5 20		159.8	ا ,,	12	'41

Dob.	336.5	5n.	5.34	1876°26 7°28
F1. P1.	335.8 338.4 160.0	4n. In. 5n.	.04 4.96 .65	'43 '24
Goldney.	157.1	3n.	5.06	8.37

406 Σ. 1678.

R. A. Dec. M. 12^h 39'4^m 15° 2' 6'3, 7

Rectilinear motion.

The angle has diminished, but the distance has changed very little, if at all.

Dunér gives

$1852.57.$ $\Delta = 32''.34.$ $P = 207'.4 + 0'.24 (t-1850.0).$									
So.	213'4	2n.	33.36	1825.30					
Σ.	212.2	3n.	2.73	8.29					
۵.	210.2	,,	45	36.25					
H.	.4	"	30.	2.38					
Ο.Σ.	209.6	ın.	32.83	40.59					
0.2.	Ι'	,,	87	2.41					
	'4	,,	'70	42					
	208.0	",	.54	45.35					
	202.7	,,	.31	68.36					
Mä.	208.2	,,	10.	45.59					
	207.7	3n.	.39	51.27					
	'n	īn.	31.76	2.35					
	206'4	ĺ	'90	4.38					
	' O	5n.	32.09	5.57					
	205.7		31.99	6.36					
	204.8	In.	32.75	8.36					
	.7	,,	'96	61.41					
Da.	207.6	,,	'06	51.29					
De.	205'5	3n.	'45	8.35					
	204'0	4n.	.17	63.53					
M.	201.9	l	35.06	6.43					
Du.	202'7	2n.	32'41	9'94					
W. & 8.	.0	4	'2	73'35					
	201.3	2	'4	4.30					
Pl.	.ı	4n.		6.95					
	•••	3n.	32.58	7.16					
Deb.	200'4	4n.	31.9	.29					
Fl.	.3	In.	1 .1	.35					

407 Σ. 1687.

35 COME BERENICES.
R. A. Dec. M.
12^h 47[·]4^m 21° 54′ 5, 7'8, 9

C. E., A, yellowish; B, blue.

Σ. discovered that the larger star was double.

H, and So., "Double: a small star, extremely faint; so much so, that it has been overlooked in former observations."

A.C. says there is no good ground for thinking that there is anything but a small relative motion, and that the earlier observations may be faulty owing to the faintness of the smaller star.

Dawes writes: "My measures at Mr. Bishop's observatory in 1842 left no doubt of the close pair having an orbital motion." There is no evidence of change in the more distant star."

The distance may have dirrinished of late, but the decrease in the angular change is opposed to this view. A C still unchanged, $(0.\Sigma.)$

A B

		▲ B.		
Σ.	25°3	5n.)	ı"43	1829.99
	28.4	In.	-38	33.37
Sm.	30.0		ŏ	4.53
	42.0		.2	43 32
Da.	36.6	5n.	·šo	2.39
	38.0	4n.	'41	3'34
	39.3	3n.	•••	8.12
	•••	2n.	·57	°45
	40.0	,,	·55 ·61	9.33
	43.8	3n.		53.38
	•6	"	.20	4'41
	44.7	In.	.29	7'45
	47.7	"	·44	60.34
Ο.Σ.	39.6	,,	.58	42.39
	•6	,,	.53	2.31
	41.5	,,	:53	.31
	52.8	,,	17	66.42
	21.8	,,	.26	74.40
Mit.	40.4		.32	47.57
Mä.	43°I	4n.	.23	51.00
	.9	3n.	23	2.35
	40.2	In.	17	4.38 5.42
	44.2	"	*33 *26	6 39
	42.2	4n.	.23	8.13
Se.	43°3 41°4	5n.	.31	6.41
De.	46 I		.2	48
20.	40.6	3n.	.2	7.66
	42.8	4n.	.3	8.44
	54'3	In.		62.95
	49.6	6n.	.26	3.31
	53.5	7n.	•23	5'94
	54.3	3n.	.27	8-32
	57.4	In.	.16	70'15
	.5	,,	•23	1.33
	56.2	3n.	'40	2.43
	55.5	,,	.20	3.41
	57.4	2n.	*29	4.31
	58.3	,,	.33	2.31
Mo.	45.4	12	'44	57.28
Kn.	52.8	In.	.31	65.31
W, & 8.	57.0	5	'28	73'24

				******	-
W. & S. Gl. Schi. Sp. Dob. Pl.	58°.7 59°.1 56°.8 57°.7 58°.4 61°.1 56°.2 58°.5 57°.1 61°.3 66°.0 61°.5	6 4 5 4 7 7 7 5 3 4 In. 3n. 2n. 2n.	1'33 1'44 '40 '27 1'40 1'32 '07 '07 1'40	1873'35 4'26 '30 5'30 '32 '39 '43 6'36 4'34 5'31 '32 6'34 7'29	
		A C.			
Σ. Ο. Σ. Mo. Kn. Ts. W. & S. Dob.	124.7 '9 '2 '8 125.5 61.6 125.3 124.9 '1	4n. In. I2 "" 4 2n. 4n.	28.60 .56 .16 .32 27.94 8.69 	30·13 45·31 57·29 65·31 71·39 6·36 5·30 6·33 7·27	
408		Σ. 2	 56.		l
R. A. 12h 50.3 One of able.	m .	Dec -0° 13 stars is	8′	M. 7'2, 7'6 oly a vari- 1848'70 67'37 75'36	
409	Ο.	5. 2!	57.		l
R. A. 12 ^h 51 ⁿ O. Σ. De.		Dec. 46° 1		M. 7'5, 8'2 1846'73 67'22	
410	Σ.	170)3.		ı
R. A. 12 ^h 53'1' E. Mä. De.	n	Dec. 8° 3. A, yello 2n. In.	3' wish.	M. 8, 11 1829 ⁻²⁷ 44 ⁻³¹ 65 ⁻³⁰	
4 5 5		4			i
411	Σ.	17C)7.		
R. A. 12 ^h 55'3 ^t	20:8 I	Dec. 16° 3	31'	M. 8·5, 10·3	

OKLO.				207
412	Σ	. 17	11.	
R. A. 12h 56.5	n	Dec	7'	M . 8·7, 9·5
Probab	oly bina	r y.		
Σ. De. W. \$ 5.	355.9 348.4 352.3	2n. In.	1.43 .58	1829·35 63·24 76·41
413	0.	Σ. 2	60.	
R. A. 13 ^h 1·8 ⁿ		Dec. 27° 35	5′	M. 7'9, ⁸ '3
Mä.	120.0		0.75	1843'30
Ο. Σ. De.	111.3 111.0	5n. 3n.	·50 ·75 ·78	6.28 5.75 67.39
414	Σ.	172	32.	
R. A. 13 ^h 2 ^m		Dec 16°		M. 7·8, 8·8
		-	B, bluis	h.
•	retrogra	de mov	ement.	
Σ. So.	343'9 339'8	2n.	3.24	1829·30 56·40
0.Σ.	336.8	In.	.36	68.36
W. & S.	335°O	2		74.36
	339.8	5		.30
	•••		3'41	.30

415 Σ. 1728. ·

42 COME BERENICES.

6.3, 2.4

C. A, yellow; B, yellower than A; De., both white.

Σ., the discoverer, writes thus in the M. M.: "This star is worthy of all attention; for there is a suspicion that its period is smaller than that of EUrsæ. It seems certain that in five years the angle has changed 180°, and that the minimum distance fell between 1829 and 1833, and nearer to 1833."

In the P.M. he adds, "Between 1829 and 1851 the star has twice become single, first in the years 1833 and 1834, and then in the years 1845 and 1846."

Sm. found it round in 1832, and in 1839

he "could not palpably notch them."

Dawes writes, "One of the closest of Σ.'s discoveries. It requires the finest and largest telescopes."

In 1874 O. Z. discussed the observations made at Dorpat and Pulkowa, and found a period of 25'71 years. In 1866, under less favourable circumstances, the period

deduced was 25.5 years.

He remarks, "During the last forty years
[the star] has presented three times more the rare phenomenon of an occultation of one star by another." His elements are

 $T = 1859.92 \pm 0^{9}.080$ $\lambda = 99^{9}.11' \pm 0^{9}.45^{8}.6$ $a = 0''.657 \pm 0''.0126$

 $e = 0.480 \pm 0.0239$ $m = 14^{\circ} 0.2 \pm 2.75$, or revolution $=25^{9}.71\pm0^{9}.084.$

(See Bull. de Acad. Imp. de St. Petersbourg, t. iii. and v).

The common proper motion is - 0".433 in R. A., and $-0^{\prime\prime\prime}$ 18 in N. P. D.

	0		"	
Σ.	9.5	2n.		1827.83
	11.6	3n.	0.64	29.40
		2n.	•••	33'37
	•••	In.	•••	4.42
	11.5	1 42		F:30
	191.5	{ 4n.	•••	5.39
	10.3	11	0:30	6.41
	190'2	} 3n.	0.30	0 41
	10.0	6n.	.39	7'40
	11.2	3n.	'35	8.41
Sm.	round	*		2.38
	10.0			9.41
	5.0		0.3	42.20
Da.	198.5		'42	0'74
	single			2.23
	,,	ļ		3.45
	14'2	1	0.62	53.09
	12.7	ļ	.22	4'39
	183.2		•2	60.34
	191.0		•5	3.25
	193.4		.45	4.43
0.Σ.	195.4	3n.	.55	40.45
	194.2	2n.	.49	1.41
	193.9	3n.	.31	2.40
	- ,,,	sing		5.47
			•	. 371

^ ~	66 [°] 8	oblon	~ >	1846.40
Ο.Σ.	15.2	oblon	0.50	7'42
	12.7	3n.	'26	8.42
	8.6		'42	9.42
	11.4	"	.48	20.39
	7.0	,, 4n.	-48	1.42
	10.9	3n.	.26	2.43
	10.8	_	.57	3.40
	14'1	in.	-60	4.38
	9.1	2n.	.62	344
	7.7	1	'43	7 49
	8.5	"	.38	8:44
		ˈ ,, sing	ie	9:37
	185.6	2n.	0'43	9°37 61°42
	191.6	,,	'54	2.40
	189.3	In.	•55	3 44
	192.2	3n.	.21	4.42
	188.5	,,	'40	6.44
	193.0	2n.	.36	7:47
	195.8	,,	.21	8 44
	195	In.	obl.?	9.47
	• • • • • • • • • • • • • • • • • • • •	sing	le	70.44
	•••	,	,	1.43
	20	In.	oblong	2.42
	9	2n.	0.50	3.46
	9.5	,,	.30	4.41
Mä.	4.7	IIn.	.32	41.40
	15.2	4n.		2.45
	194.2	3n.	0.46	51.96
	190.9	ěn.	·52 ·62	2.42
	194 0	I4n.	.62	3.32
	193.6	8n.	•68	4.40
	198.7	2n.	.57	5.38
	192.7	5n.	·š8	6.40
	188.3	2n.	.20	7:40
İ	196.5	6n.	'40	8.40
	215.8	3n.	'2	9:36
Ο.Σ.	3.8	4n.	'42	1.42
De.	189.1	7n.		63°23
ł	197'1			71.13
	194.9		0:50	5.43
Ta.	190'4 191'6	5n. In.	0.20	69.5
Du.	19.0	3n.	0.13	9
	16.2	4n.	.12	70
	18.2	2n.		2
	11.2	6n.	0.35	5.25
W. & S.		rou	n:l	5°53 3°36
	192.5	I	.5	2.30
	186.4	4	·š	6·36
Schi.	15.5	In.	.39	5.43
	13.1	,,	.47	.44
W.0.	190.3	,,	.38	6.37
[194.3	,,	'42	1 19
l	193.9	,,	40	39
1	195.2	,,	42	'4ī
410		٠ ٠	Q 1	
416	O	Σ. 2	OT:	

C. yellowish.

Probable change in angle and distance. The increase in distance has been accombanied by a retardation in the angular accomment. $(0.\Sigma.)$

Dunér gives

 $\Delta = 0^{\circ}.81 + 0'' \cdot 025 (t - 1860 \cdot 0).$

	•		",	
).Σ.	359.5	2n.	0.63	1843:80
	356.2	4n.	.22	7.17
	352.2	3n.	.91	57.76
	350'4	2n.	1.08	66.86
Ľä.	366·o		0.48	45.86 8.00
!	362.7		'35	8.00
	386.2		.22	51.27
) e.	350'7	1	•99	66.99
)u.	351.3	IOn.	1.02	70.04
ip. Pl.	349 6	1	'16	5.32
?I.	353'5	3n.	.11	7.20
W. & B.	350.9	5	'14	'45
	348.4	9	.53	46

417	Σ.	1734.
#1 (4.	1104.

R. A. Dec. M. 13^b 14.6^m 3° 34′ 7.2, 7.9

C. white.

Very slow change. Probably a binary.

Σ.	198.1	4n.	0.23	1830.32
Kä,	200'0	i	1.1	41.37
	202.2		0.82	2.46
	203.0		'96	3.30
	196.1		'96	51.35
	200'4		1.03	2.39
0.Σ.	204'0	5n.	0.06	47.16
Be.	198.2	In.	·84	56.31
	· ·8	,,	.79	.38
0 1.	192.6	۱,, ۱	1.1	74'32
W. & S.	191.3	2n.	'06	'32
	195.0	3n.	.06	5'35
Bp.	193.5	١ .	•24	'37

418 Σ. 1742.

R. A.	Dec.	М.
13 ^h 18 ^m	2° 2′	7.4, 7.9

C. yellowish white.

Σ. Mä. O.Σ.	351.1	4n. 2n.	1.39 .18	1831.85 43.30 50.99
V. ٺ.	340 1	311. 1	10	30 99

419 Σ. 1744.

Ш	48	JK.

R. A. Dec. M. 13^h 19·1^m 55° 33′ 2·1, 4·2

C. greenish white.

A very fine object, and probably the first star which was observed to be double. Riccioli discovered it in 1650; it was seen double by Kirch in 1700, and first measured by Bradley in 1755. The common proper motion of the pair is + 0°017 in R. A. and + 0°04 in N. P. D. Alcor also seems to have the same proper motion as Mizar.

Between these two stars Einmart in 1691 discovered one of the 8th magnitude: its position in 1839 was 102°-6, distance 8' 45".

(Sm.)

In 1857 Bond tried some experiments in Stellar photography. Mizar and Alcor were the objects chosen: the distance between these two stars was found to be 707".8, and that between Mizar and its companion 14".6. The following results were obtained from an examination of eighty-six photographs: "the probable error of the distance of the centres of the photographs of Mizar and its companion is \pm 0".072 for a single pair of images: the probable error of a single micrometer measurement of a double star of this class, taken in the ordinary way, is \pm 0".127; so that the relative value of the photograph is $\binom{0.127}{0.72}$; or the photograph is worth three times as much as a single direct measure."

Dunér gives the formulæ

1852·16.
$$\Delta = 14/29$$
.
P = 147°·7 + 0°·025 (t - 1850·0).

	•		"	
Bradley.	143'1		13.88	1755.00
\mathbf{H}_{1} .	•••	3n.	12.3	79.76
	•••	7n.	14.0	80'40
	146.8	2 n.	.3	1.88
	141'2	In.	•••	1802.75
Σ.	145.6	,,	•••	21.80
	•••	2n.	14.74	2.76
	147.6	6n.	•36	30.63
H, & 80.	-8	2n.	*45	22.44
	۰8	3n.	'21	30.44
Sm.	.0	l	•6	-85
	. 4		'4	9.32
	148 i	ì	'2	54'72
Be.	147'7	4n.	43	30'79
Encke.	146.8	2 n.	70	7.63
Ga.	147'2	3n.	.65	8.62
Mä.		_	'42	9.59
	147.7	1	-58	41.22
	148.2	8n.	.53	2.80
	.1	16n.	.22	51.18
	'4	ĺ	*20	•86
	.3		.10	3,35
		1	.12	4.26
	•2	14n.	.13	6.07
	•6		.03	7:39
	•8	8n.	.15	61.99
Ο.Σ.	147.8	9n.	.39	46.55
Da.	148.0	In.	'16	8.49
De.	.0	9n.	'24	52'14
	147 9	In.	.25	8.54

M.

M.

	۰		".	_
Sc.	148.1	2n.	14.6	1855.30
	- 5	4 n.	'4	7.70
M.	146.8	In.	13.90	62.44
	148.8	,,	'04	9.57
Ro.	Ι.	2n.	14.48	3.27
Eng.	. 4	١,,	.21	4'33
Ta.	•••	In.	15.06	5.22
	148'1	٠,,	13.00	71.39
Du.	· ·6	ion.	14.2	69.50
W. & S.	.0	2n.	5	73.28
G 1.	147'9	In.	1 .7	4.22
Fl.	148.7	٠,,	.55	7.50

Σ. 1746. 420

R. A.

13 ⁿ 2	2 ^m	10' 5'		7.7,	10.3
	C. A	A, yello	wish.		
Σ.	250.3	ın.	30.08 30.08	182	8.31
	251.4	,,	30.08		9:36
	250.8	,,	29.47	3	1.51
Mä,	248.7	,,	28.72	4	7:27
	249'4	,,	29'11	1	.58

29'11

Dec.

421 ο.Σ. 266.

R. A.	Dec.	М.
13 ^h 22.6 ^m	16° 21'	7:3, 7:8

C. white.

The angle has increased, and the distance may have increased also.

ο.Σ.	324'2	4n.	1.12	1846.10
Da.	325.3		•••	7'34
	326.2		1.02	7.34 50.80
	327.2	ì	.08	4.27
Mä.	7.7		.18	49'27
Se.	333.2	ın.	.71	56.41
De.	335.4	3n.	.34	67:30
W. & S.	336.5	- T	'27	77.45
	1.	5	.22	46
				•

ο.Σ. 269. 422

R. A.

13h 27m		35°	31'	6.5, 7	
Dire	ct motion.				
0.Σ.	218.0	ın.	0.33	1844.31	
	222.3	,,	•••	46.37	
	240'4	,,	•••	.38	
	230.5	,,	:39	.39	
			oblong	9'47	
	408.0	770	0.33	£1.30	

Dec. 25° 31'

223.6 ,, 72°47 65 68 De. obl.? simple

Σ. 1757.

C. Se., A, white; B, bluish. Sm., A, paie white; B, yellowish.

From his measures made between 1825 and 1835, 2. inferred direct motion.

Sm., from his own and E.'s measures, found that the angular progress was at first 2° per annum, that it then diminished to 1°, and that "it is now on the increase amounting to 14°." Hence he concludes the control of the con that the object was then seen "full face, and that its period is about 240 years."

Dawes, having the measures up to 186; before him, considered that the increase in angle was established, and that the distance

remained unchanged.

0.Σ. The distance has increased, and the angular change has diminished.

_	• .		",	
Σ.	1000	In.	1,60	1825.37
	19.5	2n.	'44	982
	23.9	,,	·54 ·66	33.38
	25.2	3n.	•66	5:37
	29'4	2n.	-64	6.42
Sm.	31.0		7	8 48
	37.9		.7	42.23
	51.7		2.0	52.38
Mä.	36.0	4n.	1.74	41.38
	40.8	2n.	2.02	5.88
	52.2	3n.	•05	53709
	50°I	5n.	.19	4'37
	54.7	2 n.	1.01	8.37
	53.7	,,	-82	9:36
Da.	37.4	,,	-67	42.39
	38.8	,,		3'45
	54.3	In.	2.31	60.31
	53.4	٠,,	60	'35
Ka.	40.9	l "		43'51
Ο.Σ.	43.7	3n.		4.72
0.2.	48.8	"	1.89	50.33
	60.8	l .	2.34	66'01
Ja.	480	15	14	
	52.8	-3	1.76	5373 808
	52.0	I	1 1/0	1 300

D-	51.3		, ,,	
De.	51. 3	4n.	1.7	1855.31
	.8	2n.	.5	0.35
	59.0	5n.	2.01	63.32
	60 4	٠,	.00	5.07
	62.7	3n.	'04	5.97 8.30
	63.5	In.	2.01 .09 .04 .03	70.12
	•4	,,	.13	1.19
Ko.	51.9	12	10'	56.42
	54.5	10	.00	7:29
Se.	52.0	2n.	1.84	6.88
Ta.	52.9 63.7 64.3	in.	2.60	67:27
	64.3	,,		9.24
	.I	,,	2'00	70:37
	67.3	,,		2:37
	69.8	,,	1.08	4.32
Br.	69·8 63·4	2	2.20	69.22
W. & S.	64.8	2 8	2.29 .30 .02	72.33
	o		.02	3.53
	65·0	5 7 4 5 6	.00	
	.5	7	15	35
	.9	' á l	• 5	4'32
	64.2	7	2.16	'32 '41
	66.5	8	21	6'47
	67.2	6	.7.	6.41
Schi.	66.6	In.	73	:36
8p.	6.	111.	°15 °00 °00	2.31
Dob.	61.1	2n		-31
	64.5	3n.	-:	0.35
	U4 2	2n.	2.33	7:23

424 S. 1768.

25 CANUM VENATICUM.

R. A.	Dec.	M.
13 _p 35.1 _m	36° 54′	5, 7.6

C. E., A, white; B, blue.

Σ., from his measures between 1827 and 1836, suspected orbital motion, and subsequent observations proved the correctness of his consistent.

of his suspicion.

O. 2. says, "The feeble angular motion rom 1833 to 1841 indicates that the satelite was in aphelio in that period. The upparent ellipse is evidently very narrow. We shall probably see the companion merge from the rays of the principal star inder an angle of position between 180° and 90°. If so, the period of revolution loes not greatly exceed a century."

Dr. Doberck, in 1877, found the following

lements for this pair :-

 $\Omega = 82^{\circ}$ to $\lambda = 202^{\circ}$ to $\gamma = 51^{\circ}$ to $\epsilon = 0.66$ P = 124.50 years T = 1862.98.

2.	79.5	5n.	1.02	1829.89
	72'4 71'7	,, 3n.	'09 '07	33.15
ľä,	70·8 56·5	4n. 6n.	39	41.39 51.38

	0		"	
Mä,	44.7	4n.	0.31	1852.33
	36.5	In.	'35	3.35
^ -	26.7	2n.	'2	8.65
0.Σ,	72.6	4n.	10.1	41'17
	69.8	3n.	'71	6.80
	65.6	,,	.65	9'77
		4n.	single	59.72
Da,	67.7	3n.	0.99	42.35
	36.3	,,	'35	54.43
	10° or 15°	In.	.12	60.36
	round		•••	5.44
Se.	25.7	In.	elongd.	56.49
De.		,,	,,	7.59
De.	180		,,	62.95
	315		,,,	3.12
Du.	02		single	.20
Du.	178?	elong	rated	9.40
	186	,	,	70.43
	47 ?		_	1.45
W. &		rou	ind	5.49
₩. O.	٥.	٠,	٠. ا	2 °38
G1.		sing	gle	5.36
Schi.		rou		'40
Sp.	161.3	In.	0'42	6.44
ωp.	-4	i	42	. 45

425 sm. 488.

	. A	Dec.	M.
13 <u>.</u>	32.3m	28° 56′	9.2, 10.2

C. white.

This close pair was discovered by Smyth in 1835, while looking through H₁'s 20 ft. reflector at Slough. It was afterwards elongated by Smyth, Challis, and Dawes. Smyth also noticed "a small blue telescopic companion in the n.f. quadrant."

Sm.	191.5	0.1	1835.48
Challis. Da.	195.0 192.0	elongated 1.0 .6 .8	43 51·37 42·47 8·42

426 Σ. 1771.

R. A. 13 ^h 33.5 ^m	ı	Dec. 70° 23'	,	M. 7·8, 8·5
Σ, Mä,	69.9 71.0 74.6 73.5 75.1	In. 2n.	1.81 .67 .76 .82 .71	1829.81 31.73 45.56 52.67 4.21

427 Σ. 1772

R. A.	Dec.	M.
13 ^h 34'9 ^m	20° 33'	6·2, 9·1
C . 11	• • •	

C. A, bluish white; B, very blue.

H,.	_								
	140°	1	6°o	1826.00	Sm.	232.0	1	1 2 2	1831.10
-	147'7		4.88	8.33		231.8	ı	3.7	6.35
	146.8	l		31.00	i	233.4	1	.5	9:7
	145.0	ľ	5	2.00	Mä.	234.8	1	42	600
Σ.	150.4	2n.	4.71	28:30		233.1			42'40
	147.6	3n.	92	33.74	i	234.2	l	3.21	3.31
	•••	In.	5.18	52.16		233.9	l	44	4.30
Sm.	147'1		4.9	32.53		232.5	5n.	.20	51.20
Mä.	149.2	1	79	44'34	1	233'3	6n.	81.	4 96
	144.8	ł	5.55	8.35		232.7	ļ	2.89	8.33
Ο.Σ.		In.	.18	52.16	.	2350			61.41
	145.6	,,	4.81	68.36	Da.	233'4	3n.	3.72	41.5
	149.4	2n.	.82	70:33		231.8	In.	61	3:34
Ze.	7	In.	.95	4.58		234'I		61	59
M.	144'I		.60	56.93	Mit.	233'6	In.	60	60.38
Fl.	140.3	Tn.	·63 ·68	62.44	De.	231.0	"	'49	47°57 56°41
	137.9	In.	00	77.43	20.	233'4 235'0	"	'33 '50	67:50
					Sc.	231.6	3n.	.36	57.03
400		-			Mo.	230.8	2n.	.35	8.58
428	Σ.	177	ัช.		Eng.	231.9	4n.	79	65.35
		_			Ta.	227.8	2n.	87	6.40
R. A		Dec	c	M.	i i	· ·7	In.	-86	9.25
13h 36.	-8 ⁱⁿ	46° 5	;o′	8, 8	Ο.Σ.	2366	,,	4 03	70.35
	,		_		G1.	231.7	,,	3.25	1.32
	•	C. white	2.		Du.	.7	4n.	.39	2.23
Duné	ér's formula	æ are			W. & 8	2	2n.	*54	3'35
	= 7":23 -					232.2	In.	.55	4.35
4	1849.0	-0 000	199°·3.	,o·o).	-	230.0	,,	-60	6.40
	1049 0	y. r =	199 3.		Sp.	231.7		°54	5 44
H _r .	199'9	In.	8.28	1830:32	Dob.	232.3	4n.		6:34
Σ.	200'2	3n.	7:32	2.00	F1. P1.	229'4		3.28	7:45
₩ä,	199'4	2n.	.55	43.22	F1.	230.1	3n. '	.25	.21
Se.	158.5	,,	6.93	57.55					
X o.	•2	,,	7.16	9.22	1				
Du.			***				4-6	\ 4	
	199.5	,,	.10	70.90	430	5 .	1'75	(I	
Ta.	201.0	"	6.90	70°90 3°37	430	Σ.	178	31.	
Ta.		" 							М.
	201'0	-	6.90		R. A	•	Dec.		M. 78, 8:
429	201'0	177	6.90			gm -	Dec. 5° 43	j'	M. 7·8, 8 <i>:</i>
429	Σ.	177	6.90	3.37	R. A	gm -	Dec.	j'	
429 R. A	Σ.	177 Dec.	6.90	3·37	R. A 13 ^h 40°2	C. yel	Dec. 5° 43	j'	
429	Σ.	177	6.90	3.37	R. A	C. yel	Dec. 5° 43	j'	
429 R. A 13 ^h 37	Σ.	177 Dec. 4° 9'	6·90 	3'37 M. 5'8, 8'2	R. A 13 ^h 40°2 A bin Σ.	C. yel	Dec. 5° 43	white.	
429 R. A 13 ^h 37	Σ. C. A, yello	177 Dec. 4° 9'	6.90 7.	3.37 M. 5.8, 8.2 e.	R. A 13 ^h 40°2 A bin Σ. H ₂ .	C. yel	Dec. 5° 43 llowish	j'	7·8, \$ <i>:</i>
429 R. A 13 ^h 37	Σ. C. A, yello colour of F	177 Dec. 4° 9' w; B,	7.	M. 5·8, 8·2 e. ges.	R. A 13 ^h 40 ⁻² A bin Σ. Η _γ . 0.Σ.	C. yel ary. 240'3 235'7 244'2	Dec. 5° 43 llowish	white.	7:8, 8:
429 R. A 13 ^h 37 The c A b	Zol'o L. C. A, yello colour of Feautiful p	Dec. 4° 9' w; B, B probal air: bi	7. very blu bly chang	3'37 M. 5'8, 8'2 e. ges. Common	R. A 13 ^h 40°2 A bin Σ. H ₂ . 0.Σ. Da.	C. yel ary. 240'3 235'7 244'2 238'6	Dec. 5° 43 llowish	white. 1.35 5 40 20	7'8, 8: 1830'31 2'01 41'91 2'31
429 R. A 13 ^h 37 The c A b proper	Z	177 Dec. 4° 9' 8 probal air: bi - 0° 023	7. very blu bly chang	3'37 M. 5'8, 8'2 e. ges. Common	R. A 13 ^h 40°2 A bin Σ. Η _γ . Ο.Σ. Da. Mä.	C. yel ary. 240'3 235'7 244'2 238'6 242'2	Dec. 5° 43 llowish 3n.	white. 1.35 .5 .40 .20 .09	7-8, 8: 1830:31 2:00 41:01 2:31 3:34
429 R. A 13 ^h 37 The c A b proper + o"o	Z. C. A, yellococouring frontion protion protion protion protion protion protion protion N. P.	177 Dec. 4° 9' W; B, B probal air: bi - 0' 023 D.	7. very blu bly chang	3'37 M. 5'8, 8'2 e. ges. Common	R. A 13 ^h 40 ⁻² A bin Σ. H ₂ 0.Σ. Da. Mä. Se.	C. yel ary. 240'3 235'7 244'2 238'6 242'2 246'5	Dec. 5° 43 llowish 3n. 2n. ,,	white. 1.35 3.40 20 0.99	7-8, 8: 1830:31 2:00 41:01 2:31 3:34 50:39
429 R. A 13 ^h 37 The c A b proper + o"o	C. A, yelle colour of peautiful penotion — 5 in N. P.	Dec. 4° 9' W; B, B probal air: bi - 0° 023 D, E are	very blu bly changnary.	3'37 M. 5'8, 8'2 e. ges. Common	R. A 13 ^h 40°2 A bin Σ. Η _γ . Ο.Σ. Da. Mä.	C. yel ary. 240'3 235'7 244'2 238'6 242'2 246'5 249'8	Dec. 5° 43 llowish 3n. 2n. ,, 2n. 3n.	white. 1.35 5 40 20 09 099 1.2	7-8, 8: 1830-31 2001 41-91 2:31 3:34 50:39 8:07
429 R. A 13h 37 The C A b proper + 0"000 Dune	C. A, yello colour of Heautiful p motion — 5 in N. P. ir's formula 1853 of	177 Dec. 4° 9' Dw; B, B probal air: bi - 0° 023 D, e are . Δ =	very blu bly changnary. in R.	M. 5.8, 8.2 e. ges. Common A., and	R. A 13 ^h 40°2 A bin E. H _p 0.E. Da. Mä, Se. De.	C. yel ary. 240'3 235'7 244'2 238'6 242'2 246'5 249'8 251'7	Dec. 5° 43 llowish 3n. 2n. 3n. 2n. 7, 7,	white. 1.35 '5 '40 '20 '099 1.2 '15	7-8, 8: 1830/31 2/00 41/01 2/31 3/34 50/39 8/07 64/75
429 R. A 13 ^h 37 The c A boproper + o"out Duné P =	C. A, yelle colour of peautiful penotion — 5 in N. P.	177 Dec. 4° 9' Dw; B, B probal air: bi - 0° 023 D, e are . Δ =	very blu bly changnary. in R.	M. 5.8, 8.2 e. ges. Common A., and	R. A 13 ^h 40°2 A bin Σ. H ₁ 0.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 244'2 246'5 242'2 246'5 249'8 255'6	Dec. 5° 43 lowish 3n. 2n. 3n. 77 2n. 3n. 77 In.	white. 1.35 5 40 20 09 0.99 1.2 1.5	7-8, 8:2 1830-31 200 41-01 2:31 3:34 56:39 8:07 64:75 9:25
429 R. A 13 ^h 37 The c A boproper + o"out Duné P =	C. A, yellocolour of Feautiful p motion – 5 in N. P. ir's formula 1853 or = 233° 3 -	Dec. 4° 9′ Dec. 4° 9′ Dec. 4° 9′ Dec. 4° 9′ Dec. 6° 023 Dec. Δ = 0° 09	7. very blu ply chang nary. in R. 3''45. (t - 185)	M. 5.8, 8.2 e. ges. Common A., and	R. A. 13 ^h 40°2 A bin Σ. H ₂ . Ο.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 238'6 242'2 246'5 249'8 251'8 255'6 255'6	Dec. 5° 43 llowish 3n. 2n. 3n. 3n. 1n. 5n. 1n. 5n.	white. 1.35 5 40 20 0.99 1.2 1.15 1.1	7-8, 8:: 1830-31 200 41-01 2:31 3:34 50:39 8:07 64:75 9:25 71:32
429 R. A 13h 37 The c A b proper + o"ou Duné P = H ₁ .	C. A, yello colour of Heautiful P motion — 5 in N. P. ir's formula 1853 or 233° 3 —	177 Dec. 4° 9' W; B, B probal air: bi - 0° 023 D, e are - 0° 09 In.	7. very blu bly chang nary. in R. 3''45.	3.37 M. 5.8, 8.2 e. common A., and	R. A 13 ^h 40°2 A bin Σ. H ₁ 0.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 238'6 242'2 246'5 249'8 251'8 255'6 255'6	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1.35 -5 -40 -20 -09 -0.79 -1.15	7-8, 8: 1830-31 2-00 41-01 2-31 3-34 50-39 8-07 64-75 9-25 71-32 2-38
429 R. A 13 ^h 37 The c A boproper + o"out Duné P =	C. A, yello colour of F eautiful p motion — 5 in N. P. ir's formula 1853 or = 233° 3 - 240° 0 239° 8	177 Dec. 4° 9' ω; Β, β probal air: bi - 0° 023 D. e are - 0° 09 In. ,	7. very blu bly chang nary. in R. 3''45. (t - 185'	M. 58, 8.2 e. Common A., and	R. A. 13 ^h 40°2 A bin Σ. H ₂ . Ο.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 244'2 249'8 251'7 255'6 256'0 257'5 256'4	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1.35 '5 '40 '20 '09 0.99 1.12 '15 1.11 0.955	7-8, 8:2 1830-31 200 41-01 2:31 3:34 56:39 8:07 64-75 9:25 71:32 2:38 3:23
429 R. A 13h 37 The c A b proper + o"ou Duné P = H ₁ .	C. A, yello colour of Heautiful P motion — 5 in N. P. ir's formula 1853 or 233° 3 —	177 Dec. 4° 9' By F, By probal air: bi - 0° 023 D. e are . Δ = - 0° 09 In. ", 5n.	7. very blu bly chang nary. in R. 3''45. (t - 185) 4'23	3.37 M. 5.8, 8.2 e. ges. Common A., and 0.0). 1782.10 1802.31 21.30	R. A. 13 ^h 40°2 A bin Σ. H ₂ . Ο.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 238'6 249'8 251'7 255'6 255'6 256'0 257'5 256'4	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1.35 '5 '40 '20 '09 0.99 1.2 '15 1.1 0.95 1.20 '23	7-8, 8: 1830-31 2'00 41-01 2'31 3'34 50'39 8:07 64'75 9'25 71'32 2'38 3'34
429 R. A 13 ^h 37 The α A by proper + ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο	201 o	177 Dec. 4° 9' ω ; Β, β probal air: bi - 0° 023 D. e are - 0° 09 In. ,	7. very blu bly chang nary. in R. 3''45. (t - 185'	M. 58, 8.2 e. Common A., and	R. A. 13 ^h 40°2 A bin Σ. H ₂ . Ο.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 244'2 249'8 251'7 255'6 256'0 257'5 256'4	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1'35 '5 '40 '20 '09 0'99 1'2 '15 1'1 0'95 1'20 '23 '02	7-8, 8:2 1830-31 200 41-01 231 3-34 50-39 8-07 64-75 9-25 71-32 2-38 3-23 3-24
429 R. A 13h 37 The c A b proper + o"ou Duné P = H ₁ .	Z. C. A, yello colour of Heautiful p. motion — 5 in N. P. ir's formula 1853 or = 233° 3 - 240° 0 239° 8 234° 1 235° 3 234° 0 229° 8	177 Dec. 4° 9′ Dw; B, B probal air: bi - 0° 023 D, e are . Δ = - 0° 09 In. ,,,	7. very blu bly chang nary. in R. 3''45. (t - 185) 4'23 3'39	M. 5.8, 8.2 e. ges. Common A., and 1782.10 1802.31 21.30 8.77	R. A. 13 ^h 40°2 A bin Σ. H ₂ . Ο.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 235'7 244'2 238'6 242'2 246'5 249'8 251'7 255'6 256'0 257'5 256'4 260'7 256'0	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1.35 '5 '40 '20 '09 1.2 '15 1.1 0.95 1.20 '23 '22 '23	7-8, 8:2 1830-31 2:00 41:01 2:31 3:34 50:39 8:07 64:75 9:25 71:32 2:35 3:23 3:4 3:5 4:23
429 R. A 13 ^h 37 The α A by proper + ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο	201 o \\ \frac{1}{201 \text{o}} \\ 1	177 Dec. 4° 9′ Dw; B, B probal air: bi - 0° 023 D, e are . Δ = - 0° 09 In. ,,, In.	7. very blu bly chang nary. in R. 3'' 45. (' - 185' 4'23 3'39 67	M. 5.8, 8.2 e. ges. Common A., and 0.00). 1782-10 1802-31 21-30 8.77 52-22 21-37 30-20	R. A. 13 ^h 40°2 A bin Σ. H ₂ . Ο.Σ. Da. Mä. Se. De.	C. yel ary. 240'3 233'7 244'2 238'6 242'2 246'5 249'8 251'7 255'6 256'0 257'5 256'4 260'7	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1'35 '5 '40 '20 '09 0'99 1'2 '15 1'1 0'95 1'20 '23 '02	7-8, 8:2 1830-31 200 41-01 231 3-34 50-39 8-07 64-75 9-25 71-32 2-38 3-23 3-24
429 R. A 13 ^h 37 The α A by proper + ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο	201 o \\ \frac{\chi_{m}}{\chi_{m}} \\ \frac	177 Dec. 4° 9′ Dw; B, B probal air: bi - 0° 023 D, e are . Δ = - 0° 09 In. ,,, In.	7. very blu bly chang nary. in R. 3''45. (t - 1850 4'23 3'39 '67 '91 4'06	M. 5.8, 8.2 e. ges. Common A., and 1782.10 1802.31 21.30 8.77 52.22 21.37 30.20 1.28	R. A 13 ^h 40°2 A bin Σ. H ₁ . Ο.Σ. Da. Mä. Se. De. Ta. Gl. W. & S.	C. yel ary. 240'3 235'7 244'2 244'2 246'5 249'8 251'7 255'6 256'0 257'5 260'7 256'0 257'5 261'4 260'7 256'5 261'7 262'5	Dec. 5° 43 llowish 3n. 2n. 3n. 3n. 1n. 5n. 1n. 5n.	white. 1.35 5 40 20 09 0.99 1.2 1.5 1.15 1.20 23 0.23 3	7-8, 8:2 1830-31 200 41-01 2:31 3:34 50:39 8:07 64:75 9:25 71:32 2:35 3:23 3:23 4:23 3:24 6:35 4:23 4:23 6:35 4:45
429 R. A 13 ^h 37 The α A by proper + ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο	201 o	177 Dec. 4° 9′ Dw; B, B probal air: bi - 0° 023 D, e are . Δ = - 0° 09 In. ,,, In.	7. very blu bly chang nary. in R. 3''45. (t - 185' 4'23 3'39 '67 '91 4'06 2'5	M. 5.8, 8.2 e. ges. Common A., and 1782 10 1802 31 21 30 8 77 52 22 21 37 30 20 1 28 2 00	R. A 13 ^h 40°2 A bin E. H ₂ . 0. E. Da. Mä. Se. De. Ta. Gl. W. & S.	C. yel ary. 240'3 / 235'7 244'2 238'6 242'2 246'5 249'8 251'7 255'6 256'0 257'5 256'4 260'7 256'0 256'0 256'5 256'5	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1.35 -35 -40 -20 -99 1.2 -15 1.1 0.95 1.20 -23 -3 -20 -20 -21	7-8, 8:2 1830-31 2-00 41-01 2-31 3-34 50-39 8-07 64-75 9-25 71-32 2-35 3-23 3-4 35 4-23 32 6-37 4-25 5-37
429 R. A 13 ^h 37 The α A by proper + ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο σ ο	201 o \\ \frac{\chi_{m}}{\chi_{m}} \\ \frac	177 Dec. 4° 9′ Dw; B, B probal air: bi - 0° 023 D, e are . Δ = - 0° 09 In. ,,, In.	7. very blu bly chang nary. in R. 3''45. (t - 1850 4'23 3'39 '67 '91 4'06	M. 5.8, 8.2 e. ges. Common A., and 1782.10 1802.31 21.30 8.77 52.22 21.37 30.20 1.28	R. A 13 ^h 40°2 A bin Σ. H ₁ . Ο.Σ. Da. Mä. Se. De. Ta. Gl. W. & S.	C. yel ary. 240'3 235'7 244'2 244'2 246'5 249'8 251'7 255'6 256'0 257'5 260'7 256'0 257'5 261'4 260'7 256'5 261'7 262'5	Dec. 5° 43 llowish 3n. 2n. ,,, 2n. 3n. ,,, In. 5n. 4	white. 1'35 '5 '40 '20 '09 0'99 1'2 '15 1'1 0'95 1'20 '23 '02 '23 '3 '20 '20	7-8, 8:2 1830-31 200 41-01 2:31 3:34 50:39 8:07 64:75 9:25 71:32 2:35 3:23 3:23 4:23 3:24 6:35 4:23 4:23 6:35 4:45

431 Ο.Σ. 270.

R. A. Dec. M. 18° 3' 13h 41.6m 4.8, 11.4

C. greenish yellow.

These stars have a common proper motion.

347[°].8 ο. Σ. 10.56 1849.54 5n. De. 348.9 3n. 9.03

432 Σ. 1785.

R. A. Dec. M. 27° 35′ 13h 43.6m 7'2, 7'5

Change in both angle and distance. The measures by Dembowski differ considerably from those by 0.2. It is probable, however, that those by the former observer are the less accurate of the two, seeing that the angular movement has not augmented in so great a degree as the diminution in the distance demanded. $(0.\Sigma.)$

The common proper motion is -o'':50 in R. A., and +o'':003 in N. P. D.

Dunér has the following formulæ:

 $\Delta \sin P = -0'' \cdot 038 - 0'' \cdot 0437 (t - 1852 \cdot 50)$ - 0" 000033 (t - 1852·50).

 $\Delta \cos P = -3'' \cdot 240 + 0'' \cdot 0267 (t - 1852 \cdot 50) + 0'' \cdot 000857 (t - 1852 \cdot 50).$

So.	160.4	l	5'07	1823'40
Σ.	164.0	2n.	3.44	9.41
	165.3	In.	.57	31.23
\mathbf{H}_{r}	164.6		4.62	0.30
	166.3	2n,	·	1'34
Mä.	172'1	1	3'47	40.85
	174.6		.39	3.48
	9	8n.	.47	4.88
	178.7	2n.	•48	51.58
	183.7	3n.	'03	5.66
	191.1	In.	.25	61.29
Po.	176.2	4n.	.20	46.41
0.Σ.	.0	2n.	.18	51.41
	194'1	In.	2.66	66.42
	198.3	٠,,	·96	8.38
	200.2	,,	.68	70.31
	198.3	,,	.91	.35
8 e.	185.9	2n,	3.24	56.36
De.	184.7	5n.	12	8.38
	190.7	7n.	2.69	63.27
	191.9	4n.	'60	4'39
	192.7	6n.	•60	5'34
	194.2	9n.	•56	6.81
	196.8	4n.	.21	8.34
	199.1	,,	. 46	70.32
	200'1	,,	'40	1.30
	201.2	,,	.32	2.38
	202.4	,,	.32	3.39
	204.4	3n.	'2I	4.46
	205.8	4n.	.16	5.30

			,,	
Mo.	185.4	2n.	2.89	1859.30
M.	192'8	In.	.69	63.31
	199.3	,,	.65	71.27
	198.9	,,	.35	'44
Eng.	193.5		•88	64.47
		7n.	•87	5.42
Du.	198.5	5n.	•46	70.19
	201.7	2n.	•59	2.43
	206.4	4n.	.39	5.54
G 1.	204'I	5	•46	1.35
	199.0	4	•6	0.35
	.o	4	'4	.55
	.8	11	٠7	1.35
Kn.	`2	3n.	.21	.38
W. & S.	200'2	5	°47	2.38
	203.5	4	*47	3.53
	201.0	4	. 46	'35
	204.2	9	'41	4.35
	2 06.1	5 7 5 6	. 46	5.32
	207.9	7	•58	39
	206.7	5		.41
	208.4		· 2 8	6.41
T	208.8	5	14	7.47
Lindsted		2n.	'41	3.42
Schi.	205.3	In.	'34	5.35
8 p.	- '4		*34	.33
70.7	206.9		.12	6.45
Pl.	208.9	2n.	.61	'42
Dob.	206.8	6n.	'21	7:32

433 Σ. 1788.

R. A. м. • 13h 48.6m - 7° 28' 6.7, 79 C. white.

The common proper motion is -0"137 in R. A.

So.	51.7	1	2.76	1825.39
H ₂ .	49.6		.57	30.52
	50.6		·68	1'44
Σ.	54.0	5n.	·57 ·68 ·36 ·66	1.38
	64.9	2n.	·66	52.53
Sm.	55°O		•5	34.59
K ä.	60'4		'49	44'35
	61.0		.49 .44	54.38
	63.3		·47	8:37
Se.	62.6	2n.	. 46	6.39
M.	64.2	ın.	•28	62.32
De.	67.7		. 46	4.85
G 1.	69.6	In.	. 28	71'32
W. & S.	75.4	,,	.55	2.38
	70.0	3n.	'64	3.63
8p.	.0	•	45	5.40
C. O.	•2	2n.	.55 .64 .45 .62	7:39
Dob.	67.5	4n.	·68	7.31

ο.Σ. 272.

Dec. M. 30° 29' 7, 9'9 C. A, white.

294	DOODLD	0111110	•			
0.Σ. 25.5 .86 .89	1843°33 9°34 °56 66°71	439 R. A.		Σ. 2 8		М.
De. 17·8 3n. ·78		14 ^h 7 ^m	1	60° 50 A, gold	8'	7, 11'2
435 Ο.Σ. 273. R. A. Dec.	М.	O.Σ. De.	20°5	3n.	7" 2 0 6·95	1848-61 66-67
13 ^h 50 ^m 5° 50′ 0.Σ. 106·1 3n. 0·74 De. 111·2 ,, 0·98	7.5, 8 1845.99 67.73	440	Σ.	181	.3.	
		R. A. 14 ^h 7'4 ^m		Dec. 5° 58	3	M. 8, 81
R. A. Dec. 14 ^h 4'7 ^m 27° 10'	M. 8, 9	Probal Dunér	oly binar			
C. white. Probably binary. Dunér has		P =	180°0		4"*95. . (t – 18 	350°0). 1 1793°36
$\Delta = 2''.70 - 0''.007 (t - 18)$ $P = 72^{\circ}.1 + 0^{\circ}.187 (t - 18)$	50·0).	H, & 80. Σ.	191.0	In. ,, 4n.	6.06 4.5 .76	1823'34 31'00 29'81
Σ. 68·8 3n. 2·82 Mä. 71·0 2n. ·76 Du. 76·1 •, ·54	1832·31 44·39 71·32	Mä,	193'9 192'9 191'5	4 n.	5°34 °21 °24	41'37 3'07 4'30 6'25
437 Σ. 1812.	-	Da.	193'I 192'2 194'0	in. ,, 7n. 2n.	5°15 4°83 '95 '84	51.28 8.38 42.27 3.35
14 ^h 7 ^m 29° 17′ A 7.8,	И. в 8, с 9·3	De. Se. M.	193'9 193'9	3n. In.	·92 ·82 ·86	55'30 7'05 63'31
A B probably binary. A B.	_	Eng. Ta.	193'2	4n. 2n.	·98 ·67	5:32 6:40 7:37
8e. 344'3 3n. '47 342'7 1n. '4	1845.85 65.42 56.44	Du. Gl.	194.5 .8 192.4 .7	in. ,, 3n. in.	3.83 4.21 .88 5.2	73'48 4'33 9'38 1'32
AB and C.		W. & S. Pl.	192.7	5'n.	•	3'30
Σ. 108·2 3n. 14·18 Ο.Σ. '1 7n. '02 Pl. 107·4 2n. 13·89	32°37 54°24 77°51	441		Σ. 2'	-	.,
438 ο.Σ. 278.		R. A. 14 ^h 8 ^m		Dec. 12° 34	ŧ′	M. 68, 9
R. A. Dec.	M. 7'5, 7'7	Ο. Σ. De.	248·4 251·8	A, yell	2 ⁻²⁷	1845 ⁻⁶⁸ 66 ⁻⁷¹
Probably a binary. Ο.Σ. 146.0 3n. 0.40 145.1 2n. .45	1846°03 54°00	442	Σ.	186	31.	v
145'I 2n. '45 124'2 In. '53 De. 128'2 3n Du. '3 ,, 0'32	75.48 67.48 9.48	R. A. 14 ^h 8 ^m		Dec. 29° 40 yellow		м. 7, 7 ^п

	Probably binary.
Dunér gives	

$$\begin{array}{c} \Delta = \text{i"} \cdot 68 - \text{o"} \cdot \text{ol22} \ (t - \text{i850} \cdot \text{o}). \\ P = 80^{\circ} \cdot 3 + \text{o"} \cdot 087 \ (t - \text{i850} \cdot \text{o}) + \text{o"} \cdot \text{coo6} \\ (t - \text{i850} \cdot \text{o})^{2}. \end{array}$$

_	80°1	1	ı"86	1-0
Σ.		5n.	1.80	1831.33
Σ. H _r . Da.	76.3	In.	.92	3°26 41°88
Da.	79'4	3n.	.69	41.88
	79 [.] 4 78 [.] 4	,,	·8 ₄	3'34 2'88
Mä.	79.8	2n.	·92 ·69 ·84 ·73 ·79	2.88
Ο.Σ.	• 5	6n.	.79	53.43
De.	80.0	2n.		5.27
	81.8	3n.	1.22	5°27 66°58
	82.2	In.	.57	74.53
Se.	80.4	2n.	'49	74°23
Du.	84.7	4n.	'32	71.16
G1.	79·8 ·6	In.	•6	'32
W. & 8.	•6	2n.	1.57 .57 .49 .32 .6 .55	3.84

443 Σ. 1820.

R. A.	Dec.	М.	
14h 9'1m	5 5° 53′	8.2, 8.5	

Direct motion. Dembowski's distance in 1866-75 is probably too small; it is probably explained by the note that the observation was made in haste.

Dunér has

1850.57.
$$\Delta = 2^{n}.35$$
.
P = 54°0 + 0°.422 (t - 1850.0).

Σ.	47'3	6n.	2.40	1834.14
Mä.	52.0	2n.	.20	45'47
	50.3	In.	.17	51.27
_	63.1	"	*35	4.51
De.	60.5	3n.	.11	66.75
Du.	63.2	5n.	.27	71.45
Ο.Σ.	68·o	In.	'64	4.40

444 Σ. 1821.

Magnitudes.—2. 5'1, 7'2. The estimations of the magnitudes differ considerably. Du. has 3'5, 6'5; 4, 7; 5, 7'5; 4, 6.

C. Σ., A, yellowish; B, bluish. The colours also are variously given.
 The proper motion of κ is + 0.000 in

R. A. and + 0"02 in N. P. D., and in this the companion probably shares. Dunér gives

 $1847^{\circ}34$. $\Delta = 12'' \cdot 68$. $P = 237^{\circ} \cdot 2 - 0^{\circ} \cdot 05$ $(t - 1850^{\circ}0)$.

	۰		"	
Σ.	233°6	ın.		1821 78
	237.7	7n.	12.60	32.20
	• 7	In.	.20	7.70
So.	238 7	4n.	13'14	22.62
H,	· · · · · · · · · · · · · · · · · · ·	'	12.79	30.48
Sm.	237.9		'5	.93
	238·í		· - 7	8.78
Mä.	237.0	8n.	.76	43'42
	236.4		·63	4'90
	237'0	5n.	·65	52:37
	236.1	4n.	'49	5:37
	237.3	2n.	.66	61.22
Mo.	·I	,,	-66	54.46
	238.6	3n.	.75	5.46
De.	Ι'	2n.	46	73
Du.	236.3	5n.	.92	72.00
W. & S.	242.8	In.	.99	6.46

445 Σ. 1819.

VIRGINIS.

R. A.	Dec.	М.
14 ^h 9.3 ^m	3° 41′	7.9, 8

C. Σ . yellowish; Se. white; De. white.

Σ. discovered this double star, and in 1836 pointed out that it was a binary.

O.Z. says, "The increase in the distance is certain, but slow; it is confirmed by the diminution in the angular motion."

GIIIIII III III	on m the	. milguia	i monon	•
Σ.	88·o	2n.	0.86	1828.35
	81.7	,,	1.10	32.42
	76°1	3n.	12	6.43
H, Mä	83.3	-	۰۰	2.00
Mä,	65.5	In.	0.92	41.35
	63.5	3n.	-86	2.40
	57.1	In.	1.04	5.39
	54'I	5n.	.16	7:38
	49.6	٠,,	•26	51.30
	44'4	4n.	'14	4.40
0.Σ	66.4	2n.	.07	41.93
	52.9	,,	.19	9.36
	36.2	In.	'43	66.42
Da.	60'5	8n.	.08	42.81
	61.9	In.	'02	3.34
Ka,	62·8			'24
Se.	43'7	2n.	0.98	56.39
	34'5		1.12	64.41
De.	44.0	3n.	.1	56.45
	40.8	7n.	.0	8'41
	211'4	4n.	.35	62.47
	32.8	7n.	'28	3.31
	31.6	6n.	'23	5.85
	27.9	2n.	17	8.41
	.0	,,	.25	70.32
	25.2	,,	'34	I.55
M.	38.3		.o	58.38
Ta.	31.0	In.	'94	67.28
G 1.	25.7	4	'2	70'32
	26.7	6	'27	'34
	26.3	6	'22	'43
	26.5	5	.32	1 1'24

-) -									
G1. W. & S.	27.0 25.1 24.7 23.9 25.7 27.4	3 4 6 8 10 3	"4 '34 '4 '25 '13	1871'32 '36 '42 2'38 '39 3'23	G1. 0.Σ. W. & S .	286°4 282°4 285°3 283°9 285°9	2 1n. ,, 4 4	5.7 -76 -60 -5	1871-32 2-54 4-70 3-25 -29
	25.0	4 6	.35	.36	448	2,	183	2.	
	23.2	6	.33	*36 4*41				۵.	M.
	26.2	4 3	*40 	5:35 39	R. A. 14 ^h 13 ^m		Dec. 4° 27'		9, 9
	23.6	7 5	1.37	'4I 6'4I	Proba	ble chang	e in an	gle.	
Schi.	21.5	ın.	.46	5.36	Σ. Ο. Σ.	132.6	3n.	o:47 :66	1830°28 47°40
8p. W.O.	·6 201·7	In.	·47 ·25	6.39	0.2.	122.I	"	.28	9.37
	199.3	"	'37 '15	'39 '41	Se.	131.0	2n.	-51 -41	53.41 6.41
Dob.	17.2	2n.	•••	7:33	W. & S.	120.2	2	. 4	76.46
P 1.	18.9	4n. 3n.	1.53	·27 ·47	449	0	Σ. 28	31.	
4.40		100	·				ب. ک. Dec.	,	М.
446	Σ.	182	2 5.		R. A.		9° 8′		7.3, 10.8
R. A.		Dec	, -,	M.	Ο.Σ.	161.4	3n.	1.52	1847 ⁻⁷² 67 ⁻³³
14 ^h 10	·	20° 4		6.8, 8.5	De.	152.3	,, '	-59	0/ 33
H ₂ .	186.2		4°0 2°5	1830.00	450	Σ.	183	4.	
Σ. Mä .	184.5	3n.	3.45 4.05	0.66 41.2		•	Dec		M.
	.3			2.40	R. A.		49° 3		7°1, 7°2
Se.	183.8	3n.	3 ^{.89}	3'31 57'77		lin ear mo	tion.		
De. Gl.	178.8	In.	'90 4'2	64.47 71.52	Dunéi	r has : 1"'04 —	o":0175	(t = 185	(o-o).
W. & 8.	178'0	3n.	.I	3.36		113°.8+			
Dob.	177'5 174'7	In. 4n.	3.93 4.03	4.93 7.39	H2.	104.0	2n.	1.09	1830.24
Pl.	179'1	3n.	3.67	.21		112.0		'20 	3.36
4.417		100	20		Σ. Da.	113.4	4n. 3n.	1.36	1.50 40.21
447	Σ,.	183	5 U.			112.7	2n.	*04	8.50
R. A 14 ^h 11		Dec.		M. 8·5, 9·8	Mä.	113.0	2n.	·10 ·37	9.48 3.53
	·		•	e; B, blue.	De. Se.	114.0	In. 2n.	0.03	57°51 7°57
	. •			d distance.	Ta.	110.9	In.	·8 ₇	66:49
	r gives		· 0		Du. Gl.	112.2	4n. In.	·66	1.21
$P = 273^{\circ}$		454 (t – t – 1850	1850°0) 0)².	- 0° 00167	W. & 8.		,,	•6	4'52
Σ.	263°0	2n. In.	4.86	1829.71 33.56	451	Σ.	183	37 .	
Mä,	267.6		2.15	38.19	R. A.		Dec.		М.
	271·3 275·3	3n. In.	'40 '30	45°48 51°27	14h 18:	2 ^m	— 11°	•	7.1, 8.7
	276.2	2n.	·48 ·67	2.69 6.46	A phy	ysical pair	. Com	non proj	per motion.
_	277 4 276 9	,,	71	8.72	Σ.	326.9	4n.	1.41	1829:83
Se. Du.	278·2 279·9	2n. 3n.	·65	60.06	8m. H _r .	325.8 321.2		·6 ·3	33'36 7'48
	.,,	J				5 5		•	

Mä.	323.4	1 1	1"55	1848:38
Mit.	324.5	In.	.50	45
Se.	312.3	2n.	°40	56.47
X.	348.8	In.	.02	62:37
De.	314.1	l i	*34	5.07
G 1.	313.0	In.	'41	71.40
W. & S.	311.6	۱ ,, ۱	*33	3.36
8p.	309.8	1 1	•26	5.87
C.O.	307.0	2n.	. 45	7.42

452 Σ. 1842.

R. A. Dec. M. 14^h 21^{·6}m 4° 14′ 8·7, 8·7

C. white.

Probably a binary.

Σ.	10.9	4n.	2.84	1828.86
H. Mä.	9.4		0.96	30.34
Mä.	11.9		3.06	4'18
_	13.8		2.00	44'35
Se.	15.8	3n.	·8o	56.77
G1.	13.4		.9	71.40
W. & S.	14.2	2n.	.75	4.42
Dob.	12.7	,,	.97	7:38
Pl.	.9	٠,,	·86	.21

453 Σ. 1847.

R. A. 14 ^h 22'2 ^m		Dec		M.
		- 9°	40'	8·5, 9·8
Σ. Mä. Mit. De.	248·4 251·5 253·1 256·0		18.73 20.17 20.167	1829·81 44·34 8·45 65·36

454 ο.Σ. **283**.

R. A.		Dec.	M.
14 ^h 28 ^m		49° 44′	7'3, 11'2
0.Σ. De .	134.6 130.1	3n. 4.93	1848.19

455 _{2.} 1858.

R. A.	Dec.	M.
14h 29m	36° 6′	7.2, 8

C. white.

Η, Σ.	30.2	2n.	1'44	1830.78
Σ.	35.5	3n.	2.50	1.84
***	33.0	In.	•73	51.80
Mä,	35.6	In.	'34	43.46
Se.	.8	2n.	•36	56.89
De.	34'7	In.	•••	8.23
Mo.	31.2	3n.	2.21	9.33
0.Σ.	30.9	ın.	.73	70.45

Du.	34.2	5n.	2.45	1870'99
Dob. Pl.	35·6	4n. 2n.	.29	7'32 7'51

456 a CENTAURI.

R. A. Dec. M. 14^h 31·8^m - 60° 20′ 1, 2

C. "Both strong reddish yellow" (Dunlop). "Both yellowish;" "A, yellow;
B, greenish yellow" (Jacob). "Both yellow" (H₂).

A fine double star discovered by Feuillée in 1709. He wrote: "Je trouvai cette étoile composée de deux, dont l'une est de la troisième grandeur, et l'autre de la quatrième. Celle de la quatrième est la plus occidentale, et leur distance est égale au diamètre de cette étoile."*

Richer was probably the first to examine this fine star with a telescope: this was in 1673, at Cayenne. Halley observed it at St. Helena in 1677, but neither observer records it as a double star.

La Condamine observed it while in Peru.

See Phil. Trans. for 1749.

In 1709 the distance was probably about 7"; in 1751, when Lacaille observed it, 22"; 5; in 1761 Maskelyne found it 15" or 16" (see *Phil. Trans.* for 1764); and in 1825 Dunlop made it 23" (Mem. R. A. S., vol. iii.)

In 1848 Captain Jacob computed the orbit: his elements are—

 $\pi = 26^{\circ} 24'$ $\gamma = 47 46$ 8 = 86 7 $\lambda = 291 22$ $\epsilon = 0^{\circ}950$ $\tau = 1851^{\circ}50$ $P = 77^{\circ}0 \text{ years}$ $\pi = 4^{\circ}675$ a = 15''.5.

Maximum distance, 21.85 at 207°.5. Minimum ,, 0.50 at 5°.0. Greatest daily motion = 2° 40'.

Mass = # of solar mass.

Mr. Hind in 1851 published the following elements:—

Perihelion passage 1859'42.

^{*} See Feuillée's Journal des Observations Physiques, etc., tome i., p. 425. Paris, 1714. The telescope used was one of 18 ft. focal length.

In 1854, Powell published the following	Washalm	a 2 1	`1	15—16	1761
	Maskely				182200
elements :	Fallows			28.75	
(I) (2)	Brisbane	215.4		22.45	400
$\tau = 1857.012$ 1858.012	Dunlop			45	10.9
$ \tau = 1857'012 1858'012 \pi = 30' 14' 29' 33' 8 = 2 35 177 50 \gamma = 77 194 77 50 $	Johnson	2150		19.95	30.01
$\Omega = 2 35 \qquad 177 50$	Taylor	·9		22.26	1.00
$\gamma = 77 19\frac{1}{3} \qquad 77 50$		216.4		19.85	2.16
e = 0.96884 0.966	127	278:5		18.67	3.00
$n = 4^{\circ}.35882$ $4^{\circ}.78$	H,	217.5			
		218.5		17.4	4.79
P = 82.59 yrs. 75.3 yrs. $a = 31.7574$ 30%.		219.6		16.2	6.30
a = 31''.7574 30".		220.7		.11	7:34
	Maclear	223.2		14.74	40'00
Powell thought that the correct elements		262.8		5.03	52.26
lay between the two sets given; that the	Ja.	232.4		10.00	46.51
next periostral passage would occur between	.	2324		9.82	-87
1857.5 and 1858.5; that the semi-major		234'3	1		
axis of the orbit is a little greater than 30";		235'1		.45	7.09
that the sum of the masses of the two stars		2380		805	8.03
that the sum of the masses of the two stars		250.7		5.97	50.96
is between six and six-and-a-half times the		251.2		·90	1.02
mass of the sun; and that the orbit is		267.6		4.22	305
something like a magnified image of the		276.3	1	.21	400
path of Halley's comet.					63
In 1877 Mr. Hind computed an orbit		283.5	_	•••	
(see Monthly Notices, vol. xxxvii., p. 96).		307.7	6n.	3.93	6.38
To able the absorptions made by Lord		320.0	,,	4.01	7.29
In this the observations made by Lord		329.2	2n.	.29	8.13
Lindsay in 1874.85 were used:—	Po.	270'1	22		3.29
Periastron passage, 1874.85.		277.0	155	•••	4.06
$\Omega = 21^{\circ} 48' \circ$.		281.I			□ -38
· •			25	•••	63
Node to periastron on orbit 59° 32'.1.		283.5	38	•••	
Inclination 82 18 4.		289.0	128	•••	2,04
		293.6	140	4'07	'32
e = 0.6673	ļ	294'9	26	•••	1 50
a = 21''.797		301.1	140	3.92	6.03
P = 85.042 years.		340.0	125	5.13	9:38
And the companion of the elements with			IIO	.68	60.11
And the comparison of the elements with		345:3		-6	-48
the observations from 1752.2 to 1874.85		348.7	10		
shows a very satisfactory agreement.		351.0	130	6.08	1.02
Mr. Hind remarks that "Lord Lindsay's		353.2	60	.3	.30
measures fall exactly at the computed time		354'3 358'0	30	.29	-58
of nearest approach of the component stars in the real orbit." "If, for the annual		358.0	8o	'79	2.20
in the real orbit." "If, for the annual		1'4		7.2	3703
parallax, a mean of Henderson's value, as	ľ	5.4		.85	4.11
name and by Determ and that of Moseta	1	3 /		10.54	7000
corrected by Peters, and that of Moesta,		20.4		.0	62
be taken, giving 0" 928, we find the mass	E 1.	0.0		_	1
of this system = 1.79 × the sun's mass,		5.5	ì	8.2	3.75
and for the semi-axis major of the orbit		•••		I.	4.72
23'49."		•••	2n.	9.4	8.18
Mr. Maxwell Hall has measured this		•••	In.	10.5	70.65
star with great care. His results are—	1	•••	,,	8.3	3.16
	İ	30.2	1	ာ်	4.12
1878·38 139°·1 2″·4.	I		20	_	6.72
See Nature, vol. xviii., p. 225.	1	50.6	3n.	3.9	
, Doc 1144470, 1041 111111, pr 2-31		69.1	5n.		7:25
Lastly, Dr. Doberck in 1879 obtained	Russell	22.3	3n.	10.46	0.4
the following elements:—	Į	.9	2n.	12	1.47
_	1	25'3	,,	9.73	2.47
$\Omega = 25^{\circ} 14'$	l	25.3 28.1	In.	-5	3.33
$\lambda = 45 58$	ŀ	30.0	2n.	7.96	4'47
$\gamma = 79$ 24	1	47.0		4 35	6.41
e = 0.2332			,, fn	2.53	
D _ 88:126 wa	Tindes-	76.1	5n.		7°54 74°85
P = 88.536 yrs.	Lindsay			•••	
$T = 1875^{\circ}12$	Gill	69.4	In.		7:55
$a = 18^{1/2}.45$.	i	80.6	"	•••	.20
0 "	I	75.3	,,		57
Feuillée 6-9 1709	l	80.2	,,		.59
Lacaille 218.7 20.51 52.2		٠,	,,		101

457 Σ. 1863.

R. A. 14^h 34^m Dec. M. 52° 6' 7'1, 7'4

C. yellowish white.

Certain change in both angle and distance. Dunér gives

$$1855.72.$$
 $\Delta = 0".61.$ $P = 101^{\circ}.5 - 0^{\circ}.25 (t - 1850.0).$

	•		".	_
Σ.	109'7	4n.	0.65	1830'14
Mä.	104'1	'	'6ŏ	8.94
	1016		•6	41.56
	'4	7n.		3.32
	98.7	2n.	·55 ·68	51.57
	97.6	٠,,	.77 .58 .67 .65	2 67
	100'2	,,	1.58	4.20
	91.3	٠,,	'67	8.69
Ο. Σ.	107:3	3n.	.65	41.51
	105.0	2n.	·67 ·88	50'14
	94.6	In.	·88	72.24
De.	97'3		elong ^d	56.03
	95.5	3n.	,,	64.37
Se.	101.2	In.	0.77	59.52
Eng.	1.801	2n.	.76	65.80
Du.	101.7	5n.	•50	9.49
	99.6	In.	·50 ·58 ·6	75.2
W. & S.	. '5	4	.6	2.41
	89.5	4	•6	3.5
	94.3	4	·57	.30
	.ī	1	·57 ·65	'36
G 1.	93'4	3	•5	4.36

Σ. 1864. **458**

π Boötis.

Dec. M. R. A. 16° 56′ 14h 35'1m 4.9, 6

C. very white.

H₁. "Sept. 20, 1879. The Rev. Mr. Hornsby told me it was a double star, and I found it so. He observed that this had been found to have changed its place 16"." H₁. (*Phil. Trans.*, vol. lxxii., p. 219). "# Boötis, Fl. 29. Sept. 20 [1781]

"* Bootis, Fl. 29. Sept. 20 [1781] Double. Pretty unequal. L, w; S, winclining to r. Distance, 6"17. Position, 6° 28′ s.f."

H, and So. (Phil. Trans. 1824, p. 199). "Nearly equal; large, white; the smaller perhaps inclines to blue."

Sm. (Cycle, p. 323). From the words used by Piazzi, and the measures of H₁ and H₂ and So., he infers a slight direct orbital motion. "This suspicion," he adds, "would have been confirmed by my observations, but that \(\mathbb{L}\) found the angle 9° 50' s.f. in 1819'61; and ten years afterwards he concluded 9° 12' s.f. to be the mean position."

Dunér gives the following formulæ:-

1852.21. $\Delta = 5^{\prime\prime}.87.$ $P = 100^{\circ} \cdot 3 + 0^{\circ} \cdot 065 (t - 1850^{\circ}).$

	100 3-	T 0 00;		300/.
H ₁ .	96°5	In.	6.17	1781.83
	97.6	2n.		1803.19
So.	· · · 9	13	6.88	22.02
Σ.	98.7	In.	.08	7.28
	99.3	3n.	5.93	9.35
	.2	5n.	.71	31.20
Da.	•5	1	6.58	3.19
	100.3		5′50	45'39
Mä,	.5	ion.	.89	3'33 52'36
	0.101	4n.	6.01	52.36
	100.8	I4n.	5.85	6.08
_	. 4	6n.	.96	60.43
Po.	98.8	3n.	6.08	46.43
D.O.	100.4	ļ	.90	'40
70-	97:3		:76	7:31
Do.	101.1	5n.	5.76	54.46 5.51
Se.	102.3	In.	5.97	6.79
Mo.	.6 100.9	3n. 2n.	6.14	7:34
Ro.	8.101	211.	01	63.27
Ka.	100.6	6n.	5.43	6.45
Ta.	101.6	In.	6.35	49
M.	98.9	,,	5.94	7:34
	100.4	,,	6.14	7:34 8:40
	102.2	,,	'	70.30
	100.2	,,	6.55	'39
	·§	,,	5.8 6.18	1.37
	101.6	٠,,	6.18	'44
ĺ	100.0	3n.	6.39 6.39	3'40
	102.7	4n.	6.39	4'37 5'33
1 _	.5	5n.	40	
Du.	101.5	4n.	5.89	69:47
	102.0	2n.	.51 .82	71.47
W. & S.	.6	6	1	2'47 '38
W. & D.	100.8		r:00	30
	101.3	6	9.11 2.30	3.36
	102.3	7	5.96	4.41
	.5	2	3.86	42
	103.2	4	.91	7:46
	.03,7	2	6.55	46
	102.2	8	5.95	.47
G 1.	101.3	2	6.2	4.36
Schi.	.0	ın.	5.87	5.47
Pl.	.9	4n.	'84	6.96
Dob.	.0	6n.	6.16	7.31
Fl.	103.3	In.	.11	47

459 Σ. 1865.

Z BOÖTIS.

M. Dec. R. A. 14° 14' 14h 35.4m 3.2, 3.9 C. white.

The angle was unchanged from 1796 to

1841; a slow retrograde movement then began, accompanied by a diminution in distance.

Dunér has the formulæ

$$\Delta = .1'' \cdot 03 - 0'' \cdot 010 (t - 1850 \cdot 0) + 0'' \cdot 00014$$

$$(t - 1850 \cdot 0)^{t}.$$

$$P = 309^{\circ} \cdot 3 - 0^{\circ} \cdot 1244 (t - 1835 \cdot 0)$$

$$- 0^{\circ} \cdot 0015 (t - 1835 \cdot 0)^{2}.$$

			. "	
H ₁ .	312.0	In.		1796.59
8o.	307.0	2n.	1.68	1823.27
H.	312.6	In.	•58	30.34
•	308.2	٠,,	.15	1.39
	309.1	,,	.0	3.54
Σ.	.2	IIn.	'19	0.47
	312.2		.16	3.42
	305.0		17	44.40
Be.	310.7		•29	31.18
201	307.5		.33	
Da.	308.3		.33	2:34
Da.		•		`47
	311.5	In.	.50	3.30
	310.1			4'43
	307.0	In.	1.04	43'32 8'11
	306·5	4n.	.08	
e			.03	8.43
Sm.	309.9		.3	33°39 8°45
	308.6		3	
	307.3		.5	42.43
A . 11 .	308.5	l	.0	52.38
Galle.	309.8		'20	38.66
Ο.Σ.	310.4	6n.	.24	41.16
	307.2	8	.00	7.72
	303.9	7	.00	61.13
	304'5	11	0.66	2.95 8.68
	303.1	6	-88	
	301.2	4	•83	73.01
ĭä.	310.0		1.31	41.39
	311.0		.16	2.36
	309.4	16n.	'14	85
	308.4		.02	3.40
	309.7	ŀ	.19	5·26 6·88
	.2	IOn.	.23	6.88
	308.7		.23	7.65
	310.0	In.	'21	8.36
	307.8	6n.	'04	52.24
	306.4	In.	'23	5.94
	305.1	İ	'34	7.43
	308.1	ĺ	.02	8.44
	307.8		.07	9.38
	308.0		•26	9·38 61·42
	306.2		.24	2.63
Ch.	• 7	2n.	•5	42,20
Ja.	307.0		•2	6.19
	306.5		'24	53'49
	·6	ĺ	35	5'44
Mit.	307.2	2n.	.11	46.67
	308'4	In.	0.93	7.57 51.75
Flt.	305.8	12	1.1	51.75
Mi.	307.2	32	.19	1 3.31
Se.	305.7	4n.	0.00	5.70
De.	306 I	9n.	1.0	.83
	303.5	. 6n.	.02	64.78
Mo.	304.7	2n.	.18	59.34
Eng.	306.0	In.	0.87	64.20
_	-		,	

_	0		,,	
Ta.	307.2	In.	1.10	1866'49
Du.	303.1	15n.	0.42	9.16
	. I	2In.	.75	71.37
	301.4	9n.	.72	5.42
W. & S.	298.9	3		1.20
	301.6	10	0.93	2.38
	300.5	5	·88	3.36
	302.5	5 7 6	*92	4'41
	301.0	6	•98	'42
G 1.	308.5	5	1.38	36
Kn.	303.1	In.	0.97	0.47
Sp.	299'4		·91	5.40
	298.5			6.20
Dob.	302.0	4n.	-8	6.32
	300.6	5n.	-88	7.33

46 0	Σ.	186	38.	
R. A. 14 ^h 35'9)ma	Dec. 10° 2'		M. 8·2, 8·2
	C.	yellow	ish.	
Σ.	19,1	In.	0.86	1827:27
	.5	,,	.99	8.32
	.3	,,	'90	33.55
¥ä.	27.0		·65	42.36
	25.8		·7 7	3.35
	29.6		.77 .89 .80	7.27
	33.2		·8o	52.43
	32.8		.79	4'42
	27.5		75	7.43
	38.4		.70	8.39
De.	19.9		.70 .89	65 08
W. 📤 S.	23.2	In.	•93	74.42
	22.9		.77	5.41
G 1.	'4	In.	1.0	4.23

461 O.Σ. 284. R. A. Dec. M. 14^h 36'1^m 49° 15' 7'2, 11'2

If De.'s angle be correct, a great change took place between 1852 and 1866.

Ο.Σ.	106·3 143·5 141·6 102·3	3n.	6.98	1848·19 6·29
Mä.	143.5	_	•••	6 29
_	141.6		•••	52.69 66.69
De.	102.3	3n.	6.49	66.69

462 Σ. 1871. R. A. Dec. M. 7. 7

C. white.

Probably a binary. Dunér has

1844.80. $\Delta = 6^{\circ}.80$. P = 286°·1 - 0°·20 (t - 1850°0).

Σ.	283°2	3n.	1.82	1829.10
ш	0.	,,	-80	36.18
H, Mä.	279°0 285°1	5n. 6n.	*55 *93	43.61
D-	286.5	2n.	·82	52.67
De. Se.	287.2	In. 2n.	1.68	7:11
Du.	28 9·8	,,	.61	71.42

463 Σ. 1876,

R. A. Dec. M. 14^h 40^m -6° 53′ 8·1, 8·6

C. Z., yellowish; Se. and De., white.

Probably a binary in rapid motion.

Σ.	51.7	In.	0.89	1829.31
	39.6	, ,,	1.19	31.37
	49.2	,,	0.94	2'34
	55.4	4n.	1.31	3.35
Mä.	57.2		'24	44'34
Mit.	59.8	In.	0.02	8.45
Se.	60.8		1.0	56.88
	63.8		elongd.	65.48
De.	64.5	ın.	1.1	56.49
	61.8	,,	.0	7'49
	57.5	, ,,	•••	8.42
	57·5 65·8	3n.	1.5	63.39
W. & S.	68.6	7	17	72.38
	69.7	7 2	'27	3.36
	56.0	2	•••	4'42
G 1.	69°1	2	1.3	54
C.O.	67.0	In.	.40	7.41

464 Σ. 1877.

€ BOÖTIS.

R. A. Dec. M. 14^h 39.7^m 27° 35′ 3, 6.3

C. H₁, A, reddish; B, blue, or rather a faint lilac. H₂ and So. A, yellow; B, blue-green. Z. A, decided yellow; B, decided green. Sm. A, pale orange; B, sea-green. Se. A, yellow; B, blue.

H₁ (Phil. Trans., vol. lxxii., p. 213):

"I. ε Boötis. Flamst. 36. Sept. 9, 1779.

—Double. Very unequal. L, reddish; S, blue, or rather a faint lilac. A very beautiful object. The vacancy or black division between them, with 227, is ½ diameter of S; with 460, 1½ diameter of L; with 932, near 2 diameters of L; with 1159, still further; with 2010, extremely distant, 2½ diameters of L. These quantities are a mean of two years' observations. Position 31° 34' n.p."

In his paper read June 9, 1803, H₁ says:

"This beautiful double star, on account of the different colours of the stars of which it is composed, has much the appearance of a planet and its satellite, both shining with innate but differently coloured light. There has been a very gradual change in the distance of the two stars; and the result of more than 200 observations, with different powers, is, that with the standard magnifier, 460, and the aperture of 6'3 inches, the vacancy between the two stars in the year 1781 was 1½ diameter of the large star, and that it now is 1½."

He found, from many observations, that the proportion of the diameters of the two stars was 3:2.

H₂ and So. (*Phil. Trans.* 1824, p. 204): "Large, yellow; small, blue-green; a very marked contrast of colours.

"Nothing can be more unsatisfactory than the measures of this very difficult star, especially in position, the difference between the greatest and least among the single measures amounting to the enormous quantity of 16° 10', and even among the mean results of the whole sets of observations extending to 10° or 11°." H, then remarks on the difficulty of accounting for this, and rejects bias of eye, error of judgment, refraction, imperfection of vision, closeness, and difference of size and colour, as insufficient. "The angular motion is indisputable."

In 1826 (*Phil. Trans.* 1826, p. 337) he writes: "The motion of this star is therefore satisfactorily confirmed."

In vol. v., p. 46, of Mem. of R. A. S., he observes, "After a long and obstinate contest with e Boötis, which is certainly one of the most difficult double stars to measure correctly, Rigel itself excepted, I remain unconvinced of its motion. My father's measure in 1796 differs only 3° from Z.'s in 1826; yet this might arise from the conspiring effect of extreme errors. But, again, the mean of my measures for 1830, which I believe to be the truth, tallies within 0° 26' with the joint result of Sir James South and myself in 1822, which rests on upwards of sixty individual measurements."

Z. (M. M., p. 49), referring to the discrepancies in his own measures, says:—
"These probably arose from neglecting the position of the eye and head." He thinks that a slow direct motion is beyond doubt, and that H, and So.'s angles for 1822'55 and 1823'34 are too large.

and 1825'34 are too large.

Sm. (Cycle, p. 325), after referring to the observations and conjectures of H₁ and H₂, submits the following details and epoch which have led him to consider the question to be, as yet, unestablished:—

H ₁ . H ₂ & So.	301° 34′	Dist. 4" 00 ±	1779.67
H ₂ & So.	322 59	3 '93	1822.55
	320 58	2 .64	1829.39
D.	321 35	***	1831.32

Dawa	e (Men	R A	S. w	ol. xxxv.,	1	•		,,	
D. 374):	"Recen	t measu	res seem	to confirm	Mä,	323.8	1	2.70	1843.92
the idea	that this	is really	a binar	y system."	t	325.2	7n.	•61	50.74
Writi	ng in 186	5 in <i>Ast</i>	ronomica	ıl Register,	1	.7	бn.	*57	4.41
he says	, "All r	ny mea	sures of	this star		326.0	,,	·63	703
point to	a slow in	crease	of angle.	"	ł	320.0	In.	.60	7.42
				produced	i	326.9	7n.	·61	8.47
in this				increased,	0.0	5	"	.77	9.38
				probably.	G.O.	319.3	1	75	42.32
				f late years ion of dis-	ο.Σ.	321.6 .6	12n.	75	4 44
	ill manife				0.2.	323.4	5n.	·67	49
	r has the			,		324.8	23n.	·56 ·70	55'33 64'14
Dunc					}	329.1	4n.	.68	73.56
ъ	1847'4 323°'9 -	O. A.:	= 2".67.	ero:o)	Ja.	323.3	-	3.20	46.58
r ==	323 9 -	F 0 10	5 (1 - 1	050 U <i>j</i> .		1.1	10	2.63	53.50
五 ₁ . 32°	19'	Αι	ıg. 31, 1	780.	Mit.	320.8	2n.	.57	46 66
30	21	Mo	ch. 13,	81.	Bond.	326.7		3.5	8 38
33 38	I	M:	ly 10,	81.	į.	322.0		.2	.38
	26	Fe	b. 17,	82.*		.I		.ı	'45
45	32.4		ıg. 18,	96.	Flt.	7	36	2.77	50.95
49	18	∣∖ Jau	n. 28, 1	802.†	Mi. De.	321.5	25	.83	2 94
43	55	11 30		0	De.	.8	5n.	'64	4.48
42	42	\ M	ch. 23, 1	au3.	[324°0	2n.	'24	5.23
44	33	{			i	.3	3n. In.	3.03	6:39
40	29 n.p.	I (м.	ch. 26, 1	802	1	323.0		'02 2'80	49
44 44	33 52‡	(20, 1			322.0	5n.	-88	7°54 8°49
44	302.1	6	١	1781.73		324.0	2n.	.78	63.50
	314.6	8		1803.01	ì	3250	4n.	.69	5.46
Amici.	•	1	2.32	16.04	Se.	323.6	,,	·6í	55.37
H, & 80	. 322'9	5n.	3.93	22.22		322.9	3n.	.29	6.50
•	324.3	бn.	:35 :87	5'43		324.7	In.	3.59	65.49
	322'4	5n.	.87	30.52	Mo.	327.8	12	2.95	57.44
Σ.	318.5			22.39	۔ ا	325.0	22	.72	8.46
	317.9	2n.	2.69	6.79	M.	324.4	In.	.60	62.39
	323.2	In.	·55 ·68	7:27	ł	148.2	"	.88	7:36
	321.4 .5	9n. In.	.61	8.26		140°4 141°2	,,	.81	9.22
	320.0	3n.	.59	9·58	ŀ	141 2	"	.74 .32	:55
	321.8	2n.	.55	3.41	ł	•••	"	3.16	70.39
Da.	321.0	In.		1.36	1	145.7	"	2.97	3.40
	320.8	2n.	2.00	41.43	i	324.0	2n.	93	4.36
	322'1	5n.	·6 ₇	8.19		328°0	,,	-86	5.31
	و. ر	3n.	•68	54.2	Ro.	323.2	in.	. 79	63.23
	323.6	In.	.63	5.23	Eng.	326.2	3n.	.92	5'40
	324.4	3n.	.83	60.02	Ta.	323.1	,,	'97	6.40
_	325.2	,,	.91	5'48	[321.3	ın.	.87	9.62
Sm.	321.0		3.2	31.46		324.9	,,	3.08	70.46
	323.8		.8	3.23 8.68	Kn.	202:0	,,,	.05	1'41
	321.5		2.8 .8	48.24	Bu.	323.9 326.8	,, 2n.	2.73	67:34
Be.	316.5 355.1		.96	31.26		327.6	4n.	·52	72
Encke.	321.3			7:44		326.1	8n.	°75 °64	8.26
Galle.	33		3°37 2°88	8.67	1	327.6	7n.	•67	9.22
	324 [.] 9		•66	9.45		.3	6n.	.56	1.26
Ka.	320.0	6n.	·80	40.05	1	328.3	,,	.77	2.23
	319.8	9n.	.74	2.37	l _	327.6	7n.	63	5.22
	325.3	5n.	-67	66.48	Br.	332.4	2	3.04	68.46
Ch.	321.4	In.	-88	41.38	W. & S.	327.2	4	2.97	71.26
	316.6	,,	:34	2.43		326.9	3	3.06	2.38
	311.3	٠,,	0.86	3.33		9	5	.00	3.36
	* Very	exact.			1	327.6	8	.00	4'42
	† Very ‡ The	accurate	iy taken.		}	326°1	6	2.0	144
	† TUE	væl.				J~/ 1	, ,	3.19	1 5.39

G 1.	327°0	1 4 1	2"9	1874.54
Schi.	328.2	In.	·8o	5'41
	327.6	١,, ١	.75 .80	6.49
Sp.	328.3		.80	5'41
	327.6		.75	6.49
W .0.	328.6	In.	'94	'41
	330'4	,,	.00	*43
	327.2	,,	3.09	*43
Dob.	324.2	IIn.	13	'42
	.7	2n.	2.92	7.23
Pl.	329.1	6n.	.92	6.70

465 Σ. 1879.

R. A. Dec. M. 7.8, 8.8

C. yellowish.

Probably binary.

Σ.	67.8	2n.	1.12	1827.80	
	66.3	In.	'21	34'39	
Mä.	59.2		0'79	42.42	
Da.		single			
	•	longate	xd.	5.31	
Du.		9.38			
	per	fectly r	ound	40	

466 Ο.Σ. 285. R. A. Dec. M. 14^h 41^m 42° 53′ 7'1, 7'6 C. white. Ο.Σ. 72'1 | 3n. | 0'60 | 1845'80

De.	36 } 23.9	3n.	•51 obl. ?	5.84 65.23
467	Σ.	188	33,	

R. A.		Dec.		M.
14 ^b 42	9 m	6° 27	<i>1</i> '	7, 7
		yellow	ish.	
H,	266.7	1	1'20	1830.53
•	271.2		•••	1.37
	2700		*25	2.00
Σ.	272'0	3n.	.24	0.22
Mä,	269.8		*07	8.29
	270'0		'10	42.40
	267.8		0.01	3:37
	265 O		1.03	54'43
	264.5	1	703	7.43
	262.7		.12	8.41
Se.	2 65.6	2n.	0.95	6.41
De.	261.3	1	.80	8.13
	262.7	1	·8o	63.58
W. & S.	261.7	in.	-88	72:37
	ģ	٠,,	•95	3.36
G 1.	262.2	,,	1.1	4'54
Sp.	259.6		0.81	5.42

C. H₁, A, pale red; B, garnet or deeper red. Σ., A, yellow; B, reddish purple. Se., A, golden; B, red. Sm., A, orange; B, purple.

H₁ (*Phil. Trans.* 1804, p. 367). He first observed this star on the 15th of April, 1782, when the position angle was 65° 53' n.f. On the 20th of April, 1792, it was again observed, and the angle recorded was 85° 43''5 n.p. He then discusses the observations, pointing out the changes which would be observed if the companion moved round the larger star, the plane of the orbit being coincident with the line of sight. He thus infers a retrograde orbital motion.

H₂ (Phil. Trans. 1824, p. 208). Discussing the observations between 1782 and 1823, he is constrained to admit that a physical connection is probable. When, however, he came to examine the measures between 1780 and 1830, he remarked, "That the motion is not rectilinear, but orbitual, there seems little room, from the later observations, to doubt; but the probable errors in the positions from 1795 to 1804 prevent any certain determination of the orbit." (Mem. R. A. S., vol. v., p. 36.)

In 1833, in vol. vi. of the Memoirs,

In 1833, in vol. vi. of the *Memoirs*, H, gives the elements of the orbit. He finds, by his graphical method, the following results:—

a = 12''.56 e = 0.59374 $\pi = 138'.24'$ $\lambda = 100.59$ $\gamma = 80.5$ $\Omega = 359.59$ P = 117'.14 tropical years Perihelion passage, Dec. 17, 1779.

path of the small star be really the straight line it appears to be, the angle of position will never reach 50° n.p., and the angular velocity will diminish continually from the present moment (1823). On the other hand, if the stars form a binary system, the present angular velocity of about 1' per annum will continue for some time nearly uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Madler's elements are as follows:— T = 176171 \[\tilde{w} = 315^\circ 2 \tilde{a} = 1727 (Equ. 18500) \(i = 52.7 \) \(\tilde{e} = -2^2 2403 \(a = 5^\circ 501 \) P = 160 by years. And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— \[\tilde{a} = 26^\circ 22' \(\lambda = 117069 \) \(a = 26^\circ 22' \(\lambda = 117069 \) \(a = 4^\circ 86. \end{array} T = 177069 \(a = 4^\circ 86. \end{array} T = 17707081 \(\tilde{a} = 4^\circ 86. \end{array} T = 17707081 \(\tilde{a} = 335^\circ 9 \) \(a = 4^\circ 86. \end{array} T = 17707081 \(\tilde{a} = 4^\circ 86. \end{array} T = 17707082 \(\tilde{a} = 4^\circ 86. \end{array} T = 177089 \(a = 4^\circ 86. \end{array} T = 17707089 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709 \(a = 4^\circ 86. \end{array} T = 1770709	Sm. (<i>Cycle</i> , p.	. 328).	"If th	e relative	Da.	323°3	In.	7.26	1841'42
line it appears to be, the angle of position will never reach 50° n.p., and the angular velocity will diminish continually from the present moment (1823). On the other hand, if the stars form a binary system, the present angular velocity of about 1° per annum will continue for some time nearly uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Madler's elements are as follows:— T = 1761 71 \[\omega = 172 \colon (Eq. 1850 to) \] \[\omega = 2 \colon 2 \colon (2.2) \] \[\omega = 172 \colon (Eq. 1.850 to) \] \[\omega = 2 \colon 2 \colon (2.2) \] \[\omega = 172 \colon (Eq. 1.850 to) \] \[\omega = 2 \colon 2 \colon (2.2) \] \[\omega = 2 \colon 2 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 2 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 315 \colon (2.2) \] \[\omega = 2 \colon (2.2) \] \[\omega = 315 \c	path of the	he small	star be	really th	ne straight		322.6	2n.		
velocity will diminish continually from the present moment (1823). On the other hand, if the stars form a binary system, the present angular velocity of about 1° per annum will continue for some time nearly uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Mädler's elements are as follows:— T = 1761.71 \[\omega = 315^\circ 2 \] \[\omega = 172^\circ (Equ. 1850^\circ) \] \[\omega = 27^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -177.669 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[\alpha = -2^\circ 2403 \] \[line it av	pears to	be, the	e angle o	f position		318.8	,,	6.80	
velocity will diminish continually from the present moment (1823). On the other hand, if the stars form a binary system, the present angular velocity of about 1° per annum will continue for some time nearly uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Mädler's elements are as follows:— T = 1761.71 \[\omega = 315^\circ 2 \] \[\omega = 172^\circ (Equ. 1850^\circ) \] \[\omega = 27^\circ 2403 \] \[\omega = 5^\circ 591 \] \[\omega = -2^\circ 2403 \] \[\omega = 5^\circ 591 \] \[\omega = 1000505 years. \] And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. \[\omega = 26^\circ 22' \] \[\omega = 11746 \] \[\omega = 26^\circ 22' \] \[\omega = 11770^\circ 69 \] \[\omega = 26^\circ 22' \] \[\omega = 17770^\circ 69 \] \[\omega = 26^\circ 22' \] \[\omeg	will neve	r reach	50° n.p	., and th	ne angular		317.9	,,	.71	
hand, if the stars form a binary system, the present angular velocity of about 1 per annum will continue for some time nearly uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Mädler's elements are as follows:—	velocity '	will dim	inish co	ntinually						
hand, if the stars form a binary system, the present angular velocity of about 1 per annum will continue for some time nearly uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Mädler's elements are as follows:—	present	moment	(1823)	. On	the other		305.0	ın.		7.42
per annum will continue for some time early uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Madler's elements are as follows:— T = 1761.71	hand, if	the star	rs form	a binar	y system,	Ga.	326.2		1 .	
per annum will continue for some time early uniform, and in about fifteen or twenty years the limit of 50° n.p. will be attained or passed." Madler's elements are as follows:— T = 1761.71	the prese	ent angi	ular vel	ocity of	about 1°	ł	325.8			
twenty years the limit of 50° n.p. will be attained or passed." Mädler's elements are as follows:— T = 1761.71	per annu	ım will	continu	ie for s	ome time	Ka.	.1			
attained or passed." Madler's elements are as follows:— T = 1761 71 w = 315°2 & = 172°7 (Equ. 1850°0) i = 52°7 i = 0°4\$40 µ = -2°2403 µ = -2°2403 µ = -3°591 P = 160°695 years. And Dunér has compared these with the differences considerable and increasing. Dr. Doberck's latest elements are— & = 26° 22′ \times \times 177 66 \times 208 \times 177 69 \times 208 \times 177 69 \times 208 \times 177 69 \times 208 \times 177 69 \times 208 \times 177 69 \times 208 \times	nearly u	niform,	and in	about	fifteen or					
Madler's elements are as follows :— Mailer's elements are as follows :— Mailer's elements are as follows :— Mailer's elements are	twenty ye	ears the	limit of	f 50° n. _]	p. will be			_		
T = 1761 71 w = 315°2 S = 172°7 (Equ. 1850°0) i = 52°7 e = 0°4540 µ = -2°2403 µ = -2°2403 µ = -3°591 P = 160°695 years. And Dunér has compared these with the differences considerable and increasing. Dr. Doberck's latest elements are— S = 26° 22′ \(\lambda = 1770'569 \(\lambda = 1770'569 \(\lambda = 4''36.\) H1. 24°1 3'38 1780'69 \(\lambda = 4''36.\) H2. 24°1 3'38 1780'69 \(\lambda = 4''36.\) H1. 24°1 3'38 1780'69 \(\lambda = 4''36.\) H2. 24°1 3'38 1780'69 \(\lambda = 4''36.\) H3. 322°3 340'3 35'3 35'3 31'2 31'4 3	attained	or passe	ed."							
T = 1761 71 ω = 315° 12 Ω = 1727 (Equ. 1850°0) i = 52.7 ε = 0.4540 μ = -2° 2403 α = 5" 591 P = 160 '055 years. And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— Ω = 26° 22′ λ = 117 46 γ = 36 55 ε = 0.7081 P = 127'35 years T = 1770'69 α = 4"86. H ₁ . 24'I 3'38 1780'69 319'3 321'3 51.	Mädler	's eleme	ents are	as follow	vs :	Ma.		4n.		
## 315°2 34 5n. 66 629 319°3 6n. 67 7:37 318°0 5n. 63 32°3 38°0 5n. 63 318°0 5n. 63 318°0 5n. 63 318°0 5n. 63 318°0 5n. 63 318°0 5n. 63 318°0 5n. 63 318°0 5n. 65 32°3 318°0 5n. 65 32°3 318°0 5n. 65 32°3 318°0 5n. 65 32°3 318°0 5n. 65 32°3 318°0 5n. 65 32°3 318°0 318°0 5n. 65 32°3 318°0		_					321.2			4 30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 =	1701 71							5 30
## - 0'4540 ## - 2'2403 ## - 2										0 29
## - 0'4540 ## - 2'2403 ## - 2				.qu. 185	0.0)				167	7.5/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1			.03	
## 160 695 years. And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— ### 20										
P = 160 695 years. And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— \$\begin{align*} \text{\$\alpha\$} = 26\circ 22' \\ \lambda = 177.35 years \\ \text{\$\alpha\$} = -\frac{7}{1} \\ \text{\$\alpha\$} \\ \text{\$\alpha\$} = -\frac{7}{1} \\ \text{\$\alpha\$} \		μ =	- 2 24	03				ı	3,	
And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— \$\begin{align*} \text{\$\alpha\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 117 \text{ 46} \\ \text{\$\gamma\$} \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 65} \\ \text{\$\gamma\$} \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 65} \\ \text{\$\gamma\$} \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 65} \\ \text{\$\gamma\$} \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 35} \text{ years} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 26^\circ 22' \\ \text{\$\lambda\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 22' \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\ \text{\$\gamma\$} = 177 \text{ 76} \\\ \text{\$\gamma\$} = 177 \text{ 76} \\\ \text{\$\gamma\$} = 177 \text{ 76} \\\\\\\\\\\\\\\\\\\\		D =	5 591	****						£.38
And Dunér has compared these with the measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— \$\begin{array}{cccccccccccccccccccccccccccccccccccc		· -	100 095	years.			•	1		6.50
measures made since 1865. He finds the differences considerable and increasing. Dr. Doberck's latest elements are— 30	And Da	-l- b			mish sha					7:40
Dr. Doberck's latest elements are—										8:54
Dr. Doberck's latest elements are—						į.				0.33
82 = 26° 22′ λ = 117 46 λ = 117 46 γ = 36 55 γ = 0.7081 P = 127.35 years T = 1770.69 a = 4″.86. H ₁ . 24.1 3.38 1780.69 319.2 20 75 646 319.2 20 75 76 76 310.3 319.2 20 75 646 319.2 20 75 646 319.2 20 75 76 310.3 319.2 20 75 646 32 311.1 316 32 51 230 352.8 311.1 9.25 21.20 310.8 8n. 5.99 645 333.6 5n. 62 30.29 10 30.89 2n. 96 75 333.7 2n. 17 8.54 30.31 4n. 65 62.55 333.8 330.7 2n. 53 3.23 30.20 2n. 50 316 333.1 4n. 21 9.46 29.90 11n. 31 680 333.1 2n. 14 32.40 29.90 11n. 31 680 328.9 3n. 07 5.43 29.90 4n. 68 24.0 328.9 3n. 07 5.43 29.90 4n. 68 24.0 328.9 3n. 07 5.43 29.90 4n. 68 24.0 328.9 3n. 07 5.43 29.90 4n. 68 24.0 328.9 3n. 07 5.43 29.90 4n. 68 24.0 328.3 32.1 33 53 31.40 285.2 7. 46 538 329.1 32.1 33 53 31.40 285.2 7. 46 538 321.1 2n. 14 32.40 29.90 11n. 31 680 321.1 2n. 14 32.40 29.90 11n. 31 680 328.9 3n. 0.7 5.43 29.90 11n. 31 680 329.0 31.1 7n. 38 34.40 38.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90 39.90					u	0.Σ.	325.1		7:03	41'06
Q = 26° 22′ 313'4 3 '22 53'54 304'9 5 5'77 61'57 7 = 36 55 1 4 58 2'47 295'3 4 09 9'02 286'7 3 4'62 35'37 4 6'45'37 22'8 35'57 6'15'37 2'28 301'9 5 6'7 3'50 2'85'37 3 4'62 37'319 35'57 6'15'37 2'28 307'8 12 5'93 58'38 35'57 9'1'39 31'5 5 5'84 4'62 35'37 354'8 1802'25 310'8 8n. 5'99 6'45 335'9 2n. 1802'25 310'8 8n. 5'99 6'45 335'9 2n. 177 8'54 333'0 5n. 6'15 5'22 335'8 330'7 2n. 5'53 3'23 30'1 7n. 38 33'1 4n. 6'5 62'55 33'1 4n. 6'8 6'47 290'4 5n. 6'8 34'4 290'4 5 5'4 290'5 4n. 6'8 34'4 20'1 28'74 31'7 28'74 31'7 28'74 31'7 28'74 31'7 28'74 31'7 28'74 31'7 28'74 31'7 28'74 30'1 31'7 6'60 5'55 5'55 33'1 31'7 6'60 5'55 5'55 33'1 5'55 1'29 30'8 31'7 5'4 5'41 5'51 5'77 5'75 33'14 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 1'29 30'50 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5 35'5	Dr. D	oberck's	latest e	lements	are—	1	310.3		6.23	
λ = 117 46 γ = 36 55 γ = 0.7081 ρ = 127.35 years T = 1770.69 α = 4".86. H ₁ . 24.1		Ω=	26° 22	,				3	.22	
γ = 36 55 ε = 0'7081 P = 127'35 years T = 1770'69 a = 4"86. H₁. 24'1 3'38 1780'69						Í		5	5.77	
## = 0 7081 P = 127:35 years T = 1770:69 a = 4":86. ## 1. 24'1		γ =	26 55				.I	4	.58	
P = 127.35 years T = 1770.69 a = 4".86. H ₁ . 24'I							301.9	5	-67	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				vears				4		902
## 1		T =	1770.60)				3		73.19
H₁. 24 1		a -=	4".86.					_		45'37
H ₁ . 24 1			•			Mo.				40
T	Ħ			2:28	1780:60				75	
355.7	<u>1</u> .	24 1						12		
355.7 354.8 352.8 352.8 352.8 352.8 360.5 360.5 31.3 360.5 32.3 31.3 360.1 37.4 36.6 32.5 31.5 58.4 44.6 32.3 31.5 58.4 44.6 32.3 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 44.6 32.5 31.5 58.4 32.5 31.5 58.4 32.5 31.5 58.4 32.5 31.5 59.9 64.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32			1	•••		ט.ט.				
354.8 352.8 352.8 352.8 60± 4.25 9e. 311.5 5 5.84 4.46 32.35 35.9 3 7.77 5.37 2 337.0 4n. 7.777 5.37 2 5 338.9 2n. 96 7.57 337.0 4n. 7.777 5.37 2 5 338.9 2n. 96 7.57 337.0 4n. 62 30.29 2n. 17 8.54 30.31 4n. 65 62.55 313.6 8n. 330.7 2n. 17 8.54 30.29 2n. 10n. 156 3.38 30.7 2n. 153 3.23 30.20 2n. 153 3.23 30.20 2n. 150 4.46 331.1 7n. 38 5.42 334.1 4n. 21 9.46 331.1 7n. 38 5.42 334.1 4n. 21 9.46 20.90 11n. 31 6.86 331.1 2n. 14 32.40 20.90 11n. 31 6.86 331.1 2n. 14 32.40 20.90 4n. 68 2.40 32.91 6n. 685 8.47 20.90 4n. 68 2.40 32.91 6n. 32.71 2n. 6.85 8.47 20.90 4n. 68 2.40 20.90 4n.			1	•••		1214		-6	6:25	
352 8		354.8								
H, & So. 353'9 H, & So. 342'3 340'1 337'0 4n. 7'77 5'37 335'9 2n. 17 8'41 338'9 2n. 17 8'41 338'9 2n. 17 8'54 330'1 330'7 2n. 153 323'3 2n. 154 22'69 331'1 2n. 144 21 946 229'0 11n. 131 2n. 144 21 946 229'0 11n. 11n. 121 946 229'0 11n. 131 2n. 144 108 6'15 5'22 509 6'45 7'57 7'57 100. 56 33'8 542 23'8 331'1 2n. 144 140. 141 32'40 229'14 331'1 2n. 144. 168 6'47 229'14 31'1 4n. 168 23'20 4n. 1734 188. 332'1 331'2 7'9 7'41 285'4 311'7 600 50'55 33'42 8m. 332'1 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 8m. 332'1 333'3 31'40 34'44 8m. 5'41 5'41 6'577 75 300'8 4n. 5'41 6'577 75 300'8 4n. 5'41 6'577 75 300'8 4n. 5'41 6'577 75 300'8 4n. 5'41 6'577 75 300'8 4n. 5'41 6'577 75 1'29 1'29 1'29 1'29 1'29 1'29 1'29 1'29 1'29 1'29 1'30 1'40 1'		352.8	1						2.8.	
340'1				6.0±		200.			5.04	
340'I	H, & 80.	342.3	In.	9.25				8n.	5:00	
337 ° 4n. 7'77 5'37 22 5n. 82 8'30 335'9 2n. 17 8'54 303'1 4n. 165 62'55 37 333'6 5n. 162 30'29 10n. 165 62'55 37 330'7 2n. 153 32'3 302'0 2n. 150 44'6 331'1 2n. 144 32'40 299'0 11n. 131 6'86 331'1 2n. 144 32'40 297'4 5n. 105 8'30 328'9 3n. 107 5'43 293'8 ", 104 70'39 328'9 3n. 107 5'43 293'8 ", 104 70'39 327'1 2n. 6'85 8'47 291'6 ", 4'83 11'34 32'40 297'4 5n. 108 293'8 ", 104 70'39 327'1 2n. 6'85 8'47 290'0 4n. 168 2'40 4n. 168 2'40 288'3 ", 163 33'40 288'3 ", 163 33'40 288'3 ", 163 33'40 288'3 ", 163 33'40 288'2 ", 163 31'2 7'9 7'41 287'4 ", 162 4'39 Be. 331'2 7'30 31'40 285'2 ", 146 5'38 8m. 332'1 33 1340 285'2 ", 146 5'38 8m. 332'1 32'4 0 7'49 Lu. 18 11'7 6'00 50'55 50'55 32'48 11 9'61 8e. 310'0 12n. 102 188 122 124'8 11 9'61 8e. 310'0 12n. 102 188 121.	•	340'1	١,, ١		1			2n.	.06	7'57
335 '9 2n. '62 30 '29 '0 10n. '56 52 55 37 38 30 20 2n. '50 446 22 69 301 1 7n. '38 542 331 1 2n. '14 32 40 297 4 5n. '05 8 30 328 9 3n. '07 543 293 8 ", '04 70 39 32 1 4n. '68 240 297 4 5n. '05 8 30 32 1 4n. '08 6 47 291 6 ", '483 1 34 1 4n. '08 6 47 291 6 ", '483 1 34 1 4n. '08 6 47 291 6 ", '483 1 34 1 34 1 4n. '08 6 23 30 28 8 3 ", '04 70 39 8 1 32 1 50 8 1 20 20 0 4n. '68 240 29 0 4n. '68 240 29 0 4n. '68 240 29 0 4n. '68 240 29 0 20 20 20 20 20 20 20 20 20 20 20 20 2				7.77	5:37					8:36
2. 333.6 5n. 52 30.29 70 10n. 55 3.38 30.20 2n. 50 4.46 331.1 2n. 14 32.40 297.4 5n. 50 8.30 328.9 3n. 50 6.47 291.6 70. 56 23.30 297.4 5n. 50 8.30 327.1 2n. 6.85 8.47 290.0 4n. 68 2.40 200.0			2n.	.17	8.54					62.22
E. 335 8 54 22 69 301 1 7n. 38 542 334 1 4n. 21 946 2990 11n. 31 680 331 1 2n. 14 32 40 2974 5n. 05 830 328 9 3n. 07 5 43 2916 , 483 134		333.6	5n.	'62	30.59	!			1.56	3:38
2. 335.8 334.1 4n. 21 9.46 2990 11n. 31 6.86 331.1 2n. 14 32.40 2974 5n. 05 8.30 11 70. 04 70.30 328.9 3n. 07 5.43 293.8 , 04 70.30 327.1 2n. 6.85 8.47 290.0 4n. 68 2.40 37.4 200.0 4n. 68 2.40 288.3 , 63 3.42 288.3 , 63 3.42 288.3 , 63 3.42 287.4 , 62 288.3 , 63 3.42 287.4 , 62 287.4 ,	_	330.2	2n.			i		1		4.16
334 I 4n. '21 9'46 299'0 IIn. '31 6'86 331'1 2n. '14 32'40 297'4 5n. '05 8 30 328'9 3n. '07 5'43 293'8 ", '04 70'39'	Σ.	335.8		*54				7n.		5'42
331 1 2n. 14 32 40 297 4 5n. 05 8 30 293 8 70 70 5 43 293 8 70 483 1 34 290 0 4n. 68 24 30 286 3 70 70 70 70 70 70 70 70 70 70 70 70 70		334'1				1	299·o			
32 31 07 543 293 8 704 70 70 70 70 70 70 7		331.1				1	297.4	5n.	.05	8.30
Amici Enoke. 327'0 Be. 331'2 7'30 327'1 30'3 Mi. 068 23'30 288'3 368 332'1 33'30 31'40 285'2 328'3 31'7 600 56'55 327'4 00 7'49 Lu. 80 80. 330'3 30'3 30. 31'40 285'2 31'7 600 56'55 32'4 50 80. 330'3 31. 7'54 34'44 Po. 330'0 35'0 35' 35' 129 129					5.43	1	293.8	,,	'04	
Amiei '66 23:30 288:3 " 63 3'42 Be. 331'2 7:30 31'40 Bm. 332'1 3 53 Wi. 311'7 600 50:55 327'4 0 749 Lu. '8 310'0 75 224'8 '1 9'61 8e. 310'0 12n. '02 88. 330'3 3n. 7:54 34'44 Po. 305'0 35 752 1:29		-			6.47	1	291.6	,,	4.83	
Enoke. 327 o Be. 331 2 7 30 31 40 287 4 7 62 4 39 8m. 332 1 3 7 30 31 40 285 2 7 60 56 55 38	Amiei	327.1	zn.			1		4n.	l _	2'40
Be. 331 2 730 31 40 287 4 7, 62 4 30 5 35 8m. 332 1 3 730 8m. 327 4 70 749 14		202:0						,,		3.42
8m. 332·1 33 '53 Wi. 311·7 6·00 56·55 1						1		,,		4.30
332 4 0 7.49 Lu. 8 7.10 000 56.55 77.49 Lu. 8 80. 310.0 12n. 02 88 322.9 6.9 42.42 300.8 4n. 5.41 65.77 80. 330.3 3n. 7.54 34.44 Po. 305.0 35 52 1.29	_					W72	285.2	"		2.38
Da. 330'3 3n. 7'54 34'44 Po. 305'0 35 52 1'29				્રે.			311.7			56.22
Da. 322 9 6'9 42'42 300'8 4n. 5'41 65'77 300'8 305'0 35 52 1'29							•			1 75
Da. 330'3 3n. 7'54 34'44 Po. 305'0 35 52 1'29						D0.			_	
324.0 ", "15 40.43 Au. 303.4 35 35 1.29	Da.		3n.			Po				
	-		ا ,, ا	1.12				35		
		- •	•		TJ		J~J 4	ı	1 93	2 15

	_			
M.	305.9	In.	5"68	1862.33
	295.4	,,	·50	•36
	294.7	,,	.33	8.40
	291'4	,,	.25	9.22
	292.7	,,	.21	.55
	293.0	,,	:33	.57
	.1	,,	.30	70.38
	292.9	,,	·53	.39
	•6	,,	'02	1'34
	.9	,,,	4.83	.36
	286°0	,,	.93	
	283.9	4n.	.92	3·39 4·36
	286.2	,,	.76	5.36
Ro.	302.4		5'79	63.58
Eng.	303'4	In.	'32	4.46
	301.4	ŀ	48	5'54
Ta.	298.5	4n.	.59	6:37
	.0	ın.	'42	9.61
	295.8	,,	4.66	70.46
	296.4	,,		1.41
	286.6	,,	4.41	3.48
	288.6	,,	.19	4'33
_	286 ·o	٠,,	•••	. 54
Du.	295.4	6n.	5.02	69.65
	292.9	7n.	4'79	71.94
	286.6	4n.	'44	2.21
W. & S.	291.8	5 5 5 5	.1	2.38
	289.3	5	-88	3.36
	4	5	.81	.38
	288.4	5	.72	4.44
V 2 3 4 - 3	283.0		46	7:46
Lindsted Gl.	15287'0	In.	.84	3'43
No.	289°2 286°3	5	50	4.24
8p.	284.3		4:40	5.38
Sp. Schi.	204 3	In.	4'40	'40
Dob.	.8	5n.	.20	6.34
202.	282.9	3n.	.70	7:24
P1.	202 9	8n.	.22	6.99
W .0.	284.9	In.	.59	.41
	280. 6	,,,	.67	43
	284.6	",	.65	'43
Fl.	282.7	, "	28	7.44
			,	, , , , ,

469	O.S.	287.
1 00	U.Z.	201.

R. A. Dec. M. 45° 25′ 7.5, 7.6 C. white.

Probably a binary.

O.Σ. 97'3 | 2n. | 0'58 | 1845'51 105'4 | 4n. | '47 | 52'74 108'4 | 3n. | '54 | 5'84 119'0 | 1n. | '74 | 68'56 Ds. 300'3 | '64 | 7'23

470 o.Σ. 288.

R. A. Dec. M. 14^h 47'7^m 16° 12' 6'4, 7'1

Certain change in angle and distance.

Σ.Ο.	228°0	3n.	o68	1845.35
	222.5	2n.	.23	8.96
	204'4	311.	1.13	63.44
De.	200'4	,,	.51	6.72
W. & S.	197.8	6	.16	73'37
	196.5	4	.55 .26	*44
	198.2	4		4'44
	195.8	4 4 9 6	'49	7.45
	₹.8		'31	7:45 :46 :24
Pl.	'2	6n.	12	*24

471 \(\Sigma\). 1893.

R. A. 14 ^h 50'2 ^m		Dec 29°		M. 8·4, 10	
Σ.	261.3	2n.	21.30	1831'49	
	·4	In.	'82	2.29	
	259.7	,,	'42	4'43	
Kä.	257.9		19.36	44'41	
	256.7		20.76	5.49	
	255.9		.13	52.21	
	256.1		•o8	5.33	
De.	252.3		114	64.76	

472 ο.Σ. **289**.

R. A.		Dec.		M.	
14 ^h 51 ^m		32° 46′		6·3, 9·8	
0.Σ. De.	115.6	3n.	4.26 .43	1846·34 67·54	

473 Σ. 1901.

R. 1		Dec.		M.	
14 ^h 5	6 m .	31°	51'	7'7, 9'5	
Σ.	203.9	ın.	30.55	1831 '46 '52 47 '20 '32	
	·5 i	,,	'47	.52	
Mà.	201.0	,,	29.22	47.29	
	200.6	••	28.75	.32	

474 Σ. 1909.

44 BOÖTIS.

R. A. Dec. M. 14^h 59.8^m 48° 7′ 5.2, 6·1

C. H₁, white. Z., A, yellowish; B, bluish. Sm., A, pale white; B, lucid grey. Se., A, yellow; B, blue.

H₁ (Phil. Trans., vol. lxxii., p. 216):

"Aug. 17 [1781]. Double, considerably unequal. Both W. With 227 they seem almost to touch, or at most \(\frac{1}{2}\) diameter of S asunder; with 460, \(\frac{1}{2}\) or \(\frac{3}{2}\) diameter of S. This is a fine object to try a telescope, and a miniature of a Geminorum. Position 29° 54' n.f."

H, (Phil. Trans. 1824, p. 218) examines
the observations between 1781 and 1821,
but finds them suite interestables indeed he
but finds them quite intractable; indeed he
is unable to make quite sure that the obser-
vations relate to the same object. He
thinks, however, that the positions given by
Σ. in 1819'43, and that by H ₂ and So. in
Σ. in 1819:43, and that by H, and So. in 1821:33, "go to destroy Σ.'s idea of several
revolutions having been performed in thirty-
eight years." In 1830 he says, "The history
of the star 44 Boötis is singularly beset with
difficulties and apparent contradictions;"
and it was not until the observations made
in 1831, 1832, and 1833 were before him
that he falt sure of the hinary character of
that he felt sure of the binary character of the system. He says, "Comparing the
present results for 44 Boötis with the whole
present results for 44 Bootis with the whole
series of former measures, there can hardly
remain a doubt of its constituting a binary
system in which the orbits are very oblique
to the visual ray, and the rotation performed
in a period of about sixty years in the
direction n.f. s.p., or direct; so that in
about nine years more it will have com-
pleted a whole period in an apparent ellipse of great excentricity. This conclusion is
of great excentricity. This conclusion is
grounded on a presumed mistake of 180°
grounded on a presumed mistake of 180° in my father's first position for 1782, and
on the presumed correctness of his correction
of a similar error in his second measure for
1802."
1802."

Dawes (Mem. R. A. S., vol. viii.) says that the stars are most probably rapidly separating, and that the "mystery arising from the apparent contradictions in the earlier measures of Sir Wm. Herschel will, ere long, be satisfactorily solved."

Mädler, writing in 1847 (Die Fixstern-Systeme, p. 157) says, "Probably the connexion is physical; but the plane of the orbit passes nearly through the solar system." In 1855, however, excluding H₁'s position 62° 57' for 1802'25, he found the following elements:—

Nod	e 60°	15'
γ	77	15' 36
λ	12	36
e	0.38	37
P	121	Vegre
T	178	4 .7
a	178 3″.	io.

Doberck's latest elements are-

Noc	le 65° 29′
γ	70 5 1 18
λ	1 18
e	0.41
P	261.12 years
T	1783'01 1° 23'
78	1° 23′
a	3″·093.

The proper motion of this system is -3° .045 in R. A., and -0° .03 in N. P. D.

	•		"	
H ₁ .	60.1	ı	···	178162
-r	62.9			1781 62
Σ.	228.0		1.2	19.43
	231.0	In.	2.23	26.79
	233.6	2n.	:55	9.20
	234'4	3n.	.96	32 95
	235.2	6n. 4n.	3.17	5.21 6.66
	234·8 236·0		.30	7:75
H, & 80.	229.I	2n.	2.52	21.33
	234.6	In.	.99	30.23
Da.	231.1	,,	·71	'44
	232.9	4n.	'97	1.34
	235.3	3n.	3.15	2.26
	·6	In.	·28	3'39 4'59 6'58
		4n. 2n.	'44 '76	6:58
	.7	5n.	-86	40.28
	2360	4n.	4.00	1.48
	235.6	2n.	3 84	2.40
	.8	ın.	.79	71
	237.7	3n.	4'21	8:49
	.2	In.	.36	9.48
	236·7 237·7	**	·49 ·58	51°52 4°74
Sm.	233.8	**	2.9	30.82
	235'I		3.3	4'55
			3.3	4°55 6°71
	234.9 235.3		.5 .7	Q*02
	9	1	7	42.28
0.Σ.	236·2 238·6		3.86	7.45 0.76
0.2.	236.3	5n. 3n.	4.53	8.36
	237.2	4n.	7.67	56.81
	238.3	7n.	79	62.44
Ch.	236.5	In.	79 3.68	41:36 - 65
Ka,	235.5		·58	-65
Mä.	236.0		·74 ·88	375 7'32
A.4.	J. I.	In. 2n.		51.52
	237.0 238.1	9n.	.99 4.18	87
	237.9	15n.	7.25	2.65
	·A	7n.	*25	3.64
Hi.	238.0	1	•26	47'09
Mit. Bond.	.3	In.	3.74	8·55
BURU.	237 O 240 O		4.5	.55
	2396	1	.3	.33
Flt.	237'9	32	33336	51.47
	240' I		46	65 60
Mi. Ja.	2	39	·35 ·47 ·58	53°28
Xo.	238.5	9 20	47	4.46
De.	230'0	IIn.	.44	-55
	239.9 1	2n.	·44 ·68	5.15
	238.8	5n.	.75 .69	5°15 6°48
	'4	4n.	*69	8.41
	239°5	6n.	.75 .82	63·31 6·45
	238.9	2n.	*70	7:43
	2400	"	.72	8.36
	2396	in.	.93 .78	961
	240.2	,,	.78	70:30
	2396	ا ور ا	'97	1.15

			,,	
Se.	238.8	7n.	4.55	1856.40
_	239.3	ln.	.93	66.58
Pe.	238·o	40	3.29	56.02
	239.9	9	5.38	.02
	238.8	36	.04	61.39
¥.	۰,0	ın.	4'61	2.42
	56.9	,,	-68	9.55
	57.1	,,	·80	.57
T	2400	,,	5.06	75.58
Eng.	- 6	,,	. 50 .	64.67
Ta.	239·I		.40	5.59
18.	237.3	2n.	4.62	6.40
	239.5	In.	•••	9.62
	4	>>	4'37	71.41
	236.8	"	.41 .88	3.48
Du.	237.5	,,		4'55
Du.	239.9	IOn.	. 73	69.16
	241.0	14n.	79	71.28
GR.	242'3	4n.	.67	5.21
u.	240'0	4	*69 *86	0.33
	239.0	5		1.13
W. & S.	.9	5	.5	4.55
	240.6	4	5.3	1.22
Schi.	239.5	In.	.3	3*25
8p.	239.5	111.	4.00	5.41
Dob.	240'3	4n.	4 90 •82	6·26
	238.5	5n.	5'04	
P 1.	240.7	7n.	4.80	7:29 :18
Fl.	241.8	In.	61	-56
		-440]	31	50

475 2. 1910.

R. A. Dec. M. 15^h 1.8^m 9° 41′ 7, 7

C. yellow.

Motion probably orbital; very slow. Dunér has

.27

Fl.

476	Σ. 3091.	
R. A. 15 ^h 10 ^m	Dec. -4° 26' C. yellow.	M. 7'7, 7'7
Σ. Mä .	47.3 6n. 0.50 35.9 2n. 50	1832·39 43·91
477	Ο.Σ. 294.	
R. A. 15 ^h 10 ^m	Dec. 56° 30'	M. 6·8, 11·3
Ο.Σ. 2 De. 2	251.2 3n. 3.26 247.8 ,, .23	1848.59

478 Σ. **1926**.

R. A. Dec. M. 15^h 10'4^m 38' 45' 6'1, 8'4

C. yellowish, blue.

Dunér gives

$$\Delta = 1''.42 - 0''.009 (t - 1850.0).$$

P = 262.5 + 0.10 (t - 1850.0).

Σ. Mä.	361.0 9.092	4n. 2n.	1.29	1830.60
Du.	264.9	,,	.37	71.42
	.9	,,	17	2.21

479 o.Σ. 295.

R. 15 ^h 10		Dec 37° 1		M. 7'4, 9
Mä.	111.9 114.9		0°77	1843.33
Ο.Σ. D a.	115.6 128.4 122.9	4n. 3n.	·6 ·74 ·85	7:32 6:38 66:84

480 Σ. 1925.

R. A. Dec. M. 7.8, 9.3

C. A, yellowish.

Σ.	6.4	3n.	4.18	1831.69
Mit. Se.	7.3	In. 3n.	'19 '70	48'49 56'28
De.	10'4		'44	68:40
C.O.	0.3	2n.	•0	77.40

481 Σ. 1930.

5 SERPENTIS.

R. A.	Dec.	M.
15h 13m	2° 14′	5, 10

C. yellowish.

The stars have a rapid common proper motion. Orbital motion seems to be indicated by the slight increase in distance and diminution of the angle. $(0, \Sigma)$

	50° to 60°	_		1783·38 1831·69 6·42 48·38 58·52
Σ.	40.9	3n.	10.07	1831.09
0.Σ.	-0	2n.	33	0.42
8e.	39.2	211.	52	40 30
æ.	37.1	"	1 50	50.52

482 Σ. 1934.

R. A.	Dec.	M.		
15h 13.5m	44° 14′	8.5, 8.5		

C. white.

Considerable change in both coordinates.

Σ. H _y . Mä.	45°I	3n.	5.29	1830.88
H _r .	44.7	-	6.19	31.41
Mä.	42.8	ĺ	5.04	43.29
	40'1	1	6.00	51.29
	41.7		5.21	3.76
	39.3		6.02	4.71
Se.	40'3	2n.	5.84	8.57
De.	38.1	4n.	6.05	4.71 8.57 64.88
Ο.Σ.	37.2	In.	.23	8.2
W. & S.	35.9	4	.3	73.25
	34.7	4 5 6	5.8 6.2	.33
		6	6.5	4'43
	35·5 36·3		.30	7'43
	35.3	5	'33	'44
G 1.	35.3 36.5	4 5 5	.27	4.49
Dob.	33.5	4n.	'30 '33 '27 '36	7.56

483 Σ. 1932.

I (B) CORONÆ BOREALIS.

R. A.	Dec.
15h 14.2m	27° 36′

Magnitudes.— Σ ., 5.6, 6.1. Se., 6, 6.5. De., 6.9, 7.2. Σ ., suspected variability.

C. white.

Certain change in both coordinates. Dunér gives the following formulæ:

$$\Delta = 1"`37 - 0"`0146 (t - 1850`0).$$

$$P = 282°`2 + 0°`571 (t - 1850`2) + 0°`055 (t - 1850`0)^{2}.$$

	•			
Σ.	273°8	4n.	1.62	1830.58
H,	268.4	3n.	.23	'29
	267.3	In.	.31	1.37
Da,	271.2	,,	'44	3.39
	281.0	2n.	·46	48.49
	284.0	In.	·36	54.40
0.Σ.	279.3	2n.	.65	41.46
	280.6	ın.	'40	51.49
	295.6	2n.	.51	70.22
Mä.	278.6	,,	.20	42.43
	283.6	4n.	'45	21.88
	287.5	6n.	.35	7.52
	Ι.	1	.32	8.24
_	289.4	5n.	'34	60.70
Se.	285.3	2n.	'14	56.40
De.	286.9	3n.	'2	
	.3	,,	'2	8.45
	290'2	4n.	.18	63.28
Kn.	288.8	In.	*34	78
Eng.	293°I	2n.	·57	4.48
Du.	297.0	IOD.	.10	70.29
	299.2	3n.	0.99	2.21
W. & S.	296.3	7	1.03	2.49
•	.8	5	.51	3.36
	2986	0	. 02	4'44
	299'4	6	.I	.49
	300.5	5	.59	5:39
~	301.2	0	.07	7'47
G1.	298.9	4	.5	4'49
Schi.	118.2	In.	.16	5'42
Sp.	298.6		.16	.43
Dob.	303.2	3n.	•26	7:37

484 Σ. 3093.

C. A, yellowish.

The distance has diminished.

Σ. Mä. De.	135.2	2n.	33.28	1829°36 47°32 65°35
20.	1300		, 115	1 62 33

485 Σ. 1937.

7 CORONE BORBALIS.

R. A. Dec. M. 5'2, 5'

C. A, yellow; B, certainly yellow.

H₁. "Sept. 10, 1781.—They are fairly separated so as to see the dark heaven between, but that is all. Oct. 4, 1781.—In the greatest perfection. Very near in contact. Oct. 22, 1781.—With 278 beautifully

white and distinct."

· H₁ (Phil. Trans., vol. lxxii., p. 216).
1781. "Sept. 9.—Double. A little unequal. They are whitish stars. They seem in contact with 227, and though I can see them with this power, I should certainly not have discovered them with it; with 460, less than ½ diameter; with 932, fairly separated, and the interval a little larger than with 460. I saw them also with 2010, but they are so close that this power is too much for them, at least when the altitude of the stars is not very considerable; with 460 they are as fine a miniature of i Boötis as that is of α Geminorum. Position 59° 19′ n.f."

(Phil. Trans. 1804, p. 370.) "This very minute double star has undergone a great alteration in the relative situation of the two stars." "Aug. 30, 1794, they were so close that, with a 10 ft. reflector, and power of 600, a very minute division could but just be perceived." "And, May 15, 1803, I saw the separation between the two stars, with the same 7 ft. reflector, and magnifying power of 460, with which I had seen it 22 years before." He also observes that the change in angle was retrograde, and that "a parallactic motion of the largest alone" would not account for the change.

H₂ and So. (*Phil. Trans.* 1824, p. 224). H₂ thinks that the position of 1802 "is erroneous, and that the surmised motion of the stars, if any, is much less rapid than

that assigned to them by H₁."

H, (Mem. R. A. S., vol. v., p. 37). After giving the measures from 1781.69 to 1830'30, he observes that the star is very difficult, and that he does not fully rely on his recent measures. On the whole, however, he thinks there are good reasons for regarding this object as a binary. He concludes that n has made more than a revolution since 1781, and that the motion has been direct. He remarks the obvious difficulty of readily ascertaining which star precedes or follows, owing to the closeness and small difference of magnitude of the two stars. Assuming that H1 misplaced the companion, he finds that the period has been 43 2 years, with a mean annual motion + 8° 34. This is the only star which up to that time had completed a whole revolution. Finally, he states that "as the actual motion is much less, the orbit must be elliptic, and the actual velocity, at one time or other, must have been 20° or 30° per annum, which will account for the enormous change of position which (on the above explanation of the MS. memorandum) must have happened between 1781 and

In 1833 (Mem. R. A. S., vol. viii., p. 50) he writes, "I am sure η Coronæ is closer than it used to be. The distance is below measuring. Surely not $\frac{\pi}{2}$ of a second." Dawes about the same time says "not quite separated," "only elongated."

H, (Mem. R. A. S., vol. vi., p. 154). Having obtained measures from Σ. and Da., he computed the orbit and found the fol-

lowing elements :-

a = 0''.8325 c = 0.26034 $\lambda = 358'.38'$ $\tau = 1761.96$ and 1806.20 $\gamma = 37'.24'$ $\Omega = 220.35$ P = 44'.242 years n = +8''.1369;

and he finds that these agree well with the observations.

With respect to the orbit of this star, he

1. That the excentricity is moderate.

That the major axis almost coincides with the line of nodes, and that hence we see it of its natural length, the conjugate axis only being foreshortened by the effect of perspective.

3. The greatest distance in the apparent or projected orbit is 1"049, and was attained in 1828; the least, about 0"5388, in

1800 and 1812.

He is almost sure that "the distance has decreased of late," and learns with regret that Mr. Dawes has given up observing the star on account of this difficulty. He regrets these things the more because "the portion of the orbit to be passed over in the next ten or twelve years will be most important in aiding the improvement of the elements."

 Σ . (M. M., p. 5) says the period is about 43 years as deduced from the observations of H_1 and himself; and he thinks that the stars will soon become so close as to defy the separating power of the largest telescopes.

Using the measures up to 1856, Dr. Winnecke made a very careful examination of the orbit of this star with the most satisfactory results. His elements are thus given in his De Stella n Corona Borealis, etc.:

a = 0" 9567 e = 0 2865 a = 22° 18' $\lambda = 215$ 29 a = 60 40 a = 43 115 years a = 18 50 329.

Smyth (*Cycle*, p. 340). When this observer began his measures of η , he found

the work "difficult enough;" the observations of position were mostly unsatisfactory, and those of distance were estimations. In 1842 the angular velocity was "under rapid and direct acceleration, while the distance was diminishing, so that the fine black division seen between the stars in 1832 had not only disappeared, but the object was not always elongated. "The general mean [annual motion] drawn from a comparison of my own and other observations was + 9°41, and the period about
44 years. The excentricity, by the graphic
process, is o 3561. The connexion of the
components is therefore 'fully proven.''

Da. (Mem. R. A. S., vol. xxxv., p. 379). After noting the closeness, rapid motion, and the fact that two complete revolutions have been made since 1781, he says he is "sure now that H₁'s position in 1802 should be s.f. instead of n.p." He remarks, too, that the components have separated since 1854, and that it is now an easy object. "The question will be an easy object. "The question will be decided in between three and four years' time."

In 1841 Mädler computed the orbit, and found the following elements:-

> T = 1815.20 $\lambda = 263^{\circ} 10'$ a - 1"'1912 U = 43.310 years.

In 1842 he published the following: -

T = 1815.230 $\lambda = 261^{\circ} 21'$ $\phi = 19 44$ $a = 1'' \cdot 0879$ U = 43.246 years

And in 1847 his last results were as follows :--

> III. T = 1807.21 $\lambda = 215^{\circ} 11'$ a = 20 6 z = 59 28 $\phi = 16.48$ a = 0'' 9024U = 42.500 years.

These last elements Mädler regarded as

very accurate.

Villarceau published two solutions about 1852, and sought to decide between the claims of the two rival orbits, viz., those of forty-three and sixty-six years. The former (the orbit of H, and Ma.) was obtained when the position for 1802 was reversed, and the latter when that for 1781 was so treated. Villarcean, thinking that the two orbits might be separated before 1853, solicited careful observations from 0.2., Da., and others; and a glance at these was sufficient to show that the observations since 1847 would not agree with the orbit of forty-three years.

Here are given the three sets of elements by this eminent astronomer: in (1.) the observation in 1781 was taken as 210° 21', and that in 1802 was left intact; in (11.) the angle in 1802 was reversed, and that in 1781 taken as 30° 21'; in (111.) are

 $T = 1780^{\circ}124$

a = 1" 0125

exhibited his last results :-

$$\lambda = 194^{\circ} \ 37'$$
 $\Omega = 4 \ 25 \ (1835 \circ)$
 $i = 58 \ 3$
 $\phi = 28 \ 0$
 $a = 1'' \cdot 1108$
 $U = 66 \cdot 257 \ years$.

II.

 $T = 1805 \cdot 666$
 $\lambda = 227'' \ 10'$
 $\Omega = 10 \ 31 \ (1835 \circ)$
 $i = 65 \ 39$
 $\phi = 28 \ 19$

U = 42'501 years.
IIII
T = 1779'338

$$\lambda = 185''$$
 o'
 $\Omega = 9 52 (1850'0)$
 $i = 59 19$
 $\phi = 23 51$
 $\alpha = 1'''2015$
U = 67'309 years.

In conclusion, Villarceau rejects the orbit of forty-three years, and thinks that the longer one is not susceptible of being "sensibly modified by ulterior observations;" that 66.257 years satisfied the observations anterior to 1848; and that the true period cannot exceed 67.309 years more than a fraction of a year.

Mr. Wilson in 1875 carefully compared the observations from 1863 to 1875 with Winnecke's orbit, and found a "systematic and increasing divergence, which is too large to be accidental." He finds on the whole that the "hypothesis that would best satisfy the observations is, that there exists in each successive revolution some shortening of the period, accompanied perhaps with a progression of the line of apsides." He thinks that the period is most probably about 41'2 years. See Monthly Notices, vol. xxxv.

M. V	Viikande	r has l	ately co	mputed the	,	۰		,,	
followin	g eleme	nts :	acció co:	inputed the	1	100.0	1	0.2	1838.19
	т_	1850:2	6		ł	120'1	1	۱ ۰۲	9.67
		2110.4			ļ	188.2	1	'3	46.69
	ω -	26 .7	(18500)		246.8	1	1 '5	52.43
	i =	58 0)	•	Ga.	109.8		. 7	38.64
	-	~ _~			0.Σ.	132'1	2n.	[0.76]	9.82
		+ 80.0				137'1	5n. 4n.	0.50	40.2
		0".827				149.6 159.1	2n.	52	1.20 2.60
	ρ —	41.28	years.			179.3	6n.	.36	5.46
M. F	'lammari	ion has	recentl	y obtained		195.6	3n.	.61	6.61
these res		.013 2222		, 00111101		203.0	5n.	.26	7.64
	0 -	22°·2				209.8	2n.	.57	8.72
	_	60 4			ł	220'3	3n.	.59	9.65
		224 'I		_		230.7	,,	'49	50.2
		1849.9		•	l	241.8	ion.	*47	1.26
		0.287			1	261°I	6n.	'43	2.62
	a =	0"'985			•	280.9	5n.	.32	3.26
	P 🕳	40'17 y	ears.		ł	330.5 313.1	4n.	'33 '40	4.66 5.62
	_					342.2	3n.	47	6.62
H,.	30.6	1		1781 69		351.8	4n.	-64	7.62
•	179.6	l		1802.69		359.5	5n.	.76	8.54
H ₁ & So.	25.9	2n.	1.22	23.27		359·5 5·8	4n.	79	9.61
	44'4	8n.		30.30		15.8	3n.	.90	61.28
		4n.	0.81	.36		22.2	2n.	.91	2.76
	52.6	ion.	•••	1.47		23.6	4n.	1,10	3.24
Σ.	57.1	9n.	****	2.20		29.6	3n.	.13	5.35 6.66
۵.	35.3	4n. 2n.	0.06	26.77		35.4	4n.	.13	
	43°2 50°6	3n.	.88	31.63 9.22		32.6	2n. 5n.	'24 '04	7.47
	56.8		79	2.76		41'3 47'1	3n.	0.64	8·55 70·54
	74.5	6n.	73	5.41		55.3	5n.	.80	2.29
	88.7	,,	.26	6.25		57.3	4n.	·81	3.24
	95.4	4n.	.38	7.47		64.6	,,	-83	4.61
	107'0	5n.	'36	8.44	Mä.	150.3	9n.	.29	41.24
D-	188.3	In.	'60	45.64		157.6	5n.	.22	3.56
Da.	50.7	2n.	•••	31.34		163.2	4n.	·55 ·68	.69
	56.7	In.	•••	2.22		199.2	12n.		7:32
	63.2	3n. 2n.	o·5	3.39 3.39		205.3	4n.	·59 ·62	.78 8·18
	135.8		.5	40.65		228.7	3n.	'41	50.40
	149.4	6'n.	.49	1.65		235.4	ion.	•36	1.68
	156.6	2n.	.5	2.28		250.7	13n.	.27	2.65
	199.9	,,	·63	7.24		267.8	5n.	.27	3.32
	204'4	,,	.65	8.34		317.0	4n.	•26	4.73
	207.4	In.	.69	:47		330.5	2n.	•••	5.73
	218.2	2n.	.69	9'44		347.2	22	0.47	7:39
	238'1	"	:55	51'42		6.3	6n.	·69	8.61
	273.3	,, 4n.	.5 .44	2·52 3·64	Ch.	4°9 158°6	4n. In.	.69	9°38 42°41
	301.4	3n.	47	4.45	VM.	172.2		.20	3.69
	322.4	In.	45	6.61	Mit.	195.7	3n.	'70	6.66
	341.7		'45	6:37	Bond.	207:3		.8	8.58
	350.8		.29	7.45		210.3		-8	• 6 6
	5'5 8'4		.72	9.62	Flt.	235°O	2n.	.7	50.26
	8.4		.86	60.35	Ja.	257.8	7	. 4	3,10
8m.	27.5		0.8	5'44		285.3	13	.5	4.04
	57°2		.8	32.63	Se.	355.7	3n. 2n.		7:95
	68.1		•6	3.24 4.60		325.6	7n.	*32 *47	5 . 40
	75.5		•6	5.65		344'3 351'0	,,	.57	7.48
	89.2			6.29		359.1	3n.	.53	8.21
	102'3		·5	7.68		4.2	4n.	.53	9.48
	- '		•						

			,,		
De.	0.8	9n.	1	1858.52	W. & B. 66.6 5 1847.32
	16.9	lin.	0.7	62.26	1 (0.1)
	20.7	13n.	.82	3.42	
	24.1	ion,	7	4.43	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	27.4	9n.	1.03	5.49	82'9 9 '47 Fer. 51'7 0'92 2'48
	30.0	,,	'04	6.44	
	33.1	7n.	'04	7.50	80hi. 66'1 In. 90 3'34 5'41
	36.4	,,	.06	8.39	l mara l ima l žija
	44'0	8n.	'04	70.38	8p. 66'1 " '91 5'42
	47.7	,,	.08	1.45	72'3 79 6'51
	47.7 50.8	,,	.02	2.44	W.0. 250'4 In. 76 41
	26.1	,,	.00	3'44	3 ,, 86 43
	59.2	٠,,	0.97	4.42	249.7 ,, 71 43
_	66.6	,,	·86	5'41	
Ro.	19.7	In.	1.06	63.26	Dob. 70.3 8n84 6.38
_	30.1	l	.29	5.2	82.0 4n 7.30
Eng.	28.3	2n.	'09	4'45	92.6 2n. 0.61 78.40
Ta.	32.3	4n.	'42	6.33	94.6 In. .61 .55
	31.2	In.	•••	7.2	
	44.6	,,	•••	9.62	400 - 4000
	ı.	,,	1.59	70.46	486 S. 1938.
	47 [.] 7	,,		1.41	··
		"	.28	2.50	μ boötis.
	91.5 22.9	"	•••	3.48	
	60.2	,,	•••	4:44	R. A. Dec. M.
	70'2	,,	0.83	5.38	15 ^h 20 ^m 37° 46′ 6.7, 7.3
Kn.	36.0	3n.	1.00	6.45	1
	46.8	In.	.13	67:34	ļ.
	45.6	5n.	.00	70.47	
Du.	29.5	In.	12	1.24 67.69	1878.
	36.9	4n.	14	8.65	
	40.0	9n.	02	9.23	si
	43.7	7n.	0.97	70.21	l ₽ (T
	47'3	9n.	· 8 7	1.23	[
	51.5	7n.	·84	2.28	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	55.0	2n.	1.08	3.72	1802
	68.7	IIn.	0.69	5.22	1
Hi.	196 5			3 33	o •
G 1.	44.6	11	1.1	70'44	C. greenish white.
	45'9	5	0.0	1.20	C. greemsn white.
	47.0	4	1.0	.63	H ₁ (<i>Phil. Trans.</i> , vol. lxxii., p. 217). 1781.
	55°O	5	. 0	3.60	"Sept. 10. Double. It is a star near #
	54°O	7	0.82	·47	not marked in Flamsteed's catalogue. Con-
	52.2	7	,	.20	siderably unequal. The interval with 460
	55.9	10	1.19	.25	is a diameter of S. The position of the
	53.2 58.8	8	•••	.21	small star is turned towards μ , a little fol-
		10	1.10	4.36	lowing the line which joins L to μ Boötis."
	59.0 59.0	10 2	.07	:32	In the Phil. Trans. for 1804, p. 372, H
	76.2	_	0.8	.49	discusses the change in angle, gives his
	73.8	4n. 2n.	0.8	76.29	measures in 1781, 1782, and 1802, and shows that a change of 11° had taken place in 19
	71.6			:33	years and 361 days, and that this was most
	75.2	,,	'7 	:34	probably orbital.
W. & S.	45.3	5	1.47	.35	H ₂ and So. (<i>Phil. Trans.</i> 1824, p. 227).
	50.0	4	•38	41.22	"A very close double star. In the 5ft.
	51.0	7	10.	2.49	equatorial with a power of 133 it is seen
	58.0	7 5 3 58 6	.01	3.36	elongated, but 303 shows it decidedly
	57.6	3	'22	3.38	double. A power of 179 applied to the
	55.6	5	.09	.45	7 ft. shows the discs of the two stars in
	58.4	8	0.93	4.44	contact, but 273 distinctly separates them.
	.1	6		49	This double star is a severe test for a tele-
	66.7	6	'94	7·36	scope, and is easily found by means of
	68°O	7		.32	μ Boötis."
				•	•

"If this double star be a binary system, of which there can be little doubt, its period is about 622 years, and the most probable mean annual motion is 0° 5783, in the

direction n.p.s.f., or retrograde."

H, (Mem. R.A.S., vol. v., p. 38). Having the measures from 1782 to 1830 before him, he says, "It will probably, ere long, become excessively difficult or close up entirely, as both the diminution of the micrometrical distance and the rapid increase of angular velocity sufficiently indicate." "None but the finest telescopes are competent to deal with it."

Dawes (Mem. R. A. S., vol. viii., p. 87). He gives measures in 1830 and 1832, and says "neatly divided; requires a superb

night like this."

Smyth (Cycle, p. 343). "From the earliest epoch here registered [1782'68] down to my latest, an annual mean movement appears = -0°.85; but from Herschel junior and Sir James South's period it averages - 1°'44, so that the period may be within 460 years; but the annual rates are as yet distressingly irregular."

Engelmann (Ast. Nack., 1673—1676) writing in 1860 observes, "The period must be about 150 years; the minimum distance o":35, which will be reached in 1868; the maximum about 1".75. Since

1857 the companion has passed through

Dawes (Mem. R. A. S., vol. xxxv., pp. 381 and 484). After noting the rapid decrease in distance and the acceleration in angle, he says that this object now requires "about a 9 inch aperture to completely separate the components."

The angle in 1852 presents an extraordinary anomaly which partly disappears when the measure is combined with those

of 1851 and 1852. (O.E.)

Mr. Wilson in 1873 obtained by graphical processes the following elements:—

e = 0.51 $\Omega = 172^{\circ}$ o' D = 45 o $\lambda = 20$ 5 $\pi = 186$ 30 P = 200.4 yrs. t = 1865.2.

In 1875 Dr. Doberck computed an orbit for this interesting binary star. The proper motion of μ^{b} agreeing with that of μ Boötis "suggested the existence of a physical connexion between these two stars. Actual measures have, however, rendered such a supposition more than doubtful." Making use of Sir John Herschel's first method, the following elements were obtained (No. 2 in the table subjoined):—

No.	T	&	λ	7	P	a	•	Computer.
1 2 3 4 5 6	1860°88 3°51 °51 5°2 5°5 6°00	163 11 182 59 173 42 172 0 169 0 166 8	54 27 17 41 20 0 20 5 23 39 23 1	41 52 44 26 39 57 45 0 46 22 47 31	years. 314'761 290'07 280'29 200'4 198'93 182'6	1.761 .500 .47 1.165	0.6832 .6174 .5974 .51 .4957 .4957	Hind. Doberck. ,, Wilson. Klinkerfues. Winagradskij.

Dunér says, "The connexion between μ Boötis and Σ . 1938 is indubitable; otherwise the motion of μ Boötis which is considerable would cause a very great change in the relative positions of the stars. If the mass of μ Boötis were equal to the sum of the masses of Σ . 1938, the orbital motion would be only -0° 003 per annum, or -0° 15 in fifty years. In reality, an annual motion of -0° 006 is perhaps probable: and if this is confirmed the mass of μ Boötis would be seven times greater than that of Σ . 1938."

The common proper motion of the three stars is -o''·16 in R. A., and o''·10 in N. P. D.

	•		"	1
н,.	357'2	•••		1782.68
•	346.5			1802.66
Σ.	330.4			22.31
	327.0	2n.	1.38	6.77
	324.0	٠,,	.24	9.73

		"	
319'7	3n.	1.19	1833'85
318.6	•,	.10	5.22
315.0	١,,	.06	6.65
•	In.	0.00	7:70
H ₂ & So. 333.7	3n.	1.62	23.41
.5	5n.	'42	5.46
324.1	2n.	0.82	30'24
322.7	3n.	1.03	2.26
Da. 319.7	In.	.12	3.39
314.8	,,	.0	7:37
306.0	3n.	0.83	40.39
303.5	6n.	-85	1.66
300'9	In.	-85	2.40
286.5	٠,,	.65	7:30
280°0	٠,,	.65	8.2
276.3	2n.	.68	9'44
266.2	٠,,	.22	51.42
262.2	In.	.22	2.23
254.6	,,	.20	3.41
249'3	3n.	46	4.41
190.0	,,	48	5.46
232.3	In.	45	7.47

	•		,,		1	0		"	
Sm.	319.9	1	1.5	1834.56	Ta.	197.9	In.	I	186572
	314.8		·õ	7.29		196.4	3n.	0.85	6.42
	310.6	1	0.9	9.32		170.8	In.		70.65
	306.1	1	.8	42.22		166.6	2n.		3.33
	255.0			53.60		155.7	In.	•••	3.47
Ο. Σ.	313.1	2n.	·5 ·98	40.46		*33.7			4.24
o. 	303.4		.84	2.53	Du.	171.1	6n.	0.23	69:49
	287.1	,, 4n.	.22	6.68		163.9	4n.	.20	70.2
	272.7	2n.	.53	50.46		160.8	5n.	·59	1.24
	262.6	3n.	.44	1.48		158.0	2n.		2.25
	268.3	- 1	48	2.65	l	146.7	In.	*55 *80	5.2
	247.2	,, 4n.	.53	Z-11	W. & S.	167.9	4	.76	1.22
	242°I	2n.	•59	6.27		164.2	ĭ	-4	2.33
	237.9	3n.	.57	7.65		162.3	3	•3	.38
	228.3	",	-57	8.26	l	151.0	4	45	3.52
	211.5	",	.57 .58	60.95		152.0	7	***	.33
	179.2	",	•60	6.40		120.1	7	0.6	.44
	167.5	2n.	*54	9.54	ţ	149'1	3 7 7 8	7	4'44
	158.2	4	.63	73.09		143.2	8	l	7.43
Mä.	308.7	2n.	·82	41.47		147.6	9		'44
	302.1	3n.	·7 I	2.40		144.6	ź	0°7 '84	•52
	304'9	2n.	78	•66		150.6	7 7	l I	.59
	301.2		.76	3.24		140'4	13	0.65	*45
	287.7	15n.	47	3.24 7.38 8.38	G1.	1520	10	'46	3'47
	282.4	2n.	47 82	8 38		7.7	5	-5	·48
	276.7	3n.	'40	50.40		150.6	10	.58	4.53
	264'9	,,	.31	1.58		.5	12	·š	.26
	263.2	4n.	.33	.78	l	164.0	5		0.44
	261.2	Ion.	41	2.61		158.4	4	.5	1.65
	256.3	6n.	'35	3'49	Schi,	143'3	ın.	·5 ·63	5.46
	9	2n.	'42	5.23	Sp.	•3		.64	*47
	239'2	,,	*35	7:38	₩.0.	146.5	In.	.78	6.41
	236.2	4n.	.32	5.23 7.38 8.27	l	148.9	• • • • • • • • • • • • • • • • • • • •	'70	·43
	226'4	3n.	'43	9.38	ŀ	143.0	,,	.72	*43
Ka.	303.3			41.67	l .		"	.73	'44
	_		0.83	2.32	Dob.	•6	2n.		.32
	295.8		•••	3.67	1	131.2	4n.	0.22	7:36
Hi.	581.5	2n.	•••	7.08	1	137.7	4n.	1.63	8.49
Bond.	282.0		0.2	8.23	i				
	283.0	1	·š	.22	ļ.				
	282.8	i i	•6	.21					
		1	٠,	.21	i	1	and	9	
v .	283.8	_	•••	.49	ł	μ	anu	μ.	
Ja.	265'1	9	0.45	53.53	ļ				
Se.	255'7	9	:5	4.05 6.97	-			128	1781 '80
De.	234'1	2n.	.20	0.97	H ₁ . Piassi.	170'4	ın.	1120	1800.00
De.	180.3			66.24		171.2	2n.	108.9	
<i>D</i> 0.	196.3	3n. 12n.	0.23	3·38	H, & 80. Σ.	170'4	211.	7	21.35
	189.2	1	.2	3 30	2.	171.9	In.	100.1	2 67
	184.6	5n. IOn.	0.2	4.48		1/1.9	7n.	108.4	34 64
	178.7	13n.	٠.ي	5:45 6:94	0.Σ.	1.	In.	100.7	40'95
	174.2	5n.	.5	8.38	0.2.	·6		7	7 09
	166.1	7n.	·5 ·5 ·62	70.39	1		3n.		51.20
	191.1		.6		ł	.,	_	7	6:77
	154.9	8n.	.6	1.43 2.43		.7 .7 .6	in.	.4	61.60
	150.0	7n.	.71	3.41	1	·6	,,	.	6.55
	147.8	6n.	.81	4.77	Mä.	٠8	",	108.9	46.29
	141.0	8n.	-69	5.41		172.0	2n.	.3	53.40
Ro.	195.8	In.	75	63.63	De.	171.6		-5	63.52
Kn.	193.6	4n.		4.41	Kn.	-7-3	3n.	i	4.40
	152.0	In.	١٠٤	72.46	1 .		,	4	6.23
Eng.	187.5	2n.	·5 ·57	65.48	Du.	·5 ·7 ·6	3n.	i -i	71.52
•	179.3	,,	1 .70	7.57	Fl.	·6	In.	•6	70)
	.,,	. ,,	, -	1 31	,	-	,		

Σ. 1944. 487

Dec. M. 6° 31' 15h 21.8m 7.5, 8.1

C. white.

Probably a binary.

	۰.		"	
Σ.	341.6	4n.	1.34	1832.40
Mä.	339.3		'35	9.00
	.5		.30	42.42
	338.1		. 34	3.33
	336.9	1	•••	54.40
	331.4		1.33	7:39
	335.6		.00	65.2
Se.	.7	2n.	.18	56.44
W. & S.	334.9	In.	.09	75.45

ο.Σ. 296. 488

R. A.	Dec.	M.
15 ^h 22.5 _m	44° 26′	7, 8.6

Change in angle.

0.Σ.	327.9	2n.	1.25	1845.23
	321.2	,,	.44	52'10
	317.3	4n.	.63	72.29
Da.	325.2	In.	.60	48.23
De.	319.6	3n.	.51	66.40
W. & S.	316.0	6	-47	73.37
	.9	2	.61	'44
	۰8	5	•33	4.20
	315.9	5 5	.40	5.49
	•5	5	•34	7.45

Σ. 1954. 489

SERPENTIS,

R. A. Dec. 15h 29'Im 10° 56'

Magnitudes.— 2. 3, 4. Se. 4, 4.5. Sm. 3, 5 De. 3'9, 5'6. One of the stars is probably variable in its light.

C. Z., A, yellowish white; B, ashy. A, bright white; B, bluish white; "but under the very best vision both have a bluish tinge, which, in such a pair, is rather against the theory of contrast.'

H₁ (Phil. Trans. 1803, p. 380). After observing that the position 42° 48' s.p. on September 5, 1782, was "an accurate measure," and that in 19 years and 155 days "the small star has moved, in a retrograde order, over an arch of 18° 39'," he proceeds to show that "the most natural way of accounting for the observed changes is to admit the two stars to form a binary system. In this case we calculate, with considerable probability, that the periodical time of a

revolution of the small star round & Serpentis

must be about 375 years."

H, and So. (*Phil. Trans.* 1824, p. 231). An examination of all the observations up to 1821 show that on the whole the distance "The angular velocity has had increased. undergone a considerable diminution, and as this corresponds with the increased distance, the orbit is probably elliptic, and so situated as to allow its ellipticity being visible without distortion. The mean annual

motion is $-0^{\circ}.726$, or tetrograde."

So. (*Phil. Trans.* 1826, p. 341). Measures for 1825 are given. On these H, remarks: "Either there is a considerable error in these or the measures of 1821, or the result is unfavourable to the motion assigned to this star, as, instead of advancing 3° in its apparent orbit, it seems actually to have receded nearly 50'. Further observations must elucidate this difficulty." And in the Mem. R. A. S., vol. v., p. 45, he writes of the measures he made in 1830, "My present observations afford no support to the evidence of motion offered by former measurements." "The present apparent fixity of & Serpentis contrasts strongly with its former rapid motion. A considerably elongated orbit can alone account for this.

Dawes, too, with his measures in 1831 and 1833 before him, writes, "This star appears to have come to a standstill."

So also Σ ., Se., Sm., and others, all note the diminished rate in the angular motion. Smyth adds that "a small movement in space has been detected in A, which, when surer known, will afford further demonstration of its physical connexion with B." Hind, however, says, "The proper motion in R. A. appears to be nil, but a very small one may exist in declination.

The distance by Σ , in 1852 is considerably in error. The angular change has diminished of late years, and the distance has augmented. From 1782 to 1834 the angle changed considerably; between 1834 and 1855 but little; since 1855 it has again been subject to change. The maximum distance, probably, has already been attained. (0.2.)

Dunér has the following formulæ:

 $\Delta = 3'' \cdot 03 + 0'' \cdot 0138 (t - 1850 \cdot 0)$ -0" 00015 (t - 1850 0)2.

P = 199° 0 - 0° 273 (t - 1830'0) +0° 0025 (t - 1830 0)2 - 0° 00002 $(t-1830.0)^3$.

The common proper motion is -o'' of in R. A., and o'' of in N. P. D.

H ₁ .	227.2	1 1		1782.99
	208.5	1 1	•••	1802.10
H, & So.	199'3	In.	3.02	21.33
_	198.4	6n.	.39	9.20
	'4	2n.	'04	32.31

Σ.	0		"	00		-0		. "	
2.	201'2	3n.	2.44	1822.68	Ta.	189.2	2n.	2.33	1874.36
	197'2	5n.	.66	33.07	0.5	.0	,,	:57	5.39
	196.9	3n.	:56	6.30	0.Σ.	.0	In.	3.11	66.49
Em.	192'4	In.	3'79	52.22		187.0	,,	12	9.22
cm.	196.5		2.0	31.43		189.7	٠,	.12	74.62
	197:3		8	8.38	Du.	191'4	6n.	.06	68.32
	196.2			42.32		189.8	4n.	*02	75-56
Da.	5		3.0	51.32	G1.	193.0	5		1.55
Da.	188.9	3n.	2.01	32.32	W. & S.		5	3.26	.26
	195.7	5n.	.97	41.06		191.2	5	.21	3.36
		ın.	85	3°44 8°52		192.9	4	.1	4.20
	194.9	3n.	3.00			191.0	2	*23	.20
	.8	2n.	.09	9.44		190.0	8	'41	2.21
	.2	,,	•03	52.58	Schi.	189.6	In.	.58	.61
	193.1	In.	.08	7:52	Sp.	.6	_	.28	-61
	.7	,,	17	.56		186.9	6n.	37	6.30
	192.3	,,	' 04	:74	P1.	188.2	4n.	.79	97 ا
	191.4	"	`37	05.39					
24"	'2	,,	.53	.55					
Mä.	197'4	5n.	. 46	41.35	490	Σ	19	56 .	
	196.1	4n.	'04	2.32	100	_	. 10	.	
	194.3	2n.	. 28	52'34	R. A.		Dec	•	M.
	193.1	3n.	12	4.22 6.68	15h 29m		42°		8, 9.5
	.3	4n.	.12		-3 -9		4~	-3	0, 93
en.	*4	3n.	'22	9.38	1	C. A, 3	rellowis	h white.	
Ch.	195.5	ın.	2.66	41.41	ŀ				_
Ka.			.76	-65	Σ.	41'4	3n.	2.41	1831.23
	197.8		.92	3.66	Mä.	406	ın.	.82	45.48
***	193.9		3.12	65.62	Se.	37'3	2n.	.23	57 60
Hi.	194.2	2n.	•03	45'27	Ο.Σ.	41'4	In.	-61	68.2
Mit.	193'4	T-00		H	I Th				
		ın.	2.12	7.70	Du.	37.9	3n.	.27	70'44
De.	197.0	5n.	3.08	53.66	Du.	37.9	3n.	.27	70'44
	197.0 194.2	5n.	3.08 .53			37.9	3n.	.27	70.44
	197 o 194 5	5n. ,, In.	3.08 .23 .58	53.66 4.54 5.13					70.44
	193.0 194.2 1950	5n. ,, In. 6n.	3.08 .23 .58 .23	53.66 4.54 5.13 6.52	491		^{3n.} Σ. 2		70.44
	197.0 194.5 1 193.0 192.4	5n. ,, In. 6n. 2n.	3.08 .23 .58 .23 .16	53.66 4.54 5.13 6.52	491	0.	Σ. 2		
	197 0 194 5 1 193 0 192 4	5n. ,, In. 6n.	3.08 .23 .58 .23 .16	53.66 4.54 5.13 6.52 7.55 8.47	491 R. A.	0.	Σ. 2		м.
De.	197.0 194.5 1 193.0 192.4 1	5n. in. 6n. 2n. 5n.	3.08 .23 .58 .23 .16 .32	53.66 4.54 5.13 6.52 7.55 8.47 63.43	491	0.	Σ. 2		
	197.0 194.5 1 193.0 192.4 1 2 195.5	5n. 7n. 6n. 2n. 5n. 7n.	3.08 23 .58 .23 .16 .32 .19	53.66 4.54 5.13 6.52 7.55 8.47 63.43	491 R. A. 15 ^h 30 ^m	0.	Σ. 2 Dec. 25° 25'		м.
De.	197.0 194.5 1 193.0 192.4 1 2 195.5 190.4	5n. ;; in. 6n. 2n. 5n. ;; 7n.	3.08 .23 .58 .23 .16 .32 .19 .06	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52	491 R. A.	0.	Σ. 2 Dec. 25° 25'		м.
De. Se. Mo.	197.0 194.5 11 193.0 192.4 11 2 195.5 190.4 193.1	5n. in. 6n. 2n. 5n. 7n. in. 2n.	3.08 .23 .58 .23 .16 .32 .19 .06 .35	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40	491 R. A. 15h 30m Change	O.	Σ. 2 Dec. 25° 25' ance.	97.	M. 7'5, 11'5
De.	197.0 194.5 11 193.0 192.4 12 195.5 190.4 193.1 190.3	5n. ;; in. 6n. 2n. 5n. ;; 7n.	3.08 .23 .58 .23 .16 .32 .19 .06 .35 .37 .296	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33	491 R. A. 15h 30m Change	O.	Dec. 25° 25' ance.	97.	M. 7'5, 11'5
De. Se. Mo.	197.0 194.5 11 193.0 192.4 12 195.5 190.4 193.1 190.3	5n. in. 6n. 2n. 5n. 7n. in. 2n.	3.08 .23 .58 .23 .16 .32 .19 .06 .35 .37 .296 .321	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33	491 R. A. 15 ^h 30 ^m Change 0. Σ.	O. 22 in dist 147.3	Σ. 2 Dec. 25° 25' ance. 1n. "	97.	M. 7'5, 11'5
De. Se. Mo.	197.0 194.5 11 193.0 192.4 11 195.5 190.4 193.1 193.5 188.4	5n. ,,, in. 6n. 2n. 5n. ,,, 7n. in. 2n.	3.08 .23 .58 .23 .16 .32 .19 .06 .35 .37 .296 .3.21 .33	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40	491 R. A. 15 ^h 30 ^m Change 0. Σ.	O. 2 in dist 147'3	Dec. 25° 25' ance.	97.	M. 7'5, 11'5
De. Se. Mo.	197 0 194 5 193 0 192 4 19 1 190 3 193 1 190 3 193 5 188 4 186 7	5n. ,,, 6n. 2n. 5n. ,,, 7n. 1n. 2n. 1n.	3.08 .23 .58 .16 .32 .19 .06 .35 .37 .396 .321 .33 .37	53 66 4 54 5 13 6 52 7 55 8 47 63 43 55 89 62 33 7 37 8 40 48	491 R. A. 15 ^h 30 ^m Change 0.Σ.	O. 22 in dist 147.3	Dec. 25° 25' ance.	97.	M. 7'5, 11'5
De. Se. Mo.	197.0 194.5 193.0 192.4 195.5 190.4 193.1 190.3 193.5 188.4 188.5	5n. ,, in. 6n. 2n. 5n. ,, 7n. in. 2n. ,, ,, ,,	3.08 .23 .58 .23 .16 .32 .19 .06 .35 .37 .2.96 .321 .33 .37 .33	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 9.49	491 R. A. 15 ^h 30 ^m Change 0.Σ.	O. 2 in dist 147'3	Dec. 25° 25' ance.	97.	M. 7'5, 11'5
De. Se. Mo.	197 °0 194 °5 193 °0 192 °4 193 °1 195 °5 190 °4 193 °1 193 °5 188 °4 186 °7 188 °5 190 °5	5n. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.08 .23 .58 .23 .16 .32 .19 .06 .35 .37 .2.96 .37 .2.96 .33 .33 .33	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 48 9.49	491 R. A. 15h 30m Change 0.Σ. De.	O. in dist 147.3 1146.1 147.7	Σ. 2 Dec. 25° 25' ance. In.	97.	M. 7'5, 11'5
De. Se. Mo.	197 o 194 · 5 193 · o 192 · 4 193 · 1 190 · 3 193 · 5 190 · 4 193 · 1 190 · 3 188 · 4 186 · 7 188 · 5 190 · 5 190 · 5	5n. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.08 .23 .58 .23 .16 .32 .19 .06 .35 .37 .296 .33 .33 .33 .49 .46	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 48 9.49 61 70.38	491 R. A. 15 ^h 30 ^m Change 0.Σ.	O. in dist 147.3 1146.1 147.7	Dec. 25° 25' ance.	97.	M. 7'5, 11'5
De. Se. Mo.	197 o 194 5 193 o 192 4 193 1 190 4 193 1 190 3 193 5 188 4 186 7 188 5 190 5 190 9	5n. ,,, in. 6n. 2n. 5n. ,, 7n. in. 2n. ,, ,, ,,	3.08 .23 .23 .16 .32 .196 .35 .37 .296 3.37 .33 .37 .33 .46 .99	53 66 4 54 513 6 52 7 55 8 47 63 43 55 89 62 33 7 37 8 40 48 9 49 61 70 38	491 R. A. 15 ^h 30 ^m Change 0.Σ. De.	O. in dist 147.3 1146.1 147.7	Σ. 2 Dec. 25° 25' ance. In.	97.	M. 7'5, 11'5
De. Se. Mo.	197 o 194 5 193 o 192 4 193 o 193 o 193 o 193 o 193 o 193 o 193 o 186 o 188 o 188 o 188 o 188 o 189 o 180 o	5n. ,,, in. 6n. 2n. ,,, 7n. in. 2n. ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.08 .23 .16 .32 .19 .06 .35 .37 .296 3.21 .33 .37 .33 .49 .49 .40 .90 .24	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.48 9.49 .61 70.38	491 R. A. 15 ^h 30 ^m Change 0.Σ. De.	O. in dist 147.3 1146.1 147.7	Dec. 25° 25' ance. In. "" 2. 19	97.	M. 7'5, 11'5
De. Se. Mo.	197 °0 194 °5 193 °0 192 °4 193 °1 195 °5 190 °4 193 °1 193 °5 188 °4 186 °7 189 °9 190 °2 193 °6 190 °1	5n. ,,, in. 6n. 2n. 5n. ,,, 7n. in. 2n. ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,	3.08 .23 .23 .16 .32 .06 .35 .37 .2.96 .321 .33 .37 .33 .49 .46 .09 .24	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 .48 9.49 .61 70.38 .40	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492	O. 22 24 21 247:3 21 246:1 247:7	Dec. 25° 25' ance. In. "" 2. 19	97.	M. 7'5, 11'5 1845'31 6'37 50'40 67'00
De. Se. Mo.	197 o 194 5 193 o 192 4 193 1 190 3 1 190 5 188 4 186 7 189 9 190 2 193 6 190 1 189 9	5n. ,, in. 6n. 2n. 5n. ,, 7n. in. 2n. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .23 .23 .16 .32 .06 .35 .37 .2.96 .321 .33 .37 .33 .49 .46 .09 .24	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 48 9.49 70.38 40 1.34 40 1.34 40 1.34 40 1.34	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30 ^{-2^m}	O. 22 23 24 27 27 27 27 27 27 27 27 27 27 27 27 27	Dec. 25° 25' ance. In. "" L. 19 Dec. 13° 1	97. 13.56	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6
De. Se. Mo.	197 o 194 '5 193 o 192 '4 193 '1 190 '4 193 '1 190 '5 188 '4 186 '7 188 '5 190 '2 193 '6 190 '1 189 '9	5n. ,,, in. 6n. 2n. 5n. ,,, 7n. in. 2n. in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .16 .32 .16 .35 .37 .296 .35 .37 .33 .46 .09 .24 .09 .24 .03 .33 .33 .33 .33 .33 .33 .33 .33 .33	53 66 4 54 513 6 52 7 55 8 47 63 43 55 89 62 33 7 37 8 40 62 33 7 37 8 40 1 34 1 34 2 39	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30·2 ^m Σ.	O. 22 24 in dist 147.3 1146.1 147.7	Dec. 25° 25' ance. In. "" 2. 19	97. 13.56 9′	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85
De. Se. Mo.	197 o 194 5 193 o 192 4 193 1 190 3 193 5 188 5 190 5 189 9 193 6 190 1 189 9 190 5	5n. ,,, in. 6n. 2n. 5n. ,, 7n. in. 2n. in. ,, in. in. ,, in. ,, in. in. ,, in. in. in.	3.08 .238 .238 .16 .329 .06 .355 .376 .333 .37 .333 .496 .03 .333 .333 .333 .333 .333 .333 .333	53 66 4 54 513 6 52 7 55 8 47 63 43 55 89 62 33 7 37 8 40 62 33 7 37 8 40 1 34 36 1 34 36 48 2 39 3 39	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30·2 ^m Σ.	O. in dist 147.3 146.1 147.7	Dec. 25° 25' ance. In. "" L. 19 Dec. 13° 1	97. 13.56	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35
De. Se. Mo.	197 o 194 '5 193 o 192 '4 193 '1 190 '3 193 '5 188 '5 188 '5 188 '5 189 '2 193 '6 190 '1 189 '9 190 '1	5n. ,,, in. 6n. 2n. 5n. ,,, 7n. in. 2n. in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .238 .16 .329 .06 .35 .37 .33 .37 .33 .33 .49 .03 .33 .33 .33 .33 .33 .33 .33 .33 .33	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 48 9.49 61 70.38 40 1.34 36 48 2.39 3.39 4.41	491 R. A. 15h 30m Change 0.Σ. De. 492 R. A. 15h 30'2m Σ.	O. 2 in dist 147.3 '1 146.1 147.7	Dec. 25° 25' ance. In. "" L. 19 Dec. 13° 1 2n.	97. 13.56 26.56 20.56	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85
Be. Mo. M.	197 o 194 5 193 o 192 4 193 1 190 4 193 1 190 5 188 4 186 7 189 9 190 2 193 6 190 1 189 9 190 4 9 5 10 5 10 5 9	5n. ,, in. 6n. 2n. 5n. ,, 7n. in. 2n. in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .238 .166 .32 .066 .357 .377 .337 .337 .337 .349 .09 .244 .09 .338 .396 .396 .396 .396 .396 .396 .396 .396	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 4.49 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30·2 ^m Σ. Mä.	O. 2 in dist 147.3 1 146.1 147.7	Dec. 25° 25' ance. In. "" L. 19 Dec. 13° 1 2n.	97. 13.56	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35
Se. Mo. M.	197 o 194 5 193 o 192 4 193 i 190 5 188 6 7 188 5 190 2 193 6 190 190 190 190 190 190 190 190 190 190	5n. ,,, in. 6n. 2n. 5n. ,, 7n. in. 2n. in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .238 .166 .32 .166 .357 .377 .337 .337 .337 .337 .339 .466 .509 .244 .509 .248 .509 .248 .509 .248 .509 .248 .509 .509 .509 .509 .509 .509 .509 .509	53.66 4.54 5.13 6.52 7.55 8.47 63.43 55.89 65.52 57.40 62.33 7.37 8.40 9.49 61 70.38 9.49 1.34 2.39 3.39 4.41 5.50 5.50 5.50	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30 ^{-2^m} Σ. Mä.	O. in dist 147.3 146.1 147.7 164.6 161.7 158.4 157.6 156.3	Dec. 25° 25' ance. In. "" L. 19 Dec. 13° 1 2n.	97. 13.56 .06 .12.53 .10.23 57 9' 1.47 25	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40 57'39
Se. Mo. M.	197 o 194 5 193 o 192 4 193 i 190 3 193 6 190 2 193 6 190 1 189 9 190 2 193 6 190 i 189 9 190 2 193 6 190 i 189 9 190 2 193 6 190 i 189 9 190 2 193 6 190 i 189 9 190 2 193 6 190 i 189 9 190 2 189 9 190 3	5n. ,,, in. 6n. 2n. 5n. ,, 7n. in. 2n. in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .238 .166 .329 .066 .357 .373 .333 .373 .333 .349 .466 .03 .338 .338 .338 .338 .338 .338 .338	53 66 4 54 513 6 52 7 55 8 47 63 43 55 89 62 33 7 37 8 40 62 33 7 37 8 40 1 34 36 48 2 39 3 39 4 41 5 42 6 5 5 5 5	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30·2 ^m Σ. Mä.	O. in dist 147.3 146.1 147.7 164.6 161.7 158.4 157.6 156.3	Dec. 25° 25' ance. In. "" L. 19 Dec. 13° 1 2n.	97. 13.56 .06 .12.53 .10.23 57	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40
Se. Mo. M.	197.0 194.5 193.0 192.4 193.1 195.5 190.4 193.1 190.3 188.4 186.7 189.9 190.5 190.1 189.9 190.5 190.5 190.5 190.5	5n. ,,, in. 6n. 2n. 5n. ,, 7n. in. 2n. in. ,, ,, in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .238 .166 .329 .066 .357 .372 .333 .373 .333 .496 .099 .244 .030 .338 .180 .284 .290 .294 .290 .294 .290 .294 .290 .294 .290 .294 .290 .294 .290 .294 .290 .294	53 66 4 54 513 6 52 7 55 8 47 63 43 55 89 65 52 57 40 62 33 7 37 8 40 48 9 49 61 70 38 40 1 34 36 48 2 39 4 41 5 42 65 05 5 41 5 5 5	491 R. A. 15h 30m Change 0.Σ. De. 492 R. A. 15h 30'2m Σ. Mä.	O. in dist 147'3 146'1 147'7 2 164'6 161'7 158'4 157'6 155'7	Dec. 25° 25' ance. In. "" 19 Dec 13° 1	97. 13.56 .06 .12.53 .10.23 57 9' 1.47 25	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40 57'39 61'555 3'51
Se. Mo. M.	197 o 194 5 193 o 192 4 193 i 190 5 188 4 186 7 189 9 190 2 189 9 190 5 10 5 10 5 190 7 189 8	5n. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.08 .238 .238 .239 .166 .329 .066 .357 .372 .396 .337 .333 .446 .508 .320 .349 .349 .349 .349 .349 .349 .349 .349	53 66 4 '54 5 '13 6 '52 7 '55 8 '47 63 '43 55 '89 65 '52 57 '40 62 '33 7 '37 8 '40 48 9 '49 3 '49 3 '40 1 '34 48 2 '39 3 '39 4 '41 5 '42 65 '65 5 '41 6 '52 5 '7 '40 6 '8 '49 6 '9 '49 6 '9 '49 6 '9 '49 6 '9 '49 6 '9 '49 6 '9 '8 '49 6 '9 '8 '49 6 '9 '8 '8 '8 '8 '8 '8 '8 '8 '8 '8 '8 '8 '8	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30·2 ^m Σ. Mä.	O. in dist 147.3 146.1 147.7 158.4 157.6 156.3 153.7 155.7 152.5	Dec. 25° 25' ance. In. "" 2. 19 Dec 13° 1	97. 13.56 66 66 69 47 69	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40 57'39 61'55 3'51 71'49
Se. Mo. M.	197 o 194 5 193 o 192 4 193 i 193 5 188 4 186 7 188 5 190 5 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 8 193 i	5n. ,,, in. 6n. 2n. 5n. ,, 7n. in. 2n. in. ,, ,, in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	3.08 .238 .238 .16 .32 .06 .357 .37 .337 .337 .337 .339 .46 .99 .24 .30 .508 .309 .248 .309 .248 .309 .248 .309 .309 .309 .309 .309 .309 .309 .309	53 66 4 54 5 13 6 52 7 55 8 47 63 43 55 89 65 52 57 40 62 33 7 37 8 40 1 34 2 39 3 39 4 41 5 5 05 5 41 5 5 7 9	491 R. A. 15 ^h 30 ^m Change 0.Σ. De. 492 R. A. 15 ^h 30 ^{-2^m} Σ. Mä.	O. in dist 147.3 146.1 147.7 158.4 157.6 156.3 153.6 152.5 155.1	Dec. 25° 25' ance. In. "" 2. 19 Dec. 13° 1 2n. ""	97. 13.56	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40 57'39 61'55 3'51 71'49 3'38
Se. Mo. M.	197 o 194 5 193 o 192 4 193 o 192 4 193 o	5n. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.08 .238 .238 .236 .316 .329 .337 .337 .337 .338 .349 .338 .339 .349 .338 .339 .349 .338 .339 .349 .338 .339 .349 .349 .349 .349 .349 .349 .349	53 66 4 54 5 13 6 52 7 55 8 47 63 43 55 89 62 33 7 37 8 40 62 33 7 37 8 40 1 34 36 48 2 39 3 39 4 41 5 5 5 5 5 5 5 6 2 33 7 5 5 6 2 33 7 6 3 7 8 40 1 3 4 3 6 5 5 5 5 6 2 3 7 6 3 7 8 40 1 3 4 1 3 6 1 3 6 1 3 7 1	491 R. A. 15h 30m Change 0.Σ. De. 492 R. A. 15h 30'2m Σ. Mä.	O. in dist 147'3 146'1 147'7 158'4 157'6 156'3 155'7 152'5 152'1	Dec. 25° 25' ance. In. "" Dec. 13° 1 2n. ""	97. 13.56 26. 25. 12.53 10.23 57. 25. 27. 25. 28. 28. 28. 28. 28. 28. 28. 28. 28. 28	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40 57'39 61'55 3'51 71'49 3'38 4'50
Se. Mo. M.	197 o 194 5 193 o 192 4 193 i 193 5 188 4 186 7 188 5 190 5 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 9 190 6 190 i 189 8 193 i	5n. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.08 .238 .238 .16 .32 .06 .357 .37 .337 .337 .337 .339 .46 .99 .24 .30 .508 .309 .248 .309 .248 .309 .248 .309 .309 .309 .309 .309 .309 .309 .309	53 66 4 54 5 13 6 52 7 55 8 47 63 43 55 89 65 52 57 40 62 33 7 37 8 40 1 34 2 39 3 39 4 41 5 5 05 5 41 5 5 7 9	491 R. A. 15h 30m Change 0.Σ. De. 492 R. A. 15h 30'2m Σ. Mä. De. Gl. W. & S.	O. in dist 147.3 146.1 147.7 158.4 157.6 156.3 153.6 152.5 155.1	Dec. 25° 25' ance. In. "" 2. 19 Dec. 13° 1 2n. ""	97. 13.56	M. 7'5, 11'5 1845'31 6'37 50'40 67'00 M. 7'9, 9'6 1828'85 33'35 42'42 3'40 57'39 61'55 3'51 71'49 3'38

M. 8.7, 9

49 3	Σ. 1961.
R. A. 15 ^h 30'3 ^m	Dec. 43° 57′
~	16.0 20 21.22

Σ.	56°0 ∣	2n.	21.55	1830.65
H. Mä.	52'4		21.63	31.43 47.30
	1.		.18	51.27
De.	49 ⁻ 4 47 ⁻ 8		22.53	66.77

494 O.S. 298.

About a quarter of a revolution has been described by A B, and the minimum distance has been attained: $\frac{A+B}{2}$ and C probably unchanged. (0.2.)

Dunér has the following formulæ:

$$\Delta = 0^{".93} - 0^{".017} (t - 1860^{\circ}0) + 0^{".00038} (t - 1860^{\circ}0)^{2}.$$

$$P = 199^{\circ}.5 + 1^{\circ}.352 (t - 1860^{\circ}0) + 0^{\circ}.0218 (t - 1860^{\circ}0)^{2}.$$

+ 0 · 0218 (r -

		AD.	1	
¥ä,	179.5	1 1	1.15	1843.35
	186.2	3n.	'42	6.58
	188.6		.21	7'33
	191.8	2n.	.40	51.74
ο. Σ.	181.6	3n.	'20	46.49
	195.5	4n.	.18	58.83
	212.2	In.	0.84	68.2
	235.8	١,, ١	.28	72.28
	264.3	,,	.23	5.2
De.	208.9	3n.	.99	66.44
	280.8	,,	•••	76.46
Du.	214'1	,,	0.28	69.46
W. & 8.	187.3	2	'7	74.20
	190.9	2	.2	.20
	234.0	5	•••	3.40

$\frac{A+B}{2}$	and	C.
-----------------	-----	----

		2	u U .	
ο.Σ.	328.3	In.	122.23	57.68
	•0	,,	38	61.44
	•	,,	121.87	8.23
	327.9	,,	122.53	72·58 5·52
	328.2	,,	.38	5.25

495 o.s. 299.

R. A. 15 ^h 32 ⁱⁿ	Dec. 64° 15'			M.
0.Σ. De.	20.9	-	-	7°2, 9°5 1848°34 66°81

496 Σ. 1965.

R. A.	Dec.	M.
15 ^h 34.9 ^m	37° 1′	4°I, 5

C. A, greenish white; B, greenish.

The motion has been rectilinear so far.

Dunér has computed the following formulæ:

1849.76. $\Delta = 6^{\prime\prime}$ ·12. P = 301° 7 + 0° 054 (ℓ – 1850 0).

• -	30. /	, 0 03.	+ 15 20	,50 0,.
H ₁ .	295 [°] .8	In.	6.25	1781 27
-1-	-73.5	,,		1802.25
Σ.	299.9	,,,		19.62
	· 6	3n.	5.88	22.26
	300.0	5n.	6.0	9.70
So.	.9	4n.	7.17	2:30
H ₂ .	.0		6.0	6.00
_	.2	In.	.3	32.57
Be.	.7		.18	0.68
Sm.	301.5		'4	1.61
	300.0		.5	9.20
The above	301.5		·ĭ	42.27
Encke.	302 4		:53	37:44
Ga. Ka.	301.1		'21	8.59
Mä.	302·2		5.92 6.04	40.26
ma.	301.0		00/	1.47
	301.0		•••	2.40 3.32
	302.4		6.33	3 37
	0.		.24	4'37 7'32
	303.5	'	2.99	51.41
	302.1		6.01	2.47
	·6		.27	3.30
	301.3	1	5.90	4.65
	302.3		6.08	5.77
	.2		•••	7'40
	·5 ·8	l	5.68	8.20
			6.13	61.35
_	303.1	Зn.	.07	'97
Po.	300'4	6n.	'07	45'93
Mit.	301.1	In.	.16	7:70
Da.	300.8	l	'21	54.55
	301.3	20	'18 '20	43.63
•	.4	3n. In.	20	7:99
Mo.	299°5	30	'00	8:45
 .	301.3	30	114	5.43 6.43
	301.3	30	.13	23.23
0.Σ.	302.1	17n.	•05	52·53 4·58
Lu.	303.4	-,	-66	6.17
Se.	301.4	4n.	'21	'49
M.	299.7	īn.	2.31 6.31	62.23
	296.4	,,	6.31	9.57
Eng.	302.8	2n.	.19	4.48
Ta.	301.9	6n.	'30	6.35
	.7	In.	.62	7.2
_	•5	3n.	•66	9.22
Du.	302.4	,,	.03	8.60
De.	.3	ł _	'21	'70
Gl.	0.	In.	:38	71.36
Dob.	300.8	3n.	160	6.52
Goldney	301.4	l 4n.	.36	8.21

318 DOUBLE	STAR	s.			
	١_	•		"	
497 Σ. 1967 .	Σ.	111.0	2n.	0.72	1826.75 8.98
		103.9	3n. 5n.	'54 '40	32.66
γ coronæ borealis.		102.8	2n.	'40	3'34
R. A. Dec.	H,	_ [sin		*00
15h 37.7m 26° 41′	Sm.		rou		4.66 9.69
		225.0	'	elongd.	42.23
Magnitudes.—Σ., 4, 7. Piazzi gives the magnitude as 6. Dawes strongly insists		295.0		0.2	8:37
upon its being registered as of the 4th,	Encke.	90.9	In.	1.10	36.48
and he gives the companion of the 7th.		950	2n.	0.87	8.70
C. Z., A, greenish white; B, purple. Sm.,	ο.Σ.	1	In.	wedg ⁴	40.48
A. flushed white. Se., A, greenish;		252	,,	suspected oblong	.21
B, purple. Da., A, light yellow; B,			,,	wedgd.	-57
"purplish."			,,	oblong	1.22
"The star will probably become single,		293.5	2n.	0.38	2.60
and after a time the companion will emerge		290'4	In.	·47	4.71
on the opposite side." (2.) Ten years after		296.0	5n.	'44	5.60
its discovery he could not elongate it.		287.7	2n.	44	6.69 7.68
H, during 1832, examined it "with 320,480,600. With all, a round disc seen,		295.5 288.5	3n. 2n.	'44 '49	8.71
but no companion."		289'I	In.	.59	971
Mädler always measured this star at		290'0	2n.	'42	50.21
sunset and sunrise, as the companion was		287.6	4n.	48	1.20
invisible by day, and at night was hidden		288.8	3n.	'45	2.65
by the rays of the larger star. Smyth, in 1839, on "a superb night,"		286.6	2n.	48	3:54
after much gazing, thought there was an		279°0 283°6	"	.23	5.65 6.56
elongation in the direction s.p. and ii.i.		288.7	,,	'43 '45	7.63
In 1842 he found it "still a dumpy mis-		284'9	3n.	44	8.56
shapen object, with an axis major perhaps		·.3	2n.	48	9.59
n n and sf"		287.7	3n.	.42	61.89
Dawes, in 1843, saw it "with the com-		298.9	In.	43	2.24
panion coming out again." The plane of the apparent orbit of		284°2 288°5	,,	34	3.28
this star, like that of 42 Comæ Ber.,	1	286.0	,, 2n.	45	6.62
approximately coincides with the visual ray.	ļ	264.2	ın.	'40	7'47
Between 1826 and 1833 the companion		255.8	,,	.33	8.56
was on the following side of the principal		•••	,,	wedgd.	9.22
star; it then passed to the north at a mini-			,,	prob.	70.2
num distance, and reappeared on the pre- ceding side in 1840, where it has been found			l	wedg ^d	1.28
to 1872 I stelv the angle has diminished		•••	",	wedgd.	2.26
considerably, and in 1874 the companion	1			prob.	· -
was invisible. Probably it has passed	l	•••	,,	oblong	3.54
southwards to reappear on the following		•••	_ ,,	single	4.22
side under an angle of about 120°. The period may be about eighty years. The	Mã.	332.3	Ion.	0.18	41.20
period may be about eighty years. The angle in 1840 seems erroneous. $(0.\Sigma.)$	1	292°2	2n. 6n.	'47 '40	2.80
In 1877 Dr. Doberck published the fol-	ł	296.4	7n.	'45	2.60
lowing:—	İ	284.4	4n.	.40	3.35
		291.0	In.	40	4.76
Z's observations), elements,	1	286'4	2n.	32	7:39
$\Omega = III^{\circ}$ $\Omega = IIO^{\circ} 24'$		284.0	4n.	.33	8.28
$\gamma = 83 \qquad \qquad \gamma = 85 12$	Da.	290'4 288'8	3n. In.	0.6	9°38
$ \lambda = 239 \qquad \lambda = 233 30 $ $ \epsilon = 0.350 \qquad \epsilon = 0.350 $		285°0	,,,	757	52.07
e = 0.387 $e = 0.350P = 95.5 yrs. P = 95.50 yrs.$	i	284.3	2n.	69	4.40
T = 1843.7 $T = 1843.70$		281.0	In.	.2	7.52
o"''r a - o"'''	1	282.2	1	.42	0.36

", 3'n.

Ĭn.

282·5 286·8

293.1 502.2

Mit.

First elements (from	Second elements.		
1. 's observations).	,		
& - 111°	•	& = 110° 24'	
$\gamma = 83$		$\gamma = 85 12$	
$\dot{\lambda} = 239$		$\lambda = 233 30$	
e = 0.387		e = 0.320	
P = 95.5 yrs.		P = 95.50 yrs.	
T = 1843.7		T = 1843.70	
a = 0".75		a = 0''.70.	

The common proper motion is small, -0.000 in R. A., and -0.000 in N. P. D.

	0		"	
Hi.	3000		•••	1847'08
Bond.	294'7	In.	0.6	8.21
	290'5	,,	·3 ·3 ·5 ·67	'49
	293.0	,,	•3	46
Ja.	294'2	IOn.	•5	53.19
Wi.	295.4		·67	6.37
Se.	289 0	3n.	. 45	.59
	. 3	5n.	•36	7.52
	294	in.	elongd.	64.46
	278	١,,	,,	5.2
	-,-	,,	round	6.55
De.	280.2	3n.		58.21
	292.9	,,		62.26
Eng.	280.0	l "	elong4.	2.21
Du. cor	npanion)	0.0B	3 3.
	t seen	} In.	•••	7:79
	ngle	5n.		8
3.	•	in.	•••	9.64
	"		•••	70.26
	,,	"	•••	
	"	"	•••	1.45
	"	"	•••	2.25
W.O.	**	,,,		5.22
W. & S.	,,	,,	single	1
W . E D.	190	"	•••	2.45
	195	, ,,,		3.36
		single		.40
Schi,		,,,	•••	5.92
8p.		,,,	•••	.98
Dob.		,,	•••	6
		,,		7

Σ. 1983. 498

R. A.	Dec.	M.
15 ^h 46 ^m	35° 51'	8·7, 10·8
	C. A, yellow.	
Σ.	77.0 3n. 17.4	4 1830.65
Mä.	76.7 In. 16.5	8 45.55

Σ. 1989. 499

R. A. 15 ^h 46 ^{·2^m}		Dec 80° 2	M. 7'1, 8'1	
C. very white.				•
Σ. Ο.Σ. Mä. So. Do.	24'I 23'9 28'I 23'0 21'I	3n. ,, ,, 2n. sir	0.71 .53 .70 .85 .60 ngle	1832.68 6.76 40.95 1.46 58.59 65.00 70.00

Σ. 1984. 500

M. 53° 16' 15 48.1m C. white.

Dunér gives

1846.91. $\Delta = 6''.42$. P = 275°.3 + 0°.085 (t – 1850.0).

	•		"	_
H,	270'3	ın.	•••	1830.50
Σ.	273.8	4n.	6.23	.72
Mä,	274'3	3n.	'49	43'42
	276'1	-	.38	51.27
		3n.	.29	2.42
Se.	•6	In.	'39	7.61
Du.	•2	2n.	'42	70'90

Σ. 1985. 501

R. A.	Dec.	M.
15h 49.7m	– 1° 49′	7, 8·1

C. A, yellowish white; B, ash.

Dunér gives the following formulæ:

1854.13.
$$\Delta = 5^{"}.70$$
.
P = 328°.3 — 0°.137 $(t - 1850.0)$.

H ₁ .	316.1	In.	•••	1783.32
5 0.	325.3	2n.	6.88	1823'42
H,	326.2	In.	7.19	30.53
Σ.	• • • •	4n.	5'42	1.95
¥ä,	327.0		6.50	41.47
	326.2		5.78	3.44
	327.5		· 96	3.32
	328.1	In.	.74	54'47
Po.	327.0	۱,,	.57	46.18
Da.	ı.	l		6.42
Mit.	325.2	In.	5°39 °83 °48	8.24
De.	328.5	4n.	·83	55.88
Se.	.2	2n.	'48	6.96
	327.7		'93	65.48
Me.	330.1	3n.	.61	58.42
Ο.Σ.	.0	2n.	'70	61.44
X.	325.6	In.	.33	4'43
Eng.	330.8	3n.	•98	5.44
Ta.	329.0	In.	6.77	9.36
Du.	331.1	6n.	5.66	71.13
W. & S.	334.6	5	6.10	6.46
C.O.	331.7	2n.	5.66	7.48

502 Σ. 1993.

R. A.		Dec.		M.	
15 ^h 54 ^m		17° 43'		8·2, 8·2	
		C. whi	te.		
Η ₁ . Σ.	217°9 37°7	3n.	37.85 33.96	1831.76	
0.Σ.	38·0	,,	.93	40.79	
Mä.	37·4	2n.	32.93		

503 ο.Σ. 303.

M. 7'4, 7'9 Certain direct motion.

ο.Σ.	111.4	3n.	o"6o	1846.78
	126.6	2n.	.75	65.44
200	134.4	In.	.77	75.45
Mä,	110.6		.21	43'46
	116.6		'60	7:35
	119.9		.72	51.40
8 e.	.5	In.	'4	7:57
De.	127.8	4n.	.77	67.20
S p. P l.	131.5	·	-85	76.2
Pl.	132.7	2n.	.95	.61

ξ SCORPII.

R. A. Dec. M.
15^h 57.8^m -11° 2′ A 4.9, B 5.2, C 7.2

Magnitudes.—South, A 7, B 7, C 9. Σ., 4'9, 5'2, 7'2. Sm., 4½, 5, 7½. Se., 6, 7, δ. Argelander gives A as 4'3 (decimal).

C. H₁, A B, fine white. South, C, "decidedly blue." Σ. A, B, yellowish white.
C, bluish white. Se., A, yellow; B, white; C, blue. Sm., A, bright white; B, pale yellow; C, grey.

H₁ (Phil. Trans., vol. lxxii., p. 218).

"May 23, 1780.—Double-double. The first set very unequal. Position 1° 23', n.f. The other set both small and obscure." In a note he adds, "In a future collection this set will be found as a treble star of the first class, the large white star, with a power of 460 and 932, appearing to be two stars.

—Orig."

Here the "first set" are A and C, about 6" apart, and are H₁ II. 20; the "other set" are a faint pair not further alluded to. When H₁ discovered the duplicity of A, he registered the close pair I. 33.

H₂ and So. (*Phil. Trans.* 1824, p. 243). Up to 1822 these observers had not seen A double. Referring to A C, H₂ says, "This is perhaps a binary system with a mean annual motion of -0° 256."

So. (Phil. Trans. 1826, p. 343). "A and B equal. Measure of the close pair A B. June 10, 1825, 84° 43' s.f. or n.p."

A B, June 19, 1825, 84° 43' s.f. or n.p."

H, in 1831 saw "the division [of A B]

quite well."

Da. (Mem. R. A. S., vol. viii., p. 69) says, "The whole series of observations distinctly points to a direct motion, and shows that nearly a whole revolution has been completed since 1782."

Sm. (Cycle, p. 352) quotes Σ ., who says of A B "that if H_1 made an error in the quadrant of the star, which the nearly equal magnitude will easily admit of, and

if, from similar causes, we add 180° to South's deductions, it will show a direct motion of 182° in 55 years; giving about a century as its annus magnus. The stars A and C, however, are evidently retrograding at about -0°'2 per annum, which is not accountable on proper motion conditions."

Da. (Mem. R. A. S., vol. xxxv., p. 386). He remarks that probably variability in the relative magnitude of the stars led to H₁ placing the companion in the n.f. quadrant. It was really in the 3rd quadrant. South's position in 1825 is similarly in error.

Of A B he writes that the orbital motion has been considerably accelerated, and that the distance has diminished, "and it will, no doubt, ere long require the most powerful optical means to fairly separate the components." And in 1867 he says, "The anticipated approximation of the components has come to pass, and it is now extremely difficult for any ordinary aperture to separate them, at least in this latitude."

Mådler, using the observations from 1782 to 1846, obtained the following elements for the close pair:—

T = 1832'611 $\Omega = 4^{\circ} 45' \cdot 2$ Annual motion = + 204'688 P = 105'522 years $i = 70^{\circ} 13' \cdot 3$ $\pi' = 0''05772$ Semi-axis major = 1'''287.

For the distant pair, $1839.85:6^{\circ}.801$; $74^{\circ}.29^{\circ}0-14^{\circ}.704t$; $G=0^{\circ}.02909$; J=1469.0.

				242210	O I L DOI				J - -
Dr	Doberck	in 1876	Spublishe	ed the fol-	De.	168°.7	ı en	o.88	1869.52
	circular o			ed the los-	20.	170.5	5n. 7n.	88	70.45
				=95 years.		173.0		1.06	1.41
•• -	Least dist	ance of	2/ : F	ro:62		.,3.8	8n,	.11	2.46
	Greatest	dietance	30 III 10	1882:27		176.4	5n.	.19	3.42
7					l	178.7	,,	.05	4.49
				its by the		180.2	,,	.10	5.43
same a	ıstronomei -			:	Se.	53.6	4n.	0.47	55.22
		- 12°			1	70.0	I 2n.	.36	6.49
$\gamma = 68 42$						106±	6n.	single	
		= 89					In.	single?	7 8
		= 0.07			Kn.	166.2	,,	0.99	68:48
	r T	- 95.9	years		_	176.9	,,	1.15	72.46
	1	= 1859 = 1":2	02		Du.	172.2	6	0.83	69.21
œ						173.3	2	'88	70.24
The	common	proper i	notion of	the three	1	174.8	5	.88	1.60
Stars 18	— o``103	ın K. A	1., and —	0'''105 in	1	177.4	3	96	2.23
N. P.	υ.	A D			G1.	181.9	4	1.52	5.26
		AB.			GI.	168.2	5	-:	0.51
Ħ	187°9		, "	1782:36		174.0	5	1.0	1'49
Η ₁ . Σ.		-	1'14	1825.47	i	182.8	4	'15 '1	3°49 •68
۵.	335.9	3n.	.21	32.46	W. & S.	176·5	6	0.95	2.45
	4·4 5·8	2n.	21	3.91	W. C D.	180.4	4	1.04	3.36
	7.7	1	•23	2.00	1	183.1	4	.19	4·44
	8·ó	4n.	.16	6.49	1	180.0	6	.33	5.21
	12.2	2n.	.09	7.21		184.0	8	.27	7:46
H, & 8	o. 351·9	8n.	'35	25.49	Fer.	355.7		.10	2.20
•	1.2	4n.	.49	30.52	Schi.	1820	ın.	.18	5.20
	9.5	2n.	.32	1.38	i	184.1	,,	.50	6.21
_	10.0	8n.	'41	5.40	C.O.	185.6	,,	'04	.44
Da.	6.3	ın.	.12	3.39		184'3	5n.	.26	7.46
	7.8	8n.	.16	4.20	W .0.	2.2	In.	.53	6.46
	5 .8	2n.	•••	.25		5·5 3·8	,,	'14	.23
	16.7	,,	1.27	9.61	١.,	3.8	,,	.02	. '54
	18.6	3n.	.19	40.26	Dob.	186.4	3n.		.61
	.9	"	.19	1.28	ļ	179.4	2n.	0.06	7.42
	21.5	2n.	1.08	2.46	ì				
	23·5 24·5	"		3.40	ļ	Α.	L TD		
	30.2	In. 3n.	1.10	.45 48·54	1	N.	ĻΒ an	d C .	
	46.3	In.		53.23			Z		
	156.0	2n.	1.22	65.24	H ₁ .	88.6	1	6.38	1782:36
Sm.	6.6		-4	34.42	H. & 80.	78.3	2n.	.76	1822.46
	13.3		·i	8.60	•	76.6	4n.	7:07	5.46
	23.2		•2	42.26		78.6	Зn.	6.95	8.40
	24.9	1	۰0	6.49	Σ.	.6	4n.	'75	5.48
Mä.	16.7	4n.	.28	1.48	1	76·1	3n.	.70	32.46
	20.4	,,	•05	2.42	i	75.4	20.	7.02	5.00
Mit.	23.6	3n.	0.06	6.46	İ	74 .7	3n.	.00	6.49
	.I	,,	96	:47		7	In.	6.99	52.22
	25.2	,,,	.98	'48	5m.	76.1		7:2	34.42
	26.0	In.	1.71	7:58		74.2	ł	'2	8.60
Ja.	27.2	??	0.84	8.54	Da.	68.1	,,,	.0	46.49
J 6.	46.5	15	.93	52.98	34.	69.4	In.	6.75	0.26
De.	50.2 50.3	3n.	oblong	4.00	M.H.	74 7 72 8	ŀ	0.75	2.42
	20.2	5n.	Oppoint	5.31 6.33		72.0	1	6.93	61.42
	318.7	3n.	wedgd.	62.22	Ka.		1	.53	43'39
	322.0	9n.	,,,	3'44		73'3 68'8	1	.91	65.40
	331.9	IOn.	oblong	4.20		70.3	1	-98	6.21
	333.į	,,	,, °	5.44	Mit.	72.9	9n.	7:27	46.82
	156.6	8n.	0.2 .82	6.46	0.Σ.		In.	•••	52.22
	160'7	7n.		7.45		71.8	,,	7.45	6.28
	165.3	۱,,	·89	8.40	ı	69.8	٠,,	.18	61.43

	۰		"	
Ja.	68°1	5 1	7.51	1853.13
	69.2	9	.73	4'06
De.	71.6	3n.	.26	2.31
	1.	2n.	6.90	6.39
	70'1	,,	7'14	62.22
	• 6	3n.	.16	3.45
	71.0	4n.	.11	5.38
	70.4	6n.	.11	6.96
	69°9	2D.	.03	8.23
	.9	,,	.51	9.20
	70.6	,,	6.99	70.35
	.1	3n.	7.08	1.36
	69.2	2n.	.19	2.48
	•5	In.	'04	3'43
	·6	2n.	'20	4'47
	68.3	,,	.03	5.44
Se.	70.2	ion.	.20	55.24
	69.7	6n.	.10	65.45
M.	72'1	In.	6.93	1.45
Eng.	68.9		7.41	4.48
Du.	69·8	4	.19	9.48
	72°I	In.	.08	70.25
	.5	,,	.12	1.25
_	.2	2n.	.12	2.25
Ta.	69.7	In.	6.5	1'42
	68.7	" 6	.87	4.37
W. & S.	72.0		.91	2.45
	1.7	3 7	7	3.36
_	3.4	7	.38	7'49
Fer.	243.6		7.62	2.20
Lindsted	t. 65°2		:30	3.45
Schi.	66.9	In.	.08	2.21
~ ~	67:4	,,	:27	6.21
C.O.	66.3	In.	.69	'44
797 A	67.1	2n.	.32	7.51 6.46
₩.0.	66.7	In.	27	'54
Dob.	68.9	,,,	.33	'46
DOD.	65.4	2n.	7.67	7.61
	66.4	i In.	7.51	, 01

505	Σ. 2007.				
R. A. 16h om	Dec. 13° 39'	M. 6·5, 8			
H, & So. 2. Mä.	328.7 2n. 31.93 2 .97 .5 1n. 33.05	30'14 43'45			

506 Σ. 2010.

R. A. Dec. M. 16^h 2.6^m 17° 22′ 5, 6

C. both yellow.

2. (P. M., p. ccxvi.) found the proper motion of the principal star was — 8" 9 and — 0" 4, that of the companion — 8" o and — 4" 6; hence both orbital and common proper motion

0.Σ. by the method of last squares finds the following:—

 $\begin{array}{l} \Delta \ A = +5^{"\cdot342} \pm 0^{"\cdot030} + (0^{"\cdot0114} \\ \pm 0^{"\cdot0019}) \ (T-1850^{\circ}); \\ \Delta \ D = +30^{"\cdot280} \pm 0^{"\cdot018} - (0^{"\cdot0257} \\ \pm 0^{"\cdot0012}) \ (T-1850^{\circ}); \end{array}$

and these show that there is no trace of deviation from rectilinear motion.

Dunér has these formulæ:— $\Delta = 30''.79 - 0''.020 (t - 1850.0).$ $P = 9^{\circ}.84 + 0^{\circ}.020 (t - 1850.0).$

$P = 9^{\circ}.84 + 0^{\circ}020 (t - 1850.0).$				
Flamstee	d13 ⁹ 4	In.	61 ["] 7	1703.31
H ₁ .	7.6	,,	39.98	81.82
H, & 80.	9.6	,,	31'17	1821'39
Σ.		2n.	'45	2.69
	-6	3n.	.23	31.2
	·5 ·6	4n.	10°	6.33
0.Σ.	·4	3n.	'14	40.88
	· 7	īn.	ზვ	1.60
	10.1	,,	30.45	7:69
	.1	,,	·	51.91
	.3	,,	30.66	2.22
	9.9	,,	'44	66.62
	10.0	,,	'39 '12	8.22
	· · ś	,,	12	72.57
	·5 ·7 ·6	,,	.51	.59
	·6	,,	.50	3.22
Mä.	9.7	5n.		41.35
	.4	٠,,	31.07	3.03
	.2	In.	30.24	3.02 8.38
Se.	10.5	3n.	'41	57:20
De.	9.8	4n.	*59	8.13
Eng.	10'4	2n.	.29	63.65
	-4	,,	115	4.36
Du.	•2	4n.	.5	9.61
W. & 8.	·4	3	75	76.46
Dob.	9. <u>9</u>	4n.	29.83	7:35

507 Σ. 2034.

001			·		
R. A	۸.	Dec.		M.	
16 ^h 3.2 ^m		83° 58′		7, 5 ^{.8}	
Σ.	1150	3n.	1'41	1831.86	
ο.Σ.	118.4	2n.	'6o	41.14	
Mä.	121'3	In.	*64	2.72	
	118.4	2n.	'34	5.01	
De.	120.3	,,	•2	57.63	
Du.	118.5	3n.	'44	71.25	

508 ν SCORPII.

R. A. Dec. M. - 19° 9′ 4. 7. 7. 8

The wide pair was discovered by H₁. Ir 1847 Jacob detected the duplicity of B, but it was reserved for the keen eye of Burnham in 1874 to see that the principal star ited was also a close double star. A very striking group.

	_	A B	3.	
Bu. Newcom De. C.O.	357.7 1b. 5.2 359.1 8.9	6n. In. 3n. 2n.	0°45 0°84 .59	1874°41 °47 °49 7°48
		B and	•	, , 40
H ₁ .	334.8	1	38.33	1781.4
H, & 80.	338·2		40.83	1821.4
•	336.6	ĺ	40 02	36.2
Sm.	338.2		40'00	1.2
Mit.	.9	3n.	43'00	46.54
Ja.	336.2	-	.57	7:7
Se,	331.3	İ	158	55.5
De.	336.9	2n.	·78	74.49
		CD.		
Mit.	39.0	2n.	1.11	46.28
Ja.	42.2		-8	7.4
_	45'4		•6	8.0
Bu.	.7	бn.		74.41
De.	48.4	2n.	1.89	49

509 Σ. 2021.

49 SERPENTIS.

·86

7:37

46.2 | In.

R. A.	Dec.	M.
16 ^h 7.7 ^m	13° 51′	6.7, 6.9

C. Σ., white. Sm., A, pale white;
B, yellowish.

H₁ (Phil. Trans. 1804, p. 376): "In the year 1783, March 7, the position of the two stars of this double star was 21° 33' n.p. May 20, 1802, 32° 52'; and April 2, 1804, 35° 10'; which gives a change of 13° 37' in 21 years and 26 days. The stars are now a little farther asunder than they were formerly. A parallactic motion would account for the change of the angle, but not for the increased distance."

H, and So. (Phil. Trans. 1824, p. 247): "The motion of this star, first pointed out by Sir W. Herschel in 1804, is thus clearly established. The disagreement between our observations and M. Struve's is rather more than usual (4° 6'); but the star is close and difficult. The mean annual angular motion is about 0° 510 in the direction n.f.s.p., or direct." Measures in 1822 and 1823 are given.

So. (Phil. Trans. for 1826, p. 347). H, having the observations by So. in 1825 before him, says that the change in this star is confirmed; that the amount 6° 13′ is greater than calculation gives, viz., 1° 6′; that probably the measures in 1823 were faulty, and ∑.'s measure in 1820 (46° 33′ n.p.) worthy of more confidence.

Sm. (Cycle, p. 355): "A rough investigation gives above 600 years for the orbital revolution of the satellite about its primary,

—or, rather, of one sun around the other. More observations at longer epochs are, however, necessary, before it can actually be pronounced a binary system."

Later, Dawes and Secchi express their conviction that the orbital motion is certain.

These stars are transported through space by a considerable common proper motion. The distance appears to have already reached its maximum. $(O.\Sigma.)$

Dunér gives the formulæ

$$\Delta \cos P = 2'' \cdot 22 + o'' \cdot 024I (t - 1830 \cdot 0) - o'' \cdot 00010 (t - 1830)^{2}.$$

$$\Delta \sin P = -2'' \cdot 27 + o'' \cdot 0052 (t - 1830 \cdot 0) + o'' \cdot 000066 (t - 1830)^{2}.$$

The common proper motion is $+0^{\prime\prime}$:152 in R. A., and $-0^{\prime\prime}$:369 in N. P. D.

		- 309		. D.
H ₁ .	291°5		. "	
_[.		In.		1783.18
	302.9	٠,,		1802.39
	305.5	,,	•••	4.25
H, & 80	. 311.9	2n.	4'15	23.28
	318.2	4n.	3.2	5.41
	316.8	2n.	2.95	30.02
Σ.	315.2	3n.	3.19	29.48
	316.6	In.	.03	23.63
	319.5	1	'24	32.23
	317.0	4n.		4.39
	316.8		:25	5.45
Da.	314.8	2n.	'29	6.71
24.	318.0	In.	17	1.40
	3100	,,,	43	41.38
	321.3 317.8	i		9.44
Sm_	317.8	l	3.7	32.43
	318.1	l	-3	9.29
	323.0		'2	54.28
Mä.	319.3	In.	١	40.84
	.2	4n.	3'62	1.45
	320.2	3n.	'40	2.38
	319.6	4n.	.39	3.34
	318.6	2n.	.36	3.34
	321.5	In.	34	4.38
	322.5	****		2.11
	321.9	1	.39	51.40
	322.4		•••	2.04
		4n.	3.25	4.62
	324.7	2n.	'37	7:39
	323.7		.28	8'42
	. 7		.70	9.38
Hi.	324.7	7n.	·71	60.67
	318.9	In.	. 23	45.26
Mit.	319.1	٠,,	4'34	7.58
Flt.	322.9	16	3.25	51 66
De.	321.2	6n.	.67	4.63
_	324.6	3n.	.53	64.80
Mo.	322'7	,,	·65	55.49
Se.	~ ·3	6n.	·46	9.01
	325·8	In.	·80	65.48
M.	323.7	- 1	.23	
	324.5	"	4.03	2:37
	327.0	"	3.81	8.43
	325.4	"		70:39
		"	·59 ·88	1.37
	324·9 326·5	"		2.42
		"	•66	3.39
	325.9	,,	'70	4.42
	329.7	,,	'94	5.63

G1.

	0		" .	
Eng.	325.7	4n.	3.76	1865.21
Ta.		In.	.91	6.32
	325.8	,,	•69	9.57
	327.2	,,	'93	71.42
	•6	,,	4.56	2.20
	328.4	2 n.	3.76	4.46
	327'9		4'11	5.42
Br.	329'I	3	3.60	68.46
Du.	327.9	3 8n.	.52	70.35
Hall.	· ·2		.94	1'42
	•6		4.27	2.20
	328.8	3n.	3.81	6.34
W. & S.	327.7	In.	73	2.45
	329'4	,,	'44	2.21
	.7	,,	'94	63
	327.0	,,	.56	6.48
Sp.	· ·6		·56	5.48
G 1.	328.5	In.	'9	, .eo
Schi.	147.6	,,	.69	.47
Dob.	327.4	3n.	·90	6.25

510 o.Σ. 303.

R. A.	Dec.	М.
16h 7m	34° 43′	7.2, 8.7

Probable change in angle and distance.

Ο.Σ.	61'4	In.	0'40	1845.65
	58.3	,,	'40	.71
	48.0	,,	.27	6.38
_	55.8	,,	[33]	8.49
De.	45		obl.?	65.47
	60		,,	.25

511 Σ. 2022.

R.	A.	Dec.	M.
16p	7.8m	26° 59′	6.2, 9.8

Angular change is certain.

Σ. Mä.	131.2	3n.	2.77 .80	1830.26 44.36 58.09
Se.	136.2	2n. In,	3.26	58.09 65.52
Ο. Σ.	138.7	"	2.78	8.50

512 **S.** 2023.

R. A.	Dec.	M.		
16p 8.6m	5° 50′	8, 9		
	C both vellowish			

	C. D	our year	OMISII.	
Σ.	236.0	4n.	1.22	1832.41
Mä.	232.7	-	·51	9.74
	231.0		.20	42.42
	229'1		'41	51.40
	.5		·85	2.63
g_a	00115	-		1 6

65.24

513	Σ.	202	26.	
R. 16h 8		Dec. 7° 40'		M. 8·6, 9·1
	•	C. yello		
Σ. Mä.	345 [°] 9 342 [°] 0	4n.	2 ["] 54	1830°94 8°05
	337·8 334·4		'22 '11	44°35 52°63
Se.	330.1	2n.	1.78	6.20

514 Σ. 2032.

σ CORONÆ BORRALIS.

R. A. Dec. M. 16^h 10'2^m 34° 10' 8'6, 9'1
C. H₁, both white.

1802. 0°

H₁ (Pkil. Trans., vol. lxxii., p. 215 "Aug. 7.—Treble. The two nearest pretty unequal; the third very faint, with powers lower than 460."

H₁ (Phil. Trans. 1804, p. 373): "This star has undergone a great change." "The great number of small stars in this neighbourhood is not favourable to a supposed connexion between any of them and or Corone. As the two small stars are considerably unequal, we may suppose the larger one to be affected by a parallactic motion, which will sufficiently account for the angular changes."

H₂ and So. (Phil. Trans. 1824, p. 249). Measures in 1821, 1822, and 1823 are given. H, then discusses the entire series at considerable length. He notes the "great and almost sudden acceleration in the angular velocity of the small star,' 23°86 having been described between 1781 and 1802, 38° 6 between 1802 and 1818, and 22° 55 between 1819 6 and 1823 83, the annual rates being respectively 10.139, 2° 298, and 6° 982. He then shows that there has also been "a very sensible diminution of distance." He explains these phenomena by supposing that the orbit is elliptic, that its plane passes nearly through the eye, and that the star is approaching its perihelion. He then assumes the orbit to be circular, and its plane inclined 30° to the visual ray; then, taking 2°.13 as the mean annual motion, he computes the positions for the times of the recorded observations, and finds a very fair agreement between the computed and observed

So. (*Phil. Trans.* 1826, p. 349). Measures made in 1825 are given, and H, remarks that the sudden increase of angular velocity noted above is not verified; and

he thinks that "the angle 40° n.f. for 1819, on which it rests, must of necessity have been considerably in error."

H, (Mem. R. A. S., vol. v., p. 39). After presenting the whole of the measures from 1781'79 to 1830'28, he says, "None of these angles can be depended upon, so very difficult is the star." Still, he thinks that a rapid direct motion and a great acceleration since 1800 are evident, and that the distance is still decreasing.

Sm. (Cycle, p. 357): "My measures afford presumptive evidence that the components are again separating; and presuming its orbit to be elliptic, with an excentricity of 0°.6988, it must occupy a period of not less than 560 years, with its motion performed in a plane passing nearly through the eye."

E. (P. M., p. ccxxix.) shows that South's star C (magnitude 10) does not belong to the system.

 $0.\Sigma$. in 1851 discovered D $(0.\Sigma$. 538): its magnitude was about 12.5.

THE ORBIT.—The following table gives the elements obtained by several astronomers:—

Ω	≖ − &	i	•	a	P	T	Observers.
138 o 20 43 9 3 8 25 7 21 3 1 57	65 54·1 96 53 64 28 69 24 101 57	o , 40 52°2 45 6 29 29 25 39 46 47	o'6112 '5899 '3887 '69978 '7256	3.679 2.3851 2.94 3.918 5.194 2.719	years. 286.6 420.24 24.0 608.45 736.88 195.12	1835'60 1825'31 1829'7 1826'60 '48 1831'17	Herschel. Klinkerfues. Powell. Mädler. Hind. Jacob.

In 1875 Doberck made a redeterminatio of the elements of this star: his results ar as follow:—	n re
T = 1828:01	

T = 1828.91 $8 = 6^{\circ} 43'$ $\lambda = 89 17$	
$\gamma = 29 40$	> See also p. 131.
$\rho = 843^{\circ}2$ years	
$a = 6'' \cdot 001$	1
e = 0.7502.)

	•		"	0 0
H,.	347.5	l i	•••	1781.79
•	11.7		•••	1804.74
Σ.	48.0		•••	19.62
	89.3	4n.	1.31	27.02
	104.9	3n.	*22	30.11
	118.8	,,	.59	2.99
	130'4	5n.	.30	5.20
	134.7	6n.	'43	6.29
	139.9	5n.	'41	7.55
H, & 80.	71.2	2n.	*44	7.55
•	77.5	6n.	'44 '48	5'44
	92'I	٠,,		8.50

	ang we not.	105 0	911.	1 44	1030 20
	-	108.7	3n. 6n.	·38 ·07	31.36
		113.2	δn.	'07	2.25
ı		119.0	3n.	'33	3.56
	Sm.	107.6		•3	0.76
		114.9		33 3 4	2.37
		120'7		'2	3.28
l		130.9		' 4	5.20
		145'1		•6	5.20 9.67
l		155.9		-8	43'35
l		162'4		2.0	43°35 6°60
		176.8		•2	52.25
l	Da.	115.4	3n.		32.22
l		120.6	4 n.	1.30	3.36
		125.6	3n.		4.22
l		136.8	īn.		7'47
l		144'3	,,	1.60	9.53
l		147.8	3n.	·65 ·65	40.22
l		150.3	,,	•65	1.48
١		153.5	ın.		2.37
١		156.2	,,	1.77	3.47
١		166.0 129.2	2n.	1.77 .88	7.44
١		168.6	3n.	.99	7'44 8'53
١		170'1	In.	2.09	9'45
ł		173.8		2.09	51.42

H. & So. 105'0 | on. | 1'22 | 1830'28

			,,					,,	
Da.	177°8 178°4	4n.	2"38	1853.63	Mo.	178.6	20	2.55	1854.67
	178.4	3n.	.25	4.26	ĺ	184'9	20	.70	9'34
	180.1	In.	'43	5.48	Ja.	177'9	2n.	.18	3-14
	185.2	2n.	.71	60'36		-8	3n.	*24	4.05
	191'4	ın.	3.02	5.38		181.5	,,	.25	6.73
Ga.	147.8		1.22	20.2	ı	1830	,,	.25	7.66
Ο. Σ.	149'3	5n.	.23	40.63		.9	,,	•56	8.20
	153.7 168.2	In.	.23 .26	1.60	De.	179'7	5n.	•38	4 66
	168.2	2n.	.76	6.68		.9	3n.	.40	5.18
	169.6	In.	•69	7.69		181.7	6n.	•68	6.42
	170.8	,,	.91	8.74	}	180.0	2n.	.25	7.66
	172'4	3n.	·96	9'74		184'7	6n.	.73 .84	8.49
	168.9	,,	.99	50.2	ĺ	189.3	5n.	•84	62.23
	173.4	6n.	2.05	1.63		190.4	9n.	.74	3.39
	174·3 175·6	5n.	.06	2.63	,	· ·9	6n.	75 83	4.48
	175.6	6n.	.17	2.65		191.7	٠,,		5.41
	179.0	2n.	*24	₫.00	ļ	193.2	IIn.	-88	6.92
	ι.	4n.	29	5.61 6.22	[195.5	5n.	'94	8-36
	.0	,,	'46	6.57	i	196'4	4n.	3'04	9.23
	181.6	3n.	.50	7.63 8.57	Ì	'9	6n.	.00	70.43
	182.3	2n.	.21	8.57	ļ.	197'1	٠,,	·07	1.46
	185.9	3n.	·š8	9.68		.8	,,	.19	2.83
	186.8	In.	.72	60'74		198.3	,,	.27	3.48
	187.4	5n.	•69	1.22	ļ	· · · 8	,,	.30	4.48
	189.5	In.	'77	2.74		199'0	5n.	.25	5.39
	188.7	,,	•77	•70	Wi.	181.6		'49	55'54
	•2	4n.	77	2.60	l	182.8	ĺ	.52	6.39
	190'2	in.	77 89	A'60	Se.	180.8	4n.	.30	5.61
	192.7	2n.	·96	5.74	1	182.3	2n.	'45	6.43
	•••	In.	l	74	ł	183.2	٠,,	'42	7.61
	192'0	٠,,	2.92	6.49	Eng.	190.2		.11	64.45
	193.2			49	Ro.	189.1	ì	•••	5.72
	.2	5n.	3.01	165	Ta.	.2	2n.	3.73	6.43
	192.8	-	2.97	8.55		193'7	In.	-62	8.29
	196.6	l	.99	8.22	Ì	195.1	,,	.29	9.22
	195.6			·61	1	196.7	,,	.30	71.42
	.3	3n.	3.56	72.57		197'9	,,	·34 ·63	2.59
	198.7	In.	17	3.54		200'5	,,	•63	3.22
	196.6		12	3.54 57	{	199.2	2n.	.19	4.46
	199.8	4n.	'41	4.61	ļ	.8	In.	.22	5.42
Ka.	148.8		·57 ·66	41.26	1	٠8	2n.	*44	6.26
	156.3		· 6 6	3.68 66.68	X.	12.0	In.	.00	67:37
	193.9		2.86	66.68	Ì	200.2	,,	.22	74'44
X ä.	152.2	7n.	1.29	41.26	Du.	195.2	In.	2.79	67.72
	156.3	4n.	1.20	2.31		194.7	4n.	3'14	8.59
	157.5	,,	.86	73		195.1	5n.	10	62
	165.0	IIn.	2.07	6.46		196.2	4n.	.12	71.35
	166.2	I4n.	.16	7'44	ł	199.5	5n.	•28	5'54
	168.3	2n.	.39	8.41	Kn.	194'3	3n.	2.97	67:34
	173.0	٠,,	.23	50.40	}	195.3	4n.	3.55	71.23
	174°5 176°2	6n.	*34	1.22	Br.	194'0	4	.11	68.55
	176.3	9n.	'43	.76	W. & S.	.3	3	.21	71.21
	177.2	IIn.	.39	2.60		197.7		.25	2.23
	_ '7	6n.	'46	3.38	}	198'4	5	14	3.42
	178.7	2n.	.65	3.38	1	200.6	5 5 6	·47 ·68	5.20
	179.4	5n.	.21	4.40		202'2		.68	7.46
Ch.	148.2	In.	1.26	41.24	Schi.	1986	In.	·34 ·89	5:46
	153.2	,,	·63	2.41	Dob.	199'4	4n.	.89	6.58
	160.4	,,		3.68	[•5	5n.	·58	7:32
G.O.	157.2		.23	4'44	l	201.3	4n.	'14	8.23
Mit.	166.4	In.	.33	7.70	P1.	199.2	3n.	·78	6.2
Bond.	171.5	l	2.5	8 42	l	202.3	5n.	-62	7.65
-	172.2	1	.3	'42	W .0.	201 · I	In.	'44	6.44
Flt.	174.4	43	.35	51.52	ŀ	200'0	,,	-58	'44
Mi,	176.4	24	.38	2.31	1	199.0	,,	•46	'45

		A C		
Η ₁ . Ο.Σ. Hall.	244.9 231.6 221.7	5n.	20" 20'41 15'92	1832.60 54.40 76.40
		A D		
H ₁ . 80. H ₂ . Sm.	65 90.6 89.2 90.0 88.7 89.3 88.9		24 42·2 44·2 43·3 44·1 '0	1781 ° 00 1825 ° 53 8 ° 40 30 ° 76 2 ° 37 6 ° 50 9 ° 67
Σ.	90°0 88.8 90°0		46·3 43·75 44·17 •88	52.00 36.69 7.66 40.58
ο.Σ.	87.9		47.2	1.69
Mä. De.	.7 90°1 88°4		.98 .83 51.0	3'32 62'00
W. & S.	87 [.] 9	In.	52.6	72.53 3.42
Fl.	.9	"	54.18	6.48 7.46

515 o.z. 309.

R. A.	Dec.	M.
16 ^h 15 ^m	41° 56′	7.5, 7.8

The relative brightness of the two stars is probably variable.

Ο.Σ.	234'4	In.	0.20	1842.71
	55'3	,,	.66	5.65
	239.4	,,	'54	7.55
_	56.4	,,	'40	51.67
De.	231.5	3n. 1	•••	67.98

516 Σ. 2044.

R. A. Dec. M. 16^h 20^m 37° 19' 7'8, 8

C. white.

Dunér gives

 $1854.98. \quad \Delta = 8''.46.$ P = 345°.4 - 0°.065 (t - 1850.0).

H, & 80.	346.4	2n.	10.12	1823.41
Σ .	.9	3n.	8.24	30.03
Mä.	.7	In.	86.	43.61
Se.	344.6	2n.	'54	57.56
De.	.2	3n.	'09	8.55
Du.	•5	5n.	'49	69.89

517 o.Σ. 310.

R. A.	Dec.	M.
16h 21m	38° 13'	7.6, 10

0.Σ.	221.5	ın.	3°15 2°88	1845:35
	.9	,,	2.88	
	217.5	,,	. 97	51.67
	224'4	,,	'96	74.67
De.	225.7	3n.	3.12	67.43

518 o.Σ. 312.

R. A.	Dec.	M.
16h 21m	61° 47′	2.1, 8.1

Probable increase in the distance.

0.Σ.	143'9	5n.	4.66	1843'71
	142'2	4n.	-86	51.51
	.I	2n.	.99	60.11
	145'5	١,,	5.50	73.67
Da.	141.4	In.	4.71	47.41
Mä.	144.8	2n.	.01	52.69
De.	142.0	4	.00	66.20
Du.	. 4	3n.	.9	70.2
W. & S.	`5	In.	.9	3.42

519 Σ. 2054.

R. A. 16 ^h 22 ^m		Dec. 61° 58'		M. 5°7, 6'9
Η, Σ.	351·5 7·4 6·1	6n.	0.90 '96	1830.54
0.Σ.	1.9 6.9	5n. 3n.	10.8	5.76 41.44 55.63
Mä.	0.4 3.4 2.0	In.	.07 .06	72.61 43.53 52.33
Se. De.	.8 .3	2n.	0.03 .04 1.15	9'40 7'74 67'85

520 a SCORPII (Antares).

R. A.	Dec.	M.
16h 22m	- 26° 10'	1'5, 7'7

C. Da., A, red; B, "blue," "purple," "very blue," "green."

Discovered to be double by Professor O. M. Mitchell with a refractor of 114 in. aperture, in 1846. Dawes could see and measure this object with his 64-inch refractor.

The proper motion of Antares is -o'''006 in R. A. and +o'''034 in N. P. D., and in this the companion most probably partakes.

_	۰		. "	
Burg.	270	1	•••	1819.58
Mit.	270	ion.	2.25	46.29
	•••	4n.	∙8	7.50
	272.0	2n.	2.11	8.50

			. "	
Da.	273°9	2	l	1847.29
	• 6	9	3'47	'29
	270'0	5	.64	8.55
	271.6	5	'41	.59
	275.9	9 5 5 5	.24	9.40
	.7	5	.67	64.43
Bond.	.3	In.	.8	48.88
	277.0	,,	.8	.28
	272.7	,,	.6	'49
	273.1	,,	-6	.58
	272 °O	,,	'4	`55
	270.4	80	'4	9·52 68
Mä.	276.2		-69	68
Ja.	272.8	15	2.94	52.63
	273.2	3n.	3.50	6.55
_	275.0	٠,٠	'40	7.18
Se.	273.8	6n.	.07	5.26
	.3	4n.	.25	6.22
	_	,,	2.69	7.54
a	272.9		.92	66.17
Sm. Mo.	270.0		3.2	57:40
до. Ро.	275.8	4n.	.30	8:35
Kn.	271'9		-:	61.09
De.	275.7	4n.	3:37	4:44
W. & S.	270'4 268'7	3n.	2.99	5.26
G1.		4 10	3.41	73.42
GI.	-4	8	.29	162
Schi.	267.6	In.	'32	.63 2.81
8p.	273'9	ъп.	'22	2.81
C.O.	274.0	45	2.85	7:42
U.U.	273'3	4n.	- °5	142

521 ο.Σ. 311.

R. A. Dec. M. 16^h 22.6^m 21° 10′ 7.5, 10.3

The distance has diminished about 4".

0.50	.00			
Ο.Σ.	183.2	In.	13.22	1845.35
	.2	,,	.22	6.37
	.2	,,	12.81	52.46
	189.0	٠,,	10.40	68.67
	188.1	٠,,	.12	73'47
Mä,	183.2	1	13'94	50.45
	'4	1	•••	2.61
De.	186.6	3n.	10.43	66.60
W. & S.	189.0		8.00	77.46

522 Σ. 2049.

R. A. Dec. M. 16^h 23^m 26° 15′ 6·5, 7·5

Dunér gives the following formulæ:

 $1854.84. \quad \Delta = 1''.12.$ $P = 215^{\circ}.1 - 0^{\circ}.180 \quad (t - 1850.0).$

P	= 215 ⁻¹ 1 -	-0190) (r — 10	500).
Σ.	215.6	6n.	1'04	1833.08
	216·1	3n.	-03	6.24
H.,	220.0	In.	•••	0.50
0.Σ.	223.8	,,	1.52	40.69
	7.7	2n.	.03	1.25

	۰,	0, ", , ,		
Ο.Σ.	217.6	i in.	1.06	1847'47
	213.7	,,	.36	68-67
	211.3	,,	'22	74.28
Μä.	217.6	3n.	.00	42.63
	216 [.] 7	In.	.09	6.39
Se.	213.2	2n.	.10	56.20
De.	214'9	,,	Ι.	7.05
Du.	210.5	IIn.	. 19	70.29
Dob.	208.5	4n.	0.95	7'47

523 Σ. 2052.

R. A. 16h 23·6m	Dec. 18° 40'		M.
10- 23-0-	18° 40'		7.2, 7.2
		_	

The common proper motion is -0":33 in R. A. and -0":36 in N. P. D.

Dunér gives

	1855.85.	$\Delta = 2^{\prime\prime}$	85.
P -	1855.85. 106°·2 — 0	150 (1-	- 1850.0)

Σ.	109.3	In.	2.66	1822 69
	.7	3n.	.98	9.2
8 0.	.2	In.	3'24	3 43
H. Mä.	107.9	2n.	2.86	30.52
Mä.	109.8	In.	·80	42.45
De.	105.4	5n.	3.14	54 69
	103.5	1	2.99	65.22
Se.	104'2	2n.	.95	56.49
	103.1	3n.	75	68.99
Mo.	104'8	,,	'62	58.44
M.	96.2	· · ·	75	64.75
Eng.	104'1	3n.	3.19	5.23
Du.	103.0	,,	'46	70.46
Gl.	· 0	2n.	.65	4.20
W. & S.	•3	٠,,	.46 .65 .63	160
Sp.	101.0	1 1	.61	6.21

524 S. 2055.

λ ophiuchi.

R. A. Dec. M. 16^h 24.9^m 2° 15′ 4, 6.1

C. A, yellow; B, bluish.

H₁ (*Phil. Trans.* 1804, p. 375): "The position, March 9, 1783, was 14° 30', n.f. May 20, 1802, it was 20° 41'. The difference in 19 years and 72 days is 60° 11'. March 9, 1783, the distance, with 460, was

or diameter of the small star. May I and 2, 1802, I could not perceive the small star, though the last of the two evenings was very fine. May 20, 1802, with 527, I saw it well, but with great difficulty. The object is uncommonly beautiful; but it requires a most excellent telescope to see it well, and the focus ought to be adjusted upon ϵ of the same constellation, so as to make that perfectly round. The appearance of the two stars is much like that of a planet with a large satellite or small companion, and strongly suggests the idea of a connexion between the two bodies, especially as they are much insulated. change of the angle of position might be explained by a parallactic motion of the large star; but the observations on the distance of the two stars can hardly agree with an increase of it, which would have been the consequence of that motion."

H₂ (Mem. R. A. Soc., vol. viii., p. 53). His measures were made in 1831, 1832, and 1833: his notes are "a very good and measurable elongation and notched disc,"—"a distinct notch in the wedge."

Da. also wedged it in these years. \(\Sigma\). (M. M., p. 6) "gives his measures from 1825 to 1834. He notes the probable error of 183° in H₁'s measure in 1783 taken as given by H₁, when compared with \(\Sigma\)'s in 1834, shows an angular change of 275° 1 in 51°24 years. This indicates a period of revolution of about sixty-six years."

revolution of about sixty-six years."

Smyth (Cycle, p. 365): "My observations are not indicative of the acceleration which has been spoken of by other astronomers." "From the shown course and velocity, it is evidently making an elliptical and rapid orbit, of which the annus magnus may be between eighty and ninety years."

Subjoined are the elements obtained by Mädler and Hind:—

Mädler. Hind. Perihelion passage ... 1798 1791.214 Position at perihelion 177° 50' 184° 30 23 Ascending node 45°-50° Inclination 49 40 Angle between # and g on orbit ... 135 24 Excentricity 0.34 0.4772 0".847 Semi-axis major Period 88 yrs. 95 88 yrs.

Dr. Doberck gives the following (Ast. Nachr., No. 2126):—

 $\Omega = 157^{\circ} 21'$ $\lambda = 94 \cdot 16$ $\gamma = 44 \cdot 44$ $\epsilon = 0.4930$ P = 233.89 yearsT = 1803.91.

O.Σ. (in 1876) writes: "My father has

already remarked (M. M., p. 6) that one of the two observations of H₁ appears to be gravely in error, and he has suggested that the direction in 1802 should be changed 180°. It appears to us, however, it would be quite as admissible, and more in accordance with the most recent observations, to suppose that in his observation of 1802 H₁ was mistaken in the designation of the quadrant in which the companion was seen. In his memoir of 1804 he admits that in 1802 the companion was found b.s.q., as in 1783. If we write a.s.q. for b.s.q., we shall have for 1802 39 the angle 110° 68, and in the interval between 1802 and 1825 the companion described an arc of 220° in passing its apparent periastre at a very small distance from the principal star. The continued increase of the distance since 1825 indicates that the position of the principal star in the apparent orbit is very excentric.

CACCELLE	٠.			
H ₁ .	75°5		. "	1783'18
<u>1</u> .	69.3	1		1805.30
Σ.	331.8	3n.	0.83	25.21
	342.1	1 -	.81	8.21
	349.4	2n.	1.04	31.00
	350.6	,,	0.08	4.42
	352.4	5n.	.99	5.22
	353.3	,,	1.01	6.20
	356.8	ın.	.03	7:59
H _r .	337.7	4n.		1.37
•		,,	1.07	2.27
	347°5 8	3n.	700	3.33
Sm.	351.5	l •	٠٥	4'48
	352.9	1	.I	6.51
	356.2		.0	9.67
	1'4		.I	42.20
_	15.2		.5	53.5
Da.	349'5	6n.	0.93	34.22
	354.8	In.	1.12	7.68
	358.3	3n.	.02	40.24
	359'4	4n.	.13	1.24
	. 4	3n.	.10	2.28
	1.6	2n.	•••	3.47
	8·8	In.	1.09	.41
		2n.	·24	8:47
	.9	7n.	.26	.85
	14.0	4n.	.31	54'14
0.Σ.	19'5 2'7	In. 6n.	0.97	60.36
0.2.	4.4	2n.	1.03	40°57 1°58
	6.3	In.	0.08	2.60
	8.1	3n.	1,00	5.63
	9.3	2n.	12	6.69
	3.9	,,	0.92	7.67
	12.3	ın.	1.30	52.55
	11.6	,,	.29	3.22
	.5	",	'21	7.57
	17.2	,,	.28	6·58
	· · 1	,,	.21	7:59
	19.7	,,	.30	7·59 8·56
	18.6	,,	.35	61. <u>6</u> 3
	29.5	,,	·6ī	6.62

	_					_			
Ο. Σ.	30,1	In.	1 1 43	1868.26	W. & S.	28°9	5 1	1.26	1872.45
	29.8	2n.	1'43	72.58		30.3	5	-62	3'42
	33.9	,,	49	4.57		33.6	4	.31	4.62
Ch.	5.5	,,	0.97	41.2	i	4	6	*54	5.2
	357.4	ın.	1.02	2.43	W .0.	7	ın.	74	4.74
	2.4	,,	.10	3.40	i	36·I	,,	45	6.44
Kä.	∙8	7n.	'29	41.20	i	33'7	,,	.48	'45
	1.6	5n.	11.	2.38	1	.7	,,	.25	45
	10.3	4n.	'17	7'43	l	31.4	,,		·46
	12.0	,,	.02	7'43 50'58		32'1	"	.64	·53
	14.8	In.	.25	1'40	Schi.	-8	,,	'44	5.49
	15.9	8n.	.06	2.22	l	-8	,,	'43	6.28
	17.8	4n.	.09	4.63	Dob.	30.2	5n.	'44	•50
	. 5	3n.	'29	6.73	İ	32.3	2n.	.56	7.42
	19.8	5n.	.27	8.62	-	33.2	,,	.59	8.47
Bond.	9.8		1.4	48.56	Pl.	31.5	4n.	.82	6.23
Ja.	12.6	15	'21	52.67					
	15.5	15	35	4.06	ĺ				
	16.8	6n.	:37	6.44	525	0	S. 31	13	
De.		3n.	1"+	8.13	020	O .	4. U.		
24.	15.3	,, 4n.	1.5	5.30	R. A.		Dec.		M.
	14.4	6n.	1.2	6.26	16h 29m		40° 21	t '	7.2, 7
	15.0	4n.	.2	7.28			•	-	, -, ,
	. 9	5n.	.24	8.50	Probab	le chan	ge.		
	18.3	7n.	'45	62.22	1	_			
	21.2	5n.	.65	3.44	Ο.Σ.	162.1	In.	0.81	1842.71
	25.2	7n.	.21	5.49	1	161.5	**	.81	5.41
	26.2	rin.	.21	6.95		162.7	"	.71	7:55
	27.4	5n.	.45	8.46	1	164.0	"	-89	9.71
	28.2	4n.	1.59	9.55	Mä.	160.8	"	.77 .8	51.67
	.6	,,	.21	70'45		155.8	4n.	و.	46.30
	•8	5n.	'57	1'41	Da.	156.4 159.6	5n. In.	94	52°03
	30.1	4n.	'64	2.44	De.	153.8	4n.	92	66.76
	•5	3n.	.68	3'43	Du.	152.6	,,	.93	9.21
	32.5	4n.	.28	4.26		-3	,,	, ,,	, ,,,
	33.9	.,,	'62	5:44					
Se.	17.9	3n.	:36	55.28					
	18.3	2n.	:37	6.29	526	Σ.	208	34.	
Mo.	19.8	3n. 2n.	.33 .39	7.21					
Ro.	15.6 20.7	In,	16	63.22	j	ζ	HERCU	LIS.	
	21.0	2n.	.10	63.57	1	•	-		3.6
Ta.	22.7	1		5.2 6.41	R. A.	_	Dec.	,	M.
	26.7	3n.	1'41	70.20	16p 36.8	-	31° 49	Т	3 , 6·5
	7	In.	-56	1.49	C.	A. vell	owish:	B, redd	ish.
	.3	,,	∙86	3.22		. •	_		
	25.8	3n.	·53 ·83	4.44	H ₁ : '	'July 2	1, 1782.	.—20° 4	2'. better than
	23.6	In.	1 .83	5.42	"Aug.	30, 1	782. —S	aw it i	etter that
	26·8	٠,,	.98	6.61	ever 1 ax	1. I COI	na bian	niy aistii	nguisa thai
M.	23.9	,,	'34	67.61				coloured	, and the
	28.3	,,	'42	8.46	large fine	blue-w	hite.		
	26.5	,,	'47	'41	"Sept	. 20, 18	02.—I	cannot s	ee the star
	•••	,,,	41	71.48	double.	A conju	nction o	i the two	stars may
D	32.0	,,,	49	.50	have tak	en plac	e." A	ithough	looked at
Du.	26.3	3n.	'41	68.68	everyeve	ning, it	was not	seen "le	ingthened" th of Sep-
	:7	7n.	.20	9.62		ge-iom	ied ui	i the 29	krit or Selv-
	28·9	3n.	:53	70°57	tember.	hil Tan	w. 12a	2 13 27	8) : "My
		,,,	·45 ·48	1	observeti	ons of	ms, 100, this sto	o, P. 3/ r formiel	us with a
G 1.	33°0 28°2	2n.	.6	5.22 0.44					stronomy;
~	27.9	7	1 .7	1.35					y another.
	29.0	5	1 .5	1.63					the cause
	30.0	4	.੯	3.68					e, whether
	33.2	10	7 5 5 26	4.62					motion, or
	55 5				•			•	•

motion in an orbit whose plane is nearly coincident with the visual ray."

H₁ discovered this object July 18, 1782, and measured the angle and distance. He gives his measures up to 1803, and then examines the several ways in which the phenomena may be explained, observing that "the observations I have made on this star are not sufficient to direct us in the investigation of the nature of the motion by which this change is occasioned."

H₂ and So. (*Phil. Trans.* 1824, p. 267): "April 27, 1821.—Decidedly single, with powers 133 and 303. The evening exceedingly favourable, and the star perfectly

round and well-defined."

June 19, 1822.—Fine evening. Powers 133 and 381 would not separate it.

Oct. 17, 1823.—Gave the same result. South, on July 28, 1825, failed to divide the star with powers 181, 327, 413, 512, and 787; nor was there any trace of elongation. "With 787 it was exquisitely defined, and as round as possible."

Σ. (M. M., p. 6). He gives his measures from 1826 to 1834. In 1828 71, he found the distance σ" 65 and the angle 349° 5; but in 1828 76 he was "uncertain whether the point of light seen" was the companion or a spurious image. In 1828 77 he writes, "not double: fine air: just after sunset."

Up to 1831 his remarks are "not double" - "certainly not double," "no comes," and so on. But in 1832.75 he says, "no doubt the comes is seen," and gives the distance o".81 and the angle 220.5. In 1833.27, "no comes seen;" 1833.41, "a red point suspected in the direction 105°;" 1834'45, "air very fine: E Libræ examined with altitude 20° bears 1000: λ Ophiuchi was then examined, and finely seen double; then 's Herculis was examined, and the companion detected at once." Distance, 0"92, 0"90: angle, 203°5, 202°5. This sudden reappearance of the comes at first led him to suspect that variability was the cause of the difficulty he had so long experienced, and he was much surprised to find the companion in almost the same straight line as that in which he saw it eight years before. Great was his delight, on copying the observation into the book containing mean results, when he found that the comes was in the same line nearly, but in the opposite direction. There had been an occultation, and all the difficulty which had so often vexed him for eight years was completely explained.

2. says this star "offers the astounding velocity of an apparent and very elliptical orbit revolving in little more than fourteen

Sm. (Cycle, p. 369). This observer elongated the star in 1835, but could not 'notch' it till 1838. He prefers an orbit

" with an excentricity of 0.4186 and a period of about thirty-five years."

The following are the principal orbits hitherto computed:—

Perihelion passage Node	300 30, 1880,20		Dunér. 1830'01 45 ⁰ 56'
Perihelion from node Inclination	50 53 0'45454	264 55 ±136 17 0'4482	34 52 0'4239
Semi-axis major Mean annual motion Period	1"'189 -730''45 31 ³⁷⁸ '4678		1".333

The common proper motion of the system is $-o^{\alpha}$ 034 in R. A., and $-o^{\alpha}$ 45 in N. P. D.

_	, 0		. "	
Η ₁ . Σ.	69.3		•••	1782.55
Σ.	23'4	5n.	0.01	1826.63
		single	from 182	8 to 1831
	220.2	In.	0.81	1832.75
	203.2	2 n.	.91	4.45
	169.9	5n.	1.00	5'45
	186.3	,,	'09	6.60
	175°4 168°6	4n.	'09	7:47
		2n.	.03	8.44
	160.4	In.	.19	9.67
	159.9	4n.	'29	40.66

H, and So.: "Decidedly single, with powers 133 and 303," in 1821'320. "Perfectly round with 381" in 1822'465. "No elongation with 578 on the 5-feet equatorial" in 1823'794". "Perfectly round," with powers up to 787", in 1825'57.

	۰		"	
Sm.	190.0	1	0.2	1835.68
	176:3		'7	6.73
	169.0		.2	8.65
	136.9		•2	42.27
	108.2		•	8.59
	83.8		.3	52.23
Encke.	190.6	2	'24	36.29
	168.4	4 2	'37	8.70
	170.3	2	:37 :97	9.20
0.Σ.	157.4		1.50	.67
	.1	5n.	*24	40.66
	147.7	3n.	•23	1.60
	146.0	,,	.51	2.64
	125.4	2n.	12	4.71 5.63 6.69
	121.3	3n.	'24	5.63
	110.2	2n.	33 42	6.69
	111.3	,,	42	7.68
	104'2	,,	.23	8.76
	98.2	,,	'49	9.73
	93·8 88·4	In.	·52 ·47	50.23
	88.4	5n.	·47	1.02
	84·1	"	.21	2.63
	79:9	4n.	.48	3.59 4.66
	76.8	3n.	•56	4.00
	70·8 64·7	4n.	'44	5.62 6.62
	04.7	3n.	'49	0.02
	58.4	4n.	·49 ·63	7.64
	51.0	,,	-03	8.62
	42'3	"	'29	9.63
	32.2	In.	'3 8	60'74

0.Σ.	17.1	4n.	1.05	1861.27	De.	1.7	9n.	ı "	1852.53
	341.2	In.	.00	2.74		342.4	4n.	:::	
	228.6	2n.	0'97	6.74	l	244.6	5n.		3 49 6 46
	204.6	In.	1.13	8.56	1	225.6	7n.	o:5	7.2
	202.7	,,	34	.61	1	210.6	•	.94	8.42
	179.6	,,	34	71.2	į.	200'9	,,	1.08	9.28
	168.8	3n.	'14	2.60	ł	190.8	IIn.	.09	70.49
	171.2	2n.	.10	3.20	İ	180.4	12n.	.27	1.20
	167.2	In.	'37	.52		173.8	"	·34	2.48
	162.9	4n.	40	4.62	1	102.4	IIn.	.39	3.25
Da.	161.9	,,	'22	39.76		157.0	ion.	-36	4.23
	150.6	8n.	.23	40.66	l	149.0	8n.	41	5.2
	142.9	4n.	'23	1.65	Mo.	73.1	4n.	45	55.00
	138.4	3n.	.06	2.58		60.5	3n.	.60	7:46
	129.8	,,	.29	3.64	Du.	221'4	2n.	*03	67.72
	112.1	5n.		6.89	i	213.2	5n.	•05	8.67
	107.9	In.	.62	7.23	İ	203.1	IIn.	•05	9.62
	102.0	6n.	'56	8.61	İ	193.6	6n.	'21	70.29
	•3	3n.	.20	.61	ł	183.4	I 2n.	.18	1.60
	99.5	In.	.70	9.48		177.2	6n.	.22	2.28
	86.9	3n.	•59	51.80		166.3	4n.	. 40	3.70
	80.0	7n.	.66	3.40		154.9	In.	*35	4 65
	69.2	In.	.29	5.68	ł	147.3	I2n.	.27	5'61
	45°7	6n.	.33	9.61	Br.	212.4	2	.19	68.73
	235 · I	3n.	0.85	66.40	Knott.	206.5	4n.	0.99	8.48
	229.2	2n.	.82	.81		183.3	Śn.	1.03	71.54
	225.0	,,	.98	.99	W. & S.	165.4	3	.3	3.45
Mä.	149'2	9n.	1.11	41.44	İ	166.8			46
	141.2	3n.	0.01	2.40	i	168.0	3 8	0.76	*47
	'4	4n.	'98	'75	ŀ	153.5	4	1.06	4.55
	130.3	l	.91	3.28	ŀ	159.3	4	.I	-62
	104.6	17n.	1.30	7.47		149'4			5.22
	98.7	3n.	.08	8.41		151.5	5 5 5 8	•••	-58
	91.4	,,	'26	50.22	G1.	153.8	5	0.75	4.21
	84.8	٠,,	.29	1.53	1_	157.3	-8	-81	·63
	.6	8n.	81.	·88	Sp.	147.2		1.51	5.22
	77.2	,,	.53	3:39		138.1		17	6.24
	74'3	3n.	.19		Schi.	147'1	In.	'21	5.22
	72.3	5n.	'33	4.68		138.0	,,	.12	6.24
	60.0	4n.	707	7:39	₩.0.	144'0	,,	.29	'45
	48.6	7n.	'20	8.66	1	142.6	,,	.33	-55
Ka.	41.2	4n.	.10	9.39	Dob.	129.0	3n.	'40	8.45
Ch.	140°1 138°6		'42	42.55	i	124.9	,,	.28	1 -6 1
Mit.		In.	.19	43.61					
Flt.	109.5	"	:09	7.71					
	89.3 81.4	10	.4	50.24	527	Σ.	208)4 .	
	84.0	48	'3	1.21	D A				3.5
Ja.	81.1	32 10	24	2.64 3.12	R. A.		Dec. 3° 44′	_	M.
•	78·o	14	•5 ²	4.06	1				·3, 7 ·6, 11
	66.3	-4	60	6.25	In A				ent is very
	57.0		•46	7.86	probable	. A C	unchang	ed.	
Se.	69.7	3n.	.52						
	64.1	6n.	'41	6.23	1		AB.	1	
	59.5		29	7.29	Σ.	82.8	5n.	1.62	1831 41
	54.6	2n.	.06	8.48	Ο.Σ.	79.6	3n.	.71	41.2
	43.5	i i	'06	9.52	1	77.6	In.	.59	61.44
	80	in.	round	65.54	Mä.	8i ·7	5n.	.23	43'45
	86			65.24	Se.	79.9	3n.	.21	56.47
		,,	**	.55	De.	80.2	In.	.3	7:50
De.	68.5	8'n.	"	4.80	Du.	81.0	4n.	•26	9:49
	708	4n.	•••	5.53	Dob.	80.6	3n.	.39	77.48
	63.7	15n.	1'2	6.2	1		• -		
	59.0	5n.	.25	7.75	1		A C		
	49.9	8n.	.03	8.55	De.	312.6	In. l	24.97	61:44
	.,,			1 - 33		J 5	· ,	-4 51	1 0.44

528

R. A.	Dec.	M.
16h 40.3m	43° 42′	8, 8
	Cbisa	

Discovered by Baron Dembowski in 1869. Rapid change in angle.

1009.	Kapid change in angle.			
De.	131.7	0.93	1870.44	
_	117.5	1.67	1870.44	
Sp.	114.0	.5	7.44	

529 Σ. 2097.

R. A. 16 ^h 40 [.] 5 ^m		Dec 35° 5	7	M. 8·5, 8·7
Σ. Mä.	89'9 86'9 85'6	3n.	2'14 '14	1829.63 43.36 4.35 65.54
8e.	85·6 84·3	2n.	1.93	4°35 65°54

530 ο.Σ. 315.

R. A.	Dec.	M.
16h 45·3m	1° 25′	6.2, 8.1

Slow retrograde motion.

Ο.Σ.	173.3	2 n.	0.87	1844'49
	164.6	4n.	'71	54.46
	162.1	In.	1.01	73'47
Mä.	175.8		0.63	45.21
_	168.6		-6	7:35
<u>8</u> e.	160.0	2n.	elongd.	57.20
Da.	167.6		1.33	65.60
De.	162.6	5n.	0.86	67:38

531 Σ. 2106.

R. A.	Dec.	M.
16h 45.4m	9° 37′	6.7, 8.4
	C. white.	

Change both in angle and distance.

Σ.	3390	2n.	1.08	1825.22
	337'2	In.	0.86	9.23
	336.2	,,	1.00	32.22
	335.8	,,	°05	3.45
Mä.	.9		0.80	42'42
	331.1		∙8	3.22
	•8	1	.9	4.35
Se.	328.4	3n.	.84 .5 .71 .70 .59	56.45
De.	321.3	2n.	•5	63.23 8.20
Ο.Σ.	323.3	In.	.71	8.20
	320'4	,,	.40	71.20
	324'7	,,	.29	5.48
W. & S.	310.7		•5	3'45
	316.6	3 3 6	•••	'46
	311.9	6	0.6	46
	329.8	4	.4 .5	5.22
G1.	310.2	4	•5	4.40

532 Σ. 2107.

R. A. Dec. M. 16^h 47'1^m 28° 52' 6'5, 8

C. A, yellowish; B, bluish.

Discovered by Σ , and measured by him from 1828 to 1836: at the latter date he wrote, "There can be no doubt about the increase in the angle." Dembowski says, "Very difficult owing to the sombre colour of B."

0.2., in 1877, says the angular movement has increased considerably in the last twenty-five years, and this augmentation has been accompanied by a notable diminution of distance.

Dunér has published the following formulæ:

$$\Delta \cos P = -1'' \cdot 04 + 0'' \cdot 00475 (t - 1825 \cdot 5) + 0'' \cdot 00059 (t - 1852 \cdot 5)^{2}.$$

$$\Delta \sin P = +0'' \cdot 12 - 0'' \cdot 02000 (t - 1852 \cdot 5) -0'' \cdot 00010 (t - 1852 \cdot 5)^{2}.$$

			"	
Σ.	148.6	3n.	1.15	1829.91
	156.4	,,	.25	36.24
	159.5	,,	'05	7.74
0.Σ.	160.2	2n.	.06	40.24
Ì	164.3	,,	.08	1.24
	165.4	In.	0.85	8.46
	169.0	2n.	.73	9'74
	.9	,,	·85	51.28
	170'1	2n.	·8ŏ	2.63
	172'4	In.	.79	3.22
	170'4	,,	.97	5.20
	175.2	,,	.92	6.28
	174'7	2n.	.93	6·58 7·63
	175'7	In.	·89	8.46
	•3	2n.	1.03	61.23
	185.2	,,	0.78	6.67
	194.0	In.	.91	8.67
	203'4	,,	.75	72.28
	208.9	,,	.72	4.67
_	218.7	,,	.72	5.48
Da.	162.0	4n.	1.56	40.95
	170°0	In.	.53	8.43
	175'7	,,	0.93	54.40
	178.7	,,	1.13	.25
Mä,	163.2	2n.	•	41.22
	162.7	зn.	.03	2.40
	166.9	бn.	0.88	6.41
l	168.3	3n.	.83	7:35

334				DOORLE
334 Mä. Ka. De.	174.7 176.0 180.1 178.2 162.9 176.8 188.9 185.7 190.3 189.8 195.8 195.8 195.8 195.8 202.0 202.0	3n. 6n. 10n. 4n. 3n. 5n. 5n. 5n. 3n. 6n. 3n. 5n.	0.88 .87 .80 .74 .86 1.27 0.93 .6 .8 1.08 0.93 .85 .78 .80 .80 .93 .85 .78 .80 .93 .93 .93 .94 .95 .95 .95 .95 .95 .95 .95 .95	1851 '20 '77 2'61 3'48 4'72 41'68 2'81 56'54 62'55 3'36 4'47 5'50 7'11 8'48 9'55 70'46 1'59 2'44
	208.0	4n.	∙8	3.20
	6.	,,	.77	4.35
Se.	212'3 175'4	,, 2n.	·72 ·97	5.45 56.60
_	191.5	,,	'42	65.29
Eng.	193.8 190.0	5n.	·6 ·94	4.43 5.48
G 1.	500.3	5	• 5	70.22
	203.0	5	•5	70.22
	208.4	10	·78 ·84	4.63
W. & S.	210.0	5	.77	2.49
	207.5		:7	3.48 4.65
	216.3	3 3		5.28
•	215.5	5		.59
Sp. Schi.	207:4 :3	In.	0.84 .84	:55
Du.	212.3	9n.	.99	.55 .61
533	Ο.	Σ. 31	L7 .	
R. A. 16 ^h 49 ⁿ Consid distance. star of th	lerable o O.Σ.	in 1874	observe. (See	M. 7.2, 11.8 angle and ed a third Measures.)
0.Σ.	235.6	In.	15.86	1845.73
	.0	,,	.61	7.69
	232'9 236'4	,,	 16:91	52.69 74.74
	220 4	ا ,, ا احمد	10 91	14 /4
ο. Σ.	318.1	AC.	13.67	1 4'74
534	0.	Σ. 31	18.	
R. A.		Dec.		M.
16h 51m		14° 18	B ′	6.7, 9.3
	C.	A, yell	low.	
Mä.	254°0 253°7	2n. In.	2 ^{.4} 8 49	1845'44 52'61

	O. E. De. Du.	250°9 253°1 255°8	3n. ,, 2n.	2"74 ·51 ·68	1847.74 66.22 70.96
	535	Σ.	310	7.	
	R. A 16 ^h 52	.5 ^m	Dec. 4° 10	,	M. 8·5, 8·5
	Σ. Ka.	162.3	3n.	1.6 .52	1831 87 41 68 2 81
	Mä. Se. De.	92 o 104 o	In.	0.13	2'43 59'51 64'53
	Ο.Σ.	109°0 106°4	ın.	1°32 °58 °44	8:50 75:48
	W. & S. Gl.	104.7 102.0 104.0		·5 ·6 ·4	3:47 5:58 "70
		1040			
	536		Σ. 32	21.	
	R. A 16 ^h 54		Dec. 14° 29'		M. 77, 87
	Mä,	14.0	1	o:37	1843°29
	0. Z. Se.	1.4 4.6	3n. 2n.	.3 .21 elongd	48·82 57·59
	De.	5.2		,,	66.45
	537			_	
ı	001	Σ.	211	.8.	
	R. A 16 ^h 55	•	211 Dec 65° 1		M. 6 ·4, 6·9
-	R. A 16 ^h 55 The c	.8m listance h	Dec 65° 1 as dimi	:. 3' inis hed fi	6.4, 6.9 6.85 rom
-	R. A 16 ^h 55 The c to o" 27 little ch	8m listance h ; in the ange.	Dec 65° 1 as dimi	:. 3' inis hed fi	6'4, 6'9 rom o'''85 s been but
3	R. A 16h 55 The c to o' 27 little cha	esm distance h ; in the ange. 245 251.5	Dec 65° 1 as dimi	: 3' inished fi there has	6.4, 6.9 rom o".85 s been but
	R. A 16 ^h 55 The c to o" 27 little ch	distance h; in the ange. 245 251.5 242.6 246.1	Dec 65° 1 as dimi angle 1n.	inished fi there has	6'4, 6'9 rom o"'85 s been but 1781'76 3'26 1830'32 1'37 2'20
3	R. A 16 ^h 55 The c to o'' 27 little ch H ₁ .		Dec 65° 1 as dimi angle 1n.	or63	6'4, 6'9 rom o" 85 s been but 1781'76 3'26 1830'32 1'37 2'30 6'75 2'41
3	R. A 16h 55 The c to 0" 27 little chi H ₁ . H ₂ .	18m listance h ; in the ange. 245 251 5 242 6 246 1 4 247 0 245 0 242 20 242 9	Dec 65° 1 as dimi angle 1n. 5n. 3n.	3' inished fithere has 0.63	6.4, 6.9 rom o".85 s been but 1781.76 3.26 1830.32 1.37 2.30 6.75 2.41 9.72 4.57 40.77
3	R. A 16h 55 The c to 0" 27 little ch H 1. H 2. Sm.	18m listance h; in the ange. 245 251'5 242'6 246'1 4247'0 245'0 242'0 240'0 2	Dec 65° 1 as dimi angle 1 in. 5n. 3n.	o-63 -70 -8 -70 -8 -70	6'4, 6'9 rom 0"'85 s been but 1781'76 3'26 1830'32 1'37 2'30 6'75 2'41 9'72 4'57 40'77 40'77 41'24
3	R. A 16h 55 The c to 0''27 little ch H 1. H 2. Sm. Da.	18m listance h ; ; in the ange. 245 251 5 242 6 245 0 243 7 252 9 241 6 245 3 235 7 238 8 0 248 4	Dec 65° 1 as dimi angle 1 in. 5n. 3n. 3n. 1n. 1n.	o-63 -70 -8 -77 -77 -58 -77 -58 -77 -58	6'4, 6'9 rom 0"'85 s been but 1781'76 3'26 1830'32 1'37 2'30 6'75 2'41 9'72 4'57 40'77 40'77 44'74 59'07 72'42 43'32
3 1 1)	R. A 16h 55 The c to 0" 27 little ch H 1. H 2. Sm. Da.	18m distance h; in the ange. 245 251.5 2426 246.1 247.0 245.0 242.9 241.6 245.3 235.7 238.0 248.4 244.6 243.3	Decc 65° 1 as dimi angle 1 in. 5n. 3n. 3n. 2n.	3' nished fi there has o-63 -70 -84 -70 -8 -7	6.4, 6.9 rom 0"85 s been but 1781.76 3.26 1830.32 1.37 2.30 6.75 2.41 9.72 4.57 40.77 54.81 41.24 59.07 72.42 43.33 7.97
3 1 1)	R. A 16h 55 The c to 0"27 little chi H 1. H 2. Sm. Da. O. E.	18m listance h; in the ange. 245 242 50 246 1 4 247 0 245 0 242 24 16 245 3 235 7 238 0 248 4 244 6	Dec 65° 1 as dimi angle 1 in. 5n. 3n. 3n. 1n. 2n.	o-63 -70 -84 -70 -8 -7 -77 -8 -77 -8 -77 -8 -77 -8 -77 -8 -77 -8 -65	6'4, 6'9 rom 0"'85 s been but 1781'76 3'26 1830'32 1'37 2'30 6'75 2'41 9'72 4'57 40'77 40'77 40'77 41'24 59'07 72'42 4'332 7'97

538 Σ. 2114.

R. A. 16 ^h 56'2 ^m	Dec. 8° 37'	M. 6 [.] 2, 7 [.] 4
	Carrhita	

H₂ in 1831 found it "extremely difficult." Da. thought it was not a binary, and noted the fact that Σ.'s measures differ largely *interse*. A small change in angle with sensible change in distance. (0.Σ.)

Dunér has computed the following formulæ:

1850.90.
$$\Delta = 1^{".25}$$
.
P=143.9+0.3125 (ℓ -1850.0).

Σ.	137.9	In.	1.21	1825.53
	134.2	,,	.26	9.23
	138.1	2n.	.32	31.61
	140.0	,,	.32	2.25
	139.0	In.	.28	3.45
H _r .	132.0		.91	1.37
	134.0		0.84	2.41
Sm.	137.0		1.2	41
Ο.Σ.	145.1	4n.	.19	41.81
	-4	In.	.26	2.60
	150.4	,,	.27	61.25
	156.5	,,		8.52
	153.9	,,	·58	75.48
Mä.	143.2	4n.	'23	42.41
	142.8	2n.	·23 ·28	52.53

Mä.	142.7		ı "25	1
		1		1853.35
	9	l	.18	5.63
Da.	148.2	In.	.10	61.26
	143.3	,,	'4±	47.63
Mit.	139.7	,,	0.83	.57
De.	147'1	3n.	1.5	55.2
	145.7	4n.	'07	6.49
	147.5	3n.	.30	63.39
Se.	145'2	,,	.25	56.84
Mo.	147.3	ı'n.	.31	9.30
Du.	149.6	5n.	.28	69.79
W. & S.	121.0		.6	
	125.5	9		73.46
			:39	·47
	151.7	4	0.0	4.62
G 1.	146.2	4	1.33	2.49
GI.	152.5	10	.6	4.66
	153.5	6	.3	69
Schi,	151'4	In.	.16	5.22
Sp.	.2		17	·58
Dob.	153.3	3n.	10	7.48
		J		, 40

539 **S.** 2120.

R.	A.	Dec.	M.
17 ^h	Om	28° 15′	6.4, 9.2

Magnitudes.—De. has 6.8, 9.7, and suspects variability in B.

C. Σ., A, yellow or red; B, fine blue.
De. gives A white, B blue.

A beautiful double star discovered by Σ . In the M. M. he gives his measures from 1829 to 1835, and from them alone he inferred change both in distance and angle. Treating the distances by the method of least squares, he finds the formula $x = 3'' \cdot 445 - 0'' \cdot 112 \ (t - 1833' \cdot 25)$. Computing the distances for the epochs of the observations, he finds the agreement between the observed and computed values all but perfect. The

motion he found was retrograde. He notes the great discrepancies between the angles made in autumn and those in spring.

At p. 293 he gives his measures in 1835 and 1836, and pronounces the change in angle and distance beyond doubt.

O.E., in 1877, after having reduced the observations to 1850, found that the results were not well represented by uniform rectilinear motion: a term depending on the

square of the time then being introduced, he was led to the following formulæ, which on the whole are satisfactory:—

$$\Delta A = -1".619 \pm 0".0203 - (0".1122 \pm 0".00130) (t-1850.0) + (0".00042 - 0".00035) (t-1850.0)^2.$$

$$\Delta D = + 1''.647 \pm 0''.0195 - (0''.1018 \pm 0''.00125) (t - 1850.0) + (0''.0010 + 0''.000033) (t - 1850.0)^2.$$

Dunér has made a special investigation of the movement of this star (see Ofversigt af Svenska Vetenskaps-Akademiens Förhandlingar, 1873). A similar special treatment by 0. \(\Sigma\). is found in vol. v. of the Mélanges Mathénatiques et Astronomiques de St. Petersbourg. The former astronomer found the following two systems of equations: $\Delta \cos P = +1".7493 - 0".10298 (t - 1850.0";$ $<math>\Delta \sin P = -1".4902 - 0".10662 (t - 1850.0;$

$$\Delta \cos P = + 1''.7827 - 0''.10242$$

 $(t - 1850.0) - 0''.000200 (t - 1850.0)^2;$
 $\Delta \sin P - 1''.5252 - 0''.10724$
 $(t - 1850.0) + 0''.000209 (t - 1850.0)^2.$

In this investigation all observations (except those by 0.2.) from 1828 to 1872 were employed.

According to the first formula the motion is rectilinear and uniform; the second represents a curve of which the centres of curvature are on the same side of the principal star.

An extract from Du.'s table showing the results of his latest formula compared with the observed angles and distances is subjoined.

1783.20	11".88	42°·2	+1".68	+8°.9	Н,.
1837.00	3 '06	359 8	+0 .01	+3 %	Σ.
1847.57	2 '19	324 '6	-o '13	-3 '1	Ο.Σ.
1851.97	2 '19	306 .0	-o ·o9		,,
1857.60		292 '7		-4 ·5 +0 ·8	De.
1865.00	2 '98	272 '9	-0 'I2	-0.3	,,
1871'10		263 '5	-0 '04	+o .8	Ğì.
1873.53	3 ·73 3 ·88	261 '0	-o .18	+0 2	W. & S.
1874.34	4 '03	258 .8	-o ·13	-o ·5	Gl.
'99	4 '21	258 1	-0 °04	-o ·š	De.
1875.53	4 '37	259 '1	+0 *07	+1.0	Du.

On the whole, Du. is inclined to think that the movement is rectilinear and uniform and that therefore the observation of H₁ is erroneous. A physical relation is, however, possible, but more good measures must be obtained before the question can be decided.

	•			
H ₁ .	42.0	ın.	11.88	1783.30
Σ.	11.4	2n.	3.83	1829.60
	8.5	In.	'54	32.25
	2.2	4n.	'45	3'47
	4.9	2n.	.25	4.67
	358 [.] 4	٠,,	.18	5.38
	0.1	4n.	.10	6.22
	1.9	3n.	.50	5.65
0.Σ.	345.8	2n.	2.83	41'12
	324.6	3n.	.19	7:57
	314'5	,,	.25	50.00
	306.8	,,	.19	1.97
	296.5	2	129	5.10
	290.7	2	'49	7.12
	281.5	1	.97	61.63
	269.2	2	3.48	7.7ŏ
	260.7	2	4.51	73.66
Mä.	347 · o	3n.	2.8	41.44
	345'9	5n.	.76	2.49
	342.5	58n.	.62	3.22
	339.4	6n.	.25	4.38
	336.0	15n.	.52	5.42
	328.9		32	
	320 9	27n.	46	7.12

			"	_
Mä.	3150	6n.	2.32	1851.09
	308·3	42n.	.35	3.00
	288°1	IIn.	'37	8.58
	283.9	15n.	:37 :88	60'97
Ka.	•••	5n.	.26	42.22
i	342.8	7n.	•••	2.93
De.	297.8	3n.	2.85	55.21
1	294.0	2n.	-6	6.34
1	289.2	5n.	.5	8 47
İ	278°4	4n.	3.03	62.21
1	275.9	6n.	2.00	3.30
1	274.0	4A.	·87	4.48
ŀ	272'1	6n.	3.02	5'49
i	269.2	9n.	.26	7.16
1	265.7	4n.	'45	8.45
	٠,	3n.	.21	9.22
	264.0	4n.	'79	70'45
	262.2	,,	.75	1'44
	261.3	,,	.06	2.42
i	259.8	,,	4.08	3.20
1	258.8	,,	.16	4.2
	257:5	,,	•26	5'45
Mo.	298·1	2n.	2.28	55 62
Se.	290'4	3n.	49	6.76
	269.8	,,	3.60	65.59
1	272.9	1	•56	.40
Eng.	268.7	3n.	'41	36
Ro.	270.6	_		1 .21
Ta.	272.9	2n.	3.26	6.41
1	2730	,,	.58	8:41
ì	270'4	ın.	2.97	71.21
	·			

_	0		"-	
Ta.	255°9	In.	3 89	1873.55
	258.3	2n.	.13	4.48
	259'9	In.	.38	5.42 6.61
	257.6	,,	•••	6.61
M.	261'2	6n.	4.02	0.38
	258.9	,,	3.80	'41
	253'4	,,	4'25	4'47
G 1.	264.0	7	3.8	0.60
	263'2	5	.6	1.51
	·4	5	-8	.20
	259.2	7 5 5 4	4'1	3.68
	258·6	10	.0	⊿ .66
	.2	10	.0	.69
Du.	265.1	3n.	3.64	1'14
	259'I	7n.	4.49	5.23
Ka.	263.3	3n.	3.86	1.21
W. & S.	262.9	4	.78	2.48
	261.7	6	•65	3.20
	258.2	4	4.3	4.62
Schi.	257'9	In.	.16	5'54
Sp.	• • •		.16	'54
W.O.	255.9	In.	.66	6.45
	257'2	,,	.22	.53
	256.7	,,	.28	*54
Dob.	257:3	3n.	.10	.21
Pl.	258.1	4n.	.30	·53 ·65
	256.2	5n.	.39	165
Fl.	• • • •	In.	.32	7.64

540 o.Σ. 323.

R. A.	Dec.	M.
17 ^h 1.6 ^m	47° 8′	7'4, 10'5

Change in angle and distance.

Ο.Σ.	112'3	In.	6.98	1845.73
	111'4	,,	.73	6.69
	112.8	,,	7:08	9.71
	108.6	,,	6.85	21.61
Mä,	284.9		5.20	45.71
	281.6		.20	9.40
	278.4		•5	52.69
De.	103'4	In.	7.52	66.88

541 Σ. 2130.

μ DRACONIS.

R. A.	Dec.	M.
17 ^h 2'9 ^m	54° 38′	5, 5'1
	C. white.	

Discovered by H₁ October 19, 1779. H₁ (*Phil. Trans.* 1804, p. 364): "The change in the relative situation of the two stars of this double star is pretty considerable."

"The two stars being nearly of an equal magnitude, we can have no inducement to suppose them to be at very different distances from us. This makes it not probable

that the difference of their parallactic motion should be the cause of the change in the angle of position; otherwise, the direction of that motion would be sufficiently favourable." (H₂ and So., *Phil. Trans.* 1824, p. 271.)

H₂ finds that their recent measures confirm the motion announced by H₁, the average amount per annum being – 0° 5792. "There can be little doubt of its being a binary system—a miniature of α Gemi-

Having the measures made by So. in 1825 before him, H₂ finds the change in 4.55 years has been $-0^{\circ}.44$ instead of $-2^{\circ}.36'$ "which a computation founded on a mean motion of $-0^{\circ}.5792$ per annum would give." He thinks that the position for 1820 is not very reliable. (*Phil. Trans.* 1826.)

E. (M. M., p. 51.) His own measures from 1826 to 1835 show that "the distance has diminished steadily." But his observations in 1836 "do not favour the opinion before expressed as to decrease of distance."

Smyth (Cycle, p. 380): "A geometrical rough-cast of the whole [of the observations] yields a period of about 600 years for the orbital revolution; since the velocity has appeared to decrease to —0°.3 per annum, and then to accelerate to —0°.7, during this small S.W. portion of its orbit."

Certain change in both angle and distance. The diminution in the distance will probably soon be followed by a much more rapid angular change: hitherto the angular change has been very uniform.

Dr. Doberck has the following formulæ for this star:—

$$\Delta = 3''.44 - o''.019 (t - 1830.0).$$
 $P = 205^{\circ}.32 - o^{\circ}.6274 (t - 1830.0)$
 $- o^{\circ}.001532 (t - 1830.0)^{\circ}.$

"The latter formula represents very nearly the five positions on which it is based," and the comparison with the measures is very satisfactory.

The proper motion of μ is $-0''\cdot 12$ in R. A., and $-0''\cdot 07$ in N. P. D.

			"	
H ₁ .	23 [°] 2	In.	4'35	1781.73
-	219.5	٠,,	•••	1802'17
	221.0	,,	•••	4.09
	215.9	,,	•••	.10
H, & So.	208.4	6	3.90	21.38
_	210 [.] 8	35	4'33	5.2 1.80
Σ.	210.8		•••	
	207:2	In.	3.61	6 89
	.8	,,	.12	8.73
	209.2	,,	.25	9.94
	204'4	2n.	'20	32.43
	203.6	In.	'24	3.37
	.0	3n.	'23	
	202.8	3n. 4n.	'24 '23 '35	5°39 6°78

Du.

8m. 206°7 3'6 1830'79 200'3 191'6 0 54'48 196'1 11n. 06 2'73 191'1 182'0 2m. 75 61'47 181'5 11n. 70 6'72'42 176'2 176'2 176'2 179'7 2'82 1'65 199'3 1'95' 3'88 1'99'3 1'99'3 1'95' 3'88 1'97'7 2m. 195'9 1n. 2'90 7'63 195'9 1n. 2'90 7'63 181'3 12n. 187'3 4n. 2'92 6'63 182'7 2m. 178'3 1n. 187'3 4n. 2'92 6'63 182'7 2m. 178'3 1n. 187'3 4n. 2'92 6'63 182'7 2m. 178'3 1n. 187'3 3n. 175'1 171'8 2m. 171'8				,,	
O.E. 199'7 3.20 54'48 40'83 196'1 11. '06 2'73 191'1 '', 182'0 21. '75 61'47 181'5 11. '70 6'72'42 176'2 '', '50 4'73 40'59 176'2 '', '50 4'73 40'59 199'3 ''55 4'73 40'59 199'3 ''55 4'73 40'59 199'3 ''56 66'75 3'88 179'7 21. ''36' 66'54 4'73 4'75 199'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 182'7 21. ''38 3'79 175'1 187'3 41. 2'92 6'63 3'39 182'7 21. ''59 4'76 175'1 175'1 175'1 175'1 175'1 175'1 175'1 175'1 171'8 21. '49 2'52 173'8 31. ''59 4'76 172'7 '', ''39 4'59 171'8 171'8 21. 181'0 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 6'70 6'70 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 ''75	Sm.		1 1		1830.79
O.E. 199'7 3.20 54'48 40'83 196'1 11. '06 2'73 191'1 '', 182'0 21. '75 61'47 181'5 11. '70 6'72'42 176'2 '', '50 4'73 40'59 176'2 '', '50 4'73 40'59 199'3 ''55 4'73 40'59 199'3 ''55 4'73 40'59 199'3 ''56 66'75 3'88 179'7 21. ''36' 66'54 4'73 4'75 199'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 195'9 11. 2'90 7'63 182'7 21. ''38 3'79 175'1 187'3 41. 2'92 6'63 3'39 182'7 21. ''59 4'76 175'1 175'1 175'1 175'1 175'1 175'1 175'1 175'1 171'8 21. '49 2'52 173'8 31. ''59 4'76 172'7 '', ''39 4'59 171'8 171'8 21. 181'0 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 65'99 177'8 177'8 31. ''72 6'70 6'70 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 175'1 175'1 ''75 ''75		200.3		.3	9.23
0.2. 199.5 3n. 3.20 40.83 190.1 1n. 190.1 11. 182.0 2n. 75 61.47 181.5 1n. 70 6.73 177.9 166 72.42 176.2 199.2 26 3.13 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 40.59 47.3 47.3 47.5 47.3 47.3 47.5 47.5 4					47.51
196'1 In. '06 2'73 191'1 2'82 51'74 182'0 2n. '75 61'47 181'5 In. '70 6'73 177'9 '66 72'42 176'2 '50 4'73 199'3 '95 3'88 199'3 '95 3'88 199'1 2n. 3'17 43'36 195'9 10. 2'90 7'63 195'9 2'8 3'09 11. 1 28 3'09 51'75 181. 188'0 48 2'97 2'25 181. 188'3 4n. 2'92 6'63 182'7 2n. '73 62'80 178'3 1n. '49 9'60 178'3 1n. '49 9'60 176'3 2n. '49 71'56 173'8 3n. '59 4'76 173'8 3n. '59 4'76 172'7 '7 '39 4'59 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '82 72'49 180'6 3n. '82 72'49 180'6 3n. '68 6'54 W. & S. 177'5 4 4 4 170'8 8n. '65 71'80 170'8 8n. '65 5'65 W. & S. 171'0 4n. '68 6'54 Dob. 171'0 4n. '68 6'54	Λ.	190'7		•	54.48
1911 1, 2.75 51.74 182	0.2.	106.1			2.72
182 \cdot 2n. 75 61 \cdot 47 181 \cdot 1n. 70 67 177 \cdot 70 67 176 \cdot 77 70 67 176 \cdot 72 42 176 \cdot 72 43 199 \cdot 298 1 \cdot 65 199 \cdot 298 1 \cdot 65 199 \cdot 298 1 \cdot 65 199 \cdot 298 1 \cdot 66 199 \cdot 298 3 \cdot 388 197 \cdot 2n. 317 43 \cdot 43 \cdot 197 \cdot 2n. 317 43 \cdot 36 197 \cdot 2n. 290 7 \cdot 76 181 \cdot 188 \cdot 48 297 2 \cdot 28 181 \cdot 188 \cdot 48 297 2 \cdot 225 18 \cdot 2 \cdot 2 \cdot 3 \cdot 73 187 \cdot 4n. 2 \cdot 292 6 \cdot 63 182 \cdot 2 \cdot 73 62 \cdot 80 181 \cdot 3 \cdot 3 \cdot 3 \cdot 47 187 \cdot 3 \cdot 1 \cdot 49 71 \cdot 56 175 \cdot 17 \cdot 3 \cdot 3 \cdot 49 71 \cdot 56 175 \cdot 17 \cdot 3 \cdot 3 \cdot 49 71 \cdot 56 175 \cdot 17 \cdot 3 \cdot 3 \cdot 3 \cdot 49 177 \cdot 3 \cdot 3 \cdot 49 71 \cdot 56 181 \cdot 3 \cdot 3 \cdot 3 \cdot 49 71 \cdot 56 181 \cdot 3 \cdot 3 \cdot 3 \cdot 49 71 \cdot 56 180 \cdot 1 \cdot 1 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 181 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdo 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot		101.1	1		51.74
181'5 1n. '70 6'73 177'9 '70 6'66 72'42 176'2 '70 5'50 4'73 199'2 26 3'13 40'59 165 199'3 '95 3'88 179'7 '70 6'66 66'75 179'7 '70 6'66 66'75 179'7 10 10 10 10 10 10 10 1		1820			61.47
176°2 7, '50 4'73 198°4 2'98 1'65 199°3 '95 3'88 179°7 2n. 3'17 43'36 1910 11. 2'90 7'63 1910 11. 2'90 7'63 181 188°0 48 2'97 2'25 181 187°3 4n. 2'92 6'63 182°7 2n. '73 62'80 181°3 12n. '59 4'76 178°3 1n. '49 9'60 176°3 2n. '49 71'56 175°1 7, '39 4'59 171°8 3n. '51 3'67 171°8 3n. '72 65'99 181°0 3n. '84 2'41 188°0 3n. '72 65'99 181°0 3n. '84 2'41 175°1 7, '91 7'37 177°8 3n. '72 65'99 177°8 3n. '72 65'99 177°8 3n. '72 65'99 177°8 3n. '72 65'99 177°8 3n. '72 65'99 177°8 3n. '72 65'99 177°8 3n. '66 68'36 176°2 1n. 2'62 71'51 170°3 3n. '69 68'36 170°4 3n. '69 68'36 170°5 3n. '69 68'36 170°6 3n. '69 68'36 170°8 8n. '65 71'80 170°8 8n. '65 5'65 W. & S. 177°5 4 2'44 1'56 170°8 8n. '65 71'80 170°8 8n. '65 71'80 170°8 8n. '65 71'80 170°9 6 '53 6'58 171°8 4 '64 5'57 171°8 4 '64 5'57 171°8 4 '64 6'5 171°0 4n. '68 6'54			In.	'70	6.73
## 198'4 2'98 1'65 3'88 1'97'7 66 66 75 3'17 43'36 195'9 11. 2'90 7'63 11. 195'9 11. 2'90 7'63 11. 188'0 48 2'97 2'25 2'89 3'71 187'3 41. 2'92 6'63 182'7 21. 73 62'80 182'7 21. 73 62'80 176'3 11. 49 9'60 176'3 11. 49 2'52 173'8 31. 51 175'1 7'37 171'8 21. 3'9 4'50 176'2 11. 3'93 4'59 175'1 11. 3'93 4'59 175'1 173'2 7'37 173'2 7'37 173'2 7'37 173'2 7'37 173'2 7'37 177'8 21. 10. 3'93 54'68 175'1 170'8 21. 10. 3'93 54'68 175'1 11. 3'93 65'72 177'8 21. 3'93 65'72 177'8 21. 3'93 65'72 177'8 21. 3'93 65'72 177'8 21. 3'93 65'72 177'8 177'8 21. 3'93 65'72 177'8		177.9	,,		72.42
## 198'4 2'98 1'65 3'88 1'97'7 66 66 75 3'17 43'36 195'9 11. 2'90 7'63 11. 195'9 11. 2'90 7'63 11. 188'0 48 2'97 2'25 2'89 3'71 187'3 41. 2'92 6'63 182'7 21. 73 62'80 182'7 21. 73 62'80 176'3 11. 49 9'60 176'3 11. 49 2'52 173'8 31. 51 175'1 7'37 171'8 21. 3'9 4'50 176'2 11. 3'93 4'59 175'1 11. 3'93 4'59 175'1 173'2 7'37 173'2 7'37 173'2 7'37 173'2 7'37 173'2 7'37 177'8 21. 10. 3'93 54'68 175'1 170'8 21. 10. 3'93 54'68 175'1 11. 3'93 65'72 177'8 21. 3'93 65'72 177'8 21. 3'93 65'72 177'8 21. 3'93 65'72 177'8 21. 3'93 65'72 177'8 177'8 21. 3'93 65'72 177'8	~ ~		"	•50	4.73
199 3 95 3 88 179 7 2n. 66 66 66 75 Mit. 190 1n. 2 90 7 63 Mit. 190 1n. 2 90 7 63 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 48 2 97 2 25 Mit. 188 4 4n. 2 92 6 63 182 7 2n. 73 62 80 178 3 1n. 49 9 60 176 3 3n. 55 3 67 172 7 7 39 4 59 171 8 2n. 49 5 75 173 3n. 72 65 99 M. 188 4 4n. 75 7 51 173 2 7 81 9 76 M. 188 4 4n. 75 7 51 177 8 3n. 72 65 99 M. 177 8 3n. 72 65 99 M. 177 8 3n. 26 8 51 177 177 3n. 26 8 51 176 2 1n. 262 71 51 176 3n. 65 66 68 36 172 5 2n. 65 5 65 W. 48 177 4 8 7 173 7 4 8 3 50 171 8 4 64 5 57 171 8 4 64 5 57 171 9 6 53 6 58 G1. 172 2 9 9 4 66 4 3 9 70 Dob. 171 4 4 68 6 54			20	3.13	40.59
179-7 2n. -66 66-75 197-1 2n. 3-17 43-36 195-9 1n. 2-90 7-63 1n. 198-9 1n. 2-90 7-63 1n. 188-0 48 2-97 2-25 2-	A.B.				2.88
Mit. 1971 2n. 317 4336 Mit. 1999 1n. 290 763 Fl. 1 28 309 5175 Mi. 1880 48 297 225 De. 2 5n. 289 371 1873 4n. 292 663 1827 2n. 73 6280 1813 12n. 59 476 1783 1n. 49 960 1763 2n. 49 7156 1751 11, 49 960 1763 2n. 49 7156 1751 1, 49 252 1738 3n. 51 367 1727 1, 39 459 Mo. 1884 30 93 5468 M 1810 3n. 75 751 1810 3n. 75 751 Mo. 1884 30 93 5468 M 1n. 303 6572 Mr 1n. 303 6572 Mr 1n. 303 6572 Mr 1n. 303 6572 Mr. 1778 2n. 26 851 1778 2n. 26 851 1778 2n. 30 93 737 1732 1, 81 976 Mr 1n. 565 Mr 1n. 565 Mr 1n. 565 Mr 5552 Mr. 1751 1n. 166 856 Mr. 1752 2n. 66 836 Mr. 1753 4 244 156 Mr. 1753 4 284 156 Mr. 1722 9 9 9 466 Mr. 1718 4 664 557 1722 9 9 9 466 Mr. 1710 4n. 68 654		170'7		-66	
Mit. 190'9 1n. 2'90 7'63 Fl. 188'0 48 2'97 2'25 2'89 3'71 187'3 4n. 2'92 6'63 3'39 182'7 2n. '73 62'80 2'3 182'7 2n. '73 62'80 178'3 1n. '49 9'60 178'3 1n. '49 9'60 176'3 2n. '49 71'56 175'1 30 4'76 173'8 3n. '51 3'67 172'7 39 4'59 4'76 188'4 30 93 54'68 86. '4 4n. '75 7'51 171'8 2n. '84 2'41 178'8 1n. '84 2'41 178'8 1n. '84 2'41 178'8 1n. '84 2'41 178'8 177'8 2n. '82 2'44 1'56 177'8 2n. '82 72'49 177'8 2n. '81 9'76 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 2n. '85 75'5 173'2 177'8 2n. '82 72'49 176'2 1n. '75 5'52 177'5 177'8 3n. '66 68'36 71'80 176'8 8n. '65 71'80 176'8 176'8 8n. '65 71'80 176'8 17	₩ä.		2n.		43.36
Mit. 190'9 1n. 2'90 7'63 Fl. 188'0 48 2'97 2'25 2'89 3'71 187'3 4n. 2'92 6'63 3'39 182'7 2n. '73 62'80 2'3 182'7 2n. '73 62'80 178'3 1n. '49 9'60 178'3 1n. '49 9'60 176'3 2n. '49 71'56 175'1 30 4'76 173'8 3n. '51 3'67 172'7 39 4'59 4'76 188'4 30 93 54'68 86. '4 4n. '75 7'51 171'8 2n. '84 2'41 178'8 1n. '84 2'41 178'8 1n. '84 2'41 178'8 1n. '84 2'41 178'8 177'8 2n. '82 2'44 1'56 177'8 2n. '82 72'49 177'8 2n. '81 9'76 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 2n. '85 75'5 173'2 177'8 2n. '82 72'49 176'2 1n. '75 5'52 177'5 177'8 3n. '66 68'36 71'80 176'8 8n. '65 71'80 176'8 176'8 8n. '65 71'80 176'8 17		195.9	,,		5.47
Mi. 188'o 48 2'97 2'25 De. '2 5n. 2'89 3'71 187'3 4n. 2'92 6'63 182'7 2n. '73 62'80 181'3 12n. '59 4'76 178'3 1n. '49 9'60 176'3 2n. '49 71'56 175'1 ,, '49 2'52 173'8 3n. '51 3'67 172'7 ,, '39 4'59 171'8 2n. '49 5'75 Mo. 188'4 30 '93 54'68 6. '4 4n. '75 7'51 181'0 3n. '72 65'99 Mr In. '84 2'41 355'5 ,, '91 7'37 173'2 ,, '81 9'76 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 2n. '85 75'51 176'2 ,, '81 9'76 177'8 3n. '26 8'51 176'2 ,, '81 9'76 177'8 3n. '26 8'51 176'2 ,, '81 9'76 177'8 3n. '26 8'51 176'2 ,, '81 9'76 177'8 3n. '26 8'51 176'2 ,, '81 9'76 177'8 3n. '26 8'51 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 172'5 2n. '62 5'65 W. & S. 177'5 4 2'44 1'56 173'7 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 3'50 172'3 4 8 6'54 171'8 4 664 5'57 9 6 533 6'58 G1. 172'2 9 9 9 4'66 171'0 4n. '68 6'54		190.9			7.63
De. '2 5n. 2.89 3.71 187.3 4n. 2.92 6.63 182.7 2n. 73 62.80 2 3n. 56 3.39 181.3 12n. 59 4.76 178.3 1n. 49 9.60 176.3 2n. 49 71.56 175.1 , 49 2.52 173.8 3n. 51 3.67 172.7 , 39 4.59 171.8 2n. 49 5.75 181.0 3n. 72 6.59 181.0 3n. 72 6.59 181.0 3n. 72 6.59 177.8 2n. 84 2.41 177.8 3n. 30 65.72 177.8 2n. 82 72.49 177.8 3n. 72 6.59 177.8 3n. 72 6.59 177.8 3n. 26 8.51 176.2 1n. 2.62 71.51 180.6 , 6.6 176.8 8n. 6.5 71.80 176.8 8n. 6.5 71.80 176.8 176.7 4 8 7.2 173.7 4 8 7.2 173.7 4 8 7.2 173.7 4 8 7.2 172.3 4 6.6 5.57 172.3 4 6.6 5.57 172.3 4 7.5 172.3 4 7.5 172.3 7.5 172.4 7.5 172.3 7.5 172.4 7.5 172.3 7.5 172.3 7.5 172.3 7.5 172.3 7.5 172.3 7.5 172.3 7.5 172.3 7.5 172.3 7.5 172.3		. 00			51.75
187'3 4n. 2'92 6-63 182'7 2n. '73 62'80 181'3 12n. '56 3'39 181'3 1n. '49 9.60 176'3 2n. '49 71.56 175'1 ,, '49 2'52 173'8 3n. '51 3.67 172'7 ,, '39 4'59 171'8 2n. '49 5'75 181'0 3n. '72 65'99 M In. '84 2'41 355'5 ,, '91 737 177'8 2n. '84 2'41 355'5 ,, '91 737 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 3n. '26 85'9 M In. '68 65'57 Du. 179'6 3n. '69 68'36 176'2 1n. '262 71'51 180'6 3n. '69 68'36 176'8 8n. '65 71'80 176'8 8n. '65 71'80 177'8 4 4 5 72'50 W. & S. 177'5 4 2'44 1'56 174'0 8 77 173'7 4 8 3 3'50 172'3 4 85 4'62 171'8 4 6'64 5'57 9 6 53 6'58 G1. 172'2 9 9 9 4'66 G1. 172'2 9 9 9 4'66 G1. 172'2 9 9 9 4'66 171'0 4n. '68 6'54					2.25
187'3 4n. 2'92 6-63 182'7 2n. '73 62'80 181'3 12n. '56 3'39 181'3 1n. '49 9.60 176'3 2n. '49 71.56 175'1 ,, '49 2'52 173'8 3n. '51 3.67 172'7 ,, '39 4'59 171'8 2n. '49 5'75 181'0 3n. '72 65'99 M In. '84 2'41 355'5 ,, '91 737 177'8 2n. '84 2'41 355'5 ,, '91 737 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 3n. '26 85'9 M In. '68 65'57 Du. 179'6 3n. '69 68'36 176'2 1n. '262 71'51 180'6 3n. '69 68'36 176'8 8n. '65 71'80 176'8 8n. '65 71'80 177'8 4 4 5 72'50 W. & S. 177'5 4 2'44 1'56 174'0 8 77 173'7 4 8 3 3'50 172'3 4 85 4'62 171'8 4 6'64 5'57 9 6 53 6'58 G1. 172'2 9 9 9 4'66 G1. 172'2 9 9 9 4'66 G1. 172'2 9 9 9 4'66 171'0 4n. '68 6'54	20.				3 /1
182'7 2n. '73 62'80 3'39 181'3 12n. '59 4'76 176'3 1n. '49 9'60 175'1 ', '49 2'52 173'8 3n. '51 3'67 172'7 ', '39 4'59 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '49 5'75 171'8 2n. '75 7'51 181'0 3n. '72 65'99 1737 173'2 ', '81 9'76 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 3n. '26 8'51 176'2 1n. 2'62 71'51 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 176'8 176'8 176'9 68'36 71'80 172'3 4 4 8 3'50 172'3 172'3 4 8 3'50 172'3 172'3 4 8 3'50 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172'3 172					
178'3 1n. '49 9'60 176'3 2n. '49 71'56 175'1 '49 2'52 173'8 3n. '51 3'67 172'7 '49 5'75 3'67 172'7 '49 5'75 3'67 171'8 2n. '49 5'75 5'68 8e. '4 4n. '75 7'51 31. '72 65'99 181'0 3n. '72 65'99 177'8 2n. '84 2'41 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 3n. '26 8'51 176'2 1n. '262 71'51 170'2 1n. '262 71'51 180'6 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 174'0 8 '7 2'50 173'7 4 8 3'50 172'3 4 4 5 78 173'7 4 8 3'50 172'3 4 85 4'62 5'57 79 6 5'53 6'58 4'66 6'54 171'0 4n. '68 6'54 171'0 4n. '68 6'54		182.7			62.80
178'3 1n. '49 9'60 176'3 2n. '49 71'56 175'1 '49 2'52 173'8 3n. '51 3'67 172'7 '49 5'75 3'67 172'7 '49 5'75 3'67 171'8 2n. '49 5'75 5'68 8e. '4 4n. '75 7'51 31. '72 65'99 181'0 3n. '72 65'99 177'8 2n. '84 2'41 177'8 2n. '82 72'49 177'8 2n. '82 72'49 177'8 3n. '26 8'51 176'2 1n. '262 71'51 170'2 1n. '262 71'51 180'6 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 174'0 8 '7 2'50 173'7 4 8 3'50 172'3 4 4 5 78 173'7 4 8 3'50 172'3 4 85 4'62 5'57 79 6 5'53 6'58 4'66 6'54 171'0 4n. '68 6'54 171'0 4n. '68 6'54					3.35
176'3 2n. '49 71'56 175'1 "		181.3			4.70
175-1					71:56
173.8 3n. '51 3.67 172.7 39 4.59 171.8 2n. 49 5.75 181.0 3n. '72 65.99 181.0 3n. '84 2.41 355.5 81 9.76 177.8 2n. 82 72.49 177.8 2n. 303 65.72 177.8 3n. '26 8.51 176.2 1n. 2.62 71.51 180.6 3n. '26 8.51 176.2 1n. 6.6 68.36 176.8 8n. 65 71.80 176.8 8n. 65 71.80 176.8 177.5 4 2.44 1.56 173.7 4 8 3.50 172.3 4 85 4.62 171.8 4 64 5.57 172.2 9 9 4.66 6 7 9 9 4.66 6 7 9 9 171.0 4n. 68 6.54		175'1		49	
172-7 171-8 2n. 39 4.59 5.75		173.8		.21	
Mo. 188'4 30 '93 54'68 8e. '4 4n. '75 75'1 181'0 3n. '72 65'99 M in. 84 2'41 3555'5 ", '91 7'37 177'8 2n. 82 72'49 Ro in. 3'03 65'72 Ta. 175'1 ", 00 6'40 177'8 3n. '26 8'51 176'8 3n. '26 8'51 176'8 8n. '65 71'80 176'8 4 2'44 1'56 176'8 8n. '65 556 171'0 8 4 66 6'53 G1. 172'2 9 9 9 4.666 '6 7 9 9 6 14 3 9 9 70 Dob. 171'0 4n. '68 6'54		172.7		•39	4.20
Be. '4 4n. '75 7:51 1810 M 1810 M 191 7:37 17312 ,, '81 9:76 1778 2n. 82 72:49 1778 2n. 30 65:79 1778 3n. 26 8:51 17612 1n. 262 71:51 180:6 ,, 552 Du. 179:6 3n. 69 68:36 176:8 8n. 65 71:80 176:8 8n. 65 71:80 176:8 8n. 65 71:80 176:8 8n. 65 71:80 176:8 8n. 65 71:80 172:5 2n. 62 5:65 W. & S. 177:5 4 2:44 1:56 174:0 8 72:50 175:0 6:53 175:0 6:58 G1. 172:2 9 9 9 4:66 14 3 9 770 Dob. 171:0 4n. 68 6:54	w.	171.8			5.75
M 181 ° 0 3n. 72 65 ° 99 181 355 ° 5 99 737 737 737 1737				93	54.00
M In. 84 2:41 355:5 ,, 91 7:37 177:8 2n. 82 72:49 Ro In. 266 8:51 176:2 In. 262 71:51 180:6 ,, 5:52 Du. 179:6 3n. 69 68:36 176:8 8n. 65 71:80 172:5 2n. 62 5:65 W. & S. 177:5 4 2:44 173:7 4 8 7 2:50 174:0 8 7 2:50 174:0 8 7 2:50 174:0 8 7 2:50 174:0 8 7 2:50 171:8 4 64 5:57 171:8 4 64 5:57 171:8 4 64 5:57 171:8 4 66 5:57 Gl. 172:2 9 9 9 4:66 Gl. 172:2 9 9 9 4:66 14 3 9 70 Dob. 171:0 4n. 68 6:54	DU.			.72	65.00
355'5 ", '91 7'37 173'2 ", '81 9'76 173'2 ", '81 9'76 177'8 2n. '82 72'49 65'72 1n. '26 8'51 176'2 1n. '262 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'8 8n. '65 71'80 176'9 8n. '4 4 8 35'50 176'8 176'9 6 53 6'58 171'8 4 664 5'57 6'58 171'8 4 764 8n. '64 5'57 6'58 171'8 4 764 6'54 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '64 8n. '65'8 8n. '65'9 8n. '65'8 8n. '65'8 8n. '65'9 8n. '65'8 8n. '65'9 8n. '6	X.			•84	2.41
Ro In. 3°03 65.72 Ta. 175°1 640 177°8 3n. 266 8.51 176°2 in. 262 71.51 180°6 5552 Du. 179°6 3n. 665 71.80 176°8 8n. 65 71.80 172°5 2n. 62 5.65 W. & S. 177°5 4 2.44 1.56 174°0 8 7 2.50 174°0 8 7 2.50 174°0 8 7 2.50 174°0 8 7 2.50 174°0 8 7 2.50 174°0 8 7 2.50 171°0 4 8 3.50 172°1 4 8 3.50 172°2 9 9 9 4.66 171°2 9 9 9 4.66 172°2 9 9 9 4.66 171°0 4n. 68 6.54		355.2	,,	.91	7 37
Ro In. 3°03 65°72 Ta. 175°1 "		173.5			9.76
Ta. 175'1 ,, 6'40 177'8 3n. 2'6 8'51 176'2 1n. 2'62 71'51 180'6 ,, 5'52 Du. 179'6 3n. '69 68'36 176'8 8n. '65 71'80 172'5 2n. '62 5'65 W. & B. 177'5 4 2'44 1'56 174'0 8 7 2'50 '4 4 55 78 173'7 4 8 3'50 172'3 4 88 3'50 172'3 4 88 3'50 172'3 4 8 3'50 172'3 4 66 5557 '9 6 53 6'58 G1. 172'2 9 9 9 4'66 '6 7 9 9 Dob. 171'0 4n. '68 6'54	Ro.	177'8			72.49 6r:72
177.8 3n. 26 8.51 176.2 1n. 262 71.51 180.6 , 5.52 Du. 179.6 3n. 69 68.36 176.8 8n. 65 71.80 172.5 2n. 62 5.65 W. & S. 177.5 4 2.44 1.56 174.0 8 .7 2.50 174.0 8 .7 2.50 173.7 4 8 3.50 172.8 4 .64 171.8 4 .64 5.57 172.8 4 .64 171.8 4 .64 5.57 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 171.0 4n. 68 6.54		175'1			6:40
176-2		177.8			8.21
Du. 179.6 3n. 69 68.36 176.8 8n. 65 71.80 172.5 2n. 62 5.65 W. & S. 177.5 4 2.44 1.56 174.0 8 .7 2.50 173.7 4 8 3.50 172.3 4 .85 4.62 171.8 4 .64 5.57 171.8 4 .64 5.57 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66 172.2 9 9 9 4.66		176.2	In.	2.62	71.21
176.8 Sn. 176.5 71.80	n	180.6			5.52
W. & S. 177'5 4 2'44 1'56 174'0 8 '7 2'50 '4 4 '5 '78 173'7 4 '8 3'50 172'3 4 '85 4'62 171'8 4 '64 5'57 '9 6 '53 6'58 G1. 172'2 9 '9 4'66 '6 7 '9 '69 '4 3 '9 '70 Dob. 171'0 4n. '68 6'54	Du.	179.0	3n.	·6r	08.30
W. & 8. 177.5 4 2:44 1:56 174.0 8 7 2:50 4 4 5 7 2:50 173.7 4 8 3:50 172.3 4 85 4:62 171.8 4 64 5:57 9 6 53 6:58 G1. 172.2 9 9 4:66 171.2 9 9 9 4:66 171.2 9 9 9 4:66 171.2 9 9 9 4:66 171.2 9 9 9 4:66 171.2 9 9 9 4:66 171.2 9 9 9 70 180. 171.0 4n. 68 6:54	•	172'5		.62	5.65
174.0 8 .7 2.50 .4 4 .8 3.50 .172.3 4 .85 4.62 .171.8 4 .64 5.57 .9 6 .53 6.58 .9 6 .7 9 4.66 .6 7 9 .69 .4 3 9 .70 .171.0 4n68 6.54	W. & S.				
172.3 4 .85 4.62 171.8 4 .64 5.57 .9 6 .53 6.58 G1. 172.2 9 .9 4.66 .6 7 .9 .69 .4 3 .9 .70 Dob. 171.0 4n68 6.54		174.0		.7	2.20
172.3 4 .85 4.62 171.8 4 .64 5.57 .9 6 .53 6.58 G1. 172.2 9 .9 4.66 .6 7 .9 .69 .4 3 .9 .70 Dob. 171.0 4n68 6.54				:\$	
171.8 4 .64 5.57 .9 6 .53 6.58 G1. 172.2 9 .9 4.66 .6 7 .9 .69 .4 3 .9 .70 Dob. 171.0 4n68 6.54		173.7		-80	3.50
G1. 172'2 9 '9 4'66 '6 7 '9 '69 '4 3 '9 '70 Deb. 171'0 4n. '68 6'54		171.8		•64	5:57
G1. 172'2 9 '9 4'66 '6 7 '9 '69 '4 3 '9 '70 Deb. 171'0 4n. '68 6'54		.9		.23	6.28
Dob. 171.0 4n. 68 6.54	G 1.	172.5	9	.9	4.66
Dob. 171.0 4n. 68 6.54			7	.9	.09
-/- • 2.	Dob			·68	6.54
				l	7.64
E40 05 004	- 46				

ο.Σ. 324.

Dec.

31° 23'

C. A, yellow.

M.

6.3, 10.8

542

R. A.

17h 3m

O.E.	221.4 219.8 212.8 217.7 219.9	; In. ;; ;; 3n.	3'79 '99 4'03 3'73 '98	1845.47 6.69 53.40 68.61 7.12
543	Σ.	218	35.	
R. A. 17 ^h 7	_	Dec. 21° 22	į	M. 7°1, 8 _{°4}
	C. A, yeler gives the 1852.5	e formu	ilæ = 6″ 78.	
Σ. Mä.	166°1 167°2 168°9	4n. 3n. In.	6°70 60 82	1829°45 43°12 50°69
Mo. Se.	171'I 170'5 169'5	2n. ,, In.	.86 7.03	5.61 6.98 65.38

544 36 OPHIUCHI.

R. A. Dec. M. 17^h 8^m -26° 25′ A 4½, B 6½, C 7½

171'1 5n. 6'79 71'34

C. A, ruddy; B, pale yellow (Sm.)

It is probable that one of the two brighter

stars is variable in its light.

H₂ and So. (Phil. Trans. 1824, p. 272'. Measures in 1822 and 1823 are given. On the 10th April, 1823, "the measure of a distant small star of the 10th magnitude was 19° 5' n.p., and 3' 0" 735," and this "will serve to verify the proper motion of A (36), which has been supposed in some way connected with the star 30 Scorpii, though at a great distance (12') from it, by reason of an observation of Bessel, that they have a common proper motion."

In 1825, however, more measures were made, and the distance of C from B as given above was found "decidedly wrong." Then follow many measures cornecting A with 30 Scorpii; a diagram is given, and the proper motions and their effects examined at great length; and he shows that 36 Ophiuchi and 30 Scorpii are "increasing together through space."

"journeying together through space."

Smyth (Cycle, p. 381): "Mayer made the two stars to be exactly on the same meridian [in 1780], with a difference of declination = 13": this accidental statement was the cause of considerable error; "for this position, combined with those of H, and So., seemed to indicate direct motion. Smyth's measures, however, "show a motion exactly contrary," and an observation made at his request by the Astonomer Royal in 1843 confirms this. Sm.

rives the following measures of a small stat n the neighbourhood of B:-

This small star is double having "a most ninute comes near the s.f. vertical." (Sm.) The proper motion of A is -0'029 in

R. A., and + 1'' 20 in N. P. D.

Bessel first pointed out the fact that a common proper motion animates 36 Ophiuchi and 30 Scorpii (see his Fundamenta Astro-The differences between these stars observed since Flamsteed's time are as follows according to Flammarion: -

Diff. in R. A.	Diff. in Dec.	Observer.
1690 + 13' 32"'4	+ 2' 56"°°	Flamsteed.
1755	+3 2 7	Bradley.
1756 + 13 13 1	•••	T. Mayer.
1800 + 13 7 0	+3 4 '2	Piazzi.
1831 + 13 11 '4	+3 3 6	Smyth.
1839 + 13 10 6	+3 4 4	,,
1860 + 13 7 8	+3 6 05	Greenwich.
1864 + 13 7 0	+ 3 7 '24	,,

The proper motions of A, B and 30 are respectively

Several small stars* are seen in the neighbourhood of this remarkable system: C, of the 10th magnitude, distant about 200" from A; D of the 10th magnitude, and E of the 12th. From the investigations of Flammarion it appears probable that C and D are fixed, and that E partakes of the common proper motion of the system.

A B .					
H, & 80.	227°3	12	5"50	1822.22	
-	228.5	15	.2	4.86	
8m.	226.1		•2	31.22	
	221'4		.0	5'33	
	219.5		•3	9.28	
	216.6		4.9	42.46	
	213.8		.6	57:30	
Da.	219.3		.78	41.29	
Air y .	213.3	In.	5.32	3.2	
Ja.	216.1		4.66	6.51	
	214'9		'49	50.62	
	'4	10	.23	4.07	
Mit.	215.8	In.	.27	47.62	
Bond.		,,	'34	8.22	
Mo.	213.0	20	.45	54.69	
	.3	24	'40	8.42	
Se.	212.9	2n.	.29	6.28	•
	211.3	In.	.25	7.56	
	208.6	1	'2	66.72	
Po.	210.0		.62	1.06	
De.	212.4	Į į	.53	2.40	

Challis in 1839 detected four small stars, in addition to those seen by Sm.

	•				
X.	218.8	In.	4.2	1862.43	
	209'0	,,	'41	8.49	
	208.2	,,	.69	9.21	
	206.0	,,	'21	72.49	
	209'I	,,	3.93	3.73	
W .0.	205.8	7	4.99	63	
	202'2	In.	'47	76.22	
Ta.	210.6	1	5.00	1.21	
W. & 8.	204'2	4	4.6	2.21	
	•5	4		.25	
	.I	2		.53	
Schi.	203.2	In.	4.52	5.28	
8p.	-6		*25	.28	
C. O .	204'3	2n.	5.12	6.24	
Dob.	200'1	In.	3.98	7'44	
Fl.	204'[٠,,	4.58	.20	
Pl.	203.3	3n.	.16	6.22	
		A C			
g	-0	, <u></u>			
Sm.	289.9		193.8	31.57	
Ja.	298.3	4	180.0	54.07	
В С.					
Ja.	296.8	2		54.07	

545 Σ. 2140.

a HERCULIS.

R. A.	Dec.	М.
17p 9.1m	14° 32′	3, 6.1

H₁: "Aug. 29, 1779. Double. On May 2, 1781, Dr. Maskelyne very politely offered to show me a double star which he mentioned having discovered about four years ago." This was a Herculis.

"Not the slightest change of relative position since 1779." (0.Σ.) Dunér's formulæ are

1851.83.
$$\Delta = 4''.58$$
.
P = 118°.0 - 0°.080 (t - 1350.0).

H ₁ .	117'2	In.	5'04	1782.69
•	121.0	,,		1803'40
H, & So.	119.5	3n.	•26	21.74
Σ.	118.4	12n.	4.64 .63	9.63
	119'4	13n.	•63	35.74
Be,	118.2	ón.	'99	0.92
Da.	119.7	4n.	.00	1.25
	118.5	3n.	'65	48.2
Sm.	119.4	_	.6	32.21
Ο.Σ.	•6	3n.	.76	40.73
	121.5	2n.	·77 ·69	1.62
	118.0	In.	'69	2.60
	117.6	,,	·68	5.65
	118.0	,,	-69	21.91
	116.9	,,	.62	2.67
	117.3	,,	.59 .70 .69	3:57 8:59
	116.8	,,	'70	8.29
	118.0	,,	.69	61.63
	.0	٠,,	·68	5.72

	. 0.	_	01	_
Mä.	118,8	IIn.	4 42	1842.67
	117.2	2n.	.82	6.97
	.9	,,	.21	52.65
	116.6	14n.	'44	6.67
	117'3	IIn.	·57 ·69	61.71
Hi.	119.8	2n.	169	45.69
M it.	117.6	In.	.93	7.61
Po.	118.0	2n.	·68	6.66
™ o.	116.6	In.	.92	52.62
	118.1	3n.	·Ś7	7.62
Ja.	117.9	36	.21	3.30
	٠, ب	70	· <u>5</u> 6	7.00
De.	118.5	5n.	·62	3.63
Se.	117.7	δn.	.74	6.32
Eng.	· · · · · · · · · · · ·	In.	·86 ·64	64.2
Ka.	115.4	7n.	•64	5.69
Du.	7.7	5n.	44	9.07
W. & S.	. 3	3n.	·68	72.86
G 1.	.3 .6	,,	68 60	4.68
Dob.	.2	4n.	.76	6.24
	_	-	. ,-	, , ,,,

546 Σ. 3127.

8 HERCULIS.

R. A. Dec. M. 17^h 10'1^m 24° 59' 3, 8'1

C. Σ., A, green; B, ashy white. De., A, clear yellow; B, blue.

H, and So. (Phil. Trans. 1824, p. 276): "There can be no doubt of a material change both in position and distance having taken place in this star: $+9^{\circ}$ 42' in the one, and -5'''349 in the other, are quantities too large to leave any room for doubt. The proper motion of δ , if correctly stated in Piazzi's catalogue, should have carried it in forty years, -8'' in R. A. and -5'''6 in declination, in the direction s.p., at an angle of 37° with the parallel. Had the small star then remained at rest, the angle of position, instead of 82°, would now have been only 54° s.f., and the distance 32'''3.''".

So. (Phil. Trans. 1826, p. 364). After recording the measures made by So. in 1825, H, says, "The change stated to have taken place in this star is confirmed by the present observations; according to which, compared with those of 1821, a motion of + 1° 23' in angle and - 2".175 in distance has taken place since our former measures. This is a remarkable verification of the relative motion both in position and distance; and as the change is contrary to what the presumed proper motion of the large star would alone produce, this star merits particular attention."

Σ. (M. M., p. 195). He gives his own measures from 1829 to 1835, and adds, "A notable decrease of distance, conjoined with a small increase of angle, is shown by these

measures." He finds that the distances computed from the formulæ 25".422 - 0".1766 (1-1833'49) agree well with the observations.

the observations.

Sm. (Cycle, p. 387): "My last epoch [1839'62] was under the very best atmospheric and instrumental circumstances; and on the whole I am led to infer that if all the series could be depended on, B had lately passed its apastron in the S.E. portion of its orbit, and that it is slackening its march as it recedes from the extremity of the ellipse, now barely moving a degree in ten years."

O.Z. finds that the following formular represent the observations quite well, and hence that there has been no deviation from uniform rectilinear motion:—

 $\Delta A = + 1'' \cdot 233 \pm 0'' \cdot 027 - (0'' \cdot 0833 \pm 0'' \cdot 0020) (t - 1850 \cdot 0).$

 $\Delta D = -22'' \cdot 539 \pm 0'' \cdot 016 + (0'' \cdot 1618 \pm 0'' \cdot 0011) (t - 1850 \cdot 0).$

Assuming that the relative change is entirely due to difference of proper motion, the minimum distance, 9"2, will be attained in 1963. If, on the contrary, the starform a binary system, the distance will continue to diminish for a shorter period.

The proper motion of δ is

-o''·10 in R. A., and +o''·12 in N. P. D.

Dunér gives

 $\Delta \cos P = -22''.65 + 0''.1605 (t - 1850.0)$ $\Delta \sin P = + 1.29 - 0.0808 (t - 1850.0)$

	0			
\mathbf{H}_{1} .	•••	In.	34.69	1779.76
	•••	,,	33'75	80.23
	162.2	,,	34.55	1.90
H, & 80.	172.5	8	28.86	1821.36
_	173.2	28	26.69	5.20
Σ.	•••	2n.	27.84	5.20 1.82
	173.7	In.	26.11	9.77
	174'1	3n.	25.63	31 67
	Ο.	2n.	.37	2.78
	•2	Sn.	24.98	5.02
	٠8	3n.	-88	6.28
	•3	,,	.58	7.74
Sm.	173.9		26.0	0.71
	174'9		24.7	7.49
	175'1		'5	9.62
Ο.Σ.	177'4	ın.	.06	40.83
	175.2	2n.	.27	1.01
	.8	In.	23.95	2.60
	.'7	,,	'40	5.68
	176.0	,,,	.23	6.21
	177'7	,,,	22.49	973
	.2 .2	,,	21.98	53.83
		,,	73	5 64
	178.3	,,	.15	8.26
	179.2	3n.	71	61.48
	180.2	In.	19.58	8.67
	183.0	,,	18.2	74.58
	182.2	2n.	ļ Ğı	5.48

	•			
Mä.	175.1	In.	24.17	1841.53
	177.1		23.24	7:32
	176.9	In.	22.03	54.69
	178.1		51.33	8.61
	180.8	,,,	20.08	62.74
Ka.	174'9	6n.	23.89	
				41.67
Ja.	175.9	7n.	'42	3.97
J A.	177.0	11	22.31	52.73
	.6	10	21.99	3.12
	.5	18	·86	4.08
	.ı	i	.55 .28	6.53
_	178.2		.28	7:94
De.	.2	4n.	.97	4.79
	176.0	2n.	.79	5.22
	178.6	In.	.64	·80
	٠.	3n.	'7i	6.47
	177.7	In.	.08	7.54
	178.6	3n.	.18	8.39
	179.4	4n.	20.22	62.75
	-/ -/ -7	rn.	-46	3.43
	•6	8n.	.18	5.48
	180.1	OII.		
		7n.	19.95	6:94
	.9	4n.		8:49
	. 9	"	'48	9 54
	181.4	,,	.38	70'45
	.2	,,	.11	1.49
	•4	,,	.33	2.49
	-6	,,	18.82	3.20
	.2	3n.	·6 ₇	4.24
_	8	5n.	.59	5.24
Se.	178.1	3n.	21.63	57.22
M.	.0	In.	20.05	62.38
	0.181	,,	.07	74.44
Eng.	179.9	2n.	'34	64.42
Kn.	.6	,,	.19	6.74
	180.3	3n.	19.33	71.60
Du.	.0	4n.	17	0.80
W. & S.	181.2	6	20'0	1.48
•	180.1	7	19.3	2.48
	181.5	-	.,3	.240
	.2	10	.3	
	.7		18.8	.53
G 1.	.,	.3		3.20
44.	.0	In,	19.0	.68
Dob.		,,	.3	5.60
Fl.	.6	2n.	-0	6.62
E L	.6	In.	18.43	7:00

547 Σ. 2145.

R. A. 17 ^h 11·8 ^{ra}		Dec 26° 4	3'	M. 8, 9 [.] 5		
Σ.	174.4	In.	9.72	1829.68		
	.1	,,	.87	32.30		
₩ä,	177.0	3n.	10.91	43.65		
	.3	4n.	'74	5.12		
	176.9	i	11.50	51.69		
	178 0		'26	2.33		
	176.8		'12	4.78		
	178.8	l		8.72		
De.	.2		11.35	63.41		
W. & S.	٠8	In.	12.93	76.47		
Fl.	179'1	.,	'64	7.45		

Σ. 2153.

Dec. M, 17h 14.8m 49° 26' 8.6, 9.1

C. yellowish.

Dunér's formulæ are

1847.98. Δ=1".90. $P = 276^{\circ} \cdot 7 - 0^{\circ} \cdot 214 (t - 1850 \cdot 0).$

	•		"	
Σ.	282.3	2n.	1.67	1828.74
	280.5	In.	2.55	32.93
	282.0	,,	1.08	4'91
Mä.	277'3	2n.	2'06	43.40
	275.0	In.	.18	5.60
		2n.	•••	51.74
	•2	ın.	1.91	4.78
Se.	276.5	2n.	· <u>5</u> 9	8.89
	270'0	In.	·96	66.84
De.	271'1	3n.		48
Du.	274.0	٠,,	·92 ·85	71.20
			•	

Σ. 2161. 549

ρ HERCULIS.

R. A. Dec. M. 17h 19.5m 37° 15' 4, 5 I

C. both white (H₁). A, greenish white; B, greenish $(\Sigma.)$

This was one of the double stars known to Mayer and other astronomers before H₁ began his survey.

Piazzi enters it "Double, the smaller precedes."

It was first examined by H1, Aug. 29,

H, and So. (Phil. Trans. 1824, p. 277). Measures from 1871 to 1822 are given. "It seems extremely probable that this elegant double star has undergone a sensible The distance alteration in its position.

has increased materially." Sm. (Cycle, p. 390). All the observa-tions subsequent to 1824 "tend to prove

its fixity."

Da. (Mem. R. A. S., vol. xxxv., p. 399). H₁'s distance in 1781 is probably much too small, and that of H, and So. considerably too large, "as is frequently the case." He thinks that the binary character of the star is doubtful.

Dunér gives

 $P = 309^{\circ} \cdot 4 + 0^{\circ} \cdot 114 (t - 1850^{\circ}).$ 1781.79 300.3 2.96

Hı. 301.5 H, & So. 307.0 8

Σ.	306.2	ın.	3.68	1876.89	W. & S.	277:2 1	4 1	4"28	1871:52
۵.	300.6		3.60	8.71	W. W.D.	311.3	4 3	48	.53
	308.0	,, 2n.	.26	32.89		.6	4	3.96	2.21
Da.	.4		·86	0.63		.2	6	404	-52
	.5	2		40.83		312.7	4	1.17	·52
	.3	3 5	.77 .85	7.48		311.7	10		3.46
	309.7	ξ	.75	8.21		9	4	3.8	63
	308.9	5 5	.75 .78	53.76		312.6	11	·85	6.48
	·7	3n.	·86	9.72	G 1.	.0	9	4.00	4.70
8m.	•5	•	•6	3í 60	P1.	320.8	۸'n.	3.41	6.52
	• •		.7	9'74	Schi.	312.6	in.	.65	5.24
	309.1		.7 .8	47.6i	Sp.	•6		·66	54
	310.2		.5 .77 .83	53.79	Dob.	311.5	4n.	.87	6.54
Ο.Σ.	309.9	In.	.77	39.88		•	• •	-	
	310.1	2n.	.83	40.83					
	311.7	,,	'82	1.62				_	
	310.1	ın.	.62	2.43	550	Σ.	216	5 0.	
•	•	,,	.62	5.65					
	311.0	,,	.75 .66	51.67		281 (J	B) HEE	CULIS.	
	310'4	,,		9.62			ъ.,		М.
	309.8	3n.	.70	61.2	R. A.		Dec	٠,	
Mä.	310.2	,,	· 8 7	41.44	17h 21.6)· ··	29° 3	4	7, 8 ⁻ 5
	309'7	**	•••	2.38	Δ	dual inc	rease in	distanc	e; motion
	310.4	2n.	3.43	3.49		ar hither			·,
	309.2	In.	:79	4:43	Duné				
	.6	5n.	*65	5:36	I		-//	/	0===1
	310.5		74	6.21		6"91 +			
	.4 .5	4n.	.74 .68	7.67 8.45	P =	48°.7 +	0 182	(1 - 10)	, o o j.
	311.1	3n.	.62	52.13	Σ.	45.6	In.	6.94	1829.68
	310.3	Ju.	02	7.39	2.	4 3.5	2n.	-64	32.78
		ion.	3.63	60.88	1	46.3	In.	.62	3.43
Ja.	·3		4.02	41.46	Mä.	*4	,,	75	40.61
• • • • • • • • • • • • • • • • • • • •	300.0	20	3.72	52.78			,,	.81	2.72
Mo.	3-7-2	36	1.87	45.21	Į.	47`4 48`7	,,	∙68	3'41
	307.0	30	.78	6.55	ĺ	46.9	6n.	·80	5.42
	309.7	60	.84	55.65		48.4	,,	-80	51.04
Po.	307.9	7n.	·8i	46.09	i	47`3	4n.	7:09	9.75
D.0.	Ĭ.	1	4'14	'48	ĬĬO.	49.6	12	•0	7.48
De.	309.9	5n.	3.20	53.66	Se.	500	4n.	'20	.62
	.3	In.		2.13	De.	51.3	6n.	.10	64.57
	.ī	,,	3.91	77	Du.	52.9	4n.	.19	72.23
	•5	l	.61	62:30	W. & S.		In.	'7	3.20
Mit.	' 4	In.	4.91	47.71 56.60	i	53'7	,,	-6	4.63
Se.	•7	2n.	3.83	56.60	1	52·5	,,,	'42	5:57
Br.	.9	2	'75	68.59	1	_	**	·54 ·68	6.28
M.	.1	In.	.61	2:37	G1.	53.5	3n.		4.71
	310'4	,,	4.03	8:46	Fl.		In.	71	7.77
	305.7	••	3.53	9.61	Dob.	50.2	4n.	1 .59	1 '54
	306.6	"	'97	.76					
	311.3	"	.90	70:38					
	308.9	"	.93	.78	551	2	. 21	71.	
	311.5	2n.	74	1.37	001	_			
	309.9		79	2'49 3'72	R. A	١.	Dec		М.
	312'9	in.	93	4.40	17h 22		-9°	54'	7.5, 76
	311.5	2n.	4.05	5.73	-,			-	
Eng.	32	4n.	3.81	65.21	Σ.	75.6	4n.	1.61	1830:53
Ta.		In.	3.81	6.35	Σ. 0.Σ.	71.9	in.	.68	41.22
	306.6	,,	-85	'46	Mä,	72.1		.29	37:35
	308.3	,,	4.01	8.54	1	73'7	In.	•••	42'41
Ka.	311.0	"	3.67	6.68		70'1	,,	1.24	3.43
Du.	310.6	2n.	.66	7.71	1	65.0	2n.	.55	5.43 8.58
	311.0	,,	.69	8.66	Mit.	68·1	In.	'41	
	313.3	In.	1.85	71.72	So.	70.0	2n.	.52	56.47
				- •					

552 Σ. 2173.

221 (B) OPHIUCHI.

Magnitudes.—5.8, 6.1. 0.2. suspects a variability in the light of these stars, and De.'s observations confirm it.

C. yellow.

Discovered by Σ , and often measured by him without artificial light. He measured it easily in 1829 and 1832, but in 1836 with the finest sky it was single. "We have therefore a new example of occultation or very close conjunction, such as γ Coronæ, and ω Leonis, and others have presented. This star is worthy of the most careful attention."

Da., who regarded this object as a binary, could just discern a slight elongation in 1840. From that time he found that the distance increased.

Owing to the equality in magnitude of the two stars, and to a probable variability in one, it is difficult to determine whether the occultations in 1836 and 1864 embrace a revolution or merely represent two periastron passages, the smaller star having been alternately on the N. and S. side of the principal star. If the companion has already been on the N. side, the period is about 28 years. The measures of 1874, however, seem to favour the hypothesis that the period is about 46 years. two passages through the apparent periastre thus divide the elongated orbit into two branches, one of which is passed over in about 28 years, and the other in 18 years. The distance has diminished since 1872, and 1875.65 gives a relation between the stars, the sign of the direction being changed, identical with that of 1829.

Dunér has computed the following elements:—

$$T = 1874.35$$

 $\omega = 1^{\circ}.84$
 $\Omega = 152.56$
 $i = 80.01$
 $e = 0.0839$
 $\mu = -7^{\circ}.63c$
 $a = 1''.051$.

Not satisfied with these, and the small excentricity of the true orbit rendering the graphical method uncertain, Dunér, with the aid of the method of least squares, has sought the general equation of the second degree which lest represents the rectilinear coordinates deduced from the normal places: he finds the following:—

$$-29.8609 x^3 - 8.7106 y^2 - 29.8333 xy + 0.0622 x + 0.3363 y + 1.0000 = 0.$$

This equation gives the elements ω , \otimes , i, e, a of the orbit: μ and T are found by another method. The results are—

T = 1872.91

$$\omega = 7^{\circ}.26$$

 $\Omega = 152.65$ (Equ. 1850.0)
 $i = 80.53$
 $e = 0.1349$
 $\mu = -7^{\circ}.9248$
 $a = 1.009$
P = 45.43 years.

With these elements the observations are compared, and the following extract will exhibit the resulting errors:—

1829'57	0".62	3270-2	-0"'23	-30.0	3 .
31 68	*68	318 6	-o 'o5	-7 3	٠.
40 64	'55	355 7	+0 '13	+0 8	
51.60	1 '07	330 7	-0 '07		,,
61.63	0 '51	315 '2	+0 '09	+4 7	_,.
67.79	.65	174 '5	+0 '17	+6 '3	Du.
70'35	85	336 '5	+0 12	-2 '5	Gl.
74.57	.85		+0 '01	+0 '3	
74 59	.90	331 7	+0 04	+0 4	₩. & S.
76.63	72	148 6	-0 '04	+1 .6	Du.

To aid those observers who wish to watch the star through its next minimum, Dunér supplies the following short ephemeris:—

1876.43	0".78	147°.4
8.43	. '62	142 '1
1880.43	'40	131 '8
2'43	'20	97 '1
4'43	*25	21 '8
6.43	*25 *46 *68	353 '1
8.43		344 '8
1890.43	'87	340 '4

	0		"	_
Σ.	327'2	2n.	0.62	1829.26
	321.6	In.	·52 ·68	30.86
	318 6	,,		1.68
	324'4	,,	·67	2.25
	single	3n.	•••	6.69
Da.	167.0	In.	0.2	40'47
	'4	2n.	.71	1.64
	163.3	3n.	.75	2.67
	161 '2	3n. 6n.	.9	3.24
	159.4	In.	1.10	3:54 8:45

	_								
0.Σ.	355.5] 3n.	0.61	1840.64	1 337 8.0			,	_
	352.5	1 -	.67	1.61	W. & 8.		7	1.10	1873.20
	344.7	2n.			1	.0	9	0.01	.51
	339.8	In.	75	2.60		331.6	6	.90	4.22
	334.0	2n.	72	4.71	1	330.8	4	•••	-63
	338.2		.83	5.63		327.8	7	0.1	5'57
		,,	.93	6.69	W.O.	.3	In.	'07	4.66
	335.6	"	.73	7.70		330.4	,,	.10	72
	331.2	In.	1.07	51.60	ı	148.3	,,	0.66	6.45
-	333.0	,,	.08	2.66		152.6	,,	.90	-53
	149.2	,,	0.83	3.22	i	146.3		.76	1 .54
	151.3	,,	1.51	4.63	Schi.	146.5	In.	-82	1 5.57
	146.6	,,	0.00	5.66	1	143.8	,,	-83	6-59
	326.0	,,	.85	6.28	Sp.	146.2		-83	5.28
	325'7	2n.	1.00	7.67		143.8		-83	6.60
	7	ın.	0.81	8.71	Dob.	331.4	3n.		•67
	323.4	2n.	'65	9.64	Ī	333.4	,,	0.66	7.68
	315.5	In.	·48	61.63		322.2	in.	.52	8:40
	190.8	,,	.23	5.2	C.O.	141.6	20.	1 .55	
	355 .7	2n.	'44	6.62				. 33	*49
	164.2	In.	.28	7.47					
	159.7	2n.	.68	8.53	553	0	Σ. 33	21	
	157.0	,,	1.03	71.21		0.	4. 0	J1.	
	334'9	3n.	0.81	2.28	R. A		Dec.		M.
	329.3	2n.	.77	4.62	17b 26		2° 55	,	
Mä.	172.4	6n.	.55	41.35	1 .				7.2, 8
	169.8	3n.	.70	2.20	Proba	ble chan	ge in ar	gle.	
	168.3	8n.	.76	3.48	Ο.Σ.	324'I	In.	0.88	1845-62
	165.0	3n.	·8o	4.32	1	330.3		-88	6.60
	162.9	9n.	.89	5.47	[324.4	"	.78	52.67
	159.4	źn.	1.07	6.46	De.	332.6	"	.89	66.22
	.2	2n.	.16	7:47	1	3320		- 09	00 22
	154.1	4n.	•26	51.32					
	·.8	,,	'21	2.54	554	2,	218	25	
	150.2	3n.	37	4.66	001	4.	210	JU.	
	148.3	2n.	0.88	8.62	R. A		Dec.		3.6
Ka.	174.9	5n.		42.46	17h 29n		6° 6		M.
	165.2	ion.		3.65	1 ' -		0 0		7, 10
		2n.	0.68	71	Σ.	5.3	2n.	27:50	1830.49
Mit.	160'4	In.	1.53	8.58	Mä,	.1	In.	. 97	47:36
De.	330.0	5n.	.0	56.21					
		single?		64	FEE	_	016		
		,,,		📆	555	Σ.	219	JU.	
	161.1	2n.	0.2	8.60	T		_		
	157.2	5n.	.58	9.57	R. A		Dec.		М.
	۰۰°	6n.	1 .82	70.44	17h 30.6)	21° 4′		6, 9.5
	1550	4n.	.09		Σ.	33.5	2n,	10'17	1829.66
	152.3	5n.	1.89	1'44	H.,	33 ·2 18·4		10	31.20
	150.8	4n.	1 .78	2.24	Mä.	33 [.] 6	In.	.16	43.74
	· · o		16.	3.20	De.	28°0		.18	63.39
	147.5	,,	74	5.23	Kn.	23.3	4n.	9.63	72.40
Se.	145.9	2n.	·84	58.29	W. & S.	24.9	In.	10.28	6.53
Mo.		In.	'25	30.91	l			, J -	- 33
Eng.	160.0		1 .6	64.45					
Du.	174.2	ın.	.65		556	Σ.	219	32	
	161.3	3n.	1.65	7.79 8.66					
	169.1	6n.	•66	9.63	R. A		Dec.		M.
		4n.	77	70.67	17h 35'4	. "	29° 1	8'	7.5, 9.9
	156·5 156·5	ón.	.84	1.64	Σ.	88.4			
	152.6	In.	1.00	2.60	1 2.		3n.	10.34	1832.63
	148.7	1	0.87	3.67	Mä,	88.2	2n.	.52	4.07
	· 4 -6	5n. 4n.		5.67	ma.	85.7	"	.09	43'72
G 1.	336.5		·72	6.63	De.	-6.5	3n.	. 45	5.68
	330.2	5	.8	0.54		76.2	•	*23	64.72
	330.9	10		*46	Gl.	73'4	In.	42	74.60
	331.4	7	.7	4.21	W. & S.		2n.	'4	160
	33. /	, ,	.99	•63	•	73.5	In.	`54	5.2 <u>§</u>

557 Σ. 2199.

R. A.	Dec.	M.
17h 36.4m	55° 49′	7:2, 7:8

Distance perhaps unchanged: a gradual diminution in angle.

Dunér's formulæ are

$$P = 108^{\circ}.8 - 0^{\circ}.378 (t - 1850^{\circ}).$$

_			"	_
Σ.	116.3	3n.	1.66	1830.94
Mä,	111.4	4n.	•5	43.20
	.2	In.	.2	5.00
	107.2	3n.	.5 .52 .53 .62	52.37
	106.6	,,	•53	7.13
	103.4	2n.		9.39
	102.8	,,	.62	60.87
	103.9	,,	•56	1.89
Ο. Σ.	111.5	3n.	·56 ·67 ·60	48.73
	IOI '2	2n.	'60	72.52
Se.	106.8	,,	•56	57.64
De.	101.4	3n.	•65	63.06
Du.	102'0	5n.	•38	71.38
W. & S.	99.6	10	·56 ·65 ·38	2.50
	98.4	8	·54	3.33
	100.4	7 9	'44	4.70
	'4	ا و ا	.73	5.28
G 1.	100.8	10	•51	4.73
	.7	6	·47	
	.7 .9	5	.73 .51 .47 .5	.79 . 80

Σ. 2203. 558

R. A. 17h 37.5m

Dec. 41° 43'

M. 7.5, 7.8

Probable change in angle. Dunér gives

1849.66.
$$\Delta = 0''.71$$
.
 $P = 332^{\circ}.2 - 0^{\circ}.140 \ (t - 1850.0)$.

Σ.	333.4	3n.	0.72	1830.13
Mä.	336.6	3n.	.78	.13
	334'9	"	.78	43.31
	328.3		•••	55.59
Ο. Σ.	335.9	4n.	0.79	41.13
	332.5	2n.	·8 ₅	54.21
_	327.6	In.	.77	72.61
De.	328.3	2n.	•••	55.29
ße.	329.3	,,	0.63	7.18
Du.	330.3	3n.	.70	70.2
₩.O.	325.8		.89	4.73
Sp.	327.8		75	5.29

559 Σ. 2202.

17h 39m

Dec. 2° 38′

M. 5.2, 2.8 Dunér's formulæ are

1851.60. $\Delta = 20^{\circ}.47$. $P = 93^{\circ}.9 - 0^{\circ}.020 \ (\ell - 1850.0)$.

	•		"	
<u>H</u> 1.	90	In.		1781.55
Η ₁ . Η ₂ & So. Σ.	93.2	2n.	20.25	1821.77
Σ.	94°I	4n.	'54	7:37
	'4 '1	2n.	.25	36.61
Mä.	.ı	3n.	10.	43.27
	•5	2n.	.10	52.63
	93'7	3n.	.25	5.68
	.0	In.	21.06	61.26
De.	.8 .0	٠,,	20'48	57.64
Eng.	•6	5n.	21 03	63.63
Du	' 4	3n.	20.38	9.30
W. & S.	•3	2n.	·60	74.22
G 1.	*4 *3 *5	,,	∙84	1.57

560 Σ. 2218.

R. A. Dec. M. 17h 39.5m 63° 44' 6.5, 7.7

Dunér gives

 $\Delta = 2'' \cdot 38 - 0'' \cdot 0080 (t - 1850 \cdot 0).$ P = 354° \cdot 0 - 0° \cdot 084 (t - 1850 \cdot 0).

H ₂ .	359'9		2.78	1831'36
Σ.	336.7	3n.	•50	2.72
	355.1	,,	. 47	6.48
Sm.	356.7		•5	5.40
Mä,	334'5	3n.	·š3	44.63
Se.	353.3	,,	.30	57.23
	358.5	In.	·60	66.85
De.	353.0	2n.	•5	58.00
	351.6	l	.22	68.41
Mo.	353.1	2n.	'29	59.35
Du.	352.1	4n.	.08	72:34

561 Σ. 2213.

17h 40'3m 31° 11' 7.5, 8

Dunér has

1851'48. $\Delta = 4'''43$. P=332''5 - 0''064 (t-1850'0).

	- 33- 3		T 12 -0.	JO 0/.
Se.	335.5	2n.	5.03	1825'47
Σ.	332.3	3n.	4'29	9.43
	333.3	,,	'45	36.60
Mä,	.3	2n.	.22	43.60
Se.	.1	3n.	.61	56.83
De.	331.5	2 n.	.29	7.83
Mo.	332.5	12	'23	8.2
Du.	331.5	5n.	'40	69.49

562 Σ. 2205.

Dec.

M.

Dunér's formulæ are

1849°56.	$\Delta = 2^{\prime\prime} \cdot 36.$
$P = 296^{\circ} \cdot I + 0^{\circ} \cdot$	270 (t-1850°0).

Σ.	291'4	2n.	2.25	1829.28
	290'1		.23	33.45
Mä.	293'4		49	9.28
	294'I	2n.	.28	42.71
	295.5	3n.	.62	5.29
Se.	297.3	,,	.16	57.23
De.	301.6		.19	69.31
Du.	۰6 ا	3n.	.19	.31

563 Σ. 2215.

R. A.	Dec.	М.
17 ^h 40.6 ^m	17° 45′	5.9, 2.9
o		

Change in angle uncertain.

Σ.	310.6	7n.	0.74	1831.23
	307.8	3n.	.81	5.99
Ο.Σ.	311.6	4n.	·85	41.26
	304.6	2n.	.77	70'54
X ä.	311'4	8n.	.75	42.22
Se.	304.6	3n.	.66	55.92
De.	•6	_	•67	.92
	306.0	In.	•••,	6.2
Du.	307.0	4n.	0.74	68.45
W.O.	296.5		.01	74.66
Sp.	300'7		.40	5'54
Dob.	306.6	4n.	•••	7:54

564 Σ. 2220.

$\mu^{\scriptscriptstyle 1}$ HERCULIS.

R. A. Dec. M.
17^h 41^{·8m} 27^o 48' A 3^{·8}, B 9^{·5}, C 10^{·5}
C. Σ., A, yellow. Sm., B, cerulean blue.
Da., B and C, white.

 H_1 IV. 41 forms the double star whose components are designated μ_2 and μ_1 , the latter preceding and being the smaller or companion star. This object was measured by H_1 , Σ , etc., the distance being about 30°. In 1856, however, Mr. Alvan Clark, with an aperture of $7\frac{1}{2}$ in., discovered that μ_1 was itself double. Σ with apertures of 9.6 in. and 15 in. had overlooked it; and Mädler did not notice the duplicity of the companion.*

A B. Σ . measured it from 1829 to 1836, and thought there was no sign of motion.

Smyth found it "difficult to measure, especially in distance, from its bearing illumination badly."

He also gives as "the assigned values" of its proper motion

Z., on the ground that the two stars have a common proper motion, thought "it very probable that they are physically connected."

B C. Dawes says "probably binary," but in the notes to his observations in 1864 he writes, "undoubtedly binary. Annual motion = ± 2°12 ± "

he writes, "undoubtedly binary. Annual motion = $+3^{\circ}$ '12 ±."

O. Σ . The recent measures of B C indicate a very rapid revolution; this would produce changes in the relative situation of B and C in the period preceding the discovery of C by Clark which may perhaps explain why the star was not seen earlier. In 1860 the measures of B C presented no difficulty, but in 1873 their separation could not be effected on any but the finest nights. In the case of Σ , the fact that his measures were made with a bright field sufficiently explains how it was that he never detected this object. In A B the distance increased from 1830 till 1860, and then began to diminish. The angle seems to have increased up to 1850, and to have been nearly stationary since. The discrepancies in the distances are in part removed when the measures made before Clark's discovery are referred to $\frac{B+C}{2}$. Since 1859 the optical

centre between B and C has remained fixed with reference to A.

AB. 18" Ħį. 1781.77 -8 1825.50 9.68 80, 29**.30** .83 Σ. 241'0 In. :§ 2n. .91 32.22 30.5 6.21 3n. 8m. ٠8 7.67 2429 ٠8 57.73 Mä. 241.6 3n. ٠2 43'74 ın. ·14 4 43 6 39 51 89 •69 ,, . 8 .27 .29 6.36 243.8 0.Σ. 1.28 In. .33 244.6 32.43 60.30 ,, 2.83 31.62 ,, 243'9 .37 662 ,, 244.6 '04 73 57⁻⁸5 ,, .19 ,, Da. **.**35 242.6 60.87 ... 1'43 K. 31.48 In. .46 Eng. .20 4'49 Kn. •32 2n. 5:43 6:86 De. ٠6 .32 244.8 3 ٠2 71.21 2 ю. 3.20 In. 15

^{*} Dawes in 1859 writes, "Seen double with A.C.'s 8-in. O.G." "Seen double with powers 312 and 697. Best measured with 697," and "very difficult in distance, as the small star bears but little illumination."

B C.						
Da.	59°2	2n.	1.81	1857:50		
	6ó.3	3n.	2.02	9.70		
	77'5	In.	1.80	64.43		
Se.	71.7	,,	. 74	57.85		
ο. Σ.	67:7	,,	·64	60.30		
	78.5	,,	•50	2.83		
	91.0	,,	.18	6.63		
	88.o	,,	'02	.73		
	98.7	,,	0.88	8.20		
	156.8	,,	.62	71.2		
	185.2	,,	·63	3.20		
Eng.	67.5		1.7	64.49		
Kn.	79.6	2n.	'84	5'43		
De.	82.0		'2	.44		
	98:7	۱ ۱	0.88	8.20		
		single	_	73.67		
	216.0	1 1	0.83	6.68		
	229.7		·87 ·6	7.54		
W. & S.	100.0	In.	.0	1.21		
	90.0	,,	.6	3.20		
G 1.	100.0	1 1	.6	1.21 4.63		
	•	10	.4 .4 .76	4.63		
	101.0	6	.4	.66		
₩.0.	202'4	1	.76	·48		

\mathbf{A} and $\mathbf{B}+\mathbf{C}$

Ι . 0.Σ.	244'0	In.	31.78 -23 -09	61.46 8.20		
U. 2.	- 1	,,	20	0 50		
	•5	,,	.09	71.22		

565 o.g. 337.

R. A. Dec. M. 17^h 44^{·8^m} 7° 17′ 7·5, 8

Probable small change in angle and distance.

Mä.	307.6		0.47	1843:37
Ο.Σ.	305.0	In.	'68	5'62
	304.3	٠,	-67	73
	306.0	,,	'52	51.67
_	123.0	,,	95.	5.66
<u>5</u> e.	298·1	2n.	'42	7.05
De.	114.8	4n.	oblong	67:32
Du.	293.8	5n.	0.39	70'44

566 o.s. 338.

R. A. Dec. M. 15° 21′ 6.6, 6.9
C. golden.

Considerable retrograde motion: a slight increase probably in the distance.

Mä. 0.Σ.	43.0	4n.	o·58	1843.37
	38.9	3n.	.65	52.30
	36.1	,,	'70	5.63
	27.8	,,	.82	72.26

a .	•		0.60	1.0
5 0.	33.0	2n.	0.00	1857.05
De.	25.9	4n.		67.33
W .0.	.3	-	0.85	74.72
W. & S.	.4	7	·83	7.45
	26.6	7	·86	'46

567 Σ. 2262.

7 OPHIUCHI.

R. A. Dec. M.
17^h 56'5^m -8° 11' 5, 5'7
C. H₁, both pale red or white red; Sm., both
pale white; Σ., yellowish.

H₁. "April 28, 1783.—The closest of all my double stars; can only be suspected with 460; but 932 confirms it to be a double star. It is wedge-formed with 460; with 932, one-half of the small star, if not three-quarters, seem to be behind the large star. The morning is so fine that I can hardly doubt the reality; but according to custom I shall put it down as a phenomenon that may be a deception."

Σ. examined this object three times by day in 1825 without being able to see the companion. Nor was he more successful in 1827. In 1835-66 and 1835-67, however, Σ., his son, and the amanuensis all agreed that it was oblong; and a few days later "two stars of the 5th and 6th magnitude" were seen in contact. The powers used were 480 and 600. On trying 1000, "in moments of best definition," Σ. saw the stars separated. He notes that the motion is direct, and that the period may be from 80 to 90 years.

Sm. failed to elongate it in 1832; but in

1838 he found it measurable.

Da. says that the low altitude and oblique position render it difficult, although its distance has increased.

Sm. also observed a small star of the toth magnitude:—

THE ORBIT.—Hind in 1852 found that the period was about 120 years, and the excentricity 0:575.

centricity 0.575.

Dr. Doberck in 1875 obtained the following definitive elements:—

T = 1818.50 $\Omega = 67^{\circ}$ 1' $\lambda = 36$ 26 $\gamma = 46$ 8 $\epsilon = 0.6055$ P = 217.87 years

a = 1'''193;

and a comparison of the elements with the observations from 1783 to 1871 shows very satisfactory agreement.

H ₁ .	331°6		elong ^d	1783:34	Ja.	239.5	1 11	1.10	1852-65
•	360		"	1802.74	••••	243.6	• • •	'41	8.50
	360		,,	4.44	Mit.	229'4	8n.	0.48	46.21
	•••		single	25.67		7.7	2n.	1.18	8.10
_	146.0		elongd.	7.28	De.	238·í	3n.	.26	5.48
Σ.	•••	2n.	single	5.62		240.2	бn.	.5	6.58
	356	in.	wedg'd	.4I	1	241.3	4n.	.25	7.62
	326	,,	, ,,,,	7:28	1		6n.	.16	8.52
	196.7	"	oblong	35.65		244 [.] 3	7n.	.36	62 60
	190.3	"	,,,	•66			6n.	. 43	3.22
	190 3	,,	in contet.	·67 ·68]	245.6	8n.	'41	5'47
	192.4	"	1	I.		246'I	ion.	*43	7.06
		,,	0.35	.71	1	.6	4n.	37	8.23
	196.6	"	separatd.	.41	1	247 [.] 4 .8	"	43	9:57
	197'3	,,	0.32	6.42	1	.3	"	.42	70.20
	203'3	,,	46	•64		248.3	,,	·55 ·56	2.25
	200'0	,,	46	•68	ł	•6	,,	.63	3.26
	199.2	,,	45	•70		.5	"	.26	4.22
_	•7	,,	46	.71	l	249.0	5n.	.64	5.22
Sm.	• • • •		round	2.22	Se.	236.9	2n.	.27	55.55
	214'0		0.2	8.28		240.7	4 n.	'20	55'55 6'24
	227.0		.9	42.22		239.6	3n.	.56	-55
Ο.Σ.	238.8	•	1.1	55.34		245.8	In.	.30	60.77
0.2.	223'I	In.	o:94 •86	40.21	l <u> </u>	247.6	3n.	.60	6.43
	232.4	3n. In.	-87	1.61 5.62	Kn.	246.8	4 n.	.50	3.22
	230.2	2n.	.96	6.69	Ro.	243'1	In.	.17	5.22
	233.9	In.	.97	7.82	Ta.	246:0	,,	.29	65
	238.2	,,	1.19	51.67	1	,246.2	,,	.65	6.43
	237.4	,,	.29	2.64	1	248.4	,,	•••	8.59
	241'9	,,	.18	•67	ł	-40 4 '9	,,	2'II	9.26
	236°I	,,	'20	4.70	Í	250.7	"	1.48	73°55 4°57
	240.3	2n.	.30	5.67	Du.	248.1	6n.	.40	69.64
	239.9	In.	'47	7.67		250.9	3n.	•29	71.35
	240.2	,,	'42	.67	G1.	247.6	5	·70	0.32
	.9	,,	:47	8.71		.0	5	•50	1.73
	242.7	,,	64	9.63		249.6	4	.60	3.60
	.9 244'I	,,	'43	61.63	i	248.5	10	•66	4 80
		,,	.21	5.72 6.62	M.	•••		·74	0.48
	243°3 248°1	,,	·75 ·69	72.28	ł	250'1	In.	·56	·49
	251.1	"	1.63	4.67		.3	,,	.00	-50
Da.	221.5	4n.	o.88	40.68	W. & S.	253.5 248.9	2n.	·45	3.73
	225.7	5n.	.79	1.66	W. C.D.	250.3	4	·67	2'49
	226.9	In.		2.64	ļ	230.8	4 10	.70 .71	3.2 3.2
	228.9	2 n.	0.92	3.6i	1	249'4	4	•64	4.63
	232.7	In.	1.01	8.66		7.9	5	.71	6.60
742	238.0	,,	.53	54.67	Schi.	248·9	ın.	.61	5.60
Mä.	217·3 225·6 228·8		0.42	41.23		247.6	,,	. 73	ĕ·59
	225 0		.77 .80	2.27	Sp.	248.9		.61	5760
	229.8			3'54		247.6		.73	6.60
	238.6		1.27	4.34	C.O.	250.4	In.	2.02	'2
	730.0		1.17	52.66 3.79	Dak	5	8n.	1.00	7.61
	.3		.09	3 /9 4.71	Dob.	248.9	4n.	.40	19.9
	240'0		1.44	8.64	Pl.	251°3 249°8	3n.	·47	7:53
	244.0		.29	61.60		249 O	2n.	•64	6.22
Ka.	224.6		0.80	43.11	568	Σ.	227	71	
	228.9		.95	.61	ł	4.			
M.	249.4		1'40	65.2	R. A.	m	Dec		М.
Ch. Ja	218.7	In.	0.79	44.74	17h 57.7		52° 5	I.	7.3, 8.3
J 2	239.5		1.0	6.50	Dunér	's formul			
	230.7		0.96	6.69		1851.2	7. ୁ∆ •	2 " 07.	
	234.0	21	·o	50.77	· P=	264° 6 -	0.15	7 (* – 18	8500).

	0		"	
H,	259.5	2n.	1.40	1829.71
Η, Σ.	262.3	3n.	·8 ₇	31.48
Mä.	263.6	In.	2:36	42.72
Se.	266·I	2n.	·53	59.72
	271'1	In.	'43	66.85
Du.	266.9	4n.	.06	9'45
Ο.Σ.	·6	In.	·37	70.87
	265.2	,,	'41	4.73

5 69	Σ.	226	37 .	
R. A.		Dec.		M. 8, 8
Σ. Mä.	234°1 236°8 239°5 237°0 238°1 237°2 241°7	3n.	1°41 °48 °48 °08 °32 °42 °25	1830.68 9.07 42.68 3.35 51.72 2.33 3.38
Ο.Σ.	243°5 62°5 56°2	In. 3n. 2n.	.40 .65 .54 .47	9.88 40.84 1.55 54.51
Mä.	59.5 236.9	In. 2n. In. 2n.	 1.59	70.87 42.67 4.36 5.46
Se. Sp. W. & S.	240°0 242°6 241°1	6	'46 '00 '09	57.64 75.63 6.60

570	Σ.	226	38 .	
R. 17 ^h	A. 58 ^m	Dec. 25° 2:	2'	M. 8, 9
Σ. Mä,	218·2 214·7 215·1	2n. ,,	18·12 ·87 ·76	1829.70 43.75 5.47

571 Σ. 2272.

....

C. Z., A, yellow; B, purple.

H₁ (*Phil. Trans.*, vol. lxxii., p. 217): "Aug. 29, 1779.—Double. Considerably unequal. With 227, 1\(\frac{1}{2}\) diameters of L; with 460, much above 2 diameters of L."

H₁ (*Phil. Trans.* 1804, p. 374): "The alteration of the angle of position that has taken place in the situation of this double star is very remarkable." The change amounted to 131° 59' in 24 years and 234 days. "This cannot be owing to the effect of systematical parallax, which could never bring the small star to the preceding side of the large one."

H₂ and So. (*Phil. Trans.* 1824, p. 288). H₂ says that the angles of 1779 and 1781 contradict each other; that that of 1779 is preferable; that the motion seems exceedingly capricious, the diminution of angular velocity since 1821 being so great and sudden as almost to throw a doubt on the observations. He is unable to say which

observation is in fault.

Having numerous observations by So.
made in 1825 before him, H₂ finds the
angular velocity greatly below that indicated by the observations up to 1820. An
examination of the observations of distance
leads him to put the distance in 1780 at
3"5, in 1804 at 2"5625, and hence fo
regard a decrease as established for that
period. With the decrease of angular
velocity there has also been an increase of
distance.

An examination of the measures from 1779 to 1830 shows "the extreme uncertainty which must attend any determination of the elements of the orbit of a double star on principles which include the measured distances among the data."—(Mem. R. A. S., vol. v.)

Σ. (M. M., p. 98): "A fine series of measures were made by Σ. between 1825 and 1835. He often measured the star during the early twilight.

Sm. (Cycle, p. 404): "70 Ophiuchi was designated by the letter ϕ in the British catalogue; but as there is no such letter in Bayer's map, Mr. Baily has properly rejected it in his late edition of Flamsteed."

"It may be stated in round numbers that 70 Ophiuchi describes its ellipse in a period of about eighty years."

H,'s investigations led him to think that Σ .'s distances in 1818, 1819, 1825, 1826, 1827, and 1828 were "the only irreconcilable contradictions to the curve," owing to their being too small. Σ ., on comparing his measures with the small telescope used in 1819 with those by the great Fraunfoper equatorial, found that the latter instrument gave smaller results than the other. He at last appealed to Bessel and the Königsberg heliometer: "A comparison of the distances of 39 stars, taken by both [observers], shows that those of Dorpat are, on an

average, o" 19 smaller than those of Königs-

Da. says, "one of the most interesting

and beautiful of the binary systems."

The proper motion of A is thus given:

	R. A.	Dec.
Piazzi	+ 0":30	— 1"'17
Bessel	+0.36	— r ·oġ
Argeland	ler + 0 '22	- I '10.

THE ORBIT.—Encke was the first to compute the orbit of this splendid object; his elements are as follow:-

> Perihelion passage ... 1806.877 Position of perihelion 283° 3 147 12 Node Inclination 46 25 Angle of excentricity 25 28 4":3284 Semi-axis major ...

Mean annual motion - 292'43 73.76 years.

In 1832 appeared a set of elements by H, obtained by means of his graphical method; they are-

$$a = 4'' \cdot 392$$

 $e = 0 \cdot 4667$
 $\pi = 292^{\circ} \cdot 25'$
 $8 = 137 \cdot 2$
 $\gamma = 48 \cdot 5$
 $\lambda = 145 \cdot 46$
 $\pi = -4' \cdot 4812$
 $P = 80'34 \text{ years.}$
 $\tau = 1807'06 \text{ A.D.};$

and the following selection from his table of comparison of elements and observations will exhibit the nature of the agreement :-

	Angle.		Distance.		
Date.	Observed.	Computed.	Observed.	Computed.	Observer.
1779'77 1819'63 21'51 22'54 22'60 25'56 27'40 28'75 30'50	90 0 168 42 156 50 154 30 148 12 143 54 137 28	90 13 163 8 157 3 155 0 147 12 144 8 	4"66 4'40 4'51 4'79 5'65	3".5 4.36 5.20 5.42 5.61	H ₁ . Σ. H ₂ and So. Σ. H ₃ and So. Σ. E. Be., H ₃ , Da.

Mädler in 1835 published the following elements :-

Perihelion passage ... 1806.746 Position of perihelion 287° 14 133 47 Inclination 42 52 28 30 Angle of excentricity 4"'3159 - 267''957 Semi-axis major ... Mean annual motion Period 80.61 years.

Discussing the measures made up to 1841, this eminent astronomer found that the law of gravity does not hold good in this system; he found that the elements which were on the whole most satisfactory gave angles widely different from those observed between 1804 and 1823. (See Ast. Nachr., No. 444.)

Hind and Jacob have arrived at the following results for this star :-

	Jacob.	Hind.
T		1807:48
Ħ	293° 17′	294° 6′
æ	128 33	122 14
ż	51 30	47 20
e	0.4820	0.4973
P	87.52 years	88.48 years
a	4.675	•••

In 1868 M. Schur published the elements which follow (see Ast. Nachr., No. 1681).

T =
$$1808^{\circ}79$$

 $\omega = 155^{\circ}7$
 $\Omega = 125^{\circ}4$ ($1850^{\circ}0$)
 $i = 57^{\circ}9$
 $e = 0^{\circ}49149$
 $\mu = -3^{\circ}8148$
 $a = 4^{\circ}704$
 $P = 94^{\circ}37$ years.

From the ephemeris Dunér has constructed a table of comparison of elements and observations from which the following is extracted :---

		Differences.			
1868'72	4"'84	970.6	- o"·53	- oo.6	Du.
70°51	4 '45	94 '0	-0'67	- z '7	Gl.
71°49	4 '60	92 6	— o :38	- 1 ·5	W. & S.
71.23	4 '27	92 6	-0.70	- z ·5	De.
			- o '66		
			- o '78		
			- o '66		
76.63	3 .12	81 .2	- 1 .01	-3 o	Du.

H,.	တို့ဝ	1	l 3 ["] 6	11779'76
•	•		4.4	80.49
	99.2			1.73
	336.1		•••	1802.22
_	315.0			4.41
Σ.	168.2	5n.	•••	19.64
	160.5	2	•••	20'77

	_								
Σ.	157 [°] 6	5		1821.74	0.Σ.	1150	5n.	6.55	1852.67
	123.0	3	•••	2.64	1	113.6	3n.	47	3.78
	153.9 148.2	I4n.	3.98	5.22		112.8	,,	-54	4.69
	145'1	2	4.37	7:02	1	111.0	3n.	49	5.66
	140'2		7.78	8.71	1	• 7	2n.	37	6.73
	138.0	6	5.08	9.59	1	1.0.1	4n.	40	7.69
	135.7	2	.31	30.84		109.8	2n.	21	8.72
	134.7		.41	1.68		108.2	3n.	'19	9.68
	133.9	5 3	·55	2.75		106.4	Ĭn.	5.88	61.63
	131.1	4	·55 85	4'47		105.5	2n.	-85	2.77
	130.4	5	6.10	5.60	1	102.4	In.	·32 ·26	5'72 '80
	129.5	8	3.68 3.68	6.66		101.5	,,		
H, & 80.	156.5		3.68	21.31		100'4	4n.	.29	6.66
	154.8		4.85	2.42	I	99.I	2n.	4.69	8.71
	153.6		•••	3.32	ł	93.6	4n.	.08	72.60
	148.2		3.98	5.22		87.4	3n.	3.48	4.69
	142		5	7.21	Ka.	127.9	In.	6.00	40.32
	138.1		.95	30.36	i	123'4	,,,	.53 .48	1.4
	136.1		.97	1.2	l .	122.6	2n.		2.29
	135.2		:49	2:57	Mä.	100.6	"	2.31	65.62
	120.8		6.97	6.65	A.	125.4	8n.	6.45	41'44
Be.		6n.	:77	45.43	l .	124.4	2n.	6.5	2:39
De.	135 ^{.6}	2n.	5.45	30.41	1	102:2	4n.		.66
Da.	137.3	6n.	·51	57	1	123·3	14n. 3n.	42	3:53
24.	132.2	5n.	71	2.22	ł	.0	5n.	.43 .48	'72 4'57
	3·8	3n.	6.14	3.42	1	120.8	17n.	-58	E.E.
	130.6	7n.	12	4.22	I	110.8	IOn.	·58	5.24 · 6.24
	125.8	2n.	.22	9.65	Į.	118.3		.83	8.50
	124.8	4n.	.62	40.20	1	116.7		94	50.64
	123.4	٠,,	•63	1.68	l.	115.4	l	67	1.47
	.3	2n.	·72 ·80	2.23	l .	· · · · · ·		•67	74
	118.8	3n.	·80	8.13	ľ	114.7		.26	2.73
	114.6	7n.	·48	53.60		113.3		.26	3.76
	113.4	4n.	.33 .51	4.73	1	.3		'31 '32	4.68
	112.6	ın.	.21	5.00		111.2		'32	6.20
	113.5	2n.	.46	'69	1	108.0	l	₹.04	8.63
	110.0	In.	.38	7.57 .58		106.0		.85	61.97
	.3	2n.	.52	.58	Ch.	105.5		.70 .86	2.72
0	109.3	5n.	24	9.72	UA.	1250	2n.		42.62
Sm.	136.4	ł	5.43 6.0	30.76	1	123.2	3n.	6.69	3.26
	132.2 130.6	1		3.26 5.26	Hi.	121.2 120.1	In.	5.96 6.14	4.59 6.46
	130 8		5.97 6.11	5.26	D.O.	117.1	l .		.26
	128.6		'19	6.81		•••,••		7'43	7:45
	127.5		•26	7.64	Mit.	120.3	In.	2.23	7.59
	126.2		.25	8.21	Ja.	.5		5.23 6.83	6.01
	122.4		64	42.55	i	115.1	10	•86	50.48
	119.7	i	∙8 '	42.55 7.48		114'0	15	.73	2.74
	114'9		·5.	52.44	1	113.6	21	•36	4.08
Encke.	128.0	3n.	46	36.20	1	111.9		'45	6.13
	.3	5n.	.72	7·46 8·56	ļ.	' 4		'39	.37
	126.6	7n.	•63		ł	110.6	i	. 46	7.13
	125.5	2n.	78	9.51	Da- 3	109.7	_	.10	8.13
Ο.Σ.	.7	4n.	34		Bond.	118.1	In.	.3	48.52
	127'1	7n.	:59	40.75	De.	117.7	2n.	· 8	.52
	125.8	3n.	.65	1.65	, Dec.	116.4	6n.	.45 .26	53.24
	124'7	5n.	·62 ·62	2.70	1	113.2	IIn.	20	4.28
	121.2	In.		4.71 5.68	1	111.7	In. 6n.	·52	5·63
	120.9	4n. 2n.	.25.	6.73	1	109.2	4n.	*40 *31	7.63
	119.7	t .	50	7.76	1		4n.	.09	8.44
	118.2	"	.78	8.79	1	105.2	gn.	5.43	62.62
	117.8	3n.	.24	9.78]	104.5	,,	3.60	3.21
	115.4	5n.	.25	51.67	1	103.2	IIn.	•46	4.60
		_	_					-	

	_			•					
De.	102.3	9n.	5.37	1865.21	W. & S.	•		4.61	-0
	101.0	15n.	3.37	7.01	W. W. D.	•••	_		1872.49
			4.85	8.46	ł	90'7	9	*32	.50
	99.0	7n.			!	6.16	4	17	.25
	96.2	8n.	.71	9.60		.8	6	'07	*54
	94 [·] Ş	,,	.26	70.21		88.8	5	.1	3.21
	92.6	,,	·27 ·08	1.23	1	.5	4	3.93	1 63
	90'7	9n.		2.49	1	95.I	4	49	5.62
	88.8	8n.	3.89	3.21		8ŏ·5	4		6.61
	86.1	٠,,	-66	4.26		.4	6		61
	83.7	9n.	·48	5.2	Fer.		•	3:37	
Se.	111.6	13n.	6.5	55.45	Schi.	91.2		4.30	2.49
20.	106.3	3n.	.07	60.61	DULL.	84'1	In.	3'44	5.62
					1	81.3	,,	'34	6.29
5714	101,1	,,	5.27	6.61	Dob.	78.9	3n.	·46	*52
Fit.	115.3	}	6.36	57:42		77.6	,,	·46	7'52
Mo.	110.1	12	6.08	.67		75'4	4n.	.03	8.54
	108.6	12		8.39	Pl.	80.5	4n.	.22	6.24
∆u.	100.0		.61	9.75		78.5	5n.	.39	7.65
	107'9	}	.49	9°75 60°74	C. O.	7.5	4n.	12	1.68
M.	· ·ó	In.	5.89	1.46	3.5.	3 '	44		. 00
	278°I	,,	.33	7'41					
	277.8	ı	.27	8.46					
	281.8	"	4.96	.69	572	2,	22'	75	
		"	*.83		0.2	— ·	اعت		
	275'1	"	-80	70:45	R. A.		Dec.		М.
	274.2	,,		47	17h 59	-m	39° 2	_/	
	276.4	"	.84	.20	17- 59	5 ⁻	39 2	1	9, 9.2
	.6	,,	·65 ·28	'79	Σ.	127'9	20	1.08	1832.20
	270.8	2n.		2.49	Mä.	126.8	3n.		, -
	268.9	In.	'20	3.41	ma.	120.9	In.	0.80	44 37
	·7	2n.	.53	.73					
	88.7	4n.	.00	4.47					
	84.8	,,	3.84	1 5.65	573	2,	227	77	
W.O.	106'2		5.10	63	0.0	4.	22	, , .	
	•9	5 6	.74	63		407 (D\ TF	ECULIS.	
	.3	6	6.04	63		401 (o) AB	MATTER.	
	105.9	6	5.87	63	R. A.		Dec		M.
	.0.9	6	72	63	18h Om	1	48° 2	-,	
	104.8	6	.74	63	10 0		40 Z	7	6.3, 8.3
Ro.		In.	.76		Dunér	's formul	or ere		
				63.22					
	:5	l		F.F.				= 27":29	
	•5	,,	.30	5.23	1 _	1820.0	,ı <u></u>		<i>j</i> .
	103.6	l	'24	5.23	P = 1	1850.6 19,000 H	- 0° 06	30 (t - 1	,. 8500).
Eng.	.5 103.9 104.8	,, 2n.	*24 *42	5.23 .25 4.48	1	19°°09 -	- 0°.06	30 (t—18	850-0).
	103.9 104.8 101.8	,, 2n. 6n.	'24	6.49	Σ.	19°·09 - 117·9	- o° ∙o6 3n.	30 (<i>t</i> — 18 27:59	8500). 183006
Eng.	103'9 104'8 101'8 100'5	97. 2n. 6n. In.	'24 '42 '26	6'49 7'52	Σ. Mä.	117.9 118.6	- 0°.06	30 (<i>t</i> — 18 27:59 26:94	850°0). 1830°06 44°90
Eng.	103.9 104.8 100.2 100.2	2n. 6n. 1n. 2n.	*42 *26 5*49	6.49 7.52 8.64	Σ. Mä. De.	119.9 118.6 114.9	- 0° 06 3n. In.	30 (#— 18 27:59 26:94 27:71	850-0). 1830-06 44-90 57-70
Eng.	103'9 104'8 101'8 100'5	97. 2n. 6n. In.	24 42 26 5'49	6.49 7.52 8.64 9.61	Σ. Mä.	117.9 118.6	- 0° ·06 3n. In.	30 (<i>t</i> — 18 27:59 26:94	850°0). 1830°06 44°90
Eng.	103'9 104'8 101'8 100'5 101'1 100'2 94'4	2n. 6n. 1n. 2n.	24 '42 '26 5'49 '31 4'62	6.49 7.52 8.64 9.61 70.60	Σ. Mä. De.	119.9 118.6 114.9	- 0° 06 3n. In.	30 (#— 18 27:59 26:94 27:71	850-0). 1830-06 44-90 57-70
Eng.	.5 103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7	6n. In. 2n. In.	*24 *42 *26 5*49 *31 4*62	6.49 7.52 8.64 9.61 70.60	Σ. Mä. De.	119.9 118.6 114.9	- 0° 06 3n. In.	30 (#— 18 27:59 26:94 27:71	850-0). 1830-06 44-90 57-70
Eng.	.5 103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7	77 2n. 6n. 1n. 2n. 1n. 2n.	*24 *42 *26 5*49 *31 4*62	7.52 8.64 9.61 70.60 1.55 3.55	Σ. Mä. De. Du.	19°·09 - 117·9 118·6 119·9 120·3	- 0° ·06 3n. 1n. ,, 3n.	30 (f — 18 27 '59 26 '94 27 '71 '03	850-0). 1830-06 44-90 57-70
Eng.	103'9 104'8 101'8 100'5 101'1 100'2 94'4	77 2n. 6n. 1n. 2n. 1n. 2n. 1n.	24 '42 '26 5'49 '31 4'62	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58	Σ. Mä. De.	19°·09 - 117·9 118·6 119·9 120·3	- 0° 06 3n. In.	30 (f — 18 27 '59 26 '94 27 '71 '03	850-0). 1830-06 44-90 57-70
Eng. Ta.	103.9 104.8 101.8 100.5 101.1 100.2 94.4 96.7 84.7 88.6	77 2n. 6n. 1n. 2n. 1n. 2n. 1n.	'24 '42 '26 5'49 '31 4'62 '34 3'95	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58	Σ. Mä. De. Du.	19°·09 - 117·9 118·6 119·9 120·3	3n. 1n. 3n. 3n.	30 (f — 18 27 '59 26 '94 27 '71 '03	850-0). 1830-06 44-90 57-70 71-49
Eng.	103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7 88'6 99'8	2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 2n. 2n. 2n.	'24 '42 '26 5'49 '31 4'62 '34 3'95 '67 5'22	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58 67'44	Σ. Mä. De. Du. 574	19°.09 - 117.9 118.6 119.9 120.3	3n. in. 3n. 22' Dec.	30 (<i>t</i> -11) 27.59 26.94 27.71 03	850-0). 1830-06 44-90 57-70
Eng. Ta.	103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7 88'6 99'8 98'5	77 2n. 6n. 1n. 2n. 1n. 2n. 1n. 77 2n.	5.49 -31 4.62 -34 3.95 -67 5.22 4.97	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58 67'44 8'56	Σ. Mä. De. Du.	19°.09 - 117.9 118.6 119.9 120.3	3n. 1n. 3n. 3n.	30 (<i>i</i> —1 <i>i</i> 27.59 26.94 27.71 03	850-ro). 1830-ro6 44-'90 57-'70 71-'49 M.
Eng. Ta.	.5 103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7 84'7 88'6 99'8 98'5	77 2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 7, 2n.	5.49 -31 4.62 -34 3.95 -67 5.22 4.97	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58 67'44 8'56 71'59	Σ. Mä. De. Du. 574	117.9 117.9 118.6 119.9 120.3	3n. 1n. 3n. 22 Dec. 56° 26	30 (i-1i 27:59 26:94 27:71 03 78.	850-0). 1830-06 44-90 57-70 71-49
Eng. Ta. Kn.	.5 103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7 88'7 88'7 88'5 99'8 98'5 98'5	77 2n. 6n. 1n. 2n. 1n. 2n. 1n. 77 2n. 77 2n.	*24 *42 *26 5*49 *31 4*62 *34 3*95 *67 5*22 4*97 *30 *92	6:49 7:52 8:61 9:61 70:60 1:55 3:55 4:58 67:44 8:56 71:59 68:90	Σ. Mä. De. Du. 574	117.9 117.9 118.6 119.9 120.3	3n. in. 3n. 22' Dec.	30 (i-1i 27:59 26:94 27:71 03 78.	850-ro). 1830-ro6 44-'90 57-'70 71-'49 M.
Eng. Ta.	.5 103'9 104'8 101'8 100'5 101'1 100'2 94'4 96'7 88'6 99'8 98'5 94'5 98'5 98'5	77 2n. 6n. 1n. 2n. 1n. 2n. 1n. 77 2n. 77 3n. 5	24 24 26 5'49 4'62 34 3'95 67 5'22 4'97 30 92 83	6-49 7-52 8-64 9-61 70-60 1-55 3-55 4-58 67-44 8-56 71-59 68-90 -72	E. Mä. De. Du. 574	19° · 09 · 117' 9 118 · 6 119 · 9 120 · 3	3n. 1n. 3n. 22 ^t Dec. 56° 26	30 (t-1) 27 59 26 94 27 77 20 93 78.	850°0). 1830°06 44°90 57°70 71°49 M. 8, 7°3, 7°8
Eng. Ta. Kn.	.5 103'9 104'8 100'5 101'1 100'5 101'1 100'5 94'4 96'7 88'6 99'8 98'5 98'5 98'5 98'5 98'5	77. 6n. 1n. 2n. 1n. 2n. 1n. 77. 2n. 77. 3n. 5 4n. 3n.	244 242 263 31462 395 522 497 309 928 833 58	6:49 7:52 8:64 9:61 70:60 1:55 3:55 4:58 67:44 8:56 71:59 68:90 -72 9:69	E. Mä. De. Du. 574 R. A. 18h 1m	119° 09 4 117'9 118'6 119'9 120'3 \$\sum_{\text{\text{\Lambda}}}\$ \$\sum_{\text{\text{\Lambda}}}\$ \$\sum_{\text{\text{\text{\Lambda}}}\$	3n. 1n. 3n. 22th Dec. 56° 26	30 (i - 1) 27.59 26.94 27.71 03 78. 6. te.	850-0). 1830-06 44'90 57'70 71'49 M. 8, 7'3, 7'8
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'5 101'1 109'7 84'7 88'6 99'8 98'5 98'5 98'5 98'5 98'5 98'5	77. 6n. 1n. 2n. 1n. 2n. 1n. 77. 2n. 78. 3n. 5. 4n. 3n. 1n.	24 ·42 · 5·49 · 3·95 ·67 5·22 4·97 · 5·92 · 838 ·	6:49 7:52 8:64 9:61 70:60 1:55 3:55 4:58 67:44 8:56 71:59 68:90 -72 9:69 71:72	E. Mä. De. Du. 574 R. A. 18h 1m	119° 09 4 117'9 118'6 119'9 120'3 \$\sum_{\text{\text{\Lambda}}}\$ \$\sum_{\text{\text{\Lambda}}}\$ \$\sum_{\text{\text{\text{\Lambda}}}\$	3n. 1n. 3n. 22th Dec. 56° 26	30 (i - 1) 27.59 26.94 27.71 03 78. 6. te.	850-0). 1830-06 44'90 57'70 71'49 M. 8, 7'3, 7'8
Eng. Ta. Kn.	.5 103'9 104'8 100'5 101'1 100'2 94'4 96'7 88'6 99'5 98'5 98'5 98'5 98'5 98'5 98'5 98'5	77. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 77. 2n. 77. 3n. 5 4n. 3n. 8	24 ·42 ··· 5·49 ··· 3·1 4·62 ··· 3·95 ··· 5·20 ··· 83 ··· 92 ··· 83 ··· •·· •·· •·· •·· •·· •·· •·	6'49 7'52 8'64 9'61 70'60 1'55 4'58 67'44 8'56 71'59 68'90 '72 9'69 71'72 0'30	Σ. M ä. De. Du. 574 R. A. 18 ^h 1 ^m Dunér	119° 09 4 117'9 118'6 119'9 120'3 \$\sum_{\text{A}}\$. has the 38'' 62 -	3n. 1n. 3n. 22 ^h Dec. 56° 26 C. whi followi	30 (<i>t</i> – 1) 27.59 26.94 27.71 03 78. 6. 6. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 alæ: 850°0).
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'2 94'4 96'7 88'7 88'6 99'8 98'5 98'5 98'5 98'5 98'5 99'8 99'8	77. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 3n. 3n. 8 7	24 ·42 ·65 ·67 ·67 ·67 ·67 ·67 ·67 ·67 ·67	6 49 7 752 8 64 9 61 70 60 1 55 3 55 4 58 67 44 8 56 71 59 68 90 72 9 69 71 72 0 30	Σ. M ä. De. Du. 574 R. A. 18 ^h 1 ^m Dunér	119° 09 4 117'9 118'6 119'9 120'3 \$\sum_{\text{A}}\$. has the 38'' 62 -	3n. 1n. 3n. 22 ^h Dec. 56° 26 C. whi followi	30 (i - 1) 27.59 26.94 27.71 03 78. 6. te.	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 alæ: 850°0).
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'2 94'4 96'7 88'6 99'5 98'5 98'5 98'5 98'5 98'5 98'5 98'5	2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 5 4n. 3n. 8 7 5	24 -426 	6:49 7:52 8:64 9:61 70:60 1:55 3:55 4:58 67:44 8:56 71:59 68:90 72 9:69 71:72 0:30 72 1:50	Σ. M ä. De. Du. 574 R. A. 18 ^h 1 ^m Dunér	119° 09 4 117'9 118'6 119'9 120'3 \$\sum_{\text{A}}\$. has the 38'' 62 -	22° Dec. 56° 26° C. whi followir - 0° 03	30 (t-1) 27:59 26:94 27:71 03 78. 6: te. ng formu 71 (t-1) 48 (t-18	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 alæ: 850°0).
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'2 94'4 96'7 88'7 88'6 99'8 98'5 98'5 98'5 98'5 98'5 99'8 99'8	2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 5 4n. 3n. 8 7 5	24 	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58 67'44 8'56 71'59 68'90 '72 9'69 71'72 0'30 -72 1'50	E. Mä. De. Du. 574 R. A. 18 ^h 1 ^m Dunér	117.9 118.6 119.9 120.3 \$\sum_{\text{2}}\$ \$\sum	3n. 1n. 3n. 22 ^h Dec. 56° 26 C. whi followi	30 (t-1) 27.59 26.94 27.71 03 78. 66 6. te. ng formu 71 (t-1) 48 (t-18	M. 8, 7'3, 7'8 liæ: 850'0).
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'5 101'1 100'5 94'4 96'7 88'7 88'5 99'8 98'5 98'5 98'5 98'5 98'7 98'9 92'6 94'7 93'2 92'9	2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 5 4n. 3n. 8 7 5	24 	6:49 7:52 8:64 9:61 70:60 1:55 3:55 4:58 67:44 8:56 71:59 68:90 72 9:69 71:72 0:30 72 1:50	Σ. Mä. De. Du. 574 R. A. 18 ^h 1 ^m Dunér Δ = P =	119° 09 4 117'9 118'6 119'9 120'3 \$\sum_{\text{A}}\$. has the 38'' 62 -	22° Dec. 56° 26° C. whi followir - 0° 03	30 (t-1) 27:59 26:94 27:71 03 78. 6: te. ng formu 71 (t-1) 48 (t-18	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 alæ: 850°0).
Eng. Ta. Kn. Br. Du.	94.7 94.7 94.7 84.7 88.6 99.8 98.5 98.5 98.5 98.5 98.5 98.7 99.9 92.6 92.6 92.1 92.1	77. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 3n. 3n. 8 7	24 -426 	6'49 7'52 8'64 9'61 70'60 1'55 4'58 67'44 8'56 71'59 68'90 '72 9'69 71'72 0'30 '72 1'50 63'80	Σ. Mä. De. Du. 574 R. A. 18h 1m Dunér Δ= P= H. Σ.	117.9 118.6 119.9 120.3 \$\sum_{\text{2}}\$ \$\sum	22 ^t Dec. 56° 20 C. whi followir - 0" 01 + 0° 03 A B	30 (t-1) 27.59 26.94 27.71 03 78. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 slæ: 850°0). 1830'34
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'5 101'1 100'5 94'7 88'6 99'5 98'5 98'5 98'5 98'5 98'7 98'7 98'7 99'9 92'6 94'7 93'1 92'1 89'5	2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 5 4n. 3n. 8 7 5	24 ·42 ·······························	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58 67'44 8'56 71'59 68'90 72 9'69 71'72 0'30 '72 1'50 '63 -80 3'51 4'73	Σ. Mä. De. Du. 574 R. A. 18h 1m Dunér Δ = P = H. Σ. Se.	19° · 09 117 · 9 118 · 6 119 · 9 120 · 3	22 ^t Dec. 56° 20 C. whi followir o' or a 3 n. A B 3n.	30 (t-1) 27.59 26.94 27.71 03 78. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	M. 8, 7'3, 7'8 1830'34 1830'34
Eng. Ta. Kn. Br. Du.	.5 103'9 104'8 100'5 101'1 100'5 101'1 100'5 94'7 88'6 99'5 98'5 98'5 98'5 98'5 98'7 98'7 98'7 99'9 92'6 94'7 93'1 92'1 89'5	2n. 6n. 1n. 2n. 1n. 2n. 1n. 2n. 1n. 3n. 5 4n. 3n. 8 7 5 5 6 6 10	24 -426 	6'49 7'52 8'64 9'61 70'60 1'55 3'55 4'58 67'44 8'56 71'59 68'90 72 9'69 71'72 0'30 '72 1'50 '63 -80 3'51 4'73	Σ. Mä. De. Du. 574 R. A. 18h 1m Dunér Δ = P = H. Σ. Se.	117.9 118.6 119.9 120.3 \$\sum_{\text{2}}\$ \$\sum	22' Dec. 56° 26 C. whi followi + 0° 03 A B 3n.	30 (t-1) 27.59 26.94 27.71 03 78. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 slæ: 850°0). 1830'34
Eng. Ta. Kn. Br. Du.	.5 103'98 101'8 100'5 101'1 100'5 101'1 96'7 884'7 98'5 98'5 98'5 98'5 98'5 98'9 99'8 99'9 92'6 94'7 93'2 92'9 93'1 93'1	72n. 6n. 1n. 2n. 1n. 2n. 7, 2n. 7, 3n. 5 4n. 3n. 8 7 5 6	24 -42 -63 -67 -549 -67 -549 -67 -549 -67 -549 -67 -549 -67 -67 -67 -67 -67 -67 -67 -67	6 49 7 752 8 64 9 61 70 60 1 755 3 55 4 58 67 44 8 56 71 59 68 90 72 9 69 71 72 0 30 72 1 50 63 80 3 51	Σ. Mä. De. Du. 574 R. A. 18h 1m Dunér Δ= P= H. Σ.	117'9 118'6 119'9 120'3 \$\sum_{\text{L}}\$ has the 38''.62 - 22'.99 -	22th 1n. 3n. 1n. 3n. 22th 2n. 2n. 2n. 2n. 2n. 2n. 2n. 2n. 2n. 2n.	30 (t-1) 27.59 26.94 27.71 03 78. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	850°0). 1830°06 44'90 57'70 71'49 M. 8, 7'3, 7'8 slæ: 850°0). 1830°34 1'50 57'00

	•	B C.		
H ₂ .	147'1	2n. 1	6.65	1829.64
-	146.5	In.	5.60	31.73
Σ. Mā,	147.8	3n.	.97	1.26
	146'1	In.	·8 ₇	44.90
Se.	147'1	2n.	6.24	57.00
De.	.3	,,	·12	8.11
Du_	·6	5n.	5.99	69.41
Ta.	•	In.	6.02	74.59
Dob.	145.8	2n.	•••	6.61

575 Ο.Σ. 342.

R. A.	Dec.	M.
18p 1.0m	9° 33′	4, 8

A very difficult object, if really double. 0. Σ . has examined it with very great care on twelve nights since 1841. Sometimes the companion was readily seen, sometimes there was no trace of it, and on other occasions there was some appearance of the principal star being oblong. He suspects the companion of rapid variability.

0.Σ.	156.6 162.4 168.1	in. 1.3 ,, 61	1842 [.] 72 7 [.] 59 .70
	169.6	'simple'	51.67
	•••	· simple	2.63
¥ä,	208.7	0.35	45'74
_	206.6	27	7.75 48
Da.	•••	single	48
	•••	,,,	54
8e.	•••	,,	6.23
	345'9	elongated	7:57
De.	5157	single	64
	•••		
W. & S.	•••	round	73.21
_	•••	elongated	5.62
Sp.	•••	i single	1 6

576 Σ. 2281.

73 OPHIUCHI.

R. A.	Dec.	М.
18p 3.0m	3° 58′	57, 7.2

Dunér's formulæ are

$$\Delta = 1'''\cdot 33 - 0''\cdot 0112 (t - 1850\cdot 0).$$

P = 255°·5 - 0°·181 (t - 1850·0).

\mathbf{H}_{1} .	265.7	2n.	•••	1783.35
	264 3	In.	•••	1802.38
H.,. 80.	257.6	2n.	•••	22.46
	•••	4n.	1.99	.93
Σ.	259'7	7n.	48	34.86
Sm.	260.5		٠7	.60
	259.9		•5	8.74
	255.0		'4	42.39

	_			
Mä.	257 [.] 8		1"35	1840.81
	256·I		43	2.40
	258.9		•06	4.35
	254.2	4n.	•30	51.51
	-34.9		.28	71
	252.0		.32	4.68
	254.1		.50	5 66
	253.7	I4n.	.25	6.81
	252.7		.27	8.65
	248.7		.20	9.81
	252.8	Hn.	'17	61.89
0.Σ.	254.5	5n.	·6i	41.26
	251.6	4n.	*35	9.72
	247.5	5n.	.13	70'12
Da.	256.3	4n.	.47	44.58
	255.0	in.	.38	9.48
Mit.	253.3	١,, ١	.27	7.59
Flt.	256.3	24	•5	51.37
Mo.	253.9	In.	`47	4.60
De.	9.0	4n.	.2	5.69
	255°Í	2n.	•35	62.69
	251 6	In.	.24	5'34
	253.4	,,	109	6.68
	252.4	,,	*05	70.66
	251.7	,,	17	7.74
8c.	2546	7n.	.33	56.27
	252.3	3n.	'47	65.92
Eng.	252°3 247°8	2n.	16.	4.48
Be.	250.8	3n.	•50	5.24
Ta.	249.2	2n.	.61	6.46
_	245.3	ın.	•64	74.61
Du.	253.9	6n.	0.93	1.02
W. & S.	252.8	6	1.45	.20
	253.7	4	.37	2.24
	•6	3 6	•••	'54
	255 .9		1.35	.55
		3	.29	3.23
	254'2	4	.06	4.64
	. 7	5	'12	5.62
	252.9	4	.19	6.22
•	253.9	5	14	.61
G 1.	254.4	8	.06	4.73
8 p.	250.4		0.93	5.61
Dob.	.0	3n.	1.03	19.9

577 ο.Σ. 344.

R. A. 18 ^h 4 ^m		Dec. 49° 41′		M. 6·7, 10·8 1842·67 8·73	
ο.Σ.	156.5	In. 2.22 1 ,, .08			
	1,	,,		8.73	
De.	153°1 147'9	,, 3n.	.50	51.67	

578 Σ. 2289.

417 (B) HERCULIS.

R. A.	Dec.	M.
18 ^h 4.8 ^m	16° 27'	6, 7·1
Very slow a	ngular change.	

formulæ	are
	formulæ

1853.46.	$\Delta = 1'' \cdot 06.$ 212 (t-1850.0).
$P = 238^{\circ} \cdot 2 - 0^{\circ}$	212 (<i>t</i> —1850°0).

	0		"	
Σ.	243'1	4n.	1.50	1829.96
H,	241.6	In.	.26	30.67
Mä.	240'I		.01	40.11
	239'I	12n.	0.92	3.49
	.0	2n.	1.12	52.63
	235.0	8n.	.03	6.79
	232'4		.02	9.81
	234'2		.02	60.86
	232.8	8n.	.08	1.99
Ο, Σ.	239'2	5n.	'33	41.11
	237:3	3n.	.16	54 69
Se.	236°I	4n.	.02	7:08
	235.3	ın.	.24	65.63
De.	234'3	3n.	.24	2.95
Eng.	235.8	,,.	•67	5.66
Du.	234'9	9n.	.02	70.29
W. & S.	235.7	4	.97	2.20
	236.3	5	.25	.20
	235.8	7	.03	3.24
	238.1	5 7 5 4	'14	4.64
	237.2	4	.13	5.65 6.22
	235'3	4	.39	6.22
	234.2	4	'33	.01
G 1.	237.6	7	.12	4.69
Dob.	235.9	411.	0.13	7.50

579 o.Σ. 345.

R. A. 18h 7m	Dec. 5° 47'			M. 7'3, 10'3
ο.Σ.	65.8	In.	1'02	1842.71
	64.7	,,	•••	5.73
De.	·3 ·8	3n.	.32	1842.71 5.73 7.59 66.61

, 580 \(\Sigma \). 2292.

R. A.	Dec.	М.
18h 7.3m	27° 37′	8, 8:

Dunér's formulæ are

1859.06.
$$\Delta = I''.23$$
.
P=261°.3 + 0°.14 (t-1850.0).

Σ.	261.3	4n.	1.30	1830'40
		411.	1 - 22	
Ο.Σ.	260'4	2n.	1.39	40.78
	.3	,,	'44	1.22
	258.4	In.	.62	56.26
	259.8	,,	.38	68.20
	263.6	,,	.71	73.23
Mä.	260.2	In.	.22	42.63
Se.	.0	2n.	.25	56.22
De.	258.9	In.	.2	6.78
Du.	264.2	8n.	11.	71.94
	265.7	2n.	.22	6.41
Lindste	dt.264 6	ın.		75

581 Σ. 2294.

R. A.	Dec.	M.
18h 8.4m	o° 9′	7.4, 77

Probable change in angle and distance.

Σ. 0.Σ.	91.8 87.8	4n. In.	1.06	1831 00
Mä. Se. Sp.	84.2 90.3 93.3 89.2	,,	66 80 62	65 80 72 56 43 60 56 83 76 11

582 o.Σ. 349.

R. A 18h 12		Dec 83° 5	4′	M. 7°5, 8
ο.Σ.	99°3	In.	0.66 .48	1842-73 5'71 51-73 67-62
De.	103.2 95.3	4n.	-48	51 73 67 62

583 Σ. 2303.

l	R. 1	۹.	Dec.		Μ.
18h 13.6m		— 8°	6.7 9.3		
3	0.	213.0		•••	1825.20
Σ	Σ.	216.4	5n.	3.55	31.50
1	ſä.	219'4		.31	7.15
1		220.6		.25	43.64
		225.7		•••	50.75
1		223'3		.20	1.77
1	Eit.	219.9	In.	'22	48.62
1	Eo.	222.9	!	.26	55.64 8.60
1		227.0			8.60
8	le.	222'I	2n.	2.79	7:59
I	De.	223'I	ın.	3.53	64.59
		225.0	,,	2.04	6.68
i		221'3	,,	3.12	7.61
1		225'3	,,	2.70	72.22
10	: O	222.4	2n.	.70	7.51

584 Σ. 2311.

R. A. Dec. 18 ^h 17 ^m 11° 23'			M. 819, 919	
Σ. Mä.	170.7	4n. In.	8.65	1830·30 43·19

585 o.Σ. 347.

R. A. 18h 19m		Dec. 7° 10'		M. 7 ⁻² , 11	
	•	•		1847:50	
De	337.5	In. ,,	.25	51.82	

586	Σ.	231	l 5.	
R. A.	m	Dec. 27° 2	·.	M.
	e in ang		J	7, 8
Σ	281°1	4n.	0.60	1830.74
0. 2.	271.4 257.6	,, 3n.	·68 ·52	41.12 63.43 41.41
Mä.	276·9 272·2		.54 .45	41.41 3.43
	270°9 267°4		.30	5°45 52°02
•	255.9 257.6		elong ^d .	4.71 9.84
5e.	260'7 267'0	2n. In.	elong ^d	7°05 65°63
8p.	247'0		0.38	75.90
587	Σ	23	18.	
R. A.	juna.	Dec. 25° 5	6′	M. 8, 10°2
Σ. Mä.	257°2 256°8	2n.	12·85 20·03	1829'74
De. Bu.	255.7 254.9		.66 .81	43°74 65°07 78°40
			·	70 40
588	Σ	. 2 3:	ld.	
R. A. 18 ^h 21 ⁿ	n	De o°	c.	M. 5'5, 7'8
18 ^b 21 ^a	C. A,	o°; ; yellow	с. 7' в, blue.	M. 5·5, 7·8
18 ^h 21 ⁿ Dunér	C. A, ; has the	o°; yellow; se form: 60. Δ	с. 7' в, blue. ulæ: = 3":88.	5.5, 7.8
18h 21h Dunér P •	C. A, ; has the 1851 of	o°; yellow; se formi 69. Δ + o°;	с. 7' в, blue.	5·5, 7·8
18h 21h Dunér P =	C. A, ; has the 1851 6 315° 6 314.5 312.4	o° yellow; se formi	c. 7' B, blue. alæ: = 3".88. 5 (t - 18)	5·5, 7·8
18h 21h Dunér P •	C. A, has the 1851 of 314.5 312.4 3 318.6	o° yellow; se form: 69.	B, blue. alæ: = 3".88. 5 (t - 18) 4.46	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54
18h 21h Dunér P =	C. A, has the 1851 of 315 of 314 5 312 4 3 318 6 319 8 318 1	o° yellow; se formi 69. \(\Delta \) + 0° o \(\Delta \) 1n. \(\Theta \), \(\Delta \	c. 7' B, blue. alæ: = 3".88. 55 (t - 18) 4.46 5.10 4.15	5°5, 7°8 50°0). 1781°79 1802°34 22°72 5°54 9°0 2°95
Dunér P = H ₁ . H, & So.	C. A, has the 1851 (315° 0 314'5 312'4 318'6 319'8 318'1 314'2 315'0	o° yellow; se forms 69.	2. 7' B, blue. 1læ: = 3".88. 15 (t - 18) 4.46 5.10 4.15 3.94 .83	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22
Dunér P = H ₁ . H, & So. Σ.	C. A, 1 has the 1851 1 315 0 314 5 312 4 318 6 319 8 318 1 314 2 315 0 314 2	yellow; se forms 69. \(\Delta \) + 0°°0 \(\text{In.} \) \(\text{Jn.} \)	2. 7' B, blue. alæ: = 3".88. 5 (t - 18) 4.46 5.10 4.15 3.94 83 4.34 4.3794	5°5, 7°8 50°0). 1781°79 1802°34 22°72 5°54 9°0 2°95 8°62 36°22 0°61 40°60
Dunér P - H ₁ . H, & So. Σ. Da. Sm.	C. A, ; has the 1851 ' 315 ' 314 ' 312 ' 318 ' 319 ' 318 ' 314 ' 314 ' 315 ' 314 ' 315 ' 314 ' 314 ' 314 ' 314 ' 314 ' 314 ' 315 ' 314 ' 314 ' 315 ' 314 ' 316 ' 3	yellow; se form: 69. \(\Delta \); o o o 1n. 7, 4n. 5n. 3n. 6n. 3n. 7, 1n.	C. 7' B, blue. 1læ: 3"88. 5 (t - 18) 4'46 5'10 4'15 3'94 4'34	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53
Dunér P = H ₁ . H, & So. Σ. Da. Sm. Mä. Mit.	C. A, thas the 1851 to 315 of 312 4 3 318 6 319 8 318 1 314 2 315 0 314 3 318 314 3 316 5 317 0	o° yellow; se form 69. Δ + o° o o o o o o o o o o o o o o o o o	C. 7' B, blue. alæ: -3"-88. 5 (t - 18)	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53 5.61 7.61
18 ^h 21 ^s Dunér P - H ₁ . H, & So. Σ. Da. Sm. Mä. Mit. Ja. Do.	C. A, ; has the 1851" = 315° 0 314.5 312.4 3318.6 319.8 318.1 314.2 315.0 314.3 2 316.5 317.0 314.4	yellow; se forms 69. \(\Delta \) + 0 o o \(\text{o} \) 1 n. \(\text{sn.} \) 1 n. \(\text{3n.} \) 3 n. \(\text{3n.} \) 1 n. \(\text{1n.} \)	C. 7' B, blue. 1læ: 3"88. 5 (t-18) 4'46 5'10 4'15 3'94 4'3 3'94 4'3 3'94 4'3 3'73	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53 5.61 7.61
18h 21s Dunés P = H ₁ . H, & So. 2. Da. Sm. Mä. Mit. Ja. Mo.	C. A, ; has the 1851" = 315° 0 314.5 312.4 33.8 6 319.8 314.2 315.0 314.2 315.0 314.3 313.8 314.3 316.5 317.0 314.4 313.7 314.4 313.7 314.4 313.7	yellow; se forms 69. \(\Delta \) + 0 o o \(\text{o} \) + 10 o \(\text{o} \) 1 n. \(\text{sn.} \) 6 n. \(\text{3n.} \) 1 n. \(\text{6n.} \) 5 n. \(\text{6n.} \) 3 n. \(\text{3n.} \) 6 n. \(\text{3n.} \) 3 n.	B, blue. 3"88. 5 (t-18) 4'46 5'10 4'15 3'94 4'3 3'94 4'3 3'94 4'3 3'94 4'3 66 4'00	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53 5.61 7.61 52.76 4.70 5.61
18 ^h 21 ^s Dunér P - H ₁ . H ₂ & So. Σ. Da. Sm. Mä. Mit. Ja. De. Mo. Se. Ro.	C. A, 1 has the 1851 1 1851 1 2 315 0 0 314 5 312 4 3 318 6 318 1 314 2 315 0 314 2 315 0 314 3 317 0 314 4 313 7 314 4 317 0 311 3	yellow; se form 69.	C. 7' B, blue. alæ: - 3".88. - 5 (t - 18) 4.46 5.10 4.15 3.94 4.3 4.34 4.3 4.39 7.3 5.4 66 96 4.00 3.79 81	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53 5.61 7.61 52.76 4.70 5.61 7.89 65.57
18h 21th Dunér P = H ₁ . H ₂ & So. E. Da. Sm. Mit. Ja. De. Mo. Se.	C. A, 1 has the 1851 315° 0 314.5 318.6 319.8 318.1 314.2 315.0 314.2 315.0 314.3 314.3 314.3 317.0 314.4 317.6 311.3 314.4 317.6 311.3 310.4	yellow; se forms 69.	B, blue. 18 : 18 : 18 : 18 : 18 : 19 : 10	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53 5.61 7.61 52.76 4.70 5.61 7.89 65.57 6.53 9.55
18 ^h 21 ^s Dunér P - H ₁ . H ₂ & So. Σ. Da. Sm. Mä. Mit. Ja. De. Mo. Se. Ro.	C. A, 1 has the 1851 1 315 0 0 314 5 312 4 3 318 6 319 8 314 2 315 0 314 2 315 0 314 3 317 314 4 317 6 311 3 4	yellow; se forms 69.	B, blue. 18 : - 3" · 88. 5 (t - 18) 4 · 46 5 · 10 4 · 15 3 · 94 4 · 3 4 · 3 4 · 3 4 · 3 5 · 4 6 · 96 4 · 00 3 · 79 81 95	5.5, 7.8 50.0). 1781.79 1802.34 22.72 5.54 9.0 2.95 8.62 36.22 0.61 40.69 33.53 42.53 5.61 7.61 52.76 4.70 5.51 7.89 65.57 65.53

589	0.	Σ. 3	51.	
R. A. 18 ^h 22'1	m	Dec. 48° 42		M. 7·3, 8
0.Σ.	31.7	In.	0.49 .21	1842.67 4.85
Mä.	20·9 44·5	"	*48 *33	51.67 43.65 6.68
De.	30.6	5n.		67:69
590	. Σ.	232	23.	
	39	DRACC	NIS.	
R. A. 18 ^h 22'I	m	Dec 58° 4		M. 4'7, 7'7
Very s movemen	low char nt.	nges.	Distinct •	retrograde
		A B	•	
H ₁ . 80.	9.6 4.0	2n.	3.6	1823.63
H ₂ .	359·8		 	5.22
Σ.	0°2 5°9	7n.	3'14	3.50
Sm. Mä.	5.2 4.1		.13	6·39 43·38
	3.2		.3 5.51	7'42 51'85
	4'9 7'2		3°45	2'34 3'39 8'80
	4.6 0.6		.03	8·80 61·45
Mo.	359·6	2n. 12	'22 '45	45.41 56.28
Ο. Σ.	2°0	In.	·26	1.90
Se.	·1 ·4	,, 3n.	.40 .32	70·87 57·59
M. W. & S.	3.4	3	·76	65 ⁻ 44 75 ⁻ 74
	1 · 2 0 · 7	3 3 4	3.97	3.22 2.28
No.	.5	A C.	1 .85	6·§o
Ħ ₁ .	26.6	A U.	· •••	1780.77
Σ.	21.2		88·96	1819 ⁻ 52 34 ⁻²⁷
80.	•9 •4		89.61 88.94	23.46 5.25
8m. Ο. Σ.	.7 .4		89.2	36·39
M. W. & S,	20.7 20.7	In. 2	·69	66·48
No.	21 ·6 ·5	3	90.58	5.74 6.80
₩.		BC	_	l ~/-0
No.	22'4		86.85	76·8o

501		. 05		
591		E. 35 Draco:	-	
R. A. 18h 24m	•	Dec.		M. 4·8, 6·5
O.Σ. De.	63.6 62.9	6n. 5n.	o·56	67.73
592	Σ.	233	30.	
R. A. 18h 25'7	m.	Dec.		M. 7`3, 9
Η, Σ.	177.3	ın.	20'94 '19	1828.65
Mä.	176'9 174'4 175'0	2 n.	.18 .00	9·58 47·57 52·62
De. W. & S.	174'5	2n.	19:26	64.80 74.68
G1.	.6	In.	•••	4'79
593	Σ.	234	2.	
R. A. 18h 29.6	m .	Dec. 4° 50'		M. 5.7, 8.5
Σ.	12.0	In.	26.60 .80	1828.71 9.62
Mä.	·1 11·7 ·9 10·6	,, ,, 2n.	27.17 .06 .89 28.32	31.69 2.81 43.61 5.46
594	0.2	£. 38	57.	
R. A. 18h 30t		Dec.		M. 7 [.] 5, 76
O.Σ,	275'5 264'4 256'9	2n. 3n. 2n.	o.48 .53	1845'15 55'67 72'58
595	Σ.	234	1 5.	
R. A. 18h 30'4	m	Dec. 20° 5	9'	M. 8·4, 10·1
Σ.	182.6	In.	7.43 7.33	1829.75 1.84
H ₇ . Mä.	.6 9. 0.881		'44 10 '51	5°59 30°50 43°77
De.	'I 194'I		.45 .70	7'48 65'21

596 o.s. 358.

R. A. Dec. M. 18h 30.5m 16° 54′ 6.8, 7.2

Considerable change in both angle and distance.

Dunér has $\Delta = 1'' \cdot 46 + 0'' \cdot 022 \ (t - 1860 \cdot 0)$. $P = 209^{\circ} \cdot 9 - 0^{\circ} \cdot 55 \ (t - 1860 \cdot 0) + 0^{\circ} \cdot 00822 \ (t - 1860)^{\circ}$.

Mä.	223.8	}	0.82	1843'54
0.Σ.	227.0	3n.	1.53	5'41
	207.9	2n.	73	63.16
	203'9	,,	.83	72.58
Da.	218.6	In.	.18	48 56
Se.	214'2	,,	'35	57'71
	207'2		2.12	65 63
De.	•5	4n.	1.72	6.68
Du.	205.4	6n.	67	9.28
	203.3	,,	.65	71 03
	.3	2n.	·8ī	5 69
Sp.	202.2		•67	
	Ĭ.		.73	6.29
Pl.	200.8	3n.	.72	57

597 Σ. 2346.

R. A.		Dec.		М.
18p 30.2	m	7° 26	i'	7:5, 9
Σ.	282.9	4n.	15.41	182964
Mä,	286.6	-	16.41	43 69
	·I		17'04	52 62
	287.2		14	9.84
De.	288.2		18.06	64 83
W. & S.	289.4	2n.	19.0	74 65
	•2	In.		7-62
G1.	.7	٠,,	19.34	479
Fl.	•5	۱ ,,	26	7.80

598 o.Σ. 359.

R. A 18h 3		Dec. 23° 31	,	M. 6-6, 69
Da.	356.9	2n.	0.73	1848-56
	358.6	,,	.60	54.10
Ο.Σ.	354.1	6n.	.66	49'54
Mä,	328.0	3n.	.69	51.77
8e.	357.6	2n.	·58	7.19
De.	173.3	4n.		67'91
Du.	352.6	8n.	0.24	70.80

599 a LYRÆ.

R. A.	Dec.
18h 32.8m	38° 40'
10 32 0	JU 440

Magnitudes.— 2., 1, 10.5; Sm., 1, 11.

C. Z., A, bluish white. Sm., A, pale sapphire; B, smalt blue. H₁, A, fine brilliant white.

H₁ (Phil. Trans., vol. lxxii., p. 223). "Sept. 24, 1781.—Double. Excessively unequal. By moonlight I could not see the small star with 278, and saw it with great difficulty with 460; but in the absence of the moon I have seen it very well with

227. L fine brilliant white; S dusky. Distance 37" 13". Position 26° 46' s.f."

On the 22nd of October H₁ applied a power of 6450 to his telescope and examined this fine star for fifteen minutes. He found the image "perfectly round, and occasionally separated from rays that were flashing about it." He was led to think that this star has light enough to bear a power of 100,000 with 6 inches of aperture. The diameter of the disc of a, taken with his new micrometer, was 0".3553.

H₂ and So. measured this double star in 1822. From a consideration of the change indicated by the measures and the proper motion of α given by Piazzi, H, was led to believe, "First, that the proximity of the large and small stars is merely apparent and accidental, no connexion existing between them; and, secondly, that the proper motions assigned to α are not very remote from truth."

So. measured it again in 1825, and Dawes has measures in 1830. Both H, and Dawes observe that the small star bears illumina-

tion well.

Smyth measured this pair in 1830, 1837, and 1843. He says (Cycle, p. 423), "a Lyræ is one of the insulated bodies, and is worthy of ranking with Sirius, Canopus, and Capella. Yet, by the experiments of Dr. Wollaston, it appeared that the light afforded us by this star is about

180,000,000,000
th part of the Sun's light, or only about one-ninth part of the light of Sirius, but still it offers a glorious blaze." Brinkley found its parallax between 2" and 2":52, Struve 0":125, while Airy "has pronounced that its annual parallax is too small to be sensible to our best instruments."

Brünnow remarks that the proper motion of this fine star appears to have decreased: the movement as deduced by three eminent

astronomers is here given :-

R. A. N. P. D. Years. Bradley 0":2839 0":2908 1750—1830 Argelander '2661 '2675 1837—1852 Brünnow '2414 '2643 1852—1869.

The following are some of the values of the parallax which have been found:

2. 0":261

147

0.Σ.

	Br. Pe.	·212 ·103.	
H ₁ .	116.8	38"	1782:36
-	.2	43	92.31
H,.	132.1	41.2	92.31
-	137'9	40	30.00
8o.	133.2	41.13	25.26
8m.	137'9 133'5 135'2	43.1	30.84
	137.9	42.7	7.21
	137.9	43.4	43'34

Ο.Σ.	144.5	ı	44.16	1851.85
Se.	147.7	5n.	45'24	7:47
De.	150.5	бn.	46.16	65.63*
Br. 150°	58′.55		.23	69 †
W. & S.	121.8	4	57.64	71.28
	152.2	6 6	49'09	2.42
	'2		47.20	3'45
	154.0	3	48.4	4.70
~ 1	·5	3 5 6	•••	.62
G1.	Ö.	_		3'79
	153·8 ·8	10	48.5	4.79
		9		.80
	.7	4	'5	.85
	.4	4n.		75.71 8.60
731	154.7	3n.		
Fl.	155.1	In.	48*14	7.00

600 o.z. 360.

R. A.	Dec.			M.
18r 33m		4° 45′	6.2, 10	
O. Σ. De.	291.3 292.6	3n. 4n.	1°11 '40	1849 [.] 67 67 [.] 16

601 S. 2356.

R. A.	Dec.	M.
18p 33.0m	28° 36′	8, 9
D		

Dunér gives

1858.69. $\Delta = 0^{\prime\prime}.96$. $P = 53^{\prime\prime}.2 + 0^{\circ}.205 (t - 1850.0)$.

}
,
•
;
,
,
,
)
:
)

602 S. 2367.

R. A. Dec. M. 18^h 35'9^m 30° 11' 7, 7'5, 8'4

Probable change in angle (A B).

		AD	•	
Σ.		In.	single	1829.75
		**	٠,,	32.31
	58.4	,,	elong ^d	
	72.2	,,	,,,	·86
	64'5	**	1	4.01

^{* &}quot;Distance corrected for refraction = 46":171."
† Position and distance determined from a very large number of observations extending over four-teen months.

0. Σ. Mä. De.	79°3 77°3 76°7 62°9 70°4 73°5	In. ,, ,,	0.53 .54 .51 .53 elonga.	7.59 51.62 66.68 43.77 64.67	
Sp.	242.3		0.35	75.65	
$\frac{A+B}{2}$ and C.					
Σ.	193.9	5n.	14.13	32.23	
Ο.Σ.	194.4	In.	'40	41.65	
	193.7	,,	·23 ·28	7:59	
	.3	,,		51.62	
	194'8		'20	66.68	
G. Bond.	193.3	In.		51.62	

603 Σ. 2384.

R. A. Dec. M. 18^h 38·4^m 67° o' 8, 8·5

C. yellow.

A small double star discovered by Σ . He says "there is scarcely any doubt that change has here taken place."

In Mr. Bishop's volume, p. 141, Hind says, "Notwithstanding the strange coincidence of \(\mathcal{\mathcal{L}}\).'s individual measures in 1836, t seems very doubtful whether any altertion has taken place since the star was first measured."

Dawes (Mem. R, A. S., vol. xxxv., p. 408) writes, "Notwithstanding the strong doubts expressed by Mr. Hind, I cannot but regard this star as constituting a highly interesting binary system; though its orbital movement is far less rapid than was indicated by the comparison of Σ ,'s measures in 1832 and 1836.

0. E. (1876). The angle has not changed since 1836, but the distance has probably slowly diminished since 1832.

Σ.	307'1	3n.	0.83	1832.34
	318.3	5n.	.65	6.87
Ο.Σ.	315.1	ın.		40.22
	319.0	,,	0.85	.61
	313.6	,,	.23	6.69
	321.3	,,	'46	51.67

604 Σ. 2375.

R. A. Dec. M. 18^h 40^m 5° 23′ 6·2, 6·6

Dunér's formulæ are

1851'40. $\Delta = 2'' \cdot 22$. P=111° · 2 + 0° · 153 (t-1850'0).

Σ.	107.8	2n.	2.53	1 1825-60
۷.	107.8	In.		8-66
	108.6		'34 '20	32 88
-		2n.	1.88	28-65
H,	103.1	1		9.80
	109.4	1	2.48	
	108.8		14	31 60
Da.	109.8		.27	2.56
	.5		.27	4.20
	111.2	ın.	.07	48-56
Mä	•4		'05	1.62
	٠6	i	'27	2:4
	.4	6n.	·3 3	3'42
	112.9		.37	50 86
	111.9	4n.	.27	1.72
	5	T	'24	2'01
	112.1	IIn.	.28	7:26
		1144	.30	9.81
D	113.4		.28	4.29
De.	110.1	5n.	1	
Se.	111.6	In.	·23	6 02
	113.2	,,	'02	66.20
Mo.	•0	3n.	'33	58 68
M.	112.0	In.	.20	65 67
Du.	114.6	5n.	1.85	71.47

605 Σ. 2382.

ϵ^1 LYRE.

R. A. Dec. M. 18^h 40[·]4^m 39[°] 33′ 4[·]6, 6[·]3

C. E., A, greenish white; B, bluish white H₁, A, very white; B, a little inclining to red; Sm., A, yellow; B, ruddy.

H₁ (Phil. Trans., vol. lxxii., p. 217):
"Aug. 29, 1779. A very curious doubledouble star. At first sight it appears
double at some considerable distance, and
by attending a little we see that each of the
stars is a very delicate double star."

(Phil. Trans. 1804, p. 373.) "This remarkable double-double star has undergone a change of situation in each double star separately, which is not very considerable, but deserves our notice on account of a certain similarity in the directions of the alteration. The position of II. 5, Nov. 2, 1779

was 56° 5' n.f; and, by a mean of three observations, taken Sept. 20, 1802, May 26 and 29, 1804, it was 59° 14', which gives a change of 3° 9', the motion of the angle being retrograde." He then states that this change could not be due to "the position of the apex of the translation of the solar system;" that the parallax thus arising would explain the change of the preceding, but not of the following star; and adds, "The situation of both, however, is in a part of the heavens which is so rich in scattered small stars, that a variety of casual and merely apparent combinations may be expected."

H₂ and So. (*Phil. Trans.* 1824, p. 311) made measures in 1822. "The measures on the whole are favourable to a slow variation in the angle of position." But as the change is so small, "it must be regarded as

still open to further inquiry."

 H_n in the Mem. R. A. S., vol. v., p. 42, says, "The strong suspicion that these two elegant double stars, so very similar to each other in appearance, distance, and velocity of motion, form in reality a twin system, and have a combined rotation about their common centre of gravity, is increased by the fact that their rotations are performed in the same direction, which, from the analogy of the planetary system, and from that of ζ Cancri, the only ternary star hitherto suspected on any grounds of observation to exist, might be expected."

Σ. (M. M., p. 52): "A small indirect

angular motion appears indubitable."

Sm. (Cycle, p. 429): "The proper motions in space assigned to this quadruple related system form a link in the chain of evidence which proves the connexion. Indeed, it may be roundly stated that B will revolve round A in about a couple of thousand years;" "and possibly both double systems may move about the central ones in something less than a million of years."

in something less than a million of years."

Ο.Σ. "The indirect motion still continues. The distance appears to have changed very little. Our measures of distance in 1841 and 1856 are no doubt too

large."
Dunér's formulæ are

1854.06. $\Delta = 3^{\circ}.12$. $P = 21^{\circ}.6 - 0^{\circ}.185 (t - 1850.0)$.

The coefficient of t - 1850 is very sure.

	•		. #	
H ₁ .	33.9	In.		1779:53
	•••	,,	(3.44)	.93 1803 [.] 84
	30.8	3n.		1803.84
H, & 80.	25.9	26	4.01	22.13
-	.3	In.	3.62	31.18
Σ.	24.5	٠,,	2.95	28.72
	27.0	2n.	3'14	30.94

	^		,,	
Σ.	25°5 26°0	In.	3.09	1831.96
	26 '0	3n.	2.08	2.20
_	20·5 23·7		3.15	42.71
Da.	23.7	2n.	·57	30.23
	25.2	In.	•••	2.27
	24.3 21.9	2n.	3'32 '25	4'52
		5n. In.	·16	6.95
	.7 .4	3n.	14	8.20
	20.4	2n.	20	8·59 53·71
	19.6	4n.	12	4.41
	.5	2n.	.03	1 '84
	٠3	In.	•03 •06	9.73
Be.	25.2		.31	30.72
Sm.	.3		.21	73
	23.9		.3	6:45
	21.9		.3 .2	9.78 42.59
	20.6		·2	53.41
Encke.	19.7 24.0		'42	27.50
Ga.	22.3		.20	37.59 8.72
Ka.	23.8 53.8		'34	9.99
	21.I		.06	41.67
	24'9	k .	. '19	3.03
	٠7		.11.	'94
	10.0	6n.	'14	31.65
	18.5		2.95	65.80
Ο. Σ.	22.2	4n.	3.22 33 31	40.74 2.71 51.88
	23.6 19.1	In.	33	E1.88
ĺ	18.8	"	.19	1 2.72
	21 · I	"	.16	7.51
	18.8	,,	.37 .22	7.51 7.76 8.57
	.2	3n.		8.57
	19.5	,,	.06	01.50
	16.1	,,	.56	2.83
	17.3	2n. In.		3.23 6.48
	17.4		•••	'49
Mä.	22'I	,,	3,10	42.47
	23.5	12n.	3.13	42.47 3.68
	24.0		.23	4 '07
	21.7	7n.	*20	7.23
Í	.9		.55	50.24
l I	·9		.26	1.84
į	20.6		'10 '20	2·58 3·75
1	20.0		02	4.70
•	.,	ıın.	.13	6.43
1	.5 .2		.ığ	8.47
ł	19.4	13n.	.05	61.35
Po.	20.7	4n.	.00	45.64
Ja.	21.9		.95 2.46	6.45
Mit.	20'4	In.	2.40	7.60 8.47
Bond. Flt.	21.0	"	3.1	51.65
Mi.	19'7 21'4	43 35	3.1 51.	1.83
De.		5n.	.33	3.63
	20'7	4n.	'35	4.70
1	19'4	in.	.11	5.21
	20'0	3n.	.18	6.49
	19.3	4n.	.03	62.64
	.4	77	.06	3.23
Se.	22.4 19.0	3n. In.	·07	55.90 66.42
	190		. 20	

	•	_	"	
Mo.	20.7	34	3.09	1845.64
	18.7	18	'20	58.43
	•8	12	.16	9.0
M.	20'4	In.	.06	61.45
	13.8	,,	.29	7.41
	14.0	,,	'00	8.79
	13.6	,,	'22	9.76
	17.4	,,	*37	70'38
_	15.1	,,	18	'41
′	14'9	",	•28	*43
	15.3	,,	'29	79
	19.0	,,	.18	2.45
	17.2	,,	'24	'47
	19'0	2n.	*25	3.43
	14'2	3n.	119	4.29
	.2	2n.	.10	5.69
Eng.	19.8	7n.	•29	64.45
Ta.	23.0	2n.	41	6.21
	· · 5	In.	·6o	7.54
	18.3	3n.	'14	73
	17.4	2n.	'15	8.73
	18.3	3n.	2.96	9.73
	.0	4n.	3.00	73.84
Br.	19.7	2	•33	68.29
W. & B.	14'3	4	.18	71.27
	17'1	4	.13	.52
	16.0	3	•••	'53
	•6	8	3.03	3.22
	17.4	11	.22	6.29
G1.	.0	6	•••	3.48
	18'4	8	•••	.81
	16.1	5	3.1	.20
		2n.	•••	5.18
	.7	6n.	•••	.26
~	.5	2n.	•••	8.63
Schi.	.9	In.	3.02	5.63
8 p.	.9		.08	.63
Dob.	17.4	3n.	•••	.93
	15.3	,,	3'24	7.43
0.13	16.3	,,	.04	8.26
Goldney.	18.6	4n.	.18	.71

606 Σ. 2383.

ε² LYRE.

R. A. Dec. M.
18h 40'4m 39° 29′ 4'9, 5'2

1779.

Magnitudes.—"The difference in brightness seems variable." (2.) The magnitudes of E, F, G, are 9.5, 12, 12, respectively.

C. H1, white; 2., very white; Sm., white.

H₁ (*Phil. Trans.*, vol. lxxii., p. 217:
"The stars of the second set are equal, or the preceding of them rather larger than the following. The interval between the equal set with a power of 227 is almost 1½ diameter of either; with 460, full 1½ diameter; with 932, two diameters; with with 2010, 2½ diameters. These estimationare a mean of two years' observations. Position of the equal set 72° 57' s.f."

H₁ (Phil. Trans. 1804, p. 373) found the position on Sept. 20, 1802, May 26 and 20, 1804, was 83° 28' and 75° 35' s.f.; this gives a difference of 7° 53', the motion being retroorade.

being retrograde.

H, and So. (Phil. Trans. 1824, p. 314):
"The change surmised by Sir Wm. Hersche.
in 1804 seems to be well borne out by subsequent observations, the total alteration in the angle being no less than 13° 51, averaging 0° 325 per annum in the direction n.p.s.f., or retrograde."

h.p.s.i., or retrograde:
H₂ (Phil. Trans. 1826, p. 375). After giving his observations in 1825'53, he remarks: "The change of position in 3'11 years amounts to -0° '45. Calculating on the presumed angular motion -0° '325, it should have been -1° o'. The difference is nearly insensible."

2. (M. M., p. 52): "Indirect motion is beyond doubt."

The angular movement in this pair is in the same direction, and very nearly of the same amount, as in the preceding pair. Both the distance and the angular change have been very constant: between 1779 and 1831 it was -0°355; between 1831 and 1862, -0°335 per annum. (O.Z.) Duner gives

1853. $\Delta = 2'' \cdot 58$. P = 149° · 2 - 0° · 360 (t + 1850°0).

		C D	. "	
H ₁ .	173°.5	In.	•••	1779.83
-	167.3	ا ۲ ا	•••	1804 08
H, & 80.	159.9	5	3.80	22'42
	'2	28	'34	5.23
	156.4		•••	5.2 8.72
	157.0	1	3.56	32.27
Σ.	159.6	In.	2.20	28.72
	154.1	2n.	•68	30'94
	156.3	In.	69	1'96
	154.0	3n.	'48	2.20
Da.	157'3	5n.	92	0.22
	126.5	In.	62	2.22
	154.5	2n.	· 8 6	4.23
	152.8	,,	·57	4072
	121.8	,,	•57 •65 •44	1.66
	149'9	ın.	.44	6795

Da.	148.9	2n.	0		. X .	•			
Da.	147'4		2·59 '45	1848.54	.	137.2	In.	2 37	1869.76
	146.5	4n.	43	53'71 4'72	1	138.4	,,,		'48
	145.9	2n.	.47	+·84	İ	139.6	"	2.25	70.43
	.43.8	ın.	.54	9.73	1	.5	"	'40	'45 '79
	144.8	"	. 55	65.75	1	137.2	2n.	.47 .50	2.45
Be.	156.1	•	.55 .82	30.72	1	138.3	In.	38	3.42
Sm.	157'1		-8	73	ľ	- 30 3	2n.	.35	4.61
	154'3		.5 .6	4.52	Eng.	143.4	7n.	•55	65.39
	120.0			42.29	Ro.		in.	.49	54
	148.1		•5	53.41	Ta.	141.0	2n.		6.21
Encke.	153.7		.95	37.59		142'3	In.	2.23	7.54
Ga.	155.4		3:35	8.72	1_	139.4	,,	•••	74.61
Ka.	152.8		2.2	9.78	Du.	143.5	2n.	2.41	67.71
Aa.	151°0 152°7		71	.99 41.67	1	139.9	,,	'29	8.73
	154 /		.49 .61	3.03	i .	141.4	3n.	*35	9.73
	151.3		-69	3 03	Br.	·5 ·8	4n.	:43	73.84
	149.0	6n.	.25	51.65	W. & S.	146.3	2	*64	71.22
	143.0		'34	65.80	W. C D.	140 3	4	'48 '7	1.57
	142.6		•37	6.84	1	144.5	ī		.53
Ο.Σ.	121.1	3n.	.73	40.83		141.5	4	2.7	.55
	150.1	In.	.20	2.21		139.4	12	.62	6.29
	147 '6	,,	·50 ·78	51.88	G1.	141.5	7		3.48
	.6	,,	.21	2.73		142'1	7	2.2	18·
	144.6	2n.	•55	7.63	1	138.6	2n.		5.28
	143.9	In.	'42	8.20	1	136.3	6n.		6.26
	144.6	2n.	:49	19.	1	138.2	5n.	2'40	8.63
	146.5	3n. 2n.	:52	2.83	Schi.	139.5	In.	'39	5.63
	145.6	i	:54		Sp. Dob.	.3		.40	.63
	142.6	in.	'45 	3.23 6.48	Dob.	.3	3n.		.93
Mä.	153.6		2.20	41.49		137.3	"	2:35	7.43 8.56
	-33.2	ł	85	2.47	Goldney	139.1	4n.	'24 '43	71
	151.9	12n.	.72	3.68		· 3	1 411.	1 43	1 /-
	• • • •		79	4.67			1	1	
	150.5	7n.	.74 .83	7.23	Small	stars	betwe	een €	and ϵ^2 .
	149.6		·83	50.24	ł		A C		
	148.5		81	1.84					1 -0
	149.2		48	2.28	W. & S.	173°0	4	207'0	1871.57
	147°4 146°8		.66	3.75	1	.o	3	206.3	52
		12n.	.70	4.70 6.43	1				.53
	.3	1	.65	84.7	}		AE		
	144.2		'21	9.40	W. & S.	135.2	1 1	- 	2.25
	145.2	13n.	.62	61.35		134.7	2	144	.52
Ja.	150.2		3.10	46.14		-34.6	ī		·52 ·53
Po.	·8	3n.	2.76	.63	1	•	'		, ,,
Mit.	149.2	In.	.22	7.60	1		A F	•	
Bond.	.0	,,	•5	8.47	W. & S.	180.2	I	139	'52
Flt. Mi.	147.0	45	:42	51.57		.ŏ	1		1 .53
De.	146.7	24	'49 '60		1		٠ . ~		-
2 0.	147°0 146°7	5n. 4n.	70	3.63 4.69			A G		_
		2n.	•68	6.46	W. & S.	167.5	1	108	.52
	147.5 143.8	4n.	.20	62.64		164.6	2		•53
	144'2	"	'45	3.23	I		CE		
Se.	148.4	4n.	.57	56.06			_	-	
		in.	'49	65.24	W. & S.	36.6	1	129	.52
Mo.	150.8	30	.75 .48	45.64	1	35.9	I		.23
	146.4	3n.		58.42		37'9	I		.53
X.	152.6	In.	. 43	61.45	1		CF	_	
	318.2	"	.10	7.41 8.79	W. & S.	226.4	-	-	1
	139.4	"	:57		W. 65 5.	338.4	I	71	53
	137.6	"	44	9.76	1	339.3		,	, 33

		C G.			
W. & S.	1.5	1	101"	1872.22	
	'4	I	•••	1 .23	
		E F.			
W. & S.	248.9	I	III	'52	
	250.0	I	•••	.53	
		E G	,		
W. & S.		I	77	.25	
	•5	1	•••	.23	
		GF.	•		
So.	220	i	53	23	
H	22 I		48	31	
W. & S.	219.2	In.	44 46·7	72	
Bu.	38.4		40.4	78	
		E H			
Bu.	357.0		25.0	78:36	
ϵ^1 and ϵ^3 .					
Sm.	172.5	I	207'3	30.43	
	*/~.3		206.8	6.45	
Σ.	.9 .3		207'I	5.53	
De.	·9		· ·7	63.12	
Eng.			206.3	4'45	
X.	'4	In.	209.7	6.47	
W. & S.	173.0	,,	206.6	72.05	
Fl.	172.8	٠,,	207'1	7.52	

* The values for A E, A F, A G, C E, C F, C G, E F, E G, F G, given by W. and S., were calculated, not measured.

607 S. 2398.

R. A. Dec. M. 18^h 40'9^m 59° 25′ 8'2, 8'7

C. A yellowish, B bluish.

12'42 1832'17 134'4 Mä. 44'91 137.4 138.6 '97 13.27 7:32 De. 142.8 15.26 65.04 77.88 Fl. 16.2 144'7 In.

608 S. 2396.

R. A. Dec. M. 18^h 42^{·8^m} 10° 38′ 7'7, 11'2

Σ. (P. M., p. ccxxx.) shows that the smaller star does not partake in the considerable proper motion of the larger star; and O.Σ. finds that the following formulæ represent the observations quite well:

 $\Delta A = -11''.790 \pm 0''.051 - (0''.1222 \pm 0''.0044) (t-1850.0).$

 $\Delta D = + 2'' \cdot 204 \pm 0'' \cdot 051 + (0'' \cdot 4579 \pm 0'' \cdot 0044) (t - 1850 \cdot 0).$

Σ.	232.6	3n.	11.74	1829.60
	232·6 285·3	2n,	12.58	21.90
Mä.	267.4		10.31	43.71

25"		i		0
Yä.	275'7		10.35	1846.
	276.5		11.75	7
	284.7		•••	507
	286.3		12.22	1"
	287.6		'40	2"
θ.Σ.	278.2	3n.	11.21	497
	292'4	2n.	13.96	57°1
_	304'7	,,	16.64	657
De.	.4	1	'39	1 4
W. & S.	313.2	4	19.9	74.6
	311.0	4	'92	5.6
Fl.	314.6	ın.	21.02	7.7

609 o.z. 363.

R. A 18h 4		Dec. 77° 3	M. 7 5, 7	
Ο.Σ.	199.5	In.	0.57	1842.73
	13.8	,,	•63	4 85
	20.2	,,	.20	6.69
_	26.5	,,	'49	75.34
De.	19.7	3n.	•••	67.61

610 \(\Sigma\). 2400.

R. A.	Dec.	M.
18h 43.2m	16° 7′	8.1, 104

At first glance the observations seem to indicate an occultation produced by orbital motion: this view, however, is not confirmed on a more careful scrutiny. On discussing the observations, it was found that the changes have been caused by the proper motion of the larger star, and that in 1871 the minimum distance would be reached. Some uncertainty still remains for future measures to remove. (O.Z.)

Σ.	305.3	2n.	2.96	1829.18
	303.2	,,	74	33.16
Mä,	300.1		1.99	43.70
	301.0		2.50	6.47
	299'9		1.80	8.45
0.Σ.	275.3	In.	.77	51.62
		,,	1 ±	4.63
	246?	,,	0.83	5.67
	•••	,,	1 3	7.61
	•••	,,	single	.67
	•••	,,	,,	8.23
		,,	,,	.29
	238	,,	1 ±	65.72
	238 236·3	,,	1 '02	72.61

611 \(\Sigma\). 2402.

R. A. Dec. M. 18^h 44'1^m 10° 32' 8, 8'4

The measures by O. Z. and Secchi seem to indicate a slight angular change.

	۰		"	
išć 🌤	196°3	2n.	0.68	1828.68
išć ja	.2	In.	.76	9.64
	201.8	٠,,	•85	33.77
ā	204.3		'70	8.83
STATE OF THE STATE	208.4		•68	43.65
1.51	2120		•68	52.63
	229.4	ľ		61.66
Σ.	218.5	In.	0.01	40'51
	215.6	,,	· Ś ī	1.22
	218.4	,,	•95	.66
_	208.8	,,	1'04	72.61
Se.	213'4	2n,	0.89	56.64
	203.8	In.	•84	65.63
—₩. & S.	206.9	7	.98	72.21
	205.9	7 2	1.0	.55
	202 · I		•0	•56
	.5	3 4 4 6	.0	4.65
	207°I	4	0.8	5.63
75 G1.	203.5	6	.97	4.73
ú. ₩.O.	205.7	In.	1,00	.68
	204.2	,,	.13	•68
Schi_	206.6	ın.	0.84	5.66
- 8p.	•6		-85	.67
			•	•

"32 75

2 |

\$1

5 🗸

1

7.5

612 S. 2409.

R. A. Dec. M. 18^h 46^m 13° 23′ 8, 9°3

The amount of angular change, if any, is still uncertain.

Σ.	32.2	6n.	0.08	1832.76
0.Σ.	48.0	In.	1.00	40.57
	49'7	,,	0.83	1.55
	45'3	,,	1.03	2.72
	42'4	,,	.18	7:59
	38.2	,,	•••	8.73
	43.1	>>	1.06	'74
	37.1	,,	.13	52.67
_	38.2	,,	.01	72.61
Se.	31.4	2n.	*05	56.65

613 o.s. 364.

R. A. Dec. M. 18^h 48^m 25° 12' 7.5, 10.5

O.Z. could not see the companion in the years 1845, 1847, and 1852. De. in 1865 found it "not round."

0. 2. 162.8 | In. | 0.74 | 1842.67

614 S. 2420.

R. A. Dec. M. 18^h 49.4^m 59° 14′ 4.6, 7.6

Probably a case of rectilinear motion. The proper motion of A is $+0^{\circ}$.005 in R. A., and -0" or in N. P. D.

Ħı.	306°0	ı	26.65	178076
Σ.	350.8			1814'13
	346.2	3n.	30.56	32.60
	345.6	6n.	.38	6.39
So.	349'2		29.95	22.14
Sm.	347.6	l	30.4	30.78
	345.2		3.3	7.89
0.Σ.	3.3.3	ın.	.52	9.85
	•1	ŀ	.64	40.84
	- 1	,,		
	342.7	,,	.82	51.67
	338.9	,,	31.25	70.87
	.9	,,	-66	4.73
ĭä,	344.8		32.10	41.48
	'2		30.20	3.32
	.0		48	7.81
Ka.	345.0		27	1.74
De.	341.5	3n.	.93	58.21
	340.6	4n.		
M.		-	31.01	63.14
	341.0	In.	32.10	5'43
F1.	339'4	,,	31.87	77.76

615 o.s. 525.

R. A. Dec. M. 18^h 50^m 33° 48′ A 5'1, B 10'3, C 7'1

C. A yellow, c blue.

0.Σ. observes that it is very remarkable the stars A C should have been measured three times without B being detected.

De. has estimated the magnitude of B as the 8th and 9th. O.E. has twice entered it as the 11th.

	AB.	
Ο. Σ.	128.0 7n. 1.	55 1849·70
De.	132.8 2n.	36 69·77
	A C.	
O.Σ.	350.5 10n. 45.5	50 46·98
De.	6 2n. 45.5	43 69·77

616 \(\Sigma\). 3130.

0.Σ. 365.

R. A. Dec. M. 18^h 52^m 44° 4′ A7'4, B8'5, C11'1

A B.—In August 1841 the star A was readily seen to be double, but in the September following it was twice examined without the companion being detected. It was oblong till 1851, quite round in 1852 and 1854, and again readily separated in 1857, the relative position being the same as in 1841. Hence the period is probably sixteen years: possibly, however, the phenomena may be explained by the variability of the companion. (0. Σ .)

A C, probably unchanged,

		AB	•	
Ο.Σ.	168°.	In.	0.20	1841.65
	212	,,	oblong	4 85
			_	4.03
	232	"	22.	.85
	235	,,	obl.?	5.65
	212	,,	,,	6.69
	226	,,	oblong	7:59
	242	,,	,,	8.74
	250	,,	obl. ?	9.82
	276	,,	0.50	51.60
	273		oblong	
	-/3	,,	corolig	:75
	•••	,,	single	2.63
	•••	,,	,,	4.64
	•••	,,	,,	·.69
	166.1	۱,,	0.20	7.67
		A C		
Σ.	262.9	бn.	2.69	33.37
Ο.Σ.	266.2	In.	'94	41.65
	260.3	,,		4.85
	265.7	"	·59 ·78	7.59
	261.6		.78	8.74
	262.6	,,	10	0 /4
	202.0	,,	.36	9.82

A D

617 Σ. 2422.

264.2

256.5

264.6

R. A. Dec. M. 18h 52.2m 25° 56′ 7.6, 7.7 Probable change in angle. Dunér gives

,,

,,

,,

52.63

4.64

7.67

.69

1849.08. $\Delta = 0''.79$. P=104.4 - 0°.1 (t-1850.0).

Σ.	106.0	6n.	0.85	1832.10
Ο.Σ.	.2	2n.	.98	40.69
	101.1	In.	.74	52.67
	100.3	,,	.74 .87	7.61
	96.8	,,	.85	72.61
Mä.	105.1	7n.		43 08
Se.	106.8	3n.	·77	56.88
De.	100.6	In.	.7	63.23
	99. 0	,,	.79	5.73
	100.2	,,	·79 ·84 ·8	5:73 8:66
	98.0	,,		73'49
_	100.6	,,	.74 .72	4.49
Du.	•5	6n.	.72	69.16
W .0.	97.4 98.5		*97 *76	74.66
Sp.	98.5	I	.76	5.68

618 Σ. 2424.

R. A. Dec. M. 13° 28′ 18p 23.2m 5.7, 9.2

Considerable changes (see P.M., p. ccxxi.), probably due to the proper motion of the brighter star.

Smyth's magnitude of A is from Piazzi:

his own estimate was that "it certainly appeared bright enough to be rated among the 6th, on careful comparison." He gives B as of the 10th magnitude, A as of the 7th. Dunér's estimates are 5, 10. Dunér gives

 $\Delta \sin P = -16''.55$. $\Delta \cos P = -6''.91 + 0''.111 (t - 18500).$

H ₁ .	238°6	In.	1 7	1802.76
Σ.	236.4		20'06	20.64
	241.6	3n.	18.66	31.31
	248.6	2n.	17.82	21.00
8o.	240'5	5n.	19.66	25'11
Sm.	· •9	•	1.	32'61
Mä.	244.9	3n.	17.07	44'22
	247.5	,,	45	52705
	.2	2n.	16.20	6.82
	248·I	In.	.13	62.72
De.	252°I	4n.	17'43	3.48
ο.Σ.	254'2	ın.	16.87	8.75
Du.	.0	2n.	17.23	9.77
W. & S.	255.8	4	16.9	74.65
	258.5	Ś	17.7	-65
	255.9	4	.20	5.63
G 1.	257.4	4	.5	473
Dob.	256.7	2n.	16.74	7.52

619 Σ. 2429.

R. 18h	A. 54 ^m		Dec. 36° 10		M. 8·3, 9·8
Η ₁ . 80. Σ. Μä, Τα.		285°0 290°3 289°5 288°8 287°9	2n. 3n. In.	5'47 '32 '67 '96	1783'21 1825'57 9'83 43'40 66'47

620 Σ. 2438.

M. 58° 4' 18p 22.2m 7, 76

Certain change in angle and distance. The periastre was probably passed either between 1842 and 1870 or since the latter year. $(0,\Sigma)$

H ₁ .	355		I	1782 68
_	358.4			3.26
H ₂ .	337.8	l	0.2	1830.00
Σ.	340.6	4n.	.72	2.23
Sm.	341.0		'7	4'53
Ο.Σ.	348.7	2n.	.69	40.22
	341.8	In.	.22	6.69
	306	٠,,	.53	70 87
	sin	gle		'92
Mä.	338.0	Ĩ	0.6	41'48
	346.6			3.35
Da.	332.1	ın.	0.62	1.80
So.	333.5	4n.	'4	57.54
De.	330.0	elon	gated	63-62
W. & S.	not	elongate	ed	73.58

621 S. 2434.

R. A. Dec. M. 18^h 56.5^m - 0° 53' A 7.9, B 8.4, C 10.3

C. Sm., A and B, white; C, blue.

A B is H₁ IV. 127. BC is Σ. 2434.

Between 1831 and 1864 the distance of A B seems to have diminished about 1", and the angle to have decreased about 10°. The change in the angle of B C also amounted to about 10° in the same time, the distance remaining nearly as when first measured.

In AB the motion is rectilinear. BC form a physical system in rapid motion.

AB.

	•		"	
\mathbf{H}_{1} .	159'9	- 1	17.7	1783.60
H, & 80.	148.8	10	26.01	1823'48
So.	•6		25.8	31.48
	146.8		•6	8.59
Σ.	147'0	4n.	•56	1.22
Mä.	145.8		·45	5.23
	142.9		•66	4'45
Mit.	141'3	In.	.77	8.65
	139.8		24'24	51.75
Se.	138.9		'48	6.93
	136.8	2n.	.53	66.65
M.	137.1	In.	23.58	1.47
W .0.	133.4	6	24.73	63
De.	136.8	2n.	'29	4.66
W. & S.	132.7	2	23.2	72.26
	.5	4	24°I	.62
	134'1	7 6	.0	3.22
	133'4	6	•••	.55
	132.9	4	24.0	4.67
	133.4	3	.18	5'66
G 1.	.2		23.8	4'73
C.O.	.6	2n.	24'31	7.67
Fl.	•8	In.	23.89	.76
		BC.	•	
Σ.	80.2	3n.	1'93	1831.28
Sm.	85°0		2.0	8.59
Mä.	8ŏ.6		'20	44.45
Mit.	72.4	2n.	1.24	8.12
Se.	68.7	,,	73	57.12

622 S. 2437.

69.6

C.O.

R. A. Dec. M. 18^h 56·6^m 19° o' 7·8, 8

In.

2n. 2

4

72.56

Certain but slow movement.

Dunér, excluding the observations of Mädler, finds the following:

1854.21.
$$\Delta = 0^{\prime\prime}.92$$
.
P = 74°.8 - 0°.312 (t - 1850.0).

	_ 0_		" -	
Σ.	80.8	5n.	1.08	1830.79
H. Mä.	82.9		.0	1,00
Mä.	76.7		0.99	9.60
	74.0	8n.	.93	44.26
	70.2	2n.	198	52.22
	65.8	,,	10.1	5.56 8.81
	53.8	In.	0.42	8.81
	62.3	,,	•6	9'74
	63.0	,,	·75	62.70
Ο.Σ.	74'1	2n.	1.36	40.76
	72.2	In.	'04	2.76
	74'4	,,	.02	6.69
	71'4	,,	0.06	7.59
	74'7	,,	1.02	9.73
	66.4	,,	'02	72.61
Se.	71.6	2n.	0.94	57'10
	68.2	In.	·§	66.73
De.	71'4	4n.	-8	3.06
Eng.	65.5	In.	1.06	4'49
Du.	72.7	5n.	0.80	70.09
W. & S.	62.8	4 6	.86	2.20
	68.2	6	1.0	3.22
	67.0	3	0.86	.26
	68.3	4	·8	4.67
	o.	4	•8	6.2
G 1.	67'9	11	I '02	4.73
8p.	70.7	l	'02	5.61
				-

623 Σ. 2441.

R. A.	Dec.	М.
18µ 28.1m	31° 13′	7.7, 9.3

Indirect motion.

Σ.	291.9	3n.	5.22	1830:34
Mä.	290.1	_	.19	7:33
	288.4		.11	43'77
	.5		'20	5'41
	287.4		4.69	51.88
	283.8		5.03	2.68
	285.2		.18	7:99
Se.	. 3	2n.	•64	.13
	284 0	ın.	.77	65.63 8.61
ο.Σ.	281.7	,,	'49	8.61
_	280.4	,,	.02	74.72
De.	285 i	,,	.36	63.47
	284 4	٠,,	'22	6.54
	283.4	,,	•26	9.20
	.1	,,	'14	74.70
	282.4	۱,,	.27	7.78

624 Σ. 2442.

R. A.		Dec.		M.
18 ^h 58 ^m		16° 48'		8, 9 [.] 5
Σ. Mä.	207.6	2n. In.	23.02	1828·77 43°70

R. A. Dec. M. 10p 1.2m 30° 15' 8, 9.2

Considerable angular change. While setting for this star in 1840, O. Z. detected another pair, of which he gives the following measures:

Angle. 160°	Distance.		Magnitudes.
	o″·68	1840.21	8, 9
155°·8	'43	2.72	

In 1866 a careful search failed to reveal the existence of this object.

			"	
Σ.	203.9	3n.	0.75	1831.20
Ο. Σ.	223.7	In.	1,00	0'84
	214'9	,,	0.80	6.68
	233.9	,,	'95	66.68
	236.3	,,	•95 •82 •6	72.61
mä.	208.1		•6	43.76
Se.	217'0	ın.	.45	57:57
De.	225.9	,,	1.56	65.32
Du.	235.2	5n.	0.81	72.45
W. & S.	.1	In.	1.0	3.22
	230.0	,,		•56
	232.4	,,	°.79 •88 •87	6.63
W .0.	231.6		-88	4.69 5.89
8p.	235.0	1	·8 ₇	5.89
		_		

626 Σ. 2456.

R. A. 19 ^h 1.6 ^m		Dec. 38° 21'		M. 8·2, 8·2
Σ. Mä,	13.6	3n.	29.07	1829'43
 8.	12'0 11'0		27:50	44.90 7.85
	. 4		28.00	50.81
	.2		27'34	2.02
Eng.	9.0		26.76	9·86 64·46
De.	.3		-48	.82
Dob.	7.1	In.		76.63
Fl.	٠.٢		25'50	7.86

Σ. 2455. 627

Dec. Μ. 21° 59′ 10µ 1.8m 7.2, 8.3

Dunér has computed the following formulæ:

 $\Delta \sin P = +3''\cdot 11 + 0''\cdot 011 (t - 1850\cdot 0) - 0''\cdot 00031 (t - 1850\cdot 0)^{2}.$

 $\Delta \cos P = -2''\cdot48 + o''\cdot058(t - 1850\cdot0)$ $+0".00025(t-1850.0)^{2}$.

The measures appear to indicate a physical relation, but the curvature is so slight that the movement may possibly be rectilinear and uniform.

	•		,,	
H,	140	1	4	1827.64
Σ.	144'5	3n.	4'93	8-77
Kä.	136.6		42	39.59
	132.6	6n.	.16	44.57
	125.5	In.	3'74	5074
	124'9	2n.	4'07	2.64
	.3	5n.	3.66	3799
	122.3	2n.	·65	8.73
	120.2	In.	4.04	61.74
	119.1	2n.	3.73	2.84
Mo,	124'3	3n.	.98	55.66
8 e.	123.0	,,	.70	7:29
_	113'4	In.	.77	65 64
De.	115.6	4n.	.25	4.60
	.3	2n.	. 55	5.66
	114.4	4n.	.35	7.20
	111.8	In.	·48	9.63
	109.9	,,	.22	71.65
	_'7	,,	·48	2.67
	106.2	"	'40	3.71
	•5	,,	.08	4.67
_	102.3	,,	.35	5.67
Eng.	114'2	3n.	.21	65.28
Du.	110.8	6n.	'41	9.95
W. & S.	109.7	6	'7	72.64
	107.2	3		.22
	109.5	4 8	3.42	3.22
01	:7		.37 .30 .48	4.67
G1.	5	10	30	4.73
Schi.	104.8	In.	48	2.61
8p.	-8	1	49 ا	1 01

Σ. 2464. 628

R. A. 19h 3.6m		Dec.	t'	M. 8·2, 10·5
Σ.	19.2	3n.	1.36	1830-36
Mä,	16.5			42.36
	24°I		I.IO	3.67
	33'5		•••	51.43
Se.	21.0	2n.	1.52	7.12
W. & S.	26.2	In.	.0.	76.32

S. 2471. 629

R. A. Dec. M. 19h 5m 7° 56′ 7'9, 10'7

Certain change in angle and distance. 121.8 7.63

1830.18 Σ. 0.Σ. 126.6 ın. 8.24 72.26 127'9 4.72

Σ. 2479. 630

Dec. R. A. M. 55° 8′ 19p 2.9m A7'I, B8, C94 Dunér has

 $P = 36^{\circ} \cdot 4 - 0^{\circ} \cdot 10 (t - 1850^{\circ}).$

		A B		
De.	40°9 36°8 20°2		elong ^d ·	1863·87 70·83 4·09
		A C		
Σ. Mä. Se. De. Du.	38.0 37.0 34.0 .9 35.6	4n. In. '' 2n.	6.65 .40 7.23 6.72 .66	32.61 44.37 59.80 63.49 71.13

631 S. 2481.

R. A. Dec. M. 38° 35′ 8, 8, 9

The common proper motion of AB is -o'' 29 in R. A., and +o'' 097 in N. P. D. C is Secchi No. 3.

Dunér gives the following formulæ:

1853'72.
$$\Delta = 3''$$
'90.
P = 231° 6 - 0°'23 (t - 1850'0).

A and $\frac{B+C}{2}$.

H ₁ .	261.6	1		1783'33
Σ.	234'3	3n.	3.83	1830.45
Mä.	235'3	In.	4'10	43'74
Po.	231.2	,,	3.73	8.23
ο. Σ.	49'3	4n.	4.03	55.26
Mo.	23 0°3	2n.	3.96	6.29
8e.	•8	3n.	.99	7.80
De.	.1	ın.	4'73	8.44
X.	223.7	,,	.31	65.44
	226 .0	,,	.35	9.77
8 p.	225.2		3.92	75.65
Du.	224.5	3n.	•••	6.75
Lindsted	l t. · 5	ın.	•••	'75

B C.

Se.	93'4		0.4	56.83
Ο. Σ. 8p.	93'4 98'2 88'7 86'5	In.	0.4 .4 .59 .52	56·83 9·61 66·74 75·64

632 Σ. 2484.

R. A.	Dec. 18° 52'			M. 7'4, 8'9
19 ^h 9 ^m				
Σ.	218.4	5n.	2.20	1831.76
Mä.	220'3		'47	6.46
	224.3		'43	43.72
	221.9		'43	51.80
	223.3		'64	2.63
	229'9			61.40
Se.	224'0	3n.	2.49	57.26
De.	.2	In.	·58	63.48
	227.7	,,	•68	6.40
	•8	,,	•68	7.63
	228.4	٠,,	1 '29	72.75

0.Σ. W. & S.	232·3	3n. In.	2.61 .5	1871°34 4°73 6°31 4°84
G 1.	232.2 232.2	"	.21 .21	6·31 4·84

633 S. 2486.

R. A.	Dec.	M.
19h 9m	49° 37′	6, 6 [.] 5

The distance has diminished.

The common proper motion is -0".22 in R. A., and -0".647 in N. P. D. (Σ.) Dunér's formulæ are

 $\Delta = 10'' \cdot 28 - 0'' \cdot 012 (t - 1850 \cdot 0).$ $P = 222' \cdot 2 - 0'' \cdot 08 (t - 1850 \cdot 0).$

	P	-	223 2 -	- o ··o	s (<i>t</i> — 13	850.0).
). #2			224'7	6n.	10'49	1834.6

Σ.	224'7	6n.	10'49	1834.62
Kä,	223 6		.23	43.84
	222.8	2n.	.38	5.85
	ı.		.53	7.85
		3n.	17	51.00
	·5 ·3	2n.	.55	60.65
Po.	.8	4n.	.33	47.36
Ο.Σ.	221.8	2n.	.28	51.85
0.2.			18	
	222.3	In.		70.92
	220.0	٠,	9.90	4.73
Mo.	222.6	6n.	10.12	56.40
De.	۰8	5n.	.51	4.76
	221.0	-	9.97	67.64
Se.	223'0	3n.	10.19	57.52
M.	221.8		9.99	63.31
Du.	-8	4n.	10.07	9.73
W. & S.	'4	4	9.8	74.72
	222'I	Ż	10.1	78
	221.3	4	.26	5.66
G 1.	3	10	.2	4.84
Dob.	220.3	4n.	9.81	7:45
200.	220 3	, 4 11.	901	1 / 43

634 o.Σ. 368.

R. A		Dec. 15° 57'		M. 7'3, 8'5
0.Σ. Mä.	217.5	6n.	.60 0.81	1850.40
Se.	 217·1	sing	16 16	51.43 6.64 7.41
De. W.O.	214·5 235·6	4n.	.93 1.84	67'13

635 S. 2491.

R. A. Dec. M. 19^h 11'4^m 28° 4′ 7'9, 9'2

Direct motion.

206°6	4n.	1.08	1828.77
211.2	3n.	.23	41.41
204.4		0.06	2.26
'4		I '20	8.45
	2n.	.02	56.68
	In.	.19	72.61
		.03	5.67
215.8	i in.	•••	6.41
	211.5 204.4	211'5 3n. 204.4 '4 211'5 2n. 222'1 In. 208'8	211'5 3n. '23 204.4 0'96 '4 1'20 211'5 2n. '05 222'1 1n. '19 208'8 '03

636 Σ. 2509.

P. XIX. 108 DRACONIS.

Dec. M. R. A. 62° 59' 19h 15.6m 7, 8.1

Σ. says (M. M., p. 296): "Angular motion is very probable."

H₀ (Mem. R. A. S., vol. vi., p. 53) writes

in 1830, "perfectly divided with 480 and the whole aperture: 320 gave a sensible elongation, but would not reduce the discs small enough, and separate them from the flare surrounding them."

Probable diminution in angle and increase

in distance. $(0.\Sigma.)$

Σ.	356.7	In.	0.42	1831.96
	347'0	,,	'45	2'34
	353.6	,,	-66	45
	354.7	,,	.22	'45
	345 8	3n.		6.93
Sm.	349.0	•	·57	8.78
Ο.Σ.	352'4	ın.	.76	40.61
	347.7	,,	•63	5.69
	345'2	,,	.64	6.69
Mä.	343.8			1.47
	339.3		0.22	
	346.5		o·55 ·67	3.40 8.50
Se.	340.3	3n.	.69	57.43
De.	339.7	,,	1	8.53
	345°I	,,	0.8	62.70
	341.7	2n.	٠,	3.39
W. & S.	JT-6	5	.81	72.64
	•4	4	.81	3.28
	342.3	7	•66	4.73
G 1.	341.8	10	1.0	1 .84

Σ. 2514. 637

R	. A.	Dec.	M.	
19 ^h	16·8 ^m	67° 28′	9, 11 [.] 3	
Σ.	277°0	3n.	7:39	1832 ⁻⁶⁷
De.	306°8		8:12	66 ⁻ 58

Σ. 2515. 638

R. A.	Dec.	M.
19 ^h 20 ^m	21° 17′	8, 9

Σ. Mä.	18 [°] 3 19 [°] 8 20°4	2n.	18.74 17.07 16.49	1829°20 47°69 50°74
De.	21.1 51.1		.42 .78 14.60	1.85 2.64 65.04

639 0.Σ. 372.

Dec. 46° 59′ 10p 10.0m A7, B8.8, C 10.5

BC form a binary system, most probably.

		AB	•		
O. Σ. De.	57°2	2n. 3n.	79:44	1849 67 67 93	
B C.					
0.Σ.	2 93.6	4n.	3.38	47:46	
Mä.	298'0		2.95	3.65	
De.	286 9 296 I	3n.	3°20	5.68	

Σ. 2521. 640

R. A. Dec. M. 19h 21m 19° 39' 5.2, 10.3

Certain change in angle and distance.

CCI	m cominge		ic and a	Duite.
H,	45		15	1827.64
	46.4		20	30.00
Σ.	43.5	3n.	22.64	29.40
	40.0	2n.	23.36	51.80
Sm.	44 8		25.0	33.28
	43'5		22.56	48 05
Ο.Σ.		In.	23'96	66.74
	39.6	,,	.81	8.75
-	43°5 40°2		23.36	48.06 66.74

Σ. 2524. 641

Dec. M. 25° 15' 19h 21.6m 8.3, 8.5 Dunér has

 $\Delta = 6^{\prime\prime}.80.$ 1854.23. $P = 102^{\circ} \cdot 8 - 0'' \cdot 09 (t - 1850 \cdot 0).$

Σ.	104.6	3n.	7.16	1829.76
Mä,	103.2	ın.	6.31	43.03
So.	105.6	,,	-67	56.59
	101.4	,,	7'18	7.05
Mo.	.1	2n.	6.93	.04
Du.	·3	5n.	.57	68.21

Σ. 2525. 642

R. A. Dec. M. 27° 5' 7.4, 7.6

The angle and distance have diminished.

				MEAG	309
Σ. Ο. Σ.	255.9 251.8 253.1 246.8 240.6	5n. 2n. In.	1°33 '30 '04 '52 '05 0'75	1830'43 6'14 40'56 '84 54'63 65'72	De. 329°I ,, 3°29 1864°59 332°O ,, 48 6°67 3 ,, 49 7°61 3 3, 42 72°71 W. & 8. 330°2 2 276 6°61 C. O. 319°8 3n. 3°69 7°56
Da. Mä. Se. De. W. & S.	242.4 234.0 255.5 251.0 254.0 247.1 239.9 240.8 232.6 225.8 237.8	In. 7n. 4	733 666 1·25 0·82 955 -85 -40 -60 	72.61 40.62 2.41 3.69 56.61 65.64 22 72.64 3.57 4.75	R. A. Dec. 19h 31m M. 7:1, 9.8 O.Σ. 228.6 6n. 2.60 1848.52 De. 233.5 3n. 72 66.65
G1. 8p. 643		253		5.66 4.84 6.00	646 Σ. 2544. R. A. Dec. M. 19 ^h 31'3 ^m 8° 3' 7'8, 9'5 A C unchanged.
R. A. 19 ^h 27 ^m So. H ₁ . Σ. Se. Du. O. Σ. W. & S. Gl.	245°2 242°1 245°2 244°7 246°1 248°1	27' A B 2n. In. 2n. ,, 3n. ,,	A 8.2, E	M. 83, c87	A B. E. 218'4 3n. 1'14 1828'99 H. 221'2 '5 30'00 Mâ. 217'8 '2 42'71 De. 208'9 '2 64'21 W. & S. 207'7 1n. 0'5 74'17 Gl. 205'2 ,, '42 '84 A C. 239'2 3n. 16'1 28'99
8ο. Η,. Σ. Μä. 8e.	56.5 53.9 52.5 54.2	2n. 3n. 2n.	6·30 7·04 6·07 5·95	25.57 30.08 -87 43.75	647 Ο.Σ. 377. R. A. Dec. M. 19 ^h 32 ^m 35° 22′ A 8.4, B 8.5, C 9.2 Direct motion in A B.

		BC	.	
So.	56.2	2n.	6.30	25.22
Η ₂ . Σ.	53.9	3n.	7.04	30.08
Σ.	52.2	,,	6.07	.87
Kä.	54 ^{.2}	2n.	5.02 6.03	43'75
Se.		,,		57.90
Du.	52.8	5n.	2.92	69.28
0.Σ.	54.5 .6		.96	70.92
W. & 8.		In.	.'9	4 [.] 75 .85
G1.	53.9	ا ,,	6'04	.85

644	Σ. 2541 .
D 4	D

R. A. 19 ^h 30 '2 ^m		Dec. - 10° 42'		M. 8·2, 9·8
	338.4	2n.	3.91	51.85
Sm.	.4		.2	35.28
Mä.	336.9		2.86	43.63 8.19
Mit.	.2	2n.	3'02	8.19
Ο.Σ.	337.6		•36	21.01
Se.	•6	2n.	'47	7.17
Da.	340		2.2	9.80
X.	323.0	In.	3.52	61.74

Direc	t motion	in A B	•	
		A B	•	
Ο.Σ.	51.5	2n.	o.88	1842.68

		+ B a		
De. Du,	45°0 38°3 45°0	3n. 5n.	·7 ·85	53:20 67:64 71:07
•			·86	53.50
·	3**	- LII.	0 00	10420

		4		
De.	154'7	3n.	25'14	67·64
Du,	'7	4n.		70·70

648	18 o.s. 378.			
R. A 19 ^h 32	\. 2■	Dec. 40° 44′		M. 7'2, 9
Ο. Σ. De.				1846.05 66.44

849 Σ. 2556. R. A. Dec. M. 19^h 34·3^m 21° 59′ 7·3, 7·8 Variable? Certain indirect motion.

Σ.	188°4	3n.	o '' 56	1829 83
0.Σ.	183'4	In.	.73	40'84
	176.1	١,, ١	•59	50.77
	345'9	,,	.57	6.58
	163'4		•55	72 64
Mä.	191.1		.5	41.26
	.7		.45	2.67
	188.1	7n.	·98	3*04
	189.9		•55	4'44
Se.	179'1	3n.	'49	56.88
De.	167.7		•••	64.91
Du.	1750	4n.	0.25	8.96
W. & S.		rot	ind	73.57
W.O.	167.7	In.	0.63	4.68
Sp.	126.5		'45	5.61

650 o.Σ. 380.

R. A. Dec. M. 19^h 36·9^m 11° 33' 6, 7·2

Slow retrograde motion in A B. In 1842 O.Σ. discovered the small star C, but it was invisible in 1844, 1849, 1851, and 1872. Dawes never saw it, but De. suspected its existence in 1865 and 1869.

AB.

Mä.	8o.8		0.73	1843.23
	67.8		.33	51.73
	72.4		'20	2.72
H,	74.6		.29	45.23
Da.	73.0		'49	8.65
	74'9		'47	53.41
ο. Σ.	.7	8n.	.62	0.72
Se.	•	ın.	.54	6.83
	77.0	,,	elong4.	7.71
	79.7	,,	,,	9.61
De.	69.6	5n.	l	67.82
W . 0.	77.4	-	0.21	74 69
		A C		
ο.Σ.	160.3		1.51	42.72
0.2.	100 3	111.	1	42.72
		C in	visible {	4 9
		C III	1131010	. 5I
	69'0	In.	1.33	6.57
	090		visible	72
Mä.	342.7	ı ~ 	1.30	43.24
	34~ /	Cin	visible	51.43
	349'3		i I	2.72
Se.	346.9	In.		9.61
De.	355.9		1.7	65.46
	333 9 1	, ,,	;	74
		C in	visible {	8.65
	363'3	ın.	1 1.71	9.74
	359 }		1 1	74
	337 .	Csu	spected	.78

651 O.S. 383.

R. A.		Dec.		M.
19 ^h 38·8 ^m		40° 26'		7, 8·5
Mä. Ο.Σ. Da. Se. De. W.O.	25.4 27.4 23.7 21.7 25.1 24.2	3n. 2n. 4n.	0.62 91 85 76 81 85	1843'39 5'07 53'75 8'22 67'64 74'70

652 S. 2574.

	·	
R. A.	Dec.	M.
10 _p 30.1 _m	62° 23′	8, 8

The angle has increased and the distance diminished.

Σ.	131.3	5n.	0.90	1834.10
ο.Σ.	139.4	In.	.92	40'61
	137.0	,,	.81	5.69
	134.7	,,	. 75	6.69
Kä.	136.9		1.02	1'47
	131.7		0.42	3.39
	132.2		65	4.90
De.	208.9		1.50	64.21

653 Σ. 2576.

R.			A. Dec.		M.
19h	41 ^m	33° 20′	7.8, 7.8		

Certain change in angle; probable diminution in distance.

Dunér has

$$P = 313^{\circ}6 - 0^{\circ}295 (l - 1850^{\circ}0).$$

P	= 313°.6 -	- 0°.295	(/ 185	(0.0).
So.	326.3	1		1823.65
H ₂ .	322.8		4'33	9.65
Σ.	318.8	3n.	3.29	31.80
ŀ	141.9	-	.55	51.80
Mä.	316.9		.53	37.89
	312.1	3n.	'46	43.00
	313.0	2n.	*35	51.80
ļ	311.1	3n.	'37	7'18
	·4	In.	.51	9.86
0.Σ.	131.3	3n.	'40	1.82
]	124'4	In.	42	66:76
i	125.3	,,	24	70.93
Mo.	312.5	2n.	'47	56.20
Se.	132.0	4n.	'49	7'15
	308.6	l -	'31	6.60
De.	310.8	2n.	'49	8102
ļ	308.8	l	*27	63.35
Eng.	.4	2n.	.19	5'64
M.	2 96 8	In.	'46	6.46
Du.	307.3	12n.	2.97	71.01

W. & 8.	304.2	1.5	3.32	1872.63
	306.4	. 5	2.93	75
	304.5	4	3.53	3.29
	7.6	6	•51	4.73
	126.7	4 2	*52	6.68
	1250	2	14	.61
G 1.	305.7	9	·48	4.85 .85
_	.3	5	.25	.85
S p. F 1.	304'9	ĺ	'14	5.65
Fl.	•5	In.	.26	7.64

654 S. 2579.

δ CYGNI.

Magnitudes.—Σ., 3, 7.9. Sm., 3.5, 9. Σ. gives the magnitude of B as 6.5 on one occasion; Da. always 8 or 9. De. thinks that B varies both in colour and magnitude. Dawes, on the other hand, never "suspected its brightness to be variable." Ο.Σ. confirms Σ.'s suspicion that B is variable.

C. Σ., A, greenish; B, ash. Sm., A, pale yellow; B, sea-green.

H₁ (Phil. Trans. 1804, p. 377): "This double star, I believe, has furnished us with a second instance of a conjunction resembling that of \(^theta\) Herculis. The position, September 22, 1783, was 18° 21' n.f. January 3, 10, and 11, 1802, I could no longer perceive the small star, which must have been at least so near the large one as to be lost in its brightness. January 29, 1804, I examined this star with powers from 527 to 1500, and saw it as a lengthened star, but not with sufficient clearness to take a measure of its position. May 22, 1804, in a very clear evening, I tried 527 and 1500, with the 10-ft. reflector, which acted remarkably well on the double stars, but I could not perceive the small star of δ Cygni." He then tried the 20-ft. reflector with powers 157 and 360, with the same result. He then adds: "A parallactic motion of δ will perfectly account for this occultation, for the situation of the two stars, in 1783, was such, that this motion

must have carried the large star, by this time, nearly upon the small one."

H, and So. (Phil. Trans. 1824, p. 339). These observers, using the 5-ft. refractor, examined δ carefully in 1823, but could not see the least appearance of elongation. "The star perfectly round and admirably defined; the night beautiful."

E. (M. M., p. 25). In 1826 E. turned the Fraunhofer equatorial on this object, and saw it double on the first examination. He says, "It is very probable that between 1783 and 1826 the small star performed a whole revolution + 34° in an orbit very elliptical, so that the period may be less than forty years." At p. 297 he thinks the above remarks need correction, the period certainly not being forty years.

H₁'s inability to see the companion in 1802 he thinks inexplicable, unless due to variability or periastron passage, the latter being perhaps the more probable.

being perhaps the more probable.

Dawes (Mem. R. A. S., vol. xxxv., p. 416).

Speaking of the difficulty of this star, he observes that this is a case "in which great perfection of telescope is of far more importance than large aperture beyond about six inches." In the Astronomical Register, 1865, p. 225, he expresses his opinion that Behrmann's elements are far from correct if his own measures are not "egregiously in error." "According to my own measures, the distance has scarcely varied for the last twenty-five years." Behrmann's ephemeris gave 320°± 0"4 for 1865, while Dawes's measures in 1865;58 were 349°62 and 1".675.

THE ORBIT.—Mr. Hind was probably the first to publish elements of this system. Making use of the observations from 1783 to 1842, he obtained the following results:—

T = 1862, Nov. 14.

$$\pi - 2 = 243^{\circ} 24'$$

 $2 = 2454$
 $2 = 4623$
 $2 = 0.6067$
 $2 = 1.78$ years and 256 days
 $3 = 1.811$

About 50° of the apparent orbit had then been described.

Behrmann in 1865, using Klinkerfues' method (see Astr. Nach., No. 1127), deduced the elements which follow:—

T =
$$1866^{\circ}3512$$

 $\pi - 8 = 280^{\circ}20'\cdot 6$
 $8 = 166 \cdot 26'\cdot 4$
 $i = 64 \cdot 38'\cdot 4$
 $e = 0.8470$
 $\mu = -10'\cdot 283$
P = $280^{\circ}56$ years
 $a = 3''\cdot 165$.

His ephemeris gives the following quantities:—

1826	40°9	1.816
30	37.3	.772
40	27.2	.635
40 50 60	14.8	'432
60	355.6	.000
70	1476·8	0.405
70 78	157.0	1.218
79 80	155.9	·585 ·646
80	154.7	.646

Behrmann used the measures made from 1783 to 1856. A comparison of the computed with the observed quantities shows that the elements require corrections. In 1866, having received the careful measures by Dawes, Dembowski, etc., Behrmann computed a fresh set of elements: they are as follows:

$$a = 2^{n} \cdot 30974$$

 $c = 0.28583$
 $\pi = 289^{\circ} 42^{\circ}$
 $\gamma = 37 \cdot 46$
 $\Omega = 91 \cdot 8$
 $\Omega = 203 \cdot 2$
 $\Omega = 415^{\circ} 11486 \text{ years}$
 $\Omega = 0^{\circ} 86723$
 $\Omega = 1904^{\circ} 1023$.

Behrmann also compares the observation from 1783 to 1865 with the elements, and a very satisfactory agreement is found. Finally, he gives the ephemeris from 1826 to 1878: the following extract will be of interest:

55 6.4 .24 .28 339.1 .426	1826 30 35 40 45 50	41°.5 37°.6 32°.3 26°.6 20°.3 13°.6 6°.4	1.93 .87 .79 .72 .65	1860 65 70 75 76 77	358.7 350.7 342.5 334.1 332.5 330.8	"49 '47 '454 '452 '453 '454
---------------------------	------------------------------------	--	----------------------------------	------------------------------------	--	--

Engelmann gives the following simple formula for the angles of position:

$$P = 20^{\circ} \cdot 4 - 1^{\circ} \cdot 410 (t - 1845 \circ).$$

 $\Delta = 1'' \cdot 68.$

On this Dunér remarks that it fairly represents the modern observations, but makes that of H₁ in error to the extent of 36°; and that if, instead of 18° 21' n.f., we read 18° 21' s.f., perfect agreement is produced.

10°. Doberck's formulæ are

$$\Theta = 12^{\circ} \cdot 48 - 1^{\circ} \cdot 402 (\tau - 1850) + 0^{\circ} \cdot 0006 (\tau - 1850)^{2}.$$

$$P = 1'' \cdot 64 - 0'' \cdot 0067 (\tau - 1850).$$

H ₁ .	71 6 sin		2 [.] 50	178372 1802
H, & So.	"perfe	23 5		
Σ.	32·5 40·6 36·9	2n. In.	.61 .61	32.72 26.55 8.80
	7	,, 2n.	.57 .40 .68	31.73 3.81
mä.	34.7 31.9 3	In. 4n.	.80 .80	5-66 6-52 7-27
	26.6 21.6 22.7		1.46 	41°50 2°77 3°45
	23.9 21.9 20.2		.47 .32 .33	4·36 5·05 6·35 7·18
Sm.	13.8		1.10	52'44
	30°9 25°6 14°7	_	·5 ·8	37.78 42.56 52.69
Da.	27.4 25.1 23.7	2n. ,, 4n.	1.66	39.66 40.67 1.89
	16.7 14.5 11.5	3n. ,, 2n.	 1·76 65	7:39 8:75 51:51 2:74
	10.4 7.3 4.3	,, 3n. In.	·68 ·76 ·68	2.74 3.73 4.56 9.58
Ka.	4'3 357'7 349'6 25'7	3n. 2n.	·67 ·67 ·72	41.07
0.Σ.	19.6 8.3	3n.	.71 .68 .51	3°12 4°78 52°70
	3·3 353·8 341·7	,, ,, 2n.	·65 ·60 ·47	8.71 63.74 72.81
Fit Mo.	10.3	30 26 30	75 11 27	51.68 4.79 5.74
Se.	3.5		gle 1.41	55 6.84
De.	350.4 355.4	3n. 5n.	··23 ···	66 08 2.75 3.61
	350.2 321.3	7n. 4n. 14n.	·68	4.72 5.64 7.06
	348·9 347·2 346·4	15n. 5n. "	·56 ·58	960
	343'4 342'3 339'3 336'2	7n. 5n. 7n.	.25 .25 .21	70°56 1°50 2°60
_	333.7	6n. 7n. 5n.	.55 .61 .58	3°56 4°62 5°58
Eng. Kn.	354'4 349'0 348'3	2n.	2·30 1·70 ·70	64'74 5'43 6'68

Kn. Bo. Ta. Br. Du.	337 9 330 2 340 7 344 7 349 0 343 7 336 5	4n. in. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	1.69 .69 1.50 .52 .53	2.67 65.73 6.59 8.69 70.85 5.69	658 R. A. 19h 44.2 Rapid		Dec. 35° ο		M. 7·2, 8·2
W. & S. Dob.	5.8 Compan	5 7 7	•70 	2·78 4·70 5·70 •77	Μä. 0.Σ.	118'3 119'4 94'7 129'4 103'8	2n. 3n.	0°52 °60 °52 °50 °47	1843·39 7·73 53·78 44·18 51·97
655 R. A. 19 ^h 42 ^m Ο.Σ. De.		Dec. 40° 16		M. 7'5, 9'8 1845'07 66'62	Da. Se. De.	90.7 78.4 89.7 91.9 198.2 52.6	2n. 3n. 1n. ,,	'57 '60 '53 '3 '25 oval oblong	5.63 61.22 53.75 6.83 9.61 68.25 70.56
8. A.		250 Dec 11° 3		M. 6, 6·8	Sp.	26.6 23.0 20.7 22.0 17.7 23.2	6n. 5n. 3n. 2n.	wedg ^d · oblong ,, 0'34 '46 '38	2.55 3.73 4.57 5.40 7.67 5.57
Dunér P=	1856	19. Δ∎ -0°1088	= 1" '43. 3 (<i>t</i> — 185	0.0).	659	a A	QUI	LÆ.	
H ₁ . H ₂ & So.	124'4 127'5 135'5 123'5	In. ,, ,, 4n. In.	 1.96 .55	1783.65 1802.72 23.70 5.61 32.56	R. A 19 ^h 44 ^r The 1 in R.A.	9 ^m	Dec 8° 33 otion o o":39 ir	3' f Altair i	M. 1·5, 10·2 is + 0"·56
Σ. Da. Sm.	120'7 124'5 120'8 122'0 121'3	6n. 2n. 1n.	•50 •83 •63 •5	29.96 30.56 65.74 31.70 6.81	Η ₁ . Σ.	334'7 326'2 324'7 322'1 323'1		143 153.5 152.9 3	1781·55 1821·16 5·53 36·29 4·81
Mä. O. Z. Mo. Kn. Ks. Du.	123.2 120.8 122.3 120.8 121.1 117.6 119.0	4n. 2n. 4n. 2n. 4n. 6n.	39 40 50 49 45 34 27	42°17 7'96 8'24 55'88 65'67 5'84 72'17	O.Σ. De. W. & S. Gl. Fl.	314.9	In. 2n. In.	153'3 154' 156 4 '4 157'0 156'1	51.81 65.07 71.58 3.60 5.68 4.70 7.82

657 o.s. 386.

121'4

119.9

Gl.

Dob.

W. & S.

R. A.		Dec.	1'	M.	
19 ^h 44 ^m		36° 5		7 [.] 7, 8	
O.Σ. Mä. Da. Se. De. Du.	77.5 83.8 78.6 79.9 77.8 82.2	3n. 1n. 3n. 7n.	0°97 '75 '97 '84 '92 '80	1846.63 47.73 8.55 58.68 67.27 70.69	

3n. 2n.

4n.

ο.Σ. 388. 660

3:37 4:85 7:70

Dec. M. 25° 33′ A 7.6, B 7.6, C 8.8

		AB.		
Mä,	156.9	In.	3.89	1847.73
0.Σ.	140.2	5n.	.40	8.21
Da.	139.8	In.	·85	.21
	140'0	,,	•••	53.73
	139'4	,,	3.89	4.73
De.	•5	3n.	.40	65 89
Th	•••	1 4m	•62	0.50

374				DOUBLE	ST
De. Du.	138.4	B C. 3n. 4n.	26 8 -84	1865·89 9·53	66 R
661 R. A. 19h 48	•	259 Dec. 14° 59		M. 7·2, 8·6	19 ^h
Σ. Mä. De.	353'I 351'8 343'4	4n.	2°12 '05 '02	1831 ·26 42 ·71 64 ·52	Σ. Mä.
662		260)3.		O.Σ Da. De.
R. A	6™	Dec. 69° 58	3′	M. 4, 7 ^{.6}	Se. Du.
The R. A.,	and + o" r gives	'01 in N	V. P. D.	0°015 in	66
	- 357° 1 -	9. Δ= F 0°152	= 2" ·94. 2 (t — 185	(o·o).	,
H ₁ .	333 ·2 354·5	In.	2.2	1804.39	19
H.	355.3 348.2	"	2·59 3·27	23.58 8.64	I
Da.	353 ² 354 ⁸	"	27	30.67	cha
24,	353.5 324.0	In.	2.84	43.78 8.87	0.2
Σ. Sm.	354.2	6n.	.83 .79 3.1	32.44 3.68	0.2
Mä,	356·3 355·7 358·8	4 n.	°0 2°69 *81	46'77 1'54 3'88	
De. Se.	357·8 358·0	In. 2n.	'92 '74	56·53 '75	De.
Mo. M.	360.4 323.1	4n. In.	3.06 2.65	9.75 61.82	
Ο. Σ. Ro .	359'3 349'0	2n.	3'04	3.66 5.65	Σ.
Ta,	••	in.	10.	9.49	"
Du	355.9 355.9	7n.	2.99	74.61 0.29	
W. & 8 Gl.	•	2n.	3.50	4.72 .84	
Dob. C.O.	360.0 329.8	3n. 4n.	2.89	6.61 7.97	-
663		Σ. 5			6
	-	IUDA	LR.		19
R. <i>I</i> 19 ^h 4		Dec. 6° 6'		M. 3'4, 11'3	'
ο.Σ.	17.1	4n.	12:36	1852.44	0.

- 1					
	664	Σ.	260	6 .	
	R. A.		Dec. 32° 5		M 7·5, 8·2
	Dunér	gives			
;	P-	1849°7 -	7. Δ= +o°'09	- 1"·16. (t - 1850	აზ).
	Σ. Mä.	132.0 133.7	6n. In.	.22	1834·39 42·42
•	O.Σ. Da. De.	134.9 137.8	1n. 4n. 2n. 1n.	.13 .13	4'34 5'48 51'24 6'65
	Se. Du.	134.8 113.9 134.2	2n. 4n.	·01	.30 68.32
1	665	Σ.	260)7.	
		(ο.Σ. 39)2.	
	R. A. 19 ^h 54)ес. ° 56′		М. в 9, с 97
	A B. change	The an in A.C.	gle has	dimi ni	shed. No
			AB.	•	
	Ο.Σ.	330.0 314.6 310.5 323.2	In. 20. In.	0.20 .41 .38 .40	1842 67 5 65 51 62 4 69 7 67
	De.	306.0 318.0	,, 4n.		8·59 67·45
			A C	•	
	Σ.	293'4 292'0	3n.	3.55	31.52

66 0.5. 393.

R. A.	Dec.	M.
19h 54m	44° 4′	7.5, 8.4

The distance has diminished.

Ο.Σ.	2257	3n.	21.75	1847'44
De.	220.7	2n.	'12	1847'44 71'48 65'96 9'78
Du.	'3	,,	20.78	9.78

667	UZ	395 .
\mathbf{c}	U.4.	OOU.

R. A.	Dec.	M.
19 _p 29.3 _m	24° 36′	5.8, 6.2

Probable direct motion.

	_ •		. "	
Mä,	89.2		0.20	1843'53
	67.4	ın.	'45	5.49
	74.2	**	'45	7.73
	.2		.52	·86
	78.3	In.	'40	51.72
	91.0	,,,	۰6	2.85
ο. Σ.	79'3	2n.	'64	44.16
	80.0	,,	·57 ·68	50.22
	96·3	In.	.68	74.76
Da.	80.6	2n.	57.	52.60
Se.	93.1	ın.	elongd.	9.61
Eng.	82.9	2n.	0.64	65.60
De.	89.1	4n.		7.41
W .0.	91.4		0.64	74'72
8p.	92.7		0.67 1.69 1.63	5.63
Da.	91.7	2n.	163	3.69

668 S. 2619.

R.	A.	Dec.	М.
19h	57 ^m	47° 56′	A8'1, B8'1, C12

Probable change in A C. C was discovered by 0. Σ . in 1851.82.

A	В
-	J

Σ.	244'9	4n.	4'29	1831.51
Mä,	245.8	In.	3'99	43.80
Se.	246.3	3n.	4'37	57.54
Mo.	244.2	2n.	'21	71
De.	.0	In.	'42	8.39
Ο. Σ.	63.9	3n.	.25	9'14
Du.	245.9	8n.	3.91	70.37
	•			

0.Σ. 296.6 | In. | 17.79 | 54.69 302.7 | 16.88 | 70.92

669 S. 2627.

R. A.		Dec.		M.	
20 ^h 2 ^m		4° 26'		9, 11°5	
Σ. Mä.	23.2			1829·37 42·72	

670 S. 2640.

R. A.	Dec.	M.
20 ^h 3·2 ^m	63° 33'	6, 9 [.] 9
20 3 2	03 33	0, 9 9

Σ.	30.2	In.	4 ["] 73	1831.87
_,	28.8	,,	7.95	3.03
	24.9	2n.	5.01	3.38
Da.	23.3		4.99	3.38
Ro.	•••	In.	.72	65.65
	25.3	,,	5.07	.74
Br.	2 2.8		.13	8.73
	23.8		.03	9.69
Ta.	26.9	In.	.21	'49
W. & S.	21'0	٠,,	4.77	73.73
	23.6	٠,,	5.36	5.40
G 1.	20.3	,,	•••	3.79
Dob.	22.7	3n.	5.53	7.74

671 S. 2637.

θ sagittæ.

R. A.	Dec.	M.
20h 4.6m	20° 33′	6, 8·3

Probable increase of distance in A B: certain increase in A C. The proper motion of A is probably the cause of these changes.

The common proper motion of A B is given by Σ. as +0".061 in R. A., and -0".147 in N. P. D.

AB.

H ₁ .	1		11'07	1781.64
So.	328·0		.78	1824'98
H,	320.0		10	7.64
•	325.9		18.0	30.00
Σ.	326.7	8n.	11.40	2.82
8m.	327'1		'4	4'77
Kä,	328.1		17	42.71
	325'7		37	3.62
	326.3		.51	7.98
	• • • •		.72	51.80
0.Z.	.3	In.	'73	.80
	328.3	,,	*54	74.72
	.7	,,	'74	79
Mo.	326.7	60	'40	53.68
X.	·2 ·8	In.	'62	53.68 61.79
		,,	12.33	6.46
	428.5		11.20	75.63

A C.

H ₁ .	1		58	1781.64
Bo.	226.8		69.66	1824.08
Σ.	-8	4n.	70'22	8.73
	•6	Śn.	.98	35.28
Sm.	·6	-	I.	4.77
Ο.Σ.	•	In.	72.86	51.80
	225'1	,,	75.83	74.72
	.1	,,	.65	'79
Mo.	.7	26	72.91	53.40
Y.	•	ın.	73.09	61.79
	224.8	,,	.93	6.46
	.7	,,	74.73	75.65

672 \(\Sigma\). 2636.	677 Σ. 2646.
R. A. Dec. M. 20 ^{l1} 5'3 ^m - 4° 56′ 8'2, 9'2	R. A. Dec. M. 20 ^h 8 ^m - 6° 25′ 7, 8·8
Σ. 201.8 2n. 12.51 1827.24 Hä. 204.0 13.27 43.75 3 63 52.39	80. 50.6 3n. 25.11 1825.69 Σ. 51.6 ,, 24.70 9.42 Nä. 2 30 43.81
Mit. 202'3 In. 12'23 48'66 C.O. 203'7 In. 773 77'73	678 ο.Σ. 403 .
673 Σ. 2641.	R. A. Dec. M. 20 ^h 10 ^m 41° 45′ A 7, B 7°2, C 9°5
010 4. 20-11.	Dembowski's distance is probably too
R. A. Dec. M. 20 ^h 5.9 ^m 3° 27′ 7.5, 11.2	great.
E. 170'1 2n. 20'34 1827'76 E. 169'5 1n. '78 43'70	0. Z. 173.0 5n. 0.59 1848.10 De. .4 3n. 1.00 66.85 Du. 171.6 2n. 0.79 75.68
674 ο.Σ. 400.	$\frac{\mathbf{A} + \mathbf{B}}{2}$ and \mathbf{C} .
R. A. Dec. M. 20 ^h 6'2 ^m 43° 37' 7'2, 8'2	0.Σ. 33.1 5n. 11.83 48.10 De. 34.0 3n. '70 66.85
A binary system in retrograde motion. The distance is sensibly constant.	679 Σ. 2658.
0. \(\Sigma\). \(334'9\) \(3\) 3n. \(\) 0'64 \(\) 1845'73 \\ 324'6\) 2n. \(\) '59 \(\) 53'23 \\ 319'3\) 11 \(\) '62 \(\) 60'10	R. A. Dec. M. 20h 10'5 52 52° 45' A 7, B 9, C 10
319'3 ,, '62 60'10 43'39	C. A yellowish white, B blue.
Da. 320.5 In. 65 53.89	1
311'2 ,, 65'51 130'3 ,, separat . '94	A B.
De. 307.8 3n 6.67	Σ. '9 4n. '49 31'62
121'9 In. oblong 8.55	Mä. 124.8 2n. 34 43.58 122.4 4.80 7.85
elongated ? 6.77	127.9 '58 51.87
8chi. 267.9 In. 0.33 5.67	De. 122'2 29 3'38 5'45 63'51
Bp . '9 '33 '67	W.0. 125.1 4.89 76.77
675 x. 2652.	A C. H ₂ , 220.2 33.48 30.76
	H ₂ . 220.2 33.48 30.76 Σ. 216.8 3n. 32.07 2.14
R. A. Dec. M. 7 ^m 61° 43′ 7'3, 7'6	Σ. 216·8 3n. 32·07 2·14 De. 213·2 37·80 63·51
Σ. 281'3 5n. 0'43 1834'18 0.Σ. 292'5 1n. wedged 40'61	680 o.Σ. 405.
282.2 ,, oblong 1.62 282.2 ,, o.4 54.69	R. A. Dec. M. 20 ^h 14 ^m 32° 52′ 7.7, 8.7
676 Σ. 2649.	O.E. 152.6 3n. 0.61 1846.43 De. 144.7 ., 67.72
R. A. Dec. M. 20 ^h 7.6 ^m 31° 43' 7.7, 8.8	681 Σ. 2690.
Σ. 152.3 3n. 26.08 1832.10	R. A. Dec. M.
Mä. 151'I In. 25'94 47'79	20h 25'5m 10° 51' A 7, B 7'5, C 76

In A and B+Cthe distance has gradually increased.

In 1840 Dawes detected the duplicity of In this pair there is probably a slow retrograde motion, with decrease of distance. The star was also detected by 0.2. independently in 1842.

	_	A B		
Σ. Mä,	256°3	4n.	14.19	1831.26
жа, Во.	255.2		.20	53.76
15-0 ,	257.2	3n.	. 73	65.68
		B C		
Da.	211'4	IIn.	0.62	41.95
	.3	4n.	•58	50.19
Sm.	210.2	1	7	42.28
	2150		.5	57.71
Ο.Σ.	210.7	ın.	· ·63	42.67
	34.2	,,	'60	5.75
	37.1	,,	.57	7.71
_	207.0	٠,,	'49	51.67
Ro.	•••	2n.	'49	65.64
De.	202.3	3n.		6.30
W. & S.	220'0	est"	•••	71.23
	227'3	1 1		2.68

125 \mathbf{A} and $\mathbf{B} + \mathbf{C}$ fixed

Σ.	256°0	2n.	14.02	1829'64
_	• .2	,,	*33	32.88
Da.	'4	4n.	•56	41.37
Ο.Σ.	'4	In.	·56 ·87	2.67
	257.0	,,	·6i	5.75
	256.1	٠,,	.61	7.71
_	257'I	,,	.77 .88	51.67
De.	256.1	4n.	-88	65.12
W. & S.	255.3	5	15'2	71.23
	256.3	4	.39	3.68
	•5	2	.09	5.74
6 1.	2550	4	.1	3.91
P 1.	254.7	4n.	.13	7.07

Σ. 2695. 682

R. A. 20 ^h 26·8	Dec. 25° 24'	M. 6·2, 8
Σ.	76.5 5n. 0.79	1831. 7 8
Ο.Σ.	75.0 4n. 1.04	50.84

S. 2696. 683

R. A.	Dec.	M.
20h 27.5m	5° 2′	8, 8.4

O.Σ.'s measure in 1872 shows that the angle is probably unchanged. The more recent measures seem to indicate a slight increase of angle and decrease of distance.

Z. 3000 In. 1'27 1825'7 298'5 3n. '32 32'8 H. 290'1 '0 1'0 Xi. 302'8 000 8'2	
H ₂ 298.5 3n. 32 32.8	
	4
ما ا ا ا ا ا ا	Ю
308.5 90 42.7	2
308·5 90 42·7 302·6 90 3·6 309·7 90 61·7	
309.7 '90 61.7	
80. 310·3 In. 72 56·6	2
W. & S. 303'4 5 66 72'6	
305.2 4 85 3.6	9
306'0 5 5'7	5
G1. 304'4 8 0'8 3'9	Ĭ
_ 3.7 7 .80 .9	
Fer in contact 4.5	4

684 Σ. 2703.

R. A.	Dec.	M.
30, 31.3 _m	14° 19′	7.6, 7.6

Increase of distance in B C and A C.

Dunér's formulæ for the motion of C with reference to $\frac{A+B}{A}$ are

 $\Delta \sin P = 46'' \cdot 11 - 0'' \cdot 0250 (t - 1853 \cdot 0).$ $\Delta \cos P = -39'' \cdot 80 - 0'' \cdot 0582 (t - 1853 \cdot 0).$

AB.

Η ₁ . Σ.	288.5	In.	26	1783.65
Σ.	290.2			1822'14
	291'1	4n.	25.58	9.25
So.	290'0	2n.	.08	4.81
Mä.	291.4		24.89	42.13
	290.6	ın.	25'06	7.69
Se.	• • •	2n.	·06	57.26
De.	291.0	,,	.11	8.17
	290'9	4n.	'15	64.60
Du.	•5	5n.	123	8.53

AC.

Σ.	238.6		1 1	21.85
_•	239'4	3n.	66.72	9.40
Se.	238.5	In.		56.69
De.	.2	2n.	67·27 68·66	8.17
	.2	4n.	68.66	64 60
Du.	•	3n.	.75	8.23

BC.

Σ.	216.8			21.88
	217'9	3n.	54'38	9.42
Bo.	·1	-	.30	4.78
Se.	.7	In.	56.07	56.69
De.	-3	2n.	55.92	8.17
	•2	4n.	57.02	64.60
Du.	•4	•	.03	8.23

685 Σ. 2704.

β DELPHINI.

R. A. Dec. M. 20h 31'9m 14° 11' A 3'5, B 4'5, C 11

C. A green.

A B.—In 1873 Mr. Burnham discovered that A was a close double star, and Dembowski's measure in 1875 seems to indicate rapid angular change.

According to Σ . (P. M., ccxxxi.) the star C does not partake in the proper motion of

the system.

____ A B.

Burnha	33 355°∣		0.7	1873.60
	15.2	5n.	.65	4.66
	20·I	4n.	·54	5.65
	25.8	,,	. 48	6.63
	29.7	5n.	.21	7.71
Ο.Σ.	8.0	In.	.69	4.73

$\frac{\mathbf{A} + \mathbf{B}}{2}$ and \mathbf{C} .

H ₁ .	348'o		27.4	1781.58
Σ.	343.8		32.48	1829.40
_	339.5	ın.	33.77	51.88
Sm.	341.8		30.0	34.79
Mä,	342'1	1		43.63
	340.6		•••	51.80
ο. Σ.	338.6	In.	33.71	.81
De.	336.6	,	34.64	64.94
W. & S.	338.9	3		75'74

686 O.S. 533.

R. A. Dec. M. 20^h 33'3^m 9° 40′ 4'7, 11'3

The proper motion of A is + 0.0227

in R. A., and + o" 340 in Dec.

This star, owing to the great difference in the brightness of the components, is very difficult to measure. The distance is probably unchanged since 1851. O. Σ . has deduced the following formulæ:

$$\Delta A = -0".262 \pm 0".036 - (0".2851 \pm 0.0040) (t - 1860.0).$$

$$\Delta D = + 10.021 \pm 0.036 - (0.0155 \pm 0.0040)$$

It is probable that the changes are due to the proper motion of κ . There is a third star following κ about 3'.5 distant which most probably forms with it a binary system.

	• .		. "	
0.Σ.	359.4	In.	10.35	185962
	348.3	,,	12	1859 ⁻⁶² 65 ⁻ 78 72 ⁻⁶⁴ 4 ⁻ 79
	338.2	"	'34	72 64
	332.1	**	-88	479

687 \$. 2708.

R. A. Dec. M. 20^h 34'1^m 38° 13' 7, 87

C. A yellow, B blue.

The formulæ for rectlinear motion deduced by Σ . (see P. M., p. ccxxxii.) still fairly represent the observations. O. Σ . obtains the following:

$$\Delta A = -4''.800 \pm 0''.040 - (0''.1786 \pm 0''.0029) (t - 1850.0);$$

$$\Delta D = +14''.528 \pm 0''.040 + (0.1939 \pm 0''.0029) (t - 1850.0);$$

and the differences show that there has yet been no departure from rectilinear motion.

Dunér finds the following formulæ: $\Delta \cos P = + 14'' \cdot 47 + 0'' \cdot 1875 (t - 1850 \cdot 0),$ $\Delta \sin P = -4'' \cdot 69 - 0'' \cdot 1745 (t - 1850 \cdot 0);$

and
$$\Delta \cos P = + 14'' \cdot 34 + 0'' \cdot 1865 (t - 1850 \cdot 0),$$

 $\Delta \sin P = -4'' \cdot 76 - 0'' \cdot 1693 (t - 1850 \cdot 0).$

So.	2.3	In.	9.65	1823 68
H,	355.1	٠,,	10'45	8.76
-	352.3	,,	11'32 10'82	32.34
Σ.	354.6	2n.		29.86
	351.5	,,	-96	32.36
	349'3	"	11.97	5.78
	348 1	4n.	12.53	6.89
Da.	352.8		11'24	071
	•			2.26
	351.1	In.	11'46	3.87
	350.2	5n.	'70	4.22
	347.4	2n.	12.61	7.75
	346.9	,,	.91	9.79
	345 9	,,	13'16	40.67
	• 6	,,	.46	1.63
	•	,,		2.65
	342~2	,,	13.69	3.86
	340.2	ın.	16.01	53.82
ο.Σ.	346.0	2n.	13'06	39.86
	343'2	3n.	14.28	46 69
	340.2	2n.	16.2	54.82
_	336.3	,,	19.22	67.74
Ka,	345°9		13.04	41.83
	337.5	6n.	18.66	65.85
Mä.	343'4	,,	14'34	44'76
Flt.	342°0	37	15.76	5179
Mo.	340.4	3n.	19.10	4 66
De.	339.1 339.1	1	12.01	5°13
	338.6	1	16.69	7:38
_	337°I	5n.	18.31	63.02
Se.	338.3	In.	17.26	57.01
Po.	337.7	15	18.10	9.85
M,	336.7	In.	17.93	62.48

	•		H	
Eng.	336.5	In.	18.80	1865.28
Ro.	335.3	2n.	17.77	.71
Du.	336.3		19.83	9.40
Ta.	.9	5		71.24
W. ♣ 8.	335.2	5 4 5 3 5 3 8	21'0	3.69 .69
	.0	5	.0	•69
	334.7	3	.5	.72
	336 ·6	5	.28	5'74
	333.5	3	22.08	5.4 6.77
G 1.	335.0	8	21'4	3.91
Dob.	333.6	2n.		6.62
	.6	,,	21.81	7.69
Pl.	.3	4n.	·86 ·67	'20
Fl.	.3	In.	.67	.78
	_		-	·-

ο.Σ. 410. 688

Dec. A 6'4, В 6'7, С 7'7 20h 35.1m 40° 9'

AB. Mä. 23°1 0.25 1843'42 6.93 Ο.Σ. 23.3 ·63 50.60 7n. Da. 27.7 3.82 67:35 De. 57:35

$\frac{A+B}{2}$ and C.

0.Σ. 69.8 | 4n. | 68.69 | 51.45

689 ο.Σ. 411.

M. Dec. 45° 25' 7'4, 10'2 20h 38.3m

Direct motion: change in distance.

0.Σ.	273'7	2n.	15.56	1845.36
	273.7 278.7	3n.	14.80	52.11
	291'5	ın.	15.02	70.92
Mä,	273'7			46 04
De.	288.9	3n.	62	66.91

Σ. 2725. 690

M. 15° 28′ 20h 40.6m 7:3, 8

Change in angle and distance. Duner has

 $\Delta = 4'' \cdot 56 + 0'' \cdot 0154 (t - 1850 \cdot 0).$ P = 358° \cdot 1 + 0° \cdot 110 (t - 1850 \cdot 0).

Ħ ₁ .	348.7	In.	•••	1783°29 1825°08 '40
8 0.	355.o	5n.		1825.08
-		,,	4'98 '28	31.78
4.	357.6	4n.	20	31 70

	0		,,	
0.Σ.	353.9	3n.	4.58	1839.86
	355.8	2n.	.61	44.62
	358.4	,,	*95	59.66
	359.8	In.		72.64
Da.	355'7	4n.	*94 *65	41.16
	356.8	3n.	.74	54.32
Mä,	.4	•	·78	41.57
	357.0		.54	2.74
	.0	Ion.	78	3.30
	358.3	3n.	5.00	9.79
Mo.	357.9	,,	4.61	
De.	358.9	5n.	.71	54 ^{.75}
	359.4	١	71	67:39
Se.	99	4n.	77	56.85
Ro.	•5	in.	•60	65.41
Ka.	•	1	.78	6.75
Du.	. 9	5n.	-67	8.55
Ta.	.3	īn.		.69
	358.7	6	5.02	71.68
Fer.	0.1		4.73	2.59
Sp.	0.4		1.85	6.11
Dob.	3 58∙Ġ	3n.	5.6	.78
	•6	2n.	.06	7.69
	359'7	3n.	4'44	8.28
Fl.	9.9	in.	1.81	.82
	- ,		,	,

691 Σ. 2726.

R. A. Dec. M. 20h 41m 30° 17′ 4, 92 C. A very yellow.

Σ. 6.61 1830.82 57.2 4n. Se. 59.6 3n. .33 57:35 Ο.Σ. 61.3 2D. .44 .28 Dob. 60.2 77'70

692 **S.** 2727.

γ DELPHINI.

M. R. A. Dec. 20h 41.8m 15° 42′ 4, 5

C. A, golden: B, bluish green. B appears to vary in colour: it is given as yellow, green, and blue, by different observers.

The common proper motion is - 0° 004 in R. A., and +0"·19 in N. P. D. Dunér's formulæ are

 $\Delta = 11''.91 - 0''.0170 (t - 1850.0).$ $P = 273^{\circ}.5 - 0^{\circ}.035 (t - 1850.0).$

_	-,,			•
H,.	•••	IIn.	10.1	1780'17
•	274.5	4n.		-65
	273'3	In.		1804'44
Σ.	6.	,,	11.83	23'34
	•8	5n.	.90	30.89
8o.	.7	ın.	12.32	23.68
Da.	.4	1	.07	31.29
	272 1	l	11.25	59.05

•	۰.		. "	
8m.	273°6		12.1	1831.60
	'4		11.8	4.2
	'4 '3 '1		11.8	9.71
H _a . Mä.	.I	2n.	12.02	
Mä.	272.8	6n.	.03	2·57 5·84
	273.5	,,	11.46	42.22
	.2	In.	1 44	5.72
	.3	3n.	.30	9.64
	272.5	2n.	.36	54·8i
Po.	3	3n.	.70	45.40
Mo.	•4	2n.	*39 *36 *70 *28	56.21
Se.	272.5 .3 .4 .5	7n.	.69	7.03
De.	271.4	3n.	'42	8.23
	272.4	In.	'45	63.89
	-,-, T	,,	.52	5.88
	271.5	2n.	·52 ·29	7:53
M,	270.8	In.	'40	3.71
Bo.	-,0'0	1	1.54	5.74
Kn.	272.7	,,	54	5.78
Ka.	271.7	6n.	.73 .18	5.4 6.4
Du.		1	10	8.28
W. & S.	272.4	,,,	:42	0 20
G1.	271.7	In.	1	73.69
Fl.	272.2	,,	30	7.82
	270.8	"	.36 .25	7.82
Dob.	272.1	3n.	.10	8.74
Goldney	• '4	i ,,	12	75

693 o.s. 413.

λ CYGNI.

R. A. Dec. M. 20^h 42·5^m 36° 3′ 5, 6·3

C. Da., pale yellow; Sm., all bluish.

H₁ VI. 32, is λ Cygni, a wide double star, the components being of 5th and 12th magnitude, according to South, and the distance about 1½ minutes. The measures indicate fixity. In 1843 the larger star was first seen double by 0.Σ.

Dawes (Mem. R. A. S., vol. xxxv., p. 427) writes, "A close and beautiful binary, discovered by Mr. Otto Struve." "On one night Mädler observed an object which he has called 0. E. 413; but the angle recorded is so far from the true one, that the star cannot have been seen really elongated, though it might reasonably be expected that the Dorpat telescope of 9.6 inches aperture would be capable of even separating such an object." At p. 498 he adds, "The retrograde movement in the position of this close double star continues so as satisfactorily to prove its binary character." He notes the great discrepancies in the measures, the great difficulty of the object,

and the absence of change in the distance.

A C unchanged.

The angular motion has probably slackened. (1878.)

	•		".	
Ο.Σ.	122.3	4n.	0.65	1842.66
	118.1	3n.	•60	5.18
	109.2	4n.	•56	§.8o
	106.8	,,	.55	52.03
	95.2	3n.	.67	6.98
	93.4	٠,,	•66	60.97
	86∙3	2n.	.70	71.75
Mä,	114.3			43.23
	36·8	l	.3	7.82
8m,	130.0		.7	3.74
Da.	108.8	In.	٠-,	51.99
	103'4	5n.	*55 *3 *7 *7 *64	4'07
	96.2	In.		60 81
	92.2	,,	·71 ·68	6-99
Se.	100.5	3n.	-64	58.76
De.	92.6	6n.		66.39
	85.1	3n.	oblong	55.88
	93.8	41.	0.4	65.73
	91.5	in.	-5	6.84
	89.8	,,		8.55
	88.7	5n.	06	71.41
	83.9	,,	.21	6.71
Du.	92.2	7n.	62	69.68
	90.2	4n.	.71	71.26
	87.4	3n.	•68	5:70
W. & S.	88.2	4	'45	2.65
	93.7	2		3.69
Schi.	82.2	In.	0.72	5.29
Sp.	٠. ت	1	72	3 39
Dob.	86.7	In.	.58	.76
	00 /		, 50	, ,

694 o.s. 414.

R. A. Dec. M. 20^h 43^m 41° 59′ 7.2, 8.3

The distance appears to have increased.

Mä, 94.2 In. O.Σ. 95.9 6n. De. 5 3n. Du. 6 6n. I	*88 8·30 *92 66·80 0·02 9·72
---	------------------------------------

695 \(\Sigma\). 2729.

4 AQUARII.

R. A. Dec. M. 20^h 45'1^m - 6° 4' 5'9, 7'²

H₁ (Phil. Trans. 1804, p. 371): "The position of the two stars, July 23, 1783, was 81° 30' n.p.; and, by a mean of two observations, August 28 and 29, 1802, it was 61° 5' n.f. Both the last measures are positive with regard to the position being following, and not preceding, as it certainly was in the year 1783. This proves a change of 37° 25' in 19 years and 37 days. The distance is perhaps a little increased.

September 5, 1782, it was \(\frac{1}{2}\) diameter of s. August 29, 1802, less than \(\frac{1}{2}\) diameter of s." He infers "a real motion, the nature of which cannot remain many years unknown; its velocity, hitherto, having been at the rate of nearly two degrees, per year,

of angular change."

Z. (M. M., p. 8) began his measures of this star in 1825, but was unable to separate the components till 1833. His measures in 1829.76 led him to think that H₁'s measure in 1783.56 was erroneous, an entire revolution between 1802 and 1829 being at variance with his observations from 1825 to 1833. He found it a very difficult object even in 1836, but suspected a decrease of distance and a direct angular motion.

Sm. (Cycle, p. 488) found this object excessively difficult; "but after succeeding in making it wedge-shaped in a direction towards a 14th magnitude star in the n.f. quadrant, long gazing brought up a bright point of light in the same direction."

Da. (Mem. R. A. S., vol. xxxv., p. 427) says that the distance has diminished, and that there has been an acceleration of the direct motion since Σ . measured this star. A careful examination of the measures led him to think that it was H_1 's result in 1802 that was in error rather than that in 1782; and he further notes that Σ 's positions differ 18° inter se, and that the mean result is too small.

The common proper motion is +0":061 in R. A., and -0":043 in N. P. D. (Σ .)

	•		"	
H ₁ .	351.2	I	0.2	1783:36
1-	28.9		- 3	1802.66
-			0-	
Σ.	25.0	In.	0.81	25.29
	30.0	,,	.80	.61
	13'4	,,	•69	30.93
	23.0	,,	•••	2.00
	31.5	,,	0.67	3.77
H,	46.6		o [.] 67	2.73
Sm.	450		•5	4.69
Da.	65.1	2n.	•••	9.68
	65.2	,,	0.6	40.72
	72.7	In.	•••	1.80
	72·7 81·7	,,	•••	3.76
	95.9	,,	0.2	53.70
,	101.4	,,	.3	4.75
Mä.	24.6	ı	.3	41.49
	27.2		.45	2.82
	31·8 81·7	ļ	-52	3.40
Ka.	81.2		٠	3.76
Se.	107.9	ın.	0.3	56.81
	125	,,	elong4.	65.41
Ro.	143.6	l		74
De.	140	"	,,,	6.13
		1	,,,	012
Sp.	157.0		0.42	75.62
Schi.	.0	In.	42	.62
W. & S.	not	separat	ed	6.86
C.O.	158.5	ın.	0.2	77.70

696 O.S. 416.

R. A. Dec. M. 20^h 47'7^m 43° 19' 7'8, 8'1

Dunér gives

1859.79. $\Delta = 6^{\circ}.98$. P = 143°·1 - 0°·2 (t - 1860·0).

0.Σ.	146.7	3n.	6.97	1846'13
	142'4	2n.	7'17	63.23
Mä,	145'9	ın.	.31	43.26
	143.8	,,	6.80	7.82
Da.	•6	In.	7.05	53.89
De.	141.7	3n.	.01	66.10
Du,	.3	,,	6.99	9.80
W. & 8	. 139.8	ın.	7:35	76.78

697 ο.Σ. 417.

R. A. Dec. M. 20^h 48^m 28° 41' A 7·5, B 8·1, C 9·4

AB.

0.Σ. 39.4 5n. 0.57 1847.98 De. 35.4 in. ... 69.78

$\frac{A+B}{2}$ and C.

0.Σ. 109'0 | 5n. | 30'49 | 47'98 De. '3 | 3n. | '87 | 66'86

698 Σ. 2734.

R. A.		Dec.		M	
20 ^h 48·3 ^m		12° 39'		8 ·2, 8· 7	
Σ.	181.7	3n.	28·50	1829·79	
De.	187.9		26·72	63·54	
W. & S.	191.7		27	76·77	

699 o.Σ. 418.

R. A. Dec. M. 20^h 49^{·9^m} 32^o 15' 7'3, 7'4

Gradual decrease in angle and increase in distance.

0.Σ.	301.8	2n.	0.26	1842.67
	292.8	,,	.67	8.81
	287.9	,,	·74 ·88	53.50
	291.2	,,	-88	60.64
	293.0	In.	'96	8.77
Se.	112.6	2n.	75	58.57
De.	292.4	3n.	1.01	66.90
W.O.	110.4		.04	74.72

700 o.s. 420.	For a	$\frac{A+B}{2}$ as	nd C,		
R. A. Dec. M.	1	-		= 10" 68 3 (t - 18	i. Isomi
20 ^h 50 ^m 40° 15′ 7, 11.2	* -	- 70 0	V 003	3 (* 10	.30 0).
0.Σ. 0.6 3n. 5.79 1848.30 pe. 4.7 ,, 5.4 67.00			A B	•	
34 T 57 S	Σ.	300.2	ı In.	0.4	1835-62
701 o.s. 422.	İ	287·3 293·9	,,	35	*64 *68
		295'4	,,		169
R. A. Dec. M. 20 ^h 51 ^m 44° 42′ 7.4. 9.1	Sm.	293°I	"	0.3	70 8.83
0.7	Da.	286.3	In.	·5	9.69
O.Σ. 331'9 5n. 2'72 1851'35 5n. 60 67'43		285.7 290.9	2n.	.7 .59	40°66 1°82
351 - 1		287.8	ın.	7	2.83
702 S. 2737.		285°2 287°0	2n. 1n.	·66	3 ⁻ 77 7 ⁻⁶³
702 S. 2737.		.3	2n.	.73 .87	8.67
€ EQUULEI.		285°E	3n. In.	.97	53.85
R. A. Dec.		.2 .2	,,	0.86	9 ^{.6} 7 63 [.] 85
20h 53·1 m 3° 50′	Mä,	297.5	000	·65	41.23
Magnitudes.—Σ., A 5.7, B 6.2, C 7.1.		293'4 290'I	9n.	-6	2.57 3.68
De., 6'2, 7'1, 7'5.	ł	296.0		•6	4.88
A.C.—H ₁ (<i>Phil. Trans.</i> , vol. lxxii., p. 219): "Aug. 2, 1780.—Double. Consider-		290'4 288'9	In. 3n.	'93 '94	1.30
ably unequal. L. W; S. much inclining to R.		291.0	ion.	-89	5.48
Distance 9" 375 mean measure. Position 5° 39' n.f."		292.4 .6		.91 .97	679 881
This is A.C. It was measured by H.		290.8	6n.	I '02	61.43
and So. in 1823, and they noted the increase in distance.	Ο.Σ.	287·5 281·7	2n.	0.68 .80	43°64 52°26
Σ. also measured this star as a double	Ì	285·3 283·8	3n.	1 '02	9.63
from 1825 to 1832. A B.—In 1835, however, Σ. discovered	Mit.	283.8 288.1	2n.	0.24 0.24	70°32 47°63
that A was double. "1835'62: power 480; elongated; 800 gave 0"4, 300°5; in contact." He could not separate the pair	Ja.	286.8	9	.8'	53.83
480; elongated; 800 gave 0"4, 300"5; in	De.	280.3	5n. 2n.	•••	4.62 5.84
m 1835.	İ	285.1	6n.	0.1	6.66
Smyth says (Cycle, p. 490), "It is clear that A and B are binary."		283·8	3n.	·o	8.49
Da. (Mem. R. A. S., vol. xxxv., p. 420)	Se.	287.4	4n. 5n.	.81	62.64 55.88
says "an increase of distance has certainly occurred in this close pair; and a very small	Kn.	287°1	3n.	1.03	66.72
diminution of angle is probable in both		290.2	2n.	.01	3.66 4.74
sets.' O.Σ. (1877). In A B the distance has	Ro.	288·1	In.	.07	5.70
increased: in $\frac{A+B}{2}$ and C there has been	Ka.	285.6 283.0	6n.	0.46 1.05	·68 ·85
and C there has been	Du.	288.6	4n.	0.99	9.69
but very little change. The plane of the apparent orbit of the former coincides very	1	289°0 288°8	in. 2n.	90.	70.73 5.68
nearly with the visual ray.	W.O.	296.6	In.	.16	
The common proper motion of the system is -0° 011 in R. A., and $+0^{\circ}$ 13	W. & 8.	287°2 285°2	8	0.86	72.65 .85
in N. P. D.		286.9	6	'15	3.20
For A B, Dunér gives	G1.	289°2 287°0	4	12	5'79 3'91
$\Delta = 0''.87 + 0''.0165 (t - 1855.0) -0''.00035 (t - 1850.0)^2.$	Sp.	286.4	1	0.97	6.44
$P = 288.^{\circ}17 - 0^{\circ}.186 (t - 1855.0)$	Schi. Dob.	288°I	In. 3n.	.97 .83	43
+ 0°.00415 (1 - 1850.0)2.	1	-4	20.		7.74 8.78

$\frac{AB}{2}$	and	C.
----------------	-----	----

		4		
H ₁ .	84.3	In.	9"37	1781 81 1821 25
Σ.	80.4		١	1821 '25
	77.5	In.	10.26	5.62
	79'4	,,,	·98	9.90
	78.0	,,	.77 .81	31.57 2.88
	79.1	"	.81	2.88
	78.0	2.	.92	
H, & 80.	77.8	6n. 10	.75	35.65
, w bv.,	79°3	10	12.37	23.57 7.79
8m.	77.6	l	10.2	22:77
	78.1	İ	11.5	33.77 8.83
Da.	77.0	In.	10.76	9.68
	.3	,,		40.80
	76.8	,,	10.4	1.84
	.7	,,	11.52	3.79 8.66
	77 ^{.3}	,,	.22	8.66
A #	70.2	,,	10.33	53.75 41.39 56.68
Ο.Σ.	78.8	5n.	11.50	41.39
	76·5	,, 2n.	.11	50.09
Mä.	77.2	211.	.19 10.25	70'32
	77°3 78°0		.50	41.54 2.76
	77.4		.30	3.68
	78·i	1	·48 ·86	4.88
	76.9		∙86	9.26
	'4		*24	51.73
	77.3		'44	51.73 3.80
	77°3 76°5			5 [.] 79 8.83
	70.2	l	10.43	6.93
Mit.	4	In.	47 11.08	61·39 47·63
Ja.	75.3	9	10.0	53.88
De.	75 [.] 3 76 [.] 4	5n.	-60	4.89
	• 1	2n.	.21	5.84
	75 ^{.9} 76 ^{.3}	5n.	.28	6.61
	76.3	2n.	1	8.46
a.		4n.	-83	62.64
Se. Po.	74.6	5n.	.90	55.88
Kn.	76.8	15 In.	•58	63·66*
	75.6 77.6	2n.	.39	4.74
	75.8	3n.	10.29	5.67#
Ro.	75·8 76·0	,,	.25	5.67*
M,	77.5	In.	•7 4	7.61
	76·5	,,	·51 ·62	.65
	74.2	,,	·62	8.62
	75.6	,,	.81	.62
	72.8	. >>	•68	9°54 °67
	74'I '6	,,	. 53	.61
	75.0	"	•••	-67
	.3.3	"	10.89	70.78
	·3	3n.	.62	2.79
	74'9	4n.	.99	3.70
	.5	3n.	11.36	4.40
n	75.0	4n.	.38	5.66
Du.	74.3	2n.	10.66	69.66
W. & S.	76.3	In.	:57	70.73 2.65
W . W D.	75.9	4	9.3	2.85
	137	-		. 03
		* A C	•	

W. & S. Ta. Schi. Sp. F1. Dob.	73.7 77.5 76.5 75.2 3 73.4 75.3	5 3 In, "	10°10 9°65 10°68 °69 °82 '77	1873.70 5.79 3.74 5.90 90 7.76 81
703	0.2	Σ. 42	34 .	
R. A. 20h 54 ^m	ı	Dec. 15° 6'	,	M. 7 [.] 5, 87
Ο.Σ. De.	325.4 320	3n.	0'42 oblong	1848·34 65·74
704	Σ.	274	1 1.	
R. A. 20h 54.6r	•	Dec. 50° o	,	M. 6, 7·3
• .		ns are v	ery disc	
H ₁ .	43.6	In.	1.12	1783.73
H,	36°2		.41 2.89	1828.22
	33.7		1.81	30.63
Da.	32.8	In.	.76 2.42	1.62 0.24
	ı.	"	•••	0°57 4°50
	·3	,,	2.04	41.80
_	35.8		1.41	7.91
Σ. Sm	35.8 34.6	3n.	.93 2.1	31.49
Mä,	35.3		.06	4.27
	33.6		.19	41.48
	·8 34·9	7n. In.	171	2.68 51.85
0.Σ.	33.0	2n.	2.07	41.22
Mo. De.	31'3 32'4	4n. 2n.	1.88 2.0	55.42
Se.	30.5	3n.	1.94	7.16
M.	29.6	In.	·85	62.49
Eng. Ro.	30'9 33'9	4n. 2n.	2.22	5.49
Du.	31'4	7n.	1.99	72.95
Ta. Fer.	27.7	In.	'74	3.74
W. & S.	31.3	In.	.39 2.05	4.55
	32.2	,,	1.92	5'79
G1. P1.	33 [.] 7	,, 2n.	·89	4.91 6.86
Dob.	28.6	,,	1.01	77
705	Ο.	Σ. 42	25.	

R. A.	Dec.	M.
20h 56m	48° 13′	A 7, B 10'5, C 11
	AB.	
ο.Σ.	27.6 3n.	12'32 1847'49

ο.Σ.	46°0	A C		51.70
0.Σ.	135.0	B C	4'11	51.20
706	Σ.	274	14 .	
R. A. 20h 57		Dec.	,	M. 6·3, 7
Retro	grade mo	tion.		
Σ. H ₁ . Ma. Da. Do. O.Σ. Se. W. & S.	190.5 188.3 187.8 187.8 189.8 177.5 184.5 170.6 184.5 175.2 7 174.5 176.2 172.9	5n. 6n. 2n. 1n. 4n. 4 6 6	1.52 2.0 1.75 .60 .71 .43 .50 .93 .77 .57 .27 .60 .31	1830·16 1·00 41·63 2·73 3·75 8·68 63·24 43·24 74·84 50·46 72·65 3·72 5·79 3·91 6·63
707	Σ.	274	<u></u>	-
R. A.		Dec.		M. 8 8:6

20h 57	m	38° 47′		8, 8.6
Direct	motion.			
Σ.	276.2	5n.	0.87	1830.82
	279'3	2n.	'98	5.63
Ο. Σ.	270'9	,,	.98	40.72
	279.2	,,	1.03	58.22
8 3.	281.5	,,	0.88	6.86
De.	283.7	,,	.80	63.33
8p.	282.9		'96	75.67
₩. & S.	290'3	5	1.00	6.48
	_	•	-	•

708	Σ.	2749.
-----	----	-------

R. A. Dec. M. 20^h 58.7^m 3° 3′ 7.7, 8.9

Probably a ternary system.

		AB.	1	
Σ. 1 H ₁ , 1	49°5 48°7 50°0 49°4 51°0	5n.	3.61 .51 .5 .74 .47	1825.60 30.10 1.00 43.70 56.70 63.90

		Ç.	
Se.	127.0	0.6	56-64
De.	141.7	.8	63-71
Bu.	150.0	1.2	74-82

61 CYGNI.

R. A. Dec. M. 38° 7′ 5'3, 5'9

C. golden.

H₁ (*Phil. Trans.*, vol. lxxii., p. 221): "Sept. 20, 1780.—Double. It is a star preceding τ. Pretty unequal. L. pale R; or L. R; S. garnet. Distance 16" 7". Position 36° 28" n.f."

H, and So. (Phil. Trans. 1824, p. 365). These observers give a complete list of measures from 1753'8 to 1819'9, and after observing that the proper motion given by Piazzi is +5"'38 in R. A. and +3"'30 in Dec., H, goes on to say, "This affords indisputable proof of their connection in a binary system, otherwise the lapse of nearly seventy years, during which they have been observed, one of them would doubtless have left the other behind, without supposing a coincidence too extraordinary to have resulted from accident."

From the measures he finds a mean annual motion in angle amounting to +0°7,30, and then, computing the positions for the dates of the observations, he finds a very fair agreement. "The mean angular motion of these stars then about their common centre of gravity is not far short of that of the two stars of Castor, while their apparent mutual distance is at least three times as great. This circumstance, taken in connection with the rapidity of their apparent proper motion, affords a presumption of their being much nearer to us, and renders of Cygni a fit object for the investigation of parallax."

2. (M. M., p. 169) gives his measures from 1821 to 1835, and from them infers an increase in angle and distance. Treating the distances by the method of least squares, he arrives at the formula

15".727 + 0".0749 (t - 1832.58); and the computed and observed distances then agree very well. In the P. M., Σ states that the motion up to 1851 had been rectilinear, and gives the following formulæ:

$$\Delta \sin P = + 16'' \cdot 163 + 0'' \cdot 0620$$

(t - 1840 \cdot 02).

 $\Delta \cos P = -1''.959 - 0''.1890$ (t - 1840.02),

Smyth (Cycle, p. 494) says: "It affords a positive instance of a double star which,

besides the individuals revolving round each other, or about their common centre of gravity, has a progressive uniform motion towards some determinate region. This path is relatively spiral, but still so vast as to appear rectilinear; but too little is yet known of its amount and direction to refer it to definite laws."

"The difference between the proper motions of the components here shown would produce a change in R. A. of 7"2 since Bradley's time, and an alteration of declination amounting to 18"'9, corresponding to a change in distance of 19".7. Bessel considered the series of positions and distances very inadequate to afford a trustworthy set of elements. He concluded that the annual angular motion is somewhere about 0°.67, and that the distance at the beginning of the present century reached a minimum of about 15". Hence, he remarks, we are enabled to conclude that the period of revolution must be more than 540 years, and that we see the semimajor axis of the orbit under an angle of more than 15°." (Hind.)

In making his observations for the determination of the parallax of this star, "Bessel chose two stars of about the 9 to magnitudes, one being nearly in the direction of the line joining the double star, and the other perpendicular to this direction. The distance of each of these stars from the point which bisects the distance between the two stars of 61 Cygni, was measured sixteen times every night of observation." The resulting parallax was 0"3136, equivalent to a distance from the sun 657,700 times the length of the semi-axis of the earth's

orbit. (See Mr. Bishop's volume of Observations.)

After reducing the angles to the equinox f 1850.0, 0. \(\Sigma\). finds the following formulæ:

$$\Delta A = + 16''.659 \pm 0''.036 + (0'.0464 \pm 0''.0028) (f - 1850.0).$$

$$\Delta D = -3''.783 \pm 0''.013 - (0''.1906 \pm 0''.0010) (f - 1850.0).$$

An examination of the differences resulting from a comparison of the measures with the calculated quantities shows that the formulæ are not satisfactory. Hence it is evident that the traces of orbital motion may soon be very distinctly recognized.

Dunér has found that Σ .'s formulæ do not represent the observations between 1866 and 1876, and he gives the following:

$$\Delta \sin P = + 15'' \cdot 09 + 0'' \cdot 0788 (t - 1825' 0) - 0'' \cdot 00062 (t - 1825' 0)^3.$$

$$\Delta \cos P = + 0'' \cdot 89 - 0'' \cdot 1858 (t - 1825' 0).$$

He observes that the deviation from a straight line is already apparent; that his formulæ give very considerable differences in the early observations; and that probably no formulæ would agree well with both the early and recent measures.

The proper motion of this object has been carefully determined. Argelander's values are—

H₂ (*Phil. Trans.* 1824, p. 367) gives the following list of the early observations:

Date.	Position. (n.f.)	No. of Obs.	Distance.	No. of Obs.	3 R.A.	No. of Obs.	Δ Decl.	No. of Obs.	Authority
1753.8	39 2		19".628		· 14°40 15°00	6	9.6 19.0	I 5	Bradley, cited by Bessel. C. Mayer, ditto.
1781.9 1784.4 1793.6	36 II 37 14	2	16 .333	3	22°50 15°00	I	6.9	I	H ₁ , Catalogue and MS. Dagelet, cited by Bessel. Lalande, ditto.
1813.3 1802.0	19 43 11 32 10 53		19 '267 14 '502 16 '741		18.00 18.00	17 6	6·5 2·9 3·1	13 8	Piazzi, Catalogue for 1800. ,, cited by Bessel, Funda Bessel, Funda Astronomia.
1813.8 1814.5					19.60	37 2			Lindenau, cited by Bessel. Struve, Catalogus primus.
1855.0	6 58 5 19	5 35	15 '20 '425	33	19.10	14	1.85		" Additamenta, p. 180. Herschel and South, mean result.

Bradley. 35°4 C. Mayer. 50°5 H ₁ . 53°5 Lalande. 52°7 Piazzi. 70°2 78°5	15°24 16°33 14°87 19°27	1753·80 78·00 81·90 93·60 1800·00	Bessel. 79°1 Lindenau. 69°1 E. 68°9 83°5 85°8 89°4	16"74 1812'30 '56 13'80 17'20 14'50 15'11 20'51 14'93 2'72 15'31 8'72
78'	14'50	1 5.00	89'4	15.31 8.72

	-								
Σ.	91.1	4n.	15.63	1831.70	D.O.	00:1		17.12	
	920	In.	79	2.77	Mit.	101.1 66.3		17'12	1846.71
	93.8	6n.	97		Flt.	102.0	ın.	.85	7'54
	94'4	0	16.08	5.65 6.24	Z		19	16.96	50.00
	95.4		15.93	7.71	}	103.0	27	17:20	2.72
80	86.3	63	-3,53	25.40	Mo.	107.5		7 28	6.67
H,	89∙≾	"	'43	8.52		105'4	3n.		2.76
•	.0		'43	9'47	1	108.3	2n.	·45 ·88	4.83
	90·8		.61	30.26	Mi.	103.9	211.	17	9.01
	7		'45	1.74	De.	102.2	7n.	29	2.93
Da.	•3	2n.	169	0.66		100.1	2n.	34	4.73 5.84
	92.4	In.	·88	3.80	1	'4	4n.	34	6.62
	03.3	2n.	16.13	4.62	1	107:3	3n.	73	761
	94.8	١,,	'20	7.56		107.3	4n.	73	8.53
	96∙o	,,	.57	9.75		109'4	8n.	18.36	62.76
	97:2	,,	'40	40'73	1	•6	4n.	37	3.39
	.9	In.	.55	1.87	1	110'4	ion.	.53	4.74
	98∙9	٠,,	76	3.76	İ	ۈ•	8n.	.57	5 65
	99.6	2n.		98	l	111.7	16n.	.57 .72	7.16
8m.	90.2		15.6	30.81	1	112.8	5n.	*83	8-68
	92.3	1	4	2.65		113.2	7n.	.96	9.70
	93.5	l	16.5	4.76	l	.9	,,	19'16	70.58
	.6	Ì	15.8	5.29	ł	114.5	,,	•23	1.22
	95.1		.9	7.65	1	.3	8n.	'33	260
	96.3		16.3	9:69	l		7n.	'44	3.22
	99.8	l	- 4	48.07	i	115.3	6n.	.20	4.23
Mä.	103·7 94·1		17.0	53.80	1_	•9	7n.	.28	5.26
	98.5		15.29 16.49	35.24	Se,	105.4	2n.	17.56	55.22
	99.0	1	10.49	41'49			,,	.89	6 63
	98.9		.78	2.62		111.8	In.	18.81	60.84
	100.1			3.76	Po.	106.6	40	17.88	55.65
	103.1	4n.	.35 .80	50.95	-	108.6	7n.	18.5	9.80
	104.1	19n.	1 .83	2.44	M.	108.8 100.8	In.	17'64	61.79
	4	- 3	.00	3.13		107.7	,,	17.89	84
	105 0	}	17.63	4.22	ł	108.4	"	17.66	+5
	106.9	12n.	'48	7.56	1	110'4	4n.	18.63	2.27
	107.6		156	9.54	i	8.111	In.	.89	5.20 8.60
	108.7	22n.	.03	61.03	l	112.2		.71	-60
Encke.	95.5	1	16.27	37.63		• • •	**	.21	*61
Galle.	. 4		15.91	71	1	111.8	"	19.06	9'54
Ka.	96.1	١ .	16.40	8.73	Ì	112.8	,,	18.24	762
AA.	97'1	6n.	.0	40.02		•6	,,	19.48	70.48
	.6	,,	1.	1.81	1	•1	,,	'07	-50
Ο. Σ.	111.5	,,	18.47	65.89	ł	114'1	,,	'77	2.78
0.2.	99.0	3n.	16.67	43.23	l _	115.1	18n.	.22	5.21
	100°9 102°4	,,	17.02	7.46	Ro.	109'7	ın.	•••	65.75
	102 4	2n.	.18	50.30	l _	111.4	,,	18.76	'76
	103·6 104·5	3n.	34	1.81	Kn.	·6	2n.	.76	6.42
	105.5	2n.	'46	2.67	1	113'4	3n.	19.16	71.60
	106.2	,,	18.02	4.5	- m-	114.4	2n.	.60	3.00
	108.4	3n.	22	7°20 60°80	Ta.	112.8	In.	18.84	66'74
	112.2	4n.	18.	8.24		113.6	,,	·68	72.70
	116.1	2n.	19.42	74.74		.6	,,	708	3.71
Ja.	99'3		16.03	45.87	ŀ	117.4 116.1	"		5'34
	90.7		17'12	6.40	Į.	115.9	,,	19'43	33
	100.8	1	16.81	7.96	1	9	,,	20.03	.29
	102'9	11		50.62	Du.	1120	4n.	18:49	67:59
	103.3	20	17:43	1.77		'2	6n.	62	8.82
	104.3	10	'40	2.75		113.0	8n.	-82	9.89
	·7	10	•68	3.89			2n.	16.	70.00
	106.4	1	.9	6.81	1	115.1	3n.	19.41	3:87
	107:2		18.0	7.82	1	.7	"	39	5 95
	. 3	J.	17.9	8.27	G1.	113.8	6	12	0.30

			,,	
G 1.	113.9	6	19"38	1870.65
	114.0	6	.00	·8ŏ
	·I	6	.18	1°32 '73
	.0	6	.32	.73
	113.0	6	18 32 20	3.73
	119.1	4		3.73 .68
	115.0	6 6 6 6 4 3 4		·81
	·ó	4	19.2	*70
	.2	10	->.46	4.01
	.6	8	.60	10.
	116.3	4n.	.46 .60 19.61	70 4.91 -91 5.71 6.46
	3	12n.	•68	6:46
	.7	7n.		8.66
W. & S.	113.1	7.5.	•1	1.20
•	115.6	6		1.26 2.65
	115.9 .0 .2 .6 116.3 .7 113.1 115.6 114.2 .4	56 4 4 7 5 4 9 7 6 10 8 4 5		.72
	'4	7		.73
	7 7 1170	7		772 773 774 774 775 3.72 5.79 6.59 .60 .61
	٠,٤	'é		74
	.7	3	18.7	.75
	.,	7	.0 /	2:72
	117.0	3	10:40	5.70
	112.0	6	19 40	5.50
	11 6.3	10	-88	3.50
	116.8	1 8	.06	'61
	115.8	, i	.66	.61
		4	.22	.62
P 1.	• •	2n.	20:02	.55
	·2 ·4 ·3 ·2 ·7 ·7		19°40 °59 °68 °96 °66 °72 20°03 19°78 °76 °52 20°02	75 777 79 8·60
Fl.	.3	7n. In.	19.76	1 77
Dob.	,		1 .70	8:60
Goldney.	4	4n.	20:02	3.00
columby.	•/	, ,,	20 02	1 72

710 S. 2760.

R. A. Dec. M. 21h 1'9m 33° 39' 7'3, 8'1

The distance has diminished considerably, but the angle has probably not changed at all since 1830. O. Σ , finds that the distances are represented by

and the differences between the observed and computed values are very small.

Dunér gives

$$\Delta = 11'''\cdot 37 - 0''\cdot 102 (t - 1850\cdot 0).$$

 $P = 224^{\circ}\cdot 1 + 0^{\circ}\cdot 047 (t - 1850\cdot 0) + 0^{\circ}\cdot 00043 (t - 1850\cdot 0)^{3}.$

So.	222.8	2n.	14'32	1825.61
Η _γ . Σ.	223.9	ın.	13'49	9.84
Σ.	•2	2n.	.66	.87
	222.9	,,	.38	32.40
	223.5	3n.	12.95	5.63
	224'I	,,	.40	6.67
	.0	,,	.76	7.77
Ο.Σ.	.9	2 n.	13.05	9.86
	223.5	4n.	11.67	47'90
	.8	2n.	'02	55.81
	224.3	,,	9.70	68.76
	.2	,,	.23	73.72

	۰		,,	
ĭä,	222.7	1	12.42	1841.20
	223.3	3n.	11.75	5.68
	Ĭ-8	•	'70	7.76
	.7	3n.	40	50.94
	.9 .6	,,	10.00	1.93
	•6	2n.	.79	6.92
	221'4	,,	'78	9.86
Da.	223.9	In.	12.12	41.67
	*4	3n.	11.08	3.82
Ka.	.9	6n.	.92	1.81
	225'4	,,	9.64	65.91
Mo.	224.3	3n.	10.01	54.73
_	•5	In.	·57	5.86
Do.	225.0		'52	7.08
	224.7	ĺ	.13	63.02
	.9	ŀ	9.84	5.55
	225.0		.68	7.12
	.5 .3 .2		:35	9.19
	.3		.24	70.96
	*2		8.99	3.02
Du.			:79	5.03
Du.	224.2	4n. 6n.	9.28	68·55 9·83
	.7 225:2	3n.	8·29	74.81
Ta.	222.6	6	7:35	2.70
,	223.3	"	8.33	3.74
W. & S.	224'4	5	9.2	72
G1.	225.3	4	'42	4.40
Pl.	224.5	2n.	8.72	6.79
Fi.	225.4		.22	7.83
-	J T	•		, , , -3

711 S. 2762.

R. A. Dec. M. 21^h 4^m 29° 43′ 6, 8

C. A greenish white, B bluish.

Dunér's formulæ are

$$1855$$
 o. $\Delta = 3'' \cdot 43$.
 $P = 314^{\circ} \cdot 3 - 0^{\circ} \cdot 047 \ (\ell - 1850 \cdot 0)$.

H ₁ .	315.3	In.		1783.70
Bo.	.2	2n.	3.22	1824.70
Σ.	•6	3n.	.54	9.75
Mä.	314.7	In.	62	47.70
De.	310.7	5n.	42	54.62
	315.1	in.	·6o	6.45
Se.	313.7	3n.	. 53	7.06
Du.	ı.	5n.	.19	68.59
W. & 8,	٠6	In.	'43	73.72
G 1.	•0	١,,	'40	4.80

712 S. 2777.

R. A. Dec. M. 21^h 8.6^m 9° 28′ A 4.1, B 10, C 10

AB. The orbit has a great resemblance to that of 42 Comæ Berenicis. The period is still uncertain: it may be six or seven years, or about double that time.

 $\frac{A+B}{2}$ and C. The observations being reduced to 1850, and weights being assigned, M. Doubiago finds the following formulæ for uniform rectilinear motion: $\Delta A = + 16" \cdot 136 \pm 0.030 - (0" \cdot 0600)$

$$\begin{array}{l}
\pm 0.0024) (t - 1850 \circ 0); \\
\Delta D = + 26'' \cdot 267 \pm 0.031 + (0'' \cdot 2943 \\
\pm 0.0024) (t - 1850 \circ);
\end{array}$$

and the differences indicate no deviation from such movement. $(0.\Sigma.)$

The proper motion of δ is + o" o8 in R. A., and - o" 28 in N. P. D. In this C has no share.

For
$$\frac{A+B}{2}$$
 and C, Schiaparelli gives
$$\Delta \sin P = + 16''.90 - 0''.0632$$

$$(t - 1839.0).$$

$$\Delta \cos P = + 22''.98 + 0''.2873$$

$$(t - 1839.0).$$

	_	A B	• '	
0.Σ.	22.5	In.] "	1852 [.] 64
	18.8	,,		.67
	191.9	,,		3.91
	•••	sin	gle	4 69
	•••	,	,	6.57
	207.6	In.	0.51	'67
	211.2	,,	.23	.67
	16.8	,,	'40	8.29
	13.2	,,	.39	9.65
	236	,,		61.57
	203.3	۱,, ۱	'50 ±	5.91
	24.0	oble	ong	74.67
	•••	wed	ged	.73
		oble	ong	•••
	221'2	In.	0.33	74.75
Du.	8.0	2n.	.25	0.43

$\frac{A+B}{2}$ and C.

H ₁ .	78.4		19:53	1781.80
So.	41.9		25.81	1825.26
Н,.	40		20'	7.63
-	39.2		27.83	30.35
Σ.	41'4	3n.	26.64	28.80
	39'7	,,	27.48	32.10
	37·8	2n.	•56	4.90
	۶۰°8	4n.	.63	5.64
	•4	4	28.07	6.65
	36· 7		.26	7:77
Sm.	38.8		27.1	0.67
944.	37.6			6.78
	36·8		28.2	0.78
16 2		ì	20 2	8.59
Mä,	34.2			41.49
	.8		29.88	3.63
Ο.Σ.		In.	28.82	1.65
	32.5	,,	30.48	7.82
	30.9	,,	31.02	51.84
	.9	,,	38	2.64
	29.2	,,	•57	3.01
	.7	,,	.57 .65	4.69
	4	,,	32.36	6.28

	28°7	In.	32.59	1857-67
		l	384	8.59
	.4 .2	"	187	9.65
	26·I	"	34.40	65.01
Ka.	34.0	"	28.5	4
	33.9	ĺ	29.2	4 4
De.	27.0		33.76	63:4
	25.0		70	74 80
Kn.	27.5		34.46	65 72
Du.	25.2	2n.	35.80	9-67
W. & S.	24.5	In.	37.66	76.81
Fl.	••	,,	.57	7.82

713	Σ. 2'	778	Э.
-----	-------	-----	----

R. A. Dec. M. 1^h 9'3^m 28° 35′ 8'5, 8'5

C. yellowish.

Change in both angle and distance. Duner gives

 $\Delta = 18^{\circ} \cdot 61 - 0^{\circ} \cdot 029 \ (\ell - 1850 \cdot 0).$ $P = 187^{\circ} \cdot 1 - 0^{\circ} \cdot 125 \ (\ell - 1850 \cdot 0).$

$P = 187^{-1} - 0^{-1}125 (1 - 1850^{-1}).$					
Σ.	189'4	2n.	19.22	1828:81	
H _{ą:} Mä,	185.4	In.	23.8	9.80	
Mä,	1880	,, -	18.30	43.71	
	186.6		'40	8.02	
	187.7	3n.	'70	50.93	
0.Σ.	.2	ın.	.77	30.83	
	184.2	,,	17.99	68.76	
	185·í	,,	.90	777	
	I.	,,	'71	74.84	
De.	`2	5n.	18.13	64.29	
Du.	184.5	4n.	.07	9.81	
Fl.	182.8	In.	17.86	77·S2	

714 S. 2778.

R. A.	Dec. - 1° 44'	M. 8·4, 10·6
Σ.	267.0 4n. 21.19	1828 ⁻ 24
Mä.	268.4 In. 20.10	43 ⁻ 70

715 o.s. 432.

110	U	.2. 1	5 2.	
R. A 21h 9"	, m	Dec. 40° 39	·	M. 6·8, 7·2
Mä.	130'4	1	1.04	1843 65
0.Σ.	'4	4n.	'19	7'94
Da.	129.7	2n.	'07	53.80
l	126.4	In.	.03	9 68
De.	128.3	4n.	.16	67'01
Du.	.3	2n.	•23	972
W. & S.	'4	In.	17	73'73
ĺ	.7	١,,	'17	5.80
Sp. Pl.	126.4		'21	6.50
P1.	124.6	3n.	.32	6-80

716	τ CYGNI.	_
A. IOm	Dec. 37° 32'	M. 5.6, 7.9
	C. yellow, blue.	
Rapid cha	ange in angle. I	Discovered by

Holden's third star in 1876 9 was 260° 3; distance 15".68.

W.O.	162°6	1	1.10	1874.83
	161.2		*25	6.49
	160.5		.04	190
De.	174.8	In.	.06	4.90
	.5	2n.	'24	5.15
	170.2	3n.	.32	'69
	161.2	2n.	.24	6.49
_	155.3	8n.	•26	7.70 8.41
Bu.	1 20.0		.06	1 8.41

717 A. C. 19.

R. A.	Dec.	M.
21p 11.4m	63° 57′	7, 7

This double star was discovered by Alvan Clark in Dawes's observatory, on July 8, 1859.

Dawes says, "a neat star, sharply defined and pretty steady;" and in his notes he observes, "if there is no error of identity, it must have rapidly separated in the interval [since the date when O.Z. frequently examined it and entered it as single], and may now perhaps have arrived nearly at its maximum distance; the plane of the orbit lying nearly in the line of sight."

Ο.Σ.		single		1842.00
Da.	246.5	1	0.88	59'73
	•4	1	.93	60.40
	244 .2	i	98	6.83
W. & S.	24 7'4	4	'93	72.78
_	251.5	4	'99	3.81
De.	247.6	1	'95	.11

ο.Σ. 435. 718

R. A 21 ^h 15	∵4 ^m	Dec. 2° 23'		M. 7·5, 8
V aria	ible ?			
Mä,	24.5	1 1	0.42	1843.65

Mä,	24.5		0.45	1843.65
	17.0		.25	5.88
	16.0		. 45	51.71
0.Σ.	23.8	3n.	.29	48.13
Da.	201.8	4n.	.55	52.43
De.	196.3	3n.		66.03

ο.Σ. 437. 719

R. A.	Dec.	M.
21h 15.9m	31° 56′	7, 10.5
Indirect mo	ion	

0.Σ.	67.7	4n.	1 37	1845.43
	58.1	3n.	.21	58.74
Mä,	63.7	ın.	•••	45.63
_	61.8	,,	1.50	51.76
Da.	.2	4n.	•29	98
_	60.3		•29	3.20
De.	54.6	4n.	'4 0	66.57
Du.	53.5	7n.	*35	71.12
W, & S.	51.4 .8	5	•32	3.43
	.8	1	.55	6.30

720 Σ. 2797.

R. A		Dec.		М.
21h 20	·9··	13° 10′		6.7, 8.2
Η. Σ.	213.3	In.	4.65	1828.64
Σ.	.3	3n.	3.12	31.56
Mä.	215.5		'20	42.71
	216.4		.18	5.2
	215.9	1	•23	51.75
	216.2		•23	2.72
	218.1			5.81
	222.3	In.	·31	8·81
Mo.	214.2	2n.	.23 .0	6.82
De.	216.0	7n.	٠٥	7.64
Du.	.3	5n.	.18	68.94

721 Σ. 2801.

R. A.	Dec.	М.
31p 33.1m	79° 50′	7:3, 8

The common proper motion of this pair is + 0.108 in R. A., and -0".106 in N. P. D.

Σ.	273'1	3n.	1'42	1832.38
Ο. Σ.	271.6 269.9	2n.	.45 .52	7.07 46.74
Se.	265.7	in.	.73 .16	75.46
DO.	279'4	,,	10	59.03

722 Σ. 2799.

20 (B) PEGASI.

R. A.	Dec.	M.
21h 23m	10° 34′	6.6, 6.6

Dawes first measured it in 1832, and says (Mem. R. A. S., vol. xxxv., p. 436), "there is sufficient evidence of a retrograde orbital motion since the first observation."

Ο. Σ. (1877).	Indirect	motion	:	distance
not sensibly cha	nged.			

	00		"	-0
8 0.	338°.1	ı	1.50	1825 68
Σ.	٠,	In.	· 2 6	8.76
	335.8	,,	'44	9.64
	333'4	3n.	.37	32.91
	332.5	ın.	.30	3.77
H. Mä.	334'6	1	•0	0.64
Mä.	332.9		'39	5.81
	330.1		.58	41.63
	328.9		·34	2.76
	324'4	ł l	.70	50.75
	• • • •		48	1.74
	322.7		.33	3.80
	323.7		.36	4'79
			•36	8.80
	318.5		.37	9.88
	321.6		.47	61.81
	317.8		.38	2.76
Da.	327'4	9n.	.26	40.72
	322.6	3n.	.26	51.96
	320.3	5n.	17	4.74
Ο.Σ.	329.8	2n.	.48	43.75
·	320.8	,,	.44	53.50
De.	142.3	4n.	.2	5.25
	137.8	5n.	.2	6.22
	317.9	4n.	· 4 5	62.67
	3.7.9	3n.	43	3.64
Se.	320.7	4n.	23	56.58
-0.	317.8	in.	.24	66.89
Mo.	320.8	16	-38	59.81
Ro.	315.5	2n.	.30	65.67
Ta.	317.1	In.	29	6.74
	315.4		1.47	71.70
	309.9	"	'00	3.71
	312.4	"	45	74
Br.		"	2.98	68.70
₩. & 8.	325.8	8	1.36	72.66
w. w.b.	314.0		28	
	312.2	5	.26	3.73 5.81
G1.	4	4		3.80
Schi.	313'7 128'7	4	'4I	6.44
8р.		In.	'2I	
вр. Pl.	308.8			.45
Dob.	310.0	5n.	:33	7.54 8.62
DUU.	٠٥	3n.	.33	0.02

723 Σ. 2802.

R.	A.	Dec.	M.
21 ^h :	27 ^m	33° 17′	8, 8

Dunér gives

1852.79. $\Delta = 3''.90$. P = 10.0 - 0.059 (t - 1850.0).

				•
So.	10.6	2n.	4'32	1825.65
Σ.	11.3	3n.	3.84	30 48
Mä,	12.3	ın.	4'25	43.48
	10.0	3n.	3'94	8.72
Se.	9.9	2n.	.93	56.83
De	.1	ın.	.75	7.64
Du.	8.7	4n.	•86	71.61

Σ. 2804.

29 (B) PEGASI.

R. A. 21h 27'1m	Dec. 20° 11'		7°3	
This object	was discovered	bу	Σ.	an-i

South. The former (M. M., p. 55.) says that the angle had increased between the years 1828 and 1834, and that the motion was almost beyond doubt.

Dawes (Mem. R. A. S., vol. xxxv., p. 436) writes: "There can be no doubt of the binary character of this object."

The direct angular movement suspected by my father is perfectly confirmed by the later observations, the distance remaining unchanged. (0.Σ.)

Duner gives

 $1852.00. \Delta = 2''.00$

$1852'90. \Delta = 2'''90.$				
$P = 320.9 + 0^{\circ}.2685 (t - 1850.0).$				
So.	311°7	2n.	2 .58	1825'70
H.	313.3	In.	.71	8 04
	318.0	,,	3.38	30.66
	316.1	,,	.22	1.73
Σ.	314'4	2n.	2.93	28.75
_,	317.2	7n.	.79	35.35
Da.	314.5	,	3.12	2.87
•	317.0		.18	5'44
	J-7.8	4n.	2.93	41'44
	319.3	2n.	·83	6.18
	321.3	4n.	-88°	54'00
Mä.	318.1		•86	38.24
	320.8		·8o	42.76
	319.9	7n.	•90	3.85
	320.8		· 8 9	51.01
	321.7		•77	-87
	322.8		90	4.45
	• 7	8n.	92	6.67
	. 4		•68	8.86
	324 .8	4n.	3.13	62.36
Hind.	322'4	ın.	2.62	45'45
	3230	,,	•••	6.24
Xo,	322.9	30	3.03	54*77
Se.	321.2	3n.	2.87	6.47
	328.0	2n.	3.03	66.81
M.	327.0	In.	2.85	4.67
De.	324.2	6n.	75	87
Bo.	•••	2n.	•65	5.67
Ta.	323'7	ın.	.60	6.78
A 15	324.8	,,	3.16	73.74
Ο.Σ.	327.7	,,	2.94	68 67
~ _	331.1	"	'92	74.67
Du.	327.6	9n.	.76	0 68

2n.

5

46

6n.

96

3.03

2.01

3250

327.3

326.7

328.5

325.3 326.9

325.6

Kn.

G1.

W. & S.

1 78

266

5.81

5.96

7.60

725 S. 2822.

μ CYGNI.

R. A. Dec. M. 21^h 38^r9^m 28° 12' 4, 5

C. A white, B bluish white.

This bright object was first seen double by C. Mayer in 1777.

Considerable diminution of distance combined with a very slow increase in the angle. It is strange that the former change has not been accompanied by a proportionate augmentation of the angular motion. The distance will no doubt be very small when the apparent periastre is reached. The apparent orbit is probably very elongated. (O. Σ .)

The common proper motion of this object is about + 0°016 in R. A., and + 0°26 in N. P. D.

The small star C does not belong to the system.

Dunér gives the following formulæ:

 $\Delta = 5^{"}\cdot 60 - 0^{"}\cdot 0330 \ (t - 1830\cdot 0) - 0^{"}\cdot 00021 \ (t - 1830\cdot 0)^{3}.$

P = $113^{\circ}.5 + 0^{\circ}.06707 (t - 1830.0) + 0^{\circ}.000555 (t - 1830.0)^{2} + 0.0000052 (t - 1830.0)^{3}.$

	0		"	
H ₁ .	109.5	2n.	•••	1780.84
S o.	113.1	,,	5.74	1823.69
H,	112.7	In.	5 ⁻ 74 -67	30.44
Σ.	114.5	4n.	·55	1.63
Sm.	113.8	·	٠6٠	2.79
	114'3	1	'4	9.62
Mä.	115.0		10	41.60
	114.9	- 1	4.63	2.77
	117.1		5.32	3.96
	115.8	1	.21	4.88
	.1		41	7.92
	116.1		4.76	50.83
	115.3	- 1	.37	1.87
			•25	3.24
	.3	1	.22	7.83
	·4		.22	8.09
	116.9	8n.	.18	62.16
Da.	114.3	6n.	5.46	42.08
Mit.	112.1	In.	4.89	7:61
Po.	.2	3n.	*94	.69
ο.Σ.	. 4	In.	.78	51.84
	115.4	,,	•66	4.60
	116.0	,,	'44	61.63
	·4	,,	*34	6.73
Mo.	۰6	"	·88	6.72 54.84
	115.5	6n.	.20	5.84
	116·7	2n.	41	9.75
De.	.4		.41 .66	5.62
	•4	6n.	'40	62.98
	·4 117:0 ·8	5n.	.40 .14	6.18
	.8	٠.,	3'94	72.85

	۰		"	
Se.	116.7	3n.	4.63	1856.94
	117.0		.39	66.90
X.	114.8	In.	46	2.23
Eng.	115.8	3n.	.13	5:37
Eng. Ro.	· 7	īn.	•••	·68
Ta,	116.3	١,,	4.64	6.78
	113'4	٠,,	.82	8.75
	117'2	,,	3.26	73'74
Ka.	115.2	5n.	4.00	66.84
Du.	116.9		3.89	8.17
	118.3	6n.	.21	75.46
Br.	117.3	İ	4.18	68.75
W. & S.	•••		12	71 68
	118.2	5	3.91	3.73
	117.8	5 3 4 3 4	.83	73
	•6	3		·78
	118.3	4	3.62	5.81 6.48
	119.4	3	4.02	6.48
	·4	4	3.84	-83
Fer.	116.8		4.08	2.62
G 1.	117.7	5		3.80
	.5	8	3.89	4.91
	٠6	2n.	.76	6.55
	120.2	٠,,	•••	8.75
P1.	115.3	5n.	3.45	7.42
F 1.	118.4	In.	76 -65 -76	. 57
Dob.	119.5	2n.	.65	8.83
Goldney	7. 116.5	4n.	76	79

726 S. 2824.

R. A. 21h 39		Dec. 25° 6		M. 3·9, 10·8
Σ. 8m.	308·5	5n.	11.01	5.66
Mä.	306·5 306·3		11.49 .60	44.89 8.01 51.00
De. W. & S.	302.8 303.9	In.	9.82 11.6 .6	60.82 4.84 71.51
	303.3	"	·8 ···	3.73 5.89
G1.	302.2	,,	12.1	4.80

727 S. 2825.

R. A. 21h 40'9	m	Dec. o° 18'	,	M. 8, 8 [,] 2
Σ.	100.5	3n.	1.09	1827.72
H, Ma	·I		.0	31
₩ä.	.3		0.92	42.69
	·ō		.95	4'33
	118.8		'97	51.78
Se.	107.7	ın.	. 95	5.78
	105.2	2n.	·87	7:34
	106.2	In.	.7	66.85
De.	107.9	:	1.08	'06
W. & 8	110.4	In.	·06	76.86

728	Σ.	283	37.	
R. A. 21h 42'9) ³⁸	Dec. 82° 2	3'	M. 8·5, 9
Σ. Mä. De. W. & S.	305.3 311.0 321.3	3n. In.	2 ["] 16 '49 '31	1832°30 44°44 66°24 76°94

729 S. 2828.

R. A. Dec. M. 21^h 43.5^m 2° 50′ 8, 9

A B.—The angle is unchanged, but the distance has increased considerably. Secchi's angle in 1856 is probably 10° in error. In B C the angle may have increased about 3°.

Dunér gives

 $\Delta = 24''.87 + 0''.051 (t - 1850.0).$ 1855.26. $P = 142^{\circ}.6.$

AB.

Σ.	142'4	3n.	23.79	1829.09
5e.	141'9	2n.	25'17	56.64
De.	142'4	3n.	.61	64.68
Du.	143'4	2n.	•86	8 80
	142.6	ın,	26.56	75.68
Ο. Σ.	.3	,,	.26	4 84
W. & S.	143'4	2	115	5.89
Fl.	142.7	In.	1 '52	7.88

B C.

Σ.	36.9	3n.	3.64	29.09
Mä.	37'3	_	.93	42.73
De.	40'0	3n.	.91	64.68
Ο.Σ.	.3	In.	'77	74.84
Du.	.9	5n.	4.06	0.42
W . & 8.	38.2	2	3.53	5.89
Fl.	41.0		-89	7.86

A C.

Du.	133'4	In.	25.32	75.68
W. & B.	134.2	**		.81
	-2 }	"	1 25.48	.89

730 Σ. 2840.

R. A. Dec. M. 21^h 48^m 55° 14′ 6, 7

C. A greenish white, B bluish white.

Dunér has

 $\Delta = 20'' \cdot 14 - 0'' \cdot 0184 (t - 1830 \cdot 0).$ 1850 \cdot 63. P = 194\cdot \cdot 6.

_	•		**	_
H ₁ .	•••	In.	21.55	1782'97
	192.2	,,		3.62
H, & 80.	193.8	2n.	20.31	1823.74
-	195.3		-31	30.76
Σ.	193.8	2n.	80	2.46
	194.5	,,	19.94	3.46
Richard'	195'1		.59	40.20
Μä.	194.8	In.	•••	2.81
	196.1	,,	20'15	4.90
	195.0	2n.	19.69	5.58
	194.8	,,	'20	52.50
De.	'4	3n.	*60	7.70
Eng.	.2	•	68	64.43
Du.	·š	3n.	.28	8.49
W. & S.	195.4	In.	•9	74-85
Gl.	194.9	,,	20.16	.91

731 O.S. 456.

21 51	51° 59′	7.8, 8
O. Z.	25.7 3n. I	35 1847-73
De.	30.6 4n.	50 66-64

732 S. 2842.

R. 21 ^h 52		Dec. 19° 40		M. 8·2, 10·7
Σ.	274.7	2n.	1.14	32.90 32.90
	267.9	In.	.00	32.90
De.	264.7 'O	"	·30 ·4	42.72 63.91

733 o.s. 458.

R. A.	Dec.	M.
21h 52.6m	59° 14′	7 ·1, 8·6

In 1873 Mr. Burnham detected a distant star, position angle 40°, distance 25".

0.Σ.	348.8	7n.	0.41	1851-75
Mä. De.	353.7	3n.	0.41 elongd.	45 ⁷⁴ 66 ⁹⁴

734 Σ. 2860.

R. A. Dec. M. 21h 59'4m 60° 16' 7'7, 9'3

C. A very yellow, B blue.

Σ. Mä.	250·8 252·4	3n.	3°32 4°45	1832'30 44'43 7'95 64'94
De.	254 O		2.12	7 95 64 94

R. A. Dec. M. 4.7, 6.5 C. A yellowish, B blue.

Dunér gives

 $\Delta = 5''.96 + 0''.0226 (t - 1850.0).$ P = 287°.8 - 0°.128 (t - 1850.0).

_	•		"	
\mathbf{H}_{1} .	•••	ın.	5.0	1780:37
	290'3	,,		81.96
	293.8	"		1803'22
So.	··2	,,	5.83	23.62
H,.	290.8	"	6.37	30 67
8m.	289.5	"	5.6	16.
	288.8	4	3.8	9.65
Σ.		25	.60	1.77
2. 36 =	.9	3n.		
Mä.	287.2	7n.	•7	45'57
	288.5	In.	.87	50.43
	287.6	3n.	.71	2.66
		,,	6.22	61.80
Po.	·3	,,	5.88	45.90
Mit.	-4	In.	ŏ٠17	7.69
De.	-5	7n.	.00	54.83
	286·ŏ	8n.	.30	64.84
Mo.	'4	2n.	5.82	58.66
Du.	285.5		6.48	70.95
W. & S.	203.3	"		1.86
	284.4	,,	·45	
G1.	.8	In.	•6	4.91

736 S. 2865.

R. A. M. Dec. 69° 38′ 22h I.Im 8.5, 9 80. 19.91 173'7 1825'27 H, 172.3 31'40 175.1 2n. .36 3.38 Mä 177.6 17.50 De. 63.26 181.3

737 o.s. 463.

R. A.		Dec.		M.
22 ^h 4 ^m		13° 9'		7'5, II'4
Ο. Σ. De.	346·8 352·7	4n. 3n.	4:53	1848.08

738 S. 2872.

R. A. Dec. M. 22^h 4'5^m 58° 42′ A7'2, B8, C8
The relative brightness of B and C is

The relative brightness of B and C variable.

AB.

Σ. 316.5 8n. 21.35 1834.42 0.Σ. 4 4n. 75 51.24

B C. ,,				
Σ.	334.5	2n.	0.54	1833'63
	335.6	3n.	*45	6.12
Sm.	330.0		•5	9.77
Mä.	332'1		.25	41.24
Ο.Σ.	333.5	5n.	.62	9.11
5e.	328.3	2n.	'40	56.92
De.	325.9		•5	67.65

739 o.s. 465.

R. A.		Dec.		M.
22 ^h 7 ^m		49° 37′		7'2, 10'7
Ο. Σ. De.	324°3 323°5	3n.	15.31	1848.10

740 S. 2878.

R. A. 22h 8·5	m.	Dec. 7° 23'	,	M. 6·5, 8
Σ.	130.8	4n.	1.36	1830.31
Mä.	132.6		'34	9.70
	135.2		*34	42.72
	134.8	1	.33	50.99
Ο.Σ.	137.8	3n.	•26	46.32
Mä.	134'7		.38	51.82
	132.7		.27	9.88
Se.	130.1	2n.	'44	6.82
Mo.	132.2	16	•26	9.84
Fer.	1256	1	0.08	73.71
G 1.	128.9	In.	1.56	·80
W. & S.	132.5	,, ,	. 45	5.92
Sp.	125.6		'20	6.90

741 S. 2877.

P. XXII. 33 PEGASI.

R. A. Dec. M. 22^h 8·5^m 16° 36′ 6·4, 9·6

C. Z., A, yellow; B, blue. Sm., A, lucid yellow; B, sea-green.

H₁ (Phil. Trans., vol. lxxv., p. 649):
"Fl. 33 Pegasi. Double. 89° 12′ n.f.")
H, and So. (Phil. Trans. 1824, p. 379):
"The proper motions assigned by Piazzi to this star are + 0° 40 in R. A., equivalent to 0° 38 on the parallel, and -0° 1 in declination. In forty years, therefore, it should have moved 15′ 2 from its place in a direction almost exactly coincident with the parallel; and supposing the small star at rest and the position of 1783 correct, the angle at present should be 75° 38′, coinciding exactly with the observed. The proper motion of this star appears therefore to be well established in fact, and correct in quantity."

R. A.,	and +	motion o"•117 ii	of A n N. F	is P. D	-o"·	2 0 in
Dun	ér gives	•				

 $\Delta \cos P = +7''\cdot53 + o''\cdot0925 \ (t-1850\cdot0).$ $\Delta \sin P = -3 \cdot71 + o \cdot0730 \ (t-1850\cdot0).$

The movement is rectilinear and uniform.

	0		. "	
Η,. Σ.	310	1		1827.65
Σ.	316.8	3n.	7.59	8.72
	315.5	In.	75	9.64
	334'9	٠,,	8.73	51.91
5m.	315.4	1	6.5	33.63
Mä,	322.4	l	6·5 7·83	6.57
	328'8	İ	8.36	43.64
	335.2	3n.	49	20.00
	336.4	2n.	77	1.85
	339.4	7n.	.57	6.99
	341.0	6n.	0.01	61.63
Mit.	331.2	In.	9.21 8.04	47.61
Ο.Σ.	332.2	1	.21	21.00
O. 2.	320.1	"	10.56	
Se.		,,,	8.26	74.73
D0.	337.4	3n.	8.26	57:35
De.	345.2	In.	9:53	66.90
Du.	342'2	3n.	8.99	3.67 8.53
M.	345.6	4n.	9.48	8.23
≖.	.8	In.	.31	.70
	348.6	,,	.22	9.77
	347'9	,,	.36	73.78
W. & S.	349°0	4	-8	2.66
	348.2	7 6	·8	3.73
	349.1		.7	4.84
G 1.	347.9	5		3'74
	348.5	4	10.0	.79
	351.0	3	١	79

742 S. 2895.

R. A. Dec. M. 22^h 15'1^m 24° 21' 8'5, 10

Dunér's formulæ are

 $\Delta = 5'' \cdot 43 + 0'' \cdot 0290 (t - 1850 \cdot 0).$

P=17 '5+0° '5125 (t-1850'0)-0° '00288 (t-1850'0)².

3n.	4.85	1830.09
4n.	5.61	44'39
3n.	.33	52.36
	.12	6.79
,,	'73	61.76
3n.		3.73
	6.00	9.53
	.2	74.85
In.	1 '62	.91
	4n. 3n. 1n. 3n. 6n.	4n. 5.61 3n. 33 1n. 15 33 3n. 86 6n. 6.00 2n. 5

743 o.s. 469.

R. A. 22h 15m	Dec. 34° 31'			M. 7·2, 8·8	
ο.Σ.	280°5				
De.	281.4	,, 3n.	30.89	1846·79 74·72 6·74 66·71	

Ħı.

So.

Da.

360.8

15.02

178362

1823.71

30.66 40.15

744 Σ. 2900.

R. A. Dec. M. 22^h 17'9^m 20° 14' A 6, B 9'2, C 7'9

In A B there has been no sensible change. 2. (see P. M., ccxxxii.) shows that C is fixed: his formulæ are

 $P = -(18'' \cdot 299 \mp 0'' \cdot 035) - (0'' \cdot 3482 \mp 0'' \cdot 0053) (T - 1838 \cdot 0).$

 $p' = + (54'' \cdot 250 \mp 0'' \cdot 035) + (0'' \cdot 0218 + 0'' \cdot 0053) (T - 1838 \cdot 0).$

 $0.\Sigma$, finds that the following formulæ represent the observations well:

 $\Delta A = -22'' \cdot 307 \pm 0'' \cdot 049 - (0'' \cdot 3266 \pm 0'' \cdot 0033) (t - 1850 \cdot 0).$

 $\Delta D = + 54'' \cdot 321 \pm 0'' \cdot 049 + (0'' \cdot 0094 \pm 0'' \cdot 0033 (t - 1850 \cdot 0).$

A B are probably a physical pair, while the changes in A C are due to the proper motion of A.

A B.

Da.	181.3	1	3.12	1830.75
	.7		·04	2.86
	179'1		2.83	40'15
	.5		•••	21.28
	180.8		2.40	4.78
5m.	181.6	1	.7	31.74
	180.3		•5	8.83
	178.9		.7	9.69
Σ.	1804	IIn.	45	506
0.Σ.	181.8	ın.	.83	9.88
	175.2	,,	'64	45'74
	180'7	,,	•60	7.87
	175.8	,,,	'40	51.41
	1826	,,	46	65.91
	178.4	,,	.25	74.66
	176.3	,,	.81	'72
Mä,	179.2		:57	42.78
	180.3	l	.07	2.21
	179·5 182·5	l	'24	7.97
	182.2	l		51.01
	181.3	l	2.20 3.80	2.26
Mit.	180.9	l <u></u>		60.82
	178.9	In.	1.4	47.61
Se. De.	177.7	,,,		56.76
Ta.	-0	1	2.5	63.25
18.	.00	6	46	70.59
W. & S.	184·8 175·8		'40	
W. & D.	1750	4	•	1.03
i	176.2	1 4	***	3.73
1	177.0	1 7	1.8	1.85
G1.	175.2	7	83	16.
 -	176.3	2 4 4 7 5	-88	.91
	•			
1		A C	•	

•	•		"	
8m.	344.0	ì	56.9	1831.74
_	341.0	1	Ĭ .6	8.38
Σ.	343'2	5n.		2.5
	341.8	6n.		6.07
Ο. Σ.	340'7	2n.	57:79	9.88
	337.8	3n.	58.60	48.44
	331.7	,,	61.90	71.76
Mo.	336.7	26	59.16	54.85
Se.	335.6	3n.	60.06	6.85
De.	334°I		·5	63.25
Ro.	•••	In.	.47	5.68
Ta.	332.2	,,	61.85	70.60
	331.7	,,	62.28	3'71
W. & S.	•7	4	7	1.61
	330.0	4	.4	.93
	331.5	2		3.73
	'4	3	60.0	4.85
	330.5	I	68.5	6.83
0 1.	'4	5	63.3	3.80
	332.1	4		·80
	331.0	5	63.3	4.91
F1.	330.5	In.	.5	7.84

745 S. 2909.

¿ AQUARII.

R. A. Dec. M. 22^h 22·6^m -0° 38′ 4, 4·1

C. Mayer saw this star double in 1777; distance about 3", angle about 18°.

H₁ (Phil. Trans., vol. lxxii., p. 217):
"Sept. 12, 1779.—Double.* Equal, or the preceding rather the larger. Both W. With 229, 1½ diameter; with 449, 1½ diameter; with 460, 2 diameters; with 932, 2½ diameters; with 2010, pretty distinct, but too tremulous to estimate. With my 20-ft. reflector, power 600, full 2 diameters, very distinct. Position 71° 39' n.f. Distance 4"56, mean of two years' observations."

H₁ (Phil. Trans. 1804, p. 367). He finds an angular change of 6° 58' in 22 years and 38 days. The equality of the stars, and the insulated situation they occupy, lead him to think a physical connexion highly probable.

H₂ in 1825 and 1829 discussed the measures, and was led to conclude that the indirect motion was fully confirmed.

indirect motion was fully confirmed. E. (M. M., p. 55): "There can be no doubt concerning the indirect angular motion. The distance has probably diminished, as it should if the angular velocity has increased."

Sm. (Cycle, p. 518): "By roundly assuming a mean of \(\frac{1}{2} \) yearly, there may be a period of 750 years."

Da. (Mem. R. A. S., vol. xxxv., p. 440). He says that some of the earlier measures

were enormously too large, and that Σ , early pointed this out.

Dr. Doberck's elements are

T = 1924.15 $\Omega = 140^{\circ} 51'$ $\lambda = 134 40$

 $\lambda = 134 40$ $\gamma = 44 42$ a = 7''64

e = 0.6518 P = 1578.33 years.

Dunér's formulæ are

1854.46. $\Delta = 3''.49$. P = 346°.4 - 0°.4945 (t - 1850.0).

The proper motion of the system is + 0° 010 in R. A., and -0" 04 in N. P. D.

H ₁ .	18.9	i ın.	4.22	1779.73
<u> </u>	109		2.31	'94
1	•••	"	3.54	80.48
ł	•••	,,,	4.38	.60
1	18.4	"		1.73
		"	•••	4.73
	17.9	,,	•••	2.38
H. & So.	12.0	"	0	
п, с во.		22	4.98	22.27
	361.1	70	.01	5.73 8.56
•	356.3	In.	5.55	8.50
ľ	'4	,,	4'73 3'84	9.60
	.3	2n.	3'84	31.64
	352°4	In.	.22	5.22
_	.0	,,	.91	6.43
Σ.	359.8	2n.	.6	25.23
	355.5	5n.	46	32.81
	353.o	In.	.20	9.83
_	349.5	,,	.77	5í·89
Be.	355.7		.25	30.98
_	354'3		.69	4.77
Sm.	356·0		.16	1.83
	355 [.] 3		4'I	2.41
			3.8	4.90
	352.4		.2	8.04
	348.9		2.7	42.59
Encke.	352.0		4.02	36.2
	351.8		3.8	.60
_	350.6		·78	7.61
Da.	.7	2n.	.57	·38
	.I	6n.	. 73	9:77
	348.4	2n.	*47	41.86
	.0		'54	2.67
	349.1		'43	·89
	348·1		•53	3.72
	.3		•••	4.00
	347.5	3n.	3.48	6.92
	346.8	1	.38	7.93
	'4		.27	8.05
	345.5	9n.	. 43	53.23
	343.6	2n.	.35	4.91
	340.3	4n.	'44	9.69
Ø-11-	336.3	In.	·33 ·85	66.99
Galle.	350.4		.85	38.67
0.Σ.	351.6	In.	.67	9.83
	349 3	,,	84	7.85
	350.3	,,	4.02	·8 ₅
	339.2	Ι.	3.36	65.91

Known to Mayer, etc

Ka.	353 [.] 7	7n.	3.49	1840'01	X.	334°5	•	1 2"5	(- QQ-
•	350.0	4n.	.29	1.85	 -		In.	3.56	1870-83
	338.9	5n.	17	66.80		333.9	,,	.60	2.72
Mä.	352.2	J	4.15	41.48	l	335.1	6n.	:47	777
	350.3		3.47	2.76	1	333 [.] 6		37	3.77
	348.7	In.	.27	7.86	Bo.		7n. In.	'41	5'74
	345.8	,,	· <u>5</u> 8	52.80	250.	339 [.] 4 338 [.] 8		'20	63.18
•	346.2	,,,	.60	3.85	Kn.		5n.	:27	5.69
	345.0		.77	4.86	 -	337.0	3n.	'64	6.41
	343.3				Ta.	333.6	"	'34	71.61
	344.4		.47 .89	5.48 6.49	1	339.8	2n.	4'24	66.74
	343.8		-65	8.01	İ	- 1	"	'42	8.76
	342.5		.21	.80	l	333.3	In.		70.63
	340.4	9n.	.63	61.81	Du.	334.0	2 n.	3.8	3.67
Hind.	348.2	In.	.23	43.79	Du.	337:2	,,	34	67.69
	.6		.57	5.63	l	336.6	,,	*22	8.84
	.1	,,		6.23	[337.4	,,	.17	9.48
Ja.	•1	,,	3.2	2.83	ł	.2	In.	35	70.99
	347.8		.82	5.87 6.48	Br.	336.1	"	.52	5.71 68.76
	٠ ٠ .6.		.94	.80	G1.	.6		'42	
	·o.	10	.26	51.43	Gi.	335.8	5	.27	70.63
	346.8		·78	31 /3		336.8	5	'40	1.40
	342.3	3n.	.28	2·73 7·87	· `	.2	4		3.73
D.O.	347.4	3	.83	46.75	l	335.8	5 3 6	3.6	74
	348·1		•	85	Į.	336.8	3	•••	-80
	340.		3.92	.86	1	335.5		3'44	.87
Mit.	346.7	In.			l	334'9	9	•6	4.91
	345.2		.95 .6	7.57 8.72	l	.9		.29	.61
Flt.	348 I	,, 40		50.88	i	333.5	2n.	·3	5.69
	347.0	16	.35	2.01	1	.2	4n.	.0	6.60
Mi.	346.7	32			***	334.0	2 n.	•••	8.77
		16	:34	1.72	W. & S.			3.43 81	1.61
Po.	345.7		.23	2.94	i	335.5	4		75
10.	342.3	35	3.66	3.77	1	336.5	4	'7	2.67
Mo.	345 ⁻ 6	30 3n.	.61	5'79	Ì	335.7	4	.9	71
 .	343.0			3.94 5.83		336.6	5	•••	'74
De.	344 [.] 8	6n.	:57	4.88	1	334'3		3.25	3.73
20.	343'9	5n.	.74 .61			335.3	3		78
	342.6	-		5.90 6.4	l	.1	4	3.48	.81
	341.0	"	:59	7.82		:7	2	7.78	*83
	.0	,, 4n.	·54 ·67	8.74		.0	5		5.92
	339.3	gn.		62:76	gab!	336.1	4	3 48	6.85
	338.5	6n.	:53	62.76	Schi.	334.4	In.	'40	5.65
	337.0	7n.	.20	3.69	e-	154.8	"	.38	6.87
	336.9	2n.	:34	8.72	Sp.	334'5		'40	5.65
		In.	·34 ·38	9.85		.9		.39	6.88
	335·3 336·7		30	70.20	C.O.	335.3	9n.	.73 .38	7,7
	330 /	"	:39		Pl.	334.2	6n.	.38	7 67
	334.6	,,	·3í	1.20	F1.	338-o	in.	•••	.35
	334.0	"	.54	2.25	Dob.		9n.	3.25	.54
	.4	,,	2.45	3.72		333.9	6n.	.26	8.80
	•4	,, 2n	3.45	4.73	Goldney	7· 332·9	5n.	. 35	·8o
Se.		3n.	:33	5.41					
DU,	345°I	,, an	.47 .32	55.77 6.76	740	_	00	4.0	
	343 [.] 0	2n.		66:77	746	Σ.	29:	10.	
Lu.	337 0	**	.20	66.77	R. A		Dec.		3.5
	349'4 342'I		4.01	62.85 62.19	22h 22		22° 5	_/	M.
Au.	341.6		3·32 ·58	02.05	l .		22 5	5	8.3, 8.8
X.		7	28	1'45	Duné	r gives			
	340.4	In.		70		1846-1	2. Δ .	= 5".22.	
	333.2	"	.26	7.65 8.62	P	1856·1 = 345°·1	- 0°.0¢	(t-18)	so·o).
	335.7	,,	'44						
	333.2	,,	·49 ·63	9.66	Σ. Mä	347'2	3n.	2.30	1832'14
	335.2	,,	·58		=6.	345	ın.	:49	45.65
	332.6	"	.68	70.81	1	3 5	•-	-58	21.01
	JJ2 U	۱ ,,	00	70.91	•	344'7	3n.	.28	2.10

Mo. Du. W. & S. Gl.	344 ^{.2} 343 ^{.8} .7 .8	2n. 3n. 2n.	5.45 27 30	1856·75 68·44 74·85
 .	0	14.	1 3º	1 21

747 Σ. 2912.

37 PEGASI.

R. A. Dec. M. 22^h 23⁹^m 3° 49′ 5⁸, 7²

Z. thought there was no evidence of orbital motion.

H₂ (Mem. R. A. S., vol. vi., p. 67) writes: "Divided with 320 and 6 inches aperture."

Sm. (Cycle, p. 518) writes: "It is clear that the angle is undergoing a rapid change direct, already indicative of a period of about five centuries."

Da. (Mem. R. A. S., vol. xxxv., pp. 442, 502) says that the angle is probably increasing and the distance possibly diminishing, but that the question of binarity is still unsettled. And Secchi was of opinion that the angular motion was then doubtful, but that the distance had certainly diminished.

O. 2.'s measure in 1852 shows that the angular change is very slow.

The common proper motion is $-0^{\prime\prime\prime}$ 063 in R. A., and $+0^{\prime\prime\prime}$ 123 in N. P. D.

		_		
Σ.	114.2	In.	1.19	1825.69
	109'3	,,	'24	32.82
	114'1	,,	.08	4.84
	.I	,,	.3 .3	51.89
Sm.	116.8		.3	35.81
	118.9			9.66
Xä.	117.8		0.01	'70
	106.5		·65	41.64
	121.1		·85	2.80
	120.3		·85 ·83	3.63
	119.8		i ⁺82	6.74
	126.3		.67	51.85
	118.2		18.	4·36 1·65
ο.Σ.	123.2	In.	1.13	1.65
	116.4	į	0.83	2.67
Da.	.2		1.10	43.87
_	118.2		0.91	54.44 60.70
-	119.8		•••	60.40
Mit.	121.8	ın.	0.98	47.57
Se.	117.6	٠,,	74	57 09
		sing	gle	66.41
Ja.	116.3		0.7	57.87
W. & S.		elong	ated	72.71
	119.3	4	0.2	3.48
	122.3	I	·5 ·5	1.92
G 1.	119.6	6	.2	3.87

748 S. 2915.

R. A. Dec. M. 22^h 26·5^m 6° 48′ 8·5, 8·7

69°7 3n. 71°9 3n. 66°5	12 ["] 90 '27 15 13 ["] 03 12 ["] 20	1825.74 7.76 31.00 43.71 63.75
	71.9 56.5	0 3n. 27 71'9 15 66'5 13'03

749 S. 2919.

R. A. Dec. M. 22^h 27'4^m 20° 33′ 9, 10·5

E. 273'8 | 4n. | 14'30 | 1829'75

Mä. 270'8 | ... | 43'79

De. 267'8 | 15'54 | 65'24

750 Σ. 2924.

R. A. 22 ^h 29·5 ^m		Dec 69° 1		M. 6·8, 7·3
Σ.	257'3	3n.	0.84	1831.76
_	259.1	,,	.72	6.69
H,	258.3		1.0	1.80
Ο.Σ.	254.8	2n.	0.64	41'12
Mä.	263.7		-84	51.66
Se.	.5	In.	.84	9.54
₩. & S.		,,	1'24	9°54 73°83
	266.2	,,	.23	4.84
G 1.	.2	٠,,	14	.91

751 \(\Sigma\). 2928.

R. A.	Dec.	M.
22µ 33.1m	– 13° 14′	8, 8

The angle has diminished.

Bo.	326.8		6.01	1825.29
Σ.	327.7	3n.	4.69	30.85
Mä.	325.9		5'34	43.41
Mit,	324.5	In.	4.09	8·74
5 e.	322.0	2n.	.39	57.40
De.	319.3		•38	63.11
Fer.	321'4	1	·55	7.91
W. & S.	318.8	3	'42	72.71
	316.0	5	3.86	75
	319.2	4	•••	5.97
G 1.	317.2	5	4.07	3.82
C.O.	316.8	3n.	'43	7.75

752 S. 2934.

R. A. Dec. M. 22^h 36'1^m 20° 48' 8'2, 9'2

Secchi thought that there was perhaps some ground for suspecting variability.

Σ.	186.3	In.	1.31	1828.86
	186°3 191°6 185°6	,,		9.72
	185.6	"	,IO	33.77

	_			
Mä.	182.5		1.50	1838.19
	177'9		'20	42.77
	176.0		.10	3.77
	181.1		.22	5.64
	169.0			53.59
	172'7			6.80
Se.	168.3	2n.	1.10	.87
De.	164.7	3n.	'21	63.82
Fer.	168.2	-	.000	7.91
W. & S.	164'I	1		72.41
	163.8	6	1.55	3.48
	162.0	5	115	4 84
	1580	4		5.97
G 1.	163.6	6	1.19	3.87

753 o.Σ. 477.

R. A. Dec. M. 22^h 38^m 45° 22′ 7'2, 11'1

Rapid change in angle and distance. O. E. finds the following formulæ:

 $\Delta A = +5".687 - 0".1795 (t - 1860.0);$ $D \Delta = -4".972 + 0".0167 (t - 1860.0);$ and the differences are very small.

O.Z. 122.7 | 3n. | 9.60 | 1846.06 148.2 | 2n. | 5.54 | 75.74 De. 138.5 | 3n. | 6.48 | 67.06

754 S. 2941.

R. A. 22h 40'Im			M. 7'5, 10'2	
270.5 269.5 267.1 265.1 267.6	3n.	8·73 9·27 ·67 9·40 ·71	1830°07 43°70 7°83 51°81 3°03 64°58	
	270°5 269°5 267°1 265°1 267°6	270·5 3n. 269·5 267·1 265·1 267·6	270.5 3n. 8.73 269.5 9.27 267.1 67 265.1 267.6 9.40	

755 Σ. 2942.

R. A. Dec. M. 22^h 41^m 38° 51' 7, 9'2

The distance has increased a little.

Σ. Ο.Σ.	282·4 278·2	4n. 3n.	2.65 .83	1831.61 46.76 69.86
Se.	279°3 276°3		3.04 3.04	69·86 56·93

756 S. 2943.

R. A.		Dec		M.
22h 4I	9	•	41 [′]	
Σ.	112.2	2n.	30'7	1831.80 47.71 77.80
Mä.	.5	ın.		47.7 I
C.O.	114.9	3n.	28.32	77 ^{.8} 0

757 Σ. 2944.

R. A. Dec. M. 22^h 41.6^m - 4° 51' A 7, B 7.5, C 8.2

In A B the angle has increased and the distance diminished.

Σ. (see P. M., ccxxxiii.) showed that the changes in A C are produced in a straight line: his formulæ are

$$P = + (22''\cdot210) \mp 0''\cdot045) + (0''\cdot2038 \mp 0''\cdot0060) (T-1837'0).$$

$$p' = - (50' \cdot 110) \mp 0'' \cdot 045 + (0'' \cdot 3102 + 0'' \cdot 0060) (T - 1837'0).$$

0.Σ. finds that the following formulæ represent the observations well:

$$\Delta A = +24".862 \pm 0".044 + (0".1997 \pm 0".0034) (t - 1850.0).$$

 $\Delta D = -46'' \cdot 149 \pm 0'' \cdot 044 + (0'' \cdot 3036 \pm 0'' \cdot 0034) (t - 1850 \cdot 0).$

Dunér has the following formulæ: For A B,

$$\Delta = 4^{"\cdot25} - 0^{"\cdot0189} (t - 1830^{\circ}0).$$

$$P = 256^{\circ\cdot7} + 0^{\circ\cdot1257} (t - 1830^{\circ}) + 0^{\circ\cdot00057} (t - 1830^{\circ})^{2}.$$

For A C,

 $\Delta \cos P = -46^{\prime\prime} \cdot 20 + 0^{\prime\prime} \cdot 3000 (\ell - 1850 \cdot 0).$ $\Delta \sin P = +24^{\prime\prime} \cdot 95 + 0^{\prime\prime} \cdot 2318 (\ell - 1850 \cdot 0).$

AB.

	0		. "	
H ₁ .	243°I	2n.	•••	1792.72
So.	245.6	In.	4'35	1822 90
Σ.	246.9	8n.	12	32.08
	247.5	3n.	.19	6.33
Sm.	4		'2	5.83
Mä.	•8ਂ	3n.	.000	44.99
	251.1	In.	3.99	58.86
Da.	248.6		-98	46.06
ο.Σ.	247'I	2n.	4.50	.78
	251.2	,,	.28	58.16
Se.	249.5	,,	3.61	5.84
Mo.	248.9	ın.	'69	7.91
De.	250'4	3n.	1 68	62.68
Ro.	•••	,,	•69	5.73
Ta.	252'2	2n.	'92	6.74
	2530	In.		8-75
	254'3	,,	4'32 '86	70.60
	251.5	In.	·86	3'64
Du.	253.8	3n.	3.46	68.82
W. & S.	254'1	3	'4	73.78
G1.	.0	ın.	•38	-82
C.O.	'4	2n.	·73 ·68	5.83
Pl.	255.1	3n.	68	6.94

A.C.				
So.	162°5	In.	57.38	1822'90
Σ.	157.7	4D.	56.03	31.84
	156.7	3n.	22.11	4.22
	230.7	4n.	54.93	6.41
Sm.	158.0	444	24.32	5.88
Da.	154.8			45.63
ο.Σ.	150.0	2n.	52.12	21.90
0.2.	148.8		51.00	8:16
Se.	150.5	**	3.65	6.34
ы.	145.1	In.	49.89	66.96
De.	148.4		51.48	57.90
20.	146.4		50.67	62.68
Mo.	148.7	2n.	21.58	57.91
Du.				68.82
W. & S.	144.2	3n.	49.96	72.78
w. & b.	142.5	4	40 2	1
	1417		•••	
G 1.	.2			3.78
GI.	•5	i	49.08	02
		ВC		
Ro.	325.6	3n.	54'95	65.70
Ta.	326.0	2n.	1 31	6.74
	318.9	In.		70.63
	323.7	,,	1	3.68
W. & S.	317.5	l ï		77
	J=7 =			
758 o.z. 481.				

R. A. Dec. M. 22^h 42^m 77° 53′ 7'5, 9'3

There is a third star (8.9) about 1'.5 distant. $(0.\Sigma.)$

O.Σ. 269.2 | 6n. | 2.43 1855.18 De. 269.2 | 3n. | 37 66.61

759 S. 2947.

R. A. 22 ^h 44 [.] 9 ^m		Dec. 67° 56'		M. 7'2, 7'2
H ₁ .	86·4 78·6 74·4		3.53 .56	1782.74 1828.64 30.63
Σ. Mä. Mo.	73.9 76.0 74.6	3n.	2.98 3.72	1 '73 2 '45 44 '42
M. De.	70°5 72°8 69°9	12	*24 *25 *31	58.72 64.69 5.27

760 o.s. 482.

R. A.	Dec.			M.
22h 48m	82° 31'			5°2, 9°9
Ο. Σ. De.	30.5	6n.	3°46	1850.29

761 S. 2959.

R. A. 22 ^h 50'9 ^m		Dec. -3° 53'		M. 6'5, 10'5
Σ. Mä.	96 [°] .7 97 ^{°.8} 98°.4	4n.	15.66	1832°10 43°64 8°00
De. C.O.	101.4	2n.	'05 '21 '14	64.78

762 o.s. 536.

R. A. Dec. M. 22^h 52·5^m 8° 43′ 7, 7·5

The common proper motion is $+o''\cdot 43$ in R. A., and $+o''\cdot 24$ in N. P. D.

0.Σ.	338.4	2n.	0.36	1852.67
	343'7	'sin	'46 nple'	3.91
	261		ong?	61.66

763 o.s. 484.

R. A. Dec. M. 22^h 52^m 72° 12′ A 7°1, B 8, C 11 In A B there is rapid retrograde motion.

AB.

Ο.Σ.	117.7	2n.	0.36	1846.42
De.	99·3 89·5	"	*46 ***	55.56
	Δ.	_1 2		

$\frac{A+B}{2}$ and C.

O.Σ. 255.4 | 2n. | 30.72 | 55.56

764 o.s. 483.

52 PEGASI.

R. A.	Dec.	M.
22p 23.3m	11° 5′	6.2, 7.7

Change in angle and distance.

0.Σ.	180.8	2n.	0.94	1845.28
	187.9	3n.	•94	52.78
	191.8	2n.	I.54	9.66
Mä.	186.3		0.73	45.40
Da.	•••		·9ī	7.86
	190.0		1.53	53.88
Se.	203'4	2n.	0.96	7.85
De.	198.5	4n.	1'14	65.24
W. & S.	202'2	4	'4	73.83
	204'2	15	'21	-82
	203.9	4	'43	4.84
101		ı	1	1 £

765 S. 2976.

R. A. Dec. M. 5° 57' A8'3, B 10'2, C8'8

In AB the distance has changed con siderably, the angle very little; while in AC there is decided change in both angle and distance.

AB.

Σ. H	262°0	3n.	7.94 6.5	1828.43 31.00
Mä. Se. Ο.Σ.	262.8 263.0 265.0	2n. In.	7.08 5.09 8.06	43'74 57'38 65'99
W. & 8.	264°2 265°1	"	7.22	75.90

AC.

Σ.	177.6	3n.	15.88	28.43
H,	-∵.8		`•o	31.00
8m.	179.7		16.0	7.72
Mä.	180.6		15.86	43'74
	182'4		16.81	52.93
Se.	183.5	2n.	.31	7.42
0.Σ.	185.1	In.	'40	65.99
0	187.4	١,,	.72	•••
W. & S.	.2	4	.5	73.78
•••	186.7	2n.	·8	5.97
G 1.	·o	4	45	3.82

766 o.Σ. 489.

π CEPHEI.

R. A.	Dec.	M.	
23h 4'Im	74° 44′	5.2, 7.5	

C. A yellow, B purple.

The wide pair, h. 1852, was measured by Sm., who gives the magnitudes as A 5, the small companion 10, B 12. His measure of the wide pair in 1838 was 241° 5, and difference of R.A. 11° 8.

O.Z., however, detected the duplicity of the principal star, the close companion being of the 8 9 magnitude, and the distance

about 11.".

On being apprised of this discovery, Sm. examined the object at Hartwell in 1843, and was able to see the companion and estimate its position and distance. Mr. Lassell and Mr. Dawes in the same year saw it with the 9-in. Newtonian, power 400.

Rapid direct motion: the distance has

probably increased.

The proper motion of π is + 0.002 in R. A., and + 0.004 in N. P. D.

	•		"	-0.60
Ο.Σ.	351.4	2n.	1.12	1846.48
	358.5	,,	.51	51.43
	23.9	In.	·32 ·8	76.25
8m.	330.0		-8	43.77
De.	14'2	zn.	*24	65.88
	17'0	In.	•••	6.43
	10.8	,,	I'42	7.60
	17.6	,,	.16	9.78
W. & S.	21'4	۱ ", ا	.38	73.91
	19.3	,,	·38 ·26	4.84
G 1.	•9	,,	'24	-91
•	16.0	2n.	•••	2.18

767	ο.Σ. 490.	
R. A. 23 ^h 5 ^m	Dec. 56° 47′	M. 7'2, 9'2
O. Z. De.	308.2 3n. 1.36	1846·80 66·95

768	Σ.	299	8.
768	Σ.	299	8

R. A.	Dec.	M.
23 ^h 12·8 ^m	- 14° 7′	5'2, 7'2
c ·	F A vellow Rash	

C. Z., A yellow, B ash

H ₁ .		In.	13.75	1781.63
-1-	342.8	,,		1802.67
80.	346.7	,,	14'99	22.87
Σ.	345.2	3n.	13.37	30.90
	344.7	,,	.82	6.65
Sm.	.9	Ì	'5	1.87
	345'4	!	140	8.91
Xä,	347.0	2n.	13.83	44 69
De.	344.8	,,	.71	58.13
Du.	346'1	,,	14.02	68.34
C.O.	348.6	3n.	13.30	75.91
	346.8	2n.	70	7.71
W. & S.	•6	ın.	.83	5.97
Fl.	348.8	,,	.74	7.92
Goldney	. 345°2	3n.	.82	8.89

769 S. 3001.

O CEPHEL

R. A. Dec. M. 5'2, 7'8

C. A very yellow, B very blue.

Discovered by Σ ., and measured by him

in 1832 and 1833.

Sm. says, "Little can be said upon the dates, until a longer lapse of time has intervened, when it may very probably prove to be a physical object."

Secchi (p. 60) writes, "motion certain."

The common proper motion is -0'019 in R. A., and -0"02 in N. P. D.

				MEAS	Į
Sm.	173 [.] 8		2 ["] .5	1831 '00 4 '95	
Σ.	174'9	3n.	.35	2.84	
Da.	175'1	J	.30	4.03	
Mä.	138.2		.30	9.55	
	180·1		.54	42.80	
			'28	4'43	
Mit.	184.9		'20	52.65	
Ο.Σ.	183.0 184.0	In.	.81	47.69	
0.2.	196.9	"	·65 ·88	51.87 ·	
De.	183.9	ζn.	.57	54.82	
20.	187.2	In.	.73	5.81	
	184.2	,,	·46	5.81 6.49	
	185.4	2n.	.2	I 8°57 I	
	187 0	6n.	·47	64.68	
Po.	182.6		•••	55.92	
_	184·3 186·8		•••	10.19	
Ja.	186.8		2.23	56.92	
S e.	187.1	2n.	`47	8.44	
Mo.	185.7	In.	·56	66.97	
M.	186.9		·28	58.62	
 .	182.3 178.7	In.	20	62·57 '57	
	0.6	"	2 56	9.67	
W. & S.	188.0	" 4	- 57	72.80	
	181.0	4	·57 ·69	3.82	
	191.0	4	·56	4'84	
	189.6	4	.81	.85	
G 1.	∙8	7	•••	3.80	
	191.0	5	•••	.81	ı
	190.7		2.7	4.91	ı
	189.9 189.9	8	.6	.91	ĺ
	189.9	2n. In.		6.41 2.93	ı
	109 9	1 211.	• • • • • • • • • • • • • • • • • • • •	- 72	ı
770	Σ.	30	06.		
R. A.		Dec.		М.	ı
23h 15'4		34° 4	7'	8.5, 9	ı
		C. whit	te.		ı
	's formu				ı
	18581	25. Δ=	- 4″'97.	_	l
P =	• 176° ·9	- 0°.25	=4"*97. ; (t — 185	0.0).	ĺ
So.	183.8	2n.	5.15	1825.70	ı
H.,.	188		·.5	7 88	
-	182.9		•••	9.67	
_	176.2	ŀ	5.02	30.76	
Da.	178.3	In.	·48	.81	
	176.9	,,	4.93	41.30	
	176'9 177'0	1	4.93 5.22	3:78	
Σ	176'9 177'0	"	5.22	3:78	
Σ. Wä.	176.9 177.0 176.4 182.8	,,	5 ^{.22} 4 ^{.6} 5	3:78	
Σ. Mä.	176'9 177'0 176'4 182'8 177'1	"	5.22 4.65 .32	3.78 5.21 31.22 43.80 4.90	
Σ. M ä. M o.	176'9 177'0 176'4 182'8 177'1	" 3n.	5.22 4.65 .32 5.22 4.98	3.78 5.51 31.55 43.80 4.90 56.88	
Mä. Mo. De.	176.9 177.0 176.4 182.8 177.1 183.5	", 3n. In.	5.22 4.65 .32 5.22 4.98	3.78 5.51 31.55 43.80 4.90 56.88 64.92	
Mä. Mo. De. Ro.	176.9 177.0 176.4 182.8 177.1 183.5 174.7 173.5	3n. 1n. 2n. 7n. 2n.	5.22 4.65 .32 5.22 4.98	3.78 5.51 31.55 43.80 4.90 56.88 64.92 5.71	
Mä. Mo. De. Bo. Du.	176.9 177.0 176.4 182.8 177.1 183.5 174.7 173.5 172.9	3n. 1n. 2n. 7n. 2n. 3n.	5.22 4.65 .32 5.22 4.98 .94	3.78 5.51 31.55 43.80 4.90 56.88 64.92 5.71 70.20	
Mä. Mo. De. Bo. Du. Ta.	176'9 177'0 176'4 182'8 177'1 183'5 174'7 173'5 172'9 171'6 168'7	3n. In. 2n. 7n. 2n. 3n. In.	5.22 4.65 .32 5.22 4.98 .94 .95 .98 5.05	3.78 5.51 31.55 43.80 4.90 56.88 64.92 5.71 70.20 3.64	
Mä. Mo. De. Bo. Du.	176.9 177.0 176.4 182.8 177.1 183.5 174.7 173.5 172.9	3n. 1n. 2n. 7n. 2n. 3n.	5.22 4.65 .32 5.22 4.98 .94	3.78 5.51 31.55 43.80 4.90 56.88 64.92 5.71 70.20	

ın.

3·87 4·91

1730

G1.

URES.				401
771	Σ.	30	07.	
R. A. 23 ^h 17 ^r	9	Dec. 19° 5.	4'	M. 6·5, 9·5
Σ. Ο.Σ.	79°2 82°9 83°3	3n. In.	5.68 6.13 .12	1829·83 51·80 69·79
772	Σ.	30	08.	
:	P. XXI	II. 69 4	AQUAR	II.
R. A. 23 ^h 17	5 m	Dec 9° 7	,,	M. 7, 8
The p R. A., a	roper m	otion of 100 in N	f A is	– 0":11 in
Bo. De. Bo. W. & S. Gl. C.O. Pl.	274'1 264'7 .8 263'1 260'6 259'9 .4 258'9 .4 256'6 7 260'7 248'1 248'5 258'0 258'0 258'0 258'0 258'0	10 3n. 1n. 4n. 2n. 6n. 1n. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7·98 5·95 ·58 ·60 ·58 ·32 ·18 ·07 ·05 ·11 4·88 ·83 ·83 ·85 ·85 5·81 4·8 5·02 ·17 ·16 · 4·90	1824·80 57·84 8·57 62·74 6·42 8·55 70·52 1·59 2·56 3·64 ·88 4·86 5·72 72·75 ·75 ·75 ·85 3·82 5·90 7·75 6·91
773	0.2	_	95.	
R. A. 23 ^h 19 ⁿ	•	Dec. 56° 52'		M. 7'3, 7'5
Ο.Σ. De.	310'4 140'3	3n. 4n.	o·56	1846·57 67·89
774	O.2	Σ. 49	96.	
1 23	R. A.		De 57°	c. 53

57° 53 M.

A 5'4, B 7'4, C 8'9, D 10.

C. A white, B reddish, C red

Of the existence of D there can be no doubt. O. E. saw it in 1845, but failed to detect it in 1853. De. has not seen it.

Da. discovered	the duplicity of B ind	e-
pendently. The in his quarto contact. (O.Σ.)	e companions given by I catalogue probably do n	I, ot

AB.

O.Σ. De.	269°.2 5n. 76″.1 1	849 64 68 68
	BC.	
O.Σ. De.	224'2 5n. 1'38 223'8 4n. '39	49.64 67.94
	AD.	
Ο.Σ.	336·8 In. I·5I	51.76

775 Ο.Σ. 500.

R. A.	Dec.	M.
23 ^h 31.8 ^m	43° 46′	6.1, 2

C. A white, B blue.

Probable direct motion.

Mä.	92.9	1 1	0.3	1843 90
0.Σ.	113'3 229'4	2n.	35 45	51.75 45.24
De. W. & s. Gl.	308·5 313·6 140·8 141·2	4n. 6 In.	°45 o°66 °7	52·82 67·21 74·86 ·91

776 so. 356.

c.	M.
21'	6, 7.5
5.15	1821.91
·96	3.79
6.13	30.67
8.0	1.40
5.2	2.80
.68	55.93
.63	66.40
l	75.90
6.34	6.75
	5.12 .96 6.12 8.0 5.5 .68

Σ. 3037.

	Α.	Dec.	М.
23h	40 ^m	59° 48′	7, 8.5

C. A very yellow, B blue.

Σ.	214'3	3n.	2.72	1831.73
Mä.	213.0	In.	.67	
	229 1	311.	12	45.95

778 Σ. 3038.

R. A.	Dec.	M.
23 ^h 40'4	61° 59'	9, 95
	C white	

Σ. Mä.	275.0 277.8 278.2 6 279.4	3n.	4°36 '30 4'14	1833 ⁻⁸ 3 45 ⁻⁷⁵ 7 ⁻⁹⁵ 8 ⁻¹³ 52 ⁻⁶⁵
-----------	---------------------------------------	-----	-------------------------	--

779 Σ. 3039.

R. A.	Dec.	M.
23 ^h 41 ^m	27° 45′	7'3 9'7
	C. A very vellow.	

		, ,	,	
\mathbf{H}_{1} .	39.5	ın.		1782.89 1824.81
Bo.	36.2	"		1824.81
Σ.	.3	2n.	30.1	30.25
	·6	In.	-6	1.43
Mä.	•	**	31.22	42'77
	35.4	2n.	· ·58	5.32

780 O.Σ. 507.

	_	
R. A.	Dec.	M.
23h 43m	64° 13′	A 6.8, B 7.5, C 7.5

0.Σ. De.

	<u>A</u> -	+ B a	nd C.	
).Σ. De.	353.8	2n. 3n.	48.83	47°01 67°96

781 Ο.Σ. 510.

R. A.	Dec.	М.
23h 45m	41° 25′	A 7'5, B 7'8, Cu

C is probably variable. 0.2. has estimated it as 9 and 10.11; De. as 11 and 12.

		AB.	,	
O.Σ. De.	347 ^{.8}	3n.	0.40	1848:43
	_			

A	+	B	and C.	
	2		!	

Ο.Σ.	344.0	In.	20.78	1	47'9
De.	345°I	4n.	21.03	i	67:21

Σ. 3046. 782

Dec. R. A. M. 23h 50.5m -- 10° 10′ 8, 8.5

Direct motion.

The common proper motion is - 0° 380 in R. A., and + o" og7 in N. P. D.

Σ. `	232.2	4n.	2.51	1830.12
	239'4	in.	·81	1 51.88
Mä.	234.8		·46	43.80
Se.	241'2	2n.	•78	57.42
_	238·0	t l	3'02	67.91
De.	241 'O	2n.	2.00	3.93
W. & S.	240.2	5	•••	72.89
Gl.	.2	2	3.5	3.87
C.O.	243 '0	3n.	.03	7.75

Σ. 3050. 783

Dec. R. A. M. 33° 4' 23h 53.4m 6, 6

Probable change in angle and distance. Dunér gives

 $\Delta = 3^{\circ}60 - 0^{\circ}0196 (t - 18500).$ $P = 194^{\circ}.8 + 0^{\circ}.278 (t - 1860.0) + 0^{\circ}.00151 (t - 1850.0)^{2}.$

	•	• •	• .	
\mathbf{H}_{1} .	180	1		1790'91
-	180			94.71
H _r .	188.4	2n.	5.56	1821 92
•	195		.5	7.88
	189.7	3n.	4.37	30.04
Da.	ó	4n.	.07	.73
	191.7	•	14	7.03
	193.0	In.	3.65	43.81
	196.0		.47	54.81
	.4		•60	5.47
Σ.	191.0	3n.	· 7 8	32.65
Mä.	190.8		•60	6'49
	193.6	l i	43	45.65
	196.0	2n.	·87	50.85
	198.3	8n.	'34	62.30
De.	196.2		.66	54.68
-0.	199.2	IOn.	.18	64.84
Mo.	196.6	3n.	•50	55.98
Se.	-,4	,,	'44	7.51
	200.5	"	.63	66.97
Eng.	I.	2n.	°49	5.38
Ro.	199'4	,,	'4Ó	7.73
Du.	200.4	3n.	.09	8.56
	203.0	,,	2.96	75.40
W. & S.	203.3		.94	1.04
	201.0	5	.93	2.89
	200'7		3.51	¹8ó
	201.0	5 4	.13	.80
	202'1	à	.01	·8o
	.1	9	'20	3.81
	203.6		'09	6.06
G 1.	201.0	6		3.79
	.3	6		·8í
	200.7	5		.82
	202.2	7	3.16	4.91

784 B. A. C. 8350.

R. A. Dec. M. 23h 55.9 26° 27 6, 9

Probably variable in magnitude.

The rapid changes are due to the proper motion of A, which is +0.064 in R. A., and +0.97 in N. P. D.

Brünnow has found a parallax of 0"054 for this star.

Br.	77.0	1	16.0	1870 00
Fl.	19.8	ın.	14.0	1870 00

785 Σ. 3056.

M. 23h 58.5m 33° 36′ A 7'4, B 7'4, C 9

Slight change in the angle of AB. In $\frac{A+B}{A+B}$ and C the distance has increased considerably.

A B form a binary system, most probably.

AB.

Σ.	159.6	2n.	0.60	1828.84
	156.4	,,	.60	33.81
0.Σ.	155.0	,,	.57	41.11
	146.8	,,	.57	53.70
Mä.	156.9		'44	41.26
	159.0		'40	2.76
Se.	154.5	2n.		56.87
De.	152'3	5n.	0.6	64.84

$\frac{A+B}{2}$ and C.

		_		
H.	352	ì	15	1827.88
Σ.	355'5	2n.	20.22	8.84
	.3	3n.	.63	33.21
0.Σ.	356.1	2n.	21.04	53.70
Da.	.4	5n.	'45	64.84

786 3062 Σ.

R. A.	Dec.	M.
23h 59'9m	57° 46′	6.9, 8

H ₁ (Phil. Trans., vol. lxxv., p. 645):	77	0		"	1 == 80-61
"Double. 50° 42' n. prec."	H ₁ .	319.4		•••	1782-65
Σ. (M. M., p. 9). Measures in 1831	Σ.	36.7±		I'2±	1823 %
and 1833 are given. Z. notes the great angular change in two years with dimi-	- ·	87.5	2n.	0.83	31.71
nished distance. In 1822 he saw the stars		108.2	3n.	.26	3.71
separated in the 5-ft. meridian instrument,	0.Σ.	186.2	4n.	·65	40'32
and presenting no difficulty. In 1824 he		220.3	2n.	·97	6.43
could see them with difficulty. Hence he		2297	,,	1'14	8.23
puts the distance in 1823.81 at from 1" to		232.5	3n.	.09	6,10
1":25, and this places the continued decrease		233.8	"	.16	1.10 20.04
of distance from 1822 to 1834 beyond doubt.		235.2 238.3	2n.	'35 '23	2.49
Thus, 147° 87 have been passed over in		230 3 243'4	3n. 4n.	47	4.11
51'06 years, in a direct sense. The appa-		242.6	3n.	.38	5.02
rent orbit must thus be very elliptical. Mädler (Die Fixst. Syst.) discusses the		247.8	2n.	.40	6.66
observations made up to 1846. He finds		250'4	3n.	49	7:37
the observations in 1782.65 and 1823 in-		255.3	,,	'45	9.16
tractable; but by giving a double weight to		261.7	2n.	'54	62.18
the later observations he finds the following		270.4	,,	. 47	6.50
elements:	1	276.5	,,	:59	8.68
T = 1834:01	. .	279.2	,,	.48	70.18
U = 146.83 years	Da.	187.0		0.8	40.78
$\phi = 35^{\circ} 7^{\prime}.5$		193'4		·95	3.80 1.86
$\lambda = 42 \text{ io } 3$	1	210.0		'94 1'16	8.87
S = 77 21 °2	l	235.5			50.03
$i = 38 \ 35 \ 9$		244'3		1.58	4.35
$a = 0'' \cdot 9982$		265.6		40	63.86
$\pi^1 = 0.03456.$	Mä.	193.6		0.80	41.28
He is of opinion that another fifty years'	l	207.3		.87	2 80
observations are needed to enable the orbit	ĺ	213.8		*85	4.20
to be fairly dealt with.		216.8		.96	5.24
M. Schur's elements are	1	220.7		1.02	6.23
T = 1835·196		225'I		'12 '28	7.53
$\omega = 97^{\circ}.5$		232.3		·16	50'71
8 = 32 ·2		237.0 234.6		27	76
i = 29 '9	Ì	241.3		.03	2.31
e = 0.2000		2380		.25	72
$\mu = +3^{\circ}.1959$ $a = 1''.310$	1	248.8		43	6.81
$a = 1^{\prime\prime\prime}310$	De.	249.8	3n.	•••	4'91
P = 112.644 years.	ľ	.9	٠,,	•••	5.05
Down / Jan 1 1 1 1 1		.5	6n.	1.3	_169
Dunér's comparison of these elements		250.5	5n.	.22	6.37
with the observations exhibits considerable differences.	1	252.2	4n.	.2	7.71
M. Schur gives an ephemeris from which		263.6	2n. 9n.	·2 ·48	8·54 62·73
the following have been taken:		265.4		43	3.22
		266 · I	2n.	.37	4.10
1870 278°·2 1″·551 72 281 ·6 ·576		268.7	6n.	.40	7-67
72 281 6 576 74 284 9 600		270'7	7n.	.35	5.61
76 288 1 620		274'1.	IIn.	'40	7.25
78 291 1 639		277.8	5n.	'42	8·55 9·63
80 294 2 655	ĺ	280.0	,,	`47	
82 297 2 670		282.2	7n.	'44	70.2
84 300 ·I ·680		283.9	,, 6n	:39	1.22
86 302 9 690	ĺ	285.7 287.5	6n.	:47	2.63 2.63
1) Doberck's provisional elements and		287·5 289·6	9n. 6n.	'44 '40	3°3 4°53
D ₁ Doberck's provisional elements are		291'9	5n.	·46	5 60
$\Omega = 38^{\circ}35', \lambda = 92^{\circ}7', \gamma = 32^{\circ}11', c = 0.4612,$ P = 104.415 years, T = 1834.88, $a = 1''.27$.		293.0	In.	-54	600
	Mo.	247.9		.33	10.55
The proper motion of this system is	Se.	253.4		.25	700
+ 0" 346 in R. A., and - 0' 020 in N. P. D.	i	2700		'34	66 97

Kn.	265°7	In.	1.40	1863.52	G1.	291°1	8	1.4	1874.91
	269·9 282·7	3n.	'43 '38	5.41 72.60	1	.0	9	.3	.01
Ro. Ta.	271.9	2n. 3n.	'14	65.71		293·2 '0	In. 3n.		5 [.] 18 6.41
Ta.	270'3 268'3	,,	•46 •66	6.64	1	295.6	2n.	•••	7.95 8.73
	280.6	in.	63	8·76 70·64	W. & S.	293'5 286'3	In.	1'45	2.80
	297 ·8	,,	0.91	3.80		287·8	4 8 8	·45	2.80 3.82 4.86
G 1.	281.0	"	.5 .6	4.72 0.44	1	298 .8	6	*37 *44	6.93
	284.0 289.4	4		1.60	Du. Pl.	292.9	5n.	43	6.63 5.69
	286.7	4	·5	3.81 -82	Dob.	302.1 304.2	",	'43 '46 '38	8.89

SUPPLEMENTARY LIST OF MEASURES.

Ref. No.	Σ.	Ref. No.	Σ.
787	35.	795	3 71 .
Σ.	268°.3 8″69 1830°1	Σ.	74.7 3.35 1831.2
De.	267°5 7°88 68°2	De.	81.7 32 67.4
788	51 .	796	
Σ. Se.	131.2 4.16 30.8 127.6 .02 22.0	H ₂ . Ja.	199.3 9.06 35.9
789	149 .	797	3114.
Σ.	118·2 1·35 33·2	Σ.	190·1 1·92 32·4
De.	108·0 ·33 67·7	De.	179·4 2·26 64·6
790	171 .	798	[78.]
Σ.	157.6 27.9 29.9	Mä.	241.7 2.5 46.1
De.	159.1 29.14 65.4	De.	247.7 .72 66.9
791	[37.]	799	531.
Mä.	223.1 1.39 43.3	Σ.	395.5 0.8 30.2
De.	214.6 41 67.7	0.Σ.	1.04 21.5
792	254 .	800	536 .
Z.	334.5 13.33 31.4	Σ.	149.5 1.75 31.0
W.	343.8 13.33 31.4	W .	160.2 .40 74.1
793	325.	801	579.
Σ.	253.4 11.40 30.0	Σ.	30.1 19.48 31.2
G1.	228.0 9.2 74.0	W.	
794	360 .	802	596 .
Σ.	146·4 1·34 31·2	Σ.	280.8 11.15 31.1
De.	139·1 ·67 69·3	W .	284.2 10.33 4.1

Ref. No. 803	Σ. 620.	Ref. No. 2. 816 1047.
Σ. W .	225.9 3.70 1828.2 232.0 .63 75.1	Σ. 19.5 20.66 1828.5 De. 22.3 21.51 68.4
804	704 .	817 10 4 6.
Σ. De.	8·5 26·53 31·3 10·4 23·77 65·1	E. 231.0 12.07 29.4 De. 234.2 10.92 67.7
805	Bu. 320.	818 1051.
Bu. De.	269.0 2.8 74.9 292.3 3.06 77.1	E. 268.5 1.23 31.3 Mä. 278.4 .22 58.1
806	782 .	This is A B. A C is fixed at 81° 31".
Σ. De.	309·2 35·96 30·1 308·6 38·66 66·6	819 1171. Σ. 338.6 2.8 28.9
807	787.	De. 330·1 ·5 64·8
Σ. G 1.	81'1 1'37 30'3 75'3 '3 79'1	820 1213.
808	[122.]	Σ. 327.7 8.43 30.9 De. 324.0 7.26 67.7
Mä.	117.8 0.55 43.5	821 1230.
De.	single. 65	Z. 194'1 28'0 29'2 Fl. 192'8 30'82 77'8
809 _{2.}	826. 115'5 1'84 32'4	822 1234.
W.	128.6 .76 75.2	Σ. 71'3 20'77 31'0 Fl. 69'0 21'75 77'8
810	879.	823 1243.
Σ. De.	67.7 8.40 27.3 71.6 7.46 67.9	Z. 221'3 1'99 33'9 De. 225'3 1'84 67'2
811	[139.]	824 1285.
Mä. De.	132.5 0.77 43.2 317.2 elong ^d 73.5	Z. 339 ⁻² 27 ⁻⁵⁷ 28 ⁻³ Fl. 337 ⁻⁹ 25 ⁻⁴⁵ 77 ⁻³
812	910.	825 1343.
Σ. De.	170'9 0'67 29'5 165'6 7 69'1	E. 271'I 10'22 36'2 Ferguson. 269'4 6'79 63'3
813	[152.]	826 1 4 02.
0. Z. De.	40°2 0°86 50°0 33°9 °85 50°0	H. 96'0 20'42 30'2 FL 98'7 23'12 77'8
814	974.	827 1476.
H ₁ . Fl.	216·9 23·5 1782·8 224·1 22·2 1877·8	H. 351'9 2'27 31'0 W. 359'1 57 75'3
815	991.	828 So. 621.
Σ. G l.	173'2 3'72 28'2 167'0 '7 74'2	80. 25'5 43'43 25'2 Fl. 38'8 57'84 77'5

			_	
Ref. No. 829	Σ. 15 4 9.	Ref. No. 842	Σ. π LUPI.	
E. Fl.	115.9 14.03 1828.7	H, Ja.	112.8 0.8 106.2 1.2	1835'3 48'1
830	1594 .	843	1908.	
Σ. W.	161.2 13.31 75.8 161.5 16.95 31.9	Σ. W.	137.2 1.46 143.8 .26	32·5 74·5
831	1621 .	844	3095.	
Σ. De.	124.0 3.44 30.3 140.0 3.44 30.3	Σ. De.	349'7 2'85 337'5 '84	69.3 31.3
832	γ CRUCIS.	845	1972.	٠, ٥
H. Po.	28 120 35 36·5 99 60	H ₁ .	96.9 1 -0 1	1783.5
833	1682.	Dê.	85.1 30.9	1865.8
Σ. Bn	308·8 33·65 31·6 306·2 31·98 78·3	846	1 988 .	
. 834	306·2 31·98 78·3 [267.]	Σ. W .	263.3 3.04	30°0 76°4
0.Σ.	300.8 0.25 49.6	847	2006.	
De.	single? 72.4	Σ. De.	203.5 1.69	28 7* 68 9*
835	h. 4649.	Σ.	197'4 '65 224'0 43'72	28·7† 68·5†
H,	64.4 12.0 35.4 69.4 0 37.5	De.	221.0 44.31	00.21
836	180 4 .	848 Σ.	2017.	2714
H.	27.6 1796.6 19.9 4.20 1874.3	De.	249.7 25.03	31.4 67.6
837	[276 .]	849	2041 .	
0. Σ. De.	202.7 0.5 42.0 194.3 elong ^d 69.4	Σ. De.	4'4 3'06 1'5 2'58	68·0
	is AB. AC seems unchanged:	850	3105.	
838	312 4 .	Σ. De.	59.4 0.41	70.0 30.0
Σ. W .	150 elong ⁴ 36·2 135 ,, 74·4	851	2080.	
839	1846.	Σ. De.	29'3 5'61 28'2 4'42	30°4 68°4
Σ. W .	108·8 3·69 26·8 112·6 4·27 75·4	852	2089.	
840	So. 184.	Z. De.	61.0 2.30 67.3 .41	30 [.] 6
H ₁ . St.	128·2 11·88 1783·0 129·8 9·68 1876·4	853	2096.	
841		H ₁ .	93'I 20'45	1783'2 1874'5
So. Bu.	270'I 10'82 23'3 291'3 15'62 78'3		*AB. †AC.	

Ref. No. 854	Σ. 2156.	Ref. No. 867	Σ. 2488.
Σ. W .	31.8 3.54 1829.5 35.4 3.54 74.6	Σ. W .	318°5 1″29 1829°0 329°5 28 76°6
855	2160 .	868 Wä.	[371.] 149'3 0'72 43'4
Σ. G 1.	61.9 4.15 29.6 66.7 3.97 74.7	Į.	b. 154.0 196 74.7
856	2163 .	869	h. 5113.
Σ. Bu.	97.5 1.21 30.0 98.3	H, St.	129·1 25 37·5 169·8 16·72 77·6
857	A. C. 9.	870	h. 5114.
Da. Sp.	231.7 1.15 24.2 237.4 0.91 75.6	H ₂ . Ja. H ₂ . Ja.	260·0
858	h. 5014.		
H ₂ . Ja.	69.2 0.75 36.7	871 Ma.	[375.]
859	[524 .]	Newcom	119.5 0.55 43.5 ab: 144.4 67 74.7
Ο.Σ. De .	86.5 0.37 53.3 68.8 elong ^d 70.8	872	2553.
860	2286.	H ₂ . De.	78.0 0.7 30.0 91.6 .98 74.1
Σ.	322'0 2'42 31'7	873	2564 .
De.	312.1 .23 92.6	Σ. Bu.	184.0 10.78 32.3 175.1 04 78.4
-	SERPENTIS.	874	Da. 10.
H ₁ . Fl.	99°1 81 1781°8 67°1 142°8 1877°5	Da.	314.4 0.23 59.6
862	2 310.	Sp.	3 1 13
Σ. W .	233.7 5.07 29.7 237.6 25 75.6	875 H _{1:}	2585 304'2 8'83 1781'9
863	A. C. 11.	Dob.	312.4 .64 1877.7
Da.	178.1 0.42 54.7	876	h. 2904.
Sp.	172.0 '33 75.6	H ₃ . St.	173.5 20 31.0 141.4 18.32 77.7
864 ο.Σ.	Bu. 134.	877	A. C. 16.
De.	134.0 .04 .22.0	Da. Newcon	234'3 0'35 59'6 nb. 241'4 '45 74'7
865	γ Cor. Aust.	878	[392.]
H,. St.	37.1 1.53 34.2 253.1 67 76.6	Mä.	324'3 0'2 43'8°
866	2461 .	De. Σ. De.	304'3 elong ^d 69'5" 293'4 3'23 31'5† 291'8 '08 70'1†
Σ. W .	330.6 3.72 30.7 76.6	26.	*AB. †AC.

Ref. No. 879	Σ. 2612.	Ref. No. 891	Σ. 2751 .
Σ. Bu.	52°.8 36°.6 1827°.7 53°.3 38°0 78°.5	H ₂ . De.	345 ^{.9} 2 ^{.42} 1828 ^{.6} 349 ^{.3} 1 ^{.62} 69 ^{.6}
880	Σ. 2624 .	892	Bu. 368.
H,. W. H,.	179'3 1783'7* 176'8 2'06 1875'7* 320'0 1783'1†	De.	99.4 0.5 75.8 93.8 64 7.8
H. W.	328.8 42.3 1875.77	893	[527.]
881	2626 .	0.Σ. B u,	306·2 0·4 46·8 99·4 64 77·7
Σ. W .	130·1 0·98 75·7	894	H ₁ I. 47.
882	2662.	H ₁ . St.	354.8 1783.5 321.8 3.0 1877.7
Σ. De.	38.9 1.72 31.0 41.8 6 67.4	895	heta INDI.
883	2666.	H ₂ . Russell.	306.7 3.68 34.5
Σ. W .	239'9 2'59 28'8 246'2 53 75'7	896	[44 5.]
884	[408.]	Ο. Σ. De .	113.1 0.78 47.5
Ο.Σ. S p.	136·3 0·54 45·8 112·9 45 76·8	897	10// 1 00 1 /22
885	2 668.	H ₃ . Ja.	13.3 30.11 36.6 7.5 33.91 56.8
Σ. W .	293.6 3.30 31.1 288.3 75.7	898	2833.
886	2673.	Σ. De.	341.7 8.73 25.7 337.2 9.29 66.6
Σ. W .	335'I 2'53 30'7 74'7	899	2842.
887	2674 .	Σ. De.	99.4 3.08 31.9
Σ. W .	1.3 15.21 29.6 3.5 14.8 75.7	900	2846.
888	2723 .	Σ. De.	264.6 3.10 31.8 268.2 3.10 31.8
Σ. De.	85.6 1.49 31.7 92.2 22 66.7	901	2847.
889	2728	Σ. W .	293.8 1.35 30.7 305.1 .38 76.9
Σ. De.	24.7 4.22 31.8 .5 5.17 67.4	902	2881.
890	ви. 269.	8o. W.	111.3 1.40 52 22.4
H ₁ . Bu.	234·8 I 1783·4 252·6 1·08 1876·2	903	
	* A B. † A C.	H ₂ . St.	300.0 10.0 26.0 305.9 8.42 76.7

Ref. No. 904	չ. [47 6.]	Ref. No. Σ. 908 3041.
Mä. Bu.	335.6 0.65 1843.5 elong ⁴ . 3 74.8	Σ. 183'4 3'27 1832'2* De. 180'5 21 66'3* Σ. 347'6 71'1 32'2†
905	295 0.	E. 347.6 71.1 32.27 De. 349.4 69.0 66.27
Σ. Fer.	319·1 2·04 32·2	909 3047.
906	2977.	Σ. 64.7 1.12 31.7 Gl. 72.7 1.02 74.9
Σ. De.	335.1 2.19 33.5 344.1 38 66.9	910 3060.
907	2989.	Σ. 109.7 3.79 28.7 De. 114.6 49 76.5
Σ. De.	144'1 1'47 28'7 138'9 '62 67'9	* B C. † A and $\frac{B+C}{2}$

APPENDIX.

WHILE the last sheets of the Measures were going through the press, the following list of double and multiple stars was most kindly placed at our service by their discoverer, Mr. Burnham. Most of them are very interesting objects; many are quite recent discoveries, and as yet unpublished; many, too, are naked-eye stars; and several are well-known Struvian pairs which Mr. Burnham has found triple; and, lastly, the measures have been largely supplied by that most excellent observer Dembowski. It is therefore with much pleasure and gratitude that we give this valuable list as an Appendix to our book.

As before, Bu. = Burnham; De. = Dembowski; Hl. = Hall; C.O. = the observers at Cincinnati Observatory.

Ref. No.	Burnham's No.	Name or Catalogue.		R. 18	A . 80.	Dec 188		P.	D,	Mags.	1870.	Observer.
1001	483			ь. О	m. 2.8	40	íı	44°7	2"37	7.5, 11.8	8.7	Bu.
1002	391	B. A. C. 10			3.5	- 28	39	97.2	0.78	6, 6	6.8	C.O.
1003	253	İ	·		4'1	57	51	49'9	0.35	8.3, 8.5	2.5	De.
1004	255		- 1		38·5	27	45	9 6.0	0.38	7'5, 7'9	5.8 5.8 8.7	De.
1005	492	B. A. C. 201	Ī		38.2	54	34	152.6	1.91	6, 12	8.2	Bu.
1006	495				42'4	18	2	230.9	0.28	7.8, 7.5	8.7	Bu.
1007	232	1	A B		43.6	49	59	288.4	0.44	8.0, 8.5	6.3	De.
_	ļ	1	AC		_		_	292.8	28.70	10.3	6.0	De.
1008	1	İ	A B		45.6	55	58	81.0	1.42	8.1, 10.1	5.3	De.
	!	1	AC			i		133.3	3°70 8·82	8 ⋅9	5.3	De.
	1	}	AD					192.9		9.5	5.3	De.
_	į		AE	_		İ		360.∓	12.Ŧ]	_	De.
1009ª	235	ł	A B	1	3.2	50	22	74.0	0.42	7.0, 7.4	5.6	De.
1010	258	ļ			5.2	61	4.	260.4	0.46	6.2, 8.9	5.5	De.
1011 _p	110				14'1	-16	26	24.6	1.20	7'2, 7'3	6.5	De.
1012	4				16.6	10	44	81.0	0.32	7'0, 7'5	7.7	Bu.
1013	399	Ceti 211			21 .8	-11	31	302.8	1.39	6.5, 10	6.2	De.
1014	506	η Piscium	1		25.I	14	44	12.0	1.03	4, II	8.7	Bu.
1015	5	103 Piscium			32.8	16	I	289.4	1'34	70,90	5.2	De.
1016		ļ			38.7	-7	22	167'1	2.29	6.4, 9.2	8.1 8.2	De.
1017°	510		A B		42'I	15	43	337'4	1.29	8, 12		Bu.
			A C					326.4	53.26		8.1	Bu.
1018	260				46.7	14		228.0	0.26	8.3, 9.0	5.8	De.
1019	7	58 Ceti	ı		21.9	-2	39	12'1	2.86	7.0, 11.8	5.2	De.

This is the principal star of the wide triple, 0.2. 24. The distant companions have minute attendants. Identical with H₂ 2036.

The wide pair is H₁ V. g2.

										_
Ref. No.	Burnham's No.	Name or Catalogue.		R. A. 1880.	Decl. 1880.	P.	D.	Mags.	1870.	Observer
				h. m.	0 /	. 0	"		+	
1020	513	48 Cassiopeæ	l	52.1	70 19	264.4	1.04	5, 7	8.7	Bu.
1021	8		ĺ	2 150	8 20	200'4	0.06	8.1, 9.4	5·3 8·9	De. Bu.
1022 ^d 1023	518	Cati ala	į	16.8	32 58	233.0	1.30	7.5, 13		Bu.
1023	521	Ceti 389 Persei 67		23·2	9 2	139.0	1.24 2.86	7, 11 6, 11	7.9 8.7	Bu.
1025	306	Arietis 107		36.9	47 45 25 8	153.4	2.93	6.4, 11.0	6.8	De.
1026	9	initial ion		39.6	35 3	160.6	1.23	6.3, 8.4	5.9	De.
I027°	524	20 Persei		46.1		158.7	0.34	5.2, 2.2	8.7	Bu.
1028	ΙI	ρ ² Eridani		56.8	37 51 -8 9	87.2	2.72	5.4, 9.6	5.6	De.
1029	526	β Persei .	A B	3 0.3	40 30	155.3	58.79	13	80	Bu.
			A C	_		144'7	67.72	13	8.5	Bu.
			ΑD			192.6	81.92	10	7.7	Bu.
			DΕ			112.1	10.64	121	77 5.8	Bu.
1030	84	D 4 G		10.1	-6 22	10.3	0.20	7'2, 7'4	5.8	De.
1031	533	B. A. C. 1101		36·8	31 17	149.3	0.43	7, 7 4, 8·5	8·7 7·8	Bu. Bu.
1032	535	38 Persei	ΑВ		31 54	60.2	0.96	4, 8°5 8°5, 8°5	7.0	Du.
1033 ^r			ÂC	37.0	31 47	37.9	0.25 ±	8.7	8.9	Bu.
10348	536		AB	39.1	23 49		0.44	8, 9.5	87	Bu.
.034	330		ÃČ	37 -	-3 47	302.4	36.44	8.0	8.7	Bu.
1035	537			39.9	23 28	185.9	0.60	8.2, 11	7.9	Bu.
1036	263			48.8	32 50	71.6	0.67	8.2, 8.5	5.9	De.
1037	545			59.4	37 42	310.0	1.03	8, 11	8.3	Bu.
1038	547	47 Tauri		4 7.4	37 42 8 58	359.7	0.89	5, 7	7.8	Bu.
1039	311	Eridani 315		21.9	-24 21	147.2	0.89	6.2, 7.0	7.I	C.O.
1040	550	Aklebaran		29.0	16 16	100.0	30.45	I, I4	7.9	Bu.
1041		46 Eridani		29.1	-7 0	57.1	1.58	6, 10.5	6.0	Bu.
1042			A B	44.6	10 52		0.32	7, 7	90	Bu.
		1	A C	+0.6		148.5	18.35	6.6 6.0	90	Bu.
1043	314 188	Leporis 3	ΑВ	53.6	-16 34 -6 58	149.9	0.43	6.6, 6.9	6.3	De. Hl.
1044	100		ÃC	0 11 0	-0 50	250°I	35·98 35·97	4, I4 I2	6.3	Hì.
	1		BB			49.3	3:77	16	6.3	HL.
1045	189	Orionis 81		14.2	-5 20	283.6	4.27	6.8, 11.2	5.9	De.
1046h	190	Orionis 82		14.6	-5 29 -8 9	355.3	0.61	7.9, 8.7	6. t	De.
1047	556			18.7	-2 36	238.2	0.79	6.2, 11.8	8.3	Bu.
10481	•		A B	20'2	34 19	223.5	1.11	8.5, 10	8.9	Bu.
			A C			131.4	18.04	10	8.9	Bu.
			A D			200.7	20.77	11.2	8.9	Bu.
1049	320	β Leporis		23.1	-20 51	288.3	2.68	4, 11	7.9	Bu.
1050)	557		A B	23.3	3 3	149.8	24.32	7	8.1	Bu.
	0		BC			142.4	0.46	9.2, 9.2	8.1	Bu. Bu.
1051	558	8 Orionis	TQ	25.9	- 0 23		33.79	2, 14 6·8, 8·3	8.9	De.
1052	321	Leponis 45 A	ČЪ	34.0	—17 55	144·5 357·7	1.56		7.3	De.
	1		ÃC			136.0	89.46	9'3 9'7	6.6	De.
1053k	80	1	0	31.2	-1 30		0.22	7.9, 8.5	5.7	De.
1054	16	3 Monocerotis		56.5	- 10 36		1.62	6.0, 9.7	5.6	De.
10551	17		AB	6 2⋅8	-11 8	178.0	3.16	6.8, 10.5		De.
	'		A C	-	ĺ	244.5	8.95	11.2	5.8 5.9	De.
1056m	1		ΑB	12'4	28 29		0.27	7.5, 7.5	9.3	B.
	İ	J .	A C		i	250.3	2.83	9.5	9.2	B.

d The principal star of Z. 258. A C 145°4:68"70 (1878'9); C D 28°8:6"16 (1878'9).

As a wide pair this is Z. 318, 236°8: 14"08 (1820'1).

A and C = So. 437. This and No. 38 in the Pleiades.

The wide pair, A C, is Z. 502. Z. gives, 4°2:34"86 (1831'5). No change since.

The wide pair, A C, is Z. 707.

Struve's companion (Z. 721) found to be a close pair.

Moving? Bu. 361°7:0"71 (1879'1). A mean of three measures in each case.

C discovered by Mr. George Kaott.

Ref. Name or Catalogue. R. A. Decl. Ref. R. A. Decl. Ref		-8°											1 15
Nonocerotis 97		Burnham' No.							P.	D.	Mags.	1870.	Observer
1058 327 Monocerotis 97 A B A C 1059 328 Canis Maj. 139 AB 7 10 -11 7 7 10 1060 575 A B A C 1400 365 579 A B A C 1410 36 59 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360 40 360				_	h.	m.		_		".			
1058 327	1057	1	Monocerotis 97				, – ŏ				6.2, 13		
1059a 328 Canis Maj. 139 Å B 7 10 -11 7 1284 20 ± 20 ± 10 1060 1061 1062 577 21 1063 1064q 332 7 Canis Maj. 21 6 7 11 27 4 4 4 9 5 5 11 3 8 9 8 1 1064q 1064q 332 7 Canis Maj. 21 6 7 11 27 4 4 4 9 5 5 11 3 8 9 8 1 1064q 1064q 332 7 Canis Maj. 21 6 7 11 27 4 4 4 9 5 5 11 3 5 9 8 1 1 1 1 1 1 1 1 1	1058	327					- 2	52			7.2, 8.0		
1060° 575		۔ ا										1	
1060	1059ª	328			7	1.0	-11	7				5.9	De.
1061	10600	575			l	0.3	- 15	16				8.2	Bu.
1061		3,3				93	-3						Bu.
1062p 577 1063 1064q 332 7 Canis Maj. 21'6 7 11 27'4 4'09 7'5, 7'7 8'2 Bu. 1064q 332 8 A B A C A B A C A B A C A B A C A B A C A B A C A B A C A B A C A B A C A B A C A	1061	İ				14.0	36	59	8.3	10.36	6, 12.5		
1064		1		С									
Toda Toda	1062 ^p				l	14.2	0	38					
TOOQ4		21			l		_						
1065 579		l		_							5.2, 11.3		
1065 579	10644	332				22.5	-11	19			8.7		De.
1065 579		1			ļ						0.8		Ru
1065 579					i		1				, , -		
1066 580	1065°	570			l	26.7	33	23					
1066	1003	313			1	20 /	33	-5					
1067 101 9 Argus	1066	580	Pollux A		i	38 °O	28	19		43	2, 13-14	7.9	Bu.
1067 1068 581				C	i	J	i	Ī	70.8	174'52			
1068 581]	C	\mathbf{D}	l						9, 12		
Topo			• Argus				-13	35				5.2	
1069 582	1068	581			l	57.7	12	38					1 =
B C S S S S S S S S S		-0-			1								
1070	1009	582				28.1	12	25	204 5				
1072 1073 1585 Cancri 109 34.3 20.54 106.4 0.40 7.5, 9.0 8.1 Bu.	1070	204	ь	C		7.0	10	AE					
1072 1073 1585 Cancri 109 34.3 20.54 106.4 0.40 7.5, 9.0 8.1 Bu.			P VIII 124		0							8.6	
1073													
1074 211 Hydræ 68 55.7 3 9 25.78 1.11 7.5, 10.0 5.2 De. 1076 590 29 Hydræ 21.3 -8 42 176.8 10.80 7.7, 12 8.2 Bu. 1078 21.5 10.79 591 10.79 592 10.80 594 Leonis 150 Leonis 222 10.83 599 65 Leonis 222 10.84 600 A B A C 10.84 600 A B A C 10.85 601 A B A C 10.85 601 A B A C 10.85 601 A B A C 10.85 602 A B A C 10.85 603 A B A C 10.85 603 A B A C 10.85 604 605 B. A. C. 4149 10.88 605 B. A. C. 4149 10.88 605 B. A. C. 4149 10.88 605 B. A. C. 4149 10.88 605 B. A. C. 4213 31. Virginis 31. Vir					l						6, 9	8.2	Bu.
1075 105 K Leonis 29 Hydræ 215	1074				l		3		257.8	1.11			
1076 590 29 Hydræ 21'3 -8 42 176'8 0'78 7', 12 8'2 Bu. 1078 591 150 163 150 163 15 58 143'4 1'58 6'5, 11'0 8'2 Bu. 1082 597 1083 599 65 Leonis 222 1084' 600 A B A C 1085'' 601 A B B C 1085'' 601 A B B C 1085'' 601 A B B C 1085 B A C 22'9 -16 40 331'5 28'16 7'5 8'3 Bu. 1086 456 1087 17 18 18 18 18 18 18		105	κ Leonis		9	17.7	26	42			4'9, 10'7		
1078 215 771 C.O. 1079 592 Leonis 150 1081 596 Leonis 222 1082 597 1083 599 65 Leonis 222 1188			29 Hydræ		1	21.3							
1079 592 1080 594 Leonis 150 1081 595 Leonis 222 597 1083 599 65 Leonis A B A C 1085 601 A B A C 22.9 -16 40 331.5 28.16 7.5 8.2 Bu. Bu. Bu. Bu. Bu. Bu. Bu. Bu. Bu. Bu.					İ	23.2	_		35.8				
1080 594 Leonis 150 Leonis 222 43°0 17 47 277°3 23°39 65°5, 13°0 8°13 80°1 80°	•							_					
1081 596 Leonis 222 43°0 17 47 277°3 23°9 65°5, 13 8°3 Bu. 1082 597 65° Leonis 11 1°8 23°0 82°4 1°78 5°5, 11°5 8°2 Bu. 1084 600 A B A C 45° 601 A B B C 97°3 61°53 8°3 Bu. 1086 456 Corvi 17 1088 605 B. A. C. 4149 1089 28 B. A. C. 4213 31°Virginis 31°Virginis 31°Virginis 31°Virginis 31°Virginis 31°Virginis 31°Virginis 35°9 728 28°7 35°6 65°7 70°7 60°3 Bu. 1094 608 15°Canes Ven. 13°0 284°9 1°22 5°5, 10°5 8°3 Bu. 1094 608 15°Canes Ven. 17°4 277°3 2°39 6°5, 13 8°3 Bu. 1094 608 15°Canes Ven. 17°4 277°3 2°39 6°5, 13° 8°3 Bu. 1094 608 15°Canes Ven. 17°4 277°3 2°39 6°5, 11° 8°2 Bu. 1095 1096 1097 1			T comin a ro		10	49.3							
1082 597 65 Leonis 49'3 24 14 46'9 0'88 8'5, 11 8'2 Bu. 1084" 600 A B A C 230'82'4 1.78 5'5, 11'5 8'2 Bu. 1085" 601 A B A C 97'3 61'53 8 8'1 Bu. 1086 456 Corvi 17 22'9 -16 40 331'5 28'16 7.5 8'3 Bu. 1087 Corvi 17 12'9'6 -22'41 232'4 0'7 6'5, 7'0 9'4 Bu. 1089 28 B. A. C. 4213 31 Virginis 35'9 -12'44' 353'7 1'95' 6'4, 10'2' 5'3 De. 1092 1091 341 Hydræ 348' 48 Virginis 8'7'7 45'54' 0'78' 6'5, 7'0' 6'3 De. 1093 B. A. C. 4389 B. A. C. 4389 B. A. C. 4389 B. A. C. 4284' 13'6'4 0'8'8' 6'5, 12' 9'3' Bu. 1094 608 15 Canes Ven. 13'0' 284'9 1'22' 5'5, 10'5' 8'3' Bu. <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.2. 13</td> <td></td> <td></td>					10						6.2. 13		
1083 599 65 Leonis A B 10'9 -6 29 226'4 1.25 6'5, 12 8'1 Bu. 1085 601			Leonis 222		İ					0.88	8.5. 11	8.2	
1084 600 A B 10 9 -6 29 226 4 1.25 6 5, 12 8 1 Bu. 1085 601 A B B C 22 9 -16 40 32 16 7 5 8 3 Bu. 1086 456 Corvi 17 12 9 6 -22 41 23 24 0 0 7 6 5 7 0 9 4 Bu. 1088 605 B. A. C. 4149 140 -21 30 144 2 1 25 6 8 8 2 Bu. 1090 1091 341 Hydræ 348 48 Virginis B. A. C. 4389 48 Virginis B. A. C. 4389 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 13 0 5 4 2 39 10 284 9 1 1 22 5 5 10 5 8 3 Bu. 1094 608 15 Canes Ven. 10 10 24 10 2 2 5 5 10 5 8 3 Bu. 1095 1096 1097			65 Leonis		11	1.8					5.2, 11.2	8.3	Bu.
A C A B Bu.				В			-6		226.4	1.25	6.5, 12		Bu.
1086 456	•		A	C		•		-	97'3		8		
1086 456 Corvi 17 12 9.6 -22 41 232.4 0.77 6.5, 70 9.4 Bu. 1089 28 B. A. C. 4213 35.9 -12 44 353.7 1.95 6.4, 10.2 5.3 Bu. 1090 341 Hydræ 348 48 Virginis B. A. C. 4389 B. A.	1085	601				22'9	-16	40	331.2			8.3	
1087 Corvi 17 12 96 -22 41 232'4 0'77 6'5, 7'0 9'4 Bu. 1088 605 B. A. C. 4149 14'0 -21 30 144'2 1'25 6, 8 8'2 Bu. 1090 31 Virginis 35'9 7 28 28'7 3.56 6, 12 9'3 Bu. 1091 341 Hydræ 348 48 Virginis B. A. C. 4389 1094 608 15 Canes Ven. 1093 Corvi 17 Corvi 17 6'5, 7'0 9'4 Bu. 1094 608 15 Canes Ven. 12 9'6 -22 41 232'4 0'77 6'5, 7'0 6'4, 10'2 5'3 De. 1095 Corvi 17 Corvi 1		ا ا	В	С								8.3	
1088 605 B. A. C. 4149 140 23 9 144 2 1 25 6, 8 8 2 Bu. 1089 28 B. A. C. 4213 35 9 7 28 28 7 3.56 6, 12 9 3 Bu. 1091 341 Hydræ 348 48 Virginis B. A. C. 4389 1093 B. A. C. 4389 1094 608 15 Canes Ven. 124 353 7 1 1 2 2 5 5 5, 10 5 8 3 Bu. 1094 608 15 Canes Ven. 140 2 39 10 284 9 1 22 5 5 5, 10 5 8 3 Bu.		456	C						4				
1089 28 B. A. C. 4213 23.9 -12 44 353.7 1.95 6.4, 10.2 5.3 De. 1091 341 Hydræ 348 48 Virginis 57.7 -12 55 229.4 0.48 6, 6 0.4		احمدا			17						0.5, 7.0	8.2	
1090 341 Hydræ 348 48 Virginis 35.77 7.28 28.77 3.56 6.12 9.3 Bu. 1092 48 Virginis 57.77 13 0.5 4.5 54 10.92 2.68 6.12 9.3 Bu. 1094 608 15 Canes Ven. 13 0.5 4.2 39 10 284.9 1.22 5.5 10.5 8.3 Bu.			B A C 4212		İ	•		_			6.4. 10.3		
1091 341 Hydræ 348 5773 -19 56 136.4 0.78 6.5, 7.0 6.3 De. 1092 8. A. C. 4389 15 Canes Ven. 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 1094 608 15 Canes Ven. 1095 1095 1095 1095 1095 1095 1095 1095		20			1					3.56	6. 12	9.3	
1092 48 Virginis 57.7 -2.55 229.4 0.48 6, 6 9.4 Bu. 1093 B. A. C. 4389 13 0.5 45.54 109.2 2.68 6, 12 9.3 Bu. 1094 608 15 Canes Ven. 4.2 39 10 284.9 1.22 5.5, 10.5 8.3 Bu.		241			l			_				6.3	
1093 B. A. C. 4389 13 0'5 45 54 109'2 2'68 6, 12 9'3 Bu. 1094 608 15 Canes Ven. 4'2 39 10 284'9 1'22 5'5, 10'5 8'3 Bu.		31.			1						6, 6		Bu.
1094 608 15 Canes Ven. 4'2 39 10 284'9 1'22 5'5, 10'5 8'3 Bu.					13						6, 12	0.3	
1095 609 4.5 -4 18 356.1 0.89 7, 11 8.3 Bu.			15 Canes Ven.		1	4.5	39	10				8.3	
	1095	609			İ	4.2	-4	18	356.1	0.89	7, 11	8.3	Bu.

^{*} A and C make Z 1026 rtj.

P A and C make Z 1024.

A and C make Z 1024.

A and C make Z 1025.

A and C make Z 1025.

A and C make Z 1025.

A and C make Z 1025.

A and B make Z 1129.

A and B make Z 1129.

The large star and two distant companions make H1 V. 120.

The wide pair is H1 IV. 112.

Ref. No.	Burnham's No.	Name or Catalogue.		R. 188		Dec 188		P.	D	Mags.	1870.	Observers.
6		Vincinia est		h.	m,	.0	<u> </u>	0	-"-6	C::	+	-
1096 1097	610	Virginis 454 Virginis 504	- 1	13	4.9	13 20	57 19	205°1 18°3	5°06	6.8, 10.5	8·2	Bu. Bu.
1098	113	Anginis 304	-		33.1	12	6	188.8	1.22	8.4, 11.1	5.3	De.
1099	114		- 1	-	28.0	-8	ŏ	137.1	1.49	7.6, 8.6	5.3	De.
1100x		Virginis 550		- 2	28.5	- I2	36	81.3	0.47	6, 6.5	9.4	Bu.
11013		A	В		39.I	33	45	30.4	1.98	8.5, 9.0	9.3	Bu.
		A	C		•	33	13	21.6	34.43	12	0.3	Bu.
1102	612	B. A. C. 4559	1	3	33.7	11	21	56·1	0.53	6, 6	8.3	Bu.
1 103ª		86 Virginis A		3	39.2	-11	49	298.4	1.91	5.2, 10.2	9.3	Bu.
		Ç						274.2	1.43	11.2, 13	9.3	Bu.
	ً ۔ ۔ ا	. А	C		0			164.7	26.94		5.3	Bu.
1104	614		ł		18.0		44	268.4	0.60	8, 12	8.4	Bu.
1105 1106	224			14	7.6 7.8	13	.8	71.0	0.69	8.9, 9.3 8, 8	5'7	De.
11074	225	A	R	,	18.8	-7 -19	58 26	160·5	35.03	6	9.4	Bu. De.
110,	3	В			.00	-19	20	101.0	1.40	7'3, 8'2	5°7 5°7	De.
1108		52 Hydræ		21	I.I	-28	57	276.8	4.00	5, 11.3	0.4	Bu.
1109	616	γ Boötis				38	50	98.6	26.18	3, 13	9°4 8°2	Bu.
1110	346	Libræ 23	1	4	27.3 11.8	-16		235.7	1.18	7.2, 8.0	6.3	De.
IIIIb	617	•	- 1		12'4	-23		219.6	59.44	61, 8	8.3	Bu.
			- 1			•		336.6	2.41	• 9	8.3	Bu.
1112		μ Libræ		4	12.2	-13		335.0	1.38	5.4, 6.3	£.6	De.
1113	239	59 Hydræ			51.6	- 27		129.5	0.83	6, 6	8.4	Bu.
1114°	618			15	5.4	– 19	20	110.2	57:46	6	8.3	Bu.
	1	В	Ч			ه. ا		24.3	1.86	10, 10	8.3	Bu.
1115			- 1		25.6	48	8	128.5	10.4	6.2, 12.2	9.3	Bu.
1116	122 619	Serpentis 55			33.0 37.6	- 19	23	204'0	1.76	7.0, 7.3	5.4 8.3	De.
11184	620		В		38·9	14 -27	3 41	359.7 166.8	o:57	6.5, 7.0	8.4	Bu. Bu.
••••		Ā	- 1	•	9	-1	Ψ-	214.1	50.5	7.5, 7.5	8.4	Bu.
1119		B. A. C. 5248		_	14'7	55	45	1520	1.31	5.2, 11.0	9.3	Bu.
I I 20°		β Scorpii .	- 1		8.5	-19	58	87.0	0.43	2, 10	9.4	Bu.
I 121 ^f	l .	Libræ 213 A	В		59.3	- 5	58	150.3	1.21	6.5, 9.5	9.4	Bu.
		A				_	_	233.7	28.54	10.4	9.4	Bu.
	1	A						192.7	52.58	10.7	9.4	Bu.
I I 22	39	11 Scorpii		16	0.0	-12	-	256.2	3.32	6.1, 10.4	5.2	De.
1123	355	. C!! A	7		4.5	45	42	279.3	0.34	7'3, 8'0	6.3	De.
1124	120	Scorpii A			5.0	-19	9	359 9	0.73	4'3, 6'7	5.9	De.
		Ä						47.9	1.89	7.0, 8.0	5'4	De.
1125	625	ω Herculis A		,	19.9			336.2	40.77	ا ۔۔۔ ا	5°4 8°6	De.
1125	023	A A		•	99	14	19	175.3	33.80	5, 12	8.6	Bu.
1126	627	52 Herculis	~		15.7	46	12	103°2 309°4	1.83	11.2	8.4	Bu. Bu.
1127	,	54 Herculis			0.15	18	38	175.4	2.26	5, 10 5, 12	9'4	Bu.
1128	282			17 `	8.5	- 14	27	154.1	4.53	6.7, 11.8	5.4	De.
1129	126	P. XVII. 43 A			12.9	-17	38	261.3	1.24	6.4, 7.5	2.1	De.
•		A			•		-	120.Ŧ	20 ±	" ' '	, -	
1130	242	Ą		1	17:3	-11	35	68.9	0.96	8.2, 8.9	5'9	De.
		A						63.4	8.90	10.4	60	De.
		D A C see A	וע					63.8	47.46		6.0	De.
1131	129	B. A. C. 5896	ı	2	12	-25	25	100.3	0.89	7.5, 8.0	7.4	C.O.

^{*} A variable star, discovered in 1866 by Schmidt. There is a distant faint companion, 1560-5:23'33

x A variable star, discovered in 1000 by Schmidt.

(1879'4).

A and C make H₂ 3261.

A as a wide pair this is Σ. 1780 rg/.

Both components are double, and the smaller very difficult.

The wide pair is H₁ N. 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 80.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is H₂ 480.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide pair is So. 663.

The wide

-												
Ref. No.	Burnham's No.	Name or Catalogue.			. A. 180.	Dec 1880		P.	D.	Mags.	1870.	Observer.
				h.	m.	و	,	•	"		$\overline{+}$	
1132		26 Draconis		17	33.2 33.8	ြို		149'1	1.36	5.2, 10.2	9·3	Bu.
1133	631	Ophiuchi 255				- -0	35	70.5	0.36	7.7	8.6	Bu.
1134	130	90 Herculis			49.4	40	3	123.0	1.82	5.8, 9.1	5.2	De.
1135	633	γ Draconis			53.8	51		122.1	20.88	2.13	8.4	Bu.
1136	132	B. A. C. 6158		18	4.1	-19	52	240'I	0.78	6·8, 7·2 8·9, 8·9	8.1 2.0	De.
11375	638		A B		4.3	2	34	152'0	22.33	8.9, 8.9	8.1	Bu.
0			ВC	1	_			10.2	1.71	11.8	8.6	Bu.
1138	286	16 Sagittarii			8.1	- 20	25	218.5	5.67	6, 13	8·5 8·6	Bu.
1139 _p	639		AB	1	11.4	-18	40	122.3	0.22	7'5, 7'5 8, 1'4		Bu.
	١		ÇD	1		1		330. Ŧ	4°±	8, 1.4	8.6	Bu.
			A C	i		_ ا		51.2	17.30		8.6	Bu.
1140	133	B. A. C. 6261			50.3	- 26		265.3	1.80	7'5, 7'5	5'7	Schi.
1141	135	Scuti Sob. 45			31.3	- 14	6	184.0	2.40	6.7, 11.2	2.1	De.
1142		Draconis 205		ŀ	44'4		18	353.6	0.29	6.5, 8.5	9.3	Bu.
1143	265	· .		İ	44.6	11	23	235.0	1.46	7'1, 9'1	5.3	De.
1144	137	2 4 0 6 0	AΒ		49.8	37	14	123.8	1.12	8 2, 8 7	5.3 5.6 8.5	De.
1145	648		1		22.2		45	312.2	0.60	6, 9.5	8.5	Bu.
1146	287	& Aquilæ			59.9	13	41	59.6	4.92	3, 12	8.2	Bu.
1147	139	Aquilæ 59		19	7.5	16	39	139.2	0.25	6.7, 8.0	5.0	De.
1148	248	2 Vulpeculæ	4.50		12.6		49	125.0	1.83	5'7, 9'5	5.6 6.0	De.
1149	141		AB	1	16.8	22	17	80.6	0.41	7'5, 9'1	6.0	De.
	l		AC	1		1		155.5	26.23	11.2	5°3	De.
	4	-	ΑD				_	90.2	50.75	11.0	7.8	1
11501	652		AB	}	27.3	28	I	331.4	4.78	7.9, 13	8.2	Bu.
1151	654	ea Saaissaaii	AC					3.7	5.60	9.7	8.5	Bu.
1152	654 658	52 Sagittarii		ŀ	29'4	-25	10	160.8	2.93	2.11	8.6	Bu.
	148	B. A. C. 6762		[39.0	26	50	295.2	0.22	6.2, 10.0	8.2	Bu.
1153 1154*	140	η Cygni		l	45.4	-10	40	333.5	0.93	7.9, 8.3	5.3	De.
1155	428	η Cygiii		20	21.8	34	46	211.7	7:54	5, 12.5	9.4	Bu.
11561	430		ΑB	20	6.8	12	36 28	343.7	0.25	7.2, 8.5	6.2	De.
30	430	1	ÃĈ		08	35	20	17.7	1.15	9.2, 10.0	6.6	De.
1157	661	Cygni 166	AC		12.6	40	0	51.3	16.91	9.7	6.6	De.
1158	431	Cygn. 100		l	15.4	35				6·5, 13 8·5, 8·8	8.4	Bu.
1159	60	# Capricorni			20'4	- 18	53 36	145'2	0.22	0.5, 0.0	7.1	De.
1160	62	- Cupitoniii		1	23.I		44	135.2	3.54 1.50	5'1, 8'7	5.0	De.
1161	668	B. A. C. 7080	1	l	25.8	-10	16	29.0	4.64	8.5, 9.4	5.2 8.6	De.
1162	670			1	27.3	13	32	58.3	0.75	6, 12 8·5, 8·8		Bu.
1163m	151	β Delphini		l	31.9	14	11	15.6	0.61		7:7	De.
1164	675	51 Cygni			38.5	49	54	101.2	2.78	4'3, 5'7	4.7 8.2	De.
1165ª	64	378		l	39.3	12	17	172.4	0.64	5, 12 8.7, 9.0	6.5	Bu.
1166	152	Cephei 55		ľ	39.3	56	57	111.0	0.44	7.2, 8.0	6.0	De.
1167	268			1	43.5	41		221'4	0.38	7.4, 8.2		De.
1168	367		A B		49.9	27	38	115.7			5.9	De.
	٠,		AC	1	777		50	28.2	30.88	7'5, 7'9	6.4	De.
1169	156			1	57.6	46	6	241.6	1.02	7'1, 9'4	5.6	De.
1170	368	Aquarii 45		21	1.0	_8	43	97.1	0.22	7.2, 7.6	5.4 6.8	De.
1171°	159	4.5	ΑB		6.3	47		318.7	1.35	6.1, 9.2	6.4	De. De.
•	_ ا	1	ĀC	l	ر -	"'		189.5	134.10	6.8	4.I	De. De.
1172 ^p	270	ļ	ΑB	l	7:5	6	43	354.6	0.62	7.4, 9.7	5.8	De. De.
•	1		ĀC	l	, ,		73	30.∓	20.∓	' ** > /	2 0	De.
			ΑĎ	l				173.0	183.5	7.8		ľ
1173	289		A B	l	13.4	24	35		0.00	8.2, 12	8.2	Bu.
			AC	l	· J · T	54	"	262·I	5.39	13	8.5	Bu.
	•	•	_	•		•	1	,			٠,	Du.

^{*} The wide pair is Z. 2287 rej.

A and C make H₂. 2867.

A noted two very distant and larger stars (= H₂ 1455).

A and C make H₂ 1480.

A and C make H₂ 1480.

Binary in rapid motion. Bu. 53° 7:0" 24 (1878 6).

The wide pair is O.Z. (App.) 209.

The wide pair, A D, is So. 781.

Ref. No.	Burnham's No.	Name or Catalogue,		. A. 88o.	Dec 1886		P.	D.	Mags.	1870.	Observer.
1174 ^q	164	A B	21	m. 19'2	8	, 52	241°6	0.57	8.0, 8.2	+ 5.2	De.
	167	Ci of a	l	37.0			242'2	26.21	8.7	6	De.
1175 ^r 1176	686	Cygni 363 A B		31.0	29	31	89.2	0.38	7.0, II.4 7.7, 8.0	6·5	De.
11/0	000	ÂC	1	33.4	55	14	127.9	41 67	7 7, 80	8.1	100
I I 77°	449	AB		34'7	41	11	10.1	6.78	7, 12	6.8	Bu.
//	449	ÃC		34 /	4.	••	170.2	13.71	10.8	0.0	De.
		AD			1		248.2	17.94	7.7	6.8	De.
1178	688	1		37.7	40	30	200.5	0.38	7.5, 7.5	8.I	Bu.
1179	690	μ Cephei		39.8	58	14		19.28	5, I2	8.5	Bu.
1180	276	n Piscis Austr.	l	23.9	-29	2	117.4	1.41	5, 6	6.6	C.O.
1181	694	Lacertæ 4	ı	29.1	43	54	352.5	0.20	6.0, 8.5	8.7	Bu.
1182	696		1	58.7	15	19	353.8	0.65	8.5, 9.0	8.2	Bu.
1183	172	51 Aquarii	22		- 5	27	21.0	0.44	6.7, 6.7	5.2	De.
1184	290	34 Pegasi	1	20.2	3	47	223.3	2.61	6, 12	5.2	Hl.
1185	291	0, 0	1	21.6	3	55	157.8	0.33	8.4, 8.4	5.8	De.
1186	76			23'4	-0	49	335.3	1.47	8.2, 10.1	5.8 6.2	De.
1187	277		1	34.5	40	45	199'4	0.20	8.2, 8.4	5.3	De.
1188	480		1	35'3	4	6	65.8	0.86	9.0, 9.8	7.5	De.
1189 ^t	382	B. A. C. 7983 A B		35°3 48°3	44	7	205'7	1 707	6,8	6.4	De.
		A C	1		İ		353.6	26.43	10.7	6.3	De.
1190	178	Aquarii 252	ļ	49'0	-5	38	324.6	0.2∓	6.2, 8.0	500	De.
1191	384	Aquarii 265	١	56.5	-19	II	72.2	1.52	7'2, 9'2	7°I	De.
1192	180	ĺ	23	2.5	60	11	176.8	0.22	7.5, 8.0	2.I	De.
			1				106.3	34.20	10.2	5.2	De.
1193ª	385	A B		4.2	31	50	135.8	0.42	7'1, 7'9	6.4	De.
	_	A C			l		77'I	58.05	8.7	67	De.
1194	181	Aquarii 286 A B		7.2	- 14	3	309.5	1.21	7.1, 10.4	6.3	De.
		AC AC	1				234'9	18.78	12	7.7	Bu.
1195	714	B. A. C. 8084	1	7'9	-3 48	17	145.2	0.22	7, 10	8.6	Bu.
1196	717	8 Andromedæ	1	16.0		22	161.4	7.61	5, 13	8.2	Bu.
1197	718	64 Pegasi		28.0	31	9	86.9	0.46	6, 8	8.7	Bu.
1198	720	72 Pegasi 27 Piscium	1		30		127.7	0.40	6, 6	8.7	Bu. Bu.
1199	730		1	25.2	-4	13	265.8	1.42	6, 11	8·4 8·7	Bu. Bu.
I 200°	733	85 Pegasi	1	55.8	26	27	274.0	0.67	6, 12.5	67	Dū.

^q Measures of A C from Struve (= Z. 2793).

^r A and C make 0.Z. (App.) 220.

^s A and C make 0.Z. 447 (= H₁ III. 110).

^t A and C = H₂ 1828.

^s A and C = H₂ 5532.

^r The principal star has a large proper motion and sensible parallax. There is a 9 m. companion, 33°6:14" 40 (1878; 5). This does not partake of the proper motion of A. There is also a founth, faint star, 227°1:61" 73 (1879; 0). Mr. Burnham's latest measures are as follows:—

	٥		. "	
ΑB,	276'0	4n.	0.75	1878.75
	276°0 287°2	ın.	73	9'46
AC,	33'0	7D.	14.22 12.00 61.43	1878 ⁻ 75 9'46 8' 7 0
	29.0	3n.	15'00	0,33
AD.	277'I	ın.	61.43	8.00 8.33

C is of 9th and D of the 13th mag. A B evidently form a physical system.

ADDITIONAL NOTES TO MEASURES.

Mo. 86 (o Ceti). H₁ on Oct. 20, 1777, wrote, "Double. Very unequal. Large, garnet; small, dusky. Distance, mean of some very accurate measures 1' 44"218; mean of other very accurate measures 1' 53"032." The earliest measure of this star was probably made by Cassini, about 1863, with a telescope 34 feet in length.

Mo. 159 (a Tauri). H₁ in 1781, Dec. 19, wrote: "Double. Extremely unequal. Large, red; small, dusky. Distance, I'27" 45""; position, 52° 58' nf. With 460, the apparent diameter of this star, when on the meridian, measured I" 46", a mean of two very complete observations; they agreed to 6"; with 932, it measured I" 12", also a mean of two excellent observations; they agreed to 8". The apparent disc was perfectly well defined with both powers."

Mo. 274, p. 244, line 4. The duplicity was detected by Bird in 1864.

Mo. 300 (Z. 1273). Hall discovered a faint companion in 1875: Position, 190°±; distance, 12"±; and Mr. Burnham gives a measure in 1878, 192°:2, 14".74.

No. 456 (a Centauri). Mr. Ellery's latest

measures of this star are, 1879'252:174°4:3"'41:13 observations. (See *Observatory*, No. 27.)

No. 520 (Antares). Burg, of Vienna, was the first to see the companion of this star: he was watching an occultation of Antares by the Moon in April 1819. Mr. Grant detected it in 1844 in India.

Mo. 1120 (β Scorpii). "Aug. 19, 1761. —Found the little star, which is 14" north of β Scorpii, to precede it one second of time, by my parallactic wires, with my watch, which makes four beats to a second of time. If anything, the difference was something more than a second of time; the little star may therefore be supposed to precede β Scorpii 17" in R.A." The difference of Dec. was 13"'97.—Maskelyne (*Phil. Trans.*, vol. liv.) Powell, in 1859, found the difference of R. A. + 6"'3. Smyth's magnitudes are A 2, B 5\frac{1}{2}, C 5 Powell's, A 2\frac{1}{2}, B 5, C 7.

No. 708 (Σ . 2749). The magnitude of C is 9.

No. 725 (μ Cygni, A C, 7.5). 1800 62°·3 216"·5 Piazzi. 77 57 ·1 209 ·9 Fl.

CLASSIFICATION.

FOR a very exhaustive and interesting classification of double stars we must refer our readers to M. Flammarion's Catalogue of these objects. A few general remarks and a much more simple classification are all that we can here present.

Sir John Herschel's great Catalogue gives the places of 10,320 double stars. Adding 700 of Mr. Burnham's and a few hundreds for the discoveries of other astronomers we may take 12,000 as a rough total of the number of known double stars. Unfortunately, observers of these objects have confined their attention till lately too much to the Herschelian and Struvian pairs, and hence at present in our attempts to ascertain the number of physical double stars we deal almost exclusively with the discoveries of those great observers.* A very extensive examination of nearly all known measures of these and many of Sir John Herschel's stars leads us to believe that the number in which orbital motion has already shown itself since discovery may be put at about 600. If to these be added the relatively fixed pairs which are known to possess a common proper motion, we get at least 700. But this is not all: Mr. Burnham's discoveries will in all probability yield a large number of binary systems. Hence it does not appear too much to say that if this branch of astronomy continue to command the attention which has been given to it during the last ten years, the number of known physical systems will soon rise to at least 1000. The careful examination of Herschel and South's and Burnham's stars by Dembowski, Mr. Burnham, and the Cincinnati observers, is almost weekly adding to this important and interesting class.

^{*} It is with much pleasure that we find Mr. Burnham and Mr. O. Stone energetically protesting by word and deed against this narrow circle of observation. The extremely clear, compact, and complete form in which Σ published his double-star work no doubt led to this custom.

SYSTEMS FOR WHICH ORBITS HAVE BEEN COMPUTED.

	Name.	a	•	P	Computer.
		l		years.	
1	42 Comæ Ber.	0.65	0.48	25	ο.Σ.
2	Herculis	1.55	.42	34	Du.
3	Σ. 3121	0.41	26	37	Dob.
4	η Cor. Bor.	0.82	.26	41	Wijkr
	Σ. 2173	1.01	.13	45	Du.
5	γ Cor. Anstr.	2.40	.69	55	Schi.
	Cancri	0.00	.33	55 58	Dob.
7 8	ξ Ursæ Maj.	2.22	.39	60	Du.
9	a Centauri	18.45	.23	88	Dob.
10	70 Ophiuchi	4.40	'49	94	Schur.
11	γ Cor. Bor.	0.40	.35	95	Dob.
12	ξ Scorpii	1.26	.07	95	,,
13	Σ. 3062	1:27	·46	104	",
14	ω Leonis	0.85	.22	114	,,
	≠ Eridani	3.82	1.37	117	,,,
15 16	Σ. 1768	0.75	·37 ·66	124	,,
17	E Boötis	4.86		127	,,,
18	γ Virginis	3.97	.71 .89	185	Thiele.
19	τ Ophiuchi	1'40	·6ó	217	Dob.
20	η Cass.	9.83	.26	222	,,
21	λ Ophiuchi	1.19	.49	233	,,
22	44 Boötis	3.09	.71	261	,,
23	μ² Boötis	1.47	.59	280	,,
24	36 Andromedæ	1.24	.65	349	,,
25 26	γ Leonis	2.00	.74 .28	402	,,
	δ Cygni •	2'31	'28	415	Behrmann.
27 28	σ Cor. Bor.	5.88	'75	845	Dob.
28	Castor	7'43	.33	1001	,,
29		7.64	.65	1578	,,

The period of $O.\Sigma$. 365 (No. 616) may be about sixteen years, while that of $O.\Sigma$. 535 (No. 712) is either seven or fourteen years.

TERNARY SYSTEMS.

Under this head may probably be placed all the following systems: γ Andromedæ, Σ . 183, 719, 948, 1001, 1110, 1196, 1938, 1998, 1426, 2006, 2220, 2479, 2481, 2607, 2737, 2749, 2607; and $O.\Sigma$. 276, 380, 392.

QUATERNARY SYSTEMS.

 ϵ^1 and ϵ^2 Lyræ, ν Scorpii, Σ . 2576 and 17, χ Cygni (see Flammarion's Catalogue), θ Orionis (?).

* These elements are quoted rather to give completeness to the table than because of their intrinsic value. They depend mainly on H₁'s angle; it should have been taken as sf., and not nf. Dr. Doberck's formulæ give better results in every way (see p. 372).

Lastly, if we tabulate the most important binaries according to the arc described since discovery, we find the following approximate numbers:—

One or Between	more i	evo	lutions 360°	14 5
,,	180	••	270	10
"	90	•	180	15
,,	45	,,	90	20
,,	20	,,	45	100
"	0	,,	20	200

NOTE

On systematic Errors in the Measures of Angle and Distance of Double Stars.

FROM our remarks on p. 418, it might be inferred that we wished to discourage the study of the Struvian stars. This is far from being the case. There are scores of Σ 's and O.Σ.'s stars which need careful remeasurement in order to determine the amount of change, if any; and where change has taken place, to find out its nature. More than this: no one with even a slight acquaintance with the distressing discrepancies and difficulties which are met with in attempts to deal in a satisfactory way with the orbits of H_1 's and Σ 's binaries would desire that attention to them should be relaxed. And it is quite certain that there are some difficulties which numerous and careful series of measures (especially at the critical times) would considerably diminish or altogether remove. We have said careful series of measures. By this expression we mean series of measures by practised observers on a uniform plan, and supplemented by a rigorous determination of systematic error. Mistakes and accidental errors are not serious matters, but constant personal errors (if the observations are so made that the constant error cannot be ascertained and the correction applied) may render worthless the honest work of long years under the most favourable circumstances. To ascertain his systematic errors in the measurement of the position angles and distances of 'double stars, Struve made extensive series of NOTE. 421

measures of artificial double stars. His distinguished son O. Struve employed the same method; and to ascertain any change in the errors he repeated the observations about every ten years. Dawes as we have seen got rid of the error, or some portion of it, as regards the angles, by the use of his prism; and the Cincinnati observers keep the line joining the two eyes parallel to or normal to that joining the two stars measured, and then from the results deduce the necessary corrections. Dembowski, in order to ascertain the corrections to be applied to his angles and distances, has undertaken a most laborious series of measures of twenty-four double stars in which the changes are so small that they may be disregarded; and other eminent observers have promised to measure the same objects. For the convenience of those who may wish to join in such an investigation, the names, places for 1875, and magnitudes of these selected pairs are subjoined.*

		R	. A .	Dec	.	Mag.	
Σ.	170	h. 1	m. 43°9	+7°5	38	6.7, 7.8	
	191		52'4	73	16	6'.8'9	
1	1169	7	57.5	79	52	7.8, 8	
	1321	9	5.8	53	14	6 , 8·9 7·8, 8 7·8, 7·8	
	1350	_	57.5 5.8 22.0	67	19	7 , 7.8	
i	1603	12	1.0	56	IÓ	7 , 7.8	
	1685		45.7	73 79 53 67 56 19 83 81	51	7 , 7.8 7 , 7.8 7 , 7.8 7 , 7.8 7.8, 8 7.8, 8.9	
	2034	16	3.7	83	58	7.8, 8	
	2326	18	17-5	8ĭ	27	7.8, 8.9	
0.Σ.	353	1	45.7 3.7 17-5 22.6	71	16	5 , 7	
	363	ĺ	43'5	77	34	5 , 7 7 , 7 6·7, 7·8 7·8, 8	
Σ.	2452	1	57.4	75	37	6.7, 7.8	
	2571	19	34.7 48.6	77	59	78,8	
	2603		48.6	69	57	4 , 7.8	
	2675	20	16.9 13.1	77 69 77 78	.57 .18	4,7.8	
	2796	21	16.9	78	4	7.8, 9	
	280I	1	22.5	79	49	7.8, 9 7.8, 8 3, 8	
	2801 2806 2893	i	27.0	70	0	4 , 78 4 , 78 7 8, 9 7 8, 8 3 , 7 8 7 , 7 9 7 , 9 8	
	2893	22	10.6	72	43	5.6, 7.8	
1	2924	1	29'4	69	15	7 , 78	
	2023	1	29.7	69	44	7,9	ļ
Ο.Σ.			41.8	77	52	7 , 9 7 , 9 5 , 7.8	1
	489	23	3.9	74	43	5,78	ŀ
\$	3051		55.6	79	36	7.8, 9.10	

^{*} See Observatory, vol. ii., p. 214, for some valuable remarks by Dr. Doberck on this subject.

Just as this sheet was ready for the printer an excellent paper on systematic errors was received from the author, M. Thiele. The subjoined results are taken from it:—

ı	Mean error of on	e night's work.	
	Distance.	Angle.	
Brünnow	0"'149	2°.44	
Dawes	1095	0 '41	
Dembowski	.119	·6g	
Doberck	.123	1 '00	
Dunér	'099	0 '94	
Gledhill	'062	o '94 '89	
Herschel (Sir J.)	*460	.91	
Herschel (Sir W.)	*39		
Knott	109	4 '4 0 '61	
Mädler	141	·71	
Main	171	2 '97	
Plummer (W. E.)	.153	1 .30	
0.Σ.	·082	o ·95	
Σ.	'095	-88∙	
Talmage	173	1.02	
Wilson, Seabroke, and others	145	•••	

The numbers given above for Dawes, Dembowski, Main, and $O.\Sigma$ are the arithmetical means of the values at different periods. And as an example of the way in which these systematic errors change in the course of series of measures extending over many years, the case of one of the most experienced and skilful observers, Dembowski, is here given more fully:—

The above results were obtained by comparing the several observers' measures of Castor with the computed position angles and distances. For a full explanation of the process, see Thiele's "CASTOR. Calcul du mouvement relatif et critique des observations de cette étoile double. Copenhagen, 1879."

PART IV. BIBLIOGRAPHY.

-		
		İ
·		

LIST A.

PAPERS ON DOUBLE STARS, ETC.

ADOLPH.

Measures of 70 Ophiuchi.—Ast. Nachr., vol. lxxi., p. 155.

AIRY.

On the Parallax of a Lyræ.—Memoirs of R. A. S., vol. x., p. 265.

AMICI.

A few of his Double Star Measures (1815 to 1823).—Ast. Nachr., vol. xc., p. 304.

ARGELANDER.

On some Double Stars.—Ast. Nachr., vol. lxii., p. 253. AUWERS (Dr. A.)

"Nachtrag zu den Untersuchungen über die Veränderliche Eigenbewegung des Procyon."—Berlin, 1873.

"Untersuchungen über veränderliche eigenbewegungen Von G. F. T. Arthur Auwers."—Erster Theil.

"Inaugural-Dissertation zur Erlangung der Philosophischen Doctorwürde."—Königsberg, 1862. It contains investigations of the proper motion of a Virginis, β Orionis, a Hydræ, the elements of the orbit of Procyon, etc.

On the Companion of Sirius.—Ast. Nachr., No. 1371. On variable Proper Motions. The Proper Motion of Procyon. The Parallax of Procyon.—Ast. Nachr., vol. lviii., pp. 33, 35, etc.

Measures of Double Stars with the Heliometer.—Ast. Nachr., vol. lix., p. 1. 1859 to 1862.

On 61 Cygni, Procyon, & Ursæ Majoris, y Lalande.

—No. 21258, Ast. Nachr., vol. lix. On the general Method of Observation; On the Errors in Measures of Distance; On the Micrometer Screw, etc.—See same paper.

On the Orbit of Sirius.—Ast. Nachr., vol. lxiii., p. 273. BARCLAY.

"Leyton Astronomical Observations," 4 vols.

BEHRMAN.

On the Orbit of δ Cygni.—Ast. Nachr., vol. lxvi., pp. 1, 141.

BESSEL.

Ast. Nachr., No. 514, 515, 516: on the Companion of Sirius.

"Astron. Untersuchungen" (Königsberg, 1841), On the Double Star 70 Ophiuchi.

"Fundamenta Astronomiæ, pro MDCCLV." Measures of some Double Stars; On the common Proper Motion of Groups and distant Pairs.

"Abhandlungen von F. W. Bessel," edited by Engelman. 3 vols. Leipsig, 1876. Papers on the Parallax of 61 Cygni.

"Verzeichniss Von 257 Doppelsternen," etc.—Ast. Nachr., vol. iv., p. 301.

"Von Doppelsternen und Vergleichung mit Struves," vol. x., p. 389; see also p. 317.

"On 70 Ophiuchi," vol. xiii., p. 11; vol. xv., p. 105.

"On 61 Cygni," vol. xvi., p. 65; vol. xvii., p. 257.

"Ueber Veränderlichkeit der eigenen Bewegungen der Fixsterne," vol. xxii., pp. 145, 169, 185.

"On the Change in the Proper Motion of Sirius," vol. xxii., p. 172.

See also his "Fundamenta Bradleianis."

BISHOP.

"Astronomical Observations," 1852.

BODE.

See Bode's Jahrbuch for 1784 for a list of Double Stars known before Sir William Herschel's time.

BOND.

On the Companion of Sirius.—Ast. Nachr., No. 1353, and No. 1374; see also the American Journal of Science for March 1862.

Measures of Mizar.—Ast. Nachr., vol. xlviii.

Stellar Photography.—Ast. Nachr., vol. xlix., p. 84.

"On the relative Precision of Measures of Double Stars taken photographically and by direct vision."—Monthly Notices, vol. xviii.

BRINKLEY.

Parallax of a Lyræ.—Phil. Trans., vol. c.; Mem. of R. A. S., vol. i., p. 329; Phil. Trans., 1824, pt. #., p. 471.

BROTHERS (A.)

Catalogue of Binary Stars.—Mem. of the Lit. and Phil. Soc. of Manchester, vol. iii., 3rd series. See also Astron. Register, 1868.

Brünnow (Dr.)

"Astronomical Notices," No. 28. On the Companion of Sirius. See also Dunsink Observations.

BURNHAM (S. W.)

Catalogues of New Double Stars.—Monthly Notices of R. A. S., vols. xxxiii., xxxiv., xxxvi., xxxvii., xxxviii.

On Σ . 2344.—Ast. Nachr., vol. lxxxviii., p. 285. See also Ast. Nachr., vols. lxxxv., lxxxviii.

CALANDRELLI (J.)

"Atti dell' Accademia Pontificia de Nuovi Lincei, 5 Aprile, 1853."

"On the Companion of Sirius."

"On the Proper Motion of Sirius." See Ast. Nachr., vol. li., p. 224.

CASSINI.

"A New Double Star."—Histoire de l'Académie Royale des Sciences, tome i. 1678.

"Occultation of γ Virginis Star seen Double."—Histoire de l'Académie Royale des Sciences, 1720.

CHACORNAC.

"On the Companion of Sirius."—Ast. Nachr., No. 1355. Also No. 1368 (vol. lvii.)

CINCINNATI OBSERVATORY Volumes:-

Mitchell's Measures; New Double Stars; Measures in 1875-76-77.

CLARK (A. C.)

"New Double Stars discovered by Mr. Alvan Clark."
—Monthly Notices of R. A. S., vol. xvii., p. 257; vol. xx., p. 55.

"Discovery of Companion of Sirius."—Ast. Nachr., vol. lvii., p. 131.

COOPER.

"Double Star Measures in 1832 and 1833."—Ast. Nachr., vol. xc., p. 303.

DARBY (Rev. W. A.)

The Astronomical Observer.

D'ARREST.

"On the Influence of Aberration on the Position Angle and Distance."—Ast. Nachr., vol. lix., p. 231.

DARQUIER.

"Mémoire sur les étoiles doubles et le mouvement des fixes. Par M. Darquier."—"Histoire et Mémoires de l'Acad. Royale des Sciences de Toulouse, tome ii., 1784.

DAWES.

"Double Stars discovered by Dawes."—Monthly Notices of R. A. S., vol. xxiv., p. 117.

Measures, in vols. ii., iii., x., xv., xxvii.

On Measuring Angles of Position, vols. xviii., xxvi., xxvii.

On Star Magnitudes, vols. xi., xiii.

On μ Herculis, 70 Ophiuchi, σ Orionis, Sirius, vols. xv., xx., xxiii., xxiv.

On Eyepieces, vols. xxiii., xxv.

On H. I. 13, vol. xxiii.

On δ Cygni.—Ast. Nachr., vol. lxv., p. 251.

The following papers are in the Memoirs of the Royal Astronomical Society:—

- "Observations of the Triple Star & Cancri," vol. v., p. 135.
 - "Observations of Double Stars," vol. v., p. 139.
 - "Micrometrical Measurements of the Positions and Distances of 121 Double Stars, taken at Ormskirk during the years 1830, 1831, 1832, and 1833," vol. viii., p. 61.
 - "Micrometrical Measures of Double Stars, made at Ormskirk between 1834 and 1839-40," vol. xix., p. 191.
 - "Catalogue of Micrometrical Measurements of Double Stars," vol. xxxv., p. 137.

DEMBOWSKI (Baron).

The following papers are in the Astronomische Nachrichten:—

His method of observing Double Stars, Instruments, etc., vol. xiii., p. 231. Naples, 1855.

Measures of the Dorpat Double Stars (lucidæ), vol. xlii., pp. 47, 77, 109, 285, 359, 375.

Measures of Double Stars, vol. xliv., p. 57.

Introductory Remarks on his Second Series of Measures, vol. xlvi., p. 267.

Measures, vol. xlvi., p. 317.

Measures, vol. xlvii., pp. 79 to 333; vol. l., pp. 129 to 317; vol. li., pp. 55 to 139.

Mean Places of Fifty-two Double Stars, vol. liii, p. 113.

Measures, vols. lxxii., lxxv., lxxvi., lxxvii., lxxix., lxxxvii., xcii.

New Double Stars, vol. lxxiii.; also No. 1475, vol. lxii. New Double Stars, vol. lxxxiii., p. 170.

Measures in 1872-3, vol. lxxxiii., p. 161.

On the Value of his Micrometer, vol. lxxxi. DOBERCK (Dr. William).

The following papers are in the Astronomische Nachrichten:—

Elements of μ Bootis, σ Cor. Bor., τ Ophiuchi,—vol. lxxxv.

Elements of τ Ophiuchi, γ Leonis, etc.,—vol. 1xxxvi.

Elements of η Cass., σ Cor. Bor., μ Drac., ι and ω Leonis, ξ Libræ, λ Ophiuchi, Σ . 175 and 1819, μ^2 Boötis' 44 Boötis, η Cass., γ Leonis, τ Ophiuchi,—vol. lxxxviii., pp. 45—297; and vol. lxxxviii., p. 199.

Elements of ξ Boötis, 1st Elements of γ Cor. Bor. Elliptical Elements of ζ Libræ, 2nd Elements of γ Cor. Bor., Elements of λ and τ Ophiuchi, and ξ Boötis,—vol. $1 \times 10^{-2} \times 10^{-2$

On Double Star Calculation,—vol. xc., p. 57.

On δ Cygni,—vol. xc,, p. 153.

Elements of p Eridani,—vol. xc., p. 191.

On Cooper's and Amici's Double Star Measures,—vol. xc., p. 303.

Provisional Elements of Σ . 1768 and Σ . 3121,—p. 313. Elements of Σ . 3062,—p. 319.

Provisional Elements of Castor; On Double Star Calculations; On Double Star Orbits,—vol. cxi.

On Double Star Observations; Elements of μ^2 Boötis; Double Star Measures made at Markrie Observatory;

On the Correction of Approximate Double Star Orbits,—vol. xcii.

In the Monthly Notices are the following:—Elements of μ^2 Boötis, σ Cor. Bor., etc., vol. xxxv. See also the Transactions of the Royal Irish Academy, and The Observatory.

DUNÉR.

Elements of ζ Herculis and η Coronæ.—Ast. Nachr., vol. lxxviii., p. 315.

"Measures Micrometriques," etc. 1 vol., 1876.

DUNLOP.

Catalogue of 253 Double and Triple Stars observed at Paramatta, N. S. W.—Mem. of R. A. S., vol. iii., 1829. DURHAM OBSERVATIONS (Measures in 1848).

ENCKE.

"Über die Berechnung der Bahnen der Doppelsterne."

—Ast. Jahrbuch, 1832.

On y Virginis.—Ast. Nachr., vol. xv., p. 22.

See also the Berlin volumes.

ENGELMANN (Dr. R.)

"Messungen von 90 Doppelsternen. Leipzig, 1865."
—It consists of historical introduction, description of telescope and micrometer, measures and notes.

Measures in 1864; the Measures of Eng., De., Se., compared.—Ast. Nachr., vol. lxiv., p. 81.

Measures and Discussion,—vol. lxx., p. 257.

Mean places of many of Σ .'s Double Stars: 1873.—Ast. Nachr., vol. lxxxiv., p. 177.

EULER.

Photometric Formula.—Berlin Memoirs, vol. vi.

FERRARI.

Terza serie delle misure micrometriche della stelle doppie."—Roma, 1875.

FLAMMARION (C.)

Periods of Four Double Stars.—Ast. Nachr., vol. lxxxiv., p. 95.

See also *Monthly Notices*, vol. xxxvi; Comptes Rendus, vol. lxxvii.

"Catalogue des étoiles doubles et multiples." 1878.

FLETCHER (I.)

"Results of Micrometrical Measures of Double Stars, made at Tarn Bank, Cumberland, from 1850-52 to 1853-4."

—Mem. R. A. S., vol. xxii., p. 167.

Measures of 70 Ophiuchi.—Ast. Nachr., vol. xxxiii., p. 53.

FORBES (Prof. J. S.)

"On the alleged Evidence for a Physical Connexion between Stars forming Binary or Multiple Groups arising from their Proximity alone."—Phil. Mag., 1849, 1850.

FRITZCHE (H.)

"Untersuchungen über dem Doppelstern; Σ . 3121."

—Bulletin de l'Académie Impériale des Sciences de St. Pétersbourg, tome x.

Fuss (V.)

"Untersuchungen über die Bahn der Doppelsterns Σ . 3062."—Bulletin de l'Académie Impériale des Sciences de St. Pétersbourg,—tome xi., 1867.

Fuss (Prof.)

"Betrachtungen über die Fixstern Trabauten von Hrn. Prof. Fuss in St. Petersburg."—Ast. Jahrbuch für das Jahr, 1785. Berlin, 1782.

"Reflexions sur les étoiles." 1780.

GASPARIS.

Formulæ for the Computation of Orbits.—Ast. Nachr., vol. lxxviii., p. 333. See also Comptes Rendus, vol. lxxiii., and the Trans. of the Acad. of Science of Naples.

GAUSS.

On the Proper Motion of the Star P. XIII. 194.—Ast. Nachr., vol. xxii., p. 191.

GAUTIER.

"Notice sur les travaux astronomiques les plus recents

relatifs aux étoiles doubles, par M. A. Gautier."—Archives des Sciences Physiques et Naturelles. Genève, 1850.

GILLISS (Lieut. James M.)

Appendix I. A Catalogue of 1963 Stars, and of 290 Double Stars, observed by the U. S. Naval Astronomical Expedition to the Southern Hemisphere during the years 1850-51-52.—Washington, Government Printing Office, 1870.

Catalogue of 290 Double Stars observed by the U.S. Naval Astronomical Expedition in 1850-51-52.—Washington.

GLEDHILL (J.)

"Measures of 484 Double Stars, made at Mr. Edward Crossley's Observatory, Bermerside, Halifax."—Mem. R. A. S., vol. xlii., p. 101.

List of Binary Stars.—Monthly Notices, vol. xxxvii.

GOLDSCHMIDT (H.)

On the close Companions of Sirius.—Ast. Nachr., vol. lx., p. 109. See also Monthly Notices, vol. xxiii.; Comptes Rendus, vol. lvi.

GORE (J. E.)

"Southern Stellar Objects for Small Telescopes." 1877. GREENWICH OBSERVATIONS (Measures).

GRUBER (Dr. L.)

On the Motion of η Cass.—Ast. Nachr., vol. lxxxviii., p. 361.

HALL (Professor A.)

On the Companion of Sirius.—Ast. Nachr., vol. lxxxiv., p. 28; vol. lxxxviii., p. 137; vol. xc., p. 163; vol. lxxix., p. 247.

"Double Star Measurements."—Ast. Nachr., vol. xc., p. 163.

HALLEY (Dr.)

"The Parallax of the Stars."—Phil. Trans., vol. xxxi. 1720.

HENDERSON (Thomas).

"On the Parallax of a Centauri."—Mem. R. A. S., vol. xi., p. 61.

"On the Parallax of Sirius,"—vol. xi., p. 239.

"The Parallax of a Centauri," etc.,—vol. xii., p. 329. HERSCHEL (Sir John).

The following papers occur in the Memoirs of the Royal Astronomical Society:—

"Descriptions and approximate Places of 321 New Double and Triple Stars," made with a 20-feet Reflecting Telescope,—vol. ii., p. 459.

"Micrometrical Measures of 364 Double Stars," with a 7-feet Equatorial Achromatic Telescope, taken at Slough in the years 1828, 1829, and 1830,—vol. v., p. 13.

"On the Investigation of the Orbits of Revolving Double Stars,"—vol. v., p. 171.

"Approximate Places and Descriptions of 295 New Double and Triple Stars," etc.,—vol. iv., p. 47. Made with a 20-feet Reflecting Telescope.

"A Catalogue of 384 New Double and Multiple Stars," etc.,—vol. iii., p. 177. Made with a 20-feet Reflecting Telescope.

"Fourth Series of Observations with a 20-ft. Reflector; containing the mean places and other particulars of 1236 Double Stars, as determined at Slough, in the years 1828 and 1829,"—vol. iv., p. 331.

"Fifth Catalogue of Double Stars observed at Slough in the years 1830 and 1831, with the 20-ft. Reflector," etc.,—vol. vi., p. 1.

"Remarks on the Fifth Catalogue,"-vol. vi., p. 74-

"Notice of the Elliptic Orbit of ξ Boötis, with a second approximation to the Orbit of γ Virginis. A Notice of the Elliptic Orbit of η -Coronæ,"—vol. vi., p. 149.

"A List of Test Objects, principally Double Stars,

arranged in classes, for the trial of Telescopes in various respects, as to light, distinctness," etc.,—vol. viii., p. 21.

"A Second Series of Micrometrical Measures of Double Stars," etc.,—vol. viii., p. 37. Made at Slough, with the 7-feet Equatorial.

"Sixth Catalogue of Double Stars," etc.: at Slough, in 1831 and 1832, with a 20-feet Reflector,—vol. ix., p. 193.

"On the determination of the most probable Orbit of a Binary Star,"—vol. xviii., p. 47.

"Seventh Catalogue of Double Stars, observed at Slough in the years 1823—1828, inclusive, with the 20-feet Reflector; 84 of which have not been previously described,"—vol. xxxviii., p. 1. 1871.

"A Catalogue of 10,300 Multiple and Double Stars," etc.,—vol. xl.

"A Synopsis of all Sir William Herschel's Micrometrical Measurements and estimated Positions and Distances of the Double Stars described by him," etc.,—vol. xxxv., p. 21.

In the *Monthly Notices* are the following papers:—Catalogues of Double Stars, vols. i., ii., iii.; On the Orbits of Double Stars, vol. ii.; List of Objects, vol. iii.; Measures, vol. iii.; On γ Virginis, vol. iii.

HERSCHEL (Sir William).

[&]quot;On the Parallax of the Fixed Stars."—Phil. Trans. 1826, pt. iii.; and 1827, pt. i.

[&]quot;Measures of 380 Double and Triple Stars made in 1821, 1822, and 1823, etc., by Herschel and South."—
Phil. Trans. 1824, pt. iii.

[&]quot;Results of Astronomical Observations made during the years 1834, 5, 6, 7, 8, at the Cape of Good Hope."— Published in 1847.

[&]quot;On the Places of 145 New Double Stars."—Memoirs of R. A. S., vol. i., p. 166.

Papers in the Philosophical Transactions:—

On the Parallax of the Fixed Stars. By Mr. Herschel, F.R.S.,—vol. lxxii., 1782.

Catalogue of Double Stars,-vol. lxxii., 1782.

Catalogue of Double Stars,—vol. lxxv., 1785.

On his Forty-feet Telescope,—vol. lxxxv., 1795.

"Account of Changes that have happened during the last Twenty-five Years, in the relative Situation of Double Stars," etc. 1803. Part ii.

Continuation of "Account," etc. 1804. Part ii.

"Experiments for ascertaining how far Telescopes will enable us to determine very small Angles," etc.,—vol. xcv., p. 31.

"On the Power of Penetrating into Space by Telescopes," etc.,—vol. xc., p. 49.

HIND (J. R.)

"On the Double Stars δ Cygni and γ Leonis."— Memoirs of R. A. S., vol. xvi., p. 291.

Elements of the Binary Star γ Virginis,—vol. xvi., p. 461.

The following are in the Astronomische Nachrichten:— Elements of γ Virginis, μ^2 Boötis, a Geminorum, σ Cor. Bor.,—vol. xxiii., pp. 225, 351, 379.

Elements of & Cygni,—vol. xxiv., p. 209.

Elements of Σ . 1938, λ Ophiuchi, τ Ophiuchi,—vol. xxvi., p. 319.

In the *Monthly Notices* are the following papers:— On Castor, σ Cor. Bor., δ Cygni, γ Leonis, vol. vii.; On μ^2 Boötis, vols. viii., xxxii.; Elements of Binary Stars, vol. ix.; On γ Virginis, vol. xi.; On α Centauri, vols. xv., xxxiii.; On ξ Boötis, vol. xxxiii.; On Castor and ξ Ursæ, vol. xxxiii.; On α Centauri, vol. xxxvii.

HOUZEAU.

"On a novel Effect of the Aberration of Light peculiar to the Double Stars which have proper motion; On

61 Cygni and 70 Ophiuchi."—Ast. Nachr., vol. xxi., pp. 241, 273; also vol. xxii., p. 249.

Annual Parallax, etc., of 70 Ophiuchi.—Ast. Nachr., vol. xxi., p. 278.

Howe (H. A.)

"Catalogue of 50 New Double Stars, discovered with the 11-inch Refractor of the Cincinnati Observatory." 1876. These are Stars of S. declination from 8° to 38°.

Нитн.

"An Doppelsternen."—Ast. Jahrbuch, 1807. These are measures of the distances of Double Stars made in Frankfort in 1804: the distances are in diameters.

JACOB (Captain).

"Relative Path of 61 Cygni."—Edinburgh New Phil. Journal, 1858.

"Double Stars observed at Poonah in 1845-6."—Mem. R. A. S., vol. xvi., p. 311.

"Catalogue of Double Stars, deduced from Observations made at Poonah from Nov. 1845 to Feb. 1848."—
Mem. R. A. S., vol. xvii., p. 79.

"Micrometrical Measures of 120 Double or Multiple Stars," etc. Madras, 1856-58.—Mem. R. A. S., vol. xxviii., p. 13.

"On the Orbit of a Centauri."—Ast. Nachr., vol. xliv., p. 41.

In the *Monthly Notices*:—Orbits of Binary Stars, vols. vii., x., xv., xvi.; Measures, vols. vii., viii., xiv., xvii., xix.; On ν Scorpii, vols. viii., xix.; On 51 Libræ, vol. xviii. See also *Brit. Assoc. Report*, 1855, on 70 Ophiuchi.

KAISER (Dr. F.)

"Doppelsternmessungen mit Airy's Doppelbildmicrometer und mit dem Fadenmicrometer."—Annalen der Sternwarte in Leiden. Dritter band. Haag, 1872. "Double Star Measures made at Leiden."—Ast. Nachr., vol. xviii., p. 1.

"On 70 Ophiuchi."—Ast. Nachr., vol. xix., p. 204; also vol. xx., pp. 187, 262.

"Measures of Double Stars,"—vol. xx., p. 112.

"On Airy's Micrometer."—Ast. Nachr., xlv., p. 209.

"Measures from 1840 to 1844."—Ast. Nachr., vol. lxxiv., p. 97.

KIRKWOOD (Prof.)

"On the High Excentricity of the Orbits of Binaries."
—Proceedings of the American Assoc. for the Advancement of Science. See also Silliman's American Journal, 2nd series, vol. xxxvii.

KLINKERFUES (Dr.)

"On the Computation of the Orbits of Double Stars."

—Ast. Nachr., vol. xlii., p. 81.

His general method of computing the Orbits of Double Stars; with an example.—Ast. Nachr., vol. xlvii., p. 353.

"On the Orbit of 70 Ophiuchi,"—vol. xlviii., p. 101.

KNOTT.

Micrometrical Measures of Double Stars.—Mem. R. A. S., vol. xliii.

KRÜGER (Dr. A.)

"On the Parallax of 70 Ophiuchi," etc.—Ast. Nachr., vol. li., p. 145. This paper deals with the Bonn heliometer, the micrometer screw, influence of temperature, etc., on it, etc.

"On the Parallax of 70 Ophiuchi."—Ast. Nachr., vol. lix., p. 161.

LALANDE.

"A Catalogue of 195 Double Stars," etc.—Mem. R. A. S., vol. iv., p. 165.

LAMBERT.

"Lettres Cosmologiques." 1761.

LAMONT (Dr.)

Measures of Double Stars.—Annalen der Königlichen Sternwarte bei Munchen, vol. xvii., 1869.

LASSELL.

"Companion of Sirius."—Ast. Nach., No. 1360; also see Mem. R. A. S., vol. xxxvi., p. 38.

"Description of a 20-feet Newtonian," etc.—Mem. R. A. S., vol. xviii., p. 1.

"Measures of Double Stars at Malta."—Ast. Nachr., vol. xxxvi., p. 287. See also Monthly Notices, vols. xvii., xxiii., xxiv.

LAUGIER.

"On the Proper Motion of Sirius."—Ast. Nachr., vol. xlviii., p. 209.

LINDENAU.

"On the Parallax of 61 Cygni."—Bohnenberger und Lindenau's Zeitschrift, vol. ii., 1815.

"On the Proper Motion of 61 Cygni."—Ast. Jahrbuch, 1818.

LINDSAY (Lord).

"Summary of the Mensuræ Micrometricæ."—Dun Echt Observations, vol. i., 1877.

LUTHER (Dr. E.)

"Measures of Binaries in 1862, 1863."—Ast. Beobachtungen, Königsberg, 1870. See also the vol. for 1865; also Ast. Nachr., vol. xlvi., p. 355, 1857.

MACLEAR (Sir Thomas).

"Determination of the Parallax of a¹ and a² Centauri," etc.—Mem. R. A. S., vol. xx., p. 70; also Ast. Nachr., vol. xxxii, p. 243. See also Monthly Notices, vols. xi., xvi.

MÄDLER.

The following papers are in the Astronomische Nachrichten:—

- "Dopplestern Messungen,"—vol. xii., p. 265. Made at Berlin.
 - "Elements of the Orbit of σ Coronæ,"—vol. xii., p. 399.
 - "On & Ursæ Majoris,"—vol. xii., p. 268.
- "Double Star Measures, at Berlin,"—vol. xiff., pp. 183, 247, 259.
 - "On 70 Ophiuchi,"-vol. xiii., p. 9.
 - "On the Orbit of Castor,"—vol. xiv., p. 75.
 - "On & Ursæ Majoris,"—vol. xiv., p. 109.
 - "Double Star Measures for 1836,"—vol. xiv., p. 183.
 - "On \$\infty\$. 3062, Orbit of,"—vol. xv., p. 151.
 - "Orbit of η Coronæ,"—vol. xv., p. 303.
- "Orbit of γ Virginis and ζ Herculis,"—vol. xvi., pp. 33 and 42.
- "On ϵ Boötis, ζ Boötis, ξ Boötis,"—vol. xviii., p. 364; ζ Cancri, p. 320; ϕ^2 Cancri, p. 363; Castor, pp. 79, 364; 42 Comæ Ber., p. 364; η Coronæ, p. 364; γ Coronæ, p. 266; σ Coronæ, p. 363," etc., etc.
 - "On 70 Ophiuchi,"—vol. xix., pp. 201, 349.
 - "The Orbit of & Ursæ,"—vol. xxi., p. 93.
- "List of 504 Dorpat Double Stars which show no change of place since the earliest Measures,"—vol. xxi., p. 147.
- "Observations of η Coronæ, ζ Herculis, 70 Ophiuchi, and Σ . 1938, at Dorpat, in 1843,"—vol. xxi., pp. 151, 152.
- "Second List of Dorpat Double Stars which appear unchanged since the earliest Measures,"—vol. xxii., p. 27.
 - ." On the Proper Motion of Procyon,"—vol. xxxii., p. 81.

See also Untersuchungen über die Fixstern-Systeme, 1847; Comptes Rendus, vol. vi., On the Direction of the Orbits of the Multiple Systems of Stars; Popular Astronomy; Schumacher's Jahrbuch, 1839; and the Dorpat volumes.

MAIN (Rev. R.)

See the Radcliffe Observations for Measures.

MARTH (A.)

On a Centauri.—Monthly Notices, vol. xxxvii.

MASKELYNE (Dr.)

"Annual Parallax of Sirius."—Phil. Trans., vol. li., 1760.

MAYER (C.)

"De novis in Cœlo sidereo Phænomenis."—Acta Academiæ Theodoro Palatinæ, vol. iv.

"Gründliche Vertheidigung neuer beobachtungen von Fixsterntrabanten."—Christian Mayer, Mannheim, 1778. MESSIER.

"A New Double Star."—Connoissance des Temps, 1783. "Occultation of γ Virginis by the Moon in 1775."— Histoire de l'Académie Royale des Sciences, 1774.

MICHELL (Rev. John).

"On the Means of Discovering the Distance, Magnitude, etc., of the Fixed Stars," etc.—Phil. Trans., vol. lxxiv., 1784.

"Parallax of the Fixed Stars."—Phil. Trans., vol. lvii., 1767.

MILLER (J. F.), Whitehaven.

The following are in the Astronomische Nachrichten:—
"Measures of Binary Stars (Σ . 2708, η Cass., Castor),"—
vol. xxxiii., p. 367.

"Measures of ϵ Lyræ, ξ Ursæ, Σ . 1263, μ Draconis,"—vol. xxxiv., p. 213.

"Measures of γ Virginis, ξ Boötis, Aquarii,"—vol. xxxvi., pp. 129, 361. See also *Monthly Notices*, vols. xii., xiii., and *Mem. R.A.S.*, vol. xxii.

MITCHELL (Prof. O. M.)

Measures of 176 Double and Triple Stars, 1846 to 1848.—Cincinnati Observatory publications.

MITCHELL (Miss).

American Journal of Science and Astronomy, vol. xxxvi. Measures, 1859 to 1863.

NOBILE (A.)

"Sulle due stelle multiple, Σ. 1263 e σ Cor. Bor. nota per A. Nobile."—Accad. delle Scienza, Naples.

"Saggio di un nuovo metodo per l'osservazione delle distanze seambievoli delle stelle multiple."—Naples.

"Misuri di Angoli di Posizione di Stelle Multiple."— Firenze, 1875.

OELTZEN.

"New Double Star."—Ast. Nachr., vol. xxxvii., p. 395. PEARSON (Dr.)

"On a doubly-refracting property of Rock Crystal, considered as a principle of Micrometrical Measurements, when applied to a Telescope,"—vol. i., p. 67.

On the Construction and Use of a Micrometrical Eyepiece of a Telescope,"—vol. i., p. 82.

"On the Construction of a new Position Micrometer, depending on the doubly-refractive power of Rock Crystal,"—vol. i., p. 103.

PETERS (Dr. C. H. F.)

The following papers are in the Astronomische Nachrichten:—

"On the Parallax of Polaris,"—vol. xxi., pp. 84, 87.

"On the Proper Motion of Sirius,"—vol. xxxii., pp. 1, 17, 33, 49; and vol. xxxii., p. 219.

"The Elements of the Orbit of Sirius,"—vol. xxxi., p. 239.

"Measures of Binaries,"—vol xliv., p. 158.

"On the Companion of Sirius,"—vol. lvii., p. 176.

"On the Proper Motion of Σ . 1300,"—(Dr. C. H. F. Peters), vol. lxxi., p. 240.

PIERCE.

On γ Virginis.—Gould's Astron. Fournal, vol. xviii. PIGOTT.

"Double Stars discovered in 1779."—Phil. Trans., vol. lxxi., 1781.

Pogson.

Measures.—Brit. Assoc. Report, 1858.

POND.

"On the Changes which have taken place in the Declination of some of the principal Fixed Stars." By J. Pond, Esq., Astronomer Royal.—Phil. Trans., 1823, pt. i.; see also 1823, p. 529.

"On the Parallax of a Lyræ." By J. Pond, Esq.—Phil. Trans., vol. cxiii.

"On the Parallax of a Aquilæ."—Phil. Trans., vol. cviii. Powell (E. B.)

"Observations of Double Stars taken at Madras in 1853, 1854, 1855, and the beginning of 1856."—Mem. R. A. S., vol. xxv., p. 55.

"On the Orbit of a Centauri."—Mem. R. A. S., vol. xxiv., p. 91.

"Second Series of Observations of Double Stars," etc. Madras, 1859 to 1862.—Mem. R. A. S., vol. xxxii., p. 75. The following are in the Monthly Notices:—

On Orbits, vols. xv., xxi., xxiv. Measures, vol. xvi.

RÜMKER (Ch.)

"Positionen von Doppelsternen."—Ast. Nachr., vol. xvi., p. 31.

SAFFORD (T. H.)

"The observed Motions of the Companion of Sirius, considered with reference to the disturbing body indicated by theory." By. T. H. Safford.—Proceedings of the American Academy of Arts and Sciences, vol. v., 1863.

See also Monthly Notices, vols. xxii., xxiii.

SAVARY.

"On the Orbit of & Ursæ Majoris."—See Connoissance des Tems, 1822 and 1830.

SCHIAPARELLI.

"Measures of Double Stars."—Ast. Nachr., vol. lxxxix., p. 317. "Orbit of γ Cor. Anst.,"—vol. lxxxvii.

SCHJELLERUP (Dr.)

"Einfacher Beweis des A. N., No. 1227 angeführten geometrischen Satzes zur Berechnung von Doppelstern-Bahnen."—Ast. Nachr., vol. lv., p. 230.

"On some New Double Stars."—Ast. Nachr., vol. lxxii., p. 331.

SCHLUTER.

"Measures of Double Stars with the Königsberg Heliometer."—Ast. Beobachtungen, edited by Busch. 1838.

SCHMIDT (J. F. J.)

"On the Colour of Arcturus."—Ast. Nachr., vol. xlii., p. 226.

"Measures of Double Stars."—Ast. Nachr., vol. lxv., p. 104.

SCHUBERT.

"On the Companion of Sirius."—Astronomical Fournal, vol. i.; see also Gould's Astronomical Journal, 16.

SCHULTZ.

"On H. VIII. 20. Measures of 104 Stars."—Ast. Nachr., vol. lxxx.

SCHUR (W.)

"Orbit of Σ. 3062."—Ast. Nachr., vol. lxix., p. 49. "Orbit of 70 Ophiuchi,"—vol. lxxi., p. 1; also vol. lxxiii., p. 301.

SCHWAUS.

"On 61 Cygni."—Ast. Nachr., vol. xvi.

SECCHI (A.)

The following papers are in the Astronomische Nach-richten:—

- "On some Double Stars, Colours," etc.,—vol. xli., p. 109.
- "Measures of Binaries," etc.,—vol. xli., p. 238.
- "On the Companion of Antares,"—vol. xli., p. 238.
- "Measures of Σ.'s Double Stars,"—vol. xliii., pp. 139, 141; vol. xlv., p. 251.
 - "On & Cygni,"—vol. lxvi., p. 62.

"Measures of Double Stars,"—vol. lxviii., p. 87; also vol. lxiv., p. 84.

"Descrizione del Nuovo Osservatorio del Collegio Romano, D.C.D.G." Roma, 1856.

"Catalogo di 1321 stelle Doppie." 1860.

SEELIGER (H.)

"Zur Theorie des Doppelsternbewegungen."—Leipsig, 1872. Inaugural Dissertation. He gives historical sketch and new formulæ for computing an orbit.

SIRIUS.

Papers in the Astronomische Nachrichten, vols. lxi. to lxxx.:—vols. lxii., lxiii., lxiv., lxvi., lxvii., lxxi, lxxii., lxxiv., lxxvii., lxxvii., lxxxii., lxxix.; by Auwers, Bruhns, Dunér, Engelmann, Eastman, Foerster, Gylden, Hall, Newcomb, Pechüle, Tempel, Tietjen, Vogel, Goldschmidt. See also vols. lxxxiv., lxxxviii., xc.

In the *Monthly Noticee*, see vols. xviii., xx., xxii., xxiii., xxiv., xxv., xxvi., xxvii., xxviii., xxix.

SMYTH (Admiral).

- "A Cycle of Celestial Objects," etc. 2 vols. London, 1844.
 - "Sidereal Chromatics." 1864.
 - "Speculum Hartwellianum." 1860.
- "Observations of v Virginis," etc.—Mem. R. A. S., vol. xvi., p. 19.

SOUTH (Sir James).

"Observations on the best mode of Examining the Double or Compound Stars; together with a Catalogue of those whose Places have been identified."—Mem. R. A. S., vol. i., p. 109.

"Measures of 458 Double and Triple Stars," etc., Also, "Re-examination of 36 Double and Triple Stars," etc., 1823, 1824, 1825.—Phil. Trans. 1826, pt. i. See also Phil. Trans. 1824, pt. iii.—Edinburgh Journal of Science, vols. vii., viii.

STEINHEIL.

"On the Separation of bright Double Stars."—Ast. Nachr., vol. xiv., p. 205.

STRUVE (F. W.)

The following paper is in the Memoirs of the Royal Astronomical Society:—

"A Comparison of Observations made on Double Stars," vol. ii., p. 443.

The following papers are in the Astronomische Nachrichten:—

Papers on his Review of the Heavens, New Double Stars, etc.,—vol. iv., pp. 50, 62, 65, 474.

- "On y Virginis,"—vol. xii., p. 271.
- "Double Star Measures at Dorpat,"—vol. xiii., p. 249.
- "On 40 Eridani,"—vol. xiv., p. 315.
- "On the Parallax of a Lyræ,"—vol. xvii., p. 177.
- "On 70 Ophiuchi,"—vol. xix., p. 203.
- "Rapport fait à la classe physico-mathématique, sur un nouvel ouvrage rélatif aux étoiles doubles et multiples,"—vol. xxii., p. 49.
- "An Account of the Instruments at Pulkowa,"—vol. xviii., p. 33.
- "Description de l'observatoire Astronomique Central de Poulkova." Par F. G. W. Struve, St. Petersbourg, 1845.
- "Catalogus 795 stellarum duplicium." 1822:—" Ueber die Doppelsterne nach einer mit dem grossen Refractor von Fraunhofer," etc. 1832:—" Memoire sur let étoiles doubles." 1832:—" Ueber doppelsterne." 1837:—
 "Catalogus novus stellarum duplicium," etc. 1827:—
 "Stellarum fixarum positiones mediæ." 1852:—
 "Mensuræ micrometricæ." 1837:—" Additamentum in mensuras," etc. 1840:—Report on Double Stars (Edinburgh Journal of Science, vol. ix.) 1828:—" Stellar Astronomy."

"Catalogue de 514 étoiles doubles et multiples." St. Petersbourg, 1843.

"On Waldbeck's Computation of the Angle and Distance of γ Virginis in 1720."—See Brewster's Edinburgh Journal, vol. i.

STRUVE (O.)

"Catalogue de 256 étoiles doubles principles," etc. St. . Petersbourg, 1843.

"Catalogue revu et corrigé," etc.—See the Recueil de Mémoires des Astronomes de l'Observatoire central de Russie, vol. i. St. Petersbourg, 1853.

"Mém. Acad." St. Petersbourg, vii., 1853.

"Mém. de Poulk," i., 1853.

The following papers are in the Bulletin de l'Aladémie Impériale des Sciences de St. Petersbourg:—

"Bullet. Scient. Acad., St. Petersbourg,—x., 1842; xiii., 1855; xvii., 1859.

"On the Companion of Procyon,"-tome xxii., 1876.

"On the Orbit of 42 Comæ Ber.,"—tome xxi., 1875, and tome x., 1866.

"On **\(\Sigma\)**. 2120,"—tome xxi., 1876.

"On \(\Sigma\). 634,"—tome xix.

"Observation du Procyon, comme étoile double,"—tome xviii.

"Results of some Supplementary Observations made on Artificial Double Stars,"—tome xii., and tome iv., 1866.

"On the Companion of Sirius,"—tome x., also vii.

"Observations of some Double Stars recently discovered,"—tome i.

"Nouvelle détermination de la parallaxe des étoiles a Lyræ et 61 Cygni."—*Mémoires de l'Académie*, vii. série, tome i. St. Petersbourg, 1859.

On the Orbit of Σ . 1728 and Σ . 2120.—Bulletin de l'Académie de St. Petersbourg, tome xxi.

"On ζ Cancri, ξ Ursæ, γ Virg., η Cor. Bor., ω Leonis, and Σ . 2173."—Ast. Nachr., vol. xviii., p. 43.

"Notice sur une révision de l'hemisphère céleste boréal," etc.—Ast. Nachr., vol. xix., p. 283.

On New Double Stars.—Monthly Notices, vol. xx. On Sirius,—vols. xxiii., xxvi.

"Observations de Poulkova,"-vol. ix., 1878.

TEMPEL (W.)

"On the Companion of Sirius."—Ast. Nachr., vol. lxii., p. 119.

"On the Stars in the Trapezium of Orion."—Ast. Nachr., vol. lxxx.

THIELE (Th. N.)

"On the Orbit of & Libræ."—Ast. Nachr., vol. 1., p. 353.

"On the Orbit of Castor."—Ast. Nachr., vol. lii., p. 39. TISSERAND.

"On 70 Ophiuchi."—Comptes Rendus, vol. lxxxii.; and Acad. of Sciences of Toulouse, 1876.

VILLARCEAU.

"Elements of & Herculis."—Ast. Nachr., vol. xxvi, p. 305.

"On η Cor. Bor."—Ast. Nachr., vol. xxxvii., p. 57.

Méthode pour Calculer les orbites relatives des étoiles doubles."—Conn. des Temps, 1852 and 1877.

See also Comptes Rendus: vols. *xviii., xxxvi., on η Cor. Bor.; vols. xxviii., xxxviii, on ζ Hercules; vol. xxix., formulæ for the case of an orbit whose plane coincides with the line of sight; vol. xxxiv., method of computing an orbit in general terms, and on the effect of the velocity of light on the form of the orbit of a double star.

WALDO (L.)

Double Star Measures made at Harvard Observatory in 1876.—Ast. Nachr., vol. xcii.

WICHMANN (Dr.)

"On the Königsberg Heliometer Observations."—Ast. Nachr., vol. xliii., p. 17.

"On the Influence of Temperature on the Observations," p. 20; also on other cognate matters. Comparison between the Oxford and Königsberg heliometers.

See also Engansungs-Heft zu den Ast. Nachr. Altona, 1849.

WILSON (J. M.)

On Castor, & Ursæ, & Cancri.—Monthly Notices, xxxii. On Castor, & Ursæ, & Cancri, μ_2 Boötis,—vol. xxxiii.

On ϵ Lyræ and Sirius,—vol. xxxiv.; On 61 Cygni and η Cor. Bor.,—vol. xxxv.

WILSON (J. M.) AND SEABROKE.

Catalogue of Micrometrical Measurements of Double Stars, made at the Temple Observatory.—Mem. R. A. S., vol. xlii., p. 61.

Second Catalogue of Measures.—Mem. R. A. S., vol. xliii. WINNECKE (A.)

"The Orbit of ζ Cancri and η Cor. Bor."—Ast. Nachr., vol. xli., pp. 102, 107.

"Measures of Double Stars."—Ast. Nachr., vol. lxxiii., p. 145.

WROTTESLEY (Lord).

"A Catalogue of the Positions and Distances of 398, Double Stars."—Mem. R. A. S., vol. xxix., p. 85.

LIST B.

PAPERS ON THE MICROMETER.

AIRY.

"On a New Construction of the Divided Eye-glass Double-Image Micrometer. By G. B. Airy, Esq., Astronomer Royal."—Monthly Notices of R. A. S., vol. vi., p. 229; also vol. x., p. 160. Mem. R. A. S., vol. xv.,

p. 199. Cambridge Trans., vol. iii.; and "Account of Northumberland Equatorial," p. 34.

ARAGO.

"Popular Astronomy," vol. i., p. 382.

Auzout.

Phil. Trans., No. 21. 1666. He used two silk threads, one fixed and the other moveable by means of a fine screw. BABBAGE.

"On a new Zenith Micrometer. By Chas. Babbage, Esq., F.R.S., etc."—Mem. R. A. S., vol. ii., p. 101. 1825. BARLOW (P.)

"On the Principle of Construction and general Application of the Negative Achromatic Lens to Telescopes and Eyepieces of every description."—Phil. Trans. 1834, pt. i.

BIDDER.

"On a new Form of Position Micrometer. By G. P. Bidder, Esq., Q.C."—Monthly Notices of R. A. S., vol. xxxiv., p. 394.

BOGUSLAWSKI.

"On the Use of a New Micrometer," etc.—Monthly Notices of R.A.S., vol. vi., p. 219. A single web is placed in the focus of the object-glass as a diameter across the field of view. It is so arranged that it can be turned round the centre in every direction, and make with the declination circle any given angle. It was specially designed for the "observations of Mars and neighbouring stars for the purpose of determining his parallax." Also Mem. R.A.S., vol. xv., p. 193.

Boscovich.

"Of a new Micrometer and Megameter. By the Abbé Boscovich, etc." 1777.—Phil. Trans., vol. lxvii.

BRADLEY.

"Directions for using the common Micrometer."—Phil. Trans., vol. lxii. 1772.

BREWSTER (Sir David).

. "Treatise on New Instruments." 1813.

Brünnow (Dr. F.)

"Spherical Astronomy." A valuable chapter on the Heliometer and Micrometer. London, 1865.

CASELLA.

"On a Micrometric Diaphragm." By L. P. Casella.— Monthly Notices of R. A. S., vol. xxi., p. 178.

CAVALLO (Mr. T.), F.R.S.

"Description of a simple Micrometer for Measuring Small Angles with the Telescope."—Phil. Trans., vol. lxxxi. 1791. This was a thin and narrow slip of mother-of-pearl finely divided, and placed in the focus of the telescope.

CHAUVENET.

"A Manual of Spherical and Practical Astronomy," etc. By Prof. Chauvenet. Trübner and Co.: 1868. A chapter on the Micrometer.

CLARK.

"Mr. Alvan Clark's New Micrometer for Measuring Large Distances."—Monthly Notices of R. A. S., vol. xix., p. 324. 1859.

CLAUSEN (Th.)

"Beschreibung eines neuen Micrometer."—Ast. Nachr., vol. xviii., p. 96.

DAWES (Rev. W. R.)

"On an Improvement in Mr. Dollond's Micrometer."— Monthly Notices of R. A. S., vol. ii., p. 180.

"New Arrangement of two Solar Prisms for use with the Micrometer."—Monthly Notices of R.A.S., vol. xxv., p. 218.

Valuable hints and information may be obtained from the following papers by this eminent observer:—

Mem. R. A. S., vol. viii., p. 62; vol. xix., p. 191; vol. xxxv. Also Monthly Notices, vol. xviii., p. 58.

DEMBOWSKI.

"D etermination de la valeur en arc des Revolutions du Micromètre."—Ast. Nachr., vol. lxxxi, p. 247.

DOBERCK.

"On Amici's Double-Image Micrometer and Graham's Square-Bar Micrometer."—Ast. Nachr., vol. cxii.

Examination of the Merz Micrometer.—Ast. Nachr., vol. cxii.

DOLLOND (John).

Contrivance for Measuring Small Angles.—Phil. Trans., vol. x., pp. 364, 462; also vol. x., p. 409.

"Account of a Micrometer made of Rock Crystal." By G. Dollond, F.R.S.—Phil. Trans., 1821, pt. i.

"An Account of a Concave Achromatic Glass Lens, as adapted to the wired Micrometer when applied to a Telescope, which has the power of increasing the magnifying power of the Telescope without increasing the diameter of the Micrometer Wires." By George Dollond, F.R.S., etc.—Phil. Trans., 1834, pt. i.

ENCYCLOPÆDIA BRITANNICA.

Article "Micrometer,"—vol. xiv., p. 742.

EPPS.

"Formulæ for reducing Micrometric Observations."— Monthly Notices of R. A. S., vol. iii., p. 198.

FRAUNHOFER.

"Mikrometer, über eine neue Art."—Ast. Nachr., vol. ii., p. 51; vol. ii., p. 361.

GASCOIGNE.

"On Mr. Gascoigne's Micrometer. By Mr. Richard Townley." 1667.—Phil. Trans., vol. ii., p. 161.

"Description of Mr. Gascoigne's Micrometer. By Mr. Hook." 1667.—Phil. Trans., vol. ii., p. 195.

"An Account of Mr. Gascoigne's Micrometer by Bevis."
—Phil. Trans., vol. x., p. 369.

See also Costard's History of Astronomy, and Baily's Account of the Rev. John Flamsteed. 1835.

HALLEY (Dr.)

"On Cassini's Micrometer."—Phil. Trans., No. 363. HERSCHEL (Sir William).

"Description of a Micrometer for taking the Angle of Position. By Mr. Wm. Herschel, of Bath." 1781. Phil. Trans., vol. lxxi. 1781.

"Description of a Lamp Micrometer, and the Method of using it. By Mr. Wm. Herschel, F.R.S." 1782.—

Phil. Trans., vol. 1xxii.

"A Description of the Dark and Lucid Disc and Periphery Micrometers. By Wm. Herschel, Esq., F.R.S." 1782.—Phil. Trans., vol. lxxiii.

"On Fixing Spider Lines." Capt. John Herschel.— Monthly Notices, vol. xxxiv., p. 396.

HIRE (De la).

"On Huyghens's Micrometer."—Royal Academy of Sciences, 1717.

HOOKE.

See Sprat's "History of the Royal Society," Hooke's "Micrographia," and Hooke's "Posthumous Works."

HUSSEY.

"Description of a Lamp Micrometer."—Ast. Nachr., vol. x., p. 385.

HUYGHENS.

See his Systema Saturnium, published in 1659. By placing a strip of metal at the focus of the telescope, and making its breadth equal to that of the object observed, the apparent diameter could be deduced.

KAISER (Dr. F.)

"On Airy's Micrometer."—Ast. Nachr., vol. xlv., p. 209.

"Erste Onderzoekingen med den Micrometer van Airy."—Ast. Nachr., vol. xlviii., p. 109.

"Measures of Double Stars with Airy's Double-Image Micrometer and the Parallel-Wire Micrometer."

"Annalen der Sternwarte in Leiden." Dritterband, Haag, 1872.

See also *Monthly Notices of R. A. S.*, vol. xxvi., p. 305, and vol. xxvii., p. 11; *Ast. Nachr.*, vol. xlv., p. 209; vol. xviii., p. 1; and vol. lx.

KLINKERFUES.

"Mikrometer von Repsold, für den Göttinger Meridian Kreis ueber dasselbe von Klinkerfues."—Ast. Nachr., vol. xlii., p. 107, and vol. lx.

LAMP (Dr.)

On Bessel's Formula for the Correction of Micrometer Screws.—Ast. Nachr., vol. lxxxviii.

MALVASIA (Marquis).

See his "Ephemerides," published at Bologna in 1662. This micrometer was a network of fine silver wires, forming small squares in the focus of the telescope.

See Mém. Acad. des Sciences, 1717.

MASKELYNE.

"Description of a Method of Measuring Differences of R.A. and Dec., with Dollond's Micrometer; with other New Applications of the same. By the Rev. N. Maskelyne, B.D., F.R.S." 1771.—Phil. Trans., vol. lxi.

"Of a New Instrument for Measuring Small Angles, called the Prismatic Micrometer. By the Rev. Nevil Maşkelyne, D.D., F.R.S., etc." 1777.—Phil. Trans., vol. lxvii.

MÖSTA.

"Mikrometer, Untersuchungen über periodische Ungleichheiten derselben, von Mösta."—Ast. Nachr., vol. lix., p. 257.

PAPE.

"Untersuchung der Microscop Mikrometer des Altoner Meridiankreises, von Dr. C. F. Pape." 1859.—Ast. Nachr., vol. l., p. 337.

PEARSON (Rev. W., LL.D., F.R.S., etc.)

"An Introduction to Practical Astronomy," etc., 2 vols. London, 1829. In this work will be found "An Historical Account of the different Methods of Measuring small

Celestial Arcs," and also full descriptions of reticles, parallel wire, angular, circular, and double-image Micrometers, etc., etc.*

Pogson.

"On the Ocular Crystal Micrometer."—Brit. Assoc. Report, 1858.

Porro.

"Nuovo micrometro per mezzo di linee luminose ad uso dell' astronomia." J. Parro.—Ast. Nachr., vol. xlviii., p. 65. 1858.

POWELL (Rev. B.)

"On a New Double-Image Micrometer."—Monthly Notices of R. A. S., vol. vii., p. 24.

RAMSDEN.

"The Description of Two New Micrometers. By Mr. Ramsden, Optician." 1779.—Phil. Trans., vol. lxix.

REES'S CYCLOPÆDIA.

Dr. Smith on Micrometers.

RESLHUBER.

"Mikrometer mit Lichtpunkten im Refractor zu Kremsmünster, über dasselbe von Reslhuber." 1858.— Ast. Nachr., vol. xlviii., p. 149.

ROGERS.

"Modification of the Micrometer Head, devised by Mr. Joseph A. Rogers, Aid U. S. Naval Observatory."—Ast. Nachr., vol. lxiii., p. 78. 1864.

SAVERY.

"On a Double-Image Micrometer."—Phil. Trans., vol. xlviii. 1783.

SECCHI.

"Doppel-bild Mikrometer, über dasselbe von Secchi."

—Ast. Nachr., vol. xlviii., p. 309. 1858.

SEELIGER (H.)

Theory of the Heliometer. Leipsig, 1877.

* See also Mem. R. A. S., vol. i.

SIMMS.

"Notice of an Improvement in the Double-Image Position Micrometer. By William Simms, Jun., Esq."—Monthly Notices of R.A.S., vol. xviii., p. 64; also vol. xxvii., p. 11.

SMEATON.

"An Equatorial Micrometer," invented by Mr. John Smeaton, F.R.S., with Observations. 1786.—Phil. Trans., vol. lxxvii.

STEINHEIL.

"Mikrometer-Ocular mit leuchtenden Faden." Remarks on, by Steinheil. 1859.—Ast. Nachr., vol. li., p. 353.

VALZ.

"On the Divided Eyepiece Micrometer."— See Monthly Notices of R. A. S., vol. x., p. 160; also Zach's Correspondance Astronomique, tome i., p. 353.

WILSON (Dr.)

"An Improvement proposed in the Cross Wires of Telescopes."—Phil. Trans., vol. lxiv. 1774.

WINNECKE (A.)

Ueber ein neues Hülfsmittel, die periodischen Fehler von Mikrometer-Schrauben zu bestimmen.—Ast. Nachr., vol. cxi. (See The Observatory, No. 12.)

WOLLASTON.

"Of a Single-lens Micrometer," by Dr. Wollaston.— Phil. Trans., vol. ciii.

"On a Method of Cutting Rock Crystals for Micrometers," by Dr. Wollaston.—Phil. Trans., vol. cx.

"A Description of a New System of Wires in the Focus of a Telescope," etc.—Phil. Trans., vol. lxxv. 1785.

WREN (Sir Christopher).

See Sprat's "History of the Royal Society."

ZENGER.

"The Stereo-Micrometer. By Professor Chas. V.

Zenger."—Monthly Notices of R. A. S., vol. xxxvi., p. 252.

See also Σ 's Mensuræ Micrometricæ, O. Σ 's last vol. of the Poulkova Observations (vol. ix.); Σ 's Description de l'Observatoire Astronomique Central de Poulkova. 1845.

LIST C.

SOME PAPERS ON THE COLOURS OF STARS.

André and Borrosch.

Ueber das farbige Licht der Doppelsterne. Prag., 1842.

ARAGO.

See his Astronomie Populaire.

BALLOT (Dr.)

Papers in Poggendorff's Annalen 1845, and vol. lxviii.

BOLZANO (Dr.)

See Pogg. Annalen 1843.

DOPPLER (Dr.)

His papers are to be found as follows:—In vol. viii. of Sitzungsberichte der Mathematisch-Naturwissenschaftichen Classe der Kaiserlichen Akademie der Wissenschaften. Wien, 1852. Weitere Mittheilungen meine Theorie des farbigen Lichtes der Doppelsterne betreffend, in Pogg. Annalen 1850 and 1851. Ueber das farbige Licht der Doppelsterne und einiger auderer Gestirne des Himmels, in Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften. Prag., 1843.

KLEIN.

"On the Changes of Colour of the Fixed Stars."—Ast. Nachr., vol. lxx.

KREIL.

"On Doppler's Theory," in Ein Astronomisch-Meteorologischen Jahrbuche für Prag. 1844.

NIESTEN.

"On the Colours of Double Stars."—Bulletin de l'Académie royale de Belgique. 1879.

SCHMIDL (Dr.)

In den österreichischen Blättern für Literatur und Kunst.

SCHMIDT (Dr.)

"On the Colours of the Stars."—Ast. Nachr., vol. lxxx.

"On the Colour of Arcturus."—Ast. Nachr., vol. xlii.

SESTINI.

Memoria sopra i colori delle stelle del Catalogo di Baily. Roma, 1845 and 1847. See Gould's Astron. Fournal, 1850. SMYTH (Admiral).

"Sidereal Chromatics." London, 1864.

SMYTH (Prof. Piazzi). See his "Teneriffe."

ZENKER (Dr.)

"On Doppler's Theory."—Ast. Nachr., vol. lxxxv.

ZOLLNER (Dr.)

Ueber Farbenbestimmung der Gestirne, vol. lxxi. See also Monthly Notices, vols. x., xi., xx., xxvi., xxvii.

ADDITIONAL NOTES.

```
PAGE
176.
       Σ. 13.
                      1020.5
                                            1879.66
                             ın.
                      155°.3
                                   0".56
177.
       0.Σ. 4.
                                              78.6
                                                       Bu.
                     273°.0
272°.3
                                   0".2
186.
       0.Σ. 515.
                                                        ,,
                                   0":28
                                                       ,,
                      314°.0
                                   o"·85
       Ο.Σ. 28.
                                              78.7
187.
      Σ. 93 (Polaris).
             "Some three years ago the discovery by M. De Böe, of Belgium, of
           two small companions about 4" distant was announced, and several observers subsequently claimed to have seen them in the described
           places. . . . I have no hesitation in saying these supposed stars do
           not exist."—(Mr. Burnham's Double Star Observations, p. 87.)
                       52° 0
193. Z. 196.
                                   2"'49 1877'7
                       82°.8
                                 115".62
199.
      o Ceti.
                                              77.8
             Mr. Burnham thus describes his new companion:
                      910.5
                                  74"'11 Mag. 13 1877'8.
201.
      Σ. 293.
                      75°.5
                                   8".30 1878.6
                                                     Bu.
      Σ. 453.
209.
             Mr. Burnham, with 6 in. and 181 in. apertures, finds no trace of
           duplicity. (1874 to 1879.)
211. Ο.Σ. 531.
                     138°.5
                                   2".60
                                           1878.6
                                                      Bu.
       Σ. 518. A B 125° 4
                                   3".66
                                              79.0
                                                       ,,
                 A D 145°.6
                                  37"·10
35"·99
                                              77.8
                                                       ,,
                                              79'0
                                                       ,,
212.
      Σ. 547.
                   Companion not seen.
                                           1865
                                                      De.
                                           1873.7
                                                      Bu.
                       93.8
                                   2"·46
                                              77'9
                                                       ,,
                       14°0
                                      .25
                                              79.0
                        7° 0
                                   0".60
213.
      Σ. 554.
                                              78°0
                                                       ,,
                     247°.4
                                   2".78
216.
      Ο.Σ. 92.
                                              78°0
                                                       ,,
                      196° 2
                                   0".45
220.
      Σ. 728.
                                              78°0
221.
      Σ. 748.
                                   4"'02
       AE (5th star) 354° 3
                                              77.9
                                                       ..
                                   3".74
       C F (6th star) 1190.8
                                              77.9
             Bu. has never suspected the existence of any other star either within
           the trapezium or near the principal stars. Nor does he think the 5th
           and 6th stars variable.
224.
             Bu. has discovered a faint star nearer than C.
```

28" '09 Mag. 13. 1878.

1878.2

78°1

23".64 Mag. 12-13. 1878.1.

19".65

0".48

157°.3

147°'4

361° 0

Bu,'s third star C is thus given: 31°.4 23".64 Ma

227.

Σ. 943.

233. Ο.Σ. 159.

```
PAGE
                        78° · I
                                      2".45
235.
      0.2. 165.
                                              1878.1
                                                         Bu.
                       1400.0
                                      0".71
236. Σ. 1074.
                                                 78°0
                                                          ,,
                                      1":36
237. Σ. 1081.
                       226° · I
                                                 78·1
                                                          .,
      Procyon and D.
243.
                       262° · 2
                                     56".59
                                                 36.7 *
                                    44"·59
·62
                       311°.8
                                                         Newcomb.
                                                 74
                       317°.3
                                                          Bu.
                                                 77
                                     22" 84
245. Z. 1142,
                       254°.5
                                                 78.3
                                                          Bu.
                       222°.5
246. Z. 1175.
                                      1".81
                                                 78'I
                       158°.8
252. Z. 1216.
                                      0".61
                                                 78.3
                                                          ,,
                       248° 4
                                     22".84
256. E. 1329.
                                                 78·I
                                                          .,
256. Z. 3121.
              Dr. Doberck's provisional elements are:
                    2 16° 0', λ 149° 30', γ 74° 15', ε0 2600, P 37 03 yrs.,
Τ 1842 78, a [D"71].
260. Σ. 1356.
              Dr. Doberck's latest elements are:
                    & 149° 15', \(\lambda\) 122° 19', \(\gamma\) 64° 5', \(\epsilon\) 0'5510, \(P\) 114'55 yts.,
                    T 1841.57, a 0".85.
                       117°.4
161°.0
                                      0":2 土
                                                 78.2
262. 8 Sextantis.
                                                          Stone.
                                      0":2士
                                                 78.2
                                                          Bu.
        0.Σ. 523.
                       298° .7
                                      6".67
                                                 78·1
                                                           ,,
                        69° 7
                                      1"'28
        Σ. 1423.
                                                 782
                                                           ,,
                        130.4
                                      8":36
267. Ο.Σ. 230.
                                                 78.3
                                                           ,,
                       282°
                                                          0.2.
277. Ο.Σ. 234.
                                      obl.
                                                  70.2
                       187°·1
                                                  78.2
                                      0":35 +
                                                          Bu.
                       151°.7
                                      0":27
                                                 78.3
                                                          ,,
        0.Σ. 235.
              Dr. Doberck's elements are:
                    \Omega 96° 17', \lambda 129° 55', \gamma 60° 13', \epsilon 0'5870, P 94'406 yrs., T 1839'10, \alpha 1"'066.
        0.Σ. 243.
                         14°.5
278.
                                      0".94
                                                 78.3
        E. 1607 - H, 202 - H, 516.
279.
                  A B 358° · 1
                                     30".85 Mag. 7.8, 8.3
                                                                    1878.2 Bu.
                  B C 309°.8
                                     21"'04
                                                                      78.2
        0.Σ. 249.
                  A B 307°1
A C 148°3
                                      0".46
                                              1878:3
                                                          Bu.
                                     12".68
                                                  78.3
                         39° .2
                                      8".96
        Σ. 1641.
                                                  78.3
                                                           ,,
                         46° ·6
280.
        Σ. 1643.
                                       1".76
                                                  78.3
                                                           ,,
 287.
                        281°.5
                                     18".79
        Σ. 1703.
                                                  78.3
                                                           ,,
                         35°.5
        Σ. 1707.
                                      9".84
                                                  78.3
                                                           ,,
                   Doberck's formulæ are:
 290.
       Σ. 1757.
                    P = 46^{\circ} \cdot 61 + 1^{\circ} \cdot 094 (t - 1850) - 0^{\circ} \cdot 0153 (t - 1850)^{\circ}
                    \Delta = 1'' \cdot 83 + 0'' \cdot 016 (t - 1850).
                                       8".71 1878.3
        0.Σ. 270.
                        351°.9
 293.
                                                          Bu.
                         67°.4
 295.
        Σ. 1820.
                                       2":32
                                                  78.3
                                                           ,,
        Σ. 1819. Doberck finds:
                    P = 51^{\circ}.16 - 1^{\circ}.491(t - 1850) + 0^{\circ}.0138(t - 1850)^{2}
                    \Delta = 1'' \cdot 00 + 0'' \cdot 010 (t - 1850).
```

^{*} Annalen König. Stern. München., xvii.
† "Too large."

```
PAGE
                     1410.3
       O.Z. 281.
                                   5":27
                                          1875.5
                                                     Ο.Σ.
297.
                     1310.1
                                   5":00
                                             78.3
                                                    Bu.
                                  o"·37
                      39°'I
       Z. 1879.
                                                     Schi.
                                             77'4
303.
                      42°.0
                                                    De.
                                     `34
`42
                     2i7°.1
                                             78.4
                                                    Bu.
                                   4".22
                     279°'4
       Σ. 1888.
305.
                                             79.40
                                                    Dob.
                     225° 0
                                  o":25 🛨
                                                     Bu.
307.
       Σ. 3091.
                                             78.4
                     248°.7
                                  2<sup>w</sup>·75
0"·75
       0.Σ. 294.
                                             78.3
                                                     ,,
                     128°.7
       0.Σ. 295.
                                             78.4
                     241°4
                                  4"'93
                                                    Dob.
       Σ. 1909.
                                             79'34
                     139°.9
                                 30".79
308.
      Σ. 3093.
                                                     Bu.
                                             78.3
313.
      Doberck's second elements were obtained from equations of condition.
                      44°.6
                                 22".45 1878.3
       Σ. 1961.
                                                    Bu.
317.
                     295°.2
                                  o"·3
       O. Z. 298.
                                                    De.
                                             77'4
                                  0":27
                     310°7
                                             78.3
                                                    Bu.
       O. Z. 298.
             Dr. Doberck gives the following:
                  Ω 14° 38', λ 342° 31', γ 56° 10', ε0'4872, P 68'802 yrs. Τ 1812'96, α 0"'886.
322. Scorpii, Bu. 120.
                     360°.6
                                  0".79
                                                    De.
                     363° .7
                                  1"'04
                                                    Bu.
                                             78.3
                     323".7
333. Z. 2106.
                                   0".64
                                             78.4
                                                      ••
                     234° 9
                                   1"'05
346. A. C. 7.
                                             78.5
                                                     ,,
                                  0″:31
                     251°.7
      Σ. 2315.
355.
                                             78.4
357. a Lyræ. A B 154° 9
                                 48" 01
                                             78.4
                                                      ,,
                          .0
                                     ·11
                                             78.2
             A faint companion of the 12-13 mag. was discovered by Winnecke
          in 1864.
                A C 298°.8
                                 46".87
                                                    Wi.
                                          1864.8
                     289° ·9
                                 51".66
                                            78.3
                                                    Bu.
                     292°.9
                                             78.4
                                     .97
                                                      ,,
                     293° · Í
                                     93
                                            78.4
             Mr. Burnham has never seen the slightest trace of the faint stars
          supposed to have been seen by Mr. Buckingham and others.
363. O.Σ. 364.
             Mr. Burnham has hitherto failed to see the companion.
                      64° · I
                                  1".53 1878.6
365.
      Σ. 2434.
367. O.Σ. 368.
             Bu. gives the following measure of a new small star:
                                 17":37 1878:6
1":03 78:7
                A C 98° 2
                                                    Bu.
                A B 216°.2
                     316°.3
368.
                                  8":51
                                            78.4
       Σ. 2514.
                                                     ,,
                      23°.8
                                             78·6
      Σ. 2515.
                                 12 "98
      0.Σ. 380.
370.
            Neither Burnham nor Newcomb can see the star C.
                     145°0
370.
                                  0".63 1878.5
                                                     Bu.
      Σ. 2574.
                     160.5
                                 12"'00
      0.Σ. 532.
                                             78.6
374.
                                                     ..
      \Sigma. 2607 A B = 0.\Sigma. 392.
                     317° 'O
                                  0":31
                                            78.5
                                                     ,,
      Σ. 2610.
375.
            C was first observed by Hr.
                     294° · 2
                                18"'40
                                             78.4
```

```
PAGE
376. O.Σ. 400.
           Single in 1878 (Bu.)
      Z. 2658.
                              5":21
              A B 119° .0
                                        78.6
                                               Bu.
                              40".50
              A C 212°.4
                                        78.6
                                                ,,
                              10":59
                  329°'2
                                        78.2
378. O.Σ. 533.
                                                ,,
                              25".82
     Σ. 2734.
Ο.Σ. 418.
                  191°.2
                                        78.6
381.
                                                ,,
                294°.8
                              1"'2±
                                        77.7
                                                ,,
                              0".45
383. Ο.Σ. 424.
                  327°.7
                                        78.6
                                                ••
384. Z. 2749.
           Secchi discovered C in 1856.
                  148° ·9
                               1"'13
                                        77.8
                                                ,,
                 150° 0
                               1"'06
389. τ Cygni.
                                        78.4
392. Σ. 2860.
                  255°.6
                               5".96
                                        78.2
                                                ,,
                  130°.0
                              0":32
     Σ. 2912.
                                        78.6
397.
                                                ,,
                  1550.1
     Σ. 2915.
                                        77.8
                                                .,
                  154° · 1
                              4".62
398. O.Σ. 477.
                                        78.6
                              13".77
399. Z. 2959.
                  1020.3
                                        77.8
           Mr. Burnham's new star C is thus given:
                   95° .9
                              8"'31 1877'9 Mag. 12-13.
399. O.Σ. 536.
                  Round
                                        74.8
                                 •••
                  161°.5
                              0":47
                                        77.8
                                                ,,
                  120.3
                              22".63 1879.21 Dob.
406.
     No. 804.
                  275°.8
     No. 818.
                              0″•99
                                        79.12
                                                ,,
    Σ. 1058. Mag. 8.2, 11.7.
```

282°.7 283°.0 23"·78 22"·47 32 Σ. Mä. 44 65 Companion not seen De. Bu. 74 ,, ,, 75 281°.0 ", 22"·84 ,, 79 ,, .0 '32 Is one of the components variable? (Bu.) The place for 1880 is R. A. 7h 10'3m. Dec. 9° 37'.

INDEX.

Adjustments, 15. Airy, 50, 144. Amici, 50. Apertures, 80. Auwers, 31, 40. a Centauri, 1, 417. a Herculis, 2, 143. a Lyræ, 3. Ball (Dr.), 90. Barclay, 7, 8. Bedford, 31. Berlin, 31. Bermerside, 32. Bessel, 8, 40, 56. Binary stars, 4. Bishop, 8, 45. Bond, 8, 33. Bonn, 32. Bradley, 1, 3. Brothers, 8. Bruhns (Dr.), 105. Brünnow, 8. Burnham, 8, 34, 151, 411. β Cygni, 1, 2. β Scorpii, 1, 417. Cambridge, 33. Cape of Good Hope, 33. Cassini, 1, 84. Castor, 1, 2, 3, 106. Catalogue, The, 152. Chairs, 27. Challis, 8, 33. Chicago, 34. Cincinnati, 34. Classification, 418. Clock, The, 25. Combination of observations, 144. Cooper, 8, 42. Crossley, 8, 32. Cranbrook, 35. Cuckfield, 34. Cygni, (61), 1, 135. Darby, 8. Dawes, 6, 35, 81. Dembowski (Baron), 7, 36, 59.

Distances, 70. Doberck (Dr.), 8, 43, 117, 452. Dorpat, 6, 36. Dunér, 7, 41. Dunlop, 37. Dunsink, 37. Elchies, 37. Ellery, 8. Encke, 8, 31, 91. Engelmann, 8, 40. Equatorial, 11 Errors of observation, 144. Errors, Systematic, 420. € Lyræ, 1, 2. Ferrari, 8, 46. Feuillée, 1. Field of view, 21. Flammarion, 8. Flamsteed, 3. Fletcher, 8, 47. Focal length, 20. Forms, 75. Galle, 8, 31. Gledhill, 8, 32. Grant, 37. Greenwich, 37. γ Andromedæ, 1, 2. γ Arietis, 1, 3. γ Virginis, 1, 2, 3. Hall, 8, 49. Herschel (Sir Wm.), 2, 38, 64. Herschel (Sir John), 4, 39, 64, 94. Hind, 8, 45. Holden, 8, 49. Hooke, 1, 3. Hornsby (Dr.), 85. Howe, 34. Huyghens, 1. θ Orionis, 1. Ja∞b, 6, 8, 42. Jenkins, 8.

Kaiser, 8, 40.

Kirsch, 1. Klinkerfues, 91, 120. Knott, 8. Konigsberg, 39.

Lambert, 84. Lassell, 8, 40. Leipsic, 40. Leyden, 40. Leyton, 41. Liverpool, 41. Long (Dr.), 3. Lund, 41. Luther, 40.

Maclear, 8. Mädler, 6, 37. Madras, 42. Main, 7, 44. Markree, 42. Maskelyne, 2 Maupertuis, 84. Mayer, 2, 4, 85. Means, 144, 422. Measures, The, 175. Messier, 1. Methods of observing, 64. Michell, 84. Micrometer, 50. Milan, 43. Miller, 8, 49. Mitchell, 8, 34. Molineux, 3. Morton, 8, 49.

Nantucket, 43. Naples, 43. Newcomb, (Prof.), 8, 49. Niesten, 458. Nobile, 8, 43. Number of measures, 72.

ξ Ursæ, 1.

Observers, 174. Observatory, The, 29. Ophiuchi, (70), 1. Otto Struve, 6, 37, 45. Oxford, 44.

Parallax, 3, 139. Paris, 44. Peters, 40. Pigott, 1. Pleiades, 56. Plummer, 44. Position angles, 7.
Poulkova, 45.
Powell, 6, 42.
Power-gauge, 22.
Precautions, 83.
Prism, 69.
Pritchard (Rev. C.), 8.
Probable error, 145.
Proper motion, 139.

Quaternary systems, 419.

Regent's Park Observatory, 45. Riccioli, I. Romberg, 46. Rome, 46. Rugby, 46.

Savary, 91.
Schiaparelli, 8, 43.
Schlüter, 40.
Seabroke, 8.
Secchi, 7, 46.
Smyth (Admiral), 6, 31.
Smyth (Prof. P.), 459.
South (Sir James), 5, 46.
Spörer, 8.
Stone (O.), 7.
Struve (W.), 5.
Systematic errors, 420.

G Cor. Bor., 118.

Talmage, 41.
Tarn Bank, 47.
Ternary systems, 419.
Tests, 11.
Thiele, 101, 422.

Upton, 34.

Villarceau, 91.

Waldo, 8.
Washington, 48.
Webb (Rev. T. W.), 8.
Weights, 78, 147.
Whitehaven, 49.
Wilson (J. M.), 8.
Winnecke, 31.
Wrottesley (Lord), 6, 49.

Cancri, 1, 2, 101. Ursæ Majoris, 1.

	•	
		1
	•	ı
		i i
		i
		:
		!
		!
		i
		i I
		į

.

Return to desk from which borrowed.

This book is DUE on the last date stamped below.

21-95m-11,'50(2877s16)476

iħ

LIVIT NEWSFELLEN

