EE 315

Problem Set 7

- 1. An NMOS transistor is characterized as follows: V_{DS} =0.1V, V_t =1.5V, k'_n = 25 μ A/V², and W/L = 10. Find the drain current for V_{GS} =0V, 1V, 2V, and 3V.
- 2. An NMOS transistor is characterized as follows: V_{DS} =3.3V, V_t =1.V, k'_n = 37.5 μ A/V², and W/L = 10. Find the drain current for V_{GS} =0V, 1V, 2V, and 3V.
- 3. Identify the region of operation and the drain current for an NMOS transistor where the $k'_n = 25 \mu A/V^2$, $V_t = 1 \text{V}$ and W/L = 10.
- a. $V_{GS}=5V$ and $V_{DS}=6V$
- b. $V_{GS}=0V$ and $V_{DS}=6V$
- c. $V_{GS}=2V$ and $V_{DS}=2V$
- d. $V_{GS}=2V$ and $V_{DS}=-0.5V$
- 4. An NMOS transistor has V_t =0.8V, k'_n = 0.05 mA/ V^2 , and W/L = 2. The device is biased at V_{GS} =2.5 V. Calculate the drain current and the resistance r_0 for V_{DS} =2V and 10V for
- a. $\lambda = 0$
- b. $\lambda = 0.02$
- c. $V_A=35V$
- 5. An NMOS transistor has V_t =0.8V, k'_n = 0.05 mA/ V^2 , and W/L = 2. The device is biased at V_{GS} =2.5 V. If V_{DS} =4V and V_A =40V,
- a. Find λ .
- b. Find the drain current for no channel length modulation.
- c. Find the drain current assuming channel length modulation.
- d. If the drain source voltage changes by 2V, what is the corresponding change in the drain current.
- 6. A PMOS transistor has $k'_p = 0.1 \text{ mA/V}^2$, W/L = 2, $V_t = -2V$ and $V_{SG} = 3V$. Find the region of operation and the drain current for:
- a. $V_{SD}=0.5V$
- b. $V_{SD}=2V$
- c. $V_{SD}=5V$
- 7. Consider the following NMOS circuit where V_t =0.5V, k'_n = 0.4 mA/ V^2 , and W/L = 5. If the circuit operates at the edge of saturation with a drain current of 1mA, find the resistor, R_D .

8. Consider the following PMOS circuit where V_t =-0.6V, k'_p = 250 μ A/V², and L = 0.25 μ m. find the values required for W and R such that the drain current is 0.8mA and the drain voltage is 1.5V

9. Consider the following circuit which contains three transistors that are matched with V_t =1V, k'_n= 120 μ A/V², and L= 1 μ m. Find the gate width for each transistor for the given drain current and voltages.

10. Find the labeled voltages on the following circuits. For all the transistors, V_t =0.8V, k' $_n$ = 0.25 mA/V², and W/L = 2.

11. Find the labeled voltages and currents in the following circuit where V_{tn} =+1V, V_{tp} = -1V, k'_{n} = 20 μ A/V², k'_{p} = 8 μ A/V²and W/L = 3 (for both n and p-type transistors).

12. For the following circuit, find V_{DS} , V_{GS} , and I_D assuming V_t =2V, k' $_n$ = 0.02 mA/V², and W/L = 5.

