1.6 Funcția de distribuție a unei variabile aleatoare

Fie (Ω, \mathcal{F}, P) un câmp de probabilitate complet aditiv.

Dacă $X:\Omega \to \mathbb{R}$ o variabilă aleatoare, atunci mulțimile de forma

$$\{X < a\} = \{\omega \in \Omega : X(\omega) < a\} \in \mathcal{F} \qquad (a \in \mathbb{R})$$

sunt măsurabile, și deci putem determina probabilitățile acestor evenimente. Avem următoarea:

Definiția 1.6.1 Dată fiind o variabilă aleatoare $X: \Omega \to \mathbb{R}$, funcția $F_X: \mathbb{R} \to [0,1]$ definită de

$$F_X(a) = P(X < a), \quad a \in \mathbb{R},$$

se numește funcția de distribuție / funcția de repartiție a variabilei aleatoare X.

Are loc următoarea propoziție de caracterizare a funcției de distribuție a unei variabile aleatoare:

Propoziția 1.6.2 Funcția de distribuție $F = F_X$ a unei variabile aleatoare X are următoarele proprietăți

- 1. $F(-\infty) = \lim_{a \to -\infty} F(a) = 0;$ $F(+\infty) = \lim_{a \to +\infty} F(a) = 1;$
- 2. F este nedescrescătoare, adică $F(a) \leq F(b)$ oricare ar fi a < b;
- 3. F este continuă la stânga, adică $\lim_{\alpha \nearrow a} F(\alpha) = F(a)$.

Reciproc, dacă o funcție $F: \mathbb{R} \to [0,1]$ verifică proprietățile 1 – 3, atunci este funcția de distribuție a unei variabile aleatoare (adică există o variabilă aleatoare X astfel incât $F = F_X$).

Demonstrație. Să presupunem că $F = F_X$ este funcția de distribuție a unei variabile aleatoare X.

Să considerăm un șir arbitrar $a_1 < a_2 < \dots$ cu $\lim_{n\to\infty} a_n = +\infty$, și să definim mulțimile

$$A_n = \{ \omega \in \Omega : X(\omega) < a_n \} \in \mathcal{F}.$$

Cum şirul $(a_n)_{n\geq 1}$ este crescător, rezultă că $(A_n)_{n\geq 1}$ formează un şir crescător de evenimente, şi din continuitatea măsurii de probabilitate obținem

$$1 = P(\Omega) = P(\bigcup_{n=1}^{\infty} A_n)$$

$$= P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$$

$$= \lim_{n \to \infty} P(X < a_n)$$

$$= \lim_{n \to \infty} F(a_n),$$

oricare ar fi şirul $(a_n)_{n\geq 1}$ cu $\lim_{n\to\infty} a_n = +\infty$, şi deci $\lim_{a\to\infty} F\left(a\right) = 1$. Similar, considerând şirul descrescător $a_1 > a_2 > \dots$ cu $\lim_{n\to\infty} a_n = -\infty$, mulțimile $A_n = \{ \omega \in \Omega : X_n < a_n \}$ formează un şir descrescător de mulțimi cu $\bigcap_{n=1}^{\infty} A_n = \emptyset$, și din continuitatea măsurii de probabilitate obținem

$$0 = P(\emptyset) = P(\bigcap_{n=1}^{\infty} A_n)$$

$$= P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$$

$$= \lim_{n \to \infty} P(X < a_n)$$

$$= \lim_{n \to \infty} F(a_n),$$

oricare ar fi șirul descrescător $(a_n)_{n>1}$ cu $\lim_{n\to\infty}a_n=-\infty$, și deci $\lim_{\alpha\to-\infty}F\left(\alpha\right)=0$ 0.

Să observăm că dacă $a, b \in \mathbb{R}$ cu a < b, atunci $\{X < a\} \subset \{X < b\}$ și deci

$$P(X < a) \le P(X < b)$$
,

sau echivalent $F(a) \leq F(b)$, adică F este o funcție nedescrescătoare.

Pentru a demonstra continuitatea la stânga a funcției F, să considerăm un punct $a \in \mathbb{R}$ arbitrar fixat și un șir crescător $(a_n)_{n>1}$ cu $\lim_{n\to\infty} a_n = a$. Atunci $A_n = \{X < a_n\}$ formează un șir crescător de multimi cu limita $\lim_{n \to \infty} A_n = \{X < a_n\}$ $\bigcup_{n=1}^{\infty} A_n = \{X < a\}$, și din continuitatea măsurii de probabilitate obținem

$$F(a) = P(X < a) = P(\bigcup_{n=1}^{\infty} A_n)$$

$$= P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$$

$$= \lim_{n \to \infty} P(X < a_n)$$

$$= \lim_{n \to \infty} F(a_n),$$

oricare ar fi șirul $(a_n)_{n\geq 1}$ cu limita a, și deci $\lim_{\alpha\nearrow a}F\left(\alpha\right)=F\left(a\right)$, oricare ar fi $a \in \mathbb{R}$, adică F este o funcție continuă la stânga pe \mathbb{R} .

Exemplul 1.6.3 Funcția de distribuție a variabilei aleatoare $X: \Omega \to \mathbb{R}$ dată $de\ X\left(\omega\right)=1\ pentru\ orice\ \omega\in\mathbb{R}\ este$

$$F\left(a\right) = P\left(X < a\right) = \left\{ \begin{array}{ll} 0, & \quad dac a \leq 1 \\ 1, & \quad dac a > 1 \end{array} \right.$$

1.6.1 Exerciții

1. Pentru variabilele aleatoare indicate, să se determine funcția de distribuție corespunzătoare și să se reprezinte grafic.

(a)
$$X = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1/4 & 1/2 & 1/8 & 1/8 \end{pmatrix}$$

(b) $Y = \begin{pmatrix} 1 & 2 & 3 \\ 1/2 & 1/3 & 1/6 \end{pmatrix}$

- 2. Se știe că articolele produse de un anumit producător sunt defecte cu probabilitate de 0.1, independent unele de altele.
 - (a) Să se determine variabila aleatoare X reprezentând numărul de piese defecte într-un lot de 4 piese produse.
 - (b) Care este probabilitatea ca cel mult două piese produse într-un lot de 4 piese să fie defecte?
- 3. Să se determine probabilitatea obținerii a n fețe stemă și a n fețe ban la aruncarea a 2n monede? (rezultatele aruncărilor se presupun independente)
- 4. Fie X variabila aleatoare ce reprezintă diferența dintre numărul de fețe stemă minus numărul de fețe ban ce se obțin la aruncarea de n ori a unui ban (aruncările se presupun independente).
 - (a) Să se determine valorile posibile ale variabilei aleatoare X
 - (b) În cazul n=3, să se determine variabila aleatoare X.
- 5. Se aruncă de două ori un zar. Să se determine (valori, probabilităţi) următoarele variabile aleatoare:
 - (a) Maximul celor două aruncări;
 - (b) Minimul celor două aruncări;
 - (c) Suma celor două aruncări;
 - (d) Valoarea primei minus celei de-a doua aruncări.