Problem Set 1

student: Bekzat Rakhimabayev

- 1. For each of the following λ -terms write down an α -equivalent term where all variable have different names:
 - a. $\lambda x.(\lambda y.x\;y)\;x
 ightarrow \lambda a.(\lambda b.\;a\;b)\;a$
 - b. $\lambda x.(\lambda x.x) \; x o \lambda a.(\lambda a.\; a) \; a$
 - c. $\lambda x.\lambda y.x\; y o \lambda a.\lambda b.\; a\; b$
 - d. $\lambda x. \ x(\lambda x. \ x) \rightarrow \lambda a. \ a(\lambda a. \ a)$
 - e. $\lambda x.(\lambda x.x) \ x \rightarrow \lambda a.(\lambda a.\ a) \ a$
 - f. $(\lambda x.\lambda y.\ y)\ z\ x o (\lambda a.\lambda b.\ b)\ c\ a$
- 2. Write down evaluation sequence for the following λ -terms:
 - a. $(\lambda x. \lambda y. x) y z$
 - i. $ightarrow (\lambda x.\ \lambda y_0.\ x)\ y\ z$
 - ii. $ightarrow ([x
 ightarrow y](\lambda y_0.\ x))\ z$
 - iii. $ightarrow \left(\lambda y_0 . \ y
 ight) z$
 - iv. ightarrow y
 - b. $(\lambda x.\ \lambda y.\ x)\ (\lambda z.\ y)\ z\ w$

i.
$$ightarrow \left(\left[x
ight.
ightarrow \left(\lambda z_0 . \ y
ight)
ight]
ight) \left(\lambda y_0 . \ x
ight) z \ w$$

ii.
$$ightarrow \left(\lambda y_0 \,\, \lambda z_0 \,.\, y
ight) z \,w$$

iii.
$$ightarrow (\lambda z_0 . \ y) \ w$$

iv.
$$ightarrow y$$

c. $(\lambda b.\lambda f.\lambda t. b t f)(\lambda f.\lambda t. t)$

i.
$$ightarrow ([b
ightarrow (\lambda f.\lambda t.\ t)])(\lambda f.\lambda t.\ b\ t\ f)$$

ii.
$$ightarrow (\lambda f.\lambda t.\,(\lambda f.\lambda t.t)\,t\;f)$$

iii.
$$ightarrow \lambda f.\lambda t.f$$

d. $(\lambda s.\lambda z. s (s z)) (\lambda b.\lambda f.\lambda t. b t f) (\lambda f.\lambda t. t)$

i.
$$\rightarrow (\lambda s.\lambda z.\ s\ (s\ z))\ (\lambda b_0.\lambda f_0.\lambda t_0.\ b_0\ t_0\ f_0)\ (\lambda f.\lambda t.\ t)$$

ii.
$$ightarrow ([s
ightarrow (\lambda b_0.\lambda f_0.\lambda t_0.\ b_0\ t_0\ f_0)])(\lambda z.\ s\ (s\ z))\ (\lambda f.\lambda t.\ t)$$

iii.
$$\rightarrow (\lambda z.~(\lambda b_0.\lambda f_0.\lambda t_0.~b_0~t_0~f_0)~((\lambda b_0.\lambda f_0.\lambda t_0.~b_0~t_0~f_0)~z))~(\lambda f.\lambda t.~t)$$

iv.
$$ightarrow \left(\lambda z. \ (\lambda b_0.\lambda f_0.\lambda t_0.\ b_0\ t_0\ f_0
ight) \ (\lambda f_0.\lambda t_0.\ z\ t_0\ f_0)
ight) \left(\lambda f.\lambda t.\ t
ight)$$

$$\begin{array}{lll} \text{v.} & \rightarrow & (\lambda z.\ (\lambda f_1.\lambda t_1.\ (\lambda f_0.\lambda t_0.\ z\ t_0\ f_0)\ t_1\ f_1))\ (\lambda f.\lambda t.\ t) \\ \text{vi.} & \rightarrow & (\lambda f_1.\lambda t_1.\ (\lambda f_0.\lambda t_0.\ (\lambda f.\lambda t.\ t)\ t_0\ f_0)\ t_1\ f_1)) \\ \text{vii.} & \rightarrow & (\lambda f_1.\lambda t_1.\ (\lambda f_0.\lambda t_0.\ f_0)\ t_1\ f_1)) \\ \text{viii.} & \rightarrow & (\lambda f_1.\lambda t_1.\ (\lambda f_0.\lambda t_0.\ f_0)\ t_1\ f_1)) \\ \text{viii.} & \rightarrow & (\lambda f_1.\lambda t_1.\ t_1)) \\ \text{e.} & (\lambda s.\lambda z.\ s\ (s\ z))\ (\lambda s.\lambda z.\ s\ (s\ z))\ (\lambda b.\lambda f.\lambda t.\ b\ t\ f)\ (\lambda f.\lambda t.\ t) \\ \text{ii.} & \rightarrow & (\lambda s_0.\lambda z_0.\ s_0\ (s_0\ z_0))\ (\lambda s.\lambda z.\ s\ (s\ z))\ (\lambda b_0.\lambda f_0.\lambda t_0.\ b_0\ t_0\ f_0)\ (\lambda f.\lambda t.\ t) \\ \text{iii.} & \rightarrow & (\lambda s.\lambda z.\ s\ (s\ z))((\lambda s.\lambda z.\ s\ (s\ z)))\ ((\lambda s.\lambda z.\ s(sz))(\lambda b_0.\lambda f_0.\lambda t_0.\ b_0\ t_0\ f_0)))\ (\lambda f.\lambda t.\ t) \\ \text{iii.} & \rightarrow & ((\lambda s.\lambda z.\ s\ (s\ z))((\lambda z.(\lambda b_0.\lambda f_0.\lambda t_0.b_0\ t_0\ f_0))\ ((\lambda b_0.\lambda f_0.\lambda t_0.b_0\ t_0\ f_0))))\ (\lambda f.\lambda t.\ t) \\ \text{iv.} & \rightarrow & ((\lambda s.\lambda z.s\ (s\ z))((\lambda z.(\lambda b_0.\lambda f_0.\lambda t_0.b_0\ t_0\ f_0))\ ((\lambda f_0.\lambda t_0.\ z\ t_0\ f_0)))))\ (\lambda f.\lambda t.\ t) \\ \text{vi.} & \rightarrow & ((\lambda s.\lambda z.s\ (s\ z))((\lambda z.(\lambda b_0.\lambda f_0.\lambda t_0.b_0\ t_0\ f_0))\ ((\lambda f_0.\lambda t_0.\ z\ t_0\ f_0)))))\ (\lambda f.\lambda t.\ t) \\ \text{vii.} & \rightarrow & ((\lambda s.\lambda z.s\ (s\ z))((\lambda z.(\lambda f_1.\lambda t_1.(\lambda f_0.\lambda t_0.\ z\ t_0\ f_0)\ t_1\ f_1))))\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & ((\lambda s.\lambda z.s\ (s\ z))((\lambda z.(\lambda f_1.\lambda t_1.(\lambda t_0.z\ t_0\ t_1\ f_1)))))\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & ((\lambda s.\lambda z.s\ (s\ z))((\lambda z.(\lambda f_1.\lambda t_1.\ z\ t_1\ f_1))\ ((\lambda z.(\lambda f_1.\lambda t_1.\ z\ t_1\ f_1)))\ (\lambda f.\lambda t.\ t) \\ \text{vii.} & \rightarrow & (\lambda z_0.\ (\lambda f_1.\lambda t_1.\ z\ t_1\ f_1)\)\ (\lambda f_1.\lambda t_1.\ z\ t_1\ f_1))\ (\lambda f.\lambda t.\ t) \\ \text{vii.} & \rightarrow & (\lambda z_0.\ (\lambda f_1.\lambda t_1.\ \lambda f_1.\lambda t_1.\ z\ t_1\ f_1)\)\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & (\lambda z_0.\ (\lambda f_1.\lambda t_1.\ \lambda f_1.\lambda t_1.\ z\ t_1\ f_1)\)\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & (\lambda z_0.\ (\lambda f_1.\lambda t_1.\ \lambda f_1.\lambda t_1.\ z\ t_1\ f_1)\)\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & (\lambda z_0.\ (\lambda f_1.\lambda t_1.\ \lambda f_1.\lambda t_1.\ t_1\ f_1)\)\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & (\lambda z_0.\ (\lambda f_1.\lambda t_1.\ \lambda f_1.\lambda t_1.\ t_1\ f_1)\)\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & (\lambda f_1.\lambda t_1.\ \lambda f_1.\lambda t_1.\ t_1\ f_1)\)\ (\lambda f.\lambda t.\ t) \\ \text{viii.} & \rightarrow & (\lambda f_1.\lambda t_1.\ \lambda$$

3. Recall that the Church booleans we have the following encoding

$$tru = \lambda t.\lambda f.t$$

 $fls = \lambda t.\lambda f.f$

(a) Using only bare λ -calculus (variables, λ -abstraction and application), write down a λ -term

for logical implication implies of two Church booleans.

$$imp = \lambda x. \lambda y. \ x. \ y. \ tru$$

(b) Verify your implementation of implies by writing down evaluation sequence for the term

Problem Set 1 2

implies $fls\ tru$.

$$imp\ fls\ tru = (\lambda x\ \lambda y.\ x\ y\ tru)\ fls\ tru \
ightarrow (\lambda y.\ fls\ y\ tru)\ tru \
ightarrow fls\ tru\ tru \
ightarrow (\lambda t.\lambda f.\ f)\ tru\ tru \
ightarrow (\lambda f.\ f)\ tru \
ightarrow tru$$

4. Recall that with Church numerals we have the following encoding

$$egin{aligned} c_0 &= \lambda s. \lambda z. z \ c_1 &= \lambda s. \lambda z. s \ z \ c_2 &= \lambda s. \lambda z. s \ (s \ z) \ c_3 &= \lambda s. \lambda z. s \ (s \ (s \ z)) \end{aligned}$$

(a) Using only bare λ -calculus (variables, λ -abstraction and application), write down a single

 λ -term for each of the following functions on natural numbers:

$$n
ightarrow 2n+1$$
 $n
ightarrow n^2+1$ $n
ightarrow 2^n+1$ $n
ightarrow 2^{n+1}$

(b) Verify each your implementations of the functions above by writing down evaluation sequence for each of them, when applied to c_2

Problem Set 1