

Steps:

1. Determine the quantity of bars of the footing.

LEGEND:

$$Qty_F = Quantity of footing$$

 $Qty_L = Quantity \ of \ Longitudinal \ Reinforcement$ $F_L = Footing \ Length$

 $Qty_T = Quantity of Transverse Reinforcement$ $F_W = Footing Width$

 $Qty_U = Quantity of Upper Reinforcement$ $CC_F = Concrete Cover of Footing$

 $db_L = diameter \ of \ Longitudinal \ Reinforcement$ $S_L = Spacing \ of \ Longitudinal \ Rebar$

 $db_T = diameter\ of\ Transverse\ Reinforcement$ $S_T = Spacing\ of\ Transverse\ Rebar$

 $db_U = diameter\ of\ Upper\ Reinforcement$ $S_U = Spacing\ of\ Upper\ Rebar$

If there is no input on the quantity box, but only on the spacing.

$$Qty_L = Qty_F \left[rounded \ up \ to \ whole \ number \left(\frac{F_W - 2CC_F}{S_L} + 1 \right) \right]$$

$$Qty_U = Qty_F \left[rounded \ up \ to \ whole \ number \left(\frac{F_W - 2CC_F}{S_U} + 1 \right) \right]$$

$$Qty_T = Qty_F \left[rounded \ up \ to \ whole \ number \left(\frac{F_L - 2CC_F}{S_T} + 1 \right) \right]$$

If there is an input on the quantity box.

$$Qty_L = Qty_F \cdot Qty_{L(input)}$$

$$Qty_U = Qty_F \cdot Qty_{U(input)}$$

$$Qty_T = Qty_F \cdot Qty_{T(input)}$$

Example

For F-1

Since there is no input on the quantity box of each reinforcement. Thus,

$$Qty_L = 3\left(\frac{4000 - 2(75)}{125} + 1\right) = 3(31.8) = 3(32) = 96 \ pcs.$$

$$Qty_U = 3\left(\frac{4000 - 2(75)}{300} + 1\right) = 3(13.8) = 3(14) = 42 \ pcs.$$

$$Qty_T = 3\left(\frac{5500 - 2(75)}{300} + 1\right) = 3(18.8) = 3(19) = 57 \ pcs.$$

For F-2

Since there is an input on the quantity box of each reinforcement. Thus,

$$Qty_L = 12 \cdot 11 = 132 \ pcs.$$

$$Qty_T = 12 \cdot 11 = 132 \ pcs.$$

The program will compute the required length of each quantity. (The answer must be converted to meters)

LEGEND:

 L_B of $Qty_L = Bar\ length\ of\ longitudinal\ reinforcement$

 L_B of $Qty_U = Bar$ length of upper reinforcement

 L_B of $Qty_T = Bar \ length \ of \ transverse \ reinforcement$

 $H_L = Hook \ length \ (Use \ the \ what \ type \ of \ bar \ hook \ on \ the \ main \ bars)$

$$L_B$$
 of $Qty_L = F_L - 2CC_F + 2H_L$
 L_B of $Qty_U = F_L - 2CC_F + 2H_L$
 L_B of $Qty_T = F_W - 2CC_F + 2H_L$

Example:

For F-1

$$L_B ext{ of } Qty_L = 5500 - 2(75) + 2(450) = 6250 ext{ } mm = 6.25 ext{ } m$$

 $L_B ext{ of } Qty_U = 5500 - 2(75) + 2(450) = 6250 ext{ } mm = 6.25 ext{ } m$

$$L_B \text{ of } Qty_T = 4000 - 2(75) + 2(450) = 4750 \text{ } mm = 4.75 \text{ } m$$

For F-2

$$L_B \ of \ Qty_L = 3800 - 2(75) + 2(450) = 4550 \ mm = 4.55 \ m$$

$$L_B \text{ of } Qty_T = 3800 - 2(75) + 2(450) = 4550 \text{ } mm = 4.55 \text{ } m$$

3. The program will check the available manufactured bar lengths. And will compute the following equations to determine the manufactured bar length and its corresponding manufactured quantity.

LEGEND:

 $Qty_P = Produced\ Quantity$ $L_M = Manufactured\ Bar\ Length$

 $Qty_{M} = Manufactured Quantity$ $L_{W} = Wastage Length$

 $Qty_M = Extra\ Quantity$ $L_E = Excess\ Length$

For Combined Footing

a) If $(L_B \ of \ Qty_L + L_B \ of \ Qty_T) \le Largest \ L_M$ and $db_L = db_U = db_T$

I. Case 1: $(Qty_L + Qty_U) < Qty_T$

For $(Qty_L + Qty_U)$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_L + L_B \ of \ Qty_T}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

$$L_W = L_M - (L_B \text{ of } Qty_L + L_B \text{ of } Qty_T) \cdot Qty_P(round \text{ down into whole number})$$

$$Qty_{M(a)} = \frac{Qty_L + Qty_U}{Qty_P(round\ down\ to\ whole\ number)}$$

$$L_E = [Qty_M(round up to whole number) - Qty_M] \cdot L_M$$

And

$$Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

For Qty_T

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_T}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

 $L_W = L_M - (L_B \text{ of } Qty_T) \cdot Qty_P(round \text{ down into whole number})$

$$Qty_{M} = \frac{Qty_{T} - Qty_{L} - Qty_{U}}{Qty_{P}(round\ down\ to\ whole\ number)}$$

$$L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$$

And

 $Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

II. Case 2: $(Qty_L + Qty_U) \ge Qty_T$

For Qty_T

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_L + L_B \ of \ Qty_T}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

 $L_W = L_M - (L_B \text{ of } Qty_L + L_B \text{ of } Qty_T) \cdot Qty_P (round \text{ down into whole number})$

$$Qty_{M(a)} = \frac{Qty_{T}}{Qty_{P}(round\ down\ to\ whole\ number)}$$

$$L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$$

And

$$Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

For
$$(Qty_L + Qty_U)$$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_L}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

$$L_W = L_M - (L_B \text{ of } Qty_L) \cdot Qty_P(round \text{ down into whole number})$$

$$Qty_{M} = \frac{Qty_{L} + Qty_{U} - Qty_{T}}{Qty_{P}(round\ down\ to\ whole\ number)}$$

$$L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$$

And

$$Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

- b) If $(L_B \ of \ Qty_L + L_B \ of \ Qty_T) > Largest \ L_M \ or \ db_L \neq db_U \neq db_T$
 - Note x is either L for Longitudinal, U for Upper, and T for Transverse

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_x}$$

$$L_W = 0$$

$$Else$$

$$L_W = \cdot L_M - (L_B \ of \ Qty_x) \cdot Qty_P(round \ down \ into \ whole \ number)$$

$$Qty_M = rac{Qty_\chi}{Qty_P(round\ down\ to\ whole\ number)}$$
 $L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$

And

$$Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

- For Isolated Footing
 - Note x is either L for Longitudinal, U for Upper, and T for Transverse

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_x}$$

If
$$Qty_P < 1$$

$$L_W = 0$$
 Else
$$L_W = \cdot L_M - (L_B \ of \ Qty_x) \cdot Qty_P(round \ down \ into \ whole \ number)$$

$$Qty_{M} = \frac{Qty_{x}}{Qty_{P}(round\ down\ to\ whole\ number)}$$

$$L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$$

And

$$Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

Example.

Based on the reference the available bars for the column footing are 6, 7.5, 9, 10.5, and 12 meters

WALL FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0
COLUMN	6.0	7.5	9.0	10.5	12.0	13.5	15.0
BEAM/GIRDER	6.0	7.5	9.0	10.5	12.0	13.5	15.0
WALL	6.0	7.5	9.0	10.5	12.0	13.5	15.0
SLAB ON GRADE	6.0	7.5	9,0	10.5	12.0	13.5	15.0
SUSPENDED SLAB	6.0	7.5	9.0	10.5	12.0	13.5	15.0
STAIRS	6.0	7.5	9.0	10.5	12.0	13.5	15.0
AVAILABLE							

For F-1

Check Conditions

$$(L_B \ of \ Qty_L + L_B \ of \ Qty_T) = (6.25 + 4.75) = 11 \ m$$

$$Largest \ L_M = 12 \ m$$

Thus,

$$(L_B \ of \ Qty_L + L_B \ of \ Qty_T) < Largest \ L_M$$

And

$$(Qty_L + Qty_U) = (96 + 42) = 120$$

 $Qty_T = 57$

Thus,

$$(Qty_L + Qty_U) > Qty_T : Case 2$$

For Qty_T

$$D_M = 6 m$$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_L + L_B \ of \ Qty_L} = \frac{6}{6.25 + 4.75} = 0.5454$$

$$L_{W(6)} = 0 : Since \ Qty_{P(6)} < 1$$

$$Qty_{M(6)} = \frac{57}{0} = Undefined$$

$$L_{E(6)} = [Undefined - Undefined] \cdot 6 = Undefined$$

Total = Undefined + O(Undefined) = Undefined

You can see the answers in the table

L [M]	Qty [Total]	L [B] of Qty [L] + L [B] of Qty [T	Qty	[P]	Qty [M]						L [W]	L [E]	Total Waste
6			0.55	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!				
7.5			0.68	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!				
9	57	11	0.82	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!				
10.5			0.95	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!				
12			1.09	1	57	57	1.000	0	57.000				

Thus,

$$L_{MC(a)} = 12 m$$
 and $Qty_{MC(a)} = 57 pcs$.

For $Qty_L + Qty_U$

$$Qty_{P} = \frac{L_{M}}{L_{B} \text{ of } Qty_{L} + L_{B} \text{ of } Qty_{L}} = \frac{6}{6.25} = 0.96$$

$$L_{W(6)} = 0 : Since \ Qty_{P(6)} < 1$$

$$Qty_{M(6)} = \frac{96 + 42 - 57}{0} = \frac{81}{0} = Undefined$$

$$L_{E(6)} = [Undefined - Undefined] \cdot 6 = Undefined$$

$$Average = \frac{Undefined + 0}{2} = Undefined$$

L [M]	Qty [L] + Qty [U] - Qty [U]	L [B] of Qty [L]	Qty [P]		Qty [M]		L [W]	L [E]	Total Waste
6			0.96	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!
7.5			1.20	1	81	81	1.250	0	101.250
9	81	6.25	1.44	1	81	81	2.750	0	222.750
10.5			1.68	1	81	81	4.250	0	344.250
12			1.92	1	81	81	5.750	0	465.750

Thus,

 $L_{MC(b)} = 7.5 m \text{ and } Qty_{MC(b)} = 81 pcs.$

For F-2

@Longitudinal Reinforcement

L [M]	Qty [Total]	L [B] of Qty [L]	Qty [P]		Qty [M]		L [W]	L [E]	Total Waste
6			1.32	1	132	132	1.450	0	191.400
7.5			1.65	1	132	132	2.950	0	389.400
9	132	4.55	1.98	1	132	132	4.450	0	587.400
10.5			2.31	2	66	66	1.400	0	92.400
12			2.64	2	66	66	2.900	0	191.400

Thus the

 $L_{MC(a)} = 10.5 m \text{ and } Qty_{MC(a)} = 66 pcs.$

@Transverse Reinforcement

L [M]	Qty [T]	L [B] of Qty [T]	Qty [P]		Qty [M]		L [W]	L [E]	Total Waste
6			1.32	1	132	132	1.450	0	191.400
7.5			1.65	1	132	132	2.950	0	389.400
9	132	4.55	1.98	1	132	132	4.450	0	587.400
10.5			2.31	2	66	66	1.400	0	92.400
12			2.64	2	66	66	2.9	0	191.400

Thus the

 $L_{MC(b)} = 10.5 m \text{ and } Qty_{MC(b)} = 66 pcs.$

4. The program will compute the price of the steel reinforcement of the footing

Г	REINFORCEMENT GRADE							
1	COLUMNS		FOOTINGS		BEAMS			
1	Grade 60	•	Grade 60	۰	Grade 60	₹		
1	STAIRS		WALLS		SLABS			
1		•		٠	Grade 40	▼		

$$Price_{Total} = \sum Qty_{M}Price_{M}$$

Where:

 $Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

= Sorted through Reinforcement Grade, diameter, and Manufactured Length

Example

Г	REINFORCEMENT GRADE									
ı	COLUMNS		FOOTINGS		BEAMS					
ı	Grade 60	T	Grade 60	T	Grade 60	₹				
ı	STAIRS		WALLS		SLABS					
ı		₹		Ŧ	Grade 40	▼				

LONGITUDINAL REINFORCEMENT	TRANSVERSE REINFORCEMENT	UPPER REINFORCEMENT
DIAMETER 25	DIAMETER 25	DIAMETER 25
QUANTITY	QUANTITY	QUANTITY
SPACING 125	SPACING 300	SPACING 300
HOOK TYPE 90 ▼	HOOK TYPE 90 ▼	HOOK TYPE 90 ▼

 $Qty_{M(a)}Price_{M(a)}; d_a = 25 mm$

 $Qty_{M(a)} = 57$

 $L_{MC(a)} = 12 m$

Thus,

Rebar GRADE 60 (Ø25mm) [6m]- P 1040.31

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

 $Price_{M(a)} = 2080.62$

 $Qty_{M(a)}Price_{M(a)} = 57(2080.62) =$ 118,595.34

 $Qty_{M(b)}Price_{M(b)}; d_b = 25$

 $Qty_{M(b)} = 81$

 $L_{MC(b)} = 7.5 m$

Thus,

Rebar GRADE 60 (Ø25mm) [6m]- P 1040.31

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]**- P 1820.54**

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

 $Price_{M(a)} = 1300.39$

 $Qty_{M(b)}Price_{M(b)} = 81(1300.39) =$ † 105,331.59

 $Price_{Total} = \sum_{M} Qty_{M} Price_{M} = 118,595.34 + 105,331.59 =$ **223,926.93**

F-2

LONGITUDINAL REINFORCEMENT	TRANSVERSE REINFORCEMENT				
DIAMETER 25	DIAMETER 25				
QUANTITY 11	QUANTITY 11				
HOOK TYPE 90 ▼	HOOK TYPE 90 ▼				

 $Qty_{M(a)}Price_{M(a)}; \qquad d_a = 25 \ mm$

 $Qty_{M(a)} = 66$

 $L_{MC(a)} = 10.5 m$

Thus,

Rebar GRADE 60 (Ø25mm) [6m]- P 1040.31

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

$$Qty_{M(a)}Price_{M(a)} = 66(1820.54) =$$
 $?$ 120,155.64

$$Qty_{M(b)}Price_{M(a)}; \qquad d_b = 25 \ mm$$

$$Qty_{M(b)} = 66$$

$$L_{MC(b)} = 10.5 m$$

Thus,

Rebar GRADE 60 (Ø25mm) [6m]- P 1040.31

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

 $Price_{M(b)} = 1820.54$

$$Qty_{M(b)}Price_{M(b)} = 66(1820.54) =$$
 † 120,155.64

$$Price_{Total} = \sum Qty_{M}Price_{M} = 120,155.64 + 120,155.64 =$$
 240, **311**. **28**

5. The program will compute the weight of the chosen manufactured bar length in transverse and longitudinal reinforcement of the footing.

For Combined Footing

$$Weight = L_{MC(y)} \cdot Qty_{M(y)} \cdot W_D$$

For Isolated Footing

$$Weight = L_{MC(y)} \cdot Qty_{M(y)} \cdot W_D$$

Where:

 $W_D = corresponding \ weight \ of \ the \ reinforcement \ diameter \ (Table \ in \ the \ Parameters)$

Example

┌ WEIGHT —	
BAR SIZE (Diameter)	kg/m
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

F-1

Since
$$(L_B \ of \ Qty_L + L_B \ of \ Qty_T) \leq Largest \ L_M$$
 and $db_L = db_U = db_T$. Thus,

@
$$Qty_T$$
: $diameter = 25 \, mm$, thus $W_D = 3.854$

$$Weight_{1(a)} = L_{MC(y)} \cdot Qty_{M(y)} \cdot W_D$$
$$= 12(57) \cdot 3.854$$

$$Weight_{1(a)} = 2636.136 \ kg$$

@
$$Qty_L + Qty_U$$
: $diameter = 25 \ mm$, thus $W_D = 3.854$

$$Weight_{1(b)} = L_{MC(y)} \cdot Qty_{M(y)} \cdot W_D$$
$$= 7.5(81) \cdot 3.854$$

$$Weight_{1(b)} = 2341.305 kg$$

@
$$Qty_L$$
: $diameter = 25 \ mm$, thus $W_D = 3.854$
 $Weight_{2(a)} = L_{M(chosen)} \cdot Qty_{M(chosen)} \cdot W_D =$
 $= (10.5) \cdot (66) \cdot (3.854)$
 $Weight_{2(a)} = \mathbf{2670.822} \ kg$
@ Qty_T : $diameter = 25 \ mm$, thus $W_D = 3.854$
 $Weight_{2(b)} = L_{M(chosen)} \cdot Qty_{M(chosen)} \cdot W_D =$
 $= (10.5) \cdot (66) \cdot (3.854)$
 $Weight_{2(b)} = \mathbf{2670.822} \ kg$

6. The program will compute the total weight of reinforcements on each footing.

$$Weight_{TOTAL(n)} = \varphi \cdot \sum_{y=a}^{y} (Weight_{ny})$$

Where:

$$\varphi = just \ a \ factor$$

$$\varphi = 1$$

Example:

For F-1

$$Weight_{TOTAL(1)} = \varphi \cdot \sum_{y=a}^{b} \left(Weight_{ny}\right) = 1 \cdot (2636.136 + 2341.305)$$

$$Weight_{TOTAL(1)} = 4977.441 \ kg$$

For F-2

$$Weight_{TOTAL} = \varphi \cdot \sum_{y=a}^{b} (Weight_{ny}) = 1 \cdot (2670.822 + 2670.822)$$

$$Weight_{TOTAL} = 5341.644 \ kg$$

7. The program will compute the labor price of the footing

$$Price_{Labor} = Weight_{TOTAL} \cdot L_R$$

Where:

 $L_R = Labor Rate in Footing based in the Pricing$

Example:

For F-1

$$Price_{Labor} = Weight_{TOTAL} \cdot L_R$$

 $Price_{Labor} = 4977.441 \cdot 17$

 $Price_{Labor} = \mathbb{P} 84, 616.497$

For F-2

 $Price_{Labor} = Weight_{TOTAL} \cdot L_{R}$

 $Price_{Labor} = 5341.644 \cdot 17$

 $Price_{Labor} = \mathbb{P} 90, 807.948$