Lengoaiak, Konputazioa eta Sistema Adimendunak

7. gaia: Haskell – 1,6 puntu – Bilboko IITUE 2014-01-13

1 Murgilketa (0,300 puntu)

Osoa den x zenbakia emanda, bere zatitzaile bikoitien kopurua zatitzaile bakoitien kopurua baino handiagoa baldin bada True eta bestela False itzuliko duen $bik_gehiago$ funtzioa definitu behar da. Zatitzaile bikoitien eta bakoitien kopurua berdina bada False itzuli beharko da. x parametroaren balioa 1 baino txikiagoa baldin bada, errore-mezua aurkeztu beharko da.

 $bik_gehiago :: Int -> Bool$ $bik_gehiago \ x \dots$

Adibideak:

bik_gehiago 3 = False 3 zenbakiaren zatitzaile bikoitien kopurua (zero) ez delako zatitzaile bakoitien kopurua (bi, 1 eta 3) baino handiagoa.

bik_gehiago 4 = True 4 zenbakiak bi zatitzaile bikoiti (2, 4) eta zatitzaile bakoiti bat (1) dituelako.

bik_gehiago 6 = False 6 zenbakiak bi zatitzaile bikoiti (2, 6) eta bi zatitzaile bakoiti (1, 3) dituelako.

Murgikeltaren teknika jarraituz, osoak diren x, bm, bik eta bak lau zenbaki emanda, bm-tik hasita x zenbakiaren zatitzaile bikoitien kopurua gehi bik zatitzaile bakoitien kopurua gehi bak baino handiagoa baldin bada True eta bestela False itzuliko duen $bik_gehiago_lag$ funtzioa definitu behar da. bm-tik hasita, x zenbakiaren zatitzaile bikoitien kopurua gehi bik eta zatitzaile bakoitien kopurua gehi bak berdinak badira, False itzuli beharko da. x balioa 1 baino txikiagoa baldin bada edo x balioa 1 baino txikiagoa baldin bada, errore-mezua aurkeztu beharko da. Bestalde, x balioa x balioa x balioa bada ere, errore-mezua aurkeztu beharko da.

 $bik_gehiago_lag :: Int \rightarrow Int \rightarrow Int \rightarrow Int \rightarrow Bool$ $bik_gehiago_lag \ x \ bm \ bik \ bak \ \dots$

Adibideak:

 $bik_gehiago_lag \ 3 \ 1 \ 0 \ 0 = False$

1etik hasita, 3ren zatitzaile bikoitien kopurua gehi 0 ez delako 3ren zatitzaile bakoitien kopurua gehi 0 baino handiagoa.

 $bik_gehiago_lag \ 3 \ 1 \ 8 \ 0 = True$

1etik hasita, 3ren zatitzaile bikoitien kopurua gehi 8 3ren zatitzaile bakoitien kopurua gehi 0 baino handiagoa delako.

 $bik_gehiago_lag$ 50 1 0 0 = False

1etik hasita, 50en zatitzaile bikoitien (2, 10, 50) kopurua gehi 0 ez delako 50en zatitzaile bakoitien (1, 5, 25) kopurua gehi 0 baino handiagoa.

 $bik_gehiago_lag$ 50 6 0 0 = True

6tik hasita, 50en zatitzaile bikoitien (10, 50) kopurua gehi 0

50en zatitzaile bakoitien (25) kopurua gehi 0 baino handiagoa delako.

 $bik_gehiago_lag$ funtzioa $bik_gehiago$ funtzioa baino orokorragoa da. $bik_gehiago$ funtzioaren bidez definitzerakoan bm parametroa zatitzaileak bilatzerakoan zeharkatu beharreko tartearen beheko muga bezala erabili behar da. Bestalde, bik eta bak parametroak zatitzaile bikoitiak eta bakoitiak zenbatuz joateko erabili behar dira.

2 Bukaerako errekurtsibitatea (0,300 puntu)

Har dezagun honako funtzio hau:

```
\begin{array}{ll} txertatu :: Integer -> [Integer] -> [Integer] \\ txertatu \ x \ [] \ = \ x : [] \\ txertatu \ x \ (y : s) \\ \mid \ x \leq y \ = x : (y : s) \\ \mid \ otherwise \ = y : (txertatu \ x \ s) \end{array}
```

Osoa den x zenbaki bat eta zenbaki osozko zerrenda bat emanda, x balioa x baino handiagoa edo berdina den zerrendako lehenengo elementuaren aurrean (ezkerreko aldean) kokatuz lortzen den zerrenda itzuliko du txertatu funtzioak.

Adibideak:

```
txertatu \ 5 \ [4,8,3,6] = [4,5,8,3,6]

txertatu \ 2 \ [4,8,3,6] = [2,4,8,3,6]

txertatu \ 8 \ [4,8,3,6] = [4,8,8,3,6]

txertatu \ 10 \ [4,8,3,6] = [4,8,3,6,10]
```

txertatu funtzioak ez du bukaerako errekurtsibitaterik. Bukaerako errekurtsibitatea edukitzeko, honako bi funtzio hauek definitu behar dira:

- txertatu funtzioak jasotzen dituen x zenbakiaz eta zerrendaz gain, emaitza bezala eraikiz joango den zerrenda gordez joateko erabiliko den bigarren zerrenda duen txertatu_lag funtzioa. Beraz, txertatu_lag funtzioak jarraian zehazten diren bi zerrendak elkartuz lortzen den zerrenda itzuli beharko du:
 - Alde batetik, datu bezala emandako bigarren zerrenda.
 - Beste aldetik, datu bezala emandako lehenengo zerrendan x balioa x baino handiagoa edo berdina den lehenengo elementuaren aurrean (ezkerreko aldean) kokatuz lortzen den zerrenda berria.

• $txertatu_lag$ funtzioari egokiak diren parametroekin deituz txertatu funtzioak egiten duen gauza bera egingo duen $txertatu_be$ funtzioa.

```
txertatu\_be 5 [4,8,3,6] = [4,5,8,3,6]

txertatu\_be 2 [4,8,3,6] = [2,4,8,3,6]

txertatu\_be 8 [4,8,3,6] = [4,8,8,3,6]

txertatu\_be 10 [4,8,3,6] = [4,8,3,6,10]
```

Beraz, txertatu funtzioak egiten duena txertatu_be eta txertatu_laq funtzioak erabiliz egin ahal izango da.

3 Zerrenda-eraketa (1,000 puntu)

3.1. (0,100 puntu) Zenbaki osozko zerrenda bat emanda, zerrendan elementu negatiborik baldin badago True eta bestela False itzultzen duen negatiborik izeneko funtzioa definitu Haskell lengoaia erabiliz.

$$negatiborik :: [Integer] \rightarrow Bool$$
 $negatiborik \dots$

Adibideak:

$$negatiborik$$
 $[7, 2, -3, 8, -9] = True$
 $negatiborik$ $[7, 2, 5, 0] = False$

Aukera bat aurredefinitutako length funtzioa erabiltzea da.

3.2. (0,150 puntu) Zenbaki osozko zerrendez eratutako zerrenda bat emanda, zerrenda bakoitzean elementu negatiborik agertzen al den adierazten duen balio Boolearrezko zerrenda itzultzen duen $neg_agerpenik$ izeneko funtzioa definitu Haskell lengoaia erabiliz.

$$neg_agerpenik :: [[Integer]] \rightarrow [Bool]$$

 $neg_agerpenik ...$

Adibideak:

```
\begin{array}{lll} neg\_agerpenik & = & [[7,2,8],[0,0],[],[4,-6,8],[-2,-2]] \\ & = & [False,False,False,True,True] \\ neg\_agerpenik & = & [] \\ & = & [[2,8],[10],[-1],[4,6]] \\ & = & [False,False,True,False] \\ \end{array}
```

Aukera bat aurreko ariketako negatiborik funtzioa erabiltzea da.

3.3. (0,150 puntu) Zenbaki osozko zerrendez eratutako zerrenda bat emanda, elementu negatiborik ez duten zerrendak bakarrik mantenduz geratzen den zerrenda itzultzen duen neg_gabe izeneko funtzioa definitu Haskell lengoaia erabiliz.

$$\begin{array}{l} neg_gabe :: [[Integer]] \mathrel{->} [[Integer]] \\ neg_gabe & \dots \end{array}$$

Adibideak:

$$\begin{array}{lll} neg_gabe &=& [[7,2,8],[0,0],[],[4,-6,8],[-2,-2]] = [[7,2,8],[0,0],[]] \\ neg_gabe &=& [] = [] \\ neg_gabe &=& [[2,8],[10],[-1],[4,6]] = [[2,8],[10],[4,6]] \\ neg_gabe &=& [[3,-9],[-20],[-1],[-2,-7,6]] = [] \end{array}$$

Aukera bat 3.1 ariketako negatiborik funtzioa erabiltzea da.

3.4. (0,100 puntu) Osoa den zenbaki bat emanda, zenbaki horren zatitzaileen zerrenda itzuliko duen *zatitzaileak* funtzioa definitu Haskell lengoaia erabiliz.

```
zatitzaileak :: Integer \rightarrow [Integer]
zatitzaileak ...
```

Adibideak:

$$\begin{array}{lll} zatitzaileak & 8 = & [1, 2, 4, 8] \\ zatitzaileak & 7 = & [1, 7] \\ zatitzaileak & 0 = & [\,] \end{array}$$

3.5. (0,100 puntu) Osoak diren zenbaki positibo denen zatitzaileen zerrendez osatutako zerrenda infinitua aurkeztuz joango de zat_denak funtzioa definitu Haskell lengoaia erabiliz.

```
zat\_denak :: [[Integer]]
zat\_denak ...
```

Adibideak:

$$zat_denak = [[1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6], \ldots]$$

Aukera bat 3.4 ariketako zatitzaileak funtzioa erabiltzea da.

3.6. (0,100 puntu) Lehenengo osagai bezala osoa eta positiboa den zenbaki bat (zenbakien ohiko ordena jarraituz) eta bigarren osagai bezala lehenengo osagaiaren zatitzaile-zerrendaz osatutako bikoteez eratutako zerrenda infinitua kalkulatuz joango den *zat_bikote* funtzioa definitu Haskell lengoaia erabiliz.

$$zat_bikote :: [(Integer, [Integer])]$$

 $zat_bikote ...$

Adibidea:

$$zat_bikote = [(1, [1]), (2, [1, 2]), (3, [1, 3]), (4, [1, 2, 4]), (5, [1, 5]), (6, [1, 2, 3, 6]), \dots]$$

Aukera bat aurreko ariketako zat_denak funtzioa eta aurredefinitutako zip funtzioa erabiltzea da.

3.7. (0,200 puntu) Osoa den n zenbaki bat emanda, n baino zatitzaile gehiago dituzten zenbakiei dagozkien zat_bikote zerrendako bikoteen zerrenda infinitua aurkeztuz joango den $zat_gehiago$ funtzioa definitu Haskell lengoaia erabiliz.

$$zat_gehiago :: Integer \rightarrow [(Integer, [Integer])]$$

 $zat_gehiago \dots$

Adibideak:

```
zat\_gehiago \ 3 = [(6, [1, 2, 3, 6]), (8, [1, 2, 4, 8]), (10, [1, 2, 5, 10]), (12, [1, 2, 3, 4, 6, 12]), \dots] Kasu horietan zatitzaile-kopurua 3 baino handiagoa da.
```

Aukera bat aurreko ariketako zat_bikote funtzioa eta aurredefinitutako genericLength funtzioa erabiltzea da.

3.8. (0,100 puntu) Osoak diren *n* eta *kop* bi zenbaki emanda, *n* baino zatitzaile gehiago dituzten lehenengo *kop* zenbakiei dagozkien *zat_bikote* zerrendako bikoteez osatutako zerrenda aurkeztuko duen *gehiago_finitua* funtzioa definitu Haskell lengoaia erabiliz.

$$gehiago_finitua :: Integer -> Integer -> [(Integer, [Integer])] \\ gehiago_finitua :...$$

Adibideak:

```
\begin{array}{lll} \textit{gehiago\_finitua} & 3 & 5 & = & [(6,[1,2,3,6]),(8,[1,2,4,8]),(10,[1,2,5,10]),(12,[1,2,3,4,6,12]),\\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\
```

3 zatitzaile baino gehiago dituzten lehenengo 5 zenbakiei dagozkien bikoteak.

Aukera bat aurreko ariketako $zat_gehiago$ funtzioa eta aurredefinitutako genericTake funtzioa erabiltzea da.