2022-2023 学年线性代数 II (H) 期末

任课老师: 统一命卷 考试时长: 120 分钟

一、(15 分)已知 $T \in \mathcal{L}(\mathbf{C}^3)$,其对应矩阵为

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 2023 & 0 & 0 \\ 6 & 28 & 0 \end{pmatrix}$$

- (1) 求 A 的 Jordan 标准形 (不必求 Jordan 基);
- (2) 证明不存在复矩阵 B 使得 $B^2 = A$.

二、 (15 分) 已知直线
$$L_1 = \begin{cases} x+y+z-1=0 \\ x-2y+2=0 \end{cases}$$
 , $L_2 = \begin{cases} x=2t \\ y=t+a \\ z=bt+1 \end{cases}$, 试确定 a,b 满

足的条件使得 L_1 , L_2 是:

- (1) 平行直线;
- (2) 异面直线.
- 三、(18分) 定义在 $V = \mathbb{R}^3$ 上的运算

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_V = x_1 y_1 + x_2 y_2 + (x_2 + x_3)(y_2 + y_3)$$

其中 $\mathbf{x} = (x_1, x_2, x_3), \ \mathbf{y} = (y_1, y_2, y_3).$

- (1) 验证 $\langle \cdot, \cdot \rangle_V$ 是 \mathbf{R}^3 上的一个内积;
- (2) 求 \mathbf{R}^3 在 $\langle \cdot, \cdot \rangle_V$ 下的一组标准正交基;
- (3) 求 $\boldsymbol{\beta} \in V$ 使得 $\forall \boldsymbol{x} \in V : x_1 + 2x_2 = \langle \boldsymbol{x}, \boldsymbol{\beta} \rangle_V$.
- 四、 $(15 \, \mathcal{G}) \, T \in \mathcal{L}(V)$ 在一组基 $\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 下的矩阵为

$$T(\varepsilon) = (\varepsilon) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

求 V 所有的 T-不变子空间.

五、(20分)试给出下列命题的真伪. 若命题为真,请给出简要证明;若命题为假,请举出反例.

- (1) $T \in \mathcal{L}(V)$. 若子空间 $W \in V$ 在 T 下不变,则其补空间 W' 在 T 下也不变;
- (2) 定义 $T \in \mathcal{L}(V, W)$: $Tv = \langle v, \alpha \rangle \beta$, $\beta \in W$ 对 $\forall v \in V$ 成立, 则 $T^*w = \langle w, \beta \rangle \alpha$, $\alpha \in V$ 对 $\forall w \in W$ 成立;
- (3) $T \in \mathcal{L}(V)$ 是非幂零算子,满足 $\operatorname{null} T^{n-1} \neq \operatorname{null} T^{n-2}$. 则其极小多项式为

$$m(\lambda) = \lambda^{n-1}(\lambda - a)0 \neq a \in \mathbf{R}$$

- (4) $A \in \mathbf{R}^{n \times n}$. $S_1 = A^{\mathrm{T}} + A$, $S_2 = A^{\mathrm{T}} A$. 则 A 是正规矩阵当且仅当 $S_1 S_2 = S_2 S_1$.
- (5) $A \in \mathbb{C}^{n \times n}$ 是正规矩阵,则 A 的实部矩阵和虚部矩阵是对称矩阵.
- 六、(15 分) $T \in \mathcal{L}(V)$. 有极分解 $T = S\sqrt{G}$,其中 S 是等距同构, $G = T^*T$. 证明以下条件等价:
 - (1) T 是正规算子;
 - (2) GS = SG;
 - (3) G 的所有特征空间 $E(\lambda, G)$ 都是 S-不变的.