

ATK-7'TFTLCD V2 用户手册

高性能 7 寸 TFTLCD 电容触摸屏模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.00	2015/4/19	第一次发布

目 录

1. 特性参数	1
2. 使用说明	2
2.1 模块简介	
2.2 模块引脚说明	3
2.3 模块接口时序	
2.4 模块指令说明	5
2.5 电容触摸屏接口说明	14
2.5.1 FT5206 寄存器简介	14
2.5.2 FT5206 初始化流程	16
3. 结构尺寸	16
4. 其他	

1. 特性参数

ATK-7'TFTLCD-V2.2(V2.2是版本号,下面均以ATK-7'TFTLCD V2表示该产品)是ALIENTEK推出的第二代高性能7寸电容触摸屏模块。

ALIENTEK 第一代 7 寸电容触摸屏,采用的是 CPLD+SDRAM 的方案,具有:支持 8 帧缓存、支持 5 点触摸的特点。但是缺点是:屏幕只可以固定一个方向扫描(竖屏不好支持)、价格比较高、触摸屏易碎等。

ALIENTEK 第二代 7 寸 TFTLCD 电容触摸屏: LCD 驱动采用 SSD1963 方案, 电容触摸 屏驱动采用 FT5206, LCD 屏使用群创 AT070TN92 屏, 触摸屏采用定制电容触摸屏。第二代 7 寸 TFTLCD 电容触摸屏具有:显示效果佳、触摸手感好、触摸屏耐用、使用方便、性价比高等特点。

ATK-7' TFTLCD V2 模块具有: 屏幕分辨率高(800*480), 支持 16/18/24 位真彩显示、支持 8/9/12/16 位数据格式、支持开窗显示、采用电容触摸屏,支持 5 点同时触摸等特点。电容触摸屏,在人机互交时,相对电阻屏具有更好的手感和操控效果。

此外 ATK-7' TFTLCD V2 模块还提供了镜像翻转、背光控制等功能,方便用户使用。 ATK-7' TFTLCD V2 模块各项参数如表 1.1 和表 1.2 所示。

项目	说明
接口类型	LCD: Intel8080-8/9/12/16 位并口
	触摸屏: IIC
颜色格式	RGB565/RGB666/RGB888
颜色深度	16 位/18 位/24 位
LCD 驱动器芯片	SSD1963
LCD 分辨率	800*480
电容触摸芯片	FT5206
触摸屏类型	电容触摸
触摸屏驱动通道	15*10
触摸点数	最多 5 点同时触摸
坐标输出速率	100Hz
屏幕尺寸	7'
工作温度	-0°C~70°C
外形尺寸	100mm*180mm

表 1.1 ATK-7' TFTLCD V2 基本特性

项目	说明
电源电压	背光: 5V
	其他: 3.3V
IO 口电平 ¹	3.3V
Voh	2. 64V (Min)
Vol	0.66V (Max)
Vih	2. 64V (Min)
Vil	0.66V (Max)
功耗 ²	70~370mA

表 1.2 ATK-7' TFTLCD V2 电气特性

注 1: 3.3V 系统,可以直接接本模块 (供电必须 5V),如果是 5V 系统,建议串接 120 欧左右电阻,做限流处理。

注 2: 70mA 对应背光关闭时的功耗, 370mA 对应背光最亮时的功耗, 此数据是在电源电压为 5V 时测出的,实际应用中功耗会由于电源电压的波动而略微变化。

2. 使用说明

2.1 模块简介

ATK-7' TFTLCD V2 模块是 ALIENTEK 推出的第二代高性能 7 寸 TFTLCD 显示模块,外观漂亮、性能优异、结构紧凑。模块通过 1 个 2*17P 的 2.54mm 间距排针与外部连接,模块外观如图 2.1.1 所示:

图 2.1.1-1 ATK-7' TFTLCD V2 电容触摸屏模块正面图

图 2.1.1-2 ATK-7' TFTLCD V2 电容触摸屏模块背面图

从图 2.1.1 可以看出,模块丝印标注非常详细,并带有安装孔位,利于安装,可方便应用于各种产品设计。

ATK-7'TFTLCD V2 模块具有如下特点:

- ▶ 高分辨率: 800*480, 显示清晰;
- ▶ 自带驱动,无需外加驱动器,单片机直接使用;
- ▶ 速度超快,理论上最高刷屏速度可达 86 帧/秒;
- ▶ 采用电容触摸屏,最大支持5点同时触摸,操控效果佳;
- ▶ 板载背光电路,只需要 3.3V&5V 供电即可,无需外加高压;
- ▶ 支持 8/9/12/16 位 8080 并口连接,连接方便;
- ▶ 支持 16/18/24 位色彩深度, 色彩丰富;
- ▶ 支持背光亮度控制,亮度调节方便;
- ▶ 采用全新元器件加工,纯铜镀金排针,坚固耐用;
- ➤ 采用国际 A 级 PCB 料, 沉金工艺加工, 稳定可靠;
- ▶ 人性化设计,各接口都有丝印标注,使用起来一目了然;
- ▶ PCB 尺寸为 180mm*100mm, 并带有安装孔位, 安装方便;

2.2 模块引脚说明

ATK-7'TFTLCD V2 电容触摸屏模块通过 2*17 的排针(2.54mm 间距)同外部连接,模块可以与 ALIENTEK 的 STM32 开发板直接对接,我们提供相应的例程,用户可以在 ALIENTEK STM32 开发板上直接测试。模块通过 34(2*17)个引脚同外部连接,对外接口原理图如图 2.2.1 所示:

图 2.2.1 模块对外接口原理图

各引脚的详细描述如表 2.1.1 所示:

序号	名称	说明
1	EX_NCE	LCD 控制器片选信号(低电平有效)

2	EX_RS	命令/数据控制信号(0,命令;1,数据;)
3	EX_WR	写使能信号(低电平有效)
4	EX_RD	读使能信号(低电平有效)
5	EX_RST	复位信号(低电平有效)
6~21	EX_D0~D15	双向数据总线
22,26,27	GND	地线
23	TE	撕裂效应信号
24,25	NC	未用到
28	VCC5	5V 电源输入引脚
29	MD_MISO	NC, 电容触摸屏未用到
30	MD_MOSI	电容触摸屏 IIC_SDA 信号(CT_SDA)
31	MD_PEN	电容触摸屏中断信号(CT_INT)
32	MD_BUSY	NC,电容触摸屏未用到
33	MD_CS	电容触摸屏复位信号(CT_RST)
34	MD_CLK	电容触摸屏 IIC_SCL 信号(CT_SCL)

表 2.1.1 ATK-7' TFTLCD V2 模块引脚说明

从上表可以看出,在 16 位模式下:LCD 控制器总共需要 21 个 IO 口驱动(不包括 TE 信号),电容触摸屏需要 4 个 IO 口驱动,这样整个模块需要 25 个 IO 口驱动。而在 8 位/9 位/12 位模式下,则可以少用一些 IO,不过驱动速度就会相应的下降。

TE 是撕裂效应信号,是 LCD 控制器反馈给单片机的信号,用于指示 LCD 控制器的显示状态。在非显示周期内,TE 信号为高。因此,本信号使单片机通过观察非显示周期发送数据,以避免撕裂。不过这个信号我们一般用不到,一般情况下可以不需要理会此信号。

2.3 模块接口时序

ATK-7'TFTLCD V2 模块采用 SSD1963 作为驱动器,支持 8 位/9 位/12 位/16 位 8080 总 线接口,总线写时序如图 2.3.1 所示:

图 2.3.1 总线写时序

图中,当 RS 为 0 的时候,表示写入的是寄存器地址(0~7),RS 为 1 的时候,表示写入的是数据(寄存器值/GRAM 数据)。

总线读时序如图 2.3.2 所示:

图 2.3.2 总线读时序

图 2.3.1 和图 2.3.2 中各时间参数见表 2.3.1 所示:

Symbol	Para	meter	Min	Тур	Max	Unit
f_{MCLK}	System Clock Frequency*		1	-	110	MHz
$t_{ m MCLK}$	System Clock Period*		1/ f _{MCLK}	-	-	ns
+	Control Pulse High Width	Write	13	1.5* t _{MCLK}		ns
t _{PWCSL}		Read	30	$3.5*t_{MCLK}$	-	115
	Control Pulse Low Width	Write (next write cycle)	13	1.5* t _{MCLK}		
t_{PWCSH}		Write (next read cycle)	80	9* t _{MCLK}	-	ns
		Read	80	9* t _{MCLK}		
t _{AS}	Address Setup Time		1	-	-	ns
t _{AH}	Address Hold Time		2	-	-	ns
$t_{ m DSW}$	Write Data Setup Time		4	-	-	ns
$t_{ m DHW}$	Write Data Hold Time		1	-	-	ns
t_{PWLW}	Write Low Time		12	-	-	ns
t_{DHR}	Read Data Hold Time		1	-	-	ns
t _{ACC}	Access Time		32	-	-	ns
t _{PWLR}	Read Low Time		36	-	-	ns
t _R	Rise Time		-	-	0.5	ns
$t_{\rm F}$	Fall Time		-	-	0.5	ns
t _{CS}	Chip select setup time		2	-	-	ns
t _{CSH}	Chip select hold time to rea	nd signal	3	-	-	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

表 2.3.1 SSD1963 参数表

一般我们设置 fMCLK 的频率为 100Mhz,因此写周期长度最小为 3 个 tMCLK,即写一个像素,最快需要 3 个 tMCLK,即: 30ns,对于本模块,屏幕分辨率是 800*480,因此可以计算得出:频率的刷新率,最快是 86.8 帧。模块的读取速度相对较慢:读周期需要 12.5 个 tMCLK,即: 125ns。

2.4 模块指令说明

ATK-7'TFTLCD V2 模块采用 SSD1963 作为 LCD 驱动芯片,该芯片自带 LCD GRAM, 无需外加独立驱动器,并且,在指令上,基本兼容 ILI9341,使用非常方便。模块采用 16位 8080 并口与外部连接(也支持 8位/9位/12位/16位并口模式,通过程序设置即可),在8080 并口模式下,LCD 驱动需要用到的信号线如下:

EX_NCE: LCD 片选信号。 EX_WR: 向 LCD 写入数据。 EX_RD: 从 LCD 读取数据。 EX D[15: 0]: 16 位双向数据线。

EX_RST: 硬复位 LCD。

EX_RS: 命令/数据标志(0,读写命令;1,读写数据)。

为了简单起见,这里我们并没有用到 TE 信号,该信号的详细介绍,请大家参考 SSD1963 数据的相关内容。

SSD1963 自带 LCD GRAM (480*864*3 字节), 并且最高支持 24 位颜色深度 (1600 万色), 我们的模块引出 16 位数据线,通过设置 (指令: 0XF0),可以支持 8 位/9 位/12 位/16 位总线宽度,可以支持 16 位/18 位/24 位颜色深度。总线宽度与颜色深度对应表,如表 2.4.1 所示:

Interface	Cycle	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
16 bits (565 format)	1 st	R5	R4	R3	R2	R1	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1
	1 st	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0
16 bits	2 nd	В7	В6	B5	B4	ВЗ	B2	B1	В0	R7	R6	R5	R4	R3	R2	R1	R0
	3 rd	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	B4	В3	B2	B1	В0
12 bits	1 st					R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4
12 bits	2 nd					G3	G2	G1	G0	В7	В6	В5	В4	ВЗ	B2	В1	В0
9 bits	1 st								R5	R4	R3	R2	R1	R0	G5	G4	G3
9 Dits	2 nd								G2	G1	G0	В5	В4	В3	B2	B1	В0
	1 st									R7	R6	R5	R4	R3	R2	R1	R0
8 bits	2 nd									G7	G6	G5	G4	G3	G2	G1	G0
	3 rd									В7	В6	B5	В4	В3	B2	B1	B0

表 2.4.1 总线宽度与像素颜色深度对应表

从上表可以看出,除了 16 位(RGB565)格式,一个点的颜色值可以在一个周期内完成,其他都需要 2~3 个周期才可以完成。虽然 18 位/24 位颜色深度可以得到更好的颜色还原效果,不过代价就是显示速度变慢。所以,我们一般使用 16 位颜色深度(65K色),RGB565 格式,这样,可以达到最快的显示速度。

特别注意 SSD1963 所有的指令都是 8 位的(高 8 位无效),且参数除了读写 GRAM 的时候可能是 8 位/9 位/12 位/16 位(根据 0XF0 的设置而定),其他操作参数,都是 8 位的。

接下来,我们介绍一下 SSD1963 一些比较重要的指令,因为 SSD1963 的指令很多,我们这里就不全部介绍了,本文档未做介绍的指令大家可以查阅 SSD1963 的数据手册 (SSD1963_DS_V1.1.pdf),里面对这些指令有详细的介绍。

这里,我们将介绍: 0XA1, 0XE2, 0XE0, 0X01, 0XE6, 0XB0, 0XB4, 0XB6, 0XF0, 0XBE, 0XB8, 0XBA, 0X36, 0X2A, 0X2B, 0X2C, 0X2E 等 17 个指令。

首先来看指令: 0XA1, 这条指令用于读取 SSD1963 的 DDB (Device Descriptor Block), 也就是读取 ID, 该指令各位描述如表 2.4.2 所示:

顺序		控制			各位描述									
则以门	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0			
指令	0	1	1	1	0	1	0	0	0	0	1	A1H		
参数 1	1	↑	1	0	0	0	0	0	0	0	1	01H		
参数 2	1	↑	1	0	1	0	1	0	1	1	1	57H		
参数 3	1	↑	1	0	1	1	0	0	0	0	1	61H		
参数 4	1	1	1	0	0	0	0	0	0	0	1	01H		

表 2.4.2 0XA1 指令描述

从上表可以看出,0XA1 指令发送完毕后,可以读取 5 个数据,而且这些数据都是固定的,分别是:0X01,0X57,0X61,0X01 和 0XFF,可以作为 LCD 的 ID。

通过这个 ID,即可判别所用的 LCD 驱动器是什么型号,这样,我们的代码,就可以根据控制器的型号去执行对应驱动 IC 的初始化代码,从而兼容不同驱动 IC 的屏,使得一个代码支持多款 LCD。

接下来看指令: 0XE2,该指令用于设置 SSD1963 的 PLL 倍频参数,该指令各位描述如表 2.4.3 所示:

顺序		控制			各位描述								
	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0		
指令	0	1	1	1	1	1	0	0	0	1	0	E2H	
参数 1	1	1	1	M7	M6	M5	M4	М3	M2	M1	MO	XXH	
参数 2	1	1	1	0	0	0	0	N3	N2	N1	N0	XXH	
参数 3	1	1	1	0	0	0	0	0	C2	0	0	XXH	

表 2.4.3 0XE2 指令描述

该函数用于设置 PLL 的 3 个参数: $M \times N$ 和 $C \cdot M$ 表示倍频数; N 表示分频数; C 表示 M 和 N 是否有效。计算公式如下:

Fvco=Fin*(M+1)

Fpll=Fvco/(N+1)

其中: Fvco 必须满足: 250Mhz<Fvco<800Mhz; Fin 表示外接晶振的频率,我们模块上面接的 10M,所以 Fin=10Mhz; Fpll 则表示倍频后的频率,即 SSD1963 的系统频率 fMCLK,该频率最大为 110Mhz。

假设我们要设置 fMCLK 为 100Mhz, 我们可以设置 M=29, N=2, 那么就可以得到 fMCLK=Fpll=100Mhz。设置完之后,记住:最后要设置 C2=1 才可以使能 M 和 N 参数。

接下来看指令: 0XE0,该指令用于设置 SSD1963 的 PLL 开关和系统时钟来源,该指令各位描述如表 2.4.4 所示:

顺序	控制				各位描述								
川川川丁	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0		
指令	0	1	↑	1	1	1	0	0	0	0	0	ЕОН	
参数 1	1	1	1	0	0	0	0	0	0	A1	A0	XXH	

表 2.4.4 0XE0 指令描述

该指令带 1 个参数,且只有最低 2 个位有效。A0 为用于设置是否使能 PLL,前面 0XE2 指令配置了 PLL 的倍频很分频,最终的 PLL 使能/禁止,还是得由这里的 A0 位控制,A0=1 则使能 PLL。A1 位用于配置是否使用 PLL 作为系统时钟(MCLK),该位设置为 1 则使用 PLL 作为系统时钟,不过次位必须在 PLL 使能后,等待至少 100us 以后才能设置为 1。

接下来看指令: 0X01,该指令用于软复位 SSD1963,该指令各位描述如表 2.4.5 所示:

顺序		控制			各位描述								
顺灯	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0		
指令	0	1	1	0	0	0	0	0	0	0	1	01H	

表 2.4.5 0X01 指令描述

该指令没有任何参数,只要写入该指令,那么 SSD1963 内部除了 0XE0~0XE5 指令,其他所有指令都将恢复复位值。特别注意:发送软复位指令后,必须等待至少 5ms 以后,才能发送其他指令。

接下来看指令: 0XE6,该指令用于设置 LSHIFT 频率,也就是像素时钟频率。该指令各位描述如表 2.4.6 所示:

顺序		控制					各位	描述				HEX
	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	DO	
指令	0	1	1	1	1	1	0	0	1	1	0	Е6Н
参数 1	1	1	1	0	0	0	0	FPR19	FPR18	FPR17	FPR16	XXH
参数 2	1	1	1	FPR15	FPR14	FPR13	FPR12	FPR11	FPR10	FPR9	FPR8	XXH
参数3	1	1	1	FPR7	FPR6	FPR5	FPR4	FPR3	FPR2	FPR1	FPR0	XXH

表 2.4.6 0XE6 指令描述

该指令带 3 个参数,用于设置 LCD 的像素时钟频率,即 Fclk。我们所用的 TFTLCD 屏型号是: AT070TN92, 从其数据手册: AT070TN92.pdf 上面,可以查得: Fclk 为 33.3Mhz。像素时钟频率的设置公式为:

Fclk=Fpll*(FPR+1)/2²⁰

而 Fpll 在前面我们介绍过,假定 Fpll=100Mhz,要得到 33.3Mhz 的 Fclk,可以计算得到 FPR=0X2FFFFF。

接下来看指令: 0XB0,该指令用于设置 LCD 的模式和分辨率。该指令各位描述如表 2.4.7 所示:

顺序		控制					各位	拉描述				HEX
顺厅	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	DO	
指令	0	1	↑	1	0	1	1	0	0	0	0	ВОН
参数1	1	1	↑	0	0	A5	A4	А3	A2	A1	AO	XXH
参数 2	1	1	↑	0	В6	В5	0	0	0	0	0	XXH
参数 3	1	1	↑	0	0	0	0	0	HDP10	HDP9	HDP8	XXH
参数 4	1	1	↑	HDP7	HDP6	HDP5	HDP4	HDP3	HDP2	HDP1	HDP0	XXH
参数 5	1	1	↑	0	0	0	0	0	VDP10	VDP9	VDP8	XXH
参数 6	1	1	1	VDP7	VDP6	VDP5	VDP4	VDP3	VDP2	VDP1	VDP0	XXH
参数 7	1	1	1	0	0	G5	G4	G3	G2	G1	GO	XXH

表 2.4.7 0XB0 指令描述

该指令带 7 个参数,用于设置 LCD 的模式和分辨率。其中 A5 位用于设置 LCD 数据宽度,A5=0 表示 18 位宽,A5=1 表示 24 位宽。AT070TN92 是 24 位宽,所以这里设置 A5 为 1 即可。HDP 用于设置 LCD 分辨率的宽度,VDP 用于设置 LCD 分辨率的高度。LCD 的分辨率,等于: (HDP+1)*(VDP+1)。AT070TN92 的分辨率为 800*480,所以可以设置 HDP=799,VDP=479 即可。

该指令的其他参数,我们就不详细介绍了,大家参考 SSD1963 的数据手册 9.33 节。接下来看指令: 0XB4,该指令用于设置 LCD 的前廊和后廊。该指令各位描述如表 2.4.8 所示:

顺序		控制						各位描述	述			HEX
	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	DO	
指令	0	1	1	1	0	1	1	0	1	0	0	В4Н
参数 1	1	1	1	0	0	0	0	0	HT10	НТ9	HT8	XXH
参数 2	1	1	1	HT7	НТ6	HT5	HT4	HT3	HT2	HT1	НТО	XXH
参数 3	1	1	1	0	0	0	0	0	HPS10	HPS9	HPS8	XXH
参数 4	1	1	1	HPS7	HPS6	HPS5	HPS4	HPS3	HPS2	HPS1	HPS0	XXH

参数 5	1	1	1	0	HPW6	HPW5	HPW4	HPW3	HPW2	HPW1	HPW0	XXH
参数 6	1	1	1	0	0	0	0	0	LPS10	LPS9	LPS8	XXH
参数 7	1	1	1	LPS7	LPS6	LPS5	LPS4	LPS3	LPS2	LPS1	LPS0	XXH
参数 8	1	1	1	0	0	0	0	0	0	LPSPP1	LPSPP0	XXH

表 2.4.8 0XB4 指令描述

该指令带了 8 个参数。其中: HT 表示行总周期宽度,等于显示和非显示总像素时钟个数-1; HPS 表示非显示周期宽度,表示从行同步信号开始到第一个有效数据之间的像素时钟个数; HPW 表示行同步信号宽度-1,以像素时钟为单位; LSP 表示行同步信号起始位置,一般设置为 0 即可; LPSPP 用于串口 TFT,我们用不到直接设置为 0 即可。

这里我们主要设置 HT/HPS/HPW 这三个参数即可,这三个参数必须根据 LCD 屏幕的参数来设置,AT070TN92 的行输入时序图如图 2.4.1 所示:

图 2.4.1 AT070TN92 行输入时序图

结合图 2.4.1, 我们可以得出:

HT=th-1=thb+thd+thfp-1 HPS=thb

HPW=thpw-1

而 thb, thd, thfp, thpw 等参数,都可以从 AT070TN92.pdf 查到: thb=46, thd=800, thfp=210, thpw=1; 那么: HT=1055, HPS=46, HPW=0。

接下来看指令: 0XB6, 该指令用于设置 LCD 的垂直消隐参数。该指令各位描述如表 2.4.9 所示:

2.7.7 ////												
顺序		控制					各位	拉描述				HEX
/ / / / / / / / / / / / / / / / / / /	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	DO	
指令	0	1	1	1	0	1	1	0	1	1	0	В6Н
参数 1	1	1	1	0	0	0	0	0	VT10	VT9	VT8	XXH
参数 2	1	1	1	VT7	VT6	VT5	VT4	VT3	VT2	VT1	VT0	XXH
参数 3	1	1	↑	0	0	0	0	0	VPS10	VPS9	VPS8	XXH
参数 4	1	1	↑	VPS7	VPS6	VPS5	VPS4	VPS3	VPS2	VPS1	VPS0	XXH
参数 5	1	1	↑	0	VPW6	VPW5	VPW4	VPW3	VPW2	VPW1	VPWO	XXH
参数 6	1	1	1	0	0	0	0	0	FPS10	FPS9	FPS8	XXH
参数 7	1	1	1	FPS7	FPS6	FPS5	FPS4	FPS3	FPS2	FPS1	FPS0	XXH

表 2.4.9 0XB6 指令描述

该指令带了7个参数。其中: VT表示一帧图像的总行数,等于显示和非显示周期内的总行数-1; VPS表示非显示周期行数,表示从帧同步信号开始到第一个显示行之间的行数; VPW表示帧同步信号宽度-1,以行为单位; FSP表示帧同步信号起始位置,一般设置为0即可。

这里我们只需要设置 VT/VPS/VPW 这三个参数即可,这三个参数同样需要根据 LCD 屏幕的参数来设置,AT070TN92 的帧时序图如图 2.4.2 所示:

图 2.4.2 AT070TN92 帧时序图

结合图 2.4.2, 我们可以得出:

VT=tv-1=tvb+tvd+tvfp-1

VPS=tvb

VPW=tvpw-1

而 tvb, tvd, tvfp, tvpw 等参数,都可以从 AT070TN92.pdf 查到: tvb=23, tvd=480, tvfp=22, tvpw=1; 那么: VT=524, VPS=23, VPW=0。

接下来看指令: 0XF0, 该指令用于设置像素数据格式。该指令各位描述如表 2.4.10 所示:

顺序		控制					各位	描述				HEX
/ / / / / / / / / / / / / / / / / / /	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	1	1	1	1	0	0	0	0	F0H
参数 1	1	1	1	0	0	0	0	0	A2	A1	A0	XXH

表 2.4.10 0XF0 指令描述

该指令带 1 个参数, 且只有低三位有效。用于设置像素数据格式, 如表 2.4.11 所示:

A[2:0]	颜色深度	像素数据位宽(即总线宽度)	像素写周期
000	24 位	8位	3
001	24 位	12 位	2
010	24 位	16 位	1.5
011	16 位	16 位 RGB565	1
100	18 位	18 位	1
101	24 位	24 位	1
110	18 位	9 位	2
111	保留	保留	保留

表 2.4.11 像素数据格式设置表

表 2.4.11 中,因为 ATK-7'TFTLCD V2 模块只引出了 16 位数据总线,所以,加粗部分的设置是不支持的。所以,我们的模块支持的数据位宽有:8 位/9 位/12 位/16 位这四种位宽设置。颜色深度则可以是:16 位/18 位/24 位等。一般我们设置 A[2:0]=011,即 16 位 RGB565

格式,以得到最快的速度。

接下来看指令: 0XBE, 该指令用于设置 SSD1963 的 PWM 输出。该指令各位描述如表 2.4.12 所示:

顺序		控制					各位	描述				HEX
川川丁	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	DO	
指令	0	1	1	1	0	1	1	1	1	1	0	BEH
参数 1	1	1	1	PWMF7	PWMF6	PWMF5	PWMF4	PWMF3	PWMF2	PWMF1	PWMF0	XXH
参数 2	1	1	1	PWM7	PWM6	PWM5	PWM4	PWM3	PWM2	PWM1	PWMO	XXH
参数 3	1	1	1	0	0	0	0	С3	0	0	C0	XXH
参数 4	1	1	1	D7	D6	D5	D4	D3	D2	D1	DO	XXH
参数 5	1	1	1	E7	E6	E5	E4	E3	E2	E1	E0	XXH
参数 6	1	1	1	0	0	0	0	F3	F2	F1	F0	XXH

表 2.4.12 0XBE 指令描述

该指令带 6 个参数,其中 PWMF[7:0]用于设置 PWM 频率,计算公式如下:

Fpwm=Fpll/(256*PWMF[7:0])/256

按 Fpll 为 PLL 倍频后的系统时钟,然后通过 PWMF 的设置,就可以设置 SSD1963 的 PWM 频率。

PWM[7:0]则用于设置占空比,值越大,PWM 的高电平时间越长。注意: SSD1963 的 PWM 输出,占空比可调范围固定为: 0~255。另外,必须设置 0XD0 指令的 A0 位为 0,否则将由 DBC 控制 PWM 的占空比(DBC 即 SSD1963 自带的一个背光控制功能,通过亮度参数,来自动控制背光)。

C3 位用于设置 PWM 控制方式,设置为 0 则由 MCU 控制;设置为 1 则由 DBC 控制 C0 位用于设置是否使能 PWM 输出,设置为 1 即使能。

D[7:0]/E[7:0]/F[3:0]在 DBC 控制 PWM 的时候,才需要设置。我们一般采用 MCU 直接控制 PWM,所以这几个参数直接设置为 0 即可。

接下来看指令: 0XB8, 该指令用于设置 SSD1963 的 $4 \land GPIO$ 的参数。该指令各位描述如表 2.4.13 所示:

,	->1	- // 1/4	. •										
	顺序		控制					各位	描述				HEX
	顺庁	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
	指令	0	1	1	1	0	1	1	1	0	0	0	В8Н
	参数1	1	1	1	A7	A6	A5	A4	А3	A2	A1	A0	XXH
	参数 2	1	1	1	0	0	0	0	0	0	0	В0	XXH

表 2.4.13 0XB8 指令描述

该指令带 2 个参数,用于设置 SSD1963 的 4 个 GPIO 的参数。A[7:4]: 这四个位用于设置 GPIO3: GPIO0 的控制方式,每一个位对应一个 IO,设置为 0 的时候,表示由 MCU 控制,设置为 1 的时候,表示由 LCDC 控制。A[3:0]: 这四个位用于控制 GPIO3: GPIO0 的方向,每一个位对应一个 IO,设置为 0,表示作为输入,设置为 1 表示作为输出。

而 B0 位,则用于控制 GPIO0 是否用做普通 IO 使用。设置为 0 表示作为 LCD 的功耗控制,设置为 1 表示作为普通 IO 使用。

ATK-7'TFTLCD V2 采用 GPIO0 和 GPIO1 来控制 LCD 的左右和上下方向,所以,我们设置 A[7:0]=0X03, B0=1 即可。

接下来看指令: 0XBA,该指令用于设置 SSD1963 的 $4 \land GPIO$ 的输出状态。该指令各位描述如表 2.4.14 所示:

顺序 控制	各位描述	HEX
-------	------	-----

	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	1	0	1	1	1	0	1	0	BAH
参数 1	1	1	1	0	0	0	0	А3	A2	A1	A0	XXH

表 2.4.14 0XBA 指令描述

该指令只有一个参数,用于控制 4 个 GPIO 的输出状态。A[3:0]用于控制 GPIO3~GPIO0 这 4 个 IO 的输出状态,每一个位对应一个 GPIO,设置为 0。表示输出 0,设置为 1 表示输出 1。

接下来看指令:	0X36,	该指令用于	·设置地址模式。		各位描述如表 2.4.15)	听示:
1女 1 /1 /1 1日 マ:	$0\Delta 30$,	図1日 マ / 11 1	以且地址快八。	火油マイ	予ツ畑处如衣 2.4.13 /	71/1/1

顺序		控制					各位	描述				HEX
/ / / / / / / / / / / / / / / / / / /	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	0	0	1	1	0	1	1	0	36H
参数 1	1	1	1	A7	A6	A5	A4	А3	A2	A1	A0	XXH

表 2.4.15 0X36 指令描述

该指令非常重要,可以控制 SSD1963 存储器的读写方向,简单的说,就是在连续写 GRAM 的时候,可以控制 GRAM 指针的增长方向,从而控制显示方式(读 GRAM 也是一样)。从上表可以看出,0X36 指令后面,紧跟一个参数,这里我们主要关注: A7、A6、A5 这三个位,通过这三个位的设置,我们可以控制整个 SSD1963 的全部扫描方向,如表 2.4.16 所示:

扌	空制位	Ī.	效果
A7	A6	A5	LCD 扫描方向 (GRAM 自增方式)
0	0	0	从左到右,从上到下
1	0	0	从左到右,从下到上
0	1	0	从右到左,从上到下
1	1	0	从右到左,从下到上
0	0	1	从上到下,从左到右
0	1	1	从上到下,从右到左
1	0	1	从下到上,从左到右
1	1	1	从下到上,从右到左

表 2.4.16 A7、A6、A5 设置与 LCD 扫描方向关系表

这样,我们在利用 SSD1963 显示内容的时候,就有很大灵活性了,比如显示 BMP 图片, BMP 解码数据,就是从图片的左下角开始,慢慢显示到右上角,如果设置 LCD 扫描方向为 从左到右,从下到上,那么我们只需要设置一次坐标,然后就不停的往 LCD 填充颜色数据即可,这样可以大大提高显示速度。

该指令的其他位,这里就不详细介绍了,请大家参考 SSD1963 的数据手册。

接下来看指令: 0X2A,该指令用于设置列地址,在从左到右,从上到下的扫描方式(横屏模式下)下面,该指令用于设置横坐标(x坐标),该指令如表 2.4.17 所示:

顺序		控制					各位描	i述				HEX
	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	0	0	1	0	1	0	1	0	2AH
参数 1	1	1	1	SC15	SC14	SC13	SC12	SC11	SC10	SC9	SC8	XXH
参数 2	1	1	↑	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	XXH
参数 3	1	1	1	EC15	EC14	EC13	EC12	EC11	EC10	EC9	EC8	XXH
参数 4	1	1	1	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	XXH

表 2.4.17 0X2A 指令描述

在横屏默认扫描方式时,该指令用于设置 x 坐标,该指令带有 4 个参数,实际上是 2 个坐标值: SC 和 EC,即列地址的起始值和结束值,SC 必须小于等于 EC,且 $0 \le$ SC/EC \le 799(lcd 横向分辨率)。一般在设置 x 坐标的时候,我们只需要带 2 个参数即可,也就是设置 SC 即可,因为如果 EC 没有变化,我们只需要设置一次即可(在初始化 SSD1963 的时候设置),从而提高速度。

与 0X2A 指令类似,指令: 0X2B,是页地址设置指令,在从左到右,从上到下的扫描方式(横屏模式下)下面,该指令用于设置纵坐标(y坐标)。该指令如表 2.4.18 所示:

顺序		控制					各位描	述				HEX
顺/宁	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	0	0	1	0	1	0	1	1	2BH
参数 1	1	1	↑	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	XXH
参数 2	1	1	↑	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	XXH
参数 3	1	1	↑	EP15	EP14	EP13	EP12	EP11	EP10	EP9	EP8	XXH
参数 4	1	1	1	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0	XXH

表 2.4.18 0X2B 指令描述

在横屏默认扫描方式时,该指令用于设置 y 坐标,该指令带有 4 个参数,实际上是 2 个坐标值: SP 和 EP, 即页地址的起始值和结束值, SP 必须小于等于 EP, 且 0≤SP/EP≤479 (lcd 纵向分辨率)。一般在设置 y 坐标的时候,我们只需要带 2 个参数即可,也就是设置 SP 即可,因为如果 EP 没有变化,我们只需要设置一次即可(在初始化 SSD1963 的时候设置),从而提高速度。

接下来看指令: 0X2C,该指令是写显存(GRAM)指令,在发送该指令之后,我们便可以往SSD1963的GRAM里面写入颜色数据了,该指令支持连续写,指令描述如表 2.4.19所示:

顺序		控制					各位	描述				HEX
// / / / / / / / / / / / / / / / / / /	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	0	0	1	0	1	1	0	0	2CH

表 2.4.19 0X2C 指令描述

MCU 在发送该指令后,便可以往 SSD1963 写入 GRAM 数据了,而 GRAM 的地址将根据 0X36 指令所设置的扫描方向进行自增。例如:假设设置的是从左到右,从上到下的扫描方式,那么设置好起始坐标(通过 SC, SP 设置)后,每写入一个颜色值,GRAM 地址将会自动自增 1 (SC++),如果碰到 EC,则回到 SC,同时 SP++,一直到坐标: EC,EP 结束,其间无需再次设置的坐标,从而大大提高写入速度。

最后,来看看指令:0X2E,该指令是读 GRAM 指令,用于读取 SSD1963 的显存(GRAM),在发送该指令之后,我们便可以读取 SSD1963 GRAM 的颜色数据了,该指令支持连续读,指令描述如表 2.4.20 所示:

顺序		控制					各位	描述				HEX
/ / / / / / / / / / / / / / / / / / /	RS	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	
指令	0	1	1	0	0	1	0	1	1	1	0	2EH

表 2.4.20 0X2E 指令描述

MCU 在发送该指令后,便可以读取 SSD1963 GRAM 的数据了,而 GRAM 的地址将根据 0X36 指令所设置的扫描方向进行自增,因此可以连续读取 GRAM 数据,其操作方式完全同 0X2C,只是写操作变成了读操作。

以上,就是使用 SSD1963 时的一些重要指令,通过这些指令,我们便可以很好的控制

SSD1963 显示我们所要显示的内容了。

2.5 电容触摸屏接口说明

ATK-7' TFTLCD V2 模块采用敦泰电子(FocalTech)的 FT5206 作为电容触摸屏的驱动 IC, 该驱动芯片通过 4 根线与外部连接: CT RST、CT INT、CT SDA、CT SCL。

CT_RST 为 FT5206 的复位信号, 低电平有效, 可以用来复位 FT5206, 并可以让 FT5206 进入正常工作模式。

CT_INT 为 FT5206 的中断输出引脚,当 FT5206 有数据可以输出的时候,该引脚会输出脉冲信号,提醒 CPU 可以读取数据了。

CT_SDA 和 CT_SCL 则是 FT5206 和 CPU 进行 IIC 通信的接口,通过 IIC 总线进行数据交换。

FT5206 采用标准的 IIC 通信,最大通信速率为 400Khz,模块设置的 FT5206 器件地址为 0X70(写)和 0X71(读)。

FT5206 的写操作流程如图 2.5.1 所示:

图 2.5.1 FT5206 写操作流程图

图 2.5.1 为 CPU 写 FT5206 的操作流程图,首先 CPU 产生一个起始信号(S),然后发送地址信息及读写位信息"0"表示写操作: 0X70(Address W)。

FT5206 接收到正确的地址后,发送 ACK 给 CPU, CPU 随后发送 8 位寄存器地址,发送完地址之后,发送 8 位要写入到寄存器的数据内容。

FT5206 寄存器的地址指针,会在写入一个数据后,自动加 1,所以当 CPU 需要对连续地址的寄存器进行写操作的时候,只需要写入第一个寄存器的地址,然后开始连续写入数据即可。最后,当写操作完成时,CPU 发送停止信号(E),结束当前的写操作。

FT5206 的读操作流程如图 2.5.2 所示:

图 2.5.2 FT5206 读操作流程图

图 2.4.2 为 CPU 读 FT5206 的操作流程图,首先 CPU 产生一个起始信号(S),然后发送地址信息及读写位信息"0"表示写操作: 0X70 (Address_W)。

FT5206 接收到正确的地址后,发送 ACK 给 CPU, CPU 随后发送 8 位首寄存器地址,设置要读取的寄存器地址。在收到应答后,CPU 重新发送一次起始信号(S),发送地址信息及读写位信息"1"表示读操作: 0X71(Address_R)。在收到应答(ACK)后,CPU 就可以开始读取数据了。

同样,FT5206 支持连续的读操作,CPU 只需要在每收到一个数据后,发送一个 ACK 给 FT5206,就可以读取下一个寄存器的数据,寄存器地址也是自动增加的。当 CPU 想停止继续读数据的时候,发送 NACK,然后在发送停止信号(E),即可结束当前的读操作。

2.5.1 FT5206 寄存器简介

FT5206 的寄存器比较多,我们这里就不一一介绍了,仅介绍一部分比较重要的寄存器。 其他寄存器描述,请大家参考: FTS_AN_CTPM_Standard.pdf 这个文档。这里我们将介绍: 0X00、0XA4、0X80、0X88、0XA1、0XA2、0X02、0X03~0X06、0X09~0X0C、0X0F~0X12、0X15~0X18、0X1B~0X1E 等寄存器。

1, 工作模式寄存器(0X00)

该寄存器用于设置 FT5206 的工作模式。该寄存器各位描述如表 2.5.1.1 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
00X0	0	MO	DDE[2:0)]	0	0	0	0

表 2.5.1.1 0X00 寄存器各位描述

MODE[2:0]用于控制 FT5206 的工作模式,一般设置为:000b,表示正常工作模式。

2, 中断状态控制寄存器(0XA4)

该寄存器用于设置 FT5206 的中断状态。该寄存器各位描述如表 2.5.1.2 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0XA4	0	0	0	0	0	0	0	M

表 2.5.1.2 0XA4 寄存器各位描述

该寄存器只有最低位有效, M=0 的时候, 表示查询模式; M=1 的时候, 表示触发模式。 一般设置为查询模式。

3, 有效触摸门限控制寄存器(0X80)

该寄存器用于设置 FT5206 的有效触摸门限值。该寄存器各位描述如表 2.5.1.3 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X80	T7	T7	T5	T4	Т3	T2	T1	T0

表 2.5.1.3 0X80 寄存器各位描述

该寄存器 8 位数据都有效,用于设置 FT5206 有效触摸的门限值, 计算公式为:

有效触摸门限值=T[7:0]*4

T[7:0]所设置的值越小,触摸越灵敏,默认状态下T[7:0]=70。

4, 激活周期控制寄存器(0X88)

该寄存器用于设置 FT5206 的激活周期。该寄存器各位描述如表 2.5.1.4 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X88	0	0	0	0	Р3	P2	P1	P0

表 2.5.1.4 0X88 寄存器各位描述

该寄存器只有低 4 位有效,用于设置 FT5206 的激活周期。P[3:0]的设置范围为: 3~14,不过建议一般不要小于 12。

5, 库版本寄存器(0XA1 和 0XA2)

这里由 2 个寄存器: 0XA1 和 0XA2 组成,用于读取 FT5206 的驱动库版本,0XA1 用于读取版本的高字节,0XA2 用于读取版本的低字节。ATK-7'TFTLCD V2 模块所用的 FT5206 库版本为: 0X3003。

6, 触摸状态寄存器(0X02)

该寄存器用于读取 FT5206 的触摸状态。该寄存器各位描述如表 2.5.1.5 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X02	0	0	0	0	TD3	TD2	TD1	TD0

表 2.5.1.5 0X02 寄存器各位描述

该寄存器只有低 4 位有效, TD[3:0]的取值范围是: 1~5, 表示有多少个有效触摸点。我们可以根据这个寄存器的值来判断有效触摸点的个数, 然后通过 0X03/0X09/0X0F/0X15 和 0X1B 等寄存器来读取触摸坐标数据。

7, 触摸数据寄存器(0X03~0X1E)

这里总共包括 20 个寄存器,他们是: 0X03~0X06、0X09~0X0C、0X0F~0X12、0X15~0X18、0X1B~0X1E。每 4 个寄存器为 1 组,表示一个触摸点的坐标数据,比如 0X03~0X06,则表示触摸点 1 的坐标数据,其他的以此类推。这里,我们仅介绍 0X03~0X06 寄存器,如表 2.5.1.6 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X03	Event	FLAG	0	0		X[1]	[8:1	
0X04				X[7	:0]			
0X05	Touc	h ID	0	0		Y[1]	[8:1	
0X06				Y[7	:0]			

表 2.5.1.6 0X03~0X06 寄存器各位描述

这里的 Event FLAG 用于表示触摸状态: 00,按下; 01,松开; 10,持续触摸; 11,保留。一般我们只需要判断该状态为 10 即可,即持续触摸状态,就可以稳定的读取触摸坐标数据了。而 Touch ID,我们一般用不到,这里就不做介绍了。最后,是 X 和 Y 的坐标数据,这些数据以 12 位的形式输出,如表 2.5.1.6 所示。

其他的 0X09~0X0C、0X0F~0X12、0X15~0X18、0X1B~0X1E 等寄存器,则分别用于读取第 2~5 个触摸点的坐标数据。

2.5.2 FT5206 初始化流程

FT5206 的初始化流程非常简单,首先通过 CT_RST 引脚对 FT5206 进行一次复位,让 FT5206 进入正常工作模式。然后设工作模式、中断状态、触摸阀值和激活周期等参数,就完成了对 FT5206 的初始化。

初始化完成便可以读取触摸坐标数据了,先读取 0X02 寄存器,判断有多少个有效触摸点,然后读取 0X03~0X1E 等寄存器,便可以获得触摸坐标数据。

3. 结构尺寸

ATK-7'TFTLCD V2 电容触摸屏模块的尺寸结构如图 3.1 所示:

图 3.1 ATK-7' TFTLCD V2 模块尺寸图

4. 其他

1、购买地址:

官方店铺 1: http://eboard.taobao.com/

官方店铺 2: http://shop62103354.taobao.com

2、资料下载

ATK-7' TFTLCD V2 模块资料下载地址: http://www.openedv.com/posts/list/51287.htm

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u>

传真: 020-36773971 电话: 020-38271790

