

Керування жорстким диском в Linux

Керування простором на жорсткому диску

- Стандарт ієрархії файлової системи (Filesystem Hierarchy Standard, FHS)
- Розділи
- Каталоги Linux

Базова система

Веб-сервер

Розділи

Базова Linux-система

1 Розділ: /boot swap

Веб-сервер

Окремі розділи:

/var /var/www/html sda1

1-й первинний

Жорсткий диск; sda

sda2

2-й первинний

sda3

3-й розширений

sda5

логічний розділ

логічний

sda6

розділ

Файловий сервер

Файловий сервер

Окремі розділи:

/home

Мережевий сервер

> NFS SAMBA FTP

4-й первинний sda4 **SWAP**

Керування простором на жорсткому диску

- Розбиття диска це метод розділення простору на жорсткому диску на окремі частини, які називаються розділами
- Стандарт ієрархії файлової системи (Filesystem Hierarchy Standard, FHS) в Linux ОС визначає призначення основних каталогів
- Якщо коренева файлова система знаходиться в окремому розділі, то в неї необхідно включити такі каталоги: /bin, /dev, /etc, /lib, /sbin, /root

FHS

/коренева файлова система повна ієрархія

Стандарт ієрархії файлової системи

/bin | Виконувані файли для основних команд

/dev Файли пристроїв

/sbin Виконувані файли для адміністрування ОС (для root)

/root Домашній каталог користувача root

/var Змінні файли для ОС (файли журналів)
/home Містить домашні каталоги користувачів ОС

/opt Додаткові пакети застосунків

/srv Дані для публічних серверних служб /tmp Тимчасові файли користувачів ОС

/proc Віртуальна файлова система (стан ядра ОС та процесів)

/boot Файли завантажувача системи

/sys Віртуальна файлова система (ядро, пристрої, драйвери)

/run Інформація, необхідна для роботи демонів (ріd-файли, сокети)

Керування простором на жорсткому диску

- Інші каталоги файлової системи Linux: /usr, /var, /home, /media, /mnt, /opt, /srv, /tmp, /proc, /boot
- На старіших версіях системи, де LBA був недоступний, розділ з /boot каталогом повинен був розташовуватися в межах перших 1024 циліндрів одного з перших двох жорстких дисків системи.

Керування простором на жорсткому диску

- Проектування файлової системи Linux
- LBA
- Первинний, розширений і логічний розділи
- Розділ підкачки
- LVM (менеджер логічних розділів)

LVM (logical volume manager)

АБСТРАКТНИЙ РІВЕНЬ

/mnt/data

/mnt/docs

/dev/vg/data

/dev/vg/docs

(logical volume)

Логічний розділ

Файлова система

vg

sdb1

sdc3

Група розділів (volume group)

Фізичні розділи (physical volume)

ФІЗИЧНИЙ РІВЕНЬ

sda1 sda2

sda2

/dev/sda

sdb1

/dev/sdb

sdc1 sdc3

/dev/sdc

Розділи

Диски

LVM – менеджер логічних томів

• PV (physical volumes) фізичні томи - це базовий логічний рівень що складається з фізичних носіїв, якими можуть бути як диски цілком (/dev/sda1, /dev/sdb5 і т.д.) так і окремі розділи (/dev/sda1, /dev/sdb5 і т.п.). Одному розділу / диску може бути присвоєна тільки одна мітка PV. Фізичні томи не мають файлової системи.

LVM – менеджер логічних томів

• VG (volume groups) – логічний рівень на якому фізичні томи поєднуються в групи. Таким чином групи томів представляють собою пул дискового простору, якому можна присвоїти певне ім'я.

LVM – менеджер логічних томів

• LV (logical volume) – логічний том - рівень абстракції, на якому створюється файлова система для розміщення даних. Користувачі (і процеси) системи працюють тільки з логічними томами.

LVM — фізичний том (pv*)

pvcreate /dev/sda1	Помічає розділ як фізичний том LVM
pvdisplay	Демонстрація всіх атрибутів фізичного тому LVM
pvscan	Пошук всіх фізичних томів LVM на всіх дисках
pvmove /dev/sda1	Переміщення фізичних томів між різними пристроями
pvremove /dev/sda1	Видалення вільного фізичного тому
pvresize /dev/sda1	Зміна розміру фізичного розділу

LVM – групи томів (vg*)

vgcreate vg1 /dev/sda1	Створення нової групи томів LVM
vgdisplay	Демонстрація всіх наявних груп LVM
vgscan	Пошук всіх груп LVM на дисках в системі
vgextend /dev/sdb1	Додавання фізичного розділу в групу LVM
vgremove vg1	Видалення групи LVM
vgrename vg1 newvg1	Зміна імені групи LVM

LVM — логічний том (Iv^*)

Ivcreate -L 1G -n docs vg1	Створення логічного тому docs розміром 1Gb в групі vg1
lvcreate -1 100%FREE -n data vg1	Створення логічного тому data розміром на в вільний простір групи vg1
Ivscan	Пошук всіх логічних томів LVM
lvdisplay	Демонстрація атрибутів логічного тому LVM
lvrename /dev/vg1/data /dev/vg1/newdata	Зміна імені логічного тому LVM
Ivremove /dev/vg1/data	Видалення логічного тому LVM

Файлова система Linux

• Проектування файлової системи Linux залежить від цілей використання системи. Наприклад, звичайна настільна система Linux може містити тільки /, /boot і розділ підкачки. Файловий сервер може використовувати окремий розділ для каталогу /home, який використовується сервісами NFS, Samba, FTP, тоді як для веб-сервера в окремий розділ необхідно визначити каталог /var

Файлова система Linux

- Три типи розділів доступні на Linux ОС: Первинні, Розширені, Логічні
- Для збільшення ефективності використання оперативної пам'яті RAM (Random Access Memory) в Linux використовуються спеціальні розділи для підкачки.

Створення розділів та файлових систем

Створення розділів та файлових систем

- fdisk
- gdisk
- parted
- gparted

- mkfs
- mk2fs
- ext2 / ext3 / ext4
- reiserfs
- xfs
- btrfs
- vfaf
- swap

Файлові системи

fdisk

fdisk -l fdisk /dev/hdbX type "m" for help

mkswap

mkswap /dev/hdX

Розділ

Диск /dev/h dX

Еквівалентні команди

mkfs.ext2 mkfs -t ext2
mkfs.ext3 mkfs -t ext3
mkfs.ext4 mkfs -t ext4
mkfs.reiserfs mkfs -t reiserfs
mkfs.xfs mkfs -t xfs
mkfs.vfat mkfs -t vfat
Linux raid auto

mk2fs mk2fs -j mkreiserfs -

mkdosfs -F 32

Типи розділів

7 HPFS/NTFS
82 Файл підкачки
83 Стандартний тип розділу в Linux
85 Linux extended
8e Linux LVM
fd Linux raid auto

Формати файлових систем в Linux

ext2 Не журнальована Журнальована, стара версія ext3 Журнальована, стандарт для Linux ext4 reiserfs Журнальована, поточна версія - 4 Підкачка Linux swap Сумісна с Microsoft FAT32 vfat 64-бітна журнальована ФС xfs B-tree FS, «копіювання при записі» btrfs

mkfs

mkfs -t ext3 /dev/hdX mkfs.ext2 /dev/hdX

створення ФС

mkfs.ext2 mkfs.ext3 mkfs.ext4 mkfs.btrfs mkfs.reiserfs mkfs.xfs mkfs.vfat

Ключі команди fdisk / gdisk

а	Перемикання прапора завантаження
d	Видалення розділу
1	Вивід відомих типів розділів
m	Вивід даного переліку опцій
n	Додати новий розділ
p	Вивести дані таблиці розділів
q	Вийти без збереження змін
t	Змінити тип розділу
W	Записати таблицю розділів на диск та вийти

Типи розділів команди fdisk

7	HPFS / NTFS
82	Розділ підкачки
83	Стандартний розділ
85	Розширений розділ
8e	LVM розділ
fd	Linux raid auto

Ключі команди parted

help (h)	Вивід довідки
print (p)	Вивід таблиці розділів
select	Вибрати пристрій в якості поточного
	редагованого пристрою
set	Перемикання прапора завантаження
mkpart	Додати новий розділ
rm	Видалення розділу
resize	Змінити розмір файлової системи
unit	Задання одиниці зображення інформації
quit	Вийти із parted

Висновки

- Увага: зміна таблиці розділів або форматування розділів, може знищити ОС
- Інформація про розділи зберігається у відповідній таблиці на жорсткому диску
- Команди fdisk, gdisk і parted з опцією -l використовуються для виведення всіх наявних розділів

Висновки

- Увага: зміна таблиці розділів або форматування розділів в програмі parted застосовується відразу, а при виході як в fdisk gdisk
- Для розбиття диска використовуються команди fdisk, gdisk або parted
- Для форматування диска / розділу використовується команда mkfs
- Для форматування розділу свопу використовується команда mkswap