Teorema di Fagin

Stefano Pessotto

14 gennaio 2022

Università degli studi di Udine - Logica per L'informatica

Introduzione

Significato del teorema di Fagin

Teorema di Fagin

∃SO cattura NP

Traduzione

- Per ogni formula $\Phi \in \exists SO$, verificare se una struttura soddisfa Φ
 - un problema NP;
- Ogni proprietà P che può essere valutata su strutture finite conn
 - complessità NP, è esprimibile in ±50

Significato del teorema di Fagin

Teorema di Fagin

∃SO cattura NP

Traduzione

- Per ogni formula Φ ∈ ∃SO, verificare se una struttura soddisfa Φ è un problema NP;
- Ogni proprietà P che può essere valutata su strutture finite con complessità NP, è esprimibile in ∃SO.

Significato del teorema di Fagin

Teorema di Fagin

∃SO cattura NP

Traduzione

- Per ogni formula Φ ∈ ∃SO, verificare se una struttura soddisfa Φ è un problema NP;
- Ogni proprietà P che può essere valutata su strutture finite con complessità NP, è esprimibile in ∃SO.

Dimostrazione

Dimostriamo che verificare se $\mathcal{I} \models \phi \in \exists SO$ è in NP.

Sia $\Phi = \exists S_1 \exists S_2 ... \exists S_n \varphi$, dove $\varphi \in FO$. Costruiamo una MdT non deterministica N che

- lacksquare prende in input una struttura ${\mathcal I}$
- sceglie non deterministicamente $S_1, S_2, ..., S_n$
- verifica se $\mathcal{I} \models \varphi(S_1, S_2, ..., S_n)$.

Poiché la verifica $\mathcal{I} \models \varphi \in FO$, con φ fissata e $rg(\varphi) = k$, richiede tempo $\mathcal{O}((|\mathcal{I}| + |S_1| + ... + |S_n|)^k)$, N opera in tempo polinomiale. Quindi determinare se una struttura soddisfi una formula $\Phi \in \exists SO$ è un problema NP.

Dimostriamo che verificare se $\mathcal{I} \models \phi \in \exists SO$ è in NP.

Sia $\Phi = \exists S_1 \exists S_2 ... \exists S_n \varphi$, dove $\varphi \in FO$.

Costruiamo una MdT non deterministica N che:

- ullet prende in input una struttura ${\mathcal I}$
- sceglie non deterministicamente $S_1, S_2, ..., S_n$
- verifica se $\mathcal{I} \models \varphi(S_1, S_2, ..., S_n)$.

Poiché la verifica $\mathcal{I} \models \varphi \in FO$, con φ fissata e $rg(\varphi) = k$, richiede tempo $\mathcal{O}((|\mathcal{I}| + |S_1| + ... + |S_n|)^k)$, N opera in tempo polinomiale. Quindi determinare se una struttura soddisfi una formula $\Phi \in \exists SO$ è un problema NP.

Dimostriamo che verificare se $\mathcal{I} \models \phi \in \exists SO$ è in NP.

Sia $\Phi = \exists S_1 \exists S_2 ... \exists S_n \varphi$, dove $\varphi \in FO$.

Costruiamo una MdT non deterministica N che:

- ullet prende in input una struttura ${\mathcal I}$
- sceglie non deterministicamente $S_1, S_2, ..., S_n$
- verifica se $\mathcal{I} \models \varphi(S_1, S_2, ..., S_n)$.

Poiché la verifica $\mathcal{I} \models \varphi \in FO$, con φ fissata e $rg(\varphi) = k$, richiede tempo $\mathcal{O}((|\mathcal{I}| + |S_1| + ... + |S_n|)^k)$, N opera in tempo polinomiale.

Quindi determinare se una struttura soddisfi una formula $\Phi \in \exists SO$ è un problema NP.

3

Dimostriamo che dato un problema P codificato in un linguaggio L e decidibile su strutture finite con complessità NP, P è esprimibile in $\exists SO$.

Sia $N=(Q,\Sigma,\Delta,\delta,q_o,Q_a,Q_r)$ la 1-MdT non deterministica che, data la codifica di una struttura $\mathcal I$ nel linguaggio L, determina se P vale in $\mathcal I$ in tempo polinomiale $|\mathcal I|^k$.

Supponiamo, senza perdita di generalità, $\Sigma = \{0,1\}.$

Codifichiamo la struttura \mathcal{I} specificando il numero di elementi nel dominio e introducendo delle stringhe di dimensione n^{m_i} per ogni predicato R_i di arietà m_i , dove n è la dimensione del dominio.

Nel caso di grafi, la codifica è data dalla stringa 0^n1s , dove $|s|=n^2$ e $0 \le u, v \le n-1, (u,v) \in E \iff$ s contiene 1 in posizione $u \cdot n + v$

Dimostriamo che dato un problema P codificato in un linguaggio L e decidibile su strutture finite con complessità NP, P è esprimibile in $\exists SO$.

Sia $N=(Q,\Sigma,\Delta,\delta,q_o,Q_a,Q_r)$ la 1-MdT non deterministica che, data la codifica di una struttura $\mathcal I$ nel linguaggio L, determina se P vale in $\mathcal I$ in tempo polinomiale $|\mathcal I|^k$.

Supponiamo, senza perdita di generalità, $\Sigma = \{0,1\}$.

Codifichiamo la struttura \mathcal{I} specificando il numero di elementi nel dominio e introducendo delle stringhe di dimensione n^{m_i} per ogni predicato R_i di arietà m_i , dove n è la dimensione del dominio.

Nel caso di grafi, la codifica è data dalla stringa 0^n1s , dove $|s|=n^2$ e $0 \le u, v \le n-1, (u,v) \in E \iff$ s contiene 1 in posizione $u \cdot n + v$

Sappiamo che:

- la dimensione della codifica di \(\mathcal{I}\) è polinomialmente correlata al dominio dell'interpretazione;
- N termina in tempo n^k , modificando quindi al più n^k celle del nastro.

Possiamo quindi esprimere un istante di tempo e una posizione del nastro tramite una k-pupla nel seguente modo:

- $\vec{t} = (t_1, ..., t_k)$ codifica l'elemento $\sum_{i=1}^k t_i \cdot n^{k-i}$ nell'ordine lessicografico fra le k-puple corrispondenti ai passi di computazione;
- $\vec{p} = (p_1, ..., p_k)$ codifica l'elemento $\sum_{i=1}^k p_i \cdot n^{k-i}$ nell'ordine lessicografico fra le k-puple corrispondenti alle posizioni del nastro

Sappiamo che:

- la dimensione della codifica di *T* è polinomialmente correlata al dominio dell'interpretazione;
- N termina in tempo n^k , modificando quindi al più n^k celle del nastro.

Possiamo quindi esprimere un istante di tempo e una posizione del nastro tramite una k-pupla nel seguente modo:

- $\vec{t} = (t_1, ..., t_k)$ codifica l'elemento $\sum_{i=1}^k t_i \cdot n^{k-i}$ nell'ordine lessicografico fra le k-puple corrispondenti ai passi di computazione;
- $\vec{p} = (p_1, ..., p_k)$ codifica l'elemento $\sum_{i=1}^k p_i \cdot n^{k-i}$ nell'ordine lessicografico fra le k-puple corrispondenti alle posizioni del nastro.

Costruiamo la formula $\Phi \in \exists SO$:

$$\Phi = \exists < \exists T_0 \exists T_1 \exists T_{\sqcup} \exists H_{q_0} ... \exists H_{q_m} \Psi$$

- < è un ordine lineare;
- $\forall c \in \Delta$, il predicato $T_c(\vec{p}, t)$ indica che la posizione \vec{p} del nastro, al tempo \vec{t} , contiene il carattere c;
- $\forall q \in Q$, il predicato $H_q(\vec{p}, \vec{t})$ indica che, al tempo \vec{t} , N si trova nello stato q e la testina si trova in \vec{p} ;
- $\Psi \in FO(L \cup \{<, T_0, T_1, T_{\sqcup}\} \cup \{H_q | q \in Q\})$

Costruiamo la formula $\Phi \in \exists SO$:

$$\Phi = \exists < \exists T_0 \exists T_1 \exists T_{\sqcup} \exists H_{q_0} ... \exists H_{q_m} \Psi$$

- < è un ordine lineare;
- $\forall c \in \Delta$, il predicato $T_c(\vec{p}, \vec{t})$ indica che la posizione \vec{p} del nastro, al tempo \vec{t} , contiene il carattere c;
- $\forall q \in Q$, il predicato $H_q(\vec{p}, \vec{t})$ indica che, al tempo \vec{t} , N si trova nello stato q e la testina si trova in \vec{p} ;
- $\Psi \in FO(L \cup \{<, T_0, T_1, T_{\sqcup}\} \cup \{H_q | q \in Q\})$

Costruiamo la formula $\Phi \in \exists SO$:

$$\Phi = \exists < \exists T_0 \exists T_1 \exists T_{\sqcup} \exists H_{q_0} .. \exists H_{q_m} \Psi$$

- < è un ordine lineare;
- $\forall c \in \Delta$, il predicato $T_c(\vec{p}, \vec{t})$ indica che la posizione \vec{p} del nastro, al tempo \vec{t} , contiene il carattere c;
- $\forall q \in Q$, il predicato $H_q(\vec{p}, \vec{t})$ indica che, al tempo \vec{t} , N si trova nello stato q e la testina si trova in \vec{p} ;
- $\Psi \in FO(L \cup \{<, T_0, T_1, T_{\sqcup}\} \cup \{H_q | q \in Q\})$

Costruiamo la formula $\Phi \in \exists SO$:

$$\Phi = \exists < \exists T_0 \exists T_1 \exists T_1 \exists H_{q_0} ... \exists H_{q_m} \Psi$$

- < è un ordine lineare;
- $\forall c \in \Delta$, il predicato $T_c(\vec{p}, \vec{t})$ indica che la posizione \vec{p} del nastro, al tempo \vec{t} , contiene il carattere c;
- $\forall q \in Q$, il predicato $H_q(\vec{p}, \vec{t})$ indica che, al tempo \vec{t} , N si trova nello stato q e la testina si trova in \vec{p} ;
- $\Psi \in FO(L \cup \{<, T_0, T_1, T_{\sqcup}\} \cup \{H_q | q \in Q\}).$

Ψ è creato dalla congiunzione delle seguenti affermazioni:

- 1. < definisce un ordine lineare;
- 2. dato un istante di tempo \vec{t} :
 - ogni cella del nastro \vec{p} contiene esattamente un elemento di Δ
 - N si trova in esattamente uno stato di Q
- 3. la computazione di N raggiunge uno stato di accettazione;
- 4. i predicati T_i e H_{σ} rispettano la funzione di transizione δ :

$$\bigvee \alpha_{(q,a,q',b,m)}$$
$$(q',b,m) \in \delta(q,a)$$

dove α descrive la transizione

- se N si trova nello stato q e la testina si trova nel carattere a
- sostituisce il carattere nella posizione della testina con il carattere b
- sposta la testina secondo m
- cambia lo stato in q'
- 5. la computazione inizia dalla configurazione iniziale (richiede L)

 Ψ è creato dalla congiunzione delle seguenti affermazioni:

- 1. < definisce un ordine lineare;
- 2. dato un istante di tempo \vec{t} :
 - ogni cella del nastro \vec{p} contiene esattamente un elemento di Δ
 - N si trova in esattamente uno stato di Q
- 3. la computazione di N raggiunge uno stato di accettazione;
- 4. i predicati T_i e H_q rispettano la funzione di transizione δ :

$$\bigvee \alpha_{(q,a,q',b,m)}$$
$$(q',b,m) \in \delta(q,a)$$

dove α descrive la transizione

- se N si trova nello stato q e la testina si trova nel carattere a
- sostituisce il carattere nella posizione della testina con il carattere b
- sposta la testina secondo m
- cambia lo stato in q'
- 5. la computazione inizia dalla configurazione iniziale (richiede L)

 Ψ è creato dalla congiunzione delle seguenti affermazioni:

- 1. < definisce un ordine lineare;
- 2. dato un istante di tempo \vec{t} :
 - ogni cella del nastro \vec{p} contiene esattamente un elemento di Δ
 - N si trova in esattamente uno stato di Q
- 3. la computazione di N raggiunge uno stato di accettazione;
- 4. i predicati T_i e H_a rispettano la funzione di transizione δ :

$$\bigvee_{q',b,m)\in\delta(q,a)}\alpha_{(q,a,q',b,m)}$$

dove α descrive la transizione

- se N si trova nello stato q e la testina si trova nel carattere a
- sostituisce il carattere nella posizione della testina con il carattere b
- sposta la testina secondo m
- cambia lo stato in q'
- 5. la computazione inizia dalla configurazione iniziale (richiede L).

 Ψ è creato dalla congiunzione delle seguenti affermazioni:

- 1. < definisce un ordine lineare;
- 2. dato un istante di tempo \vec{t} :
 - ogni cella del nastro \vec{p} contiene esattamente un elemento di Δ
 - N si trova in esattamente uno stato di Q
- 3. la computazione di N raggiunge uno stato di accettazione;
- 4. i predicati T_i e H_a rispettano la funzione di transizione δ :

$$\bigvee_{\substack{\alpha(q,a,q',b,m)\\ (q',b,m)\in\delta(q,a)}} \alpha_{(q,a,q',b,m)}$$

dove α descrive la transizione:

- se N si trova nello stato q e la testina si trova nel carattere a
- sostituisce il carattere nella posizione della testina con il carattere b
- sposta la testina secondo m
- cambia lo stato in q'
- 5. la computazione inizia dalla configurazione iniziale (richiede L)

 Ψ è creato dalla congiunzione delle seguenti affermazioni:

- 1. < definisce un ordine lineare;
- 2. dato un istante di tempo \vec{t} :
 - ullet ogni cella del nastro $ec{p}$ contiene esattamente un elemento di Δ
 - N si trova in esattamente uno stato di Q
- 3. la computazione di N raggiunge uno stato di accettazione;
- 4. i predicati T_i e H_q rispettano la funzione di transizione δ :

$$\bigvee_{\substack{(q',b,m)\in\delta(q,a)}} \alpha_{(q,a,q',b,m)}$$

dove α descrive la transizione:

- se N si trova nello stato q e la testina si trova nel carattere a
- sostituisce il carattere nella posizione della testina con il carattere b
- sposta la testina secondo m
- cambia lo stato in q'
- 5. la computazione inizia dalla configurazione iniziale (richiede L).

5. la computazione inizia dalla configurazione iniziale (richiede L).

Supponiamo di avere due formule, $\psi_1, \psi_2 \in FO(L \cup \{<\})$ con il seguente significato:

 $\mathcal{I} \models \psi_1(\vec{p}) \iff$ la posizione \vec{p} della codifica di \mathcal{I} contiene il carattere 1; $\mathcal{I} \models \psi_2(\vec{p}) \iff$ la posizione \vec{p} è maggiore della lunghezza della codifica di \mathcal{I} ;

dove $\psi_1(\vec{p})$ e $\psi_2(\vec{p})$ dipendono esclusivamente dal linguaggio e non dalla struttura \mathcal{I} .

Costruiamo la configurazione iniziale con la formula

$$\forall \vec{p} \forall \vec{t} (\neg \exists \vec{u} (\vec{u} <_k \vec{t}) \implies [(\psi_1(\vec{p}) \iff T_1(\vec{p}, \vec{t})) \land (\psi_2(\vec{p}) \iff T_{\sqcup}(\vec{p}, \vec{t}))])$$

$$\land \land \land \land \land \forall \vec{p} \forall \vec{t} ((\neg \exists \vec{u} (\vec{u} <_k \vec{t}) \land \neg \exists \vec{u} (\vec{u} <_k \vec{p})) \implies H_{q_0}(\vec{p}, \vec{t}))$$

5. la computazione inizia dalla configurazione iniziale (richiede L).

Supponiamo di avere due formule, $\psi_1, \psi_2 \in FO(L \cup \{<\})$ con il seguente significato:

 $\mathcal{I} \models \psi_1(\vec{p}) \iff$ la posizione \vec{p} della codifica di \mathcal{I} contiene il carattere 1; $\mathcal{I} \models \psi_2(\vec{p}) \iff$ la posizione \vec{p} è maggiore della lunghezza della codifica di \mathcal{I} ;

dove $\psi_1(\vec{p})$ e $\psi_2(\vec{p})$ dipendono esclusivamente dal linguaggio e non dalla struttura \mathcal{I} .

Costruiamo la configurazione iniziale con la formula:

$$\forall \vec{p} \forall \vec{t} (\neg \exists \vec{u} (\vec{u} <_k \vec{t}) \implies [(\psi_1(\vec{p}) \iff T_1(\vec{p}, \vec{t})) \land (\psi_2(\vec{p}) \iff T_{\sqcup}(\vec{p}, \vec{t}))])$$

$$\land \land \land \land \land \neg \exists \vec{u} (\vec{u} <_k \vec{t}) \land \neg \exists \vec{u} (\vec{u} <_k \vec{p})) \implies H_{\sigma_0}(\vec{p}, \vec{t}))$$

5. la computazione inizia dalla configurazione iniziale (richiede L).

Supponiamo di avere due formule, $\psi_1, \psi_2 \in FO(L \cup \{<\})$ con il seguente significato:

 $\mathcal{I} \models \psi_1(\vec{p}) \iff$ la posizione \vec{p} della codifica di \mathcal{I} contiene il carattere 1; $\mathcal{I} \models \psi_2(\vec{p}) \iff$ la posizione \vec{p} è maggiore della lunghezza della codifica di \mathcal{I} ;

dove $\psi_1(\vec{p})$ e $\psi_2(\vec{p})$ dipendono esclusivamente dal linguaggio e non dalla struttura \mathcal{I} .

Costruiamo la configurazione iniziale con la formula:

Per k=3, \vec{p} è la posizione $p_1 \cdot n^2 + p_2 \cdot n + p_3$ nell'ordine lessicografico delle k-puple. Per semplicità consideriamo il minimo nell'ordine definito da < come 0, e il suo successore come 1.

La formula $\psi_1(p_1, p_2, p_3)$ deve esprimere che:

- se $p_1 > 1$ allora ψ_1 è falso (la codifica di E termina in posizione $n^2 + n$), assumiamo $p_1 = 0$;
- se $p_3 \neq 0$ $p_2 \cdot n + p_3 = (p_2 - 1) \cdot n + (p_3 - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 1, p_3 - 1)$:
- se $p_3 = 0$ $p_2 \cdot n = (p_2 2) \cdot n + (n 1) + (n + 1)$ che corrisponde all'arco $E(p_2 2, n 1)$.

Analogo per $ho_1=1$.

Per k=3, \vec{p} è la posizione $p_1 \cdot n^2 + p_2 \cdot n + p_3$ nell'ordine lessicografico delle k-puple. Per semplicità consideriamo il minimo nell'ordine definito da < come 0, e il suo successore come 1.

La formula $\psi_1(p_1, p_2, p_3)$ deve esprimere che:

- se $p_1 > 1$ allora ψ_1 è falso (la codifica di E termina in posizione $n^2 + n$), assumiamo $p_1 = 0$;
- la posizione n contiene il bit successivo a 0^n , quindi se $p_2 = 0$ allora ψ_1 è falso, quindi $p_2 \neq 0$;
- se $p_3 \neq 0$ $p_2 \cdot n + p_3 = (p_2 - 1) \cdot n + (p_3 - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 1, p_3 - 1)$;
- se $p_3 = 0$ $p_2 \cdot n = (p_2 - 2) \cdot n + (n - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 2, n - 1)$.

Analogo per $ho_1=1$.

Per k=3, \vec{p} è la posizione $p_1 \cdot n^2 + p_2 \cdot n + p_3$ nell'ordine lessicografico delle k-puple. Per semplicità consideriamo il minimo nell'ordine definito da < come 0, e il suo successore come 1.

La formula $\psi_1(p_1, p_2, p_3)$ deve esprimere che:

- se $p_1 > 1$ allora ψ_1 è falso (la codifica di E termina in posizione $n^2 + n$), assumiamo $p_1 = 0$;
- la posizione n contiene il bit successivo a 0^n , quindi se $p_2=0$ allora ψ_1 è falso, quindi $p_2\neq 0$;
- se $p_3 \neq 0$ $p_2 \cdot n + p_3 = (p_2 - 1) \cdot n + (p_3 - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 1, p_3 - 1)$;
- se $p_3 = 0$ $p_2 \cdot n = (p_2 - 2) \cdot n + (n - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 2, n - 1)$.

Analogo per $p_1=1$.

Per k=3, \vec{p} è la posizione $p_1 \cdot n^2 + p_2 \cdot n + p_3$ nell'ordine lessicografico delle k-puple. Per semplicità consideriamo il minimo nell'ordine definito da < come 0, e il suo successore come 1.

La formula $\psi_1(p_1, p_2, p_3)$ deve esprimere che:

- se $p_1 > 1$ allora ψ_1 è falso (la codifica di E termina in posizione $n^2 + n$), assumiamo $p_1 = 0$;
- la posizione n contiene il bit successivo a 0^n , quindi se $p_2=0$ allora ψ_1 è falso, quindi $p_2\neq 0$;
- se $p_3 \neq 0$ $p_2 \cdot n + p_3 = (p_2 - 1) \cdot n + (p_3 - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 1, p_3 - 1)$;
- se $p_3 = 0$ $p_2 \cdot n = (p_2 2) \cdot n + (n 1) + (n + 1)$ che corrisponde all'arco $E(p_2 2, n 1)$.

Analogo per $p_1 = 1$.

Per k=3, \vec{p} è la posizione $p_1 \cdot n^2 + p_2 \cdot n + p_3$ nell'ordine lessicografico delle k-puple. Per semplicità consideriamo il minimo nell'ordine definito da < come 0, e il suo successore come 1.

La formula $\psi_1(p_1, p_2, p_3)$ deve esprimere che:

- se $p_1 > 1$ allora ψ_1 è falso (la codifica di E termina in posizione $n^2 + n$), assumiamo $p_1 = 0$;
- la posizione n contiene il bit successivo a 0^n , quindi se $p_2 = 0$ allora ψ_1 è falso, quindi $p_2 \neq 0$;
- se $p_3 \neq 0$ $p_2 \cdot n + p_3 = (p_2 - 1) \cdot n + (p_3 - 1) + (n + 1)$ che corrisponde all'arco $E(p_2 - 1, p_3 - 1)$;
- se $p_3 = 0$ $p_2 \cdot n = (p_2 2) \cdot n + (n 1) + (n + 1)$ che corrisponde all'arco $E(p_2 2, n 1)$.

Analogo per $p_1 = 1$.

Quindi $\psi_1(\vec{p})$ e $\psi_2(\vec{p})$ sono esprimibili tramite le formule

$$\psi_{1}(p_{1}, p_{2}, p_{3}) = [p_{1} = 0 \land p_{2} = 1 \land p_{3} = 0]$$

$$\vee[(p_{1} = 0 \land p_{2} \neq 0 \land p_{3} = 0) \land E(p_{2} - 2, n - 1)]$$

$$\vee[(p_{1} = 0 \land p_{2} \neq 0 \land p_{3} \neq 0) \land E(p_{2} - 1, p_{3} - 1)]$$

$$\vee[(p_{1} = 1 \land p_{2} = 0 \land p_{3} = 0) \land E(n - 2, n - 1)]$$

$$\vee[(p_{1} = 1 \land p_{2} = 0 \land p_{3} \neq 0) \land E(n - 2, p_{3} - 1)]$$

$$\vee[(p_{1} = 1 \land p_{2} = 1 \land p_{3} = 0) \land E(n - 1, n - 1)]$$

$$\psi_{2}(p_{1}, p_{2}, p_{3}) = (p_{1} = 1 \implies ((p_{2} > 1) \lor (p_{2} > 0 \land p_{3} > 0))$$

$$\vee(p_{1} > 1)$$

Mentre nel caso generale e nel caso di restrizione di SO a MSO è noto un esempio che dimostra, rispettivamente, $\exists SO \neq \forall SO$ e $\exists MSO \neq \forall MSO$, $\exists SO \stackrel{?}{=} \forall SO$ rimane un problema aperto nella teoria dei modelli finiti.

- Dimostrando che ∃SO cattura NP otteniamo che coNP è catturato dalla negazione di ∃SO, ovvero ∀SO;
- Dimostrare $\exists SO \neq \forall SO$ equivale quindi a dimostrare $NP \neq coNP$;
- Dimostrare $\exists SO \neq \forall SO$ implicherebbe inoltre $P \neq NP$, poichè P = coP;
- Dimostrare $\exists SO = \forall SO$ implicherebbe $\Sigma_i^P = \Pi_i^P$, e PH = NP

Mentre nel caso generale e nel caso di restrizione di SO a MSO è noto un esempio che dimostra, rispettivamente, $\exists SO \neq \forall SO$ e $\exists MSO \neq \forall MSO$, $\exists SO \stackrel{?}{=} \forall SO$ rimane un problema aperto nella teoria dei modelli finiti.

- Dimostrando che ∃SO cattura NP otteniamo che coNP è catturato dalla negazione di ∃SO, ovvero ∀SO;
- Dimostrare $\exists SO \neq \forall SO$ equivale quindi a dimostrare $NP \neq coNP$
- Dimostrare $\exists SO \neq \forall SO$ implicherebbe inoltre $P \neq NP$, poichè P = coP;
- Dimostrare $\exists SO = \forall SO$ implicherebbe $\Sigma_i^P = \Pi_i^P$, e PH = NP

Mentre nel caso generale e nel caso di restrizione di SO a MSO è noto un esempio che dimostra, rispettivamente, $\exists SO \neq \forall SO$ e $\exists MSO \neq \forall MSO$, $\exists SO \stackrel{?}{=} \forall SO$ rimane un problema aperto nella teoria dei modelli finiti.

- Dimostrando che ∃SO cattura NP otteniamo che coNP è catturato dalla negazione di ∃SO, ovvero ∀SO;
- Dimostrare $\exists SO \neq \forall SO$ equivale quindi a dimostrare $NP \neq coNP$;
- Dimostrare $\exists SO \neq \forall SO$ implicherebbe inoltre $P \neq NP$, poichè P = coP;
- Dimostrare $\exists SO = \forall SO$ implicherebbe $\Sigma_i^P = \Pi_i^P$, e PH = NP.

Mentre nel caso generale e nel caso di restrizione di SO a MSO è noto un esempio che dimostra, rispettivamente, $\exists SO \neq \forall SO$ e $\exists MSO \neq \forall MSO$, $\exists SO \stackrel{?}{=} \forall SO$ rimane un problema aperto nella teoria dei modelli finiti.

- Dimostrando che ∃SO cattura NP otteniamo che coNP è catturato dalla negazione di ∃SO, ovvero ∀SO;
- Dimostrare $\exists SO \neq \forall SO$ equivale quindi a dimostrare $NP \neq coNP$;
- Dimostrare $\exists SO \neq \forall SO$ implicherebbe inoltre $P \neq NP$, poichè P = coP;
- Dimostrare $\exists SO = \forall SO$ implicherebbe $\Sigma_i^P = \Pi_i^P$, e PH = NP

Mentre nel caso generale e nel caso di restrizione di SO a MSO è noto un esempio che dimostra, rispettivamente, $\exists SO \neq \forall SO$ e $\exists MSO \neq \forall MSO$, $\exists SO \stackrel{?}{=} \forall SO$ rimane un problema aperto nella teoria dei modelli finiti.

- Dimostrando che ∃SO cattura NP otteniamo che coNP è catturato dalla negazione di ∃SO, ovvero ∀SO;
- Dimostrare $\exists SO \neq \forall SO$ equivale quindi a dimostrare $NP \neq coNP$;
- Dimostrare $\exists SO \neq \forall SO$ implicherebbe inoltre $P \neq NP$, poichè P = coP;
- Dimostrare $\exists SO = \forall SO$ implicherebbe $\Sigma_i^P = \Pi_i^P$, e PH = NP.

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Trakhtenbrot

- Nessun limite a tempo di esecuzione e spazio utilizzato
- T_i e H_q rispettano la funzione di transizione
- La macchina inizia su input vuoto
- La computazione termina
- Indipendenza dal linguaggio

- Tempo e spazio limitati da un polinomio del dominio
- T_i e H_q rispettano una delle possibili transizioni
- La configurazione iniziale contiene la codifica della struttura
- La computazione raggiunge uno stato di accettazione
- Dipendenza dal linguaggio nella formulazione di ψ_1 e ψ_2

Teorema di Cook

Teorema di Cook

Teorema di Cook

SAT è NP-completo

Sia P un problema NP ed N la NMdT che accetta strutture che soddisfano P.

Dal teorema di Fagin sappiamo che esiste una formula $\Phi = \exists S_1, ..., \exists S_n \varphi$ tale che N accetta $\mathcal{I} \iff \mathcal{I} \models \Phi$.

Sia $X = \{S_i(\vec{a}) : i \in \{1,..,n\}, \vec{a} \in A^{arity(S_i)}\}$ l'insieme delle scelte non deterministiche.

Costruiamo la formula $\alpha_{\varphi}^{\mathcal{I}}$ modificando φ nel seguente modo:

- ogni $\exists x \psi(x, \cdot)$ diventa $\bigvee_{a \in A} \psi(a, \cdot)$
- ogni $\forall x \psi(x, \cdot)$ diventa $\bigwedge_{a \in A} \psi(a, \cdot)$
- ogni $R(\vec{a})$, per $R \in L$, diventa il suo valore di verità in \mathcal{I} .

Le variabili della formula $lpha_{arphi}^{\mathcal{I}}$ sono definite in X.

Abbiamo $\mathcal{I} \models \Phi \iff \alpha_{\varphi}^{\mathcal{I}}$ è soddisfacibile.

Sia P un problema NP ed N la NMdT che accetta strutture che soddisfano P.

Dal teorema di Fagin sappiamo che esiste una formula $\Phi = \exists S_1, ..., \exists S_n \varphi$ tale che N accetta $\mathcal{I} \iff \mathcal{I} \models \Phi$.

Sia $X = \{S_i(\vec{a}) : i \in \{1,..,n\}, \vec{a} \in A^{arity(S_i)}\}$ l'insieme delle scelte non deterministiche.

Costruiamo la formula $\alpha_{\varphi}^{\mathcal{I}}$ modificando φ nel seguente modo:

- ogni $\exists x \psi(x, \cdot)$ diventa $\bigvee_{a \in A} \psi(a, \cdot)$;
- ogni $\forall x \psi(x, \cdot)$ diventa $\bigwedge_{a \in A} \psi(a, \cdot)$
- ogni $R(\vec{a})$, per $R \in L$, diventa il suo valore di verità in \mathcal{I} .

Le variabili della formula $\alpha_{\omega}^{\mathcal{I}}$ sono definite in X.

Abbiamo $\mathcal{I} \models \Phi \iff \alpha_{\varphi}^{\mathcal{I}}$ è soddisfacibile.

Sia P un problema NP ed N la NMdT che accetta strutture che soddisfano P.

Dal teorema di Fagin sappiamo che esiste una formula $\Phi = \exists S_1, ..., \exists S_n \varphi$ tale che N accetta $\mathcal{I} \iff \mathcal{I} \models \Phi$.

Sia $X = \{S_i(\vec{a}) : i \in \{1,..,n\}, \vec{a} \in A^{arity(S_i)}\}$ l'insieme delle scelte non deterministiche.

Costruiamo la formula $\alpha_{\varphi}^{\mathcal{I}}$ modificando φ nel seguente modo:

- ogni $\exists x \psi(x, \cdot)$ diventa $\bigvee_{a \in A} \psi(a, \cdot)$;
- ogni $\forall x \psi(x, \cdot)$ diventa $\bigwedge_{a \in A} \psi(a, \cdot)$;
- ogni $R(\vec{a})$, per $R \in L$, diventa il suo valore di verità in \mathcal{I} .

Le variabili della formula $\alpha_{\omega}^{\mathcal{I}}$ sono definite in X.

Abbiamo $\mathcal{I} \models \Phi \iff \alpha_{\varphi}^{\mathcal{I}}$ è soddisfacibile.

Sia P un problema NP ed N la NMdT che accetta strutture che soddisfano P.

Dal teorema di Fagin sappiamo che esiste una formula $\Phi = \exists S_1, ..., \exists S_n \varphi$ tale che N accetta $\mathcal{I} \iff \mathcal{I} \models \Phi$.

Sia $X = \{S_i(\vec{a}) : i \in \{1,..,n\}, \vec{a} \in A^{arity(S_i)}\}$ l'insieme delle scelte non deterministiche.

Costruiamo la formula $\alpha_{\varphi}^{\mathcal{I}}$ modificando φ nel seguente modo:

- ogni $\exists x \psi(x, \cdot)$ diventa $\bigvee_{a \in A} \psi(a, \cdot)$;
- ogni $\forall x \psi(x, \cdot)$ diventa $\bigwedge_{a \in A} \psi(a, \cdot)$;
- ogni $R(\vec{a})$, per $R \in L$, diventa il suo valore di verità in \mathcal{I} .

Le variabili della formula $\alpha_{\varphi}^{\mathcal{I}}$ sono definite in X.

Abbiamo $\mathcal{I}\models\Phi\iff\alpha_{\varphi}^{\mathcal{I}}$ è soddisfacibile.

Sia P un problema NP ed N la NMdT che accetta strutture che soddisfano P.

Dal teorema di Fagin sappiamo che esiste una formula $\Phi = \exists S_1, ..., \exists S_n \varphi$ tale che N accetta $\mathcal{I} \iff \mathcal{I} \models \Phi$.

Sia $X = \{S_i(\vec{a}) : i \in \{1,..,n\}, \vec{a} \in A^{arity(S_i)}\}$ l'insieme delle scelte non deterministiche.

Costruiamo la formula $\alpha_\varphi^{\mathcal{I}}$ modificando φ nel seguente modo:

- ogni $\exists x \psi(x, \cdot)$ diventa $\bigvee_{a \in A} \psi(a, \cdot)$;
- ogni $\forall x \psi(x, \cdot)$ diventa $\bigwedge_{a \in A} \psi(a, \cdot)$;
- ogni $R(\vec{a})$, per $R \in L$, diventa il suo valore di verità in \mathcal{I} .

Le variabili della formula $\alpha_{\omega}^{\mathcal{I}}$ sono definite in X.

Abbiamo $\mathcal{I}\models\Phi\iff\alpha_{\varphi}^{\mathcal{I}}$ è soddisfacibile.

Sia P un problema NP ed N la NMdT che accetta strutture che soddisfano P.

Dal teorema di Fagin sappiamo che esiste una formula $\Phi = \exists S_1, ..., \exists S_n \varphi$ tale che N accetta $\mathcal{I} \iff \mathcal{I} \models \Phi$.

Sia $X = \{S_i(\vec{a}) : i \in \{1,..,n\}, \vec{a} \in A^{arity(S_i)}\}$ l'insieme delle scelte non deterministiche.

Costruiamo la formula $\alpha_{\varphi}^{\mathcal{I}}$ modificando φ nel seguente modo:

- ogni $\exists x \psi(x, \cdot)$ diventa $\bigvee_{a \in A} \psi(a, \cdot)$;
- ogni $\forall x \psi(x, \cdot)$ diventa $\bigwedge_{a \in A} \psi(a, \cdot)$;
- ogni $R(\vec{a})$, per $R \in L$, diventa il suo valore di verità in \mathcal{I} .

Le variabili della formula $\alpha_{\varphi}^{\mathcal{I}}$ sono definite in X.

Abbiamo $\mathcal{I} \models \Phi \iff \alpha_{\varphi}^{\mathcal{I}}$ è soddisfacibile.

Gerarchia Polinomiale

Gerarchia polinomiale e gerarchia analitica

La gerarchia polinomiale è definita come:

$$\begin{split} &\Delta_0^P = \Sigma_0^P = \Pi_0^P = P \\ &\Sigma_1^P = NP \text{ , } \Pi_1^P = coNP \\ &\Sigma_{n+1}^P = NP^{\Sigma_n^P} \\ &\Pi_{n+1}^P = coNP^{\Sigma_n^P} \\ &\Delta_{n+1}^P = P^{\Sigma_n^P} \end{split}$$

La gerarchia analitica è definita come:

$$\begin{split} \Sigma_0^1 &= \Pi_0^1 = & \text{SO senza quantificatori sulle relazioni} \\ \Sigma_{n+1}^1 &= & \exists X_1.. \exists X_k \psi \text{, dove } \psi \in \Pi_n^1 \\ \Pi_{n+1}^1 &= & \forall X_1.. \forall X_k \psi \text{, dove } \psi \in \Sigma_n^1 \end{split}$$

Σ_k^1 cattura Σ_k^P e Π_k^1 cattura Π_k^P

Il teorema di Fagin ci dice che

- $\exists SO$ cattura NP $(\Sigma_1^1$ cattura $\Sigma_1^P)$
- $\forall SO$ cattura coNP $(\Pi_1^1 \text{ cattura } \Pi_1^P)$

Supponiamo di avere $P \in NP^{\Sigma_k^P}$, quindi decidibile tramite una MdT non deterministica in tempo polinomiale con oracoli in Σ_k^P .

Per il teorema di Fagin esiste $\Phi \in \exists SO$ con dei predicati per esprimere formule Σ^P_{ν} , corrispondenti all'oracolo.

Per ipotesi induttiva, sappiamo che i predicati per Σ_k^P sono esprimibili in Σ_{ν}^1

Spostando i quantificatori del secondo ordine all'inizio, trasformiamo Ψ in una formula Σ^1_{k+1} .

Σ_k^1 cattura Σ_k^P e Π_k^1 cattura Π_k^P

Il teorema di Fagin ci dice che

- $\exists SO$ cattura NP $(\Sigma_1^1$ cattura $\Sigma_1^P)$
- $\forall SO$ cattura coNP $(\Pi_1^1 \text{ cattura } \Pi_1^P)$

Supponiamo di avere $P \in NP^{\Sigma_k^P}$, quindi decidibile tramite una MdT non deterministica in tempo polinomiale con oracoli in Σ_k^P .

Per il teorema di Fagin esiste $\Phi \in \exists SO$ con dei predicati per esprimere formule Σ_k^P , corrispondenti all'oracolo.

Per ipotesi induttiva, sappiamo che i predicati per Σ_k^P sono esprimibili in Σ_k^1

Spostando i quantificatori del secondo ordine all'inizio, trasformiamo Ψ in una formula Σ^1_{k+1} .

Σ_k^1 cattura Σ_k^P e Π_k^1 cattura Π_k^P

Il teorema di Fagin ci dice che

- $\exists SO$ cattura NP $(\Sigma_1^1$ cattura $\Sigma_1^P)$
- $\forall SO$ cattura coNP $(\Pi_1^1 \text{ cattura } \Pi_1^P)$

Supponiamo di avere $P \in NP^{\Sigma_k^P}$, quindi decidibile tramite una MdT non deterministica in tempo polinomiale con oracoli in Σ_k^P .

Per il teorema di Fagin esiste $\Phi \in \exists SO$ con dei predicati per esprimere formule Σ_k^P , corrispondenti all'oracolo.

Per ipotesi induttiva, sappiamo che i predicati per Σ_k^P sono esprimibili in Σ_k^1

Spostando i quantificatori del secondo ordine all'inizio, trasformiamo Ψ in una formula Σ^1_{k+1} .

Esempio

Supponiamo di avere una proprietà P sia esprimibile in $\Sigma_2^P = NP^{\Sigma_1^P}$.

Per il teorema di Fagin sappiamo che esiste una formula $\Phi = \exists X_1..\exists X_n \varphi(P')$ dove P' è esprimibile a sua volta con una formula $\exists Y_1..\exists Y_m \psi,\ \psi \in FO$.

Se P' occorre in forma negata all'interno di Φ , mettendo Φ in forma prenessa otteniamo

$$\Phi=\exists X_1..\exists X_n\lnot(\exists Y_1..\exists Y_m\psi)=\exists X_1..\exists X_n(\forall Y_1..\forall Y_m\lnot\psi)$$
 ovvero $\Phi\in\Sigma^1_2$

Altrimenti, se P' occorre in forma positiva, mettendo Φ in forma prenessa otteniamo $\Phi = \exists X_1..\exists X_n (\exists Y_1..\exists Y_m \psi) = \exists X_1..\exists X_n \exists Y_1..\exists Y_m \Psi$ ovvero $\Phi \in \Sigma^1_1$

(Simmetrico per Π

Esempio

Supponiamo di avere una proprietà P sia esprimibile in $\Sigma_2^P = NP^{\Sigma_1^P}$.

Per il teorema di Fagin sappiamo che esiste una formula $\Phi = \exists X_1..\exists X_n \varphi(P')$ dove P' è esprimibile a sua volta con una formula $\exists Y_1..\exists Y_m \psi,\ \psi \in FO$.

Se P' occorre in forma negata all'interno di Φ , mettendo Φ in forma prenessa otteniamo

$$\Phi = \exists X_1..\exists X_n \neg (\exists Y_1..\exists Y_m \psi) = \exists X_1..\exists X_n (\forall Y_1..\forall Y_m \neg \psi)$$
 ovvero $\Phi \in \Sigma_2^1$

Altrimenti, se P' occorre in forma positiva, mettendo Φ in forma prenessa otteniamo $\Phi = \exists X_1..\exists X_n (\exists Y_1..\exists Y_m \psi) = \exists X_1..\exists X_n \exists Y_1..\exists Y_m \Psi$ ovvero $\Phi \in \Sigma_1^1$

(Simmetrico per Π)

Esempio

Supponiamo di avere una proprietà P sia esprimibile in $\Sigma_2^P = NP^{\Sigma_1^P}$.

Per il teorema di Fagin sappiamo che esiste una formula $\Phi = \exists X_1..\exists X_n \varphi(P')$ dove P' è esprimibile a sua volta con una formula $\exists Y_1..\exists Y_m \psi, \ \psi \in FO$.

Se P' occorre in forma negata all'interno di Φ , mettendo Φ in forma prenessa otteniamo

$$\Phi = \exists X_1..\exists X_n \neg (\exists Y_1..\exists Y_m \psi) = \exists X_1..\exists X_n (\forall Y_1..\forall Y_m \neg \psi)$$
 ovvero $\Phi \in \Sigma_2^1$

Altrimenti, se P' occorre in forma positiva, mettendo Φ in forma prenessa otteniamo $\Phi = \exists X_1..\exists X_n (\exists Y_1..\exists Y_m \psi) = \exists X_1..\exists X_n \exists Y_1..\exists Y_m \Psi$ ovvero $\Phi \in \Sigma_1^1$

(Simmetrico per Π)

Corollario

Abbiamo dimostrato che:

- Σ_k^1 cattura Σ_k^P ;
- Π_k^1 cattura Π_k^P .

Di conseguenza, SO cattura PH.

Conclusione

- Teorema di Fagin: $\exists SO$ cattura NP, $\forall SO$ cattura coNP;
- Differenze con Trakhtenbrot;
- Teorema di Cook: SAT è NP-completo;
- SO cattura PH.

Grazie per l'attenzione.