MATRIX THEORY: RANK OF MATRIX

NUMERICAL METHODS FOR SYSTEM OF LINEAR EQUATIONS

FY BTECH SEM-I
MODULE-2
SUB-MODULE 2.5

2	Matri	Matrix Theory: Rank of Matrix		CO 2
	2.1	Types of matrices: Hermitian, Skew-Hermitian, Unitary		
		and Orthogonal matrix		
	2.2	Rank of a matrix using row echelon forms, reduction to		
		normal form, and PAQ form		
	2.3	System of homogeneous and non-homogeneous		
		equations, their consistency and solutions		
	2.4	Linearly dependent and independent vectors		
	2.5	Solution of system of linear algebraic equations by		
		(a) Gauss Seidal method (b) Jacobi iteration method		
		#Self-learning topics: Symmetric, Skew-symmetric		
		matrices and properties, Properties of adjoint and inverse		
		of a matrix		

ITERATIVE METHODS

- **Definition:** Numerical method in which we start with some random (Initial) solution of system of equations and use previous iteration values in rearranged equations to find next values are called **Iterative methods.**
- Example: 1) Gauss Jacobi's Method 2) Gauss Seidel Method
- Convergence condition for these two methods:
- A sufficient condition for method to converge is that the coefficient matrix A of order n should be **strictly or irreducibly diagonally dominant.** i.e. $a_{ii} > \sum_{j \neq i} |a_{ij}|$, for every 1 < i < n
- **Note:** If the initial value to start the iterations is not provided in the problem then we can assume it to be x=0, y=0 and z=0

GAUSS JACOBI'S METHOD

- Solve the following equations by Gauss-Jacobi's Method
- 20x + y 2z = 17
- 3x + 20y z = -18
- 2x 3y + 20z = 25
- Solution: Rewrite given equations as,

•
$$x = \frac{1}{20}(17 - y + 2z)$$

•
$$y = \frac{1}{20}(-18 - 3x + z)$$

•
$$z = \frac{1}{20}(25 - 2x + 3y)$$

- (i) First iteration:
- start with $x_0 = 0$, $y_0 = 0$ and $z_0 = 0$

•
$$x_1 = \frac{17}{20} = 0.85$$
, $y_1 = \frac{-18}{20} = -0.9$, $z_1 = \frac{25}{20} = 1.25$

• (ii) Second iteration:

• Use
$$x_1 = 0.85$$
, $y_1 = -0.9$ and $z_1 = 1.25$

•
$$x_2 = \frac{1}{20} (17 - (-0.9) + 2(1.25))$$

•
$$y_2 = \frac{1}{20} \left(-18 - 3(0.85) + (1.25) \right)$$

$$= -0.965$$

•
$$z_2 = \frac{1}{20} (25 - 2(0.85) + 3(-0.9))$$

$$= 1.03$$

Example 1 (contd...)

• (iii) Third iteration:

• Use
$$x_2 = 1.02$$
, $y_2 = -0.965$ and $z_2 = 1.03$

•
$$x_3 = \frac{1}{20} (17 - (-0.965) + 2(1.03))$$

•
$$y_3 = \frac{1}{20} \left(-18 - 3(1.02) + (1.03) \right)$$

•
$$= -1.0015$$

•
$$z_3 = \frac{1}{20} (25 - 2(1.02) + 3(-0.965))$$

$$= 1.00325$$

• (iv) Fourth iteration:

• Use
$$x_3 = 1.00125$$
, $y_3 = -1.0015$ and $z_3 = 1.00325$

•
$$x_4 = \frac{1}{20} \left(17 - (-1.0015) + 2(1.00325) \right)$$

•
$$y_4 = \frac{1}{20} \left(-18 - 3(1.00125) + (1.00325) \right)$$

•
$$= -1.000025$$

•
$$z_4 = \frac{1}{20} (25 - 2(1.00125) + 3(-1.0015))$$

$$= 0.99965$$

 Hence the final answer (correct up to 4 decimal places) after fourth iteration is

•
$$x = 1.0004$$
, $y = -1.0000$ and $z = 0.9997$

Example 2

- Solve the following equations by Gauss-Jacobi's Method (Take three iterations)
- 2x + 20y 3z = 19
- 3x 6y + 25z = 22
- 15x + 2y + z = 18
- **Solution:** First checking the condition of strictly diagonally dominant, we rearrange the system as,
- 15x + 2y + z = 18
- 2x + 20y 3z = 19
- 3x 6y + 25z = 22
- Rewrite given equations as,
- $x = \frac{1}{15}(18 2y z)$

- $y = \frac{1}{20}(19 2x + 3z)$
- $z = \frac{1}{25}(22 3x + 6y)$
- (i) First iteration:
- start with $x_0 = 0$, $y_0 = 0$ and $z_0 = 0$
- $x_1 = \frac{18}{15} = 1.2$, $y_1 = \frac{19}{20} = 0.95$, $z_1 = \frac{22}{25} = 0.88$
- (ii) Second iteration:
- Use $x_1 = 1.2$, $y_1 = 0.95$ and $z_1 = 0.88$
- $x_2 = \frac{1}{15} (18 2(0.95) (0.88))$
- = 1.0147
- $y_2 = \frac{1}{20} (19 2(1.2) + 3(0.88))$
- = 0.962

Example 2 (contd...)

•
$$z_2 = \frac{1}{25} (22 - 3(1.2) + 6(0.95))$$

$$= 0.964$$

- (iii) Third iteration:
- Use $x_2 = 1.0147$, $y_2 = 0.962$ and $z_2 = 0.964$

•
$$x_3 = \frac{1}{15} (18 - 2(0.962) - (0.964))$$

•
$$y_3 = \frac{1}{20} (19 - 2(1.0147) + 3(0.964))$$

•
$$z_3 = \frac{1}{25} (22 - 3(1.0147) + 6(0.962))$$

$$\bullet$$
 = 0.9891

- Hence the final answer (correct up to 4 decimal places) after third iteration is
- x = 1.0075, y = 0.9931 and z = 0.9891

GAUSS SEIDEL METHOD:

- In this method, we will use latest two values instead of previous iteration values to calculate next value. All other conditions and calculation is same as Gauss Jacobi's Method
- Use Gauss-Seidel method to solve the following equations (Take three iterations)
- 3x 0.1y 0.2z = 7.85
- 0.1x + 7y 0.3z = -19.3
- 0.3x 0.2y + 10z = 71.4
- Solution: Rewrite given equations as,
- $x = \frac{1}{3}(7.85 + 0.1y + 0.2z)$ (1)
- $y = \frac{1}{7}(-19.3 0.1x + 0.3z)....(2)$
- $z = \frac{1}{10}(71.4 0.3x + 0.2y)$(3)

• (i) First iteration: start with y = 0 and z = 0

$$x = \frac{7.85}{3} = 2.6167 \, ,$$

- We use this value to find y,
- i.e. we put x = 2.6167 and z = 0
- $y = \frac{1}{7} \left(-19.3 0.1(2.6167) + 0.3(0) \right)$
- = -2.7945,
- We use latest two value to find z, i.e.
- we put x = 2.6167 and y = -2.7945
- $z = \frac{1}{10} (71.4 0.3(2.6167) + 0.2(-2.7945))$
- = 7.0056

Example 1 (contd...)

- (ii) **Second iteration:** We use latest two value to find x, we put y = -2.7945 and z = 7.0056
- $x = \frac{1}{3}(7.85 + 0.1(-2.7945) + 0.2(7.0056))$
- = 2.9906
- We use latest two value to find y, we put x = 2.9906 and z = 7.0056
- $y = \frac{1}{7} \left(-19.3 0.1(2.9906) + 0.3(7.0056) \right)$
- = -2.4996
- We use latest two value to find z, i.e. we put x = 2.9906 and y = -2.4996
- $z = \frac{1}{10} (71.4 0.3(2.9906) + 0.2(-2.4996))$
- = 7.0003
- (iii) **Third iteration:** We use latest two value to find x, we

- put y = -2.4996 and z = 7.0003
- $x = \frac{1}{3}(7.85 + 0.1(-2.4996) + 0.2(7.0003))$
- = 3.0000
- We use latest two value to find y, we put x=3 and z=7.0003
- $y = \frac{1}{7} (-19.3 0.1(3) + 0.3(7.0003))$
- = -2.500
- We use latest two value to find z, i.e. we put x = 3 and y = -2.5
- $z = \frac{1}{10} (71.4 0.3(3) + 0.2(-2.5))$
- = 7.000
- Hence the final answer after third iteration is
- x = 3, y = -2.5 and z = 7