8. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

15. Januar 2021

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 82 des Vorlesungsskripts behandelt.

Aufgabe 29 (K):

Untersuchen Sie die folgenden Funktionen $f \colon D \to \mathbb{R}$ auf gleichmäßige Stetigkeit.

(i) $D = [0, \infty), \ f(x) = \sqrt{x},$

(ii) $D = (0, \infty), f(x) = \frac{1}{\sqrt{x}},$

(iii) $D = \mathbb{R}, \ f(x) = \frac{1}{1+x^2},$

(iv) $D = (0, \infty), f(x) = \log(x).$

Lösungsvorschlag zu Aufgabe 29:

(i) Behauptung: Die Funktion $f:[0,\infty)\to\mathbb{R},\ f(x)=\sqrt{x}$ ist gleichmäßig stetig.

Beweis: Zu zeigen ist:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x, y \in [0, \infty) \colon |x - y| < \delta \Rightarrow |\sqrt{x} - \sqrt{y}| < \epsilon.$$

Es sei $\epsilon > 0$. Definiere $\delta := \epsilon^2 > 0$. Es gilt zunächst für alle $x, y \in [0, \infty)$:

$$|x - y| \le |x| + |y| = x + y \le x + 2\sqrt{x}\sqrt{y} + y = (\sqrt{x} + \sqrt{y})^2$$

d.h. es gilt

$$\sqrt{|x-y|} \le \sqrt{x} + \sqrt{y}.\tag{1}$$

Es seien nun $x, y \in [0, \infty)$ mit $|x - y| < \delta$. Dann gilt mit (1)

$$\left|\sqrt{x}-\sqrt{y}\right| = \left|\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}+\sqrt{y}}\right| = \frac{|x-y|}{\sqrt{x}+\sqrt{y}} \le \sqrt{|x-y|} < \sqrt{\delta} = \epsilon.$$

(ii) <u>Behauptung:</u> Die Funktion $f \colon (0, \infty) \to \mathbb{R}, \ f(x) := \frac{1}{\sqrt{x}}$ ist nicht gleichmäßig stetig.

Beweis: Zu zeigen ist:

$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x, y \in (0, \infty) \colon |x - y| < \delta \text{ und } \left| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right| \ge \epsilon.$$

Setze $\epsilon := 1$ und sei $\delta > 0$. Definiere $y := \delta$ und $x := \min\left\{\frac{\delta}{2}, \left(1 + \frac{1}{\sqrt{\delta}}\right)^{-2}\right\}$. Dann gilt $0 < x < y = \delta$, also $|x - y| = \delta - x < \delta$. Zudem gilt nach Definition $0 < x \le \left(1 + \frac{1}{\sqrt{y}}\right)^{-2}$, also $\frac{1}{\sqrt{x}} \ge 1 + \frac{1}{\sqrt{y}} > \frac{1}{\sqrt{y}}$ und damit

$$\left| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right| = \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \ge 1 + \frac{1}{\sqrt{y}} - \frac{1}{\sqrt{y}} = 1 = \epsilon.$$

(iii) <u>Behauptung:</u> Die Funktion $f \colon \mathbb{R} \to \mathbb{R}, \ f(x) := \frac{1}{1+x^2}$ ist gleichmäßig stetig.

<u>Beweis:</u> Wir zeigen, dass f sogar Lipschitz-stetig. ist. Dann ist f insbesondere gleichmäßig stetig. Es seien $x, y \in \mathbb{R}$. Dann gilt:

$$|f(x) - f(y)| = \left| \frac{1}{1+x^2} - \frac{1}{1+y^2} \right| = \left| \frac{1+y^2 - (1+x^2)}{(1+x^2)(1+y^2)} \right| = \left| \frac{y^2 - x^2}{(1+x^2)(1+y^2)} \right| = \left| \frac{(y+x)(y-x)}{(1+x^2)(1+y^2)} \right|$$

$$= \frac{|x+y|}{(1+x^2)(1+y^2)} \cdot |x-y| \le \left(\frac{|y|}{1+y^2} + \frac{|x|}{1+x^2} \right) \cdot |x-y|. \tag{2}$$

Für $|x| \le 1$ gilt $\frac{|x|}{1+x^2} \le |x| \le 1$.

Für |x| > 1 gilt $|x| < x^2$, also $x^2 + 1 > |x|$ und damit auch $\frac{|x|}{x^2 + 1} < 1$. Dieselben Abschätzungen wenden wir auch für y an. Somit lässt sich (2) weiter abschätzen zu

$$|f(x) - f(y)| \le (1+1)|x-y| = 2|x-y|,$$

was die Lipschitz-Stetigkeit von f zeigt.

(iv) <u>Behauptung:</u> Die Funktion $f:(0,\infty)\to\mathbb{R},\ f(x):=\log(x)$ ist nicht gleichmäßig stetig.

Beweis: Zu zeigen ist:

$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x, y \in (0, \infty) \colon |x - y| < \delta \text{ und } |\log(x) - \log(y)| \ge \epsilon.$$

Setze $\epsilon:=1$ und sei $\delta>0$. Wähle $x=\delta$ und $y=\frac{\delta}{\mathrm{e}}$. Dann gilt $|x-y|=\left|\delta\left(1-\frac{1}{\mathrm{e}}\right)\right|<\delta$. Zudem gilt

$$|f(x) - f(y)| = |\log(x) - \log(y)| = \left|\log(\delta) - \log\left(\frac{\delta}{e}\right)\right| = |\log(\delta) - (\log(\delta) - \underbrace{\log(e)}_{-1})| = 1 = \epsilon.$$

Aufgabe 30:

(i) Es sei $\emptyset \neq D \subseteq \mathbb{R}$ und (f_n) eine Folge von Funktionen $f_n \colon D \to \mathbb{R}$, welche punktweise auf D gegen eine Funktion $f \colon D \to \mathbb{R}$ konvergiert. Zeigen Sie: (f_n) konvergiert gleichmäßig gegen f auf D genau dann, wenn für jede Folge (x_n) in D gilt:

$$\lim_{n \to \infty} (f_n(x_n) - f(x_n)) = 0.$$

(ii) Es sei $f_n: [a,b] \to \mathbb{R}$ $(n \in \mathbb{N})$ eine Folge monoton wachsender Funktionen mit

(a)
$$f_n(a) \ge 0 \ (n \in \mathbb{N}),$$

(b)
$$\lim_{n \to \infty} f_n(b) = 0.$$

Zeigen Sie, dass (f_n) dann gleichmäßig auf [a, b] gegen 0 konvergiert.

Lösungsvorschlag zu Aufgabe 30:

(i) <u>Voraussetzung:</u> Es sei $\emptyset \neq D \subseteq \mathbb{R}$ und (f_n) eine Folge von Funktionen $f_n : D \to \mathbb{R}$, welche punktweise auf D gegen eine Funktion $f : D \to \mathbb{R}$ konvergiert.

 $\underline{Behauptung:}$ (f_n) konvergiert gleichmäßig gegen f auf D genau dann, wenn für jede Folge (x_n) in D gilt

$$\lim_{n \to \infty} (f_n(x_n) - f(x_n)) = 0.$$

<u>Beweis:</u> \Rightarrow : Es sei also (f_n) gleichmäßig konvergent gegen f und $\epsilon > 0$ vorgegeben. Dann gibt es ein $N \in \mathbb{N}$, sodass für alle $n \geq N$ und alle $x \in D$ gilt:

$$|f_n(x) - f(x)| < \epsilon.$$

Folglich gilt dies auch für $x = x_n$.

 \leq : Angenommen (f_n) ist nicht gleichmäßig konvergent gegen f. Dann gibt es ein $\epsilon_0 > 0$, sodass es für jedes $N \in \mathbb{N}$ ein $n \geq N$ und ein $x(n) \in D$ gibt mit

$$|f_n(x(n)) - f(x(n))| \ge \epsilon_0.$$

Definiere die Folge (x_n) durch $x_n := x(n)$ $(n \in \mathbb{N})$. Dann konvergiert $f_n(x_n) - f(x_n)$ nicht gegen

- (ii) Voraussetzung: Es sei $f_n \colon [a,b] \to \mathbb{R} \ (n \in \mathbb{N})$ eine Folge monoton wachsender Funktionen mit
 - (a) $f_n(a) > 0 \ (n \in \mathbb{N}),$

(b)
$$\lim_{n \to \infty} f_n(b) = 0.$$

Behauptung: Die Funktionenfolge (f_n) konvergiert gleichmäßig auf [a, b] gegen 0.

<u>Beweis:</u> Für alle $n \in \mathbb{N}$ gilt wegen der Monotonie

$$0 \le f_n(a) \le f_n(x) \le f_n(b)$$
 für alle $x \in [a, b]$.

Es sei nun $\epsilon > 0$. Wegen der Eigenschaft (b) existiert ein $n_0 \in \mathbb{N}$, sodass $0 \le f_n(b) < \epsilon$ für alle $n \geq n_0$. Wegen der Monotonie erhalten wir

$$\forall n \ge n_0 \ \forall x \in [a, b] : 0 \le f_n(x) \le f_n(b) < \epsilon.$$

Somit gilt insgesamt

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall x \in [a, b] \colon |f_n(x) - 0| < \epsilon,$$

also konvergiert (f_n) auf [a,b] gleichmäßig gegen 0.

Aufgabe 31 (K):

Untersuchen Sie die folgenden Funktionenfolgen bzw. -reihen auf punktweise und gleichmäßige Konver-

- (i) $f_n : [0, \infty) \to \mathbb{R}, \ f_n(x) := x e^{-nx} \ (n \in \mathbb{N}),$ (ii) $f_n : [0, 1] \to \mathbb{R}, \ f_n(x) := nx(1 x)^n \ (n \in \mathbb{N}),$ (iii) $\sum_{r=1}^{\infty} \frac{1}{nx n^2} \text{ für } x \in (0, 1),$ (iv) $\sum_{r=0}^{\infty} \frac{\sin(x)}{(1 + x^4)^n} \text{ für } x \in \mathbb{R}.$

Lösungsvorschlag zu Aufgabe 31:

(i) Behauptung: Die Funktionenfolge (f_n) konvergiert gleichmäßig und insbesondere punktweise gegen $\overline{\text{die Funktion}} \ f : [0, \infty) \to \mathbb{R}, \ f(x) := 0.$

Beweis: Wir zeigen gleichmäßige Konvergenz, woraus sich dann auch die punktweise Konvergenz ergibt. Für alle $x \in [0, \infty)$ gilt

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \sum_{n=2}^{\infty} \frac{x^n}{n!} \ge x,$$

d.h. $\frac{x}{e^x} \leq 1$. Damit folgt für alle $n \in \mathbb{N}$ und $x \in [0, \infty)$:

$$|f_n(x) - f(x)| = xe^{-nx} = \frac{1}{n} \cdot \frac{nx}{e^{nx}} \le \frac{1}{n},$$

also gilt $\sup_{x \in [0,\infty)} |f_n(x) - f(x)| \le \frac{1}{n} \to 0$ für $n \to \infty$, woraus die Behauptung folgt.

(ii) <u>Behauptung:</u> Die Funktionenfolge (f_n) konvergiert punktweise, aber nicht gleichmäßig gegen die Nullfunktion $f: [0,1] \to \mathbb{R}, f(x) := 0.$

<u>Beweis:</u> Es gilt $f_n(0) = 0 \to 0$ für $n \to \infty$. Für $x \in (0,1]$ gilt $(1-x) \in [0,1)$ und damit folgt

$$\sqrt[n]{|nx(1-x)^n|} = \sqrt[n]{n} \sqrt[n]{x}(1-x) \xrightarrow{n \to \infty} 1 \cdot 1 \cdot (1-x) = 1-x < 1.$$

Nach dem Wurzelkriterium konvergiert daher die Reihe $\sum_{n=1}^{\infty} (nx(1-x)^n)$ und somit ist die Folge $(nx(1-x)^n)$ eine Nullfolge. Somit ist die punktweise Konvergenz von (f_n) gegen die Nullfunktion gezeigt.

Weiter gilt für die Folge $(\frac{1}{n})$ in [0,1]:

$$f_n\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) = \left(1 - \frac{1}{n}\right)^n \to e^{-1} \neq 0$$

für $n \to \infty$. Nach Aufgabe 30 (i) ist die Konvergenz daher nicht gleichmäßig.

(iii) <u>Behauptung:</u> Die Funktionenreihe $\sum_{n=1}^{\infty} \frac{1}{nx-n^2}$ konvergiert auf (0,1) punktweise und gleichmäßig.

<u>Beweis:</u> Für alle $n \in \mathbb{N}$ mit $n \geq 2$ und $x \in (0,1)$ gilt

$$\left| \frac{1}{nx - n^2} \right| = \frac{1}{n} \cdot \frac{1}{n - x} \le \frac{1}{n} \cdot \frac{1}{n - 1} \le \frac{1}{(n - 1)^2} =: a_n.$$

Setze $a_1 := 1$. Dann ist die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent und es gilt $\left| \frac{1}{nx-n^2} \right| \le a_n$ für alle $n \ge 2$ und alle $x \in (0,1)$. Nach dem Kriterium von Weierstraß konvergiert $\sum_{n=1}^{\infty} \frac{1}{nx-n^2}$ auf (0,1) gleichmäßig, und daher insbesondere auch punktweise.

(iv) <u>Behauptung:</u> Die Funktionenreihe $\sum_{n=0}^{\infty} \frac{\sin(x)}{(1+x^4)^n}$ konvergiert auf \mathbb{R} punktweise, aber nicht gleichmäßig gegen die Funktion $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) := \begin{cases} 0, & x = 0, \\ \sin(x) \left(1 + \frac{1}{x^4} \right), & x \neq 0. \end{cases}$$

<u>Beweis:</u> Es sei $x \in \mathbb{R}$. Für x = 0 ergibt sich wegen $\sin(0) = 0$ direkt $\sum_{n=0}^{\infty} \frac{\sin(x)}{(1+x^4)^n} = 0 = f(0)$.

Für $x \neq 0$ ist die geometrische Reihe $\sum_{n=0}^{\infty} \left(\frac{1}{1+x^4}\right)^n$ konvergent und damit ergibt sich

$$\sum_{n=0}^{\infty} \frac{\sin(x)}{(1+x^4)^n} = \sin(x) \sum_{n=0}^{\infty} \left(\frac{1}{1+x^4}\right)^n = \sin(x) \cdot \frac{1}{1-\frac{1}{1+x^4}} = \sin(x) \cdot \frac{1+x^4}{1+x^4-1}$$
$$= \sin(x) \left(\frac{1}{x^4} + 1\right) = f(x).$$

Somit konvergiert (f_n) punktweise gegen f.

Für $x \neq 0$ gilt $f(x) = \sin(x) + \frac{\sin(x)}{x} \cdot \frac{1}{x^3}$. Nach Vorlesung gilt $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$, $\frac{1}{x}$ divergiert aber für $x \to 0$. Somit existiert der Grenzwert von f(x) für $x \to 0$ nicht, insbesondere ist f in 0 nicht stetig. Damit kann die Konvergenz der stetigen Funktionen $s_k \colon \mathbb{R} \to \mathbb{R}$, $s_k(x) := \sum_{n=0}^k \frac{\sin(x)}{(1+x^4)^n}$ $(k \in \mathbb{N})$ gegen f nicht gleichmäßig sein (vgl. Satz 8.3 b)).

Aufgabe 32:

(i) Es seien $f,g:\mathbb{R}\to\mathbb{R}$ zwei Funktionen. Die Funktion f sei stetig in 0 und g sei differenzierbar in 0 mit g(0)=0. Zeigen Sie, dass das Produkt $g\cdot f\colon\mathbb{R}\to\mathbb{R},\ (g\cdot f)(x):=g(x)f(x)$ in 0 differenzierbar ist und berechnen Sie die Ableitung.

(ii) Bestimmen Sie alle $x \in \mathbb{R}$, in denen die Funktion $f : \mathbb{R} \to \mathbb{R}$ differenzierbar ist, und berechnen Sie für diese x die Ableitung f'(x):

$$f(x) := \begin{cases} x^4 - 2x^3 + x^2, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 0, & \text{falls } x \in \mathbb{Q}. \end{cases}$$

Lösungsvorschlag zu Aufgabe 32:

(i) <u>Voraussetzung:</u> Es seien $f, g: \mathbb{R} \to \mathbb{R}$ zwei Funktionen, wobei f stetig in 0 ist und g differenzierbar in 0 ist mit g(0) = 0.

<u>Behauptung:</u> Das Produkt $\varphi := g \cdot f : \mathbb{R} \to \mathbb{R}$, $\varphi(x) := (g \cdot f)(x) := g(x)f(x)$ ist in 0 differenzierbar mit Ableitung $\varphi'(0) = (g \cdot f)'(0) = f(0) \cdot g'(0)$.

<u>Beweis:</u> Für alle $h \neq 0$ gilt

$$\frac{\varphi(0+h) - \varphi(0)}{h} = \frac{g(h)f(h) - g(0)f(0)}{h} = \frac{g(h)f(h)}{h} = f(h) \cdot \frac{g(h) - g(0)}{h}.$$

Da f in 0 stetig ist, gilt $f(h) \to f(0)$ für $h \to 0$. Da g in 0 differenzierbar ist, gilt $\frac{g(h) - g(0)}{h} \to g'(0)$ für $h \to 0$. Insgesamt gilt also

$$\frac{\varphi(0+h)-\varphi(0)}{h} = f(h) \cdot \frac{g(h)-g(0)}{h} \xrightarrow{h\to 0} f(0) \cdot g'(0),$$

also ist φ nach Definition in 0 differenzierbar mit $\varphi'(0) = f(0) \cdot g'(0)$.

(ii) Behauptung: f ist genau dann differenzierbar, wenn $x \in \{0,1\}$. In diesem Fall gilt f'(x) = 0.

<u>Beweis:</u> Für $x \in \mathbb{R} \setminus \mathbb{Q}$ gilt $f(x) = x^2(x-1)^2$. Es sei zunächst $x \in \{0,1\}$. Dann gilt f(x) = 0, also

$$\frac{f(x+h) - f(x)}{h} = \frac{f(x+h)}{h}$$

für alle $h \in \mathbb{R} \setminus \{0\}$. Folglich gilt

$$\left| \frac{f(x+h)}{h} \right| \le \left| \frac{(x+h)^2(x+h-1)^2}{h} \right| = \left| (x+h)(x-1+h) \cdot \frac{(x+h)(x-1+h)}{h} \right|$$

für alle $h \in \mathbb{R} \setminus \{0\}$. Somit gelten

$$\left| \frac{f(h) - f(0)}{h} \right| \le \left| h(h-1) \cdot \frac{h(h-1)}{h} \right| = |h| (h-1)^2 \xrightarrow{h \to 0} 0$$

und

$$\left|\frac{f(1+h)-f(1)}{h}\right| \leq \left|(1+h)h \cdot \frac{(1+h)h}{h}\right| = |h| (1+h)^2 \xrightarrow{h \to 0} 0,$$

d.h. f ist in diesen x differenzierbar mit f'(x) = 0.

Es sei nun $x \in \mathbb{R} \setminus \{0,1\}$. Wir zeigen, dass f in x nicht stetig ist, somit kann f dort auch nicht differenzierbar sein.

<u>1. Fall:</u> Es sei $x \in \mathbb{Q}$. Dann gilt f(x) = 0. Wähle eine Folge (x_n) in $\mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x$ für $n \to \infty$. Dann gilt

$$f(x_n) = x_n^2 (x_n - 1)^2 \xrightarrow{n \to \infty} x^2 (x - 1)^2 \neq 0 = f(x),$$

also ist f nicht stetig in x.

2. Fall: Es sei $x \notin \mathbb{Q}$. Dann gilt $f(x) = x^2(x-1)^2 \neq 0$. Wähle eine Folge (x_n) in \mathbb{Q} mit $x_n \to x$ für $n \to \infty$. Dann gilt $f(x_n) = 0 \xrightarrow{n \to \infty} 0 \neq f(x)$, also ist f nicht stetig in x. □