finalproject_Echo

May 13, 2019

In [1]: import pandas as pd

```
import numpy as np
         import matplotlib.pyplot as plt
         import sklearn
        import math
In [2]: XandY = pd.read_csv('X_and_Y_7-Day Lag.csv')
In [3]: XandY
Out [3]:
                                                                      Shanghai 2.3
               Shanghai
                          Shanghai 2
                                       Shanghai 2.1
                                                       Shanghai 2.2
        0
                    NaN
                                  NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
                 104.39
        1
                                  NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
        2
                 109.13
                               104.39
                                                 NaN
                                                                 NaN
                                                                                NaN
        3
                 114.55
                                              104.39
                               109.13
                                                                 NaN
                                                                                NaN
        4
                                                             104.39
                 120.25
                              114.55
                                              109.13
                                                                                NaN
        5
                                                                             104.39
                 125.27
                               120.25
                                              114.55
                                                             109.13
        6
                 125.28
                              125.27
                                              120.25
                                                             114.55
                                                                             109.13
        7
                 126.45
                              125.28
                                              125.27
                                                             120.25
                                                                             114.55
        8
                 127.61
                              126.45
                                              125.28
                                                             125.27
                                                                             120.25
        9
                 128.84
                              127.61
                                              126.45
                                                             125.28
                                                                             125.27
        10
                 130.14
                              128.84
                                              127.61
                                                             126.45
                                                                             125.28
        11
                 131.44
                              130.14
                                              128.84
                                                             127.61
                                                                             126.45
        12
                 132.06
                               131.44
                                              130.14
                                                                             127.61
                                                             128.84
        13
                 132.68
                              132.06
                                              131.44
                                                             130.14
                                                                             128.84
        14
                 133.34
                               132.68
                                              132.06
                                                              131.44
                                                                             130.14
        15
                 133.97
                              133.34
                                              132.68
                                                             132.06
                                                                             131.44
        16
                 134.60
                               133.97
                                              133.34
                                                             132.68
                                                                             132.06
        17
                 134.67
                               134.60
                                              133.97
                                                             133.34
                                                                             132.68
        18
                 134.74
                                                                             133.34
                              134.67
                                              134.60
                                                             133.97
        19
                 134.24
                               134.74
                                              134.67
                                                             134.60
                                                                             133.97
        20
                 134.25
                               134.24
                                              134.74
                                                             134.67
                                                                             134.60
        21
                 134.24
                               134.25
                                              134.24
                                                             134.74
                                                                             134.67
        22
                 134.24
                               134.24
                                              134.25
                                                             134.24
                                                                             134.74
        23
                 133.72
                               134.24
                                              134.24
                                                             134.25
                                                                             134.24
        24
                 133.17
                               133.72
                                              134.24
                                                             134.24
                                                                             134.25
        25
                 132.61
                              133.17
                                              133.72
                                                             134.24
                                                                             134.24
        26
                 132.05
                                              133.17
                                                                             134.24
                               132.61
                                                             133.72
```

27	131.46	132.05	132.61	133.17	133.72	
28	130.95	131.46	132.05	132.61	133.17	
29	130.44	130.95	131.46	132.05	132.61	
6865	2535.77	2553.83	2535.10	2544.34	2526.46	
6866	2570.34	2535.77	2553.83	2535.10	2544.34	
6867	2570.42	2570.34	2535.77	2553.83	2535.10	
6868	2559.64	2570.42	2570.34	2535.77	2553.83	
6869	2596.01	2559.64	2570.42	2570.34	2535.77	
6870	2610.51	2596.01	2559.64	2570.42	2570.34	
6871	2579.70	2610.51	2596.01	2559.64	2570.42	
6872	2581.00	2579.70	2610.51	2596.01	2559.64	
6873	2591.69	2581.00	2579.70	2610.51	2596.01	
6874	2601.72	2591.69	2581.00	2579.70	2610.51	
6875	2596.98	2601.72	2591.69	2581.00	2579.70	
6876	2594.25	2596.98	2601.72	2591.69	2581.00	
6877	2575.58	2594.25	2596.98	2601.72	2591.69	
6878	2584.57	2575.58	2594.25	2596.98	2601.72	
6879	2618.23	2584.57	2575.58	2594.25	2596.98	
6880	2653.90	2618.23	2584.57	2575.58	2594.25	
6881	2671.89	2653.90	2618.23	2584.57	2575.58	
6882	2721.07	2671.89	2653.90	2618.23	2584.57	
6883	2719.70	2721.07	2671.89	2653.90	2618.23	
6884	2682.39	2719.70	2721.07	2671.89	2653.90	
6885	2754.36	2682.39	2719.70	2721.07	2671.89	
6886	2755.65	2754.36	2682.39	2719.70	2721.07	
6887	NaN	2755.65	2754.36	2682.39	2719.70	
6888	NaN	NaN	2755.65	2754.36	2682.39	
6889	NaN	NaN	NaN	2755.65	2754.36	
6890	NaN	NaN	NaN	NaN	2755.65	
6891	NaN	NaN	NaN	NaN	NaN	
6892	NaN	NaN	NaN	NaN	NaN	
6893	NaN NaN		NaN	NaN	NaN	
6894	NaN	NaN	NaN	NaN	NaN	
	Shanghai 2.4	Shanghai 2.5	DOW	DOW.1	DOW.2	\
0	NaN	NaN		NaN	NaN	
1	NaN	NaN	921.340027	NaN	NaN	
2	NaN	NaN	925.500000	921.340027	NaN	
3	NaN	NaN	921.729980	925.500000	921.340027	
4	NaN	NaN	925.690002	921.729980	925.500000	
5	NaN	NaN	920.409973	925.690002	921.729980	
6	104.39	NaN	920.369995	920.409973	925.690002	
7	109.13	104.39	920.609985	920.369995	920.409973	
8	114.55	109.13		920.609985	920.369995	
9	120.25	114.55	907.070007	914.890015	920.609985	
10	125.27	120.25		907.070007	914.890015	
11	125.28	125.27		905.599976	907.070007	

12	126.45	125.28	890.739990	891.429993	905.599976
13	127.61	126.45	880.820007	890.739990	891.429993
14	128.84	127.61	889.229980	880.820007	890.739990
15	130.14	128.84	889.099976	889.229980	880.820007
16	131.44	130.14	882.070007	889.099976	889.229980
17	132.06	131.44	883.900024	882.070007	889.099976
18	132.68	132.06	890.530029	883.900024	882.070007
19	133.34	132.68	932.859985	890.530029	883.900024
20	133.97	133.34	944.880005	932.859985	890.530029
21	134.60	133.97	939.210022	944.880005	932.859985
22	134.67	134.60	931.320007	939.210022	944.880005
23	134.74	134.67	937.140015	931.320007	939.210022
24	134.24	134.74	954.210022	937.140015	931.320007
25	134.25	134.24	957.820007	954.210022	937.140015
26	134.24	134.25	955.179993	957.820007	954.210022
27	134.24	134.24	955.659973	955.179993	957.820007
28	133.72	134.24	975.520020	955.659973	955.179993
29	133.17	133.72	981.479980	975.520020	955.659973
			301.473300		300.003310
6865	2533.09	2514.87	8239.509766	8261.849609	8234.610352
6866	2526.46	2533.09	8039.109863	8239.509766	8261.849609
6867	2544.34	2526.46	7899.600098	8039.109863	8239.509766
6868	2535.10	2544.34	8085.709961	7899.600098	8039.109863
6869	2553.83	2535.10	7993.259766	8085.709961	7899.600098
6870	2535.77	2553.10	7991.089844	7993.259766	8085.709961
6871	2570.34	2535.63	8092.529785	7991.089844	7993.259766
6872	2570.42	2570.34	7949.359863	8092.529785	7991.089844
6873	2559.64	2570.42	8072.439941	7949.359863	8092.529785
6874	2596.01	2559.64	8118.490234	8072.439941	7949.359863
6875	2610.51	2596.01	8189.089844	8118.490234	8072.439941
6876	2579.70	2610.51	8003.240234	8189.089844	8118.490234
6877	2581.00	2579.70	8007.479980	8003.240234	8189.089844
6878	2591.69	2581.00	8106.609863	8007.479980	8003.240234
6879	2601.72	2591.69	8054.729980	8106.609863	8007.479980
6880	2596.98	2601.72	8133.740234	8054.729980	8106.609863
6881	2594.25	2596.98	8119.729980	8133.740234	8054.729980
6882	2575.58	2594.25	8229.530273	8119.729980	8133.740234
6883	2584.57	2575.58	8280.209961	8229.530273	8119.729980
6884	2618.23	2584.57	8307.450195	8280.209961	8229.530273
6885	2653.90	2618.23	8268.690430	8307.450195	8280.209961
6886	2671.89	2653.90	8199.370117	8268.690430	8307.450195
6887	2721.07	2671.89	NaN	8199.370117	8268.690430
6888	2719.70	2721.07	NaN	NaN	8199.370117
6889	2682.39	2719.70	NaN	NaN	NaN
6890	2754.36	2682.39	NaN	NaN	NaN
6891	2755.65	2754.36	NaN	NaN	NaN
6892	NaN	2755.65	NaN	NaN	NaN
6893	NaN	NaN	NaN	NaN	NaN

6894	NaN	NaN	NaN		NaN	N	aN	
	DOW.6	Y	Y.1	Y.2	Y.3	Y.4	Y.5	\
0	NoN	NaN	NaN	NaN	NaN	NaN	NaN	
1	NaN	5.2400	NaN	NaN	NaN	NaN	NaN	
2	NaN	5.2400	5.2400	NaN	NaN	NaN	NaN	
3	MaN	5.2400	5.2400	5.2400	NaN	NaN	NaN	
4	NaN	5.2400	5.2400	5.2400	5.2400	NaN	NaN	
5	NaN	5.2400	5.2400	5.2400	5.2400	5.2400	NaN	
6	NaN	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
7	921.340027	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
8	925.500000	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
9	921.729980	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
10	925.690002	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
11	920.409973	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
12	920.369995	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
13	920.609985	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
14	914.890015	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
15	907.070007	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
16	905.599976	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
17	891.429993	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
18	890.739990	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
19	880.820007	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
20	889.229980	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
21	889.099976	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
22	882.070007	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
23	883.900024	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
24	890.530029	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
25	932.859985	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
26	944.880005	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
27	939.210022	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
28	931.320007	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
29	937.140015	5.2400	5.2400	5.2400	5.2400	5.2400	5.2400	
	• • •							
6865	8320.969727	6.6395	6.6340	6.6289	6.6397	6.6631	6.6170	
6866		6.6395	6.6395	6.6340	6.6289	6.6397	6.6631	
6867		6.5758	6.6395	6.6395	6.6340	6.6289	6.6397	
6868		6.6122	6.5758	6.6395	6.6395	6.6340	6.6289	
6869	8234.610352	6.6295	6.6122	6.5758	6.6395	6.6395	6.6340	
6870		6.6763	6.6295	6.6122	6.5758	6.6395	6.6395	
6871	8239.509766	6.6629	6.6763	6.6295	6.6122	6.5758	6.6395	
6872		6.6899	6.6629	6.6763	6.6295	6.6122	6.5758	
6873		6.6899	6.6899	6.6629	6.6763	6.6295	6.6122	
6874		6.6899	6.6899	6.6899	6.6629	6.6763	6.6295	
6875	7993.259766	6.6865	6.6899	6.6899	6.6899	6.6629	6.6763	
6876		6.7017	6.6865	6.6899	6.6899	6.6899	6.6629	
6877		6.7164	6.7017	6.6865	6.6899	6.6899	6.6899	
6878	7949.359863	6.7697	6.7164	6.7017	6.6865	6.6899	6.6899	

```
6879
                   8072.439941
                                  6.7658
                                           6.7697
                                                     6.7164
                                                              6.7017
                                                                       6.6865
                                                                                6.6899
         . . .
6880
                   8118.490234
                                  6.7658
                                                     6.7697
                                           6.7658
                                                              6.7164
                                                                       6.7017
                                                                                6.6865
         . . .
6881
                   8189.089844
                                  6.7658
                                           6.7658
                                                     6.7658
                                                              6.7697
                                                                       6.7164
                                                                                6.7017
         . . .
6882
                   8003.240234
                                  6.7926
                                           6.7658
                                                     6.7658
                                                              6.7658
                                                                       6.7697
                                                                                 6.7164
         . . .
                                            6.7926
6883
                   8007.479980
                                  6.7911
                                                     6.7658
                                                              6.7658
                                                                       6.7658
                                                                                6.7697
         . . .
6884
                   8106.609863
                                  6.7657
                                            6.7911
                                                     6.7926
                                                              6.7658
                                                                       6.7658
                                                                                6.7658
         . . .
6885
                   8054.729980
                                  6.7864
                                            6.7657
                                                     6.7911
                                                              6.7926
                                                                       6.7658
                                                                                6.7658
         . . .
6886
                   8133.740234
                                  6.8096
                                           6.7864
                                                     6.7657
                                                              6.7911
                                                                       6.7926
                                                                                6.7658
         . . .
6887
                   8119.729980
                                      NaN
                                            6.8096
                                                     6.7864
                                                              6.7657
                                                                       6.7911
                                                                                6.7926
         . . .
6888
                   8229.530273
                                      NaN
                                               {\tt NaN}
                                                     6.8096
                                                              6.7864
                                                                       6.7657
                                                                                 6.7911
         . . .
6889
                   8280.209961
                                      NaN
                                               NaN
                                                              6.8096
                                                                       6.7864
                                                                                 6.7657
                                                        {\tt NaN}
         . . .
                   8307.450195
                                                                       6.8096
6890
                                      NaN
                                               NaN
                                                        {\tt NaN}
                                                                  NaN
                                                                                6.7864
         . . .
6891
                   8268.690430
                                      NaN
                                               NaN
                                                                                 6.8096
         . . .
                                                        NaN
                                                                  NaN
                                                                           NaN
6892
         . . .
                   8199.370117
                                      NaN
                                               NaN
                                                        NaN
                                                                  NaN
                                                                           NaN
                                                                                    NaN
6893
                             NaN
                                      NaN
                                               NaN
                                                        NaN
                                                                  NaN
                                                                           NaN
                                                                                    NaN
         . . .
6894
                             NaN
                                      NaN
                                               NaN
                                                                 NaN
                                                                           NaN
                                                                                    NaN
                                                        NaN
         . . .
```

	Y.6	Y.7	Date
0	NaN	5.2400	20-Dec-90
1	NaN	5.2400	21-Dec-90
2	NaN	5.2400	24-Dec-90
3	NaN	5.2400	25-Dec-90
4	NaN	5.2400	26-Dec-90
5	NaN	5.2400	27-Dec-90
6	NaN	5.2400	28-Dec-90
7	5.2400	5.2400	31-Dec-90
8	5.2400	5.2400	2-Jan-91
9	5.2400	5.2400	3-Jan-91
10	5.2400	5.2400	4-Jan-91
11	5.2400	5.2400	7-Jan-91
12	5.2400	5.2400	8-Jan-91
13	5.2400	5.2400	9-Jan-91
14	5.2400	5.2400	10-Jan-91
15	5.2400	5.2400	11-Jan-91
16	5.2400	5.2400	14-Jan-91
17	5.2400	5.2400	15-Jan-91
18	5.2400	5.2400	16-Jan-91
19	5.2400	5.2400	17-Jan-91
20	5.2400	5.2400	18-Jan-91
21	5.2400	5.2400	21-Jan-91
22	5.2400	5.2400	22-Jan-91
23	5.2400	5.2400	23-Jan-91
24	5.2400	5.2400	24-Jan-91
25	5.2400	5.2400	25-Jan-91
26	5.2400	5.2400	28-Jan-91
27	5.2400	5.2400	29-Jan-91
28	5.2400	5.2400	30-Jan-91
29	5.2400	5.2400	31-Jan-91

```
6.6395
                      6865
                                      6.6170
                                                                                   15-Jan-19
                                      6.6170
                                                            6.5758
                                                                                   16-Jan-19
                      6866
                                                             6.6122
                                                                                   17-Jan-19
                                      6.6631
                      6867
                                                             6.6295
                      6868
                                      6.6397
                                                                                   18-Jan-19
                                      6.6289
                                                             6.6763
                                                                                   21-Jan-19
                      6869
                      6870
                                      6.6340
                                                             6.6629
                                                                                   22-Jan-19
                      6871
                                      6.6395
                                                           6.6899
                                                                                   23-Jan-19
                                    6.6395
                                                           6.6899
                                                                                   24-Jan-19
                      6872
                      6873
                                    6.5758
                                                            6.6899
                                                                                   25-Jan-19
                      6874
                                    6.6122
                                                           6.6865
                                                                                   28-Jan-19
                                     6.6295
                                                           6.7017
                                                                                   29-Jan-19
                      6875
                      6876
                                    6.6763
                                                           6.7164
                                                                                   30-Jan-19
                                      6.6629
                      6877
                                                            6.7697
                                                                                   31-Jan-19
                      6878
                                      6.6899
                                                            6.7658
                                                                                     1-Feb-19
                                      6.6899
                                                            6.7658
                                                                                   11-Feb-19
                      6879
                      6880
                                     6.6899
                                                             6.7658
                                                                                   12-Feb-19
                                      6.6865
                                                            6.7926
                                                                                   13-Feb-19
                      6881
                                    6.7017
                                                             6.7911
                                                                                   14-Feb-19
                      6882
                      6883
                                     6.7164
                                                           6.7657
                                                                                   15-Feb-19
                                     6.7697
                      6884
                                                             6.7864
                                                                                   18-Feb-19
                      6885
                                      6.7658
                                                            6.8096
                                                                                   19-Feb-19
                      6886
                                      6.7658
                                                                     NaN
                                                                                                    NaN
                                      6.7658
                                                                     NaN
                                                                                                    NaN
                      6887
                      6888
                                      6.7926
                                                                     NaN
                                                                                                   NaN
                                      6.7911
                                                                     NaN
                                                                                                    NaN
                      6889
                      6890
                                     6.7657
                                                                     NaN
                                                                                                    NaN
                      6891
                                      6.7864
                                                                     NaN
                                                                                                    NaN
                      6892
                                      6.8096
                                                                     NaN
                                                                                                    NaN
                      6893
                                               NaN
                                                                     NaN
                                                                                                    NaN
                      6894
                                               NaN
                                                                     NaN
                                                                                                    NaN
                       [6895 rows x 23 columns]
In [4]: #Moving Average
                      tenp = (6886-3700)/10.0
                      endLoc = int(6886-tenp)
                      def movingAverage(Y):
                                ma_Y = np.copy(Y)
                                 for i in range(Y.size-3):
                                            if i > 3:
                                                        ma \ Y[i][0] = (Y[i-3][0]+Y[i-2][0]+Y[i-1][0]+Y[i][0]+Y[i+1][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]+Y[i+2][0]
                                 return(ma_Y)
                      Y = np.array(XandY.iloc[0:6886,21])
                      Y = np.reshape(Y, (Y.size,1))
                      dow = np.array(XandY.iloc[0:6886,7])
                      dow = np.reshape(dow, (dow.size,1))
```

. . .

. . .

```
shangCom = np.array(XandY.iloc[0:6886,0])
shangCom = np.reshape(shangCom, (dow.size,1))

scatterRange = np.array(XandY.iloc[0:6886,22])
scatterRange = pd.to_datetime(scatterRange)

plt.figure(figsize=(10,5))
plt.plot(scatterRange,movingAverage(Y), label='Exchange Rate Trend')
plt.legend()
plt.title('Exchange Rate History')
plt.ylabel('Exchange Rate (Yuan to Dollar)')
plt.xlabel('Date')

plt.legend()
plt.savefig('exch_rate_Hist_all.png')
plt.show()
```



```
plt.savefig('Dow_Hist_all.png')
plt.show()
```



```
In [7]: Y = np.array(XandY.iloc[3700:(6886),21])
    Y = np.reshape(Y, (Y.size,1))

scatterRange = np.array(XandY.iloc[3700:(6886),22])
scatterRange = pd.to_datetime(scatterRange)

plt.figure(figsize=(10,5))
plt.plot(scatterRange,movingAverage(Y), label='Exchange Rate Moving average')

plt.legend()
plt.title('Exchange Rate History from 2005')
plt.ylabel('Exchange Rate (Yuan to Dollars)')
plt.xlabel('Date')
plt.savefig('exch_rate_Hist_2005.png')
plt.show()
```



```
In []: Y = np.array(XandY.iloc[3700:(6886),21])
       Y = np.reshape(Y, (Y.size,1))
        scatterRange = np.array(XandY.iloc[3700:(6886),22])
        scatterRange = pd.to_datetime(scatterRange)
       plt.figure(figsize=(10,5))
       plt.plot(scatterRange,movingAverage(Y), label='Exchange Rate Moving average')
       plt.legend()
       plt.title('Exchange Rate History from 2005')
       plt.ylabel('Exchange Rate (Yuan to Dollars)')
       plt.xlabel('Date')
       plt.savefig('exch_rate_Hist_2005.png')
       plt.show()
In [8]: def linRegress(XandY):
            tenp = (6886-3700)/10.0
            endLoc = int(6886-tenp)
           X = (np.array(XandY.iloc[3700:endLoc,0:20], dtype = float))
            \#oneS = np.ones(np.size(X, axis = 0))
            #oneS = np.reshape(oneS, (oneS.size,1))
```

```
\#X = np.concatenate((oneS, X), axis = 1)
            \#X = np.array(X, dtype=float)
            Y = np.array(XandY.iloc[3700:endLoc,21])
            Y = np.reshape(Y, (Y.size,1))
            xPrimeX = np.matmul(X.T,X)
            xPrimeXInv = np.linalg.inv(xPrimeX)
            #print(xPrimeXInv)
            xPrimeY = np.matmul(X.T,Y)
            coef = np.matmul(xPrimeXInv,xPrimeY)
            #print(coef)
            X = (np.array(XandY.iloc[(endLoc):(6886),0:20], dtype = float))
            Y = np.array(XandY.iloc[endLoc:(6886),21])
            Y = np.reshape(Y, (Y.size,1))
            predictedY = np.matmul(X,coef)
            scatterRange = np.array(XandY.iloc[endLoc:(6886),22])
            scatterRange = pd.to_datetime(scatterRange)
            plt.figure(figsize=(10,5))
            plt.plot(scatterRange,Y, label='Y')
            plt.plot(scatterRange,predictedY,label='Predicted')
            SSE = np.sum((Y-predictedY)**2)
            MSE = SSE/Y.size
            SD = math.sqrt(MSE)
            print('SSE: ',SSE)
            print('MSE: ',MSE)
            print('SD: ',SD)
            plt.title('Exchange Rate Prediction Utilizing Shanghai Composite Index, DOW, and A
            plt.legend()
            plt.xlabel('Date')
            plt.ylabel('Exchange Rate (Yuan to Dollar)')
            plt.show()
In [9]: linRegress(XandY)
SSE: 0.0900962530893456
MSE: 0.0002824333952644063
SD: 0.01680575482578531
```



```
In [10]: def linRegress(XandY):
             tenp = (6886-3700)/10.0
             endLoc = int(6886-tenp)
             X = (np.array(XandY.iloc[3700:endLoc,13:20], dtype = float))
             \#oneS = np.ones(np.size(X, axis = 0))
             #oneS = np.reshape(oneS, (oneS.size,1))
             \#X = np.concatenate((oneS, X), axis = 1)
             \#X = np.array(X, dtype=float)
             Y = np.array(XandY.iloc[3700:endLoc,21])
             Y = np.reshape(Y, (Y.size,1))
             xPrimeX = np.matmul(X.T,X)
             xPrimeXInv = np.linalg.inv(xPrimeX)
             xPrimeY = np.matmul(X.T,Y)
             coef = np.matmul(xPrimeXInv,xPrimeY)
             X = (np.array(XandY.iloc[(endLoc):(6886),13:20], dtype = float))
             Y = np.array(XandY.iloc[endLoc:(6886),21])
             Y = np.reshape(Y, (Y.size,1))
             predictedY = np.matmul(X,coef)
             scatterRange = np.array(XandY.iloc[endLoc:(6886),22])
             scatterRange = pd.to_datetime(scatterRange)
             plt.figure(figsize=(10,5))
             plt.plot(scatterRange,Y, label='Y')
             plt.plot(scatterRange,predictedY,label='Predicted')
```

```
SSE = np.sum((Y-predictedY)**2)
MSE = SSE/Y.size
SD = math.sqrt(MSE)
print('SSE: ',SSE)
print('MSE: ',MSE)
print('SD: ',SD)
plt.title('Exchange Rate Prediction Using Autoregression')
plt.xlabel('date')
plt.ylabel('Exchange Rate (Yuan to Dollar)')
plt.legend()
plt.show
```

In [11]: linRegress(XandY)

SSE: 0.09044357120366141 MSE: 0.00028352216678263764 SD: 0.016838116485600095


```
\#X = np.array(X, dtype=float)
             Y = np.array(XandY.iloc[3700:endLoc,21])
             Y = np.reshape(Y, (Y.size,1))
             xPrimeX = np.matmul(X.T,X)
             xPrimeXInv = np.linalg.inv(xPrimeX)
             xPrimeY = np.matmul(X.T,Y)
             coef = np.matmul(xPrimeXInv,xPrimeY)
             X = (np.array(XandY.iloc[(endLoc):(6886),6:20], dtype = float))
             Y = np.array(XandY.iloc[endLoc:(6886),21])
             Y = np.reshape(Y, (Y.size,1))
             predictedY = np.matmul(X,coef)
             scatterRange = np.array(XandY.iloc[endLoc:(6886),22])
             scatterRange = pd.to_datetime(scatterRange)
             plt.figure(figsize=(10,5))
             plt.plot(scatterRange,Y, label='Y')
             plt.plot(scatterRange,predictedY,label='Predicted')
             SSE = np.sum((Y-predictedY)**2)
             SSE = np.sum((Y-predictedY)**2)
             MSE = SSE/Y.size
             SD = math.sqrt(MSE)
             print('SSE: ',SSE)
             print('MSE: ',MSE)
             print('SD: ',SD)
             plt.title('Exchange Rate Prediction Using DOW and Autoregression')
             plt.xlabel('date')
             plt.ylabel('Exchange Rate (Yuan to Dollar)')
             plt.legend()
             plt.show
             plt.legend()
             plt.show
In [13]: linRegress(XandY)
SSE: 0.09017017947553893
MSE: 0.0002826651394217521
SD: 0.016812648197763257
```

#X = np.concatenate((oneS, X), axis = 1)


```
In [14]: def linRegress(XandY):
             tenp = (6886-3700)/10.0
             endLoc = int(6886-tenp)
             X1 = (np.array(XandY.iloc[3700:endLoc,13:20], dtype = float))
             X2 = (np.array(XandY.iloc[3700:endLoc,0:6], dtype = float))
             X = np.concatenate((X1,X2),axis=1)
             \#oneS = np.ones(np.size(X, axis = 0))
             #oneS = np.reshape(oneS, (oneS.size,1))
             \#X = np.concatenate((oneS, X), axis = 1)
             \#X = np.array(X, dtype=float)
             Y = np.array(XandY.iloc[3700:endLoc,21])
             Y = np.reshape(Y, (Y.size,1))
             xPrimeX = np.matmul(X.T,X)
             xPrimeXInv = np.linalg.inv(xPrimeX)
             xPrimeY = np.matmul(X.T,Y)
             coef = np.matmul(xPrimeXInv,xPrimeY)
             X1 = (np.array(XandY.iloc[(endLoc):(6886),13:20], dtype = float))
             X2 = (np.array(XandY.iloc[(endLoc):(6886),0:6], dtype = float))
             X = np.concatenate((X1,X2),axis=1)
             Y = np.array(XandY.iloc[endLoc:(6886),21])
```

```
Y = np.reshape(Y, (Y.size,1))
predictedY = np.matmul(X,coef)
scatterRange = np.array(XandY.iloc[endLoc:(6886),22])
scatterRange = pd.to_datetime(scatterRange)
plt.figure(figsize=(10,5))
plt.plot(scatterRange,Y, label='Y')
plt.plot(scatterRange,predictedY,label='Predicted')
SSE = np.sum((Y-predictedY)**2)
MSE = SSE/Y.size
SD = math.sqrt(MSE)
plt.title("Exchange Rate Prediction Using Shanghai Composite Index and Autoregres
plt.legend()
plt.show
print('SSE: ',SSE)
print('MSE: ',MSE)
print('SD: ',SD)
```

In [15]: linRegress(XandY)

SSE: 0.0903813451732948 MSE: 0.0002833271008567235 SD: 0.01683232309744331

