Lecture Three - Exponential and Logarithmic Functions

Section 3.1 – Inverse Functions

Inverse Relations

Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse relation.

If a relation is defined by an equation, interchanging the variables produces an equation of the inverse relation

```
Given the relation: {(Zambia, 4.2), (Columbia, 4.5), (Poland, 3.3), (Italy, 3.3), (US, 2.5)} Inverse Relation: {(4.2, Zambia), (4.5, Columbia), (3.3, Poland), (3.3, Italy), (2.5, US)}
```

Example

Consider the relation g given by: $G = \{(2, 4), (-1, 3), (-2, 0)\}$

Solution

The inverse relation: $G = \{(4, 2), (3, -1), (0, -2)\}$

Example

Consider the relation given by: $F = \{(-2, 2), (-1, 1), (0, 0), (1, 3), (2, 5)\}$

Solution

The inverse relation: $G = \{(2, -2), (1, -1), (0, 0), (3, 1), (5, 2)\}$

One-to-One Functions

A function f is one-to-one (1-1) if different inputs have different outputs that is,

if
$$a \neq b$$
, then $f(a) \neq f(b)$

A function f is one-to-one (1-1) if different outputs the same, the inputs are the same – that is,

if
$$f(a) = f(b)$$
, then $a = b$

Example

Given the function f described by f(x) = 2x - 3, prove that f is one-to-one.

Solution

$$f(a) = f(b)$$

 $2a - 3 = 2b - 3$ Add 3 on both sides
 $2a = 2b$ Divide by 2
 $a = b$
 $\therefore f$ is one-to-one

Example

Given the function f described by f(x) = -4x + 12, prove that f is one-to-one.

Solution

$$f(a) = f(b)$$

$$-4a + 12 = -4b + 12$$

$$-4a = -4b$$

$$a = b$$

$$f \text{ is one-to-one}$$
Subtract 12 from both sides
$$Divide \text{ by -4}$$

Example

Given the function f described by $f(x) = x^2$, prove that f is one-to-one.

Solution

$$-1 \neq 1$$

$$\begin{cases} f(-1) = 1 \\ f(1) = 1 \end{cases} \Rightarrow f(-1) = f(1)$$

 $\therefore f$ is *not* one-to-one

Definition of the Inverse of a Function

Let f and g be two functions such that

$$f(g(x)) = x$$
 and $g(f(x)) = x$

$$x \xrightarrow{f} f(x)$$

$$g(f(x)) = f^{-1}(f(x)) = x$$

If the inverse of a function f is also a function, it is named f^{-1} read "f - inverse"

The -1 in f^{-1} is not an exponent! And is not equal to

Domain and **Range** of f and f^{-1}

domain of
$$f^{-1}$$
 = range of f
range of f^{-1} = domain of f

If a function f is one-to-one, then f^{-1} is the unique function such that each of the following holds.

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$
 for each x in the *domain* of f , and

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$$
 for each x in the *domain* of f^{-1}

The condition that f is one-to-one in the definition of inverse function is important; otherwise, g will not define a function

3

Graphing

Example

Let $f(x) = x^3 - 1$ and $g(x) = \sqrt[3]{x+1}$, is g the inverse function of f?

Solution

$$(f \circ g)(x) = f(g(x))$$

$$= f\left(\sqrt[3]{x+1}\right)$$

$$= \left(\sqrt[3]{x+1}\right)^3 - 1$$

$$= x + 1 - 1$$

$$= x$$

$$= (3\sqrt[3]{x+1})^3 - 1$$

$$= x + 1 - 1$$

$$= x$$

$$= x$$

$$= x$$

$$= x$$

$$= x$$

$$= x$$

g is the inverse function of f

Example

Show that each function is the inverse of the other: f(x) = 4x - 7 and $g(x) = \frac{x + 7}{4}$

Solution

$$f(g(x)) = f\left(\frac{x+7}{4}\right)$$

$$= 4\left(\frac{x+7}{4}\right) - 7$$

$$= x + 7 - 7$$

$$= x$$

$$g(f(x)) = g(4x-7)$$

$$= \frac{4x-7+7}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

Finding the Inverse Function

Example

Finding an Inverse Function

$$f\left(x\right) = 2x + 7$$

- 1. Replace f(x) with y
- y = 2x + 7
- 2. Interchange *x* and *y*
- x = 2y + 7

3. Solve for y

x - 7 = 2v

$$\frac{x-7}{2} = \mathbf{y}$$

- **4.** Replace y with $f^{-1}(x)$ $f^{-1}(x) = \frac{x-7}{2}$

Example

Find the inverse of $f(x) = 4x^3 - 1$

Solution

$$y = 4x^3 - 1$$

$$x = 4y^3 - 1$$

$$x+1=4y^3$$

$$\frac{x+1}{4} = y^3$$

$$y = \left(\frac{x+1}{4}\right)^{1/3}$$

$$f^{-1}(x) = \sqrt[3]{\frac{x+1}{4}}$$

Example

Find a formula for the inverse $f(x) = \frac{5x-3}{2x+1}$

Solution

$$y = \frac{5x - 3}{2x + 1}$$

$$x = \frac{5y - 3}{2y + 1}$$

$$x(2y+1) = 5y - 3$$

$$2xy + x = 5y - 3$$

$$2xy - 5y = -x - 3$$

$$y(2x-5) = -x-3$$

$$y = \frac{-x - 3}{2x - 5}$$

$$f^{-1}(x) = -\frac{x+3}{2x-5}$$

Exercise Section 3.1 – Inverse Functions

(1-9) Find the inverse relation of the given sets:

- **1.** $A = \{(-2, 2), (1, -1), (0, 4), (1, 3)\}$
- **2.** $B = \{(1, -1), (2, -2), (3, -3), (4, -4)\}$
- 3. $C = \{(a, -a), (b, -b), (c, -c)\}$
- **4.** $D = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)\}$
- **5.** $E = \{(-a, a), (-b, b), (-c, c), (-d, d)\}$

(6-14) Determine whether the function is one-to-one

- **6.** f(x) = 3x 7
- **9.** $f(x) = \sqrt[3]{x}$

12. $f(x) = (x-2)^3$

- 7. $f(x) = x^2 9$
- **10.** f(x) = |x|

13. $y = x^2 + 2$

 $8. \qquad f(x) = \sqrt{x}$

- 11. $f(x) = \frac{2}{x+3}$
- **14.** $f(x) = \frac{x+1}{x-3}$
- **15.** Given that f(x) = 5x + 8, use composition of functions to show that $f^{-1}(x) = \frac{x 8}{5}$
- **16.** Given the function $f(x) = (x+8)^3$
 - a) Find $f^{-1}(x)$
 - b) Graph f and f^{-1} in the same rectangular coordinate system
 - c) Find the domain and the range of f and f^{-1}

(17 – 32) Prove that f(x) and g(x) are inverse functions of each other.

17. f(x) = 4x; $g(x) = \frac{x}{4}$

25. $f(x) = \frac{3x}{x-1}$; $g(x) = \frac{x}{x-3}$

18. f(x) = 2x; $g(x) = \frac{1}{2x}$

- **26.** $f(x) = x^3 + 2$; $g(x) = \sqrt[3]{x-2}$
- **19.** $f(x) = 4x 1; \quad g(x) = \frac{x+1}{4}$
- **27.** $f(x) = x^3 1$; $g(x) = \sqrt[3]{x+1}$
- **20.** $f(x) = \frac{1}{2}x \frac{3}{2}$; g(x) = 2x + 3
- **28.** $f(x) = (x+4)^3$; $g(x) = \sqrt[3]{x} 4$
- **21.** $f(x) = -\frac{1}{2}x \frac{1}{2}; \quad g(x) = -2x + 1$
- **30.** f(x) = 3x 2 $g(x) = \frac{x+2}{3}$

29. $f(x) = x^3 - 1$ $g(x) = \sqrt[3]{x+1}$

- **22.** $f(x) = 3x + 2; g(x) = \frac{1}{3}(x 2)$
- **31.** $f(x) = x^2 + 5, x \le 0$ $g(x) = -\sqrt{x-5}, x \ge 5$
- **23.** $f(x) = \frac{5}{x+3}$; $g(x) = \frac{5}{x} 3$
- **32.** $f(x) = x^3 4$; $g(x) = \sqrt[3]{x+4}$
- **24.** $f(x) = \frac{2x}{x+1}$; $g(x) = \frac{-x}{x-2}$

(33-35) Find the inverse of

33.
$$f(x) = (x-2)^3$$

34.
$$f(x) = \frac{x+1}{x-3}$$

35.
$$f(x) = \frac{2x+1}{x-3}$$

(36 – 38) Determine the domain and range of f^{-1} (Hint: first find the domain and range of f)

36.
$$f(x) = -\frac{2}{x-1}$$

37.
$$f(x) = \frac{5}{x+3}$$

38.
$$f(x) = \frac{4x+5}{3x-8}$$

(39-66) For the given functions

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

39.
$$f(x) = \frac{2x}{x-1}$$

48.
$$f(x) = \frac{3x-1}{x-2}$$

58.
$$f(x) = 2 - 3x^2$$
; $x \le 0$

40.
$$f(x) = \frac{x}{x-2}$$

49.
$$f(x) = \frac{3x-2}{x+4}$$

59.
$$f(x) = 2x^3 - 5$$

41.
$$f(x) = \frac{x+1}{x-1}$$

50.
$$f(x) = \frac{-3x-2}{x+4}$$

60.
$$f(x) = \sqrt{3-x}$$

61. $f(x) = \sqrt[3]{x} + 1$

42.
$$f(x) = \frac{2x+1}{x+3}$$

51.
$$f(x) = \sqrt{x-1}$$
 $x \ge 1$

62.
$$f(x) = (x^3 + 1)^5$$

43.
$$f(x) = \frac{3x - 1}{x - 2}$$

52.
$$f(x) = \sqrt{2-x}$$
 $x \le 2$

63.
$$f(x) = x^2 - 6x$$
; $x \ge 3$

44.
$$f(x) = \frac{2x}{x-1}$$

53.
$$f(x) = x^2 + 4x$$
 $x \ge -2$

64.
$$f(x) = (x-2)^3$$

45.
$$f(x) = \frac{x}{x-2}$$

55.
$$f(x) = \frac{1}{3x-2}$$

54. f(x) = 3x + 5

65.
$$f(x) = \frac{x+1}{x-3}$$

46.
$$f(x) = \frac{x+1}{x-1}$$

56.
$$f(x) = \frac{3x+2}{2x-5}$$

66.
$$f(x) = \frac{2x+1}{x-3}$$

47.
$$f(x) = \frac{2x+1}{x+3}$$

57.
$$f(x) = \frac{4x}{x-2}$$

67. The function w(x) = 2x + 24 can be used to convert a U.S. women's shoe size into an Italian women's shoe size. Determine the function $w^{-1}(x)$ that can use to convert an Italian women's shoe size to its equivalent U.S. shoe size.

- 68. The function m(x) = 1.3x 4.7 can be used to convert a U.S. men's shoe size into an U.K. women's shoe size. Determine the function $m^{-1}(x)$ that can used to convert an U.K. men's shoe size to its equivalent U.S. shoe size.
- **69.** A catering service use the function $c(x) = \frac{300 + 12x}{x}$ to determine the amount, in *dollars*, it charges per person for a sit-down dinner, where x is the number of people in attendance.
 - a) Find c(30) and explain what it represents
 - b) Find $c^{-1}(x)$
 - c) Use $c^{-1}(x)$ to determine how many people attended a dinner for which the cost per person was \$15.00
- **70.** A landscaping service use the function $c(x) = \frac{600 + 140x}{x}$ to determine the amount, in *dollars*, it charges per tree to deliver, where x is the number of trees.
 - a) Find c(5) and explain what it represents
 - b) Find $c^{-1}(x)$
 - c) Use $c^{-1}(x)$ to determine how many trees were delivered for which the cost per tree was \$160.00