

STN Columbus

SU455976

ANSWER 1 OF 2 CAPLUS:

ACCESSION NUMBER: 1975:484889 CAPLUS
DOCUMENT NUMBER: 83:84889
TITLE: Polymeric composition
INVENTOR(S): Sherstnev, P. P.; Tservadze, G. G.
PATENT ASSIGNEE(S): All-Union Scientific-Research Institute for Medical Instruments and Equipment, USSR
SOURCE: U.S.S.R. From: Otkrytiya, Izobret., Prom. Obraztsy, Tovarnye Znaki 1975, 52(1), 55-6.
CODEN: URXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Russian
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
SU 455976	T	19750105	SU 1973-1901303	19730330
			SU 1973-1901303	A 19730330

PRIORITY APPLN. INFO.:

AB For making biol. inert, atraumatic intrauterine contraceptive devices with high elastic and x-ray contrasting characteristics, high-mol. plasticizer, polyisobutylene [9003-27-4] (5.0-15.0), Bi Oxide [12640-40-3] (20.0-40.0 part by wt.) (as x-ray contrast filler) are added to the title compn. contg. polyethylene [9002-88-4] 100.0 and internal lubricant 1.0-3.0 parts by wt.

ANSWER 2 OF 2 WPIX:

ACCESSION NUMBER: 1975-58167W [35] WPIX
TITLE: Intra-uterine contraceptive device - prep'd from plasticised polyethylene, bismuth oxide and lubricant.
DERWENT CLASS: A96 P32
PATENT ASSIGNEE(S): (MEDI-R) MEDIC APPTS RES INS
COUNTRY COUNT: 1
PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG
SU 455976	A	19750218 (197535)*			

PRIORITY APPLN. INFO: SU 1973-1901303 19730330

AN 1975-58167W [35] WPIX

AB SU 455976 A UPAB: 19930831

Biologically inert, atraumatic, elastic, intra-uterine contraceptives showing increased X-ray contrast are produced from a compsn. contg. (in pts. wt.) polyethylene 100, polyisobutylene (as a plasticiser) 5-15, Bi₂O₃ (X-ray contrast medium) 20-40, and an inner lubricant 1-3. The compsn. is sterilised with gamma-radiation (Bi₂O₃ protects the polymer against destruction by an ionising radiation). The X-ray contrast is higher than in known compsns. contg. BaSO₄ or talc.

This Page Blank (uspto)

Союз Советских
Социалистических
Республик

Государственный комитет
Совета Министров СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 455976

(61) Зависимое от авт. свидетельства —

(22) Заявлено 30.03.73 (21) 1901303/23-5

с присоединением заявки № —

(51) М. Кл. С 08f 29/10
С 08f 45/02
А 61f 5/42

(32) Приоритет —

Опубликовано 05.01.75. Бюллетень № 1

(53) УДК 678.742.2
(088.8)

Дата опубликования описания 18.02.75

(72) Авторы
изобретения

П. П. Шерстнев и Г. Г. Церцвадзе

(71) Заявитель

Всесоюзный научно-исследовательский институт медицинского
приборостроения

(54) ПОЛИМЕРНАЯ КОМПОЗИЦИЯ

1

Изобретение относится к биомедицинским полимерам, в частности к получению биологически инертной, упруго-эластичной рентгеноконтрастной композиции для изготовления имплантантов, вводимых на длительное время внутрь организма человека, например для внутриматочных контрацептивных телец.

Известная композиция, предназначенная для изготовления внутриматочных контрацептивных телец, состоит из полимерного связующего — полиэтилена и рентгеноконтрастного наполнителя — сернокислого бария в количестве 22%. К недостаткам композиции относятся: малая степень рентгеноконтрастности; высокая жесткость, способная вызвать травмирование живых тканей; недостаточная текучесть расплавов, ограничивающая применение композиции для изготовления тонкостенных контрацептивных телец сложной конфигурации методом литья под давлением.

Целью изобретения является изготовление биологически инертных, атравматичных упруго-эластичных с повышенной рентгеноконтрастностью внутриматочных контрацептивов различных геометрических форм и размеров любыми принятыми способами формообразования, например литьем под давлением, экспрессией, пневмораздувом и др. Указанныя цель достигается тем, что полимерная матрица состоит из двух высокомолекулярных соединений — полиэтилена низкой плотности и поли-

2

изобутилена, а в качестве рентгеноконтрастного наполнителя взята окись висмута с внутренними смазками. Компоненты композиции взяты в следующих соотношениях (в вес. ч.):

5	Полиэтилен	100
	Полизобутилен	5—15
	Окись висмута	20—40
	Внутренняя смазка	1—3

10 Использование полизобутилена как пластификатора полиэтилена взамен широко применяемых в медицинских полимерных композициях эфиров фталевой кислоты (ДОФ, ДБФ и др.) резко снижает окисляемость и бромируемость водных вытяжек (см. табл. 1). Это свидетельствует о значительном улучшении санитарно-химических характеристик системы «полиэтилен + пластификатор» и дает возможность применять ее в целях имплантации.

Все биомедицинские полимеры в изделиях проходят стадию заводской стерилизации γ-лучами до дозы 2,5 Мрад, после чего ухудшаются санитарно-химические характеристики композиции. Сравнение окисляемости и бромируемости водных вытяжек композиций на основе полиэтилена различных составов показало (см. табл. 2), что окись висмута обладает защитным действием к полимеру к воздействию ionизирующих излучений, т. е. служит антирадом.

Таблица 1

Окисляемость и бромируемость водных вытяжек пластификаторного полиэтилена

Полимерная композиция	10 вес. ч. пластифи- катора	Окисляемость (в мг О ₂ /л) и бро- мируемость (в мг Br ₂ /л) водных вытяжек через 20 суток при тем- пературе, °C	
		20	40
Полиэтилен П2020Т	ДОФ	15,7	49,3
То же	ДБФ	31,6	52,8
Полиэтилен П2020Т, наполненный окисью висмута	ПИБ-118	0,44	1,65

Таблица 2

Окисляемость и бромируемость водных вытяжек композиций на основе полиэтилена,
облученных стерилизаторной дозой γ-лучей

Полимер	10 вес. ч. пластифи- катора	40 вес. ч. наполни- теля	Окисляемость (в мг О ₂ /л) и бро- мируемость (в мг Br ₂ /л) водных вытяжек через 20 суток при температуре, °C	
			20	40
Полиэтилен П2020Т	ПИБ-118	Тальк	21,4	46,6
То же	То же	BaSO ₄	17,2	31,8
.	.	Bi ₂ O ₃	1,83	3,08
.	.	—	8,43	17,8

Предмет изобретения

Полимерная композиция на основе полиэтилена, содержащая рентгеноконтрастный наполнитель, отличающаяся тем, что, с целью изготовления биологически инертных атравматических внутриматочных контрацептивных телец с высокими упруго-эластическими и рентгеноконтрастными характеристиками, в композицию введен высокомолекулярный пластификатор — полизобутилен, в качестве наполнителя введена окись висмута, и компоненты взяты в следующих соотношениях (в вес. ч.):

Полиэтилен	100,0
Полизобутилен	5,0—15,0
Окись висмута	20,0—40,0
Внутренняя смазка	1,0—3,0

При введении в композицию в качестве рентгеноконтрастного наполнителя висмута в количестве от 20 до 40 вес. ч. достигается более высокая степень рентгеноконтрастности, чем в случае применения сернокислого бария в тех же дозировках. Кроме того, использование окиси висмута значительно улучшает физико-механические свойства пластифицированного полиэтилена.

Таким образом, предлагаемая композиция имеет ряд преимуществ, по сравнению с известными, обеспечивает возможность изготовления из нее различными способами переработки физиологически инертных, атравматических внутриматочных контрацептивных телец, обладающих высокой степенью контрастности и упруго-эластическими свойствами, которые могут варьироваться в зависимости от конфигураций и размеров телец.

Составитель Н. Махмудбекова

Редактор Л. Ушакова

Техред Г. Дворина

Корректор З. Тарасова

Заказ 280/9

Изл. № 281 Тираж 495
ЦНИИПИ Государственного комитета Совета Министров СССР
по делам изобретений и открытий
Москва, Ж-35, Раушская наб., д. 4/5

Подписьное

Типография, пр. Сапунова, 2