LIMBAJUL VHDL - 1

INTRODUCERE

VHDL

- VHSIC Very High Speed Integrated Circuit
- HDL Hardware Description Language
- început 1980; standard 1987; extins 1993; variantă 2002
- Scop metodologie riguroasă de proiectare în ciclul de dezvoltare a sistemelor hardware

INTRODUCERE

Definiție

- limbaj de descriere a sistemelor electronice hardware
 - structură de blocuri
 - relaţii
 - interconexiuni
- VHDL definit şi integrat în instrumentele CAD
 (Computer-Aided Design)
- toate instrumentele CAE (Computer-Aided Engineering) - produse cu intrări / ieşiri standard VHDL

STRUCTURA PROGRAMULUI

Proiectare ierarhică

model VHDL: pereche entitate + arhitectură

Declarația de entitate

Descrierea arhitecturii

STRUCTURA PROGRAMULUI

Proiectare ierarhică

- entitatea declarație a intrărilor şi ieşirilor modulului
- arhitectura
 - descriere detaliată a structurii modulului sau
 - descriere detaliată a funcționării modulului

- sistemele hardware în mod natural concurente
- modelare în:
 - domeniul concurent +
 - domeniul secvențial

Obiecte

- constante
- variabile
- semnale
 - specifice sistemelor hardware
 - modelează informația care tranzitează între componente (legătură fizică prin fire)
 - există tot timpul simulării, indiferent de zona de vizibilitate

Obiecte

pilot (driver) de semnal

Coadă de așteptare a valorilor prevăzute pentru semnal

Objecte

- orice object clasificat într-un tip
- tipul este obligatoriu și nu se schimbă niciodată
- tipurile impun valori şi operaţii permise şi interzise
- 4 tipuri:
 - scalare (întregi, flotante, fizice, enumerate)
 - compuse (tablouri, articole)
 - acces (pointeri)
 - fişier
- tipuri predefinite:
 - bit, bit-vector, boolean, character, integer, real, severity-level, string, time

Funcții și proceduri

- funcțiile:
 - argumente au tip definit
 - returnează rezultat are tip definit
- procedurile
 - argumente au tip definit
 - se pot folosi în locul unei instrucțiuni secvențiale

Biblioteci și pachete

- VHDL limbaj modular ⇒ se scriu unităţi mici, ierarhizate ⇒ descrieri compilate separat = unităţi de proiectare
- unitățile de proiectare salvate în biblioteca de lucru generată de mediul VHDL: WORK
- biblioteci de resurse apelare cu library înainte de unitatea de proiectare
- folosire cu use unitate.all
- WORK şi STD au o clauză library implicită

Biblioteci şi pachete

architecture A
configuration C
package P
package body P

	REG	LES!		ogic_1164]
pac	kage s	std_lo	ogic_a	arith
	4 4	QE/	86%] ogic_arith
				_\/(

STD

pack	textic	√.		
pack	body		io	

Biblioteci şi pachete

- bibliotecile conțin doar unități de proiectare
- fişierele sursă (cu cod VHDL) analizate şi compilate nu mai există pentru proiectant
- după compilarea fişierelor ⇒ utilizăm (referim) doar unități de proiectare

Biblioteci şi pachete

- unități de proiectare:
 - entitate (interfața sistemului)
 - arhitectură (descrierea sistemului)
 - specificație de pachet (vedere externă a posibilităților puse la dispoziție)
 - corp de pachet (descrierea internă a funcționalităților)
 - configurație (asociere componentă model)

DOMENII DE APLICARE

Objective VHDL

- specificare sisteme hardware
- simulare evoluție temporală a descrierilor
 - instrumentele de simulare realizează simularea ("execuţia") codului VHDL în paralel
 - codul nu descrie modul de proiectare sau de realizare a funcției, ci doar ce trebuie să facă aceasta

DOMENII DE APLICARE

Objective VHDL

- pentru faza de proiectare sinteza logică în cadrul instrumentelor CAD care integrează VHDL (fază automatizată)
 - descrierea proiectării unui sistem prin descrierea atât a funcționării cât şi a structurii exacte a fiecărei părți
 - descrierea realizării finale în termeni de interconexiuni de componente logice elementare
 - porneşte de la o descriere VHDL sintetizabilă şi conduce la o schemă logică clasică (porți logice + bistabili)