

Universidade de Itaúna		Curso: Ciência da Computação		Disciplina: Laboratório Arquitetura e Organização de Computadores II	
Professor (a): A			Ano: 2021		
3º Período	Turno: Noite		CIU:	Atividade relativa ao 2°	
			82148	Trabalho Prát	ico Avaliativo
Nome: Edmilson Lino Cordeiro					
Davi Ventura Cardoso Perdigão					
Eric Castro					
Descritivo sobre o projeto desenvolvido					

Este presente descritivo busca, de forma clara e objetivo, explicar sobre os processos de criação, e também sobre a aplicação do projeto abaixo:

Fonte: Autoria própria.

O projeto em questão se trata de um circuito elétrico que ilustra como seria a aplicação de alguns componentes para o conceito de "Casa Inteligente", controlados por uma placa de prototipagem. Para construí-lo, foram necessários os seguintes componentes:

- Arduino Uno;
- 4 resistores de 150 Ω;
- 1 resistor de 50 kΩ;
- 1 Protoboard;
- 4 LED's (Relé);
- 1 Sensor PIR;
- 1 Sensor Infravermelho + 1 Controle;
- 1 Sensor de Temperatura;
- 1 LDR (Fotorresistor);

Basicamente, podemos definir casa inteligente como um imóvel que reúne inúmeros dispositivos conectados à internet, desde geladeiras e smart TVs até sistemas inteligentes de iluminação e climatização. No caso do presente projeto desenvolvido, buscamos justamente essa intergração entre dispositivos. Porém, devido à algumas limitações da ferramenta utilizada para montagem do circuito (Tinkercad), foi necessária a substituição dos relés (interruptor eletromecânico com inúmeras aplicações possíveis em comutação de contatos elétricos, servindo para ligar ou desligar dispositivos) por LED's, para ilustrar como seria a aplicação fundamental deste dispositivo em um circuito do gênero.

No circuito, cada LED representa o acionamento de algum dispositivo, provocado pelos sensores. Se tratando do **Sensor PIR** de presença ou movimento, ele poderia acionar algum dispositivo como uma luz, uma porta, um alarme, entre outros. Sobre o **Sensor Infravermelho**, graças ao controle que o acompanha, dispositivos como cortina, ventilador, luzes ou portas, poderiam ser acionados, inclusive por senha (se tratando das portas). O **Sensor de temperatura TMP36** poderia acionar algum alarme caso houvesse um incêndio, ou regular a temperatura ambiente através de um ar condicionado ou de um ventilador. E por último, o **LDR (fotorresistor)** pode ser usado em acendimento automático de lâmpadas, ou em regulagem automática de brilho de telas e televisões. Tudo isso, claro, só é possível graças à um código presente no Arduino:

```
30
 1 #include <IRremote.h>
                                               pinMode(11, OUTPUT);
                                           31
                                               pinMode(A0, INPUT);
                                           32
                                                pinMode(8, OUTPUT);
 3 int valorPIR=0;
                                           33
                                                irrecv.enableIRIn();
 4 int PIR = 2;
                                           34 }
 5 int valorFotoResistor=0;
                                           35
 6 int fotoResistor = A1;
 7 float sensorTemp = A0;
                                           36 void loop()
                                           37 {
 8 int change =0;
                                           38
 10 //Variaveis Infravermelho
                                           39
                                                 //Funcionamento Sensor PIR
                                           40
                                                valorPIR = digitalRead(PIR);
 11 int sensorInfravermelho = 3;
                                                if (valorPIR == 1) {
                                          41
 12 IRrecv irrecv(sensorInfravermelho);
 13 decode_results results;
                                           42
                                                  digitalWrite(ledPIR, HIGH);
                                           43
14
                                           44
 15
                                                 else {
                                           45
 16 // Declaração das saídas
                                                  digitalWrite(ledPIR, LOW);
 17 int ledPIR = 13;
                                           46
 18 int ledFotoResistor = 12;
                                           47
 19 int ledSensorInfravermelho = 11;
                                           48
 20 int ledSensorTemp = 8;
                                           49
                                                 //Funcionamento Sensor infravermelho
                                           50
 21
                                                 if (irrecv.decode(&results)) {
 22 void setup()
                                           51
                                                   irrecv.resume();
23 {
                                           52
24
                                           53
                                                 if (results.value == 0xFD00FF && change==0) {
     Serial.begin(9600);
25
    pinMode(13, OUTPUT);
                                           54
                                                  digitalWrite(ledSensorInfravermelho, HIGH);
                                          55
26
     pinMode(2, INPUT);
                                                  results.value = 0;
                                           56
27
     pinMode(A1, INPUT);
                                                  change = 1;
                                           57
28
     pinMode(12, OUTPUT);
                                           58
29
    pinMode(3, INPUT);
                                           59
 30
     pinMode(11, OUTPUT);
                                                 if (results.value == 0xFD00FF && change ==1) {
" Monitor serial
                                          Monitor serial
                  59
                       if (results.value == 0xFD00FF && change ==1) {
                  60
                        digitalWrite(ledSensorInfravermelho, LOW);
                  61
                        results.value = 0;
                  62
                         change = 0;
```

```
63
64
65
66
      //Funcionamento Sensor de Temperatura
67
     float valor = analogRead(sensorTemp);
     float tensao = (valor/1024) *5;
68
69
     float temperatura = (tensao-0.5) *100;
70
71
     if(temperatura>=29){
72
       digitalWrite(ledSensorTemp, HIGH);
73
74
     else{
75
       digitalWrite(ledSensorTemp, LOW);
76
77
78
79
      //Funcionamento Sensor iluminacao ambientes externos
80
      valorFotoResistor = analogRead(fotoResistor);
81
      Serial.println(valorFotoResistor);
     if(valorFotoResistor >= 800){
83
       digitalWrite(ledFotoResistor, HIGH);
84
85
      else{
86
       digitalWrite(ledFotoResistor, LOW);
87
88
   - }
```

" Monitor serial

Com este código, também é possível observar as alterações que o acionamento dos sensores causa no circuito além dos LED's, através do monitor serial:

	Monitor serial
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
800	
68	
68	
59	
59	
59	
52	
52	
52	
31	
31	
23	
19	

Fonte: Autoria própria.