MATH 16600 Practice Final Exam, Version 4

1 Given a one-to-one function $f(x) = 2x^3 + \ln x$, x > 0. Find $(f^{-1})'(2)$.

- 2 The common inhabitant of human intestines is the bacterium *Escherichia coli*, named after the German pediatrician Theodor Escherich, who identified it in 1885. A cell of this bacterium in a nutrient-broth medium divideds into two cells every 20 minutes. The initial population of a culture is 50 cells.
- (a) Find the number of cells after 6 hours.
- (b) When will the population reach a million cells?

3 Find the limit $\lim_{x\to 0} \frac{\ln(1+x)}{\cos x + e^x - 2}$.

4 Let $f(x) = \ln \left[\frac{\sqrt[4]{x^2 + 1}}{(x+1)^5} \right]$. Use the properties of logarithmic functions to decompose f(x) completely. Using the decomposition you have obtained, find f'(x).

5 Evaluate the integral $\int (3x-5)\sin x \, dx$.

6 Evaluate the integral $\int \frac{x-4}{x^2-5x+6} dx$.

7 Evaluate the integral $\int \frac{1}{x^2 \sqrt{x^2 + 1}} dx$.

8 Set up, but do not evaluate an integral that represents the area of the surface obtained by rotating the curve $y = 2x - \frac{1}{x^2}$, $1 \le x \le 4$ about the x-axis.

9 Determine whether the improper integral $\int_e^\infty \frac{1}{x(\ln x)^2} dx$ is convergent or divergent. Evaluate the integral if it is convergent.

10 Find an equation of the tangent line to the parametric curve $x = e^{3t-3}$, $y = t^3 + 3t$ at the point where t = 1.

11 Find the area of the shaded region.

$$r = 2 - \cos \theta$$

12 Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[4]{n}}$ is absolutely convergent, conditionally convergent, or divergent.

13 Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2+2}{n^2+2n+2}$ is convergent or divergent.

15 Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum $\sum_{n=0}^{\infty} \frac{(-3)^n}{4^{n+1}}.$

16 Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{n^9 \, 9^n}$.

17 Find the exact length of the curve $y = \ln(\sec x)$, $0 \le x \le \pi/4$.

18 Determine whether the series $\sum_{n=1}^{\infty} \frac{1+\cos n}{6^n}$ is convergent or divergent.