

Instituto Tecnológico de Estudios Superiores de Monterrey

Laboratorio de microcontroladores

Reporte de práctica 6

Gabriela Natalia Altamirano Cruz - A01411942

Introducción

El objetivo de esta práctica de laboratorio es programar un teclado 4x4 para el PIC18F45K50 y mostrar el valor de la tecla correspondiente en el display de 7 segmentos. Para esto se deberá implementar una rutina de barrido para adquirir 16 valores de datos de un teclado 4x4 utilizando 8 pines de entrada/salida. Así como conocer la función y las interacciones entre la resistencia de pull-up y los puertos de entrada/salida de un dispositivo.

Desarrollo

Para el desarrollo de esta práctica se siguieron los pasos descritos en el archivo de la práctica. El código que se utilizó en la práctica es el siguiente:

```
1 - /*
2
   * File: main.c
   * Author: gabii
3
4
   * Created on 1 de mayo de 2022, 09:44 AM
5
6
7
8
9
  10 - #include "device config.h.txt"
11
  #include <stdint.h>
12
  #include <math.h>
 #include <xc.h>
13
14
  15
  #define XTAL FREQ 8000000
16
  #define SWEEP FREQ 20
17
18
  #define SWEEP STEP 5000
19
20
  21
  22
23
24
  25
  void portsInit(void);
26
  uint8 t char to seg(uint8 t);
27
  void send to disp(uint32 t);
28
  char key scanner (void);
```

```
31 - void main(void) {
32
      int num to disp = 0;
33
       portsInit();
34
       while(1){
         char key = key_scanner();
36
          send to disp(key);
37
38
39
       while(1){
         uint32_t num = 0x01020304;
41
          send to disp(num);
42
43
44
    46 - void portsInit(void) {
47
       ANSELA = digital;
                     // Set port A as Digital for keypad driving
48
       TRISA = 0x0F;
                     // For Port A, set pins 4 to 7 as inputs (columns), and pins 0 to 3 as outputs (rows)
       ANSELB = digital;
49
                     // Set port B as Digital for 7 segment cathode selection (only 4 pins used)
       TRISB = 0x00;
                      // For Port B, set pins as outputs for cathode selection
50
51
       ANSELD = digital; // Set port D as Digital for 7 segment anodes
52
       TRISD = 0 \times 00:
                      // for Port D, set all pins as outputs for 7 segment anodes
       OSCCON = 0x74;
                     // Set the internal oscillator to 8MHz and stable
53
54
   char key scanner (void) {
58
          LATAbits.LA0 = 0;
59
          LATAbits.LA1 = 1;
60
          LATAbits.LA2 = 1;
61
          LATAbits.LA3 = 1;
62
            delay ms (SWEEP FREQ);
63
          if
                   (PORTAbits.RA4 == 0) { delay_ms(SWEEP_FREQ); return 1;}
          else if (PORTAbits.RA5 == 0) { __delay_ms(SWEEP_FREQ); return 2;}
64
65
          else if (PORTAbits.RA6 == 0) { delay ms(SWEEP FREQ); return 3;}
          else if (PORTAbits.RA7 == 0) { delay ms(SWEEP FREQ); return 10;}
66
67
          LATAbits.LA0 = 1;
          LATAbits.LA1 = 0;
68
          LATAbits.LA2 = 1;
69
70
          LATAbits.LA3 = 1;
71
           delay ms (SWEEP FREQ);
72
          if
                    (PORTAbits.RA4 == 0) { delay ms(SWEEP FREQ); return 4;}
73
          else if (PORTAbits.RA5 == 0) { delay ms(SWEEP FREQ); return 5;}
74
          else if (PORTAbits.RA6 == 0) { delay ms(SWEEP FREQ); return 6;}
75
          else if (PORTAbits.RA7 == 0) { delay ms(SWEEP FREQ); return 11;}
76
          LATAbits.LA0 = 1;
          LATAbits.LA1 = 1;
77
78
          LATAbits.LA2 = 0;
79
          LATAbits.LA3 = 1;
80
            delay ms (SWEEP FREQ);
81
                   (PORTAbits.RA4 == 0) { delay ms(SWEEP FREQ); return 7;}
82
          else if (PORTAbits.RA5 == 0) { delay ms(SWEEP FREQ); return 8;}
83
          else if (PORTAbits.RA6 == 0) { delay ms(SWEEP FREQ); return 9;}
          else if (PORTAbits.RA7 == 0) { delay ms(SWEEP FREQ); return 12;}
84
          LATAbits.LA0 = 1;
85
```

```
86
         LATAbits.LA1 = 1;
         LATAbits.LA2 = 1;
87
88
         LATAbits.LA3 = 0;
89
          delay ms (SWEEP FREQ);
               (PORTAbits.RA4 == 0) { delay ms(SWEEP FREQ); return 14;}
90
         else if (PORTAbits.RA5 == 0) { delay ms(SWEEP FREQ); return 0;}
91
         else if (PORTAbits.RA6 == 0) { delay ms(SWEEP_FREQ); return 15;}
92
         else if (PORTAbits.RA7 == 0) { delay ms(SWEEP FREQ); return 13;}
93
94
         else return 'x';
95
96
97 - void send to disp(uint32 t disp word) {
         for (char i = 0; i < 4; i++) {
98
99
            int internal sweep = (int) pow(2, i);
            int sweep = 0x0F & ~internal sweep;
100
101
            LATB = (char) sweep;
102
            uint8 t num disp = 0x000000FF & (disp word >> i*8);
103
            LATD = char to seg(num disp);
104
            __delay_ms(SWEEP FREQ);
105
106
    uint8 t char to seg(uint8 t num) {
108
109
            uint8 t segments;
110
            switch (num) {
111
                 case 0: segments = 0b00111111; break;
                 case 1: segments = 0b00000110; break;
112
113
                 case 2: segments = 0b01011011; break;
114
                 case 3: segments = 0b01001111; break;
115
                 case 4: segments = 0b01100110; break;
116
                 case 5: segments = 0b01101101; break;
117
                 case 6: segments = 0b01111101; break;
                 case 7: segments = 0b00000111; break;
118
119
                 case 8: segments = Ob01111111; break;
120
                 case 9: segments = 0b01100111; break;
121
                 case 10: segments = Ob01110111; break;
                 case 11: segments = 0b011111100; break;
122
123
                 case 12: segments = 0b01011000; break;
124
                 case 13: segments = 0b01011110; break;
125
                 case 14: segments = 0b01111001; break;
126
                 default: segments = 0b01110001; break;
127
128
            return segments;
129
       }
```

Conclusiones

Considero que es importante aprender sobre las diferentes aplicaciones que se pueden realizar en un microcontrolador, también qué es importante aprender sobre estos temas debido a que en un futuro nos podrían ser de mucha utilidad.