Ravi Raju MA 521 Homework #11 5/2/2019

Chapter 8: 2.12, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 3.3

Exercise 2.12 Which $n \in \mathbb{N}$ have the property that $f^n \in \mathcal{R}([a,b])$ implies $\mathcal{R}([a,b])$? Give proofs(s) and counterexamples(s) to show your answer is correct and complete.

Exercise 2.15 Show that if $f : [a, b] \to \mathbb{R}$ is continuous and $F(x) := \int_a^x f(t)dt = 0$ for all $x \in [a, b]$, then $f(x) \in [a, b]$. Provide an example to show that the statement is false if f is not continuous.

Exercise 2.16 Assume f and g are differentiable functions on [a,b] and assume $f',g' \in \mathcal{R}([a,b])$. Show that the integration by parts formula is valid:

$$\int_a^b fg'dx = f(b)g(b) - f(a)g(a) = \int_a^b fg'dx.$$

Make sure you show the relevant functions are Riemann integrable when you do the proof!

Exercise 2.17 Assume $g : [a, b] \to \mathbb{R}$ is differentiable, that g' is continuous, and M and m are upper and loewr bounds, respectively, for the function g. Assume $f : [m, M] \to \mathbb{R}$ is continuous. SHow that the change of variables formula is valid:

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(t)dt.$$

Again, part of the exercise is to check that the relevant functions are Riemann integrable when you do the proof!

Exercise 2.18 Assume $f \in \mathcal{R}([a,b])$, but that f has a jump discontinuity at $c \in (a,b)$, i.e. $f(c-) \neq f(c+)$. Show that $F(x) := \int_a^x f(t)dt$ is not differentiable at x = c.

1

Exercise 2.20 Assume *g* is bounded, $g \in \mathcal{R}([0,1])$ and *g* is continuous at 0. Show that

$$\lim_{n\to\infty}\int_0^1 g(x^n)dx = g(0).$$

Hint: Consider the difference $\int_0^1 g(x^n) dx - g(0)$; add and subtract $\int_0^c g(x^n) dx$ for a carefully chosen c, and then that $\int_0^c dx$ is close to cg(0) for large enough n.

Exercise 3.3 Let (f_n) be a sequence of real-valued, Riemann integrable functions on the interval [a,b]. Assume that $f_n(x) \to 0$ as $n \to \infty$ for each $x \in [a,b]$, and additionally,

$$\sum_{n=1}^{\infty} |f_{n+1}(x) - f_n(x)|$$

converges uniformly on [a, b].

- 1. Show that $\lim_{n\to\infty} \int_a^b f_n dx \to 0$.
- 2. Is it necessarily the case that the series $\sum_{n=1}^{\infty} f_n$ converges uniformly? Give a proof or counterexample to support your answer.

•