- Overview of multidomain recommender systems (Liang Hu, 25 mins)
- Multi-item domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-user domain recommender systems (Qi Zhang, 20 mins)
- Multi-data domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-spatial domain recommender systems (Qi Zhang 20 mins)
- Multi-temporal domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-goal domain recommender systems (Liang Hu, 20 mins)
- Summary (Liang Hu, 5 mins)

Multi-data domain recommendation

Modalities:

• E.g. rating, description, photos, geo information

• Distributions:

- Ratings have different distributions for different domains, e.g., food vs stays
- The content of image distribution is also different, e.g., color distributions between food and stays.

Multi-modal modeling for multidomain recommendation

Multi-data domain recommender systems

• Multi-distribution modeling for multidomain recommendation

Multimodal Recommender Systems

Traditional RSs are built on single data type.

• It may not learn sufficient information from single data due to the data incompletion and data quality.

 Joint learning multiple data types, e.g. attributes, text description and images, can obtain more comprehensive information.

Human are Joint Thinking with Related Data

Multimodal Learning

- The information in real world usually comes as different modalities.
 - Images are usually associated with tags and text;
 - Texts contain images to more clearly express the main idea of the article.
- Different modalities are characterized by very different statistical properties.
- Multimodal learning aims to learn a joint representation of different modalities.

Multimodal Music Recommendation

Datasets

- Million Song Dataset (MSD)
 - https://labrosa.ee.columbia.edu/millionsong/
 - Echo Nest Taste Profile Subset provides play counts of 1 million users on more than 380,000 songs from the MSD
 - Biographies and social tags are collected from Last.fm for all the artists that have at least one song in the dataset.
- Final Dataset (MSD-A)
 - https://zenodo.org/record/831348
 - The dataset consists of 328,821 tracks from 24,043 artists. Each track has at least 15 seconds of audio, each biography is at least 50 characters long, and each artist has at least 1 tag associated with it.

Results of Artist and Song Recommendation

Table 1: Artist Recommendation Results

Input	Data model	Arch	MAP
Bio	VSM	FF	0.0161
Sem Bio	VSM	FF	0.0201
Bio	w2v-pretrain	CNN	0.0119
Bio	w2v-trained	CNN	0.0145
Tags	VSM	FF	0.0314
Tags	-	itemKnn	0.0161
Bio	VSM	RF	0.0089
-	-	-	0.0014
-	-	-	0.5528
	Bio Sem Bio Bio Bio Tags Tags	Bio VSM Sem Bio VSM Bio w2v-pretrain w2v-trained Tags VSM Tags - Bio VSM	Bio VSM FF Bio W2v-pretrain CNN Bio W2v-trained CNN Tags VSM FF Tags - itemKnn Bio VSM RF

Mean average precision (MAP) at 500 for the predictions of artist recommendations in 1M users. VSM refers to Vector Space Model, FF to Feedforward, RF to Random Forest, CNN to Convolutional Neural Network, and itemKnn to itemAttributeKnn approach. Bio refers to biography texts and Sem Bio to semantically enriched texts.

Table 2: Song Recommendation Results

Approach	Artist Input	Track Input	Arch	MAP
AUDIO	-	audio spec	CNN	0.0015
SEM-VSM	Sem Bio	-	FF	0.0032
SEM-EMB	A-SEM	-	FF	0.0034
MM-LF-LIN	A-SEM	AUDIO emb	MLP	0.0036
MM-LF-H1	A-SEM	AUDIO emb	MLP	0.0035
MM	Sem Bio	audio spec	CNN	0.0014
TAGS-VSM	Tags	-	FF	0.0043
TAGS-EMB	A-TAGS	-	FF	0.0049
RANDOM	rnd emb	-	FF	0.0002
UPPER-BOUND	-	-	-	0.1649

Mean average precision (MAP) at 500 for the predictions of song recommendations in 1M users. Audio emb refers to the track embedding of audio approach, sem to artist embedding of sem approach, tags to artist embedding of tags approach, spec to spectrogram, mm to multimodal, lf to late fusion, lin to linear, and h1 to one hidden layer.

Multimodal learning for images and texts

"Pocket Knife wedding shower ideas wedding dresses, beach ..."

"Yellow dress. Retro dress **Wedding dress**. Flared skirt..."

 Irrelevant search results for the query "wedding dress"

 Even though it's apparent in the images that these are not wedding dresses

Transferring Parameters of A CNN to The Task of Multimodal Embedding

Lynch, C., Aryafar, K., and Attenberg, J. Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 541-548, 2016.

From search logs to multimodal pairwise classification instances

Lynch, C., Aryafar, K., and Attenberg, J. Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 541-548, 2016.

Datasets

https://www.etsy.com/

• 2 week period in search logs, 1.4 million Etsy listings with images.

- Related dataset:
 - http://vision.is.tohoku.ac.jp/~kyamagu/research/etsy-dataset/

Image information can help disentangle different listings considered similar by a text model

Lynch, C., Aryafar, K., and Attenberg, J. Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 541-548, 2016.

Visualizing ranking changing by incorporating image information

Original ranking for "bar necklace"

Multimodal ranking for "bar necklace"

- **Problem to be solved:** how to integrate other sources of relationship information between user / items into CDR?
- In this paper: knowledge graphs are specific types of graphs that define relationships between nodes
 - Such relationships contain additional information apart from existence of link

- KGs are directed graph defining characteristics of a central node; MMKGs are KGs which incorporate MM data as 1st class citizens (nodes and edges);
- Collaborative KGs are generalized KGs incorporating user behavior and item knowledge as unified relational graph;
- Task description:
 - Input: collaborative knowledge graph including user-item graph and multimodal knowledge graph;
 - Output: prediction function for probability of user adopting an item.

- framework consists of two main parts: MMKG Embedding module and Recommendation module;
 - MMKG Embedding Module: consists of graph *entity encoder* and *attention layer*;
 - use different encoders for different modalities (graph structure, images, text) (KGs have distinct structure in form, e.g., (*ToyStory, DirectorOf, John Lasseter*));
 - encoders output multiple encodings in form of dense vectors.
 - attention layer: composed of *propagation* and *aggregation* layers
 - Recommendation Module:

Models	Movi	eLens	Dianping		
Models	recall	ndcg	recall	ndeg	
NFM	0.3591	0.4698	0.1163	0.0724	
CKE	0.3600	0.4723	0.1321	0.0895	
KGAT	0.3778	0.4827	0.1522	0.1301	
MMGCN	0.3966	0.5023	0.1424	0.1255	
MKGAT	0.4134	0.5181	0.1646	0.1433	
%Improv.	4.2%	3.1%	8.1%	10.1%	

Models	KG	AT	MKGAT		
Models	recall	ndcg	recall	ndcg	
base	0.1522	0.1301	0.1542	0.1341	
base + text	0.1544	0.1343	0.1589	0.1389	
%Improv.	1.5%	3.2%	3.1%	3.5%	
base + image	0.1572	0.1352	0.1612	0.1396	
%Improv.	3.3%	3.9%	4.5%	4.1%	
base + text + image	0.1598	0.1361	0.1646	0.1433	
%Improv.	4.9%	4.6%	6.7%	6.8%	

- baseline models include neural factorization machines (NFM), KG methods (CKE,KGAT) and multimodal methods (MMGCN);
- baselines are not optimized to handle MM data, and its graphical relational information renders it better than naïve CF methods;
- MM methods coupled with relational information is indeed powerful framework for CDR tasks.

Multi-modal Graph Convolution Network for CDR

- Problem to be solved: how to model modality-specific user preferences?
- In this paper: construct user-item bipartite graph on each modality.
 - Within each modality user-item interactions aggregated;
 - Aggregated modality embeddings integrated with user representations.

Multi-modal Graph Convolution Network for CDR

- use information propagation of GCNs to encode higher-order connectivity between users; construct separate graphs for each modality instead of unifying these;
- Architecture consists of graph inputs, aggregation, combination and prediction layers;
 - Graphs: each modality is treated separately, as a bipartite user-item graph;
 - Aggregation: aggregates historical interaction and user group data; employs either mean or max agg. functions.
 - Combination: needs to account for multiple modalities; projects modality information u_m onto same latent space as user ID embedding u_{id} . Here u_{id} is the bridge between modalities.
 - Prediction: Outputs probability of item-user connections.

Multi-modal Graph Convolution Network for CDR

Model		Kwai			Tiktok			MovieLens	
Model	Precision	Recall	NDCG	Precision	Recall	NDCG	Precision	Recall	NDCG
VBPR	0.2673	0.3386	0.1988	0.0972	0.4878	0.3136	0.1172	0.4724	0.2852
ACF	0.2559	0.3248	0.1874	0.8734	0.4429	0.2867	0.1078	0.4304	0.2589
GraphSAGE	0.2718	0.3412	0.2013	0.1028	0.4972	0.3210	0.1132	0.4532	0.2647
NGCF	0.2789	0.3463	0.2058	0.1065	0.5008	0.3226	0.1156	0.4626	0.2732
MMGCN	0.3057*	0.3996*	0.2298*	0.1164*	0.5520°	0.3423*	0.1215*	0.5138*	0.3062°
%Improv.	9.61%	15.59%	11.66%	9.03%	10.23%	6.11%	3.67%	8.76%	7.36%

Datasets:

- Tiktok: micro-video sharing site, 3-15 second videos
- Kwai: micro-video sharing site, similar to Tiktok
- MovieLens
- Baselines are distinguished by MF methods (VBPR), attention-based frameworks (ACF) and graphical approaches (GraphSAGE, NGCF)
 - Graph structure outperforms naïve MF methods due to structural information;
 - Other methods were generally unable to capture structural information as well as MMGCN.

Multi-modal modeling for multidomain recommendation

Multi-data domain recommender systems

Multi-distribution modeling for multidomain recommendation

MF based Transfer Learning

- Transfer the knowledge learned from the auxiliary domain to the target domain
 - The user-factor vectors are co-determined by the feedback in auxiliary and target domains

Deficiency

- Blind Transfer
 - If $m{u}_i$ is transferred to the target domain and interacts with heterogeneous item factors, it may yield a poor prediction.

Deep Dual Transfer Cross Domain Recommendation

- Problem to be solved: how to effectively transfer learned knowledge from one domain to another?
 - Needs to include not only user-item information, but also latent and complex relationships.
- In this paper: latent orthogonal embedding approach to transfer learned latents across domains

Li, Pan, and Alexander Tuzhilin. "DDTCDR: Deep Dual Transfer Cross Domain Recommendation." Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339.

Deep Dual Transfer Cross Domain Recommendation

Algorithm 1 Dual Neural Collaborative Filtering

- 1: Input: Domain V_A and V_B, autoencoder AE_A and AE_B, transfer rate α, learning rates γ_A and γ_B, initial recommendation models RS_A and RS_B, initial mapping function X
- 2: repeat
- Sample user-item records d_A and d_B from V_A and V_B respectively
- Unpack records d_A, d_B as user features u_A, u_B, item features i_A, i_B and ratings r_A, r_B
- Generate feature embeddings from autoencoder as W_{uA} = AE_A(u_A), W_{uB} = AE_B(u_B), W_{iA} = AE_A(i_A), W_{iB} = AE_B(i_B)
- 6: Estimate the ratings in domain A via $r'_A = (1 \alpha)RS_A(W_{u_A}, W_{i_A}) + \alpha RS_B(X * W_{u_A}, W_{i_A})$
- 7: Estimate the ratings in domain B via $r'_{R} = (1 \alpha)RS_{B}(W_{u_{R}}, W_{i_{R}}) + \alpha RS_{A}(X^{T} * W_{u_{R}}, W_{i_{R}})$
- 8: Compute MSE loss $\hat{r}_A = r_A r'_A$, $\hat{r}_B = r_B r'_B$
- Backpropogate r_A, r_B and update RS_A, RS_B;
- Backpropogate orthogonal constraint on X; Orthogonalize X
- 11: until convergence

- transfer learning approach to multidistribution recommendation;
- main intuition is that similar preferences in source will be replicated in target domain; procedure quantified via LOTs;
- Algorithm:
 - construct feature embeddings from user and item features;
 - design LOT to transfer feature embeddings across domains since OTs preserve inner product of vectors;
 - minimize MSE between actual and predicted user ratings;
 - backprop MSE losses and update recommendation models;
 - backprop orthogonal constraint and orthogonalize;

Li, Pan, and Alexander Tuzhilin. "DDTCDR: Deep Dual Transfer Cross Domain Recommendation." Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339.

Deep Dual Transfer Cross Domain Recommendation

tegory Feature Group		Type
Gender	2	one-hot
Age	$\sim 10^{2}$	numerical
	12	one-hot
	12	one-hot
	9	one-hot
	5	one-hot
2-2002-2000		one-hot
Personality	6	one-hot
	_	one-hot
Title	$\sim 10^{5}$	one-hot
Author	~ 10 ⁴	multi-hot
Publisher	$\sim 10^{2}$	one-hot
Language	4	one-hot
Country	4	one-hot
Price	$\sim 10^{2}$	numeric
Date	$\sim 10^{3}$	date
Genre	6	one-hot
Title	$\sim 10^{5}$	one-hot
Director	$\sim 10^{3}$	multi-hot
Writer	$\sim 10^{3}$	multi-hot
Runtime	$\sim 10^{3}$	numeric
Country	4	one-hot
Rating	$\sim 10^{2}$	numeric
Votes	~ 104	numeric
Listener	$\sim 10^{3}$	numeric
Playcount	$\sim 10^{3}$	numeric
Artist	$\sim 10^{4}$	one-hot
Album	$\sim 10^{4}$	one-hot
Tag	8	one-hot
Release	$\sim 10^{3}$	date
Duration	$\sim 10^{3}$	numeric
Title	~ 105	one-hot
	Gender Age Movie Taste Residence Preferred Category Recommendation Usage Marital Status Personality Category Title Author Publisher Language Country Price Date Genre Title Director Writer Runtime Country Rating Votes Listener Playcount Artist Album Tag Release Duration	Gender

Algorithm			Book		Movie				
Aigoriumi	RMSE	MAE	Precision@5	Recall@5	RMSE	MAE	Precision@5	Recall@5	
DDTCDR	0.2213*	0.1708*	0.8595*	0.9594*	0.2213*	0.1714*	0.8925*	0.9871*	
Improved %	(+3.98%)	(+9.54%)	(+2.77%)	(+6.30%)	(+2.44%)	(+9.80%)	(+2.75%)	(+2.74%)	
NCF	0.2315	0.1887	0.8357	0.8924	0.2276	0.1895	0.8644	0.9589	
CCFNet	0.2639	0.1841	0.8102	0.8872	0.2476	0.1939	0.8545	0.9300	
CDFM	0.2494	0.2165	0.7978	0.8610	0.2289	0.1901	0.8498	0.9312	
CMF	0.2921	0.2478	0.7972	0.8523	0.2738	0.2293	0.8324	0.9012	
CoNet	0.2305	0.1892	0.8328	0.8990	0.2298	0.1903	0.8680	0.9601	

Table 4: Comparison of recommendation performance in Book-Movie Dual Recommendation: Improved Percentage versus the second best baselines

Algorithm		Book				Music			
Algorithm	RMSE	MAE	Precision@5	Recall@5	RMSE	MAE	Precision@5	Recall@5	
DDTCDR	0.2209*	0.1704*	0.8570*	0.9602*	0.2753*	0.2302^{*}	0.8392*	0.8928*	
Improved %	(+4.07%)	(+8.87%)	(+3.97%)	(+3.15%)	(+2.14%)	(+4.74%)	(+5.51%)	(+5.35%)	
NCF	0.2315	0.1887	0.8230	0.9294	0.2828	0.2423	0.7930	0.8450	
CCFNet	0.2630	0.1842	0.8150	0.9108	0.3090	0.2422	0.7902	0.8388	
CDFM	0.2489	0.2155	0.8104	0.9102	0.3252	0.2463	0.7895	0.8365	
CMF	0.2921	0.2478	0.8072	0.8978	0.3478	0.2698	0.7820	0.8324	
CoNet	0.2307	0.1897	0.8230	0.9300	0.2801	0.2410	0.7912	0.8428	

Table 5: Comparison of recommendation performance in Book-Music Dual Recommendation: Improved Percentage versus the second best baselines

Algorithm			Movie		Music			
Algorithin	RMSE	MAE	Precision@5	Recall@5	RMSE	MAE	Precision@5	Recall@5
DDTCDR	0.2174*	0.1720*	0.8926*	0.9869*	0.2758*	0.2311*	0.8370*	0.8902*
Improved %	(+3.75%)	(+9.77%)	(+5.32%)	(+3.68%)	(+1.89%)	(+4.24%)	(+4.30%)	(+4.38%)
NCF	0.2276	0.1895	0.8428	0.9495	0.2828	0.2423	0.7970	0.8501
CCFNet	0.2468	0.1932	0.8398	0.9310	0.3090	0.2433	0.7952	0.8498
CDFM	0.2289	0.1895	0.8306	0.9382	0.3252	0.2467	0.7880	0.8460
CMF	0.2738	0.2293	0.8278	0.9222	0.3478	0.2698	0.7796	0.8400
CoNet	0.2302	0.1908	0.8450	0.9508	0.2811	0.2428	0.8010	0.8512

Table 6: Comparison of recommendation performance in Movie-Music Dual Recommendation: Improved Percentage versus the second best baselines

Li, Pan, and Alexander Tuzhilin. "DDTCDR: Deep Dual Transfer Cross Domain Recommendation." Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339.

Next chapter

- Overview of multidomain recommender systems (Liang Hu, 25 mins)
- Multi-item domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-user domain recommender systems (Qi Zhang, 20 mins)
- Multi-data domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-spatial domain recommender systems (Qi Zhang 20 mins)
- Multi-temporal domain recommender systems (Z. Y. Lai, 20 mins)
- Multi-goal domain recommender systems (Liang Hu, 20 mins)
- Summary (Liang Hu, 5 mins)