Category 10 Triangles

Set-10

- 1. In $\triangle ABC$ above, what is x in terms of z?
 - **(A)** z + 73
 - **(B)** z 73
 - (C) 70-z
 - **(D)** z 70
 - **(E)** 73 z

- 2 For what value of x will the triangle above be equilateral?
 - (A) 2
 - (B) 3
 - (C) 6
 - (D) 9
 - (E) 12

- 3. In the figure above, the perimeter of ΔMNP is how much greater than the perimeter of the shaded region?
 - **(A)** $2 + \sqrt{2}$
 - (B) 6
 - (C) $8\sqrt{2}$
 - **(D)** $6 + 3\sqrt{2}$
 - **(E)** $6 + 8\sqrt{2}$

Set-10

- 4. The figure above shows the dimensions of an isosceles triangle in terms of x. What is the area of the triangle?
 - (A) 24
 - **(B)** 30
 - (C) 48
 - (\mathbf{D}) 60
 - (E) 96

- 5. In the figure above, if $AB \parallel CE$, CE = DE, and y = 45, then x =
 - (A) 45
 - **(B)** 60
 - (C) 67.5
 - (D) 112.5
 - (E) 135

- 6. On the map above, if the segment that joins cities P and Q represents 6 kilometers, how many kilometers does the segment that joins cities Q and R represent?
 - **(A)** $3\sqrt{3}$
 - **(B)** 6
 - (C) 9
 - **(D)** $6\sqrt{3}$
 - (E) It cannot be determined from the information given

- 7. If the perimeter of ΔRST above is 40, which of the following could NOT be the length of
 - RT ?
 - (A) 21
 - **(B)** 19
 - (C) 17 (D) 15
 - (E) 13
 - .

- 8. In $\triangle RST$ above, if the measure of $\angle R$ equals the measure of $\angle T$, then RT =
 - $(\mathbf{A}) \qquad \frac{1}{2}$
 - **(B)** 1
 - (C) $\frac{3}{2}$
 - $(\mathbf{D}) \quad \mathbf{2}$
 - $\mathbf{(E)} \quad \frac{5}{7}$

- 9. In the figure above, if the sum of the perimeters of the three triangles is 37, what is the perimeter of pentagon ABCDE?
 - (A) 32
 - **(B)** 27
 - (C) 25
 - (D) 22
 - (E) 17

Note: Figure not drawn to scale.

- 10. The figure above shows the dimensions of a stepladder that stands on a floor. How high is the top of the ladder from the floor?
 - (A) $\frac{1}{4}$ ft
 - (B) 5 ft
 - (C) 6 ft
 - **(D)** $4\sqrt{3}$ ft
 - **(E)** $2\sqrt{15}$ ft

- 11. In the figure above, CE = 5, BD = 8, and the area of quadrilateral ABCD is 36. What is the area of $\triangle ABD$?
 - (A) 4
- (B) 9
- (C) 16
- (D) 20
- (E) 56

- 12. In the figure above, If PQRS is a square and QT = TR, which of the following statements is NOT true?
 - (A) PT = TS
 - **(B)** x = y
 - (C) u = v
 - **(D)** r = y
 - (E) The area of ΔPQT is equal to the area of ΔSRT .

- 13. In City R, streets run either east-west or north-south, as shown on the map above. Blocks along east-west streets are 400 feet long and blocks along north-south streets are 200 feet long. If the width of the streets is ignored, what is the straight-line distance, in feet, from X to Y?
 - (A) $200\sqrt{5}$
 - (B) 1,000
 - (C) 1,200
 - **(D)** $400\sqrt{10}$
 - (E) 1,600

<High Level Questions>

- 14. If 3 and 8 are the lengths of two sides of a triangular region, which of the following can be the length of the third side?
 - I. 5
 - II. 8
 - III. 11
 - (A) II only
 - (B) III only
 - (C) I and II only
 - (D) II and III only
 - (E) I, II, and III
- 15. The length of each side of a triangle is an even number. If no two of the sides are equal, what is the smallest perimeter the triangle could have?
 - (A) 18
 - **(B)** 16
 - (C) 14
 - (D) 12
 - **(E)** 6

- 16. The lengths of two sides of a right triangle are $\frac{d}{3}$ and $\frac{d}{4}$. If one of these sides is the hypotenuse, what is the length of the third side of the triangle?
 - (A) 12
 - **(B)**

- 17. If each side of $\triangle ACD$ above has length 3 and if AB has length 1, what is the area of region BCDE?

- (A) $\frac{9}{4}$ (B) $\frac{7}{4}\sqrt{3}$ (C) $\frac{9}{4}\sqrt{3}$ (D) $\frac{7}{2}\sqrt{3}$ (E) $6+\sqrt{3}$

- 18. In $\triangle PQS$ above, if PQ = 3 and PS = 4, then PR =
 - **(A)**
 - **(B)**
 - **(C)**
 - **(D)**

- 19. In the figure above, square region ABCE and triangular region ACD each have area 36. What is the perimeter of triangle ACD?
 - **(A)** 24
 - $12 + 12\sqrt{2}$ **(B)**
 - **(C)**
 - $18 + 18\sqrt{2}$ **(D)**
 - $36\sqrt{2}$ **(E)**

- 20. The figure above shows the relative positions of a projection lens L, a film F, and a screen S . The film is 6 inches from the lens and is parallel to the screen. How many feet from the screen is the lens if a 0.3-inch figure on F projects a 6-foot image on S? (1 foot = 12 inches)
 - **(A)** 0.3
 - **(B)** 10
 - **(C)** 12
 - 100 **(D)**
 - **(E)** 120

- 21. In the figure above, if A_1 , A_2 , and A_3 are the areas of the respective semicircular regions, what is the value of $\frac{A_1 + A_2}{A_3}$? (A) 1 (B) $\frac{3}{2}$ (C) $\frac{p}{2}$ (D) 2 (E) $\frac{3p}{2}$

- 22. A cable is being laid from one side of a swamp, at point A, to the other side, at point D. If laying cable costs \$500 per mile on dry land and \$800 per mile in the swamp, how much is saved by laying the cable on the ABD route rather than the ABCD route?
 - (A) \$700
 - (B) \$1,000
 - (C) \$1,500
 - (D) \$3,200
 - (E) \$4,700

- 23. A ladder that is 13 feet long is placed against a vertical wall so that the top of the ladder is 5 feet below the top of the wall. If the bottom of the ladder rests on level ground and is 5 feet out from the base of the wall, what is the height of the wall, in feet?
 - (A) 12
 - **(B)** 13
 - (C) 17
 - (D) 19
 - **(E)** 23
- 24. A ladder 25 feet long is leaning against a wall that is perpendicular to level ground. The bottom of the ladder is 7 feet from the base of the wall. If the top of the ladder slips down 4 feet, how many feet will the bottom of the ladder slip?
 - (A) 4
 - **(B)** 5
 - (C) 8
 - **(D)** 9
 - (E) 15

- 25. A rope hangs from the top of a vertical pole, leaving 4 feet of slack on the floor. When fully extended, the rope touches the floor at a point 12 feet away from the pole. How many tall is the pole?
 - (A) 4
 - (B) 12
 - (C) 13
 - (D) 16
 - (E) 20

<< - >>

가

•

<< >>

가 . 가

<<

가 , 가 , 가 .

가 . 가

<< >>

가 . 가 , 가 가 .

Category 10 Triangles

- 1. In $\triangle ABC$ above, what is x in terms of z?
 - (A) z + 73
 - **(B)** z 73
 - (C) 70-z
 - **(D)** z 70
 - **(E)** 73-z

X + 37 + Z + 70 = 180180

Z. \boldsymbol{x} 73 - z

(E)

- 2. For what value of x will the triangle above be equilateral?
 - **(A)**
 - **(B)**
 - 3 6 **(C)**
 - 9 **(D)**
 - 12 **(E)**

x = 32x = x + 3,

(

(B).

- 3. In the figure above, the perimeter of ΔMNP is how much greater than the perimeter of the shaded region?
 - **(A)** $2 + \sqrt{2}$
 - (\mathbf{B}) 6
 - (C) $8\sqrt{2}$
 - (D) $6 + 3\sqrt{2}$
 - **(E) (E)** $6 + 8\sqrt{2}$
- a $b^{2}+c^{2}=a^{2} ,$ $8^{2}+8^{2}=(8\sqrt{2})^{2}, \qquad 5^{2}+5^{2}=(5\sqrt{2})^{2}$ $16+8\sqrt{2}, \qquad 10+5\sqrt{2}$
- **(D)**

- 4. The figure above shows the dimensions of an isosceles triangle in terms of x. What is the area of the triangle?
 - (A) 24
 - (B) 30
 - **(0)** 48
 - **(D)** 60
 - (E) 96

 $\frac{1}{2}(6 \times 16) = 48$

(C)

- 5. In the figure above, if $AB \parallel CE$, CE = DE, and y = 45, then x =
 - (A) 45
 - **(B)** 60
 - (C) 67.5
 - (D) 112.5
 - **(E)** 135
- **(C)**

- 6. On the map above, if the segment that joins cities P and Q represents 6 kilometers, how many kilometers does the segment that joins cities Q and R represent?
 - (A) $3\sqrt{3}$
 - (B) 6
 - (C) 9
 - **(D)** $6\sqrt{3}$
 - (E) It cannot be determined from the information given
- (B)

- 7. If the perimeter of ΔRST above is 40, which of the following could NOT be the length of

 - (A)
 - **(B)** 19
 - **(C)** 17 **(D)** 15
 - **(E)** 13
 - 40 RT = 2140 - 21 = 19. (2a) 19 > 21(RT)
- **4** (A)

- 8. In $\triangle RST$ above, if the measure of $\angle R$ equals the measure of $\angle T$, then RT =

 - (A) $\frac{1}{2}$ (B) 1 $\frac{3}{2}$ (D) 2

 - **(E)**
- R T

- 7\ . 2x-1 = x + 1/2
- x = 3/2
- **(** (C)

Note: Figure not drawn to scale.

- 9. In the figure above, if the sum of the perimeters of the three triangles is 37, what is the perimeter of pentagon ABCDE?
 - **(A)**
 - 27 **(B)**
 - **(C)** 25
 - 22 **(D)**
 - **(E) 17**

- 10. The figure above shows the dimensions of a stepladder that stands on a floor. How high is the top of the ladder from the floor?
 - **(A)** 4 ft
- **(B)** 5 ft
- **(C)** 6 ft
- (D) $4\sqrt{3}$ ft (E) $2\sqrt{15}$ ft

$$.8^2 - 2^2 = (2\sqrt{15})^2$$

- 11. In the figure above, CE=5, BD=8, and the area of quadrilateral ABCD is 36. What is the area of ΔABD ?
 - **(A)**
 - (B) 9
 - (C) 16
 - (\mathbf{D}) 20
 - (E) 56
- BCD ABD . BCD $20(=\frac{1}{2}(5\times8))$ 36 20 16 .
- **(C)**

- 12. In the figure above, If PQRS is a square and QT = TR, which of the following statements is NOT true?
 - (A) PT = TS
 - **(B)** x = y
 - (C) u = v
 - (\mathbf{D}) r = y
 - (E) The area of ΔPQT is equal to the area of ΔSRT .
 - 가 4
 - r = y

(D)

Note: Figure not drawn to scale.

- 13. In City R, streets run either east-west or north-south, as shown on the map above. Blocks along east-west streets are 400 feet long and blocks along north-south streets are 200 feet long. If the width of the streets is ignored, what is the straight-line distance, in feet, from X to Y?
 - (A) $200\sqrt{5}$
 - (E) 1,000
 - (C) 1,200
 - **(D)** $400\sqrt{10}$
 - (E) 1,600

block 7\ 400 feet 200 feet 200 feet blocks 7\ 400 feet 200 feet . Block 7\ x y 7\ 2 blocks 3 blocks . $800^2 + 600^2 = 1000^2$ (B)

<High Level Questions >

- 14. If 3 and 8 are the lengths of two sides of a triangular region, which of the following can be the length of the third side?
 - I. 5 II. 8
 - III. / 11_
 - (A) II only
 - (B) III only
 - (C) I and II only(D) II and III only
 - (E) I, II, and III

15. The length of each side of a triangle is an even number. If no two of the sides are equal, what is the smallest perimeter the triangle could have?

- (A) 18
- **(B)** 16
- (C) 14
- (D) 12
- **(E)** 6

(A) .

16. The lengths of two sides of a right triangle are $\frac{d}{3}$ and $\frac{d}{4}$. If one of these sides is the hypotenuse, what is the length of the third side of the triangle?

- $(\mathbf{A}) \quad \frac{5d}{12}$
- **(B)** $\frac{d}{\sqrt{7}}$
- (C) $\frac{d}{5}$
- **(D)** $\frac{d}{12}$
- $(E) \quad \frac{d\sqrt{7}}{12}$

 $\frac{d}{3} \quad \frac{d}{4} \quad \frac{d}{3} \Rightarrow 1$

 $\left(\frac{d}{3}\right)^2 = \left(\frac{d}{4}\right)^2 + x^2$

(E) .

- 17. If each side of $\triangle ACD$ above has length 3 and if AB has length 1, what is the area of region BCDE?
- (B) $\frac{7}{4}\sqrt{3}$ (C) $\frac{9}{4}\sqrt{3}$ (D) $\frac{7}{2}\sqrt{3}$ (E) $6+\sqrt{3}$

AB

 ΔACD

가 1

ナ √3

BCDE

.)

 ΔACD

 ΔABE

$$\left(\frac{1}{2} \times 3 \times \frac{3\sqrt{3}}{2}\right) - \left(\frac{1}{2} \times 1 \times \sqrt{3}\right) = \frac{7\sqrt{3}}{4}$$

 (ΔACD)

丑 (B)

- 18. In $\triangle PQS$ above, if PQ = 3 and PS = 4, then PR =
- (C) $\frac{16}{5}$ (D) $\frac{15}{4}$ (E) $\frac{20}{3}$

 ΔPQR ΔPQS

가

PR

3:5=x:4

(B)

- 19. In the figure above, square region ABCE and triangular region ACD each have area 36. What is the perimeter of triangle ACD?
 - (A) 24
 - (B) $12 + 12\sqrt{2}$
 - (C) 36
 - **(D)** $18 + 18\sqrt{2}$
 - **(E)** $36\sqrt{2}$
- ABCE 36 6 AD ACD 36 AD .(
- $\frac{1}{2} \times 6 \times x = 36$
- **B** (B) .

- 20. The figure above shows the relative positions of a projection lens L, a film F, and a screen S. The film is 6 inches from the lens and is parallel to the screen. How many <u>feet</u> from the screen is the lens if a 0.3-inch figure on F projects a 6-foot image on S? (1 foot = 12 inches)
 - (A) 0.3
 - (B) 10
 - (C) 12
 - (D) 100
 - (E) 120

가 .

 $0.3:72 (= 6 feet \times 12 inches) = 6:x$

(E) .

- 21. In the figure above, if A_1 , A_2 , and A_3 are the areas of the respective semicircular regions, what is the value of $\frac{A_1 + A_2}{A_2}$?

- **(B)** $\frac{3}{2}$ **(C)** $\frac{\mathbf{p}}{2}$ **(D)** 2 **(E)** $\frac{3\mathbf{p}}{2}$

$$\frac{A_1}{2}$$
, A_2 , A_3
 $\frac{(a_1)^2 \mathbf{p}}{2}$, $\frac{(a_2)^2 \mathbf{p}}{2}$, $\frac{(a_3)^2 \mathbf{p}}{2}$

$$(a_1, a_2, a_3)$$

 $(a_1)^2 + (a_2)^2 = (a_3)^2$

- $\frac{A_1 + A_2}{A_3} = \frac{(a_1)^2 \mathbf{p}}{2} + \frac{(a_2)^2 \mathbf{p}}{2} / \frac{(a_3)^2 \mathbf{p}}{2}$
- (A)

- 22. A cable is being laid from one side of a swamp, at point A, to the other side, at point D. If laying cable costs \$500 per mile on dry land and \$800 per mile in the swamp, how much is sayed by laying the cable on the ABD route rather than the ABCD route?
 - **\$700 (A)**
 - \$1,000 **(B)**
 - \$1,500 **(C)**
 - **(D)** \$3,200
 - **(E)** \$4,700
 - BD가 5 miles ABD가 15 miles . ABCD .10 miles 17miles ABCDABDswamp 1mile dry

3miles land

- H
- (A)

- 23. A ladder that is 13 feet long is placed against a vertical wall so that the top of the ladder is 5 feet below the top of the wall. If the bottom of the ladder rests on level ground and is 5 feet out from the base of the wall, what is the height of the wall, in feet?
 - (A) 12
 - **(B)** 13
 - **(C)** 17
 - (D) 19
 - **(E)** 23
- 13feet 가 . 5 feet
- 5feet .
- 12feet가
- $(13)^2 (5)^2 = (12)^2$
- **扭** (C) .
- 24. A ladder 25 feet long is leaning against a wall that is perpendicular to level ground. The bottom of the ladder is 7 feet from the base of the wall. If the top of the ladder slips down 4 feet, how many feet will the bottom of the ladder slip?
 - (A) 4
 - **(B)** 5
 - **(C)** 8
 - (**D**) 9
 - (E) 15
 - 7feet 24feet
- $((25)^2 (7)^2 = (24)^2)$ 4feet
 - 20feet7\\
 15feet . $((25)^2 (20)^2 = (15)^2)$
- **1** (C) .

- 25. A rope hangs from the top of a vertical pole, leaving 4 feet of slack on the floor. When fully extended, the rope touches the floor at a point 12 feet away from the pole. How many tall is the pole?
 - (A) 4
 - (B) 12
 - (C) 13
 - **(D)** 16
 - (E) 20

12feet 4feet

•

$$x^{2} + 12^{2} = (x+4)^{2} \Rightarrow x = 16$$

1 (D) .