1

EE5609 Assignment 16

SHANTANU YADAV, EE20MTECH12001

1 Problem

Let **W** be the space of $n \times n$ matrices over the field **F**, and let **W**₀ be the subspace spanned by the matrices C of the form C = AB - BA. Prove that **W**₀ is exactly the subspace of matrices which have trace zero.

2 Explanation

Let there be two subspaces defined as

$$\mathbf{W}_0 = \{ A \in \mathbf{W} : trace(A) = 0 \}$$
 (2.0.1)

and

$$\mathbf{W}_1 = \{ C \in \mathbf{W} : C = AB - BA \} \tag{2.0.2}$$

Consider $C \in \mathbf{W}$ such that C = AB - BA where $A, B \in \mathbf{R}^{N \times N}$ and since

$$trace(AB) = trace(BA)$$
 (2.0.3)

$$\implies trace(AB) - trace(BA) = 0$$
 (2.0.4)

$$\implies trace(C) = 0$$
 (2.0.5)

Thus any linear combination of matrices C = AB - BA represents the subspace of all $N \times N$ matrices with trace equal to 0. Hence, the subspace \mathbf{W}_0 and \mathbf{W}_1 are equivalent.