Tutorial of ST5215

AY2020/2021 Semester 1

13 Aug 2020

- Exercise 1 Let \mathcal{C} be a collection of subsets of Ω and $\Gamma = \{\mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-field on } \Omega \text{ and } \mathcal{C} \subset \mathcal{F}\}$. Show that $\Gamma \neq \emptyset$ and $\sigma(\mathcal{C}) = \bigcap_{\mathcal{F} \in \Gamma} \mathcal{F}$.
- Exercise 2 Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \to \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.
- Exercise 3 Show that a monotone function from \mathcal{R} to \mathcal{R} is Borel
- Exercise 4 Let f be a Borel function on \mathbb{R}^2 . Define a function g from \mathbb{R} to \mathbb{R} as $g(x) = f(x, y_0)$, where y_0 is a fixed point in \mathbb{R} . Show that g is Borel.