Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Automatyki i Informatyki Stosowanej

Systemy automatyki DCS i SCADA

Projekt układu sterowania stanowiska INTECO TCRANE

Zdający:

Krystian Guliński Jakub Sikora Konrad Winnicki Prowadzący:

mgr. inż. Andrzej Wojtulewicz

Warszawa, 19 stycznia 2019

Spis treści

1.	Opis	stanowiska	2
	1.1.	Stanowisko TCRANE	2
	1.2.	Enkodery inkrementalne	3
	1.3.	Opis wejść i wyjść obiektu	3
2.	Stere	ownik PLC	4
	2.1.	Konfiguracja sprzętowa	4
		2.1.1. Ethernet	4
		2.1.2. Analog	4
		2.1.3. High Speed Counter	4
		2.1.4. Wyjścia PWM	4
	2.2.	Mechanizm labeli	4
	2.3.	Skalowanie i bazowanie	4
	2.4.	Obsługa I/O cyfrowych	4
	2.5.	PID	4
	2.6.	Tryb sterowania ręcznego	4
	2.7.	Zabezpieczenia ruchów krańcowych	4
	2.8.	Język ST	4
3.	Real	izacja w systemie MAPS	5
	3.1.	Panel operatorski	5
	3.2.	Sterowanie auto/ręka	5
	3.3.	Nastawy regulatorów	5
	3.4.	Wykresy	5

1. Opis stanowiska

1.1. Stanowisko TCRANE

Trójwymiarowy model laboratoryjnego modelu dźwigu ilustruje strukturę współczesnego żurawia, skutecznie odwzorowuje stosunek wielkości do maksymalnego podnoszonego ładunku. Obiekt jest wielowejściowym i wielowyjściowym systemem wyposażonym w dedykowane czujniki do mierzenia przemieszczeń i kątów.

Stanowisko laboratoryjne T-Crane posiada 5 enkoderów inkrementalnych. Trzy z nich mierzą położenie elementów napędzanych przez silniki. Dwa z nich znajdują się na karetce dźwigu i przedstawiają aktualne wychylenie obciążenia od pionu.

Rysunek 1.1. Stanowisko laboratoryjne TCRANE

 ${\bf W}$ ramach projektu laboratoryjnego, mieliśmy wysterować ramię dźwigu w dwóch płaszczyznach:

- obrót kolumny dźwigu (wieży)
- ruch wózka wzdłuż ramienia

1.2. Enkodery inkrementalne

Enkoder (przetwornik położenia) służy do pomiaru położenia. W powyższej wersji mamy do czynienia z przetwornikiem obrotowym. Zatem możemy dzięki niemu określić położenie kątowe wokół osi. Jeżeli podłączymy go do liniowego układu przeniesienia napędu możemy określić położenie liniowe wyrażane w odległości.

Do określenia kierunku potrzebujemy dwóch sygnałów (tzw. fazy A i B). Do określenia pozycji wykorzystujemy dwa wejścia do zliczania impulsów z fazy A i B. Wykrywanie kierunku jest wykonywane automatycznie w sterowniku. Przy pomocy mechanizmu sprzętowych liczników możemy w dowolnym momencie odczytać aktualne położenie enkodera. W pamięci sterownika pozycja będzie przedstawiona w odpowiednim rejestrze 32 bitowym.

1.3. Opis wejść i wyjść obiektu

2. Sterownik PLC

2.1. Konfiguracja sprzętowa
2.1.1. Ethernet
2.1.2. Analog
2.1.3. High Speed Counter
2.1.4. Wyjścia PWM
2.2. Mechanizm labeli
2.3. Skalowanie i bazowanie
2.4. Obsługa I/O cyfrowych
2.5. PID
2.6. Tryb sterowania ręcznego
2.7. Zabezpieczenia ruchów krańcowych

2.8. Język ST

3. Realizacja w systemie MAPS

- 3.1. Panel operatorski
- 3.2. Sterowanie auto/ręka
- 3.3. Nastawy regulatorów
- 3.4. Wykresy