Guía de ejercicios (Cálculo 2)

Áreas, volúmenes de sólidos, longitud de una curva, y áreas de superficies de revolución

1.- Calcular el área de la región encerrada por la función $f(x) = x^2 - 3x + 2$, el eje OX y las rectas x = 0 y x = 3.

R: 11/6

2.- Determine el área del recinto limitado por las funciones:

$$f(x) = 4x - x^2 y g(x) = x^2 + 2x$$

R: 1/3

3.- Determine el área entre las función $f(x) = x^3 - 4x^2 + 3x$ y el eje OX.

R: 37/12

4.- Determinar el área del recinto limitado por la curva

a)
$$y = \frac{1}{(x+1)(x+3)}$$
 entre $x = 0$ y $x = 1$

R: $\frac{1}{2} ln(3/2)$

b)
$$y = \ln(x + 3)$$
 y el eje OX entre $x = 0$ y $x = 1$

R: $4 \ln 4 - 3 \ln 3 - 1$

c)
$$y = sen\left(\frac{x}{2}\right)$$
 y el eje OX desde $x = 0$ hasta $x = \pi$

R: 2

d)
$$y = \cos x$$
, el eje OX y las rectas $x = 0$ y $x = \pi$

R: 2

e)
$$y = \frac{x^2}{1 + x^2}$$
, el eje OX y las rectas $x = -1$ y $x = 1$

R:
$$2 - \pi/2$$

5.- Determine el área limitado por la curva $y = xe^x$, el eje OY y la ordenada correspondiente al punto máximo de la curva.

R:
$$3/e - 1$$

6.- Hallar el área encerrada por las curvas : $y = x^4 - 4x^2$; $y = x^2 - 4$.

R: 8

6.- Hallar el área encerrada por las curvas : $y = x^3 - x$; y = 3x.

R: 8

7.- Determine el área limitado por la curva $y=xe^x$, el eje OY y la ordenada correspondiente al punto mínimo de la curva.

R:
$$3/e - 1$$

8.- Hallar el área de la región del plano delimitada por los ejes de coordenadas y la gráfica de la función $f(x) = (x - 1)e^{-x}$.

9.- Hallar el área de la región del plano limitada por la curva $y=(x-1)e^{-x}$, el eje de las abscisas desde el punto de corte hasta la abscisa en el punto máximo.

R:
$$1/e - 1/e^2$$

10.- Calcular el valor del número real m para que el área del recito limitado por la curva $y=x^2$ y la recta y=mx sea 9/2 u^2 .

R: ±3

11.- Hallar el valor del número real a para que el área de la región limitada por la curva $y=-x^2+a$ y el eje OX sea igual a 36.

R:
$$a = 9$$

12.- Calcular el área comprendida entre la función $y = \ln x$, el eje OX y la tangente a la función en el punto x = e.

R:
$$e/2 - 1$$

13.- Determinar el área de las regiones del plano limitado por :

$$y = |x^2 - 5x + 4|$$
 y el eje *OX*

R: 9/2

14.- Hallar el área comprendida entre la curvas $y = ln(x^2 + 1)$; y = ln 5.

R:
$$8 - 4arctg(2)$$
 obs: $arctg(-\alpha) = arctg(\alpha)$

15.- Esbozar la región encerrada por la gráfica de las siguientes ecuaciones y luego calcule su área:

i)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
, $y = 8$; $y = 0$

R:
$$12(2\sqrt{3} - \ln(2 + \sqrt{3}))$$

ii)
$$y = x^3 - x$$
; $y = |x + 1| - 1$

16.- Represente la región R acotado por las gráficas de las ecuaciones y calcule el volumen del sólido generado al girar R alrededor del eje de giro indicado:

i)
$$y = x^2$$
; $y = 4 - x^2$; alrededor del eje X

R:
$$64\sqrt{2}\pi/3$$

$$(ii)$$
 $y = -x^2 - 3x + 6$; $x + y = 3$ alrededor de la recta $x = 3$

R:
$$(256/3)\pi$$

iii)
$$y = x^2$$
; $y^2 = 8x$ alrededor del eje Y

R:
$$24\pi/5$$

$$iv$$
) $yx^2 = 1$, $y = 1$, $y = 4$ alrededor de $y = 5$

R:
$$64\pi/3$$

v)
$$y = x^2 + 1$$
; $y = 5$; $y = \frac{5x - 15}{2}$, $y = 0$ alrededor del eje X

R:
$$(1081/15)\pi$$

17.- Calcule el volumen del sólido generado al girar la región encerrada por las gráficas de $y=x^2$; y=4 alrededor de:

i)
$$y = 5$$

$$ii) x = 2$$

R: $832\pi/15$; $128\pi/3$

18.- Exprese la integral que permite calcular el volumen del sólido generado al girar la región acotada por las gráficas de:

i)
$$x + y = 3$$
; $y + x^2 = 3$ alrededor de $x = 2$

ii)
$$y = |x - 1| + |x - 2|$$
; $y = \frac{x + 2}{2}$ alredeor de $y = 1$

R: i)
$$V = \pi \int_{2}^{3} \left[(y - 1)^{2} - \left(2 - \sqrt{3 - y} \right)^{2} \right] dy$$

$$R ii) V_1 = \pi \int_{4/5}^{1} \left[\left(\frac{x+2}{2} - 1 \right)^2 - \left((3-2x) - 1 \right)^2 \right] dx$$

$$V_2 = \pi \int_1^2 \left(\frac{x+2}{2} - 1 \right)^2 dx$$

$$V_3 = \pi \int_2^{8/3} \left[\left(\frac{x+2}{2} - 1 \right)^2 - \left((2x-3) - 1 \right)^2 \right] dx$$

$$V = V_1 + V_2 + V_3$$

19.- Grafique y luego determine el área limitada por la curva $r=2+\cos\theta$.

R: $9\pi/2 u^2$

20.- Hallar el área común del circulo $r=3\cos\theta$ y la cardioide $r=1+\cos\theta$.

R: $5\pi/4 u^2$

21.- Hallar el área de cada uno de los lazos del limazón $r = \frac{1}{2} + \cos \theta$.

R: Lazo mayor:
$$\frac{\pi}{2} + \frac{3\sqrt{3}}{8} u^2$$
 lazo menor: $\frac{\pi}{4} - \frac{3\sqrt{3}}{8} u^2$

22.- Calcular el área de la región que se encuentra dentro del cardioide r=2. La casa 0 y fuera de la circumforancia r=2.

$$2+2\cos\theta$$
 y fuera de la circunferencia $r=3$

R:
$$9\sqrt{3}/2 - \pi$$

23.- Hallar el área interior a $r = \cos \theta$ y exterior a $r = 1 - \cos \theta$

R:
$$\sqrt{3} - \pi/3 u^2$$

24.- Calcule el área de la región encerrada por r=4 sen 2θ .

R:
$$8\pi u^2$$

25.- Calcule el área de la región interior a las curvas:

$$r = sen(2\theta)$$
 y $r = cos(2\theta)$

R:
$$\pi/2 - 1 u^2$$

26.- Encuentre el área de la circunferencia $(x-a)^2+y^2=a^2$, a>0 usando coordenadas polares.

$$R:\pi a^2 u^2$$

27.- Encuentre el área de la región que es común a los interiores de la cardioide $r=2-2\cos\theta$ y de la limazón $r=2+\cos\theta$.

R:
$$21/4\pi - 12 u^2$$

28.- Calcular la longitud de la cardioide $r=1+\cos\theta$.

29.- Calcular la longitud de la cardioide $r = 2(1 - \sin \theta)$.

R:
$$8\sqrt{2}$$

30.- Calcule la longitud de la curva $r=cos^2\frac{\theta}{2}$ desde $\theta=0$ a $\theta=\pi$

31.- Calcular el área de la superficie generada en la rotación de $r=4\cos\theta$ alrededor del eje polar. R: 16π unid. sup.

32.- Calcular la longitud de arco entre A y B de la gráfica de la ecuación:

i)
$$8x^2 = 27y^3$$
; $A = (1,2/3)$; $B = (8,8/3)$

R: 7,29

ii)
$$y = 5 - \sqrt{x^3}$$
; $A = (1,4)$; $B = (4, -3)$

R: 7,63

$$iii)$$
 $y^2 = 12x$; $A = (0,0)$; $B = (3,6)$

$$(iv) y = \frac{x^3}{12} + \frac{1}{x}; A = (1,13/12); B = (2,7/6)$$

R: 13/12

33.- Calcule la longitud del segmento de curva dada en coordenadas paramétricas, desde $t=t_0$ hasta $t=t_1$:

i)
$$x = a\cos^3 t$$
; $y = a\sin^3 t$; $t_0 = 0$; $t_1 = \pi/2$

ii)
$$x = e^t \cos t$$
; $y = e^t \sin t$; $t_0 = 0$; $t_1 = \pi$

iii)
$$x = t$$
; $y = ln(\cos t)$; $t_0 = 0$; $t_1 = \pi/6$

$$iv) x = 2t; y = ln(cos^2t); t_0 = 0; t_1 = \pi/4$$

R:
$$3a/2$$
; $\sqrt{2}(e^{\pi}-1)$; $ln\sqrt{3}$; $2ln(\sqrt{2}+1)$

34.- Suponga que la circunferencia $x^2 + (y-4)^2 = 9$ se gira en torno al eje X Calcule el valor del área de la superficie resultante.

$$R:48\pi^{2}u^{2}$$

35.- Hallar el área de la superficie de revolución que se forma al rotar la curva $8y^2 = x^2 - x^4$ sobre el eje X.

R:
$$\pi/4 u^2$$

36.- Determine el área de la superficie que se obtiene al hacer girar el arco de curva dada por la función: $f(x) = x^3/12 + 1/x$, para $1 \le x \le 2$, alrededor de la recta y = -5. R:(203/16) π