Lección 4

Salida analógica

TEMAS

- A. Arquitectura de salida analógica
- B. Generación de muestra única
- C. Generación amortiguada finita

- D. Generación continua amortiguada
- E. Generación disparada

A. Arquitectura de salida analógica

- La mayoría de los dispositivos DAQ multifunción tienen un convertidor digital a analógico.
 Convertidor (DAC) para cada canal de salida analógica
- Los DAC se actualizan al mismo tiempo
 Similar al muestreo simultáneo para entrada analógica

Transferencia de datos para una operación de salida

DAQmx Write VI

2. Verificar configuración

Parámetro de inicio automático para escribir VI

Controla si Write VI inicia la generación • Para muestras individuales, el inicio automático es verdadero de forma predeterminada • Para muestras múltiples, el inicio automático es falso de forma predeterminada Al usar Start/Clear Task VI, siempre establezca el inicio automático en falso

B. Generación de muestra única

Úselo cuando el nivel de la señal es más importante que la tasa de generación • Ejemplo: salida de un voltaje de CC constante

Establecer tiempos con DAQmx Timing VI

- Temporizado por software
 - ÿ La tasa está determinada por el sistema operativo o el programa (agregando un retraso de tiempo en el ciclo de generación)
 - ÿ La propiedad Sample Timing Type se establece en On Demand
- Temporizado por hardware
 - ÿ El reloj de su dispositivo controla el tiempo. Mucho más rápido y más preciso que un bucle de software.
 - ÿ La propiedad Sample Timing Type se establece en Sample Clock

Bucle de salida analógica temporizado por software

Actualice el voltaje en el canal de salida analógica hasta que el usuario presione el botón de parada

Ejercicio 4-1: Generación continua de un solo punto

Para crear un VI que produzca una señal de voltaje variable.

META

Ejercicio 4-1: Generación continua de un solo punto

 ¿Debe utilizar esta aplicación para emitir una onda sinusoidal de 10 Hz? ¿Por qué o por qué no?

DISCUSIÓN

C. Diagrama de flujo de generación con búfer finito

Frecuencia de forma de onda de salida

La frecuencia de la forma de onda de salida depende de tres factores:

- Frecuencia de actualización
- Puntos en el búfer
- Número de ciclos en el búfer

Frecuencia de señal = # de ciclos en el búfer X

actualizar

puntos de tasa en el búfer

Frecuencia de forma de onda de salida • Tamaño del búfer = 1000 pts •

Número de ciclos en el búfer = 1 • Tasa de actualización ⇒ 1000 Hz

Frecuencia de la señal = 1 Hz

Tamaño del búfer = 1000 pts
 Número de ciclos en el búfer = 1 • Tasa
 de actualización = 2000 Hz

Frecuencia de la señal = 2 Hz

Tamaño del búfer = 1000 pts
 Número de ciclos en el búfer = 2 • Tasa
 de actualización = 1000 Hz

Frecuencia de la señal = 2 Hz

Frecuencia de la señal = número de ciclos en el búfer X

frecuencia de actualización

ni.com/entrenamiento

Esperar hasta que termine vs. Tarea terminada

Esperar hasta que termine VI

• Utilizado para generaciones finitas • El usuario

puede configurar el tiempo de espera

• Bloquea la tarea hasta que termine de ejecutarse

Tarea terminada VI

• Se utiliza para comprobar errores en generaciones continuas •

Sondeos para determinar el estado de la generación

Tiempo para la generación finita

Configure el tiempo con DAQmx Timing VI •

Temporizado por software

- ÿ La tasa está determinada por el sistema operativo o el programa (agregando un retraso de tiempo en el ciclo de generación)
- ÿ La propiedad Sample Timing Type se establece en On Demand •

Hardware-timed

ÿ El reloj de su dispositivo controla el tiempo. Mucho más rápido y más preciso que un bucle de software: la propiedad Sample Timing Type se establece en Sample Clock

Ejemplo de generación con búfer finito

Establezca el modo de muestra en muestras
 finitas • Escriba datos en el búfer con DAQmx
 Write VI • Use DAQmx Wait Until Done VI

Ejercicio 4-2: Generación amortiguada finita

Para crear un VI que genere una forma de onda finita de datos de sonido.

META

Ejercicio 4-2: Generación amortiguada finita

 ¿Qué sucedería si eliminara el DAQmx Wait Until Done VI del diagrama de bloques?

DISCUSIÓN

D. Diagrama de flujo de generación continua amortiguada

Generación continua de formas de onda usando el Reloj de muestra

Establezca el modo de muestra en Muestras
 continuas • Escriba datos en el búfer con DAQmx
 Write VI • Use DAQmx Is Task Done VI

Generación de forma de onda usando dt para temporización

 Use la instancia de forma de onda de DAQmx Timing VI para usar dt para el tiempo

Regeneración

Usar la propiedad Modo de regeneración

• Permitir regeneración genera los mismos datos varias veces

Usar propiedad de memoria integrada

- Si es verdadero, regenerar datos de la memoria integrada de dispositivo
- Si es falso (predeterminado), regenerar datos del búfer de la PC

Si la regeneración está habilitada y escribe nuevos datos en el búfer, pueden ocurrir **fallas** durante la transición

Generación no regenerada

E. Generación disparada

Usar DAQmx Trigger VI

Ejercicio 4-3: Activado Continuo Bufferado Generacion

Construir un VI para activar una generación continua en búfer en un canal de entrada analógica.

META

Ejercicio 4-3: Activado Continuo Bufferado Generacion

• ¿Cómo modificaría el diagrama de bloques para generar su propia señal analógica personalizada?

DISCUSIÓN

Resumen—Cuestionario

1. En un dispositivo DAQ típico, ¿cuántos canales hay por CAD?

a)

1 b)

8 c)

16 d) 32

Resumen—Respuesta del cuestionario

1. En un dispositivo DAQ típico, ¿cuántos canales hay por CAD?

a)

1 b)

8 c)

16 d) 32

Resumen—Cuestionario

- 2. Si genera una forma de onda sinusoidal con 200 muestras y 10 ciclos a una tasa de salida de 1 kHz, ¿cuál es la tasa aparente de la onda sinusoidal?
 - a) 1000 Hz
 - b) 500 Hz
 - c) 50 Hz
 - d) 20 Hz

Resumen—Respuesta del cuestionario

- 2. Si genera una forma de onda sinusoidal con 200 muestras y 10 ciclos a una tasa de salida de 1 kHz, ¿cuál es la tasa aparente de la onda sinusoidal?
 - a) 1000 Hz
 - b) 500 Hz
 - c) 50 Hz
 - d) 20 Hz

