Software 2 WS 2016 #12

Additive Analysis/Resynthesis

Rekonstruktion eines Spektrum mit Additive Synthese

200 Hz Karinette

Rekonstruktion eines Spektrum mit Additive-Synthese

Oberton	Frequenz	Amplitude
Grund Ton	200	7
1	400	0
2	600	6
3	800	0.3
4	1000	3.5
5	1200	0.2
6	1400	0.5

Analysis Resynthesis

Figure 4.20 General overview of analysis/resynthesis. The modification stage may involve manual edits to the analysis data or modifications via cross-synthesis where the analysis data of one sound scale the analysis data from another sound.

Das klassische Modell

Sinusoidal Analysis

Sinusoidal Analysis

Joseph Fourier

ein französischer Mathematiker und Physiker. Mit der Fourieranalyse legte er einen Grundstein für den Fortschritt der modernen Physik und Technik.

Er entdeckte: ein periodisches Signal lässt sich durch Überlagerung von sinus- bzw. kosinusförmigen Teilschwingungen unterschiedlicher Frequenz und Amplitude erzeugen.

FT

FT / iFT

FT/iFT

FFT Resynthesis

Anwendungen

Table 4.1 Musical transformations using additive analysis/resynthesis

Musical effect	Technique
Variations of recorded sounds	Change selected frequency or amplitude envelopes by editing or multiplications by arbitrary functions.
Spectrum scaling (without time scaling)	Multiply the frequency of all the partials (possibly excepting the fundamental) by a factor n or by arbitrary functions. Since multiplication does not preserve formant structures, vocal and instrumental sounds may lose their characteristic identity.
Spectrum shifting (without time scaling)	Add a factor n or an arbitrary function to all partials (possibly excepting the fundamental). For small values this preserves formant structures.
Spectrum inversion	Reversing the order of the frequency components before resynthesis, so that the amplitude of the first partial is assigned to the last partial, and vice versa, followed by exchange of the amplitudes of the second and next-to-last components, etc.
Hybrid timbres	Replace some envelopes from one sound with selected envelopes from another sound.
Time expansion and compression without pitch shifting	Extend the duration of the frequency and amplitude envelopes, or change the hop size on playback (see chapter 13).
Stretch a percussive timbre into a prolonged synthetic passage	Delay the onset time of each partial and smooth their envelopes.
Timbral interpolation from one instrumental tone to another	Interpolate over time between the envelopes of two instrument tones.
Mutating synthetic sounds	Interpolate between the envelopes of arbitrary synthetic sounds.
Enhance the resonance regions of recorded sounds	Increase the amplitude of selected frequency partials.
Cross-synthesis	Method 1: Use the amplitude envelopes for the partials of one sound to scale the amplitude envelopes of another sound (see fast convolution in chapter 10).
	Method 2: Apply the amplitude envelopes from one sound to the frequency (or phase) functions of another sound.
	Method 3: Apply the noise residual from one sound to the quasi-harmonic part of another sound (see, for example, the description of spectral modeling synthesis and the comb wavelet transform in chapter 13).

Spectral Shift

Spectral gate

Spectral EQ

Spectral Decay

Spectral Delay

SPEAR

SPEAR

Eine Software für Resynthesis

Demo - Spear

Musikalische Anwendungen

Cort Lippe

Music for piano

Walsh Synthese

Additive Synthese

Baustein eines Spektrums = Sinus

Sine OSC 3

Begrenzung der Additive Synthese

* Was ist die schwierigste Wellenform für die Additive Synthese?

Begrenzung der Additive Synthese

- Additive Synthese
 - Was ist die schwierigste Wellenform zu imitieren?

Begrenzung der Additive Synthese

- Additive Synthese
 - Was ist die schwierigste Wellenform zu imitieren?

* Rechteck

Rechteck

ca 140 Oszillatoren sind nötig!

Rechteck

138

Part 2 Sound Synthesis

Figure 4.15 Stages of harmonic addition as seen in a series of time-domain waveforms. (a) Fundamental only. (b) First and third harmonics. (c) Sum of odd harmonics through the fifth. (d) Sum of odd harmonics through the ninth. (e) Quasi-square wave created by summing odd harmonics up to the 101st.

Walsh Synthese

Rechteck als Baustein

Figure 4.24 The first eight Walsh functions, 0 (top) to 7 (bottom).

Walsh-Funktion

https://de.wikipedia.org/wiki/Walsh-Funktion

We define the sequence of Walsh functions $W_k:[0,1] o \{-1,1\}$, $k\in \mathbb{N}_0$ as follows.

For any $k\in\mathbb{N}_0$, $x\in[0,1]$ let

$$k = \sum_{j=0}^{\infty} k_j 2^j, k_j \in \{0,1\}, \;\; x = \sum_{j=1}^{\infty} x_j 2^{-j}, x_j \in \{0,1\}$$

such that there are only finitely many non-zero k_j and no trailing x_j all equal to 1, be the canonical binary representations of integer k and real number x, correspondingly. Then, by definition

$$W_k(x) = (-1)^{\sum_{j=0}^\infty k_j x_{j+1}}$$

In particular, $W_0(x)=1$ everywhere on the interval.

Notice that W_{2^m} is precisely the Rademacher function r_m . Thus, the Rademacher system is a subsystem of the Walsh system. Moreover, every Walsh function is a product of Rademacher functions:

$$W_k(x) = \prod_{j=0}^\infty r_j(x)^{k_j}$$

Walsh Funktion

Figure 4.25 Demonstration of Walsh function summation. (a) A simple sine wave approximation built by adding the Walsh functions shown in (b). (After Tempelaars 1977.)

Experiment mit Max

Corpus-based Concatenative Synthesis

Corpus

Corpus ... Sammlung

Concatenation ... Verkettung

Datenbank und Klang

- https://www.freesound.org
- http://www.xeno-canto.org bird song
- http://theremin.music.uiowa.edu/MIS.html# instrument
- http://www.whosampled.com sampling
- http://mycity-mysounds.zkm.de soundscape

Speech Synthesis

Dr. Stephen Hawking

Vocaloid

Speech Synthesis

Speech Synthesis

Granular Synthesis vs Concatenative Synthesis

In contrast to granular synthesis, concatenative synthesis is driven by an **analysis of the source sound**, in order to identify the units that best match the specified criterion.

Experiment mit Sound Source

Analysis of Sound Source

Cata -RT (IRCAM)

CataRT

http://imtr.ircam.fr/imtr/CataRT

Klangbeispiel

Diemo Schwarz Cata-RT

