

Supervised Learning

Javier Cañadillas - javier@canadillas.org

Esta presentación:

bit.ly/ks-sl-day1

Notas adicionales:

bit.ly/ks-sl-notes

Sobre mi (shameless self promotion)

- Hoy: Google Cloud Customer Engineer
- Antes: Arquitecto y Especialista diversas áreas en Oracle, HP y Sun
- Profesor invitado Master Data Science profesional UNED 2018
- Profesor asistente IE School of Human Sciences & Technology
- Profesor UC3M IoT Software Engineering & PhD student
- Computer Science Master Degree (UC3M)
- Licenciado en Ciencias Físicas Física Industrial (UNED)
- Ingeniería aeronáutica Navegación y Transporte Aéreo (UPM)

Temario

- Introducción Aprendizaje supervisado, regresión y clasificación
- Modelos de aprendizaje supervisado
- Evaluación de modelos Sobre la marcha
- Laboratorios y ejercicios
- Refrescos, recapitulaciones y conclusiones

NOT(Temario)

- Matemáticas avanzadas y demostraciones
- Ingeniería de características
- Técnicas de descenso de gradiente
- Optimización y evaluación avanzada de modelos

Agenda y reparto aproximado

- Introducción
- k-Nearest Neighbors
- Modelos lineales de regresión
- Modelos lineales de clasificación —
- Naive Bayes
- Árboles de decisión
- Ensemble learning
- (Kernelized) Support Vector Machines
- Recap

Día 3

Día 1

Día 2

Repositorio de código

gitlab.com/Sh3llD00m/kschool-supervised-learning.git

0. Introducción

Aprendizaje supervisado en ML

Aprendizaje Supervisado vs No Supervisado

- Tenemos conocimiento previo de valores de salida (labels o etiquetas)
- Objetivo: encontrar función que, dado un dataset de entrada y unas salidas, aproxime de la mejor forma la relación existente entre ellos.
- Tipos de algoritmos supervisados:
 - Clasificación (binaria o multiclase)
 - Regresión (predicción número continuo)

Motores de reglas ↔ Aprendizaje Supervisado

```
import numpy as np
from sklearn.datasets import make_classification

rs = np.random.RandomState(42)
X, y = make_classification(n_samples = 10, random_state = rs)
```


Motores de reglas ↔ Aprendizaje Supervisado

```
def tomar_decision_super_importante(X):
    0.00
    Decidir si pasa algo gordo
    0.00
    row_sums = X.sum(axis=1)
    return (row_sums > 0).astype(int)
tomar_decision_super_importante(X)
```


Ejemplo de aprendizaje supervisado

```
from sklearn.linear_model import LogisticRegression
def aprender_leccion_vital(X,y):
    Aprender una lección y aplicarla en el futuro
    model = LogisticRegression().fit(X,y)
    return (lambda x: model.predict(x))
# Aprender una lección y aplicarla
decision_informada = aprender_leccion_vital(X,y)(X)
print(decision_informada)
```


¿Qué es aprendizaje supervisado?

Es un método de aprendizaje que **aprende una función** a partir de un **conjunto de muestras ya etiquetada** que **aproxima valores futuros de** *y*

Función de coste (loss function)

- Cuantifica un coste que el algoritmo minimiza
- Es una medida de lo bien que un modelo se ajusta a un problema

$$L(y, \hat{y}) \in \mathbb{R}$$

$$L = -\sum_{x} p(x) \log(1 - p(x)))$$

Entropía cruzada (clasificación)

$$L = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Sumatorio error cuadrático (regresión)

Queremos minimizar *L* - ¿cómo?

Algoritmo general de minimización de gradiente

- Inicializamos los parámetros/pesos (theta) de manera aleatoria
- 2. Calculamos el gradiente **G** de la función de coste **L** con respecto a los parámetros
- Actualizamos los pesos con una cantidad proporcional al gradiente: w = w -(learning rate)*G
- 4. Repetimos hasta que L ya no se reduce más o alcanzamos otro criterio de parada.

¿Quién querrá comprar un barco?

Edad	# coches en propiedad	Tiene casa	# niños	Estado civil	Tiene perro	Tiene barco
66	1	SÍ	2	viudo	no	SÍ
52	2	SÍ	3	casado	no	SÍ
22	0	no	0	casado	SÍ	SÍ
25	1	no	1	soltero	no	no
44	0	no	2	divorciado	SÍ	no
39	1	SÍ	2	casado	SÍ	no
26	1	no	2	soltero	no	no
40	3	SÍ	1	casado	SÍ	no
53	2	SÍ	2	divorciado	no	SÍ
64	2	SÍ	3	divorciado	no	no
58	2	SÍ	2	casado	SÍ	SÍ
33	1	no	1	soltero	no	no

Modelo 1

Edad	# coches en propiedad	Tiene casa	# niños	Estado civil	Tiene perro	Tiene barco
66	1	sí	2	viudo	no	SÍ
52	2	sí	3	casado	no	sí
22	0	no	0	casado	SÍ	sí
25	1	no	1	soltero	no	no
44	0	no	2	divorciado	SÍ	no
39	1	sí	2	casado	SÍ	no
26	1	no	2	soltero	no	no
40	3	SÍ	1	casado	SÍ	no
53	2	SÍ	2	divorciado	no	sí
64	2	SÍ	3	divorciado	no	no
58	2	SÍ	2	casado	SÍ	SÍ
33	1	no	1	soltero	no	no

(> 45 años) y (< 3 niños o (no divorciado)) → Sí

Modelo 2

Edad	# coches en propiedad	Tiene casa	# niños	Estado civil	Tiene perro	Tiene barco
66	1	sí	2	viudo	no	sí
52	2	sí	3	casado	no	sí
22	0	no	0	casado	SÍ	sí
25	1	no	1	soltero	no	no
44	0	no	2	divorciado	SÍ	no
39	1	sí	2	casado	SÍ	no
26	1	no	2	soltero	no	no
40	3	SÍ	1	casado	SÍ	no
53	2	SÍ	2	divorciado	no	sí
64	2	SÍ	3	divorciado	no	no
58	2	SÍ	2	casado	SÍ	SÍ
33	1	no	1	soltero	no	no

> 50 años → Sí

¿Cuál es mejor?

Underfitting, Overfitting y generalización

<u>Sobreajuste</u> (overfitting)

- Alto grado de complejidad
- Functiona bien en training set
- No generaliza bien

<u>Subajuste</u> (underfitting)

- Demasiado sencillo
- Predice mal, incluso en training set
- Generaliza demasiado

Se trata de buscar un compromiso

Complejidad del modelo y tamaño del dataset

- ↑ Dataset → ↑ Complejidad
 - ¿Y si tenemos 100k entradas de posibles compradores de barcos?
- Recoger más datos funciona muy bien para los modelos de Aprendizaje Supervisado

Lab 0 - Datasets de ejemplo

1. Conclusiones

- El uso de datasets sencillos es útil
- Hay que probar con datasets reales conocidos
- Importante desarrollar una intuición
- Realizar siempre trabajo exploratorio de los datos

1. k-Nearest Neighbors

k-Nearest Neighbors

- Algoritmo sencillo
 - No paramétrico
 - Basado en instancias
- Clasificación, o regresión
 - Training mínimo: construir modelo → almacenar dataset
- Predicción: encontrar datapoints más próximos en training set
 - Por defecto: min(métrica Minkowski o distancia euclídea)

k-Nearest Neighbors

Lab 1 - k-Nearest Neighbors

1. Conclusiones

- Dos parámetros importantes
 - \circ Número de vecinos \rightarrow 3 a 5, pero probar
 - Métrica de distancia → Fuera de alcance
- Fácil de entender, rendimiento razonable
 - Training rápido
 - Testing lento para grandes datasets
- Se usa menos que la regresión lineal