2.1.1 证明一个正则参数曲面是球面的一部分的充要条件是它的所有法线都经过一个 定点.

证. (1)必要性: 设正则参数曲面 $\vec{r} = \vec{r}(u, v)$ 位于以点P为球心,

R为半径的球面上,则 $[\vec{r}(u,v)-\overrightarrow{OP}]^2=R^2$. (2分)

两边微分得 $d\vec{r}(u,v)[\vec{r}(u,v)-\overrightarrow{OP}]=0$.

dr(u, v)可以是曲面在点(u, v)处的任意一个切向量.

因此上式说明 $P(u,v) - \overrightarrow{OP}$ 是曲面在点(u,v)处的一个法向量.

这说明该曲面的所有法线都经过定点P. (3分)

(2)充分性: 设正则参数曲面P = P(u, v)的所有法线都经过一个定点P,

则 $\vec{r}(u,v) - \overrightarrow{OP} / / \vec{r}_u \times \vec{r}_v$. 因此 $[\vec{r}(u,v) - \overrightarrow{OP}] \cdot \vec{r}_u = 0$, $[\vec{r}(u,v) - \overrightarrow{OP}] \cdot \vec{r}_v = 0$.

进而
$$\frac{d[(\vec{r}(u,v)-\overrightarrow{OP})^2]}{du}=0, \quad \frac{d[(\vec{r}(u,v)-\overrightarrow{OP})^2]}{dv}=0. \quad (3分)$$

可见 $(\vec{r}(u,v) - \overrightarrow{OP})^2$ 与u,v都无关,因此为常数,记为 R^2 .

则曲面 $\vec{r} = \vec{r}(u,v)$ 在以P为球心, R为半径的球面上. (2分)

```
线 u+v=0, u-v=0 和 v=1 围成一个曲边三角形, 求
    (1) 该曲边三角形所围曲面域的面积;
    (2) 该曲边三角形的三个内角:
   (3) 该曲边三角形的三条曲边的长度,
17. E(u, v) = \cos^2 u, F(u, v) = 0, G(u, v) = \sin^2 v,
u + v = 0与u - v = 0相交于点A = (0,0)处, u - v = 0与v = 1相交于点B = (1,1)处,
u+v=0与v=1相交于点C=(-1,1)处......
(1) 这三条曲线在参数平面中所围的区域D可用不等式表示为\begin{cases} -v \le u \le v \\ 0 \le v \le 1 \end{cases}
所求曲面域的面积为
\iint\limits_{D} \sqrt{EG - F^2} \, du \, dv = \iint\limits_{D} \sqrt{\cos^2 u \sin^2 v} \, du \, dv = \iint\limits_{D} \cos u \sin v \, du \, dv \quad \dots \quad (1 \, \%)
= \int_0^1 \sin v \, dv \int_0^{\infty} \cos u \, du = 2 \int_0^1 \sin^2 v \, dv = \int_0^1 (1 - \cos 2v) \, dv = 1 - \frac{1}{2} \sin 2. \dots (1 \, \%)
(2) 在点A(0,0)处, E(0,0)=1, F(0,0)=0, G(0,0)=0,
由u-v=0得到沿着有向孫AB的切方向为(du:dv) = (1:1).
由u+v=0得到沿着有向弧AC的切方向为(\delta u:\delta v) = (-1:1), .....(1分)
               \frac{E \operatorname{d} u \delta u + F(\operatorname{d} u \delta v + \operatorname{d} v \delta u) + G \operatorname{d} v \delta v}{\sqrt{E(\operatorname{d} u)^2 + 2F \operatorname{d} u \operatorname{d} v + G(\operatorname{d} v)^2} \sqrt{E(\delta u)^2 + 2F \delta u \delta v + G(\delta v)^2}} \bigg|_{(0,0)}
 在点B(1,1)处, E(1,1) = \cos^2 1, F(1,1) = 0, G(1,1) = \sin^2 1.
由u-v=0得到沿着有向弧BA的切方向为(du:dv) = (-1: -1),
E du \delta u + F(du \delta v + dv \delta u) + G dv \delta v
               \sqrt{E(\mathrm{d}u)^2 + 2F}\,\mathrm{d}u\,\mathrm{d}v + G(\mathrm{d}v)^2\,\sqrt{E(\delta u)^2 + 2F}\,\delta u\,\delta v + G(\delta v)^2
                          \cos^2 1 \times (-1) \times (-1)
= \arccos \frac{\cos^2 1 \times (-1) \times (-1)}{\sqrt{\cos^2 1 \times (-1)^2 + \sin^2 1 \times (-1)^2} \sqrt{\cos^2 1 \times (-1)^2}} = 1; \dots (1\%)
在点C(-1,1)处, E(-1,1) = \cos^2 1, F(-1,1) = 0, G(-1,1) = \sin^2 1,
由u+v=0得到沿着有向弧CA的切方向为(du:dv) = (1: -1),
\frac{E \operatorname{d} u \, \delta u + F(\operatorname{d} u \, \delta v + \operatorname{d} v \, \delta u) + G \operatorname{d} v \, \delta v}{\sqrt{E(\operatorname{d} u)^2 + 2F \operatorname{d} u \, \operatorname{d} v + G(\operatorname{d} v)^2} \sqrt{E(\delta u)^2 + 2F \operatorname{d} u \, \delta v + G(\delta v)^2}} \left|_{(-1,1)} \dots (1 \%)\right|
           \frac{\cos^2 1 \times 1 \times 1}{\sqrt{\cos^2 1 \times 1^2 + \sin^2 1 \times (-1)^2} \sqrt{\cos^2 1 \times 1^2}} = 1. \qquad (1\%)
(3) 在曲边AB上, u-v=0, v=u, dv=du, u \in [0,1], ......(1分)
(ds)^2 = \cos^2 u (du)^2 + \sin^2 u (du)^2 = (du)^2, \dot{m} \dot{u} \xi \xi \beta \int_0^1 \sqrt{(du)^2} = \int_0^1 du = 1; \dots (2\beta)
在曲边BC上, v = 1, dv = 0, u \in [-1, 1], ......(1分)
(ds)^2 = \cos^2 u (du)^2, 曲边长度为\int_{-1}^1 \sqrt{\cos^2 u (du)^2} = 2 \sin 1; .......................(2分)
在曲边CA上, u+v=0, v=-u, dv=-du, u\in[-1,0], ......(1分)
(ds)^2 = \cos^2 u (du)^2 + \sin^2 (-u)(-du)^2 = (du)^2, 曲边长度为\int_{-1}^0 \sqrt{(du)^2} = 1.....(2分)
```

(2.2.1) 已知曲面的第一基本形式为 $I = \cos^2 u du^2 + \sin^2 v dv^2$, 它上面的三条曲面由

(2.2.2)改写 $\tilde{r}(u,v) = (u\cos v, u\sin v, u+v)$ 的参数方程,使得它的曲纹坐标网成为正交网.

 $\vec{r}_{u} = (\cos v, \sin v, 1), \quad \vec{r}_{v} = (-u \sin v, u \cos v, 1).$

$$E = \vec{r}_u^2 = 2$$
, $F = \vec{r}_u \cdot \vec{r}_v = 1$, $G = \vec{r}_v^2 = u^2 + 1$.

方法一 $I = 2 du^2 + 2 du dv + (u^2 + 1) dv^2 = 2(du + \frac{1}{2} dv)^2 + (u^2 + \frac{1}{2}) dv^2$.

取新参数x, y使得 $dx = du + \frac{1}{2}dv$, dy = dv,

这只需取 $x=u+\frac{1}{2}v,y=v$,即 $u=x-\frac{1}{2}y,v=y$ 即可.

 $0 I = 2 dx^2 + [(x - \frac{1}{2}y)^2 + \frac{1}{2}] dy^2,$

得到的新参数方程为产(u, v) = ア・(x, y) = $((x - \frac{1}{2}y)\cos y, (x - \frac{1}{2}y)\sin y, x + \frac{1}{2}y)$,

其曲纹坐标网为正交网.

正文的充要条件为E du $\delta v + F$ (du $\delta v + \delta u$ dv) + G dv δv ,

 $\mathbb{P}EBD - F(AD + BC) + GAC = 0.$

 $\mathbb{P}^2 2BD - AD - BC + (u^2 + 1)AC = 0.$

得到两族正交曲线为 dv = 0和 $2\delta u + \delta v = 0$.

取新参数x, y使得 dx = 2 du + dv, dy = dv,

这只需取x = 2u + v, y = v,即 $u = \frac{1}{2}(x - y), v = y$ 即可.

得到的新参数方程为产(u, v) = $\stackrel{*}{\digamma}$ *(x, y) = $(\frac{1}{2}(x-y)\cos y, \frac{1}{2}(x-y)\sin y, \frac{1}{2}(x+y))$,

其曲纹坐标网为正交网.

部分其他结果 $\begin{cases} u = y - x \\ v = 2x \end{cases}, \quad \begin{cases} u = x + y \\ v = -2y \end{cases}, \quad \begin{cases} u = 2x + y \\ v = -2y \end{cases}, \quad \cdots$

(2.2.3)请在球面 $\vec{S}(\varphi,\theta) = (\cos\varphi\cos\theta,\cos\varphi\sin\theta,\sin\varphi)$ 与圆柱面 $\vec{C}(u,v) = (\cos u,\sin u,v)$ 之间设计一个保角变换.

 $\mathbf{R} \vec{S}_{\varphi} = (-\sin\varphi\cos\theta, -\sin\varphi\sin\theta, \cos\varphi), \qquad \vec{S}_{\theta} = (-\cos\varphi\sin\theta, \cos\varphi\cos\theta, 0).$

$$E_{\vec{S}} = \vec{S}_{\varphi}^{2} = 1, \qquad F_{\vec{S}} = \vec{S}_{\varphi} \vec{S}_{\theta} = 0, \qquad G_{\vec{S}} = \vec{S}_{\theta}^{2} = \cos^{2} \varphi,$$

$$I_{\vec{s}} = E_{\vec{s}} d\varphi^2 + 2F_{\vec{s}} d\varphi d\theta + G_{\vec{s}} d\theta^2 = d\varphi^2 + \cos^2 \varphi d\theta^2. \quad (3\%)$$

$$\vec{C}_u = (-\sin u, \cos u, 0), \qquad \vec{C}_v = (0, 0, 1).$$

$$E_{\vec{C}} = \vec{C}_u^2 = 1, \qquad F_{\vec{C}} = \vec{C}_u \vec{C}_v = 0, \qquad G_{\vec{C}} = \vec{C}_v^2 = 1,$$

$$I_{\vec{c}} = E_{\vec{c}} du^2 + 2F_{\vec{c}} du dv + G_{\vec{c}} dv^2 = du^2 + dv^2. \quad (3\%)$$

要使 $u = u(\varphi, \theta), v = v(\varphi, \theta)$ 成为球面 \vec{S} 和圆柱面 \vec{C} 之间的一个保角变换,只需要第一

基本形式成比例, 即
$$\frac{du^2}{dv^2} = \frac{d\varphi^2}{\cos^2\varphi d\theta^2}$$
. 这只需要 $\frac{du}{\sec\varphi d\varphi} = \frac{dv}{d\theta} = 1$ 即可.

面C之间的一个保角变换. (4分)

(2.3.2)求 C^3 类曲线 $\vec{r}(u)$ 的切线面 $\vec{R}(u,v) = \vec{r}(u) + v\vec{r}'(u)$ 上的曲线u + v = c 的法曲率.

解
$$\vec{R}_u(u,v) = \vec{r}'(u) + v\vec{r}''(u),$$
 $\vec{R}_v(u,v) = \vec{r}'(u), \dots (1分)$

$$E(u,v) = \vec{R}_u^2(u,v) = \vec{r}'^2(u) + 2v\vec{r}'(u) \cdot \vec{r}''(u) + v^2\vec{r}''^2(u),$$

$$F(u,v) = \vec{R}_u(u,v) \cdot \vec{R}_v(u,v) = \vec{r}'^2(u) + v\vec{r}'(u) \cdot \vec{r}''(u), \ G(u,v) = \vec{R}_v^2(u,v) = \vec{r}'^2(u). \ \dots \ (2\%)$$

$$\vec{n}(u,v) = \frac{\vec{R}_u(u,v) \times \vec{R}_v(u,v)}{|\vec{R}_u(u,v) \times \vec{R}_v(u,v)|} = \frac{v\vec{r}''(u) \times \vec{r}'(u)}{|v||\vec{r}''(u) \times \vec{r}'(u)|},$$

$$\vec{R}_{uu}(u,v) = \vec{r}''(u) + v\vec{r}'''(u), \quad \vec{R}_{uv}(u,v) = \vec{r}''(u), \quad \vec{R}_{vv}(u,v) = \vec{0}. \quad \dots \quad (2\%)$$

$$L(u,v) = \vec{n}(u,v) \cdot \vec{r}_{uu}(u,v) = -\frac{|v|(\vec{r}'(u),\vec{r}''(u),\vec{r}'''(u))}{|\vec{r}'(u) \times \vec{r}''(u)|},$$

$$M(u, v) = \vec{n}(u, v) \cdot \vec{r}_{uv}(u, v) = 0, \quad N(u, v) = \vec{n}(u, v) \cdot \vec{r}_{vv}(u, v) = 0. \dots (2\%)$$

法曲率
$$k_n(u,v) = \frac{L(u,v) du^2 + 2M(u,v) du dv + N(u,v) dv^2}{E(u,v) du^2 + 2F(u,v) du dv + G(u,v) dv^2} = \frac{-(\vec{r}'(u),\vec{r}''(u),\vec{r}'''(u))}{|v|\vec{r}''^2(u)|\vec{r}'(u) \times \vec{r}''(u)|}.$$
 (2分)

(2.3.3)求曲面 $r(u,v) = \{u,v,u^2+v^3\}$ 上的抛物点,椭圆点和双曲点的集合.

$$\mathbf{\vec{R}} \ \vec{r}_u = \{1, 0, 2u\}, \quad \vec{r}_v = \{0, 1, 3v^2\}, \quad \vec{r}_u \times \vec{r}_v = \{-2u, -3v^2, 1\}, \quad \vec{n} = \frac{\{-2u, -3v^2, 1\}}{\sqrt{4u^2 + 9v^4 + 1}}.$$

 $\vec{r}_{uu} = \{0,0,2\}, \quad \vec{r}_{uv} = \{0,0,0\}, \quad \vec{r}_{vv} = \{0,0,6v\}.$

$$L = \vec{r}_{uu} \cdot \vec{n} = \frac{2}{\sqrt{4u^2 + 9v^4 + 1}}, \quad M = \vec{r}_{uv} \cdot \vec{n} = 0, \quad N = \vec{r}_{vv} \cdot \vec{n} = \frac{6v}{\sqrt{4u^2 + 9v^4 + 1}}.$$

$$LN - M^2 = \frac{12v}{4u^2 + 9v^4 + 1}.$$

抛物点的集合为 $\{(u,v) \mid LN - M^2 = 0\} = \{(u,v) \mid v = 0\};$

椭圆点的集合为 $\{(u,v) \mid LN-M^2>0\} = \{(u,v) \mid v>0\};$

双曲点的集合为 $\{(u,v) \mid LN - M^2 < 0\} = \{(u,v) \mid v < 0\}.$

(2.3.8)如果曲面S上的渐近曲线网的夹角是常数,则曲面S的高斯曲率K(u,v)和平均曲率H(u,v)的平方成比例.

证 设曲面的方程为 $\vec{r} = \vec{r}(u, v)$, 在点(u, v)处的两个主曲率为 $k_1(u, v)$ 和 $k_2(u, v)$,

且该点处的一个渐近方向与主曲率 $k_1(u,v)$ 所在切方向的夹角为 $\theta(u,v)$.

则在该点处,两个渐近方向之间的夹角为 $2\theta(u,v)$.

由题设条件知,两个渐近方向之间的夹角是常数,因此 $\theta(u,v)=\theta$ 为常数.

由欧拉公式知 $k_1 \cos^2 \theta + k_2 \sin^2 \theta = 0$.

因此 $k_1(u,v) = ck_2(u,v)$, 其中c为常数.

$$\frac{K(u,v)}{H^2(u,v)} = \frac{k_1(u,v)k_2(u,v)}{(\frac{k_1(u,v)+k_2(u,v)}{2})^2} = \frac{ck_2^2(u,v)}{[(c+1)k_2(u,v)/2]^2} = \frac{4c}{(c+1)^2} 为常数.$$
即 $K(u,v)$ 与 $H^2(u,v)$ 成比例.

(2.4.1)判断下列曲面是不是可展曲面,并给出理由.

(1)
$$\vec{r}(u, v) = \{u + v, u - v, 2uv\};$$
 (2) $xy = (z - 1)^2$

解 (1)方法一: $\vec{r}(u,v) = \{u+v, u-v, 2uv\} = \{u, u, 0\} + v\{1, -1, 2u\} \triangleq \vec{a} + v\vec{b}$.

因为 $(\vec{a}', \vec{b}, \vec{b}') = -4 \neq 0$, 所以该曲面不是可展曲面.

方法二:
$$\vec{r}_u(u,v) = \{1,1,2v\}, \vec{r}_v(u,v) = \{1,-1,2u\}, \cdots$$

$$LN - M^2 = -\frac{4}{2u^2 + 2v^2 + 1} \neq 0 \Rightarrow K \neq 0$$
. 因此该曲面不是可展曲面.

$$(2)$$
令 $x = u + v$, $y = u - v$, $z = w + 1$, 则可将原曲面方程可化为 $u^2 = v^2 + w^2$,(5分)

另外化为参数方程,得出 $LN - M^2 = 0$ 或 K = 0也可.

(2.4.	2) 求单参数曲面族 $x^2 + (y - \alpha)^2 + (z - 2\alpha)^2 = 1$ 的包络.
解	曲面族为 $x^2 + (y - \alpha)^2 + (z - 2\alpha)^2 = 1$
	式两边关于 α 求导得 $2(y-\alpha)(-1)+2(z-2\alpha)(-2)=0$
由(2	$)得 \alpha = \frac{y + 2z}{5}.$
代入	(1)得到所求包络为 $5x^2 + 4y^2 + z^2 - 4yz - 5 = 0$.

(2.4.3)求双曲抛物面z = xy沿着它与柱面 $x^2 = y$ 的交线的切平面构成的单参数平面族

由(2)得
$$t = \frac{x \pm \sqrt{x^2 + 3y}}{3}$$
, 代入(1)得到所求包络面为

$$2x^3 + 9xy - 27z \pm 2(x^2 + 3y)\sqrt{x^3 + 3y} = 0.$$

$(3.1.1)$ 设 $\varphi = yz dx + dz, \xi = \sin z dx + \cos z dy, \eta = dy + z dz, 计算$
$(1) \varphi \wedge \xi, \ \xi \wedge \eta, \ \eta \wedge \varphi; \ (2) \ d\varphi, \ d\xi, \ d\eta.$
解. (1) $\varphi \wedge \xi = (yz dx + dz) \wedge (\sin z dx + \cos z dy)$
$= -\cos z dy \wedge dz + \sin z dz \wedge dx + yz \cos z dx \wedge dy; \dots \qquad (2\%)$
$\xi \wedge \eta = (\sin z \mathrm{d}x + \cos z \mathrm{d}y) \wedge (\mathrm{d}y + z \mathrm{d}z) = z \cos z \mathrm{d}y \wedge \mathrm{d}z - z \sin z \mathrm{d}z \wedge \mathrm{d}x + \sin z \mathrm{d}x \wedge \mathrm{d}y; \ \dots (2\%)$
$\eta \wedge \varphi = (\mathrm{d}y + z\mathrm{d}z) \wedge (yz\mathrm{d}x + \mathrm{d}z) = \mathrm{d}y \wedge \mathrm{d}z + yz^2\mathrm{d}z \wedge \mathrm{d}x - yz\mathrm{d}x \wedge \mathrm{d}y. \dots \qquad (2\%)$
(2) $d\varphi = d(yz dx + dz) = d(yz) \wedge dx + d(dz) = (z dy + y dz) \wedge dx + 0 = y dz \wedge dx - z dx \wedge dy; (2\%)$
$d\xi = d(\sin z dx + \cos z dy) = d\sin z \wedge dx + d\cos z \wedge dy = \sin z dy \wedge dz + \cos z dz \wedge dx; \dots (2\%)$
$d\eta = d(dy + z dz) = d(dy) + dz \wedge dz = 0. \qquad (2\%)$

(3.1.2)设f和g是两个光滑函数, d为外微分算子, 计算