CSE260 Lab Report

Experiment Name: Applications of Boolean algebra

Submitted by

Name: Shabab Abdullah

ID: 20301005

Section: 09

Date: 11 July, 2021

- 1. Name of the experiment?
- Application of Boolean Algebra.
- 2. Objective:
- i) To investigate the rules of Boolean Algebra.
- ii) To goin experience working with partial circuits.
- iii) To simplify a complex function using Boolean Algebra.
- 3. Required Components and Equipments ?
- i) Proteus 8º Professional.
- 19) NAND
- (1) LOGIC STATE (BIG)
- 9v) LOGIC PROBE
- y) Ground
- vi) LED- Green

4. Experimental Setup?

P.T.O

5. Result: (Truth table:)

A	B	AB	A.AB	7.AB	B. AB	B. AB	(A+AB). (B. AB)	
0	0	1	0	1	0	1	O	O
0	1	ı	0	1	1	0	1	1
1	0	1	1	0	0	1	1	1
1	1	0	0	1	0	1	0	0

D'iscussions;

Here

$$Y = \overline{(\overline{A}.\overline{AB})}.(\overline{B}.\overline{AB})$$

$$= \left(\overline{A} + \overline{B}\right) \left(A + B\right)$$

Upon further examination, we can see that circuit function is equal to a single gate, which is referred to as the X-OR gate once it has been simplified.