Первообразные корни

- **1.** Докажите, что 2 первообразный корень по модулю **a)** 101; **б)** 3^n $(n \in \mathbb{N})$.
- **2.** Число p простое. Для произвольного $d \in \mathbb{N}$ положим $f(d) = |\{x \in \mathbb{Z}_p^* \colon \operatorname{ord}_p(x) = d\}|$. Докажите, что
- а) $f(d) = \varphi(d)$, если $f(d) \neq 0$;
- b) $\sum_{d|(p-1)} f(d) = \sum_{d|(p-1)} \varphi(d) = p-1;$
- \mathbf{c}) f(d)=arphi(d) для любого делителя d числа p-1.
- 3. Пусть x первообразный корень по простому модулю p. Докажите, что найдётся такое целое число y, что x+yp первообразный корень по модулю p^2 .
- **4.** Пусть x первообразный корень по модулю p^2 , где p нечётное простое число. Докажите, что x первообразный корень по модулю p^k , $k \in \mathbb{N}$.
- **5.** Пусть x первообразный корень по модулю p^k , где p нечётное простое число и $k \in \mathbb{N}$. Докажите, что хотя бы одно из чисел x или $x + p^k$ является первообразным корнем по модулю $2p^k$.
- 6. Докажите, что
- а) $2^k \mid x^{2^{k-2}} 1$ для любых нечётного x и целого $k \geqslant 3$;
- **b**) если n отлично от p^k , $2p^k$ (p простое, $k \in \mathbb{N}$), то n представимо в виде произведения n=ab, где HOД(a,b)=1 и $\varphi(a)$, $\varphi(b)$ чётные числа;
- **c**) существует первообразный корень по модулю n, если и только если $n=1,\ 2,\ 4,\ p^k,\ 2p^k$ (p нечётное простое, $k\in\mathbb{N}$).
- 7. Для простого числа p найдите все такие $k \in \mathbb{N}$, что сумма $1^k + 2^k + \ldots + (p-1)^k$ делится на p.