IE1207 Analog elektronik Studentövning 4

Lösningarna skall skrivas för hand på A4-papper. Alla lösningsblad skall vara märkta med ditt namn i övre högra hörnet. Dina lösningar skall finnas inlämnade i Canvas innan övningen börjar.

Uppgift 4.1

I kopplingen ovan har vi matningsspänning ± 5 V och en strömgenerator som ger likströmmen $I_{DC} = 10$ mA. Belastningsresistansen $R_L = 150$ Ω .

- a Vilken ungefärlig likspänningsnivå behövs på ingången för att likspänningsnivån på utgången skall bli 0 volt? Hur stor likström går det genom R_L då? Hur stor likström går det genom transistorn då?
- b Antag att vi har likspänningsnivå enligt a) och överlagrar en inspänning

 $u_{in} = 1 \cdot \sin(2\pi 1000t) \text{ V}$ (sinus, 1000 Hz, 1 V toppvärde) kring den likspänningsnivån.

Rita i graderat tidsdiagram totalspänningarna u_{IN} och u_{UT} (DC + AC).

Rita i graderat tidsdiagram totalströmmarna i_{UT} och i_C (DC + AC).

Uppgift 4.2

Givet är en strömspegel enligt figur. Strömgeneratorn i uppgift 4.1 kan tänkas realiseras på detta sätt.

- a Dimensionera R_I och R_E så att $I_I = 1$ mA och I = 10 mA. Antag att $U_{BE} \approx 0.7$ V och att spänningsfallet över R_E kan försummas när R_I dimensioneras. Transistorerna kan antas ha hög strömförstärkning.
- b Beräkna maximalt värde på R_L då T_2 fortfarande fungerar som strömgenerator om $U_{CEmin} = 0,2$ V kan antas för transistor T_2 .

© Bengt Molin

Uppgift 4.3

Transistorerna i differentialsteget ovan kan anses vara likadana transistorer med ett par hundra gångers strömförstärkning.

- a Antag att vi önskar en DC-nivå +3 V på utgången när inspänningarna u_{IN1} och u_{IN2} är noll. Dimensionera R_C om strömgeneratorn ger strömmen I_{DC} = 1,0 mA.
- b Beräkna småsignalförstärkningen $A_{vDM} = \frac{U_{ut}}{U_{in1} U_{in2}}$ om vi har differentiell inspänning och du använder värde på R_C och ström I_{DC} enligt a).
- c Hur stort spänningssving bedömer du att vi maximalt kan ha på utgången av förstärkaren.
- d Mellan vilka värden kan förstärkningen varieras om vilopunkten 3V på utgången inte får ändras?

Uppgift 4.4

I kopplingen ovan används en PNP-transistor. Likspänningsnivån på ingången är +3V och vi önskar en likspänningsnivå +1,4 V på utgången. Vi skall på utgången klara av ett sving på minst ± 1 V kring likspänningsvärdet. Dimensionera R_E och R_C så att viloström $I_C = 1,0$ mA erhålls samtidigt som vi får önskade likspänningsnivåer och klarar svinget.

Vilken spänningsförstärkning för småsignaler erhålls från ingång till utgång i din koppling?

Uppgift 4.5

Nedanstående förstärkare består av tre förstärkarsteg med bipolartransistorerna Q1a/Q1b, Q2 respektive Q3. Likspänningsnivåer finns angivna i schemat.

En ren differentiell signalspänning med låg frekvens ansluts på ingången så att $V(In_2) = -V(In_1)$. Strömförstärkningsfaktorn är 200 för både NPN- och PNP-transistorn. Transistorernas utresistans r_o kan försummas. Övriga approximationer skall motiveras.

- a Beräkna in- och utresistans samt spänningsförstärkning separat för varje steg.
- b Beräkna totala spänningsförstärkningen $\frac{V(Ut)}{V(In_1)-V(In_2)}$.

Uppgift 4.6

I figuren nedan visas en förstärkarkoppling som du inte tidigare stött på med två transistorer.

Betrakta alla kondensatorer som stora.

Bortse från transistorernas utresistans.

Båda transistorerna har strömförstärkning $\beta_{ac} = \beta_{DC} = 200$

Vilopunkterna är inställda med R_1 , R_2 , R_3 och R_E så att båda transistorerna har samma $I_{CQ} = 1$ mA och arbetar i aktiva området.

$$R_C = 2.7 \text{ k}\Omega$$

- a Rita småsignalschema för kopplingen och härled ur detta ett uttryck för småsignalförstärkningen U_{ut}/U_{in} .
- b Beräkna vilken last transistor T1 känner genom att beräkna inresistansen på emittern till transistor T2.
- c Bestäm småsignalförstärkningen från ingång till kollektorn på T1.