Augmented Reality & Video Service Emerging Technologies

Video Streaming & MPEG-DASH

Prof. Jong-Moon Chung

Video Streaming & MPEG-DASH

Streaming Networks and Technologies

- Managed Networks
 - Cable TV and IPTV services
 - Use multicast transport
 - Uses controlled QoS functions
 - QoS: Quality-of-Service

Streaming Networks and Technologies

- Unmanaged Networks
 - Content delivery to the viewer using a unicast connection
 - Delivery from a Server or CDN
 - CDN: Content Delivery Network

Unmanaged Networks

- Streaming Methods
 - Proprietary streaming protocol running on TCP (or UDP)
 - HTTP over TCP (Progressive Download)
- Conventional Streaming vs.
 Adaptive Streaming technology

Streaming Networks and Technologies

Unmanaged Networks

- 1. Conventional Streaming Services
 - Streaming Service Types
 - Microsoft Windows Media
 - Apple QuickTime
 - Adobe Flash
 - Progressive Download
 - HTTP over TCP
 - Video playout can start as soon as the necessary amount of data is retrieved and buffered

Unmanaged Networks

- 1. Conventional Streaming Services
 - Progressive Download
 - Pros
 - Easily supports Freezes and Rebuffering
 - Easily supports Trick mode (e.g., Fast-Forward Seek/Play, Rewind, etc.)
 - Cons
 - Server must have multiple resolution versions of the same video

Streaming Networks and Technologies

Trick Mode example

Unmanaged Networks

2. Adaptive Streaming

Viewer device monitors its
 Replay Buffer & Network conditions
 (e.g., bandwidth, error rate, delay, etc.)
 to choose the most appropriate version
 of the video and uses
 Progressive Downloading

Streaming Networks and Technologies

Unmanaged Networks

2. Adaptive Streaming

- Adaptive Streaming service examples
 - MPEG DASH (Dynamic Adaptive Streaming over HTTP)
 - Microsoft Smooth Streaming
 - Apple HTTP Live Streaming
 - Adobe HTTP Dynamic Streaming

Unmanaged Networks

- 2. Adaptive Streaming
 - HTTP for Adaptive Streaming Benefits
 - HTTP has ubiquitous connectivity (almost all devices support HTTP connections)
 - HTTP is a Pull protocol

Streaming Networks and Technologies

Unmanaged Networks

- 2. Adaptive Streaming
 - Pull Streaming Benefits
 - Easily traverses middleboxes
 (e.g., Firewall, NAT (Network Address
 Translation) device, etc.)
 - Pull streaming supportive servers keep only minimum device state information
 - Much more scalable compared to Push streaming servers

Media Streaming

Push based Media Streaming

- Server streams packets to the client until the client stops or interrupts the session
- Server maintains a session state with the client and listens for commands from the client regarding session-state changes

Media Streaming

Push based Media Streaming

- RTSP (Real-time Streaming Protocol)
 - IETF standard RFC 2326
 - SCP (Session Control Protocol) commonly used
- RTP (Real-time Transport Protocol)
 - IETF standard RFC 3550
 - UDP (User Datagram Protocol) commonly used

Media Streaming

Push based Media Streaming

- RTP on UDP lets the Server push packets to the Client
- Server bitrate (bits/s = bps) determining factors
 - Application QoS requirements
 - Client & Server characteristics

Media Streaming

Push based Media Streaming

- Cons
 - Server has too much to do → too burdening
 - Playing device's status is hard to track
 - Many Firewalls will block RTP packets
 - Many Internet service networks have been replaced with CDN which do not support RTP
 - CDN: Content Delivery Network

Pull based Adaptive Media Streaming

- Media Client (e.g., smartphone, PC) sends a HTTP Request to the server to quickly receive (pulling) content packets in Burst Mode
- After the minimum required buffer level is filled at the Media Client, the Media Client will begin to play the media

Adaptive Media Streaming

Pull based Adaptive Media Streaming

- Server transmits at the media encoding bitrate that matches the media consumption rate
- If the client buffer level remains stable then the network resources will be efficiently used
- If network packet loss or transmission delays occur, buffer underflow (emptying) will occur, and playback will be interrupted

Pull based Adaptive Media Streaming

- Server will dynamically switch to a lower bitrate stream to prevent buffer underflow
- To avoid noticeable visual quality degradation, gradual bitrate stream reductions will be used
- If network conditions improve, the server switches to a higher bitrate stream until the media encoding bitrate is recovered

Pull based Adaptive Media Streaming

Fragmented MP4 file format structure

- Audio and video data are in the mdat boxes
- mdat boxes & metadata form a fragment
- Fragments are retrieved in an HTTP GET request

Adaptive Media Streaming

- Pull based Adaptive Media Streaming
- HTTP request message (example)

GET/sample/v_720p.lsm/QualityLevels/1500000/Fragments/video=160577243/HTTP/1.1

- Each fragment is downloaded based on a unique HTTP request-response pair
- HTTP request message header contains two pieces of information
 - Bitrate & Time Offset of the requested fragment

Adaptive Media Streaming Pull based Adaptive Media Streaming Generic client side pull-based adaptive streaming implementation example Client manages Manifest(s) HTTP transport **GET** • TCP connection(s) Request Client Monitors/measures Server Playout buffer · Download times and throughput Response Local resources (CPU, memory, screen, etc.) Client Dropped frames

Client performs adaptation

Adaptive Media Streaming

Pull based Adaptive Media Streaming

A client-side pull-based adaptive streaming implementation

 Client acquires media from fragments of a file over one or more connections according to the playout buffer state and other conditions

Pull based Adaptive Media Streaming

A client-side pull-based adaptive streaming implementation

- At minimum, the server provides standard responses to the HTTP GET request
- Client gets a manifest file that identifies files containing media presentations at alternative bitrates

Adaptive Media Streaming

Pull based Adaptive Media Streaming

A client-side pull-based adaptive streaming implementation

- Client needs a Client-side Manifest or Playlist file to map fragment requests to specific files or to map byte ranges or time offsets to files
- In some adaptive streaming schemes, a similar file on the server translates client requests

❖ Pull based Adaptive Media Streaming

A client-side pull-based adaptive streaming implementation

- Playout buffer management selects fragments from a file at a particular bitrate in response to buffer state and other variables
- Adaptive streaming client keeps a playout buffer of several seconds (between 5 and 30 s)