CSI3660 – System Administration

Prof. Fredericks

Mounting and Compressing

Permissions Revisited

Quick example

Additions to Adding Users

- May be beneficial to create basic directories required for all new users
 - i.e., a skeleton
- Add whatever you wish to /etc/skel and it will appear for all future users!

Outline

- Piping and redirects
- Filesystems and mounting
- File compression

Piping and Redirects

- Pipes
 - Use output of one program as input to another
 - operator
 - E.g.,
 - Is -la /etc | less
 - Is -I | sed "s/[aeio]/u/g"

- Simple redirection
 - Output to file
 - > operator
 - E.g.,
 - locate find > locate_results.txt
 - More detail when we get into scripting

Filesystem and Mounting

- /dev → Structure and types of device files
- Common filesystem types and features
- Mount and unmount filesystems
- Manage media (CD, DVD, USB, Firewire, HDD partitions)

Chapter 8

Filanyctam and Marintina

Hard Drives and SSDs

- PATA (parallel ATA) → legacy
 - Master/slave relationship
 - Primary (hda, hdb), Secondary (hdc, hdd)
 - Each has different device file
- SCSI / SATA (serial ATA) → more current
 - Can include solid-state drives
 - First HDD (sda)
 - Second (sdb)

 - sda could refer to first SATA or first SATA SSD

PATA and SATA cables

Hard [

Common names you will find when shopping for PATA and SATA drives

Transfer Rate

	P	A	T	A	(p	a
--	---	---	---	---	---	---	---

Master/s

Drive Type

- Primary (
- Each has
- SCSI / SAT
 - Can incl
 - First HDD
 - Second
 - **.** . . .
 - sda coul

PATA Drives	
ATA	3.3 to 8.3 MBytes /s
ATA-2, -3, -4	13.3 to 16.6 MBytes/s
ATA-4 (ATA-33)	33.3 MBytes/s
ATA-5	16.6 to 44 MBytes/s
ATA-5 (ATA-33)	33.3 MBytes/s
ATA5 (ATA-66)	66.6 MBytes/s
ATA-6 (ATA-100)	100 MBytes/s
ATA-7 (ATA-133)	133 MBvtes/s

SATA Drives (or also known as Serial ATA)

SATA (SATA 1.5Gb/s) 150 MBytes/s SATA II (SATA 3.0Gb/s) 300 MBytes/s

newmodeus.com

ATA SATA

PATA and SATA cables

http://www.computerhope.com

Back to /dev

- Contains device files
 - Represent system device
 - One file per device
 - How to transfer data to/from device

```
[fredericks@SciLinux6 ~]$ ls -l /dev
total 0
crw-rw---. 1 root video
                           10, 175 Jul 20 14:28 agggart
crw-rw---. 1 root root
                            10, 55 Jul 20 14:28 autofs
                                660 Jul 20 14:28 block
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
                                 80 Jul 20 14:28 bsg
crw-----. 1 root root
                            10, 234 Jul 20 14:28 btrfs-control
                                  3 Jul 20 14:28 cdrom -> sr0
lrwxrwxrwx. 1 root root
                                  3 Jul 20 14:28 cdrw -> sr0
lrwxrwxrwx. 1 root root
                               2600 Aug 12 14:33 char
drwxr-xr-x. 2 root root
crw-----. 1 root root
                             5, 1 Jul 20 14:28 console
lrwxrwxrwx. 1 root root
                                 11 Jul 20 14:28 core -> /proc/kcore
                                 80 Jul 20 14:28 cpu
drwxr-xr-x. 3 root root
crw-rw----. 1 root root
                            10, 61 Jul 20 14:28 cpu dma latency
                            10,
                                 62 Jul 20 14:28 crash
crw-rw---. 1 root root
drwxr-xr-x. 5 root root
                                100 Jul 20 14:28 disk
brw-rw----. 1 root disk
                           253,
                                  0 Jul 20 14:28 dm-0
```

Kernel device controller

Back to /dev

- Three types of devices
 - Character device
 - Transfer data character-by-character
 - Serial/parallel ports, sound cards, terminal, etc.
 - Block device
 - Transfer data in blocks
 - Faster
 - Floppy disks, CD-ROMS, USB, file loopback, etc.
 - Network device
 - Transfer data in packets
 - Network cards / network loopback devices

Device File	Description	Block or Character	
/dev/fd0	First floppy disk on the system	Block	
/dev/fd1	Second floppy disk on the system	Block	
/dev/hda1	First primary partition on the first PATA hard disk drive (primary master)	Block	
/dev/hdb1	First primary partition on the second PATA hard disk drive (primary slave)	Block	
/dev/hdc1	First primary partition on the third PATA hard disk drive (secondary master)	Block	
/dev/hdd1	First primary partition on the fourth PATA hard disk drive (secondary slave)	Block	
/dev/sda1	First primary partition on the first SATA/SCSI hard disk drive	Block	
/dev/sdb1	First primary partition on the second SATA/SCSI hard disk drive	Block	
/dev/loop0	First loopback interface	Block	
/dev/tty1	First local terminal on the system (Ctrl+Alt+F1)	Character	
/dev/tty2	Second local terminal on the system (Ctrl+Alt+F2)	Character	
/dev/ttyS0	First serial port on the system (COM1)	Character	
/dev/ttyS1	Second serial port on the system (COM2)	Character	
/dev/psaux	PS/2 mouse port	Character	
/dev/lp0	First parallel port on the system (LPT1)	Character	
/dev/null	Device file that represents nothing; any data sent to this Character device is discarded		
/dev/st0	First SCSI tape device in the system	Character	
/dev/bus/usb/*	USB device files Character		

/dev Versioning

■ Is -I /dev

Major number Minor number

```
[fredericks@SciLinux6 ~]$ ls -1 /dev
total 0
crw-rw---. 1 root video
                           10, 175 Jul 20 14:28 agpgart
crw-rw---. 1 root root
                           10, 55 Jul 20 14:28 autofs
                               660 Jul 20 14:28 block
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
                                80 Jul 20 14:28 bsg
crw-----. 1 root root
                           10, 234 Jul 20 14:28 btrfs-control
                                 3 Jul 20 14:28 cdrom -> sr0
lrwxrwxrwx. 1 root root.
                                 3 Jul 20 14:28 cdrw -> sr0
lrwxrwxrwx. 1 root root
drwxr-xr-x. 2 root root
                              2600 Aug 12 14:33 char
crw-----. 1 root root
                            5, 1 Jul 20 14:28 console
                                11 Jul 20 14:28 core -> /proc/kcore
lrwxrwxrwx. 1 root root
drwxr-xr-x. 3 root root
                                80 Jul 20 14:28 cpu
crw-rw---. 1 root root
                           10, 61 Jul 20 14:28 cpu dma latency
                           10, 62 Jul 20 14:28 crash
crw-rw---. 1 root root
drwxr-xr-x. 5 root root
                               100 Jul 20 14:28 disk
brw-rw---. 1 root disk
                          253, 0 Jul 20 14:28 dm-0
```

/dev Versioning

- Major number
 - Points to driver in Linux kernel
 - Several devices can share major number if similar type
- Minor number
 - Specific device
 - Minor number differentiates particular device
- Device type (character / block), major number, minor number define unique characteristics of device

Device File

- Device driver
 - Software that operates device
 - Part of monolithic kernel (e.g., Linux)

- Lookup existing devices
 - View content of /proc/devices
 - Major number | Device

```
Character devices:

1 mem
4 /dev/vc/0
4 tty
4 ttyS
5 /dev/tty
5 /dev/console
5 /dev/ptmx
7 vcs
10 misc
13 input
```

- mknod : Re-create corrupted device
 - Requires file type, major number, minor number

Filesystems Revisited

- Organization and management infrastructure for media device
 - HDD, USB, etc.
 - All require a filesystem before it can be used
- Formatting device
 - Create filesystem on device
- Filesystems share three common components:
 - Superblock : filesystem metadata
 - inode table : table of inodes (metadata of files)
 - Data blocks : data referenced by inodes

Filesystem Revisited

- Superblock
 - Filesystem characteristics
 - Size
 - Block size
 - Inode tables (size / count)
 - Disk block map
 - Block usage
 - Etc.

Filesystems Revisited

- inode
 - Each file has entry in inode table
 - Extended info:
 - Filename
 - File size
 - File owner
 - Group
 - Permissions
 - Pointer to disk block that contains data

Filesystems

1 11 3 3 7 3 1 1 13				
File System	Max File Size	Max Partition Size	Journaling	Notes
Fat16	2 GB	2 GB	No	Legacy
Fat32	4 GB	8 TB	No	Legacy
NTFS	2 TB	256 TB	Yes	(For Windows Compatibility) NTFS-3g is installed by default in Ubuntu, allowing Read/Write support
ext2	2 TB	32 TB	No	Legacy
ext3	2 TB	32 TB	Yes (ordered)	Standard linux filesystem for many years
ext4	16 TB	1 EB	Yes	Modern iteration of ext3
reiserFS	8 TB	16 TB	Yes (writeback)	No longer well-maintained.
JFS	4PB	32PB	Yes (ordered)	Created by IBM - Not well maintained.
	8 EB	8 EB	Yes (writeback)	Created by SGI. Best choice for a mix of stability and advanced journaling.
https://help.ubuntu.com/community/LinuxFilesystemsExplained				

Other Common Filesystems

- vfat
 - DOS filesystem (long filename support)
- iso9660
 - Standard CD / DVD / ISO

Journaling vs. Copy-on-Write

- Journaling
 - Write file changes to temporary file (journal) prior to writing to storage / inode table
 - Journal deleted after write success
 - Mhys
- Three common journaling approaches
 - **Data mode**: inode and file data journaled
 - Good at keeping data, bad at performance
 - Writeback mode: inode only written, no control over file data
 - High risk of data loss, but better performance
 - Ordered mode: inode only written, but not removed until file data is written
 - Compromise

Journaling vs. Copy-on-Write

- Copy-on-write
 - Snapshots of data rather than writing to temp file
 - Create new file rather than updating over old file
 - Old data not overwritten
 - Snapshot includes superblock and inode metadata
 - ZFS (Sun)
 - Comparable of Resier4, Btrfs, ext4
 - No GPL license
 - Btrfs (Oracle)
 - Based on Resier4
 - Used as default in openSUSE
 - Offered in RHEL (and therefore, Scientific), but not as default

Which Filesystem(s) am I using?

■ df –T

```
[fredericks@SciLinux6 ~]$ df -T
Filesystem
                   Type
                          1K-blocks
                                       Used Available Use% Mounted on
/dev/mapper/vg scilinux6-lv root
                   ext4 51475068
                                    5937424 42916204 13% /
tmpfs
                   tmpfs
                          961700
                                        252 961448 1% /dev/shm
/dev/sda1
                   ext4 487652
                                      96518
                                               365534 21% /boot
/dev/mapper/vg scilinux6-lv home
                   ext4 46902216 10705764 33807256 25% /home
/home/fredericks/Downloads/SL-6.7-x86 64-DVD.iso
                   iso9660 4241300
                                     4241300
                                                   0 100% /mnt/disk
```

mount

```
[fredericks@SciLinux6 ~]$ mount
/dev/mapper/vg_scilinux6-lv_root on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0")
/dev/sdal on /boot type ext4 (rw)
/dev/mapper/vg_scilinux6-lv_home on /home type ext4 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/home/fredericks/Downloads/SL-6.7-x86_64-DVD.iso on /mnt/disk type iso9660 (rw,loop=/dev/loop0)
```

- Make device accessible to user
 - Adding media to virtual directory

- Make device accessible to user
 - Adding media to virtual directory
- Mount point
 - Directory where device is attached
 - Any existing directory can be used as a mount point!
 - Create empty directory to prevent issues with existing files
- Graphical desktop tends to auto-mount added devices, discs, etc.
 - Console you get to do it by hand! Yay!

Figure 5-1: The directory structure prior to mounting

Figure 5-2: The directory structure after mounting a floppy device

Root Filesystem

- System is mounted to / when it is turned on
 - / contains most OS-specific files
- **mount**: Mount device to mount point
 - No options: lists currently mounted devices
 - (1) Device filename
 - (2) Mount point in virtual directory
 - (3) Type of filesystem
 - (4) Access status

■ **umount**: Unmount device from mount point

mount

- (1) Device filename
- (2) Mount point in virtual directory
- (3) Type of filesystem
- (4) Access status

```
[fredericks@SciLinux6 ~]$ mount
/dev/mapper/vg_scilinux6-lv_root on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0")
/dev/sdal on /boot type ext4 (rw)
/dev/mapper/vg_scilinux6-lv_home on /home type ext4 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/home/fredericks/Downloads/SL-6.7-x86_64-DVD.iso on /mnt/disk type iso9660 (rw,loop=/dev/loop0)
```

What HDDs exist?

■ **df** –h

Mount/Unmount Example

I downloaded an ISO file (Sci Linux 7)

Mounting:

```
sudo mkdir /mnt/scilinux7
sudo mount -t iso9660 -o loop ~/sci-linux-7.iso
/mnt/scilinux7
```

Unmounting:

sudo umount /mnt/scilinux7

Overview Review

```
df -- disk space usagedu -- estimate file space usagemount -- mount a filesystem (and report mount points)
```

```
umask -- _ _ _
```

- 0755 None of the special bits set
- 1755 Sticky bit set
- 2755 SGID bit set
- 4755 SUID bit set

Creating Filesystems

- What filesystems can be created using our system
 - Is /sbin/mk*
- **mkfs**: make filesystem
 - Format disk device with specified system
 - -t: filesystem type
 - Default is ext2
 - mkfs -t ext3 /dev/sda8

Filesystem Creation Commands

Command	Filesystem It Creates
mkfs	filesystems of most types
mkdosfs mkfs.msdos mkfs.vfat	FAT
mkfs.ext2 mke2fs mke2fs -t ext2	ext2
mkfs.ext3 mke2fs-t ext3	ext3
mkfs.ext4 mke2fs-text4	ext4
mkisofs	ISO
mkreiserfs mkfs.reiserfs	REISERFS
mkfs.xfs	XFS
mkntfs mkfs.ntfs	NTFS

Filesystem Creation Commands

```
Filesystem It Creates
       Command
                                    filesystems of most types
       mkfs
[fredericks@SciLinux6 ~]$ ls -la /sbin/mk*
-rwxr-xr-x. 1 root root 30592 Dec 10 2011 /sbin/mkdosfs
-rwxr-xr-x. 1 root root 121906 Jul 22 14:32 /sbin/mkdumprd
rwxr-xr-x. 5 root root 68960 Jul 22 11:33 /sbin/mke2fs
rwxr-xr-x. 1 root root 10336 Oct 16 2014 /sbin/mkfs
                         26208 Oct 16 2014 /sbin/mkfs.cramfs
-rwxr-xr-x. 1 root root
                         68960 Jul 22 11:33 /sbin/mkfs.ext2
rwxr-xr-x. 5 root root
                         68960 Jul 22 11:33 /sbin/mkfs.ext3
-rwxr-xr-x. 5 root root
                         68960 Jul 22 11:33 /sbin/mkfs.ext4
-rwxr-xr-x. 5 root root
rwxr-xr-x. 5 root root
                         68960 Jul 22 11:33 /sbin/mkfs.ext4dev
                               Jun 16 2014 /sbin/mkfs.msdos -> mkdosfs
lrwxrwxrwx. 1 root root
                             7 Jun 16 2014 /sbin/mkfs.vfat -> mkdosfs
lrwxrwxrwx. 1 root root
-rwxr-xr-x. 1 root root 295808 Oct 14 2014 /sbin/mkfs.xfs
-rwxr-xr-x. 1 root root 22536 Aug 18 10:31 /sbin/mkhomedir helper
-rwxr-xr-x. 1 root root 3412 Jul 22 11:31 /sbin/mkinitrd
rwxr-xr-x. 1 root root 22648 Oct 16 2014 /sbin/mkswap
       HKIS.XIS
                                    NTFS
       mkntfs
       mkfs.ntfs
```

Which Device to Format?

- ...knowing the approximate size of device helps
- Lookup with (sudo) fdisk –/
 - Lists all devices
 - sudo fdisk –l <device>
 - Lists particular device

```
[fredericks@SciLinux6 ~]$ sudo fdisk -1
              Disk /dev/sda: 107.4 GB, 107374182400 bytes
              255 heads, 63 sectors/track, 13054 cylinders
              Units = cylinders of 16065 * 512 = 8225280 bytes
              Sector size (logical/physical): 512 bytes / 512 bytes
              I/O size (minimum/optimal): 512 bytes / 512 bytes
              Disk identifier: 0x00037730
Device Boot St.

NOW/dev/sda1 *

Partition 1 does not end
/dev/sda2

LOOKUP
                                  Start
                                                                   Id System
                                                          Blocks
                                                End
                                                                   83 Linux
                                                 64
                                                          512000
              Partition 1 does not end on cylinder boundary.
                          64 13055 104344576
                                                                   8e Linux LVM
              Disk /dev/mapper/vg scilinux6-lv root: 53.7 GB, 53687091200 bytes
              255 heads, 63 sectors/track, 6527 cylinders
              Units = cylinders of 16065 * 512 = 8225280 bytes
              Sector size (logical/physical): 512 bytes / 512 bytes
              I/O size (minimum/optimal): 512 bytes / 512 bytes
              Disk identifier: 0x00000000
              Disk /dev/mapper/vg scilinux6-lv swap: 4227 MB, 4227858432 bytes
              255 heads, 63 sectors/track, 514 cylinders
              Jnits = cylinders of 16065 * 512 = 8225280 bytes
              Sector size (logical/physical): 512 bytes / 512 bytes
              I/O size (minimum/optimal): 512 bytes / 512 bytes
              Disk identifier: 0x00000000
              Disk /dev/mapper/vg scilinux6-lv home: 48.9 GB, 48930750464 bytes
              255 heads, 63 sectors/track, 5948 cylinders
              Units = cylinders of 16065 * 512 = 8225280 bytes
              Sector size (logical/physical): 512 bytes / 512 bytes
              I/O size (minimum/optimal): 512 bytes / 512 bytes
              Disk identifier: 0x00000000
```

Working with Filesystems

- /etc/fstab
 - Mounting is temporary!
 - Mount devices when system boots
 - Add filesystem entry to file
 - Also checked if user doesn't specify appropriate options when mounting a filesystem

Mount Commands

Command	Description
mount	Displays mounted filesystems
mount -t <type> <device> <mount point=""></mount></device></type>	Mounts a <device> of a certain <type> to a <mount point=""> directory</mount></type></device>
fuser -u <directory></directory>	Displays the users using a particular directory
umount <mount point=""> or umount <device></device></mount>	Unmounts a <device> from its <mount point=""> directory</mount></device>

CD and DVD

- Just another type of media
- Mounted and unmounted as normal (mount / unmount)
 - Device file can be different → dependent on drive technology
 - Common is iso9660 for CD/DVD
 - Read-only → mount with -r option
 - Can't be ejected until unmounted
 - mkdir /media/cdrom
 - mount -t iso9660 /dev/scd0 /media/cdrom
- GUI desktop
 - Automounted
 - Named by CD/DVD label
 - Shortcut created on user's desktop

/mnt vs. /media

- Why do we have different mount points?
 - /media → intended for removable devices
 - E.g., USB key, ISO
 - /mnt → typically for persistent manual mount
 - E.g., internal HDD
- Nothing in the OS to prevent you from using them differently!
 - You can technically mount a device from *any* location
 - Though, not all graphical desktops show devices mounted in /mnt

ISO

- Image (archive) file
 - Typically a backup of a CD/DVD, but can be used as an archive of other files
- Mounted with iso9660 as loopback device
 - \blacksquare SU -
 - mkdir –p /media/disk
 - mount –o loop CIT348.iso /media/disk
 - (Double click on ISO in GUI will also auto-mount file)
- mkisofs : create ISO from directory
 - Args: name of ISO, directory to create from

Mounting Reference

- mount -t type device directory
 - mount -t vfat /dev/sdb1 /mnt/disk1
- ISO:
 - SU -
 - mkdir -p /mnt/disk
 - mount -o loop linux.iso /media/linux-iso
 - loop → makes file accessible as block device (accessible by file system)
- If mount point is not available...need to create virtual directory!
 - mkdir/media/cdrom
 - mount -t iso9660 /dev/scd0 /media/cdrom
- Normal user may not have permission to mount!
 - Ensure user is either part of appropriate group, or sudo your way through it

Standard Hard Disk Partitioning

- Partition
 - Division of an HDD
 - Can have its own filesystem
- Linux requires at least two partitions
 - Root (Linux OS / C: drive)
 - Swap (virtual memory)
- It is good practice to use more than two partitions
 - Segregate different types of data
 - Allow for use of multiple filesystem types on one HDD
 - Reduce chance that filesystem corruption will render a system unusable
 - Speed up access to stored data
 - E.g., home directory

Standard Hard Disk Partitioning

Partition	PATA Device Name (Assuming /dev/hda)	SATA/SCSI Device Name (Assuming /dev/sda)
1st primary partition	/dev/hda1	/dev/sda1
2nd primary partition	/dev/hda2	/dev/sda2
3rd primary partition	/dev/hda3	/dev/sda3
4th primary partition	/dev/hda4	/dev/sda4
1st logical drive in the extended partition	/dev/hda5	/dev/sda5
2nd logical drive in the extended partition	/dev/hda6	/dev/sda6
3rd logical drive in the extended partition	/dev/hda7	/dev/sda7
4th logical drive in the extended partition	/dev/hda8	/dev/sda8
5th logical drive in the extended partition	/dev/hda9	/dev/sda9
nth logical drive in the extended partition	/dev/hda n	/dev/sdan

Table 5-5: Common hard disk partition device files for /dev/hda and /dev/sda

Partition Types

- Primary
 - Boot an operating system

- Extended
 - Contain logical drives

- Logical drive
 - Files unrelated to operating system
 - Music, photos, games, etc.

Standard Hard Disk Partitioning

Figure 5-5: A sample Linux partitioning strategy

Standard Hard Disk Partitioning

Figure 5-6: A sample dual-boot Linux partitioning strategy

Red Hat Recommended

Table 16.2. Recommended System Swap Space

Amount of RAM in the system	Recommended swap space	Recommended swap space if allowing for hibernation
≤ 2GB	2 times the amount of RAM	3 times the amount of RAM
> 2GB – 8GB	Equal to the amount of RAM	2 times the amount of RAM
> 8GB – 64GB	At least 4 GB	1.5 times the amount of RAM
> 64GB	At least 4 GB	Hibernation not recommended

Working with Standard Hard Disk Partitions

- **fdisk** command: Create partitions
- Specify hard disk partition as an argument
 - Variety of options for fdisk prompt to achieve different tasks
 - Reboot computer after using fdisk to ensure proper reloading into memory
 - E.g., fdisk /dev/sda
 - Create partition using all space
 - After process is completed, ensure you issue (w)rite command to finalize

Working with Standard Hard Disk Partitions

- Edit /etc/fstab file to allow system to mount new filesystems automatically at boot time
- Swap partitions do not contain a filesystem
 - You must still prepare and activate them for Linux
 - Why additional swap over the standard installed swap?
- **mkswap** command: Prepare the swap partition
- **swapon** command: Activate the swap partition
- swapoff command: Deactivate the swap partition
- Edit /etc/fstab file to ensure that new swap partition is activated as virtual memory

Setting up a Filesystem (Process Reference)

- (1) Prepare device (partition)
 - Use fdisk command
- (2) Create filesystem inside partition (format)
 - Use mkfs command
 - fsck to check for errors
- (3) Mount new file system (mount)
 - Use **mount** command to temporarily mount filesystem
 - Edit /etc/fstab to mount upon startup
- If creating swap partition (additional swap to the standard install)
 - (1) fdisk
 - (2) mkswap
 - **■** (3) **swapon**

In-class work

- Get together with your team and discuss what each person's responsibility will be
 - You can't have one person be the "documentation" person --everybody must do equivalent technical work

- On that note, consider (and write down) what technologies you think you'd need to build your project
 - Labs will include a LAMP stack, firewall work, scripts for managing users, etc.

 Lastly, what are the major milestones you'll need to hit to achieve your project goals?

- Logical Volume Manager (LVM)
 - Easy way to adjust disk space
 - Used to create volumes
 - Volumes can contain filesystems and can be mounted to directories
 - More flexible than standard partitions allows use of free space across multiple hard disks
 - Has error correction abilities
 - Components
 - Physical volumes (PVs)
 - Volume group (VG)
 - Logical volumes (LVs)

Figure 5-8: A sample LVM configuration

- LVM consists of different components:
 - Physical volumes (PVs)
 - Unused partitions on hard disks that the LVM can use to store information
 - Volume groups (VGs)
 - Contain one or more PVs
 - Logical volumes (LVs)
 - Usable volumes that are created by the LVM from the available storage space within a VG
- Linux treats an LVM as any other partition

LVM

Striping

- LVM created across multiple
 HDDs
- LVM striping!= RAID striping
- No parity
- Improves disk performance, but can increase chance of data loss
 - If one hard drive goes down, multiple LVMs may be corrupt

Mirroring

- Copy of LVM updated in real time
- Slow performance (large file writes)
- But, hey, fault tolerance!

pvcreate

Create PVs

pvdisplay

Display detailed information about each PV

vgcreate

- Create a VG that uses the space in PVs
- Arguments are name of the VG and PVs to be used
- Physical Extent (PE) size: block size for saving data in a VG
 - Should be set when creating a VG
 - Can use vgcreate -s to set the PE

vgdisplay

Display detailed information about each VG

Ivcreate

Create LVs from available space in a VG

Ivdisplay

- Display information about each LV
- You work with mount points of LVs as you would work with any other hard disk partition device file
 - Edit /etc/fstab to ensure that LVs are automatically mounted at system startup

- pvscan, vgscan, and lvscan
 - Display information about PVs, VGs, and LVs, respectively

vgextend

Used to add a new PV to an existing VG

Ivextend

- Used to increase the size of an LV
 - E.g., to use space extended onto an existing VG

LVM or Manual Partitioning?

- Manual partitioning
 - Direct control over memory space
 - Simple for single-disk systems
 - Custom memory layouts

LVM

- Layer of abstraction between OS and storage devices
 - Combine multiple drives into single space (logical volume)
- Easy modification of storage space
 - ext4 can be modified without need for LVM
- Snapshots
- "Another thing that can go wrong"

Storage Devices

- Removable storage devices are commonly used today
 - Typically connect to your PC via USB or Firewire
 - Examples include:
 - Flash memory drives
 - External hard drives
 - Digital cameras
 - Media players
 - Smartphones
 - Tablets

Working with USB and Firewire-Based Storage Devices

- Most removable storage devices emulate SCSI protocol in the firmware of the device
- Devices are automatically mounted to a new directory under the /media directory named for the label on the device
 - When running GUI
- You must mount in command line!
 - sudo mkdir /media/usb
 - sudo mount /dev/sdb1 /media/usb

Monitoring Filesystems

- Check mounted filesystems periodically for:
 - Errors
 - Disk space usage
 - Inode usage
- Minimizes problems that can occur as a result of a damaged filesystem
 - Reduces the likelihood that a file cannot be saved due to insufficient disk space

Disk Usage

- More filesystems == less hard disk space
 - May result in errors when filesystems fill up with data
 - Periodically remove obsolete files such as old log files to make room for new ones

- df (disk filesystem) command
 - Monitor free space used by mounted filesystems
 - -h option: to view a more user friendly format
 - To get information about different filesystems, you must mount them prior to using df command

Disk Usage

- **du** (directory usage)
 - View size of a directory and contents in Kilobytes
 - -s option: Summarizes output
 - -h option: More user friendly format

Checking Filesystems for Errors

- Filesystem corruption
 - Errors in filesystem structure preventing retrieval of data
 - Commonly occurs due to improper system shutdown
- Syncing error
 - Process of writing data stored in RAM to the HDD
- Bad blocks
 - Unusable areas of a physical disk
 - Cannot hold a magnetic charge

Checking Filesystems for Errors

- fsck (filesystem check)
 - Check a filesystem for errors
 - Filesystem must be unmounted
 - -f option used to perform full check

■ e2fsck

- Check an ext2, ext3, or ext4 filesystem
- -c option checks for bad blocks

■ tune2fs

- Used to change filesystem parameters
- -i option sets interval to forcing full system check

Checking Filesystems for Errors

Option	Description
-f	Performs a full filesystem check
-a or -y	Allows fsck to automatically repair any errors
-A	Checks all filesystems in /etc/fstab that have a 1 or 2 in the sixth field
-Cf	Performs a full filesystem check and displays a progress line
-AR	Checks all filesystems in /etc/fstab that have a 1 or 2 in the sixth field but skips the / filesystem
-V	Displays verbose output

Table 5-6: Common options to the fsck command

fsck

```
[fredericks@SciLinux6 ~]$ fsck
fsck from util-linux-ng 2.17.2
e2fsck 1.41.12 (17-May-2010)
/dev/mapper/vg_scilinux6-lv_root is mounted.

WARNING!!! The filesystem is mounted. If you continue you ***WILL***
cause ***SEVERE*** filesystem damage.

Do you really want to continue (y/n)?
```

- File checker separate from main system
 - 2 programs potentially reading/modifying data at same time
 - Change filesystem metadata on the fly
- Filesystem mounted as read-only, fsck is read-only, then it should only report issues, not fix them!

Hard Disk Quotas

- If several users on a system, must be enough hard disk space for each user's files
- Hard disk quotas: user limits on filesystem usage
 - Quotas can restrict number of files/directories or total disk space usage
- Soft limit: user may exceed quota briefly
 - For a certain period of time (seven days by default)
- Hard limit: limit cannot be exceeded

Hard Disk Quotas

yum install quota

- quotaon and quotaoff
 - Toggle quotas on and off

edquota

■ Edit user quotas

■ repquota

Report user quotas

quota

Allows regular users to view their own quotas and current usage

Compression

- Back to Chapter 4!
 - Archiving and compression

Archiving and Compression

- What is the difference between archiving and compression?
 - Archive : set of files stored in single file
 - No space savings
 - tar command
 - Historically used to write data to tape backup
 - Compressed file: set of files stored in single file and reduced space
 - gzip, bzip2, zip, compress, 7z,
 - Different technologies behind compression

Archiving

- Files stored in single file without compression
 - tar -cvf dir1.tar dir1
 - -c→ create tar archive
 - -v → verbose output
 - \blacksquare -f \rightarrow redirect output to file

- Can compress a tar archive
 - gzip
 - tar -zcvf dir2.tar.gz dir2
 - \blacksquare -z \rightarrow redirect to gzip
 - *.tgz or *.tar.gz common
 - gunzip dir2.tar.gz → dir2.tar
 - tar -zxvf dir2.tar.gz → dir2/

Compression

- compress : original UNIX utility
 - Patented to make money
 - z extension

■ gzip

- Performs better than compress anyway
- Patent-free
- **gzip** file 1.txt \rightarrow file 1.txt.gz
- **gzip** -d file1.txt.gz \rightarrow file1.txt
- **gunzip** file 1. $txt.gz \rightarrow file 1.txt$

Compression

■ bzip2

- Uses different compression algorithm
- Typically smaller filesize than gzip
- **bzip2** file3.txt → file3.txt.bz2
- **bunzip2** file3.txt.bz2 → file3.txt

zip

- UNIX version of PKZIP made for Windows (based on standard ZIP)
- **zip** file4.txt → file4.txt.zip
- unzip file4.txt.zip → file4.txt

./usr/bin/end_class

■ Lab #2 Monday, Oct 2nd

Break