Algorithmic Machine Learning Project

Topic: Image Depth Regression Analysis

Team J: Neeraj Nagpal, Anirudh Putrevu, Vipul Maingi

Project Objective:

- 1. Perform EDA on the dataset to understand the image data set.
- 2. Extract, pre-process and clean the image data.
- 3. Apply Machine learning algorithms KNN, Linear Regression, Ridge, Ridge CV, Neural Nets.
- 4. Analyze the performance of each model and propose the best working model

Dataset Description:

The dataset consists of two image files in the NP format. One file consists of RGB files with 3 dimensions or axis, and another file consist of Depth images with 1 dimension or axis.

Data Cleaning & Pre-Processing:

- 1. **Extracting the image dataset from NP array** This includes loading of data from NPZ file and storing them into two separate variables
- 2. **Normalization** This step scales the data set and helps in better performance and to converge faster.
- 3. **Transpose** This would permute the axis of the array and will return an modified or transposed array.
- 4. **Shuffling** This would shuffle both the image datasets for RGB and Depth so that random training and testing is carried out.

Machine Learning Models Implemented:

- 1. Linear Regression
- 2. Ridge Regression
- 3. Ridge CV
- 4. Neural Nets
- 5. Random Forest Regressor
- 6. Decision Tree Regressor
- 7. Multioutput Lasso

Member Contribution:

No	Activity	Member
1	EDA	Neeraj, Anirudh, Vipul
2	Data Cleaning & Pre-Processing	Neeraj, Anirudh, Vipul
3	Implementation of KNN, Random Forest Model, Linear	Vipul
	Regression, RBF SVR	
4	Implementation of Ridge & Ridge CV Model, Neural	Neeraj
	Nets, Multioutput Lasso, Linear SVR	
5	Implementation of Neural Nets, CNN, Decision Tree,	Anirudh
	KNN convolved	