

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

ESCOM

Trabajo terminal

Sistema generador de documentos de casos de uso "TESSERACT"

2018-B140

Presentan

Jiménez Chávez Luis Gerardo López Orozco Diego Efrain Martínez Ibáñez Esteban Pablo Olvera Neria Yamile Giselle

Directores

M. en C. Hermes Francisco
. Montes Casiano

M. en C. José Jaime López Rabadán

06 de Mayo del 2019

Índice general

1.	Introducción	
	1.1. Problemática	
	1.2. Propuesta	
	1.3. Objetivos	
	1.3.1. Objetivo General	
	1.3.2. Objetivos Específicos	
	1.4. Justificación	
	1.5. Estructura del Documento	
2.	Estado del Arte	:
	2.1. Antecedentes	
	2.1.1. UCD-Generator - Una aplicación LESSA para el diseño de casos de uso	
	2.1.2. Generación automatizada de diagramas de casos de uso a partir de requerimientos	
	de usuarios	(
3.	Marco teórico	1
	3.1. Ingeniería de software	1
	3.2. Proceso de desarrollo de software	1
	3.2.1. Análisis	1
4.	Análisis de mercado	1
	4.1. Situación actual y evolución del mercado	1
	4.1.1. Industria Mexicana del Software	1
5.	Estimación de tiempo y costo	1
	5.1. Puntos de función	1

6. Bibliografía 23

Introducción

La etapa de mantenimiento de software requiere mayor tiempo y costo que sus fases complementarias, por lo que resulta ser también la etapa de mayor complejidad dentro del ciclo de vida de desarrollo de software. Se estima que aproximadamente dos tercios del costo total del software se dedican al mantenimiento [1]. Esta situación es causada por diversos problemas presentes durante las etapas precedentes, principalmente en la etapa de análisis, ya que es difícil contar con las bases sólidas de una documentación bien construida y estructurada que favorezca a la fase de mantenimiento. Específicamente, el proceso de documentación de los casos de uso requiere una gran cantidad de esfuerzos humanos y es habitualmente propenso a errores, generando un impacto negativo en el desarrollo e implementación del sistema [2].

1.1. Problemática

La obtención de requerimientos es crucial para la generación de casos de uso desde el punto de vista del analista [3]. La inadecuada especificación de requerimientos es una de las causas predominantes en el fracaso del desarrollo de los sistemas de software hoy en día [4]. Del mismo modo, es común que el equipo de análisis se enfrente a situaciones que dificultan y prolongan la tarea de documentar casos de uso, algunos de los problemas más comunes son: La falta de consistencia en la utilización de los nombres de los actores, reglas de negocio y mensajes, la incorrecta agrupación de casos de uso en gestiones determinadas, la confusión entre escenarios [5], la falta de adaptación a un estándar de escritura y redacción de los elementos del documento y la incorrecta descripción de derechos funcionales (permisos), todos esto, resultado de la falta de experiencia de los analistas y el gran esfuerzo humano que requiere obtener un producto final óptimo [6].

1.2. Propuesta

Se propone construir un sistema que asista a la generación de un documento de análisis basado en casos de uso, que permita gestionar:

Un catálogo de actores el cual explicará brevemente el objetivo del mismo, teniendo la siguiente estructura para definirlos: el nombre del actor, descripción del mismo y sus responsabilidades relacionadas con el sistema según aplique, con el fin de tener consistencia en la utilización de los nombres de los actores. Un catálogo de Reglas de negocio especificando los siguiente: Identificador y nombre de la regla de negocio, de que tipo es, el nivel, una descripción explicando en qué consiste dicha regla, con el fin tener un control al momento de usarlas en diferentes casos de uso. Un catálogo de Mensajes el cual explicará brevemente el objetivo del mismo, este catálogo documentará los mensajes de la siguiente manera: identificador y nombre del mensaje, el tipo de mensaje, propósito, la redacción del mismo y que parámetros deben cumplirse para que el mensaje aparezca esto ayudará a que el usuario pueda reutilizar mensajes en diferentes casos de uso evitando la confusión de los nombres de los mensajes. La agrupación de casos uso dividiéndolos por módulos. Un estándar de redacción y escritura definido para evitar confusiones en la descripción de los casos de uso. Generar de manera automatizada documentos de casos de uso es un desafío que propone la idea de transformar la escritura del lenguaje natural (comúnmente empleado en la elaboración de dichos documentos) a un lenguaje formal y específico. De concretarse este desafío, el tiempo que actualmente toma solucionar los problemas que se presentan durante la elaboración del análisis y su documentación por el personal de análisis será optimizado. Coadyuvará a adquirir experiencia al equipo para disminuir errores, su uso representará una reducción de tiempo (el cual no podrá ser medido debido al tiempo con el que se cuenta para desarrollar el proyecto) y en los recursos destinados al análisis. Lo anterior permitirá generar un documento de análisis con mayor estructura y consistencia.

1.3. Objetivos

1.3.1. Objetivo General

Desarrollar un sistema que asista en la generación de la documentación de casos de uso de un proyecto de software con base en una plantilla predefinida a fin de contribuir en el proceso de su creación.

1.3.2. Objetivos Específicos

Generar un módulo de gestión de usuarios encargado del control de acceso y la administración de los usuarios, en este módulo se asignan los roles y permisos a los diferentes usuarios que se registren. Generar un módulo de gestión proyectos encargado de la administración de proyectos, a partir de este módulo se hará el registro, lectura, modificación, eliminación de los componentes necesarios para la documentación del proyecto; contendrá un apartado para la asignación de usuarios al proyecto. Generar un módulo de gestión de casos de uso encargado de la creación, lectura, modificación y eliminación de casos de uso así como la asociación de analistas. Generar un módulo de gestión de elementos encargado de la definición y registro de todos los elementos necesarios para la creación de casos de uso, con el

objeto de registrarlos en una base de datos y poder reutilizarlos al momento de escribir un caso de uso. Generar un módulo de revisión y validación de elementos de casos de uso encargado de mostrar los elementos que los conforman para su revisión y validación por usuarios permitidos. Generar un módulo de generación de documento de análisis encargado de la generación del documento final de casos de uso para el desarrollo de un sistema con base en la plantilla predefinida.

1.4. Justificación

Un proyecto de software bien construido y formado es esencial para la competitividad de una organización, e incluso para su propia supervivencia, del mismo modo, la documentación es un elemento partícipe que determina la calidad del sistema dado que facilita su interpretación y comprensión, provee los antecedentes que permiten conocer cómo fué diseñado, que hace y cómo está operando, sirve de base para auditorias, elimina los riesgos de dependencia con respecto al personal, es fundamental para la capacitación de los usuarios del sistema facilitando la comunicación, provee antecedentes esenciales, concretos y permanentes para evaluar modificaciones a su funcionamiento y/o para decidir la sustitución de los mismos y aumenta la seguridad y eficiencia en su mantenimiento reduciendo su costo.

El proceso de construcción del documento no es sencillo, al analista le toma tiempo aprender y hacer de manera entendible la redacción, la inclusión de elementos del caso de uso y la especificación correcta de las trayectorias. La curva de aprendizaje es extensa y es común que una persona inexperta en el tema tenga complicaciones y retrasos al realizar el documento. Una herramienta web capaz de recolectar, almacenar y procesar los elementos que integran un proyecto para generar el documento de análisis será de gran apoyo para los analistas, reduciendo de manera considerable el tiempo, costo y gastos de dicho documento.

Éste proyecto de trabajo terminal se considera un trabajo terminal porque coadyuvará a formación de los autores en áreas de investigación, autoaprendizaje, y resolución de problemas, en la generación de este sistema se utilizarán conocimientos del área de Ingeniería de software, bases de datos, programación, tecnologías web, algoritmos y diseño orientado a objetos.

1.5. Estructura del Documento

El presente documento está dirigido a los sinodales del Trabajo Terminal 2018-B140, retoma los objetivos descritos en el protocolo, considerando las observaciones realizadas en la primera evaluación del trabajo. Se entregan otros dos documentos anexos a este reporte para un mejor entendimiento del sistema de los que al final de este capítulo se dará una breve explicación.

En el capítulo 2 Se muestra la situación actual en proyectos que tienen cierta relación con el trabajo terminal, en este análisis se muestran los avances más importantes que se han logrado con respecto al conocimiento de los generadores de casos de uso.

En el capítulo 3 Se expone el soporte conceptual de los conceptos teóricos que se utilizaron para el planteamiento del problema del traajo terminal.

En el capítulo 4 En este capítulo se expone el mercado al cual está enfocado el desarrollo, así como la viabilidad de colocarlo en la industria en México.

En el capítulo 5 Se realiza la estimación de tiempo y costo con base en el método de puntos de función.

Estado del Arte

Es común que dentro del área de la ingeniería de software, se confundan los términos: "Caso de uso" y "Diagrama de caso de uso", sin embargo es importante resaltar las diferencias para comprender el objetivo principal del proyecto terminal.

Un caso de uso narra una historia detallada sobre cómo interactúa un usuario final (con cierto número de roles posibles) con el sistema en circunstancias específicas. La historia puede ser un texto narrativo, un lineamiento de tareas o interacciones, una descripción basada en un formato o una representación diagramática de casos de uso. Sin importar su forma, un caso de uso ilustra el software o sistema desde el punto de vista del usuario final [7].

En otras palabras, un caso de uso es aquel que describe en forma de secuencia de acciones o pasos la interacción entre un actor y el sistema, en cambio, un diagrama de casos de uso es una representación visual simple de las interacciones del sistema con el mundo exterior, el modelo de un grafo con dos tipos de nodos (Actor y caso de uso), el cual ilustra gráficamente el comportamiento del caso de uso. Un diagrama de casos de uso no describe la interacción detallada del sistema con los actores ni reemplaza o sustituye el concepto de caso de uso.

Ahora bien, en la red hay una gran variedad de sistemas que permiten la generación de **diagramas de casos de uso en UML**, a partir de distintas técnicas, sin embargo no hay herramientas comerciales o gratuitas que posibiliten la generación del documento con las especificaciones y la gestión de sus componentes, tal como lo pretende el presente trabajo terminal.

2.1. Antecedentes

2.1.1. UCD-Generator - Una aplicación LESSA para el diseño de casos de uso

Las herramientas CASE convencionales requieren una comprensión completa del negocio, una gran cantidad de tiempo y esfuerzos adicionales por parte del analista del sistema durante el proceso de creación, organización, etiquetado y finalización de los diagramas de casos de uso. Es por esto que se diseñó un sistema que proporciona una manera rápida y confiable de generar diagramas de casos de uso para ahorrar tiempo y presupuesto tanto para el usuario como para el analista del sistema.

Objetivo

Este sistema presenta un enfoque basado en el procesamiento del lenguaje natural LESSA (Language Engineering System for semantic analysis) que se utiliza para comprender automáticamente el texto en lenguaje natural y extraer la información requerida. Esta información se utiliza para dibujar los diagramas de casos de uso. El usuario escribe sus preferencias basadas en la interfaz en inglés, en unos pocos párrafos y el sistema diseñado tiene una capacidad notable para analizar el script dado. Después del análisis compuesto y la extracción de información asociada, el sistema diseñado en realidad dibuja los diagramas de casos de uso [8].

2.1.2. Generación automatizada de diagramas de casos de uso a partir de requerimientos de usuarios

Con el estado actual de la tecnología de procesamiento de lenguaje natural (PNL), muchos investigadores han demostrado que automatizar el proceso de análisis de requisitos es posible, lo que ahorra una cantidad significativa de tiempo invertido por los analistas. Se han desarrollado numerosas herramientas semiautomáticas que ayudan al analista en este proceso. Sin embargo, una técnica comúnmente utilizada para usar la gramática en el texto obtenido como la base para identificar información útil, ha estado enfrentando problemas de escalabilidad debido a que el formato textual de los requisitos consiste en lenguaje natural no estructurado (NL).

Objetivo

Este proyecto utiliza una técnica probabilística para identificar actores y casos de uso. El resultado prometedor demuestra que las mejoras adicionales de este enfoque pueden automatizar completamente la fase de análisis, propone una metodología para la asistencia automática de análisis de requisitos a los analistas de software mediante la extracción de un diagrama de caso de uso del documento de requisitos del usuario. Este proyecto ha intentado con éxito extraer actores y usar casos utilizando un modelo de clasificación probabilística junto con una asistencia mínima de enfoque basado en reglas. Los casos de uso son nítidos y consistentes independientemente del tamaño del texto de los requisitos. Debido al pequeño tamaño de los datos utilizados, el rendimiento no se ha logrado precisar. Sin embargo, se pueden utilizar

mejores modelos de clasificación con un conjunto de datos más grande que incluya otros dominios de software para mejorar los resultados. El desafío restante aquí se relaciona con abordar los requisitos no funcionales y también para incorporar funciones de inclusión y extensión al diagrama de casos de uso. Un gráfico bien diseñado [9].

Marco teórico

Todo proyecto de software se desencadena por alguna necesidad de negocios: la de corregir un defecto en una aplicación existente, la de adaptar un "sistema heredado" a un ambiente de negocios cambiante, la de ampliar las funciones y características de una aplicación ya existente o la necesidad de crear un producto, servicio o sistema nuevo. Al comenzar un proyecto de software, es frecuente que las necesidades del negocio se expresen de manera informal como parte de una simple conversación. El esfuerzo de ingeniería tendrá éxito sólo si también lo tiene el software. El mercado aceptará el producto sólo si el software incrustado en éste satisface las necesidades del cliente.

3.1. Ingeniería de software

Una de las primeras definiciones de ingeniería de software fue dada por Fritz Bauer en el año de 1969, quien define que la ingeniería de software es..

"el establecimiento y uso de principios robustos, orientados a obtener software económico que sea fiable y que funcione de manera eficiente sobre máquinas reales".

Aunque esta definición omite algunos términos referentes a tiempos de entrega, procesos eficaces, y calidad de software, nos da un panorama de sus principios fundamentales y es también la base de la definición que la IEEE ha desarrollado de una manera más completa:

"La ingeniería de software es: La aplicación de un enfoque sistemático, disciplinado y cuantificable al desarrollo, operación y mantenimiento de software; es decir, la aplicación de la ingeniería al software." [7]

La ingeniería de software está formada por un proceso, un conjunto de métodos (prácticas) y un arreglo de herramientas que permite a los profesionales elaborar software de cómputo de alta calidad.

Un aspecto muy importante de Ingeniería de Software es que proporciona parámetros formales para lo que se conoce como Gestión (o Administración) de Proyectos de Software. Esto se refiere a que Ingeniería de Software proporciona diversas métricas y metodologías que pueden usarse como especificaciones para todo lo referente a la administración del personal involucrado en proyectos de software, ciclos de vida de un proyecto de software, costos de un proyecto, y en si todo el aspecto administrativo que implica el desarrollar software.

La ingeniería en general es el análisis, diseño, construcción, verificación y gestión de entidades técnicas. En general, todo proceso de ingeniería debe comenzar por contestar las siguientes preguntas: ¿Cuál es el problema a resolver?, ¿Cuáles son las características de la entidad que se utiliza para resolver el problema?, ¿Cómo se realizará la entidad (y la solución)?, ¿Cómo se construirá la entidad?, ¿Cómo va a probarse la entidad?, y ¿Cómo se apoyará la entidad cuando los usuarios finales soliciten correcciones y adaptaciones a la entidad?. [7]

Figura 3.1: Capas de la ingeniería de software

La ingeniería de software es una tecnología con varias capas, como se muestra en la figura 3.1, existen 4 capas: herramientas, métodos, procesos y compromiso con la calidad. Cada una de ellas es importante, sin embargo, la capa de proceso es fundamental para el desarrollo de software, ya que es donde se define la estructura básica del producto hasta la culminación del mismo.

El proceso de software forma la base para el control de la administración de proyectos de software, y establece el contexto en el que se aplican métodos técnicos, se generan productos del trabajo (modelos, documentos, datos, reportes, formatos, etc.), se establecen puntos de referencia, se asegura la calidad y se administra el cambio de manera apropiada.

3.2. Proceso de desarrollo de software

Se define proceso del software como una estructura para las actividades, acciones y tareas que se requieren a fin de construir software de alta calidad. La ingeniería de software es llevada a cabo por personas creativas y preparadas que deben adaptar un proceso maduro de software a fin de que resulte apropiado para los productos que construyen y para las demandas de su mercado. Cuando se trabaja en la construcción de un producto o sistema, es importante ejecutar una serie de pasos predecibles, una estructura general para la ingeniería de software se define en cinco actividades elementales:

- 1. Comunicación
- 2. Planeación
- 3. Modelado
- 4. Construcción
- 5. Despliegue

Existen diferentes metodologías de desarrollo con modificaciones y adecuaciones al esquema general de construcción antes mencionado, algunas de ellas son las metodologías tradicionales y ágiles. Este proceso puede tener diferentes variaciones, sin embargo, sea cual sea la metodología aplicada, las etapas de Modelado (Análisis y Diseño) y Costrucción (Codificación y Pruebas) son las más críticas e importantes para un producto final exitoso.

Durante el desarrollo, se realizan tareas específicas para cada etapa, por ejemplo, para la etapa de modelado se elabora el documento de análisis (donde se describe el funcionamiento del sistema), así como el diseño (en donde se genrean los diagramas que describen el funcionamiento establecido en el análisis); en la fase de construcción se genera el código del software y en la etapa de pruebas se valida y verifica que el software cumpla con lo asentado en las fases precedentes.

3.2.1. Análisis

El proceso de análisis dentro del desarrollo de software consiste en obtener los requerimientos del sistema para crear una solución, identificar los problemas a resolver o necesidad a ser atendida, evaluar las restricciones que presenta, así como los insumos se requieren para su debida construcción. Al ser la primera etapa dentro del proceso de desarrollo es las más crítica y sensible, ya que cualquier error de gran impacto que surja dentro de esta perjudicará las etapas consecuentes ocasionando retrasos en el proceso.

En esta etapa se construye el documento de análisis, en donde se describen todos los requerimientos que el cliente ha solicitado mediante diferentes componentes Con base en los requisitos, el analista sigue el proceso de análisis identificando en alto nivel que funcionalidades deberá poseer el sistema para cumplir los requerimientos. Una solución común para mapear cada funcionalidad es a través de CASOS DE USO.

Este documento emplea un lenguaje técnico especializado ya que busca ser comprendido por los diseñadores y programadores para su correcta construcción.

Documento de análisis

Parte 1. Modelo de negocio: Glosario de términos Modelo de información utilizado para representar la información que será almacenada en el sistema. Reglas de negocio mediante las cuales se normará el funcionamiento del sistema. Parte 2. Modelo dinámico, el cual describe funcionalidad a partir de los siguientes capítulos: Arquitectura lógica. Máquinas de estados que modelarán el comportamiento de las entidades que así lo necesiten. Funciones y roles que tendrán los actores que interactuarán con el sistema. Casos de uso que describen funcionalidad. Parte 3. Interacción con el usuario, que muestra las interfaces y mensajes a partir de los siguientes capítulos: Interfaces del sistema. Catálogo de mensajes

Caso de Uso

Un caso de uso es una actividad que puede realizar un usuario dentro del software. Estas actividades sirven para describir el comportamiento del producto en distintas condiciones en las que el sistema responde a alguna de las peticiones realizadas por el usuario, es decir, describe el funcionamiento de los componentes acorde a las acciones que los usuarios realizan dentro del software.

En un libro que analiza cómo escribir casos de uso eficaces, Alistair Cockburn [Coc01b] afirma que "un caso de uso capta un contrato [...] [que] describe el comportamiento del sistema en distintas condiciones en las que el sistema responde a una petición de alguno de sus participantes[...]".

En esencia, un caso de uso narra una historia estilizada sobre cómo interactúa un usuario final (que tiene cierto número de roles posibles) con el sistema en circunstancias específicas. La historia puede ser un texto narrativo, un lineamiento de tareas o interacciones, una descripción basada en un formato o una representación diagramática. Sin importar su forma, un caso de uso ilustra el software o sistema desde el punto de vista del usuario final.

Un caso de uso está compuesto por distintos elementos, los cuales se describen a continuación:

- Actor: Es la idealización de un rol que puede jugar una persona, otro sistema, proceso, un dispositivo o de alguna cosa que interactúa con el sistema. Los actores son objetos que residen fuera del sistema, en tanto que los casos de uso están compuestos por objetos y acciones que residen dentro del sistema. Todo actor tiene uno o más objetivos cuando utiliza el sistema. [9].
- **Entidad**: Representación de un objeto exclusivo único en el mundo real que se está controlando. Algunos ejemplos de entidad son una sola persona, un solo producto o una sola organización.
- Atributo : Es una especificación que define una propiedad de un objeto, elemento o archivo. También puede referirse o establecer el valor específico para una instancia determinada de los mismos.
- **Entrada**: Es la información producida por el usuario para ser guardada o procesada en el sistema. El usuario comunica y determina qué clases de entrada aceptará el sistema (por ejemplo, secuencias de control o de texto escritas a máquina a través del teclado y el ratón).
- Salida: Es la información producida por el sistema y percibida por el usuario. Las clases de salida los productos de programa, y las clases de entrada la que el programa acepta, definen la interfaz de usuario del programa.

- Acción: Evento originado por el usuario mediante botones.
- Pantalla: Es la interfaz de usuario, utiliza imágenes, iconos y menús para mostrar las acciones disponibles entre las que el usuario puede escoger en un sistema. Su función es proporcionar un entorno visual amigable y sencillo de usar que facilite la comunicación del usuario con el software.
- **Regla de Negocio**: Es aquella que rige los procesos de un negocio para garantizar el correcto funcionamiento del software. Las reglas de negocio establecen los procedimientos que se deben realizar y las condiciones sobre las que dichas actividades se van a ejecutar.
- **Mensaje**: Constituyen la mínima unidad de comunicación entre el usuario y el sistema. Se trata de un proceso de comunicación completa porque el sistema lanza un mensaje hacia el usuario que no se resuelve hasta que el usuario lo recibe o lo responde, completando así el proceso de comunicación con la realimentación correspondiente.
- **Trayectoria**: Es un conjunto de pasos que describen la interacción entre el usuario y el sistema.
- Paso: Es una instruccion que realiza el usuario o el sistema.
- **Precondición**: Está formada por el conjunto de condiciones que se tienen que cumplir para que se pueda iniciar un caso de uso. En muchos casos supone la ejecución de casos de uso previos.
- Postcondición: Refleja el estado en que se queda el sistema una vez ejecutado el caso de uso.
- **Puntos de extensión**: Es la incorporación implícita del comportamiento de otro caso de uso, el cuál no es parte del flujo principal. Modela la parte opcional del sistema, un subflujo que sólo se ejecuta bajo ciertas condiciones o varios flujos que se pueden insertar en un punto determinado.

Análisis de mercado

En este apartado se demuestra la viabilidad comercial del trabajo terminal TESSERACT en México, así mismo se realiza un estudio en donde se determina el campo en donde un sistema con las características del generador de documento de casos de uso podría generar un mayor impacto y aceptación por parte de los equipos de construcción de software. Cabe resaltar que TESSERACT no pretende ser comercializado por el momento.

4.1. Situación actual y evolución del mercado

El software es un elemento consustancial a la economía moderna, es uno de los sectores tecnológicos más competitivos, se usa en en una gran cantidad de productos manufacturados y servicios, por lo que la elaboración de programas de cómputo figura en casi todas las industrias y es, de hecho, factor de éxito de todos los sectores de la economía. Esta industra ha tenido una evolución constante en lo que se refiere a las metodologías o bien, las formas en las cuales se realiza la planeación para el diseño del software, básicamente con el objetivo de mejorar, optimizar procesos y ofrecer una mejor calidad.

En el campo del desarrollo de software, existen dos grupos de metodologías, las denominadas tradicionales (formales) y las ágiles. Las primeras son un tanto rígidas, exigen una documentación exhaustiva y se centran en cumplir con el plan del proyecto definido totalmente en la fase inicial del desarrollo del mismo; mientras que la segunda enfátiza el esfuerzo en la capacidad de respuesta a los cambios, las habilidades del equipo y mantener una buena relación con el usuario. La metodología que sea seleccionada, debe ser adaptada al contexto del proyecto, teniendo en cuenta los recursos técnicos y humanos; tiempo de desarrollo y tipo de sistema.

Dean Leffingwell, autor de Scaling Software Agility, menciona que los Casos de Uso son una herramienta valiosa para modelar requerimientos en metodologías Lean/Ágiles de gran envergadura, si

embargo, no es común encontrar casos de uso en los proyectos ágiles (especialmente en XP y Scrum), en donde se suele utilizar historias de usuario para recolectar los requerimientos [10].

Ahora bien, de acuerdo a la teoría expuesta, TESSERACT al ser una herramienta que asiste a la generación del documento de casos de uso, se convierte en un instrumento que puede contribuir en cualquier metodología, ya sea formal o ágil, sin embargo el beneficio e impacto incrementa cuando se utiliza en la construcción de sistemas con metodologías formales y de gran escala, los casos de uso son una herramienta muy poderosa para explorar las interacciones entre los usuarios, los sistemas, y los sub-sistemas. Más aún, la técnica de casos de uso es la mejor forma para identificar todos los escenarios alternativos que se nos aparecen, fundamentales para asegurar la calidad de los sistemas. En los desarrollos ágiles, los casos de uso no reemplazan a las historias de usuario pero pueden resultar sumamente útiles para analizar, elaborar y comprender el funcionamiento deseado de sistemas complejos.

4.1.1. Industria Mexicana del Software

Para conocer el nivel de oportunidad que tiene TESSERACT dentro de la industria en México, es importante conocer de manera cuantitativa cual es el perfil de las empresas desarrolladoras de software en México. Es importante destacar que los diversos análisis que hasta la fecha se han realizado con respecto al panorama de este sector no resultan aún generalizables a toda la industria, ya que cada estudio analiza sólo un subconjunto del total de empresas, por lo tanto se hace la aclaración que lo aquí se presenta son datos representativos, y no necesariamente significa que sean generalizables.

Localización Geográfica de las Empresas Participantes

Las empresas participantes en el estudio se localizan en 11 de los 32 estados de la República Mexicana, presentando la siguiente distribución: 2.9 % Chihuahua, 1.5 % en Coahuila, 44.1 % en la Ciudad de México, 11.8 % en Durango, 2.9 % en el Estado de México, 1.5 % en Guanajuato, 2.9 % en Jalisco, 2.9 % en Michoacán, 2.9 % en Morelos, 23.5 % en Nuevo León y 2.9 % en Querétaro. Esta concentración es similar a la de otros estudios realizados para este sector en México.

Número de Empresas Desarrolladoras de Software en México

La respuesta a esta pregunta no tiene una cifra exacta. De acuerdo con estimaciones realizadas por ESANE consultores sobre del número total de empleados y empresas de la Industria del Software en México, el número aproximado de empresas de la industria mexicana del software podría ser del orden de 1,500 empresas.

Tamaño de las Empresas

El estudio revela que el 85.29 % de las empresas del sector de la Industria Mexicana del Software son de tamaño micro (54.41 %) y pequeño (30.88 %), el 5.8 % mediana, y tan sólo el 8.82 % son de tamaño grande (con un número de empleados mayor a 100) [11].

Las oportunidades que se tienen de posicionar TESSERACT en el mercado son amplias, la industria del software muestra un constante crecimiento y en México hay posibilidades de colocar nuestra

herramienta en diversos sectores para contribuir en el desarrollo y construcción de software.

Estimación de tiempo y costo

5.1. Puntos de función

Es una técnica de estimación de software desarrollada originalmente por Allan Albrecht en 1979 mientras trabajaba para IBM, quien definió conceptos para medir el software a partir de valoraciones de funcionalidades entregadas al usuario y no a partir de aspectos técnicos, con la intención de producir valoraciones independientes de la tecnología y fases del ciclo de vida utilizado.

El trabajo de Albrecht fue continuado por el grupo internacional de usuarios de puntos de función, quienes plasmaron sus conceptos en el método IFPUG-FPA, el cual realiza las valoraciones a partir de la funcionalidad del sistema, primero clasificándolas, luego asignando una complejidad y ponderación a cada una según unas tablas predefinidas, determinando así el valor de puntos de función.

Sumando los puntos de todas las funcionalidades se obtiene la valoración de todo el proyecto y finalmente se puede aplicar un factor de ajuste, que puede depender de características generales del sistema como por ejemplo requerimientos no funcionales como el rendimiento, reusabilidad, facilidad de instalación y operación entre otros aspectos.

Los puntos de función permiten traducir el tamaño de funcionalidades de software a un número, a través de la suma ponderadas de las características que este tiene. Una vez que tenemos los puntos de función, podemos traducirlos en horas hombre o días de trabajo, según factor de conversión que dependería de mediciones históricas de nuestra productividad. Con las horas hombre, podemos determinar el costo y presupuesto de los proyectos. [12].

Desarrollaremos la medición en dos pasos, primero determinaremos los componentes funcionales del presupuesto de desarrollo de software, a partir del análisis de requerimientos realizado anteriormente. Seguidamente, realizaremos el cálculo de los puntos de función, con lo cual obtendremos una medida del tamaño del proyecto.

Para determinar los componentes funcionales, debemos determinar tanto las transacciones de negocio como los componentes de datos, siguiendo el método de análisis de puntos de función. Las transacciones de negocio que podemos desglosar a partir de los requerimientos de software son las siguientes.

Tipo de Caso de uso	Cantidad
Gestionar	13
Registrar	18
Modificar o Editar	15
Eliminar	17
Buscar	9

Seguidamente, clasificamos las transacciones de negocio, que pueden ser de 3 tipos: Entradas, salidas y consultas.

• Entradas: Registrar modificar y eliminar

• Salida: Gestionar

• Consultas: Buscar

• Archivo lógico interno: Tablas en Base de datos

Adicionalmente, debemos asignar un nivel de complejidad alto, medio o bajo a cada uno con base en la siguiente tabla.

Tipo	Baja	Media	Alta
Entrada externa	3PF	4PF	6PF
(EI)			
Salida externa	4PF	5PF	7PF
(EO)			
Consulta externa	3PF	4PF	6PF
(EQ)			
Archivo lógico	7PF	10PF	15PF
interno (ILF)			
Archivo de inter-	5PF	7PF	10PF
faz externo (ILF)			

Los niveles de complejidad dependen de factores como por ejemplo el número de campos no repetidos, número de archivos a ser leídos, creados o actualizados, número de sub grupos de datos o formatos de registros, entre otros.

Al clasificar las transacciones de negocio y asignar los niveles de complejidad se llegó a la conclusión que para el desarrollo de TESSERACT, la complejidad en todos sus niveles es **MEDIA**

Al determinar los puntos de función tenemos una medida de la magnitud del tamaño del software y del esfuerzo que se requiere para desarrollarlo.

Tipo de Caso de uso	Cantidad	Complejidad	Total PF
Gestionar	13	5	65
Registrar	18	4	72
Modificar o Editar	15	4	60
Eliminar	17	4	68
Buscar	9	4	36
Tablas en BD	65	10	650

MAGNITUD ESTIMADA: 951 PF

Lenguaje	Horas PF Pro- medio	Lineas de código por PF
Lenguajes de 4ta generación	8	20

HORAS HOMBRE: 7608 hrs para que una persona termine el sistema.

Ahora bien para estimar el tiempo se tienen los siguientes datos:

Concepto	Tiempo
Desarrolladores	4
Horas de trabajo al día	8
Días al mes de trabajo	24
Horas de trabajo x desa-	1902
rrollador	
Dias de trabajo x desa-	237
rrollador	
Meses de trabajo	10

TIEMPO ESTIMADO: 10 meses para desarrollar el software, con un trabajo de lunes a sábado, 8 hrs diarias con 4 desarrolladores.

Para estimar el costo del proyecto se tiene la siguiente información:

TIEMPO ESTIMADO: 10 MESES

DESARROLLADORES: 4 DESARROLLADORES

Concepto	Cantidad	Total
Sueldo Mensual de un	\$18,000	\$720,000
desarrollador		
Consumo de luz por	\$125	\$1250
mes		
Consumo de agua por	\$50	\$500
mes		
Otros costos del pro-	\$850	\$8500
yectopor mes		

Datos salariales promedios obtenidos de https://www.indeed.com.mx/salaries/Desarrollador/a-java-Salaries

COSTO TOTAL ESTIMADO: \$730,250

Bibliografía

- [1] Rui, K. Butler, G. (2003, April 21). Refactoring use case models: the metamodel [Online]. Available: https://dl.acm.org/citation.cfm?id=783140
- [2] Shuang, L. Sun, L. (2014, September 19). Automatic early defects detection in use case documents [Online]. Available: https://dl.acm.org/citation.cfm?id=2642969
- [3] J. Lee. (1999, August). Analyzing user requirements use cases a goal driven approach. [Online]. Avaible: https://ieeexplore.ieee.org/document/776956
- [4] L. Julijana. (2007, August). "Information Systems Modeling with Use Cases" IEEE Computer [Online]. Available: https://ieeexplore.ieee.org/document/4283759
- [5] Jason Gorman, J. G. (2007, 9 marzo). 10 Common Use Case Pitfalls. Recuperado 23 abril, 2018, [Online]. Available: http://codemanship.co.uk/parlezuml/blog/?postid=364
- [6] Susan Lilly [2002, August]. "Use Case Pitfalls: Top 10 Problems from Real Projects Using Use Cases" [Online]. Avaible: https://ieeexplore.ieee.org/document/787547
- [7] Pressman, Roger. (2010). Ingenieria de Software. Un enfoque práctico / 7 ED.(777 páginas). USA: Mcgraw-Hill Interamericana.
- [8] B. Imran S. and H. Irfan, ÜCD-generator a LESSA application for use case design IEEE Conference Publication", Ieeexplore.ieee.org, 2007. [Online]. Available: https://ieeexplore.ieee.org/document/4381333.
- [9] G. Booch, J. Rumbaugh, I. Jacobson, J. García Molina and J. Saez Martínez, El lenguaje unificado de modelado, 2nd ed. Madrid: Pearson Educación, 2010.

- [10] D. West, Üse Cases Considered Valuable (but Optional) For Lean/Agile Requirements Capture", InfoQ, 2010. [Online]. Available: https://www.infoq.com/news/2009/02/Use-Cases-Valuable-But-Optional.
- [11] D. González, Ïndustria Mexicana del Software. Un estudio en cifras.", SG Buzz, 2005. [Online]. Available: https://sg.com.mx/revista/9/industria-mexicana-cifras. [Accessed: 20- Apr- 2019].
- [12] J. Gómez, "Métodos de Medición en Puntos Función (I): IFPUG FPA", El Laboratorio de las TI, 2014. [Online]. Available: https://www.laboratorioti.com/2013/01/16/metodos-de-medicion-en-puntos-funcion-i/.