

### Description

The VSM5N20 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

#### **General Features**

- $V_{DS}$  =200V, $I_D$  =8A  $R_{DS(ON)}$  <300m $\Omega$  @  $V_{GS}$ =10V (Typ: 260m $\Omega$ )
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

## **Application**

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply



## **Package Marking and Ordering Information**

| Device Marking | Device  | Device Package | Reel Size | Tape width | Quantity |
|----------------|---------|----------------|-----------|------------|----------|
| VSM5N20-T2     | VSM5N20 | TO-252         | -         | -          | -        |

## Absolute Maximum Ratings (T<sub>c</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol                | Limit      | Unit |  |
|--------------------------------------------------|-----------------------|------------|------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>       | 200        | V    |  |
| Gate-Source Voltage                              | V <sub>G</sub> s      | ±20        | V    |  |
| Drain Current-Continuous                         | I <sub>D</sub>        | 8          | А    |  |
| Drain Current-Continuous(T <sub>C</sub> =100℃)   | I <sub>D</sub> (100℃) | 5.6        | А    |  |
| Pulsed Drain Current                             | I <sub>DM</sub>       | 20         | А    |  |
| Maximum Power Dissipation                        | P <sub>D</sub>        | 55         | W    |  |
| Operating Junction and Storage Temperature Range | $T_{J}, T_{STG}$      | -55 To 150 | °C   |  |

## **Thermal Characteristic**

| Thermal Resistance,Junction-to-Case <sup>(Note 2)</sup> | $R_{	heta JC}$ | 2.3 | °C/W |
|---------------------------------------------------------|----------------|-----|------|



# Electrical Characteristics (T<sub>C</sub>=25 °C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                   | Min | Тур | Max  | Unit |
|------------------------------------|---------------------|-------------------------------------------------------------|-----|-----|------|------|
| Off Characteristics                |                     |                                                             | •   |     |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | BV <sub>DSS</sub> V <sub>GS</sub> =0V I <sub>D</sub> =250μA |     | 215 | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =200V,V <sub>GS</sub> =0V                   | -   | -   | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                   | -   | -   | ±100 | nA   |
| On Characteristics (Note 3)        |                     |                                                             | •   |     |      |      |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                          | 1   | 1.7 | 2.5  | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =4.5A                  | -   | 260 | 300  | mΩ   |
| Forward Transconductance           | g <sub>FS</sub>     | V <sub>DS</sub> =25V,I <sub>D</sub> =4.5A                   | 3   | -   | -    | S    |
| Dynamic Characteristics (Note4)    |                     |                                                             | •   |     |      |      |
| Input Capacitance                  | C <sub>lss</sub>    |                                                             |     | 540 |      | PF   |
| Output Capacitance                 | Coss                | $V_{DS}$ =25V, $V_{GS}$ =0V,<br>F=1.0MHz                    |     | 90  |      | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | r-1.0IVIHZ                                                  |     | 35  |      | PF   |
| Switching Characteristics (Note 4) | ·                   |                                                             |     |     |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                             | -   | 6.4 | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =100 $V$ , $I_{D}$ =4.5 $A$                        | -   | 11  | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> | $V_{GS}\text{=}10V, R_{GEN}\text{=}5\Omega$                 | -   | 20  | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                             | -   | 12  | -    | nS   |
| Total Gate Charge                  | Qg                  | \/ 400\/ L 4.55                                             | -   | 16  | -    | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | $V_{DS}$ =160V, $I_{D}$ =4.5A,<br>$V_{GS}$ =10V             | -   | 3.4 | -    | nC   |
| Gate-Drain Charge                  | Q <sub>gd</sub>     | VGS-1UV                                                     | -   | 5.1 | -    | nC   |
| Drain-Source Diode Characteristics |                     |                                                             |     |     |      |      |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =8A                      | -   | -   | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                             | -   | -   | 8    | Α    |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production



## **Test Circuit**

## 1) E<sub>AS</sub> test Circuit



## 2) Gate charge test Circuit



### 3) Switch Time Test Circuit





## **Typical Electrical and Thermal Characteristics (Curves)**



Vds Drain-Source Voltage (V)





Vgs Gate-Source Voltage (V)



I<sub>D</sub>- Drain Current (A) **Figure 3 Rdson- Drain Current** 



 $T_J$ -Junction Temperature( $^{\circ}\mathbb{C}$ )

Figure 4 Rdson-JunctionTemperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





T<sub>J</sub>-Junction Temperature(°C)

Figure 9 BV<sub>DSS</sub> vs Junction Temperature







T<sub>J</sub>-Junction Temperature(°ℂ)

Figure 10 V<sub>GS(th)</sub> vs Junction Temperature



Square Wave Pluse Duration(sec)

**Figure 11 Normalized Maximum Transient Thermal Impedance**