

PIE NIA05 - PLAN DE GESTION DE PROJET

DÉTECTION D'INTENTION DE MOUVEMENTS EEG-STROKE POUR LE CHU DE TOULOUSE.

APPENZELLER Brice, DARIO Mathieu, DELAVANDE Julien, DENIAU Aurélien, GOMEL Jules, IGBIDA Rayanne

Table des matières

1	Cont	exte	2
2	Cadr	age du projet	3
	2.1	Objectifs	
	2.2	Parties Prenantes	3
	2.3	Exigences utilisateur	4
	2.4	Exigences système	4
	2.5	Hypothèses	5
3	Prépa	aration du projet	6
	3.1	PBS - Organigramme produit	
	3.2	WBS - Organigramme des travaux	7
	3.3	Diagramme de flux	8
	3.4	Fiches détaillées	9
	3.5	Définition des ressources	16
	3.6	Matrice RAM (Responsability Assignment Matrix)	17
	3.7	Matrice des estimations	18
	3.8	Planning et plan de charge	19
	3.9	Analyse de risque	20
4	Mana	agement du projet	21
	4.1	Métrique d'avancement du projet	21
	4.2	Courbe d'avancement	22
	4.3	Processus de pilotage et réunions projet	22
	4.4	Tableau de bord et suivi de projet	

1. CONTEXTE 2

1 Contexte

L'Accident Vasculaire Cérébral (AVC) représente la première cause de handicap acquis chez l'adulte. À la suite d'un AVC, plusieurs perspectives sont possibles selon la gravité et l'évolution des séquelles. Une des séquelles les plus importantes chez les patients est l'hémyplégie, caractérisée par une paralysie ou une perte de mobilité partielle ne touchant que la moitié du corps. La rééducation pour limiter l'impact de cette séquelle est encore aujourd'hui un enjeu majeur.

Une perspective porteuse d'espoir dans ce domaine repose sur la plasticité cérébrale et est appelée neurofeedback. Cette thérapie exploite les signaux cérébraux produits pour générer un mouvement, qui vont être reconnus pour déclencher un mouvement du côté paralysé - au moyen d'un exosquelette par exemple - et ainsi stimuler la zone cérébrale lésée après l'AVC.

Notre projet "BCI-EEG-STROKE" s'inscrit dans la continuité de recherches antérieures menées par le Centre Hospitalier Universitaire (CHU) de Toulouse, notre commanditaire, sur la rééducation et le suivi des patients post-AVC, qui comme énoncé précédemment restent des sujets

Ce projet vise à être appliqué dans le domaine de la recherche, explorant une utilisation concrète du neurofeedback dans la rééducation des patients post-AVC. Dans ce contexte, le patient est encouragé à exprimer l'intention de déplacer son bras du côté affecté. Cette intention de mouvement, détectée par un algorithme, déclenche l'activation d'un effecteur, tel qu'un exosquelette ou une orthèse, pour concrétiser le mouvement. Le retour d'information reçu par le patient est ainsi la manifestation physique du mouvement, résultant de la génération d'une intention de mouvement par son cerveau. Notamment du côté lésé, cela vise à stimuler la plasticité cérébrale, favorisant ainsi l'amélioration des fonctions motrices du patient.

Les années précédentes, dans le cadre des PIE, un prototype de détection de l'intention du mouvement dans les signaux électriques cérébraux, ou électroencéphalogramme (EEG), a été produit. Cette année, notre équipe se focalise sur l'amélioration de la précision des précédents algorithmes.

2 Cadrage du projet

2.1 Objectifs

L'objectif principal de notre projet est de perfectionner un algorithme de détection d'intention de mouvement chez les patients post-AVC, visant à optimiser leur rééducation. Le but ultime est de détecter de manière précise l'intensité de l'intention de mouvement à partir des données électroencéphalographiques (EEG) obtenues pendant des séries de mouvements d'extension du coude.

Notre démarche consiste à élaborer un algorithme qui, à partir des signaux EEG, puisse discriminer avec précision les patterns associés à l'intention de mouvement spécifique, en se concentrant particulièrement sur les mouvements d'extension du coude, du côté paralysé.

Outre l'aspect algorithmique, une attention particulière sera portée à la convivialité et à la facilité d'utilisation de notre solution. Nous visons à fournir un code d'implémentation clair et optimisé, facilitant son intégration dans l'environnement médical. De plus, nous utiliserons au maximum l'interface homme-machine fournie par la précédente équipe, en limitant les modifications aux adaptations nécessaires à notre algorithme afin de permettre aux professionnels de la santé de tirer pleinement parti de cet outil dans leur pratique quotidienne.

Bien que la solution délivrée par l'équipe précédente ait été satisfaisante et fonctionnelle, notre projet de cette année se concentre spécifiquement sur l'amélioration des performances de l'algorithme de détection de l'intention du mouvement. Nous chercherons à améliorer la précision et la fiabilité pour offrir une solution encore plus robuste et efficace, contribuant ainsi de manière significative à l'amélioration de la rééducation des patients post-AVC.

2.2 Parties Prenantes

Les parties prenantes sont les suivantes, en plus de nous, l'équipe projet :

- Les parties prenantes participant tout au long du projet
 - <u>Notre client</u>: Dr David Gasq, CHU Toulouse
 - Notre coach en gestion de projet : Antoine CASTA, Airbus Defense & Space
 - Notre co-superviseur : Frédéric DEHAIS, professeur à l'ISAE-SUPAERO
 - Notre co-superviseur et responsable technique école : Kalou CABRERA-CASTILLOS, chercheur post-doctoral à l'ISAE-SUPAERO
- Les patients du CHU qui seront utilisateurs de notre solution en tant que sujet.
- Les praticiens kinésithérapeutes, ergothérapeutes, étudiants en thèse ou en master
 travaillant à rééduquer leurs patients, qui seront potentiellement utilisateurs de notre solution dans le cadre de leurs recherches.
- Le CHU en lui-même est partie prenante dans la mesure où il encadre notre projet en tant que commanditaire

2.3 Exigences utilisateur

ID	Libellé	Négociabilité	Catégorie	Partie
				Prenante
EU01	Garder l'anonymisation des	Obligatoire	Contrainte	Patients
	données des patients			
EU02	Faire une interface facile	Importante	Fonctionnelle	Practicien
	d'utilisation en stand alone			Neuro
EU03	Le système doit permettre aux	Importante	Fonctionnelle	Practicien
	cliniciens de personnaliser les			Neuro
	paramètres d'acquisition EEG en			
	fonction des besoins de chaque			
	patient.			
EU04	Le système doit générer des	Souhaitable	Non	Chercheurs
	rapports de résultats clairs et		fonctionnelle	
	précis pour l'analyse de la			
	recherche.			
EU05	Le proket doit être documenté	Importante	Non	Practicien
	afin de faciliter son utilisation		fonctionnelle	Neuro,
	ainsi que la passation avec les			Chercheurs
	projets ultérieurs.			

Table 1 – Exigences utilisateur

2.4 Exigences système

ID	Libellé	Catégorie
ES01	Réalisation d'un code sous Python	Fonctionnelle
ES02	Le système doit être capable de détecter l'intention de	Performance
	mouvement du membre supérieur avec une précision	
	minimale de 80%	
ES03	Les résultats de l'algorithme de détection d'intention de	Performance
	mouvement seront cohérents et reproductibles sur différents	
	ensembles de données de patients post-AVC.	
ES04	Définir une méthode permettant de tester la validité et la	Performance
	fiabilité de la procédure de détection	
ES05	Le système doit offrir une interface utilisateur graphique	Interface
	conviviale pour les utilisateurs non spécialistes	
ES06	Le code doit être commenté et documenté afin de faciliter la	Fonctionnelle
	réutilisation ainsi que la passation avec les projets ultérieurs.	

Table 2 – Exigences Système

2.5 Hypothèses

- Le client garantit la fiabilité des données des patients, fournies sous forme anonymisée en format MATLAB.
- Un code de conversion de MATLAB à Python sera mis à disposition pour assurer la compatibilité des données.
- L'utilisation de Python est privilégiée pour faciliter l'intégration d'algorithmes de machine learning.
- L'interface homme-machine développée lors du précédent PIE sera intégrée dans notre projet actuel.
- Le commanditaire s'engage à collaborer étroitement avec l'équipe du projet, notamment en fournissant un accès aux sessions d'acquisition de données.
- La collaboration avec le Centre Hospitalier Universitaire (CHU) de Toulouse sera continue tout au long du projet, permettant une intégration harmonieuse de la solution dans le contexte clinique.
- La documentation fournie pour l'implémentation de l'algorithme sera suffisamment détaillée, permettant aux professionnels de la santé de comprendre et d'utiliser efficacement la technologie.

3 Préparation du projet

3.1 PBS - Organigramme produit

Product Breakdown Structure

FIGURE 1 – Product Breakdown Structure

3.2 WBS - Organigramme des travaux

Work Breakdown Structure

FIGURE 2 – Work Breakdown Structure

3.3 Diagramme de flux

FIGURE 3 – Diagramme de flux

3.4 Fiches détaillées

Fiche de tâche - WP1.1		
Titre : Lire de la bibliographie sur le pro-	Edition du :	
blème	20/11	
Description : S'approprier le sujet en effectu	ant une bibliogra-	
phie complète sur les thèmes suivants : le traitement de signal,		
la classification issue de signaux temporels e	et de signaux EEG	
Activités principales : Lecture active, prise	e de note, écriture	
d'une bibliographie		
Entrées nécessaires : ressources bibliographiques		
Sorties nécessaires : Synthèse détaillée de l'état de l'art		
date début : 02/10/2023	volume horaire:	
date debut . 02/10/2023	30h	
date fin: $18/12/2023$	durée : 2.5 mois	
ressources : articles scientifiques, livres	budget : X	
Responsable(s) : Jules GOMEL		

Fiche de tâche - WP1.2		
Titre : Comprendre la structure du PIE pré-	Edition du :	
cédent	20/11	
Description : Comprendre en profondeur la structure du PIE		
précédent afin d'identifier les éléments clés pouvant être récu-		
pérés et les points à améliorer.		
Activités principales : Compréhension, Analyse, Amélioration		
Entrées nécessaires : Rapports du PIE précédent		
Sorties nécessaires : Synthèse détaillée de l'état de l'art		
1-4- 141-4 . 09/10/9099	volume horaire:	
date début : $02/10/2023$	30h	
date fin: $7/11/2023$	durée : 1 mois	
ressources : équipe projet	budget : X	
Responsable(s) : Mathieu DARIO		

Fiche de tâche - WP1.3		
Titre : Comprendre la structure des données	Edition du :	
	20/11	
Description : Analyser en détail la structure des données afin		
de faciliter une implémentation efficace et cohérente des al-		
gorithmes, en identifiant les types de données, les sources, les		
formats, et en évaluant leur qualité.		
Activités principales : Compréhension, Analyse, Nettoyage		
Entrées nécessaires : Exemples de données provenant du CHU		
Sorties nécessaires : Synthèse détaillée de l'état de l'art		
date début : $02/10/2023$	volume horaire:	
date debut . 02/10/2025	30h	
date fin: $31/10/2023$	durée : 1 mois	
ressources : équipe projet	budget : X	
Responsable(s) : Julien DELAVANDE		

Fiche de tâche - WP2.1.1		
Titre : Intégrer les algorithmes à l'interface	Edition du :	
graphique	20/11	
Description : Réaliser l'intégration de tout	te la structure al-	
gorithmique à l'IHM. S'assurer du bon fonctionnement des		
algorithmes et de la facilité d'usage.		
Activités principales : Codage		
Entrées nécessaires : Réalisation et quali-	fication de l'algo-	
rithme		
Sorties nécessaires : Interface fonctionnelle	avec l'algorithme	
intégré		
date début : $01/01/2024$	volume horaire :	
date debut . 01/01/2024	20h	
date fin: $10/03/2024$	durée : 2.5 mois	
ressources : Environnement de gestion de ver-		
sion : GitHub, Environnement de codage :	budget : X	
Visual Studio Code		
Responsable(s) : Julien DELAVANDE	<u> </u>	

Fiche de tâche - WP2.2.1		
Titre : Comparer différentes méthodes de	Edition du :	
traitement du signal	20/11	
Description : Évaluer et comparer diverses n	néthodes de traite-	
ment du signal afin de sélectionner la plus adaptée aux besoins		
spécifiques du projet, en prenant en compte l'efficacité, la pré-		
cision et la faisabilité opérationnelle. Le but est d'avoir une		
évaluation complète des différentes métho	des de traitement	
du signal, avec une recommandation claire sur la méthode la		
plus appropriée en fonction des besoins du projet.		
Activités principales : Compréhension, Analyse, Nettoyage		
Entrées nécessaires : Synthèse détaillée de l'état de l'art		
Sorties nécessaires : Comparaison des méthodes de chaque		
module		
date début : $06/11/2023$	volume horaire:	
date debut : 00/11/2025	10h	
date fin: $15/01/2024$	durée : 2.5 mois	
ressources : équipe projet	budget : X	
Responsable(s) : Jules GOMEL		

Fiche de tâche - WP2.2.2		
Titre : Choisir et implémenter la meilleure	Edition du :	
méthode de traitement du signal	20/11	
Description : Sélectionner la méthode optim	nale de traitement	
du signal et la mettre en oeuvre de manière efficace dans le		
cadre du projet, en garantissant une intégration harmonieuse		
avec les exigeances spécifiques aux autres	parties du projet,	
tout en optimisant les performances.		
Activités principales : Intégration, Optimisation, Implémen-		
tation		
Entrées nécessaires : Comparaison des méthodes de chaque		
module		
Sorties nécessaires : Méthode choisies et implémentées pour		
chaque module		
date début : 06/11/2023	volume horaire :	
date debut . 00/11/2020	10h	
date fin: $15/01/2024$	durée : 2.5 mois	
ressources : équipe projet	budget : X	
Responsable(s) : Jules GOMEL		

Fiche de tâche - WP2.3.1			
Titre : Comparer différentes méthodes d'ex-	Edition du :		
traction de feature			
	20/11		
Description : Évaluer et comparer diverse	es méthodes d'ex-		
traction de features afin de sélectionner la	plus adaptée aux		
besoins spécifiques du projet, en prenant en compte la per-			
tinence des caractéristiques, la récupération et la faisabilité			
opérationnelle. Le but est d'avoir une évaluation complète des			
différentes caractéristiques à récupérer, avec une recomman-			
dation claire sur l'extraction la plus appropriée en fonction			
des besoins du projet.			
Activités principales : Compréhension, Ana	alyse, Nettoyage		
Entrées nécessaires : Synthèse détaillée de l'état de l'art			
Sorties nécessaires : Comparaison des méthodes de chaque			
module			
1.4. 1/1 4 01 /11 /0009	volume horaire:		
date début : $01/11/2023$	20h		
date fin: 29/11/2023	durée : 1 mois		
ressources : équipe projet	budget : X		
Responsable(s) : Rayanne IGBIDA			

Fiche de tâche - WP2.3.2		
Titre : Choisir et implémenter la meilleure	Edition du :	
méthode d'extraction de feature	20/11	
Description : Sélectionner la méthode opti	imale d'extraction	
de feature et la mettre en oeuvre de manière efficace dans le		
cadre du projet, en garantissant une intégration harmonieuse		
avec les exigeances spécifiques aux autres parties du projet,		
tout en optimisant les performances.		
Activités principales : Intégration, Optimisation, Implémen-		
tation		
Entrées nécessaires : Comparaison des méthodes de chaque		
module		
Sorties nécessaires : Méthode choisies et implémentées pour		
chaque module		
date début : 01/11/2023	volume horaire :	
date debut . 01/11/2020	20h	
date fin: $29/11/2023$	durée : 1 mois	
ressources : équipe projet	budget : X	
Responsable(s) : Rayanne IGBIDA		

	Edition du :	
classification 20		
Classification	0/11	
Description : Comparer les performances des	algorithmes de	
classification en terme de précision, de donn	nées d'entraîne-	
ments nécéssaires, de temps de calcul. Se baser sur des res-		
sources bibliographiques et des tests effectuer sur nos algo-		
rithmes.		
Activités principales : Analyse de performance		
Entrées nécessaires : Synthèse détaillée de l'état de l'art		
Sorties nécessaires : Comparaison des méthodes de chaque		
module		
date début : 01/12/2023	olume horaire:	
14	40h	
date fin: $01/03/2024$	urée : 3 mois	
ressources: Environnement de gestion de ver-		
sion : GitHub, Environnement de codage : b	udget: X	
Visual Studio Code, articles scientifiques		
Responsable(s) : Mathieu DARIO		

Fiche de tâche - WP2.4.2					
Titre : Choisir et implémenter le meilleur al- Edition du					
gorithme	20/11				
Description : Après comparaison des algorit	thmes, choisir l'al-				
gorithme le plus adapté à nos besoins.					
Activités principales : Programmation					
Entrées nécessaires : Comparaison des mé	thodes de chaque				
module					
Sorties nécessaires : Méthode choisies et in	mplémentées pour				
chaque module					
date début : 01/12/2023	volume horaire :				
date debut . 01/12/2029	140h				
date fin: $01/03/2024$	durée : 3 mois				
ressources : Environnement de gestion de ver-					
sion : GitHub, Environnement de codage : budget :					
Visual Studio Code, articles scientifiques					
Responsable(s) : Brice APPENZELLER					

Fiche de tâche - WP2.5.1				
Titre : Définir une métrique de validation	$\begin{array}{ccc} Edition & du & : \\ 20/11 & & & \end{array}$			
Description : Établir une métrique de valida	ation pertinente et			
significative pour évaluer l'efficacité et la pe	erformance de l'al-			
gorithme mis en place, permettant ainsi une	e mesure objective			
de la qualité des résultats.				
Activités principales : Compréhension des	objectifs, Identifi-			
cation des indicateurs clés, Choix des métr	iques			
Entrées nécessaires : Méthodes choisies pou	ır chaque module			
Sorties nécessaires : Définition de la métrie	que de développe-			
ment				
data début : 01 /01 /2024	volume horaire:			
date début : $01/01/2024$	15h			
date fin: $10/03/2024$	durée : 2.5 mois			
ressources : équipe projet budget : X				
Responsable(s) : Aurélien DENIAU				

Fiche de tâche - WP2.5.2				
Titre : Qualifier l'algorithme	$\begin{array}{ccc} Edition & du & : \\ 20/11 & & & \end{array}$			
Description : Évaluer et qualifier l'algorithm	ne pour garantir sa			
performance, sa robustesse, et sa fiabilité o	conformément aux			
exigeances du projet.				
Activités principales : Évaluation, Validation	ion sur des cas li-			
mites, Optimisation de la complexité, Rap	port de qualifica-			
tion				
Entrées nécessaires : Définition de la métri	que de développe-			
ment				
Sorties nécessaires : Qualification de l'algor	rithme			
data dábut + 01 /01 /2024	volume horaire:			
date début : $01/01/2024$	15h			
date fin: $10/03/2024$	durée : 2.5 mois			
ressources : équipe projet budget : X				
Responsable(s) : Aurélien DENIAU				

Fiche de tâche - WP3.1				
Titre : Rédiger le plan de développement	Edition du :			
Tivie : recaigor le plan de developpement	20/11			
Description : Élaborer un plan de développer	ment exhaustif qui			
détaille les étapes, les ressources nécessaires	s, les échéances, et			
les responsabilités afin de guider le projet.				
Activités principales : Analyse des exigenc	ces, Définition des			
objectifs, Identification des responsabilités	et des différentes			
gestions				
Entrées nécessaires : Réunions avec le clien	t			
Sorties nécessaires : Plan de développement	t rédigé			
data dábut + 10/10/2022	volume horaire:			
date début : $10/10/2023$	30h			
date fin: $01/12/2023$	durée : 2.5 mois			
ressources : équipe projet budget : X				
Responsable(s) : Jules GOMEL				

Fiche de tâche - WP3.2				
Titre : Rédiger les rapports	$\begin{array}{ c c c c }\hline Edition & du & :\\ 20/11 & & & \\ \hline \end{array}$			
Description : Produire des rapports clairs, matifs pour documenter les différentes phas	ses du projet, four-			
nir des mises à jour aux parties prenantes, analyse réfléchie des résultats.				
Activités principales : Structuration, Documation	Activités principales : Structuration, Documentation, Information			
Entrées nécessaires : Plan de développemen	nt rédigé			
Sorties nécessaires : Différents rapports réd	ligés			
date début : $10/10/2023$	volume horaire : 30h			
date fin: $18/03/2024$	durée : 5 mois			
ressources : équipe projet budget : X				
Responsable(s) : Jules GOMEL				

Fiche de tâche - WP3.3				
Titre : Rédiger le guide utilisateur	Edition du : $20/11$			
Description : Élaborer un guide utilisateur	complet et acces-			
sible afin d'assister les utilisateurs finaux	dans la prise en			
main, l'utilisation optimale et le dépannage	e de l'interface.			
Activités principales : Compréhension de l'a	audience, Structu-			
ration, Test utilisateur				
Entrées nécessaires : Interface fonctionnelle	e avec l'algorithme			
intégré				
Sorties nécessaires : Guide utilisateur				
date début : $01/02/2024$	volume horaire:			
date debut . 01/02/2024	30h			
date fin: $15/03/2024$	durée : 1.5 mois			
ressources : équipe projet budget : X				
Responsable(s) : Jules GOMEL				

3.5 Définition des ressources

Id Res	Nom	Profil
DG	Dr David Gasq	Expert en neurologie et enregistrant des données EEG
AC	Antoine Casta	Coach en gestion de projet
KCC	Kalou Cabrera	Responsable technique école
BA	Brice Appenzeller	Expert en Ingénierie financière
MD	Mathieu Dario	Expert en Data Science
AD	Aurélien Deniau	Expert en Observation de la Terre
JD	Julien Delavande	Expert en Data Science
JG	Jules Gomel	Expert en Traitement du signal
RI	Rayanne Igbida	Experte en Data Science

 ${\it TABLE 3-Ressources \ du \ projet \ (nom, \ profil)}$

3.6 Matrice RAM (Responsability Assignment Matrix)

Act/Ress	BA	MD	JD	AD	JG	RI	DG	KCC	AC
WP1.1.1	R	R	R	R	A/R	R	С	С	С
WP1.1.2	R	R	R	R	A/R	R	С	С	С
WP1.1.3	R	R	R	R	A/R	R	С	С	С
WP1.2	R	A/R	R	R	R	R	I	I	I
WP1.3	R	R	A/R	R	R	R	С	С	I
WP2.1.1	I	I	A/R	I	I	I	I	I	I
WP2.2.1	R	R	R	R	A/R	R	I	С	I
WP2.2.2	R	R	R	R	A/R	R	I	С	I
WP2.3.1	R	R	R	R	R	A/R	I	I	I
WP2.3.2	R	R	R	R	R	A/R	I	I	I
WP2.4.1	R	A/R	R	R	R	R	I	С	I
WP2.4.2	A/R	R	R	R	R	R	I	С	I
WP2.5.1	R	R	R	A/R	R	R	I	С	I
WP2.5.2	R	R	R	A	R	R	I	С	I
WP3.1	R	R	R	R	A/R	R	I	I	C/I
WP3.2	R	R	R	R	A/R	R	I	I	I
WP3.3	R	R	R	R	A/R	R	I	I	I
WP3.4	R	R	R	R	A/R	R	I	I	I

Table 4 – Matrice RAM

Légende : R : Responsable, A : Accountable, C : Consulted, I : Informed

3.7 Matrice des estimations

Act/Ress	BA	MD	JD	AD	JG	RI
WP1.1	5%	5%	5%	5%	5%	5%
WP1.2	5%	5%	5%	5%	5%	5%
WP1.3	5%	5%	5%	5%	5%	5%
WP2.1.1			20%			
WP2.2.1					10%	
WP2.2.2					10%	
WP2.3.1	5%	5%		5%		5%
WP2.3.2	5%	5%		5%		5%
WP2.4.1	25%	25%	20%	25%	20%	25%
WP2.4.2	25%	25%	20%	25%	20%	25%
WP2.5.1	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
WP2.5.2	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
WP3.1	5%	5%	5%	5%	5%	5%
WP3.2	5%	5%	5%	5%	5%	5%
WP3.3	5%	5%	5%	5%	5%	5%
WP3.4	5%	5%	5%	5%	5%	5%
Total %	100%	100%	100%	100%	100%	100%

Table 5 – Matrice des estimations

3.8 Planning et plan de charge

FIGURE 4 – Diagramme de Gant

3.9 Analyse de risque

La gestion des risques permet d'anticiper les risques, de limiter leur impact potentiel et de prévoir des stratégies de réponse. La matrice de risque ci-dessous permet d'identifier et de classifier selon la probabilité d'occurence et leur impact les principaux risques de notre projet.

ID	Risque	Impact	Proba Gravité Stratégie		ID	
Risqu	e		$(1 \ \text{à} \ 5)$	$(1 \ \text{à} \ 5)$	de réponse	Ré-
						ponse
R1	Fuite des données	Perte de	1	4	Pseudony-	A1
		confiance du			misation	
		client				
R2	Manque de communi-	Données peu	2	4	Réunions	A2
	cation entre les expéri-	compréhensibles				
	mentateurs et l'équipe					
R3	Le CHU n'a pas la ca-	Généralisation	4	3	Bases de	A3
	pacité de fournir beau-	des algorithmes			données	
	coup de données	difficiles			annexes	
R4	Manque de compé-	Le projet prend	3	2	Formations	A4
	tences au niveau des	du retard				
	outils utilisés					
R5	Difficulté d'accès aux	Le projet prend	1	4	Bases de	A5
	données	du retard et perd			données	
		en pertinence			annexes	

Table 6 – Matrice des risques

Figure 5 – Visualisation de la matrice des risques

ID Ré-	Réponse (Description textuelle	Responsable
ponse		
A1	Données pseudonymisées et stockées en	Client et Équipe pro-
	local	jet
A2	Organisation de réunions avec le client	Client
	afin d'assurer une bonne compréhen-	
	sion et une bonne utilisation des don-	
	nées	
A3	Recherche de bases de données annexes	Équipe projet
	et utilisation de modèles adaptés à	
	cette configuration, Apprentissage fru-	
	gal	
A4	Formation aux outils du projet auprès	Encadrants
	de professionnels	
A5	Recherche et utilisation de données an-	Équipe projet
	nexes	

Table 7 – Matrice des réponses aux risques

FIGURE 6 – Visualisation de la matrice des réponses aux risques

4 Management du projet

4.1 Métrique d'avancement du projet

Les métriques que nous utiliserons pour suivre l'avancement du projet dépendant de l'activité considérée.

ID	Lot ou Activité	Coût de réfé- rence	État d'avt nomi- nal
WP1.1	Lire la bibliographie sur le problème	30h	60%
WP1.2	Comprendre le PIE précédent	30h	100%
WP1.3	Comprendre la structure des données	30h	100%
WP2.1.1	Intégration à l'IHM	20h	0%
WP2.2.1	Comparer différentes méthodes de traitement du signal	10h	60%
WP2.2.2	Choisir et implémenter la meilleure méthode de traitement de données	10h	40%
WP2.3.1	Comparer différentes méthodes d'extraction de features	20h	70%
WP2.3.2	Choisir et implémenter la meilleure méthode d'extraction de features	20h	70%
WP2.4.1	Comparer différents algorithmes de classification	140h	23.33%
WP2.4.2	Choisir et implémenter le meilleur algorithme	140h	0%
WP2.5.1	Définir une métrique de validation	15h	2.5%
WP2.5.2	Qualifier l'algorithme	15h	0%
WP3.1	Rédiger le plan de développement	30h	90%
WP3.2	Rédiger les rapports	30h	33%
WP3.3	Rédiger le guide utilisateur	30h	0%
WP3.4	Préparer les soutenances	30h	0%
Total	Projet	600h	100%

Table 8 – Métrique d'avancement du projet

4.2 Courbe d'avancement

4.3 Processus de pilotage et réunions projet

Processus de pilotage

Notre projet s'appuie sur un processus de pilotage efficace :

- **Objectifs clairs :** Définir précisément nos objectifs pour une vision cohérente du projet.
- Plans : Créer des plans avec des dates pour guider la mise en œuvre.
- Surveillance continue : Identifier rapidement tout écart par rapport aux plans préétablis.
- **Décisions rapides :** Analyser les écarts et ajuster les plans en conséquence pour maintenir la trajectoire.

- Communication proactive : Partager régulièrement les performances, ajustements, et décisions avec toutes les parties prenantes.
- Adaptation continue : Un processus itératif qui s'ajuste constamment en fonction des changements et des enseignements du projet.

Cette approche garantit une gestion transparente, proactive et flexible, alignée sur nos objectifs de projet.

Réunions d'avancement

Au sein de notre équipe, pour notre processus de pilotage, notre organisation interne repose sur des réunions régulières durant les créneaux planifiés par l'école. Ces rencontres nous offrent l'occasion de discuter ouvertement de nos progrès individuels, des obstacles rencontrés et des objectifs à atteindre, tout en faisant le point sur les prochaines deadlines et en réévaluant nos tâches respetives si le besoin se fait ressentir. La fréquence de ces réunions est de l'ordre de une fois toute les semaines ou une fois toutes les deux semaines. Ces entrevues sont suivies d'un compte-rendu écrit, qui est diffusé à l'équipe projet.

Réunions de pilotage

Avec notre client, le Dr David Gasq, nous organisons des réunions régulières planifiées à l'avance car son emploi du temps est très chargé. Elles sont organisées environ toutes les trois semaines et sont l'occasion pour nous de présenter à notre client nos avancées récentes, et l'organisation de la suite. C'est aussi un moment privilégié pour lui faire part de nos questionnements et de nos besoins d'actions ou de ressources de sa part. Ces entrevues sont suivies d'un compte-rendu écrit, qui est diffusé à l'équipe projet.

4.4 Tableau de bord et suivi de projet

Les indicateurs de suivi de projet dans notre cadre peuvent être définis comme suit : État d'avancement :

- suivi du développement de l'algorithme à chaque étape, de la collecte des données à l'entraînement du modèle. Les livrables permettent également de structurer l'avancement.
- Évaluation régulière des performances de l'algorithme à l'aide des jeux de données dont nous disposons.

Mesure des écarts:

- Comparaison des résultats attendus par David GASQ avec les résultats réels de l'algorithme. Le CHU attend que nous améliorions les performances obtenus avec l'algorithme du PIE précédent.
- Identification et gestion proactive des écarts par rapport aux objectifs définis initialement.

Courbes d'avancement :

- Utilisation de courbes de performance pour représenter graphiquement l'évolution du projet pour chaque point du WBS.
- Analyse des tendances pour anticiper les possibles ajustements nécessaires à l'amélioration continue.

Tableau de bord :

— Utilisation régulière du diagramme de Gantt pour mettre à jour et suivre l'avancement du projet.

Fréquence de mise à jour :

- Réunions toutes les deux/trois semaines avec Dr GASQ pour le tenir au courant de notre avancement et avoir un avis expert sur nos décisions.
- Réunions toutes les semaines entre les membres de l'équipe projet afin et discuter des résultats, des défis et des ajustements potentiels.

Diffusion:

- Communication régulière des progrès aux membres de l'équipe et aux parties prenantes.
- Comptes rendus de chaque réunion diffusés aux membres de l'équipe.