Compression isotherme d'une vapeur d'eau

Un récipient de volume initial $V_i = 3.0$ L contient seulement m = 1.0 g d'eau à la température $t_0 = 100$ °C. On donne la pression de vapeur saturante à t_0 , $P_v = 1.0$ atm, l'enthalpie massique de vaporisation $\Delta h_{\rm vap} = 2.26 \times 10^3 \, {\rm J \cdot g^{-1}}$ à la température t_0 . On considère la vapeur d'eau sèche comme un gaz parfait.

Par déplacement réversible d'un piston, on réalise sur ce système une compression isotherme réversible jusqu'au volume final $V_f=1.0\,\mathrm{L}$.

On donne

$$R = 8.314 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1} \quad ; \quad M_{\mathrm{eau}} = 18 \,\mathrm{g} \cdot \mathrm{mol}^{-1}$$

- 1. Préciser la composition du système dans les états initial et final.
- 2. Calculer le travail W et le transfert thermique Q reçus par le système.

Un glaçon et de la vapeur d'eau

On considère une enceinte calorifugée et maintenue à pression constante $P_0 = 1,0$ bar. Initialement l'enceinte contient une masse $(1 - \alpha)m$ de vapeur d'eau à la température d'ébullition de l'eau sous la pression P_0 , soit $T_{\rm eb} = 373\,\rm K$. On introduit dans l'enceinte un glaçon de masse αm dont la température initiale est la température de fusion de l'eau solide sous la pression P_0 , soit $T_{\rm fus} = 273\,\rm K$. La masse totale d'eau dans l'enceinte est donc égale à m.

- 1. Expliquer qualitativement ce qui va se passer dans l'enceinte. On pourra s'aider d'un schéma.
- 2. Déterminer la composition du système dans l'état final lorsque la température finale est égale à $T_{\rm fus}$. Montrer qu'un tel état final n'est possible que si α est supérieur à une valeur minimale $\alpha_{\rm min}$ à préciser.
- 3. Déterminer la composition du système dans l'état final lorsque la température finale est égale cette fois à $T_{\rm eb}$. Montrer qu'un tel état final n'est possible que si α est inférieur à une valeur maximale $\alpha_{\rm max}$ à préciser.
- 4. Déterminer la température finale T du système dans l'état final lorsque $\alpha_{\min} < \alpha < \alpha_{\max}$.
- 5. La valeur numérique pour $\alpha=0.8$ de la température finale est 339,89 K. Que pouvez-vus en conclure ?

Données.

- * enthalpie de vaporisation $l_{\rm vap} = 2.3 \times 10^6 \,\mathrm{J/kg}$,
- * enthalpie de fusion $l_{\text{fus}} = 330 \cdot \text{kJ/kg}$,
- * capacité thermique de l'eau liquide $c = 4.18 \,\mathrm{kJ \cdot kg^{-1} \cdot K^{-1}}$.

I | Variation d'entropie pour N transformations

Soit n moles de gaz (n = 1) parfait à la pression p = 1 bar et à température la $T_0 = 450 \,\mathrm{K}$ (état 0). On comprime ce gaz de la pression p à p' = 10 bar de façon réversible et isotherme, puis, on détend le gaz de façon réversible et adiabatique de p' à p (état 1).

- 1. Représentez la suite des transformations dans un diagramme de Watt (p,V).
- 2. Calculez la température finale T_1 du gaz ainsi que la variation d'entropie ΔS_1 en fonction de n, p et p' et R la constante des gaz parfaits (On pourra utiliser l'expression de C_p en fonction de γ pour simplifier le résultat). Faire l'application numérique.
- 3. On recommence la même opération depuis l'état 1 $(p,T_1) \rightarrow$ état 2 $(p,T_2) \rightarrow ... \rightarrow$ état N (p,T_N) . Complétez le diagramme de Watt et déterminez la variation d'entropie du gaz après les N opérations ainsi que la température finale T_N et enfin la variation d'énergie interne ΔU_N en supposant le gaz parfait monoatomique.

Faîtes ensuite les applications numériques pour N=5.

4. Voyez-vous une application? Discuter l'hypothèse du gaz parfait si N grand

 $Rappel\ pour\ un\ GP$:

$$S_m(T_f, p_f) - S_m(T_i, p_i) = C_{p,m} \ln \frac{T_f}{T_i} - R \ln \frac{p_f}{p_i}$$

Chauffage isobare d'un gaz parfait

On considère une enceinte calorifugée, fermée par un piston libre de coulisser sans frottements, contenant un gaz parfait. La pression extérieure est notée p_0 . Initialement, le volume de l'enceinte est $V = V_0$, la température et la pression du gaz T_0 et p_0 .

Il y a dans l'enceinte un résistor de capacité thermique négligeable, alimenté par un générateur de courant idéal délivrant l'intensité I supposée faible.

On considère dans un premier temps que la résistance du résistor est constante : R_0

- 1. Réaliser un schéma de l'expérience.
- 2. Justifier que la transformation subie par le gaz parfait présent dans l'enceinte est quasi-statique et isobare.
- 3. Déterminer l'évolution de la température du gaz au cours à l'instant t. On pourra pour cela appliquer le premier principe de la thermodynamique à un système judicieusement choisi entre l'instant initial $t_0 = 0$ et l'instant t.
- 4. En déduire l'expression de l'évolution du volume V au cours du temps.

On considère maintenant que la résistance varie avec la température selon la loi $R(T) = R_0 \frac{T}{T_0}$.

5. Reprendre alors les questions 3 et 4.