```
Eine Woche, ein Beispiel
11.19. Basic sheaf calculation
```

Goal. Motivate f*, f*, f!, f', by connecting them with (co) homology theory

```
After story ~> calculation of Perv_(CIP') 
~> generalize Morse theory
                 ~> Characteristic classes/cycles
                 ~> index theorem
Minor advantages from my talk.
         - offers examples for derived category.
            (more geometrical compared with examples about quiver reps)
         - the first step toward 6-fctor formalism.
              · formal nonsense: adjointness, open-closed, SES(triangles)

    application:

                              Riemann-Roch, Serre duality, index theorem (guess)
                 w understand cpt RS, Weil conj, ...
                glue: open-closed, cellular fibration, Morse theory, ...
covering: (étale) descent, ramification, ...
              · glue:
                Three types closed immersion, submersion, covering.
Usual setting: X & Top
           Obj(Sh(x)) = \{sheaves of abelian gps\}
e.p. Sh(\{x\}) = Abel
```

```
0. sheaf
1. fx, skyscraper sheaf & global sections
2. f*, constant sheaf & stalks
3. Rfx
4. f!
5. Rf:
6. f'
8 dobal sections with cpt supp
8 cohomology with cpt supp
8 homology
Poincaré duality.
```

Ref:

O. Sheaf

https://mathoverflow.net/questions/4214/equivalence-of-grothendieck-style-versus-cech-style-sheaf-cohomology If X is paracompact and Hausdorff, Cech cohomology coincides with Grothendieck cohomology for ALL SHEAVES

Recall examples of sheaves:

complicated
$$S$$
 · C_X : sheaf of cont fcts on X

· O_X : structure sheaf on X

• O_X : constant sheaf on X

• S_X : constant sheaf on X

• S_X : constant sheaf of S_X : on S_X : $S_$

Ex. For
$$X = \mathbb{C}$$
 as cplx mfld, $x = 0$, compute
$$(\underline{Q}_X)_x \subseteq (\mathcal{O}_X)_x \subseteq (\mathcal{C}_X)_x \qquad \& (sky_p(Q))_x.$$

1. f., skyscraper sheaf & global sections

Setting $X, Y \in Top$, $F \in Sh(Y)$, $f: Y \longrightarrow X$ cont

Def.
$$f_*F \in Sh(X)$$
 is given by $f_*F(\mathcal{U}) = F(f'(\mathcal{U}))$ This defines a fctor $f_*: Sh(Y) \longrightarrow Sh(X)$ \mathcal{I}

E.g. For
$$p \in X$$
, $(p : \hat{p}) \longrightarrow X$, $(p * Q_{\hat{p}}) = sky_p(Q)$
For $\pi: Y \longrightarrow \{*\}$, $\pi_* \mathcal{F} = \mathcal{F}(Y) = \Gamma(Y; \mathcal{F})$

2. f^* , constant sheaf & stalks In [Vakil, Chapter 2], it is f^- , the inverse image functor.

Setting $X, Y \in Top$, $F \in Sh(X)$, $f: Y \longrightarrow X$ cont

Def.
$$f^*F \in Sh(Y)$$
 is given by sheafification of

$$f^{*,pre}\mathcal{F}(\mathcal{U}) = \underset{f(\mathcal{U}) \in \mathcal{V}}{\underline{\lim}} \mathcal{F}(\mathcal{V})$$

This defines a fctor $f^{*}. Sh(X) \longrightarrow Sh(Y)$

Recall:

$$\mathcal{F}^{sh}(\mathcal{U}) = \begin{cases} (x_p)_p \in \overline{\Pi} \mathcal{F}_p \end{cases}$$