Exploring Longitudinal Pulmonary Exacerbation Outcome Trajectories in Cystic Fibrosis Patients

Brenton Graham 12/5/22

Cystic Fibrosis (CF)

- Hereditary disease which involves production of abnormally viscous mucus
- Early airway vulnerability to chronic bacterial infections
- Most common life-threatening autosomal recessive disease in US
 - Affects 1 in 4000 newborns
 - No known cure

Pulmonary Exacerbations (PExs)

- Significant life events ("lung attacks") in people with CF
- Associated with declining lung function, reduced quality of life, hospitalizations, and decreased survival
- A leading cause of morbidity in CF
- Treatment response often suboptimal despite seemingly appropriate antimicrobial therapy
- PEx-related outcomes (markers)
 - FEV-1: Measure of lung function
 - <u>PEx Score</u>: Self-evaluated score of PEx severity
 - CRP: Marker of inflammation
 - <u>Neutrophil Elastase:</u> Secreted during inflammation; destroys bacteria and host tissue

Study Design

- Participants include CF patients hospitalized at the onset of a PEx
 - 34 CF patients and 39 PExs (5 subjects with multiple PEx)
- Subjects evaluated at three timepoints separated by 10-14 days
 - T1: Admission (PEx onset) *least healthy*
 - **T2:** Hospital discharge *most healthy*
 - T3: Follow-up *somewhere in between*
- At each time point subjects were evaluated for...
 - PEx-related clinical outcomes
 - CF pathogen detection (Culture and 16S)

PEx-Related Outcomes

Project Aim

- Outcome of Interest: Neutrophil elastase
 - Inflammatory marker that suggests lung disease
 - "If you can detect elastase, disease is in progression"
- Question: Are there any baseline risk factors associated with outcome trajectory (treatment response)?
- Hypotheses
 - <u>Hypothesis 1:</u> There exist sub-groups in our population that experience separable outcome trajectories (treatment response)
 - <u>Hypothesis 2:</u> There exist baseline risk factors that are associated with said sub-groups

Latent Class Analysis (LCA)

- LCA is a longitudinal (LMM) framework that can be used for clustering repeated responses based on similar patterns
 - This project: we want to cluster subjects based on treatment response over time
- Longitudinal piece
 - LMM framework
 - Can specify random effects and correlation structures that shape
- Fitting a latent class mixed model
 - Icmm package in R
 - Must specify the number of latent classes
 - Model selection process used to determine the optimal # of classes

Latent Class Mixed Model

- Model specifications
 - Fixed effects: Time (as class variable)
 - Random effects
 - Random intercept for subject
 - Random effect for time
 - Correlation structure
 - Tried both unstructured and UN(1) equivalent from SAS
 - Number of latent classes
 - Varied between 2-5 classes

Unstructured UN $\begin{bmatrix} \sigma_1^2 & \sigma_{21} & \sigma_{31} & \sigma_{41} \\ \sigma_{21} & \sigma_2^2 & \sigma_{32} & \sigma_{42} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 & \sigma_{43} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_4^2 \end{bmatrix}$ Banded main diagonal $\begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 \end{bmatrix}$

LCMM Model Selection

- Model selection process
 - Considering a mixture of AIC, adjusted BIC, latent class balance, and visualizations to assess which model makes the most sense
 - Decision: 4 LC, diagonal variancecovariance structure for random effects

Table 2: Model comparison of latent class mixed-models fit with different numbers of latent classes

	Latent Classes	AIC	LC1	LC2	LC3	LC4	LC5
m2	2	390.5	66.7%	33.3%			
m2.unstr	2	394.4	66.7%	33.3%			
m3	3	391.7	69.2%	23.1%	7.7%		
m3.unstr	3	395.4	48.7%	30.8%	20.5%		
m4	4	392.3	41%	20.5%	12.8%	25.6%	
m4.unstr	4	396.4	48.7%	20.5%	10.3%	20.5%	
m5	5	392.8	43.6%	20.5%	10.3%	17.9%	7.7%
m5.unstr	5	404.4	43.6%	10.3%	17.9%	17.9%	10.3%

LCMM Selected Model

#	Variance-covar	riance matr	rix of the rand	dom-effects:
#		intercept	${\tt time Discharge}$	timeFollow-Up
#	intercept	0.77158		
#	${\tt time Discharge}$	0.00000	0.16506	
#	timeFollow-Up	0.00000	0.00000	0.6319
#				
#			coef	Se
#	Residual stand	dard error	0.28291 0.14	1426

LC	Baseline Elastase	Treatment Response
1	High	Non-Responder
2	High	Responder
3	Low	Non-Responder
4	Low	Responder

• LCMM model also reports the probability of an observation belonging to each latent class

LCMM Selected Model Inference

Post-Hoc Analysis

Final Step

• Use something like multinomial regression or binomial regression to assess baseline risk factor differences between latent classes; can use table 1 and data visualizations also to guide comparisons

Table 1: Demographics for study population by hard-drug use

	High, Non-Responder	High, Responder	Low, Non-Responder	Low, Responder
n	8	5	16	10
Female (%)	4 (50.0)	0 (0.0)	10 (62.5)	5 (50.0)
Age	15.50 [13.00, 20.00]	16.00 [12.00, 18.00]	15.73 [11.93, 19.90]	17.77 [12.91, 22.05]
BMI	19.98 [16.97, 23.00]	18.51 [17.95, 20.48]	19.57 [16.42, 28.70]	19.89 [16.61, 25.14]
Mutations				
0 F508del	2 (25.0)	0 (0.0)	1 (6.2)	1 (10.0)
1 F508del	4 (50.0)	2 (40.0)	5 (31.2)	1 (10.0)
2 F508del	2 (25.0)	3 (60.0)	10 (62.5)	8 (80.0)
Virus Present (%)	1 (12.5)	0 (0.0)	7 (46.7)	2 (28.6)
Pseudomonas	4.54 [-0.81, 11.51]	5.09 [4.54, 5.74]	3.48 [-0.99, 10.78]	3.48 [-0.82, 12.23]
Staph Aureus	8.68 [-0.77, 12.47]	12.51 [6.33, 12.70]	5.31 [-0.96, 13.17]	6.55 [-1.04, 10.83]
Achromobacter	-0.71 [-1.07, 3.78]	-0.63 [-1.14, -0.28]	-0.50 [-0.95, 10.20]	-0.63 [-1.12, 12.07]
HFlu	1.07 [-0.86, 10.65]	4.45 [-0.63, 7.38]	3.31 [-0.79, 7.63]	5.54 [-0.82, 12.20]
Smalto	-0.79 [-1.07, -0.56]	-0.63 [-1.14, 6.23]	1.94 [-0.99, 12.01]	1.51 [-0.82, 6.37]
Burkholderia	1.10 [-0.86, 3.67]	-0.63 [-1.14, -0.28]	-0.68 [-0.99, 3.22]	-0.56 [-1.12, 12.85]

Limitations

- In general, we should be careful about using latent class assignments as actual classes
- Sample size is a serious limitation here
- Results are exploratory; shouldn't necessarily use the results for inference