1. Dataset Overview

This dataset simulates the internal characteristics of 50 software modules or projects. Each sample is defined by commonly used **software metrics**, and its quality is labeled based on a weighted logic formula that reflects real-world quality considerations.

2. Features in the Dataset

Feature Name Description

Lines of Code (range: 500–10,000). Larger size often means more maintenance cost

and complexity.

Cyclomatic_Complexity Indicates decision paths in code (range: 3–20). Higher value = harder to test and

maintain.

Frequency of code changes (range: 10–200). High churn can indicate instability.

Coupling Inter-module dependency (range: 1–9). High coupling decreases modularity.

Bugs_Reported Total bugs reported (range: 0–24). Directly reflects software defects.

3. Target Variable

Column Name

Description

Quality_Label Assigned as High, Medium, or Low based on an aggregate quality score computed from the above features.

4. Logic Behind Label Assignment

Each sample gets a quality score using the following weighted formula:

```
makefile
CopyEdit
Quality_Score =
    0.25 × (1 - LoC / 10000) +
    0.20 × (1 - Cyclomatic_Complexity / 20) +
    0.20 × (1 - Code_Churn / 200) +
    0.15 × (1 - Coupling / 10) +
    0.20 × (1 - Bugs_Reported / 25)
```

Then the labels are assigned:

- **High** \rightarrow if score > 0.7
- **Medium** \rightarrow if $0.4 < \text{score} \le 0.7$
- Low \rightarrow if score < 0.4

5. Why This Dataset is Useful

- Mimics real-world software quality scenarios
- Allows comparison of ML models like Decision Tree, Random Forest, SVM, etc.
- Fully labeled and clean ideal for training and testing classification models
- Scalable for larger experiments
- Useful in academic and industrial research for defect prediction or quality estimation

Scientific Purpose of the Dataset

This dataset is intended for **predictive software quality analysis** — the goal is to forecast whether a codebase (or module) will have **High, Medium, or Low quality** based on measurable software metrics.

The mathematics behind this dataset comes from software engineering metrics theory, mainly:

- McCabe's Cyclomatic Complexity theory for logic branches
- Code Churn theory for code evolution & maintainability
- Coupling measurement theory for dependency risks
- Defect density & bug tracking mathematics for quality assessment
- Weighted scoring systems for classification into quality categories

Each row includes:

- LOC (Lines of Code)
- Cyclomatic Complexity (Code logic branches)
- Code_Churn (Code changes over time)
- Coupling (Interdependence between modules)
- Bugs_Reported (Reported defects)
- Quality Label: {High, Medium, Low} based on a weighted scoring system

2. Mathematical Meaning of Each Feature

(a) LOC - Lines of Code

- Definition: Total number of physical lines of source code in a module/class.
- Mathematical Relation to Quality:
 Higher LOC often → Higher complexity & maintenance cost (but too low LOC might mean underdeveloped functionality).
- Typical formula for productivity impact:

$$\text{Defect Density} = \frac{\text{Bugs Reported}}{\text{KLOC}}$$

where KLOC =
$$\frac{LOC}{1000}$$

(b) Cyclomatic Complexity (CC)

- **Definition:** McCabe's metric for measuring independent paths in a program's control flow graph.
- Formula:

$$CC = E - N + 2P$$

where:

- E =Number of edges in the control flow graph
- N = Number of nodes
- P = Number of connected components (usually 1 for a single program)
- Interpretation:
 - $CC \le 10 \rightarrow Simple$
 - $10 < CC \le 20 \rightarrow Moderate risk$
 - $CC > 20 \rightarrow Complex$, high maintenance risk

(c) Code Churn

- **Definition:** Number of lines of code added, modified, or deleted over a given time period.
- Formula:

$$\mbox{Churn Rate} = \frac{\mbox{LOC Added} + \mbox{LOC Modified} + \mbox{LOC Deleted}}{\mbox{Total LOC}}$$

• Impact on Quality:

High churn \rightarrow unstable codebase \rightarrow higher bug introduction probability.

(d) Coupling

- **Definition:** Degree of interdependence between software modules/classes.
- Mathematical Representation:

Often measured as CBO (Coupling Between Objects):

CBO = Number of distinct classes/modules referenced

• Impact:

Higher coupling \rightarrow More ripple effects from changes \rightarrow Lower maintainability & higher defect risk.

(e) Bugs_Reported

- **Definition:** Number of confirmed defects found during testing or production.
- Defect Density Formula:

$$Defect \ Density = \frac{Bugs \ Reported}{KLOC}$$

• Impact:

More bugs \rightarrow Lower perceived quality.

3. Label Logic – Weighted Scoring

The Quality_Label is assigned via a weighted scoring function that integrates all the above metrics.

Example formula:

Score =
$$w_1 \cdot \frac{1}{LOC} + w_2 \cdot \frac{1}{CC} + w_3 \cdot \frac{1}{Churn Rate} + w_4 \cdot \frac{1}{Coupling} + w_5 \cdot \frac{1}{Bugs Reported}$$

Weights $(w_1, w_2, ..., w_5)$ are determined experimentally.

Classification:

• **High Quality:** Score ≥ threshold_H

Medium Quality: threshold_L ≤ Score < threshold_H

Low Quality: Score < threshold_L

4. Mathematical Science Behind the Model

When you feed this dataset to a machine learning model (e.g., Decision Tree, Random Forest, Logistic Regression), the mathematics involves:

• Feature space:

 $X = \{LOC, CC, Churn, Coupling, Bugs\}$

• Label space:

 $Y \in \{\text{High,Medium,Low}\}\$

• **Goal:** Learn the mapping $f: X \to Y$

For example, Logistic Regression would model:

$$P(\text{High Quality } \mid X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot LOC + \dots + \beta_5 \cdot Bugs)}}$$

5. Why This Dataset is Balanced

A balanced dataset ensures each quality class (High/Medium/Low) has **equal representation**, reducing bias in classification. Mathematically:

$$P(\mathsf{High}) \approx P(\mathsf{Medium}) \approx P(\mathsf{Low}) \approx \frac{1}{3}$$

This prevents skewed decision boundaries.

Machine Learning Model:

Data set info:

	LOC	${\bf Cyclomatic_Complexity}$	Code_Churn	Coupling	Bugs_Reported	Quality_Label
0	2324	3	199	5	7	Medium
1	4157	7	198	2	21	Medium
2	9435	5	161	7	1	Medium
3	988	5	65	4	16	Medium
4	934	20	60	9	13	Medium

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 6 columns):
# Column
                         Non-Null Count
                                        Dtype
   LOC
0
                         150000 non-null int64
1 Cyclomatic_Complexity 150000 non-null int64
2 Code_Churn 150000 non-null int64
3 Coupling
                       150000 non-null int64
4 Bugs_Reported
                      150000 non-null int64
5 Quality_Label
                       150000 non-null object
dtypes: int64(5), object(1)
memory usage: 6.9+ MB
```

Quality_Label Medium 67991 Low 46806 High 35203

Name: count, dtype: int64

Correlation matrix:

Distributions:

Feature co-relation matrix:

Final Feature Distribution:

Scaling before and after:

Results:

Logisitic Regression

Model performance for Training set

Accuracy: 0.9985F1 Score: 0.9985Precision: 0.9985Recall: 0.9985

- ROC AUC Score: 1.0000

Model performance for Test set

Accuracy: 0.9983F1 Score: 0.9983Precision: 0.9983Recall: 0.9983

- ROC AUC Score: 1.0000

knn

Model performance for Training set

Accuracy: 0.9933F1 Score: 0.9933Precision: 0.9933Recall: 0.9933

- ROC AUC Score: 0.9999

Model performance for Test set

- Accuracy: 0.9890 - F1 Score: 0.9890 - Precision: 0.9890 - Recall: 0.9890

- ROC AUC Score: 0.9993

NB

Model performance for Training set

Accuracy: 0.9134F1 Score: 0.9132Precision: 0.9132Recall: 0.9134

- ROC AUC Score: 0.9767

Model performance for Test set

Accuracy: 0.9109F1 Score: 0.9106Precision: 0.9106Recall: 0.9109

- ROC AUC Score: 0.9753

Decision Tree

Model performance for Training set

- Accuracy: 1.0000 - F1 Score: 1.0000 - Precision: 1.0000 - Recall: 1.0000

- ROC AUC Score: 1.0000

Model performance for Test set

Accuracy: 0.9753F1 Score: 0.9753Precision: 0.9753Recall: 0.9753

- ROC AUC Score: 0.9798

Adaboost

Model performance for Training set

Accuracy: 0.9786F1 Score: 0.9785Precision: 0.9792Recall: 0.9786

- ROC AUC Score: 0.9960

Model performance for Test set
- Accuracy: 0.9779
- F1 Score: 0.9779

- Precision: 0.9786 - Recall: 0.9779

- ROC AUC Score: 0.9957

Gausian

Model performance for Training set

Accuracy: 0.9436F1 Score: 0.9432Precision: 0.9498Recall: 0.9436

- ROC AUC Score: 0.9955

Model performance for Test set

Accuracy: 0.9419F1 Score: 0.9414Precision: 0.9485Recall: 0.9419

- ROC AUC Score: 0.9953

Gradient Boost

Model performance for Training set

Accuracy: 0.9879F1 Score: 0.9879Precision: 0.9881Recall: 0.9879

- ROC AUC Score: 0.9997

Model performance for Test set

Accuracy: 0.9853F1 Score: 0.9853Precision: 0.9856Recall: 0.9853

- ROC AUC Score: 0.9997

Xgboost

Model performance for Training set

Accuracy: 1.0000F1 Score: 0.9999Precision: 1.0000Recall: 1.0000

- ROC AUC Score: 1.0000

Model performance for Test set

Accuracy: 0.9932F1 Score: 0.9932Precision: 0.9932Recall: 0.9932

- ROC AUC Score: 0.9999

svm

Model performance for Training set

Accuracy: 0.9976F1 Score: 0.9976Precision: 0.9976Recall: 0.9976

- ROC AUC Score: 0.9999

Model performance for Test set

Accuracy: 0.9972F1 Score: 0.9972Precision: 0.9972Recall: 0.9972

- ROC AUC Score: 0.9999

Random Forest

Model performance for Training set

- Accuracy: 1.0000 - F1 Score: 1.0000 - Precision: 1.0000 - Recall: 1.0000

- ROC AUC Score: 1.0000

Model performance for Test set

Accuracy: 0.9878F1 Score: 0.9878Precision: 0.9878

- Recall: 0.9878

- ROC AUC Score: 0.9997