The Association of Crime Occurrence on Rates of Suspensions and Expulsions in Chicago Public Schools Using Double Hurdle Models

Nicholas Fox, John Cote, Dr. Earvin Balderama
Department of Mathematics & Statistics, Loyola University Chicago, Chicago, IL, USA

Motivation

- ► Goal:
 - ▶ To gain a better understanding of factors that may influence student explusion
- **▶** Steps:
 - ▷ Investigate potential factors leading to student expulsion
 - Analyze the effects of the amount of violent crime in a school attendance boundary
 - Examine spatial effects of school attendance boundaries

Model

Priors for Beta and Alpha Parameters

 $eta_{j} \sim Normal(0, 100)$ $lpha_{i} \sim Normal(0, 1000)$ (1

Negative Binomial and Generalized Pareto Distribution Double Hurdles Models

p = P(zero-count)

 $\mathsf{logit}(\mathsf{p}) = \mathsf{X} \gamma + \mathsf{V} lpha$

 μ = mean of typical-count distribution.

 $\log(\mu) = \log(School.Pop) + X\beta + V\alpha$

q = P(large-count | nonzero-count)

 $\mathsf{logit}(\mathsf{q}) = \mathsf{X} \delta$

Data

- Chicago Data Portal
 - Chicago Crime Records for the year 2015
 - Shapefiles for CPS attendance boundaries
- Chicago Public School Data from the CPS Website
 - Attendance records
 - Education quality scores
- Standardized test scores
- Suspension, expulsion, and misconduct information

Model Variables and Results

Response data:

Expulsions \rightarrow Expulsions counts for each Chicago Public School Suspensions \rightarrow Suspension counts for each Chicago Public School Model Covariates covariates:

- Common Covariates
 - $\mathbf{x}_1 \mathbf{x}_3 =$ Ethnicity counts for schools; White, African American, Hispanic respectively
 - x_4 = Number of misconducts per school
- Unique Elementary School Covariates
 - $\mathbf{x}_5 =$ School quality score
 - $\mathbf{x}_6 = \mathsf{PARCC}$ average math score
 - $\mathbf{x}_7 = \mathsf{PARCC}$ English Language Arts average score
 - \mathbf{x}_8 = Crime counts based on school attendance boundary
- Unique High School Covariates
 - \mathbf{x}_5 = Average ACT composite score per school
 - \mathbf{x}_6 = Crime counts based on school attendance boundary
 - $\mathbf{x}_7 =$ School quality score
- Spatial Random Effects are included for each model

Crime Regression Coefficients for Elementary School Models

Figure: Expulsion Models for Elementary Schools

Figure: Suspension Models for Elementary Schools

Crime Regression Coefficients for High School Models

Figure: Expulsion Models for High Schools

Figure: Suspension Models for High Schools

► Interpretation Example: The odds of having zero expulsions decreases by 40.6% for every one standard deviation increase in the amount of crime

Model Diagnostics

Model	DIC	СРО	PPO	Model	DIC	СРО	PPO
GPD-Hurdle	189.0624	0.906428	0.910272	GPD-Hurdle	3891.406	0.009427	0.0
Double-Hurdle	186.6292	0.906297	0.909889	Double-Hurdle	3901.314	0.008998	0.0
NB-Hurdle	187.1526	0.90624	0.910572	NB-Hurdle	3891.117	0.009428	0.0

Figure: Elemetary School Expulsion Diagnostic (left) and Suspension Diagnostics (right)

Model	DIC	СРО	PPO	Model	DIC	CPO	PPO
GPD-Hurdle	399.6648	0.425075	0.445602	GPD-Hurdle	1140.971	0.010367	0.010546
Double-Hurdle	370.6124	0.422647	0.449454	Double Hurdle	1045.549	0.045831	0.060184
NB-Hurdle	371.3801	0.430773	0.455491	NB Hurdle	1135.263	0.015739	0.01652

Figure: High School Expulsion Diagnostic (left) and Suspension Diagnostics (right)

Discussion of Results

- Demographics
 - □ These factors were mostly insignificant
 - A couple were barely significant in a couple models, however overall not very important
- ► Test Scores
 - ▶ Test scores were used to look at student performance and were used as a proxy for student motivation
 - ▶ Most significant when modelling the mean number of non-zero expulsion counts
- Misconducts
 - ▶ The number of misconducts was significant in the majority of the models run
- □ This is expected, as with more misconducts we expect more suspensions and expulsions
- Quality Scores
 - A quality score provided by CPS for each school
- ▶ Found to be insignificant in the majority of the models
- Violent Crime Frequency
 - ▶ Crime frequency was found to be mostly insignificant for zero counts of suspensions and expulsions
 - Found to have a positive relationship between the amount violent crime and the mean number of suspension and expulsions for most cases
- Spatial Random Effects

Future Considerations

- Consider temporal factors as potentially affecting suspensions and expulsions
- Consider more types of crime than just violent crime
- Consider physical distances of crimes to a school

Acknowledgements

- ► Software Used: (www.r-project.org)
- Data obtained from the Chicago Data Portal and Chicago Public Schools Data Page
- Special thanks to the Loyola University Chicago Department of Mathematics and Statsitics