V. Operators in Inner Product Space

Convention

이 장에서 특별한 언급이 없다면 다음을 가정한다.

- 1. F는 C or ℝ 이다.
- 2. $V, W = \text{finite dimensional vector space over } \mathbb{F}$ 이다.

1. Self-Adjoint and Normal Operators

Definition: Adjoint of an operator, Hermitian operator

 $T \in \mathcal{L}(V,W)$ 일 때 $T^*: V \to W$ s.t. $\langle w|Tv \rangle = \langle T^{\dagger}w|v \rangle$ for all $w \in W$ and $v \in V$ 인 T^{\dagger} 를 adjoint of T 라 한다. $T \in \mathcal{L}(V)$ 일 때 $T = T^{\dagger}$ 이면 T를 Hermitian operator 혹은 self-adjoint operator 라 한다.

Lemma 1.1.

 $T^{\dagger}:W
ightarrow V$ is a linear map.

Proof is trivial.

Theorem 1.2.

 $S, T \in \mathcal{L}(V, W)$ 이고 $\lambda \in \mathbb{C}$ 일 때 다음이 성립한다.

(a)
$$(S+T)^{\dagger} = S^{\dagger} + T^{\dagger}$$
.

- (b) $(\lambda S)^{\dagger} = \overline{\lambda} S^{\dagger}$.
- (c) $(T^{\dagger})^{\dagger} = T$.
- (d) $I^{\dagger} = I$.
- (e) $(ST)^{\dagger} = T^{\dagger} S^{\dagger}$ if ST is works.

Proof is trivial.

Theorem 1.3.

 $T \in \mathcal{L}(V, W)$ 일 때 다음이 성립한다.

(a) ker
$$T^{\dagger} = (\operatorname{range} T)^{\perp}$$
.

- (b) range $T^{\dagger} = (\ker T)^{\perp}$.
- (c) $\ker T = (\operatorname{range} T^{\dagger})^{\perp}$.
- (d) range $T = (\ker T^{\dagger})^{\perp}$.

 $\begin{array}{ll} (\textit{Proof}) \ \ (\text{a}) \ \ w \in \ker T^\dagger \iff T^\dagger w = 0 \iff \langle v | T^\dagger w \rangle = 0 \ \ \text{for all} \ \ v \in V \iff \langle w | T v \rangle = 0 \ \ \text{for all} \ \ v \in V \iff w \in (\text{rangle } T)^\perp. \end{array}$

- (b) $v \in \operatorname{range} T^\dagger \iff v = T^\dagger w$ for some $w \in W \iff \langle T^\dagger w | v \rangle = \langle w | T v \rangle > 0$ for some $w \in W \iff v \in (\ker T)^\perp$.
- $\text{(c) } v \in \ker T \iff Tv = 0 \iff \langle w | Tv = \langle T^\dagger w | v \rangle = 0 \text{ for any } w \in V \iff v \in (\operatorname{range} T^\dagger)^\perp \,.$
- (e) $v \in \operatorname{range} T \iff v = Tu \text{ for some } u \in V \iff \langle Tu|v \rangle = \langle u|T^{\dagger}v \rangle > 0 \iff v \in (\ker T^{\dagger})^{\perp}.$

Definition: Conjugate transpose

A 가 $n \times m$ matrix 일 때 $m \times n$ matrix A^{\dagger} which is defined as $A_{ij}^{\dagger} = \overline{A_{ji}}$ 를 **conjugate transpose** of A 라 한다.

Lemma 1.4.

 $T \in \mathcal{L}(V, W)$ 이고 $\{\alpha_i\}$, $\{\beta_j\}$ 이 각각 V, W의 basis 일때 이 basis에서의 T^* 의 matrix form 은 T의 matrix form의 conjugate transpose 이다.

(Proof) Let A,B the matrix form of T and T^\dagger respectively. $A_{ij}=\langle \beta_j|T\alpha_i\rangle$ and $B_{ii}=\langle \alpha_i|T^\dagger\beta_i\rangle=\langle T\alpha_i|\beta_i\rangle=\overline{A_{ij}}$. 따라서 $B=A^\dagger$. \square

Theorem 1.5.

 $T \in \mathcal{L}(V)$ 가 hermitian 일 때 T의 eigenvalue는 실수이다.

(*Proof*) Let λ and α is an eigenvalue and its corresponding eigenvector of T. Then, $\lambda = \langle \alpha | T\alpha \rangle = \langle T \alpha | \alpha \rangle = \overline{\langle \alpha | T\alpha \rangle} = \overline{\lambda}$. \square

Theorem 1.6.

V가 complex vector space 이고 $T \in \mathcal{L}(V)$ 라 하자. $\langle v|Tv \rangle = 0$ for all $v \in V$ 이면 T = 0 이다.

(*Proof*) The below holds for any $u, w \in V$,

$$\langle w|Tu
angle =rac{1}{4}(\langle u+w|T|u+w
angle -\langle u-w|T|u-w
angle +i\langle u+iw|T|u+iw
angle -i\langle u-iw|T|u-iw
angle) \ .$$

우변의 네 항은 모두 $\langle v|Tv \rangle$ 꼴이므로 $\langle w|Tu \rangle = 0$ for all $w, u \in V$. 따라서 T = 0. \square

Theorem 1.7.

V가 complex vector space 이고 $T \in \mathcal{L}(V)$ 일 때 다음이 성립한다. : T is hermitian $\iff \langle v|Tv \rangle \in \mathbb{R}$ for all $v \in V$.

(*Proof*) For every
$$v \in V$$
, $\langle v|Tv \rangle - \overline{\langle v|Tv \rangle} = \langle v|Tv \rangle - \langle Tv|v \rangle = \langle v|(T-T^*)v \rangle$. \square

Theorem 1.8.

T 가 hermitian 이고 $\langle v|Tv\rangle=0$ for all $v\in V$ 이면 T=0 이다.

(Proof) V가 complex vector space 일 때는 Theorem 1.6에서 보였다. V를 real vector space 라 하자. 이 때 T가 hermitian 이면 다음이 성립한다.

$$\langle w|Tu
angle =rac{1}{4}(\langle u+w|T|u+w
angle -\langle u-w|T|u-w
angle)$$

따라서 $\langle w|Tu \rangle=0$ for all $u,\,w\in V$. \square

Definition: Normal operator

For $T \in \mathcal{L}(V)$, T is said to be **normal** if $TT^{\dagger} = T^{\dagger}T$.

(1) If T is hermitian, $TT^{\dagger} = TT = T^{\dagger}T$. Then T is normal.

Theorem 1.9.

 $T \in \mathcal{L}(V)$ is normal $\iff \|Tv\| = \|T^{\dagger}v\|$ for all $v \in V$.

 $\begin{array}{lll} (\textit{Proof}) \quad T \quad \text{is normal} & \Longleftrightarrow \quad TT^\dagger - T^\dagger T = 0 & \Longleftrightarrow \quad \langle v | (TT^\dagger - T^\dagger T) v \rangle = 0 \quad \text{for all} \quad v \in V \quad \Longleftrightarrow \\ \langle T^\dagger v | T^\dagger v \rangle = \langle Tv | Tv \rangle \quad \text{for all} \quad v \in V \quad \Longleftrightarrow \quad \| T^\dagger v \| = \| Tv \| \quad \text{for all} \quad v \in V. \quad \Box$

Corollary 1.10.

 $T \in \mathcal{L}(V)$ 가 normal 이면 $\ker T = \ker T^{\dagger}$ 이다.

Obvious from theorem 1.9

Theorem 1.11.

 $T \in \mathcal{L}(V)$ is normal and $v \in V$ is an eigenvectors of T with eigenvalue $\lambda \implies v$ is an eigenvectors of T^{\dagger} with eigenvalue $\overline{\lambda}$.

(Proof) T is normal 이면 $T - \lambda I \subseteq \text{normal}$. From theorem $1.9, 0 = \|(T - \lambda I)v\| = \|(T^{\dagger} - \overline{\lambda}I)v\|$. \square

Theorem 1.12.

 $T \in \mathcal{L}(V)$ is normal 이고 $v_1, v_2 \in V$ 가 각각 λ_1, λ_2 의 eigenvalue를 갖는 eigenvectors 라 하자. 이 때, $\lambda_1 \neq \lambda_2$ 이면 $\langle v_2 | v_1 \rangle = 0$ 이다. 즉 v_1, v_2 는 orthogonal 하다.

$$(Proof) (\lambda_1 - \lambda_2) \langle v_2 | v_1 \rangle = \langle v_2 | T v_1 \rangle - \langle T^\dagger v_2 | v_1 \rangle = 0. \ \lambda_1 \neq \lambda_2 \ 0$$
 으로 $\langle v_2 | v_1 \rangle = 0.$

Corollary 1.13

If $T \in \mathcal{L}(V)$ is normal, $T^{\dagger}T$ is hermitian.

 $(Proof)(T^{\dagger}T)^{\dagger} = T^{\dagger}T.$

Corollary 1.14

If $T \in \mathcal{L}(V)$ is hermitian, $\ker T = \ker T^k$ and range $T = \operatorname{range} T^k$ for every $k \in \mathbb{Z}_+$.

 $(Proof)(1) u \in \ker T \implies Tu = 0 \implies T^k u - T^{k-1} T u = 0 \implies u \in \ker T^k$. 따라서 $\ker T \subset \ker T^K$.

- (2) Suppose $u\in\ker T^k$. $\langle T^{k-1}u|T^{k-1}u\rangle=\langle T^{k-2}u|T^ku\rangle=0$ 따라서 $u\in\ker T^{k-1}$. 즉 $\ker T^k\subset\ker T^{k-1}$ 이 명 이로부터 $\ker T^k\subset\ker T^{k-1}\subset\cdots\subset\ker T$. With (1), $\ker T=\ker T^k$
- (3) From Theorem 1.3, rangle $T=(\ker T^\dagger)^\perp=(\ker T)^\perp=(\ker T^k)^\perp=\mathrm{range}\,(T^\dagger)^k=\mathrm{range}\,T^k$. \square

Exercises (Chap. 7.A)

1. $n \in \mathbb{Z}_+$ 에 대해 $T \in \mathcal{L}(\mathbb{F}^n)$ 을 $T(z_1, \ldots, z_n) = (0, z_1, \ldots, z_{n-1})$ 로 정의한다. 이 때 T^* 을 구하시오.

 $T^*(z_1,\ldots,z_n)=(z_2,\ldots,z_n,\,0).$

2. $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$ 일 때 다음을 증명하시오 : λ is an eigenvalue of $T \iff \overline{\lambda}$ is an eigenvalue of T^* .

 $\lambda \text{ is an eigenvalue of } T \text{ with eigenvector } v \iff \langle w | (T-\lambda I)v \rangle = 0 \text{ for all } w \in V \iff \langle w | (T-\lambda I)v \rangle = 0$ for all $w \in V \iff \langle (T^* - \overline{\lambda}I)v | w \rangle = 0$ for all $w \in V \iff \overline{\lambda}$ is an eigenvalue of T^* .

3. Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. U가 invariant under T 이면 U^{\perp} 는 invariant under T^{\dagger} 임을 보이시오.

Suppose $u\in U$ and $w\in U^{\perp}$. $\langle w|Tu\rangle=0$ 이므로 $\langle T^{\dagger}w|u\rangle=0$. 따라서 $T^{\dagger}w\in U^{\perp}$ 이므로 U^{\perp} is invariant under T^{\dagger} .

- **4.** $T \in \mathcal{L}(V, W)$ 일 때 다음을 보이시오.
- (a) T is injective $\iff T^{\dagger}$ is surjective.

$$\begin{split} T \text{ is injective.} &\iff \forall v \in V, \, v \neq 0, Tv \neq 0 \text{ .} \\ &\iff \forall v \in V, \, v \neq 0, \, \exists w \in W \text{ s.t. } \langle w | Tv \rangle \neq 0 \text{ .} \\ &\iff \forall v \in V, \, v \neq 0, \, \exists w \in W \text{ s.t. } \langle v | T^\dagger w \rangle \neq 0 \text{ .} \\ &\iff T^\dagger \text{ is surjective.} \end{split}$$

- (a) is direct from above. If we change $T \longleftrightarrow T^{\dagger}$, (b) is induced.
- 5. $T\in\mathcal{L}(V,W)$ 일 때, $\dim\left(\ker T^{\dagger}\right)=\dim(\ker T)+\dim(W)-\dim(V)$ 이며 $\dim(\operatorname{range} T^{\dagger})=\dim(\operatorname{range} T)$ 임을 보이시오.
- (1) V and W are finite dimensional vector space. From the fundamental theorem of linear map, $\dim(V) = \dim(\ker T) + \dim(\operatorname{range} T)$ and $\dim(W) = \dim(\ker T^{\dagger}) + \dim(\operatorname{range} T^{\dagger})$
- (2) $\dim(\operatorname{range} T^{\dagger}) = \dim((\ker T)^{\perp}) = \dim(\operatorname{range} T)$; Theorem 1.3
- 7. $S, T \in \mathcal{L}(V)$ 가 hermitian 일 때 다음을 보이시오. ST is self adjoint $\iff ST = TS$.
- (1) ST is self adjoint $\iff ST = (ST)^{\dagger} = T^{\dagger}S^{\dagger} = TS$.
- 8. V 가 real inner product vector space 이면 hermitian operator on V의 집합은 $\mathcal{L}(V)$ 의 subspace 임을 보이시오.

Let $\mathcal{H}(V)$ be a set of hermitian operators of V. $0 \in \mathcal{H}(V)$ is trivial. For $T, S \in \mathcal{H}(V)$ and $c \in \mathbb{R}$, $(T+cS)^\dagger = T^\dagger + \overline{c}S^\dagger = T+cS$. 따라서 $T+cS \in \mathcal{H}(S)$.

9. V 가 complex inner product vector space 이면 hermitian operator on V의 집합은 $\mathcal{L}(V)$ 의 subspace 가 아님을 보이시오.

Let $\mathcal{H}(V)$ be a set of hermitian operators of V. $0 \in \mathcal{H}(V)$ is trivial. For $T, S \in \mathcal{H}(V)$ and $c \in \mathbb{C}$, $(T+cS)^\dagger = T^\dagger + \overline{c}S^\dagger = T + \overline{c}S$. 따라서 $T+cS \notin \mathcal{H}(S)$.

- 10. $\dim V \geq 2$ 에 대해 V에서의 모든 normal operator의 집합은 $\mathcal{L}(V)$ 의 subspace가 아님을 보이시오.
- (1) (e_1,\ldots,e_n) 이 V의 orthonormal basis라 하자. $T\in\mathcal{L}(V)$ 일 때, $Te_i=\sum_i a_{j,\,i}e_j$, $T^\dagger e_i=\sum_i b_{j,\,i}e_j$ 라자. $a_{j,\,i}=\langle e_j|Te_i\rangle=\langle T^\dagger e_j|e_i\rangle=\overline{b_{i,\,j}}$ 이다.
- (2) S, T이 normal operator on V일 때, $v = \sum_i a_i e_i$ 에 대해

$$egin{split} S(\sum_i a_i e_i) &= a_2 e_1 + a_1 e_2 \;, \ T(\sum_i a_i e_i) &= a_2 e_1 - a_1 e_2 \;. \end{split}$$

이면 $S^\dagger(\sum_i a_i e_i) = a_2 e_1 + a_1 e_2$, $T^\dagger(\sum_i a_i e_i) = -a_2 e_1 + a_1 e_2$

(2) $SS^{\dagger} = S^{\dagger}S$ 임은 쉽게 알 수 있다. 역시 $T^{\dagger}T - TT^{\dagger}$ 이다. 즉 S, T는 normal operator 이다.

 $(3)(S+T)^{\dagger}(S+T)-(S+T)(S+T)^{\dagger}\neq 0$ 임을 보이자.

$$(S+T)^\dagger (S+T) - (S+T)(S+T)^\dagger (\sum_i a_i e_i) = (S+T)^\dagger (2a_2 e_1) + (S+T)(2a_1 e_2)
onumber \ = 2a_2 a_1 e_2 + 2a_1 a_2 e_1
onumber \ = 0$$

11. $P \in \mathcal{L}(V)$ 이며 $P^2 = P$ 일 때 다음을 보이시오 : $P = P_U$ 가 되도록 하는 subspace U가 존재한다 \iff P is hermitian

(1) $P=P_U$ 가 되도록 하는 subspace U of V가 존재함을 가정하자. $V=U\oplus U^\perp$ 이며 모든 $v\in V$ 는 v=u+w for unique $u\in U$ and $w\in U^\perp$ 이다. $v_1,\,v_2\in V$ 에 대해 $v_1=u_1+w_1,\,v_2=u_2+v_2$ for $u_1,\,u_2\in U$ and $w_1,\,w_2\in W$ 라 하자.

 $\langle v_2|Pv_1
angle=\langle u_2+w_2|u_1
angle=\langle u_2|u_1
angle.$ $\langle Pv_2|v_1
angle=\langle u_2|u_1+w_1
angle=\langle u_2|u_1
angle.$ 따라서 $\langle v_2|Pv_1
angle=\langle Pv_2|v_1
angle$ 이므로 모는 hermitian.

(2) P가 hermitian 임을 가정한다. v=Pv+(v-Pv) 임을 이용한다. $u\in \mathrm{range}\,P$ 이면 u=Pv for some $v\in V$ 이며 $Pu=P^2v=Pv\in \mathrm{range}\,P$ 이다. 따라서 $\mathrm{range}\,P$ 는 invariant subspace of V 이다. P(v-Pv)=0 이므로 $v-Pv\in \ker P$ 이다.

P가 hermitian 이므로 $\ker P = (\operatorname{range} P)^{\perp}$ 이다. 즉 $V = \operatorname{range} P \oplus \ker P$ 이다.

12. T가 normal operator on V 이고 3과 4는 T의 eigenvalue이다. 어떤 $v \in V$ 는 $||v|| = \sqrt{2}$ 이며 ||Tv|| = 5 임을 보이시오.

(1) Let e_1 and e_2 be orthogonal eigenvectors of which eigenvalues are 3 and 4, respectively. $Te_1 = 3e_1$ and $Te_2 = 4e_2$.

(2) Let $v=ae_1+be_2$. $\|v\|^2=a^2+b^2=2$, $\|T(ae_1+be_2)\|^2=9a^2+16b^2=25$. Then $a^2=b^2=1$. 따라서 $v=e_1+e_2$ 는 조건을 만족한다.

13. Normal 이지만 hermitian이 아닌 $T \in \mathcal{L}(\mathbb{C}^4)$ 의 예를 드시오.

$$\begin{bmatrix} 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \; .$$

14. T는 normal operator on V 이고 $v, w \in V$ 는 다음을 만족한다.

$$||v|| = ||w|| = 2, \quad Tv = 3v, \quad Tw = 4w.$$

이 때 ||T(v+w)|| = 10임을 보 이시오.

v, w가 각각 다른 eigenvalue를 가지므로 $\langle v|w \rangle = \langle w|v \rangle = 0$. 따라서 $||T(v+w)||^2 = 9||v||^2 + 16||v||^2 = 100$.

15. For fixed $u, x \in V$ 에 대해 $T \in \mathcal{L}(V)$ 는 $Tv = \langle u|v \rangle x$ 로 정의된다.

- (a) $\mathbb{F} = \mathbb{R}$ 일 때 다음을 보이시오: T is hermitian $\iff u, x$ are linearly dependent.
- (b) T is normal $\iff u, x$ are linearly dependent.

```
\begin{split} \langle x|Tx\rangle &= \langle x|u\rangle\|x\|^2, \quad \langle u|Tu\rangle = \langle u|x\rangle\|u\|^2, \quad \langle x|Tu\rangle = \|u\|^2\|x\|^2, \quad \langle u|Tx\rangle = |\langle u|x\rangle|^2. \quad \langle Tx|x\rangle = \langle u|x\rangle\|x\|^2, \\ \langle Tu|u\rangle &= \langle x|u\rangle\|u\|^2, \langle Tx|u\rangle = |\langle u|x\rangle|^2, \langle Tu|x\rangle = \|u\|^2\|x\|^2. \end{split}
```

(a) T가 hermitian 이므로, 그리고 $\mathbb{F}=\mathbb{R}$ 이므로, $\langle x|Tu\rangle=\langle Tx|u\rangle$ 이어야 한다. 따라서 $\|u\|^2\|x\|^2=|\langle u|x\rangle|^2$ 이어야 하며 이것은 u=cx for some $c=\mathbb{F}$ 일 때 이다. 즉 u,x는 linearly dependent 하다.

역으로 linearly dependent 하면 u=cx for some $c\in\mathbb{R}$. 따라서 $Tv=c\langle x|v\rangle x$ for a fixed $x\in V$. $v_1,\,v_2\in V$ 일 때 $\langle v_2|Tv_1\rangle=c\langle x|v_1\rangle\langle v_2|x\rangle$, $\langle Tv_2|v_1\rangle=c\langle x|v_2\rangle\langle x|v_1\rangle$ 이므로 $\langle v_2|Tv_1\rangle=\langle Tv_2|v_1\rangle$ 이다. 즉 T는 hermitian.

(b) T가 normal operator 라 하자.

$$\langle u|T(T^{\dagger}u)\rangle = \langle u|(\langle u|T^{\dagger}u\rangle)x\rangle = \langle Tu|u\rangle\langle u|x\rangle = \overline{\langle u|Tu\rangle}\langle u|x\rangle = \|u\|^2|\langle u|x\rangle|^2$$
 이므로
$$\|u\|^4\|x\|^2 = \|u\|^2|\langle u|x\rangle|^2 \text{ 이며 } \|u\|^2\|x\|^2 = |\langle u|x\rangle|^2 \text{ 이다. 따라서 } u, x \doteq \text{ linearly dependent 하다. }$$

역으로 u, x가 linearly dependent 하면 x = cu for some $c \in \mathbb{F}$. 따라서 $Tv = c\langle u|v\rangle u$. 이다. $v_1, v_2 \in V$ 일 때,

$$\langle v_2|(T^\dagger T)v_1
angle = \langle Tv_2|Tv_2
angle = |c|^2\|u\|^2\langle v_2|u
angle\langle u|v_1
angle$$
 ,

$$\langle v_2|TT^\dagger v_2\rangle = \langle v_2|(c\langle u|T^\dagger v_1\rangle)u\rangle = c\langle Tu|v_1\rangle\langle v_2|u\rangle = |c|^2\|u\|^2\langle u|v_1\rangle\langle v_2|u\rangle = \langle v_2|(T^\dagger T)v_1\rangle.$$

따라서 T는 normal 이다.

- 16. $T \in \mathcal{L}(V)$ 가 normal 일 때 $\operatorname{range} T = \operatorname{range} T^{\dagger}$ 임을 보이시오.
- (1) From Theorem 1.9, if T is normal, $||Tv|| = ||T^*v||$. $v \in \ker T \iff v \in \ker T^{\dagger}$ 따라서 $\ker T = \ker T^{\dagger}$.
- (2) From Theorem 1.3, if $T \in \mathcal{L}(V)$, range $T^{\dagger} = (\ker T)^{\perp}$ and range $T = (\ker T^{\dagger})^{\perp}$. $\ker T = \ker T^{\dagger} = 0$ \square range $T = (\ker T)^{\perp} = (\ker T)^{\perp} = \operatorname{range} T^{\dagger}$.
- 17. $T \in \mathcal{L}(V)$ 가 normal 일 때, 모든 $k \in \mathbb{Z}_+$ 에 대해 $\ker T^k = \ker T$, range $T^k = \operatorname{range} T$ 임을 보이시오.
- (1) T가 normal 이면 $T^{\dagger}T$ 는 hermitian 이다(Corollary 1.13).
- (2) $u \in \ker T \implies Tu = 0 \implies T^k u = T^{k-1}(Tu) = 0 \implies u \in \ker T^k$. 따라서 $\ker T \subset \ker T^{k-1}$.
- (3) Suppose $u \in \ker T^k$. T가 normal 이므로 $(T^\dagger T)^k = (T^\dagger)^k T^k$ 이며 $u \in \ker (T^\dagger) T^k$. T is hermitian and from corollary 1.14, $\ker T^\dagger T = \ker (T^\dagger T)^k$. 따라서 $u \in \ker T^\dagger T$. $0 = \langle u | T^\dagger T \rangle = \langle T u | T u \rangle$ 이므로 $u \in \ker T$.
- (4) From (2) and (3), $\ker T = \ker T^k$.
- (4) With corollary 1.10 and ker $T = \ker T^{\dagger}$. Then,

$$\operatorname{range} T^k = (\ker(T^k)^\dagger)^\perp = (\ker T^k)^\perp = (\ker T)^\perp = (\ker T^\dagger)^\perp = \operatorname{range} T.$$

18. 다음 진술에 대해 증명하거나 반례를 드시오.

 $T \in \mathcal{L}(V)$ 이고, V의 어떤 orthonormal basis e_1, \ldots, e_n 이 $\|Te_j\| = \|T^{\dagger}e_j\|$ for each $j=1,\ldots,n$ 를 만족하면 T는 normal 이다.

- (1) Let $Te_j = \sum_i a_{i,j} e_i$. Then, $T^{\dagger} e_j = \sum_i \overline{a_{j,i}} e_i$. $||Te_j|| = ||T^* e_j|| \implies \sum_i |a_{i,j}|^2 = \sum_i |a_{j,i}|^2$.
- (2) Let $\mathcal{M}(T)=A=\begin{bmatrix}1&1\\i&-i\end{bmatrix}$. Then $A^\dagger=\begin{bmatrix}1&-i\\1&-i\end{bmatrix}$. $AA^\dagger=\begin{bmatrix}2&-2i\\0&0\end{bmatrix}$ and $A^\dagger A=\begin{bmatrix}2&0\\2&0\end{bmatrix}$. 따라서 normal이 아니다.
- **19.** $T \in \mathcal{L}(\mathbb{C}^3)$ 이 normal 이며 T(1, 1, 1) = (2, 2, 2) 이다. $(z_1, z_2, z_3) \in \ker T$ 이면 $z_1 + z_2 + z_3 = 0$ 임을 보이시오.
- (1) Let $v_1 = (1, 1, 1)$, and $v_2 = (z_1, z_2, z_3)$. $Tv_1 = 2v_1$ 이므로 $v_1 \in \operatorname{range} T$, 이며 $v_2 \in \ker T$.
- (2) v_1 이 eigenvector of T 이므로 theorem 1.11에 의해 v_1 은 eigenvalue 2를 갖는 eigenvector of T^* 이다. $v_2 \in \ker T$ 이므로 corollary 1.10에 의해 $v_2 = \ker T^\dagger$ 이다.
- (3) range $T=(\ker T^\dagger)^\perp$ 이며 $v_1\in \operatorname{range} T$, $v_2\in \ker T^\dagger$ 이므로 $0=\langle v_1|v_2\rangle=z_1+z_2+z_3$.
- 20. $T \in \mathcal{L}(V, W)$ 이며 $\mathbb{F} = \mathbb{R}$ 이다. $\Phi \vdash V \to V'$ isomorphism given by exercise 6.B.17 이며 $\Psi \vdash$ corresponding isomorphism from W to W' 이라 하자. 이 때 $\Phi \circ T^\dagger = T' \circ \Psi$ 임을 보이시오.
- (1) Exercise 6.B.17에 의해 $\Phi \in \mathcal{L}(V,V')$ defined by $(\Phi u)(v) = \langle u|v\rangle$ 이며 injection 이다. $\Psi \in \mathcal{L}(W,W')$ 는 $(\Psi w)(\omega) = \langle \omega|w\rangle$ 로 정의 하며 역시 injection 이다. Φ , Ψ 가 isomorphism 이라 하자.
- $(2) \qquad (\Phi \circ T^{\dagger}w)v = \langle T^{\dagger}w|v\rangle = \langle w|Tv\rangle. \qquad (T' \circ \Psi w)v = (T'(\Psi w))v = (\Psi w) \circ T(v) = \langle w|Tv\rangle. \qquad \text{따라서,} \\ \Phi \circ T^{\dagger} = T' \circ \Psi.$
- 21. $\operatorname{Fix} n = \mathbb{Z}_+$. $[-\pi, \pi]$ 구간에서 연속인 실함수의 집합 $C[-\pi, \pi]$ 에서의 내적이 다음과 같이 정해졌다

$$\langle g|f
angle = \int_{-\pi}^{\pi} f(x)g(x)\,dx \;.$$

 $V = \operatorname{span}(1, \cos x, \cos 2x, \dots, \sin x, \sin 2x, \dots)$ 라하자.

- (a) $D = \mathcal{L}(V)$ defined by Df = f' 에 대해 $D^{\dagger} = -D$ 임을 보이시오. 이를 이용하여 D는 normal 이지만 hermitian은 아님을 보이시오.
- (b) $T \in \mathcal{L}(V)$ 가 Tf = f'' 으로 정의되었을 때 T는 hermitian 임을 보이시오.
- (a) From exercise 6.B.4, $\frac{1}{\sqrt{2\pi}}$, $\frac{\cos x}{\sqrt{\pi}}$, $\frac{\cos 2x}{\sqrt{\pi}}$, ..., $\frac{\sin x}{\sqrt{\pi}}$, $\frac{\sin 2x}{\sqrt{\pi}}$... are orthonormal basis V.

Let's denote $e_0=1/\sqrt{2\pi}$, $e_n=(\cos nx)/\sqrt{\pi}$ and $d_n=(\sin nx)/\sqrt{\pi}$ for $n=1,\,2,\ldots$ Then, $e_0,e_1,\,e_2,\ldots,\,d_1,\,d_2,\ldots$ are orthonormal basis of V.

Let $f=a_0+\sum\limits_{k=1}(a_ke_k+b_kd_k)$ and $g=\alpha_0+\sum\limits_{k=0}(\alpha_ke_k+\beta_kd_k)$. Then $f'=\sum\limits_{i=1}(b_ke_k-a_kd_k)$ and $g'=\sum\limits_{k=1}(\beta_ke_k-\alpha_kd_k)$. Then,

$$\langle g|D^\dagger f
angle = \langle Dg|f
angle = \sum\limits_k (a_keta_k - b_klpha_k)$$
 , $\langle g|Df
angle = \sum\limits_k (b_klpha_k - a_keta_k) = -\langle g|D^\dagger f
angle$.

 $D^\dagger D - DD^\dagger = -D^2 + D^2 = 0$. 따라서 D는 normal 이며 $D^\dagger = -D \neq D$ 이므로 D는 hermitian이 아니다.

2. Spectral Theorem

Theorem 2.1 (Complex spectral theorem)

 $\mathbb{F} = \mathbb{C}$ 일 때 $T \in \mathcal{L}(V)$ 에 대해 다음 세 statements는 equivalent 하다.

- (a) T is normal.
- (b) V는 T의 eigenvectors로 이루어진 orthonormal basis를 가진다.
- (c) 어떤 orthonormal basis of V에서 $\mathcal{M}(T)$ 는 diagonal matrix 이다.

(Proof) (a \implies b) Suppose T is normal. Schure's theorem에 의해 T는 어떤 orthonormal basis of V에서 upper triangular form을 가진다. 이 basis를 e_1, \ldots, e_n 이라 하고, 이에 대한 T의 matrix form을 A라 하자.

$$T^\dagger e_k = \sum\limits_{i=k}^n a_{k,i} e_i$$
 이며, T 가 normal 이므로, $\|Te_k\| = \|T^\dagger e_k\|$ for all $k=1,\ldots,n$ 이다.

$$\|Te_1\|^2=|a_{11}|^2$$
, $\|T^\dagger e_1\|^2=\sum\limits_{i=1}^n|a_{1,\,j}|^2$ 이므로 $a_{1,\,j}=0$ if $j
eq 1$.

$$\|Te_2\|^2 = |a_{1,\,2}|^2 + |a_{2,\,2}|^2, \|T^\dagger e_2\|^2 = |a_{2,\,2}|^2 + \cdots + |a_{2,\,n}|^2. \ a_{1,\,2} = 0 \ \mathsf{O}$$
 卫星 $a_{2,\,j} = 0 \ \mathsf{if} \ j \neq 2.$

이것을 반복하면 모든 k에 대해 $a_{k,j}=0$ if $j\neq k$ 임을 알 수 있다. 따라서 A는 diagonal matrix이다.

(b \implies c) e_1, \ldots, e_n 이 T의 eigenvalues 이며 orthogonal basis of V라 하자. $Te_i = \lambda_i e_i$ 이므로 A는 diagonal form 이다.

 $(c \implies a)$ Let e_1, \ldots, e_n be a orthonormal basis of V 이며 이 basis에서 $\mathcal{M}(T)$ 는 diagonal matrix A라 하자. $Te_i = \sum_i a_{j,i} e_j$ 이므로 $Te_i = a_{i,i} e_i$ for all $i = 1, \ldots, n$ 이다. $a_{i,i} = a_i$ 라 하자. $T^\dagger e_i = \overline{a_i} e_i$ 이므로,

$$\langle e_i|TT^{\dagger}e_i\rangle=a_i\overline{a_i}\delta_{i,j}=\langle e_i|T^{\dagger}Te_i\rangle$$
 이다. 따라서 T 는 normal. \Box

Theorem 2.2

 $T \in \mathcal{L}(V)$ 가 hermitian 이며 $b, c \in \mathbb{R}$ 이 $b^2 < 4c$ 일 때 $T^2 + bT + cI$ 는 invertible 하다.

(*Proof*) For nonzero $v \in V$,

$$\begin{split} \langle v|(T^2+bT+cI)v\rangle &= \langle v|T^2v\rangle + b\langle v|Tv\rangle + c\langle v|v\rangle \\ &\geq \|Tv\|^2 - |b|\|v\|\|Tv\| + c\|v\|^2 \\ &= \left(\|Tv\|^2 - \frac{|b|\|v\|}{2}\right)^2 + \left(c - \frac{|b|^2}{4}\right)\|v\|^2 > 0 \end{split}$$

따라서 $\ker(T^2+bT+cI)=\{0\}$ 이므로 T는 injection이며 invertible 하다. (이 chapter 전체에서 V는 finite dimensional로 가정했다.) \square

우리는 Complex vector space에서의 모든 operator(hermitian이나 normal이 아니더라도)는 eigenvalue를 가짐을 알고 있다. 그렇다면 real vector space에서는 어떠한가?

Theorem 2.3

 $V \neq \{0\}$ 이며 $T \in \mathcal{L}(V)$ 가 hermitian 일 때, T는 eigenvalue를 가진다.

(Proof)(1) V가 finite dimensional real inner product space라 하자. $n=\dim V$ 이고 nonzero $v\in V$ 를 선택하면 v,Tv,\ldots,T^nv 는 linearly dependent list of vectors in V 이다. 즉 $a_0v+a_1Tv+\cdots+a_nT^n=0$ 을 만족하는 a_0,\ldots,a_n 중 일부는 0이 아니다.

- (2) $a_0 + a_1x + \cdots + a_nx^n = c(x \lambda_1) \cdots (x \lambda_m)(x^2 + b_1x + c_1) \cdots (x^2 + b_Mx + c_M)$ for real λ_i and b_j , c_j 로 factorization 된다. 이 때 $b_j^2 < 4c_j$ for all j이며 $m + M \ge 1$ 이다.
- (3) $0=(a_0+\cdots a_nT^n)v=c(T-\lambda_1I)\cdots(T-\lambda_mI)(T^2+b_1T+c_1I)\cdots(T^2+b_MT+c_MI)v$ 이다. 이 때 $T^2+b_iT+c_iI$ 는 invertible이다. 그렇다면 $0=c(T-\lambda_1I)\cdots(T-\lambda_m)v'$ 인 $v'\in V$ 가 존재한다. 여기서 최소한 하나의 $T-\lambda_iI$ 가 injection이 아니므로 T는 eigenvalue를 가진다. \square

Theorem 2.4

 $T \in \mathcal{L}(V)$ 가 hermitian이고 U가 invariant subspace of V under T 일 때 다음이 성립한다.

- (a) U^{\perp} 는 invariant under T 이다.
- (b) $T|_U \in \mathcal{L}(U)$ 는 hermitian 이다.
- (c) $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ 는 hermitian 이다.

(Proof) (a) For any $u \in U$ and $v \in U^{\perp}$. $\langle u | Tv \rangle = \langle Tu | v \rangle = 0$. 따라서 $Tv \in U^{\perp}$ 이므로 U^{\perp} 는 invariant under T.

(b) and (c) are trivial.

Theorem 2.5 (Real spectral theorem)

 $\mathbb{F} = \mathbb{R}$ 이고 $T \in \mathcal{L}(V)$ 일 때 다음 statements는 equivalent 하다.

- (a) T is hermitian.
- (b) $V \vdash T$ 의 eigenvectors 들로 이루어진 orthonormal basis를 가진다.
- (c) V의 어떤 orthonormal basis에서 T의 matrix form은 diagonal 하다.

(Proof) (a \Longrightarrow b) $n=\dim V$ 로 놓고 induction으로 보이자. n=1 일 때는 자명하다 k< n 일 때 $1,\ldots,k$ dimensional real vector space 에서 (b)가 성립함을 가정하자. k+1 dimensional real vector space U 에서 T가 hermitian 이면 eigenvector u가 존재한다. $U_0=\operatorname{span}(u)$ 는 invariant subspace of U 이며 $(U_0)^\perp$ 역시 invariant subspace of U 이고 $T|_{U_0^\perp}$ 는 U_0^\perp 에서 정의된 hermitian operator이다. $\dim U_0^\perp=k$ 이므로 induction hypothesis에 의해 U_0^\perp 는 orthonormal basis e_1,\ldots,e_k , each of which are eigenvectors of U_0^\perp , U_0^\perp 0 이 기가 U_0^\perp 1 이 기가 U_0^\perp 2 orthonormal basis of U_0^\perp 3 이 기가 U_0^\perp 4 이 기가 U_0^\perp 5 이 OFT.

Exercises (Chap. 7.B)

1. 다음을 증명하거나 부정하시오. \mathbb{R}^3 에서 어떤 non-hermitian operator $T \in \mathcal{L}(\mathbb{R}^3)$ 가 존재하여 eigenvectors of T가 \mathbb{R}^3 의 basis를 이룬다. (Inner product in \mathbb{R}^3 는 usual inner product 이다.)

In standard basis, define $Te_1=e_1, Te_2=2e_2+e_1$, and $Te_3=3e_3$. 그렇다면 $T(e_1+e_2)=2(e_1+e_2)$ 이므로 e_1, e_1+e_2, e_3 가 eigenvectors of Vunder T 이다. $\langle e_2|Te_1\rangle=0$ 이며 $\langle Te_2|e_1\rangle=1$ 이므로 $T\neq T^\dagger$. 따라서 True.

2. V는 finite dimensional inner product space이다. $T \in \mathcal{L}(V)$ 는 hermitian 이고 2와 3 이외의 eigenvalues 를 갖지 않는다. 그렇다면 $T^2 - 5T + 6I = 0$ 임을 보이시오.

T가 hermitian 이면 V는 T의 eigenvectors로 이루어진 orthonormal basis를 가진다. e_1,\ldots,e_n 을 그러한 orthonormal basis 라 할 때 $Te_i=2e_i$ or $3e_i$ 이다. $(T^2-5T-6I)v=0$ for all $v\in V$ 이므로 $T^2-5T-6I=0$ 이다.

3. 2 와 3 만을 eigenvalues로 갖지만 $T^2 - 5T + 6I \neq 0$ 인 T의 예를 드시오.

 $Te_1=2e_1, Te_2=e_1+2e_2, Te_3=3e_3$ 라 하자. $\mathcal{M}(T)$ in standard basis를 A라 할 때,

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

우리는 T의 eigenvalues가 A의 diagonal elements인 2와 3 뿐임을 알고 있다.

$$(T^2 - 5T + 6I)e_2 = T(e_1 + 2e_2) - 5e_1 - 10e_2 + 6e_2 = 2e_1 + 2e_1 + 4e_2 - 5e_1 - 10e_2 + 6e_2 = -e_1 \neq 0$$

4. $\mathbb{F}=\mathbb{C}$ 이며 $T\in\mathcal{L}(V)$ 일 때 다음을 보이시오 : T is normal \iff 모든 다른 eigenvalue를 가지는 두 vectors는 orthogonal 하며 $\lambda_1,\ldots,\lambda_m$ 이 T의 모든 distinct eigenvalues 일 때 $V=E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)$ 이다.

(1) T가 normal 이면 spectral theorem에 의해 V는 T의 orthonormal eigenvectors를 basis로 갖는다. v_1, v_2 가 각각 λ_1, λ_2 with $\lambda_1 \neq \lambda_2$ 를 갖는 eigenvectors of T 라 하자. T가 normal 이므로 $T^{\dagger}v_2 = \overline{\lambda_2}v_2$ 이다.

$$(\lambda_1 - \lambda_2) \langle v_2 | v_1 \rangle = \langle v_2 | Tv_1 \rangle - \langle \overline{\lambda_2} v_2 | v_1 \rangle = \langle v_2 | Tv_1 \rangle - \langle T^{\dagger} v_2 | v_1 \rangle = \langle v_2 | Tv_1 \rangle - \langle v_2 | Tv_1 \rangle = 0.$$

이며 $\lambda_1 - \lambda \neq 0$ 이므로 v_1 과 v_2 는 orthogonal 하다. $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$ 임은 자명하다.

(2) 모든 다른 eigenvalue를 가지는 두 vector는 orthogonal 하며 $\lambda_1,\ldots,\lambda_m$ 이 T의 모든 distinct eigenvalues 일 때 $V=E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)$ 임을 가정하자. 즉 V는 T의 eigenvectors로 span 됨을 의 미한다.

 $E(\lambda_i,T)$ 의 orthonormal basis를 $e_1^{(i)},\ldots,e_{n_i}^{(i)}$ 라 하자. 즉 $n_i=\dim E(\lambda_i,T)$ 이다. $v\in V$ 는 다음과 같이 표현된다. $v=\sum_i\sum_j c_{ij}e_j^{(i)}$. 또한 $Te_j^{(i)}=\lambda_ie_j^{(i)}$, $T^\dagger e_j^{(i)}=\overline{\lambda_i}e_j^{(i)}$ 이다. $\|Tv\|^2=\|T^\dagger v\|^2$ for all $v\in V$ 임을 쉽게 보일 수 있으며 theorem 1.9로부터 T는 normal operator 이다.

5. $\mathbb{F}=\mathbb{R}$, $T\in\mathcal{L}(V)$ 일 때 다음을 보이시오 : T is hermitian \iff 모든 다른 eigenvalue를 가지는 두 vectors는 orthogonal 하며 $\lambda_1,\ldots,\lambda_m$ 이 T의 모든 distinct eigenvalues 일 때 $V=E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)$ 이다.

- (1) Theorem 2.5와 exercise 4로부터 쉽게 증명 할 수 있다.
- **6.** V가 complex inner product space 이고 $T \in \mathcal{L}(V)$ 가 normal operator 일 때 다음을 보이시오 : T is hermitian $\iff T$ 의 모든 eigenvalue는 real.
- (1) T가 hermitian이라 가정하자. $Tv = \lambda v$ 이면. Theorem 1.5에 의해 $T^{\dagger}v = \overline{\lambda}v$ 이다.

$$(\lambda - \overline{\lambda})\langle v|v \rangle = \langle v|Tv \rangle - \langle Tv|v \rangle = \langle v|(T-T^\dagger)v \rangle = 0. \ \langle v|v \rangle > 0 \ ext{for every nonzero} \ v \in V \ ext{이므로} \ \lambda = \overline{\lambda} \ .$$

(2) T의 모든 eigenvalue는 real 이라 가정하자. T가 normal operator 이므로 complex spectral theorem에 의해 V는 T의 orthonormal eigenvectors로 이루어진 basis를 가진다. 이를 e_1, e_2, \ldots 라 하고 각각의 eigenvectors를 $\lambda_1, \lambda_2, \ldots$ 라 하자. $v = \sum_i c_i e_i$ 라 하면 $\langle v | (T - T^\dagger) v \rangle = \sum_i (\lambda_i - \overline{\lambda_i}) \langle v | v \rangle = 0$ 이므로 $T = T^\dagger$.

7. V가 complex inner product space 이고 $T \in \mathcal{L}(V)$ 가 normal operator 이며 $T^9 = T^8$ 이라 하자. 이 때 T는 hermitian 이며 $T^2 = T$ 임을 보이시오.

(1) T가 normal operator on complex inner product space 이므로 T의 orthonormal eigenvectors e_1, e_2, \ldots 는 V의 basis 이다. 각각의 e_i 에 대한 eigenvalue를 λ_i 라 하자.

(2) $T^9e_i = \lambda_i{}^9e_i = \lambda_i{}^8e_i = T^8e_i$ 이므로, $\lambda_i{}^9 = \lambda_i{}^8$ for all $i=1,2,\ldots$ 따라서 $\lambda_i=0$ or 1 이며 따라서 hermitian 이고 $T^2e_i = Te_i$ 이다.

8. V가 complex inner product space 이고 $T \in \mathcal{L}(V)$ 이며 $T^9 = T^8$ 이지만 $T^2 \neq T$ 인 예를 드시오.

Define $T \in \mathcal{L}(\mathbb{C}^3)$ as $Te_1 = e_2 + e_3$, $Te_2 = e_3$, $Te_3 = 0$. $T^2e_1 = T(e_2 + e_3) = e_3$, $T^2e_2 = Te_3 = 0$, $T^2e_3 = 0$. $T^3e_1 = T^3e_2 = Te_3 = 0$. Therefore $T^9 = T^8 = 0$. However $T^2 \neq T$.

9. V가 complex inner product space 일 때 모든 V에서의 normal operator는 square root를 가짐을 보이시 오. 즉 T가 normal operator on V 이면 어떤 $S \in \mathcal{L}(V)$ 에서 $T = S^2$ 이다.

Let $T \in \mathcal{L}(V)$ be an normal operator. Complex spectral theorem에 의해 T의 orthonormal eigenvectors는 V의 basis를 이룬다. e_1, e_2, \ldots 를 T의 orthonormal eigenvectors 이자 V의 orthonormal basis 이고 $\lambda_1, \lambda_2, \ldots$ 를 각각에 대한 eigenvalues라 하자.

모든 λ_i 에 대해 $\mu_i = \sqrt{\lambda_i}$ 인 $\mu_i \in \mathbb{C}$ 가 존재한다. $S \in \mathcal{L}(V)$ 를 $Se_i = \mu_i e_i$ 라 정의하자. $v = \sum_i c_i e_i$ 일 때 $\langle v | (T - S^2) v \rangle = \sum_i |c_i|^2 (\lambda_i - \mu_i^2) = 0$ 이므로 $T = S^2$ 이다.

10. V가 real inner product space 이고 $T \in \mathcal{L}(V)$ 라 하자. $b, c \in \mathbb{R}$ 이 $b^2 < 4c$ 일 때 $T^2 + bT + cI$ 가 invertible 이지 않는 예를 드시오.

Define $Te_1 = e_2$, $Te_2 = -e_1$, $Te_3 = e_2$ and $S = T^2 + bT + cI$. Then $T^2e_1 = -e_1$. $T^2e_2 = -e_2$ and $T^2e_3 = -e_1$.

$$Se_1 = (c-1)e_1 + be_2, Se_2 = -be_1 + (c-1)e_2, Se_3 = -e_1 + be_2 + ce_3.$$

Let b=0 and c=1, Then, $Se_1=0$, $Se_2=0$, $Se_3=-e_1+e_3$. Therefore S is not invertible.

11. 모든 hermitian operator on V는 cube root를 가지는가? 증명하거나 반례를 드시오.

Let $T \in \mathcal{L}(V)$ be an hermitian operator on V. Complex spectran theorem과 real spectral theorem에 따라 V는 T의 orthonormal eigenvectors를 basis로 갖는다. 이 basis를 $\{e_i\}$ 라 하고 각각의 e_i 에 대한 eigenvalue를 λ_i 라 하자.

 \mathbb{F} 가 \mathbb{C} 든 \mathbb{R} 이든 $\sqrt[3]{\lambda_i}$ 가 존재한다. 이를 μ_i 라 하자. 즉 $\mu_i{}^3=\lambda_i$ 이다. $S\in\mathcal{L}(V)$ 를 $Se_i=\mu_ie_i$ 로 정의하면 $v=\sum_i c_ie_i$ 에 대해 $\langle v|(T-S^3)v\rangle=0$ 이므로 $T=S^3$ 이다.

12. $T \in \mathcal{L}(V)$ 가 hermitian 이며 $\lambda \in \mathbb{F}$, $\epsilon > 0$ 이라 하자. 어떤 $v \in V$ 에서 ||v|| = 1 이고 $||Tv - \lambda v|| < \epsilon$ 이라 하자. 그렇다면 $T \vdash |\lambda - \lambda'| < \epsilon$ 인 eigenvalue λ' 을 가짐을 보이시오.

T가 hermitian 이므로 T의 orthonormal eigenvectors는 V의 basis를 이룬다. 이를 e_1, e_2, \ldots 라 하고 각각의 e_i 에 대한 eigenvalue를 λ_i 라 하자.

주어진 λ 와 ϵ 에 대해 $\|Tv-\lambda v\|<\epsilon$ 이며 $\|v\|=1$ 이지만 $|\lambda-\lambda_i|\geq\epsilon$ for all $i=1,\,2,\ldots$ 라 하자. $v=\sum_i c_i e_i$ 라 하면 $\|v\|=1$ 이므로 $\sum_i |c_i|^2=1$ 이다.

$$\epsilon^2 > \|Tv - \lambda v\|^2 = \|\sum_i c_i(\lambda_i - \lambda)e_i\|^2 = \sum_i |c_i|^2 |\lambda - \lambda_i|^2 \ge \epsilon^2 \sum_i |c_i|^2 = \epsilon^2$$
 이므로 모순.

13. Schur's theorem을 사용하지 않고 real spectran theorem을 증명하는 방법으로 complex spectran theorem을 증명하시오.

V가 complex inner product space 이고 $T \in \mathcal{L}(V)$ 일 때 다음 statements가 equivalent 함을 보이자.

- (a) T is normal.
- (b) V는 T의 eigenvectors로 이루어진 orthonormal basis를 가진다.
- (c) 어떤 orthonormal basis of V에서 $\mathcal{M}(T)$ 는 diagonal matrix 이다.

(a \Longrightarrow b) Complex vector space에서 정의된 모든 operator는 eigenvalue를 가진다는 것을 알고 있다. Induction을 통해 증명하자. $n=\dim V=1$ 인 경우는 자명하다. $n=\dim V$ 일 때 모든 $k<\dim V$ 에서 (a \Longrightarrow b)임을 가정하자. T는 eigenvalue와 eigenvector를 가지며 이를 각각 λ_n, v_n 이라 하고 $e_n=v_n/\|v_n\|$ 라 하면 e_n 는 $\|e_n\|=1$ 인 T의 eigenvector 이다. $U_n=\mathrm{span}(e_n)$ 라 하면 $(U_n)^\perp$ 는 n-1 dimensional complex vector space 이며 invariant subspace of V under T 이다. 따라서 induction hypothesis에 의해 (b) 가 성립하며 이 때의 orthonormal basis를 e_1,\ldots,e_{n-1} 이라 하자. e_1,\ldots,e_{n-1},e_n 은 T의 eigenvors 이며 orthonormal basis of V 이다.

(b ⇒ c)는 자명하다.

 $(c \implies a)$ 를 보이자. $A = \mathcal{M}(T)$ 가 diagonal 임을 가정하자. $\mathcal{M}(TT^\dagger - T^\dagger T) = AA^\dagger - A^\dagger A$ 이며 $(AA^\dagger - A^\dagger A)_{ij} = \sum_k A_{ik} A^\dagger_{kj} - A^\dagger_{ik} A_{kj} = A_{ii} A^\dagger_{jj} \delta_{ij} - A^\dagger_{ii} A_{jj} \delta_{ij} = 0$ 이므로 T는 normal 이다.

14. U가 finite dimensional real vector space 이고 $T \in \mathcal{L}(U)$ 일 때 다음을 보이시오 : U가 T의 eigenvectors 로 이루어진 basis를 가진다 \iff T를 hermitian으로 만든는 inner product on U가 존재한다.

(1) U가 T의 eigenvectors로 이루어진 basis를 가진다고 가정하자. 이 basis를 v_1,\ldots,v_n 이라 하자. $Tv_i=\lambda_iv_i$ and $\lambda_i\in\mathbb{R}$ for all $i=1,\ldots,n$ 이다. $v=\sum_i c_iv_i$ 에 대해 norm $\|v\|$ 를 $\|v\|=\sqrt{\sum_i c_i^2}$ 로 정의하자 또한 $\phi:U\times U\to\mathbb{R}$ 을 다음과 같이 정의하자

$$\phi(u,\,v)=\sum\limits_{i}a_{i}b_{i},\quad ext{for }u=\sum\limits_{i}a_{i}v_{i} ext{ and }v=\sum\limits_{i}b_{i}v_{i}\,.$$

 ϕ 가 inner product임을 보이자. $\phi(u,u)=\|u\|^2$ 이며 $\phi(u,u)\geq 0$ 이고 $\phi(u,u)=0\iff u=0$ 임은 자명하다. 또한 $\phi(u,v+w)=\phi(u,v)+\phi(u,w)$ $\phi(v+w,u)=\phi(v,u)+\phi(w,u)$ 임도 쉽게 보일 수 있다. 또한 $c\in\mathbb{R}$ 에 대해 $\phi(\lambda u,v)=\lambda\phi(u,v)$ 이며 $\phi(u,v)=\phi(v,u)$ 이다. 따라서 U의 innerproduct가 정의되므로 $\phi(u,v)=\langle v|u\rangle$ 로 놓자.

이제 T가 hermitian 임을 보이자. $\langle v|Tu\rangle=\sum_i\lambda_ia_ib_i=\langle Tv|u\rangle$ 이므로 T는 hermitian 이다.

(b) T를 hermitian으로 만드는 inner product on U가 존재함을 가정하자. Real spectral theorem에 의해 T의 eigenvectors로 이루어진 U의 orthonormal basis가 존재한다.

3. Positive operators and Isometries

Definition: Positive operator

 $T \in \mathcal{L}(V)$ 가 hermitian 이며 $\langle v|Tv \rangle \geq 0$ for all $v \in V$ 일 때 T를 positive operator on V 라 한다.

Definition: Square root

 $T \in \mathcal{L}(V)$ 에 대해 어떤 $S \in \mathcal{L}(V)$ 가 $T = S^2$ 일 때 S = T의 square root 라 한다.

Theorem 3.1

 $T \in \mathcal{L}(V)$ 에 대해 아래의 statements는 equivalent 하다

- (a) T is positive;
- (b) T는 hermitian 이며 T의 모든 eigenvalue는 nonnegative 이다;
- (c) T는 positive square root를 가진다;
- (d) T는 hermitian square root를 가진다;
- (e) $T = R^{\dagger}R$ 이 되도록 하는 $R \in \mathcal{L}(V)$ 가 존재한다.

(Proof) (a \implies b) T가 positive 이면 by definition T 는 hermitian 이며, v가 λ 를 eigenvalue로 갖는 T의 eigenvector 일 때 $\langle v|Tv \rangle = \lambda_i \langle v|v \rangle \geq 0$ 이므로 $\lambda_i \geq 0$ 이다.

 $(b \Longrightarrow c)$ T가 hermitian 이며 모든 eigenvalues가 nonnegative라 가정하자. Spectral theorem에 의해 V는 T의 orthonormal eigenvectors로 이루어진 basis를 가지며 이를 e_1,\ldots,e_n 이라 하고 eigenvalues를 $\lambda_1,\ldots,\lambda_n$ 이라 하자. 가정에 의햐 모든 $\lambda_i\geq 0$ 이다. $Se_i=\sqrt{\lambda_i}e_i$ 로 정의하면 $S\in\mathcal{L}(V)$ 이며 $S^2=T$ 이다. $v=\sum_i c_ie_i$ 라 하면 $\langle v|Sv\rangle=\sum_i \sqrt{\lambda_i}|c_i|^2\geq 0$ 이다. Theorem 1.7에 의해 $\langle v|Sv\rangle\geq 0$ 이면 S는 hermitian 이므로 S는 positive square root of T 이다.

 $(c \implies d)$ T가 positive square roots를 가지면 $T=S^2$ 이며 $\langle v|Sv \rangle \geq 0$ for all $v \in V$ 이며 S는 theorem 1.7 에 의해 hermitian 이다.

 $(d \implies e)$ T가 hermitian square root를 가지면 $T = S^2$ 이며 $S = S^{\dagger}$ 이므로 T = R 이다.

 $(e \implies a) \ T = R^\dagger R$ 이면 $T^\dagger = (R^\dagger R)^\dagger = T$ 이므로 T는 hermitian 이며 $\langle v|Tv \rangle = \langle Rv|Rv \rangle = \|Rv\|^2 \geq 0$ 이므로 T는 positive 이다. \square

Theorem 3.2

T가 positive operator on V 일 때, T의 positive square root는 유일하다.

(Proof) (1) T가 hermitian 이므로 T의 orthonormal eigen vectors e_1,\ldots,e_n 이 V의 basis 이며 theorem 3.1 에 의해 e_i 의 eigenvalue λ_i 는 nonnegative 이다. 역시 theorem 3.1에 의해 T는 positive square root R을 가지며 $Re_i = \sqrt{\lambda_i}e_i$ 이다.

(2) $S \in \mathcal{L}(V)$ 가 T의 another positive square root라 하자. S가 positive 이므로 by definition hermitian 이다. $e \vdash \mu$ 를 eigenvalue로 갖는 S의 eigenvector라 하자. $S^2e = \mu^2e = Te$ 이므로 $e \vdash$ eigenvector of T 이며 μ^2 \vdash eigenvalue of T 이어야 한다. 따라서 S의 orthonormal eigenvectors = T의 orthonormal eigenvectors 이다.

(3) $Se_i=\mu e_i=\sqrt{\lambda_i}e_i=Re_i$ for all $i=1,\ldots,n$ 이므로 S=R 이다. 즉 T의 positive square root는 유일하다. \square

Definition: Isometry

 $S \in \mathcal{L}(V)$ 가 ||Sv|| = ||v|| for all $v \in V$ 일 때 S를 **isometry** 라 한다. \mathbb{R} 에서의 isometry를 특별히 **orthogonal** operator 라 하고 \mathbb{C} 에서의 isometry를 **unitary** operator라 한다.

Lemma 3.3

Inner product space V에서의 $T \in \mathcal{L}(V)$ 가 어떤 orthonormal basis of V, e_1, \ldots, e_n 에 대해 $Te_i = \lambda_i e_i$ 이 이며 $|\lambda_i| = 1$ for all $i = 1, \ldots, n$ 이면 T는 isometry 이다.

(Proof) Let
$$v = \sum_{i} a_{i} e_{i}$$
. $||Tv||^{2} = \sum_{i} |\lambda_{i}|^{2} |a_{i}|^{2} = \sum_{i} |a_{i}|^{2} = ||v||^{2}$. \Box

Theorem 3.4

 $S \in \mathcal{L}(V)$ 일 때 다음 statements는 equivalent 하다.

- (a) S is an isometry;
- (b) $\langle Sv|Su\rangle = \langle v|u\rangle$ for all $u, v \in V$;

(c) e_1, \ldots, e_n 이 orthonormal list of vectors in V 일 때 Se_1, \ldots, Se_n 역시 orthonormal list of vectors in V 이다;

(d) 어떤 V의 orthonormal basis e_1, \ldots, e_n 에 대해 Se_1, \ldots, Se_n 역시 orthonormal 하다.

- (e) $S^{\dagger}S = SS^{\dagger} = I$;
- (f) S^{\dagger} is an isometry;
- (g) S는 invertible 하며 $S^{-1} = S^{\dagger}$ 이다;

(Proof) (a \implies b) Use exercise 6.A.19(for real inner product space) and 6.A.20(for complex inner product space).

For real inner product space, $4\langle v|u\rangle = ||u+v||^2 - ||u-v||^2$.

$$4\langle Sv|Su \rangle = \|S(u+v)\|^2 - \|S(u-v)\|^2 = \|u+v\|^2 - \|u-v\|^2 = 4\langle v|u \rangle$$
.

For complex inner product space $4\langle v|u\rangle=\|u+v\|^2-\|u-v\|^2+i\|u+iv\|^2-i\|u-iv\|^2$.

$$4\langle Sv|Su\rangle = ||S(u+v)||^2 - ||S(u-v)||^2 + i||S(u+iv)||^2 - i||S(u-iv)||^2$$

= $||u+v||^2 - ||u-v||^2 + i||u+iv||^2 - i||u-iv||^2 = 4\langle v|u\rangle$.

 $(b \implies c) \langle Se_i | Se_i \rangle = \langle e_j | e_i \rangle = \delta_{ij}$. 따라서 Se_1, \ldots, Se_n 은 orthonormal list of vectors in V 이다.

(c \Longrightarrow d) Trivial

(d
$$\Longrightarrow$$
 e) $\langle e_j|S^\dagger S e_i \rangle = \langle S e_j|S e_i \rangle = \delta_{ij}$ 따라서 $S^\dagger S = I$. $\langle e_j|S S^\dagger e_i \rangle = \langle S S^\dagger e_j|e_i \rangle = \langle e_j|e_i \rangle = \delta_{ij}$. 따라서 $S S^\dagger = S^\dagger S = I$

(e
$$\Longrightarrow$$
 f) $||S^{\dagger}u||^2 = \langle S^{\dagger}u|S^{\dagger}u\rangle = \langle u|SS^{\dagger}u\rangle = ||u||^2$.

$$(f \Longrightarrow g) \langle u|u \rangle = \langle S^{\dagger}u|S^{\dagger}u \rangle = \langle u|SS^{\dagger}u \rangle$$
 . 따라서 $SS^{\dagger} = I$ 이므로 $S^{-1} = S^{\dagger}$.

$$(g \implies a) |Su||^2 = \langle Su|Su \rangle = \langle u|S^{\dagger}Su \rangle = ||u||^2.$$

Theorem 3.5

V가 complex inner product space 이고 $S \in \mathcal{L}(V)$ 일 때 다음 statements는 equivalent 하다.

- (a) S is an isometry;
- (b) S의 eigenvectors로 이루어진 V의 orthonormal basis가 존재하며 각각의 eigenvalue의 절대값은 1이다.

(Proof) (b ⇒ a) 는 Lemma 3.3에 보였다.

(a \Longrightarrow b) $SS^\dagger - SS^\dagger = 0$ 이므로 S는 normal operator 이다. Complex spectral theorem에 의해 S의 orthogonal eigenvectors로 이루어진 V의 basis가 존재한다. e_1,\ldots,e_n 을 그 orthonormal eigenvectors of S라 하고 $\lambda_1,\ldots,\lambda_n$ 을 eigenvalues라 하자. $\|Se_i\|^2=|\lambda_i|^2=\|e_i\|^2=1$ 이어야 하므로 $|\lambda_i|=1$. \square

Exercise (Chap. 7. C)

1. $T \in \mathcal{L}(V)$ 가 hermitian 이고 어떤 orthonormal basis of V, e_1, \ldots, e_n 에서 $\langle e_j | Te_j \rangle \geq 0$ for each j 일 때 T는 positive operator인가? 증명하거나 반례를 드시오.

Let $V=\mathbb{R}^2$ and define $Te_1=e_1-e_2$ and $Te_2=-e_1+e_2$. Then T is hermitian, and $\langle e_1|Te_1\rangle=\langle e_2|Te_2\rangle=1$. $\langle e_2|Te_1\rangle=-1$. T is not positivie.

2. T가 positive operator on V 이고 $v, w \in V$ 라 하자. Tv = w 이고 Tw = v 이면 v = w 임을 보이시오.

T(v-w)=-(w-v). 따라서 $\langle v-w|T(v-w)\rangle=-\|w-v\|^2$. T가 positive 이려면 $-\|w-v\|^2\geq 0$ 이어야하므로 v=w.

3. T가 positive on V이며 U는 T-invariant subspace of V라 하자. $T|_U$ 가 positive on U 임을 보이시오.

For $u \in U$, $\langle u|T|_{U}u \rangle = \langle u|Tu \rangle \geq 0$.

4. $T \in \mathcal{L}(V, W)$ 일 때, $T^{\dagger}T$ 는 positive operator on V이며 TT^{\dagger} 는 positive on W임을 보이시오.

 $\langle v|T^{\dagger}Tv\rangle=\|Tv\|^2\geq 0.$ and $\langle w|TT^{\dagger}w\rangle=\|T^{\dagger}w\|^2\geq 0.$

5. Sum of two positive operator 역시 positive 임을 보이시오.

Let $T, S \in \mathcal{L}(V)$ and assume that T and S are positive. $\langle v | (T+S)v \rangle = \langle v | Tv \rangle + \langle v | Sv \rangle \geq 0$, since $\langle v | Tv \rangle \geq 0$ and $\langle v | Sv \rangle \geq 0$.

6. $T \in \mathcal{L}(V)$ 가 positive 이면 T^k 도 모든 양의 정수 k에 대해 positive 임을 보이시오.

Induction 으로 보이자. k=1일 때는 자명하다. 모든 j < k에 대해 T^j 가 positive 임을 가정하자. T^j positive 이므로 hermition 이며 $T^\dagger = T$ 이다. $\langle v|T^kv \rangle = \langle (Tv)|T^{k-2}(Tv) \rangle \geq 0$.

- 7. T가 positive operator 일 때 다음을 보이시오 : T is invertible $\iff \langle v|Tv \rangle > 0$ for every $v \in V$, $v \neq 0$.
- (1) T가 positive 이면 theorem 3.1에 의해 hermitian square root가 존재한다. 즉 $T=R^{\dagger}R$ for some $R\in\mathcal{L}(V)$. Finite dimensional vector space에서 생각하자.
- $(2) \ker R \subset \ker T$ 임은 자명하다. $v \in \ker T$ 이면 $0 = \langle v | Tv \rangle = \langle v | R^\dagger R v \rangle = \|Rv\|^2$ 이므로 $v \in \ker R$ 이다. 따라서 $\ker T = \ker R$ 이다.
- (3) Assume that T is invertible. Then $\ker T=\{0\}$ 이며 따라서 $\ker R=\{0\}$ 이므로 R도 invertible 이다. $\langle v|Tv\rangle=\langle v|R^\dagger Rv\rangle=\|Rv\|^2$ 이며 $\ker R=\{0\}$ 이므로 $\langle |Tv\rangle>0$ for every $v\in V,v\neq 0$.
- (4) Assume that $\langle v|Tv\rangle>0$ for every $v\in V,\ v\neq 0.$ $\langle v|Tv\rangle=\|Rv\|^2$ 이므로 $\langle v|Tv\rangle=0\iff v\in\ker R$. 따라서 $\ker R=\{0\}=\ker T$ 이므로 T는 invertible.
- 8. $T \in \mathcal{L}(V)$ 와 $u, v \in V$ 에 대해 $\langle \cdot | \cdot \rangle_T : V \times V \to \mathbb{F}$ 를 다음과 같이 정의하자.

$$\langle v|u\rangle_T = \langle v|Tu\rangle$$
.

(1) T가 invertible positive operator임을 가정하자. $T=R^{\dagger}R$ for a $R\in\mathcal{L}(V)$ 이며 exercise 7에서 보았듯이 $\ker T=\ker R$ 이므로 R도 invertible positive operator 이다. 따라서 $\langle v|u\rangle_T=\langle Rv|Ru\rangle$. R 이 invertible 이므로 $\langle u|u\rangle_T=0\iff u=0$ 이다. 다른 inner product에 대한 properties를 만족함은 쉽게 보일 수 있다.

(2) $\langle\cdot|\cdot\rangle_T$ 가 inner product on V 임을 가정하자. $\langle u|u\rangle_T=0\iff u=0$ 이므로 $\langle u|Tu\rangle=0\iff u=0$. 따라서 $\ker T=\{0\}$ 이므로 T는 invertible 이다.

$$\langle v|u
angle_{T^\dagger}=\langle v|T^\dagger u
angle=\langle Tv|u
angle=\overline{\langle u|Tv
angle}=\overline{\langle u|v
angle_T}=\langle v|u
angle_T.$$
 따라서 $T=T^\dagger$ 이므로 T 는 hermitian.

 $\langle v|Tv\rangle=\langle v|v\rangle_T\geq 0$ for all $v\in V$. 따라서 T 는 positive.

9. Identity operator on \mathbb{F}^2 는 무한히 많은 hermitian square roots를 가지는가?

Define
$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 for $\theta \in \mathbb{R}$. Then $R(\theta)^\dagger = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and $R(\theta)^\dagger R(\theta) = I \in \mathcal{L}(\mathbb{F}^2)$.

- 10. $S \in \mathcal{L}(V)$ 일 때 아래 statements가 equivalent 함을 보이시오.
- (a) S is an isometry;
- (b) $\langle S^{\dagger}v|S^{\dagger}u\rangle=\langle v|u\rangle$ for all $u,\,v\in V$;
- (d) e_1, \ldots, e_n 이 orthonormal basis of V 일 때 $S^{\dagger}e_1, \ldots, S^{\dagger}e_n$ 도 orthonormal basis of V이다.

Theorem 3.4에 의해 S가 isometry $\iff S^{\dagger}$ 가 isometry. 그렇다면 나머지는 theorem 3.4에 의해 자동으로 증명됨.

11. T_1 , T_2 가 normal operator on $\mathcal{L}(\mathbb{F}^3)$ 이며 모두 2, 5, 7을 eigenvalue로 가진다고 하자. 그렇다면 어떤 isometry $S \in \mathcal{L}(\mathbb{F}^3)$ 가 존재하여 $T_1 = S^\dagger T_2 S$ 임을 보이시오.

 T_1 , T_2 가 각각 로 다른 세 값을 eigenvalues로 가지므로 orthonormal eigenvectors를 basis로 가진다. T_1 에 대해 e_1 , e_2 , e_3 , T_2 에 대해 f_1 , f_2 , f_3 라 하자. $T_1e_1=2e_1$, $T_1e_2=5e_2$, $T_1e_3=7e_3$, $T_2f_1=2f_1$, $T_2f_2=5f_2$, $T_3f_3=7f_3$ 라 하자.

 $Se_i=f_i ext{ for } i=1,\,2,\,3$ 으로 $S\in\mathcal{L}(\mathbb{F}^3)$ 를 정의하자. $v=\sum_i c_i e_i$ 라 하면 ,

$$\|Sv\|^2 = \langle Sv|Sv
angle = \sum_i \sum_j c_i \overline{c_j} \langle f_j|f_i
angle = \sum_i |c_i|^2 = \|v\|^2$$

이므로 S는 isometry 이다. $(S^\dagger T_2 S)v = \sum_i (S^\dagger T_2 S)v = \sum_i (S^\dagger T_2)f_i = \sum_i \lambda_i S^\dagger f_i = \sum_i \lambda_i e_i = T_1 v$.

13. $S \in \mathcal{L}(V)$ 이고 어떤 orthonormal basis of V, e_1, \ldots, e_n 에 대해 $\|Se_i\| = 1$ for all $i = 1, \ldots, n$ 일 때 S는 isometry 인가?

 $||S(e_1+e_2)||^2 = ||1/\sqrt{2}e_1+(1/\sqrt{2}+1)e_2||^2 = 1/2+(1/\sqrt{2}+1)^2$. but $||e_1+e_2||^2 = 2 \neq ||S(e_1+e_2)||^2$.

S is not isometry.

4. Polar decomposition and singular value decomposition

Definition: \sqrt{T}

우리는 $T \in \mathcal{L}(V)$ 가 positive operator 일 때 positive square root가 존재함을 보았다. 이 때의 positive square root of $T = \sqrt{T}$ 로 정의한다.

Theorem 4.1 (Polar decomposition)

 $T \in \mathcal{L}(V)$ 에 대해 $T^{\dagger}T$ 는 positive operator 이다. 어떤 V에서의 isometry S 가 존재하여 $T = S\sqrt{T^{\dagger}T}$ 이다.

 $(Proof)(1) v \in V \supseteq \mathbb{H} ||Tv||^2 = \langle Tv|Tv \rangle = \langle v|T^{\dagger}Tv \rangle = ||\sqrt{T^{\dagger}T}v||^2 \cap \mathbb{H}.$

(2) Define $S_1: \mathrm{range}\,\sqrt{T^\dagger T} \to \mathrm{range}\,T$ by $S_1(\sqrt{T^\dagger T}v) = Tv$. 다소 이상해 보이지만 이것이 잘 정의됨을 보이자. $v_1,\,v_2\in V$ 일 때 $\sqrt{T^\dagger T}v_1=\sqrt{T^\dagger T}v_2$ 라 하자.

$$\|Tv_1 - Tv_2\| = \|T(v_1 - v_2)\| = \|\sqrt{T^\dagger T}(v_1 - v_2)\| = \|\sqrt{T^\dagger T}v_1 - \sqrt{T^\dagger T}v_2\|$$

따라서 $\sqrt{T^{\dagger}T}v_2 = \sqrt{T^{\dagger}T}v_1$ 이면 $Tv_2 = Tv_1$ 이다. 즉 S_1 은 잘 정의된다.

- (3) 이제 S_1 이 linear map on range $\sqrt{T^\dagger T}$ 임을 보이자. $u \in \operatorname{range} \sqrt{T^\dagger T}$ 이면 $u = \sqrt{T^\dagger T}v$ for some $v \in V$ 이다. $u_1, u_2 \in \operatorname{range} \sqrt{T^\dagger T}$, $c \in \mathbb{F}$ 일 때 $S_1(u_1 + cu_2) = S_1(\sqrt{T^\dagger T}v_1 + c\sqrt{T^\dagger T}v_2)$ for some $v \in V$. 따라서 $S_1(u_1 + cu_2) = S_1 \circ \sqrt{T^\dagger T}(v_1 + cv_2) T(v_1 + cv_2) = S_1u_1 + cS_1u_2$ 이므로 S_1 은 linear map 이다.
- (4) $S_1(u) = S_1(\sqrt{T^\dagger T}v) = Tv$ 이므로 $\|S_1(u)\| = \|Tv\| = \|\sqrt{T^\dagger T}v\| = \|u\|$ 이다. 즉 $S_1(u) = 0 \iff u = 0$ 이므로 S_1 은 injection이다. 따라서 $\dim(\operatorname{range}\sqrt{T^\dagger T}) = \dim(\operatorname{range}T)$ 이며, $\dim(\operatorname{range}\sqrt{T^\dagger T})^\perp = \dim(\operatorname{range}T)^\perp$ 이다.
- (5) $(\operatorname{range} \sqrt{T^{\dagger}T})^{\perp}$ 와 $(\operatorname{range} T)^{\perp}$ 의 orthonormal basis를 각각 $e_1,\ldots,e_m,\,f_1,\ldots,f_m$ 이라 하자. Linear map $S_2:(\operatorname{range} \sqrt{T^{\dagger}T})^{\perp} \to (\operatorname{range} T)^{\perp}$ 를 $S_2e_i=f_i$ for all $i=1,\ldots,m$ 으로 정의하자. $w \in (\operatorname{range} \sqrt{T^{\dagger}T})^{\perp}$ 일 때 $\|S_2w\| = \|w\|$ 임을 쉽게 보일 수 있다.
- (6) S_1 은 range $\sqrt{T^\dagger T}$ 에서의 operator 이며 S_2 는 $(\mathrm{range}(\sqrt{T^\dagger T}))^\perp$ 에서의 operator 이다. 모든 $v \in V$ 는 v = u + w for $u \in \mathrm{range}\sqrt{T^\dagger T}$ 와 $w \in (\mathrm{range}\sqrt{T^\dagger T})^\perp$ 로 분해될 수 있으며 이 분해는 unique 하다는 것을 알 고 있다. $Sv = S_1 u + S_2 w$ 로 정의하면 $S(\sqrt{T^\dagger T} v) = S_1(\sqrt{T^\dagger T} v) = Tv$ 이므로 $S\sqrt{T^\dagger T} = T$ 임을 알 수 있다.
- (7)이제 S가 isometry임을 보이자.

$$||Sv||^2 = ||S_1u + S_2w||^2 = ||S_1u||^2 + ||S_2w||^2 = ||u||^2 + ||w||^2 = ||v||^2$$
.

따라서 S는 isometry 이다. \Box

Note : Theorem 4.1은 operator on V가 isometry와 positive operator의 product로 표현될 수 있음을 말한다.

Definition: Singular values

 $T \in \mathcal{L}(V)$ 일 때 **singular values** of T는 eigenvalues of $\sqrt{T^{\dagger}T}$ 를 의미한다. 각각의 eigenvalue λ 는 $\dim E(\lambda, \sqrt{T^{\dagger}T})$ 만큼 반복된다.

 $\sqrt{T^{\dagger}T}$ 의 eigenvalue가 0, 1, 2 이고 $\dim E(0, \sqrt{T^{\dagger}T}) = 1, \dim E(1, \sqrt{T^{\dagger}T}) = 2, \dim E(2, \sqrt{T^{\dagger}T}) = 1$ 이면 T의 singular values는 0, 1, 1, 2이다.

Theorem 4.2 (Singular value decomposition)

 $T \in \mathcal{L}(V)$ 의 singular value가 s_1, \ldots, s_n 일 때 다음을 만족하는 ortohormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V 가 존재한다.

$$Tv = s_1 \langle e_1 | v \rangle f_1 + \cdots + s_n \langle e_n | v \rangle f_n$$
 for every $v \in V$.

(Proof) (1) $\sqrt{T^{\dagger}T}$ 는 positive 이므로 hermitian 이다. 따라서 spectral theorem에 의해 $\sqrt{T^{\dagger}T}$ 의 orthonormal eigenvectors로 이루어진 V의 basis e_1,\ldots,e_n 이 존재한다. 즉 e_1,\ldots,e_n for $\sqrt{T^{\dagger}T}e_i=s_ie_i$. 따라서 $v\in V$ 에 대해, $v=\sum_i\langle e_i|v\rangle e_i$ 이며, $\sqrt{T^{\dagger}T}v=\sum_is_i\langle e_i|v\rangle e_i$ 이다.

(2) Polar decomposition theorem에 의해 $T = S\sqrt{T^{\dagger}T}$ for some isometry S on V 이다. 따라서,

$$Tv = S\sqrt{T^{\dagger}T}(\sum_i \langle e_i|v
angle e_i) = S\sum_i s_i \langle e_i|v
angle e_i = \sum_i s_i \langle e_i|v
angle Se_i$$

이다. $f_i=Se_i$ 로 정의하자. $f_1,\ldots,\,f_n$ 은 orthonormal basis of V (theorem 3.4) 이므로 $Tv=\sum_i s_i \langle e_i|v\rangle f_i$.

Theorem 4.3

 $T \in \mathcal{L}(V)$ 일 때 T의 singular values는 nonnegative square roots of the eigenvalues of $T^{\dagger}T$ 이며 각각의 eigenvalue λ 는 $\dim E(\lambda, T^{\dagger}T)$ 만큼 반복된다.

(Proof) $T^{\dagger}T$ 는 hermitian이므로 $T^{\dagger}T$ 의 orthonormal eigenvectors가 V의 orthonormal basis가 된다. 이를 e_1,\ldots,e_n 이라 하고 e_i 의 eigenvalue를 λ_i 라 하자. $T^{\dagger}Te_i=\lambda_ie_i$ for $i=1,\ldots,n$ 이므로 $\sqrt{T^{\dagger}T}e_i=\sqrt{\lambda_i}e_i$ for $i=1,\ldots,n$ 이다.

Exercise (Chap. 7.D)

1. $u, x \in V$ 이고 $u \neq 0$ 이라 하자. $T \in \mathcal{L}(V)$ 를 $Tv = \langle u|v \rangle x$ 로 정의하자. 그렇다면 $\sqrt{T^\dagger T}v = \frac{\|x\|}{\|v\|} \langle u|v \rangle u$ for every $v \in V$ 임을 보이시오.