4 Generating Permutations and Combinations

4.1 Generating Permutation

Potentially useful formula Sterling's Formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

<u>Idea</u> We can write down all the permutations of n objects by "weaving" n across the permutations of n-1 objects.

Example(p.90)

Algorithm for generating permutations of {1, 2, ..., n}

- Start with $1 \ 2 \dots n$ (A mobile integer is one whose arrow points to an adjacent smaller integer.)
 - 1. Find the largest mobile integer m.
 - 2. Switch m with the adjacent integer that its arrow points to.
 - 3. Switch the direction of all arrows above integers p with p > m.

Example n=4

Nothing mobile, so we stop!

4.2 Inversions in Permutations

Let $i_1 i_2 i_3 \dots i_n$ be a permutation of $\{1, 2, \dots, n\}$. An <u>inversion</u> is a pair (i_k, i_l) such that k < l but $i_k > i_l$.

Example 6 3 5 1 2 4 has inversions

(6,3) (3,1)(5,1)(6,5) (3,2)(5,2)(6,1) (5,4)(6,1) (6,2)(6,4)

There are 10 total inversions.

For the permutation $i_1 i_2 i_3 \dots i_n$, let a_j be the number of inversions whose second component is j. The sequence $a_1 a_2 a_3 \dots a_n$ is called the inversion sequence. $(a_j$ equals the number of integers that precede j in the permutation that are greater than j).

Example $a_1 = 3$ $a_2 = 3$ $a_3 = 1$ $a_4 = 2$ $a_5 = 1$ $a_6 = 0$ So, the permutation 6 3 5 1 2 4 has inversion sequence 3 3 1 2 1 0.

Theorem 4.2.1 Let $b_1, b_2, ..., b_n$ be integers satisfying

$$0 \le b_1 \le n - 1, \ 0 \le b_2 \le n - 2, \ 0 \le b_{n-1} \le 1, \ b_n = 0$$

. Then there is a unique permutation whose inversion sequence is $b_1b_2...b_n$.

Proof Use an algorithm (see pp.94-96 of Brualdi for details) Let $5\ 1\ 4\ 3\ 0\ 1\ 1\ 0$ be an inversion sequence.

Algorithm I (right to left):

Each b_k tells us how many entries in permutation bigger than k precede k.

8

87

867

5867

58647

586437

5286437

52864137

Algorithm II (left to right):

 $\overline{\text{Place each } k}$ in open spot $b_k + 1$

<u>5 2 8 6 4 1 3 7</u>

4.3 Generating Combinations

Goal Given a set of n distinct elements, write down all 2^n subsets of our set.

Approach count n-digit binary integers.

$$\underline{\text{Ex}} \text{ n=4} \quad \text{S={A, B, C, D}} \quad 0 \le k \le 2^n - 1$$

k	$\mathbf{n} ext{-}\mathbf{bit}$	subset of S
	binary representation of k	
0	0000	ϕ
1	0001	$\{A\}$
2	0010	{B}
3	0011	$\{A,B\}$
4	0100	$\{C\}$
5	0101	$\{A,C\}$
6	0110	$\{B,C\}$
7	0111	$\{A,B,C\}$
8	1000	$\{D\}$
9	1001	$\{A,D\}$
10	1010	$\{B,D\}$
11	1011	$\{A,B,D\}$
12	1100	$\{C,D\}$
13	1101	$\{A,C,D\}$
14	1110	$\{B,C,D\}$
15	1111	$\{A,B,C,D\}$

This ordering is called lexicographic ordering of the sequence of 0s and 1s.

The order of the third column 'subset of S' is called the squashed order.

4.4 Generating r-subsets

Recall the squashed order of the subsets of {A,B,C,D}.

$$\begin{array}{cccccc} 0 & 0 & 0 & \phi \\ 0 & 0 & 1 & \{A\} \\ 0 & 1 & 0 & \{B\} \\ 0 & 1 & 1 & \{A,B\} \\ 1 & 0 & 0 & \{C\} \\ 1 & 0 & 1 & \{A,C\} \\ 1 & 1 & 0 & \{B,C\} \\ 1 & 1 & 1 & \{A,B,C\} \end{array}$$

2-subsets: $\{A,B\}$, $\{A,C\}$, $\{B,C\}$ \Rightarrow squashed ordering of 2-subsets inherited from the squashed ordering of all subsets.

Example Squashed order of 2-subsets of {A,B,C,D} is

$$\{A,B\} \quad \{A,C\} \quad \{A,D\}$$

$$\{B,C\}$$
 $\{B,D\}$ $\{C,D\}$

Big Idea Lexicographic order is essentially alphabetic order.

Example Lexicographic order of 3-subsets of $\{1,2,3,4,5\}$ (should be $\binom{5}{3} = 10$ of these)

2 2 2 2 3 3 5 4 5