Das Teilen von Geheimnissen (Secret Sharing)

Prof. Dr. Wolfgang Konen FH Köln

Aktivierung / Motivation

- Ernsteres Problem: Sicherheitscode für Aktivierung Atombomben (hoffentlich!) auf N Personen verteilt
 - Wieviel wissen N-1 Personen bereits über Geheimnis?
 - Was passiert, wenn 1 aus N stirbt / verschwindet?
 - Prozessorientierte Fragen (behandeln wir hier nicht)
 - Was ist mit dem, der den Code verteilt hat?

Fragestellungen Secret Sharing

- Wie kann ich ein Geheimnis / einen Zugang so auf N Personen aufteilen, dass ...
 - ... das Geheimnis rekonstruiert werden kann, wenn alle N zusammenkommen
 - > ... nichts / wenig über das Geheimnis bekannt wird, wenn N-1, N-2, ..., 2, 1 Personen zusammenkommen
- 2. Wie kann ich ein Geheimnis / einen Zugang so auf N Personen verteilen, dass ...
 - > ... bereits K aus N das Geheimnis rekonstruieren können

Fragestellungen (2)

- Welches Problem löst die 2. Fragestellung?
 - Das Problem, dass Geheimnis nicht verlorengeht, wenn N-K der N Personen ausfallen.
 - Anwendungsfall: Internet-Sicherheitspasswort über N multiple Server verteilen.
 - Beispiel: N=10, K=8
 - Auch wenn 1,2=N-K der multiplen Server ausfallen, kann sich der Hauptserver noch das Geheimnis verschaffen
 - Trotzdem ist der Einbruch von Hackern auf 1,2,...,7=K-1 der multiplen Server noch nicht kompromittierend
 - Wir nennen solche Verfahren K-aus-N-Verfahren

Lösungsraum / Lösungen für N-aus-N

Beim Tresor: N Schlüssel bzw. N Vorhängeschlösser:

.

- Diskrete Mathe / Kryptographie
 - Geheimnis = Zahl G (möglicherweise sehr lang)
 - Beispiel:

G = 65439 82713 62780 00123 45219

Wir beschäftigen uns im Folgenden nur mit den Zahl-Lösungen

(K)eine Lösung

Aufteilen von G auf N=5 Person:

G = 65439 82713 62780 00123 45219 65439 82713 62780 00123 45219

- Warum keine Lösung?
 - Wenn 4 Personen zusammenkommen, gibt es nur noch 10⁵ statt 10²⁵ Möglichkeiten für Geheimnis G >> leicht zu knacken
 - Allgemeiner: Der Raum für G wurde auf den Anteil 10⁵/10²⁵ = 1/10²⁰ des ursprünglichen Raums eingeschränkt
 >> dramatische Reduktion!

Bessere Lösung: Summe

- Verteile Geheimnis G=129 auf N=5 Personen, indem jeder eine Zahl ∈ Z₄₀ erhält, sodass die Summe G ergibt.
 - Beispiel: 17+32+39+11+30 = 129
- Um wieviel wird der Raum für G eingeschränkt, wenn N-1=4 Personen zusammenkommen?
 - Minimalzahl für G ist 0
 - ➤ Maximalzahl für G ist (40-1)·5 = 195
 - ➤ Wenn die Personen 1,...4 zusammenkommen, ist 17+32+39+11 = 99. G kann also nur 99,...,138 sein
 - Im Allgemeinen wird der Raum für G auf den Anteil 40/[(40-1) ⋅N] ≈ 1/N eingeschränkt >> deutliche Reduktion

(Noch) Bessere Lösung: Summe mod m

- Algorithmus, um Geheimnis G auf N Personen zu verteilen
 - > Wähle Modul m mit m>G und N-1 zufällige Zahlen $t_1,...,t_{N-1}$ ∈ \mathbf{Z}_m für Personen 1,2,...,N-1
 - ightharpoonup Berechne R = $(t_1 + ... + t_{N-1})$ mod m
 - ▶ Die Zahl für die N. Person ist t_N=(G-R) mod m
- Wieso richtig?
 - $> t_1 + ... + t_{N-1} + t_N = R + (G-R) = G \pmod{m}$
- Um wieviel wird der Raum für G eingeschränkt, wenn N-1 Personen zusammenkommen?

(Noch) Bessere Lösung: Summe mod m

- Um wieviel wird der Raum für G eingeschränkt, wenn N-1 Personen zusammenkommen?
 - Gar nicht!
 - > Denn:
 - Wenn G=R, ist t_N=0 die richtige Zahl
 - Wenn G=R+1, ist t_N=1 die richtige Zahl
 - Wenn G=m-1, ist t_N=G-R-1 die richtige Zahl
 - Wenn G=0 , ist t_N=G-R die richtige Zahl, usw.
 - Wenn G=R-1, ist t_N=m-1 die richtige Zahl
 - ▶ Insgesamt: Für t_N und G sind alle Zahlen ∈ Z_m möglich
 - Wenn N-1 Personen zusammenkommen, ist der Raum für G um NICHTS eingeschränkt (!)

Geheimnis teilen: K-aus-N-Verfahren

■ Idee aus Geometrie: 2-aus-N: Geraden in Ebene R²

- Jede Person erhält eine Gerade, das Geheimnis ist Schnittpunkt
- Bereits 2 Personen können Geheimnis rekonstruieren:

Geheimnis teilen: K-aus-N-Verfahren

Wie verallgemeinern auf 3-aus-N?

- Richtig, Ebenen im Raum **R**³
- Jede Person erhält eine Ebene, Geheimnis = Schnittpunkt

Bereits 3 Personen können Geheimnis rekonstruieren:

s. Notizen

Vor- und Nachteil des Geraden-Ebenen - Verfahrens

Vorteil: K-aus-N überhaupt möglich

Welche Nachteile?

- Bereits jeder Teilnehmer (jede Gerade oder Ebene)
 weiß etwas über Geheimnis, K-1 Teilnehmer wissen noch mehr.
- Beispiel 2 Ebenen im Raum R³: Wenn die Box die Kantenlänge 10² (Gitterpunkte) hat, dann sind initial 10²⋅3 = 106 Gitterpunkte möglich
- Wenn 2 Personen zusammenkommen, wissen sie, dass Geheimnis auf "ihrer" Schnittgeraden liegt >> nur noch 10² Gitterpunkte
- Reduktion auf Anteil 10²/10⁶ = 1/10⁴ des ursprünglichen Geheimnisraumes
- Allgemein: Bei Kantenlänge L und K Personen ist die Reduktion bei K-1 Personen mindestens L^{1-K}, was besonders für große K erheblich ist

Adi Shamir: das "S" von RSA, israelischer Kryptologieexperte

- Shamir legte 1979 ein neues Verfahren vor:
 - das K-aus-N Secret Sharing erlaubt,
 - bei dem K-1 Teilnehmer NICHTS über das Geheimnis erfahren,
 - (auch patentiert).
 - ➤ Das Verfahren ist in [1] beschrieben. Ausnahmsweise ein Krypto-Paper, das auch für Nicht-Mathematiker sehr gut lesbar ist. Es ist auch nur 2 Seiten lang! (1979 konnte man noch kurze und trotzdem gehaltvolle Paper schreiben.)
 - ➤ Weiteres gutes Anwendungsbeispiel: elektronische Überweisung in einer Firma nur nach dem 4,6,8,...,- Augen-Prinzip

Shamirs Secret Sharing

Adi Shamir: das "S" von RSA

Idee: Nehme ein Polynom vom Grad K-1, wenn ein Geheimnis unter K Personen geteilt werden soll:

$$f(x) = a_0 + a_1x + ... + a_{K-1}x^{K-1}$$

Geheimnis

zufällig gewählte Koeffizienten

- Ein Polynom vom Grad K-1 ist eindeutig durch beliebige K Punkte festgelegt ⇒
- Verteile N Punkte (x_n,f(x_n)) an N Personen [n=1,...,N] für ein K-aus-N-Verfahren ¹
 - ¹ Damit wir nicht durch Rundungsfehler gestört werden, rechnen wir nur mit ganzen Zahlen x_n, a_i.

Adi Shamir: das "S" von RSA

- Wie berechnet man aus den Punkten (x_i, f_i) direkt f(0) ?
- Mit der Lagrange-Interpolationsformel (sieht kompliziert aus, ist aber einfach zu programmieren ;-))

$$f(x) = \sum_{i=1}^{K} f_i \prod_{\substack{j=1, \ j \neq i}}^{K} \frac{x - x_j}{x_i - x_j}$$

Spezialfall x=0:

$$f(0) = \sum_{i=1}^{K} f_i \prod_{\substack{j=1, \ j \neq i}}^{K} \frac{-x_j}{x_i - x_j}$$

- VORSICHT: Die Aussage, dass 2 von 3 Personen NICHTS über das Geheimnis wissen, gilt im bisher gezeigten Bild noch nicht: In [3] wird gezeigt, dass in einem bestimmten Beispiel aus 2 von 3 Punkten auf a₀=5k+4, k∈Z, geschlossen werden kann.
- Also Reduktion des Geheimnisraumes um 80% (!)
- Was fehlt?
- Ähnlich wie bei Summe, muss man alle Berechnungen mod p durchführen (p: Primzahl)
- Dann ist wahr, dass 2 von 3 Punkten nichts über a₀ verraten (genauer erklärt in [4])

 ausführlicher in sss.mw

Fazit Secret Sharing

- Summe mod m" ist gutes und einfaches Verfahren für N-aus-N Secret Sharing
- Shamirs Secret Sharing mit mod p ist gutes Verfahren für K-aus-N Secret Sharing
- In beiden Fällen spielt Modulare Arithmetik und damit Diskrete Mathematik eine entscheidende Rolle, damit Teile des Puzzles <u>keinerlei</u> Rückschlüsse auf das Ganze erlauben.

Literatur

- (1) Shamir, A.: How to share a secret, Comm. of the ACM, 22, p. 612-613, Nov. 1979.

 http://lardbucket.org/blog/wp
 - content/uploads/2007/10/shamir how to share a secret.pdf
- (2) Wikipedia (engl.) http://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing (leider mit einem Fehler im Beispiel, auf Discussion-Page diskutiert >> warum man bei Wikipedia-Beiträgen immer auch weiterlesen sollte!!)
- (3) Der (vermeintliche) "Flaw" (Fehler) von Andy Schmitz http://lardbucket.org/blog/archives/2007/10/30/a-flaw-in-shamirs-secret-sharing-method/
- (4) Die (korrekte) Antwort darauf von A.J. Bromage: http://andrew.bromage.org/blog/archive/2007/11/shamirs_secret_sharin.html