ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ А.Ф. МОЖАЙСКОГО

Математического и программного обеспечения

УТВЕРЖДАЮ

«____» августа 201__ г.

протокол № ___

	Начальник 2	Начальник 27 кафедры			
полк	совник				
		С. Войцеховский			
	« <u> </u> »	20 г.			
Автор: старший преподат кандидат техниче подполковник С	еских наук	ЭЫ			
Лекция М по учебной дис «Защита инфор на тему	ециплине омации»				
Тема: «МЕТОДЫ ЗАЩИТІ	Ы ИНФОРМАЦИИ	·»			
	Рассмотрено и на заседании кас	-			

Санкт-Петербург 201_

Содержание занятия и время

Введение – 5 мин.

Учебные вопросы (основная часть):

- 1. Понятие метода защиты информации и характеристика основных методов 3И.-30 мин.
- 2. Программно-аппаратные методы 3И.-50 мин. Заключение -3-5 мин.

Литература:

Основная:

- 1. Войцеховский С.В., Воробьёв Е.Г. Методы и средства защиты компьютерной информации: учебно-методическое пособие. СПб.: ВКА имени А.Ф. Можайского 2013. 134 с.
- 2. Воробьев Е.Г. Защита информации в автоматизированных системах военного назначения. Учебное пособие СПб, ВКА им.А.Ф. Можайского, 2007. 252 с.

Дополнительная:

- 1. Вихорев С.В. Классификация угроз информационной безопасности. http://www2.cnews.ru/comments/security/elvis class.shtml
- 2. Войцеховский С.В., Марковский А.С., Палагушин В.А. Защита информации в автоматизированных системах./ Под ред. профессора Хомоненко А.Д. Спб.:НТЦ им. Л.Т. Тучкова, 2005. 149 с.

Материально техническое обеспечение:

- 1. Технические средства обучения: ПЭВМ, мультимедиа проектор, экран, программное обеспечение.
 - 2. Приложения (слайды).
 - 3. Наглядные средства обучения доска, мел.

Организационно-методические указания:

Цель лекции: Дать знания в области основных методов защиты информации.

Во введении сформулировать тему лекции, цель и название изучаемых вопросов. При этом произвести опрос курсантов по пройденному материалу.

Применяемым методическим приемом является рассказ.

В основной части сконцентрировать внимание курсантов на основных группах методов ЗИ, возможности применения комплексного подхода при построении системы информационной безопасности объекта ВТ.

В заключительной части обобщить изложенный материал и осуществить контрольный опрос.

- 1. Дайте определение метода защиты информации?
- 2. Перечислите основные группы методов ЗИ?
- 3. Какие методы относятся к программно-аппаратным методам ЗИ?

Отвечаю на вопросы по теме занятия, даю задание на самостоятельную подготовку.

РАЗДЕЛ II МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Тема 3. «Основные методы защиты информации»

В. 1. Понятие метода защиты информации и характеристика основных методов ЗИ.

В соответствии с «Современным словарём иностранных слов», метод — приём, способ или образ действия. В соответствии с [2 — Большаков А.А., Петряев А.Б., Платонов В.В., Ухлинов Л.М. Основы обеспечения безопасности данных в компьютерных системах и сетях. Часть 1. Методы, средства и механизмы защиты данных] метод (способ) защиты данных — совокупность приёмов и операций, реализующих функции защиты данных.

В соответствии с Государственным Стандартом Российской Федерации Р 50922-96 [4] под *методом* (способом) защиты информации понимают порядок и правила применения определенных принципов и средств защиты информации. Это определение мы и будем использовать в дальнейшем.

Уменьшить отрицательное, дестабилизирующее воздействие угроз на AC возможно различными *методами*, направленными, с одной стороны, на устранение ИУ, а с другой — на устранение или существенное ослабление уязвимостей. Эти методы должны быть направлены и на устранение последствий реализации угроз.

Их можно разделить на следующие основные группы:

- правовые (законодательные);
- экономические;
- организационные (административные);
- инженерно-технические;
- технические;
- программно аппаратные.

Правовые (законодательные) методы представляют собой законодательные акты государства, которыми регламентируются правила использования данных ограниченного доступа и устанавливаются меры ответственности за нарушение этих правил. Этим они препятствуют несанкционированному использованию информации и являются сдерживающим фактором для потенциальных нарушителей. Эти методы являются базисом для реализации всех остальных методов защиты.

Экономические методы воздействуют на антропогенные ИУ и позволяют их сократить, а также подключать механизмы ликвидации последствий реализации угроз. Так к примеру возможно применение системы коэффициентов и надбавок для сотрудников работающих с конфиденциальной информацией; страхование оборудования и информации; возмещение убытков и компенсация ущерба.

Организационные (административные) методы защиты ориентированы в основном на работу с персоналом — это меры организационного характера, вытекающие из политики безопасности и регламентирующие процессы функционирования системы обработки данных, использование ее ресурсов, деятельности персонала, а также порядок взаимодействия пользователей с системой таким образом, чтобы в наибольшей степени затруднить или исключить возможность реализации угроз безопасности.

Кроме того организационные методы защиты могут включать:

- выбор местоположения и размещения;
- мероприятия по разработке правил доступа пользователей к ресурсам системы

(разработка политики безопасности; пользователь должен знать, что ему разрешено делать в AC и подписать соответствующий документ) и определение ответственности сотрудников за нарушение политики безопасности и нанесение вреда компании (компрометация имиджа, разглашение коммерческой тайны);

- мероприятия, осуществляемые при подборе и подготовке персонала;
- физическая защита, организация охраны и надежного пропускного режима к AC;
- организацию учета, хранения, использования и уничтожения оборудования, документов и носителей с информацией;
- распределение реквизитов разграничения доступа (паролей, ключей, шифрования и т. п.);
- организацию явного и скрытого контроля за работой пользователей по выполнению требований по защите;
- взаимодействие с компетентными органами;
- противопожарную охрану и другие.

Инженерно-технические методы связаны с оптимальным построением зданий, сооружений, инженерных коммуникаций, транспортных магистралей с учётом требований безопасности информации. Это довольно дорогостоящие методы, но они как правило, реализуются ещё на этапе строительства или реконструкции объекта информатизации, способствуют повышению его общей живучести и дают высокий эффект при устранениии источников угроз. А некоторые источники угроз, например обусловленные стихийными бедствиями или техногенного характера, вообще не устранимы другими методами. Кроме того, они позволяют уменьшить влияние объективных и случайных уязвимостей.

К ним относятся следующие мероприятия:

- защита помещений от разрушений;
- электрозащита оборудования и зданий;
- оптимальное размещение оборудования и инженерных коммуникаций;
- применение технических средств визуального наблюдения, связи и охранной сигнализации;
- оптимальное построение зданий, сооружений, сетей инженерных коммуникаций с учётом требований безопасности информации (экранирование помещений, разделение трасс силовых и коммуникационных кабелей и т.д.).

Технические методы предназначены для устранения воздействий преднамеренных ИУ (нарушителей) по добыванию информации специальными техническими средствами. Они основаны на использовании специальных технических средств защиты информации и контроля обстановки для предотвращения вышеуказанных угроз. К ним относятся следующие мероприятия:

- резервирование каналов связи;
- использование выделенных каналов связи;
- создание системы пространственного зашумления;
- создание системы линейного зашумления;
- создание системы акустического зашумления;
- экранирование узлов и оборудования;
- использование источников бесперебойного питания;
- контроль каналов связи;
- контроль отсутствия средств съёма информации и другие.

Например, для защиты акустической (речевой) информации используются пассивные и активные методы.

Пассивные методы защиты акустической (речевой) информации направлены на:

- □ ослабление акустических (речевых) сигналов на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
- ослабление информационных электрических сигналов в соединительных линиях ВТСС, имеющих в своем составе электроакустические преобразователи (обладающие микрофонным эффектом), до величин, обеспечивающих невоможность их выделения средством разведки на фоне естественных шумов;
- □ исключение (ослабление) прохождения сигналов высокочастотного навязывания во вспомогательные технические средства, имеющие в своем составе электроакустические преобразователи (обладающие микрофонным эффектом);
- □ обнаружение излучений акустических закладок и побочных электромагнитных излучений диктофонов в режиме записи;
- □ обнаружение несанкционированных подключений к телефонным линиям связи.

Активные методы защиты акустической (речевой) информации направлены на:

- □ создание маскирующих акустических и вибрационных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения информационного акустического сигнала средством разведки;
- □ создание маскирующих электромагнитных помех в соединительных линиях ВТСС, имеющих в своем составе электроакустические преобразователи (обладающие микрофонным эффектом), с целью уменьшения отношения сигнал/шум до величин, обеспечивающих невозможность выделения информационного сигнала средством разведки;
- □ электромагнитное подавление диктофонов в режиме записи;
- □ ультразвуковое подавление диктофонов в режиме записи;
- □ создание маскирующих электромагнитных помех в линиях электропитания ВТСС, обладающих микрофонным эффектом, с целью уменьшения отношения сигнал/шум до величин, обеспечивающих невозможность выделения информационного сигнала средством разведки;
- □ создание прицельных радиопомех акустическим и телефонным радиозакладкам с целью уменьшения отношения сигнал/шум до величин, обеспечивающих невозможность выделения информационного сигнала средством разведки;
- □ подавление (нарушение функционирования) средств несанкционированного подключения к телефонным линиям;
- □ уничтожение (вывод из строя) средств несанкционированного подключения к телефонным линиям.

Методы защиты телефонных разговоров

- □ подача во время разговора в телефонную линию синфазного маскирующего низкочастотного сигнала (метод синфазной низкочастотной маскирующей помехи);
- □ подача во время разговора в телефонную линию маскирующего высокочастотного сигнала звукового диапазона (метод высокочастотной маскирующей помехи);
- □ подача во время разговора в телефонную линию маскирующего высокочастотного ультразвукового сигнала (метод ультразвуковой маскирующей помехи);
- □ поднятие напряжения в телефонной линии во время разговора (метод повышения напряжения):
- □ подача во время разговора в линию напряжения, компенсирующего постоянную составляющую телефонного сигнала (метод "обнуления");

- □ подача в линию при положенной телефонной трубке маскирующего низкочастотного сигнала (метод низкочастотной маскирующей помехи);
- □ подача в линию при приеме сообщений маскирующего низкочастотного (речевого диапазона) с известным спектром (компенсационный метод);
- □ подача в телефонную линию высоковольтных импульсов (метод "выжигания").

Основные характеристики устройств активной защиты телефонной линии

Наименование характеристик	Тип устройства						
	«Прокруст»	«Протон»	«Цикада- М»	Sel SP-17/P	Гром-ЗИ-6	Кзот-06	
Метод синфазной низкочастотной маскирующей помехи	-	-	•	-	-	-	
Метод высокочастотной маскирующей помехи	•	•	-	•	•	•	
Метод ультразвуковой маскирующей помехи	-	-	•	-	•	-	
Метод повышения напряжения	•	-	-	-	-	-	
Метод "обнуления"			•	-	-	-	
Метод низкочастотной маскирующей помехи	•	•	-	-	-	•	
Метод "выжигания"	-	-	-	-	-	-	
Индикация	световая	световая	световая	световая	световая, звуковая	световая	
Габаритные размеры, мм	62*155*195	205*60*285	68*176*170	152*104*34	150*200*50	210*85*32	
Вес, кг	1	2,3		0,6	1,5	0.75	
Напряжение питания, В	220	220	220	220/12	220	9	
Примечание	Цифровая индикация напряжения в линии	Цифровая индикация напряжения в линии		Частотный диапазон помехи8 10 кГ. Уровень сигнала помехи 70 дБ	Цифровая индикация уменьшения напряжения в линии	Цифровая индикация напряжения в линии	

Защита от перехвата компьютерной информации от ПЭМИ осуществляется пассивными и активными методами ЗИ.

Пассивные методы защиты информации направлены на:

- □ ослабление побочных электромагнитных излучений (информационных сигналов)
 ТСПИ на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
- □ ослабление наводок побочных электромагнитных излучений (информационных сигналов) ТСПИ в посторонних проводниках и соединительных линиях ВТСС, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;

□ исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

- □ создание маскирующих пространственных электромагнитных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ;
- □ создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях ВТСС с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ.

В. 2. Программно-аппаратные методы защиты информации.

Наибольший эффект достигается при применении совокупности организационных и программно-аппаратных методов защиты информации.

Программно-аппаратные методы защиты информации играют ключевую роль как при обеспечении ИБ на автономных ЭВМ так и при построении комплексной системы ИБ АС и вычислительных сетей. На основе программно-аппаратных методов защиты создаются программно-аппаратные средства защиты, которые могут сочетать в себе не один, а несколько методов защиты информации. Многие из этих средств имеют действующие сертификаты ФСТЭК России.

Простота реализации и администрирования, высокая эффективность применения, приемлемые цены делают эти методы, и средства защиты на их основе, очень привлекательными для пользователей во всём мире.

Задача защиты информации от несанкционированного доступа решалась во все времена на протяжении истории человечества. Уже в Древнем мире выделилось два основных метода решения этой задачи, существующие и по сегодняшний день: криптография и стеганография. В последние десятилетия в связи с высокими темпами развития и внедрения новых информационных технологий (ЭВМ, вычислительных сетей) и автоматизации доступа к информации получил применение новый метод — эталонных характеристик.

К основным программно-аппаратным методам защиты информации можно отнести следующие:

- ♦ криптографические;
- ♦ стеганографические;
- ♦ эталонных характеристик.

Суть *криптографического* метода защиты информации заключается в преобразовании открытых данных в зашифрованные при помощи шифра.

Суть *стеганографического* метода защиты информации заключается в том, что скрываемое сообщение встраивается в некоторый безобидный, не привлекающий внимания объект, который затем открыто транспортируется адресату. При стеганографии скрывается сам факт существования тайного сообщения.

Суть метода **эталонных характеристик** заключается в анализе аппаратнопрограммной среды и формировании её уникального идентификатора. Только субъект, обладающий этим уникальным идентификатором, будет иметь (не иметь) право доступа к информации.

Под аппаратно-программной средой понимают: состав устройств, программ, носителей информации, установленный определённый порядок действий, правил и характеристики производительности компьютерных подсистем. Подсистема — набор

устройств и программ АС выполняющих единую задачу. **Доступ к информации** – получение субъектом возможности ознакомления с информацией, в том числе при помощи технических средств.

Программно-аппаратные методы предназначены для устранения проявления угроз, непосредственно связанных с процессом обработки и передачи информации. К ним в соответствии с [14] относятся следующие мероприятия:

- разграничение (ограничение) доступа пользователей к ресурсам АС;
- управление потоками информации;
- маскирование структуры и назначение сети;
- блокирование неиспользуемых сервисов;
- подтверждение подлинности информации;
- преобразование информации при её передаче и хранении;
- контроль целостности данных;
- обеспечение конфиденциальности данных;
- мониторинг целостности аппаратно-программного обеспечения;
- резервирование ресурсов и компонентов АС;
- регистрация и анализ событий, происходящих в АС.

Сопоставление описанных выше угроз безопасности информации и группы методов их парирования позволяет решить, какими способами, какие угрозы целесообразно предотвращать, а также определить рациональное соотношение групп методов при распределении денежных средств.