

Concours d'entrée 2013 – 2014

Chimie

Durée: 1 heure Le 14 juillet 2013

Premier exercice (7 points) Étude cinétique en phase gazeuse

La réaction de décomposition en phase gazeuse, dans une enceinte de volume V constant, du peroxyde de diterbutyle est représentée par l'équation suivante :

$$(CH_3)_3C - O - O - C (CH_3)_3 (g) \rightarrow 2 CH_3 - C - CH_3 (g) + CH_3 - CH_3 (g)$$

À 420 K, la mesure de la pression totale P_t du mélange conduit, à différentes dates, aux résultats suivants :

t(min)	10	50	100	150	200	300
P (bar)	0,278	0,405	0,513	0,584	0,630	0,681

Lorsque la réaction est terminée, la pression est constante et vaut $P_{\text{finale}} = 0,718$ bar. On note n_0 la quantité de matière initiale de diterbutyle et x la quantité de matière d'éthane $(CH_3 - CH_3)$ formée à la date t.

- 1- Exprimer les quantités de matière des différentes espèces chimiques à la date t en fonction de n_0 et x.
- 2- Montrer que la pression initiale P₀ est égale à P finale /3.
- 3- Montrer qu'à la date t : $P_t = P_0$ $(1 + 2\frac{x}{n_0})$, en déduire l'expression de $\frac{x}{n_0}$ en fonction de P_t .
- 4- Trouver les deux valeurs qui manquent dans le tableau suivant :

t (min)	10	50	100	150	200	300
$\frac{x}{n_0}$	0,082	0,347		0,722	0,818	

5- Tracer la courbe $\frac{x}{n_0} = f(t)$. Prendre pour échelles : en abscisses 2 divisions pour 25 min,

en ordonnées 2 divisions pour $\frac{x}{n_0} = 0.1$.

6- Déterminer le temps de demi-réaction.

Deuxième exercice (13 points) Préparation et propriétés d'un acide carboxylique

La carbonylation est une réaction permettant de préparer un acide carboxylique à partir d'un alcool en présence d'un catalyseur selon l'équation suivante :

$$ROH + CO \xrightarrow{catalyseur} RCOOH$$

1- Carbonylation d'un alcool (X)

On réalise la carbonylation de 2,5 g d'un monoalcool (X) à chaîne carbonée saturée et ouverte. L'acide carboxylique (HA) obtenu est dissous dans l'eau pour avoir une solution (S) de volume égal à 250 mL.

Le dosage d'un volume de 20 mL de la solution (S) exige 8 mL d'une solution d'hydroxyde de sodium de concentration $Cb = 0.5 \text{ mol.L}^{-1}$.

- 1.1- Écrire l'équation de la réaction de dosage de l'acide (HA).
- 1.2- Déterminer le nombre de moles de l'acide (HA) dans la solution (S).
- 1.3- Déduire la masse molaire de l'alcool (X) sachant que le rendement de la réaction de carbonylation est 92 %.
- 1.4- Montrer que la formule de (HA) est C_2H_5 COOH.

Donnée:

- Masse molaire en g.mol⁻¹: M(H) = 1; M(C) = 12; M(O) = 16.
- Produit ionique de l'eau : $Ke = 10^{-14}$.
- pKa $(C_2H_5COOH/C_2H_5COO^{-}) = 4.9$.
- Cette étude est effectuée à 25 °C.

2- <u>Étude de la solution S_{E1/2} obtenue à la demi-équivalence du dosage</u>

La solution obtenue après avoir ajouté 4 mL de la solution d'hydroxyde de sodium de concentration $Cb = 0.5 \text{ mol.L}^{-1}$ à 20 mL de la solution S est notée SE1/2.

- 2.1- Faire l'inventaire des espèces chimiques majoritaires présentes dans la solution SE1/2.
- 2.2- Donner la relation entre [C₂H₅COO⁻] et [C₂H₅COOH], dans la solution S_{E1/2}, sans tenir compte de la réaction de ces espèces avec l'eau ; en déduire le pH de la solution S_{E1/2}.
- 2.3- Préciser le nom et les propriétés de cette solution S E1/2.
- 2.4- Il est possible de préparer deux solutions (S₅) et (S₆) de même pH que la solution S_{E1/2} en mélangeant chaque fois deux solutions parmi celles proposées dans le tableau ci-dessous.

Préciser les deux solutions utilisées pour préparer (S₅) d'une part et (S₆) d'autre part.

Solution	Soluté	Concentration (mol.L ⁻¹)	Volume (L)
S ₁	Propanoate de sodium	$C_1 = 0.05$	$V_1 = 1,00$
S ₂	Hydroxyde de sodium	$C_2 = 0.05$	$V_2 = 0,50$
S ₃	Acide propanoïque	$C_3 = 0.05$	$V_3 = 1,00$
S ₄	Acide chlorhydrique	$C_4 = 0.05$	$V_4 = 0,50$

3- Quelques réactions d'acide propanoïque

Les dérivés des acides carboxyliques présentent une grande importance industrielle. Écrire, en utilisant les formules semi-développées des composés organiques, les équations des réactions permettant d'avoir, à partir de l'acide propanoïque, le chlorure de propanoyle, le propanoate de méthyle, l'anhydride propanoïque et le N-méthylpropanamide.

Les trois parties de cet exercice sont indépendantes.

Concours d'entrée 2013 - 2014

Corrigé de Chimie

Durée: 1 heure Le 14 juillet 2013

Premier exercice (7 points) Étude cinétique en phase gazeuse

1-Le tableau d'évolution de la réaction :

Etat	Avancement	$C_8 H_{18}O_2 \rightarrow$	$2 C_3 H_6 O +$	C_2H_6
initial	0	n_0	0	0
en cours	x	n ₀ –x	2x	x
final	$x_{\text{final}} = \mathbf{n}_0$	0	$2 n_0$	n_0

- 2- La quantité de matière finale : $n_{\text{final}} = 2 n_0 + n_0 = 3 n_0$ Travaillant à volume constant et température constante $P_t = n_t (RT/V)$ et $P_0 = n_0 (RT/V)$, on tire : $P_0 = P_{\text{finale}}/3$.
- 3- À tout instant $n_t = (n_0-x) + 2x + x = n_0 + 2x = n_0 (1 + 2 x/n_0)$ et $P_t = P_0 (1 + 2 \frac{x}{n_0})$ Or: $P_0 = 0.718/3 = 0.239$ bar $\frac{x}{n_0} = (P_t - P_0)/2P_0 = (P_t - 0.239)/2 \times 0.239 = 2.09 P_t - 0.5$.
- 4- À t = 100 min; $\frac{x}{n_0} = (P_t P_0)/2P_0, \frac{x}{n_0} = (0, 513 0,239)/2 \times 0,239 = 0,573$ bar À t = 300 min; $\frac{x}{n_0} = (P_t - P_0)/2P_0, \frac{x}{n_0} = (0,681 - 0,239)/2 \times 0,239 = 0,925$ bar

5- La courbe:

6 –Le temps de demi-réaction $t_{1/2}$ est atteint lorsque $x_{t1/2} = n_{0/2}$ et $\frac{x}{n_0} = 0.5$ alors $t_{1/2} = 80$ min.

De<mark>uxième e</mark>xercice (13 points) Préparation et propriétés d'un acide carboxylique

1-Carbonylation d'un alcool (X)

1.1- L'équation de la réaction de dosage de l'acide (HA)

$$HA + HO^{-} \rightarrow A^{-} + H_{2}O$$

- 1.2- $n_{\text{acide (équivalence)}} = n_{\text{base versée}} = CbVb_E = 0,5 \times 0,008 = 0,004 \text{ mol}$ $n_{\text{acide total}} = 0,004 \times (250/20) = 0,05 \text{ mol}.$
- 1.3- D'après l'équation de carbonylation n $_{acide \ form\'e} = n_{alcool \ r\'eagissant} = 0,05 \ mol$ n $_{alcool \ utilis\'e} = 0,05 \times 100/92 = 0,054 \ mol$. M $_{alcool} = m/n = 2,5/0,054 = 46,29 \ g.mol^{-1}$.
- 1.4- L'alcool de masse molaire 46,3 g est l'éthanol CH_3CH_2OH on tire que la formule de (HA) est C_2H_5-COOH .

2-Étude de la solution S E1/2 obtenue à la demi-équivalence du dosage.

2.1. À part l'eau à la demi-équivalence les espèces chimiques majoritaires présentes dans la solution S_{E1/2} sont : C₂H₅COO⁻, C₂H₅COOH et Na⁺

tel que $n_{C2H5COO}$ = $n_{C2H5COOH}$ = n_{Na+} CbVb_E/2=0,002 mol.

- 2.2. On tire que $[C_2H_5COO^-] = [C_2H_5COOH]$ et pH = pKa = 4,9.
- 2.3. La solution obtenue est une solution tampon dont le pH ne varie pas par addition de l'eau et varie peu par addition modérée d'un acide fort ou une base forte.
- 2.4. On peut obtenir une solution de même pH en mélangeant :
 - **a-** Solution 1 + solution 4

Equation: $C_2H_5COO^- + H_3O^+ \rightarrow C_2H_5COOH + H_2O Kr = 10^{4,9}$ réaction totale

	C ₂ H ₅ COO ⁻ -	$+$ $H_3O^+ \rightarrow$	C ₂ H ₅ COOH +	H ₂ O
initial	0,05	0,025	0	Вср
final	0,025	0	0,025	Bcp

et pH =pKa.

b- Solution 2 + solution 3

Equation: $C_2H_5COOH + HO^- \rightarrow C_2H_5COO^- + H_2O Kr = 10^{9,1}$

	C ₂ H ₅ COOH	+ HO ⁻ →	$C_2H_5COO^- +$	H ₂ O
initial	0,05	0,025	0	bcp
final	0,025	0	0,025	bcp

et pH = pKa

c- Solution 1 + solution 3

Equation: $C_2H_5COO^- + C_2H_5COOH + C_2H_5COO^- + C_2H_5COO^- + C_2H_5COOH + C_2H_5COO^- + C_2H_5COOH + C_$

3- Quelques réactions d'acide propanoïque

a-
$$CH_3$$
— CH_2 — $COOH + PCl_5$ \rightarrow CH_3 — CH_2 — $COCl + POCl_3 + HCl$

c-
$$CH_3$$
— CH_2 — $COOH + CH_3$ — CH_2 — $COOH \rightarrow$

$$CH_3$$
— CH_2 — $COOOC$ — CH_2 — $CH_3 + H_2O$

$$d$$
- CH_3 — CH_2 — $COOH$ + CH_3 — NH_2 \rightarrow CH_3 — CH_2 — $CONH$ — CH_3 + H_2O .