1 Mechatronik.lib

1	Mechatronik.lib 1
1.1	Träge Masse – Mechatronische Kapazität 2
1.2	Steifigkeit – Mechatronische Induktivität 3
1.3	Dämpfung – Mechatronischer Widerstand 4
1.4	Massenträgheitsmoment – Mechatronische Kapazität 5
1.5	Torsionssteifigkeit – Mechatronische Induktivität6
1.6	Torsionsdämpfung – Mechatronischer Widerstand7
1.7	Schwere Masse – Mechatronische Kapazität8
1.8	Rohrleitung – Mechatronische Induktivität 9
1.9	Rohrreibung – Mechatronischer Widerstand 10
1.10	Nichtlinearitäten – nichtlinearer Widerstand Type 1 11
1.11	Nichtlinearitäten – nichtlinearer Widerstand Type 212
2	Wandler.lib13
2.1	Transformator (Zweitor)13
2.2	Gyrator (Zweitor) 14
3	Control.lib15
3.1	P-Glied (Proportionalglied) 15
3.2	I-Glied (Integrator) 16
3.3	D-Glied (Differenzierer) 17

1.1 Träge Masse – Mechatronische Kapazität

Tab. 1: träge Masse (Primärgröße Impuls)

Tab. 2: Component Attribute Editor

Attribute	Value
Prefix	Х
InstName	C
SpiceModel	
Value	C_m_p
Value2	
SpiceLine	m=
SpiceLine2	V=

Die Eingabe des Größenwertes der trägen Masse erfolgt im Component Attribut Editor unter *SpiceLine*. Die Eingabe der Anfangsgeschwindigkeit erfolgt unter *SpiceLine2*.

Bsp.: träge Masse von $1000~\mathrm{kg}~\mathrm{mit}$ einer Anfangsgeschwindigkeit von $2~\mathrm{m/s}$ m=1E3 v=2

1.2 Steifigkeit – Mechatronische Induktivität

Tab. 3: Steifigkeit (Primärgröße Impuls)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Steifigkeit	1	N/m
Flussgröße	Kraft	1	N
Differenzgröße	Geschwindigkeit	1	m/s
Symbol	•-\\\		
Ersatzschaltbild	R_{par} L R_{ser} C_{par}		

Tab. 4: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	С	
SpiceModel		
Value	L_m_p	
Value2		
SpiceLine	c= Rser=0	
SpiceLine2		

Die Eingabe des Größenwertes der Steifigkeit erfolgt im Component Attribut Editor unter *SpiceLine*. Der zur Berechnung genutzte Induktivitätswert berechnet sich aus der inversen Steifigkeit. Der Parallelwiderstand ist ohne eine Werteangabe automatisch unendlich groß. Der Wert des seriellen Widerstandes muss explizit angegeben werden.

Bsp.: Steifigkeit von $100~\mathrm{N/m}$ ohne Reibungsverluste c=100 Rser=0

1.3 Dämpfung – Mechatronischer Widerstand

Tab. 5: Dämpfung (Primärgröße Impuls)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Dämpfungskonstante	1	$N \times s/m$
Flussgröße	Kraft	1	N
Differenzgröße	Geschwindigkeit	1	m/s
Symbol	•——		

Ersatzschaltbild

$$R_m = \frac{1}{k_S}$$

Tab. 6: Component Attribute Editor

Attribute	Value	
Prefix	X	
InstName	k	
SpiceModel		
Value	R_m_p	
Value2		
SpiceLine	k=	
SpiceLine2		

Die Eingabe des Größenwertes der Dämpfungskonstante erfolgt im Component Attribut Editor unter *SpiceLine*. Der zur Berechnung genutzte Widerstandswert berechnet sich aus der inversen Dämpfungskonstante. Weitere Ersatzgrößen existieren für die (lineare) Dämpfungskonstante nicht.

Bsp.: Dämpfungskonstante von 0.01 Ns/m k=0.01

1.4 Massenträgheitsmoment – Mechatronische Kapazität

Tab. 7: Massenträgheitsmoment (Primärgröße Drehimpuls)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Massenträgheitsmoment	1	$N\times m\times s^2$
Flussgröße	Moment	1	$N \times m$
Differenzgröße	Winkelgeschwindigkeit	1	rad/s
Symbol	\longleftarrow		
Ersatzschaltbild	R_{par} R_{sh} C_{par}	R_{ser}	

Tab. 8: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	С	
SpiceModel		
Value	C_m_d	
Value2		
SpiceLine	Js=	
SpiceLine2		

Die Eingabe des Größenwertes des Massenträgheitsmomentes erfolgt im Component Attribut Editor unter *SpiceLine*.

Bsp.: Massenträgheitsmoment von $5.2~\mathrm{N} \times \mathrm{m} \times \mathrm{s}^2$ Js=5.2

1.5 Torsionssteifigkeit – Mechatronische Induktivität

Tab. 9: Torsionssteifigkeit (Primärgröße Drehimpuls)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Torsionssteifigkeit	1	N×m
Flussgröße	Moment	1	N×m
Differenzgröße	Winkelgeschwindigkeit	1	rad/s
Symbol			
Ersatzschaltbild	R_{par} L R_{ser} C_{par}	•	

Tab. 10: Component Attribute Editor

Attribute	Value
Prefix	X
InstName	С
SpiceModel	
Value	L_m_d
Value2	
SpiceLine	ct= Rser=0
SpiceLine2	

Die Eingabe des Größenwertes der Steifigkeit erfolgt im Component Attribut Editor unter *SpiceLine*. Der zur Berechnung genutzte Induktivitätswert berechnet sich aus der inversen Steifigkeit. Der Parallelwiderstand ist ohne eine Werteangabe automatisch unendlich groß. Der Wert des seriellen Widerstandes muss explizit angegeben werden.

Bsp.: Torsionssteifigkeit von $100 \cdot N \times m$ ohne Reibungsverluste c=100 Rser=0

1.6 Torsionsdämpfung – Mechatronischer Widerstand

Tab. 11: Torsionsdämpfung (Primärgröße Drehimpuls)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Dämpfungskonstante	1	N×m×s/rad
Flussgröße	Moment	1	$N \times m$
Differenzgröße	Winkelgeschwindigkeit	1	rad/s
Symbol	• <u>[</u>		
Ersatzschaltbild	$R_{m} = \frac{1}{k_{t}}$		

Tab. 12: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	kt	
SpiceModel		
Value	R_m_d	
Value2		
SpiceLine	kt=	
SpiceLine2		

Die Eingabe des Größenwertes der Dämpfungskonstante erfolgt im Component Attribut Editor unter *SpiceLine*. Der zur Berechnung genutzte Widerstandswert berechnet sich aus der inversen Dämpfungskonstante. Weitere Ersatzgrößen existieren für die (lineare) Dämpfungskonstante nicht.

Bsp.: Dämpfungskonstante von 0.01 Nm×s/rad kt=0.01

1.7 Schwere Masse – Mechatronische Kapazität

Tab. 13: Kapazität (Primärgröße schwere Masse)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Kapazität	1	$kg \times s^2/m^2$
Flussgröße	Massestrom	1	kg/s
Differenzgröße	Druckdifferenz/Dichte	1	m^2/s^2
Symbol	•————		
Ersatzschaltbild	R_{par} L_{ser} C_{pa}	R_{ser}	

Tab. 14: Component Attribute Editor

Attribute	Value	
Prefix	X	
InstName	С	
SpiceModel		
Value	C_m_h	
Value2		
SpiceLine	C=	
SpiceLine2		

Die Eingabe des Größenwertes der schweren Masse erfolgt im Component Attribut Editor unter *SpiceLine*.

Bsp.: Kapazität von
$$10 \frac{kg \times s^2}{m^2}$$
 C=10

1.8 Rohrleitung – Mechatronische Induktivität

Tab. 15: Rohrleitung (Primärgröße schwere Masse)

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Induktivität	1	m²/kg
Flussgröße	Massestrom	1	kg/s
Differenzgröße	Druckdifferenz/Dichte	1	m^2/s^2
Symbol	←		
Ersatzschaltbild	R_{par} L R_{ser} C_{par}	•	

Tab. 16: Component Attribute Editor

Attribute	Value	
Prefix	X	
InstName	С	
SpiceModel		
Value	L_m_h	
Value2		
SpiceLine	L= Rser=0	
SpiceLine2		

Die Eingabe des Größenwertes der Steifigkeit erfolgt im Component Attribut Editor unter *SpiceLine*. Der Parallelwiderstand ist ohne eine Werteangabe automatisch unendlich groß. Der Wert des seriellen Widerstandes muss explizit angegeben werden.

Bsp.: Induktivität von $100\frac{\mathrm{m}^2}{\mathrm{kg}}$ ohne Reibungsverluste

L=100 Rser=0

1.9 Rohrreibung – Mechatronischer Widerstand

Tab. 17: Rohrreibung (Primärgröße Drehimpuls)

Bauelement	Rohrreibung (linear)	1	m²/kg×s
Flussgröße	Massestrom	1	kg/s
Differenzgröße	Druckdifferenz/Dichte	1	m^2/s^2
Symbol	•		

Ersatzschaltbild

$$R_m = \frac{1}{k_{St}}$$

Tab. 18: Component Attribute Editor

Attribute	Value	
Prefix	X	
InstName	ks	
SpiceModel		
Value	R_m_h	
Value2		
SpiceLine	ks=	
SpiceLine2		

Die Eingabe des Größenwertes der linearen Dämpfungskonstante erfolgt im Component Attribut Editor unter *SpiceLine*. Der zur Berechnung genutzte Widerstandswert berechnet sich aus der inversen Stokes'schen Dämpfungskonstante. Weitere Ersatzgrößen existieren für die (lineare) Dämpfungskonstante nicht.

Bsp.: Dämpfungskonstante von $0.01\,\mathrm{m^2/kg}\times\mathrm{s}$ ks=0.01

1.10 Nichtlinearitäten – nichtlinearer Widerstand Type 1

Tab. 19: nichtlinearer Widerstand Type 1

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Widerstand (nichtlinear)	1	[x]
Flussgröße	beliebig	1	[x]
Differenzgröße	beliebig	1	[x]
Symbol	- 1		
Ersatzschaltbild	$R_{L1}(Y) = \sqrt[n]{R_1} \cdot Y^{\frac{n-1}{n}}$	$Y = R_1 \cdot I_X^n$	

Tab. 20: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	U1	
SpiceModel		
Value	RL1	
Value2		
SpiceLine	RL1=	
SpiceLine2	n=	

Die Eingabe des Größenwertes des Widerstandes R_1 erfolgt im Component Attribut Editor unter *SpiceLine*. Der Exponent der Flussgröße I_X wird in der *SpiceLine2* Variable n festgelegt. Der zur Simulation genutzte Widerstandswert $R_{L1}(Y)$ wird aus R_1 und n berechnet. Weitere Ersatzgrößen existieren für den nichtlinearen Widerstand nicht.

Bsp.: RL1=100 n=2

1.11 Nichtlinearitäten – nichtlinearer Widerstand Type 2

Tab. 21: nichtlinearer Widerstand Type 2

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Widerstand (nichtlinear)	1	[x]
Flussgröße	beliebig	1	[x]
Differenzgröße	beliebig	1	[x]
Symbol	2		
Ersatzschaltbild	$R_{L2}(Y) = R_2 \cdot \frac{1}{Y^{n-1}}$	$I_X = \frac{1}{R_2} \cdot Y^n$	

Tab. 22: Component Attribute Editor

Attribute	Value
Prefix	Х
InstName	U1
SpiceModel	
Value	RL2
Value2	
SpiceLine	RL2=
SpiceLine2	n=

Die Eingabe des Größenwertes des Widerstandes R_2 erfolgt im Component Attribut Editor unter *SpiceLine*. Der Exponent der Potentialgröße Y wird in der *SpiceLine2* Variable n festgelegt. Der zur Simulation genutzte Widerstandswert $R_{L2}(Y)$ wird aus R_2 und n berechnet. Weitere Ersatzgrößen existieren für den nichtlinearen Widerstand nicht.

Bsp.: RL2=100 n=2

2 Wandler.lib

2.1 Transformator (Zweitor)

Tab. 23: Transformator

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Transformator	1	[x]
Flussgröße	beliebig	1	[x]
Differenzgröße	beliebig	1	[x]
Symbol	$\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$		
Ersatzschaltbild	$ \begin{cases} H_{11} \\ \\ E1 \end{cases} $ $ \lbrace H_{12} \rbrace $	$ \begin{array}{c c} \hline \\ \hline \\ \hline \\ E1\{H_{21}\} \end{array} \left\{ \frac{1}{H_{22}} \right\} $	

Tab. 24: Component Attribute Editor

Attribute	Value
Prefix	X
InstName	U1
SpiceModel	Transformator
Value	H11=
Value2	H12=
SpiceLine	H21=
SpiceLine2	H22=

Die Eingabe des Größenwertes der Hybridmatrix erfolgt im Component Attribut Editor unter den Punkten *Value*, *Value*, *SpiceLine* und *SpiceLine*.

Bsp.: H11=1, H12=10, H21=-H12, H22=100

2.2 Gyrator (Zweitor)

Tab. 25: Gyrator

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	Gyrator	1	[x]
Flussgröße	beliebig	1	[x]
Differenzgröße	beliebig	1	[x]
Symbol	$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$		
Ersatzschaltbild	$\left\{\frac{1}{Y_{11}}\right\} \left[\begin{array}{c} \mathbf{G1} \\ \mathbf{V}_{12} \end{array}\right]$	$ \begin{array}{c c} \mathbf{G2} \\ \hline \\ Y_{21} \end{array} \end{array} \bigg[\frac{1}{Y_{22}} \bigg] $	

Tab. 26: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	U1	
SpiceModel	Gyrator	
Value	Y11=	
Value2	Y12=	
SpiceLine	Y21=	
SpiceLine2	Y22=	

Die Eingabe des Größenwertes der Leitwertsmatrix erfolgt im Component Attribut Editor unter den Punkten *Value*, *Value*2, *SpiceLine* und *SpiceLine*2.

Bsp.: Y11=1, Y12=10, Y21=Y12, Y22=100

3 Control.lib

3.1 P-Glied (Proportionalglied)

Tab. 27: P-Glied

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	P-Glied	1	[x]
Flussgröße	-	-	-
Differenzgröße	Potentialdifferenz	1	[x]
Symbol	P-Glied		
Funktion	$y(t) = K_P \cdot u(t)$		

Tab. 28: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	P-Glied	
SpiceModel		
Value	P-Glied	
Value2		
SpiceLine	Kp=	
SpiceLine2		

Das P-Glied führt eine einfache Verstärkung des Eingangssignals (Differenzgröße) um den Faktor Kp durch. Dabei ist es unerheblich, um welches physikalische System es sich handelt.

Bsp.: Verstärkung des Eingangssignals um den Faktor Kp=2

$$u(t) = \hat{x} \cdot \sin(\Omega t) \rightarrow y(t) = 2 \cdot \hat{x} \cdot \sin(\Omega t)$$

3.2 I-Glied (Integrator)

Tab. 29: I-Glied

Beschreibung	Größe	Größenwert	Maßeinheit
Bauelement	I-Glied	1	[x]
Flussgröße	-	-	-
Differenzgröße	Potentialdifferenz	1	[x]
Symbol	•———I-Glied		
Funktion	$y(t) = K \cdot \int_{0}^{t} u(\tau)d\tau + C$;	

Tab. 30: Component Attribute Editor

Attribute	Value	
Prefix	Х	
InstName	Integrator	
SpiceModel		
Value	I-Glied	
Value2		
SpiceLine	ic=	
SpiceLine2		

Das I-Glied führt eine einfache Integration des Eingangssignals (Differenzgröße) durch. Dabei ist es unerheblich, um welches physikalische System es sich handelt. Die Eingabe der Anfangsbedingungen für die Integration erfolgt im Component Attribut Editor unter *SpiceLine*.

Bsp.: Integration der Funktion
$$u(t) = \hat{x} \cdot \sin(\Omega t) \rightarrow y(t) = -\frac{\hat{x}}{\Omega} \cdot \cos(\Omega t)$$
 $ic = -\frac{1}{\Omega}$

3.3 D-Glied (Differenzierer)

Tab. 31: D-Glied

Beschreibung	Größe	Größenwert	Maßeinheit	
Bauelement	D-Glied	1	[x]	
Flussgröße	-	-	-	
Differenzgröße	Potentialdifferenz	1	[x]	
Symbol	D-Glied	-•		
Funktion	$y(t) = K \cdot \dot{u}(t)$			

Tab. 32: Component Attribute Editor

Attribute	Value	
Prefix	X	
InstName	Differenzierer	
SpiceModel		
Value	D-Glied	
Value2		
SpiceLine	ic=	
SpiceLine2		

Das D-Glied führt eine einfache Differentation des Eingangssignals (Differenzgröße) durch. Dabei ist es unerheblich, um welches physikalische System es sich handelt. Die Eingabe der Anfangsbedingungen für die Integration erfolgt im Component Attribut Editor unter *SpiceLine*.

Bsp.: Differentation der Funktion $u(t) = \hat{x} \cdot \sin(\Omega t) \rightarrow y(t) = \hat{x} \cdot \Omega \cdot \cos(\Omega t)$