CAPSTONE PROJECT

PROJECT TITLE

Presented By:

PIYUSH LENDE - MIT Academy of Engineering - Computer Engineering

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- Electrical faults in power distribution systems pose serious threats to system reliability and stability. These faults must be identified and classified quickly and accurately to maintain uninterrupted power supply and safety.
- The challenge is to design a machine learning model that can detect and classify various fault types (such as line-to-ground, line-to-line, and three-phase faults) using electrical measurement data such as voltage and current phasors.

PROPOSED SOLUTION

- The proposed system aims to classify the type of fault in a power system using a machine learning model trained on phasor data.
- Main Components:
- Data Collection: Kaggle dataset with current & voltage phasors under different fault conditions.
- Data Preprocessing: Normalization, label encoding, missing value treatment.
- Model Development: Use of supervised classification algorithms.
- Cloud Deployment: Deployed using IBM Watsonx.ai studio, with AutoAl model pipeline.

SYSTEM APPROACH

Platform: IBM Cloud (Lite Tier)

Tool: Watsonx.ai Studio

Steps Followed:

- Associated a Watsonx.ai runtime as powerhouse
- Created a new project
- Uploaded the dataset
- Used AutoAl for model creation
- Selected best-performing pipeline
- Saved and promoted model to deployment space
- Created API deployment

ALGORITHM & DEPLOYMENT

- Algorithm Used:
- AutoAl Model IBM Watsonx.ai automatically selects the best classifier based on the dataset.
- Data Input:
- Voltage and Current Phasors (Features)
- Fault Type (Target Variable)
- Training Process:
- AutoAl splits dataset into training and test sets
- Performs model selection, hyperparameter tuning, and pipeline generation
- Deployment:
- Best model saved and deployed on IBM Cloud
- Model tested with new inputs in real-time using deployed API

RESULT

- ✓ Model Accuracy: 98–99% (as shown in AutoAl leaderboard)
- Classification Output: Model successfully predicts fault types (e.g., overheating, line breakage, etc)
- Output Screenshot: Included the pipeline leaderboard, deployed model dashboard, and test prediction screen from IBM Cloud

SAMPLE DATA

	A1	~	(<i>f</i> _x Faul	t ID									
4	А	В	С	D	Е	F	G	H	1	J	K	L	M	N
1	Fault ID	Fault Type	Fault Loca	Voltage (\	Current (A	Power Loa	Temperat	Wind Spe	Weather	Maintena	Compone	Duration of	Down time	(hrs)
2	F001	Line Break	(34.0522, -	2200	250	50	25	20	Clear	Schedule	Normal	2	1	
3	F002	Transform	(34.056, -1	1800	180	45	28	15	Rainy	Complete	Faulty	3	5	
4	F003	Overheati	(34.0525, -	2100	230	55	35	25	Windstor	Pending	Overheate	4	6	
5	F004	Line Break	(34.055, -1	2050	240	48	23	10	Clear	Complete	Normal	2.5	3	
6	F005	Transform	(34.0545, -	1900	190	50	30	18	Snowy	Schedule	Faulty	3.5	4	
7	F006	Overheati	(34.05, -11	2150	220	52	32	22	Thunders	Pending	Overheate	5	7	
8	F007	Line Break	(34.9449, -	1994	233	51	23	21	Snowy	Complete	Normal	3.7	6.1	
9	F008	Transform	(34.2294, -	2133	229	52	20	18	Snowy	Schedule	Normal	5.4	2.1	
10	F009	Line Break	(34.1279, -	2155	240	45	21	29	Rainy	Pending	Overheate	3.2	4.7	
11	F010	Line Break	(34.4192, -	2065	199	55	25	21	Clear	Schedule	Normal	4	2.8	
12	F011	Overheati	(34.3732, -	2118	221	45	20	20	Clear	Complete	Normal	4.9	1.9	
13	F012	Transform	(34.0465, -	2106	247	47	25	13	Clear	Complete	Normal	2.4	6.9	
14	F013	Line Break	(34.9687, -	2012	248	52	24	29	Clear	Complete	Faulty	3.9	6.4	
15	F014	Line Break	(34.3229, -	2289	192	52	35	28	Rainy	Schedule	Normal	4.1	5.8	
16	F015	Line Break	(34.2256, -	1848	231	49	39	13	Rainy	Schedule	Faulty	2.7	5	
17	F016	Transform	(34.7105, -	2102	246	53	38	18	Rainy	Complete	Faulty	3.5	1.9	
10	F017	O	124 0240	2262	220	rr	21	10	D-:	Calandoda.	A11	4 5	-	

DATA INPUT

RESULT

CONCLUSION

- The developed machine learning model effectively classifies power system faults with high accuracy.
- IBM Cloud's AutoAl and Watsonx.ai simplified the model creation and deployment process.
- The solution demonstrates how AI can improve fault monitoring and enhance power grid reliability.

FUTURE SCOPE

- Integrate real-time SCADA or PMU data from substations.
- Apply the solution to larger regional or national grid networks.
- Extend the model to predict fault location and severity.
- Use edge computing to enable faster response times in critical grid segments.

REFERENCES

- Kaggle Dataset: https://www.kaggle.com/datasets/ziya07/power-system-faultsdataset
- IBM Watsonx.ai Documentation: https://dataplatform.cloud.ibm.com
- Research papers on power system protection and ML
- IBM AutoAl Tutorial and Resources

IBM CERTIFICATIONS

Screenshot/ credly certificate(getting started with Al)

IBM CERTIFICATIONS

Screenshot/ credly certificate(Journey to Cloud)

IBM CERTIFICATIONS

Screenshot/ credly certificate(RAG Lab)

THANK YOU

