CLAIMS

20

1. A compound of formula I:

and salts, solvates and chemically protected forms thereof, wherein:

 R^6 and R^9 are independently selected from H, R, OH, OR, SH, SR, $NH_2, NHR, \ NRR', \ nitro, \ Me_3Sn \ and \ halo;$

 $\ensuremath{\mathtt{R}}$ and $\ensuremath{\mathtt{R}}'$ are independently selected from optionally substituted

10 C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups; R^7 and R^8 are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (\mathbf{I}) , where the \mathbf{R}^7 groups or \mathbf{R}^8 groups of each monomers form together a

dimer bridge having the formula -X-R''-X- linking the monomers, where R'' is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH;

or any pair of adjacent groups from R^6 to R^9 together form a group $-O-(CH_2)_p-O-$, where p is 1 or 2;

 R^{10} is a carbamate-based nitrogen protecting group; R^{11} is an oxygen protecting group; and R^{2} is a labile leaving group.

- 25 2. A compound according to claim 1, wherein R9 is H.
 - 3. A compound according to either claim 1 or claim 2, wherein R^6 is selected from H, OH, OR, SH, NH₂, nitro and halo.
- 30 4. A compound according to any one of the preceding claims, wherein \mathbb{R}^{10} is Troc.

- 5. A compound according to any one of the preceding claims, wherein R^{11} is a silyl oxygen protecting group or THP.
- 6. A compound according to any one of the preceding claims, wherein \mathbb{R}^2 is triflate.
 - 7. A compound according to any one of the preceding claims, wherein R^7 and R^8 are independently selected from H, OH, OR, SH, NH₂, NHR, NRR' and halo.
 - 8. A compound according to any one of claims 1 to 6, wherein the compound is a dimer with each monomer being of formula (I), where the R^7 groups or R^8 groups of each monomer form together a dimer bridge having the formula $-0-(CH_2)_n-0-$ linking the monomers, where n is from 3 to 12.
 - 9. A compound according to claim 8, wherein n is from 3 to 7.
- 10. A compound according to either claim 8 or claim 9, wherein the substituents R^8 join to form the dimer bridge.
 - 11. A compound of formula III:

10

15

25

and salts, solvates, chemically protected forms and prodrugs thereof, wherein:

 R^6 and R^9 are independently selected from H, R, OH, OR, SH, SR, $NH_2,$ $NHR,\ NRR'$, nitro, Me_3Sn and halo;

R and R' are independently selected from optionally substituted C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups;

30 R^7 and R^8 are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

WO 2005/085251 PCT/GB2005/000768

77

or the compound is a dimer with each monomer being of formula (I), where the R^7 groups or R^8 groups of each monomers form together a dimer bridge having the formula -X-R''-X- linking the monomers, where R'' is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH; or any pair of adjacent groups from R^6 to R^9 together form a group $-O-(CH_2)_p-O-$, where p is 1 or 2; R^{10} is a carbamate-based nitrogen protecting group; and R^{16} is either $O-R^{11}$, wherein R^{11} is an oxygen protecting group, or $O-R^{11}$ is OH; or R^{10} and R^{16} together form a double bond between N10 and C11; R^{15} is R; and wherein,

when R⁷ and R⁸ are OMe, R⁶ and R⁹ are H, and where R¹⁰ and R¹⁶ together form a double bond between N10 and C11, R¹⁵ is not phenyl, 4-methylphenyl, 2-methylphenyl, 4-ethylphenyl, 2,6-dimethylphenyl, 4-methoxyphenyl, 4-tert-butylphenyl, 4-fluorophenyl, 4-chlorophenyl, 2-naphthyl or 2-thiophenyl.

20

35

5

10

- 12. A compound according to claim 11, wherein when R⁷ and R⁸ are OMe, R⁶ and R⁹ are H, and R¹⁵ is R, R is selected from the group 3-methoxyphenyl, 4-biphenyl, 4-phenoxyphenyl, 3,4-methylenedioxyphenyl, trans-2-(4-methylphenyl)vinyl, trans-propenyl, 4-dimethylaminophenyl, 4-methylthiophenyl, 4-vinylphenyl, 3,4-dichlorophenyl, 4-trifluoromethylphenyl, 4-isopropylphenyl, 4-cyanophenyl, 3-pyridinyl, 4-pyridinyl, 4-formylphenyl, 4-carboxylphenyl, 2,6-dimethoxyphenyl, 4-acetanilide, 4-aminophenyl, 1-naphthyl, 5-indole, 3-aminophenyl, 2,6-difluorophenyl, 1-pyrenyl, 4-hydroxyphenyl and trans-hexenyl.
 - 13. A compound according to either claim 11 or claim 12, wherein when R^7 and R^8 are OMe, R^6 and R^9 are H, and R^{15} is R, R is selected from a C_{3-20} heterocyclyl group having a nitrogen ring atom, C_{5-20} aryl group having a nitrogen-containing substituent, or a C_{5-20}

heteroaryl group having a nitrogen ring atom or a nitrogen-

78

PCT/GB2005/000768

- containing substituent.
- A compound according to claim 11, wherein the compound is a dimer with each monomer being of formula (I), where the R⁷ groups 5 or R8 groups of each monomer form together a dimer bridge having the formula $-O-(CH_2)_n-O-$ linking the monomers, where n is from 3 to 12.
- A compound according to claim 14, wherein n is from 3 to 7. 10 15.
 - A compound according to either claim 14 or claim 15, wherein the substituents R⁸ join to form the dimer bridge.
- 15 A compound according to any one of claims 14 to 16, wherein R¹⁵ is selected from:
 - optionally substituted C5-20 aryl groups;
 - (ii) substituted C2 alkyl groups; and

WO 2005/085251

20

30

- (iii) optionally substituted C_{3-7} alkyl groups.
- A compound according to any one of claims 11 to 17, wherein R^{10} and R^{16} together form a double bond between N10 and C11.
- 19. A compound according to any one of claims 11 to 18, wherein R9 25 is H.
 - 20. A compound according to any one of claims 11 to 19, wherein R^7 and R8 are independently selected from H, OH, OR, SH, NH2, NHR, NRR' and halo.
 - A compound according to any one of claims 11 to 20 for use in a method of therapy.

WO 2005/085251

- 22. A pharmaceutical composition containing a compound of any one of claims 11 to 20, and a pharmaceutically acceptable carrier or diluent.
- 5 23. Use of a compound according to any one of claims 11 to 20 in the manufacture of a medicament for treating a proliferative disease.
- 24. A method of treatment of a proliferative disease, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of any one of claims 11 to 20.
 - 25. A method of synthesising a compound of formula I:

15 from a compound of formula IIa:

wherein:

 R^6 and R^9 are independently selected from H, R, OH, OR, SH, SR, NH_2 , NHR, NRR', nitro, Me_3Sn and halo;

- R and R' are independently selected from optionally substituted $C_{1-12} \text{ alkyl, } C_{3-20} \text{ heterocyclyl and } C_{5-20} \text{ aryl groups;}$ $R^7 \text{ and } R^8 \text{ are independently selected from H, R, OH, OR, SH, SR, NH}_2,$ $NHR, NRR', \text{ nitro, Me}_3Sn \text{ and halo,}$
- or the compound is a dimer with each monomer being of formula (\mathbf{I}) , where the R^7 groups or R^8 groups of each monomers form together a dimer bridge having the formula -X-R''-X- linking the monomers, where R'' is a C_{3-12} alkylene group, which chain may be interrupted

WO 2005/085251 PCT/GB2005/000768

by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH; or any pair of adjacent groups from R^6 to R^9 together form a group - $O-(CH_2)_p-O-$, where p is 1 or 2; R^{10} is a carbamate-based nitrogen protecting group;

 R^{10} is a carbamate-based nitrogen protecting group; R^{11} is an oxygen protecting group; R^{2} is a labile leaving group; and R^{12} and R^{13} together form =0.

5

15

20

25

26. A method according to claim 25, wherein the compound of formula IIa is synthesised from a compound of formula IIb:

$$R^{8}$$
 R^{9}
 R^{10}
 R^{11}
 R^{7}
 R^{10}
 R^{11}
 R^{13}
 R^{12}
 R^{12}

wherein said compound of formula IIb has R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} defined according to claim 25, and for said compound of formula IIb R^{12} is $O-R^{14}$, and R^{13} is H; and R^{14} is an oxygen protecting group orthogonal to R^{11} .

- 27. A method according to claim 26, wherein the compound of formula IIa is synthesised using an oxidation reaction performed under Swern conditions, or a method involving the TPAP or the Dess Martin reagents.
- 28. A method according to any one of claims 25 to 27, wherein when R^2 in the compound of formula \mathbf{I} is $-OSO_2CH_3$, $-OSO_2\left(C_nF_{2n+1}\right)$ where n=0, 1 or 4, or $-OSO_2R^S$ where R^S is an optionally substituted phenyl group, then said compound of formula \mathbf{I} is synthesised by using a treatment step with the appropriate R^2 anhydride.
- 29. A method according to any one of claims 25 to 27, wherein when R² in the compound of formula **I** is -I or -Br, then said compound of formula **I** is synthesised by using a reaction step involving hydrazine and iodine or bromine.

- WO 2005/085251 PCT/GB2005/000768
- 30. A method according to any one of claims 25 to 27, wherein when R^2 in the compound of formula \mathbf{I} is -Cl, then said compound of formula \mathbf{I} is synthesised by using a reaction step involving phosphorous oxychloride.
- 31. A method of synthesising a compound of formula III:

from a compound of formula I:

$$R^{8}$$
 R^{9}
 R^{10}
 R^{10}
 R^{11}
 R^{7}
 R^{6}
 R^{6}
 R^{10}
 R^{2}

10

15

20

25

5

wherein

 R^6 and R^9 are independently selected from H, R, OH, OR, SH, SR, NH_2 , NHR, NRR', nitro, Me_3Sn and halo;

R and R' are independently selected from optionally substituted C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups; R^7 and R^8 are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (\mathbf{I}) , where the R^7 groups or R^8 groups of each monomers form together a dimer bridge having the formula -X-R''-X- linking the monomers, where R'' is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH;

or any pair of adjacent groups from R^6 to R^9 together form a group $-O-(CH_2)_p-O-$, where p is 1 or 2;

 $\ensuremath{\text{R}^{10}}$ is a carbamate-based nitrogen protecting group; $\ensuremath{\text{R}^2}$ is a labile leaving group;

 R^{16} is either O- R^{11} , where R^{11} is an oxygen protecting group, or OH, or R^{10} and R^{16} together form a double bond between N10 and C11; and

82

PCT/GB2005/000768

5 32. A method according to claim 31, wherein the synthesis of said compound of formula III uses a palladium catalysed coupling step.

WO 2005/085251

R¹⁵ is R.

10

- 33. A method according to claim 32, wherein the palladium catalyst is $Pd(PPh_3)_4$, $Pd(OCOCH_3)_2$, $PdCl_2$ or $Pd(dba)_3$.
- 34. A method according to either claim 32 or claim 33, wherein the coupling reaction is performed under microwave conditions.
- 35. A method according to any one of claims 32 to 34, wherein the palladium catalyst is solid supported.