

Experimental Methods: Nuclear And Particle Physics

Experiment – 3 Energy Loss

IISER

Satyajit Jena, 08/10/2021

Satyajit Jena, 08/10/2021

II5EK

Energy loss

- Particle loses its energy due to
 - ionization,
 - bremsstrahlung,
 - direct pair production
 - photo-nuclear interaction.

$$-\frac{dE_{\mu}}{dx} = \left[a(E_{\mu}) + b(E_{\mu})E_{\mu}\right]$$

 $a(E_{\mu})$ is the ionization energy loss.

$$b(E_{\mu}) = b_{brem} + b_{pair} + b_{photo}$$

Radiative Processes

Energy loss

Ionization Energy Loss: As we have already discussed that this energy losses are estimated by well-known Bethe-Bloch formula:

$$-\frac{dE}{dx} = \alpha^2 2\pi N \lambda_e^2 \frac{Zm_e}{A} \frac{1}{\beta^2} \left[\ln \frac{2m_e \beta^2 \gamma^2 E_m'}{I^2(Z)} - 2\beta^2 + \frac{1}{4} \frac{E_m'^2}{E^2} - \delta \right]$$
 (1)

Bremsstrahlung: The high-energy muons predominantly lose energy in matter by bremsstrahlung. The energy loss by bremsstrahlung is given by

$$\frac{dE}{dx} = -E\frac{N}{A} \int_{v_{min}}^{v_{max}} \frac{d\sigma}{dv} dv \qquad \qquad \frac{d\sigma}{dv} = \alpha \left(2Z_e \frac{m_e}{m_\mu}\right)^2 \frac{1}{v} \left(\frac{4}{3} - \frac{4}{3}v + v^2\right) \phi(\delta)$$

Direct electron pair production: The energy loss due to the direct pair production can be calculated by

$$rac{dE}{dx} = -2Erac{N}{A}\int_{v_{min}}^{v_{max}}v\int_{0}^{
ho_{max}}rac{d^{2}\sigma}{dvd
ho}d
ho dv \qquad \qquad rac{d^{2}\sigma}{dvd
ho} = lpha^{4}rac{2}{3\pi}\left(2Z_{e}
ight)^{2}rac{1-v}{v}\left(\phi_{e}+rac{m_{e}}{m_{\mu}}\phi_{\mu}
ight)$$

Photo-nuclear Cross section

$$\begin{split} \frac{d\sigma}{dv} &= \frac{\alpha}{2\pi} \; A \sigma_{\gamma N} v \; \left\{ \; \frac{3}{4} \; G(x) \left[\; \kappa \; \; \ln \; \left(1 \; + \; \; \frac{m_1^2}{t} \; \right) \; - \frac{\kappa m_1^2}{m_1^2 + t} \; - \; \frac{2m^2}{t} \; \right] \; + \right. \\ & \left. \; + \; \frac{1}{4} \left[\; \kappa \; \; \ln \left(\; 1 + \; \frac{m_2^2}{t} \; \right) \; - \; \frac{2m^2}{t} \; \right] \; + \right. \\ & \left. \; + \; \frac{\mu^2}{2t} \left[\; \frac{3}{4} \; G(x) \; \frac{m_1^2}{m_1^2 + t} \; + \; \frac{1}{4} \; \frac{m_2^2}{t} \; \ln \left(\; 1 + \; \frac{t}{m_2^2} \; \right) \; \right] \right\} \; , \end{split}$$

Task-3 (a)

Following tables shows the type of incident particle

Particle	Symbol	Rest Mass (MeV/c^2)	Mean Lifetime
Electron	e^-, e^+	$m_0^{e^{\pm}} = 0.511$	stable ($> 6.6 \times 10^{28} \text{ yr}$)
Muon	μ^-, μ^+	$m_0^{\mu^{\pm}} = 105.658$	2.197×10^{-6} s
Tauon	$ au^-, au^+$	$m_0^{\tau^{\pm}} = 1776.86$	$2.903 \times 10^{-13} \text{ s}$
Pion	π^-, π^+	$m_0^{\pi^{\pm}} = 139.57$	$2.6 \times 10^{-8} \text{ s}$
Kaon	K^-, K^+	$m_0^{K^{\pm}} = 493.677$	$1.238 \times 10^{-8} s$
Proton	$p,ar{p}$	$m_0^{P,\bar{P}} = 938.272$	stable ($> 2.1 \times 10^{29} \text{ yr}$)
Neutron	$n, ar{n}$	$m_0^{n,\bar{n}} = 939.565$	879.4 s (free)
Hydrogen	H	$m_0^D = 938.781$	-
Deterium	D	$m_0^D = 1875.6127$	-
Hellium	He	$m_0^{He} = 3727.379$	-

Task is to find out momentum vs energy-loss of each particle

Number of incidence per particle: 10,000

Incoming Energy; 1 MeV to 10 GeV (uniform distribution)

Material Volume: Cu (10 cm thick)

How to start: Muon Interaction

If you follow the approximation energy loss merely depends on the function dE/dx=a

- => every loss point you must recalculate the value of available E^1
- => Make slices (how small you can make)

How to start: Muon Interaction Experiment

Calculate ΔE^1

If you conduct same experiment for several time, it will not give exactly same theoretical values for all observations

Gaussian Distribution

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

$$f(x)$$
 = probability density function

$$\sigma$$
 = standard deviation

$$\mu$$
 = mean

Do not Use Landau Distributions

What to plot

- 3. Plot energy spectrum of each particles.
- 4. Calculate energy loss for each particles (you should use the energy loss due to ionization alone)
 - (a) Plot momentum vs dE/dx plot for each particle
 - (b) Plot momentum vs dE/dx plot for all particles in single plot.

Task -3 (b)

Element	Symbol	AtomicNumber	NumberofNeutrons	AtomicMass
Hydrogen	н	1	0	1.0070000000000000
Helium	He	2	2	4.002
Lithium	Li	3	4	6.941
Beryllium	Ве	4	5	9.012
Boron	В	5	6	10.811
Carbon	С	6	6	12.011
Nitrogen	N	7	7	14.007
Oxygen	0	8	8	15.999
Fluorine	F	9	10	18.998
Neon	Ne	10	10	20.18
Sodium	Na	11	12	22.99
Magnesium	Mg	12	12	24.305
Aluminum	Al	13	14	26.982
Silicon	Si	14	14	28.086
Phosphorus	P	15	16	30.974
Sulfur	s	16	16	32.065
Chlorine	CI	17	18	35.453
Argon	Ar	18	22	39.948
Potassium	к	19	20	39.098
Calcium	Ca	20	20	40.078
Scandium	Sc	21	24	44.956
Titanium	Ti	22	26	47.867
Vanadium	V	23	28	50.942
Chromium	Cr	24	28	51.996
Manganese	Mn	25	30	54.938
Iron	Fe	26	30	55.845
Cobalt	Co	27	32	58.933
Nickel	Ni	28	31	58.693000000000000
Copper	Cu	29	35	63.54600000000000
Zinc	Zn	30	35	65.38

You need to estimate what is the minimum energy required for a muon and an electron to penetrate through an unit depth of the hypothetical active volume made out of each element.

The data files are uploaded in moodle

- 1. When muon and electron Energies are 20 GeV (only ionization energy loss)
- (a) Calculate and plot minimum energy loss vs atomic number
- (b) Calculate and plot the minimum energy loss vs atomic mass
- (c) (c) Plot dE/dx vs atomic number plot for muon and electron
- 2. Plot minimum required energy vs atomic number. Hints: You need to use the approximation that we used in task-2