Creating Composite Scores in R

Andy Grogan-Kaylor

2020-11-16

Contents

All Variables on Same Scale	1
Simulate Some Data	
Make A Scale	
	2
Simulate Some Data	
Make A Scale	
Solution: z-score	

All Variables on Same Scale

Simulate Some Data

```
N <- 100 # sample size
x1 <- rnorm(N, 100, 10)
x2 <- rnorm(N, 100, 10)
x3 <- rnorm(N, 100, 10)</pre>
```

Make A Scale

```
myscale1_sum <- x1 + x2 +x3 # scale is sum of variables
myscale1_average <- (x1 + x2 + x3)/3 # scale is average of variables
mydata <- data.frame(x1, x2, x3, myscale1_sum, myscale1_average)
par(mar = c(3, 10, 1, 1)) # graph margins
stripchart(mydata, col = rainbow(9), pch=19, las = 2) # stripchart</pre>
```


When variables are on the same scale, their average is on that same scale, and all of the variables equally contribute to the sum.

All Variables on Different Scales

Simulate Some Data

```
N <- 100 # sample size
x4 <- rnorm(N, 10, 1)
x5 <- rnorm(N, 1000, 100)
x6 <- rnorm(N, 100, 10)</pre>
```

Make A Scale

```
myscale2_sum <- x4 + x5 +x6 # scale is sum of variables
myscale2_average <- (x4 + x5 + x6)/3 # scale is average of variables
mydata2 <- data.frame(x4, x5, x6, myscale2_sum, myscale2_average)
par(mar = c(3, 10, 1, 1)) # graph margins
stripchart(mydata2, col = rainbow(9), pch=19, las = 2) # stripchart</pre>
```


When variables are on different scales, their average is often not particularly reflective of any single variable, and all of the variables differentially contribute to the sum.

Solution: z-score

$$x_z = \frac{x - \bar{x}}{sd_x}$$

In reproducing the example below, you may wish to use the dataset\$variable notation.

```
z_x4 <- (x4 - mean(x4))/ sd(x4) # standardize

z_x5 <- (x5 - mean(x5))/ sd(x5) # standardize

z_x6 <- (x6 - mean(x6))/ sd(x6) # standardize

z_myscale2_sum <- z_x4 + z_x5 + z_x6 # scale is sum of variables

z_myscale2_average <- (z_x4 + z_x5 + z_x6)/3 # scale is average of variables

mydata3 <- data.frame(z_x4, z_x5, z_x6, z_myscale2_sum, z_myscale2_average)

par(mar = c(3, 10, 1, 1)) # graph margins

stripchart(mydata3, col = rainbow(9), pch=19, las = 2) # stripchart</pre>
```


> When variables are z-scored, the average is reflective of all the variables, and all variables contribute equally to the sum.