Colpier Clément Fornara Thibault Pellegrino Guillaume Renard Charles

Projet de Mathématiques appliquées PR3003 _

Table des matières

1	Détermine	${ m er} { m l'\acute{e}quation} { m diff\acute{e}rentielle} { m v\acute{e}rifi\acute{e}e} { m par} { m M}(t){=}({ m x}(t),{ m y}(t)).$	4
	1.0.1	Projection du Poids sur la composante tangentielle	5
	1.0.2	Projection de la tension du ressort su la composante tangentielle	6
	1.0.3	Détermination de a_t	6
	1.0.4	Détermination de l'équation différentielle	6

1 Déterminer l'équation différentielle vérifiée par M(t)=(x(t),y(t)).

La masselotte M se déplace uniquement selon la composante tangentielle. Pour déterminer l'équation différentielle on va donc particulièrement s'intéresser à l'équation sur la composante tangentielle. Pour cela, on commence à faire la somme des forces s'exerçant sur la composante tangentielle $\vec{u_t}$ et normale $\vec{u_n}$:

$$\begin{cases} mg_t + T_t = ma_t \\ mg_n + R_n + T_n = 0 \end{cases}$$

On s'intéresse à l'équation : $mg_t + T_t = ma_t$

Pour déterminer l'équation différentielle, on doit alors projeter \vec{T} et \vec{mg} sur $\vec{u_t}$.

On projette $\vec{mg} = -mg.\vec{u_y}$ sur $\vec{u_t}$

1.0.1 Projection du Poids sur la composante tangentielle

On remarque sur le graphique que $P_t = P.\cos(\alpha)$

On cherche à déterminer α . On calcule la pente a de la tige parabolique. $a = \frac{\partial y}{\partial x} = \frac{\partial x^2/2}{\partial x} = x$ En $M(x_0, y_0)$ la pente a de la tige parabolique vaut donc x_0 . Cette pente a nous permet de calculer l'angle α .

En effet, on remarque graphiquement que $\tan(\alpha) = \frac{a}{1}$. On en déduit : $\alpha = \tan^{-1}(x_0)$ Au final on trouve donc : $P_t = P.\cos(\tan^{-1}(x_0))$ $\cos(\tan^{-1}(x)) = \frac{1}{1+x^2}$ (A vérifier) Donc : $P_t = P.\frac{1}{1+x_0^2}$

On projette désormais \vec{T} sur $\vec{u_t}$. Il faut pour cela d'abord projeter \vec{T} sur $\vec{u_x}$ et $\vec{u_y}$.

1.0.2 Projection de la tension du ressort su la composante tangentielle

La pente de la tangente vaut x_0 . Celle de PM vaut $\frac{y_0-1}{x_0}$. On en déduit ainsi : $\tan(\phi) = x_0$ et $\tan(\theta) = \frac{y_0-1}{x_0}$ On obtient ainsi $\alpha = \tan^{-1}(x_0) - \tan^{-1}(\frac{y_0-1}{x_0})$ et on en déduit : $T_t = T \cdot \cos(\tan^{-1}(x_0) - \tan^{-1}(\frac{y_0-1}{x_0}))$

1.0.3 Détermination de a_t

On a vu dans la première équation que $a_n=0$. On en déduit : $||veca||=a_t$ On peut ainsi écrire : $a_t=||\vec{a}||=\sqrt{a_x^2+a_y^2}$ On obtient alors : $a_t=\sqrt{\ddot{x}^2+\ddot{y}^2}$

1.0.4 Détermination de l'équation différentielle

A l'aide de ce qu'on a calculé précédemment on développe l'équation $mg_t + T_t = ma_t$ pour déterminer l'équation différentielle. On obtient alors :

$$mg.\cos(\tan^{-1}(x_0)) + k(l-l_0).\cos(\tan^{-1}(x_0) - \tan^{-1}(\frac{y_0-1}{x_0})) = \sqrt{\ddot{x}^2 + \ddot{y}^2}$$

En développant on a :

$$mg.\cos(\tan^{-1}(x)) + k(\sqrt{(x^2/2-1)^2+x^2}-l_0).\cos(\tan^{-1}(x)-\tan^{-1}(\frac{x^2/2-1}{x})) - \sqrt{\ddot{x}^2+1}$$

=0