离散数学 II Discrete Mathematics II

封筠

fengjun@stdu.edu.cn

20-10

课程回顾

有序n元组:序偶定义、序偶性质

笛卡尔积(直积): 定义、性质、举例

关系基本概念:两个等价定义、前域、值域、特殊的关系

关系的三种表示: 序偶集合表示法、关系 矩阵、关系图

第三章 集合与关系第3讲

3—6 关系的性质

3—7 复合关系和逆关系

3-6 关系的性质

在一个小的集合上可以定义很多个(2^{n²}) 不同的关系,但真正有实际意义的只是其中很少 的一部分,它们一般都是有着某些性质的关系。 本节讨论集合X上的二元关系R的一些特殊性质。

要求:

掌握关系的五种性质(自反性、反自反性、 对称性、反对称性、传递性),能够对关系性质 进行正确判断。

一、自反性和反自反性

1、自反性(定义3-6.1):设R是集合X上的二元关系,如果对于每一个 $x \in X$,有< x, $x > \in R$,则称R是自反的。

R在X上自反⇔($\forall x$)($x \in X \rightarrow \langle x, x \rangle \in R$)

- 2、反自反性(定义3-6.4): 设R是集合X上的
- 二元关系,如果对于每一个xeX,有
- <x, x>∉R, 则称R是反自反的。

R在X上反自反⇔($\forall x$)($x \in X \rightarrow \langle x, x \rangle \notin R$)

例如,在实数集合中,"≤"是自反的,

因为对于任意实数x≤x成立。

平面上三角形的全等关系是自反的。

说明:全域关系Ex是自反的;

恒等关系Ix是自反的。

例: X={a, b, c}, R1={<a, a>, <b, b>, <c, c>, <a, b>, <c, a>}是自反的, R2={<a, b>, <b, c>, <c, a>}是反自反的, R3={<a, a>, <b, c>}不是自反的也不是反自反的。

注意: R不是自反的,未必一定是反自反的。 一个关系可能既不是自反的,也不是反自反的。 例1: 设*X*={1,2,3}, *X*上的二元关系 *R*={<1,1>,<2,2>,<3,3>,<1,2>}

R是自反的,它的关系矩阵,关系图如下:

$$\mathbf{M_{R}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

例2: 设*X*={1,2,3}, *X*上的二元关系 *R*={<1,2>,<2,3>,<3,1>},

R是反自反的,它的关系图,关系矩阵如下所示:

$$M_R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

3、关系矩阵的特点

自反关系的关系矩阵的对角元素均为1,反 自反关系的关系矩阵的对角元素均为0。

4、关系图的特点

自反关系的关系图,每个结点均有自回路, 而反自反关系的关系图,每个结点均没有 自回路。

5、结论:

R是X上的二元关系,则:

- (1)R是自反关系的充要条件是I_X⊆R。
- (2)R是反自反关系的充要条件是 $I_X \cap R = \emptyset$ 。
- (3)如果 $I_X \cap R \neq \emptyset$ 且 $I_X \not= R$,则R既不是自反的,也不是反自反的。
- (4)如果|X|=n,其中n个序偶为<x,x>,则X上的自反关系共有 2^{n*n-n} 个。

例,|X|=3,X上关系共有2⁹个,而自反关系共有2⁶个。

- 常见自反关系:全域关系、恒等关系、小于等于关系、大于等于关系、整除关系、包含关系等。
- 常见反自反关系:小于关系、大于关系、真包含关系等。
- 思考:最大(含有序偶最多)、最小(含有序偶最少)的自反/反自反关系分别是?设A={1,2,3}

例3: 设A={1,2,3},
$$R_1$$
, R_2 , R_3 是A上的关系,
$$R_1$$
={<1,1>,<2,2>}
$$R_2$$
={<1,1>,<2,2>,<3,3>,<2,1>}
$$R_3$$
={<3,1>,<1,2>}

则R₁,R₂,R₃是否为A上的自反或反自反关系?

	自反性	反自反性	
R ₁	×	×	
R ₂	V	×	
R_3	X	V	

二、对称性和反对称性

1、对称性(定义3-6.2):设R是集合X上的二元关系,如果对于每一个x,y \in X,每当<x,y> \in R,就有<y,x> \in R,则称R是对称的。

R在X上对称

 $\Leftrightarrow (\forall x)(\forall y)(x \in X \land y \in X \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$

2、反对称性(定义3-6.5):设R是集合X上的二元关系,如果对于每一个x,y \in X,每当<x,y> \in R和<y,x> \in R必有x=y,则称R是反对称的。

R在X上反对称

 $\Leftrightarrow (\forall x)(\forall y)(x \in X \land y \in X \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$

$$(\langle x,y\rangle \in R \land \langle y,x\rangle \in R) \rightarrow (x=y)$$

$$\Leftrightarrow \neg(\langle x,y\rangle \in R \land \langle y,x\rangle \in R) \lor (x=y)$$

$$\Leftrightarrow (\langle x,y\rangle \notin R \lor \langle y,x\rangle \notin R) \lor (x=y)$$

$$\Leftrightarrow (\langle x,y\rangle \notin R \lor (x=y)) \lor \langle y,x\rangle \notin R$$

$$\Leftrightarrow \neg(\langle x,y\rangle \in R \land \neg (x=y)) \lor \langle y,x\rangle \notin R$$

$$\Leftrightarrow (\langle x,y\rangle \in R \land (x\neq y)) \rightarrow \langle y,x\rangle \notin R$$

由此,反对称的定义又可以等价地描述为:
$$(\forall x)(\forall y)(x \in X \land y \in X \land \langle x,y \rangle \in R \land (x \neq y))$$
 $\rightarrow \langle y,x \rangle \notin R$

例如,平面上三角形的相似关系是对称的。

例:

R1={<1, 1>, <2, 3>, <3, 2>}是对称的,

R2={<1, 1>, <3, 3>}是对称的也是反对称的,

R3={<2, 2>, <2, 3>, <3, 2>, <3, 1>}不是对称的也不是反对称的,

R4={<2, 2>, <2, 3>, <3, 1>}是反对称的。 注意:存在关系既不是对称的,也不是反对称的。 也存在关系既是对称的,也是反对称的。 例4: 设X={1,2,3}, X上的二元关系

 $R = {<1,2>,<2,1>,<3,3>},$

R是对称的。它的关系矩阵,关系图如下:

$$M_{R} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

例5: 设X={1,2,3}, X上的二元关系

R={<1,2>,<2,3>,<3,3>}

R是反对称的。它的关系图,关系矩阵如下:

$$M_{R} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

3、关系矩阵和关系图的特点

对称关系的关系矩阵是对称矩阵,即对所有i, j, r_{ij}=r_{ji}, 对称关系的关系图,任何两个不同的 结点之间,或者有双向两条弧,或者没有弧。

反对称关系的关系矩阵,如果在非对角元上 r_{ij}=1,则在其对称位置上r_{ji}=0,反对称关系的 关系图,任何两个不同的结点之间至多有一条弧。

4、结论

R是X上的二元关系,则:

- (1)R是对称关系的充要条件是R=R^c(逆关系)。
- (2)R是反对称关系的充要条件是R \cap R c ⊆ I_{x} 。
- (3)如果R既是对称,又是反对称的,则R \subseteq I_X 。

常见对称关系:全域关系、恒等关系、 空关系Φ。

反对称关系: 恒等关系、空关系Φ。

则R₁,R₂,R₃,R₄是否为A上的对称或反对称关系?

	对称性	反对称性
R ₁	V	X
R ₂	X	V
R ₃	×	×
R_4	V	V

例题1:设 $A=\{2,3,5,7\}$,定义A上的二元关系

如下: $R=\{\langle x,y\rangle|(x-y)/2是整数\}$

试证明R在A上是自反的和对称的。

证明: $\forall x \in A$,(x-x)/2=0,0是整数,所以 $\langle x, x \rangle \in R$,即R是自反的。

设x, $y \in A$, 若 $\langle x, y \rangle \in R$, 即(x-y)/2是整数,因为整数的相反数也是整数,

所以(y-x)/2=-(x-y)/2是整数, $<y,x>\in R$ 。即 R是对称的。

三、传递性

1、定义(定义3-6.3): 设R是集合X上的二元 关系,如果对于任意x,y, $z \in X$,每当< x, $y > \in R$, <y,z>∈R时就有<x,z>∈R,则称R是传递的。 R在X上传递 $\Leftrightarrow (\forall x)(\forall y)(\forall z)(x \in X \land y \in X \land z \in X \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \land$ $R \rightarrow \langle x, z \rangle \in R$ 例:

R1={<x,y>,<z,x>,<z,y>}是传递的, R2={<x,b>,<c,d>}也是传递的,它没有违背定义。 R3={<x,b>,<b,x>}不是传递的。 2、定理:设R、S是A上的传递关系,则R○S也是A上的传递关系。

证明: 设<x,y> ∈ R∩S ,<y,z> ∈ R∩S ,则 <x,y> ∈ R,<y,z> ∈ R且<x,y> ∈ S ,<y,z> ∈ S 。 因为R、S是A上的传递关系,所以<x,z> ∈ R,<<x,z> ∈ S ,从而<x,z> ∈ R∩S,即R∩S是A上的传递关系。

注意: R、S均是传递的,但RUS未必是传递的。例: R={<a, b>}, S={<b, c>}, 则R、S均是传递的,但RUS={<a, b>, <b, c>}不是传递的。

定理:设R是X上的二元关系,R是传递的当且仅当R ∘ R ⊆R。

证明: 设R是传递的,下证 $R \circ R \subset R$ 。 $< x,y> \in R \circ R$,由合成运算定义,则 $\exists z \in X$,使得 $< x,z> \in R$ 且 $< z,y> \in R$,又因为R是传递的,所以 $< x,y> \in R$,这就证明了 $R \circ R \subset R$ 。

设R°R ⊆R, 下证R是传递的。 ∀<x,y>∈R且<y,z>∈R, 由复合关系的定义 得<x,z>∈R°R, 因为R°R⊆R, 所以<x,z>∈R°, 所以R是传递的。 有人说:集合A上的关系R,如果是对称且传递的,则它也是自反的。其理由是,从aRb,由对称性得bRa,再由传递性得aRa,该说法正确吗?为什么?

错误! 再看自反性、对称性、传递性的定义。

自反性是说对于每一个 $x \in X$,有< x, $x > \in R$ 。 对称性是说每当< x, $y > \in R$,就有< y, $x > \in R$, 没有要求对于每一个 $x \in X$,传递性是说每当< x, $y > \in R$,< y, $z > \in R$ 时就有< x, $z > \in R$,也没有 要求对于每一个 $x \in X$ 。因此不能从一个关系是对 称且传递的推出它是是自反的。

例如A={a, b, c},

R={<a,a>, <b,b>, <a,b>, <b,a>} 是A上的一个二元关系,R是对称且传递的,但 R不是自反的,因为对于 $c \in A$,没有 $< c,c > \in R$ 。 例7:设R是实数集合,

$$S=\{|x\in R\land y\in R\land x=y\}$$

是实数集合上的等于关系。证明实数集合上的等于关系是传递的。

证明: ∀x,y,z∈R, <x,y>∈S且<y,z>∈S,

由S的定义有x=y和y=z,

由实数相等的概念得x=z。

再根据S的定义,<x,z>∈S。

故实数集合上的等于关系S是传递的。

- 常见传递关系:全域关系、恒等关系、空关系Φ、 小于等于关系、大于等于关系、整除关系、包含 关系、小于关系、大于关系、真包含关系等。
- 关系矩阵: 若X上的二元关系R是传递的,当且仅当 关系矩阵中,对于任何 $x_i, x_j, x_k \in X$,如果有 $r_{ij}=1$,并且 $r_{ik}=1$ 则必有 $r_{ik}=1$ 。
- 关系图: 若X上的二元关系R是传递的,当且仅当关系图中,若结点x_i有弧线指向结点x_j,并且结点x_j有弧线指向结点x_k,则结点x_i必有一条弧线直接指向结点x_k。

例8: 设A={1,2,3},R₁,R₂,R₃是A上的关系,

 R_1 ={<1,2>,<2,1>} R_2 ={<2,1>} R_3 ={<3,1>,<1,2>,<2,1>} R_4 ={<3,3>,<1,1>}
则 R_1 , R_2 , R_3 , R_4 是否为A上的传递关系?

	传递 性
R ₁	×
R ₂	√
R ₃	×
R ₄	V

	自反性	反自反性	对称性	反对称性	传递性
集合表达式	I _A ⊆R	I _A ∩R= φ	R=R °	R ∩R ^c ⊆ I _A	R [□] R ⊆ R
关系矩 阵	主对角线元素 全是1	主对角线元素 全是0	矩阵是对称矩 阵	若 r _{ij} = 1 ,且 i≠j,则r _{ji} =0 即:除对角线 元素外对称元 素不能同时为1	对 M ² 中 1 所 在 位 置 , M 中 相 应的位置都是1
关系图	每个顶点都有 环	每个顶点都没 有环	如果两个顶点 之间有边,一 定是一对方向 相反的边 (无单边)	如果两点之间 有边,一定是 一条有向边 (无双向边)	如果顶点 x_i 到 x_j 有边, x_j 到 x_k 有边,则从 x_i 到 x_k 也有边

例9: 设A={1,2,3,4,5,6,7,8,9,10}上的关系,R是A上的关系, R={<x,y>|x,y∈A ∧x+y=10},说明R具有哪些性质。

解: R={<1,9>,<2,8>,<3,7>,<4,6>,<5,5>,<9,1>,<8,2>,<7,3>,<6,4>}

易知 既不是自反也不是反自反的 是对称的 不是反对称的 不是传递的。

设R,S是定义在A上的关系,都具有某些共同的性质,在经过以下运算后是否还保持原来关系的性质呢?

	自反性	反自反性	对称性	反对称性	传递性
RNS					
RUS					
R-S					
R · S					
Rc					

R • S={,<1,3>,<3,2>}

R={<1,2>,<2,3>,<1,3>}

S={<2,3><3,1>,<2,1>},

R • S={<1,3>,<1,1><2,1>}

例10:如果R是反对称关系,则R ∩R °的关系 矩阵的非零值的分布特点?

如果R是反自反且反对称关系,则R∩R°的关系矩阵的非零值的分布特点?

解:如果R是反对称关系,则R ∩R °的关系矩阵只有对角线元素可能非零。

如果R是反自反且反对称关系,则R ∩R °的 关系矩阵全是零,即无非零值。

3-7 复合关系和逆关系

二元关系是以序偶为元素的集合,除可进行集合的运算,如并、交、补外,还可进行关系的复合(合成)运算。

要求:

掌握关系的复合运算、逆运算的定义、 相关定理,能够求解对应的复合关系、逆 关系。

一、复合关系

引例: a、b、c三人,a、b是兄妹关系,b、c是母子关系,则a、c是舅甥关系,若设R是兄妹关系,S是母子关系,则R与S的复合T是舅甥关系。如R是父子关系,R与R复合是祖孙关系。

1、复合关系(关系的复合运算)

定义3-7.1:设X、Y、Z是三个集合,R是X 到Y的关系,S是Y到Z的关系,则R°S称为R 和S的复合关系,表示为

 $R^{\circ}S=\{\langle x,z\rangle \mid x\in X\wedge z\in Z\wedge (\exists y)(y\in Y\wedge \langle x,y\rangle\in R\wedge \langle y,z\rangle\in S)\}$

从R和S求R°S,称为关系的合成运算。

说明: R与S能进行复合的必要条件是R的值域所属集合Y与S前域所属集合Y是同一个集合。

例: $X=\{1, 2, 3, 4, 5\}, Y=\{3, 4, 5\}, Z=\{1, 2, 4, 5\}$ 3},R是X到Y的关系,S是Y到Z的关系: $R=\{\langle x, y \rangle \mid x+y=6\}=\{\langle 1, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle\},\$ $S={\langle y, z \rangle | y-z=2}={\langle 3, 1 \rangle, \langle 4, 2 \rangle, \langle 5, 3 \rangle},$ 则R°S={<1,3>,<2,2>,<3,1>} 另可以用推导: ∵x+y=6, y-z=2, 消去y得x+z=4 例:集合X={x,y,z,d,e}, $R=\{\langle x, y\rangle, \langle y, y\rangle, \langle z, d\rangle\},\$ $S=\{<d, y>, <y, e>, <z, x>\},$ 则R°S={<x,e>,<y,e>,<z,y>}, $S^{\circ}R=\{<d, y>, <z, y>\},$ $R^{\circ}R=\{\langle x, y\rangle, \langle y, y\rangle\}, S^{\circ}S=\{\langle d, e\rangle\}$ 39

例题1: 令R={<1, 2>, <3, 4>, <2, 2>}, S={<4, 2>, <2, 5>, <3, 1>, <1, 3>}, 试求R°S, S°R, R°(S°R), (R°S)°R, R°R, S°S, R°R°R° **解**: $R^{\circ}S=\{<1, 5>, <3, 2>, <2, 5>\}$ $S^{\circ}R=\{<4, 2>, <3, 2>, <1, 4>\}$ $R^{\circ}(S^{\circ}R) = \{ <3, 2 > \}$ $(R^{\circ}S)^{\circ}R = \{ <3, 2 > \}$ $R^{\circ}R=\{<1, 2>, <2, 2>\}$ $S^{\circ}S=\{<4, 5>, <3, 3>, <1, 1>\}$ $R^{\circ}R^{\circ}R = \{ <1, 2>, <2, 2> \}$ 关系的复合运算不满足交换律,满足结合律。

例题2: 设R1和R2是集合X={0,1,2,3}上的关系,R1={<i,j>|j=i+1或j=i/2},R2={<i,j>|i=j+2} 试求R1°R2,R2°R1,R1°R2°R1,R1°R1,R1°R1°R1。解:

R1={<0,1>,<1,2>,<2,3>,<0,0>,<2,1>} $R2 = \{ <2,0 >, <3,1 > \}$ $R1^{\circ}R2=\{<1,0>,<2,1>\}$ R2°R1={<2,1>,<2,0>,<3,2>} R1°R2°R1={<1,1>,<1,0>,<2,2>} R1°R1={<0,2>,<1,3>,<1,1>,<0,1>,<0,0>,<2,2>} $R1^{\circ}R1^{\circ}R1 = \{<0,3>,<0,1>,<1,2>,<0,2>,<0,0>,<2,3>,<2,$ 1>}

关系的n次幂:设R是X上的二元关系, $n \in N$,则关系的n次幂 $R^{(n)}$ 定义为: $(1)R^{(0)}=I_x$; $(2)R^{(n+1)}=R^{(n)}\circ R$ 说明:如果R是X到Y的关系,且X \neq Y,则 $R^{(2)}$ 是无意义的,因为 R° R是无法复合的。

定理: 设R是集合X上的二元关系, m, n∈N,则 (1)R^(m)°R⁽ⁿ⁾=R^(m+n)(称第一指数律) (2)(R^(m))⁽ⁿ⁾=R^(mn) (称第二指数律) 此定理证明可以用数学归纳法加以证明。

说明:第三指数律(R°S)⁽ⁿ⁾=R⁽ⁿ⁾°S⁽ⁿ⁾一般是不成立的。因为: (R°S)⁽²⁾=(R°S)°(R°S)=R°(S°R)°S, R⁽²⁾°S⁽²⁾=(R°R)°(S°S)=R°(R°S)°S, 只要交换律不成立,第三指数律不成立。 例: 设X={1,2,3,4,5},X上关系R为 R={<1,2>,<2,1>,<2,3>,<3,4>,<4,5>},则: $R^{(0)}=I_x=\{<1,1>,<2,2>,<3,3>,<4,4>,<5,5>\}$ $R^{(1)} = R$ $R^{(2)} = \{ <1,1>, <2,2>, <1,3>, <2,4>, <3,5> \}$ $R^{(3)} = \{ <1,2>,<2,1>,<1,4>,<2,3>,<2,5> \}$ $R^{(4)} = \{ <1,1>, <2,2>, <1,5>, <2,4>, <1,3> \}$ $R^{(5)} = \{ <1,2>,<1,4>,<2,1>,<2,3>,<2,5> \}$

2、关系矩阵:

设集合 $X=\{x_1, x_2, ..., x_m\}, Y=\{y_1, y_2, ..., y_n\},$ $Z=\{z_1, ..., z_P\}$,R是X到Y的关系,其关系矩阵 $M_R=(u_{ij})_{m\times n}$,S是Y到Z的关系,其关系矩阵 $M_{S}=(v_{jk})_{n\times p}$,复合关系R°S是X到Z的关系,其关系 矩阵 $M_{R \bullet S} = (w_{ik})_{m \times p}$,则 $w_{ik} = \bigvee_{i=1}^{n} (u_{ij} \wedge v_{jk})$ 。 式中\代表逻辑加,满足0 \(0=0, 0 \) 1=1, (布尔加) 1 \(\mathred{0} = 1 \), 1 \(\mathred{1} = 1 \) $_{\land}$ 代表逻辑乘,满足 $0_{\land} 0=0$, $0_{\land} 1=0$, (布尔乘) 1 _^ 0=0, 1 _^ 1=1

例题3: 给定集合A={1, 2, 3, 4, 5}, 在A上定义两个关系。R={<1, 2>, <2, 2>, <3, 4>}, S={<1, 3>, <2, 5>, <3, 1>, <4, 2>}。求R°S和S°R的矩阵。

(2)复合运算与∪,∩的关系 设R是从集合X到Y的关系,S和T均为Y到Z的关系, U是Z到D的关系,则

- $@R^{\circ}(S\cap T) \subseteq R^{\circ}S\cap R^{\circ}T$
- $3(S \cup T)^{\circ}U = S^{\circ}U \cup T^{\circ}U$
- **4**(S∩T)°U⊆S°U∩T°U

证明: ①∀<x, z>∈R°(S∪T)

 $\Leftrightarrow \exists y \in Y, \langle x, y \rangle \in R \land (y, z) \in S \cup T$

 $\Leftrightarrow <x, y> \in R \land (<y, z> \in S \lor <y, z> \in T)$

 $\Leftrightarrow (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \lor (\langle x, y \rangle \in R \land \langle y, z \rangle \in T)$

 $\Leftrightarrow <x, z> \in R^{\circ}S \lor <x, z> \in R^{\circ}T) \Leftrightarrow <x, z> \in R^{\circ}S \cup R^{\circ}T$

从而R°(S∪T)=R°S∪R°T

3、复合关系的性质

(1)复合运算结合律

设R、S、T分别是X到Y、Y到Z、Z到D的关系,则 (R°S)°T=R°(S°T)

证明: ∀<x, w>∈(R°S)°T

 $\Rightarrow \exists z \in Z, \langle x, z \rangle \in \mathbb{R}^{\circ}S, \langle z, w \rangle \in T,$

 $\Rightarrow \exists y \in Y, \langle x, y \rangle \in R, \langle y, z \rangle \in S, \langle z, w \rangle \in T$

 $\Rightarrow <x, y> \in R, <y, w> \in S^{\circ}T \Rightarrow <x, w> \in R^{\circ}(S^{\circ}T)$

所以(R°S)°T⊆R°(S°T)

类似可以证R°(S°T)⊆(R°S)°T,从而(R°S)°T=R°(S°T)

二、逆关系

1、逆关系

定义3-7.2:设R是集合X到Y的二元关系,如将R中 每一序偶中的元素顺序互换,所得到的集合称为R 的<mark>逆关系</mark>,记作R^c={<y, x>|<x, y>∈R}。 说明: R^c的关系矩阵是R的关系矩阵的转置, R^c的 关系图是将R的关系图中的弧改变方向。 例:设集合 $X=\{x,y,z\}$,X上的关系 $R=\{<x, x>, <z, x>, <z, y>\}$,则 $R^c = \{ \langle x, x \rangle, \langle x, z \rangle, \langle y, z \rangle \}$

例题4: 给定集合X={a,b,c}, R是X上的二元 关系。R的关系矩阵

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

求R^c和R°R^c的关系矩阵。

$$\mathbf{\hat{R}}: \begin{cases} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{cases}$$

$$\mathbf{M}_{R}^{c} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R}^{c} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

2、定理3-7.1:设R,R₁和R₂均是A到B的二元关系,则
(1)(R^c)^c=R

$$(1)(R^{c})^{c}=R$$

$$(2)(R_{1} \cup R_{2})^{c}=R_{1}^{c} \cup R_{2}^{c}$$

$$(3)(R_{1} \cap R_{2})^{c}=R_{1}^{c} \cap R_{2}^{c}$$

$$(4)(A \times B)^{c}=B \times A$$

$$(5)(R)^{c}=R^{c} \quad R=A \times B-R$$

$$(6)(R_{1}-R_{2})^{c}=R_{1}^{c}-R_{2}^{c}$$
证明: $(2) < x$, $y > \in (R_{1} \cup R_{2})^{c}$

$$\Leftrightarrow < y$$
, $x > \in R_{1} \cup R_{2}$

$$\Leftrightarrow < y$$
, $x > \in R_{1} \lor < y$, $x > \in R_{2}$

$$\Leftrightarrow < x$$
, $y > \in R_{1}^{c} \lor < x$, $y > \in R_{2}^{c}$

$$\Leftrightarrow < x$$
, $y > \in R_{1}^{c} \cup R_{2}^{c}$

3、定理3-7.2:设R是X到Y的关系,S是Y到Z的关系,则(R°S)^c=S^c°R^c。

证明: <z, x>∈(R°S)^c

 $\Leftrightarrow < x, z \ge \in \mathbb{R}^{\circ}S$

 $\Leftrightarrow (\exists y)(y \in Y \land \langle x, y \rangle \in R \land \langle y, z \rangle \in S)$

 $\Leftrightarrow (\exists y)(y \in Y \land \langle y, x \rangle \in \mathbb{R}^c \land \langle z, y \rangle \in \mathbb{S}^c$

 $\Leftrightarrow <z, x> \in S^{co}R^{c}$

例: X={x, y, z}, Y={1, 2, 3, 4, 5}, R是X上关系, S是X到Y的关系。

可验证: S^c°R^c=(R°S)^c

- 4、定理3-7.3:设R是X上的二元关系,则
- (1)R是对称的,当且仅当R=R^c
- (2)R是反对称的,当且仅当R∩R°⊆I_x

证明:

(1)因为R是对称的,

故<x,y>∈R⇔<y,x>∈R⇔<x,y>∈R^c,所以 R=R^c。

反之,若 $R=R^c$,因为<x, $y>\in R\Leftrightarrow <$ y, $x>\in R^c$ $\Leftrightarrow <$ y, $x>\in R$, 所以R是对称的。

即当<x,y>∈R和<y, x>∈R时,必有x=y。)

(2)设R是反对称的,

 $\langle x, y \rangle \in R \cap R^c \Leftrightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^c$

⇔ <x, y>∈ R ∧ <y, x>∈ R,
因为 R是反对称的, 所以x=y,故R∩R^c⊆l_x。
反之,若R∩R^c⊂l_x, <x, y>∈ R∩R^c有<x,

y>∈ I_x,即x=y。

又 $\langle x, y \rangle \in R \cap R^c \Leftrightarrow \langle x, y \rangle \in R \wedge \langle x, y \rangle \in R^c$ $\Leftrightarrow \langle x, y \rangle \in R \wedge \langle y, x \rangle \in R$,但x=y,故R是反对称的。

5、定理:设R、S是X上的自反关系,则R∪S、R∩S、R^c也是X上的自反关系。

设R、S是X上的对称关系,则R∪S、R∩S、R^c也是X上的对称关系。

设R、S是X上的反对称关系,则R∩S、R^c也是X上的反对称关系。

R是传递关系的充要条件是R°R⊆R。

The End