Trabalho 2 de OAC ULA e Gerador de Imediatos

Alunos:

Gabriel Matheus - 17/0103498 Guilherme Braga - 17/0162290 Victor Castor - 17/0115127

Professor: Marcelo Grandi Mandelli

Entrega: 10/10/2019

1- Marco Teórico: ULA e Gerador de Imediatos

1.1- ULA

A unidade lógica e aritmética (proposta pelo matemático John von Neumann), em inglês Arithmetic Logic Unit (ALU), é um circuito digital que realiza um conjunto predefinido de operações lógicas, dado um input. É considerada a mais simples unidade de processamento central. A ULA aqui proposta segue a seguinte estrutura, utilizando funções prontas da linguagem padrão do VHDL:

Operação	Significado	Op code
ADD	A + B	0000
SUB	A - B	0001
SLL	A deslocado B bits para a esquerda	0010
SLT	A < B? (com sinal)	0011
SLTU	A < B? (sem sinal)	0100
XOR	A XOR B	0101
SRL	A deslocado B bits para a direita sem sinal	0110

SRA	A deslocado B bits para a direita com sinal	0111
OR	A OR B	1000
AND	A AND B	1001
SEQ	A == B?	1010
SNE	A != B?	1011
SGE	A >= B? (com sinal)	1100
SGEU	A >= B? (sem sinal)	1101

Após a execução do código, teremos um módulo com esta estrutura:

1.2 - Gerador de Imediatos

RISC-V é um conjunto de instruções (ISA) aberto e baseado em RISC ("Reduced Instruction Set Computing"). Para este trabalho iremos considerar a geração de instruções de 32 bits, onde, dependendo da instrução, será necessária a extração de uma constante, o imediato. Ou seja, este módulo em VHDL gerará o imediato para alguns tipos de instruções.

Após a execução em VHDL, teremos um módulo com esta estrutura:

2- Procedimento

2.1- ULA

O código da ULA se concentra em duas partes: a definição de sinais e a designação destes sinais e de operações "inline". Para operações de comparação, o retorno será uma informação do tipo booleana. A partir desta informação, designamos para a resposta um vetor composto unicamente de zeros (para indicar o sinal negativo) ou um vetor com o 1 em sua posição inicial (para indicar o sinal positivo).

Por sua importância, destacamos o seguinte trecho de código. Este serve para efetivamente designar os sinais desejados caso o opcode seja correspondido:

```
result <= std_logic_vector(signed(A) + signed(B))
                                                                                   when op="0000" else
          std_logic_vector(signed(A) - signed(B))
                                                                                   when op="0001" else
          std_logic_vector(shift_left(unsigned(A), to_integer(unsigned(B))))
                                                                                   when op="0010" else
          sinal_A_menor_com_sinal
                                                                                   when op="0011" else
         sinal_A_menor_sem_sinal
                                                                                   when op="0100" else
          std_logic_vector(unsigned(A) xor unsigned(B))
                                                                                   when op="0101" else
          std_logic_vector(shift_right(unsigned(A), to_integer(unsigned(B))))
                                                                                   when op="0110" else
          std_logic_vector(shift_right(signed(A), to_integer(unsigned(B))))
                                                                                   when op="0111" else
          std_logic_vector(A or B)
                                                                                   when op="1000" else
          std_logic_vector(A and B)
                                                                                   when op="1001" else
          sinal_A_igual_B
                                                                                   when op="1010" else
          sinal_A_dif_B
                                                                                   when op="1011" else
          sinal A maiorigual B com sinal
                                                                                   when op="1100" else
          sinal_A_maiorigual_B_sem_sinal
                                                                                   when op="1101" else
          sinal default;
end ula;
```

2.2- Gerador de Imediatos

Para o gerador de imediatos, separamos a resposta necessária em pré-determinada ordem para poder definir o sinal correto, nos valendo dos recursos de concatenação do VHDL. Sinais auxiliares foram criados para a fácil interpretação do código.

Por sua importância, destacamos o seguinte trecho de código. Este serve para efetivamente designar os sinais desejados caso o opcode seja correspondido:

```
imm32 <= (aux & inst(31 downto 20))
                                                                                  when opcode = "0000011" else
     (aux & inst(31 downto 20))
                                                                                  when opcode = "0010011" else
     (aux & inst(31 downto 20))
                                                                                  when opcode = "1100111" else
                                                                                  when opcode = "0100011" else
     [(aux & inst(31 downto 25) & inst(11 downto 7))
      (aux & inst(7) & inst(30 downto 25) & inst(11 downto 8) & '0')
                                                                                  when opcode = "1100011" else
                                                                                  when opcode = "0010111" else
     (inst(31 downto 12) & "000000000000")
      (inst(31 downto 12) & "000000000000")
                                                                                  when opcode = "0110111" else
                                                                                  when opcode = "1101111" else
     (aux_j & inst(19 downto 12) & inst(20) & inst (30 downto 21) & '0')
      default;
```

3- Resultados

3.1- Para a ULA:

- A+B

Name	Value	0 ps	1 ps	2 ps	3 ps	4 ps	5 ps
▶ □ a[31:0]	01001110000001000001000011001010				0100111000	00010000010000	11001010
▶ 5 b[31:0]	0000100001100000001000001100101				0000100001	10000000010000	01100101
▶ □ op[3:0]	0000					0000	
> = result[31:0]	01010110011001000010000100101111				0101011001	10010000100001	00101111

- A-B

Name	Value	34,860 ps	34,861 ps	34,862 ps	34,863 ps	34,864 ps	34,865 ps
▶ 📆 a[31:0]	01001110000001000001000011001010			01	0011100000001000	00100001100101	o O
▶ 5 b[31:0]	00001000011000000001000001100101			00	001000011000000	00100000110010	1
▶ 🌃 op[3:0]	0001				000	1	
result[31:0]	01000101101001000000000001100101			01	000101101001000	00000000110010	1

- SLL (A deslocado à esquerda "B" vezes)

- SLT (A<B com sinal)

Name	Value	370,730 ps	370,731 ps	370,732 ps	370,733 ps	370,734 ps 3
▶ 🎇 a[31:0]	0100111000000100001000011001010			010	0111000000010000	001000011001010
▶ 🎇 b[31:0]	0000100001100000001000001100101			000	010000110000000	001000001100101
▶ 🎇 op[3:0]	0011				001	
> K result[31:0]	000000000000000000000000000000000000000			000	000000000000000000000000000000000000000	0000000000000000

- SLTU (A<B sem sinal)

				385,372 ps	385,373 ps	385,374 ps 38
1000001000011001010				010	0111000000010000	01000011001010
0000001000001100101				000	010000110000000	01000001100101
					0100)
				000	00000000000000000	000000000000000000000000000000000000000
	0000001000001100101	0000001000001100101	0000001000001100101	0000001000001100101	0000001000001100101	00001000001100101 00001100000100001000010000010000010000010000

- A XOR B

Name	Value	402,440 ps	402,441 ps	402,442 ps	402,443 ps	402,444 ps 4
▶ 🎇 a[31:0]	01001110000001000001000011001010			010	01110000001000	001000011001010
▶ % b[31:0]	00001000011000000001000001100101			000	01000011000000	001000001100101
▶ ■ op[3:0]	0101				010	
> 🧱 result[31:0]	0100011001100100000000010101111			010	00110011001000	000000010101111

- SRL (A deslocado à direita "B" vezes sem sinal)

Name	Value	424,390 ps	424,391 ps	424,392 ps	424,393 ps	424,394 ps	424,
▶ Na[31:0]	0100111000000100001000011001010			010	01110000001000	00100001100101d	
▶ b [31:0]	000000000000000000000000000000000000000			000	000000000000000000000000000000000000000	000000000000101	
▶ 5 op[3:0]	0110				011	ф	
> = result[31:0]	00000010011100000010000010000110			000	00010011100000	01000001000011d	

- SRA (A deslocado à direita "B" vezes com sinal)

Value	742,240 ps	742,241 ps	742,242 ps	742,243 ps	742,244 ps	742,245 ps 74
010011100000010000				010	01110000001000	001000011001010
000000000000000000000000000000000000000				000	00000000000000	000000000000101
0111					011	1
000000100111000000				000	00010011100000	010000010000110
	010011100000010000	010011100000010000	010011100000010000	010011100000010000 0000000000000000000	010011100000010000 0000000000000000000	010011100000010000 0000000000000000000

- A OR B

Name	Value	471,950 ps	471,951 ps	471,952 ps	471,953 ps	471,954 ps	171
▶ 🎇 a[31:0]	0100111000000100001000011001010			010	0111000000010000	01000011001010	
▶ b [31:0]	0000100001100000001000001100101			000	01000011000000	01000001100101	
▶ □ op[3:0]	1000				1000		
result[31:0]	01001110011001000001000011101111			010	01110011001000	01000011101111	
-9							

- A AND B

Value	492,680 ps	492,681 ps	492,682 ps	492,683 ps	492,684 ps	492,68
0100111000000100001000011001010			010	011100000001000	001000011001010	d
00001000011000000001000001100101			000	01000011000000	00100000110010	1
1001				100		
000010000000000001000001000000			000	0100000000000000	001000001000000	q
	0100111000000100001000011001010 00001000011000000	01001110000001000001000011001010 00001000011000000	0100111000000100000100101010101010101010	01001110000001000011001010 0000100011000000	01001110000001000001000011001010 00001000011000000	01001110000001000001000011001010 00001000011000000

- SEQ (comparação A == B)

Name	Value	503,660 ps	503,661 ps	503,662 ps	503,663 ps	503,664 ps 503
▶ 🎇 a[31:0]	01001110000001000001000011001010			010	01110000001000	001000011001010
▶ 📑 b[31:0]	0100111000000100001000011001010			010	01110000001000	00100001100101d
▶ 3 op[3:0]	1010				101	Φ
result[31:0]	000000000000000000000000000000000000000			000	000000000000000000000000000000000000000	000000000000001
- 0			N Inc.			

- SNE (comparação A != B)

Name	Value	 529,270 ps	529,271 ps	529,272 ps	529,273 ps	529,274 ps	529,2
▶ 🌃 a[31:0]	0100111000000100001000011001010			010	011100000001000	001000011001010	
▶ % b[31:0]	0000100001100000001000001100101			000	01000011000000	001000001100101	1
▶ ■ op[3:0]	1011				101		
> ** result[31:0]	000000000000000000000000000000000000000			000	000000000000000	0000000000000000	1
F = [lesuidat.0]	000000000000000000000000000000000000000						

- SGE (A >= B com sinal)

Name	Value	 546,340 ps	546,341 ps	546,342 ps	546,343 ps	546,344 ps 54
▶ 🌃 a[31:0]	01001110000001000001000011001010			010	011100000001000	01000011001010
▶ b [31:0]	0000100001100000001000001100101			000	01000011000000	01000001100101
▶ op[3:0]	1100				110	
result[31:0]	000000000000000000000000000000000000000			000	00000000000000	0000000000000001

- SGEU (A >= B sem sinal)

Name	Value	568,290 ps	568,291 ps	568,292 ps	568,293 ps	568,294 ps	568
▶ 🎇 a[31:0]	0100111000000100001000011001010			010	011100000001000	0100001100101	
> ■ b[31:0]	00001000011000000001000001100101			000	01000011000000	01000001100101	4
▶ S op[3:0]	1101				110		
> K result[31:0]	000000000000000000000000000000000000000			000	000000000000000	000000000000000	1

- SINAL DEFAULT

Name	Value	590,240 ps	590,241 ps	590,242 ps	590,243 ps	590,244 ps	590
▶ 🎇 a[31:0]	01001110000001000001000011001010			010	01110000001000	00100001100101	d
▶ 🌃 b[31:0]	00001000011000000001000001100101			000	01000011000000	00100000110010	1
▶ 3 op[3:0]	1111				111		
> ** result[31:0]	111111111111111111111111111111111111111			111	111111111111111	111111111111111	1

3.2 - Para o gerador de imediatos:

- Instrução tipo R

RISC-V: add t0, zero, zero Instrução: 0x000002B3 Imediato: 0x00000000

Name	Value	0 ps	1 ps	2 ps	3 ps	4 ps	5 ps
▶ 3 inst[31:0]	000000000000000000000000000000000000000				00000	000000000000000000000000000000000000000	0001010110011
▶ Mimm32[31:0]	000000000000000000000000000000000000000				00000	0000000000000000	000000000000
9							

- Instrução tipo I

RISC-V: lw t0, 16(zero) Instrução: 0x01002283 Imediato: 0x00000016

23,330 ps	23,331 ps	23,332 ps	23,333 ps	23,334 ps	23,335 ps 23
			00000	001000000000001	00010100000011
			00000	0000000000000000	000000010000

- Instrução tipo S

RISC-V: sw t0 60(s0) Instrução: 0x02542E23

Imediato: 60

45,560 ps	45,561 ps	45,562 ps	45,563 ps	45,564 ps	45,565 ps
			00000	010010101000010	111000100011
			00000	00000000000000000	000000111100

- Instrução tipo B

RISC-V: bne t0, t0, main Instrução: 0xFE5290E3

Imediato: -32

			62,225 ps
11111	110010	10010100	000011100011
111111	ШШ	111111111	111111100000

- Instrução tipo U

RISC-V: lui s0, 2

Instrução: 0x00002437 Imediato: 0x2000

90,005 ps
0010000110111
.0000000000000
.00

- Instrução tipo J

RISC-V: jal rot

Instrução: 0x00C000EF

Imediato: 12

4- Link para o trabalho no Github:

https://github.com/therealguib545/OAC_Trabalho2