

Malware
Analysis
Project

김현수(Hyeonsu Kim) 최가온(Gaon Choi)

Contents

- 1. Previous works
- 2. Malware-image Transformation
- 3. Malware Binary Classification (malware or non-malware?)
- 4. Malware Family Classification
- 5. Other works

Introduction

이번 프로젝트에서는 악성코드 파일을 이미지로 변환한 후, 이미지를 기반으로 악성 여부를 판단하고, 악성코드 계통(malware family)을 분류하는 인공지능 모델을 설계하고 학습하였습니다.

Previous works

지난 발표 시기까지의 프로젝트 진행 요약

Malware Image Visualization

.vir file .png file .png file

Binary classification training using VGGNet

malware: 5007 non-malware: 5007 श

Layer(type)	Output Shape	# of params
con2d(Conv2D)	(None, 32, 32, 3)	84
activation (Activation)	(None, 32, 32, 3)	0
vgg16 (Functional)	(None, None, None, 512)	14714688
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 32)	16416
dense_1 (Dense)	(None, 1)	33

Performance	
Train loss	loss: 0.0291
Train acc	accuracy: 97.87
Test loss	loss: 0.2332
Test acc	accuracy: 69.50

Malware Image Transformation

dataset	# of malware data points	# of non-malware data points
train set	7,000	3,000
test set1	5,000	5,000
test set2	5,000	5,000

A model that receives a transformed 32 x 32 size image as input and dichotomously determines whether it is malware or not(non-malware)

dataset	# of malware data points	# of non-malware data points
train set	7,000	3,000
test set1	5,000	5,000
test set2	5,000	5,000

dataset	# of malware data points	# of non-malware data points
train set	5,000	5,000
test set	5,000	5,000

Malware or Non-malware?
Binary Classification


```
self.resnet_50.fc = nn.Sequential(
    nn.Linear(2048, 1000),
    nn.ReLU(inplace=True),
    nn.Linear(1000, 256),
    nn.ReLU(inplace=True),
    nn.Linear(256, 64),
    nn.ReLU(inplace=True),
    nn.ReLU(inplace=True),
    nn.Linear(64, 1),
    nn.Sigmoid()
)
```

Model Performance

- Train Accuracy: 99.5%
- Test Accuracy: 93.0%
- Epoch: 400

- Learning rate: 0.001
- Loss: nn.BCELoss
- Optimizer: SGD

Model Performance


```
pred=0.0014788481639698148 | ans=0
image 0 |
image 1 |
         pred=0.9997912049293518 |
         pred=0.005231290124356747 |
image 2 |
image 3 l
         pred=0.7512921690940857 | ans=0
         pred=0.0017309949034824967 | ans=0
image 4 |
image 5 |
         pred=0.001742606982588768 |
                                      ans=0
         pred=0.000600828614551574 |
image 6 l
                                      ans=0
         pred=0.9383810758590698 |
image 7 |
         pred=0.0016865450888872147 | ans=0
image 8 |
image 9 l
         pred=0.0007257546531036496
                                       ans=0
image 10 | pred=0.0006229666178114712 | ans=0
image 11 | pred=0.9989845156669617 | ans=1
          pred=0.001240861602127552 |
image 13 | pred=0.0006093949778005481 |
image 14 | pred=0.9991174340248108 |
image 15 | pred=0.00038419407792389393 | ans=0
image 16 | pred=0.0970044657588005 |
                                     ans=1
          pred=0.9984909296035767
                                     ans=1
image 18 | pred=0.00386615376919508
                                      ans=0
image 19 | pred=0.0015628642868250608 | ans=0
image 20 | pred=0.9997197985649109
                                     ans=1
image 21 | pred=0.9999942779541016
                                     ans=1
image 22 | pred=0.002477513626217842 |
                                       ans=0
image 23 | pred=0.0005884646088816226
                                        ans=()
```

Model Performance

A model that receives a transformed 32 x 32 size image as input and determines its malware family such as adware, downloader, etc.

dataset	# of malware data points	# of non-malware data points
train set	7,000	3,000
test set1	5,000	5,000
test set2	5,000	5,000

dataset	# of malware data points
train set	7,000
test set1	5,000
test set2	5,000

dataset	# of malware data points
train set	7,000
test set1	5,000
test set2	5,000

dataset	# of malware data points
ALL	17,000

dataset	# of malware data points
ALL	17,000

Extracts labels from examination data based on VirusTotal.

- 1. majority rule
- 2. exceptions for trojan
 - 1) only case -> trojan
 - 2) else -> get the 2nd decision

We performed over-sampling

With imblearn.over sampling.RandomOverSampler

Object to over-sample the minority class(es) by picking samples at random with replacement.

The bootstrap can be generated in a smoothed manner.

Which malware family does this

virus belong to?

multi-class classification


```
self.resnet_50.fc = nn.Sequential(
    nn.Linear(2048, 1000),
    nn.ReLU(inplace=True),
    nn.ReLU(inplace=True),
    nn.Linear(256, 64),
    nn.ReLU(inplace=True),
    nn.ReLU(inplace=True),
    nn.Linear(64, 11),
    nn.Softmax()
)
```

Performance

test set accuracy: 84%

- Folder: 40,000
- Files: 414,784
- Capacity: 2.84GB
- base.json behaviours.json bundled_files.json contacted_domains.json contacted_ips.json contacted_urls.json dropped_files.json execution_parents.json pe_resource_children.json pe_resource_parents.json

```
"data": {
    "attributes": {
        "vhash": "064046551d1500f1z14z211b5z3dz17z45z",
        "trid": [
```

Type description

- Win32 DLL
- Win32 EXE
- JavaScript
- ...

TrID

- Win32 Executable MS Visual C++ (generic)
- OS/2 Executable (generic)
- Microsoft Visual C++ compiled executable (generic)
- ...

```
'popular_threat_classification": {
   "popular_threat_category": [
           "value": "trojan"
           "value": "dropper"
   "popular threat name": [
           "count" 12
           "value": "ddos"
           "value": "rincux"
```

Popular threat category/name

- Trojan
- Worm
- Virus
- Dropper
- DDOS
- •

```
"packers": {
    "PEiD": "Microsoft Visual C++"
},
```

Packers

- PEiD
 - UPX
 - Microsoft Visual C++ v6.0 DLL
 - .NET executable
 - •

```
"entropy": 2.0,
   "chi2" 252.0
   "filetype": "ASCII text",
   "md5": "2f5f7485fd0c9653a9338251cad59e8b",
   "size": 4
"entry point": 9844
"machine type": 332,
"sections": [
       "virtual size": 6298.
       "entropy": 5.13,
       "raw size" 8192
       "md5": "6dfbc6899241990b3bc003eef552e520"
       "virtual size": 2712,
       "entropy": 4.11,
       "virtual_address": 12288,
       "md5": "29aa83f4db54de6e04f0b3f5c0e545df"
```

Sections

- Overlay
 - Entropy
 - Chi2
- .text, .rdata, .rsrc ···
 - Entropy

type_des	best_trid_	best_trid	type_exte	has_signa	packer	type_tag	overlay_e	overlay_c	overlay_f	dropped_	beha
Win32 Dl	Win32 Exe	33.7	dll	0	unknown	pedll	2	252	ASCII text	0	
Win32 DI	Win64 Exe	61.7	dll	0	unknown	pedll	2	252	ASCII text	0	
Win32 EX	OS/2 Exec	25.2	exe	1	unknown	peexe	0.004528	2.58E+09	Data	0	
Win32 DI	Windows	83.7	dll	1	unknown	pedll	7.398872	22471.63	Data	0	
Win32 EX	Win32 Exe	42.7	exe	0	unknown	peexe	2	252	ASCII text	0	
Win32 DI	Win32 Exe	33.7	dll	1	Microsoft	pedll	2	252	ASCII text	0	
Win32 DI	Win32 EX	60.7	dll	0	UPX	pedll	2	252	ASCII text	0	
Win32 EX	Microsoft	33.5	exe	0	unknown	peexe	2	252	ASCII text	0	
Win32 EX	Win32 Exe	41	exe	0	Microsoft	peexe	4.818212	96692040	Data	0	
Win32 EX	Win32 Exe	58.7	exe	1	Microsoft	peexe	7.406668	7600.766	Data	0	
Win32 DI	Win64 Exe	82	dll	0	unknown	pedll	1.212236	52465.13	ASCII text	0	
Win32 EX	Win64 Exe	42.3	exe	1	UPX v0.89	реехе	3.649286	5206.675	Data	0	
Win32 EX	Win64 Exe	82	exe	1	unknown	peexe	7.999897	268.3149	Data	0	
Wirss Di	Caparia N	650	االہ	1	Microsoft	nadli	1	רור	ACCII +out	۸	

hash type_description best trid type best_trid_probability type_extension has_signature packer type_tag overlay_entropy overlay chi2 overlay_filetype dropped_files_count behaviours count contacted_domains_count contacted_ips_count contacted_urls_count .text_entropy .bss_entropy .rdata_entropy .data_entropy .xdata_entropy .idata_entropy .pdata_entropy .rsrc entropy .reloc entropy .CRT entropy

Test set 1

Accuracy: 96.15% Precision: 93.99%

Test set 2

Accuracy: 94.37% Precision: 91.27%

Thank You ©

Hyeonsu Kim, Gaon Choi.

Department of Computer Science

Hanyang University

