

大连理工大学工科硕士研究生数学公共基础课程 and the state of t

大连理工大学研究生教育大楼

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

授课教师基本信息

9姓 名: 萱波

• 工作单位: 数学科学学院

· 办公地点:创新园大厦(大黑楼) B1113室

EMAIL: dongbodlut@gmail.com

高等学校教材

计算机科学计算

第二版

◎ 张宏伟 金光日 施吉林 董波 编

主

讲

教

材

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

回参考书目(Reference)

- ▶ 数值分析 李庆扬等 编著 清华大学出版社
- > 数值分析 冯果忱等 编著 高等教育出版社

John.H.Mathews ▶ 数值方法(MATLAB版)[美] Kurtis D.Fink

陈渝等译 李晓梅审校 (电子工业出版社)

> 矩阵论简明教程 许仲 张凯院等编著 科学出版社

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

考核要求

课程的总成绩

平时作业 → 占20%;

数值实验 → 占10%;

期末考试 → 占70%;

第1章 绪 论

作业: P27

2、3、7、8、10、12 (3) 、13

3. (2)
$$x_2 = \frac{-2c}{-b - \sqrt{b^2 - 4ac}} \Rightarrow x_2 = \frac{-2c}{b - \sqrt{b^2 - 4ac}}$$

第1章 绪 论

1.1 计算机科学计算研究对象与特点

1.2 误差分析与数值方法的稳定性

1.3 向量与矩阵的范数

1.1 计算机科学计算研究对象与特点

科学计算、理论计算和实验并列为三大科学方法。 我们所学习的内容属于一门新学科——科学计算。

> 数学+计算科学 化学+计算科学 力学+计算科学 物理+计算科学

计算数学 计算化学 计算力学 计算物理

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

本课程主要研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现

主要内容包括:

$$Ax = b$$

f(x) f'(x)

$$\int_a^b \rho(x) f(x) dx$$

数值代数-

数值逼近(数值微分积分)

微分方程数值解法

$$\boldsymbol{u}' = \boldsymbol{f}(\boldsymbol{t}, \boldsymbol{u}), \boldsymbol{u}(\boldsymbol{t}_0) = \boldsymbol{u}_0$$

矩阵分析简介_

$$\left\{ A_{k} \right\}_{k=0}^{\infty} \sum_{k=0}^{\infty} A_{k} \quad f(A) = e^{A} \cdot \sin A$$

$$\frac{dA(t)}{dt} \quad \int_{a}^{b} A(t) dt$$

解决实际问题:

- 一、构造计算机可行的有效算法
- 二、给出可靠的理论分析,即对任意逼近达到精度要求,保证数值算法的收敛性和数值稳定性,并可进行误差分析。
 - 三、有好的计算复杂性,既要时间复杂性好,是指节省时间,又要空间复杂性好,是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。

四、数值实验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

什么是有效算法?

考察线性方程组的解法

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Cramer求解法则(18世纪)

$$x_i = \frac{D_i}{D} i = 1, 2, \dots, n, (D \neq 0)$$

$$D = \det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn}$$

$$a_{21} \quad \cdots \quad b_{1} \quad \cdots \quad a_{1n}$$

$$a_{21} \quad \cdots \quad b_{2} \quad \cdots \quad a_{2n}$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots$$

Laplace展开定理

 $\det(\mathbf{A}) = a_{i1}A_{i1} + \dots + a_{in}A_{in}$ A_{ij} 表示元素 a_{ij} 的代数余子式

理论非常漂亮 实际计算困难 (运算量大得惊人)

线性方程组的求解 \Longrightarrow 计算n+1个n阶行列式 \Longleftrightarrow Laplace展开定理

设计算k 阶行列式所需要的乘法运算的次数为 m_k ,则 $m_k = k + k m_{k-1}$

于是, 我们有

$$m_n = n + n m_{n-1} = n + n [(n-1) + (n-1)m_{n-2}]$$

= $n + n(n-1) + n(n-1)(n-2) + \dots + n(n-1) \dots 3 \cdot 2$
> $n!$

利用Cramer法和Laplace展开定理来求解一个n阶线性方程组,所需的乘法运算次数就大于

$$(n+1)n! = (n+1)!$$

求解25阶线性方程组

总的的乘法运算次数将达:

$$26! = 4.0329 \times 10^{26}$$
 (次)

若使用每秒百亿次的串行计算机计算,一年可进行的运算应为:

365(天) × 24(小时) × 3600(秒) × 10¹⁰ ≈ 3.1536 × 10¹⁷ (次) 共需要耗费时间为:

$$(4.0329 \times 10^{26})$$
÷ (3.1536×10^{17}) ≈ 1.2788×10^{9} ≈ $13($ 亿年)

它远远超出目前所了解的人类文明历史!

Cramer 算法是"实际计算不了"的。

而著名的 Gauss消元法,它的计算过程已作根本改进,成为有效算法,使得可在不到一秒钟之内即可完成上述计算任务。

随着科学技术的发展,出现的数学问题也越来越多样化,有些问题用消去法求解达不到精度,甚至算不出结果,从而促使人们对消去法进行改进,又出现了主元消去法,大大提高了消去法的计算精度。

这就是研究数值方法的必要性

UNIVERSITY OF TECHNOLOGY

1.2 误差分析与数值方法的稳定性

- 1.2.1 误差来源与分类 📕
- 1.2.2 误差的基本概念和有效数字 ——
- 1.2.3 函数计算的误差估计
- 1.2.4 数值方法的稳定性和避免误差危害的基本原则 ▲

1.2.1 误差来源与分类

用计算机解决科学计算问题时经常采用的处理方式是将连续的问题离散化、用有限代替无限等,并且用数值分析所处理的一些数据,不论是原始数据,还是最终结果,绝大多数都是近似的,因此在此过程中,误差无处不在。

DUT

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

计 算 机 科 学 计 算 的 流 程 图

1. 模型误差 由实际问题抽象出数学模型,要简化许多条件,这就不可避免地要产生误差.实际问题的解与数学模型的解之间的误差

2. 截断误差 从数学问题转化为数值问题的算法时所产生的误差,如用有限代替无限的过程所产生的误差

例如,给定 x 求 e^{x^2} 的值的运算,我们可用无穷级数:

$$e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \dots + \frac{x^{2n}}{n!} + \frac{x^{2(n+1)}}{(n+1)!} + \dots$$

我们可用它的前 n+1 项和

$$s(x) =$$

近似代替函数 e^{x^2} ,则数值方法的误差是

$$R_n(x) = e^{x^2} - s(x) = \frac{e^{(\theta x)^2}}{(n+1)!} x^{2(n+1)}, \quad 0 < \theta < 1$$

- 3. 观测误差 初始数据大多数是由观测而得到的。由于观测手段的限制,得到的数据必然有误差
- 4. 舍入误差 以计算机为工具进行数值运算时,由于计算机的字长有限,原始数据在计算机上的表示往往会有误差,在计算过程中也可能产生误差

例如, 用1.4142近似代替 $\sqrt{2}$,产生的误差

$$E = \sqrt{2} - 1.4142 = 1.4142135 \cdots - 1.4142$$
$$= 0.0000135 \cdots$$

就是舍入误差。

模型和观测两种误差不在本课程的讨论范围

这里主要讨论算法的截断误差与舍入误差,而截断误差将结合具体算法讨论

分析初始数据的误差通常也归结为舍入误差

研究计算结果的误差是否满足精度要求就是: 误差估计问题

1.2.2 误差的基本概念和有效数字

定义 设x为精确值,a为x的一个近似值,称

绝对误差 (误差)

为近似值a的绝对误差,简称误差。误差x-a 可正可负。

通常准确值 x 是未知的, 因此误差 x-a 也未知。

定义

设 X 为精确值, a为 X 的一个近似值, 若有常数

ea使得

绝对误差界 $|x-a| \le e_a$

则 e_a 叫做近似值a的误差界(限)。它总是正数。

例如,用毫米刻度的米尺测量一长度x,读出和该长度接近的刻度a,a是x的近似值,它的误差界是0.5mm,于是有

绝对误差界

$$|x - a| \le 0.5mm$$

如若读出的长度为765mm,则有,

$$|x - 765| \le 0.5^{\circ}$$

虽然从这个不等式不能知道准确的x是多少,但可知 $764.5 \le x \le 765.5$,

结果说明x在区间[764.5, 765.5]内。

对于一般情形 $|x-a| \le e_a$, 即可以表示为

$$a - e_a \le x \le a + e_a,$$

也可以表示为

$$x = a \pm e_a$$

但要注意的是,误差的大小并不能完全表示近似值的好坏。

定义 若 $x \neq 0$,则将近似值的误差与准确值的比值

$$\frac{x-a}{x}$$
 $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$

称为近似值a的相对误差。 相对误差也可正可负。

实际计算中,如果真值 x未知时,通常取

$$\frac{x-a}{x} \approx \frac{x-a}{a}$$

x a x-a 作为a的相对误差,条件是 $\frac{x-a}{x}$ 较小。

相对误差的绝对值上界叫做相对误差界(限),记为:

$$\left|\frac{x-a}{a}\right| \le \frac{e_a}{|a|} \qquad \text{and } |E| = \frac{1}{|a|}$$

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

有两个量 x=3.000, a=3.100,则其绝对误差:

$$x - a = -0.1$$

绝对误差

其相对误差为:

$$\frac{x-a}{x} = \frac{-0.1}{3.00} = -0.333 \times 10^{-1}$$

又有两个量 x = 300.0, a = 310.0, 则其绝对误差:

$$x - a = -0.1 \times 10^2$$

其相对误差为:

绝对误差

$$\frac{x-a}{x} = \frac{-0.1 \times 10^2}{0.3 \times 10^4} = -0.333 \times 10^{-1}$$

相对误差

相对误差

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

作为精确值的度量,绝对误差可能会引起误会,而相对误差由于考虑到准确值本身的大小而更有意义。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

回知 $e = 2.71828182 \cdots$ 其近似值 a = 2.718, 求 a

的绝对误差界和相对误差界。

解:
$$e-a=0.00028182$$
 …

其绝对误差界为:

$$|e-a| \le 0.0003$$

相对误差界为:

$$\frac{|e-a|}{|a|} = \frac{0.0003}{2.718} \approx 0.0001110375 \le 0.0002_{\circ}$$

绝对误差界和相对误差界并不是唯一的

误差界的取法

当准确值x位数比较多时,人们常常按四舍五入的原则得到x的前几位近似值a,例如

$$x = \pi = 3.14159265\cdots$$

取3位:
$$a_1 = 3.14$$
, $\pi - a_1 = 0.00159265$ …

取5位:
$$a_2 = 3.1416$$
, $\pi - a_2 = -0.00000735 \cdots$

那么,它们的误差界的取法应为:

$$\left|\pi - 3.14\right| \le \frac{1}{2} \times 10^{-2}, \qquad \left|\pi - 3.1416\right| \le \frac{1}{2} \times 10^{-4}.$$

定义 设x为精确值, a为x的一个近似值,表示为:

$$a = \pm 10^k \times 0. a_1 a_2 \cdots a_n \cdots \tag{1-14}$$

可以是有限或无限小数形式,其中 $a_i(i=1,2,\dots,n)$ 是0到9中的一个数字, $a_1 \neq 0$, k为整数, n为正整数,如果其绝对误差界

$$\left| x - a \right| \le \frac{1}{2} \times 10^{k - n} \tag{1-15}$$

则称a为x的具有n位有效数字的近似值。

有对于 $e=2.71828182\cdots$,下面的各个值的有效数字的位数。

效 数

字

位 数

与小

数

点

的

无 关

位 置 取 $a = 2.718 = 10^{1} \times 0.2718$, 其绝对误差界为

$$|e-a| < 0.0003 < \frac{1}{2} \times 10^{-3}, \qquad k-n = -3 \implies n = 4,$$

$$k-n=-3 \Longrightarrow n=4$$

a 是 e 的具有4位有效字的近似值。

取 $a_1 = 2.7182 = 10^1 \times 0.27182$, 其绝对误差界为

$$|e-a_1| < 0.00009 < \frac{1}{2} \times 10^{-3},$$

故a是e的具有4位有效数字的近似值。

取 $a = 0.02718 = 10^{-1} \times 0.2718$ 作为 $x = 0.0271828182 \cdots$

的近似值,
$$|x-a| < 0.000002 < \frac{1}{2} \times 10^{-5}$$
 $k-n=-5 \Rightarrow n=4$ 。

也具有4位有效数字。

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

如果一个近似值是由精确值经四舍五入得到的,那么,从这个近似值的末尾数向前数起直到再无非零数字止,所数到的数字均为有效数字

一般来说,绝对误差与小数位数有关, 相对误差与有效数字位数有关

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

n

绝对误差界

绝对误差别
$$\frac{1}{2} \times 10^{k-n}$$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

有效数字 — 相对误差界

$$n \frac{\left| \frac{|x-a|}{|a|} \le \frac{1}{2a_1} \times 10^{1-n} \right|}{\frac{|x-a|}{|a|} \le \frac{1}{2a_1} \times 10^{1-n}} = \frac{1}{2a_1} \times 10^{1-n}$$

$$n \leftarrow \frac{|x-a|}{|a|} \le \frac{1}{2(a_1+1)} \times 10^{1-n}$$

$$0.a_1 a_2 \cdots \times 10^k \times \frac{|x-a|}{|a|} = |a| \frac{|x-a|}{|a|} = |x-a| \le \frac{1}{2} \times 10^{k-n}$$

$$\frac{|x-a|}{|a|} \le \frac{1}{2(a_1+1)} \times 10^{1-n}$$

定理 设实数x 为某个精确值,a 为它的一个近似值, 其表达形式如 $a = \pm 10^k \times 0. a_1 a_2 \cdots a_n \cdots$

(1) 如果 a 有 n 位有效数字,则其相对误差界满足

$$\frac{\left|x-a\right|}{\left|a\right|} \le \frac{1}{2a_1} \times 10^{1-n},$$

(2) 如果其相对误差界满足

$$\frac{|x-a|}{|a|} \le \frac{1}{2(a_1+1)} \times 10^{1-n},$$

则a至少具有n位有效数字。

由 (1-14) 可得到

$$a_1 \times 10^{k-1} \le |a| \le (a_1+1) \times 10^{k-1}$$
 (1-18)

所以如果a有n位有效数字、那么

$$\frac{|x-a|}{|a|} = |x-a| \times \frac{1}{|a|} \le \frac{1}{2} \times 10^{k-n} \times \frac{1}{a_1 \times 10^{k-1}} = \frac{1}{2a_1} \times 10^{1-n},$$

结论 (1) 成立。再由 (1-17) 和 (1-18)

$$\frac{\left|x-a\right|}{\left|a\right|} \leq \frac{1}{2(a_1+1)} \times 10^{1-n} \leq \frac{(a_1+1)\times 10^{k-1}}{2\times (a_1+1)} \times 10^{1-n} = \frac{1}{2} \times 10^{k-n},$$

由定义1.6知, a具有n位有效数字。

1.2.3 函数计算的误差估计

设一元函数 f(x) 具有二阶连续导数,

自变量X的一个近似值为a,

f(a) 作为 f(x) 的近似, 其误差应如何估计?

用Taylor展开的方法来估计其误差

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(\xi)(x-a)^2}{2}$$
,
移项取绝对值得

$$|f(x)-f(a)| \le |f'(a)||x-a| + \frac{|f''(\xi)||x-a|^2}{2},$$

忽略 |x-a| 的二次项,得到

近似绝对误差估计式:

$$|f(x)-f(a)| \approx |f'(a)| |x-a|$$

近似相对误差界为:

$$\frac{\left|f(x) - f(a)\right|}{\left|f(a)\right|} \le \frac{\left|f'(a)\right|}{\left|f(a)\right|} \left|x - a\right|$$

如果 $f(x_1, x_2, \dots, x_n)$ 为n元函数,自变量 x_1, x_2, \dots, x_n 的近似值分别为 a_1, a_2, \dots, a_n ,则

$$f(x_1, x_2, \dots, x_n) - f(a_1, a_2, \dots, a_n) \approx \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k}\right)_a (x_k - a_k)$$

其中
$$\left(\frac{\partial f}{\partial x_k}\right)_a = \frac{\partial f(a_1, a_2, \dots, a_n)}{\partial x_k}$$
.

可以估计到函数值的误差界

$$\left| f(x_1, x_2, \dots, x_n) - f(a_1, a_2, \dots, a_n) \right| \le \sum_{k=1}^n \left| \left(\frac{\partial f}{\partial x_k} \right)_a \right| |x_k - a_k|$$

应用到数的四则运算的误差估计中,

$$f(x_{1}, x_{2}) = x_{1} \pm x_{2} \qquad f(x_{1}, x_{2}) = x_{1} \cdot x_{2} \qquad f(x_{1}, x_{2}) = \frac{x_{1}}{x_{2}}$$

$$|f(x_{1}, x_{2}) - f(a_{1}, a_{2})| \le \left| \left(\frac{\partial f}{\partial x_{1}} \right)_{a} \right| \cdot |x_{1} - a_{1}| + \left| \left(\frac{\partial f}{\partial x_{2}} \right)_{a} \right| \cdot |x_{2} - a_{2}|$$

从而得到四则运算的估计式:

$$\begin{aligned} \left| \left(x_1 \pm x_2 \right) - \left(a_1 \pm a_2 \right) \right| &\leq \left| x_1 - a_1 \right| + \left| x_2 - a_2 \right| \\ \left| x_1 x_2 - a_1 a_2 \right| &\leq \left| a_2 \right| \left| x_1 - a_1 \right| + \left| a_1 \right| \left| x_2 - a_2 \right| \\ \left| x_1 - a_1 \right| &\leq \frac{\left| x_1 - a_1 \right|}{\left| a_2 \right|} + \frac{\left| a_1 \right| \left| x_2 - a_2 \right|}{\left| a_2 \right|^2} \end{aligned}$$

$$\leq \frac{|a_2||x_1 - a_1| + |a_1||x_2 - a_2|}{|a_2|^2}$$

计算中应尽力避免小数作除数

已知
$$a_1 = 1.21$$
, $a_2 = -3.65$, $a_3 = 9.81$ 均为有效数字,

求 $a_1 + a_2 \cdot a_3$ 的相对误差界。

解: 取 $f(x_1, x_2, x_3) = x_1 + x_2 \cdot x_3$, 根据 (1-20) 式, 得

$$\frac{\left|f(x_{1}, x_{2}, x_{3}) - f(a_{1}, a_{2}, a_{3})\right|}{\left|f(a_{1}, a_{2}, a_{3})\right|} = \frac{\left|(x_{1} + x_{2} \cdot x_{3}) - (a_{1} + a_{2} \cdot a_{3})\right|}{\left|a_{1} + a_{2} \cdot a_{3}\right|} \\
\leq \frac{\left|x_{1} - a_{1}\right| + \left|a_{3}\right| \cdot \left|x_{2} - a_{2}\right| + \left|a_{2}\right| \cdot \left|x_{3} - a_{3}\right|}{\left|a_{1} + a_{2} \cdot a_{3}\right|}$$

由已知,

$$|x_1 - a_1| \le \frac{1}{2} \times 10^{-2}, \quad |x_3 - a_3| \le \frac{1}{2} \times 10^{-2}, \quad |x_2 - a_2| \le \frac{1}{2} \times 10^{-2}, \quad \text{A. in}$$

$$\frac{\left| \left(x_1 + x_2 \cdot x_3 \right) - \left(a_1 + a_2 \cdot a_3 \right) \right|}{\left| a_1 + a_2 \cdot a_3 \right|} \le \frac{1 + \left| a_3 \right| + \left| a_2 \right|}{\left| a_1 + a_2 \cdot a_3 \right|} \times \frac{1}{2} \times 10^{-2} \approx 0.20435598 \times \frac{1}{2} \times 10^{-2} \approx 0.00102178$$

DALIAN UNIVERSITY OF TECHNOLOGY

观察

$$\frac{\left|\left(x_{1}-x_{2}\right)-\left(a_{1}-a_{2}\right)\right|}{\left|a_{1}-a_{2}\right|} \leq \frac{\left|x_{1}-a_{1}\right|+\left|x_{2}-a_{2}\right|}{\left|a_{1}-a_{2}\right|}$$

当 $x_1 \approx x_2$ 时,必有 $a_1 \approx a_2$,则 $a_1 - a_2 \approx 0$,进而 $\frac{1}{|a_1 - a_2|} \approx +\infty$ 。这时由上式可知,计算的相对误差会很大 会导致计算值的有效数字的损失。

在计算中应尽量避免出现两个相近的数相减

一元二次方程
$$ax^2+2bx+c=0$$
 $(a\cdot b\cdot c\neq 0)$

有两个根, 其求根公式为

$$x_1 = \frac{-b + \sqrt{b^2 - ac}}{a}$$
, $x_2 = \frac{-b - \sqrt{b^2 - ac}}{a}$

如果 $b^2 >> |ac|$,则 $\sqrt{b^2 - ac} \approx |b|$,用上述公式计算时 如果b>0,则有 $x_1 \approx \frac{-b + b^2 - ac}{a}$ 如果b<0,则有 $x_2 \approx \frac{-bb+\sqrt{b^2-ac}}{ac}$

总之, 两者其中之一必将会损失有效数字。

解一般二次方程 $ax^2 + 2bx + c = 0$ $(a \cdot b \cdot c \neq 0)$, 应取

$$x_1 = \frac{-b - \text{sgn}(b)\sqrt{b^2 - ac}}{a}, \quad x_2 = \frac{c}{ax_1};$$

其中
$$\operatorname{sgn}(b) = \begin{cases} 1, & b>0 \\ -1, & b<0 \end{cases}$$
 是 b 的符号函数。

如果 $b^2 >> |ac|$, 则 $\sqrt{b^2 - ac} \approx |b|$, 用上述公式计算时 如果b>0 ,则有 $x_1 \approx \frac{-b-b \ln(b)\sqrt{b^2-ac}}{q_1 a}$ $x_2 = \frac{c}{ax_1}$; 如果b<0 ,则有 $x_1 \approx \frac{-b-b \ln(b)\sqrt{b^2-ac}}{q_1 a}$

DALIAN UNIVERSITY OF TECHNOLOGY

求方程 $x^2 - 16x + 1 = 0$ 的根

方程的真实解: $x_1 = 8 + \sqrt{63} = 15.93725$, $x_2 = 8 - \sqrt{63} = 0.0627461$.

由习惯的公式,若取三位有效数字计算,有 $\sqrt{63} \approx 7.94$ 。

$$x_1 = 8 + \sqrt{63} \approx 8.00 + 7.94 = 15.9$$
,有三位有效数字。

$$x_2 = 8 - \sqrt{63} \approx 8.00 - 7.94 = 0.06$$
,只有一位有效数字。

其原因为在计算x2时发生了两个相近数相减,造成有效数字损失。

如果改用公式:

$$x_2 = \frac{c}{ax_1} = \frac{1}{x_1}$$

计算得 $x_2 \approx 0.062746$, 具有三位有效数字。

- 1.2.4 数值方法的稳定性和避免误差危害的基本原则
 - 1.数值方法的稳定性

用某一种数值方法求一个问题的数值解,如果在方法的计算过程中舍入误差在一定条件下能够得到控制(或者说舍入误差的增长不影响产生可靠的结果),则称该方法是数值稳定的;否则,出现与数值稳定相反的情况,则称之为数值不稳定的。

蝴蝶效应——亚洲蝴蝶拍拍翅膀,将使风和日丽的美洲 几个月后出现狂风暴雨?!

DUT

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

什么是蝴蝶效应?

美国麻省理工学院气象学家洛伦兹(Lorenz)为了预报天气,他用计算机求解仿真地球大气的13个方程式。为了更细致地考察结果,他把一个中间解取出,提高精度再送回。而当他喝了杯咖啡以后回来再看时竟大吃一惊:本来很小的差异,结果却偏离了十万八千里!计算机没有毛病,于是,洛伦兹(Lorenz)认定,他发现了新的现象:"对初始值的极端不稳定性",即:"混沌",又称"蝴蝶效应"

DALIAN UNIVERSITY OF TECHNOLOGY

君子慎始,差若毫厘,谬以千里。

《礼记·经解》

DUT

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

DUT

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

潘金莲撑开窗户,棍子掉下, 历史在这一刻被改写:

- ——不撑开窗户,就不会遇到西门庆
- ——不遇到西门庆,就不会被迫出轨
- ——不出轨,武松就不会怒杀之,不会被逼上梁山
- ——不上梁山,方腊也不会被武松单臂擒住
- ---不被武松擒,方腊就能取得大宋江山
- ——不会有靖康耻、金兵入关
- ——不会有大清朝
- ----不会有闭关锁国、慈禧太后
- ——不会有鸦片战争、八国联军侵略和不平等条约
- ——说不定资本主义最先在中国发展
- ——到21世纪,中国将是世界上唯一的超级大国,神马美、日、越南都是浮云
- ——而我们也再也不用为房子、车子、票子发愁了!

所以,潘金莲,你有事没事开神马窗子啊! 搞得老子为了买个屁大的房子,这么早跑来上班, 都TM是你害的!!! wsibo.com/wbmb

潘金莲推窗

世界格局、大众生活的改变

DALIAN UNIVERSITY OF TECHNOLOGY

计算积分
$$I_n = \int_0^1 \frac{x^n}{x+5} dx, n = 0, 1, 2, \dots, 7$$

解: 由于

$$I_n = \int_0^1 \frac{x^n + 5x^{n-1} - 5x^{n-1}}{x + 5} dx = \int_0^1 x^{n-1} dx - 5I_{n-1} = \frac{1}{n} - 5I_{n-1}$$

则递归算法如下:

1.
$$I_n = \frac{1}{n} - 5I_{n-1}$$
 , 由 $I_0 = \ln \frac{6}{5}$ 计算出 I_1, \dots, I_7

2.
$$I_{n-1} = \frac{1}{5} \left(\frac{1}{n} - I_n \right)$$
, 由 $I_7 = 0.0210$ 计算出 I_7, \dots, I_0

DALIAN UNIVERSITY OF TECHNOLOGY

n	I_n	方法1	方法2
0	0.1820	0.1820	0.1820
1	0.0880	0.0900	0.0880
2	0.0580	0.0500	0.0580
3	0.0431	0.0830	0.0431
4	0.0343	-0.0165 ?	0.0343
5	0.0284	1.0250 ??	0.0284
6	0.0240	-4.9580 ?!	0.0240
7	0.0210	24.933 !!	0.0210

What happened?!

DUT

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

迭代公式
$$I_n = \frac{1}{n} - 5I_{n-1}$$
 ,

$$E_7 = I_7 - \bar{I}_7 = (-5)E_6 = (-5)\cdot(-5)E_5 = \cdots = (-5)^7 E_0$$

计算 I_7 时产生的舍入误差放大了 $5^7 = 78125$ 倍该方法数值不稳定

迭代公式
$$I_{n-1} = \frac{1}{5} \left(\frac{1}{n} - I_n \right)$$
,

$$E_0 = I_0 - \bar{I}_0 = \left(-\frac{1}{5}\right) E_1 = \left(-\frac{1}{5}\right) \cdot \left(-\frac{1}{5}\right) E_2 = \cdots = \left(-\frac{1}{5}\right)^7 E_7$$

计算时不会放大舍入误差。

该方法数值稳定

2、避免误差危害的基本原则

为了用数值方法求得数值问题满意的近似解,在数值运算中应注意下面两个基本原则。

(I)避免有效数字的损失

在四则运算中为避免有效数值的损失, 应注意以下事项:

- (1) 在做加法运算时,应防止"大数吃小数";
- (2) 避免两个相近数相减;
- (3) 避免小数做除数或大数做乘数。

大连疆三大学

例2 在五位十进制的计算机上计算 $x = 63015 + \sum \delta_i$,

 $\delta_i = 0.4$

解 计算机作加减法时, 先将所相加数阶码对齐, 根据 字长舍入, 再加减。

若用63015依次加 δ ,则上式用规范化和阶码对齐后的数为:

 $x = 0.63015 \times 10^5 + 0.0000004 \times 10^5 + \dots + 0.0000004 \times 10^5$

因其中0.000004×105的舍入结果为0,所以上式的计算结果是

0.63015×10⁵。这种现象被称为"大数吃小数"。

如果改变运算次序,先把1000个 δ ,相加,再和63015相加、即

 $x = 0.4 + 0.4 + \dots + 0.4 + 0.63015 \times 10^5 = 0.4 \times 10^3 + 0.63015 \times 10^5$

 $=0.004\times10^5+0.63015\times10^5=0.63415\times10^5$

后一种方法的结果是正确的,前一种方法的舍入误差影响太大。

DALIAN UNIVERSITY OF TECHNOLOGY

(II) 减少运算次数

多项式求值运算,设 $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

如果直接逐项求和计算, 需要 2n-1次乘法运算即

$$x \cdot x \to x^2 \cdot x \to x^3 \cdot x \to \cdots \to x^{n-1} x \to x^{n_\bullet} \quad \bullet \quad \bullet \quad \bullet \quad \longleftarrow n-1 \not x$$

$$a_n \cdot x^n, \quad a_{n-1} \cdot x^{n-1}, \cdots, \quad a_1 \cdot x$$

若将公式变成如下递推公式、即令

$$p_{n}(x) = (a_{n}x + a_{n-1}) x^{n-1} + \dots + a_{1}x + a_{0}$$

$$= ((a_{n}x + a_{n-1})x + a_{n-2})x^{n-2} + a_{n-3}x^{n-3} + \dots + a_{1}x + a_{0}$$

$$= \dots =$$

$$= (\dots (a_{n}x + a_{n-1})x + a_{n-2})x + \dots + a_{2})x + a_{1})x + a_{0}$$
若令 $S_{k} = (\dots (a_{n}x + a_{n-1})x + a_{n-2})x + \dots + a_{k+1})x + a_{k}$

则有递推公式:
$$\begin{cases} s_n = a_n \\ s_k = x \cdot s_{k+1} + a_k \end{cases} k = n-1, n-2, \dots 2, 1, 0$$

 $p_n(x) = S_0$ 就是所求的的值。 总的计算量为n次乘法。

$$P_{55}(x) = 5x^{55} + 0x^{34} + 31x^{23} + 3x^{2}1 + 1x - 1$$

$$P_5(x) = ((((5x+0)x+1)x-3)x+1)x-1$$

5 0 1 -3 1 -1

今X=2

10 20 421

39 1758 157 = $P_5(2)$

以上计算过程称之为 秦九韶算法

利用 $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ 计算 $\ln 2$,若要精确到 10^{-5} 要计算十万项的和,计算量很大,另一方面舍入误差的积累也十分 严重。

如果改用级数

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots\right)$$

$$\Re x = \frac{1}{3}, \quad \ln 2 = \ln \frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} = 2 \left(\frac{1}{3} + \frac{\left(\frac{1}{3}\right)^3}{3} + \frac{\left(\frac{1}{3}\right)^5}{5} + \dots + \frac{\left(\frac{1}{3}\right)^{2n+1}}{2n+1} + \dots \right)$$

只须计算前9项的和,截断误差便小于 10-10

1.3 向量与矩阵范数

- 1.3.1 向量范数
- 1.3.2 范数的等价性
- 1.3.3 矩阵范数
- 1.3.4 矩阵范数的性质

1.3.1 向量范数

向量范数的概念是复数模的概念的自然推广。

范数的主要的应用:

- 一、研究矩阵和向量的误差估计
- 二、研究矩阵和向量的序列以及级数的收敛准则

DALIAN UNIVERSITY OF TECHNOLOGY

模函数提供了复数变量大小的度量

对任意的复数 x,y 及 α , 函数 f(x) = |x| 满足以下三条件:

1、非负性

$$|x| \ge 0, \quad |x| = 0 \Leftrightarrow x = 0$$

2、齐次性

$$|ax| = |a||x|$$

3、三角不等式 $|x+y| \le |x| + |y|$

范数某种意义上提供了向量或矩阵的大小的度量

对任意向量 x 和 y 及复数 $\alpha \in C$, 函数 f(x) = ||x|| 满足以下三条件:

1、非负性

$$||x|| \ge 0, ||x|| = 0 \iff x = 0_{n \times 1}$$

2、齐次性

$$\|\alpha x\| = |\alpha| \cdot \|x\|$$

3、三角不等式

$$||x + y|| \le ||x|| + ||y||$$

称函数 ||∗|| 为 Cⁿ 上的一个向量范数

DALIAN UNIVERSITY OF TECHNOLOGY

常用的向量范数为: p-范数

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad 1 \le p < +\infty$$

特别的,

 $|x_i|$ 表示 x_i 的模。

大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

$$W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix} \in \mathbf{C}^{3 \times 3},$$

加权的1-范数为:

$$\|\mathbf{x}\|_{W} = \|\mathbf{W}\mathbf{x}\|_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = |x_{1}| + 3|x_{2}| + 2|x_{3}|$$

加权的2-范数为:

$$\|\boldsymbol{x}\|_{w} = \|Wx\|_{2} = (|\boldsymbol{x}_{1}|^{2} + 9|\boldsymbol{x}_{2}|^{2} + 4|\boldsymbol{x}_{3}|^{2})^{1/2}$$

例 对任给 $x = (x_1, x_2, x_3)^T \in C^3$,试问如下实值函数是否构成 向量范数?

$$|x_1| + |2x_2 + x_3|,$$

答: 1.中取
$$x_1 = 0$$
, $x_3 = -2x_2$ 2.中取 $x_1 = 0$, $x_3 = \frac{2}{5}x_2$

故,1.和2.不满足非负性条件。

3.不满足齐次性条件;
$$f(\alpha x) = |\alpha x_1|^4 + |\alpha x_2|^4 + |\alpha x_3|^4 = |\alpha|^4 (|x_1|^4 + |x_2|^4 + |x_3|^4),$$

4. 满足加权向量范数的定义,故构成向量范数。

DALIAN UNIVERSITY OF TECHNOLOGY

例: 求向量 $x = (-1, 2, 4)^T$ 的 1, 2 和 ∞ -范数。

解:

$$||x||_{1} = |-1| + 2 + 4 = 7;$$

$$||x||_{2} = \sqrt{|-1|^{2} + 2^{2} + 4^{2}} = \sqrt{21}$$

$$||x||_{2} = \max\{|-1|, 2, 4\} = 4.$$

1.3.2 向量范数的等价性

在 C"上可以定义各种向量范数, 其数值大小一般不同。 但是在各种向量范数之间存在下述重要的关系

$$\|x\|_{\infty} \le \|x\|_{1} \le n \|x\|_{\infty}$$

$$\frac{1}{\sqrt{n}} \|x\|_{1} \le \|x\|_{2} \le \|x\|_{1}$$

$$\frac{1}{\sqrt{n}} \|x\|_{2} \le \|x\|_{\infty} \le \|x\|_{2}$$

或者

$$\|x\|_{\infty} \le \|x\|_{2} \le \|x\|_{1} \le \sqrt{n} \|x\|_{2} \le n \|x\|_{\infty}$$

定理1.1 (向量范数的等价性定理) 设 $\|\cdot\|_{\beta}$ 和 $\|\cdot\|_{\alpha}$ 为 \mathbb{C}^n

上的任意两种向量范数,则存在两个与向量无关的正常数 a>0和 a>0,使得下面的不等式成立

$$c_1 \|\boldsymbol{x}\|_{\beta} \le \|\boldsymbol{x}\|_{\alpha} \le c_2 \|\boldsymbol{x}\|_{\beta}$$

并称 || ||_α 和 || ||_β 为 Cⁿ上的等价范数。

定理 (向量序列收敛性定理) 设 $x_k \in \mathbb{C}^n$, 则

$$\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x} \iff \lim_{k \to \infty} \left| x_i^{(k)} - x_i \right| = 0, \ i = 1, 2, \dots, n \iff \lim_{k \to \infty} \left\| \mathbf{x}_k - \mathbf{x} \right\| = 0$$

$$\mathbf{x}_k = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)} \right)^T, \ \mathbf{x} = \left(x_1, x_2, \dots, x_n \right)^T \circ$$

向量收敛 ⇔ 分量收敛 ⇔ 范数收敛

1.3.3 矩阵范数

矩阵可以看做是一个向量 向量范数的概念直接推广到矩阵上? 推广应考虑到矩阵的乘法运算

DALIAN UNIVERSITY OF TECHNOLOGY

定义1.2 定义在 $C^{m\times n}$ 上的一个非负实值函数,记为 f(A) = ||A||,若该函数满足以下条件:

即对任意矩阵A、B以及任意复常数 $\alpha \in \mathbb{C}$

(1) 非负性
$$||A|| \ge 0$$
 当且仅当 $A=0_{m\times_n}$ 时 $||A||=0$

(2) 齐次性
$$\|\alpha A\| = |\alpha| \cdot \|A\|$$

(3) 三角不等式
$$||A+B|| \le ||A|| + ||B||$$

(4) 相容性
$$\|AB\| \le \|A\| \cdot \|B\|$$
 $A \in \mathbb{C}^{m \times l}, B \in \mathbb{C}^{l \times n}$

则称函数 || 为 Cm×n上的一个矩阵范数。

DUT 大

DALIAN UNIVERSITY OF TECHNOLOGY

矩阵的 m_1 -范数和Frobenius范数(简称F范数)

$$\|\mathbf{A}\|_{m_1} \stackrel{\Delta}{=} \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|$$

$$\|\mathbf{A}\|_{F} \stackrel{\Delta}{=} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \left|a_{ij}\right|^{2}\right)^{\frac{1}{2}}$$

例:设 $\mathbf{A} = (a_{ij})_{m \times n} \in \mathbb{C}^{m \times n}$, $f(A) = \max_{ij} |a_{ij}|$, 问是否构成A的一种范数?

解: 取
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, 那么, AB = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

则可得出

$$f(A) = f(B) = 1$$
, $f(AB) = 2$, $f(AB) > f(A) \cdot f(B)$

故不构成A的一种范数。

若定义实值函数: $\|A\|_{m_n} = \sqrt{m \cdot n} \cdot \max_{ij} |a_{ij}|$, 则可验证其构成 A的一种范数。

矩阵范数具有向量范数的一切性质

定理 (矩阵范数的等价性定理) 设 $\|\cdot\|_{eta}$ 和 $\|\cdot\|_{lpha}$ 为 $\mathbf{C}^{m imes n}$

上的任意两种矩阵范数, 则存在两个与矩阵无关的正常数

G>0和 G>0,使得下面的不等式成立

$$c_1 \|\boldsymbol{A}\|_{\beta} \le \|\boldsymbol{A}\|_{\alpha} \le c_2 \|\boldsymbol{A}\|_{\beta}$$

并称 || a 和 || B 为 C^{m×n} 上的等价范数。

定理 (矩阵序列收敛性定理)设 $A_k \in \mathbb{C}^{m \times n}$, 则

$$\lim_{k \to \infty} \mathbf{A}_k = \mathbf{A} \iff \lim_{k \to \infty} \left| a_{ij}^{(k)} - a_{ij} \right| = 0, \quad i = 1, 2, \dots, m \iff \lim_{k \to \infty} \left\| \mathbf{A}_k - \mathbf{A} \right\| = 0$$

其中
$$A_k = (a_{ij}^{(k)}), A = (a_{ij}) \in \mathbb{C}^{m \times n}$$
。

矩阵收敛 ⇔ 元素收敛 ⇔ 范数收敛

DALIAN UNIVERSITY OF TECHNOLOGY

定义

称如下集合为矩阵 $A \in C^{n \times n}$ 的谱

$$\sigma(A) = \{ \lambda | \det(\lambda I - A) = 0 \}$$

称如下实数为矩阵 $A \in C^{n \times n}$ 的谱半径

$$\rho(\mathbf{A}) = \max_{i} |\lambda_{i}|$$

2. 算子范数

定理1.2 若定义

$$\|A\|_{M} = \max_{x \neq 0} \frac{\|Ax\|_{V}}{\|x\|_{V}} = \max_{\|x\|_{V}=1} \|Ax\|_{V}$$

则 ||A||, 是一种矩阵范数。

称由如上关系式定义的矩阵范数为从属向量范数 的矩阵范数简称从属范数或算子范数.

在向量范数中,最常用的范数为向量的1-范数、2-范数和 ∞-范数,下面分别给出从属这三种向量范数的矩阵范数。

定理1.3 几种常用的算子范数

(1)
$$\|\mathbf{A}\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|$$

(列和范数)

(2)
$$\|A\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

(行和范数)

(3)
$$\|\mathbf{A}\|_{2} = \sqrt{\lambda_{\max}(\mathbf{A}^{H}\mathbf{A})}$$

(谱范数)

其中 $\lambda_{\max}(A^HA)$ 表示矩阵 A^HA 的最大特征值; $\left(\overline{\operatorname{g}}\sqrt{
ho(A^HA)} \right)$

可以证明:
$$||A||_2^2 \le ||A||_1 ||A||_\infty$$

特殊矩阵:单位矩阵的范数???

推论 对任何算子范数,单位矩阵 I∈R^{n×n} 的范数值为1,即

$$\|I\| = \max_{x \neq 0} \frac{\|Ix\|}{\|x\|} = \max_{x \neq 0} \frac{\|x\|}{\|x\|} = 1$$

 $\|A\|_{m_1}$ 、 $\|A\|_F$ 、 $\|A\|_{m_\infty}$ 不是算子范数。

$$\|\boldsymbol{I}\|_{m_{1}} = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| = \sum_{i=1}^{n} 1 = n \neq 1$$

$$\|\boldsymbol{I}\|_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} = \sqrt{\sum_{i=1}^{n} 1^{2}} = \sqrt{n} \neq 1$$

$$\|\boldsymbol{I}\|_{m_{1}} = \sqrt{n \times n} \max_{1 \le i, j \le n} |a_{ij}| = n \neq 1$$

DALIAN UNIVERSITY OF TECHNOLOGY

例2 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & -2 & 4 \end{pmatrix}$$
, 求 $\|A\|_{1}$ 、 $\|A\|_{\infty}$ 、 $\|A\|_{2}$ 、 $\|A\|_{m_{1}}$ 、 $\|A\|_{F}$ 。

解:
$$\|A\|_1 = \max_{1 \le j \le n} \sum_{i=1}^{3} |a_{ij}| = \max_{1 \le j \le n} \{1, 4, 8\} = 8$$

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{3} |a_{ij}| = \max_{1 \le j \le n} \{1, 6, 6\} = 6$$

$$\|A\|_{m_1} = \sum_{i=1}^{3} \sum_{j=1}^{3} |a_{ij}| = 1 + 2 + 4 + |-2| + 4 = 13$$

$$\|\mathbf{A}\|_{F} = \sqrt{\sum_{i=1}^{3} \sum_{j=1}^{3} |a_{ij}|^{2}} = \sqrt{1 + 2^{2} + 4^{2} + |-2|^{2} + 4^{2}} = \sqrt{41}$$

$$\mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & -2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 32 \end{pmatrix}$$

$$\det(\lambda I - A^T A) = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 8 & 0 \\ 0 & 0 & \lambda - 32 \end{vmatrix}$$

$$= (\lambda - 1)(\lambda - 8)(\lambda - 32) = 0$$

得

$$\|A\|_{2} = \sqrt{\lambda_{\max}(A^{T}A)} = \sqrt{32} = 4\sqrt{2}$$

DALIAN UNIVERSITY OF TECHNOLOGY

对于酉矩阵 $U^HU=UU^H=I$,我们可有如下的结论:

 $\|U\|_{2} = 1$, $\|AU\|_{2} = \|UA\|_{2} = \|A\|_{2}$ (酉矩阵的范数不变性)

事实上,

$$\|\boldsymbol{U}\|_{2}^{2} = \max_{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{U}\boldsymbol{x}\|_{2}^{2}}{\|\boldsymbol{x}\|_{2}^{2}} = \max_{\boldsymbol{x} \neq 0} \frac{(\boldsymbol{U}\boldsymbol{x}, \boldsymbol{U}\boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})} = \max_{\boldsymbol{x} \neq 0} \frac{(\boldsymbol{U}^{H}\boldsymbol{U}\boldsymbol{x}, \boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})} = \max_{\boldsymbol{x} \neq 0} \frac{(\boldsymbol{x}, \boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})} = 1$$

$$\|UA\|_{2}^{2} = \max_{x \neq 0} \frac{\|(UA)x\|_{2}^{2}}{\|x\|_{2}^{2}} = \max_{x \neq 0} \frac{((UA)x, (UA)x)}{(x, x)} = \max_{x \neq 0} \frac{((UA)^{H}(UA)x, x)}{(x, x)}$$

$$= \max_{x \neq 0} \frac{\left(\left(A^{H}U^{H}UA\right)x, x\right)}{\left(x, x\right)} = \max_{x \neq 0} \frac{\left(\left(A^{H}A\right)x, x\right)}{\left(x, x\right)} = \max_{x \neq 0} \frac{\left(Ax, Ax\right)}{\left(x, x\right)}$$

$$= \max_{x \neq 0} \frac{\|Ax\|_{2}^{2}}{\|x\|_{2}^{2}} = \|A\|_{2}^{2}$$

DALIAN UNIVERSITY OF TECHNOLOGY

$$||AU||_{2}^{2} = \max_{x \neq 0} \frac{||(AU)x||_{2}^{2}}{||x||_{2}^{2}} = \max_{x \neq 0} \frac{((AU)x, (AU)x)}{(x, x)} = \max_{x \neq 0} \frac{(A(Ux), A(Ux))}{(x, x)}$$

$$= \max_{y \neq 0} \frac{(Ay, Ay)}{((U^{H}y), (U^{H}y))} = \max_{y \neq 0} \frac{||Ay||_{2}^{2}}{||U^{H}y||_{2}^{2}} = \max_{y \neq 0} \frac{||Ay||_{2}^{2}}{||U^{H}y||_{2}^{2}} = ||A||_{2}^{2}$$

矩阵与向量的乘积在矩阵计算中经常出现,所以我们自然希望矩阵范数与向量范数之间最好有某种协调性。

定义1.3 对于一种矩阵范数 $\|\cdot\|_{M}$ 和一种向量范数 $\|\cdot\|_{V}$ 如果对任意 $m \times n$ 矩阵A和任意n维向量x,满足

$$\left\| \mathbf{A} \mathbf{x} \right\|_{V} \leq \left\| \mathbf{A} \right\|_{M} \left\| \mathbf{x} \right\|_{V}$$

则称矩阵范数 || · || _N 与向量范数 || · || _V 是相容的。

矩阵 m_1 -范数与向量的p-范数是相容的,即 $\|Ax\|_p \leq \|A\|_{m_1} \|x\|_p$ 矩阵的F-范数与向量的2-范数是相容的,即 $\|Ax\|_s \leq \|A\|_p \|x\|_s$

可以证明任意一种矩阵范数必然存在与之相容的向量范数

可以证明:

- 1.任意给定的矩阵范数必然存在与之相容的向量范数; 任意给定的向量范数必然存在与之相容的矩阵范数(如 算子范数)。
- 2. 一个矩阵范数可以与多种向量范数相容 (矩阵的m-范数与向量的p-范数相容); 多种矩阵范数可以与一个向量范数相容 (矩阵的F-范数、2-范数与向量的2-范数相容)。3. 算子范数一定与所定义的向量范数相容, 但是矩阵范
- 3. 算子范数一定与所定义的向量范数相容,但是矩阵范数与向量范数相容却未必有从属关系。 (矩阵的F-范数与向量的2-相容,但无从属关系)。
- 4. 并非任意的矩阵范数与任意的向量范数相容。

DALIAN UNIVERSITY OF TECHNOLOGY

矩阵范数与向量范数不相容的例子:

取
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, 则有 $||A||_1 = 1, ||x||_{\infty} = 1,$$$

$$\|Ax\|_{\infty} = 2 > \|A\|_{1} \cdot \|x\|_{\infty}$$

故矩阵的 || || || 与向量的 || || 不相容。

1.3.3 矩阵范数的性质

定理1.4 设 $\|\cdot\|_M$ 为矩阵 $\mathbb{C}^{n\times n}$ 空间的任一矩阵范数,则对任意的n阶方阵A均有

$$\rho(A) \leq ||A||_{M}$$

其中 $\rho(A)$ 为方阵A的谱半径。

证 设 $|\lambda| = \rho(A)$,则存在向量 $x \neq 0$,满足 $Ax = \lambda x$,从而

$$\left|\lambda\right|\left\|\boldsymbol{x}\right\|_{v} = \left\|\lambda\boldsymbol{x}\right\|_{v} = \left\|\boldsymbol{A}\boldsymbol{x}\right\|_{v} \leq \left\|\boldsymbol{A}\right\|_{M} \left\|\boldsymbol{x}\right\|_{v}$$

故得到

$$\rho(A) = |\lambda| \le |A|_{M}$$

DALIAN UNIVERSITY OF TECHNOLOGY

定理1.5 对于任给的 $\varepsilon > 0$,则存在 $\mathbf{C}^{n \times n}$ 上的一种算子范数 $\|\cdot\|_{M}$

 $(依赖矩阵A和常数 \mathcal{E})$,使得

$$\|A\|_{M} \leq \rho(A) + \varepsilon$$

注: 定理1.5 中的矩阵范数 ||·||_M 与给定的矩阵A有关。 针对矩阵A构造的矩阵范数 $\|\cdot\|_{M}$,对于另一个矩阵B,不等式

$$\|\mathbf{B}\|_{M} \geq \rho(\mathbf{B}) + \varepsilon$$

不一定成立。

DALIAN UNIVERSITY OF TECHNOLOGY

注意: 当 $A = A^T$ 时, $\|A\|_2 = \sqrt{\lambda_{\max}(A^T A)} = \sqrt{\lambda_{\max}(A^2)} = \rho(A)$

问实值函数 $\rho(A)$ 可不可以作为A的一种范数?

取
$$A = B^T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
,则有 $\rho(A) = 0$, $\rho(B) = 0$,而

$$\rho(A+B)=1$$
, 即有 $\rho(A)+\rho(B)=0$; 从而

$$\rho(\boldsymbol{A} + \boldsymbol{B}) > \rho(\boldsymbol{A}) + \rho(\boldsymbol{B}) = 0$$

故不可以作为的一种范数。

定理1.6 $C^{n\times n}$ 上的一种算子矩阵范数 $\|\cdot\|$,如果 $A \in C^{n\times n}$,

且||A||<1,则 $I\pm A$ 可逆,且

$$\left\| \left(\boldsymbol{I} \pm \boldsymbol{A} \right)^{-1} \right\| \leq \frac{1}{1 - \|\boldsymbol{A}\|}$$

证 由定理1.4可得, $\rho(A) \leq ||A|| < 1$ 。 设 λ , 为矩阵A的任意 非零特征值,则矩阵 I±A 的特征值为:

$$\mu_i = 1 \pm \lambda_i \neq 0, i = 1, 2, \dots, n$$

从而可知 $\det(I \pm A) = \prod \mu_i \neq 0$,即 $I \pm A$ 可逆。 进一步

$$(\mathbf{I} \pm \mathbf{A})^{-1} (\mathbf{I} \pm \mathbf{A}) = \mathbf{I} \implies (\mathbf{I} (\mathbf{E} \pm \mathbf{A})^{-1})^{-1} + (\mathbf{I} \pm \mathbf{A})^{-1} \mathbf{A} = \mathbf{I}$$

$$\Rightarrow \|(\mathbf{I} \pm \mathbf{A})^{-1}\| = \|\mathbf{I} \mp (\mathbf{I} \pm \mathbf{A})^{-1} \mathbf{A}\| \implies \|(\mathbf{I} \pm \mathbf{A})^{-1}\| \le \|\mathbf{I}\| + \|(\mathbf{I} \pm \mathbf{A})^{-1}\| \|\mathbf{A}\| = 1 + \|(\mathbf{I} \pm \mathbf{A})^{-1}\| \|\mathbf{A}\|$$

整理后便可得:

