MÈTODES NUMÈRICS I. Grau de Matemàtiques. Curs 2019-20. Tardor

EXAMEN FINAL. 10 de gener de 2020

TEMES 3 I 4: Interpolació polinomial i Zeros de funcions

Poseu el NOM i els COGNOMS amb lletra ben clara en cadascun dels fulls. Entregueu problemes diferents en fulls diferents.

Problema 1 (10 punts) Sigui $f \in C^8([a,b])$ una funció tal que $|f^{(k)}(z)| \le M_k$, $\forall z \in [a,b]$, per a $1 \le k \le 8$. Sigui n = 4, i considerem les abscisses equiespaiades a l'interval [a,b], $x_k = a + kh$, $k = 0, \ldots, n$.

- a) Calculeu el polinomi interpolador de f en les abscisses x_0, x_2 i x_4 . Avalueu-lo en el punt x_1 i doneu una fita de l'error en x_1 . Doneu els resultats en funció de h.
- b) Volem calcular una aproximació de la integral $\int_a^b f(x) dx$. Per això calculem p(x), el polinomi interpolador de f en les abscisses x_1, x_2 i x_3 usant el mètode de Lagrange, i aproximem el valor de la integral de f pel de la integral del polinomi. Obtenim la fórmula (on $f_i = f(x_i)$):

$$\int_a^b f(x) \ dx \simeq h \left[A f_1 + B f_2 + C f_3 \right]$$

Calculeu els pesos A, B i C.

De la funció f coneixem la següent taula de valors:

					0.500	
f(x)	1.00000	0.984496	0.939413	0.868815	0.778801	0.676634
		0.875				
f(x)	0.569783	0.465043	0.367879	_		

Calculeu una aproximació de la integral $\int_0^1 f(x) dx$

- c) usant el mètode de l'apartat anterior,
- d) usant la fórmula de Simpson simple i la composta amb dos intervals.

Doneu els resultats amb 6 dígits significatius.

Problema 2 (10 punts) Volem trobar els zeros positius de la funció $f(x) = \frac{1}{2}x^2 + x - \cos(x)$.

- a) Demostreu que f té un únic zero positiu, α . Trobeu un interval I de longitud 1 i extrems enters tal que $\alpha \in I$.
- b) Considerem la funció $g(x) = -1 + \sqrt{1 + 2\cos x}$. Demostreu que g(x) està ben definida si $x \in I$ i que α és l'únic punt fix de g en I.
- c) Trobeu una constant L tal que 0 < L < 1 i $|g(x) g(y)| \le L|x y|$, per a tot $x, y \in I$.
- d) Considerem el procés iteratiu $x_{k+1} = g(x_k)$, amb x_0 el punt mig de I. Trobeu $k_0 \ge 0$ tal que si $k \ge k_0$ llavors $|x_k \alpha| \le 10^{-30}$.
- e) Considerem ara el procés iteratiu $x_{k+1} = h(x_k)$, on $h(x) = \cos x \frac{1}{2}x^2$. És localment convergent? En tal cas, és millor o pitjor que l'anterior?

MÈTODES NUMÈRICS I. Grau de Matemàtiques. Curs 2019-20. Tardor

EXAMEN FINAL. 10 de gener de 2020

TEMES 1 I 2 : Problemes numèrics i errors i Algebra lineal numèrica

Poseu el NOM i els COGNOMS amb lletra ben clara en cadascun dels fulls. Entregueu problemes diferents en fulls diferents.

Problema 3 (10 punts) Volem calcular det A, on

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

amb $a \neq 0$ i det $A \neq 0$. En aquest cas podem calcular el determinant almenys de dues maneres:

$$\det A = ad - cb$$
 (fórmula 1), $\det A = a\left(d - \frac{c}{a}b\right)$ (fórmula 2)

A més, suposem que les operacions aritmètiques tenen errors relatius fitats per u i que els valors de a, b, c i d són exactes.

- a) Trobeu una fita a primer ordre en *u* de l'error relatiu de det *A*, quan usem la fórmula 1.
- b) Trobeu una fita a primer ordre en u de l'error relatiu de det A, quan usem la fórmula 2.
- c) Determineu en quins casos sembla que és millor usar la fórmula 1 i en quins sembla que és millor usar la fórmula 2.
- d) Si sabem que ad > 0 i cb < 0, trobeu millors fites dels errors relatius en aquest cas. Què es pot dir sobre la conveniència d'usar una o l'altra fórmula?
- e) Si *a*, *b*, *c* i *d* tenen un error relatiu fitat per *u*, però no hi ha error en les operacions, trobeu fites aproximades (a primer ordre) de l'error absolut de det *A* per a les dues fórmules proposades.

Problema 4 (10 punts) Volem resoldre el sistema $Mv = e_1$ amb $e_1 = (1, 0, ..., 0)^T$ on M és la matriu real $n \times n$, no singular amb $b_i \neq 0, \forall i$:

$$M = \begin{pmatrix} a_1 & -b_2 \\ -b_2 & a_2 & -b_3 \\ & -b_3 & a_3 & -b_4 \\ & & \ddots & \ddots & \ddots \\ & & & -b_{n-1} & a_{n-1} & -b_n \\ & & & -b_n & a_n \end{pmatrix}$$

Donada l'estructura especial del terme independent, considerarem la descomposició $M = UD^{-1}U^T$ amb

$$U = \begin{pmatrix} d_1 & -b_2 & & & & \\ & d_2 & -b_3 & & & \\ & & \ddots & \ddots & \\ & & & d_{n-1} & -b_n \\ & & & & d_n \end{pmatrix} \text{ i } D = \begin{pmatrix} d_1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & d_{n-1} & \\ & & & & d_n \end{pmatrix}$$

- a) Escriviu les fórmules per al càlcul de les d_i .
- b) Demostreu que resoldre $Mv = e_1$ és equivalent a resoldre $D^{-1}U^Tv = \frac{1}{d_1}e_1$
- c) Resoleu el sistema anterior. Escriviu les fórmules per al càlcul de v en funció de les b_i i d_i .
- d) Calculeu el determinant de M.
- e) Si $n = 2k \ge 10$ i $b_k = 0$, compteu el nombre d'operacions necessàries per resoldre el sistema.