Results

2020-07-09

Contents

Criteria for drug/placebo performance measurement	
EMBARC: example trajectories	
EMBARC: boxplots based on criteria	
EMBARC: assigned trajectories	
Simulation	
Relationship between purity-criteria and likelihood-criteria	_

Criteria for drug/placebo performance measurement

We consider the criteria to measure the performance of the drug or placebo through the score v.s. time trajectory. Take the curve of subject 12 for example. We can calculate the:

- Change score: Y(t = 8) Y(t = 0) = 5 18 = -13
- Integral: continuous/discrete
- Weighted intergal: continuous/discrete

The red curve is estimated by fit the LME (without the predictors)

$$Y_k = X\beta_k + Xb_k + \epsilon$$

And the curve has a function $y = f(t) = 16.7 - 5.1t + 0.45t^2$. The area under the curve can be calculated through the integral,

$$\int_0^8 f(t)dt = 16.7 \times 8 - 5.1/2 \times 8^2 + 0.45/3 \times 8^3 \approx 47.6$$

However, the quadratic curve is estimated, which is not the true trajectory for this subject. The area under the curve may be not accurate.

I then tried to calculate the area through the discrete approach (the area of the bars), which is just the summation of the scores

discrete area:
$$15 \times 1 + 4 \times 1 + 1 \times 4 + 5 \times 2 = 33$$

In we consider the weighted integral, we may just use the value of time as the weight to calculate the integral, i.e.

$$\int_0^8 t f(t) dt = \int_0^8 16.7t - 5.1t^2 + 0.45t^3 \approx 126$$

The discrete weighted area under the curve is just the previous area times the value of each time points, i.e.

weighted discrete area:
$$15 \times 1 \times 1 + 4 \times 1 \times 2 + 1 \times 4 \times 6 + 5 \times 2 \times 8 = 126$$

The different criteria values are shown in the following plot.

subj= 12

EMBARC: example trajectories

We may draw more subjects' trajectories to study their features.

However, there may have some problem in terms of the integral area, since they have different intercept. Let's move the curves parallelly to have a common intercept and then calculate the integrals.

EMBARC: boxplots based on criteria

EMBARC: assigned trajectories

How do the subjects' trajectories look like when they are assigned to drug group or placebo group based on purity method, loglikelihood method or SIMML?

by Purity

by SIMML

If we only keep the trajectory that observed assignment matchs the predicted assignment, i.e. the subject who should get drug and are assigned to drug group in the trial and the subject who should get placebo and are assigned to placebo group in the trial.

by Purity

by SIMML

Simulation

Parameter settings

Scenario 1

- dimension of the predictors p = 3, 10

- dimension of the predictors p = 3, 10• $\beta_{drg} = \beta_{pbo} = 1, -0.05, -0.02$ $\Gamma_{drg} = (0, -\sin(\frac{\pi}{3}/10, -\cos(\frac{\pi}{3})/10)$ $\Gamma_{pbo} = (0, \cos(\frac{\pi}{3}/10, -\sin(\frac{\pi}{3})/10)$ $S = [1, t, t^2], t = [0, 1, 2, 3, 4, 6, 8]$ is the design matrix for fixed effect and random effect $x \sim MVN(\mu_x, \Sigma_x), \mu_x = \mathbf{0}_p, \Sigma_x$ has diagonal equals to 1 and 0.5 everywhere else.

•
$$D_{drg} = D_{pbo} = \begin{pmatrix} 1 & 0.3 & 0.1 \\ 0.3 & 1 & 0.5 \\ 0.1 & 0.5 & 1 \end{pmatrix}$$

- $\epsilon_{drg}, \epsilon_{pbo} \sim N(0, 1^2)$
- $\alpha = \alpha_1 + \delta \alpha_{2k}, k = 1, 2, \delta = 0, 1, 10, 100...$

$$-\alpha_1 = (1,1,1)$$

- drg:
$$\alpha_{21} = (1, ..., p)$$

- pbo: $\alpha_{22} = (p, ..., 1)$

If $\delta = 0$, $\alpha_1 = \alpha_2 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. The cosine similarity is 1.

If
$$\delta = 10$$
,

- $\alpha_1 = (0.2818660, 0.5381079, 0.7943497)$
- $\alpha_2 = (0.7943497, 0.5381079, 0.2818660)$

• cosine similarity is 0.737

If $\delta = 100$,

- $\alpha_1 = (0.2687815, 0.5349018, 0.8010222)$
- $\alpha_2 = (0.8010222, 0.5349018, 0.2687815)$
- cosine similarity is 0.717

Scenario 2

- dimension of the predictors p = 3, 10
- $\beta_{drg} = \beta_{pbo} = 1, -0.05, -0.02$
- $\Gamma_{drg} = (0, -\sin(\frac{\pi}{3}/10, -\cos(\frac{\pi}{3})/10)$
- $\Gamma_{pbo} = (0, \cos(\frac{\pi}{3}/10, -\sin(\frac{\pi}{3})/10)$
- $S = [1, t, t^2], t = [0, 1, 2, 3, 4, 6, 8]$ is the design matrix for fixed effect and random effect
- $x \sim MVN(\mu_x, \Sigma_x)$, $\mu_x = \mathbf{0}_p$, Σ_x has diagonal equals to 1 and 0.5 everywhere else.

•
$$D_{drg} = D_{pbo} = \begin{pmatrix} 0.1 & 0.01 & 0.01 \\ 0.01 & 0.1 & 0.01 \\ 0.01 & 0.01 & 0.05 \end{pmatrix}$$

- $\epsilon_{drg}, \epsilon_{pbo} \sim N(0, 1^2)$
- $\alpha = \alpha_1 + \delta \alpha_{2k}, k = 1, 2, \delta = 0, 1, 10, 100...$

$$-\alpha_1=(1,1,1)$$

- drg:
$$\alpha_{21} = (1, ..., p)$$

- drg:
$$\alpha_{21} = (1, ..., p)$$

- pbo: $\alpha_{22} = (-p, ..., -1)$

If $\delta = 0$, $\alpha_1 = \alpha_2 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. The cosine similarity is 1.

If $\delta = 10$,

- $\alpha_1 = (0.2818660, 0.5381079, 0.7943497)$
- $\alpha_2 = (-0.8096264, -0.5304449, -0.2512634)$
- cosine similarity is -0.713

If $\delta = 100$,

- $\alpha_1 = (0.2687815, 0.5349018, 0.8010222)$
- $\alpha_2 = (-0.8025494, -0.5341382, -0.2657271)$
- cosine similarity is -0.714

If $\delta = 0$, $\alpha_1 = \alpha_2 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. The cosine similarity is 1.

If $\delta = 10$,

- $\alpha_1 = (0.2818660, 0.5381079, 0.7943497)$
- $\alpha_2 = (-0.8096264, -0.5304449, -0.2512634)$
- cosine similarity is -0.71

Assignment trajectory plots

delta = 0

delta = 10

Boxplots of criteria

Scenario 1, $\delta = 0$

Scenario 1, $\delta = 0$, coefficient estimation

sine similarity between alpha from likelihood and

Scenario 1, $\delta = 100$

Scenario 1, $\delta = 100$, coefficient estimation

Histogram of cossim

Scenario 2, $\delta = 0$

Scenario 2, $\delta = 0$, coefficient estimation

Scenario 2, $\delta = 100$

Scenario 2, $\delta = 100$, coefficient estimation

Histogram of cossim

Relationship between purity-criteria and likelihood-criteria

When $\delta = 0$

Plots: purity v.s. α (2 dimension)

purity v.s. (alpha1, alpha2)

purity v.s. (alpha1, -alpha2)

If we substitude extreme value as 0, 8b

purity v.s. (alpha1, alpha2)

-1.0 -0.5 0.0 0.5 1.0 alpha1

purity v.s. (alpha1, -alpha2)

Likelihood

likelihood v.s. (alpha1, alpha2)

likelihood v.s. (alpha1, -alpha2)

 $\delta = 100$

purity v.s. (alpha1, alpha2)

Annity -1.0 -0.5 0.0 0.5 1.0 alpha1

If we substitude extreme value as 0,

purity v.s. (alpha1, alpha2)

Likelihood

purity v.s. (alpha1, -alpha2)

purity v.s. (alpha1, -alpha2)

likelihood v.s. (alpha1, alpha2)

likelihood v.s. (alpha1, -alpha2)

use the fixed value of β, Γ, D

-likelihood/(n/4) v.s. purity

