

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

 FAST SHIPPING AND DELIVERY TENS OF THOUSANDS OF **IN-STOCK ITEMS** EQUIPMENT DEMOS HUNDREDS OF SUPPORTED LEASING/MONTHLY

SECURE ASSET SOLUTIONS

Instra View REMOTE INSPECTION

SERVICE CENTER REPAIRS

Remotely inspect equipment before purchasing with our interactive website at www.instraview.com ↗

at our full-service, in-house repair center

Experienced engineers and technicians on staff

Contact us: (888) 88-SOURCE | sales@artisantg.com | www.artisantg.com

Sell your excess, underutilized, and idle used equipment We also offer credit for buy-backs and trade-ins www.artisantg.com/WeBuyEquipment >

WE BUY USED EQUIPMENT

LOOKING FOR MORE INFORMATION?

Visit us on the web at **www.artisantg.com** [→] for more information on price quotations, drivers, technical specifications, manuals, and documentation

USPIIe-cPCI Software Manual

Version 1.0 — January 2003

Themis Computer—Americas and Pacific Rim 3185 Laurelview Court Fremont, CA 94538
Phone (510) 252-0870
Fax (510) 490-5529
World Wide Web http://www.themis.com

Themis Computer—Rest of World 5 Rue Irene Joliot-Curie 38320 Eybens, France Phone +33 476 14 77 80 Fax +33 476 14 77 89 Copyright © 2003 Themis Computer, Inc.

ALL RIGHTS RESERVED. No part of this publication may be reproduced in any form, by photocopy, microfilm, retrieval system, or by any other means now known or hereafter invented without the prior written permission of Themis Computer.

The information in this publication has been carefully checked and is believed to be accurate. However, Themis Computer assumes no responsibility for inaccuracies. Themis Computer retains the right to make changes to this publication at any time without prior notice. Themis Computer does not assume any liability arising from the application or use of this publication or the product(s) described herein.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

TRADEMARKS

THEMIS® is a registered trademark of Themis Computer, Inc.

SOLARIS[™] is a trademark of Sun Microsystems

SPARC® and UltraSPARC® are registered trademarks of SPARC International

All other trademarks or registered trademarks used in this publication are the property of their respective owners.

Themis Customer Support

North America, South America, and Pacific Rim

Telephone: 510-252-0870
Fax: 510-490-5529
E-mail: support@themis.com
Web Site: http://www.themis.com

USPIIe-cPCI Software Manual

January 2003

Part Number: 110553-023

Version Revision History

Version 1.0	January	2003
-------------	---------	------

– iii

IV — Themis Computer

Table of Contents

Ho	ow to	Use This Manual	ix
1.	USP	IIe-cPCI Address Map	1-1
	1.1	Introduction	1-1
	1.2	USPIIe-cPCI Address Map	1-1
	1.3	PCI Address Map	1-2
	1.4	List of PCI devices	1-3
	1.5	Physical Memory Address Range	1-4
	1.6	UltraSPARC-IIe PCI Control and Status Registers	1-4
	1.7	Advanced PCI Bridge (APB) Configuration Space Registers	1-10
	1.8	PCI Bridge 21154 Registers	1-12
	1.9	Ultra Fast/Wide SCSI Controller (SYMBIOS SYM53C896)	1-13
2.	USP	IIe-cPCI Interrupts	2-1
	2.1	Overview	2-1
	2.2	Mondo Dispatch Overview	2-2
	2.3	UltraSPARC-IIe Interrupt Registers	2-3
		2.3.1 Interrupt Mapping Registers	
		2.3.2 Interrupt Vector Data Register	2-3
		2.3.3 Clear Interrupt Register	2-5
	2.4	Interrupt Level Mapping	2-5
3.	Tem	perature Monitoring	3-1
	3.1	Temperature Monitoring	3-1
4.	PLD	Register Set	4-1
	4.1	PLD Registers	4-1
		4.1.1 PLD Register Description	4-1

			4.1.1.1	PLD_ID/rev Register	4-3
			4.1.1.2	Flash_status Register	4-3
			4.1.1.3	cPCI_slot_ID Register	4-5
			4.1.1.4	Patch_status Register (Themis-qualified personnel only)	4-6
			4.1.1.5	Test_status Register (Themis-qualified personnel only)	4-6
			4.1.1.6	Voltage_status Register	4-7
			4.1.1.7	TTY/KBM_config Register	4-8
			4.1.1.8	SCSI_A_status Register	4-8
			4.1.1.9	Misc_status Register	4-9
			4.1.1.10	2-Level Watchdog Registers	4-10
			4.1.1.11	Semaphore_Status Register	4-10
			4.1.1.12	Semaphore_Request1 Register	4-11
5.	The	mis US	PIIe-cPC	I Software	5-1
	5.1	Introd	uction		5-1
	5.2	SUN (OBP (Ope	nBoot PROM)	5-1
		5.2.1	OBP En	vironment Variables	5-2
		5.2.2	Updating	g Flash PROMs	5-5
		5.2.3	USPIIe-	cPCI OBP Device aliases	5-7
	5.3	SUN S	Solaris		5-7
In	dex				Index-1

List of Figures

Interrupt Logic. 2-2 Figure 2-1 List of Tables **Table 1-1** UltraSPARC-IIe Address Map 1-1 **Table 1-2** Physical Address Space to PCI Space 1-2 **Table 1-3 Table 1-4** Physical Memory Address Range 1-4 **Table 1-5** CSR Register Address Space 1-4 **Table 1-6** APB Configuration Space Registers 1-10 **Table 1-7** PCI Bridge Registers 1-12 **Table 1-8** SCSI Controller Registers 1-13 **Table 2-1 Table 2-2** Interrupt Receive Data Register 2-4 **Table 2-3 Table 2-4 Table 4-1 Table 4-2 Table 4-3 Table 4-4 Table 4-5 Table 4-6 Table 4-7 Table 4-8** Test_status Register 0x1FF.F120.0006 4-6 **Table 4-9** Voltage_status Register 0x1FF.F120.0007...... 4-7 **Table 4-10** SCSI_A_status Register 0x1FF.F120.0009...... 4-9 **Table 4-11**

Table 4-12	Misc_status Register 0x1FF.F120.000a	4-9
Table 4-13	Semaphore_Status Register 0x1FF.F120.00F0	4-11
Table 4-14	Semaphore_Request1 register 0x1FF.F120.00F1	4-11
Table 5-1	OBP Environment Variables	5-2
Table 5-2	List of OBP aliases	5-8

viii

How to Use This Manual

Introduction

Themis Computer's USPIIe-cPCI is a UltraSPARC-IIe-based single-board computer that operates at up to 650 MHz with up to 2 GB of custom memory. The USPIIe-cPCI is designed with a 6RU form factor and resides in a cPCI backplane. I/O from the front faceplate includes two SCSI, two serial, a PS/2 keyboard/mouse or dual USB, and two Ethernet ports. Additional connections are available through a user-installed optional PMC Module mounted directly on the USPIIe-cPCI Baseboard

In addition, a 1-slot wide Rear Transition Board is available for the USPIIe-cPCI that mounts behind the cPCI backplane and provides I/O connections for two SCSI, one parallel, four serial, two USB, and four audio ports. Themis has also developed custom software that enables software programmers to effectively use the powerful features of high-speed PCI and cPCI architecture.

[See the *USPIIe-cPCI Hardware Manual*, Themis Part Number 110553-022, for more information.]

Intended Audience

The custom software containing programs, documentation, and packaging, is targeted for various software users:

• System Administrators who install the software and perform the necessary software configuration.

IX

- Users who perform day-to-day operations on USPIIe-cPCI systems.
- Application programmers who write user-level programs to access cPCI-bus interface devices through the built-in software.
- System programmers/device-driver writers who develop kernel-level device drivers for cPCI devices.

Some functions overlap one another. The basic concepts required for many of these functions are common. This manual is structured around the basic concepts of using a cPCI bus system.

In Case Of Difficulties

If the USPII*e*-cPCI does not behave as described or if you encounter difficulties installing or configuring the board, please call Themis Computer technical support at +1 (510) 252-0870, fax your questions to +1 (510) 490-5529, or e-mail to *support@themis.com*. You can also contact us via our web site: http://www.themis.com.

UNIX Commands

This document may not contain information on basic UNIX® commands and procedures such as shutting down the system, booting the system, and configuring devices.

See one or more of the following for this information:

- *Solaris Handbook for Sun Peripherals*, which contains SolarisTM software commands
- AnswerBookTM on-line documentation for the Solaris software environment
- Other software documentation that you received with your system

Themis Computer

Shell Prompts

Shell	Prompt
C shell	machine_name%
C shell superuser	machine_name#
Bourne shell and Korn shell	\$
Bourne shell and Korn shell superuser	#

Website Information

Themis Computer corporate and product information may be accessed on the World Wide Web by browsing the website http://www.themis.com.

Notes, Cautions, Warnings, and Sidebars

The following icons and formatted text are included in this document for the reasons described:

Note: A note provides additional information concerning the procedure or action being described that may be helpful in carrying out the procedure or action.

Caution: A caution describes a procedure or action that may result in injury to the operator or equipment damage. This may involve—but is not restricted to—heavy equipment or sharp objects. To reduce the risk, follow the instructions accompanying this symbol.

- xi

Warning: A warning describes a procedure or action that may cause injury to the operator or equipment as a result of hazardous voltages. To reduce the risk of electrical shock and danger, follow the instructions accompanying this symbol.

Sidebar: A "sidebar" adds detail to the section within which it is placed, but is not absolutely vital to the description or procedure of the section.

Your Comments are Welcome

We are interested in improving our documentation and welcome your comments and suggestions. You can email your comments to us at **docfeedback@themis.com**. Please include the document part number in the subject line of your email.

xii

Operation Section

USPIIe-cPCI Address Map

1.1 Introduction

This chapter provides detailed descriptions of the address maps and register address locations for the Themis Computer USPIIe-cPCI single-board computer.

1.2 USPIIe-cPCI Address Map

The UltraSPARC-IIe CPU used on the USPIIe-cPCI divides its physical address space among:

- DRAM
- PCI, that is further subdivided by three PCI segments into PCI A, B, and C bus spaces

Table 1-1. UltraSPARC-IIe Address Map

Address Range in PA <40:0>		Size	Port Addressed	Access type
0x000.0000.0000	0x000.7FFF.FFFF	2 GB	SDRAM Main Memory	Cacheable
0x000.8000.0000	0x000.FFFF.FFFF	2 GB	Reserved	Cacheable
0x001.0000.0000	0x007.FFFF.FFFF	_	Reserved	Cacheable
0x008.0000.0000	0x1FD.FFFF.FFFF	_	Reserved	Non-Cacheable

Table 1-1. UltraSPARC-IIe Address Map (Continued)

Address Range in PA <40:0>		Size	Port Addressed	Access type
0x1FE.0000.0000	0x1FF.FFFF.FFFF	8 GB	Processor Subsystems (PCI, memory, clock control, GP outputs, and ECU)	Non-Cacheable

1.3 PCI Address Map

The UltraSPARC-IIe CPU directly interfaces the primary PCI bus. The PCI Bus mapping as seen from the CPU is given in *Table 1-2*.

Table 1-2. Physical Address Space to PCI Space

PCI Address Space	PA[40:0]	CPU Commands Supported	PCI Commands Generated
PCI Configuration Space	0x1FE.0100.0000- 0x1FE.01FF.FFFF	Non Cacheable read (any) Non Cacheable write (any)	Configuration Read Configuration Write (may also be Special Cycle)
PCI Bus I/O Space	0x1FE.0200.0000- 0x1FE.02FF.FFFF	NC ^a read (any) NC write (any)	I/O Read I/O Write
Don't Use	0x1FE.0300.0000- 0x1FE.FFFF.FFFF		May wrap to Configuration or I/O Space behavior
PCI Bus Memory Space	0x1FF.0000.0000- 0x1FF.FFFF.FFFF	NC read (4 byte) NC read (8 byte) NC Block read NC write NC Block write NC Instruction fetch	Memory Read Memory Read Multiple Memory Read Line Memory Write Memory Write Memory Read

a-NC = Non-Cacheable.

1.4 List of PCI devices

Table 1-3 lists all on-board PCI devices that are attached to the PCI bus interface. This does not include the PMC Module (expansion card) that may be plugged into the USPII*e*-cPCI Baseboard.

Table 1-3. List of PCI Devices

Bus Number	Device Number	Function Number	PCI Device	Vendor ID	Device ID	Configuration space offset ^a
0	0	0	CPU PCI Bus Module	0x108e	0xa001	0
0	1	0	APB chip (Bus A)	0x108e	0x5000	0x800
0	1	1	APB chip (Bus B)	0x108e	0x5000	0x900
0	2	0	Intel PCI-PCI Bridge (Bus C)	0x8086	0xb154	0x1000
1	С	0	PCIO-Rio (A) (Ebus 1)	0x108e	0x1100	0x16000
1	С	1	PCIO-Rio (Ethernet A)	0x108e	0x1101	0x16100
2	8	0	Symbios SCSI Controller (Port A)	0x1000	0xb	0x24000
2	8	1	Symbios SCSI Controller (Port B)	0x1000	0xb	0x24100
1	3	0	AcerLabs Super I/O PMC-I2C	0x10bg	0x7101	0x11800
1	7	0	AcerLabs Southbridge	0x10bg	0x1533	0x13800
1	8	0	AcerLabs Audio	0x10bg	0x5451	0x14000
1	d	0	AcerLabs IDE	0x10bg	0x5229	0x16800
1	5	0	RIO (B) eBus	0x108e	0x1100	0x12800
1	5	1	RIO (B) Ethernet	0x108e	0x1100	0x12900

a—This offset is derived from bus #, device #, function #, as specified in PCI specs. To find the full CPU physical address, you need to add the PCI configuration space base address 0x1FE.0100.0000. To examine the configuration header under OBP, use the "sph" command. For example: "ok 21800 sph" will display the DEC PCI-PCI bridge configuration header.

1.5 Physical Memory Address Range

Table 1-4. Physical Memory Address Range

Memory Bank/RAS ^a	Address Range
1/0B	0x0000.0000 to 0x07FF.FFFF
2/0T	0x2000.0000 to 0x27FF.FFFF
3/1B	0x0800.0000 to 0x0FFF.FFFF
4/1T	0x2800.0000 to 0x2FFF.FFFF
5/2B	0x1000.0000 to 0x13FF.FFFF
6/2T	0x3000.0000 to 0x37FF.FFFF
7/3B	0x1800.0000 to 0x1FFF.FFFF
8/3T	0x3800.0000 to 0x3FFF.0000

a—128MB/RAS. One bank is equal to 128Mbytes (10bit column mode)

1.6 UltraSPARC-IIe PCI Control and Status Registers

This table lists the UltraSPARC-IIe registers that controls the PCI Bus and the interrupts management.

Table 1-5. CSR Register Address Space

Physical Address	Register	Access size	
DMA Error Registers: The following USPII <i>e</i> -cPCI CPU registers control DMA activity (i.e PCI activity not generated by the CPU). Please refer to Sun's UltraSPARC-II <i>e</i> manual for details.			
0x1FE.0000.0030	DMA UE AFSR	8 bytes	
0x1FE.0000.0038	DMA UE/CE AFAR	8 bytes	

Table 1-5. CSR Register Address Space (Continued)

Physical Address	Register	Access size
0x1FE.0000.0040	DMA CE AFSR	8 bytes
0x1FE.0000.0048	CMD UE/CE AFAR (aliases to 0x1FE.0000.0038)	8 bytes
IOMMU Registers: The f to Sun's UltraSPARC-IIe	ollowing CPU registers controls the IOMMU manual for details.	. Please refer
0x1FE.0000.0200	IOMMU Control Register	8 bytes
0x1FE.0000.0208	IOMMU TSB Base address Register	8 bytes
0x1FE.0000.0210	IOMMU FlushRegister	8 bytes
ters. There is one such rethe INO (Interrupt Number the interrupt handler for the	following CPU registers are the Interrupt M gister for each Interrupt source. They are pro r Offset) for that interrupt. The INO will be us nat IRQ source. These registers also contain d interrupt (See Chapter 5, "USPIIe Interrup	grammed with sed to retrieve a VALID bit
0x1FE.0000.0C00	PCI Bus A Slot 0 Int Mapping register	8 bytes
0x1FE.0000.0C08	PCI Bus A Slot 1Int Mapping register	8 bytes
0x1FE.0000.0C10	PCI Bus A Slot 2 Int Mapping register	8 bytes
0x1FE.0000.0C18	PCI Bus A Slot 3Int Mapping register	8 bytes
0x1FE.0000.0C20	PCI Bus B Slot 0 Int Mapping register	8 bytes
0x1FE.0000.0C28	PCI Bus B Slot 1Int Mapping register	8 bytes
0x1FE.0000.0C30	PCI Bus B Slot 2 Int Mapping register	8 bytes
0x1FE.0000.0C38	PCI Bus B Slot 3Int Mapping register	8 bytes
0x1FE.0000.1000	SCSI In Mapping register	8 bytes
0x1FE.0000.1008	Ethernet Int Mapping register	8 bytes
0x1FE.0000.1010	Parallel port Int Mapping Register	8 bytes
0x1FE.0000.1018	Audio Record Int Mapping Register	8 bytes
0x1FE.0000.1020	Audio Playback Int Mapping Register	8 bytes
0x1FE.0000.1028	Power fail Int Mapping Register	8 bytes
0x1FE.0000.1030	Keyboard/mouse Int Mapping Register	8 bytes
0x1FE.0000.1038	Floppy Int mapping register	8 bytes

Table 1-5. CSR Register Address Space (Continued)

Physical Address	Register	Access size	
0x1FE.0000.1040	Space HW Int Mapping Register	8 bytes	
0x1FE.0000.1048	Keyboard Int Mapping register	8 bytes	
0x1FE.0000.1050	Mouse Int mapping Register	8 bytes	
0x1FE.0000.1058	Serial Int Mapping Register	8 bytes	
0x1FE.0000.1070	DMA UE Int Mapping Register	8 bytes	
0x1FE.0000.1078	DMA CE Int Mapping Register	8 bytes	
0x1FE.0000.1080	PCI Error Int Mapping Register	8 bytes	
0x1FE.0000.1098	On Board Graphic Int Mapping Register (also mapped at 0x1FE.0000.6000)	8 bytes	
0x1FE.0000.10A0	Expansion UPA64 Int mapping register		
Interrupt clear registers	:		
0x1FE.0000.1400 to 0x1FE.0000.1418	PCI bus A slot 0 clear Int registers	8 bytes	
0x1FE.0000.1420 to 0x1FE.0000.1438	PCI Bus A slot 1 clear registers	8 bytes	
0x1FE.0000.1440 to 0x1FE.0000.1458	PCI Bus A slot 2 clear Int registers	8 bytes	
0x1FE.000.1460 to 0x1FE.0000.1478	PCI Bus A slot 3 clear Int register	8 bytes	
0x1FE.0000.1480 to 0x1FE.0000.1498	PCI bus B slot 0 clear Int registers	8 bytes	
0x1FE.0000.14A0 to 0x1FE.0000.14B8	PCI Bus B slot 1 clear registers	8 bytes	
0x1FE.0000.14C0 to 0x1FE.0000.14D8	PCI Bus B slot 2 clear Int registers	8 bytes	
0x1FE.0000.14E0 to 0x1FE.0000.14D8	PCI Bus B slot 3 clear Int register 8 by		
0x1FE.0000.0180	SCSI clear Int register	8 bytes	
0x1FE.0000.1808	Ethernet clear Int register 8 I		

Table 1-5. CSR Register Address Space (Continued)

Physical Address	Register	Access size
0x1FE.0000.1810	Parallel port clear Int register	8 bytes
0x1FE.0000.1818	Audio record clear Int register	8 bytes
0x1FE.0000.1820	Audio Playback clear Int register	8 bytes
0x1FE.0000.1828	Power fail clear Int register	8 bytes
0x1FE.0000.1830	Keyboard / mouse clear Int register	8 bytes
0x1FE.0000.1838	Floppy clear Int register	8 bytes
0x1FE.0000.1840	Spare HW clear Int register	8 bytes
0x1FE.0000.1848	Keyboard clear Int register	8 bytes
0x1FE.0000.1858	Serial clear Int register	8 bytes
0x1FE.0000.1870	DMA UE clear Int register	8 bytes
0x1FE.0000.1878	DMA CE clear Int register	8 bytes
0x1FE.0000.1880	PCI error clear Int register	8 bytes
0x1FE.0000.1C20	PCI DMA write synchronization register	8 bytes
0x1FE.0000.2000	PCI control / status register	8 bytes
0x1FE.0000.2010	PCI PIO write AFSR	8 bytes
0x1FE.0000.2018	PCI PIO write AFAR	8 bytes
0x1FE.0000.2020	PCI diagnostic register	8 bytes
0x1FE.0000.2028	PCI target address space register	8 bytes
0x1FE.0000.5000 to 0x1FE.0000.5038	PCI buffer diag access	56 bytes
0x1FE.0000.5100 to 0x1FE.0000.5138	DMA buffer diag access	56 bytes
0x1FE.0000.51C0	DMA buffer diag access (72:64)	8 bytes
0x1FE.0000.6000	On-board graphics Int Mapping register (also mapped at 0x1FE.0000.1098)	
0x1FE.0000.8000	Expansion UPA64S Int mapping register (also mapped at 0x1FE.0000.10A0)	8 bytes

Table 1-5. CSR Register Address Space (Continued)

Physical Address	Register	Access size
0x1FE.0000.A400	IOMMU virtual address diag register	8 bytes
0x1FE.0000.A408	IOMMU tag compare diag	8 bytes
0x1FE.0000.A580 to 0x1FE.0000.A5FF	IOMMU tag details	128 bytes
0x1FE.0000.A600 to 0x1FE.0000.A67F	IOMMU data RAM diag	128 bytes
0x1FE.0000.A800	PCI Int state diag register	8 bytes
0x1FE.0000.A808	OBIO and misc Int State diag register	8 bytes
0x1FE.0000.F010	MC_Control0	4 bytes
0x1FE.0000.F018	MC_Control1	4 bytes
0x1FE.0000.F020	Reset _Control	4 bytes
0x1FE.0200.0000 to 0x1FE.02FF.FFFF	PCI Bus I/O bus	16 Mbytes
0x1FF.0000.0000 to 0x1FF.FFFF.FFF	PCI bus memory space	4 Gbytes
USPIIe-cPCI PCI operation	registers: The following CPU registers cont ons that are not defined by the PCI specifical pecification are listed in the following section	tion. The regis-
0x1FE.0000.2000	PCI Control / Status Register	8 bytes
0x1FE.0000.2010	PCI PIO Write AFSR	8 bytes
0x1FE.0000.2018	PCI PIO Write AFAR	8 bytes
0x1FE.0000.2020	PCI Diagnostic Register 8	
0x1FE.0000.2028	PCI Target Address Space Register	8 bytes
0x1FE.0000.1C20	PCI DMA Write Synchronization Register 8 b	
0x1FE.0000.5000 to 0x1FE.0000.5038	PIO Data Buffer Diagnostics Access 8 by	

1-8 ______Themis Computer

Table 1-5. CSR Register Address Space (Continued)

Physical Address Register Access siz		
	gioto.	7100000 0120
0x1FE.0000.5100 to	DMA Data Buffer Diagnostics Access	8 bytes
0x1FE.0000.5138		,
0x1FE.0000.51C0	DMA Data Buffer Diagnostics Access (72:64)	8 bytes
whose format is specified uration header are access considered to be device 0	ce registers: The PBM contains a configuration by the PCI specification. The registers in the sed through PCI configuration address space and function 0 on bus 0. This means that the be 0x1FE.0100.000. Also note that the PCI	e PBM config- e. The PBM is e configuration
0x1FE.0100.0000	Vendor ID (0x108E) 2 byte	
0x1FE.0100.0002	Device ID (0xA001)	2 bytes
0x1FE.0100.0004	Command register 2 bytes	
0x1FE.0100.0006	Status register 2 bytes	
0x1FE.0100.0008	Revision ID 1 bytes	
0x1FE.0100.0009	Programming I/F code 1 byte	
0x1FE.0100.000A	Sub-class Code 1 byte	
0x1FE.0100.000B	Base class code 1 byte	
0x1FE.0100.000D	Latency time register 1 byte	
0x1FE.0100.000E	Header type 1 byte	
	rs are part of the PCI optional bridge configu	ıration header,

(The two following registers are part of the PCI optional bridge configuration header, as the PBM is considered to be a PCI bridge device).)

0x1FE.0100.0040	Bus Number	1 byte
0x1FE.0100.0041	Subordinate bus	1 byte

1.7 Advanced PCI Bridge (APB) ConfigurationSpace Registers

The advanced PCI bridge or APB (Sun) is connected to the UltraSPARC-IIe through the primary PCI bus (66-MHz/32-bit), and splits the PCI into two secondary PCI buses, A and B (both 33-MHz/32-bit).

The APB internal configuration space is organized as 2 functions. Function 0 contains registers for transactions to/from PCI Bus A. Function 1 contains registers for transactions to/from PCI bus B. The APB IDSEL pin is connected to Bus 0 AD[12] signal. This means APB is device 1 on PCI bus 0. APB registers can be divided into two classes:

- 1. Registers from the PCI specification and PCI Bridge specification
- **2.** Device-specific registers.

Note: These registers are little endian

Table 1-6. APB Configuration Space Registers

Offset ^a	Register	Access size
00	Vendor ID (0x108E)	2 bytes
02	Device ID (0x5000)	2 bytes
02	Primary command	2 bytes
06	Primary status	2 bytes
08	Revision ID	1 byte
09	Class code	3 bytes
0C	Cache line size	1 byte
0D	Primary Master Latency Timer	1 byte
0E	Header type	1 byte
18	Primary Bus Number	1 byte
19	Secondary Bus Number A/B	1 byte
1A	Subordinate Bus Number A/B	1 byte

1-10 — Themis Computer

Table 1-6. APB Configuration Space Registers (Continued)

Offset ^a	Register	Access size
1B	Secondary Master Latency Timer A/B	1 byte
1E	Secondary status A/B	2 bytes
3E	Bridge Control A/B	2 bytes
Device specific register	s:	
В0	Tick register	4 bytes
B8	INT ACK Generation register A/B	4 bytes
C8	DMA AFSR A/B	8 bytes
D0	DMA AFAR A/B	1 byte
D8	PIO Target Retry Limit A/B	1 byte
D9	PIO target Latency Timer A/B	1 byte
DA	DMA target Retry Limit A/B	1 byte
DB	DMA Target Latency Timer A/B	1 byte
DC	Secondary Master Retry Limit A/B	1 byte
DD	Secondary Control register	1 byte
DE	I/O Address Map Register A/B	1 byte
DF	Memory Address Map Register	1 byte
E0	PCI Control Register A/B	1 byte
E8	PIO AFSR A/B	8 bytes
F0	PIO AFAR A/B	8 bytes
F8	Diagnostic register A/B 8	

a—These values are offset from the APB base PCI Configuration address. See *Table 2-3*, "List of PCI Devices", on page 2-3.

1.8 PCI Bridge 21154 Registers

The Intel 21154 PCI bridge converts the 66-MHz/32-bit primary PCI bus into a 33-MHz/64-bit secondary PCI bus C. It permits the installation of a PMC Module on USPII*e*-cPCI Baseboard. This bridge is programmable through its configuration header registers. This PCI device is configured as Bus #2, Device #3, Function #0.

Table 1-7. PCI Bridge Registers

Offset ^a	Register	Access size
00	Vendor ID (0x1011) / 8086	2 bytes
02	Device ID (0x26) / b154	2 bytes
04	Primary command	2 bytes
06	Primary status	2 bytes
08	Revision ID	1 byte
09	Class code	3 bytes
0C	Cache line size	1 byte
0D	Primary Master Latency Timer	1 byte
0E	Header type	1 byte
18	Primary Bus Number	1 byte
19	Secondary Bus Number A/B	1 byte
1A	Subordinate Bus Number A/B	1 byte
1B	Secondary Master Latency Timer A/B	1 byte
1E	Secondary status A/B 2 by	
3E	Bridge Control A/B 2 byte	
Device-specific registers:		
В0	Tick register	4 bytes
B8	INT ACK Generation register A/B	4 bytes
C8	DMA AFSR A/B	8 bytes
D0	DMA AFAR A/B	1 byte
D8	PIO Target Retry Limit A/B 1 by	

Offset^a Register Access size D9 PIO target Latency Timer A/B 1 byte DA DMA target Retry Limit A/B 1 byte DB DMA Target Latency Timer A/B 1 byte DC Secondary Master Retry Limit A/B 1 byte DD Secondary Control register 1 byte DE I/O Address Map Register A/B 1 byte DF Memory Address Map Register 1 byte E0 PCI Control Register A/B 1 byte E8 PIO AFSR A/B 8 bytes F0 PIO AFAR A/B 8 bytes F8 Diagnostic register A/B 8 bytes

Table 1-7. PCI Bridge Registers (Continued)

1.9 Ultra Fast/Wide SCSI Controller (SYMBIOS SYM53C896)

The SYMBIOS Ultra Fast/Wide SCSI Controller is located on PCI bus A. It has two PCI functions, as it is managing the two on-board SCSI interfaces.

Offset Register

Vendor ID (0x1000)

Offset	Hegister	Access size
00	Vendor ID (0x1000)	2 bytes
02	Device ID (0x000b)	2 bytes
04	Primary command	2 bytes
06	Primary status	2 bytes
08	Revision ID	1 byte
09	Class code	3 bytes

a—These values are offset from the base PCI configuration address. See *Table 2-3*, "List of PCI Devices", on page 2-3

Table 1-8. SCSI Controller Registers (Continued)

Offset	Register	Access size
0C	Cache line size	1 byte
0D	Primary Master Latency Timer	1 byte
0E	Header type	1 byte
18	Primary Bus Number	1 byte
19	Secondary Bus Number A/B	1 byte
1A	Subordinate Bus Number A/B	1 byte
1B	Secondary Master Latency Timer A/B	1 byte
1E	Secondary status A/B	2 bytes
3E	Bridge Control A/B	2 bytes
Device specific register	s:	
В0	Tick register	4 bytes
B8	INT ACK Generation register A/B	4 bytes
C8	DMA AFSR A/B	8 bytes
D0	DMA AFAR A/B	1 byte
D8	PIO Target Retry Limit A/B	1 byte
D9	PIO target Latency Timer A/B	1 byte
DA	DMA target Retry Limit A/B	1 byte
DB	DMA Target Latency Timer A/B	1 byte
DC	Secondary Master Retry Limit A/B	1 byte
DD	Secondary Control register	1 byte
DE	I/O Address Map Register A/B	1 byte
DF	Memory Address Map Register	1 byte
E0	PCI Control Register A/B	1 byte
E8	PIO AFSR A/B	8 bytes
F0	PIO AFAR A/B	8 bytes
F8	Diagnostic register A/B	8 bytes

Operation Section

USPIIe-cPCI Interrupts

2.1 Overview

The UltraSPARC-IIe CPU interrupt mechanism is based on the SPARC V9 "Mondo interrupt transfer mechanism". This mechanism features interrupt packets being delivered to the CPU over the UPA bus. But this mechanism is simpler on the UltraSPARC-IIe CPU, since it occurs internally within the CPU.

The "Mondo" interrupt transfer mechanism for Sun4u systems reduces interrupt service overhead by directly identifying the unique interrupter, without polling multiple status registers.

An interrupt packet contains a Mondo vector which has three double words designed to assist the processor in servicing the interrupt. Limitations of the Mondo vector approach include:

- Only one interrupt request packet can be serviced at a time.
- There is no priority level associated with Mondo vector interrupts; they are serviced on a first come, first served basis.

This interrupt packet delivery now happens inside the UltraSPARC-IIe CPU, rather than being visible on the UPA interconnect. Since it is an internal dedicated uniprocessor path, the flow control issues are simpler, and no interrupt retry is needed. UltraSPARC-IIe just causes one interrupt packet delivery at a time, after each acknowledgment by software (clearing of the BUSY bit in the Interrupt Mapping Register in the Mondo receive trap handler).

Figure 2-1. Interrupt Logic.

SPARC V9 processors provide a dedicated set of registers to be used exclusively for servicing interrupts. This eliminates the need for the processor to save its current register set to service an interrupt, and then restore it later. There is a unique interrupt number register or INR for each interrupt source. These numbers are defined in the *UltraSPARC-IIe User's manual* (Table 11-4), and are also programmed in the interrupt mapping registers.

2.2 Mondo Dispatch Overview

UltraSPARC-IIe's PIE logic block is responsible for fielding interrupts from external PCI sources, other external sources, and internal UltraSPARC-IIe resources, loading the Mondo data receive registers, and signalling a Mondo receive trap to the UltraSPARC-IIe pipeline.

External interrupt sources include PCI slots on three separate PCI busses, the onboard IO devices, and a graphics interrupt. These interrupts are concentrated in an external ASIC (ICHIP) and presented to the Mondo Unit one at a time. This saves pins on UltraSPARC-IIe. Internal interrupt sources include ECC (memory errors) and PBM (PCI bus errors). The CPU can process only one interrupt at a time. The Mondo Dispatch Unit is responsible for remembering all interrupts that have arrived, and serializing them to the CPU pipeline as traps. In addition, it tracks the state of pending DMA writes in the APB and UltraSPARC-IIe, and guarantees that all DMA writes complete on the Secondary PCI buses (temporally) before a PCI interrupt request, complete to memory before notifying the CPU. This is for the case, where the interrupt routine is called prior to the DMA transfer not being done, potentially resulting in data structures being not coherent.

2.3 UltraSPARC-IIe Interrupt Registers

The UltraSPARC-IIe registers involved for interrupt processing are:

- Interrupt mapping registers.
- Incoming Interrupt Vector Data <2:0>
- Clear Interrupt Register
- Softint register

2.3.1 Interrupt Mapping Registers

Each source of interrupt has a mapping register associated to it. These registers must be initialized by software. They act as an "enable interrupt register", since the only bit that is writable is the "valid" bit. The rest of the information is hard-wired into these registers.

Field	Bits	Description	POR State	Туре
Reserved	63:32	Reserved read as 0	0	R
V	31	Valid bit. When set to 0, any incoming interrupt will not be dispatched to CPU. Has no other impact on interrupt state.	0	R/W
Reserved	30:11	Reserved. Read as 0	0	RO
IGN	10:6	Interrupt Group Number: Read as 0x1F	0	RO
INO	5:0	Interrupt Number Offset: The value of this field is hardwired for each mapping register.	-	R

Table 2-1. Interrupt Mapping register definition

2.3.2 Interrupt Vector Data Register

UltraSPARC-IIe maintains an interrupt number lookup table. The Interrupt Vector Data Register in UltraSPARC-IIe is used to store the INR created from this lookup. After an Interrupt Vector Data Register is loaded with data, the UltraSPARC-IIe core must not receive another interrupt until it empties the register. Loading interrupt data into an Interrupt Vector Data Register sets the Interrupt Vector Receive Regis-

ter "Busy" bit. This bit indicates to the UltraSPARC-IIe IO that it must neither send another interrupt to the UltraSPARC-IIe core, nor load an Interrupt Vector Data Register until this bit is cleared. The "Busy" bit can also be cleared by software. After the UltraSPARC-IIe core receives the interrupt, an interrupt trap is generated if IE bit of PSTATE Register is set to 1. The trap type for the interrupt trap is II 0x60.

Name	Bits	Description
Interrupt RCV Data #0	63:11	Reserved read as 0
Interrupt RCV Data #0	11:0	INR
Interrupt RCV Data #1	63:0	Reserved read as 0
Interrupt RCV Data #2	63:0	Reserved read as 0

Table 2-2. Interrupt Receive Data Register

INR is an 11 bit interrupt number that indicates the source of the interrupt. Where possible, the interrupt is precise (that is, it points to only one interrupt source). This singularity permits the dispatch of the proper interrupt service routine without any register polling.

Bits [11] through [63] of the first word are guaranteed to be 0 for all UltraSPARC-IIe IO generated interrupts. Words 1 and 2 of the interrupt packet are also guaranteed to be 0.

Each interrupt source has a mapping register, containing the INR value used for the interrupt. The INR has two parts: IGN and INO. The Interrupt Group Number (IGN) is the upper 5 bits of the INR, and for most interrupts is 0x1f.

Note: Compatibility—The IGN on UltraSPARC-II*e* is not programmable for the Partial Interrupt Mapping Registers, and is fixed to 0x1f.

The lower 6 bits of the INR are the Interrupt Number Offset (INO). This value is hardcoded by UltraSPARC-IIe for each interrupt source, as shown in *Table 2-4*, page 2-5, and is read-only in the mapping register. For PCI slot interrupt mapping registers, INO<1:0> is always read as 00.

2.3.3 Clear Interrupt Register

There is one such register per interrupt source.

Table 2-3. Clear Interrupt Register

Field	Bits	Description
RESERVED	63:02	Reserved
STATE	01:00	State Bits for the interrupt state machine associated with this interrupt. The following valued may be written: 00 - Set state machine to IDLE 01 - Set state machine to RECEIVED state 10 - Reserved 11 - Set state machine to PENDING state
Interrupt RCV Data #1	63:0	Reserved. Read as 0
Interrupt RCV Data #2	63:0	Reserved. Read as 0

2.4 Interrupt Level Mapping

This table lists the interrupt level used by Solaris on the USPIIe-cPCI. These levels correspond to the level at which the software interrupt is running. (The SW interrupt is generated by the general trap TT 0x60. This is contained in the intr_vector table.)

Table 2-4. Interrupt level mapping

INO	Level	Interrupt Source
0x14	0xc	ТТҮВ
0x16	0x6	PMC Expansion and ETHERNET B
0x17	0xb	Not assigned
0x1C	0xc	TTYA
0x20	0x4	SCSI
0x21	0x6	ETHERNET A
0x22	0x3	Parallel Port

Table 2-4. Interrupt level mapping (Continued)

INO	Level	Interrupt Source
0x23	0x9	Audio Int
0x24	0x9	Audio Playback
0x29	0x9	PS/2 Keyboard
0x2A	0x9	PS/2 Mouse
0x2B	0xc	TTYC
0x2E	0xe	Uncorrectable ECC
0x2F	0x9	Correctable ECC
0x30	0xe	PCI Bus Error

2-6 ______ Themis Computer

Operation Section

Temperature Monitoring

3.1 Temperature Monitoring

Temperature monitoring on the USPII*e*-cPCI can be enabled by setting the OBP environment variable env-monitor to enabled.

```
ok setenv env-monitor enabled
```

Enabling this variable triggers the OBP to set up the Winbond registers at boot-time. The environment variables cpu-shutdown-temp and cpu-warning-temp are used to set up the Hysteresis and OverTemp registers of the Winbond chip. The OverTemp register is assigned the cpu-shutdown-temp value. The Hysteresis register is assigned the cpu-warning-temp minus 10°C.

```
ok printenv cpu-shutdown-temp
cpu-shutdown-temp = 85
ok printenv cpu-warning-temp
cpu-warning-temp = 70
```


Note: See section 5.2.1 "OBP Environment Variables" on page 5-2., Chapter 5, for more information on environment variables.

3-]

An OBP function, "themis-temp-show" can be invoked at any time to see the Current temperature and the values assigned to the Hysteresis & OverTemp registers. When the CPU junction temperature reaches the overtemp value, then the PLD shuts down the CPU.

```
ok themis-temp-show

CPU Junction Temperature = 57

Hysteresis Temperature setting = 60

Over Temperature setting = 85
```

A new OBP environment variable themis-temp-restart has been introduced to control the automatic wakeup of the CPU. The default value of this variable is "disabled" and needs to be set to "enabled" to avail the automatic restart of the CPU. After a hot shutdown of the CPU, once the CPU junction temperature cools down to the Hysteresis temperature (in the Winbond chip) then the PLD automatically restarts the CPU.

```
ok setenv themis-temp-restart enabled
```

The PLD generates a hardware reset (just like pushing the front-panel button) when the temperature auto-restart feature is enabled. Initial messages after one such automatic restart are as follows:

```
Processor Speed = [Speed Jumper = 0] 650 MHz
Firmware CORE Sun Microsystems, Inc.
@(#) core 1.0.10 2002/08/23 16:05
Hardware Power ON
Verifying NVRAM...Done
```

As can be seen, there is no difference from a hardware cold start.

Note: The OBP environment variable ras-shutdown-enabled? is not used and should be left with its default assigned value of false.

Operation Section

PLD Register Set

4.1 PLD Registers

The Programmable Logic Device or PLD resides on the Ebus of the Sun Rio I/O Controller on the USPII*e*-cPCI Baseboard. A full description of PLD features and implementation is contained in Chapter 5 of the *USPIIe-cPCI Hardware Manual*. This chapter only describe the PLD software registers.

The PLD has two primary functions:

- To implement miscellaneous control/status resisters and manipulate the address map of their EEPROM flash devices.
- To implement the RESET logic, LED control, and SCSI A definition logic.

Table 4-1 on page 4-2 describes the PLD register address map.

4.1.1 PLD Register Description

The PLD has its own chip select signal to select unambiguously any internal registers. The synchronous logic implemented into this PLD is driven by a 33-Mhz clock, synchronous to the PCI clock. The PLD is reprogrammable on-board.

Table 4-1. PLD Register Address Map

Reg ister	Refer to:	Register Name	Offset Address	Description
0	<i>Table 4-2</i> , page 4-3	pld_ID/rev	0x1FF.F120.0000	Revision and ID of the base_Usp2e_PLD
1	<i>Table 4-3</i> , page 4-3	flash_status	0x1FF.F120.0002	Boot addess space mapping
2	<i>Table 4-5</i> , page 4-5	cpci_slot_ID	0x1FF.F120.0003	USPIIe-cPCI id status register
3	Reserved for future use		0x1FF.F120.0004	
4	<i>Table 4-7</i> , page 4-6	patch_status	0x1FF.F120.0005	Status of JP2704, JP2705, and JP2706
5	<i>Table 4-8</i> , page 4-6	test_status	0x1FF.F120.0006	Presence bits of plug-in boards
6	<i>Table 4-9</i> , page 4-7	voltage_status	0x1FF.F120.0007	Voltage status
7	<i>Table 4-10</i> , page 4-8	TTY/KBM_config	0x1FF.F120.0008	TTY ports and Keyboard/Mouse setting (Front panel versus cPCI)
8	<i>Table 4-11</i> , page 4-9	SCSI_A_status	0x1FF.F120.0009	SCSI-A termination and others
9	<i>Table 4-12</i> , page 4-9	misc_status	0x1FF.F120.000a	
10	N/A	watchdog 1 counter	0x1FF.F120.0010	Watch dog 1 counter loaded value
11	N/A	watchdog 1 Limit	0x1FF.F120.0014	Watch dog 1 limiter loaded value
12	N/A	watchdog 1 status	0x1FF.F120.0018	Watchdog 1 status
13	N/A	watchdog 2 counter	0x1FF.F120.0020	Watch dog 2 counter loaded value
14	N/A	watchdog 2 Limit	0x1FF.F120.0024	Watch dog 2 limiter loaded value
15	N/A	watchdog 2 status	0x1FF.F120.0028	Watchdog 2 status
16	N/A	watchdog int mask	0x1FF.F120.0040	Watchdog interrupt mask
17	Table 4-13, page 4-11	semaphore status	0x1FF.F120.00F0	Semaphore status and requester flag
18	Table 4-14, page 4-11	semaphore request1	0x1FF.F120.00F1	requester's image of semaphore

4.1.1.1 PLD_ID/rev Register

This register returns the revision number and ID number of this PLD.

Field 8-bit **Type Description** Provide the revision number: Bit 0-3 RO Revision b1111 and b0000 reserved for Themis Engineering Provides the CPU family information for which the RO Family Bit 4-7 PLD was designed. 0001 = Hummingbird 0010 = Phantom0011 = Corsair

Table 4-2. PLD_ID/rev Register 0x1FF.F120.0000

4.1.1.2 Flash_status Register

This register returns the status of the jumpers JP2701, JP2702, JP2703, JP2201, JP2202, and JP2203. Jumpers JP270x are used to define mapping of the four boot devices (Flash 0, Flash 1, Flash 2, and ROMBO). Jumpers JP220x are used to enable or disable write accesses to Flash 0, Flash 1, and Flash 2. The correspondence between jumpers JP270x settings and the boot space mapping is given in *Table 4-3* and *Table 4-4* on page 4-4.

[Note that each Flash (28F032SA - 4 MB) has two sections: the lower (1st) 2-MB section and the upper (2nd) 2-MB section.]

Field	8-bit	Туре	Description
Status of JP2703	Bit 0	RO	0 means the jumper is installed 1 means the jumper is not installed
Status of JP2701	Bit 1	RO	0 means the jumper is installed 1 means the jumper is not installed
Status of JP2702	Bit 2	RO	0 means the jumper is installed 1 means the jumper is not installed
Reserved	Bit 3	RO	Read as 0.

Table 4-3. Flash_status Register 0x1FF.F120.0002

Table 4-3. Flash_status Register 0x1FF.F120.0002 (Continued)

Field	8-bit	Туре	Description
Status of JP2201	Bit 4	BO	0 means write access to device Flash 0 is enabled
Flash 0 write-protect	Dit 4	nO	1 means write access to device Flash 0 is write protected
Status of JP2202	Bit 5	RO	0 means write access to device Flash 1 is enabled
Flash1 write-protect	ысэ		1 means write access to device Flash 1 is write protected
Status of JP2203	Bit 6	RO	0 means write access to device Flash 2 is enabled
Flash 2 write-protect	Dit 0	110	1 means write access to device Flash 2 is write protected
Reserved	Bit 7	RO	Read as 0.

Table 4-4. Flash PROM/Rombo Address Mapping

UPA Address Start	Ma	ap 1	Ма	ap 2	Ma	ър 3	Ма	р 4	Ма	p 5	Ma	ар 6	Ма	ър 7	Ма	ıp 8
0x1FF.F0E0.0000 —	U	F2	C	F2	U	F2	U	F2	U	F2	U	F2	U	F2	U	F2
0x1FF.F0C0.0000 =	L	12	L	12	L	12	L	12	L	12	L	12	L	12	L	12
	U	-1	U	F4	U	F4	U	F4	U	F4	U	F4	U	F4	U	-1
0x1FF.F0A0.0000 —	L	F1	L	F1	L	F1	L	F1	L	F1	L	F1	L	F1	L	F1
0x1FF.F080.0000 —	U		U		U		U		U		U		U		U	
0x1FF.F060.0000 —	L	F0	L	F0	L	F0	L	F0	L	F0	L	F0	L	F0	L	F0
0x1FF.F040.0000 —																
0x1FF.F020.0000 —	L	F0	U	F0	L	F1	U	F1	L	F2	U	F2	L	R	U	R
0x1FF.F000.0000 —																
JP2703	ON	1 (0)	OF	F (1)	ON	1 (0)	OF	F (1)	ON	1 (0)	OF	F (1)	ON	1 (0)	OF	F (1)
JP2701	ON		. , , , , ,		OFF (1)			ON (0)		. ,	OFF (1)		,			
JP2702			(0)			ON				OFF	. ,				= (1)	

[.] *Note:* U = Upper (2nd) bank of flash address space, L = Lower (1st) bank of flash address space. Flash PROM designations: F0 = Flash0, F1 = Flash1, F2 = Flash2, R = Rombo

4.1.1.3 cPCI_slot_ID Register

This register (*Table 4-5*) provides the geographical position (as defined in the *CompactPCI Specification*, PICMG 2.0 R3.0, Section 3.2.7.6, "Geographic Addressing") of the USPII*e*-cPCI Baseboard when it is plugged into a cPCI backplane. Encoding (see *Table 4-6*) of the physical position is done directly on the backplane.

Table 4-5. cPCI_slot_ID Register 0x1FF.F120.0003

8-bit	Туре	Description
Bit 0	RO	Status of the cPCI backplane GA0 input pin; see <i>Table 4-6</i> .
Bit 1	RO	Status of the cPCI backplane GA1 input pin.
Bit 2	RO	Status of the cPCI backplane GA2 input pin.
Bit 3	RO	Status of the cPCI backplane GA3 input pin.
Bit 4	RO	Status of the cPCI backplane GA4 input pin.
Bit 5	RO	Read as 0.

Table 4-6. Encoding Table

Register Value	cPCI Slot Number	
0x00	0 Reserved	0:
0x01	1	0:
0x02	2	0:
0x03	3	0:
0x04	4	0:
0x05	5	0:
0x06	6	0:
0x07	7	0:
0x08	8	0:
0x09	9	0:
0x0A	10	0:

Register Value	cPCI Slot Number
0x0B	11
0x0C	12
0x0D	13
0x0E	14
0x0F	15
0x10	16
0x11	17
0x12	18
0x13	19
0x14	20
0x15	21

Register Value	cPCI Slot Number
0x16	22
0x17	23
0x18	24
0x19	25
0x1A	26
0x1B	27
0x1C	28
0x1D	29
0x1E	30
0x1F	31

4.1.1.4 Patch_status Register (*Themis-qualified personnel only*)

See *Table 4-7* on page 4-6.

Table 4-7. Patch_status Register 0x1FF.F120.0005

8-bit	Туре	Description
Bit 0	RO	For Themis use only: 0 means JP2704 is ON 1 means JP2704 is OFF
Bit 1	RO	For Themis use only: 0 means JP2705 is ON 1 means JP2705 is OFF
Bit 2	RO	For Themis use only: 0 means JP2706 is ON 1 means JP2706 is OFF
Bit 5-7	RO	Unused - Read as 0

4.1.1.5 Test_status Register (*Themis-qualified personnel only*)

The ROMBO connector interface has two CS (chip-select) lines, one for the ROMBO device (which can be set as the BIOS device; see *Table 4-4*, page 4-4), the other for any device attached to the Ebus (selected by the value of bits 0, 1, and 2 of the test-status register; see *Table 4-8*). If the value is 0,the ROMBO is selected; if the value is 1, NVRAM is selected; if the value is 3, PLD is selected; and if the value is 4, the dual UART is selected.

Table 4-8. Test_status Register 0x1FF.F120.0006

8-bit	Туре	Description
Bit 0-2	RO	Bits 0, 1, and 2 are used to select which chip-select (CS) will be sent to the ROMBO interface. These bits are used only for debugging purposes and are irrelevant to the user.
Bit 3-7	RO	Unused - Read as 0

4.1.1.6 Voltage_status Register

The Vdd core DC/DC converters can be shut down by software. However, this feature can be disabled by solder-bead configuration (SB2702 for the Vdd core). The setting of this solder bead is accessible through voltage_status register bit 1 (see *Table 4-9*). When the solder bead is set to disable the shutdown mode, the programmable shutdown bits (bits 2 and 6) must have no effect, meaning it cannot turn off the DC/DC converter. This condition is called the "battle or "self-preservation" mode, where we do not try to save the board from total destruction, but rather try to have the board operate as long as it possibly can.

The programmable shut-down bit 2 must be reset ONLY during the power-up phase. In other words, when this bit is set to one (assuming it has an effect authorized by the solder-bead setting), it shall remain so. Only recycling the cPCI Vcc power will place the programmable shutdown bit back to its inactive state (= 0).

Table 4-9. Voltage_status Register 0x1FF.F120.0007

Field	8-bit	Туре	Description
Reserved	Bit 0	RO	Read as 0
Vdd_core shutdown	Bit 1	RO	0 means the Vdd-core DC/DC converter CANNOT be shut down by S/W (SB2702 shorted or ON)
mode			1 means the Vdd-core DC/DC converter can be turned-off by S/W (SB2702 open or OFF)
			[See SB2702 in Table B-4, Appendix B of the USPIIe-cPCI Hardware Manual.]
Vdd_core	Bit 2	R/W	0 means there is no software request to shut down the Vdd-core converter
shutdown S/W control			1 means there is a software request to shut down the Vdd-core converter ^a Note: This bit is reset to 0 on system power-up.
Vdd_core DC/DC	Bit 3	RO	0 means the Vdd-core DC/DC converter is off (disabled)
converter			1 means the Vdd-core DC/DC converter is turned-on (<i>enabled</i>) Note: This bit should always be read as a 1.
Reserved	Bit 4	RO	Read as 0
3.3V stand-	D:: 5	DO.	0 means SB2701 is shorted (ON), therefore the 3.3V standby signal is disabled
by signal	Bit 5	RO	1 means SB2701 is open (OFF), therefore the 3.3V standby signal is disabled
3.3V shut- down status	Bit 6	RO	Not applicable
3.3V signal status	Bit 7	RO	Not applicable

a—The software request to shut down the Vdd-core converter will only be effective if solder-bead SB2702 is OPEN (not installed).

4.1.1.7 TTY/KBM_config Register

The many options available on the USPIIe-cPCI with regard to the USB and PS/2 Keyboard/Mouse configuration prompted the addition of a status register to help software obtain results during the probing process (see *Table 4-10*). See the *USPIIe-cPCI Hardware Manual* to find out the correct solder-bead settings for any specific configuration.

Table 4-10. TTY/KBM_config Register 0x1FF.F120.0008

Field	8-bit	Туре	Description
TTYB I/F mode status	Bit 0	RO	Always read as 0 (TTYB is in RS232 mode only)
Reserved	Bit 1	R/W	Reserved for future use
USB status ^a	Bit 2	RO	0 means USB is available on the Front Panel 1 means USB is NOT available on the Front Panel
USB power	Bit 3	RO	0 means USB power has failed 1 means USB power is OK
PS/2 KB/Mouse status ^a	Bit 4	RO	0 means PS/2 is available on the Front Panel 1 means PS/2 is NOT available on the Front Panel
Reserved	Bit 5	RO	Read as 0
Reserved	Bit 6	RO	Read as 0
Reserved	Bit 7	RO	Read as 0

a—Bits 2 and 4 are always reversed, therefore cannot have the same value (i.e., when one is 0, the other is 1, and vice versa).

4.1.1.8 SCSI_A_status Register

Since the SCSI-A port is routed to both the front panel and the cPCI backplane connector, it is important that all SCSI terminations are properly configured. This register reports the status of the SCSI-A bus terminations (see *Table 4-11* on page 4-9).

8-bit **Field Type Description** (defaults are in boldface) Reserved Bit 0 R/W Set to 1 when system is reset Reserved Bit 1 R/W Set to 1 when system is reset Reserved Bit 2 R/W Set to 1 when system is reset SCSI-A front-panel 0 means SCSI-A device is not installed on front panel Bit 3 RO sense pin 1 means SCSI-A device is installed on front panel 0 means SCSI-A device is not installed on cPCI backplane SCSI-A backplane Bit 4 RO sense pin 1 means SCSI-A device is installed on cPCI backplane

Read as 0

Table 4-11. SCSI_A_status Register 0x1FF.F120.0009

[SCSI termination is covered in detail in section 1.2.2, "SCSI Termination", of Chapter 1, USPIIe-cPCI Hardware Manual.]

4.1.1.9 Misc_status Register

Bits 5-7

RO

Reserved

This register provides control of the user-LED on the front-panel and the software alarm on the cPCI backplane.

Table 4-12. Misc_status Register 0x1FF.F120.000a

Field	8-bit	Туре	Description (defaults are in boldface)
User LED	Bit 0	R/W	means the front-panel user LED is turned OFF means the front-panel user LED is turned ON
Reserved	Bit 1	R/W	Set to 0 when system is reset
Reserved	Bit 2	R/W	Set to 0 when system is reset
Vdd_Core Thermal shutdown	Bit 3	R/W	means the Vdd-CORE thermal shutdown is DISABLED means the Vdd-CORE thermal shutdown is ENABLED
Reserved	Bits 4-7	RO	Read as 0

4.1.1.10 2-Level Watchdog Registers

A watchdog is started:

- When the counter register is loaded with the contents of the limit register
- When a read to the counter register occurs.

Either action will cause the counter register to begin its countdown from the programmed limit to zero. A watchdog expires when its counter register has counted down to zero (0). The hexadecimal offsets for these registers are provided in *Table 4-1* on page 4-2. Note that the software should never read the counter register before the limit register has first been programmed. In this case, the (default) value of the limit register is 1 and the watchdog will expire on the next 10 MHz clock cycle.

All watchdog status registers contain 2 read-only information bits:

- Bit 0: the "Running Bit" indicates, when set to '1', that the counter register has started its countdown at least once. This bit is only reset when the watchdog itself is reset.
- Bit 1: the "Expired Bit" indicates, when set to '1' that the counter value is at zero (0) and the respective watchdog has expired.

Caution: Since the EBus2 is little-endian, an odd byte access will start a watchdog. Any access to a 16-bit Watchdog register (Limit register or Counter register) must be made by half-word access.

Upon expiration, any high-order watchdog will reset a lower-order watchdog, i.e. The expiration of watchdog 2 resets watchdog 1 to its initially programmed states.

When a watchdog is reset the following occurs:

- The limit register and the counter register are reset. The default value for these registers is '1'.
- The countdown process is disabled
- The watchdog status bits are set.

4.1.1.11 Semaphore_Status Register

This 8-bit Register provides one semaphore and its ownership information. However, the software can ONLY read this register directly. To get the ownership of the

semaphore, use the requester's image address.

Table 4-13. Semaphore_Status Register 0x1FF.F120.00F0

Field	8-bit	Туре	Description (defaults are in boldface)
semaphore	Bit 0	RO	means the semaphore is available means the semaphore is NOT available
			Timeans the semaphore is NOT available
Reserved	Bit 1	RO	Read as 0
Reserved	Bit 2	RO	Read as 0
Reserved	Bit 3	RO	Read as 0
request ID0	Bit 4	RO	bit 0 of the requester's ID
request ID1	Bit 5	RO	bit 1 of the requester's ID
request ID2	Bit 6	RO	bit 2 of the requester's ID
Reserved	Bit 7	RO	Read as 0

4.1.1.12 Semaphore_Request1 Register

This 8-bit Register is the image of the Semaphore_Status Register. It is read-only and can not perform read-modify-write.

Table 4-14. Semaphore_Request1 register 0x1FF.F120.00F1

Field	8-bit	Туре	Description
semaphore	Bit 0	RO	0 means the semaphore is available.
status			1 means the semaphore is NOT available.
Reserved	Bit 1	RO	Read as 0
Reserved	Bit 2	RO	Read as 0
Reserved	Bit 3	RO	Read as 0
request ID0	Bit 4	RO	bit 0 of the requester's ID
request ID1	Bit 5	RO	bit 1 of the requester's ID
request ID2	Bit 6	RO	bit 2 of the requester's ID
Reserved	Bit 7	RO	Read as 0

- 4-11

Software Section

Themis USPIIe-cPCI Software

5.1 Introduction

This chapter describes the software used on the Themis USPII*e*-cPCI. This includes the OBP firmware (OpenBoot 4.0; Themis version 1.2), Sun Solaris 7 (or higher) Operating System, and Wind River Systems VxWorks Operating System. The default firmware is Sun's OBP (Open Boot Prom), which will boot the Solaris operating system. Users can also install VxWorks bootrom firmware (bootrom.bin file). The VxWorks bootrom will boot the VxWorks image.

5.2 SUN OBP (OpenBoot PROM)

The Themis USPII*e*-cPCI OBP is based on OBP 3.10.*x* from SUN. Themis has added several OBP command extensions that are specific to the USPII*e*-cPCI. All other OBP commands are the same as the Sun UltraSPARC-II*e* Platform. Specific details of the OBP architecture are defined in the IEEE 1275 specification document. Reference materials that describe the OBP include:

- OpenBoot 3.1 Command Reference -- Sun Part Number: 802-3242-31
- OpenBoot Quick Reference -- Sun Part Number: 802-5675-31
- Writing FCode 3.1 Programs -- Sun Part Number: 802-3239-31.f3f_

5.2.1 OBP Environment Variables

The environment variables (see *Table 5-1* and *Table 5-1* on page 5-2) may be set at the ok prompt in OBP by using the setenv command.

```
ok setenv variable_name value
```

when running Solaris with the command (the syntax may vary depending on the shell used):

```
# eeprom variable_name=value
```

A board RESET is required for the new values to take effect.

Important: By default, all values are decimal at the OBP prompt. The Solaris command line will accept hexadecimal if they are preceded by 0x.

Table 5-1 shows the results of the printenv command.

Table 5-1. OBP Environment Variables

ok printenv		
Variable Name	Value	Default Value
force-system-controlle	er false	false
ttyd	/pci@1f,0/pci@1,1/ebus@c	/pci@1f,0/pci@1,1/ebus@c
ttyc	/pci@1f,0/pci@1,1/ebus@c	/pci@1f,0/pci@1,1/ebus@c
themis-temp-restart	disabled	disabled
ras-shutdown-enabled?	false	false
sys-shutdown-temp	70	70
sys-warning-temp	65	65
cpu-shutdown-temp	85	85
cpu-warning-temp	25	80
env-monitor	disabled	disabled
diag-passes	1	1
diag-continue?	0	0

5-2 — Themis Computer

Table 5-1. OBP Environment Variables (Continued)

		,
diag-targets	0	0
diag-verbosity	0	0
scsi-initiator-id	7	7
#power-cycles	278	No default
system-board-serial#		No default
system-board-date	00 00 00 00 00 00 00 00	No default
ttyb-rts-dtr-off	false	false
ttyb-ignore-cd	true	true
ttya-rts-dtr-off	false	false
ttya-ignore-cd	true	true
ttyb-mode	9600,8,n,1,-	9600,8,n,1,-
ttya-mode	9600,8,n,1,-	9600,8,n,1,-
pcic-probe-list	4,5,6,7	4,5,6,7
pcia-probe-list		
pcib-probe-list	7,c,3,5,2	7,c,3,5,2
keyboard-click?	false	false
keymap		
watchdog-timeout	63	63
watchdog-enable?	false	false
mfg-mode	off	off
diag-level	max	max
fcode-debug?	false	false
output-device	screen	screen
input-device	keyboard	keyboard
load-base	16384	16384
auto-boot-retry?	false	false
boot-command	boot	boot
auto-boot?	false	true
watchdog-reboot?	false	false
diag-file		
diag-device	disk1	net
boot-file		

Table 5-1. OBP Environment Variables (Continued)

boot-device	disk	disk net
local-mac-address?	false	false
net-timeout	0	0
ansi-terminal?	true	true
screen-#columns	80	80
screen-#rows	34	34
silent-mode?	false	false
use-nvramrc?	false	false
nvramrc		
security-mode	none	No default
security-password		No default
security-#badlogins	128	No default
oem-logo		No default
oem-logo?	false	false
oem-banner		No default
oem-banner?	false	false
hardware-revision		No default
last-hardware-update	80 00 00 00 00 00 00	No default
diag-switch?	true	false

5.2.2 Updating Flash PROMs

Warning: GREAT CARE must be taken when performing a Flash Upgrade. If an invalid or corrupted PROM file was downloaded, or if you experience a power outage during the process, the USPII*e*-cPCI may not be bootable. DO NOT interrupt the command while it is in progress.

USPIIe-cPCI board has 3 Flash PROMs (0, 1, and 2). Since each Flash PROM has two banks and each bank can be used as boot PROM, each board has 6 Flash PROM banks from which to choose a boot PROM. Please refer to the jumper-pin section in Appendix B of the USPIIe-cPCI *Hardware Manual* on how to select a particular Flash PROM bank as the boot PROM. Once a particular Flash PROM bank is chosen through the jumper configuration, it becomes the default boot PROM, hence during a flash update the program will write to the current boot PROM set by the jumpers (see following *Caution*).

Caution: Selecting the proper Flash PROM bank requires three jumpers: JP2701 and JP2702 to select Flash PROM 0, 1, or 2, and JP2703 to select the bank.

If OBP needs to be updated in the field, it is advisable to program the new OBP binary to a spare Flash PROM bank, and use the new bank as the boot PROM. In this case, if there is anything wrong with the flash-update process, the user can still go back to original Flash PROM bank to boot OBP.

If there is a working OBP in one of the Flash PROM banks other than the current boot PROM, the current boot PROM can be overwritten with the new OBP.

For USPIIe-cPCI boards, flash-update is no longer used to update the OBP, since the command does not erase all boot PROM contents and can cause the board to fail once the flash-update is complete. Instead, flat-update is used. This command erases the complete contents of boot PROM, then programs the new OBP into the boot PROM.

Use the following procedure to burn OBP into a new Flash PROM bank:

- **1.** Power up the USPII*e*-cPCI board until the ok prompt is displayed. At this point, the OBP is run from memory, not the boot PROM.
- 2. Change the jumper to select a new Flash PROM bank as the new boot PROM.

3. Use flat-update to program OBP into the new boot PROM. Please remember to specify the device pathname net:, as flat-update does not assume "net" to be the default device.

For example, to update the OBP from the network to a new revision usp2e.postobp.sunkbd, use the following command:

```
ok flat-update net:,usp2e.postobp.sunkbd
Loading file: net:,usp2e.postobp.sunkbd
Using Onboard Transceiver - Link Up.

104000
Server IP address: 92.111.0.1
Client IP address: 92.111.0.80

100000 Bytes
Erasing Flash PROM ... Done
Programming Flash PROM ... Done
Verifying Flash PROM ... Done
```

4. Reset the board to make the new OBP effective.

If the current boot PROM can be overwritten, use flat-update to overwrite the current boot PROM with new OBP revision:

1. For example, to update OBP from the network to a new revision usp2e.postobp.sunkbd, use the following:

```
ok flat-update net:,usp2e.postobp.sunkbd
Loading file: net:,usp2e.postobp.sunkbd
Using Onboard Transceiver - Link Up.

104000
Server IP address: 92.111.0.1
Client IP address: 92.111.0.80
```

100000 Bytes

Erasing Flash PROM ... Done

Programming Flash PROM ... Done

Verifying Flash PROM ... Done

2. Reset the board to make the new OBP effective.

Remember that usp2e.postobp.sunkbd is a file containing the binary image of the new PROM. Prior to Flash upgrade, this file must be copied in the /tftp-boot directory of a TFTP server. This server must be configured to support TFTP requests from the USPIIe-cPCI client. Both systems must be connected to Ethernet to allow USPIIe-cPCI to download its PROM file.

Call your Unix system administrator in case of problems.

5.2.3 USPII*e*-cPCI OBP Device aliases

The devalias command displays the list of OBP aliases for the USPIIe-cPCI, as shown in *Table 5-2* on page 5-8.

Note: OBP device aliases for the USPII*e*-cPCI are different from other models of the USPII*e*. OBP device aliases for any model of the USPII*e* are described in the *Software Manual* for that model.

5.3 SUN Solaris

The USPII*e*-cPCI can run the Solaris OS from either a local disk or from the Ethernet network as a diskless client. In the case of a local disk, the Solaris OS will be loaded from the Sun Solaris CD-ROM.

To install the USPIIe-cPCI as a diskless client, users need to run Sun's Solstice on a boot server system. Please refer to Sun's documentation on how to install the Solaris Operating System.

Table 5-2. List of OBP aliases

ok devalias	
userprom2	/pci@1f,0/pci@1,1/ebus@c/flashprom@10,800000
userprom1	/pci@1f,0/pci@1,1/ebus@c/flashprom@10,400000
dload	/pci@1f,0/pci@1,1/network@c,1:,
net2	/pci@1f,0/pci@2/pci@6/network@4,1
net	/pci@1f,0/pci@1,1/network@c,1
cdrom	/pci@1f,0/pci@2/scsi@4/cdrom@6,0:f
disk	/pci@1f,0/pci@2/scsi@4/disk@0,0
disk3	/pci@1f,0/pci@2/scsi@4/disk@3,0
disk2	/pci@1f,0/pci@2/scsi@4/disk@2,0
disk1	/pci@1f,0/pci@2/scsi@4/disk@1,0
disk0	/pci@1f,0/pci@2/scsi@4/disk@0,0
ide	/pci@1f,0/pci@1,1/ide@d
floppy	/pci@1f,0/pci@1,1/isa@7/dma/floppy
ttyb	/pci@1f,0/pci@1,1/isa@7/serial@0,2e8
ttya	/pci@1f,0/pci@1,1/isa@7/serial@0,3f8

5-8 — Themis Computer

Index

Numerics	device aliases 5-7
2-Level Watchdog Registers 4-10	environment variable 3-1
2 20 (01) 4 400140 8 110 8 10015 1 10	Environment Variables 5-2
A	OverTemp register 3-1
address map 1-1	P
C	Patch_status Register 4-6
cPCI_slot_ID Register 4-5	PCI
CPU junction temperature 3-2	address map 1-2 Advanced PCI Bridge (APB) Configuration
E	Space Registers 1-10
Encoding Table 4-5	Control and Status Registers 1-4 devices 1-3
F	PCI Bridge 21150 Registers 1-12
Flash PROM	Physical Memory Address Range 1-4
	PLD <i>4-1</i>
updating 5-5	PLD Registers <i>4-1</i>
Flash PROM/Rombo Address Mapping 4-4	PLD_ID/rev Register 4-3
Flash_status Register 4-3 FPGA	Programmable Logic Device 4-1
Status Register 4-1	Programmable Logic Device. See PLD
п	R
Н	Rio I/O Controller 4-1
Hysteresis register 3-1	
T	\mathbf{S}
I	SCSI_A_status Register 4-8
In Case Of Difficulties x	Semaphore_Request1 Register 4-11
Intended Audience ix	Semaphore_Status Register 4-10
	software 5-1
M	SUN Open Boot PROM 5-1
Misc_status Register 4-9	SUN Solaris Operating System 5-7
Mondo	Solaris 5-7
Dispatch Overview 2-2	SPARC V9 2-1
interrupt transfer mechanism 2-1	SUN OBP (Open Boot Prom) 5-1
	SUN Solaris 5-7
0	
OBP 5-1	

Themis Computer Index-1

\mathbf{T}

Temperature 3-1
Temperature Monitoring 3-1
Test_status Register 4-6
TTY/KBM_config Register 4-8

U

UltraSPARC-IIe
Clear Interrupt Register 2-5
CPU interrupt mechanism 2-1
Interrupt Mapping Registers 2-3
Interrupt Registers 2-3
Interrupt Vector Data Register 2-3
USPIIe-cPCI
address map 1-1
Interrupt Level Mapping 2-5
USPIIe-cPCI Software 5-1
USPIIe-cPCI software 5-1

\mathbf{V}

Voltage_status Register 4-7

W

Watchdog Registers *4-10* Winbond registers *3-1*

Index-2

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

 FAST SHIPPING AND DELIVERY TENS OF THOUSANDS OF **IN-STOCK ITEMS** EQUIPMENT DEMOS HUNDREDS OF SUPPORTED LEASING/MONTHLY

SECURE ASSET SOLUTIONS

Instra View REMOTE INSPECTION

SERVICE CENTER REPAIRS

Remotely inspect equipment before purchasing with our interactive website at www.instraview.com ↗

at our full-service, in-house repair center

Experienced engineers and technicians on staff

Contact us: (888) 88-SOURCE | sales@artisantg.com | www.artisantg.com

Sell your excess, underutilized, and idle used equipment We also offer credit for buy-backs and trade-ins www.artisantg.com/WeBuyEquipment >

WE BUY USED EQUIPMENT

LOOKING FOR MORE INFORMATION?

Visit us on the web at **www.artisantg.com** [→] for more information on price quotations, drivers, technical specifications, manuals, and documentation