

I 1881 BANGAR A CARAN HERA BORN BORN BORN BOR AN BORN BAN BAN BAN BAN BAN BAN BAN KARAN HOL AN ALAK

(43) 国際公開日 2004年7月1日 (01.07.2004)

国際事務局

PCT

(10) 国際公開番号 WO 2004/054555 A1

(51) 国際特許分類⁷: A61K 9/72, 9/14, 9/19, 38/28, A61P 5/50, 43/00, A61M 13/00, 15/00, A61J 3/02

(21) 国際出願番号:

PCT/JP2003/015931

(22) 国際出願日:

2003年12月12日(12.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-363158

JP 2002年12月13日(13.12.2002)

(71) 出願人(米国を除く全ての指定国について): 大塚 製薬株式会社 (OTSUKA PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒101-8535 東京都 千代田区 神田司町 2丁目9番地 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 山下 親正 (YA-MASHITA, Chikamasa) [JP/JP]; 〒772-0034 徳島県鳴 門市 大津町徳長字川向西ノ越11-5 Tokushima (JP). 赤木 亮之 (AKAGI,Akitsuna) [JP/JP]; 〒779-0225 徳島 県 鳴門市 大麻町桧字高麗 2-3 6 Tokushima (JP). 福 永裕一郎 (FUKUNAGA, Yuichiro) [JP/JP], 〒771-0203 徳島県 板野郡 北島町中村宇宮北裏27 リッチde北 島505号 Tokushima (JP).

[続葉有]

(54) Title: NOVEL DRY POWDER INHALATION SYSTEM FOR TRANSPULMONARY ADMINISTRATION

(54) 発明の名称: 新しい経肺投与用乾燥粉末吸入システム

It is intended to provide (57) Abstract: a novel dry powder inhalation system for transpulmonary administration which is suitable for transpulmonary administration. This novel dry powder inhalation system for transpulmonary administration comprises: (1) a container having a freeze-dried composition for transpulmonary administration which is prepared by freeze-drying a liquid composition containing a component in an undissolved state and has the following properties (i) to (iii): (i) being in the form of a non-powdery cake; (ii) having a disintegration index of 0.05 or more; and (iii) upon an air impact of an air speed of at least 1 m/sec and an air flow rate of at least 17 ml/sec, being disintegrated into fine particles having an average particle diameter (an aerodynamic particle diameter) of 10 μ m or less or an effective particle rate of 10% or more; combined with (2) a means of applying the above-described air impact to the freeze-dried composition in the above-described container, and a means of discharging the powdery freeze-dried composition having been disintegrated into fine particles.

(57) 要約: 本発明は、経肺投与に適した新規 な経肺投与用乾燥粉末吸入システムを提供 する。本発明の経肺投与用乾燥粉末吸入シ ステムは、(1)配合成分を非溶解状態で 含む組成液を凍結乾燥して調製してなる、 下記(i)~(iii)の特性:(i) 非粉末のケーキ状形 態を有する、(ii) 崩壊指数がO. 05以上で

ある、及び(iii)少なくとも1m/secの空気速度及び少なくとも17ml/secの空気流量を有する空気の衝撃を受けること によって、平均粒子径(空気力学的粒子径

- (74) 代理人: 三枝 英二 , 外(SAEGUSA,Eiji et al.); 〒 541-0045 大阪府 大阪市 中央区道修町 1-7-1 北浜TNKビル Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

⁾が10ミクロン以下または有効粒子割合が10%以上の微粒子になる:を有する経肺投与用の凍結乾燥組成物を 収容した容器と、(2)上記容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段、及び微粒子化さ れた粉末状の凍結乾燥組成物を排出する手段を備えたデバイスとを組み合わせて用いられる経肺投与用乾燥粉末吸 入システム。

明細書

新しい経肺投与用乾燥粉末吸入システム

5

技術分野

本発明は、経肺投与に適した新規な乾燥粉末吸入システムに関する。より詳細には、本発明は容器に収容して提供される凍結乾燥組成物を使用時に微粒子化することによって経肺投与に適した製剤形態に調製し、そのまま吸入投与できる経肺投与用乾燥粉末吸入システムに関する。

10 さらに、本発明は、当該経肺投与用乾燥粉末吸入システムに関連する下記の技術に関する。具体的には、かかる技術としては、使用時に経肺投与に適した微粒子粉末(経肺投与用乾燥粉末製剤)に調製可能な凍結乾燥組成物、当該経肺投与用乾燥粉末製剤の製造方法、上記凍結乾燥組成物を用いた吸入による経肺投与方法、並びに経肺投与用乾燥粉末製剤を使用時に製造するための凍結乾燥組成物の使用などを挙げることができる。

尚、以下、本明細書において微粒子という用語は、粉末(微粉末)状、針状、 板状及び繊維状などといった形状の別を問わず、微細な形状を有するものを包括 的に含む意味で用いられる。

20

25

背景技術

一般的に、経肺投与に際しては、医薬品に含まれる有効成分の平均粒子径を10ミクロン以下、望ましくは5ミクロン以下にすることによって該有効成分を効率良く肺へ到達させることができることが知られている。このため、従来の経肺投与用吸入剤は、医薬品原体を予め経肺投与に適した粒子径にするために、スプレードライ法やジェットミル法などで微粒子を調製し、またはさらに加工処理をして、これを吸入デバイスに充填して提供されているのが現状である。

具体的には、従来より、例えば乾燥粉末吸入剤として、(1)薬物微粒子のみからなる粉末状組成物を適当な容器に充填してなる製剤、(2)薬物微粒子同士が柔らかく造粒されて比較的大きな粒径を形成してなる粉末状組成物を適当な容器に

15

20

充填してなる製剤、および(3)薬物微粒子と該薬物微粒子より粒径の大きい賦 形剤粒子(乳糖など)とが均一に混合された混合粒子からなる粉末状組成物を適 当な容器に充填してなる製剤という、3種類のものが知られている(例えば、特 開平11-171760号公報等参照)。当該文献には、これらの乾燥粉末吸入剤 を気道内に投与すると、(1)は組成物中の該薬物微粒子が気管や気管支などの下 気道に到達し沈着し、(2)は造粒された薬物が気道内を飛行中に微粒子に解離し、 生成した薬物微粒子が気管や気管支などの下気道に到達し沈着し、(3)は賦形剤 が口腔内、咽頭あるいは喉頭に沈着して、薬物微粒子のみが気管や気管支などの 下気道に到達して沈着するといった挙動を示すことが記載されている。

このように、従来の経肺投与用乾燥粉末吸入剤は、予め吸入成分を望ましい微 10 粒子に製造した後、またはこの微粒子を何らかの方法で加工したものを、吸入デ バイスに充填したものを用いて経肺投与されている。

通常、低分子薬物は微粒子化するために、スプレードライ法(例えば、特開平 11-171760号公報等)やジェットミル法(例えば、特開2001-15 1673号公報等)等が用いられている。ここで用いられるジェットミル法は、 1000 L/min 以上の空気流量で、しかも音速以上の空気速度によって生じる空気衝 撃を低分子薬物に与えて該薬物を微粒子化する方法であって、低い空気衝撃で薬 物を微粒子化する方法については知られていない。

一方、ペプチドや蛋白質等の高分子薬物に関しては、例えば、添加剤を含む医 薬原液のスプレー溶液をスプレードライ法によってワンステップで平均粒子径5 ミクロン以下の微粒子とし、これを吸入デバイスに充填する方法(スプレードラ イ法:例えばWO95/31479等),ペプチドや蛋白質を添加剤と共に凍結乾 燥し、次いで該凍結乾燥物をジェットミル等で微粒子化してごれを吸入デバイス に充填する方法が知られている(凍結乾燥―ジェットミル法;例えばWO91/ 16038等)。 25

しかし、上記に示したスプレードライ法やジェットミル法で調製される従来の 経肺投与用乾燥粉末吸入剤は,特にペプチドや蛋白質等の高分子薬物には必ずし も理想的な製剤ではない。例えば、WO95/31479にスプレードライ工程 中にインターフェロンが約25%失活することが記載されているように、スプレ

ードライ法によると製造工程で蛋白質等が失活し、薬物活性が低下することが予想される。尚、高分子薬物についても、低分子薬物と同様に、低い空気衝撃で微粒子化する方法は知られていない。

また、スプレードライ法や凍結乾燥―ジェットミル法は、いずれも調製した微粉末をスプレードライ装置またはジェットミル装置から回収して容器に小分け充填するという操作が必要である。このため、かかる操作に伴って、回収や充填口スによる調製収率の低下及びそれに伴う原価コストの上昇、並びに製剤への夾雑物の混入等という問題が不可避的に生じてしまう。また、一般に粉末を微量で精度良く小分け充填することは困難である。従って、かかる粉末状での微量の小分け充填が必須であるスプレードライ法や凍結乾燥―ジェットミル法によると必然的に高精度な微量粉末充填法の確立が必要とされる。事実、例えば米国特許公報第5、826、633号公報には、微粉末を粉末充填するシステム、装置及び方法について詳細な内容が記載されている。

15

20

25

5

10

発明の開示

本発明は、上記従来の経肺投与用乾燥粉末吸入剤に関する種々の問題を解決することを目的とするものである。具体的には、本発明は容器内に収容された凍結乾燥組成物を、該容器内で経肺投与に適した粒子径に微粒子化し、そのまま吸入による経肺投与に使用できる新規な製剤システム並びに投与システムを提供することを目的とするものである。

本発明者らは、上記目的を達成するため日夜鋭意研究を重ねていたところ、有 効成分として薬理活性物質を容器に液充填して凍結乾燥法により調製した非粉末 状態の凍結乾燥組成物が、思いもよらず比較的低い空気衝撃で該容器内に収納さ れたままで微粒子化できることを見出した。かかる知見に基づいて、本発明者ら は更に研究を重ねることによって、容器内に非粉末状態で収容された凍結乾燥組 成物を、該組成物に所定の空気衝撃を与えるように容器内に所定の速度と流量で 空気を導入する手段と微粒子化された粉末組成物を容器から排出する手段とを備 えたデバイスと組み合わせて用いることによって、使用者において使用時(特に 吸入時)に且つ簡単に、凍結乾燥された非粉末製剤を経肺投与に適した微粒子状

25

態に調製でき、このため該微粒子をそのまま吸入服用することにより経肺投与が可能であることを見出した。更に、本発明者らは、容器に液充填する薬理活性物質含有組成液は、配合成分、特に有効成分である薬理活性物質が、溶媒に澄明に溶解若しくは澄明に混和している場合に限らず、溶媒に溶解しないか若しくは溶解しきれない状態(非溶解状態)で存在している場合であっても、所定の空気衝撃によって経肺投与に適した微粒子化可能な凍結乾燥組成物として調製できることを見出した。そして、本発明者らは、当該経肺投与用乾燥粉末吸入システムによれば、前述した従来の経肺投与用乾燥粉末吸入剤に関わる問題を全て解決できることを確認した。

10 すなわち、上記本発明の経肺投与システムによれば、別途装置で微粒子化した 後に容器に小分け充填する必要がないためコンタミネーションの問題なく、経肺 投与に供することができる。また、本発明の経肺投与用乾燥粉末吸入システムに よれば、薬効成分である蛋白質やペプチド等がスプレードライ法等のように製造 工程で高温に曝されることがないので、高温曝露による薬理活性の低下が問題と ならない。このことは高価な薬物であるペプチドや蛋白質等の薬理活性物質につ いて製剤製造コストが低下できること、すなわち本発明の経肺投与システムが経 済的においても有用であることを意味する。更にまた、本発明の経肺投与用乾燥 粉末吸入システムによれば極めて高い有効粒子割合(肺への薬剤の到達量: Fine Particle Fraction, Respirable Fraction)が得られ、薬物を効率良く肺へ到達 することが可能となる。

本発明の経肺投与用乾燥粉末吸入システムは、有効成分を含む非溶解状態の組成液を凍結乾燥して調製してなる非粉末のケーキ状形態の凍結乾燥組成物を経肺投与用の製剤として用いることを特徴とする。こうした調製されたケーキ状形態の凍結乾燥組成物を乾燥粉末吸入用デバイスに適用してなる本発明の乾燥粉末吸入システムによれば、従来の乾燥粉末吸入剤で採用される例えばジェットミル法やドライスプレー法に従って予め経肺投与に適した大きさに微粒子化してなる粉末状の製剤を本発明の乾燥粉末吸入用デバイスに適用した場合に比して、有意に高い有効粒子割合を得ることができる。こうしたことから、本発明の乾燥粉末吸入システムは高性能な経肺投与システムとして位置づけることができる。

本発明はかかる知見に基づいて開発されたものであり、下記の態様を含むものである。

- 項1. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下記
- (i)~(iii)の特性を有する経肺投与用の凍結乾燥組成物:
- 5 (i) 非粉末のケーキ状形態を有する、
 - (ii) 崩壊指数が0.05以上である、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる。
- 10 項2. 有効成分として高分子薬物を含む、項1に記載の凍結乾燥組成物。
 - 項3. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下記 特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05以上の崩壊指数を有する、及び
- 15 (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を 有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または 有効粒子割合が10%以上の微粒子になる

を有する凍結乾燥組成物を収容した容器に、上記容器内の凍結乾燥組成物に上記 の空気衝撃を与えることのできるデバイスを用いて、当該空気衝撃を備えた空気

20 を導入し、

それによって上記凍結乾燥組成物を平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子とする,経肺投与用乾燥粉末製剤の製造方法。

- 項4. 凍結乾燥組成物が有効成分として高分子薬物を含むものである請求項3 に記載の経肺投与用乾燥粉末製剤の製造方法。
- 25 項5. デバイスとして下記(A)または(B)に記載の乾燥粉末吸入デバイス を用いて凍結乾燥組成物を微粒子化することを特徴とする項3に記載の経肺投与 用乾燥粉末製剤の製造方法:
 - (A) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を被験者に吸入させるために用いられるデバイスであって、

15

25

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と 前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて 前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物 を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるよ うに構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイス;または

(B) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られ 10 た微粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾 燥粉末吸入デバイス。

- 項6.(1)配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、 20 下記特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 崩壊指数が0.05以上である、及び
 - (iii)少なくとも $1\,\text{m/sec}$ の空気速度及び少なくとも $1\,7\,\text{ml/sec}$ の空気流量を有する空気の衝撃を受けることによって、平均粒子径が $1\,0\,\text{S}$ クロン以下または有効粒子割合が $1\,0\,\text{S}$ 以上の微粒子になる:

を有する凍結乾燥組成物を収容した容器と、

(2) 上記容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段、 及び微粒子化された粉末状の凍結乾燥組成物を排出する手段を備えたデバイスと を組み合わせて用いられる経肺投与用乾燥粉末吸入システム。

15

- 項7. 吸入時に上記容器と上記デバイスとが組み合わされて用いられる、項6 に記載の経肺投与用乾燥粉末吸入システム。
- 項8. 凍結乾燥組成物が有効成分として高分子薬物を含むものである項6に記載の経肺投与用乾燥粉末吸入システム。
- 5 項9. デバイスとして、下記
 - (A) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を使用者に吸入させるために用いられるデバイスであって、

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを 備え、

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイス、または

(B) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

20 前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾 25 燥粉末吸入デバイス

を用いる項6に記載の経肺投与用乾燥粉末吸入システム。

- 項10. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、 下記特性:
 - (i) 非粉末のケーキ状形態を有する、

- (ii) 0.05以上の崩壊指数を有する、及び
- (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる:
- 5 を有する凍結乾燥組成物に、使用時に上記の空気衝撃を与えることによって平均 粒子径が10ミクロン以下または有効粒子割合が10%以上になるように微粒子 化し、該微粒子化された粉末を使用者に吸入により投与させることを含む、経肺 投与方法。
- 項11. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、当 該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子 化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用 いて調製されるものである、項10に記載の経肺投与方法。
 - 項12. 凍結乾燥組成物が有効成分として高分子薬物を含むものである項10 に記載の経肺投与方法。
- 15 項13. デバイスとして下記(A)または(B)に記載する乾燥粉末吸入デバイスを用いる項11に記載の経肺投与方法:
 - (A) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を使用者に吸入させるために用いられるデバイスであって、
- 空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流 20 路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを 備え、

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイス、または

(B) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通

する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾 燥粉末吸入デバイス。

項14. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、 下記特性:

- 10 (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05以上の崩壊指数を有する、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる:
- 15 を有する凍結乾燥組成物を、上記平均粒子径または有効粒子割合を有する微粒子 に粉末化して用いる、凍結乾燥組成物の吸入による経肺投与への使用。
 - 項15. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、 当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒 子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを
- 20 用いて調製されるものである、項14に記載の凍結乾燥組成物の経肺投与への使 用。
 - 項16. 凍結乾燥組成物が有効成分として高分子薬物を含むものである項14 に記載の凍結乾燥組成物の経肺投与への使用。
- 項17. 吸入による経肺投与用の乾燥粉末製剤の製造のための、下記凍結乾燥 25 組成物の使用:
 - (i)配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、
 - (ii) 非粉末のケーキ状形態を有する、
 - (iii) 0.05以上の崩壊指数を有する、及び
 - (iv)少なくとも 1m/sec の空気速度及び少なくとも 17ml/sec の空気流量を有

する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有 効粒子割合が10%以上の微粒子になる、

という特性を有し、使用時に上記平均粒子径または上記有効粒子割合になるよう に微粒子化して用いられる凍結乾燥組成物。

- 5 項18. 凍結乾燥組成物が有効成分として高分子薬物を含むものである、項1 7に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 項19. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、 当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒 子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを 用いて調製されるものである、項17に記載の経肺投与用の乾燥粉末製剤の製造 のための凍結乾燥組成物の使用。
 - 項20. 経肺投与用乾燥粉末製剤を調製するための下記特性を有する凍結乾燥組成物を製造するための、配合成分を非溶解状態で含む組成液の使用:
 - (i) 非粉末のケーキ状形態を有する、
- 15 (ii) 0. 05以上の崩壊指数を有する、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる、

という特性を有し、使用時に上記平均粒子径または上記有効粒子割合になるよう 20 に微粒子化して用いられる凍結乾燥組成物。

- 項21. 凍結乾燥組成物が有効成分として高分子薬物を含むものである、項2 0に記載の配合成分を非溶解状態で含む組成液の使用。
- 項22. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、 当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒 子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを 用いて調製されるものである、項20に記載の配合成分を非溶解状態で含む組成 液の使用。

図面の簡単な説明

図1は、実施態様例1として記載する本発明の乾燥粉末吸入デバイス(噴射型1) を示す断面図である。なお、図中、矢印は外部エアーの流れを示す(以下、図2 及び3において同じ)。

- 5 また各符号の意味は下記の通りである: 1. 容器、1 a. 口栓、2. 凍結乾燥組成物、3. 空気噴射流路、4. 排出流路、5. 針部、6. 吸入口、7. 吸気部材、8. 筒状安全カバー、9. 空気圧送手段、10. ベロー体、11. 吸込弁、12. 吸込口、13. 吐出弁、14. 吐出口、15. 接続口(以下、図2~11において同じ)。
- 10 図2は、実施態様例2として記載する本発明の乾燥粉末吸入デバイス(自己吸入型1)を示す断面図である。また各符号の意味は下記の通りである:16.吸引流路、17.空気導入流路、18.吸入口、19.吸気部材(以下、図3において同じ)。

図3は、実施態様例3として記載する本発明の乾燥粉末吸入デバイス(自己吸 15 入型2)を示す断面図である。

図4は、実施態様例4として記載する本発明の乾燥粉末吸入デバイス(自己吸入型3)を示す斜視図である。また各符号の意味は下記の通りである:21.ハウジング、22.ホルダー部、27.蓋、28.窓、32.マウスピース、32a.マウスピースのキャップ、39.連結体(以下、図5~13において同じ)。

20 図5は、上記乾燥粉末吸入デバイス(自己吸入型3)の断面図である。また各符号の意味は下記の通りである:20.収容室、21A.ヒンジ、23.ガイド部、24.ホルダー作動部、26.ハウジング本体、29.導入口、30.逆止弁、31.吸引口、33.隔壁部、35.取り出し体、36.レバー、37.機構部、39.連結体、40.ヒンジ、41.ヒンジ(以下、図6~13において25 同じ)。

図6の(a)は、上記乾燥粉末吸入デバイス(自己吸入型3)の部分断面図、

(b) は同乾燥粉末吸入デバイスの針部の側面図である。また各符号の意味は下記の通りである:16a. 吸引流路16の先端口、17a. 空気導入流路17の 先端口、34. 周壁部、42. 第2導入路、42a. 隔壁部33の導入溝、42

PCT/JP2003/015931

b. 周壁部34の導入溝、43. 隙間、44. 第2導入路42の一端、45. 第 2導入路42の他端、46. 通気孔、47. 壁 (以下、図7~13において同じ)。

図7~図10は、上記乾燥粉末吸入デバイス(自己吸入型3)の動作を説明する断面図である。符号25は出し入れ口を示す。

5 図11は、本発明の他の実施態様である乾燥粉末吸入デバイス(自己吸入型4) の斜視図である。符号48は操作体を示す。

図12は、本発明のその他の実施形態の乾燥粉末吸入デバイス(自己吸入型5)の斜視図である。符号49は操作体を示す。

図13は、本発明のその他の実施形態の乾燥粉末吸入デバイス(自己吸入型5) 10 の斜視図である。符号49は操作体を示す。

発明を実施するための最良の形態

(1) 凍結乾燥組成物

20

本発明の凍結乾燥組成物は、配合成分を非溶解状態で含む組成液を容器に液充 填し、そのまま凍結乾燥することによって非粉末の乾燥状態に調製されてなる組 成物である。好ましくは単回若しくは数回投与の有効量、特に好ましくは単回投 与分の有効量の有効成分を含む非溶解状態の組成液を凍結乾燥して調製される凍 結乾燥組成物である。

本発明の凍結乾燥組成物は、凍結乾燥処理によって得られる非粉末組成物の崩壊指数が0.05以上になるように上記組成液の組成(有効成分、並びに該有効成分と併用する担体の種類及びその量)を選択して調製することによって、容器内に導入(流入)された空気の衝撃(空気衝撃、噴射圧)により、瞬時もしくは速やかに経肺投与に適した粒子径まで微粒子化することができる。

ここで、本発明でいう崩壊指数は、凍結乾燥組成物について下記の方法に従っ 25 て測定することによって得ることができる当該凍結乾燥組成物固有の値である: <崩壊指数>

胴径 φ18mm あるいは胴径 φ23mm の容器に、対象とする凍結乾燥組成物を構成する目的の成分を含有する組成液を 0.2~0.5ml の範囲で液充填して、それを凍結乾燥する。次いで得られた非粉末状の凍結乾燥組成物に、n-ヘキサンを容器の壁

を通じて静かに1.0ml 滴下する。これを 3000rpm で約10秒間攪拌させた混合 液を光路長 1mm, 光路幅 10mm の UV セルに投入し, 速やかに分光光度計を用いて測 定波長 500mm で濁度を測定する。得られた濁度を凍結乾燥組成物を構成する成分 の総量(重量)で割り、得られた値を崩壊指数と定義する。

ここで本発明の凍結乾燥組成物が備える崩壊指数の下限値としては、上記の0. 5 好ましくは0.08、より好ましくは0.09、さらに好ましくは0. 1、よりさらに好ましくは0. 1 1、更により好ましくは0. 1 2、特に好まし くは0.13を挙げることができる。

また本発明の凍結乾燥組成物が備える崩壊指数の上限値としては特に制限され ないが、1.5、好ましくは1、より好ましくは0.9、さらに好ましくは0.10 8、更により好ましくは0.7、特に好ましくは0.6、特により好ましくは0. 5を挙げることができる。好適には本発明の凍結乾燥組成物は、0.05以上で あることを限度として、上記から任意に選択される下限値と上限値から構成され る範囲内にある崩壊指数を有することが望ましい。例えば、崩壊指数の範囲とし て具体的には0.05~1.5、0.08~1.5、0.09~1、0.1~0. 15 9、0.10~0.8、0.1~0.7、0.1~0.6、0.1~0.5を例 示することができる。

本発明の凍結乾燥組成物は、凍結乾燥によって非粉末のケーキ状の形態に調製 されてなるものである。本発明において非粉末状の凍結乾燥組成物とは、有効成 分を含有する組成液を凍結乾燥して得られる乾燥固体であり、通常、凍結乾燥ケ ーキと呼ばれるものを意味する。但し、凍結乾燥工程あるいはその後のハンドリ ングでケーキにひびが入ったり、数個の大きな塊になったり、一部が破損して粉 状になったものも、本発明の効果を損なわないことを限度として本発明が対象と する非粉末状の凍結乾燥組成物、すなわち非粉末のケーキ状形態を有する凍結乾 燥組成物に包含される。 25

本発明の凍結乾燥組成物は、前述するように配合成分を非溶解状態で含む組成 液を凍結乾燥して調製されるものであって、0.05以上の崩壊指数と、非粉末 のケーキ状の形態を備えており、さらに上記崩壊指数で表現される該凍結乾燥組 成物の固有の性質に基づいて、少なくとも1m/sec の空気速度及び少なくとも1

10

20

7ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が1 0ミクロン以下または有効粒子割合が10%以上の微粒子になることを特徴とす るものである。

好ましい凍結乾燥組成物としては、上記空気衝撃を受けることによって、平均 粒子径が10ミクロン以下、好ましくは5ミクロン以下、または有効粒子割合が 10%以上、好ましくは20%以上、より好ましくは25%以上、さらに好まし くは30%以上、特に好ましくは35%以上の微粒子になるものを挙げることが できる。

なお、凍結乾燥組成物に与える空気衝撃は、1m/sec 以上の空気速度及び17 ml/sec 以上の空気流量を有する空気によって生じる衝撃であれば特に制限され ない。具体的には、上記の空気衝撃としては、 $1\,\mathrm{m/sec}$ 以上、好ましくは $2\,\mathrm{m/sec}$ 以上、より好ましくは5m/sec 以上、よりさらに好ましくは 10m/sec 以上の空気 速度によって生じる衝撃を例示することができる。ここで空気速度の上限として は、特に制限されないが、通常300m/sec、好ましくは250m/sec、より好ま しくは200m/sec、よりさらに好ましくは150m/sec を挙げることができる。 15 なお、空気速度は、上記から任意に選択される下限と上限から構成される範囲内 にあれば特に制限されないが、具体的には $1\sim300\,\mathrm{m/sec}$ 、 $1\sim250\,\mathrm{m/sec}$ 、 $2\sim250 \text{ m/sec}$, $5\sim250 \text{ m/sec}$, $5\sim200 \text{ m/sec}$, $10\sim200 \text{ m/sec}$, 1 $0\sim150$ m/sec の範囲を挙げることができる。

また、上記の空気衝撃としては、通常17ml/sec以上、好ましくは20ml/sec 以上、より好ましくは25ml/sec以上の空気流量によって生じる衝撃を例示する ことができる。ここで空気流量の上限は、特に制限されないが、900L/min、好 ましくは15L/sec、より好ましくは10L/sec、さらに好ましくは5L/sec、さら により好ましくは4L/sec、特に好ましくは3L/sec である。具体的には、空気流 量は上記から任意に選択される下限と上限から構成される範囲内にあればよく、 25 特に制限されないが、かかる範囲としては例えば17ml/sec~15L/sec、20 ml/sec \sim 1 OL/sec. 2 Oml/sec \sim 5L/sec. 2 Oml/sec \sim 4L/sec. 2 Oml/sec ~3L/sec、25ml/sec~3L/sec を挙げることができる。

本発明に用いられる有効成分は、原則として経肺投与用乾燥粉末吸入剤の成分

として使用できる薬理学的に何らかの活性を有する物(薬理活性物質:以下、単に薬物ともいう)ではあれば特に限定されないが,具体的には低分子薬物及び高分子薬物を挙げることができる。なお、高分子薬物には、酵素、ホルモン及び抗体などの蛋白質類(ペプチド及びポリペプチドを含む)、並びにDNA(遺伝子、c DNAを含む)やRNA等の核酸といったような生理活性成分が含まれる。

また、薬物の対象疾患としては、場合により、全身療法と局所療法の2つが考えられる。

低分子薬物としては、例えば、ヒドロコルチゾン、プレドニゾロン、トリアムシノロン、デキサメタゾン、ベタメタゾン、ベクロメタゾン、フルチカゾン、モメタゾン、ブデソニド、サルブタモール、サルメテロール、プロカテロール、塩酸ププレノルフィン、アポモルフィン、タキソール、及びトブラマイシン等の抗生物質などが挙げられる。

高分子薬物(蛋白質類や核酸等の生理活性成分)としては、例えば、インター フェロン (α, β, γ) , インターロイキン (例えばインターロイキンー1, 2, 3, 4, 5. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1 15 7, 18等), 抗インターロイキン -1α 抗体, インターロイキン-1受容体, インターロイキン受容体アンタゴニスト,インターロイキン-4受容体,抗イン ターロイキンー2抗体、抗インターロイキンー6受容体抗体、インターロイキン - 4アンタゴニスト、インターロイキン-6アンタゴニスト、抗インターロイキ ン-8抗体,ケモカイン受容体アンタゴニスト,抗インターロイキン-7受容体, 20 抗インターロイキンー7抗体、抗インターロイキンー5抗体、インターロイキン -5受容体, 抗インターロイキン-9抗体, インターロイキン-9受容体, 抗イ ンターロイキンー10抗体、インターロイキン-10受容体、抗インターロイキ ン-14抗体,インターロイキン-14受容体,抗インターロイキン-15抗体, インターロイキン-15受容体、インターロイキン-18受容体、抗インターロ 25 イキン-18抗体,エリスロポエチン(EPO),エリスロポエチン誘導体,顆粒球 コロニー刺激因子(G-CSF), 顆粒球マクロファージ・コロニー刺激因子(GM-CSF), マクロファージ. コロニー刺激因子 (M-CSF) ,カルシトニン, インスリン, イン スリン誘導体 (LisPro, NovoRapid, HOE901, NN-304 等), インスルノトロピン,

インスリン様成長因子、グルカゴン、ソマトスタチンまたはそのアナログ、バソ プレッシンまたはそのアナログ,アミリン,ヒト成長ホルモン,黄体形成ホルモ ン放出ホルモン、卵胞刺激ホルモン、成長ホルモン放出因子、副甲状腺ホルモン、 血管内皮細胞成長因子、血小板由来増殖因子、ケラチノサイト成長因子、上皮細 胞成長因子, 繊維芽細胞成長因子, 脳由来神経栄養因子, 毛様体神経栄養因子, 5 腫瘍壊死因子 (TNF), TNF受容体, TNF阻害剤, トランスフォーミング成長 因子 (TGF), 肝細胞成長因子 (HGF), 神経成長因子(NGF), 血液幹細胞成長因子, 血小板増殖因子、ナトリウム利尿ペプチド、血液凝固因子、血液肝細胞成長因子 (S-CSF), FLT3 リガンド, 抗血小板凝集阻害モノクローン抗体, ティッシュ・プ ラスミノーゲン・アクチベータまたはその誘導体、スーパーオキサイド・ディス 10 ムターゼ、アンチセンス医薬、免疫抑制剤(例えば、シクロスポリン、タクロリ ムス水和物など),癌抑制遺伝子 p53,嚢胞性線維症膜貫通型調節蛋白 (CFTR) 遺 伝子, RNA interferance(RNAi), Bridged Nucleic Acid(BNA), αー1アンチトリ プシン, トロンボポエチン (TPO), メタスタチン, デオキシリボヌクレアーゼ (Dnase),プロラクチン,オキシトシン,サイロトピン放出ホルモン(TRH),殺 15 菌性/透過性増加タンパク質(BPI), 並びにインフルエンザワクチン, エイズワク チン, ロタウイルスワクチン, マラリアワクチン、及びMtb72f 等の結核ワクチン 等のワクチン製剤などを挙げることができる。

これらの有効成分は1種単独で又は2種以上組み合わせて使用することができ 20 る. なお、上記各種ペプチド類には、天然型ポリペプチド、遺伝子組み替え型ポ リペプチド、化学合成によるポリペプチド等も包含される。

また、これらの有効成分は、それ自体フリー若しくは塩の状態で用いてもよいし、また任意の保持体に保持された形態で用いることができる。かかる保持体としては、有効成分 (例えば、蛋白質類や核酸などの高分子薬物、合成低分子薬物を含む)を任意の付着/存在態様 (吸着、内包、包接、イオン結合など)で保持できるものであれば特に制限されず、例えば脂質膜構造体、マイクロカプセル、シクロデキストリン、デンドリマー、マイクロスフェア、ナノカプセル、ナノスフェア等を挙げることができる。なお、ここで脂質膜構造体には、一枚膜リポソームや多重層リポソーム等のリポソーム、〇/W型またはW/〇/W型のエマル

20

25

ジョン、球状ミセル、ひも状ミセル、層状構造物などが含まれる。

また、デンドリマーとは、一般に分子の鎖が一定のルールに基づいて中心から 外方向へ三次元的に規則正しく広がった形をした分子である。デンドリマーは球 状構造を持ち、その内部に薬物を取り込むスペースを持つため、ナノカプセルと して機能することができる。 デンドリマー内部に薬物を保持させるためには、1) デンドリマー内部と薬物との相互作用(疎水性相互作用、静電相互作用など)を 利用する、あるいは2) デンドリマー表面に緻密なシェル構造を形成させ、薬物 を物理的にトラップする等の方法が知られている(文献:河野健司:Drug Delivery System, 17-6,462-470(2002)。なお、実施例で使用する SuperFect は一定の形状 の活性型デンドリマー分子から形成されている(文献:Tang, M. X, Redemann, C. T. 10 and Szoka, Jr. F. C: In vitro gene delivery by degraded Polyamidoamine dendrimers. Bioconjugate Chem. 7,703(1996))。これらの分子は中心から枝分か れし、末端にはプラスに荷電したアミノ基を有し、核酸のリン酸基(マイナスに 荷電)と相互作用するように構成されている。また、SuperFect は DNA や RNA が 細胞に導入しやすいように、DNA や RNA をコンパクトな形に凝縮する性質を有し 15 ている。

保持体として好ましくは、リポソーム、デンドリマー、レトロウィルスベクタ ー、アデノウィルスベクター、アデノ随伴(Adeno-associated virus)ウィルス ベクター、レンチウィルス、単純ヘルペスウィルスベクター、HVJ (Sendai virus)-リポソーム (例えば、HVJ Envelope VECTOR KIT 等を挙げることができる。

ここで、脂質膜構造体やデンドリマー等の保持体は、外来遺伝子を細胞内に導 入するために従来より広く用いられており、本発明においてもかかる遺伝子導入 用リポソームや遺伝子導入用デンドリマーを同様に用いることができる。また、 これらは商業的に入手可能である。

なお、保持体の粒子径 (幾何学的平均粒子径:動的光散乱法またはレーザー回 折・散乱法)は、10ミクロン以下であれば特に制限されない。好ましくは5ミ クロン以下である。例えばリポソームやエマルションは、通常、粒子径(幾何学 的平均粒子径: 動的光散乱法またはレーザー回折・散乱法)が $50 \,\mathrm{m}$ から数 $\mu \,\mathrm{m}$ であり、球状ミセルは粒子径が5~50nmである。

25

尚、幾何学的平均粒子径の測定方法としては、一般的には、数十ナノメーター 領域の粒子の粒度分布には、動的光散乱法が用いられ、数十ミクロン以上の粒子 の粒度分布にはレーザー回折・散乱法が用いられる。その中間である数百ナノメ ーターから数ミクロン領域の粒子の粒度分布測定には、いずれの測定方法を用い ても良い。

これらの保持体への有効成分 (例えば、遺伝子等の核酸) の保持態様としては、 特に制限されず、例えば脂質膜構造体の場合は、脂質膜構造体の膜中、表面、内 部、脂質層中または脂質層表面に任意の付着/存在態様で存在する場合を例示す ることができる。

10 かかる保持態様を形成する方法としては、脂質膜構造体等の保持体と有効成分 (遺伝子など)の混合乾燥物に水系溶媒を添加し、さらにホモジナイザーなどの 乳化機で乳化するか若しくは懸濁する方法;脂質膜構造体等の保持体を有機溶媒 で一旦溶解後、該溶媒を留去して得られた乾燥物に、更に遺伝子を含む水系溶媒 を添加して乳化する方法;水系溶媒に既に分散した脂質膜構造体等の保持体に、

15 さらに有効成分(遺伝子など)を含む水系溶媒を添加する方法;並びに、いった ん脂質膜構造体等の保持体を水系溶媒に分散した後に乾燥させた乾燥物を、有効 成分(遺伝子など)を含む水系溶媒を添加する方法を挙げることができる(特開 2001-2592 号公報参照)。

なお、大きさ(粒子径)を制御したい場合には、孔径のそろったメンプランフィルターを用いて、高圧力下でイクストルージョン (押し出し濾過)を行う方法、または加圧型整粒器 (Extruder)を用いる方法 (例えば、特開平 6-238142 号公報参照)を行うことができる。

本発明の凍結乾燥組成物は、配合成分(上記有効成分を包含する)を非溶解状態で含有する組成液を凍結乾燥して調製されるものであることを特徴の一つとする。ここで非溶解状態とは、配合成分が組成液を構成する溶媒に澄明な状態で溶解しているか若しくは澄明な状態で混和しているかのいずれでもない状態を意味する。かかる非溶解状態には、溶媒中に固形物が任意の手段で検出可能な状態で存在している状態が含まれる。具体的には、溶媒中に、 0.01μ m以上、好ましくは 0.05μ m以上、より好ましくは 0.1μ 以上、さらに好ましくは 0.2μ m以上、

10

15

20

25

より一層好ましくは 0.5μm以上の幾何学的平均粒子径 (動的光散乱法またはレ

ーザー回折・散乱法)を有する固形物の存在が検出できる場合を挙げることがで きる。本発明の目的が達成できるものであれば、これらの固形物の幾何学的平均 粒子径(動的光散乱法またはレーザー回折・散乱法)の上限は特に制限されない が、通常 $20\,\mu$ m以下、好ましくは $15\,\mu$ m以下、より好ましくは $10\,\mu$ mを挙げる ことができる。より具体的には、本発明でいう「非溶解状態」には、溶媒中に、 幾何学的平均粒子径(動的光散乱法またはレーザー回折・散乱法)が 0.01~20 μ m, $0.05\sim15\,\mu$ m, $0.1\sim15\,\mu$ m, $0.2\sim15\,\mu$ m, $0.5\sim15\,\mu$ m, $0.05\sim10\,\mu$ m, 0.1 $\sim 10\,\mu\,\mathrm{m}$ 、 $0.2\sim 10\,\mu\,\mathrm{m}$ 、または $0.5\sim 10\,\mu\,\mathrm{m}$ の範囲にある固形物が、任意の手段 で検出可能な状態で存在している状態が含まれる。かかる非溶解状態の具体的な 態様としては、配合成分が溶媒中に溶解しきれずに飽和以上になって存在してい る状態、並びに配合成分が溶媒中に溶解しないで存在している状態、すなわち溶 媒に対して非溶解性若しくは難溶解性の有効成分が溶媒中に懸濁もしくは混濁し ている状態を挙げることができる。なお、非溶解状態を具体的に評価する方法と して、試料の濁度を測定するのが一般的であるが、粒度分布測定装置で不溶解物 の粒度分布を測定する方法を用いることもできる。後者の方法は、具体的には、 対象とする非溶解状態の組成液を、蒸留水または生理食塩液を用いて粒径測定に 適した濃度に希釈した後、セルに入れて十分攪拌し、得られた希釈液中に存在す る粒子の粒子径を粒度分布測定装置で測定することによって実施することができ る。

また、ここで配合成分が非溶解状態であるとは、有効成分や後述する担体その ものが溶媒に非溶解状態にある場合のみならず、例えば上記リポソーム、マイク ロカプセル、シクロデキストリン、デンドリマー等の保持体に保持された有効成 分が該保持体に保持された状態で溶媒に溶解状態にあるが、リポソーム等の保持 体が非溶解状態である場合をも含む意味で用いられる。なお、配合成分が非溶解 状態にある限りにおいて、当該非溶解状態の配合成分が有効成分であるか、また 有効成分とともに組成液に配合される保持体若しくは他の任意成分(後述)であ るかの別は特に制限されない。

なお、ここで配合成分とともに組成液を構成する溶媒としては、特に制限され

ないが、水、生理食塩液等の等張液、培地、または緩衝液等を挙げることができる。また、当該溶媒中には、最終調製物(経肺投与用凍結乾燥組成物)が人体に悪影響を与えないことを限度として、有機溶媒が含まれていてもよい。かかる有機溶媒としてメタノール、エタノール、イソプロピルアルコール、アセトン、エチレングリコール等を例示することができる。

本発明の凍結乾燥組成物は、最終調製物が上記の崩壊指数を充足するものであれば、上記の有効成分単独または有効成分と保持体からなるものであってもよいし、また適切な担体を配合していてもよい。有効成分に加えて担体を用いる場合、使用できる担体の種類及びその量は、それを有効成分とともに含む、非溶解状態の組成液を凍結乾燥して調製される最終凍結乾燥組成物が、下記(i)~(iii)の特性:

- (i) 非粉末のケーキ状形態を有する、
- (ii) 崩壊指数が0.05以上である、及び
- (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有 する空気の衝撃を受けることによって、平均粒子径10ミクロン以下または有効 粒子割合が10%以上の微粒子になる、

を充足し、本発明の効果(微粒子化)を達成できるものであれば特に制限される ことなく、従来より凍結乾燥に使用されている担体を任意にまた所望量、使用す ることができる。

20 かかる担体として、具体的には、例えばバリン、ロイシン、イソロイシン、フェニルアラニン等の疎水性アミノ酸またはこれらの塩若しくはアミド;グリシン、プロリン、アラニン、アルギニン、グルタミン酸等の親水性アミノ酸またはこれらの塩若しくはアミド;アミノ酸の誘導体;上記アミノ酸を同一または異なって2以上有するジペプチド、トリペプチドまたはこれらの塩若しくはアミドを挙げることができる。これらは1種若しくは2種以上組み合わせて用いることができる。ここでアミノ酸またはペプチドの塩としては、ナトリウムやカリウムなどのアルカリ金属やカルシウムなどのアルカリ土類金属との塩;燐酸、塩酸等の無機酸やスルホン酸等の有機酸との付加塩等を、またアミドとしては、例えばLーロイシンアミド塩酸塩を挙げることができる。また、担体としてαーアミノ酸以外

20

25

のアミノ酸を配合することもでき、かかるアミノ酸としては β - アラニン, γ - アミノ酪酸,ホモセリン,タウリン等を例示することができる。

さらに他の担体として、ブドウ糖等の単糖類;ショ糖、麦芽糖、乳糖、トレハロース等の二糖類;マンニット等の糖アルコール、シクロデキストリン等のオリゴ糖類、デキストラン40やプルラン等の多糖類;ポリエチレングリコール等の多価アルコール;カプリン酸ナトリウムなどの脂肪酸ナトリウム等を挙げることができる。なお、これらの担体は1種単独で配合されても、また2種以上組み合わせて配合されても良い。

この中でも有効成分を効率良く肺へ到達させる好ましい担体としては、具体的には、イソロイシン、バリン、ロイシン、フェニルアラニン等の疎水性アミノ酸またはこれらの塩若しくはアミド;ロイシルーバリン、ロイシルーフェニルアラニン、フェニルアラニルーイソロイシン等の疎水性ジペプチド;およびロイシルーロイシルーロイシン、ロイシルーロイシルーバリン等の疎水性トリペプチドなどを例示することができる。これらもまた、1種単独で配合されても、2種以上組み合わせて配合されても良い。

なお、インターフェロンーγの場合、微粉末化と製剤安定性の点から、上記疎水性アミノ酸またはこれらの塩若しくはアミド、疎水性ジペプチド及び疎水性トリペプチドに加えて、塩基性アミノ酸またはこれらの塩若しくはアミド、塩基性ジペプチド及び塩基性トリペプチドを組み合わせて用いることが好ましい。ここで塩基性アミノ酸としては、アルギニン、リジン、ヒスチジン及びその塩を挙げることができる。好ましくは、フェニルアラニンと塩酸アルギニンの組み合わせ、フェニルアラニン、ロイシンと塩酸アルギニンとの組み合わせである。

凍結乾燥組成物に含まれる有効成分(薬物)の含有割合は特に制限されないが, 含有量として、20mg以下、好ましくは10mg以下、より好ましくは5mg 以下、さらに好ましくは2mg以下、特に好ましくは1mg以下を例示すること ができる。

また、上記担体の配合割合は、最終の凍結乾燥組成物が上記(i) \sim (iii)の特性を充足するものであれば、特に制限されない。限定はされないが、一つの目安として、凍結乾燥組成物 100 重量%あたり、通常 $0.1\sim100$ 重量%未満、好ま

10

15

'20

25

しくは $1\sim100$ 重量%未満、より好ましくは $10\sim100$ 重量%未満、特に好ましくは $20\sim100$ 重量%未満の範囲を例示することができる。

なお、本発明が対象とする凍結乾燥組成物には、上記(i)~(iii)の特性を充足し、本発明の効果を損なわないことを限度として、上記成分に加えて更に、凍結乾燥前の組成液中での有効成分の安定化、乾燥後の有効成分の安定化、容器への有効成分の吸着防止等のために、各種添加剤を配合してもよい。例えば、ヒト血清アルブミン、無機塩、界面活性剤、緩衝剤などを含んでいてもよい。界面活性剤には、通常医薬品に適用される界面活性剤であれば、アニオン性界面活性剤、カチオン性界面活性剤及び非イオン性界面活性剤の別を問わず、広く用いることができる。好適には、ポリオキシエチレンソルビタン脂肪酸エステル(例えば、Tween型界面活性剤)、ソルビタントリオレート等の非イオン性界面活性剤を例示できる。

また、かかる有効成分、及び任意成分を含んでいても良い組成液を凍結乾燥する方法は特に制限されず、用時溶解型の注射剤等のような一般的な凍結乾燥製剤 (凍結乾燥組成物)の製造に慣用的に用いられる凍結乾燥法を用いることができる。制限はされないが、場合によっては、凍結乾燥条件を工夫して、急速に凍結乾燥することも可能である。

本発明の凍結乾燥組成物は、所定の空気衝撃を付与することによって、経肺投与に適した状態にまで微粒子することができる。よって、本発明の凍結乾燥組成物は経肺投与用の粉末製剤を調製するのに適した、いわゆる経肺投与粉末製剤の前調製物(経肺投与粉末製剤調製用の凍結乾燥組成物)として提供することができる。

なお、本発明の凍結乾燥組成物には下記に掲げる具体的態様物が含まれる:

- 101. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製されるものであって、下記(i)~(iii)の特性を有する経肺投与用の凍結乾燥組成物:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 崩壊指数が0.05以上である、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有

PCT/JP2003/015931

10

効粒子割合が10%以上の微粒子になる。

- 102. 崩壊指数が 0.05~1.5である、態様項 101 に記載の凍結乾燥組成物。
- 103. 少なくとも 2 m/sec の空気速度及び少なくとも 1 7 ml/sec の空気流量を 有する空気の衝撃を受けることによって平均粒子径が 1 0 ミクロン以下または有 効粒子割合が 1 0 %以上の微粒子になる、態様項 101 に記載の凍結乾燥組成物。
 - 104. $1 \sim 300 \, \text{m/sec}$ の範囲にある空気速度及び少なくとも $17 \, \text{ml/sec}$ の空気流量を有する空気の衝撃を受けることによって平均粒子径が $10 \, \text{S}$ クロン以下または有効粒子割合が $10 \, \text{S}$ 以上の微粒子になる、態様項 $101 \, \text{C}$ に記載の凍結乾燥組成物。
 - 105. 少なくとも 1 m/sec の空気速度及び少なくとも 2 0 ml/sec の空気流量を有する空気の衝撃を受けることによって平均粒子径が 1 0 ミクロン以下または有効粒子割合が 1 0 %以上の微粒子になる、態様項 101 に記載の凍結乾燥組成物。
- 106. 少なくとも 1 m/sec の空気速度及び 1 7 ml/sec ~ 1 5 L/sec の範囲の空 気流量を有する空気の衝撃を受けることによって平均粒子径が 1 0 ミクロン以下 または有効粒子割合が 1 0 %以上の微粒子になる、態様項 101 に記載の凍結乾燥 組成物。
 - 107. 空気の衝撃を受けることによって、平均粒子径が5ミクロン以下または有効粒子割合が20%以上の微粒子になる態様項101に記載の凍結乾燥組成物。
- 20 108. 有効成分として低分子薬物を含む、態様項101に記載の凍結乾燥組成物。
 - 109. 有効成分として蛋白質類や核酸等の高分子薬物を含む、態様項101 に記載の凍結乾燥組成物。
 - 110. 有効成分として核酸を保持体に保持した態様で有する、態様項 109 に記載の凍結乾燥組成物。
- 25 111. 有効成分として低分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有する態様項108に記載の凍結乾燥組成物。
 - 112. 有効成分として蛋白質類や核酸等の高分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なく

とも1種を含有する、態様項109に記載の凍結乾燥組成物。

- 113. 有効成分として低分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド,及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有する、態様項111に記載の凍結乾燥組成物。
- 5 114. 有効成分として蛋白質類や核酸等の高分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有することを特徴とする、態様項112に記載の凍結乾燥組成物。
 - 115. 水溶性組成物である態様項101に記載の凍結乾燥組成物。
- 10 116. 1回投与量の有効成分を含有するものである、態様項 101 に記載の凍結 乾燥組成物。
 - 117. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製されるものであって、下記(i)~(iii)の特性を有する態様項101に記載の凍結乾燥組成物:
 - (i) 非粉末のケーキ状形態を有する、
- 15 (ii) 崩壊指数が0.05~1.5の範囲にある、及び
 - (iii) $1\sim300\,\mathrm{m/sec}$ の範囲にある空気速度及び $17\,\mathrm{ml/sec}\sim15\,\mathrm{L/sec}$ の範囲の空気流量を有する空気の衝撃を受けることによって、平均粒子径が $10\,\mathrm{S}$ クロン以下または有効粒子割合が $10\,\mathrm{S}$ 以上の微粒子になる。
 - 118. 空気速度が1~250m/secである、態様項117に記載の凍結乾燥組成物。
 - 20 119. 空気流量が20ml/sec~10L/sec である、態様項117に記載の凍結乾燥 組成物。

(2) 経肺投与用乾燥粉末製剤の製造方法

また、本発明は、容器内に非粉末状態で収容された凍結乾燥組成物を該容器内で微粒子化することによって、吸入による経肺投与に適した粒子径を備えた乾燥粉末製剤(経肺投与用乾燥粉末製剤)を製造する方法に関する。当該方法は、容器に非粉末状態で収容された凍結乾燥組成物に特定の空気衝撃を与えることによって実施することができる。

具体的には、本発明の経肺投与用乾燥粉末製剤の製造方法は、上記(1)にお

いて詳述する、配合成分を非溶解状態で含む組成液を凍結乾燥して調製される 0.0 5以上の崩壊指数を有する本発明の非粉末状の凍結乾燥組成物に、少なくとも 1 m/sec の空気速度及び少なくとも 1 7 ml/sec の空気流量を有する空気の衝撃を与えることによって実施することができ、これにより、当該非粉末状の凍結乾燥組成物を平均粒子径が 10ミクロン以下、好ましくは5ミクロン以下、または有効粒子割合(Fine Particle Fraction)が 10%以上、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上、特に好ましくは35%以上の微粒子形態を有する乾燥粉末製剤に調製することができる。

なお、本発明において微粒子の平均粒子径とは、吸入剤に関する当業界におい て通常採用される平均粒子径を意味するものであり、具体的には幾何学的な粒子 10 径ではなく、空気力学的な平均粒子径 (mass median aerodynamic diameter, MMAD) を示すものである。当該空気力学的平均粒子径は、慣用方法によって求めること ができる。具体的には、空気力学的平均粒子径は、例えば、人工肺モデルである エアロブリザーを装着した乾式粒度分布計(Amherst Process Instrument, Inc 社製, USA,), ツインインピンジャー (G.W. Hallworth and D.G. Westmoreland: J. 15 Pharm. Pharmacol., 39, 966-972(1987), 米国特許公報第 6153224 号)、マルチス テージリギッドインピンジャー, マープルミラーインパクター, アンダーセンカ スケードインパクター等を用いて測定することができる。また,B.Olsson らは, 空気力学的平均粒子径が 5 μ m以下の粒子の割合が増加するにつれて、肺へのデ リバリーが増加することが報告している (B.Olsson et al:Respiratory Drug 20 Delivery V, 273-281(1996))。このような肺にデリバリーできる量を推定する方 法としては、ツインインピンジャー、マルチステージリギッドインピンジャー、 マープルミラーインパクター,アンダーセンカスケードインパクター等で測定さ れる有効粒子割合 (Fine Particle Fraction) や Fine Particle Dose 等を挙げる ことができる。 25

本発明の製造方法は、好適には、配合成分を非溶解状態で含む組成液を容器に収容し、該状態で凍結乾燥することによって非粉末の凍結乾燥組成物を生成し、次いで該凍結乾燥組成物に上記の空気衝撃を、該組成物を収容した容器内に空気を導入することによって付与することで実施することができる。この場合、凍結

乾燥処理と粉末製剤化処理とが同一の容器を利用して実施できるため、小分け分配によるロスやコンタミネーションという問題が生じない。

上記凍結乾燥組成物に上記の空気衝撃を与える手段としては特に制限されないが、好ましくは下記(3)で説明する乾燥粉末吸入デバイスを挙げることができる。

本発明の経肺投与用乾燥粉末製剤の製造方法は、経肺投与用乾燥粉末製剤を使用する患者が、自ら、使用時(吸入時)に、容器に収容された凍結乾燥組成物を経肺投与に適した粒子径の粉末製剤に調製することができるところをも一つの特徴とする。

- 10 なお、本発明の経肺投与用乾燥粉末製剤の製造方法には下記に掲げる具体的態 様物が含まれる:
 - 201. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製される、下記(i) ~(iii)の特性:
 - (i) 非粉末のケーキ状形態を有する、
- 15 (ii) 0.05以上の崩壊指数を有する、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる
- を有する凍結乾燥組成物を収容した容器に、上記容器内の凍結乾燥組成物に上記 20 の空気衝撃を与えることのできるデバイスを用いて、当該空気衝撃を備えた空気 を導入し、

それによって上記凍結乾燥組成物を平均粒子径が10ミクロン以下または有効粒子割合が10%以上となるように微粒子化する,経肺投与用乾燥粉末製剤の製造方法。

- 25 202. 容器に収容された凍結乾燥組成物が1回投与量の有効成分を含有するも のである態様項201に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 203. 調製される微粒子の平均粒子径が5ミクロン以下であるか、または有効粒子割合が20%以上である、態様項201に記載の経肺投与用乾燥粉末製剤の製造方法。

- 204. 凍結乾燥組成物の崩壊指数が0.05~1.5の範囲にある、態様項201に記載の経肺投与用乾燥粉末製剤の製造方法。
- 205. 凍結乾燥組成物が有効成分として低分子薬物を含むものである態様項201 に記載の経肺投与用乾燥粉末製剤の製造方法。
- 5 206. 凍結乾燥組成物が有効成分として蛋白質類や核酸などの高分子薬物を含むものである態様項 201 に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 207. 凍結乾燥組成物が有効成分として、核酸を保持体に保持した状態で含む ものである態様項 201 に記載の経肺投与用乾燥粉末製剤の製造方法。
- 208. 凍結乾燥組成物が、有効成分として低分子薬物、並びに、担体としてア ミノ酸、ジペプチド、トリペプチド及び糖類よりなる群から選択される少なくと も1種を含有するものである態様項 205 に記載の経肺投与用乾燥粉末製剤の製造 方法。
- 209. 凍結乾燥組成物が、有効成分として蛋白質類や核酸等の高分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである態様項206に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 210. 凍結乾燥組成物が、有効成分として低分子薬物、並びに、担体として疎水性アミノ酸、疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである、態様項208に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 211. 凍結乾燥組成物が、有効成分として蛋白質類や核酸等の高分子薬物、並びに、担体として疎水性アミノ酸、疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである、態様項209に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 25 212. 凍結乾燥組成物が水溶性組成物である態様項 201 に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 213. 容量が 0.2~50mlの容器内で凍結乾燥組成物を微粒子化する方法である、態様項 201 に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 214. 容器内の凍結乾燥組成物に少なくとも 2 m/sec の空気速度及び少なくと

も17ml/sec の空気流量を有する空気の衝撃を与えることのできる手段を有す るデバイスを用いて、当該空気衝撃を備えた空気を凍結乾燥組成物を収容した容 器に導入することによって行う、態様項201に記載の経肺投与用乾燥粉末製剤の 製造方法。

- 容器内の凍結乾燥組成物に1~300m/secの範囲にある空気速度及び 215. 5 少なくとも17ml/sec の空気流量を有する空気の衝撃を与えることのできる手 段を有するデバイスを用いて、当該空気衝撃を備えた空気を凍結乾燥組成物を収 容した容器に導入することによって行う、態様項201に記載の経肺投与用乾燥粉 末製剤の製造方法。
- 容器内の凍結乾燥組成物に少なくとも 1 m/sec の空気速度及び少なくと 216. 10 も20ml/sec の空気流量を有する空気の衝撃を与えることのできる手段を有す るデバイスを用いて、当該空気衝撃を備えた空気を凍結乾燥組成物を収容した容 器に導入することによって行う、態様項201に記載の経肺投与用乾燥粉末製剤の 製造方法。
- 容器内の凍結乾燥組成物に少なくとも1m/sec の空気速度及び17 217. 15 ml/sec~15L/sec の範囲の空気流量を有する空気の衝撃を与えることのできる 手段を有するデバイスを用いて、当該空気衝撃を備えた空気を凍結乾燥組成物を 収容した容器に導入することによって行う、態様項201に記載の経肺投与用乾燥 粉末製剤の製造方法。
- デバイスとして (3) 乾燥粉末吸入デバイスの章に記載される態様項 218. 20 301 または 302 の乾燥粉末吸入デバイスを用いて凍結乾燥組成物を微粒子化する ことを特徴とする態様項201に記載の経肺投与用乾燥粉末製剤の製造方法。
 - デバイスとして(3)乾燥粉末吸入デバイスの章に記載される態様項 219. 309 の乾燥粉末吸入デバイスを用いて凍結乾燥組成物を微粒子化することを特徴 とする態様項218に記載の経肺投与用乾燥粉末製剤の製造方法。
 - (1) 乾燥粉末吸入デバイスの (3) 章に記載される態様項 301 の乾燥 220. 粉末吸入デバイスを用いて凍結乾燥組成物を微粒子化する乾燥粉末製剤の製造方 法であって、当該デバイスを用いて容器内への一回あたりの空気の噴射量が5~ 100ml である態様項 218 に記載の経肺投与用乾燥粉末製剤の製造方法。

- 221. 乾燥粉末吸入デバイスの(3)章に記載される態様項302の乾燥粉末吸入デバイスを用いて凍結乾燥組成物を微粒子化する乾燥粉末製剤の製造方法であって、当該デバイスを用いた吸入口での空気流量が5~300L/minである態様項218に記載の経肺投与用乾燥粉末製剤の製造方法。
- 5 222. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製される、下記の 特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05~1.5の範囲の崩壊指数を有する、及び
- (iii) 1~300m/sec の範囲にある空気速度及び17ml/sec~15L/sec の 範囲にある空気流量を有する空気の衝撃を受けることによって、平均粒子径が1 0ミクロン以下または有効粒子割合が10%以上の微粒子になる を有する凍結乾燥組成物を収容した容器に、上記容器内の凍結乾燥組成物に上記 の空気衝撃を与えることのできるデバイスを用いて、当該空気衝撃を備えた空気 を導入し、
- 15 それによって上記凍結乾燥組成物を平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子とすることを含む,態様項201に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 223. 容器に収容された凍結乾燥組成物が1回投与量の有効成分を含有するものである態様項222に記載の経肺投与用乾燥粉末製剤の製造方法。
- 20 224. 空気速度が 1 ~ 2 5 0 m/sec である、態様項 222 に記載の経肺投与用乾燥粉末製剤の製造方法。
 - 225. 空気流量が20ml/sec~10L/sec である、態様項222に記載の経肺投与用乾燥粉末製剤の製造方法。

25 (3) 乾燥粉末吸入デバイス

上記本発明の経肺投与用乾燥粉末製剤の製造に際して好適に用いられる乾燥粉末吸入デバイスは、容器内に非粉末状態で収容された凍結乾燥製剤(凍結乾燥組成物)を該容器内で微粒子化するだけでなく、さらに該微粒子化した乾燥粉末製剤を使用者が吸入服用することにも用いることができるデバイスである。

当該デバイスは、①非粉末状の凍結乾燥組成物に、それを微粒子化し得る程度の空気衝撃を与えることのできる手段、及び②微粒子化された粉末状の凍結乾燥組成物を使用者に吸入投与することのできる手段を備えることによって、凍結乾燥組成物の微粒子化と使用者への吸入投与の両方を実施可能とするものである。なお、上記①の手段は凍結乾燥組成物を収容した容器内に、上記空気衝撃を備えた空気を導入する手段ということもできる。また②は容器内で微粒子化された粉末製剤を容器から排出する手段ということもできる。本発明においては、かかる手段を備えるものであれば、従来公知のものまた将来開発されるもののいずれのデバイスも使用することができる。

10 ①の手段は、具体的には、容器に収容された凍結乾燥組成物に上記の空気衝撃を与えることのできる空気を、該容器に導入する手段によって実現することができる。なお、当該①の手段には、容器内の凍結乾燥組成物に少なくとも1m/secの空気速度及び少なくとも17ml/secの空気流量を有する空気衝撃を与えることのできる手段であることもできる。②の手段によって若しくは該手段を介して、とのできる手段であることもできる。②の手段によって若しくは該手段を介して、経肺投与に適した形態に調製された乾燥粉末製剤を患者などの使用者に吸入投与することができる。なお、②の手段には、さらに組成物が微粒子化または分散されるような、例えば部屋や流路が設けられていてもよい。

当該乾燥粉末吸入デバイスには、下記(a)に掲げる噴射型の乾燥粉末吸入デバイスと(b)に掲げる自己吸入型の乾燥粉末吸入デバイスが含まれる。

20 (a) 噴射型デバイス: Active powder inhaler

(a-1) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、吸入 に用いられるデバイスであって、

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射 流路に空気を送るための空気圧送手段、排出流路に連通する吸入口とを備え、

25 前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路から前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記排出流路を通じて吸入口から排出するように構成したことを特徴とする乾燥粉末吸入デバイス。

- (a-2) 前記空気圧送手段は手動式であって、吸込弁付き吸込口と吐出弁付き吐出口とを有するベロー体を備え、吸込弁を閉じた状態で該ベロー体を縮めて吐出弁を開放することにより、吐出口に連通した針部の空気噴射流路を通じて前記ベロー体内の空気を容器内に圧送し、前記吐出弁を閉じ吸込弁を開いた状態で弾性復元力によって前記ベロー体を伸張させることにより前記ベロー体内に空気を導入するように構成されたことを特徴とする(a-1)に記載の乾燥粉末吸入デバイス。
- (a-3) 一本の針部に前記空気噴射流路及び前記排出流路を形成したことを特徴とする上記 (a-1) 又は (a-2) に記載の乾燥粉末吸入デバイス。
- 10 (b) 自己吸入型デバイス: Passive powder inhaler
 - (b-1) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、吸入に用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

- 15 前記容器を密封する口栓に前記針部を突き刺した状態で、使用者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出するように構成したことを特徴とする乾燥粉末吸入デバ イス。
 - (b-2) 使用者の一回の吸入によって、前記凍結乾燥組成物の大部分が微粒子化して前記吸入口から排出されるように構成したことを特徴とする(b-1)に記載の乾燥粉末吸入デバイス。
 - (b-3) 一本の針部に前記吸引流路及び前記空気導入流路を形成したことを 25 特徴とする(b-1)又は(b-2)に記載の乾燥粉末吸入デバイス。

容器内に空気を導入する手段(前述する①の手段)は、常圧で外部から空気を 導入する手段であればよく、ジェットミルなどの圧縮空気を特段使用する必要は ない。なお、外部から空気を導入する手段は、特に制限されず、例えば前述する 噴射型の乾燥粉末吸入デバイスの場合は、人為的に外部エアーを容器内に噴射導

20

25

入する手段を採用することができ、また自己吸入型の乾燥粉末吸入デバイスの場合は、使用者の吸入服用に伴う容器内の負圧化によって自然に外部エアーを容器内に吸引導入する手段を採用することができる。なお、前者噴射型の乾燥粉末吸入デバイスの場合、人為的に外部エアーを容器内に噴射導入する方法は、手動であっても、任意の機械を使用して自動的に行う方法であってもよい。

本発明で用いられる乾燥粉末吸入デバイスは、噴射型及び自己吸入型の別を問わず、上記空気導入手段によって容器内に導入(流入)された外部エアー(空気)の衝撃(噴射圧)を利用して、容器内に非粉末状態で収容された凍結乾燥製剤を微粒子化することのできるものである。

10 なお、ここで用いられる容器としては、例えば凍結乾燥に供することのできる ものを用いることができ、材質、形状などに特に制限されない。例えば、材質と しては、ポリエチレン,ポリプロピレン,ポリスチレンなどのポリオレフィン系 を主とするプラスチック,ガラス,アルミ等が例示できる。また形状としては、 円筒状、カップ状、三角柱(三角錐)、正方柱(正方錐)、六角柱(六角錐)、八角 柱(八角錐)などを多角柱(多角錐)を例示することができる。

かかる効果を効率よく得るためには、凍結乾燥組成物を収容する容器の容量として、 $0.2\sim50\,\mathrm{m}\,1$ 、好ましくは $0.2\sim25\,\mathrm{m}\,1$ 、より好ましくは $1\sim15\,\mathrm{m}\,1$ の範囲のものを使用することができる。また、容器の胴径(内径)として、 $\phi\,2\sim100\,\mathrm{mm}$ 、好ましくは $\phi\,2\sim75\,\mathrm{mm}$ 、より好ましくは $\phi\,2\sim50\,\mathrm{mm}$ のものを使用することが望ましい。

また、かかる容器内に収容する凍結乾燥組成物の量は、単位投与量(1回投与量)または数回、具体的には2~3回投与量の有効成分を含む量であることが好ましい。より好ましくは単位投与量(1回投与量)の有効成分を含む量である。また、凍結乾燥組成物の具体的な量は、凍結乾燥組成物に含まれる有効成分の種類や配合量によっても異なり、吸入可能な量から適宜選択されて特に制限されないが、通常30mg以下、好ましくは20mg以下、より好ましくは10mg以下、特に好ましくは5mg以下である。

また、容器内に導入する外部エアー(空気)により生じる空気衝撃は少なくと もヒトの1回若しくは数回の吸気動作によって容器内に空気が流入する空気流量

25

やそれによって生じる空気速度によって規定される。勿論,容器の耐久性を限度 として、これを越える空気流量や空気速度を持って外部エアーを導入することは 特に制限されない。ヒトが1回吸入する空気流量は通常5~300L/分、より 詳細には10~200L/分である。また、噴射型の乾燥粉末吸入デバイスの場 合、1回の空気の噴射量が $5\sim100$ ml、好ましくは $10\sim50$ mlとなるも のを使用することができる。好ましくは容器内部に充填された凍結乾燥組成物の 表面に少なくとも1m/sec の空気速度によって生じる空気衝撃が当たるように調 整することができる。より好ましい空気衝撃は少なくとも2m/sec の空気速度に よって生じる衝撃、さらに好ましくは少なくとも5m/sec の空気速度によって生 じる衝撃、よりさらに好ましくは少なくとも 10m/sec の空気速度によって生じる 10 衝撃である。ここで空気衝撃の上限としては、特に制限されないが、例えば30 Om/sec の空気速度によって生じる衝撃を挙げることができる。かかる上限とし て好ましくは250m/sec の空気速度によって生じる衝撃、より好ましくは20 Om/sec の空気速度によって生じる衝撃、よりさらに好ましくは150m/sec の空 気速度によって生じる衝撃である。 15

空気衝撃は、上記から任意に選択される下限と上限から構成される範囲内にあ る空気速度を備えた空気によって生じるものであればよく、特に制限されないが、 例えば $1\sim300$ m/sec、 $1\sim250$ m/sec、 $2\sim250$ m/sec、 $5\sim250$ m/sec、 5~200m/sec、10~200m/sec、10~150m/sec の範囲にある空気速 20 度によって生じる衝撃を挙げることができる。

なお、ここで凍結乾燥組成物に付与される空気の速度は、下記のようにして測 定することができる。すなわち、後述する実施態様例1で示した噴射型乾燥粉末 吸入デバイスでは、ペロー体10に蓄えられている空気を空気噴射流路3から強 制的に容器内に充填された凍結乾燥組成物(ケーキ状の凍結乾燥組成物:以下「凍 結乾燥ケーキ」ともいう) に導入し、空気衝撃を与えて、結果として生じた微粒 子が排出経路4から排出される機構を採用している。この場合、空気噴射流路3 を流れる空気流量はベロー体10に蓄えられている空気量をその空気を容器に送 り込む時間で割ることにより算出することができる。次いで,この空気流量を空 気噴射流路3等の容器に空気を導入する流路の断面積で割ることにより、凍結乾

燥組成物(凍結乾燥ケーキ)に衝撃を与える空気速度を算出することができる。

空気速度(cm/sec)= 空気流量(ml=cm³/sec) ÷ 空気導入流路の断面積(cm²)

具体的には、例えば、空気噴射流路3の孔径 φ1.2mm, 排出経路の孔径 φ1.8mm, ベロー体10に蓄えられている空気量が約20ml に設計した噴射型の乾燥粉末 吸入デバイスの場合、ベロー体10に蓄えられている約20ml の空気量を約0.5秒で空気噴射流路3から強制的に容器内の凍結乾燥組成物に導入した場合、空気流量は約40ml/secとなる。そこでこの値を空気導入流路(空気噴射流路)の 断面積 (0.06 x 0.06 x 3.14=0.0113cm²) で割ると、3540cm/secとなる。つまり、空気速度は約35m/secとなる。

また、後述する実施態様例2、3及び4で示す自己吸入型乾燥粉末吸入デバイスでは、空気導入流路17から流入した空気が凍結乾燥ケーキに衝撃を与えた後、結果として生じた微粒子が吸引流路16から排出される機構を採用しているため、空気導入流路17と吸引流路16の孔径が該流路を流れる空気流量を規定することになる。従って、容器に収容された凍結乾燥組成物に付与される空気速度は、空気導入流路17に流れる空気流量を測定し、これを空気導入流路17のノズルの断面積で割ることにより算出することができる。

20 空気速度 (cm/sec) = 空気流量 (ml=cm³/sec) ÷空気導入流路 17 の断面積 (cm²)

具体的には、ヨーロッパ薬局方 (European Pharmacopoeia, Third Edition Supplement 2001, pl13-115) に記載されている装置 A(Apparatus A) (ツインインピンジャー(Twin Impinger):Copley 社製, UK) のスロート部分に容器を含む吸入デバイスを装着させて、Flow Meter (KOFLOC DPM-3) を用いて空気導入流路17に流れる空気流量を測定する。

例えば、空気導入流路17の孔径を φ1.99mm, 吸引流路の孔径を φ1.99mm に 設計された自己吸入型乾燥粉末吸入デバイスにおいて、Flow Meter (KOFLOC DPM-3) を用いて測定された空気導入流路17に流れる空気流量が 17.7L/min 即ち、

295ml/sec であった場合に、空気速度は、この値を空気導入流路の断面積 (0.0995 x 0.0995 x 3.14=0.0311cm²) で割ることによって得ることができる (9486cm/sec、つまり 95m/sec)。

また容器内部に充填された凍結乾燥組成物に付与される空気の流量としては、 少なくとも17ml/sec を挙げることができる。空気の流量として、好ましくは少なくとも20ml/sec、より好ましくは少なくとも25ml/sec である。ここで空気流量の上限としては、特に制限されないが、例えば900L/min を挙げることができる。かかる上限として好ましくは15L/sec、より好ましくは10L/sec、さらに好ましくは5L/sec、さらにより好ましくは4L/sec、特に好ましくは3L/secである。具体的には、空気流量は上記から任意に選択される下限と上限から構成される範囲内にあればよく、特に制限されないが、かかる範囲としては例えば17ml/sec~15L/sec、20ml/sec~10L/sec、20ml/sec~5L/sec、20ml/sec~4L/sec、20ml/sec~3L/sec、25ml/sec~3L/secを挙げることができる。

また、本発明で用いる乾燥粉末吸入デバイスは、外部から導入された空気の衝撃圧を高める手段として、実施例で詳述する空気導入流路若しくは空気噴射流路を備えた針部のように、容器底部に収容された凍結乾燥組成物に接近させた状態で流路の吐出口、好ましくは細孔を備えた吐出口から空気を吐出させる手段を備えることができる。なお、かかる流路吐出口の孔径は、容器の大きさなどの関係で好ましい範囲が変動するため、特に制限されないが、直径 Φ 0.3~10 mm、

20 好ましくは $0.5\sim5\,\mathrm{mm}$ 、より好ましくは $0.8\sim5\,\mathrm{mm}$ 、さらに好ましくは $1\sim4\,\mathrm{mm}$ の範囲であることができる。

かかる容器内への空気導入によって容器内に非粉末状態で収容されている凍結 乾燥組成物を微粒子化することができる。ここで微粒子化の程度は、経肺投与に 適した粒子径となるものであればよく、平均粒子径として 10μ m以下、好まし くは 5μ m以下を挙げることができる。

なお、本発明で用いられる乾燥粉末吸入デバイスには下記に掲げる具体的態様 物が含まれる:

300. 容器に非粉末状態で収容された凍結乾燥組成物を空気の衝撃で微粒子化し、得られた微粒子を被験者に吸入させるために用いる経肺投与用の乾燥粉末吸

10

20

25

入デバイス。

301. 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を被験者に吸入させるために用いられるデバイスであって、

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流 路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを 備え、

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるように構成したことを特徴とする態様項300に記載の経肺投与用の乾燥粉末吸入デバイス。

- 302. 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた微粒子を被験者に吸入させるために用いられるデバイスであって、
- 15 吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする態様項300に記 載の経肺投与用の乾燥粉末吸入デバイス。

- 303. 前記容器内へ一回の空気の噴射によって、前記凍結乾燥組成物が微粒子 化して前記吸入口から排出されるように構成したことを特徴とする態様項301に 記載の経肺投与用の乾燥粉末吸入デバイス。
- 304. 前記容器内への空気の噴射によって、前記凍結乾燥組成物が平均粒子径 10ミクロン以下、または有効粒子割合が10%以上となるように微粒子化して、前記吸入口から排出されるように構成したことを特徴とする態様項301に記載の経肺投与用の乾燥粉末吸入デバイス。

- 305. 一本の針部に前記空気噴射流路及び前記排出流路が形成されてなる態様項301に記載の経肺投与用の乾燥粉末吸入デバイス。
- 306. 被験者の一回の吸入によって、前記凍結乾燥組成物が微粒子化して前記 吸入口から排出されるように構成したことを特徴とする態様項302に記載の経肺 投与用の乾燥粉末吸入デバイス。
- 307. 被験者の吸入によって、前記凍結乾燥組成物が平均粒子径10ミクロン以下、または有効粒子割合が10%以上となるように微粒子化して、前記吸入口から排出されるように構成したことを特徴とする態様項302に記載の経肺投与用の乾燥粉末吸入デバイス。
- 10 308. 一本の針部に前記吸引流路及び前記空気導入流路が形成されてなる態様項302に記載の経肺投与用の乾燥粉末吸入デバイス。
 - 309. 空気衝撃を受けることによって微粒子化する非粉末のケーキ状形態の凍結乾燥組成物が収容され且つ口栓で密封された容器を保持するためのホルダー部と、
- 15 該容器内の前記凍結乾燥組成物に空気衝撃を与え、該空気衝撃により微粒子化 された粉末状の前記凍結乾燥組成物を前記容器内から吸引するための手段と、を 備えた乾燥粉末吸入デバイスであって、

前記凍結乾燥組成物を前記容器内から吸引するための吸引流路、及び外気を前記容器内に導入するための空気導入流路を有する針部と、

20 前記針部の前記吸引流路と連通する吸引口部と、

前記ホルダー部を前記針部の軸線方向にガイドするためのガイド部と、

前記ホルダー部に前記容器が保持された際に、当該容器を前記針部の針先に向けて前進させて容器の口栓を前記針先に突き刺し、また前記針先から後退させて容器の口栓を前記針先から引き離すための機構部、及び該機構部を操作する操作体を有し、該機構部は容器の口栓を前記針部に突き刺すのに要する力よりも小さい力で前記操作体を操作できるように構成されているホルダー作動部と、

前記針部を支持し、且つ、前記吸引口部と前記ガイド部と前記ホルダー作動部を設けるためのハウジングと、

を備え、

25

10

20

前記口栓を前記針部に突き刺して前記針部の吸引流路及び空気導入流路と前記容器内とを連通させると共に空気導入流路の先に前記凍結乾燥組成物を位置させた状態において、被験者の吸気圧で前記吸引口部から前記容器内の空気を吸入して、空気導入流路を通じて前記容器内に空気を流入させることにより、前記容器内の凍結乾燥組成物に空気衝撃を与えることを特徴とする態様項308に記載の経肺投与用の乾燥粉末吸入デバイス。

310. 前記ハウジングは筒状に形成され、該ハウジングの先部に前記吸引口部を形成し、前記ハウジング内に前記ホルダーを介して前記容器を収容するための収納室を形成し、前記針先が前記収納室を向くように前記針部を前記ハウジング内に配設し、前記針部の空気導入流路と連通して外気を導入するための導入口を前記ハウジングの壁部に設け、

前記ホルダー作動部により前記ホルダー部を前記収納室内において前記ハウジングの軸線方向に前進及び後退させるように構成したことを特徴とする態様項309に記載の経肺投与用の乾燥粉末吸入デバイス。

15 311. 前記ハウジングは、前記ホルダー部が後退した位置に前記容器の出し入れ口が形成されたハウジング本体と、前記ハウジング本体にヒンジにて連結された前記出し入れ口の蓋とで形成され、

ホルダー作動部は、前記蓋を倒して前記出し入れ口を閉じたときには、前記ホルダー部を針部の針先にむけて前進させ、前記蓋を起こして前記出し入れ口を開けたときには、前記ホルダー部を前記針先から後退させる前記機構部を備え、且つ、前記蓋が前記機構部の操作体を兼ねるように構成されたことを特徴とする態様項310に記載の経肺投与用の乾燥粉末吸入デバイス。

(4) 経肺投与用乾燥粉末吸入システム

25 本発明の経肺投与用乾燥粉末吸入システムは、容器内に凍結乾燥されたままで 粉砕等の処理がされることなく非粉末状態で存在している凍結乾燥組成物に空気 の衝撃を与えることにより、該容器内で平均粒子径10ミクロン以下または有効 粒子割合が10%以上の微粒子とすることのできる組成を有した凍結乾燥組成物 と所定の手段を備えた吸入デバイスとを組み合わせてなるシステムである。当該

20

経肺投与用乾燥粉末吸入システムによれば、使用者が非粉末状態で提供される凍結乾燥組成物を使用時(吸入時)に、経肺投与に適した剤型である平均粒子径10ミクロン以下または有効粒子割合が10%以上の微粒子からなる乾燥粉末製剤に自ら調製し、かつ投与(服用)することが可能となる。

当該経肺投与用乾燥粉末吸入システムの効果を効率良く得るためには、凍結乾燥組成物の組成、吸入デバイス及び容器等を適切に選択することが重要である。

かかる凍結乾燥組成物としては、配合成分を非溶解状態で含む組成液を凍結乾燥して調製され、且つ下記の特性:

- (i) 非粉末のケーキ状形態を有する、
- 10 (ii) 崩壊指数が0.05以上である、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる

を有する凍結乾燥組成物を用いることが好ましい。

15 当該凍結乾燥組成物の組成並びにその調製方法については、前述の(1)章に おいて詳細する内容がここでも援用される。

当該凍結乾燥組成物は、容器内で凍結乾燥処理されて該容器内に収容されている。当該容器内に収容される凍結乾燥組成物の量は、単位投与量(1回投与量)または数回、具体的には2~3回投与量の有効成分を含む量であることが好ましい。より好ましくは単位投与量(1回投与量)の有効成分を含む量である。容器に収容される凍結乾燥組成物の具体的な量は、凍結乾燥組成物に含まれる有効成分の種類や配合量によっても異なり、吸入可能な量から適宜選択されて特に制限されないが、通常30mg以下、好ましくは20mg以下、より好ましくは10mg以下、特に好ましくは5mg以下である。

25 一方、乾燥粉末吸入デバイスとしては、①空気衝撃付与手段(あるいは空気導入手段)と②微粒子排出手段(あるいは吸入投与手段)を備え、前記①空気衝撃付与手段によって非粉末状態の凍結乾燥組成物を収容した容器内に空気を導入(流入)し、導入(流入)された空気の衝撃(噴射圧)を利用して,該凍結乾燥組成物を微粒子化し、さらに前記②微粒子排出手段によって、上記①の手段で微

20

25

物が含まれる:

粒子化された乾燥粉末組成物を容器から排出し、使用者にそのまま吸入投与することのできる乾燥粉末吸入デバイスを採用することが好ましい。

かかるデバイスの一例として前述の (3) 章に詳述する乾燥粉末吸入デバイス を挙げることができる。

5 すなわち、本発明の好適な経肺投与用乾燥粉末吸入システムは、少なくとも使用時に、前述する本発明の凍結乾燥組成物を収容した容器と、前述する乾燥粉末吸入デバイスとを組み合わせて使用されるシステムである。すなわち、本発明の経肺投与用乾燥粉末吸入システムは、少なくとも吸入使用前には、前述する本発明の凍結乾燥組成物を収容した容器と、前述する乾燥粉末吸入デバイスとを備えてなるものである。

本発明の当該システムによれば、上記の乾燥粉末吸入デバイスを用いて本発明の凍結乾燥組成物を収容した容器内に空気を導入して、内部に存在する凍結乾燥組成物に少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を与えることによって、吸入による経肺投与が可能な粒子径または吸入による経肺投与に有効に用いることのできる有効粒子割合を備えた乾燥粉末製剤を調製することができる。

吸入による経肺投与が可能な粒子径としては、平均粒子径、具体的には空気力学的な平均粒子径 (mass median aerodynamic diameter, MMAD) が10ミクロン以下、好ましくは5ミクロン以下を挙げることができる。また、吸入による経肺投与に有効に用いることのできる有効粒子割合 (Fine Particle Fraction) としては、10%以上、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上、特に好ましくは35%以上を挙げることができる。

また、当該システムによれば、調製された乾燥粉末製剤を使用者にそのまま吸入経肺投与することができる。こうした意味で、本発明の経肺投与用乾燥粉末吸入システムは、吸入による経肺投与に適した乾燥粉末製剤の製造システムであるといえる。とともに、該乾燥粉末製剤を使用者に経肺投与する投与システムであるといえる。なお、本発明の経肺投与用乾燥粉末吸入システムには下記に掲げる具体的態様

401. (1) 配合成分を非溶解状態で含む組成液を凍結乾燥して調製され、且つ

20

下記の特性:

- (i) 非粉末のケーキ状形態を有する、
- (ii) 崩壊指数が0.05以上である、及び
- (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるを有する凍結乾燥組成物を収容した容器と、
 - (2) 上記容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段、及び微粒子化された粉末状の凍結乾燥組成物を排出する手段を備えたデバイスを組み合わせて用いられる経肺投与用乾燥粉末吸入システム。
 - 402. 凍結乾燥組成物を収容した容器が、1回投与量の有効成分を含有する凍結 乾燥組成物を収容してなる容器である、態様項 401 に記載の経肺投与用乾燥粉末 吸入システム。
- 403. 吸入時に、上記容器と上記デバイスとが組み合わされて用いられる態様 15 項 401 に記載の経肺投与用乾燥粉末吸入システム。
 - 404. 凍結乾燥組成物の崩壊指数が0.05~1.5の範囲にある、態様項401に記載の経肺投与用乾燥粉末吸入システム。
 - 405. (iii)に記載する空気の衝撃が少なくとも2m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気によって生じるものである態様項401に記載の経肺投与用乾燥粉末吸入システム。
 - 406. (iii) に記載する空気の衝撃が $1\sim300\,\mathrm{m/sec}$ の範囲にある空気速度及び少なくとも $17\,\mathrm{ml/sec}$ の空気流量を有する空気によって生じるものである態様項 401 に記載の経肺投与用乾燥粉末吸入システム。
 - 407. (iii)に記載する空気の衝撃が少なくとも1m/sec の空気速度及び少な 25 くとも20ml/sec の空気流量を有する空気によって生じるものである態様項401 に記載の経肺投与用乾燥粉末吸入システム。
 - 408. (iii) に記載する空気の衝撃が少なくとも $1\,\mathrm{m/sec}$ の空気速度及び $1\,7\,\mathrm{ml/sec}\sim 1\,5\,\mathrm{L/sec}$ の範囲にある空気流量を有する空気によって生じるものである態様項 401 に記載の経肺投与用乾燥粉末吸入システム。

25

- 409. 凍結乾燥組成物が、空気の衝撃を受けることによって平均粒子径が5ミクロン以下またはその有効粒子割合が20%以上の微粒子になる特性を有するものである、態様項401に記載の経肺投与用乾燥粉末吸入システム
- 410. 凍結乾燥組成物が有効成分として低分子薬物を含むものである、態様項 5 401 に記載の経肺投与用乾燥粉末吸入システム。
 - 411. 凍結乾燥組成物が有効成分として蛋白質類や核酸などの高分子薬物を含むものである態様項401に記載の経肺投与用乾燥粉末吸入システム。
 - 412. 凍結乾燥組成物が、有効成分として核酸を保持体に保持した状態で含むものである態様項401に記載の経肺投与用乾燥粉末吸入システム。
- 10 413. 凍結乾燥組成物が有効成分として低分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである、態様項410に記載の経肺投与用乾燥粉末吸入システム。
- 414. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである、態様項411に記載の経肺投与用乾燥粉末吸入システム。
 - 415. 凍結乾燥組成物が有効成分として低分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド,及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有することを特徴とする、態様項413に記載の経肺投与用乾燥粉末吸入システム。
 - 416. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである、態様項414に記載の経肺投与用乾燥粉末吸入システム。
 - 417. 凍結乾燥組成物が水溶性組成物である、態様項 401 に記載の経肺投与用 乾燥粉末吸入システム。
 - 418. デバイスとして
 - i) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた微粒子

20

25

を被験者に吸入させるために用いられるデバイスであって、

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを 備え、

- 5 前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と 前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて 前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物 を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるよ うに構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイスまたは、
- 10 ii) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた微 粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾 燥粉末吸入デバイスを用いる態様項 401 に記載の経肺投与用乾燥粉末吸入システム。

419. デバイスとして

空気衝撃を受けることによって微粒子化する非粉末のケーキ状形態の凍結乾燥組 成物が収容され且つ口栓で密封された容器を保持するためのホルダー部と、

該容器内の前記凍結乾燥組成物に空気衝撃を与え、該空気衝撃により微粒子化された粉末状の前記凍結乾燥組成物を前記容器内から吸引するための手段と、を備えた乾燥粉末吸入デバイスであって、

前記凍結乾燥組成物を前記容器内から吸引するための吸引流路、及び外気を前 記容器内に導入するための空気導入流路を有する針部と、

前記針部の前記吸引流路と連通する吸引口部と、

前記ホルダー部を前記針部の軸線方向にガイドするためのガイド部と、

前記ホルダー部に前記容器が保持された際に、当該容器を前記針部の針先に向けて前進させて容器の口栓を前記針先に突き刺し、また前記針先から後退させて容器の口栓を前記針先から引き離すための機構部、及び該機構部を操作する操作体を有し、該機構部は容器の口栓を前記針部に突き刺すのに要する力よりも小さい力で前記操作体を操作できるように構成されているホルダー作動部と、

前記針部を支持し、且つ、前記吸引口部と前記ガイド部と前記ホルダー作動部を設けるためのハウジングと、

を備え、

- 10 前記口栓を前記針部に突き刺して前記針部の吸引流路及び空気導入流路と前記容器内とを連通させると共に空気導入流路の先に前記凍結乾燥組成物を位置させた状態において、被験者の吸気圧で前記吸引口部から前記容器内の空気を吸入して、空気導入流路を通じて前記容器内に空気を流入させることにより、前記容器内の凍結乾燥組成物に空気衝撃を与えることを特徴とする経肺投与用の乾燥粉末吸入デバイスを用いる態様項418に記載の経肺投与用乾燥粉末吸入システム。
 - 420. (1) 配合成分を非溶解状態で含む組成液を凍結乾燥して調製され、かつ 下記特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05~1.5の範囲の崩壊指数を有する、及び
 - 20 (iii) 1~300m/sec の範囲にある空気速度及び17ml/sec~15L/sec の範囲にある空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるを有する凍結乾燥組成物を収容した容器と、
 - (2) 上記容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段、 25 及び微粒子化された粉末状の凍結乾燥組成物を排出する手段を備えたデバイスと を組み合わせて用いられる、態様項 401 に記載の経肺投与用乾燥粉末吸入システム、
 - 421. 凍結乾燥組成物を収容した容器が、1 回投与量の有効成分を含有する凍結 乾燥組成物を収容してなる容器である、態様項 420 に記載の経肺投与用乾燥粉末

15

25

吸入システム。

- 422. 空気速度が $1\sim 2$ 5 0 m/sec である、態様項 420 に記載の経肺投与用乾燥粉末吸入システム。
- 423. 空気流量が20ml/sec~10L/sec である、態様項420に記載の経肺投 5 与用乾燥粉末吸入システム。

(5) 経肺投与方法

さらに、本発明は、非粉末状態の凍結乾燥組成物を使用時(投与時)に経肺投与可能な微粒子化状態に調製し、該微粒子形態の乾燥粉末製剤を吸入投与することからなる経肺投与方法に関する。当該経肺投与方法は、(4)章において詳述する本発明の経肺投与用乾燥粉末吸入システム、好適には(1)章において詳述する配合成分を非溶解状態で含む組成液を凍結乾燥して調製される本発明の凍結乾燥組成物を収容した容器と、(3)章において詳述する乾燥粉末吸入デバイスから構成される経肺投与用乾燥粉末吸入システムを用いることによって行うことができる。

本発明の経肺投与方法には下記に掲げる具体的態様が含まれる:

- 501. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製される、下記の特性:
 - (i) 非粉末のケーキ状形態を有する、
- 20 (ii) 崩壊指数が0.05以上である、及び
 - (iii)少なくとも $1\,m/sec$ の空気速度及び少なくとも $1\,7\,ml/sec$ の空気流量を有する空気衝撃を受けることによって、平均粒子径が $1\,0\,s$ クロン以下または有効粒子割合が $1\,0\,s$ 以上の微粒子になる

を有する凍結乾燥組成物に、使用時に上記の空気衝撃を与えることによって平均 粒子径が10ミクロン以下または有効粒子割合が10%以上になるように微粒子 化して、該微粒子化された粉末を使用者に吸入により投与させることを含む、経 肺投与方法。

502. 凍結乾燥組成物が1回投与量の有効成分を含有するものである、態様項 501 に記載の経肺投与方法。

- 503. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、容器内の当該凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用いて調製されるものである、態様項501に記載の経肺投与方法。
- 5 504. 凍結乾燥組成物の崩壊指数が0.05~1.5の範囲にある、態様項 503に記載の経肺投与方法。
 - 505. (iii)に記載する空気の衝撃が少なくとも2m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気によって生じるものである態様項503に記載の経肺投与方法。
- 10506. (iii) に記載する空気の衝撃が1~300m/sec の範囲にある空気速度及び少なくとも17ml/sec の空気流量を有する空気によって生じるものである態様項503に記載の経肺投与方法。
 - 507. (iii)に記載する空気の衝撃が少なくとも1m/sec の空気速度及び少なくとも20ml/sec の空気流量を有する空気によって生じるものである態様項503に記載の経肺投与方法。
 - 508. (iii)に記載する空気の衝撃が少なくとも $1\,\mathrm{m/sec}$ の空気速度及び $1\,7\,\mathrm{ml/sec}\sim 1\,5\,\mathrm{L/sec}$ の範囲にある空気流量を有する空気によって生じるものである態様項 503 に記載の経肺投与方法。
 - 509. 凍結乾燥組成物が有効成分として低分子薬物を含むものである、態様項 20 503 に記載の経肺投与方法。
 - 510. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物を含む ものである態様項 503 に記載の経肺投与方法。
 - 511. 凍結乾燥組成物が、有効成分として核酸を保持体に保持した状態で含むものである態様項 503 に記載の経肺投与方法。
 - 25 512. 凍結乾燥組成物が有効成分として低分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである、態様項509に記載の経肺投与方法。
 - 513. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物、並び に、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から

10

15

選択される少なくとも1種を含有するものである、態様項 510 に記載の経肺投与 方法。

- 514. 凍結乾燥組成物が有効成分として低分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド,及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有することを特徴とする、態様項 512 に記載の経肺投与方法。
- 515. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである、態様項513に記載の経肺投与方法。
- 516. 凍結乾燥組成物が水溶性組成物である、態様項 503 に記載の経肺投与方法。
- 517. 平均粒子径が5ミクロン以下または有効粒子割合が20%以上の微粒子になるように微粒子化して投与する方法である、態様項503に記載の経肺投与方法。
- 518. デバイスとして(3)乾燥粉末吸入デバイスの章に記載される態様項301 又は302の乾燥粉末吸入デバイスを用いる態様項503に記載の経肺投与方法。
- 519. デバイスとして(3)乾燥粉末吸入デバイスの章に記載される態様項309の乾燥粉末吸入デバイスを用いる態様項518に記載の経肺投与方法。
- 20 520. 凍結乾燥組成物が、配合成分を非溶解状態で含む組成液を凍結乾燥して 調製される、下記特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05~1.5の範囲の崩壊指数を有する、及び
- (iii) 1~300m/sec の範囲にある空気速度及び17ml/sec~15L/sec の範 25 囲にある空気流量を有する空気の衝撃を受けることによって、平均粒子径が10 ミクロン以下または有効粒子割合が10%以上の微粒子になる を有するものであり、

微粒子化された粉末が、容器内の上記凍結乾燥組成物に上記の空気衝撃を与える ことのできる手段と微粒子化された粉末状の凍結乾燥組成物を容器から排出する

手段を備えたデバイスを用いて調製されるものである、態様項 503 に記載の経肺 投与方法。

- 521. 空気速度が 1~250m/sec である、態様項 520 に記載の経肺投与方法。
- 522. 空気流量が20ml/sec~10L/sec である、態様項520に記載の経肺投 5 与方法。
 - (6) 凍結乾燥組成物の吸入による経肺投与への使用

さらに,本発明は,非粉末状態の凍結乾燥組成物について吸入による経肺投与 への使用に関する。当該使用には下記に掲げる具体的態様が含まれる:

- 10 601.配合成分を非溶解状態で含む組成液を凍結乾燥して調製される、下記特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05以上の崩壊指数を有する、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる
 - を有する凍結乾燥組成物を、上記平均粒子径または有効粒子割合を有する微粒子 に粉末化して用いる、凍結乾燥組成物の吸入による経肺投与への使用。
 - 602. 凍結乾燥組成物が1回投与量の有効成分を含有するものである、態様項601 に記載の凍結乾燥組成物の経肺投与への使用。

 - 25 604. 凍結乾燥組成物の崩壊指数が 0.05~1.5の範囲にある、態様項 603に記載の凍結乾燥組成物の経肺投与への使用。
 - 605. 凍結乾燥組成物が、少なくとも2m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様

20

25

項603に記載の凍結乾燥組成物の経肺投与への使用。

- 606. 凍結乾燥組成物が、1~300m/secの範囲にある空気速度及び少なくとも17ml/secの空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様項603に記載の凍結乾燥組成物の経肺投与への使用。
- 607. 凍結乾燥組成物が、少なくとも1m/sec の空気速度及び少なくとも20 ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様項603に記載の凍結乾燥組成物の経肺投与への使用。
- 10 608. 凍結乾燥組成物が、少なくとも1m/sec の空気速度及び17ml/sec~1 5L/sec の範囲にある空気流量を有する空気の衝撃を受けることによって、平均 粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様項603に記載の凍結乾燥組成物の経肺投与への使用。
- 609. 凍結乾燥組成物が、空気衝撃を受けることによって、平均粒子径が5ミ 15 クロン以下または有効粒子割合が20%以上の微粒子になるものである、態様項 603に記載の凍結乾燥組成物の経肺投与への使用。
 - 610. 凍結乾燥組成物が有効成分として低分子薬物を含むものである態様項603 に記載の凍結乾燥組成物の経肺投与への使用。
 - 611. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物を含む ものである態様項603に記載の凍結乾燥組成物の経肺投与への使用。
 - 612. 凍結乾燥組成物が、有効成分として核酸を保持体に保持した状態で含む態様項603に記載の凍結乾燥組成物の経肺投与への使用。
 - 613. 凍結乾燥組成物が有効成分として低分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである態様項 610 に記載の凍結乾燥組成物の経肺投与への使用。
 - 614. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から 選択される少なくとも1種を含有するものである態様項 611 に記載の凍結乾燥組

成物の経肺投与への使用。

- 615. 凍結乾燥組成物が有効成分として低分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド,及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである態様項 613 に記載の凍結乾燥組成物の経肺投与への使用。
- 616. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである態様項614に記載の凍結乾燥組成物の経肺投与への使用。
- 10 617. 凍結乾燥組成物が水溶性組成物である態様項 603 に記載の凍結乾燥組成 物の経肺投与への使用。
 - 618. デバイスとして(3)乾燥粉末吸入デバイスの章に記載される態様項301 又は302の乾燥粉末吸入デバイスを用いる、態様項603に記載の凍結乾燥組成物 の経肺投与への使用。
- 15 619. デバイスとして(3)乾燥粉末吸入デバイスの章に記載される態様項309 の乾燥粉末吸入デバイスを用いる態様項618に記載の凍結乾燥組成物の経肺投与 への使用。
 - 620. 凍結乾燥組成物が、配合成分を非溶解状態で含む組成液を凍結乾燥して 調製される、下記特性:
- 20 (i) 非粉末のケーキ状形態を有する、
 - (ii) 崩壊指数が0.05~1.5の範囲にある、及び
 - (iii) $1\sim300\,\mathrm{m/sec}$ の範囲にある空気速度及び $17\,\mathrm{ml/sec}\sim15\,\mathrm{L/sec}$ の範囲にある空気流量を有する空気の衝撃を受けることによって、平均粒子径が $10\,\mathrm{m/sec}$ のミクロン以下または有効粒子割合が $10\,\mathrm{m/sec}$ の微粒子になる
- 25 を有するものであって、微粒子化された粉末が、容器内の上記凍結乾燥組成物に 上記の空気衝撃を与えることのできる手段及び微粒子化された粉末状の凍結乾燥 組成物を容器から排出する手段を備えたデバイスを用いて調製されるものである、 態様項 603 に記載の凍結乾燥組成物の経肺投与への使用。
 - 621. 空気速度が 1 ~ 2 5 0 m/sec である、態様項 620 に記載の凍結乾燥組成

物の経肺投与への使用。

25

- 622. 空気流量が20ml/sec~10L/sec である、態様項 620 に記載の凍結乾燥組成物の経肺投与への使用。
- 5 (7) 吸入による経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用 さらに、本発明は、非粉末状態の凍結乾燥組成物について吸入による経肺投与 用乾燥粉末製剤の製造のための使用に関する。当該使用には下記に掲げる具体的 態様が含まれる:
- 701. 吸入による経肺投与用乾燥粉末製剤の製造のための、下記の凍結乾燥組 10 成物の使用:
 - (i)配合成分を非溶解状態で含む組成液を凍結乾燥して調製される、
 - (ii) 非粉末のケーキ状形態を有する、
 - (iii) 0. 05以上の崩壊指数を有する、及び
- (iv)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量 を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下また は有効粒子割合が10%以上の微粒子になる
 - という特性を有し、使用時に上記平均粒子径または上記有効粒子割合になるよう に微粒子化して用いられる凍結乾燥組成物。
- 702. 凍結乾燥組成物が1回投与量の有効成分を含有するものである、態様項20 701 に記載の凍結乾燥組成物の使用。
 - 703. 凍結乾燥組成物の崩壊指数が0.05~1.5の範囲にある、態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 704. 凍結乾燥組成物が、少なくとも2m/sec の空気速度及び少なくとも17 ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 705. 凍結乾燥組成物が、 $1\sim300\,\mathrm{m/sec}$ の範囲にある空気速度及び少なくとも $17\,\mathrm{ml/sec}$ の空気流量を有する空気の衝撃を受けることによって、平均粒子径が $10\mathrm{S}$ クロン以下または有効粒子割合が $10\mathrm{S}$ 以上の微粒子になるものであ

10

25

- る、態様項 701 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物 の使用。
- 706. 凍結乾燥組成物が、少なくとも1m/sec の空気速度及び少なくとも20 ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 707. 凍結乾燥組成物が、少なくとも1m/sec の空気速度及び17ml/sec~15L/sec の範囲にある空気流量を有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になるものである、態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 708. 凍結乾燥組成物が、空気衝撃を受けることによって、平均粒子径が5ミクロン以下または有効粒子割合が20%以上の微粒子になるものである、態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 709. 凍結乾燥組成物が有効成分として低分子薬物を含むものである、態様項701 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 710. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物を含む ものである、態様項 701 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾 燥組成物の使用。
- 20 711. 凍結乾燥組成物が、有効成分として核酸を保持体に保持された状態で含むものである態様項 701 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 712. 凍結乾燥組成物が有効成分として低分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである態様項709に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 713. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物、並びに、担体としてアミノ酸、ジペプチド、トリペプチド、及び糖類よりなる群から選択される少なくとも1種を含有するものである態様項710に記載の経肺投与用

25

乾燥粉末製剤の製造のための凍結乾燥組成物の使用。

- 714. 凍結乾燥組成物が有効成分として低分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド,及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである態様項712に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 715. 凍結乾燥組成物が有効成分として蛋白質類や核酸等の高分子薬物,並びに,担体として疎水性アミノ酸,疎水性ジペプチド及び疎水性トリペプチドからなる群から選択される少なくとも1種を含有するものである態様項713に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 10 716. 凍結乾燥組成物が水溶性組成物である態様項 701 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 717. 経肺投与用乾燥粉末製剤の微粒子の平均粒子径が5ミクロン以下であるか、または微粒子の有効粒子割合が20%以上である態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 15 718. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用いて調製されるものである、態様項701に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 719. デバイスとして、(3) 乾燥粉末吸入デバイスの章に記載される態様項 301 又は 302 の乾燥粉末吸入デバイスを用いる態様項 718 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 720. デバイスとして、(3) 乾燥粉末吸入デバイスの章に記載される態様項309の乾燥粉末吸入デバイスを用いる態様項719 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 721. 下記の特性を有する凍結乾燥組成物を用いる、態様項 701 に記載の経肺 投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用:
 - (i)配合成分を非溶解状態で含む組成液を凍結乾燥して調製される、
 - (ii) 非粉末のケーキ状形態を有する、

- (iii)崩壊指数が0.05~1.5の範囲にある、及び
- (iv) $1\sim300\,m/sec$ の範囲にある空気速度及び $17\,ml/sec\sim15\,L/sec$ の範囲にある空気流量を有する空気の衝撃を受けることによって、平均粒子径が $10\,seccolored$ クロン以下または有効粒子割合が $10\,seccolored$ 以上の微粒子になる。
- 5 722. 空気速度が 1~250m/sec である、態様項721 に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 723. 空気流量が20ml/sec~10L/sec である、態様項721に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
- 10 (8)経肺投与用乾燥粉末製剤の調製に用いられる凍結乾燥組成物を製造するための、配合成分非溶解組成液の使用

さらに、本発明は、配合成分非溶解組成液について、経肺投与用乾燥粉末製剤の調製に用いられる凍結乾燥組成物を製造するための使用に関する。ここで凍結乾燥組成物の製造に使用される配合成分非溶解組成液、その調製方法、及びそれを用いた凍結乾燥組成物の調製方法、並びに凍結乾燥組成物の使用方法(経肺投与用乾燥粉末製剤の調製方法)については、前述の通りである。

<u>実施例</u>

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらの 20 実施例に限定されるものではない。

なお、以下の実施例において、本発明の非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)の崩壊指数、及び微粉末化された乾燥粉末製剤の肺への送達を評価する指標である有効粒子割合(Fine Particles Fraction(%))は下記の方法に従って算出した。

25 <崩壊指数の算出>

調製した非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)に、n-ヘキサンを容器の壁を通じて静かに 1.0ml 滴下し、これを Automatic Lab-Mixer NS-8 (Pasolina 社製)を用いて 3000rpm で約 10 秒間攪拌する。得られた混合液を光路長 1mm, 光路幅 10mm の UV セル (島津 GLC センター製) に投入し、速やかに分光光度計 (UV-240,

20

島津製作所製)を用いて測定波長 500nm で該混合液の濁度を測定する。得られた 濁度を総処方量(有効成分と担体との総量(重量))で割った値を崩壊指数とする。 <有効粒子割合(Fine Particles Fraction)の算出>

調製した非粉末状の凍結乾燥組成物を充填した容器を乾燥粉末吸入デバイスに 装着し、該デバイスを用いて所定の空気衝撃を与えて微粉末化された粉末製剤を ヨーロッパ薬局方 (European Pharmacopoeia, Third Edition Supplement 2001, p113-115) に記載されている装置A (Apparatus A) (ツインインピンジャー (Twin Impinger):Copley 社製, UK) に直接排出する。その後、該装置の Stage 1 と Stage2 中に入った溶媒をそれぞれ回収して、Bioassay 法やHPLC等の凍結乾燥組成物 中の有効成分に応じて所望の方法により、Stage 1 と Stage 2 の各溶媒中に含ま 10 れる有効成分を定量する (Lucas らの報告 (Pharm. Res., 15(4), 562-569(1998)) や飯田らの報告(薬学雑誌 119(10)752-762(1999)参照)。なお,肺への送達が期 待できるフラクションは Stage 2(このフラクションで回収される空気力学的粒 子径は $6.4\mu m$ 以下である。)であり、通常、このStage2 に達し回収される有効 成分の割合を有効粒子割合(肺へ到達が期待できる量, Fine Particles Fraction) 15 と呼び,経肺投与用の吸入剤としての適性を評価する基準とされている。

下記の本実施例及び比較例では、Stagel と Stagel のそれぞれに含まれる有効 成分の重量を定量し、得られた Stage2 中の有効成分の重量を、噴射された有効成 分の重量総量(Stage1 と Stage2 に含まれる有効成分の重量総量:以下「Stage1 +Stage2」ともいう。) で割った値を有効粒子割合 (Fine Particles Fraction (%)) として算出した。また、原則として、ヨーロッパ薬局方ではツインインピンジャ ー (Copley 社製, UK) を用いる場合, 空気の吸引流量として 60L/min、即ち 1L/sec で吸引することが規定されているので、下記の本実施例及び比較例もこれに従っ た。

乾燥粉末吸入デバイス(噴射型1) 実施態様例1 25

本発明で用いられる噴射型の乾燥粉末吸入デバイスの一実施態様を図1を用い て説明する。

乾燥粉末吸入デバイスは、容器1の底部に収容された非粉末性の単位若しくは 数回投与量の凍結乾燥組成物2を微粒子化して肺器官に送るための空気噴射型の

10

15

20

25

器具であって、空気噴射流路3及び排出流路4を有する針部5と、吸入口6を有し且つ針部5の基端に取り付けられる吸気部材7と、針部5を囲繞し且つ容器1 の保持も兼ねる筒状安全カバー8と、空気圧送手段9とを備えている。

空気圧送手段9は、手動式であって筒状のベロー体10を備え、ベロー体10には吸込弁11の付いた吸込口12と吐出弁13の付いた吐出口14とが設けられ、吐出口14は針部5の空気噴射流路3の基端側に形成された接続口15に取り付けられ、空気噴射流路3に連通している。そして、吸込弁11を閉じた状態でベロー体10に圧縮力を加えて収縮させることにより吐出弁13が開放して、ベロー体10内の空気が吐出口14から空気噴射流路3を通じて容器1内に排出される。一方、圧縮力を解除すると、ベロー体10の弾性復元力によってベロー体10が伸張して吐出弁13が閉じた状態で吸込弁11が開いて、ベロー体10内に空気が導入されるようになっている。

該乾燥粉末吸入デバイスを使用するときには、図1に示すように、容器1を筒状安全カバー8にはめ込み、容器1の口栓1 aに針部5を突き刺して空気噴射流路3及び排出流路4と容器1の内部とを連通させる。この状態で、空気圧送手段9のベロー体10を収縮させて吐出口14から空気を排出すると、該空気は空気噴射流路3を通り針部5の先端から容器内の凍結乾燥組成物2に向けて噴射され、その空気衝撃によって凍結乾燥組成物2は微粒子となって、針部5の排出流路4を通って吸気部材7の吸入口6から排出される。そして、使用者(患者)はこの微粒子を吸気部材の吸気口6から吸気することにより、凍結乾燥組成物2の微粒子が患者の肺器官内に送られる。なお、本発明で用いられる容器の口栓は、その材質を特に制限されることなく、例えばゴム、プラスチックまたはアルミニウムなどの通常薬物や化合物を収容する容器の口栓として使用される材質を任意に選択して使用することができる。

この噴射型の吸入デバイスでは、空気噴射量が約20m1、容器の容量が約5m1、空気噴射流路3の孔径(直径)が約1.2mm、及び排出流路4の孔径(直径)が約1.8mmになるように設定されている。

但し、これに限定されることなく、空気噴射流路3及び排出流路4の孔径は、 容器の大きさ等の関係で好ましい範囲が変動するため、特に制限されないが、直

10

15

20

25

径0. $3\sim10\,\mathrm{mm}$ 、好ましくは0. $3\sim7\,\mathrm{mm}$ 、より好ましくは0. $5\sim5\,\mathrm{m}$ m の範囲内から適宜選択される。

また、空気圧送手段9は、ベロー体10の圧縮速度を調整することによって吸入投与に必要な微粒子の排出量を調節することが可能であり、また、かかる空気噴射によっても凍結乾燥組成物2の大部分を微粒子化するように調整することができる。

実施態様例2 乾燥粉末吸入デバイス(自己吸入型1)

本発明で用いられる自己吸入型の乾燥粉末吸入デバイスの一実施態様(その1)を図2を用いて説明する。図2に示す乾燥粉末吸入デバイスは、吸引流路16及び空気導入流路17を有する針部5と、筒状安全カバー8と、吸引流路16に連通する吸入口18を有する吸気部材19とを備え、吸気部材19は針部5の吸引流路16の基端側に連結されている。

乾燥粉末吸入デバイスを使用するときには、図2に示すように、容器1を筒状安全カバー8にはめ込み、容器1の口栓1aに針部5を突き刺して吸引流路16及び空気導入流路17と容器1の内部とを連通させる。この状態で、患者の吸気圧で吸入口18から吸引流路16を介して容器1内の空気を吸引すると共に、これによって負圧となった容器1内に空気導入流路17から外気を流入させる。このとき、凍結乾燥組成物2に作用する空気衝撃によって凍結乾燥組成物2が微粒子化され、調製された微粒子が吸引流路16を通じて吸入口18から患者の肺器官内に送られる。

また、当該乾燥粉末吸入デバイスは、患者の1回の吸入によって凍結乾燥組成物2の大部分が微粒子化して吸入口18から排出されるように設定されている。なお、患者の1回の吸入の空気流量は5~300L/分、好ましくは10~200L/分、より好ましくは10~100L/分とされるが、本発明の自己吸入型乾燥粉末吸入デバイスは、使用する患者の呼吸能力に応じて適宜設計変更される。図2に示す吸入デバイスは、かかる患者の呼吸能力に応じて、容器の容量を約10mlに、空気導入流路17及び吸引流路16の孔径を直径約1.5mmに設定したものである。これによって、患者の1回の吸入によって凍結乾燥組成物2がほぼ残らず微粒子化して吸入口18から排出されるように設定される。

10

25

乾燥粉末吸入デバイス(自己吸入型2) 実施態様例3

本発明で用いられる自己吸入型の乾燥粉末吸入デバイスの一実施態様(その2) を図3を用いて説明する。図3に示す乾燥粉末吸入デバイスは、図1に示す噴射 型の乾燥粉末吸入デバイスの接続口15から空気圧送に使用するベロー体10を 取り外したときの形態と同じになっており、また、図1の噴射型の乾燥粉末吸入 デバイスの排出流路4が吸引流路16に、空気噴射流路3が空気導入流路17に、 吸入口6を有する吸気部材7が吸入口18を有する吸気部材19に、それぞれ相 当するようになっている。

そして、かかる自己吸入型の乾燥粉末吸入デバイスを使用するときには、図2 に示した乾燥粉末吸入デバイスと同じ要領で、患者の吸気圧で吸入口18から吸 引流路16を介して容器1内の空気を吸引すると共に、これによって負圧となっ た容器1内に空気導入流路17から外気を流入させ、該空気流入に伴って生じる 空気衝撃によって凍結乾燥組成物2が微粒子化される。そして、得られた該微粒 子は吸入口18から患者の肺器官内に送られる。なお、前述するように患者の1 回の吸入の空気流量は通常5~300L/分の範囲にあるが、図3に示す吸入デ 15 バイスは、かかる患者の呼吸能力に応じて、容器の容量を約5m1に、空気導入 流路17の孔径(直径)を約1.2mmに、吸引流路16の孔径(直径)を約1. 8mmにそれぞれ設定したものである。これによって、患者の1回の吸入によっ て凍結乾燥組成物2の大部分が微粒子化して吸入口18から排出されるように設 定される。 20

このようにして自己吸入型の乾燥粉末吸入デバイスを構成すれば、接続口15 にベロー体10などの空気圧送手段9を着脱自在に取り付けることによって、該 自己吸入型の吸入デバイスを噴射型に変更することもできる。これによって、一 つの乾燥粉末吸入デバイスを所望に応じて自己吸入型・噴射型のいずれの態様に も適宜選択し使用することができる。

以上の本発明の乾燥粉末吸入デバイスは、自己吸入型又は噴射型のいずれのタ イプであっても、凍結乾燥組成物が10ミクロン以下、好ましくは5ミクロン以 下の平均粒子径の微粒子になってほぼ残らず飛散するように空気衝撃の大きさを 選択設定することができるように構成することができる。

10

15

20

25

実施態様例4 乾燥粉末吸入デバイス(自己吸入型3)

本発明で用いられる自己吸入型の乾燥粉末吸入デバイスの一実施態様(その3)を図4から図10を用いて説明する。なお、図4は当該乾燥粉末吸入デバイスを示す斜視図、図5は当該乾燥粉末吸入デバイスを示す断面図である。また図6の

- (a) は当該乾燥粉末吸入デバイスの針部 5 及び吸引口 3 1 を示す部分断面図、
 - (b) は針部5の側面図である。さらに図7~10は、各々当該乾燥粉末吸入デバイスの動作を説明する断面図である。

乾燥粉末吸入デバイスは、吸引流路16及び空気導入流路17が形成された針部5と、容器1を保持するためのホルダー部22と、該ホルダー部22を介して容器1を収容するための収容室20と、ホルダー部22を針部5の軸線方向にガイドするために収納室20に設けられるガイド部23と、ホルダー部22をガイド部23に沿って前進及び後退させるホルダー作動部24とを備えており、これらは筒状のハウジング21に収容されている。またこのハウジング21の先部には、針部5の吸引流路16と連通する吸引口31を有するマウスピース32を備えている。

図7に示すように、ハウジング21は、詳細にはホルダー部22が後退した位置に出し入れ口25が形成されたハウジング本体26と、出し入れ口25を開閉する蓋27とで形成されている。蓋27はハウジング本体26にヒンジ21Aにて連結され、また、蓋27には容器1の装填を確認するための窓28が設けられている。

ハウジング21の壁部には外気を導入するための導入口29が設けられ、導入口29には逆止弁30が装着されている。また、ハウジング21の先部にはマウスピース32が取り付けられている。マウスピース32は、本乾燥粉末吸入デバイスを使用しないときには、吸引口31はキャップ32aで塞がれる。

針部5の基端部にはフランジ状の隔壁部33が形成され、空気導入流路17の端部は隔壁部33内を通って隔壁部33の外周方向に開口している。また、隔壁部33の外周縁部からマウスピース32の吸引口31に向けて周壁部34が延び、ハウジング21の先端部に隔壁部33を嵌め込むことにより、ハウジング21内に針部5が取り付けられている。この取り付けによってハウジング21の軸線方

向と針部5の軸線方向とを合致させている。

ホルダー部22には容器1をホルダー部22の底部から起こして取り出すための取り出し体35が取り付けられ、取り出し体35には容器1を起こすためのレバー36が形成されている。

5 ホルダー作動部24は、ホルダー部22をハウジング21の軸線方向に往復動させるための機構部37と、機構部37を操作する操作レバーとを備えている。機構部37は連結体39を備えている。連結体39の一端はホルダー部22にヒンジ40にて連結され、連結体39の他端は蓋27にヒンジ41にて連結されている。蓋27は前記操作レバーを兼ねている。蓋27の開閉操作によってホルダー部22をガイド部23の沿って前進及び後退させる。

蓋27を倒すための力の作用点を図7の矢印Cで示す点とする。すなわち、ヒンジ21Aからヒンジ41までの長さよりもヒンジ21Aから該作用点までの長さを長くする。これにより、「てこの原理」により、容器1の口栓1aを針部5に突き刺すのに要する力よりも小さい力で蓋(操作レバー)27を操作できる。

15 また、図6に示すように、乾燥粉末吸入デバイスには空気を補助的に導入するための第2導入路42が形成されている。粉末化した凍結乾燥組成物をマウスピース32から吸引するときには、外気はこの第2導入路42を通って直接マウスピース32の吸引口31に流入する。これにより、肺活量が低下した患者や子供の患者でも、負担をかけずに乾燥粉末吸入デバイスを使用できるようになっている。なお、第2導入路42を省略しても良い。

第2導入路42は、針部5の隔壁部33に導入溝42aを、周壁部34に導入 溝42bをそれぞれ設け、針部5の周壁部34にマウスピース32を嵌め込むこ とにより、マウスピース32と導入溝42a及び42bとで形成されるものであ る。

25 マウスピース32とハウジング21との間には僅かな隙間43が形成され、第 2導入路42の一端44は隙間43を通じて外部に開口し、第2導入路42の他 端45はマウスピース32の吸引口31に開口している。

また、図6に示すように、吸引口31には通気孔46を有する壁47が設けられている。したがって、吸引力の不足等により凍結乾燥組成物2に与える空気衝

10

15

20

25

撃力が小さくなり、凍結乾燥組成物2の一部に非粉末部分が発生する場合でも、 該非粉末部分は壁47の通気孔46を通過する際に粉末化させることができる。

また、図6(a)に示すように、針部5の空気導入流路17の先端口17aは 吸引流路16の先端口16aよりも凍結乾燥組成物2に近づけている。これによ り、空気導入流路17の先端口17aから容器1内に流入する空気の流速低下を できるだけ抑え、凍結乾燥組成物2に効果的な空気衝撃を与えることができるよ うにしている。また、針部5の吸引流路16の先端口16aは空気導入流路17 の先端口17aよりも凍結乾燥組成物2から離れているので、針部5の吸引流路 16に吸引される前に、容器1内での凍結乾燥組成物2の微粉末化をできるだけ 進ませることができる。

そして、乾燥粉末吸入デバイスは次のようにして使用されるものである。まず、 図7のように、蓋27を起こしてハウジング21の出し入れ口25を開くことに より、ホルダー部22が引き寄せられてハウジング21の出し入れ口25まで後 退する。次に、容器1を口栓1aを前向きにしてホルダー部22に取り付ける。

次に、図8のように蓋27を倒してハウジング21の出し入れ口25を閉じることにより、連結体39によってホルダー部22が針部5の方に押し込まれて容器1の口栓1aが針部5の先端に突き刺さり、針部5の吸引流路16及び空気導入流路17と容器1の内部とが連通する。次に、患者の吸気圧でマウスピース32の吸引口31から針部5の吸引流路16を介して容器1内の空気を吸引する。このとき容器1内は負圧になって逆止弁30が開き、外気が針部5の空気導入流路17を通って容器1内に外気が流入する。これにより、容器1内で空気衝撃が発生して凍結乾燥組成物2が微粒子化され、調製された微粒子が吸引流路16を通じて吸引口31から患者の肺器官内に送られる。使用後は、蓋27を起こしてホルダー部22をハウジング21の出し入れ口25まで引き寄せた後、レバー36で取り出し体35を起こして容器1をホルダー部22から取り出す。

一方、マウスピース32の吸引口31から容器1内に空気を吹き込んでも、微 粒子化した凍結乾燥組成物2の外部への排出は逆止弁30によって阻止される。

なお、前述したように患者の1回の吸入の空気流量は通常 $5\sim300$ L/分の 範囲にあるが、図4から図10に示す吸入デバイスは、かかる患者の呼吸能力に

15

応じて、容器1の容量を約5mlに、空気導入流路17の口径(直径)を約2.5mmに、吸引流路16の口径(直径)を約2.5mmにそれぞれ設定したものである。これによって、患者の1回の吸入によって凍結乾燥組成物2の大部分が微粒子化して吸引口31から排出されるように設定される。

5 乾燥粉末吸入デバイス(自己吸入型)の他の実施態様例を、図11から図13 に示す。

図11に示す乾燥粉末吸入デバイス(自己吸入型4)は、矢印のようにハウジング21の周方向に操作体48が回転自在に設けられている。図示しないホルダー作動部の機構部は、螺旋溝とこれに係合するフォロワーを備え、操作体48の回転運動によりホルダー部22を針部5の軸線方向への直線運動に変換させる。なお、操作体48の回転角度はほぼ180度である。

また、図12及び図13に示す乾燥粉末吸入デバイス(自己吸入型5)は、ハウジング21に環状の操作体49が回転自在に取り付けられている。図示しないホルダー作動部の機構部は、送りねじを備え、操作体49の回転運動によりホルダー部22を針部5の軸線方向への直線運動に変換させる。ホルダー部22はハウジング21の後部から引き出し自在となっている。

実施例1

遺伝子導入用カチオニックリポソームである LipofectAMINE2000 (Invitrogen 社製) 72μgとプラスミッド DNA である pEGFP-C2 (Clontech 社製) 24μgを細胞 培養液である OPTI-MEM I Reduced Serum Medium (Invitrogen 社製, イーグル最少 必須培地の改良培地) 1200μl に配合し、懸濁混合して、該培養液存在下で複合 体を形成させた。この複合体の幾何学的平均粒子径を動的光散乱光度計(Dynamic Light Scattering Spectrophotometer, ELS-8000, 大塚電子 (株) 製)で測定した。 次に、この複合体を含む懸濁液各々100μlを、予めL-ロイシンを水に溶解しておいた水溶液 (5mg/ml) 400μlを収容した各容器 (胴径φ18mm) 1 0本にそれぞれ 添加混合した (検体数:10)。その後、棚状凍結乾燥機 (LYOVAC GT-4, LEYBOLD 社製)を用いて凍結乾燥を行い、得られた非粉末状の凍結乾燥組成物 (凍結乾燥 ケーキ)について、崩壊指数を算出した。次に、得られた非粉末状の凍結乾燥組

成物 (凍結乾燥ケーキ) を含有する容器を空気噴射流路3の孔径をφ1.2mm、排 出流路4の孔径をφ1.8mmに設計した噴射型の乾燥粉末吸入デバイス(空気量約 20ml を供給できるベロー体10を有する。実施態様例1、図1参照)に装着し た。

空気量約20mlを吸入デバイスから容器内に導入することにより(空気速度 約35m/sec及び空気流量約40ml/secで生じる空気衝撃を付与),容器内の非粉 末状の凍結乾燥ケーキが微粒子化され、容器から微粒子が排出流路4を通じて瞬 時に噴射排出されるのが確認された。これを容器から噴射された粒子の粒度分布 を直接測定することのできる人工肺モデルであるエアロブリーダー(Amherst Process Instrument, Inc社製, USA、R.W. Niven: Pharmaceutical Technology, 10 72-78(1993)) (測定条件、Breath Rate:6 OL/min, Breath Volume:1L,アクセ ラレーション:19)を装着した粒度分布計(エアロザイザー: Amherst Process Instrument, Inc社製, USA、R.W. Niven:Pharmaceutical Technology, 72-78(1993)) を用いて回収し、微粒子化された粒子の粒度分布を測定して、これから空気力学 平均粒子径(μm±SD)を算出した。懸濁液中に非溶解状態で存在する粒子の幾 15 何学的平均粒子径並びに各凍結乾燥組成物の崩壊指数、及びデバイスから噴射さ れた粒子の空気力学平均粒子径(μm±SD)を表1に示す。

<表1>

25

20	凍結乾燥組成物	幾何学的平均粒子径 (µm)	崩壊指数	空気力学的平均粒子径 (μm±SD, MMAD)
	LipofectAMINE2000+ pEGFP-C2 + ロイシン	0. 827	0.186	1.726±1.491

表 1 に示すように、崩壊指数 0.186 を示す非粉末状の凍結乾燥ケーキは空気速 度約35m/sec 及び空気流量約40ml/sec で生じる空気の衝撃により崩壊して、空気 力学的な平均粒子径が5ミクロン以下の経肺投与に適した微粒子状の乾燥粉末製 剤となった。この結果は、凍結乾燥する前の試料が非溶解状態(ここでは懸濁状 態)であっても、本発明で規定する特定の空気衝撃によって経肺投与に適した微 粒子化乾燥粉末が調製できる凍結乾燥組成物として提供できること、すなわち凍

10

15

20

25

結乾燥する前の試料が非溶解状態であっても、本発明の経肺投与用乾燥粉末吸入システムに適用でき、有効に経肺投与が可能であることを示すものである。なお、本実施例で使用したプラスミッド DNA(pEGFP-C2)に代えて、癌抑制遺伝子 p53 や嚢胞性線維症膜貫通型調節蛋白(CFTR)遺伝子等を用いることによって、経肺投与によって治療効果が得られる遺伝子もしくはアンチセンス分子などを体内に導入可能である。ゆえに本発明の経肺投与用乾燥粉末吸入システムは、遺伝子治療に有効に利用できるものと考えられる。

実施例2、比較例1

遺伝子導入用カチオニックリポソームである LipofectAMINE2000(Invitrogen 社製)72μgと0ligo-RNA 10μg(大塚製薬製)をOPTI-MEM I Reduced Serum Medium (Invitrogen 社製,イーグル最少必須培地の改良培地) の存在下で混合懸濁して 複合体を形成させた。この複合体の幾何学的平均粒子径を動的光散乱光度計 (Dynamic Light Scattering Spectrophotometer, ELS-8000, 大塚電子 (株) 製) で測定した。次に、この複合体を含む懸濁液各 100 μ l を、予め L-ロイシンを水 に溶解調製しておいた L-ロイシン水溶液 (5mg/ml) 400μl をいれた容器 (胴径φ 18㎜) (10本) に各々添加し、凍結乾燥用試料を調製した (実施例2)。また比 較例として、上記 L-ロイシン水溶液に代えてデキストラン 40 の水溶液(5mg/ml) 400μ1を用いて、同様にして凍結乾燥用試料(10本)を調製した(比較例1) その後、各々の試料を棚状凍結乾燥機(LYOVAC GT-4, LEYBOLD 社製)を用いて 凍結乾燥し、得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)について、 崩壊指数を算出した。次に、非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)を含 有する容器を空気噴射流路3の孔径をφ1.2mm、排出流路4の孔径をφ1.8mm に設計した噴射型の乾燥粉末吸入デバイス (空気量約20ml を供給できるベロー 体10を有する。実施態様例1、図1参照)に装着した。

その結果、実施例2の凍結乾燥組成物は、空気量約20m1を吸入デバイスから容器内に導入することにより(空気速度約35m/sec及び空気流量約40ml/secで生じる空気衝撃を付与),容器内の非粉末状の凍結乾燥ケーキが微粒子化され、容器から微粒子が排出流路4を通じて瞬時に噴射排出されるのが確認された。これを実施例1と同様にエアロブリーダー(Amherst Process Instrument, Inc社製,

USA) (測定条件、Breath Rate: 60L/min, Breath Volume: 1L,アクセラレーション:19) を装着した粒度分布計 (エアロザイザー: Amherst Process Instrument, Inc社製, USA) を用いて回収し、微粒子化された粒子の粒度分布を測定して、これから空気力学平均粒子径 (μm±SD) を算出した。

5 一方、比較例1の凍結乾燥組成物は、空気速度約35m/sec及び空気流量約40ml/secで生じる空気の衝撃により全く分散せず、空気力学的平均粒子径を測定することができなかった。

各懸濁液中に非溶解状態で存在する粒子の幾何学的平均粒子径並びに各凍結乾燥組成物(実施例2、比較例1)の崩壊指数、及びデバイスから噴射された粒子の空気力学平均粒子径(μm±SD)を表2に示す。

<表2>

10

15

20

25

30

凍結戟	5燥組成物		均平均粒子径 μm)	崩壊指数	空気力学的平均粒子径 (μm±SD,MMAD)
 実施例 2)	LipofectAMINE	2000	1.19	0. 165	1.633 ± 1.496
+Oligo-RNA + 比較例 1)LiofectAMINE20 +Oligo-RNA+	ト ロイシン 000	1.19	0.002	全く分散せず測定不能	

表に示すように、崩壊指数 0.165 を示す非粉末状の凍結乾燥ケーキ (実施例 2) は、実施例 1 と同様に、凍結乾燥する前の試料が非溶解状態 (ここでは懸濁状態) であっても、空気速度約 35m/sec 及び空気流量約 40ml/sec で生じる空気の衝撃により崩壊して、空気力学的な平均粒子径が 5 ミクロン以下の経肺投与に適した微粒子状の乾燥粉末製剤となった。

それに対して、崩壊指数 0.002 を示す非粉末状の凍結乾燥ケーキ(比較例 1)は、上記の空気衝撃により全く分散、微粒子化せず、経肺投与用の乾燥粉末製剤としての調製に適していなかった。

実施例3~5、比較例2

遺伝子導入用活性型デンドリマー分子(カチオニックポリマー)である Superfect (Qiagen社製) $360\,\mu\,\mathrm{g}$ と、 $01\mathrm{igo-RNA}$ (大塚製薬製) $5\,\mu\,\mathrm{g}$ (実施例 3、比較例 2)またはプラスミッドDNAであるpEGFP-C2(Clontech社製) $24\,\mu\,\mathrm{g}$ (実施例

10

15

20

25

4、5) を、OPTI-MEM 1200μl (GibcoBRL社製) 存在下で混合懸濁して複合体を形成した。この複合体の幾何学的平均粒子径を動的光散乱光度計(Dynamic Light Scattering Spectrophotometer, ELS-8000, 大塚電子 (株) 製),あるいは、レーザー回折・散乱式粒度分布測定装置 (Laser Diffraction/Scattering Particle Size Analyzer、SALD-3000」、(株)島津製作所製)を用いて測定した。

次に、これらの複合体を含む懸濁液各々 100μ l を、表3に示すように、予め調製しておいたL-ロイシン溶解水溶液(5mg/ml) 400μ l をいれた容器(胴径 ϕ 18mm)(実施例3、4)、または乳糖溶解水溶液(5mg/ml) 400μ l をいれた容器(胴径 ϕ 18mm)(実施例5)(各実施例につき10本)に各々添加し、凍結乾燥用試料を調製した。また比較例として、実施例3のL-ロイシン溶解水溶液に代えてデキストラン400の溶解水溶液(5mg/ml) 400μ l を用いて、同様にして凍結乾燥用試料(10本)を調製した(比較例2)

その後、棚状凍結乾燥機(LYOVAC GT-4, LEYBOLD 社製)を用いて凍結乾燥を行い得られた非粉末状の各凍結乾燥組成物(凍結乾燥ケーキ)について、崩壊指数を算出した。次に、得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)を含有する容器を空気噴射流路3の孔径をφ1.2mm、排出流路4の孔径をφ1.8mmに設計した噴射型の乾燥粉末吸入デバイス(空気量約20mlを供給できるベロー体10を有する。実施態様例1、図1参照)に装着した。

その結果、実施例3、4及び5の凍結乾燥組成物は、空気量約20m1を吸入デバイスから容器内に導入することにより(空気速度約35m/sec及び空気流量約40ml/secで生じる空気衝撃を付与),容器内の非粉末状の凍結乾燥ケーキが微粒子化され、容器から微粒子が排出流路4を通じて瞬時に噴射排出されるのが確認された。これを実施例1と同様にエアロブリーダー(Amherst Process Instrument, Inc社製, USA)(測定条件、Breath Rate: 60L/min, Breath Volume: 1L,アクセラレーション:19)を装着した粒度分布計(エアロザイザー: Amherst Process Instrument, Inc社製, USA)を用いて回収し、微粒子化された粒子の粒度分布を測定して、これから空気力学平均粒子径(μm±SD)を算出した。

一方、比較例2の凍結乾燥組成物は、空気速度約35m/sec及び空気流量約40ml/secで生じる空気の衝撃により全く分散せず、空気力学的平均粒子径を測定

することができなかった。

各懸濁液中に非溶解状態で存在する粒子の幾何学的平均粒子径並びに各凍結乾燥組成物(実施例3~5、比較例2)の崩壊指数、及びデバイスから噴射された粒子の空気力学平均粒子径(μm±SD)を表3に示す。

5 〈表3〉

20

30

凍約	吉乾燥組成物	幾何学的平均粒子径 (µm)	崩壊指数	空気力学的平均粒子径 (μm±SD,MMAD)
3) 4)	極例 Superfect+Oligo-RN/ Superfect+pEGFP-C2 Superfect+pEGFP-C2	+ロイシン 3.74	0. 225 0. 189 0. 080	1.578 \pm 1.403 1.646 \pm 1.420 2.848 \pm 1.837
	較例 Superfect+Oligo-RN +デキストラン 40	A 11.12	0. 003	全く分散せず測定不能

表3に示すように、崩壊指数 0.080~0.225、すなわち崩壊指数 0.080 以上を示す非粉末状の凍結乾燥ケーキは、実施例1と同様に、凍結乾燥する前の試料が非溶解状態 (ここでは懸濁状態)で、その幾何学的平均粒子径が11ミクロンとかなり凝集しやすい粒子であっても、空気速度約 35m/sec 及び空気流量約40ml/sec で生じる空気の衝撃により崩壊して、空気力学的な平均粒子径が5ミクロン以下の経肺投与に適した微粒子状の乾燥粉末製剤となった。

それに対して、崩壊指数 0.003 を示す非粉末状の凍結乾燥ケーキ(比較例 2) 25 は、上記の空気衝撃により全く分散、微粒子化せず、経肺投与用の乾燥粉末製剤 としての調製に適していなかった。

この結果は、凍結乾燥する前の試料が非溶解状態(ここでは懸濁状態)であっても、本発明で規定する特定の空気衝撃によって経肺投与に適した微粒子化乾燥粉末が調製できる凍結乾燥組成物として提供できること、すなわち、本発明の経肺投与用乾燥粉末吸入システムに適用でき、有効に経肺投与が可能であることを示

10

15

20

25

すものである。なお、本実施例で使用したプラスミッド DNA(pEGFP-C2)に代え て、癌抑制遺伝子 p53 (肺癌に適用) や嚢胞性線維症膜貫通型調節蛋白 (CFTR) 遺伝子(嚢胞性線維症に適用)等を用いることによって、経肺投与によって治療 効果が得られる遺伝子もしくはアンチセンス分子などを体内に導入可能である。

また、Oligo-RNA は RNAi (RNA interferance)の一つで、RNAi 技術に適用できる 2 本鎖 RNA で、標的遺伝子に対応して短い 2 本鎖 RNA を導入することにより、標的 遺伝子のメッセンジャーRNA の機能を特異的に制御(抑制)する可能となり、肺 癌等の治療にも適用可能である。

ゆえに本発明の経肺投与用乾燥粉末吸入システムは、遺伝子治療に有効に利用 できるものと考えられる。

実施例 6

遺伝子導入用活性型デンドリマー分子である Superfect (Qiagen 社製) 360 μg と 01igo-RNA (大塚製薬製) 5μg を、OPTI-MEM 1200μl (GibcoBRL 社製) 存在下で 混合懸濁して複合体を形成した。この複合体の幾何学的平均粒子径を、レーザー 回折·散乱式粒度分布測定装置 (Laser Diffraction/Scattering Particle Size Analyzer、SALD-3000J、(株)島津製作所製)を用いて測定した。次に、この複 合体を含む懸濁液 $100\,\mu$ l を、予め調製しておいた L-バリン溶解水溶液 $(2.5\,\mathrm{mg/m\,l})$ 400μl をいれた容器 (胴径φ18mm) (10本) に添加し、凍結乾燥用試料を調製 した。その後、棚状凍結乾燥機(LYOVAC GT-4, LEYBOLD 社製)を用いて凍結乾燥 を行い、得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)について、崩壊 指数を算出した。

次に、得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)を含有する容器 を空気噴射流路3の孔径をφ1.2mm、排出流路4の孔径をφ1.8mmに設計した 噴射型の乾燥粉末吸入デバイス (空気量約20ml を供給できるベロー体10を有 する。実施態様例1、図1参照)に装着した。

10

20

25

その結果、実施例6の凍結乾燥組成物は、空気量約20m1を吸入デバイスから容器内に導入することにより(空気速度約35m/sec 及び空気流量約40ml/sec で生じる空気衝撃を付与),容器内の非粉末状の凍結乾燥ケーキが微粒子化され,容器から微粒子が排出流路4を通じて瞬時に噴射排出されるのが確認された。これを実施例1と同様にエアロブリーダー(Amherst Process Instrument, Inc 社製,USA)(測定条件、Breath Rate: 60L/min, Breath Volume: 1L,アクセラレーション:19)を装着した粒度分布計(エアロザイザー: Amherst Process Instrument, Inc 社製,USA)を用いて回収し,微粒子化された粒子の粒度分布を測定して、これから空気力学平均粒子径(μm±SD)を算出した。

懸濁液中に非溶解状態で存在する粒子の幾何学的平均粒子径並びに各凍結乾燥 組成物の崩壊指数及びデバイスから噴射された粒子の空気力学的平均粒子径を表 4に示す。

<表4>

	凍結乾燥組成物	幾何学的平均粒子径	崩壊指数	空気力学的平均粒子径	
15	31.1.	(μm)		(μm±SD, MMAD)	
	6) Superfect + Oigo-RNA+N	リン 13.9	0.275	1.589±1.553	

表4に示すように、実施例1と同様に、凍結乾燥する前の試料が非溶解状態(ここでは懸濁状態)で、その幾何学的平均粒子径が約14ミクロンとかなり凝集しやすい粒子であっても、崩壊指数が0.275を示す非粉末状凍結乾燥組成物(凍結乾燥ケーキ)は空気速度約35m/sec及び空気流量約40ml/secで生じる空気衝撃により、空気力学的な平均粒子径が5ミクロン以下の経肺投与に適した微粒子状の乾燥粉末製剤となった。

以上の実施例2~6の結果は、実施例1と同様に、凍結乾燥する前の試料が非溶解状態(ここでは懸濁状態)であっても、本発明で規定する特定の空気衝撃によって経肺投与に適した微粒子化乾燥粉末が調製できる凍結乾燥組成物として提供できること、すなわち配合成分が溶媒に対して不溶性若しくは難溶解性のものであっても、本発明の経肺投与用乾燥粉末吸入システムに適用でき、有効に経肺投与が可能であることを示す。

10

15

30

実施例7~8

インシュリン(Recombinant Human Insulin crystal, Biobras社製, Brazil,比活性: 26.4U/mg) (実施例7では0.2mg、実施例8では1mg) を塩酸水溶液で溶解した水溶液と、表5に示す各種担体を精製水に溶解した溶液を別個に調製し、表5に示す配合割合でこれらを混合すると各々懸濁状態の懸濁液が得られた。この懸濁液に含まれている粒子の幾何学的平均粒子径をレーザー回折・散乱式粒度分布測定装置(Laser Diffraction/Scattering Particle Size Analyzer、SALD-3000」、(株) 島津製作所製) を用いて測定した。

次に、この懸濁液を容器 (胴径 φ 18mm) に充填し、棚状凍結乾燥機 (LYOVAC GT-4, LEYBOLD 社製) を用いて凍結乾燥した。得られた非粉末状の凍結乾燥組成物 (凍結乾燥ケーキ) について、崩壊指数を算出した。次に、非粉末状凍結乾燥組成物を充填した容器 (胴径 φ 18mm) を、空気導入流路 17 の孔径を φ 1.99mm,吸引流路 16 の孔径を φ 1.99mm に設計した自己吸入型乾燥粉末吸入デバイス (実施態様例 3, 図 3 参照) を装着した。これを用いてツインインピンジャー (Copley 社製、UK)により (凍結乾燥ケーキに空気速度約 95m/sec 及び空気流量約 295ml/sec で生じる空気衝撃を付与)、有効粒子割合 (%)を算出した。各懸濁液中に非溶解状態で存在する粒子の幾何学的平均粒子径並びに各凍結乾燥組成物の崩壊指数及び有効粒子割合 (%)を表 5 に示す。

<表5>

20	凍結乾燥組成物	幾何学的平均粒子径 (µm)	崩壊指数	有効粒子割合(%)
	7) インシュリン 0. 2mg + ロイシン 0. 1mg	0.52	0.292	95.3%
	+アルギニン 0.042mg (pH6.5) 8) インシュリン 1 mg+フェニルアラニン 0.6mg	g 0.63	0. 238	57.9%
25	+アルギニン 0.11mg (pH6.4)			

表5に示すように、崩壊指数が少なくとも 0.238 を示す非粉末状凍結乾燥組成物 (凍結乾燥ケーキ) は、凍結乾燥前の試料が有効成分 (インスリン) を非溶解状態で含む場合であっても、上記の空気衝撃により容器中で容易に微粒子化され、しかも経肺投与に適した乾燥粉末製剤に調製することができた。

10

15

30

実施例 9~11

インシュリン(Recombinant Human Insulin crystal, Biobras社製, Brazil,比 活性: 26.4U/mg) Imgを塩酸水溶液で溶解した溶液と、フェニルアラニン0.5mgを精製水に溶解した溶液を別個に調製し、これらを混合し、水酸化ナトリムにより、各種pHを調整すると、各々懸濁状態の懸濁液が得られた。この懸濁液に含まれている粒子の幾何学的平均粒子径をレーザー回折・散乱式粒度分布測定装置(Laser Diffraction/Scattering Particle Size Analyzer、SALD-3000J、(株)島津製作所製)を用いて測定した。

次に、この懸濁液を容器 (胴径 φ 18mm) に充填し、棚状凍結乾燥機 (LYOVAC GT-4, LEYBOLD 社製) を用いて凍結乾燥した。得られた非粉末状の凍結乾燥組成物 (凍結乾燥ケーキ) について、崩壊指数を算出した。次に、非粉末状凍結乾燥組成物を充填した容器 (胴径 φ 18mm) を、空気噴射流路の孔径を φ 1.2mm, 流出流路の孔径を φ 1.8mm に設計した噴射型型乾燥粉末吸入デバイス (空気量約 2 0 m 1 を供給できるベロー体を有する) を装着した。これを用いてツインインピンジャー (Copley 社製、UK) により (凍結乾燥ケーキに空気速度約 35m/sec 及び空気流量約 40ml/sec で生じる空気衝撃を付与)、有効粒子割合 (%) を算出した。各懸濁液中に非溶解状態で存在する粒子の幾何学的平均粒子径並びに各凍結乾燥組成物の崩壊指数及び有効粒子割合 (%) を表 6 に示す。

<表 6>

20	凍結乾燥組成物	幾何学的平均粒子径 (µm)	崩壊指数	有効粒子割合(%)
	9) インシュリン 1mg +フェニルアラニン 0.5mg	3. 10	0.39	69.3
	(pH 6.0) 10) インシュリン 1 mg + フェニルアラニン 0.5mg	0.55	0.39	75. 1
25	(pH 6.4) 11) インシュリン 1 mg 十フェニルアラニン 0.5mg (pH 6.6)	g 0.61	0.36	72.0

表6に示すように、崩壊指数が少なくとも0.36を示す非粉末状凍結乾燥組成物 (凍結乾燥ケーキ)は、凍結乾燥前の試料が有効成分(インスリン)を非溶解状態で含む場合であっても、上記の空気衝撃により容器中で容易に微粒子化され、

10

15

25

しかも経肺投与に適した乾燥粉末製剤に調製することができた。

実施例12<u>~13</u>

インシュリン(Recombinant Human Insulin crystal, Biobras社製, Brazil,比活性: 26.4U/mg) 0.1mgを塩酸水溶液で溶解した溶液と、表7に示す各種担体を精製水に溶解した溶液を別個に調製し、これらを混合し、水酸化ナトリムにより、pHを調整すると、各々懸濁状態の懸濁液が得られた。この懸濁液に含まれている粒子の幾何学的平均粒子径をレーザー回折・散乱式粒度分布測定装置(Laser Diffraction/Scattreing Particle Size Analyzer、SALD-3000J、(株)島津製作所製)を用いて測定した。

次に、この懸濁液をそれぞれ容器(胴径 φ 18mm)に充填し、棚状凍結乾燥機(LYOVAC GT-4, LEYBOLD 社製)を用いて凍結乾燥した。得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)について、崩壊指数を算出した。次に、非粉末状凍結乾燥組成物を充填した容器(胴径 φ 18mm)を、空気導入流路 17 の孔径をφ 1.99mm,吸引流路 16 の孔径をφ 1.99mm に設計した自己吸入型乾燥粉末吸入デバイス(実施態様 3,図3)を装着した。これを用いてツインインピンジャー(Copley 社製、UK)により(凍結乾燥ケーキに空気速度約 95m/sec 及び空気流量約 295ml/sec で生じる空気衝撃を付与)、有効粒子割合(%)を算出した。各懸濁状態の粒子の幾何学的平均粒子径並びに各凍結乾燥組成物の崩壊指数及び有効粒子割合(%)を表 7 に示す。

20 <表7>

凍結乾燥組成物	幾何学的平均粒子径 (µm)	崩壊指数	有効粒子割合(%)
12) インシュリン 0.1mg + ロイシルーパ リン 0. (pH 6.4)	5mg 0.54	0.115	68. 7
13) インシュリン 0.1mg+ロイシルーパ リン 1. (pH 6.5)	5mg 0.67	0.051	58.9

表7に示すように、崩壊指数が少なくとも0.051を示す非粉末状凍結乾燥組成物(凍結乾燥ケーキ)は、凍結乾燥前の試料が有効成分(インスリン)を非溶解状態で含む場合であっても、上記の空気衝撃により容器中で容易に微粒子

化され、しかも経肺投与に適した乾燥粉末製剤に調製することができた。 実施例14

インシュリン(Recombinant Human Insulin crystal, Biobras社製, Brazil, 比活性: 26.4U/mg) 0.1mgを塩酸水溶液で溶解した水溶液と、バリン0.5mgを精製水に溶解した溶液を別個に調製し、これらを混合し、水酸化ナトリムにより、pHを6.5に調整すると、懸濁状態の懸濁液が得られた。この懸濁液に含まれている粒子の幾何学的平均粒子径をレーザー回折・散乱式粒度分布測定装置(Laser Diffraction/Scattering Particle Size Analyzer、SALD-3000J、(株) 島津製作所製)を用いて測定した。次に、この懸濁液を容器(胴径φ18mm)に充填し、棚状凍結乾燥機(LYOVAC GT-4, LEYBOLD社製)を用いて凍結乾燥した。得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)について、崩壊指数を算出した。

次に、非粉末状凍結乾燥組成物を充填した容器(胴径φ18mm)を、空気導入 流路 17 の孔径をφ1.99mm,吸引流路 16 の孔径をφ1.99mm に設計した自己吸入 型乾燥粉末吸入デバイス(実施態様3、図3)を装着した。

これを用いて、容器中の非粉末状凍結乾燥組成物(凍結乾燥ケーキ)に空気速度約1 m/sec 及び空気流量約17ml/sec の空気衝撃を付与し、生じた微粒子を、デバイスから、人工肺モデルであるエアロブリーダー(Amherst Process Instrument, Inc. 社、USA; 測定条件: Breath rate $1L/\min$ 、Breath Volume 0.1L)を装着したエアロザイザー (Amherst Process Instrument, Inc. 社、USA) に直接噴射して、微粒子の粒度分布を測定した。そして、その結果から当該微粒子の空気力学的平均粒子径($\mu\pm SD$)を算出した。各凍結乾燥組成物の崩壊指数及びデバイスから噴射された粒子の空気力学的平均粒子径を表8に示す。

<表8>

5

10	凍結乾燥組成物	幾何学的平均粒子径	崩壞指数	空気力学的平均粒子径 (μm±SD, MMAD)
	14) インシュリン 0. 1mg+パリン 0. 5mg	0. 57	0. 221	1.875±1.384

表8に示すように、崩壊指数が0.221を示す非粉末状凍結乾燥組成物(凍結乾

燥ケーキ)は、凍結乾燥前の試料が有効成分(インスリン)を非溶解状態で含む 場合であっても、上記の空気衝撃により容器中で容易に微粒子化され、しかも経 肺投与に適した乾燥粉末製剤に調製することができた。

参考例1~5 5

インシュリン(Recombinant Human Insulin crystal, Biobras 社製, Brazil,比 活性: 26.4U/mg) (1mg、2mg)、またはインシュリンと表9に示す各種担体をそれ ぞれ塩酸を含む注射蒸留水で溶解して 0.2ml に調製し、これを容器 (胴径φ18mm) に充填し、棚状凍結乾燥機 (LYOVAC GT-4, LEYBOLD 社製) を用いて凍結乾燥した。 得られた非粉末状の凍結乾燥組成物(凍結乾燥ケーキ)について、崩壊指数を算 10 出した。次に、得られた非粉末状凍結乾燥組成物を充填した容器(胴径 φ 18 m) を、空気導入流路 17 の孔径をφ1.99㎜,吸引流路 16 の孔径をφ1.99㎜ に設計し た自己吸入型乾燥粉末吸入デバイス(実施態様例3,図3参照)を装着した。こ れを用いてツインインピンジャー (Copley 社製、UK) により (凍結乾燥ケーキに 空気速度約 95m/sec 及び空気流量約 295ml/sec で生じる空気衝撃を付与)、有効粒 15 子割合(%)を算出した。各凍結乾燥組成物の崩壊指数及び有効粒子割合(%) を表りに示す。

<表9>

25

	凍結乾燥組成物	崩壊指数	有効粒子割合(%)
20	参 1) インシュリン 1mg	0.159	75.0
	参 2) インシュリン 1mg + ロイシン 1.4mg	0.145	80.7
	参 3) インシュリン 1mg + パリン 1.0mg	0.110	79.4
	参 4) インシュリン 2mg	0.177	42.4
	参 5) インシュリン 2mg + ロイシン 1.4mg	0.137	65. 1

表9に示すように、崩壊指数が少なくとも0.110を示す非粉末状凍結乾燥組成 物(凍結乾燥ケーキ)は、上記の空気衝撃により容器中で容易に微粒子化され、 しかも経肺投与に適した乾燥粉末製剤に調製することができた。

10

20

25

参考例 6 ~ 1<u>0</u>

インシュリン(Recombinant Human Insulin crystal, Biobras 社製, Brazil,比 活性: 26.4U/mg) 1 mg と表7に示す各種担体(1.5mg) をそれぞれ塩酸を含む注射 蒸留水で溶解して 0.5ml に調製し、これを容器(胴径φ18mm)に充填し、棚状凍 結乾燥機 (LYOVAC GT-4, LEYBOLD 社製) を用いて凍結乾燥した。得られた非粉末 状の凍結乾燥組成物(凍結乾燥ケーキ)について、崩壊指数を算出した。次に、 得られた非粉末状凍結乾燥組成物を充填した容器 (胴径φ18mm) を、空気噴射流 路3の孔径をφ1.2mm,流出流路4の孔径をφ1.8mm に設計した噴射型乾燥粉末吸 入デバイス (空気量約 20ml を供給できるベロー体を有する:実施態様例1,図1 参照)に装着した。これを用いて、容器中の非粉末状凍結乾燥組成物(凍結乾燥 ケーキ) に空気速度約 35m/sec 及び空気流量約 40ml/sec の空気衝撃を付与し、生 じた微粒子を、デバイスから、人工肺モデルであるエアロブリーダー(Amherst Process Instrument, Inc. 社、USA;測定条件:Breath rate 60L/min、Breath Volume 1L) を装着した粒度分布計 (エアロザイザー: Amherst Process Instrument, Inc. 社、USA、R. W. Niven: Pharmaceutical Technology, 72-78(1993)) に直接噴射 15 して、微粒子の粒度分布を測定した。そして、この結果から微粒子の空気力学的

75

平均粒子径 (μ±SD) を算出した。 更に、非粉末状凍結乾燥組成物を充填した容器(胴径φ18㎜)を、空気導入流 路17の孔径φ1.99mm, 吸引流路の孔径φ1.99mm に設計した自己吸入型乾燥粉末 吸入デバイス(実施態様例3, 図3参照)に装着した。そしてこれを用いてツイン インピンジャー (Copley 社製, UK) により (凍結乾燥ケーキに空気速度約 95m/sec 及び空気流量 295ml/sec で生じる空気衝撃を付与), 有効粒子割合(%) を算出し た。

各凍結乾燥組成物の崩壊指数、デバイスから噴射された粒子の空気力学的平均 粒子径 (μm±SD) 及び有効粒子割合 (%) を表 10 に示す。

<表10>

	凍結乾燥組成物	崩壊指数	空気力学的平均粒子径 (μm±SD, MMAD)	有効粒子割合(%)
	参 6) インシュリン + イソロイシン	0.124	1.759±1.425	71.1
5	参 7) インシュリン + ロイシン	0.250	1.954 ± 1.454	74.1
	参 8) インシュリン + パリン	0.124	2.007 ± 1.438	72.1
	参 9) インシュリン + フェニルアラニン	0.204	1.872 ± 1.477	62.0
	参 10) インシュリン + D-マンニト-ル	0.160	2. 239±1. 435	61. 2

表10に示すように、崩壊指数が少なくとも0.124を示す非粉末状凍結乾燥組成物(凍結乾燥ケーキ)は空気速度約35m/sec及び空気流量約40ml/secで生じる空気衝撃または空気速度約95m/sec及び空気流量295ml/secで生じる空気衝撃により、容器中で容易に微粒子化された。しかも、空気速度約95m/sec及び空気流量295ml/secで生じる空気衝撃で微粒子化された粒子の平均粒子径は5ミクロン以下であり、経肺投与に適した乾燥粉末製剤に調製することができた。

15

20

25

10

産業上の利用可能性

本発明の経肺投与用乾燥粉末吸入システムによれば、凍結乾燥組成物を肺への送達に必要な大きさにまで微粒子化することができるとともに、該微粒子の肺へ吸入投与が可能である。すなわち、本発明の経肺投与用乾燥粉末吸入システムによれば、非粉末状態で調製された凍結乾燥組成物を使用時(投与時)に微粒子化すると同時に、吸入投与が可能であり、これによって製剤の微粒化のための特別な操作が不要となる。従って、本発明の経肺投与用乾燥粉末吸入システム(製剤システム)によれば、製造過程でのロス(薬物の不活性化や充填操作による回収ロス)や保存中のロス(微粒子状での保存による薬物の不活性化など)、並びに製造過程での夾雑物の混入の恐れがなく、所望の一定量を安定して投与することが可能となる。これは、特に蛋白質やペプチドなどの一般に高価な薬理活性物質を有効成分とする製剤に有用である。

また本発明の経肺投与用乾燥粉末吸入システムにおいて得られる有効粒子割合

15

20

25

PC1/JP20

(Fine Particle Fraction) は少なくとも10%以上であり、さらに本発明の経肺投与用乾燥粉末吸入システムによれば当該有効粒子割合を20%以上、25%以上、30%以上、並びに35%以上に高めることが可能である。米国特許公報第6153224号によると、従来のドライパウダー吸入装置の多くは、肺下部に付着する有効成分(粒子)は、吸入される有効成分の10%程度に過ぎないことが記載されている。また、特開2001-151673号公報においても、一般的な吸入用粉末製剤の肺への薬物の到達量(肺到達率)は、該製剤から排出される薬物の10%程度であることが記載されている。ゆえに、本発明の経肺投与用乾燥粉末吸入システムは、従来の吸入用粉末製剤よりも高い有効粒子割合(Fine Particle

10 Fraction)を達成することができる点で有用な投与システムであるといえる。

本発明の凍結乾燥組成物および噴射型の乾燥粉末吸入デバイスによれば、空気 圧送手段によって空気噴射流路から容器内に空気を噴射して僅かな空気衝撃を凍 結乾燥組成物に与えるだけで該凍結乾燥組成物を微粒子化することができる。こ のため簡単な構造の吸入デバイスで、また簡単な取り扱いで用時に微粒子化が可 能である。また、当該吸入デバイスは平易な構造を有するため低い製造コストで 生産が可能であり、その結果大量拡布が可能である。

また噴射型の乾燥粉末吸入デバイスによれば、ベロー体などの空気圧送手段の 圧縮速度を調整することにより、使用者の呼吸能力に合わせてエアロゾル(粉末 製剤)の吸引量を調整することができる。また、針部を一本にまとめることによ れば、容器の口栓への針部の突き刺し作業が容易になる。

さらに自己吸入型の乾燥粉末吸入デバイスによれば、使用者の吸気圧で空気衝撃を発生させて凍結乾燥組成物をエアロゾル化(微粒子化)することができるので、使用者の吸気と同時に凍結乾燥組成物の微粒子化と肺への投与が可能であり、これによってロスなく安定した量での薬物投与が期待できる。また、エアロゾル化(微粒子化)のために別途特別の操作が不要であるため取扱いが容易である。また、噴射型と同様、針部を一本にまとめることによれば容器の口栓への背部の突き刺し作業が容易になる。

本発明の乾燥粉末吸入デバイスによれば、吸引流路及び空気導入流路を有する針部の先端を容器の口栓に突き刺し、患者の吸気圧で吸引口から前記容器内の空

15

気を吸入することにより、針部の空気導入流路から容器内に空気を流入させて前 記凍結乾燥組成物に空気衝撃を与え、粉末化した凍結乾燥組成物を容器から吸引 することができる。

また、特に実施態様例4に記載する本発明の乾燥粉末吸入デバイスの場合には、 下記の効果を奏する。

凍結乾燥組成物に有効な空気衝撃を与え、微粒子化した粉末状の凍結乾燥組成物を容器から吸引しようとする場合には、吸引流路及び空気導入流路の断面積を 大きくしなければならず、そのために針部の径を大きくする必要がある。

しかし、径の大きい針部を口栓に突き刺す場合には、容器を、確実に保持した 10 状態において、針部の軸線から外れることなく、針先に近づけ、大きな力で口栓 を針先に押し付ける必要が生じる。

そこで、本発明の乾燥粉末吸入デバイスは、上述のように、容器を保持するホルダー部と、ホルダー部のガイド部と、機構部及び該機構部を操作する操作体を有するホルダー作動部とを備えることにより、容器を、ホルダー部で保持し、ガイド部に沿って針部の軸線上を移動させて針先に近づけ、操作体を操作することにより比較的小さい力で容器の口栓を針部に突き刺すことができる。

このように、本発明の乾燥粉末吸入デバイスによれば、容器の口栓を容易かつ 確実に針部に突き刺すことが可能になる。

また、前記ハウジングは筒状に形成され、該ハウジングの先部に前記吸引口部 を形成し、前記ハウジング内に前記容器の収納室を形成し、 前記針先が前記収 納室を向くように前記針部を前記ハウジング内に配設し、前記針部の空気導入流 路と連通して外気を導入するための導入口を前記ハウジングの壁部に設け、前記 ホルダー作動部により前記ホルダー部を前記収納室内において前記ハウジングの 軸先方向に前進及び後退させるように構成すれば、ペンシル形の乾燥粉末吸入デ バイスを形成することができ、使いやすく、携帯にも便利になる。

また、前記ハウジングは、前記ホルダー部が後退した位置に前記容器の出し入れ口を有するハウジング本体と、前記ハウジング本体にヒンジにて連結された前記出し入れ口の蓋とで形成され、前記ホルダー作動部は、前記蓋を倒して前記出し入れ口を閉じたときには、前記ホルダー部を前進させ、前記蓋を起こして前記

る。

5

出し入れ口を開けたときには、前記ホルダー部を後退させる前記機構部を備え、 且つ、前記蓋が前記機構部の操作体を兼ねるようにすれば、ホルダー作動部の機 構部を簡略化できて製造コストの面で有利になる。また、容器の口栓が針先に突 き刺さると同時に容器の出し入れ口に蓋をすることができるので、使いやすくな

請求の範囲

- 1. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下記(i) ~(iii) の特性を有する経肺投与用の凍結乾燥組成物:
- 5 (i) 非粉末のケーキ状形態を有する、
 - (ii) 崩壊指数が0.05以上である、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気の衝撃を受けることによって、平均粒子径(空気力学的粒子径)が10ミクロン以下または有効粒子割合が10%以上の微粒子になる。
- 10 2. 有効成分として高分子薬物を含む、請求項1に記載の凍結乾燥組成物。
 - 3. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下記特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05以上の崩壊指数を有する、及び
- 15 (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を 有する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または 有効粒子割合が10%以上の微粒子になる

を有する凍結乾燥組成物を収容した容器に、上記容器内の凍結乾燥組成物に上記 の空気衝撃を与えることのできるデバイスを用いて、当該空気衝撃を備えた空気

20 を導入し、

それによって上記凍結乾燥組成物を平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子とする,経肺投与用乾燥粉末製剤の製造方法。

- 4. 凍結乾燥組成物が有効成分として高分子薬物を含むものである請求項3に記載の経肺投与用乾燥粉末製剤の製造方法。
- 25 5. デバイスとして下記(A)または(B)に記載の乾燥粉末吸入デバイスを 用いて凍結乾燥組成物を微粒子化することを特徴とする請求項3に記載の経肺投 与用乾燥粉末製剤の製造方法:
 - (A) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を被験者に吸入させるために用いられるデバイスであって、

15

25

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイス;または

(B) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られ 10 た微粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾 燥粉末吸入デバイス。

- 6. (1)配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下 20 記特性:
 - (i) 非粉末のケーキ状形態を有する、
 - (ii) 崩壊指数が0.05以上である、及び
 - $(i\,i\,i)$ 少なくとも $1\,m/sec$ の空気速度及び少なくとも $1\,7\,ml/sec$ の空気流量を有する空気の衝撃を受けることによって、平均粒子径が $1\,0\,$ ミクロン以下または有効粒子割合が $1\,0\,$ %以上の微粒子になる:

を有する凍結乾燥組成物を収容した容器と、

(2) 上記容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段、 及び微粒子化された粉末状の凍結乾燥組成物を排出する手段を備えたデバイスと を組み合わせて用いられる経肺投与用乾燥粉末吸入システム。

- 7. 吸入時に上記容器と上記デバイスとが組み合わされて用いられる、請求項6に記載の経肺投与用乾燥粉末吸入システム。
- 8. 凍結乾燥組成物が有効成分として高分子薬物を含むものである請求項6に 記載の経肺投与用乾燥粉末吸入システム。
- 5 9. デバイスとして、下記
 - (A) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を使用者に吸入させるために用いられるデバイスであって、

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを

10 備え、

15

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイス、または

(B) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通する吸入口とを備え、

- 20 前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾
- 25 燥粉末吸入デバイス

を用いる請求項6に記載の経肺投与用乾燥粉末吸入システム。

- 10. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下記特性:
 - (i) 非粉末のケーキ状形態を有する、

- (ii) 0.05以上の崩壊指数を有する、及び
- (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気衝撃を受けることによって、平均粒子径が10s0つン以下または有効粒子割合が10%以上の微粒子になる:
- 5 を有する凍結乾燥組成物に、使用時に上記の空気衝撃を与えることによって平均 粒子径が10ミクロン以下または有効粒子割合が10%以上になるように微粒子 化し、該微粒子化された粉末を使用者に吸入により投与させることを含む、経肺 投与方法。
- 11. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、当 10 該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子 化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用 いて調製されるものである、請求項10に記載の経肺投与方法。
 - 12. 凍結乾燥組成物が有効成分として高分子薬物を含むものである請求項1 0に記載の経肺投与方法。
- 13. デバイスとして下記(A)または(B)に記載する乾燥粉末吸入デバイス を用いる請求項11に記載の経肺投与方法:
 - (A) 容器に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた 微粒子を使用者に吸入させるために用いられるデバイスであって、

空気噴射流路を有する針部と、排出流路を有する針部と、前記針部の空気噴射流 20 路に空気を送るための空気圧送手段と前記針部の排出流路に連通する吸入口とを 備え、

前記容器を密封する口栓に前記針部を突き刺して空気噴射流路及び排出流路と前記容器内部とを連通し、前記空気圧送手段によって前記空気噴射流路を通じて前記容器内に空気を噴射することにより、噴射空気の衝撃で前記凍結乾燥組成物を微粒子化し、得られた微粒子を前記排出流路を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾燥粉末吸入デバイス、または

(B) 容器内に非粉末状態で収容された凍結乾燥組成物を微粒子化し、得られた微粒子を被験者に吸入させるために用いられるデバイスであって、

吸引流路を有する針部と、空気導入流路を有する針部と、前記吸引流路に連通

20

する吸入口とを備え、

前記容器を密封する口栓に前記針部を突き刺した状態で、被験者の吸気圧で前 記吸入口から前記容器内の空気を吸入すると共に負圧となった容器内に前記空気 導入流路を通じて前記容器内に空気を流入させることにより、流入した空気の衝 撃によって前記凍結乾燥組成物を微粒子化して、得られた微粒子を前記吸引流路 を通じて吸入口から排出させるように構成したことを特徴とする経肺投与用の乾 燥粉末吸入デバイス。

- 14. 配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、下記特性:
- 10 (i) 非粉末のケーキ状形態を有する、
 - (ii) 0.05以上の崩壊指数を有する、及び
 - (iii)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有する空気衝撃を受けることによって、平均粒子径が10ミクロン以下または有効粒子割合が10%以上の微粒子になる:
- 15 を有する凍結乾燥組成物を、上記平均粒子径または有効粒子割合を有する微粒子 に粉末化して用いる、凍結乾燥組成物の吸入による経肺投与への使用。
 - 15. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用いて調製されるものである、請求項14に記載の凍結乾燥組成物の経肺投与への使用。
 - 16. 凍結乾燥組成物が有効成分として高分子薬物を含むものである請求項1 4に記載の凍結乾燥組成物の経肺投与への使用。
- 17. 吸入による経肺投与用の乾燥粉末製剤の製造のための、下記凍結乾燥組 25 成物の使用:
 - (i)配合成分を非溶解状態で含む組成液を凍結乾燥して調製してなる、
 - (ii) 非粉末のケーキ状形態を有する、
 - (iii) 0.05以上の崩壊指数を有する、及び
 - (iv)少なくとも1m/sec の空気速度及び少なくとも17ml/sec の空気流量を有

25

する空気の衝撃を受けることによって、平均粒子径が10ミクロン以下または有 効粒子割合が10%以上の微粒子になる、

という特性を有し、使用時に上記平均粒子径または上記有効粒子割合になるよう に微粒子化して用いられる凍結乾燥組成物。

- 5 18. 凍結乾燥組成物が有効成分として高分子薬物を含むものである、請求項 17に記載の経肺投与用乾燥粉末製剤の製造のための凍結乾燥組成物の使用。
 - 19. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用いて調製されるものである、請求項17に記載の経肺投与用の乾燥粉末製剤の製
 - 20. 経肺投与用乾燥粉末製剤の製造に用いられる、下記特性を有する凍結乾燥組成物を調製するための、配合成分を非溶解状態で含む組成液の使用:
 - (i) 非粉末のケーキ状形態を有する、

造のための凍結乾燥組成物の使用。

- 15 (ii) 0. 05以上の崩壊指数を有する、及び
 - (iii)少なくとも $1\,\mathrm{m/sec}$ の空気速度及び少なくとも $1\,7\,\mathrm{ml/sec}$ の空気流量を有する空気の衝撃を受けることによって、平均粒子径が $1\,0\,\mathrm{S}$ クロン以下または有効粒子割合が $1\,0\,\mathrm{S}$ 以上の微粒子になる、

という特性を有し、使用時に上記平均粒子径または上記有効粒子割合になるよう 20 に微粒子化して用いられる凍結乾燥組成物。

- 21. 凍結乾燥組成物が有効成分として高分子薬物を含むものである、請求項 20に記載の配合成分を非溶解状態で含む組成液の使用。
- 22. 凍結乾燥組成物が容器内に収容されており、微粒子化された粉末が、当該容器内の凍結乾燥組成物に上記の空気衝撃を与えることのできる手段と微粒子化された粉末状の凍結乾燥組成物を容器から排出する手段を備えたデバイスを用いて調製されるものである、請求項20に記載の配合成分を非溶解状態で含む組成液の使用。

1/13

FIG.1

2/13

FIG.2

3/13

FIG.3

WO 2004/054555 PCT/JP2003/015931

6/13

FIG.6

7/13

FIG.7

FIG.8

WO 2004/054555 PCT/JP2003/015931

31

WO 2004/054555 PCT/JP2003/015931

WO 2004/054555 PCT/JP2003/015931

11/13

FIG.11

FIG.12

13/13 FIG.13

Internation No.
PC: P03/15931

A. CLASS	IFICATION OF SUBJECT MATTER C1 ⁷ A61K9/72, 9/14, 9/19, 38/28 15/00, A61J3/02	, A61P5/50, 43/00, A61	м13/00,		
According to	International Patent Classification (IPC) or to both national	onal classification and IPC			
	SEARCHED				
Minimum do Int.	cumentation searched (classification system followed by C1 ⁷ A61K9/72, 9/14, 9/19, 38/28	y classification symbols) 3, A61M13/00, 15/00, A6	1J3/02		
Jitsu Kokai	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1992–1996 Jitsuyo Shinan Toroku Koho 1996–2002 Kokai Jitsuyo Shinan Koho 1971–2002 Toroku Jitsuyo Shinan Koho 1994–2002				
Electronic da	ata base consulted during the international search (name	of data base and, where practicable, sear	ch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
A	WO 91/16038 A1 (TOLAY INDUSTR 31 October, 1991 (31.10.91), Full text & JP 5-500229 A	RIES, INC.),	1-9,17-22		
A.	JP 2002-179589 A (JCR Pharmac Ltd.), 26 June, 2002 (26.06.02), Full text (Family: none)	ceuticals Co.,	1-9,17-22		
A	JP 2002-241313 A (Ryukakusan 28 August, 2002 (28.08.02), Full text (Family: none)	Co., Ltd.),	1-9,17-22		
× Furth	ner documents are listed in the continuation of Box C.	See patent family annex.	1		
"A" docum consid "E" carlier date "L" docum cited! specia "O" docum means docum than ti	nent published prior to the international filing date but later the priority date claimed	understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
28	actual completion of the international search January, 2004 (28.01.04)	Date of mailing of the international sea 10 February, 2004	(10.02.04)		
Name and Japa	mailing address of the ISA/ anese Patent Office	Authorized officer			
Facsimile l	No.	Telephone No.			

International dication No.
PC'1 P03/15931

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 01/32144 A1 (INHALE THERAPEUTIC SYSTEMS, INC.), 10 May, 2001 (10.05.01), Full text & EP 1223915 A1	1-9,17-22
A	WO 01/00262 A (CAMBRIDGE CONSULTANTS LTD.), 04 January, 2001 (04.01.01), Full text & EP 1191966 A1	1-9,17-22
A	JP 11-267212 A (Kabushiki Kaisha Yunishia Jekkusu), 05 October, 1999 (05.10.99), Full text (Family: none)	1-9,17-22
A	JP 11-16045 Y1 (Muheji FUJIMOTO), 24 November, 1936 (24.11.36), Full text (Family: none)	1-9,17-22

Internation Polication No.
PC JP03/15931

Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. X Claims Nos.: 10 to 16 because they relate to subject matter not required to be searched by this Authority, namely: Claims 10 to 16 pertain to methods for treatment of the human body by therapy and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

発明の属する分野の分類(国際特許分類(IPC)) Α.

Int. $C1^7$ A61K9/72, 9/14, 9/19, 38/28, A61P5/50, 43/00, A61M13/00, 15/00, A61J3/02

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ A61K9/72, 9/14, 9/19, 38/28, A61M13/00, 15/00, A61J3/02

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1992-1996年

日本国公開実用新案公報

1971-2002年

日本国実用新案登録公報

1996-2002年

日本国登録実用新案公報

1994-2002年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 91/16038 A1 (TOLAY INDUSTRIES, INC.) 1991. 10. 31,全文 & JP 5-500229 A	1-9, 17-22
A	JP 2002-179589 A (日本ケミカルリサーチ株式会社) 2002.06.26,全文 (ファミリーなし)	1-9, 17-22
A	JP 2002-241313 A (株式会社龍角散) 2002.08.28,全文 (ファミリーなし)	1-9, 17-22

|×| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 28.01.2004	国際調査報告の発送日 10.2.2004
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP)	特許庁審査官(権限のある職員) 4C 3127 内藤 伸一
郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3451

国際出願番号 PCT/103/15931 C(続き). 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 カテゴリー* 1-9, 17-22 WO 01/32144 A1 (INHALE THERAPEUTIC SYSTEMS, INC.) Α 2001.05.10,全文 & EP 1223915 A1 WO 01/00262 A (CAMBRIDGE CONSULTANTS LIMITED) 1-9, 17-22 Α 2001.01.04,全文 & EP 1191966 A1 JP 11-267212 A (株式会社ユニシアジェックス) 1-9, 17-22 Α 1999.10.05,全文(ファミリーなし) 1-9, 17-22 JP 11-16045 Y1 (藤本武平二) Α 1936.11.24,全文(ファミリーなし)

際調査報告	

第 I 欄 請求の範囲の一部の調査ができないときの意見(第 1 ページの 2 の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. X 請求の範囲 <u>10-16</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲 $10-16$ は治療による人体の処置方法に関するものであって、 $PCT17条(2)$ (a)(i)及び $PCT規則39.1$ (iv)の規定により、この国際調査期間が国際調査を行うことを要しない対象に係るものである。
2. 間
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意