Linear System Theory Solution to Homework 2

1. Suppose that $x \in \mathcal{N}(A)$. Then $Ax = 0 \Rightarrow EAx = 0 \Rightarrow x \in \mathcal{N}(EA)$. Therefore, $\mathcal{N}(A) \subseteq \mathcal{N}(EA)$.

Conversely, suppose that $x \in \mathcal{N}(EA)$, i.e. EAx = 0. Since E is invertible, there exists E^{-1} such that $E^{-1}EAx = Ax = 0$. This implies $x \in \mathcal{N}(A)$, and therefore $\mathcal{N}(EA) \subseteq \mathcal{N}(A)$. Combine the previous result and we have $\mathcal{N}(A) = \mathcal{N}(EA)$.

Suppose that $y \in \mathcal{R}(A)$, i.e. $\exists x \in \mathbb{R}^n$ such that y = Ax. Let $z = F^{-1}x$ and $y = AFF^{-1}x = AFz$. This implies $y \in \mathcal{R}(AF)$ and therefore, $\mathcal{R}(A) \subseteq \mathcal{R}(AF)$.

Conversely, suppose that $y \in \mathcal{R}(AF)$, i.e. $\exists z \in \mathbb{R}^n$ such that y = AFz. Define x = Fz and y = Ax. This implies that $y \in \mathcal{R}(A)$, and therefore $\mathcal{R}(AF) \subseteq \mathcal{R}(A)$. Combine the previous result and we have $\mathcal{R}(A) = \mathcal{R}(AF)$.

- 2. (a) Suppose that $\mathcal{N}(A) = \{0\}$. If f is not one-to-one, then there exist $x, y \in \mathbb{R}^n$, $x \neq y$, such that f(x) = Ax = f(y) = Ay. Therefore A(x y) = 0. This is a contradiction to $\mathcal{N}(A) = \{0\}$ because $(x y) \in \mathcal{N}(A)$ and $x y \neq 0$. Therefore, $\mathcal{N}(A) = \{0\}$ implies that f is one-to-one. Conversely, suppose that f is one-to-one. If there exists $z \neq 0$ such that $z \in \mathcal{N}(A)$, then for any $x \in \mathbb{R}^n$, f(x + z) = A(x + z) = Ax = f(x) and $x \neq z$. This contradicts the hypothesis that f is one-to-one. Therefore, if f is one-to-one, then $\mathcal{N}(A) = \{0\}$.
 - (b) Suppose that $\mathcal{R}(A) = \mathbb{R}^m$. Then for each $y \in \mathbb{R}^m$, there exists $x \in \mathbb{R}^n$ such that y = Ax = f(x). In other words, f is onto. Conversely, if f is onto, then for every $y \in \mathbb{R}^m$, there exists $x \in \mathbb{R}^n$ such that y = f(x) = Ax. Therefore $y \in \mathcal{R}(A)$ and $\mathcal{R}(A) = \mathbb{R}^m$.
- 3. (a) The subspace spanned by x is $\operatorname{span}(x) = \{\alpha x | \alpha \in \mathbb{R}\}$. The distance between y and any point in $\operatorname{span}(x)$ is $D = \|y \alpha x\|$. Then the projection $p \in \operatorname{span}(x)$ is the point that D is minimal. Note that

$$D^{2} = ||y - \alpha x||^{2} = (y - \alpha x)^{T}(y - \alpha x) = y^{T}y - 2\alpha x^{T}y + \alpha^{2}x^{T}x$$

Since D^2 is a convex quadratic function of α , which has minimum at the point that the first derivative of D^2 w.r.t. α vanishes, i.e.

$$0 = \frac{dD^2}{d\alpha} = 2\alpha x^T x - 2x^T y$$

which implies $\alpha = \frac{x^T y}{x^T x}$ and $p = \alpha x = \frac{x^T y}{x^T x} x$.

(b)

$$\begin{array}{ll} 0 & \leq & (y-p)^T(y-p) \\ & = & \left(y-\frac{x^Ty}{x^Tx}x\right)^T\left(y-\frac{x^Ty}{x^Tx}x\right) = y^Ty - 2\frac{x^Ty}{x^Tx}x^Ty + \left(\frac{x^Ty}{x^Tx}\right)^2x^Tx \\ & = & y^Ty - \frac{(x^Ty)^2}{x^Tx} \end{array}$$

Hence

$$|x^T y| \le \sqrt{x^T x} \sqrt{y^T y} = ||x|| ||y||$$

4. Since the columns of U are orthonormal, we have $n \geq k$. Let $V \in \mathbb{R}^{n \times (n-k)}$ such that Q = [U, V] is an orthogonal matrix. Then

$$||x||^2 = ||Q^T x||^2 = \left\| \begin{bmatrix} U^T x \\ V^T x \end{bmatrix} \right\|^2 = ||U^T x||^2 + ||V^T x||^2, \quad \forall x \in \mathbb{R}^n$$

Hence $||U^Tx|| \le ||x||$ for all $x \in \mathbb{R}^n$.

Based on the previous analysis, the equality holds when $V^T x = 0$. In other words, x is orthogonal to each column of V. However, the columns of U are orthogonal to the columns of V. This implies that x is a linear combination of the columns of U, i.e. $x \in \mathcal{R}(U)$. Notice that if n = k, then $\mathcal{R}(U) = \mathbb{R}^n$. Hence for all $x \in \mathbb{R}^n$, $||U^T x|| = ||x||$.

- 5. (a) Let P be a projection matrix. Then $(I P)^T = I P^T = I P$, and $(I P)^2 = (I P)(I P) = I 2P + P^2 = I P$. Hence I P is also a projection matrix.
 - (b) $(UU^T)^T = UU^T$ and $(UU^T)^2 = UU^TUU^T = UU^T$. This is because $U^TU = I$. Hence UU^T is a projection matrix.
 - (c) $(A(A^TA)^{-1}A^T)^T = A(A^TA)^{-1}A^T$ and $(A(A^TA)^{-1}A^T)^2 = (A(A^TA)^{-1}A^T)(A(A^TA)^{-1}A^T) = A(A^TA)^{-1}A^T$. Hence $A(A^TA)^{-1}A^T$ is a projection matrix.
 - (d) Suppose that $z \in \mathcal{R}(P)$, i.e. there exists $w \in \mathbb{R}^n$ such that z = Pw. Then

$$||x-z||^2 = ||x-Px+Px-z||^2 = ||x-Px||^2 + ||Px-z||^2 + 2(x-Px)^T (Px-z).$$

Notice that

$$(x-Px)^T(Px-z) = (x-Px)^TP(x-w) = x^T(I-P)P(x-w) = x^T(P-P^2)(x-w) = 0$$

Thus

$$||x - z||^2 = ||x - Px||^2 + ||Px - z||^2 \ge ||x - Px||^2, \quad \forall z \in \mathcal{R}(P)$$

This implies that Px is the closest point in $\mathcal{R}(P)$ to x, i.e. Px the projection of x on $\mathcal{R}(P)$.