МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Параллельные алгоритмы»

ТЕМА: ПАРАЛЛЕЛЬНОЕ УМНОЖЕНИЕ МАТРИЦ

Студент гр. 9304	Афанасьев А
Преподаватель	Сергеева Е.И

Санкт-Петербург 2022

Цель работы.

Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации. Реализовать параллельный алгоритм "быстрого" умножения матриц Штрассена.

Задание.

Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации.

Реализовать параллельный алгоритм "быстрого" умножения матриц Штрассена.

Проверить, что результаты вычислений разных реализаций совпадают.

Сравнить производительность на больших размерностях данных (порядка $10^4 - 10^6$).

Выполнение работы.

Первый алгоритм рассматривает матрицу как массив и заключается в разбиении данных на независимые части. Поскольку части независимы друг от друга, то и нет необходимости синхронизации самого алгоритма,

Алгоритм Штрассена является рекурсивным. Для распараллеливания разбиваем данные на минимальные независимые части, чтобы уменьшить конкуренцию между потоками и увеличить пропускную способность. Кратко алгоритм описывается так:

- 1. Разбить матрицу на 7 частей.
- 2. Рекурсивно для каждой из 7 частей выполнить п.1, п.2, а затем объединить в единый результат.

Пример работы программы представлен на рисунке 1.

```
| lab4 x | /home/afanasev-a@ad.speechpro.com/reps/labs_PA_22/9304_Afanasyev_A/lab4/cmake-build-debug/lab4 | Enter matrix size | 1024 | Enter strassen depth | 16 | Pid: 855295 | ThreadId: 140330803394368 | Strassen duration: 2462911 | Enter thread count | 8 | Pid: 855295 | ThreadId: 140330803394368 | Parallel duration: 3460806 | Process finished with exit code 0 |
```

Рисунок 1 - Пример работы

Далее приведено сравнение алгоритмов при разных параметров.

Таблица 1: Результаты измерений

Название	Параметры	Размер матрицы	Время, мк. с.
Первый	1 поток	8 на 8	40
Первый	8 потоков	8 на 8	147
Штрассен	Глубина 1	8 на 8	176
Первый	1 поток	64 на 64	2562
Первый	8 потоков	64 на 64	956
Первый	32 потока	64 на 64	1053
Штрассен	Глубина 1	64 на 64	937
Штрассен	Глубина 2	64 на 64	874
Штрассен	Глубина 4	64 на 64	884
Штрассен	Глубина 16	64 на 64	959
Первый	8 потоков	2048 на 2048	28814276
Штрассен	Глубина 1	2048 на 2048	15809930
Штрассен	Глубина 2	2048 на 2048	15881261
Штрассен	Глубина 3	2048 на 2048	16086299
Штрассен	Глубина 4	2048 на 2048	17033200
Штрассен	Глубина 16	2048 на 2048	17137252

На рисунке 2 представлено подтверждение идентичности результатов умножения обоих алгоритмов.

Рисунок 2 - Сравнение результатов алгоритмов

Выводы.

На языке программирования C++ были реализованы параллельные алгоритмы умножения матриц. В результате сравнения было установлено, что первое разработанное решение успешно масштабируется при увеличении размеров матрицы и потоков, а также предложенная модификация алгоритма Штрассена в среднем быстрее первого алгоритма подхода. Масштабируется алгоритм Штрассена на тестовом окружении крайне плохо по причине недостаточного количества вычислительных ядер (4 физических ядер, 8 логических).