

LADDER: Language-Driven Slice Discovery and **Error Rectification in Vision Classifiers**

Shantanu Ghosh¹, Rayan Syed¹, Chenyu Wang¹, Vaibhav Choudhary¹, Binxu Li², Clare B. Poynton³, Shyam Visweswaran⁴, Kayhan Batmanghelich^{1,2}

¹Dept. Of Electrical and Computer Engineering, Boston University. ²Stanford University.

³Boston University Chobanian & Avedisian School of Medicine. ³Intelligent Systems Program (ISP), University of Pittsburgh

What is Slice discovery methods?

Identifying coherent subsets of data that exhibit higher systematic error than the overall dataset. Overall Accuracy of the dataset: 88%.

Accuracy of Landbird class: 83%

Challenges in existing SDMs

- Existing methods needs biases to be annotated
- Existing methods do not incorporate reasoning
- They do not utilize domain knowledge, needed for medical imaging
- Only slices with visual biases are detected. They can not detect the slices containing meta-data biases.

TL; DR: LADDER uses LLMs to identify slices without requiring annotated bias attributes or group labels. Unlike the traditional methods, it identifies both visual and non-visual sources of bias, enabling interpretable diagnosis across the vision pipeline.

Tracing Bias with LLM, going beyond visual biases

Population

Age: [32-88] Race: 80% Non-Hispanic White, 20% Asian

Individual

Reason for Visit: [....] **Blood Pressure:** [...] Lab Test: [....]

Data

Manufacturer: [.....] X-ray Dosage: [...] **Aperture Setting:** [....] Al Risk Model

Al Explanation: Al model identifies calcification on the left breast and 2mm mass on right breast ...

Patient Data (EHR) Age: [.....] **Blood Pressure**: [...] Lab Test: [....]

Metadata (e.g, DICOMS) Manufacturer: [.....] X-ray Dosage: [...] **Aperture Setting:** [....]

1. there is little change in the 3 left chest tubes with area of hydro pneumothorax 2. with chest tube remaining in place and no striking change

Detecting visual biases Utilization of LLM-based reasoning Using LLM's domain knowledge (Cancer) Postsurgical changes Nodules Scattered calcifications **Progressive Extracted hypotheses by Ladder** calcifications The classifier is making mistake as it is biased toward: Stable H1: relative positioning of red and yellow box calcifications **H2:** images with small birds Benign **H3:** images with overlapping boxes calcifications **H4:** the position of boxes relative to the bird H5: images with bird on branches 100

More in our paper

200+ Classifiers **6 Datasets**

GPT-40 as primary LLM Using LLaVA to eliminate the need of captions/reports.

Ablations

4 LLMs 2 SDMs

12 Mitigation methods

