0.1 Grundlagen

Definition (Körper). $K = (K, 0_K, 1_K, +, \cdot)$ ist Körper $\iff K$ ist ein kommutativer Ring und $(K \setminus \{0\}, 1_K, \cdot)$ ist eine Gruppe $(0_K \neq 1_K)$.

Bemerkung. Im weiteren seien K, K' stets Körper.

Definition 0.1 (Unterkörper/Oberkörper). (i) $L \subseteq K$ heißt Unterkörper : $\iff L$ ist ein Unterring und L ist ein Körper.

(ii) $E\supseteq K$ heißt Oberkörper : $\iff E$ ist ein Körper und $K\subseteq R$ ist ein Unterkörper.

Bemerkung 0.2 (Übung). Sind $(K_i)_{i\in I}$ Unterkörper von K, so ist $\bigcap_{i\in I} K_i$ ein Unterkörper von K.

Definition 0.3 (Körperhomomorphismus). Eine Abbildung $\varphi: K \to K'$ heißt Körperhomomorphismus : $\iff \varphi$ ist ein Ringhomomorphismus (der Ringe $K \to K'$)

Bemerkung 0.4. Sei R ein Ring mit $0_R \neq 1_R$ und $\varphi: K \to R$ ein Ringhomomorphismus, dann:

- (a) $\operatorname{Kern}(\varphi) = \{0\} \ (\Longrightarrow \varphi \text{ ist injektiv})$
- (b) R ist ein K-Vektorraum (vermöge φ) durch

$$\cdot: K \times R \to R, (\alpha, r) \mapsto \varphi(\alpha) \cdot r, \quad +: R \times R \to R := +_R$$

Beweis. (a) Nur zu zeigen: Kern $(\varphi) \subseteq K$. Dies ist klar wegen $\varphi(1_K) = 1_R \neq 0_R$. (einzige Ideale von K sind $\{0\}, K$)

Proposition 0.5 (Primkörper). Jeder Körper K enthält einen kleinsten Unterkörper $K_0 \subseteq K$, der sogenannte **Primkörper** von K: es gilt:

$$K_0 \cong \begin{cases} \mathbb{Q}, & \operatorname{char}(K) = 0, \\ \mathbb{F}_p, & \operatorname{char}(K) = p > 0. \end{cases}$$

Beweis.

- Existenz: Nach Bemerkung 2 ist $K_0 := \bigcap_{L \subseteq K \text{ Unterk\"orper}} L$ ein K\"orper, sicher auch der kleinste.
- Isomorphietyp: betrachte $\varphi : \mathbb{Z} \to K, n \mapsto n \cdot 1_K$
 - Fall 1: Kern $(\varphi) \supseteq \{0\}$: Hatten schon gesehen Kern $(\varphi) = p\mathbb{Z}$ für $p = \operatorname{char}(K)$. Homomorphiesatz gibt Isomorphismus

$$\underbrace{\mathbb{Z}_{p\mathbb{Z}}}_{\text{K\"{o}rner}} \xrightarrow{\cong} \text{Bild}(\varphi) \underbrace{\subseteq}_{\text{Unterring}} K \implies \text{Unterk\"{o}rper}.$$

 $\operatorname{Bild}(\varphi) \subseteq K_0$, denn $1_K \in K_0$ und also $\mathbb{Z} \cdot 1_K \subseteq K_0 \Longrightarrow \operatorname{Bild}(\varphi) = K_0$ ist der kleinste $\Longrightarrow K_0 \cong \mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$.

– Fall 2: Kern $(\varphi) = \{0\}$, d.h. φ ist injektiv, und es gilt char(K) = 0. Beachte:

$$\varphi(\underbrace{\mathbb{Z}\setminus\{0\}}_{S}) \underset{\varphi \text{ inj. Hom.}}{\subseteq} K_0 \setminus \{0\} \subseteq K \setminus \{0\}$$

universelle Eigenschaft der Lokalisierung (S multiplikativ abgeschlossen, $\varphi(S) \subseteq K^{\times}$) \Longrightarrow $\exists !$ Ringhomomorphismus $\widehat{\varphi} : S^{-1}\mathbb{Z} = \mathbb{Q} \to K_0$, der φ fortsetzt; und $\widehat{\varphi}\left(\frac{a}{b}\right) = \varphi(a)\varphi(b)^{-1}, z, b \in \mathbb{Z}, b \neq 0$. Erhalten: $\widehat{\varphi}$ gibt Isomorphismus $\mathbb{Q} \xrightarrow{\cong} \widehat{\varphi}(\mathbb{Q}) \subseteq K_0, K_0$ minimal $\Longrightarrow \widehat{\varphi}$ ist Isomorphismus $\mathbb{Q} \cong K_0$.

Definition 0.6. Sei $E \supseteq K$ ein Oberkörper. Der **Grad** von E über K ist die Vektorraumdimension.

$$[E:K] := \dim_K E \in \mathbb{N} \cup \{\infty\}$$

Satz 0.7. Sei $E \supseteq K$ ein Oberkörper und V ein E-Vektorraum, dann gilt; $\dim_K V = [E:K] \dim_E V$.

Beweis. Sei $B=(b_i)_{i\in I}$ eine Basis von E als K-Vektorraum, $C=(c_j)_{j\in J}$ eine Basis von V als E-Vektorraum.

- Behauptung: $D = (b_i c_j)_{(i,j) \in I \times J}$ ist eine Basis von V als K-Vektorraum $(\implies \dim_K V = \#(I \times J) = \#I \#J = [E:K] \dim_E V)$.
- Dazu: D ist Erzeugendensystem (von V als K-Vektorraum) Sei $v \in V$, schreibe $v = \sum_{j \in J} \lambda_j c_j$, $(\lambda_j \in E)$. Für jedes j schreibe

$$\lambda_j = \sum_{i \in I} \mu_{ij} b_i \implies v = \sum_{j \in J} (\sum_{i \in I} \mu_{ij} b_i) c_j = \sum_{(i,j) \in I \times J} \mu_{ij} (b_i c_j).$$

• D ist linear unabhängig (über K): Seien $\beta_{ij} \in K$ für alle $(i,j) \in I \times J$ (nur endlich viele $\neq 0$), sodass

$$0 = \sum_{(i,j) \in I \times J} \beta_{ij} b_i c_j = \sum_{j \in J} \underbrace{\left(\sum_{i \in I} \beta_{ij} b_i\right)}_{\in E} \cdot \underbrace{c_j}_{\text{bilden E-Basis von V}}$$

$$\implies \forall j \in J : \sum_{i \in I} \underbrace{\beta_{ij}}_{\in K} \cdot \underbrace{b_i}_{\text{bilden } K\text{-Basis von } E} = 0.$$

$$\implies \forall j \in J \forall i \in I : \beta_{ij} = 0.$$

Korollar 0.8 (Gradformel für Körpertürme). Seien $L \supseteq E$ und $E \supseteq K$ Oberkörper. Dann ist $L \supseteq K$ ein Oberkörper und

$$[L:K] = [L:E] \cdot [E:K]$$

Beweis. (der Formel)

$$[L:K] = \dim_K L \underset{\text{Satz 7}}{=} [E:K] \cdot \dim_E L = [E:K] \cdot [L:E].$$

Proposition 0.9 (Übung). Sei K ein Körper mit $\#K < \infty$ und seien p die Charakteristik, K_0 der Primkörper von K, dann gilt

$$\#K = p^n$$
, $f\ddot{u}r \ n = \dim_{K_0} K$

Bemerkung. Zu jeder Primpotenz $p^n \exists K$ Körper mit $\#K = p^n$

Definition 0.10. Sei $E \supseteq K$ ein Oberkörper und $S \subseteq E$ eine Teilmenge, dann:

(a) K(S) := der kleinste Oberkörper von K, der S enthält, d.h.

$$K(S) := \bigcap \{ L \subseteq E \text{ Unterk\"{o}rper} \mid K \cup S \subseteq L \}$$

(b) K[S] := der kleinste Oberring von K, der S enthält, d.h. (Übung)

$$K[S] := \bigcap \{ L \subseteq E \text{ Unterring } | K \cup S \subseteq L \}$$

Falls $S = \{\alpha_1, \ldots, \alpha_n\}$, schreibe auch $K(\alpha_1, \ldots, \alpha_n)$ für $K(\{\alpha_1, \ldots, \alpha_n\})$ und $K[\alpha_1, \ldots, \alpha_n]$ für $K[\{\alpha_1, \ldots, \alpha_n\}]$.

Bemerkung.

- (a) $K[\alpha_1, ..., \alpha_n] = \{f(\alpha_1, ..., \alpha_n) \mid f \in K[X_1, ..., X_n]\}$
- (b) $K(S) = \text{Quot}(K[S]) = \{ \frac{f}{g} \mid f, g \in K[S], g \neq 0 \}$
- (c) $K(S_1)(S_2) = K(S_1 \cup S_2)$ und $K[S_1][S_2] = K[S_1 \cup S_2]$

Beispiel.

- (a) $E = \operatorname{Quot}(K[X]) = K(X)$ rationaler Funktionenkörper über K in Variablen X. Hier gilt $K[X] \subsetneq K(X)$ und $[K[X] : K] = \infty$ (dim $_K K[X] = \infty$)
- (b) $\sqrt{3} \subseteq \mathbb{R} \subseteq \mathbb{C}$, dann

$$\mathbb{Q}[\sqrt{3}] = \{\alpha + \beta\sqrt{3} \mid \alpha, \beta \in \mathbb{Q}\} \subset \mathbb{R}$$

und

$$\mathbb{Q}(\sqrt{3}) \underset{\text{Übung}}{=} \mathbb{Q}[\sqrt{3}], ([\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2)$$

0.2 Algebraische und transzendente Elemente

Definition 0.11. Sei $E\supseteq K$ ein Oberkörper und seien $\alpha,\alpha_1,\ldots,\alpha_n\in E$. Dann

- (i) α heißt algebraisch über $K:\iff [K(\alpha):K]<\infty$
- (ii) α heißt transzendent über $K:\iff [K(\alpha):K]=\infty$

Beispiele (ohne Beweis).

- (a) $X \in K(X)$ ist transzendent über K.
- (b) $\sqrt{3} \in \mathbb{R}$ ist algebraisch über \mathbb{Q} .
- (c) $e = \sum_{n \geq 0} \frac{1}{n!} \in \mathbb{R}$ ist transzendent über \mathbb{Q}

(d) $\pi \in \mathbb{R}$ ist transzendent über \mathbb{Q}

Wiederholung 0.12. (Propositionen 3.49 und 3.50)

- (a) K[X] ist Hauptidealring.
- (b) $f \in K[X]$ irreduzibel \iff $(f) \subseteq K[X]$ ist maximales Ideal.
- (c) Ist $0 \neq P \subseteq K[X]$ Primideal, so $\exists f \in K[X]$ irred. P = (f).
- (d) (Übung, s. LA) für $f \in K[X] \setminus K$ von Grad n > 0, dann hat K[X]/(f) als K-Vektorraum die Basis $\{1, X, \dots, X^{n-1}\}$.

Definition. Die Auswertungsabbildung an $\alpha \in E$ ist der Ringhomomorphismus

$$\operatorname{ev}_\alpha: K[X] \to E, f = \sum a_i X^i \mapsto f(\alpha) = \sum a_i \alpha^i$$

Satz 0.13. Für $\alpha \in E$ sind äquivalen:

- (a) α ist algebraisch über K.
- (b) $\exists n \in \mathbb{N} : 1, \alpha, \dots, \alpha^n$ sind linear unabhängig über K.
- (c) $\exists g \in K[X] \setminus \{0\} \ mit \ g(\alpha) = 0.$
- (d) $\operatorname{Kern}(\operatorname{ev}_{\alpha}) \subseteq K[X]$ ist maximales Ideal.
- (e) $K(\alpha) = K[\alpha]$.

Beweis.

- (a) \Longrightarrow (b): Sei $n:=[K(\alpha):K]=\dim_K K(\alpha)<\infty\implies 1,\alpha,\ldots,\alpha^n$ sind l.u. über K.
- (b) \Longrightarrow (c): Voraussetzung in (b) \Longrightarrow $\exists (c_0, \dots, c_n) \in K^{n+1} \setminus \{0\}$ mit $\sum_{0 \le i \le n} c_i \alpha^i = 0$, dann ist

$$\implies g(X) = \sum_{0 \le i \le n} c_i X^i \in K[X] \setminus \{0\}. \text{ und } g(\alpha) = 0$$

 $(c) \implies (d)$: Homomorphiesatz gibt und den Isomorphismus

$$K[X]_{\operatorname{Kern}(\operatorname{ev}_{\alpha})} \xrightarrow{\cong} \operatorname{Bild}(\operatorname{ev}_{\alpha}) \subseteq_{\operatorname{Unterring}} E$$

 $\operatorname{Bild}(\operatorname{ev}_{\alpha})$ ist Integritätsbereich \Longrightarrow $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ ist Primideal. Da $0 \neq g \in \operatorname{Kern}(\operatorname{ev}_{\alpha})$ (g aus (c)) folgt: $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ ist Primideal $\neq 0$ also ein maximales Ideal.

(d) \Longrightarrow (a): Voraussetzung: $\mathfrak{m}_{\alpha} := \text{Kern}(ev_{\alpha}) \subseteq K[X]$ ist maximales Ideal.

$$\overset{\text{Homomorphiesatz}}{\Longrightarrow} \underbrace{\underbrace{K[X]/\mathfrak{m}_{\alpha}}_{\text{K\"{o}rper, da}\ \mathfrak{m}_{\alpha}\ \text{max.}}}^{\cong} \text{Bild}(\text{ev}_{\alpha}) \subseteq E$$

 \Longrightarrow Bild(ev_{\alpha}) ist ein Körper. Aber: Bild(ev_{\alpha}) = $K[\alpha]$, also $K[\alpha] = K(\alpha)$ (*), und sei $f \in K[X]$ irreduzibler Erzeuger von \mathfrak{m}_{α} , dann:

$$\dim_K K[X]/(f) = \operatorname{Grad} f < \infty \implies \dim_K K(\alpha) = \operatorname{Grad} f < \infty.$$

- (d) \implies (e): gezeigt wegen (*).
- (e) \Longrightarrow (a): Zu zeigen: $K[\alpha] = K(\alpha) \Longrightarrow [K(\alpha) : K] < \infty$, wir zeigen (b). o.E. $\alpha \neq 0$, wesentliche Beobachtung: $\alpha^{-1} \in K[\alpha]$. d.h. $\exists c_0, \ldots, c_n \in K$ mit $\alpha^{-1} = c_0 + c_1\alpha + \cdots + c_n\alpha^n$

$$\implies 0 = -1 + c_0\alpha + c_1\alpha^2 + \dots + c_n\alpha^{n+1}$$

d.h. $1, \alpha, \ldots, \alpha^{n+1}$ sind linear abhängig über K.

Definition 0.14. Sei $\alpha \in E$ algebraisch über K. Das Minimalpolynom μ_{α} (oder $\mu_{\alpha,K}$) von α über K ist das normierte Polynom in $K[X] \setminus \{0\}$ kleinsten Grades mit $\mu_{\alpha}(\alpha) = 0$.

Proposition 0.15. Sei $\alpha \in E$ algebraisch über K, dann:

- (a) $(\mu_{\alpha}) = K[X] \cdot \mu_{\alpha} = \text{Kern}(ev_{\alpha}).$
- (b) μ_{α} ist irred. und $K[X]/(\mu_{a})$ ist ein Körper.
- (c) $[K(\alpha):K] = \operatorname{Grad} \mu_{\alpha}$

Beweis.

- (a) " \subseteq ": Klar, da $\mu_{\alpha} = 0$ also $\operatorname{ev}_{\alpha}(\mu_{\alpha}) = 0$
 - " \supseteq ": K[X] ist Hauptidealring $\Longrightarrow \exists g \in K[X] : (g) = \text{Kern}(\text{ev}_{\alpha})$ mit $g \neq 0, g \mid \mu_{\alpha}$ und $\text{Kern}(\text{ev}_{\alpha})$ ist ein maximales Ideal $(\neq 0)$ folgt aus 13. μ_{α} hat den kleinsten Grad unter allen solchen $f \neq 0$ mit $f(\alpha) = 0 \Longrightarrow g \simeq \mu_{\alpha} \Longrightarrow (g) = (\mu_{\alpha})$.
- (b) $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ maximal $\neq 0 \Longrightarrow \operatorname{Erzeuger} \mu_{\alpha}$ von $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ ist irred. und $K[X]/(\mu_{\alpha})$ ist ein Körper, da (μ_{α}) maximal.
- (c) Im Beweis von Satz 13: $K(\alpha) \cong K[X]/(\mu_{\alpha})$

$$\Longrightarrow [K[\alpha]:K] = \dim_K K[X]/(\mu_\alpha) = \operatorname{Grad} \mu_\alpha.$$

Korollar 0.16. Sei $f \in K[X]$ irred. normiert und $\alpha \in E$ eine Nullstelle von f, dann ist α algebraisch über K und $\mu_{\alpha} = f$ und $[K(\alpha) : K] = \operatorname{Grad} f$

Beispiel. $X^2 - 3 \in \mathbb{Q}[X]$ ist irreduzibel (Eisenstein mit p = 3)

$$\implies \mu_{\sqrt{3},\mathbb{Q}} = X^2 - 3$$

analog: $\alpha = \sqrt[3]{2}$ algebraisch über \mathbb{Q} mit $\mu_{\alpha} = X^3 - 2$ und

$$\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha) = \{a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbb{Q}\}\$$

Korollar 0.17. Für $\alpha \in E$ sind äquivalent:

- (a) α ist transzendent über K
- (b) $K[\alpha] \subseteq K(\alpha)$
- (c) $\operatorname{ev}_{\alpha}: K[X] \to K[\alpha]$ ist ein Isomorphismus.

Beweis.

 $\neg(a) \iff \neg(b)$, folgt aus Satz 13 $(a) \iff (e)$.

Beachte weiter: $(c) \iff \operatorname{Kern}(\operatorname{ev}_{\alpha}) = \{0\}$, also: $\neg(c) \iff \exists g \in K[X] \setminus \{0\} : g(\alpha) = a \iff \alpha \text{ ist algebraisch} \iff \neg(a).$

Bemerkung. Ist $\alpha \in E$ transzendent über K, so setzt sich $\operatorname{ev}_{\alpha} : K[X] \xrightarrow{\cong} K[\alpha]$ fort zu einem Körperisomorphismus $K(X) = \operatorname{Quot}(K[X]) \to K(\alpha)$.

Definition 0.18 (Algebraischer Oberkörper). Ein Oberkörper $E \supseteq K$ heißt algebraisch über $K : \iff \text{jedes } \alpha \in E \text{ ist algebraisch über } K.$

Lemma 0.19. Seien $F \supseteq E \supseteq K$ Oberkörper, dann:

- (a) $[E:K] < \infty \implies E$ ist algebraisch über K.
- (b) $\alpha_1, \ldots, \alpha_n \in E$ mit α_i algebraisch über $K, \forall i \implies K(\alpha_1, \ldots, \alpha_n) \supseteq K$ algebraisch.
- (c) $F \supseteq K$ ist algebraisch $\iff F \supseteq E$ und $E \supseteq K$ sind algebraisch.
- (d) Ist $K = K_0 \subseteq K_1 \subseteq \cdots$ eine Kette (indiziert über \mathbb{N}) von Oberkörpern, so ist $K_{\infty} = \bigcup_n K_n$ ein Oberkörper von K, und sind alle $K_{i+1} \supseteq K_i$ algebraisch, so ist $K_{\infty} \supseteq K$ algebraisch.
- (e) Ist $S \subseteq E$ eine beliebige Teilmenge, so dass alle $\alpha \in S$ algebraisch über K sind, so gilt K(S) = K[S] und K(S) ist algebraisch über K.
- Beweis. (a) Für $\alpha \in E$ gilt: $K \subseteq K(\alpha) \subseteq E$ und wegen Gradformel folgt $[K(\alpha):K] \leq [E:K] < \infty \implies \alpha$ algebraisch über K.
- (b) Definiere $K_i = K(\alpha_1, \dots, \alpha_i), i \in \{1, \dots, n\}$, wir wissen α_i algebraisch über K, d.h. $\exists g \in K[X] \setminus \{0\} = g(\alpha_i) = 0 \implies g \in K_{i-1}[X] \setminus \{0\} \ (K_{i-1} \supseteq K), \exists g \in K_{i-1} \setminus \{0\} : g(\alpha_i) = 0 \implies \alpha_i$ algebraisch über K_{i-1}

$$\implies [K_i:K_{i-1}] = [K_{i-1}(\alpha):K_{i-1}] < \infty \underset{\text{Ind.} + \text{Gradformel}}{\Longrightarrow} [K_n:K] < \infty$$

$$\underset{(a)}{\implies} K_n = K(\alpha_1,\ldots,\alpha_n) \supseteq K \text{ algebraisch.}$$

- (c) " \Longrightarrow ": Sei $F\supseteq K$ algebraisch, sei $\alpha\in E$ \Longrightarrow $\alpha\in F$ \Longrightarrow α algebraisch über K. Und sei $\alpha\in F$. Dann argumentiere wie in (b) um α algebraisch über E zu folgen \Longrightarrow $F\supseteq E$ algebraisch.
 - " \iff ": (Problem: [E:K] könnte unendlich sein.) Es gelte: $F\supseteq E$ und $E\supseteq K$ sind algebraisch. $\alpha\in F$ (zz: $[K(\alpha):K]<\infty$). Wir wissen α algebraisch über $E\implies$ haben $\mu_{\alpha,E}\in E[X]\setminus E$ schreibe $\mu_{\alpha,E}=a_0+a_1X+\cdots+a_{n-1}X^{n-1}+X^n$ mit $a_i\in E$ algebraisch über $K\implies E'=K[a_0,\ldots,a_{n-1}]$ hat endlichen Grad über K (nach (b)) und α ist algebraisch über E', da $\mu_{\alpha,E}\in E'[X]\implies [E'[\alpha]:E']<\infty$. Nach Definition von algebraisch und Gradformel $[E'[\alpha]:K]<\infty\implies \alpha$ algebraisch über K.
 - Gegeben eine Körperkette $K = K_0 \subseteq K_1 \subseteq \cdots K_n \subseteq \cdots, K_{\infty} = \bigcup K_n$ ist Oberkörper von K (Übung). Gilt zusätzlich $K_{i+1} \supseteq K_i$ algebraisch $\forall i$, so folgt mit Induktion und (c): $K_i \supseteq K$ algebraisch $\forall i$. Sei $\alpha \in K_{\infty} \implies \exists n : \alpha \in K_n \implies \alpha$ ist algebraisch über K.

• Übung.

Korollar 0.20. Sei $E \supseteq K$ ein Oberkörper und

$$F := \{ \alpha \in E \mid \alpha \text{ algebraisch ""uber } K \}$$

Dann gilt:

- (a) $F \subseteq E$ Unterkörper.
- (b) $F \supseteq K$ algebraisch.
- (c) K[F] = F.

Beweis. 19(e) $\Longrightarrow K[F] \supseteq K$ ist algebraischer Oberkörper und $K[F] \subseteq E \Longrightarrow K[F] = F$, d.h. (c) gilt. Und (a), (b) folgen. ((a),(b) gelten für K[F] nach 19(e)).

Beispiel 0.21 (Übung). Sei $\alpha_n := \sqrt[2^n]{2} \in R$ für $n \ge 0$, dann: $[\mathbb{Q}(\alpha_n) : \mathbb{Q}] = 2^n$. $\Longrightarrow \mathbb{Q}_{\infty} = \bigcup_n \mathbb{Q}(\alpha_n)$ ist algebraisch über \mathbb{Q} , aber $[\mathbb{Q}_{\infty} : \mathbb{Q}] = \infty$.

Beispiel. $\widetilde{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ ist algebraisch """} \text{""} \Longrightarrow [\widetilde{\mathbb{Q}} : \mathbb{Q}] = \infty \text{ und } \widetilde{\mathbb{Q}} \supseteq \mathbb{Q} \text{ ist algebraisch.}$

Leitfragen. (a) Gegeben $f \in K[X]$ irred. Finde Oberkörper E und $\alpha \in E$ mit $f(\alpha) = 0$.

(b) Finde Oberkörper $E \supseteq K$ in dem alle irred. $f \in K[X]$ eine Nullstelle (alle Nullstellen) haben.

Sei $f = \sum_{0 \le i \le n} a_i X^i \in K[X] \setminus K$, sei $E \supseteq K$ Oberkörper, hatten schon gesehen $f(\alpha) = 0 \iff \operatorname{ev}_{\alpha}(f) = 0 \iff \mu_{\alpha,K} \mid f$.

Proposition 0.22. $\#\{\alpha \in E \mid f(\alpha) = 0\} \leq \operatorname{Grad} f$.

Beweis.
$$TODO$$

Definition 0.23. (a) $f \in K[X] \setminus K$ zerfällt in Linearfaktoren über $K : \iff$ jeder irred. normierte Faktor von f ist der Form $X - \alpha$ für ein $\alpha \in K$.

(b) K heißt algebraisch abgeschlossen \iff jedes $f \in K[X] \setminus K$ zerfällt in Linearfaktoren über K.

Bemerkung 0.24. K ist algebraisch abgeschlossen \iff jedes $f \in K[X] \setminus K$ hat eine Nullstelle $\alpha \in K$.

Beweis.

- " \Longrightarrow ": Klar
- " \iff ": Sei $f \in K[X] \setminus K$ irred. normiert, nach Voraussetzung hat f eine Nullstelle $\alpha \in K \implies f = X \alpha$ (alle irred. Polynome sind linear).

Beispiel.

 \mathbb{C} ist algebraisch abgeschlossen.

TODO

Definition 0.25. Sei $f \in K[X]$ irred. Ein Oberkörper $E \supseteq K$ heißt Stammkörper zu $f \iff \exists \alpha \in E$ mit $f(\alpha) = 0$ und $E = K(\alpha)$.

Satz 0.26. Sei $f \in K[X]$ irred. von Grad n, dann:

- $(a) \ E := {}^{K[X]} / {}_{\!\! (f)} \ \text{ist ein K\"{o}rper (schreibe \overline{g} f\"{u}r die Klasse zu $g \in K[X]$)}.$
- (b) $K \to E, \alpha \to \overline{\alpha}$ ist ein Ringhomomorphismus, also Körperhomomorphismus. (Betrachte K als Unterkörper von E, schreibe α für $\overline{\alpha}$)
- (c) Es gilt $f(\overline{X}) = 0$, d.h. f hat keine Nullstelle in E.
- (d) Es gilt $E = K[\overline{X}]$ und [E : K] = n
- (e) Ist F ein Oberkörper von K mit Nullstelle $\beta \in F$ von f, so gilt $n \mid [F : K]$, falls $[F : K] < \infty$.

Korollar 0.27. Seien $f_1, \ldots, f_t \in K[X]$ irred. Dann \exists Oberkörper $E \supseteq K$ mit $\beta_1, \ldots, \beta_t \in E$, so dass $f_i(\beta_i) = 0, \forall i \in \{1, \ldots, t\}$ und $E = K(\beta_1, \ldots, \beta_t)$.

Bemerkung. Es gilt nur $[E:K] \leq \prod_{1 \leq i \leq t} \operatorname{Grad} f_i$.

Beispiel. Seien $f_1, f_2 \in \mathbb{R}[X]$ irred. quadr. Polynome $\implies E = \mathbb{C}$ und $[E : \mathbb{R}] = 2 < 2 \cdot 2$. z.B. $f_1 = X^2 + 1$ und $f_2 = X^2 + \pi$.

Satz 0.28. Jeder Körper K hat einen (inj.) Körperhomomorphismus in einen algebraisch abgeschlossen Körper \widetilde{K} .

Definition 0.29 (Algebraischer Abschluss). Ein Oberkörper $E \supseteq K$ heißt algebraischer Abschluss, wenn

- (a) E ist algebraisch abgeschlossen.
- (b) $E \supseteq K$ ist algebraisch.

Bezeichnung. \overline{K} sei immer ein algebraischer Abschluss von K.

Bemerkung (zu Satz 28). \widetilde{K} ist ein algebraischer Abschluss.

Beweis. (von Satz 28) TODO.

Proposition 0.30.

(a) K ist algebraisch abgeschlossen \iff \forall algebraischer Oberkörper $E\supseteq K$ gilt E=K

- (b) Ist $E \supseteq K$ algebraischer Oberkörper und $\overline{E} \supseteq E$ ein algebraischer Abschluss. Dann ist $\overline{E} \supseteq K$ ein algebraischer Abschluss.
- (c) Ist $E \supseteq K$ algebraisch abgeschlossen, so ist $F := \{\alpha \in E \mid \alpha \text{ algebraisch ""uber } K\}$ ein algebraischer Abschluss von K.

Beweis.

- (a) " \Longrightarrow ": Sei $\alpha \in E$, z.z. $\alpha \in K$. Betrachte $\mu_{\alpha,K} \in K[X]$, K algebraisch abgeschlossen \Longrightarrow irred. Polynome haben Grad \Longrightarrow Grad $\mu_{\alpha,K} = 1 \Longrightarrow \mu_{\alpha,K} = X \alpha \in K[X]$ also $\alpha \in K$.
 - " \Leftarrow ": Sei $f \in K[X]$ irred. normiert. Sei E sein Stammkörper \Longrightarrow $\exists \alpha \in E$ mit $f(\alpha) = 0 \Longrightarrow_{E \supseteq K \text{ alg.}} E = K$ und also $\alpha \in K \Longrightarrow f = X \alpha$.
- (b) Folgt aus Proposition 19.
- (c) Nach Korollar 20 ist F ein alg. Oberkörper von K. Noch z.z: $f \in F[X]$ irred. normiert $\Longrightarrow f$ linear. f faktorisiert in E[X] also $f = \prod_{1 \le i \le n} (X \alpha_i)$ ($n = \operatorname{Grad} f, \alpha_i \in E$). Nun sind die α_i algebraisch über F, also auch über $K \Longrightarrow \alpha_1, \ldots, \alpha_n \in F \Longrightarrow n = 1$.

Beispiel 0.31. $\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ ist alg. "über } \mathbb{Q} \}$ ist ein algebraischer Abschluss von \mathbb{Q} . Es gilt $\overline{\mathbb{Q}} \subseteq \mathbb{C}$, denn $\overline{\mathbb{Q}}$ ist abzählbar, \mathbb{C} aber nicht.

Bemerkung. Nächste Ziele:

- (a) \overline{K} ist eindeutig bis auf Isomorphie.
- (b) "Verstehe" Körperautomorphismen von \overline{K} über K.

Bezeichnungen 0.32. Sei $\varphi_i: K \to K'$ ein Körperhomomorphismus.

(a) Schreibe φ_* für den induzierten Ringhomomorphismus

$$\varphi_*: K[X] \to K'[X], \sum a_i X^i \mapsto \sum \varphi(a_i) X^i$$

(b) Sei $L \supseteq K$ ein Oberkörper, Nenne einen Körperhomomorphismus $\psi: L \to K'$ eine Ausdehnung von φ , falls $\psi|_K = \varphi$, also wenn

$$L \xrightarrow{\psi} K'$$

$$i \downarrow \qquad \qquad \downarrow \varphi$$

$$K$$

Lemma 0.33. Sei $L \supseteq K$ ein Stammkörper zu $f \in K[X]$ irred. und sei $\alpha \in L$ eine Nullstelle von f, sei $\varphi : K \to E$ ein Körperhomomorphismus, dann gilt: Die Abbildung

$$\begin{cases} \psi: L \to E \ eine \\ Ausdehnung \ von \ \varphi \end{cases} \longrightarrow \begin{cases} \beta \in E \ \middle| \ \begin{array}{c} \beta \ ist \ eine \\ Nst. \ von \ \varphi_*(f) \end{array} \end{cases}$$

$$\psi \longmapsto \psi(\alpha)$$

 $ist\ wohl\text{-}definiert\ und\ bijektiv,\ insbesondere:$

$$\# \left\{ \begin{matrix} \psi: L \to E \ eine \\ Ausdehnung \ von \ \varphi \end{matrix} \right\} = \# \left\{ \beta \in E \ \middle| \begin{array}{c} \beta \ ist \ eine \\ Nst. \ von \ \varphi_*(f) \end{array} \right\} \leq \operatorname{Grad} f = [L:K]$$

Beweis. • Abbildung ist wohl-definiert: Sei $f = \sum a_i X^i$

$$\varphi_*(f)(\psi(\alpha)) = \sum_i \underbrace{\varphi(a_i)}_{\psi(a_i)} \psi(\alpha)^i$$

$$= \underset{\psi \text{ K\"{o}rperhom.}}{=} \psi(\sum_{i} a_{i}\alpha^{i}) = \psi(f(\alpha)) = \psi(0) = 0$$

- Abbildung ist injektiv: $L = K[\alpha] \implies$ Ausdehnungen $\psi : L \rightarrow E$ sind eindeutig bestimmt durch $\psi \mid_{K} = \varphi$ und Angabe von $\psi(\alpha)$. D.h. unterschiedliche Ausdehnungen führen auf verschiedene Nullstellen von $\varphi_*(f)$.
- Abbildung ist surjektiv: Sei $\beta \in E$ Nullstelle von $\varphi_*(f)$. Betrachte den Ringhomomorphismus:

$$\xi: K[X] \to E, \sum \alpha_i X^i \mapsto \sum \varphi(\alpha_i) \beta^i$$

Beachte: $f \in \text{Kern}(\xi)$, nach der Wahl von β , nach dem Homomorphiesatz erhalten wir einen Ringhomomorphismus

$$\overline{\xi}: K[X]/_{(f)} \to E, [g] \mapsto \varphi_*(g)(\beta)$$

Wir erinnern uns, dass L konstruiert wurde als K[X]/(f), d.h. wir haben einen Isomorphismus

$$\overline{\rho}: K[X]_{f} \to L, [g] \to g(\alpha)$$

Erhalten $\psi: L \to E$ als $\psi = \overline{\xi} \circ \overline{\rho}^{-1}$ (prüfe $\psi|_K = \varphi$ und $\psi(\alpha) = \overline{\xi}(\overline{\rho}^{-1}(\alpha)) = \overline{\xi}(\overline{X}) = \beta$).

Lemma 0.34. Sei $L \supseteq K$ ein Oberkörper mit $[L:K] < \infty$, dann \exists Oberkörper $F \supseteq K$ mit $L \supsetneq F$ und $f \in F[X]$ irred., sodass $L \supseteq F$ Stammkörper von f ist.

Beweis. TODO.
$$\Box$$

Korollar 0.35. Sei $L \supseteq K$ ein Oberkörper mit $[L:K] < \infty$ und sei $\varphi: K \to E$ ein Körperhomomorphismus, dann gilt:

$$\#\{\psi: L \to E \text{ Ausdehnung von } \varphi\} < [L:K]$$

Satz 0.36. Sei E algebraisch abgeschlossener Körper, $\varphi: K \to E$ ein Körperhom. Sei $L \supseteq K$ ein algebraischer Oberkörper, dann \exists Ausdehnung $\psi: L \to E$ von φ .

Beweis. TODO.
$$\Box$$

Definition 0.37. Seien E_1, E_2 Oberkörper von K. Ein Körperhomomorphismus $\varphi: E_1 \to E_2$ heißt

- (a) K-Homomorphismus : $\iff \varphi|_K = \mathrm{id}_K$
- (b) K-Isomorphismus : $\iff \varphi$ ist bij. und $\varphi|_K = \mathrm{id}_K$

(c) K-Automorphismus : $\iff E_1 = E_2$ und φ ist K-Isomorphismus.

Notation.

- (a) $\operatorname{Hom}_K(E_1, E_2) := \{ \varphi : E_1 \to E_2 \mid \varphi \text{ ist } K\text{-Hom.} \}$
- (b) $\operatorname{Isom}_K(E_1, E_2) := \{ \varphi : E_1 \to E_2 \mid \varphi \text{ ist } K\text{-Isom.} \}$
- (c) $Aut_K(E_1) := Isom_K(E_1, E_1)$

Korollar 0.38. Sei $E \supseteq K$ ein algebraischer Oberkörper und $\overline{K} \supseteq K$ ein algebraischer Abschluss von K, dann:

(a) $\operatorname{Hom}_K(E,\overline{K}) \neq \emptyset$ (Satz 36). Ist $[E:K] < \infty$, so gilt $\# \operatorname{Hom}_K(E,\overline{K}) \leq [E:K]$ (Kor 35). Ist E Stammkörper zu $f \in K[X]$ irred, so gilt

$$\#\operatorname{Hom}_K(E,\overline{K}) = \#\{\alpha \in E \mid f(\alpha)\}\$$

(Lemma 33)

- (b) Ist E algebraisch abgeschlossen, so gilt $\operatorname{Hom}_K(E, \overline{K}) = \operatorname{Isom}(K)(E, \overline{K}) \neq \emptyset$ wegen (a))
- (c) Ist \overline{E} ein algebraischer Abschluss von E und $\varphi: E \to \overline{K}$ ein K-Homomorphismus, so $\exists K$ -Isomorphismus $\psi: \overline{E} \to \overline{K}$, der φ ausdehnt. ((b) und Satz 36)

Beweis. TODO

0.3 Normale Erweiterungen und Zerfällungskörper

Bezeichnung. Nenne Oberkörper $E \supseteq K$ auch Erweiterungskörper oder Erweiterung.

Definition 0.39. (a) Eine algebraische Erweiterung $E \supseteq K$ heißt normal : $\iff \forall \alpha \in E: \mu_{\alpha,K}$ zerfällt in Linearfaktoren über $E[X] \iff \forall f \in K[X]$ irred. mit Nullstellen $\alpha_1, \ldots, \alpha_n$ in \overline{K} gilt: liegt ein α_i in E, so folgt $\{\alpha_1, \ldots, \alpha_n\} \subseteq E$.

- (b) Eine Erweiterung $E\supseteq K$ heißt Zerfällungskörper (ZK) über K von $f\in K[X]\setminus K$ normiert : \Longleftrightarrow
 - (i) $\exists \alpha_1, \dots \alpha_n \in E : f = \prod_{1 \le i \le n} (X \alpha_i)$
 - (ii) Kein echter Unterkörper von E enthält $\alpha_1, \ldots, \alpha_n$.

Proposition 0.40. *Sei* $f \in K[X] \setminus K$ *normiert, dann gilt:*

- (a) f besitzt einen eindeutigen Zerfällungskörper in \overline{K} , nämlich $E = K(\alpha_1, \ldots, \alpha_n)$ mit $\alpha_1, \ldots, \alpha_n$ die Nst. von f in \overline{K} . (so dass $f = \prod_{1 \leq i \leq n} (X \alpha_i), n = \operatorname{Grad} f$)
- (b) Ist E ein Zerfällungskörper von f, und $\varphi: E \to F$ ein Körperhomomorphismus, so ist $\varphi(E)$ der Zerfällungskörper über $\varphi(K)$ von $\varphi_*(f)$
- (c) Je zwei Zerfällungskörper E, E' zu f (über K) sind K-isomorph.

Beweis. TODO.

Beispiel 0.41.

$$f = X^4 - 5 = (X - \sqrt[4]{5})(X - i\sqrt[4]{5})(X + \sqrt[4]{5})(X + i\sqrt[4]{5}) \in \mathbb{Q}[X]$$

Zerfällungskörper von f über \mathbb{Q} ist (Übung)

$$E = \mathbb{Q}(i, \sqrt[4]{5})$$

und es gilt (Übung) $[E:\mathbb{Q}]=8$.

Wiederholung. $E \supseteq K$ algebraische Erweiterung heißt normal $\iff \forall \alpha \in E$ zerfällt $\mu_{\alpha,K}$ in E[X] über Linearfaktoren.

Satz 0.42. Für eine algebraische Erweiterung $E \supseteq K$ sind äquivalent:

- (i) $\forall \psi, \psi' \in \operatorname{Hom}_K(E, \overline{K}) \ gilt \ \psi(E) = \psi'(E)$
- $(i') \ \forall \psi \in \operatorname{Hom}_K(E, \overline{K}) \ gilt \ \psi(E) = E$
- (ii) $E \supseteq K$ ist normale Erweiterung.

Gilt $[E:K] < \infty$, so sind (i), (ii) äquivalent zu

(iii) E ist der Zerfällungskörper eines Polynoms in K[X].

Beweis. TODO.
$$\Box$$

Korollar 0.43. Sei E ein Oberkörper von K in \overline{K} mit $[E:K]<\infty$, dann \exists kleinster Oberkörper $F\supseteq E$ in \overline{K} , sodass $F\supseteq K$ normal ist, für diesen gilt $[F:K]<\infty$.

Beweis. TODO.
$$\Box$$

Definition 0.44. Der Körper $F \supseteq \overline{K}$ aus Korollar 43 heißt normale Hülle von $E \supseteq K$.

0.4 Seperabilität

Sei \overline{K} ein algebraischer Abschluss von K.

Vorbereitung. "Formale Ableitung."

Definition 0.45.

$$\frac{d}{dX}: K[X] \to K[X],$$

$$f = \sum_{0 \le i \le n} a_i X^i \mapsto f' := \frac{d}{dX} f = \sum_{0 \le i \le n} i a_i X^{i-1}$$

Hierbei steht i für $i \cdot 1 = 1 + \cdots + 1 \in K$ i-fache Summe.

Proposition 0.46 (Rechenregeln).

- (a) $\frac{d}{dX}$ ist K-linear.
- (b) $\frac{d}{dX}(f \cdot g) = \frac{df}{dX} \cdot g + f \cdot \frac{dg}{dX}$.

(c) $\frac{d}{dX}f(g(X)) = \frac{df}{dX}(g(X)) \cdot \frac{d}{dX}g$. Insbesondere $\frac{d}{dX}(g^n) = ng^{n-1}$.

Beweis. Übung.

Lemma 0.47. Sei $p = \operatorname{char}(K)$, sei $f \in K[X] \setminus \{0\}$, dann gilt

- (a) $p \mid \operatorname{Grad} f \Longrightarrow \operatorname{Grad} \frac{d}{dX} f = \operatorname{Grad} f 1$.
- (b) $f' = 0 \iff f \in K[X^p]$ mit der Konvention $X^0 = 1$

Beweis. TODO. \Box

Definition 0.48. $f \in K[X]$ hat mehrfache Nullstelle in $\overline{K} \iff \exists \alpha \in \overline{K}$ mit $f(\alpha) = 0$ und $(X - \alpha)^2$ teilt f in \overline{K} .

Bemerkung 0.49 (Übung). $\alpha \in \overline{K}$ ist mehrfache Nullstelle von $f \iff f(\alpha) = f'(\alpha) = 0$.

Proposition 0.50. Sei $f \in K[X] \setminus \{0\}$ und $g := ggT(f, f') \in K[X]$. Dann: f hat mehrfache Nullstellen in $\overline{K} \iff Grad g = 0$.

Beweis. TODO.
$$\Box$$

Korollar 0.51. Sei $p = \operatorname{char} K$ und $f \in K[X]$ irred. Dann sind äquivalent:

- (i) f hat mehrfache Nullstelle in \overline{K} .
- (ii) p > 0 und f' = 0.
- (iii) p > 0 und $\exists g \in K[X]$ ohne mehrfache Nst. und $\exists > 0$ sodass $f = g(X^{p^m})$ und g irred.

Insbesondere gelten für g,m aus (iii):

- (a) $p^m \mid \operatorname{Grad} f$
- (b) $\#\{\beta \in \overline{K} \mid f(\beta) = 0\}$
- (c) Ist $\xi: K \to K'$ ein Körperhomomorphismus, so gilt $\xi_* f = (\xi_* g)(X^{p^m})$ und

$$\#\{\beta \in \overline{K}' \mid \xi_* f(\beta) = 0\} = \operatorname{Grad} g = \operatorname{Grad}(\xi_*(g))$$

Beweis. TODO. \Box

Definition 0.52. Sei $f \in K[X] \setminus K$, und $E \supseteq K$ Oberkörper.

- (a) f heißt seperabel \iff Kein irred. Faktor von f hat mehrfache Nst.
- (b) $\alpha \in E$ heißt seperabel über $K \iff \mu_{\alpha,K}$ ist seperabel.
- (c) $E \supseteq K$ heißt seperabel \iff alle $\alpha \in E$ sind seperabel über K.
- (d) K heißt perkeft \iff alle $g \in K[X] \setminus K$ sind seperabel (\iff alle algebraische Erweiterungen $E \supseteq K$ sind seperabel.)
- (e) Ist f irred., so heißt f rein inseperabel $\iff f$ besitzt genau eine Nst. in \overline{K} .

(f) $E \supseteq K$ ist rein inseperabel $\iff \forall \alpha \in E : \mu_{\alpha,K}$ ist rein inseperabel.

Beispiel (zu 52(e)). in 54 geg. $X^p - Y$

Beispiel 0.53. Gelte char K = p > 0, sei $f = X^p - a \in K[X]$ und sei $b \in \overline{K}$ eine Nst. von f, dann:

- (a) $(X b)^p = f(X)$ in $\overline{K}[X]$
- (b) f ist irred. $\iff b \in \overline{K} \setminus K$.

Beweis. Übung.

Beispiel 0.54. $K = \mathbb{F}_p(Y) = \operatorname{Quot}(\mathbb{F}_p[Y])$, sei $f(X) = X^p - Y \in (\mathbb{F}_p[Y])[X] \subseteq K[X]$ irred. nach Existenz $(Y \in \mathbb{F}_p[Y] \text{ prim})$. Haben TODO.

Satz 0.55. K ist perfekt \iff es gelten (i) oder (ii).

- (i) $\operatorname{char} K = 0$.
- (ii) $\operatorname{char} K = p > 0$ und der Frobeniushomomorphismus

$$\varphi_K: K \to K, \alpha \mapsto \alpha^p$$

ist surjektiv. (φ_K ist Ringhomomorphismus, da char K=p, also ein Körperhomomorphismus)

Beispiel.

$$\varphi_K : \mathbb{F}_p \to \mathbb{F}_p(Y) = K, \quad \text{Bild}(\varphi_K) \stackrel{\text{Übung}}{=} \mathbb{F}_p(Y^p)$$

und \mathbb{F}_p ist perfekt.