Lecture 12 (Local Search)

1 Exploitiong Problem Structure

- 1. Problem specific optimisations to speed up CSP solving
- 2. Disconnected components can be independently solved
- 3. Tree-structured CSPs can be easily solved in $O(nd^2)$ time
- 4. Instantiate some variables and solve on the pruned graph
 - Find a subset of variables S, such that the remaining constraint graph becomes a tree after the removal of S (S is a cycle cut set)

2 Iterative Approaches to Solving CSPs - Local Search

- 1. Take an assignment with unsatisfied constraints
- 2. Reassign variable values
- 3. Repeat: till CSP does not have a solution
 - i. Variable selection randomly select any conflicted variable
 - ii. Choose a new value which has the least number of conflicts heuristic functions

Above idea is called "hill climbing" with h(x). Generic idea is:

- 1. Start at a state
- 2. Repeat: move to best neighbouring neighbour
- 3. If no neighbour better than current, return

3 Optimisation Problems - Generic Setup

- Local search is an example of optimisation problem
- We attempt to minimise the cost function
- Compared to search algorithms, notion of "path" from initial state to goal state isn't important here

4 Preventing Stagnating at Local Maxima - Simulated Annealing

- 1. Allow some bad moves to escape local maxima
- 2. Repeat:
 - i. Let X_i be a random neighbour of X
 - ii. If $E_i > E$, $X \leftarrow X_i$ and $E \leftarrow E_i$
 - iii. Else, with some probability $p, X \leftarrow X_i$ and $E \leftarrow E_i$
- 3. This algorithm is a form of Monte-Carlo Search
- 4. p is higher when $|E_i E|$ is low and vice-versa
- 5. Exact formulation of $p = \exp{-\frac{E E_i}{T}}$, T is the dynamic variable that slowly reduces to 0 over time

5 Local Beam Search

- 1. Track k states
- 2. Begin with k randomly sampled states
- 3. Loop:
 - i. Generate successors of each of the k states
 - ii. If any of them has the goal, algorithm halts
 - iii. Select only the k best successors from the list and repeat
- 4. States become concentrated in a small region of space