CSC 226 SUMMER 2019 ALGORITHMS AND DATA STRUCTURES II ASSIGNMENT 2 - WRITTEN UNIVERSITY OF VICTORIA

- 1. **[5 marks]** Let T_R be a right-leaning red-black tree. We will build a corresponding left-leaning red-black tree T_L as follows:
 - For every node $v_R \in T_R$ with key k we create a node $v_L \in T_L$ and add key k to it. Map v_R to v_L .
 - For every red edge $v_R w_R \in T_R$ where w_R is the right child of v_R we construct a red edge $w_L v_L \in T_L$ where v_L is the left child of w_L . Map $v_R w_R$ to $w_L v_L$.
 - Furthermore, for black edge $w_R x_R \in T_R$ where x_R is the left child of w_R , create edge $v_L x_L \in T_L$ where x_L is the right child of v_L . Map $w_R x_R$ to $v_L x_L$.
 - O And, for black edge $u_R v_R \in T_R$ where u_R is the parent of v_R (whether v_R is left or right child) create edge $u_L w_L \in T_L$ with u_L the parent of w_L (where w_L is either the left or right child, corresponding to v_R 's orientation in T_R .) Map $u_R v_R$ to $u_L w_L$. Visually, the two cases are shown below.

• For all other edges $u_R v_R \in T_R$ construct the corresponding edge $u_L v_L \in T_L$ with the same orientation. Map $u_R v_R$ to $u_L v_L$.

Now, all right-leaning red edges in T_R are left-leaning red edges in T_L , and all external nodes have the same black depth.

<u>Marking Note</u> – You may get a lot of students mapping a right-leaning red-black tree to a 2-3 tree first and then invoking the theorem we proved in class that all 2-3 trees map to a left-leaning red-black tree. This is okay.

2. [2 + 3 marks]

If you insert the elements of a permutation of n elements, in the order of the permutation, then inversions only occur when elements in the tree are bigger than the element being inserted. During an insertion, every time the current key k is less than the key in the current node, h, we add $1 + size(h \cdot right)$ to the inversion count. Thus, put() looks like the following (assuming variable invCount):

```
private Node put(Node h, int key) {
  if (h == null)
     return new Node(key, RED, 1);
  int cmp = key - h.key;
       (cmp < 0) {
     invCount += 1 + size(h.right);
    h.left = put(h.left, key);
    }
  else if (cmp > 0)
    h.right = put(h.right, key);
  else
     h.kev = kev:
  if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
  if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
  if (isRed(h.left) && isRed(h.right))
                                         flipColors(h);
  h.size = size(h.left) + size(h.right) + 1;
  return h;
```

3. [1 + 2 + 2 marks]

(a)

- (b) There are 3 paths from a to b. For every one of those there is 1 path from b to g and for every one of those there are 3 paths from g to h. So, by the rule of products there are a total of $3 \times 1 \times 3 = 9$ paths from a to b.
- (c) There is 3 path with length less than 5. They are

$$a,b,g,h$$

 a,b,g,f,h
 a,c,b,g,h

4. [5 marks]

Let G=(V,E) be an undirected graph, with no parallel edges or self-loops. Let |V|=n and |E|=m. For the induction, let mi denote the number of edges for each n=i.

When n=1, the graph must have no edges, thus $2m_1 = 0$ and $n_2 - n = 1 - 1 = 0$ and the base case holds.

Let n=k and assume that $2m_k \le k^2 - k$. Now, suppose n=k+1 in a graph with m_{k+1} edges. Remove one vertex, say v, and all edges incident upon it. We are now left with a graph with k vertices and m_k edges. By induction then, $2m_k \le k^2 - k$. In this graph, we know that the total degree for all the vertices is $2m_k$, thus if we add v and the its incident edges (at most k of them) back to the graph we have

$$2m_{k+1} = 2m_k + 2 \deg(v)$$

$$\leq k^2 - k + 2k$$

$$= k^2 + 2k + 1 - k - 1$$

$$= (k+1)^2 - (k+1)$$

Therefore, by induction $2m \le n^2 - n$ for all $n \ge 1$.

5. [2 + 1 + 2 marks]

Consider the graph *G* shown below:

- (a) $2^9 = 512$. There are 9 edges each of which is either in the spanning subgraph or it isn't. All the vertices must be in the spanning subgraph.
- (b) 4. The graph itself plus one for each edge in the cycle 0, 1, 2.
- (c) $2^6 = 64$. Remove edges (0,1), (0,2), and (0,3) to isolate 0. The rest of the 6 edges are either in the subgraph or are not.