Отчет о выполнении лабораторной работы 2.1.3 Определение Ср/Сv по скорости звука в газе

Г. А. Багров

ФРКТ МФТИ, 27.04.2022

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа

В работе используются: звуковой генератор ГЗ; электорнный осциллограф ЭО; микрофон; телефон; раздвижная труба; генератор сигналов специальной формы; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Теоретические сведения:

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ и определяется формулой

$$c = \sqrt{\gamma \frac{RT}{\mu}}. (1)$$

где T – температура газа, а μ – его молярная масса.

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\lambda/2$$
,

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения. Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения.

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. (2)$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1) При неизменной частоте f звукового генератора (т.е. при неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Для k-ого резонанса имеем:

 $L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$

- т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k.
- 2) При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для k-ого резонанса получим:

$$L = (n+k)\frac{\lambda_{k+1}}{2}$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

Экспериментальная установка: Соответственно двум методам измерения скорости звука в работе имеются две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для углекислого газа CO_2 .

Рис. 2: Установка для изучения зависимости скорости звука от температуры

Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

Рис. 3: Используемые генератор сигналов и осциллограф (ЭО)

Измерения и обработка данных

1) Параметры установки: $L = 700 \pm 5$ мм, t = 24 °C;

Исходя из примерного значения скорости звука ($\approx 320 \, \frac{\text{м}}{\text{c}}$), рассчитаем, в каком диапазоне частот следует вести измерения, чтобы при удлинении трубы можно было наблюдать х резонансов: $L = \frac{n\lambda}{2}$, $L + \Delta L = \frac{(n+x)\lambda}{2}$. Поскольку $\Delta L \leq 23$ см - сильнее трубу выдвинуть нельзя, то для 4 резонансов необходимо $\lambda \leq 11.5$ см, т.е. $f \geq 2600$ Гц (по ф-ле 2). Для 2 резонансов $\lambda \leq 23$ см, т.е. $f \geq 1300$ Гц.

- 2.1) Проведём измерения на первой установке для воздуха. Плавно изменяя длину трубы, последовательно зафиксируем все доступные для наблюдения точки резонанса. Измерения проводятся для нескольких частот. Значение Δl соответствует значению на размеченной подвижной части трубы при измерении как по укорачиванию длины, так и по удлинению. Занесём полученные результаты в таблицу 1.
- 3.1) Изобразим полученные результаты на графиках (см. рис. 4), откладывая по оси абсцисс номер k последовательного резонанса, а по оси ординат соответствующее удлинение трубы Δl .

На полученных графиках угловой коэффициент прямой определяет длину полуволны. Вычислим

f, Гц	2518	2648	2847	3123	3262
k	Δl , cm				
0	5,2	1,6	3,6	2,1	4,4
1	12,1	8,1	9,8	7,4	9,7
2	19,0	14,7	16,0	13,0	15,1
3	_	21,2	22,1	18,5	20,4

Таблица 1: Измерения для воздуха

с их помощью скорость звука в воздухе, оценим погрешности измерений. Результаты вычислений (по ϕ -ле 2) см. в таблице 2:

Рис. 4: Зависимость $\Delta l({\bf k})$ при различных f для воздуха при 24 °C

f, Гц	2518	2648	2847	3123	3262
$\frac{\lambda}{2}$, CM	6,9	6,54	6,17	5,48	5,34
$c, \frac{M}{c}$	347,48	346,36	351,32	342,28	348,38
σ_{λ} , cm	0,05	0,05	0,05	0,05	0,05
σ_f, Γ ц	5	5	5	5	5

Таблица 2: результаты обработки для воздуха

Полученные значения скоростей звука при различных частотах близки. Усреднив полученные значения найдём окончательное значение скорости звука в воздухе. Погрешность:

$$\sigma_c = \sqrt{(\sigma_{\text{случ}})^2 + (\sigma_{\text{сист}})^2} = 7,58 \frac{M}{c}.$$

Итого,

$$c = 347, 16 \pm 7, 58 \frac{M}{c}$$
.

Теоретическое значение скорости звука в воздухе при температуре $t=24^{\circ}C$ равно

$$c_{\text{\tiny T}} = 345,549 \, \frac{\text{\tiny M}}{\text{\tiny c}}.$$

В пределах погрешности эксперементальное значение совпадает с теоретическим.

Из формулы (1) получим: $\gamma = \frac{\mu}{RT}c^2 = 1,42\pm0,03$, что сходится с теоретическим значением $\gamma = \frac{7}{5}$. 2.2) Аналогично пункту 2.1 проведём измерения на первой установке для углекислого газа. Занесём полученные результаты в таблицу 3.

f, Гц	2326	2597	2779	2938	3314	3571
k	Δl , cm					
0	0,1	3,0	3,1	3,7	3,5	1,9
1	5,9	8,3	8,0	8,4	7,7	5,4
2	11,8	13,7	13,1	13,2	12,0	9,7
3	18,3	19,1	18,1	18,3	16,5	13,6
4	_	_	_	_	20,2	17,7
5	_	_	_	_	_	22,4

Таблица 3: Измерения для углекислого газа

3.2) Изобразим полученные результаты на графиках (см. рис. 5), откладывая по оси абсцисс номер k последовательного резонанса, а по оси ординат — соответствующее удлинение трубы Δl .

На полученных графиках угловой коэффициент прямой определяет длину полуволны. Вычислим с их помощью скорость звука в воздухе, оценим погрешности измерений. Результаты вычислений (по ф-ле 2) см. в таблице 4:

Рис. 5: Зависимость $\Delta l(\mathbf{k})$ при различных f для углекислого газа при 24 °C

f, Гц	2326	2597	2779	2938	3314	3571
$\frac{\lambda}{2}$, CM	6,05	6,54	5,01	4,86	4,22	4,09
$c, \frac{M}{c}$	281,45	309,69	278,46	285,57	279,70	292,11
$\sigma_{\lambda}, c_{\mathrm{M}}$	0,05	0,05	0,05	0,05	0,05	0,05
σ_f, Γ ц	5	5	5	5	5	5

Таблица 4: результаты обработки для СО2

Полученные значения скоростей звука при различных частотах близки. Усреднив полученные значения найдём окончательное значение скорости звука в углекислом газе. Погрешность:

$$\sigma_c = \sqrt{(\sigma_{\text{случ}})^2 + (\sigma_{\text{сист}})^2} = 26,98 \frac{\text{M}}{\text{c}}.$$

Итого,

$$c = 287,83 \pm 26,98 \frac{M}{c}$$
.

Теоретическое значение скорости звука в CO2 при температуре $t=24^{\circ}C$ равно

$$c_{\text{\tiny T}} = 281, 18 \frac{\text{M}}{\text{c}}.$$

В пределах погрешности эксперементальное значение совпадает с теоретическим.

Из формулы (1) получим: $\gamma = \frac{\mu}{RT}c^2 = 1,48 \pm 0,14$, что сходится с теоретическим значением $\gamma = \frac{7}{5}$.

4) Проведём измерения на второй установке. Результаты измерений представлены в таблице 5.

$t, {}^{\circ}C$	27,0		35,6		45,4	
k	f_1 , Гц	f_2 , Гц	f_1 , Гц	f_2 , Гц	f_1 , Гц	f_2 , Гц
0	500	502	275	276	275	275
1	744	744	509	510	515	516
2	993	994	756	756	768	768
3	1240	1245	1010	1010	1025	1024
4	1490	1490	1260	1259	1279	1280
5	1740	1735	1510	1509	1534	1533

Таблица 5: измерения для второй установки

 f_1 - соответствует значениям, полученным при увеличении частоты, f_2 - при уменьшении. Видно, что при обратном ходе данные воспроизводятся.

5) Полученные результаты изобразим на графике (см. рис. 6), откладывая по оси абсцисс номер резонанса k, а по оси ординат — разность между частотой последующих резонансов и частотой первого резонанса: $\Delta f_k = f_{k+1} - f_1$. Полученный таким образом угловой коэффициент прямой на графике определяет величину $\mathbf{k} = \mathbf{c}/2\mathbf{l}$.

Значение γ найдём при помощи формулы (1). Результаты вычислений по построенным графикам представлены в таблице 6:

t, ° C	27,0	35,6	45,4
$k = \frac{c}{2l}, \Gamma$ ц	246,43	249,63	254,54
$c, \frac{M}{c}$	345,00	349,48	356,36
$\sigma_{\mathbf{k}}, \Gamma$ ц	9,2	7,6	8,1
σ_L , $\mathrm{m} \cdot 10^{-3}$	1	1	1
$\sigma_c, \frac{\mathrm{M}}{\mathrm{c}}$	13,44	10,24	11,34
γ	1,38	1,38	1,39

Таблица 6: результаты обработки по данным 2 установки (при $l=0.7\ {\rm M}$)

Таким образом, γ не зависит от температуры и равен $1,38\pm0,02,$ что в пределах погрешности совпадает с теоретическим значением $\gamma=1,40.$

Рис. 6: Зависимость $\Delta f(\mathbf{k})$ при различных t для воздуха при $\mathbf{l}=700$ мм

Выводы:

- 1) В ходе данной работы была найдены длины волн при резонансе звуковых колебаний в газе, заполняющем трубу (порядка 10 см).
- 2) Двумя способами был определён показатель адиабаты $\gamma = \frac{C_p}{C_v}$: при помощи установки с раздвижной трубой (T = const, l меняется) был получен результат $\gamma = \frac{\mu}{RT}c^2 = 1,42\pm0,03$; а при помощи установки с термостатом (l = const, T меняется) $\gamma = 1,38\pm0,02$. Оба результата сошлись с теоретическим значением $\gamma = 1,40$.