CoolSiC[™] 1200 V SiC MOSFET G2

Final datasheet

CoolSiC™ 1200 V SiC MOSFET G2: Silicon Carbide MOSFET

Features

- V_{DSS} = 1200 V at T_{vi} = 25°C
- I_{DDC} = 36 A at T_C = 100°C
- $R_{DS(on)}$ = 39.6 m Ω at V_{GS} = 18 V, T_{vj} = 25°C
- Very low switching losses
- Overload operation up to T_{vi} = 200°C
- Short circuit withstand time 2 μs
- Benchmark gate threshold voltage, V_{GS(th)} = 4.2 V
- Robust against parasitic turn on, 0 V turn-off gate voltage can be applied
- · Robust body diode for hard commutation
- .XT interconnection technology for best-in-class thermal performance
- Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder

Potential applications

- · EV Charging
- Online UPS/Industrial UPS
- · String inverter
- General purpose drives (GPD)

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Description

Pin definition:

- Pin 1 Gate
- Pin 2 Kelvin sense contact
- Pin 3...7 Source
- Tab Drain

Note: the source and sense pins are not exchangeable, their exchange might lead to malfunction (only for 4pin, TO263-7L)

Туре	Package	Marking
IMBG120R040M2H	PG-TO263-7-U01	12M2H040

CoolSiC[™] 1200 V SiC MOSFET G2

Table of contents

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET	3
3	Body diode (MOSFET)	6
4	Characteristics diagrams	8
5	Package outlines	14
6	Testing conditions	15
	Revision history	16
	Disclaimer	17

CoolSiC™ 1200 V SiC MOSFET G2

1 Package

Package 1

Table 1 **Characteristic values**

Parameter	Symbol	symbol Note or test condition		Values		
			Min.	Тур.	Max.	
Storage temperature	$T_{\rm stg}$		-55		150	°C
Soldering temperature	T_{sold}	reflow soldering (MSL1 according to JEDEC J-STD-020)			260	°C
Thermal resistance, junction-ambient	$R_{th(j-a)}$				62	K/W
MOSFET/body diode thermal resistance, junction-case	R _{th(j-c)}			0.46	0.6	K/W

MOSFET 2

Table 2 **Maximum rated values**

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	$V_{\rm DSS}$	<i>T</i> _{vj} ≥ 25 °C		1200	V
Continuous DC drain	I _{DDC}	V _{GS} = 18 V	T _c = 25 °C	52	А
current for R _{th(j-c,max)} , limited by T _{vj(max)}			T _c = 100 °C	36	
Peak drain current, t _p limited by T _{vj(max)} ¹⁾	/ _{DM}	V _{GS} = 18 V	V _{GS} = 18 V		
Gate-source voltage, max. transient voltage	V _{GS}	$t_{\rm p} \le 0.5 \ \mu {\rm s}, D < 0.01$	$t_{\rm p} \le 0.5 \mu{\rm s}, D < 0.01$		
Gate-source voltage, max. static voltage ²⁾	V _{GS}				
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ = 17.5 A, $V_{\rm DD}$ = 50 V, L =	1.4 mH	220	mJ
Avalanche energy, repetitive	E _{AR}	$I_{\rm D}$ = 17.5 A, $V_{\rm DD}$ = 50 V, L =	$I_{\rm D}$ = 17.5 A, $V_{\rm DD}$ = 50 V, L = 7.2 μ H		mJ
Short-circuit withstand time	t _{SC}	$V_{\rm DD} \le 800 \text{ V}, V_{\rm DS,peak} < 1200 \text{ V}, V_{\rm GS(on)} = 15 \text{ V},$ $T_{\rm vj(start)} = 25 ^{\circ}\text{C}$		2	μs
Power dissipation, limited	P _{tot}		T _c = 25 °C	250	W
by T _{vj(max)}			T _c = 100 °C	125	

¹⁾ 2) verified by design.

The maximum gate-source voltage in the application design should be in accordance to IPC-9592B.

CoolSiC™ 1200 V SiC MOSFET G2

2 MOSFET

Table 3 **Recommended values**

Parameter	Symbol	Note or test condition	Values	Unit
Recommended turn-on gate voltage	V _{GS(on)}		1518	V
Recommended turn-off gate voltage	V _{GS(off)}		-50	V

Table 4 **Characteristic values**

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-state resistance	R _{DS(on)}	I _D = 17.5 A	$T_{\rm vj} = 25 ^{\circ}\text{C},$ $V_{\rm GS(on)} = 18 ^{\circ}\text{V}$		39.6		mΩ
			$T_{\rm vj} = 150 ^{\circ}{\rm C},$ $V_{\rm GS(on)} = 18 {\rm V}$		81	105	
			$T_{\rm vj} = 175 ^{\circ}{\rm C},$ $V_{\rm GS(on)} = 18 {\rm V}$		94		
			$T_{vj} = 25 ^{\circ}\text{C},$ $V_{GS(on)} = 15 ^{\circ}\text{V}$		49.4		
Gate-source threshold		T _{vj} = 25 °C	3.5	4.2	5.1	V	
voltage		(tested after 1 ms pulse at V _{GS} = 20 V)	T _{vj} = 175 °C		3.2		
Zero gate-voltage drain	$I_{\rm DSS}$ $V_{\rm DS} = 1200 \text{V}, V_{\rm GS} = 0 \text{V}$	<i>T</i> _{vj} = 25 °C			150	μΑ	
current			T _{vj} = 175 °C		2.6		
Gate leakage current	$I_{\rm GSS}$ $V_{\rm DS} = 0 \text{ V}$	V _{GS} = 23 V			120	nA	
			V _{GS} = -10 V			-120	
Forward transconductance	g_{fs}	$I_{\rm D}$ = 17.5 A, $V_{\rm DS}$ = 20 V			11.8		S
Internal gate resistance	$R_{G,int}$	$f = 1 \text{ MHz}, V_{AC} = 25 \text{ mV}$			6.5		Ω
Input capacitance	C _{iss}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = 0 V, f = 1	$100 \text{ kHz}, V_{AC} = 25 \text{ mV}$		1310		pF
Output capacitance	$C_{\rm oss}$	$V_{\rm DS} = 800 \text{V}, V_{\rm GS} = 0 \text{V}, f = 1$	$100 \text{ kHz}, V_{AC} = 25 \text{ mV}$		55		pF
Reverse transfer capacitance	C_{rss}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = 0 V, f = 1	.00 kHz, $V_{AC} = 25 \text{ mV}$		4.7		pF
C _{oss} stored energy	E _{oss}	$V_{DS} = 0800 \text{ V}, V_{GS} = 0 \text{ V}, t$ $V_{AC} = 25 \text{ mV}, \text{ Calculated b}$			23		μJ
Output charge	Q _{oss}	$V_{\rm DS}$ = 0800 V, $V_{\rm GS}$ = 0 V, Calculated based on C _{oss}			85.2		nC
Effective output capacitance, energy related	C _{o(er)}	$V_{\rm DS} = 0800 \text{V}, V_{\rm GS} = 0 \text{V}$			71.9		pF
Effective output capacitance, time related	C _{o(tr)}	$I_D = \text{constant}, V_{DS} = 080$	0 V, $V_{GS} = 0 V$		106.5		pF

(table continues...)

IMBG120R040M2H **CoolSiC™ 1200 V SiC MOSFET G2**

2 MOSFET

Table 4 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Total gate charge	Q _G	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A, $V_{\rm C}$ pulse	_{GS} = -2/18 V, turn-on		39		nC
Plateau gate charge	Q _{GS(pl)}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A, $V_{\rm C}$ pulse	_{GS} = -2/18 V, turn-on		8.5		nC
Gate-to-drain charge	Q_{GD}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A, $V_{\rm C}$ pulse	_{GS} = -2/18 V, turn-on		10.4		nC
Turn-on delay time	t _{d(on)}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A,	T _{vj} = 25 °C		3		ns
		$V_{\rm GS}$ = 0/18 V, $R_{\rm GS(on)}$ = 2.3 Ω , $R_{\rm GS(off)}$ = 2.3 Ω , L_{σ} = 15 nH, diode: body diode at V _{GS} = 0 V	T _{vj} = 175 °C		3.2		
Rise time	t _r	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A,	T _{vj} = 25 °C		14.7		ns
		$V_{\rm GS} = 0/18 \text{V},$ $R_{\rm GS(on)} = 2.3 \Omega,$ $R_{\rm GS(off)} = 2.3 \Omega,$ $L_{\sigma} = 15 \text{nH}, \text{diode: body}$ diode at $V_{\rm GS} = 0 \text{V}$	T _{vj} = 175 °C		14.5		
Turn-off delay time	$t_{\sf d(off)}$	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A, $V_{\rm GS}$ = 0/18 V, $R_{\rm GS(on)}$ = 2.3 Ω , $R_{\rm GS(off)}$ = 2.3 Ω , L_{σ} = 15 nH, diode: body diode at $V_{\rm GS}$ = 0 V	T _{vj} = 25 °C		6.4		ns
			T _{vj} = 175 °C		11.1		
Fall time	t _f	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A,	T _{vj} = 25 °C		4		ns
		$V_{\rm GS}$ = 0/18 V, $R_{\rm GS(on)}$ = 2.3 Ω , $R_{\rm GS(off)}$ = 2.3 Ω , L_{σ} = 15 nH, diode: body diode at V _{GS} = 0 V	T _{vj} = 175 °C		4.7		
Turn-on energy	E _{on}	$V_{\rm DD} = 800 \text{ V}, I_{\rm D} = 17.5 \text{ A},$	T _{vj} = 25 °C		113		μJ
		$V_{\rm GS}$ = 0/18 V, $R_{\rm GS(on)}$ = 2.3 Ω , $R_{\rm GS(off)}$ = 2.3 Ω , L_{σ} = 15 nH, diode: body diode at V _{GS} = 0 V	T _{vj} = 175 °C		222		
Turn-off energy	E _{off}	$V_{\rm DD} = 800 \text{ V}, I_{\rm D} = 17.5 \text{ A},$	T _{vj} = 25 °C		24		μJ
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 2.3 \Omega,$ $R_{\rm GS(off)} = 2.3 \Omega,$ $L_{\sigma} = 15 \rm nH, diode: body$ diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		35		

(table continues...)

CoolSiC™ 1200 V SiC MOSFET G2

3 Body diode (MOSFET)

Table 4 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Total switching energy ¹⁾	E _{tot}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 17.5 A,	T _{vj} = 25 °C		187		μJ
		$V_{\rm GS} = 0/18 \text{V},$ $R_{\rm GS(on)} = 2.3 \Omega,$ $R_{\rm GS(off)} = 2.3 \Omega,$ $L_{\sigma} = 15 \text{nH}, \text{diode: body}$ diode at $V_{\rm GS} = 0 \text{V}$	T _{vj} = 175 °C		397		
Virtual junction temperature	$T_{\rm vj}$			-55		175	°C
Virtual junction temperature	$T_{\rm vj(over)}$	overload, cumulative ma	overload, cumulative max. 100 h ²⁾			200	°C

¹⁾ including E_{fr}

Note:

The chip technology was characterized up to 200 kV/ μ s. The measured dV/dt was limited by measurement test setup and package.

Characteristics at T_{vi} = 25°C, unless otherwise specified.

3 Body diode (MOSFET)

Table 5 Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Drain-source voltage	$V_{\rm DSS}$	<i>T</i> _{vj} ≥ 25 °C	1200	V
Peak reverse drain current, t _p limited by T _{vj(max)}	I _{SM}	$V_{GS} = 0 \text{ V}$	45	А

Table 6 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
					Тур.	Мах.	
Drain-source reverse	V _{SD}	$V_{\rm SD}$ $I_{\rm SD} = 17.5 \text{A}, V_{\rm GS} = 0 \text{V}$	T _{vj} = 25 °C		4.2	5.5	V
voltage			T _{vj} = 100 °C		4.11		
			T _{vj} = 175 °C		4.05		
MOSFET forward recovery charge	Q _{fr}	/ - 17 F A 1/ - O 1/	T _{vj} = 25 °C		0.21		μC
			T _{vj} = 175 °C		0.36		_
MOSFET peak forward recovery current	/ _{frm}	$V_{\rm DD} = 800 \text{ V},$	T _{vj} = 25 °C		6.4		А
		I_{SD} = 17.5 A, V_{GS} = 0 V, - di_{SD}/dt = 1000 A/ μ s, Q _{fr} includes also Q _C	T _{vj} = 175 °C		8.4		

(table continues...)

²⁾ up to 5000 cycles. Maximum ΔT limited to 100 K.

CoolSiC™ 1200 V SiC MOSFET G2

3 Body diode (MOSFET)

Table 6 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
MOSFET forward recovery	E _{fr}	V _{DD} = 800 V,	T _{vj} = 25 °C		50		μJ
energy		I_{SD} = 17.5 A, V_{GS} = 0 V, - di_{SD}/dt = 1000 A/ μ s, Q _{fr} includes also Q _C	T _{vj} = 175 °C		140		
Virtual junction temperature	$T_{\rm vj}$			-55		175	°C
Virtual junction temperature	$T_{\rm vj(over)}$	overload, cumulative ma	x. 100 h ¹⁾			200	°C

¹⁾ up to 5000 cycles. Maximum ΔT limited to 100 K.

4 Characteristics diagrams

4 Characteristics diagrams

Reverse bias safe operating area (RBSOA)

 $I_{\mathsf{DS}} = \mathsf{f}(\mathsf{V}_{\mathsf{DS}})$

 $T_{vj} \le 200 \,^{\circ}\text{C}, \, V_{GS} = 0/18 \, \text{V}, \, T_{c} = 25 \,^{\circ}\text{C}$

Power dissipation as a function of case temperature

 $P_{tot} = f(T_c)$

Maximum DC drain to source current as a function of case temperature limited by bond wire

 $I_{DS} = f(T_c)$

Maximum source to drain current as a function of case temperature limited by bond wire

 $I_{SD} = f(T_c)$

 $V_{GS} = 0 V$

CoolSiC™ 1200 V SiC MOSFET G2

4 Characteristics diagrams

Typical transfer characteristic

$$I_{DS} = f(V_{GS})$$

 $V_{DS} = 20 \text{ V}, t_p = 20 \text{ } \mu\text{s}$

Typical gate-source threshold voltage as a function of junction temperature

$$V_{GS(th)} = f(T_{vj})$$
$$I_D = 5.5 \text{ mA}$$

Typical output characteristic, V_{GS} as parameter

$$I_{DS} = f(V_{DS})$$

 $T_{vj} = 25 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$

Typical output characteristic, V_{GS} as parameter

$$I_{DS} = f(V_{DS})$$

 $T_{vi} = 175 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$

160

10 V_{DS} (V)

16 18

4 Characteristics diagrams

Typical on-state resistance as a function of junction temperature

$$R_{DS(on)} = f(T_{vj})$$

$$I_D = 17.5 A$$

Typical gate charge

$$V_{GS} = f(Q_G)$$

 $I_D = 17.5 \text{ A}, V_{DS} = 800 \text{ V}$

Typical capacitance as a function of drain-source voltage

$$C = f(V_{DS})$$

f = 100 kHz, $V_{GS} = 0 V$

Typical reverse drain voltage as function of junction temperature

$$V_{SD} = f(T_{vj})$$

 $I_{SD} = 17.5 \text{ A}, V_{GS} = 0 \text{ V}$

4 Characteristics diagrams

Typical reverse drain current as function of reverse drain voltage, V_{GS} as parameter

$$I_{SD} = f(V_{SD})$$

$$T_{vj} = 25 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$$

Typical reverse drain current as function of reverse drain voltage, V_{GS} as parameter

$$I_{SD} = f(V_{SD})$$

$$T_{vj} = 175 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$$

Typical switching energy as a function of junction temperature, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

$$E = f(T_{vi})$$

$$V_{GS} = 0/18 \text{ V}, I_D = 17.5 \text{ A}, R_{G,ext} = 2.3 \Omega, V_{DD} = 800 \text{ V}$$

Typical switching energy as a function of drain current, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

$$E = f(I_D)$$

$$V_{GS} = 0/18 \text{ V}, T_{vj} = 175 \,^{\circ}\text{C}, R_{G,ext} = 2.3 \,\Omega, V_{DD} = 800 \,\text{V}$$

CoolSiC™ 1200 V SiC MOSFET G2

4 Characteristics diagrams

Typical switching energy as a function of gate resistance, test circuit in Fig. F, 2nd device own body diode: V_{GS} = 0 V

 $E = f(R_{G,ext})$

 $V_{GS} = 0/18 \text{ V}, I_D = 17.5 \text{ A}, T_{vi} = 175 \text{ °C}, V_{DD} = 800 \text{ V}$

Typical switching times as a function of gate resistance, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $t = f(R_{G,ext})$

 $I_D = 17.5 \text{ A}, T_{vj} = 175 \text{ °C}, V_{DD} = 800 \text{ V}, V_{GS} = 0/18 \text{ V}$

Typical reverse recovery charge as a function of reverse drain current slope, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $Q_{fr} = f(-di_{SD}/dt)$

 $V_{GS} = 0/18 \text{ V}, I_{SD} = 17.5 \text{ A}, V_{DD} = 800 \text{ V}$

Typical reverse recovery current as a function of reverse drain current slope, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $I_{frm} = f(-di_{SD}/dt)$

 $V_{GS} = 0/18 \text{ V}, I_{SD} = 17.5 \text{ A}, V_{DD} = 800 \text{ V}$

CoolSiC™ 1200 V SiC MOSFET G2

4 Characteristics diagrams

Typical switching energy as a function of dead time / blanking time, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = -5 \text{ V}$

$$E = f(t_{dead})$$

$$V_{GS} = 0/18 \text{ V, } I_D = 17.5 \text{ A, } T_{vj} = 175 \text{ °C, } R_{G,ext} = 2.3 \Omega$$

$$V_{DD} = 800 \text{ V}$$

Max. transient thermal impedance (MOSFET/diode)

$$Z_{th(j-c),max} = f(t_p)$$
$$D = t_p/T$$

5 Package outlines

Package outlines 5

Figure 1

6 Testing conditions

Testing conditions 6

Figure 2

CoolSiC™ 1200 V SiC MOSFET G2

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2023-08-08	Preliminary datasheet
1.00	2023-10-05	Final datasheet
1.10	2024-01-16	Negative gate voltage values updated
		Additional capacitance & charge values added
		E = f(t _{dead}) graph y-axis correction to percentage values
		Editorial changes
1.20	2024-07-02	Updated "Potential applications"
		Corrected package name
		Corrected static and dynamic gate-source voltage
		Corrected unit of L to µH for "Avalanche energy, repetitive"
		Corrected value of g _{fs} in the Table 4
		Corrected diagrams "Typical transfer characteristic" and "Max. transient thermal impedance (MOSFET/diode)"
		Updated Figure D. Definition of QGD
1.30	2024-11-08	Corrected diagram $I_{frm} = f(-di_{SD}/dt)$
		Editorial changes

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-11-08 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABH462-005

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.