Ability bias in the returns to schooling: How large it is and why it matters

Petr Čala

Institute of Economic Studies Charles University, Prague

Motivation

- Does ability bias affect the estimation of returns to education?
- Two extensive meta-analyses on the topic (1754 and 293 observations)

- Average effect of returns to education of around 7%
- Drops by around one percentage point after correcting for publication bias
- Ability matters, and controlling for it in a regression decreases the expected returns to education
- The returns drop even further for twin studies with identical inherent ability (4% to 6%)

Motivation

- Does ability bias affect the estimation of returns to education?
- Two extensive meta-analyses on the topic (1754 and 293 observations)

- Average effect of returns to education of around 7%
- Drops by around one percentage point after correcting for publication bias
- Ability matters, and controlling for it in a regression decreases the expected returns to education
- The returns drop even further for twin studies with identical inherent ability (4% to 6%)

Motivation

- Does ability bias affect the estimation of returns to education?
- Two extensive meta-analyses on the topic (1754 and 293 observations)

- Average effect of returns to education of around 7%
- Drops by around one percentage point after correcting for publication bias
- Ability matters, and controlling for it in a regression decreases the expected returns to education
- The returns drop even further for twin studies with identical inherent ability (4% to 6%)

Motivation

- Does ability bias affect the estimation of returns to education?
- Two extensive meta-analyses on the topic (1754 and 293 observations)

- Average effect of returns to education of around 7%
- Drops by around one percentage point after correcting for publication bias
- Ability matters, and controlling for it in a regression decreases the expected returns to education
- The returns drop even further for twin studies with identical inherent ability (4% to 6%)

Mincer Equation (Mincer, 1974)

- Ability bias: Distorted estimation of returns to education due to omission of ability (Blackburn & Neumark, 1993)
- Ability correlates with both education and earnings
- Sorting bias: Correlation between education and ability
- How to separate the effect of education from the effect of ability?

Mincer Equation (Mincer, 1974)

- Ability bias: Distorted estimation of returns to education due to omission of ability (Blackburn & Neumark, 1993)
- Ability correlates with both education and earnings
- Sorting bias: Correlation between education and ability
- How to separate the effect of education from the effect of ability?

Mincer Equation (Mincer, 1974)

- Ability bias: Distorted estimation of returns to education due to omission of ability (Blackburn & Neumark, 1993)
- Ability correlates with both education and earnings
- Sorting bias: Correlation between education and ability
- How to separate the effect of education from the effect of ability?

Mincer Equation (Mincer, 1974)

- Ability bias: Distorted estimation of returns to education due to omission of ability (Blackburn & Neumark, 1993)
- Ability correlates with both education and earnings
- Sorting bias: Correlation between education and ability
- How to separate the effect of education from the effect of ability?

Mincer Equation (Mincer, 1974)

- Ability bias: Distorted estimation of returns to education due to omission of ability (Blackburn & Neumark, 1993)
- Ability correlates with both education and earnings
- Sorting bias: Correlation between education and ability
- How to separate the effect of education from the effect of ability?

Inclusion of Ability Measures

- Use cognitive test scores as control variables
- Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education and with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- Inclusion of Ability Measures
 - Use cognitive test scores as control variables
 - Separates effect of education from ability
- Instrumental Variables (IV)
 - Find variable correlated with education, not with error term
 - Isolates exogenous variation in education
- Fixed Effects Models
 - Use within-individual variation over time
 - Controls for time-invariant unobserved heterogeneity
- Sibling and Twin Studies
 - Compare siblings/twins with different education levels
 - Controls for family and genetic factors

- A large meta-analysis of 1754 estimates of returns to education over 115 studies
- Correct for publication bias, observe heterogeneity
- Observe the isolated effect of ability
- Conduct a whole another meta-analysis comprised of twin studies (293 observations)
- Fully automate the whole analysis process

- A large meta-analysis of 1754 estimates of returns to education over 115 studies
- Correct for publication bias, observe heterogeneity
- Observe the isolated effect of ability
- Conduct a whole another meta-analysis comprised of twin studies (293 observations)
- Fully automate the whole analysis process

- A large meta-analysis of 1754 estimates of returns to education over 115 studies
- Correct for publication bias, observe heterogeneity
- Observe the isolated effect of ability
- Conduct a whole another meta-analysis comprised of twin studies (293 observations)
- Fully automate the whole analysis process

- A large meta-analysis of 1754 estimates of returns to education over 115 studies
- Correct for publication bias, observe heterogeneity
- Observe the isolated effect of ability
- Conduct a whole another meta-analysis comprised of twin studies (293 observations)
- Fully automate the whole analysis process

- A large meta-analysis of 1754 estimates of returns to education over 115 studies
- Correct for publication bias, observe heterogeneity
- Observe the isolated effect of ability
- Conduct a whole another meta-analysis comprised of twin studies (293 observations)
- Fully automate the whole analysis process

What do we already know?

Study name	AB	AB*	РВ	PB*	Method
Psacharopoulos (1994)					
Fleisher et al. (2005)					\checkmark
Churchill & Mishra (2018)			\checkmark	\checkmark	\checkmark
Psacharopoulos & Patrinos (2018)					
Patrinos & Psacharopoulos (2020)					
Cui & Martins (2021)			\checkmark	\checkmark	\checkmark
Iwasaki & Ma (2021)			\checkmark		\checkmark
Ma & Iwasaki (2021)			\checkmark	\checkmark	\checkmark
Wincenciak et al. (2022)	\checkmark	\checkmark			\checkmark
Horie & Iwasaki (2023)			\checkmark		
Number of studies:	1	1	5	3	6
Percentage of studies:	10%	10%	50%	30%	60%

Estimates of ability across the dataset

Graphical Test Using a Funnel Plot

Statistical Tests and Publication Bias

	OLS	FE	BE	RE	Study	Precision
Publication bias (Standard error)	0.832 (0.097)	0.746 (0.060)	0.752 (0.244)	0.747 (0.058)	1.169 (0.121)	0.262 (0.425)
Effect beyond bias (Constant)	6.408 (0.118)	6.517 (0.107)	6.741 (0.418)	6.708 (0.294)	6.294 (0.153)	6.540 (0.168)
-	WAAP	Top10	Stem	Hier	AK	Kink
Publication bias				0.503 (0.168)	P = 2.764 (0.107)	0.262 (0.39)
Effect beyond bias	6.9 (0.092)	6.439 (0.548)	7.2 (1.186)	6.801 (0.266)	6.548 (0.091)	6.54 (0.054)
Observations	1,754	1,754	1,754	1,754	1,754	1,754

- Estimates and their descriptive statistics
- Estimate characteristics
- Data characteristics
- Spatial/structural variation
- Estimation method
- Publication characteristics

- Estimates and their descriptive statistics
- Estimate characteristics
- Data characteristics
- Spatial/structural variation
- Estimation method
- Publication characteristics

- Estimates and their descriptive statistics
- Estimate characteristics
- Data characteristics
- Spatial/structural variation
- Estimation method
- Publication characteristics

- Estimates and their descriptive statistics
- Estimate characteristics
- Data characteristics
- Spatial/structural variation
- Estimation method
- Publication characteristics

- Estimates and their descriptive statistics
- Estimate characteristics
- Data characteristics
- Spatial/structural variation
- Estimation method
- Publication characteristics

- Estimates and their descriptive statistics
- Estimate characteristics
- Data characteristics
- Spatial/structural variation
- Estimation method
- Publication characteristics

Different Approach to Ability

Four ways to address ability:

- Directly using cognitive test scores or proxies thereof
- Indirectly using instrumental variables
- Verbally acknowledging the issue
- Not at all ignoring the problem

Different Approach to Ability

Four ways to address ability:

- Directly using cognitive test scores or proxies thereof
- Indirectly using instrumental variables
- Verbally acknowledging the issue
- Not at all ignoring the problem

Different Approach to Ability

Four ways to address ability:

- Directly using cognitive test scores or proxies thereof
- Indirectly using instrumental variables
- Verbally acknowledging the issue
- Not at all ignoring the problem

Different Approach to Ability

Four ways to address ability:

- Directly using cognitive test scores or proxies thereof
- Indirectly using instrumental variables
- Verbally acknowledging the issue
- Not at all ignoring the problem

Model Inclusion in Bayesian Model Averaging

Economic Significance of Key Variables

	One SD cha	nge	Maximum change		
	Effect on Returns	% of BP	Effect on Returns	% of BP	
 Standard Error 	0.642	9.82%	3.435	52.56%	
Estimate: Sub-region	-0.428	-6.55%	-1.433	-21.92%	
Estimate: Region	-0.612	-9.37%	-1.325	-20.27%	
Education: Years	0.566	8.67%	1.175	17.98%	
Wage: Log Daily	-0.405	-6.2%	-1.384	-21.18%	
Micro Data	0.532	8.13%	1.391	21.29%	
 Primary Education 	0.535	8.18%	3.540	54.16%	
 Higher Education 	1.366	20.91%	5.521	84.48%	
Gender: Male	-0.425	-6.5%	-1.215	-18.58%	
Ethnicity: Caucasian	-0.608	-9.3%	-1.449	-22.18%	
Method: 2SLS	0.433	6.62%	1.474	22.56%	
Method: IV	0.824	12.61%	2.627	40.2%	
Ability: Direct	-0.388	-5.94%	-1.138	-17.41%	
 Ability: Uncontrolled 	0.271	4.15%	0.548	8.39%	
Control: Age	-0.895	-13.69%	-1.883	-28.81%	
 Control: Age² 	1.315	20.12%	2.945	45.06%	
Control: Area	0.878	13.44%	1.781	27.24%	
 Impact Factor 	-0.296	-4.53%	-1.349	-20.64%	
Study: Published	-0.445	-6.8%	-1.047	-16.01%	

Aggregating BPE Results

Making a twin dataset

- Only subjects with identical inherent ability twins
- 16 twin studies with 293 observations
- Assumption: Differences in returns to education are due to differences in education

Publication bias for twins

	OLS	FE	BE	RE	Study	Precision
Publication bias (Standard error)	1.347 (0.138)	0.602 (0.162)	2.133 (0.505)	0.840 (0.154)	0.947 (0.177)	2.897 (0.442)
Effect beyond bias (Constant)	4.735 (0.175)	5.574 (0.219)	4.106 (0.711)	5.55 (0.342)	4.754 (0.185)	3.907 (0.232)
	WAAP	Top10	Stem	Hier	AK	Kink
Publication bias				0.601 (0.365)	2.257 (0.126)	2.895 (0.435)
Effect beyond bias	5.77 (0.159)	4.314 (0.265)	3.403 (0.95)	5.857 (0.544)	5.616 (0.157)	3.908 (0.093)
Observations	293	293	293	293	293	293

- An overall effect of returns to schooling drops roughly one percentage point (7% to 6%) after corrected for publication bias
- Ability matters, and controlling for it in the regression decreases the expected returns to schooling
- Nine variables have a significant positive influence on returns to schooling, while ten have a negative one
- The returns to schooling drop even further for twin studies with identical inherent ability (4% to 6%)

- An overall effect of returns to schooling drops roughly one percentage point (7% to 6%) after corrected for publication bias
- Ability matters, and controlling for it in the regression decreases the expected returns to schooling
- Nine variables have a significant positive influence on returns to schooling, while ten have a negative one
- The returns to schooling drop even further for twin studies with identical inherent ability (4% to 6%)

- An overall effect of returns to schooling drops roughly one percentage point (7% to 6%) after corrected for publication bias
- Ability matters, and controlling for it in the regression decreases the expected returns to schooling
- Nine variables have a significant positive influence on returns to schooling, while ten have a negative one
- The returns to schooling drop even further for twin studies with identical inherent ability (4% to 6%)

- An overall effect of returns to schooling drops roughly one percentage point (7% to 6%) after corrected for publication bias
- Ability matters, and controlling for it in the regression decreases the expected returns to schooling
- Nine variables have a significant positive influence on returns to schooling, while ten have a negative one
- The returns to schooling drop even further for twin studies with identical inherent ability (4% to 6%)

Thank you!

References

Mincer, Jacob A. "The human capital earnings function." Schooling, experience, and earnings, pp. 83-96. NBER, 1974.

Blackburn, McKinley L., and David Neumark.
"Omitted-ability bias and the increase in the return to schooling."

Journal of labor economics 11, no. 3 (1993): 521-544.

Schooling in Years vs. Levels

$$S_i = (1 + \beta_{i,higher} - \beta_{i,lower})^{\frac{1}{Y_{i,higher} - Y_{i,lower}}} - 1$$

Results Using Some Recent Methods

Panel A: p-hacking tests by Elliott et al. (2022)					
	Non-increas.	Monotonicity			
Non-increas.	0.819	0.871			
Observations (p≤0.1) Observations	1,610 1.754	1,610 1,754			
	, -				
Panel B: MAIVE estimate	,	123)			
	Results				
MAIVE coefficient	5.736				
Standard Error	(0.460)				
F-test	12.491				
Observations	1,754				
Panel C: Robust Bayesian Model Averaging (Bartos et al., 2022)					
	Mean	Median	0.025	0.975	
Coefficient	7.125	7.124	6.946	7.299	
Standard Error	(3.505)	(3.504)	(3.371)	(3.645)	
Observations	1,754	1,754	1,754	1,754	

Best-Practice Estimate Across Literature

Study	Estimate	95% Confidence Interval	Studies
Author	6.536	(5.762; 7.310)	0
Query	7.529	(3.552; 11.506)	74
Snowballing	6.346	(2.530; 10.162)	41
All studies	7.109	(3.046; 11.17)	115

Meta-Analysis Automatization Script

- Meta-analysis, but automatized
- One script and a bit of parametrization
- Faster methods, all ran locally
- Caches and file handling
- All results calculated, formatted, and exported within minutes

Project structure

```
data/
  pckg/
 scripts/
 results/
     graphic/
    -numeric/
    - main_results.txt
- main_master_thesis_cala.R
 script_runner_master_thesis_cala.R
  source_master_thesis_cala.R
 README.md
└ user_parameters.yaml
```

Graphic Results

Numeric Results

- bpe_econ_sig
- bpe_res_all_studies
- bpe_summary_stats
- effect_summary_stats
- 🛂 exo_tests
- 🛂 linear_tests
- 🖾 ma
- ma_variables_description_table
- nonlinear_tests
- p_hacking_tests_caliper
- p_hacking_tests_elliott
- p_hacking_tests_maive
- robma_components
- robma_estimates
- variable_summary_stats

main_results.txt

- [1] "Generating the prima facie graphs..."
- [1] "Printing a box plot 1/2 for the factor: study_name"
- [1] "Printing a box plot 2/2 for the factor: study_name"
- [1] "Printing a box plot for the factor: country"
- [1] "Results of the linear tests, clustered by study:"

OLS
.262
425)
4***
168)
1754

- [1] "Writing the linear tests results into ./results/numeric/linear_tests.csv"
- [1] "Results of the non-linear tests, clustered by study:"

	WAAP	Top10	Stem	Hierarch	Selection	Endogenous Kink
Publication Bias				0.503***	2.764***	0.262
(PB SE)				(0.168)	(0.107)	(0.39)
Effect Beyond Bias	6.9***	6.439***	7.2***	6.801***	6.548***	6.54***
(EBB SE)	(0.092)	(0.146)	(1.186)	(0.266)	(0.091)	(0.054)
Total observations	1754	1754	1754	1754	1754	1754
Model observations	1/160	176				

It can do this...

- Variable summary statistics
- Effect summary statistics
- Prima Facie graphs
- Box plot
- Funnel plot
- T-statistic histogram
- Linear tests
 - OLS
 - Between Effects
 - Fixed Effects
 - Random Effects
 - Study-weighted OLS
 - Precision-weighted OLS

...and this...

- Non-linear tests
 - Weighted Average of Adequately Powered
 - Top10
 - Stem-based method
 - Hierarchial Bayes
 - Selection model
 - Endogenous Kink model
- Tests relaxing exogeneity
 - Instrumental Variable regression
 - p-uniform*
- P-hacking tests
 - Caliper tests
 - Elliott tests
 - MAIVE estimator

...and even this!

- Bayesian Model Averaging
- Frequentist Model Averaging
- Model Averaging variables description table
- Best-practice estimate
- Best-practice estimate: Graphs
- Best-practice estimate: Summary statistics
- Robust Bayesian Model Averaging

Available on GitHub

github.com/PetrCala/Diploma-Thesis