Step-1

Given
$$a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

Let's do Gram –Schmidt on $\{\vec{a}_1, \vec{a}_2\}$.

The Gram-Schmidt process starts with independent vectors $a_1, ..., a_n$ and ends with orthonormal vectors $q_1, ..., q_n$. At step j it subtracts form a_j its components in the direction $q_1, ..., q_{j-1}$ that are already settled:

$$A_{j} = a_{j} - (q_{1}^{T} a_{j}) - \dots - (q_{j-1}^{T} a_{j}) q_{j-1}$$

Then q_j is the unit vector $A_j/\|A_j\|$

Step-2

First,

$$q_1 = \frac{a_1}{\|a_1\|}$$

$$= \frac{1}{\sqrt{1^2 + 1^2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$= \begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$$

Next,

$$q_2 = \frac{\beta}{\|\beta\|}$$
 where $\beta = a_2 - (q_1^T a_2)q_1$

So,

$$q_1^T a_2 = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4\\0 \end{bmatrix}$$
$$= \frac{4}{\sqrt{2}} + 0$$
$$= \frac{4}{\sqrt{2}}$$

And,

$$(q_1^T a_2) q_1 = \frac{4}{\sqrt{2}} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Therefore,

$$\beta = \begin{bmatrix} 4 \\ 0 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

By construction, β is orthogonal to a_1 , so we see that we needed to subtract a_1 from a_2 to get a vector perpendicular to a_2

Step-3

Now, continuing with Gram-Schmidt, So

$$\left\|\beta\right\| = \sqrt{4+4} = \sqrt{8}$$

$$q_2 = \frac{1}{\sqrt{8}} \begin{bmatrix} 2\\ -2 \end{bmatrix} = \begin{bmatrix} 2/2\sqrt{2}\\ -2/2\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2}\\ -1/\sqrt{2} \end{bmatrix}$$
 Therefore

Therefore, if $A = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$ and $Q = \begin{bmatrix} q_1 & q_2 \end{bmatrix}$ then A = QR where $R = \begin{bmatrix} a_1^T q_1 & a_2^T q_1 \\ 0 & a_2^T q_2 \end{bmatrix}$.

Step-4

So,

$$a_1^T q_1 = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$
$$= \frac{2}{\sqrt{2}}$$
$$= \sqrt{2}$$

$$a_2^T q_1 = \begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
$$= \frac{4}{\sqrt{2}} + 0$$
$$= 2\sqrt{2}$$

$$a_2^T q_2 = \begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$
$$= \frac{4}{\sqrt{2}} + 0$$
$$= 2\sqrt{2}$$

Plug these values in R, so

$$R = \begin{bmatrix} a_1^T q_1 & a_2^T q_1 \\ 0 & a_2^T q_2 \end{bmatrix}$$

Step-5

$$\begin{bmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & 2\sqrt{2} \end{bmatrix}$$

Therefore.
$$R == \begin{bmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & 2\sqrt{2} \end{bmatrix}$$