Deep Learning lecture 6 Variational Autoencoder

Yi Wu, IIIS

Spring 2024

Apr-7

Logistics

- Coding Project 2 grading is finished
 - Many submissions have run-time errors during evaluation!
 - Pay attention to format and evaluation!!!

- Coding Project 3 will be released tomorrow
 - Due in 3 weeks
 - Try to start early
- Don't forget about your homework!
 - No late submission

Today's Topic

- Latent Variable Model
 - Variational inference

Variational Autoencoder

Discriminative v.s. Generative (Recap)

- Discriminative model (lecture 2-3)
 - Feedforward networks
 - straightforward to learn
- Generative model
 - The problem itself is hard (need to model high-dimensional data distribution)
 - Inference is non-trivial (posterior distribution)

Discriminative v.s. Generative (Recap)

- Discriminative model (lecture 2-3)
 - Feedforward networks
 - straightforward to learn
 - Typically require labels (supervised learning)
- Generative model
 - The problem itself is hard (need to model high-dimensional data distribution)
 - Inference is non-trivial (posterior distribution

Discriminative v.s. Generative (Recap)

- Discriminative model (lecture 2-3)
 - Feedforward networks
 - straightforward to learn
 - Typically require labels (supervised learning)
- Generative model
 - The problem itself is hard (need to model high-dimensional data distribution)
 - Inference is non-trivial (posterior distribution
 - We have a probability distribution to draw samples!
 - Unsupervised by nature (directly learn p(x))
 - Fill missing information (inpainting, learn complex latent structures)

Generative Model

- Goal: learn $p(x; \theta)$
- What we have learned ...
 - Energy-based model (lecture 4)
 - $p(x) = \frac{1}{Z} \exp(-E(x))$ (extremely flexible)
 - Sampling: MCMC
 - Gradients! (Stochastic Gradient MCMC)
 - Z: partition function (key challenge)
 - No closed-form density for $p(x) \rightarrow$ NO MLE Learning!
 - Learning: Contrastive Divergence
 - Decrease E(x) on data samples & increase E(x') on non-data samples

Generative Model

- Goal: learn $p(x; \theta)$
- What we have learned ...
 - Energy-based model (lecture 4)
 - Most flexible! Hard to sample & learn!
 - Flow model (lecture 5)
 - $x = f(z; \theta)$ where $f(; \theta)$ is bijection, $z \sim N(0, I)$
 - z is also called latent representation of x
 - Sampling is straightforward!
 - MLE training is easy
 - $\log p(x) = \log p(z) \sum_{i} \log \det |\partial f_i/\partial x|$
 - f_i needs to have a structured Jacobian

Generative Model

- Goal: learn $p(x; \theta)$
- What we have learned ...
 - Energy-based model (lecture 4)
 - No explicit sampling \rightarrow hard training and expensive generation
 - Flow Model (lecture 5)
 - x = f(z): easy sampling and tractable likelihood
 - Most limited modeling capacity
 - ... because of the bijection constraint!
- What if x = f(z) is NOT a bijection?
 - Still easy generation!
 - What about MLE training? How to compute p(x)?

Latent Variable Model

- A more general formulation: p(x, z) = p(z)p(x|z)
 - x data; z latent variable
 - When z is given, p(x|z) is easy to compute
- Example
 - *x*: image (pixel values)
 - z: latent feature/factors
 - Only grey circle is observed
 - p(z): prior distribution of factors
 - p(x|z): a Gaussian/Categorical on each pixel value
 - $p(x|z) = N(\mu(z), \Sigma(z))$

Latent Variable Model

- p(x,z) = p(z)p(x|z)
 - x data; z latent variable
- Example: Gaussian Mixture Model
 - $z\sim \text{Categorical}(w_1, ..., w_K)$
 - $x \sim N(\mu_z, \Sigma_z)$
 - Generative process
 - Pick a cluster z
 - Generate x according to the cluster distribution
 - Unsupervised learning
 - Unlabeled data
 - E.g. clustering of handwritten digits

- Learning the latent variable model
 - Joint probability: $p(x, z; \theta)$ for random variable X and Z
 - $p(x, z; \theta) = p(z; \theta)p(x|z; \theta)$
 - Dataset $D = \{x^{(i)}\}$ for X, variable Z is never observed
- Maximal Likelihood Learning

$$L(\theta) = \log \prod_{x \in D} p(x; \theta) = \sum_{x \in D} \log \sum_{z} p(x, z; \theta)$$

- Marginal probability can be expensive to compute!
 - When z is continuous, the objective even becomes intractable

- Learning the latent variable model
 - Joint probability: $p(x, z; \theta)$ for random variable X and Z
 - $p(x, z; \theta) = p(z; \theta)p(x|z; \theta)$
 - Dataset $D = \{x^{(i)}\}$ for X, variable Z is never observed
- Maximal Likelihood Learning

$$L(\theta) = \log \prod_{x \in D} p(x; \theta) = \sum_{x \in D} \log \sum_{z} p(x, z; \theta)$$

- Marginal probability can be expensive to compute!
 - When z is continuous, the objective even becomes intractable
- Goal: a fast approximation of the marginal probability
 - Remark: $L(\theta)$ is tractable when $p(x,z) \propto \exp(-E(x,z))$

- Goal: approximation of $\log \sum_{z} p(x, z; \theta)$
- Idea#1: Importance Sampling
 - Proposal distribution q(z)

$$p(x) = \sum_{z} q(z) \cdot \frac{p(x, z; \theta)}{q(z)}$$

- The probability can be approximated by drawing samples from q(z)
- Learning objective $L(x; \theta)$

$$L(x;\theta) = \log \sum_{z} q(z) \cdot \frac{p(x,z;\theta)}{q(z)}$$

- Goal: approximation of $\log \sum_{z} q(z) \cdot \frac{p(x,z;\theta)}{q(z)}$
- Idea#2: concavity of $log(\cdot)$
 - $\log \sum_{z} q(z) \cdot \frac{p(x,z;\theta)}{q(z)}$
 - For any $0 < x_1 \le x_2 \le 1$,
 - $\log(\alpha x_1 + (1 \alpha)x_2) \ge \alpha \log(x_1) + (1 \alpha)\log(x_2)$
 - More general, for any weights $\alpha_i > 0 \& \sum_i \alpha_i = 1$,
 - $\log(\sum_i \alpha_i x_i) \ge \sum_i \alpha_i \log(x_i)$

- Goal: approximation of $\log \sum_{z} q(z) \cdot \frac{p(x,z;\theta)}{q(z)}$
- Idea#2: concavity of log(·)

•
$$\log \sum_{z} q(z) \cdot \frac{p(x,z;\theta)}{q(z)} \ge \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- For any $0 < x_1 \le x_2 \le 1$,
 - $\log(\alpha x_1 + (1 \alpha)x_2) \ge \alpha \log(x_1) + (1 \alpha)\log(x_2)$
- More general, for any weights $\alpha_i > 0 \& \sum_i \alpha_i = 1$,
 - $\log(\sum_i \alpha_i x_i) \ge \sum_i \alpha_i \log(x_i)$

- Goal: approximate $\log \sum_{z} p(x, z; \theta)$
 - Ideas: importance sampling & concavity of $log(\cdot)$
- Evidence Lower Bound (ELBO)

$$\log p(x;\theta) = \log \sum_{z} p(x,z;\theta) \ge \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- A tractable lower bound of the true objective
 - Easy to optimize
- When will the equality hold?
 - i.e., a tight lower bound
 - Sol: $q(z) \leftarrow p(z|x;\theta)$

•
$$\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$$

• $\sum_{z} q(z) \log p(x;\theta)$

- $= \log p(x; \theta)$
- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed q(z)

•
$$J(\theta) = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- Set $q(z) \leftarrow p(z|x;\theta)$
- Repeat

•
$$\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$$

• $= \sum_{z} q(z) \log p(x;\theta)$
• $= \log p(x;\theta)$

- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed q(z)

•
$$J(\theta) = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- Set $q(z) \leftarrow p(z|x;\theta^0)$
- Repeat

•
$$\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$$

• $\sum_{z} q(z) \log p(x;\theta)$

- $= \log p(x; \theta)$
- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed $q(z; \theta^0)$

•
$$J(\theta) = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- Set $q(z) \leftarrow p(z|x;\theta)$
- Repeat

•
$$\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$$

• $= \sum_{z} q(z) \log p(x;\theta)$
• $= \log p(x;\theta)$

- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed q(z)

•
$$J(\theta) = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- Set $q(z) \leftarrow p(z|x;\theta^1)$
- Repeat

•
$$\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$$

• $= \sum_{z} q(z) \log p(x;\theta)$
• $= \log p(x;\theta)$

- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed $q(z; \theta^1)$

•
$$J(\theta) = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- Set $q(z) \leftarrow p(z|x;\theta^2)$
- Repeat

•
$$\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$$

• $= \sum_{z} q(z) \log p(x;\theta)$
• $= \log p(x;\theta)$

- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed q(z)

•
$$J(\theta) = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

- Set $q(z) \leftarrow p(z|x;\theta)$
- Repeat
- Converge to a local optimum

- ELBO becomes exact when $q(z) = p(z|x;\theta)$
 - $\sum_{z} q(z) \log \frac{p(x,z;\theta)}{q(z)} = \sum_{z} q(z) \log \frac{p(x,z;\theta)}{p(z|x;\theta)}$
 - $= \sum_{z} q(z) \log p(x; \theta)$
 - $= \log p(x; \theta)$
- We can optimize a tight lower bound by setting $q(z) = p(z|x;\theta)$
- An iterative process
 - Optimize $p(x, z; \theta)$ w.r.t. fixed q(z) (M-step)
 - Set $q(z) \leftarrow p(z|x;\theta)$ (E-step)
 - An EM algorithm
- How to set $q(z) \leftarrow p(z|x;\theta)$?

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the true posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} KL(q||p)$

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} KL(q||p)$
 - Remark: pay attention to the order of KL (reverse KL)!
 - Mean-field variational inference
 - A factored proposal: $q(z) = \prod_i q_i(z_i|x)$
 - By calculus of variation (变分法,泛函分析领域) $\log q_i^*(z_i|x) = \mathrm{E}_{z_{i\neq i}}[\log p(z,x)] + constant$
 - Repeatedly update the distribution of $q_i(z_i)$ using the expectation of p(z,x)

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} KL(q||p)$
 - $KL(q(z;\phi)||p(z|x)) = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)}{p(z|x)}$

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} \mathit{KL}(q||p)$
 - $KL(q(z;\phi)||p(z|x)) = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)}{p(z|x)} = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)p(x)}{p(z,x)}$

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} KL(q||p)$
 - $KL(q(z;\phi)||p(z|x)) = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)}{p(z|x)} = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)p(x)}{p(z,x)}$ $= \sum_{z} q(z;\phi) \log p(x) \sum_{z} q(z;\phi) \log \frac{p(z;\phi)}{q(z;\phi)}$

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} \mathit{KL}(q||p)$

•
$$KL(q(z;\phi)||p(z|x)) = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)}{p(z|x)} = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)p(x)}{p(z,x)}$$

$$= \log p(x) - \sum_{z} q(z; \phi) \log \frac{p(z, x)}{q(z; \phi)}$$
Constant

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} KL(q||p)$
 - $KL(q(z;\phi)||p(z|x)) = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)}{p(z|x)} = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)p(x)}{p(z,x)}$

$$= \log p(x) - \sum_{z} q(z; \phi) \log \frac{p(z, x)}{q(z; \phi)}$$

•
$$L(\phi) = \sum_{z} q(z; \phi) \log \frac{p(z, x)}{q(z; \phi)}$$

Evidence Lower Bound (ELBO)!!!

Also called variational lower bound in VI

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} \mathit{KL}(q||p)$
 - $KL(q(z;\phi)||p(z|x)) = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)}{p(z|x)} = \sum_{z} q(z;\phi) \log \frac{q(z;\phi)p(x)}{p(z,x)}$
 - $= \log p(x) \sum_{z} q(z; \phi) \log \frac{p(z, x)}{q(z; \phi)}$
 - $L(\phi) = \sum_{z} q(z; \phi) \log \frac{p(z, x)}{q(z; \phi)}$

- Goal: $q(z; \phi) \leftarrow p(z|x)$
 - Find a parameterized distribution $q(z;\phi)$ to approximate the posterior
 - In our case, approximate $p(z|x;\theta)$ w.r.t. a fixed θ
 - Distance metric between $q(z; \phi)$ and p(z|x)
 - $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
- Variational Inference: $\min_{\phi} KL(q||p)$
 - $\log p(x) = KL(q(z;\phi)||p(z|x)) + \sum_{z} q(z;\phi) \log \frac{p(z,x)}{q(z;\phi)}$
 - = approximate error + ELBO ≥ ELBO
 - $L(\phi) = \sum_{z} q(z; \phi) \log \frac{p(z, x)}{q(z; \phi)}$

Variational Inference (Explained)

- General Formulation of Bayesian Inference
 - Dataset $D = \{x\}$
 - Model $p(x; \theta)$ with parameter θ
 - Goal $p(\theta|x)$
 - Remark: optimization learns a single θ^* while BI learns a distribution
- Variational Inference as a Mean of Approximate Bayesian Inference
 - Use $q(\theta; \phi)$ to approximate $p(\theta|x)$
 - VI Objective: KL(q||p) = C + ELBO
 - Interpretation: VI objective is a *lower bound* of $\log p(x)$ $\log p(x;\theta) = approximation error + ELBO$
- VAE naturally inherits all the nice mathematical properties of VI ©
 - Further read: black-box variational inference https://arxiv.org/abs/1401.0118

- Latent Variable Model: p(z, x) = p(z)p(x|z)
 - MLE objective: $p(x; \theta) = \sum_{z} p(z, x; \theta)$
- ELBO: $p(x; \theta) \ge \sum_{z} q(z) \log \frac{p(x, z; \theta)}{q(z)} = L(\theta; q)$
 - Iterative learning: (1) optimize θ and (2) $q(z) \leftarrow p(z|x;\theta)$

- Latent Variable Model: p(z, x) = p(z)p(x|z)
 - MLE objective: $p(x; \theta) = \sum_{z} p(z, x; \theta)$
- ELBO: $p(x; \theta) \ge \sum_{z} q(z) \log \frac{p(z, x; \theta)}{q(z)} = L(\theta; q)$
 - Iterative learning: (1) optimize θ and (2) $q(z) \leftarrow p(z|x;\theta)$
- Variational Inference
 - Approximate $p(z|x;\theta)$ by a tractable distribution $q(z;\phi)$

- Latent Variable Model: p(z, x) = p(z)p(x|z)
 - MLE objective: $p(x; \theta) = \sum_{z} p(z, x; \theta)$
- ELBO: $p(x; \theta) \ge \sum_{z} q(z) \log \frac{p(z, x; \theta)}{q(z)} = L(\theta; q)$
 - Iterative learning: (1) optimize θ and (2) $q(z) \leftarrow p(z|x;\theta)$
- Variational Inference
 - Approximate $p(z|x;\theta)$ by a tractable distribution $q(z;\phi)$

$$L(\phi; \theta) = \sum_{z} q(z; \phi) \log \frac{p(z, x; \theta)}{q(z; \phi)}$$

- Latent Variable Model: p(z, x) = p(z)p(x|z)
 - MLE objective: $p(x; \theta) = \sum_{z} p(z, x; \theta)$
- ELBO: $p(x; \theta) \ge \sum_{z} q(z) \log \frac{p(z, x; \theta)}{q(z)} = L(\theta; q)$
 - Iterative learning: (1) optimize θ and (2) $q(z) \leftarrow p(z|x;\theta)$
- Variational Inference
 - Approximate $p(z|\mathbf{x};\theta)$ by a tractable distribution $q(z;\phi)$

$$L(\phi; \theta) = \sum_{z} q(z; \phi) \log \frac{p(z, \mathbf{x}; \theta)}{q(z; \phi)}$$

Use VI to learn a separate $q(z; \phi)$ for each possible x?

- Latent Variable Model: p(z, x) = p(z)p(x|z)
 - MLE objective: $p(x; \theta) = \sum_{z} p(z, x; \theta)$
- ELBO: $p(x; \theta) \ge \sum_{z} q(z) \log \frac{p(z, x; \theta)}{q(z)} = L(\theta; q)$
 - Iterative learning: (1) optimize θ and (2) $q(z) \leftarrow p(z|x;\theta)$
- Amortized Variational Inference
 - Approximate $p(z|x;\theta)$ by a conditional tractable distribution $q(z|x;\phi)$

$$L(\phi; \theta) = \sum_{z} q(z|\mathbf{x}; \phi) \log \frac{p(z, x; \theta)}{q(z|\mathbf{x}; \phi)}$$

• A universal approximation q for any x and p(z|x)

- Latent Variable Model: p(z, x) = p(z)p(x|z)
 - MLE objective: $p(x; \theta) = \sum_{z} p(z, x; \theta)$
- ELBO: $p(x; \theta) \ge \sum_{z} q(z) \log \frac{p(x, z; \theta)}{q(z)} = L(\theta; q)$
 - Iterative learning: (1) optimize θ and (2) $q(z) \leftarrow p(z|x;\theta)$
- Amortized Variational Inference
 - Approximate $p(z|x;\theta)$ by a conditional tractable distribution $q(z|x;\phi)$

$$L(\phi; \theta) = \sum_{z} q(z|x; \phi) \log \frac{p(z, x; \theta)}{q(z|x; \phi)}$$

• Joint Learning $J(\theta, \phi; x)$

$$J(\theta, \phi; x) = \sum_{z} q(z|x; \phi) \log \frac{p(z, x; \theta)}{q(z|x; \phi)}$$

- Learning objective $J(\theta, \phi; x)$
 - $J(\theta, \phi; x) = \sum_{z} q(z|x; \phi)(\log p(z, x; \theta) \log q(z|x; \phi))$

• Learning objective $J(\theta, \phi; x)$

```
• J(\theta, \phi; x) = \sum_{z} q(z|x; \phi) (\log p(z, x; \theta) - \log q(z|x; \phi))

• \sum_{z} q(z|x; \phi) (\log p(x|z; \theta) - \log q(z|x; \phi) + \log p(z; \theta))
```

• Learning objective $J(\theta, \phi; x)$

```
• J(\theta, \phi; x) = \sum_{z} q(z|x; \phi) (\log p(z, x; \theta) - \log q(z|x; \phi))

• = \sum_{z} q(z|x; \phi) (\log p(x|z; \theta) - \log q(z|x; \phi) + \log p(z; \theta))

• = \sum_{z} q(z|x; \phi) \log p(x|z; \theta) - \sum_{z} q(z|x; \phi) \log \frac{q(z|x; \phi)}{p(z; \theta)}
```

- Learning objective $J(\theta, \phi; x)$
 - $J(\theta, \phi; x) = \sum_{z} q(z|x; \phi)(\log p(z, x; \theta) \log q(z|x; \phi))$
 - $= \sum_{z} q(z|x;\phi)(\log p(x|z;\theta) \log q(z|x;\phi) + \log p(z;\theta))$
 - $= \sum_{z} q(z|x;\phi) \log p(x|z;\theta) \sum_{z} q(z|x;\phi) \log \frac{q(z|x;\phi)}{p(z;\theta)}$
 - $= E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] KL(q(z|x;\phi)||p(z;\theta))$

Expectation of log likelihood (reconstruction)

KL divergence

- Design of $p(z, x; \theta)$ and $q(z|x; \phi)$
 - Principle: easy to compute!
 - Gaussian prior: $p(z) \sim N(0, I)$
 - Gaussian likelihood: $p(x_{ij}|z;\theta) \sim N(f_{ij}(z;\theta),1)$
 - Isomorphic Gaussian: $q(z|x;\phi) \sim N\left(\mu(x;\phi), \operatorname{diag}\left(\exp\left(\sigma(x;\phi)\right)\right)\right)$

• Learning objective $J(\theta, \phi; x)$

```
• J(\theta, \phi; x) = \sum_{z} q(z|x; \phi) (\log p(z, x; \theta) - \log q(z|x; \phi))

• = \sum_{z} q(z|x; \phi) (\log p(x|z; \theta) - \log q(z|x; \phi) + \log p(z; \theta))

• = \sum_{z} q(z|x; \phi) \log p(x|z; \theta) - \sum_{z} q(z|x; \phi) \log \frac{q(z|x; \phi)}{p(z; \theta)}

• = E_{z \sim q(z|x; \phi)} [\log p(x|z; \theta)] - KL(q(z|x; \phi)||p(z; \theta))
```

Expectation of log likelihood (reconstruction)

KL divergence

- Design of $p(z, x; \theta)$ and $q(z|x; \phi)$
 - Principle: easy to compute!
 - Gaussian prior: $p(z) \sim N(0, I)$
 - Gaussian likelihood: $p(x_{ij}|z;\theta) \sim N(f_{ij}(z;\theta),1)$
 - Isomorphic Gaussian: $q(z|x;\phi) \sim N\left(\mu(x;\phi), \operatorname{diag}\left(\exp\left(\sigma(x;\phi)\right)\right)\right)$

Neural networks!

VAE Architecture

- Isomorphic Gaussian: $q(z|x;\phi) \sim N\left(\mu(x;\phi), \operatorname{diag}\left(\exp\left(\sigma(x;\phi)\right)\right)\right)$
- Gaussian prior: $p(z) \sim N(0, I)$
- Gaussian likelihood: $p(x|z;\theta) \sim N(f(z;\theta),I)$
- Autoencoder $x \to z \to x$
 - Unsupervised learning (data to data, z never observed)
 - Encoder $q(z|x;\phi): x \to z$
 - Decoder $p(x|z;\theta): z \to x$
 - Remark
 - p(x|z) is the actual generative model
 - q(z|x) is only the proposal
 - but optimized to approximate p(z|x)

- Training via jointly optimizing ELBO
 - $J(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] KL(q(z|x;\phi)||p(z))$
 - Two terms: likelihood term & KL term

- Training via jointly optimizing ELBO
 - $J(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] KL(q(z|x;\phi)||p(z))$
- KL penalty
 - $q(z|x;\phi) \sim N\left(\mu(x;\phi), \operatorname{diag}\left(\exp\left(\sigma(x;\phi)\right)\right)\right)$
 - $p(z) \sim N(0, I)$
 - Closed-form!

$$D_{ ext{KL}}(\mathcal{N}_0 \| \mathcal{N}_1) = rac{1}{2} \left\{ ext{tr}ig(oldsymbol{\Sigma}_1^{-1} oldsymbol{\Sigma}_0ig) + (oldsymbol{\mu}_1 - oldsymbol{\mu}_0)^{ ext{T}} oldsymbol{\Sigma}_1^{-1} (oldsymbol{\mu}_1 - oldsymbol{\mu}_0) - k + ext{ln} \, rac{|oldsymbol{\Sigma}_1|}{|oldsymbol{\Sigma}_0|}
ight\}$$

Implement it in your coding project ©

- Training via jointly optimizing ELBO
 - $J(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] KL(q(z|x;\phi)||p(z))$
- Likelihood term (reconstruction loss)
 - Monte-Carlo estimate!
 - Draw samples from $q(z|x;\phi)$
 - Compute gradient of θ : $L(\theta) \propto \sum_{z} |x f(z; \theta)|^2$
 - $x \sim N(f(z; \theta); I)$
 - $p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}|x f(z;\theta)|^2\right)$
 - How to get **the gradient of** ϕ through $q(z; \phi)$??

$$L(\phi) = E_{\mathbf{z} \sim \mathbf{q}(\mathbf{z}; \boldsymbol{\phi})}[\log p(x|\mathbf{z})]$$

- Training via jointly optimizing ELBO
 - $J(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] KL(q(z|x;\phi)||p(z))$
- Likelihood term (reconstruction loss)
 - Monte-Carlo estimate!
 - Draw samples from $q(z|x;\phi)$
 - Compute gradient of θ : $L(\theta) \propto \sum_{z} |x f(z; \theta)|^2$
 - Re-parameterization trick
 - Recap in autoregressive flow
 - $z \sim N(\mu, \sigma^2) \iff z = \mu + \sigma \cdot \epsilon, \ \epsilon \sim N(0, 1)$
 - $L(\phi) \propto \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\phi)}[|f(\mathbf{z}) x|^2]$
 - $\propto E_{\epsilon \sim N(0,I)}[|f(\mu(x; \phi) + \sigma(x; \phi) \cdot \epsilon) x|^2]$
 - Monte-Carlo estimate for $\nabla L(\phi)$!
 - 1 sample for ϵ is sufficient for stable training

- Variational Autoencoder (VAE)
 - Encoder $q(z|x;\phi)$
 - Decoder $p(x|z;\theta)$
 - End-to-end unsupervised learning $(x \to z \sim q(z|x) \to x)$ $J(\phi, \theta; x) = \mathbb{E}_{\epsilon \sim N(0,I)}[\log p(x|\mu(x;\phi) + \sigma(x;\phi) \cdot \epsilon;\theta)] - KL(q(z;\phi)||p(z))$
 - By Kingma & Welling, ICLR 2013 (34k citation)

Auto-Encoding Variational Bayes

Diederik P. Kingma

Machine Learning Group Universiteit van Amsterdam dpkingma@gmail.com Max Welling

Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

VAE v.s. Standard AE

- Autoencoder
 - A classical unsupervised learning method for representation learning
- VAE: a simple generative extension of AE
 - Generative model: AE + Gaussian noise on z
 - KL penalty: L2 constraint on the latent vector z

VAE v.s. Flow Model

- Both model has a latent representation z
- Flow model
 - Encoder: inference mapping; decoder: generation mapping
 - Exact inference but no dimension reduction!
- VAE
 - Approximate inference
 - Dimension reduction
 - Flexible architecture

Flow-based generative models: minimize the negative log-likelihood

VAE: maximize ELBO.

- Interpretable latent space
 - By interpolating z, we can observe how the generated samples vary
 - Automatic clustering in the (low-dimensional) latent space

Inpainting with VAE

- Inference the mixing pixels?
 - Fully observable training data $D = \{x^{(i)}\}$
 - Standard VAE: q(z|x) & p(x|z)
 - Corrupted data: $\bar{x} = x \odot mask$
 - Goal: $q(z|\bar{x}) \approx q(z|x)$
 - We do not need to change the generator p(x|z)
- Randomized mask in training!
 - $x \odot mask \rightarrow z \rightarrow x$
 - Better encoder architecture
 - Masked convolution
 - Idea: convolution only on unmasked pixels
 - Image Inpainting for Irregular Holes Using Partial Convolutions (ECCV 2018)

- Include label in VAE
 - $D = \{(x^{(i)}, y^{(i)})\}$
 - Encoder: $q(z|x, y; \phi)$
 - Decoder: $p(x|y,z;\theta)$
 - Conditioned generation!

What if we have both labeled data and unlabeled data?

- Semi-supervised learning
 - $D_l = \{(x^{(i)}, y^{(i)})\}$
 - $D_u = \{(x^{(i)})\}$
 - Decoder: $p(x|y,z;\theta)$
 - Encoder?
 - $q(z,y|x;\phi)$
 - In practice: $q(z, y|x; \phi) = q(z|x; \phi) \cdot q(y|x; \phi)$

conditioned generation

Semi-supervised learning

•
$$D_l = \{(x^{(i)}, y^{(i)})\}$$

•
$$D_u = \{(x^{(i)})\}$$

- Decoder: $p(x|y,z;\theta)$
- Encoder: $q(z, y|x; \phi)$

conditioned generation

Training

- Easy on supervised data
 - Cross-entropy loss on $q(y|x;\phi)$ on labeled data
- What about unlabeled data?

Semi-supervised learning

•
$$D_l = \{(x^{(i)}, y^{(i)})\}$$

$$D_u = \{ (x^{(i)}) \}$$

- Decoder: $p(x|y,z;\theta)$
- Encoder: $q(z, y|x; \phi)$

- Training on D_u
 - Loss = reconstruction + KL penalty
 - KL penalty: KL(q(z)||p(z)) + KL(q(y)||p(y)) (p(y)~uniform)
 - Reconstruction loss: $L = E_{z,y \sim q(z,y)}[\log p(x|z,y;\theta)]$

- Semi-supervised learning
 - $D_l = \{(x^{(i)}, y^{(i)})\}$
 - $D_u = \{(x^{(i)})\}$
 - Decoder: $p(x|y,z;\theta)$
 - Encoder: $q(z, y|x; \phi)$

conditioned generation

- Training on D_{ν}
 - Loss = reconstruction + KL penalty
 - KL penalty: KL(q(z)||p(z)) + KL(q(y)||p(y)) ($p(y) \sim \text{uniform}$)
 - Reconstruction loss: $L = E_{\epsilon \sim N(0,I), \gamma \sim q(\gamma)} [\log p(x|\mu(x) + \sigma(x) \cdot \epsilon, y; \theta)]$
 - Reparameterization trick for z

- Semi-supervised learning
 - $D_l = \{(x^{(i)}, y^{(i)})\}$
 - $D_u = \{(x^{(i)})\}$
 - Decoder: $p(x|y,z;\theta)$
 - Encoder: $q(z, y|x; \phi)$

conditioned generation

- Training on D_{ν}
 - Loss = reconstruction + KL penalty
 - KL penalty: KL(q(z)||p(z)) + KL(q(y)||p(y)) ($p(y) \sim \text{uniform}$)
 - Reconstruction loss: $L = E_{\epsilon \sim N(0,I), \mathbf{y} \sim q(\mathbf{y})} [\log p(x|\mu(x) + \sigma(x) \cdot \epsilon, \mathbf{y}; \theta)]$
 - Reparameterization trick for z
 - What about y?
 - although we do have tricks in lecture 11:P

- Semi-supervised learning
 - $D_l = \{(x^{(i)}, y^{(i)})\}$
 - $D_u = \{(x^{(i)})\}$
 - Decoder: $p(x|y,z;\theta)$
 - Encoder: $q(z, y|x; \phi)$

- Training on D_u
 - Loss = reconstruction + KL penalty
 - KL penalty: KL(q(z)||p(z)) + KL(q(y)||p(y)) ($p(y) \sim \text{uniform}$)
 - Reconstruction loss: $L = E_{\epsilon \sim N(0,I), \mathbf{y} \sim \mathbf{q}(\mathbf{y})} [\log p(x|\mu(x) + \sigma(x) \cdot \epsilon, \mathbf{y}; \theta)]$
 - Reparameterization trick for z
 - We only have a few labels! Expand the expectation!

Semi-supervised learning

•
$$D_l = \{(x^{(i)}, y^{(i)})\}$$

•
$$D_u = \{(x^{(i)})\}$$

- Decoder: $p(x|y,z;\theta)$
- Encoder: $q(z, y|x; \phi)$

conditioned generation

- Training on D_{ν}
 - Loss = reconstruction + KL penalty
 - KL penalty: KL(q(z)||p(z)) + KL(q(y)||p(y)) ($p(y) \sim \text{uniform}$)
 - Reconstruction loss:
 - $L = E_{\epsilon \sim N(0,I), \mathbf{v} \sim \mathbf{q}(\mathbf{v})} [\log p(x|\mu(x) + \sigma(x) \cdot \epsilon, \mathbf{v}; \theta)]$
 - $= E_{\epsilon \sim N(0,I)} \left[\sum_{c} q(y=c) \cdot \log p(x|\mu(x) + \sigma(x) \cdot \epsilon, y; \theta) \right]$

Semi-supervised learning

•
$$D_l = \{(x^{(i)}, y^{(i)})\}$$

•
$$D_u = \{(x^{(i)})\}$$

- Decoder: $p(x|y,z;\theta)$
- Encoder: $q(z, y|x; \phi)$

conditioned generation

- Training on the entire dataset D
 - Supervised loss L^l
 - Cross entropy for q(y); VAE loss for q(z) & p(x|z,y)
 - Unsupervised loss L^u
 - Expanded likelihood over y for reconstruction loss
 - Combined loss: $J(\theta, \phi) = L^l + \beta L^u$
 - Leverage massive unlabeled data!

Semi-supervised Learning with Deep Generative Models

Diederik P. Kingma*, Danilo J. Rezende[†], Shakir Mohamed[†], Max Welling*
*Machine Learning Group, Univ. of Amsterdam, {D.P.Kingma, M.Welling}@uva.nl

†Google Deepmind, {danilor, shakir}@google.com

- Pros
 - Flexible architecture & stable training
- Cons
 - Approximate inference

- Pros
 - Flexible architecture & stable training
- Cons
 - Approximate inference
 - Intrinsic issue of KL divergence in VI
 - KL is asymmetric
 - VI: $KL(q||p) = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$
 - KL(q||p): reverse (exclusive) KL
 - KL(p||q): forward (inclusive) KL
 - The mode collapse issue
 - Use forward KL?
 - Further reading of interest
 - https://arxiv.org/abs/2202.01841

- Pros
 - Flexible architecture & stable training
- Cons
 - Approximate inference
 - Intrinsic issue of KL divergence in VI
 - Assumed density of q(z|x) & p(z)
 - $p(z) \sim N(0, I)$ for computation reason
 - We can have a more powerful prior (later in lecture 10)
 - E.g., structured VAE; VQ-VAE-2
 - $q(z|x) \sim N(\mu(x), \Sigma(x))$
 - What if p(z|x) is multi-modal?
 - We need a more powerful proposal distribution
 - E.g., flow models as q(z)

Structured VAE

https://arxiv.org/abs/1603.06277

 h_{top}

 $h_{\text{top}}, h_{\text{middle}}$

 $h_{\text{top}}, h_{\text{middle}}, h_{\text{bottom}}$

Original

VQ-VAE-2

https://arxiv.org/abs/1906.00446

Variational Inference with Normalizing Flows

Danilo Jimenez Rezende Shakir Mohamed Google DeepMind, London DANILOR @ GOOGLE.COM SHAKIR @ GOOGLE.COM

- Pros
 - Flexible architecture & stable training
- Cons
 - Approximate inference
 - Intrinsic issue of KL divergence
 - Assumed density of q(z) & p(z)
 - Variance due to single-step sampling
 - Importance-weighted autoencoder (Burda, Grosse & Ruslan, ICLR16)
 - https://arxiv.org/abs/1509.00519
 - Use more than one samples from q(z|x) for a tighter lower-bound

- Pros
 - Flexible architecture & stable training
- Cons
 - Approximate inference
 - Intrinsic issue of KL divergence
 - Assumed density of q(z) & p(z)
 - Variance due to single-step sampling
 - MLE as the reconstruction loss
 - $p(x|z;\theta) = N(f(z;\theta),I)$
 - Blurry samples!
 - Improve the decoder architecture
 - Balancing the KL penalty and reconstruction loss
 - Gaussian latent to discrete latent (in lecture 11)
 - Change the loss! (next lecture ©)

- Pros
 - Flexible architecture & stable training
- Cons
 - Approximate inference
 - Intrinsic issue of KL divergence
 - Assumed density of q(z) & p(z)
 - Variance due to single-step sampling
 - MLE as the reconstruction loss
 - $p(x|z;\theta) = N(f(z;\theta),I)$
 - Blurry samples!
 - Improve the decoder architecture
 - Balancing the KL penalty and reconstruction loss
 - Gaussian latent to discrete latent (in lecture 10)
 - Change the loss! (next lecture ©)

VAE Objective (ELBO)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)} [\log p(x|z;\theta)] - KL(q(z|x;\phi)||p(z;\theta))$$
Reconstruction KL penalty

• β -VAE (Higgins et. al, DeepMind, ICLR 2017)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta KL(q(z|x;\phi)||p(z;\theta))$$

Reconstruction

KL penalty

Interpretation

$$\max_{\theta,\phi} E_{x\sim D} \left[E_{z\sim q(z|x;\phi)} [\log p(x|z;\theta)] \right]$$

subject to $KL(q(z|x;\phi)||p(z)) < \epsilon$

• β -VAE (Higgins et. al, DeepMind, ICLR 2017)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta KL(q(z|x;\phi)||p(z;\theta))$$

Reconstruction

KL penalty

- Special cases
 - $\beta = 0$: standard AE
 - $\beta = 1$: standard VAE
 - $\beta > 1$: force the latent space closer to isomorphic Gaussian
 - Insight: each dimension of z are forced to be independent
 - Disentangle factors!

• β -VAE (Higgins et. al, DeepMind, ICLR 2017)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta KL(q(z|x;\phi)||p(z;\theta))$$

Reconstruction

KL penalty

Learned factors in z

• β -VAE (Higgins et. al, DeepMind, ICLR 2017)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta KL(q(z|x;\phi)||p(z;\theta))$$

Reconstruction

KL penalty

• Learned factors in z

• β -VAE (Higgins et. al, DeepMind, ICLR 2017)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta KL(q(z|x;\phi)||p(z;\theta))$$

Reconstruction

KL penalty

- Learned factors in z
 - Trade-off between reconstruction and disentangle features!

 β can be critical!

• Understanding disentangling in β -VAE (DeepMind, NIPS 2017)

$$J(\theta,\phi;x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta |KL(q(z|x;\phi)||p(z;\theta)) - C|$$

Reconstruction

KL penalty

Controlled capacity

- Learned factors in z
 - Gradually increase C!

• β -VAE (Higgins et. al, DeepMind, ICLR 2017)

$$J(\theta, \phi; x) = E_{z \sim q(z|x;\phi)}[\log p(x|z;\theta)] - \beta KL(q(z|x;\phi)||p(z;\theta))$$

Reconstruction

KL penalty

- Learned factors in z
 - A popular (unsupervised) approach for pretraining features
- No free lunch!
 - Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, (Google Brain, ICML2019)
 - Disentangle features are fundamentally impossible without supervision or model inductive bias
 - Inductive bias or supervision is important (structured model)
 - Empirical successes can be highly random ...
 - Tune your model hard!

Summary

- Generative Model
 - Learn a probability distribution $p(x; \theta)$
 - Energy-based model: $p(x) = \frac{1}{Z} \exp(-E(x; \theta))$
 - Flow model: $x = f(z; \theta)$ (f is a bijection)
 - Latent variable model: p(x, z) = p(x|z)p(z)
- Variational Autoencoder
 - A computation-efficient design of p(x, z)
 - Isomorphic Gaussian wherever possible
 - Variational inference for efficient and stable learning
 - ELBO & reparameterization trick
 - Flexible framework with nice mathematical property
 - But may suffer from blurry outputs... (next lecture!)

Lunch Time