```
(% i2)
```

/* Cantilever beam with a concentrated force at the free end */ /* Differential equations */ eq1: E * I * 'diff($\phi(z)$, z, 2) - E / 2 * A * ('diff(a(z), z, 1) + $\phi(z)$) =~0; eq2: E / 2 * A * ('diff($\phi(z)$, z, 1) + 'diff(a(z), z, 2)) = 0;

$$EI\left(\frac{d^{2}}{dz^{2}}\phi(z)\right) - \frac{AE\left(\frac{d}{dz}a(z) + \phi(z)\right)}{2} = 0$$

$$\frac{AE\left(\frac{d}{dz}\phi(z) + \frac{d^{2}}{dz^{2}}a(z)\right)}{2} = 0$$

(% i3)

/* Solving the system */
sol: desolve([eq1, eq2], [ϕ (z), a(z)]);

$$\left[\phi(z) = z \left(\frac{d}{dz} \phi(z) \right)_{z=0} \right) + \frac{A z^2 \left(\frac{d}{dz} a(z) \right)_{z=0}}{4 I} + \frac{\phi(0) A z^2}{4 I} + \phi(0), a(z) = -\left(\frac{z^2 \left(\frac{d}{dz} \phi(z) \right)_{z=0}}{2} \right) - \frac{A z^3 \left(\frac{d}{dz} a(z) \right)_{z=0}}{12 I} + z \left(\frac{d}{dz} a(z) \right)_{z=0} + z \left(\frac$$

(% i4)

phi_sol: rhs(sol[1])\$;

(% i5)

a_sol: rhs(sol[2])\$;

(% i7)

/* Applying first two boundary conditions */ a_sol: subst([a(0) = 0, ϕ (0) = 0, 'diff(a(z), z, 1) = C, 'diff(ϕ (z), z, 1) = K], a_sol); phi_sol: subst([a(0) = 0, ϕ (0) = 0, 'diff(a(z), z, 1) = C, 'diff(ϕ (z), z, 1) = K], phi_sol);

$$-\left(\frac{ACz^{3}}{12I}\right) - \frac{Kz^{2}}{2} + Cz$$

$$\frac{ACz^{2}}{4I} + Kz$$

(% i8)

/* Third boundary condition */
bc1: ev(diff(phi_sol, z, 1), z = L) = 0;

$$\frac{ACL}{2I} + K = 0$$

(% i9)

/* Fourth boundary condition */
bc2: A * E / 2 * (ev(phi_sol, z = L) + ev(diff(a_sol, z, 1), z = L)) = F;

$$\frac{ACE}{2} = F$$

(% i10)

/* Solving for C and K constants */
solve([bc1, bc2], [C, K])[1];

$$\left[C = \frac{2F}{AE}, K = -\left(\frac{FL}{EI}\right)\right]$$

(% i11)

C_sol: rhs(solve([bc1, bc2], [C, K])[1][1])\$

(% i12)

 K_{sol} : rhs(solve([bc1, bc2], [C, K])[1][2])\$

(% i13)

/* Final a(z) */
a_sol: factor(subst([C = C_sol, K = K_sol], a_sol));

$$-\left(\frac{Fz(Az^2-3ALz-12I)}{6AEI}\right)$$

(% i14)

/* Final $\phi(z)$ */
phi_sol: factor(subst([C = C_sol, K = K_sol], phi_sol));

$$\frac{Fz(z-2L)}{2EI}$$

(% i19)

/*****************/
/* Cantilever beam with a distributed load */
/* Differential equations */
eq1: E * I * 'diff(ϕ (z), z, 2) - E / 2 * A * ('diff(a(z), z, 1) + ϕ (z)) = 0;
eq2: E / 2 * A * ('diff(ϕ (z), z, 1) + 'diff(a(z), z, 2)) = - p;

/* Solving the system */
sol: desolve([eq1, eq2], [ϕ (z), a(z)]);
phi_sol: rhs(sol[1])\$;
a_sol: rhs(sol[2])\$;

$$EI\left(\frac{d^{2}}{dz^{2}}\phi(z)\right) - \frac{AE\left(\frac{d}{dz}a(z) + \phi(z)\right)}{2} = 0$$

$$\frac{AE\left(\frac{d}{dz}\phi(z) + \frac{d^{2}}{dz^{2}}a(z)\right)}{2} = -p$$

$$\left[\phi(z) = z \left(\frac{d}{dz}\phi(z)\right)_{z=0}\right) + \frac{z^2 \left(A\left(\frac{d}{dz}a(z)\right)_{z=0}\right) + \phi(0)A}{12I} + \frac{Az^2 \left(\frac{d}{dz}a(z)\right)_{z=0}\right)}{6I} - \frac{pz^3}{6EI} + \frac{\phi(0)Az^2}{6I} + \phi(0), a(z) = -\left(\frac{z^2 \left(2Az^2\right)}{2Az^2}\right) + \frac{z^2}{6EI} + \frac{z^2$$

(% i21)

/* Applying first two boundary conditions */ a_sol: subst([a(0) = 0, ϕ (0) = 0, 'diff(a(z), z, 1) = C, 'diff(ϕ (z), z, 1) = K], a_sol); phi_sol: subst([a(0) = 0, ϕ (0) = 0, 'diff(a(z), z, 1) = C, 'diff(ϕ (z), z, 1) = K], phi_sol);

$$\frac{pz^{4}}{24EI} - \frac{ACz^{3}}{12I} - \frac{(4p+2AEK)z^{2}}{24AE} - \frac{(2p+AEK)z^{2}}{6AE} - \frac{pz^{2}}{2AE} - \frac{Kz^{2}}{4} + Cz$$
$$-\left(\frac{pz^{3}}{6EI}\right) + \frac{ACz^{2}}{4I} + Kz$$

ان

(% **i22**)

/* Third boundary condition */
bc1: ev(diff(phi_sol, z, 1), z = L) = 0;

$$-\left(\frac{L^2p}{2EI}\right) + \frac{ACL}{2I} + K = 0$$

(% i23)

/* Fourth boundary condition */ bc2: A * E / 2 * (ev(phi_sol, z = L) + ev(diff(a_sol, z, 1), z = L)) = 0;

$$\frac{AE\left(-\left(\frac{L(4p+2AEK)}{12AE}\right) - \frac{L(2p+AEK)}{3AE} - \frac{Lp}{AE} + \frac{KL}{2} + C\right)}{2} = 0$$

(% **i24**)

/* Solving for C and K constants */
solve([bc1, bc2], [C, K])[1];

$$\left[C = \frac{2Lp}{AE}, K = -\left(\frac{L^2p}{2EI}\right)\right]$$

(% **i26**)

C_sol: rhs(solve([bc1, bc2], [C, K])[1][1])\$
K_sol: rhs(solve([bc1, bc2], [C, K])[1][2])\$

(% i27)

/* Final a(z) */
a_sol: factor(subst([C = C_sol, K = K_sol], a_sol));

$$\frac{p\,z\,(A\,z^3-4\,A\,L\,z^2+6\,A\,L^2\,z-24\,I\,z+48\,I\,L)}{24\,A\,E\,I}$$

(% i28)

/* Final $\phi(z)$ */
phi_sol: factor(subst([C = C_sol, K = K_sol], phi_sol));

$$-\left(\frac{p\,z(z^2-3L\,z+3L^2)}{6\,E\,I}\right)$$

(% i30)

/* Simply supported beam with a distributed load */ /* Differential equations */ eq1: E * I * 'diff($\phi(z)$, z, 2) - E / 2 * A * ('diff(a(z), z, 1) + $\phi(z)$) = 0\$; eq2: E / 2 * A * ('diff($\phi(z)$, z, 1) + 'diff(a(z), z, 2)) = - p\$;

(% i31)

/* Solving the system */ sol: desolve([eq1, eq2], [ϕ (z), a(z)]);

$$[\phi(z) = z \left(\frac{d}{dz}\phi(z)\right)_{z=0}) + \frac{z^2 \left(A\left(\frac{d}{dz}a(z)\right)_{z=0}\right) + \phi(0)A}{12I} + \frac{Az^2 \left(\frac{d}{dz}a(z)\right)_{z=0}\right)}{6I} - \frac{pz^3}{6EI} + \frac{\phi(0)Az^2}{6I} + \phi(0), a(z) = -\left(\frac{z^2 \left(2Az^2\right)}{2Az^2}\right) + \frac{z^2}{6EI} + \frac{z^2}{$$

(% i33)

phi_sol: rhs(sol[1])\$;
a_sol: rhs(sol[2])\$;

(% i35)

/* Applying the first boundary condition */ a_sol: subst([a(0) = 0, ϕ (0) = J, 'diff(a(z), z, 1) = C, 'diff(ϕ (z), z, 1) = K], a_sol); phi_sol: subst([a(0) = 0, ϕ (0) = J, 'diff(a(z), z, 1) = C, 'diff(ϕ (z), z, 1) = K], phi_sol);

$$\frac{pz^{4}}{24EI} - \frac{(AJ + AC)z^{3}}{48I} - \frac{AJz^{3}}{16I} - \frac{ACz^{3}}{16I} - \frac{(4p + 2AEK)z^{2}}{24AE} - \frac{(2p + AEK)z^{2}}{6AE} - \frac{pz^{2}}{2AE} - \frac{Kz^{2}}{4} + Cz$$

$$- \left(\frac{pz^{3}}{6EI}\right) + \frac{(AJ + AC)z^{2}}{12I} + \frac{AJz^{2}}{6I} + \frac{ACz^{2}}{6I} + Kz + J$$

(% i36)

/* Applying the second boundary condition */
bc1: subst(z = 0, diff(phi sol, z, 1)) = 0;

$$K=0$$

(% i37)

/* Applying the third boundary condition */ bc2: ev(a_sol, z = L) = 0;

$$-\left(\frac{L^{2}(4\,p+2\,AE\,K)}{24\,A\,E}\right) - \frac{L^{2}(2\,p+AE\,K)}{6\,A\,E} + \frac{L^{4}\,p}{24\,E\,I} - \frac{L^{2}\,p}{2\,A\,E} - \frac{(A\,J+A\,C)\,L^{3}}{48\,I} - \frac{A\,J\,L^{3}}{16\,I} - \frac{A\,C\,L^{3}}{16\,I} - \frac{K\,L^{2}}{4} + C\,L = 0$$

(% i38)

/* Applying the fourth boundary condition */bc3: ev(diff(phi_sol, z, 1), z = L) = 0;

$$-\left(\frac{L^{2} p}{2 E I}\right) + \frac{(A J + A C) L}{6 I} + \frac{A J L}{3 I} + \frac{A C L}{3 I} + K = 0$$

(% i39)

/* Solving for J, C and K constants */
solve([bc1, bc2, bc3], [J, C, K])[1];

$$\left[J = -\left(\frac{L^{3} p}{24 E I}\right), C = \frac{\left[A L^{3} + 24 I L\right] p}{24 A E I}, K = 0 \right]$$

(% i42)

J_sol: rhs(solve([bc1, bc2, bc3], [J, C, K])[1][1])\$
C_sol: rhs(solve([bc1, bc2, bc3], [J, C, K])[1][2])\$
K_sol: rhs(solve([bc1, bc2, bc3], [J, C, K])[1][3])\$

(% i43)

/* Final a(z) */

a_sol: factor(subst([J = J_sol, C = C_sol, K = K_sol], a_sol));

$$\frac{p\,z\,(z-L)(A\,z^2-A\,L\,z-A\,L^2-24\,I)}{24\,A\,E\,I}$$

(% i44)

/* Final $\phi(z)$ */

 $phi_sol: factor(subst([J=J_sol, C=C_sol, K=K_sol], phi_sol));\\$

$$-\left(\frac{p(2z-L)(2z^2-2Lz-L^2)}{24EI}\right)$$