Programme du cours

- Introduction et contexte
- Réseaux de neurones et optimisation
- Deep Computer Vision
- Deep Sequence model
- Deep Generative model (vision)
- Récap et aller plus loin

Cas d'application

Cas d'application Exemple 1: Voitures autonomes

Problème: Comment détecter rapidement et de façon fiable un piéton à proximité du véhicule et ce, quelque soit le type d'environnement ?

Cas d'application Exemple 1: Voitures autonomes

Problème: Comment détecter rapidement et de façon fiable un piéton à proximité du véhicule et ce, quelque soit le type d'environnement ?

Cas d'application Exemple 1: Voitures autonomes

Problème: Comment détecter rapidement et de façon fiable un <u>piéton</u> à proximité du véhicule et ce, quelque soit le type d'environnement ?

<u>Données:</u> images, points de vue du véhicule avec et sans piétons **labellisées**

Modèle: réseaux de neurones type CNN

Cas d'application Exemple 2: aide au diagnostic médical

Problème: Comment mettre en évidence de façon fiable les symptômes critiques d'un dossier médical parmi un historique non structuré et très différent d'un patient à l'autre ?

Cas d'application Exemple 2: aide au diagnostic médical

Problème: Comment mettre en évidence de façon fiable les symptômes critiques d'un dossier médical parmi un historique non structuré et très différent d'un patient à l'autre ?

Cas d'application

Exemple 2: aide au diagnostic médical

Problème: Comment <u>déterminer</u> de façon fiable la <u>criticité de l'état d'un patient</u> admis à l'hôpital pendant un parcours **non structuré** et **très différent d'un patient à l'autre** ?

Données: textes, diagnostiques, compte-rendus médicaux,

Modèle: réseaux type transformer (ex: ClinicalBERT, GPT fine tuned, ...)

- Apprentissage par renforcement
- Privacy-preserving machine learning
- Geometric deep learning

Apprentissage par renforcement

À chaque temps t, d'après l'état S_t , l'agent effectue l'action A_t sur l'environnement qui se retrouve dans l'état S_{t+1} et donne à l'agent une récompense R_t .

Apprentissage par renforcement

Exemple 1:

Apprentissage par renforcement

Exemple 1:

Actions

Apprentissage par renforcement

Exemple 2:

Apprentissage par renforcement

Exemple 2:

Actions

Apprentissage par renforcement

Exemple d'échec: https://openai.com/index/emergent-tool-use/

Apprentissage par renforcement

Le problème de l'alignement → faire "comprendre" à l'agent ce qu'on cherche à lui faire faire

Apprentissage par renforcement

Le problème de l'alignement → faire "comprendre" à l'agent ce qu'on cherche à lui faire faire

Apprentissage par renforcement

Le problème de l'alignement → faire "comprendre" à l'agent ce qu'on cherche à lui faire faire

Objectif de l'utilisateur

Objectif de l'agent

Comment aligner les objectifs de l'utilisateur à l'objectif de l'agent sur le long terme ?

Apprentissage par renforcement

Apprentissage par renforcement

Apprentissage par renforcement

"panda"

57.7% confidence

Privacy-preserving machine learning

Individuals Data

- Les modèles d'apprentissage sont sensibles aux attaques de reconstruction.
- Exemple avec des phrases clés pour des modèles de langages ou des attaques de différenciation.

- Les modèles d'apprentissage sont sensibles aux attaques de reconstruction.
- Exemple avec des phrases clés pour des modèles de langages ou des attaques de différenciation.

Privacy-preserving machine learning

Solution: Differential privacy (DP) machine learning

- → Introduit, de façon contrôlé, de l'aléatoire dans le pipeline.
- \rightarrow On fixe un "privacy budget" ϵ
- ightharpoonup Un algorithme est dit $\epsilon\text{-DP}$ si, pour deux ensembles de données qui ne diffèrent que par les données d'un seul individu, la probabilité de tout résultat de l'algorithme est à peu près la même.

Aperçu de thèmes pour approfondir Geometric deep learning

Aperçu de thèmes pour approfondir Geometric deep learning

Données "géométriques"

Aperçu de thèmes pour approfondir Geometric Deep Learning

Aperçu de thèmes pour approfondir Geometric Deep Learning

EXAMEN (2H)

