

Analisi del tempo di esecuzione di algoritmi con le notazioni asintotiche

Giovedì 9 marzo 2023

Punto della situazione

- Cos'è un algoritmo
- Tempo di esecuzione T(n)
- Analisi di algoritmi: analisi asintotica di T(n)
- Notazioni asintotiche

Argomento di oggi

• Analisi del tempo di esecuzione di un algoritmo con le notazioni asintotiche

Motivazioni

• Confrontare tempi di esecuzione di algoritmi fra loro o con funzioni standard (lineare, polinomiale, esponenziale...)

Notazioni asintotiche

Nell'analisi asintotica analizziamo T(n)

- 1. A meno di costanti moltiplicative (perché non quantificabili)
- 2. Asintoticamente (per considerare input di taglia arbitrariamente grande, quindi in numero infinito)

Le notazioni asintotiche:

$$O, \Omega, \Theta, o, \omega$$

ci permetteranno il **confronto** tra funzioni, mantenendo queste caratteristiche.

Idea di fondo: O, Ω , Θ , o, ω rappresentano rispettivamente \leq , \geq , =, <, >

in un'analisi asintotica

Analisi di T(n)

Analizzare il tempo di esecuzione T(n) di un algoritmo significherà dimostrare che:

 $T(n) = \Theta(f(n))$ se possibile

oppure

delimitare T(n) in un intervallo:

 $T(n)=O(f(n)) e T(n)=\Omega(g(n))$

(nel caso in cui il caso peggiore sia diverso dal caso migliore).

Per stabilire la crescita di una funzione

Basterà usare:

- La «scaletta»
- Le proprietà di additività e transitività
- Le due regole fondamentali

Limitazioni più utilizzate

Scaletta:

Man mano che si scende troviamo funzioni che crescono **più** velocemente (in senso stretto):

ogni funzione f(n) della scaletta è f(n)=o(g(n)) per ogni funzione che sta più in basso.

Quindi potremo utilizzare (negli esercizi) che per queste funzioni standard:

 $f(n) \le c g(n)$ per qualsiasi valore di c, ci possa servire, da un opportuno n_c in poi.

Espressione O	nome
O(1)	costante
$O(\log \log n)$	log log
$O(\log n)$	logaritmico
$O(\sqrt[c]{n}), \ c > 1$	sublineare
O(n)	lineare
$O(n \log n)$	$n \log n$
$O(n^2)$	quadratico
$O(n^3)$	cubico
$O(n^k) \ (k \ge 1)$	polinomiale
$O(a^n) \ (a > 1)$	esponenziale
O(n!)	fattoriale

Asymptotic Bounds for Some Common Functions

- Polynomials. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Polynomial time. Running time is O(n^d) for some constant d independent of the input size n.
- Logarithms. $\log_a n = \Theta(\log_b n)$ for any constants a, b > 0.

 can avoid specifying the base
- Logarithms. For every x > 0, $\log n = o(n^x)$. $\log grows$ slower than every polynomial
- Exponentials. For every r > 1 and every d > 0, $n^d = o(r^n)$.

every exponential grows faster than every polynomial

E ancora

Informalmente....

Per esempio:

- □ Nel confronto fra esponenziali conta la base
- ☐ Nel confronto fra polinomi conta il grado
- □ Nel confronto fra logaritmi... la base non conta

☐Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo

$$n^2 = o(n^3)$$

 $2^n = o(3^n)$

$$\log_{10} n = \log_2 n \ (\log_{10} 2) = \Theta(\log_2 n)$$

$$(log_b n)^k = o(n^d)$$

per ogni k, d>0 e b>1

Polinomi vs logaritmi

Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo. *Per esempio:*

Proviamo che

$$\log_2 n = O(n).$$

Occorre provare che $\exists c, n_0 : \log_2 n \le cn \quad \forall n \ge n_0$

Per induzione su n: Per n=1 abbiamo $\log_2 1 = 0 \le 1$.

In generale, per $n \ge 1$

$$\begin{split} \log_2(n+1) &\leq \log_2(n+n) = \log_2(2n) \\ &= \log_2 2 + \log_2 n = 1 + \log n \\ &\leq 1 + n \text{ (per ipotesi induttiva)} \end{split}$$

Abbiamo quindi provato che

$$\log n \le n \quad \forall n \ge 1 \Longrightarrow \log n = O(n)$$

Lo proveremo con c=1 e $n_0=1$, cioè log_2 $n \le n$, $\forall n \ge 1$

Domanda

Per questo genere di esercizi:

a cosa serve la calcolatrice?

Suggerimento:

ricorda che f(n) = O(g(n)) significa $f(n) \le c g(n)$ per ogni $n \ge n_0$ cioè per un numero **infinito** di valori di n.

QUINDI: NON basta dimostrare che $f(n) \le c g(n)$ per qualche costante c, per esempio che:

$$f(1) \le c g(1)$$
, $f(2) \le c g(2)$, ..., $f(10.000) \le c g(10.000)$.

Perché potrebbe essere invece $f(n) \ge c g(n)$ per ogni $n \ge 10.001$.

Properties

Transitivity

(analoga ad a \leq b e b \leq c allora a \leq c per i numeri)

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$.

(Attenzione: l'analoga per i numeri sarebbe

"se a \leq c e b \leq c allora a+b \leq c", che non è vera!!)

Analogie e differenze fra notazioni asintotiche e numeri reali

Confronto	Analogo confronto
fra notazioni	fra numeri
asintotiche	reali
a(n) = O(b(n))	$a \le b$
$a(n) = \Omega(b(n))$	$a \ge b$
$a(n) = \Theta(b(n))$	a = b
a(n) = o(b(n))	a < b
$a(n) = \omega(b(n))$	a > b

Differenza: due nº reali possono sempre essere confrontati mentre esistono funzioni asintoticamente non confrontabili (o incommensurabili), ad es.

•
$$f(n)$$

$$\begin{cases} n \text{ per n dispari} \\ n^2 \text{ per n pari} \end{cases}$$
 e $g(n) =$

e
$$g(n) = \begin{cases} n \text{ per n pari} \\ n^2 \text{ per n dispari} \end{cases}$$

Due regole fondamentali

Nel determinare l'ordine di crescita asintotica di una funzione

- 1. Possiamo trascurare i termini additivi di ordine inferiore
- 2. Possiamo trascurare le costanti moltiplicative

ATTENZIONE!

Le regole NON servono però per determinare esplicitamente le costanti c ed n_0 .

Tempo di esecuzione

Tempo di esecuzione T(n) è espresso rispetto al numero di operazioni elementari/atomiche per eseguire l'algoritmo su un input di taglia n

Sono operazioni elementari le operazioni che richiedono tempo costante (= non dipendente dalla taglia n dell'input)

Per esempio: assegnamento, incremento, confronto

Nelle prossime slides vedremo come l'analisi asintotica può aiutarci nel calcolo del tempo di esecuzione di algoritmi di tipo iterativo (strutturati come for e while)

Operazioni Semplici

- operazioni aritmetiche (+, *,...)
- operazioni logiche(ه ه , ||,....)
- confronti (\leq , \geq , = ,...)
- assegnamenti (a = b) senza chiamate di funzione
- operazioni di lettura (read)
- operaioni di controllo (break, continue, return)

$$T(n) = \Theta(1) \Rightarrow T(n) = O(1)$$

Tempo di esecuzione: blocchi sequenziali

Tempo di esecuzione: ciclo for

$$T(n) = O(g(n) \times f(n))$$

Tempo di esecuzione: ciclo while

Bisogna stabilire un limite per il numero di iterazioni del ciclo, *g(n)*.

Può essere necessaria una prova induttiva per g(n).

$$T(n) = O(g(n) \times f(n))$$

Tempo di esecuzione: If-Then-Else

Somma primi n numeri

$$1 + 2 + 3 + ... + (n-1) + n = \sum_{i=1}^{n} i$$

$$1 + 2 + 3 + ... + (n-1) + n = ?$$

$$= 1 + 2 + 3 + ... + (n-2) + (n-1) + n =$$

$$= (n+1) n/2 =$$

$$= \Theta(??)$$

Somma quadrati (sup)

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = \Theta(??)$$

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} \le \le n^{2} + n^{2} + n^{2} + ... + n^{2} + n^{2} = = (n^{2}) n = n^{3}$$

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = O(n^{3})$$

$$D: 1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = \Omega(n^{3})$$

Somma quadrati (inf)

$$1^2 + 2^2 + 3^2 + ... + (n-1)^2 + n^2 = \sum_{i=1}^{n} i^2$$

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = \Omega(n^{3})?$$

$$1^{2} + 2^{2} + ... + (n/2)^{2} + ... + (n-1)^{2} + n^{2} \ge$$

$$\ge (n/2)^{2} + ... + (n-1)^{2} + n^{2} \ge$$

$$\ge (n/2)^{2} + ... + (n/2)^{2} + (n/2)^{2} =$$

$$= (n/2)^{2} \cdot n/2 =$$

$$= (n/2)^{2} \cdot n/2 =$$

$$= (n^{2}/4) \cdot n/2 =$$

$$= 1/8 \cdot n^{3}$$

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = \Omega(n^{3})$$

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = \Theta(n^{3})$$

$$1^{2} + 2^{2} + 3^{2} + ... + (n-1)^{2} + n^{2} = \Theta(n^{3})$$

Esercizi

Usando la notazione Θ , stimare il numero di volte che la istruzione x = x + 1 viene eseguita:

1. **for**
$$i = 1$$
 to $2n$ $x = x + 1$

2. for
$$i = 1$$
 to $2n$
for $j = 1$ to n
 $x = x + 1$

3. for
$$i=1$$
 to n for $j=1$ to i for $k=1$ to j $x=x+1$

Esercizi

Usando la notazione Θ , stimare il numero di volte che la istruzione x=x+1 viene eseguita:

1. for
$$i = 1$$
 to $2n$ $\Theta(n)$ $x = x + 1$

2. for
$$i=1$$
 to $2n$ for $j=1$ to n $\Theta(n^2)$ $x=x+1$

3. for
$$i=1$$
 to n for $j=1$ to i Numero di volte in cui eseguo $x=x+1$ è for $k=1$ to j
$$\sum_{i=1}^n \sum_{j=1}^i j = \sum_{i=1}^n \frac{i(i+1)}{2} = \sum_{i=1}^n \Theta(i^2)$$

$$x=x+1$$

$$= \Theta(n^3)$$

Esercizi (continua)

4.
$$i=n$$
 while $i\geq 1$ do $x=x+1,\ i=i/2$

Il **while** è eseguito per i = n, n/2, n/4, ..., $n/2^k$, ..., $n/2^t = 1$ cioè per k = 0, 1, ..., t. Si noti che il simbolo «/» indica la divisione intera (che scarta le cifre decimali). Quindi $\mathbf{t} = \lfloor \log_2 \mathbf{n} \rfloor$ (dove $\lfloor \rfloor$ indica l'arrotondamento all'intero inferiore) e il numero di volte in cui viene eseguito il **while** è: $\lfloor \log_2 \mathbf{n} \rfloor + 1 = \Theta(\log_2 \mathbf{n})$.

Si noti che arrotondamenti del genere NON incidono nell'analisi asintotica:

```
\log_2 n
\log_2 n + 1
\log_2 n - 1
```

sono tutte funzioni in $\Theta(\log_2 n)$.

Esempio: InsertionSort

Algoritmo di ordinamento di A[1...n] ottenuto mantenendo ad ogni iterazione A[1...j-1] ordinato e inserendovi A[j].

```
InsertSort(array A[1...n])

for j = 2 to n

key = A[j]

i = j - 1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i - 1

A[i+1] = key
```

Analisi di InsertionSort

$$O(n^{2}) = \begin{cases} \text{InsertSort(array } A[1...n]) \\ \text{for } j = 2 \text{ to } n \\ key = A[j] \\ i = j - 1 \\ \text{while } i > 0 \text{ and } A[i] > key \\ A[i+1] = A[i] \\ i = i - 1 \\ A[i+1] = key \\ = O(1) \end{cases}$$

Più precisamente:

Fissato j, il test del while è eseguito un numero di volte fra 1 e j. Da cui

$$T(n) \le \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 = \frac{1}{2}n^2 + \frac{1}{2}n - 1$$

e quindi $T(n) = O(n^2)$. Inoltre $T(n) = \Omega(n)$.

Esercizio 2

Per ciascuna delle seguenti coppie di funzioni f(n) e g(n), dire se f(n) = O(g(n)), oppure se g(n) = O(f(n)).

$$f(n) = (n^2 - n)/2, g(n) = 6n$$

$$f(n) = n + 2\sqrt{n}, \qquad g(n) = n^2$$

$$f(n) = n + \log n, \qquad g(n) = n\sqrt{n}$$

$$f(n) = n^2 + 3n, \qquad g(n) = n^3$$

$$f(n) = n \log n, \qquad g(n) = n\sqrt{n}/2$$

$$f(n) = n + \log n, \qquad g(n) = \sqrt{n}$$

$$f(n) = 2(\log n)^2, \qquad g(n) = \log n + 1 \text{ svolto}$$

$$f(n) = 4n \log n + n,$$
 $g(n) = (n^2 - n)/2$

$$f(n) = (n^2 + 2)/(1 + 2^{-n}), \qquad g(n) = n + 3$$
 svolto

$$f(n) = n + n\sqrt{n}, g(n) = 4n\log(n^3 + 1)$$

NOTA: Esistono anche funzioni (particolari) non confrontabili tramite O

Esercizio 3

Date le seguenti funzioni

$$\log n^5, n^{\log n}, \log^2 n, 10\sqrt{n}, (\log n)^n, n^n, n \log \sqrt{n}, n \log^3 n, n^2 \log n, \sqrt{n \log n}, 10 \log \log n, 3 \log n,$$

ordinarle scrivendole da sinistra a destra in modo tale che la funzione f(n) venga posta a sinistra della funzione g(n) se f(n) = O(g(n)).

Esercizi «per casa»

- Esercizi dalle slides precedenti
- Es. 3, 4, 5 e 6 di pagg. 67-68 del libro [KT]
- Esercizi sul team: Esercizi_O_2010.pdf

Tempo di esecuzione 1

Qual è il tempo di esecuzione del seguente frammento di pseudocodice?

for
$$i=1$$
 to $n/2$

if $i>10$ then

 $x=2x$

B.
$$\Theta$$
 (n log n)

C.
$$\Theta(n^2)$$

return x

D. Nessuna delle risposte precedenti

Esercizi analisi tempo di esecuzione

Qual è il tempo di esecuzione del seguente frammento di pseudocodice?

A. $O(\log n)$

B. o(n log n)

C. Θ (n²)

D. Nessuna delle precedenti

Multiple Prima prova 2021 (Moodle)

Confronto2

Siano $f(n) = 4n + 2^{\log_2 n}$ e $g(n) = n + \log_2 n + 1000$. Allora

- A. f(n) = o(g(n))
- B. $f(n) = \omega(g(n))$
- C. $f(n) = \Theta(g(n))$
- D. nessuna

Prima prova intercorso 2020

3) (18 punti)

Indicare la corretta successione delle funzioni seguenti affinché compaiano da sinistra a destra in **ordine crescente** di crescita asintotica, **motivando** adeguatamente la successione proposta:

$$F_1(n) = 2^{(2 \log_2 n)}$$

$$F_2(n) = n^2 \sqrt{n}$$

$$F_3(n) = 2^{n+1}$$

$$F_4(n) = n^2 \log n$$

TEMPO ESECUZIONE

1)			1 📙
Un algoritmo ha tempo di esecuzio	one T(n) polinom	iiale se:	
A. $T(n) = \Theta(n^c)$ per una costan	` ' 1	C. $T(n) = O(n^c)$ per una costante c>0	
B. $T(n) = \Omega(n^c)$ per una costan		D. Nessuna delle precedenti	
2)			2
Qual è il tempo di esecuzione del s	eguente framme	nto di pseudocodice?	
for $i=1$ to $n/2$	A. O(log n	-	
if i>10 then	$B.\Theta(n)$,	
x=2x	C. $\Theta(n^2)$		
return x	` '	a delle risposte precedenti	
3)			3 🗆
Qual è il tempo di esecuzione del s	eguente framme	nto di pseudocodice?	_
for $i=1$ to logn	•	O(log n)	
for j=1 to logn		$O(n \log n)$, ma non Θ (n log n)	
x=i*j	C.	$\Theta(n^2)$	
return x	D.	Nessuna delle risposte precedenti	

Dal file in Materiale del corso

- 1. Dimostrare che
 - a) 3n + 5 = O(n)
 - b) n = O(3n + 5)
- 2. Dimostrare che
 - a) 3n 5 = O(n)
 - b) n = O(3n 5)
- 3. Sapreste dimostrare che, comunque scelgo due costanti a e b positive, valgono le due affermazioni seguenti?
 - i) an + b = O(n)
 - ii) n = O(an + b)
- 4. i) E' vero che $7n = O(n^2)$?
 - ii) E' vero che $n^2 = O(7n)$?

In entrambi i casi e' necessario giustificare la risposta.

Dal file in Materiale del corso

5. Dimostrare che

i)
$$n^2 - 3n + 5 = O(n^2)$$

ii)
$$n^2 = O(n^2 - 3n + 5)$$

6. Dimostrare che

i)
$$n^2 + 3n + 5 = O(n^2)$$

ii)
$$n^2 = O(n^2 + 3n + 5)$$

7. Si dimostri che

a)
$$4\sqrt{n}\log n + 7n = \Theta(n)$$

b)
$$n^{\log n} = O(n^n + 2^n)$$