INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4510B MSI BCD up/down counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4510B MSI

 P_3

DESCRIPTION

The HEF4510B is an edge-triggered synchronous up/down BCD counter with a clock input (CP), an up/down count control input (UP/ \overline{DN}), an active LOW count enable input (\overline{CE}), an asynchronous active HIGH parallel load input (PL), four parallel inputs (P0 to P3), four parallel outputs (O0 to O3), an active LOW terminal count output (\overline{TC}), and an overriding asynchronous master reset input (MR).

Information on P_0 to P_3 is loaded into the counter while PL is HIGH, independent of all other input conditions except the MR input, which must be LOW. With PL LOW, the counter changes on the LOW to HIGH transition of CP if \overline{CE} is LOW. UP/ \overline{DN} determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, \overline{TC} is LOW when O_0 and O_3 are HIGH and \overline{CE} is LOW. When counting down, \overline{TC} is LOW when O_0 to O_3 and \overline{CE} are LOW. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of all other input conditions.

CP 15 SD/CD 5 CE UP/DOWN ŦĊ 7 UP/DN 10 COUNTER 9 MR c_D 00 03 02 6 12 7273715 2 Fig.1 Functional diagram.

PARALLEL LOAD CIRCUITRY

Pn

HEF4510BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4510BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4510BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

PL

PL parallel load input (active HIGH)

P₀ to P₃ parallel inputs

CE count enable input (active LOW)
CP clock pulse input (LOW to HIGH,

edge triggered)

UP/DN up/down count control input

MR master reset input

TC terminal count output (active LOW)

O₀ to O₃ parallel outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4510B MSI

FUNCTION TABLE

MR	PL	UP/DN	CE	СР	MODE
L	Н	Х	Х	Х	parallel load
L	L	Х	Н	Х	no change
L	L	L	L		count down
L	L	Н	L		count up
Н	X	Х	Х	X	reset

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Logic equation for terminal count:

$$\overline{TC} \,=\, \overline{\overline{CE}} \,\cdot\, \{\, (UP/\overline{DN}) \,\cdot O_0 \,\cdot\, O_3 \,+\, \overline{(UP/\overline{DN}\,)} \,\cdot\, \overline{O}_0 \,\cdot\, \overline{O}_1 \,\cdot\, \overline{O}_2 \,\cdot\, \overline{O}_3 \}$$

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; input transition times $\leq 20 \, \text{ns}$

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1000 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$4500 f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	11 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_0 = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

BCD up/down counter

HEF4510B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$CP \rightarrow O_n$	5		145	290	ns	118 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	60	120	ns	49 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns $+$ (0,16 ns/pF) C_L
	5		155	310	ns	128 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	65	130	ns	54 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns $+$ (0,16 ns/pF) C_L
$CP \rightarrow \overline{TC}$	5		260	525	ns	233 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	105	210	ns	94 ns + (0,23 ns/pF) C _L
	15		75	150	ns	67 ns + (0,16 ns/pF) C _L
	5		180	360	ns	153 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	75	150	ns	64 ns + (0,23 ns/pF) C _L
	15		55	115	ns	47 ns + (0,16 ns/pF) C _L
$PL \to O_n$	5		125	255	ns	98 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	55	110	ns	44 ns + (0,23 ns/pF) C _L
	15		40	85	ns	32 ns + (0,16 ns/pF) C _L
	5		170	340	ns	143 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	70	140	ns	59 ns + (0,23 ns/pF) C _L
	15		50	105	ns	42 ns + (0,16 ns/pF) C _L
$PL \rightarrow \overline{TC}$	5		250	500	ns	223 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	110	220	ns	99 ns + (0,23 ns/pF) C _L
	15		80	160	ns	72 ns + (0,16 ns/pF) C _L
	5		250	500	ns	223 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	110	220	ns	99 ns + (0,23 ns/pF) C _L
	15		80	160	ns	72 ns + (0,16 ns/pF) C _L
$\overline{CE} \to \overline{TC}$	5		165	330	ns	138 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	135	ns	54 ns + (0,23 ns/pF) C _L
	15		50	100	ns	42 ns + (0,16 ns/pF) C _L
	5		145	290	ns	118 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	60	125	ns	49 ns + (0,23 ns/pF) C _L
	15		45	95	ns	37 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n, \overline{TC}$	5		205	405	ns	178 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	130	ns	54 ns + (0,23 ns/pF) C _L
	15		45	85	ns	37 ns + (0,16 ns/pF) C _L
$MR \rightarrow \overline{TC}$	5		225	450	ns	198 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	75	150	ns	64 ns + (0,23 ns/pF) C _L
	15		50	100	ns	42 ns + (0,16 ns/pF) C _L

Philips Semiconductors Product specification

BCD up/down counter

HEF4510B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

BCD up/down counter

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Minimum clock	5		95	45	ns	
pulse width; LOW	10	t _{WCPL}	35	20	ns	
	15		25	15	ns	
Minimum PL	5		105	55	ns	
pulse width; HIGH	10	t _{WPLH}	45	25	ns	
	15		35	15	ns	
Minimum MR	5		120	60	ns	
pulse width; HIGH	10	t _{WMRH}	50	25	ns	
	15		40	20	ns	
Recovery time	5		130	65	ns	
for MR	10	t _{RMR}	45	20	ns	
	15		30	15	ns	
Recovery time	5		150	75	ns	
for PL	10	t _{RPL}	50	25	ns	
	15		30	15	ns	
Set-up times	5		100	50	ns	
$P_n \to PL$	10	t _{su}	50	25	ns	see also waveforms Figs 6 and 7
	15		40	20	ns	Figs 6 and 7
	5		250	125	ns	
$UP/\overline{DN} \to CP$	10	t _{su}	100	50	ns	
	15		75	35	ns	
	5		120	60	ns	
$\overline{CE} \to PL$	10	t _{su}	40	20	ns	
	15		25	10	ns	
Hold times	5		10	-40	ns	
$P_n \rightarrow PL$	10	t _{hold}	5	-20	ns	
	15		0	-20	ns	
	5		35	-90	ns	
$UP/\overline{DN} \to CP$	10	t _{hold}	15	-35	ns	
	15		15	-25	ns	
	5		20	-40	ns	
$\overline{CE} \to CP$	10	t _{hold}	5	-15	ns	
	15		5	-10	ns	
Maximum clock	5		5	10	MHz	
pulse frequency	10	f _{max}	12	24	MHz	
•	15		17	34	MHz	

HEF4510B NSI

Product specification

Philips Semiconductors