Семинар 12

Варламов Антоний Михайлович

1 декабря 2021 г.

1 Консультация к потоковой контрольной работе

Важный совет: для потоковой контрольной критически важно иметь технические заготовки для быстрого решения технических вопросов.

1.1 Структура контрольной работы

1.1.1 Задание 1. Контрольный вопрос

На данный вопрос обязательно необходимо ответить для получения оценки отличной от 0.

1.1.2 Задача 7. Квадратура Гаусса-Кристоффеля

Типичная формулировка задачи: Построить квадратурную формулу с n узлами для приближенного вычисления интеграла:

$$\int_{-\infty}^{+\infty} f(x) \rho(x) dx \tag{1}$$

Узлы и веса Пусть имеется два узла: $x_0, x_1 \in (-\infty; \infty)$

В таком случае имеется два так называемых веса: $\omega_0, \omega_1.$

 Π ри этом:

$$\int_{-\infty}^{+\infty} f(x) \rho(x) dx \approx \omega_0 f(x_0) + \omega_1 f(x_1)$$
(2)

Критерии для весов:

1. Точность для 1:

$$\int_{-\infty}^{+\infty} 1\rho(x) dx = \omega_0 + \omega_1 \tag{3}$$

2. Точность для х:

$$\int_{-\infty}^{+\infty} x \rho(x) dx = \omega_0 x_0 + \omega_1 x_1 \tag{4}$$

3. Точность для x^2 :

$$\int_{-\infty}^{+\infty} x^2 \rho(x) \, dx = \omega_0 x_0^2 + \omega_1 x_1^2 \tag{5}$$

4. Точность для x^3 :

$$\int_{-\infty}^{+\infty} x^3 \rho(x) \, dx = \omega_0 x_0^3 + \omega_1 x_1^3 \tag{6}$$

Для $\rho(x) = \exp(-x^2)$:

$$\begin{cases}
\omega_0 + \omega_1 = \sqrt{\pi} \\
\omega_0 x + \omega_1 x = 0 \\
\omega_0 x^2 + \omega_1 x^2 = \sqrt{\frac{\pi}{2}} \\
\omega_0 x^3 + \omega_1 x^3 = 0
\end{cases}$$
(7)

Откуда следует, что: $\omega_1 = \omega_2 = \frac{\sqrt{\pi}}{2}$. После чего имеем возможность определить x_i .

1.1.3 Задача 5. Обратная интерполяция

Имеется табличная функция:

Действия:

- 1. $f(x) \approx L_n(x)$ стандартная интерполяционная задача.
- 2. $x(f) \approx L_n(f)$
- 3. $L_n(0) \rightarrow Otbet$.

1.1.4 Задача 4. Решение нелинейных уравнений

Рассмотрим на примере:

$$\exp(x) - 2x + 1 = 0 \tag{9}$$

Локализация корня Первым делом локализуем корень, к которому необходимо построить МПИ. Для этого можно воспользоваться графиком функции.

Построение МПИ Для данной задачи есть два варианта:

$$\exp(x) = 2x + 1 \Rightarrow x = \ln(2x + 1)$$
 (10)

И

$$x = \frac{1}{2} (\exp(x) - 1) \tag{11}$$

Рассмотрим итерационный процесс для первого уравнения:

$$x_{k+1} = \ln(2x_k + 1) \tag{12}$$

Проверка МПИ Достаточные условия:

- 1. Значения функции лежат в области локализации.
- 2. $\left| (\ln (2x+1))' \right| < 1 \forall x \in [1,2]$

Обязательно выписать оценку максимального значения модуля производной. Данная оценка потребуется для оценки количества итераций.

Оценка количества итераций Оценку производим исходя из условия:

$$|x_k - x^*| \leqslant \varepsilon \tag{13}$$

$$|x_k - x^*| \leqslant q |x_{k-1} - x^*| \leqslant \ldots \leqslant q^n |b - a| \leqslant \varepsilon$$
(14)

$$\Rightarrow \left(\frac{2}{3}\right)^n \leqslant \varepsilon \to n \tag{15}$$

1.1.5 Задача 6. Численное интегрирование

Довольно неприятная задача. Как правило, общего алгоритма решения задач нет. Но есть несколько "базовых"примеров действий:

Рассмотрим опять на примере:

$$\int_{0}^{4} \frac{\ln\left(1+\sqrt{x}\right)}{x} dx \tag{16}$$

C точностью $\varepsilon=10^{-6}$ Методом трапеции. Рассмотрим первый метод:

1. Разделим интеграл:

$$\int_{0}^{4} \frac{\ln(1+\sqrt{x})}{x} dx = \int_{0}^{\delta} \frac{\ln(1+\sqrt{x})}{x} dx + \int_{\delta}^{4} \frac{\ln(1+\sqrt{x})}{x} dx \tag{17}$$

2. Рассмотрим плохой интеграл:

$$\int_{0}^{\delta} \frac{\ln\left(1+\sqrt{x}\right)}{x} dx = \left|\ln\left(1+\sqrt{x}\right) \leqslant \sqrt{x}\right| \leqslant \int_{0}^{4} \frac{\sqrt{x}}{x} dx = 2\sqrt{\delta}$$
(18)

3. Для достижения заданной точности следует учесть:

$$2\sqrt{\delta} \leqslant \frac{\varepsilon}{2} \to \delta \leqslant \frac{\varepsilon^2}{16} \tag{19}$$

4. вспомним формулу ошибки для метода трапеции:

$$E_{tr} = \frac{h^2}{12} (b - a) \cdot M_2 \leqslant \frac{\varepsilon}{2} \tag{20}$$

Где

$$M_2 = \max_{x \in [\delta, 4]} \left| \left(\frac{\ln\left(1 + \sqrt{x}\right)}{x} \right)'' \right| \tag{21}$$

Определение значение M_2 может быть графическим.

Другой возможный метод — разложение в асимптотический ряд, из вида которого можно попытаться предугадать вид замены переменной для избавления от проблем с исходным интегралом. Так, для описанного интеграла:

$$\int_{0}^{4} \frac{\ln(1+\sqrt{x})}{x} dx = 2 \cdot \int_{0}^{2} \frac{\ln(1+t)}{t} dt \tag{22}$$

Полученный интеграл аналитический, но все равно необходимо производить вычисления по методу трапеции (С обязательной оценкой ошибок)

Еще один вариант - метод Канторовича.

1. Раскладываем функцию в ряд вблизи особенности:

$$f(x) \approx \frac{1}{\sqrt{x}} - \frac{1}{2} + \frac{\sqrt{x}}{3} + \dots$$
 (23)

2. Вычтем из исходной функции несколько членов ряда, а затем добавим:

$$\int_{0}^{4} \left[\frac{\ln(1+\sqrt{x})}{x} - \left(\frac{1}{\sqrt{x}} - \frac{1}{2} = \frac{\sqrt{x}}{3} \right) \right] dx + \int_{0}^{4} \left(\frac{1}{\sqrt{x}} - \frac{1}{2} = \frac{\sqrt{x}}{3} \right) dx \tag{24}$$

1.1.6 Задача 2.Интерполяция и интегрирование табличных функций

- 1. Построение интерполяционного полинома $L_n(x)$ После этого можно сразу определить $L_n(x^*)$.
- 2. Для поиска первой производной нужно найти $L_n'\left(x_{lb}\right)$ и $L_n'\left(x_{rb}\right)$.
- 3. Смотрим на предложенную сетку. Как правило, сетка равномерная. В таком случае, для метода трапеций:

$$I_{tr}^{h} = \frac{h}{2} \sum_{i=0}^{n-1} (f_i + f_{i+1}) = \frac{h}{2} (h_0 + 2f_1 + \dots + 2f_{n-1} + f_n)$$
 (25)

4. Для уточнения экстраполяции Ричардсона определяем I_{tr}^{2h} . Тогда формула уточнения:

$$I = \frac{4I_{tr}^h - I_{tr}^{2h}}{3} \tag{26}$$

- 5. Для сравнения результата с результатом, полученным по методу Симпсона достаточно знать, что уточнение экстраполяцией Ричардсона тождественно вычислению по методу Симпсона.
- 6. Формула Эйлера-Маклорена (ВНИМАНИЕ! Данного материала нет в лекционной программе!)

$$I_{em} = I_{tr}^{h} + \frac{h^{2}}{12} \left(f'(a) - f(b) \right)$$
 (27)

Значения производных были получены ранее.

Заметим, что Формулы Эйлера-Маклорена и экстраполяции Ричардсона точны для полиномов 3 степени!

7. Немного об ошибках интерполяции:

$$|E(x)| \leqslant \frac{M_{n+1}}{(n+1)!} \cdot |\omega(x)| \tag{28}$$

Где $|\omega(x)| = \prod_{k=0}^{n} (x - x_k)$

$$|E| \leqslant \frac{M_{n+1}}{(n+1)!} \cdot \max_{x \in [a,b]} |\omega(x)| \tag{29}$$

Величину $|\omega(x)|$ можно оценить как:

$$|\omega(x)| \leqslant \frac{h^{n+1} \cdot n!}{4} \tag{30}$$

Все описанные формулы справедливы для бесконечно точной арифметики. Для учета ошибок округления следует использовать:

$$E = E_M + E_R \tag{31}$$

$$E_R = \varepsilon \cdot M_0 \cdot \Lambda_n \tag{32}$$

Где константа Лебега описывается как:

$$\Lambda_n \leqslant \frac{2^{n+1}}{e \cdot n \cdot \ln n}, n \gg 1 \tag{33}$$