Maturitní okruh č. 10 - Oscilátory

Oscilátor je zařízení generující elektrický střídavý signál určitého tvaru a kmitočtu bez vnějšího buzení. Oscilátory musí splňovat dvě základní podmínky.

- 1. **Fázová –** celkový fázový posuv obvodu je roven nule (použití kladné zpětné vazby)
- 2. Amplitudová zisk zesilovač musí vyrovnávat ztráty v obvodu

Výstupní napětí oscilátoru závisí na typu obvodu a použitém zařízení. Například u sinusových oscilátorů bývá výstupní napětí hladké sinusové vlny, u nesinusových oscilátorů bývá signál obvykle čtvercový nebo pilový.

Druhy oscilátorů podle:

- 1. druhu řídícího obvodu
- 2. Frekvence (nf a vf)
- 3. Tvaru kmitů

a) Sinusové: Oscilátory LC, Oscilátory RC, Oscilátory řízené krystalem

b) Nesinusové: Oscilátory pilových průběhů, Rázovací (blokující) oscilátory

Oscilátory LC

Elektrický impulz v rezonančním obvodu LC vytváří kmitání na určité frekvenci, které postupně slábne kvůli ztrátám energie. Pro udržení kmitů se energie doplňuje zesilovačem. Rezonanční frekvenci určuje Thomsonův vzorec.

Thomsonův vzorec

Tlumené kmity

1. S induktivní vazbou:

Rezonanční obvod je přímo připojen na výstup zesilovače. Vstup zesilovače je propojen s rezonančním obvodem pomocí indukce (magnetického pole). Oscilátor díky tomu kmitá na rezonanční frekvenci, kterou spočítáme pomocí již zmíněného Thomsonova vzorce.

Meissnerův oscilátor

Tranzistor je v zapojení se společným emitorem, tudíž obrací fázi o 180°. Pomocné vinutí L1 také obrací fázi o 180°, čímž je splněna fázová podmínka vzniku oscilací. Kmitočet je určen hodnotami L1 a C1.

Armstrongův oscilátor

Pro svou jednoduchost byl dříve využíván v komerčních elektronkových a později i v tranzistorových přijímačích. Výhodou je uzemněný vývod ladicího kondenzátoru.

Maturitní okruh č. 10 - Oscilátory

2. Tříbodové oscilátory

Tříbodové oscilátory jsou oscilátory, které využívají tří bodů zapojení k vytvoření zpětné vazby v obvodu. Tyto body mohou být určeny rezonančním obvodem (LC) nebo jiným typem zpětnovazebního zapojení.

Hartleyův oscilátor

Je vyznačen svou odbočkou na cívce. Na horním obrázku pracuje tranzistor v zapojení se společným emitorem, které obrací fázi o 180°. Další obrácení fáze zajišťuje signálově uzemněna odbočka cívky.

Na spodním obrázku pracuje tranzistor se společným kolektorem. Tranzistor ani cívka neobrací fázi signálu. Jeden konec ladicího kondenzátoru je připojen k zemi.

Colpittsův oscilátor

Funguje podobně jako předchozí oscilátor, ale má kapacitní dělič místo indukčního. Stabilita frekvence je vyjádřena poměrem $\Delta f / f_o$, který bývá přibližně 10^{-3} .

Oscilátory RC

Mají zpětnou vazbu (řídící obvod) vytvořenou kombinací R a C. Jejich frekvence je dána hodnotami R a C. Jejich výhodou je jejich jednoduchost, protože nemají indukčnost, která se obtížně realizuje v integrovaných obvodech. Řídící obvod zde tvoří tři derivační články (C_1 R_1 , C_2 R_2 , C_3 R_3) z nichž každý posunuje fázi svého výstupního napětí o 60°. protože tranzistor posouvá fázi o 180°, je splněna fázová podmínka $\phi A + \phi B = 2\pi$

Oscilátory řízené krystalem

Požadavek na vysokou stabilitu oscilátorů nejlépe splňují krystalové oscilátory. Takovéto zapojení využívá piezoelektrických vlastností výbrusu krystalu křemene. Tento krystal se přiložením napětí deformuje, a naopak při jeho deformaci se na jeho polepech objeví elektrické napětí. V elektrickém obvodu se chová jako sérioparalelní rezonanční obvod.

Maturitní okruh č. 10 - Oscilátory

Krystalové oscilátory jsou velmi stabilní, což je činí ideálními pro aplikace, které vyžadují přesnou frekvenci, jako jsou hodinové oscilátory v počítačích a mobilních telefonech.

