

HO Ngoc-Huynh

Postdoctoral Researcher at Chonnam National University

- ngochuynhcnu@gmail.com
- +82 010.4995.3369
- Vietnamese
- https://www.linkedin.com/in/ngochuynh-ai/
- Gwangju, S. Korea

Machine Leaning

Deep Leaning

Programming

Problem-solving

- Python
- **▲** MATLAB
- C#/C++
- Office

SOFT SKILLS

Attention to detail

Teamwork

Analytical thinking

Communication

LANGUAGES

- Vietnamese
- VietnameseEnglish
- Korean

EDUCATION

- Ph.D in Al Convergence | 2017 2021 Chonnam National University, S. Korea
 - GPA: 4.25 / 4.5
- M.S in Electronics Engineering | 2015 2017 Kookmin University, S. Korea GPA: 4.375 / 4.5
- B.S in Telecommunications | 2010 2015 Hochiminh City University of Technology, Vietnam GPA: 7.96 / 10

PROJECTS

- Disease's Progression Prediction | 2020-Present
 - Modelling the progression of long-term disease
- Alzheimer's Disease (AD) Detection | 2017-2020
 Predicting the progression of AD
- Bone Tumor Detection | 2018-2019
 - Detecting the status of bone tumor from imaging
- Multimodal Emotion Recognition | 2017-Present
 - Identifying human emotional states from multimedia: video, audio, text
- Indoor Human Localization | 2016-2017
 - Estimating human walking steps using a smartphone

PUBLICATIONS

(11)

Journal articles

Conference articles

Citations

Google Scholar

https://scholar.google.com/citations?user=dYRENHsAAAAJ&hl=vi

Top citation articles

- **Ho NH**, Truong PH, Jeong GM. Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone. Sensors (**SCI journal**)
- Vu TD, **Ho NH**, Yang HJ, et al. *Non-white matter tissue* extraction and deep convolutional neural network for Alzheimer's disease detection. Soft Computing (**SCI journal**)