Section 1

Fundamental Principles (Chap A1)

Fundamental Principles of Aerodynamics

(Anderson Fundamental of Aerodynamics Chapter 1)

Aerodynamics: Objectives & Terminology (A1.2)

Course Objectives:

- 1) Learn to compute the forces (normal and shear) on a flying vehicle
- 2) Understand the trade-offs between vehicle external shape and resultant forces on it, leading to insights about optimum shapes for the mission

Aircraft Wisdom: If it looks good, it flies good?

https://techxplore.com/news/2020-09-rolls-royce-plane-technology-electric.html

UC Davis EAE-127 Prof. S.K. Robinson

UC Davis EAE-127 Prof. S.K. Robinson

Ideal (?):

Terminology:

• Fluid: liquid or gas

• Hydrodynamics: flow of liquids

• Gas Dynamics: flow of gases

• Aerodynamics: flow of air

Internal vs External Aerodynamics

Roadmap (A1.3):

<u>Aerodynamic Variables (A1.4)</u> – The Language of Aerodynamics

- Density
 - Mass/unit volume
 - Scalar
- Temperature
 - Scalar
- Flow Velocity
 - Vector
 - Always measured relative to something, so reference frame is essential to state or to assume correctly

FORCES: Normal and Shear

- Pressure
 - Normal force/unit area due to time rate of change of momentum of gas molecules impacting surface
 - Ovector or scalar?

- Shear stress (internal to fluid)
 - Tangential force between adjacent fluid elements

Airplane Nomenclature (F2.6)

Figure 2.13 Basic components of an airplane.

Airplane Nomenclature (F2.6)

Figure 2.14 Control surfaces and flaps.

Airfoil Nomenclature (F5.2)

Figure 5.2 Sketch of a wing and airfoil.

Figure 5.3 Airfoil nomenclature. The shape shown here is a NACA 4415 airfoil.

UC Davis EAE-127 Prof. S.K. Robinson	
Ainfail Niana an alatana (FF 2)	
Airfoil Nomenclature (F5.2)	

UC Davis EAE-127 Prof. S.K. Robinson

UC Davis EAE-127 Prof. S.K. Robinson

What do we want to be able to predict?

- Lift forces
- Drag forces
- Moments

Aerodynamic Forces and Moments (A1.5)

- Why study aerodynamics? What's the point?
- Generally, to estimate the forces on the vehicle, to quantify performance
- How many kinds of airflow-induced forces act on the surface of a vehicle? Just TWO!

p = p(s) = surface pressure distribution $\tau = \tau(s)$ = surface shear stress distribution

- Normal force (pressure distribution over surface)
- Tangential force (shear stress distribution over surface)
- Dimensions of both are of stress (force/unit area)

 For net effect of stress distributions, integrate over surface to form resultant aerodynamic force and moment, acting at a chosen point (more on choosing that point later!):

• So, if we know the surface stresses (normal and tangential, or pressure and shear), p(s) and τ (s) over an aerodynamic body, we can integrate to compute the resultant aerodynamic

Lift, Drag, and Moment

• Therefore the trick is to learn enough about fluid flow to be able to predict the imposed stresses on a given body shape...

This is the field of Aerodynamics

A Preliminary Note About DRAG

Drag due to pressure differences:

Drag due to friction:

Drag due to lift:

Guy Schauerhamer, PhD (2018)

Dimensionless Force and Moment Coefficients

S = plantorm area l = c = chord length

Force & Moment Integrals in Coefficient Form:

Center of Pressure (A1.6):

- Engineering: Replace P and τ surface distributions with a resultant force and moment, applied anywhere you choose, as long as the moment is adjusted so that the combined force/moment effect is the same as that of the distributed stresses.
- But there is <u>one point</u> of resultant application on the airfoil where there is no moment required: "Center of Pressure"

UC Davis EAE-127 Prof. S.K. Robinson

Resultant force at leading edge

Resultant force at quarter-chord point

Resultant force at center of pressure

Dimensional Analysis (A1.7):

For a given aerodynamic body at a given angle of attack, α , what does the resultant force on the body depend on?

UC Davis EAE-127 Prof. S.K. Robinson Simplify by <u>Dimensional Analysis</u> to get grouped variables. **Results:**

UC Davis EAE-127 Prof. S.K. Robinson	
Generalize our findings as:	

Flow Similarity (A1.8):

Two flows are dynamically similar if:

- 1) Boundaries and bodies in flow are geometrically similar (same shape, not necessarily same size)
- 2) Similiarity parameters are the same

Wind tunnel testing example:

Example 1.5:

Design Box (A pg 46): Importance of C_L and C_D

High-Lift Aircraft: McDonnell Douglas C-17

Low-Drag Airplane: Northrup B2

Stall

Relationship between aircraft speed and C_L

Relationship between aircraft speed and CD

Aerodynamic Efficiency of Aircraft: Lift/Drag Ratio

	UC Davis EAE-127 Prof. S.K. Robinson	
Aerodynamic Efficiency of Aircraft: Lift/Drag Ratio		

Flight velocity, V_{∞}

Fluid Statics: Manometry (A1.9):

Types of Flow (A1.10):

Inviscid vs Viscous Flow:

Inviscid vs Viscous Flow:

••••••••••••••••••••••••	
UC Davis EAE-127 Prof. S.K. Robinson	
Incompressible vs Compressible F	low:

Mach Number Regimes:

(a) Subsonic flow

(b) Transonic flow with $M_{\infty} < 1$

(c) Transonic flow with $M_{\infty} > 1$

(d) Supersonic flow

Thin, hot shock layer with viscous interaction and chemical reactions

(e) Hypersonic flow

