Lamma Tommaso 0000881007 Turno II Misura della caratteristica di uscita di un BJT P-N-P in configurazione a Emettitore comune

Il circuito utilizzato per la prova è il seguente :

Gli strumenti utilizzati nella prova sono:

- (i) Potenziometro da $1k\Omega$
- (ii) Potenziometro da $100k\Omega$
- (iii) Transistor BJT 2N3906(BU) (Si PNP)
- (iv) Breadboard generica
- (v) Oscilloscopio GOS-652 GW
- (vi) Multimetro digitale FLUKE 77
- (vii) Generatore di tensione continua IPS 3303 ISO-TECH

I dati misurati con corrente di base 100mA e 200mA sono:

Corrente di base 100mA					
$\mathbf{V}[V]$	$\delta V[V]$	I[mA]	$\delta I[mA]$	fondoscala[V]	
3.8	0.2	22.5	0.3	1	
3.6	0.1	22.5	0.3	1	
3.4	0.1	22.5	0.3	1	
3.2	0.1	22.4	0.3	1	
3	0.1	22.2	0.3	1	
2.8	0.1	22.1	0.3	1	
2.6	0.1	21.8	0.3	1	
2.4	0.1	21.5	0.3	1	
2.2	0.1	21.3	0.3	1	
2	0.1	21.1	0.3	1	
1.8	0.1	20.9	0.3	1	
1.6	0.1	20.6	0.3	1	
1.4	0.1	20.4	0.3	1	
1.2	0.1	20.2	0.3	1	
1.15	0.04	19.9	0.3	0.2	
1.1	0.04	19.8	0.3	0.2	
1.05	0.04	19.7	0.3	0.2	
1	0.04	19.6	0.3	0.2	
0.5	0.02	18.6	0.3	0.1	
0.4	0.02	17.9	0.3	0.1	
0.3	0.01	16.5	0.2	0.1	
0.2	0.01	13.3	0.2	0.1	
0.18	0.01	12	0.2	0.1	
0.16	0.01	10.5	0.2	0.1	
0.13	0.01	8.7	0.1	0.1	
0.12	0.01	6.4	0.1	0.1	
0.1	0.01	4.3	0.06	0.1	
0.08	0.003	2.3	0.03	0.02	
0.07	0.003	1.7	0.03	0.02	
0.06	0.003	1.1	0.02	0.02	
0.05	0.003	0.8	0.01	0.02	
0.04	0.002	0.4	0.006	0.02	
0.03	0.002	0.2	0.003	0.02	

Corrente di base 200mA						
V[V]	$\delta V[V]$	I[mA]	$\delta I[mA]$	fondoscala[V]		
4	0.2	37.6	0.6	1		
3.8	0.2	39.2	0.6	1		
3.6	0.1	39.1	0.6	1		
3.4	0.1	38.8	0.6	1		
3.2	0.1	38.4	0.6	1		
3	0.1	37.9	0.6	1		
2.8	0.1	37.4	0.6	1		
2.6	0.1	37	0.6	1		
2.4	0.1	36.5	0.5	1		
2.2	0.1	36.1	0.5	1		
2	0.1	35.6	0.5	1		
1.8	0.1	35.1	0.5	1		
1.6	0.1	34.5	0.5	1		
1.4	0.1	33.8	0.5	1		
1	0.04	32.2	0.5	0.2		
0.9	0.03	31.7	0.5	0.2		
0.8	0.03	31.2	0.5	0.2		
0.2	0.01	18.9	0.3	0.1		
0.15	0.01	14.2	0.2	0.1		
0.12	0.01	9.9	0.1	0.1		
0.1	0.004	6.5	0.1	0.02		
0.08	0.003	3.9	0.06	0.02		
0.06	0.003	2.1	0.03	0.02		
0.05	0.003	1.3	0.02	0.02		

I loro rispettivi grafici sono:

Caratteristica in uscita

I risultati finali sono:

Calibrazione	slope	1.02 ± 0.02
Silicio	ηV_T I_0	$ (53 \pm 4)mV (0.005 \pm 0.002)mA $
Germanio	ηV_T I_0	$(53 \pm 3)mV$ $(5 \pm 4) \cdot 10^{-6}mA$

Le stime dei parametri riportati nella precedente tabella e delle relative incertezze sono state ricavate da fit lineari pesati considerando soltanto gli errori sulla tensione misurata con l'oscilloscopioin quanto relativamente maggiori a quelli sulla corrente o sulla tensione misurate dal multimetro, per le caratteristiche dei diodi il fit lineare è stato fatto utilizzando il logaritmo delle correnti. Per la corrente I_0 nel caso dei diodi si sono propagate le incertezze rispetto ai parametri di pendenza ed intercetta restituiti dal fit. Nel caso del diodo al Silicio si è scelto di fittare solo per tensioni superiori ai 150mV.