(a) Algorithm
$$alg1(L[0..n-1])$$
if $(n=1)$ return $L[0]$ $O(I)$
else

tmp = $alg1(L[0..n-2])$ $T(n-I)$
if $(tmp <= L[n-1])$ return tmp $I(I)$
else return $I(I)$

The operations that can be done are minimized, it is not possible to find the result without going through all the coefficients. So this is the best time complexity.

1)
$$T(n) = T(n/1) + o(1)$$

 $T(n/2) = T(n/2) + o(1)$
 $T(n/2) = T(n/3) + o(1)$
 $T(n) = T(n) + o(1)$
 $T(n) = T(n) + (n-1) \cdot o(1)$
 $T(n) = o(n)$

Okan Joren 1801042662

1801047662 1801047662

for i=0 to len(letters)):)
$$O(n)$$

for i=0 to len(letters)):) $O(n)$

if (letters[i]!= start) $O(n)$

break

else

if (letters[j]==end)

Count=count+1

return count

return min.

$$f(n) = \sum_{i=0}^{n} \sum_{j=1}^{n} \varphi(n)$$

$$f(n) = \sum_{i=0}^{n} \varphi(n) = \varphi(n^{2})$$

$$f(n) = \varphi(n^{2})$$

Okun Jorun 1801042662 mostprofitable Cluster (brench Nome, branch No) Maxz= # on for i to to ten (branch Name))O(1) for j=i to len(branch Name)) 1 temp. profit=0) (1) for k= ; to j+1 temp-profit = temp-profit + branchwo[] temp-cluster = temp. cluster + branch Nume[k] if temp-profit > maxel max = temp_profit max2 = temp_cluster

Print (max 2)

$$\sum_{i=1}^{j-1} \sum_{i=1}^{j-1} \sum_{i=1}^{j-1}$$

Jour Jours 201042662