Ekonometria Dynamiczna

Szeregi czasowe: podstawowe definicje i miary

mgr Paweł Jamer¹

2 marca 2015

¹pawel.jamer@gmail.com

Proces Stochastyczny

Niech:

- $(\Omega, \mathcal{F}, \mathbf{P})$ przestrzeń probabilistyczna;
- \bullet \mathbb{T} zbiór indeksów (zwykle czas).

 - $\mathbb{T} \subseteq \mathbb{R}$ czas ciągły.

Proces stochastyczny

Procesem stochastycznym nazwiemy taką funkcję

$$(t,\omega)\mapsto X_t(\omega), t\in\mathbb{T}, \omega\in\Omega,$$

że dla każdego ustalonego $t \in \mathbb{T}: X_t(\omega)$ jest zmienną losową.

Proces Stochastyczny

Proces stochastyczny

Procesem stochastycznym nazwiemy taką funkcję

$$(t,\omega)\mapsto X_t(\omega), t\in\mathbb{T}, \omega\in\Omega,$$

że dla każdego ustalonego $t \in \mathbb{T}: X_{t}(\omega)$ jest zmienną losową.

Uwaga. Wyżej zdefiniowany proces stochastyczny oznaczać będziemy zazwyczaj pisząc X_t albo $\{X_t\}$ lub używając zapisu akcentującego zakres indeksów postaci $\{X_t\}_{t\in\mathbb{T}}$ albo $\{X_t\}_{t=1}^\infty$.

Oznaczenia:

- $S = \{X_t(\omega) : t \in \mathbb{T}, \omega \in \Omega\}$ przestrzeń stanów.
- $s \in \mathcal{S}$ stan procesu.
- $t \mapsto X_t(\omega)$ trajektoria (realizacja) procesu.

Definicje Podstawowe miary

Szereg Czasowy

Szereg czasowy

Szeregiem czasowym nazywamy proces stochastyczny X_t , którego zbiór indeksów \mathbb{T} reprezentuje czas.

Uwaga. Wiele źródeł definiuje szereg czasowy jako *realizację* procesu stochastycznego, którego zbiór indeksów \mathbb{T} reprezentuje czas.

Uwaga. Będziemy rozpatrywać przede wszystkim przypadek $\mathbb{T}=\mathbb{Z}_+$, zakładając niejawnie taktowanie tym samym odcinkiem czasowym. W praktyce zdarzają się odstępstwa od tego założenia (np. notowania giełdowe).

Przykład (biały szum)

Szereg czasowy ϵ_t niezależnych zmiennych losowych o tym samym rozkładzie taki, że

$$\mathbb{E}(\epsilon_t) = 0,$$

$$Var(\epsilon_t) = \sigma^2$$

nazywać będziemy **białym szumem** i oznaczać WN $(0, \sigma^2)$.

Przykład (model autoregresyjny)

Szereg czasowy

$$X_t = \rho X_{t-1} + \epsilon_t,$$

gdzie $\epsilon_t \sim \text{WN}\left(0, \sigma^2\right)$, nazwiemy szeregiem **autoregresyjnym** rzędu $\mathbf{1}$ i oznaczymy AR (1).

Wartość oczekiwana

Wartość oczekiwana

Wartością oczekiwaną procesu stochastycznego X_t nazywamy funkcję

$$t\mapsto \mathbb{E}\left(X_{t}\right)$$

o ile dla każdego $t \in \mathbb{T} : \mathbb{E} |X_t| < \infty$.

Niech: c - stała, X, Y - zmienne losowe.

Właściwości:

- $\mathbb{E}(c) = c$,
- $\mathbb{E}(cX) = c\mathbb{E}(X)$,
- $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$,
- X, Y niezależne $\Rightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Wariancja

Wariancja

Wariancją procesu stochastycznego X_t nazywamy funkcję

$$t\mapsto \mathsf{Var}\left(X_{t}\right)=\mathbb{E}\left(X_{t}-\mathbb{E}\left(X_{t}\right)\right)^{2}$$

o ile dla każdego $t\in\mathbb{T}:\mathbb{E}\left(X_{t}^{2}\right)<\infty.$

Niech: *c* - stała, *X*, *Y* - zmienne losowe.

Właściwości:

- Var(c) = 0,
- $Var(cX) = c^2 Var(X)$,
- Var(X + c) = Var(X),
- $Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X, Y)$,
- X, Y niezależne $\Rightarrow Var(X \pm Y) = Var(X) + Var(Y)$.

Kowariancja

Kowariancja

Kowariancją procesów stochastycznych X_t i Y_t nazwiemy funkcję

$$(s,t)\mapsto \operatorname{\mathsf{Cov}}\left(X_{s},Y_{t}\right)=\mathbb{E}\left(X_{s}-\mathbb{E}\left(X_{s}\right)\right)\left(Y_{t}-\mathbb{E}\left(Y_{t}\right)\right)$$

o ile dla każdego $t \in \mathbb{T}$: $\mathbb{E}\left(X_{t}^{2}\right) < \infty$ oraz $\mathbb{E}\left(Y_{t}^{2}\right) < \infty$.

Uwaga. Kowariancja wyraża siłę zależności liniowej występującej pomiędzy dwiema zmiennymi losowymi.

- X, Y liniowo niezależne $\Leftrightarrow Cov(X, Y) = 0$,
- X, Y niezależne $\Rightarrow Cov(X, Y) = 0$,
- X, Y niezależne $\notin Cov(X, Y) = 0$.

Uwaga. Kowariancję procesu stochastycznego X_t z samym sobą nazywamy **autokowariancją** i oznaczymy symbolem $\gamma_X(s,t)$.

Korelacja

Korelacja

Korelacją procesów stochastycznych X_t i Y_t nazwiemy funkcję

$$(s,t) \mapsto \mathsf{Corr}(X_s, Y_t) = \frac{\mathsf{Cov}(X_s, Y_t)}{\sqrt{\mathsf{Var}(X_s)}\sqrt{\mathsf{Var}(Y_t)}}$$

o ile dla każdego $t \in \mathbb{T}$: $\mathbb{E}\left(X_t^2\right) < \infty$ oraz $\mathbb{E}\left(Y_t^2\right) < \infty$.

Uwaga. Korelacja jest unormowaną miarą zależności liniowej łączącej dwie zmienne losowe.

- $Corr(X, Y) = 1 \Rightarrow pełna dodatnia zależność liniowa,$
- $Corr(X, Y) = 0 \Rightarrow brak zależności liniowej,$
- $Corr(X, Y) = -1 \Rightarrow pełna ujemna zależność liniowa.$

Uwaga. Korelację procesu stochastycznego X_t z samym sobą nazywamy **autokorelacją** i oznaczymy symbolem $\rho_X(s,t)$.

Pytania?

Dziękuję za uwagę!