Employing models of stratigraphic preservation in phylogenetic inference

Caroline Parins-Fukuchi, Daniel C. Fisher University of Michigan

Stratocladistic approach

Temporal data can inform phylogenetic relatedness

Fisher 2008

Stratocladistic approach

Choose topology which implies fewest unsampled stratigraphic crossings ("stratigraphic debt")

Fisher 2008

Stratocladistic approach

- Relies on parsimony principal
- Combine with character data to minimize combined parsimony debt

Fisher 2008

Could be applied in a probabilistic modelling framework:

- Evaluate tree likelihood under models of fossil preservation
- Compare different models
- Explicit statement of model assumptions

Bayesian tip dating, especially combined with Fossilized Birth-Death (FBD) prior could be used to address similar questions

- Will not discuss here
- Instead, apply preservation and character models in maximium likelihood (ML) framework

Calculate likelihood as product of independent Poisson processes along b branches:

$$\hat{L} = \prod_{i=1}^{b} \frac{(o_s^i - o_f^i)^{n_o^i - 2} \lambda^{n_o^i} e^{-\lambda (t_s^i - t_f^i)}}{(n_o^i - 2)!}$$

(Huelsenbeck and Rannala 1997)

Characteristics of model:

- Assumes preservation rate is constant across lineages
- Branching time estimates will match first and last fossil deposit times as closely as is permitted by topology
 - Best thought of as minimum divergence times
- Likelihood of branch lengths asymptotes as they approach observed range

$$\hat{L} = \prod_{i=1}^{b} \frac{(o_s^i - o_f^i)^{n_o^i - 2} \lambda^{n_o^i} e^{-\lambda (t_s^i - t_f^i)}}{(n_o^i - 2)!}$$

 Combine with discrete and continuous character evolutionary models (ex. Lewis Mk, Brownian motion) by summing log-likelihoods

$$\hat{L} = \prod_{i=1}^{b} \frac{(o_s^i - o_f^i)^{n_o^i - 2} \lambda^{n_o^i} e^{-\lambda(t_s^i - t_f^i)}}{(n_o^i - 2)!}$$

- Combine with discrete and continuous character evolutionary models (ex. Lewis Mk, Brownian motion) by summing log-likelihoods
- Test hypotheses of direct ancestorship/anagenetic evolution by collapsing branches and comparing likelihood scores

$$\hat{L} = \prod_{i=1}^{b} \frac{(o_s^i - o_f^i)^{n_o^i - 2} \lambda^{n_o^i} e^{-\lambda (t_s^i - t_f^i)}}{(n_o^i - 2)!}$$

Mandos

- Implemented in 'mandos' package (github.com/carolinetomo/mandos)— working, needs optimisation
- Calculate stratigraphic and morphological likelihoods on candidate trees
 - Likelihoods calculated using Lewis Mk, Brownian motion, and Poisson preservation models
- Test direct ancestor-descendant hypotheses in likelihood framework
 - Compare likelihoods (AIC) of collapsed and bifurcating arrangements

Direct Ancestors in the Hominin Fossil Record

Application to fossil hominins

Trees estimated from morphology alone disagree with paleoanthropological assessments

Application to fossil hominins

Paleoanthropological hypotheses often consider direct-ancestorship

Rightmire 1997

Application to fossil hominins

Paleoanthropological hypotheses often consider direct-ancestorship

Stringer 2012

Fossil hominins

- Published morphological matrix (Dembo et al. 2015)
 - 23 taxa, 391 characters
- Temporal and stratigraphic occurrences surveyed across literature

Analysis

Generate 1700 candidate topologies from morphological ML/parsimony starting tree

Calculate likelihood of stratigraphic and morphological data on each topology

Collapse individual branches and test for anagenesis on best tree

Branch support measured as approximate posterior probabilities

Testing for direct ancestorship

Branches with non-overlapping sister ranges are collapsed as set of potential direct ancestors

AIC comparison using morphological and stratigraphic log-likelihoods

Fossil hominins

Fossil hominins

Acknowledgements

- Christopher Dick lab at UMich
- Laura MacLatchey (UMich Anthropology)
- Edward Ionides (UMich Statistics)
- Joseph Brown (UMich)