→ ASSIGNMENT-4

Name: Gopu Bala Reshma Sravani

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.get_dataset_names ()
     ['anagrams',
      'anscombe',
      'attention',
      'brain_networks',
      'car_crashes',
      'diamonds',
      'dots',
      'dowjones',
      'exercise',
      'flights',
      'fmri',
      'geyser',
      'glue',
      'healthexp',
      'iris',
      'mpg',
      'penguins',
      'planets',
      'seaice',
      'taxis',
      'tips',
      'titanic']
data=pd.read_csv("Employee-Attrition.csv")
data.head()
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1

data.tail()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCoun
1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	
1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	

data.info()

5 rows × 35 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

		,	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object

	••		
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64

34 YearsWithCurrManager dtypes: int64(26), object(9) memory usage: 402.1+ KB

data.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769
Handling	the null w	alues ′					
050/	00 000000	405 000000	0.00000	0 000000	4.0	404 050000	0.00000
lata.isnull().any()						
Age		Fals	e				
Attriti	.on	Fals	e				
Busines	sTravel	Fals	e				
DailyRa	ite	Fals	e				
Departm		Fals	e				
	eFromHome	Fals	e				
Educati	.on	Fals	e				
Educati	onField	Fals	e				
Employe	eCount	Fals	e				
	eNumber	Fals	e				
	mentSatisfact	tion Fals	e				
Gender		Fals	e				
HourlyR	ate	Fals	e				
	lvement	Fals	e				
JobLeve	1	Fals	e				
JobRole	!	Fals	e				
JobSati	.sfaction	Fals	e				
Marital	.Status	Fals	e				
Monthly	Income	Fals	e				
Monthly		Fals	e				
NumComp	aniesWorked	Fals	e				
0ver18		Fals	e				
OverTim	ie	Fals	e				
Percent	SalaryHike	Fals	e				
Perform	anceRating	Fals	e				
Relatio	nshipSatisfa	ction Fals	e				
Standar	dHours	Fals	e				
Stock0p	tionLevel	Fals	e				
	rkingYears	Fals	e				
	gTimesLastYe						
	eBalance	Fals					
	:Company	Fals					
	CurrentRole	Fals					
YearsSi	nceLastPromot						
	thCurrManage	r Fals	e				
dtype:	bool						

data.isnull().sum()

0 Age Attrition 0 BusinessTravel 0 DailyRate 0 0 Department DistanceFromHome 0 Education 0 EducationField 0 EmployeeCount 0 EmployeeNumber 0 EnvironmentSatisfaction 0 Gender 0 0 HourlyRate JobInvolvement 0 JobLevel 0 JobRole 0 JobSatisfaction 0 MaritalStatus 0 MonthlyIncome 0 MonthlyRate 0 NumCompaniesWorked 0 0ver18 0 OverTime 0 PercentSalaryHike 0 PerformanceRating 0 RelationshipSatisfaction 0 StandardHours 0 StockOptionLevel 0 TotalWorkingYears 0 TrainingTimesLastYear 0 WorkLifeBalance 0 0 YearsAtCompany YearsInCurrentRole 0 YearsSinceLastPromotion 0 YearsWithCurrManager dtype: int64

cor=data.corr()

<ipython-input-11-410fe4458127>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it w
cor=data.corr()

fig=plt.figure(figsize=(18,18))
sns.heatmap(cor,annot=True)

▼ outliers

sns.boxplot(data["Age"])

sns.boxplot(data["DailyRate"])

data.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Hour
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.

data.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	Emplo
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

fig, axes = plt.subplots(2,2)
sns.boxplot(data=data["YearsInCurrentRole"],ax=axes[0,0])
sns.boxplot(data=data["YearsSinceLastPromotion"],ax=axes[0,1])
sns.boxplot(data=data["YearsWithCurrManager"],ax=axes[1,0])
sns.boxplot(data=data["WorkLifeBalance"],ax=axes[1,1])

fig, axes = plt.subplots(2,2)
sns.boxplot(data=data["DistanceFromHome"],ax=axes[0,0])
sns.boxplot(data=data["TotalWorkingYears"],ax=axes[0,1])
sns.boxplot(data=data["HourlyRate"],ax=axes[1,0])
sns.boxplot(data=data["YearsAtCompany"],ax=axes[1,1])

Handling the outliers

```
YearsInCurrentRole q1 = data.YearsInCurrentRole.quantile(0.25)
YearsInCurrentRole q3 = data.YearsInCurrentRole.quantile(0.75)
IQR YearsInCurrentRole=YearsInCurrentRole q3-YearsInCurrentRole q1
upperlimit YearsInCurrentRole=YearsInCurrentRole q3+1.5*IQR YearsInCurrentRole
lower_limit_YearsInCurrentRole =YearsInCurrentRole_q1-1.5*IQR_YearsInCurrentRole
median YearsInCurrentRole=data["YearsInCurrentRole"].median()
data['YearsInCurrentRole'] = np.where(
    (data['YearsInCurrentRole'] > upperlimit YearsInCurrentRole),
    median YearsInCurrentRole,
    data['YearsInCurrentRole']
)
YearsSinceLastPromotion q1 = data.YearsSinceLastPromotion.quantile(0.25)
YearsSinceLastPromotion q3 = data.YearsSinceLastPromotion.quantile(0.75)
IQR YearsSinceLastPromotion=YearsSinceLastPromotion q3-YearsSinceLastPromotion q1
upperlimit YearsSinceLastPromotion=YearsSinceLastPromotion q3+1.5*IQR YearsSinceLastPromotion
lower limit YearsSinceLastPromotion = YearsSinceLastPromotion q1-1.5*IQR YearsSinceLastPromotion
median YearsSinceLastPromotion=data["YearsSinceLastPromotion"].median()
data['YearsSinceLastPromotion'] = np.where(
    (data['YearsSinceLastPromotion'] > upperlimit YearsSinceLastPromotion),
    median YearsSinceLastPromotion,
    data['YearsSinceLastPromotion']
YearsWithCurrManager q1 = data.YearsWithCurrManager.quantile(0.25)
YearsWithCurrManager q3 = data.YearsWithCurrManager.quantile(0.75)
IQR YearsWithCurrManager=YearsWithCurrManager q3-YearsWithCurrManager q1
upperlimit_YearsWithCurrManager=YearsWithCurrManager_q3+1.5*IQR_YearsWithCurrManager
lower limit YearsWithCurrManager =YearsWithCurrManager q1-1.5*IQR YearsWithCurrManager
median_YearsWithCurrManager=data["YearsWithCurrManager"].median()
data['YearsWithCurrManager'] = np.where(
    (data['YearsWithCurrManager'] > upperlimit_YearsWithCurrManager),
    median YearsWithCurrManager,
    data['YearsWithCurrManager']
TotalWorkingYears q1 = data.TotalWorkingYears.quantile(0.25)
TotalWorkingYears q3 = data.TotalWorkingYears.quantile(0.75)
IQR TotalWorkingYears=TotalWorkingYears q3-TotalWorkingYears q1
```

```
upperlimit TotalWorkingYears=TotalWorkingYears q3+1.5*IQR TotalWorkingYears
lower limit TotalWorkingYears=TotalWorkingYears q1-1.5*IQR TotalWorkingYears
median TotalWorkingYears=data["TotalWorkingYears"].median()
data['TotalWorkingYears'] = np.where(
    (data['TotalWorkingYears'] > upperlimit TotalWorkingYears),
    median TotalWorkingYears,
    data['TotalWorkingYears']
YearsAtCompany q1 = data.YearsAtCompany.quantile(0.25)
YearsAtCompany q3 = data.YearsAtCompany.quantile(0.75)
IQR_YearsAtCompany=YearsAtCompany_q3-YearsAtCompany_q1
upperlimit YearsAtCompany=YearsAtCompany q3+1.5*IQR YearsAtCompany
lower_limit_YearsAtCompany=YearsAtCompany_q1-1.5*IQR_YearsAtCompany
median_YearsAtCompany=data["YearsAtCompany"].median()
data['YearsAtCompany'] = np.where(
    (data['YearsAtCompany'] > upperlimit_YearsAtCompany),
    median YearsAtCompany,
    data['YearsAtCompany']
fig, axes = plt.subplots(2,2)
sns.boxplot(data=data["YearsWithCurrManager"],ax=axes[0,0])
sns.boxplot(data=data["TotalWorkingYears"],ax=axes[0,1])
sns.boxplot(data=data["YearsSinceLastPromotion"],ax=axes[1,0])
sns.boxplot(data=data["YearsAtCompany"],ax=axes[1,1])
```


data.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	Emplo
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

data.drop("EducationField",axis=1,inplace=True)

data.head(2)

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Envir
0	41	Yes	Travel_Rarely	1102	Sales	1	2	1	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	1	2	

2 rows × 34 columns

```
data["BusinessTravel"].unique()
    array(['Travel_Rarely', 'Travel_Frequently', 'Non-Travel'], dtype=object)
```

splitting the data

```
y=data["Attrition"]

y.head()

0    Yes
1    No
2    Yes
3    No
4    No
Name: Attrition, dtype: object

data.drop("Attrition",axis=1,inplace=True)

data.head()
```

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSati:
0	41	Travel_Rarely	1102	Sales	1	2	1	1	
1	49	Travel_Frequently	279	Research & Development	8	1	1	2	
2	37	Travel_Rarely	1373	Research & Development	2	2	1	4	
3	33	Travel_Frequently	1392	Research & Development	3	4	1	5	
4	27	Travel_Rarely	591	Research & Development	2	1	1	7	

5 rows × 33 columns

▼ Encoding

from sklearn.preprocessing import LabelEncoder

```
le=LabelEncoder()
data["BusinessTravel"]=le.fit transform(data["BusinessTravel"])
data["Department"]=le.fit transform(data["Department"])
data["Gender"]=le.fit transform(data["Gender"])
y=le.fit transform(y)
У
     array([1, 0, 1, ..., 0, 0, 0])
data["JobRole"]=le.fit transform(data["JobRole"])
data["Over18"]=le.fit transform(data["Over18"])
data["MaritalStatus"]=le.fit_transform(data["MaritalStatus"])
data["OverTime"]=le.fit transform(data["OverTime"])
data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1470 entries, 0 to 1469
     Data columns (total 33 columns):
         Column
                                   Non-Null Count Dtype
                                   -----
                                   1470 non-null
                                                  int64
      0
         Age
         BusinessTravel
                                   1470 non-null
                                                  int64
      1
      2
         DailyRate
                                  1470 non-null
                                                  int64
      3
         Department
                                  1470 non-null
                                                  int64
                                   1470 non-null
         DistanceFromHome
                                                  int64
      5
         Education
                                   1470 non-null
                                                  int64
      6
         EmployeeCount
                                   1470 non-null
                                                  int64
      7
         EmployeeNumber
                                   1470 non-null
                                                  int64
      8
         EnvironmentSatisfaction 1470 non-null
                                                  int64
      9
         Gender
                                   1470 non-null
                                                   int64
      10 HourlyRate
                                   1470 non-null
                                                  int64
```

```
11 JobInvolvement
                              1470 non-null
                                              int64
12 JobLevel
                              1470 non-null
                                              int64
13 JobRole
                              1470 non-null
                                              int64
14 JobSatisfaction
                              1470 non-null
                                              int64
15 MaritalStatus
                              1470 non-null
                                              int64
16 MonthlyIncome
                              1470 non-null
                                              int64
17 MonthlyRate
                              1470 non-null
                                              int64
18 NumCompaniesWorked
                              1470 non-null
                                              int64
19 Over18
                              1470 non-null
                                              int64
20 OverTime
                              1470 non-null
                                              int64
21 PercentSalaryHike
                              1470 non-null
                                              int64
22 PerformanceRating
                              1470 non-null
                                              int64
23 RelationshipSatisfaction 1470 non-null
                                              int64
24 StandardHours
                              1470 non-null
                                              int64
25 StockOptionLevel
                              1470 non-null
                                              int64
26 TotalWorkingYears
                              1470 non-null
                                              float64
27 TrainingTimesLastYear
                              1470 non-null
                                              int64
28 WorkLifeBalance
                              1470 non-null
                                              int64
29 YearsAtCompany
                              1470 non-null
                                              float64
30 YearsInCurrentRole
                              1470 non-null
                                             float64
31 YearsSinceLastPromotion 1470 non-null
                                             float64
32 YearsWithCurrManager
                              1470 non-null
                                             float64
dtypes: float64(5), int64(28)
```

dtypes: float64(5), int64(28) memory usage: 379.1 KB

▼ train test split

▼ Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
```

```
x_train=sc.fit_transform(x_train)
x test=sc.fit transform(x test)
```

Building the model

▼ Multi-Linear Regression

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x train,y train)
      ▼ LinearRegression
     LinearRegression()
lr.coef #slope(m)
     array([-3.54940447e-02, 7.88352347e-05, -1.70825038e-02, 3.46389690e-02,
             2.44612841e-02, 3.65668214e-03, -7.25114413e-16, -9.46820520e-03,
            -4.11203734e-02, 1.06338881e-02, -2.97662154e-03, -3.84864283e-02,
            -1.52927977e-02, -1.57839139e-02, -3.67252862e-02, 3.35765928e-02,
            -5.90043558e-03, 5.81099165e-03, 3.78471890e-02, 6.93889390e-18,
            9.55263279e-02, -2.55800078e-02, 2.01844797e-02, -2.64773510e-02,
            2.60208521e-18, -1.79286106e-02, -3.30529386e-02, -1.09247807e-02,
            -3.10631611e-02, -2.47887717e-02, -1.10177742e-02, 2.11897289e-02,
            -6.60823991e-03])
lr.intercept #(c)
     0.16229348882410102
y_pred = lr.predict(x_test)
y_pred
```

```
2.0544/50/E-01, 4.1052515/E-01, 5.534/5315/E-01, 1.805/1041/E-01,
            2.76792072e-01, 2.86132531e-01, 2.62476320e-01, -1.83021903e-02,
            2.36094900e-01, 1.54018489e-01, 6.36220924e-02, 6.18224799e-03,
            1.85057193e-02, 7.69476922e-02, 1.34623859e-01, 1.87169316e-01,
            2.36666289e-01, -1.82114662e-01, 2.98547908e-01, 1.73398527e-01,
           -8.87118635e-02, 3.51838607e-02, 1.35598577e-01, 1.70085191e-01,
           1.69932034e-01, 2.29056852e-01, 2.15573570e-01, 1.04403736e-01,
           -8.21467550e-02])
y_test
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
           0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
           0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
           0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
           0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
           0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
           0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           01)
```

▼ Logistic Regression

```
from sklearn.linear_model import LogisticRegression
lg=LogisticRegression()
lg.fit(x_train,y_train)
```

```
y pred lg=lg.predict(x test)
```

y pred

```
array([ 1.30302477e-01, 2.17626230e-01, 3.46282415e-01, 5.41382549e-03,
       4.99292896e-01, 1.01628868e-01, 3.44742777e-01, 1.23994945e-01,
      -1.60694945e-01, 4.02435622e-01, 1.44159172e-01, 2.67416840e-01,
      -4.62559536e-02, 5.58671849e-01, 2.81858700e-01, 1.53537792e-02,
       1.78573363e-01, 2.77532834e-01, 9.37121052e-02, 2.17571624e-01,
       2.65936178e-01, 1.41499184e-02, 8.36251186e-02, 9.58849826e-02,
       5.09869963e-01, 2.94764240e-01, 7.85819529e-02, 1.26647773e-01,
       5.05518902e-01, 8.48456917e-02, -7.97229275e-02, 2.15516993e-02,
       1.08079105e-01, 3.65998400e-01, 1.24517362e-01, 5.13682786e-02,
       1.06749689e-01, 6.07640778e-02, 6.66425313e-02, 4.81312859e-02,
      -1.16761425e-02, -2.97852924e-02, 5.25135582e-02, -1.59076817e-02,
      -1.71522795e-02, 4.17777714e-01, 3.67341564e-01, -2.14569245e-01,
       5.47964121e-01, 4.40723777e-01, 1.96701754e-01, 4.42415223e-01,
       1.45760263e-01, 3.75821843e-01, 4.92762622e-01, 2.95885645e-01,
      -4.62363391e-02, 3.16337190e-01, -7.90813313e-03, 2.52644685e-01,
      -3.18239329e-02, 2.83907645e-01, 9.03615010e-02, 1.26934391e-01,
       3.58670014e-01, 2.40923530e-02, 3.55890111e-01, 1.95961225e-01,
       1.28554515e-01, 1.18806226e-01, -2.86217094e-02, 3.17635336e-01,
       1.08017895e-01, 1.25723940e-01, 2.30183307e-01, 9.84315444e-02,
       9.10911969e-02, 2.72901425e-01, 2.52029723e-01, 4.09210759e-02,
      -9.10277454e-02, -1.08769544e-02, 1.94114970e-01, -2.25933708e-02,
       -1.73984898e-02, 1.15587264e-01, 8.36037575e-02, 2.82744685e-03,
       4.96507732e-02, 2.41862504e-01, 3.14048594e-01, 2.26261102e-01,
       3.30118359e-01, 2.38527777e-01, -2.16338946e-02, 2.26553579e-01,
       3.01400098e-01, 2.98806055e-01, 9.89137248e-02, 8.90108718e-02,
       2.86485256e-01, 5.00403045e-01, 3.03125892e-01, -4.87373316e-03,
       1.71527163e-01, -5.37529492e-03, 2.54338027e-02, 2.15725447e-01,
       6.00786752e-02, 1.64813384e-01, 1.09106397e-01, 1.08287462e-01,
      -3.09499535e-02, 1.96828572e-01, 9.71193504e-02, 3.19061388e-02,
       1.07934574e-01, 2.33635162e-01, -8.52754375e-02, -7.69198906e-02,
       2.00624349e-01, 3.35600477e-02, 1.28249663e-01, 6.03012321e-01,
       5.78155766e-03, -3.07808886e-02, -1.45938525e-01, 2.19398082e-01,
       2.76229397e-01, 1.67698116e-01, -2.88123044e-03, 2.62341213e-01,
       4.41290897e-01, 3.95975088e-01, 1.70004873e-01, 4.18305270e-01,
       4.90462749e-01. 2.02777466e-01. 1.57881421e-01. 3.60759061e-01.
       2.26021266e-01, 1.45366468e-01, 2.13509469e-01, 2.67909863e-01,
       3.12986724e-01, -8.02842312e-04, 1.49216491e-01, -1.34599710e-01,
       2.08537425e-01, 2.79887773e-01, 1.16637429e-01, 2.74165030e-01,
       5.51651427e-02, 3.41585144e-01, 1.70439326e-01, -7.99466715e-06,
       -4.10384806e-02, 1.34296605e-01, -1.03707555e-01, -5.60163735e-02,
       3.36748074e-01, -9.48504896e-02, 2.11704189e-01, 6.18083877e-01,
       2.03467623e-01, 3.04552682e-01, 1.81990599e-01, 1.84838109e-01,
```

```
-3.51278477e-03, -8.95239598e-02, 4.14367926e-02, 1.31087001e-01,
            1.73558095e-01, 1.58265827e-01, -8.67210631e-02, 1.87726385e-01,
            1.99929237e-01, 1.82109241e-01, 1.03646411e-01, 1.91244072e-01,
            2.59558194e-03, 1.94666775e-01, -6.08132432e-02, 5.85376580e-01,
            6.66728668e-02, 4.49620331e-02, 3.30502696e-01, 9.74393000e-02,
            5.51447175e-01, 1.52212203e-01, 3.58819339e-01, 3.66371593e-01,
            2.47091987e-01, 5.86970935e-02, 1.28678988e-01, 2.80584025e-01,
            7.21059443e-02, -8.07006907e-02, 3.39791632e-01, 8.25270203e-02,
            2.20338157e-01, 2.47703594e-01, 4.97067397e-01, 1.36010592e-01,
            2.88153807e-01, 4.61306498e-02, 4.52544344e-01, -8.24037634e-02,
            2.26796295e-01, 1.42129836e-02, 1.62111340e-01, 2.32246950e-01,
            9.12503556e-02, 1.18866795e-01, 2.12735292e-01, -2.69559828e-02,
            4.53611463e-02, 1.09618223e-01, 2.64436901e-02, 2.32180310e-01,
            1.63285101e-01, 2.42669261e-01, 5.44757533e-01, 1.25881866e-01,
            3.69790740e-01, -8.06922880e-02, 1.41602350e-01, 2.86556696e-01,
y_test
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
           0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
           0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
           0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
           0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
           0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
           0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           01)
score = lg.score(x test, y test)
print(score)
     0.8820861678004536
```

confusion matrix

```
from sklearn import metrics
cm = metrics.confusion_matrix(y_test,y_pred_lg)
print(cm)

[[366 5]
       [47 23]]
```

▼ Ridge and Lasso

```
from sklearn.linear_model import Ridge
from sklearn.model selection import GridSearchCV
rg=Ridge()
parametres={"alpha":[1,2,3,5,10,20,30,40,60,70,80,90]}
ridgecv=GridSearchCV(rg,parametres,scoring="neg mean squared error",cv=5)
ridgecv.fit(x_train,y_train)
      ▶ GridSearchCV
      ▶ estimator: Ridge
            ▶ Ridge
print(ridgecv.best_params_)
     {'alpha': 90}
print(ridgecv.best_score_)
     -0.1139062113923418
y_pred_rg=ridgecv.predict(x_test)
y_pred_rg
     array([ 1.34413485e-01, 2.22561818e-01, 3.41692977e-01, 3.88209867e-03,
             4.84617338e-01, 1.16361483e-01, 3.30449743e-01, 1.27358807e-01,
```

```
-1.34442619e-01, 3.77692888e-01, 1.33001445e-01, 2.69898751e-01,
-2.54707392e-02, 5.25771894e-01, 2.67543514e-01, 2.78725024e-02,
1.82233111e-01, 2.78896415e-01, 9.12689699e-02, 2.11494641e-01,
2.70103341e-01, 8.44922044e-03, 8.74746722e-02, 1.05348798e-01,
4.87749940e-01, 2.83080512e-01, 8.80556209e-02, 1.23817268e-01,
4.82185624e-01, 9.34824523e-02, -7.16448509e-02, 4.07003104e-02,
1.08437994e-01, 3.42151399e-01, 1.22270929e-01, 6.85889862e-02,
1.06690533e-01, 7.08689637e-02, 7.51570276e-02, 6.05829413e-02,
1.08782897e-02, -6.91368661e-03, 5.83191600e-02, -1.54680056e-02,
-4.02267475e-03, 4.08010612e-01, 3.43668700e-01, -1.83519405e-01,
5.29536511e-01, 4.27646098e-01, 1.95234877e-01, 4.25012930e-01,
1.40754410e-01, 3.52173952e-01, 4.70372694e-01, 2.89240343e-01,
-3.11642726e-02, 3.04206456e-01, 9.89337674e-03, 2.44569884e-01,
-1.40249115e-02, 2.75133912e-01, 8.64669565e-02, 1.24214885e-01,
3.48994545e-01, 3.41026778e-02, 3.40548051e-01, 1.95847356e-01,
1.30040885e-01, 1.32259137e-01, -2.34680143e-02, 3.04595468e-01,
1.12452197e-01, 1.30525275e-01, 2.19329505e-01, 9.44722098e-02,
9.98185782e-02, 2.60042486e-01, 2.51475715e-01, 4.59039018e-02,
-7.94007856e-02, -7.05812314e-03, 2.04344419e-01, -3.97180151e-03,
-5.91286905e-03, 1.26797761e-01, 8.02495203e-02, 2.55422079e-02,
4.65384158e-02, 2.32985240e-01, 3.16063931e-01, 2.02833301e-01,
3.14235904e-01, 2.33427101e-01, -1.42446708e-02, 2.24789285e-01,
2.94719863e-01, 2.94698323e-01, 1.19907108e-01, 9.47152062e-02,
2.86026178e-01, 4.75925979e-01, 2.87802013e-01, 6.72561468e-03,
1.65013565e-01, 1.72887026e-02, 3.34684186e-02, 2.15466121e-01,
7.50317322e-02, 1.67646673e-01, 1.16585544e-01, 1.07157808e-01,
-1.84689359e-02, 1.86217544e-01, 1.16586463e-01, 4.67201201e-02,
1.11060472e-01, 2.27053971e-01, -7.00247692e-02, -5.81070776e-02,
2.03141688e-01, 4.69029664e-02, 1.31525768e-01, 5.66738022e-01,
2.41883060e-02, -3.41250985e-02, -1.13904557e-01, 2.18572744e-01,
2.60568042e-01, 1.65533667e-01, -5.94078459e-05, 2.60009384e-01,
4.20709666e-01, 3.71031267e-01, 1.70250288e-01, 4.03052216e-01,
4.67312765e-01, 1.98845366e-01, 1.55005619e-01, 3.41505080e-01,
2.20024496e-01, 1.40989758e-01, 1.97796963e-01, 2.57841889e-01,
2.99122317e-01, 9.24907038e-03, 1.39162817e-01, -1.13916709e-01,
1.97670909e-01, 2.70864780e-01, 1.22454317e-01, 2.58893294e-01,
6.78818374e-02, 3.08485027e-01, 1.49347982e-01, 2.01436659e-02,
-3.30262214e-02, 1.44305312e-01, -8.99199978e-02, -3.74712872e-02,
3.10198738e-01, -7.96862570e-02, 2.18579680e-01, 5.85363859e-01,
1.98166099e-01, 3.02558934e-01, 1.82182301e-01, 1.84955080e-01,
1.83694574e-02, -7.41419216e-02, 4.48013268e-02, 1.38405390e-01,
1.84013774e-01, 1.60373463e-01, -6.83819091e-02, 2.00146771e-01,
1.97563797e-01, 1.73505024e-01, 1.01481984e-01, 1.83169586e-01,
1.99747065e-02, 1.81881922e-01, -5.23948254e-02, 5.46171171e-01,
6.66114639e-02, 5.88865384e-02, 3.17247692e-01, 9.77721299e-02,
5.25297461e-01, 1.62566350e-01, 3.51341492e-01, 3.58324715e-01,
2.37059552e-01, 8.05788438e-02, 1.36041888e-01, 2.66653277e-01,
7.95513973e-02, -6.96788172e-02, 3.29442074e-01, 8.93231393e-02,
2.16673846e-01, 2.50725892e-01, 4.72995721e-01, 1.26285837e-01,
2.72059331e-01, 6.13056795e-02, 4.38912502e-01, -7.79381284e-02,
```

```
2.09974643e-01, 2.20746796e-02, 1.56186553e-01, 2.26485767e-01,
               9.61150570e-02, 1.27870464e-01, 2.13995902e-01, -9.95070059e-03,
               2.59908614e-02, 1.24499158e-01, 3.31256404e-02, 2.39369272e-01,
               1.48870840e-01, 2.49438253e-01, 5.25239856e-01, 1.25104891e-01,
               3.65711314e-01, -5.96554519e-02, 1.45443911e-01, 2.80327834e-01,
  y_test
       array([0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
              1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
              0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
              0. 0. 0. 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
              0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
              0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0])
  from sklearn import metrics
  print(metrics.r2 score(y test,y pred rg))
  print(metrics.r2 score(y train, ridgecv.predict(x train)))
       0.21073458438815906
       0.2061567210285109
▼ Lasso
  from sklearn.linear model import Lasso
  from sklearn.model selection import GridSearchCV
  la=Ridge()
```

```
1.1/41002/0-01, 1.20/800/00-01, 2.198455280-01, 3.113038940-01,
-1.70611843e-01, -6.89093044e-02, 5.87182022e-02, 1.46846582e-02,
2.07924051e-01, 2.57017951e-01, 2.33929422e-01, 2.81772193e-01,
2.28214280e-01, 8.56533063e-02, 1.28782763e-01, 6.89964545e-03,
2.66888647e-01, 1.25060071e-01, 3.71449815e-01, 3.23080605e-01,
1.80691831e-01, 1.35736688e-01, 3.05937337e-01, 3.02505887e-01,
-1.61842349e-01, 1.22990350e-01, 1.33351902e-02, 3.42072173e-01,
1.35302335e-01, 3.71921241e-01, 2.43987619e-01, -1.42777272e-01,
2.54178774e-01, -1.97769860e-01, 3.22194537e-01, 1.46753524e-01,
1.28207748e-01, 4.59813547e-01, 1.49345212e-01, 3.97978765e-01,
1.11492990e-01, 2.94090069e-02, 2.30676290e-01, 1.19192017e-01,
1.49461455e-02, 2.42284371e-01, 7.22361156e-02, 3.33852369e-01,
1.61213354e-01, 9.69685794e-02, 2.32264965e-01, -6.93181380e-02,
1.86467739e-01, 2.03098589e-01, -1.10349710e-02, 2.63095846e-01,
-2.48406147e-01, -3.25418955e-02, 1.74487006e-01, 2.62780720e-02,
1.91428194e-01, 2.03493779e-01, -8.84696022e-02, 3.35631012e-01,
6.29476544e-02, 2.28818932e-01, -7.72255471e-02, 3.05353195e-01,
3.63634109e-02, 2.30128273e-01, 3.03522210e-01, 1.05913376e-01,
1.26693452e-02, 9.53511494e-02, 4.52766233e-01, -4.37470263e-02,
3.05687630e-01, 3.57706117e-02, 1.82867743e-01, 2.10106289e-01,
-1.71378996e-01, 2.60157245e-01, -1.38655420e-01, 3.36603939e-01,
-7.65297319e-02, 2.15165094e-01, 3.72947326e-02, 1.96608549e-01,
1.07172893e-01, 3.07687901e-01, 3.97760529e-01, 1.06797074e-03,
8.12866229e-02, 2.95445495e-01, 5.47994817e-02, 1.13818287e-01,
4.07117263e-01, 1.48860323e-01, 3.88471838e-02, 3.79029267e-02,
1.09895981e-01, -4.30946471e-02, 3.30298512e-01, 1.07254284e-01,
-1.13032643e-02, -3.69192632e-02, 2.87732288e-01, 9.91961213e-02,
2.12225886e-01, 3.88660531e-01, 3.15623317e-01, 1.80996998e-01,
2.69970366e-01, 2.81850174e-01, 2.49972461e-01, -2.33065542e-03,
2.34240860e-01, 1.51536128e-01, 6.56810225e-02, 1.35221573e-02,
3.03956323e-02, 9.22075626e-02, 1.28297232e-01, 2.04669352e-01,
2.26917512e-01, -1.62627965e-01, 2.95984225e-01, 1.80934145e-01,
-6.34810776e-02, 4.36092057e-02, 1.39814157e-01, 1.72029014e-01,
1.65538329e-01, 2.24411690e-01, 2.15315070e-01, 1.16342630e-01,
-6.24745967e-021)
```

```
from sklearn import metrics
print(metrics.r2 score(v test, v pred la))
print(metrics.r2 score(y train, ridgecv.predict(x train)))
```

- 0.21073458438815906
- 0.2061567210285109