21. Линза. Формула и фокусы тонкой линзы. Изображение в тонкой линзе. Увеличение

Тонкая линза – система из двух сферических поверхностей малой толщины. Различают выпуклые линзы (середина толще, чем края) и вогнутые (середина тоньше, чем края). В зависимости от хода лучей, линзы бывают собирающие (выпуклые) и рассеивающие (вогнутые).

Линзы характеризуются, фокусным расстоянием f (расстояние от линзы до фокуса), оптической силой (величина обратная фокусному расстоянию $D=\frac{1}{f}$).

Собирающая линза

Рассеивающая линза

S – оптический центр

$$F_1$$
 – передний фокус $(a_1 = F_1 \leftrightarrow a_2 = \infty)$

$$F_2$$
 – задний фокус $(a_1 = -\infty_1 \leftrightarrow a_2 = F_2)$

Формула и фокусы тонкой линзы

$$\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{f}$$
 — формула линзы.

 a_1 — расстояние до источника, a_2 — расстояние до изображения.

$$f = f_2 = -f_1$$
 — фокусное расстояние линзы $f > 0$ — собирающая линза, $f < 0$ — рассеивающая линза

Изображение в тонкой линзе

- 1) луч, проходящий через оптический центр линзы; после преломления в линзе луч не меняет своё направление;
- 2) луч, идущий параллельно главной оптической оси; после преломления в линзе луч (или его продолжение) проходит через задний фокус линзы;
- 3) луч (или его продолжения), проходящий через передний фокус линзы; после преломления в ней он выходит параллельно ее главной оптической оси.

Увеличение линзы

Увеличение линзы - это отношение размера изображения к размеру предмета, но еще это и отношение расстояния от изображения к линзе к расстоянию от предмета к линзе. Линейным увеличением тонкой линзы Γ называется отношение $\Gamma = \frac{f}{d}$ с учетом правила знаков для d и f. Для действительных изображений $\Gamma < 0$, то есть они обратные; для мнимых изображений $\Gamma > 0$ - они прямые.