

Global United Technology Services Co., Ltd.

Report No.: GTS201906000004F01

FCC Report (Bluetooth)

Cooper Lighting LLC **Applicant:**

1121 Hwy 74 S, Peachtree City, Georgia 30269, United **Address of Applicant:**

States

Manufacturer/Factory: Cooper Lighting LLC

1121 Hwy 74 S, Peachtree City, Georgia 30269, United Address of

Manufacturer/Factory: **States**

Equipment Under Test (EUT)

Product Name: LED Downlight

Model No.: DL-N9RbA07ER2-2590, RL4069BLE40AWH*-CA

FCC ID: 2AKCY-RL4069BLE

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

June 05, 2019 Date of sample receipt:

Date of Test: June 06-13, 2019

Date of report issued: June 14, 2019

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 14, 2019	Original

Prepared By:	Bill. Yuan	Date:	June 14, 2019
	Project Engineer		
Check By:	Reviewer	Date:	June 14, 2019

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
_		TENTS	
3	CON	IIEN15	
4	TEST	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	7
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
6	TEST	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	16
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1	Conducted Emission Method	20
	7.6.2	Radiated Emission Method	21
	7.7	Spurious Emission	
	7.7.1		
	7.7.2	Radiated Emission Method	25
8	TEST	T SETUP PHOTO	33
9	FUT	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Frequency Range Measurement Uncertainty		
Radiated Emission	9kHz ~ 30MHz	±3.8039dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 3.9679dB	(1)	
Radiated Emission	1GHz ~ 26.5GHz	± 4.29dB	(1)	
AC Power Line Conducted Emission	1 () 15MHz ~ 30MHz + 3.44dB 1			
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 General Description of EUT

Product Name:	LED Downlight
Model No.:	DL-N9RbA07ER2-2590, RL4069BLE40AWH*-CA
Test Model No:	DL-N9RbA07ER2-2590
Remark: All above models are The only difference is model n	identical in the same PCB layout, interior structure and electrical circuits. ame for commercial purpose.
Test sample(s) ID:	GTS201906000004-1
Sample(s) Status:	Engineer sample
Serial No.:	LDXRL4069BLE40AWH
Hardware Version:	V2.0
Software Version:	V4.1
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	2.08dBi(Declare by applicant)
Power Supply:	AC 120V, 60Hz

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
. !!		• !	. !	• !	. !	·	•	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 27 2018	June. 26 2019		

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019			

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019			
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 2.08dBi, reference to the appendix II for details.

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:	[[] [] [] [] [] [] [] [] [] [Limit (c	dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarithm	60	50
Test setup:	Reference Plane	Tor the frequency.	
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter AC pow	
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test voltage:	AC 120V, 60Hz		
Test results:	Pass		

Measurement data

Report No.: GTS201906000004F01

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Probe:	Line

Fre MH	level	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.1	5 56.70	0.40	0.07	57.17	66.00	-8.83	QP
0.1	5 44.23	0.40	0.07	44.70	56.00	-11.30	Average
0.1	9 51.24	0.40	0.10	51.74	64.24	-12.50	QP
0.1	9 30.50	0.40	0.10	31.00	54.24	-23.24	Average
0.3	7 43.15	0.37	0.10	43.62	58.56	-14.94	QP
0.3	7 23.36	0.37	0.10	23.83	48.56	-24.73	Average
0.8	0 42.72	0.24	0.14	43.10	56.00	-12.90	QP
0.8	0 22.19	0.24	0.14	22.57	46.00	-23.43	Average
0.9	0 41.52	0.22	0.14	41.88	56.00	-14.12	QP
0.9	0 19.67	0.22	0.14	20.03	46.00	-25.97	Average
19.7		0.29	0.23	50.31	60.00	-9.69	QP
19.7	4 40.53	0.29	0.23	41.05	50.00	-8.95	Average

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHProbe:Neutral

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	4.45		
Middle	5.41	30.00	Pass
Highest	5.99		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02	
Limit:	>500KHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.678		
Middle	0.685	>500	Pass
Highest	0.702		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02	
Limit:	8dBm/3kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-11.29		
Middle	-10.21	8.00	Pass
Highest	-9.44		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Test plot as follows:

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:20				
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.				
Test site:	Measurement D				
Receiver setup:	Frequency				Value
·		Peak	1MHz	3MHz	Peak
	Above 1GHz	RMS	1MHz	3MHz	Average
Limit:	Freque	Frequency Limit (dBuV		m @3m)	Value
	Above 1		54.0	0	Average
	Above I	GHZ	74.0	0	Peak
Test setup:	Tum Table+- <150cm>	EUT-		Antenna Am >	T++
Test Procedure:	determine the 2. The EUT was antenna, whice tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota te the maximum 5. The test-rece Specified Bar 6. If the emission limit specified the EUT woul 10dB margin average meth 7. The radiation	a 3 meter can be position of the set 3 meters of the set 4 meters	mber. The takene highest races away from the don the toped from one maximum valued rizations of the tuned to heigh and the from 0 decreases set to Pearlaximum Hold EUT in peak could be stoped. Otherwise the ested one by ed and then refers are performitioning which it	ole was rotated liation. The interference of a variable meter to four reports of the field see antenna are was arranged by the first from 1 meters from 1 meters from 1 meters from 2 mode. The mode was 10 mode in X, Y, X is worse case in x, X is worse case in x, Y, X is x, Y,	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and DdB lower than the peak values of a that did not have eak, quasi-peak or
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	39.75	27.59	5.38	30.18	42.54	74.00	-31.46	Horizontal
2400.00	54.09	27.58	5.40	30.18	56.89	74.00	-17.11	Horizontal
2310.00	40.00	27.59	5.38	30.18	42.79	74.00	-31.21	Vertical
2400.00	55.79	27.58	5.40	30.18	58.59	74.00	-15.41	Vertical

Average value:

71101ago 1a								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	31.01	27.59	5.38	30.18	33.80	54.00	-20.20	Horizontal
2400.00	39.06	27.58	5.40	30.18	41.86	54.00	-12.14	Horizontal
2310.00	30.73	27.59	5.38	30.18	33.52	54.00	-20.48	Vertical
2400.00	39.01	27.58	5.40	30.18	41.81	54.00	-12.19	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.48	27.53	5.47	29.93	44.55	74.00	-29.45	Horizontal
2500.00	41.25	27.55	5.49	29.93	44.36	74.00	-29.64	Horizontal
2483.50	41.80	27.53	5.47	29.93	44.87	74.00	-29.13	Vertical
2500.00	41.95	27.55	5.49	29.93	45.06	74.00	-28.94	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.80	27.53	5.47	29.93	36.87	54.00	-17.13	Horizontal
2500.00	32.25	27.55	5.49	29.93	35.36	54.00	-18.64	Horizontal
2483.50	34.75	27.53	5.47	29.93	37.82	54.00	-16.18	Vertical
2500.00	31.91	27.55	5.49	29.93	35.02	54.00	-18.98	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

Lowest channel

Report No.: GTS201906000004F01

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Method: Test Frequency Range: Test site: Receiver setup: Limit: Test setup:	ANSI C63.10:2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz	Qu Qu Qu IHz	Detector lasi-peak lasi-peak lasi-peak Peak Peak Limit (uV		z 600 z 30K Hz 300k z 3MI	Hz Hz (Hz Hz	Value Quasi-peak Quasi-peak Quasi-peak Peak Average Measurement	
Test site: Receiver setup: Limit:	Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705MHz-30MH	Qu Qu Qu IHz	Detector lasi-peak lasi-peak lasi-peak Peak Peak Limit (uV	200H 9KHz 120KH 1MH: 1MH:	z 600 z 30K Hz 300k z 3MH z 10H	Hz Hz (Hz Hz	Quasi-peak Quasi-peak Quasi-peak Peak Average	
Receiver setup: Limit:	Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705MHz-30MH	Qu Qu Qu IHz	Detector lasi-peak lasi-peak lasi-peak Peak Peak Limit (uV	200H 9KHz 120KH 1MH: 1MH:	z 600 z 30K Hz 300k z 3MH z 10H	Hz Hz (Hz Hz	Quasi-peak Quasi-peak Quasi-peak Peak Average	
Limit:	9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	Qu Qu IHz IHz	iasi-peak iasi-peak iasi-peak Peak Peak Limit (uV	200H 9KHz 120KH 1MH: 1MH:	z 600 z 30K Hz 300k z 3MH z 10H	Hz Hz (Hz Hz	Quasi-peak Quasi-peak Quasi-peak Peak Average	
	150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	Qu Qu IHz IHz	iasi-peak iasi-peak Peak Peak Limit (uV	9KH; 120KH 1MH; 1MH; '/m)	z 30K Hz 300k z 3MH z 10H	Hz (Hz Hz Hz	Quasi-peak Quasi-peak Peak Average	
	30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	Qu IHz IHz	Peak Peak Limit (uV	120KH 1MH: 1MH: '/m)	1z 300k z 3Mł z 10ł	Hz Hz Hz	Quasi-peak Peak Average	
	Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	IHz IHz	Peak Peak Limit (uV 2400/F(K	1MH: 1MH: '/m)	z 3Mł z 10ł	-lz -lz	Peak Average	
	Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	lHz	Peak Limit (uV 2400/F(k	1MH: //m)	z 10F	lz	Average	
	Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	lHz	Limit (u\ 2400/F(K	//m)				
	0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH	lHz	2400/F(K		Value		Magguramant	
Test setup:	0.490MHz-1.705M 1.705MHz-30MH	lHz		'L_\			Distance	
Test setup:	1.705MHz-30MH			112)	QP		300m	
Test setup:			24000/F(KHz)		QP		30m	
Test setup:	30MHz-88MHz	IZ	30		QP		30m	
Test setup:	I		100		QP			
Test setup:	88MHz-216MHz	<u> </u>	150		QP			
Test setup:	216MHz-960MH	Z	200		QP		3m	
Test setup:	960MHz-1GHz		500		QP		····	
Test setup:	Above 1GHz		500		Average			
Test setup:	1		5000		Peak			
	For radiated emiss	EUT	< 3m	*******	MHz	liftaru		

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the

F	Report	No).: G	TS2	20	<u> 190</u>	ე6	00	0000	4F	0	1
be	stopp	ed	and	the	р	eal	k١	/al	ues	of	th	е
											_	

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHPolarziation:Horizontal

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHPolarziation:Vertical

■ Above 1GHz

Report No.: GTS201906000004F01

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.49	31.78	8.60	32.09	43.78	74.00	-30.22	Vertical
7206.00	30.63	36.15	11.65	32.00	46.43	74.00	-27.57	Vertical
9608.00	30.40	37.95	14.14	31.62	50.87	74.00	-23.13	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	39.41	31.78	8.60	32.09	47.70	74.00	-26.30	Horizontal
7206.00	32.22	36.15	11.65	32.00	48.02	74.00	-25.98	Horizontal
9608.00	29.65	37.95	14.14	31.62	50.12	74.00	-23.88	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.65	31.78	8.60	32.09	32.94	54.00	-21.06	Vertical
7206.00	19.52	36.15	11.65	32.00	35.32	54.00	-18.68	Vertical
9608.00	18.71	37.95	14.14	31.62	39.18	54.00	-14.82	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.68	31.78	8.60	32.09	36.97	54.00	-17.03	Horizontal
7206.00	21.57	36.15	11.65	32.00	37.37	54.00	-16.63	Horizontal
9608.00	18.29	37.95	14.14	31.62	38.76	54.00	-15.24	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:			Middle						
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	35.41	31.85	8.67	32.12	43.81	74.00	-30.19	Vertical	
7320.00	30.57	36.37	11.72	31.89	46.77	74.00	-27.23	Vertical	
9760.00	30.35	38.35	14.25	31.62	51.33	74.00	-22.67	Vertical	
12200.00	*					74.00		Vertical	
14640.00	*					74.00		Vertical	
4880.00	39.31	31.85	8.67	32.12	47.71	74.00	-26.29	Horizontal	
7320.00	32.16	36.37	11.72	31.89	48.36	74.00	-25.64	Horizontal	
9760.00	29.59	38.35	14.25	31.62	50.57	74.00	-23.43	Horizontal	
12200.00	*					74.00		Horizontal	
14640.00	*					74.00		Horizontal	
Average value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	24.59	31.85	8.67	32.12	32.99	54.00	-21.01	Vertical	

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	24.59	31.85	8.67	32.12	32.99	54.00	-21.01	Vertical
7320.00	19.48	36.37	11.72	31.89	35.68	54.00	-18.32	Vertical
9760.00	18.67	38.35	14.25	31.62	39.65	54.00	-14.35	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	28.61	31.85	8.67	32.12	37.01	54.00	-16.99	Horizontal
7320.00	21.53	36.37	11.72	31.89	37.73	54.00	-16.27	Horizontal
9760.00	18.25	38.35	14.25	31.62	39.23	54.00	-14.77	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:					Highest				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.38	31.93	8.73	32.16		43.88	74.00	-30.12	Vertical
7440.00	30.55	36.59	11.79	31.78		47.15	74.00	-26.85	Vertical
9920.00	30.33	38.81	14.38	31.88		51.64	74.00	-22.36	Vertical
12400.00	*						74.00		Vertical
14880.00	*						74.00		Vertical
4960.00	39.27	31.93	8.73	32.16		47.77	74.00	-26.23	Horizontal
7440.00	32.14	36.59	11.79	31.78	3	48.74	74.00	-25.26	Horizontal
9920.00	29.57	38.81	14.38	31.88	3	50.88	74.00	-23.12	Horizontal
12400.00	*						74.00		Horizontal
14880.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.58	31.93	8.73	32.16	6	33.08	54.00	-20.92	Vertical
7440.00	19.47	36.59	11.79	31.78	3	36.07	54.00	-17.93	Vertical
9920.00	18.67	38.81	14.38	31.88	3	39.98	54.00	-14.02	Vertical
12400.00	*						54.00		Vertical
14880.00	*						54.00		Vertical
4960.00	28.60	31.93	8.73	32.16	ŝ	37.10	54.00	-16.90	Horizontal
7440.00	21.52	36.59	11.79	31.78	3	38.12	54.00	-15.88	Horizontal
9920.00	18.24	38.81	14.38	31.88	3	39.55	54.00	-14.45	Horizontal
12400.00	*						54.00		Horizontal

Remarks:

14880.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

54.00

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----