EEE422/6082 Computational Vision

Face Recognition

Ling Shao

Many slides from Lana Lazebnik, Silvio Savarese, Fei-Fei Li, Derek Hoiem

Object recognition

• Object instance recognition: focus on localization of miscellaneous objects

Face recognition

- Face recognition: focus on distinguishing one face from another
- Feature subspaces: PCA and FLD
- · Look at results from recent vendor test
- Look at interesting findings about human face recognition

Face detection and recognition

Applications of Face Recognition

Digital photography

Applications of Face Recognition

- Digital photography
- Surveillance

Applications of Face Recognition

- · Digital photography
- Surveillance
- Album organization

Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/

Consumer application: iPhoto 2009

• Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Consumer application: iPhoto 2009

• Things iPhoto thinks are faces

Starting idea of "eigenfaces"

1. Treat pixels as a vector

2. Recognize face by nearest neighbor

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
 - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

The space of all face images

 Eigenface idea: construct a low-dimensional linear subspace that best explains the variation in the set of face images

Principal Component Analysis (PCA)

- Given: N data points $\mathbf{x_1}$, ..., $\mathbf{x_N}$ in \mathbf{R}^d
- We want to find a new set of features that are linear combinations of original ones:

$$u(\mathbf{x}_i) = \mathbf{u}^T(\mathbf{x}_i - \mathbf{\mu})$$

(µ: mean of data points)

• Choose unit vector **u** in R^d that captures the most data variance

Forsyth & Ponce, Sec. 22.3.1, 22.3.2

Principal Component Analysis

• Direction that maximizes the variance of the projected data:

$$\label{eq:maximize} \begin{aligned} & \frac{1}{N} \sum_{i=1}^{N} \underbrace{\mathbf{u}^{\! \mathrm{T}}(\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{u}^{\! \mathrm{T}}(\mathbf{x}_i - \boldsymbol{\mu}))^{\! \mathrm{T}}}_{\text{Subject to } ||\mathbf{u}|| = 1} \end{aligned}$$

$$= \mathbf{u}^{\mathrm{T}} \left[\sum_{i=1}^{N} (\mathbf{x}_{i} - \mu)(\mathbf{x}_{i} - \mu)^{\mathrm{T}} \right] \mathbf{u}$$

 $= \mathbf{u}^{\mathrm{T}} \Sigma \mathbf{u}$

The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of $\boldsymbol{\Sigma}$

Implementation issue

- Covariance matrix is huge (N2 for N pixels)
- But typically # examples << N
- · Simple trick
 - X is matrix of normalized training data
 - Solve for eigenvectors **u** of **XX**^T instead of **X**^T**X**
 - Then $\mathbf{X}^T\mathbf{u}$ is eigenvector of covariance $\mathbf{X}^T\mathbf{X}$
 - May need to normalize (to get unit length vector)

Eigenfaces (PCA on face images)

- 1. Compute covariance matrix of face images
- 2. Compute the principal components ("eigenfaces")
 - K eigenvectors with largest eigenvalues
- 3. Represent all face images in the dataset as linear combinations of eigenfaces
 - Perform nearest neighbor on these coefficients

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Eigenfaces example

Training images

x₁,...,x_N

Eigenfaces example

Top eigenvectors: $u_1, \dots u_k$

Mean: µ

Representation and reconstruction

• Face x in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$

= w_1, \dots, w_k

Representation and reconstruction

• Face x in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathsf{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathsf{T}}(\mathbf{x} - \mu)]$$

= w_1, \dots, w_k

• Reconstruction:

Reconstruction

After computing eigenfaces using 400 face images from ORL face database

Eigenvalues (variance along eigenvectors)

Note

Preserving variance (minimizing MSE) does not necessarily lead to qualitatively good reconstruction.

Recognition with eigenfaces

Process labeled training images

- Find mean μ and covariance matrix Σ
- Find k principal components (eigenvectors of Σ) u₁,...u_k
- Project each training image \mathbf{x}_{i} onto subspace spanned by principal components:

 $(w_{i1},...,w_{ik}) = (u_1^T(x_i - \mu), ..., u_k^T(x_i - \mu))$

Given novel image x

- · Project onto subspace:
 - $(w_1,...,w_k) = (u_1^T(x-\mu), ..., u_k^T(x-\mu))$
- Optional: check reconstruction error $\mathbf{x} \hat{\mathbf{x}}$ to determine whether image is really a face
- Classify as closest training face in k-dimensional subspace

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

EEE422/6082 4

Computational Vision

PCA

- General dimensionality reduction technique
- Preserves most of variance with a much more compact representation
 - Lower storage requirements (eigenvectors + a few numbers per face)
 - Faster matching
- What are the problems for face recognition?

Limitations

Global appearance method: not robust to misalignment, background variation

Limitations

• The direction of maximum variance is not always good for classification

A more discriminative subspace: FLD

- Fisher Linear Discriminants → "Fisher Faces"
- PCA preserves maximum variance
- FLD preserves discrimination
 - Find projection that maximizes scatter between classes and minimizes scatter within classes

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997

Comparing with PCA

Variables

• N Sample images: $\{x_1, \dots, x_N\}$

• c classes: $\{\chi_1, \cdots, \chi_c\}$

• Average of each class: $\mu_i = \frac{1}{N_i} \sum_{x_k \in \mathcal{X}_i} x_k$

• Average of all data: $\mu = \frac{1}{N} \sum_{k=1}^{N} x_k$

Scatter Matrices

 $S_i = \sum_{x_k \in \chi_i} (x_k - \mu_i)(x_k - \mu_i)^T$ · Scatter of class i:

· Within class scatter:

• Between class scatter: $S_B = \sum_{i=1}^{c} N_i (\mu_i - \mu)(\mu_i - \mu)^T$

Illustration

Mathematical Formulation

After projection

$$\mathbf{v}_{k} = \mathbf{W}^{T} \mathbf{x}_{k}$$

- Between class scatter $\tilde{S}_B = W^T S_B W$

- Within class scatter

Objective

$$W_{opt} = \arg\max_{\mathbf{W}} \frac{\left| \widetilde{S}_{B} \right|}{\left| \widetilde{S}_{W} \right|} = \arg\max_{\mathbf{W}} \frac{\left| W^{T} S_{B} W \right|}{\left| W^{T} S_{W} W \right|}$$

· Solution: Generalized Eigenvectors $S_B w_i = \lambda_i S_W w_i$ $i=1,\ldots,m$

$$- Rank(S_B) \le |C|-1$$

$$-$$
 Rank(S_W) <= N-C

Illustration

Recognition with FLD

· Similar to "eigenfaces"

· Compute within-class and between-class scatter matrices

$$S_{i} = \sum_{x_{i} \in \mathcal{X}_{k}} (x_{k} - \mu_{i})^{T} \qquad S_{W} = \sum_{i=1}^{c} S_{i} \qquad S_{B} = \sum_{i=1}^{c} N_{i} (\mu_{i} - \mu)(\mu_{i} - \mu)^{T}$$

• Solve generalized eigenvector problem $W_{opt} = \arg \max_{\mathbf{w}} \frac{|W^T S_B W|}{|W^T S_W W|} \qquad S_B w_i = \lambda_i S_W w_i \qquad i$

$$W_{opr} = \arg \max_{w} \frac{|W^{T}S_{B}W|}{|W^{T}S_{w}W|}$$
 $S_{B}w_{i} = \lambda_{i}S_{W}w_{i}$
 $i = 1,...,m$

· Project to FLD subspace and classify by nearest neighbor

$$\hat{x} = W_{ont}^T x$$

Results: Eigenface vs. Fisherface

• Input: 160 images of 16 people

Train: 159 images · Test: 1 image

Variation in Facial Expression, Eyewear, and Lighting

With

Without

3 Lighting conditions

5 expressions

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997

EEE422/6082 6

Computational Vision

Eigenfaces vs. Fisherfaces

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997

Large scale comparison of methods

- FRVT 2006 Report
- Not much (or any) information available about methods, but gives idea of what is doable

FVRT Challenge

- · Frontal faces
 - FVRT2006 evaluation

FVRT Challenge

- · Frontal faces
 - FVRT2006 evaluation: controlled illumination

FVRT Challenge

- · Frontal faces
 - FVRT2006 evaluation: uncontrolled illumination

FVRT Challenge

- · Frontal faces
 - FVRT2006 evaluation: computers win!

Face recognition by humans

Face recognition by humans: 20 results (2005)

Result 1

Humans can recognize faces in extremely low resolution images.

Slides by Jianchao Yang

Result 3

 High-frequency information by itself does not lead to good face recognition performance

Result 5

Eyebrows are among the most important for recognition

Result 6

 Both internal and external facial cues are important and they exhibit non-linear interactions

Result 7

▶ The important configural relations appear to be independent across the width and height dimensions

Computational Vision

Result 8

 Vertical inversion dramatically reduces recognition performance

Result 15

▶ Motion of faces appears to facilitate subsequent recognition

Result 20

 Human memory for briefly seen faces is rather poor

Things to remember

- PCA is a generally useful dimensionality reduction technique
 - But not ideal for discrimination
- FLD better for discrimination, though only ideal under Gaussian data assumptions
- Computer face recognition works very well under controlled environments – still room for improvement in general conditions