

Elektrotechnik I

Formelsammlung

1 Das elektrostatische Feld

Coulomb'sches Gesetz	$\vec{\mathbf{f}}_{12} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{ \vec{\mathbf{f}}_{12} ^3} \vec{\mathbf{r}}_{12}$	$\vec{\mathbf{r}}_{12} = \vec{\mathbf{r}}_{02} - \vec{\mathbf{r}}_{01}$ $\vec{\mathbf{r}}_{1} = \vec{\mathbf{r}}_{01}$ $\vec{\mathbf{r}}_{2} = \vec{\mathbf{r}}_{02}$
		Kraft von 1 auf 2, Q, Ladung [C]=[As]
	$F_{12} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$	Skalare Variante
Ladungsverteilung	$\rho = \frac{\mathrm{d}Q}{\mathrm{d}V}$	Raumladungsdichte [C/m³]
	$\sigma = \frac{\mathrm{d}Q}{\mathrm{d}A}$	Flächenladungsdichte [C/m²]
	$\lambda = \frac{\mathrm{d}Q}{\mathrm{d}l}$	Linienladungsdichte [C/m]
Elektrisches Feld	$\vec{\mathbf{F}} = Q\vec{\mathbf{E}}$	E , elektrisches Feld [V/m] E-Feld zeigt von + nach -
	$\vec{\mathbf{E}}(\vec{\mathbf{r}}_{\mathrm{p}}) = \frac{1}{4\pi\epsilon_{0}} \sum_{i} \frac{Q_{\mathrm{i}}}{\left \vec{\mathbf{r}}_{\mathrm{p}} - \vec{\mathbf{r}}_{\mathrm{i}}\right ^{3}} \left(\vec{\mathbf{r}}_{\mathrm{p}} - \vec{\mathbf{r}}_{\mathrm{i}}\right)$	Superposition von Punktladungen am Ort \vec{r}_i , Feld am Punkt \vec{r}_p
	$\vec{\mathbf{E}}(\vec{\mathbf{r}}_{p}) = \frac{1}{4\pi\epsilon_{0}} \iiint \rho(\vec{\mathbf{r}}') \frac{\vec{\mathbf{r}}_{p} - \vec{\mathbf{r}}'}{\left \vec{\mathbf{r}}_{p} - \vec{\mathbf{r}}'\right ^{3}} d\vec{\mathbf{r}}'$	Allg. Superposition
Eigenschaften des el. Feldes (konservatives Kraftfeld, nur im statischen Fall)	$\int_{C_1} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = \int_{C_2} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$	Arbeit ist weginvariant, nur abhängig vom Anfangs- und Endpunkt.
,	$\oint_C \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = 0$	Arbeit entlang eines geschlossenen Pfades verschwindet
	$\nabla \times \vec{\mathbf{E}} = 0$	Rotation des Feldes = 0 (nur in Elektrostatik!)
El. Arbeit	$W_{\text{e12}} = Q_1 \int_{0}^{r_2} \left(-\vec{\mathbf{E}} \right) \cdot d\vec{\mathbf{s}}$	$W_{\rm e}$ Arbeit um Q_1 von 1 nach 2 [J]
Potential	$\varphi = \frac{W_e}{Q}$	φ , Potential [V],
	$\varphi(P_{\rm B}) = -\int\limits_{\infty}^{P_{\rm B}} \vec{\mathbf{E}} \cdot \mathrm{d}\vec{\mathbf{s}}$	Bezugspunkt üblicherweise im Unendlichen
	$ec{\mathbf{E}} = - abla arphi$	
	$U_{12} = \varphi(P_1) - \varphi(P_2) = \int_{P_1}^{P_2} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$	U, Spannung [V]

Elektrische Flussdichte	$\vec{\mathbf{D}} = \epsilon_{\mathrm{r}} \epsilon_{\mathrm{0}} \vec{\mathbf{E}}$	$\vec{\mathbf{D}}$, elektrische Flussdichte [C/m ²] $\epsilon_{\mathbf{r}}$, Dielektrizitätskonstante, einheitslos
	$\iint_{\mathbf{A}V} \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}} = Q$	Gauss'sches Gesetz (Integralform)
	$\nabla \cdot \vec{\mathbf{D}} = \rho$	Gauss'sches Gesetz (Differentialform)
Randbedingungen	$\vec{\mathbf{E}}_{t1} = \vec{\mathbf{E}}_{t2}$	Tangentialkomponente
	$D_{\rm n2} - D_{\rm n1} = \sigma$	Normalkomponente
Kapazität, Kondensatoren	$C = \frac{Q}{U}$	C, Kapazität, [F]=[As/V]
		Plattenkondensator
	$C = \frac{\epsilon_{\rm r}\epsilon_0 A}{d}$	Fläche A
Serienschaltung	$C_{\text{ser}}^{-1} = \sum_{k=1}^{n} C_{k}^{-1}$	$U_{ges} = \begin{bmatrix} C_1 & C_2 & C_n \\ U_1 & U_2 & U_n \end{bmatrix}$
Spannungsteiler	$C_{12} = \frac{C_1 C_2}{C_1 + C_2}$ $U_i = U_{\text{ges}} \frac{C_i^{-1}}{\sum_n C_n^{-1}}$	Spezialfall für zwei Kondensatoren
. 0	$U_1 = U_{\text{ges}} \frac{\sum_n C_n^{-1}}{C_2}$	Spezialfall für zwei Kondensatoren
Parallelschaltung	$C_{\text{parr}} = \sum_{k=1}^{n} C_k$	U C_1 C_2 C_n
Ladungsteiler	$Q_{\rm i} = Q_{\rm ges} \frac{C_{\rm i}}{\sum_n C_{\rm n}}$	
	$Q_{1} = Q_{\text{ges}} \frac{C_{1}}{C_{1} + C_{2}}$ $W_{e} = \frac{1}{2} \frac{Q^{2}}{C} = \frac{1}{2} QU = \frac{1}{2} CU^{2}$	Spezialfall für zwei Kondensatoren
Energie	$W_{\rm e} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q U = \frac{1}{2} C U^2$	W _e , Energie im Kondensator [J]

2 Das stationäre elektrische Strömungsfeld

Elektrischer Strom	$I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$	I, Strom [Ampere, A]Q, el. Ladung, [Coulomb, C]
	$I = \iint_{\mathbf{A}} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = \kappa \iint_{\mathbf{A}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$	
Elektrische Stromdichte	$I = \iint_{A} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$	J, Stromdichte, [A/m²]
	$I = \vec{\mathbf{J}} \cdot \vec{\mathbf{A}}$, wenn $J = \text{konstant auf A}$	
	$\vec{\mathbf{J}} = \frac{\Delta I}{\Delta A} \vec{\mathbf{e}}_{\mathbf{v}} = \rho \cdot \vec{\mathbf{v}}$	Konvektionsstrom
	$\vec{\mathbf{J}}_{\mathrm{v}}=rac{\mathrm{d}}{\mathrm{d}t}\vec{\mathbf{p}}$	Verschiebungsstrom
Kontinuitätsgleichung	$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \vec{\nabla} \cdot \vec{\mathbf{J}} = 0$	
	$ \oint_{A} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = 0 $ (geschlossene Fläche A!)	Spezialfall: ohne Ladungsträger- Generation, Senke
Materialeigenschaften	$\mu_{\rm e} \vec{\mathbf{E}} = \vec{\mathbf{v}}_{\rm e} \ , \mu_{\rm h} \vec{\mathbf{E}} = \vec{\mathbf{v}}_{\rm h}$	μ _e , μ _h , Mobilität Elektronen & Löcher, [m²/Vs]
	$\kappa=ne~\mu_{ m e}$	κ , Leitfähigkeit, [S/m]
	$ ho_R = rac{1}{\kappa}$	$ ho_{ m R}$, Spez. Widerstand, [Ω m]
Im elektrischen Leiter	$\vec{\mathbf{E}} = ho_{\mathrm{R}} \vec{\mathbf{J}}$	
	$\vec{J} = \kappa \vec{E}$	
Widerstand, Leitwert	$R = \rho_{\rm R} \frac{L}{A}$	
	$G = \frac{1}{R}$	
	$R(T) = \frac{l}{A} \rho_{20^{\circ}C} (1 + \alpha \Delta T + \beta \Delta T^{2})$	$ ho_{20}$, spez. Widerstand bei 20°C
	Kaltleiter (PTC) Heißleiter (NTC) 50 100 150 200 $\frac{\theta}{^{9}C}$	α, β, ρ-Temperaturkoeffizient, [1/T ⁿ] n = Korrektur Ordn. Negativer Temperaturkoeffizient (NTC) Positiver Temperaturkoeffizient (PTC)
Ohm'sches Gesetz	U = RI	U , Spannung, [Volt, V] R , Widerstand [Ohm, Ω]
	I = GU	G, Leitwert [Siemens, S]
Leistung	P = UI	P, Leistung, [Watt, W]
	$p = \frac{dP}{dV} = \vec{\mathbf{J}} \cdot \vec{\mathbf{E}}$	p, Leistungsdichte pro Volumen, [W/m ³]

3 Elektrische Netzwerke

Kirchhoff'sche
Gleichungen

$$\sum_{Knoten} I = 0$$

$$\sum_{Masche} U = \bigcap_{P_1 \\ U_{R_1}} \bigcap_{R_2 \\ U_{R_4}} \bigcap_{R_3 \\ U_{R_5}} \bigcap_{P_2 \\ U_{R_5}} \bigcap_{P_2 \\ U_{R_5}} \bigcap_{P_3 \\ U_{R$$

$$\frac{1}{R_{\text{ges}} = \sum_{k=1}^{n} R_{k}}$$

Gesamtwiderstand

$$\frac{1}{R_{\text{ges}}} = \sum_{k=1}^{n} \frac{1}{R_k}$$

 $G_{\text{ges}} = \sum_{k=1}^{n} G_{k}$

$$R_{\rm ges} = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_1$$
 R_2

$$R_{\rm ges} = \frac{R}{n}$$

Teiler

$$\frac{U_2}{U} = \frac{R_2}{(R_1 + R_2)}$$

$$\frac{I_1}{I} = \frac{R_2}{R_1 + R_2} = \frac{G_1}{G_1 + G_2}$$

Umwandlung

$$R_{1N} = \frac{R_{12} + R_{23} + R_{31}}{R_{12} + R_{23}}$$

$$R_{2N} = \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_{31}$$
 R_{12}
 R_{23}

$$\begin{split} R_{1\mathrm{N}} &= \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}} \\ R_{2\mathrm{N}} &= \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}} \\ R_{3\mathrm{N}} &= \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}} \\ R_{12} &= R_{1\mathrm{N}} + R_{2\mathrm{N}} + \frac{R_{1\mathrm{N}}R_{2\mathrm{N}}}{R_{3\mathrm{N}}} \\ R_{23} &= R_{2\mathrm{N}} + R_{3\mathrm{N}} + \frac{R_{2\mathrm{N}}R_{3\mathrm{N}}}{R_{1\mathrm{N}}} \\ R_{31} &= R_{1\mathrm{N}} + R_{3\mathrm{N}} + \frac{R_{1\mathrm{N}}R_{3\mathrm{N}}}{R_{2\mathrm{N}}} \end{split}$$

$$R_{3N}$$
 R_{2N}
 R_{2N}

Superpositionsprinzip Quellen: Die Gesamtquelle ist die lineare Superposition der Teillösungen von jeder einzelnen Quelle

Spannungsquelle

Einzelne Quelle bestimmen: Ersatz durch Kurzschluss

Es darf bei Teillösungen keine zusätzliche Spannung über der Quelle abfallen

Stromquelle

Einzelne Quelle bestimmen: Ersatz durch Unterbruch

Es darf bei Teillösungen kein zusätzlicher Strom durch die Quelle fliessen.

DITET

 I_{\blacktriangle} Konstante Spannung unabh. Ideale von Strom Spannungsquelle Innenwiderstand 0 Unphysikalisch bei Kurzschluss Konstanter Strom unabh. von Spannung Ideale Stromquelle Innenwiderstand unenedlich Unphysikalisch wenn offen **►** U **Endlicher Innenwiderstand O** B Kein unphysikalisches Reale (lineare) Verhalten Quelle **-O** A $U = U_0 - R_i I$ **►** U $I = I_{\rm k} - U/R_{\rm i}$ Thévenin-Äquivalent: Nach Norton-Äquivalent: Beliebige Kombi-**-0** A nation von Quellen können durch eine äquivalente Quelle ersetzt werden. **O** B Verfahren zum Finden äquivalenter Quellen: Finde 2 $U_0 = I_K R_i$ der 3 Grössen U_0, I_K, R_i Leerlaufspannung Spannnung Ausgang offen lassen U_0 finden durch berechnen O B Kurzschlussstrom Ausgang kurzschliessen Strom berechnen IK finden durch Äquivalenten Innenwiderstand Alle Quellen ausschalten Widerstand R_i finden durch berechnen • В

Identische Quellen	Leerlaufspannung	Kurzschlussstrom	Innenwiderstand
Serienschaltung	$U_{0,\mathrm{n}}=n\;U_0$	$I_{K,n} = I_{K}$	$R_{i,n} = n R_i$
Parallelschaltung	$U_{0,n} = U_0$	$I_{K,n} = n I_{K}$	$R_{i,n} = \frac{R_i}{n}$

Leistungsanpassung

Von Spannungsquelle an Last abgegebene Leistung

$$P_{\rm L} = \left(\frac{U_0}{R_{\rm i} + R_{\rm L}}\right)^2 R_{\rm L}$$

Bei Leistungsanpassung: $R_{\rm L} = R_{\rm i}$

Maximal abgegebene Leistung

$$P_{\rm L,max} = \frac{U_0^2}{4R_i}$$

bei

 $R_{\rm L} = R_{\rm i}$ Leistungsanpassung

Wirkungsgrad einer Spannungsquelle Wirkungsgrad einer Stromquelle

$$\eta = \frac{P_{L}}{P_{ges}} = \frac{R_{L}}{(R_{i} + R_{L})} = \frac{U_{L}}{U_{0}}$$

$$\eta = \frac{P_{L}}{P_{ges}} = \frac{R_{i}}{(R_{i} + R_{L})} = \frac{I_{L}}{I_{K}}$$

Knotenpotentialverfahren

1) Knoten & Potentiale nummerieren

- Potential 0: «GND»
- k-1 freie

 $\varphi_{\rm i} = U_{\rm i0}$

2) Knotengleichungen
$$\sum_{j \neq i} I_{ij} = 0$$

- 3)Leitwerte & Potentiale einsetzen
 - Stromquellen auf die rechte Seite

 $1: I_3 + I_4 - I_q = 0$

$$\left(\sum_{j \neq i} G_{ij}\right) \varphi_{i} - \sum_{j \neq i} G_{ij} \varphi_{j} = \sum_{j \neq i} I_{q,ij}$$
 2: $(G_{3} + G_{4}) \varphi_{1} - G_{3} \varphi_{2} - G_{4} \varphi_{3} = I_{q}$

2:
$$(G_3 + G_4)\varphi_1 - G_3\varphi_2 - G_4\varphi_3 = I_q$$

5) Matrix form

Eidaenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Leitwertmatrix M
- Quellenstromvektor \vec{I}

$$\mathbf{M}_{\mathbf{i}\mathbf{j}} = \begin{cases} -G_{\mathbf{i}\mathbf{j}} & j \neq \\ \sum_{l \neq i} G_{\mathbf{i}\mathbf{l}} & j = \end{cases}$$

$$\vec{I}_{\mathbf{i}} = \sum_{l \neq i} I_{\mathbf{q},\mathbf{i}\mathbf{j}}$$

$$\begin{split} \mathbf{M}_{ij} = & \begin{cases} -G_{ij} & j \neq i \\ \sum_{l \neq i} G_{il} & j = i \end{cases} & \mathbf{M} = \begin{bmatrix} G_3 + G_4 & -G_3 & -G_4 \\ -G_3 & G_3 + G_5 + G_7 & -G_7 \\ -G_4 & -G_7 & G_4 + G_6 + G_7 \end{bmatrix} \\ \vec{I}_i = & \sum_{l \neq i} I_{\mathbf{q}, ij} & \vec{I} = \begin{bmatrix} I_{\mathbf{q}} \\ 0 \\ 0 \end{bmatrix} \end{split}$$

6) Matrixgleichung lösen

$$M\vec{\varphi} = \vec{I}$$

Maschenstromverfahren

Allgemein

Beispiel

Lin. unabhängige Maschen finden

 M_1 bis M_m , m Maschen

Maschenstrom für jede Masche definieren

 I_{M_1} bis I_{M_m}

Zweigströme als Kombination der Maschenströme schreiben

 $\forall i \in \{1, \dots, k\}, \ I_i$ $= \sum_{n=1}^{\infty} b_n I_{M_n}, \text{ mit } b_n \in \{0, \pm 1\}$
$$\begin{split} I_1 &= I_{M_1} + I_{M_3} \\ I_3 &= I_{M_1} \\ I_6 &= I_{M_1} - I_{M_2} \end{split}$$
etc. $\Rightarrow \vec{I} = A\vec{I}_M$

- 5) Für jede Masche Maschengleichung aufstellen.
- $\forall m \sum_{U \in M} U = 0$
- $U_1 + U_6 + U_3 U_{q1} = 0$

Ohm'sches Gesetz anwenden. Ströme durch Maschenströme gemäss (4) ersetzen.

 $= \begin{cases} R_i I_i = R_i \sum_{n=1}^m b_n I_{M_n} &, \Omega\text{-Law} & R_1 (I_{M_1} + I_{M_3}) + R_6 (I_{M_1} - I_{M_2}) + R_3 I_{M_1} = U_{q1} \\ U_q &, \text{Quellen} \end{cases}$

- Finde Maschenströme
- $\mathbf{R}\vec{I}_{M} = \vec{Q}$
- $\begin{bmatrix} -R_6 & R_2 + R_6 + R_4 & R_4 \\ R_1 + R_3 + R_6 & -R_6 & R_1 \\ R_1 & R_4 & R_4 + R_5 + R_1 \end{bmatrix} \begin{bmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{bmatrix}$ $= \begin{bmatrix} U_{q2} \\ U_{q1} \end{bmatrix}$

- Finde Zweigströme
- $\vec{I} = A\vec{I}_M = AR^{-1}\vec{O}$

DITET

4 Das stationäre Magnetfeld

Lorentz-Kraft auf bewegte Ladung	$\vec{\mathbf{F}} = q(\vec{\mathbf{v}} \times \vec{\mathbf{B}})$	q , Elementarladung [C] $\vec{\mathbf{v}}$, Geschwindigkeitsvektor [m/s] $\vec{\mathbf{B}}$, Magnetische Flussdichte [T]
Lorentz-Kraft auf Leiter	$\vec{\mathbf{F}} = I(\vec{\ell} \times \vec{\mathbf{B}})$	$\vec{\ell}$, Gerichtetes Leiterstück der Länge ℓ
Gesetz von Oersted	$\oint\limits_C \vec{\mathbf{H}} \cdot d\vec{\mathbf{s}} = \sum_k I_k := \Theta$	$\overrightarrow{\mathbf{H}}$, Magnetische Feldstärke [A/m] θ , Durchflutung [A]
Durchflutungsgesetz/ Ampèresches Gesetz	$\oint_C \vec{\mathbf{H}} \cdot d\vec{\mathbf{s}} = \iint_A \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} := \Theta$	
	$\nabla imes \vec{H} = \vec{J}$	
Magnetische Feldstärke im Vakuum	$\vec{\mathbf{B}} = \mu_0 \vec{\mathbf{H}}$	μ_0 , Magnetische Feldkonstante [H/m=N/A ²]
Magnetische Spannung	$V_{\mathrm{m,AB}} = \int_{A}^{B} \overrightarrow{\mathbf{H}} \cdot \mathrm{d}\overrightarrow{\mathbf{s}}$	$V_{m,AB}$, Magnetische Spannung zwischen den Punkten A und B [A]
Magnetischer Fluss	$\Phi_{\mathbf{A}} = \iint\limits_{A} \overrightarrow{\mathbf{B}} \cdot \mathrm{d}\overrightarrow{\mathbf{A}}$	$\Phi_{\rm A}$, Magnetischer Fluss durch Fläche A
Magnetische Feldstärke eines unendlich langen geraden Leiters	$\vec{\mathbf{H}}(\rho) = \begin{cases} \vec{\mathbf{e}}_{\varphi} \frac{I}{2\pi a^2} \rho & \rho \leq a \\ \vec{\mathbf{e}}_{\varphi} \frac{I}{2\pi \rho} & \rho > a \end{cases}$	ρ , Abstand zum Zentrum des Leiters a , Radius des Leiters $\vec{\mathbf{e}}_{\varphi}$, Einheitsvektor in φ -Richtung in Zylinderkoordinaten
Magnetische Feldstärke im Inneren einer idealisierten Toroidspule	$\vec{\mathbf{H}}(\rho) = \vec{\mathbf{e}}_{\varphi} \frac{NI}{2\pi\rho}$	ρ , Abstand zum Zentrum der Spule N , Wicklungszahl $\vec{\mathbf{e}}_{\varphi}$, Einheitsvektor in φ -Richtung in Zylinderkoordinaten
Magnetische Feldstärke im Inneren einer idealisierten langgestreckten Zylinderspule	$\vec{\mathbf{H}} = \vec{\mathbf{e}}_{\mathrm{x}} \frac{NI}{l}$	N , Wicklungszahl l , Spulenlänge $\vec{\mathbf{e}}_{x}$, Einheitsvektor in x-Richtung
Gesetz von Biot-Savart	$\vec{\mathbf{H}}(\vec{\mathbf{r}}) = \frac{1}{4\pi} \iiint_{V} \vec{\mathbf{J}}(\vec{\mathbf{r}}') \times \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}'}{ \vec{\mathbf{r}} - \vec{\mathbf{r}}' ^{3}} dV'$	\vec{r} , Ortsvektor des Berechnungspunkts \vec{r}' , Ortsvektor des Leiterstücks
Magnetisches Moment	$\vec{\mathbf{m}} := \vec{\mathbf{n}} I A = I \vec{\mathbf{A}}$	∱ m d
Magnetisierung	$\overrightarrow{\mathbf{M}} := \frac{1}{V} \sum_{n=1}^{N} \overrightarrow{\mathbf{m}}_{n}$	n
Magnetische Polarisation	$\vec{\mathbf{J}} := \frac{1}{V} \sum_{n=1}^{N} \vec{\mathbf{j}}_{n} = \mu_{0} \vec{\mathbf{M}}$	A
Beziehung zwischen magnetischer Feldstärke und magnetischer Flussdichte	$\vec{\mathbf{B}} = \mu \vec{\mathbf{H}}$ $\vec{\mathbf{B}} = \mu_0 \vec{\mathbf{H}} + (\mu - \mu_0) \vec{\mathbf{H}} = \mu_0 \vec{\mathbf{H}} + \vec{\mathbf{J}}$	μ, Magnetische Permeabilität
Beziehungen zwischen den Feldgrössen, der Magnetisierung $\overrightarrow{\mathbf{M}}$ und	$\vec{\mathbf{J}} = (\mu - \mu_0)\vec{\mathbf{H}} = \mu_0(\mu_r - 1)\vec{\mathbf{H}}$ $= \mu_0 \chi \vec{\mathbf{H}}$ $\vec{\mathbf{B}} = \mu_0 (\vec{\mathbf{H}} + \vec{\mathbf{M}})$	μ , Magnetische Permeabilität $\mu_{ m r}$, Relative Permeabilität $\overline{f M}$, Magnetisierung
	0	_

EIH	
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	

der magnetischen Polarisation \vec{J}	$\overrightarrow{\mathbf{M}} = \chi \overrightarrow{\mathbf{H}}$	χ , Magnet	ische Suszeptibilität
Feldgrössen an Grenzflächen	$B_{n1} = B_{n2}$ $\mu_1 H_{n1} = \mu_2 H_{n2}$ $H_{t1} = H_{t2}$ $\frac{B_{t1}}{B_{t2}} = \frac{\mu_1}{\mu_2}$	t, Tangenti	komponente ialkomponente ische Permeabilität
Hystereseschleife B_r S H_c S	Sättigung 3 Neukurve H	$B_{ m r}$, Reman	ngsflussdichte enzflussdichte tivfeldstärke
	Bezeichnung	Elektrisches Netzwerk	Magnetisches Netzwerk
	Leitfähigkeit	κ	μ
	Widerstand	$R = \frac{l}{\kappa A}$	$R_m = \frac{l}{\mu A}$
Magnetischer Kreis	Leitwert	$G = \frac{1}{R}$	$\Lambda_m = \frac{1}{R_m}$
	Spannung	$U_{12} = \int\limits_{\mathrm{P_{1}}}^{\mathrm{P_{2}}} \vec{\mathbf{E}} \cdot \mathrm{d}\vec{\mathbf{s}}$	$V_{m12} = \int\limits_{\mathrm{P_{1}}}^{\mathrm{P_{2}}}\!$
	Strom bzw. Fluss	$I = \iint_{A} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = \kappa \iint_{A} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$	$\Phi = \iint_A \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = \mu \iint_A \vec{\mathbf{H}} \cdot d\vec{\mathbf{A}}$
	Ohm'sches Gesetz	U = RI	$V_m = R_m \Phi$
	Maschengleichung (Abb. 5.26)	$U_0 = \sum_{Masche} R I$	$\Theta = \sum_{Masche} R_m \Phi$
	Knotengleichung	$\sum I = 0$	$\sum \Phi = 0$

Allgemein

Netzwerkgleichungen des magnetischen Kreises

$$\sum_{V = tom \, i} \Phi_i = 0$$

$$\Phi_K - \Phi_L = 0
\to \Phi \equiv \Phi_K = \Phi_L$$

$$\sum_{\substack{Knoten \ i}} \Phi_i = 0$$

$$\Theta = \sum_{\substack{Masche \ i}} V_{m_i} = \sum_i R_{m_i} \Phi_i$$

$$\Theta = \Phi \left(R_{\rm m,K} + R_{\rm m,L} \right)$$

$$V_{\rm m,i} = \phi_{\rm i} R_{\rm m,i}$$

$$V_{\mathrm{m,K}} = \Phi R_{\mathrm{m,K}},$$

 $V_{\mathrm{m,L}} = \Phi R_{\mathrm{m,L}}$

Jetzt noch die fehlenden Grössen bestimmen:

iv) Durchflutung
$$\theta$$
 via Ampére.

(i.e. Quellen bestimmen & Vorzeichen beachten!)

$$\Theta = \sum_{i} H_{i} l_{i} = \sum_{i} N_{i} I_{i}$$

$$\Theta = NI$$

v) Magnetische Widerstände

(Mittlere Längen l_i)

 $R_{m,i}$ bestimmen

$$R_{\rm m,i} = \frac{l_{\rm i}}{\mu_0 \mu_{\rm r,i} A_{\rm i}}$$

$$R_{\rm m,K} = \frac{2(b+c) - l}{\mu_0 \mu_{\rm r} a^2}$$

$$R_{\rm m,L} = \frac{l}{\mu_0 a^2}$$

→ Nach gewünschter Grösse auflösen

z.B.
$$\Phi = \frac{NI}{R_{m,K} + R_{m,L}}$$

Mit der Spule verketteter Fluss	$\Phi = N\Phi_{\rm A}$	N, Windungszahl
Induktivität	$L = \frac{\Phi}{I}$	L, Induktivität [H]
Induktivität aus Reluktanzmodell	$L = \frac{N^2}{R_{\rm m}}$	

Induktivität einer	$L = N^2 \frac{\mu h}{2\pi} \ln\left(\frac{b}{a}\right)$
Ringkernspule	$\approx N^2 \frac{\mu h}{2} \frac{b-a}{a}$, $b-a \ll a$

N, Windungszahl
u Magnetische Permeah

 μ , Magnetische Permeabilität h, Kernhöhe b, Äusserer Radius a, Innerer Radius

$$L = \frac{\mu_0}{\pi} \left(\frac{1}{4} + \ln \left(\frac{b}{a} \right) \right)$$

$$\mu_0$$
, Permeabilitätskonstante b , Leiterabstand

5 Das zeitlich veränderliche elektromagnetische Feld

Induzierte Spannung in
der Leiterschleife gemäss
Abbildung

$$U = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

Faraday'sche Induktionsgesetz

$$\oint_{\mathbf{G}} \vec{\mathbf{E}}' \cdot d\vec{\mathbf{s}} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{\mathbf{A}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}}$$

Lenz'sche Regel

Der induzierte Strom ist so gerichtet, dass er die Ursache seines Entstehens zu verhindern sucht

Induktivität

$$u_{\rm L} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

L, Induktivität [Henry, H]

Serienschaltung

$$L_{\rm ser} = \sum_{k=1}^{n} L_{\rm k}$$

Parallelschaltung

$$L_{\text{parr}}^{-1} = \sum_{k=1}^{n} L_{k}^{-1}$$

$$L_{\text{parr}} = \frac{L_1 L_2}{L_1 + L_2}$$

Spezialfall für zwei Induktivitäten

 Φ_{11} , Fluss durch C_1 aufgrund $i_1(t)$

 Φ_{12} , Fluss durch C_1 aufgrund $i_2(t)$ Φ_{21} , Fluss durch C_2 aufgrund $i_1(t)$ Φ_{22} , Fluss durch C_2 aufgrund $i_2(t)$

Gekoppelte Leiterschleifen

$$u_1 = R_1 i_1 + L_{11} \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_{12} \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u_2 = R_2 i_2 + L_{21} \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_{22} \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

 L_{11}, L_{22} , Selbstinduktivität L_{12}, L_{21} , Gegeninduktivität

Gegeninduktion

$$M = L_{ik} = L_{ki}$$

DITET

Gegeninduktivität zweier Doppelleitungen

$$L_{12} = \frac{\mu_0 l}{2\pi} \ln \left(\frac{bc}{ad} \right)$$

l, Länge des Leiterabschnitts

Kopplungsfaktoren

$$k_{12} = \frac{\Phi_{12}}{\Phi_{22}} = \frac{M}{L_{22}}$$

$$k_{21} = \frac{\Phi_{21}}{\Phi_{11}} = \frac{M}{L_{11}}$$

$$k = \pm \sqrt{k_{12}k_{21}}$$

Streuung $\sigma = 1 - k^2$

k, Kopplungsfaktor

Energieinhalt Induktivitäten

$$W_{\rm m} = \frac{1}{2} L I^2 = \frac{1}{2} \Phi I$$

Einzelne Spule

 $W_{\rm m} = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} L_{ik} I_{i} I_{k}$

Gekoppelte Spulen

Energiedichte w

$$w_{\rm m} = \int_{0}^{B} H \mathrm{d}B = \frac{1}{2} \vec{\mathbf{H}} \cdot \vec{\mathbf{B}}$$

 $w_{\rm m}$, Energiedichte [VAsm⁻³]

Magnetische Energie

$$W_{\rm m} = \iiint\limits_V w_{\rm m} \mathrm{d}V = \frac{1}{2} \iiint\limits_V \overrightarrow{\mathbf{H}} \cdot \overrightarrow{\mathbf{B}} \mathrm{d}V$$

Rotierende Leiterschleife im Magnetfeld

 $\Phi = \widehat{\Phi}\cos(\omega t)$

 $\widehat{\Phi}$, der maximale magnetische Fluss

 ω , Kreisfrequenz

t, Zeit

Wechselspannung

 $u(t) = -\frac{d}{dt}\Phi(t) = \hat{u}\sin(\omega t)$

 \hat{u} , Spitzenspannung

 ω , Kreisfrequenz

 u_{31}

 u_{1N} , Strangspannung L1 nach N u_{2N} , Strangspannung L2 nach N u_{3N} , Strangspannung L3 nach N

 u_{12} , Leiterspannung L1 nach L2

 u_{23} , Leiterspannung L2 nach L3 u_{31} , Leiterspannung L3 nach L1

 i_1 , Leiterstrom in L1

 i_2 , Leiterstrom in L2

 i_3 , Leiterstrom in L3

 $i_{\rm N}$, Neutralleiterstrom

Sternschaltung Strangspannung $u_{kN} = \hat{\mathbf{u}} \sin\left(\omega t - (k-1)\frac{2\pi}{3}\right)$

û, maximale Spannung (Spitzenspannung)

Leiterspannung Spitzenwert

 $\hat{\mathbf{u}}_{12} = \hat{\mathbf{u}}_{23} = \hat{\mathbf{u}}_{31} = \sqrt{3}\hat{\mathbf{u}}$

k, Index der Leitung $k \in \{1,2,3\}$

Neutralleiterstrom bei symmetrischer Last

 $i_N = i_1 + i_2 + i_3 = 0$

Swiss Federal Institute of Technology Zurich

Dreieckschaltung Leiterspannung

$$u_{12} = \hat{\mathbf{u}} \sin(\omega t)$$

$$u_{23} = \hat{\mathbf{u}}\sin(\omega t + 2\pi/3)$$

$$u_{31} = \hat{\mathbf{u}}\sin(\omega t + 4\pi/3)$$

Leiterstrom Spitzenwert bei symmetrischer Last

$$\hat{\mathbf{i}}_k = \sqrt{3}\hat{\mathbf{i}}_{12} = \sqrt{3}\hat{\mathbf{i}}_{23} = \sqrt{3}\hat{\mathbf{i}}_{31}$$

k, Index der Leitung $k \in \{1,2,3\}$

 u_{12} , Leiterspannung L1 nach L2 u_{23} , Leiterspannung L2 nach L3 u₃₁, Leiterspannung L3 nach L1

 i_1 , Leiterstrom in L1 i_2 , Leiterstrom in L2 i₃, Leiterstrom in L3 i₁₂, Strangstrom L1 nach L2 i₂₃, Strangstrom L2 nach L3 i₃₁, Strangstrom L3 nach L1

Der verlustlose streufreie Transformator

$$\frac{u_1}{u_2} = \mp \frac{N_2}{N_2}$$

Der ideale Transformator

$$\frac{i_1}{i_2} = \pm \frac{N_2}{N_1}$$

$$P_1 = P_2$$

Übersetzungsverhältnis

$$\ddot{\mathbf{u}} = \frac{N_1}{N_2}$$

 u_1 , Spannung an der Primärseite u₂, Spannung an der Sekundärseite i₁, Strom auf der Primärseite i₂, Strom auf der Sekundärseite N_1 , Anzahl Windungen auf der Primärseite N_2 , Anzahl Windungen auf der Sekundärseite

In der Skizze obere Vorzeichen. Je

nach Wicklungssinn untere.

P₁, Leistung auf der Primärseite P2, Leistung auf der Sekundärseite

Widerstands-Transformation

$$R_{\rm E} = \frac{u_1}{i_1} = \ddot{u}u_2\frac{\ddot{u}}{i_2} = \ddot{u}^2R_2$$

R₂, Widerstand auf Sekundärseite $R_{\rm E}$, Ersatzwiderstand auf Primärseite

6 Wechselstrom

Mittelwert	$\overline{u} = \frac{1}{T} \int_{t=t_0}^{t_0+T} u(t) \mathrm{d}t$	
Effektivwert	$U_{\text{eff}} = \sqrt{\frac{1}{T} \int_{t=t_0}^{t_0+T} u^2(t) dt} = \sqrt{\frac{1}{2\pi} \int_{\varphi=\varphi_0}^{\varphi_{0+2\pi}} u^2(\varphi) d\varphi}$	
	$I_{\mathrm{eff}} = \hat{1}/\sqrt{2}$, $U_{\mathrm{eff}} = \hat{1}/\sqrt{2}$	Sim

nusförmige Anregung

 $p(t) = u(t) \cdot i(t)$ Instantane Leistung

 $\bar{P} = \frac{1}{T} \int_{t=t_0}^{t_0+T} p(t) dt = U_{\text{eff}} \cdot I_{\text{eff}}$ Mittlere Leistung

Zusammenhang zwischen Strang- und Außenleitergrößen

Komponente	Spannung	Strom	Gleichung
i(t) R $u(t)$	$u(t) = R \ i(t)$	$i(t) = \frac{1}{R} u(t)$	(7.3)
$\frac{i_L(t)}{u_L(t)} \frac{L}{u_L(t)}$	$u_L(t) = L \frac{\mathrm{d}i_L(t)}{\mathrm{d}t}$	$i_L(t) = \frac{1}{L} \int u_L(t) dt$	(7.4)
$\frac{i_C(t)}{u_C(t)}$	$u_C(t) = \frac{1}{C} \int i_C(t) dt$	$i_{C}(t) = C \frac{\mathrm{d} u_{C}(t)}{\mathrm{d} t}$	(7.5)
<i>u_C(t)</i>			

 $u(t) = \hat{u}\cos(\omega t + \varphi) = \text{Re}\{\hat{\underline{u}} \cdot e^{j\omega t}\}$ Komplexe Amplitude

 $i(t) = \hat{\imath}\cos(\omega t + \varphi) = \text{Re}\{\hat{\imath} \cdot e^{j\omega t}\}$

Strom- und Spannungsbeziehungen an den linearen, passiven Netzwerkelementen

Komponente	Spannung	Strom	Impedanz	Admittanz	Gl.
$\frac{\hat{i}}{\hat{u}}$ R	$ \underline{\hat{u}} = R \ \hat{\underline{i}} $	$\hat{\underline{i}} = \hat{\underline{u}} / R$	$\underline{Z}_R = R$	$\underline{Y}_R = \frac{1}{R} = G$	(8.28)
		^	(8.13)	•	

$$\underbrace{\hat{\underline{u}}}_{\underline{\hat{u}}} = j\omega L \, \underline{\hat{i}} \quad \underline{\hat{i}} = \frac{\underline{\hat{u}}}{j\omega L} \quad \underline{Z}_L = j\omega L \stackrel{\text{(8.13)}}{=} jX_L \, \underline{Y}_L = \frac{1}{j\omega L} = jB_L \quad \text{(8.29)}$$

$$\mathrm{mit} \ B_{\scriptscriptstyle L} = -\frac{1}{\omega \, L}$$

$$\hat{\underline{i}} = \frac{1}{j\omega C} \hat{\underline{i}} = \frac{1}{j\omega C} \hat{\underline{i}} \quad \hat{\underline{i}} = j\omega C \hat{\underline{u}} \quad \underline{Z}_C = \frac{1}{j\omega C} = jX_C \quad \underline{Y}_C = j\omega C \stackrel{(8.15)}{=} jB_C \quad (8.30)$$

$$\text{mit } X_C = -\frac{1}{\omega C}$$

Vorgehen zur Netzwerkanalyse

- Ersatzschaltbild 1.
- Mehrere Strom-, Spannungsquellen via Superposition 2.
- Vom Zeit- in Frequenzraum transformieren, komplexe
- Vereinfachen: Serien- und Parallelschaltung, Maschen- und 4. Knotenregeln, Spannungs- und Stromteiler
- 5. Rücktransformation in Zeitbereich

Zeitabhängige Spannung und zugehörige komplexe Amplitude		
Zeitabhängige Spannung	Komplexe Amplitude	
$\hat{u}\cos\omega t$	$\underline{\hat{u}} = \hat{u}$	
$\hat{u}\cos(\omega t + \varphi_u)$	$\underline{\hat{u}} = \hat{u} e^{j\varphi_u}$	
$\hat{u}\sin\omega t = \hat{u}\cos(\omega t - \pi/2)$	$\underline{\hat{u}} = \hat{u} e^{-j\pi/2}$	
$\hat{u}\sin(\omega t + \varphi_u)$	$\underline{\hat{u}} = \hat{u} \mathrm{e}^{\mathrm{i}(\varphi_u - \pi/2)}$	

Ohm'sches Gesetz

$$\underline{\hat{u}} = \underline{Z}\,\hat{\underline{\imath}}$$

Z, Komplexe Impedanz

Maschenregel

Knotenregel

$$\sum_{\text{Masche}} \underline{\hat{u}}_{i} = 0$$

$$\sum_{\text{Nate p}} \underline{\hat{t}}_{i} = 0$$

Reihenschaltung: Impedanz-Addition

$$\underline{Z}_{\text{ges}} = \sum_{k=1}^{n} \underline{Z}_{k}$$

Parallelschaltung: Admittanz-Addition

$$\underline{Y}_{\text{ges}} = \sum_{k=1}^{n} \underline{Y}_{k}$$

Spannungsteiler

$$\frac{\underline{\hat{u}}_1}{\underline{\hat{u}}_2} = \frac{\underline{Z}_1}{\underline{Z}_2}$$

Stromteiler

$$\frac{\underline{\hat{l}}_1}{\underline{\hat{l}}_2} = \frac{\underline{Y}_1}{\underline{Y}_2} = \frac{\underline{Z}_2}{\underline{Z}_1}$$

Grenzfrequenz ω_{g}	$\left \frac{\underline{\hat{u}}_{2}(\omega_{\mathrm{g}})}{\underline{\hat{u}}_{1}(\omega_{\mathrm{g}})}\right ^{2} = \frac{1}{2}$	
RC Hochpass	$u_1(t)$ C R $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_R}{\underline{Z}_R + \underline{Z}_C} = \frac{j\omega RC}{j\omega RC + 1}$ $\Delta \varphi = \angle \frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1}\left(\frac{1}{\omega RC}\right)$ $\omega_g = \frac{1}{RC}$
RC Tiefpass	$u_1(t)$ R C $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_C}{\underline{Z}_R + \underline{Z}_C} = \frac{1}{j\omega RC + 1}$ $\Delta \varphi = 4\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1}(-\omega RC)$
RL Hochpass	$u_1(t)$ R $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_L}{\underline{Z}_R + \underline{Z}_L} = \frac{j\omega L}{R + j\omega L}$ $\Delta \varphi = \angle \frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1} \left(\frac{R}{\omega L}\right)$ $\omega_g = \frac{R}{L}$
RL Tiefpass	$u_1(t)$ R $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_R}{\underline{Z}_R + \underline{Z}_L} = \frac{R}{R + j\omega L}$ $\Delta \varphi = \angle \frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1} \left(\frac{-\omega L}{R}\right)$
RLC Oszillator	$ \begin{array}{c c} \hat{\underline{\hat{i}}} & \stackrel{L}{\sim} & \stackrel{C}{\longrightarrow} \\ \hat{\underline{u}}_{L} & & \hat{\underline{u}}_{C} \\ & & \hat{\underline{u}}_{R} \end{array} $	$\frac{\frac{\hat{u}_{R}}{\hat{u}}}{\frac{\hat{u}}{\hat{u}}} = \frac{\frac{Z_{R}}{Z_{R} + Z_{L} + Z_{C}}}{\frac{Rj\omega C}{Rj\omega C - \omega^{2}LC + 1}}$ $\left \frac{\hat{u}_{R}}{\hat{u}}\right = \frac{R}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}}$
	$\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{LC}}$ $Q_s = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{d_s}$	ω_0 , Resonanzfrequenz Q_s , Güte
	$Q_{\rm s} = \frac{1}{R} \sqrt{\frac{1}{C}} = \frac{1}{d_{\rm s}}$ $B = \frac{1}{2\pi} \frac{R}{L} = \frac{f_0}{Q_{\rm s}}$	$d_{\rm s}$, Dämpfung B , Bandbreite

DITET

7 Halbleiter

Bandlücke $E_{\rm G}$	$E_{\rm G} = E_{\rm L} - E_{\rm V}$	$E_{ m L}$, Leitungsband $E_{ m V}$, Valenzband
Halbleiter	$0.1 \text{ eV} < E_{\text{G}} < 4 \text{ eV}$	$1 \text{ eV} = 1.602 \cdot 10^{-19} \text{ J}$
Kinetische Energie De Broglie	$E_{ m kin}=rac{1}{2}mv^2=rac{p^2}{2m}$ $p=rac{h}{\lambda}=\hbar k$	m , Masse v , Geschwindigkeit p , Impuls h , Planck'sche Konstante $\hbar = h/2\pi$, reduzierte Planck'sche K.
Energie eines Elektrons	$E_{\text{tot}} = \frac{\hbar^2 k^2}{2 m_{\text{eff}}}$	$h = 6.626 \cdot 10^{-34} \text{ Js}$ m_{eff} , effektive Masse
	2 tot 2 2 $m_{\rm eff}$	$k_{\rm B} = 1.380 \cdot 10^{-23} \text{J K}^{-1}$
Boltzmann-Konstante	$k_{ m B}$	$k_{\rm B} = 8.617 \cdot 10^{-5} \text{ eV K}^{-1}$
Fermi-Dirac-Verteilung	$f_{\rm FD}(E) = \frac{1}{1 + e^{\frac{E - E_{\rm F}}{k_{\rm B}T}}}$	$E_{\rm F}$, Fermi-Energie
Boltzmann-Verteilung	$f_{\rm B}(E) = e^{-\frac{E - E_{\rm F}}{k_{\rm B}T}}$	
Ladungsträgerdichte im Leitungsband, allg.	$n = \int_{E_1}^{\infty} f(E) \rho_{\rm n}(E) \mathrm{d}E$	ρ , Zustandsdichte
Ladungsträgerdichte im Leitungsband, mit Boltzmann-Annäherung	$n = N_{\rm L} \exp\left(-\frac{E_{\rm L} - E_{\rm F}}{k_{\rm B}T}\right)$	
Aquivalente Zustandsdichte im Leitungsband <i>N</i> _L	$N_{\rm L} = 2 \left(\frac{2\pi \cdot m_{\rm eff,n} \cdot k_{\rm B} T}{h^2} \right)^{3/2}$	
Ladungsträgerdichte im Valenzband	$p = N_{\rm V} \exp\left(-\frac{E_{\rm F} - E_{\rm V}}{k_{\rm B}T}\right)$	
Äquivalente Zustandsdichte im Valenzband N _V	$N_{\rm V} = 2 \left(\frac{2\pi \cdot m_{\rm eff,p} \cdot k_{\rm B} T}{h^2} \right)^{3/2}$	
Eigenhalbleiter	$n_{ m th}=p_{ m th}=n_{ m i}$	n_i , Eigenleitungsträgerdichte th, thermische Ladungsträger
Massenwirkungsgesetz	$n_{\rm i}^2(T)=np$	
Donatorenniveau $E_{\rm D}$	$\Delta E_{\rm D} = E_{\rm L} - E_{\rm D}$	E _D ist <i>unter</i> dem Leitungsband
Akzeptorenniveau E_A	$\Delta E_{\rm A} = E_{\rm A} - E_{\rm V}$	E _A ist über dem Valenzband
T. I	$n+n_{\rm A}^-=p+n_{\rm D}^+$	$n_{\rm A}^-$, ionisierte Akzeptorendichte
Ladungsneutralität	$n + n_{\rm A} = p + n_{ m D}$	$n_{\rm D}^+$, ionisierte Donatorendichte
Drift	$ec{\mathbf{J}}_{\mathrm{Drift}} = \left[en\mu_{\mathrm{n}} + ep\mu_{\mathrm{p}}\right] \vec{\mathbf{E}}$	\vec{J}_{Drift} , Drift-Stromdichte
Leitfähigkeit	$\kappa = en\mu_{\rm n} + ep\mu_{\rm p}$	
Diffusion	$\vec{J}_{\text{Diff}} = \vec{J}_{\text{n, Diff}} + \vec{J}_{\text{p, Diff}}$	\vec{J}_{Diff} , Diffusions-Stromdichte
	$\vec{\mathbf{J}}_{n,D} = +eD_{n}\nabla n$	$\vec{J}_{n,Diff}$, ElektrDiffusionsstromdichte D , Diffusionskonstante
	$\vec{\mathbf{J}}_{\mathrm{p},\mathrm{D}} = -eD_{\mathrm{p}}\nabla p$	$\vec{J}_{p,Diff}$, Löcher-Diffusionsstromdichte

Institut für Elektromagnetische Felder (IEF)

Einschuss v. Ladungsträgern	$pn > n_{\rm i}^2$	n, Elektronendichte p, Löcherdichte
	$\Delta n = \Delta p = g au_{ m n/p}$	g , Generationsrate $\tau_{\rm n/p}$, Lebensdauer von Elektronen (n) und Löchern (p)
Kontinuitätsgleichung	$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{\mathbf{J}} = e(g_{\rm n} - r_{\rm n}) - e(g_{\rm p} - r_{\rm p})$	ρ , Raumladungsdichte
	$\rho = e(p + n_{\mathrm{D}}^+ - n - n_{\mathrm{A}}^-)$	
Elektronenstromdichte	$\vec{J}_n = \vec{J}_{n,Drift} + \vec{J}_{n,Diff}$	\vec{J}_n , totale Elektronen-Stromdichte
	$\vec{\mathbf{J}}_{\mathrm{n}} = e n \mu_{\mathrm{n}} \vec{\mathbf{E}} + e D_{\mathrm{n}} \nabla n$	
Löcherstromdichte	$\vec{J}_{p} = \vec{J}_{p,Drift} + \vec{J}_{p,Diff}$	\vec{J}_n , totale Löcher-Stromdichte
	$\vec{\mathbf{J}}_{\mathrm{p}} = ep\mu_{\mathrm{p}}\vec{\mathbf{E}} - eD_{\mathrm{p}}\nabla p$	
Kontinuitätsgleichung für Löcher	$\frac{\partial(ep)}{\partial t} + \nabla \cdot \vec{\mathbf{J}}_{p} = e(g_{p} - r_{p}) + eg_{ext}$	
Kontinuitätsgleichung für Elektronen	$\frac{\partial (-en)}{\partial t} + \nabla \cdot \vec{\mathbf{J}}_{n} = -e(g_{n} - r_{n}) - eg_{\text{ext}}$	
Poisson Gleichung	$\Delta \phi = -rac{ ho}{arepsilon} = -rac{e}{arepsilon}(p+n_{ m D}^+-n-n_{ m A}^-)$	ϕ , Potential ρ , Raumladungsdichte ε , Permittivität

DITET

8 pn-Diode

Diffusionsspannung

$$U_{\rm D} = \frac{k_{\rm B}T}{e} \ln \left(\frac{n_{\rm D}n_{\rm A}}{n_{\rm i}^2} \right)$$

Verhalten der RLZ bei angelegter Spannung U > 0

 $U_{\rm D}$, Diffusionsspannung

Verhalten der RLZ

Diodenkennlinie

$$I = I_{\rm n} + I_{\rm p} = I_{\rm S} \left(e^{\frac{eU}{k_{\rm B}T}} - 1 \right)$$

Photodiode

$$I_{\rm PD} = I_{\rm L} - I_{\rm S} \left(e^{\frac{eU}{k_{\rm B}T}} - 1 \right)$$

Kleinsignal:
- Leitwert

$$g(U) = \frac{dI}{dU} = \frac{e}{k_{\rm B}T}(I(U) + I_{\rm S})$$

- Sperrschichtkapazität

$$C_{\rm S} = \frac{dQ}{dV} = \frac{A}{l} \epsilon_{\rm r} \epsilon_{\rm 0}$$

Diodenkennlinie

g, Kleinsignal Leitwert

 $C_{\rm S}$, Kleinsignal Kapazität

Kleinsignal Ersatzschaltbild

9 Aktive Bauelemente

Linear: $I_{DS} = \beta (V_{GS} - V_T)V_{DS}$ Sättigung: $I_{DS} = \frac{\beta}{2}(V_{GS} - V_T)^2$ **Anwendung**: Digitales

Schaltelement, Verstärker **Typ. Char.**: Lineare und Saturierte Region, mit U_{GS} steigt der Strom I_{DS}

Anwendung: Schaltungsschutz **Typ. Char**.: Durchbruch nach einer gewissen Spannung, Widerstand sackt zu sehr kleinen Werten.

LED

Anwendung: Licht-Generation **Typ. Char**.: Wie normale pn-diode.

Solarzelle/Photodetektor

 $I = I_L - I_S (e^{\frac{eU}{kT}} - 1)$ **Anwendung**: Solarenergie, Quelle **Typ. Char.:** Maximum Power Point

Institut für Elektromagnetische Felder (IEF)

10 Konstanten

Elementarladung $e = 1.6 \times 10^{-19} \,\text{C}$ [C] = [As]

Vakuumpermittivität $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ [F/m] = [As/Vm]

 $\begin{array}{ll} \text{Vakuumpermeabilit"at} & \mu_0 = 4\pi \times 10^{-7} \text{ H/m} \\ & \approx 1.26 \times 10^{-6} \text{ H/m} \end{array} \qquad \qquad \left[\frac{\text{H}}{\text{m}}\right] = \left[\frac{\text{N}}{\text{A}^2}\right] = \left[\frac{\text{kg m}}{\text{s}^2\text{A}^2}\right] \end{array}$

Boltzmann-Konstante $k_{\rm B} = 1.380 \times 10^{-23} \, {\rm J/K}$ = 8.617 × 10⁻⁵ eV K⁻¹

Thermische Energie bei $k_{\rm B}T=25.9~{\rm meV}$ Raumtemperatur $=4.14\times10^{-21}~{\rm J}$ Raumtemperatur: 300 K