1 Introduction

This report draws on the knowledge and experience gained from development of the AstroGrid and IVOA virtual observatory systems to answer the following questions:

- What would be required to implement a virtual observatory system for the TROPGLOBE research community, capable of supporting the science use-cases outlined on the *AstroTrop* website.
- What components from the *AstroGrid* and *IVOA* projects would be appropriate to use in developing a virtual observatory system for the TROP-GLOBE research community.

2 The IVOA Virtual Observatory

The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to:

"facilitate the international coordination and collaboration necessary for the development and deployment of the tools, systems and organizational structures necessary to enable the international utilization of astronomical archives as an integrated and interoperating virtual observatory."

The *Virtual Observatory* (*VO*) is the realization of the *IVOA* vision of an integrated and interoperating virtual observatory. The work of the *IVOA* focuses on the development of standards, providing a forum for members to debate and agree the technical standards that are needed to make the *VO* possible.

The operational VO itself is comprised of a global shared metadata registry, the Registry, and a number of individual data discovery and data access services deployed at each of the participating institutes. These components work together to present a uniform mechanism for discovering and accessing data, irrespective of where it is physically located.

The VO architecture and data discovery processes are very similar to the 'interconnected metadata collections' approach described in "The new bioinformatics: integrating ecological data from the gene to the biosphere" (Jones et al. 2006):

".... a loosely structured collection of project-specific data sets accompanied by structured metadata about each of the data sets."

"Each of the data sets is stored in a manner that is opaque to the data system in that the data themselves cannot be directly queried; rather, the structured metadata describing the data is queried in order to locate data sets of interest."

"After data sets of interest are located, more detailed information can be extracted from the metadata and used to load, query, and manipulate individual data sets."

2.1 Example use case

A useful way to illustrate how the data discovery process works in the VO is to look at an example task such as selecting images covering a particular region of the sky, in a particular wavelength e.g. infrared, visible light, radio or x-ray.

2.1.1 Service discovery

The first step of the process is to identify the services that provide access to the type of data we are looking for by querying the *Registry*.

The *Registry* is comprised of a number of small local registry services, typically hosted at the participating institute level, working in cooperation with a set of higher level global registry services hosted by a few key institutes that aggregate the data from the smaller registries to create a global searchable index of metadata describing all of the services and datasets available in the *VO*.

When a new service is deployed, part of the deployment process involves registering the service with the local registry. The local registry is then responsible for collecting and storing the metadata that describes both the service itself and the datasets that it provides access to. Once the metadata for a service or dataset has been registered in a local registry, it is automatically propagated up to the next level and replicated between the global registries.

This makes it possible to access the metadata for all of the services and datasets published in the VO by querying any one of the global registries.

The first step in fulfilling our example use case is to identify services that contain the type of data we are looking for, in this case images, by querying the *Registry* for services that support the *IVOA Simple Image Access* (SIA) capability.

In addition to the technical details of services and their capabilities the *Registry* also contains details about the content of datasets, including details of the wavelength(s) measured, e.g. infrared, visible, radio or x-ray.

This allows us to refine our query to search for SIA services that contain images in a specific waveband, e.g. optical, infrared or x-ray.

The *Registry* query returns a table of data, each row of which contains information about a *SIA* service that provides the type of data we are interested in - images in a particular wavelength.

The VO is itself an evolving system, building on the existing work to add additional levels of integration as new features are added to the IVOA specifications.

A recent addition to the list of IVOA standards is the $HEALPix\ Multi-Order$ $Coverage\ Map\ (MOC)$ which allows Registry services to perform coarse grained region matches.

This will enable us to further refine our *Registry* query to filter for *SIA* services that contained data in a particular region of the sky.

2.1.2 Data discovery

The next stage of the process is to query each of the SIA services in the list to discover details about the individual images available from that service.

A SIA service can handle queries that specifiy a particular wavelength and a particular region of the sky:

- POS The positional region (ra, dec).
- BAND The energy interval (wavelength).

Each SIA service returns a table of data, each row of which contains metadata about an individual image. The details of the fields in the image metadata are defined in the Observation Data Model Core Components (ObsCore) data model.

This demonstrates a core part of the *IVOA* architecture, interoperable services based on standard interfaces and data formats.

All of the SIA services will return a standard response, which makes it much easier to combine them to produce a global list of all the images available within the whole VO that match our search criteria.

The two key components of this are:

- A standard interface for the global Registry that uses a standard set of attributes to describe datasets and services.
- A standard interface for local SIA data access services that uses a standard set of attributes to describe the available data products.

The separation between the initial service discovery query at the global level followed by individual data discovery queries at the local level is very similar to the stages described in Jones et al. 2006:

- 1. Querying the metadata to establish the location of suitable data.
- Querying the individual services to establish what the data is and how to access it.

3 Tropical forest science

3.1 Carbon density comparison

We can compare the VO data discovery process for astronomy data with an example use case based on a recent study "Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites" (Mitchard et al. 2014), comparing remote sensing data from satellites with ground plot data collected in the field.

The study compares two sets of remote sensing data, from $NASA\ Jet\ Propulsion\ Laboratory\ (JPL)$ "Benchmark map of forest carbon stocks in tropical regions across three continents" (Saatchi et al. 2011), and the $Woods\ Hole\ Research\ Center\ (WHRC)$ "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps" (Baccini et al. 2012), with four sets of ground plot data from the following sources:

- Red Amazónica de Inventarios Forestales (RAINFOR) (Peacock et al. 2007) (Malhi et al. 2009).
- Amazon Tree Diversity Network (ATDN).
- Tropical Ecology Assessment and Monitoring (TEAM).
- Brazilian Program for Biodiversity Research (PPBio) (Pezzini et al. 2012).

3.1.1 Remote sensing source data

The paper does not give details of the data discovery and data access methods used to access the primary remote sensing source data. However, there are a number of data discovery tools available that enable researchers to search for remote sensing data products such as satellite images and radar scans.

Good examples of this type of tool are the *Earth Explorer* and GloVis tools provided by the U.S. Geological Survey (USGS).

"The USGS EarthExplorer ... provides users the ability to query, search, and order satellite images, aerial photographs, and cartographic products from several sources."

"In addition to data from the Landsat missions and a variety of other data providers, EE now provides access to MODIS land data products from the NASA Terra and Aqua missions, and ASTER level-1B data products over the U.S. and Territories from the NASA ASTER mission."

"The USGS Global Visualization Viewer (GloVis) is an online search and order tool for selected satellite data. The viewer allows access to all available browse images from the Landsat 7 ETM+, Landsat 4/5 TM, Landsat 1-5 MSS, EO-1 ALI, EO-1 Hyperion, MRLC, and Tri-Decadal data sets, as well as Aster TIR, Aster VNIR and MODIS browse images from the DAAC inventory."

The USGS also provides large area composited mosaics generated from Land-sat data via the WELD project.

"The WELD data products are processed so users do not need to apply the equations, spectral calibration coefficients, and solar information, needed to convert Landsat digital numbers to reflectance and brightness temperature. They are defined in the same coordinate system and align precisely, making them simple to use for multi-temporal applications. The products provide consistent data that can be used to derive higher-level land cover as well as geophysical and biophysical products for assessment of surface dynamics and to study Earth system functioning."

The USGS also maintains a $Long\ Term\ Archive\ (LTA)$ of historical remote sensing data:

"The U.S. Geological Survey's (USGS) Long Term Archive (LTA) at the National Center for Earth Resource Observations and Science (EROS) in Sioux Falls, SD is one of the largest civilian remote sensing data archives."

"Time series images are a valuable resource for scientists, disaster managers, engineers, educators, and the general public. USGS EROS has archived, managed, and preserved land remote sensing data for more than 35 years and is a leader in preserving land remote sensing imagery."

However, all of these interfaces are based around human interaction. There do not apper to be any machine readable (web service) data discovery services for this type of remote sensing data.

3.1.2 Carbon density maps

A detailed description of the dataset produced by NASA Jet Propulsion Laboratory (JPL) is available in the associated paper (Saatchi et al. 2011).

The paper, along with the additional supporting information available on the *Proceedings of the National Academy of Sciences of the United States of America (PNAS)* website, describes the main upstream data sources and the methods applied.

However, details of the data sources, the instruments, target areas and date ranges the data covers are not available in a *machine readable* format.

The carbon density dataset itself is available as *GTIF* files, with associated *World file* metadata, for download from the *NASA JPL carbon dataset* site.

A detailed description of the dataset produced by the Woods Hole Research Center (WHRC) is available in the associated paper (Baccini et al. 2012).

The paper, along with the additional supporting information available from the *Nature* website, describes the upstream data sources and the methods applied. However, details of the data sources, the instruments, target areas and date ranges the data covers are not available in a machine readable format.

The carbon density dataset itself is available by request from the WHRC carbon dataset website. Access to the data requires filling in a simple web form declaring who you are and what you want to use the data for. On submitting

the webform, an automated email reply is generated containing a URL to a ZIP file on the WHRC website.

The ZIP file referred to in the email contains the data as GTIF files, with associated World file metadata.

This is a fairly standard mechanism for providing access to research data. However, it is not suitable as a *machine readable web service* interface.

3.1.3 Ground plot data

The four sets of ground plot data from *RAINFOR*, *ATDN*, *TEAM* and *PPBio* were combined together in the *ForestPlots.Net* database.

Details of the design and capabilities of the *ForestPlots.Net* system is presented in "ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data" (Lopez-Gonzalez et al. 2011).

"The ForestPlots.net web application was designed primarily as a repository for long-term intact tropical forest inventory plots, where trees within an area are individually identified, measured and tracked through time."

Of the three sets of ground plot data, the data from *RAINFOR* and *ATDN* were already available in the *ForestPlots.Net* database.

The plot data from the TEAM and PPBio projects were downloaded and imported into the ForestPlots.Net database manually.

A permanent archive of the combined field plot data is stored in the *Forest-Plots.Net* database as a publically available dataset¹ and is available in the supporting information for the paper.

3.1.4 AGB data

The AGB data for the forest plots were calculated using a SQL query provided by the ForestPlots.Net system which implements the tropical forest model described in "Tree allometry and improved estimation of carbon stocks and balance in tropical forests" (Chave et al. 2005). The results of the AGB calculation for each forest plot are included in the combined field plot dataset stored in the ForestPlots.Net database.

The paper refers to a number of maps derived from the field plot data and other sources which were generated as part of the analysis:

- Kriged map of mean wood density (ρ) .
- Ratio of diameter (D) to tree height (H) Feldpausch et al. 2012.
- Kriged map of basal area.
- Kriged map of AGB using D and species-specific ρ , and a regional height model $(K_{DH\rho})$.

¹http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1

- Kriged map of AGB using D and species-specific ρ , but a pan Amazonian height model $(K_{D\rho})$.
- Kriged map of AGB using D, regional height models and ρ , but with ρ fixed at 0.63 (K_{DH}).
- Kriged map of AGB using D, pan-Amazonian height model, and ρ fixed at 0.63 (K_D).
- AGB map from Saatchi et al. 2011 (RS1).
- AGB map from Baccini et al. 2012 (RS2).
- Difference between RS1 and $K_{DH\rho}$.
- Difference between RS2 and $K_{DH\rho}$.
- Difference between RS1 and RS2.

These derived datasets and maps are not available in the supporting information for the paper.

The AGB data derived from two remote-sensing-derived maps, Saatchi et al. 2011 and Baccini et al. 2012 are not available in the supporting information for the paper.

4 AstroTrop requirements

Based on the *AstroTrop* use cases we have studied so far it is clear that data discovery forms a significant part of the requirements for *AstroTrop*.

4.1 External data

In many of the use cases a significant part of the source material for the use case has come from outside the *AstroTrop* community.

For example, both the Saatchi et al. 2011 and Baccini et al. 2012 datasets used in the Mitchard et al. 2014 use case came from external data sources, NASA Jet Propulsion Laboratory and Woods Hole Research Center respectively.

In the short-term, in order to make this type of external data available as part of the *AstroTrop* data discovery process, it will be necessary for a member of the *AstroTrop* community to register and curate the *AstroTrop* metadata describing the external data.

In the longer-term, the ideal solution would be to encourage external data providers like NASA Jet Propulsion Laboratory and Woods Hole Research Center to join the AstroTrop community and participate in the development of the standards and web service interfaces for data sharing and discovery.

It is worth noting that a number of NASA projects are active members of the IVOA, participating in the working groups and conferences and contributing towards developing the IVOA standards.

4.2 Internal data

A number of the *AstroTrop* use cases require access to data provided by members of the *AstroTrop* community. Promoting and facilitating this kind of data sharing and re-use of results within the *AstroTrop* community is one of the key goals of the *AstroTrop* project.

In order to support this activity, the AstroTrop system needs to enable individual members of the AstroTrop community to publish metadata describing their datasets in the AstroTrop system.

Once this metadata is available within the *AstroTrop* system, it enables other members of the *AstroTrop* community to discover and use the data as source material for their own research.

5 IVOA software

In both cases, the requirements for the data discovery process are that the users are able to specify an area of interest and the type of data they are interested in and then gradually narrow the search criteria in response to the data discovery results until they find the data they are interested in.

Based on this outline we can begin to evaluate how well the *IVOA* and *AstroGrid* software meets the *AstroTrop* requirements and compare this with equivalent *Geographic Information System* (*GIS*) software available.

At first glance, the IVOA and AstroTrop data discovery processes are very similar. Suggesting that the IVOA and AstroGrid software should be a good fit for the AstroTrop requirements.

However, there are a number of issues that may mean that the IVOA and AstroGrid software are not the best solution for meeting the AstroTrop requirements.

5.0.1 Design issues

5.0.2 Data models

One issue is that a significant part of the IVOA metadata structure relies on a number of domain specific astronomy terms and concepts, making it difficult to apply the IVOA metadata structure to data from a different domain.

Although it would be possible to remove the domain specific terms and concepts from the *IVOA* data model and replace them with a set of terms that were more suited to the *AstroTrop* domain. Doing this piece at a time, gradually evolving a new metadata data model for the *AstroTrop* project would be a non-trivial undertaking involving a significant commitment of time and resources.

It is worth noting that the IVOA ObsCore data model that forms the basis of the IVOA data discovery process is the result of 10 years' work by the IVOA working groups to define a common data model for astronomy observations. It

would be likely to take a similar length of time for the *AstroTrop* community to develop an equivalent data model from scratch.

With this in mind, it would probably be more practical to base the *AstroTrop* metadata on existing data models and data description techniques that are already in use within the *AstroTrop* community or that has been developed for domains similar to *AstroTrop*.

Examples of these are the World file GIS metadata and Ecological Metadata Language~(EML) metadata formats.

The World file GIS metadata format provides a simple way of annotating an existing map or raster image with GIS location metadata.

The World file format consists of a plain text file format containing details of the location, scale and rotation of a map or raster image.

Both of the Saatchi et al. 2011 and Baccini et al. 2012 remote sensing datasets provide $World\ file$ metadata using the example.tfw convention to associate the metadata with the GTIF maps.

This is a simple example of an established convention within the GIS community for linking GIS metadata to datasets or maps.

At the other end of the scale, *EML* is a detailed set of specifications for metadata describing ecological datasets, based on work done by the Ecological Society of America and associated efforts "Nongeospatial metadata for the ecological sciences" (Michener et al. 1997).

EML is implemented as a series of XML document types that can be used to describe different aspects of an ecological dataset.

These are just two examples of metadata data models and data description techniques that are already in use within the GIS and Ecology domains.

This highlights a significant opportunity for the AstroTrop community to identify the existing metadata datamodels and data description techniques already in use by members of the AstroTrop community and to work together to define a common set of interoperable models and techniques that best describe the data used by the AstroTrop community.

5.0.3 Data owners

A second issue with the *IVOA* and *AstroGrid* metadata *Registry* and data discovery tools concerns the allocation of roles and responsibilities for managing the metadata within the *Registry*, and the way these reflect the structure of the *IVOA* and the members involved in developing the *Registry*.

Historically, the most active contributors to the development of the *IVOA* standards and the *AstroGrid* software have been primary data providers within the international and UK astronomy communities. Many of these represent large scale data providers responsible for publishing and curating primary science archives for telescope surveys or satellite missions.

In the AstroTrop domain these are equivalent to the upstream data providers who publish the original satellite remote sensing data, such as the Landsat data archive or the $Long\ Term\ Archive\ (LTA)$ of remote sensing data published by by the USGS.

This has influenced the way that the *IVOA* and *AstroGrid* software and services have been developed. In particular, the priority has been to concentrate on providing tools and services for publishing the large primary source datasets.

This emphasis on the larger data providers has meant that the curation of the dataset metadata was seen as a system administrator role. As a result, many of the current tools for managing and curating datasets are designed around a single system administrator role managing the metadata for an entire service, rather that individual researchers managing the metadata for their own data.

In contrast, in the *AstroTrop* use cases the hope is that a significant portion of the data in the system will be provided by and curated by individual researchers or small research groups. For example, the results and supplementary data for the (Mitchard et al. 2014) paper would be published and curated by the members of the research team themselves.

6 Alternative software

The design issues identified with the *IVOA* software would prevent using it as the basis for developing the *AstroTrop* system.

It should be possible to gradually replace the *ObsCore* data model in the *IVOA* software with a new data model designed for *AstroTrop*, and it should be possible to develop a new user interface and permission infrastructure to enable individual users to publish and curate their own data.

However, bearing in mind the level of resources these changes would require, it may be useful to compare the data discovery capabilities and features provided by the IVOA and AstroGrid software with the equivalent capabilities of some of the current GIS based systems which are designed to handle geographical and ecological data.

6.1 Global Index of Vegetation-Plot Databases

The Global Index of Vegetation-Plot Databases (GIVD) system is a complex registry of metadata describing databases of vegetation plot data from around the world.

The GIVD system contains records for over 200 databases and 3 million individual vegetation plots.

Three of the datasets used in our use cases are listed in the ${\it GIVD}$ system:

- [GIVD:00-00-001] 2 ForestPlots.Net.
- [GIVD:SA-BR-001] 3 PPBio.
- [GIVD:00-00-002] 4 TEAM.

²http://www.givd.info/ID/00-00-001

³http://www.givd.info/ID/SA-BR-001

⁴http://www.givd.info/ID/00-00-002

In "The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science" (Dengler et al. 2011) the *GIVD* project team describe the system architecture and some plans for the future to aggregate different types of data from external sources.

"Our longer-term vision is to develop GIVD in ways similar to Metacat (Jones et al. 2006), so that, ultimately, users who query GIVD will not only receive information on which databases contain data suitable for the intended analyses, but they will also discover other data from distributed databases, with GIVD acting as the central node."

This is broadly similar to the *VO* architecture of distributed datasets and to the *'interconnected metadata collections approach'* described in "The new bioinformatics: integrating ecological data from the gene to the biosphere" (Jones et al. 2006).

However, the current emphasis is focussed on providing a human interactive search facility, with the *GIVD* system acting as the central node. The current plans do not include providing a machine readable web service interface to enable *GIVD* system itself to be used as a component in a larger distributed system.

6.2 PPBio Information System

In "The Brazilian Program for Biodiversity Research (PPBio) Information System" (Pezzini et al. 2012) the PPBio team describe the role of the data manager and the metadata collection processes developed as part of the PPBio Information System.

They also describe the transition from an initial flat file data storage system, to a new system based on *Metacat*.

"To facilitate data searches, all the metadata were converted to XML, and the PPBio has installed a METACAT server to integrate with the Knowledge Network for Biocomplexity (KNB), a network which aims to assist ecological and environmental research."

This move towards open standards for both the metadata (*EML*) and the service interfaces (*Metacat*) enables the *PPBio* Information System to become part of a larger distributed system.

6.3 Knowledge Network for Biocomplexity

The Knowledge Network for Biocomplexity (KNB) is a network designed to:

"facilitate ecological and environmental research"

by enabling researchers to:

"share, discover, access and interpret complex ecological data."

The KNB system is based on a set of $Open\ Source$ software and standards developed and maintained as part of the KNB project:

- The Morpho data management tools.
- The rDataONE R package for accessing *DataONE* repositories.
- The *Metacat* metadata database.
- The Ecological Metadata Language (EML) metadata language.

6.3.1 Metacat

Metacat is a data management tool that provides a repository for managing data and metadata in a single system:

"Metacat is a repository for data and metadata (documentation about data) that helps scientists find, understand and effectively use data sets they manage or that have been created by others."

Metacat uses the EML metadata data model and vocabulary to describe datasets in the network.

In some cases the Metacat system stores both the metadata and actual data itself, e.g. $Tree\ crown\ allometries$, $Piedmont\ and\ Southern\ Appalachians\ 2001-2004^5$.

In other cases the *Metacat* system only stores the metadata, referring to data that is stored elsewhere, e.g. *Tree crown allometries, Piedmont and Southern Appalachians 2001-2004* ⁶.

This would be a good match for the *AstroTrop* requirements and use cases. In some cases, the *AstroTrop* system needs to store both the data and the metadata, e.g the results and supplementary data for (Mitchard et al. 2014).

In this example, a member of the team working on (Mitchard et al. 2014) would store the results and supplementary data in the *AstroTrop* system together with the metadata describing their data.

In other cases, the *AstroTrop* system would only store the metadata, along with a refence to the data stored in an external system, e.g. the (Saatchi et al. 2011) and (Baccini et al. 2012) source material datasets used by (Mitchard et al. 2014).

In this example, a member of the team working on (Mitchard et al. 2014) would enter the metadata details of the (Saatchi et al. 2011) and (Baccini et al. 2012) datasets into the *AstroTrop* system, but the actual datasets would remain with their original publishers, *NASA Jet Propulsion Laboratory* and *Woods Hole Research Center* respectively.

All three datasets would appear to be within the same (virtual) system. Enabling *AstroTrop* users to discover the (Saatchi et al. 2011) and (Baccini et al. 2012) remote sensing datasets alongside the results and all of the supplementary data for the (Mitchard et al. 2014) paper.

⁵https://knb.ecoinformatics.org/#view/doi:10.5063/AA/mdietze.3.2

⁶https://knb.ecoinformatics.org/#view/doi:10.5063/AA/mdietze.3.2

6.4 Data Observation Network

Metacat and the KNB project is part of the Data Observation Network (DataONE) project.

The *DataONE* project is part of the *National Science Foundation (NSF)* funded *DataNet (DataNet)* programme to build an infrastructire that provides open, persistent, robust, and secure access to Earth observational data.

"The DataONE project is a collaboration among scientists, technologists, librarians, and social scientists to build a robust, interoperable, and sustainable system for preserving and accessing Earth observational data at national and global scales. Supported by the U.S. National Science Foundation, DataONE partners focus on technological, financial, and organizational sustainability approaches to building a distributed network of data repositories that are fully interoperable, even when those repositories use divergent underlying software and support different data and metadata content standards."

The *DataONE* architecture is based on a set of top level *Coordinating Nodes* and individual *Member Nodes* located at each participating institute or organisation

The top level *Coordinating Nodes* provide a replicated cataloge of the data in the *Member Nodes*, enabling researchers to search for and discover data across the whole network.

The individual $Member\ Nodes$ at each institute enable researchers to publish data to the whole DataONE network.

This hierarchical structure is similar to the VO architecture of a global Registry containing metadata describing datasets and services in the VO and the 'interconnected metadata collections approach' described in "The new bioinformatics: integrating ecological data from the gene to the biosphere" (Jones et al. 2006).

6.5 Geospatial Platform

The Geospatial Platform (FGDC) Geospatial Platform is designed to:

"provide a suite of well-managed, highly available, and trusted geospatial data, services, and applications for use by Federal agencies-and their State, local, Tribal, and regional partners."

The Geospatial Platform system brings together metadata standards, software and services that provide a set of features which are similar to those that the AstroTrop aims to provide.

- Map Viewer.
- Trusted Datasets.

- Multiple Basemaps.
- Collaborative Groups.
- Editable Layers.

6.6 Comprehensive Knowledge Archive Network

A key component of the Geospatial Platform system is the Comprehensive Knowledge Archive Network (CKAN) service, which provides the main metadata and data repository for the system.

Development of CKAN data management system (DMS) is managed by the $Open\ Knowledge$ network.

CKAN is used to power official data portals by national and local governments in the UK, Brazil, the Netherlands, Austria, the US.

Examples of science based CKAN sites:

- University of Bristol Research Data Repository⁷.
- Danube Reference Data and Service Infrastructure⁸.
- National Energy Technology Laboratory Energy Data eXchange⁹.
- National Geothermal Data System ¹⁰.
- National Oceanic and Atmospheric Administration data catalog¹¹.

As with the Metacat system, CKAN is able to store the data along with the metadata describing it, or just store the metadata about a data resource held in an external system.

This matches the two use cases described above, where members of a research team would store their results and supplementary data in the *AstroTrop* system together with the metadata describing the data, or they would enter the metadata for an external dataset stored in remote repository.

As with the Metacat system, CKAN is designed to function as a node in a federated network of services, using a metadata harvesting mechanism to bring together metadata about resources in other nodes.

This model of using distributed federation of collaborating services is similar to the *IVOA* and *AstroGrid* architecture and the *'interconnected metadata collections approach'* described in "The new bioinformatics: integrating ecological data from the gene to the biosphere" (Jones et al. 2006).

⁷http://data.bris.ac.uk/data/

⁸http://drdsi.jrc.ec.europa.eu/

⁹https://edx.netl.doe.gov/about

¹⁰http://geothermaldata.org/

¹¹https://data.noaa.gov/dataset

7 IVOA process

- ** TODO ** Need more details here
 The thing we want to keep from *IVOA* and *AstroGrid*.
 - Scientists and engineers from the community members.
 - Specialist working groups looking at specific areas.
 - Development based on open source model.
 - Standards evolve as a result of public discussion.
 - Small meetings focussed on specific technical details.
 - Large meetings focussed on interoperability and standards.

8 Conclusion

8.1 Core software

For reasons outline above, the *AstroGrid* software may not be the best solution for meeting the *AstroTrop* requirements. It may be more practical to base the *AstroTrop* system on one of the *GIS* based systems such as *Metacat* and *CKAN*.

Both Metacat and CKAN already provide support for the GIS and EML metadata models.

In addition, both Metacat and CKAN are involved in large scale cross disciplinary data management projects.

- *Metacat* is part of the *DataONE* project, which is specifically aimed at building the infrastructure for earth observational data.
- CKAN is used in a number of national Data. Gov projects, in particular the FGDC Geospatial Platform system which is specifically aimed at handling geospatial data.

A number of the *AstroTrop* science cases are based on remote sensing data from sources such as *Landsat* and on processed data products from groups such as *JPL* and *WHRC*.

Ideally, in the long term, the best way to support these *AstroTrop* science cases would be to encourage these external data providers to join the *AstroTrop* community and adopt the same metadata and service standards for data discovery and data access.

Basing the AstroTrop system on software that is already being used by projects that handle earth observational and geospatial data and use the GIS and EML metadata models is likely to make it easier encourage data providers such as JPL and WHRC to participate.

8.2 Project structure

However, that said, we strongly recomend adopting the political structure and development processes from the *IVOA* and *AstroGrid* projects.

The AstroGrid project succeded in its goal of delivering a VO system for the UK astronomy community, and as one of the founding members of the IVOA played a significant part in establishing the IVOA structure and processes.

Over 10 years after it was established the *IVOA* is still an active and thriving community of scientists and engineers working on developing the next generation of servces and specifications needed to support the latest research techniques and for handling and processing the huge data volumes the next generation of telescopes and satelite missions will generate.

Much of that success is due to the structures and processes put implace early in the AstroGrid and IVOA projects.

8.3 Next steps

A National *OpenData* projects using CKAN

- Argentina (http://datospublicos.gob.ar/)
- Austria (https://www.data.gv.at/)
- Australia (http://data.gov.au/)
- Canada (http://open.canada.ca/en)
- European Union (http://open-data.europa.eu/en/data/)
- Germany (https://www.govdata.de/)
- Italy (http://www.dati.gov.it/)
- Netherlands (https://data.overheid.nl/)
- Norway (http://data.norge.no/)
- Ireland (http://data.gov.ie/)
- Romanina (http://data.gov.ro/)
- Slovakia (http://data.gov.sk/)
- Switzerland (http://opendata.admin.ch/)
- Uganda (http://www.data.ug/)
- UK (http://data.gov.uk/)
- USA (http://www.data.gov/)

References

- AGB. Above Ground Biomass. URL: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf.
- ATDN. Amazon Tree Diversity Network. URL: http://web.science.uu.nl/Amazon/ATDN/.
- AstroGrid. URL: http://www.astrogrid.org/.
- AstroTrop. URL: http://www.astrotrop.org/.
- Baccini, A. et al. (2012). "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps". In: *Nature Climate Change* 2 (3), 182–185. DOI: 10.1038/nclimate1354. URL: http://www.nature.com/nclimate/journal/v2/n3/full/nclimate1354.html.
- PPBio. Brazilian Program for Biodiversity Research. URL: http://www.teamnetwork.org/.
- Chave, J. et al. (2005). "Tree allometry and improved estimation of carbon stocks and balance in tropical forests". In: *Oecologia* 145 (1), pp. 87-99. DOI: 10.1007/s00442-005-0100-x. URL: http://link.springer.com/article/10.1007/s00442-005-0100-x.
- CKAN. Comprehensive Knowledge Archive Network. URL: http://ckan.org/. DRDSI. Danube Reference Data and Service Infrastructure. URL: http://drdsi.jrc.ec.europa.eu/.
- DataONE. Data Observation Network. URL: https://www.dataone.org/.
- Data. Gov. URL: http://www.data.gov/.
- DataNet. URL: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id= 503141
- Dengler, Jürgen et al. (2011). "The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science". In: Journal of Vegetation Science 22 (4), pp. 582-597. DOI: 10.1111/j.1654-1103.2011.01265.x. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2011.01265.x/abstract.
- Dietze, Michael, Michael Wolosin, and James Clark (2004). Tree crown allometries, Piedmont and Southern Appalachians 2001-2004. URL: https://knb.ecoinformatics.org/#view/doi:10.5063/AA/mdietze.3.2.
- Earth Explorer. URL: https://lta.cr.usgs.gov/earth_explorer.
- EML. Ecological Metadata Language. URL: https://en.wikipedia.org/wiki/Ecological_Metadata_Language.
- XML. Extensible Markup Language. URL: http://www.w3.org/XML/.
- FGDC. Federal Geographic Data Committee. URL: https://www.fgdc.gov/.
- Feldpausch, T. R. et al. (2012). "Tree height integrated into pantropical forest biomass estimates". In: *Biogeosciences* 9 (8), 3381-3403. DOI: 10.5194/bg-9-3381-2012. URL: http://www.biogeosciences.net/9/3381/2012/bg-9-3381-2012.html.
- ForestPlots.Net. URL: http://www.forestplots.net/.
- Kriged. Gaussian process regression. URL: https://en.wikipedia.org/wiki/ Kriging.

```
GIS. Geographic Information System. URL: http://en.wikipedia.org/wiki/Geographic_information_system.
```

Geospatial Platform. URL: http://www.geoplatform.gov/.

GTIF. GeoTIFF. URL: http://trac.osgeo.org/geotiff/.

GIVD. Global Index of Vegetation-Plot Databases. URL: http://www.givd.info/.

GloVis. Global Visualization Viewer. URL: https://lta.cr.usgs.gov/glovis. MOC. HEALPix Multi-Order Coverage Map. URL: http://www.ivoa.net/documents/MOC/.

IVOA. International Virtual Observatory Alliance. URL: http://www.ivoa.net/.

Registry. IVOA Registry. url: http://www.ivoa.net/documents/RegistryInterface/. SIA. IVOA Simple Image Access. url: http://www.ivoa.net/documents/STA/.

Jones, Matthew B. et al. (2006). "The new bioinformatics: integrating ecological data from the gene to the biosphere". In: *Annual Review of Ecology, Evolution, and Systematics* 37, pp. 519-544. DOI: 10.1146/annurev.ecolsys. 37.091305.110031. URL: http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.37.091305.110031.

KNB. Knowledge Network for Biocomplexity. URL: https://knb.ecoinformatics.org/.

Landsat. Landsat Program. URL: http://landsat.gsfc.nasa.gov/.

LTA. Long Term Archive. URL: https://lta.cr.usgs.gov/about.

Lopez-Gonzalez, Gabriela et al. (2011). "ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data". In: *Journal of Vegetation Science* 22 (4), pp. 610–613. DOI: 10.1111/j.1654-1103.2011. 01312.x. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2011.01312.x/abstract.

machine readable.

Malhi, Y. et al. (2009). "An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)". In: Journal of Vegetation Science 13 (3), pp. 439-450. DOI: 10.1111/j.1654-1103. 2002.tb02068.x. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2002.tb02068.x/abstract.

Metacat. URL: https://knb.ecoinformatics.org/knb/docs/intro.html.

Michener, William K. et al. (1997). "Nongeospatial metadata for the ecological sciences". In: *Ecological Applications* 7 (1), pp. 330-342. DOI: 10.1890/1051-0761(1997)007[0330:NMFTES]2.0.C0;2. URL: http://www.esajournals.org/doi/abs/10.1890/1051-0761%281997%29007%5B0330%3ANMFTES%5D2.0.C0%3B2.

Mitchard, Edward T. A. et al. (2014). "Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites". In: *Global Ecology and Biogeography* 23 (8), pp. 935-946. DOI: 10.1111/geb.12168. URL: http://onlinelibrary.wiley.com/doi/10.1111/geb.12168/abstract.

Morpho. URL: https://www.dataone.org/software-tools/morpho.

JPL. NASA Jet Propulsion Laboratory. URL: http://carbon.jpl.nasa.gov/.

- NASA JPL carbon dataset. URL: ftp://www-radar.jpl.nasa.gov/projects/carbon/datasets/.
- NASA. National Aeronautics and Space Administration. URL: http://www.nasa.gov/.
- NETL. National Energy Technology Laboratory. URL: http://www.netl.doe.gov/.
- NGDS. National Geothermal Data System. URL: http://geothermaldata.org/.
- NOAA. National Oceanic and Atmospheric Administration. URL: http://www.noaa.gov/.
- NSF. National Science Foundation. URL: http://www.nsf.gov/.
- Nature. URL: http://www.nature.com/.
- ObsCore. Observation Data Model Core Components. URL: http://www.ivoa.net/documents/ObsCore/.
- OKFN. Open Knowledge. URL: https://okfn.org/.
- Open Source. URL: https://en.wikipedia.org/wiki/Open_source.
- OpenData. URL: https://en.wikipedia.org/wiki/Open_data.
- Peacock, J et al. (2007). "The RAINFOR database: monitoring forest biomass and dynamics". In: *Journal of Vegetation Science* 18 (4), 535-542. DOI: 10. 1111/j.1654-1103.2007.tb02568.x. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2007.tb02568.x/abstract.
- Pezzini, Flávia Fonseca et al. (2012). "The Brazilian Program for Biodiversity Research (PPBio) Information System". In: *Biodiversity & Ecology* 4 (24), 265-274. DOI: 10.7809/b-e.00083. URL: http://www.biodiversity-plants.de/biodivers_ecol/article_meta.php?DOI=10.7809/b-e.00083.
- PNAS. Proceedings of the National Academy of Sciences of the United States of America. URL: http://www.pnas.org/.
- RAINFOR. Red Amazónica de Inventarios Forestales. URL: http://www.rainfor.org/.
- Saatchi, Sassan S. et al. (2011). "Benchmark map of forest carbon stocks in tropical regions across three continents". In: *Proceedings of the National Academy of Sciences of the United States of America* 108 (24), 9899–9904. DOI: 10.1073/pnas.1019576108. URL: http://www.pnas.org/content/108/24/9899.
- SQL. Structured Query Language. URL: https://en.wikipedia.org/wiki/SQL.
- TEAM. Tropical Ecology Assessment and Monitoring. URL: http://www.teamnetwork.org/.
- University of Bristol. URL: http://www.bris.ac.uk/.
- USGS. U.S. Geological Survey. URL: http://www.usgs.gov/.
- VO. Virtual Observatory. URL: http://www.ivoa.net/.
- WELD. Web-enabled Landsat data. URL: http://landsat.usgs.gov/WELD.php.
- web service. URL: https://en.wikipedia.org/wiki/Web_service.

- $WHRC\ carbon\ dataset.\ {\tt URL:\ http://www.whrc.org/mapping/pantropical/carbon_dataset.html}.$
- WHRC. Woods Hole Research Center. URL: http://www.whrc.org/.
- World file. World file GIS metadata. URL: https://en.wikipedia.org/wiki/World_file.
- ZIP. ZIP archive. URL: https://en.wikipedia.org/wiki/Zip_(file_ format).