

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

requires that the sum of the squares of the errors of the coordinates, or variables measured, shall be a minimum. And since the law of errors in all observations is the same, which law is given by the equation

$$y = \frac{p}{1 + cx^2},$$

(Analyst, p. 51 Vol. V), where y is the probability of the error of magnitude x; therefore, universally, when the constants in an equation or equations, of any number of variables, are to be determined from measured values of the variables, they must be determined by the condition that the sum of the squares of the errors of these measured values shall be a minimum.

DEMONSTRATION OF THE CISSOID.

BY JAMES SIMMONS, JR., BELOIT, WIS.

THE following construction is founded on the definition of the Cissoid given in Olney's General Geometry and Calculus. CO is the fixed line, D the fixed point, CED the right angle, whose side CE = DO. Required to find the locus of its middle point P.

With a center O, and radius CP describe the semicircle. Join O and E, O and F, A and P Draw PH and FG parallel to CO; PI to BD, and produce CE to K.

Since CEJ and DOJ are equal right angles JE = JO, and the triangle OJE is isosceles; ... JEO = JOE; ... OEK = EOK, and the triangle OKE is isosceles.

But PE = AO; ... triangle AKP is isosceles, AP is parallel to OE, and EPO = OAP. Now since OFA = OAF, FO is parallel to PE and OFG = PCI. But since FO = CP, CIP and FGO are equal right triangle and IP = GO, and the point P describes the cissoid according to the definition.

To obtain the equation of the cissoid, make CE = AB = 2a; AH = x; PH = y. Then, from the similar triangles AHP and AOL, we get

But
$$OL = \frac{1}{2}CO = \frac{1}{2}[y + CI(=FG)] = \frac{1}{2} \langle y + \sqrt{[(2a-x)x]} \rangle;$$

 $\therefore x : y :: a : \frac{1}{2} \langle y + \sqrt{[(2a-x)x]} \rangle;$
which gives $y^2 = \frac{x^3}{2a-x}$, the equation of the cissoid.