Examenul național de bacalaureat 2022 Proba E. c) Matematică *M. mate-info*

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$8-6\sqrt{6}+6(\sqrt{6}-1)=8-6\sqrt{6}+6\sqrt{6}-6=$	3 p
	=8-6=2	2p
2.	$f(0) = m, (f \circ f)(0) = 4m$	3 p
	4m = 4, de unde obținem $m = 1$	2p
3.	$3 \cdot 4^x + 4^x = 4$, deci $4 \cdot 4^x = 4$	3 p
	x = 0	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Deoarece cifra zecilor poate fi 1, 2, 3 sau 6, în mulțimea numerelor naturale de două cifre sunt $4 \cdot 10 = 40$ de numere care au cifra zecilor divizor al numărului 6, deci sunt 40 de cazuri favorabile, de unde obținem $p = \frac{40}{90} = \frac{4}{9}$	3 p
5.	a=3a-2	3 p
	<i>a</i> = 1	2p
6.	$A = \frac{\pi}{2}$	2p
	$AC = AB \Rightarrow \mathcal{A}_{\Delta ABC} = \frac{10 \cdot 10}{2} = 50$	3p

1.a)	$A(1) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$A(x) \cdot A(y) = \begin{pmatrix} 1 & -y - x & y^2 + 2xy + x^2 \\ 0 & 1 & -2y - 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 & -(x+y) & (x+y)^2 \\ 0 & 1 & -2(x+y) \\ 0 & 0 & 1 \end{bmatrix} = A(x+y), \text{ pentru orice numere reale } x \text{ și } y$	3p 2p
c)	$A(n) \cdot A(n+1) \cdot A(n+2) \cdot A(n+3) = A(4n+6)$, pentru orice număr natural n	3p
	$4n+6=2n^2 \Leftrightarrow n^2-2n-3=0$ şi, cum n este număr natural, obținem $n=3$	2p
2.a)	$1*0 = \frac{2 \cdot 1}{0+2} + \frac{2 \cdot 0}{1+2} =$	3 p
	=1+0=1	2p

-		Contrai Pagional de l'Ontrei și Evaluate în Educuție	
	b)	$x*0 = \frac{2x}{0+2} + \frac{2 \cdot 0}{x+2} = x \text{, pentru orice } x \in M$	2p
		$0*x = \frac{2 \cdot 0}{x + 2} + \frac{2x}{0 + 2} = x$, pentru orice $x \in M$, deci $e = 0$ este elementul neutru al legii de	3p
		compoziție "*"	
	c)	$x * \frac{4}{x} = \frac{2x}{\frac{4}{x} + 2} + \frac{\frac{8}{x}}{x + 2} = \frac{x^2}{x + 2} + \frac{8}{x(x + 2)} = \frac{x^3 + 8}{x(x + 2)}, \text{ pentru orice } x \in M, x \text{ nenul}$	3p
		$\frac{x^3 + 8}{x(x+2)} = x \text{ si, cum } x \in M, x \text{ nenul, obținem } x = 2$	2p

SUBIECTUL al III-lea

	•	
1.a)	$f'(x) = \frac{e^x - x - x(e^x - 1)}{(e^x - x)^2} =$	3p
	$=\frac{e^x-xe^x}{\left(e^x-x\right)^2}=\frac{e^x\left(1-x\right)}{\left(e^x-x\right)^2},\ x\in\mathbb{R}$	2 p
b)	$f'(x) = 0 \Leftrightarrow x = 1$; pentru orice $x \in (-\infty, 1]$, $f'(x) \ge 0 \Rightarrow f$ este crescătoare pe $(-\infty, 1]$	3 p
	Pentru orice $x \in [1, +\infty)$, $f'(x) \le 0 \Rightarrow f$ este descrescătoare pe $[1, +\infty)$	2p
c)	$\lim_{x \to -\infty} f(x) = 1, \ f(1) = 2 + \frac{1}{e-1}, \ \lim_{x \to +\infty} f(x) = 2$	3 p
	Cum f este continuă, f este strict crescătoare pe $(-\infty,1)$ și f este strict descrescătoare pe $(1,+\infty)$, obținem că, pentru orice $m \in (1,2]$, ecuația $f(x) = m$ are soluție unică	2 p
2.a)	$\int_{1}^{5} \left(f(x) - \sqrt{x^2 + 9} \right) dx = \int_{1}^{5} (3 - x) dx = \left(3x - \frac{x^2}{2} \right) \Big _{1}^{5} =$	3p
	$=15 - \frac{25}{2} - 3 + \frac{1}{2} = 0$	2p
b)	$\int_{0}^{4} \frac{x}{f(x) + x - 3} dx = \int_{0}^{4} \frac{x}{\sqrt{x^{2} + 9}} dx = \int_{0}^{4} \frac{(x^{2} + 9)'}{2\sqrt{x^{2} + 9}} dx = \sqrt{x^{2} + 9} \bigg _{0}^{4} =$	3p
	=5-3=2	2p
c)	$I_n = \int_0^1 \frac{x^n}{f(x)} dx = \int_0^1 \frac{x^n}{3 - x + \sqrt{x^2 + 9}} dx, \text{ pentru orice număr natural nenul } n$	2 p
	$0 \le x \le 1 \Rightarrow 3 - x + \sqrt{x^2 + 9} \ge 3 - x \ge 2 \Rightarrow 0 \le \frac{x^n}{3 - x + \sqrt{x^2 + 9}} \le \frac{x^n}{2}, \text{ deci } 0 \le I_n \le \frac{1}{2(n+1)},$ pentru orice număr natural nenul n și, cum $\lim_{n \to +\infty} \frac{1}{2(n+1)} = 0$, obținem $\lim_{n \to +\infty} I_n = 0$	3 p
	pentru orice număr natural nenul n și, cum $\lim_{n\to+\infty} \frac{1}{2(n+1)} = 0$, obținem $\lim_{n\to+\infty} I_n = 0$	

Examenul național de bacalaureat 2022

Proba E. c)

Matematică M_mate-info

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $8-6\sqrt{6}+6(\sqrt{6}-1)=2$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + m, unde m este număr real. Determinați numărul real m pentru care $(f \circ f)(0) = 4$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3 \cdot 2^{2x} + 4^x = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor divizor al numărului 6.
- 5p 5. În reperul cartezian xOy se consideră dreapta d de ecuație y = 3x 2 și punctul A(a,a), unde a este număr real. Determinati numărul real a, stiind că punctul A apartine dreptei d.
- **5p 6.** Se consideră triunghiul isoscel ABC, cu AB = 10 și $\cos A = 0$. Arătați că aria triunghiului ABC este egală cu 50.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & -x & x^2 \\ 0 & 1 & -2x \\ 0 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Arătați că $A(x) \cdot A(y) = A(x+y)$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul natural n pentru care $A(n) \cdot A(n+1) \cdot A(n+2) \cdot A(n+3) = A(2n^2)$.
 - **2.** Pe mulțimea $M = [0, +\infty)$ se definește legea de compoziție $x * y = \frac{2x}{y+2} + \frac{2y}{x+2}$.
- **5p a)** Arătați că 1*0=1.
- **5p b**) Arătați că e = 0 este elementul neutru al legii de compoziție "*".
- **5p** c) Determinați $x \in M$, x nenul, pentru care $x * \frac{4}{x} = x$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2 + \frac{x}{e^x x}$.
- **5p** a) Arătați că $f'(x) = \frac{e^x(1-x)}{(e^x-x)^2}, x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că, pentru orice $m \in (1,2]$, ecuația f(x) = m are soluție unică.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3 x + \sqrt{x^2 + 9}$.
- **a)** Arătați că $\int_{1}^{5} \left(f(x) \sqrt{x^2 + 9} \right) dx = 0$. **b)** Arătați că $\int_{0}^{4} \frac{x}{f(x) + x 3} dx = 2$.
- c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 \frac{x^n}{f(x)} dx$. Demonstrați că

Examenul național de bacalaureat 2022 Proba E. c) Matematică M_mate-info BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2i(3-i)-6i=6i-2i^2-6i=$	3р
	$= -2 \cdot (-1) = 2$	_
	$=-2\cdot (-1)=2$	2 p
2.	f(-1)=1+m, $f(1)=1-m$, unde m este număr real	2p
	1+m=1-m, de unde obținem $m=0$	3 p
3.	$3^{3x-3} = 3^{2x}$, de unde obţinem $3x - 3 = 2x$	3 p
	x=3	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt $3.4 = 12$ numere cu cifrele mai mici sau	
	egale cu 3, deci sunt 12 cazuri favorabile, de unde obținem $p = \frac{12}{90} = \frac{2}{15}$	3р
5.	B este mijlocul segmentului AC	3 p
	$\frac{x_C + 3}{2} = 1$ și $\frac{y_C + 2}{2} = -1$, de unde obținem $x_C = -1$ și $y_C = -4$	2p
6.	$\sin\frac{\pi}{2} = 1$, $\tan\frac{\pi}{4} = 1$, $\sin\frac{\pi}{6} = \frac{1}{2}$	3p
	$E\left(\frac{\pi}{4}\right) = 1 - 2 \cdot 1 \cdot \frac{1}{2} = 1 - 1 = 0$	2p

	2 p
	3 p
pentru orice număr real x	3р
	_
$(2 \ 0 \ 0)$	
$\begin{vmatrix} 0 & 2 & 0 \end{vmatrix} = 2I_3$, pentru orice număr	
$\begin{pmatrix} 0 & 0 & 2 \end{pmatrix}$	2p
$(1) + 2I_3 = A(x-2) + 2I_3 + 2A(1),$	_
, 3, (, , 3 (, ,	3 p
de unde obtinem $r-2=1$ deci	
, de ande comment x 2-1, deer	2 p
	pentru orice număr real x $ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I_3, pentru orice număr $ $ (x-2) + 2I_3 + 2A(1), $

	Central Pagional de l'Ontrel și Evaluare în Educație	
2.a)	$1*3 = \frac{1 \cdot 3(1+3)}{1 \cdot 3 + 1} =$	3p
	$=\frac{3\cdot 4}{4}=3$	2p
b)	$x*1 = \frac{x \cdot 1 \cdot (x+1)}{x \cdot 1 + 1} = \frac{x(x+1)}{x+1} = x$, pentru orice $x \in M$	2p
	$1*x = \frac{1 \cdot x \cdot (1+x)}{1 \cdot x + 1} = \frac{x(x+1)}{x+1} = x$, pentru orice $x \in M$, deci $e = 1$ este elementul neutru al legii de compoziție, **	3p
c)	$\frac{1}{m} * \frac{1}{n} = \frac{m+n}{mn(mn+1)}; \frac{1}{16} \cdot (m*n) = \frac{1}{16} \cdot \frac{mn(m+n)}{mn+1}, \text{ pentru orice numere naturale nenule } m \text{ si } n$	3 p
	$m^2n^2 = 16$ şi, cum m şi n sunt numere naturale nenule, cu $m \le n$, obținem perechile (1,4) şi (2,2)	2p

SUBIECTUL al III-lea

1.a)	$(2x-3)e^x - (x^2-3x+1)e^x$	_
	$f'(x) = \frac{(2x-3)e^x - (x^2 - 3x + 1)e^x}{(e^x)^2} =$	3 p
	$= \frac{-x^2 + 5x - 4}{e^x} = \frac{(x - 1)(4 - x)}{e^x}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 3x + 1}{e^x} = \lim_{x \to +\infty} \frac{2x - 3}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$	3 p
	Dreapta de ecuație $y=0$, adică axa Ox , este asimptota orizontală spre $+\infty$ la graficul lui f	2p
c)	$f'(x) = 0 \Leftrightarrow x = 1$ sau $x = 4$; pentru orice $x \in (-\infty, 1)$, $f'(x) < 0 \Rightarrow f$ este strict	
	descrescătoare pe $(-\infty,1)$, pentru orice $x \in (1,4)$, $f'(x) > 0 \Rightarrow f$ este strict crescătoare pe	3 p
	(1,4) și pentru orice $x \in (4,+\infty)$, $f'(x) < 0 \Rightarrow f$ este strict descrescătoare pe $(4,+\infty)$	
	Cum $\lim_{x \to -\infty} f(x) = +\infty$, $f(4) = \frac{5}{e^4} < 1$ și funcția f este continuă, obținem că ecuația	2p
	f(x)=n are soluție unică, pentru orice număr natural nenul n	
2.a)	$\int_{0}^{2} \frac{f(x)}{\sqrt{x^{2} + 4}} dx = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big _{0}^{2} =$	3 p
	$=\frac{4}{2}-0=2$	2p
b)	$= \frac{4}{2} - 0 = 2$ $\int_{0}^{\sqrt{5}} f(x) dx = \frac{1}{2} \int_{0}^{\sqrt{5}} (x^{2} + 4)' \sqrt{x^{2} + 4} dx = \frac{1}{3} (x^{2} + 4) \sqrt{x^{2} + 4} \Big _{0}^{\sqrt{5}} =$	3 p
	$=\frac{1}{3}(27-8)=\frac{19}{3}$	2p
c)	$I_n = \int_1^2 \frac{x^n}{x^2 \left(x^2 + 4\right)} dx = \int_1^2 \frac{x^{n-2}}{x^2 + 4} dx$, pentru orice număr natural $n, n \ge 2$	2p
	$I_{n+2} + 4I_n = \int_{1}^{2} \frac{x^{n-2}(x^2 + 4)}{x^2 + 4} dx = \frac{x^{n-1}}{n-1} \Big _{1}^{2} = \frac{2^{n-1} - 1}{n-1} , \text{ deci } \frac{2^{n-1} - 1}{n-1} = \frac{3}{n-1} , \text{ de unde obţinem}$	3 p
	$2^{n-1} = 4$, deci $n = 3$, care convine	

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_mate-info*

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 2i(3-i)-6i=2, unde $i^2=-1$
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx$, unde m este număr real. Determinați numărul real m pentru care f(-1) = f(1).
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $27^{x-1} = 9^x$.
- **5p 4.** Determinați probabilitatea ca, alegând un element din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele mai mici sau egale cu 3.
- **5p 5.** În sistemul cartezian xOy se consideră punctele A(3,2) și B(1,-1). Determinați coordonatele punctului C pentru care $\overrightarrow{AC} = 2\overrightarrow{BC}$.
- **5p 6.** Se consideră expresia $E(x) = \sin 2x 2 \operatorname{tg} x \cdot \sin \frac{2x}{3}$, unde $x \in \left(0, \frac{\pi}{2}\right)$. Arătați că $E\left(\frac{\pi}{4}\right) = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} x & 1-x & 1 \\ 1-x & x & 1 \\ 1 & 1 & 0 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0)) = 2$.
- **5p b**) Arătați că $A(1) \cdot A(x) A(x-1) = 2I_3$, pentru orice număr real x.
- **5p** c) Determinați numărul real x pentru care $A(1) \cdot A(1) \cdot A(x) = 3A(1) + 2I_3$.
 - **2.** Pe mulțimea $M = [0, +\infty)$ se definește legea de compoziție $x * y = \frac{xy(x+y)}{xy+1}$.
- **5p a**) Arătați că 1*3=3.
- **5p** | **b**) Arătați că e=1 este elementul neutru al legii de compoziție "*".
- **5p** c) Determinați perechile (m,n) de numere naturale nenule, cu $m \le n$, pentru care $\frac{1}{m} * \frac{1}{n} = \frac{1}{16} \cdot (m * n)$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 3x + 1}{e^x}$.
- **5p** a) Arătați că $f'(x) = \frac{(x-1)(4-x)}{e^x}, x \in \mathbb{R}$.
- **5p** b) Arătați că axa Ox este asimptotă orizontală spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că ecuația f(x) = n are soluție unică, pentru orice număr natural nenul n.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x\sqrt{x^2 + 4}$.
- **5p** a) Arătați că $\int_{0}^{2} \frac{f(x)}{\sqrt{x^2 + 4}} dx = 2$.

5p b) Arătați că
$$\int_{0}^{\sqrt{5}} f(x) dx = \frac{19}{3}$$
.

5p c) Pentru fiecare număr natural
$$n$$
, $n \ge 2$, se consideră numărul $I_n = \int_1^2 \frac{x^n}{f^2(x)} dx$. Determinați numărul natural n , $n \ge 2$, pentru care $I_{n+2} + 4I_n = \frac{3}{n-1}$.

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Model

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(6-3\sqrt{3})(2+\sqrt{3})=3(2-\sqrt{3})(2+\sqrt{3})=3=$	3 p
	$=(\sqrt{3})^2$, deci numerele $6-2\sqrt{3}$, $\sqrt{3}$ și $2+\sqrt{3}$ sunt termeni consecutivi ai unei progresii geometrice	2p
2.	Axa Ox este tangentă graficului funcției $f \Leftrightarrow \Delta = 0 \Leftrightarrow m^2 - 4 = 0$	3р
	m = -2 sau $m = 2$	2p
3.	$25 \cdot 5^x - 5^x = 24$, deci $5^x = 1$	3p
	x = 0	2p
4.	Mulțimea numerelor naturale de două cifre distincte are 81 de elemente, deci sunt 81 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre distincte sunt $3 \cdot 9 = 27$ de numere care au cifra zecilor multiplu de 3, deci sunt 27 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{3}$	1p
5.	$\overrightarrow{MA} + 2\overrightarrow{MA} + 2\overrightarrow{AB} + 3\overrightarrow{MC} = \overrightarrow{0}$, deci $3(\overrightarrow{MA} + \overrightarrow{MC}) + 2\overrightarrow{AB} = \overrightarrow{0}$ și, cum $\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MD}$, obținem $\overrightarrow{MD} = -\frac{1}{3}\overrightarrow{AB}$	3р
	Vectorii \overrightarrow{MD} şi \overrightarrow{AB} sunt coliniari, deci dreptele MD şi AB sunt paralele	2p
6.	Unghiul C are măsura egală cu 90° , deci triunghiul ABC este dreptunghic în C	2p
	$\sin B = \frac{\sqrt{3}}{2}$ şi, cum $AC = 3$, obţinem $AB = 2\sqrt{3}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det B = \begin{vmatrix} 1 & 0 & 1 \\ 0 & i & 0 \\ -2 & 0 & -1 \end{vmatrix} = 1 \cdot i \cdot (-1) + 0 + 0 - (-2) \cdot i \cdot 1 - 0 - 0 =$	3p
	=-i+2i=i	2p
b)	Cum $B \cdot B = -I_3$, $A(z_1) \cdot A(z_2) = (aI_3 + bB)(cI_3 + dB) = acI_3 + adB + bcB + bdB \cdot B =$	3p
	$=(ac-bd)I_3+(ad+bc)B=A(z_1z_2)$, pentru orice $z_1=a+ib$ și $z_2=c+id$, cu a , b , c și d numere reale	2p
c)	$A(1+i) \cdot A(2+i) \cdot A(3+i) \cdot A(1-i) \cdot A(2-i) \cdot A(3-i) = A((1+i)(2+i)(3+i)(1-i)(2-i)(3-i)) = A(1+i) \cdot A(2+i) \cdot A(3+i) \cdot A(3-i) = A(1+i)(3+i)(3+i)(3+i)(3-i) = A(1+i)(3+i)(3+i)(3+i)(3+i)(3+i)(3+i)(3+i)(3$	2p
	$= A((1+i)(1-i)(2+i)(2-i)(3+i)(3-i)) = A(2\cdot5\cdot10) = 100I_3, \text{ deci } n=100$	3 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

2.a)	$x * y = \log_2(2^x(2^y - 2) - 2^{y+1} + 4 + 2) =$	3p
	$= \log_2(2^x(2^y - 2) - 2(2^y - 2) + 2) = \log_2((2^x - 2)(2^y - 2) + 2), \text{ pentru orice } x, y \in M$	2p
b)	$x*e=x$ pentru orice $x \in M$, unde e este elementul neutru al legii de compoziție, deci $(2^x-2)(2^e-3)=0$ pentru orice $x \in M$, de unde obținem $e=\log_2 3 \in M$	3p
	Cum $(\log_2 3) * x = x$ pentru orice $x \in M$, obținem că $e = \log_2 3$ este elementul neutru al legii de compoziție ", *"	2p
c)	$x * x * x = \log_2\left(\left(2^x - 2\right)^3 + 2\right)$, pentru orice $x \in M$	3 p
	$(x*x*x) - 3x = \log_2\left(\frac{(2^x - 2)^3 + 2}{2^{3x}}\right) = \log_2\left(1 - \frac{6(2^x - 1)^2}{2^{3x}}\right) < 0, \text{ pentru orice } x \in M, \text{ de}$	2p
	unde obținem că $x * x * x < 3x$, pentru orice $x \in M$	

~ ~ ~ ~ ~	(30 th pi	
1.a)	$f'(x) = (x^3 + 3x + 1)'e^{-x} + (x^3 + 3x + 1)(e^{-x})' = (3x^2 + 3)e^{-x} - (x^3 + 3x + 1)e^{-x} =$	3p
	$= \left(-x^3 + 3x^2 - 3x + 2\right)e^{-x} = \left(2 - x\right)\left(x^2 - x + 1\right)e^{-x}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \left(\frac{f(x) - e^{-x}}{f(x) + e^{-x}} \right)^{f(x)} e^{x} = \lim_{x \to +\infty} \left(\frac{x^{3} + 3x}{x^{3} + 3x + 2} \right)^{x^{3} + 3x + 1} = \lim_{x \to +\infty} \left(\left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{x^{3} + 3x + 2}{-2}} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} + 3x + 2}}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2} = \lim_{x \to +\infty} \left(\frac{1 + \frac{-2}{x^{3} $	3р
	$= e^{\lim_{x \to +\infty} \frac{-2(x^3 + 3x + 1)}{x^3 + 3x + 2}} = e^{-2}$	2p
c)		2p
	g este continuă și, cum pentru orice $x \in (-\infty,0)$, $g'(x) = -3x^2 - 3 < 0 \Rightarrow g$ este strict descrescătoare pe $(-\infty,0)$ și pentru orice $x \in (0,+\infty)$, $g'(x) = 3x^2 + 3 > 0 \Rightarrow g$ este strict	3p
	crescătoare pe $(0,+\infty)$, obținem că funcția g are un singur punct de extrem	
2.a)	$\int_{4}^{6} \frac{f(x)}{\ln(x-1)} dx = \int_{4}^{6} x dx = \frac{x^{2}}{2} \Big _{4}^{6} =$	3р
	=18-8=10	2p
b)	F este o primitivă a lui f , deci $F'(x) = f(x) = x \ln(x-1)$, de unde obținem că $F'(x) > 0$, pentru orice $x \in (2, +\infty)$, deci F este strict crescătoare pe $(2, +\infty)$	3p
	Cum $2 < \sqrt{7} < 3$, obținem că $F(\sqrt{7}) < F(3)$	2p
c)	$\int_{3}^{5} f(x) dx = \int_{3}^{5} \left(\frac{x^{2} - 1}{2} \right) \ln(x - 1) dx = \frac{x^{2} - 1}{2} \ln(x - 1) \Big _{3}^{5} - \frac{1}{2} \int_{3}^{5} \frac{(x - 1)(x + 1)}{x - 1} dx =$	3p
	$= 12 \ln 4 - 4 \ln 2 - \frac{1}{2} \left(\frac{x^2}{2} + x \right) \Big _{3}^{5} = 20 \ln 2 - 5 = 5 (4 \ln 2 - 1), \text{ de unde obținem } m = 5$	2p

Matematică M mate-info

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numerele $6-3\sqrt{3}$, $\sqrt{3}$ și $2+\sqrt{3}$ sunt termeni consecutivi ai unei progresii geometrice.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx + 1$, unde m este număr real. Determinați numerele reale m pentru care axa Ox este tangentă graficului funcției f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $5^{x+2} = 5^x + 24$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre distincte, acesta să aibă cifra zecilor multiplu de 3.
- **5p 5.** Se consideră triunghiul ABC, punctul D mijlocul laturii AC și punctul M astfel încât $\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{MC} = \overrightarrow{0}$. Arătați că dreptele MD și AB sunt paralele.
- **5p 6.** Calculați lungimea laturii AB a triunghiului ABC, în care AC = 3 și măsurile unghiurilor A și B sunt de 30°, respectiv 60°.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & i & 0 \\ -2 & 0 & -1 \end{pmatrix}$ și $A(z) = aI_3 + bB$, unde z = a + ib, cu
- a și b numere reale și $i^2 = -1$.
- **5p** a) Arătați că $\det B = i$.
- **5p b)** Demonstrați că $A(z_1) \cdot A(z_2) = A(z_1 z_2)$, pentru orice numere complexe z_1 și z_2 .
- **5p** c) Determinați numărul natural n pentru care $A(1+i) \cdot A(2+i) \cdot A(3+i) \cdot A(1-i) \cdot A(2-i) \cdot A(3-i) = nI_3$.
 - **2.** Pe $M = [1, +\infty)$ se definește legea de compoziție asociativă $x * y = \log_2(2^{x+y} 2^{x+1} 2^{y+1} + 6)$.
- **5p** a) Arătați că $x * y = \log_2((2^x 2)(2^y 2) + 2)$, pentru orice $x, y \in M$.
- 5p b) Determinați elementul neutru al legii de compoziție "*".
- **5p** c) Arătați că x * x * x < 3x, pentru orice $x \in M$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x^3 + 3x + 1)e^{-x}$.
- **5p** a) Arătați că $f'(x) = (2-x)(x^2-x+1)e^{-x}, x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \left(\frac{f(x) e^{-x}}{f(x) + e^{-x}} \right)^{f(x) \cdot e^{x}} = e^{-2}$.
- **5p** c) Demonstrați că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \left| \frac{f(x)}{e^{-x}} 1 \right|$ are un singur punct de extrem.

- **2.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x)=x\ln(x-1)$.
- **5p a)** Arătați că $\int_{4}^{6} \frac{f(x)}{\ln(x-1)} dx = 10$.
- **5p** b) Demonstrați că $F(\sqrt{7}) < F(3)$, pentru orice primitivă F a funcției f.
- **5p** c) Determinați numărul real m, știind că $\int_{3}^{5} f(x) dx = m(4 \ln 2 1)$.

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(z_1+i)(z_2-1)=(1-2i+i)(2+i-1)=(1-i)(1+i)=$	2p
	$=1-i^2=2$	3p
2.	$\Delta < 0$ şi, cum $\Delta = 16 - 4m$, obţinem $16 - 4m < 0$	3p
	$m \in (4, +\infty)$	2p
3.	$1 + \log_2(x-2) = \log_2 x$, deci $\log_2 \frac{x}{x-2} = 1$, de unde obținem $\frac{x}{x-2} = 2$	3p
	x = 4, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numărul n din mulțimea A are exact doi multipli în mulțimea A dacă $2n \le 99 < 3n$, de unde obținem că numerele din mulțimea A care au exact doi multipli în mulțimea A sunt 34, 35, 36,, 49, deci sunt 16 cazuri favorabile și $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{16}{90} = \frac{8}{45}$	3 p
5.	P(0,1), unde P este mijlocul segmentului AM	2p
	Segmentele AM și BN au același mijloc, de unde obținem $N(-3,1)$	3 p
6.	$A+B=\pi-C$, deci $\sin C+\cos C=1$	2p
	$\sin^2 C + 2\sin C\cos C + \cos^2 C = 1 \Rightarrow \sin 2C = 0$ şi, cum $C \in (0,\pi)$, obținem $C = \frac{\pi}{2}$, deci triunghiul <i>ABC</i> este dreptunghic	3 p

1.a)	$\det(A(1)) = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 1 & -1 \\ 1 & 3 & 1 \end{vmatrix} = 1 \cdot 1 \cdot 1 + 2 \cdot 3 \cdot 1 + 3 \cdot (-1) \cdot 1 - 1 \cdot 1 \cdot 1 - (-1) \cdot 3 \cdot 1 - 2 \cdot 3 \cdot 1 =$ $= 1 + 6 - 3 - 1 + 3 - 6 - 0$	3p
	=1+6-3-1+3-6=0	2p
b)	$B(a) = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ a & 0 & 0 \end{pmatrix}, \ B(a) \cdot B(a) = \begin{pmatrix} a^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a^2 \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	$B(a) \cdot B(a) \cdot B(a) = \begin{pmatrix} 0 & 0 & a^3 \\ 0 & 0 & 0 \\ a^3 & 0 & 0 \end{pmatrix} = a^3 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = a^3 B(1), \text{ pentru orice număr real } a$	3 p

c)	$\det(A(a)) = 0$; cum $\det(A(a)) = -a^2 + 3a - 2$, obținem $a = 1$, pentru care sistemul este incompatibil, deci nu convine, sau $a = 2$, pentru care sistemul are o infinitate de soluții	2p
	Dacă $a=2$, soluția sistemului este $(x_0,y_0,z_0)=(\alpha-1,-\alpha+1,\alpha)$ și, cum α este număr real, obținem $x_0y_0+y_0z_0+z_0x_0=(\alpha-1)(-\alpha+1)+\alpha(-\alpha+1)+\alpha(\alpha-1)=-(\alpha-1)^2\leq 0$, pentru orice soluție (x_0,y_0,z_0) a sistemului de ecuații, cu x_0 , y_0 și z_0 numere reale	3 p
2.a)		2
	$(-1)*2 = \frac{-1+2}{4 \cdot -1 \cdot 2 + 1} =$	3р
	$=\frac{1}{4\cdot 2+1}=\frac{1}{9}$	2p
b)	$z * 0 = \frac{z + 0}{4 \cdot z \cdot 0 + 1} = z$, pentru orice număr complex z	2p
	$0*z = \frac{0+z}{4 \cdot 0 \cdot z + 1} = z$, pentru orice număr complex z, deci $e = 0$ este elementul neutru al	3 p
	legii de compoziție "*"	
c)	$z * z = \frac{2z}{4 \cdot z^2 + 1}$, pentru orice număr complex z	2p
	$\left \frac{2z}{4 \cdot z ^2 + 1} \right = z \text{si } z \text{ este număr complex nenul, deci } 4 \cdot z ^2 + 1 = 2 \text{ , de unde obținem } z = \frac{1}{2}$	3 p
	și, de exemplu, numerele distincte nenule $\frac{1}{2}$, $-\frac{1}{2}$ și $\frac{i}{2}$ verifică egalitatea dată	

(30 de puncte) SUBIECTUL al III-lea

1.a)	$f'(x) = \frac{\frac{4x^3}{2\sqrt{x^4 + 16}} \cdot x - \sqrt{x^4 + 16}}{x^2} = \frac{2x^4 - x^4 - 16}{x^2\sqrt{x^4 + 16}} =$	3p
	$= \frac{x^4 - 16}{x^2 \sqrt{x^4 + 16}} = \frac{\left(x^2 - 4\right)\left(x^2 + 4\right)}{x^2 \sqrt{x^4 + 16}}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^4 + 16}}{x^2} = \lim_{x \to +\infty} \sqrt{1 + \frac{16}{x^4}} = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{\sqrt{x^4 + 16} - x^2}{x} = \lim_{x \to +\infty} \frac{16}{x \left(\sqrt{x^4 + 16} + x^2\right)} = 0$, deci dreapta de ecuație	3 p
	$y = x$ este asimptota oblică spre $+\infty$ la graficul funcției f	
(c)	$f'(x) = 0 \Leftrightarrow x = 2$; $f'(x) < 0$, pentru orice $x \in (0,2)$ și $f'(x) > 0$, pentru orice $x \in (2,+\infty)$	2p
	$g:(0,+\infty)\to\mathbb{R},\ g(x)=f(x)+f\Big(rac{4}{x}\Big)=2f(x),\ \mathrm{deci}\ g\ \mathrm{este}\ \mathrm{strict}\ \mathrm{descrescătoare}\ \mathrm{pe}\ (0,2)$ și $g\ \mathrm{este}\ \mathrm{strict}\ \mathrm{crescătoare}\ \mathrm{pe}\ (2,+\infty)$ și, cum $g\ \mathrm{este}\ \mathrm{continuă},\ g(2)=4\sqrt{2}$, $\lim_{x\to 0}g(x)=+\infty$ și $\lim_{x\to +\infty}g(x)=+\infty$, obținem că ecuația $g(x)=m$ are exact două soluții $\mathrm{pentru}\ m\in\left(4\sqrt{2},+\infty\right)$	3р

2.a)	$\int_{0}^{3} e^{x} f(x) dx = \int_{0}^{3} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{3} =$	3 p
	$=\frac{27}{3}+3=12$	2p
b)	G este primitivă a funcției $g \Rightarrow G'(x) = g(x)$, deci $G''(x) = g'(x) =$	2p
	$= \frac{e^x (x-1)^2}{(x^2+1)^2} \ge 0$, pentru orice $x \in \mathbb{R}$, deci funcția G este convexă	3р
c)	$\int_{0}^{1} \frac{x^{3}}{\sqrt{e^{x} f(x)}} dx = \int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} \frac{x^{3} + x - x}{\sqrt{x^{2} + 1}} dx = \frac{1}{2} \int_{0}^{1} (x^{2} + 1)' \cdot \left(\sqrt{x^{2} + 1} - \frac{1}{\sqrt{x^{2} + 1}} \right) dx = \int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} \frac{x^{3} + x - x}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} \frac$	
	$= \frac{1}{2} \left(\frac{2(x^2+1)\sqrt{x^2+1}}{3} - 2\sqrt{x^2+1} \right) \Big _{0}^{1} = \frac{2-\sqrt{2}}{3}$	3р
	$\frac{2-\sqrt{2}}{3} = \frac{a-\sqrt{2}}{3}$, de unde obţinem $a=2$	2p

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_mate-info*

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 1 2i$ și $z_2 = 2 + i$. Arătați că $(z_1 + i)(z_2 1) = 2$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 4x + m$, unde m este număr real. Determinați valorile reale ale lui m pentru care f(x) > 0, pentru orice număr real x.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $1 + 2\log_2 \sqrt{x-2} = \log_2 x$.
- **5p 4.** Se consideră mulțimea A, a numerelor naturale de două cifre. Calculați probabilitatea ca, alegând un număr din mulțimea A, acesta să aibă exact doi multipli în mulțimea A.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-2,-2), B(3,1) și M(2,4). Determinați coordonatele punctului N, știind că patrulaterul ABMN este paralelogram.
- **5p 6.** Se consideră triunghiul ABC, în care $\sin(A+B) + \cos C = 1$. Arătați că triunghiul ABC este dreptunghic.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 3 & a \\ 2 & 1 & -1 \\ a & 3 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x + 3y + az = 2 \\ 2x + y - z = -1, \text{ unde } a \text{ este } ax + 3y + z = 1 \end{cases}$

număr real.

- **5p** | **a)** Arătați că $\det(A(1)) = 0$.
- **5p b)** Arătați că $B(a) \cdot B(a) \cdot B(a) = a^3 B(1)$, pentru orice număr real a, unde B(a) = A(a) A(0).
- **5p c)** Demonstrați că, dacă sistemul de ecuații are o infinitate de soluții, atunci $x_0y_0 + y_0z_0 + z_0x_0 \le 0$, pentru orice soluție (x_0, y_0, z_0) a sistemului de ecuații, cu x_0 , y_0 și z_0 numere reale.
 - 2. Pe mulțimea numerelor complexe se definește legea de compoziție $z_1 * z_2 = \frac{z_1 + z_2}{4 \cdot |z_1 z_2| + 1}$.
- **5p a)** Arătați că $(-1)*2 = \frac{1}{9}$.
- **5p b)** Arătați că e = 0 este elementul neutru al legii de compoziție "*".
- **5p** c) Demonstrați că există cel puțin trei numere complexe distincte și nenule care verifică egalitatea |z*z| = |z|.

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{\sqrt{x^4 + 16}}{r}$.
- **5p** a) Arătați că $f'(x) = \frac{(x^2 4)(x^2 + 4)}{x^2 \sqrt{x^4 + 16}}, x \in (0, +\infty).$
- **5p** b) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.

- **5p** c) Determinați valorile reale ale lui m pentru care ecuația $f(x) + f\left(\frac{4}{x}\right) = m$ are exact două soluții.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 + 1}{e^x}$.
- **5p** a) Arătați că $\int_{0}^{3} e^{x} f(x) dx = 12$.
- **5p b)** Arătați că orice primitivă G a funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \frac{1}{f(x)}$ este convexă.
- **5p** c) Determinați numărul real a pentru care $\int_{0}^{1} \frac{x^3}{\sqrt{e^x f(x)}} dx = \frac{a \sqrt{2}}{3}.$

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$5(1+2i)-2i(5-i)=5+10i-10i+2i^2=$	3 p
	$=5+2\cdot (-1)=3$	2p
2.	$f(a) = a^2 - 2a - 3$, deci $a^2 - 2a - 3 = 1 + a^2$	3 p
	-2a = 4, de unde obținem $a = -2$	2p
3.	$2x^2 + 1 = 3^2 \Rightarrow x^2 - 4 = 0$	3p
	x = -2 sau $x = 2$, care convin	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 20 de numere care au cifrele impare și distincte, deci sunt 20 de cazuri favorabile, de unde obținem $p = \frac{20}{90} = \frac{2}{9}$	3 p
5.	$\overrightarrow{AB} = \overrightarrow{DC} \Rightarrow ABCD$ este paralelogram, deci segmentele AC și BD au același mijloc	2p
	Mijlocul segmentului AC are coordonatele $(3,1)$, de unde obținem $D(5,-4)$	3 p
6.	$\sin B = \frac{AC}{BC}$, $\sin C = \frac{AB}{BC}$, deci $AC = 2AB$	2p
	Cum $AB^2 + AC^2 = 100$, obținem $AB = 2\sqrt{5}$	3 p

1.a)	$A(1) = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	= 0 + 0 + 0 - 0 - 0 - (-1) = 1	3 p
b)	$A(x) - I_3 = \begin{pmatrix} x & -x & 0 \\ x & -x & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$ (A(x) - I_3)(A(x) - I_3) = \begin{pmatrix} x^2 - x^2 & -x^2 + x^2 & 0 \\ x^2 - x^2 & -x^2 + x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3, \text{ pentru orice număr } $ real x	3р
c)	$A(x) \cdot A(x) = 2A(x) - I_3$, pentru orice număr real x	2p
	$2A(x)-I_3 = xA(x)-(x-1)I_3 \Leftrightarrow (x-2)(A(x)-I_3)=O_3$, de unde obţinem $x=0$ sau $x=2$	3р

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

2.a)	$0*2 = (0+2)^2 - 2(0-2) - 3 =$	3 p
	=4+4-3=5	2p
b)	$x*(x+1) = 4x^2 + 4x$, pentru orice număr real x	2p
	$4x^2 + 4x = 8 \Leftrightarrow x^2 + x - 2 = 0$, de unde obținem $x = -2$ sau $x = 1$	3 p
c)	$(m+n)^2 - 2(m-n) - 3 = 2mn \Leftrightarrow m^2 + n^2 - 2m + 2n - 3 = 0$	2p
	$(m-1)^2 + (n+1)^2 = 5$ şi, cum m şi n sunt numere naturale, obţinem perechile $(0,1)$, $(2,1)$ şi $(3,0)$	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = (2x-5)\sqrt{x} + (x^2-5x+10) \cdot \frac{1}{2\sqrt{x}} =$	3р
	$= \frac{5x^2 - 15x + 10}{2\sqrt{x}} = \frac{5(x^2 - 3x + 2)}{2\sqrt{x}}, \ x \in (0, +\infty)$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 2$	2p
	$f'(x) \ge 0$, pentru orice $x \in (0,1]$, deci f este crescătoare pe $(0,1]$, $f'(x) \le 0$, pentru orice	
	$x \in [1,2]$, deci f este descrescătoare pe $[1,2]$ și $f'(x) \ge 0$, pentru orice $x \in [2,+\infty)$, deci	3 p
	f este crescătoare pe $[2,+\infty)$	
c)	$\lim_{x \to +\infty} \left(\frac{f(x)}{x^2 \sqrt{x}} \right)^{\frac{x}{5}} = \lim_{x \to +\infty} \left(\frac{x^2 - 5x + 10}{x^2} \right)^{\frac{x}{5}} = \lim_{x \to +\infty} \left(\left(1 + \frac{-5x + 10}{x^2} \right)^{\frac{-5x + 10}{x^2} \cdot \frac{x}{5}} \right)^{\frac{-5x + 10}{x^2} \cdot \frac{x}{5}} = $	3 p
	$=e^{\lim_{x\to +\infty} \frac{-5x+10}{5x}} = e^{-1} = \frac{1}{e}$	2p
2.a)	$\int_{0}^{2} \left(f(x) - \frac{1}{e^{x} + 1} \right) dx = \int_{0}^{2} \left(x + e^{x} \right) dx = \left(\frac{x^{2}}{2} + e^{x} \right) \Big _{0}^{2} =$	3 p
	$=2+e^2-1=e^2+1$	2p
b)	$= 2 + e^{2} - 1 = e^{2} + 1$ $\int_{-1}^{1} e^{x} (f(x) - x - e^{x}) dx = \int_{-1}^{1} \frac{e^{x}}{e^{x} + 1} dx = \int_{-1}^{1} \frac{(e^{x} + 1)'}{e^{x} + 1} dx = \ln(e^{x} + 1) \Big _{-1}^{1} =$	3 p
	$= \ln(e+1) - \ln\frac{1+e}{e} = \ln e = 1$	2p
c)	$\int_{0}^{1} x (f(x) + f(-x)) dx = \int_{0}^{1} x (e^{x} + e^{-x} + 1) dx = \int_{0}^{1} x (e^{x} - e^{-x} + x)' dx = x (e^{x} - e^{-x} + x) \Big _{0}^{1} - \int_{0}^{1} (e^{x} - e^{-x} + x) dx = e^{-\frac{1}{e}} + 1 - \left(e^{x} + e^{-x} + \frac{x^{2}}{2} \right) \Big _{0}^{1} = \frac{5}{2} - \frac{2}{e}$	3р
	$\frac{5}{2} - \frac{2}{e} = \frac{m}{2} - \frac{2}{e}$, de unde obţinem $m = 5$	2p

Matematică M_mate-info

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 5(1+2i)-2i(5-i)=3, unde $i^2=-1$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x 3$. Determinați numărul real a pentru care $f(a) = 1 + a^2$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(2x^2+1)=2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele impare și distincte.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,0), B(1,6) și C(4,2). Determinați coordonatele punctului D, știind că $\overrightarrow{AB} = \overrightarrow{DC}$.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, astfel încât BC = 10 și $\sin B = 2\sin C$. Arătați că lungimea laturii AB este egală cu $2\sqrt{5}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ și $A(x) = \begin{pmatrix} x+1 & -x & 0 \\ x & 1-x & 0 \\ 0 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Arătați că $(A(x)-I_3)(A(x)-I_3)=O_3$, pentru orice număr real x.
- **5p** c) Determinați numerele reale x pentru care $A(x) \cdot A(x) = xA(x) (x-1)I_3$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x * y = (x + y)^2 2(x y) 3$.
- **5p** | **a**) Arătați că 0*2=5.
- **5p b**) Determinați numerele reale x pentru care x*(x+1)=8.
- **5p** | **c**) Determinați perechile (m,n) de numere naturale pentru care m*n=2mn.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = (x^2 5x + 10)\sqrt{x}$.
- **5p a**) Arătați că $f'(x) = \frac{5(x^2 3x + 2)}{2\sqrt{x}}, x \in (0, +\infty).$
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Arătați că $\lim_{x \to +\infty} \left(\frac{f(x)}{x^2 \sqrt{x}} \right)^{\frac{x}{5}} = \frac{1}{e}$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^x + \frac{1}{e^x + 1}$.
- **5p** a) Arătați că $\int_{0}^{2} \left(f(x) \frac{1}{e^{x} + 1} \right) dx = e^{2} + 1$.
- **5p b)** Arătați că $\int_{-1}^{1} e^{x} \left(f(x) x e^{x} \right) dx = 1.$
- **5p** c) Determinați numărul real m pentru care $\int_{0}^{1} x(f(x) + f(-x)) dx = \frac{m}{2} \frac{2}{e}.$