$$P_{1}(x_{1},y_{1})$$

$$P_{2}(x_{1},y_{1})$$

$$= \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}$$

$$P_{o}\left(x_{P_{i}},y_{o}\right)$$
 $r>0$ $B(P_{o},r)=I_{r}(P_{o})=\left\{P\in\mathbb{R}^{2}:d\left(P_{i},P_{o}\right)< r\right\}$

es.
$$B((0,0),3) = \{(n,y) \in \mathbb{R}^2 : \sqrt{n^2 + y^2} < 3\}$$

X SRI Poex Printerno ad X se 3 7 >0; B(Po, 2) SX

Per l'accumulatione pe X se 72>0 B(P, z) n(X \ (Pos) # \$ D(X) = ins. des punt di accum.

(& D(X) P. e f(x) Peint(X), PED(X)

Po funto isolato $P_2 \in F(X)$, $P_2 \in D(X)$

$$X$$
 april or $X = \emptyset$ office $X \neq \emptyset$ e $X = int(X)$

$$X = \varphi$$
 offine $X \neq \varphi$ e $X = int(X)$

$$X = \{(a, y) \in \mathbb{R}^{2} : \sqrt{x^{2} + y^{1}} < 1\} = B((0, 0), 1)$$

$$\mathbb{R}^{1} \setminus X = \left\{ (\pi_{1}y) \in \mathbb{R}^{1} : \sqrt{\pi^{2} + y^{2}} \geq 1 \right\} \in \mathbb{R}^{1}$$

$$\times = \left((3, y) : \int a^2 + y^2 \le 1 \right)$$
 chiuso

$$\mathbb{R}^2 \cdot \times = \left\{ (\pi, y) \in \mathbb{R}^2 : \sqrt{\pi^2 + y^2} > 1 \right\}$$

$$X$$
 chius (=) $F(X) \subseteq X$ (=) $D(X) \subseteq X$

$$X \cup f(X) = X \cup D(X) = \overline{X}$$
 climmed X

de Re sono gli unici ajerti e chiusi (=> nono gli unici ad avere Proutien vuota

5 oHolae

$$X \subseteq \mathbb{R}^{1}$$
 $f: X \to \mathbb{R}$ $(\alpha, y) \in X \to f(\alpha, y) \in \mathbb{R}$

$$f(X) = \{ f(x,y) : (x,y) \in X \}$$
 imagine & f

M= massius assolub de l se H = wex f(X) $M = f(\bar{\pi}, \bar{y})$ $(\bar{\alpha}, \bar{y})$ for ub d' me son us assol minimo assoluto analogamente Po é di ma orimo relativo se 3 200; se (21, y) 6 x, \((2-76)^2 + (y-y)^2 = 2 (aninim) s: ha { (2, y) = { (20, y0) $f: \times \rightarrow \mathbb{R} \times \subseteq \mathbb{R}^2$ P. (no,y) & D(X) Q e R lim f(n,y) = l se VE>0 3570; se (n,y) EX, (n,y) \$(20,y), V(x-26)2+(y-y)2 = 5 si la | (12,y) - e | < 8 (1 y) - (20,1/2) P-3 R l- E < f(2,y) < l + E lu ((11y) = +00 se +600 3800; se (21y) EX, (21y) \$ (20, y), (or, y) -> (ola, yo) (- 🗠) (7,7) & B ((7,4),5) st la f(7,4) > & (<-k) l'regolare se converge o diverge Valgous ausora!

Valgous aucora!

teorema dell' unicità del l'mile

della permanenza del segno

teoremi di orfionto

oporazioni con: limiti

veore ma sulle restrizioni

1P. $f: X \to \mathbb{R}$ $P_0 \in D(X)$ $Y \subseteq X$ $P_0 \in D(Y)$

Se due restrit. Danno Cuit Diero -> 6 non à regolare.

2).
$$\int (\pi_1 y) = \frac{\pi y}{\pi^2 + y^2}$$
 lum
$$\int (\pi_1 y) = \frac{\pi y}{\pi^2 + y^2}$$

$$\int (\pi_1 y) = 0$$

$$\int (\pi_$$

$$y = \pi$$

$$f(x, x) = \frac{x^2}{2x^2} = \frac{1}{2} \implies \text{se } 3 \text{ fm } (\text{eno sous } \frac{1}{2})$$

$$(4) \quad G \in \text{NERALE}$$

IN GENERALE

es. Jen
$$\frac{xy}{x^2+y^2}$$
 $l_1(x) = \frac{mx^2}{x^2+m^2x^2} = \frac{m}{1+m^2}$ difende de m

Se esso non djende da molbra il limile di l'POTREBBE ESSERE lui

$$\begin{cases} (x,y) = \begin{cases} 0 & \text{se } y = x^2 \\ 1 & \text{se } y \neq x^2 \end{cases}$$

passante je (0,0) NON untersece la paresola (al mono in m intorno dell'origne) quindi il bruik delle restrit alle rette fa sempe 1.

$$l(\pi) = f(\pi, m\pi) = \frac{m\pi^3}{(1+m^2)\pi^2} = \frac{m}{l+m^2} \pi \rightarrow 0$$

0 = | ((n,y) | = una cose de tende a zero

$$0 \le |\beta(x,y)| = \frac{\pi^2}{\pi^2 + y^2} |y| \rightarrow 0$$

$$\le 1$$

$$= > \beta_{N} \qquad (|x_{1}y) = 0$$

DISEGUAGLIANZE UTILI

$$\frac{x^2}{x^2+y^2} \leq 1 \qquad \frac{y^2}{x^2+y^2} \leq 1$$

$$\left(|x| \leq \sqrt{x^2 + y^2} \quad \text{vera fuche}\right)$$

$$x^2 \leq x^2 + y^2$$

$$|xy| \leq \frac{1}{2} \left(x^2 + y^2 \right)$$

$$|xy| \leq \frac{1}{2} (n^2 + y^2)$$
 $\left(\frac{1}{2} |x| - |y|^2 + n^2 + y^2 - 2|xy| = 2|xy| \leq n^2 + y^2 \right)$

$$\int (x,y) = \frac{xy}{\sqrt[3]{x^2 + y^2}}$$

$$l(n) = \int_{0}^{\infty} (n, mn) = \frac{m^{2}}{\sqrt{(1+m^{2})n^{2}}} =$$

$$= \frac{M}{\sqrt{1 + m^{2}}} \xrightarrow{72^{-\frac{7}{3}}} \rightarrow 0 \quad \forall m =) \quad \text{if } 0 \text{ for } 0 \text$$

FUNZ COMPOSTE

(a) IP
$$f:(a,b) \rightarrow \mathbb{R}$$
 $g: X \subseteq \mathbb{R}^{l} \rightarrow (a,b)$
 $(x,y) \in X \rightarrow g(x,y) \in (a,b) \rightarrow l(x,y) = l(g(x,y))$
 $(x_0,y_0) \in D(V)$
 $loonetright (x_0,y_0) = loonetright (x_0,y_0) = loonetright (x_0,y_0)$
 $loonetright (x_0,y_0) = loonetright (x_0,y_0)$

(2) IP
$$f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$$

 $g_1, g_2: (a,b) \to \mathbb{R}$ $(g,(t), g_2(t)) \in X \forall t \in (a,b)$
 $t \in (a,b) \to (g,(t), g_1(t)) \in X \to f(t) = f(g,(t), g_1(t))$
Let $f(a,b) = f(a,b)$
 $f(a,b) = f(a,b)$

lin
$$g_1(t) = x_0$$
 lin $g_2(t) = y$
 $t \rightarrow t_0$

lin $g_1(t) = y$
 $t \rightarrow t_0$
 $t \rightarrow t_0$

CONTINUITA

$$f: X \rightarrow \mathbb{R}$$
 $X \subseteq \mathbb{R}^2$ $P_0 \in X$ mon isolab

DEF f continue in P_0 se $f(x_1y) = f(x_0, y_0)$
 $f(x_0) \rightarrow (x_0, y_0)$

Operationi e funt. composte for funt. continue sous continue

Xerema d' Weierstran

IP X = R2 chiuso e limitato

6: X -> R continua

TS f ammette mínimo e massimo assoluti

FUDRI PROGRAMMA

X S R1

se X é ajerb (chiuss) non é possible de comprlo mella unione de due april (chiusi) disginali

1

y P, Pz ∈ X J una foligonale S X che li

conginnge

TEOREM DEI VALORI INTERMEDI

IP X connesso

f: X -> R continue

TS Se f assume due valori, assume anche tulli quell' confesi fra essi