DEVOIR SURVEILLÉ 5

Calculatrice autorisée Lundi 10 mars 2025

EXERCICE 1 (6 POINTS)

Résoudre les équations suivantes d'inconnue un réel x. Donner la valeur exacte de la solution lorsqu'elle existe.

1.
$$e^{2x} = 1$$

2.
$$2e^{x-1} = -6$$

3.
$$e^{-2x+3} = e$$

4.
$$5e^x - 4 = -3e^x + 2$$

CORRECTION

1.

$$e^{2x} = 1$$

$$\Leftrightarrow \ln(e^{2x}) = \ln(1)$$

$$\Leftrightarrow 2x = 0$$

$$\Leftrightarrow x = 0$$

2.

$$2e^{x-1} = -6$$

$$\Leftrightarrow e^{x-1} = -3$$

Il n'y a donc pas de solution réelle puisque l'exponentielle est strictement positive.

3.

$$e^{-2x+3} = e$$

$$\Leftrightarrow \ln(e^{-2x+3}) = \ln(e)$$

$$\Leftrightarrow -2x+3 = 1$$

$$\Leftrightarrow -2x = -2$$

$$\Leftrightarrow x = 1$$

4.

$$5e^{x} - 4 = -3e^{x} + 2$$

$$\Leftrightarrow 8e^{x} = 6$$

$$\Leftrightarrow e^{x} = \frac{6}{8}$$

$$\Leftrightarrow \ln(e^{x}) = \ln(\frac{3}{4})$$

$$\Leftrightarrow x = \ln(\frac{3}{4})$$

EXERCICE 2 (6 POINTS)

Déterminer la limite des fonctions suivantes en a.

1. f est la fonction définie pour tout nombre réel x > 0 par :

$$f(x) = (e^x - 1)(2 - \ln(x))$$
 et $a = +\infty$.

2. f est la fonction définie pour tout nombre réel x > 0 par :

$$f(x) = \frac{\ln(x) - 1}{x} \quad \text{et } a = 0.$$

3. f est la fonction définie pour tout nombre réel x > 0 par :

$$f(x) = \frac{4 + \ln(x)}{x}$$
 et $a = +\infty$.

CORRECTION

- 1. $\lim_{x \to +\infty} e^x 1 = +\infty$ par somme et $\lim_{x \to +\infty} 2 \ln(x) = -\infty$ par somme $(\lim_{x \to +\infty} \ln(x) = +\infty)$. Ainsi, par produit, $\lim_{x \to +\infty} f(x) = -\infty$.
- 2. $\lim_{x \to 0^+} x = 0^+$ et $\lim_{x \to 0} \ln(x) 1 = -\infty$. Ainsi, par quotient, $\lim_{x\to 0} = -\infty$.
- 3. $\lim_{x \to +\infty} 4 + \ln(x) = +\infty$ et $\lim_{x \to +\infty} x = +\infty$ donc nous avons une forme indéterminée.

Seulement, $f(x) = \frac{4}{x} + \frac{\ln(x)}{x}$ et $\lim_{x \to +\infty} \frac{4}{x} = 0$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ par croissances comparées. Ainsi, par somme, $\lim_{x \to +\infty} f(x) = 0$.

EXERCICE 3 (8 POINTS)

Soit f la fonction définie sur $]0; +\infty[$ par :

$$f(x) = \frac{1 + \ln(x)}{x^2}.$$

- 1. Démontrer que pour tout x > 0, $f'(x) = \frac{-1 2\ln(x)}{r^3}$.
- 2. **a.** Résoudre dans $]0; +\infty[$ l'inéquation $-1-2\ln(x) > 0$.
 - **b.** En déduire le tableau de variations de f.
- **3.** On note \mathscr{C} la courbe représentative de f.
 - a. Démontrer que $\mathscr C$ admet un unique point d'intersection avec l'axe des abscisses, dont on précisera les coordonnées.
 - **b.** En déduire le tableau de signe de f.

CORRECTION

1. En dérivant f(x) comme un quotient $\frac{u(x)}{v(x)}$, on a pour tout x > 0:

$$f'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v(x)^2}$$

$$= \frac{\frac{1}{x} \times x^2 - 2x \times (1 + \ln(x))}{(x^2)^2}$$

$$= \frac{x - 2x - 2x \ln(x)}{x^4}$$

$$= \frac{1 - 2 - 2\ln(x)}{x^3}$$

$$= \frac{-1 - 2\ln(x)}{x^3}$$

2. a. N'oublions pas que x > 0 sinon ln(x) n'est pas défini.

$$-1 - 2\ln(x) > 0$$

$$\Leftrightarrow -2\ln(x) > 1$$

$$\Leftrightarrow \ln(x) < \frac{1}{-2}$$

$$\Leftrightarrow \ln(x) < -\frac{1}{2}$$

$$\Leftrightarrow e^{\ln(x)} < e^{-\frac{1}{2}} \text{ car } x \mapsto e^x \text{ est strictement croissante sur } \mathbf{R}$$

$$\Leftrightarrow x < e^{-\frac{1}{2}}$$

Les solutions dans $]0; +\infty[$ de l'inéquation $-1-2\ln(x)>0$ forment l'intervalle $]0; e^{-\frac{1}{2}}[$.

b. Nous avons donc le tableau de variations de f grâce à l'étude du signe de f'.

x	0		$e^{-\frac{1}{2}}$		+∞
$-1-2\ln(x)$		+	0	_	
x^3	0	+		+	
f'(x)		+	0	-	
f(x)			1		<i>,</i>

3. $\mathscr C$ admet un unique point d'intersection avec l'axe des abscisses est équivalent à : il existe x > 0 tel que f(x) = 0. Nous voulons donc utiliser le TVI sur $\left|0;e^{-\frac{1}{2}}\right|$ et $\left|e^{-\frac{1}{2}};+\infty\right|$.

Constatons que $\lim_{x \to +\infty} f(x) = 0^+$ par croissances comparées, $f\left(e^{-\frac{1}{2}}\right) \approx 1,36$ et $\lim_{x \to 0^+} f(x) = -\infty$ par quotient.

х	0	$\mathrm{e}^{-\frac{1}{2}}$	+∞
f(x)		≈ 1,36 -∞	0+

Ainsi, f étant continue sur $]0; +\infty[$, il existe une unique solution à f(x) = 0 sur $]0; e^{-\frac{1}{2}}[$ et aucune sur $]e^{-\frac{1}{2}}; +\infty[$. Enfin,

$$f(x) = 0$$

$$\Leftrightarrow \frac{1 + \ln(x)}{x^2} = 0$$

$$\Leftrightarrow 1 + \ln(x) = 0$$

$$\Leftrightarrow \ln(x) = -1$$

$$\Leftrightarrow x = e^{-1}$$

Les coordonnées du point d'intersection sont $(e^{-1};0)$.

4. On a donc:

X	0	e^{-1}	+∞
f(x)		- 0	+