集合論 1

1.1 1.1.6

(1)

Proof. $c \in C$ を任意にとる. g は全射であるから, g(b) = c をみたす $b \in B$ が存在し, その b に対して f の全射性 により, f(a) = b を満たす $a \in A$ が存在する. 以上の議論から, $c = g(b) = g(f(a)) = (g \circ f)(a)$ である、よって $g \circ f$ も全射である.

$$c = g(b) = g(f(a)) = (g \circ f)(a)$$

(2)

Proof. $a,\ a'\in A$ とし, $(g\circ f)(a)=(g\circ f)(a')$ を仮定する.このとき,g(f(a))=g(f(a')), $f(a),\ f(a')\in B$ で あり、このとき g の単射性から f(a)=f(a') となり、さらに f の単射性から a=a' となる.よって、

$$(g \circ f)(a) = (g \circ f)(a') \Longrightarrow a = a'$$

2 第2章・群の基本

2.1 2.1.1

Hint:		

Proof. まず、単位元について調べる。G は群であると仮定すると、単位元が存在し、それを e とすると、

$$1 \circ e = 1, \quad e \circ 1 = 1$$

であることから、単位元が存在すればe=1である.

このもとで逆元を考察する. $0 \in G$ について、ある $b \in G$ が存在して、

$$0 \circ b = 1, \quad b \circ 0 = 1$$

となる. しかし、このような $b \in G$ は存在せず、矛盾. したがって G は群でない.

Hint:

Proof. 単位元の存在について調べる. いま、単位元が存在すると仮定し、それを e とおく. この演算は可換であることに留意して、

$$a \circ e = a + e + ae = a$$

とすると.

$$e(a+1) = 0$$

よって, e=0またはa=-1である.

まず, a=-1 のとき, 逆元が存在するか調べる. 任意の $b\in\mathbb{R}$ について,

$$(-1) \circ b = -1 + b - b = -1 \neq 0$$

よって、この演算によって ℝ は群とならない. よってただちに主張が従う.

2.3 2.3.5

TT	- 1
H_{1}	nt

......

Proof. $R_{>} = \{x \mid x \in \mathbb{R}, \ 0 < x\}$ とする.

- (1) \mathbb{R}^{\times} の単位元 1 について, $1 \in \mathbb{R}_{>}$ である.
- (2) 演算の定義により、 $\mathbb{R}_>$ での加法は写像 $\mathbb{R}_> \times \mathbb{R}_> \to \mathbb{R}_>$ で定められるので、 $x,y \in \mathbb{R}_>$ のとき、 $xy \in \mathbb{R}_>$ である
- (3) $x \in \mathbb{R}_{>}$ について、逆元は明らかに定義でき、 $x^{-1} \in \mathbb{R}_{>}$ である.
- (1), (2), (3) により,部分群の必要十分条件の 3 つが満たされ, $\mathbb{R}_{>}$ は \mathbb{R}^{\times} の乗法についての部分群である. \square