Анализ Данных

Лабораторная работа 3: «Вариационный ряд»

Тема: «Числовые характеристики вариационных рядов»

Цель: Вычислить математические характеристики вариационного ряда.

Используемое оборудование: ПК, табличный процессор Excel

Постановка задачи:

- 1. Ознакомиться с материалами Лекции «Математические характеристики вариационных рядов».
- 2. Выполнить задания № 1, 2, 3 лабораторной работы

Задание № 1.

Задание № 1.

В качестве изучаемого признака рассматривается число продаж каждого из 26 случайно выбранных продавцов универмага:

16, 12, 15, 15, 23, 9, 15, 13, 14, 14, 21, 15, 14, 17, 27, 15, 16, 12, 16, 19, 14, 16, 17, 13, 14, 14.

Необходимо сделать следующее:

- 1) Построит варнационный ряд;
- 2) Провести анализ построенного вариационного ряда:

	А	В	С	D	E	F
1	Ряд	n	Варианты	Частоты	Накопленные частоы	Накопленные частоти
2	9	31	9	1	0	0
3	12		12	2	1	0,032258065
4	12		13	3	3	0,096774194
5	13		14	8	6	0,193548387
6	13		15	6	14	0,451612903
7	13		16	4	20	0,64516129
8	14		17	2	24	0,774193548
9	14		19	1	26	0,838709677
10	14		21	2	27	0,870967742
11	14		23	1	29	0,935483871
12	14		27	1	30	0,967741935
13	14		28	0	31	1
14	14					
15	14					
16	15					
17	15		Среднее арифметическое			
18	15		15,58064516			
19	15					
20	15					
21	15		Дисперсия			Разности для ассиметрии
22	16		11,98543184		43,30489074	-284,9741197
23	16				12,82101977	-45,90752241
24	16		Среднее квадратичное отклонение		12,82101977	-45,90752241
25	16		3,461998244		6,659729448	-17,18639858
26	17				6,659729448	-17,18639858
27	17		Коэффициент вариации		6,659729448	-17,18639858
28	19		22%		2,498439126	-3,949145715
29	21				2,498439126	-3,949145715
30	21		Коэффициент ассимметрии		2,498439126	-3,949145715
31	23		0,007934839		2,498439126	-3,949145715
32	27				2,498439126	-3,949145715
33			Эксцесс		2,498439126	-3,949145715

34	3,124278688	2,498439126	-3,949145715
35		2,498439126	-3,949145715
36	Мода	0,337148803	-0,195763821
37	14	0,337148803	-0,195763821
38		0,337148803	-0,195763821
39	Медиана	0,337148803	-0,195763821
40	15	0,337148803	-0,195763821
41		0,337148803	-0,195763821
42	Рассматриваемое распределение не	0,175858481	0,073747105
43		0,175858481	0,073747105
44	является симметричным (л=0,007934839	0,175858481	0,073747105
45	>0 => пик смещён влево) и не является	0,175858481	0,073747105
46	нормальным (3,124278688 >0 => эксцесс	2,014568158	2,859387063
47	превышает нормальный)	2,014568158	2,859387063
48		11,69198751	39,97905408
49		29,36940687	159,1632372
50		29,36940687	159,1632372
51		55,04682622	408,4119365
52		130,4016649	1489,102883

Задание № 2.

- 1. Какова нижняя и верхняя границы интервалов (по таблице 1)?
- 2. Изучите распределение, представленное в таблице 2.

	A	В	С	D	E	F	G	Н	- 1	J	K	L	M
1	Интервалы расходов	100	300	300	500	500	700	700	900	900	1100	1100	1300
2	Число покупателей (mi)		30	38		5	0	3	1	22	2	13	
3	Доля покупателей(wi)		0.163	0.207		0.2	72	0.1	.68	0.13	20	0.07	0
4													
5													
6													
7													
8													
9	Нижняя граница												
10	100												
11													
12	Верхняя граница												
13	1300												

25				
26		n		
27		60		
28				
29				
30	Интервалы	Число регионов	Накопленные частоты	Накопленные частости
31	До 60	10	0	0
32	60-70	29	10	0,166666667
33	70-80	2	39	0,65
34	80-90	13	41	0,683333333
35	90-100	0	54	0,9
36	Свыше 100	6	54	0,9
37				
38				
39				
40				
41				
42			Медиана	Мода
43			70,34482759	64,13043478

Задание № 3.

Интервалы	Число регионов	
До 60	10	
60-70	29	
70-80	2	
80-90	13	
90-100		
Свыше 100	6	
Constitution of the consti	·	

	А	В
1	Интервалы	Число регионов
2	До 60	10
3	60-70	29
4	70-80	2
5	80-90	13
6	90-100	0
7	Свыше 100	6
8		
9	Начало первого интервала	Правая граница последнего
10	0	60
11		

 Для данных Задания № 1 определите оптимальную величину интервала и представьте ряд из этого задания в виде интервального ряда.

Решение:

Интерва/	тьный ряд	Частоты	Накоп. Частоты	Накоп. Частости
8,03207	11,13207	1	0	0
11,13207	14,23207	13	1	0,032258065
14,23207	17,33207	12	14	0,451612903
17,33207	20,43207	1	26	0,838709677
20,43207	23,53207	3	27	0,870967742
23,53207	26,63207	0	30	0,967741935
26,63207	29,73207	1	30	0,967741935
29,73207	32,83207	0	31	1

4.

4. Интервальные ряды бывают с равными и неравными интервалами. Иногда при группировке с равными интервалами сначала определяют число интервалов (групп) z при заданном объеме совокупности, используя формулу:

$$L = 2 \ln n$$

и тогда k в формуле Стеджерса вычисляется по формуле

$$\kappa = \frac{x_{max} - x_{min}}{L}$$

Для Задания 1 вычислите оптимальную величину интервала по данной формуле и сравните его с интервалом, вычисленным по формуле Стеджерса.

			· · · · · - - · · · · · · · - · · · ·
21 Ряд		n	8,03207 11,13207
22	9	31	11,13207 14,23207
23	12		14,23207 17,33207
24	12	k	17,33207 20,43207
25	13	5,807582086	20,43207 23,53207
26	13	6	23,53207 26,63207
27	13		26,63207 29,73207
28	14	Δ	29,73207 32,83207
29	14	3,09939657	
30	14	3,1	
31	14		
32	14	X _{HBY}	
33	14	8,032069652	
34	14		
35	14		
36	15		
37	15		
38	15	L	
39	15	6,867974409	
40	15		
41	15	Δ2	
42	16	2,620860086	
43	16		
14	16	Интервал Стеджерса = 3,09939657	
45	16	Интервал по формуле $= 2,620860086$	
46	17	Интервал Стеджерса > Интервал по фо	рмуле
17	17	- титерыы стеджерей интервы по фо	
48	19		
19	21		
50	21		
51	23		
52	27		
50			

5.

5. Для данных таблицы 1 накопленные частоты и расположите их в таблице в восходящем порядке и в нисходящем порядке. На чо они указывают? Поясните.

Решение:

Варианты	Накопленные частоы	Накопленные частоы		17
	9 (31	Накопленные частоты показывают, сколько единиг
	12	I	30	совокупности имеют значение признака не больше
	13	3	29	чем рассматриваемое. Они определяются путем
	14 (5	27	последовательного
	15 14	1	26	суммирования частот (частостей) предшествующих
	16 20		24	интервалов и используются для построения
	17 24	1	20	КУММУЛЯНТЫ
	19 26	5	14	
	21 2	7	6	
	23 29		3	
	27 30)	1	
	28 3:		0	

6.

6. Постойте полигон распределния для Задания 1

7.

7. Постойте гистограмму и кумулянту для данных таблицы 2

8.

8. Постройте огиву для данных таблицы 2 Огива строится аналогично кумулянте (но по оси абсцисе откладываются накопленные частоты (частости), а по оси ординат — значения признака).

Решение:

9.

Для данных Задания № 1 вычислить:
 1) 25-й, 50-й и 90-й перцентили в вариационном ряду.

125	25 Персентиль	
126		72,5
127		
128	50 Персентиль	
129		85
130		
131	90 Персентиль	
132		5050

10.

10. По данным таблицы 2 вычислить медиану (используйте формулу для нахождения медианы внутри медианного интервала).

Решение:

135	Медиана
136	70,34482759
127	

11.

11.По данным таблицы 2 вычислить моду (используйте формулу для нахождения моды внутри модального интервала).

Решение:

101		
138	Мода	
139		64,13043478

12.

- 12. Вычислите среднюю арифметическую для данных Задания № 1 по формулам:
 - Средней арифметической;
 - Средней арифметической взвещанной.

Варианты	Частоты	Взвешенная средняя арифметическая
9	1	9
12	2	24
13	3	39
14	8	112
15	6	90
16	4	64
17	2	34
19	1	19
21	2	42
23	1	23
27	1	27
28	0	Результат
		15,58064516
		Средняя арифметическая
		15,58064516
	9 12 13 14 15 16 17 19 21 23	9 1 12 2 13 3 14 8 15 6 16 4 17 2 19 1 21 2 23 1 27 1

13.

13. Проверить насколько медиана и <u>средняя арифметическая</u> чувствительна к положению крайних значений ряда значений (для данных Задания № 1).

Решение:

Среднее арифметическое является очень чувствительным к изменениям крайних значений ряда значений, так как в формуле

$$x = \frac{\sum\limits_{i=1}^{n} x_i}{n}$$

присутствует сумма, а она в свою очередь будет меняться при каждом изменении крайнего значения, что и приведет к изменению среднего арифметического.

"Медиана - это такое значение признака, которое делит упорядоченное множество пополам, так что одна половина всех значений становится меньше медианы, а другая больше" - из определения медианы мы можем сделать вывод что значение медианы не будет чувствительным к изменениям крайних значений ряда, так как от этого количество значений не изменится, а, следовательно, и медиана тоже останется неизменной.

14. Может ли быть в одном ряду несколько мод? Обоснуйте.

Решение:

Иногда в совокупности встречается более чем одна мода. В этом случае можно сказать, что совокупность мультимодальна. Из структурных средних величин только мода обладает таким уникальным свойством. Как правило, мультимодальность указывает на то, что набор данных не подчиняется нормальному распределению.

Вывод:

В итоге, используя табличный процессор Excel и его встроенные функции, нам удалось вычислить математические характеристики вариационного ряда и выполнить поставленные задачи.