Devoir maison 8.

Exercice

1°) φ est dérivable sur \mathbb{R}_+^* par somme, et pour tout $x \in \mathbb{R}_+^*$,

$$\varphi'(x) = -\frac{2}{x^3} + \frac{5}{x^2} - \frac{2}{x} = \frac{-2 + 5x - 2x^2}{x^3}$$

Pour tout x>0, $\varphi'(x)$ est du signe de $-2x^2+5x-2$. Le discriminant de ce trinôme du second degré vaut $\Delta=25-16=9$, donc ses racines sont $\frac{-5+3}{-4}=\frac{1}{2}$ et $\frac{-5-3}{-4}=2$. Comme le coefficient de x^2 est négatif, on en tire le tableau de variations suivant :

avec
$$\varphi(2) = \frac{1}{4} - \frac{5}{2} - 2\ln(2) = -\frac{9}{4} - 2\ln(2)$$
, et $\varphi(\frac{1}{2}) = 4 - 10 + 2\ln(2) = -6 + 2\ln(2)$.

Explications des limites :

$$\varphi(x) = \frac{1}{x^2} - \frac{5}{x} - 2\ln x \underset{x \to +\infty}{\longrightarrow} -\infty.$$

$$\varphi(x) = \frac{1 - 5x - 2x^2 \ln x}{x^2} \underset{x \to 0^+}{\longrightarrow} +\infty \text{ car } x^2 \ln x \underset{x \to 0}{\longrightarrow} 0.$$

2°) • L'équation (E) est définie sur \mathbb{R}_+^* , de même que la fonction φ . Soit $x \in \mathbb{R}_+^*$.

$$x$$
 solution de $(E) \iff 1 - 5x - 2x^2 \ln x = 0$
$$\iff \frac{1 - 5x - 2x^2 \ln x}{x^2} = 0 \text{ car } x \neq 0$$

$$\iff \varphi(x) = 0$$

- Pour tout $x \in \left[\frac{1}{2}, +\infty\right[, \varphi(x) \le \varphi(2) = -\frac{9}{4} 2\ln 2 < 0$. Donc l'équation (E) n'a pas de solution sur $\left[\frac{1}{2}, +\infty\right[$.
- Sur l'intervalle $]0,\frac{1}{2}[$, φ est continue et strictement décroissante. D'après le théorème de la bijection, φ réalise une bijection de $]0,\frac{1}{2}[$ dans l'intervalle image $]\varphi(\frac{1}{2}),\lim_{x\to 0}\varphi(x)[$ i.e. de $]0,\frac{1}{2}[$ dans $]\varphi(\frac{1}{2}),+\infty[$. Comme $\varphi(\frac{1}{2})\leq \varphi(2)<0$, on a $0\in]\varphi(\frac{1}{2}),+\infty[$. Ainsi 0 admet un unique antécédent par φ dans $]0,\frac{1}{2}[$: il existe un unique $\alpha\in]0,\frac{1}{2}[$ tel que $\varphi(\alpha)=0$.
- On a bien montré l'existence et l'unicité d'une solution α à l'équation (E) dans \mathbb{R}_+^* De plus, $\alpha \in \left]0, \frac{1}{2}\right[$.

3°) a) On a
$$f(x) \xrightarrow[x \to 0]{} \frac{1}{4}$$
.

C'est une limite finie donc f est prolongeable par continuité en 0 en posant $f(0) = \frac{1}{4}$

f est également continue sur $]0, +\infty[$ comme somme, produit et quotient de fonctions continues.

f est prolongeable en une fonction continue sur $[0, +\infty[$

- b) f est continue sur $[0, +\infty[$.
 - f est dérivable sur $]0, +\infty[$ par opérations.
 - Pour tout x > 0,

$$f'(x) = \frac{1}{4} \left(-1 - 4x \ln x - 2x^2 \frac{1}{x} \right) = -\frac{1}{4} - x \ln x - \frac{1}{2}x$$

On a
$$f'(x) \xrightarrow[x \to 0]{} -\frac{1}{4}$$
.

D'après le théorème de la limite de la dérivée, on en déduit que

$$\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} -\frac{1}{4}$$

Ainsi f est dérivable en 0 et $f'(0) = -\frac{1}{4}$.

De plus, $f'(x) \xrightarrow[x \to 0]{} -\frac{1}{4} = f'(0)$, donc la fonction f' est continue en 0.

• f est de classe C^1 sur $]0, +\infty[$ par opérations.

Finalement, f est de classe C^1 sur $[0, +\infty[$.

c) Pour tout x > 0,

$$\frac{f'(x) - f'(0)}{x - 0} = \frac{-x \ln x - \frac{1}{2}x}{x} = -\ln x - \frac{1}{2} \underset{x \to 0}{\longrightarrow} +\infty$$

Donc f' n'est pas dérivable en 0, ce qui signifie que f n'est pas deux fois dérivable en 0.

Autre méthode : f' est continue sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* .

Pour tout
$$x > 0$$
, $f''(x) = -\ln(x) - \frac{3}{2}$, $f''(x) \xrightarrow[x \to 0]{} +\infty$.

Donc, par le théorème de la limite de la dérivée : $\frac{f'(x) - f'(0)}{x - 0} \xrightarrow[x \to 0]{} + \infty$.

d) f' est dérivable sur [0,1] comme somme et produit de fonctions dérivables.

Pour tout
$$x \in [0, 1]$$
, $f''(x) = -\ln x - x\frac{1}{x} - \frac{1}{2} = -\ln x - \frac{3}{2}$

Pour $x \in]0,1]$:

$$f''(x) > 0 \iff \ln x < -\frac{3}{2} \iff x < e^{-\frac{3}{2}}$$
 car exp est strictement croissante

$$f''(x) = 0 \iff \ln x = -\frac{3}{2} \iff x = e^{-\frac{3}{2}} \text{ car exp est bijective}$$

Comme f' est continue en 0 et que $f'(0) = -\frac{1}{4}$, on en tire le tableau suivant :

4						
	x	0		$e^{-\frac{3}{2}}$		1
	f''(x)		+	0	_	
	f'	$-\frac{1}{4}$		$f'(e^{-\frac{3}{2}})$		$-\frac{3}{4}$

Ainsi, pour tout $x \in [0, 1], -\frac{3}{4} \le f'(x) \le f'(e^{-\frac{3}{2}}).$

Or,
$$f'(e^{-\frac{3}{2}}) = -\frac{1}{4} - e^{-\frac{3}{2}} \ln\left(e^{-\frac{3}{2}}\right) - \frac{1}{2}e^{-\frac{3}{2}} = -\frac{1}{4} + \frac{3}{2}e^{-\frac{3}{2}} - \frac{1}{2}e^{-\frac{3}{2}} = e^{-\frac{3}{2}} - \frac{1}{4} \le 0$$
 d'après l'époncé

Ainsi f' est négative sur [0,1]. Donc, pour tout $x \in [0,1], -\frac{3}{4} \le f'(x) \le 0$.

Il vient :
$$\forall x \in [0,1], |f'(x)| \leq \frac{3}{4}.$$

e) Comme f' est négative sur [0,1], f est décroissante sur [0,1]Donc pour tout $x \in [0, 1], f(1) \le f(x) \le f(0)$. Comme f(1) = 0 et que $f(0) = \frac{1}{4} \le 1$, on a bien :

$$\forall x \in [0, 1], \ f(x) \in [0, 1]$$

- **4°)** a) Posons, pour tout $n \in \mathbb{N}$, P_n : "le réel u_n existe et $u_n \in [0,1]$ ".
 - P_0 est vraie, car $u_0 = \frac{1}{5}$ existe et il est dans [0,1].
 - Soit $n \in \mathbb{N}$ fixé. Supposons P_n vraie. Comme $u_n \in [0, 1]$, $f(u_n)$ existe, autrement dit u_{n+1} existe, et par la question précédente, on a aussi $u_{n+1} \in [0,1]$. Ainsi P_{n+1} est vraie.
 - On a montré par récurrence que : la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et qu'elle est à valeurs dans [0,1].
 - b) La fonction f est dérivable sur [0,1], et |f'| est majorée par $\frac{3}{4}$ sur cet intervalle. On peut donc appliquer l'inégalité des accroissements finis :

$$\forall (x,y) \in [0,1]^2, |f(x) - f(y)| \le \frac{3}{4}|x - y|.$$

Soit $n \in \mathbb{N}$.

Appliquons cette inégalité avec $x = u_n$ et $y = \alpha$, qui sont bien dans [0,1]:

$$|f(u_n) - f(\alpha)| \le \frac{3}{4}|u_n - \alpha|.$$

$$f(\alpha) = \frac{1 - \alpha - 2\alpha^2 \ln \alpha}{4} = \frac{1 - \alpha - (1 - 5\alpha)}{4} = \alpha$$

Or $f(u_n) = u_{n+1}$, et, en utilisant le fait que α est solution de (E): $f(\alpha) = \frac{1 - \alpha - 2\alpha^2 \ln \alpha}{4} = \frac{1 - \alpha - (1 - 5\alpha)}{4} = \alpha.$ Ainsi, pour tout $n \in \mathbb{N}$, $|u_{n+1} - \alpha| \le \frac{3}{4}|u_n - \alpha|$.

- c) On pose, pour tout $n \in \mathbb{N}$, $Q_n : |u_n \alpha| \le \left(\frac{3}{4}\right)^n |u_0 \alpha|$.
 - Q_0 est vraie car $\left(\frac{3}{4}\right)^0 |u_0 \alpha| = |u_0 \alpha|$.
 - Soit $n \in \mathbb{N}$ fixé. Supposons \mathcal{Q}_n vraie. D'après la question précédente,

$$|u_{n+1} - \alpha| \le \frac{3}{4}|u_n - \alpha| \le \frac{3}{4} \left(\frac{3}{4}\right)^n |u_0 - \alpha| = \left(\frac{3}{4}\right)^{n+1} |u_0 - \alpha| \quad \text{par } Q_n$$

Donc Q_{n+1} est vraie.

• Conclusion : on a montré par récurrence que : pour tout $n \in \mathbb{N}$, $|u_n - \alpha| \le \left(\frac{3}{4}\right)^n |u_0 - \alpha|$.

Comme $\frac{3}{4} \in]-1,1[$, on a $\left(\frac{3}{4}\right)^n \xrightarrow[n \to +\infty]{} 0$. $|u_0 - \alpha|$ étant une constante, on en tire, par le théorème d'encadrement, que $|u_n - \alpha| \underset{n \to +\infty}{\longrightarrow} 0$, c'est-à-dire que $(u_n)_{n \in \mathbb{N}}$ converge vers α .