```
if b = 1 then
 begin
   p := sqrt(z); \quad d := 0.5 \times z \times p; \quad p := 1 - p
 end else
 begin
   d := z \times z; p := w \times z
 end;
 y := 2 \times w/z;
 for j := b + 2 step 2 until n do
   d := (1 + a/(j-2)) \times d \times z;
   p := if a = 1 then p + d \times y/(j-1) else (p+w) \times z
 end j;
 y := w \times z; \ z := 2/z; \ b := n - 2;
 for i := a + 2 step 2 until m do
 begin
    j:=i+b; d:=y\times d\times j/(i-2); p:=p-z\times d/j
 end i;
 Fisher := p
end Fisher
```

ALGORITHM 323 GENERATION OF PERMUTATIONS IN LEXICOGRAPHIC ORDER [G6]

R. J. Ord-Smith (Recd. 27 Apr. 1967 and 26 July 1967) Computing Laboratory, University of Bradford, Bradford, Yorkshire, England

KEY WORDS AND PHRASES: permutations, lexicographic order, lexicographic generation, permutation generation CR CATEGORIES: 5.39

Author's Remark. Lexicographic generation involves more than the minimum of n! transpositions for generation of the complete set of n! permutations of n objects. The actual number of transpositions required can be shown to tend asymptotically to $(\cosh 1) \ n! \ = \ 1.53n!$ However, lexicographic generation can be described by an algorithm requiring very simple book-keeping. The author is indebted to Professor H. F. Trotter for suggesting an improvement to an original algorithm, which now results in a process more than twice as fast as the previously fastest lexicographic Algorithm 202 [Comm. ACM 6 (Sept. 1963), 517]. Tabulated results below show BESTLEX to be only 9.3 percent slower than the transposition Algorithm 115 [Comm. ACM 5 (Aug. 1962), 434] when n = 8.

The usual practice is adopted of using a nonlocal Boolean variable called *first* which may be assigned the value *true* to initialize generation. On procedure call this is set *false* and remains so until it is again set *true* when complete generation of permutations has been achieved. Table I gives results obtained for BESTLEX. The times given in seconds are for an I.C.T. 1905 computer. t_n is the time for complete generation of n! permutations. r_n has the usual definition $r_n = t_n/(n \cdot t_{n-1})$.

TABLE I

Algorithm	<i>t</i> 7	<i>t</i> ₈	18	Number of transpositions
BESTLEX	6	47	0.98	$\rightarrow 1.53n!$
202	12.4	100	1.00	5
115	5.6	43	0.98	n!

```
procedure BESTLEX(x, n); value n; integer n; array x;
begin own integer array q[2:n]; integer k, m; real t;
comment own dynamic arrays are not often implemented. The
  upper bound will then have to be given explicitly;
  if first then
  begin first := false;
    for m := 2 step 1 until n do q[m] := 1
  end of initialization process;
  if q[2] = 1 then
  begin q[2] := 2;
    t := x[1]; x[1] := x[2]; x[2] := t;
    go to finish
  end:
  for k := 2 step 1 until n do
    if q[k] = k then q[k] := 1 else go to trstart;
first := true; k := n; go to trinit;
trstart: m := q[k]; t := x[m]; x[m] := x[k]; x[k] := t;
  q[k] := m + 1; k := k - 1;
trinit: m := 1;
transpose: t := x[m]; x[m] := x[k]; x[k] := t;
  m := m + 1; k := k - 1;
  if m < k then go to transpose;
end of procedure BESTLEX
ALGORITHM 324
MAXFLOW [H]
G. BAYER (Recd. 31 July 1967)
Technische Hochschule, Braunschweig, Germany
KEY WORDS AND PHRASES: network, linear programming,
  maximum flow
CR CATEGORIES: 5.41
procedure maxflow (from, to, cap, flow, v, n, mflow, source, sink,
inf, eps);
  value v, n, source, sink, inf;
  integer v, n, source, sink; real inf, eps, mflow;
  integer array from, to; array cap, flow;
comment The nodes of the network are numbered from 1 to sn.
  It is not necessary but reasonable that each number represent a
  node. The data of the network are given by arrays from, to, cap
  in the following manner. There is a maximum possible flow of
  cap[i], nonnegative, leading from from[i] to to[i], i = 1, \dots, v.
    Compute the maximum flow mflow from source to sink,
  (source and sink given by their node numbers). inf represents
  the greatest positive real number within machine capacity.
  flow[i] gives the actual flow from from[i] to to[i]. Flows abso-
  lutely less than eps are considered to be zero. Literature: G.
  Hadley, Linear Programming, Addison-Wesley, Reading (Mass.)
  and London, 1962, pp. 337-344.
    Multiple solutions are left out of account;
begin integer l, j, k, r, lk, ek, u, s; real gjk, d;
  integer array low, up, klist, labj[1:n], ind[1:v]; real array
  labf[1:n];
comment Note structure of data lists in up and low;
  for j := 1 step 1 until n do
  begin low[j] := l;
    for r := 1 step 1 until v do
    begin if from[r] = j then
      begin ind[l] := r;
```

flow[l] := cap[l]; l := l + 1

```
end;
    up[j] := l - 1
  end:
 mflow := 0.0;
lab:;
  comment Prepare lists for new labeling;
  for j := 1 step 1 until n do
  \mathbf{begin}\ labj[j]\ :=\ klist[j]\ :=\ 0;
    labf[j] := 0.0
  end;
  labf[source] := inf;
  comment labeling;
 j := source; lk := ek := 0;
path:
 u := up[j];
 for s := low[j] step 1 until u do
  begin l := ind[s];
   k := to[l]; qik := flow[l];
   if labj[k] \neq 0 \lor abs(gjk) < eps
      then go to end;
    labj[k] := j;
   labf[k] := if \ gjk < labf[j] \ then \ gjk \ else \ labf[j];
   if k = sink then go to reached;
    lk := lk + 1; klist[lk] := k;
end:
  end:
  ek := ek + 1; \quad j := klist[ek];
  if i \neq 0 then go to path else go to max;
  comment sink is labeled, find path and possible
    flow, reduce excess capacities along path;
 j := sink; d := labf[j]; mflow := mflow + d;
look: k := labj[j]; u := up[k];
  for s := low[k] step 1 until u do
  begin l := ind[s];
   if to[l] = j then flow[l] := flow[l] - d
  end;
  u := up[j];
  for s := low[j] step 1 until u do
  begin l := ind[s];
    if to[l] = k then flow[l] := flow[l] + d
  j := k; if j \neq source then go to look;
  go to lab;
max:; comment maximal flow found:
  for l := 1 step 1 until v do
    flow[l] := cap[l] - flow[l]
end
```

```
ALGORITHM 325
```

ADJUSTMENT OF THE INVERSE OF A SYM-METRIC MATRIX WHEN TWO SYMMETRIC ELEMENTS ARE CHANGED [F1]

Gerhard Zielke (Recd. 24 Aug. 1967)

Institut für Numerische Mathematik der Martin Luther Universität Halle-Wittenberg, German Democratic Republic

KEY WORDS AND PHRASES: symmetric matrix, matrix inverse, matrix perturbation, matrix modification CR CATEGORIES: 5.14

```
procedure INVSYM \ 2 \ (n, i, j, c, a, b);
 value n, i, j, c; integer n, i, j; real c; array a, b;
comment INVSYM 2 computes the inverse A^{-1} = a of a non-
 singular symmetric nth order matrix A = B + c(e_i e_{i'} + e_j e_{i'})
  which arises from a symmetric matrix B by a change c in two
 elements B_{ij} and B_{ji} = B_{ij} (i \neq j). The inverse matrix B^{-1} = b
 is assumed to be known. The calculation with the new formula
```

$$a = b - \frac{c}{d} \left[b_{.i}(h_1b_{j.} + h_2b_{i.}) + b_{.j}(h_3b_{j.} + h_1b_{i.}) \right]$$

where

$$h_1 = 1 + cb_{ij}$$
, $h_2 = -cb_{jj}$, $h_3 = -cb_{ii}$, $d = h_1^2 - h_2h_3$

requires $n^2 + O(n)$ multiplications, therefore only about the same number of operations as if the well-known Sherman-Morrison formula for a change in one element (see Algorithm 51 [Comm. ACM 4 (Apr. 1961), 180]) is used. In these equations e_i denotes the *i*th column and e_i the *i*th row of the unit matrix, $b_{i} = be_{i}$ denotes the *i*th column and $b_{i} = e_{i}'b$ the *i*th row of the matrix b;

```
begin integer k, l; real h1, h2, h3, d;
  array r, s[1:n];
  h1 := 1 + c \times b[i, j]; \quad h2 := -c \times b[j, j];
  h3 := -c \times b[i, i]; d := h1 \uparrow 2 - h2 \times h3; d := c/d;
  h1 := h1 \times d; h2 := h2 \times d; h3 := h3 \times d;
  for k := 1 step 1 until n do
  begin
     r[k] := h1 \times b[j, k] + h2 \times b[i, k];
     s[k] := h3 \times b[j, k] + h1 \times b[i, k]
  \mathbf{for}\ k := 1\ \mathbf{step}\ 1\ \mathbf{until}\ n\ \mathbf{do}
  for l := 1 step 1 until k do
     a[k, l] := a[l, k] := b[k, l] - b[k, i] \times r[l] - b[k, j] \times s[l]
end INVSYM 2
```

MODIFIED SHARE CLASSIFICATIONS

[Designations follow algorithm titles.]

A1	Real Arithmetic, Number Theory	D4	Differentiation	G7	Subset Generators and Classifications
A2	Complex Arithmetic	E1	Interpolation	Н	Operations Research, Graph Structures
В1	Trig and Inverse Trig Functions	E2	Curve and Surface Fitting	15	Input—Composite
B2	Hyperbolic Functions	E3	Smoothing	J6	Plotting
В3	Exponential and Logarithmic Functions	E4	Minimizing or Maximizing a Function	K2	Relocation
B4	Roots and Powers	F١	Matrix Operations, Including Inversion	M1	Sorting
C1	Operations on Polynomials and Power Series	F2	Eigenvalues and Eigenvectors of Matrices	M2	Data Conversion and Scaling
C2	Zeros of Polynomials	F3	Determinants	02	Simulation of Computing Structure
C5	Zeros of One or More Transcendental Equa-	F4	Simultaneous Linear Equations	_	• •
	tions	F5	Orthogonalization	S	Approximation of Special Functions
C6	Summation of Series, Convergence Acceleration	G1	Simple Calculations on Statistical Data		Functions are Classified S01 to S22, Following
D1	Quadrature	G2	Correlation and Regression Analysis		Fletcher-Miller-Rosenhead, Index of Math.
D2	Ordinary Differential Equations	G5	Random Number Generators		Tables
D3	Partial Differential Equations	G6	Permutations and Combinations	Z	All Others