Lista 5

Exercício 1. Considere o conjunto $A = \{1, 2, 3\}$.

(a) Quantos elementos possui $\mathcal{P}(A)$?

 $2^3 = 8$.

(b) Determine quais são os conjuntos $A \cap \mathcal{P}(A)$ e $A \cup \mathcal{P}(A)$.

 $A \cap \mathcal{P}(A) = \emptyset$, pois nenhum elemento de A é também um subconjunto de A. $A \cup \mathcal{P}(A) = \{1, 2, 3, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$

(c) É verdade que $\emptyset \in A$? E se for $\emptyset \in \mathcal{P}(A)$?

Não, e sim..

(d) É verdade que $\exists x \in \mathcal{P}(A) : (\forall y \in \mathcal{P}(A), y \subseteq x)$? Prove.

Sim! $\{1,2,3\} \in \mathcal{P}(A)$, e para todo $y \in \mathcal{P}(A)$, ou seja, para todo $y \subseteq A$, temos que $y \subseteq \{1,2,3\}$.

(e) É verdade que $\{A\} \subseteq A$? E se for $\{A\} \in \mathcal{P}(A)$? Que tal $\{A\} \in \mathcal{P}(\mathcal{P}(A))$?

Não, não, e sim, uma vez que $A \in \mathcal{P}(A)$, e portanto o conjunto que contém o elemento A é elemento de $\mathcal{P}(\mathcal{P}(A))$.

Exercício 2. Demonstre que, para quaisquer conjuntos S e T, temos

$$(S \cap T) \cap (S - T) = \emptyset.$$

Se $x \in S \cap T$, então $x \in T$, por definição da interseção. Mas se $x \in T$, então $x \notin (S - T)$, por definição da diferença. Portanto não há x tal que $x \in S \cap T$ e $x \in (S - T)$, logo $(S \cap T) \cap (S - T) = \emptyset$.

Exercício 3. Seja U um conjunto contendo A e B. Mostre que:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

 $x\in \overline{A\cap B}$ se, e somente se, $x\notin A\cap B$. Significa que $x\notin A$ ou $x\notin B$. Equivalentemente, $x\in \overline{A\cup B}$.

Exercício 4. (Rosen 2.2.50) Determine $\bigcup_{i=1}^{\infty} A_i$ e $\bigcap_{i=1}^{\infty} A_i$ para cada A_i abaixo:

1. $A_i = \{i, i+1, i+2, ...\}.$

A união é $\mathbb N$ (inteiros maiores que 0), e a interseção é \emptyset .

2. $A_i = \{0, i\}.$

A união é $\mathbb{N} \cup \{0\}$, e a interseção é $\{0\}$.

```
3. A<sub>i</sub> = (0, i), i.e., o conjunto {x ∈ ℝ | 0 < x < 1}.</li>
A união é ℝ<sub>>0</sub>, e a interseção é (0, 1).
4. A<sub>i</sub> = (i, ∞), i.e., o conjunto {x ∈ ℝ | x > i}.
A união é ℝ<sub>>1</sub>, e a interseção é ∅.
```

Exercício 5. Quantas partições distintas possui o conjunto {1, 2, 3, 4, 5, 6}? Quem pesquisou um pouco em casa, e principalmente quem lembra do triângulo que eu desenhara ao final da aula, saberá facilmente que a resposta é 203. (Mas perguntas deste tipo não cairão amanhã na prova.

Exercício 6. Demonstre que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ se, e somente se, $A \subseteq B$. Primeiro vamos mostrar que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ implica em $A \subseteq B$. Suponha que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Seja $y \in A$. Portanto $\{y\} \in \mathcal{P}(A)$. Como todo elemento de $\mathcal{P}(A)$ também é de $\mathcal{P}(B)$, temos que $\{y\} \in \mathcal{P}(B)$, ou seja $y \in B$. Logo para todo $y \in A$, temos $y \in B$, ou seja, $A \subseteq B$. Agora suponha $A \subseteq B$. Seja $C \in \mathcal{P}(A)$. Por definição, $C \subseteq A$. Logo $C \subseteq B$, e portanto $C \in \mathcal{P}(B)$. Logo $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, como queríamos.