Predict retention of an employee within an organization such that whether the employee will leave the company or continue with it. An organization is only as good as its employees, and these people are the true source of its competitive advantage. Dataset is downloaded from Kaggle.

First do data exploration and visualization, after this create a logistic regression model to predict Employee Attrition Using Machine Learning & Python.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import LogisticRegression
df = pd.read_csv("/content/HR_comma_sep.csv")
```

df

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_
0	0.38	0.53	2	157	
1	0.80	0.86	5	262	
2	0.11	0.88	7	272	
3	0.72	0.87	5	223	
4	0.37	0.52	2	159	
14994	0.40	0.57	2	151	
14995	0.37	0.48	2	160	
14996	0.37	0.53	2	143	
14997	0.11	0.96	6	280	
14998	0.37	0.52	2	158	

14999 rows × 10 columns

df1 = df[['salary','satisfaction_level', 'average_montly_hours', 'promotion_last_5years','lef
df1

	salary	satisfaction_level	average_montly_hours	promotion_last_5years	left		
0	low	0.38	157	0	1		
1	medium	0.80	262	0	1		
2	medium	0.11	272	0	1		
3	low	0.72	223	0	1		
4	low	0.37	159	0	1		
14994	1 low	0.40	151	0	1		
1499	5 low	0.37	160	0	1		
14990	6 low	0.37	143	0	1		
14997	7 low	0.11	280	0	1		
<pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(df1[['satisfaction_level', 'average_montl model = LogisticRegression() model.fit(X_train,y_train)</pre>							
<pre>LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,</pre>							
<pre>model.score(X_test,y_test)</pre>							
0.7828							
<pre>data = pd.read_csv('/content/HR_comma_sep.csv')</pre>							
<pre># exploration of data data.head()</pre>							

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.38	0.53	2	157	
1	0.80	0.86	5	262	

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	satisfaction_level	14999 non-null	float64
1	last_evaluation	14999 non-null	float64
2	number_project	14999 non-null	int64
3	average_montly_hours	14999 non-null	int64
4	<pre>time_spend_company</pre>	14999 non-null	int64
5	Work_accident	14999 non-null	int64
6	left	14999 non-null	int64
7	<pre>promotion_last_5years</pre>	14999 non-null	int64
8	Department	14999 non-null	object
9	salary	14999 non-null	object

dtypes: float64(2), int64(6), object(2)

memory usage: 1.1+ MB

```
# laber encoder of data
from sklearn.preprocessing import LabelEncoder
col=['Department','salary']
label_encoder =LabelEncoder()
data['Department']= label_encoder.fit_transform(data['Department'])
data['salary']= label_encoder.fit_transform(data['salary'])
print("after the laber encoder : \n",data)
```

after the laber encoder :

	satisfaction_level	last_evaluation	 Department	salary
0	0.38	0.53	 7	0
1	0.80	0.86	 7	0
2	0.11	0.88	 7	0
3	0.72	0.87	 7	0
4	0.37	0.52	 7	0
	• • •	• • •	 • • •	
14994	0.40	0.57	 8	0
14995	0.37	0.48	 8	0
14996	0.37	0.53	 8	0
14997	0.11	0.96	 8	0
14998	0.37	0.52	 8	0

[14999 rows x 10 columns]

```
# LogisticRegression of data
```

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion matrix,accuracy score

https://colab.research.google.com/drive/1lLmaWOz0UPF6_z1noeubbJh5tFst_jlW?usp=sharing#printMode=true

```
ft=data[['Department', 'satisfaction level', 'salary']]
label=data['left']
xtrain,xtest,ytrain,ytest=train test split(ft,label)
my_model=LogisticRegression()
my model.fit(xtrain,ytrain)
y pred=my model.predict(xtest) # y test
cm=confusion_matrix(ytest,y_pred)
print("confusion matrix: ",cm)
print("accuracy socre: ",accuracy_score(ytest,y_pred))
print("socre: ",my model.score(xtrain,ytrain))
     confusion matrix: [[2659 179]
      [ 662 250]]
     accuracy socre: 0.7757333333333334
     socre: 0.7725131122766468
# visualization of data
import matplotlib.pyplot as plt
plt.subplot(4,1,1)
plt.scatter(ytest, y_pred, marker = '+')
plt.xlabel('xtest')
plt.ylabel('y prediction')
plt.title('Prediction of company')
plt.legend()
plt.grid()
plt.show()
plt.subplot(4,1,2)
plt.scatter(x=data['salary'], y=data['left'],label='salary and left')
plt.xlabel('x')
plt.ylabel('y')
plt.title('salary and left')
plt.legend()
plt.grid()
plt.show()
plt.subplot(4,1,3)
plt.scatter(x=data['satisfaction level'], y=data['left'],label='satisfaction level and left')
plt.xlabel('x')
plt.ylabel('y')
plt.title('satisfaction level and left')
plt.legend()
plt.grid()
plt.show()
plt.subplot(4,1,4)
plt.scatter(x=data['time spend company'], y=data['left'],label='time spend company and left')
plt.xlabel('x')
plt.ylabel('y')
plt.title('time spend company and left')
```

```
plt.legend()
plt.grid()
plt.show()
```

No handles with labels found to put in legend.


```
# logistic regression model to predict Employee Attrition
#create a pipeline for Logistic Regression
from sklearn.externals import joblib
import joblib as joblib
import pickle
with open('model_save','wb') as file:
    pickle.dump(my_model,file)
```

/usr/local/lib/python3.7/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarnings.warn(msg, category=FutureWarning)

```
#load model and prediction
with open('model_save','rb') as file:
    newmodel=pickle.load(file)
# newmodel.coef_
joblib.dump(my_model,'model_joblib')
mymodel=joblib.load('model_joblib')
print("my model: ",mymodel)
print("new model: ",newmodel)
print("file is :",file)
```

• ×