数学试题(八)参考答案

1-5:DAACB 6-8:BCD 9.ABD 10.ABD 11.BCD

12.
$$-4+2i$$
. 13. $\frac{3}{8}$. 14. $\frac{\sqrt{21}}{2}$

15.解: 1) 由正弦定理知,
$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$,即 $\left(\frac{a}{2R}\right)^2 + \left(\frac{c}{2R}\right)^2 = \frac{a}{2R} \cdot \frac{c}{2R} + \left(\frac{b}{2R}\right)^2$,

$$\therefore a^2 + c^2 = ac + b^2, \quad \therefore \cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1}{2}, \quad \text{\times} B \in (0, \pi), \quad \therefore B = \frac{\pi}{3}.$$

(2)
$$\therefore b = \sqrt{3}$$
, $B = \frac{\pi}{3}$, $\therefore a^2 + c^2 = 3 + ac$, $X \therefore S = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}ac = \frac{\sqrt{3}}{2}$, $\therefore ac = 2$,

$$\therefore (a+c)^2 = 3+3ac = 9$$
, $\therefore a+c=3$, 故 $\triangle ABC$ 的周长为 $a+b+c=3+\sqrt{3}$.

16.解: (1) 由题意可知: 该圆锥的底面半径r=2, 母线长l=4,

所以表面积 $S_{\bar{z}} = \pi r l + \pi r^2 = \pi \times 2 \times 4 + \pi \times 2^2 = 12\pi$.

(2) 连接 *BD*, *DE* 由题意可得:
$$PO = \sqrt{AP^2 - AO^2} = 2\sqrt{3}$$
,

因为 $PO \perp$ 平面ABC, $BC \subset$ 平面ABC, 可知 $PO \perp BC$,

由题意可知: $AE \perp BC$, POIAE = O, $PO, AE \subset$ 平面 ADE, 所以 $BC \perp$ 平面 ADE,

在
$$\triangle ABC$$
 中,因为 $\frac{BC}{\sin 60^{\circ}}$ = 4,所以 $BC = 4\sin 60^{\circ} = 2\sqrt{3}$,可得三棱锥 $B - PAD$ 的高为 $\frac{1}{2}BC = \sqrt{3}$,

所以
$$V_{D-APB} = V_{B-PAD} = \frac{1}{3} \times \sqrt{3} \times \frac{2}{3} \times \frac{1}{2} \times 2 \times 2\sqrt{3} = \frac{4}{3}$$
.

17.解: (1) 由于函数
$$f(x) = 2\sin x \cos(x + \frac{\pi}{3}) + m = 2\sin x (\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x) + m = \sin x \cos x - 3\sin x + m$$

$$= \frac{1}{2}\sin 2x - \frac{\sqrt{3}}{2}(1 - \cos 2x) + m = \sin(2x + \frac{\pi}{3}) + m - \frac{\sqrt{3}}{2}$$

由于
$$-1 \le \sin(2x + \frac{\pi}{3}) \le 1$$
, 故函数 $f(x)$ 的最大值为 $1 + m - \frac{\sqrt{3}}{2} = 2m$, 解得 $m = 1 - \frac{\sqrt{3}}{2}$.

(2) 由于
$$-\frac{\pi}{2} + 2k\pi \le 2x + \frac{\pi}{3} \le \frac{\pi}{2} + 2k\pi$$
, $(k \in \mathbb{Z})$, 解得 $-\frac{5\pi}{12} + k\pi \le x \le k\pi + \frac{\pi}{12}$, $(k \in \mathbb{Z})$;

故函数 f(x) 的单调递增区间为 $[-\frac{5\pi}{12} + k\pi, k\pi + \frac{\pi}{12}]$, $(k \in \mathbb{Z})$;

故[0,a]
$$\subseteq$$
[$-\frac{5\pi}{12}+k\pi,k\pi+\frac{\pi}{12}$], $(k\in \mathbb{Z})$; 故取 $k=0$,则 $[0,a]\subseteq$ [$-\frac{5\pi}{12},\frac{\pi}{12}$]

故 $a \in (0, \frac{\pi}{12}]$,即a的最大值为 $\frac{\pi}{12}$.

18.解: (1) 证明: 连接 AC, BD 交于点 O, 连接 OE.

由己知 OE 为 $\triangle PAC$ 的中位线,故 PC // OE ,OE \subset 平面 BDE ,PC \angle 平面 BDE ,所以 PC // 平面 BDE

(2) 取 AD 中点 F, 连接 PF, 则由 $\triangle PAD$ 为等边三角形可知 $PF \perp AD$

因为平面 PAD 上平面 ABCD, 它们的交线为 AD, $PF \subset$ 平面 PAD, $PF \perp AD$

所以 PF 上平面 ABCD, 故 PC 在平面 ABCD 的射影为 CF, 故 $\angle PCF$ 即为所求.

由己知
$$PF = \sqrt{3}$$
, $CF = \sqrt{CD^2 + DF^2} = \sqrt{2^2 + 1^2} = \sqrt{5}$

故
$$\tan \angle PCF = \frac{PF}{CF} = \frac{\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{15}}{5}$$
,

故 PC 和平面 ABCD 所成角的正切值为 $\frac{\sqrt{15}}{5}$

19.解: (1) 由题意知: $\angle ADC = 360^{\circ} - (120^{\circ} + 90^{\circ} + 60^{\circ} + \theta) = 90^{\circ} - \theta$.

在 $\triangle ACD$ 中,由正弦定理: $\frac{AC}{\sin \angle ADC} = \frac{AD}{\sin \angle ACD}$,即: $AC = 2\sqrt{3}\cos\theta$,在 $\triangle ABC$ 中,: $\angle ACB = \theta$,

$$\therefore$$
 $\angle CAB = 60^{\circ} - \theta$. 由正弦定理: $\frac{AB}{\sin \theta} = \frac{BC}{\sin(60^{\circ} - \theta)} = \frac{AC}{\sin 120^{\circ}} = 4\cos \theta$,

$$AB = 4\cos\theta\sin\theta = 2\sin2\theta$$
, $BC = 4\cos\theta\sin(60^\circ - \theta)$,

$$\therefore S = AB + BC = 2\sin 2\theta + 4\cos \theta \sin (60^\circ - \theta) \perp 10^\circ < \theta < 60^\circ,$$

$$\nabla S = \sin 2\theta + \sqrt{3} \cos 2\theta + \sqrt{3} = 2 \sin(2\theta + 60^\circ) + \sqrt{3},$$

$$0^{\circ} < \theta < 60^{\circ}$$
, $60^{\circ} < 2\theta + 60^{\circ} < 180^{\circ}$,

:S 的最大值为2+ $\sqrt{3}$, 当且仅当 θ =15° 时取得等号.

(2) 由 (1) 知:
$$BC = 4\cos\theta\sin(60^\circ - \theta)$$
, $CD = 2\sqrt{3}\sin(\theta + 30^\circ)$.

$$\therefore S = \frac{1}{2} \cdot 4\cos\theta \sin(60^\circ - \theta) \cdot 2\sqrt{3}\sin(\theta + 30^\circ) \cdot \sin(60^\circ + \theta)$$

$$=2\cos\theta\sin\left[90^{\circ}-\left(30^{\circ}+\theta\right)\right]\cdot2\sqrt{3}\sin\left(\theta+30^{\circ}\right)\cdot\sin\left(60^{\circ}+\theta\right)$$

$$= 2\cos\theta\sin(60^\circ + \theta)2\sqrt{3}\cos(30^\circ + \theta)\sin(30^\circ + \theta)$$

$$= (\sqrt{3}\cos^2\theta + \sin\theta\cos\theta)\sqrt{3}\sin(2\theta + 60^\circ)$$

$$= \sqrt{3}\sin(2\theta + 60^{\circ})(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\cos 2\theta + \frac{1}{2}\sin 2\theta)$$

$$= \sqrt{3}\sin(2\theta + 60^{\circ})[\sin(2\theta + 60^{\circ}) + \frac{\sqrt{3}}{2}],$$

$$\therefore S = \sqrt{3}\sin(2\theta + 60^\circ) \left[\sin(2\theta + 60^\circ) + \frac{\sqrt{3}}{2}\right],$$

$$\therefore S = \sqrt{3}t^2 + \frac{3}{2}t \, \text{m } S \, \text{在} \, t \in \big(0,1\big] \, \text{上单调递增},$$

$$S_{\max} = S(1) = \frac{3}{2} + \sqrt{3}$$
, 当且仅当 $\theta = 15$ °时取得等号.