CSE 1320

Week of 04/22/2019

Instructor: Donna French

Stack

```
typedef struct node
{
    int node_number;
    struct node *next_ptr;
} node;

node *StackTop = NULL;
```

```
void push(node **StackTop, int NodeNumber)
   node *NewNode = malloc(sizeof(node));
   NewNode->node number = NodeNumber;
  NewNode->next ptr = NULL;
   if (*StackTop == NULL)
      *StackTop = NewNode;
   else
      NewNode->next ptr = *StackTop;
      *StackTop = NewNode;
```

Stack Push

```
Stack Pop
void pop(node **StackTop)
   node *TempPtr = *StackTop;
   if (*StackTop == NULL)
      printf("Pop not executed - stack is empty\n\n");
   else
      free(*StackTop);
      *StackTop = TempPtr->next ptr;
```

Queue

```
typedef struct node
{
    int node_number;
    struct node *next_ptr;
} node;

node *QueueHead = NULL, *QueueTail = NULL;
```

```
void enQueue(int NewNodeNumber, node **QueueHead, node **QueueTail)
   node *NewNode = malloc(sizeof(node));
   NewNode->node number = NewNodeNumber;
   NewNode->next ptr = NULL;
   /* Queue is empty */
   if (*QueueHead == NULL)
      *QueueHead = *QueueTail = NewNode;
   else
      (*QueueTail) ->next ptr = NewNode;
      *QueueTail = NewNode;
```

Queue

```
void deQueue(node **QueueHead)
   node *TempPtr = (*QueueHead) ->next ptr;
   if (*QueueHead == NULL)
      printf("Queue is emtpy\n\n");
   else
      free (*QueueHead);
      *QueueHead = TempPtr;
```

Queue Dequeue

A floating-point number (or real number) can represent a very large (1.23×10^88) or a very small (1.23×10^-88) value.

It could also represent very large negative number (-1.23×10^88) and very small negative number (-1.23×10^88), as well as zero:

A floating-point number is typically expressed in scientific notation, with a fraction (F), and an exponent (E) of a certain radix (r), in the form of F×r^E.

Decimal numbers use radix of 10 (F×10^E)

fraction is also called the mantissa.

ra·dix

/ˈrādiks,ˈradiks/

noun

MATHEMATICS the base of a system of numeration.

Binary numbers use radix of 2 (F×2^E).

Representation of floating point numbers is not unique.

```
55.66

5.566×10^1

0.5566×10^2

0.05566×10^3
```

The fractional part can be *normalized*.

In the normalized form, there is only a single non-zero digit before the radix point.

In the normalized form, there is only a single non-zero digit before the radix point.

For example, decimal number 123.4567 can be normalized as

1.234567×10^2

binary number 1010.1011B can be normalized as

1.0101011B×2³

It is important to note that floating-point numbers suffer from *loss of precision* when represented with a fixed number of bits (e.g., 32-bit or 64-bit).

This is because there are *infinite* number of real numbers (even within a small range of 0.0 to 0.1).

On the other hand, a n-bit binary pattern can represent a *finite* 2^n distinct numbers.

Hence, not all the real numbers can be represented. The nearest approximation will be used instead which results in loss of accuracy.

An n-bit binary pattern can represent a *finite* 2^n distinct numbers.

Computer uses a fixed number of bits to represent a piece of data, which could be a number, a character, or others.

A n-bit storage location can represent up to 2^n distinct entities.

For example, a 3-bit memory location can hold one of these eight binary patterns:

000, 001, 010, 011, 100, 101, 110, or 111.

Hence, it can represent at most 8 distinct entities.

It is also important to note that floating number arithmetic is very much less efficient than integer arithmetic.

Floating point arithmetic can be speed up with a dedicated floating-point co-processor but this extra step still adds extra time.

Use integers if your application does not require floating-point numbers.

In computers, floating-point numbers are represented in scientific notation of fraction (F) and exponent (E) with a radix of 2, in the form of

Both E and F can be positive as well as negative.

Modern computers adopt **IEEE 754 Standard** for representing floating-point numbers.

There are two representation schemes: 32-bit single-precision and 64-bit double-precision.

IEEE-754 32-bit Single-Precision Floating-Point Numbers

In 32-bit single-precision floating-point representation:

The most significant bit is the sign bit (S), with 0 for positive numbers and 1 for negative numbers.

The following 8 bits represent exponent (E). The remaining 23 bits represents fraction (F).

31 30 23 22 0

32-bit Single-Precision Floating-point Number

IEEE-754 32-bit Single-Precision Floating-Point Numbers

Floating-point numbers are represented in scientific notation of fraction (F) and exponent (E) with a radix of 2 $F \times 2^{E}$.

0 10000000 110 0000 0000 0000 0000 0000

 $+1.75_{10} = 1.11_{2}$

 $128_{10} = 10000000_2$

IEEE-754 64-bit Double-Precision Floating-Point Numbers

In 64-bit single-precision floating-point representation:

The most significant bit is the sign bit (S), with 0 for positive numbers and 1 for negative numbers.

The following 11 bits represent exponent (E). The remaining 52 bits represents fraction (F).

64-bit Double-Precision Floating-point Number

```
float f;
double d;
f = 1.0/3;
 d = 1.0/3;
                     Why use 1.0 instead of 1?
if (f == d)
     printf("f equals d!");
else
     printf("of course they don't equal!");
```

```
Breakpoint 1, main () at floatingDemo.c:10
              f = 1.0/3;
10
(gdb) step
             d = 1.0/3;
11
(gdb)
13
              if (f == d)
(qdb) p f
$1 = 0.3333333333
(qdb) p d
(gdb) step
19
                      printf("of course they don't equal!");
```

NaN

IEEE 754 floating point numbers can represent NaN (not a number).

NaN, not a number, is a numeric data type value representing an undefined or unrepresentable value, especially in floating-point arithmetic.

Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985.

For example, 0/0 is undefined as a real number, and is therefore represented by NaN.

The square root of a negative number is an imaginary number and cannot be represented as a real number, so is represented by NaN.

NaNs may also be used to represent missing values in computations.

```
float f1;
float f2;
f1 = sqrt(-1);
f2 = sqrt(-1);
if (f1 == f2)
     printf("f1 equals f2!");
else
     printf("of course they don't equal!");
```

```
Breakpoint 1, main () at floatingDemo.c:11
                 f1 = sqrt(-1);
11
(gdb) step
12
                f2 = sqrt(-1);
(ddb)
14
                if (f1 == f2)
(qdb) p f1
$3 = -nan(0x400000)
(qdb) p f2
$4 = -nan(0x400000)
(qdb) step
21
                printf("of course they don't equal!");
(qdb) c
Continuing.
of course they don't equal!
Program exited normally.
```

```
float f1;
float f2;
f1 = sqrt(-1);
f2 = sqrt(1);
if (isnan(f1))
    printf("f1 isnan() is true");
if (isnan(f2))
    printf("f2 isnan() is true");
```

```
Breakpoint 1, main () at floatingDemo.c:11
11
                 f1 = sqrt(-1);
(gdb) step
12
                 f2 = sqrt(1);
(gdb)
15
                 if (isnan(f1))
(gdb) p f1
$5 = -nan(0x400000)
(gdb) p f2
$6 = 1
(gdb) p isnan(f1)
$7 = 1
(gdb) p isnan(f2)
$8 = 0
(gdb) c
Continuing.
fl isnan() is true
```

Given the declaration "float f", when is the expression "if (f==f)" false?

When f is a NaN.

Given

```
float f1 = M_PI;
double d1 = M_PI;
```

ls

```
if (f1 == d1)
```

always true?

No

```
Breakpoint 1, main () at floatingDemo.c:8
float f = sqrt(-1);
float f1 = M PI;
                                  8
                                                   float f = sqrt(-1);
double d2 = M PI;
                                  (qdb) step
                                                   float f1 = M PI;
if (f == f)
                                  (qdb)
                                  10
                                                  double d2 = M PI;
     printf("f == f");
                                  (gdb)
                                  16
                                                  if (f == f)
else
                                  (qdb) p f
                                  $1 = -nan(0x400000)
      printf("f != f");
                                  (qdb) p f1
                                  $2 = 3.14159274
                                  (qdb) p d2
                                  $3 = 3.1415926535897931
if (f1 == d2)
                                  (qdb) step
                                  23
     printf("f1 == d2");
                                                           printf("f != f");
                                  (qdb)
                                  26
                                                   if (f1 == d2)
else
                                  (gdb)
      printf("f1 != d2");
                                  32
                                                           printf("f1 != d2");
```

9.25

Begin with the decimal fraction and multiply by 2. The whole number part of the result is the first binary digit to the right of the point.

$$0.25 \times 2 = 0.5$$

We keep the 0

Next we disregard the whole number part of the previous result (the 0 in this case) and multiply by 2 once again. The whole number part of this new result is the second binary digit to the right of the point.

$$0.5 * 2 = 1.0$$
 We keep the 1

 9_{10} in binary is 1001_2 so 9.25 is

1001.012

9.625

Begin with the decimal fraction and multiply by 2. The whole number part of the result is the first binary digit to the right of the point.

$$0.625 * 2 = 1.250$$
 We keep the 1

Next we disregard the whole number part of the previous result (the 1 in this case) and multiply by 2 once again.

$$0.250 \times 2 = 0.5$$

We keep the 0

The whole number part of this new result is the second binary digit to the right of the point. We will continue this process until we get a zero as our decimal part or until we recognize an infinite repeating pattern.

$$0.50 \times 2 = 1.00$$
 We keep the 1

$$9.625_{10} = 1001.101_{2}$$

109.5

Begin with the decimal fraction and multiply by 2. The whole number part of the result is the first binary digit to the right of the point.

$$0.50 * 2 = 1.00$$
 We keep the 1

We got a 0 for the decimal part so we are done...

$$109.5_{10} = 1101101.1_{2}$$

$$0.1 = .0001100110011..._2$$

```
0.1 * 2 = 0.20
                             We keep the 0
0.2 \times 2 = 0.40
                             We keep the 0
0.4 \times 2 = 0.80
                             We keep the 0
0.8 \times 2 = 1.60
                             We keep the 1
0.6 \times 2 = 1.20
                             We keep the 1
0.2 \times 2 = 0.40
                             We keep the 0
0.4 \times 2 = 0.80
                             We keep the 0
0.8 \times 2 = 1.60
                             We keep the 1
0.6 * 2 = 1.20
                             We keep the 1
0.2 \times 2 = 0.40
                             We keep the 0
0.4 \times 2 = 0.80
                             We keep the 0
0.8 * 2 = 1.60
                             We keep the 1
0.6 \times 2 = 1.20
                             We keep the 1
```

...or until we recognize an infinite repeating pattern

Two's Complement

How to calculate the two's complement of a number

0000 = 0	1111 = -1	Take		Take	
0001 = 1	1110 = -2	5 ₁₀ which is	01012	3 ₁₀ which is	00112
0010 = 2	1101 = -3	10	· - · - Z	10	2
0011 = 3	1100 = -4	invert it	1010 ₂	invert it	1100 ₂
0100 = 4	1011 = -5	and add 1	10102	and add 1	11002
0101 = 5	1010 = -6		+ 1		+ 1
0110 = 6	1001 = -7		1011 ₂		1101 ₂
0111 = 7	1000 = -8		- 5 ₁₀		-3 ₁₀

Two's Complement

$$-12_{10} = 0100_2$$

$$-16_{10} = 11110000_2$$

$$-25_{10} = 11100111_2$$

$$-100_{10} = 10011100_2$$

$$-55_{10} = 11001001_2$$

$$-150_{10} = 01101010_2$$

-315,400 ₁₀		-0.0010	-0.00101 ₂		
0.315	4x10 ⁶		-0.101x2 ⁻²		
sign manti	negative ssa 3154	(1)	sign mantissa	negative (1) 101	
expon	ient 6		exponent	10 ₂ (-2 ₁₀)	
1101.101 ₂		1.001 ₂			
0.110	1101x2 ⁴		$0.1001x2^{1}$		
sign	positive	(0)	sign	positive	
manti	ssa 1101101	-	mantissa	1001	
expor	ient 100 ₂		exponent	1 ₂	

$$12.5_{10} = 1100.1_{2}$$
 $170.75_{10} = 10101010.11_{2}$
 $100.2_{10} = 1100100.0011001100110011..._{2}$
 $9.25_{10} = 1001.01_{2}$
 $4.625_{10} = 100.101_{2}$
 $7.875_{10} = 111.111_{2}$
 $4.375_{10} = 100.011_{2}$
 $300.875_{10} = 100101100.111_{2}$