Centro de Convenções

Por Desconhecido Brasil

Timelimit: 3

Já com a Final Mundial da Maratona de Programação em mente, o governo chinês iniciou um projeto para a construção de um centro de convenções novo. Esse centro será o mais moderno do mundo, com toda a infraestrutura para sediar importantes eventos. O governo já decidiu (e se decidiu está decidido) construí-lo no formato de uma circunferência. Quando visto de cima esse novo centro, com auxílio de toda sua iluminação de ultima geração, irá dar a impressão de ser uma grande nave espacial redonda. Com truques de luzes, pretende-se ainda criar a impressão de movimento para o imponente prédio.

Porém todos sabem que a China possui um grande problema de espaço físico, e o único lugar disponível para a construção fica nos arredores de uma antiga floresta de árvores milenares. Para deixar o projeto ainda mais atraente, decidiu-se que o centro será construído dentro da floresta, mas sem derrubar uma única árvore. A sorte do projetista é que a floresta é esparsa, e existe bastante espaço entre as árvores em alguns lugares. Como se deseja criar o maior (no sentido da área construída) centro de convenções possível, sua tarefa é ajudar a encontrar o melhor lugar para a construção. Seu objetivo é encontrar as coordenadas do ponto central da construção, que deve estar dentro do fecho convexo induzido pelas árvores.

Entrada

A entrada é composta de diversas instâncias. Cada instância inicia-se com uma linha contendo o número $0 \le n \le 1000$ de árvores da floresta, seguida por n linhas contendo os pares ordenados $\mathbf{x_i}$ $\mathbf{y_i}$, que representam as coordenadas das árvores da floresta. Todas as coordenadas dadas são inteiras. A entrada termina com $\mathbf{n} = 0$.

Saída

Para cada instância solucionada, você deverá imprimir um identificador **Instancia h** em que **h** é um número inteiro, sequencial e crescente a partir de 1. Na linha seguinte você deve imprimir a posição **x y** ideal para o ponto central do centro de convenções. Caso exista mais que um ponto ideal para a construção, imprima aquele com o menor valor para **x**. Caso ainda exista mais que uma opção, imprima aquele com o menor valor para **y**. Trunque os números impressos em exatamente três casas decimais. Caso não seja possível construir o centro, escreva a palavra **impossível** na linha.

Uma linha em branco deve separar a saída de cada instância.

Exemplo de Entrada	Exemplo de Saída
4	Instancia 1
0 0	1.000 1.000
2 2	
0 2	Instancia 2
2 0	impossivel
3	
0 0	Instancia 3
10 10	1.500 2.500
6 4	
5	
0 0	

	o de Saída
1 1	
3 1	
0 3	
0	

VIII Maratona de Programação IME-USP 2004.