

Algorithmen und Komplexität **TIF 21A/B** Dr. Bruno Becker

Übungsblatt 2: Analyse und Sortieren

www.dhbw-loerrach.de


```
Beispiel: 15,2,43,17,4,8
     Erstellen Sie rekursiven Algorithmus für Bubblesort.
     Wann ist Bubblesort besonders günstig, wann besonders ungünstig?
b.
                                                                           DL: 15,2 (Tausch in 2,15) 15,43,17 (tausch in 17,43)
     Ist Bubblesort stabil?
                                                                           43,4 (Tausch in 4,43) 43,8 (Tausch in 8,43)
Public void bubbleSort(int[] a, int n)
                                                                                Folge nach 1. DL: 2,15,17,4,8,43
   // a array der Länge n
   swapped? = false
   for (int i=0; i < n-1, i++)
                                                                           DL: 2,15,17,4 (Tausch in 4,17), 17,8 (Tausch in 8,17)
      if (a[i] > a [i+1] )
                                                                           17,43
                                                                                Folge nach 2. DL: 2,15,4,8,17,43
         swap (a, i,i+1); // swap a[i] with a [i+1]
                                                                           DL 2,15,4 (Tausch in 4,15), 15,8 (Tausch in
         swapped? = true
                                                                           8,15),15,17,43
                                                                                Folge nach 3. DL: 2,4,8,15,17,43
    If (n-1 > 1) and (swapped?=true)
                                                                                => Folge sortiert
       bubbleSort (a,n-1); //In Rekursionstiefe k sind
      die letzten k Elemente schon sortiert
                                             b) Aufwand: Best case (Folge sortiert) C(N) = N-1, M(N) = 0
                                                           Worst Case (Folge absteigend sortiert) \Theta (N<sup>2</sup>), auch für average case..
                                             Bubblesort nur gut, wenn Folge "fast" sortiert
                                             c) Ist stabil (Nachbarn werden nur vertauscht bei echt >) und in-place
```

a)
$$f(n) = n^2$$

$$g(n) = n \log n \implies f(n) \varepsilon \Omega (g(n))$$
, g ist untere Schranke für f

b)
$$f(n) = \sqrt{n}$$

$$g(n) = 500 \ n => f(n) \ \varepsilon \ O(g(n), g \ ist \ obere$$

Schranke für f

c)
$$f(n) = 3 \log n$$

$$g(n) = \ln n = f(n) \varepsilon \Theta(g(n)), g \text{ ist obere und}$$

untere Schranke für f (wg. Logarithmus-Gesetzen)

d)
$$f(n) = 47 n^2 - 12 n + 18$$

$$g(n) = n^2 f(n) \varepsilon \Theta(g(n))$$
. z.B. für $f(n) \varepsilon O(g(n))$ z.B. $c=47$, $n_o=2$

- a) Sortieren Sie die Folge mittels Insertion Sort. Geben Sie die Folge nach jedem Schleifendurchlauf an.
- b) In welchem Fall benötigt Insertion Sort nur O(n) Vergleiche?

- 1. DL 281546937
- 2. DL: 128546937
- 3. DL: 125846937
- 4. DL: 124586937
- 5. DL: 124568937
- 6. DL: 124568937
- 7. DL: 123456897
- 8. DL: 123456789
- b) Wenn Folge sortiert nur O (n) Vergleiche

- a) Erläutern Sie die Funktionsweise von Quicksort
- b) Gegeben sei die folgende Zahlenfolge

11	7	23	17	15	8
		29		– –	

Rekursionstiefe sei k, S_k die Folge in der k-ten Rekursion, x_k das Pivot-Element der k-ten Rekursion

k	S _k	Pivot x _k	Kommentar	
0	S ₀ = (11, 7, 23, 17, 15, 8)	$x_0 = 11$	Start mit $x_0 = 11$	
	x ₀ i-> <-j			
	S ₀ = (11, 7, 23, 17, 15, 8)		i < j: vertausche a[i] mit a[j],	
	x ₀ i j		fahre mit Suche fort	
	$S_0 = (11, 7, 8, 17, 15, 23)$		i ≥ j; vertausche a[j] mit Pivot	
	x ₀ j i		und setze mit Teilfolgen fort	
	$S_0 = (8, 7, 11, 17, 15, 23) = S_1 x_0 S_2$			
1	$S_1 = (8, 7)$	$x_1 = 8$		
	X ₁ i,j			
	$S_1 = (8, 7)$		i ≥ j; vertausche a[j] mit Pivot	
	X ₁ i,j		und setze mit Teilfolgen fort	
	$S_1 = (7, 8) = S_3 x_1$			
2	S = (17 15 22)	x ₂ = 17		
	$S_2 = (17, 15, 23)$ $X_2 i \rightarrow <-j$	X ₂ - 17		
	$S_2 = (17, 15, 23)$		i ≥ j; vertausche a[j] mit Pivot	
	X_2 \downarrow X_2 \downarrow \downarrow		und setze mit Teilfolgen fort	
	$S_2 = (15, 17, 23) = S_4 \times_2 S_5$		and sale mic remarkant for	
3	$S_3 = (7)$		Folge 1 Element-> Abbruch	
4	$S_3 = (15)$		Folge 1 Element-> Abbruch	
5	$S_3 = (23)$		Folge 1 Element-> Abbruch	

Geben Sie für die unten angegebenen Zahlenfolgen jeweils die Laufzeit der Sortierverfahren Selection Sort, Insertion Sort und Bubblesort in O-Notation an (mit Begründung).

a)
$$1, \frac{N}{2} + 1, 2, \frac{N}{2} + 2, ..., \frac{N}{2}, N$$
 (N gerade)

b) N, 1, N-1, 2, N-2,3,..., N -
$$\frac{N}{2}$$
 +1, $\frac{N}{2}$ (N gerade)

- c) N, 1,2,3,...,N-1
- d) 2,3,4,...N,1

Selection Sort: O(N²) für a)-d), weil unabhängig von Sortierreihenfolge

Insertion Sort:

- a) Bei jedem zweiten Element findet Swap statt, suche an die richtige Stelle zum Einfügen abhängig von Teilfolge => O(N²)
- b) Analog zu a) O(N²)
- c) O(N), Es muss zwar bei jedem Schleifen-Durchgang eingefügt werden, aber Einfügestelle immer an 2ter Stelle => O(N)
- d) Nur 1x muss Swap durchgeführt werden => O(N)

Bubblesort:

- a) Durch lokale Vertauschungen wandern Elemente langsam an richtige Stelle, z.B. 2tes Element N/2+1 benötigt ca N/2 Durchläufe $> O(N^2)$
- b) Durch lokale Vertauschungen wandern Elemente langsam an richtige Stelle, z.B. letztes Element N/2 benötigt ca N/2 Durchläufe N/2 Durchläufe
- c) Maximum wandert in einem Durchlauf nach hinten => O(N)
- d) Die 1 wandert nur sehr langsam nach vorne, pro Schleifendurchgang um 1 Position => O(N²)