Bestimmung einer Zeitverzögerung

Anwendung der Kreuzkorrelationsmethode 交叉相关法

- Messungen sollten ohne allzu große Verzögerung registriert werden, um eine hohe Qualität der Positions- und Objektinformationen zu gewährleisten
 - Notwendigkeit von Echtzeitsystemen:
 - → Erfassen und Verarbeiten von Daten innerhalb einer vordefinierten und reproduzierbaren Zeittoleranz
- Zeitliche Beschränkungen ergeben sich aus <u>einzuhaltenden Fristen</u> (basierend auf den Erfassungs- und Kontrollaufgaben)
 - Zeitspanne zwischen dem Auftreten eines Ereignisses und einer definierten Systemreaktion
 - → Reaktion innerhalb weniger Millisekunden für ein autonomes Fahrzeug
 - → Reaktion innerhalb von Sekunden/Minuten/Stunden für ein Überwachungssystem
- Zitate aus Hennes et al. (2014):
 - "Echtzeit ist die Zeitspanne, die, wenn sie nicht überschritten wird, den Eintritt einer Katastrophe verhindert."
 - "Die Echtzeit hängt in erster Linie von der Aufgabe und indirekt von der Funktionsweise des MSS ab."

- In einem MSS werden zeitkritische Aufgaben ausgeführt
- Beispiel:
 - Übertragung des Triggersignals an die Sensorkomponenten
 - Messstart nach Systemanforderung
- Voraussetzung:
 - Das System sollte so schnell arbeiten, dass keine Störungen bei der Durchführung der nachfolgenden Aufgaben auftreten
- Konzept der Echtzeit:
 - Erledigung einer bestimmten Aufgabe innerhalb einer bestimmten Zeit

Grundlegende Anforderungen an ein Echtzeitsystem

Punctuality / Pünktlichkeit

- Die Reaktion auf ein Ereignis muss innerhalb einer oder mehrerer fester Fristen eingeleitet oder abgeschlossen werden
 - Soft: Geringfügige Überschreitung der Zeitbedingung oft akzeptabel
 - Firm: Eine Überschreitung des Limits kann akzeptiert werden, aber die Daten werden unbrauchbar
 - Hard: Die Zeitvorgaben müssen eingehalten werden, da sonst unumkehrbare Folgen eintreten

Simultaneity / Gleichzeitigkeit

 Parallele Ausführung von Aufgaben (von mehreren Sensoren) ohne signifikante Erhöhung der Latenzzeit

Availability / Verfügbarkeit

 Ständige Betriebsbereitschaft/Standby (auch in Bezug auf andere Aufgaben des Betriebssystems)

Determinacy / Determiniertheit

 Funktionale Vorhersagbarkeit einer Ausgabe und die Fähigkeit, Reaktions- und Latenzzeiten vorherzusagen

Zeitlicher Rahmen der Echtzeit

Zeitlicher Rahmen

- i.e. die Rechtzeitigkeit des Systems
- beschrieben durch Zeitanforderungen mit Hilfe vom/n
 - frühestmöglichem Zeitpunkt
 - spätestmöglichem Zeitpunkt
 - einem Zeitintervall 时间区间
 - einem genauen Moment

Beispiel: Synchronisation kTLS-basierter HUSKY

Beispiel: Synchronisation kTLS-basierter HUSKY

Untersuchung zur Qualität der Zeitsynchronisation

Qualität hängt von möglichen Delays ab

Delay [s] / Einfluss au	f Position [m]	Mögliche Ursache				
	20 · 10 ⁻⁹	Angenommener Hardware Delay vom LT				
bei Bewegungs-	150 · 10 ⁻⁹	Länge des Kabels				
geschwindigkeit	1 · 10 ⁻³	Unsicherheit der ansteigenden GPS-Flanke (Garmin 18x für Velodyne Puck)				
von 1 m/s	20 · 10 ⁻³	Synchronisationsfehler zwischen Empfänger und LT (bei 50 Hz)				
	~20 · 10 ⁻³	Summe der Einflüsse (worst case)				
	1,0002 · 10 ⁻³	Summe der regulären Einflüsse				

Einfluss für Antennenkabel mit 30 m \rightarrow $t_{\rm delay} = \frac{30~m}{2 \cdot 10^8 \, m/s} = 150~ns$

Ernst (2021)

Untersuchung zur Qualität der Zeitsynchronisation

- Analyse eines möglichen Delays anhand kinematischer Messungen
 - Überprüfen einer Abweichung während Vorwärts- und Rückwärtsfahrt auf Systematik mittels Referenzpunktwolke
 - Abstand (aus kinematischer Punktwolke) zu einem Referenzobjekt (hier: Ebene) im Hin- und Rückweg in Relation zur mittleren Geschwindigkeit
 - Doppelter Einfluss eines etwaigen Delays

$$\Delta t_{
m delay} = rac{ar{d}_{
m Hin} - ar{d}_{
m R\"{u}ck}}{2ar{v}}$$

Ernst (2021)

Untersuchung zur Qualität der Zeitsynchronisation

- Analyse eines möglichen Delays anhand kinematischer Messungen
 - Überprüfen einer Abweichung während Vorwärts- und Rückwärtsfahrt auf Systematik mittels Referenzpunktwolke
 - Abstand (aus kinematischer Punktwolke) zu einem Referenzobjekt (hier: Ebene) im Hin- und Rückweg in Relation zur mittleren Geschwindigkeit
 - Doppelter Einfluss eines etwaigen Delays

$$\Delta t_{\rm delay} = rac{ar{d}_{
m Hin} - ar{d}_{
m R\"{u}ck}}{2ar{v}}$$

Messung	Differenz [mm]	Geschwindigkeit [mm/s]	Delay [ms]
1	0,77	147	2,62
II	6,64	146	22,67
III	0,48	119	2,03
IV	2,43	434	2,80

Ernst (2021) Σ +2,53 ms

Verwendung der GPS-Zeit zur Synchronisation

Verwendung der GPS-Zeit zur Synchronisation

Durchführung von externem Tracking mittels Lasertracker

Beispiel: NTP für die Synchronisation eines MSS

Thalmann & Neuner (2018)

点火顺序

Zeitsynchronisation für den Velodyne VLP16 (1)

- Zwei Arten von Datenpaketen des Sensors:
 - Datenpakete: 3D-Messung, kalibrierte Reflektivität, Zeitstempel, (Modellkennung, Laser-Return-Modus)
 - Positions-/GPS-Pakete: letzte empfangene NMEA-Nachricht, Status des PPS-Signals
 Firing sequence → alle Laser im Sensor werden innerhalb von 55.296 µs ausgelöst
 - 16 einzelne Laserkanäle (mit festem bestimmten Elevationswinkel) mit jeweils einem 903-nm-Laser-Emitter- und -Detektorpaar
 - 24 firing sequences sind in einem Paket von 12 Datenblöcken enthalten
- Der Zeitstempel markiert den Zeitpunkt des ersten Datenpunkts in der ersten firing sequences des ersten Datenblocks
 - Anzahl der seit dem Stundenanfang verstrichenen Mikrosekunden (0 to 3,599,999,999 µs)
 - Synchronisierung mit der UTC-Zeit

Zeitsynchronisation für den Velodyne VLP16 (2)

- Berechnung des genauen Zeitpunkts für jeden Datenpunkt in einem Paket
 - In Bezug auf die Laser-ID & firing sequence $TimeOffset = (55.296 \ \mu s \cdot SequenceID) + (2.304 \ \mu s \cdot LaserID)$ ExactPointTime = Timestamp + TimeOffset

	Data Blocks											
[1	2	3	4	5	6	7	8	9	10	11	12
	Stror	ngest	Strongest		Strongest		Strongest		Strongest		Strongest	
Laser Number	1	2	3	4	5	6	7	8	9	10	11	12
1	0.000	110.592			442.368		663.552	774.144	884.736	995.33	1,105.92	1,216.51
2	2.304	112.896			444.672	555.264	665.856	776.448	887.040	997.63	1,108.22	1,218.82
3	4.608	115.200		336.384	446.976		668.160	778.752	889.344	999.94	1,110.53	1,221.12
4	6.912	117.504		338.688	449.280		670.464	781.056	891.648	1,002.24	1,112.83	1,223.42
5	9.216	119.808		340.992	451.584	562.176	672.768	783.360	893.952	1,004.54	1,115.14	1,225.73
6	11.520	122.112	232.704	343.296	453.888	564.480	675.072	785.664	896.256	1,006.85	1,117.44	1,228.03
7	13.824	124.416		345.600	456.192	566.784	677.376	787.968	898.560	1,009.15	1,119.74	1,230.34
8	16.128	126.720		347.904	458.496		679.680	790.272	900.864	1,011.46	1,122.05	1,232.64
9	18.432	129.024			460.800	571.392	681.984	792.576	903.168	1,013.76	1,124.35	1,234.94
10	20.736	131.328	241.920		463.104	573.696	684.288	794.880	905.472	1,016.06	1,126.66	1,237.25
11	23.040	133.632	244.224	354.816	465.408	576.000	686.592	797.184	907.776	1,018.37	1,128.96	1,239.55
12	25.344	135.936		357.120	467.712	578.304	688.896	799.488	910.080	1,020.67	1,131.26	1,241.86
13	27.648	138.240		359.424	470.016	580.608	691.200	801.792	912.384	1,022.98	1,133.57	1,244.16
14	29.952	140.544	251.136	361.728	472.320	582.912	693.504	804.096	914.688	1,025.28	1,135.87	1,246.46
15	32.256	142.848	253.440	364.032	474.624	585.216	695.808	806.400	916.992	1,027.58	1,138.18	1,248.77
16	34.560	145.152	255.744	366.336	476.928	587.520	698.112	808.704	919.296	1,029.89	1,140.48	1,251.07
1	55.296	165.888	276.480	387.072	497.664	608.256	718.848	829.440	940.032	1,050.62	1,161.22	1,271.81
2	57.600	168.192	278.784	389.376	499.968	610.560	721.152	831.744	942.336	1,052.93	1,163.52	1,274.11
3	59.904	170.496		391.680	502.272	612.864	723.456	834.048	944.640	1,055.23	1,165.82	1,276.42
4	62.208	172.800		393.984	504.576	615.168	725.760	836.352	946.944	1,057.54	1,168.13	1,278.72
5	64.512	175.104	285.696		506.880	617.472	728.064	838.656	949.248	1,059.84	1,170.43	1,281.02
6 7	66.816	177.408 179.712	288.000 290.304	398.592	509.184	619.776	730.368	840.960	951.552	1,062.14	1,172.74	1,283.33
8	69.120 71.424	182.016	290.304	400.896 403.200	511.488 513.792	622.080 624.384	732.672 734.976	843.264 845.568	953.856 956.160	1,064.45 1,066.75	1,175.04 1,177.34	1,285.63 1,287.94
9	73.728	184.320	292.608	405.504	516.096	626.688	737.280	847.872	958.464	1,069.06	1,177.54	1,287.94
10	76.032	186.624	294.912	407.808	518.400	628.992	739.584	850.176	960.768	1,069.06	1,179.65	1,290.24
11	78.336	188.928	299.520	410.112	520.704	631.296	741.888	852.480	963.072	1,073.66	1,184.26	1,292.34
12	80.640	191.232	301.824	410.112	523.008	633.600	744.192	854.784	965.376	1,075.97	1,184.26	1,294.85
12 13	82.944	193.536		414.720	525.312	635.904	744.192	857.088	967.680	1,078.27	1,188.86	1,297.15
14	85.248	195.840		417.024	527.616	638.208	748.800	859.392	969.984	1,080.58	1,191.17	1,301.76
15	87.552	198.144			529.920	640.512	751.104	861.696	972.288	1,080.38	1,193.47	1,301.76
16	89.856	200.448			532.224	642.816	753.408	864.000	974.592	1,085.18	1,195.78	1,304.00

velodynelidar.com

- Hennes, M.; Urban, S.; Wursthorn, S. (2014): Zur Synchronisierung von Multi-Sensor-Systemen Grundlagen und Realisierung. In: DVW-Schriftreihe, Vol. 75., pp. 25-37.
- Thalmann, T. and Neuner, H. (2021): Temporal calibration and synchronization of robotic total stations for kinematic multi-sensor-systems. In: Journal of Applied Geodesy. 15 1, pp. 13–30.
- Voges, R., Wieghardt, C. S., and Wagner, B. (2017): TIMESTAMP OFFSET DETERMINATION BETWEEN AN ACTUATED LASER SCANNER AND ITS CORRESPONDING MOTOR, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1/W1, 99–106.
- Stempfhuber, W. (2004): Ein integritätswahrendes Messsystem für kinematische Anwendungen. Ph.D. Thesis. München. DGK, Reihe C. 576.
- Qiu, M., Qiu, Y., Yang, Y., & Bai, Y. (2020). Research on GPS Timing Remote Synchronization Algorithm in High Altitude Meteorological Data Acquisition System. In IOP Conference Series: Materials Science and Engineering (Vol. 740, No. 1, p. 012209). IOP Publishing.
- Koo, K. Y., Hester, D., & Kim, S. (2019). Time synchronization for wireless sensors using low-cost gps module and arduino. Frontiers in Built Environment, 82
- Liu, S., Yu, B., Liu, Y., Zhang, K., Qiao, Y., Li, T. Y., ... & Zhu, Y. (2021). Brief industry paper: The matter of time—A general and efficient system for precise sensor synchronization in robotic computing. In 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS) (pp. 413-416). IEEE.
- Hesse, C. (2007): Hochauflösende kinematische Objekterfassung mit terrestrischen Laserscannern. Ph.D. Thesis. München. DGK, Reihe C. 608.
- Hanus, R. (2019). Time delay estimation of random signals using cross-correlation with Hilbert transform. Measurement, 146, 792-799.
- Ernst, D. (2021): Development of a quality model for the uncertainty judgement of a kinematic TLS-based multi-sensor system. Master Thesis (unpublished). Leibniz Universität Hannover. Geodätisches Institut.
- Schön, S.; Brenner, C.; Alkhatib, H.; Coenen, M.; Dbouk, H.; Garcia-Fernandez, N.; Fischer, C.; Heipke, C.; Lohmann, K.; Neumann, I.; Nguyen, U.; Paffenholz, J.-A.; Peters, T.; Rottensteiner, F.; Schachtschneider, J.; Sester, M.; Sun, L.; Vogel, S.; Voges, R. und Wagner, B. (2018): Integrity and Collaboration in Dynamic Sensor Networks. In: Sensors. Schön, Steffen; Brenner, Claus; Alkhatib, Hamza; Coenen, Max; Dbouk, Hani; Garcia-Fernandez, Nicolas; Fischer, Colin; Heipke, Christian; Lohmann, Katja; Neumann, Ingo; Nguyen, Uyen; Paffenholz, Jens-André; Peters, Torben; Rottensteiner, Franz; Schachtschneider, Julia; Sester, Monika; Sun, Ligang; Vogel, Sören; Voges, Raphael; Wagner, Bernardo. 18 7, 21.
- Vogel, S. (2020): Kalman Filtering with State Constraints Applied to Multi-sensor Systems and Georeferencing. Ph.D. Thesis. München. DGK, Reihe C.
- Thalmann, T. und Neuner, H. (2018): Untersuchung des Network Time Protocols für die Synchronisation von Multi-Sensor-Systemen. Evaluation of the Network Time Protocol for Synchronization of Multi-Sensor-Systems. In: AVN (Allgemeine Vermessungs-Nachrichten), 125 6, 163–174.
- Okunsky, M. V., and N. V. Nesterova. "Velodyne LIDAR method for sensor data decoding." IOP Conference Series: Materials Science and Engineering. Vol. 516. No. 1. IOP Publishing, 2019.
- Herrmann, Ch.; Hennes, M.; Juretzko, M.; Schneider, M.; Munziger, Ch. (2010): Positioning and Synchronization of Industrial Robots. Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Nav-igation (IPIN), Mautz, R., Kunz, M. and Ingensand, H. (eds.), IEEE Xplore, p. 436-440.
- Gojcic, Z., Kalenjuk, S., & Lienhart, W. (2017, October). Synchronization routine for real-time synchronization of robotic total stations. In INGENEO 2017: Proceedings of the 7th International Conference on Engineering Surveying (pp. 83-91).
- Paffenholz, J.-A. (2012): Direct geo-referencing of 3D point clouds with 3D positioning sensors. Ph.D. Thesis. München. DGK, Reihe C. 689.
- Toth, C.; Shin, S. W.; Grejner-Brzezinska, D. A. und Kwon, J. H. (2008): On accurate time synchronization of multi-sensor mobile mapping systems. . In: Journal of Applied Geodesy. Toth, Charles; Shin, Sung Woong; Grejner-Brzezinska, Dorota A.; Kwon, Jay Hyoun. 2 3, pp. 159-166.