## **EM Algorithm to Train Neural Networks**



### **Contents**

- 1. EM Algorithm
- 2. Training Multilayer Perceptron Network
- 3. Training MLP: with Python
- 4. Discussion & Conclusion

# 1 EM Algorithm

### The General EM Algorithm

- EM for latent
- X의 ML은 다음과 같다.

$$\max_{ heta} p(\mathbf{X}| heta) = \sum_{\mathbf{Z}} p(\mathbf{X}, Z| heta).$$



- X의 marginal을 계산하기 어렵기 때문에 Joint  $p(X,Z|\theta)$  를 사용한다.
- Latent Z의 marginal을 q(Z)라 하면 log-likelihood를 다음과 같이 쓸 수 있다.

$$\ln p(\mathbf{X}|\theta) = L(q,\theta) + KL(q||p)$$

• KL divergence가 반드시 0보다 크거나 같기 때문에  $L(q,\theta)$  이 곧 log-likelihood의 lower bound가 된다.



- 즉 EM for latent의 의의는 lower bound가 maximum이 되도록 하는  $\theta$ 와 q(Z)의 값을 찾고, 그에 해당하는 log-likelihood의 값을 찾는 것이다.
- 구체적으로는  $\theta$ 와 q(Z)를 jointly optimize하는 문제가 어려운 문제라면 둘 중 한 variable을 고정해두고 나머지를 update한 다음, 나머지 variable을 같은 방식으로 update하는 alternating method이다.

### The General EM Algorithm

#### E-step

- $\theta_{old}$ 값을 고정해두고,  $L(q,\theta)$ 의 값을 최대로 만드는 q(Z)의 값을 찾는 과정
- KL divergence는  $q(Z) = p(Z|X, \theta_{old})$  인 상황에서 0이 되기 때문에,q(Z)에 posterior distribution  $p(Z|X, \theta_{old})$ 을 대입하는 것으로 해결할 수 있다.
- 따라서 E-step은 언제나 KL-divergence를 0으로 만들고, lower bound와 likelihood의 값을 일치시키는 과정이 된다.

 $\mathcal{L}(q, \boldsymbol{\theta}^{\text{old}})$ 

 $\ln p(\mathbf{X}|\boldsymbol{\theta}^{\text{old}})$ 

#### M-step

- M-step에서는 그 반대로, q(Z)를 고정하고 log likelihood를 가장 크게 만드는  $\theta_{new}$ 를 찾는 optimization 문제를 푸는 단계이다.
- M-step에서는  $\theta$ 가 log likelihood에 직접 영향을 미치기 때문에 log likelihood 자체가 증가하게 된다.
- 즉 구한 Z를 기반으로 다시 반복해서 데이터와 비교하는 과정이기 때문에  $\theta$ 가 업데이트가 되면서 log likelihood 자체가 증가하게 되는 것이다.



### The General EM Algorithm

- Summary
- 1) E-step :  $\theta_{old}$ 에서 log likelihood와 최대한 근사한 L을 얻는다. (파란색)
- 2) M-step : L을 최대화하는  $\theta_{new}$ 를 얻는다.
- 3) E-step :  $\theta_{new}$ 로부터 L을 새로 얻는다. (초록색)
- 4) 위의 E-M step을 수렴할 때까지 반복







### An example of EM Algorithm

• EM Algorithm 예시

#### <COIN TOSS EXAMPLE>

- EM: state unknown 상태에서 probability 계산
- 상황: 2개의 코인 A,B, 무작위로 코인을 선택하여 10번 toss
- : toss 결과(앞/뒤) 만 알뿐, 어떤 코인을 던졌는지 모 름
- 목표 : 각 코인 A,B의 앞면 나올 확률을 추정해보자.
- 1) 초기화
- 각 코인 앞면 나올 확률을 임의로 설정



- 2) E-step
- 결과를 바탕으로 사용된 코인이 A/B일확률 계산



- 3) M-step

$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$

# 2 Training Multilayer Perceptron Networks

### EM Algorithm and Multiclass Classification

Assume multiclass classification with g groups,  $G_1, ..., G_g$ 

**Problem:** Infer the unknown membership of an unclassified entity with feature vector of p-dimensions Let  $(\mathbf{x}_1^T, \mathbf{y}_1^T)^T, \dots, (\mathbf{x}_n^T, \mathbf{y}_n^T)^T$  be the n examples available for training the neural network and  $\mathbf{z}$  be

#### missing data or latent variable

- EM uses **complete-data log likelihood** to estimate unknown parameters  $oldsymbol{\Psi}$
- 1) E-Step: Computes Q-function

$$\log L_c(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) \propto \log \operatorname{pr}(\boldsymbol{Y}, \boldsymbol{Z} | \boldsymbol{x}; \boldsymbol{\Psi})$$

$$= \log \operatorname{pr}(\boldsymbol{Y} | \boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\Psi})$$

$$+ \log \operatorname{pr}(\boldsymbol{Z} | \boldsymbol{x}; \boldsymbol{\Psi})$$

$$Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(k)}) = E_{\boldsymbol{\Psi}^{(k)}} \{ \log L_c(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) | \boldsymbol{y}, \boldsymbol{x} \}$$

#### 2) M-Step

:  $\Psi^{(k)}$  is updated by taking  $\Psi^{(k+1)}$  be the value of  $\Psi$  that maximizes Q-function

MLP(Multi-Layer Perceptron) neural network with one hidden layer of m units



 $z_{hj}$  be the realization of the zero-one random variable  $Z_{hj}$ 

$$(h = 1, ..., m; j = 1, ..., n)$$

Synaptic weight of the hth hidden unit:

$$\boldsymbol{w}_h = (w_{h0}, w_{h1}, \dots, w_{hp})^T$$

• Conditional distribution given  $x_i$ :

sigmoid function

$$pr(Z_{hj} = 1 \mid x_j) = \frac{\exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}{1 + \exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}$$

The bias term  $(w_{h0})$  is included in  $\mathbf{w}_h$  by adding a constant input  $x_{0j} = 1$   $\Rightarrow \text{input } \mathbf{x}_i = (x_{0j}, x_{1j}, \dots, x_{pj})^T$ 

• Then, 
$$\mathbf{w}_h^T \mathbf{x}_j = \sum_{l=1}^p w_{hl} x_{lj} + w_{h0} = \sum_{l=0}^p w_{hl} x_{lj}$$



• Synaptic weight of the ith hidden unit:

$$\mathbf{v}_i = (v_{i0}, v_{i1}, \dots, v_{im})^T$$
  
for  $i = 1, \dots, g$ 

• Conditional distribution given  $x_i$ ,  $z_i$ :

#### softmax function

$$pr(Y_{ij} = 1 \mid \boldsymbol{x}_j, \boldsymbol{z}_j) = \frac{\exp(\boldsymbol{v}_i^T \boldsymbol{z}_j)}{\sum_{r=1}^g \exp(\boldsymbol{v}_r^T \boldsymbol{z}_j)}$$

• The bias term  $(v_{i0})$  is included in  $oldsymbol{v}_i$  by adding a constant hidden u nit  $z_{oj}=1$ 

$$\Rightarrow$$
 hidden layer  $\mathbf{z}_j = (z_{oj}, z_{1j}, ..., z_{mj})^T$ 

• Then, 
$$v_i^T z_j = \sum_{h=1}^m v_{ih} z_{hj} + v_{i0} = \sum_{h=0}^m v_{ih} z_{hj}$$

**Goal:** Find ML estimate for unknown parameters  $\Psi = (w_1^T, w_2^T, ..., w_{m}^T, v_1^T, v_2^T, ..., v_{g-1}^T)^T$  through **EM Steps** using complete-data log likelihood  $L_c(\Psi; y, z, x)$ 

• Likelihood Function ( $Z_{hj} \sim \text{Bernoulli}$ )

$$pr(\mathbf{Z}|\mathbf{x}; \mathbf{\Psi}) = \prod_{j=1}^{n} \prod_{h=1}^{m} u_{hj}^{z_{hj}} (1 - u_{hj})^{(1-z_{hj})}$$

where

$$u_{hj} = pr(Z_{hj} = 1 | x_j) = \frac{\exp(\sum_{l=0}^{p} w_{hl} x_{lj})}{1 + \exp(\sum_{l=0}^{p} w_{hl} x_{lj})}$$

$$(\boldsymbol{w}_h^T \boldsymbol{x}_j = \sum_{l=0}^p w_{hl} \boldsymbol{x}_{lj} \stackrel{\exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}{1 + \exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}$$
에 대입)

• Likelihood Function ( $Y_i \sim \text{Multinomial}$ )

$$pr(Y|\mathbf{x},\mathbf{z};\boldsymbol{\Psi}) = \prod_{j=1}^{n} \prod_{i=1}^{g} o_{ij}^{y_{ij}}$$

where

$$o_{ij} = pr(Y_{ij} = 1 | \mathbf{x_j}, \mathbf{z_j}) = \frac{\exp(\sum_{h=0}^{m} v_{ih} z_{hj})}{1 + \sum_{r=1}^{g-1} \exp(\sum_{h=0}^{m} v_{rh} z_{hj})}$$

$$o_{gj} = pr(Y_{ij} = 1 | \mathbf{x_j}, \mathbf{z_j}) = \frac{1}{1 + \sum_{r=1}^{g-1} \exp(\sum_{h=0}^{m} v_{rh} z_{hj})}$$

$$(\mathbf{v}_i^T \mathbf{z}_j = \sum_{h=0}^{m} v_{ih} z_{hj} \stackrel{\text{def}}{=} \frac{\exp(\mathbf{v}_i^T \mathbf{z}_j)}{\sum_{r=1}^{g} \exp(\mathbf{v}_r^T \mathbf{z}_j)} \text{에 대입}$$

**Goal:** Find ML estimate for unknown parameters  $\Psi = (w_1^T, w_2^T, ..., w_{m}^T, v_1^T, v_2^T, ..., v_{g-1}^T)^T$  through **EM Steps** using complete-data log likelihood  $L_c(\Psi; y, z, x)$ 

Recall

$$\log L_c(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) \propto \log pr(\boldsymbol{Y}, \boldsymbol{Z} | \boldsymbol{x}; \boldsymbol{\Psi}) = \log pr(\boldsymbol{Y} | \boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\Psi}) + \log pr(\boldsymbol{Z} | \boldsymbol{x}; \boldsymbol{\Psi})$$

• Then, the Complete-data log likelihood for  $\Psi$  is

$$\sum_{j=1}^{n} \left\{ \sum_{h=1}^{m} [z_{hj} \log \frac{u_{hj}}{1 - u_{hj}} + \log(1 - u_{hj})] + \sum_{i=1}^{g} y_{ij} \log o_{ij} \right\}$$
Linear in z

Nonlinear

• We will calculate the expectation of the complete-data log likelihood  $\log L_c(\Psi; y, z, x)$  conditional on the current estimate  $\Psi^{(k)}$  and the observed input and output vectors

• E-step

: Compute the Q-function

$$Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(k)}) = E_{\boldsymbol{\Psi}^{(k)}} \{ \log L_c(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) | \boldsymbol{y}, \boldsymbol{x} \}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{m} \left[ E_{\boldsymbol{\Psi}^{(k)}}(Z_{hj} | \boldsymbol{y}, \boldsymbol{x}) \right]$$

$$\times \log \frac{u_{hj}}{1 - u_{hj}} + \log(1 - u_{hj})$$

$$+ \sum_{j=1}^{n} \sum_{i=1}^{g} y_{ij} E_{\boldsymbol{\Psi}^{(k)}}(o_{ij} | \boldsymbol{y}, \boldsymbol{x})$$

$$= Q_w + Q_v$$

$$(11)$$

• Complete-data log likelihood에 대해 Expectation을 취하면 (marginalize out all possible Z) 다음과 같이 Q-function이 유도된다.

• Q-function은 가중치 w, v에 대한 식으로 각각 분해 된다.

• 따라서 M-step에서  $Q_w$ ,  $Q_v$  를 **각각 최대화 하는 과 정을 통해 w와 v를 update**할 수 있다.

- M-step
- Set the differentiation of  $Q_w$  with respect to w as 0.
- Then we take  $\mathbf{w}_h^{(k+1)} = \operatorname{argmax} Q_w$

$$\sum_{j=1}^{n} \left[ E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y},\mathbf{x}) - u_{hj} \right] \mathbf{x}_{j} = \mathbf{0} \quad (h = 1, \dots, m) \quad (12)$$

where

$$E_{\boldsymbol{\Psi}^{(k)}}(Z_{hj}|\boldsymbol{y},\boldsymbol{x}) = \frac{\sum_{\boldsymbol{z}_j: z_{hj}=1} \operatorname{pr}_{\boldsymbol{\Psi}^{(k)}}(\boldsymbol{x}_j,\boldsymbol{y}_j,\boldsymbol{z}_j)}{\sum_{\boldsymbol{z}_j} \operatorname{pr}_{\boldsymbol{\Psi}^{(k)}}(\boldsymbol{x}_j,\boldsymbol{y}_j,\boldsymbol{z}_j)}$$
(13)

and where

$$\operatorname{pr}_{\boldsymbol{\Psi}^{(k)}}(\boldsymbol{x}_j, \boldsymbol{y}_j, \boldsymbol{z}_j) = \prod_{h=1}^m u_{hj}^{z_{hj}} (1 - u_{hj})^{(1 - z_{hj})} \prod_{i=1}^g o_{ij}^{y_{ij}}.$$
(14)

- Set the differentiation of  $Q_v$  with respect to v as 0.
- Then we take  $v_i^{(k+1)} = argmax Q_v$

$$\sum_{j=1}^{n} \left[ y_{ij} E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - \frac{\sum_{j:z_{hj}=1}^{n} o_{ij} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})}{\sum_{\mathbf{z}_{j}} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})} \right] = \mathbf{0}. \quad (15)$$

M-step for gradient descent: Since we cannot obtain our new parameters as a closed form.

# 3

**Training MLP: with Python** 

#### 1. 데이터 준비 및 전처리

```
[5. 3.4 1.5 0.2]
import numpy as np
                                                                          [4.4 2.9 1.4 0.2]
                                                                          [4.9 3.1 1.5 0.1]
from sklearn.datasets import load iris
                                                                          [5.4 3.7 1.5 0.2]
                                                                          [4.8 3.4 1.6 0.2]
from sklearn.model selection import train test split
                                                                          [4.8 3. 1.4 0.1]
from sklearn.preprocessing import OneHotEncoder
                                                                          [4.3 3. 1.1 0.1]
                                                                          [5.8 4. 1.2 0.2]
                                                                          [5.7 4.4 1.5 0.4]
                                                                          [5.4 3.9 1.3 0.4]
# Iris dataset
                                                                          [5.1 3.5 1.4 0.3]
iris = load iris()
                                                                          [5.7 3.8 1.7 0.3]
                                           Iris 데이터셋 로드
                                                                          [5.1 3.8 1.5 0.3]
X = iris.data
                                                                          [5.4 3.4 1.7 0.2]
y = iris.target
# One-hot encoding
                                                             One – hot encoding
encoder = OneHotEncoder(sparse=False)
y = encoder.fit_transform(y.reshape(-1, 1))
# train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)#, random_sta
                                            학습 & 테스트 데이터
```

```
print(X)
                            print(y)
[[5.1 3.5 1.4 0.2]
                             [1. 0. 0.]
 [4.9 3. 1.4 0.2]
                             [1. 0. 0.]
 [4.7 3.2 1.3 0.2]
                             [1. 0. 0.]
 [4.6 3.1 1.5 0.2]
                             [1. 0. 0.]
 [5. 3.6 1.4 0.2]
                             [1. 0. 0.]
 [5.4 3.9 1.7 0.4]
                             [1. 0. 0.]
 [4.6 3.4 1.4 0.3]
                             [1. 0. 0.]
                             [1. 0. 0.]
                             [1. 0. 0.]
                             [1. 0. 0.]
                             [1. 0. 0.]
                             [0. 1. 0.]
                             [0. 1. 0.]
                             [0. 1. 0.]
                             [0. 1. 0.]
                                     4.5
                                     4.0
                                     3.5
                                 sepal_width
                                                                                         species
                                     2.5
                                     2.0
                                                 5.0
                                                                        7.0 7.5 8.0
```

#### 2. 보조 함수 및 활성화 함수 정의

zlst(m) : 가능한 은닉층의 활성화 조합을 생성하는 함수

```
def zlst(m):
    zlst=np.zeros((2**m,m))
    for i in range(2**m):
        z=format(i, 'b').zfill(m)
        z=np.array(list(z))
        zlst[i,:]=z
    return zlst
```

```
import numpy as np
import random

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def softmax(z):
    exp_z = np.exp(z)
    return exp_z / np.sum(exp_z)
```

활성화 함수인 sigmoid와 softmax 함수 구현

#### 3. 신경망 클래스 정의 (by using EM

#### Algorithm)

```
class NeuralNetwork:
   def __init__(self, input_size, hidden_size, output_size, lr): #p,m,g
       self.p = input size #p
       self.m = hidden size #m
       self.g = output size #g
       self.lr = lr
       self.zlst=zlst(self.m)
                                                     모델의 가중치 초기화
       # weight initialize & shape construction
       self.W = np.random.randn(self.p, self.m) #p*m
       self.V = np.random.randn(self.m, self.g) #m*g
                                                     Forward Propagation 구현
   def forward(self, X): #forward propagation
       self.A1 = self.W.T @ X #m*1
       self.U = sigmoid(self.A1) #m*1
       self.A2 = self.V.T @ self.U #g*1
       self.0 = softmax(self.A2) #g*1
       return self.0
```



$$\operatorname{pr}(Z_{hj} = 1 | \boldsymbol{x}_j) = \frac{\exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}{1 + \exp(\boldsymbol{w}_h^T \boldsymbol{x}_j)}$$
 (5)

$$pr(Y_{ij} = 1 | \boldsymbol{x}_j, \boldsymbol{z}_j) = \frac{\exp(\boldsymbol{v}_i^T \boldsymbol{z}_j)}{\sum_{r=1}^g \exp(\boldsymbol{v}_r^T \boldsymbol{z}_j)}$$
(6)

### 3. 신경망 클래스 정의 – E step 구현(1)

```
def E step W(self, j, X, y):
    self.forward(X[j,:])
    sumz=0
    for z in self.zlst:
        pr_xyz=1
       for h in range(self.m):
            pr xyz*=self.U[h]**z[h]*(1-self.U[h])**(1-z[h])
       for i in range(self.g):
            pr_xyz*=softmax(self.V.T @ z)[i]**y[j,i]
        sumz+=pr xyz
    sumzh=0
   for z in self.zlsth:
        pr_xyz=1
       for h in range(self.m):
            pr xyz*=self.U[h]**z[h]*(1-self.U[h])**(1-z[h])
       for i in range(self.g):
            pr_xyz*=softmax(self.V.T @ z)[i]**y[j,i]
        sumzh+=pr_xyz
    return sumz, sumzh
```

Expectation(summation) algorithm for M-step to update w

$$Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(k)}) = E_{\boldsymbol{\Psi}^{(k)}} \{ \log L_{c}(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) | \boldsymbol{y}, \boldsymbol{x} \}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{m} \left[ E_{\boldsymbol{\Psi}^{(k)}}(Z_{hj} | \boldsymbol{y}, \boldsymbol{x}) \right]$$

$$\times \log \frac{u_{hj}}{1 - u_{hj}} + \log(1 - u_{hj})$$

$$+ \sum_{j=1}^{n} \sum_{i=1}^{g} y_{ij} E_{\boldsymbol{\Psi}^{(k)}}(o_{ij} | \boldsymbol{y}, \boldsymbol{x})$$

$$= Q_{w} + Q_{v}$$

$$(11)$$

$$\sum_{j=1}^{n} \left[ E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y},\mathbf{x}) - u_{hj} \right] \mathbf{x}_{j} = \mathbf{0} \quad (h = 1,\dots,m) \quad (12)$$

### 3. 신경망 클래스 정의 – E step 구현(2)

```
def E_step_V(self, j, X, y, i):
    self.forward(X[i,:])
    sumz=0
    for z in self.zlst:
        pr xyz=1
        for h in range(self.m):
            pr xyz*=self.U[h]**z[h]*(1-self.U[h])**(1-z[h])
        for i in range(self.g):
            pr_xyz*=softmax(self.V.T @ z)[i]**y[j,i]
        sumz+=pr xyz
    sumzy=0
    for z in self.zlsth:
        pr xyz=1
       for h in range(self.m):
            pr_xyz*=self.U[h_]**z[h_]*(1-self.U[h_])**(1-z[h_])
        for i in range(self.g):
            pr xyz*=softmax(self.V.T @ z)[i ]**y[j,i ]
        pr_xyz*=y[j,i]-softmax(self.V.T @ z)[i]
        sumzy+=pr_xyz
    return sumz, sumzy
```

Expectation(summation) algorithm for M-step to update v

$$Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(k)}) = E_{\boldsymbol{\Psi}^{(k)}} \{ \log L_{c}(\boldsymbol{\Psi}; \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}) | \boldsymbol{y}, \boldsymbol{x} \}$$

$$= \sum_{j=1}^{n} \sum_{h=1}^{m} \left[ E_{\boldsymbol{\Psi}^{(k)}}(Z_{hj} | \boldsymbol{y}, \boldsymbol{x}) \right]$$

$$\times \log \frac{u_{hj}}{1 - u_{hj}} + \log(1 - u_{hj})$$

$$+ \sum_{j=1}^{n} \sum_{i=1}^{g} y_{ij} E_{\boldsymbol{\Psi}^{(k)}}(o_{ij} | \boldsymbol{y}, \boldsymbol{x})$$

$$= Q_{w} + Q_{v}$$

$$(11)$$

$$\sum_{j=1}^{n} \left[ y_{ij} E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - \frac{\sum_{j:z_{hj}=1}^{n} o_{ij} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})}{\sum_{\mathbf{z}_{j}} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})} \right] = \mathbf{0}. \quad (15)$$

### 3. 신경망 클래스 정의 – M step 구현

```
def M step(self, X, y): #EM algorithm
   grad W = np.zeros((self.p, self.m)) #p*m
   grad V = np.zeros((self.m, self.g)) #m*g
    for h in range(self.m):
        grad Wh=0
        self.zlsth=self.zlst[self.zlst[:,h]==1]
       for j in range(len(X)):
            sumz, sumzh=self.E step W(j,X,y)
            grad Wh += sumzh/sumz-self.U[h]*X[j,:]
        grad W[:,h]=grad Wh
    ##########
    for h in range(self.m):
        self.zlsth=self.zlst[self.zlst[:,h]==1]
        for i in range(self.g):
            for j in range(len(X)):
               sumz, sumzy = self.E step V(j, X, y, i)
               grad V[h,i] += sumzy/sumz
    ##########
    # update weight & bias
    self.W += grad_W * self.lr
    self.V += grad V * self.lr
```

$$\sum_{j=1}^{n} \left[ E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - u_{hj} \right] \mathbf{x}_{j} = \mathbf{0} \quad (h = 1, \dots, m) \quad (12)$$

$$\sum_{j=1}^{n} \left[ y_{ij} E_{\mathbf{\Psi}^{(k)}}(Z_{hj}|\mathbf{y}, \mathbf{x}) - \frac{\sum_{\mathbf{z}_{j}: z_{hj}=1}^{n} o_{ij} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})}{\sum_{\mathbf{z}_{j}} \operatorname{pr}_{\mathbf{\Psi}^{(k)}}(\mathbf{x}_{j}, \mathbf{y}_{j}, \mathbf{z}_{j})} \right] = \mathbf{0}. \quad (15)$$

#### 4. 모델 학습 및 평가

```
Train: 주어진 epochs만큼 모델 학습 및 손실 값 출력
def Train(self, X, y, epochs):
   for epoch in range(epochs):
       self.M step(X, y)
       losses=list()
       for n in range(len(X)):
           y pred = self.forward(X[n,:])
           loss = -np.sum(y[n,:]*np.log(y pred)) #Cross Entropy Loss
           losses.append(loss)
       avgloss=np.mean(losses)
       if (epoch+1) % 1 == 0:
           print(f'Epoch {epoch+1}, Loss: {avgloss}')
                                                                   Test: 테스트 데이터를 사용하여 예측 수행
def Test(self, X):
   testoutput=[]
   for n in range(len(X)):
       y_pred = self.forward(X[n,:])
       testoutput.append(np.argmax(y_pred))
   return testoutput
```

### Optimization via EM vs Backpropagation

### 5. 실험 결과1: Cross Entropy Loss 관측

#### **EM**

### #setting hyperparameters epochs=50 Ir=0.005

NN=NeuralNetwork(4,7,3,1r)
NN.Train(X\_train,y\_train,epochs)

Epoch 0, Loss: 1.1427729846642725
Epoch 5, Loss: 0.8477192072820486
Epoch 10, Loss: 0.8088932560503146
Epoch 15, Loss: 0.8013409928099052
Epoch 20, Loss: 0.7953260351338284
Epoch 25, Loss: 0.7862787851641184
Epoch 30, Loss: 0.6765491949913677
Epoch 35, Loss: 0.6733092653604303
Epoch 40, Loss: 0.670328548725725
Epoch 45, Loss: 0.6676518890360496
Epoch 50, Loss: 0.6652140857718162

### **Backpropagation**

#### #setting hyperparameters learning\_rate=0.005 epochs=30

NN=NeuralNetwork(4,7,3,learning\_rate)
NN.Train(X\_train,y\_train,epochs)

Epoch 0, Loss: 1.1799459307487936 Epoch 5, Loss: 0.7697343605798745 Epoch 10, Loss: 0.6724774620576618 Epoch 15, Loss: 0.5865647960528668 Epoch 20, Loss: 0.5445126310389149 Epoch 25, Loss: 0.5078813746853241 Epoch 30, Loss: 0.46463978978466247



### Optimization via EM vs Backpropagation

### 5. 실험 결과2: 정확도 & test data 10개 sample

#### **EM**

```
testoutput = NN.Test(X_test)
y test labels = np.argmax(y test, axis=1)
#accuracy
accuracy = np.mean(testoutput == y test labels)
print(f'Accuracy: {accuracy * 100:.2f}%')
Accuracy: 93.33%
for i in range(10):
    pred=NN.forward(X_test[i,:])
    target=y test[i,:]
    print(pred, target, np. argmax(pred) == np. argmax(target))
[0.936249 0.04692205 0.01682896] [1. 0. 0.] True
[0.27988311 0.32700521 0.39311167] [0. 0. 1.] True
[0.28207146 0.33332921 0.38459933] [0. 0. 1.] True
[0.95591958 0.03276875 0.01131167]
[0.27057917 0.31213924 0.4172816 ] [0. 0. 1.] True
[0.33065804 0.38445328 0.28488868] [0.1.0.] True
[0.95479909 0.03355867 0.01164225] [1. 0. 0.] True
[0.27467353 0.31926968 0.4060568 ] [0. 0. 1.] True
[0.94697415 0.03924066 0.01378519] [1. 0. 0.] True
[0.31662273 0.37827904 0.30509823] [0. 1. 0.] True
```

### **Backpropagation**

```
testoutput = NN.Test(X_test)
y test labels = np.argmax(y test, axis=1)
#accuracy
accuracy = np.mean(testoutput == y test labels)
print(f'Accuracy: {accuracy * 100:.2f}%')
Accuracy: 96.67%
for i in range(10):
   pred=NN.forward(X_test[i,:])
   target=v test[i,:]
   print(pred, target, np.argmax(pred) == np.argmax(target))
[0.79087513 0.17280196 0.03632291] [1. 0. 0.] True
[0.0147225  0.34725775  0.63801976] [0. 0. 1.] True
[0.01470303 0.33480121 0.65049575] [0. 0. 1.] True
[0.83338793 0.13828392 0.02832815]
[0.00902271 0.33238056 0.65859673] [0. 0. 1.] True
[0.17068413 0.52608564 0.30323023]
[0.01058652 0.32585278 0.6635607 ]
[0.81611671 0.15257764 0.03130565] [1. 0. 0.] True
[0.13539729 0.5567226 0.30788011] [0.1.0.] True
```

# 4

## **Discussion & Conclusion**

### **Discussion**

#### 1. 코드 구현 과정에서 개선할 점

#### 1. E-step의 효율성

: E-step에서 가능한 모든 은닉층의 조합을 반복하여 확률을 계산하는 과정은 계산 비용이 매우 높음 (실제로 코드 실행까지 걸리는 시간이 길다)

→ 샘플링 또는 근사 방법을 사용하여 계산 비용을 줄이는 방법을 채택해볼 수 있음.

#### 2. Hyperparameter 튜닝

: 모델 학습 과정에서 학습률(lr)과 은닉층 유닛의 수(m) 등의 hyperparameter를 튜닝하여 모델의 성능을 향상시키는 방법을 생각해볼 수 있음.

#### 3. 입력 데이터의 정규화(Normalization)

: 입력 데이터를 정규화하여 모든 입력 특성이 동일 범위를 갖게 되면 특정 값이 다른 값보다 지나치게 큰 영향을 주는 것을 방지할 수 있고, M-step의 최적화 알고리즘이 더욱 빠르게 수렴하게끔 도와주며, 오버플로우 또는 언더플로우 문제를 줄여줄 수 있음.

### **Discussion**

2. Backpropagation 방법론 신경망 학습과의 비교

**Backpropagation** 

VS

**Expectation** – Maximization

일반적으로 GD 방법이 더 빠르게 수렴하며, 복잡한 손실함수 공간에서도 잘 작동함 E-step과 M-step이 교차하며 수렴 속도가 느려질 수 있고, 특히 고차원 데이터에서 결과값의 수렴이 어려울 수 있음

반복적인 손실 함수의 경사를 계산, 일반적으로 효율 적 가능한 모든 은닉층 유닛의 조합을 반복 계산, 높은 계산 비용이 필요하며, 큰 데이터셋에서 비효율 적

손실 함수가 단순히 예측값과 실제값 간의 차이를 나타내기 때문에, 데이터의 분포가 무엇인지와는 무관하게 작동함

잠재 변수의 추정을 기반으로 하기에, 가정된 분포에 대한 해석이 부족하면 성능 저하 우려

### **Conclusion**

### EM을 shallow Neural Network 이상으로 Deep Learning에 적용하기에는 적합하지 않다

#### 1. 시간복잡도

: shallow network에서 hidden layer의 node수에 따른  $O(2^m*)$ 의 시간복잡도 발생, 2개 이상의 hidden layer에 대해서는 요구되는 연산량이 매우 증폭될 것으로 예상됨

#### 2. 수렴 속도

: 실험 결과를 통해 확인한 수렴 속도는 backpropagation method보다 현저히 느림. 앞서 언급한 EM algorithm의 상당한 시간복잡도를 고려한다면 더욱 비효율적

#### 3. 데이터의 분포 가정

: Deep Learning에서는 모델 파라미터와 데이터 간의 관계에 대한 비선형성이 더욱 강화되므로 latent variable z에 대한 분포를 적절하게 가정하기 어려움

# 감사합니다