## Non linear Regression

| mpact of out | 10                                           |
|--------------|----------------------------------------------|
| L(w)=        | $\frac{1}{2} \sum_{i=1}^{N} y_i - w^T x_i^*$ |
| Robust Lin   | ear model (RLM                               |
| Polynomial   | basis expansian                              |

Regularization - Controlling the complexity of a model

$$J(w) = \frac{1}{2}(w) - xw)^{T}(y-xw)$$

$$J(w) = \frac{1}{2}(w) + \frac{x}{2}(w) + \frac{x}{2}(w)$$

$$Ridge regression$$

$$\|\mathbf{w}\|_{p} = \left(\sum_{i=1}^{\infty} w_{i}^{*}\right) / p$$

$$\|\mathbf{w}\|_{2} = \left(\sum_{i=1}^{\infty} w_{i}^{*}\right) / 2$$

$$\|\mathbf{w}\|_{2} = \left(\sum_{i=1}^{\infty} w_{i}^{*}\right) / 2$$

Friday Mar 5 "Correlation does not mean causation" Ridge regressia: 1 (y-Xw)(y-Xw)+[x] ||w||2  $\frac{1}{2} (y - \chi w)^{T} (y - \chi w)$   $S - t \qquad \text{II} w \text{II}^{2} \leq t$ 

