Appendix A Ordinary Differential Equations: Review of Concepts and Methods

38. Consider the equation

$$xy'' - (2+x)y' + 2y = 0, \quad x > 0.$$

- (a) Show that x = 0 is a regular singular point. Find the indicial equation and the indicial roots, and conclude that we are in Case 3 of the Frobenius method.
- (b) Use the method of Frobenius to find a Frobenius series solution corresponding to the larger root r_1 .
- (c) Identify the solution in (b) as 3!(e^x 1 x x²/2).
 (d) Even though the roots differ by an integer, there exists a second Frobenius series solution. Using the method of Frobenius, show that e^x or $1+x+x^2/2$ can be taken as a second solution. [Hint: Argue that the coefficient b_3 is arbitrary.]

39. Consider the equation

$$xy'' - (n+x)y' + ny = 0, \quad x > 0,$$

where n is a nonnegative integer.

- (a) Show that x = 0 is a regular singular point. Find the indicial equation and the indicial roots, and conclude that we are in Case 3 of the Frobenius method.
- (b) Use the method of Frobenius to find a Frobenius series solution corresponding to the larger root r_1 .
- (c) Identify the solution in (b) as

$$(n+1)!(e^x-1-x-\frac{x^2}{2}-\cdots-\frac{x^n}{n!}).$$

(d) Using the method of Frobenius, show that e^x or $1 + x + x^2/2 + \cdots + \frac{x^n}{n!}$ can be taken as a second solution. [Hint: Argue that the coefficient b_{n+1} is arbitrary.]

Copyright: Nakhlé H. Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems 3rd Edition, 2016

APPENDIX B

TABLES OF TRANSFORMS

- Table of Fourier Transforms
- Table of Fourier Cosine Transforms
- Table of Fourier Sine Transforms
- Table of Laplace Transforms

B.1 Fourier Transforms A6

Table of Fourier Transforms

	Total of Total Al Titubioliub		
f(x)	$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{ix\omega} d\omega$	$\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$	
1.	$\begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin a\omega}{\omega}$	
2.	$\begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$	$rac{i\left(e^{-ib\omega}-e^{ia\omega} ight)}{\sqrt{2\pi}\omega}$	
3.	$\begin{cases} 1 - \frac{ x }{a} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases} \qquad a > 0$	$2\sqrt{\frac{2}{\pi}} \frac{\sin^2(\frac{a\omega}{2})}{a\omega^2}$	
4.	$\begin{cases} x & \text{if } x < a \\ 0 & \text{if } x > a \end{cases} \qquad a > 0$	$i\sqrt{rac{2}{\pi}}rac{a\omega\cos(a\omega)-\sin(a\omega)}{\omega^2}$	
5.	$\begin{cases} \sin x & \text{if } x < \pi \\ 0 & \text{if } x > \pi \end{cases}$	$i\sqrt{rac{2}{\pi}}rac{\sin(\pi\omega)}{\omega^2-1}$	
6.	$\begin{cases} \sin(ax) & \text{if } x < b \\ 0 & \text{if } x > b \end{cases} \qquad a, b > 0$	$i\sqrt{\frac{2}{\pi}}\frac{\omega\cos(b\omega)\sin(ab) - a\cos(ab)\sin(b\omega)}{\omega^2 - a^2}$	
7.	$\frac{1}{a^2 + x^2}, \ a > 0$	$\sqrt{\frac{\pi}{2}} \frac{e^{-a \omega }}{a}$	
	$\frac{x}{a^2 + x^2}, \ a > 0$	$-i\sqrt{rac{\pi}{2}}\operatorname{sgn}\omegae^{-a \omega }$	
9.	$\sqrt{\frac{2}{\pi}} \frac{a}{1 + a^2 x^2}, \ a > 0$	$e^{-rac{ \omega }{a}}$	
10.	$\frac{\sin ax}{x}, \ a > 0$	$\left\{ egin{array}{ll} \sqrt{rac{\pi}{2}} & ext{if } \omega < a \ rac{1}{2} \sqrt{rac{\pi}{2}} & ext{if } \omega = a \ 0 & ext{if } \omega > a \end{array} ight.$	
11.	$\frac{4}{\sqrt{2\pi}} \frac{\sin^2(\frac{1}{2}ax)}{ax^2}, \ a > 0$	$\left\{ \begin{array}{ll} 1 - \frac{ \omega }{a} & \text{if } \omega < a \\ 0 & \text{if } \omega > a \end{array} \right.$	
12.	$\frac{4}{\sqrt{2\pi}} \frac{\sin^2(ax) - \sin^2(\frac{1}{2}ax)}{ax^2}, \ a > 0$	$\begin{cases} 1 & \text{if } x < a \\ (-x+2a)/a & \text{if } a < x < 2a \\ (x+2a)/a & \text{if } a < x < 2a \\ 0 & \text{if } x > 2a \end{cases}$	
	$e^{-a x }, a>0$	$\sqrt{rac{2}{\pi}} rac{a}{a^2 + \omega^2}$	
	$\begin{cases} e^{-ax} & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}, \ a > 0$	$rac{1}{\sqrt{2\pi}}rac{1}{a+i\omega}$	
15.	$\begin{cases} 0 & \text{if } x > 0 \\ e^{ax} & \text{if } x < 0 \end{cases}, \ a > 0$	$rac{1}{\sqrt{2\pi}}rac{1}{a-i\omega}$	
16.	$ x ^n e^{-a x }, \ a > 0, \ n > 0$	$\frac{\Gamma(n+1)}{\sqrt{2\pi}} \left(\frac{1}{(a-i\omega)^{1+n}} + \frac{1}{(a+i\omega)^{1+n}} \right)$	

Table of Fourier Transforms (continued)

	$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{ix\omega} d\omega$	$\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$
17.	$e^{-\frac{a}{2}x^2}, \ a > 0$	$\frac{1}{\sqrt{a}}e^{-\frac{\omega^2}{2a}}$
18.	$e^{-ax^2}, \ a > 0$	$\frac{1}{\sqrt{2a}}e^{-\frac{\omega^2}{4a}}$
19.	$xe^{-\frac{a}{2}x^2}, \ a > 0$	$rac{-i\omega}{a^{3/2}}e^{-rac{\omega^2}{2a}}$
20.	$x^2 e^{-\frac{a}{2}x^2}, \ a > 0$	$\frac{a-\omega^2}{a^{5/2}}e^{-\frac{\omega^2}{2a}}$
21.	$x^3e^{-\frac{a}{2}x^2}, \ a>0$	$\frac{-i\omega(3a-\omega^2)}{a^{7/2}}e^{-\frac{\omega^2}{2a}}$
22.	$e^{-rac{x^2}{2}}H_n(x), \ H_n, n$ th Hermite polynomial	$(-1)^n i^n e^{\frac{-\omega^2}{2}} H_n(\omega)$
23.	$J_0(x)$, Bessel function of order 0	$\begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1-\omega^2}} & \text{if } \omega < 1\\ 0 & \text{if } \omega > 1 \end{cases}$
24.	$J_n(x)$, Bessel function of order $n \geq 0$	$\begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1-\omega^2}} & \text{if } \omega < 1\\ 0 & \text{if } \omega > 1\\ \sqrt{\frac{2}{\pi}} \frac{(-i)^n}{\sqrt{1-\omega^2}} T_n(\omega) & \text{if } \omega < 1\\ 0 & \text{if } \omega > 1 \end{cases}$
		T_n , Chebyshev polynomial of degree n .

Special Transforms

25.
$$\mathcal{F}(\delta_0(x))(\omega) = \frac{1}{\sqrt{2\pi}}$$

26. $\mathcal{F}(\delta_0(x-a))(\omega) = \frac{1}{\sqrt{2\pi}}e^{-ia\omega}$
27. $\mathcal{F}(\sqrt{\frac{2}{\pi}}\frac{1}{x})(\omega) = -i\operatorname{sgn}\omega$
28. $\mathcal{F}(e^{iax})(\omega) = \sqrt{2\pi}\delta_0(\omega - a)$

Operational Properties

		r	1, 1/4
29.	$\mathcal{F}(af + bg)(\omega) = a\mathcal{F}(f) + b\mathcal{F}(g)$	36.	$\mathcal{F}(f g)(\omega) = \mathcal{F}(f) * \mathcal{F}(g)(\omega)$
30.	$\mathcal{F}(f')(\omega) = i\omega \mathcal{F}(f)(\omega)$	37.	$\mathcal{F}(f(x-a))(\omega) = e^{-ia\omega}\mathcal{F}(f)(\omega)$
31.	$\mathcal{F}(f'')(\omega) = -\omega^2 \mathcal{F}(f)(\omega)$	38.	$\mathcal{F}(e^{iax}f(x))(\omega) = \mathcal{F}(f)(\omega - a)$
32.	$\mathcal{F}(f^{(n)})(\omega) = (i\omega)^n \mathcal{F}(f)(\omega)$	39.	$\mathcal{F}(\cos(ax)f(x))(\omega) = \frac{\mathcal{F}(f)(\omega-a)+\mathcal{F}(f)(\omega+a)}{2}$
33.	$\mathcal{F}(xf(x))(\omega) = i\frac{d}{d\omega}\mathcal{F}(f)(\omega)$	40.	$\mathcal{F}(\sin(ax)f(x))(\omega) = \frac{\mathcal{F}(f)(\omega-a)-\mathcal{F}(f)(\omega+a)}{2i}$

34.
$$\mathcal{F}(x^n f(x))(\omega) = i^n \frac{d^n}{d\omega^n} \mathcal{F}(f)(\omega)$$
 41. $\mathcal{F}(f(ax))(\omega) = \frac{1}{|a|} \mathcal{F}(f)(\frac{\omega}{a}), \ a \neq 0$

35.
$$\mathcal{F}(f * g)(\omega) = \mathcal{F}(f)(\omega)\mathcal{F}(g)(\omega)$$
 42. $f(x) = \mathcal{F}(\widehat{f})(-x), \ \mathcal{F}(\mathcal{F}(f)) = f(-x)$

Table of Fourier Cosine Transforms

	$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \mathcal{F}_c(f)(\omega) \cos \omega x d\omega,$	$\mathcal{F}_c(f)(\omega) = \widehat{f}_c(\omega) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos \omega x dx,$
	$0 < x < \infty$	$0 \le \omega < \infty$
1.	$\begin{cases} 1 & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin a\omega}{\omega}$
2.	$e^{-ax}, a > 0$	$\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \omega^2}$
3.	$x e^{-ax}, a > 0$	$\sqrt{\frac{2}{\pi}} \frac{a^2 - \omega^2}{(a^2 + \omega^2)^2}$
4.	$e^{-a x^2/2}, a > 0$	$\frac{1}{\sqrt{a}}e^{-\omega^2/2a}$
5.	$\cos ax e^{-ax}, a > 0$	$\sqrt{\frac{2}{\pi}} \frac{a\omega^2 + 2a^3}{4a^4 + \omega^4}$
6.	$\sin ax e^{-ax}, a > 0$	$\sqrt{\frac{2}{\pi}} \frac{2a^3 - a\omega^2}{4a^4 + \omega^4}$
7.	$\frac{a}{a^2 + x^2}, a > 0$	$\sqrt{\frac{\pi}{2}}e^{-a\omega}$
8.	x^p , 0	$\sqrt{rac{2}{\pi}} rac{\Gamma(p) \cos(p\omega/2)}{\omega^p}$
9.	$\begin{cases} \cos x & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{\sqrt{2\pi}} \left[\frac{\sin a(1-\omega)}{1-\omega} + \frac{\sin a(1+\omega)}{1+\omega} \right]$
		Operational Properties
10.	lpha f(x) + eta g(x)	$lpha \mathcal{F}_c(f)(\omega) + eta \mathcal{F}_c(g)(\omega)$
11.	f(ax), a > 0	$rac{1}{a}\widehat{f_c}(rac{\omega}{a})$
12.	f'(x)	$\omega \widehat{f}_s(\omega) - \sqrt{\frac{2}{\pi}} f(0)$
13.	f''(x)	$-\omega^2\widehat{f}_c(\omega)-\sqrt{rac{2}{\pi}}f'(0)$
14.	xf(x)	$\left[\widehat{f}_{s} ight]'(\omega)$
15.	$\mathcal{F}_c(\mathcal{F}_c f)$. f

	Table of Fourier Sine Transforms			
	$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \mathcal{F}_s(f)(\omega) \sin \omega x d\omega,$	$\mathcal{F}_s(f)(\omega) = \widehat{f}_s(\omega) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin \omega x dx,$		
	$0 < x < \infty$	$0 \le \omega < \infty$		
1.	$\begin{cases} 1 & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{1 - \cos a\omega}{\omega}$		
2.	e^{-ax} , $a>0$	$\sqrt{\frac{2}{\pi}} \frac{\omega}{a^2 + \omega^2}$		
3.	$x e^{-ax}, a > 0$	$\sqrt{rac{2}{\pi}}rac{2a\omega}{(a^2+\omega^2)^2}$		
4.	$\frac{e^{-ax}}{x}$, $a > 0$	$\sqrt{\frac{2}{\pi}} \tan^{-1} \frac{\omega}{a}$		
5.	$\frac{1}{2}xe^{-ax^2}, a>0$	$\frac{\omega}{a^{3/2}}e^{-\omega^2/2a}$		
6.	$\cos ax e^{-ax}, a > 0$	$\sqrt{\frac{2}{\pi}} \frac{\omega^3}{4a^4 + \omega^4}$		
7.	$\sin ax e^{-ax}, a > 0$	$\sqrt{rac{2}{\pi}}rac{2a^2\omega}{4a^4+\omega^4}$		
8.	$\frac{x}{a^2 + x^2}, a > 0$	$\sqrt{\frac{\pi}{2}}e^{-a\omega}$		
9.	$x^{p-1}, 0$	$\sqrt{rac{2}{\pi}} rac{\Gamma(p)\cos(\pi p/2)}{\omega^p}$		
10.	$\begin{cases} \sin x & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{\sqrt{2\pi}} \left[\frac{\sin a(1-\omega)}{1-\omega} - \frac{\sin a(1+\omega)}{1+\omega} \right]$		
	Operational Properties			
11.	lpha f(x) + eta g(x)	$ \alpha \mathcal{F}_s(f)(\omega) + \beta \mathcal{F}_s(g)(\omega) $		
		1 2		

11.	lphaf(x)+etag(x)	$\alpha \mathcal{F}_s(f)(\omega) + \beta \mathcal{F}_s(g)(\omega)$
12.	f(ax), a > 0	$rac{1}{a}\widehat{f}_{\widehat{s}}(rac{\omega}{a})$
13.	f'(x)	$-\omega\widehat{f}_c(\omega)$
14.	f''(x)	$-\omega^2 \widehat{f}_s(\omega) + \sqrt{\frac{2}{\pi}} \omega f(0)$
15.	xf(x)	$-\left[\widehat{f}_{c} ight]'(\omega)$
16.	$\mathcal{F}_s(\mathcal{F}_s f)$	f

Table of Laplace Transforms

	$f(t), t \ge 0$		$F(s) = \mathcal{L}(f)(s) = \int_0^\infty f(t)e^{-st} dt,$	11
1.	1		$\frac{1}{s}$, $s > 0$	1 =
2.	t^n , $n=1, 2, \dots$		$\frac{n!}{s^{n+1}}, s > 0$	-,1
3.	$t^a (a > -1)$		$\frac{\Gamma(a+1)}{s^{a+1}}, s > 0$	
4.	e^{at}		$\frac{1}{s-a}$, $s>a$	
5.	$t^n e^{at}$		$\frac{n!}{(s-a)^{n+1}}, s > a$	
6.	$\frac{e^{at}-e^{bt}}{a-b}$		$\frac{1}{(s-a)(s-b)}, s > \max(a, b)$	
7.	$\frac{ae^{at} - be^{bt}}{a - b}$		$\frac{s}{(s-a)(s-b)}, s > \max(a,b)$	
8.	$\sin kt$		$\frac{k}{s^2 + k^2}, s > 0$	
9.	$\cos kt$		$\frac{s}{s^2 + k^2}, s > 0$	
10.	$e^{at}\sin kt$		$\frac{k}{(s-a)^2 + k^2}, s > a$	£
11.	$e^{at}\cos kt$		$\frac{s-a}{(s-a)^2+k^2}, s > a$,
12.	$t\sin kt$		$\frac{2ks}{(s^2+k^2)^2}, s > 0$	
13.	$t\cos kt$,	$\frac{s^2 - k^2}{(s^2 + k^2)^2}, s > 0$	
14.	$\frac{1}{2a^3}(\sin at - at \cos at)$	9	$\frac{1}{(s^2+a^2)^2}, s>0$	
15.	$\sinh kt$		$\frac{k}{s^2 - k^2}, s > k $	
16.	$\cosh kt$		$\frac{s}{s^2 - k^2}, s > k $	
17.	$e^{at}\sinh kt$	-	$\frac{k}{(s-a)^2 - k^2} s > a + k $	
18.	$e^{at}\cosh kt$		$\frac{s-a}{(s-a)^2-k^2} s > a+ k $	
19.	$t \sinh kt$	ī	$\frac{2ks}{(s^2-k^2)^2}, s > k $	
20.	$t \cosh kt$	7	$\frac{s^2 + k^2}{(s^2 - k^2)^2}, s > k $	
21.	$\frac{1}{2k^3}(kt\cosh kt - \sinh kt)$	ī	$\frac{1}{(s^2-k^2)^2}, s > k $	

Table of Laplace Transforms (continued)

	Table of Laplace Transforms	(continued)
	$f(t), t \ge 0$	$F(s) = \mathcal{L}(f)(s) = \int_0^\infty f(t)e^{-st} dt,$
22.	$\delta_0(t-t_0), t_0 \ge 0$	$e^{-t_0 s}, s > 0$
23.	$\mathcal{U}_0(t-a) = \begin{cases} 0 & \text{if } t < a \\ 1 & \text{if } t \ge a \end{cases} (a > 0)$	$\frac{e^{-as}}{s}$, $s > 0$
24.	f(t+T) = f(t) (T>0)	$\frac{1}{1 - e^{-Ts}} \int_0^T e^{-st} f(t) dt$
25.	f(t+T) = -f(t) (T>0)	$\frac{1}{1+e^{-Ts}} \int_0^T e^{-st} f(t) dt$
26.	Triangular Wave 0 a 2a 3a t	$\frac{1}{as^2} \left[\frac{1 - e^{-as}}{1 + e^{-as}} \right] = \frac{1}{as^2} \tanh\left(\frac{as}{2}\right), s > 0$
27.	Square Wave 0 a 2a 3a -1	$\frac{1}{s} \left[\frac{1 - e^{-as}}{1 + e^{-as}} \right] = \frac{1}{s} \tanh \left(\frac{as}{2} \right), s > 0$
28.	Sawtooth 0 a 2a 3a t	$\frac{1}{as^2} - \frac{e^{-as}}{s(1 - e^{-as})}, s > 0$
29.	$rac{\sin at}{t}$	$\tan^{-1}(\frac{a}{s}), s > 0$
30.	$J_0(at)$	$\frac{1}{\sqrt{s^2 + a^2}}, s > 0$
31.	$J_0(a\sqrt{t})$	$\frac{e^{-a^2/4s}}{s}, s > 0$
32.	$t^p J_p(at) (p > -\frac{1}{2})$	$\frac{2^p a^p \Gamma(p + \frac{1}{2})}{\sqrt{\pi} (s^2 + a^2)^{p + \frac{1}{2}}}, s > 0$
33.	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} J_{k-\frac{1}{2}}(at) (k>0)$	$\frac{1}{(s^2+a^2)^k}, s>0$
34.	$\frac{\sqrt{\pi}}{\Gamma(k)}a\left(\frac{t}{2a}\right)^{k-\frac{1}{2}}J_{k-\frac{3}{2}}(at) (k > \frac{1}{2})$	$\frac{s}{(s^2+a^2)^k}, s>0$
35.	$2\sum_{m=1}^{n} {2n-m-1 \choose n-1} \frac{t^{m-1}\cos(at-\frac{m\pi}{2})}{(2a)^{2n-m}(m-1)!}$	$\frac{1}{(s^2+a^2)^n}, s>0$
	(n an integer ≥ 1) $1 n-1 (2n-m-3)! t^m \cos(at-\frac{m\pi}{2})$	
36.	$\frac{1}{(n-1)!} \sum_{m=1}^{n-1} \frac{(2n-m-3)!}{(m-1)!(n-m-1)!} \frac{t^m \cos(at - \frac{m\pi}{2})}{(2a)^{2n-m-2}}$	$\frac{s}{(s^2+a^2)^n}, s>0$
1	$(n \text{ an integer } \geq 2)$	

Appendix B

Table of Laplace Transforms (continued)

	Table of Laplace Transforms (continued)		
	$f(t), t \geq 0$	$F(s) = \mathcal{L}(f)(s) = \int_0^\infty f(t)e^{-st} dt,$	
37.	$\operatorname{erf}(at) (a > 0)$	$\frac{1}{s} e^{s^2/4a^2} \operatorname{erfc}\left(\frac{s}{2a}\right), s > 0$	
38.	$\operatorname{erf}(a\sqrt{t})$	$\frac{a}{s\sqrt{s+a^2}}, s>0$	
39.	$e^{-a^2t^2} (a>0)$	$\frac{\sqrt{\pi}}{2a}e^{s^2/4a^2}\operatorname{erfc}(\frac{s}{2a}), s > 0$	
40.	$\frac{1}{\sqrt{\pi t}}e^{-a^2/4t} (a \ge 0)$	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}, s > 0$	
41.	$\frac{a}{2\sqrt{\pi}t^{3/2}}e^{-a^2/4t} (a>0)$	$e^{-a\sqrt{s}}, s > 0$	
42.	$\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right) (a \ge 0)$	$\frac{1}{s}e^{-a\sqrt{s}}, s > 0$	
	Operational Pr	operties	
43.	lpha f(t) + eta g(t)	$\alpha F(s) + \beta G(s)$	
44.	f'(t)	sF(s) - f(0)	
45.	f''(t)	$s^2F(s) - sf(0) - f'(0)$	
46.	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$	
47.	-tf(t)	F'(s)	
48.	$t^n f(t)$	$(-1)^n F^{(n)}(s)$	
49.	$\int_0^t f(au)d au$	$\frac{1}{s}F(s), s > 0$	
50.	$\int_0^t \int_0^{ au} f(ho) d ho d au$	$\frac{1}{s^2} F(s), s > 0$	
51.	$rac{f(t)}{t}$	$\int_{s}^{\infty} F(u) du$	
52.	$rac{f(t)}{t^2}$	$\int_{s}^{\infty} \int_{\sigma}^{\infty} F(u) du d\sigma$	
53.	$\mathcal{U}_0(t-a)f(t-a) (a>0)$	$e^{-as}F(s)$	
54.	$e^{at}f(t)$	F(s-a)	
55.	f(ct) $(c>0)$	$\frac{1}{c}F(\frac{s}{c})$	
56.	$f*g(t) = \int_0^t f(au)g(t- au) d au$	F(s)G(s)	

References

- 1. N. Asmar (with the assistance of Gregory C. Jones), Applied Complex Analysis with Partial Differential Equations, Prentice Hall, Upper Saddle River, N. J., 2002.
- 2. G. Birkhoff and G. C. Rota, *Ordinary Differential Equations* (4th ed.), John Wiley, New York, 1989.
- 3. W. E. Boyce and R. C. DiPrima, *Elementary Differential Equations* (5th ed.), John Wiley, New York, 1992.
- 4. R. Bracewell, *The Fourier Transform and its Applications* (2nd ed.), McGraw-Hill, New York, 1978.
- 5. J. R. Cannon, *The One-Dimensional Heat Equation*, Addison-Wesley, Reading, 1984.
- 6. G. Carrier and C. Pearson, *Partial Differential Equations* (2nd ed.), Academic Press, New York, 1988.
- 7. R. Churchill and J. Brown, Fourier Series and Boundary Value Problems (4th ed.), McGraw-Hill, New York, 1987.
- 8. E. Coddington and N. Levinson, *Theory of Ordinary Differential Equations*, McGraw-Hill, New York, 1955.
- 9. D. Colton, Partial Differential Equations: an Introduction, Random House, New York, 1988.
- 10. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, *Mathematics of Computation* **19** (1965), 297–301.
- 11. R. Courant and D. Hilbert, *Methods of Mathematical Physics*, Vols. 1 and 2, Wiley-Interscience, New York, 1953 and 1962.
- G.B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, N.J., 1976.
- 13. G.B. Folland, Fourier Analysis and its Applications, Wadsworth and Brooks Cole, 1992.
- 14. P.R. Garabedian, Partial Differential Equations, Wiley, New York, 1964.
- 15. D. Griffiths, *Introduction to Quantum Mechanics*, Prentice Hall, Englewood Cliffs, N.J., 1995.
- 16. R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (4th ed.), Prentice Hall, Upper Saddle River, N.J., 2004.
- 17. E. Hewitt and R. Hewitt, The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis, Archive for the History of the Exact Sciences 21 (1979), 129–160.