属球的边缘处开始逐渐发红变亮,发红发亮部分逐渐向中心处扩展。而陶瓷球则恰好相反,先是球心处开始变红变亮,发红发亮部分逐渐向边缘处扩展。小明感到不可思议:同样受热情况下两个小球因升温变红变亮发展趋势竟然不一样。请你给小明解释其中的奥秘。(7分)

## 二、计算题 (95 分)

1. 如图 2 所示. 大平板 A 和 B 紧密贴在一起,其导热系数分别为  $\lambda_A$ = 35 W/mK 和  $\lambda_B$ =100 W/mK,厚度分别为  $\delta_A$ =7mm 和  $\delta_B$ =6mm,平板 A 内热源强度  $\dot{\Phi}$ =1.5×10<sup>7</sup> W/m³,其左侧绝热,平板 B 右侧受温度 为 150℃流体冷却,对流换热系数为 h=3500 W/m²K,已知平板 A 中



温度分布为:  $t = \frac{\Phi}{2\lambda_A}(\delta_A^2 - x^2) + t_2 = 0$ , 其中  $t_2$ 为 A 和 B 之间的

界面温度。请计算稳态时平板 A 左侧面界面温度。(20分)

- 2. 一形状为球形的热电偶结点置于气流中测量温度。已知结点表面与气流间的对流换 热系数 h=400 W/m²K,结点的导热系数  $\lambda$ =20 W/mK,c=400 J/kgK, $\rho$ =8500 kg/m³。(20 分)
  - 1) 若要求热电偶的时间常数为 1 秒,结点的直径应为多大?(10分)
- 2) 若气流为 200℃,结点初始温度为 25℃,请问要使结点温度达到 199℃需要多长时间? (10 分)
- 3. 一段长 2mm,直径 20μm 的金属丝通过的电流强度为 0.15A,电阻为 0.4 $\Omega$ ,20 $^{\circ}$ 0的 空气气流横掠该金属丝,稳态时测得金属丝温度为 40 $^{\circ}$ 0,请计算空气速度。(20 分)已知流体外掠单管的实验关联式为  $Nu_{m}=0.911$  Re  $_{m}^{0.385}$  Pr  $_{m}^{0.25}$  ,空气参数见表 1。

表 1. 空气热物理性质

|   | t/ (°C) | λ/( w/(m.k)) | v/(m²/s)               | Pr    |
|---|---------|--------------|------------------------|-------|
|   | 20      | 0.0259       | 15.06×10 <sup>-6</sup> | 0.703 |
| ſ | 30      | 0.0267       | 16.0                   | 0.701 |
|   | 40      | 0.0276       | 16.96                  | 0.699 |

- 4.一长宽高分别为 5m、4m 和 3m 的房间(见图 3),四周墙壁隔热良好,地板与天花板表面温度均匀且分别为27℃和 12℃,房间所有内表面均为漫灰表面,发射率均为 0.9,天花板对地板的角系数为 0.35,忽略房间内空气自然对流。(20 分)
- 1) 画出辐射网络图,并标注出各辐射热阻表达式;(6分)

