SISTEMI DI CONTROLLO IN RETROAZIONE: TRANSITORIO

- Risposta al gradino di un sistema in retroazione unitaria stabile internamente.
 - (I). G(s) di tipo 0 presenta sempre un errore di inseguimento a regime non nullo $(e_{0,\infty}=(1+K)^{-1})$.
 - (II). G(s) almeno di tipo 1 presenta sempre un errore di inseguimento a regime nullo $(e_{0,\infty}=0)$.

SISTEMI DI CONTROLLO IN RETROAZIONE: TRANSITORIO

• Problema:

— valutazione dei parametri caratteristici della risposta al gradino del sistema ad anello chiuso: massima sovraelongazione, y_p tempo di ritardo, t_r

tempo di salita, t_s

tempo di assestamento, t_a

istante di massima sovraelongazione, t_p

• Tipo di soluzione:

- determinare tali parametri utilizzando soltanto la risposta in frequenza $G(j\omega)$ della catena diretta

PARAMETRI DEL TRANSITORIO VS. $G(j\omega)$

- Step I: passaggio dal dominio del tempo al dominio della frequenza.
 - Determinare le relazioni fra i parametri caratteristici del transitorio e i parametri della risposta in frequenza di W(s), ovvero il picco di risonanza, M_r , la pulsazione di risonanza, ω_r , la banda a 3dB, B_3 .
- Relazione approssimate genericamente valide per sistemi ad anello chiuso con due poli dominanti complessi.
 - Relazione fra sovraelongazione e modulo alla risonanza.

$$rac{y_p}{M_r}pprox ext{[0.85,1]}$$

- Relazione fra tempo di salita e banda a 3dB.

PARAMETRI DEL TRANSITORIO VS. $G(j\omega)$

- Step II: passaggio da anello chiuso ad anello aperto.
 - Determinare le relazioni fra i parametri B_3 e M_r della risposta in frequenza di W(s) e la risposta in frequenza $G(j\omega)$ del blocco in catena diretta.
- Relazione approssimata (per sistemi comuni) fra il modulo alla risonanza M_r di W(s) e il margine di fase m_ϕ di G(s):

 $M_r = 2.3 - 1.25 m_\phi$

valida nell'intorno di $m_\phi=\pi/4$ (M_r non è espresso in dB).

PARAMETRI DEL TRANSITORIO VS. $G(j\omega)$

• Relazione approssimata (per sistemi comuni) fra la banda a 3dB B_3 di W(s) e la pulsazione di attraversamento ω_a di G(s).

• La relazione dipende dal valore del margine di fase m_{ϕ} di G(s).

- Nota: le relazione di sopra sono a rigore valide per sistemi almeno di tipo 1.
- Relazione quantitativa valida per valori del margine di fase compresi fra 30° e 60°.

$$\frac{\omega_a}{B_3} \approx [0.5, 0.8]$$