Измерение параметров механической колебательной системы

Ревков Сергей

МГУ имени М.В. Ломоносова

Постановка задачи

С помощью встроенного датчика угловой скорости устройство должно измерять период колебаний математического маятника (в качестве маятника выступает плата, подвешенная на относительно длинном проводе). На основе полученного периода колебаний и известного значения ускорения свободного падения должна определяться длина подвеса маятника. Результат измерений должен выводиться на дисплей.

Математический маятник

Математический маятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен

$$T=2\pi\sqrt{\frac{L}{g}}$$

где L - длина маятника, g - ускорение свободного падения.

Математический маятник

Гироскоп (отладочная плата)

Гироскоп (характеристики)

ST L3GD20

- Three-axis angular rate sensor.
- Full scale of ±250/±500/±2000 dps
- ▶ I2C/SPI digital output interface.
- Integrated low- and high-pass filters with user selectable bandwidth.
- Embedded temperature sensor.
- Embedded FIFO buffers.

Гироскоп (характеристики)

	Table 4. Mechanical characteristics ⁽¹⁾							
Symbol	Parameter	Test condition	Min.	Typ. ⁽²⁾	Max.	Unit		
				±250				
FS	Measurement range	User-selectable		±500		dps		
		1111	83	±2000				
		FS = 250 dps	166	8.75				
So	Sensitivity	FS = 500 dps	8	17.50		mdps/digit		
		FS = 2000 dps	an an	70				
SoDr	Sensitivity change vs. temperature	From -40 °C to +85 °C		±2		%		
	Digital zero-rate level	FS = 250 dps	8.5	±10				
DVoff		FS = 500 dps	16	±15		dps		
		FS = 2000 dps	8	±75				
OffDr	Zero-rate level change vs. temperature	FS = 250 dps	re.	±0.03		dps/°C		
OllDr		FS = 2000 dps		±0.04		dps/°C		
NL	Non linearity	Best fit straight line		0.2		% FS		
Rn	Rate noise density			0.03		ips/(√Hz)		
ODR	Digital output data rate		3	95/190/ 380/760		Hz		
Тор	Operating temperature range		-40		+85	°C		

Гироскоп (характеристики)

Table 7. SPI slave timing values

0	Description	Valu	11		
Symbol	Parameter	Min	Max	Unit	
tc(SPC)	SPI clock cycle	100	() (o	ns	
fc(SPC)	SPI clock frequency		10	MHz	
tsu(CS)	CS setup time	5			
th(CS)	CS hold time	8	F.5	54 -	
tsu(SI)	SDI input setup time	5	.5		
th(SI)	SDI input hold time	15	5	ns	
tv(SO)	SDO valid output time		50		
th(SO)	SDO output hold time	6		×	
tdis(SO)	SDO output disable time		50	1	

Values are guaranteed at a 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results; not tested in production.

Схема алгоритма

Схема алгоритма

```
LL APB2 GRP1 EnableClock(LL APB2 GRP1 PERIPH USART1);
LL APB1 GRP1 EnableClock(LL APB1 GRP1 PERIPH TIM2);
// Инициализация
HAL Init();
SystemClock_Config();
InitializeRCC GPIO();
ConfigurationUSART();
ConfigurationTIM();
BSP GYRO Init();
BSP LCD Init();
// Получение данных
BSP GYRO GetXYZ(omega xyz);
MEDIANFILTER Init(&medianFilter);
// Период, длина, вывод на экран
period();
length();
display();
BSP LCD DisplayStringAtLine(row d++, (unsigned char *)str);
```

Гироскоп (данные)

Алгоритм

Из
$$T=2\pi\sqrt{rac{L}{g}}=>L=rac{gT^2}{4\pi^2}.$$

g и π нам известно, остается найти T .

Предлагается следующий алгоритм. Сложим $\max(\omega_x, \omega_y, \omega_z,)$ и ω и в полученном массиве найдем среднее.

Алгоритм

Далее, считаем сколько раз наш график пересекает среднее. Причем считаем два варианта - первый когда очередная точка стала меньше среднего и второй вариант, когда больше. Получается два массива T_1 - красные точки и T_2 - зелёные.

Алгоритм

Затем находим среднее по красным и зелёным точкам - T_{1mean} и T_{2mean} . И нужный нам период расчитываем так:

$$T = \frac{T_{1mean} + T_{2mean}}{2}$$

Медианный фильтр

Медианный фильтр — один из видов цифровых фильтров, широко используемый в цифровой обработке сигналов и изображений для уменьшения уровня шума. Значения отсчётов внутри окна фильтра сортируются в порядке возрастания (убывания); и значение, находящееся в середине упорядоченного списка, поступает на выход фильтра.(wikipedia)

До фильтрации	2	3	80	6	2	3			
Окно 3									
0	2	3	=>	2					
	2	3	80	=>	3				
		3	80	6					
		3	6	80	=>	6			
			80	6	2				
			2	6	80	=>	6		
				6	2	3			
				2	3	6	=>	3	
					2	3	0		
					0	2	3	=>	2
Іосле фильтрации	2	3	6	6	3	2			

Список литературы

- mikheev.hopto.org/stm32 Материалы курса «Программирование микроконтроллеров», Москва, 2023-2024.
- Datasheets STM32F429, L3GD20
- Reference manual STM32F429
- https://microtechnics.ru/stm32f3-spi-i-giroskop-l3gd20/ STM32 и гироскоп L3GD20. Часть 1. Настройка и обмен данными.
- https://microtechnics.ru/stm32-i-giroskop-l3gd20-chast-2/ STM32 и гироскоп L3GD20. Часть 2. Определение положения платы.

Список литературы

- Interfacing L3GD20 MEMS Gyroscope using SPI https://www.youtube.com/watch?v=iAzqwXTmGcM
- STM32 SPI Interrupt Tutorial: Setup And Usage With Registers https://www.youtube.com/watch?v=RBXQLPGr7Q
- https://github.com/adem-alnajjar/Gyroscope-L3GD20-STM32/
- MedianFilter https://github.com/accabog/MedianFilter/tree/master

Список литературы

Median Filter https://en.wikipedia.org/wiki/Medianfilter

Спасибо за внимание!