POLITECNICO DI MILANO Scuola 3I Bovisa II prova in itinere – Fondamenti di Chimica – 21 gennaio 2019 A

(4 punti)

- 1. Il protossido di azoto N₂O è un gas usato come anestetico (gas esilarante) e come propellente in certe bombolette spray. Scrivere la reazione di formazione di questo composto a partire dagli elementi che lo costituiscono, e determinare l'entalpia e l'entropia della reazione. Mostrare poi graficamente la dipendenza di ΔG° dalla temperatura e stabilire se N₂O è stabile termodinamicamente, e in questo caso in quali condizioni. [Per N₂O(g): ΔH°_f = 82 kJ/mol, S° = 220 J/(K·mol)]
- **R:** Per la reaz. $2 N_2 + O_2 = 2 N_2 O$ ho $\Delta H^{\circ} = 2 \Delta H^{\circ}_f(N_2 O)$ = 164 kJ e $\Delta S^{\circ} = 2 S^{\circ}(N_2 O) 2 S^{\circ}(N_2) S^{\circ}(O_2) = -149$ J/K. Dato che $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$, il grafico di ΔG° in funzione di T è quello mostrato a lato. Dato poi che ΔG° > 0, per la reazione $K_{eq} << 1$, per cui il composto non è mai stabile termodinamicamente (tende sempre a decomporsi in N_2 e O_2).

(4 punti)

- 2. **a**) Si consideri una pila costituita da un semielemento standard ad idrogeno e dal semielemento Cr (s) / Cr³⁺ (0.025 M). Scrivere le semireazioni che avvengono, e determinare la polarità e la f.e.m. della pila. **b**) Spiegare cosa succede se una lega metallica di zinco e nickel viene attaccata da una soluzione di HCl 1M.
- **R:** a) Semireazioni: $2 H_3O^+ + 2 e^- = H_2 + 2 H_2O$ $E = E^\circ = 0.00 V$; $Cr^{3+} + 3 e^- = Cr$ $E = E^\circ(Cr^{3+}/Cr) + (0.059/3) log [Cr^{3+}] = [-0.74 + (0.059/3) log 0.025] V = -0.77 V$. Perciò il semielemento a idrogeno fa da polo + e Cr da polo -, e si ha f.e.m. = $E^\circ_+ E^\circ_- = 0.77 V$. b) Dati i potenziali di riduzione $2 H_3O^+ + 2 e^- = H_2 + 2 H_2O$ $E^\circ = 0.00 V ([H_3O^+] = 1 M)$, $Zn^{2+} + 2 e^- = Zn$ $E^\circ_- = -0.76 V$, $Ni^{2+} + 2 e^- = Ni$ $E^\circ_- = -0.26 V$, si la riduzione di H_3O^+ con sviluppo di idrogeno e l'ossidazione prima di Zn, che ha il potenziale di riduzione minore, e poi di Ni (entrambi i metalli hanno $E^\circ_- < 0 V$).

(4 punti)

- 3. La reazione CO $(g) + H_2O(g) = CO_2(g) + H_2(g)$ può essere utilizzata per produrre idrogeno (usato per esempio nella sintesi dell'ammoniaca). Per la reazione scritta sopra, si ha $K_{eq} = 0.10$ a 690°C. In un reattore, in cui è stato fatto il vuoto, vengono introdotte 3.00 mol di CO e 3.00 mol di H₂O. Calcolare la composizione all'equilibrio in moli a 690°C e stabilire che influenza ha sull'equilibrio una compressione del reattore.
- **R:** Bilancio di massa: $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ (mol all'eq.) 3.00 x 3.00 x x x Per cui: $K_c = x^2/(3.00 x)^2$, da cui $\sqrt{K_{eq}} = 0.316 = x/((3.00 x))$. La soluzione accettabile è x = 0.720. All'eq. le mol di CO_2 e H_2 sono quindi 0.720 mol, mentre le mol di CO_2 e di CO_3 mol. Una compressione non ha nessun effetto, in quanto il numero di moli non cambia.

(3 punti)

- 4. Stabilire quali prodotti si ottengono al catodo e all'anodo durante l'elettrolisi di una soluzione acquosa di solfato d'argento Ag₂SO₄ 0.01 M in soluzione fortemente acida e stabilire la massa dei prodotti ottenuti usando una corrente di 2.0 A per 2 h 30 min.
- **R:** Semireazione catodica: $Ag^+ + e^- \rightarrow Ag^- E^\circ = 0.80 \text{ V}$, semireazione anodica: $6 \text{ H}_2O \rightarrow O_2 + 4 \text{ H}_3O^+ + 4 e^- E^\circ = 1.23 \text{ V}$. La carica passata nel circuito è $Q = i \cdot t = 2.0 \text{ C s}^{-1} \cdot 150 \text{ min} \cdot 60 \text{ s min}^{-1} = 1.8 \cdot 10^4 \text{ C}$, per cui $n_{e^-} = 1.8 \cdot 10^4 \text{ C} / 96480 \text{ C mol}^{-1} = 0.187 \text{ mol}_{e^-}$. Per cui si

ottengono 0.187 mol di Ag, cioè 20.2 g di Ag, e 0.047 mol di O2, cioè 1.49 g di O2.

(3 punti)

- 5. **a)** Il metanolo viene preparato industrialmente con la reazione CO (g) +2 H₂ (g) = CH₃OH (g) in presenza di un catalizzatore solido. Stabilire che effetto ha la diminuzione di volume sulla velocità di questa reazione. **b)** Descrivere quali sono le caratteristiche di un catalizzatore, specificando anche l'effetto che esso esercita sulla quantità di prodotti ottenuti in una reazione.
- **R:** a) Accelera la reazione, in quanto rende più frequenti gli urti (aumenta la concentrazione dei reagenti) e favorisce l'adsorbimento dei reagenti sul catalizzatore solido. b) E' una sostanza che si recupera inalterata e che permette alla reazione di seguire un diverso percorso con minore energia di attivazione, accelerandola molto ma senza alterare l'equilibrio.

(3+2=5 punti)

- 6. a) Un soluzione acquosa 0.150 M di acido formico HCOOH, un acido debole monoprotico, ha pH = 2.3. Calcolare la Ka dell'acido formico, e stabilire cosa succede per aggiunta di una base forte. b) Cosa avviene se si introduce SO₃ (g) in una soluzione acquosa di ossido di sodio?
- **R:** a) In sol. acquosa: HCOOH + H₂O = HCOO⁻ + H₃O⁺. Da pH = -log[H₃O⁺] si ottiene [H₃O⁺] = 10^{-pH} = 0.005 M = [HCOO⁻], per cui K_a = [HCOO⁻] [H₃O⁺] / [HCOOH] = (0.005 M)² / (0.150-0.005) M = 1.7 10⁻⁴ mol/L. Con una base forte che libera ioni OH⁻ avviene H₃O⁺ + OH⁻ = 2 H₂O, spostata a destra, per cui si sposta a destra anche la reazione dell'acido debole. b) L'ossido di sodio Na₂O in acqua si comporta da base forte: Na₂O + H₂O → 2 NaOH → 2 Na⁺ + 2 OH⁻, dando pH basico. L' SO₃ invece si comporta da acido forte: SO₃ + H₂O → H₂SO₄; poi H₂SO₄ + 2 H₂O → 2 H₃O⁺ + SO₄²⁻. Avviene perciò la reazione H₃O⁺ + OH⁻ = 2 H₂O, spostata a destra, ed il pH quindi diminuisce.

(4 punti)

- 7. **a)** L'idrossido di cobalto $Co(OH)_2$ è molto poco solubile in acqua $[K_{ps} = 2 \cdot 10^{-16} \text{ (mol/L)}^3]$. Descrivere un modo semplice per aumentarne la solubilità. **b)** Si consideri il seguente equilibrio $MgCO_3(s) = MgO(s) + CO_2(g)$ presente in un recipiente chiuso a 650°C. Stabilire quale effetto ha sull'equilibrio *i*) l'aggiunta di magnesia MgO; *ii*) un aumento di T; *iii*) l'introduzione di aria nel recipiente.
- **R:** a) All'equilibrio si ha $Co(OH)_2$ (s) = $Co^{2+} + 2$ OH^- , che è un equilibrio spostato a sinistra ($K_{ps} << 1$). L'aggiunta di un acido forte sposta a destra l'equilibrio, in quanto in acqua libera H_3O^+ , che reagiscono con OH^- per formare acqua. b) i) Non ha nessun effetto, perchè è un equilibrio eterogeneo, in cui la quantità di ciascuna fase solida è irrilevante; ii) un aumento di T favorisce il processo, dato che è endotermico, aumentando i prodotti tramite un aumento della K_{eq} ; iii) nessun effetto, in quanto i gas presenti nell'aria non partecipano alla reazione e non compaiono nella K_{eq} .

(4 punti)

- 8. Una soluzione acquosa del volume di 1.5 L contenente 3.5 g del cloruro di un metallo del secondo gruppo presenta una pressione osmotica di 1.52 atm a 25°C. Determinare il peso molecolare del sale ed individuare il metallo in questione.
- **R:** Il sale in acqua si dissocia: $MeCl_2 \rightarrow Me^{2+} + 2$ Cl⁻, per cui i=3. Da $\Pi V = nRTi = mRTi/M$ si ha $M=mRTi/(\Pi V) = 3.5$ g 0.082 L atm K^{-1} mol⁻¹ 298 K $\cdot 3$ / (1.52 atm 1.5 L) = 112.5 g mol⁻¹. Dato che $PM = 112.5 = PA_{Me} + 2$ PA_{Cl} si ottiene $PA_{Me} = 41.5$, per cui il metallo è il Ca.