389.138 Telekommunikation – 2017S

1. Übung

25.04.2017 - 26.04.2017

Einen Überblick über die in der Übung verwendete Notation finden Sie in TUWEL.

Beispiel 1 — Lineares System angeregt mit Rauschen

Ein RC-Tiefpass $(R = 1 \,\mathrm{k}\Omega,\, C = 1 \,\mathrm{\mu F})$ wird mit weißem Rauschen $(\frac{N_0}{2} = 200 \,\mathrm{pW/Hz})$ angeregt.

- (a) Skizzieren Sie die Schaltung.
- (b) Berechnen Sie die Impulsantwort h(t) und die Übertragungsfunktion $H(j\omega)$.
- (c) Berechnen Sie die Leistung des Ausgangssignals.
- (d) Ist das Ausgangssignal ebenfalls ein weißes Signal?

Beispiel 2 — 3-PAM

Ein gleichverteiltes 3-PAM Signal $X \in \mathcal{X} = \{-v, 0, v\}$ wird über einen Kanal mit additivem Rauschen gesendet, d.h. Y = X + N. Das Rauschen sei gemäß

$$f_{\mathsf{N}}(n) = \frac{2}{w} \mathrm{tri} \left(\frac{2n}{w} \right),$$

mit Parameter w > 0 verteilt. Aus dem Empfangssignal Y wird das detektierte Signal $\hat{X} \triangleq g(Y) \in \mathcal{X}$ gebildet, indem für das am nächsten gelegene Symbol entschieden wird: $g(y) = \arg\min_{\hat{x} \in \mathcal{X}} |\hat{x} - y|$.

- (a) Skizzieren Sie $f_{\mathbb{N}}(n)$ und berechnen Sie die Varianz des Rauschens.
- (b) Bestimmen Sie die Entscheidungsregionen für alle $x \in \mathcal{X}$. Für welche Werte von w sind die beiden Bedingungen
 - $P_s = P\{\hat{X} \neq X\} > 0$ (Symbolfehlerwahrscheinlichkeit größer Null) und
 - $p_{\hat{\mathbf{X}}|\mathbf{X}}(-v|v) = p_{\hat{\mathbf{X}}|\mathbf{X}}(v|-v) = 0$ (Es treten nur nearest-neighbor Fehler auf, vgl. Punkt (d))

erfüllt? Nehmen Sie im Weiteren an, dass w in diesem Wertebereich liegt.

- (c) Skizzieren Sie qualitativ die gewichteten bedingten Dichten $f_{Y|X}(y|x)p_X(x)$, $x \in \mathcal{X}$. Berechnen und skizzieren Sie außerdem $f_Y(y)$.
- (d) Berechnen Sie $P\{\hat{X} = \hat{x} | X = x\} = p_{\hat{X}|X}(\hat{x}|x)$ für alle $x, \hat{x} \in \mathcal{X}$.
- (e) Berechnen Sie die Symbolfehlerwahrscheinlichkeit P_s und geben Sie einen Zahlenwert für w=4 und v=3 an.
- (f) Der Kanal wird num 4 Mal hintereinander verwendet um den Vektor $\mathbf{x} = (-v, v, -v, -v)^{\mathrm{T}}$ zu übertragen. Berechnen Sie die Wahrscheinlichkeit, dass $\hat{\mathbf{x}} = (-v, v, 0, v)^{\mathrm{T}}$ detektiert wird.

Beispiel 3 — Nichtlineare Quantisierung

Ein Signal habe eine Amplitudenverteilung der Gestalt

$$f_{\mathsf{S}}(s) = \begin{cases} bs^n & \text{für } -a \le s < a \\ 0 & \text{sonst} \end{cases}$$

mit a>0 und $n\in\mathbb{N}$. Weiters sei der Quantisierer $Q:[-a,a)\to\mathbb{R}$ definiert durch

$$Q(x) \triangleq \hat{s}_k \text{ für } \hat{x}_{k-1} \le x < \hat{x}_k,$$

wobei $k \in \{1, 2, ..., m\}$ und m die Anzahl der unterschiedlichen Quantisierungsstufen $\{\hat{s}_k\}_{k \in \{1, 2, ..., m\}}$ bezeichnet. Es gelte $-a = \hat{x}_0 < \hat{x}_1 < \hat{x}_2 < \cdots < \hat{x}_m = a$. Der Quantisierer Q bildet die kontinuierliche Zufallsvariable S auf die diskrete Zufallsvariable $\hat{S} \triangleq Q(S)$ ab.

(a) Welchen Bedingungen müssen $b \in \mathbb{R}$ und $n \in \mathbb{N}$ genügen, sodass $f_{S}(s)$ tatsächlich eine Wahrscheinlichkeitsdichte ist?

Für die folgenden Teilaufgaben gelte a=1, die Parameter n und m bleiben aber allgemein. Für Skizzen verwenden Sie n=2 und m=8.

- (b) Bestimmen Sie die Folge der Quantisierungsgrenzen (\hat{x}_k) derart, dass \hat{S} über alle möglichen Ausgangswerte $\{\hat{s}_k\}$ gleich verteilt ist, d.h., $P\{\hat{S}=\hat{s}_k\}=p, \ \forall k\in\{1,2,\ldots,m\}$. Welchen Wert hat p? Skizzieren Sie $f_S(s)$ und tragen Sie die Werte $\{\hat{x}_k\}$ im Diagramm ein. Welcher qualitative Zusammenhang lässt sich zwischen $f_S(s)$ und der Quantisierungsbreite $|\hat{x}_k-\hat{x}_{k-1}|$ erkennen?
 - Hinweis: Zur Bestimmung von $\{\hat{x}_k\}$ betrachten Sie die kumulative Verteilungsfunktion $P\{S \leq \hat{x}_k\}$.
- (c) Nehmen Sie an, Sie kennen den Ausgang des Quantisierers $\hat{S} = \hat{s}_k$. Schließen Sie unter dieser Bedingung auf die Verteilung des Eingangs S, berechnen und skizzieren Sie dazu die Wahrscheinlichkeitsdichte $f_{S|\hat{S}}(s|\hat{s}_k)$.
- (d) Um das Quantisierungsrauschen möglichst klein zu halten, wird nun zu jedem Quantisierungsintervall $I_k = [\hat{x}_{k-1}, \hat{x}_k)$ der zugehörige Reproduktionswert \hat{s}_k so gewählt, dass der mittlere quadratische Quantisierungsfehler minimiert wird. Damit erhält man

$$\hat{s}_k = \operatorname*{arg\,min}_{r \in \mathbb{R}} \mathbb{E}\left[(\mathsf{S} - r)^2 \middle| \mathsf{S} \in I_k \right]. \tag{1}$$

Zeigen Sie durch Differenzieren und Null setzen von Gleichung (1), dass der Reproduktionswert \hat{s}_k dem gewichteten Mittelwert entspricht, d.h.,

$$\hat{s}_k = \int_{-\infty}^{\infty} s f_{\mathsf{S}|\hat{\mathsf{S}}}(s|\hat{s}_k) \mathrm{d}s.$$

Geben sie \hat{s}_k als Funktion von $\hat{s}_k(\hat{x}_{k-1}, \hat{x}_k)$ an. Berechnen Sie $\{\hat{s}_k\}$ und tragen Sie die Werte im Diagramm aus Punkt (b) ein.

Hinweis: $x^* = \operatorname*{arg\,min}_{x \in \mathcal{X}} f(x)$ liefert einen Wert $x^* \in \mathcal{X}$ sodass $f(x^*) \leq f(x) \quad \forall x \in \mathcal{X}$.

Beispiel 4 — Diskrete Zufallsvariablen

Die Zufallsvariable X bezeichne einen fairen Münzwurf, d.h., $P\{X=0\} = P\{X=1\} = \frac{1}{2}$, wobei wir 0 für "Kopf" und 1 für "Zahl" verwenden. Diese faire Münze wird nun oft hintereinander geworfen, wobei X_n den n-ten Wurf $(n \in \mathbb{N})$ bezeichnet. Sei Z die Anzahl der Würfe bis zur ersten "Zahl" und Y_N die Summer aller Würfe bis zum N-ten (inklusive), d.h., $Z = \min\{n : X_n = 1\}$ und $Y_N = \sum_{n=1}^N X_n$.

(a) Berechnen Sie die Wahrscheinlichkeitsfunktionen $p_{\mathsf{Z},\mathsf{Y}_N}(z,y) = P\{\mathsf{Z}=z,\mathsf{Y}_N=y\}$ und $p_{\mathsf{Z},\mathsf{X}_n}(z,x) = P\{\mathsf{Z}=z,\mathsf{X}_n=x\}.$

Hinweis: Unterscheiden Sie die Fälle z > N, z = N und z < N.

- (b) Berechnen Sie die Erwartungswerte $\mu_{\mathsf{Z}} = \mathbb{E}[\mathsf{Z}]$ und $\mu_{\mathsf{Y}_N} = \mathbb{E}[\mathsf{Y}_N]$.
- (c) Berechnen Sie die Kovarianz $C_{\mathsf{Z},\mathsf{Y}_N} = \mathbb{E}[(\mathsf{Z} \mu_{\mathsf{Z}})(\mathsf{Y}_N \mu_{\mathsf{Y}_N})]$ von Z und Y_N . $\mathit{Hinweis: } \sum_{n=1}^N nr^n = r \frac{Nr^{N+1} - (N+1)r^N + 1}{(r-1)^2}$
- (d) Was können Sie über den Erwartungswert $\mathbb{E}[2^{\mathsf{Z}}]$ aussagen? Erklären Sie den Zusammenhang mit dem Sankt-Petersburg-Paradoxon¹.

Beispiel 5 — Bandbreite

Gegeben seien die beiden Signale

$$f(t) = \cos(\omega_1 t)$$
 $g(t) = \sin(\omega_2 t)$

mit $\omega_1 = 5\pi$ und $\omega_2 = 6\pi$. Das Signal h(t) ergibt sich als das Produkt h(t) = f(t)g(t).

- (a) Geben Sie die Fouriertransformierten $F(j\omega) \bullet f(t)$ und $H(j\omega) \bullet h(t)$ an.
- (b) Ist h(t) periodisch? Falls ja, geben Sie die kleinste Periode T_0 an. Ansonsten setzen Sie $T_0 = \infty$.

Für ein allgemeines Signal x(t) definieren wir im Folgenden

$$x^{(T)}(t) \triangleq \begin{cases} x(t) & 0 \le t \le T \\ 0 & \text{sonst} \end{cases}, \qquad X^{(T)}(j\omega) \triangleq \mathcal{F}\left\{x^{(T)}(t)\right\}.$$

- (c) Welcher Zusammenhang gilt allgemein zwischen den Fouriertransformierten $X_1^{(T)}(j\omega)$ und $X_1^{(nT)}(j\omega)$ eines T-periodischen Signals $x_1(t)$ für $n \in \mathbb{N}$?
- (d) Berechnen Sie die Fouriertransformierte $H^{(T_0)}(j\omega)$
- (e) Skizzieren Sie $|H^{(T_0)}(j\omega)|$.
- (f) Geben Sie die 3 dB-Bandbreite von h(t) und $h^{(T_0)}(t)$ an.
- (g) Sind die Werte die Sie in Punkt (f) erhalten haben sinnvoll? Begründen Sie. Diskutieren Sie, welche Definition der Bandbreite hier besser geeignet wäre.

¹https://de.wikipedia.org/wiki/Sankt-Petersburg-Paradoxon

Beispiel 6 — Fehlerwahrscheinlichkeit

Gegeben sei folgende Beschreibung eines Kommunikationssystems:

$$Y = N_1X + N_2$$
.

Die Zufallsvariable $X \in \{-x_0, x_0\}$ ist das Sendesymbol, welches zwei unterschiedliche Werte annehmen kann $(x_0 > 0)$. Die Zufallsvariablen N_1 und N_2 sind unabhängig voneinander und unabhängig vom Sendesymbol X. Es gelte $P\{N_1 = 0\} = p$, $P\{N_1 = 1\} = 1 - p$ und $N_2 \sim \mathcal{N}(0, \sigma^2)$. Y bezeichne das empfangene Signal. Für das Sendesignal X gilt $P\{X = x_0\} = q$ und $P\{X = -x_0\} = 1 - q$, wobei $q = \frac{1}{2}$. Hinweis: Für Skizzen verwenden Sie $x_0 = 1$, $p = \frac{1}{5}$ und $\sigma^2 = \frac{1}{2}$.

- (a) Zeichnen Sie den Verlauf von $F_X(x) = P\{X \le x\}$.
- (b) Skizzieren und berechnen Sie die bedingten Dichten $f_{Y|X}(y|x_0)$ und $f_{Y|X}(y|-x_0)$.
- (c) Skizzieren und berechnen Sie $f_Y(y)$. Überprüfen Sie, dass es sich um eine Wahrscheinlichkeitsdichtefunktion handelt.

Aufgabe des Empfängers ist es, X mit möglichst geringer Fehlerwahrscheinlichkeit zu reproduzieren. Wir verwenden zu diesem Zweck die Funktion $g: \mathbb{R} \to \{-x_0, x_0\}$, gegeben durch

$$g(y) = \begin{cases} x_0 & y \ge 0 \\ -x_0 & y < 0 \end{cases}.$$

- (d) Berechnen Sie folgende Wahrscheinlichkeiten und geben sie Zahlenwerte für $x_0=1$ und $\sigma^2=p=\frac{1}{4}$ an:
 - (i) $P\{g(Y) = 1 | X = 1\}$
 - (ii) $P\{g(Y) = 1 | X = -1\}$
 - (iii) $P\{g(Y) = -1|X = 1\}$
 - (iv) $P\{g(Y) = -1|X = -1\}$
 - (v) $P\{g(Y) \neq X\}$
- (e) Lösen Sie die Punkte (a) bis (d) erneut für $q = \frac{1}{3}$. Welche Unterschiede ergeben sich?

Beispiel 7 — Binäres Basisbandsystem

In einem binären Basisbandsystem wird für das 1-Bit die Kurvenform $s_1(t) = \text{rect}(t)\cos(\pi t)$ und für das 0-Bit $s_0(t) = -\text{tri}(2t)$ verwendet. Die Dämpfung zwischen Sender und Empfänger beträgt 50 dB.

- (a) Skizzieren Sie das Kommunikationssystem und die verwendeten Signale.
- (b) Ermitteln Sie die Signalenergien E_1 und E_2 von s_1 und s_2 .
- (c) Berechnen und skizzieren Sie die normierte Kreuzkorrelationsfunktion $\rho_{12}(\tau)$ von $s_1(t)$ und $s_2(t)$.
- (d) Welches Referenzsignal ergibt sich, wenn zur Detektion nur ein Korrelator verwendet wird?
- (e) Welchen Betrag darf die spektrale Rauschleistungsdichte unter der Annahme von weißem Gaußschen Rauschen am Korrelatoreingang nicht überschreiten, wenn die Symbolfehlerwahrscheinlichkeit $P\{\mathcal{E}\}$ einen Wert von 10^{-5} nicht übersteigen darf?

Beispiel 8 — Signalangepasstes Filter

Ein Übertragungssystem erzeuge das Signal

$$s(t) = U \cdot \operatorname{rect}\left(\frac{t - \frac{T}{2}}{T}\right),$$

mit U, T > 0. Dieses Signal wird über einen Kanal mit der Impulsantwort

$$g_{\rm K}(t) = \delta(t) - \frac{1}{2}\delta(t - 2T)$$

übertragen.

- (a) Skizzieren Sie das Übertragungssystem.
- (b) Berechnen und skizzieren Sie das am Ausgang des Kanals empfangene Signal y(t).
- (c) Ermitteln Sie die Energie E_y von y(t).
- (d) Das Ausgangssignal y(t) wird durch additives, weißes gaußsches Rauschen mit der zweiseitigen Leistungsdichte $G_N(f) = \frac{N_0}{2}$ gestört. Geben Sie die Impulsantwort g(t) des signalangepassten Filters als Skizze und durch einen mathematischen Formelausdruck an.
- (e) Ist das Gesamtsystem inklusive Filter ISI-frei? Wenn ja, geben Sie die maximal mögliche Symbolrate R für ISI-freie Übertragung an.