Lazy Evaluation and Memoïsing functions USCS 2016

Utrecht University

July 4-15, 2016

Infinite Lists

Given the following code:

```
take 0 \ l = []

take n \ l = head \ l : take \ (n-1) \ (tail \ l)

length \ [] = 0

length \ (\_: l) = 1 + length \ l
```

what is the result of the following session?

```
Prelude> let v = error "undefined"
Prelude> v
*** Exception: undefined
Prelude> length (take 3 v)
```


Infinite Lists

Given the following code:

```
take 0 \ l = []

take n \ l = head \ l : take \ (n-1) \ (tail \ l)

length \ [] = 0

length \ (\_: l) = 1 + length \ l
```

what is the result of the following session?

```
Prelude> let v = error "undefined"
Prelude> v
*** Exception: undefined
Prelude> length (take 3 v)
...
```


It may suprise some that the answer is 3

[Faculty of Science Information and Computing Sciences]

◆□▶◆御▶◆三▶◆三▶ ● 夕久で

What is going on?

We evaluate the original expression stepwise:

```
length (take 3 v)
length (head v : take 2 (tail v))
1 + length (take 2 (tail v))
1 + length (head (tail v) : take 1 (tail (tail v)))
1+1+length (take 1 (tail (tail v)))
1+1+length (head (tail (tail v)): take 0 (tail (tail (tail v))))
1+1+1+length (take 0 (tail (tail (tail v))))
1 + 1 + 1 + length
1+1+1+0
1 + 1 + 1
1 + 2
3
```


What is driving the evaluation?

In the example we have seen that every expression is evaluated when it is needed in order to decide which alternative of the function *length* should be taken. We conclude:

It is pattern matching (and evaluation of conditions) which drives the evaluation!

Each expression is only evaluated when, and as far as needed, when we have to decide how to proceed with the evaluation.

Why Functional programming is Easy

We have learned to appreciate that when we have automatic garbage collection we do not have to worry about when the life of a value ends!

Why Functional programming is Easy

We have learned to appreciate that when we have automatic garbage collection we do not have to worry about when the life of a value ends!

When using lazy evaluation we do not have to worry about when the life of a value starts!

Where lazy evaluation matters

- describing process like structures
- recurrent relations
- combing function, e.g. by building an infinite structure and inspecting only a finite part of it.

Example: Communicating processes

Two processes which communicate:

```
let pout = map p pin
    qout = map q qin
    pin = 1 : qout
    qin = pout
in pout
```

We can build arbitray complicated nets of communication processes in this way.

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

1. take the list of all natural numbers starting from 2: [2..].

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

- 1. take the list of all natural numbers starting from 2: [2..].
- 2. remove all multiples of 2, and remember that 2 is a prime number.

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

- 1. take the list of all natural numbers starting from 2: [2..].
- 2. remove all multiples of 2, and remember that 2 is a prime number.
- 3. the smallest number still in the list is 3, so remove all multiples of 3 and remember that 3 is a prime number

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

- 1. take the list of all natural numbers starting from 2: [2..].
- 2. remove all multiples of 2, and remember that 2 is a prime number.
- 3. the smallest number still in the list is 3, so remove all multiples of 3 and remember that 3 is a prime number
- 4. the smallest remaining number is 5, so ...

 $removeMultiples\ n\ list = filter\ ((\not\equiv 0) \circ ('mod'n))\ list$

 $removeMultiples\ n\ list = filter\ ((\not\equiv 0) \circ (`mod'n))\ list$

Apply repeatedly, letting prime numbers pass:

sift (p:xs) = p:sift (removeMultiples p xs)

◆□▶◆御▶◆三▶◆三▶ ● 夕久で

 $remove Multiples \ n \ list = filter \ ((\not\equiv 0) \circ ('mod'n)) \ list$

Apply repeatedly, letting prime numbers pass:

$$sift (p:xs) = p:sift (removeMultiples p xs)$$

And now pass the list of candidates:

primeNumbers = sift [2...]

 $removeMultiples\ n\ list = filter\ ((\not\equiv 0) \circ (`mod'n))\ list$

Apply repeatedly, letting prime numbers pass:

sift (p:xs) = p:sift (removeMultiples p xs)

And now pass the list of candidates:

primeNumbers = sift [2...]

Programs> take 4 primeNumbers [2,3,5,7]

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

The typical way to approach this is to start with an inductive definition:

1. 1 is a Hamming number.

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

The typical way to approach this is to start with an inductive definition:

- 1. 1 is a Hamming number.
- 2. If n is a Hamming number then also 2 * n, 3 * n en 5 * n are Hamming numbers.

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

The typical way to approach this is to start with an inductive definition:

- 1. 1 is a Hamming number.
- 2. If n is a Hamming number then also 2 * n, 3 * n en 5 * n are Hamming numbers.
- 3. Purist add "And there are no other Hamming numbers", but for computer scientists this is obvious.

We now reason as follows:

1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.

We now reason as follows:

- 1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.

We now reason as follows:

- 1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

```
ham = 1 : \dots
```

We now reason as follows:

- 1. Suppose that ham is the sought list, then the lists map~(*2)~ham,~map~(*3)~ham,~and~map~(*5)~ham also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

```
ham = 1 : \dots (map (*2) ham)
\dots
(map (*3) ham)
\dots
(map (*5) ham)
```

We now reason as follows:

- 1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

We now reason as follows:

- 1. Suppose that *ham* is the sought list, then the lists $map\ (*2)\ ham,\ map\ (*3)\ ham,\ and\ map\ (*5)\ ham$ also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

```
ham = 1 : remdup ((map (*2) ham)
'merge'
(map (*3) ham)
'merge'
(map (*5) ham)
)
remdup (x : ys) = x : remdup (dropWhile (<math>\equiv x) ys) Fomputing
```

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

Why doesn't the follow work:

remdup
$$(x:y:zs) \mid x \equiv y$$
 = remdup $(y:zs)$
| otherwise = x : remdup $(y:zs)$

We evaluate a few steps:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x:remdup (y:zs)
```

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

```
ham = 1 : remdup (2 : ( (map (*2) (tail ham)) 
 'merge' 
 (3 : map (*3) (tail ham)) 
 'merge' 
 (5 : map (*5) (tail ham)) 
)
```

Why doesn't the follow work:

```
remdup(x:y:zs) \mid x \equiv y = remdup(y:zs)
                   otherwise = x : remdup (y : zs)
```

```
ham = 1: remdup (2: (((2*(head (tail ham): map (*2) (tail (tail (tail ham): map (*2) (tail ham)
                                                                                                                                                                                                                                                                                                                                                                                                'merge'
                                                                                                                                                                                                                                                                                                                                                                                           (3: map (*3) (tail ham))
                                                                                                                                                                                                                                                                                                                                                                                'merge'
                                                                                                                                                                                                                                                                                                                                                                           (5: map (*5) (tail ham))
```

For *head* (*tail ham*) we need the result of *remdup*!

Faculty of Science Information and Computing Sciences

Universiteit Utrecht

Productivity

Compare the two definitions of remdup

Productivity

Compare the two definitions of remdup

If we apply these definitions to the sequence [1, <expr1>, <expr2>] then the first definition needs the result of <expr1>, before it yields the 1. The second definition yields the 1 directly.

Productivity

Compare the two definitions of remdup

If we apply these definitions to the sequence [1, <expr1>, <expr2>] then the first definition needs the result of <expr1>, before it yields the 1. The second definition yields the 1 directly.

Strictness

We say that the second definition is less strict than the first one: it both definitions return something then these values will be the same, but the second definition will evaluate a small part of its argument.

The Fibonacci sequence

Leonardo van Pisa ($\pm 1170 - \pm 1250$):

$$F_n = \begin{cases} n & \text{if } n < 2, \\ F_{n-2} + F_{n-1} & \text{if } n \geqslant 2. \end{cases}$$


```
fib :: Integer \rightarrow Integer
fib 0 = 0
fib 1 = 1
fib n = fib (n-2) + fib (n-1)
```


[Faculty of Science Information and Computing Sciences]

GHCi with :set +s:

Main >

GHCi with :set +s:

Main> fib 10

GHCi with :set +s:

Main > fib 10 55 0.02 secs, 3043752 bytes

Main>

GHCi with :set +s:

Main> fib 10 55 0.02 secs, 3043752 bytes Main> fib 20

GHCi with :set +s:

Main> fib 10

55

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main>

GHCi with :set +s:

Main > fib 10

55

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main > fib 25

GHCi with :set +s:

Main > fib 10

55

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main > fib 25

75025

0.63 secs, 34743476 bytes

Main >

GHCi with :set +s:

Main > fib 10

55

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main > fib 25

75025

0.63 secs, 34743476 bytes

Main > fib 30

GHCi with :set +s:

Main > fib 10

55

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main > fib 25

75025

0.63 secs, 34743476 bytes

Main> fib 30

832040

6.80 secs, 383178156 bytes

[Faculty of Science Information and Computing Sciences]

Interactive session: number of steps

Hugs (http://haskell.org/hugs):

```
Main > fib 10
```


Interactive session: number of steps

Hugs (http://haskell.org/hugs) with +s:

```
Main > fib 10
55
3177 reductions, 5054 cells
Main > fib 20
6765
390861 reductions, 622695 cells
Main > fib 25
75025
4334725 reductions, 6905874 cells, 6 garbage collections
Main > fib 30
832040
48072847 reductions, 76587387 cells, 77 garbage collections
```


Call Tree

Call Tree

Number of recursive calls

We show the number of recursive calls for fib n:

value of n	number of <i>fib</i> calls
5	15
10	177
15	1973
20	21891
25	242785
30	2692537

Local memoïsation

Idea: 'remember' the results of the function calls for a sequence of arguments.

Local memoïsation

Idea: 'remember' the results of the function calls for a sequence of arguments.

```
fib :: Integer \rightarrow Integer

fib n = fibs ! n

where

fibs = listArray (0, n) $

0:1: [fibs ! (k-2) + fibs ! (k-1) | k \leftarrow [2...n]]
```

4□▶
4□▶
4□▶
4□▶
4□
5
9
0

Local memoïsation

Idea: 'remember' the results of the function calls for a sequence of arguments.

```
fib :: Integer \rightarrow Integer
fib n = fibs ! n
where
fibs = listArray (0, n) $
0 : 1 : [fibs ! (k - 2) + fibs ! (k - 1) | k \leftarrow [2 ... n]]
```

 $\ensuremath{\wp}$ For each call of $\ensuremath{\mathit{fib}}$ we construct a completely new array $\ensuremath{\mathit{fibs}}$.

Global memoïsation

The global memo function

- ▶ also remembers the results of previous calls directly from the program,
- remembers the result for all all arguments ever passed.

Global memoïsation

The global memo function

- ▶ also remembers the results of previous calls directly from the program,
- remembers the result for all all arguments ever passed.

Goal: to construct a library which makes it easy to build a memoïsing version of a function which takes an *Integer* parameter.

Fixed-point Combinator

The fixed point of a function f is the value x, for which f x = x holds.

Fixed-point Combinator

The fixed point of a function f is the value x, for which f x = x holds.

A fixpoint combinator is a higher-order function which 'computes' the fixpoint of other functions:

$$fix :: (a \rightarrow a) \rightarrow a$$

 $fix f = let fixf = f fixf in fixf$

Using fix we can make the use of recursion explicit:

Using fix we can make the use of recursion explicit:

Example:

```
fac :: Integer \rightarrow Integer

fac 0 = 1

fac n = n * fac (n - 1)
```

Using fix we can make the use of recursion explicit:

Example:

```
fac :: Integer \rightarrow Integer

fac 0 = 1

fac n = n * fac (n - 1)
```

can, using fix, be written as:

```
fac :: Integer \rightarrow Integer

fac = fix fac'

where

fac' f 0 = 1

fac' f n = n * f (n - 1)
```

Using fix we can make the use of recursion explicit:

Example:

```
fac :: Integer \rightarrow Integer

fac 0 = 1

fac n = n * fac (n - 1)
```

can, using fix, be written as:

Idea: introduce an extra parameter which is used in the recursive calls:

```
fac :: Integer \rightarrow Integer
fac = fix fac'
where
fac' f 0 = 1
fac' f n = n * f (n - 1)
```

[Faculty of Science Information and Computing Sciences]

Using fix we can make the use of recursion explicit:

Example:

```
fac :: Integer \rightarrow Integer

fac 0 = 1

fac n = n * fac (n - 1)
```

can, using fix, be written as:

Idea: introduce an extra parameter which is used in the recursive calls:

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶</p

```
fac :: Integer \rightarrow Integer

fac = fix fac'

where

fac' f 0 = 1

fac' f n = n * f (n - 1)
```

 $\begin{array}{c} \textit{fac}' :: (\underbrace{\textit{Integer} \rightarrow \textit{Integer}}) \rightarrow (\underbrace{\textit{Integer} \rightarrow \textit{Integer}}). & \text{[Faculty of Sciences]} \\ \text{Universiteit Utrecht} & \text{Information and Computing Sciences]} \end{array}$

Explicit recursion: example

$$fac 3$$
=
$$fix fac' 3$$
=
$$fac' (fix fac') 3$$
=
$$3 * fix fac' (3 - 1)$$
=
$$3 * fix fac' 2$$
=
$$3 * fac' (fix fac') 2$$
=
$$3 * (2 * fix fac' (2 - 1))$$
=
$$3 * (2 * fix fac' 1)$$

$$= 6$$

$$= 3*2$$

$$= 3*(2*1)$$

$$= 3*(2*(1*1))$$

$$= 3*(2*(1*fix fac' 0))$$

$$= 3*(2*(1*fix fac' (1-1)))$$

$$= 3*(2*fac' (fix fac') 1)$$

$$= 3*(2*fix fac' 1)$$

Fibonacci again

Fibonacci function with explicit recursion

:

```
fib :: Integer \rightarrow Integer

fib = fix fib'

where

fib' f 0 = 0

fib' f 1 = 1

fib' f n = f (n-2) + f (n-1)
```

Fibonacci again

Fibonacci function with explicit recursion, and clever (ab)use of Haskell scope rules:

```
fib :: Integer \rightarrow Integer

fib = fix fib

where

fib fib 0 = 0

fib fib 1 = 1

fib fib n = fib (n - 2) + fib (n - 1)
```

Idea: replace fix by a memoising fixpoint combinator

Library for memofunctions: plan of attack

Choose a (parameterised) datatype *Memo* for the memo tables.

Library for memofunctions: plan of attack

Choose a (parameterised) datatype *Memo* for the memo tables.

Define functions tabulate and apply,

```
tabulate :: (Integer \rightarrow a) \rightarrow Memo \ a
apply :: Memo \ a \rightarrow Integer \rightarrow a
```

such that:

- ► tabulate f results in a (lazily constructed) memo table containing all results of calls to f and
- ▶ apply mem n retrieves the corresponding value for the parameter n from mem.

Library for memofunctions: plan of attack

Choose a (parameterised) datatype *Memo* for the memo tables.

Define functions tabulate and apply,

```
tabulate :: (Integer\rightarrowa)\rightarrowMemo a apply :: Memo a\rightarrowInteger\rightarrowa
```

such that:

- ► tabulate f results in a (lazily constructed) memo table containing all results of calls to f and
- apply mem n retrieves the corresponding value for the parameter n from mem.

Define a fixedpoint combinator memo using tabulate and apply.

[Faculty of Science Information and Computing Sciences]

Memo lists

In our first approach we will represent memo tables using infinite lists:

type *Memo* a = [a]

Memo lists

In our first approach we will represent memo tables using infinite lists:

type
$$Memo \ a = [a]$$

tabulate :: (Integer \rightarrow a) \rightarrow Memo a tabulate f = map f [0..]

Memo lists

In our first approach we will represent memo tables using infinite lists:

```
type Memo a = [a]
```

```
tabulate :: (Integer \rightarrow a) \rightarrow Memo \ a tabulate f = map \ f \ [0..]
```

```
apply :: Memo a \rightarrow Integer \rightarrow a
apply (x : \_) 0 = x
apply (\_: xs) n = apply xs (n - 1)
```



```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

イロトイクトイミトイミト ヨ かなべ

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

▶ The combinator constructs a fixpoint f of f'.

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ▶ The function f retreives its result from the memo table tabulate (f' f).

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ▶ The function f retreives its result from the memo table tabulate (f' f).
- ▶ Each element in the table is computed using f'.

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ▶ The function f retreives its result from the memo table tabulate (f' f).
- **Each** element in the table is computed using f'.
- ightharpoonup Recursive calls use the memo function f.

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ► The function f retreives its result from the memo table tabulate (f' f).
- **Each** element in the table is computed using f'.
- ightharpoonup Recursive calls use the memo function f.
- ► Thanks to lazy evaluation only those elements in the list are computed which are really used in constructing the resulting value

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ► The function f retreives its result from the memo table tabulate (f' f).
- **Each** element in the table is computed using f'.
- ightharpoonup Recursive calls use the memo function f.
- ► Thanks to lazy evaluation only those elements in the list are computed which are really used in constructing the resulting value
- ► The table does not depend on the parameter of f; calls to f share the table which is persistent during the evaluation of the Faculty of Science University (Information and Computing Sciences)

Fibonacci sequence using memo lists

Fibonacci function using global memoïsation:

```
fib :: Integer \rightarrow Integer

fib = memo fib'

where

fib' f 0 = 0

fib' f 1 = 1

fib' f n = f (n-2) + f (n-1)
```

Memo lists: number of reductions

```
Main > fib 10
55
1450 reductions, 2316 cells
Main > fib 20
6765
5060 reductions, 8178 cells
Main > fib 25
75025
7690 reductions, 12463 cells
Main > fib 30
832040
10870 reductions, 17649 cells
```


Main>

Main> fib 30


```
Main> fib 30
832040
10870 reductions, 17649 cells
```



```
Main> fib 30
832040
10870 reductions, 17649 cells
Main> fib 30
```


Information and Computing Sciences

```
Main > fib 30
832040
10870 reductions, 17649 cells
Main > fib 30
832040
359 reductions, 583 cells
```



```
Main > fib 30
832040
10870 reductions, 17649 cells
Main > fib 30
832040
359 reductions, 583 cells
```

In the second call all we have to do is to look up the result in the table.

Memo lists: lineair search time

- ► Arrays: fixed number of possible argument, but constant lookup time.
- Lists: no restriction on number of arguments, but lineair lookup time.