Pós-Prática Franck - Hertz

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

> Instituto de Física de São Carlos Universidade de São Paulo

> > 29/05/2024

Espectros Observados Séc. XIX

$$\lambda = B \cdot (\frac{m^2}{m^2 - n^2})$$
 (a)

$$\frac{1}{\lambda} = R_h \cdot (\frac{1}{n_f^2} - \frac{1}{n_i^2}) \tag{b}$$

Equações empíricas para descrever o espectro do Hidrogênio: (a) Série de Balmer (1885); (b) Série de Rydberg (1888)

Nascimento da Teoria Quântica

• Estudo de Corpo Negro (Planck 1901)

 $\Delta E = nhf$

Efeito Fotoelétrico (Einstein 1905)

Figura 3: Ilustração do efeito fotoelétrico.

Figura 2: Emissão de corpo negro.

Modelo Atômico de Bohr (1913)

Figura 4: Ilustração do modelo atômico de Bohr.

Hipóteses para o modelo

- O elétron pode se mover em determinadas órbitas (estacionárias) sem irradiar, possuindo energias bem definidas.
- ullet O momento angular do elétron é quantizado, $mrv=nh\cdot$
- Para que o elétron mude de estado estacionário o átomo deve absorver ou emitir radiação. De forma que $E_f-E_i=h \nu \ \cdot$

Experimento de Franck - Hertz:

Figura 5: Colisões elásticas e inelásticas de um elétron com um átomo de mercúrio.

Figura 6: Criadores do experimento: (a) James Franck; (b) Gustav Hertz.

Prêmio Nobel 1925

- Estudar a colisão de elétrons com átomos;
- Evidenciou a existência das órbitas estacionárias

Montagem experimental:

Figura 7: Diagrama de uma válvula tetrodo contendo vapor de mercúrio, ilustrando elétrons sendo acelerados.

Figura 8: Corrente medida no anodo em função da tensão de aceleração dos elétrons.

> Transições dos níveis de energia do mercúrio:

Figura 9:
Esquema simplificado dos
níveis de energia dos
menores estados do
átomo de mercúrio.

Figura 10: Seções de choque para o impacto de um elétron para alguns estados do mercúrio em função da energia.

Transmissão dos elétrons:

Livre caminho médio:
$$\lambda=\frac{1}{N\sigma}=\frac{K_BT}{p\sigma}=\frac{K_BT}{p\sqrt{2}\pi d_0^2}$$

Pressão do mercúrio para temperaturas entres 300K e 500K:

$$p = 8.7 \times 10^{(9 - (3110/T))}$$

Figura 11:

Esquema ilustrando a transferência de energia dos elétrons para os átomos, com o livre caminho médio entre as colisões.

Figura 12:Dependência do livre caminho médio com a temperatura.

OBJETIVOS

- Estudar a dinâmica de colisões entre elétrons e átomos, utilizando a curva de corrente por tensão;
 - **Uma excitação:** Analisar a dependência da curva de uma colisão com a variação da temperatura do forno.
 - Múltiplas colisões: Analisar o comportamento das múltiplas colisões do elétron para diferentes temperaturas e estudar a curva de corrente por tensão para temperatura fixa. Obter o potencial de contato.
 - **Ionização:** Analisar o surgimento de uma corrente positiva, interpretando para diferentes temperaturas. Determinar a energia de ionização do átomo.

Figura 13: Imagens do aparato experimental a ser utilizado.

- Uma Excitação:
 - As tensões utilizadas serão V4 por volta de 2V e V3 em torno de 10 a 15V com V1 na tensão máxima. Dessa forma, colhemos os dados da curva para diferentes temperaturas (40°C, 60°C, 80° C, 100°C e 130°C);

Figura 14: (a) Esquema do experimento de uma excitação, (b) ilustração da tensão sobre o elétron.

Múltiplas Excitações:

- Variar a temperatura do forno entre (120°C, 130°C, 140°C, 150°C, 160°C), mantendo V₁, V₂ e V₄ por volta de 0.5V e V₃ em 50V;
- Manter o forno a 160° C e variar V₄, variar logo após a tensão do filamento. Repetir para temperatura fixa de 170° C

Figura 15: (a) Esquema do experimento de múltiplas colisões, (b) ilustração da tensão sobre o elétron.

➤ Ionização:

 As tensões V1 e V4 permanecerão máximas com V2 por volta de 3V e V3 a 25V. Alterando a temperatura entre 130° C, 115°C e 100°C, assim analisamos a curva em função da temperatura;

Figura 16: (a) Esquema do experimento de ionização, (b) ilustração da tensão sobre o elétron.

RESULTADOS ESPERADOS

Espera-se reproduzir os resultados obtidos por Franck-Hertz em 1914.

Figura 17: Representação tridimensional das curvas características obtidas no experimento de Franck-Hertz.

Uma excitação:

- Variação dos parâmetros para uma temperatura fixa de 175 °C.
- Parâmetros ótimos: $V_1 = 4 V$ $V_3 = 13.5 V$ $V_4 = 6 V$

Figura 18: Gráfico de otimização dos parâmetros experimentais para uma excitação do mercúrio.

$$V_1 = 4 V$$
, $V_3 = 13.5 V$, $V_4 = 6 V$

$$V_1 = 6 V$$
, $V_3 = 22.5 V$, $V_4 = 6 V$

Figura 19: Gráficos de corrente versus tensão obtidos para uma colisão no mercúrio em duas configurações diferentes.

 \blacktriangleright Múltiplas colisões: $V_1 = 5.2 \text{ V}, V_2 = 6.23 \text{ V}, V_3 = 24.51 \text{ V}, V_4 = 0.49 \text{ V}$

Figura 20: Gráficos de corrente versus tensão obtidos para uma múltiplas colisões do mercúrio.

 \blacktriangleright Múltiplas colisões: V1 = 5.2 V, V2 = 6.23 V, V3 = 24.51 V, V4 = 0.49 V

Figura 21: Gráfico de corrente versus tensão, com y na escala logarítmica, demonstrando os diferentes potenciais para a emissão dos elétrons.

Variação do V₁:

$$V_2 = 6.23 \text{ V}, V_3 = 24.51 \text{ V}, V_4 = 0.49 \text{ V}$$

Figura 22: Gráficos de corrente versus tensão obtidos para variação da tensão do filamento para temperaturas fixas.

Variação do V4:

$$V_1 = 5.2 \text{ V}, V_2 = 6.23 \text{ V}, V_3 = 24.51 \text{ V}$$

Figura 23: Gráficos de corrente versus tensão obtidos para variação do potencial de retardo para temperaturas fixas.

> Potencial de contato:

Temperatura (°C)	Pot. Contato $(V) \pm 0.06$	Energia de Exc. Hg (eV) \pm 0.09
163	2.42	5.41
165	2.69	5.81
171	2.64	5.16
177	2.88	4.95
180	2.84	4.96
Médias	$\bar{P} = 2.69 \pm 0.06$	$\bar{E} = 5.26 \pm 0.09$

Figura 24: Potencial de contato para diferentes temperaturas.

➤ lonização:

Figura 25: Energia de ionização do mercúrio para diferentes temperaturas.

Temperatura (°C)	Energia de Ionização (eV) ± 0.03 10.08 9.57		
100			
105			
110	10.02		
115	9.89		
122	10.02		
Experimental	$\bar{E} = 9.91 \pm 0.03$		
Esperado	E = 10.44		

Figura 26: Energia de ionização do mercúrio para diferentes temperaturas.

Figura 27: Diagramas dos níveis de energia (a) Hélio (b) Neônio

➤ Neônio:

(I)
$$V_{e1} = V_R - V_1$$
 (II) $V_{e1} = V_1 + V_0$

$$V_0 = V_R - 2V_1$$

	Potenciais de Excitação (V)			
	V_1 $2p \ 3s \ ^1P_1$ $2p \ 3s \ ^3P_0$ $2p \ 3s \ ^3P_1$ $2p \ 3s \ ^3P_2$	$\begin{array}{c} V_2 \\ \mathrm{2p} \ \mathrm{3p} \ ^3S_1 \end{array}$	V_3	
Esperado	16.66	18.3		
Experimental	16.65 ± 0.008	18.562 ± 0.008	20.11 ± 0.008	

$$V_0 = 2.633 \pm 0.006$$

Figura 28: Gráfico de corrente versus tensão para múltiplas colisões do neônio.

Figura 29: Gráficos de corrente versus tensão para múltiplas colisões do neônio para diferentes configurações.

➤ Hélio:

(I)
$$V_{e1} = V_R - V_1$$
 (II) $V_{e1} = V_1 + V_0$

$$V_0 = V_R - 2V_1$$

	Potenciais de Excitação (V)			
	V_1 23S	V_2 2 ¹ S - 2 ³ P - 2 ¹ P	V_3 3 ⁸ S - 3 ¹ S - 3 ⁸ P - 3 ¹ P	
Esperado	19.8	20.9	22.9	
Experimental	18.561 ± 0.008	19.311 ± 0.008	21.462 ± 0.008	

$$V_0 = 0.962 \pm 0.006$$

Figura 30: Gráfico de corrente versus tensão para múltiplas colisões do hélio.

Figura 31: Gráficos de corrente versus tensão para múltiplas colisões do hélio para diferentes configurações.