2017/1/11 26装饰器.html

装饰器

2215次阅读

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

```
>>> def now():
...     print '2013-12-25'
...
>>> f = now
>>> f()
2013-12-25
```

函数对象有一个 name 属性,可以拿到函数的名字:

```
>>> now. __name__
'now'
>>> f. __name__
'now'
```

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为"装饰器"(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的 decorator,可以定义如下:

```
def log(func):
    def wrapper(*args, **kw):
        print 'call %s():' % func.__name__
        return func(*args, **kw)
    return wrapper
```

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

```
@log
def now():
    print '2013-12-25'
```

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

```
>>> now()
call now():
2013-12-25
```

把@log放到now()函数的定义处,相当于执行了语句:

```
now = log(now)
```

wrapper()函数的参数定义是(*args, **kw),因此, wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更

2017/1/11 26装饰器.html

```
复杂。比如,要自定义log的文本:
```

```
def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print '%s %s():' % (text, func.__name__)
            return func(*args, **kw)
        return wrapper
    return decorator
```

这个3层嵌套的decorator用法如下:

```
@log('execute')
def now():
    print '2013-12-25'
```

执行结果如下:

```
>>> now()
execute now():
2013-12-25
```

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

```
>>> now = log('execute') (now)
```

我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper':

```
>>> now.__name__
'wrapper'
```

因为返回的那个wrapper()函数名字就是'wrapper', 所以,需要把原始函数的_name_等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

不需要编写wrapper. __name__ = func. __name__这样的代码,Python内置的functools. wraps就是干这个事的,所以,一个完整的decorator的写法如下:

```
import functools
```

```
def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print 'call %s():' % func.__name__
        return func(*args, **kw)
    return wrapper
```

或者针对带参数的decorator:

```
import functools

def log(text):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kw):
            print '%s %s():' % (text, func.__name__)
            return func(*args, **kw)
```

2017/1/11 26装饰器.html

return wrapper return decorator

import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。

小结

在面向对象(00P)的设计模式中,decorator被称为装饰模式。00P的装饰模式需要通过继承和组合来实现,而Python除了能支持00P的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

请编写一个decorator,能在函数调用的前后打印出'begin call'和'end call'的日志。

再思考一下能否写出一个@log的decorator, 使它既支持:

@log
def f():
 pass

又支持:

@log('execute')
def f():
 pass