Notations, définitions et rappels

– Soient S^1 le cercle : $\{z \in \mathbf{C}, |z| = 1\}$, D le disque : $\{z \in \mathbf{C}, |z| < 1\}$. On note \mathcal{C} la \mathbf{C} -algèbre des fonctions continues de S^1 dans \mathbf{C} , \mathcal{C}^* le groupe des inversibles de cette algèbre, c'est-à-dire l'ensemble des éléments de \mathcal{C} qui ne s'annulent pas sur S^1 . L'algèbre \mathcal{C} est munie de la norme uniforme sur S^1 , définie par :

$$\forall \varphi \in \mathcal{C}, \qquad |\varphi|_{\infty} = \max \{|\varphi(z)| ; z \in S^1\}.$$

– Si n est dans \mathbf{Z} , soit e_n l'élément de $\mathcal C$ défini par :

$$\forall z \in S^1, \quad e_n(z) = z^n.$$

– Si f est une fonction de S^1 dans ${\bf C}$, on note $\tilde f$ la fonction 2π -périodique de ${\bf R}$ dans ${\bf C}$ définie par :

$$\forall t \in \mathbf{R}, \qquad \tilde{f}(t) = f(e^{it}).$$

Selon l'usage, on identifie deux fonctions f_1 et f_2 de S^1 dans ${\bf C}$ telles que les fonctions \tilde{f}_1 et \tilde{f}_2 soient mesurables au sens de Lebesgue et coïncident sur le complémentaire d'une partie négligeable de $[-\pi,\pi]$. On note L^1 (resp. L^2) l'ensemble des (classes de) fonctions f de S^1 dans ${\bf C}$ telles que \tilde{f} soit intégrable (resp. de carré intégrable) au sens de Lebesgue sur $[-\pi,\pi]$. Pour f dans L^1 , soit :

$$\int f = \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{f} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) dt.$$

L'application qui à f dans L^1 associe $|f|_1 = \int |f|$ est une norme sur L^1 .

- Si f est dans L^1 , on note \hat{f} la fonction de ${\bf Z}$ dans ${\bf C}$ définie par :

$$\forall n \in \mathbf{Z}, \qquad \hat{f}(n) = \int f e_{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) e^{-int} dt.$$

On rappelle que \hat{f} est nulle si et seulement si f est l'élément nul de L^1 .

– Pour f_1 et f_2 dans L^2 , on notera $\langle f_1, f_2 \rangle = \int (\overline{f_1} \times f_2)$, définissant ainsi un produit scalaire hermitien sur L^2 . La norme associée à \langle , \rangle est notée $| \cdot |_2$. Si f est dans L^2 , alors :

$$|f|_2 = \sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(e^{it})|^2 dt}.$$

– On rappelle que L^2 est contenu dans L^1 , avec de plus :

$$\forall f \in L^2, \qquad |f|_1 \le |f|_2.$$

- On rappelle également que L^2 est un espace de Hilbert complexe dont $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne.
- Si E est un espace vectoriel et F un sous-espace de E, on dit que F est de codimension finie dans E si et seulement si l'espace quotient E/F est de dimension finie. La dimension de E/F est alors appelée codimension de F dans E, notée $\operatorname{codim}_E(F)$.

On rappelle par ailleurs que tout supplémentaire de F dans E est isomorphe à E/F. Si G est un tel supplémentaire, F est donc de codimension finie dans E si et seulement si G est de dimension finie, et on a alors : $\operatorname{codim}_E(F) = \dim G$.

- Dans la fin de ces rappels, $(H, \langle \; , \; \rangle)$ est un espace de Hilbert complexe.
- Si V est un sous-espace de H, on note V^{\perp} l'orthogonal de V; le sous-espace V^{\perp} est un supplémentaire de V dans H si et seulement si V est fermé dans H.

– On note $\mathcal{L}(H)$ la C-algèbre des endomorphismes continus de H. Les éléments de $\mathcal{L}(H)$ sont appelés opérateurs de l'espace H. Si T_1 et T_2 sont dans $\mathcal{L}(H)$, on abrège $T_2 \circ T_1$ en T_2T_1 . On note I l'identité de H, c'est-à-dire le neutre multiplicatif de $\mathcal{L}(H)$. L'algèbre $\mathcal{L}(H)$ est munie de la norme subordonnée définie par :

$$\forall T \in \mathcal{L}(H), \qquad ||T|| = \sup \left\{ \frac{|T(x)|}{|x|}, \ x \in H \setminus \{0\} \right\},$$

où $|x| = \sqrt{\langle x, x \rangle}$ désigne la norme du vecteur x de H.

- Pour tout élément T de $\mathcal{L}(H)$ il existe un unique T^* dans $\mathcal{L}(H)$ tel que :

$$\forall (x,y) \in H^2, \qquad \langle T(x), y \rangle = \langle x, T^*(y) \rangle.$$

- On rappelle enfin les relations suivantes, valables pour tout T de $\mathcal{L}(H)$:

$$\ker T^* = \operatorname{Im} T^{\perp}, \qquad \overline{\operatorname{Im} T^*} = \ker T^{\perp}.$$

Objectif du problème, dépendance des parties

- Le but du problème est d'associer à tout élément φ de \mathcal{C} un endomorphisme continu T_{φ} d'un espace de Hilbert et d'étudier T_{φ} .
- La partie I démontre une formule de Jensen relative aux éléments de H(D). La partie II détermine les composantes connexes par arcs de \mathcal{C}^* . La partie III introduit l'espace de Hardy H^2 , la partie IV les opérateurs de Toeplitz T_{φ} . Les parties V et VI étudient respectivement les opérateurs compacts et les opérateurs de Fredholm d'un espace de Hilbert et appliquent les résultats obtenus aux T_{φ} ; elles aboutissent notamment à la caractérisation des φ de \mathcal{C} tels que T_{φ} soit inversible.
- La partie I n'est utilisée que dans la partie III. La partie II n'est utilisée que dans la partie VI.
 La partie III n'est utilisée que dans la partie IV.

I. Formule de Jensen

1. (a) Soit n dans \mathbf{N}^* . Ecrire le polynôme $X^{2n}-1$ comme produit de polynômes irréductibles unitaires de $\mathbf{C}[X]$, puis de $\mathbf{R}[X]$.

En déduire, si r est dans $]1, +\infty[$, une expression simple de :

$$\sum_{k=1}^{n-1} \ln(1 - 2r\cos(k\pi/n) + r^2).$$

(b) Soit r dans $]1, +\infty[$. En utilisant éventuellement la question précédente, établir les égalités :

$$\int_0^{\pi} \ln(1 - 2r\cos t + r^2) dt = 2\pi \ln r,$$

$$\int_{-\pi}^{\pi} \ln\left(\left|1 - re^{it}\right|\right) \, \mathrm{d}t = 2\pi \ln r.$$

(c) Justifier l'existence de :

$$\int_{-\pi}^{\pi} \ln\left(\left|1 - e^{it}\right|\right) \, \mathrm{d}t,$$

puis montrer que cette intégrale est nulle.

(d) Soient a dans \mathbf{C}^* , r dans \mathbf{R}^{+*} avec : $|a| \leq r$. Calculer l'intégrale :

$$\int_{-\pi}^{\pi} \ln\left(\left|a - re^{it}\right|\right) \, \mathrm{d}t.$$

2. Ici, F est une fonction holomorphe sur D telle que F(0) ≠ 0. On fixe r dans]0,1[et on note D_r = {z ∈ C, |z| ≤ r}. On rappelle (théorème des zéros isolés) que F n'a qu'un nombre fini de zéros comptés avec multiplicités dans D_r. On note a₁,..., a_p ces zéros comptés avec multiplicités. Montrer l'égalité :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln\left(|F(re^{it})|\right) dt = \ln\left(|F(0)|\right) + \sum_{i=1}^{p} \ln\left(\frac{r}{|a_i|}\right).$$

Indication. On pourra utiliser, sans démonstration, l'existence d'une fonction G holomorphe sur un voisinage de D_r telle que :

$$\forall z \in D_r, \qquad F(z) = \prod_{i=1}^p (z - a_i) e^{G(z)}.$$

La formule précédente implique l'inégalité ci-après, utilisée en III.3.(c) :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln\left(|F(re^{it})|\right) dt \geqslant \ln\left(|F(0)|\right).$$

II. Composantes connexes par arcs de \mathcal{C}^*

Si φ est dans \mathcal{C}^* , on appelle relèvement de φ toute application continue θ de \mathbf{R} dans \mathbf{C} telle que :

$$\forall t \in \mathbf{R}, \qquad \varphi\left(e^{it}\right) = e^{\theta(t)}.$$

L'ensemble des relèvements de φ est noté $R(\varphi)$.

1. Soient I un intervalle de $\mathbf R$ non vide et non réduit à un point, f et g deux fonctions continues de I dans $\mathbf C$ telles que :

$$\forall t \in I. \qquad e^{f(t)} = e^{g(t)}.$$

Montrer que la fonction f - g est constante.

2. Soient φ dans \mathbb{C}^* , A dans \mathbb{R}^{+*} . Pour n dans \mathbb{N}^* et k dans $\{0, \ldots, n-1\}$, on note $u_{k,n}$ la fonction continue de [-A, A] dans \mathbb{C}^* définie par :

$$\forall t \in [-A, A], \qquad u_{k,n}(t) = \frac{\varphi\left(e^{i(k+1)t/n}\right)}{\varphi\left(e^{ikt/n}\right)}.$$

4

(a) Soit $\varepsilon > 0$. Montrer qu'il existe n dans \mathbf{N}^* tel que :

$$\forall k \in \{0, \dots, n-1\}, \quad \forall t \in [-A, A], \qquad \left| \varphi\left(e^{i(k+1)t/n}\right) - \varphi\left(e^{ikt/n}\right) \right| < \varepsilon.$$

(b) Montrer qu'il existe n dans \mathbf{N}^* tel que :

$$\forall k \in \{0, \dots, n-1\}, \quad \forall t \in [-A, A], \quad |u_{k,n}(t) - 1| < 1.$$

En déduire que pour tout k de $\{0, \ldots, n-1\}$ il existe une fonction continue $v_{k,n}$ de [-A, A] dans \mathbf{C} telle que :

$$\forall t \in [-A, A], \qquad u_{k,n}(t) = e^{v_{k,n}(t)}.$$

Indication. On rappelle qu'il existe une (unique) fonction continue L de $\mathbf{C} \setminus \mathbf{R}^-$ dans la bande $\{z \in \mathbf{C}, |\operatorname{Im}(z)| < \pi\}$ vérifiant :

$$\forall z \in \mathbf{C} \setminus \mathbf{R}^-, \qquad e^{L(z)} = z.$$

(c) Montrer qu'il existe une fonction continue θ_A de [-A,A] dans ${\bf C}$ telle que :

$$\forall t \in [-A, A], \qquad \varphi(e^{it}) = e^{\theta_A(t)}.$$

- (d) Conclure que $R(\varphi)$ n'est pas vide.
- 3. (a) Si φ est dans \mathcal{C}^* , θ dans $R(\varphi)$ et t dans \mathbf{R} , montrer que le réel

$$\frac{\theta(t+2\pi)-\theta(t)}{2i\pi}$$

est un entier relatif indépendant du couple (θ, t) de $R(\varphi) \times \mathbf{R}$. L'entier ainsi défini est appelé degré de φ et noté $\deg(\varphi)$.

- (b) Calculer le degré de φ dans les cas suivants :
 - i) $\varphi = e_n$ où $n \in \mathbf{Z}$,
 - ii) $\varphi = \varphi_1 \times \varphi_2$ où φ_1 et φ_2 sont dans \mathcal{C}^* (réponse en fonction des degrés de φ_1 et φ_2),
 - iii) φ est un élément de \mathcal{C}^* à valeurs dans $\mathbf{C} \setminus \mathbf{R}^-$.
- (c) Soient φ_1 et φ_2 dans \mathcal{C}^* telles que : $|\varphi_1 \varphi_2| < |\varphi_1|$. Montrer :

$$\deg(\varphi_1) = \deg(\varphi_2).$$

Indication. On pourra considérer φ_2/φ_1 .

- (d) Montrer que l'application deg qui à φ associe deg (φ) est continue sur \mathcal{C}^* muni de la topologie provenant de la norme $|\cdot|_{\infty}$.
- 4. Pour n dans \mathbf{Z} , soit \mathcal{C}_n^* l'ensemble des φ de \mathcal{C}^* de degré n.

Montrer que les C_n^* sont les composantes connexes par arcs de C^* (toujours muni de la topologie provenant de $|\cdot|_{\infty}$).

Indication. Pour φ dans C_0^* , on pourra considérer θ dans $R(\varphi)$ et, pour s dans [0,1], H_s l'application définie sur S^1 par :

$$\forall t \in \mathbf{R}, \qquad H_s(e^{it}) = e^{s\theta(t)}.$$

III. Espace de Hardy H^2

On note ${\cal H}^2$ le sous-espace de L^2 constitué des f telles que :

$$\forall n \in \mathbf{Z} \setminus \mathbf{N}, \qquad \hat{f}(n) = 0.$$

1. Montrer que H^2 est un sous-espace fermé de L^2 dont $(e_n)_{n\in\mathbb{N}}$ est une base hilbertienne.

Dans la suite, l'espace H^2 est muni de la structure d'espace de Hilbert induite par celle de L^2 . On note Π le projecteur orthogonal de L^2 sur H^2 .

Si f est dans L^2 , exprimer la décomposition de $\Pi(f)$ sur $(e_n)_{n \in \mathbb{N}}$.

2. Soit f dans H^2 . Justifier que le rayon de convergence de la série entière

$$\sum_{n>0} \hat{f}(n) \ z^n$$

est supérieur ou égal à 1.

Pour z dans D, soit :

$$F(z) = \sum_{n=0}^{+\infty} \hat{f}(n) \ z^n.$$

Pour r dans [0,1[, soit f_r la fonction définie sur S^1 par :

$$\forall z \in S^1, \qquad f_r(z) = F(rz).$$

Prouver que $|f_r - f|_2$ tend vers 0 lorsque r tend vers 1.

- 3. Soit f un élément non nul de H^2 . Le but de cette question est de démontrer que l'ensemble des t de $[-\pi,\pi]$ tels que $f(e^{it})=0$ est de mesure de Lebesgue nulle. Quitte à multiplier f par e_{-m} où m est le plus petit i de $\mathbf N$ tel que : $\hat{f}(i)\neq 0$, on peut supposer $\hat{f}(0)\neq 0$ et c'est ce qu'on fait désormais. On fixe ε dans [0,1[.
 - (a) Montrer que $\ln(|f| + \varepsilon)$ appartient à L^1 .
 - (b) Si r est dans [0,1[, t dans \mathbf{R} , établir :

$$\left| \ln \left(|f_r(e^{it})| + \varepsilon \right) - \ln \left(|f(e^{it})| + \varepsilon \right) \right| \le \frac{|f_r(e^{it}) - f(e^{it})|}{\varepsilon}$$

(c) En utilisant l'inégalité obtenue à la fin de I, établir :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln\left(\left|f(e^{it})\right| + \varepsilon\right) dt \geqslant \ln\left(\left|\hat{f}(0)\right|\right).$$

(d) Conclure.

IV. Opérateurs de Toeplitz

Soit φ dans \mathcal{C} .

1. (a) Si f est dans H^2 , vérifier que $\Pi(\varphi \times f)$ est un élément de H^2 .

Dans la suite, on note T_{φ} l'application de H^2 dans lui-même qui à f associe $\Pi(\varphi \times f)$. Il est clair que T_{φ} est un endomorphisme de H^2 .

Vérifier que T_{φ} appartient à $\mathcal{L}(H^2)$; T_{φ} est appelé opérateur de Toeplitz de symbole φ .

- (b) Si i et j sont dans \mathbf{N} , exprimer $\langle e_i, T_{\varphi}(e_j) \rangle$ à l'aide de $\hat{\varphi}$. L'application qui à φ associe T_{φ} est-elle injective?
- (c) Montrer la relation : $T_{\varphi}^* = T_{\overline{\varphi}}$.
- 2. On suppose que φ n'est pas l'application nulle. On fixe f dans $\ker T_{\varphi}$, g dans H^2 , on pose : $u = \varphi \times f \times \overline{g}$.
 - (a) Montrer que u est dans L^1 et que \hat{u} est nulle sur \mathbf{N} .

- (b) On suppose désormais que g est dans $\ker T_{\varphi}^*$. En considérant \overline{u} , montrer que u est l'élément nul de L^1 .
- (c) Conclure en utilisant la question III.3 que l'un au moins des deux opérateurs T_{φ} et T_{φ}^* est injectif.
 - Si T_{φ} n'est pas injectif, montrer que son image est dense dans H^2 .

Dans les parties V et VI, (H, \langle , \rangle) est un espace de Hilbert complexe. On adopte les notations rappelées au début du problème et on note B la boule fermée de centre 0 et de rayon 1 de H.

V. Opérateurs compacts et opérateurs de Toeplitz

Un élément T de $\mathcal{L}(H)$ est dit compact si et seulement si $\overline{T(B)}$ est une partie compact de H. On note $\mathcal{K}(H)$ l'ensemble des T de $\mathcal{L}(H)$ vérifiant cette propriété, $\mathcal{K}_0(H)$ l'ensemble des T de $\mathcal{L}(H)$ dont l'image est de dimension finie.

- 1. (a) Montrer que $\mathcal{K}(H)$ est un idéal bilatère de l'algèbre $\mathcal{L}(H)$ contenant $\mathcal{K}_0(H)$.
 - (b) Montrer que $\mathcal{K}(H)$ est fermé dans $\mathcal{L}(H)$. Indication. On rappelle qu'une partie X de H est d'adhérence compacte si, pour tout $\varepsilon > 0$, on peut recouvrir X par une réunion finie de boules fermées de rayon ε .
- 2. Dans cette question, H est l'espace de Hilbert H^2 , \mathcal{P} le sous-espace de \mathcal{C} engendré par la famille $(e_n)_{n \in \mathbf{Z}}$.
 - (a) Si φ_1 et φ_2 sont dans \mathcal{P} , montrer que $T_{\varphi_1}T_{\varphi_2} T_{\varphi_1 \times \varphi_2}$ est dans $\mathcal{K}_0(H^2)$.
 - (b) Si φ_1 et φ_2 sont dans \mathcal{C} , montrer que $T_{\varphi_1}T_{\varphi_2} T_{\varphi_1 \times \varphi_2}$ est dans $\mathcal{K}(H^2)$.
- 3. Soit K dans $\mathcal{K}(H)$.
 - (a) Montrer que ker(I + K) est de dimension finie.
 - (b) Montrer que Im (I + K) est fermé dans H. Indication. Soient y dans H adhérent à Im (K + I), $(x_n)_{n \geq O}$ une suite d'éléments de H telle que : $K(x_n) + x_n \to y$, et, pour tout n de \mathbb{N} , x'_n la projection orthogonale de x_n sur $\ker(K + I)^{\perp}$. En raisonnant par l'absurde et en considérant $u_n = x'_n/|x'_n|$, montrer que $(x'_n)_{n\geq 1}$ est bornée. Conclure.
 - (c) Montrer que K^* appartient à $\mathcal{K}(H)$. Indication. Soient $(x_n)_{n\geq 0}$ une suite d'éléments de B, Γ l'adhérence de K(B) dans H, et, pour tout n de \mathbb{N} , f_n la fonction de Γ dans \mathbb{C} qui à x associe $\langle x_n, x \rangle$. En utilisant le théorème d'Ascoli, montrer qu'il existe une suite strictement croissante $(n_k)_{k\geq 0}$ d'entiers naturels telle que $(f_{n_k})_{k\geq 0}$ converge uniformément sur Γ . En déduire que $(K^*(x_{n_k}))_{k\geq 0}$ converge dans H.
 - (d) Montrer que Im (I + K) est de codimension finie dans H.

VI. Opérateurs de Fredholm et opérateurs de Toeplitz

Soit T dans $\mathcal{L}(H)$. On dit que T est de Fredholm si et seulement s'il vérifie les deux propriétés suivantes :

- i) l'espace $\ker T$ est de dimension finie,
- ii) l'espace $\operatorname{Im} T$ est fermé et de codimension finie dans H.

On note $\mathcal{F}(H)$ l'ensemble des T de $\mathcal{L}(H)$ vérifiant ces propriétés. Si T est dans $\mathcal{F}(H)$ on appelle indice de T et on note ind (T) l'entier relatif :

$$\dim(\ker T) - \operatorname{codim}_{H}(\operatorname{Im} T).$$

On remarquera que si T est un élément inversible de $\mathcal{L}(H)$, alors T appartient à $\mathcal{F}(H)$ et a pour indice 0.

- 1. (a) Soient V et W deux sous-espaces de H tels que $V \subset W$ et que V soit fermé et de codimension finie dans H. Montrer que W est fermé et de codimension finie dans H.
 - (b) Soit T dans $\mathcal{L}(H)$. On suppose qu'il existe S_1 et S_2 dans $\mathcal{L}(H)$ tels que $K_1 = S_1T I$ et $K_2 = TS_2 I$ appartiennent à $\mathcal{K}(H)$. Montrer que T est dans $\mathcal{F}(H)$.
- 2. Dans cette question, H est l'espace de Hilbert H^2 , φ un élément de \mathcal{C}^* . Montrer que T_{φ} est dans $\mathcal{F}(H^2)$.

Indication. On pourra utiliser les questions V.2.(b), VI.1(b) et considérer la fonction $1/\varphi$.

3. On se propose d'établir une réciproque de la question VI.1.(b) ci-dessus.

Soit T dans $\mathcal{F}(H)$. On note T_0 l'application linéaire de ker T^{\perp} dans Im T obtenue en restreignant T à ker T^{\perp} , P le projecteur orthogonal de H sur Im T. Il est clair que T_0 est un isomorphisme de ker T^{\perp} sur Im T. Or, tout isomorphisme linéaire continu d'un espace de Banach sur un autre est un homéomorphisme (théorème de Banach); il en résulte que T_0^{-1} est continu, ce que l'on ne demande pas de justifier davantage.

Soit S l'élément $T_0^{-1}P$ de $\mathcal{L}(H)$. Reconnaître les éléments ST-I et TS-I de $\mathcal{L}(H)$ et montrer en particulier qu'ils appartiennent à $\mathcal{K}_0(H)$.

Des questions VI.1.(b) et VI.3 il résulte qu'un élément de $\mathcal{L}(H)$ est dans $\mathcal{F}(H)$ si et seulement s'il est "inversible modulo $\mathcal{K}(H)$ " ou "inversible modulo $\mathcal{K}_0(H)$ ". Ceci prouve en particulier que si T_1 et T_2 sont dans $\mathcal{F}(H)$, T_2T_1 est dans $\mathcal{F}(H)$, ce que l'on ne demande pas de justifier davantage.

4. Le but de cette question est d'établir que $\mathcal{F}(H)$ est ouvert dans $\mathcal{L}(H)$ et que la fonction ind est localement constante sur $\mathcal{F}(H)$.

Soient T dans $\mathcal{F}(H)$, S dans $\mathcal{L}(H)$ telle que K = ST - I et L = TS - I soient dans $\mathcal{K}_0(H)$, J dans $\mathcal{L}(H)$ vérifiant : $||J|| \times ||S|| < 1$.

(a) Montrer qu'il existe K' et L' dans $\mathcal{K}_0(H)$ tels que :

$$S(T+J) = (I+SJ)(I+K')$$
, $(T+J)S = (I+L')(I+JS)$.

En déduire que T+J est dans $\mathcal{F}(H)$, ce qui justifie bien le caractère ouvert de $\mathcal{F}(H)$. Indication. On pourra utiliser la question $\mathbf{VI}.1(b)$ et le fait que si U est un élément de $\mathcal{L}(H)$ tel que $\|U\| < 1$, alors I+U est inversible dans l'algèbre $\mathcal{L}(H)$.

- (b) On admet les deux résultats suivants, qui peuvent être prouvés de manière entièrement algébrique :
 - i) si T_1 et T_2 sont dans $\mathcal{F}(H)$, alors : $\operatorname{ind}(T_2T_1) = \operatorname{ind}(T_1) + \operatorname{ind}(T_2)$,
 - ii) si K est dans $\mathcal{K}_0(H)$, ind(I+K)=0.

Montrer que:

$$ind(T+J) = ind(T).$$

La fonction ind est donc localement constante sur $\mathcal{F}(H)$.

- 5. Dans cette question, H est l'espace de Hilbert H^2 .
 - (a) Montrer que si φ est dans \mathcal{C}^* , on a :

$$\operatorname{ind}(T_{\varphi}) = -\operatorname{deg}(\varphi).$$

- (b) Si φ est dans \mathcal{C}^* , préciser la dimension de $\ker T_{\varphi}$ et la codimension de $\operatorname{Im} T_{\varphi}$ dans H^2 .
- (c) Quels sont les éléments φ de \mathcal{C} tels que T_{φ} soit un élément inversible de l'algèbre $\mathcal{L}(H^2)$?