An example of a G2-instanton on a resolution of $(K3 \times T^3)/\mathbb{Z}_2^2$ coming from a stable bundle

Daniel Platt 29 May 2023 Spinorial and Octonionic Aspects of G_2 and Spin(7) Geometry, Banff

Abstract: I will begin with a brief explanation of what G_2 -instantons and G_2 -manifolds are. There is a general construction by Joyce-Karigiannis for G_2 -manifolds. Ignoring all analysis, I will explain one example of their construction. The example is the resolution of $(K3 \times T^3)/\mathbb{Z}_2^2$ for a very explicit K3 surface. Furthermore, there is a construction method for G_2 -instantons on Joyce-Karigiannis manifolds. I will explain the ingredients needed for the construction, say nothing about the proof, and then explain one example of the ingredients.

Hyperkähler 4-manifolds

1. (y_0, y_1, y_2, y_3) coordinates on \mathbb{C}^2 , Hyperkähler triple

$$\omega_1 = \mathsf{d} y_0 \wedge \mathsf{d} y_1 + \mathsf{d} y_2 \wedge \mathsf{d} y_3, \qquad \omega_2 = \mathsf{d} y_0 \wedge \mathsf{d} y_2 + \mathsf{d} y_3 \wedge \mathsf{d} y_1,$$

$$\omega_3 = \mathsf{d} y_0 \wedge \mathsf{d} y_3 + \mathsf{d} y_1 \wedge \mathsf{d} y_2$$

Invariant under $(-1): \mathbb{C}^2 \to \mathbb{C}^2$, $x \mapsto -x \Rightarrow \omega_1, \omega_2, \omega_3 \in \Omega^2(\mathbb{C}^2/\{\pm 1\})$

2. Blowup \Rightarrow complex manifold X_{EH} with $\pi: X_{EH} \to \mathbb{C}^2/\{\pm 1\}$ Eguchi-Hanson \Rightarrow ex. $\widetilde{\omega}_1^{(t)}, \widetilde{\omega}_2^{(t)}, \widetilde{\omega}_3^{(t)} \in \Omega^2(X)$ Hyperkähler triple

The exceptional Lie group G_2

▶ On
$$\mathbb{R}^7 = \mathbb{R}^3 \times \mathbb{C}^2$$

$$\varphi_0 := \mathsf{d} x_1 \wedge \mathsf{d} x_2 \wedge \mathsf{d} x_3 - \sum_{i=1}^3 \mathsf{d} x_i \wedge \underline{\omega_i}, \quad *\varphi_0 = \mathsf{vol}_{\mathbb{C}^2} - \sum_{\substack{(1,2,3),(2,3,1),\\(3,1,2)}} \mathsf{d} x_i \wedge \mathsf{d} x_j \wedge \underline{\omega_k}$$

- ▶ $G_2 := \mathsf{Stab}_{\mathsf{GL}(7,\mathbb{R})}(\varphi_0)$. Remark: $\varphi_0(u,v,w) = \langle u \times v,w \rangle$ where $u,v,w \in \mathsf{Im}(\mathbb{O}) \cong \mathbb{R}^7$
- $\varphi \in \Omega^3(M^7)$ is G_2 -structure if: for all $x \in M$ exists $F : T_xM \to \mathbb{R}^7$ s.t. $F^*\varphi_0 = \varphi(x)$
- ▶ Fact: $G_2 \subset SO(7)$ therefore φ induces metric g_{φ} and $*_{\varphi}$

Theorem (Fernández-Gray '82)

$$\operatorname{\mathsf{Hol}}(\mathsf{g}_\varphi) \subset \mathsf{G}_2$$
 if and only if $\mathrm{d}\varphi = 0$ and $\mathrm{d}(*_\varphi \varphi) = 0$.

Which 7-manifolds admit holonomy G_2 metrics? Difficult!

Example of a G_2 -manifold

▶ $f \in \mathbb{C}[x, y, z]$ homogeneous degree 6 polynomial

$$Y := \{(x : y : z : w) \in \mathbb{CP}(1, 1, 1, 3) : f(x, y, z) = w^2\}$$

Involutions, $\alpha^*(\omega_1) = \omega_1$, $\alpha^*\omega_2 = -\omega_2$, $\alpha^*\omega_3 = -\omega_3$ $\sigma^*(\omega_1) = -\omega_1$, $\sigma^*\omega_2 = \omega_2$, $\sigma^*\omega_3 = -\omega_3$ extend to $T^3 \times Y$:

$$\widetilde{\alpha}: T^3 \times Y \to T^3 \times Y$$
 $\widetilde{\sigma}: T^3 \times Y \to T^3 \times Y$

$$(x_1, x_2, x_3), p \mapsto (x_1, \frac{1}{2} - x_2, -x_3), \alpha(p) \quad (x_1, x_2, x_3), p \mapsto (-x_1, x_2, \frac{1}{2} - x_3), \sigma(p)$$

$$\widetilde{\alpha}^* \varphi_{T^3 \times Y} = \varphi_{T^3 \times Y} \text{ and } \widetilde{\sigma}^* \varphi_{T^3 \times Y} = \varphi_{T^3 \times Y} \leadsto \varphi_{\textit{orbi}} \in \Omega^3((T^3 \times Y)/\langle \widetilde{\alpha}, \widetilde{\sigma} \rangle)$$

Example of a G_2 -manifold (continued)

Singular set fix($\widetilde{\sigma}$), pointwise orthonormal basis e_1, e_2, e_3 Neighbourhood $U \cong \text{fix}(\widetilde{\sigma}) \times (B^4/\{\pm 1\})$ $\varphi_U := e_1 \wedge e_2 \wedge e_3 - \sum e_i \wedge \omega_i, \quad \text{for } \omega_i \in \Omega^2(\mathbb{C}^2/\{\pm 1\})$ Far away from singular set φ_{orbi}

$$\begin{array}{l} \pi: X_{EH} \rightarrow \mathbb{C}^2/\{\pm 1\}, \ \text{nbhd} \ \widetilde{U} \cong \operatorname{fix}(\widetilde{\sigma}) \times \pi^{-1}(B^4/\{\pm 1\}) \\ \varphi_{\widetilde{U}} := e_1 \wedge e_2 \wedge e_3 - \sum e_i \wedge \omega_i^{(t)}, \quad \text{ for } \omega_i^{(t)} \in \Omega^2(X_{EH}) \\ \operatorname{As \ before} \ \varphi_{orbi} \end{array}$$

Theorem (Joyce-Karigiannis '21)

On M exists a G_2 -structure $\widetilde{\varphi}^{(t)}$ such that $\nabla \widetilde{\varphi}^{(t)} = 0$ and

$$\left|\widetilde{\varphi}^{(t)}-arphi_{orbi}
ight|$$
 small far away from fix $\widetilde{\sigma}$ and $\left|\widetilde{\varphi}^{(t)}-arphi_{\widetilde{U}}
ight|$ small near fix $\widetilde{\sigma}$.

*G*₂-instantons

▶ Connection A on bundle over $(Y^4, \omega_1, \omega_2, \omega_3)$ is anti-self-dual instanton if

$$F_A \wedge \omega_i = 0$$
 for $i = 1, 2, 3$

- Connection A on bundle over $(M^7, \varphi, \psi = *\varphi)$ is G_2 -instanton if $F_A \wedge \psi = 0$
- **Example** on $p: T^3 \times Y \rightarrow Y$: A anti-self-dual instanton over Y

$$F_{p^*A} \wedge \psi = F_{p^*A} \wedge \left(\operatorname{vol}_Y - \sum_{\substack{(1,2,3),(2,3,1),\\(3,1,2)}} \operatorname{d} x_{ij} \wedge \omega^k \right)$$

$$= \underbrace{F_{p^*A} \wedge \operatorname{vol}_Y}_{\text{6-form on 4-fold is 0}} - \sum_{\substack{(1,2,3),(2,3,1),\\(3,1,2)}} \operatorname{d} x_{ij} \wedge \underbrace{F_{p^*A} \wedge \omega_k}_{\text{e0 because anti-self-dual}} = 0$$

 $\Rightarrow p^*A$ is G_2 -instanton

A G_2 -instanton on $(T^3 \times Y)/\langle \widetilde{\alpha}, \widetilde{\sigma} \rangle$

ightharpoonup On \mathbb{CP}^2 write $E = T\mathbb{CP}^2$, have

$$\Omega^2_{\mathbb C}=\Omega^{2,0}\oplus\Omega^{1,1}\oplus\Omega^{0,2}$$

 ∇^{LC} on \mathbb{CP}^2 is Hermite-Einstein:

$$F^{2,0}=0, F^{0,2}=0, \langle F^{1,1}, \omega \rangle = \lambda \operatorname{Id} \in \Omega^0(\mathbb{CP}^2, \mathfrak{u}(E)) \text{ for } \lambda \in \mathbb{C}$$

- $\Leftrightarrow E$ is stable (Donaldson-Uhlenbeck-Yau theorem)
- \Rightarrow for $\rho: Y \to \mathbb{CP}^2$ have that ρ^*E is stable
- $\Leftrightarrow \rho^* E$ admits Hermite-Einstein connection A
- $\lambda: U(2) \to PU(2) = SO(3) \leadsto extend U(2)$ -connection A to PU(2)-connection \widetilde{A}

$$F_{\widetilde{A}}^{2,0}=0, F_{\widetilde{A}}^{0,2}=0, \langle F_{\widetilde{A}}^{1,1}, \omega \rangle = [0] \in \Omega^0_{\mathbb{C}}(Y, \mathfrak{pu}(\rho^*E)), \text{ because } [\mathrm{Id}] = [0] \in \mathfrak{pu}(2)$$

$$(\Omega^2_+)_{\mathbb{C}} = \Omega^{2,0} \oplus \Omega^{0,2} \oplus \langle \omega \rangle$$
, so $F_{\widetilde{A}}$ is anti-self-dual

- $ightharpoonup \sigma' := d\sigma : \rho^* E \to \rho^* E$ lift of σ preserves \widetilde{A} , analog lift α' for α ; extend to $T^3 \times Y$
- $ightharpoonup
 ightharpoonup p^*\widetilde{A}$ is G_2 -instanton on $T^3 \times Y$, descends to $(p^*\rho^*E)/\langle \alpha', \sigma' \rangle$

A G_2 -instanton on $\widetilde{U} \cong L^3 \times X_{EH}$

Moduli space

 $\mathcal{M}(X_{EH}) = \{\text{framed anti-self-dual connections on } X_{EH}\}/\{\text{bundle isomorphism}\}$

- $ightharpoonup X_{EH}$ Hyperkähler $ightharpoonup \mathcal{M}(X_{EH})$ Hyperkähler I_1, I_2, I_3
- $ightharpoonup s: L^3 o \mathcal{M}(X_{EH})$, local frame (x_1, x_2, x_3) on L. Fueter section \Leftrightarrow

$$0 = \sum_{i=1}^{3} I_i \left(\mathsf{d}s \left(\frac{\partial}{\partial x_i} \right) \right)$$

- ▶ $s \leadsto s(A)$ connection over $L \times X_{EH}$
- ▶ *s* Fueter section \Rightarrow *s*(A) is close to being G_2 -instanton
- Example: s(x) := A for all x, constant Fueter section

A glued G_2 -instanton

$$s(A)$$
 close to being G_2 -instanton on $\operatorname{fix}(\widetilde{\sigma}) \times \pi^{-1}(B^4/\{\pm 1\})$ (coming from Fueter section) $p^*\widetilde{A}$ is G_2 -instanton on $(T^3 \times Y)/\langle \widetilde{\alpha}, \widetilde{\sigma} \rangle$ (coming from stable bundle)

Theorem (P. '22)

On M exists a G_2 -instanton \widetilde{A}_t

$$\left|\widetilde{A}_t - p^*\widetilde{A}\right|$$
 small far away from $\operatorname{fix} \widetilde{\sigma}$ and $\left|\widetilde{A}_t - s(A)\right|$ small near $\operatorname{fix} \widetilde{\sigma}$.

Needs s rigid, no non-constant example known

References I

- [1] S. K. Donaldson. "Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles". In: *Proc. London Math. Soc.* (3) 50.1 (1985), pp. 1–26. ISSN: 0024-6115. DOI: 10.1112/plms/s3-50.1.1. URL: https://doi.org/10.1112/plms/s3-50.1.1.
- [2] M. Fernández and A. Gray. "Riemannian manifolds with structure group G_2 ". In: Ann. Mat. Pura Appl. (4) 132 (1982), 19–45 (1983). ISSN: 0003-4622. DOI: 10.1007/BF01760975. URL: https://doi.org/10.1007/BF01760975.
- [3] Toru Gocho and Hiraku Nakajima. "Einstein-Hermitian connections on hyper-Kähler quotients". In: *J. Math. Soc. Japan* 44.1 (1992), pp. 43–51. ISSN: 0025-5645. DOI: 10.2969/jmsj/04410043. URL: https://doi.org/10.2969/jmsj/04410043.
- [4] D. Joyce and S. Karigiannis. "A new construction of compact G_2 -manifolds by gluing families of Eguchi-Hanson spaces". In: $ArXiv\ e$ -prints (July 2017). arXiv: 1707.09325 [math.DG].

References II

- [5] Dominic D. Joyce. "Compact Riemannian 7-manifolds with holonomy G_2 . I, II". In: J. Differential Geom. 43.2 (1996), pp. 291–328, 329–375. ISSN: 0022-040X. URL: http://projecteuclid.org/euclid.jdg/1214458109.
- [6] Peter B. Kronheimer and Hiraku Nakajima. "Yang-Mills instantons on ALE gravitational instantons". In: Math. Ann. 288.2 (1990), pp. 263–307. ISSN: 0025-5831. DOI: 10.1007/BF01444534. URL: https://doi.org/10.1007/BF01444534.
- [7] Thomas Walpuski. "G₂-instantons on generalised Kummer constructions". In: Geom. Topol. 17.4 (2013), pp. 2345—2388. ISSN: 1465-3060. DOI: 10.2140/gt.2013.17.2345. URL: https://doi.org/10.2140/gt.2013.17.2345.
- [8] Shuguang Wang. "Moduli spaces over manifolds with involutions". In: *Math. Ann.* 296.1 (1993), pp. 119–138. ISSN: 0025-5831. DOI: 10.1007/BF01445098. URL: https://doi.org/10.1007/BF01445098.