Prove that the set of all feasible solutions of a linear Programming problem is convex set. be converted into equation by means of introduction of slack & Surplus Variables. LPP of the form

AX = B, X70

where Ais mxn matrix; X is nx1 matrix & Bis

mx1 matrix Let the set S be the set of all fearible solutions of $A \times = B$.. S= { X | AX=B, X 70} Now to prove Sisa convex set

Let X₁, X₂ ∈ S

Then we have AX₁ = B & AX₂ = B such that X₁, X₂>10 Consider AX, + (1-2) X2 for 7 € [0,1] $[AX_1 + (1-a)X_2] = 200 A(AX_1) + A((1-a)X_2)$ $= 2Ax_1 + (1-2)Ax_2 = 2B + (1-2)B$ = B

Since X,, X2 & A, 1-2 are all 7,0

Thus $\partial X_1 + (1-\partial)X_2 \in S$ for all $\partial \in [0,1]$ robusch implies set S is convex set.

Q A Company manufacturing air-coolers has two plants docated at Bengaluru & Mumbai with a weekly capacity of 200 runits & 100 units respectively. The company supplies air-coolers to its 4 showrooms situated at Mangalore, Bengaluru, Delhi & you which has a demand of 75,100,100 25 units respectively. Due to difference in local taxes, show charges, transportation cost and others, the profit (in Rs) are shown in the following table.

7-0	TO					
From	Mangalore	Bengaluru	Delhi	Grua		
Bengalwu	90	90	100	100		
Mumbai	50	70	130	85		
					-	

Plan the production program so as to maximize the profit. The company may have its production capacity at both plants partially or wholly in runused.

de we have.	Mangalore	Bengaluxu	Delhi	Gog	Supply
Bengalway	90	.90	100	100	200
Mumbai	50	70	130	85	100
Demand	75	100	100	25	

Since this maximization peroblem we choose penalty in VAM method as difference between highest second highest element & to choose basic cell we choose cell with max projet. So initial Basic feasible Solution 100 90 130 85 (00) 100/0 100/0 75/0 25/0 [20] 1307 [40] [15] 40 Total no. of assignments = 4 \ \pm (5 = m+n-1) so degenrate solution. so make it non degenate let assign E to cellhaving highest projet such that E>O, so we have anignments as To check for optimality, Consider a set ui, vj such strat (ij= vit vj for basic cells & let vi=0 Cu= U1+V1 =) 90 = 0+V1 =) V1=90 C12=U1+V2 = 90 = 0+V2 = V2=90 C13= U,+ V3 =) 100 = 0 + V3 =) V3 = 100 C14= U1+V4 - 100 = 0+ V4 - 1 V4=100 Ce3 = U2+V3 =) 130= U2+ 100 =) U2=30

Now consider Aij = Cij - (ni+yj) for all non basic cells
$\Delta 21 = C_{21} - (U_{2} + V_{1}) = 50 - (30 + 90) = -70$ $\Delta 22 = C_{22} - (U_{2} + V_{2}) = 70 - (30 + 90) = -50$ $\Delta 24 = C_{24} - (U_{2} + V_{4}) = 85 - (30 + 100) = -45$
Since all sij's \(0 \) problem is of maximization of streached.
-: production program
- Bengaluru - Bengaluru 100 - Bengaluru - yoa 25 - Mumbai - delhi 100
- Total = 75×90+100×90+100×25+100×130 - Rs 31250