Electricity and Magnetism

- •Physics 259 L02
 - •Lecture 18

Chapter 23

Last time

Chapter 23.2 and 23.3

This time

• Chapter 23.5 and 23.5

today -> Finish chapter. 23

Midterm exam =>

Tuesday 14 Feb.

7-9 pm

Multiple choice questions Bring calculator

-00

Chapters 21,22 and 23

TopHat Question: Metal plate >

What is surface charge density of the disc?

A.
$$Q/2\pi R^2$$

B.
$$Q/\pi R^2$$

C.
$$-Q/\pi R^2$$

D.
$$-Q/2\pi R^2$$

Summary of Conductors and Electric Fields

(a) The electric field inside the conductor is zero.

All excess charge is on the surface.

(b) The electric field at the surface is perpendicular to the surface.

A void completely enclosed by the conductor $\vec{E} = \vec{0}$

The electric field inside the enclosed void is zero.

$$E = \frac{\sigma}{\varepsilon_0}$$
 (conducting surface).

23-4 to 23-6

23-4: Electric field of a long, charged wire

Infinitely long plastic wire

Intrinitely long plastic wire

$$\Phi_{e} = \oint \vec{E} . d\vec{A} = \frac{Q_{in}}{\varepsilon_{0}}$$

$$\oint \vec{E} . d\vec{A} = \oint \vec{E} . d\vec{A} + \oint \vec{E} . d\vec{A}$$

$$\uparrow : \Theta = 90$$

$$\downarrow : \Theta = 0$$

$$\uparrow : \Theta = 90$$

$$\downarrow : \Theta = 0$$

$$\uparrow : \Theta = 90$$

$$\downarrow : \Theta = 0$$

$$\uparrow : \Theta = 90$$

$$\downarrow : \Theta = 0$$

$$\uparrow : \Theta = 90$$

$$\downarrow : \Theta = 0$$

$$\downarrow : \Theta =$$

23-5: Electric field of a plane of charge

Nonconduction infinite sheet

$$\Phi_e = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\mathcal{E}_0} = \frac{Q_{in}}{\mathcal{E}_0}$$

Q2) Two very thin infinite sheets are uniformly charged with surface charge densities -2η and $+5\eta$ as indicated in the figure. What is the magnitude and direction of the electric field at point P located between the sheets? (note the direction of +x in the figure)

a)-30/28. b)30/28. c)-70/28. d)70/28.

Two conducting Plates

Copyright ${\tt ©}$ 2014 John Wiley & Sons, Inc. All rights reserved.

$$E = \frac{2\sigma_1}{\varepsilon_0} = \frac{\sigma}{\varepsilon_0}.$$

TopHat Question

4 surfaces are coaxial with an infinitely long line of charge with a uniform linear charge density = λ . Choose all the surfaces through which $\Phi_E = \lambda L / \mathcal{E}_0$

- A) I only
- B) I and II only
- C) I and III only
- D) I, II, and III only
- E) All four.

TopHat Question

Two infinite planes are uniformly charged with the same charge per unit area σ (or η in your textbook). If <u>one plane only</u> were present, the E-field magnitude due to the **one** plane would be E. With both planes in place, the E-field magnitude in region B has magnitude:

Two infinite planes are uniformly charged with the same charge per unit area σ

If <u>one plane only</u> were present, the E-field magnitude due to the <u>one</u> plane would be E. With <u>both planes</u> in place, the E-field magnitude in region B has magnitude:

TopHat Question

Negative charges are uniformly distributed on the surface of an insulating sphere with charge density σ . Two additional point charges -q are placed outside of the spherical charge distribution.

What is the magnitude of the E field at point P?

A: 0

B: non-zero

C: Not enough info given

Negative charges are uniformly distributed on the surface of an insulating sphere with charge density σ . Two additional point charges -q are placed outside of the spherical charge distribution.

What is the magnitude of the E field at point P?

A: 0

B: non-zero

C: Not enough info given

The two outside charges –q break the spherical symmetry.

If the 2 outside charges were **removed**, the E field at point P would indeed be ZERO.

In order to find the E field at point P, we draw a Gaussian surface that goes through point P. If the 2 outside charges were removed (just for a moment), the spherical charge distribution would insure that the E field = 0 at point P (also anywhere inside the spherical charge distribution). THEN, once we reinsert the 2 outside charges –q, they would produce their own E field at point P...therefore resulting in a net E field at point P.

Field of a line charge

Consider an infinitely long, positively charged rod of linear charge density λ . How large is the flux through side A of the box? Suppose the values for l, a and λ are given.

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge – not the shape of the (closed) Gaussian surface:

$$\Phi_{\text{tot}} = Q_{\text{encl}}/\epsilon_0 = \lambda l/\epsilon_0$$

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge – not the shape of the (closed) Gaussian surface:

$$\Phi_{\text{tot}} = Q_{\text{encl}}/\epsilon_0 = \lambda l/\epsilon_0$$

 The total flux must be equally partitioned into flux through the four surfaces whose area vectors are parallel to the electric field.

Hence,
$$\Phi_A = \lambda 1/4\epsilon_0$$

