Página Principal ► Mis cursos ► 222_20_642 : Fundamentos matemáticos de la multimedia ► MÓDULO 5 CRIPTOGRAFÍA - PEC 5 Y PREPARACIÓN PARA LA PEC de aplicación ► PEC 5 - CUESTIONARIO

Comenzado el	Friday, 12 de May de 2023, 18:01
Estado	Finalizado
Finalizado en	Friday, 12 de May de 2023, 18:31
Tiempo empleado	30 minutos 35 segundos
Calificación	9,25 de 10,00 (93%)

Información

MÓDULO 5. CRIPTOGRAFÍA DE CLAVE PÚBLICA

Pregunta 1

Correcta

Se puntúa 1,00 sobre 1,00

Antonio quiere mandar un mensaje m = CRZ a Bárbara a través de un canal no seguro. Para ello, deciden acordar que el algoritmo criptográfico a utilizar será RSA. Para pasarlo a código numérico, utilizaremos el siguiente alfabeto:

A B C D E F G H I J K L M N

01 02 03 04 05 06 07 08 09 10 11 12 13 14

OPQRSTUVWXYZ

15 16 17 18 19 20 21 22 23 24 25 26 00

Si sabemos que Bárbara elige la siguiente pareja de números primos: $p_{\text{Bárbara}} = 97$, $q_{\text{Bárbara}} = 101$, según el teorema de Euler, ¿podría enviar Antonio este mensaje a Bárbara? Elegid la explicación y justificación correcta.

Seleccione una:

- a.
 m = 31826 no es divisible ni por p ni por q, por tanto Antonio sí puede enviar el mensaje a Bárbara utilizando el método RSA. ✓
- b.
 m = 31826 es divisible por p y por q, por tanto Antonio sí puede enviar el mensaje a Bárbara a través del método RSA.
- m = 31826 no es divisible ni por p ni por q, por tanto Antonio no puede enviar el mensaje a Bárbara a través del método RSA.
- m = 31826 es divisible por p, pero no es divisible por q, por tanto Antonio sí puede enviar el mensaje a Bárbara por el método RSA.

Pregunta 2

Correcta

Se puntúa 3,00 sobre 3,00

Sabemos que Bárbara ha elegido la siguiente pareja de números primos:

 $p_{\text{Bárbara}} = 97 \text{ y } q_{\text{Bárbara}} = 101, \text{ podemos decir que:}$

- 1. ¿La opción $e_{Bárbara} = 359$ se puede considerar una clave pública?
- 2. ¿La opción $e_{Bárbara} = 357$ se puede considerar una clave pública?

Seleccione una:

) a

 $e_{
m Bárbara}$ = 357 se puede considerar una clave pública y $e_{
m Bárbara}$ = 359 no se puede considerar una clave pública para $p_{
m Bárbara}$ = 97 y $q_{
m Bárbara}$ = 101 dados.

_ b

Ni $e_{
m Bárbara}$ = 359 ni $e_{
m Bárbara}$ = 357 se pueden considerar claves públicas para $p_{
m Bárbara}$ = 97 y $q_{
m Bárbara}$ = 101 dados.

C

 $e_{
m B\'{a}rbara}$ = 359 se puede considerar una clave pública y $e_{
m B\'{a}rbara}$ = 357 no se puede considerar una clave pública para $p_{
m B\'{a}rbara}$ = 97 y $q_{
m B\'{a}rbara}$ = 101 dados. \checkmark

O d

 $e_{
m B\'{a}rbara}$ = 359 y $e_{
m B\'{a}rbara}$ = 357 se pueden considerar las dos claves públicas para $p_{
m B\'{a}rbara}$ = 97 y $q_{
m B\'{a}rbara}$ = 101 dados.

Pregunta 3

Correcta

Se puntúa 1,00 sobre 1,00

En este ejercicio, Bárbara con $q_{\rm Bárbara}$ = 229 decide dar a conocer su clave pública $n_{\rm Bárbara}$ = 51983, $e_{\rm Bárbara}$ = 233 para que le enviemos mensajes cifrados con RSA. Si Antonio le quiere enviar el mensaje m = ADV utilizando el cuadro del alfabeto:

A B C D E F G H I J K L M N

01 02 03 04 05 06 07 08 09 10 11 12 13 14

OPQRSTUVWXYZ

15 16 17 18 19 20 21 22 23 24 25 26 00

- a) (50% de la nota) ¿Qué mensaje codificado recibirá Bárbara?
- b) (50% de la nota) ¿Qué clave privada usará Bárbara para descifrarlo?

Respuesta:

c = 41196

d = 47105

Pregunta 4

Correcta

Se puntúa 2,00 sobre 2,00

Alí $(p_{\rm Alí}=467,\,q_{\rm Alí}=503,\,e_{\rm Alí}=523)$ conoce la clave pública de Boris $(p_{\rm Boris}=487,\,q_{\rm Boris}=509,\,e_{\rm Boris}=541)$ y le quiere mandar un mensaje de forma que se asegure la máxima autenticidad y confidencialidad posible.

El mensaje que Alí quiere enviar a Boris es CLO. Para pasarlo a código numérico, utilizaremos el siguiente alfabeto:

ABCDEFGHIJKLMN

01 02 03 04 05 06 07 08 09 10 11 12 13 14

OPQRSTUVWXYZ

15 16 17 18 19 20 21 22 23 24 25 26 00

Se pide:

- a) (50% de la nota) encontrad el mensaje a encriptar CLO.
- b) (25% de la nota) encontrad la clave privada de Alí.
- c) (25% de la nota) encontrad la clave privada de Boris.

Respuesta:

Pregunta 5

Parcialmente correcta

Se puntúa 2,25 sobre 3.00

Alí $(p_{\text{Alí}} = 467, q_{\text{Alí}} = 503, e_{\text{Alí}} = 523)$ conoce la clave pública de Boris $(p_{\text{Boris}} = 487, q_{\text{Boris}} = 509, e_{\text{Boris}} = 541)$ y quiere enviarle un mensaje de manera que se asegure la máxima autenticidad y confidencialidad posible.

El mensaje que Alí quiere enviar a Boris es BAFON. Para pasarlo a código numérico, utilizaremos el siguiente alfabeto:

ABCDEFGHIJKLMN

01 02 03 04 05 06 07 08 09 10 11 12 13 14

OPQRSTUVWXYZ_

15 16 17 18 19 20 21 22 23 24 25 26 00

Encontrad el mensaje enviado a Boris separando el mensaje en bloque inferiores a n y marcad aquellas opciones que consideréis correctas:

Seleccione una o más de una:

- a. Para buscar máxima CONFIDENCIALIDAD, utilizaremos el método de la de <u>firma digital</u>. Para buscar AUTENTICIDAD, a continuación utilizaremos el <u>métode RSA</u> de la forma habitual.
- b. Para garantizar la **CONFIDENCIALIDAD**, utilizamos el proceso de desencriptación con la clave pública de Alí.
- c. Para garantizar la **AUTENTICIDAD**, utilizamos el proceso de desencriptación con la clave privada de Alí.
 - d. Para garantizar la **CONFIDENCIALIDAD**, utilizamos el proceso de encriptación con la clave pública de Boris.
- e.
 El mensaje enviado a Boris podría ser c = 4125246056 con firma digital previa s = 1300639324.
- f. Para garantizar la **AUTENTICIDAD**, utilizamos el proceso de <u>encriptación</u> con la clave privada de Boris.
- g. Para buscar máxima **AUTENTICIDAD**, utilizaremos el método de la <u>firma</u> <u>digital</u>. Para buscar **CONFIDENCIALIDAD**, a continuación utilizaremos el <u>método RSA</u> de la forma habitual.
- h. El mensaje enviado a Boris podría ser c = 1300639324 con firma digital previa s = 4125246056.

■ CUESTIONARIO DE ENTRENO DEL MÓDULO 5 Criptografía de clave pública

Ir a... ▼

Recursos complementarios externos - Módulo 5 Criptografía de clave privada ▶