Exemple de théories décidables.

Dans ce chapitre, on traite de l'élimination des quantificateurs dans les corps réels clos (et les corps algébriquement clos).

1 De quoi on parle?

1.1 L'élimination des quantificateurs.

Définition 1. Une théorie T (de la logique du 1er ordre) admet *l'élimination des quantificateurs* si pour toute formule $\varphi(\bar{y})$, il existe une formule sans quantificateurs $\psi(\bar{y})$ telle que $T \vdash \forall \bar{y} \ (\varphi(\bar{y}) \leftrightarrow \psi(\bar{y}))$.

Lemme 1. Une théorie T élimine les quantificateurs si pour toute formule $\varphi(x,\bar{y})$ sans quantificateurs, il existe une formule $\psi(\bar{y})$ sans quantificateurs et $T \vdash \forall \bar{y} \ (\exists x \ \varphi(x,\bar{y}) \leftrightarrow \psi(\bar{y}))$.

Preuve. Idée de la preuve :

- ightharpoonup « \Longrightarrow ». C'est un cas particulier.
- ▷ « ⇐— ». Toute formule est équivalente à une formule prénexe, c'est-à-dire une formule où les quantificateurs sont à la racine :

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi(x_1,\dots,x_n),$$

où $\varphi(\cdots)$ est sans quantificateurs. Pour démontrer que

toute formule est équivalente à une formule prénexe, on procède par induction sur la formule, et on doit potentiellement procéder à des cas d' α -renommage au besoin.

Pour toute formule sous forme prénexe, le lemme est vrai.

Exemple 1. La théorie des booléens est la théorie

$$T_{\text{bool}} := \{ \forall x \ x = 0 \lor x = 1, 0 \neq 1 \},$$

sur le langage $\mathcal{L} = \{0, 1\}$. Cette théorie admet l'élimination des quantificateurs. En effet, par exemple, une formule

$$F := \exists x_1 \cdots \exists x_n (x_1 = 1 \lor x_2 = 0 \lor x_4 = 1) \land \cdots),$$

est équivalente à \top ou \bot .

Exemple 2. Sur le langage $\mathcal{L}_{co} = \{0, 1, +, \times, \leq\}$, la théorie $T := \mathbf{Th}(\mathbb{R})$ admet l'élimination des quantificateurs. En effet, par exemple, la formule

$$\varphi(a,b,c) := \exists x (a \times x \times x + b \times x + c = 0)$$

est équivalente à la formule sans quantificateurs

$$\psi(a,b,c):=(a\neq 0 \wedge b^2-4ac\geq 0) \vee (a=0 \wedge b\neq 0) \vee (a=0 \wedge b=0 \wedge c=0) \ .$$

1.2 Les corps réels clos et le théorème de Tarski.

Définition 2. Un corps réel clos est un corps commutatif ordonné dans lequel on a le théorème des valeurs intermédiaires pour les polynômes à 1 variable.

La théorie $T_{\rm CRC}$ est la théorie du 1er ordre et ses axiomes sont :

▷ axiomes de corps commutatifs;

- ▷ axiomes de relation d'ordre total;
- > 1 > 0;
- \triangleright axiomes de corps ordonné (compatibilité de + et \times avec \leq):

$$\forall x \, \forall y \, \forall z \, \begin{pmatrix} x \leq y \to x + z \leq y + z \\ \land \\ (z \geq 0 \land x \leq y) \to x \times y \leq y \times z \\ \land \\ (z \leq 0 \land x \leq y) \to x \times y \geq y \times z \end{pmatrix} ;$$

 \triangleright schéma d'axiomes pour le théorème des valeurs intermédiaires : pour $n \in \mathbb{N}$,

$$\forall a_0 \dots a_n \ \forall x \ \forall y$$

$$a_0 + a_1 x + \dots + a_n x^n \ge 0 \land a_0 + a_1 y + \dots + a_n y^n \le 0$$

$$\downarrow$$

$$\exists z \ (x \le z \le y \lor y \le z \le x) \land a_0 + a_1 z + \dots + a_n z^n = 0.$$

Exemple 3. Exemples de corps réels clos : \mathbb{R} les réels, $\mathbb{Q} \cap \mathbb{R}$ les nombres réels algébriquement clos.

Qu'en est-il de \mathbb{C} ? Si on a $i \geq 0$ et on a $1 \leq 2$ donc $i \leq 2i$ et par multiplication par i on a $-1 \leq -2$, absurde! Le même procédé fonctionne si l'on suppose $i \leq 0$. Il n'y a pas de manière d'ordonner \mathbb{C} de telle sorte à ce qu'il soit un corps réel clos.

Proposition 1. 1. Un corps réel clos est de caractéristique 0.

2. Dans un corps réel clos, on a le théorème de Rolle (entre deux racines d'un polynôme, la dérivée s'annule).

Preuve. Idée de la preuve :

- 1. On a 1>0 donc 2>1>0 donc 3>0, etc. On montre, par récurrence, pour tout n que n>0 et donc $n\neq 0$.
- 2. On montre que si la dérivée est de signe constant alors le

polynôme est monotone d'où le théorème de Rolle.

À quoi ressemblent les formules dans \mathcal{L}_{co} ?

- \triangleright Les termes représentent des polynômes à plusieurs variables et à coefficients dans \mathbb{N} .
- \triangleright Les formules atomiques représentent des équations et inéquations entre polynômes :

$$P(X) \leq Q(X)$$
 ou $P(X) = Q(X)$,

et même $P(X) \ge 0$ ou P(X) = 0 avec P à coefficient dans \mathbb{Z} .

▶ Les formules sans quantificateur sont équivalentes à des formules de la forme

$$\bigvee_{i} \bigwedge_{j} (P_{i,j} \Delta_{i,j} 0),$$

où $\Delta_{i,j} \in \{<,>,=\}$.

▶ Les formules sont équivalentes à des formules sous forme prénexe de la forme

$$Q_1x_1 \dots Q_nx_n \bigvee_i \bigwedge_j (P_{i,j} \Delta_{i,j} 0),$$

avec $Q_i \in \{ \forall, \exists \}$.

Théorème 1 (Tarski). La théorie des corps réels clos admet l'élimination des quantificateurs. Elle est axiome-complète et décidable.

Preuve. En supposant que T_{CRC} admet l'élimination des quantificateurs, alors on a une théorie axiome-récursive qui contient les entiers done indécidable par Gödel. Non! On ne contient pas \mathcal{P}_0 ! En effet, l'axiome A1 n'est pas vérifié : on n'a pas \mathbf{S} $x \neq 0$!

Soit F une formule close de \mathcal{L}_{co} . Montrer que $T_{CRC} \vdash F$ ou $T_{CRC} \vdash \neg F$. Il existe une formule sans quantificateurs G et $T_{CRC} \vdash F \leftrightarrow G$ et G n'a pas de variable. Ainsi G est équivalent à une conjonction

de disjonction de formules équivalentes à

La valeur de vérité ne dépend pas du modèle, d'où $T_{\text{CRC}} \vdash G$ ou $T_{\text{CRC}} \vdash \neg G$, donc $T_{\text{CRC}} \vdash F$ ou $T_{\text{CRC}} \vdash \neg F$, et donc T_{CRC} est axiome-complète.

Comme T_{CRC} est axiome-récursive, pour décider si $T_{\text{CRC}} \vdash F$, il suffit d'énumérer toutes les preuves jusqu'à en trouver une de F ou de $\neg F$.

2 La méthode d'élimination.

2.1 Rappels et exemples.

Il suffit de montrer le lemme ci-dessous.

Lemme 2. Si pour toute formule F de la forme $\exists x \bigvee_i \bigwedge_k P_{i,j} \Delta_{i,j} 0$ avec $P_{i,j}$ des polynômes et $\Delta_{i,j} \in \{<,>,=\}$, il existe une formule sans quantificateurs G telle que

$$T_{\text{CRC}} \vdash \forall \bar{y} \ G(\bar{y}) \leftrightarrow F(\bar{y})$$

alors $T_{\rm CRC}$ admet l'élimination des quantificateurs.

Idée de la méthode :

- \triangleright On part d'un polynôme, par exemple $ax^2 + bx + 1$.
- \triangleright On calcule des « quantités importantes » (des polynômes de degré 0 en x), ici a et a^2-4a .
- \triangleright On trouve des « conditions de signe » qui permettent de satisfaire la formule, ici $a \neq 0 \land a^2 4a \geq 0$.

Définition 3. Avec $P \in \mathbb{Z}[\bar{Y}][X] = \mathbb{Z}[Y_1, \dots, Y_n][X]$, les poly-

nômes s'écrivent comme

$$P(X) = a_n X^n + \dots + a_0$$
 où $n \ge 1$, $a_n \ne 0$ et $a_i \in \mathbb{Z}[\bar{Y}]$,

et on définit les opérations :

- \triangleright dérivée $D(P) := \frac{\partial P(X)}{\partial X}$;
- \triangleright extraction du coefficient dominant $E(P) := a_n$
- \triangleright omission du terme dominant $O(P) := a_{n-1}X^{n-1} + \cdots + a_0$;
- ightharpoonup reste modifié MR(P,Q): si $P=a_nX^n+\cdots+a_0$ et $Q=b_nX^n+\cdots+b_0$ où

$$n = \deg P \ge m = \deg Q \ge 1$$

et $P \neq Q$ alors MR(P,Q) est l'unique polynôme de $\mathbb{Z}[\bar{Y}][X]$ de degré r < m tel qu'il existe $L \in \mathbb{Z}[\bar{Y}][X]$ et

$$(b_n)^{nm+1} \times P = Q \times L + R.$$

Exemple 4. Si $P = X^4$ et $Q = 3X^2 + X + 1$ alors

$$\begin{array}{c|c}
X^{4} \\
-X^{4} - \frac{1}{3}X^{3} - \frac{1}{3}X^{2} \\
\hline
-\frac{1}{3}X^{3} - \frac{1}{3}X^{2} \\
-\frac{1}{3}X^{3} + \frac{1}{9}X^{2} + \frac{1}{9}X \\
-\frac{2}{9}X^{2} + \frac{1}{9}X \\
\underline{-\frac{2}{9}X^{2} + \frac{2}{27}X + \frac{2}{27}} \\
\underline{-\frac{5}{27}X + \frac{2}{27}}
\end{array}$$

et le reste modifié est $MR(P,Q) = 3^3(\frac{5}{27}X + \frac{2}{27}) = 5X + 2$.

2.2 Énoncé comme lemme clé.

Lemme 3 (Informel). À partir d'un ensemble de polynômes S, on obtient en temps fini un ensemble fini de polynômes BCS de degré 0 en appliquant les quatre opérations D, E, O et MR. ¹

Exemple 5. À partir de $S = \{\overbrace{aX^2 + bX + 1}^{p_0}\}$, on a

- \triangleright on commence par ajouter p_0 ;
- \triangleright d'abord les dérivées, omissions et extractions : on ajoute les polynômes 2aX + a, a et aX + 1, 2a, 1 et 0;
- ▷ ensuite on calcule le reste modifié

$$MR(aX^2 + aX + 1, 2aX + a) = 4a^2 - a^3,$$

et on l'ajoute;

▷ on calcule le reste modifié

$$MR(aX^2 + aX + 1, aX + 1) = a,$$

et on l'ajoute (il y est déjà);

▷ on calcule le reste modifié

$$MR(3aX + a, aX + 1) = a^2 - 2a,$$

et on l'ajoute;

▷ on ne conserve que les polynômes de degré 0.

Dans l'exemple on obtient (après suppression des termes inutiles pour les comparaisons à 0),

$$BCS = \{a, 4a^2 - a^3, a^2 - 2a\}.$$

On a, en théorie, 27 conditions de signe possibles $(3^{|BCS|})$:

- a > 0 et $4a^2 a^3 > 0$ et $A^2 2a < 0$,
- a > 0 et $4a^2 a^3 < 0$ et $a^2 2a < 0$,
- $\Rightarrow a = 0 \text{ et } a^2 a^3 > 0 \text{ et } a^2 2a > 0,$
- \triangleright etc pour les 24 autre cas.

^{1.} I \heartsuit le lemme de König.

On traite deux cas : a > 0 et $4a^2 - a^3$ et $a^2 - 2a$.

X	$-\infty$		γ_2		γ_1		$+\infty$
a		>	>	>	>	>	
$4a^2 - a^3$		>	>	>	>	>	
a^2-2a		<	<	<	<	<	,
aX + 1	$-\infty$	<	<	<	0	>	$+\infty$
2aX + a	$-\infty$	<	0	>	>	>	$+\infty$
$aX^2 + aX + 1$	$+\infty$	>	>	>	>	>	$+\infty$

3 Corps algébriquement clos.

Définition 4. Un corps algébriquement clos est un corps commutatif dans lequel tout polynôme a une racine.

Exemple 6. Le corps $\mathbb C$ est algébriquement clos. En effet, il s'agit du théorème fondamental de l'algèbre, i.e. un polynôme de degré n a n racines comptées avec multiplicité.

Tout polynôme est ainsi un produit de polynômes de degré 1.

Définition 5. La théorie des corps algébriquement clos est la théorie formée des :

- ▷ axiomes de corps;
- \triangleright du schémas d'axiomes, noté $Clos_n$, pour tout $n \in \mathbb{N}$,

$$\forall a_0 \dots \forall a_n \ (a_1 \neq 0 \vee \dots \vee a_n \neq 0 \rightarrow \exists b \ a_0 + a_1 b + \dots + a_n b^n = 0).$$

Définition 6. Un corps est de caractéristique $p \in \mathbb{N}^*$ s'il est modèle de l'ensemble Car_p définie par

$$\{(1 \neq 0) \land (1+1 \neq 0) \land \cdots \land (\underbrace{1+\cdots+1}_{p-1} \neq 0) \land (\underbrace{1+\cdots+1}_{p} = 0)\}.$$

Un corps est de caractéristique~0 s'il est modèle de l'ensemble Car_0 définie par

$$\{1 \neq 0, 1+1 \neq 0, 1+1+1 \neq 0, \ldots\}.$$

La théorie des corps algébriquement clos de caractéristique $p \in \mathbb{N}$ est :

 $\mathsf{ACF}_p := \{\mathsf{Axiomes \ des \ corps}\} \cup \{\, \mathsf{Clos}_n \mid n \in \mathbb{N} \,\} \cup \mathsf{Car}_p.$

Exemple 7. Les corps \mathbb{C} et $\bar{\mathbb{Q}}$ sont modèles de cette théorie. **Attention**, \mathbb{F}_p ne l'est pas (et \mathbb{F}_{p^n} non plus), il faut prendre sa clôture algébrique $\bar{\mathbb{F}}_p$ et $\bar{\mathbb{F}}_{p^n}$.

- **Remarque 1.** \triangleright Tous les corps finis sont de la forme \mathbb{F}_{p^n} avec p premier.
 - \triangleright Un élément a est dit algébrique sur le corps \Bbbk si c'est la racine d'un polynôme à coefficient dans \Bbbk . On dit que a est algébrique de degré q si le polynôme minimal dont a est racine est de degré q.

Exemple 8. \triangleright Le nombre $\sqrt{3}$ est algébrique sur \mathbb{Q} de degré 2.

- $\,\,{\scriptstyle{\,\,{}^{\triangleright}\,\,}}$ Le nombre i est algébrique sur $\mathbb Q$ de degré 2.
- $\,\vartriangleright\,$ Le nombre $\sqrt[3]{2}$ est algébrique sur $\mathbb Q$ de degré 3.
- $\,\,\vartriangleright\,\,$ Le nombre π n'est pas algébrique sur $\mathbb{Q}.$

Remarque 2. Si a est algébrique de degré q sur k alors k(a) est le corps engendré par k et a. C'est l'ensemble des polynômes de degré $\leq q-1$ sur k, et on définie le produit modulo un polynôme minimal de a.

Exemple 9. On a $\mathbb{R}(i) = \mathbb{R}[X]/(X^2 - 1) \cong \mathbb{C}$. Le produit est :

$$(aX + b)(cX + d) = acX^2 + X(ad + bc) + bd$$
$$= (ad + bc)X + bd - ac.$$

En particulier, si a est de degré q sur \mathbb{F}_{p^n} alors $\mathbb{F}_{p^n}(a) = \mathbb{F}_{p^{q_n}}$.

Théorème 2 (Tarski-bis). Pour tout p, la théorie des corps algébriquement clos de caractéristique p admet l'élimination des quantificateurs. Elle est complète et décidable.

Preuve. Comme la dernière fois, il suffit de montrer pour toute formule de la forme

$$\exists x \ (P_1(x) = 0 \land \dots \land P_n(x) = 0 \land Q(x) \neq 0),$$

il existe une formule sans quantificateurs équivalente dans ACF_p . On continue la preuve sur un exemple.

Exemple 10. On élimine les quantificateurs sur

$$\exists x (ax^2 + ax + 1 = 0 \land ax + 1 \neq 0),$$

avec la caractéristique p = 0. On a les polynômes suivants :

$$p_0(X) = aX^2 + aX + 1$$

$$p_1(X) = Dp_0(X) = 2aX + a$$

$$p_2(X) = Ep_0 = a$$

$$\triangleright p_3(X) = aX + 1$$

$$p_4(X) = MR(p_0, p_1) = 4a^2 - a^3$$

$$p_2(X) = MR(p_0, p_3) = a$$

$$p_5(X) = MR(p_1, p_3) = a^2 - 2a.$$

Les « conditions de signe » sont = 0 ou \neq 0 (notés 0 et \neq).

On se place dans un cas exemple:

	autres	γ_1	γ_2	γ_3	γ_4
a	\neq	\neq	\neq	\neq	\neq
$4a^2 + a^3$	#	#	\neq	\neq	\neq
a^2-2a	\neq	\neq	\neq	\neq	\neq
aX+1	\neq	0	\neq	\neq	\neq
2aX + a	<i>≠</i>	#	0	#	\neq
$aX^2 + aX + 1$	\neq	\neq	\neq	0	0

Ainsi, pour $a \neq 0$, $4a^2 - a^3 \neq 0$, $a^2 - 2a \neq 0$ alors on a

$$\exists x (ax^2 + ax + 1 = 0 \land ax + 1 \neq 0).$$

Avec les autres cas, on peut en déduire que

$$\exists x (ax^2 + ax + 1 = 0 \land ax + 1 \neq 0)$$

est équivalente à

V (conditions de signe). tableau de la condition de signe a une colonne qui convient

Exercice 1. En déduire que ACF_p est complète et décidable.

Remarque 3. En 2010, une preuve Coq Rocq de l'élimination des quantificateurs de cette théorie a été publiée par Cyril Cohen et Assia Mahboubi.

3.1 Applications aux mathématiques.

Théorème d'Ax-Grothendieck.

Théorème 3 (Ax-Grothendieck). Si P est un polynôme de \mathbb{C}^n dans \mathbb{C}^n injectif alors il est bijectif (et son inverse est un polynôme!).

On va prouver ce théorème en trois lemmes.

Lemme 4. Si φ est une formule qui admet comme modèle un corps algébriquement clos de caractéristique arbitrairement grande, alors φ admet comme modèle un corps algébriquement clos de caractéristique 0.

Preuve. On utilise le théorème de compacité de la logique du 1er ordre. Soit $T := ACF_0 \cup \{\varphi\}$. Montrons que T a un modèle. Pour cela, on montre que T est finiment satisfiable. Soit $T' \subseteq_{fini} T$. Soit n le plus grand entier tel que

$$(\underbrace{1+1+\cdots+1}_{r}\neq 0)\in T'.$$

Soit p > n un nombre premier tel que φ admet comme modèle un corps algébriquement clos \Bbbk de caractéristique p (qui existe par hypothèse). D'où $\Bbbk \models \varphi$, et

$$\mathbb{k} \models \{ \text{Axiomes des corps} \} \cup \{ \text{Clos}_n \mid n \in \mathbb{N} \}.$$

D'où, $\mathbb{k} \models \mathrm{ACF}_p$, et donc $\mathbb{k} \models T'$. Ainsi T finiment satisfiable donc T satisfiable. On en déduit que φ admet un modèle de caractéristique 0.

Lemme 5. Soit \mathbb{k} un corps fini et soient $n \in \mathbb{N}^*$ et $P : \mathbb{k}^n \to \mathbb{k}^n$ un polynôme injectif. Alors P est bijectif.

Preuve. Comme \mathbb{k}^n est fini alors P est bijectif.

Lemme 6. Soit \mathbbm{k} un corps fini et soient $n \in \mathbbm{N}^\star$ et $\bar{\mathbbm{k}}$ la clôture

algébrique de \Bbbk . Soit $P: \bar{\Bbbk}^n \to \bar{\Bbbk}^n$ un polynôme injectif. Alors P est bijectif.

Preuve. On suppose P non surjectif, il existe donc $\bar{b} = (b_1, \ldots, b_n) \in \bar{\mathbb{k}}^n \setminus P(\bar{\mathbb{k}}^n)$ des nombres algébriques dans \mathbb{k} . Ils sont raciles de polynômes minimaux à coefficients dans \mathbb{k} . Soient $\bar{a} = (a_1, \ldots, a_m)$ les coefficients de ces polynômes, ce sont des éléments de $\bar{\mathbb{k}}$. Soient \bar{c} les coefficients de P.

Soit $\mathbb{k}' := \mathbb{k}(\bar{a}, \bar{b}, \bar{c})$, c'est un corps fini. On a $P : \mathbb{k}'^n \to \mathbb{k}'^n$ injectif pas surjectif, qui est impossible d'après le lemme précédent. \square

On peut donc montrer le théorème d'Ax-Grothendieck.

Pour un degré d fini et un entier n fixé, on va construire la formule $\phi_{n,d}$ qui exprime qu'un polynôme de degré $\leq d$ de \mathbb{k}^n dans \mathbb{k}^n qui est injectif et surjectif. Soit M(n,d) l'ensemble fini des monômes unitaires de degré $\leq d$ avec n variables x_1, \ldots, x_n :

$$M(n,d) := \{1, x_1, x_2, x_1x_2, \dots, x_1^d, x_1^{d-1}x_2, \dots\}.$$

On pose la formule, notée $\varphi_{n,d}$.

$$\forall (a_{m,i})_{m \in M(n,d), i \in [1,n]}$$

$$\left(\forall x_1 \dots x_n \forall y_1 \dots y_n \bigwedge_{i=1}^n \sum_{m \in M(n,d)} a_{m,i} m(x_i) = \sum_{m \in M(n,d)} a_{m,i} m(y_i) \to \bigwedge_{i=1}^n x_i = y_i\right)$$

$$\downarrow$$

$$\forall y_1 \dots y_n \exists x_1 \dots x_n \bigwedge_{i=1}^n y_i = \sum_{m \in M(n,d)} a_{m,i} m(x_i).$$

Par le troisième lemme, pour tout corps fini \mathbb{k} , on a $\bar{\mathbb{k}} \models \varphi_{n,d}$ donc pour tout p premier, on a $\bar{\mathbb{F}}_p \models \varphi_{n,d}$. Par le premier lemme, il existe donc \mathbb{k} de caractéristique 0 telle que $\mathbb{k} \models \varphi_{n,d}$. Par la complétude de la théorie des corps algébriquement clos, on a que $\mathbb{C} \models \varphi_{n,d}$.

Conjecture de la Jacobienne (1939).

C'est une question encore ouverte. On reçoit plein de preuves fausses.

Définition 7. Soit $P:\mathbb{C}^n\to\mathbb{C}^n$ un polynôme. Son *jacobien* est le déterminant de la matrice jacobienne

$$\operatorname{Jac} P = \left| \left(\frac{\partial P_i}{\partial x_j} \right)_{1 \le i \le n, 1 \le j \le n} \right|.$$

C'est un polynôme.

Proposition 2. Si P est injectif sur \mathbb{C}^n alors P est localement injectif. Et donc, pour tout x (théorème des fonctions implicites), $\operatorname{Jac}(P)$ n'est jamais nul, d'où $\operatorname{Jac} P$ est un polynôme constant non nul.

Remarque 4 (Conjecture (problème 16 de la liste de Steve Smale)). En caractéristique 0, on a Jac P non nul implique P injectif.

Remarque 5. En caractéristique p, c'est faux : $P(x) := x - x^p$ est non-inversible et P'(x) = 1 - px = 1.

Exemple 11. \triangleright Avec n=1 et d=1, on considère

$$P: \mathbb{C} \longrightarrow \mathbb{C}$$
$$x \longmapsto P(x) := ax + b.$$

On a Jac P = a et, $a \neq 0$ implique P injectif.

 \triangleright Avec n=1 et d=2, on considère

$$P: \mathbb{C} \longrightarrow \mathbb{C}$$

 $x \longmapsto P(x) := ax^2 + bx + c.$

On a, si JacP=2ax+b non nul, alors a=0 et $b\neq 0$. C'est le cas précédent!

 \triangleright Avec n=2 et d=1, on considère

$$P: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$

 $x \longmapsto P(x,y) := (ax + by + c, dx + ey + f).$

On a Jac $P=\begin{vmatrix} a & b \\ d & e \end{vmatrix}=ae-bd$. On a Jac P non nul implique $ae-bd\neq 0$ ce qui implique que le système

$$\begin{cases} ax + bj + c = 0 \\ dx + ej + f = 0 \end{cases}$$

est inversible, donc la conjecture est vrai.

On a montré quelques résultats partiels :

- \triangleright pour $d \le 2$ en 1980;
- $\,\,\vartriangleright\,\,$ pour $d\leq 3$ dans le cas général.