SBML Model Report

Model name: "Bungay2006_Plasma"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following three authors: Nick Juty¹, Vijayalakshmi Chelliah² and Michael Schubert³ at May twelveth 2011 at 12:58 a.m. and last time modified at May 28th 2014 at 1:15 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	78
events	0	constraints	0
reactions	69	function definitions	0
global parameters	113	unit definitions	1
rules	0	initial assignments	0

Model Notes

This model is from the article:

Modelling thrombin generation in human ovarian follicular fluid

Bungay Sharene D., Gentry Patricia A., Gentry Rodney D. <u>Bulletin of Mathematical Biology</u> Volume 68, Issue 8, 12 July 2006, Pages 2283-302 16838084,

Abstract:

¹EMBL-EBI, juty@ebi.ac.uk

 $^{^2}$ EMBL-EBI, viji@ebi.ac.uk

³EBI, schubert@ebi.ac.uk

A mathematical model is constructed to study thrombin production in human ovarian follicular fluid. The model results show that the amount of thrombin that can be produced in ovarian follicular fluid is much lower than that in blood plasma, failing to reach the level required for fibrin formation, and thereby supporting the hypothesis that in follicular fluid thrombin functions to initiate cellular activities via intracellular signalling receptors. It is also concluded that the absence of the amplification pathway to thrombin production in follicular fluid is a major factor in restricting the amount of thrombin that can be produced. Titration of the initial concentrations of the various reactants in the model lead to predictions for the amount of tissue factor and phospholipid that is required to maintain thrombin production in the follicle, as well as to the conclusion that tissue factor pathway inhibitor has little effect on the time that thrombin generation is sustained. Numerical experiments to determine the effect of factor V, which is at a much reduced level in follicular fluid compared to plasma, and thrombomodulin, illustrate the importance for further experimental work to determine values for several parameters that have yet to be reported in the literature.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nano mole

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

 $\mbox{\bf Notes}\,$ Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	Cell		3	1	litre	\checkmark	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name Cell

4 Species

This model contains 78 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
II_f	II_f	compartment	$nmol \cdot l^{-1}$		
II_1	II_1	compartment	$nmol \cdot l^{-1}$		\Box
$mIIa_f$	mIIa_f	compartment	$nmol \cdot l^{-1}$		
$mIIa_{-}l$	mIIa_l	compartment	$nmol \cdot l^{-1}$		
$V_{-}f$	$V_{_f}$	compartment	$nmol \cdot l^{-1}$		
$V_{-}1$	V_1	compartment	$nmol \cdot l^{-1}$		
Va_f	Va_f	compartment	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
Va_l	Va_l	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
VII_f	VII_{f}	compartment	$nmol \cdot l^{-1}$		
VII_1	$VII_{-}1$	compartment	$nmol \cdot l^{-1}$		
$VIIa_f$	$VIIa_{-}f$	compartment	$nmol \cdot l^{-1}$	\Box	
VIIa_l	VIIa_l	compartment	$nmol \cdot l^{-1}$	\Box	
${\tt VIII_f}$	$VIII_{-f}$	compartment	$nmol \cdot l^{-1}$	\Box	
$VIII_{-}1$	VIII_1	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
${\tt VIIIa_f}$	VIIIa_f	compartment	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
${\tt VIIIa_l}$	VIIIa_l	compartment	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
$IX_{-}f$	$IX_{-}f$	compartment	$nmol \cdot l^{-1}$	\Box	
IX_{-1}	IX_1	compartment	$nmol \cdot l^{-1}$	\Box	
IXa_f	$IXa_{-}f$	compartment	$nmol \cdot l^{-1}$		
IXa_l	IXa_l	compartment	$nmol \cdot l^{-1}$	\Box	
$X_{-}f$	$X_{-}f$	compartment	$nmol \cdot l^{-1}$	\Box	
$X_{-}1$	X_1	compartment	$nmol \cdot l^{-1}$	\Box	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Xa_f	Xa_f	compartment	$nmol \cdot l^{-1}$	В	
Xa_l	Xa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
$\mathtt{APC_f}$	$APC_{-}f$	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
APC_1	APC_1	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
$PS_{-}f$	PS_f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
PS_1	PS_1	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
VIIIai_f	VIIIai₋f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
${\tt VIIIai_l}$	VIIIai₋l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
Vai_f	Vai_f	compartment	$nmol \cdot l^{-1}$		\Box
Vai_l	Vai_l	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
$PC_{-}f$	PC_f	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
PC_1	PC_1	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
TF_1	TF_1	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
${\sf TF_VIIa_l}$	TF_VIIa_l	compartment	$nmol \cdot l^{-1}$		
TF_VII_1	TF_VII_1	compartment	$nmol \cdot l^{-1}$		\Box
$TF_{-}VIIa_{-}IX_{-}l$	TF_VIIa_IX_1	compartment	$nmol \cdot l^{-1}$		\Box
$TF_{-}VIIa_{-}IXa_{-}l$	TF_VIIa_IXa_1	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
$TF_VIIa_X_1$	TF_VIIa_X_l	compartment	$nmol \cdot l^{-1}$		
$TF_VIIa_Xa_1$	TF_VIIa_Xa_l	compartment	$nmol \cdot l^{-1}$		
$TF_{-}VII_{-}Xa_{-}1$	TF_VII_Xa_l	compartment	$nmol \cdot l^{-1}$		
IXa_VIIIa_1	IXa_VIIIa_l	compartment	$nmol \cdot l^{-1}$		
Xa_Va_1	Xa_Va_l	compartment	$\operatorname{nmol} \cdot 1^{-1}$		\Box
$IXa_VIIIa_X_1$	IXa_VIIIa_X_1	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
V_Xa_1	V_Xa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
VIII_Xa_l	VIII_Xa_l	compartment	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
IIa_f	IIa_f	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
$V_{-}IIa_{-}l$	V_IIa_1	compartment	$nmol \cdot l^{-1}$	\Box	

6	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	VIII_IIa_l	VIII_IIa_1	compartment	$nmol \cdot l^{-1}$		
	$Xa_Va_II_I$	Xa_Va_II_1	compartment	$nmol \cdot l^{-1}$		
	${\tt Xa_Va_mIIa_l}$	Xa_Va_mIIa_l	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
	$\mathtt{XI}_{-}\mathtt{f}$	XI_f	compartment	$nmol \cdot l^{-1}$		
	${\tt XI_IIa_l}$	XI_IIa_l	compartment	$nmol \cdot l^{-1}$		
	${\tt XIa_l}$	XIa_l	compartment	$nmol \cdot l^{-1}$		
	APC_PS_1	APC_PS_1	compartment	$nmol \cdot l^{-1}$		
	APC_PS_VIIIa_l	APC_PS_VIIIa_1	compartment	$nmol \cdot l^{-1}$		
Produced by SBML218TEX	$\mathtt{TFPI}_{\mathtt{f}}$	TFPI_f	compartment	$nmol \cdot l^{-1}$		
duc	$\mathtt{AT}_{\mathtt{-}}\mathtt{f}$	AT_f	compartment	$nmol \cdot l^{-1}$		
ed	IIa_AT_f	IIa_AT_f	compartment	$nmol \cdot l^{-1}$		
by	TFPI_Xa_l	TFPI_Xa_l	compartment	$nmol \cdot l^{-1}$		
<u>88</u>	$TFPI_Xa_TF_VIIa_1$	TFPI_Xa_TF_VIIa_l	compartment	$nmol \cdot l^{-1}$		
\leq	APC_PS_Va_1	APC_PS_Va_1	compartment	$nmol \cdot l^{-1}$		
Ä	IXa_AT_f	IXa_AT_f	compartment	$nmol \cdot l^{-1}$		
\sim	Xa_AT_f	Xa_AT_f	compartment	$nmol \cdot l^{-1}$		
	VII_Xa_l	VII_Xa_l	compartment	$nmol \cdot l^{-1}$		
	V_mIIa_1	V_mIIa_l	compartment	$nmol \cdot l^{-1}$		
	${\tt VIII_mIIa_l}$	VIII_mIIa_l	compartment	$nmol \cdot l^{-1}$		
	$\mathtt{TM}_{-}\mathtt{l}$	TM_1	compartment	$nmol \cdot l^{-1}$		
	IIa_TM_1	IIa_TM_l	compartment	$nmol \cdot l^{-1}$		
	$IIa_TM_PC_1$	IIa_TM_PC_1	compartment	$nmol \cdot l^{-1}$		
	${\tt mIIa_AT_l}$	mIIa_AT_l	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
	XIa_IX_I	XIa_IX_1	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
	LIPID	LIPID	compartment	$\operatorname{nmol} \cdot 1^{-1}$		
	$alpha2M_{-}l$	alpha2M_l	compartment	$nmol \cdot l^{-1}$	\Box	\Box
	alpha2M_IIa_l	alpha2M_IIa_l	compartment	$nmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
alpha2M_Xa_l	alpha2M_Xa_l	compartment	$nmol \cdot l^{-1}$		
AT_XIa_l	AT_XIa_l	compartment	$nmol \cdot l^{-1}$		

5 Parameters

This model contains 113 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
konII			0.004		
nva			100.000		
koffII			1.000		
konmIIa			0.050		
koffmIIa			0.475		
konV			0.050		
koffV			0.145		\square
konVa			0.057		
koffVa			0.170		
konVII			0.050		
koffVII			0.660		
konVIIa			0.050		
koffVIIa			0.227		
konVIII			0.050		$ \overline{\mathscr{L}} $
koffVIII			0.100		$ \overline{\mathbf{Z}} $
konVIIIa			0.050		
koffVIIIa			0.335		
konIX			0.050		
koffIX			0.115		
konIXa			0.050		\square
koffIXa			0.115		
konX			0.010		
koffX			1.900		
konXa			0.029		
koffXa			3.300		
konAPC			0.050		
koffAPC			3.500		
konPS			0.050		
koffPS			0.200		
konVIIIai			0.050		
koffVIIIai			0.335		
konVai			0.057		
koffVai			0.170		\mathbf{Z}
konPC			0.050		
koffPC			11.500		
k1			0.500		
k2			0.005		$\overline{\mathbb{Z}}$

Id	Name	SBO	Value	Unit	Constant
k3			0.005		
k4			0.005		$\overline{\checkmark}$
k5			0.010		
k6			2.090		$ \overline{\checkmark} $
k7			0.340		$ \overline{\checkmark} $
k8			0.100		$ \overline{\checkmark} $
k9			32.500		
k10			1.500		
k11			0.050		
k12			44.800		$ \overline{\checkmark} $
k13			15.200		$ \overline{\checkmark} $
k14			0.100		$ \overline{\checkmark} $
k15			0.200		$ \overline{\checkmark} $
k16			1.000		$ \overline{\checkmark} $
k17			1.000		$ \overline{\checkmark} $
k18			0.100		
k19			10.700		$ \overline{\checkmark} $
k20			8.300		$ \overline{\checkmark} $
k21			0.100		$ \overline{\checkmark} $
k22			1.000		$ \overline{\checkmark} $
k23			0.043		
k24			0.100		
k25			2.100		
k26			0.023		$ \overline{\checkmark} $
k27			0.100		$ \overline{\checkmark} $
k28			6.940		$ \overline{\checkmark} $
k29			0.230		
k30			0.100		
k31			13.800		
k32			0.900		
k33			0.100		
k34			100.000		
k35			0.100		\square
k36			66.000		
k37			13.000		
k38			15.000		
k39			0.050		
k40			44.800		$ \overline{\checkmark} $
k41			15.200		$ \overline{\checkmark} $
k42			0.100		$ \overline{\checkmark} $
k43			10.000		$ \overline{\checkmark} $
k44			1.430		$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
k45			0.100		\checkmark
k46			1.600		
k47			0.400		
k48			0.100		
k49			1.600		
k50			0.400		$ \overline{\mathbf{Z}} $
k51			0.016		$ \overline{\mathbf{Z}} $
k52			$3.3 \cdot 10^{-4}$		
k53			0.010		
k54			0.001		
k55			$4.9\cdot10^{-7}$		
k56			$2.3 \cdot 10^{-6}$		
k57			$6.83 \cdot 10^{-6}$		
k58			0.100		
k59			6.940		
k60			1.035		
k61			0.100		
k62			13.800		
k63			0.900		
k64			1.000		$ \overline{\mathbf{Z}} $
k65			0.500		
k66			0.100		
k67			6.400		
k68			3.600		
k69			$6.83 \cdot 10^{-6}$		
k70			0.100		
k71			0.500		
k72			0.010		
k73			1.417		
k74			0.183		
k75			1.000		$ \overline{\mathbf{Z}} $
k76			$2.3 \cdot 10^{-6}$		
k77			$2.5\cdot10^{-6}$		
k78			$1.4 \cdot 10^{-6}$		$ \overline{\mathbf{Z}} $

6 Reactions

This model contains 69 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

	Table 3. Overview of all feactions							
N₀	Id	Name	Reaction Equation	SBO				
1	LB1	Factor II lipid binding	$II_f + 100 LIPID \longrightarrow II_1$					
2	LB2	Factor mIIa lipid binding	$mIIa_f + 100 LIPID \longrightarrow mIIa_1$					
3	LB3	Factor V lipid binding	$V_{-}f + 100 LIPID \longrightarrow V_{-}l$					
4	LB4	Factor Va lipid binding	$Va_{-}f + 100 LIPID \longrightarrow Va_{-}1$					
5	LB5	Factor VII lipid binding	$VII_f + 100 LIPID \longrightarrow VII_1$					
6	LB6	Factor VIIa lipid binding	$VIIa_f + 100 LIPID \longrightarrow VIIa_1$					
7	LB7	Factor VIII lipid binding	$VIII_f + 100 LIPID \longrightarrow VIII_l$					
8	LB8	Factor VIIIa lipid binding	$VIIIa_f + 100 LIPID \longrightarrow VIIIa_l$					
9	LB9	Factor IX lipid binding	$IX_f + 100 LIPID \longrightarrow IX_1$					
10	LB10	Factor IXa lipid binding	$IXa_f + 100 LIPID \longrightarrow IXa_1$					
11	LB11	Factor X lipid binding	$X_{-}f + 100 LIPID \longrightarrow X_{-}1$					
12	LB12	Factor Xa lipid binding	$Xa_f + 100 LIPID \longrightarrow Xa_1$					
13	LB13	APC lipid binding	$APC_{-}f + 100 LIPID \longrightarrow APC_{-}1$					
14	LB14	PS lipid binding	$PS_f + 100 LIPID \longrightarrow PS_1$					
15	LB15	Factor VIIIai lipid binding	$VIIIai_f + 100 LIPID \longrightarrow VIIIai_l$					
16	LB16	Factor Vai lipid binding	$Vai_f + 100 LIPID \longrightarrow Vai_l$					
17	LB17	PC lipid binding	$PC_f + 100 LIPID \longrightarrow PC_l$					
18	R1	TF_VIIa binding	$VIIa_l + TF_l \longrightarrow TF_VIIa_l$					
19	R2	TF_VII binding	$VII_1 + TF_1 \longrightarrow TF_VII_1$					
20	R3	IX_TF_VIIa binding	$IX_1 + TF_VIIa_1 \longrightarrow TF_VIIa_IX_1$					
21	R3b	Factor IX activation	$TF_VIIa_IX_I \longrightarrow TF_VIIa_I + IXa_I$					
22	R4	X_TF_VIIa complex formation	$X_l + TF_VIIa_l \longrightarrow TF_VIIa_X_l$					
23	R4b	Factor X activation	$TF_VIIa_X_l \longrightarrow TF_VIIa_Xa_l$					

12	No	Id	Name	Reaction Equation	SBO
	24	R4c	Factor Xa release	$TF_VIIa_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$	
	25	R5	Xa_TF_VII binding	$Xa_1 + TF_VII_1 \longrightarrow TF_VII_Xa_1$	
	26	R5b	TF_VII activation	$TF_VII_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$	
	27	R6	VIIIa_IXa binding	$VIIIa_l + IXa_l \longrightarrow IXa_VIIIa_l$	
	28	R7	Va_Xa binding	$Va_1 + Xa_1 \longrightarrow Xa_Va_1$	
	29	R8	X_IXa_VIIIa complex formation	$X_1 + IXa_VIIIa_1 \longrightarrow IXa_VIIIa_X_1$	
	30	R8b	Factor X activation	$IXa_VIIIa_X_1 \longrightarrow Xa_1 + IXa_VIIIa_1$	
	31	R9	V_Xa binding	$Xa \perp 1 + V \perp 1 \longrightarrow V \perp Xa \perp 1$	
	32	R9b	Factor V activation	$V_Xa_1 \longrightarrow Xa_1 + Va_1$	
	33	R10	Xa_VIII binding	$Xa_1 + VIII_1 \longrightarrow VIII_Xa_1$	
Pro	34	R10b	Factor VIII activation	$VIII_Xa_1 \longrightarrow Xa_1 + VIIIa_1$	
Produced by SBML2l ^{ET} EX	35	R11		$IIa_f + V_I \longrightarrow V_IIa_I$	
ed	36	R11b		$V_IIa_I \longrightarrow IIa_f + Va_I$	
by	37	R12		$IIa_f + VIII_l \longrightarrow VIII_IIa_l$	
<u>88</u>	38	R12b		$VIII_IIa_1 \longrightarrow IIa_f + VIIIa_1$	
≦	39	R13		$II_1 + Xa_Va_1 \longrightarrow Xa_Va_II_1$	
Ä	40	R14		$mIIa_l + Xa_Va_l \longrightarrow Xa_Va_mIIa_l$	
\times	41	R15		$Xa_Va_II_I \longrightarrow Xa_Va_mIIa_I$	
	42	R15b		$Xa_Va_mIIa_1 \longrightarrow IIa_f + Xa_Va_1 + 100 LIPID$	
	43	R16		$Xa_l + VII_l \longrightarrow VII_Xa_l$	
	44	R16b		$VII_Xa_1 \longrightarrow Xa_1 + VIIa_1$	
	45	R17		$IIa_f + XI_f \longrightarrow XI_IIa_1$	
	46	R17b		$XI_IIa_I \longrightarrow IIa_f + XIa_I$	
	47	R18		$VIIIa_l + APC_PS_l \longrightarrow APC_PS_VIIIa_l$	
	48	R18b		$APC_PS_VIIIa_1 \longrightarrow VIIIai_1 + APC_PS_1$	
	49	R19		$Va_l + APC_PS_l \longrightarrow APC_PS_Va_l$	
	50	R19b		$APC_PS_Va_1 \longrightarrow Vai_1 + APC_PS_1$	
	51	R20		$Xa_f + TFPI_f \longrightarrow TFPI_Xa_1$	
	52	R21		$TF_VIIa_l + TFPI_Xa_l \longrightarrow TFPI_Xa_TF_VIIa_l$	

N⁰	Id	Name	Reaction Equation	SBO
53	R22		$AT_f + IXa_f \longrightarrow IXa_AT_f$	
54	R23		$AT_f + Xa_f \longrightarrow Xa_AT_f$	
55	R24		$AT_f + IIa_f \longrightarrow IIa_AT_f$	
56	R25		$mIIa_1 + V_1 \longrightarrow V_mIIa_1$	
57	R25b		$V_mIIa_l \longrightarrow mIIa_l + Va_l$	
58	R26		$mIIa_1 + VIII_1 \longrightarrow VIII_mIIa_1$	
59	R26b		$VIII_mIIa_1 \longrightarrow mIIa_1 + VIIIa_1$	
60	R27		$TMl + IIaf \longrightarrow IIaTMl$	
61	R28		$PC_{-}1 + IIa_{-}TM_{-}1 \longrightarrow IIa_{-}TM_{-}PC_{-}1$	
62	R28b		$IIa_TM_PC_I \longrightarrow APC_I + IIa_TM_I$	
63	R29		$AT_f + mIIa_f \longrightarrow mIIa_AT_1$	
64	R30		$PS_1 + APC_1 \longrightarrow APC_PS_1$	
65	R31		$IX_1 + XIa_1 \longrightarrow XIa_IX_1$	
66	R31b		$XIa_IX_I \longrightarrow IXa_I + XIa_I$	
67	R32	R32	$AT_f + XIa_1 \longrightarrow AT_XIa_1$	
68	R33	R33	$alpha2M_l + IIa_f \longrightarrow alpha2M_IIa_l$	
69	R34	R34	$alpha2M_l + Xa_f \longrightarrow alpha2M_Xa_l$	

6.1 Reaction LB1

This is an irreversible reaction of two reactants forming one product.

Name Factor II lipid binding

Reaction equation

$$II_{-}f + 100 LIPID \longrightarrow II_{-}1$$
 (1)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
${\tt II_f}$	$II_{-}f$	
LIPID	LIPID	

Product

Table 7: Properties of each product.

Id	Name	SBO
II_1	II_l	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konII} \cdot [\text{II_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffII} \cdot [\text{II_I}]\right) \tag{2}$$

6.2 Reaction LB2

This is an irreversible reaction of two reactants forming one product.

Name Factor mIIa lipid binding

Reaction equation

$$mIIa_f + 100LIPID \longrightarrow mIIa_1$$
 (3)

Table 8: Properties of each reactant.

Name	SBO
mIIa_f LIPID	
	mIIa_f

Table 9: Properties of each product.

Id	Name	SBO
mIIa_l	mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konmIIa} \cdot [\text{mIIa_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffmIIa} \cdot [\text{mIIa_l}]\right) \tag{4}$$

6.3 Reaction LB3

This is an irreversible reaction of two reactants forming one product.

Name Factor V lipid binding

Reaction equation

$$V_{\perp}f + 100 LIPID \longrightarrow V_{\perp}$$
 (5)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
$V_{-}f$	V_f	
LIPID	LIPID	

Table 11: Properties of each product.

Id	Name	SBO
V_1	V_1	

Derived unit contains undeclared units

$$v_{3} = vol\left(compartment\right) \cdot \left(\frac{konV \cdot [V_f] \cdot [LIPID]}{nva} - koffV \cdot [V_l]\right) \tag{6}$$

6.4 Reaction LB4

This is an irreversible reaction of two reactants forming one product.

Name Factor Va lipid binding

Reaction equation

$$Va_{-}f + 100 LIPID \longrightarrow Va_{-}1$$
 (7)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
Va_f	Va_f	
LIPID	LIPID	

Product

Table 13: Properties of each product.

Id	Name	SBO
Va_l	Va_l	

Kinetic Law

$$v_{4} = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVa} \cdot [\text{Va_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVa} \cdot [\text{Va_l}]\right)$$
(8)

6.5 Reaction LB5

This is an irreversible reaction of two reactants forming one product.

Name Factor VII lipid binding

Reaction equation

$$VII_{-}f + 100LIPID \longrightarrow VII_{-}1$$
 (9)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
VII_f	VII_f	
LIPID	LIPID	

Product

Table 15: Properties of each product.

Id	Name	SBO
VII_1	VII_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = vol\left(compartment\right) \cdot \left(\frac{konVII \cdot [VII_f] \cdot [LIPID]}{nva} - koffVII \cdot [VII_I]\right)$$
(10)

6.6 Reaction LB6

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIa lipid binding

Reaction equation

$$VIIa_f + 100LIPID \longrightarrow VIIa_1$$
 (11)

Table 16: Properties of each reactant.

Id	Name	SBO
VIIa_f	VIIa_f	
LIPID	LIPID	

Table 17: Properties of each product.

Id	Name	SBO
VIIa_l	VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol} \left(\text{compartment} \right) \cdot \left(\frac{\text{konVIIa} \cdot [\text{VIIa_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIa} \cdot [\text{VIIa_l}] \right)$$
 (12)

6.7 Reaction LB7

This is an irreversible reaction of two reactants forming one product.

Name Factor VIII lipid binding

Reaction equation

$$VIII_f + 100LIPID \longrightarrow VIII_J$$
 (13)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
VIII_f	VIII_f	
LIPID	LIPID	

Table 19: Properties of each product.

Id	Name	SBO
VIII_1	VIII_l	

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVIII} \cdot [\text{VIII}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIII} \cdot [\text{VIII}_l]\right)$$
 (14)

6.8 Reaction LB8

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIIa lipid binding

Reaction equation

$$VIIIa_f + 100LIPID \longrightarrow VIIIa_1$$
 (15)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
VIIIa_f	VIIIa_f	
LIPID	LIPID	

Product

Table 21: Properties of each product.

Id	Name	SBO
VIIIa_l	VIIIa_l	

Kinetic Law

$$v_8 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVIIIa} \cdot [\text{VIIIa_f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIIa} \cdot [\text{VIIIa_l}]\right)$$
 (16)

6.9 Reaction LB9

This is an irreversible reaction of two reactants forming one product.

Name Factor IX lipid binding

Reaction equation

$$IX_{-}f + 100LIPID \longrightarrow IX_{-}1$$
 (17)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
$IX_{-}f$	IX_f	
LIPID	LIPID	

Product

Table 23: Properties of each product.

Id	Name	SBO
IX_1	IX_1	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konIX} \cdot [\text{IX}_\text{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffIX} \cdot [\text{IX}_\text{I}]\right)$$
(18)

6.10 Reaction LB10

This is an irreversible reaction of two reactants forming one product.

Name Factor IXa lipid binding

Reaction equation

$$IXa_f + 100LIPID \longrightarrow IXa_1$$
 (19)

Table 24: Properties of each reactant.

Id	Name	SBO
IXa_f	IXa_f	
LIPID	LIPID	

Table 25: Properties of each product.

Id	Name	SBO
IXa_l	IXa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = vol\left(compartment\right) \cdot \left(\frac{konIXa \cdot [IXa_f] \cdot [LIPID]}{nva} - koffIXa \cdot [IXa_l]\right) \tag{20}$$

6.11 Reaction LB11

This is an irreversible reaction of two reactants forming one product.

Name Factor X lipid binding

Reaction equation

$$X_f + 100 LIPID \longrightarrow X_J$$
 (21)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
$X_{-}f$	X_f	
LIPID	LIPID	

Table 27: Properties of each product.

Id	Name	SBO
X_1	X_1	

Derived unit contains undeclared units

$$v_{11} = vol\left(compartment\right) \cdot \left(\frac{konX \cdot [X_f] \cdot [LIPID]}{nva} - koffX \cdot [X_l]\right) \tag{22}$$

6.12 Reaction LB12

This is an irreversible reaction of two reactants forming one product.

Name Factor Xa lipid binding

Reaction equation

$$Xa_f + 100LIPID \longrightarrow Xa_1$$
 (23)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
Xa_f	$Xa_{-}f$	
LIPID	LIPID	

Product

Table 29: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	

Kinetic Law

$$v_{12} = \frac{konXa \cdot [Xa_f] \cdot [LIPID]}{nva} - koffXa \cdot [Xa_l]$$
 (24)

6.13 Reaction LB13

This is an irreversible reaction of two reactants forming one product.

Name APC lipid binding

Reaction equation

$$APC_{-}f + 100LIPID \longrightarrow APC_{-}1$$
 (25)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
APC_f	APC_f	
LIPID	LIPID	

Product

Table 31: Properties of each product.

Id	Name	SBO
APC_1	APC_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = vol\left(compartment\right) \cdot \left(\frac{konAPC \cdot [APC_f] \cdot [LIPID]}{nva} - koffAPC \cdot [APC_l]\right) \quad (26)$$

6.14 Reaction LB14

This is an irreversible reaction of two reactants forming one product.

Name PS lipid binding

Reaction equation

$$PS_f + 100LIPID \longrightarrow PS_1$$
 (27)

Table 32: Properties of each reactant.

Id	Name	SBO
PS_f	PS_f	
LIPID	LIPID	

Table 33: Properties of each product.

Id	Name	SBO
PS_1	PS_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = vol\left(compartment\right) \cdot \left(\frac{konPS \cdot [PS_f] \cdot [LIPID]}{nva} - koffPS \cdot [PS_l]\right) \tag{28}$$

6.15 Reaction LB15

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIIai lipid binding

Reaction equation

$$VIIIai_f + 100LIPID \longrightarrow VIIIai_l$$
 (29)

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
VIIIai_f	VIIIai_f	
LIPID	LIPID	

Table 35: Properties of each product.

Id	Name	SBO
VIIIai_l	VIIIai_l	

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konVIIIai} \cdot [\text{VIIIai} \cdot f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIIai} \cdot [\text{VIIIai} \cdot l]\right)$$
 (30)

6.16 Reaction LB16

This is an irreversible reaction of two reactants forming one product.

Name Factor Vai lipid binding

Reaction equation

$$Vai_f + 100 LIPID \longrightarrow Vai_1$$
 (31)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
Vai_f	Vai_f	
LIPID	LIPID	

Product

Table 37: Properties of each product.

Id	Name	SBO
Vai_l	Vai_l	

Kinetic Law

$$v_{16} = vol\left(compartment\right) \cdot \left(\frac{konVai \cdot [Vai_f] \cdot [LIPID]}{nva} - koffVai \cdot [Vai_l]\right) \tag{32}$$

6.17 Reaction LB17

This is an irreversible reaction of two reactants forming one product.

Name PC lipid binding

Reaction equation

$$PC_{-}f + 100LIPID \longrightarrow PC_{-}1$$
 (33)

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
PC_f	PC_f	
LIPID	LIPID	

Product

Table 39: Properties of each product.

Id	Name	SBO
PC_1	PC_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{\text{konPC} \cdot [\text{PC}_\text{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffPC} \cdot [\text{PC}_\text{I}]\right)$$
 (34)

6.18 Reaction R1

This is an irreversible reaction of two reactants forming one product.

Name TF_VIIa binding

Reaction equation

$$VIIa_1 + TF_1 \longrightarrow TF_VIIa_1 \tag{35}$$

Table 40: Properties of each reactant.

Id	Name	SBO
VIIa_l	VIIa_l	
TF_1	TF_1	

Table 41: Properties of each product.

Id	Name	SBO
TF_VIIa_l	TF_VIIa_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol} (\text{compartment}) \cdot (\text{k1} \cdot [\text{TF} \cdot 1] \cdot [\text{VIIa} \cdot 1] - \text{k2} \cdot [\text{TF} \cdot \text{VIIa} \cdot 1])$$
 (36)

6.19 Reaction R2

This is an irreversible reaction of two reactants forming one product.

Name TF_VII binding

Reaction equation

$$VII_1 + TF_1 \longrightarrow TF_VII_1$$
 (37)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
VII_1	VII_1	
TF_1	TF_1	

Table 43: Properties of each product.

Id	Name	SBO
TF_VII_1	TF_VII_1	

Derived unit contains undeclared units

$$v_{19} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k3} \cdot [\text{TF_l}] \cdot [\text{VII_l}] - \text{k4} \cdot [\text{TF_VII_l}]\right) \tag{38}$$

6.20 Reaction R3

This is an irreversible reaction of two reactants forming one product.

Name IX_TF_VIIa binding

Reaction equation

$$IX_1+TF_VIIa_1 \longrightarrow TF_VIIa_IX_1$$
 (39)

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
IX_1	IX_1	
$TF_{-}VIIa_{-}l$	TF_VIIa_1	

Product

Table 45: Properties of each product.

Id	Name	SBO
TF_VIIa_IX_1	TF_VIIa_IX_1	

Kinetic Law

$$v_{20} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k5} \cdot \left[\text{TF_VIIa_I}\right] \cdot \left[\text{IX_I}\right] - \text{k6} \cdot \left[\text{TF_VIIa_IX_I}\right]\right) \tag{40}$$

6.21 Reaction R3b

This is an irreversible reaction of one reactant forming two products.

Name Factor IX activation

Reaction equation

$$TF_{-}VIIa_{-}IX_{-}I \longrightarrow TF_{-}VIIa_{-}I + IXa_{-}I$$
 (41)

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
TF_VIIa_IX_1	TF_VIIa_IX_1	

Products

Table 47: Properties of each product.

Id	Name	SBO
TF_VIIa_l	TF_VIIa_l	
$IXa_{-}1$	$IXa_{-}l$	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{compartment}) \cdot \text{k7} \cdot [\text{TF_VIIa_IX_I}]$$
 (42)

6.22 Reaction R4

This is an irreversible reaction of two reactants forming one product.

Name X_TF_VIIa complex formation

Reaction equation

$$X_l + TF_VIIa_l \longrightarrow TF_VIIa_X_l$$
 (43)

Table 48: Properties of each reactant.

Id	Name	SBO
X_1	X_l	
$TF_{-}VIIa_{-}l$	TF_VIIa_1	

Table 49: Properties of each product.

Id	Name	SBO
TF_VIIa_X_l	TF_VIIa_X_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k8} \cdot [\text{TF_VIIa_l}] \cdot [\text{X_l}] - \text{k9} \cdot [\text{TF_VIIa_X_l}] \right) \tag{44}$$

6.23 Reaction R4b

This is an irreversible reaction of one reactant forming one product.

Name Factor X activation

Reaction equation

$$TF_VIIa_X_1 \longrightarrow TF_VIIa_Xa_1$$
 (45)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
TF_VIIa_X_1	TF_VIIa_X_l	

Table 51: Properties of each product.

Id	Name	SBO
TF_VIIa_Xa_l	TF_VIIa_Xa_l	

Id	Name	SBO

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{compartment}) \cdot \text{k10} \cdot [\text{TF_VIIa_X_l}]$$
 (46)

6.24 Reaction R4c

This is an irreversible reaction of one reactant forming two products.

Name Factor Xa release

Reaction equation

$$TF_VIIa_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$$
 (47)

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
TF_VIIa_Xa_l	TF_VIIa_Xa_l	

Products

Table 53: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
$TF_{-}VIIa_{-}l$	$TF_{-}VIIa_{-}1$	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol} (\text{compartment}) \cdot \text{k75} \cdot [\text{TF_VIIa_Xa_l}]$$
 (48)

6.25 Reaction R5

This is an irreversible reaction of two reactants forming one product.

Name Xa_TF_VII binding

Reaction equation

$$Xa_{-}l + TF_{-}VII_{-}l \longrightarrow TF_{-}VII_{-}Xa_{-}l$$
 (49)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
Xa_l	Xa_l	
TF_VII_1	TF_VII_1	

Product

Table 55: Properties of each product.

Id	Name	SBO
TF_VII_Xa_l	TF_VII_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k11} \cdot \left[\text{TF_VII_l}\right] \cdot \left[\text{Xa_l}\right] - \text{k12} \cdot \left[\text{TF_VII_Xa_l}\right]\right) \tag{50}$$

6.26 Reaction R5b

This is an irreversible reaction of one reactant forming two products.

Name TF_VII activation

Reaction equation

$$TF_VII_Xa_I \longrightarrow Xa_I + TF_VIIa_I$$
 (51)

Table 56: Properties of each reactant.

Id	Name	SBO
TF_VII_Xa_l	TF_VII_Xa_l	

Table 57: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
${\tt TF_VIIa_l}$	TF_VIIa_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{compartment}) \cdot \text{k13} \cdot [\text{TF_VII_Xa_l}]$$
 (52)

6.27 Reaction R6

This is an irreversible reaction of two reactants forming one product.

Name VIIIa_IXa binding

Reaction equation

$$VIIIa_l + IXa_l \longrightarrow IXa_VIIIa_l$$
 (53)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
VIIIa_l	VIIIa_l	
IXa_l	IXa_l	

Product

Table 59: Properties of each product.

Id	Name	SBO
IXa_VIIIa_l	IXa_VIIIa_l	

Kinetic Law

$$v_{27} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k14} \cdot \left[\text{IXa_l} \right] \cdot \left[\text{VIIIa_l} \right] - \text{k15} \cdot \left[\text{IXa_VIIIa_l} \right] \right)$$
 (54)

6.28 Reaction R7

This is an irreversible reaction of two reactants forming one product.

Name Va_Xa binding

Reaction equation

$$Va_1 + Xa_1 \longrightarrow Xa_Va_1$$
 (55)

Reactants

Table 60: Properties of each reactant.

Id	Name	SBO
Va_l	Va_l	
Xa_l	Xa_l	

Product

Table 61: Properties of each product.

Id	Name	SBO
Xa_Va_l	Xa_Va_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k16} \cdot \left[\text{Xa_l}\right] \cdot \left[\text{Va_l}\right] - \text{k17} \cdot \left[\text{Xa_Va_l}\right]\right) \tag{56}$$

6.29 Reaction R8

This is an irreversible reaction of two reactants forming one product.

Name X_IXa_VIIIa complex formation

Reaction equation

$$X_{-}1 + IXa_{-}VIIIa_{-}1 \longrightarrow IXa_{-}VIIIa_{-}X_{-}1$$
 (57)

Table 62: Properties of each reactant.

Id	Name	SBO
X_1	X_1	
IXa_VIIIa_1	IXa_VIIIa_l	

Table 63: Properties of each product.

Id	Name	SBO
IXa_VIIIa_X_1	IXa_VIIIa_X_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k18} \cdot \left[\text{IXa_VIIIa_I} \right] \cdot \left[\text{X_I} \right] - \text{k19} \cdot \left[\text{IXa_VIIIa_X_I} \right] \right)$$
 (58)

6.30 Reaction R8b

This is an irreversible reaction of one reactant forming two products.

Name Factor X activation

Reaction equation

$$IXa_VIIIa_X_I \longrightarrow Xa_I + IXa_VIIIa_I$$
 (59)

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
IXa_VIIIa_X_1	IXa_VIIIa_X_1	

Table 65: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	

Id	Name	SBO
IXa_VIIIa_l	IXa_VIIIa_l	

Derived unit contains undeclared units

$$v_{30} = \text{vol} (\text{compartment}) \cdot \text{k20} \cdot [\text{IXa_VIIIa_X_l}]$$
 (60)

6.31 Reaction R9

This is an irreversible reaction of two reactants forming one product.

Name V_Xa binding

Reaction equation

$$Xa_l + V_l \longrightarrow V_Xa_l \tag{61}$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Xa_l	Xa_l	
Vl	V_{-1}	

Product

Table 67: Properties of each product.

Id	Name	SBO
V_Xa_1	V_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k21} \cdot \left[\text{V} \perp\right] \cdot \left[\text{Xa} \perp\right] - \text{k22} \cdot \left[\text{V} \perp \text{Xa} \perp\right]\right) \tag{62}$$

6.32 Reaction R9b

This is an irreversible reaction of one reactant forming two products.

Name Factor V activation

Reaction equation

$$V_Xa_1 \longrightarrow Xa_1 + Va_1 \tag{63}$$

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
V_Xa_l	V_Xa_l	

Products

Table 69: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
${\tt Va_l}$	Va_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{vol} (\text{compartment}) \cdot \text{k23} \cdot [\text{V}_\text{Xa_l}]$$
 (64)

6.33 Reaction R10

This is an irreversible reaction of two reactants forming one product.

Name Xa_VIII binding

Reaction equation

$$Xa_1 + VIII_1 \longrightarrow VIII_Xa_1$$
 (65)

Reactants

Table 70: Properties of each reactant.

Id	Name	SBO
Xa l	Xa_l	

Id	Name	SBO
VIII_1	VIII_l	

Product

Table 71: Properties of each product.

Id	Name	SBO
VIII_Xa_1	VIII_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = k24 \cdot [VIII_l] \cdot [Xa_l] - k25 \cdot [VIII_Xa_l]$$
(66)

6.34 Reaction R10b

This is an irreversible reaction of one reactant forming two products.

Name Factor VIII activation

Reaction equation

$$VIII_Xa_I \longrightarrow Xa_I + VIIIa_I$$
 (67)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
VIII_Xa_l	VIII_Xa_l	

Products

Table 73: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
${\tt VIIIa_l}$	VIIIa_l	

Derived unit contains undeclared units

$$v_{34} = \text{vol} (\text{compartment}) \cdot \text{k26} \cdot [\text{VIII}_X\text{a_l}]$$
 (68)

6.35 Reaction R11

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IIa_f + V_I \longrightarrow V_IIa_I$$
 (69)

Reactants

Table 74: Properties of each reactant.

Id	Name	SBO
IIa_f	IIa_f	
V1	V_1	

Product

Table 75: Properties of each product.

Id	Name	SBO
V_IIa_l	V_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k27} \cdot \left[\text{V} \, \text{\bot}\right] \cdot \left[\text{IIa} \, \text{_f}\right] - \text{k28} \cdot \left[\text{V} \, \text{_IIa} \, \text{\bot}\right]\right) \tag{70}$$

6.36 Reaction R11b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$V_IIa_I \longrightarrow IIa_f + Va_I$$
 (71)

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
V_IIa_l	V_IIa_l	

Products

Table 77: Properties of each product.

Id	Name	SBO
IIa_f	IIa_f	
${\tt Va_l}$	Va_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol} (\text{compartment}) \cdot \text{k29} \cdot [\text{V_IIa_I}]$$
 (72)

6.37 Reaction R12

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IIa_f + VIII_1 \longrightarrow VIII_IIa_1 \tag{73}$$

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
IIa_f	IIa_f	
$VIII_{-}1$	$VIII_1$	

Product

Table 79: Properties of each product.

Id	Name	SBO
VIII_IIa_l	VIII_IIa_1	

Derived unit contains undeclared units

$$v_{37} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k30} \cdot \left[\text{VIII} \right] \right) \cdot \left[\text{IIa_f} \right] - \text{k31} \cdot \left[\text{VIII_IIa_I} \right]$$
 (74)

6.38 Reaction R12b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$VIII_IIa_I \longrightarrow IIa_f + VIIIa_I$$
 (75)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
VIII_IIa_l	VIII_IIa_1	

Products

Table 81: Properties of each product.

Id	Name	SBO
IIa_f	IIa_f	
VIIIa_l	VIIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol}(\text{compartment}) \cdot \text{k32} \cdot [\text{VIII}_\text{IIa}_\text{I}]$$
 (76)

6.39 Reaction R13

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$II_1 + Xa_Va_1 \longrightarrow Xa_Va_II_1$$
 (77)

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
$II_{-}1$	II_1	
Xa_Va_l	$Xa_{-}Va_{-}l$	

Product

Table 83: Properties of each product.

Id	Name	SBO
Xa_Va_II_1	Xa_Va_II_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k33} \cdot \left[\text{Xa_Va_I}\right] \cdot \left[\text{II_I}\right] - \text{k34} \cdot \left[\text{Xa_Va_II_I}\right]\right) \tag{78}$$

6.40 Reaction R14

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mIIa_1 + Xa_Va_1 \longrightarrow Xa_Va_mIIa_1$$
 (79)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
mIIa_l Xa Va l	mIIa_l	
va_r	Λa_Va_I	

Product

Table 85: Properties of each product.

Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k35} \cdot \left[\text{Xa_Va_l}\right] \cdot \left[\text{mIIa_l}\right] - \text{k36} \cdot \left[\text{Xa_Va_mIIa_l}\right]\right) \tag{80}$$

6.41 Reaction R15

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Xa_Va_III \longrightarrow Xa_Va_mIIa_I$$
 (81)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
Xa_Va_II_1	Xa_Va_II_l	

Product

Table 87: Properties of each product.

Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol} (\text{compartment}) \cdot \text{k37} \cdot [\text{Xa_Va_II_I}]$$
 (82)

6.42 Reaction R15b

This is an irreversible reaction of one reactant forming three products.

Reaction equation

$$Xa_Va_mIIa_l \longrightarrow IIa_f + Xa_Va_l + 100LIPID$$
 (83)

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Products

Table 89: Properties of each product.

Id	Name	SBO
IIa_f	IIa_f	
Xa_Va_1	Xa_Va_1	
LIPID	LIPID	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol} (\text{compartment}) \cdot \text{k38} \cdot [\text{Xa_Va_mIIa_l}]$$
 (84)

6.43 Reaction R16

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Xa_1 + VII_1 \longrightarrow VII_Xa_1$$
 (85)

Reactants

Table 90: Properties of each reactant.

Id	Name	SBO
Xa_l	Xa_l	
$VII_{-}1$	VII_1	

Product

Table 91: Properties of each product.

Id	Name	SBO
VII_Xa_l	VII_Xa_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol} (\text{compartment}) \cdot (\text{k39} \cdot [\text{VII}_1] \cdot [\text{Xa}_1] - \text{k40} \cdot [\text{VII}_\text{Xa}_1])$$
 (86)

6.44 Reaction R16b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$VII_Xa_1 \longrightarrow Xa_1 + VIIa_1$$
 (87)

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
VII_Xa_l	VII_Xa_1	

Products

Table 93: Properties of each product.

Id	Name	SBO
Xa_l	Xa_l	
${\tt VIIa_l}$	VIIa_l	

Derived unit contains undeclared units

$$v_{44} = \text{vol} (\text{compartment}) \cdot \text{k41} \cdot [\text{VII_Xa_l}]$$
 (88)

6.45 Reaction R17

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IIa_f + XI_f \longrightarrow XI_IIa_l$$
 (89)

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
IIa_f	IIa_f	
$\mathtt{XI}_{\mathtt{-}}\mathtt{f}$	XI_f	

Product

Table 95: Properties of each product.

Id	Name	SBO
XI_IIa_l	XI_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k42} \cdot \left[\text{XI_f}\right] \cdot \left[\text{IIa_f}\right] - \text{k43} \cdot \left[\text{XI_IIa_l}\right]\right) \tag{90}$$

6.46 Reaction R17b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$XI_IIa_I \longrightarrow IIa_f + XIa_I$$
 (91)

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
XI_IIa_l	XI_IIa_l	

Products

Table 97: Properties of each product.

Id	Name	SBO
IIa_f	IIa_f	
${\tt XIa_l}$	XIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{vol} (\text{compartment}) \cdot \text{k44} \cdot [\text{XI_IIa_I}]$$
 (92)

6.47 Reaction R18

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$VIIIa_1 + APC_PS_1 \longrightarrow APC_PS_VIIIa_1$$
 (93)

Reactants

Table 98: Properties of each reactant.

Id	Name	SBO
VIIIa_l	VIIIa_l	_
APC_PS_1	APC_PS_1	

Product

Table 99: Properties of each product.

	erties of their produ	
Id	Name	SBO
APC_PS_VIIIa_1	APC_PS_VIIIa_1	

Derived unit contains undeclared units

$$v_{47} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k45} \cdot [\text{APC_PS_l}] \cdot [\text{VIIIa_l}] - \text{k46} \cdot [\text{APC_PS_VIIIa_l}] \right)$$
 (94)

6.48 Reaction R18b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APC_PS_VIIIa_1 \longrightarrow VIIIai_1 + APC_PS_1$$
 (95)

Reactant

Table 100: Properties of each reactant.

Table 100. I toperties of each reactant.		
Id	Name	SBO
APC_PS_VIIIa_1	APC_PS_VIIIa_1	

Products

Table 101: Properties of each product.

Id	Name	SBO
VIIIai_l APC_PS_1	VIIIai_l APC_PS_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{vol}(\text{compartment}) \cdot \text{k47} \cdot [\text{APC_PS_VIIIa_l}]$$
 (96)

6.49 Reaction R19

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Va_1 + APC_PS_1 \longrightarrow APC_PS_Va_1$$
 (97)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Va_l	Va_l	
APC_PS_1	APC_PS_1	

Product

Table 103: Properties of each product.

Id	Name	SBO
APC_PS_Va_1	APC_PS_Va_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k48} \cdot [\text{APC_PS_l}] \cdot [\text{Va_l}] - \text{k49} \cdot [\text{APC_PS_Va_l}]\right) \tag{98}$$

6.50 Reaction R19b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APC_PS_Va_l \longrightarrow Vai_l + APC_PS_l$$
 (99)

Reactant

Table 104: Properties of each reactant.

Id	Name	SBO
APC_PS_Va_1	APC_PS_Va_1	

Products

Table 105: Properties of each product.

Id	Name	SBO
Vai_l	Vai_l	
APC_PS_1	APC_PS_1	

Derived unit contains undeclared units

$$v_{50} = \text{vol} (\text{compartment}) \cdot \text{k50} \cdot [\text{APC_PS_Va_l}]$$
 (100)

6.51 Reaction R20

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Xa_f + TFPI_f \longrightarrow TFPI_Xa_l$$
 (101)

Reactants

Table 106: Properties of each reactant.

Id	Name	SBO
Xa_f	Xa_f	
TFPI_f	TFPI_f	

Product

Table 107: Properties of each product.

Id	Name	SBO
TFPI_Xa_1	TFPI_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k51} \cdot [\text{TFPI}_f] \cdot [\text{Xa}_f] - \text{k52} \cdot [\text{TFPI}_\text{Xa}_l]\right)$$
 (102)

6.52 Reaction R21

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$TF_VIIa_1 + TFPI_Xa_1 \longrightarrow TFPI_Xa_TF_VIIa_1$$
 (103)

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
TF_VIIa_l TFPI_Xa_l	TF_VIIa_l TFPI_Xa_l	

Product

Table 109: Properties of each product.

Id	Name	SBO
TFPI_Xa_TF_VIIa_1	TFPI_Xa_TF_VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k53} \cdot [\text{TFPL}X\text{a.l}] \cdot [\text{TF-VIIa.l}] - \text{k54} \cdot [\text{TFPL}X\text{a.TF-VIIa.l}]\right)$$
 (104)

6.53 Reaction R22

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + IXa_f \longrightarrow IXa_AT_f$$
 (105)

Reactants

Table 110: Properties of each reactant.

Id	Name	SBO
AT_f	AT_f	

Id	Name	SBO
IXa_f	IXa_f	

Product

Table 111: Properties of each product.

Id	Name	SBO
IXa_AT_f	IXa_AT_f	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{vol} (\text{compartment}) \cdot \text{k55} \cdot [\text{IXa.f}] \cdot [\text{AT.f}]$$
 (106)

6.54 Reaction R23

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + Xa_f \longrightarrow Xa_AT_f$$
 (107)

Reactants

Table 112: Properties of each reactant.

Id	Name	SBO
$AT_{-}f$	$AT_{-}f$	
Xa_f	$Xa_{-}f$	

Product

Table 113: Properties of each product.

Id	Name	SBO
Xa_AT_f	Xa_AT_f	

Derived unit contains undeclared units

$$v_{54} = \text{vol} (\text{compartment}) \cdot \text{k56} \cdot [\text{Xa_f}] \cdot [\text{AT_f}]$$
 (108)

6.55 Reaction R24

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + IIa_f \longrightarrow IIa_AT_f$$
 (109)

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
$AT_{-}f$	$AT_{-}f$	
IIa_f	IIa_f	

Product

Table 115: Properties of each product.

Id	Name	SBO
IIa_AT_f	IIa_AT_f	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\text{compartment}) \cdot \text{k57} \cdot [\text{IIa_f}] \cdot [\text{AT_f}]$$
 (110)

6.56 Reaction R25

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mIIa_1 + V_1 \longrightarrow V_mIIa_1$$
 (111)

Reactants

Table 116: Properties of each reactant.

Id	Name	SBO
mIIa_l	111114	
V_1	V_1	

Product

Table 117: Properties of each product.

Id	Name	SBO
V_mIIa_l	V_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k58} \cdot \left[\text{V}_\text{I}\right] \cdot \left[\text{mIIa}_\text{I}\right] - \text{k59} \cdot \left[\text{V}_\text{mIIa}_\text{I}\right]\right)$$
 (112)

6.57 Reaction R25b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$V_mIIa_1 \longrightarrow mIIa_1 + Va_1$$
 (113)

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
V_mIIa_l	V_mIIa_l	

Products

Table 119: Properties of each product.

Id	Name	SBO
$mIIa_l$	mIIa_l	
Va_l	Va_l	

Derived unit contains undeclared units

$$v_{57} = \text{vol} \left(\text{compartment} \right) \cdot \text{k60} \cdot \left[\text{V}_{\text{mIIa_l}} \right]$$
 (114)

6.58 Reaction R26

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mIIa_1 + VIII_1 \longrightarrow VIII_mIIa_1$$
 (115)

Reactants

Table 120: Properties of each reactant.

Id	Name	SBO
mIIa_l	mIIa_l	
VIII_1	VIII_l	

Product

Table 121: Properties of each product.

Id	Name	SBO
VIII_mIIa_l	VIII_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k61} \cdot \left[\text{VIII_I} \right] \cdot \left[\text{mIIa_I} \right] - \text{k62} \cdot \left[\text{VIII_mIIa_I} \right] \right)$$
 (116)

6.59 Reaction R26b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$VIII_mIIa_l \longrightarrow mIIa_l + VIIIa_l$$
 (117)

Reactant

Table 122: Properties of each reactant.

Id	Name	SBO
VIII_mIIa_l	VIII_mIIa_l	

Products

Table 123: Properties of each product.

Id	Name	SBO
$mIIa_{-}l$	mIIa_l	
${\tt VIIIa_l}$	VIIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{vol}(\text{compartment}) \cdot \text{k63} \cdot [\text{VIII}_\text{mIIa_l}]$$
 (118)

6.60 Reaction R27

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$TM_1 + IIa_f \longrightarrow IIa_TM_1$$
 (119)

Reactants

Table 124: Properties of each reactant.

Id	Name	SBO
TM_l	TM_{-1}	

Id	Name	SBO
IIa_f	IIa_f	

Product

Table 125: Properties of each product.

Id	Name	SBO
IIa_TM_l	IIa_TM_l	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{60} = vol\left(compartment\right) \cdot \left(k64 \cdot [IIa_f] \cdot [TM_l] - k65 \cdot [IIa_TM_l]\right) \tag{120}$$

6.61 Reaction R28

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PC_1 + IIa_TM_1 \longrightarrow IIa_TM_PC_1$$
 (121)

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
PC_1	PC_l	
IIa_TM_l	IIa_TM_l	

Product

Table 127: Properties of each product.

Id	Name	SBO
IIa_TM_PC_1	IIa_TM_PC_l	

Derived unit contains undeclared units

$$v_{61} = \text{vol}(\text{compartment}) \cdot (\text{k}66 \cdot [\text{IIa_TM_l}] \cdot [\text{PC_l}] - \text{k}67 \cdot [\text{IIa_TM_PC_l}])$$
 (122)

6.62 Reaction R28b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$IIa_TM_PC_1 \longrightarrow APC_1 + IIa_TM_1$$
 (123)

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
IIa_TM_PC_1	IIa_TM_PC_1	

Products

Table 129: Properties of each product.

Id	Name	SBO
APC_1	APC_1	
IIa_TM_1	IIa_TM_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{vol} (\text{compartment}) \cdot \text{k68} \cdot [\text{IIa_TM_PC_l}]$$
 (124)

6.63 Reaction R29

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + mIIa_f \longrightarrow mIIa_AT_1$$
 (125)

Reactants

Table 130: Properties of each reactant.

Id	Name	SBO
$AT_{-}f$	AT_f	
${\tt mIIa_f}$	mIIa_f	

Product

Table 131: Properties of each product.

Id	Name	SBO
mIIa_AT_1	mIIa_AT_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{vol} (\text{compartment}) \cdot \text{k69} \cdot [\text{mIIa_f}] \cdot [\text{AT_f}]$$
 (126)

6.64 Reaction R30

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PS_1 + APC_1 \longrightarrow APC_PS_1 \tag{127}$$

Reactants

Table 132: Properties of each reactant.

Id	Name	SBO
PS_1	PS_1	
$\mathtt{APC}\mathtt{l}$	APC_{-1}	

Product

Table 133: Properties of each product.

Id	Name	SBO
APC_PS_1	APC_PS_1	

Derived unit contains undeclared units

$$v_{64} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k70} \cdot [\text{APC_l}] \cdot [\text{PS_l}] - \text{k71} \cdot [\text{APC_PS_l}]\right) \tag{128}$$

6.65 Reaction R31

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IX_{-}1 + XIa_{-}1 \longrightarrow XIa_{-}IX_{-}1$$
 (129)

Reactants

Table 134: Properties of each reactant.

Id	Name	SBO
$IX_{-}1$	IX_l	
${\tt XIa_l}$	XIa_l	

Product

Table 135: Properties of each product.

Id	Name	SBO
XIa_IX_l	XIa_IX_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k72} \cdot \left[\text{XIa_l} \right] \cdot \left[\text{IX_l} \right] - \text{k73} \cdot \left[\text{XIa_IX_l} \right] \right)$$
 (130)

6.66 Reaction R31b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$XIa_IX_I \longrightarrow IXa_I + XIa_I$$
 (131)

Reactant

Table 136: Properties of each reactant.

Id	Name	SBO
XIaIX1	XIa_IX_1	

Products

Table 137: Properties of each product.

Id	Name	SBO
IXa_l	IXa_l	
${\tt XIa_l}$	XIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{vol} (\text{compartment}) \cdot \text{k74} \cdot [\text{XIa_IX_I}]$$
 (132)

6.67 Reaction R32

This is an irreversible reaction of two reactants forming one product.

Name R32

Reaction equation

$$AT_f + XIa_1 \longrightarrow AT_XIa_1$$
 (133)

Reactants

Table 138: Properties of each reactant.

Id	Name	SBO
$AT_{-}f$	AT_f	
${\tt XIa_l}$	XIa_l	

Product

Table 139: Properties of each product.

Id	Name	SBO
AT_XIa_l	AT_XIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{vol} (\text{compartment}) \cdot \text{k76} \cdot [\text{AT}_{f}] \cdot [\text{XIa}_{l}]$$
 (134)

6.68 Reaction R33

This is an irreversible reaction of two reactants forming one product.

Name R33

Reaction equation

$$alpha2M_l + IIa_f \longrightarrow alpha2M_IIa_l$$
 (135)

Reactants

Table 140: Properties of each reactant.

Id	Name	SBO
alpha2M_l IIa_f	alpha2M_l IIa_f	

Product

Table 141: Properties of each product.

production		
Id	Name	SBO
alpha2M_IIa_l	alpha2M_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = \text{vol} (\text{compartment}) \cdot \text{k77} \cdot [\text{alpha2M_l}] \cdot [\text{IIa_f}]$$
 (136)

6.69 Reaction R34

This is an irreversible reaction of two reactants forming one product.

Name R34

Reaction equation

$$alpha2M_l + Xa_f \longrightarrow alpha2M_Xa_l$$
 (137)

Reactants

Table 142: Properties of each reactant.

Id	Name	SBO
alpha2M_l Xa_f	alpha2M_l Xa_f	

Product

Table 143: Properties of each product.

Id	Name	SBO
alpha2M_Xa_l	alpha2M_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{vol} (\text{compartment}) \cdot \text{k78} \cdot [\text{alpha2M_l}] \cdot [\text{Xa_f}]$$
 (138)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species II_f

Name II_f

Initial concentration $1400 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{II}_{-}f = -v_1 \tag{139}$$

7.2 Species II_1

Name II_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R13 and as a product in LB1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{II} = |v_1| - |v_{39}| \tag{140}$$

7.3 Species mIIa_f

Name mIIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in LB2, R29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mIIa}_{f} = -v_{2} - v_{63} \tag{141}$$

7.4 Species mIIa_1

Name mIIa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R14, R25, R26 and as a product in LB2, R25b, R26b).

$$\frac{d}{dt} \text{mIIa.l} = v_2 + |v_{57}| + |v_{59}| - |v_{40}| - |v_{56}| - |v_{58}|$$
(142)

7.5 Species V_f

Name $V_{-}f$

Initial concentration $20 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{V}_{-}\mathbf{f} = -v_{3} \tag{143}$$

7.6 Species V_1

Name V_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R9, R11, R25 and as a product in LB3).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{V} \mathbf{1} = |v_3| - |v_{31}| - |v_{35}| - |v_{56}| \tag{144}$$

7.7 Species Va_f

Name Va_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Va.f} = -v_4 \tag{145}$$

7.8 Species Va_1

Name Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R7, R19 and as a product in LB4, R9b, R11b, R25b).

$$\frac{d}{dt} Va_{-}l = v_4 + v_{32} + v_{36} + v_{57} - v_{28} - v_{49}$$
(146)

7.9 Species VII_f

Name VII_f

Initial concentration $10 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in LB5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VII}.\mathrm{f} = -v_5 \tag{147}$$

7.10 Species VII_1

Name VII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R2, R16 and as a product in LB5).

$$\frac{d}{dt}VII_{1} = |v_{5}| - |v_{19}| - |v_{43}| \tag{148}$$

7.11 Species VIIa_f

Name VIIa_f

Initial concentration $0.1 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIa}_{-}\mathrm{f} = -v_{6} \tag{149}$$

7.12 Species VIIa_1

Name VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R1 and as a product in LB6, R16b).

$$\frac{d}{dt}VIIa_{\perp}I = |v_{6}| + |v_{44}| - |v_{18}| \tag{150}$$

7.13 Species VIII_f

Name VIII_f

Initial concentration $0.7 \text{ } nmol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIII}_{\mathbf{f}} = -v_7 \tag{151}$$

7.14 Species VIII_1

Name VIII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R10, R12, R26 and as a product in LB7).

$$\frac{d}{dt}VIII_1 = |v_7| - |v_{33}| - |v_{37}| - |v_{58}|$$
 (152)

7.15 Species VIIIa_f

Name VIIIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIa_f} = -v_8 \tag{153}$$

7.16 Species VIIIa_1

Name VIIIa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R6, R18 and as a product in LB8, R10b, R12b, R26b).

$$\frac{\mathrm{d}}{\mathrm{d}t}VIIIa_l = |v_8| + |v_{34}| + |v_{38}| + |v_{59}| - |v_{27}| - |v_{47}|$$
(154)

7.17 Species IX_f

Name IX_f

Initial concentration $90 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IX}_{-}\mathrm{f} = -\nu_{9} \tag{155}$$

7.18 Species IX_1

Name IX_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R3, R31 and as a product in LB9).

$$\frac{\mathrm{d}}{\mathrm{d}t} IX_{-}l = |v_9| - |v_{20}| - |v_{65}| \tag{156}$$

7.19 Species IXa_f

Name IXa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in LB10, R22).

$$\frac{d}{dt}IXa.f = -|v_{10}| - |v_{53}| \tag{157}$$

7.20 Species IXa_1

Name IXa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R6 and as a product in LB10, R3b, R31b).

$$\frac{d}{dt}IXa_{1} = |v_{10}| + |v_{21}| + |v_{66}| - |v_{27}|$$
(158)

7.21 Species X_f

Name $X_{-}f$

Initial concentration $170 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X}_{\cdot}\mathbf{f} = -v_{11} \tag{159}$$

7.22 Species X_1

Name $X \perp$

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R4, R8 and as a product in LB11).

$$\frac{\mathrm{d}}{\mathrm{d}t}X_{-}l = |v_{11}| - |v_{22}| - |v_{29}| \tag{160}$$

7.23 Species Xa_f

Name Xa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in LB12, R20, R23, R34).

$$\frac{\mathrm{d}}{\mathrm{d}t} X a_{-} f = - v_{12} - |v_{51}| - |v_{54}| - |v_{69}|$$
(161)

7.24 Species Xa_1

Name Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in twelve reactions (as a reactant in R5, R7, R9, R10, R16 and as a product in LB12, R4c, R5b, R8b, R9b, R10b, R16b).

$$\frac{d}{dt}Xa.l = v_{12} + v_{24} + v_{26} + v_{30} + v_{32} + v_{34} + v_{44} - v_{25} - v_{28} - v_{31} - v_{33} - v_{43}$$
(162)

7.25 Species APC_f

Name APC_f

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in LB13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC}_{\cdot}\mathrm{f} = -v_{13} \tag{163}$$

7.26 Species APC_1

Name APC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R30 and as a product in LB13, R28b).

$$\frac{d}{dt}APC_1 = v_{13} + v_{62} - v_{64}$$
 (164)

7.27 Species PS_f

Name PS_f

Initial concentration $300 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB14).

$$\frac{\mathrm{d}}{\mathrm{d}t} PS.f = -v_{14} \tag{165}$$

7.28 Species PS_1

Name PS_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R30 and as a product in LB14).

$$\frac{d}{dt}PS_{-1} = v_{14} - v_{64} \tag{166}$$

7.29 Species VIIIai_f

Name VIIIai_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIai}_{\mathbf{f}} = -v_{15} \tag{167}$$

7.30 Species VIIIai_1

Name VIIIai_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in LB15, R18b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIai_1} = v_{15} + v_{48} \tag{168}$$

7.31 Species Vai_f

Name Vai_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB16).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Vai}_{\mathbf{f}} = -v_{16} \tag{169}$$

7.32 Species Vai_1

Name Vai_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in LB16, R19b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Vai} \, \mathbf{l} = |v_{16}| + |v_{50}| \tag{170}$$

7.33 Species PC_f

Name PC_f

Initial concentration 60 nmol·1⁻¹

This species takes part in one reaction (as a reactant in LB17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PC}_{-}\mathrm{f} = -v_{17} \tag{171}$$

7.34 Species PC_1

Name PC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R28 and as a product in LB17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PC} = v_{17} - v_{61} \tag{172}$$

7.35 Species TF_1

Name TF_1

Initial concentration $0.0050 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R1, R2).

$$\frac{d}{dt}TF_{-}l = -v_{18} - v_{19} \tag{173}$$

7.36 Species TF_VIIa_1

Name TF_VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R3, R4, R21 and as a product in R1, R3b, R4c, R5b).

$$\frac{d}{dt}TF_{-}VIIa_{-}I = v_{18} + v_{21} + v_{24} + v_{26} - v_{20} - v_{22} - v_{52}$$
(174)

7.37 Species TF_VII_1

Name TF_VII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R5 and as a product in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF_{-}VII_1} = |v_{19}| - |v_{25}| \tag{175}$$

7.38 Species TF_VIIa_IX_1

Name TF_VIIa_IX_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R3b and as a product in R3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF_{-}VIIa_{-}IX_{-}I} = v_{20} - v_{21} \tag{176}$$

7.39 Species TF_VIIa_IXa_1

Name TF_VIIa_IXa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF_{-}VIIa_{-}IXa_{-}I} = 0 \tag{177}$$

7.40 Species TF_VIIa_X_1

Name TF_VIIa_X_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R4b and as a product in R4).

$$\frac{d}{dt}TF_{VII}a_{X_{-}}I = v_{22} - v_{23}$$
 (178)

7.41 Species TF_VIIa_Xa_1

Name TF_VIIa_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R4c and as a product in R4b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF_{-}VIIa_{-}Xa_{-}l} = v_{23} - v_{24} \tag{179}$$

7.42 Species TF_VII_Xa_1

Name TF_VII_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R5b and as a product in R5).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{TF_{-}VII_{-}Xa_{-}l} = v_{25} - v_{26} \tag{180}$$

7.43 Species IXa_VIIIa_1

Name IXa_VIIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R8 and as a product in R6, R8b).

$$\frac{d}{dt}IXa_VIIIa_l = |v_{27}| + |v_{30}| - |v_{29}|$$
 (181)

7.44 Species Xa_Va_1

Name Xa_Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R13, R14 and as a product in R7, R15b).

$$\frac{d}{dt}Xa_{-}Va_{-}l = |v_{28}| + |v_{42}| - |v_{39}| - |v_{40}|$$
(182)

7.45 Species IXa_VIIIa_X_1

Name IXa_VIIIa_X_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R8b and as a product in R8).

$$\frac{d}{dt}IXa_VIIIa_X_1 = |v_{29}| - |v_{30}|$$
 (183)

7.46 Species V_Xa_1

Name V_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R9b and as a product in R9).

$$\frac{d}{dt}V_{-}Xa_{-}l = |v_{31}| - |v_{32}| \tag{184}$$

7.47 Species VIII_Xa_1

Name VIII_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R10b and as a product in R10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIII}_{-}\mathrm{Xa}_{-}\mathrm{l} = |v_{33}| - |v_{34}| \tag{185}$$

7.48 Species IIa_f

Name IIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in R11, R12, R17, R24, R27, R33 and as a product in R11b, R12b, R15b, R17b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{IIa.f} = v_{36} + v_{38} + v_{42} + v_{46} - v_{35} - v_{37} - v_{45} - v_{55} - v_{60} - v_{68}$$
 (186)

7.49 Species V_IIa_1

Name V_IIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R11b and as a product in R11).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{V} \underline{\mathbf{I}} \mathbf{I} \mathbf{a} \underline{\mathbf{I}} = |v_{35}| - |v_{36}| \tag{187}$$

7.50 Species VIII_IIa_1

Name VIII_IIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R12b and as a product in R12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIII}\underline{\mathrm{IIa}}\underline{\mathrm{I}} = |v_{37}| - |v_{38}| \tag{188}$$

7.51 Species Xa_Va_II_l

Name Xa_Va_II_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R15 and as a product in R13).

$$\frac{d}{dt}Xa_{Va_{II}} = v_{39} - v_{41}$$
 (189)

7.52 Species Xa_Va_mIIa_1

Name Xa_Va_mIIa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R15b and as a product in R14, R15).

$$\frac{d}{dt}Xa_{Va}mIIa_{1} = v_{40} + v_{41} - v_{42}$$
 (190)

7.53 Species XI_f

Name XI_f

Initial concentration $30 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in R17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{XI}_{-}\mathrm{f} = -v_{45} \tag{191}$$

7.54 Species XI_IIa_1

Name XI_IIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R17b and as a product in R17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{XI_IIa_I} = v_{45} - v_{46} \tag{192}$$

7.55 Species XIa_1

Name XIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R31, R32 and as a product in R17b, R31b).

$$\frac{d}{dt}XIa_{\perp}I = v_{46} + v_{66} - v_{65} - v_{67}$$
 (193)

7.56 Species APC_PS_1

Name APC_PS_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in R18, R19 and as a product in R18b, R19b, R30).

$$\frac{d}{dt}APC_PS_1 = v_{48} + v_{50} + v_{64} - v_{47} - v_{49}$$
(194)

7.57 Species APC_PS_VIIIa_1

Name APC_PS_VIIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R18b and as a product in R18).

$$\frac{\mathrm{d}}{\mathrm{d}t} APC_PS_VIIIa_l = |v_{47}| - |v_{48}| \tag{195}$$

7.58 Species TFPI_f

Name TFPI_f

Initial concentration $2.5 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{-}\mathrm{f} = -v_{51} \tag{196}$$

7.59 Species AT_f

Name AT_f

Initial concentration $3400 \text{ nmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in R22, R23, R24, R29, R32).

$$\frac{\mathrm{d}}{\mathrm{d}t} AT_{-}f = -|v_{53}| - |v_{54}| - |v_{55}| - |v_{63}| - |v_{67}|$$
(197)

7.60 Species IIa_AT_f

Name IIa_AT_f

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in R24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IIa_AT_f} = v_{55} \tag{198}$$

7.61 Species TFPI_Xa_1

Name TFPI_Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R21 and as a product in R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{-}\mathrm{Xa}_{-}\mathrm{l} = |v_{51}| - |v_{52}| \tag{199}$$

7.62 Species TFPI_Xa_TF_VIIa_1

Name TFPI_Xa_TF_VIIa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in R21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{-}\mathrm{Xa}_{-}\mathrm{TF}_{-}\mathrm{VIIa}_{-}\mathrm{l} = v_{52} \tag{200}$$

7.63 Species APC_PS_Va_1

Name APC_PS_Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R19b and as a product in R19).

$$\frac{d}{dt}APC_PS_Va_1 = v_{49} - v_{50}$$
 (201)

7.64 Species IXa_AT_f

Name IXa_AT_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R22).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IXa}_{-}\mathrm{AT}_{-}\mathrm{f} = v_{53} \tag{202}$$

7.65 Species Xa_AT_f

Name Xa_AT_f

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in R23).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Xa_AT_f} = v_{54} \tag{203}$$

7.66 Species VII_Xa_1

Name VII_Xa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R16b and as a product in R16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VII}_{-}\mathrm{Xa}_{-}\mathrm{I} = v_{43} - v_{44} \tag{204}$$

7.67 Species V_mIIa_1

Name V_mIIa_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R25b and as a product in R25).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{V}_{-}\mathbf{m}\mathbf{IIa}_{-}\mathbf{I} = v_{56} - v_{57} \tag{205}$$

7.68 Species VIII_mIIa_1

Name VIII_mIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R26b and as a product in R26).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{VIII_mIIa_l} = |v_{58}| - |v_{59}| \tag{206}$$

7.69 Species TM_1

Name TM_1

Initial concentration $1 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in R27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TM}.1 = -v_{60} \tag{207}$$

7.70 Species IIa_TM_1

Name IIa_TM_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R28 and as a product in R27, R28b).

$$\frac{d}{dt} \text{IIa_TM_1} = |v_{60}| + |v_{62}| - |v_{61}| \tag{208}$$

7.71 Species IIa_TM_PC_1

Name IIa_TM_PC_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R28b and as a product in R28).

$$\frac{d}{dt} IIa_TM_PC_l = |v_{61}| - |v_{62}|$$
 (209)

7.72 Species mIIa_AT_1

Name mIIa_AT_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mIIa_AT_1} = v_{63} \tag{210}$$

7.73 Species XIa_IX_1

Name XIa_IX_1

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R31b and as a product in R31).

$$\frac{d}{dt}XIa_{1}IX_{1} = v_{65} - v_{66}$$
 (211)

7.74 Species LIPID

Name LIPID

Initial concentration $170000 \text{ nmol} \cdot l^{-1}$

This species takes part in 18 reactions (as a reactant in LB1, LB2, LB3, LB4, LB5, LB6, LB7, LB8, LB9, LB10, LB11, LB12, LB13, LB14, LB15, LB16, LB17 and as a product in R15b).

$$\frac{d}{dt}LIPID = 100 v_{42} - 100 v_1 - 100 v_2 - 100 v_3 - 100 v_4 - 100 v_5
- 100 v_6 - 100 v_7 - 100 v_8 - 100 v_9 - 100 v_{10} - 100 v_{11}
- 100 v_{12} - 100 v_{13} - 100 v_{14} - 100 v_{15} - 100 v_{16} - 100 v_{17}$$
(212)

7.75 Species alpha2M_1

Name alpha2M_1

Initial concentration $2600 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R33, R34).

$$\frac{d}{dt}alpha2M_{-}l = -|v_{68}| - |v_{69}|$$
 (213)

7.76 Species alpha2M_IIa_1

Name alpha2M_IIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{alpha2M_IIa_l} = v_{68} \tag{214}$$

7.77 Species alpha2M_Xa_1

Name alpha2M_Xa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{alpha}2\mathrm{M}_{-}\mathrm{Xa}_{-}\mathrm{I} = v_{69} \tag{215}$$

7.78 Species AT_XIa_1

Name AT_XIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R32).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AT}_{-}\mathrm{XIa}_{-}\mathrm{I} = v_{67} \tag{216}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany