Association Rules

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

What is a rule

• A rule is of the form $X \Rightarrow Y$

X and Y are itemsets

- X is the antecedent, Y is the consequent
- The **confidence** of the rule is:

$$conf(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

Confidence of a rule

• The confidence of the rule $X \Rightarrow Y$ is:

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}$$

ullet This is the conditional probability of $X\ U\ Y$ occurring in a transaction, given that X occurs in the transaction

Confidence of a rule (cont.)

```
tid Set of items

1    Bread, Jam, Juice

2    Tofu, Juice, Tomatoes

3    Bread, Strawberries, Tofu, Juice

4    Tofu, Juice, Tomatoes

5    Strawberries, Juice, Tomatoes
```

```
conf(\{tofu, juice\} \Rightarrow \{tomatoes\}) = ?
```

X and Y are sets of items

$$conf(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

- The "union" in the above definition is confusing for some people, because conditional probability definitions use "intersection"
- Remember that that the set of transactions containing X U Y is the set of transactions containing X intersected with the set of transactions containing Y
- The set of transactions containing " $X \cap Y$ " is **irrelevant** for the purposes of computing confidence, e.g., **in the previous exercise**, {tofu, juice} \cap {tomato} is an empty set

Lift of a rule

• The lift of the rule $X \Rightarrow Y$ is:

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X) \sup(Y)}$$

 This is the ratio between the observed support and the expected support if X and Y were independent

Exercise

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}$$

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)\sup(Y)}$$

Rule	$\begin{array}{ c c } \textbf{Support} \\ \sup(X \cup Y) \end{array}$	Confidence	Lift
$A \Rightarrow D$			
$C \Rightarrow A$			
$A \Rightarrow C$			
$B \& C \Rightarrow D$			

Association rule (minsup, minconf)

• Let X, Y be two itemsets; the rule $X \Rightarrow Y$ is an association rule of minimum support minsup and minimum confidence minconf if:

$$\sup(X\Rightarrow Y) \ge \min\sup$$

and
 $\operatorname{conf}(X\Rightarrow Y) \ge \min \operatorname{conf}$

Summary

Things to remember

- Association rule of minsup and minconf
- The concepts of **confidence** and **lift**

Exercises for TT11-TT12

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - $^-$ Exercises 4.9 \rightarrow 1-3, 5, 7-8
 - $^-$ Exercises 5.7 ightarrow 1-5
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.1.5 \to 6.1.1 6.1.7$
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - $^-$ Exercises 5.10 \rightarrow 2-7