Machine Learning and Al

Stats from Survey

Stats from Survey

- To prepare myself
- Learning/Update my knowledge with latest stuff
- Leverage the learning in my projects
- Look at data science opportunity

What will I get of out these sessions?

- Intermediate expertise with python and popular ML / Deep Learning libraries
 - Python the most preferred language in the world of AI/ML
 - numpy, pandas, scikit-learn, matplotlib,
 - Deeplearning libraries tensorflow, Keras
- Introductory theory of Machine Learning
 - Basics of Linear Algebra and Probability just enough to get your foundations in place
- Machine Learning techniques like: Regression, Decision Trees and Neural Networks (deep learning)
- Well equipped to look for use cases in your area
- OPTIONAL: tailor a learning path based on your individual needs

What will not be covered

- Mathematical theory of machine learning
- Teach you all the details of individual libraries
- Expertise in Production level coding
- Equip you for data science Competitions

Structure?

- Lectures with hands-on Demos
 - ► Focus will hands-on with just enough theory
- Weekly assignments
- You need to commit some time for self exploration apart from attending sessions.

First Look

Basic Terms

- Machine Learning(ML) Application of statistics using computer algorithms to find patterns in data. E.g. Spelling autocorrect, Google Now, Cortana, Amazon recommendations etc
- Artificial Intelligence (AI)

 Extending ML to have machines perform tasks previously only feasible by humans like playing chess, self driving cars, voice and face recognition
- Deep-Learning (DL) A form of machine learning algorithm inspired by human brain. It is good for things like language and vision related tasks – self driving cars, intelligent robots, medical diagnosis
 - Problems that are hard to describe but easy to do by humans

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Why now?

- Higher Computing power with special purpose hardware (GPU)
- Availability of high volume data auto generated in digital world
- Newer Advances in Computational Models

Some examples

- Sports Seen the movie Moneyball?
 - recruiting bargain-bin players whom the scouts have labeled as flawed, but have gamewinning potential
- Financial
 - ► Fraud detection, credit approvals, process automations (OCR + ML)
- ► Medical
 - Imaging, smart robot guided surgeries, process automations (insurance), predictive health care (IOTs/ wearables)
- Autonomous Vehicles
 - ► Self driving Cars, flying cars, robotic pets with emotions and many more like that
- Consumer market
 - **■** E-commerce, devices, mobile and IOT driven applications
- And the list keeps growing

Supervised Machine Learning

Setting up the problem

What is machine learning

■ Titanic Survivors

_		5.1				011.0			_		
Passenger	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0		Braund, Mr. Owen Harris	male	22	1		0 A/5 21171	I 7.25		S
2	1	1	1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1		0 PC 17599	71.2833	C85	С
3	1	3	B Heikkinen, Miss. Laina	female	26	C		0 STON/O2	7.925		S
4	1	1	1 Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1		0 113803	53.1	C123	S
5	0	3	3 Allen, Mr. William Henry	male	35	C		0 373450	8.05		S
6	0	3	3 Moran, Mr. James	male		C		0 330877	8.4583		Q
7	0	1	1 McCarthy, Mr. Timothy J	male	54	C		0 17463	51.8625	E46	S
8	0	3	Palsson, Master. Gosta Leonard	male	2	3		1 349909	21.075		S
9	1	3	3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	C		2 347742	11.1333		S
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1		0 237736	30.0708		С
11	1	3	3 Sandstrom, Miss. Marguerite Rut	female	4	1		1 PP 9549	16.7	G6	S
12	1	1	1 Bonnell, Miss. Elizabeth	female	58	C		0 113783	26.55	C103	S
13	0	3	3 Saundercock, Mr. William Henry	male	20	C		0 A/5. 2151	8.05		S
14	0	3	3 Andersson, Mr. Anders Johan	male	39	1		5 347082	31.275		S
15	0	3	3 Vestrom, Miss. Hulda Amanda Adolfina	female	14	C		0 350406	7.8542		S
16	1	2	2 Hewlett, Mrs. (Mary D Kingcome)	female	55	C		0 248706	16		S
17	0	3	Rice, Master. Eugene	male	2	4		1 382652	29.125		Q
18	1	2	Williams, Mr. Charles Eugene	male		C		0 244373	13		S

Can we predict "survived" based on other parameters?

Scatter Plot

what are we trying to do?

- Given sample data (X)
- Trying to predict outcome (survived / did-not-survive) (y)
- Develop rules/models using this data that can be used to predict survival chances for a future disaster
- But easiest way is to just learn the rule for each sample data point
 - This is will be memorizing and not learning can you think of other examples?

Memorization ≠ Learning

So what are we trying to do?

So what are we trying to do?

Supervised Learning – Predicting House prices

Supervised Learning – Sentiment analysis

Unsupervised Learning – Document Retrieval

Unsupervised Learning – Product Reco

Supervised Learning – Visual Product Reco

Learning types

► Supervised Learning

- Given X^{Train} and Y^{Train}
- ► Learn relationship: X^{Train} -> Y^{Train}
- Use relationship to predict output for new set of inputs

Learning types

Unsupervised Learning

- Given X^{Train}
- Try to find common patterns to segment /cluster the data
- ■The trained system predicts the segment/cluster a new data belongs to

Learning types

► Reinforcement Learning

Learn from responses system gets for some action taken and slowly become more intelligent in taking right steps

■ Example – chess playing program trained to beat

human champs

One of the hottest areas

