Análise de circuitos següenciais

As técnicas para análise de circuitos seqüenciais que implementam uma certa máquina de estados finitos, em geral, dividem-se em duas etapas:

- 1. determinar as funções que determinam o próximo estado e as saídas
 - especificar as equações que representem a lógica do circuito e as saídas de cada flip-flop (estado corrente);
 - especificar as equações que determinem as transições entre dois pulsos de *clock*;
 - construir a *tabela de transições* para cada uma das combinações das entradas, indicando quais os próximos estados;
 - identificar todas as combinações que representem um mesmo estado e reescrevêlas em uma tabela de estados;
- 2. construir as tabelas de estados/saídas que especifiquem o comportamento do circuito para todas as combinações das entradas e do estado corrente:
 - verificar as funções das saídas em relação às entradas e aos estados correntes;
 - após avaliar todas as combinações de entradas e estados, combinar a tabela de estados com essas informações e criar a tabela de estados/saídas, relacionando cada saída ao proximo estado.

Exemplo 1:

Considerar o circuito abaixo com um *flip-flop* tipo D.

Tabela de transições

$Q_t \setminus xy$	00	01	10	11
0	0	1	0	1
1	1	1	0	0
		Q_{t+1}		

Equações de transições

$$D = x' \cdot Q + y \cdot Q'$$

$$Q_{t+1} = x' \cdot Q_t + y \cdot Q'_t$$

Tabela de estados/saídas

Diagrama de estados

Considerar o circuito abaixo com dois flip-flops tipo JK.

Tabela de transições

S_1	S_2	Χ	S_1	S_2	saída
(t)	(t)		(t+1)	(t+1)	

0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Equações de transições

$$saida = s_1 \bullet s_2 \bullet x$$

$$J_1 = s_2 \cdot x' e K_1 = s_2 + x$$

$$J_2 = s_1 + x e K_2 = x'$$

$$\begin{split} &Q_{t+1} = J_1 \ Q'_t + K_1' \ Q_t \\ &s_1 = s_2 \bullet x' \bullet s_1' + (s_2 + x)' \bullet s_1 \\ &= s_2 \bullet x' \bullet s_1' + s_2' \bullet x' \bullet s_1 \\ &= x' \bullet (s_2 \bullet s_1' + s_2' \bullet s_1) \\ &= x' \bullet (s_1 \quad \textbf{xor} \quad s_2) \end{split}$$

$$\begin{split} Q_{t+1} &= J_2 \ Q'_t + K_2' \ Q_t \\ S_2 &= (X+S_1)^{\bullet} S_2' + (X')'^{\bullet} S_2 \\ &= (X^{\bullet} S_2') + (S_1^{\bullet} S_2') + (X^{\bullet} S_2) \\ &= X^{\bullet} (S_2' + S_2) + (S_1^{\bullet} S_2') \\ &= X + (S_1 \cdot S_2') \end{split}$$

Tabela de estados/saídas

51	3 2	X=U		Salua	
S₁	S ₂	x=0	x=1	saída	

_							
	0	0	0	0	0	1	0
Ī	0	1	1	0	0	1	0
Ī	1	0	1	1	0	1	0
ſ	1	1	Λ	0	Λ	1	0/1

Diagrama de estados

