1

(2003S)

Matrices and Determinants

EE24BTECH11001 - ADITYA TRIPATHY

of a is

a) -1

b) 1

c) 0

d) no real values

12. Given

$$2x - y + 2z = 2,$$

$$x - 2y + z = -4,$$

$$x + y + \lambda z = 4$$

then the value of λ such that the given system of equation has NO solution, is

(2004S)

a) 3

b) 1

c) 0

d) -3

13. Is $A = \begin{pmatrix} \alpha & 2 \\ 2 & \alpha \end{pmatrix}$ and $|A^3| = 125$ then the value α is

(2004S)

d) ± 5

14. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 2005S and $A^{-1} = \left(\frac{1}{6}(A^2 + cA + dI)\right)$, then the value of c and d(2005S)

a) (-6, -11)

b) (6, 11)

c) (-6, 11)

d) (6, -11)

15. If $P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$ and $A = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ and $Q = PAP^T$ and $X = P^TQ^{2005}P$ then X is equal to

- a) $\begin{vmatrix} 1 & 2005 \\ 0 & 1 \end{vmatrix}$ b) $\begin{vmatrix} 4 + 2005 \sqrt{3} & 6015 \\ 2005 & 4 2005 \sqrt{3} \end{vmatrix}$ c) $\frac{1}{4} \begin{vmatrix} 2 + \sqrt{3} & 1 \\ -1 & 2 \sqrt{3} \\ 2005 & 2 \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{vmatrix}$

16. Consider 3 point

$$P = (-\sin(\beta - \alpha), -\cos\beta), Q = (\cos(\beta - \alpha), \sin\beta)$$

and

$$R = (\cos(\beta - \alpha + \theta), \sin(\beta - \theta))$$

where $0 < \alpha, \beta, \theta < \frac{\pi}{4}$. Then,

(2008)

- a) P lies on the same segment RQ
- b) Q lies on the line segment PR
- c) R lies on the line segment QP
- d) P,Q,R are non-collinear
- 17. The number of 3x3 matrices A whose entries are either 0 or 1 and for which the system A y = 0has exactly two distinct solutions is

		$\begin{vmatrix} 1 \\ \omega \\ \omega^2 \end{vmatrix}$	$egin{array}{ccc} a & b \\ 1 & c \\ \omega & 1 \end{array}$	
	where each of a, b and c is either ω or ω^2 . Then the number of distinct matrices in the set S is (2008)			
a	a) 2	b) 6	c) 4	d) 8
19.	Let $P = (a_{ij})$ be 3x3 matrix and let $Q = (b_{ij})$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is (2012)			
a	a) 2^{10}	b) 2 ¹¹	c) 2 ¹²	d) 2 ¹³
20. If P is a 3x3 matrix such that $P^T = 2P + I$, where P^T is the transpose of P and I is the 3x3 identity				
:	matrix, then there exist	s a column matrix $X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	(2012)
a	$PX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$		b) $PX = X$	
C	PX = 2X		d) $PX = -X$	
21.	1. Let $P = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{pmatrix}$ and I be the identity matrix of order 3. If $Q = \begin{pmatrix} q_{ij} \end{pmatrix}$ is a matrix such that $P^{50} - Q = I$, then $\frac{q_{31} + q_{32}}{q_{21}}$ equals (JEEAdv.2016)			
	$P^{50} - Q = I$, then $\frac{q_{31} + q_{32}}{q_{21}}$	² equals		(JEEAdv.2016)
a	a) 52	b) 103	c) 201	d) 205

c) 168

18. Let $\omega \neq 1$ be a cube root of unity and S be the set of all non-singular matrices of the form

d) 2

b) $2^9 - 1$

a) 0