FCC Test Report

for

PenPal Wireless

Model No. : PP2xx, AMW059xx

FCC ID : ZU2PP200RF

Report Number: RF- P430-1107-397

Date of Receipt: August 13, 2011

Date of Report : August 25, 2011

Prepared for

Salient Technology International LLC

PO Box 23425, Pleasant Hill, CA 94523, USA

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiw

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546

Page: 1/42

Verification of Compliance

Equipment under Test : PenPal Wireless

Model No. : PP2xx, AMW059xx

FCC ID : ZU2PP200RF

Applicant : Salient Technology International LLC

Address : PO Box 23425, Pleasant Hill, CA 94523, USA

Applicable Standards : 47 CFR part 15, Subpart C

Date of Testing : August 13 ~ 25, 2011

Deviation : N/A

Condition of Test Sample : Engineering Sample

We, **Central Research Technology Co.**, hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY: (ushy Chen, DATE: Ang. 16, 2011

(Cathy Chen/ Technical Manager)

APPROVED BY: \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2}\),

(Tsun-Yu Shih/General Manager)

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Contents

1	General Description	4
1.1	General Description of EUT	4
1.2	Applied standards	
1.3	The Support Units	
1.4	Layout of Setup	8
1.5	Test Capability	9
1.6	Measurement Uncertainty	
2	Field Strength of Fundamental	12
2.1	Applied standard	12
2.2	Test Instruments	12
2.3	Measurement Procedure	13
2.4	Test configuration	14
2.5	Test Data	15
3	Radiated Emission Measurement	22
3.1	Limit for Radiated Emission Measurement	22
3.2	Test Instruments	23
3.3	Test Procedures	24
3.4	Test Configuration	25
3.5	Tost Results	26

Attachment 1 – Photographs of the Test Configurations

Attachment 2 - External Photographs of EUT

Attachment 3 –Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

Equipment under Test : PenPal Wireless

Model No. : PP2xx, AMW059xx

Power in : 3Vdc by the internal battery

Test Voltage : 3Vdc by the internal battery

Channel Numbers : 16

Frequency Range : 2402MHz ~ 2478MHz

Channel Frequency : 2402MHz, 2408MHz, 2414MHz, 2419MHz, 2423MHz,

2424MHz, 2431MHz, 2439MHz, 2444MHz, 2448MHz, 2456MHz, 2459MHz, 2466MHz, 2472MHz, 2475MHz,

2478GHz

Modulation : GFSK

Function Description :

The EUT is used to transmit control command. Please refer to the user's manual for the details.

Perform the function of EUT continuously by executing the test program supplied by manufacturer.

Since the EUT is considered a portable unit, it was pre-tested on the positioned in each of 3 axis. Therefor only the test data of the worse case - Z axiz was used for Radiated test.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Applied standards 1.2

(1) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
Frequency of Emission (MHZ)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

(2) Field strength of emissions

According to 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Field Strength	Field Strength	
of Fundamental	of Harmonics	
(millivolts/meter)	(microvolts/meter)	
50	500	
50	500	
50	500	
250	2500	
	of Fundamental (millivolts/meter) 50 50 50	

TEL.: 886-2-25984542

FAX.: 886-2-25984546

(3) Radiated Emission Requirement

According to 15.249(d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

For intentional device, according to §15.209, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
960 – 1610	3	500	54.0
above 1610	3	500	54.0

Note 1- The lower limit shall apply at the transition frequency.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page : 7/42

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

² Above 38.6

1.3 The Support Units

No.	Unit	Model No./ Serial No.	Trade Name	Power Cord	Supported by lab.
N/A	*	*	*	*	*

1.4 Layout of Setup

EUT

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
N/A	*	*	*	*	*	*	*

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.5 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4:2003.

Test Room	Type of Test Room	Descriptions
TR1	10m semi-anechoic chamber	Complying with the NSA requirements in
IKI	(23m×14m×9m)	documents CISPR 22 and ANSI
TD44	3m semi-anechoic chamber	C63.4:2003 for the radiated emission
TR11	$(9m \times 6m \times 6m)$	measurement.
TR13	Took Site	For the RF conducted emission
11(13	Test Site	measurement.
TR5	Shielding Room	For the conducted emission measurement.
IKS	(8m×5m×4m)	For the conducted emission measurement.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
	R.O.C.	TAF	0905	ISO/IEC 17025
	(Taiwan)	IAF	0903	
Accreditation			SL2-IN-E-0033,	
Certificate	R.O.C.		SL2-IS-E-0033,	
		BSMI	SL2-R1/R2-E-0033,	ISO/IEC 17025
	(Taiwan)		SL2-A1-E-0033	
			SL2-L1-E-0033	
	USA	FCC	474046, TW1053	Test facility list
		100		& NSA Data
Site Filing	Filing Canada	IC	4699A-1, -3	Test facility list
Document	Cariaua	IC	4099A-1, -3	& NSA Data
	lonon	VCCI	R-1527,C-1609,T-131,T-1441,	Test facility list
	Japan	VCCI	G-10	& NSA Data
Authorization	Germany	TUV	10021687	ISO/IEC 17025
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty		
Radiated Emission: (30MHz~200MHz)	Horizontal 3.5dB; Vertical 3.8dB		
Radiated Emission: (200MHz~1GHz)	Horizontal 3.9dB; Vertical 3.9dB		
Radiated Emission: (1GHz~18GHz)	Horizontal 3.5dB; Vertical 3.6dB		
Radiated Emission: (18GHz~26.5GHz)	Horizontal 4.4dB; Vertical 4.5dB		
Line Conducted Emission	ESH2-Z5	3.1dB	
Line Conducted Emission	ENV 4200	2.8dB	

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2 Field Strength of Fundamental

Result: Pass

2.1 Applied standard

Fundamental Frequency	Peak	Average
□ 902 – 928 MHz	500mV/m (114dBuV/m)	50mV/m (94dBuV/m)
☑ 2400 – 2483.5 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 5725 – 5875 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 24.0 – 24.25 GHz	2500 mV/m (128dBuV/m)	250 mV/m (108dBuV/m)

2.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration
Equipment	wanuiacturer	Serial No.	Calibration Date	Due Date
Spectrum Analyzer	Agilent	E4407B/ MY45106795	2011/5/2	2012/5/2
Antenna	EMCO	3117/82847	2011/3/1	2012/3/1
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-5A/ 742229	2010/12/15	2011/12/15
RF Cable	N/A	N/A/C0081	2011/4/19	2011/10/19
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	2011/4/17	2012/4/17

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
1MHz	1MHz	Peak	Maxhold	Peak
1MHz	10Hz	Peak	Maxhold	Average

Climatic Condition

Ambient Temperature : 28°C Relative Humidity : 54%

2.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at operating frequency.
- c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it should be placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT is set 3m away from the receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine higher emission level and record it.
- g. Then measure frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. Set the spectrum detector to be Peak or Average to find out the maximum level occurred.
- i. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- j. Change the receiving antenna to another polarization to measure radiated emission by following step e. to i. again.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Ta

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test configuration 2.4

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 15/42

2.5 Test Data

Test Mode : Continuous Transmitting Tester : Liu

Frequency (MHz)	Polarization	/-ID\/\		Factor	Output Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
(2)		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
2402	V	84.72	84.57	0.92	85.64	85.49	114	94	28.36	8.51
	Н	76.87	76.41	0.92	77.79	77.33	114	94	36.21	16.67
2456	V	85.49	85.10	1.05	86.54	86.15	114	94	27.46	7.85
	Н	78.24	77.78	1.05	79.29	78.83	114	94	34.71	15.17
2478	V	82.49	82.36	1.11	83.60	83.47	114	94	30.40	10.53
	Н	79.85	79.76	1.11	80.96	80.87	114	94	33.04	13.13

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Output Field Strength

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2402MHz, Vertical Polarization - Peak

2402MHz, Vertical Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2402MHz, Horizontal Polarization - Peak

2402MHz, Horizontal Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2456MHz, Vertical Polarization - Peak

2456MHz, Vertical Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2456MHz, Horizontal Polarization - Peak

2456MHz, Horizontal Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2478MHz, Vertical Polarization - Peak

2478MHz, Vertical Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2478MHz, Horizontal Polarization - Peak

2478MHz, Horizontal Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3 Radiated Emission Measurement

Result: PASS

3.1 Limit for Radiated Emission Measurement

Limit for Harmonics Radiation Emission Measurement

Fundamental Frequency	Field Strength of Harmonics
□ 902 – 928 MHz	500 uV/m (54dBuV/m)
☑ 2400 – 2483.5 MHz	500 uV/m (54dBuV/m)
□ 5725 – 5875 MHz	500 uV/m (54dBuV/m)
□ 24.0 – 24.25 GHz	2500 uV/m(68dBuV/m)

Limit for Other Emissions except Harmonics

Frequency (MHz)	Quasi-peak (dBμV/m)				
30 to 88	40				
88 to 216	43.5				
216 to 960	46				
960 to 1000	54				
Frequency (MHz)	Peak (dBμV/m)	Average (dBμV/m)			
Above 1000	74 54				

Note 1- The lower limit shall apply at the transition frequency.

Note 2- Additional provisions may be required for cases where interference occurs.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11. Lane 41. Fushuen St., Jungshan Chiu, Taipei.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration	
Equipment	Wanulacturer	Serial No.	Calibration Date	Due Date	
Spectrum Analyzer	Agilent	E4407B/ MY45106795	2011/5/2	2012/5/2	
EMI Test Receiver	R&S	ESCI/100019	2011/5/25	2012/5/25	
Broadband Antenna	EMCO	3142C/52088	2011/5/19	2012/5/19	
Antenna	EMCO	3117/82847	2011/3/1	2012/3/1	
Pre-Amplifier	MITEQ	JS4-00101800-28-5A/ 742229	2010/12/15	2011/12/15	
Pre-Amplifier	MITEQ	JS4-00101800-28-1 0P/1498979	2010/12/10	2011/12/10	
Pre-Amplifier	Mini Circuit	ZKL-2/004	2011/2/7	2012/2/7	
RF Cable	RF Cable N/A		2011/8/6	2012/2/6	
RF Cable	N/A	N/A/C0081	2011/4/19	2011/10/19	
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	2011/4/17	2012/4/17	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	1MHz	Peak	Maxhold	Above 1GHz Peak
1MHz	10Hz	Peak	Maxhold	Above 1GHz Average

Climatic Condition

Ambient Temperature: 28°C; Relative Humidity: 52%

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

FCC Test Report

Report No.: RF- P430-1107-397

Page: 24/42

3.3 Test Procedures

a. The EUT was set up per the test configuration figured in the next section of this chapter to

simulate the typical usage per the user's manual.

b. A software provided by client enabled the EUT to transmit and receive data at operating

frequency.(if necessary)

c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8

meters above the reference ground plane in the semi-anechoic chamber. If the EUT is

floor-standing equipment, it should be placed on a non-conducted support with a height of 12

millimeters above the reference ground plane in the semi-anechoic chamber.

d. The EUT is set 3m away from the interference receiving antenna.

e. Rapidly sweep the signal in the test frequency range by using the spectrum through the

Maximum-peak detector.

f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4

meters above the reference ground plane continuously to determine at least six frequencies

associated with higher emission levels and record them.

g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT

and positioning the receiving antenna height to determine the maximum level.

h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per

CISPR 16-1 to find out the maximum level occurred.

i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or

Average to find out the maximum level occurred, if any.

Record frequency, azimuth angle of the turntable, height, and polarization of the receiving

antenna and compare the maximum level with the required limit.

k. Change the receiving antenna to another polarization to measure radiated emission by

following step e. to j. again.

I. If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit

specified, then the emission values presented will be the peak value only. Otherwise, accurate

Q.P. value will be measured and presented.

m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit

specified, then the emission values presented will be the peak value only. Otherwise, accurate

A.V. value will be measured and presented.

TEL.: 886-2-25984542

3.4 Test Configuration

Radiated Emission Measurement below 1000MHz

Radiated Emission Measurement above 1000MHz

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 26/42

3.5 Test Results

Band Edge

Test Mode : Continuous Transmitting

Test Distance : 3m Tester : Liu

Test Range	Polarization	Frequency (MHz)	Reading Data (dBuV)		Correction Factor	Emission (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
			PK.	AV.	(dB/m)	PK.	AV.	PK.	AV.	PK.	AV.
Lowest	٧	2400.00	105.11	87.77	-36.18	68.93	51.59	74	54	5.07	2.41
	Н	2400.00	93.89	74.18	-36.18	57.71	38.00	74	54	16.29	16.00
Highest	V	2483.55	89.02	68.66	-35.99	53.03	32.67	74	54	20.97	21.33
	Н	2483.65	85.38	67.19	-35.99	49.39	31.20	74	54	24.61	22.80

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission Level

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Lowest Channel, Vertical - Peak

Lowest Channel, Vertical - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Lowest Channel, Horizontal - Peak

Lowest Channel, Horizontal - Average

Highest Channel, Vertical - Peak

Highest Channel, Vertical - Average

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Highest Channel, Horizontal - Peak

Highest Channel, Horizontal - Average

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Transmitter Radiated Emission Measurement

Below 1000MHz

Test Mode : 2402MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2402MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2456MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2456MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Test Mode : 2478MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2478MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Above 1000MHz

Test Mode : 2402MHz, Continuous transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical **Frequency Range**: 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2402MHz, Continuous transmitting

Test Distance : 3m Tester : Liu

Polarization : Horizontal Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2456MHz, Continuous transmitting

Test Distance : 3m Tester : Liu

Polarization : Vertical Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2456MHz, Continuous transmitting

Test Distance : 3m Tester : Liu

Polarization : Horizontal Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 41/42

Test Mode : 2478MHz, Continuous transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical **Frequency Range**: 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2478MHz, Continuous transmitting

Test Distance : 3m Tester : Liu

Polarization : Horizontal Frequency Range : 1GHz ~ 25GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Attachment 1 Photographs of the Test Configurations

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Report No.: RF-P430-1107-397

Radiated Emission Measurement

Transmitter

X-AXIS

Y-AXIS

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Z-AXIS

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.
TEL.: 886-2-25984542
FAX.: 886-2-25984546

Attachment 2 External Photographs of EUT

Report No.: RF-P430-1107-397

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Sample

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Series Sample

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Attachment 3 Internal Photographs of EUT

Report No.: RF-P430-1107-397

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX:: 886-2-25984546