Attention via $\log \sum \exp \text{ energy}$

Alexander Tschantz

January 20, 2025

1 General Framework

We consider a directed graph of A nodes, where each node is a vector $\{v_a\}_{a=1}^A$ with $v_a \in \mathbb{R}^d$. Each node v_a has a set of parents $\mathcal{P}(a) \subseteq \{1, 2, \dots, A\}$.

We define a generic similarity function

$$sim(\boldsymbol{v}_a, \boldsymbol{v}_p),$$

which measures how well v_a is "explained by" or "aligned with" its parent v_p . This function may have parameters, as in a dot-product model $v_a^\top v_p$, or a conditional-probability-based model such as a Gaussian log-likelihood term $-\frac{1}{2}(v_a-v_p)^\top \Sigma^{-1}(v_a-v_p)$.

1.1 Energy Function

Each node v_a has a $\log \sum$ exp-type term over its parents. We sum these across all nodes to define the total energy:

$$E(\{\boldsymbol{v}_a\}) = -\sum_{a=1}^{A} \ln \Big(\sum_{p \in \mathcal{P}(a)} \exp(\operatorname{sim}(\boldsymbol{v}_a, \boldsymbol{v}_p)) \Big).$$

Informally, each v_a seeks to place high mass on those parents v_p yielding large similarity scores.

1.2 Gradient Updates

For a single node v_a , the gradient of the energy decomposes into two parts, reflecting two ways in which v_a can appear in the summations:

$$-\frac{\partial E}{\partial \boldsymbol{v}_{a}} = \underbrace{\sum_{\boldsymbol{p} \in \mathcal{P}(a)} \operatorname{softmax}_{\boldsymbol{p}} \left(\operatorname{sim}(\boldsymbol{v}_{a}, \boldsymbol{v}_{\boldsymbol{p}}) \right) \frac{\partial}{\partial \boldsymbol{v}_{a}} \operatorname{sim}(\boldsymbol{v}_{a}, \boldsymbol{v}_{\boldsymbol{p}})}_{\text{("being explained by its parents")}} + \underbrace{\sum_{\boldsymbol{c} : a \in \mathcal{P}(\boldsymbol{c})} \operatorname{softmax}_{\boldsymbol{a}} \left(\operatorname{sim}(\boldsymbol{v}_{\boldsymbol{c}}, \boldsymbol{v}_{a}) \right) \frac{\partial}{\partial \boldsymbol{v}_{a}} \operatorname{sim}(\boldsymbol{v}_{\boldsymbol{c}}, \boldsymbol{v}_{a})}_{\text{("explaining its children")}}.$$

Above, the summation $\sum_{p \in \mathcal{P}(a)}$ iterates over the parents of a, while $\sum_{c:a \in \mathcal{P}(c)}$ iterates over all children c such that a is in their parent set. The softmax is taken over the appropriate parent indices in each case.

1.3 Proof of Gradient (Appendix)

A full derivation, with explicit sums over $\exists \in \mathcal{P}(c)$, is given in Appendix A. There we show how collecting terms in the derivative leads precisely to the two-term decomposition above.

2 Gaussian Mixture Models (GMMs)

Setup. Let $X = [x_1, ..., x_N]$, where each $x_i \in \mathbb{R}^d$. We consider K mixture components, each with mean $\mu_k \in \mathbb{R}^d$ and covariance Σ_k . Defining π_k as the mixing proportion, a standard GMM log-likelihood term can be written in a form that matches our framework.

$$oldsymbol{A}_{ik} \ = \ \ln \pi_k \ - \ frac{1}{2} \left(oldsymbol{x}_i - oldsymbol{\mu}_k
ight)^ op oldsymbol{\Sigma}_k^{-1} (oldsymbol{x}_i - oldsymbol{\mu}_k) \quad \in \ \mathbb{R}^{N imes K}.$$

Energy.

$$E^{\mathrm{GMM}}(\boldsymbol{X}, \{\boldsymbol{\mu}_k\}) = -\sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \exp(\boldsymbol{A}_{ik})\right).$$

Gradient. If we differentiate w.r.t. μ_k , then

$$-\frac{\partial E^{\text{GMM}}}{\partial \boldsymbol{\mu}_k} = \sum_{i=1}^{N} \operatorname{softmax}_k(\boldsymbol{A}_{ik}) \; \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k).$$

Setting this gradient to zero yields the usual GMM M-step:

$$oldsymbol{\mu}_k \ = \ rac{\sum_{i=1}^N \operatorname{softmax}_k(oldsymbol{A}_{ik}) \ oldsymbol{x}_i}{\sum_{i=1}^N \operatorname{softmax}_k(oldsymbol{A}_{ik})}.$$

3 Self-Attention

Setup. Let $X = [x_1, ..., x_N]$, where each $x_i \in \mathbb{R}^d$. We define two learnable weight matrices, $W^Q, W^K \in \mathbb{R}^{d \times d}$, and construct

$$Q = W^Q X, \quad K = W^K X.$$

Let q_c be the c-th column of Q and k_b the b-th column of K. Then we define

$$\operatorname{sim}(\boldsymbol{x}_b, \boldsymbol{x}_c) \ \widehat{=} \ \boldsymbol{k}_b^{ op} \boldsymbol{q}_c.$$

On a single line, we gather these into the matrix:

$$oldsymbol{A}_{bc} = oldsymbol{k}_b^ op oldsymbol{q}_c \in \mathbb{R}^{N imes N}$$

Energy.

$$E^{\mathrm{SA}}(\boldsymbol{X}) = -\sum_{c=1}^{N} \ln \left(\sum_{b=1}^{N} \exp(\boldsymbol{A}_{bc}) \right).$$

Gradient. Differentiating w.r.t. x_i gives two terms, as each token x_i acts both as a "query" for some other tokens and a "key" for yet others:

$$-\frac{\partial E^{\mathrm{SA}}}{\partial \boldsymbol{x}_{i}} = \underbrace{\sum_{b=1}^{N} \mathrm{softmax}_{b}(\boldsymbol{A}_{b,i}) \, \boldsymbol{W}_{Q}^{\top} \boldsymbol{W}_{K} \, \boldsymbol{x}_{b}}_{(\mathrm{query \ side})} + \underbrace{\sum_{c=1}^{N} \mathrm{softmax}_{i}(\boldsymbol{A}_{i,c}) \, \boldsymbol{W}_{K}^{\top} \boldsymbol{W}_{Q} \, \boldsymbol{x}_{c}}_{(\mathrm{key \ side})}.$$

4 Cross Attention

Setup. In cross attention, we have one set of *query* vectors and a separate set of *key* vectors. Let $Q = W^Q X^Q \in \mathbb{R}^{d \times N_Q}$ and $K = W^K X^K \in \mathbb{R}^{d \times N_K}$, where X^Q has N_Q query tokens and X^K has N_K key tokens. Denote q_c as the c-th query column of Q and k_b as the b-th key column of K.

We define

$$oldsymbol{A}_{b,c} = oldsymbol{k}_b^ op oldsymbol{q}_c \in \mathbb{R}^{N_K imes N_Q}.$$

This is a matrix of pairwise similarities between keys and queries.

Energy.

$$E^{\text{Cross}}(\boldsymbol{X}^Q, \boldsymbol{X}^K) = -\sum_{c=1}^{N_Q} \ln \left(\sum_{b=1}^{N_K} \exp(\boldsymbol{A}_{b,c}) \right).$$

Minimizing this encourages each query q_c to place large mass on keys k_b that yield higher dot-products.

Gradient. As in the self-attention derivation, taking the derivative w.r.t. a single query or key token yields sums weighted by the appropriate softmax terms. For example, w.r.t. the query-side vector x_i^Q ,

$$-\frac{\partial E^{\text{Cross}}}{\partial \boldsymbol{x}_{i}^{Q}} = \sum_{b=1}^{N_{K}} \operatorname{softmax}_{b}(\boldsymbol{A}_{b,i}) \, \boldsymbol{W}_{Q}^{\top} \, \boldsymbol{W}_{K} \, \boldsymbol{x}_{b}^{K} + \dots$$

and similarly a key x_i^K appears in the "explaining children" part of the gradient.

5 Hopfield Networks (Softmax Version)

Setup. We have data vectors $\boldsymbol{X} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_N]$, each $\boldsymbol{x}_i \in \mathbb{R}^d$, and memory vectors $\boldsymbol{m}_{\mu} \in \mathbb{R}^d$ for $\mu = 1, \dots, K$. Define

$$oldsymbol{A}_{i\mu} \ = \ oldsymbol{x}_i^ op oldsymbol{m}_{\mu} \quad \in \ \mathbb{R}^{N imes K}.$$

Energy.

$$E^{\text{Hopfield}}(\boldsymbol{X}) = -\sum_{i=1}^{N} \ln \left(\sum_{\mu=1}^{K} \exp(\boldsymbol{A}_{i\mu}) \right).$$

Gradient.

$$-rac{\partial E^{ ext{Hopfield}}}{\partial oldsymbol{x}_i} \ = \ \sum_{\mu=1}^K ext{softmax}_{\mu} ig(oldsymbol{A}_{i\mu}ig) \ oldsymbol{m}_{\mu}.$$

Hence each x_i is updated toward a softmax-weighted combination of the memory vectors.

6 Slot Attention

Slot Attention can be seen as cross attention in which we normalize across slots (queries) for each token (key), rather than the usual normalization across the token dimension.

Setup. Let $X = [x_1, ..., x_N]$ be the set of tokens (e.g. image patches), where each $x_j \in \mathbb{R}^d$. We also have a set of S latent "slots": $\mu_i \in \mathbb{R}^d$ for i = 1, ..., S. As in cross attention, we define learnable transforms:

$$\mathbf{W}_K, \ \mathbf{W}_Q \ \in \ \mathbb{R}^{d \times d}.$$

The tokens serve as keys (and potentially values), while the slots serve as queries. However, the key difference is that each token decides its distribution over slots (hence the normalization is over i for each fixed token j).

Energy. We write the negative log-likelihood as a sum over tokens j = 1, ..., N, and in each term we do a log \sum exp over the slots i = 1, ..., S. Concretely,

$$E^{\mathrm{Slot}}ig(\{oldsymbol{\mu}_i\}ig) = -\sum_{j=1}^N \ln\Bigl(\sum_{i=1}^S \exp\bigl(\mathrm{sim}(oldsymbol{x}_j,oldsymbol{\mu}_i)\bigr)\Bigr),$$

where $sim(\boldsymbol{x}_i, \boldsymbol{\mu}_i) = (\boldsymbol{W}_K \, \boldsymbol{x}_i)^\top (\boldsymbol{W}_O \, \boldsymbol{\mu}_i).$

$$oldsymbol{A}_{j,i} = ig(oldsymbol{W}_K \, oldsymbol{x}_jig)^ op ig(oldsymbol{W}_Q \, oldsymbol{\mu}_iig) \quad \in \; \mathbb{R}^{N imes S}$$

Gradient. Taking the derivative w.r.t. a single slot μ_i yields

$$-\frac{\partial E^{\text{Slot}}}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^N \operatorname{softmax}_i(\boldsymbol{A}_{j,i}) \; \boldsymbol{W}_Q^\top \, \boldsymbol{W}_K \, \boldsymbol{x}_j.$$

Hence each slot μ_i aggregates information from all tokens j, but the weight is proportional to $\exp(\mathbf{A}_{j,i})$ normalized across the slots i. This produces the usual iterative update rule:

$$oldsymbol{\mu}_i^* \ = \ \sum_{j=1}^N \mathrm{softmax}_i \! \left(oldsymbol{\mu}_i^ op oldsymbol{W}_Q^ op oldsymbol{W}_K \, oldsymbol{x}_j
ight) \, oldsymbol{W}_Q^ op \, oldsymbol{W}_K \, oldsymbol{x}_j,$$

which is sometimes referred to as *inverted cross attention*.

A Proof of the Gradient Decomposition

For completeness, we provide a short derivation of the gradient expression. Recall that our energy is

$$E(\{v_a\}) = -\sum_{c=1}^{A} \ln \Big(\sum_{\exists \in \mathcal{P}(c)} \exp(\operatorname{sim}(v_c, v_{\exists})) \Big).$$

Differentiating w.r.t. v_a :

$$\frac{\partial E}{\partial \boldsymbol{v}_a} = -\sum_{c=1}^A \frac{\partial}{\partial \boldsymbol{v}_a} \ln \Big(\sum_{\boldsymbol{\vdash} \in \mathcal{P}(c)} \exp \big(\sin(\boldsymbol{v}_c, \boldsymbol{v}_{\boldsymbol{\vdash}}) \big) \Big).$$

Inside the sum, only terms $sim(\mathbf{v}_c, \mathbf{v}_{\dashv})$ with $\dashv = a$ or c = a will contribute. Carefully extracting these leads to the "being explained by parents" plus "explaining children" split in the main text:

$$-\frac{\partial E}{\partial \boldsymbol{v}_a} \ = \ \sum_{\boldsymbol{\dashv} \in \mathcal{P}(a)} \operatorname{softmax}_{\boldsymbol{\dashv}} \left(\operatorname{sim}(\boldsymbol{v}_a, \boldsymbol{v}_{\boldsymbol{\dashv}}) \right) \frac{\partial \operatorname{sim}(\boldsymbol{v}_a, \boldsymbol{v}_{\boldsymbol{\dashv}})}{\partial \boldsymbol{v}_a} \ + \ \sum_{\substack{c=1 \\ a \in \mathcal{P}(c)}}^A \operatorname{softmax}_a \left(\operatorname{sim}(\boldsymbol{v}_c, \boldsymbol{v}_a) \right) \frac{\partial \operatorname{sim}(\boldsymbol{v}_c, \boldsymbol{v}_a)}{\partial \boldsymbol{v}_a}.$$