CNN. Receptive Field

CNN

Каждый нейрон в CNN **"смотрит"** на определенный регион входного изображения. Это позволяет нейрону **выучивать** различные **паттерны**, которые есть на изображении, например, линии, какие-то детали представленных объектов.

Receptive Field - Поле восприятия

Такой определенный регион на изображении называется "Receptive Field"

Receptive Field

- Регион тензора выходного слоя, который участвовал в вычислении конкретной характеристики текущего слоя;
- Регион на изображении, куда смотрит каждая характеристика сверточной нейронной сети.

Каждой такой регион определяется свои центром и размером.

Формулы для вычисления Receptive Field

1. Расстояния между центрами Receptive Field для характеристик текущего слоя:

$$j_{out} = j_{in} * stride_{prev}$$

Ha старте $j_{in}=1$

2. Размер RF для текущего слоя:

$$r_{out} = r_{in} + (k-1) * j_{in} \label{eq:rout}$$

k -- это размер фильтра. На старте $r_{in}=1$

3. Центр RF:

$$start_{out} = start_{in} + (\frac{k-1}{2} - p) * j_{in}$$

p -- это размер padding.

n:number of features

receptive field size r:

jump (distance between two consecutive features) start : center coordinate of the first feature

k: convolution kernel size

p: convolution padding size

s : convolution stride size

 $n_{out} = \left| \frac{n_{in} + 2p - k}{s} \right| + 1$ $r_{out} = r_{in} + (k-1) * j_{in}$ $start_{out} = start_{in} + \left(\frac{k-1}{2} - p\right) * j_{in}$

Layer 0:

yer 0:
$$n_0 = 5; r_0 = 1; j_0 = 1;$$

 $start_0 = 0.5$

Copy1: $k_1 = 3$; $p_1 = 1$; $s_1 = 2$

 $n_1 = 3$; $r_1 = 3$; $j_1 = 2$; Layer 1: $start_1 = 0.5$

 $n_1 = 3$; $r_1 = 3$; $j_1 = 2$; Layer 1: $start_1 = 0.5$

Conv2: $k_2 = 3$: $p_2 = 1$: $s_2 = 2$

 $n_3 = 2; r_3 = 7; j_3 = 4;$ $start_1 = 0.5$

Что дает понять Receptive Field

- Для задач image segmentation и object detection важно понимать, какого размера Receptive Field, чтобы оценить, насколько хорошо нейрон сможет охватывать объекты на изображении.
- Object Detector плохо будет работать с большими объектами, если у него маленький Receptive Field.
- Исходя из допустимого размера Receptive Field регулируется глубина сети и , в целом, вся ее архитектура.

Зависимость точности от размера RF

Effective Receptive Field

- Не все пиксели, входящие в Receptive Field выходного нейроны, одинаково влияют.
- Центр RF больше всего влияет на выходной нейрон, так как могут быть еще и skip connection или другие связи, где центр RF будет чаще участвовать, чем те, что на окраине.
- Такое влияние центра RF проявляется при вычислении градиентов. Именно здесь видно, кто вносит бОльший вклад.

https://arxiv.org/pdf/1701.04128.pdf

Effective Receptive Field

ConvNet Model	Receptive Field (r)	Effective Stride (S)	Effective Padding (P)	Model Year
alexnet_v2	195	32	64	2014
vgg_16	212	32	90	2014
mobilenet_v1	315	32	126	2017
mobilenet_v1_075	315	32	126	2017
resnet_v1_50	483	32	239	2015
inception_v2	699	32	318	2015
resnet_v1_101	1027	32	511	2015
inception_v3	1311	32	618	2015
resnet_v1_152	1507	32	751	2015
resnet_v1_200	1763	32	879	2015
inception_v4	2071	32	998	2016
inception_resnet_v2	3039	32	1482	2016

