```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing, svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import Ridge,Lasso
```

Out[4]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
	0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
	1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
	2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
	3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
	4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
	1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
	1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
	1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
	1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [5]: df.head()

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700

In [6]: df.tail()

Out[6]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
1533	1534	sport	51	3712	115280	1	45.069679	7.70492	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.41348	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227	5990
1537	1538	рор	51	1766	54276	1	40.323410	17.56827	7900

In [7]: df.describe()

Out[7]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64
	67		- \

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

```
In [13]: plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True)
```

Out[13]: <Axes: >


```
ep age
```

The dimension of X_train is (1076, 2) The dimension of X_test is (462, 2)

```
In [14]: features = df.columns[0:2]
    target = df.columns[-1]
    #X and y values
    X = df[features].values
    y = df[target].values
    #splot
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=17)
    print("The dimension of X_train is {}".format(X_train.shape))
    print("The dimension of X_test is {}".format(X_test.shape))
    #Scale features
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

```
In [15]: lr = LinearRegression()
         #Fit model
         lr.fit(X_train, y_train)
         #predict
         #prediction = lr.predict(X test)
         #actual
         actual = y test
         train score lr = lr.score(X train, y train)
         test score lr = lr.score(X test, y test)
         print("\nLinear Regression Model:\n")
         print("The train score for lr model is {}".format(train score lr))
         print("The test score for lr model is {}".format(test score lr))
         Linear Regression Model:
         The train score for lr model is 1.0
         The test score for lr model is 1.0
In [16]: #Ridge Regression Model
         ridgeReg = Ridge(alpha=10)
         ridgeReg.fit(X train,y train)
         #train and test scorefor ridge regression
         train score ridge = ridgeReg.score(X train, y train)
         test score ridge = ridgeReg.score(X_test, y_test)
         print("\nRidge Model:\n")
         print("The train score for ridge model is {}".format(train score ridge))
         print("The test score for ridge model is {}".format(test score ridge))
```

Ridge Model:

The train score for ridge model is 0.9999059589052988
The test score for ridge model is 0.9999057892122102

```
In [17]: plt.figure(figsize = (10, 10))
    plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge;$\alpha #plt.plot(rr100.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'Ridge;$\alpha = 100$')
    plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regression')
    plt.xticks(rotation = 90)
    plt.legend()
    plt.show()
```



```
In [18]: #Lasso regression model
    print("\nLasso Model: \n")
    lasso = Lasso(alpha = 10)
    lasso.fit(X_train,y_train)
    train_score_ls =lasso.score(X_train,y_train)
    test_score_ls =lasso.score(X_test,y_test)
    print("The train score for ls model is {}".format(train_score_ls))
    print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.999938742790022 The test score for ls model is 0.9999387415288635

```
In [19]: pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
```

Out[19]: <Axes: >


```
In [20]: #Using the linear CV model
    from sklearn.linear_model import LassoCV
    #Lasso Cross validation
    lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).fit(X_train, y_train)
    #score
    print(lasso_cv.score(X_train, y_train))
    print(lasso_cv.score(X_test, y_test))
```

0.9999999999890582
0.9999999999918023

```
In [21]: #plot size
    plt.figure(figsize = (10, 10))
    #add plot for ridge regression
    plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge; $\alpha #add plot for lasso regression
    plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso; $\alpha = grids #add plot for linear model
    plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regression')
    #rotate axis
    plt.xticks(rotation = 90)
    plt.legend()
    plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
    plt.show()
```

Comparison plot of Ridge, Lasso and Linear regression model


```
In [22]: #Using the Linear CV model
        from sklearn.linear model import RidgeCV
        #Ridge Cross validation
        ridge cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 0.1, 1, 10]).fit(X train, y train)
         #score
        print("The train score for ridge model is {}".format(ridge cv.score(X train, y train)))
        print("The train score for ridge model is {}".format(ridge cv.score(X test, y test)))
        The train score for ridge model is 0.99999999999993
        In [23]: from sklearn.linear model import ElasticNet
         regr=ElasticNet()
        regr.fit(X,y)
        print(regr.coef )
        print(regr.intercept )
         [0.
                   0.99999941
         0.0009934970469203108
In [24]: y pred Elastic=regr.predict(X train)
In [25]: mean squared error=np.mean((y pred Elastic-y train)**2)
         print("Mean Squared Error on test set", mean squared error)
```

Mean Squared Error on test set 4349723.44309672