LAB ASSIGNMENT 1: CASE STUDY OF AMAZON EC2

1. What are the key components of Amazon EC2, and how do they work together?

Answer:

Amazon EC2 (Elastic Compute Cloud) provides scalable compute capacity in the cloud. Key components include:

- **Instances** Virtual machines running on EC2.
- Amazon Machine Images (AMI) Pre-configured templates used to launch instances.
- **Instance Types** Different configurations of CPU, memory, and networking capacity.
- Elastic Block Store (EBS) Persistent storage volumes for EC2 instances.
- **Security Groups** Firewalls that control inbound and outbound traffic.
- Elastic Load Balancer (ELB) Distributes traffic across multiple instances.
- Auto Scaling Automatically adjusts the number of instances based on demand.

These components work together to provide a scalable, flexible, and secure cloud computing environment.

2. How does AWS EC2 Auto Scaling work, and why is it important?

Answer:

AWS **Auto Scaling** automatically adjusts the number of EC2 instances to handle workload fluctuations. It works by:

- 1. Defining **Scaling Policies** Increase or decrease instances based on CPU usage, network traffic, or other metrics.
- 2. Using **Launch Templates** Configurations for new instances (AMI, instance type, security groups).
- 3. Integrating with **Elastic Load Balancer (ELB)** Distributes traffic across instances for high availability.
- 4. **Monitoring with CloudWatch** Triggers scaling actions based on performance metrics.

Auto Scaling is important because it:

- Ensures **high availability** by adding instances when demand increases.
- Optimizes **costs** by reducing instances during low usage periods.
- Improves application performance by dynamically adjusting resources.

3. What are the differences between On-Demand, Reserved, and Spot EC2 instances?

Answer:

Instance Type	Description	Best Use Cases
On- Demand		Short-term, unpredictable workloads. Development & testing.
Reserved		Steady, predictable workloads. Costsensitive applications.
Spot		Fault-tolerant, batch jobs, big data processing.

Each type provides **flexibility**, **cost-efficiency**, **and scalability** based on business needs.

4. How does AWS ensure high availability and fault tolerance in EC2 deployments?

Answer:

AWS ensures high availability and fault tolerance through:

- 1. Multiple Availability Zones (AZs):
 - o EC2 instances can be deployed across different AZs to prevent failures.
- 2. Elastic Load Balancing (ELB):
 - o Automatically distributes traffic between healthy instances.
- 3. Auto Scaling Groups:
 - o Automatically adds or removes instances based on demand.
- 4. Amazon Elastic Block Store (EBS) Snapshots:
 - o Enables regular backups for disaster recovery.
- 5. Amazon CloudWatch Monitoring:
 - o Detects performance issues and triggers alerts.
- 6. AWS Global Infrastructure:
 - o Ensures redundancy with multiple data centers worldwide.

5. What security measures should be implemented for an EC2 instance?

Answer:

To secure an EC2 instance, follow these best practices:

- 1. Use IAM Roles:
 - o Assign least privilege permissions instead of using root credentials.
- 2. Configure Security Groups & Network ACLs:
 - o Restrict inbound and outbound traffic based on need.
- 3. Enable Encryption:
 - o Encrypt EBS volumes and S3 data.
- 4. Implement Key Pair Authentication:
 - Use SSH key pairs for secure access.
- 5. Regularly Update Software & Patch Vulnerabilities:
 - o Keep OS and applications up to date.
- 6. Enable AWS GuardDuty & AWS WAF:
 - Detect and prevent threats like DDoS attacks.
- 7. Set Up CloudWatch & CloudTrail Logs:
 - o Monitor activity and identify suspicious behavior.