第8次作业

一. 填空题

- 1. (填空)改变积分的积分次序,得 $\int_0^1 dy \int_y^{\sqrt{y}} f(x,y) dx =$
- 2. (填空)化二次积分为极坐标形式的二次积分,得 $\int_0^2 dx \int_x^{\sqrt{3}x} f(\sqrt{x^2+y^2}) dy =$
- 3. 设a > 0,则积分值 $\int_0^a dy \int_0^{\sqrt{a^2 y^2}} (x^2 + y^2) dx = ______.$
- 4. 利用二重积分的对称性得 $\iint_{x^2+y^2 \le 4} (xy + y^3 \cos x) d\sigma =$ _______。

二. 计算题

1.计算二重积分 $\iint_D xydxdy$, 其中 \mathbf{D} 是由 x 轴、 y 轴和单位圆 $x^2+y^2=1$ 在第一象限所围部分。

2.计算二重积分 $\iint_D \frac{x^2}{y^2} dx dy$, 其中 \mathbf{D} 是由直线 y=2,y=x 和双曲线 xy=1 所围的区域。

- 3. 计算二重积分 $\iint_D (x+1) dx dy$, 其中积分区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 。
- 4. 利用二重积分的对称性计算 $\iint_D y[1+xf(x^2+y^2)]d\sigma$,其中 D 是由抛物线 $y=x^2$ 和直线 y=1所围成的闭区域, f 在 D 上连续。

第九次作业

1. 计算 $I = \iiint_{\Omega} x dx dy dz$, 其中 Ω 是三个坐标平面与平面 x + y + z = 1 所围成的区域。

2. 计算 $I = \iiint_{\Omega} z \sqrt{x^2 + y^2} dv$, 其中 Ω 是由圆锥面 $x^2 + y^2 = z^2$ 和平面 z = 1 所围成的区域。

3. 计算 $I = \iiint_{\Omega} z dx dy dz$, 其中 Ω 是半球体 $x^2 + y^2 + z^2 \le 1, z \ge 0$ 。

4.求曲面 $x^2 + y^2 = 2az$ 在柱面 $x^2 + y^2 = 3a^2$ 内那部分的面积 S 。