Диплом

Федоров Глеб, 125

25 марта 2015 г.

Оглавление

1	Вве	едение		3	
2	Теоретические сведения			5	
	1 Явление сверхпроводимости		Явлег	ние сверхпроводимости	5
	2	Эффект Джозефсона		6	
		2.1	Уравнения Джозефсона	6	
		2.2	RCSJ-модель	7	
		2.3	Фазо-потоковое соотношение	7	
	3	Теори	ия изолированного Flux-кубита	8	
		3.1	Построение гамильтониана	9	
3		3.2	Квантово-механический анализ	10	
	4	Взаиг	модействие кубита с окружающей средой	15	
		4.1	Матрица плотности	15	
		4.2	Уравнение эволюции в форме Линдблада	17	
		4.3	Релаксация	18	
		4.4	Дефазировка	18	
				20	
4				21	
5	5 Заключение		22		

Введение

Квантовый компьютер — это устройство, хранящее и обрабатывающее информацию внутри группы квантовых систем, причем обработка информации происходит в результате когерентных взаимодействий систем внутри группы. Каждая квантовая система, как правило, является двухуровневой и носит название "квантовый бит" или "кубит" (англ. "qubit" — quantum bit). Для осуществления квантового расчета необходимо связать кубиты друг с другом, иметь возможность управлять состоянием кубитов и считывать его, сохраняя чистоту соответствующей матрицы плотности, а также обеспечить изоляцию кубитов от влияния окружающей среды. Следовательно, в качестве кубитов могут быть использованы любые достаточно изолированные двухуровневые системы, поддающиеся контролю и способные вза-имодействовать друг с другом. В качестве примера можно привести фотоны, оны в ионных ловушках, ядерные спины, атомы в электромагнитных резонаторах, электрические системы и т.п.

Последние являются одними их самых заманчивых кандидатов на эту роль, но при условии, что их поведение будет именно квантовым, а не классическим. К счастью, явление сверхпроводимости и эффект Джозефсона позволяют наблюдать квантовые эффекты в контурах даже мезоскопического масштаба и создавать на их основе так называемые сверхпроводящие (джозефсоновские) кубиты. В данной работе проводится исследование одного из них – потокового сверхпроводящего кубита (он был впервые предложен в статье 12 и назван Flux-кубитом).

Джозефсоновские кубиты имеют два значительных недостатка и одно значительное преимущество в сравнении с микроскопическими кубитами. Первый недостаток заключается в значительном взаимодействии с окружающей средой - в силу больших размеров, джозефсоновские кубиты сильнее связываются со средой, что требует дополнительных изысканий в области их изоляции; второй недостаток заключается в том, что в то время как микроскопические кубиты, например, атомы, идентичны друг другу, сверхпроводящие кубиты могут иметь отличия из-за неточностей производства. Для борьбы с этим требуется либо создавать заведомо нечувствительные к дефектам схемы, либо проводить калибровку, в процессе которой параметры цепей измеряются, а затем компенсируются в эксперименте.

Преимущество джозефсоновских кубитов в их гибкости: они могут быть про-

Глава 1. Введение

извольным образом расположены относительно друг друга, а их параметры легко и непрерывно изменяемы в широких пределах. Эта гибкость вместе с некоторыми фундаментальными эффектами¹³ может быть использована для борьбы с первым недостатком, а также предоставляет много вариантов для подстройки параметров, что в значительной степени нивелирует второй недостаток. Далее, накопленный опыт человечества в области изготовления интегральных схем позволит упростить переход к производству реальных квантовых вычислительных устройств, что является еще одним преимуществом в сравнении с другими типами кубитов. Таким образом, скорее всего именно джозефсоновские кубиты и будут применены в первом квантовом компьютере, и именно их следует изучать.

Важно отметить, что сверхпроводящие кубиты могут применяться не только для непосредственного использования в квантовом компьютере, так как по сути являются рукотворными атомами с широко изменяемыми характеристиками, как внутренними, так и касающимися связи с окружением. Они могут быть пригодны для создания метаматериалов, 14 проведения высокоточных измерений полей, 15 использоваться в качестве активной среды, 16 применяться в квантовой криптографии и телепортации 17 и т.п.

Теоретические сведения

Данный раздел содержит теоретическое описание явлений, наблюдаемых в экспериментальной части работы. Далее будут кратко рассмотрена теория сверхпроводимости, эффект Джозефсона, затем произведено рассмотрение теории изолированного Flux-кубита, теории его взаимодействия с окружающей средой и, наконец, вопросы измерения и контроля.

1 Явление сверхпроводимости

Сверхпроводимость – это сложное коллективное явление, свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определенного значения. В настоящий момент самой известной точной теорией сверхпроводимости является теория БКШ, ¹⁸ согласно которой электроны в сверхпроводнике при переходе через критическую температуру объединяются в так называемые куперовские пары и претерпевают бозеконденсацию. Спаривание электронов происходит в результате обмена фононами, приводящего к эффективному притяжению между ними и образованию связанного состояния на уровне Ферми, отделенного от уровней квазичастичных возбуждений энергетической щелью. Полное описание данного эффекта в рамках микроскопической теории невозможно в данной работе, поэтому мы будем далее пользоваться феноменологической теорией Гинзбурга-Ландау, 19 которая выводится из модели БКШ,²⁰ но является более удобной в практическом применении. Сверхпроводящее состояние в рамках этой теории может быть описано параметром порядка или, иначе, модулем так называемой "макроскопической волновой функции куперовских пар":

$$\Psi(\mathbf{r}) = \sqrt{\frac{n_s}{2}} e^{i\theta(\mathbf{r})},\tag{1.1}$$

где n_s – концентрация сверхпроводящих электронов в сверхпроводнике. Важно подчеркнуть, что она не является настоящей волновой функцией, но тем не менее позволяет получить практически важные результаты. Мы далее считаем, что в изолированном невозмущенном полями сверхпроводнике и модуль, и фаза волновой

функции (1.1) постоянны.

Из минимизации функционала Гинзбурга-Ландау и одного из уравнений Максвелла можно получить следующее уравнение для сверхпроводящего тока куперовских пар в зависимости от приложенного поля, являющееся обобщением уравнения Лондонов:

$$\mathbf{j}_s = -\frac{i\hbar e}{2m_e} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*) - \frac{2e^2}{m_e} \mathbf{A} |\Psi|^2.$$
 (1.2)

Подставляя сюда $\Psi(\mathbf{r})$ из определения (1.1), получим:

$$\mathbf{j}_s = \frac{1}{\Lambda} \left(\frac{\Phi_0}{2\pi} \nabla \theta(\mathbf{r}) - \mathbf{A} \right), \tag{1.3}$$

где $\Lambda = \frac{m_e}{n_s e^2}$, $\Phi_0 = \frac{h}{2e}$. Вторая константа, как будет показано далее, является квантом магнитного потока, и имеет важное значение в данной работе.

2 Эффект Джозефсона

2.1 Уравнения Джозефсона

Эффект Джозефсона²¹ – это эффект установления одной макроскопической фазы в двух сверхпроводниках, соединенных через так называемую "слабую связь". Слабые связи многообразны: это могут быть тонкие слои диэлектрика, сужения, точечные контакты, прослойки из металла в нормальном состоянии или из ферромагнетика. В случае, если фазы не равны, то через слабую связь будет течь бездиссипативный ток, и будет выполнено некоторое фазо-токовое соотношение между током и скачком фазы на переходе. Часто, хотя и не всегда,²² оно оказывается синусоидальным:

$$I_s = I_c \sin(\theta_2 - \theta_1) = I_c \sin \varphi. \tag{2.1}$$

Из этой формулы видно, что сверхпроводящий ток I_s не может превысить некоторого значения I_c . Это так называемый *критический ток* джозефсоновского перехода, при превышении которого бездиссипативность нарушается, и на переходе устанавливается напряжение V. В этом случае выполнено второе уравнение Джозефсона:

$$\hbar \frac{\partial \varphi}{\partial t} = 2eV, \tag{2.2}$$

и наблюдаются осцилляции разности фаз между сверхпроводниками. Величина критического тока рассчитывается из микроскопической теории, например, для перехода SIS верна формула Амбегаокара-Баратова:

$$I_c = \frac{\pi \Delta(T)}{2eR_n} \operatorname{th}\left(\frac{\Delta(T)}{2k_b T}\right),\tag{2.3}$$

где через T обозначена температура, а через R_n сопротивление контакта в отсутствие сверхпроводимости, $R_n=\rho\frac{d}{S}$, где ρ – удельное сопротивление I-слоя, а d и S – его толщина и площадь.

2.2 RCSJ-модель

Для упрощения описания динамики джозефсоновского контакта применяется модель RCSJ (Resistively and Capacitively Shunted Junction), работающая для маленьких переходов со слоем изолятора, когда изменения фазы на размере контакта пренебрежимо малы и присутствует ненулевая геометрическая емкость.

Рис. 2.1: Схема RCSJ в виде параллельного соединения идеального джозефсоновского перехода с конденсатором и резистором.

Принципиальная схема изображена на Рис. 2.1. В случае, когда ток через систему не превышает критического I_c , резистор на схеме может быть опущен. В силу параллельности соединения выполнено также соотношение $\frac{\hbar}{2e} \frac{\partial \varphi}{\partial t} = U_C$ между напряжениями на переходе и на конденсаторе, которое устанавливает аналогию между неидеальным переходом и колебательным контуром с нелинейной индуктивностью.

В рамках RCSJ-модели энергия перехода состоит из энергии, запасенной в нелинейной индуктивности идеального перехода, и энергии конденсатора:

$$E = E_{ind} + E_{cap} (2.4)$$

$$E_{ind} = \int I_J V_J dt = I_c \frac{\hbar}{2e} \int_0^T \sin(\phi(t)) \frac{d\phi(t)}{dt} dt$$

$$= E_J \int_0^{\varphi} \sin \phi \, d\phi = E_J [1 - \cos \varphi] \tag{2.5}$$

$$E_{cap} = \frac{1}{2}CU_C^2 = \frac{1}{2}C\left(\frac{\Phi_0}{2\pi}\right)^2 \dot{\varphi}^2 = \frac{\hbar^2}{4E_C}\dot{\varphi}^2, \ E_C = \frac{(2e)^2}{2C}.$$
 (2.6)

2.3 Фазо-потоковое соотношение

Рассмотрим замкнутый сверхпроводящее кольцо конечной толщины, быть может, прерванный конечным числом джозефсоновских переходов $\{J_1..J_n\}$. Рассмотрим применительно к данному случаю уравнение (1.3). Проведем контур C внутри кольца так, чтобы он нигде не приближался к стенкам на расстояние, меньшее глубины проникновения магнитного поля (Рис. 2.2). Тогда сверхток на всей его длине

будет равен нулю, и, проинтегрировав по нему (1.3), мы получим следующее равенство:

$$\oint_C \mathbf{A}d\mathbf{l} = \frac{\Phi_0}{2\pi} \oint_C \nabla \theta d\mathbf{l}.$$

Руководствуясь Рис. 2.2, соображениями однозначности волновой функции (1.1) при обходе вокруг контура и теоремой Стокса для ${\operatorname{rot}} {\bf A}$, можем написать:

$$\Phi = \frac{\Phi_0}{2\pi} \left(\sum_i \varphi_n + 2\pi k \right)$$

$$\sum_i \varphi_n = 2\pi \left(\frac{\Phi}{\Phi_0} - k \right), \ k \in \mathcal{Z}.$$
(2.7)

Рис. 2.2: К выводу фазо-потокового соотношения. Пунктиром обозначен контур интегрирования С. Через φ_i обозначены скачки фаз на джозефсоновских контактах, а точками - место разрешенного накопления фазы при полном обходе вокруг кольца $2\pi k$, $k \in \mathcal{Z}$.

Таким образом, получено фазо-потоковое соотношение. Видно, что в случае отсутствия в кольце джозефсоновских переходов полученное уравнение (2.7) опишет равенство магнитного потока Φ , проходящего через сверхпроводящее кольцо, целому числу k квантов потока Φ_0 , обосновывая определение этой константы в (1.3).

3 Теория изолированного Flux-кубита

Flux-кубит, или потоковый трехконтактный сверхпроводящий кубит, был предложен впервые в 1999 году^{12} и представляет собой сверхпроводящий контур, прерванный в трех местах джозефсоновскими переходами (Рис. 2.3), два из которых

Рис. 2.3: Принципиальная схема Flux-кубита в рамках RCSJ-модели. Два из трех переходов по площади одинаковы, площадь третьего по сравнению с ними в α раз отличается (параметры отличаются в то же число раз согласно формулам для емкости конденсатора и (2.3)). Φ – поток, пронизывающий контур. Резисторы не изображены, так как рабочий ток переходов меньше I_c .

одинаковы, а третий отличается по площади в α раз. Под *изолированным* в данном разделе понимается одиночный кубит, не взаимодействующий с окружением ни диссипативным, ни консервативным образом. Единственным внешним фактором является при таком рассмотрении постоянное магнитное поле, проходящее через контур.

3.1 Построение гамильтониана

Для того, чтобы провести квантово-механическое рассмотрение кубита, требуется записать его гамильтониан. Для этого прежде всего нужно понять, какими независимыми степенями свободы он обладает. Вообще говоря, состояние одиночного джозефсоновского перехода, в силу того, что в параллельном соединении RCSJ-модели $U = \frac{\hbar}{2e} \dot{\varphi}$, целиком описывается своей разностью фаз. Для трех невзаимодействующих переходов таких разностей будет три, и их и следует выбрать в качестве обобщенных координат системы. Однако в случае замкнутого контура дополнительно накладывается фазо-потоковое соотношение (2.7):

$$\varphi_1 + \varphi_2 + \varphi_3 = 2\pi \left(\frac{\Phi}{\Phi_0} - k\right), \ k \in \mathcal{Z}.$$
 (3.1)

Таким образом, в контуре на Рис. 2.3 остаются независимыми только две разности фаз из трех. Введя их в качестве обобщенных координат, можно понять, что является аналогом кинетической, а что – потенциальной энергии системы. В уравнениях (2.4)-(2.6) энергия перехода зависит непосредственно от φ , а емкостная от $\dot{\varphi}$. Таким образом, переход запасает потенциальную, а емкость кинетическую энергию. Энергия магнитного поля, возникающего при течении тока в кольце, считается малой в силу малости геометрической индуктивности кубита по сравнению с джозефсоновской индуктивностью переходов, а поток $\Phi = \Phi_{ext}$ (подробное описание данной

процедуры см. в статье²³). Теперь можно записать лагранжиан системы, используя все те же уравнения (2.4)-(2.6) и выражая разность фаз φ_3 отличающегося перехода через разности фаз φ_1 и φ_2 одинаковых переходов при помощи (3.1):

$$\mathcal{L} = \mathcal{T} - \mathcal{U},$$

$$\mathcal{T} = E_{cap} = \frac{1}{2} \sum_{i=1}^{3} C_{i} V_{i}^{2} = \frac{1}{2} \left(\frac{\Phi_{0}}{2\pi} \right)^{2} \left[C(\dot{\varphi}_{1})^{2} + \alpha C \left(\dot{\varphi}_{1} + \dot{\varphi}_{2} \right)^{2} + C(\dot{\varphi}_{2})^{2} \right]$$

$$= \frac{1}{2} \left(\frac{\Phi_{0}}{2\pi} \right)^{2} \left(\dot{\varphi}_{1} \quad \dot{\varphi}_{2} \right) C \left(\frac{1+\alpha}{\alpha} \quad \alpha \atop 1+\alpha \right) \left(\frac{\dot{\varphi}_{1}}{\dot{\varphi}_{2}} \right),$$

$$\mathcal{U} = E_{ind} = E_{J} \left[2 + \alpha + \cos \varphi_{1} + \cos \varphi_{2} + \alpha \cos \left(2\pi \frac{\Phi}{\Phi_{0}} - \varphi_{1} - \varphi_{2} \right) \right].$$

Строить гамильтониан системы из такого лагранжиана не очень удобно, поэтому предварительно произведем замену координат $\phi = \frac{\varphi_1 + \varphi_2}{2}, \; \theta = \frac{\varphi_1 - \varphi_2}{2}$:

$$\mathcal{T} \stackrel{\varphi_1, \varphi_2 \to \phi, \theta}{=} C \left(\frac{\Phi_0}{2\pi} \right)^2 (\dot{\phi} \quad \dot{\theta}) \begin{pmatrix} 1 + 2\alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \end{pmatrix},$$

$$\mathcal{U} \stackrel{\varphi_1, \varphi_2 \to \phi, \theta}{=} E_J \left[2 + \alpha - 2\cos(\phi)\cos(\theta) - \alpha\cos\left(2\pi\frac{\Phi}{\Phi_0} - 2\phi\right) \right]. \tag{3.2}$$

Теперь, стандартным образом вводя обобщенный импульс $\mathbf{p}^T = \begin{pmatrix} p_{\phi} & p_{\theta} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \dot{\phi}} & \frac{\partial \mathcal{L}}{\partial \dot{\theta}} \end{pmatrix}$ и производя преобразование Лежандра, получим итоговый гамильтониан системы:

$$\mathcal{H} = \frac{p_{\phi}^2}{2M_{\phi}} + \frac{p_{\theta}^2}{2M_{\theta}} + E_J \left[2 + \alpha - 2\cos(\phi)\cos(\theta) - \alpha\cos\left(2\pi\frac{\Phi}{\Phi_0} - 2\phi\right) \right],$$
$$M_{\phi} = 2C \left(\frac{\Phi_0}{2\pi}\right)^2 (1 + 2\alpha), \ M_{\theta} = 2C \left(\frac{\Phi_0}{2\pi}\right)^2.$$

Далее, осуществляя переход к операторному виду квантовой механики, можно получить оператор Гамильтона для сверхпроводящего потокового кубита в терминах исключительно E_C и E_J :

$$\hat{\mathcal{H}} = E_C \left[-\frac{1}{2(1+2\alpha)} \frac{\partial^2}{\partial \phi^2} - \frac{1}{2} \frac{\partial^2}{\partial \theta^2} \right] + E_J \left[2 + \alpha - 2\cos(\phi)\cos(\theta) - \alpha\cos\left(2\pi\frac{\Phi}{\Phi_0} - 2\phi\right) \right].$$
(3.3)

3.2 Квантово-механический анализ

Анализ потенциала. Прежде всего рассмотрим потенциал $\mathcal{U}(\phi,\theta)$. На Рис. 2.4 представлены графики, демонстрирующие его структуру в случае $\Phi = \Phi_0/2$, или в так называемой *точке вырождения* по потоку. На Рис. 2.4 (а) можно видеть,

(a) Трехмерное изображение потенциала при $\Phi = \Phi_0/2$, $\alpha = 0.8$. Можно видеть 2π -периодическую центрированную квадратную решетку с базисом из двойных ям.

(b) При отклонении потока от $\Phi_0/2$ появляется перекос внутри двойных ям, одна половина становится глубже, а другая мельче в зависимости от знака отклонения $\Delta\Phi$. Здесь $\Delta\Phi=-0.05\Phi_0,~\alpha=0.8$

(c) Срез потенциала при $\Phi = \Phi_0/2$ по направлению $\theta = \pi$ (барьер внутри ям) в зависимости от α . При $\alpha = 0.5$ этот барьер пропадает, при $\alpha = 1$ он сравнивается с барьером между ямами (см. (d)).

(d) Срез потенциала при $\Phi = \Phi_0/2$ по направлению $\phi = \left(1 - \frac{2}{\pi} \arccos \frac{1}{2\alpha}\right)\theta + \arccos \frac{1}{2\alpha}$ (барьер между ямами) в зависимости от α . Здесь крайние точки отвечают минимумам \mathcal{U} при $\theta = 0$ (π), $\phi = \arccos \frac{1}{2\alpha}$ ($\pi - \arccos \frac{1}{2\alpha}$).

Рис. 2.4: Графическое изображение периодического потенциала Flux-кубита в зависимости от относительного размера отличающегося перехода α и пронизывающего потока Φ .

что потенциал 2π -периодичен по каждой из переменных ϕ и θ и представляет собой бесконечную центрированную квадратную решетку с базисом из симметричных двойных ям, отделенных друг от друга диагональными барьерами. Каждая их ям, в свою очередь, делится на две части меньшим барьером. Его высота, как видно из Рис. 2.4 (c), определяется параметром α . Для того, чтобы структура оставалась подобной изображенной на Рис. 2.4 (a), требуется, чтобы $\alpha \in (0.5, 1)$: при нарушении этого условия либо совсем пропадает внутренний барьер, либо внешний барьер сравнивается с внутренним по высоте, и ямы перестают быть качественно отделены друг от друга (Рис. 2.4 (d)). Минимумы \mathcal{U} находятся в точках $\theta = \pi k, \ \phi = \pm \arccos\frac{1}{2\alpha} + \pi \frac{n}{2}, \ k, \ n \in \mathcal{Z}$, причем в точке вырождения все минимумы имеют одинаковую энергию, а при отходе от нее в зависимости от знака отклонения одна половина двойных ям становится мельче, а другая глубже, и вырождение внутри каждой ямы снимается (Рис. 2.4 (b)).

Стационарные состояния. Прежде, чем начинать поиск стационарных состояний для гамильтониана (3.3), важно не упустить смысл происходящего. Строго говоря, в силу того, что потенциал (3.2) является периодическим, решениями уравнения Шредингера будут являться блоховские функции, а спектр энергий будет иметь зонную структуру. Таким образом, в приближении нулевой индуктивности Flux-кубит представляет собой модель частицы в идеальной периодической решетке двумерного твердого тела. В реальности, однако, энергетический спектр все же является дискретным из-за квадратичной по фазам индуктивной энергии, ²³ с пиками числа уровней в областях бывших зон.

Оставаясь в рамках приближения нулевой индуктивности, для аналитического решения задачи можно использовать модель сильной связи для центрированной решетки с базисом, однако мы будем рассматривать численный вариант – метод, изложенный в работе. 24 В условиях 2π -периодичности и действительности потенциала и искомой волновой функции можно разложить в ряд Фурье, ограничиваясь 2N+1начальными слагаемыми, уравнение Шредингера с гамильтонианом (3.3), что после определенных преобразований сведет задачу к поиску собственных значений и векторов матрицы размером $(2N+1)^2$ на $(2N+1)^2$. Результаты такого вычисления для N=20 представлены на Рис. 2.5. Вычисленный спектр энергий (Рис. 2.5 (a)) состоит из дублетов (на рисунке они сливаются в синглеты), причем расщепление в дублетах обусловлено разными периодическими конфигурациями волновой функции при фиксированной четности ее внутри ям, а расстояния между дублетами изменением четности внутри ям. Такая структура спектра возникает по причине того, что в силу использованных предположений о волновой функции машинный метод "вылавливает" из каждой энергетической зоны лишь граничные состояния, так как только они обладают подходящими свойствами! Действительно, по теореме Блоха $\psi(r) = e^{ikR}\psi(r)$, для граничных квазиимпульсов k=0 и k=K/2 (K-вектор обратной решетки) выполнено соответственно $\psi(r+R) = \psi(r)$ и $\psi(r+R) = -\psi(r)$, что и наблюдается на парах Рис. 2.5 (b) и Рис. 2.5 (c). Четные конфигурации волновой функции имеют меньшую рассчитанную энергию, а нечетные большую, в соответствии с вышесказанным.

(а) Уровни энергии в зависимости от внешнего поля. Каждая линия на рисунке на самом деле является двойной (подробности см. в тексте).

(b) Граничные по квазиимпульсу состояния нулевой зоны (" $|g\rangle$ -состояния") в точке вырождения. Внутри ям волновая функция четная.

(c) Граничные по квазиимпульсу состояния первой зоны (" $|e\rangle$ -состояния") в точке вырождения. Внутри ям волновая функция нечетная.

Рис. 2.5: Результаты численного решения стационарного уравнения Шредингера с параметрами $\alpha=0.7,\ E_J=30E_C=400\ {\rm GHz}.$ Цветом обозначено значение волновой функции, нормированной на единицу в периоде потенциала.

В зависимости от поля спектр ведет себя, как показано на Рис. 2.5 (а), неравномерно: в окрестности $\Phi_0/2$ четные зоны сдвигаются вниз, нечетные вверх, а на большем удалении магнитного потока от полкванта картина вообще теряет порядок из-за значительного числа квазипересечений. На Рис. 2.5 (b) и (c) изображены соответственно нулевое и первое дублетные состояния в точке вырождения. Далее мы будем пренебрегать тем, что первые две зоны отличны от дискретных уровней, так как расщепления внутри них примерно в 10^5 раз меньше, чем расстояния между ними, и назовем верхнюю по энергии зону " $|e\rangle$ -состоянием", а нижнюю " $|g\rangle$ -состоянием".

Двухуровневое приближение. Следующим шагом будет приведение системы к двум нижним состояниям, пренебрегая всеми остальными. Это оправданно, так как третья зона в окрестности точки вырождения лежит гораздо выше (почти в 20 раз) по энергии, чем состояние $|e\rangle$. Теперь, используя метод сильной связи в двойной яме, рассчитаем зависимость расщепления уровней $|g\rangle$ и $|e\rangle$ от Ф. Разобьем яму на два потенциала \mathcal{U}_1 и \mathcal{U}_2 , так, что их сумма даст исходный потенциал ямы, а не равными нулю они окажутся только в области соответствующих полуям. Для каждого из этих двух потенциалов можно найти основные состояния, которые мы обозначим $|1,g\rangle$ и $|2,g\rangle$. Основное состояния для уравнения с потенциалом $\mathcal{U}_1 + \mathcal{U}_2$ в предположении о малом перекрытии потенциалов и волновых функций отдельных ям можно искать в виде $|g\rangle = a|1,g\rangle + b|2,g\rangle$. Также мы получим сразу и $|e\rangle$ в качестве второго решения задачи. Итак, записывая полный гамильтониан, действуя им на выбранного вида функцию $|g\rangle$ и умножая слева сначала на $\langle 1,g|$, а потом на $\langle 2,g|$, получим следующую систему уравнений:

$$\begin{pmatrix} E_{1g} + U_2^{1g1g} & E_{1g}\langle 1, g | 2, g \rangle + U_2^{1g2g} \\ E_{2g}\langle 2, g | 1, g \rangle + U_1^{2g1g} & E_{2g} + U_1^{2g2g} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = E \begin{pmatrix} 1 & \langle 1, g | 2, g \rangle \\ \langle 2, g | 1, g \rangle & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix},$$

где верхними индексами обозначены соответствующие матричные элементы потенциалов U, E_{1g}, E_{2g} — энергии основных состояний ям, E — искомое собственное значение полного гамильтониана. Далее, пренебрежем диагональными матричными элементами потенциалов, так как здесь они берутся по волновым функциям противоположной половины ямы, а также неортогональностью $|1,g\rangle$ и $|2,g\rangle$ (они также локализованы в разных ямах). Тогда уравнение значительно упростится:

$$\begin{pmatrix} E_{1g} & U_2^{1g2g} \\ U_1^{2g1g} & E_{2g} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = E \begin{pmatrix} a \\ b \end{pmatrix}.$$

Следующим приближением будет пренебрежение различием в недиагональных элементах, так как при малых отклонениях Ф деформации около дна ям незначительны, и можно считать, что формы волновых функций и потенциалов остаются прежними, а меняются лишь энергии основных состояний из-за перекоса ям. Переобозначая элементы матрицы и смещая собственные значения на постоянную величину,

получаем сокращенный гамильтониан следующего вида:

$$\hat{\mathcal{H}} = \frac{\delta}{2}\hat{\sigma}_z + \frac{\Delta}{2}\hat{\sigma}_x \Leftrightarrow \frac{\delta}{2}\hat{\sigma}_x + \frac{\Delta}{2}\hat{\sigma}_z$$
(с точностью до выбора базиса)

где $\Delta = 2U_1^{2g1g} \approx 2U_2^{1g2g}$ — минимальное расщепление по энергии, $\delta = |E_{1g} - E_{2g}|$ — сдвиг энергий основных состояний ям в зависимости от поля. После дифференцирования потенциала можно получить, что сдвиг минимумов по энергии, а, следовательно, и δ , будут пропорциональны $\Phi - \Phi_0/2$.

Сокращенный гамильтониан (3.2) можно просто привести к диагональному виду. Его собственные значения и их разность будут зависеть от δ следующим образом:

$$E_{g,e} = \pm \frac{1}{2} \sqrt{\Delta^2 + \delta^2}, \ \Delta E = h\nu_q = \sqrt{\Delta^2 + \delta^2},$$
 (3.5)

где ν_q — это экспериментально наблюдаемая частота перехода между кубитными уровнями. Легко построить зависимость этой частоты от приложенного поля — это гипербола.

Главным обоснованием сделанных приближений является точный численный результат Рис. 2.5 (a) для двух нижних состояний, который так же дает гиперболическую зависимость.

4 Взаимодействие кубита с окружающей средой

Переход от замкнутых квантовых систем, эволюция которых подчинена нестационарному уравнению Шредингера и состояние которых в каждый момент времени точно известно, к так называемым *открытым*, т.е. незамкнутым, квантовым системам всегда сопряжен с трудностями. Это связано с тем, что для описания таких систем в идеале требовалось бы найти закон эволюции Вселенной, а затем исключить из рассмотрения все ее степени свободы, не касающиеся представляющей интерес области. Эта формулировка является, конечно, довольно туманной в отношении Вселенной, но что вообще такое Вселенная? В силу отсутствия однозначного ответа на данный вопрос в качестве "вселенной" часто выбирают что-то простое, такое, что в определенных приближениях можно описать математически – и получают результаты, согласующиеся с экспериментом. ²⁵ Далее будет описана такая процедура и соответствующий математический аппарат.

4.1 Матрица плотности

Матрица плотности – это обобщение вектора состояния на системы, точное состояние которых неизвестно. Матрицы плотности подразделяются на *чистые* и *смешанные*: первые эквивалентны обычной волновой функции, вторые же определяют распределение вероятности на волновых функциях. Рассмотрим две ситуации:

1. Система находится в суперпозиции состояний из какого-либо набора $|a\rangle = \sum_k c_k |k\rangle$. Тогда матрица плотности является чистой и записывается следующим образом:

$$\hat{\rho}_a = |a\rangle\langle a| = \sum_{k,n} c_k c_n^* |k\rangle\langle n|.$$

2. Система находится в каком-то одном из состояний $|k\rangle$ с вероятностью c_k^2 . Тогда матрица плотности является смешанной и записывается теперь иначе:

$$\hat{\rho}_a = \sum_k c_k^2 |k\rangle\langle k|.$$

В чем удобство таких определений? Для ответа на этот вопрос рассмотрим значение произвольной наблюдаемой с оператором \hat{Q} . В первом случае, из определения:

$$Q = \langle a|\hat{Q}|a\rangle = \sum_{k,n} c_k c_n^* \langle n|\hat{Q}|k\rangle \equiv \sum_i \sum_{k,n} c_k c_n^* \langle i|k\rangle \langle n|\hat{Q}|i\rangle \stackrel{def}{=} \operatorname{Tr} \left[\hat{\rho}_a \hat{Q}\right].$$

Во втором случае, из определения и квантового, и статистического среднего, а также приема, примененного выше, для каждого вероятного состояния:

$$Q = \sum_{k} Q_{k} p_{k} = \sum_{k} \operatorname{Tr} \left[|k\rangle\langle k| \hat{Q} \right] p_{k} \equiv \operatorname{Tr} \left[\hat{\rho}_{a} \hat{Q} \right].$$

Таким образом, через матрицу плотности мы получаем единое определение среднего значения оператора, имеющего смысл как для статистического, так и для простого квантового случая. Также просто показывается, что обе матрицы плотности удовлетворяют одному и тому же уравнению Лиувилля-фон-Неймана:

$$i\hbar \frac{\partial}{\partial t}\hat{\rho} = [\hat{\mathcal{H}}, \hat{\rho}].$$

В качестве примера того, как матрица плотности может помочь при описании открытых систем, рассмотрим два кубита, находящихся в *перепутанном* состоянии, когда невозможно представить их общее состояние как тензорное произведение векторов состояний кубитов по отдельности. Такое состояние – это, например,

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_{A}\otimes|\downarrow\rangle_{B} + |\downarrow\rangle_{A}\otimes|\uparrow\rangle_{B}).$$

Соответствующая матрица плотности:

$$\hat{\rho}_{\Psi^+} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Каждый из кубитов в примере является, по сути, открытой системой, которую требуется описать. Для этого вводится понятие *сокращенной матрицы плотности* и операция взятия *частичного следа* для системы двух подсистем:

$$\hat{\rho}_A = \operatorname{Tr}_B \left[\hat{\rho}_{AB} \right] \stackrel{def}{=} \sum_i \langle i|_B \hat{\rho}_{AB} | i \rangle_B \iff \left[\hat{\rho}_A \right]_{n,m} = \sum_i \langle n|_A \otimes \langle i|_B \hat{\rho}_{AB} | i \rangle_B \otimes | m \rangle_A,$$

где суммирование ведется по базису подсистемы В (второе выражение показывает, как суммировать по состояниям композитного базиса $\mathcal{A}\otimes\mathcal{B}$). Для каждого из двух кубитов системы в состоянии $|\Psi^+\rangle$ такое вычисление даст $\hat{\rho}_{A,B}=\hat{\mathbb{1}}_{A,B}/2$ – матрица плотности каждого из них смешанная и дает 50%-ую вероятность быть в одном из двух состояний. Таким образом, зная все о перепутанной системе, мы не имеем достоверной информации о ее частях.

4.2 Уравнение эволюции в форме Линдблада

Процедура сокращения матрицы плотности, проведенная с двумя кубитами и их общим стационарным состоянием, применяется и в нестационарном случае для получения уравнения эволюции подсистемы (master equation).²⁶ Исходный гамильтониан включает систему, ее окружение и их взаимодействие:

$$\hat{\mathcal{H}}_{se} = \hat{\mathcal{H}}_s \otimes \hat{\mathbb{1}}_e + \hat{\mathbb{1}}_s \otimes \hat{\mathcal{H}}_e + \hat{\mathcal{H}}_i. \tag{4.1}$$

$$i\hbar \frac{\partial}{\partial t} \hat{\rho}_{se} = [\hat{\mathcal{H}}_{se}, \hat{\rho}_{se}] \tag{4.2}$$

Теперь обозначим приближения, которые используются для получения сокращенного уравнения эволюции (хорошее обсуждение их соответствия реальности см. в работе 27):

- 1. Модель окружения. В качестве модели внешней среды обычно используется бозе-термостат, т.е. $\hat{\mathcal{H}}_e = \sum_k \hbar \omega_k \hat{a}_k^{\dagger} \hat{a}_k$ в (4.1), а взаимодействие $\hat{\mathcal{H}}_i$ однобозонным и слабым.
- 2. **Борновское приближение.** При решении уравнения (4.2) мы ищем матрицу плотности системы в виде $\hat{\rho}_{se}(t) = \hat{\rho}_{s}(t) \otimes \hat{\rho}_{e}^{0}$, тем самым пренебрегая изменением состояния термостата $\hat{\rho}_{e}^{0} = \exp\left(\hat{\mathcal{H}}_{e}\right) / \text{Tr} \left[\exp\left(\hat{\mathcal{H}}_{e}\right)\right]$.
- 3. **Приближение Маркова.** Эволюция $\hat{\rho}_s$ после момента t определяется только ее значением в этот момент и не зависит от прошлых значений. По-другому это формулируется как отсутствие памяти у термостата.

В условиях выбранных приближений можно путем достаточно громоздких преобразований получить уравнение динамики подсистемы. Его часть, ведущая к отличиям от стандартной унитарной эволюции, окажется представимой в форме Линдблада, и, в итоге, искомое уравнение будет иметь следующий вид:

$$i\hbar \frac{\partial}{\partial t}\hat{\rho}_{s} = \left[\hat{\mathcal{H}}_{s}, \hat{\rho}_{s}\right] + \sum_{k} \Gamma_{k} \left(\hat{\mathcal{O}}_{k}\hat{\rho}_{s}\hat{\mathcal{O}}_{k}^{\dagger} - \frac{1}{2}\left\{\hat{\mathcal{O}}_{k}^{\dagger}\hat{\mathcal{O}}_{k}, \hat{\rho}_{s}\right\}\right) \tag{4.3}$$

$$\stackrel{def}{=} \left[\hat{\mathcal{H}}_s, \hat{\rho}_s \right] + \sum_k \Gamma_k \mathcal{D} \left[\hat{\mathcal{O}}_k \right] \hat{\rho}_s. \tag{4.4}$$

 $\hat{\mathcal{D}}$ - линдбладовский супероператор. Коэффициенты Γ_k , определяющие скорость распада, и операторы $\hat{\mathcal{O}}_k$, определяющие каналы распада, выводятся²⁶ для каждой конкретной модели, для каждого гамильтониана (4.1), однако вид (4.4) сохраняется (это можно показать в рамках теории групп²⁸).

4.3 Релаксация

Для получения диссипатора, отвечающего за передачу энергии кубита внешнему бозе-полю, используется следующий модельный гамильтониан:

$$\hat{\mathcal{H}}_{se} = \frac{\hbar \omega_q}{2} \hat{\sigma}_z \otimes \hat{\mathbb{1}}_e + \hat{\mathbb{1}}_q \otimes \sum_k \hbar \omega_k \hat{a}_k^{\dagger} \hat{a}_k + \sum_k g_k \left(\hat{\sigma}^- \otimes \hat{a}_k^{\dagger} + \hat{\sigma}^+ \otimes \hat{a}_k \right), \tag{4.5}$$

где ω_q , ω_k — энергии кубита и мод, $\hat{\sigma}^{\pm}$ — повышающий и понижающий операторы кубита, $\hat{\sigma}^+ = \hat{\sigma}^{-\dagger} = |e\rangle\langle g|$, а g_k — константы связи кубита с внешним полем. Последняя часть возникает из взаимодействия квантованного поля каждой моды, которое пропорционально $\hat{a}_k^+ + \hat{a}_k$, с кубитом (через оператор $\hat{\sigma}_x = \hat{\sigma}^- + \hat{\sigma}^+$, см. (3.2)) в первом порядке теории возмущений, т.е. $\hat{\mathcal{H}}_{i_k} \propto (\sigma^- + \hat{\sigma}^+) \otimes (\hat{a}_k^+ + \hat{a}_k) \stackrel{\mathbb{L}ord}{\to} (\hat{\sigma}^- \otimes \hat{a}_k^\dagger + \hat{\sigma}^+ \otimes \hat{a}_k)$. Это оправданно, так как мы полагаем связи, т.е. g_k , малыми. Исходя из такой модели при $T \approx 0$ получаем²⁶ следующее уравнение эволюции:

$$i\hbar \frac{\partial}{\partial t}\hat{\rho}_{q} = \left[\hat{\mathcal{H}}_{q}, \hat{\rho}_{q}\right] + \gamma_{rel}(\hat{\sigma}^{-}\hat{\rho}_{q}\hat{\sigma}^{+} - \frac{1}{2}\left\{\hat{\sigma}^{+}\hat{\sigma}^{-}, \hat{\rho}_{q}\right\}), \tag{4.6}$$

где γ_{rel} получается в процессе вычисления из (4.5), однако на практике подбирается. Динамику данного уравнения мы обсудим несколько позже.

4.4 Дефазировка

Более тонкий эффект получится, если мы будем рассматривать другую модель, выбрав следующий вид гамильтониана (4.1):²⁶

$$\hat{\mathcal{H}}_{q} = \frac{\hbar \omega_{q}}{2} \hat{\sigma}_{z}$$

$$\hat{\mathcal{H}}_{e} = \sum_{k} \hbar \omega_{1k} \hat{a}_{1k}^{\dagger} \hat{a}_{1k} + \sum_{k} \hbar \omega_{2k} \hat{a}_{2k}^{\dagger} \hat{a}_{2k}$$

$$\hat{\mathcal{H}}_{i} = \sum_{k,j} g_{k,j} \left(\hat{\sigma}^{-} \hat{\sigma}^{+} \otimes \hat{a}_{1k}^{\dagger} \hat{a}_{1j} + \hat{\sigma}^{+} \hat{\sigma}^{-} \otimes \hat{a}_{2k}^{\dagger} \hat{a}_{2j} \right).$$

$$(4.7)$$

Слагаемое $\hat{\mathcal{H}}_i$ здесь отвечает за переброс мод термостата вместе с виртуальным возбуждением (релаксацией) кубита. Так же выбирается иногда т.н. спин-бозонное взаимодействие. Вообще говоря подобный вид вытекает в общем случае из разложения произвольного оператора в пространстве термостата по его фундаментальным модам. Аналогично предыдущему пункту, получаем следующее уравнение:

$$i\hbar \frac{\partial}{\partial t}\hat{\rho}_{q} = \left[\hat{\mathcal{H}}_{q}, \hat{\rho}_{q}\right] + \gamma_{\phi}(\hat{\sigma}^{z}\hat{\rho}_{q}\hat{\sigma}^{z} - \frac{1}{2}\left\{\hat{\sigma}^{z}\hat{\sigma}^{z}, \hat{\rho}_{q}\right\}) \equiv \left[\hat{\mathcal{H}}_{q}, \hat{\rho}_{q}\right] + \gamma_{\phi}(\hat{\sigma}^{z}\hat{\rho}_{q}\hat{\sigma}^{z} - \hat{\rho}_{q}), \quad (4.8)$$

где последнее равенство верно в силу того, что $\hat{\sigma}_z^2 \equiv \hat{\mathbb{1}}$. Понятно, что объединив гамильтонианы (4.5) и (4.7), мы получим итоговое уравнение с диссипативной частью $\gamma_{rel}\mathcal{D}\left[\hat{\sigma}^-\right] + \gamma_\phi \mathcal{D}\left[\hat{\sigma}_z\right]$. Теперь перейдем к рассмотрению динамики таких уравнений.

4.5 Диссипативная динамика

Экспериментальная часть

Результаты

Заключение

Литература

- ¹ Lloyd S. A potentially realizable quantum computer. // Science (New York, N.Y.). 1993. Vol. 261. Р. 1569—1571. (ссылка на стр. [3])
- ² DiVincenzo D. P. Quantum Computation // Science.— 1995.— Vol. 270, no. 5234.— P. 255—261.— URL: http://www.sciencemag.org/content/270/5234/255. abstract. (ссылка на стр. [3])
- 3 DiVincenzo D.P. Prospects for quantum computing. 2000. Р. 12–15. (ссылка на стр. [3])
- ⁴ Spiller T. P. Quantum information processing: cryptography, computation, and teleportation // Proceedings of the IEEE. 1996. Vol. 84. (ссылка на стр. [3])
- ⁵ Milburn G J. Photons as qubits // Physica Scripta.— 2009.— Vol. 2009, no. T137.— P. 14003.— URL: http://stacks.iop.org/1402-4896/2009/i=T137/a= 014003. (ссылка на стр. [3])
- 6 Cirac J. I., Zoller P. Quantum computations with cold trapped ions // Physical review letters. 1995. Vol. 74, no. 20. P. 4091. (ссылка на стр. [3])
- 7 Kane B. E. A silicon-based nuclear spin quantum computer // Nature. 1998. Vol. 393. Р. 133–137. (ссылка на стр. [3])
- 8 Rempe G. Cavity QED with single atomic and photonic qubits // Conference on Quantum Electronics and Laser Science (QELS) Technical Digest Series. 2008. (ссылка на стр. [3])
- ⁹ Devoret M. H., Martinis J. M. Implementing qubits with superconducting integrated circuits // Experimental Aspects of Quantum Computing.— 2005.— Р. 163–203. (ссылка на стр. [3])
- ¹⁰ Devoret M. H. Quantum fluctuations in electrical circuits // Les Houches, Session LXIII. 1995. URL: http://www.physique.usherb.ca/tremblay/cours/PHY-731/Quantum_circuit_theory-1.pdf. (ссылка на стр. [3])
- ¹¹ Clarke J., Wilhelm F. K. Superconducting quantum bits. // Nature. 2008. Vol. 453, no. 7198. P. 1031–42. URL: http://www.ncbi.nlm.nih.gov/pubmed/18563154. (ссылка на стр. [3])

Питература

¹² Superconducting persistent-current qubit / T. Orlando, J. Mooij, Lin Tian et al. // Physical Review B.— 1999.— Vol. 60, no. 22.— P. 15398—15413.— URL: http://link.aps.org/doi/10.1103/PhysRevB.60.15398. (ссылки на стр. [3 и 8])

- 13 Charge insensitive qubit design derived from the Cooper pair box / J. Koch, T. M. Yu, J. Gambetta et al. 2007. P. 21. 0703002. (ссылка на стр. [4])
- ¹⁴ Implementation of a quantum metamaterial using superconducting qubits. / P. Macha, G. Oelsner, J.-M. Reiner et al. // Nature communications. 2014. Vol. 5. P. 5146. URL: http://www.ncbi.nlm.nih.gov/pubmed/25312205. (ссылка на стр. [4])
- 15 Clarke J., Braginski A. I. The SQUID Handbook. 2006. Vol. 2. Р. 1–634. ISBN: 9783527404087. (ссылка на стр. [4])
- ¹⁶ Resonance Fluorescence of a Single Artificial Atom / O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov et al. // Science.— 2010.— Vol. 327, no. 5967.— Р. 840–843. (ссылка на стр. [4])
- ¹⁷ Xia K., Vanner M. R., Twamley J. An opto-magneto-mechanical quantum interface between distant superconducting qubits. // Scientific reports.— 2014.— Vol. 4.— P. 5571.—arXiv:1407.2324v1. (ссылка на стр. [4])
- ¹⁸ Schrieffer J. R., Tinkham M. Superconductivity // Reviews Of Modern Physics.— 1999.— Vol. 71.— Р. S313—S317. (ссылка на стр. [5])
- $^{19}\,\rm Ginzburg$ V.L., Landau L.D. On the theory of superconductivity // Zh. Eksp. Teor. Fiz. 20, 1064. 1950. (ссылка на стр. [5])
- ²⁰ Gorkov L. P. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity // Sov. Phys. JETP.— 1959.— Vol. 9, no. 6.— P. 1364–1367. (ссылка на стр. [5])
- 21 Josephson B. Coupled Superconductors // Rev. Mod. Phys. 1964. Vol. 36. P. 216—220. (ссылка на стр. [6])
- ²² Golubov A. A., Kupriyanov M. Y., Il'Ichev E. The current-phase relation in Josephson junctions // Reviews of Modern Physics. 2004. Vol. 76. Р. 411—469. (ссылка на стр. [6])
- ²³ Quantum theory of three-junction flux qubit with non-negligible loop inductance: Towards scalability / T. Robertson, B. Plourde, P. Reichardt et al. // Physical Review B. 2006. Vol. 73, no. 17. P. 174526. URL: http://link.aps.org/doi/10. 1103/PhysRevB.73.174526. (ссылки на стр. [10 и 12])
- ²⁴ Johansson R. Reproduce: Orlando et al., Phys. Rev. B 60, 15398 (1999).— URL: http://nbviewer.ipython.org/github/jrjohansson/reproduced-papers/blob/master/Reproduce-PRB-60-15398-1999-Orlando.ipynb. (ссылка на стр. [12])

 25 Nonlinear response of the vacuum Rabi resonance / L. S. Bishop, J. M. Chow, J. Koch et al. // Nature Physics. — 2009. — Vol. 5, no. 2. — P. 105–109. (ссылка на стр. [15])

- ²⁶ Carmichael H. J. Quantum Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Springer Verlag, 1999. (ссылки на стр. [17 и 18])
- ²⁷ Markovian master equations: a critical study / A. Rivas, A. D. K. Plato, S. F. Huelga, M.B. Plenio // New Journal of Physics.— 2010.— Vol. 12, no. 11.— Р. 113032. (ссылка на стр. [17])
- ²⁸ Lindblad G. On the generators of quantum dynamical semigroups // Communications in Mathematical Physics. 1976. Vol. 48, no. 2. P. 119–130. URL: http://link.springer.com/10.1007/BF01608499. (ссылка на стр. [18])
- ²⁹ Dynamics of the dissipative two-state system / A. J. Leggett, A. T. Dorsey, M. P. A. Fisher et al. // Reviews of Modern Physics.— 1987.— Vol. 59, no. 1.— Р. 1. (ссылка на стр. [19])
- ³⁰ Hsu D., Skinner J. L. General quantum mechanical theory of pure dephasing // Journal of luminescence. 1987. Vol. 37, no. 6. Р. 331–337. (ссылка на стр. [19])