Данное пособие ориентировано на практическую поддержку специального курса «Криптографические методы защиты информации» и частично "Лабораторного практикума по информационно - компьютерным технологиям" для студентов (бакалавров и магистров), обучающихся по направлениям «Прикладная математика и информатика» и «Информационная безопасность». Студенты, завершившие обучение по данным направлениям, должны ориентироваться в методах криптографической защиты информации, обладать практическими навыками простейшей защиты информации в информационных системах. Лабораторный практикум по данной дисциплине предполагает реализацию курсового проекта, представляющего собой комплексное выполнение нескольких заданий по различным аспектам практической криптографии.

Представленные в данном пособии материалы, ориентированые на реализацию такого проекта, апробированы в течение нескольких лет в Институте вычислительной математики и информационных технологий Казанского (Приволжского) Федерального университета.

СОДЕРЖАНИЕ ПЕРВОЙ ЧАСТИ

- Часть І. Скоростные блочные шифры.
- I.1. Введение. Содержание разделов курсового проекта по курсу «Криптографические методы защиты информации».
 - І.2. Реализация криптографических примитивов
 - 2.1. Операции над *п*-битовыми блоками
 - 2.1.1. Конкатенация блоков
 - 2.1.2. Побитовые логические операции над блоками
 - 2.1.3. Сдвиги блоков
 - 2.2. Элементы теории чисел
 - 2.2.1. Модулярная арифметика
 - 2.2.2. Арифметические операции
 - 2.2.3. Наибольший общий делитель
 - 2.2.4. Быстрое возведение в степень
 - 2.2.5. Мультипликативный обратный элемент по модулю п
 - 2.2.6. Тестирование чисел на простоту
 - 2.3. Алгебраические структуры
 - 2.3.1. Группы
 - 2.3.2. Группы подстановок
 - 2.3.3. Перестановки битов
 - 2.3.4. Кольца
 - 2.3.5. Поля
 - 2.3.6.Вычисления в конечном поле \mathbb{F}_{256}
 - І.З. Блочные шифры. Формальные модели
 - І.4. Коллекция блочных шифров.
 - 4.1. Anubis
 - 4.2. Blowfish
 - 4.3. Camellia
 - 4.4. CAST
 - 4.5. Crypton V.1
 - 4.6. CS Cipher
 - 4.7. DES
 - 4.8. DFCv.2
 - 4.9. Diamond 2
 - 4.10. E2
 - 4.11. FEAL8.NX
 - 4.12. Frog
 - 4.13. ГОСТ 28147, Р 34.12-2015 (Магма и Кузнечик)
 - 4.14. Hierocrypt
 - 4.15. ICE
 - 4.16. IDEA
 - 4.17. Khazad
 - 4.18. LOKI-91, 97
 - 4.19. Magenta
 - 4.20. MARS
 - 4.21. Misty
 - 4.22. Nimbus
 - 4.23. Noekeon
 - 4.24. NUSH
 - 4.25. Rainbow
 - 4.26. RC2, 5, 6
 - 4.27. Rijndael

- 4.28. SAFER K64, ++
- 4.29. SC 2000
- 4.30. Serpent
- 4.31. Skipjack 4.32. Square
- 4.33. Three Way, Base King
- 4.34. TwoFish
- 5. Генерация псевдослучайных PIN-кодов.
- 6. Литература
- 7. Глоссарий

СОДЕРЖАНИЕ ЧАСТЕЙ II-IV

Часть II. Хеширование: вычисление сжатого образа сообщения

- 1. Ключевые функции хеширования
- 2. Бесключевые функции хеширования
- 3. Некоторые алгоритмы хеширования
 - 3.1. MD2
 - 3.2. MD5
 - 3.3. RIPEMD 160
 - 3.4. SHA-1
 - 3.5. ΓΟCT P34.11 94
- 4. Российский стандарт функци хеширования ГОСТ Р34.11-2012
 - 4.1 Обозначения
 - 4.2 Общие положения. Значения параметров
 - 4.3. Нелинейное биективное преобразование множества двоичных векторов
 - 4.4. Перестановка байт
 - 4.5. Линейное преобразование множества двоичных векторов
 - 4.6. Итерационные константы
 - 4.7. Преобразования и функция сжатия
 - 4.8. Алгоритм вычисления хеш-функции
 - 4.9. Приложение. Контрольные примеры к ГОСТ Р 34.10 –2012

Часть III. Электронная цифровая подпись

- 1. Схемы цифровой подписи с использованием дискретных логарифмов
- в простом конечном поле
- 2. Некоторые стандарты цифровой подписи
 - 2.1. Федеральный стандарт США.
 - 2.2. FOCT P34.10-94
 - 2. 3. FOCT P 34.10-2001
 - 2. 3.1. Обозначения
 - 2. 3.2. Общие положения
 - 2. 3.3. Математические определения
 - 2. 3.4. Параметры цифровой подписи
 - 2. 3.5. Двоичные векторы
 - 2. 3.6. Формирование цифровой подписи
 - 2. 3.7. Проверка цифровой подписи
 - 2. 3.8. Приложение. Контрольный пример

Часть IV. Режимы шифрования.

- 1. ECB
- 2. CBC
- 3. CFB
- 4. OFB
- 5. Counter
- 6.BC
- 7.PFB
- 8. Модификация СВС
- 9.PCBC
- 10.OFBNLF
- 11. CNLF
- 12.BC
- 13.CTS
- 14. Вероятностное шифрование

І.1. Введение.

Содержание разделов курсового проекта по курсу «Криптографические методы защиты информации»

Без использования криптографии в настоящее время немыслимо решение задач по обеспечению безопасности информации, связанных с конфиденциальностью и целостностью, аутентификацией и невозможностью отказа от авторства. До 1990 года криптография обеспечивала закрытие лишь государственных линий связи. Однако в наше время использование криптографических методов получает широкое распространение благодаря развитию компьютерных сетей и электронного обмена данными в различных сферах человеческой деятельности: в промышленности, финансовом и банковском деле, торговле и т.п. Очевидно, что значение криптографических методов в указанных областях будет только возрастать.

Разработка и использование современных приложений криптографии невозможно без изучения теоретических основ криптографии. При этом теоретические курсы должны сопровождаться обязательными практическими занятиями по разработке программно-аппаратных средств защиты информации.

Цель данного пособия — обеспечить практическую поддержку специального курса «Криптографические методы защиты информации» и частично "Лабораторного практикума по информационно-компьютерным технологиям" для студентов (бакалавров и магистров), обучающихся по направлениям «Прикладная математика и информатика» и «Информационная безопасность». Студенты, завершившие обучение по данным направлениям, должны ориентироваться в методах криптографической защиты информации, обладать практическими навыками простейшей защиты информации в информационных системах. Лабораторный практикум по данной дисциплине предполагает реализацию курсового проекта, представляющего собой комплексное выполнение нескольких заданий по различным аспектам практической криптографии.

Общая структура реализуемого студентами курсового проекта представлена в следующей таблице:

Раздел	Наименование разделов курсового проекта
	«Криптографические методы защиты информации»
	Реализация криптографических примитивов.
I.	Реализация операций над <i>п</i> -битовыми блоками, длинной и модульной
1.	арифметики, вычислений в конечных полях, тестирование чисел на про-
	стоту, построение датчиков псевдослучайных чисел.
	Скоростные блочные шифры.
II.	Программная реализация процедур зашифрования и расшифрования на
11.	основе блочного шифра из предложенной коллекции современных блоч-
	ных шифров.
III.	Хеширование.
111.	Построение сжатого образа сообщения.
	Электронная цифровая подпись.
IV.	Реализация алгоритмов вычисления электронной цифровой подписи сооб-
10.	щения и ее проверки на основе дискретных логарифмов или эллиптических
	кривых над конечными полями.
	Режимы шифрования.
٧.	Зашифрование и расшифрование подписанного сообщения с использова-
	нием одного из режимов блочного или поточного шифрования.
	Построение псевдослучайных PIN-кодов.
VI.	Конструирование алгоритма генерации псевдослучайных десятичных PIN-
ν	кодов с использованием датчика случайных чисел криптографическим ме-
	тодом.

I.2. Реализация криптографических примитивов

Криптографический примитив – в широком смысле это операция, используемая в качестве элемента шифра (криптоалгоритма), в узком смысле это операция, определяющая требуемые свойства криптосистемы (например, стойкость и т.п.).

Современная криптография базируется на математическом аппарате теории чисел и алгебры. В данном разделе приводятся необходимые сведения и алгоритмы (а также некоторые задачи) из следующих областей:

- 1. Операции над *п*-битовыми блоками
- 2. Элементы теории чисел
- 3. Алгебраические структуры

2.1. Операции над n-битовыми блоками

Пусть $B_2 = \{0,1\}$ – алфавит двоичных цифр, называемых также битами 1 .

Набор $B=b_{n-1}b_{n-2}\dots b_0$, составленный из n битов, т.е. $b_i\in B_2,\,0\leq i\leq n-1$, будем называть n-битовым блоком. Число битов в блоке B называется длиной блока и обозначается $\lambda(B)$. Блок, составленный из m одинаковых битов c обозначается c^m . (Например, $0^8 = 00000000$, $1^8 = 111111111$.) Для обозначения четырехбитовых блоков используется шестнадцатеричная (16-ичная) система обозначений (нотация):

блок	16-ичное	10-ичное	блок	16-ичное	10-ичное
Ostok	обозначение	значение	OHOK	обозначение	значение
0000	0x0	0	1000	0x8	8
0001	0x1	1	1001	0x9	9
0010	0x2	2	1010	0xa	10
0011	0x3	3	1011	0xb	11
0100	0x4	4	1100	0xc	12
0101	0x5	5	1101	0xd	13
0110	0x6	6	1110	0xe	14
0111	0x7	7	1111	0xf	15

Такая система обозначений используется и для блоков, длина которых кратна 4. Например, блок

1000 0000 1111 0110 1110 0111 1001 1010

обозначается как 0x80f6e79a. Для некоторых блоков традиционно используется следующая нотация: 4-битовый блок называется полубайтом, 8-битовый – байтом (byte), 16-битовый — nonycnoвом (word), 32-битовый — cnoвом (longword), а 64-битовый — deoŭным словом (double word). Впрочем, вместо термина «блок» будем использовать термин «слово», если из контекста ясно, какова длина блока.

Замечание. Формально множество всевозможных *п*-битовых блоков можно рассматривать как B_2^n – декартово произведение n экземпляров множества B_2 :

$$B_2^n = B_2 \times ... \times B_2 \text{ (n pa3)} = \{b_{n-1}b_{n-2} ... b_0 | b_i \in B_2, 0 \le i \le n-1\}.$$

Всего имеется 2^n n-битовых блоков.

$$N(B) = b_{n-1} 2^{n-1} + b_{n-2} 2^{n-2} + \dots + b_0 2^0$$

Для произвольного блока $B=b_{n-1}b_{n-2}\dots b_0\in B_2^n$ положим $N(B)=b_{n-1}2^{n-1}+b_{n-2}2^{n-2}+\dots+b_02^0.$ Число $N(B)\in N_{2^n}=\{0,1,\dots,2^n-1\}$ называется *числовым значением n*-битового блока B.Бит b_{n-1} называется *старшим*, а b_0 – младшими битами в блоке B.

¹ Бит является минимальной двоичной единицей измерения энтропии и количества информации в ЭВМ, соответствующей одному двоичному разряду. Энтропия сообщения, выраженная в битах, определяется средним числом символов необходимых для записи этого сообщения. Определенное количество битов составляет размер других единиц – двоичных слов байта, килобайта, мегабайта и т.д.

Замечание. Существует извечный спор между «математиками» и «программистами» о том, как нумеровать при записи биты и байты. (Например, в системе IBM-360 биты в словах нумеровались, начиная с нуля: $b_0b_1 \dots b_{31}$, причем при представлении целых числе бит b_{31} рассматривался как младший.) Память современных компьютеров имеет байтовую организацию, а каждый байт имеет свой номер — адрес. С помощью одного байта можно представить неотрицательные целые числа от 0 до 255. Для чисел с большим значением необходимо несколько байтов. Чтобы расположить информацию в нескольких байтах, можно выбрать один из способов:

Big-endian — байт с наибольшей значащей частью (старший байт, в исходном тексте он находится слева) размещается в памяти по *наименьшему* адресу (в младшей адресной позиции). Такое представление называется по-русски *обратным порядком следования байтов*. В компьютерной литературе байт с большей значащей частью называют *MSB* (Most Signiticant Byte), байт с наименьшей значащей частью называется LSB (Last Signiticant Byte).

Little-endian — байт с наибольшей значащей частью (слева) размещается в памяти на наибольшему адресу. Такое представление называется по-русски прямым порядком следования байтов. ²

Распространенные в России компьютеры с 32-процессорами используют архитектуру little-endian . Существуют, однако, и big-endian-компьютеры (IBM 370, Motorolla 68000, Sun и многие RISC-процессоры). Система Power PC допускает оба формата данных. В современном внеплатформенном языке Java данные хранятся в формате big-endian, а ADA допускает возможность задания режима хранения многобайтовых данных.

Пример 1. В записи B = 0ха1b2c3d4 — первый полубайт является старшим, и соответствующее числовое значение B равно

 $N(B) = 10 \cdot 16^7 + 1 \cdot 16^6 + 11 \cdot 16^5 + 2 \cdot 16^4 + 12 \cdot 16^3 + 3 \cdot 16^2 + 13 \cdot 16^1 + 4 \cdot 160 = 2712847316.$

В big-endian-представлении байты блока B будут записаны в порядке 0xa1, 0xb2, 0xc3, 0xd4, а в little-endian — в порядке 0xd4, 0xc3, 0xb2, 0xa1.

Отметим теперь некоторые операции над блоками.

2.1.1. Конкатенация блоков

Блок $C=a_{n-1}a_{n-2}\dots a_0b_{n-1}b_{n-2}\dots b_0$, получающийся в результате прописываия справа к блоку $A=a_{n-1}a_{n-2}\dots a_0$ битов блока $B=b_{n-1}b_{n-2}\dots b_0$, называется конкатенацией (сцеплением, соединением) блоков A и B и обозначается C=A||B| (или просто AB).

Например, если $A = 01010101 = 0 \times 55$ и $B = 11110011 = 0 \times 53$, то $A||B = 010101011110011 = 0 \times 55 \times 53$. Очевидно, что $\lambda(A||B) = \lambda(A) + \lambda(B)$. Если k|n, то любой блок из B_2^n можно рассматривать как конкатенацию n/k блоков из B_2^n .

2.1.2. Побитовые логические операции над блоками

Пусть \neg (not), & (\otimes или and), \vee (or), \oplus (xor) — логические (булевы) операции, определенные на B_2 как

х	$\neg x$
0	1
1	0

х	у	x&y	<i>x</i> ∨ <i>y</i>	x⊕y
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

(Названия операций: \neg – *отрицание*, & – конъюнкция, или логическое умножение, \vee – дизъюнкция, или логическое сложение, \oplus – сложение по модулю 2.)

 $^{^2}$ В Лилипутии (см. книгу Джонатана Свифта «Приключения Гулливера» образовались две непримиримые партии по вопросу, с какого конца разбивать яйца – с тупого (big side) или острого (little side). Споры между сторонниками big- и little-endian носят такой же характер.

Определим побитовые операции над блоками $A = a_{n-1}a_{n-2} \dots a_{0n-1}$ и B = $b_{n-1}b_{n-2} \dots b_0$ одинаковой длины как

 $\neg A = c_{n-1}c_{n-2}c_0$, где $c_i = \neg a_i$ (побитовое отрицание),

 $A\&B = c_{n-1}c_{n-2}c_0$, где $c_i = a_i\&b_i$ (побитовое умножение),

 $A \lor B = c_{n-1} c_{n-2} c_0$, где $c_i = a_i \lor b_i$ (побитовая дизьюнкция),

 $A \oplus B = c_{n-1}c_{n-2}c_0$, где $c_i = a_i \oplus b_i$ (побитовое сложение по модулю 2),

i=0,1,...,n-1. Такие операции (над байтами и словами длины 16, 32 и 64) обычно предусмотрены в современных языках программирования.

Отметим, что структура (B_2^n, \oplus) является *группой*. Роль нуля играет нулевой блок 0^n ; $a \oplus a = 0$, т.е. $-a \equiv a$. При заданных $a, b \in B_2^n$ уравнение $a \oplus x = b$ однозначно разрешимо относительно $x \in B_2^n$.

Множество B_2 с операциями & (·) и \oplus образует конечное поле, которое обозначается как GF(2) (Galois field – поле Галуа), или \mathbb{F}_2 . Множество \mathbb{F}_2^n с операциями сложения (\bigoplus) и умножения блоков на скаляр $c \in \mathbb{F}_2^n$ (по правилу $0 \cdot a = 0^n$, $1 \cdot a = a$, где $a \in \mathbb{F}_2^n$) образует векторное пространство над \mathbb{F}_2^n размерности $dim \ \mathbb{F}_2^n = n$. Множество \mathbb{F}_2^n относительно операций сложения (Ф) и умножения блоков (&) образует линейную ассоциативную алгебру ⁴.

2.1.3. Сдвиги блоков

Операция shl_s сдвига влево на s битов, выполняемая над -битовым блоком $A = a_{n-1}a_{n-2} \dots a_0$, определяется как

$$shl_s(A) = \begin{cases} a_{n-(s-1)}a_{n-(s-2)} \dots a_0 0^s, \text{ если } s < n; \\ 0^n, \text{ если } s \ge n. \end{cases}$$

Сдвиг влево – это сдвиг в сторону старших битов, при этом старшие *s* битов выталкиваются за пределы разрядкой сетки и пропадают, а s младших битовых позиций заполняется нулями. Более того, эта операция трактуется как замена значения N(A) на

$$N(shl_s(A)) = (N(A) \cdot 2^s) \mod 2^n$$

где $a \mod b$ – остаток от деления a на b.

Операция сдвига вправо определяется как

едвига вправо определяется как
$$shr_s(A) = \begin{cases} 0^s a_{n-1} a_{n-2} \dots a_{n-s}, \text{ если } s < n;; \\ 0^n, \text{ если } s \ge n. \end{cases}$$

Сдвиг вправо – это сдвиг битов в сторону младших битов (с выталкиванием *s* младших битов и заполнением s старших битовых позиций нулями). При этом

$$N(shr_s(A)) = N(A) div 2^s$$
,

где $a \ div \ b$ — частное от деления a на b.

V3. выполняются дистрибутивные замены:

$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}, \forall c \in F, \forall \mathbf{u}, \mathbf{v} \in V,$$

$$(c+d) \mathbf{u} = c\mathbf{u} + d\mathbf{v}, \forall c, d \in F, \forall \mathbf{u} \in V;$$

V4. выполняется ассоциативный закон:

$$(cd) \mathbf{u} = c(d\mathbf{u}), \forall c, d \in F, \forall \mathbf{u} \in V.$$

А3. выполняется ассоциативный закон:

$$u(vw) = (uv)w, \forall u, v, w \in A;$$

А4. выполняются билинейные законы:

$$u(cv + dw) = cuv + duw, cv + dw)u = cvu + dwu, \forall c, d \in F, \forall u, v, w \in A$$

 $^{^{3}}$ Множество V называется векторным пространством над полем F, если для него выполнимы аксиомы:

V1. (V, +) – абелева аддитивная группа;

V2. для любого вектора $v \in V$ и любого элемента поля $c \in F$ определено произведение cv (элементы поля называют *скалярами*, а элементы V – *векторами*);

Множество A называется *линейной ассоциативной алгеброй* над полем F, если выполнены аксиомы:

A1. A – векторное пространство над F:

A2. для любых $u, v \in A$ определено их произведение – элемент $uv \in A$;

2.1.4. Циклические сдвиги блока A влево (rol_s) и вправо (ror_s) на s позиций определяются как

$$rol_s(A) = a_{n-s-1}a_{n-s=2} \dots a_0 a_{n-1}a_{n-2} \dots a_{n-s}$$
, если $0 \le s < n$; $ror_s(A) = a_{s-1}a_{s=2} \dots a_0 a_{n-1}a_{n-2} \dots a_s$, если $0 \le s < n$; $rol_t(A) = rol_s(A)$, $ror_t(A) = ror_s(A)$, если $s \equiv t \mod n$.

Для $0 \le s < n$ справедливы соотношения:

$$rol_s(A) = shl_s(A) \lor shr_{n-s}(A),$$

 $ror_s(A) = shr_s(A) \lor shl_{n-s}(A),$

где вместо ∨ можно использовать также ⊕.

2.2. Элементы теории чисел

2.2.1. Модулярная арифметика

Запись в модулярной арифметике $a \equiv b \pmod n$ читается "a сравнимо с по модулю n") означает, что числа a и b при делении на n дают один и тот же остаток, или $n \mid (a-b)$ (читается: "n делит (a-b)", или "a-b делится на n без остатка"). Если $a \equiv b \pmod n$, то b называют вычетом числа a по модулю n, а саму операцию нахождения вычета a по модулю n называют приведением числа a по модулю a.

Числа от 0 до n-1 образуют полную систему вычетов по модулю n. Это означает, что для любого целого a найдется $r \in \{0, 1, ..., n-1\}$ такое, что $a \equiv r \pmod{n}$.

Модулярная арифметика над вычетами во многом аналогична обычной арифметике. Вычисляя значение некоторого выражения над целыми числами (с использованием операций сложения, вычитания и умножения) по модулю n, можно использовать следующие соотношения:

```
(a + b) \mod n = [(a \mod n) + (b \mod n)] \mod n,

(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n,

(a \cdot b) \mod n = [(a \mod n) \cdot (b \mod n)] \mod n,

(a \cdot (b + c)) \mod n = \{[(a \cdot b) \mod n] + [(a \cdot b) \mod n]\} \mod n.
```

Другими словами, целые числа по модулю n с использованием операций сложения и умножения образуют коммутативное кольцо. Оно обозначается как \mathbb{Z}_n .

2.2.2. Арифметические операции

Операции сложения, вычитания и умножения $(A+B) \mod m$, $(A-B) \mod m$ и $(A\cdot B) \mod m$ над целыми числами $A,B\in\mathbb{Z}$ по модулю $m\in\mathbb{N}$ будем для краткости обозначать как

$$A+_mB$$
, $A-_mB$, $A\cdot_mB$.

Для n-битовых блоков $A, B \in B_2^n$ значение m часто выбирают равным 2^n . В этом случае будем использовать обозначения:

$$A \coprod_n B \equiv A +_{2^n} B \equiv (A + B) \mod 2^n,$$

 $A \coprod_n B \equiv A -_{2^n} B \equiv (A - B) \mod 2^n,$
 $A \boxtimes_n B \equiv A \cdot_{2^n} B \equiv (A \cdot B) \mod 2^n.$

Операции \coprod_n и \boxtimes_n реализуются как обычные арифметические операции над целыми числами (в двоичной системе счисления) с той лишь разницей, что в полученном результате оставляют n младших битов, а старшие отбрасывают. Отметим также, что

$$A \boxminus_n B = A \boxminus_n (not B) \boxminus_n C, N(C) = 1.$$

Структура $(B_2^n, \boxplus_n, \boxtimes_n)$ является коммутативным кольцом (с делителями нуля при n>1). Уравнение $A\boxplus_n X=B$ однозначно разрешимо относительно $X\in B_2^n\in$ для любых $A,B\in B_2^n$.

Уравнение $A \boxtimes_n X = B$ разрешимо относительно X тогда и только тогда, когда н.о.д. (N(A), N(B)) = 1, т.е. числа N(A) и N(B) взаимно просты.

2.2.3. Наибольший общий делитель

Пусть $a, b \in \mathbb{Z}$ – любые целые числа, не равные нулю одновременно. Наибольшее целое число, делящее одновременно числа a и b, называется их *наибольшим общим дели- телем* и обозначается НОД(a, b) (или gcd(a, b) от great common divisor, или просто (a, b)). Отметим следующие свойства НОД:

- **1)** (a, 0) = |a|;
- **2)** (a,b) = (b,a);
- **3)** если $b \neq 0$, то (a, b) = (r, b), где $r = a \mod b$ остаток от деления a на b.

Алгоритм Евклида вычисления НОД основан на использовании этих свойств:

```
a:=abs(a);\ b:=abs(b);
while\ (a>0)\&(b>0)\ do\ \{
if\ a>b\ then\ a:=a\ mod\ b\ else\ b:=b\ mod\ a
\};
HOД:=a+b.
```

Алгоритм Евклида затрачивает на вычисление HOД(a, b) в худшем случае $O(log_2(|a| + |b|))$ времени (по числу арифметических операций). Анализ этого и других алгоритмов вычисления HOД см. у Д. Кнута (т. 2, $\S4.5.2$, 4.5.3).

2.2.4. Быстрое возведение в степень

Пусть x – неотрицательное целое число, a и n – положительные целые числа. Значение $y = a^x \mod n$ можно вычислить по схеме:

```
y:=1;

for i:=1 to x do y:=(y\cdot a) \ mod \ n.
```

Но это медленный алгоритм, а при больших x заведомо неприемлемый. Существенно более быстрая схема основана на использовании следующего соотношения:

$$a^x \mod n = (b^z \times c) \mod n$$
,

где $b = a^2 \mod n$, $z = x \operatorname{div} 2$, а c = 1 или a соответственно для четного и нечетного x. Данное соотношение подсказывает следующий алгоритм:

```
y:=1;
\textit{while } x > 0 \textit{ do } \{
\textit{if } x нечетно \textit{then } y:=(y \cdot a) \textit{ mod } n;
a:=(a \cdot a) \textit{ mod } n;
x:=x \textit{ div } 2
\}.
```

Временна́я сложность (по числу арифметических операций) составляет для первого алгоритма O(x), а для второго $O(\log_2 x)$.

2.2.5. Мультипликативный обратный элемент по модулю n

Сравнение $ax \equiv 1 \pmod n$ имеет решение x тогда и только тогда, когда a и n взаимно просты, т.е. (a,n)=1. Если решение существует, то оно единственно в интервале [0,n-1] (как, впрочем, и в любом другом интервале [b,b+n-1]). Значение x, удовлетворяющее данному сравнению, называется m и обозначается m и обозначается m (или просто m и обозначается m и обозначается m (или просто m и обозначается m основываясь на теореме Эйлера:

$$a^{\varphi(n)} \equiv 1 \pmod{n} \Rightarrow a^{-1} = a^{\varphi(n)-1} \mod n$$
.

где $\varphi(n)$ – функция Эйлера (количество чисел среди 1,2, ..., n, взаимно простых с n); в частности, если n – простое число, то

$$a^{-1} = a^{n-2} \mod n$$
.

Теорема Эйлера допускает следующее обобщение:

Теорема Кармайкла. Для любых взаимно простых чисел $a \in \mathbb{Z}$, $n \in \mathbb{N}$

$$a^{\lambda(n)} \equiv 1 \pmod{n},\tag{1}$$

где $\lambda(n) - \phi$ ункция Кармайкла, определяемая следующим образом:

 $\lambda(2) = 1, \lambda(4) = 2; \lambda(2^{\alpha}) = 2^{\alpha-2},$ если $\alpha \ge 3;$

 $\lambda(p^{\alpha}) = \varphi(p^{\alpha}) = p^{\alpha}(p-1)$, если p — нечетное простое число; $\lambda(n) = \text{HOK}\left[\lambda(p_1^{\alpha_1}), \dots, \lambda(p_k^{\alpha_k})\right]$, если $p_1^{\alpha_1}p_2^{\alpha_2} \dots p_k^{\alpha_k}$ — каноническое разложение числа n, где НОК $[a_1,...,a_k]$ – наименьшее общее кратное чисел $a_1,...,a_k$.

Таким образом, если a и n взаимно просты, то $a^{-1} = a^{\lambda(n)-1} \mod n$.

Замечание. Для чисел n вида 2, 4, p^{α} или $2p^{\alpha}$, где p — простое число, $\alpha \in \mathbb{N}$, имеет место равенство $\lambda(n) = \varphi(n)$. Во всех остальных случаях $\lambda(n)$ — собственный делитель числа $\varphi(n)$ и для них соотношение (1) улучшает теорему Эйлера.

Общим недостатком вычисления $a^{-1} \pmod{n}$ на основе теорем Эйлера и Кармайкла является необходимость вычисления значений $\varphi(n)$ и $\lambda(n)$, что связано с разложением числа n на простые множители. Другой способ вычисления a^{-1} , свободный от этого недостатка, основан на использовании расширенного алгоритма Евклида. Следующий алгоритм возвращает значение d = (a, n) и значение x, удовлетворяющее сравнению

 $ax \equiv d \pmod{n}$ (поэтому, если d = 1, то $x = a^{-1} \pmod{n}$):

```
(d, m, y, x) := (a, n, 0, 1):
r := m \mod d:
while r > 0 do {
      q := m \operatorname{div} d;
      z:=(y+(n-((q\cdot x)\ mod\ n)))\ mod\ n;
      (m,d) := (d,r);
      (y, x) := (x, z);
      r := m \mod d
```

2.2.6. Тестирование чисел на простоту

Простейшим методом проверки простоты натурального числа n является метод пробных делений: для d=2,3,5,7,... проверяется выполнение условия $n \mod d \neq 0$ или условия HOД(n,d) = 1. Если эти условия выполняются для каждого d, не превосходящего \sqrt{n} , то n – простое число, в противном случае n – составное число. Этот метод работает медленно. Поэтому для больших чисел он неприменим.

Для доказательства простоты числа n можно использовать следующее обращение Малой теоремы Ферма:

Теорема Люка (1876). Натуральное число n является простым тогда и только тогда, когда существует число b такое, что $b^{n-1} \equiv 1 \pmod{n}$, но $b^{(n-1)/q} \not\equiv 1 \pmod{n}$ для любого простого делителя q числа n-1.

Из Малой теоремы Ферма следует, что если HOД(b, n) = 1 и $b^{n-1} \not\equiv 1 \pmod n$, то n- заведомо составное число. Вместе с тем существуют составные числа, для которых $b^{n-1} \equiv 1 \pmod{n}$.

Такие (составные) числа называют b-псевдопростыми по модулю n.

Теорема Чиполлы (1904). Существует бесконечно много *b*-псевдопростых чисел.

Недостаток теста проверки числа n на простоту на основе теоремы Люка заключается в необходимости разложения числа n-1 на простые множители. С другой стороны, этот тест полезен при конструировании простых чисел вида bq + 1, где q -известное простое число, а для четного b известно разложение на простые множители.

На практике обычно используют вероятностные тесты проверки простоты. Для этих тестов необходима последовательность равномерно распределенных случайных чисел из отрезка [1, n]. Для каждого случайного числа a проверяется выполнение некоторых условий. Если какое-либо условие не выполнено, то n – заведомо составное число. Если же все условия выполнены, то с некоторой вероятностью ошибки можно утверждать, что n – простое число. Вероятность ошибки тем ближе к 0, чем больше чисел a будет испытано. Наиболее широко используется тест Рабина-Миллера.

Определение. Пусть n – нечетное число, $n-1=2^{s}t$, где t нечетно. Число n называется сильным b-псевдопростым (сильным b-псп) по модулю n, если либо

$$b^t \equiv 1$$
 или $n-1 \pmod{n}$,

либо

$$(b^t)^k \equiv n - 1 \pmod{n}$$

 $(b^t)^k \equiv n-1 \ (mod \ n)$ для некоторого $k=2,4,8,\dots,2^{s-1}.$ Экспериментально установлено, что число $n < 25 \times 10^9$ является простым тогда и только тогда, когда n — сильное b-псп для b = 2, 3, 5 и 7. Исключение составляет составное число $n=3215031751=151\times751\times28351$. Если n<341550071728321 является сильным b-псп при b=2,3,5,7,11,13 и 17, то n – простое число. Для больших значений n тестирование на простоту опирается на следующую теорему:

Теорема Рабина. Если n — нечетное составное число и $S = \{b | 1 \le b \le n - 1 \text{ и } n \text{ не является сильным -псп } \},$

то

$$|S| \ge (3/4)(n-1)$$
.

Тест Рабина проводится так. Случайным образом выбираем k значений $b \in$ $\{1,2,...,n-1\}$ и для каждого b проверяем, является ли n сильным b-псп. Если нет, то n-1заведомо составное число; если да, то можно с вероятностью ошибки $\leq (1/4)^k$ утверждать, что n – простое число. Известны и более точные оценки. Например, для 256-битового кандидата в простые числа вероятность ошибки при k=6 испытаниях не превосходит $(\frac{1}{2})^{51}$. Отметим также, что во многих реализациях проверяется делимость n на все простые числа, меньшие некоторого числа. Например, проверка делимости на простые числа, меньшие 256, отсекает из числа кандидатов в простые числа 80% нечетных чисел; еще более надежна проверка делимости на простые числа, меньшие 2000.

2.3. Алгебраические структуры

- **2.3.1.** Группы. Множество G с заданной на нем бинарной операцией "." называется группой, если выполнены три условия (аксиомы):
 - G1. Операция " \cdot " замкнута на G, т.е. $a \cdot b \in G$ для любых $a, b \in G$.
 - G2. Операция "· " ассоциативна, т.е. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ для любых $a, b, c \in G$.
 - G3. Существует элемент $e \in G$ такой, что $e \cdot g = g \cdot e = g$ для любого $g \in G$.
- G4. Для любого $g \in G$ существует $g' \in G$ такой, что $g \cdot g' = g' \cdot g = e$. Обычно для группы используется обозначение (G, ·). Элемент e называется нейтральным элементом группы G, а g' – обратным элементом к g. В группе нейтральный элемент и элемент, обратный к g, определены однозначно, а уравнения

$$a \cdot x = b$$
, $y \cdot a = b$

однозначно разрешимы (первое относительно x, а второе – относительно y) при любых a, $b \in G$. Операция "·" называется коммутативной, если $a \cdot b = b \cdot a$ для любых $a, b \in G$. В этом случае группа называется коммутативной, или абелевой.

Пример 2. 1) Множество целых чисел $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ с операцией сложения по модулю n образует аддитивную группу порядка n; 2) множество целых чисел $\mathcal{G}_n =$ $\{1, 2, ..., n-1\}$, где n – простое число, с операцией умножения по модулю n а образует мультипливную группу порядка n-1.

2.3.2. Группы подстановок

Подстановкой непустого множества M называют любое биективное (т.е. взаимно однозначное) отображение множества M на себя. Множество всех подстановок на множестве M обозначается через S(M).

Произведение $f \circ g$ отображений f и g определяется как $f \circ g$ (x) = f(g(x)) для любого $x \in M$. Множество подстановок S(M) образует относительно произведения \circ группу. Если M – конечное множество мощности n, то S(M) – группа порядка n! Ее называют симметрической группой степени n.

Группа S(M) коммутативна только при $n \le 2$.

Замечание. Элементы конечного множества M можно занумеровать как 0,1,...,n-1. Тогда вместо группы S(M) можно рассматривать группу $S(\Omega)$, $\Omega = \{0,1,...,n-1\}$; последнюю группу обычно обозначают через S_n .

Любая подгруппа G группы S_n (G – подмножество в S_n , само являющееся группой) называется *группой подстановок степени* n.

Пусть $\sigma_1, \ldots, \sigma_k$ – подстановки, заданные на элементах $b_1, b_2, \ldots, b_k \in B_2^m$. Операция подстановки, применения к блоку $B = b_1 ||b_2|| \ldots ||b_k||$ с использованием подстановок $\sigma_1, \ldots, \sigma_k$, заключается в замене блока B на блок $B' = b_1' ||b_2'|| \ldots ||b_k'||$, где $b_i' = \sigma_i(b_i), i = 1, 2, \ldots, k$.

Пример 3. Рассмотрим подстановку на множестве полубайтов B_2^4 , заданную таблицей:

Х	0	1	2	3	4	5	6	7	8	9	а	b	C	d	e	f
$\sigma[x]$	5	а	f	U	b	6	9	d	1	7	е	2	3	4	8	0

Применение этой подстановки к полубайтам блока $B = 0 \times 01234567$ дает блок $B' = 0 \times 5$ аfcb69d, повторное применение дает блок $B'' = 0 \times 6$ у 032974.

Подстановка может быть задана таблицей, как в рассмотренном примере 3, либо аналитически. Например, отображение

$$x \rightarrow ax + b \pmod{256}$$
,

где a — нечетное, является подстановкой на множестве B_2^8 байтов.

Если σ — подстановка на элементах множества B_2^m , то обратная подстановка σ^{-1} (реализующая отображение, обратное к σ) может быть вычислена по схеме:

for
$$x \in B_2^m$$
 do $\{y := \sigma[x]; \sigma^{-1}[y] := x\}.$

Пример 4. Подстановка σ^{-1} , обратная к подстановке σ , приведенной в примере 3, имеет следующий вид:

X	0	1	2	3	4	5	6	7	8	9	а	b	U	d	υ	f
$\sigma^{-1}[x]$	f	8	b	С	d	0	5	9	е	6	1	4	3	7	а	2

Подстановочные преобразования широко применяются при конструировании блочных шифров. Одно из требований, представляемых к используемой для замены подстановке σ , заключается в том, чтобы зависимость между x и $\sigma[x]$ была нелинейной и плохо апроксимировалась линейными функциями. В современных блочных шифрах чаще всего используют подстановки, заданные на множестве полубайтов (т.е. B_2^4) либо на множестве байтов (B_2^8). Это объясняется тем, что таблицы размера 16 (для случая B_2^4) и 256 (для случая B_2^8) поддаются экспериментальному исследованию на устойчивость по отношению к известным методам криптоанализа. Проектирование таблиц подстановок, имеющих больший размер, — более сложная задача.

Отметим один способ конструирования подстановки Σ , заданной на множестве B_2^{16} двухбайтовых слов. Пусть $b_1b_2 \in B_2^{16}$ – двухбайтовое слово; $\sigma_0, ..., \sigma_{255}$ – любые подстановки на множестве B_2^8 байтов (построенная, например, псевдослучайным способом); $k_1, k_2, k_3, \ k_4 \in B_2^8$ – любые фиксированные байты (параметры, которые, наряду с σ_i , опре-

деляют конструируемую подстановку σ). Рассмотрим преобразование $\Sigma: B_2^{16} \longrightarrow B_2^8$, представленное на рис.1.

Это преобразование имеет обратное Σ^{-1} , представленное на рис.2, т.е. Σ – подстановка на множестве двухбайтовых слов. Заметим, что подстановки \sum и \sum^{-1} вычисляются по одинаковой схеме, известной как 4-раундовая схема Фейстеля. Если первую подстановку обозначить как \sum [k_1 , k_2 , k_3 , k_4 ; σ_0 , σ_1 ,..., σ_{255}] (b_1b_2), то обратная подстановка задается как

$$\sum^{-1} [k_1, k_2, k_3, k_4; \sigma_0, \sigma_1, ..., \sigma_{255}] (b_1 b_2)) = \sum [k_4, k_3, k_2, k_1; \sigma_0, ..., \sigma_{255}] (b_1 b_2).$$

Другими словами, алгоритм вычисления Σ^{-1} совпадет с алгоритмом вычисления Σ с той лишь разницей, что при вычислении Σ^{-1} ключевые параметры используются в обратном порядке (ключевые параметры k управляют выбором соответствующих подстановок σ_k).

Схемы, представленные на рис. 1, 2 можно обобщить путем замены операции \oplus побитового сложения по модулю 2 на инволютивные подстановки τ_0 , τ_1 ,..., τ_{255} . Соответствующее обобщение представлено на рис. 3. (Подстановка τ называется *инволютивной*, если $\tau^2 = e$, где e – тождественная подстановка, и, следовательно, $\tau^{-1} = \tau$. Такие преобразования представляют особый интерес для криптографии.)

Преобразование ∑:

$$Bxo\partial: x||y \in B_{2}^{16}.$$

 $z: = \sigma_{k_{1}}[y]; \quad x: = \tau_{z}[x];$
 $z: = \sigma_{k_{2}}[x]; \quad x: = \tau_{z}[y];$
 $z: = \sigma_{k_{3}}[y]; \quad x: = \tau_{z}[x];$
 $z: = \sigma_{k_{4}}[x]; \quad x: = \tau_{z}[y];$
 $x \leftrightarrow y.$

Выход: $x||y \in B_2^{16}$.

Преобразование Σ^{-1} реализуется аналогично, но ключевые параметры k_1, k_2, k_3, k_4 используются в обратном порядке.

Обозначение:

входы выходы

Рис. 3.

2.3.3. Перестановки битов

Операция π перестановки битов в блоке B_2^n , как и операция подстановки может быть задана таблицей или аналитически с помощью формул, указывающих в какую позицию перемещается тот или иной бит.

Пример 5. Таблица

0	1	2	3	4	5	6	7
7	5	0	1	6	4	3	2

задает следующее преобразование: байт $b_7b_6b_5b_4b_3b_2b_1b_0$ преобразуется в байт $b_2b_3b_4b_6b_1b_0b_5b_7$, т.е. бит b_0 перемещается в позицию 2, бит b_1 – в позицию 3, бит b_2 – в позицию 7 и т.д.

2.3.4. Кольца

Множество R с заданными на нем операциями сложения (+) и умножения (·) называется *кольцом*, если выполнены следующие условия (аксиомы):

R1.(R, +) – абелева группа;

R2. Умножение замкнуто и ассоциативно на множестве R, т.е.

$$a \cdot b \in R$$
 и $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ для любых $a, b, c \in R$;

R3. Выполняются дистрибутивные законы:

 $(a+b)\cdot c = (a\cdot c) + (b\cdot c), a\cdot (b+c) = (a\cdot b) + (a\cdot c)$ для любых $a,b,c\in R$. Если операция " \cdot " коммутативна, то кольцо R называется коммутативным.

Пример 6.

Множество $\mathbb{Z}_n = \{0, 1, ..., n-1\}$, образующее полную систему вычетов целых чисел по модулю n с операциями сложения и умножения чисел по модулю n, является кольцом, причем коммутативным. Например, \mathbb{Z}_4 с операциями, заданными таблицами

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	2	0	1	2

•4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

является коммутативным кольцом.

Нейтральный элемент кольца относительно операции "+" называется *нулем* кольца и обозначается через 0. Для любого $x \in R$ имеем $x \cdot 0 = 0 \cdot x$.

Если существует нейтральный элемент относительно умножения, то этот элемент называется единицей и обозначается обычно через 1. Заметим, что единица существует не в каждом кольце. Например, в кольце четных целых чисел единица отсутствует. Если в кольце существует единица, то обратные элементы могут существовать не для каждого нулевого элемента. В рассмотренном кольце \mathbb{Z}_4 элемент 2 не имеет мультипликативного обратного (т.е. обратного относительно умножения).

2.3.5. Поля

Полем называется коммутативное кольцо с единицей, отличной от нуля, в котором каждый ненулевой элемент имеет мультипликативный обратный.

Пример 7. Кольцо \mathbb{Z}_n целых чисел по модулю n является полем тогда и только тогда, когда n – простое число. Другими примерами полей являются множества рациональных (\mathbb{Q}), действительных (\mathbb{R}) и комплексных (\mathbb{C}) чисел.

Для криптографии особый интерес представляют поля с конечным числом элементов. Число элементов конечного поля равно p^m , где p – простое число, $m \in \mathbb{N}$ — натуральное число. Поле из q элементов обозначается через GF(q) или \mathbb{F}_q . (Обозначение GF образовано от $Galois\ field$, по имени Э. Галуа, первого исследователя конечных полей.)

Пусть $q = p^m$. Сформулируем основные свойства конечных полей:

Все элементы поля \mathbb{F}_q являются корнями многочлена $x^q - x$.

Обозначим через $\mathbb{F}_q[x]$ множество многочленов с коэффициентами из поля \mathbb{F}_q . Множество $\mathbb{F}_q[x]$ относительно операций сложения и умножения многочленов является кольцом.

Пусть $deg\ f(x)$ обозначлает степень многочлена f(x). Многочлен $f(x) \in \mathbb{F}_q[x]$ называется henpusodumum над полем \mathbb{F}_q , если f(x) не разлагается на нетривиальные множители, т.е. f(x) не может быть представлен в виде $f(x) = g(x) \cdot h(x)$ ни при каких g(x), $h(x) \in \mathbb{F}_q[x]$, степени которых удовлетворяют неравенствам $1 \le deg\ g(x)$, $deg\ h(x) < deg\ f(x)$.

Любой неприводимый многочлен $f(x) \in \mathbb{F}_q[x]$ степени m является делителем многочлена $x^{q^m} - x$. Все его корни содержатся в поле \mathbb{F}_{q^m} , которое является *полем разложения* многочлена f(x).

Любой делитель многочлена $x^{q^{m-1}}-1$, неприводимый над полем \mathbb{F}_q , имеет степень, являющуюся делителем числа m.

В поле \mathbb{F}_q существует элемент α такой, что всякий ненулевой элемент $\beta \in \mathbb{F}_q$ представим в виде $\beta = \alpha^i$ для некоторого $0 \le i \le q-2$. Другими словами, мультипликативная группа $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ поля \mathbb{F}_q , составленная из ненулевых элементов, является циклической, т.е. $\mathbb{F}_q^* = \{\alpha^0, \alpha^1, \ldots, \alpha^{q-2}\}$. Элемент α называется *примитивным элементом* поля.

В прикладных задачах обычно используют задание поля либо в виде кольца классов вычетов целых чисел по простому модулю p (в этом случае $\mathbb{Z}_p = \mathbb{F}_p$), либо в виде фактор-кольца $\mathbb{F}_q[x]/f(x)$ – кольца многочленов $\mathbb{F}_q[x]$ по модулю неприводимого многочлена $f(x) \in \mathbb{F}_q[x]$.

В последнем случае конструкция поля \mathbb{F}_{q^m} , содержащего q^m элементов, описывается следующим образом. Предположим, что поле \mathbb{F}_q построено, и пусть $f(x) \in \mathbb{F}_q[x]$ – неприводимый многочлен над \mathbb{F}_q степени m. Тогда элементами поля \mathbb{F}_{q^m} являются многочлены $g(x) \in \mathbb{F}_q[x]$, степень которых не превышает m-1. Сложение многочленов определяется как обычно: если $g(x) = \sum_i g_i x^i$, $h(x) = \sum_i h_i x^i$ то $g(x) + h(x) = \sum_i (g_i + h_i) x^i$ (где, конечно, сумма коэффициентов $g_i + h_i$ рассматривается в поле \mathbb{F}_q). Для умножения многочленов вводится понятие деления с остатком: разделить g(x) на f(x) значит представить многочлен g(x) в виде:

$$g(x) = a(x) \cdot f(x) + r(x), \deg r(x) < n,$$

где r(x) – остаток от деления g(x) на f(x), определяемый однозначно.

По аналогии с целыми числами вводятся понятия вычета по модулю многочлена f(x), сравнимость многочленов и операции сложения и умножения по модулю многочлена. Роль полной системы вычетов по модулю многочлена f(x) выполняет множество всех возможных остатков от деления многочленов над полем \mathbb{F}_q на f(x). Другими словами, полную систему вычетов образуют многочлены

$$r(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{m-1} x^{m-1}; \ r_0, \ r_1, \dots, r_{m-1} \in \mathbb{F}_q$$

(всего имеется q^m таких многочленов). Множество вычетов по модулю f(x) с операциями сложения и умножения вычетов образуют коммутативное кольцо. Это кольцо является полем тогда и только тогда, когда f(x) – неприводимый многочлен. Проще говоря, если перемножаются два многочлена (рассматриваемые как элементы поля \mathbb{F}_{q^m}), то в качестве результата необходимо перемножить их и взять остаток от деления произведения на модуль f(x).

Пример 8. 1) Простейшим конечным полем является поле $\mathbb{F}_2 = \{0,1\}$ из 2 элементов с операциями:

2) Построим поле из $4=2^2$ элементов. Многочлен $f(x)=x^2+x+1$ является неприводимым над полем $\mathbb{F}_2=\{0,1\}$ из двух элементов. Элементами поля \mathbb{F}_4 являются $\{0,1,x,x+1\}$, т.е. всевозможные многочлены с коэффициентами из \mathbb{F}_2 степени < 2. Таблицы сложения и умножения в поле \mathbb{F}_4 задаются следующим образом:

+	0	1	х	x + 1
0	0	1	х	x + 1
1	1	0	x + 1	х
x	x	x + 1	0	1
x + 1	x + 1	x	1	0

•	0	1	\boldsymbol{x}	x + 1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	x + 1	1
x + 1	0	x + 1	1	x

2.3.6. Вычисления в конечном поле \mathbb{F}_{256}

Конечное поле \mathbb{F}_{256} , состоящее из 256 элементов, привлекательно для построения криптографических примитивов. В данном случае байты (8-битовые блоки) могут быть интерпретированы как элементы этого поля, а операции над элементами поля легко реализуемы.

Поле \mathbb{F}_{256} можно рассматривать как фактор-кольцо $\mathbb{F}_2[x]/(f(x))$, где $f(x) \in \mathbb{F}_2[x]$ неприводимый многочлен 8-ой степени. 5 На более простом языке это означает следующее. Элементы поля \mathbb{F}_{256} представлены всевозможными многочленами

$$a(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

с коэффициентами из поля $\mathbb{F}_2 = \{0,1\}$, а многочлены в свою очередь, представлены 8-битовыми наборами (байтами) $a_7a_6a_5a_4a_3a_2a_1a_0$. Например, многочлен $x^6+x^5+x^3+$ x+1 представлен двоичным набором 01101011 или байтом 0x6b (в 16-ичной записи). Операция сложения (\oplus) элементов поля \mathbb{F}_{256} – это обычная операция сложения многочленов из $\mathbb{F}_2[x]$. Поскольку многочлены представлены байтами, то в данном случае сложение - это побитовое сложение байтов по модулю 2 (операция \oplus , или xor).

Операция умножения (\odot) в поле \mathbb{F}_{256} реализуется сложнее, а именно: $a(x)\odot b(x) =$ c(x), где $c(x) = a(x)b(x) \mod f(x)$ – остаток от деления многочлена a(x)b(x) на f(x).

Пример 9. Пусть $f(x) = x^8 + x^4 + x^3 + x^2 + 1$ – многочлен, на основе которого определяется конкретная реализация поля $\mathbb{F}_{256} \cong \mathbb{F}_2[x]/(f(x))$ (многочлен f(x) является неприводимым в $\mathbb{F}_2[x]$, т.е. не разлагается на множители), и пусть

$$a(x) = x^7 + x^5 + x^1 + 1$$
 u $b(x) = x^6 + x^5 + x^4 + x^3 + x^1 + 1$

- многочлены, представляющие элементы данного поля. Тогда

$$a(x) \oplus b(x) = x^7 + x^6 + x^4 + x^3,$$

$$a(x) \odot b(x) = x^7 + x^3 + x^1 + 1$$
 (поскольку $a(x)b(x) = x^{13} + x^{12} + x^6 + x^5 + x^3 + x^2 + 1 = (x^5 + x^2 + x + 1)f(x) + x^5 + x^2 + x^1 + 1),$ или, на "языке байтов", $a(x) = 0$ ха3, $b(x) = 0$ х7b;

$$a(x) \oplus b(x) = 0xa3 \oplus 0x7b = 0xd8,$$

 $a(x) \odot b(x) = 0x27.$

Вычисление многочлена $c(x) = a(x)b(x) \mod f(x)$ сводится к вычислению $a(x) \cdot x^m \bmod f(x) = (((a(x) \cdot x) \bmod f(x)) \cdot x^{m-1}) \bmod f(x),$

причем

$$(a(x)\cdot x)\ mod\ f(x)= egin{cases} a(x)\cdot x, & \text{если}\ a_7=0, \ a(x)\cdot x\ominus f(x), & \text{если}\ a_7=1. \end{cases}$$
 где $a(x)\cdot x\ominus f(x)\equiv a(x)\cdot x\ominus f(x)$, поскольку в поле характеристики 2 имеем: $a\ominus a=0$

0, и, следовательно, $a = -a, \forall a \in \mathbb{F}_{256}$.

Пусть g(x) – многочлен 7-й степени такой, что $f(x) = x^8 + g(x)$; будем считать, что многочлен g(x) представлен байтом g. Тогда вычисление c = ab – произведения элементов $a, b \in \mathbb{F}_{256}[x]$ – можно выполнить по схеме (где все элементы – байты):

```
c = 0x00:
mask := 0x01;
for i := 1 to 7 do {
      if (b \& mask) \neq 0x00 then c := c \oplus a;
      a := shl_1(a)
      if (a \& 0x80) \neq \$00 then a := shl_1(a) \oplus g;
      mask:=shl_1(mask)
```

Здесь $shl_1(x)$ – сдвиг битов байта x на одну позицию влево.

Значение $c = a^m(a, c \in \mathbb{F}_{256}, m \in N)$ вычисляется по быстрой схеме:

⁵ Многочлен f(x) необходимо зафиксировать. Выбор другого многочлена приведет в некоторому полю \mathbb{F}'_{256} с другим представлением элементов. С алгебраической точки зрения поля \mathbb{F}_{256} и \mathbb{F}'_{256} изоморфны, т.е. отличаются только обозначениями элементов. Тем не менее поля \mathbb{F}_{256} и \mathbb{F}'_{256} следует считать различными, поскольку элементы этих полей могут участвовать в суррогатных вычислениях (т.е. в рамках разных вычислительных систем). Например, элементы поля \mathbb{F}_{256} , представленные байтами, могут интерпретироваться как элементы кольца \mathbb{Z}_{256} целых чисел по модулю 256, и как элементы мультипликативной группы целых чисел по модулю 257 и т.п. Итоговый результат таких смешанных вычислений зависит от того, как согласованы представления элементов.

```
c := 0 \times 01;
while m > 0 do {

if m нечетно then c := c \odot a;
a := a \odot a;
m := m \ div \ 2
}.
```

Отметим, что $0^0 = 1$ и $0^m = 0$ для $m \ge 1$; если $a \ne 0$, то $a^{-n} = a^{255-n}$ ввиду $a^{255} = 1$.

Мультипликативный порядок ord(a) ненулевого элемента $a \in \mathbb{F}_{256}$ определяется как наименьшее $m \in \mathbb{N}$, для которого $a^m = 1$. Значение ord(a) можно вычислить по схеме:

```
ord: = 255; \ p_1: = 3; \ p_2: = 5; \ p_3: = 17;
for \ i: = 1 \ to \ 3 \ do \ \{
m: = ord \ div \ p_i;
if \ a^m = 1 \ then \ ord: = m
\}.
```

В поле \mathbb{F}_{256} имеется 128 элементов порядка 255; такие элементы называются *примитивными*. Пусть ω – один из них. Поиск ω можно осуществить по схеме:

```
\omega: = 0x02;

while ord(\omega) < 255 do \omega: = \omega + 1,
```

где символ + обозначает обычное арифметическое сложение байтов. Любой другой примитивный элемент ω' может быть вычислен как

$$\omega' := \omega^m$$

где m – число, взаимно простое с 255, т.е. НОД(m, 255) = 1. Тот факт, что $ord(\omega) = 255$, означает, что мультипликативная группа \mathbb{F}_{256}^* , состоящая из ненулевых элементов поля \mathbb{F}_{256} , является циклической, т.е.

$$\mathbb{F}_{256}^* = \mathbb{F}_{256} \setminus \{0\} = \{\omega^0, \omega^1, \dots, \omega^{254}\}.$$

Целое число j ($0 \le j \le 254$) такое, что $a = \omega^j$ называется дискретным логарифмом элемента $a \in \mathbb{F}^*_{256}$ по основанию ω и обозначается $ind_{\omega}a$. Операции умножения и возведения в степень можно ускорить, если построить две вспомогательные таблицы TD[0..254] и TL[1..255], определяемые как

$$TD[j] = \omega^{j}, TL[\omega^{j}] = j, j = 0,1,...,254.$$

Таблицы заполняются следующим образом:

```
a:=1;
for \ j:=0 \ to \ 254 \ do \ \{
TL[a]:=j;
TD[j]:=a;
a:=a \odot \omega
\{ a:=a \odot \omega \}
```

Для любых $a, b \in \mathbb{F}_{256}^*$ имеем:

$$a \odot b = TD[(TL[a] + TL[b]) mod 255];$$

 $a^m = TD[(m \cdot TL[a]) mod 255], m \in \mathbb{Z},$

в частности,

$$a^{-1} = \begin{cases} 1, \text{ если } a = 1, \\ TD[255 - TL[a]], \text{ если } a \neq 1. \end{cases}$$

Приведем две функции на языке Pascal, реализующие умножения и возведения в степень в конечном поле $\mathbb{F}_{256} \cong \mathbb{F}_2[x]/(f(x))$.

Элементы поля представлены многочленами $a(x) = a_7 x^7 + a_6 x^6 + \dots + a_1 x^1 + a_0$, а в памяти ЭВМ – байтами $a = (a_7 a_6 \dots a_1 a_0)_2$. Сложение элементов поля – побитовое сло-

жение байтов по модулю 2 (x o r). Умножение элементов поля a(x) и $b(x) \in \mathbb{F}_{256}[x]$ осуществляется так: a(x) и b(x) перемножаются, затем результат приводится по модулю неприводимого многочлена $f(x) = x^8 + f_7 x^7 + f_6 x^6 + \dots + f_1 x^1 + f_0 \in \mathbb{F}_{256}[x]$, т.е. находится остаток от деления $a(x) \cdot b(x)$ на f(x). Многочлен f(x) представлен байтом $f = (f_7 f_6 \dots f_1 f_0)_2$.

```
Function MulGF256(a, b, f: byte): byte;

// Для a(x), b(x) возвращает c(x) = a(x) \cdot b(x) \mod f(x).

var t, mask: byte; i: integer;

begin

t:=0; mask:=1;

for i:=0 to 7 do

begin

if (b \text{ and } mask) <> 0 \text{ then } t := t \text{ xor } a;

if (a \text{ and } 128) = 0 \text{ then } a := a \text{ shl } 1 \text{ else } a := (a \text{ shl } 1) \text{ xor } f;

mask := mask \text{ shl } 1;

end;

MulGF256:=t;
end;
```

```
Function PowerGF256 (a, b, f: byte): byte;

// Возведение в степень: возвращает a(x)^b \mod f(x).

var c: byte;

begin

c:=1;

while b>0 do begin

if odd(b) then c:=MulGF256(c,a,f);

a:=MulGF256(a,a,f);b:=b shr 1;

end;

PowerGF256:= c;
end;
```