Project: Process Enhancement

Victoria Geisel & Natasha Randall

Process Mining – Prof. Dr. Dietlind Zühlke

Table of Contents

Recap of Seminar Presentation

Research Hypotheses

Project Concept

Answering the Research Questions

Conclusion

Recap:

Process Enhancement

Definition of Process Enhancement

Enhancement

Increase or improve something in value, quality, desirability or attractiveness

Process Enhancement

A process model is extended or improved (repaired) using information extracted from some event log

Recap: Model Repair & Extension

Model Repair

change the original model so that it reflects the reality better

- Missing activities in the model
- Missing activities in reality
- discrepancy in execution order

Extension

add a new aspect or perspective to an initial model in addition to the control flow perspective

time perspective

case perspective

organization perspective

Process Enhancement

Research Hypotheses

Research Hypotheses

Hypothesis 1

Tools like Celonis and ProM can help us enhance a business process model with information on its processing times.

Hypothesis 2

Tools like Celonis and ProM can help us enhance a business process model with information on the company's organization (employees and resources).

Hypothesis 3

Tools like Celonis and ProM can help us adjust an existing process model to better reflect the reality of a business process.

Project Concept

Testing Concept

Enhancement with ProM

Hand-over of work social network & dotted chart

organization

information concerning the organizational structure

<u>"Social Network Miner"</u> <u>"Generate Log from</u> <u>Resource Perspective"</u>

Which employees work together? Do employees work on the purchases of one or several vendors?

Which process activities are automated and which are handled manually?

Enhancement with Celonis

organization

information concerning the organizational structure

"PI Social"

How many employees are working overall on the process each day?

How many activities is an employee working on each day?

PI Social: Analysis overview

Process Enhancement

PI Social: detailed working information for user 002

Enhancement with ProM

time

information concerning the process performance

<u>"Multi-perspective PE"</u>

How long does the process as a whole / a single activity take for execution?

Where are potentials for optimizing the process, because bottlenecks are occurring?

Technology

Enhancement with Celonis

time

information concerning the process performance

"Throughput time search"

"P. Explorer Animation"

How efficient are the employees throughout the day?

Where are potentials for optimizing the process, because bottlenecks are occurring?

Process Start

Process Explorer Animation: Average Throughput-Time

Enhancement with ProM

case

information concerning the execution patterns

<u>"Pattern Abstractions"</u> <u>"Decision Tree Mining"</u>

What are the most frequent paths in the purchase order process?

How high is the rush?

How do case attributes relate to particular paths taken?

PM - Prof. Dr. Dietlind Zühlke

Enhancement with Celonis

case

information concerning the execution patterns

"Process Explorer"

"Variant Explorer"

"Activity Profile (PI Social)"

What is the Happy Path of the purchase order process?

Which activities are executed most often?

PI Social: Activity Profile showing the most executed activities

Process Explorer: Execution analysis for end activity

Process Enhancement

Process Explorer: Happy Path

Research Questions

What is the distribution of throughput times? Why do throughput times vary?

Why this is a useful research question in a business context:

- Time from purchase to pay is common KPI
- Important metric for customer satisfaction
- Can utilise case and organisational perspectives

Why look at throughput on this event log:

- Only one timestamp for each event
- Multiple goods receipt and invoice activities per case

Pre-processing the Event Log

Filtering the Event Log

Filter only one process:

- 4 processes in event log "an event log contains data related to a single process" (van der Aalst, 2016)
- Chose "3-way match, invoice before goods receipt" (contains 75% events)

Process prioritisation criteria: "Importance" and "Feasibility" (Dumas et al., 2013)

Filter only completed cases:

Top two most common cases in event log (ProM)

Filtering the Event Log: ProM

"Filter Event Log" plugin by D. Fahland

Discovering a Process Model

Modelled the data using inductive miner:

- Inductive miner "can handle infrequent behaviour and huge logs" (van der Aalst, 2016)
- Petri net needed for "Multi-Perspective Process Explorer" plugin

- Need >99% fitness to calculate timing information (Adriansyah & Buijs, 2013)
- Inductive miner run with low noise threshold strongly overfitting, low precision

Process Model in ProM

Process Enhancement

Technology Arts Sciences TH Köln

Process Model in Celonis Process Start 25.684 **Process Start** 29,941 Create Purchase Order Item 29,930 25,684 Create Purchase Order Item 5,674 3,418 13,784 Record Goods Receipt 22,104 Delete Purchase Order Item 13,756 Vendor creates invoice 12,112 6,357 13,136 Vendor creates invoice 2,660 3,474 11,861 Record Goods Receipt 8,935 97% 12,995 Remove Payment Block 5,649 Record Invoice Receipt 3,568 Record Invoice Receipt of activities 25,864 5,089 15,124 18,361 89.8% Clear Invoice Clear Invoice 21,118 22,116 22.118 25,879 of connections 25,877

Process End

Happy Path

Process End

Process Model in Celonis

What is the distribution of throughput times?

What is the distribution of throughput times?

Why do throughput times vary?

Why do throughput times vary?

Event Log Attributes

Case attributes:

Example:

Product type (packaging)

Value in euros (€1272)

Resource attributes:

Vendors

• Employee on activity

(vendorID_0136) (user 055)

Control flow attributes:

Payment block occurred (TRUE)

Generating Attributes

- Number of rework activities
- Automation rate
- Average vendor workload
- Number of line items

Creating an attribute dataset used to model throughput:

case_PO_id	avg_value_EUR	case_vendor	case_product_type	case_product_specific	rework_activities	payment_block	automation (%)	avg_vendor_workload	num_items	throughput
4507000266	134	vendorID_0103	Packaging	Labels	0	FALSE	0	49.272727	1	84 days 00:21:00
4507000268	300.5	vendorID_0105	Packaging	Labels	0	FALSE	0	13.402778	2	216 days 03:14:00
4507000272	769	vendorID_0137	Sales	Products for Resale	1	FALSE	25	3.647059	2	216 days 03:06:00
4507000273	598.5	vendorID_0138	Sales	Products for Resale	2	TRUE	0	9.121951	2	183 days 01:56:00
4507000287	581.5	vendorID_0148	Sales	Products for Resale	0	TRUE	50	3.714286	3	182 days 02:26:00

PM – Prof. Dr. Dietlind Zühlke

Modelling Throughput

```
throughput ~ event_value_EUR + rework_activities + payment_block + automation +
avg_vendor_workload + C(case_product_type) + C(case_product_specific) + C(case_vendor)
```

	coef	p-value
Intercept	110.417	0.000
Product Type: Additives	6.722	0.009
Product Type: Packaging	-6.1567	0.090
Product Type: Sales	15.2249	0.013
Specific Product Type: Containers	23.4936	0.000
Specific Product Type: Extenders	-18.3602	0.000
Specific Product Type: Labels	15.139	0.001
Specific Product Type: Products for Resale	-24.1504	0.000
vendorID_0104	-0.1407	0.982
vendorID_0106	-30.3705	0.000
vendorID_0120	34.2074	0.000
vendorID_0136	50.8701	0.000
vendorID_0171	9.0812	0.015
Value of Purchase Order (EUR)	0.0001	0.055
Number of rework Activities	11.4667	0.000
Payment block occurred	1.2151	0.460
% of automation	-0.2137	0.001
Vendor workload	-0.5985	0.000
Number of line items	0.4596	0.001

Different product types and different vendors have very different throughput times

Rework activities increase throughput

Higher levels of automation decrease throughput

Purchase order values doesn't affect throughput

PM - Prof. Dr. Dietlind Zühlke

No obvious correlation between value of purchase order and throughput time

Vendors working in the same product type area have different averages and variances in throughput times

- High number of rework activities lead to higher throughput time
- But very large amount of variation in the plot
- Model does not fit well

Bottlenecks: ProM

• "Multi-perspective Process Explorer" calculates times between activities

• Can identify bottlenecks affecting throughput

Multi-perspective Process Explorer — Performance View by F. Mannhardt

Bottlenecks: Celonis

The largest bottleneck is at clear invoice

Bottlenecks

These connections increase process throughput time considerably

Record Invoice Receipt \rightarrow Clear Invoice

View cases in...

Throughput time Cases affected

66 work day(s) 71%

Remove Payment Block → Clear Invoice

View cases in...

Throughput time Cases affected

58 work day(s) 21%

PM - Prof. Dr. Dietlind Zühlke

Why is "Clear Invoice" a bottleneck?

 Companies delay clearing invoices to improve their own capital Vendors only clear invoices once a month in batches

This affects throughput calculations

Research Questions Conclusion

What is the distribution of throughput times?

Large variance in timings

Why do throughput times vary?

Can explain variance using event log attributes:

- More rework activities increase throughput
- Increasing automation rate decreases throughput
- Different vendor and product types have very different throughput

Bottleneck analysis revealed strongest influence is delay to 'clear invoice'

Research Hypothesis Conclusion

Conclusion

Hypothesis 1

Tools like Celonis and ProM can help us enhance a business process model with information on its processing times.

Research Questions

What is the distribution of throughput times?

Why do throughput times vary?

References

Van Dongen, B.F. Dataset BPI Challenge 2019. 4TU Centre for Research Data.

https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1 https://icpmconference.org/2019/icpm-2019/contests-challenges/bpi-challenge-2019/

- Van Der Aalst, W. (2012). *Process mining: Overview and opportunities*. ACM Transactions on Management Information Systems (TMIS), 3(2), 1-17.
- Van Der Aalst, W. (2016). *Process mining: Data science in action* (Vol. 2). Heidelberg: Springer.
- Leemans, S. J. (2022). Robust Process Mining with Guarantees: Process Discovery, Conformance Checking and Enhancement (Vol. 440). Springer Nature.
- Van Der Aalst, W., Josep Carmona (2022). Process Mining Handbook.. Springer
- Van Der Aalst, W., et al. (2012). *Process mining manifesto*. In International conference on business process management (pp. 169-194). Springer, Berlin, Heidelberg.
- Yasmin, F. A. (2019). Enhancement in process mining: guidelines for process owners and process analysts (Master's thesis, University of Twente).
- Verbeek, H. M. W., & Bose, R. J. C. (2010). Prom 6 tutorial. ProM.(nd). Extraído el, 27.
- Van der Aalst, W. M., Schonenberg, M. H., & Song, M. (2011). *Time prediction based on process mining*. Information systems, 36(2), 450-475.
- Mannhardt, F., De Leoni, M., & Reijers, H. A. (2015). Extending process logs with events from supplementary sources. In International conference on business process management (pp. 235-247). Springer, Cham.

Project: Process Enhancement

Victoria Geisel & Natasha Randall

Are there any questions?

Process Mining – Prof. Dr. Dietlind Zühlke