Title: Balancing Data and Model Optimization in NLP Sentiment Analysis

1. Introduction

- **Objective**: To evaluate the performance of NLP models (BERT and GPT-2) on a sentiment analysis task under different data preprocessing and weighting strategies.
- Dataset: Sentiment dataset with 5 classes, where class distribution is highly imbalanced:
 - o Largest class: 79,582 samples (Neutral)
 - o Smallest class: 7,072 samples (Negative)

2. Methodology

Data Cleaning:

Sentiment		Sentiment	
2	79582	2	19436
3	32927	3	18901
1	27273	1	15953
4	9206	4	5331
0	7072	0	4139

- Removed special characters, stop words.
- Dropped rows with less than two words which are neutral sentiments.
- o Goal: Balance class distribution and reduce noise.

Model Optimization:

- Baseline models: BERT and GPT-2 (on cleaned and uncleaned datasets).
- o Implemented class-weighted loss for BERT to address class imbalance.
- Evaluation Metrics:
 - Accuracy: Overall correctness.
 - **F1-Score**: Balance between precision and recall.
 - Weighted and Macro-averaged metrics for better class comparison.

3. Results and Observations

Performance Comparison Table

${ t Model}$	Accuracy	Macro F1	Weighted F1	Observation 0
BERT (Cleaned)	63.93%	60%	64%	Cleaning reduced overall accuracy.
GPT-2 (Cleaned)	61.14%	56%	61%	Performed slightly worse than BERT.
BERT (Uncleaned)	69.80%	63%	70%	Uncleaned data retained useful sentiment info.
GPT-2 (Uncleaned)	68.75%	59%	69%	Close to BERT but consistently lower.
BERT (Weighted)	70. 04%	63%	70%	Class-weighting helped balance performance.

4. Analysis

Data Cleaning:

- While it aimed to remove noise, essential sentiment indicators (like short texts) were inadvertently removed.
- o Uncleaned data preserved these features, leading to better performance.

Class-Weighting:

- Improved a little bit BERT's ability to balance class performance, particularly for minority classes.
- o No significant improvement in overall F1-Score

Model Characteristics:

- BERT: Outperformed GPT-2 due to better handling of context and smaller classes.
- o **GPT-2**: Lagged behind, likely due to its preference for longer context and generative training objectives.

5. Conclusion

- **Best Model**: BERT with class-weighting on uncleaned data performed the best with **70.04% accuracy** and balanced metrics.
- Insights:
 - 1. **Data Cleaning**: Must be carefully designed to retain sentiment-relevant features.
 - 2. Class Imbalance: Addressed effectively through class-weighted loss functions.
 - 3. **Model Choice**: BERT's contextual understanding outperformed GPT-2 in this task.