Dolphin echolocation behaviour

The Data

The dataset was obtained from a Phd candidate conducting an ongoing research on dolphin communities

1	nID_1	ClksThisMin_1	NofClx_1	medianKHz	avEndF_1	nRisingIPIs	avSPL_1	TrDur_us_1	MedianPRF	nlClrising	MinICI_us_1	midpointICI	MaxICI_us_1	CIkNofMinICI	ClkNofMaxICI	NofClstrs_1	avClstrNx8	avcIF0	avcIF1	avPkIPI	BeforelPIratio	PrelPIratio	Post1 Piratio	Post2IPIratio	Endl
5																									
ı	16.0	2240.0	10.0	64.0	68.0	0.0	170.0	481481.0	21.0	4.0	8272.0	9440.0	10933.0	6.0	6.0	5.0	8.0	0.0	0.0	65.0	1.12	1.090	1.000	0.93	
)	15.0	2128.0	9.0	114.0	111.0	0.0	130.0	350000.0	27.0	4.0	6732.0	7333.0	8047.0	6.0	5.0	8.0	8.0	0.0	0.0	35.0	0.00	1.100	0.970	0.00	
L	16.0	1993.0	10.0	118.0	118.0	0.0	170.0	444444.0	22.0	4.0	8409.0	9149.0	9992.0	6.0	5.0	7.0	8.0	0.0	0.0	34.0	0.00	1.120	1.030	1.06	,
,	16.0	25200	10.0	112.0	102.0	0.0	121.0	26262.0	400.0	3.0	461.0	402.0	E40 E	5.0		0.0	0.0	0.0	0.0	26.0	0.00	1140	0.000	0.00	

- Two different hydrophones
 C-POD, newer F-POD
- I am working only on F-pod for now due to size limitations

all_train.shape

(614765, 76)

Typical information from the device - Present\Absent

Hourly frequency of events - searching for daily behavior

Outliers and Feature engineering

The business question -" What is there???"

Why should you do it?

Better defined -

step 1 - finding different "behaviours" associated to the "train" types - Clustering - Initial stage

step 2 - Analysis of results - Future

step 3 - Automated classification - Maybe?

Tursiops truncatus - דולפינן מצוי

סטנלה מפוספסת - Stenella coeruleoalba

Outliers and Feature engineering

I tried many different approaches

- 5 min bins
- Removing outliers with PCA
- I removed columns due to correlation
- bins for noisy columns of lesser importance
- extracting sites from other columns
- removing very low frequency values
- removing unreliable data
- I removed irrelevant columns

Most of the features has very long "tails" that can disturb later clustering

Clustering is a sea of uncertainty

K-Means - Standard Scaler, PCA, Silhouette and clustering results

PCA - I chose to reduce to 16 columns

Scaling

scikit learn's standard scaling.

standard scaling emphasize the mean at 0

I used dummies for the site column.

Silhouette -I chose 8 clusters

Cluster size

0	77241
1	6375
2	142764
3	31743
4	81416
5	67845
6	117955
7	34389

interesting...

Between Cluster variability - testing results

1 temp.groupby(['hour','cluster_7']).TrDur_us_1.median().

<matplotlib.axes._subplots.AxesSubplot at 0x7fd1a2e70490>

Biased results - weights of features control the results!

Requirement already satisfied: MarkupSafe>=0.23 Weight Feature

rroight	Louturo
102015.3407 ± 195.8733	site Ashdod
101750.6633 ± 288.0505	site_Michmoret
30874.7928 ± 104.3634	avclF1
29215.5402 ± 130.1415	avclF0
18175.2166 ± 16.5591	medianKHz
14716.2647 ± 66.8436	avEndF_1
12484.0408 ± 102.4597	avSPL_1
9765.3351 ± 51.1398	TrDur_us_1
7853.9554 ± 23.6647	avPkIPI
5460.5633 ± 23.0392	BeforelPIratio
4187.6535 ± 22.6757	Post2IPIratio
3552.1910 ± 21.9569	MaxICI_us_1
3277.2151 ± 24.0953	MedianPRF
2217.6506 ± 21.8857	midpointICI
1855.5308 ± 12.3580	PrelPIratio
1783.7261 ± 11.8048	MinICI_us_1
1631.6979 ± 5.8911	NofClstrs_1
883.0130 ± 3.4632	avClstrNx8
810.0554 ± 14.8920	Post1 Plratio
554.8347 ± 10.0705	nRisingIPIs
10 more	***

Light in the darkness..

RESEARCH ARTICLE

Automated classification of dolphin echolocation click types from the Gulf of Mexico

Kaitlin E. Frasier¹*, Marie A. Roch², Melissa S. Soldevilla³, Sean M. Wiggins¹, Lance P. Garrison³, John A. Hildebrand¹

1 Scripps Institution of Oceanography, La Jolla, California, United States of America, 2 San Diego State University, San Diego, California, United States of America, 3 NOAA NMFS Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, Miami, Florida, United States of America

^{*} kfrasier@ucsd.edu

How to examine the clusters? Cluster Signature

Different clustering algorithms

	Flat	Hierarcical			
Centroid / Parametric	k-means GMM	Ward Complete- linkage			
Density/ Non-Parametric	DBSCAN Mean shift	HDBSCAN			

Different clustering algorithms

- you have to choose initial number of K
- Better for groups

K-Means

- same epsilon for all clusters
- very slow

DBSCAN

HDBSCAN

Why HDBSCAN is so nice?...

How close are points to their cluster center?

The final pipeline! (for now..)

```
f pod model = all median[['medianKHz', 'MedianPRF', 'MaxICI us 1', 'MinICI us 1', 'midpointICI', 'NofClx 1', 'avSPL 1'
                       , 'avclF0', 'PreIPIratio', 'Post1IPIratio', 'Post2IPIratio']]
                                                                                              site & df reassemble
                                                              site separation
                                                                                  clusters
                                                                                                     median
                                               MinMax
                                               scaling (0,1)
            Feature
                              Removing
                                                                                  Outliers
Data
                                                                  HDBSCAN
            Engineering
                              Outliers
                                                                                                    HDBSCAN
                                               MinMax scaling
                                               (0.001,1)
                                                                                    HDBSCAN
                                                                                                     median
 clusterer = hdbscan.HDBSCAN(algorithm='best',
                          approx min span tree=True,
                         gen_min_span_tree=False, leaf_size=80,metric='euclidean',
```

).fit(Clus)#, min samples = 2, p=None,min cluster size=30,,cluster selection epsilon=0.2

min samples=1, min cluster size=20, cluster selection method = 'leaf', alpha=1.0, cluster selection epsilon=0.01

Cluster comparison

Whats next? Data is still collected

- Validation of promising clusters -density and difference from other clusters
- cluster_persistence_:ndarray, shape (n_clusters,)
- prediction_data_:PredictionData object
- DBVC both distance and density
- Cluster analysis with experts
- Recluster as needed
- Analysis
- Classifier

The rest are in the notebook...

