Portfolio Theory Tutorial 2 – 2022

1. The rate of return on investments A and B can be 2%, 4%, 5%, 6%, 8% or 9%. The probability of the return taking each of these values is shown in the table below:

Return	Probability for A	Probability for B
2%	0.25	0
4%	0.25	0.5
5%	0	0.25
6%	0.25	0
8%	0.25	0
9%	0	0.25

Let $F_A(x)$ and $F_B(x)$ denote the distribution functions of the rates of return on investments A and B, respectively.

- (a) By drawing graphs of $F_A(x)$ and $F_B(x)$, or otherwise, determine whether one of the investments has first order stochastic dominance over the other, and, if so, which one.
- (b) By calculating;

$$\int_{-\infty}^{6\%} F_A(y) \, dy \quad \text{and} \quad \int_{-\infty}^{6\%} F_B(y) \, dy$$

or otherwise, determine whether one of the investments has second order stochastic dominance over the other, and, if so, which one.

2. Investors can choose between four portfolios, A, B, C and D. The returns from these portfolios depend on which of four scenarios occurs; the relevant information is shown in the following table.

Scenario	Prob	A	B	C	D
1	$\frac{1}{4}$	80	40	50	90
2	$\frac{1}{4}$	100	80	60	90
3	$\frac{1}{4}$	120	120	130	140
4	$\frac{1}{4}$	140	200	140	140

(a) Calculate the expected return from each of these portfolios.

1

- (b) For each of the portfolios determine which of the other portfolios it dominates in the sense of:
 - (i) Absolute dominance.
 - (ii) First order stochastic dominance.
 - (iii) Second order stochastic dominance.
- 3. Consider two investment portfolios A and B. Each has a return which is normally distributed with variance σ^2 . The expected return from A is μ_A , and the expected return from B is μ_B . Assume that $\mu_A > \mu_B$. Show that portfolio A has first order stochastic dominance over B.
- 4. Consider two investment portfolios A and B. The return from each portfolio is normally distributed with expected value μ . The variance of the return from A is σ_A^2 ; the variance of the return from B is σ_B^2 . Assume that $\sigma_A > \sigma_B$.
 - (a) Show that neither of the two investments has first order stochastic dominance over the other one.
 - (b) Show that B has second order stochastic dominance over A. Hint: For $x > \mu$ show that:

$$\int_{-\infty}^{x} (F_A(y) - F_B(y)) \, dy > \int_{-\infty}^{\infty} (F_A(y) - F_B(y)) \, dy = 0$$