Reg. No.	

B.Tech. DEGREE EXAMINATION, DECEMBER 2023 Fourth / Fifth Semester

18ECC202J - LINEAR INTEGRATED CIRCUITS

(For the candidates admitted from the academic year 2020 - 2021)

Note: (i) (ii)		over	- A should be answered in OMR should be answered in OMR should be answered answered	ninute	• 5,400	and OMR sheet	shoul	d be	han	ded
Time:	3 1	hours				N	Iax. N	/ark	cs: 1	00
Time.	,	10 012					Marks	BL	СО	PO
			$PART - A (20 \times 1 = Answer ALL Q)$	uestic	ons	used	1	1	. 1	1
	1.	In 8-	pin package of 741, terminals _	6	and	useu				
			lc offset.	(D)	2 3					
		(A)			2, 3 8, 6					
		(C)	7,4	(D)	0, 0					
	^	0	741C has a low slew rate of				1	2	1	2
	2.	_	amp 741C has a low slew rate of	(B)	0.5 V/μs					
			0.6 V/μs	` '	0.5μV/μs					
		(C)	$00.5 \text{ mV/} \mu \text{s}$	(2)	0.5 pt 17 pts					
	2	Eon	741C, CMRR is typically				1	1	2	1
	٥.		80 dB	(B)	70 dB					
		(C)	90 dB	. ,	95 dB					
		(C)	70 dB	,				2	2	2
	4	The	common-mode signal V_{cm} is def	ined	as		1	2	2	2
	٦.		· ·	(B)	$V_1 + V_2$					
		(Λ)	$\frac{V_1-V_2}{2}$	` ′						
			$V_1 - V_2$	(D)	$V_1 + V_2$					
		(C)	$r_1 - r_2$	(-)	$\frac{V_1 + V_2}{2}$					
	5	1 n	amplifier with a gain of +5, has	R_1 of	$5k\Omega$ and R_f of	<u></u>	1	1	3	2
	٥.				10 kΩ					
			20 kΩ	` '	5 kΩ					
		(C)	15 kΩ	(D)	J K52					
			Construction con ampli	fier i	c		1	1	2	3
	6.	And	other name for a unity gain ampli	(B)	Comparator					
			Difference amplifier		Voltage follower					
		(C)	Single ended	(1)	, voitage zone					
	7	٨٥	circuit whose output is proportio	nal to	the difference betw	een the input	1	1	2	2
	7.	AC	nals is considered to be which type	oe of	amplifier?					
		(A)	1	(B)	Darlington					
		(C)	- 100 .11) Operational					
		(0)	D11101 0110101	` '						

8.		ne input to a comparator is a sine		마일보다 (1) 10 He HONG 및 및 10 He HONG HONG HONG HONG HONG HONG HONG HONG	1	2	2	3
		Ramp voltage	, ,	Sine wave				
	(C)	Rectangular wave	(D)	Sawtooth wave				
9.	In to $C = C$	he design of RC phase shift os $0.01\mu F$, then R is	cillat	or to generate 100 Hz signal, if	1	2	3	1
	(A)	64.9 kΩ	(B)	6.49 kΩ				
	(C)	649 Ω		64.9 Ω				
10.	Whi	ch among the following can be u	ised to	o detect the missing heart heat?	1	2	3	2
	(A)	Monostable multivibrator	(B)	Astable multivibrator	A me			
		Schmitt trigger		Comparator				
11.	The	signal shifts the V	CO f	frequency in a direction to reduce	1	3	3	1
, júl.:	the f	Frequency between f_s and f_0 .		Make a season to reduce				
	(A)	이 맛있게 살아보는 아이를 보고 있다면 하나 아이를 보고 있다면 하는 것이 없어 있다.		V_e				
	(C)			V_0				
	(0)	C	(D)	0				
12.	PLL	is used in			1	2	3	1
		AM detection	(B)	QAM				
		BPSK		QPSK				
13.	In w	hich filter the output and input uencies?	voltag	ges are equal in amplitude for all	1	1	4	2
	-	All pass filter	(B)	Low pass filter				
		High pass filter		Band pass filter				
14.	Nam	e the filter that has two pass ban	de		1	2	4-	2
	(A)	Band pass filter		Low pass filter				_
		High pass filter	, ,	Band reject filter				
15	Wha	t is the dropout voltage in a 3 ter	minol	la IC raculatore?	1	3	4	1
15.	(A)	$ V_{in} \ge V_0 + 2V$				5	4	1
				$\left V_{in}\right < \left V_{0}\right - 2V$				
	(C)	$ V_{in} = V_0 $	(D)	$\left V_{in}\right < \left V_{0}\right $				
16.		% load regulation of a power tically	r sup	ply is ideallyand	1	3	4	2
		Zero, small	(B)	Small, zero				
	(C)	Zero, large	(D)	Large, zero				
17.	A 1	monotonic DAC is one wh	ose	analog output increases for	1	1	5	2
	(A)	Decrease in digital input	(B)	An increase in analog input				
	(C)	An increase in digital input		Decrease in analog input				
18.	Find	the resolution of a 10-bit ADC f	or an	innut range of 10 V	1	1	4	3
		97.7 mV		9.77 mV				-
	(C)	0.977 mV	(D)	977 mV				
	. /		()					

	17.	Which ADC is c (A) Servo track (C) Flash type		(B)	Counter type Successive appro					
	20	Equ. Colo	roximation type	A State			1	1	4	3
		clo	ck periods.			TOTAL MANAGEMENT				
		(A) $2^n - 1$ (C) n		(B) (D)	1 $2^{n} + 1$		204			
			PART – B (5 × 4 =	20 Marks)		Marks	BL	СО	РО
			Answer AN							
	21.	List the characte	eristics of an ideal of			lues.	4	2	1	
	22.	Draw the block	schematic of an op	-amp ai	nd explain.		4	3	2	1
	23.	Draw the circuit	of a transconducta	ince am	plifier and explain	n the operation.	4	2	3	2
	24.	Design an adde $V_0 = -(0.5V_1 + V_0)$	er circuit using a $V_2 + 15V_3$). Where V_2	n op-an V_1, V_2 and	mp to get output V_3 are the input	t expression as	4	3		1
	25.	State the two co	ndition of oscillation	on.			4	3	4	2
	26.	6. Draw the basic structure of feedback oscillator.						3	4	1
	27.	Write short note	es on switched capa	icitor fi	lter.		4	4	4	2
			PART – C (5 × 1) Answer ALL				Marks	BL	СО	РО
28	8. a.	List the non-ide		Questi	ons	them.	Marks	BL 3	co	PO 4
28			Answer ALL	Questics of ar	ons 1 op-amp. Explain					
28	b.i.	List the frequent	Answer ALL al DC characteristi (OR acy compensation to verting amplifier,	Questi cs of ar R) echnique $R_1 = 1k$	ons one amp. Explain the second of the second and $R_f = 10k\Omega$	ne. Ω. Calculate the	6	3	1	4
28	b.i.	List the frequent For the non-inverse maximum output with $V_{ios} = 10n$ R_{comp} needed to	Answer ALL al DC characteristi (OR acy compensation to	Questi cs of ar R) echnique $R_1 = 1k$ are to V_i and, I_{os} ect of I_H	ons on op-amp. Explain the set of Ω and $R_f = 10k\Omega$ and I_B . The op $I_B = 50nA$. Calculated	ne. Ω. Calculate the o-amp is LM307 be the value of	6 6	3	1	3
	b.i.	List the frequent For the non-inverse maximum outpower with $V_{ios} = 10n$ R_{comp} needed to offset voltage of the List the imposition of the component of	Answer ALL and DC characteristic (OR acy compensation to verting amplifier, but offset voltage duty and $I_B = 300$ to reduce the effective and $I_B = 300$	Questi cs of ar R_1 echnique $R_1 = 1k$ ue to V_i nA , I_{os} et of I_E ed.	ons n op-amp. Explain nes. Explain any or Ω and $R_f = 10k\Omega$ os and I_B . The op $= 50nA$. Calculate Ω 3. Calculate the mentation amplifi	ne. O. Calculate the o-amp is LM307 the value of naximum output	6 6	3	1	3
	b.i. ii. 9. a.	List the frequent For the non-inverse maximum output with $V_{ios} = 10n$ R_{comp} needed to offset voltage of the List the important of instance of the component of the com	Answer ALL al DC characteristic (OR acy compensation to verting amplifier, but offset voltage dual $I_B = 300$ to reduce the effect of R_{comp} is connected that features of	Questi cs of ar R_1 = $1k$ ne to V_i nA, I_{os} et of I_H ed. instrum	ons one	ne. O. Calculate the part of the value of the value of the naximum output of the calculate the calc	12 6 6	3 3	1 2	3
2	b.i. ii. 9. a. b.	List the frequent For the non-inverse maximum output with $V_{ios} = 10m$ R_{comp} needed to offset voltage of the List the important of instance of output.	Answer ALL and DC characteristic (OR acy compensation to verting amplifier, but offset voltage duty and $I_B = 300$ to reduce the effect of R_{comp} is connected at the features of strumentation amplifier.	Questi cs of ar R) echnique $R_1 = 1k$ ne to V_i nA, I_{os} et of I_E ed. instruming ifier with	ons on op-amp. Explain the ses. Explain any of Ω and $R_f = 10k\Omega$ os and I_B . The op $= 50nA$. Calculate Ω Calculate the numeritation amplifies the neat diagram.	ne. O. Calculate the part of the value of the value of the naximum output of the control of the	12 6 6	3 3 3	1 2 2	3

b.i.	Derive the expression of time delay of monostable multivibrator using 555 timer.	8	3	3	1
ii.	In the astable multivibrator using 555 timer if $R_A=4.7k\Omega$, $R_B=1.5k\Omega$ and $C=0.1\mu F$. Calculate t_{HIGH} , t_{LOW} , free running frequency and duty cycle D.	4	3	3	1
31. a.i.	With a neat diagram, explain the operation of narrow band pass filter.	8	4	3	1
ii.	Design a wide-band pass filter having $f_l = 400Hz$, $f_h = 2kHz$ and passband gain of 4. Find the value of Q of the filter.	4	4	3	1
	(OR)				
b.i.	What are the limitations of three terminal regulator?	2	3	2	4
ii.	Draw the functional diagram of 723 regulator and explain.	10	3	2	4
32. a.	Explain the operation of R-2R ladder DAC with neat diagram.	12	3	4	3
	(OR)				
h	With relevant diagrams explain the operation of ramp type ADC	12	3	4	3

* * * * *

Page 4 of 4