

Faculty of Engineering and Information Technology

Group 12

Do Additional Variables Improve the Accuracy of Total Population Forecasts Generated by Global Machine Learning

Industry Partner: Dr Irina Grossman

Project Supervisor: Prof Michael Kirley

Presented by: Chi Zhang, Haitong Gao, Yuexin Li, Eric Luanzon, Meijun Yue

Presentation Outline

- Project Team Introduction
- Industry Client Introduction and Requirements' Illustration
- Challenges of the Data Science Project
- Literature Review of Population Forecasting & Long-Short Term Memory
- Data Science Pipeline (Data, Model, Result)
- Conclusion & Recommendation

Team Introduction

Chi Zhang

Work Coordinating
Data Analysis
Data Reconstruction
Benchmark Model
LSTM
Model's Evaluation
Report Writing

Eric Luanzon

Data Preprocessing
Potential Model
Model Testing
LSTM
Parameters' Tuning
Report Writing

Haitong Gao

Forecast Reconciliation
Reference Collecting
LSTM
Model's Improvement
Multivariate Implement
Report Writing

Meijun Yue

Data Visualisation

Data Reconstruction

Model Testing

Data Splitting

LSTM

Report Writing

Yuexin Li

Meeting Agenda Arranging

Data Visualisation

Data Reconstruction

LSTM

Multivariate Implement

Model's Improvement

Report Writing

Project Background

Population Forecasting: Planning, Marketing, Research etc.

Current Outstanding Model: Synthetic Migration Model

Global Machine Learning Model: Long-Short Term Memory (LSTM)

Target: Construct a LSTM Model on Forecasting the Small Area (SA3) Population in Age-Sex Cohort

Other Requirement: Comparison between LSTM and Synthetic Migration Model

Challenges

- 1. Data Sparsity (Unstable Trend)
- 2. Short Time-Series (Insufficient amount of Data)
- 3. Less Feature Input for the LSTM Model (Compare with the Benchmark)
- 4. Lower Interpretability of Model (Weights during training are not interpretable)
- 5. Computational Consumption (Epoch)
- 6. Error Stack Issue (Retraining & Rolling Update)
- 7. Input Structure (Format)

Literature Review

Hamilton-Perry Model

Could be implemented without migration data, easy to implement. But less detail output

• Synthetic Migration Model

Age-Sex Cohort population forecasting with birth, death, migration rate and total population constraints

Long-Short Term Memory (LSTM)

Long Term Dependencies

Synthetic Migration Model

- Constraint Forecast with the total population (National Projection) in each area
- Change the inward migration flows to maintain consistency
- Apply extra 4 models for creating projection total population data
- Migration Rate, Birth Rate, Death Rate are considered
- Area's independence

Synthetic Migration Model

- Data Source: Based on SA3 Age-Sex Cohort Data (2 * 18 of Age-Sex Cohorts)
- Investigate Area: 325 Area (Above 1000) + 1 Remainder (Aggregated Below 1000)
- Difference from LSTM: More Features / Variables for Forecasting

Fertility Rate, Mortality Rate, Migration Rate

SmallAreaTotal Population from Average-4-Model's Result

Forecast Result: 2006, 2011 Age-Sex Cohort's Population

Data Science Pipeline

Data Collection

- Data Preparation & Description & Analysis
- Data Modelling and Validation
- Model Deployment on New Data
- Comparison & Reviewing

Data Collection & Description

- All Data are Preliminarily Cooked by Client from the Australia Bureau of Statistic
- Data Scale SA3 (Statistical Area Level 3)
- Data Format Age-Sex Cohort's Population in Each Area (351 Areas)
- Time Series Data Record from 1991 to 2011
- Above_1000 Area Area with Above 1000 Total Population in Every Year
- Below_1000 Area Area with Less than 1000 Total Population in One Year

Data Description

Age Cohorts

0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+

Each Region's Time-series in one year: 2 * 18 (Sex Cohort * Age Cohort)

SA3 Code	SA3 Name	m0-4	m5-9	m10-14	m15-19	m20-24	m25-29		m60-64	m65-69	m70-74	m75-79	m80-84	m85+
1010 1	Goulbum Yass	2603	2565	2517	2472	2178	2392		1513	1170	765	506	260	159
1010 2	Queanbeyan	1593	1362	1223	1406	1743	1803		617	478	330	198	95	43
								 Sroj	 .n. in 10					

Partial Dataframe (Male Group in 1991)

Data Description

1991 - < 2011

Year	SA3 Name	Total
1991	Goulburn - Yass	61667
1991	Queanbeyan	35281
1992	Goulburn - Yass	61751
1992	Queanbeyan	36409
2011	Goulburn - Yass	69775
2011	Queanbeyan	56051

Above_1000 & Below_1000 Area — Preliminary Preprocessing

Above_1000			
SA3 Code	SA3 Name		
10101	Goulburn - Yass		
10102	Queanbeyan		
10103	Snowy Mountains		
10104	South Coast		
10201	Gosford		
10202	Wyong		
10301	Bathurst		
10302	Lachlan Valley		
10303	Lithgow - Mudgee		
10304	Orange		

	Below_1000
SA3 Code	SA3 Name
10702	Illawarra Catchment Reserve
10803	Lord Howe Island
12402	Blue Mountains - South
19797	Migratory - Offshore - Shipping (NSW)
19999	Special Purpose Codes SA3 (NSW)
29797	Migratory - Offshore - Shipping (Vic.)
29999	Special Purpose Codes SA3 (Vic.)
39797	Migratory - Offshore - Shipping (Qld)
39999	Special Purpose Codes SA3 (Qld)
49797	Migratory - Offshore - Shipping (SA)

(Aggregate to Remainder Area)

Data Analysis – Descriptive Statistic

Time-Series Data (21 Years) — 11 Years for Training & 10 Years for Testing

Maximum & Minimum Value of Total Population — Min = 0; Max = 190621

Population Distribution (Pyramid Plot) among each Age-Sex Cohort

Population Growth's Trend (Trend Plot) in Each Area

Data Analysis – Data Sparsity

Elder Age-Sex Cohorts Population's Lacking (Visualisation of Anchor Year 2000)

Data Analysis – Population Trends & Clustering

Data Trends – Region's Population Growth Trends' Difference / Similarity

Latrobe Valley vs. Barossa

Wellington vs. Gawler Two Wells

Characteristic of Data

Short Time-Series for Training

Sparse — Less Population in Elder Age Cohorts for both Male & Female

• Different in Changing Trend — Hard to fit Model with Same Fixed Parameters

Dependency among Age or Sex Cohorts

Long-Short Term Memory (LSTM)

The repeating module in an LSTM contains four interacting layers.

★ LSTM Basic Structure (3 Gates)

- Input Gate
- Forget Gate
- Output Gate

★ Age & Sex Prediction

- Scaled input data
- Decide time step
- Unidirectional
- Multivariate Input

Python Package(s)

TensorFlow — LSTM Package — Model's Framework

Tuning / Learning Rate & Auto-Stop — Model's Hyper-parameter(s)

Random Seed — Model's Reproducibility

Training & Validation & Test in LSTM

• Training Set — 1991 - 2001

Training & Validation Split Varies During Model's Tuning

- (i) LSTM Model Basic (Type 1) 1991-1998 Training, 1999-2001 Validation
- (ii) LSTM Model Implemented (Type 2 & 3) Random Splitting
- (iii) LSTM Model Extra Implemented (Type Extra) Random Splitting
- Test Set 2002 2011
 Models' Evaluation Comparison only Processed in 2006, 2011

LSTM Model Basic (Type 1)

- Sliding Window: 1, 3 Window Gap
- Multivariate Input (2 LSTM Models * 18 Age-Cohort List Input)
- Validation Set: 1999 2001
- Fitting & Forecasting

Rolling Update with Fixed Length Training Set & Fitted Model Epoch = 1000

Computational Consumption (Large)

LSTM Model Implementation (Type 2 & 3)

- Extra Implementation
 - (i) Scaling No Improvement / Introduce Risk
 - (ii) Non-Negative Reasonable Application (No Negative Population)
 - (iii) Random-Splitting Allows Best Year(s) to be Included for Model Fitting
 - (iv) Learning Rate / Auto-Stop No Significant Improvement
 - (v) Extra Features Birth Rate & State & Average Total Population

LSTM Model Extra (Type Extra)

- Sliding Window with Step = 1
- Gap = 5
- Inherit Implementation from the Standard Model (Type 2)
- Only Predict the Population in 2006 & 2011 (Special Offer)
- Reduce Computational Consumption (Measured in big O)
- Increase Prediction Accuracy

Evaluation (Error Measures)

Absolute Percentage Error (APE) among each Age-Sex Cohort

$$APE_{age-sex} = \sum_{s} \sum_{a} (F_{s,a} - A_{s,a})/A*100\%$$

• $F_{s,a}$ = Forecast Population of the Age-Sex Cohort (e.g. Forecast Area 10101 Male 0-4)

 $A_{s,a}$ = True Population of the Age-Sex Cohort (e.g. True Area 10101 Male 0-4)

A = Total of True Population of the Selected Area (e.g. True Area 10101)

Evaluation (Error Measures)

Absolute Percentage Error (APE) among each Age-Sex Cohort

$$APE_{age-sex} = \sum_{s} \sum_{a} (F_{s,a} - A_{s,a})/A*100\%$$

• $F_{s,a}$ = Forecast Population of the Age-Sex Cohort (e.g. Forecast Area 10101 Male 0-4)

 $A_{s,a}$ = True Population of the Age-Sex Cohort (e.g. True Area 10101 Male 0-4)

A = Total of True Population of the Selected Area (e.g. True Area 10101)

Result Table (Basic vs. Benchmark)

LSTM Basic Model (Type 1)

LSTM Type 1 (Step = 3)						
Age-Sex Level Total Leve						
mean_2006	16.1709	14.8950				
median_2006	12.4672	13.0478				
percentile_90_2006	33.1622	21.8927				
mean_2011	25.6209	24.4915				
median_2011	19.9009	20.5182				
percentile_90_2011	51.8375	39.7218				

Benchmark Model

Synthetic Migration Model						
	Age-Sex Level	Total Level				
mean_2006	7.0493	6.5987				
median_2006	4.7671	5.2553				
percentile_90_2006	15.4181	11.0650				
mean_2011	11.4899	11.4337				
median_2011	8.1259	9.4145				
percentile_90_2011	25.4696	18.8916				

Higher Error Rate than the Synthetic Migration Model (Benchmark)

Result Table (Basic vs. Implementation)

LSTM Basic Model (Type 1)

LSTM Type 1 (Step = 3)						
	Total Level					
mean_2006	16.1709	14.8950				
median_2006	12.4672	13.0478				
percentile_90_2006	33.1622	21.8927				
mean_2011	25.6209	24.4915				
median_2011	19.9009	20.5182				
percentile_90_2011	51.8375	39.7218				

LSTM Implemented Model (Type 2)

LSTM Type 2 (Step = 3)						
	Age-Sex Level	Total Level				
mean_2006	13.3995	12.2033				
median_2006	9.4548	9.7856				
percentile_90_2006	26.6544	19.5631				
mean_2011	22.3879	21.2186				
median_2011	16.2436	16.5910				
percentile_90_2011	44.4078	33.8293				

Decrease Around 3% of Error Rate from the Median Perspective

Result Table (Basic vs. Extra + Implementation)

LSTM Basic Model (Type 1)

LSTM Type 1 (Step = 3)					
	Age-Sex Level	Total Level			
mean_2006	16.1709	14.8950			
median_2006	12.4672	13.0478			
percentile_90_2006	33.1622	21.8927			
mean_2011	25.6209	24.4915			
median_2011	19.9009	20.5182			
percentile_90_2011	51.8375	39.7218			

LSTM Extra Model (Type Extra)

LSTM Type Extra (Step = 1, Gap = 5)					
	Age-Sex Level	Total Level			
mean_2006	11.8885	10.6295			
median_2006	8.6265	9.0743			
percentile_90_2006	23.5991	15.4323			
mean_2011	18.4228	17.4967			
median_2011	14.2963	15.0642			
percentile_90_2011	36.9972	24.9798			

Decrease Around 4% of Error Rate from the Median Perspective Negligible Difference between the Unscaled and the Scaled Version of the Extra Model

Recommendation

- Recommend
 - (i) External Variable Improvement
 - (ii) Easy Application without Complicate Coding
- Not Recommend
 - (i) Performance Does not Outperform than the Benchmark
 - (ii) Data Characteristic Too Short Time-Series
 - (iii) Interpretation Lack of Interpretability of the Black-Box Model
 - (iv) Computational Consumption Too Long for Computing the Result Comparing with the Benchmark
- Overall Recommendation

Conclusion & Report

- Conclusion of Work
 - (i) Data Preprocessing + Reconstruct Benchmark Model in R
 - (ii) Mainly Three Steps of LSTM Model Implementation (Introduce Based on Type 1)
 - (iii) Result and Recommendation
- Brief Introduce of Report

Deeper Illustration of Related Work, Model Interpretation, Result & Discussion

Faculty of Engineering and Information Technology

Thank you!

Reference

https://blog.paperspace.com/time-series-forecasting-regression-and-lstm/