$\left\{ \text{ CS 323 } \mid \text{ Lecture 11 } ight\}$

Design and Analysis & of Algorithms

Hoeteck Wee · hoeteck@cs.qc.cuny.edu http://www.cs.qc.edu/~hoeteck/f09/

DIVIDE-AND-CONQUER ALGORITHMS

I. closest pair of points

II. integer multiplication

PROBLEM. given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest.

APPLICATIONS. graphics, computer vision, molecular modeling, etc

NAIVE ALGORITHM. try all pairs of points, $O(n^2)$ time

TODAY. divide-and-conquer algorithm with running time $O(n \log n)$ time

- if $n \sim 10^3$, $O(n^2) \sim 10^6$ and $O(n \log n) \sim 10^4$
- use Manhattan distance d((x,y),(x',y')) = |x-x'| + |y-y'|

QUESTION. how to divide?

- expect $O(n \log n)$ time from T(n) = 2T(n/2) + O(n)
- ▶ need combining step to run in O(n) time

. 2009 3 / 10

ALGORITHM. divide-and-conquer

- 1. divide. draw a vertical line so that there are $\sim n/2$ points on each side
- 2. conquer. find closest pair on each side recursively
- 3. combine. find closest pair with one point on each side

return best of the 3 solutions

QUESTION. how to do divide?

- ▶ sort points by *x*-coordinate: $O(n \log n)$ time
- provide sorted points as inputs to conquer step

Hoeteck Wee CS 323 Oct 14, 2009 4 /

ALGORITHM. divide-and-conquer

- 1. divide. draw a vertical line L so that there are $\sim n/2$ points on each side
- 2. conquer. find closest pair on each side recursively
- 3. combine. find closest pair with one point on each side

return best of the 3 solutions

QUESTION. how to do combine in O(n) time?

- ightharpoonup easier: additionally assume distance $<\delta$
- use δ value from conquer step

Hoeteck Wee CS 323 Oct 14, 2009 5 / 1

QUESTION. how to do combine in O(n) time?

lacktriangle find closest pair with one point on each side, assuming distance $<\delta$

IDEAS. exploit distance $< \delta$

- lacktriangle observation 1: only need to consider a strip of width 2δ around L
- **b** observation 2: compare each point with 15 (instead of O(n)) points
- ightharpoonup figure out the 15 points by sorting points in strip by y coordinate

Hoeteck Wee CS 323 Oct 14, 2009 6 / 10

QUESTION. how to do combine in O(n) time?

lacktriangle find closest pair with one point on each side, assuming distance $<\delta$

each box contains ≤ 1 point

IDEAS. exploit distance $< \delta$

- ightharpoonup observation 1: only need to consider a strip of width 2δ around L
- ightharpoonup observation 2: compare each point with 15 (instead of O(n)) points
- figure out the 15 points by sorting points in strip by y coordinate

Hoeteck Wee CS 323 Oct 14, 2009 7 / 10

Integer multiplication

PROBLEM. multiply two n-bit numbers X and Y

ELEMENTARY APPROACH. $O(n^2)$ time

- ightharpoonup O(n) computation for each bit in Y
- ightharpoonup n additions of O(n)-bit numbers

	1100
	× 1101
12	1100
× 13	0000
36	1100
12	1100
156	10011100

ALGORITHM. divide-and-conquer

- 1. divide. write $X = 2^{n/2} \cdot A + B$ and $Y = 2^{n/2} \cdot C + D$
- 2. conquer. recursively compute $A \cdot C$, $A \cdot D$, $B \cdot C$, $B \cdot D$
- 3. combine. compute $2^n \cdot AC + 2^{n/2} \cdot (AD + BC) + BD$.

running time: $T(n) = 4T(n/2) + O(n) \Rightarrow T(n) = O(n^2)$

Hoeteck Wee CS 323 Oct 14, 2009

Integer multiplication

PROBLEM. multiply two n-bit numbers X and Y

ALGORITHM. divide-and-conquer

- 1. divide. write $X = 2^{n/2} \cdot A + B$ and $Y = 2^{n/2} \cdot C + D$
- 2. conquer. recursively compute $A \cdot C$, $A \cdot D$, $B \cdot C$, $B \cdot D$
- 3. combine. compute $2^n \cdot AC + 2^{n/2} \cdot (AD + BC) + BD$.

running time:
$$T(n) = 4T(n/2) + O(n) \Rightarrow T(n) = O(n^2)$$

ALGORITHM. improved divide-and-conquer

- ightharpoonup compute AD + BC more quickly
- ▶ note AD + BC = (A + B)(C + D) AC BD
- 2. conquer. recursively compute $A \cdot C$, $B \cdot D$, (A + B)(C + D)

running time:
$$T(n) = 3T(n/2) + O(n) \implies T(n) = O(n^{\log_2 3}) \sim n^{1.59}$$

Hoeteck Wee CS 323 Oct 14, 2009 9 / 10

