PARTE A (TEORIA)

[T1] Rispondere ad almeno una delle seguenti domande.

a) Siano y e z due soluzioni dell'equazione differenziale lineare completa $y''+a(x)y'+b(x)y=f(x)$. Quale delle seguenti affermazioni è l'unica corretta?
$\Box \ y+z$ è soluzione dell'equazione completa
$\Box \ y-z$ è soluzione dell'equazione completa
$\Box \ y+z$ è soluzione dell'equazione omogenea
$\square \ y-z$ è soluzione dell'equazione omogenea
b) Quale delle seguenti affermazioni su \bar{z} e $ z $, coniugato e modulo del numero complesso z , è l'unica corretta?
$\Box \ \bar{z}$ non è mai un numero reale
$\Box \bar{z} < z $
$\Box \bar{z} = - z $
$\Box \ z\bar{z}$ è un numero reale
$\Box \ \bar{z} \neq z$ per ogni $z \in \mathbf{C}$

- [T2] Enunciare e dimostrare almeno uno dei seguenti teoremi:
- a) Formula fondamentale del calcolo integrale
- b) Relazioni tra differenziabilitá ed esistenza delle derivate direzionali di una funzione in un punto.

PARTE B (ESERCIZI)

[E1] Risolvere almeno uno dei seguenti esercizi.

a) Calcolare il seguente integrale indefinito:

$$\int \frac{\log x}{x(\log^2 x + \log x + 3)} dx$$

b) Determinare gli estremi assoluti della funzione

$$f(x,y) = xy(y - x^2 + 1)$$

nell'insieme

$$X = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 1\}.$$

[E2] Risolvere almeno uno dei seguenti esercizi.

a) Determinare il carattere delle seguenti serie:

$$\sum_{n=1}^{\infty} \frac{n^5 + n^3 \cos(n+2)}{3n^4 \sqrt{2n^3 + 1}}$$

$$\sum_{n=1}^{\infty} \tan\left(\frac{1}{n+2} - \frac{1}{n+3}\right)$$

b) Determinare le radici quarte del numero complesso

$$z = \frac{i}{1+i}.$$