中国科学院大学网络空间安全学院专业普及课

多媒体编码及其信息安全应用

Multimedia Coding and Its Application to Information Security

第六讲 H.264关键技术及H.265简介

授课时间: 2022年3月28日

第六讲 H.264关键技术及H.265简介

内容提纲 (3节课内容)

1. H.264/AVC编码标准特性

2. H.265/HEVC简介

3. 小结

第六讲 H.264关键技术及H.265简介

内容提纲 (3节课内容)

1. H.264/AVC编码标准特性

2. H.265/HEVC简介

3. 小结

H.264/AVC视频编码框架

○H.264编码器框架

- ○变换编码技术简介
 - ●变换(Transform)编码将视频的空域信号变换为频域信号,使大部分能量集中到低频区域。从而有选择地编码人眼敏感的低频信号,部分丢弃人眼不敏感的高频信号,以此提高压缩效率。
 - 自1968 年快速傅立叶变换(Fast Fourier Transform, FFT)技术被利用进行图像编码以来,出现了多种正交变换编码方法,如K-L(Karhunen-Loeve)变换、离散余弦变换(Discrete Cosine Transform, DCT)等。
 - K-L变换(又称为主成分变换、特征向量变换)是均方误差标准下的最佳变换。但其变换矩阵并不是确定的,而是由其所处理的图像决定的,所以K-L变换矩阵需要根据图像进行统计更新,因此计算复杂度非常高,并且没有快速算法,很难在实际应用中被采用。
 - ●离散余弦变换编码性能接近于K-L变换,并且具有快速算法,广泛应用于图像编码。JPEG图像压缩就是基于8×8分块(浮点)离散余弦变换技术来进行变换编码的。

- ○一维离散余弦变换
 - ●1-D DCT 将一维N个离散实数采样值变换为N个变换域上的变换系数的过程。定义为:

$$F(u) = \sqrt{\frac{2}{N}}c(u)\sum_{n=0}^{N-1} f(n)\cos\frac{(2n+1)u\pi}{2N} \quad (u = 0,1,...,N-1)$$
$$c(u) = \begin{cases} 1/\sqrt{2} & u = 0\\ 1 & \text{otherwise} \end{cases}$$

其中,f(n)为一维离散采样值,F(n)为一维变换系数。

•1-DIDCT 将N个变换系数重构为N个离散实数采样值的过程。定义为:

$$f(n) = \sqrt{\frac{2}{N}} \sum_{u=0}^{N-1} c(u)F(u) \cos \frac{(2n+1)u\pi}{2N} \quad (n = 0,1,...,N-1)$$

- ○一维离散余弦变换
 - 当N取8时

$$F(u) = \frac{1}{2}c(u)\sum_{n=0}^{7} f(n)\cos\frac{(2n+1)u\pi}{16} \quad (u = 0,1,...,7)$$

$$\begin{pmatrix} F(0) \\ F(1) \\ \vdots \\ F(7) \end{pmatrix} = \begin{bmatrix} \frac{c(0)}{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{c(7)}{2} \end{bmatrix} \begin{bmatrix} \cos\frac{1\cdot 0}{16}\pi & \cos\frac{3\cdot 0}{16}\pi & \cdots & \cos\frac{15\cdot 0}{16}\pi \\ \cos\frac{1\cdot 1}{16}\pi & \cos\frac{3\cdot 1}{16}\pi & \cdots & \cos\frac{15\cdot 1}{16}\pi \\ \vdots & \ddots & \vdots \\ \cos\frac{1\cdot 7}{16}\pi & \cos\frac{3\cdot 7}{16}\pi & \cdots & \cos\frac{15\cdot 7}{16}\pi \end{bmatrix} \begin{pmatrix} f(0) \\ f(1) \\ \vdots \\ f(7) \end{pmatrix}$$

$$\binom{F(0)}{F(1)}_{\vdots} = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 \\ \sqrt{2}\cos\frac{1}{16}\pi & \sqrt{2}\cos\frac{3}{16}\pi & \cdots & \sqrt{2}\cos\frac{15}{16}\pi \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{2}\cos\frac{7}{16}\pi & \sqrt{2}\cos\frac{21}{16}\pi & \cdots & \sqrt{2}\cos\frac{105}{16}\pi \end{bmatrix} \binom{f(0)}{f(1)}_{\vdots}$$

○一维离散余弦变换

● 当N取8时

$$\mathbf{C}_{8} = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 \\ \sqrt{2}\cos\frac{1}{16}\pi & \sqrt{2}\cos\frac{3}{16}\pi & \cdots & \sqrt{2}\cos\frac{15}{16}\pi \\ \vdots & \ddots & \vdots \\ \sqrt{2}\cos\frac{7}{16}\pi & \sqrt{2}\cos\frac{21}{16}\pi & \cdots & \sqrt{2}\cos\frac{105}{16}\pi \end{bmatrix}$$

$$\begin{pmatrix}
F(0) \\
F(1) \\
\vdots \\
F(7)
\end{pmatrix} = \mathbf{C}_8 \begin{pmatrix}
f(0) \\
f(1) \\
\vdots \\
f(7)
\end{pmatrix}$$

$$\begin{pmatrix} f(0) \\ f(1) \\ \vdots \\ f(7) \end{pmatrix} = \mathbf{C}_8^{-1} \begin{pmatrix} F(0) \\ F(1) \\ \vdots \\ F(7) \end{pmatrix} = \mathbf{C}_8^{\mathrm{T}} \begin{pmatrix} F(0) \\ F(1) \\ \vdots \\ F(7) \end{pmatrix}$$

- ○二维离散余弦变换
 - ●2-D DCT 将二维N×M个离散实数采样值变换为N×M个变换域上的变换 系数的过程。定义为:

$$F(u,v) = \sqrt{\frac{2}{N}} \sqrt{\frac{2}{M}} c(u)c(v) \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f(n,m) \cos \frac{(2n+1)u\pi}{2N} \cos \frac{(2m+1)v\pi}{2M}$$

$$(u = 0,1,...,N-1. \ v = 0,1,...,M-1)$$

$$c(u) = \begin{cases} 1/\sqrt{2} & u = 0\\ 1 & \text{otherwise} \end{cases} c(v) = \begin{cases} 1/\sqrt{2} & v = 0\\ 1 & \text{otherwise} \end{cases}$$
其中 $f(n,m)$ 为二维离散采样值 $F(n,m)$ 为二维变换系数。

其中,f(n,m)为二维离散采样值,F(n,m)为二维变换系数。

2-D IDCT 将 $N \times M$ 个变换系数重构为 $N \times M$ 个离散实数采样值的过程。 定义为:

$$f(n,m) = \sqrt{\frac{2}{N}} \sqrt{\frac{2}{M}} \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} c(u)c(v) F(u,v) \cos \frac{(2n+1)u\pi}{2N} \cos \frac{(2m+1)v\pi}{2M}$$

$$(n = 0,1, ..., N-1, m = 0,1, ..., M-1)$$

○二维离散余弦变换

● 当N, M取8时

$$\mathbf{C}_{8} = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ \sqrt{2}\cos\frac{1}{16}\pi & \sqrt{2}\cos\frac{3}{16}\pi & \cdots & \sqrt{2}\cos\frac{15}{16}\pi \\ \vdots & \ddots & \vdots \\ \sqrt{2}\cos\frac{7}{16}\pi & \sqrt{2}\cos\frac{21}{16}\pi & \cdots & \sqrt{2}\cos\frac{105}{16}\pi \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{C}_{8}\mathbf{X}\mathbf{C}_{8}^{\mathrm{T}}$$

$$\mathbf{X} = \mathbf{C}_{8}^{\mathrm{T}}\mathbf{Y}\mathbf{C}_{8}$$

875	-1	3	-5	7	-10	0	10
0	-6	3	0	7	4	3	4
-5	1	2	6	3	3	0	-6
0	-6	7	6	-7	4	5	5
11	-2	-2	9	-8	-9	-9	17
12	0	3	-8	11	8	7	2
-5	-8	-9	12	5	-1	-9	1
3	3	-9	-8	1	-5	-6	-3

- ○H.264/AVC中的整数离散余弦变换
 - ●离散余弦变换也可以表示成矩阵运算的形式

$$\mathbf{Y} = \mathbf{C}_N \mathbf{X} \mathbf{C}_N^{\mathrm{T}}$$

$$\mathbf{C}_N(i,j) = \sqrt{\frac{2}{N}} c(i) \cos\left[\frac{(2j+1)i}{2N}\pi\right]$$

●在H.264中对4×4的待编码系数块进行操作,则相应的变换矩阵为

$$\mathbf{C}_{4} = \begin{bmatrix} \frac{1}{2}\cos(0) & \frac{1}{2}\cos(0) & \frac{1}{2}\cos(0) \\ \frac{1}{2}\cos(\frac{\pi}{8}) & \sqrt{\frac{1}{2}\cos(\frac{3\pi}{8})} & \sqrt{\frac{1}{2}\cos(\frac{5\pi}{8})} & \sqrt{\frac{1}{2}\cos(\frac{7\pi}{8})} \\ \frac{1}{2}\cos(\frac{2\pi}{8}) & \sqrt{\frac{1}{2}\cos(\frac{6\pi}{8})} & \sqrt{\frac{1}{2}\cos(\frac{10\pi}{8})} & \sqrt{\frac{1}{2}\cos(\frac{14\pi}{8})} \\ \frac{1}{2}\cos(\frac{3\pi}{8}) & \sqrt{\frac{1}{2}\cos(\frac{9\pi}{8})} & \sqrt{\frac{1}{2}\cos(\frac{15\pi}{8})} & \sqrt{\frac{1}{2}\cos(\frac{21\pi}{8})} \end{bmatrix}$$

OH.264/AVC整数离散余弦变换

•
$$\Rightarrow a = \frac{1}{2}\cos(0)$$
, $b = \sqrt{\frac{1}{2}}\cos(\frac{\pi}{8})$, $c = \sqrt{\frac{1}{2}}\cos(\frac{3\pi}{8})$, \emptyset \uparrow

$$\mathbf{C}_4 = \begin{bmatrix} a & a & a & a \\ b & c & -c & -b \\ a & -a & -a & a \\ c & -b & b & -c \end{bmatrix}$$

● C₄可进一步分解为

$$\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & c/b & -c/b & -1 \\ 1 & -1 & -1 & 1 \\ c/b & -1 & 1 & -c/b \end{bmatrix} = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & d & -d & -1 \\ 1 & -1 & -1 & 1 \\ d & -1 & 1 & -d \end{bmatrix}$$
其中,
$$d = \frac{c}{b} = \frac{\cos \frac{3\pi}{8}}{\cos (\frac{\pi}{8})} = \tan \frac{\pi}{8} = \sqrt{2} - 1 = 0.414.$$
 为了将上式整数化,令
$$d = \frac{1}{2}$$
 则

$$\mathbf{C}_4 = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1/2 & -1/2 & -1 \\ 1 & -1 & -1 & 1 \\ 1/2 & -1 & 1 & -1/2 \end{bmatrix}$$

- OH.264/AVC整数离散余弦变换
 - ●将右边矩阵的1/2因子移到左边矩阵,可得

$$\mathbf{C}_4 = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b/2 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b/2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix}$$

为了维持变换矩阵的正交性, 需满足 $2a^2 = b^2 + c^2 = (d^2 + 1)b^2$, 可得 b^2

$$=\sqrt{\frac{2a^2}{d^2+1}}$$
. $\pm a = d = \frac{1}{2}$ $\mp i$ $\mp i$ $\mp i$ $\pm i$

整数离散余弦变换过程为

$$\mathbf{Y} = \mathbf{C}_4 \mathbf{X} \mathbf{C}_4^{\mathrm{T}} =$$

$$\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b/2 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b/2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 \\ 1 & -1 & -1 & 2 \\ 1 & -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b/2 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b/2 \end{bmatrix} =$$

$$\begin{pmatrix}
\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 \\ 1 & -1 & -1 & 2 \\ 1 & -2 & 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} a^2 & ab/2 & a^2 & ab/2 \\ ab/2 & b^2/4 & ab/2 & b^2/4 \\ a^2 & ab/2 & a^2 & ab/2 \\ ab/2 & b^2/4 & ab/2 & b^2/4 \end{bmatrix}$$

)H.264/AVC整数离散余弦变换

• 根据
$$a = \frac{1}{2}, b = \sqrt{\frac{2}{5}}$$
可得

$$\mathbf{C_4XC_4^T} = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 \\ 1 & -1 & -1 & 2 \\ 1 & -2 & 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} a^2 & \frac{ab}{2} & a^2 & \frac{ab}{2} \\ \frac{ab}{2} & \frac{b^2}{4} & \frac{ab}{2} & \frac{b^2}{4} \\ a^2 & \frac{ab}{2} & a^2 & \frac{ab}{2} \\ \frac{ab}{2} & \frac{b^2}{4} & \frac{ab}{2} & \frac{b^2}{4} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 \\ 1 & -1 & -1 & 2 \\ 1 & -2 & 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} \frac{1}{4} & \frac{1}{2\sqrt{10}} & \frac{1}{4} & \frac{1}{2\sqrt{10}} \\ \frac{1}{2\sqrt{10}} & \frac{1}{10} & \frac{1}{2\sqrt{10}} & \frac{1}{10} \end{bmatrix}$$

$$\begin{pmatrix}
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1
\end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 \\ 1 & -1 & -1 & 2 \\ 1 & -2 & 1 & -1
\end{bmatrix} \rangle \otimes \begin{bmatrix} 4 & 2\sqrt{10} & 4 & 2\sqrt{10} \\ \frac{1}{2\sqrt{10}} & \frac{1}{10} & \frac{1}{2\sqrt{10}} & \frac{1}{10} \\ \frac{1}{4} & \frac{1}{2\sqrt{10}} & \frac{1}{4} & \frac{1}{2\sqrt{10}} \\ \frac{1}{2\sqrt{10}} & \frac{1}{10} & \frac{1}{2\sqrt{10}} & \frac{1}{10} \\ \end{bmatrix}$$

- OH.264/AVC整数离散余弦变换
 - 整数离散余弦逆变换过程为

$$\mathbf{X} = \mathbf{C}_{4}^{\mathrm{T}} \mathbf{Y} \mathbf{C}_{4} = \begin{bmatrix} 1 & 1 & 1 & d \\ 1 & d & -1 & -1 \\ 1 & -d & -1 & 1 \\ 1 & -1 & 1 & -d \end{bmatrix} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \mathbf{Y} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & d & -d & -1 \\ 1 & -1 & -1 & 1 \\ d & -1 & 1 & -d \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 1 & 1/2 & -1 & -1 \\ 1 & -1/2 & -1 & 1 \\ 1 & -1 & 1 & -1/2 \end{bmatrix} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \mathbf{Y} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1/2 & -1/2 & -1 \\ 1 & -1 & -1 & 1 \\ 1/2 & -1 & 1 & -1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 1 & 1/2 & -1 & -1 \\ 1 & -1/2 & -1 & 1 \\ 1 & -1 & 1 & -1/2 \end{bmatrix} \begin{pmatrix} \mathbf{Y} \otimes \begin{bmatrix} a^2 & ab & a^2 & ab \\ ab & b^2 & ab & b^2 \\ a^2 & ab & a^2 & ab \\ ab & b^2 & ab & b^2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1/2 & -1/2 & -1 \\ 1 & -1 & -1 & 1 \\ 1/2 & -1 & 1 & -1/2 \end{bmatrix}$$

$$\mathbf{C}_{4} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+b+c+d \\ 2a+b-c-2d \\ a-b-c+d \\ a-2b+2c-d \end{pmatrix} = \begin{pmatrix} (a+d)+(b+c) \\ 2(a-d)+(b-c) \\ (a+d)-(b+c) \\ (a-d)-2(b-c) \end{pmatrix}$$

$$\mathbf{C}_{4}^{\mathrm{T}} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 1 & 1/2 & -1 & -1 \\ 1 & -1/2 & -1 & 1 \\ 1 & -1 & 1 & -1/2 \end{bmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+b+c+d/2 \\ a+b/2-c-d \\ a-b/2-c+d \\ a-b+c-d/2 \end{pmatrix} = \begin{pmatrix} (a+c)+(b+d/2) \\ (a-c)+(b/2-d) \\ (a-c)-(b/2-d) \\ (a+c)-(b+d/2) \end{pmatrix}$$

○量化技术简介

- ●量化(Quantization)是指将信号的连续取值(或大量的离散取值)映射 为若干个离散取值的过程。视频残差信号经过变换之后,变换系数往往具 有较大的动态范围,对变换系数进行量化可以有效减小信号取值空间,获 得更好的(有损)压缩效果,但同时也因此成为视频编码产生失真的根本 原因。
- ●H.264/AVC 视频压缩标准使用标量量化(Scalar Quantization)器。基本的前向量化器的操作是:

$$\mathbf{Z}_{ij} = \text{round}(\frac{\mathbf{Y}_{ij} + f}{Q_{\text{step}}})$$

式中, Y_{ij} 是变换后的系数; Q_{step} 是量化器的步长;f控制量化误差; Z_{ij} 是量化后的系数。

• H.264 标准建议量化帧内预测的变换系数时, $f = (2^{15} + \frac{QP}{6})/3$; 量化帧间预测的变换系数时, $f = (2^{15} + \frac{QP}{6})/6$ 。这里的舍入(round)操作不需要舍入到最接近的整数,例如,有时向下取整反而有助于改善视频的感知质量。

○H.264/AVC量化级别表

QP	$Q_{ m step}$	QP	$oldsymbol{Q}_{ ext{step}}$	QP	$Q_{ m step}$	QP	$oldsymbol{Q}_{ ext{step}}$	QP	$Q_{ m step}$
0	0.625	12	2.5	24	10	36	40	48	160
1	0.6875	13	2.75	25	11	37	44	49	176
2	0.8125	14	3.25	26	13	38	52	50	208
3	0.875	15	3.5	27	14	39	56	51	224
4	1	16	4	28	16	40	64		
5	1.125	17	4.5	29	18	41	72		
6	1.25	18	5	30	20	42	80		
7	1.375	19	5.5	31	22	43	88		
8	1.625	20	6.5	32	26	44	104		
9	1.75	21	7	33	28	45	112		
10	2	22	8	34	32	46	128		
11	2.25	23	9	35	36	47	144		

- Q_{step} 变化有明显规律: QP值每增加1, Q_{step} 就增加12.25%; QP值增加6, Q_{step} 就增加一倍。(此周期性特性有助于减少量化表和反量化表大小)
- ●正向变换的⊗运算矩阵(记为 S_f)可以合并到量化表中,反向(逆)变换的⊗运算矩阵(记为 S_i)可以合并到反量化表中。
- ●对于色度编码,一般使用和亮度编码相同的量化步长。H.264标准规定,亮度QP的最大值为51,色度QP的最大值为39。

$$\mathbf{Y} = \text{round}\left(\left(\mathbf{C}_{f4}\mathbf{X}\mathbf{C}_{f4}^{T}\right) \otimes \mathbf{M}_{f} \cdot \frac{1}{2^{15}}\right)$$

$$\mathbf{V}_{\mathrm{i}} = 2^{6} \cdot Q_{\mathrm{step}} \cdot \mathbf{S}_{\mathrm{i4}}$$

$$\mathbf{X}' = \text{round}\left(\mathbf{C}_{i4}(\mathbf{Y} \otimes \mathbf{V}_i)\mathbf{C}_{i4}^T \cdot \frac{1}{2^6}\right)$$

$$\begin{aligned} \mathbf{M}_{\mathrm{f}} &= \begin{bmatrix} m(QP,0) & m(QP,2) & m(QP,0) & m(QP,2) \\ m(QP,2) & m(QP,1) & m(QP,2) & m(QP,1) \\ m(QP,0) & m(QP,2) & m(QP,0) & m(QP,2) \\ m(QP,2) & m(QP,1) & m(QP,2) & m(QP,1) \end{bmatrix} \\ \mathbf{V}_{\mathrm{i}} &= \begin{bmatrix} v(QP,0) & v(QP,2) & v(QP,0) & v(QP,2) \\ v(QP,2) & v(QP,1) & v(QP,2) & v(QP,1) \\ v(QP,0) & v(QP,2) & v(QP,0) & v(QP,2) \\ v(QP,2) & v(QP,1) & v(QP,2) & v(QP,1) \end{bmatrix} \end{aligned}$$

QP	m(QP,0)	m(QP,1)	m(QP,2)	v(QP,0)	v(QP,1)	v(QP,2)
0	13107	5243	8066	10	16	13
1	11916	4660	7490	11	18	14
2	10082	4194	6554	13	20	16
3	9362	3647	5825	14	23	18
4	8192	3355	5243	16	25	20
5	7282	2893	4559	18	29	23
• • •	• • •	• • •	• • •	• • •	• • •	• • •

○H.264/AVC整数离散余弦变换、量化流程示例

7	7
1	1

 $\mathbf{C}_{\mathbf{f4}}\mathbf{X}\mathbf{C}_{\mathbf{f4}}^{\mathrm{T}}$

$$\begin{bmatrix} 970 & -50 & 14 & -20 \\ -38 & 11 & -24 & -97 \\ -6 & -8 & 18 & 26 \\ 6 & 73 & 8 & 29 \end{bmatrix}$$

$$M_f (QP = 30)$$

H.264/AVC 亮度分量变换(C_{f4})、量化(M_{f4})整体流程(默认情况)

H.264/AVC 亮度分量反量化(V_{i4})、逆变换(C_{i4})整体流程(默认情况)

H.264/AVC 亮度分量变换(\mathbf{C}_{f4})、量化(\mathbf{M}_{f4})整体流程(Intra_16x16)

H.264/AVC 亮度分量反量化(\mathbf{V}_{i4})、逆变换(\mathbf{C}_{i4})整体流程(Intra_16x16)

H.264/AVC色度分量变换(C_{f4})、量化(M_{f4})整体流程(YUV420)

H.264/AVC色度分量反量化(\mathbf{V}_{i4})、逆变换(\mathbf{C}_{i4})整体流程(YUV420)

H.264/AVC色度分量变换(C_{f4})、量化(M_{f4})整体流程(YUV422)

H.264/AVC色度分量反量化(\mathbf{V}_{i4})、逆变换(\mathbf{C}_{i4})整体流程(YUV422)

○相关概念

- ●消除信息熵冗余(编码冗余)
- ●两种常用方案
 - ✓变长编码(Variable Length Coding, VLC)
 - ▶ 为概率大的符号分配短码字、为概率小的符号分配长码字
 - ▶例如:哈夫曼 (Huffman) 编码、指数哥伦布编码 (Exp-Golomb Coding, EGC)
 - ✓ 算数编码(Arithmetic Coding)
 - > 对输入符号序列进行操作
 - 》将输入符号序列映射为实数轴上[0,1)区间内的一个小区间,区间宽度为符号序列的概率值,在此区间内选择一个二进制小数作为整个符号序列的编码码字
- ●应用于视频编码的技术革新是在H.264中引入了上下文自适应技术。

○指数哥伦布编码

- ●一种规则变长码, 具有很好的结构性
- ●由前缀和后缀两部分构成,均依赖于指数哥伦布码阶数K
- •第一个码字结构以1开头,后跟K个二进制位,即 $1X_{K-1}X_{K-2}\cdots X_0$ (X_i = 0,1);第二个码字结构以01开头,后跟(K+1)个二进制位;以此类推,每个码字结构都是前一个码字结构最左端添加一个0,最右端添加一个二进制位。

非负	码字							
整数	K=0		<i>K</i> =1		K=2			
索引	前缀	后缀	前缀	后缀	前缀	后缀		
0	1	-	1	0	1	00		
1	01	0	1	1	1	01		
2	01	1	01	00	1	10		
3	001	00	01	01	1	11		
4	001	01	01	10	01	000		
• • •	• • •	• • •	• • •	• • •	• • •	• • •		

○H.264/AVC采用的指数哥伦布编码

- ▶ 阶数K = 0
- ●码字结构: [ZERO PREFIX][1][INFO]
- ●码字前缀: M个"0"后跟1个"1", M = [log₂(code_num + 1)]
- 码字后缀: M个二进制位, $INFO = code_num 2^M + 1$

code_num	Codeword
0	1
1	010
2	011
3	00100
4	00101
5	00110
6	00111
7	0001000
8	0001001
• • •	•••

○H.264/AVC采用的指数哥伦布编码

- •读取一系列"0"直到检测到"1",确定"0"的数量M
- ●读取第一个"1"后,接着读取长度为M的二进制序列,得到INFO
- code_num = INFO + $2^M 1$

○示例

• code_num = 106

 $M = \lfloor \log_2(106+1) \rfloor = 6$,故相应码字前缀为 0000001_2 INFO = $106-2^6+1=43=1010112$,其为相应码字后缀拼接前缀、后缀得到码字为0000001101011

●码字000000011100011

检测到第一个"1"时,读取了7个连续"0",故M=7读取第一个"1"后,接着读取长度为7的二进制序列,得到INFO=99₁₀ code_num=99+2⁷-1=226

○H.264/AVC采用的指数哥伦布编码

- ue (unsigned direct mapping)
 无符号直接映射,用于编码宏块类型等。
 code_num = k
- me (mapped symbols) 标记映射,用于编码coded_block_pattern(子宏块残差编码模式) code_num通过查找H.264标准中的相应表格(Table 9-4)得到
- te (truncated mapping) 截断映射,取决于语法元素的取值范围,用于编码参考图像在参考 帧列表中的序号等。

- ○上下文自适应变长编码
 - Context Adaptive Variable Length Coding, CAVLC
 - ●用于亮度、色度残差数据编码,
 - ●与以往的单一码表的编码方式不同,CAVLC 通过多个码表切换逼近信源概率分布,以实现自适应编码,提高了熵编码的编码效率。
 - ●主要编码:系数标识(coeff_token,包括TotalCoeff和TrailingOnes)、拖尾系数符号、除拖尾系数外的非零系数幅值(Level)、最后一个非零系数前零的数量(TotalZeros)、每个非零系数前零的数量(RunBefore)
 - ●残差变换、量化后具有如下特性:
 - ●4×4块残差经过变换量化后,非零系数主要集中在低频部分,高频系数大部分都是零
 - ●直流系数附近的非零系数较大,高频非零系数不少为+1或-1
 - 非零系数的幅值变化有一定规律性和相关性,非零系数游程也具有一定特性
 - ●相邻4×4块的非零系数的数量具有一定相关性

OCAVLC具体步骤

●步骤1:编码非零系数数量(TotalCoeff)和拖尾系数数量(TrailingOnes)

非零系数数量取值范围为0~16 拖尾系数数量取值范围为0~3。拖尾系数是指经过 zigzag扫描后,系数序列末尾连续出现的±1(中间 可间隔任意数量0)。若±1的数量大于3,则只有最 后3个被视为拖尾系数,其余被视为普通非零系数 通过查表对TotalCoeff和TrailingOnes进行编码

- 步骤2:编码拖尾系数的符号按反向扫描的顺序,从高频数据开始,正号用"0"编码,负号用"1"编码。
- ●步骤3:依次编码所有剩下的非零系数幅值(Level) 根据编码系数Level进行自适应码表切换。包括两个 部分:前缀(level_prefix)和后缀(level suffix)。
- ●步骤4:编码最后一个非零系数前零的数量 (TotalZeros)
- ●步骤5:依次编码每个非零系数前零的数量 (RunBefore)

- ○CAVLC编码示例
 - 经过zigzag扫描之后,数据重新排列为0,3,0,1,-1,-1,0,1,0...
 - 初始值设定: 非零系数的数目 (TotalCoeff) = 5; 拖尾系数的数目 (TrailingOnes) = 3; 最后一个非零系数前零的数目 (TotalZeros) = 3; 变量NC = 1; suffixLength = 0; i = TotalCoeff = 5。
 - 编码coeff_token: 查H.264标准表9-5, 根据TotalCoeff = 5, TrailingOnes = 3, 有coeff_token = 0000 100。此时Code = 0000 100。
 - ●编码拖尾系数符号: 逆序编码, 三个拖尾系数的符号依次被编码为0, 1, 1。此时, Code = 0000 1000 11。

OCAVLC编码示例

●编码除拖尾系数以外非零系数幅值:

• levelCode =
$$\begin{cases} (level \ll 1) - 2 & level > 0 \\ -(level \ll 1) - 1 & level < 0 \end{cases}$$

- level_prefix = levelCode/(1 ≪ suffixLength) 查询H.264标准表9-6可得对应字符串的前缀
- level_suffix = levelCode%(1 < suffixLength) level suffix值的无符号二进制数形式为对应字符串的后缀

当前 suffixLength	闽 值
0	0
1	3
2	6
3	12
4	24
5	48
6	N

• 按照逆序, Level[i--]=1; (此时i=1) levelCode=0; level_prefix=0; 查H.264标准表9-6可得level_prefix=0时对应的bit string=1; 因为suffixLength初始化为0,故该Level没有后缀; 因为suffixLength=0,故suffixLength++; 此时, Code=0000 1000 111。

 编码下一个Level: Level[0] = 3; levelCode = 4; level_prefix = 2; 查 H.264标准表9-6可得bit string = 001; level_suffix = 0; suffixLength = 1; 故码流为0010; 此时, Code = 0000 1000 1110 010。

OCAVLC编码示例

- 编码最后一个非零系数前零的数目(TotalZeros): 查H.264标准表9-7可得,当TotalCoeff = 5, total_zeros = 3时, bit string = 111。此时,Code = 0000 1000 1110 0101 11。
- 编码每个非零系数前零的数量(RunBefore): i = TotalCoeff = 5; ZerosLeft = TotalZeros = 3; 通过查H.264标准表9-10, 按照逆序编码, 有
 - ZeroLeft = 3, run_before = 1, run_before[4] = 10;
 - ZeroLeft = 2, run_before = 0, run_before[3] = 1;
 - ZeroLeft = 2, run before = 0, run before [4] = 1;
 - ZeroLeft = 2, run before = 1, run before[1] = 01;
 - ZeroLeft = 1, run_before = 1, run_before[0]不需要码流来表示。
- 最终, Code = 0000 1000 1110 0101 1110 1101。对该4×4块残差系数的编码完毕。

- ○上下文自适应二元算术编码
 - Context-Adaptive Binary Arithmetic Coding, CABAC
 - ●以算数编码为核心,将其与一个设计精良的上下文模型相结合。
 - 不同于VLC,算术编码能为符号分配非整数长度的码字,这样编码的长度可以更加接近于符号的熵,因此具有更高的编码性能。
 - CABAC会为当前编码的语法元素选择合适的上下文模型,在此基础上, 给出了当前语法元素与相关语法元素之间的条件概率,利用这个条件概率, 可减少语法元素之间的冗余信息,提高压缩效率。
 - CABAC为每个语法元素提供非静态的统计模型,使得编码器可根据编码 内容自适应地调整语法元素的概率模型,进一步提高压缩效率。
 - ●与CAVLC相比, CABAC在编码效率上有9%~14%的性能提高,是目前应用于视频编码标准中编码效率最高的熵编码器之一。

○块效应产生及其原因

- ●块效应在视频编码中人眼可察觉到的小块边界处的不连续,只要是以 块为单位进行视频编码(block-Based Video Coding)就会产生块效应。
- 分块DCT变换使得块与块之间的相关性被忽略。
- 不同分块分别进行量化处理,当相邻分块量化步长不同或舍弃的高频 分量存在差异时,将破坏它们之间的相关性。
- ●基于块的运动补偿(Motion Compensation)会加剧块效应。运动估计 不会绝对准确。

- ○去块效应滤波器(Deblocking Filter)
 - 减轻、消除视频图像中的块效应
 - ●对块边界的像素滤波
- ○后置滤波器(Post Filter)
 - ●只放置于解码端
 - ●处理位于解码环路外的显示缓冲区中的视频数据
 - ●后处理范畴, 非标准化规范内容
- ○环路滤波器(In-Loop Filter)
 - ●放置于编解码环路中
 - ●编码器中:滤波图像作为帧间预测编码的(运动估计)参考图像
 - ●解码器中:滤波图像显示输出、作为解码重建的参考图像
 - ●编解码器使用相同滤波器,为标准化规范内容

○滤波次序

- ●以宏块为单位
- ●先横向后纵向, 先亮度后色度, 对4×4块边界进行滤波

宏块色度分量滤波顺序(YUV420)

宏块亮度分量滤波顺序

○滤波过程

●确定边界强度BS (Boundary Strength)

判断条件	BS
P块或Q块为帧内编码, 且块边缘为宏块边界	4 (最强滤波)
P块或Q块为帧内编码, 且块边缘不为宏块边界	3
P块和Q块均非帧内编码,且残差变换系数不都为零	2
P块和Q块均非帧内编码, 残差变换系数均为零, 但它们的参考帧或运动向量不同	1
P块和Q块均非帧内编码, 残差变换系数均为零, 参考帧帧和运动向量均相同	0 (无滤波)

●色度块的边界强度无需计算,直接等于对应亮度块的边界强度

○滤波过程

区分真假边界:当且仅当同时满足下述四个条件,则判定为需要滤波的虚假边界,否则判定为无需滤波的真实边界。其中,阈值α和β由相邻块的平均量化参数确定,且与其正相关。

$$Bs > 0$$

 $|p_0 - q_0| < \alpha \text{ (IndexA)}$
 $|p_1 - p_0| < \beta \text{ (IndexB)}$
 $|q_1 - q_0| < \beta \text{ (IndexB)}$

○IndexA和IndexB

IndexA = Clip(0,51, QP_{avg} + FilterOffsetA)

IndexB = Clip(0,51, QP_{avg} + FilterOffsetB)

偏移量FilterOffsetA和FilterOffsetB用于调整滤波强度,可由用户指定。

	IndexA for(α)或 IndexB for(β)																									
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	5	6	7	8	9	10	12	13
β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	3	3	3	3	4	4	4

		IndexA for(α)或 IndexB for(β)																								
	26	27	28	29	30	31	32	33	34	3 5	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
а	15	17	20	22	25	28	32	36	40	45	50	56	63	71	80	90	101	113	127	144	162	182	203	226	255	25 5
β	6	6	7	7	8	8	9	9	10	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18

- ○滤波运算 (Bs ∈ {1,2,3})
 - \bullet 对边界像素 p_0 和 q_0 进行滤波:

将 p_1,p_0,q_0,q_1 作为四拍(4-tap)线性滤波器的输入,产生滤波像素 p_0' 和 q_0'

- •若 $|p_2-p_0|<\beta$,则对内部像素 p_1 进行滤波: 将 p_2 , p_1 , p_0 , q_0 作为四拍线性滤波器的输入,产生滤波像素 p_1' (色度像素无需考虑此情况)
- •若 $|q_2-q_0|<\beta$,则对内部像素 q_1 进行滤波:将 q_2,q_1,q_0,p_0 作为四拍线性滤波器的输入,产生滤波像素 q_1' (色度像素无需考虑此情况)

○滤波运算(Bs = 4)

• 若 $|p_2 - p_0| < \beta$ 且 $|p_0 - q_0| < ((\alpha \gg 2) + 2)$,则对像素 p_2, p_1, p_0 进行滤波:

将 p_2 , p_1 , p_0 , q_0 , q_1 作为五拍线性滤波器的输入,产生滤波像素 p_0 将 p_2 , p_1 , p_0 , q_0 作为四拍线性滤波器的输入,产生滤波像素 p_1 将 p_3 , p_2 , p_1 , p_0 , q_0 作为五拍线性滤波器的输入,产生滤波像素 p_2 (色度像素无需此操作)

- |a| = |
- ●对边界另一侧的像素 q_i ($i \in \{0,1,2,3\}$)进行上述类似操作

○滤波效果实例 (帧间编码)

原始视频帧

未滤波重建视频帧 QP=36

滤波重建视频帧 QP=36

未滤波重建视频帧 QP=32

滤波重建视频帧 QP=32

○滤波效果实例(帧内编码)

原始视频帧

未滤波重建视频帧 QP=38

滤波重建视频帧 QP=38

未滤波重建视频帧 QP=30

滤波重建视频帧 QP=30

第六讲 H.264关键技术及H.265简介

内容提纲 (3节课内容)

1. H.264/AVC编码标准特性

2. H.265/HEVC简介

3. 小结

○什么是H.265/HEVC

- High Efficiency Video Coding, HEVC
- ●一种视频压缩编码的国际标准 由ISO/IEC的MPEG和ITU-T的VCEG这两个组织共同开发制定。
- 一种压缩视频格式

标准规定了一种视频压缩编码格式及其相应的解析方法和工具。 H.265/HEVC视频需要能够满足H.265标准所规定的码流规范,并且 可以通过标准所提供的方法被正确解析。HEVC视频流可以存储于 媒体文件,通过互联网进行点播、直播等。

一种视频编码工具集

标准规定了一系列方法或工具,可供视频编码器采用。至于需要采用哪些工具、如何使用这些工具,由编码器设计者决定。

○为什么需要H.265/HEVC

- 数字视频的普及视频点播、流媒体直播、视频会议、视频通话
- 视频解析度的增长
 480P → 720P → 1080P → 2k → 4k → 8k → ...
- ●处理性能的提升

当前移动终端的计算处理性能可超过10年前的普通家用计算机

○为什么需要H.265/HEVC

- 需要一种新的视频编码方案,能够充分利用计算资源,以应对海量高 清数字视频的处理。
- H.265能够做到:
 - ✓在同等视频质量条件下,比H.264占用更少的存储空间和传输带宽
 - ✓在同等存储空间和传输带宽条件下,提供比H.264更高的视频质量

○更灵活的编码单元尺寸选择

●可将视频帧划分为64×64,32×32或16×16分块(CTU)

将16×16宏块作为编码单元

将64×64分块作为编码单元

○更丰富的帧内预测模式

●35种帧内预测模式

○更灵活的帧间预测分块尺寸选择

- ○更灵活的变换分块尺寸选择
 - 变换分块尺寸可为4×4,8×8,16×16或32×32

第六讲 H.264关键技术及H.265简介

内容提纲 (3节课内容)

1. H.264/AVC编码标准特性

2. H.265/HEVC简介

3. 小结

3小结

- ○H.264/AVC编码标准特性
 - ●变换
 - ●量化
 - ●熵编码
 - ●去块效应环路滤波
- ○H.265/HEVC简介

网络空间安全学院

谢 Q&A

欢迎电子邮件、QQ与微信交流问题!