Classification of toxicity of metallic NPs

Tung X. Trinh

4/2/2021

Reference: Trinh et al. "Curation of datasets, assessment of their quality and completeness, and nanoSAR classification model development for metallic nanoparticles." Environmental Science: Nano 5.8 (2018): 1902-1910.

Load necessary libraries:

```
library(openxlsx)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(data.table)
library(dplyr)
##
## Attaching package: 'dplyr'
  The following objects are masked from 'package:data.table':
##
##
       between, first, last
##
  The following object is masked from 'package:randomForest':
##
##
  The following objects are masked from 'package:stats':
##
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
```

```
library(svDialogs)
library(shiny)
library(shinythemes)
library(shinydashboard)
## Attaching package: 'shinydashboard'
## The following object is masked from 'package:graphics':
##
##
       box
Load dataset:
DataMetal <- read.xlsx("www/MetalESN.xlsx", sheet = 1, startRow = 1, colNames = TRUE,
                        rowNames = FALSE, detectDates = FALSE, skipEmptyRows = TRUE,
                        skipEmptyCols = TRUE, rows = NULL, cols = NULL, check.names = FALSE,
                        namedRegion = NULL, na.strings = "NA", fillMergedCells = FALSE)
DataMetal <- select(DataMetal, c("Toxicity",</pre>
                                   "Dose",
                                   "Assay",
                                   "Time",
                                  "Species",
                                  "Cancer",
                                   "Cell_Tissue",
                                  "Cell_line",
                                   "SSA",
                                  "Zeta",
                                   "HSize",
                                   "CoreSize",
                                  "Coating",
                                   "Shape",
                                   "Metal"))
Split data into train and test set (70/30)
set.seed(1991)
split_size <- floor(0.70 * nrow(DataMetal))</pre>
in_rows <- sample(c(1:nrow(DataMetal)), size = split_size, replace = FALSE)</pre>
train <- DataMetal[in rows, ]</pre>
test <- DataMetal[-in rows, ]</pre>
Train Random Forest model:
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 5)
RFmodel <- train(Toxicity ~ ., data = train, method = "rf", ntree = 100, trControl = train.control)
print(RFmodel)
## Random Forest
##
## 1403 samples
##
     14 predictor
##
      2 classes: 'NON_TOXIC', 'TOXIC'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 1262, 1263, 1263, 1263, 1263, 1262, ...
```

```
## Resampling results across tuning parameters:
##
##
     mtry
           Accuracy
                      Kappa
           0.8238213 0.1845892
##
       2
##
      68
           0.9154577 0.7138967
##
     134
           0.9158772 0.7215603
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 134.
Use RFmodel to predict test set:
predictions <- RFmodel %>% predict(test); predictions_train <- RFmodel %>% predict(train)
Get confusion matrix and performance of model:
CMatrix <- confusionMatrix(predictions, as.factor(test$Toxicity))</pre>
Performance <- data.frame(Parameter = row.names(as.data.frame(CMatrix$byClass)),
                          Value = as.data.frame(CMatrix$byClass))
colnames(Performance) <- c("Parameters", "Values")</pre>
CMatrix
## Confusion Matrix and Statistics
##
              Reference
## Prediction NON_TOXIC TOXIC
##
     NON_TOXIC
                     480
     TOXIC
                      14
##
                            83
##
##
                  Accuracy: 0.9352
                    95% CI: (0.9125, 0.9535)
##
##
       No Information Rate: 0.8206
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.7709
##
##
   Mcnemar's Test P-Value: 0.1093
##
               Sensitivity: 0.9717
##
##
               Specificity: 0.7685
##
            Pos Pred Value: 0.9505
##
            Neg Pred Value: 0.8557
##
                Prevalence: 0.8206
##
            Detection Rate: 0.7973
##
      Detection Prevalence: 0.8389
##
         Balanced Accuracy: 0.8701
##
##
          'Positive' Class : NON_TOXIC
##
Performance
##
                                   Parameters
                                                 Values
## Sensitivity
                                  Sensitivity 0.9716599
## Specificity
                                  Specificity 0.7685185
## Pos Pred Value
                              Pos Pred Value 0.9504950
```

Neg Pred Value 0.8556701

Neg Pred Value

```
## Recall
                                       Recall 0.9716599
## F1
                                          F1 0.9609610
## Prevalence
                                  Prevalence 0.8205980
## Detection Rate
                              Detection Rate 0.7973422
## Detection Prevalence Detection Prevalence 0.8388704
## Balanced Accuracy
                           Balanced Accuracy 0.8700892
Make an interactive app for users:
ui <- dashboardPage(</pre>
  dashboardHeader(title = "QSAR metal NPs", titleWidth = 350),
  dashboardSidebar(
   width = 350,
   sidebarMenu(
      menuItem("Model", tabName = "Model", icon = icon("th")),
      menuItem("Introduction", tabName = "Introduction", icon = icon("dashboard"))
   )
  ),
  dashboardBody(
   tabItems(
      # Model tab content
      tabItem(tabName = "Model",
   h2("A web-based app for predicting cytotoxicity of metal nanoparticles (i.e., Ag and Au)"),
   h2("Reference: Trinh et al. Environmental Science: Nano 5.8 (2018): 1902-1910."),
    # Boxes need to be put in a row (or column)
   fluidRow(
     box(
       height = 500,
        title = "Input properties of NPs:",
        selectInput("Metal", "Metal NPs:",
                    c("Au" = "Au",
                      "Ag" = "Ag")),
        selectInput("Shape", "Shape:",
                    c("Nanorod" = "Nanorod",
                      "Sphere" = "Sphere",
                      "Hollow" = "Hollow")),
        sliderInput("CoreSize", "Core diameter (nm):", 1, 100, 10),
        sliderInput("HSize", "Hydrodynamic diameter (nm):", 1, 300, 50),
        sliderInput("Zeta", "Zeta potential (mV):", -20, 20, 0)
      ),
      box(
       height = 500,
       title = "Input experimental conditions:",
        selectInput("Cell_line", "Cell line:",
                    c("HeLa" = "HeLa",
                      "HepG2" = "HepG2",
                      "BEAS-2B" = "BEAS-2B",
                      "A549" = "A549")),
        selectInput("Assay", "Toxicity assay method:",
                    c("MTS" = "MTS",
                      "MTT" = "MTT",
                      "AlamarBlue" = "Alamar Blue",
                      "NRU" = "NRU")),
```

Precision 0.9504950

Precision

```
sliderInput("Time", "Exposure time (h):", 1, 96, 10),
        sliderInput("Dose", "Concentration (ug/L):", 1, 10<sup>3</sup>, 50),
      ),
      box(
        height = 500,
       title = "Model performance:",
        tableOutput("Performance")
      ),
      box(height = 120, title = "Predicted toxicity:", tableOutput("Prediction")),
      box(height = 360, title = "Summary of input:", tableOutput("SummaryInput"))
    )
  ),
  # Introduction tab content
  tabItem(tabName = "Introduction",
          h2("A web-based app for predicting cytotoxicity of metal nanoparticles (i.e., Ag and Au)"),
          column(
            br(),
            p("Dataset for model development was published in:",
              strong("Trinh et al. Environmental Science: Nano 5.8 (2018): 1902-1910."),
              style="text-align:justify;color:black;
              background-color:papayawhip;padding:15px;border-radius:10px"),
            br(),
            width=8),
 )
 )
 )
)
server <- function(input, output) {</pre>
  output$Performance <- renderTable({</pre>
    Performance
  }, digits = 2)
  output$SummaryInput <- renderTable({</pre>
    data.frame("Descriptor" = c("Metal NPs",
                                 "Core size (nm)",
                                 "Hydrodynamic diameter (nm)",
                                 "Zeta potential (mV)",
                                 "Cell line",
                                 "Toxic Assay",
                                 "Exposure time (h)",
                                 "Concentration (ug/L)"),
               "Values" = c(input$Metal,
                             input$CoreSize,
                             input$HSize,
                             input$Zeta,
                             input$Cell_line,
```

```
input$Assay,
                             input$Time,
                             input$Dose))
  }, digits = 2)
  output$Prediction <- renderTable({</pre>
    table1 <- data.frame("Toxicity" = "UNKNOWN",</pre>
                          "Dose" = input$Dose,
                          "Assay" = input$Assay,
                          "Time" = input$Time,
                          "Species" = "Human",
                          "Cancer" = 1,
                          "Cell_Tissue" = "Lung",
                          "Cell_line" = input$Cell_line,
                          "SSA" = 20,
                          "Zeta" = input$Zeta,
                          "HSize" = input$HSize,
                          "CoreSize" = input$CoreSize,
                          "Coating" = "None",
                          "Shape" = "Sphere",
                          "Metal" = input$Metal)
    table2 <- as.data.frame(predict(RFmodel, table1))</pre>
    data.frame("Observed.Toxicity" = table1[1,1], "Predicted.Toxicity" = table2[1,1])
 })
shinyApp(server = server, ui = ui)
```

Listening on http://127.0.0.1:6735

A web-based app for predicting cytotoxicity of metal nanoparticles (i.e., Ag and Au) Reference: Trinh et al. Environmental Science: Nano 5.8 (2018): 1902-1910.

Input p	ropertie	s of NPs:								
Metal NP	h:									
Au										
hape:										
Nanoro	od									-
	meter (nm	i:								
	-									
1		26	*	-		44	3		16	100
	namic diar	neter (nm):								
_		*								- 1
1			**	25	20.	16	200	36	26	300
eta pot	ential (mV)									
					å					
	*				÷				и	26
nput e	xperime			4	-	4			и	
nput e	xperime			ı	-	4	*		26	
an nput e	xperime	ntal cond		×	-	4	*	9	26	26
an nput e	x xperime	ntal cond		16	-	4	*	D	и	26
nput e Cell line: HeLa Fessicity NTS	x xperime	ntal cond		ú	-	4			м	
nput e Cell line: HeLa Fessicity NTS	xperimer	ntal cond		4	-	•	*	10	м	
nput e Cell line: HeLa Fessicity NTS	e time (b):	ntal cond		á	-	4		2	26	
Input e Cell line: HeLa Fexicity HTS Exposure:	e time (h):	ntal cond	itions:		•					
Input e Cell line: HeLa Foxicity HTS Exposure:	e time (h):	ntal cond	itions:		•					

Model performance:		
Parameters	Values	
Sensitivity	0.97	
Specificity	0.77	
Pos Pred Value	0.95	
Neg Pred Value	0.86	
Precision	0.95	
Recall	0.97	
F1	0.96	
Prevalence	0.82	
Detection Rate	0.80	
Detection Prevalence	0.84	
Balanced Accuracy	0.87	

Predicted toxicity:		
Observed.Toxicity	Predicte	d.Toxicity
UNKNOWN	NON_TO	300
Summary of input:		
Descriptor		Values
Metal NPs		Au
Core size (nm)		10
Hydrodynamic diame	ter (nm)	50
Zeta potential (mV)		0
Cell line		HeLa
Toxic Assay		MTS
Exposure time (h)		10