Natural Language Processing with Classification and Vector Spaces

Vector Space Models

2021.02.05

Vector Space Models

- Vector space model identifies similarities and dependencies
 - ex.

Vector Space Models

- Vector space model captures many other types of relationships among different sets of words.
 - Applications: Information Extraction, machine translation, chatbot.
 - The way that representations are made is by identifying the context around each word in the text, and this captures the relative meaning.

- You eat <u>cereal</u> from a <u>bowl</u>
- You buy something and someone else sells it

Word by Word & Word by Doc.

- Using co-occurrence matrix → Vector representation
 - Word by word design: Number of times they occur together within a certain distance k.

I like simple data

I prefer simple raw data

simple raw like I
data 2 1 1 0

Word by Word & Word by Doc.

- Using co-occurrence matrix → Vector representation
 - Word by document design: Number of times a word occurs within a certain category.

	Entertainment	Economy	ML
data	500	6620	9320
film	7000	4000	1000

Euclidean Distance

Similarity metric: the length of the straight line between points.

Corpus A: (500,7000)

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$

$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(8820)^2 + (-6000)^2}$$

Euclidean Distance

Similarity metric: the length of the straight line between points.

Corpus A: (500,7000)

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$

$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(8820)^2 + (-6000)^2}$$

Euclidean Distance

• For *n*-dimensional vectors.

In Python,

```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])

# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

Cosine Similarity

- Problem of Euclidean distance
 - It can be misleading when corpora have different sizes.

Cosine Similarity

As a similarity metric, it isn't biased by the size difference.

$$\hat{v} \cdot \hat{w} = \|\hat{v}\| \|\hat{w}\| \cos(\beta)$$

$$\cos(\beta) = \frac{\hat{v} \cdot \hat{w}}{\|\hat{v}\| \|\hat{w}\|}$$

Cosine Similarity

As a similarity metric, it isn't biased by the size difference.

Manipulating Words in Vector Space

 By performing some simple vector arithmetic, we are able to manipulate vectors.

Visualization and PCA

- Dimensionality reduction
 - A way to reduce the dimension of high dimensional vectors to 2-dimensions, so plot it on an XY axis.

	d > 2				d = 2		
oil	0.20		0.10		oil	2.30	21.2
gas	2.10		3.40	PCA	gas	1.56	19.3
city	9.30		52.1		city	13.4	34.1
town	6.20		34.3	_	town	15.6	29.8

We can find that initial representation captured the relationship between them.
 (Clustered with related words)

Visualization and PCA

- Principal Component Analysis
 - ullet 2-dimensional vector space o one feature.
 - Find a set of uncorrelated features, then projects data to lower dimensional space.
 - While trying to retain as much information as possible.

PCA Algorithm

- Two algebra
 - Eigenvector: Uncorrelated features for data.
 - Eigenvalue: the amount of information retained by each feature.
- To perform PCA,
 - Get the eigenvectors and eigenvalues from the covariance matrix of data.

PCA Algorithm

- Perform PCA
 - Get a set of uncorrelated features:
 - Mean normalize data, get covariance matrix, then perform a singular value decomposition to get a set of 3 matrices.

PCA Algorithm

- Perform PCA
 - Project data to a new set of features.
 - Perform the dot products between the matrix containing word embeddings and the 1st and columns of the U matrix.
 - Then get the percentage of variance retained in the new vector space.

