

SMAT: An Input Adaptive Auto-Tuner for Sparse Matrix-Vector Multiplication

Jiajia Li, Guangming Tan, Mingyu Chen, Ninghui Sun

Institute of Computing Technology, Chinese Academy of Sciences

Contents

1 Background

- 2 Motivation
- 3 SMAT Design and Implementation
- 4 Experimental Results

High Performance Computational Software Development-1

High Performance Computational Software Development-2

Killer Applications

Sparse Linear System

Sparse Matrix

- Diverse Application Background
- Different Solving Methods

Diagonal "pcrystk02"

"Slim"
"Bfly"

"Fat"
"crankseg_2"

222

Power-Law "roadNet-CA"

Diff. Nonzero
Distribution Structure

Kinds of Sparse

- Matrices
 - Diagonal Matrix
 - "Slim" Matrix
 - "Fat" Matrix
 - Power-Law Matrix
 - Matrix with Dense Blocks
 - **–** ..

number of nonzeros per row

Storage Formats

SpMV: solve Y=AX+Y, where A is a sparse matrix, X and Y are dense vectors.

n –x[maices[]]]] aata[]]],

```
[1 5 2 6 8 3 7 9 4] | y[i] = sum;

(a) CSR SpMV

row
[0 0 1 1 2 2 2 3 3] for (i = 0; i < num_nonzeros; i++)
{
    y[rows[i]] = data[i] * x[cols[i]];
}

(b) COO SpMV
```


(c) DIA SpMV

Indices $\begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 1 & 2 \\ 1 & 3 & * \end{bmatrix}$ data $\begin{bmatrix} 1 & 5 & * \\ 2 & 6 & * \\ 8 & 3 & 7 \end{bmatrix}$

9 4

```
for(n = 0; n <max_ncols; n++)
{
    for(i = 0; i <num_rows; i++)
    y[i] =
    data[n*num_rows+i] *
        x[indices[n*num_rows+i]];
}
```

(d) ELL SpMV

Motivation

- Sparse solvers mainly use ONE storage format CSR
 - Hypre (LLNL), PETSc (ANL), Trilinos (SNL)

Low Performance

High Performance High Productivity

- Libraries provide complicated interfaces to users
 - MKL (Intel), OSKI (UCB), SpBLAS (UTK)

Low Productivity

Motivation cont.

Observation 1: The optimal formats are diverse for sparse matrices from different application areas.

Observation 2: Different formats are needed in different stages of one application during runtime.

Algebraic Multigrid (AMG) Solver

Performance Gap: 10x!

Application-Architecture Aware Auto-tuner Design

Extract parameter values of the input matrix

Predict the optimal algo. & impl. based on model **Algorithm** Data Structure Architecture

Predict

Model

Extract

Features

Online

Optimal

Algo. & Impl.

Application

SMAT Framework

SMAT API

Intel MKL

mkl_xcsrgemv mkl_xdiagemv mkl_xbsrgemv mkl_xcscmv mkl_xcoogemv mkl_xskymv

SMAT

Matrix Feature Parameters

Generally:

- ◆ Diagonal Matrix ↔ DIA Format
- ◆ "Slim" Matrix ↔ ELL Format
- ◆ "Fat" Matrix ↔ CSR Format
- ◆ Power-Law Matrix ↔ COO Format

Parameter		Meaning	Formula	DIA	ELL	CSR	coo
Matrix Dimension M		the number of rows	-	\checkmark	\checkmark	\checkmark	
Matrix Dimension	N	the number of columns -			\checkmark		
Diagonal Situation	Ndiags	the number of diagonals	-	1			
Diagonal Situation	NTdiags_ratio	the ratio of "true" diagonals to $NT diags_ratio = \frac{number\ of\ "true\ diagonals\ NT\ diags_ratio}{Ndiags}$		1			
		total diagonals	2146498				
	NNZ	the number of nonzeros	-		\checkmark	\checkmark	
Nonzero Distribution	aver_RD				\checkmark	\checkmark	
Tronzero Disaroution	max_RD	the maximum number of	$max_RD = max_1^M \{number\ of\ nonzeros\ per\ row\}$		+		
		nonzeros per row					
	var_RD	the variation of the number of	$var_RD = \frac{\sum_{1}^{M} row_degree - aver_RD ^2}{M}$			\leftarrow	
		nonzeros per row	1/1			•	
Nonzero Ratio	ER_DIA	the ratio of nonzeros in DIA da-	$ER_DIA = \frac{NNZ}{N \operatorname{diags} \times M}$	1			
Nonzero Katio		ta structure	11 dedg 5 \ 191				
	ER_ELL	the ratio of nonzeros in ELL da-	$ER.ELL = \frac{N.N.Z}{max_RD \times M}$		1		
		ta structure	mounted V III				
Power-Law	R	a factor of power-law distribu-	$P(k) \sim k^{-R}$				[1, 4]
		tion					

[&]quot; $\sqrt{\ }$ " shows the parameter is useful for all formats.

[&]quot;↑/↓" indicates the larger (smaller) the parameter value is, the format shows more benefit.

Feature Extraction Process

- Divide the matrix set based on the optimal storage format, and measure SpMV performance on them
- Draw the value distribution graph to each parameter, and find the regulations.

Perf. Beneficial values

Matrix Partition	DIA_best	ELL_best	CSR_best	COO_best
Size of Sub-set	206	169	1496	507

SMAT—Choosing Optimal Implementation

Scoreboard Strategy

- Choose typical matrix set to test each algo. and impl.
- Record the performance value on scoreboard
- TLB size
 cache size
 register size
 prefetech
 SIMDization
 branch
 threading policy

 Example

 Example

 Example

 Example

 Example

 Measure

 SMAT

 Architecture
 parameters

 Search
 (OSKI etc.)

 Optimal Kernel

 Optimization

 Optimization

 Feature

 Search

 Optimization

 Optimization

 Optimization

 Optimization

 Application

 A

The optimal impl. for each algo. are recorded in index table

SMAT—Data Mining

- Belong to data mining problems
 - Classification problem
 - Target Attribute: "Best_format"

$$f(\overrightarrow{x_1}, \overrightarrow{x_2}, \cdots, \overrightarrow{x_n}, \overrightarrow{TH}) \rightarrow C_n(DIA, ELL, CSR, COO)$$

 $\overrightarrow{x_i}$: value of each record, \overrightarrow{TH} : threshold of each parameter, $C_n(DIA, ELL, CSR, COO)$: one of the four formats.

- Build model
 - Use ruleset to represent model
 - Add rule confidence

SMAT—Data Mining

SMAT -- Online Procedure

Platform and Matrix Set

Platforms:

- Intel Xeon X5680
- AMD Opteron 6168
- Matrix set: The University of Florida Sparse Matrix Collection
 - Learning Set: 2055
 - Testing Set: 331, represented by 16 matrices

Representative Matrices

No.	Graph	Name	Dimensions	Nonzeros (NNZ/M)	Application area
1		parystk02	14K×14K	491K (35)	duplicate materials problem
2		_ Dia	agon	al M	at. example
3		cryg10000	1UK×1UK	(5)	materials problem
4		apache1	81K×81K	311K (4)	structural problem
5	1	bfly	49K×49K	98K (2)	undirected graph sequence
6		whita _dual 66	Slim"	' Ma	/3D problem
7		ch7-9-b3	106K×18K	(4)	combinatorial problem
8		shar_te2-b2	200K×17K	601K (3)	combinatorial problem
9	1	pkustk14	152K×152K	15M (98)	structural problem
10	Z.	crankse ₍ ('Fat"	Mat	uctural problem
11	No.	Ga3As3H12	61K×61K	(97)	meoretical/quantum chemistry
12		HV15R	2M×2M	283M (140)	computational fluid dynamics
13		europe_osm	51 M×51M	108M (2)	undirected graph
14	A	Pow	ver-L	aw I	Mat. problem
15	N. C.	dictionary28	53K×53K	178K (3)	undirected graph
16	X	roadNet-CA	2M×2M	6M (3)	undirected graph

Performance

- SMAT Auto-tuning
- Optimized SpMV kernels
- Assembling opt.
 - Loop unrolling
 - SIMDization
- Multi-threading on task level
 - Allocate a sub-block to each thread
 - Independently choose the optimal algo. & impl. on each sub-block

Performance

Compared with MKL

~3X Speedup on average

Analysis on Accuracy and Overhead

- Analyze the prediction procedure and accuracy on 16 representative matrices
- Overhead
 - When the model predicts right, small overhead (about 2 CSR-SpMV)
 - Wrong predict, execute & measure mudule used, the overhead is more than 10 CSR-SpMV (OSKI:40+; clSpMV: ~10)
 - When a matrix is used hundreds of times in an iterative method, the overhead can be overlapped.

Madada	Madein Madein Madein Astrol			- M-J-I	CMAT Ol		
Matrix	Matrix	Model	Execution	SMAT	Actual	Model	SMAT Overhead
Number	Name	Prediction Format	Execution	Prediction Format	Best Format	Accuracy	(times of CSR-SpMV)
1	pcrystk02	DIA	-	DIA	DIA	R	2.28
2	denormal	DIA	-	DIA	DIA	R	2.09
3	cryg10000	DIA	-	DIA	DIA	R	2.11
4	apache 1	DIA	-	DIA	DIA	R	1.94
5	bfly	ELL	-	ELL	ELL	R	1.18
6	whitaker3_dual	ELL	-	ELL	ELL	R	4.89
7	ch7-9-b3	ELL	-	ELL	ELL	R	2.25
8	shar_te2-b2	ELL	-	ELL	ELL	R	2.24
9	pkustk14	confidence < TH	CSR+COO	CSR	CSR	W	16.39
10	crankseg_2	confidence < TH	CSR+COO	CSR	CSR	W	16.28
11	Ga3As3H12	confidence < TH	CSR+COO	CSR	CSR	W	16.2
12	HV15R	confidence < TH	CSR+COO	CSR	CSR	W	15.43
13	europe_osm	COO	-	COO	COO	R	2.3
14	D6-6	COO	-	COO	coo	R	5.79
15	dictionary28	COO	-	COO	coo	R	2.05
16	roadNet-CA	COO	-	COO	COO	R	2.38
(41) 22 1 (6)	13722 A D	1 1 4 1 337 1		451			

"R" and "W" represent Right and Wrong prediction respectively.

Application Usability— Applied to Numerical Solver

Algebraic Multi-grid Algorithm

- An iterative algo. to solve linear equations Au=f, where A is sparse matrix, u, f are dense vectors
- As a pre-conditioner applied in applications such as laser fusion and climate modeling
- SpMV the critical operation of AMG, takes 90% execution time.

Coarsen	Rows	Hypre AMG	SMAT AMG	Speedup
cljp_7pt_50	125k	3034	2487	1.22
rugeL_9pt_500	250k	388	300	1.29

AMG Execution Process

- Relax is relaxation algorithm, such as Jacobi、G-S iterative methods
- A, P are sparse matrices
- U, f, e are dense vectors

SMAT Many-core

NVIDIA K20

Xeon Phi

Accuracy

• For 289 testing matrices: 89%(single), 95%(double)

SMAT Summary

- Develop auto-tuning method
 - Design application-architecture aware SpMV auto-tuner.
 - Develop auto-tuning method to algorithm level
- Introduce data mining to auto-tuning method
 - Reinforce its usability and extensibility
- API Easy-to-use
 - Unify the interface
- ◆Increase SpMV performance using SMAT
- Apply SMAT to AMG, and extend it to many-core architecture

High Performance Computational Software Development

Future Work

- Extend storage formats
- Combine other autotuners

Thank You!

Question?

SMAT: An Input Adaptive Auto-Tuner for Sparse Matrix-Vector Multiplication. <u>Jiajia Li</u>, Guangming Tan, Mingyu Chen, Ninghui Sun

