

SEMICONDUCTOR TECHNICAL DATA

KIA6278P/S/F BIPOLAR LINEAR INTEGRATED CIRCUIT

1W SINGLE AUDIO POWER AMPLIFIER

KIA6278P/S/F are suitable for the audio power amplifier of portable radio cassette.

FEATURES

- Very few external parts counts (only three capacitor)
- Low Quiescent Current $: I_{\text{CCQ}} = 6.6 \text{mA} (\text{Typ.}) \ (V_{\text{CC}} = 6V)$
- Wide operationg supply voltage range. $:V_{CC}=2\sim10V$
- · Output Power
 - $:P_{OUT}=720 \text{mW}(\text{Typ.}) \text{ (V}_{CC}=6 \text{V, } R_L=4 \Omega, \text{ THD}=10\%)$
- Voltage Gain : G_V=40dB(Typ.)

MAXIMUM RATINGS (Ta=25℃)

CHARACTERIS	SYMBOL	RATING	UNIT		
Supply Voltage	V_{CC}	14	V		
Power Dissipation (Peakage Limitation) (Note)	KIA6278P		900	mW	
	KIA6278S	P_{D}	950		
	KIA6278F		400		
Operating Temperature	T_{opr}	-25~75	$^{\circ}$		
Storage Temperature	T_{stg}	T _{stg} -55~150			

Note: Derated above Ta=25°C in the proportion of 7.2mW/°C.

KIA6278P/S/F

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, Vcc=6V, f=1kHz, Rg=600 Ω , R_L=4 Ω , Ta=25 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT		
Quiescent Current	$ m I_{CCQ}$	-	V_{CC} =3V, V_{IN} =0V	-	5.5	-			
			$V_{\text{CC}}=6V$, $V_{\text{IN}}=0V$ - 6.6		6.6	15	mA		
			$V_{CC}=9V$, $V_{IN}=0V$	-	7.5	18			
Output Power	P _{OUT}	-	V_{CC} =3V, R_L =4 Ω , THD=10% - 120		120	_			
			V_{CC} =6V, R_L =4 Ω , THD=10%	720	-				
			V_{CC} =6V, R_L =8 Ω , THD=10%	300	450	60 – mW			
			V_{CC} =9V, R_L =8 Ω , THD=10%	800	1100	-			
			V_{CC} =9V, R_L =16 Ω , THD=10%	610	-				
Total Harmonic Distortion	THD	-	P _{OUT} =100mW	-	0.3	1.0	%		
Voltage Gain	Gv	-	$V_{\rm IN}$ =0.5m $V_{\rm rms}$	37	40	43	dB		
Output Noise Voltage	V_{NO}	-	Rg=10kΩ, BW=20Hz~20kHz	-	0.2	0.5	mV_{rms}		
Ripple Rejection Ratio	R.R.	-	$\begin{array}{c} f_{RIP}\text{=}100\text{Hz}, \ V_{RIP}\text{=}0.3V_{rms} \\ Without \ C_{RIP} \end{array}$	-	25	-	dB		
Input Resistance	R_{IN}	_		-	27	_	kΩ		

TYPICAL VOLTAGE OF EACH TERMINAL (KIA6278S)

(V_{CC} =6V, Ta=25 $^{\circ}$ C, by test circuit)

(unit:V)

TERMINAL NO.	1	2	3	4	5	6	7	8	9
DC Voltage	0	2.40	0.62	0.64	0	0	2.61	NC	6.0

KIA6278P/S/F

TEST CIRCUIT & BLOCK DIAGRAM

Note: The V_{CC} of KIA6278S is pin \mathfrak{G} .

The V_{CC} of KIA6278P/F are pin \otimes .