- 1. Compute the exact area of the region bounded by the given curves.
 - (a) the x-axis and $y = 2x x^2$
 - (b) the y-axis and $x = y^2 y^3$
 - (c) $y^2 = x$ and x = 4
 - (d) $y = 2x x^2$ and y = -3
 - (e) $y = x^2$ and y = x
 - (f) $x = 3y y^2$ and x + y = 3
 - (g) $y = x^4 2x^2$ and $y = 2x^2$
 - (h) $\sqrt{x} + \sqrt{y} = 1$ and the coordinate axes
- 2. Find the area of the region in the first quadrant bounded by the y-axis, the curve $y = \sin x$, and the curve $y = \cos x$.
- 3. Compute the volume of the solid generated when the area bounded by the given curves and lines is rotated about the x-axis.
 - (a) x + y = 2, x = 0, y = 0
 - (b) $y = x x^2$, y = 0
 - (c) $y = 3x x^2$, y = x
 - (d) y = x, y = 1, x = 0
 - (e) $y = x^2$, y = 4
- 4. Evaluate the following integrals.
 - (a) $\int \frac{dx}{3x+5}$
 - (b) $\int \frac{\sin x}{2 + \cos x} dx$
 - (c) $\int \frac{x \, dx}{(3x^2+4)^3}$
 - (d) $\int \frac{x \, dx}{4x^2 + 1}$
 - (e) $\int e^{2x} dx$
 - (f) $\int \sin x \, e^{\cos x} \, dx$
 - (g) $\int xe^{-x^2} dx$
 - (h) $\int \frac{\cos x}{1 + \sin x} \, dx$