Dual Operational Amplifier

Features

Power Supply Range:

- Signal Supply: 3V to 20V

- Dual Supply : ± 1.5 V to ± 10 V

· Large DC Voltage Gain: 100dB

Large Output Swing: 0V ~ V_{DD}- 1.5V

· Bandwidth(unity gain): 2MHz

 Internally Frequency Compensated for Unity Gain

Low Input Offset Voltage: 1mV

Lead Free Available (RoHS Compliant)

Applications

- Amplifiers
- Filters
- Analog Circuit

General Description

The JRC4558 consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply up to 20 volts. Operation from dual power supplies is also possible and the power supply current drain is essentially independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional OP amplifier circuits which can be more easily implemented in single power supply systems. (For example, the JRC4558 can be directly operated from the standard +5V power supply voltage which is normally used in digital systems).

1

Block Diagram

Absolute Maximum Ratings (T_A = 25°C)

Symbol	Parameter	Rating	Unit
V_{DD}	Supply Voltage	20	V
V_{ID}	Differential Input Voltage	20	V
V _I	Input Voltage	-0.3V to +20V	V
P_{D}	Power Dissipation	500	mW
T _A	Operating Free-air Temperature Range	0 to 70	°C
T _{STG}	Storage Temperature Range	-40 to +150	°C

Electrical Characteristics $(V_{DD} = \pm 10V, T_A = 25^{\circ}C)$

		T 10 IV	JRC4558			
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input Offset Voltage	$R_s \le 10k\Omega$		1	6	mV
I _{IO}	Input Offset Current			5	200	nA
I _{BIAS}	Input Bias Current			25	500	nA
R_{IN}	Input Resistance		0.3	5		$M\Omega$
A_{V}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	100		dB
V_{OM1}	Maximum Output Voltage Swing 1	R _L ≥10kΩ	± 9	± 9.5		V
V_{OM2}	Maximum Output Voltage Swing 2	$R_L \ge 2k\Omega$	± 8.5	± 9.0		V
V _{ICM}	Input Common-Mode Voltage Range		±9	± 9.5		V
CMRR	Common-Mode Rejection Ratio	$R_s \le 10k\Omega$		90		dB
SVRR	Supply Voltage Rejection Ratio	$\begin{split} R_{S} &\leq 10k\Omega, V_{\text{P-P}} {=} 100 \text{mV}, \\ f_{\text{IN}} &= 100 \text{HZ} \end{split}$	60	65		dB
I_{cc}	Operating Current			3.7	6	mA
V _{NI}	Equivalent Input Noise Voltage	RIAA, $R_s = 1k\Omega$,30kHz, LPF		1.4		μVrms
SR	Slew Rate			650		mV/μs
GBWP	Gain Bandwidth Product			2		MHz

Typical Characteristics

Open Loop Voltage Gain vs Frequency

Figure 1: Frequency (Hz)

Maximum Output Voltage Swing vs Frequency

Figure 2: Frequency (Hz)

Maximum Output Voltage Swing vs Load Resistance

Figure 3 : Load Resistance - $k\Omega$

Operating Current vs Temperature

Figure 4 : Temperature - °C

Typical Characteristics Cont.

Figure 5 : Temperature - °C

Input Offset Voltage vs Temperature 2 1.5 Input Offset Voltage - mV 1 0.5 0 -0.5 -1 -1.5 -2 <u></u>-50 -25 25 50 75 100

Figure 6: Temperature - °C

Input Bias Current vs Temperature

Figure 7 : Temperature - °C

Maximum Output Voltage Swing vs Operating Voltage

Figure 8 : Operating Voltage - V

Typical Characteristics Cont.

Figure 8 : Operating Voltage - V

Figure 9 : Time – μ s

Packaging Information

SOP-8-P pin (Reference JEDEC Registration MS-012)

Dim	Millim	neters	Inch	ies
Dilli	Min.	Max.	Min.	Max.
Α	1.35	1.75	0.053	0.069
A1	0	0.15	0	0.006
D	4.80	5.00	0.189	0.197
D1	3.00REF		0.118REF	
Е	3.80	4.00	0.150	0.157
E1	2.60REF		0.102REF	
Н	5.80	6.20	0.228	0.244
L	0.40	1.27	0.016	0.050
e1	0.33	0.51	0.013	0.020
e2	1.27BSC		0.50BSC	
φ1	8°		8°	

Packaging Information

TSSOP-8

Dim	Millimeters		Inc	hes	
Dim	Min.	Max.	Min.	Max.	
А		1.2		0.047	
A1	0.00	0.15	0.000	0.006	
A2	0.80	1.05	0.031	0.041	
b	0.19	0.30	0.007	0.012	
D	2.9	3.1	0.114	0.122	
е	0.65 BSC		0.026 BSC		
Е	6.40 BSC		0.252 BSC		
E1	4.30	4.50	0.169	0.177	
L	0.45	0.75	0.018	0.030	
L1	1.0	1.0 REF		0.039REF	
R	0.09		0.004		
R1	0.09		0.004		
S	0.2		0.008		
φ1	0°	8°	0°	8°	
φ2	12° REF 12° RE		REF		
ф3	12° REF 12° REF		REF		

Packaging Information

PDIP-8 pin (Reference JEDEC Registration MS-001)

Dim	Millin	neters	Incl	nes
Dilli	Min.	Max.	Min.	Max.
Α		5.33		0.210
A1	0.38		0.015	
A2	2.92	3.68	0.115	0.145
D	9.02	10.16	0.355	0.400
e1	2.54 BSC		0.100 BSC	
e2	0.36	0.56	0.014	0.022
e3	1.14	1.78	0.045	0.070
E	7.62 BSC		0.300	BSC
E1	6.10	7.11	0.240	0.280
E3		10.92		0.430
L	2.92	3.81	0.115	0.150
φ1	15° REF		15°	REF

Physical Specifications

Terminal Material	Solder-Plated Copper (Solder Material: 90/10 or 63/37 SnPb), 100%Sn
Lead Solderability	Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.

Reflow Condition (IR/Convection or VPR Reflow)

Classificatin Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate $(T_L \text{ to } T_P)$	3°C/second max.	3°C/second max.
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)	100°C 150°C 60-120 seconds	150°C 200°C 60-180 seconds
Time maintained above: - Temperature (T _L) - Time (t _L)	183°C 60-150 seconds	217°C 60-150 seconds
Peak/Classificatioon Temperature (Tp)	See table 1	See table 2
Time within 5°C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Notes: All temperatures refer to topside of the package .Measured on the body surface.