Mean Deviation: Mean deviation of a set of observations of a series is the arithmetic mean (Am) of all the deviations, (without their algebraic signs), taken from its contral value [mean (or) median (or) mode]. Mean deviation is the average of the modulus of the deviations of the observations in the series taken from mean or median or mode. Formula: I - Raw data: Mean deviation about mean = $\mathbb{Z}[X; -X]$ Mean deviation about median = [] Xi-median Mean deviation about mode = = [xi-mode] II. For frequency distribution Mean deviation about mean = $\mathbb{Z}[f_i | \hat{x}_i - \hat{x}]$ Mean deviation about median = \(\int \text{i} \| \timedian \) Mean deviation about mode = \(\subseteq \frac{1}{2} \) | \(\text{i} - mode | \) where N= Zf; Co officient of Mean deviation Co of Mean deviation = Mean deviation about A where A = Mean (or) Median (or) Mode.

Coefficient of Mean Variation Co off of Mean Variation = mean deviation about A X 100 (0r) = logy of mean deviation × 100. Problems: The marks obtained by 10 students in an examinations were as follows 70,65,68,70, 15,73,80,70,83,86. Find the mean deviation about the mean and 60-94 of variation. Variation. Mean deviation about mean = $\mathbb{Z}[X_i - X]$ where = 70+65+68+70+75+73+80+70+83+86 $=\frac{740}{10}=74.$ Mean deviation = $\frac{\sum |X_i - \overline{X}|}{D}$ $= \frac{4+9+6+4+1+1+6+4+9+12}{10}$ $=\frac{56}{10}=5.6$. Coeff of Variation = Mean deviation X100 5.6 X100 = 7.57%

						lata.	
	No a stude	onts	2	4 9	18 27	1 25 1	
				ey of "		$=\int_{N} x_{i}-\overline{x} ,$	$N = \frac{1}{2} \frac{1}{6} \times \frac{1}{2} \frac{1}{6} \times \frac{1}{2} \frac{1}{6} \times \frac{1}{6} = \frac{1}{6} \times \frac{1}{6$
	X	7	C.f	x f	x-x/	8 1x-x 16 94 36 36 0 50 56 6	
	Z	100	1200			224	
M	ean d	eviation	1200 = 1 100 about	mean =	Z 6 /x; -> = 6	$\frac{1}{100} = \frac{924}{100} = \frac{100}{100} = $	18.67%

ii) Mean deviation about median = If (X;-median) If , N=If median = Average of (N) th and (N+1) th item $= \underbrace{\frac{100}{9} + \frac{100}{9}}_{2} + \underbrace{\frac{100}{9}}_{100} + \underbrace{\frac{100}{9}}_{100} + \underbrace{\frac{12+12}{9}}_{2}$ mean deviation about median = $\leq 6 |x_i-12|$ Co espicient of variation = 200 x100 = 2.24 x100 = 18-67 /. 3. Calculate the mean deviation from the mean for the following data. 4-8 8-12 12-16 16-20 class interval 0-4 Frequency 60/0. : Assuming that the proquencies in each class are centered as its mid value. 8 |x-x| 1x-x/ Class interval xf 8 28.8 7-2 2 4 19.2 3.2 16 4-8 6.4 0-8 80 8-12 10 24.0 4.8 70 12-16 17.6. 8-8 36 96. 230 25 $=\frac{\mathbb{Z}f|x-\overline{x}|}{\mathbb{Z}f}$, Mean deviation

Standard deviation [or Root mean square deviation]. standard deviation is the positive square root of the average of squared deviations taken from withmetic mean. It is denoted by o (or) 5.D. (or) s.d. Formula: I - Raw data: Discet Method: $\sigma = \sqrt{\frac{z(x-\overline{x})^2}{n}}$ Short sut Method: $\sigma = \sqrt{\frac{zd^2}{n} - \left(\frac{zd}{n}\right)^2}$, where d=x-A and A = Assumed mean. n = total number II. Discrete frequency distribution . of observation Direct Method: $\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{N}}, \ N = \sum f$ Short cut Method: $\sigma = \sqrt{\frac{z d^2}{N} - \left(\frac{z d}{N}\right)^2}, N = z d$ Step deviation method: To this method we divide the deviations by a common class interval and use the following formula for Computing standard deviation:

 $\sigma = \sqrt{\frac{z}{N}} \frac{d^2}{d^2} \left(\frac{z}{N} \frac{d}{N} \right)^2 \times i$ where i = common class interval $d = \frac{x - A}{i}$, A = assumed mean.III - Continuory The standard deviation of a continuous series can be calculated by any one of the methods discussed for discrete prequency distribution. However, in practice only step deviation method is mostly used. $\sigma = \sqrt{\frac{26d^2}{N} - \left(\frac{26d}{N}\right)^2} \times i$ where i = class interval (or the common factor in Care the class intervals are $d = \frac{m-A}{i}$, m is mid value

A is Assumed mean. of standard deviation Co-egg of SD = = = = Coeff of variations Co-en of Variations (C.V) = = = x 100 = coeff of SD X 100.

Problems: 1. Find the standard deviation of 16, 13, 17, 22.
$\frac{5dn!}{x} = \frac{16 + 13 + 17 + 22}{4} = 17$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
13 17 22 5 25
$\sqrt{\frac{4^3}{12^3}} = 3.24$
2. Find the s. d. of the following data, 48, 43, 65, 57, 31, 60, 37, 48, 59, 78.
$\frac{500}{2} \frac{\text{Cet}}{A} = \frac{50}{4}$
$\begin{bmatrix} 48 \\ 43 \\ 65 \\ 15 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$5D = \sigma = \sqrt{\frac{2}{N}} \frac{d^{2}}{\sqrt{\frac{2}{N}}} - \left(\frac{2}{N} \frac{d}{\sqrt{\frac{2}{N}}}\right)^{2}$$

$$= \sqrt{\frac{92}{50}} - \left(\frac{-10}{50}\right)^{2}$$

$$= 1.342.$$

$$(o-94) of variation = \frac{\sigma}{\chi} \times 100 = \frac{1.342}{12.8} \times 100$$

$$= 10.4.$$

$$4. Daily Sales (recorded in rupees) of a retail shop are given between the shop are given between the sales in Rs.

$$(\chi-m) \frac{102}{\sqrt{\frac{2}{N}}} = \frac{102}{\sqrt{\frac{2}{N}}} = \frac{100}{\sqrt{\frac{2}{N}}} = \frac$$$$

	113000					-
	No of days	6	$d = \frac{x - 114}{4}$	fd	do	6 d2
	102	3	-3	-9	19	97
199	106	9	-2	-18	14	36
	110	25	-1	-25	11	25
	114	35	0	0	101	17
	118	17	1	17	1	40
	122	10	2	30	4	9
	126		3			
	2	100		-12		154
		$= 11$ $= \sqrt{2}$ $= \sqrt{-1}$ $= \sqrt{-1}$ $= 4.99$	$A + \frac{z_{fd}}{N} \times 4 + \frac{-12}{100} \times 4$ 13.52 $\frac{z_{fd}}{N} - \frac{z_{fd}}{N} = \frac{z_{fd}}{N} \times $	xi, n		
	00 9		× XI	113.5	9 2100	
				= 4.	35 %	

marks	10-20	0 90-30	30-40 4		0 60-70 70-8
No of students	5	12	15 9	10	4 2
soln: let	A= 45	7.			
Marks	f	midvalue (m)	$d = \frac{m-45}{10}$	fd -15	fd ² 45
10-20	5	15	-3 -9	-24	48
20-30	12	25	-1	-15	15
30-40	15	35 45	0	0	0
40-50	20	55	1	10	10
50-60	10	65	2	8	18
60-70	4 2	75	3		152
70-80	68			-30	102
2	-		19		
4	T =	Z fd? ((Ibd) X	, î	N=Z
		59 - [-3 68	0)2		
	= 1/-	(-	-) × /0		

Karl Pearson's co-egg of correlation Karl Pearson [1857-1936] was a great statistician. He gave the following mathematical formula for measuring the magnitude of linear co-est between two variables. To X and Y are two variables, then the correlation co-eff & (x, y) between them is given by COV [X,Y] $n_{xy} = n = \int (X, Y) = \int =$ = COV [x, y] Von X Van Y where COV [X, Y] = E[XY] - E[X] E[Y] $= \frac{Z \times y}{n} - \left(\frac{Z \times y}{n}\right) \left(\frac{Z \cdot y}{n}\right)$ $\sigma_{x} = Var(x) = \frac{zx^{2}}{n} - \left(\frac{zx}{n}\right)^{2}$ $\sigma_y^2 = Var[y] = \frac{zy^2}{\rho} - \left(\frac{zy}{\rho}\right)^2$ Another formula: $\int (x_i y) = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$ $\sqrt{z(x_i-\bar{x})^2}\sqrt{z(y_i-\bar{y})^2}$

Rank Correlation: 7 (xi, yi), i=1,2,..., be the ranks of the individuals in two characteristics A and B respectively, then the rank correlation Co efficients is given by. $97 = 1 - \frac{6}{n(n^2-1)} \stackrel{?}{=} d_i^2$ where di = x;-y;, diperence between ranks. n = no of items This formula is called spearman's formula for the rank correlation to-eff. Repeated Rank correlation: $\Re \left[X,Y\right] = 1 - \frac{6}{n(6^2)} \left[\sum_{i=1}^{n} d_i^2 + \frac{m(m^2)}{12}\right]$ $+\frac{m(m^2-1)}{12}+\cdots$ where m is the number of times an item (Rank) is repeated.

(alculate the co-ey of woveletion between X and Y for the following data.
X: 1 9 3 4 5 6 7 8 9 Y: 9 8 10 12 11 13 14 16 15
3 do: Method-1: X
$Cov[X,Y] = \frac{ZXY}{n} - \frac{ZX}{n} \frac{ZY}{n} = \frac{597}{9} - \left(\frac{45}{9}\right) \left(\frac{108}{9}\right) = 6.3333$ $\sigma_X^2 = \frac{ZX^2}{n} - \left(\frac{ZX}{n}\right)^2 = \frac{985}{9} - \left(\frac{45}{9}\right)^2 = 6.6667$
$\sigma_{\chi} = 2.5820$ $\sigma_{\chi}^{2} = \frac{\chi y^{2}}{n} - \left(\frac{\chi y}{n}\right)^{2} = \frac{1356}{9} - \left(\frac{108}{9}\right)^{2} = 6.6667$

E	mark	rank 78	co vidali	the following and so ton co-eff 83 60 68 62	2 90 6	65 39
Soln	X 78 36 98 95 75 90 65 39	Y 84 51 91 60 68 62 86 58 53 47	Rank 8 X X i 4 8 1 9 5 3 2 10 6 7	Renk of y y; 3 9 1 6 4 5 2 7 8 10	di=xi-yi 1 -1 0 3 1 -2 0 3 -3 -3	di 1 0 9 1 4 0 9 9 9 9 38
		=	$1 - \frac{6}{n(n^2-1)}$ $1 - \frac{6}{10(10^2-1)}$ 0.769	Zd; 2 -(38)		

	n to	te gi	ven data	81 71 6 71 71 3	3 63 4	9 38
Soln:	X 90 2 8 2 8 1 1 6 3 3 9 8	Y 75 72 71 71 71 50 432 32	Rank of X Xi 3 3 3 5 6 7-5 7-9 10	Rank of Y y; 1 2 4.5 4.5 4.5 7 8 9.5 9.5	di=xi-yi 0 1-5 -1.5 0.5 0.5 -0.5 -0.5	d; 9 0 1 2.25 2.25 2.25 2.25 2.25 0.25 0.25 0.25
n	(219)	=/-	,	$-di^{2} + m(m^{2} - 12)$ -12 -13 -13 -13		

Measures of Skewness, Kurtosis and Moments Skowness Averages determine the central point of distribution, but they give no information about the shape of the frequency work. Meeasures of dispersion give some ideas of the spread of a variable about its overage. Bothe these measures do not study whether a distribution is symmetrical or not. Skewness is a measure to study this aspect of a statistical distribution. To a distribution is not symmetrical, We say that it is showed. In a Symmetrical distribution, the values of the variable equi-distant from their near have equal proquencies. In a perjectly symmetrical distribution mean, median and mode coincide. If this is not the case, the distribution is said to be specied.

when the distribution is showed to the right, mean is greater than the mode. When the distribution is skewed to the left, mean is less than the mode. The measure of showness based on these is due to pearson and is salled pearson's Coefficient of skewness. Pearson's w-ey of stewness = Mean-Mode 5D. When made is not well defined, Pearson's well of strenoness = 3 (mean - median) Also in a symonetrical distribution, the quartiles Q, and B3 are equidistant from their median. To it is not the case, then we say that the distribution is skewed. The measure of skewness based on this is due to Bowley. 83+8,-2M Note: When the distribution is showed to the right mean > mode. Therefore, from pearson's formula we see that the to-eff of skewness is positive. My when the distribution is skewed to the left, the skewness is negative.

1-	Calcular	te le	arison s	measu	re of	skeu	mejs	for to	te pellowing
	dota	1 -	7 8	9 1	0 11	12	13	14	
	freque		2 11	36 6		30	29	2	
	100								
Soln:	X	1 6	d	fd	fd2				
23	7	2	-3	-6	18				
	8	11	-9	-22	44			· · d:	$= \chi - 10.$
	9	36	-1	-36	36				
	10	64	0	0.	0				
13/19	11	39	1	39	39				
3 5 3	12	30	2	60	120				
10 600	13	22	3	66	198				
- 138	14	2	4	8	32.				
		906		109	487	1			
-	ان بن	a di	screte	dat					
4.	in m	Lucque	ency a	groespone	ls to > C=10	7.			
Masi	anum	0 %	Mode =	= 10.					
	,,								
Beer a	let	A=10,	d=x-1	< fd				. / - at	two
		mean	= A+	- If		F: A	uso by	direct that	$=\frac{3169}{306}=10.53$
393			= 10 +	109			mean	= 36	306 = 10.93
			= (0.5	- 4/1)	0				
1386	SD	= 0 = V	2 fa -	(t)					
		= 1	487	(109) 2	=1-44				
138 92 13	DE PROPERTY	V		0	Charles To			La Contraction of the last	-

Scanned by CamScanner

Pewyon's co.			Mean-M 5D 10.53-1 1.44 0.3680	0	the distribution.
class interval	8.	19-19	20-29	30-39	40-49
9-5-19-5	x' f -5 8 7-5 15 4-5 93 4-5 16 7-7	d -2 -1 0 1	16 -16 -15 0 16 18	fd ² 32 15 0 16 36.	$\int_{0}^{\infty} d = \frac{x - 94.3}{10.}$
	$= A + \frac{\sum_{i=1}^{6} x_{i}^{2}}{x_{i}^{2}}$ $= 24.92^{\frac{6}{3}}$ $= l + \frac{l}{3lm^{\frac{1}{3}}}$	3 X10 25			
	$= 19.5 + \frac{9}{96}$	3-15	x10 =	21	

	= /	(99) - (- 71)	$\frac{\left(\frac{3}{7}\right)^2}{\left(\frac{3}{7}\right)^2} \times i \qquad \left[: N=26\right]$
	=11.8	8008.	/
Pearson's	(D-RA	or skew	oness = Mean-Mode
vento, -			2. 2005-21
			= 24.925-21 11.9008
			= 0.332
(3) Calculate sellowing	the dala	Bowley's	neasure of skewness for the
Payment of			140-160 160-180 180-200 200-200 200-240 240-260
Commission	100-120	0 130-140	0.2
No of salesmen	4	10	16 29 52 80 42 23
1 100 - CA SCIENT			
15 g suestion			960-980 980-300
soln: class	+	cf	
soln: class	f 4	C f	960-980 980-300 17 7.
soln: class			
soln: class 100-120 120-140	4	4	
50/n: class 100-120 120-140 140-160	10 16	4	
50/n: class 100-120 120-140 140-160 160-180	10	4 14 30	
50/n: class 100-120 120-140 140-160 160-180 180-200	4 10 16 29	4 14 30 59	
50/n: class 100-120 120-140 140-160 160-180 180-200 200-220	4 10 16 29 52	4 14 30 59 [1]	
50/n: class 100-120 120-140 140-160 160-180 180-200 200-220	4 10 16 29 52 80	4 14 30 59 [1]	
50/n: Class 100-120 120-140 140-160 160-180 180-200 200-220 220-240 240-260	4 10 16 29 52 80 42	4 14 30 59 (1) 191 933	
50/n: Class 100-120 120-140 140-160 160-180 180-200 200-220 220-240 240-260 260-280	4 10 16 29 52 80 42 23	4 14 30 59 111 191 933 956	
50/n: Class 100-120 120-140 140-160 160-180 180-200 200-220 220-240 240-260	4 10 16 29 52 80 43 17	4 14 30 59 11 191 933 956 973	

in , where N= Eq. $\frac{N}{4} = \frac{980}{4} = 70.$ Q1 tres in the group 180-200, L= 180, C= 59, h=90, 6=59 $\therefore Q_1 = L + \left(\frac{4}{4} - C\right) \times h = 180 + \frac{70 - 59}{52} \times 20 = 184.23$ To find ag (medias): IN $\frac{N}{2} = \frac{380}{4} = 140$ Do lies in the group 200-220, L=200, C=117, h=20, f=80 $-1 - Q_2 = L + \left(\frac{N}{2} - C\right) \times h = 900 + \frac{140 - 111}{80} \times 20 = 907.25$ Topind 23: $\frac{7}{4} = \frac{31980}{4} = 910$ Az lies in the group 230-240; L=220, C= 191, h=20, 6=42 $\therefore Q_3 = L + \left(\frac{3N}{4}\right) \chi h = 220 + \frac{2(0 - 191)}{42} \chi 90 = 229.05.$ Bowley's co-eff of shewness = Q3 +Q1-2M Q3-Q, = 229.05 + 184.93 - (2x207.25) 229.05 - 184.23 = -0.03. Note. There is a very small negative co-eff of showness : The distribution is almost symmetrical.