Упражнение 1. Всякий ли элемент в S_3 является простым циклом? В S_4 ?

Решение. В S_3 — да, что проверяется перебором:

Перестановка $a_1 \dots a_k$			
$\frac{1}{\binom{1}{1}}$	2 2	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	Ø
$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 3	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	2,3
$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	1, 2
1	2	3	1, 2, 3
$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	3 2	1)	1, 2, 3
$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	1 2	2)	
$\sqrt{3}$	2	1)	1, 2, 3

В S_4 — нет, т.к. $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ нельзя представить в виде простого цикла — на все элементы она действует не тождественно ($\forall x \ g(x) \neq x$), следовательно все элементы $\{1 \dots n\}$ в этом цикле. Пусть $1 = a_1$, тогда $a_2 = 2$, тогда a_4 это либо 3, либо 4, но ни для одного из них не верно g(x) = 1.

Упражнение 2. Рассмотрим все $g \in S_4$, которые являются простыми циклами. Какие значения может принимать порядок g?

Решение.

M3*37y2019 16.10.2021

 $^{^{1}}$ Так можно говорить, т.к. $a_{1}\dots a_{k}$ можно циклически сдвинуть без потери общности.

Порядок	Пример перестановки с таким порядком
1	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$
2	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$
3	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$
4	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$

Утверждение. Элементов с порядком > 4 нет.

Доказательство. Рассмотрим a_i . Оно отображается в себя же за максимум последовательных 4 шага g, т.к. так работает цикл.

Ответ:
$$\{1, 2, 3, 4\}$$

Упражнение 3. Показать, что любой элемент $\rho \in S_4$ представим в виде произведения независимых простых циклов:

$$\rho = g_1 \cdots g_k$$

Решение. Предположим обратное, что есть $\rho \in S_4$, не представимый искомым образом. Пусть $a_1 = 1, a_2 = \rho(a_1)$.

Если $a_2=a_1$, то ρ действует тождественно на первый элемент и тогда группа G всех таких ρ изоморфна S_3 , а все элементы S_3 — простые циклы, следовательно ρ есть простой цикл.

Рассмотрим случай $a_1 \neq a_2$. Пусть $a_3 = \rho(a_2)$. $a_3 \neq a_2$, т.к. иначе ρ не биективно. Если $a_3 = a_1$, то ρ действует как простой цикл длины 2 на элементы $\{a_1, a_2\}$. Группа всех таких ρ изоморфна S_2 , т.к. осталось 2 не использованных элемента, а все элементы S_2 — простые циклы (перебор).

Рассмотрим случай $a_3 \neq a_1$. Пусть $a_4 = \rho(a_3)$. $a_4 \neq a_3$ и $a_4 \neq a_2$ по соображениям выше. Если $a_4 = a_1$, то ρ — цикл длины $a_4 = a_1$, то $a_4 = a_1$. По соображениям выше $a_4 = a_1$, то $a_4 = a_1$, то $a_4 = a_1$, то $a_4 = a_1$. По соображениям выше $a_4 = a_1$, то $a_4 = a_1$, то $a_4 = a_1$, то $a_4 = a_1$.

Альтернативное доказательство: перебор.

ho	Представление ρ в виде произведения простых циклов
----	---

M3*37y2019 16.10.2021

$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} $	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$
2 1 3 4 1 2 3 4 2 1 4 3 1 2 3 4 2 3 1 4 1 2 3 4 2 3 4 1 1 2 3 4 2 4 1 3 1 2 3 4 2 4 3 1 1 2 3 4	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} $
3 1 2 4 1 2 3 4 3 2 1 4 1 2 3 4 3 2 4 1 1 2 3 4 3 4 2 1 1 2 3 4 3 4 2 1 1 2 3 4 4 1 2 3	$ \begin{pmatrix} 3 & 1 & 2 & 4 \\ 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} $

M3*37y2019 16.10.2021

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}$$

Упражнение 4. Показать, что если $g,h \in S_n$ — независимые простые циклы, то они коммутируют. Что можно сказать об обратном? (если g,h — коммутирующие простые циклы, то ...)

Решение.

Утверждение. Если $g(x) \neq x$, то h(g(x)) = g(x).

Доказательство. $g(g(x)) \neq g(x)$ по биективности g.

$$g(h(x)) = \begin{cases} g(x), & g(x) \neq x \\ h(x), & h(x) \neq x \\ x, & h(x) = g(x) = x \end{cases}$$
$$h(g(x)) = \begin{cases} g(x), & g(x) \neq x \\ h(x), & h(x) \neq x \\ x, & h(x) = g(x) = x \end{cases}$$

Итого gh = hg.

Если g,h — коммутирующие простые циклы, то они не обязательно независимы. Например, если g=h: gg=gg, но g зависит от себя (если это не тривиальный цикл). Также можно построить случай с $g\neq h$. Пусть дано g с $\{a_i\}_{i=1}^n$. Тогда пусть $h(a_i)=1$

$$\begin{cases} a_{i-1}, & i > 1 \\ a_n, & i = 1 \end{cases}$$

M3*37y2019 16.10.2021