МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №2

по дисциплине «Вычислительная математика»

Тема: Изучение понятия обусловленности вычислительной задачи

Студент гр. 7383	 Кирсанов А.Я
Преподаватель	 Сучков А.И.

Санкт-Петербург 2018

Цель работы.

Используя программы-функции BISECT и Round исследовать обусловленность задачи нахождения корня уравнения (1)

$$f(x) = 0 \tag{1}$$

для линейной функции (2)

$$f(x) = c(x - d). (2)$$

Сравнить полученные данные с теоретическими.

Основные теоретические положения.

Задачу называют хорошо обусловленной, если малым погрешностям входных данных отвечают малые погрешности решения, и плохо обусловленной, если возможны сильные изменения решения.

Пусть между абсолютными погрешностями входных данных X и решения Y установлено неравенство (3):

$$\Delta(y^*) \le \nu_{\Lambda} \Delta(x^*),\tag{3}$$

где y*u x* – приближенное решение и приближенные входные данные. Тогда величина v_{Λ} называется абсолютным числом обусловленности.

Если же установлено неравенство (4):

$$\delta(y^*) \le v_{\delta} \delta(x^*) \tag{4}$$

между относительными ошибками данных и решения, то величину v_s называют относительным числом обусловленности. Для плохо обусловленной задачи v>>1.

Если рассматривать задачу вычисления корня уравнения Y = f(X), то роль числа обусловленности будет играть величина (5):

$$v_{\Delta} = \frac{1}{\left| f'(x^0) \right|},\tag{5}$$

где x^0 - корень уравнения.

Постановка задачи.

- 1) Аналитически отделить корень уравнения (1), то есть найти отрезки [Left, Right], на которых функция удовлетворяет условиям применимости метода бисекции.
- 2) Составить подпрограмму вычисления корня функции (2) для параметров c и d, вводимых c клавиатуры. Предусмотреть округление вычисленных значений функции (2) c использованием программы-функции Round c точностью Delta, также вводимой c клавиатуры.
- 3) Составить головную программу, вычисляющую корень уравнения с заданной точностью Eps и содержащую обращение к подпрограмме f(x), программам-функциям BISECT, Round и представление результатов.
- 4) Провести вычисления по программе, варьируя значения параметров c (тангенс угла наклона прямой), Eps (точность вычисления корня) и Delta (точность задания исходных данных).
- 5) Проанализировать полученные результаты и обосновать выбор точности Eps вычисления корня. Сопоставить полученные теоретические результаты с экспериментальными данными.

Выполнение работы.

Листинги программы, используемых функций и заголовочного файла представлены в приложениях A, Б, В соответственно.

Результаты работы программы и сравнение их с теоретическими данными даны в табл. 1. В уравнении (2) выбрано d=2.99999, левая граница a=-5, правая граница b=5.

В качестве теоретических данных выступает число обусловленности $-\nu$, рассчитываемое по формуле (5).

Обусловленность задачи определяется выражением (3), в котором $\Delta(y^*) = \mathsf{Eps}$, а $\Delta(x^*) = \mathsf{Delta}$.

Таблица 1 – Тестирование программы

Значение Значение Eps с	Значение Delta	Экспериментальные данные		Теоретические данные	
		Значение	Обусловленность	ν_{Δ}	
		X	задачи		
0.01	20	0.1	2.988281	Плохо	0.05
0.1	1	0.1	2.968750	Хорошо	1
0.0001	10	0.1	2.998047	Плохо	0.1
0.1	0.1	0.01	2.968750	Хорошо	10
0.001	0.1	0.01	2.968750	Плохо	10
0.1	200	0.1	2.968750	Хорошо	0.005
0.1	0.5	0.1	2.968750	Хорошо	2
0.1	0.5	0.001	2.968750	Хорошо	2
0.0001	200	0.1	2.999878	Хорошо	0.005
0.0001	0.1	0.1	2.500000	Плохо	10

Выводы.

Проанализированы результаты, полученные программой (см. табл. 1) и произведен анализ обусловленности задачи с помощью выражения (3). Для анализа было использовано абсолютное число обусловленности v_{Δ} . По результатам анализа задача хорошо обусловлена, когда верно неравенство из выражения (3). Обнаружено, что если уравнение линейное (2), то на значение v_{Δ} влияет только коэффициент c.

ПРИЛОЖЕНИЕ А ЛИСТИНГ ПРОГРАММЫ

```
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "methods.h"
double delta,c,d;
int main()
{
     int k;
     float a1,b1,c1,d1,eps1,delta1;
     double a,b,eps,x;
     double f(double);
     printf("введите eps:");
     scanf("%f",&eps1);
     eps = eps1;
     printf("введите c:");
     scanf("%f",&c1);
     c = c1;
     printf("введите d:");
     scanf("%f",&d1);
     d = d1;
     printf("введите a:");
     scanf("%f",&a1);
     a = a1;
     printf("введите b:");
     scanf("%f",&b1);
     b = b1;
     printf("введите delta:");
     scanf("%f",&delta1);
     delta = delta1;
     x = bisect(a,b,eps,k);
     printf("x=%f k=%d\n",x,k);
}
```

ПРИЛОЖЕНИЕ Б

ИСПОЛЬЗУЕМЫЕ ФУНКЦИИ

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <iostream>
#include "METHODS.H"
using namespace std;
double Round (double X,double Delta)
{
     if (Delta<=1E-9) {puts("Неверное задание точности
округления\n");exit(1);}
     if (X>0.0) return (Delta*(long((X/Delta)+0.5)));
                   return (Delta*(long((X/Delta)-0.5)));
}
double F(double x)
{
     extern double c,d,delta;
     double s;
     long int S;
     s = c*(x - d);
     if( s/delta < 0 )</pre>
     S = s/delta - .5;
     else
     S = s/delta + .5;
     s = S*delta;
     s = Round( s,delta );
     return(s);
}
double BISECT(double Left,double Right,double Eps,int &N)
     double E = fabs(Eps)*2.0;
     double FLeft = F(Left);
     double FRight = F(Right);
     double X = (Left+Right)/2.0;
     double Y;
    if (FLeft*FRight>0.0) {puts("Неверное задание
интервала\n");exit(1);}
    if (Eps<=0.0) {puts("Неверное задание точности\n");exit(1);}
```

```
N=0;
    if (FLeft==0.0) return Left;
    if (FRight==0.0) return Right;
    while ((Right-Left)>=E)
    {
          X = 0.5*(Right + Left); /* вычисление середины отрезка
     */
          Y = F(X);
          if (Y == 0.0) return (X);
          if (Y*FLeft < 0.0)
                Right=X;
          else
          { Left=X; FLeft=Y; }
          N++;
    };
    return X;
}
```

ПРИЛОЖЕНИЕ В ЛИСТИНГ ЗАГОЛОВОЧНОГО ФАЙЛА

extern double F(double);	
/**************************************	**/
/* Функция F (X), задаваемая пользователем	*/
/**************************************	**/
double Round (double X,double Delta);	
/***********************	**/
/* Функция Round (X,Delta) , предназначена для округления	*/
/* X с точностью Delta	*/
/**************************************	**/
<pre>double BISECT(double Left,double Right,double Eps,int &N);</pre>	
/**************************************	**/
/* Функция BISECT предназначена для решения уравнения F(X)=0	*/
/* методом деления отрезка пополам. Использованы обозначения:	*/
/* Left - левый конец промежутка	*/
/* Right - правый конец промежутка	*/
/* Eps - погрешность вычисления корня уравнения;	*/
/* N - число итераций	*/
/*************************************	**/