

New Jersey's Policy

P.L. 2020. CC. (NJSA 13-99.122)

Generator subjected to the law:

- Produces 52 tons or more annually
- Within 25 road miles of recycling facility

Goal:

- Meet food waste reduction goal by 2030
- Free up space in landfills
- Repurpose emissions to energy

Food Waste Recycling & Food Waste-to-Energy Production Law

Data Source: Environmental Protection Agency

"The U.S. EPA Excess Food Opportunities Map supports nationwide diversion of excess food from landfills. The interactive map identifies and displays facility-specific information about potential generators and recipients of excess food in the industrial, commercial and institutional sectors and also provides estimates of excess food by generator type. The map displays the locations of nearly 1.2 million potential excess food generators."

2018 data from the EPA Excess Food Opportunities Map (last updated in April 2020) (9 Datasets)

correctional
facilities

educational institutions

food banks

healthcare facilities

hospitality industry

food manufacturing and processing facilities

food wholesale and retail

restaurants and food services

What is Excess Food?

"Food—whether processed, semi-processed, or raw—that is intended for human consumption but was removed from the supply chain and is managed in a variety of ways, such as donation to feed people, creation of animal feed, composting, anaerobic digestion, or sending to landfills or combustion facilities" (EPA530-R-20-001, Abstract).

Loading Data

```
import pandas as pd # data processing
import numpy as np # linear algebra
import matplotlib.pyplot as plt # plotting
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
#import pycountry
#from skimpy import skim
```

1. Loading Data

```
# Loading all EPA datasets NATIONWIDE

# EXCESS FOOD WASTE GENERATORS (1.2 million locations)

correctional = pd.read_excel("Correctional Facilities.xlsx", "Data")
  educational = pd.read_excel("EducationalInstitutions.xlsx", "Data")
  foodManufacturersProcessors = pd.read_excel("Food Manufacturers and Processors.xlsx", "Data")
  foodWholesaleRetail = pd.read_excel("Food Wholesale and Retail.xlsx", "Data")
  foodBank = pd.read_excel("HoodBank.xlsx", "Data")
  healthcare = pd.read_excel("HealthcareFacilities.xlsx", "Data")
  hospitality = pd.read_excel("Hospitality Industry.xlsx", "Data")
  restaurants1 = pd.read_excel("RestaurantsandFoodServices-Part1.xlsx", "Data (Part 1 out of 2)")
  restaurants2 = pd.read_excel("RestaurantsandFoodServices-Part2.xlsx", "Data (Part 2 out of 2)")

# Communities with source separated organics programs
  communities = pd.read_excel("CommunitiesWithSourceSeparatedOrganics.xlsx", "Data")

# Potential recipients of excess food
  composting = pd.read_excel("CompostingFacilities.xlsx", "Data")
```

Data Cleaning

Filtering New Jersey Data

```
# function to filter only NJ data across all datasets
  def filterNJ(dataset):
      dataNJ = pd.DataFrame()
      # different dataframes have different formats for their state listing (column titles, data point)
      # 'STATE', 'State', and 'STATEABRV' account for variations in column headings
      # and 'New Jersey' and 'NJ' account for variations in data points
      if 'STATE' in dataset.columns:
          dataNJ = dataset.loc[dataset['STATE'].isin(['New Jersey', 'NJ'])]
      elif 'State' in dataset.columns:
          dataNJ = dataset.loc[dataset['State'].isin(['New Jersey', 'NJ'])]
      elif 'STATEABRV' in dataset.columns:
          dataNJ = dataset.loc[dataset['STATEABRV'].isin(['New Jersey', 'NJ'])]
      else:
          print(f"look into excel file for {dataset}.")
      return dataNJ
```

```
# applying function to all data frames

healthcareNJ = filterNJ(healthcare)
communitiesNJ = filterNJ(communities)
compostingNJ = filterNJ(composting)
correctionalNJ = filterNJ(correctional)
educationalNJ = filterNJ(educational)
foodManufacturersProcessorsNJ = filterNJ(foodManufacturersProcessors)
foodWholesaleRetailNJ = filterNJ(foodWholesaleRetail)
```

Data Cleaning

2. Checking for Null Values

```
# checking if there are any empty df's
  def isEmpty(dataset):
      if dataset.empty:
          print(f"{dataset.attrs['name']} is empty!")

    # running isEmpty function

  counter = 0
  for i in dataSetListNJ:
      isEmpty(i)
      counter += 1
  print(counter)
  11

    def visNullValues(dataset):

      x = dataset.attrs['name']
      print(f"{x}: {len(dataset)} rows")
      #print(dataset.isnull().sum())
      plt.figure(figsize = (16, 6))
      print(sns.heatmap(dataset.isnull(), yticklabels = False, cbar = False, cmap = 'viridis'))
      plt.title(x, size = 20)
  for i in dataSetListNJ:
      visNullValues(i)
```


Data Cleaning

making the column names the same across df's

```
# getting important columns' names homogenous across all dataframes
  def changeColumnNames(dataset):
      # NAME of Location
      if 'Name' in dataset.columns:
          dataset.rename(columns = {"Name": "NAME"}, inplace = True)
      elif 'FACILITY_NAME' in dataset.columns:
          dataset.rename(columns = {"FACILITY_NAME": "NAME"}, inplace = True)
      # ADDRESS
      if 'Address' in dataset.columns:
          dataset.rename(columns = {"Address": "ADDRESS"}, inplace = True)
      elif 'STREET ADDRESS' in dataset.columns:
          dataset.rename(columns = {"STREET ADDRESS": "ADDRESS"}, inplace = True)
      #CITY
      if 'City' in dataset.columns:
          dataset.rename(columns = {"City": "CITY"}, inplace = True)
      elif 'CITY NAME' in dataset.columns:
          dataset.rename(columns = {"CITY NAME": "CITY"}, inplace = True)
      #COUNTY
      if 'County' in dataset.columns:
          dataset.rename(columns = {"County": "COUNTY"}, inplace = True)
      elif 'COUNTY NAME' in dataset.columns:
          dataset.rename(columns = {"COUNTY NAME": "COUNTY"}, inplace = True)
      #STATE
      if 'State' in dataset.columns:
          dataset.rename(columns = {"State": "STATE"}, inplace = True)
      elif 'STATEABRV' in dataset.columns:
```

Prepping data to use Google Maps API


```
# 2. CREATING NEW COLUMNS FOR LONGITUDE AND LATITUDE

def newColumns(dataset):
    # dataset = dataset.reset_index(drop = True) # reset index
    dataset['LONG'] = ""
    dataset['LAT'] = ""

return dataset
```

```
# GET LONGITUDE AND LATITUDE
  import googlemaps
  import pandas as pd
  # got Google Maps
  gmaps = googlemaps.Client(key = 'AIzaSyC6SFrIYrlQiln840pPNJN69aAC83yyhv0')
  def getLongLat(dataset):
      for b in range(len(dataset)):
          try:
              #time.sleep(1) #to add delay in case of large DFs
              geocode_result = gmaps.geocode(dataset['ADDRESS'][b])
              dataset['LAT'][b] = geocode_result[0]['geometry']['location']['lat']
              dataset['LONG'][b] = geocode_result[0]['geometry']['location']['lng']
          except IndexError:
              print("Address was wrong...")
          except Exception as e:
              print("Unexpected error occurred.", e )
      return dataset
```


NAME	ADDRESS	CITY	COUNTY	STATE	ZIP_CODE	EXCESSFOOD_TONYEAR_LOWEST	EXCESSFOOD_TONYEAR_HIGHEST	LONG	
NT CLARES HOSPITAL - SUSSEX CAMPUS	20 WALNUT STREET	SUSSEX	SUSSEX	NJ	7461	NaN	NaN		
NEWTON MEMORIAL HOSPITAL	175 HIGH STREET	NEWTON	SUSSEX	NJ	7860	16.9798	91.12590		

NAME	ADDRESS	CITY	COUNTY	STATE	ZIP_CODE	EXCESSFOOD_TONYEAR_LOWEST	EXCESSFOOD_TONYEAR_HIGHES	LONG	LAT
LARES PITAL - JSSEX MPUS	20 WALNUT STREET, SUSSEX, NJ, 7461, USA, SUSSE	SUSSEX	SUSSEX	NJ	7461	NaN	Nat	-74.603482	41.207112
:WTON IORIAL SPITAL	20 WALNUT STREET, SUSSEX, NJ, 7461, USA, SUSSE	NEWTON	SUSSEX	NJ	7860	16.9798	91.1259	- 74.603482	41.207112

2. GETTING DISTANCES FROM FOOD RECYCLING FACILITIES

```
# function to get distance from A to B using Google Maps API
  import googlemaps
  gmaps = googlemaps.Client(key = 'AIzaSyD3N dQ38Uh8uUCI0UwgNZempwIQiKpq4E') #api key
  elizabethFacility = "40.66804734922109, -74.19826414484662"
  trentonFacility = "40.188669787557856, -74.75156461205404"
  def getDistance(dataset, facilityCoordinates, columnName):
      for i in range(len(dataset)):
          try:
              #time.sleep(1) #to add delay in case of large DFs
              lat = dataset['LAT'][i]
              long = dataset['LONG'][i]
              directions_result = gmaps.directions((facilityCoordinates), (lat, long),
                                       mode="driving")
              miles = (directions result[0]['legs'][0]['distance']['text'])
              dataset[columnName][i] = miles
          except IndexError:
              print("Address was wrong...")
          except Exception as e:
              print("Unexpected error occurred.", e )
      return dataset
```

3. COMBINING ALL SETS INTO FINAL SET

COMPARING DISTANCES

```
In []: N for i in range(len(generatorsFinal)):
    # if distance from generator i to facility in Elizabeth is less than to Trenton's,
    # then CLOSEST_RECYCLING_FACILITY = 'CORe Elizabeth'

if generatorsFinal['ELIZABETH_DISTANCE'][i] < generatorsFinal['TRENTON_DISTANCE'][i]:
    generatorsFinal['CLOSEST_RECYCLING_FACILITY'][i] = 'CORe Elizabeth'

# if distance from generator i to facility in Trenton is less than to Elizabeth's,
    # then CLOSEST_RECYCLING_FACILITY = 'Trenton Biogas'

elif generatorsFinal['TRENTON_DISTANCE'][i] < generatorsFinal['ELIZABETH_DISTANCE'][i]:
    generatorsFinal['TRENTON_DISTANCE'][i] == generatorsFinal['ELIZABETH_DISTANCE'][i]:
    generatorsFinal['TRENTON_DISTANCE'][i] == generatorsFinal['ELIZABETH_DISTANCE'][i]:
    generatorsFinal['CLOSEST_RECYCLING_FACILITY'][i] = 'Either'</pre>
```

In [59]: ▶ generatorsFinal

00	D_TONYEAR_HIGHEST	UNIQUEID	LONG	LAT	ELIZABETH_DISTANCE	TRENTON_DISTANCE	GENERATOR_CATEGORY	FIPS	CLOSEST_RECYCLING_FACILITY
	NaN	18HEA1963	-74.603482	41.207112	60.2	107.0	Healthcare Facilities	34037.0	CORe Elizabeth
	91.12590	18HEA2036	-74.768269	41.057869	57.0	85.3	Healthcare Facilities	34037.0	CORe Elizabeth

generatorsFinal


```
★ for col in generatorsFinal.columns:
      print(col)
  NAME
  GENERATOR_CATEGORY
  NAICS_CODE_DESCRIPTION
  NAICS CODE
  UNIQUEID
   ADDRESS
  CITY
   COUNTY
  STATE
  ZIP_CODE
  FIPS
  LAT
  LONG
   EXCESSFOOD_TONYEAR_LOWEST
  EXCESSFOOD_TONYEAR_HIGHEST
  EXCESSFOOD TONYEAR AVERAGE
  ELIZABETH DISTANCE
  TRENTON_DISTANCE
  CLOSEST_RECYCLING_FACILITY
  DISTANCE CLOSEST
```

Data Stats

▶ generatorsFinal[['EXCESSFOOD_TONYEAR_LOWEST', 'EXCESSFOOD_TONYEAR_HIGHEST', 'EXCESSFOOD_TONYEAR_AVERAGE']].describe()

3]:

EXCESSFOOD_TONYEAR_LOWEST EXCESSFOOD_TONYEAR_HIGHEST EXCESSFOOD_TONYEAR_AVERAGE

count	35953.000000	35953.000000	35953.000000
mean	8.179563	60.139452	34.159508
std	78.297151	261.412955	168.408271
min	0.000000	0.042380	0.025690
25%	1.010000	10.180000	5.970000
50%	2.110000	16.200000	10.050000
75%	4.125000	117.000000	58.692048
max	6414.600000	20575.200000	13494.900000

▶ generatorsFinal[['ELIZABETH_DISTANCE', 'TRENTON_DISTANCE', 'DISTANCE_CLOSEST']].describe()

1]:

ELIZABETH_DISTANCE TRENTON_DISTANCE DISTANCE_CLOSEST

count	36673.000000	36673.000000	36673.000000
mean	42.690830	57.352131	32.068642
std	66.180609	60.306703	61.114835
min	0.100000	0.400000	0.100000
25%	18.500000	40.900000	16.500000
50%	29.000000	57.000000	25.200000
75%	55.200000	69.700000	37.200000
max	2802.000000	2794.000000	2794.000000

75% of generators are within ~37 miles of a food waste recycling facility

generatorsFinal['GENERATOR_CATEGORY'].value_counts() 20083]: Restaurants Food Wholesale Retailers 9572 Educational Facilities 3450 Food Manufacturers and Processors 1750 Hospitality 1600 Healthcare Facilities 150 Correctional Facilities 77 Name: GENERATOR CATEGORY, dtype: int64

Food Waste Generators by Industry Dominance

COUNT OF GENERATORS CLOSEST TO EACH OF THE 2 FOOD WASTE RECYCLING FACILITIES IN NJ genByRecFacility = generatorsFinal.groupby(['CLOSEST_RECYCLING_FACILITY'])[['CLOSEST_RECYCLING_FACILITY']].count() genByRecFacility

CLOSEST_RECYCLING_FACILITY

CLOSEST_RECYCLING_FACILITY

CORe Elizabeth	23516
Either	45
Trenton Biogas	13112

According to my analysis, about 5,497 generators must comply to the NJ policy

```
policyRequired = generatorsFinal.loc[generatorsFinal['EXCESSFOOD_TONYEAR_AVERAGE'] >= 52]
policyRequired = policyRequired.loc[policyRequired['DISTANCE_CLOSEST'] <= 25]</pre>
```

GENERATOR_CATEGORY EXCESSFOOD_TONYEAR_AVERAGE

GENERATOR_CATEGORY

Food Wholesale Retailers 4950 339,793.757 Food Manufacturers and Processors 184 92,043.050 Restaurants 249 20,786.600 Hospitality 57 5,870.831 Healthcare Facilities 42 5,787.727 Educational Facilities 27 4,126.780 Correctional Facilities 15 3,506.903			
Restaurants 249 20,786.600 Hospitality 57 5,870.831 Healthcare Facilities 42 5,787.727 Educational Facilities 27 4,126.780	Food Wholesale Retailers	4950	339,793.757
Hospitality 57 5,870.831 Healthcare Facilities 42 5,787.727 Educational Facilities 27 4,126.780	Food Manufacturers and Processors	184	92,043.050
Healthcare Facilities 42 5,787.727 Educational Facilities 27 4,126.780	Restaurants	249	20,786.600
Educational Facilities 27 4,126.780	Hospitality	57	5,870.831
,	Healthcare Facilities	42	5,787.727
Correctional Facilities 15 3,506.903	Educational Facilities	27	4,126.780
	Correctional Facilities	15	3,506.903