- $1. \quad \bullet \ z = f(x, y)$
 - x = x(r, s, t)
 - y = y(r, s, t)
 - $\bullet \frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial r} =$
 - $\bullet \ \frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$
 - $\bullet \ \frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$
- 2. w = f(x, y, z)
 - x = x(r,s)
 - x = y(r,s)
 - x = z(r,s)
 - $\bullet \ \frac{\partial w}{\partial r} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial r}$
 - $\bullet \ \frac{\partial w}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$