

A VOLTAGE/VOLTAGE CONVERTER FOR INTEGRATED CIRCUITS

The invention relates to a voltage/voltage converter for integrated circuits, and it finds application in particular in making electrically erasable programmable 5 read-only memories (EEPROMs) and low voltage integrated circuits.

In general, the first circuit based on the charge transfer principle to enable a voltage/voltage converter to be made on an integrated circuit was proposed by 10 Mr. J.F. Dickson in an article entitled "On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique" which was published in June 1976 in the journal "IEEE J. Solid-State Circuits, Vol. 11, pp. 374-376". That circuit referred to below as the "Dickson" circuit presents a 15 structure that is not symmetrical and that is constituted by capacitors and NMOS transistors connected as diodes. The function of the capacitors is to store electric charge, whereas that of the transistors is to act as 20 switches to control charging of the capacitors and to transfer charge between capacitors. Since the publication of that article, most voltage/voltage converters of non-symmetrical structure have been implemented on the basis of the above-mentioned Dickson 25 circuit, but they suffer in particular from the drawback of leading to a loss of voltage due to imperfections in the NMOS transistor switches.

Elsewhere, a "Clock Booster" circuit implemented in CMOS technology is described in an article entitled "An 30 experimental 1.5 V 64 Mb DRAM" published in April 1991 in Volume 26, pp. 465-472 of the above-mentioned journal, with such a circuit of geometrical structure enabling a direct current (DC) component to be added to a clock signal. That circuit is referred to below as the clock 35 booster circuit.

In general, integrated CMOS voltage/voltage converters are used in two main fields in particular,

specifically: EEPROMs, also referred to as FLASHROMs, and low-voltage integrated circuits in order to feed certain portions of such circuits with higher voltages. EEPROMs are presently used in numerous consumer applications such 5 as, for example: digital cameras, MP3 digital audio players, and pocket computers, and demand for memories of this type has increased considerably over the last few years. Low-voltage integrated circuits are also in full expansion and are used in particular in consumer products 10 such as cell phones and the above-mentioned portable appliances.

Specifically, the technical problem to be solved is for the output voltage from the converter to be increased as much as possible for a given number of stages. With a 15 portable appliance powered at 3 volts (V) from a battery, for example, it is necessary to obtain a programming voltage of 9 V in order to be able to store information in a memory of the FLASHROM type.

In theory, if a voltage/voltage converter were 20 perfect, then a two-stage voltage tripler would suffice to produce such a 9-V programming voltage. Unfortunately, experience shows that a voltage/voltage converter of non-symmetrical structure implemented on the basis of the Dickson circuit needs to be a three-stage 25 voltage quadrupler in order to produce the above-specified programming voltage.

In the prior art, document WO 02/43232 describes a voltage/voltage converter in accordance with the pre-characterizing portion of claim 1.

30 Since present voltage/voltage converters are limited in performance, the invention seeks to devise a novel voltage/voltage converter structure capable of satisfying various objectives, and in particular:

- eliminating voltage loss at the output from the 35 converter due to the imperfection of switches made using MOS transistors;
- enable multistage configurations to be provided;

- achieve a maximum output voltage that is close to the theoretical output voltage;
 - minimize total surface area of the converter for equivalent performance; and
- 5 • operate over a broad range of power supply voltages, e.g. 1.2 V to 5 V using standard technology.

To achieve these objectives, the invention provides a voltage/voltage converter for integrated circuits, the converter presenting a symmetrical multistage structure and comprising at least one input stage constituted by a clock booster circuit of symmetrical structure which delivers two output voltages, a voltage multiplier circuit of symmetrical structure comprising two voltage multiplier circuits respectively connected in two branches of the converter and having the output voltages of the input stage applied respectively thereto, and an output stage constituted by a multiplexer circuit having the two output voltages from the voltage multiplier stage applied thereto, the converter being characterized in that each voltage multiplier circuit is controlled by a control circuit, and in that each voltage multiplier circuit supplies voltages needed both for the operation of its own control circuit and for the operation of the control circuit of the other voltage multiplier circuit of the same stage.

In general:

- the clock booster circuit serves to add a DC component to a clock signal, and it comprises two similar circuits receiving respective clock signals of opposite phase;
 - each voltage multiplier circuit comprises a capacitor and a switch for controlling charging of the capacitor and transfer of its charge to the voltage multiplier circuit of the following stage; and
- 35 • each voltage multiplier circuit is controlled by a control circuit and delivers voltages needed both for the operation of its own control circuit and for the

operation of the control circuit of the other voltage multiplier circuit of the same stage.

The converter of the invention may have a positive output, in which case the multiplexer circuit recovers 5 the highest voltages from the voltage multiplier circuits, and, by switching, extracts therefrom the highest DC voltage that forms the output voltage from the converter.

Conversely, the converter may have a negative 10 output, in which case the multiplexer circuit recovers the lowest voltages from the voltage multiplier circuits, and by switching, extracts therefrom the lowest DC voltage which forms the output voltage of the converter.

Thus, the structure of the voltage/voltage converter 15 of the invention enables the advantages of a symmetrical structure to be conserved. The Applicants have undertaken tests and have been able to demonstrate that, in comparison with a voltage/voltage converter of non-symmetrical structure, a converter of symmetrical 20 structure provides improved performance, in particular for applications on a resistive load. More precisely, a converter of symmetrical structure holds charge better, and as a result the smoothing capacitor that needs to be added to the output can be of lower capacitance, thus 25 enabling the total surface area of the converter to be reduced. Furthermore, for a given value of resistive load and for the same ripple tolerance in the output voltage, the output voltage rises quicker than with a non-symmetrical structure.

30 The voltage/voltage converter structure of the invention also makes it possible to reduce the effect of stray capacitance in order to obtain better efficiency and a higher output voltage. This result is obtained by using voltage multiplier circuits based on the Dickson 35 circuit structure, even though the Applicants made their initial tests on a voltage/voltage converter using a capacitor-stacking technique.

The invention thus makes it possible to implement a voltage/voltage converter having a positive output or a negative output that is the result of a compromise found from known symmetrical and non-symmetrical structures by 5 combining them in an original manner after performing numerous laboratory tests.

Other advantages, characteristics, and details of the invention appear from the following additional description made with reference to the drawings given 10 purely by way of example and in which:

- Figure 1 is a block diagram showing the general structure of a voltage/voltage converter in accordance with the invention;
- Figure 2 shows a first embodiment of a 15 voltage/voltage converter in accordance with the invention and having a positive output;
- Figures 3 and 4 show two respective multiplexer circuits, each suitable for constituting the output stage of the positive output voltage/voltage converter of 20 Figure 2;
- Figure 5 shows a second embodiment of a voltage/voltage converter in accordance with the invention and having a positive output;
- Figure 6 shows a first embodiment of a 25 voltage/voltage converter in accordance with the invention and having a negative output;
- Figures 7 and 8 show two respective multiplier circuits each suitable for constituting the output stage of the negative output voltage/voltage converter of 30 Figure 6;
- Figure 9 shows a second embodiment of a voltage/voltage converter in accordance with the invention and having a negative output; and
- Figures 10 and 11a to 11d are views that are used 35 for explaining the operation of the first embodiment of the converter as shown in Figure 2.

The general structure of a voltage/voltage converter of the invention is shown in Figure 1, it being understood that this converter 10 presents a structure that is symmetrical, that has a plurality of stages, and 5 that has an output voltage that can be positive or negative. More precisely, the converter comprises at least N stages connected in cascade, the first stage being constituted by a clock booster circuit CB of symmetrical structure. Each of the following (N-1) 10 intermediate stages is constituted by two voltage multiplier circuits CM_i and CM_{ip} (where i lies in the range 2 to N) that form a symmetrical structure. These two voltage multiplier circuits are controlled respectively by two control circuits CC_i and CC_{ip} which 15 deliver control voltages V_{ci} and V_{cip} (where i lies in the range 2 to N). Each voltage multiplier circuit uses the charge transfer technique of the Dickson circuit mentioned in the introduction, and delivers both a fraction of the voltages needed for the operation of its 20 own control circuit and a fraction of the voltages needed for the operation of the other multiplier circuit. Finally, the voltage/voltage converter presents an output stage S which is constituted by a multiplexer circuit MX receiving the output voltages 25 V_N and V_{Np} from the two multiplier circuits CM_N and CM_{Np} of the last intermediate stage in order to reconstitute a DC output voltage V_s .

All of these stages are described in detail below with reference to Figures 2 to 9 which show several 30 embodiments.

In a first embodiment shown in Figure 2, the voltage/voltage converter 10 has a positive output, presents a symmetrical structure with two branches B_1 and B_2 , and comprises a plurality of stages. The first or 35 input stage is a clock booster circuit CB of symmetrical structure and having a positive output, comprising an NMOS type transistor M_1 and a capacitor C_1 for the branch

B_1 of the converter 10, and an NMOS type transistor M_{1p} and a capacitor C_{1p} for the branch B_2 of the converter 10. The transistors M_i and M_{ip} have their drains connected to a power supply voltage V_{dd} , and have their sources
 5 connected respectively to the positive electrodes of the capacitors C_1 and C_{1p} . The grid of transistor M_1 is connected to the source of transistor M_{1p} , and vice versa. The negative electrodes of the capacitors C_1 and C_{1p} are connected respectively to two clock signals ϕ_1 and ϕ_2
 10 which are in phase opposition.

The following (N-1) stages are connected in cascade, each comprising two voltage multiplier circuits CM_i and CM_{ip} (where i lies in the range 2 to N) respectively connected in the two branches B_1 and B_2 of the converter
 15 10 in order to form a symmetrical structure, each multiplier circuit reproducing the structure based on the Dickson circuit.

Each voltage multiplier circuit CM_i of the branch B_1 comprises a capacitor C_i with its positive electrode
 20 connected to the output terminal of a switch K_i via a node V_i , and with its negative electrode connected to a clock signal ϕ_n . In similar manner, each voltage multiplier circuit CM_{ip} of the branch B_2 comprises a capacitor C_{ip} whose positive electrode is connected to the output
 25 terminal of a switch K_{ip} via node V_{ip} , and whose negative electrode is connected to a clock signal ϕ_{np} (i lying in the range 2 to N). The clock signal ϕ_n corresponds to the clock signal ϕ_1 of the clock booster circuit CB if i is odd and to the signal ϕ_2 of the clock booster circuit CB
 30 if i is even, and vice versa for the clock signal ϕ_{np} , these two clock signals ϕ_1 and ϕ_2 corresponding to those received by the clock booster circuit CB. The input terminal of the switch K_i of the branch B_1 of the converter 10 is connected to the node V_{i-1} of the preceding stage, whereas the input terminal of the switch K_{ip} of the branch B_2 of the converter 10 is connected to the node $V_{(i-1)p}$ of the preceding stage.
 35

Each control circuit CC_i of a voltage multiplier CM_i of the branch B_1 of the converter 10 comprises an inverter circuit I_i whose output voltage delivers the control voltage V_{ci} that is applied to the control input of the switch K_i of the voltage multiplier circuit CM_i (i lying in the range 2 to N). Each inverter circuit I_i is powered both by the output voltage V_{i-1} of the multiplier circuit CM_{i-1} of the preceding stage in the branch B_1 of the converter 10, and by the output voltage V_{ip} of the voltage multiplier circuit CM_{ip} of the corresponding stage of the branch B_2 of the converter 10. It is important to observe that although the output voltage V_{i-1} (apart from the voltage V_1) is supplied by the multiplier circuit CM_{i-1} of the branch B_1 of the converter 10, the voltage V_{ip} is supplied by the voltage multiplier circuit CM_{ip} of the same stage but in the branch B_2 of the converter 10. The inverter I_i is controlled by an input signal which is constituted by the output signal $V_{c(i-1)}$ of the preceding stage (i lying in the range 3 to N) in order to obtain an output signal V_{ci} , it being understood that the inverter I_2 is controlled by the output signal V_{1p} of the branch B_2 of the clock booster circuit CB of the first stage of the converter 10.

Symmetrically, each control circuit CC_{ip} of a voltage multiplier circuit CM_{ip} of the branch B_2 of the converter 10 comprises an inverter circuit I_{ip} whose output voltage supplies the control voltage V_{cip} applied to the control input of the switch K_{ip} of the voltage multiplier circuit CM_{ip} (i lying in the range 2 to N). Each inverter circuit I_{ip} is powered between the output voltage $V_{(i-1)p}$ of the voltage multiplier circuit $CM_{(i-1)p}$ of the preceding stage of the branch B_2 of the converter 10, and the output voltage V_i of the voltage multiplier circuit CM_i of the corresponding stage of the branch B_1 of the converter 10. As before, it is important to observe that although the output voltage $V_{(i-1)p}$ (apart from the voltage V_{1p}) is provided by the voltage multiplier circuit $CM_{(i-1)p}$ of the

branch B_2 of the converter 10, the voltage V_i is supplied by the voltage multiplier circuit CM_i of the same stage but in the branch B_1 of the converter 10. The inverter I_{ip} is controlled by an input signal which is constituted by the output signal $V_{c(i-1)p}$ of the preceding stage (i lying in the range 3 to N) in order to obtain an output signal V_{cip} , it being understood that the inverter I_{2p} is controlled by the output signal V_1 of the branch B_1 of the clock booster circuit CB of the first stage of the converter 10.

The multiplexer circuit MX which constitutes the output stage S of the voltage/voltage converter 10 of Figure 2 can be implemented in two different ways as shown in Figures 3 and 4. The function of the multiplexer circuit MX is to retrieve the highest voltages from the voltage multiplier circuit and, by switching, to extract therefrom the highest DC voltage which forms the output voltage from the converter.

In the first embodiment shown in Figure 3, the multiplexer circuit MX is based on using two switches K_{s1} and K_{s2} which, on the output side, share a common output node corresponding to the output voltage V_s of the converter 10, and on the input side, are connected respectively to the two output voltages V_{Np} and V_N of two multiplier circuits CM_{Np} and CM_N of the stage N of the converter 10. The multiplexer circuit MX also comprises an auxiliary circuit for producing the control signals for the two switches K_{s1} and K_{s2} , this auxiliary circuit being constituted by two inverter circuits $I_{(N+1)p}$ and I_{N+1} , two switches K_{s3} and K_{s4} , and two capacitors $C_{(N+1)p}$ and C_{N+1} .

The switch K_{s3} shares the same control and input signals as the switch K_{s1} , while the switch K_{s4} shares the same control and input signals as the switch K_{s2} . However the switch K_{s3} is connected between the output voltage V_{Np} of the multiplier circuit CM_{Np} of the branch B_2 of the stage N of the converter 10 and the positive electrode of the capacitor $C_{(N+1)p}$ whose negative electrode is boosted

by the clock signal $\phi_{(n+1)p}$. Symmetrically, the switch K_{s4} is connected between the output voltage V_N of the multiplier circuit CM_N of the branch B_1 of the stage N of the converter 10 and the positive electrode of the 5 capacitor C_{N+1} whose negative electrode is boosted by the clock signal ϕ_{n+1} .

The input signal of the inverter circuit $I_{(N+1)p}$ is the control signal V_{cNp} of the voltage multiplier circuit CM_{Np} of the stage N of the branch B_2 of the converter 10, 10 and it is powered between the output voltage V_{Np} as its low power supply voltage and the output voltage V_{N+1} as its high power supply voltage. Symmetrically, the inverter circuit I_{N+1} has as its input signal the control signal V_{cN} of the multiplier circuit CM_N of the stage N of 15 the branch B_1 of the converter 10, and it is powered between the output voltage V_N as its low power supply voltage and the voltage $V_{(N+1)p}$ as its high power supply voltage.

In the second embodiment of Figure 4, the 20 multiplexer circuit MX has the same overall structure as that shown in Figure 3. The only difference lies in the fact that the input signal to the inverter circuit $I_{(N+1)p}$ is the signal $V_{(N+1)p}$ instead of the signal V_{cNp} , and the input signal of the inverter circuit I_{N+1} is the signal 25 V_{N+1} instead of the signal V_{cN} .

In a second embodiment shown in Figure 5, which constitutes a variant of the embodiment shown in Figure 2, the voltage/voltage converter 10 likewise presents a positive output, and it differs solely in the 30 control circuit CC_i and CC_{ip} for controlling the voltage multiplier circuit CM_i and CM_{ip} (i lying in the range 2 to N). More precisely, the inverter circuit I_i of each control circuit CC_i is powered between the output voltages V_{i-1} and V_{ip} , it being understood that the output voltage 35 V_{i-1} is the voltage produced by the voltage multiplier circuit CM_{i-1} of the preceding stage of the branch B_1 of the converter 10, and the output voltage V_{ip} is the

voltage produced by the voltage multiplier circuit CM_{ip} of the corresponding stage of the branch B_2 of the converter 10. The input of each inverter circuit I_i is controlled by the output signal V_i of the voltage multiplier circuit CM_i to produce the output signal V_{ci} . Symmetrically, the inverter circuit I_{ip} of each control circuit CC_{ip} is powered between the output voltages $V_{(i-1)p}$ and V_i , it being understood that the output voltage $V_{(i-1)p}$ is produced by the voltage multiplier circuit $CM_{(i-1)p}$ of the preceding 5 stage of the branch B_2 of the converter 10, and the output voltage V_i is the voltage produced by the voltage multiplier circuit CM_i of the corresponding stage of the branch B_1 of the converter 10. The input of each inverter circuit I_{ip} is controlled by the output signal V_{ip} from the 10 voltage multiplier circuit CM_{ip} in order to produce the 15 output signal V_{cip} .

Like the first embodiment shown in Figure 2, the multiplexer circuit MX which forms the output stage of the converter 10 can be implemented using either of the 20 two embodiments shown in Figures 3 and 4.

Figure 6 shows a first embodiment of a voltage/voltage converter in accordance with the invention but having a negative output, it being understood that it likewise presents a plurality of 25 stages and a symmetrical structure with two branches B_1 and B_2 . The first or input stage is a clock booster circuit of symmetrical structure with a negative output, comprising a PMOS type transistor M_1 and a capacitor C_1 for the branch B_1 of the converter 10, and a PMOS type 30 transistor M_{1p} and a capacitor C_{1p} for the branch B_2 of the converter 10. The transistors M_1 and M_{1p} have their drains connected to a zero volt ground, and they have their sources connected respectively to the negative electrodes of the capacitors C_1 and C_{1p} . The grid of 35 transistor M_1 is connected to the source of transistor M_{1p} , and vice versa. The positive electrodes of the

capacitors C_1 and C_{1p} are respectively connected to two clock signals ϕ_1 and ϕ_2 which are in phase opposition.

- Each of the following (N-1) stages that are connected in cascade comprises two voltage multiplier circuits CM_i and CM_{ip} (i lying in the range 2 to N) respectively connected in the two branches B_1 and B_2 of the converter 10 in order to form a structure that is symmetrical, each voltage multiplier circuit reproducing the basic structure of the Dickson circuit.
- 10 Each voltage multiplier circuit CM_i of the branch B_1 comprises a capacitor C_i whose negative electrode is connected to the output terminal of a switch K_i via a node V_i , and whose positive electrode is connected to a clock signal ϕ_n . Similarly, each voltage multiplier circuit CM_{ip} of the branch B_2 comprises a capacitor C_{ip} whose negative electrode is connected to the output terminal of a switch K_{ip} via a node V_{ip} and whose positive electrode is connected to a clock signal ϕ_{np} (i lying in the range 2 to N). The clock signal ϕ_n corresponds to the clock signal ϕ_1 of the clock booster circuit CB if i is odd and to the signal ϕ_2 of the clock booster circuit CB if i is even, and vice versa for the clock signal ϕ_{np} , these two clock signals ϕ_1 and ϕ_2 corresponding to those received by the clock booster circuit CB. The input terminal of the switch K_i of the branch B_1 of the converter 10 is connected to the node V_{i-1} of the preceding stage, while the input terminal of the switch K_{ip} of the branch B_2 of the converter 10 is connected to the node $V_{(i-1)p}$ of the preceding stage.
- 20 Each control circuit CC_i of a voltage multiplier circuit CM_i of the branch B_1 of the converter 10 comprises an inverter circuit I_i whose output voltage supplies the control voltage V_{ci} that is applied to the control input of the switch K_i of the voltage multiplier circuit CM_i (i lying in the range 2 to N). Each inverter circuit I_i is powered between the output voltage V_{ip} of the voltage multiplier circuit CM_{ip} of the corresponding stage of the

branch B_2 of the converter 10, and the output voltage V_{i-1} of the multiplier circuit CM_{i-1} of the preceding stage of the branch B_1 of the converter 10. It is important to observe that although the output voltage V_{i-1} (apart from the voltage V_1) is supplied by the voltage multiplier circuit CM_{i-1} of the branch B_1 of the converter 10, the voltage V_{ip} is supplied by the voltage multiplier circuit CM_{ip} of the same stage but in the branch B_2 of the converter 10. The inverter I_i is controlled by an input signal which is constituted by the output signal $V_{c(i-1)}$ of the preceding stage (i lying in the range 3 to N) in order to obtain an output signal V_{cip} , it being understood that the inverter I_2 is controlled by the output signal V_{1p} of the branch B_2 of the clock booster circuit CB of the first stage of the converter 10.

Symmetrically, each control circuit CC_{ip} of a voltage multiplier CM_{ip} in the branch B_2 of the converter 10 comprises an inverter circuit I_{ip} whose output voltage supplies the control voltage V_{cip} applied to the control input of the switch K_{ip} of the voltage multiplier circuit CM_{ip} (i lying in the range 2 to N). Each inverter circuit I_{ip} is powered between the output voltage V_i of the voltage multiplier circuit CM_i of the corresponding stage of the branch B_1 of the converter 10, and the output voltage $V_{(i-1)p}$ of the voltage multiplier circuit $CM_{(i-1)p}$ of the preceding stage of the branch B_2 of the converter 10. As before, it is important to observe that although the output voltage $V_{(i-1)p}$ (apart from the voltage V_{1p}) is supplied by the voltage multiplier circuit $CM_{(i-1)p}$ of the branch B_2 of the converter 10, the voltage V_i is supplied by the voltage multiplier circuit CM_i of the same stage, but of the branch B_1 of the converter 10. The inverter I_{ip} is controlled by an input signal which is constituted by the output signal $V_{c(i-1)p}$ of the preceding stage (i lying in the range 3 to N) in order to obtain an output signal V_{cip} , it being understood that the inverter I_{2p} is controlled by the output signal V_1 of the branch B_1 of the

clock booster circuit CB of the first stage of the converter 10.

The multiplexer circuit MX constituting the output stage S of the voltage/voltage converter 10 having a negative output as shown in Figure 6 can be implemented in two ways as shown in Figures 7 and 8. The function of the multiplexer circuit MX is to recover the lowest voltages from the voltage multiplier circuits and, by switching, to extract therefrom the lowest DC voltage which forms the output voltage from the converter.

In the first embodiment shown in Figure 7, the multiplexer circuit MX is based on using two switches K_{s1} and K_{s2} controlled in inverse manner, which, on the output side, share a common output node corresponding to the output voltage V_s of the converter 10, and on the input side are connected respectively to the two output voltages V_{Np} and V_N of the two voltage multiplier circuits CM_{Np} and CM_N of the stage N of the converter 10. The multiplexer circuit MX also comprises an auxiliary circuit for producing the control signals for the two switches K_{s1} and K_{s2} , this auxiliary circuit being constituted by two inverter circuits $I_{(N+1)p}$ and I_{N+1} , two switches K_{s3} and K_{s4} , and two capacitors $C_{(N+1)p}$ and C_{N+1} .

The switch K_{s3} shares the same control and input signals as the switch K_{s1} , while the switch K_{s4} shares the same control and input signals as the switch K_{s2} . However, the switch K_{s3} is connected between the output voltage V_{Np} of the multiplier circuit CM_{Np} of the branch B_2 of the stage N of the converter 10 and the negative electrode of the capacitor $C_{(N+1)p}$ whose positive electrode is boosted by the clock signal $\phi_{(n+1)p}$. Symmetrically, the switch K_{s4} is connected between the output voltage V_N of the multiplier circuit CM_N of the branch B_1 of the stage N of the converter 10 and the negative electrode of the capacitor C_{N+1} whose positive electrode is boosted by the clock signal ϕ_{n+1} .

The inverter circuit $I_{(N+1)p}$ has as its input signal the control signal V_{cNp} of the voltage multiplier circuit CM_{Np} of the stage N of the branch B_2 of the converter 10, and it is powered between the output voltage V_{Np} as its 5 high power supply voltage and the voltage V_{N+1} as its low power supply voltage. Symmetrically, the inverter circuit I_{N+1} has as its input signal the control signal V_{cN} of the multiplier circuit CM_N of the stage N of the branch B_1 of the converter 10, and it is powered between the 10 output voltage V_N as its high power supply and the voltage $V_{(N+1)p}$ as its low power supply.

In the second embodiment shown in Figure 8, the multiplexer circuit MX reproduces the same overall structure as that shown in Figure 7. The only difference 15 lies in the fact that the input signal of the inverter circuit $I_{(N+1)p}$ is the signal $V_{(N+1)p}$ instead of the signal V_{cNp} , and the input signal of the inverter circuit I_{N+1} is the signal V_{N+1} instead of the signal V_{cN} .

In a second embodiment shown in Figure 9 and 20 constituting a variant of the embodiment shown in Figure 6, the voltage/voltage converter 10 likewise has a positive output and differs solely in the control circuits CC_i and CC_{ip} of the voltage multiplier circuits CM_i and CM_{ip} (i lying in the range 2 to N). More 25 precisely, the inverter circuit I_i of each control circuit CC_i is powered between the output voltages V_{ip} and V_{i-1} , it being understood that the output voltage V_{i-1} is the voltage produced by the multiplier circuit CM_{i-1} of the preceding stage of the branch B_1 of the converter 10, and 30 the output voltage V_{ip} is the voltage produced by the multiplier circuit CM_{ip} of the corresponding stage of the branch B_2 of the converter 10. The input of each inverter circuit I_i is controlled by the output signal V_i of the voltage multiplier circuit CM_i to produce the output 35 signal V_{ci} . Symmetrically, each inverter circuit I_{ip} of each control circuit CC_{ip} is powered between the output voltages V_i and $V_{(i-1)p}$, it being understood that the output

voltage $V_{(i-1)p}$ is produced by the multiplier circuit $CM_{(i-1)p}$ of the preceding stage of the branch B_2 of the converter 10, and the output voltage V_i is the voltage produced by the voltage multiplier circuit CM_i of the 5 corresponding stage of the branch B_1 of the converter 10. The input of each inverter circuit I_{ip} is controlled by the output signal V_{ip} of the voltage multiplier circuit CM_{ip} to produce the output signal V_{cip} .

As for the first embodiment shown in Figure 6, the 10 multiplexer circuit MX forming the output stage of the converter 10 can be made using either of the two embodiments shown in Figures 7 and 8.

The operation of the voltage/voltage converter of order N and having a positive output voltage as shown in 15 Figure 2 is described below. This operation can be subdivided into two phases, namely: a first phase corresponding to charging the capacitor of the first stage, and a second phase corresponding to transferring the charge stored on the capacitor during the first stage 20 towards the following stage.

As a preliminary point, with reference to Figure 10, it is important to understand the following:

- the branches B_1 and B_2 of the converter are in phase opposition, stage by stage, i.e. if stage i of the 25 branch B_1 having voltage multiplier circuit CM_i and its control circuit CC_i is in a first operating phase, then stage i of the branch B_2 comprising the voltage multiplier circuit CM_{ip} and its control circuit CC_{ip} is then in the second operating phase;

- 30 • there is also phase inversion between any one stage and its neighbors in each of the branches B_1 and B_2 , i.e. if stage i of branch B_1 is in the second operating phase, then stages $i-1$ and $i+1$ will be in the first operating phase; and

- 35 • phase switching is controlled both by the clock signals ϕ_1 and ϕ_2 , and the phase of a stage is changed on each new half-cycle of the clock, i.e. if stage i of

branch B_2 is in the first operating phase, then it will switch to the second operating stage during the following clock half-cycle, as illustrated in the waveform diagrams of Figures 11a to 11d, and in particular the diagrams of 5 Figures 11a and 11b.

The first operating phase corresponds to each of the capacitors C_i or C_{ip} of stage i in each branch B_1 and B_2 being charged, with i lying in the range 2 to N. For each branch B_1 and B_2 , this first phase takes place when 10 the clock signal ϕ_j ($j = 1$ or 2) applied to the capacitor C_i or C_{ip} of the stage CM_i (branch B_1) or CM_{ip} (branch B_2) is at the low level (0 volts), as shown in Figure 11a for the branch B_1 and in Figure 11b for the branch B_2 . During this first operating phase, the voltage on the positive 15 electrode of the capacitor C_i (branch B_1) or C_{ip} (branch B_2) is charged via the switch K_i (branch B_1) or K_{ip} (branch B_2) which is in the ON state, up to the voltage V_{i-1} (capacitor C_i) or to the voltage $V_{(i-1)p}$ (capacitor C_{ip}), these voltages being equal to iV_{dd} . The state of switch 20 K_i (branch B_1) or switch K_{ip} (branch B_2) is controlled by a voltage V_{ci} (branch B_1) or V_{cip} (branch B_2), these voltages equal to $(i+1)V_{dd}$ being supplied via the inverter I_i (branch B_1) or I_{ip} (branch B_2) that is powered between the voltages V_{ip} (equal to $(i+1)V_{dd}$) and V_{i-1} (equal to iV_{dd}) 25 for the branch B_1 , and V_i (equal to $(i+1)V_{dd}$) and $V_{(i-1)p}$ (equal to iV_{dd}) for the branch B_2 .

The second operating phase corresponds to stacking the capacitors C_i or C_{ip} of the stage i in each branch B_1 or B_2 with i lying in the range 2 to N onto the power 30 supply voltage V_{dd} . For each branch B_1 and B_2 , this phase takes place while the clock ϕ_j ($j = 1$ or 2) connected to the capacitor C_i or C_{ip} of the stage CM_i or CM_{ip} is at the high level (V_{dd}). During this phase, the voltage on the positive electrode V_i (V_{ip}) of the capacitor C_i (C_{ip}) is 35 boosted by V_{dd} , thereby raising this voltage to $(i+1)V_{dd}$. The switch K_i (K_{ip}) is OFF during the second phase under the control of a voltage V_{ci} (V_{cip}) equal to $(i-1)V_{dd}$ as

supplied by the inverter I_i (I_{ip}), as shown in Figures 11c and 11d respectively associated with Figures 11a and 11b. The inverter I_i is powered between V_{ip} at iV_{dd} and V_{i-1} at $(i-1)V_{dd}$, while the inverter I_{ip} is powered between V_i at 5 iV_{dd} and $V_{(i-1)p}$ at $(i-1)V_{dd}$.

The two operating phases also apply to the clock booster CB. When the elements of the branch B_1 comprising the capacitor C_1 associated with the transistor M_1 are in the first phase, then the elements in the branch B_2 10 comprising the capacitor C_{1p} associated with the transistor M_{1p} are in the second phase, and then vice versa. The first phase corresponds to charging the capacitor C_1 or C_{1p} to V_{dd} via the transistor M_1 or M_{1p} , and this phase occurs when the clock ϕ_j ($j = 1$ or 2) is at its 15 low level (0 volts). The second phase corresponds to stacking the capacitor C_1 or C_{1p} onto the clock signal ϕ_j at the high level (V_{dd}), thereby producing on V_1 or V_{1p} a voltage of $2V_{dd}$ as shown in Figures 11a and 11b.

By way of example, in an EEPROM that requires a 20 programming voltage of at least 9 V that is derived from a power supply voltage of 3 V supplied by a battery, a voltage/voltage converter of the invention and having only two voltage multiplier stages is sufficient for producing the programming voltage.