Signal Processing (MENG3520)

Module 4

Weijing Ma, Ph. D. P. Eng.

Consider the following RLC circuit, let $R = 3\Omega$, L = 1H and C = 0.5F.

- a. Determine the characteristic equation and find its roots analytically.
- b. Find the zero-input response with the given initial conditions. $v_c(0^-) = 5V$ and $i_L(0^-) = 0A$.
- c. Determine the unit impulse response of the system.
- d. Calculate the zero-state response for the specified input signals.
 - x(t) = u(t)
 - $x(t) = 10e^{-2t}u(t)$

Consider the following RLC circuit, let $R = 3\Omega$, L = 1H and C = 0.5F.

a. Determine the characteristic equation and find its roots analytically.

Answer:

According to
$$KVL$$
: $x(t) = v_L(t) + v_R(t) + v_C(t)$

Since
$$i(t) = C \frac{dv_c}{dt}$$
:

$$v_L(t) = L\frac{di(t)}{dt} = LC\frac{d^2v_c}{dt}, v_R(t) = Ri(t) = RC\frac{dv_c}{dt}$$

$$x(t) = LC \frac{d^2 v_c}{dt} + RC \frac{dv_c}{dt} + v_c(t)$$

$$x(t) = 0.5 \frac{d^2 v_c}{dt} + 3 \frac{d v_c}{dt} + 2 v_c(t)$$

Characteristic equation is: $\lambda^2 + 3\lambda + 2 = 0$, roots: $\lambda_1 = -1$, $\lambda_2 = -2$.

Consider the following RLC circuit, let $R = 3\Omega$, L = 1H and C = 0.5F.

b. Find the zero-input response with the given initial conditions. $v_c(0^-) =$

$$5V \ and \ i_L(0^-) = 0A.$$

Answer:

Let zero-input response: $y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ $y_0(0)v_c(0^-) = y_0(0) = 5$

Two initial conditions become: $y_0(0) = 5$, $\dot{y}_0(0) = 0$.

Solve equations:
$$\begin{cases} c_1 + c_2 = 5 \\ -c_1 - 2c_2 = 0 \end{cases}$$

Zero input response $y_0(t) = 10e^{-t} + 5e^{-2t}$

We have: $c_1 = 10$, $c_2 = -5$,

Consider the following RLC circuit, let $R = 3\Omega$, L = 1H and C = 0.5F.

c. Determine the unit impulse response of the system.

Answer:

System equation is:
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = 2x(t)$$

Order of the system N = 2, M < N, $b_0 = 0$.

Thus, the impulse response is in the form: $h(t) = [P(D) y_n(t)]u(t)$.

 $y_n(t) = c_3 e^{\lambda_1 t} + c_4 e^{\lambda_2 t}$ satisfies the simplified initial conditions:

$$y_n(0) = 0$$
 and $\dot{y}_n(0) = 1$

Solve equations:
$$\begin{cases} c_3 + c_4 = 0 \\ -c_3 - 2c_4 = 1 \end{cases}$$

We have:
$$c_1 = 1$$
, $c_4 = -1$,

Impulse response $h(t) = [P(D)y_n(t)]u(t) = 2y_n(t)u(t) = (2e^{-t} - 2e^{-2t})u(t)$

Consider the following RLC circuit, let $R = 3\Omega$, L = 1H and C = 0.5F.

- d. Calculate the zero-state response for the specified input signals.
 - x(t) = u(t)
 - $x(t) = 10e^{-2t}u(t)$

$$x(t) = u(t) \rightarrow$$

$$y_{ZSR}(t) = x(t) * h(t) = h(t) * x(t) = ((2e^{-t} - 2e^{-2t})u(t)) * u(t)$$

$$= (2e^{-t}u(t)) * u(t) - (2e^{-2t}u(t)) * u(t)$$

$$= \int_{-\infty}^{t} 2e^{-\tau} u(\tau) u(t-\tau) d\tau - \int_{-\infty}^{t} 2e^{-2\tau} u(\tau) u(t-\tau) d\tau$$

$$= \int_0^t 2e^{-\tau} d\tau - \int_0^t 2e^{-2\tau} d\tau$$

$$= 2(1 - e^{-t})u(t) - 2\left(\frac{1 - e^{-2t}}{2}\right)u(t) = (1 - 2e^{-t} + e^{-2t})u(t)$$

No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$	
1	x(t)	$\delta(t-T)$	x(t-T)	
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1 \left -e^{\lambda t} - \lambda \right }{-\lambda} u(t)$	
3	u(t)	u(t)	tu(t)	

Answer:

$$\begin{split} x(t) &= u(t) \Rightarrow \\ y_{ZSR}(t) &= x(t) * h(t) = h(t) * x(t) = \left((2e^{-t} - 2e^{-2t})u(t) \right) * u(t) \\ &= \left(2e^{-t}u(t) \right) * u(t) - \left(2e^{-2t}u(t) \right) * u(t) \\ &= \int_{-\infty}^{t} 2e^{-\tau}u(\tau)u(t-\tau)d\tau - \int_{-\infty}^{t} 2e^{-2\tau}u(\tau)u(t-\tau)d\tau \end{split}$$

$$= 2(1 - e^{-t})u(t) - 2\left(\frac{1 - e^{-2t}}{2}\right)u(t) = (1 - 2e^{-t} + e^{-2t})u(t)$$

Consider the following RLC circuit, let $R = 3\Omega$, L = 1H and C = 0.5F.

- d. Calculate the zero-state response for the specified input signals.
 - x(t) = u(t)
 - $x(t) = 10e^{-2t}u(t)$

$$x(t) = 10e^{-2t}u(t) \rightarrow$$

$$y_{ZSR}(t) = x(t) * h(t) = h(t) * x(t) = (2e^{-t} - 2e^{-2t})u(t) * 10e^{-2t}u(t)$$

$$= 20[[e^{-t}u(t) * e^{-2t}u(t)] - [e^{-2t}u(t) * e^{-2t}u(t)]]$$

$$= 20 \left[\left[e^{-t} - e^{-2t} \right] u(t) - t e^{-2t} u(t) \right] = 20 \left(e^{-t} - e^{-2t} - t e^{-2t} \right) u(t)$$

Module 4

LAPLACE TRANSFORM

Overview

- Important tools for frequency domain analysis of continuoustime (CT) systems: Laplace transform, and Fourier transform
- The Laplace transform is the more general form.
- The Fourier transform can be considered a special case of the Laplace transform.
- For this module, we will explore the Laplace transform and how it is used to analyze CT LTI systems.

Module Outline

- 4.1 Eigenfunctions of CT LTI systems
- 4.2 Definition of Laplace Transform and Inverse Laplace Transform
- 4.3 ROC, Poles, and Zeros.
- 4.4 Properties of the Laplace transform
- 4.5 Transfer Functions
- 4.6 Analog filters
- 4.7 Frequency response of CT LTI systems

4.1

EIGENFUNCTIONS OF CT LTI SYSTEMS

 Input x is an eigenfunction of the system H if the corresponding output y is:

$$y = \lambda x$$

- Where λ is a complex constant called the **eigenvalue**.
- When input is an eigenfunction of the system H, the system acts as an ideal amplifier with the amplifier gain defined by λ .

- Eigenfunctions and eigenvalues are important concepts in linear algebra, differential equations and now in signal processing.
- Different types of systems will have different types of eigenfunctions – we are interested in learning the form of the eigenfunctions for the systems that we are interested in – LTI systems.

Conclusion first: complex exponentials e^{st} are the eigenfunctions of LTI systems:

- In our previous modules we have spent time discussing the nature of complex exponentials.
- In fact, the main reason why complex exponentials are extremely important in the context of signal processing is because of it being the eigenfunctions of LTI systems.

- Consider a CT LTI system with impulse response h(t).
- Let $x(t) = e^{st}$ be a complex exponential excitation / input to the system.
- Output:

$$y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)}d\tau$$
$$= e^{st} \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau$$

$$y(t) = e^{st} \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau$$

$$x(t) \qquad H(s)$$

$$H(s) = \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau$$
 is a complex constant.

$$y(t) = H(s)x(t)$$

• Important conclusion: complex exponentials e^{st} are the eigenfunctions of CT LTI systems.

$$X(t) = e^{st}$$

$$H(s)$$

$$y = x(t)H(s)$$

 This property is only valid for LTI systems, not time varying or non-linear systems.

- Suppose for the same CT LTI system, input x(t) can be expressed as:
- $x(t) = \sum_{k} a_k e^{s_k t}$, where a_k and s_k are complex constant.
- Because LTI,
- $y(t) = \sum_k x(t)H(s_k) = \sum_k a_k H(s_k)e^{s_k t}$

 Important conclusion: if an input to a LTI system is a linear combination of complex exponentials, the output can be expressed as a linear combination of the same complex exponentials.

Example: EM propagation

Real wireless environment is a very "harsh" environment: different paths will have different propagation loss - multipath fading

EM propagation in wireless environment

Find the system function of the channel causing the multipath fading:

EM propagation in wireless environment

Find the system function H(s) of the channel causing the multipath fading:

$$y(t) = \sum_{k=0}^{n} \alpha_k x(t - t_k)$$

Let $x(t) = e^{st}$, then:

$$y(t) = H(s)x(t) = \sum_{k=0}^{n} \alpha_k x(t - t_k)$$

$$H(s) = \frac{y(t)}{x(t)} = \sum_{k=0}^{n} \alpha_k e^{-st_k}$$

4.2

DEFINITION OF LAPLACE TRANSFORM AND INVERSE LAPLACE TRANSFORM

• For general values of complex variable $s = \sigma + j\omega$, with σ and ω being the real and imaginary parts, the Laplace transform of a general function x(t) is defined as:

$$X(s) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

The inverse Laplace transform, is defined as:

$$x(t) = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} X(s)e^{st} ds$$

• Where *c* is a constant chosen to ensure the convergence of the integral.

- In practice, we often refer x(t) and X(s) a Laplace transform pair.
- The Laplace transform is denoted using the Laplace symbol $\mathcal L$:

$$x(t) \overset{\mathcal{L}}{\leftrightarrow} X(s)$$
Or
 $X(s) = \mathcal{L}\{x(t)\}$

- Note: $s = \sigma + j\omega$ is a variable representing the complex frequency
- $\sigma = Re(s)$, indicates the rate of decay.
- $\omega = Im(s)$, indicates the rate of oscillation.

- This Laplace transform is also called bilateral Laplace transform due to integral from $-\infty$ to $+\infty$, differentiating from the unilateral Laplace transform.
- In the bilateral case, the lower limit is $-\infty$, whereas in the unilateral case, the lower limit is 0.
- Unilateral Laplace transform can be considered a special case of bilateral transform.

4.3

ROC, Poles and Zeros

Region of Convergence (ROC), also referred to as the region of existence, for the Laplace transform F(s), is the set of values of s (the region in the complex plane) for which the integral $F(s) \triangleq \int_{-\infty}^{+\infty} f(t)e^{-st}dt$ converges.

- If $F(s) \triangleq \int_{-\infty}^{+\infty} f(t)e^{-st}dt$ does not converge, then the Laplace transform of function f(t) does not exist.
- For the Laplace transform of f(t) to exist:
- $\left| \int_{-\infty}^{+\infty} f(t)e^{-st} dt \right| = \left| \int_{-\infty}^{+\infty} f(t)e^{-(\sigma+j\omega)t} dt \right| \le \int_{-\infty}^{+\infty} |f(t)e^{-\sigma t}| dt < \infty$
- σ needs to be chosen appropriately while ω does not affect the ROC.

Activity. Compute the Laplace transform of the following signals and determine ROC.

• (a)
$$f(t) = -e^{-at}u(-t)$$

Activity: compute the Laplace transform of the following signals and determine ROC.

• (b) $f(t) = e^{-at}u(t)$

Activity: compute the Laplace transform of the following signals and determine ROC.

• (c)
$$f(t) = e^{-t}u(t) + e^{3t}u(-t)$$

- For any rational function $F(s) = \int_{-\infty}^{+\infty} f(t)e^{-st}dt = L\{f(t)\} = N(s)/D(s)$.
- Zeros: points on the s-plane where the values of s that make the function F(s) = 0. indicated on s-plane as "o".
- Poles: points on the s-plane where the values of s that make the function $F(s) \to \infty$. Indicated on s-plane as "x".
- Usually only finite zeros and poles are considered, infinite zeros and poles are also possible.

- Property 1: The ROC consists of strips parallel to the $j\omega$ (axis, which means that it is the damping σ that defines the ROC, not frequency ω .
- The ROC is the values of σ such that $\left| \int_{-\infty}^{+\infty} f(t) e^{-st} dt \right| \le \int_{-\infty}^{+\infty} |f(t)e^{-\sigma t}| dt < \infty$, this condition is independent of frequency ω .

- Property 2: For rational Laplace transforms, no poles are included in the ROC.
- The ROC is the region where the Laplace transform is defined, whilst the poles are where the transform becomes non-convergent.

- Property 3: if f(t) is of finite duration and is absolutely integrable, then ROC is the entire s-plane.
- Since in this case,

$$\int_{T_1}^{T_2} |f(t)| dt < \infty$$

$$F(s) = \int_{T_1}^{T_2} f(t) e^{-st} dt \le \int_{T_1}^{T_2} |f(t)| |e^{-st}| dt = \int_{T_1}^{T_2} |f(t)| e^{-\sigma t} dt$$

$$< \max(e^{-\sigma t}) \int_{T_1}^{T_2} |f(t)| dt < \infty$$

- Property 4: if f(t) is right-sided, and if the line $Re\{s\} = \sigma_0$ is also in the ROC, then all values of s for which $Re\{s\} > \sigma_0$ are also in the ROC.
- This means that for right-sided f(t), if there exists a real value $Re\{s\} = \sigma_0$ where the transform converges, all the points to the right of that point are also in the ROC.
- $e^{-\sigma t}$ is decaying faster toward $+\infty$ than $e^{-\sigma_0 t}$ for $\sigma > \sigma_0$

- Property 5: if f(t) is left-sided, and if the line $Re\{s\} = \sigma_0$ is also in the ROC, then all values of s for which $Re\{s\} < \sigma_0$ are also in the ROC.
- This means that for left-sided f(t), if there exists a real value $Re\{s\} = \sigma_0$ where the transform converges, all the points to the left of that point are also in the ROC.
- $e^{-\sigma t}$ is decaying faster toward $-\infty$ than $e^{-\sigma_0 t}$ for $\sigma < \sigma_0$

- Property 6: if f(t) is two-sided, and if the line $Re\{s\} = \sigma_0$ is also in the ROC, then the ROC will consists of a strip in the s-plane that includes the line $Re\{s\} = \sigma_0$.
- Break f(t) into the sum of a right-sided and a left-sided signals.

• Property 7: if the Laplace transform $F(s) = L\{f(t)\}$ is rational, then its ROC bounded by poles or extends to infinity.

- Property 8: if the Laplace transform $F(s) = L\{f(t)\}$ is rational, then:
- If f(t) is right-sided, then the ROC is the region in the s-plane to the right of the rightmost pole.
- If f(t) is left-sided, then the ROC is the region in the s-plane to the left of the leftmost pole.

Let Laplace transform of f(t) to be:

$$F(s) = \frac{1}{(s+1)(s+2)}$$
, determine the ROC:

- (a) If f(t) is right-sided;
- (b) If f(t) is left-sided;
- (c) If f(t) is two-sided.

4.4

PROPERTIES OF LAPLACE TRANSFORM

Linearity of the Laplace transform: if

•
$$x_1(t) \stackrel{\mathcal{L}}{\leftrightarrow} X_1(s)$$
, ROC=R₁

•
$$x_2(t) \stackrel{\mathcal{L}}{\leftrightarrow} X_2(s)$$
, ROC=R₂

•
$$ax_1(t) + bx_2(t) \stackrel{\mathcal{L}}{\leftrightarrow} aX_1(s) + bX_2(s)$$

• ROC containing $R_1 \cap R_2$

Example: compute the Laplace transform of the following signal: $g(t) = A \cos(\Omega_0 t) u(t)$

Solution:
$$g(t) = A \frac{e^{j\Omega_0 t}}{2} u(t) + A \frac{e^{-j\Omega_0 t}}{2} u(t)$$

• Time shifting:

• If:
$$x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$$
, ROC=R

• Then: $x(t-t_0) \overset{\mathcal{L}}{\leftrightarrow} e^{-st_0}X(s)$, ROC=R

- s-domain shifting:
- If: $x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$, ROC=R
- Then: $e^{s_0 t} x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s-s_0)$,
- ROC=R+Re $\{s_0\}$

Example: compute the modulated periodic complex exponential $g(t) = e^{j\omega_0 t}x(t)$

Solution: because if $x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$, ROC=R

Then:
$$e^{s_0 t} x(t) \overset{\mathcal{L}}{\leftrightarrow} X(s - s_0)$$
, ROC=R+Re{s_0}

Thus using this s-domain shifting property, let:

$$s_0 = j\omega_0$$

Then

$$G(s) = X(s - j\omega_0)$$
, ROC = R

• Time scaling:

• If:
$$x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$$
, ROC = R

• Then:
$$x(at) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right)$$
, ROC = aR

Example: prove that if $x(t) \overset{\mathcal{L}}{\leftrightarrow} X(s)$, ROC=R

Then:
$$x(-t) \stackrel{\mathcal{L}}{\leftrightarrow} X(-s)$$
, ROC=-R

• Conjugation:

• If: $x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$, ROC=R

• Then: $x^*(t) \stackrel{\mathcal{L}}{\leftrightarrow} X^*(s^*)$, ROC=R

Convolution Property: if

•
$$x_1(t) \stackrel{\mathcal{L}}{\leftrightarrow} X_1(s)$$
, ROC = R_1

•
$$x_2(t) \stackrel{\mathcal{L}}{\leftrightarrow} X_2(s)$$
, ROC = R₂

•
$$x_1(t) * x_2(t) \stackrel{\mathcal{L}}{\leftrightarrow} X_1(s) X_2(s)$$

• ROC contains $R_1 \cap R_2$

Differentiation in the time domain:

• If
$$x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$$
, ROC = R

• Then $\frac{d}{dt}x(t) \stackrel{\mathcal{L}}{\leftrightarrow} sX(s)$, ROC contains R

 Generalization of the derivative property of the Laplace transform:

• If
$$x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$$
, ROC = R

• Then $\frac{d^N}{dt^N} x(t) \overset{\mathcal{L}}{\leftrightarrow} s^N X(s)$, ROC contains R

 Application of the linearity and the derivative properties of the Laplace transform makes solving differential equations an algebraic problem. • Differentiation in the s-domain:

• If
$$x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$$
, ROC = R

• Then
$$-tx(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{d}{ds}X(s)$$
, ROC = R

Example: if $u(t) \overset{\mathcal{L}}{\leftrightarrow} \frac{1}{s}$, $\sigma > 0$, find the inverse Laplace transform of $\frac{1}{s^2}$

Solution:
$$-tx(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{d}{ds} X(s), \sigma > 0$$

$$-tu(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{d}{ds} \left(\frac{1}{s}\right) = -\frac{1}{s^2}, \sigma > 0$$

$$tu(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{d}{ds} \left(\frac{1}{s}\right) = \frac{1}{s^2}, \sigma > 0$$

Time domain integration property:

• If
$$x(t) \stackrel{\mathcal{L}}{\leftrightarrow} X(s)$$
, ROC = R

• Then
$$\int_{-\infty}^{t} x(\tau) d\tau \stackrel{\mathcal{L}}{\leftrightarrow} \frac{X(s)}{s}$$
, ROC = R \cap Re(s)>0

4.5

TRANSFER FUNCTIONS

• (Recall) For general values of complex variable $s = \sigma + j\omega$, with σ and ω being the real and imaginary parts, the Laplace transform of a general function f(t) is defined as:

$$F(s) \triangleq \int_{-\infty}^{+\infty} f(t)e^{-st}dt, s \in ROC$$

The inverse Laplace transform, is defined as:

$$x(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} F(s)e^{st}ds, s \in ROC$$

• Let the impulse response of the system h(t), then the Laplace transform of h(t) is defined as:

$$H(s) \triangleq \int_{-\infty}^{+\infty} h(t)e^{-st}dt$$
, $s \in ROC$

• For LTI systems, h(t) completely characterizes the system in the time domain, relating its input with its corresponding output. Similarly, H(s) completely characterizes the system in the s domain.

• What type of insights do you get from studying H(s)?

Transfer Function

- Input signal x(t)
- LTI system function h(t)
- Output signal y(t) = x(t) * h(t)

Transfer Function

- Input signal $X(s) = \mathcal{L}\{x(t)\}$
- LTI system function $H(s) = \mathcal{L}\{h(t)\}$
- Output signal $Y(s) = \mathcal{L}\{y(t)\}$

•
$$Y(s) = \mathcal{L}{y(t)} = \int_{-\infty}^{+\infty} (h(t) * x(t)) e^{-st} dt$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} h(\tau) x(t - \tau) d\tau \right) e^{-st} dt$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x(t - \tau) e^{-st} dt \right) h(\tau) d\tau$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x(t - \tau) e^{-s(t - \tau)} d(t - \tau) \right) e^{-s\tau} h(\tau) d\tau$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x(\lambda) e^{-s\lambda} d\lambda \right) e^{-s\tau} h(\tau) d\tau = X(s) \left(\int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau \right)$$

$$= X(s) H(s)$$

• Conclusion: when you analyse the system in the s domain, the output y becomes: $Y(s) = \mathcal{L}\{y(t)\} = X(s)H(s)$

Transfer Function H(s): describes how the system "transfers" the excitation to the response. Through the Laplace transform, time-domain convolution becomes s-domain multiplication.

$$H(s) = \frac{Y(s)}{X(s)}$$

$$X(s) Y(s) = X(s)H(s)$$

Transfer Function

$$H(s) = \frac{Y(s)}{X(s)} = |H(s)|e^{j\Phi}$$

Connecting Systems with Different Transfer Functions

Series (cascade): $H(s) = H_1(s)H_2(s)$

Parallel: $H(s) = H_1(s) + H_2(s)$

4.6

ANALOG FILTERS

- Filters: systems that process signals in a frequency dependent manner.
- Filtering: to change the relative amplitudes of the frequency components in a signal or eliminate altogether.
- Filter can be carried out by analog or digital means.
- Filters can be divided into frequency shaping filters and frequency selective filters.

- Frequency-shaping filters: Systems that designed to change the shape of the frequency spectrum
- Applications: equalizer

 Frequency-shaping filters: Systems that designed to change the shape of the frequency spectrum

Applications:

- Frequency-selective filters: systems that designed to pass some frequencies undistorted and eliminate others completely.
- Applications:
- Communications: modulations and demodulation
- Manufacturing: common safety and harmonic pollution removal.
- General signal processing operations: speech synthesis, images processing, etc.

Types of frequency-selective filters:

- Low-pass filters: used to pass a band of preferred low frequencies and reject undesirable high frequencies.
- High-pass filters: used to pass a band of preferred high frequencies and reject undesirable low frequencies.
- Band-pass filters: used to pass a band of frequencies and reject low- and high-frequency bands.

• Ideal low-pass and its corresponding frequency response, here ω_c is the cutoff frequency

• Ideal high-pass and its corresponding frequency response, here ω_c is the cutoff frequency

• Ideal band-pass and its corresponding frequency response, here ω_l and ω_h is the lower and upper cutoff frequency

• Ideal band-stop filter and its corresponding frequency response, here ω_l and ω_h is the lower and upper stopband frequency

- Ideal filters vs nonideal filters
- Ideal filters are used to describe idealized systems in certain circumstances.
- Implementation of ideal filters are often limited or nonpractical.

Figure 4.55 Passband, stopband, and transition band in filters of various types.

- Question: How to achieve frequency selective filters?
- Answer: through the use of LTI systems described by linear constant-coefficient differential or difference equations.

- Reasons:
- Physical systems are often modeled as such.
- The resulting systems are easy to implement both digitally or analog since h.

Common analog filter designs.

- Butterworth: flat in the passband and the stopband, however, with a bigger transition band between the pass- and the stopband.
- Chebyshev I: reduces the transition band (a steeper roll-off) at the expense of ripples in the passband.
- Chebyshev II: also known as the inverse Chebyshev filters, reduces the transition band at the expense of ripples in the stopband.
- Elliptic: with equalized ripple (equiripple) in both the passband and the stopband.

84

		Advantages		Disadvantages
Analog Filters	•	Processing speed: usually much faster than digital filters. Amplitude dynamic range: much higher ratio between the highest process-able signal amplitude and the lowest process-able signal amplitude. Frequency dynamic range: much higher ratio between the highest process-able signal frequency and the lowest process-able signal frequency. Peripheral interfacing hardware support unnecessary: usually directly interfacing with the physical analog quantities both as inputs and outputs.	•	Component accuracy: The achievable accuracy is limited by the accuracy and linearity of the resistors and capacitors. Higher cost of construction for complex designs: the limited accuracy and linearity significantly complicates designs with high number of components. Less flexibility and adaptability: hardware based prototyping which is hard to design, test and troubleshoot.

Toro	וונויי	
ī	-	
	_	
	_	
מ	2	
dita	<u> </u>	

Advantages

- Compact design: main implementation unit usually only requires a microprocessor, which can be used to complete other DSP tasks.
- Flexible and adaptive design: software programmable and easier to prototype and troubleshoot.
- Component accuracy: the achievable accuracy is limited by the round-off error in digital calculator.
- Noise resistance: less prone to thermal noise compared to analog filters. Better achievable signal to noise ratio (SNR).
- Able to achieve linear phase (FIR).

Disadvantages

- Processing speed: slower than analog filters with extra latency.
- Peripheral interfacing hardware necessary: requires analog to digital converter (ADC) and digital to analog converter (DAC) to interface with the physical analog quantities as inputs and outputs.
- Computation must be complete in a sampling period – limits realtime operations.

4.7

FREQUENCY RESPONSE OF LTI SYSTEMS

Derive Frequency Response From Transfer Function

Consider a LTI system:

$$H(s) = \frac{Y(s)}{X(s)} = |H(s)|e^{j\Phi}, s = \sigma + j\omega$$

How to examine the impact of this transfer function at different frequencies?

Investigate the frequency response function $H(j\omega)$:

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = H(s)|_{\sigma=0}$$

Derive Frequency Response From Transfer Function

Note: the frequency response function $H(j\omega)$ only exists if $\sigma=0$ is part of the ROC

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = H(s)|_{\sigma=0}$$

Using Transfer Function to Analyse Frequency Response

Many LTI systems of practical interest can be represented by linear differential equations with constant coefficients as follows:

$$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} b_k \frac{d^k}{dt^k} x(t)$$

$$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} k_k \frac{d^k}{dt^k} x(t)$$

Transform into the *s*-domain, use linearity and derivative properties of the Laplace transform.

$$\sum_{k=0}^{N} a_k s^k Y(s) = \sum_{k=0}^{M} b_k s^k X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

Thus for systems represented by linear constant-coefficient differential equations:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

Zeros: the solutions of $\sum_{k=0}^{M} b_k s^k = 0$

Poles: the solutions to $\sum_{k=0}^{N} a_k s^k = 0$

If only interested in the frequency response of such a system:

$$H(j\omega) = H(s)|_{\sigma=0} = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k}$$

Zeros (z₁,..., z_M): the solutions of $\sum_{k=0}^{M} b_k (j\omega)^k = 0$ Poles (p₁, ..., p_N): the solutions to $\sum_{k=0}^{N} a_k (j\omega)^k = 0$

Example: given a LTI system $H(s) = \frac{s}{s+3}$, its frequency response: $H(j\omega) = \frac{j\omega}{j\omega+3}$. Analyze the magnitude and phase of the frequency response of this system.

$$|H(j\omega)| = \left| \frac{j\omega}{j\omega + 3} \right|$$

$$\arg(H(j\omega)) = \arg(j\omega) - \arg(j\omega + 3)$$

 $\omega \rightarrow 0$:

 $\omega \rightarrow \infty$:

Homework:

Review: in-class examples, textbook chapter 4.

Textbook examples: 4.1, 4.6, 4.7, 4.10, 4.27

Problems: 4.1-2, 4.3-11, 4.3-14