```
##
   fixed.acidity
                 volatile.acidity citric.acid
                                              residual.sugar
##
   Min. : 4.60 Min. :0.1200 Min. :0.000 Min. : 0.900
   1st Qu.: 7.10 1st Qu.:0.3900 1st Qu.:0.090 1st Qu.: 1.900
   Median: 7.90 Median: 0.5200 Median: 0.260 Median: 2.200
##
   Mean : 8.32 Mean : 0.5278 Mean : 0.271
                                              Mean : 2.539
##
##
   3rd Qu.: 9.20 3rd Qu.:0.6400
                               3rd Qu.:0.420
                                              3rd Qu.: 2.600
        :15.90 Max. :1.5800
                               Max. :1.000
                                              Max. :15.500
##
    chlorides
                 free.sulfur.dioxide total.sulfur.dioxide
##
        :0.01200 Min. : 1.00
                                Min. : 6.00
   1st Qu.:0.07000 1st Qu.: 7.00
                                   1st Qu.: 22.00
##
                                  Median : 38.00
   Median :0.07900 Median :14.00
##
   Mean :0.08747 Mean :15.87
                                  Mean : 46.47
##
                                 3rd Qu.: 62.00
Max. :289.00
   3rd Qu.:0.09000 3rd Qu.:21.00
##
  Max. :0.61100 Max. :72.00
                  pH sulphates
##
   density
                                               alcohol
   Min. :0.9901 Min. :2.740 Min. :0.3300 Min. : 8.40
##
   1st Qu.:0.9956
                 1st Qu.:3.210 1st Qu.:0.5500
##
                                              1st Ou.: 9.50
##
   Median :0.9968
                 Median :3.310 Median :0.6200
                                              Median :10.20
                 Mean :3.311 Mean :0.6581 Mean :10.42
##
   Mean :0.9967
##
   3rd Qu.:0.9978
                  3rd Qu.:3.400 3rd Qu.:0.7300 3rd Qu.:11.10
##
   Max. :1.0037
                  Max. :4.010 Max. :2.0000 Max. :14.90
   quality
##
  Min. :3.000
   1st Qu.:5.000
##
   Median :6.000
##
   Mean :5.636
##
   3rd Qu.:6.000
        :8.000
```

```
fixed.acidity
                  volatile.acidity citric.acid
                                                residual.sugar
                  Min. :0.0800 Min. :0.0000 Min. : 0.600
   Min. : 3.800
##
   1st Qu.: 6.300
                  1st Qu.:0.2100
                                1st Qu.:0.2700
                                                1st Qu.: 1.700
##
   Median : 6.800
                  Median :0.2600 Median :0.3200
                                                Median : 5.200
                                                     : 6.391
##
   Mean : 6.855
                  Mean :0.2782 Mean :0.3342 Mean
                  3rd Qu.:0.3200 3rd Qu.:0.3900
                                                3rd Qu.: 9.900
##
   3rd Qu.: 7.300
##
   Max. :14.200 Max. :1.1000 Max. :1.6600 Max.
                  free.sulfur.dioxide total.sulfur.dioxide
    chlorides
##
  Min. :0.00900 Min. : 2.00 Min. : 9.0
   1st Qu.:0.03600    1st Qu.: 23.00
                                   1st Qu.:108.0
##
                                 Median :134.0
   Median :0.04300 Median : 34.00
##
                                   Mean :138.4
                  Mean : 35.31
   Mean :0.04577
##
                                 3rd Qu.:167.0
Max. :440.0
                  3rd Qu.: 46.00
##
   3rd Qu.:0.05000
##
   Max. :0.34600
                  Max. :289.00
   density
                  pH sulphates
##
                                                  alcohol
##
   Min. :0.9871 Min. :2.720 Min. :0.2200 Min. : 8.00
   1st Qu.:0.9917    1st Qu.:3.090    1st Qu.:0.4100    1st Qu.: 9.50
##
   Median :0.9937
                  Median :3.180 Median :0.4700 Median :10.40
##
   Mean :0.9940
                  Mean :3.188 Mean :0.4898 Mean :10.51
                  3rd Qu.:3.280 3rd Qu.:0.5500 3rd Qu.:11.40
##
   3rd Qu.:0.9961
                  Max. :3.820 Max. :1.0800 Max. :14.20
##
   Max. :1.0390
   quality
##
##
        :3.000
##
   1st Ou.:5.000
##
   Median :6.000
##
   Mean :5.878
   3rd Qu.:6.000
## Max.
         :9.000
```

Conhecendo os conjuntos de dados

O conjunto de dados winequality-red possui 1599 observações e 12 variaveis relacionadas. Sendo que para facilitar as análises posteriores foi criada uma nova variável chamada de 'avaliacao'.

O conjunto de dados winequality-white possui 4898 observações e 12 variaveis relacionadas. Sendo que para facilitar as análises posteriores foi criada uma nova variável chamada de 'avaliacao'.

Nos histogramas abaixo distribuiremos as obserções de acordo do os valores atribuídos à variável quality.

Histograma da variável qualidade segmentada por avaliação para cada tipo de vinho

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Matriz de correlação entre as variáveis do conjunto de dados

Por meio da matriz de correlação podemos encontrar os relacionamentos mais significativos entre as variáveis do conjunto de dados.

Box plot entre Teor Alcoólico e Qualidade

quality

Como existe uma correlação significativa entre as variáveis alcohol e quality para ambos os tipos de vinho, podemos analisar adistribuição das observações entre as categorias de Avaliação. E verificamos que existe uma diferenciação do teor alcoólico dos vinhos com uma avaliação mais alta.

1

0.44

Box plot entre Volatile.acidity e Quality

Também existe uma correlação significativa entre as variáveis volatie.acidity e quality para os vinhos tintos e que não se repete para os vinhos brancos. Para os vinhos tintos, observamos que a volatile.acidity cai de acordo com que as notas de qualidade aumentam.

```
#Box plot - Volatile.acidity x quality, segmentado por Avaliacao
#ggplot(aes(x=quality, y=volatile.acidity, color=avaliacao), data=vinho_tinto) +
  geom_boxplot() +
  geom_jitter(alpha=1/8) +
  facet_wrap(~avaliacao) +
  scale_color_brewer(type='qual')
p1 <- ggplot(aes(x=avaliacao, y=volatile.acidity), data=vinho_tinto) +</pre>
  #geom_jitter(alpha=1/8) +
  geom_boxplot() +
  stat_summary(fun.y=mean, geom="point", shape=4) +
  xlab("Avaliação") +
 ylab("Volatile acidity (acetic acid - g / dm^3)") +
  ggtitle("Acidez Volátil dos Vinhos Tintos")
p2 \leftarrow ggplot(aes(x = quality, y = volatile.acidity), data = vinho_tinto) +
  geom_smooth(aes(color=avaliacao), stat = "summary", fun.y = mean) +
  xlab("Qualidade") +
  ylab("Volatile acidity (acetic acid - g / dm^3)")
p3 <- ggplot(aes(x=avaliacao, y=volatile.acidity), data=vinho_branco) +
  #geom_jitter(alpha=1/8) +
  geom_boxplot() +
  stat_summary(fun.y=mean, geom="point", shape=4) +
  xlab("Avaliação") +
  ylab("Volatile acidity (acetic acid - g / dm^3)") +
  ggtitle("Acidez Volátil dos Vinhos Brancos")
p4 <- ggplot(aes(x = quality, y = volatile.acidity), data = vinho_branco) +
  geom_smooth(aes(color=avaliacao), stat = "summary", fun.y = mean) +
  xlab("Qualidade") +
 ylab("Volatile acidity (acetic acid - g / dm^3)")
grid.arrange(p1, p2, p3, p4, ncol=2)
```


Box plot entre Density e Quality

Já para o conjunto de dados de vinho branco, há uma correlação identificável entre as variáveis density e quality. Assim, podemos analisar a distribuição das observações entre as categorias de Avaliação. Infelizmente como a correlação entre as variáveis não é tão elavada, não foi possível identificar com ênfase no gráfico a segmentação entre classes de avaliação.

```
p1 <- ggplot(aes(x=avaliacao, y=density), data=vinho_tinto) +</pre>
 #geom_jitter(alpha=1/8) +
  geom boxplot() +
  stat_summary(fun.y=mean, geom="point", shape=4) +
  scale_y_continuous(limits = c(0.990, 1.005)) +
 xlab("Avaliação") +
 ylab("Density (g / cm^3)") +
  ggtitle("Densidade dos Vinhos Tintos")
p2 <- ggplot(aes(x = quality, y =density), data = vinho_tinto) +</pre>
  #geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom_smooth(aes(), stat = "summary", fun.y = mean) +
  geom_smooth(aes(color=avaliacao), stat = "summary", fun.y = mean)+
  scale y continuous(limits = c(0.990, 1.005)) +
 xlab("Qualidade") +
 ylab("Density (g / cm^3)")
p3 <- ggplot(aes(x=avaliacao, y=density), data=vinho_branco) +
 #geom_jitter(alpha=1/8) +
  geom_boxplot() +
  stat_summary(fun.y=mean, geom="point", shape=4) +
  scale_y_continuous(limits = c(0.990, 1.005)) +
  xlab("Avaliação") +
 ylab("Density (g / cm^3)") +
  ggtitle("Densidade dos Vinhos Brancos")
p4 <- ggplot(aes(x = quality, y =density), data = vinho_branco) +
  #geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom smooth(aes(), stat = "summary", fun.y = mean) +
  geom_smooth(aes(color=avaliacao), stat = "summary", fun.y = mean) +
 scale_y_continuous(limits = c(0.990, 1.005)) +
 xlab("Qualidade") +
 ylab("Density (g / cm^3)")
grid.arrange(p1, p2, p3, p4, ncol=2)
```

```
## Warning: Removed 348 rows containing non-finite values (stat_boxplot).
```

```
## Warning: Removed 348 rows containing non-finite values (stat_summary).
## Warning: Removed 348 rows containing non-finite values (stat_summary).
```


Relação entre Qualidade e as três variáveis com maior correlação para cada tipo de vinho

Após analisarmos cada uma das uma das correlações de forma individualizada, podemos construir uma visão consolidada entre elas. E verificamos o comportamento de cada uma delas com o aumento das notas de qualidade, onde alcohol tem uma variação positiva, volatile.acidity negativa e sulphates segue uma distribuição normal, no caso dos vinhos tintos.

```
# Relacao Qualidade e tres variaveis com mais correlacao para os vinhos tinto
p1 <- ggplot(aes(x = alcohol, y =quality), data = vinho_tinto) +
  geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom_line(aes(), stat = "summary", fun.y = mean)
  geom_smooth(se = FALSE,color='red') +
  xlab("% by volume") +
  ylab("Qualidade") +
  ggtitle("Alcohol")
p2 <- ggplot(aes(x = volatile.acidity, y =quality), data = vinho_tinto) +</pre>
  geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom line(aes(), stat = "summary", fun.y = mean)
  geom_smooth(se = FALSE,color='red') +
 xlab("Acetic acid - g / dm^3") +
 ylab("Qualidade") +
  ggtitle("Volatile.acidity")
p3 <- ggplot(aes(x = sulphates, y =quality), data = vinho_tinto) +
  geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom_line(aes(), stat = "summary", fun.y = mean)
  geom_smooth(se = FALSE,color='red') +
  scale_x_log10() +
  xlab("potassium sulphate - g / dm3") +
 ylab("Qualidade") +
  ggtitle("Sulphates")
grid.arrange(p1, p2, p3, ncol=3, top = textGrob("3 variáveis com maior correlação - vinhos tintos",gp=gpar
(fontsize=18,font=3)))
```

```
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
```

3 variáveis com maior correlação - vinhos tintos

No caso dos vinhos brancos, observamos que o aumento das notas de qualidade, acompanha uma variação positiva para o teor alcoólico, negativa para densidade e cloretos.

```
# Relacao Qualidade e tres variaveis com mais correlacao para os vinhos brancos
p1 <- ggplot(aes(x = alcohol, y =quality), data = vinho_branco) +
  geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom_line(aes(), stat = "summary", fun.y = mean)
  geom_smooth(se = FALSE,color='red') +
  xlab("% by volume") +
 ylab("Qualidade") +
  ggtitle("Alcohol")
p2 <- ggplot(aes(x = density, y =quality), data = vinho_branco) +</pre>
  geom_point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom_line(aes(), stat = "summary", fun.y = mean)
  geom_smooth(se = FALSE,color='red') +
  scale_x_continuous(limits = c(0.990,quantile(vinho_branco$density, 0.99))) +
  xlab("g / cm^3") +
 ylab("Qualidade") +
  ggtitle("Density")
p3 <- ggplot(aes(x = chlorides, y =quality), data = vinho_branco) +
  geom point(alpha = 1/10, size = 1/2, position = 'jitter') +
  #geom_line(aes(), stat = "summary", fun.y = mean)
  geom_smooth(se = FALSE,color='red') +
  scale_x_log10() +
  xlab("sodium chloride - g / dm^3") +
  ylab("Qualidade") +
  ggtitle("Chlorides")
grid.arrange(p1, p2, p3, ncol=3, top = textGrob("3 variáveis com maior correlação - vinhos brancos",gp=gpar
(fontsize=18, font=3)))
```

```
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
```

```
## Warning: Removed 394 rows containing non-finite values (stat_smooth).
```

```
## Warning: Removed 407 rows containing missing values (geom_point).
```

```
## geom_smooth() using method = 'gam' and formula 'y ~ s(x, bs = cs')'
```

3 variáveis com maior correlação - vinhos brancos

O relacionamento entre Alcohol, Volatile.acidity e Quality nos vinhos tintos

Como os maiores índices de correlação da variável quality são com as variáveis alcohol e volatile.acidity para o conjunto de dados dos vinhos tintos, iremos representá-las em um gráfico segmentado pelo grau de avaliação.

```
## Warning: Removed 29 rows containing non-finite values (stat_smooth).
```

```
## Warning: Removed 30 rows containing missing values (geom_point).
```

Relacionamento dos vinhos tintos entre Teor Alcoólico e Acidez Volátil

O relacionamento entre Alcohol, Density e Quality nos vinhos brancos

Como os maiores índices de correlação da variável quality são com as variáveis alcohol e volatile.acidity para o conjunto de dados dos vinhos brancos, iremos representá-las em um gráfico segmentado pelo grau de avaliação.

```
#
#Quality possui as maiores correlações com as variaveis: alcohol e volatile.acidity. No grafico abaixo rela
cionamos alcohol e volatile.acidity, destacando a variavel quality e segmentando a visualização por Avaliaç
ão.
ggplot(data = vinho_branco, aes(x = alcohol, y = density, color=as.factor(quality))) +
    facet_wrap(~avaliacao) +
    scale_x_continuous(lim = c(8, quantile(vinho_branco$alcohol, 0.99))) +
    scale_y_continuous(lim = c(0.990, quantile(vinho_branco$density, 0.99))) +
    geom_point(alpha = 0.075, size = 3, position = 'jitter') +
    scale_color_brewer(type = 'qual',
    guide = guide_legend(title = 'Avaliação', reverse = T,
        override.aes = list(alpha = 1, size = 2)), palette = 1) +
    stat_smooth(method = 'lm') +
    xlab("Alcohol (% by volume)") +
    ylab("Density (g / cm^3)") +
    ggtitle("Relacionamento dos vinhos brancos entre Teor Alcoólico e Densidade")
```

```
## Warning: Removed 406 rows containing non-finite values (stat_smooth).
```

```
## Warning: Removed 427 rows containing missing values (geom_point).
```

```
## Warning: Removed 33 rows containing missing values (geom_smooth).
```

Relacionamento dos vinhos brancos entre Teor Alcoólico e Densidade

#Referências utilizadas:

- https://s3.amazonaws.com/content.udacity-data.com/courses/ud651/diamondsExample_2016-05.html (https://s3.amazonaws.com/content.udacity-data.com/courses/ud651/diamondsExample_2016-05.html)
- http://rstudio-pubs-static.s3.amazonaws.com/198466_b17daa66ce6748a6a91cd27017608720.html (http://rstudio-pubs-static.s3.amazonaws.com/198466_b17daa66ce6748a6a91cd27017608720.html)
- http://rstudio-pubs-static.s3.amazonaws.com/53416_83b9685bc8c54afebcbb1e65a7c688fc.html (http://rstudio-pubs-static.s3.amazonaws.com/53416_83b9685bc8c54afebcbb1e65a7c688fc.html)
- https://rpubs.com/inageorgescu/whitewine2 (https://rpubs.com/inageorgescu/whitewine2)
- http://www.sthda.com/english/wiki/visualize-correlation-matrix-using-correlogram (http://www.sthda.com/english/wiki/visualize-correlation-matrix-using-correlogram)
- https://www.wardsci.com/www.wardsci.com/images/Chemistry_of_Wine.pdf (https://www.wardsci.com/www.wardsci.com/images/Chemistry_of_Wine.pdf)
- https://revistaadega.uol.com.br/artigo/o-alcool-e-acidez-dos-vinhos_6055.html (https://revistaadega.uol.com.br/artigo/o-alcool-e-acidez-dos-vinhos 6055.html)
- https://rpubs.com/szon0111/P4#targetText=Wine%20seems%20to%20have%20better,is%20between%208%20and%2010 (https://rpubs.com/szon0111/P4#targetText=Wine%20seems%20to%20have%20better,is%20between%208%20and%2010)
- http://periodicos.ses.sp.bvs.br/scielo.php?script=sci_arttext&pid=S0073-98552011000200009&Ing=pt&nrm=iso (http://periodicos.ses.sp.bvs.br/scielo.php?script=sci_arttext&pid=S0073-98552011000200009&Ing=pt&nrm=iso)