Série 1 : Suivi temporel d'une transformation chimique -Vitesse de réaction

EXERCICE 1

A la date t=0 s, on ajoute une solution acidifiée d'iodure de potassium à une solution d'eau oxygénée de concentration telle que les ions iodure et les ions oxonium soient en excès. A l'aide d'une technique adaptée, on obtient la courbe suivante donnant l'évolution temporelle de la concentration $[I_2]$ en fonction de temps. La transformation est modélisée par la réaction d'équation.

$$H_2O_{2 (aq)} + 2I_{(aq)}^- + 2H_3O_{(aq)}^+ = I_{2 (aq)} + 4H_2O_{(l)}$$

- 1- Dresser le tableau d'avancement de la réaction correspond à la transformation étudiée.
- 2- Définir la vitesse volumique d'une réaction chimique, puis donne son expression en fonction de [I2].
- 3 Calculer les vitesses de réaction aux instants : t = 0 s et t = 300 s.
- 4- Quel facteur cinétique permet d'expliquer le résultat de question 3?
- 5- Sur même courbe, représenter l'allure de la courbe si on reproduit l'expérience à une température plus élevée. Justifier.

EXERCICE 2:

On étudie la transformation des ions iodure par les ions peroxodisulfate, pour cela on introduit dans un bécher un volume $V_1 = 50$ mL de solution aqueuse de peroxodisulfate de potassium $\left(2K^+_{(aq)} + S_2O_8^{2-}_{(aq)}\right)$ de concentration molaire $C_1 = 1$ mol L^{-1} .

À $\mathbf{t} = \mathbf{0}\mathbf{s}$, on ajoute $V_2 = 50$ mL de solution aqueuse \mathbf{d}' iodure de potassium $\left(K_{(aq)}^+ + I^-(aq)\right)$ de concentration $C_2 = 1$ mol. L^{-1} .

Le suivi de cette réaction a permis de tracer la courbe ci-dessous donnant la quantité de matière

Rection sont $S_2 O_8^{2-} / S O_4^{2-}$ et I_2 / I^-

- 2-dresser le tableau d'avancement de la réaction.
- 3-déterminer l'avancement maximal x_{max} et le réactif limitant.
- 4-trouver l'expression de la vitesse volumique de la réaction en fonction de $n(S_2O_8^{2-}(aq))$.
- 5-calculer la vitesse volumique à l'instant t = 10 min.
- 6-déterminer la valeur du temps de demi-réaction $t_{1/2}$

EXERCICE 3

Lors de l'étude de la réaction totale des ions iodures I⁻avec les ions peroxodisulfate $S_2O_8^{2-}$ on a obtenu

le graphe de la quantité de matière de I⁻en fonction du temps :

L'équation de la réaction chimique est :

$$S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_{2(aq)}$$

- 1- Dresser le tableau d'avancement de la réaction correspond à la transformation étudiée
- 2-Définir la vitesse d'une réaction chimique. Donner son expression en fonction de $n(I^-)$.
- 3- Déterminer graphiquement sa valeur à la date t=0. Que peut-on dire de la valeur de la vitesse à cette date ?
- 4- Définir le temps de demi-réaction $t_{1/2}$. Trouver sa valeur graphiquement

Donnée: Volume de mélange réactionnel V_s = 20 mL

EXERCICE 4

On introduit, à la date t=0, la quantité de matière n_0 de l'éthanoate d'éthyle dans un bêcher contenant la même quantité de matière n_0 d'hydroxyde de sodium $HO_{(aq)}^- + Na_{(aq)}^+$ de concentration c=10 mol. m^{-3} et de volume V_0 . On considère que le mélange réactionnel obtenu a un volume $V \approx V_0 = 10^{-4} \ m^3$. L'équation associée à la réaction chimique s'écrit :

$$\mathrm{C_4H_8O_{2(\ell)}+HO^-_{(aq)}} \rightarrow \mathrm{A}^-_{(aq)} + \mathrm{B}_{(aq)}$$

1. Dresser le tableau d'avancement de la réaction.

2. On suit l'évolution de la réaction en mesurant la conductivité σ du mélange réactionnel à des instants différents.

Le graphe ci-dessous représente $\sigma(t)$ ainsi que la tangente (T) à l'origine. A chaque instant t, l'avancement x(t) peut être calculé par l'expression :

$$x(t) = -6.3 \times 10^{-3} \cdot \sigma(t) + 1.57 \times 10^{-3}$$

; avec $\sigma(t)$ la conductivité du mélange réactionnel exprimée en $S.\,m^{-1}$ et x(t) en mol. En exploitant la courbe expérimentale :

- (a) Calculer $\sigma_{1/2}$, la conductivité du mélange réactionnel quand $x = \frac{x_{\text{max}}}{2}$; x_{max} étant l'avancement maximal de réaction.
- (b) Trouver, en minutes, le temps de demi-réaction $t_{1/2}$.
- (c) Déterminer, en mol. $m^{-3} \cdot min^{-1}$, la vitesse volumique v de la réaction à la date t=0.