Matemática Discreta

2020/2021 Relações binárias

Professores: João Araújo Júlia Vaz Carvalho Departamento de Matemática FCT/UNL Manuel Silva

Programa

- Parte 1 Conjuntos e Relações e Funções
 - Conjuntos, representações e operações básicas; conjunto das partes; cardinalidade.
 - Relações binárias: equivalências e ordens parciais.
 - 3 Funções: bijecções; inversão e composição.
- Parte 2 Indução
 - Definições indutivas
 - 2 Indução nos naturais e estrutural
 - O Primeiro e segundo princípios de indução
 - Funções recursivas e provas por indução
- Parte 3 Grafos e Aplicações
 - Generalidades
 - Onexidade
 - Arvores
 - Grafos Eulerianos
 - 6 Matrizes e grafos

1.2 Relações Binárias

Definição

Seja X um conjunto. Chamamos relação binária sobre X a todo o subconjunto de $X \times X$.

Mais geralmente, uma relação n-ária ($n \in \mathbb{N}$) sobre X é um subconjunto BC Xx de X^n .

Exemplos R = X' + UNTRRY

- **1** Seja $X = \{1, 2, 3\}$. O conjunto $R = \{(1, 1), (2, 3), (3, 2)\}$ é uma relação binária sobre X.
- ② Sejam $X = \{1, 2, 3, 4\}$. O conjunto $R = \{(x, y) \in X^2 \mid x + y \le 5\}$ é uma relação binária sobre X.

Notação

Sejam X um conjunto e R uma relação binária sobre X. Dado um par $(x,y) \in X \times X$, escrevemos também xRy para designar que $(x,y) \in R$.

Definição

Sejam X e Y dois conjuntos. Uma relação de X em Y é um subconjunto de $X \times Y$. (No caso particular em que X = Y temos uma relação binária sobre X.)

Seja R uma relação de X em Y. Chamamos domínio de R ao conjunto

e imagem de R ao conjunto

$$\int \mathcal{Y} / \mathcal{F}_{X,Y} = \{ y \in Y \mid (\exists x \in X) (x,y) \in R \}.$$

A relação inversa de R é a relação R^{-1} de Y em X definida por

$$R^{-1} = \{ (y, x) \mid (x, y) \in R \}.$$

A relação composta da relação R de X em Y com a relação S de Y em Z é a relação $R \circ S$ de X em Z definida por

$$R \circ S = \{(x, y) \mid (\exists a \in Y) \ (x, a) \in R \in (a, y) \in S\}.$$

Exemplo

Sobre o conjunto $X = \{1, 2, 3, 4, 5, 6\}$, considere as relações $R = \{(1, 1), (2, 2), (2, 3), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5)\}$ e $S = \{(1, 1), (1, 2), (2, 5), (1, 6)\}$.

A imagem de R é o conjunto $\{1, 2, 3, 4, 5, 6\}$.

O domínio de S é o conjunto $\{1,2\}$.

A relação inversa de S, S^{-1} , será dada pela troca dos elementos nos pares ordenados que definem S.

Assim temos $S^{-1} = \{(1,1), (2,1), (5,2), (6,1)\}.$

Para encontrar a composta $R \circ S$ pode-se pensar assim:

- 1 é aplicado por R em 1, e 1 é aplicado por S em 1, 2 e 6; logo na composta temos (1,1) e (1,2). De forma sintética 1R1S1 e 1R1S2 pelo que na composta temos (1,1), (1,2), (1,6).
- 2 2R2S5 e 2R3S; logo na composta temos apenas (2,5).
- 3RS e 4RS pelo que na composta não aparece nenhum par ordenado cuja primeira coordenada seja 3 ou 4.
- § 5R4S, 5R5S,6R4S e 6R5S pelo que não há mais pares na composta.

Representação de uma relação binária

Seja R uma relação binária sobre um conjunto finito $X = \{x_1, \dots, x_n\}$.

• Através de uma matriz de adjacências: a matriz de adjacências de R é a matriz $A = [a_{ij}]_{n \times n} \in \mathcal{M}_{n \times n}(\{0,1\})$ definida por:

 $a_{ij} = \left\{ \begin{array}{ll} 1 & \text{se} & (x_i, x_j) \in R \\ 0 & \text{se} & (x_i, x_j) \notin R \end{array} \right.$

② Através de um diagrama: os elementos de X são representados por pontos e dois pontos do diagrama que representam x_i e x_j estão unidos por uma seta, com orientação de x_i para x_j, se (x_i, x_j) ∈ R.

Exemplo

Sejam $X = \{1,2,3,4\}$ e $R = \{(1,1),(1,4),(2,1),(2,2),(3,2),(4,1),(4,4)\}$. A matriz das adjacências de R (considerando $x_i = i, i = 1,2,3,4$) é a matriz

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} e e^{\int_{-4}^{1} e^{2}} \text{ \'e um diagrama que representa } R.$$

Se R é relação binária em $X = \{1, 2, 3, 4\}$ dada pela matriz das adjacências de R (considerando $x_i = i, i = 1, 2, 3, 4$)

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}$$

Então a relação R é $\{(1,1),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}.$

Definição

Dizemos que uma relação binária R sobre X é:

- reflexiva se $(\forall x \in X) xRx$;
- irreflexiva se $(\forall x \in X) (x, x) \notin R$;
- simétrica se $(\forall x, y \in X) xRy \Rightarrow yRx$;
- anti-simétrica se $(\forall x, y \in X) xRy \land yRx \Rightarrow x = y;$
- transitiva se $(\forall x, y, z \in X) xRy \land yRz \Rightarrow xRz$.

Definição

Uma relação binária reflexiva, simétrica e transitiva diz-se uma relação de equivalência.

Exemplos

• Seja $X = \{1, 2, 3, 4\}$. A relação $R = \{(1, 1), (1, 2), (4, 1), (2, 2), (3, 3), (1, 4), (2, 1), (4, 4)\}$ não é uma relação de equivalência pois não é transitiva: 4R1R2, mas não temos 4R2.

• A relação R definida em $\mathbb R$ por, para quaisquer $x,y\in R$,

$$xRy \Leftrightarrow x^2 = y^2,$$

é uma relação de equivalência.

• Em \mathbb{Z} a relação \sim definida por, para quaisquer $m, n \in \mathbb{Z}$,

$$m \sim n \Leftrightarrow |m| = |n|,$$

é uma relação de equivalência.

- Sejam X um conjunto e $\Delta = \{(x,x) \mid x \in X\}$. Então Δ é uma relação de equivalência sobre X (denominada relação identidade sobre X).
- Sejam X um conjunto e $\Omega = \{(x,y) \mid x,y \in X\}$. Então Ω é uma relação de equivalência sobre X (denominada relação universal sobre X).
- Para cada $x \in \mathbb{R}$, denotemos por $\lfloor x \rfloor$ o maior número inteiro y tal que $y \le x$ (parte inteira de x). A relação \sim definida em \mathbb{R} por, para quaisquer $x, y \in \mathbb{R}$,

 $x \sim y \Leftrightarrow \lfloor x \rfloor = \lfloor y \rfloor$, arredondas para baixo

é uma relação de equivalência.

A proposição seguinte permite classificar as relações binárias, em particular, permite verificar se uma dada relação binária é ou não uma relação de equivalência.

Proposição

Sejam X um conjunto, R uma relação binária sobre X e $\Delta = \{(x,x) : x \in X\}$. Então:

- **1** R é reflexiva se, e só se, $\Delta \subseteq R$.
- **2** R é irreflexiva se, e só se, $\Delta \cap R = \emptyset$.
- **3** R é simétrica se, e só se, $R = R^{-1}$.
- R é anti-simétrica se, e só se, $(R \cap R^{-1}) \setminus \Delta = \emptyset$.
- **5** R é transitiva se, e só se, $(R \setminus \Delta) \circ (R \setminus \Delta) \subseteq R$.

Definição

Dados uma relação de equivalência R num conjunto X e um elemento $a \in X$, chamamos classe de equivalência de a (módulo R), que representamos usualmente por $[a]_R$ (ou, se não houver ambiguidade, simplesmente por [a] ou, em certos casos, por \overline{a}), ao conjunto dos elementos x de X tais que $(x,a) \in R$, isto é a

$$[a]_R = \{x \in X \mid xRa\}.$$

Ao conjunto cujos elementos são as classes de equivalência $[a]_R$, com $a \in X$, chamamos conjunto cociente de X por R e representamo-lo por X/R.

Exemplo

Seja $X = \{1, 2, 3, 4, 5\}$. A relação $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 1), (1, 5), (5, 1), (2, 5), (5, 2)\}$ é uma equivalência sobre X e temos $[1] = \{1, 2, 5\} = [2] = [5], [3] = \{3\}, [4] = \{4\},$ donde $X/R = \{\{1, 2, 5\}, \{3\}, \{4\}\}.$

Exemplo

Fixado $n \in \mathbb{N}$, em \mathbb{Z} definimos uma relação de equivalência \equiv_n da seguinte forma: para quaisquer $x,y \in \mathbb{Z}$,

$$x \equiv_n y \Leftrightarrow (\exists k \in \mathbb{Z}) x - y = kn.$$

Designamos esta relação em \mathbb{Z} por relação de congruência módulo n.

Para indicar que $x \equiv_n y$, usualmente escrevemos $x \equiv y \pmod{n}$.

Sabemos também que:

$$\overline{0} = \{\dots, -2n, -n, 0, n, 2n, \dots\} = n\mathbb{Z},
\overline{1} = \{\dots, 1 - 2n, 1 - n, 1, 1 + n, 1 + 2n, \dots\} = 1 + n\mathbb{Z},
\vdots
\overline{k} = \{\dots, k - 2n, k - n, k, k + n, k + 2n, \dots\} = k + n\mathbb{Z},
\vdots
\overline{n-1} = \{\dots, -n-1, -1, n-1, 2n-1, 3n-1, \dots\} = (n-1) + n\mathbb{Z},$$

donde $\mathbb{Z}_n = \mathbb{Z}/R = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$

Proposição

reflexiva, simétrica e transitiva

Sejam X um conjunto e R uma relação de equivalência sobre X. Para quaisquer a, $b \in X$, as seguintes afirmações são equivalentes:

- bRa;
- $arrow b \in [a]_R;$

Teorema

Sejam X um conjunto e R uma relação de equivalência sobre X. Temos:

- Para qualquer $x \in X$, $[x]_R \neq \emptyset$ (pela reflexividade)
- ② Para quaisquer $x, y \in X$, $[x]_R = [y]_R$ ou $[x]_R \cap [y]_R = \emptyset$ (pela transitivdiade)
- 4 A relação R fica determinada pelas suas classes de equivalência.

Seja X um conjunto. Dizemos que um conjunto não vazio $\{X_i \mid i \in I\}$ de subconjuntos não vazios de X é uma partição de X se:

- $i \neq j \Longrightarrow X_i \cap X_i = \emptyset$, para quaisquer $i, j \in I$.

Exemplos

- Seja X um conjunto. Se $A \in \mathcal{P}(X)$ é tal que $\emptyset \subsetneq A \subsetneq X$, então $\{A, \overline{A}\}$ é uma partição de X.
- Seja $X = \{1, 2, 3, 4\}$. Então, por exemplo,

$$\{\{1\},\{2\},\{3\},\{4\}\},\quad \{\{1,2\},\{3,4\}\},\quad \{\{1,3\},\{2\},\{4\}\}\quad e\quad \{\{1,2,3,4\}\}$$

são partições de X.Pelo contrário, por exemplo,

 $\{\{1,2\},\{3\}\}$ (por faltar o 4) e $\{\{1,2\},\{1,3,4\}\}$ (intersecção não vazia) não são partições de X.

Teorema

Seja X não vazio.

- Se R é uma relação de equivalência sobre X, então o conjunto cociente X/R é uma partição de X.
- ② Se $\mathcal{P} = \{X_i \mid i \in I\}$ é uma partição de X e R é a relação binária sobre X definida por

$$xRy \iff (\exists i \in I) \ x, y \in X_i,$$

para quaisquer $x, y \in X$, então:

- R é relação de equivalência sobre X;
- $\mathcal{P} = X/R$.

Exemplo

Seja $X = \{1, 2, 3, 4, 5\}$ e consideremos a partição $\mathcal{P} = \{\{1, 2\}, \{3, 5\}, \{4\}\}$ de X. Então, \mathcal{P} determina a seguinte relação de equivalência sobre X:

$$R = \{(1,1), (2,2), (1,2), (2,1), (3,3), (5,5), (3,5), (5,3), (4,4)\}.$$

Uma relação binária reflexiva, anti-simétrica e transitiva diz-se uma relação de ordem parcial (abreviadamente: r.o.p.).

As r.o.p. são usualmente denotadas pelos símbolos por \leq ou por \subseteq .

Definições

Seja \leq uma relação de ordem parcial sobre um conjunto X. Dizemos que:

- Os elementos x e y de X são comparáveis se $x \le y$ ou $y \le x$;

Sejam \leq uma r.o.p. sobre X e $x,y\in X$. Escrevemos x< y para significar que $x\leq y$ e $x\neq y$.

Definição

Sejam X um conjunto e \leq uma r.o.p. sobre X. Dizemos que o par (X, \leq) é um conjunto parcialmente ordenado (abreviadamente: c.p.o.). Se \leq for uma ordem total, dizemos que (X, \leq) é um conjunto totalmente ordenado ou uma cadeia (abreviadamente: c.t.o.).

Exemplos

- Seja \leq a relação de ordem usual em \mathbb{R} . Então (\mathbb{R}, \leq) é uma cadeia. Também (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) e (\mathbb{Q}, \leq) são cadeias (para a ordem usual).
- Seja X um conjunto. A relação de inclusão \subseteq definida sobre $\mathcal{P}(X)$ é uma relação de ordem parcial em $\mathcal{P}(X)$, pelo que $(\mathcal{P}(X), \subseteq)$ é um c.p.o..
- Em ℕ definimos a seguinte relação binária (relação de divisibilidade) | :

para quaisquer $a,b\in\mathbb{N}$. Então, (\mathbb{N},\mid) é um c.p.o..

Definição

Seja (X, \leq) um c.p.o.. Dados $x, y \in X$, dizemos que y cobre x (relativamente a \leq) se x < y e não existe $z \in X$ tal que x < z < y, i.e., equivalentemente, se $x \leq y$ e, para qualquer $z \in X$,

$$x \le z \le y \implies z = x \lor z = y.$$

Escrevemos $x \ll y$ para denotar que y cobre x.

Proposição

Seja (X, \leq) um c.p.o. e $\Delta = \{(x, x) : x \in X\}$. Sejam $x, y \in X$ tais que x < y. Então, y cobre x se, e só se, $(x, y) \notin (\leq \backslash \Delta) \circ (\leq \backslash \Delta)$.

Exemplo

O c.p.o. ($\{1,2,3,4\}$, |), em que | é a relação de divisibilidade (x|y se, e só se, x divide y), é o conjunto seguinte:

$$=\{(1,1),(1,2),(1,3),(1,4)(2,2),(2,4),(3,3),(4,4)\}.$$

Temos

$$|\Delta = \{(1,2),(1,3),(1,4),(2,4)\}$$

e

$$(| \setminus \Delta) \circ (| \setminus \Delta) = \{(1,4)\}.$$

Logo, pela proposição, 4 não cobre 1 mas 2 cobre 1, 3 cobre 1 e 4 cobre 2.

Diagrama de Hasse

Sejam $X = \{x_1, x_2, \ldots, x_n\}$ e \leq uma r.o.p. em X. A relação \leq pode ser representada através de um diagrama (denominado diagrama de Hasse) construído do seguinte modo: os elementos de X são os pontos do diagrama e, para quaisquer $x, y \in X$, $x \neq y$, se y cobre x, colocamos o ponto que representa y "acima" do ponto que representa x e unimo-los com um segmento de recta:

Exemplos

 Consideremos o c.p.o. ({1,2,3,4},≤), em que ≤ é a ordem usual.
 Esta cadeia tem o seguinte diagrama de Hasse:

• O c.p.o. $(\{1,2,\ldots,10\}, \mid)$, em que \mid é relação de divisibilidade, tem o seguinte diagrama de Hasse:

• O c.p.o. $(\mathcal{P}(\{1,2,3\}),\subseteq)$ possui o seguinte diagrama de Hasse:

Definição

Sejam (X, \leq) um c.p.o. e $Y \subseteq X$.

- Dizemos que $a \in X$ é um minorante [resp. majorante] de Y se $a \le y$ [resp. $y \le a$], para qualquer $y \in Y$.
- Chamamos primeiro elemento de Y (ou mínimo de Y) a um elemento $a \in Y$ tal que $a \le y$, para qualquer $y \in Y$.
- Chamamos último elemento de Y (ou máximo de Y) a um elemento $b \in Y$ tal que $y \le b$, para qualquer $y \in Y$.
- Dizemos que $a \in Y$ é um elemento minimal [resp. maximal] de Y se não existe $b \in Y$ tal que b < a (resp. a < b).
- Dizemos que a ∈ X é o ínfimo [resp. supremo] de Y se a é o maior (i.e. o máximo) dos minorantes [resp. o menor (i.e. o mínimo) dos majorantes].

Exemplo

Considere o conjunto $X = \{a, b, ..., o, p\}$ e a relação de ordem parcial \leq sobre X definida pelo seguinte diagrama de Hasse:

Indique, se existirem, os elementos mínimo, máximo, minimais, maximais, minorantes, majorantes, ínfimo e supremo do subconjunto $A = \{a, b, c, d, e, f, g, h\}$ (pontos azuis) do conjunto parcialmente ordenado (X, \leq) .