Group B Progress Report

Content

- O Ensemble Tradeoff
- O Model analysis

Ensemble on medical datasets

O In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.

Why Ensemble

- Specifically, Medical image segmentation annotations suffer from inter- and intra-observer variations even among experts due to intrinsic differences in human annotators and ambiguous boundaries.
- O Therefore, it will we hard to train a single model to cover all cases.
- While it is possible to train many of them to learn different tendencies.
- O https://openaccess.thecvf.com/content/CVPR2021W/ISIC/papers/Mirikharaji D-LEMA Deep Learning Ensembles From Multiple Annotations Application to CVPRW 2021 paper.pdf

Ensemble tradeoff

- Therefore, we introduced combining outputs of multiple models (currently, we have tried at most 20 models).
- O While it is not always merits that are brought by adding new models.
- Sometimes, it evokes curse of democracy which slow down the prediction while worsen the general output.
 - Such problems are partly caused by training and model capacity.

Model analysis

- The general structure of the model is FPN
- Currently, we have these backbone models tried:
 - O Efficientnet_b4
 - Efficientnet_b5
 - O Efficientnet_b6
 - Efficientnet_b7
 - UneXt50
 - O UneXt101 (Still training)

Architecture	Supervision	#Parameters	FLOPS	Тор-1 Асс.	Top-5 Acc.
ResNet-18	semi-supervised	14M	2B	72.8	91.5
ResNet-50	semi-supervised	25M	4B	79.3	94.9
ResNeXt-50 32x4d	semi-supervised	25M	4B	80.3	95.4
ResNeXt-101 32x4d	semi-supervised	42M	8B	81.0	95.7
ResNeXt-101 32x8d	semi-supervised	88M	16B	81.7	96.1
ResNeXt-101 32x16d	semi-supervised	193M	36B	81.9	96.2
ResNet-18	semi-weakly supervised	14M	2B	73.4	91.9
ResNet-50	semi-weakly supervised	25M	4B	81.2	96.0
ResNeXt-50 32x4d	semi-weakly supervised	25M	4B	82.2	96.3
ResNeXt-101 32x4d	semi-weakly supervised	42M	8B	83.4	96.8
ResNeXt-101 32x8d	semi-weakly supervised	88M	16B	84.3	97.2
ResNeXt-101 32x16d	semi-weakly supervised	193M	36B	84.8	97.4

Model Analysis

- By comparison and experiment, we have got some rule-of-thumb to discern the performance of model individually without submit single model prediction.
 - O 1. Best Dice_th on most folds should exceed 0.82
 - 2. Parameter size should be higher than UneXt50 (.pth size >= 100m approximately)

Future plans

- O We are trying to replace all models we have by stronger models (SwinUnet) that are trained on adjusted dataset.
- This process would likely to be very painstaking, but still promising.

Discussion