HW 1 - MLP and Character Language Modeling-4

January 30, 2023

1 Homework 1 - MLP and Character Language Modeling

1.1 Name: Yichen Huang

1.2 CUID: yh3550

```
[]: import torch
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, TensorDataset
import time
from tqdm import tqdm
```

1.2.1 Information

- We will do a few preliminary exercises and also build a character level MLP language model.
- This model will be similar to the model we did in class, except that we will have characters as tokens, not words.
- You will need a conda environment for this, here is general information on this.
- https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
- PyTorch: https://anaconda.org/pytorch/pytorch

In the code below, FILL-IN the code necessary in the hint string provided.

1.2.2 Preliminary exercises

• Please fill in the cells below with the asked for data.

```
[]: torch.manual_seed(1)
[]: <torch._C.Generator at 0x108433bf0>
```

```
[]: # Create an embedding layer for a vocabulary of size 10 and the word vectors
→ are each of dimension 5.
e = nn.Embedding(10, 5)
```

Shape of the vector: torch.Size([5])

```
[]: # Create a batch of size 2 with entries [0, 1, 2] and [2, 3, 4] in the data

⇒batch.

x = torch.tensor([[0, 1, 2], [2, 3, 4]])
```

```
[]: # What is the dimesion of this batch ran through the embeding layer? assert(e(x).shape == torch.Size([2, 3, 5]))
```

[]:

1.2.3 Constants and configs used below.

```
[]: DEVICE = "cpu"
LR = 4.0
BATCH_SIZE = 16
NUM_EPOCHS = 5
MARKER = '.'
# N-gram level; P(w_t | w_{t-1}, ..., w_{t-n+1}).
# We use 3 words to predict the next word.
n = 4
# Hidden layer dimension.
h = 20
# Word embedding dimension.
m = 20
```

[]:

1.2.4 Get the dataset and the tokenizer.

```
[]: class CharDataset(Dataset):
         def __init__(self, words, chars):
              self.words = words
              self.chars = chars
              # Inverse dictionaries mapping char tokens to unique ids and the
      ⇔reverse.
              # Tokens in this case are the unique chars we passed in above.
              # Each token should be mappend to a unique integer and MARKER should
      \hookrightarrowhave token 0.
              # For example, stoi should be like \{'.' \rightarrow 0, 'a' \rightarrow 1, 'b' \rightarrow 2\} if I_{\sqcup}
      \hookrightarrow pass in chars = '.ab'.
             dic_stoi = {}
             dic_itos = {}
             for i in range(len(chars)):
                  dic_stoi[chars[i]] = i
                  dic_itos[i] = chars[i]
             self.stoi = dic_stoi
              self.itos = dic_itos
         def __len__(self):
              # Number of words.
             return len(self.words)
         def contains(self, word):
              # Check if word is in self.words and return True/False if it is, is not.
             return word in self.words
         def get_vocab_size(self):
              # Return the vocabulary size.
             return len(self.chars)
         def encode(self, word):
              # Express this word as a list of int ids. For example, maybe ".abc" ->_
      \hookrightarrow [0, 1, 2, 3].
              # This assumes 'a' -> 1, etc.
             return [self.stoi[char] for char in word]
         def decode(self, tokens):
              # For a set of tokens, return back the string.
              # For example, maybe [1, 1, 2] -> "aac"
             return ''.join([self.itos[token] for token in tokens])
         def __getitem__(self, idx):
```

```
# This is used so we can loop over the data.
word = self.words[idx]
return self.encode(word)
```

[]:

```
[]: def create_datasets(window, input_file = 'names.txt'):
         This takes a file of words and separates all the words.
         It then gets all the characters present in the universe of words and then \sqcup
      ⇔ouputs the statistics.
         with open(input_file, 'r') as f:
             data = f.read()
         # Split the file by new lines. You should get a list of names.
         words = data.split('\n')
         words = [word.replace(' ', '') for word in words] # This gets rid of any
      →trailing and starting white spaces.
         words = [i for i in words if i] # Filter out all the empty words.
         # This gets the universe of all characters.
         chars = sorted(list(set([char for word in words for char in word])))
         # Will force chars to have MARKER having index O.
         chars= [MARKER] + chars
         # Pad each word with a context window of size n-1.
         # Why? a word like "abc" should becomes "..abc.." if the window is size 3.
         # This is some we can get pair of (x, y) data like this: ".." -> "a", ".a"
      →-> "b", "ab" -> "c", "bc" -> ".", "c." -> "."
         # I.e. this allows us to know that "a" is a start character.
         # So you should get something like ["ab", "c"] -> ["..ab..", "..c.."], for
      ⇔example.
         words = [MARKER * (window - 1) + word + MARKER * (window - 1) for word in_
      ⊶wordsl
         print(f"The number of examples in the dataset: {len(words)}")
         print(f"The number of unique characters in the vocabulary: {len(chars)}")
         print(f"The vocabulary we have is: {''.join(chars)}")
         # Partition the input data into a training, validation, and the test set.
         out_of_sample_set_size = min(2000, int(len(words) * 0.1)) # We use 10% of_
      → the training set, or up to 2000 examples.
         test set size = 1500
```

```
# First, get a random permutation of randomly permute of size len(words).
        # Then, convert this to a list.
        # This index list is used below to get the train, validation, and test sets.
        rp = torch.randperm(len(words)).tolist()
        # Get train, validation, and test set.
        train_words = [words[i] for i in rp[:-out_of_sample_set_size]]
        validation_words = [words[i] for i in rp[-out_of_sample_set_size:
      →-test_set_size]]
        test_words = [words[i] for i in rp[-test_set_size:]]
        print(f"We've split up the dataset into {len(train_words)},__
      ⇔examples")
        # But the data in the data set objects.
        train_dataset = CharDataset(train_words, chars)
        validation_dataset = CharDataset(validation_words, chars)
        test_dataset = CharDataset(test_words, chars)
        return train_dataset, validation_dataset, test_dataset
[]: train_dataset, validation_dataset, test_dataset = create_datasets(n)
    The number of examples in the dataset: 32033
    The number of unique characters in the vocabulary: 27
    The vocabulary we have is: .abcdefghijklmnopqrstuvwxyz
    We've split up the dataset into 30033, 500, 1500 training, validation, and test
    examples
[]: train_dataset.words[0]
[]: '...niyam...'
    1.3 Explore the data
[]: # Get the first word in "train_dataset"
    train_dataset.words[0]
[]: '...niyam...'
[]:
[]: | # Get the stoi map of train_dataset. How many keys does it have?
    len(train_dataset.stoi)
[]: 27
```

[]:

1.3.1 Get the dataloader

```
[]: def create_dataloader(dataset, window):
         x_list = []
         y_list = []
         # For ech word.
         for i, word in enumerate(dataset):
              # Grab a context of size window and window-1 characters will be in x, 1_{\sqcup}
      \hookrightarrowwill be in y.
             for j, _ in enumerate(word):
                  # If there is no widow of size window left, break.
                  if j + window > len(word) - 1:
                      break
                  word_window = word[j:j+window]
                  x, y = word_window[:window-1],word_window[-1]
                  x_list.append(x)
                 y_list.append(y)
         return DataLoader(
             TensorDataset(torch.tensor(x_list), torch.tensor(y_list)),
             BATCH_SIZE,
             shuffle=True
         )
```

```
[]:
```

```
[]: train_dataloader = create_dataloader(train_dataset, n)
validation_dataloader = create_dataloader(validation_dataset, n)
test_dataloader = create_dataloader(test_dataset, n)
```

[]:

1.3.2 Set up the model

• Identical to lecture. Please look over that!

```
[]: # One of the first Neural language models!
class CharacterNeuralLanguageModel(nn.Module):
    def __init__(self, V, m, h, n):
        super(CharacterNeuralLanguageModel, self).__init__()

    # Vocabulary size.
    self.V = V

# Embedding dimension, per word.
```

```
self.m = m
       # Hidden dimension.
       self.h = h
       # N in "N-gram"
       self.n = n
       # Can you change all this stuff to use nn.Linear?
       # Ca also use nn.Parameter(torch.zeros(V, m)) for self.C but then we_{\sqcup}
→need one-hot and this is slow.
       self.C = nn.Embedding(V, m)
       self.H = nn.Parameter(torch.zeros((n-1) * m, h))
       self.W = nn.Parameter(torch.zeros((n-1) * m, V))
       self.U = nn.Parameter(torch.zeros(h, V))
       self.b = torch.nn.Parameter(torch.ones(V))
       self.d = torch.nn.Parameter(torch.ones(h))
       self.init_weights()
  def init_weights(self):
       # Intitialize C, H, W, U in a nice way. Use xavier initialization for
\hookrightarrow the weights.
       # On a first run, just pass.
       with torch.no_grad():
           torch.nn.init.xavier uniform (self.C.weight)
           torch.nn.init.xavier_uniform_(self.H)
           torch.nn.init.xavier_uniform_(self.W)
           torch.nn.init.xavier_uniform_(self.U)
  def forward(self, x):
       # x is of dimenson N = batch size X n-1
       # N \ X \ (n-1) \ X \ m
       x = self.C(x)
       # N
       N = x.shape[0]
       \# N X (n-1) * m
       x = x.view(N,-1)
       # N X V
```

```
y = self.b + torch.matmul(x, self.W) + torch.matmul(nn.Tanh()(self.d +

→torch.matmul(x, self.H)), self.U)

return y
```

[]:

1.3.3 Set up the model.

```
[]: # Identical to lecture.
    criterion = torch.nn.CrossEntropyLoss().to(DEVICE)
    model = CharacterNeuralLanguageModel(
        train_dataset.get_vocab_size(), m, h, n
    ).to(DEVICE)
    optimizer = torch.optim.SGD(model.parameters(), lr=LR)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)

[]: # How many parameters does the neural network have?
    # Hint: look up model.named_parameters and the method "nelement" on a tensor.
    # See also the XOR notebook where we count the gradients that are 0.
    # There, we loop over the parameters.
```

```
# There, we loop over the parameters.
number_parameters = 0
for name, param in model.named_parameters():
    print(f"Parameter {name} has {param.numel()} elements.")
    number_parameters += param.numel()
print(f"Total number of parameters: {number_parameters}")
Parameter H has 1200 elements.
```

Parameter H has 1200 elements.

Parameter W has 1620 elements.

Parameter U has 540 elements.

Parameter b has 27 elements.

Parameter d has 20 elements.

Parameter C.weight has 540 elements.

Total number of parameters: 3947

1.3.4 Train the model.

```
[]: def calculate_perplexity(total_loss, total_batches):
    return torch.exp(torch.tensor(total_loss / total_batches)).item()
```

```
[]: def train(dataloader, model, optimizer, criterion, epoch):
    model.train()
    total_loss, total_batches = 0.0, 0.0
    log_interval = 500

for idx, (x, y) in tqdm(enumerate(dataloader)):
    optimizer.zero_grad()
```

```
logits = model(x)
       # Get the loss.
       loss = criterion(input=logits, target=y.view(-1))
       # Do back propagation.
      loss.backward()
       # Clip the gradients so they don't explode. Look at how this is done in ...
⇔lecture.
       torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
       # Do an optimization step.
       optimizer.step()
      total_loss += loss.item()
      total_batches += 1
       if idx % log_interval == 0 and idx > 0:
           perplexity = calculate_perplexity(total_loss, total_batches)
           print(
               "| epoch {:3d} "
               "| {:5d}/{:5d} batches "
               "| perplexity {:8.3f} "
               "| loss {:8.3f} "
               .format(
                   epoch,
                   idx,
                   len(dataloader),
                   perplexity,
                   total_loss / total_batches,
               )
           total_loss, total_batches = 0.0, 0
```

```
[]: for epoch in range(1, NUM_EPOCHS + 1):
        epoch_start_time = time.time()
        train(train_dataloader, model, optimizer, criterion, epoch)
        loss_val, perplexity_val = evaluate(validation_dataloader, model, criterion)
        scheduler.step()
        print("-" * 59)
        print(
            "| end of epoch {:3d} "
            "| time: {:5.2f}s "
            "| valid perplexity {:8.3f} "
            "| valid loss {:8.3f}".format(
               time.time() - epoch_start_time,
               perplexity_val,
               loss_val
            )
        print("-" * 59)
    print("Checking the results of test dataset.")
    loss_test, perplexity_test = evaluate(test_dataloader, model, criterion)
    print("test perplexity {:8.3f} | test loss {:8.3f} ".format(perplexity_test,
     ⇔loss_test))
    867it [00:00, 1879.58it/s]
                  epoch
             1 |
                                                                 2.273
    1332it [00:00, 2120.97it/s]
             2.168
    1762it [00:00, 2002.05it/s]
             1 | 1500/15247 batches | perplexity
                                                 8.605 | loss
                                                                 2.152
    2450it [00:01, 2201.15it/s]
             1 | 2000/15247 batches | perplexity
                                                  8.323 | loss
                                                                 2.119
    2927it [00:01, 2290.79it/s]
             1 | 2500/15247 batches | perplexity
                                                  8.510 | loss
                                                                 2.141
    3421it [00:01, 2380.11it/s]
             1 | 3000/15247 batches | perplexity
                                                  8.326 | loss
                                                                 2.119
                                                  8.231 | loss
             1 | 3500/15247 batches | perplexity
    | epoch
                                                                 2.108
    4388it [00:02, 2209.57it/s]
             1 | 4000/15247 batches | perplexity 8.015 | loss
                                                                 2.081
    4850it [00:02, 2258.03it/s]
```

epoch 1	4500/15247 batches perplexity	8.167 loss	2.100
5311it [00:02,	2251.25it/s]		
epoch 1	5000/15247 batches perplexity	8.002 loss	2.080
5780it [00:02,	2281.83it/s]		
epoch 1	5500/15247 batches perplexity	8.121 loss	2.094
6230it [00:02,	2181.59it/s]		
epoch 1	6000/15247 batches perplexity	8.067 loss	2.088
6911it [00:03,	2232.63it/s]		
epoch 1	6500/15247 batches perplexity	8.083 loss	2.090
7362it [00:03,	2106.52it/s]		
epoch 1	7000/15247 batches perplexity	7.990 loss	2.078
7800it [00:03,	2070.10it/s]		
epoch 1	7500/15247 batches perplexity	7.733 loss	2.045
8283it [00:03,	2243.23it/s]		
epoch 1	8000/15247 batches perplexity	8.021 loss	2.082
8732it [00:04,	2204.82it/s]		
epoch 1	8500/15247 batches perplexity	8.104 loss	2.092
9389it [00:04,	2107.83it/s]		
epoch 1	9000/15247 batches perplexity	7.951 loss	2.073
9814it [00:04,	2069.37it/s]		
epoch 1	9500/15247 batches perplexity	7.866 loss	2.063
10231it [00:04	, 2062.58it/s]		
epoch 1	10000/15247 batches perplexity	7.756 loss	2.049
10633it [00:05	, 1737.98it/s]		
epoch 1	10500/15247 batches perplexity	8.197 loss	2.104
11273it [00:05	, 2001.55it/s]		
epoch 1	11000/15247 batches perplexity	8.008 loss	2.080
11926it [00:05	, 2126.75it/s]		
epoch 1	11500/15247 batches perplexity	7.859 loss	2.062
12433it [00:05	, 2341.58it/s]		
	12000/15247 batches perplexity 12500/15247 batches perplexity		2.019 2.078

```
13345it [00:06, 2142.49it/s]
       2.084
13781it [00:06, 2152.49it/s]
       1 | 13500/15247 batches | perplexity
                                     7.898 | loss
                                                 2.067
14213it [00:06, 2096.74it/s]
7.566 | loss
                                                 2.024
14848it [00:07, 2015.59it/s]
2.066
15247it [00:07, 2118.47it/s]
2.056
2.051
_____
763it [00:00, 2557.36it/s]
| epoch
       2 |
           500/15247 batches | perplexity
                                     7.514 | loss
                                                 2.017
epoch
       2 | 1000/15247 batches | perplexity 7.111 | loss
                                                 1.962
1812it [00:00, 2557.69it/s]
       2 | 1500/15247 batches | perplexity
                                     7.164 | loss
                                                 1.969
epoch
       2 | 2000/15247 batches | perplexity
                                     7.318 | loss
                                                 1.990
2868it [00:01, 2623.91it/s]
epoch
       2 | 2500/15247 batches | perplexity
                                     7.256 | loss
                                                 1.982
       2 | 3000/15247 batches | perplexity
                                     7.209 | loss
| epoch
                                                 1.975
3940it [00:01, 2533.90it/s]
       2 | 3500/15247 batches | perplexity
                                     7.180 | loss
                                                 1.971
4482it [00:01, 2622.21it/s]
       2 | 4000/15247 batches | perplexity
                                     7.157 | loss
epoch
                                                 1.968
       2 | 4500/15247 batches | perplexity
                                     7.158 | loss
                                                 1.968
epoch
5307it [00:02, 2707.60it/s]
epoch
       2 | 5000/15247 batches | perplexity
                                     7.254 | loss
                                                 1.982
       2 | 5500/15247 batches | perplexity
                                     7.012 | loss
                                                 1.948
epoch
6400it [00:02, 2723.80it/s]
       2 | 6000/15247 batches | perplexity
                                     6.993 | loss
                                                1.945
epoch
       2 | 6500/15247 batches | perplexity
                                     7.224 | loss
                                                 1.977
epoch
7502it [00:02, 2734.41it/s]
```

```
epoch
         2 | 7000/15247 batches | perplexity
                                              7.133 | loss
                                                             1.965
         2 | 7500/15247 batches | perplexity
                                              7.176 | loss
                                                             1.971
| epoch
8324it [00:03, 2723.46it/s]
         2 | 8000/15247 batches | perplexity
                                              7.039 | loss
epoch
                                                             1.951
         2 | 8500/15247 batches | perplexity
                                              7.034 | loss
                                                             1.951
9435it [00:03, 2765.71it/s]
         2 | 9000/15247 batches | perplexity
                                              7.378 | loss
                                                             1.998
epoch
         2 | 9500/15247 batches | perplexity
                                              6.957 | loss
| epoch
                                                             1.940
10545it [00:03, 2765.15it/s]
         2 | 10000/15247 batches | perplexity
                                              7.155 | loss
                                                             1.968
                                              7.195 | loss
         2 | 10500/15247 batches | perplexity
                                                             1.973
epoch
11378it [00:04, 2767.66it/s]
epoch
         2 | 11000/15247 batches | perplexity
                                              7.045 | loss
                                                             1.952
         2 | 11500/15247 batches | perplexity
                                              7.052 | loss
| epoch
                                                             1.953
12491it [00:04, 2753.19it/s]
         2 | 12000/15247 batches | perplexity
                                              6.973 | loss
                                                             1.942
epoch
         2 | 12500/15247 batches | perplexity
                                              7.191 | loss
                                                             1.973
13322it [00:04, 2754.72it/s]
                                              7.003 | loss
epoch
         2 | 13000/15247 batches | perplexity
                                                             1.946
         2 | 13500/15247 batches | perplexity
                                              7.090 | loss
epoch
                                                             1.959
14434it [00:05, 2733.21it/s]
                                              7.184 | loss
         2 | 14000/15247 batches | perplexity
                                                             1.972
epoch
         2 | 14500/15247 batches | perplexity
                                              7.057 | loss
                                                             1.954
15247it [00:05, 2696.19it/s]
         2 | 15000/15247 batches | perplexity
epoch
                                              7.010 | loss
                                                             1.947
_____
| end of epoch 2 | time: 5.68s | valid perplexity 7.023 | valid loss
1.949
814it [00:00, 2723.84it/s]
              500/15247 batches | perplexity
epoch
         3 l
                                              6.910 | loss
                                                             1.933
         3 | 1000/15247 batches | perplexity
                                              6.954 | loss
                                                             1.939
| epoch
1924it [00:00, 2758.81it/s]
         3 | 1500/15247 batches | perplexity
                                              7.033 | loss
                                                             1.951
         3 | 2000/15247 batches | perplexity
                                              7.119 | loss
epoch
                                                             1.963
3021it [00:01, 2691.37it/s]
```

epoch 3 epoch 3	2500/15247 batches per 3000/15247 batches per	- •		1.947 1.927
3851it [00:01,	2739.73it/s]			
-	3500/15247 batches per 4000/15247 batches per	- •		1.954 1.932
4957it [00:01,	2719.72it/s]			
-	4500/15247 batches per 5000/15247 batches per	- •		1.929 1.948
5781it [00:02,	2726.22it/s]			
-	5500/15247 batches per 6000/15247 batches per	-		1.980 1.942
6882it [00:02,	2717.79it/s]			
-	6500/15247 batches per 7000/15247 batches per	-		1.954 1.966
7983it [00:02,	2729.84it/s]			
-	7500/15247 batches per 8000/15247 batches per	-		1.929 1.941
8814it [00:03,	2753.37it/s]			
-	8500/15247 batches per 9000/15247 batches per	- •		1.932 1.953
9928it [00:03,	2777.36it/s]			
-	9500/15247 batches per 10000/15247 batches per	-		1.956 1.954
11041it [00:04, 2777.08it/s]				
	10500/15247 batches per 11000/15247 batches per	1		1.940 1.929
11879it [00:04	, 2784.07it/s]			
•	11500/15247 batches per 12000/15247 batches per	- 0		1.936 1.977
12998it [00:04	e, 2783.73it/s]			
	12500/15247 batches per 13000/15247 batches per			1.943 1.967
13837it [00:05	, 2785.63it/s]			
	13500/15247 batches per 14000/15247 batches per			1.958 1.949
14956it [00:05	, 2786.33it/s]			

```
3 | 14500/15247 batches | perplexity 7.114 | loss
                                                          1.962
epoch
        3 | 15000/15247 batches | perplexity
                                            7.068 | loss
                                                          1.956
epoch
15247it [00:05, 2737.15it/s]
   _____
| end of epoch 3 | time: 5.60s | valid perplexity 6.994 | valid loss
   _____
268it [00:00, 2675.88it/s]
        4 | 500/15247 batches | perplexity 6.875 | loss
| epoch
                                                          1.928
825it [00:00, 2759.31it/s]
        4 | 1000/15247 batches | perplexity
                                           7.027 | loss
                                                          1.950
1379it [00:00, 2761.86it/s]
| epoch 4 | 1500/15247 batches | perplexity
                                            7.130 | loss
                                                          1.964
1935it [00:00, 2761.45it/s]
epoch 4 | 2000/15247 batches | perplexity
                                           7.178 | loss
                                                          1.971
2491it [00:00, 2762.72it/s]
| epoch 4 | 2500/15247 batches | perplexity
                                           7.017 | loss
                                                          1.948
3048it [00:01, 2772.53it/s]
        4 | 3000/15247 batches | perplexity
                                            6.986 | loss
| epoch
                                                          1.944
3327it [00:01, 2775.84it/s]
       4 | 3500/15247 batches | perplexity
                                            7.015 | loss
                                                          1.948
3884it [00:01, 2771.06it/s]
        4 | 4000/15247 batches | perplexity
                                            7.055 | loss
                                                          1.954
4444it [00:01, 2777.06it/s]
epoch 4 | 4500/15247 batches | perplexity
                                            6.887 | loss
                                                          1.930
4999it [00:01, 2767.72it/s]
epoch 4 | 5000/15247 batches | perplexity
                                            6.832 | loss
                                                          1.922
5557it [00:02, 2774.43it/s]
epoch 4 | 5500/15247 batches | perplexity
                                            7.057 | loss
                                                          1.954
5836it [00:02, 2777.75it/s]
        4 | 6000/15247 batches | perplexity
                                            7.094 | loss
                                                          1.959
6393it [00:02, 2770.89it/s]
epoch 4 | 6500/15247 batches | perplexity
                                            7.051 | loss
                                                          1.953
```

6949it [00:02,	2755.90it/s]		
epoch 4	7000/15247 batches perplexity	7.015 loss	1.948
7502it [00:02,	2756.45it/s]		
epoch 4	7500/15247 batches perplexity	6.942 loss	1.938
7780it [00:02,	2761.22it/s]		
epoch 4	8000/15247 batches perplexity	6.986 loss	1.944
8333it [00:03,	2730.65it/s]		
epoch 4	8500/15247 batches perplexity	6.943 loss	1.938
8887it [00:03,	2748.87it/s]		
epoch 4	9000/15247 batches perplexity	6.885 loss	1.929
9439it [00:03,	2749.48it/s]		
epoch 4	9500/15247 batches perplexity	6.844 loss	1.923
9992it [00:03,	2750.26it/s]		
epoch 4	10000/15247 batches perplexity	7.073 loss	1.956
10545it [00:03	, 2736.83it/s]		
epoch 4	10500/15247 batches perplexity	6.989 loss	1.944
10819it [00:03	, 2732.23it/s]		
epoch 4	11000/15247 batches perplexity	7.023 loss	1.949
11373it [00:04	, 2752.56it/s]		
epoch 4	11500/15247 batches perplexity	6.851 loss	1.924
11926it [00:04	, 2749.79it/s]		
epoch 4	12000/15247 batches perplexity	6.905 loss	1.932
12480it [00:04	, 2755.61it/s]		
epoch 4	12500/15247 batches perplexity	6.861 loss	1.926
13036it [00:04	, 2762.33it/s]		
epoch 4	13000/15247 batches perplexity	6.967 loss	1.941
13313it [00:04	, 2755.84it/s]		
epoch 4	13500/15247 batches perplexity	7.020 loss	1.949
13867it [00:05	, 2757.71it/s]		
epoch 4	14000/15247 batches perplexity	7.028 loss	1.950
14422it [00:05	, 2761.70it/s]		
epoch 4	14500/15247 batches perplexity	6.986 loss	1.944

14981it [00:05, 2768.03it/s] | epoch | 4 | 15000/15247 batches | perplexity | 7.137 | loss | 1.965 15247it [00:05, 2753.05it/s] _____ | end of epoch 4 | time: 5.57s | valid perplexity 6.987 | valid loss 1.944 541it [00:00, 2710.51it/s] | epoch 5 | 500/15247 batches | perplexity 7.017 | loss 1.948 817it [00:00, 2728.82it/s] epoch 5 | 1000/15247 batches | perplexity 7.090 | loss 1.959 1362it [00:00, 2674.27it/s] 7.062 | loss 5 | 1500/15247 batches | perplexity 1.955 1906it [00:00, 2701.16it/s] 5 | 2000/15247 batches | perplexity 6.987 | loss 1.944 2461it [00:00, 2740.81it/s] 7.005 | loss 5 | 2500/15247 batches | perplexity 1.947 3013it [00:01, 2742.31it/s] 5 | 3000/15247 batches | perplexity 7.160 | loss 1.969 3288it [00:01, 2733.97it/s] 5 | 3500/15247 batches | perplexity 7.224 | loss epoch 1.977 3841it [00:01, 2748.02it/s] | epoch 5 | 4000/15247 batches | perplexity 6.921 | loss 1.935 4395it [00:01, 2758.84it/s] epoch 5 | 4500/15247 batches | perplexity 7.065 | loss 1.955 4947it [00:01, 2742.78it/s] epoch 5 | 5000/15247 batches | perplexity 6.747 | loss 1.909 5497it [00:02, 2717.40it/s] epoch 5 | 5500/15247 batches | perplexity 7.056 | loss 1.954 6047it [00:02, 2730.58it/s] epoch 5 | 6000/15247 batches | perplexity 6.975 | loss 1.942 6321it [00:02, 2729.65it/s] | epoch 5 | 6500/15247 batches | perplexity 6.820 | loss 1.920

6880it [00:02, 2	2760.48it/s]			
		plexity 6.858	loss	1.925
7434it [00:02, 2				
epoch 5 7		plexity 7.035	loss	1.951
7988it [00:02, 2	?758.74it/s]			
epoch 5 8	3000/15247 batches per	plexity 6.927	loss	1.935
8542it [00:03, 2	?762.34it/s]			
epoch 5 8	3500/15247 batches per	plexity 6.937	loss	1.937
8819it [00:03, 2	?755.54it/s]			
epoch 5 9	0000/15247 batches per	plexity 6.960	loss	1.940
9371it [00:03, 2	?743.91it/s]			
epoch 5 9	0500/15247 batches per	plexity 7.090	loss	1.959
9922it [00:03, 2	2738.61it/s]			
epoch 5 10	0000/15247 batches per	plexity 6.949	loss	1.939
10480it [00:03,	2762.04it/s]			
epoch 5 10	0500/15247 batches per	plexity 6.912	loss	1.933
11037it [00:04,	2764.92it/s]			
epoch 5 11	.000/15247 batches per	plexity 6.918	loss	1.934
11314it [00:04,	2763.43it/s]			
epoch 5 11	.500/15247 batches per	plexity 6.971	loss	1.942
11867it [00:04,	2746.71it/s]			
epoch 5 12	2000/15247 batches per	plexity 6.879	loss	1.928
12423it [00:04,	2761.01it/s]			
epoch 5 12	2500/15247 batches per	plexity 6.909	loss	1.933
12980it [00:04,	2764.75it/s]			
epoch 5 13	3000/15247 batches per	plexity 7.007	loss	1.947
13534it [00:04,	2758.92it/s]			
epoch 5 13	3500/15247 batches per	plexity 7.042	loss	1.952
13810it [00:05,	2757.07it/s]			
epoch 5 14	:000/15247 batches per	plexity 7.005	loss	1.947
14363it [00:05,				
epoch 5 14	500/15247 batches per	plexity 7.007	loss	1.947

Hint: For the above, you should see your loss around 2.0 and going down. Similarly to perplexity which should be aroud 7 to 8.

1.4 Generate some text.

```
[]: def generate_word(model, dataset, window):
         generated_word = []
         # Set the context to a window-1 length array having just the MARKER
      ⇔character's token_id.
         context = (window - 1) * [dataset.stoi[MARKER]]
         while True:
             logits = model(torch.tensor(context).view(1, -1))
             # Get the probabilities from the logits.
             # Hint: softmax!
             probs = nn.Softmax(dim=1)(logits)
             # Get 1 sample from a multinomial having the above probabilities.
             token_id = torch.multinomial(probs, 1).item()
             # Append the token_id to the generated word.
             generated_word.append(token_id)
             # Move the context over 1, drop the first (oldest) token and apped the
      →new one above.
             # The size of the resulting context should be the same.
             # For exaple, if it was "[0, 1, 2]" and you generated 4, it should now \Box
      ⇔be [1, 2, 4].
             context = context[1:] + [token_id]
             if token_id == 0:
                 # If you generate token_id = 0, i.e. '.', break out.
                 break
         # Return and decode the generated word to a string.
         return dataset.decode(generated_word)
```

```
[]: torch.manual_seed(1)
     for _ in range(50):
         print(generate_word(model, train_dataset, n))
    ama.
    ele.
    lia.
    aldi.
    jarorsse.
    dez.
    bria.
    jairestlei.
    revy.
    madlais.
    hoanna.
    dacelian.
    alalie.
    shais.
    maya.
    jouston.
    zailah.
    ede.
    rie.
    gros.
    aukh.
    bamaka.
    anyaarius.
    kelee.
    har.
    jami.
    naekshreem.
    kaylen.
    quyla.
    naygusen.
    mayanatram.
    ahazoriexsunya.
    shamonti.
    hori.
    evfiah.
    rosie.
    vaivel.
    ynalaydin.
    kenasia.
    dar.
    wun.
    jayana.
```

ris.

nor.
ilyn.
marri.
alevante.
kalyn.
desleeshanaa.
daniellaenimariinilah.