§7. Поверхности вращения второго порядка

Определение 7.1. Алгебраическая поверхность называется *поверхностью вращения*, если в некоторой прямоугольной декартовой системе координат она может быть задана уравнением вида

$$F(x^2 + y^2, z) = 0, (7.1)$$

где $F(x^2 + y^2, z)$ – многочлен от $x^2 + y^2, z$.

Замечание 7.1. Данное определение является конструктивным в том смысле, что позволяет выделить поверхности вращения по виду их уравнений из множества всех алгебраических поверхностей. Так, например, в соответствии с этим определением уравнения $2(x^2+y^2)+z=0$ и $(x^2+y^2)^2+4z^2=1$ задают алгебраические поверхности вращения.

Теорема 7.1. Поверхность (S), определяемая уравнением (7.1), образуется при вращении вокруг оси Oz кривой Γ , являющейся линией пересечения (S) с плоскостью Oyz.

Рис. 7.1. Поверхность вращения

►Пусть $M_0(0, y_0, z_0)$ – любая точка Γ (рис. 7.1). В силу (7.1) имеем

$$F(y_0^2, z_0) = 0. (7.2)$$

Проведём через M_0 плоскость $P: z=z_0$, перпендикулярную оси Oz, и рассмотрим в ней окружность с центром в точке $O_1(0,0,z_0)$ и радиусом $\left|y_0\right|$ (рис. 7.1). Пусть точка $M(x,y,z_0)$ — произвольная точка этой окружности. Так как $|O_1M|^2 = |O_1M_0|^2$, то $x^2+y^2=y_0^2$. Подставляя координаты точки M в уравнение (7.1), с учетом последнего равенства и равенства (2) имеем

$$F(x^2+y^2,z_0)=F(y_0^2,z_0)=0$$
.

Таким образом, показано, что координаты произвольной точки M упомянутой окружности удовлетворяют уравнению (7.1). Следовательно, эта точка принадлежит (S). Тем самым установлено, что поверхность (S) образуется при вращении линии Γ вокруг оси Oz (рис. 7.1).

Следствие из теоремы 7.1. Алгебраические поверхности, определяемые уравнениями $G(x, y^2 + z^2) = 0$ и $H(x^2 + z^2, y) = 0$, образуются при вращении некоторых кривых вокруг оси Ox и оси Oy соответственно.

Из вышеприведённого определения следует, что уравнение поверхности вращения второго порядка в некоторой прямоугольной декартовой ситеме координат имеет вид

$$A(x^2 + y^2) + Bz^2 + Cz + D = 0. (7.3)$$

Сопоставив уравнение (7.3) с уравнениями эллипсоида, гиперболоидов, конуса 2-го порядка, эллиптического параболоида и эллиптического цилиндра из $\S\S2-6$, приходим к выводу, что эти поверхности будут поверхностями вращения при условии p=q для эллиптического параболоида и a=b для всех остальных поверхностей. Сопоставление этого уравнения с уравнениями гиперболического параболоида из $\S5$, гиперболического и параболического цилиндров из $\S6$ приводит к заключению, что эти поверхности не могут быть поверхностями вращения ни при каких значениях констант. Итак, уравнения

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1, \quad \frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = \pm 1,$$
$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 0, \quad \frac{x^2 + y^2}{p} = 2z \quad \text{и} \quad \frac{x^2 + y^2}{a^2} = 1$$

определяют алгебраические поверхности вращения второго порядка, а именно, эллипсоид вращения, гиперболоиды вращения, конус вращения второго порядка (или прямой круговой конус), параболоид вращения (или круговой параболоид) и цилиндр вращения второго порядка (или прямой круговой цилиндр) соответственно. Каждая из этих поверхностей образуется при вращении вокруг оси Oz кривой, являющейся пересечением данной поверхности с плоскостью Oyz. Так, например, вышеуказанный эллипсоид вращения образуется при вращении вокруг оси Oz линии Γ_3 (рис. 2.1).