# **Optimization in Machine Learning**

# First order methods: ADAM and friends



#### Learning goals

- Adaptive Step Sizes
- Adagrad
- RMSProp
- ADAM

### **ADAPTIVE STEP SIZES**

- Step size is probably the most important control param
- Has strong influence on performance
- Natural to use different SS for each input, and to automatically adapt them

#### **ADAGRAD**

- Adagrad adapts SSs by scaling them inversely proportional to square root of the sum of the past squared derivatives
  - Inputs with large partial derivatives get rapid decrease in SS
  - Inputs with small PDs get small decrease in SS
- Goodfellow et al. (2016) say that the accumulation of squared gradients can result in premature decrease in SS

#### **ADAGRAD**

# Algorithm 1 Adagrad

- 1: **require** Global SS  $\alpha$
- 2: require Initial parameter  $\theta$
- 3: **require** Small constant  $\beta$ , perhaps  $10^{-7}$ , for numerical stability
- 4: Initialize gradient accumulation variable  $\mathbf{r} = \mathbf{0}$
- 5: while stopping criterion not met do
- 6: Sample a minibatch of m examples from the training set  $\{\tilde{x}^{(1)}, \dots, \tilde{x}^{(m)}\}$
- 7: Compute gradient estimate:  $\hat{\mathbf{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L\left(y^{(i)}, f\left(\tilde{\mathbf{x}}^{(i)} \mid \boldsymbol{\theta}\right)\right)$
- 8: Accumulate squared gradient  $\mathbf{r} \leftarrow \ddot{\mathbf{r}} + \hat{\mathbf{g}} \odot \hat{\mathbf{g}}$
- 9: Compute update:  $\nabla \theta = -\frac{\alpha}{\beta + \sqrt{r}} \odot \hat{\mathbf{g}}$  (division and square root applied element-wise)
- 10: Apply update:  $\theta \leftarrow \theta + \nabla \theta$
- 11: end while
  - ⊙: element-wise product (Hadamard)

#### **RMSPROP**

- Modification of Adagrad
- Resolves Adagrad's radically diminishing SSs.
- Gradient accumulation is replaced by exponentially weighted moving average.
- Theoretically, leads to performance gains in non-convex scenarios.
- Empirically, RMSProp is a very effective optimization algorithm.
  Particularly, it is employed routinely by DL practitioners.

#### **RMSPROP**

#### **Algorithm 2** RMSProp

- 1: **require** Global SS  $\alpha$  and decay rate  $\rho \in [0, 1)$
- 2: **require** Initial parameter heta
- 3: **require** Small constant  $\beta$ , perhaps  $10^{-6}$ , for numerical stability
- 4: Initialize gradient accumulation variable  $\mathbf{r} = \mathbf{0}$
- 5: while stopping criterion not met do
- 6: Sample a minibatch of m examples from the training set  $\{\tilde{x}^{(1)}, \dots, \tilde{x}^{(m)}\}$
- 7: Compute gradient estimate:  $\hat{\mathbf{g}} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(y^{(i)}, f\left(\tilde{\mathbf{x}}^{(i)} \mid \theta\right)\right)$
- 8: Accumulate squared gradient  $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 \rho)\hat{\mathbf{g}} \odot \hat{\mathbf{g}}$
- 9: Compute update:  $\nabla \theta = -\frac{\alpha}{\beta + \sqrt{\mathbf{r}}} \odot \hat{\mathbf{g}}$
- 10: Apply update:  $\theta \leftarrow \theta + \nabla \dot{\theta}$
- 11: end while

- Adaptive Moment Estimation also has adaptive SSs
- Uses the 1st and 2nd moments of gradients
  - Keeps an exponentially decaying average of past gradients (1st moment)
  - Like RMSProp, stores an exp-decaying avg of past squared gradients (2nd moment)
  - Can be seen as combo of RMSProp + momentum.

#### Algorithm 3 Adam

- 1: **require** Global step size  $\alpha$  (suggested default: 0.001)
- 2: **require** Exponential decay rates for moment estimates,  $\rho_1$  and  $\rho_2$  in [0, 1) (suggested defaults: 0.9 and 0.999 respectively)
- 3: **require** Small constant  $\beta$  (suggested default  $10^{-8}$ )
- 4: **require** Initial parameters  $\theta$
- 5: Initialize time step t = 0
- 6: Initialize 1st and 2nd moment variables  $\mathbf{s}^{[0]} = 0$ ,  $\mathbf{r}^{[0]} = 0$
- 7: while stopping criterion not met do
- 8:  $t \leftarrow t + 1$
- 9: Sample a minibatch of m examples from the training set  $\{\tilde{x}^{(1)}, \dots, \tilde{x}^{(m)}\}$
- 10: Compute gradient estimate:  $\hat{\mathbf{g}}^{[t]} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(y^{(i)}, f\left(\tilde{\mathbf{x}}^{(i)} \mid \theta\right)\right)$
- 11: Update biased first moment estimate:  $\mathbf{s}^{[t]} \leftarrow \rho_1 \mathbf{s}^{[t-1]} + (1 \rho_1)\hat{\mathbf{g}}^{[t]}$
- 12: Update biased second moment estimate:  $\mathbf{r}^{[t]} \leftarrow \rho_2 \mathbf{r}^{[t-1]} + (1 \rho_2) \hat{\mathbf{g}}^{[t]} \odot \hat{\mathbf{g}}^{[t]}$
- 13: Correct bias in first moment:  $\hat{\mathbf{s}} \leftarrow \frac{\mathbf{s}^{[t]}}{1-\rho_1^t}$
- 14: Correct bias in second moment:  $\hat{\mathbf{r}} \leftarrow \frac{\mathbf{r}^{[l]}}{1-\rho_2^l}$
- 15: Compute update:  $\nabla \theta = -\alpha \frac{\hat{\mathbf{s}}}{\sqrt{\hat{\mathbf{f}}} + \beta}$
- 16: Apply update:  $\theta \leftarrow \theta + \nabla \theta$
- 17: end while

- Inits exp-weighted moving averages s and r as 0 (zero) vectors
- Hence, they are biased towards zero
- This means  $\mathbb{E}[\mathbf{s}^{[t]}] \neq \mathbb{E}[\hat{\mathbf{g}}^{[t]}]$  and  $\mathbb{E}[\mathbf{r}^{[t]}] \neq \mathbb{E}[\hat{\mathbf{g}}^{[t]} \odot \hat{\mathbf{g}}^{[t]}]$  (where the expectations are calculated over minibatches)
- To see, let's unroll  $\mathbf{s}^{[t]}$ :

$$\begin{split} \mathbf{s}^{[0]} &= 0 \\ \mathbf{s}^{[1]} &= \rho_1 \mathbf{s}^{[0]} + (1 - \rho_1) \hat{\mathbf{g}}^{[1]} = (1 - \rho_1) \hat{\mathbf{g}}^{[1]} \\ \mathbf{s}^{[2]} &= \rho_1 \mathbf{s}^{[1]} + (1 - \rho_1) \hat{\mathbf{g}}^{[2]} = \rho_1 (1 - \rho_1) \hat{\mathbf{g}}^{[1]} + (1 - \rho_1) \hat{\mathbf{g}}^{[2]} \\ \mathbf{s}^{[3]} &= \rho_1 \mathbf{s}^{[2]} + (1 - \rho_1) \hat{\mathbf{g}}^{[3]} = \rho_1^2 (1 - \rho_1) \hat{\mathbf{g}}^{[1]} + \rho_1 (1 - \rho_1) \hat{\mathbf{g}}^{[2]} + (1 - \rho_1) \hat{\mathbf{g}}^{[3]} \end{split}$$

- Therefore,  $\mathbf{s}^{[t]} = (1 \rho_1) \sum_{i=1}^{t} \rho_1^{t-i} \mathbf{g}^{[i]}$ .
- NB: contrib of earlier  $\hat{\mathbf{g}}^{[i]}$  to moving average shrinks rapidly

Now:

$$\begin{split} \mathbb{E}[\mathbf{s}^{[t]}] &= \mathbb{E}[(1 - \rho_1) \sum_{i=1}^t \rho_1^{t-i} \hat{\mathbf{g}}^{[i]}] \\ &= \mathbb{E}[\hat{\mathbf{g}}^{[t]}] (1 - \rho_1) \sum_{i=1}^t \rho_1^{t-i} + \zeta \\ &= \mathbb{E}[\hat{\mathbf{g}}^{[t]}] (1 - \rho_1^t) + \zeta \end{split}$$

where we approximate  $\hat{\mathbf{g}}^{[l]}$  with  $\hat{\mathbf{g}}^{[l]}$  which allows us to move it outside the sum.  $\zeta$  is the error that results from this approximation.

- Therefore,  $\mathbf{s}^{[t]}$  is a biased estimator of  $\hat{\mathbf{g}}^{[t]}$  and the effect of the bias vanishes over the time-steps (because  $\rho_1^t \to 0$  for  $t \to \infty$ ).
- Ignoring  $\zeta$  (as it is small), we correct for the bias by setting  $\hat{\mathbf{s}}^{[t]} = \frac{\mathbf{s}^{[t]}}{(1-\rho_{+}^{t})}$ .
- ullet Similarly, we set  $\hat{f r}^{[t]}=rac{{f r}^{[t]}}{(1ho_2^t)}.$

## COMPARISON OF OPTIMIZERS: ANIMATION



Comparison of SGD optimizers near saddle point. Left: After few secs; Right: Later. All methods accelerate compared to vanilla SGD. Best is Rmsprop, then Adagrad.

# **COMPARISON ON QUADRATIC FORM**



SGD vs. SGD with Momentum vs. ADAM on a quadratic form.