北京科技大学 2021-2022 年 第 一 学期

Exam for Computational Method B(计算方法 B) Time:2 Hours

Name: Student ID

Part A: (50points)

- **1.** Explain the advantages and disadvantages of Bisection, Fixed-Point Iteration, and Newton's methods for finding the roots of equation f(x) = 0.
- **2.** Explain the idea of Interpolation and Polynomial Approximation, the advantages and disadvantages of Lagrange interpolating polynomial and Newtonian interpolating polynomial.
- **3.** Explain the idea of direct methods (Gauss elimination method, Pivoting Strategies) and Iterative Techniques for solving linear systems of equations.
- **4.** Explain the idea of numerical differentiation and integration, the idea of Composite Trapezoidal rule and Composite Simpson's rule.

5. Let
$$A = \begin{vmatrix} 1 & -1 & 2 \\ 1 & -2 & -3 \\ -2 & 4 & 5 \end{vmatrix}$$
, to compute $||A||_1 = ||A||_{\infty} =$

Part B: (50 points)

- **1.** (a) Use the Bisection method to find P3 for $f(x) = \sqrt{x} \cos x = 0$ on [0, 1].
- (b) Let $f(x) = x^2 6 = 0$, Use Newton's method to find P2 with $p_0 = -1$.
- **2.** Table 1 lists values of a function f(x) at various points, to find approximation value f(1.5) by using Lagrange interpolating polynomial of degree 1 and of degree 2 by $P_{2.3.4}(1.5)$.

Table 1

X	1.0	1.3	1.6	1.9
f(x)	0.7651977	0.6200860	0.4554022	0.2818186

- **3.** Use the composite Trapzoidal rule with the value of 4 to approximate the integral $\int_{-2}^{2} e^{x} x^{2} dx$, n = 4
- 4. Find the Jacobi iterations and Gauss-Seidel iterations for the following linear systems, write the iterative method in matrix form. For Jacobi iterative methods, to find $x^{(2)}$ by using initial value $x^{(0)} = (0,0,0)^t$

$$\begin{bmatrix} 10 & -1 & -1 \\ -1 & 10 & -2 \\ -2 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6.2 \\ 8.5 \\ 3.2 \end{bmatrix}$$

5. Use Euler's method to approximate the solution for the following initial-value problem with h = 0.1.

$$\begin{cases} y' = -5y + 5t^2 + 2t, & 0 \le t \le 1 \\ y(0) = \frac{1}{3} \end{cases},$$