Probabilistic Method Lecture 1

EGMOTC 2023 - Rohan

December 24, 2023

Markov's inequality and beyond!

 ± 1 on the number line For this section, we will restrict our attention to a random walk on the integers. We start at x=0 and in each move, we move forward or backward each with probability $\frac{1}{2}$. Now, we expect that it should be unlikely that after n steps that we are too far from 0 (the expected value). In this section, we will try to find some bounds for the same.

We will now write the setup a little more formally: let $X_1 = X_2 = \cdots$ be independent identically distributed random variables taking value ± 1 with probability 1/2 each. Now, $S_n = X_1 + X_2 + \cdots + X_n$ and we would like to understand the values of S_n .

Definition 1. The Var(X) or the variance of a random variable X is defined as $\mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$.

Now, prove the following:

- (Markov's Inequality) Prove that for any non-negative r.v. X, we have $\mathbb{P}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$.
- (Chebyshev's Inequality) Prove that for any a > 0, we have $\mathbb{P}[|X \mathbb{E}[X]| \ge a] \le \frac{Var(X)}{a^2}$
- (Random Walk 1): Prove that for the random variable S_n described before, we have that $\mathbb{P}[|S_n| > 2\sqrt{n}] < \frac{1}{2}$
- (Chernoff Bound): Prove that for $0 \le k \le \sqrt{n}$, we have:

$$\mathbb{P}[|S_n| \ge k\sqrt{n}] \le 2e^{-\frac{k^2}{2}}$$

• (Binomial Coefficients): As a consequence of the above, prove that

$$\frac{\sum_{i=0}^{n} \binom{n}{i}}{2^n} \le e^{-\frac{k^2}{2}}$$

To provide context on these bounds: Chebyshev's inequality will tell you that $\mathbb{P}[|S_n| \geq 10\sqrt{n}] \leq 0.01$ but Chernoff will tell you, it is $\leq 2 \cdot e^{-50} \sim 3.9 \cdot 10^{-22}$.

An Olympiad problem:

A problem from the USAMO: For integer $n \geq 2$, let x_1, x_2, \ldots, x_n be real numbers satisfying

$$x_1 + x_2 + \ldots + x_n = 0$$
, and $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$.

For each subset $A \subseteq \{1, 2, \dots, n\}$, define

$$S_A = \sum_{i \in A} x_i.$$

(If A is the empty set, then $S_A = 0$.)

Prove that for any positive number λ , the number of sets A satisfying $S_A \geq \lambda$ is at most $2^{n-3}/\lambda^2$. For which choices of $x_1, x_2, \ldots, x_n, \lambda$ does equality hold?

Hints:

For more details, check the solution document.

• Markov: Write down both the sides and compare.

 \bullet Chebyshev: Apply Markov to $Y = |X - \mathbb{E}[X]|^2.$

■ Apply Chebyshev

Discuss in class

 \blacksquare Apply Chernoff

• (USAMO): Apply Chebyshev