ALEKS: Jeremiah Gaertner 12/4/12 8:11 AM

Search Go

DICTIONARY | CLOSE WINDOW

Formulas for inferential statistics

Some facts about inference for means and proportions Some facts about inference for other parameters

- A common format
- Specific situations

Some facts about inference for means and proportions

A common format

 Several types of confidence intervals for population means and population proportions follow the general format

estimate \pm (critical value) (spread),

in which **estimate** is the value of a statistic used to estimate of the population parameter(s), **spread** is the standard deviation or standard error of the statistic, and **critical value** is a number that depends on the level of confidence and the sampling distribution of the statistic.

 Several hypothesis tests for population means and population proportions employ a test statistic of the form

in which **estimate** and **spread** are as above, and **parameter** is the population parameter of interest.

Specific situations

Inference situation

Estimating statistic

Standard deviation or standard error

Estimating
µ (via a confidence interval) or testing whether µ

equals a certain value

- Known σ
- Normal population or *n* large

 \bar{x}

 $\frac{\sigma}{\sqrt{n}}$

Estimating
µ (via a confidence interval) or testing whether µ equals a certain value

 \bar{x}

 $\frac{s}{\sqrt{n}}$

- Unknown σ
- Normal population
- Estimating p (via a confidence interval)
- np > 5 and n(1-p) > 5

 \hat{p}

 $\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$

- Testing whether $p = p_0$
- np > 5 and n(1-p) > 5

 \widehat{p}

 $\sqrt{\frac{p_0(1-p_0)}{n}}$

- Estimating $\mu_1 \mu_2$ (via a confidence interval) or testing whether $\mu_1 = \mu_2$
- Known ${f \sigma}_1^2$ and ${f \sigma}_2^2$

 $\mathbf{\sigma}_1^z$ and $\mathbf{\sigma}_2^z$ \mathbf{x}_1^{-1}

ullet Normal populations or n_1 and n_2 large

 $\overline{x}_1 - \overline{x}_2$

 $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

- Estimating \(\mu_1 \mu_2\) (via a confidence interval) or testing whether \(\mu_1 = \mu_2\)
- Unknown $\mathbf{\sigma}_1^2$ and $\mathbf{\sigma}_2^2$
- n₁ and n₂ large

 $\bar{x}_1 - \bar{x}_2$

 $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

- Estimating \(\mu_1 \mu_2 \) (via a confidence interval) or testing whether \(\mu_1 = \mu_2 \)
- $\bar{x}_1 \bar{x}_2$

 $\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

ALEKS: Jeremiah Gaertner 12/4/12 8:11 AM

> • Unknown $\mathbf{\sigma}_1^2$ and $\mathbf{\sigma}_2^2$; $\sigma_1^2 = \sigma_2^2$

 $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

Normal populations

 \bullet Estimating $\boldsymbol{p}_1 - \boldsymbol{p}_2$ (via a confidence interval)

$$\widehat{p}_1 - \widehat{p}_2$$

$$\sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}$$

• Testing whether $p_1 = p_2$

•
$$n_1 p_1 > 5$$
, $n_1 (1-p_1) > 5$, $n_2 p_2 > 5$, and $n_2 (1-p_2) > 5$

$$\widehat{p}_1 - \widehat{p}_2$$

$$\sqrt{\widehat{p}\big(1\!-\!\widehat{p}\big)\!\!\left(\frac{1}{n_1}\!+\!\frac{1}{n_2}\right)}$$

$$\widehat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 \widehat{p}_1 + n_2 \widehat{p}_2}{n_1 + n_2}$$

Some facts about inference for other parameters

Inference **Estimating** Test situation statistic statistic Estimating σ² (via a $\frac{(n-1)s^2}{s^2}$ follows a chi-square confidence interval) or testing whether σ equals a certain value distribution with n-1 degrees of Normal populations freedom

 $\frac{s_1^2/s_2^2}{\sigma_1^2/\sigma_2^2}$ follows an F distribution • Estimating $\frac{\sigma_1^2}{\sigma_1^2}$ (via a confidence interval) or with $n_1 - 1$ numerator degrees of testing whether $\sigma_1^2 = \sigma_2^2$ freedom and $n_2 - 1$ denominator

Jeremiah Gaertner Tuesday, December 4, 2012 8;11;25 AM Central Standard Time 58;b0;35;ae;2a;f6

ALEKS: Jeremiah Gaertner 12/4/12 8:11 AM

• Normal populations

degrees of freedom