CMIMD 2021

Geometry Div. 1

- 1. Points A, B, and C lie on a line, in that order, with AB = 8 and BC = 2. B is rotated 20° counter-clockwise about A to a point B', tracing out an arc R_1 . C is then rotated 20° clockwise about A to a point C', tracing out an arc R_2 . What is the area of the region bounded by arc R_1 , segment B'C, arc R_2 , and segment C'B?
- 2. In convex quadrilateral ABCD, $\angle ADC = 90^{\circ} + \angle BAC$. Given that AB = BC = 17, and CD = 16, what is the maximum possible area of the quadrilateral?
- 3. Let $\triangle ABC$ be a triangle with AB=10 and AC=16, and let I be the intersection of the internal angle bisectors of $\triangle ABC$. Suppose the tangents to the circumcircle of $\triangle BIC$ at B and C intersect at a point P with PA=8. Compute the length of BC.
- 4. Let ABCDEF be an equilateral heaxagon such that $\triangle ACE \cong \triangle DFB$. Given that AC = 7, CE = 8, and EA = 9, what is the side length of this hexagon?
- 5. Let $\gamma_1, \gamma_2, \gamma_3$ be three circles with radii 3, 4, 9, respectively, such that γ_1 and γ_2 are externally tangent at C, and γ_3 is internally tangent to γ_1 and γ_2 at A and B, respectively. Suppose the tangents to γ_3 at A and B intersect at X. The line through X and C intersect γ_3 at two points, P and Q. Compute the length of PQ.
- 6. Let circles ω and Γ , centered at O_1 and O_2 and having radii 42 and 54 respectively, intersect at points X, Y, such that $\angle O_1 X O_2 = 105^{\circ}$. Points A, B lie on ω and Γ respectively such that $\angle O_1 X A = \angle A X B = \angle B X O_2$ and Y lies on both minor arcs XA and XB. Define P to be the intersection of AO_2 and BO_1 . Suppose XP intersects AB at C. What is the value of $\frac{AC}{BC}$?
- 7. Convex pentagon ABCDE has $\overline{BC} = 17$, $\overline{AB} = 2\overline{CD}$, and $\angle E = 90^{\circ}$. Additionally, $\overline{BD} \overline{CD} = \overline{AC}$, and $\overline{BD} + \overline{CD} = 25$. Let M and N be the midpoints of BC and AD respectively. Ray EA is extended out to point P, and a line parallel to AD is drawn through P, intersecting line EM at Q. Let G be the midpoint of AQ. Given that N and G lie on EM and PM respectively, and the perimeter of $\triangle QBC$ is 42, find the length of \overline{EM} .
- 8. Let ABC be a triangle with AB < AC and ω be a circle through A tangent to both the B-excircle and the C-excircle. Let ω intersect lines AB, AC at X, Y respectively and X, Y lie outside of segments AB, AC. Let O be the center of ω and let OI_C , OI_B intersect line BC at J, K respectively. Suppose KJ = 4, KO = 16 and OJ = 13. Find $\frac{[KI_BI_C]}{[JI_BI_C]}$.