

Pair of linear equation in two variable

**Mathematics** 

Lecture - 02

By - Ritik Sir



# OPICS to be covered

- Questions on Graphical Method
- Substitution Method









| Pair of lines                       | $\frac{a_1}{a_2}$ | $\frac{b_1}{b_2}$ | $\frac{c_1}{c_2}$ | Compare the ratios                                       | Graphical<br>Representation | Algebraic<br>Representation             | Condition for solvability |
|-------------------------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-----------------------------|-----------------------------------------|---------------------------|
| x - 2y = 0<br>3x - 4y - 20 = 0      | $\frac{1}{3}$     | - 2<br>- 4        | 0<br>- 20         | $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$                   | Intersecting lines          | Exactly one solution or Unique Solution | System is consistent      |
| 2x + 3y - 9 = 0<br>4x + 6y - 18 = 0 | $\frac{2}{4}$     | $\frac{3}{6}$     | - 9<br>- 18       | $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$    | Coincident Lines            | Infinitely many solutions               | System is consistent      |
| x + 32y - 4 = 0<br>2x + 4y - 12 = 0 | $\frac{1}{2}$     | $\frac{2}{4}$     | -4<br>-12         | $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ | Parallel Lines              | No Solutions                            | System is inconsistent    |



# **#Q.** Write the number of solutions of the following pair of linear equations:

$$x + 2y - 8 = 0$$
;  $2x + 4y = 16$ 

[NCERT]

> Inginik.



**#Q.** Are the following pair of linear equation consistent? Justify your answer.

$$2ax + by = a$$
 and  $4ax + 2by - 2a = 0$ ;  $a, b \ne 0$ 

$$a_{1}=2a$$
 $b_{2}=b$ 
 $b_{2}=2b$ 
 $c_{1}=-a$ 
 $c_{2}=-2a$ 
 $c_{2}=-2a$ 
 $c_{3}=b_{1}=c_{1}$ 
 $c_{3}=b_{2}=c_{2}$ 
 $c_{3}=b_{2}=c_{3}$ 
 $c_{4}=b_{2}=c_{2}$ 
 $c_{5}=b_{2}=c_{2}$ 
 $c_{5}=b_{2}=c_{3}$ 
 $c_{5}=b_{2}=c_{4}$ 
 $c_{5}=b_{2}=c_{4}$ 
 $c_{5}=b_{2}=c_{4}$ 



# **#Q.** Graphically, the pair of equations

$$6x - 3y + 10 = 0$$

$$2x - y + 9 = 0$$

Represents two lines which are

Intersecting at exactly one point 
$$3 = 3 \neq 1$$

- В
- Intersecting at exactly two point

Nosdution



**#Q.** If a pair of linear equations is consistent, then the lines will be:

- A Parallel
- B Always coincident
- Intersecting or coincident Unique Infi
- Always intersecting



ution





- **#Q.** The pair of equations y = 0 and y = -7 has:
- A One solutions
- B Two solutions
- C Infinitely many solutions
- No solution





# #Q. A pair of linear equations which has a unique solution x = 2, y = -3.

**A** 
$$x + y = -1$$
;  $2x - 3y = -5$ 

B 
$$2x + 5y = -11$$
;  $4x + 10y = -22$   $\frac{2}{3}$ 

$$2x - y = 1; 3x + 2y = 0$$





#Q. Find whether the following pair of linear equations is consistent or inconsistent: 3x + 2y = 8 and 6x - 4y = 9 [Board Term - 1, 2016]





# **#Q.** Draw the graphs of the pair of linear equations:

$$x + 2y = 5$$
 and  $2x - 3y = -4$ 

Also, find the points where the lines meet the X-axis.

[Board Term - 1, 2014, 2015]







## #Q. A pair of linear equation which has a unique solution x = 2 and y = -3 is

**A** 
$$x + y = 1$$
 and  $2x - 3y = -5$ 

B 
$$2x + 5y = -11$$
 and  $4x + 10y = -22$ 



$$2x - y = 1$$
 and  $3x + 2y = 0$ 

D 
$$x - 4y - 14 = 0$$
 and  $5x - y - 13 = 0$ 



#Q. Two straight paths are represented by the equations x - 3y = 2 and

-2x + 6y = 5. Check whether the paths cross each other or not.





 $\mathbf{\#Q}$ . The pair of equations  $\mathbf{x} = \mathbf{a}$  and  $\mathbf{y} = \mathbf{b}$  graphically represents lines which are:

- A parallel
- B Intersecting at (b, a)
- Coincident
- Intersecting at (a, b)





- **#Q.** The pair of linear equations  $\frac{3x}{2} + \frac{5y}{3} = 1$  and 9x + 10y = 14 is
- (A) Consistent

[CBSE, Delhi & OD, 2020]



Consistent with many solution



#Q. Show below are the graphs of the lines y - 2x = 0, x + y = 6 and px + qy = r.





[CBSE Q.B., 2021-22]



**B** 
$$x = 4, y = 2$$

$$x = 3, y = 2$$

We cannot say for sure as the values of p and q are not known.



# #Q. Solving the following system of equations graphically

$$x + 3y = 16$$

$$2x - 3y = 12$$

and hence find the value of a, if 4x + 3y = a

## [CBSE 2008]







#Q. Draw the graphs of 2x + y = 6 and 2x - y + 2 = 0. Shade the region bounded by these lines and x-axis. Find the area of the shaded region. [CBSE 2002]

$$\frac{3 + y = 6}{x + 9 = 6}$$





# Topic: Algebraic Methods of Solving Simultaneous



Linear Equations in two variables

The most commonly used algebraic methods of solving simultaneous linear equation in two variables are:

- (i) Method of elimination by substitution
- (ii) Method of elimination by equation the coefficients.
- (iii) Method of cross-multiplication.

not incosse

#### **Topic: Substitution Method**



(i) 
$$3x - 5y = -1$$
;  $x - y = -1$ 

$$3x-sy=-1$$
 $x-y=-1$ 
 $x=-1+y=-3$ 

Put (3) in (1)
 $3x-sy=-1$ 
 $3(-1+y)-sy=-1$ 

$$3(-1-29)-39=12$$

#### **Topic: Substitution Method**



92436-8x

(i) 
$$2x + 3y = 9$$
;  $3x + 4y = 5$ 

$$3x+3y=9$$
 $3x+4y=9$ 
 $3x+4y=9$ 
 $3x+4y=9$ 
 $3x+4y=9$ 
 $3x+4y=9$ 
 $3x+4y=9$ 
 $3x+36-8x$ 

(ii) 
$$\frac{2x}{a} + \frac{y}{b} = 2$$
;  $\frac{x}{a} - \frac{y}{b} = 4$ 





# #Q. The area of the triangle formed by the lines y = x, x = 6 and y = 0 is

- A 36 sq. units
- B 18 sq. units
- © 9 sq. units
- D 72 sq. units







## Homework



72 inclass Questions

