邏輯設計HW4_solution

3 to 8 decoder:

 $\{z, y, x\}$ is select =(000, 001, 010, 011, 100, 101, 110, 111) . D0~D7 Only one is "1", others are "0" .

8x2 AND OR:

For example, $\{z, y, x\} = 000$, D0=1, D1~D7=0, a0D0=a0 (because D0=1) a1D1~a7D7=0 (because D1~D7=0) output is a0 (It's a 8to1 MUX)

z	у	х	a0D0	a1D1	a2D2	a3D3	a4D4	a5D5	a6D6	a7D7	output
0	0	0	a0	0	0	0	0	0	0	0	a0
0	0	1	0	a1	0	0	0	0	0	0	a1
0	1	0	0	0	a2	0	0	0	0	0	a2
0	1	1	0	0	0	a3	0	0	0	0	a3
1	0	0	0	0	0	0	a4	0	0	0	a4
1	0	1	0	0	0	0	0	a5	0	0	a5
1	1	0	0	0	0	0	0	0	a6	0	a6
1	1	1	0	0	0	0	0	0	0	a7	a7

3. (20%)

Design a 4->2 priority encoder with input D[3:0] and output A[1:0] where D[0] has the highest priority and D[3] has the lowest priority.

4-bit arbiter:

Priority: r0>r1>r2>r3 (D0>D1>D2>D3)

4-bit encoder:

Input: {g3, g2, g1, g0}

Output: {A1, A0}

A1 = g3 + g2

A0 = g3 + g1

D3	D2	D1	DO	g3	g2	g1	g0	A1	A0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0	0	1
0	0	1	1	0	0	0	1	0	0
0	1	0	0	0	1	0	0	1	0
0	1	0	1	0	0	0	1	0	0
0	1	1	0	0	0	1	0	0	1
0	1	1	1	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	1
1	0	0	1	0	0	0	1	0	0
1	0	1	0	0	0	1	0	0	1
1	0	1	1	0	0	0	1	0	0
1	1	0	0	0	1	0	0	1	0
1	1	0	1	0	0	0	1	0	0
1	1	1	0	0	0	1	0	0	1
1	1	1	1	0	0	0	1	0	0

4. (20%)
Design a three-way magnitude comparator that outputs true if its three inputs are in strict order: a>b>c. (All a, b, and c are 3-bit signals.)

Magnitude Comparator:

Input: $A = \{A_2, A_1, A_0\}, B = \{B_2, B_1, B_0\}$

If A>B, output = 1 Else output = 0

 $(A>B) = A_2B_2' + x_2A_1B_1' + x_1x_2A_0B_0'$ $x_i = A_iB_i + A_i'B_i'$

