

10/10/2005

REC'D. CT/PTO 01 MAR 2005

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2003年10月30日 (30.10.2003)

PCT

(10) 国際公開番号
WO 03/089172 A1

(51) 国際特許分類⁷: B23B 27/14

(21) 国際出願番号: PCT/JP03/02362

(22) 国際出願日: 2003年2月28日 (28.02.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2002-117578 2002年4月19日 (19.04.2002) JP
特願2002-117580 2002年4月19日 (19.04.2002) JP

(71) 出願人(米国を除く全ての指定国について): 三菱マテリアル株式会社 (MITSUBISHI MATERIALS CORPORATION) [JP/JP]; 〒100-8117 東京都千代田区大手町一丁目5番1号 Tokyo (JP).

(72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 田嶋 逸郎 (TAJIMA, Itsuro) [JP/JP]; 〒311-0102 茨城県那珂郡那珂町向山1002番地14 三菱マテリアル株式会社 総合研究所 那珂研究センター内 Ibaraki (JP). 関直方 (SEKI, Naokata) [JP/JP]; 〒311-0102 茨城県那珂郡那珂町向山1002番地14 三菱マテリアル株式会社 総合研究所 那珂研究センター内 Ibaraki (JP). 山本和男 (YAMAMOTO, Kazuo) [JP/JP]; 〒311-0102 茨城県那珂郡那珂町向山1002番地14 三菱マテリアル株式会社 総合研究所 那珂研究センター内 Ibaraki (JP).

(74) 代理人: 志賀 正武, 外 (SHIGA, Masatake et al.); 〒169-8925 東京都新宿区高田馬場三丁目23番3号 ORビル Tokyo (JP).

(81) 指定国(国内): CN, KR, US.

(84) 指定国(広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: CUBIC BORON NITRIDE BASE ULTRA-HIGH PRESSURE SINTERED MATERIAL CUTTING TIP

(54) 発明の名称: 立方晶窒化ほう素基超高压焼結材料製切削チップ

(57) Abstract: A cubic boron nitride base ultra-high pressure sintered material cutting tip comprising a cubic boron nitride base ultra-high pressure sintered material which exhibits a three phase structure comprising substantially a continuous bonding phase, a hard dispersion phase, and an intermediate intimate contact phase being present between the continuous bonding phase and the hard dispersion phase, as observed by a scanning electron microscope, wherein the continuous bonding phase comprises at least two of titanium nitride, titanium carbo-nitride and titanium carbide, or 15 to 56 mass % of titanium carbo-nitride, wherein the intermediate intimate contact phase comprises 2 to 10 mass % of a composite nitride of Ti and Al and 2 to 10 mass % of tungsten carbide, and wherein the hard dispersion phase comprises cubic boron nitride in the balanced amount (provided that in the range of 35 to 65 mass %). The tip is excellent in the resistance to chipping.

(57) 要約: 耐チッピング性のすぐれた立方晶窒化ほう素基超高压焼結材料製切削チップである。この立方晶窒化ほう素基超高压焼結材料製切削チップは、走査型電子顕微鏡による組織観察で、実質的に連続結合相、硬質分散相、および前記連続結合相と硬質分散相の間に介在する中間密着相の3相組織を示し、かつ質量%で、上記連続結合相形成成分として、窒化チタン、炭窒化チタン、および炭化チタンのうちの2種以上、または炭窒化チタン:15~56質量%、上記中間密着相形成成分として、TiとAlの複合窒化物:2~10質量%、炭化タングステン:2~10質量%、上記硬質分散相形成成分として、立方晶窒化ほう素:残り(ただし、35~65質量%含有)、からなる配合組成を有する立方晶窒化ほう素基超高压焼結材料で構成される。

WO 03/089172 A1

明 細 書

立方晶窒化ほう素基超高压焼結材料製切削チップ

技術分野

この発明は、例えば高硬度焼き入れ鋼などの難削材の仕上げ切削を高速で行った場合にもすぐれた耐チッピング性を發揮する立方晶窒化ほう素基超高压焼結材料製切削チップ（以下、c-BN基焼結切削チップという）に関するものである。

背景技術

従来、一般に、c-BN基焼結切削チップとして、例えば特開昭53-77811号公報に記載されるように、走査型電子顕微鏡による組織観察で、実質的に連続結合相および硬質分散相の2相組織を示し、かつ質量%で、上記連続結合相形成成分として、

窒化チタン（以下、TiNで示す）、炭窒化チタン（以下、TiCNで示す）、および炭化チタン（以下、TiCで示す）のうちの1種または2種以上：20～45%、

上記硬質分散相形成成分として、

立方晶窒化ほう素（以下、c-BNで示す）：残り、
からなる配合組成を有するプレス成形体の焼結体である立方晶窒化ほう素基超高压焼結材料（以下、c-BN基材料という）で構成されたc-BN基焼結切削チップが知られており、これが例えば各種の鋼や鋳鉄などの表面仕上げ切削などに用いられていることも知られている。

一方、近年の切削装置の高性能化および高出力化はめざましく、また切削加工の省力化および省エネ化に対する要求も強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来c-BN基焼結切削チップはじめ、その他のc-BN基焼結切削チップにおいては、例えば高硬度焼き入れ鋼などの難削材の仕上げ切削などを高速で行うのに用いると、連続結合相を構成する実質的にTiCN相に対する硬質分散相であるc-BN相の密着性不足のために前記c-BN相が剥離

し易くなり、この結果切刃にチッピング（微小欠け）が発生するようになることから、比較的短時間で使用寿命に至るのが現状である。

発明の開示

そこで、本発明者等は、上述のような観点から、耐チッピング性のすぐれたc-BN基焼結切削チップを開発すべく、研究を行った結果、

c-BN基焼結切削チップの製造に際して、原料粉末として用いられているc-BN粉末と、TiN粉末、TiCN粉末、およびTiCN粉末に加えて、さらにTiとAlの複合窒化物〔以下、(Ti, Al)Nで示す〕粉末と炭化タングステン（以下、WCで示す）粉末を原料粉末として用い、これらを、質量%（以下、%は質量%を示す）で、

TiN、TiCN、およびTiCのうちの2種以上、またはTiCN:15~56%、

(Ti, Al)N:2~10%、

WC:2~10%、

c-BN:残り（ただし、35~65%含有）、

からなる配合組成に配合し、混合して形成したプレス成形体を超高压焼結すると、これら構成成分のうちの(Ti, Al)N粉末とWC粉末が、焼結時に優先的にc-BN粉末の表面に凝集し、反応して反応生成物を形成し、焼結後のc-BN基材料において、前記反応生成物が実質的にTiCN相からなる連続結合相とc-BN相からなる硬質分散相の間に介在するようになり、しかもこの反応生成物は、連続結合相を構成する前記TiCN相、さらに硬質分散相を構成する前記c-BN相のいずれともきわめて強固に密着し、中間密着相として作用することから、このc-BN基材料で構成されたc-BN基焼結切削チップは、例えば高硬度焼き入れ鋼などの難削材の仕上げ切削などを高速で行うのに用いても、切刃にc-BN相の密着性不足が原因のチッピングの発生がなく、すぐれた切削性能を長期に亘って発揮するという研究結果を得たのである。

この発明は、上記の研究結果に基づいてなされたものであって、走査型電子顕微鏡による組織観察で、実質的に連続結合相、硬質分散相、および前記連続結合

相と硬質分散相の間に介在する中間密着相の3相組織を示し、
上記連続結合相形成成分として、

T_iN、T_iCN、およびT_iCのうちの2種以上、またはT_iCN：15～56%（以下、いずれも質量%で示す）、

上記中間密着相形成成分として、

(T_i, A1)N：2～10%、

WC：2～10%、

上記硬質分散相形成成分として、

c-BN：残り（ただし、35～65%含有）、

からなる配合組成を有するプレス成形体の焼結体であるc-BN基材料で構成してなる、耐チッピング性のすぐれたc-BN基焼結切削チップに特徴を有するものである。

つぎに、この発明のc-BN基焼結切削チップにおいて、これを構成するc-BN基材料の配合組成を上記の通りに限定した理由を説明する。

(a) T_iN、T_iCN、およびT_iC

これらの成分には、焼結性を向上させると共に、実質的にT_iCN相からなる連続結合相を形成して強度を向上させる作用があるが、その配合割合が15%未満では所望の強度を確保することができず、一方その配合割合が56%を越えると耐摩耗性が急激に低下することから、その配合割合を15～56%と定めた。望ましくは30～50%とするのがよい。

(b) (T_i, A1)NおよびWC

上記の通り、これらの成分は、焼結時に優先的にc-BN粉末の表面に凝集し、反応して反応生成物を形成し、焼結後のc-BN基材料で、前記連続結合相のT_iCN相と、前記硬質分散相のc-BN相の間に介在するようになる。しかもこの反応生成物は、前記連続結合相のT_iCN相と、前記硬質分散相のc-BN相のいずれとも強固に密着接合する性質をもつことから、前記c-BN相の連続結合相であるT_iCN相に対する密着性が著しく向上し、この結果刃の耐チッピング性が向上するようになるが、これら成分のうちのいずれの成分の配合割合が上記の範囲から外れても、中間密着相として前記硬質分散相と連続結合相の間

に強固な密着性を確保することができず、したがって、(Ti, Al)NおよびWCの上記の配合割合は強固な密着性を確保する上で経験的に定めたものである。望ましくはいずれもそれぞれ3~8%とするのがよい。

(c) c-BN

硬質分散相を構成するc-BNは、きわめて硬質で、これによって耐摩耗性の向上が図られるが、その配合割合が35%未満では所望のすぐれた耐摩耗性を確保することができず、一方その配合割合が65%を越えると、c-BN基材料自体の焼結性が低下し、この結果切刃にチッピングが発生し易くなることから、その割合を35~65%と定めた。望ましくは45~60%とするのがよい。

なお、上記のこの発明のc-BN基焼結切削チップには、その表面に切削チップ使用前後識別層として、黄金色の色調を有する窒化チタン（以下、TiNで示す）層を蒸着形成してもよく、この場合の蒸着層厚は、平均層厚が0.5μm未満では識別に十分な黄金色の色調を付与することができず、一方識別は5μmまでの平均層厚で十分であることから、0.5~5μmの平均層厚とすればよい。

また、本発明者等は、耐チッピング性のすぐれたc-BN基焼結切削チップを開発すべく、さらに研究を行った結果、

c-BN基焼結切削チップの製造に際して、原料粉末として用いられているc-BN粉末と、TiN粉末および/またはTiCN粉末に加えて、TiとAlの金属間化合物（以下、Ti-Al化合物で示す）粉末、TiとAlの複合窒化物[以下、(Ti, Al)Nで示す]粉末、および炭化タングステン（以下、WCで示す）粉末を原料粉末として用い、これらを、質量%（以下、%は質量%を示す）で、

Ti-Al化合物：3~8%、

(Ti, Al)N：5~10%、

WC：5~15%、

の割合で配合すると、これらのTi-Al化合物粉末、(Ti, Al)N粉末、およびWC粉末は、焼結時に優先的に反応し、TiとAlとWの複合炭窒化物[以下、(Ti, Al, W)CNで示す]を形成して、c-BN粉末の表面に凝集

することから、焼結後の c-BN 基材料においては、前記 (Ti, Al, W) CN が TiN および／または TiCN からなる連続結合相と c-BN からなる硬質分散相の間に介在するようになり、しかもこの (Ti, Al, W) CN は、連続結合相を構成する前記 TiN および TiCN、さらに硬質分散相を構成する前記 c-BN のいずれともきわめて強固に密着し、中間密着相として作用することから、この c-BN 基材料で構成された c-BN 基焼結切削チップは、例えば高硬度焼き入れ鋼などの難削材の仕上げ切削を高速で行うのに用いても、切刃にチッピングの発生なく、すぐれた切削性能を長期に亘って発揮するという研究結果を得たのである。

この発明は、上記の研究結果に基づいてなされたものであって、走査型電子顕微鏡による組織観察で、実質的に連続結合相、硬質分散相、および前記連続結合相と硬質分散相の間に介在する中間密着相の 3 相組織を示し、

上記連続結合相形成成分として、

TiN および／または TiCN : 20 ~ 37 %、

上記中間密着相形成成分として、

Ti-Al 化合物 : 3 ~ 8 %、

(Ti, Al) N : 5 ~ 10 %、

WC : 5 ~ 15 %、

上記硬質分散相形成成分として、

c-BN : 残り（ただし、35 ~ 55 % 含有）、

からなる配合組成を有する c-BN 基材料で構成してなる、耐チッピング性のすぐれた c-BN 基焼結切削チップに特徴を有するものである。

つぎに、この発明の c-BN 基焼結切削チップにおいて、これを構成する c-BN 基材料の配合組成を上記の通りに限定した理由を説明する。

(d) TiN および／または TiCN

これらの成分には、焼結性を向上させると共に、連続結合相を形成して強度を向上させる作用があるが、その配合割合が 20 % 未満では所望の強度を確保することができず、一方その配合割合が 37 % を越えると耐摩耗性が急激に低下するようになることから、その配合割合を 20 ~ 37 % と定めた。

なお、連続結合相形成成分である TiN および／または TiCN の一部（5～10 質量%）を、炭化タンタル（TaC）、または、炭化ニオブ（NbC）に置き換えるても、特に弊害は発生せずに、これらの成分を含まない場合と同様のすぐれた耐チッピング性が得られることも分かった。

(e) Ti-Al 化合物、(Ti, Al)N、および WC

上記の通り、これらの成分は、焼結時に優先的に反応して、(Ti, Al, W)CN を形成し、硬質分散相である c-BN 表面に凝集することから、焼結後の c-BN 基材料では、前記連続結合相の TiN および TiCN と、前記硬質分散相の c-BN の間に介在するようになる。しかもこの (Ti, Al, W)CN は、TiN、TiCN、および c-BN のいずれとも強固に密着接合する性質をもつことから、前記 c-BN の TiN および TiCN に対する密着性が著しく向上し、この結果切刃の耐チッピング性が向上するようになるが、これら成分のうちのいずれの成分の配合割合が上記の範囲から外れても、中間密着相として前記硬質分散相と連続結合相の間に強固な密着性を確保することができず、したがって、Ti-Al 化合物、(Ti, Al)N、および WC の上記の配合割合は強固な密着性を確保する上で経験的に定めたものである。

(f) c-BN

硬質分散相を構成する c-BN は、きわめて硬質で、これによって耐摩耗性の向上が図られるが、その配合割合が 35% 未満では所望のすぐれた耐摩耗性を確保することができず、一方その配合割合が 55% を越えると、c-BN 基材料自身の焼結性が低下し、この結果チッピングが発生し易くなることから、その割合を 35～55% と定めた。

なお、上記のこの発明の c-BN 基焼結切削チップには、その表面に切削チップ使用前後識別層として、黄金色の色調を有する窒化チタン（以下、TiN で示す）層を蒸着形成してもよく、この場合の蒸着層厚は、平均層厚が 0.5 μm 未満では識別に十分な黄金色の色調を付与することができず、一方識別は 5 μm までの平均層厚で十分であることから、0.5～5 μm の平均層厚とすればよい。

発明を実施するための最良の形態

始めに、この発明の c-BN基焼結切削チップを第1実施例により具体的に説明する。

原料粉末として、いずれも $0.5 \sim 2 \mu\text{m}$ の範囲内の所定の平均粒径を有する、連続結合相形成用としての TiN粉末およびTiCN粉末、さらにTiC粉末、中間密着相形成用としてのWC粉末、そして (Ti, Al)N粉末である ($\text{Ti}_{0.65}\text{Al}_{0.35}$) N粉末、($\text{Ti}_{0.50}\text{Al}_{0.50}$) N粉末、および ($\text{Ti}_{0.35}\text{Al}_{0.65}$) N粉末（いずれも組成式内の数字は原子比を示す）、さらに硬質分散相形成用としてのc-BN粉末を用意し、これら原料粉末を表1、2に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で直径：50mm×厚さ：1.5mmの寸法をもった成形体にプレス成形し、この成形体を圧力：1Paの真空雰囲気中、900～1300°Cの範囲内の所定の温度に1時間保持の条件で予備焼結し、ついでこれを別途用意した直径：50mm×厚さ：2mmの寸法をもった超硬合金チップ（組成：WC-8%Co）と重ね合わせた状態で超高压焼結装置に装入し、1200～1400°Cの範囲内の所定温度に5GPaの圧力下で30分保持の条件で焼結し、焼結後上下面をダイヤモンド砥石を用いて研削し、アーク放電によるワイヤカットで寸法調製することにより前記超硬合金で裏打された本発明c-BN基焼結切削チップ（以下、本発明切削チップと云う）1～12および比較c-BN基焼結切削チップ（以下、比較切削チップと云う）1～12をそれぞれ製造した。

なお、比較切削チップ1～12は、いずれも中間密着相形成成分である (Ti, Al)N粉末およびWC粉末のうちのいずれかの配合割合がこの発明の範囲から外れた配合組成をもつものである。

また、本発明切削チップ11および比較切削チップ11について、これをアセトン中で超音波洗浄し、乾燥した状態で、通常のアーキイオンプレーティング装置内に装着し、カソード電極（蒸発源）として金属Tiを装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500°Cに加熱した後、前記切削チップに-1000Vの直流バイアス電圧を印加し、一方カソード電極の前記金属Tiとアノード電極との間には100Aの電流を流してアーク放電を発生させ、もって前記切削チップ表面をTiボンバート洗浄し、つ

いで装置内に反応ガスとして窒素ガスを導入して 5 Pa の反応雰囲気とともに、前記前記切削チップに -100 V の直流バイアス電圧を印加し、一方カソード電極とアノード電極との間には 100 A の電流を流してアーク放電を発生させ、もって前記本発明切削チップ 1 1 および比較切削チップ 1 1 の表面に、いずれも 1. 5 μm の平均層厚で、黃金色の色調を有する TiN 層を蒸着形成した。

この結果得られた各種の切削チップを構成するそれぞれの c-BN 基材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれの切削チップも、実質的に連続結合相、硬質分散相、および前記連続結合相と硬質分散相の間に介在する中間密着相からなる 3 相組織を示した。

さらに、これらの切削チップを、超硬合金本体（組成：WC - 10%Co）の切刃先端部に形成した切り込み段部にろう付けすることにより JIS・TNMA 160408 に規定する形状をもったスローアウエイ型切削工具とし、本発明切削チップ 1～4 および比較切削チップ 1～4 については、

被削材：浸炭焼き入れ鋼（JIS・SCM415、硬さ：HRC62）の丸棒

、
切削速度：350 m/min、

切り込み：0.15 mm、

送り：0.1 mm/rev、

切削時間：30 分、

の条件での難削材の乾式高速連続旋削切削試験、また本発明切削チップ 5～8 および比較切削チップ 5～8 については、

被削材：浸炭焼き入れ鋼（JIS・SCM415、硬さ：HRC62）の長さ方向等間隔 4 本縦溝入り丸棒、

切削速度：300 m/min、

切り込み：0.15 mm、

送り：0.2 mm/rev、

切削時間：60 分、

の条件での難削材の乾式高速断続表面仕上げ切削試験、さらに本発明切削チップ 9～12 および比較切削チップ 9～12 については、

被削材：球状黒鉛鋳鉄（J I S・F C D 7 0）、

切削速度：4 5 0 m／m i n、

切り込み：0. 1 5 mm、

送り：0. 2 mm／r e v、

切削時間：3 0 分、

の条件での難削材の乾式高速連続表面仕上げ切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表 1， 2 に示した。

また、上記の切削チップ表面に、切削チップ使用前後識別層として黃金色の色調を有する T i N 層を蒸着形成したものについて、上記の切削試験後の表面を観察したところ、切刃部のすくい面と逃げ面の切粉当接部、並びにすくい面と逃げ面の交わる切刃稜線部における前記 T i N 層が摩滅し、前記 T i N 層摩滅部分には切削チップ素地のもつ灰色の色調が露呈しており、これらの前記 T i N 層摩滅部分以外の部分の黃金色と前記切削チップ素地の灰色のコントラストから使用前後の識別を容易に行なうことができた。

表1

種別	配合組成(質量%)						逃げ面 摩耗幅(mm)		
	TiN	TiCN	TiC	(Ti0.65Al0.35)N	(Ti0.50Al0.50)N	(Ti0.35Al0.65)N	WC	C-BN	
1	16	30	—	2	—	—	2	残(50)	0.24
2	20	—	17	2	4	—	3	残(54)	0.24
3	—	43	—	—	2	2	5	残(48)	0.22
4	—	30	15	—	8	—	7	残(40)	0.20
5	6	18	5	—	—	7	8	残(56)	0.25
6	18	8	—	3	—	5	8	残(58)	0.24
7	—	22	6	1	1	2	8	残(60)	0.20
8	10	—	8	2	3	2	10	残(65)	0.20
9	16	16	—	3	—	4	6	残(55)	0.23
10	14	—	13	—	2	3	6	残(62)	0.20
11	10	17	10	—	—	7	4	残(52)	0.18
12	22	—	22	2	2	2	7	残(43)	0.18

表2

種別	配合組成(質量%)					切削試験結果
	TiN	TiCN	TiC	(Ti0.65Al0.35)N	(Ti0.50Al0.50)N	
比較切削チップ	1	16	31	—	1※	—
	2	21.5	—	18	2	4
	3	—	36	—	—	—
	4	—	30	10	—	4※
	5	9	18	8.5	—	—
	6	18	14.5	—	3	—
	7	—	18	2	4※	2※
	8	10	—	7	2	3
	9	19	19	—	0.5※	—
	10	11	—	10	—	6※
	11	10	10	20	10	—
	12	20	—	19	2	2

(表中、※印は本発明範囲外を示し、使用寿命は切刃に発生したチッピングが原因)

表1、2に示される結果から、本発明切削チップ1～12は、いずれも難削材である浸炭焼き入れ鋼の旋削や表面仕上げ切削を高速で行っても切刃にチッピングの発生なく、すぐれた耐摩耗性を示し、すぐれた切削性能を長期に亘って發揮するのに対して、比較切削チップ1～12に見られるように、中間密着相形成成分であるTi-Al化合物粉末およびWC粉末のうちのいずれかの配合割合がこの発明の範囲から外れても切刃にチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。

上述のように、この発明のc-BN基焼結切削チップは、硬質分散相を構成するc-BN相が中間密着相の介在によって実質的に連続結合相を構成するTiCN相にきわめて強固に密着し、通常の条件での切削加工は勿論のこと、上記の通り高硬度焼き入れ鋼などの難削材の高速切削や高速表面仕上げ切削でもすぐれた耐チッピング性を發揮するものであるから、切削装置の高性能化および高出力化、さらに切削加工の省力化および省エネ化にも十分満足に対応できるものである。

つぎに、この発明のc-BN基焼結切削チップを第2実施例により具体的に説明する。

原料粉末として、いずれも0.5～4μmの範囲内の所定の平均粒径を有する、連続結合相形成用としてのTiN粉末およびTiCN粉末、中間密着相形成用としてのTi-Al化合物粉末、Ti₂AlN粉末、およびWC粉末、さらに硬質分散相形成用としてのc-BN粉末を用意し、これら原料粉末を表3に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で直径：50mm×厚さ：1.5mmの寸法をもった成形体にプレス成形し、この成形体を真空中、900～1300℃の範囲内の所定の温度に1時間保持の条件で予備焼結し、ついでこれを別途用意した直径：50mm×厚さ：2mmの寸法をもった超硬合金チップ（組成：WC-8%C）と重ね合わせた状態で超高压焼結装置に装入し、1200～1400℃の範囲内の所定温度に5GPaの圧力下で30分保持の条件で焼結し、焼結後上下面をダイヤモンド砥石を用いて研削し、アーク放電によるワイヤカットを施すことにより前記超硬合金で

裏打された本発明 c-BN基焼結切削チップ（以下、本発明切削チップと云う）1～8および比較c-BN基焼結切削チップ（以下、比較切削チップと云う）1～6をそれぞれ製造した。

なお、比較切削チップ1～6は、いずれも中間密着相形成成分であるTi-Al₁化合物粉末、Ti₂Al₁N粉末、およびWC粉末のうちのいずれかの配合割合がこの発明の範囲から外れた配合組成をもつものである。

また、本発明切削チップ8、および比較切削チップ6について、これをアセトン中で超音波洗浄し、乾燥した状態で、通常のアークイオンプレーティング装置内に装着し、カソード電極（蒸発源）として金属Tiを装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記切削チップに-1000Vの直流バイアス電圧を印加し、一方カソード電極の前記金属Tiとアノード電極との間には100Aの電流を流してアーク放電を発生させ、もって前記切削チップ表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して5Paの反応雰囲気と共に、前記前記切削チップに-100Vの直流バイアス電圧を印加し、一方カソード電極とアノード電極との間には100Aの電流を流してアーク放電を発生させ、もって前記本発明切削チップ8、および比較切削チップ6の表面に、いずれも1.5μmの平均層厚で、黄金色の色調を有するTiN層を蒸着形成した。

この結果得られた各種の切削チップを構成するそれぞれのc-BN基材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれの切削チップも、実質的に連続結合相、硬質分散相、および前記連続結合相と硬質分散相の間に介在する中間密着相からなる3相組織を示した。

さらに、これらの切削チップを、超硬合金本体（組成：WC-10重量%Co）の切刃先端部に形成した切り込み段部にろう付けすることによりJIS・TNMA160408に規定する形状をもったスローアウェイ型切削工具とし、

被削材：浸炭焼き入れ鋼（JIS・SCM415、硬さ：HRC62）の長さ方向等間隔4本縦溝入り丸棒、

切削速度：300m/min、

切り込み：0.12mm、

送り : 0. 15 mm / rev、

切削時間 : 45分、

の条件で難削材の乾式高速表面仕上げ切削試験を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表3に示した。

また、上記の切削チップ表面に、切削チップ使用前後識別層として黃金色の色調を有するTiN層を蒸着形成したものについて、上記の切削試験後の表面を観察したところ、切刃部のすくい面と逃げ面の切粉当接部、並びにすくい面と逃げ面の交わる切刃稜線部における前記TiN層が摩滅し、前記TiN層摩滅部分には切削チップ素地のもつ灰色の色調が露呈しており、これらの前記TiN層摩滅部分以外の部分の黃金色と前記切削チップ素地の灰色のコントラストから使用前後の識別を容易に行なうことができた。

表3

種別	配合組成(質量%)					逃げ面 摩耗幅(mm)			焼結体組成(質量%)		
	Ti-Al 化合	Ti ₂ AlN	WC	TiN	TiCN	C-BN	TiN	TiCN	(Ti, Al, W)CN	C-BN	
本発明 切削チップ	1	3	7	8	—	37	残(45)	0.24	5	35	15
	2	6	7	8	17	8	残(54)	0.2	22	7	17
	3	8	7	8	25	—	残(52)	0.22	27	—	21
	4	6	5	8	21	5	残(55)	0.19	28	5	15
	5	6	10	5	—	30	残(46)	0.23	4	29	21
	6	6	7	5	37	—	残(45)	0.22	41	—	14
	7	6	7	12	10	15	残(50)	0.18	12	15	23
	8	6	7	15	12	8	残(52)	0.19	15	8	25
比較 切削チップ	1	1.5※	7	8	—	37	残(46.5)	18分で使用寿命	2.5	37	14
	2	9.5※	7	8	25	—	残(50.5)	15分で使用寿命	28.5	—	21
	3	6	3.5※	8	21	5	残(56.5)	17分で使用寿命	23.5	5	15
	4	6	11※	3	—	30	残(45)	12分で使用寿命	2	30	23
	5	6	7	3※	37	—	残(47)	17分で使用寿命	40	—	13
	6	6	7	17※	12	8	残(50)	9分で使用寿命	14	8	28
他の実施例	配合組成(質量%)									逃げ面 摩耗幅(mm)	
	Ti-Al 化合	Ti ₂ AlN	WC	TiN	TiCN	C-BN	TaC	NbC	—	摩耗幅(mm)	
	9	8	7	8	12	5	残(50)	10	—	0.21	
	10	8	7	8	12	5	残(50)	—	10	0.19	

(表中、※印は本発明範囲外を示し、使用寿命は刃刃に発生したチッピングが原因)

表3に示される結果から、本発明切削チップ1～8は、いずれも難削材である浸炭焼き入れ鋼の表面仕上げ切削を高速で行っても切刃にチッピングの発生なく、すぐれた耐摩耗性を示し、すぐれた切削性能を長期に亘って発揮するのに対して、比較切削チップ1～6に見られるように、中間密着相形成成分であるTi—Al化合物粉末、 Ti_2AlN 粉末、およびWC粉末のうちのいずれかの配合割合がこの発明の範囲から外れても切刃にチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。

なお、表3には、他の実施例として、連続結合相形成成分であるTiN及びTiCNの一部をTaC（炭化タンタル）に置き換えた切削チップ9、同様にTiN及びTiCNの一部をNbCに置き換えた切削チップ10により、上記同様、難削材の乾式高速表面仕上げ切削試験を行った場合の切刃の逃げ面摩耗幅も記載した。これら切削チップ9、10も、切削チップ1～8と同様に、浸炭焼き入れ鋼の表面仕上げ切削を高速で行っても切刃にチッピングの発生なく、すぐれた耐摩耗性を示している。

上述のように、この発明のc-BN基焼結切削チップは、硬質分散相を構成するc-BNが中間密着相の介在によって連続結合相を構成するTiNおよびTiCNにきわめて強固に密着し、通常の条件での表面仕上げ切削は勿論のこと、上記の通り高硬度焼き入れ鋼などの難削材の高速表面仕上げ切削でもすぐれた耐チッピング性を発揮するものであるから、切削装置の高性能化および高出力化、さらに切削加工の省力化および省エネ化にも十分満足に対応できるものである。

請求の範囲

1. 走査型電子顕微鏡による組織観察で、実質的に連続結合相、硬質分散相、および前記連続結合相と硬質分散相の間に介在する中間密着相の3相組織を示し、上記連続結合相形成成分として、チタン化合物を含み、
上記中間密着相形成成分として、少なくとも、TiとAlの複合窒化物と、炭化タングステンと、を含み、
上記硬質分散相形成成分として、立方晶窒化ほう素を含む、立方晶窒化ほう素基超高压焼結材料で構成したことを特徴とする切削チップ。

2. 上記連続結合相形成成分として、
窒化チタン、炭窒化チタン、および炭化チタンのうちの2種以上、または炭窒化チタン：15～56質量%、
上記中間密着相形成成分として、
TiとAlの複合窒化物：2～10質量%、
炭化タングステン：2～10質量%、
上記硬質分散相形成成分として、
立方晶窒化ほう素：残り（ただし、35～65質量%含有）、
からなる配合組成を有することを特徴とする請求項1に記載の切削チップ。

3. 上記連続結合相形成成分として、
窒化チタンおよび／または炭窒化チタン：20～37質量%、
上記中間密着相形成成分として、
TiとAlの金属間化合物：3～8質量%、
TiとAlの複合窒化物：5～10質量%、
炭化タングステン：5～15質量%、
上記硬質分散相形成成分として、
立方晶窒化ほう素：残り（ただし、35～55質量%含有）、
からなる配合組成を有することを特徴とする請求項1に記載の切削チップ。

4. 上記連続結合相形成成分として、

窒化チタンおよび／または炭窒化チタン：10～32質量%、

炭化タンタル：5～10質量%、

上記中間密着相形成成分として、

TiとAlの金属間化合物：3～8質量%、

TiとAlの複合窒化物：5～10質量%、

炭化タングステン：5～15質量%、

上記硬質分散相形成成分として、

立方晶窒化ほう素：残り（ただし、35～55質量%含有）、

からなる配合組成を有することを特徴とする請求項1に記載の切削チップ。

5. 上記連続結合相形成成分として、

窒化チタンおよび／または炭窒化チタン：10～32質量%、

炭化ニオブ：5～10質量%、

上記中間密着相形成成分として、

TiとAlの金属間化合物：3～8質量%、

TiとAlの複合窒化物：5～10質量%、

炭化タングステン：5～15質量%、

上記硬質分散相形成成分として、

立方晶窒化ほう素：残り（ただし、35～55質量%含有）、

からなる配合組成を有することを特徴とする請求項1に記載の切削チップ。

6. 切削チップ表面に、チップ使用前後識別層として0.5～5μmの平均層厚を有する窒化チタン層を蒸着形成してなる請求項1に記載の切削チップ。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/02362

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ B23B27/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ B23B27/14, C04B35/58

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Toroku Jitsuyo Shinan Koho	1994-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Jitsuyo Shinan Toroku Koho	1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 56-156738 A (Sumitomo Electric Industries, Ltd.), 03 December, 1981 (03.12.81), Full text (Family: none)	1-6
X	JP 56-9279 A (Sumitomo Electric Industries, Ltd.), 30 January, 1981 (30.01.81), Page 3, lower left column, line 2 to page 4, lower left column, line 10 (Family: none)	1-6
A	JP 2001-322006 A (Mitsubishi Materials Corp.), 20 November, 2001 (20.11.01), Par. Nos. [0006] to [0008] (Family: none)	1-6

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier document but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
01 April, 2003 (01.04.03)Date of mailing of the international search report
15 April, 2003 (15.04.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/02362

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 61-201751 A (NOF Corp.), 06 September, 1986 (06.09.86), Page 1, lower left column, line 4 to page 2, lower left column, line 12 (Family: none)	1-6
A	JP 59-41445 A (Mitsubishi Metal Corp.), 07 March, 1984 (07.03.84), Page 1, lower left column, line 5 to lower right column, line 2 (Family: none)	1-6
A	JP 58-164750 A (Mitsubishi Metal Corp.), 29 September, 1983 (29.09.83), Page 1, lower left column, line 5 to lower right column, line 6 (Family: none)	1-6
A	JP 58-113348 A (Mitsubishi Metal Corp.), 06 July, 1983 (06.07.83), Page 1, lower left column, line 5 to lower right column, line 12 (Family: none)	1-6

A. 発明の属する分野の分類（国際特許分類（IPC））
Int. C17 B23B27/14

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
Int. C17 B23B27/14, C04B35/58

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2003年
日本国登録実用新案公報	1994-2003年
日本国実用新案登録公報	1996-2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	J P 56-156738 A (住友電気工業株式会社) 1981. 12. 03, 全文 (ファミリーなし)	1-6
X	J P 56-9279 A (住友電気工業株式会社) 1981. 01. 30, 第3頁左下欄第2行～ 第4頁左下欄第10行 (ファミリーなし)	1-6
A	J P 2001-322006 A (三菱マテリアル株式会社) 2001. 11. 20, 段落【0006】～【0008】 (ファミリーなし)	1-6

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日
01. 04. 03

国際調査報告の発送日

15.04.03

国際調査機関の名称及びあて先
日本国特許庁 (ISA/JP)
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
平田 信勝

3C

3020

電話番号 03-3581-1101 内線 3324

C (続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
A	J P 61-201751 A (日本油脂株式会社) 1986. 09. 06, 第1頁左下欄第4行～ 第2頁左下欄第12行 (ファミリーなし)	1-6
A	J P 59-41445 A (三菱金属株式会社) 1984. 03. 07, 第1頁左下欄第5行～右下欄第2行 (ファミリーなし)	1-6
A	J P 58-164750 A (三菱金属株式会社) 1983. 09. 29, 第1頁左下欄第5行～右下欄第6行 (ファミリーなし)	1-6
A	J P 58-113348 A (三菱金属株式会社) 1983. 07. 06, 第1頁左下欄第5行～右下欄第12行 (ファミリーなし)	1-6