第一章 自定义命令的使用

自定义命令是作者自己常用的,或是遇到了问题定义的命令,使用者可自行增删改,以 适应自己的需求。

微分符号和实数集 \d x 1 2 \R $\mathrm{d}x \ \mathbb{R}$ 空行 \myspace{1} %参数表示空几行 1 空行演示开始 空行演示结束 表格行高调整 %... 1 \xrowht{10pt} 2 %... 3 \begin{table}[htbp!] 1 \centering 2 \begin{tabular}{|1|1|} 3 \hline 4

```
(C)' = 0
                                                                                                                                                                                                                                                                                                                                                                                                & $(x
    5
                                                                                                         \mbox{ } \
                                                                                                                                                                                                                                                                                             //
                                                                                         \hline
    6
                                                                                         正弦: (\sin\{x\})' = \cos\{x\}$
                                                                                                                                                                                                                                                                                                                                                                                               & 余
    7
                                                                                                          弦: (\cos\{x\})' = -\sin\{x\}
                                                                                                                                                                                                                                                                                                  //
                                                                                         \hline\xrowht{25pt}
    8
                                                                                        \frac{1}{x\ln\{a\}} \le (a>0 \land a \land a \land b )
    9
                                                                                                                                                                                                                     //
                                                                                                              = \frac{1}{x}
                                                                                         \hline\xrowht{25pt}
10
                                                                                         (\operatorname{x})' = \operatorname{x}(1-x^2)
11
                                                                                                                                                                                                                                                                                                                                                                                               & $(\
                                                                                                         arccos{x})' = -\dfrac{1}{\sqrt{1-x^2}}$ \\
                                                                                         \hline\xrowht{25pt}
12
                                                                                         (\arctan\{x\})' = \frac{1}{1+x^2}
                                                                                                                                                                                                                                                                                                                                                                                                & $(\
13
                                                                                                         \hline
14
                                                                       \end{tabular}
15
                                                     \end{table}
16
```

(C)' = 0	$(x^{\mu})' = \mu x^{\mu - 1}$
正弦: $(\sin x)' = \cos x$	余弦: $(\cos x)' = -\sin x$
$(\log_a x)' = \frac{1}{x \ln a} \ (a > 0 \land a \neq 1)$	$(\ln x)' = \frac{1}{x}$
$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$
$(\arctan x)' = \frac{1}{1+x^2}$	$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$

效果对比

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} \quad (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 $(\arctan x)' = \frac{1}{1+x^2} \quad (\operatorname{arccot} x)' = -\frac{1}{1+x^2}$

自定义行高的 cases 和 vmatrix 环境,通过中括号内的参数修改环境行高

$$f(x) = \begin{cases} \frac{\sin 2x}{x} & x < 0\\ (x+k)^2 & x \ge 0 \end{cases}$$

效果对比

$$f(x) = \begin{cases} \frac{\sin 2x}{x} & x < 0\\ (x+k)^2 & x \ge 0 \end{cases}$$

$$\iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial Q}{\partial z} \\ P & Q & R \end{vmatrix} = \oint_{\Gamma} P dx + Q dy + R dz$$

效果对比

$$\iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial Q}{\partial z} \\ P & Q & R \end{vmatrix} = \oint_{\Gamma} P dx + Q dy + R dz$$

好像没有什么区别,实际上自定义行高的 cases 和 vmatrix 环境主要是为了消除以下全局命令的影响

- - 当 linespread 设置为 2 时, cases 和 vmatrix 环境的行高也会相应改变。 因此建议将 linespread 设置为 1.6,使用 cases 和 vmatrix 环境时,行高不会改变。

表格内长内容换行

% ...

1

```
\begin{table}[htbp!]
1
           \centering
2
           \begin{tabular}{|c|c|}
3
              \hline
4
              $k$重实根$r$
                                                    & 给出$k$项: $e^{rx
5
                 (C_1+C_2x+\dots+C_kx^{k-1})
                                                                  //
              \hline
6
              一对$k$重复根$r_{1,2} = \alpha \pm \beta\mathrm{i}$ & 给出$2k$
7
                 k-1)\cos\beta{x}$ \\ $+ (D_1+D_2x+\dots+D_kx^{k-1})\sin\
                 beta{x} \big]$} \\
              \hline
8
           \end{tabular}
9
10
        \end{table}
      主要代码
```

给出\$2k\$项: \tabincell{c}{\$e^{\alpha{x}} \big[(C_1+C_2x+\dots+C_kx^{k-1})\cos\beta{x}\$ \ \$ + (D_1+D_2x+\dots+D_kx^{k-1})\sin\beta{x} \ big]\$}

特征方程的根	微分方程通解中的对应项
单实根 r	给出一项: Ce ^{rx}
一对单复根 $r_{1,2} = \alpha \pm \beta i$	给出两项: $e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$
k 重实根 r	给出 k 项: $e^{rx}(C_1 + C_2x + \cdots + C_kx^{k-1})$
一对 k 重复根 $r_{1,2} = \alpha \pm \beta i$	给出 $2k$ 项: $e^{\alpha x} [(C_1 + C_2 x + \dots + C_k x^{k-1}) \cos \beta x + (D_1 + D_2 x + \dots + D_k x^{k-1}) \sin \beta x]$

平行符号

\[AB \pll CD \]

AB // CD

散度旋度

\[\dive \quad \rotn \]

 $\operatorname{div} \boldsymbol{F} \quad \operatorname{rot} \boldsymbol{A}$

自定义命令使用者可根据自己的情况修改

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}$$