Pertemuan ke-15

APLIKASI INTEGRALI VOLUME BENDA

Santi Arum Puspita Lestari, M.Pd

Teknik Informatika

Universias Buana Perjuangan Karawang

METODE CAKRAM

1) Daerah $D = \{(x, y) | a \le x \le b, 0 \le y \le y(x)\}$ diputar terhadap sumbu x.

 Untuk menghitung volume benda putar gunakan pendekatan irisan, hampiri, jumlahkan dan ambil limitnya.

METODE CAKRAM

• Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas Δx diputar terhadap sumbu x akan diperoleh suatu cakram lingkaran dengan tebal Δx dan jari-jari f(x), sehingga;

$$\Delta V \approx \pi f^2(x) \Delta x$$

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

CONTOH 1:

 Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh $y = x^2$, sumbu x, dan garis x = 2diputar terhadap sumbu x.

Penyelesaian:

Jika irisan diputar terhadap sumbu x akan diperoleh cakram dengan jari-jari x^2 dan tebal Δx ,

Sehingga;

$$\Delta V \approx \pi (x^2)^2 \Delta x$$

$$= \pi x^4 \Delta x$$

LANJUTAN CONTOH 1:

Volume benda putar:

$$V = \pi \int_{0}^{2} x^{4} dx = \pi \left[\frac{1}{5} x^{5} \right]_{0}^{2} = \pi \left[\left(\frac{1}{5} 2^{5} \right) - 0 \right] = \pi \left(\frac{32}{5} \right)$$
$$= \frac{32}{5} \pi$$

Jadi, volume benda putar nya adalah $\frac{32}{5}\pi$ satuan volume.

METODE CAKRAM

2) Daerah $D = \{(x, y) | c \le y \le d, 0 \le x \le g(y)\}$ diputar terhadap sumbu y.

• Untuk menghitung volume benda putar gunakan pendekatan iris, hampiri, jumlahkan dan ambil limitnya.

METODE CAKRAM

- Jika irisan berbentuk persegi panjang dengan tinggi g(y) dan alas Δy diputar terhadap sumbu y akan diperoleh suatu cakram lingkaran dengan tebal Δy dan jari-jari g(y).
- Sehingga;

$$\Delta V \approx \pi g^2(y) \Delta y$$

$$V = \pi \int_{c}^{d} g^{2}(y) \, dy$$

CONTOH 2:

• Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh $y = x^2$ garis y = 4, dan sumbu y diputar terhadap sumbu y.

Penyelesaian:

LANJUTAN CONTOH 2:

- Jika irisan dengan tinggi \sqrt{y} dan tebal Δy diputar terhadap sumbu y akan diperoleh cakram dengan jari-jari \sqrt{y} dan tebal Δy .
- Sehingga;

$$\Delta V = \pi(\sqrt{y})^2 \Delta y = \pi y \Delta y$$

Volume benda putar:

$$V = \pi \int_{0}^{\pi} y \, dy = \left[\frac{\pi}{2} y^{2} \right]_{0}^{4} = \left(\frac{\pi}{2} 4^{2} \right) - 0 = \frac{\pi}{2} 16 = 8\pi$$

Jadi, volume benda tersebut adalah 8π satuan volume.

METODE CINCIN

▶Daerah $D = \{(x,y) | a \le x \le b, g(x) \le y \le h(x)\}$ diputar terhadap sumbu x.

METODE CINCIN

- Jika irisan berbentuk persegi panjang dengan tinggi h(x) g(x) dan alas Δx diputar terhadap sumbu x akan diperoleh suatu cincin dengan tebal Δx dan jari-jari luar h(x) dan jari-jari dalam g(x).
- Sehingga;

$$\Delta V \approx \pi (h^2(x) - g^2(x)) \Delta x$$

$$V = \pi \int_a^b (h^2(x) - g^2(x)) dx$$

CONTOH 3:

Tentukan volume benda pejal yang dibentuk dengan memutar mengelilingi sumbu x, daerah yang dibatasi oleh parabola-parabola $y = x^2$ dan $y^2 = 8x$.

Penyelesaian:

Diketahui : $y = x^2$

$$y^2 = 8x \quad \Rightarrow y = \sqrt{8x}$$

Titik potong

$$x^2 = \sqrt{8x}$$

$$x^2 - \sqrt{8x} = 0$$

dikuadratkan

$$x^4 - 8x = 0$$

$$x(x^3 - 8) = 0$$

$$x = 0 \, dan \, x^3 = 8$$

$$x = \sqrt[3]{8} = 2$$

LANJUTAN CONTOH 3:

Sehingga volume benda;

$$V = \pi \int_0^2 \left(\left(\sqrt{8x} \right)^2 - (x^2)^2 \right) dx$$

$$V = \pi \int_0^2 (8x - x^4) dx$$

$$V = \pi \left[\frac{8}{2} x^2 - \frac{1}{5} x^5 \right]_0^2$$

$$V = \pi \left[\left(4 \cdot 2^2 - \frac{1}{5} \cdot 2^5 \right) - 0 \right]$$

$$V = \pi \left(16 - \frac{32}{5} \right)$$

 $V = \frac{48}{5}\pi$

Jadi, volume benda tersebut adalah $\frac{48}{5}\pi$ satuan volume

CONTOH 4:

• Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh $y=x^2$, sumbu x, dan garis x=2 diputar terhadap garis y=-1.

Jika irisan diputar terhadap garis y = 1Akan diperoleh suatu cincin dengan jari-jari dalam 1 dan jari-jari luar $1 + x^2$ Sehingga;

$$\Delta V = \pi ((x^2 + 1)^2 - 1^2) \Delta x$$

= $\pi (x^4 + 2x^2 + 1 - 1) \Delta x$
= $\pi (x^4 + 2x^2) \Delta x$

LANJUTAN CONTOH 4:

Jadi, volume benda putar:

$$V = \pi \int_{0}^{2} (x^{4} + 2x^{2}) dx$$

$$V = \pi \left[\frac{1}{5}x^{5} + \frac{2}{3}x^{3} \right]_{0}^{2}$$

$$V = \pi \left[\left(\frac{1}{5}2^{5} + \frac{2}{3}2^{3} \right) - 0 \right]$$

$$V = \pi \left(\frac{186}{15} \right) = \frac{186}{15}\pi$$

Jadi, Volume benda tersebut adalah $\frac{186}{15}\pi$ satuan luas

METODE KULIT TABUNG

▶ Daerah $D = \{(x, y) | a \le x \le b, 0 \le y \le f(x)\}$ diputar terhadap sumbu x.

Benda putar

METODE KULIT TABUNG

 $\frac{\Delta x}{f(x)}$

- Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas Δx serta berjarak x dari sumbu y diputar terhadap sumbu y akan diperoleh suatu kulit tabung dengan tinggi f(x), jari-jari x, dan tebal Δx .
- Sehingga;

$$\Delta V \approx 2\pi x f(x) \Delta x$$

$$V = 2\pi \int_{a}^{b} x f(x) \, dx$$

CONTOH 5:

• Daerah yang dibatasi oleh kurva $y = \frac{1}{\sqrt{x}}$, sumbu x, x = 1, dan x = 4, diputar mengelilingi sumbu y. Tentukan volume benda yang terbentuk.

Penyelesaian:

$$y = \frac{1}{\sqrt{x}} = \frac{1}{x^{1/2}} = x^{-1/2}$$

$$V = 2\pi \int_{1}^{4} (x \cdot x^{-1/2}) dx$$

$$V = 2\pi \int_{1}^{4} (x^{1/2}) dx$$

$$V = 2\pi \left[\frac{2}{3} x^{3/2} \right]_{1}^{4}$$

$$V = 2\pi \left[\left(\frac{2}{3} (4)^{3/2} \right) - \left(\frac{2}{3} (1)^{3/2} \right) \right]$$

$$V = 2\pi \left[\frac{16}{3} - \frac{2}{3} \right]$$

$$V = 2\pi \left(\frac{14}{3} \right)$$

$$V = \frac{28}{3}\pi$$

Jadi, volume benda yang terbentuk = $\frac{28}{3}\pi$ satuan volume

CONTOH 6:

• Tentukan volume benda putar yang trejadi jika daerah D yang dibatasu oleh $y = x^2$, sumbu x, dan garis x = 2 diputar terhadap sumbu y.

Jika irisan dengan tinggi x^2 , tebal Δx dan berjarak x dari sumbu y diputar terhadap sumbu y akan diperoleh kulit tabung dengan tinggi x^2 , tebal Δx dan jari-jari x Sehingga;

$$\Delta V = 2\pi x x^2$$
$$= 2\pi x^3 \Delta x$$

LANJUTAN CONTOH 6:

• Jadi, volume benda putar:

$$V = 2\pi \int_{0}^{2} x^{3} dx$$

$$V = \left[\frac{\pi}{2}x^{4}\right]_{0}^{2}$$

$$V = \left(\frac{\pi}{2}2^{4}\right) - 0$$

$$V = \frac{\pi}{2}16$$

$$V = 8\pi$$

Jadi, volume banda tersebut adalah 8π satuan volume

SEKIAN DAN TERIMA KASIH

