

Searches for invisible decays of the Higgs boson with the CMS detector

Outline

- Why look for invisibly decaying Higgs bosons?
- Higgs to invisible at CMS so far
- Parked update to VBF channel
- Combination with ZH channel

Why look for invisibly decaying Higgs bosons?

SM compatible 125 GeV Higgs boson does not mean BSM incompatible

- ▶ Many BSM theories predict Higgs to invisible, e.g. SUSY
 - ► Often provide good DM candidates

Higgs to invisible at CMS

- ▶ Indirect: Look for effect of BSM Higgs decays on Higgs total width
- ▶ Direct: Use channels where the Higgs recoils against a visible system

M, [GeV]

CMS VBF History

- CMS ran two sets of triggers in 2012:
 - prompt: reconstructed immediately
 - parked: looser thresholds, reconstructed in long shutdown
- CMS published result using full run I prompt dataset
- Parked analysis presented today

Parked Triggers

- Use already analysed prompt trigger for run A
- One parked trigger for runs B and C, another for run D
- Parked trigger cuts are looser so prompt trigger not used where parked trigger is available
- All parked and prompt triggers are seeded by L1_ETM40
- Parked triggers have looser HLT thresholds
- This allows us to look at new regions of phase space and different analysis techniques
- Use prompt analysis as a base:
- e.g. same objects and MC samples

HLT

Run period	MET cut	dijet p _T cut	dijet mass cut
А	METnoMuons>65 GeV	DiPFJet40	MJJ800
B&C	N/A	DiJet35	MJJ700
D	N/A	DiJet30	MJJ700

Prompt Analysis

- Standard object definition
- ► Single bin counting experiment
- Signal region chosen to eliminate QCD and be above trigger turn ons
- Major backgrounds use data driven estimates:
- Z o
 u
 u, $W o \ell
 u$, QCD
- Minor backgrounds taken from MC:
- VV, W γ , $t\bar{t}$, single top
- ► Observed (Expected) limit 65 (49)% at $m_H = 125$ GeV

Parked Analysis Changes

Trigger

- ► Parked trigger efficiency has been measured including correlation between variables
 - This allows the trigger turn on region to be used

Signal region

- ▶ QCD hard to model, signal region cuts are chosen to make remaining QCD small whilst enhancing real-MET using new ${\rm Min}\Delta\phi({\rm jet},{\rm MET})$ variable
- ► The signal region has been reoptimised for the looser parked triggers
- New region uses new variable has higher signal efficiency with much less QCD

Background estimation and limit setting

- lacktriangle Minor modifications made to W o au
 u background estimation method
- QCD background estimation method changed
- $lackbox{W}\gamma$ contribution found to be modelled already by our $W o\ell
 u$ Monte Carlo
- lacktriangle We removed the $Z/\gamma^* o \mu\mu$ to Z o
 u
 u after more studies with aMC@NLO
- Remaining backgrounds very signal like in variables studied so far
- Stayed with cut and count analysis

Prompt vs Parked selection

Summary of differences in signal region selection

Variable	Prompt cut	Parked cut	
Lepton veto	no veto e or μ		
$\eta_{j1,2}$	< 4.7		
$\eta_{j1} \cdot \eta_{j2}$	< 0		
jet 1 p_T	> 50 GeV		
jet 2 <i>p_T</i>	> 50 GeV	> 45 GeV	
$\Delta\eta_{jj}$	> 4.2	> 3.6	
M_{jj}	> 1100 GeV	> 1200 GeV	
METnomu	> 130 GeV	> 90 GeV	
Central jet veto	yes	no	
$\Delta\phi_{jj}$	< 1.0	no cut	
METnoMU σ METnoMU	no cut	> 4	
$Min\Delta\phi(\mathit{alljets}, METnomu)$	no cut	> 2.3	

Background estimation

All major backgrounds have data driven normalisation

$$N_{bkg}^{W} = \frac{(N_{obs}^{control} - N_{other}^{control})}{N_{MC}^{control}} \cdot N_{MC}^{sig}, \ N_{Bkg}^{Z} = \left(N_{obs}^{control} - N_{otherbkgs}^{control}\right) \cdot \frac{\sigma(Z \to \nu \nu)}{\sigma(Z/\gamma^* \to \mu \mu)} \cdot \frac{\epsilon_{S}^{ZMC}}{\epsilon_{C}^{ZMC}}$$

- Most backgrounds from missed lepton or misreconstructed jet
 - use control region where object is reconstructed

 $W \to \mu \nu$ control region

 $Z \rightarrow \nu \nu$ control region

VBF results

Total background	$439.7 \pm 41.0(stat.) \pm 55.8(syst.)$
VBF H(inv.) assuming B(H→inv)=100%	$273.4 \pm 31.2 (syst.)$
ggF H(inv.) assuming B(H \rightarrow inv)=100%	$22.6 \pm 15.6 (syst.)$
Observed data	508

Compatible with the background hypothesis

Signal region

CMS preliminary CMS-PAS-HIG-14-038

Signal region

19.2 fb⁻¹ (8 TeV)

- Data

VBF limits

- \blacktriangleright Perform a single bin counting experiment using CL_S method
- ▶ Observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for $m_H = 125$ GeV is 57(40)%

ZH: summary

- ▶ Search also performed in $ZH \to \ell\ell inv$ and $ZH \to b\bar{b}inv$ channels at CMS
- ▶ Observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for m_H =125 GeV is 81(83)%

Combined Results

- ▶ Separate limits on $\sigma xB(H \rightarrow inv)$ are combined at 125 GeV
- \blacktriangleright Assume SM production cross-sections to interpret as a limit on B(H \rightarrow inv)

```
Observed (expected) limits on B(H\rightarrowinv) at 95% C.L. for m_H=125 GeV Channel Limit/% VBF 57(40) ZH(\ell\ell+bb) 81(83) VBF + ZH 47(35)
```


Conclusions

- A direct search for Higgs boson decays to invisible final states has been carried out in the VBF channel
 - No significant excesses are seen over the background predictions
- ▶ This has been combined with the results in the $Z(\ell\ell)H$ and Z(bb)H channels
- ▶ The combined limit is 47(35)% observed (expected) at 95% C.L. for $m_H = 125 \text{GeV}$

Backup

References

- CMS Higgs combination CMS-HIG-14-009
- CMS VBF Higgs to invisible parked data PAS -CMS-PAS-HIG-14-038
- ► CMS Higgs to invisible paper Eur. Phys. J. C 74 (2014) 2980

Comparison to recent ATLAS result

- We see an excess where ATLAS see a deficit:
- observed can move the post-fit expected limit
- were we to see a similar deficit our expected limit improves by ${\sim}10\%$
- ATLAS use a single data driven normalisation factor for all V+jets backgrounds
- statistical uncertainty on the factor is therefore lower
- reducing our Z o
 u
 u statistical uncertainty to the level we see in $W o \mu
 u$ our expected limit improves by $\sim \! \! 10\%$

W+jets

- $W \to e/\mu \nu$ control region formed by swapping lepton veto for e/μ requirement
- W o au
 u control region formed by requiring a hadronic tau
- not many events with hadronic taus, need to loosen requirements
- assign a 20% systematic to W o au
 u to compensate

$$N_{bkg}^{sig} = (N_{obs}^{control} - N_{other \ bkgs}^{control}) \cdot \frac{N_{MC}^{sig}}{N_{MC}^{control}}$$

$$W \rightarrow \mu \nu \quad 102.5 \pm 6.2 \pm 11.7$$

$$W \rightarrow e \nu \quad 57.9 \pm 7.4 \pm 7.7$$

$$W \rightarrow \tau \nu \quad 94.6 \pm 13.1 \pm 23.8$$

Z+jets

- Use $Z \to \mu\mu$ MC ignoring muons to emulate $Z \to \nu\nu$
- Correct for difference in cross-section
- Efficiency correction takes into account EWK vs QCD difference

$$N_S^{Z \to \nu\nu} = \left(N_C^{Data} - N_C^{bkg}\right) \cdot \frac{\sigma(Z \to \nu\nu)}{\sigma(Z \to \mu\mu)} \cdot \frac{\epsilon_S^{ZMC}}{\epsilon_C^{ZMC}}$$

$$Z \to \nu\nu \mid 158.1 \pm 37.3 \pm 21.2$$

QCD

- ► Take shape from region with third jet near MET
- Normalise in sideband region
- normalisation highly selection dependent
- parameterise as function of selection and extrapolate
- ▶ Final estimate 17 ± 14

Other backgrounds

► Taken from MC

top
$$5.5 \pm 1.8$$
 VV 3.9 ± 0.7

arXiv:1404.134

$Z(\ell\ell)H$ outline $e/\mu/ au$

Signal Topology and Selection

- ► Two same flavour opposite sign electrons or muons
- $p_T > 20 \text{ GeV}, |M_{\ell\ell} m_Z| < 15 \text{ GeV}$
- Large MET
- MET > 120 GeV

Backgrounds and Rejection Cuts

- ightharpoonup ZZ($\ell\ell\nu\nu$)+jets, WW($\ell\nu\ell\nu$)+jets
- $WZ(\ell\nu\ell\ell)$ +jets
- Veto events with >3 leptons, $p_T > 10$ GeV
- $Z(\ell\ell)$ +jets
- MET cut, MET- $\ell\ell$ balance requirement
- $t\bar{t}$, single top, W($\ell\nu$), QCD
- <1 jet, $p_T > 30 \text{ GeV}$
- no b-tagged jets, p_T > 30 GeV

$Z(\ell\ell)H$ background estimation

$\mathsf{ZZ}(\ell\ell u u)+\mathsf{jets}$ and $\mathsf{WZ}(\ell u\ell\ell+\mathsf{jets})$

Estimated from MC prediction

$Z(\ell\ell)$ +jets

- ► Estimated from photon + jets events
- Photon p_T spectrum reweighted to match Z spectrum

$\mathsf{WW}(\ell\nu\ell\nu)$ +jets, single top, $tar{t}$, Z(au au)

- **E**stimated from $e\mu$ events and Z peak sidebands:
 - $m_{\ell\ell}$ 40-70 and 110-200 GeV
- $N_{\ell\ell}^{sig} = N_{e\mu}^{sig} \cdot N_{\ell\ell}^{SB}/N_{e\mu}^{SB}$

$Z(\ell\ell)H$ results

		00,			
	Process	$\sqrt{s} =$	= 7TeV	$\sqrt{s} =$	8TeV
		ee	$\mu\mu$	ee	μμ
0 jets	Total backgrounds	8.7 ± 6.5	11.0 ± 3.3	37.4 ± 3.7	51.6 ± 4.8
,	ZH(125)	2.3 ± 0.2	3.1 ± 0.3	10.3 ± 1.2	14.7 ± 1.5
	Observed data	9	10	36	46
	S/B for B(H→inv) 100%	0.26	0.28	0.28	0.24
1 jet	Total backgrounds	2.6 ± 0.7	2.8 ± 0.9	10.6 ± 4.2	13.8 ± 5.8
	ZH(125)	0.4 ± 0.1	0.5 ± 0.1	1.6 ± 0.2	2.5 ± 0.3
	Observed data	1	4	11	17
	S/B for B(H→inv) 100%	0.15	0.18	0.15	0.18

- ▶ Limits obtained from a 2D fit to m_T and $\Delta\phi(\ell\ell)$
- 1D fit to m_T for 7 TeV data
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for m_H =125 GeV is 83(86)%

arXiv:1404.1344

Z(bb)H outline and backgrounds

Signal Topology and Selection

- ► Two b-tagged jets:
- $p_T > 30/60$ GeV, $p_{Tjj} > 100-130$ GeV
- ► Three bins in MET
 - 100-130, 130-170, > 170 GeV

Backgrounds and Rejection Cuts

- ► $Z(\nu\nu)$ +jets, $W(\ell\nu)$ +jets
- ightharpoonup ZZ($\nu\nu b\bar{b}$)
- WZ($\ell \nu b \bar{b}$), $t \bar{t}$, single top
- Veto events with leptons, $p_T\!>\!15~{\rm GeV}$
- ► QCD
- MET quality requirements

Background estimation - data normalised MC

- Normalisation from a simultaneous fit in seven control regions:
- Z+jets (0,1,2 b-jets), W+jets (0,1,2 b-jets), tt

arXiv:1404.1344

Imperial College London

$Z(b\bar{b})H$ results

Process	High $p_T(V)$	Intermediate $p_T(V)$	Low $p_T(V)$
Total backgrounds	181.3 ± 9.8	64.8 ± 4.1	40.5 ± 4.1
$Z(b\bar{b})H(inv)$	12.6 ± 1.1	3.6 ± 0.3	1.6 ± 0.1
Observed data	204	61	38

- Multivariate analysis (BDT):
- performed for each mass hypothesis and boost region
- Limits from a fit to the BDT output distribution
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \to inv)$ for $m_H{=}125$ GeV is 182(199)%

Trigger efficiency

- Variables used in prompt and parked triggers are highly correlated:
- dijet mass, METnoMU, jet 2 p_T
- In the prompt analysis correlations were neglected as we cut to ensure trigger was > 95% efficient
- ► For the parked analysis we use a 2D binning in dijet mass and jet 2 p_T
- MJJ: 0,600,800,900,1000,5000
- Jet 2 p_T: 30,40,50,60,1000
- ► In each bin we fit the METnoMU trigger turn on using an error function
- We then combine the turn ons from runs A, BC and D weighted by luminosity and apply this to MC events

Starting point for region choice

- ► Trigger turn ons and detector acceptance impose the following cuts:
- $\eta_{j1} \cdot \eta_{j2} < 0$, $|\eta_{j1,2}| < 4.7$, jet 1 $p_T > 50$ GeV, $\Delta \eta_{jj} > 3.6$, jet 2 $p_T > 40$ GeV, METnomu > 90 GeV, $M_{jj} > 800$ GeV
- QCD in plots is VBF enriched MC doesn't model all QCD
- ► Following cuts added due to poor data-MC agreement from QCD contamination:
- $\qquad \qquad \frac{\textit{METnomu}}{\sigma_{\textit{METnomu}}} > 3.0, \ \mathsf{Min} \Delta \phi (\textit{all jets p}_T > 30 \ \textit{GeV}, \textit{METnomu}) > 1.0, \ \textit{M}_{jj} > 1000 \ \mathsf{GeV}$

Signal region selection

- As in the prompt analysis we veto events with 'veto' electrons or muons
- Taus are not vetoed due to low (\sim 55%) ID efficiency and high (\sim 2-3%) fake rate
- Can't model QCD shape so cut hard to remove most QCD
- Can then tolerate a larger uncertainty on QCD estimation
- ► Remaining QCD in region $\frac{METnoMU}{\sigma_{METnoMU}} < 4$ and Min $\Delta \phi$ (all jets, METnomu) < 2.0
- Select region $\frac{METnoMU}{\sigma_{METnoMU}} > 4$ and $Min\Delta\phi(all\ jets, METnomu) > 2.0$
- Signal contribution also large in this region of parameter space
- We blind this region and use as a basis for signal region optimisation

Signal region selection

- ► We optimise by choosing the cut values with the best 95% C.L. expected limit
- Limit calculation details later
- ▶ We scanned through jet 2 p_T , $\frac{METnoMU}{\sigma_{METnoMU}}$, Min $\Delta \phi$ (all jets , METnomu) and M_{jj}
- Best limit was found for:
 - jet 2 $p_T > 45$ GeV
 - $\frac{METnoMU}{\sigma_{METnoMU}} > 4$
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets}, \mathit{METnomu}) > 2.3$
- $M_{jj}>1200~{
 m GeV}$
- We defined this as our "signal region"
- Discrepancy outside signal region is from QCD

QCD background estimation: Shape

- Other background methods estimate unreconstructed contribution from reconstructed
- For QCD use MET near reconstructed jets to model MET from unreconstructed/mismeasured jets
- Use region with low MinΔφ(all jets, METnomu) but high MinΔφ(leading jets, METnomu)
- $\mathsf{Min}\Delta\phi(\mathit{all\ jets},\ \mathit{METnomu}) < 1.0$
- $\mathsf{Min}\Delta\phi(\mathit{leading jets},\,\mathit{METnomu}) > 1.0$
- ► Has good shape agreement with enriched QCD MC
- Use shape from this region

QCD background estimation: Normalisation

- ▶ MET significance and min $\Delta\phi(METnomu, all jets)$ correlated
- Cannot use ABCD to normalise
- Normalisation shows strong dependence on cut variables
- Norm 2 and 3 have large signal contamination
- Norm 3 also has low stats and odd because we forbid jets recoiling against significant met
- ► Fit normalisation variation in norm 1
- ► Check consistency in norm 2 and 3

Normalisation variation

Jet met dphi

MET significance

QCD background estimation: Result and systematics

Factor	Extrapolation	Extrapolation
	mindphi> 2.5	metsig> 4
0.17 ± 0.02	0.014 ± 0.008	0.05 ± 0.04
0.12 ± 0.01	0.013 ± 0.004	0.01 ± 0.01
0.24 ± 0.03	0.03 ± 0.01	0.55 ± 0.06
0.06 ± 0.01	-	0.01 ± 0.02
0.5 ± 0.1	0.21 ± 0.11	-
	$\begin{array}{c} 0.17 \pm 0.02 \\ 0.12 \pm 0.01 \\ 0.24 \pm 0.03 \\ 0.06 \pm 0.01 \end{array}$	$\begin{array}{c cccc} & mindphi> 2.5 \\ \hline 0.17 \pm 0.02 & 0.014 \pm 0.008 \\ 0.12 \pm 0.01 & 0.013 \pm 0.004 \\ 0.24 \pm 0.03 & 0.03 \pm 0.01 \\ 0.06 \pm 0.01 & - \end{array}$

- Good agreement in mindphi extrapolations
- Norm 3 agreement in metsig is poor
- As norm 3 has low statistics and is an odd region: drop
- ▶ Use envelope of norm 1 scale factors
- Final prediction: $N_S^{QCD} = 17 \pm 14$

Systematics

- Uncertainties considered are mostly the same as the prompt analysis
- Changes are:
 - New W
 ightarrow au
 u extrapolation error
- QCD background error procedure now as described above
- lacktriangle We removed the $Z/\gamma^* o \mu\mu$ to Z o
 u
 u after more studies with aMC@NLO