TP 4 d'analyse numérique

Le but de ce TP est d'implémenter les méthodes de la puissance (les 3 variantes) ainsi que la décomposition et la méthode QR, pour le calcul des valeurs et vecteurs propres d'une matrice carrée, $n \times n$, réelle et symétrique (les valeurs propres d'une telle matrice sont réelles).

Le fichier "http://10.27.3.235/TP/matrices.txt" contient les définitions des matrices A, B et C, de dimensions 3×3 , 4×4 et 8×8 . Il contient aussi les définitions des vecteurs \vec{a} , \vec{b} et \vec{c} , de dimensions 3, 4 et 8. Vous pouvez copier ce fichier dans votre compte et l'inclure dans votre programme principal.

- 1. Calculer, puis afficher, les matrices symétriques $A_s = AA^t$, $B_s = BB^t$ et $C_s = CC^t$. (Vous pouvez bien sûr ré-utiliser les fonctions du TP3).
- 2. Ecrire en C, dans le cas général d'une matrice A, $n \times n$, une fonction qui calcule la valeur propre λ_1 qui a le module le plus grand, ainsi que le vecteur propre associé, que vous normaliserez à la fin du calcul à 1 (c'est la méthode de la puissance directe : vous supposerez que les conditions nécessaires pour appliquer cette méthode sont réunies). Vous appellerez cette fonction "methode_de_la_puissance_directe", et elle devra avoir 5 arguments :
 - le premier argument sera le tableau contenant la matrice A,
 - le deuxième argument la dimension n,
 - le troisème argument contiendra le vecteur initial (c'est un tableau en C) \vec{x}_0 avec lequel on démarre l'itération (et où on remet le résultat après chaque itération),
 - le quatrième argument est la précision (vous arrêterez l'itération lorsque $|\lambda^{(k)} \lambda^{(k-1)}| < \epsilon$),
 - le cinquième argument sera un pointeur à un double, où vous enregistrerez la valeur propre approchée obtenue après un nombre k d'itérations.

Voici un exemple de comment définir cette fonction :

void methode_de_la_puissance_directe(double A[], int n, double x0[], double eps , double *lambda)

{ ... }

Ecrire ensuite un petit programme qui calcule et affiche cette valeur propre (ainsi que son vecteur propre associé) pour les matrices A_s , B_s et C_s calculées précédemment. Utilisez une précision de $\varepsilon=10^{-12}$.

Exemple:

```
int n=3; double x0[n]={...}; double eps=1.e-10; double lambda;
methode_de_la_puissance_directe( A_s, n , x0, eps , &lambda);
```

- 3. Ecrire en C, dans le cas général d'une matrice A, n × n, une fonction qui calcule la valeur propre λ₂ qui a le module le plus petit, ainsi que le vecteur propre associé, que vous normaliserez à la fin du calcul à 1 (c'est la méthode de la puissance inverse : vous supposerez que les conditions nécessaires pour appliquer cette méthode sont réunies). Vous appellerez cette fonction "methode_de_la_puissance_inverse", et elle devra avoir 5 arguments (voir question précédente).
 - Ecrire ensuite un petit programme qui calcule et affiche cette valeur propre (ainsi que son vecteur propre associé) pour les matrices A_s , B_s et C_s calculées précédemment. Utilisez une précision de $\varepsilon=10^{-12}$.
- 4. Ecrire en C, une fonction qui calcule la valeur propre λ_s de la matrice B = A sI qui a le module le plus petit, ainsi que le vecteur propre associé, que vous normaliserez

à la fin du calcul à 1 (c'est la méthode de la puissance inverse pour la matrice B, qui est carrée, $n \times n$, mais est appelée la méthode de la puissance avec translation pour la matrice A, également carrée, $n \times n$. Vous supposerez que les conditions nécessaires pour appliquer cette méthode sont réunies). Vous appellerez cette fonction "methode_de_la_puissance_avec_translation", et elle devra avoir 6 arguments. Par exemple :

Remarque : cette méthode permet d'obtenir les valeurs propres intermédiaires de A si vous choisissez s suffisamment proche d'une de ces valeurs propres intermédiaires; vous l'utiliserez plus tard, en la combinant avec la méthode QR (voir plus bas). Testez votre fonction sur un petit programme en C que vous inventerez!

5. Ecrire en C, dans le cas général d'une matrice non singulière A une fonction qui décompose cette matrice A en un produit QR, ou Q est une matrice orthogonale et R est triangulaire supérieure (utlisez le processus de Gram-Schmidt). Toutes les matrices sont carrées, $n \times n$.

Cette fonction devra d'abord vérifier que A a un déterminant non nul.

Ecrire ensuite un petit programme qui utilise cette fonction pour décomposer chacune des matrices A, B et C données plus haut.

Vous devrez vérifier, à la fin, par exemple, que $\det A = \pm \det R$ (car la matrice orthogonale Q a toujours un déterminant égal à ± 1).

<u>Rappel</u>: Le processus de Gram-Scmidt est le suivant : On écrit A et Q comme des vecteurs \vec{a}_i et \vec{q}_i .

$$A = (\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n)$$
 ; $Q = (\vec{q}_1 \ \vec{q}_2 \ \dots \ \vec{q}_n)$

Les \vec{a}_i sont supposés donnés, et on cherche les \vec{q}_i . L'algorithme pour trouver les \vec{q}_i (ainsi que la matrice R) est :

Pour $i = 1, \ldots, n$

- 1. Calculer $\vec{a}_{i}' = \vec{a}_{i} \sum_{k=1}^{i-1} (\vec{a}_{i} \cdot \vec{q}_{k}) \vec{q}_{k}$
- 2. $\vec{q}_i = \vec{a}_i'/||\vec{a}_i'||$
- 3. $R_{ii} = ||\vec{a}_i|'||$
- 4. $R_{ij} = \vec{q}_i \cdot \vec{a}_j$, pour j = i + 1, ..., n (Remarque: $R_{ij} = 0$ si i > j).
- 6. Implémentez la méthode QR par une fonction en C que vous appellerez methode_QR. Elle ressemblera à ceci

Cette méthode consiste à démarrer avec une matrice connue A que nous écrivons ici A^1 . On décompose $A^{(1)}$ en un produit $Q^{(1)}R^{(1)}$, puis on définit la matrice $A^{(2)} \equiv R^{(1)}Q^{(1)}$, que l'on décompose en un produit $Q^{(2)}R^{(2)}$, et ainsi de suite jusqu'à obtenir la matrice $A^{(k)} \equiv R^{(k-1)}Q^{(k-1)}$. On arrête l'itération, et on met cette matrice $A^{(k)}$ dans la matrice B. (Toutes les matrices sont carrées, $n \times n$) Ecrire ensuite un petit programme qui utilise cette méthode sur les matrices A_s , B_s et C_s (faites k=30 itérations), et en déduire TOUTES les valeurs et vecteurs propres de ces matrices, en combinant cette méthode avec la méthode de la puissance avec translation, en utilisant une précision de $\varepsilon=10^{-12}$.