Yakeen NEET 2.0 2026

Physical Chemistry

Electrochemistry

DPP: 1

Amit Mahajan Sir

- Q1 The standard reduction potential values of three metallic cations X,Y and Z are 0.52,-3.03 and -1.18~V respectively. The order of reducing power of the corresponding metal is
 - (A) Y > Z > X
 - (B) X > Y > Z
 - (C) Z > Y > X
 - (D) Z > X > Y
- Q2 To a mixture containing pieces of Zn, Cu and silver, $1MH_2SO_4$ was added. H_2 gas was found to be evolved. Which of the metal/metals do you think has/have reacted?

$$egin{aligned} E^{o}_{Zn^{+2}/Zn} &= -0.76 \ V \ E^{o}_{Cu^{+2}/Cu} &= 0.34 \ V \ E^{o}_{A\sigma^{+2}/A\sigma} &= 0.80 \ V \end{aligned}$$

- (A) All the metals
- (B) Only Zn
- (C) Both Zn and Cu
- (D) Only Ag
- ${\bf Q3}$ The standard reduction potentials at 298~K for the following half reactions are given

$$m Zn^{+2} + 2e^- \rightleftharpoons Zn -0.762 \ V$$
 $m Cr^{+3} + 3e^- \rightleftharpoons Cr -0.740 \ V$
 $m 2H^+ + 2e^- \rightleftharpoons H_2 0.00 \ V$
 $m Fe^{+3} + e^- \rightleftharpoons Fe^{+2} 0.770 \ V$

Which is the strongest reducing agent?

(A) Zn

- (B) Cr
- (C) H_2
- (D) $\mathrm{Fe^{+2}}$
- ${\bf Q4}~~{\rm When}~Zn$ dust is added to a solution of $MgCl_2$
 - (A) No reaction will take place
 - (B) ZnCl_2 is formed
 - (C) Zinc dissolved in the solution
 - (D) Magnesium is precipitated
- Q5 The standard reduction potential of A,B and C are $0.34\ V, 0.80\ V$ and $0.79\ V$ respectively. The decreasing order of deposition of metals on electrodes are
 - (A) A > B > C
 - (B) B > C > A
 - (C) C > B > A
 - (D) A > C > B
- Q6 Using the data given, find strongest oxidizing agent.

$${
m E_{Cl_2 \, / \, Cl^-}^0} \, = \, 1.36 \ {
m V}$$

$${
m E_{Cr^{+6}\,/\,Cr^{+3}}^0} \,=\, 1.\,33~{
m V}$$

$$E^0_{MnO_4^-\,/\,Mn^{+2}}\ =\ 1.\,51\ V$$

$$E^0_{Cr^{+3}\,/\,Cr}\ =\ -\ 0.\,74\;V$$

- (A) Cl^-
- (B) Cr
- (C) Cr^{+3}
- (D) ${
 m MnO_4^-}$

Q7

A metal having negative reduction potential when dipped in the solution its own ions, has a tendency

- (A) to pass into the solution
- (B) to be deposited from the solution
- (C) to become electrically positive
- (D) to remain neutral
- **Q8** In cannot displace the following ion from its aqueous solution:
 - (A) Ag^+
 - (B) Cu^{+2}
 - (C) $\mathrm{Fe^{+2}}$
 - (D) Na^+
- **Q9** Which of the following displacement does not occur?
 - (A) $\mathrm{Zn} + 2\mathrm{H}^+ o \mathrm{Zn}^{+2} + \mathrm{H}_2$
 - (B) $\mathrm{Fe} + 2\mathrm{Ag}^+ \rightarrow \mathrm{Fe}^{+2} + 2\mathrm{Ag}^-$
 - (C) $\mathrm{Cu} + \mathrm{Fe}^{+2} \rightarrow \mathrm{Fe} + \mathrm{Cu}^{+2}$
 - (D) $\mathrm{Zn} + \mathrm{Pb}^{+2} o \mathrm{Zn}^{+2} + \mathrm{Pb}$
- Q10 The Kohlrausch's law is related to
 - (A) Conductance of ions at infinite dilution.
 - (B) Independent migration of ions.
 - (C) Both (A) & (B)
 - (D) Neither (A) & (B)

Answer Key

Q1	(A)	Q6	(D)
Q2	(B)	Q7	(A)
Q3	(A)	Q6 Q7 Q8 Q9 Q10	(D)
Q4	(A)	Q9	(C)
Q5	(B)	Q10	(C)

Master NCERT with PW Books APP

