Discrete and Algorithmic Geometry.

Sheet 4.

(2) Show that
$$\int_{P} f(x) dx = Vol(P), f(P_0)$$
 where $P_0 = \frac{1}{Vol(P)} \int_{P} x dx$ (bary center of P)

Solution:

$$f(P_0) = f\left(\frac{1}{\text{Vol}(P)}\right) p x dx$$
 $\frac{1}{\text{Vol}(P)}$ is cst. so using linearity of f

we have:
$$=\frac{1}{Vol(P)}$$
. $f\left(\int_{P} x dx\right)$

2 Vol(P).
$$f(P_0) = Vol(P), \frac{1}{Vol(P)} \cdot \int_{P} f(x) dx$$

$$= \int_{Q} f(x) dx.$$

(3) Theorem:
$$Z(P,Q)$$
 is a polytope of dimension $\dim(P)$ - $\dim(Q)$, whose nonempty faces correspond to the Π -coherent subdivisions of P , that is the face lattice of $Z(P,Q)$ is $L(Z(P,Q)) = \{0\} \cup \omega_{can}(P,Q)$.

- Proof: First of all we have that Z(P,P) is convex using the Linearity of the integral as it is a compaination of 2 sections.
- " \leq (PQ) is contained in the fiber $\pi^{-1}(r_0)$ whose dim is $\dim(P)$ -dim(Q); so $\dim(Z(PQ)) \leq \dim(P)$ -dim(Q).
 - . We need to show that $\mathbb{Z}(P,Q)$ is a polytoper Indeed using the following Lemma we can find that $\mathbb{Z}(P,Q)$ is the convex hull of $\frac{1}{\text{Vol}(Q)} \int_Q \mathcal{E}(x) dx$ for \mathcal{E} tight section of $\mathbb{T}: \mathbb{F}_Q Q$.

Lemma: Every piecewise linear section that is not tight can be changed locally in 2 opposite directions, and can be written as a convex combination of 2 other sections that have a different integral.

. The vertices of Z(P,Q) on the unique maxima for generic linear functions $c \in (\mathbb{R}^p)^*$.

Since c is generic then every fiber of Ti'(r) for rea has a unique maximal element with respect to c. So c determines a unique tightcoherent section &c.

The integral over \mathcal{E}^{C} is the only point of $\mathbb{Z}(P,Q)$ which maximazes C,

=> The vertices of $\mathbb{Z}(P,Q)$ coincide with the tight coherent.

Subdivisions $\mathbb{T}: P \to Q$,

· Every face of E(P,Q) = IRP is defined by a linear func. on IRP. So

il defines a map ITC: 17-1 QC, so a Ti-coherent subdivision F of Q.

This proves that there is a bij. bt. The faces of $\Sigma(P,Q)$ the coherent subdivisors of Q i.e. $L(\Sigma(P,Q)) = \{\delta\} \cup \omega_{coh}(P,Q)$.

O