

창의적 공학 설계

(Creative Engineer Design)

동국대학교 정보통신공학부 봉 정 식

dongguk 💥

- 1.1 공학의 정의와 공학적 문제 정의
- 1.2 공학 발전의 역사적 배경
- 1.3 공학과 공학설계

요즘 들어 공학설계에 대한 관심이 커지고 있으며, 더욱 흥미로우면서도 새로운 관점에 바탕을 둔 창의적인 탐구 방법이 요구되고 있다. 이에 따라 새로운 개념의 창의적 공학설계의 중요성이 점차 커지고 있다. 제1장에서는 창의적 공학설계의 중심 개념 중 공학설계의 배경을 주제로 하여 살펴본다. 공학의 정의와 공학적 문제 정의, 공학 발전의 역사적 배경, 그리고 공학과 공학설계에 대해 살펴본다.

1. 공학의 정의와 공학적 문제 정의

1.1 공학이란 무엇인가?

공학(engineering)

- 지식과 기술을 이용하여 인간에게 유용한 제품을 만드는 학문
- 자원을 효율적인 구조물, 기계, 시스템, 공정으로 변환시키는 것
- 문제를 발견하고 그에 대한 기술적 해결책을 제시하는 학문
- 인문학, 사회과학을 활용하여 더욱 나은 삶을 위한 환경 구축

그림 1.1 문명의 이기를 만드는 공학

공학이란 무엇인가?

엔지니어(engineer, 공학자, 공학인, 공학도)

- 과학적 지식과 창의성을 바탕으로 사회적 요구와 실용적 지식을 활용하여 새로운 제품이나 도구 등을 만드는 전문가
- 기계, 엔진, 건축물, 컴퓨터 등의 기술을 발전시키는 전문가

그림 1.3 다양한 분야의 일을 해내는 엔지니어

공학이란 무엇인가?

과학과 공학의 차이점

- 과학: '왜 그런 현상이 생기는 걸까?'
- 공학: '어떻게 하면 새롭고 창의적인 물품을 만들 수 있을까?'

뉴턴과 같은 과학자 vs 아인슈타인과 같은 공학자

1.2 공학과 과학의 관계

공학과 과학은 밀접한 관계를 가지며 상호 발전

과학(Science)

- 보편적 진리나 법칙을 발견할 목적의 체계적인 지식
- 자연의 법칙을 탐구하여 얻어진 지식 체계
- 자연 연구에 대해 검증 가능한 방법으로 얻어진 지식 체계
- 아무도 반증하지 못한 보편성과 객관성이 인증되는 지식 체계

그림 1.4 과학의 영역

공학(Engineering)

- 자연과학을 이용하여 개발하고 실천하는 응용과학 분야
- 과학적 지식과 기술을 개발하고 응용하는 창의적인 전문 분야
- 경제성 등 현실성을 고려하는 것이 최근의 추세
- 자연에 존재하는 물질, 에너지 등을 활용하여 유용한 제품 제작

그림 1.5 공학의 영역

기술(Technology)

- 과학 이론을 적용하여 자연의 사물을 유용하게 가공하는 수단
- 인간의 복리증진을 위한 방법(know-how) 또는 지식
- 공학적 문제 해결을 위한 도구 또는 물건을 생산하는 기술
- 기계적 작동보다는 기술 자체에 비중이 큰 분야

그림 1.6 기술의 영역

공학과 과학의 비교

구분	공학	과학
주요 특징	개발에 대해 주된 관심	연구에 대해 주된 관심
탐구 대상	기계장치나 가공된 재료	자연의 법칙
관심의 대상	기계장치를 비롯한 시스템(system) 위주	자연법칙의 이론(theory) 위주
생성된 결과	새롭고 유용한 물건	새로운 이론
추구 대상	어떤 유용한 장치, 구조와 프로세스	지식의 탐구
연구 방법	모델 분석에 따른 응용	이론과 그것의 실험
관심과 목적	어떤 작업의 성취	새로운 지식의 추구
결과 테스트	설계 목적에 맞는지 테스트	논리나 통계로 입증

과학, 공학, 기술의 관계

- 과학, 공학, 기술의 수직적 관계
 수직적인 순서로 바탕과 응용의 연관 관계
- 과학, 공학, 기술의 수평적 관계
 상호 다른 영역이면서도 겹치는 것도 있는 관계

과학 공학

자연의 성질을
연구하는 학문

기술

과학적 지식과 공학의 연구결과를
바탕으로 실제 제품을 만드는
노하우(know-how)

그림 1.8 수평적 관계로 본 과학, 공학, 기술

1.3 공학의 관심 영역과 영역 변화

- 생활의 질을 향상시키는 혁신적인 영역에 관심이 많음
- 문제 해결을 위한 의욕, 과학적 지식과 기술 모두 요구됨
- 경제적 가치성, 문화적 요구, 환경적 배경, 법률적 요소 고려

표 1.2 공학의 시대별 영역 변화

시대	공학의 영역 변화	
원시 사회	- 인간의 기본적인 의식주 해결을 위한 요구들로부터 시작됨- 세월이 흐름에 따라 공학적 수준이 조금씩 높아짐	
산업혁명 이후	- 공학의 중요성이 상당히 커지기 시작함 - 자동차, 기차, 기계 등 다양한 분야로 파급되면서 발전됨	
최근의 지식정보 화사회		

2.1 선사 시대부터 르네상스 시대까지

- (1) 선사 시대
- 석기의 사용, 사냥, 불의 사용 활과 화살
- 마차와 수레바퀴

- 지렛대와 도르래

(2) 고대 시대

- 그리스 파르테논 신전
- 바빌론 공중정원
- 나선형 양수기

- 로마 콜로세움
- 이집트 피라미드
- 발리스타와 투석기

(3) 중세 시대

- 풍차
- 기계의 제어
- 로봇

- 나침반
- 시계
- 트레부켓(trebuchet)

(4) 르네상스 시대

- 레오나르도 다빈치: 기계설계 및 인체공학 연구, 헬리콥터 등
- 갈릴레오: 지동설을 주장한 천문학의 아버지
- 뉴턴: 운동 법칙과 만유인력 주장

2.2 산업혁명 시대부터 21세기 이후의 시대

- (1) 산업혁명 시대
- 방적기 개발 영국의 제임스 와트가 증기기관 개발
- 증기자동차 (1770년), 증기선 (1807년), 증기기차 (1814년) 개발

(2) 20세기의 과학혁명 시대

- 자동차의 성능개선, 대량생산
- 비행기의 개발
- 메커트로닉스 기술 개발
- 디스플레이 장치

- 전기 시설의 확장
- 원자력 기술 개발
- 진공관, 반도체, VLSI, ULSI
- 휴대폰을 비롯한 휴대기기

(3) 21세기 이후의 시대

과학과 공학 분야와의 융합(fusion) 기술에 대한 연구 가속화

- 나노(nano) 기술
- 사물인터넷
- 생명공학기술

- 정보통신기술(ICT)
- 광(optical) 기술
- 유전인자들의 분석

2.3 20세기에 이루어진 위대한 공학 업적들

20세기에 이루어진 20가지 공학 업적들

- 1. 전기
- 2. 자동차
- 3. 비행기
- 4. 물의 공급과 분배
- 5. 전자기기
- 6. 라디오와 텔레비전
- 7. 농업기계
- 8. 컴퓨터
- 9. 전화
- 10. 에어컨과 냉장고

- 11. 고속도로
- 12. 우주선
- 13. 인터넷
- 14. 사진기
- 15. 가전제품
- 16. 엘리베이터
- 17. 석유와 석유화학 기술
- 18. 레이저와 광섬유
- 19. 원자력 기술
- 20. 고성능 물질들

20세기에 이루어진 위대한 공학 업적들

■ 전화기, 전구, 비행기, 엘리베이터, 자동차, 사진기, 컴퓨터 등

그림 1,27 에디슨의 전구와 벨의 초기 상업용 전화기

그림 1,29 비행기와 엘리베이터

그림 1,28 초기의 자동차와 냉장고

그림 1.30 카메라와 라디오 방송

3. 공학과 공학설계

3.1 공학 분야의 확산

공학의 분야

- 기계공학을 비롯한 수많은 분야들
- 현재 분야 간 융합을 통한 새로운 공학 분야들이 생기고 있음
- 다음 영역에 포함되지 않은 분야일수록 새로운 분야임

기계공학, 전기공학, 전자공학, 토목공학, 건축공학, 산업공학, 자동차공학, 항공우주공학, 화학 공학, 고분자공학, 생물공학, 제어계측공학, 재료공학, 환경공학, 컴퓨터공학, 정보통신공학, 원 자력공학, 조선공학, 해양공학, 섬유공학, 자원공학, 금속공학, 신소재공학, 교통공학, 의공학, 농공학, 산림공학, 열공학, 지질공학, 해양공학, 유전공학 등

- 기계공학
 - 물리학과 역학을 기초로 기계의 설계, 사용법, 성능을 연구

- 화학공학
 - 화학제품의 제조공정을 위한 계획, 장치의 설계, 운용을 연구

- 전자공학
 - 전자들의 운동에 대한 과학적 지식과 그 응용 기술을 연구

- 신소재공학
 - 이전의 재료에는 없는 새롭고 뛰어난 특성을 가진 소재를 연구

- 건축공학
 - 구조, 재료, 설계, 시공법 등을 연구

- 토목공학
 - 도로, 하천, 도시 계획 등 토목에 관한 이론과 실제를 연구

- 산업공학
 - 시스템이나 프로세스 등을 과학적 방법으로 최적화하고 합리화

- 컴퓨터공학
 - 하드웨어와 소프트웨어를 통해 다양한 응용을 가능하게 함

3.2 공학설계란 무엇인가?

(1) 공학설계

공학설계의 배경

- 인간은 고대로부터 생활에 필요한 도구들을 끊임없이 개발
- 도구 개발은 아이디어를 구체화시키는 설계에 의해 이루어짐
- 그 후 간단한 형태의 기계 등이 만들어지고 개선되어 왔음
- 현대에는 다양한 형태의 공학설계가 이루어지고 있음

그림 1.32 고대 농기구와 행글라이더의 설계

공학설계(engineering design)

- 통상 '설계(design)'라고도 부름
- 목적물을 만들거나 변경, 해체하는 일에 대한 계획을 세우는 일
- 아이디어, 목표, 블록다이어그램, 요구사항 및 제한사항 등 포함
- 사물이나 시스템의 계획 또는 생산을 위한 제안이나 계획
- 설계도를 작성하고 구체적으로 내용을 명시하는 일
- 요즘은 목표 달성을 위한 구체적인 계획과 관련된 것들을 총칭

설계자와 설계도

- 설계자(designer) 고객의 요구에 따라 제품의 설계 작업을 담당하는 전문인
- 설계도(design drawing) 제품의 형상과 사용 재료들을 결정한 후 이에 따라 그린 도면

그림 1.33 설계도와 청사진

- 공학설계 분야는 매우 다양해지고 있음
- 소프트웨어 작성 또는 분석도 공학설계 영역에 포함

그림 1.34 컴퓨터 순서도와 유사코드

설계와 디자인의 예

- 명확한 구분은 없으나 설계는 일반적인 용어
- 우리말 '디자인'은 아이디어 쪽에 좀 더 무게를 둠

그림 1.35 통상적 표현의 설계 예

그림 1,36 통상적 표현의 디자인

(2) 공학발전을 위한 노력과 인증제도

한국공학교육인증원(ABEEK)

- 1999년 미국의 ABET을 모델로 하여 설립
- 인증평가, 상호교류 활동, 공학교육 연구 등의 활동 수행
- 공학교육 교과내용에 대한 진단 및 평가 프로그램 설정
- 공학 및 공학 관련 능력개발과 공학교육의 발전
- 주도적인 역할을 할 실력과 창의력을 갖춘 엔지니어 배출

공학발전을 위한 노력과 인증제도

미국공학기술인증원(ABET)

- 1932년 ABET를 중심으로 공학교육 인증제도 도입
- 응용과학, 컴퓨터, 공학, 기술 분야의 관련 학회를 구성원으로 둠
- 관련 분야의 인증평가자들을 뽑아 교육시키고 인증평가 시행
- 한국과 미국의 인증기관 비교

구분	한국	미국
기관	ABEEK	ABET
시행평가 종류	공학, 공학기술, 컴퓨터정보기술	응용과학, 컴퓨터, 공학, 기술
인증평가 시작년도	2001년	1936년
평가목적	공학 관련 교육의 질 향상	공학 관련 교육의 질 향상
5/1축석	프로그램의 인증	프로그램의 발달과 개선

(3) 엔지니어가 갖추어야 할 능력(요약)

- 수학, 기초과학, 공학의 지식과 정보기술을 응용할 수 있는 능력
- 자료 능력 및 실험을 계획하고 수행할 수 있는 능력
- 제한요소를 반영하여 시스템, 요소, 공정을 설계할 수 있는 능력
- 공학실무에 필요한 기술, 방법, 도구들을 사용할 수 있는 능력
- 효과적으로 의사를 전달할 수 있는 능력
- 직업적 책임과 윤리적 책임에 대한 인식

