Short Project 9 Report CS 6301.011

Savan Amitbhai Visalpara (sxv180069) Srikumar Ramaswamy (sxr170016)

This report provides details on run time of our implementation of Boruvka's and Prim's algorithm for minimum spanning tree, and also compares their performance.

We ran our program on test cases provided for SP-9 as well as on random graphs as suggested.

Below table shows performance on test cases provided for SP-9.

No of V, E	Boruvka's	Prim's
50, 140 (mst-50-	Boruvka	Prim IndexedHeap
140-84590.txt)	84950	84950
	Time: 12 msec.	Time: 12 msec.
	Memory: 3 MB / 256	Memory: 3 MB / 256 MB.
	MB.	
200, 580 (mst-200-	Boruvka	Prim IndexedHeap
580-153534.txt)	153534	153534
	Time: 19 msec.	Time: 13 msec.
	Memory: 4 MB / 256	Memory: 4 MB / 256 MB.
	MB.	
10k, 30k (mst-10k-	Boruvka	Prim IndexedHeap
30k-1085305.txt)	1085305	1085305
	Time: 127 msec.	Time: 41 msec.
	Memory: 57 MB / 256	Memory: 51 MB / 256
	MB.	MB.

As we can see, for smaller cases both algorithm's running time is very similar. However, as the number grows, Prim's is clearly more efficient than the Boruvka's.

Below table compares the performance on randomly generated graph as suggested in the assignment.

No of V, E	Boruvka's	Prim's
10k, 1M	Boruvka	Prim IndexedHeap
	203410	203410
	Time: 462 msec.	Time: 287 msec.
	Memory: 350 MB / 1024	Memory: 627 MB / 1024
	MB.	MB.
100k, 30M	Boruvka	Prim IndexedHeap
	2147868221	2147868221
	Time: 7386 msec.	Time: 4578 msec.
	Memory: 2800 MB /	Memory: 2902 MB / 4066
	4066 MB.	MB.
100k, 300M	Boruvka	Prim IndexedHeap
	2147588463	2147588463
	Time: 81246 msec.	Time: 45607 msec.
	Memory: 25545 MB /	Memory: 25545 MB /
	256 26327.	26327 MB.
1M, 300M	Boruvka	Prim IndexedHeap
	2151331035	2151331035
	Time: 12850 msec.	Time: 46280 msec.
	Memory: 25949 MB /	Memory: 25949 MB /
	26327 MB.	26327 MB.

As we can see, Prim's algorithm is way more efficient than the Boruvka's. Note that we couldn't run 300M test cases for Boruvka's both on local machine and csgrad machine as it was throwing out of memory error. So, we extrapolated those values from known value.