Aufgabe 3: Faltungskodierer

[17 Punkte]

Gegeben sei folgender Faltungskodierer für eine Eingabe u_i , dessen Zustand von zwei vorangegangenen Bits u_{i-1} und u_{i-2} abhängt. Es sei

$$\begin{array}{ccc}
x_{i,1} &= u_i \\
\hline
x_{i,2} &= \neg (u_{i-2} \oplus u_{i-1}) \\
\hline
x_{i,3} &= u_{i-2} \oplus u_i,
\end{array}$$

wobei $a \oplus b := (a+b) \mod 2$ und $\neg(a) := 1 - a$ für $a, b \in \{0, 1\}$.

(a) [8 Punkte] Ergänzen Sie im folgenden Trellis-Diagramm die Werte für $x_{i,1}, x_{i,2}, x_{i,3}$ und die Pfeile zu den Folgezuständen.

> ALT: 011 061 111 d=1 NR: 019 011 119 d=4 ALT: 120 011 100 (b) [6 Punkte] Nehmen Sie an, die beiden zuletzt kodierten Eingabebits waren $u_{-2} = 1$ und $u_{-1} = 1$. Kodieren Sie die Eingabebits $u_0 = 0$, $u_1 = 0$ und $u_2 = 1$. Tragen Sie dazu jeweils die Ausgabe $x_{i,1}, x_{i,2}, x_{i,3}$ für $0 \le i \le 2$ in der folgenden Liste ein.

		1,17 1,27 1,0			
	(i)	0	L.	2	
	u_i	U=0	$u_1 = 0$	U2 1 9 6	
	u_{i-1}	U = 1	$u_0 = 0$	W 7= 0 8	L \(\alpha \)
	u_{i-2}	4-2=10	u_1=1/	No= OB) Ψ)
æ	$x_{i,1}$	0		1 (0)-	xi,1= W.
	$x_{i,2}$	10	01	104	/xv, 2=7(4)
	$x_{i,3}$	1	1	1 (Xi,3= Li-
	1				

(c) [2 Punkte] Kann in dieser Folge ein einzelner Bitfehler beim Senden der zweiten Ausgabe $x_{1,1}, x_{1,2}, x_{1,3}$ vom Empfänger/Dekodierer korrigiert werden?

□ Nein

(d) [1 Punkt] Erhalten wir immer noch einen funktionierenden Faltungskodierer, wenn wir die Berechnungsvorschrift für $x_{i,2}$ durch $x_{i,2} = u_{i-2} \oplus u_{i-1}$ ersetzen?

✓ Ja

□ Nein