A PROJECT REPORT

ON

"ONLINE INTEGRATED PLATFORM FOR PROJECTS"

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF COMPUTER ENGINEERING

BY

Vipul Kumar Sharma
Sanket Tupe
Manish Vaishnav
Ashish Yaday

UNDER GUIDANCE OF

Dr. Shraddha Mithbaykar

UNIVERSITY OF MUMBAI

DEPARTMENT OF COMPUTER ENGINEERING

DATTA MEGHE COLLEGE OF ENGINEERING

PLOT NO.98 SECTOR-3, AIROLI, NAVI MUMBAI

ACADAMIC YEAR 2023-24

DATTA MEGHE COLLEGE OF ENGINEERING AIROLI, NAVI MUMBAI

CERTIFICATE

This is to certify that the project entitled "Online Integrated Platform For Projects" is bona fide work of "Vipul Sharma, Sanket Tupe, Manish Vaishnav, Ashish Yadav" submitted to the University of Mumbai in partial fulfillment of the requirement for the award of the degree of "Undergraduate" in "Computer Engineering".

Dr. Shraddha Mithbavkar Project Guide Dr. A.P.Pande
Head of the Department

Dr.D.J.Pete

Principal

DATTA MEGHE COLLEGE OF ENGINEERING AIROLI, NAVI MUMBAI

PROJECT APPROVAL

This project report entitled "Online Integrated Platform For Projects" of the students "Vipul Sharma, Sanket Tupe, Manish Vaishnav, Ashish Yadav" approved for the degree of Computer Engineering.

Internal Examiner	External Examiner
Date:	Date:
Place:	Place:

DECLARATION

We declare that, this written submission represents our ideas in our own words and where others' ideas or words have been included; we have adequately cited and referenced the original sources. We also declare that, we have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in our submission. We understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

Name of the Students

Signature

- 1) Vipul Kumar Sharma
- 2) Sanket Tupe
- 3) Manish Vaishnav
- 4) Ashish Yadav

ACKNOWLEDGEMENT

Motivation and guidance are the keys towards success. I would like to extend my thanks to

all the sources of motivation.

We would like to grab this opportunity to thank **Dr.D.J.Pete**, Principal for encouragement

and support he has given for our project.

We express our deep gratitude to Dr. A.P.Pande, Head of the Department who has been the

constant driving force behind the completion of this project.

We wish to express our heartfelt appreciation and deep sense of gratitude to my project guide

Dr. Shraddha Mithbavkar for her encouragement, invaluable support, timely help, lucid

suggestions and excellent guidance which helped us to understand and achieve the project

goal. Her concrete directions and critical views have greatly helped us in successful

completion of this work.

We extend our sincere appreciation to all Professors for their valuable inside and tip during

the designing of the project. Their contributions have been valuable in so many ways that we

find it difficult to acknowledge of them individually.

We are also thankful to all those who helped us directly or indirectly in completion of this

work.

Place: Vipul kumar Sharma

Sanket Tupe

Manish Vaishnav

Ashish Yadav

Date:

INDEX

	ACKNOWLEDGEMENT	1
	ABSTRACT	ii
	LIST OF FIGURES	iii
	LIST OF TABLES	iv
1.	INTRODUCTION	1
2.	LITERATURE SURVEY/ EXISTING SYSTEM	2
3.	LIMITATION OF EXISTING SYSTEM OR RESEARCH GAP	6
4.	PROBLEM STATEMENT AND OBJECTIVE	7
5	PROPOSED SYSTEM	
	5.1 ANALYSIS/FRAMEWORK/ ALGORITHM	8
	5.2 DESIGN DETAILS	11
	5.3 METHODOLOGY PROPOSED	15
6	TECHNOLOGY USED	
	6.1 DETAILS OF DATABASE OR DETAILS ABOUT INPUT TO	17
	SYSTEMS OR SELECTED DATA.	
	6.2 SOFTWARE AND HARDWARE REQUIREMENT	19
7	REFERENCES	20

ABSTRACT

This project is a dedicated endeavor to harness the untapped potential of these academic projects. It envisions the creation of a unified platform that transcends institutional boundaries, geography, and discipline. This integrated platform, at its core, embodies a sophisticated plagiarism-checking mechanism, ensuring the authenticity and originality of the projects shared within its digital realm.

The platform's mission is clear: to serve as a repository of academic projects from students across India's technical and higher educational institutions. By uniting a wealth of diverse projects and research findings, we aim to create an environment of shared knowledge, peer-to-peer learning, and cross-functional collaboration. Our vision is to empower students to take the reins of innovation, inspire unique projects, and foster an ecosystem that transcends the constraints of traditional education.

This report outlines the comprehensive design and methodology underpinning this ambitious endeavor. It leverages the MERN (MongoDB, Express.js, React, Node.js) stack, a powerhouse of technology, and the Model-View-Controller (MVC) architectural pattern to ensure a user-friendly, responsive, and scalable platform. The synthesis of technology and architecture promises a transformative platform that will enable students to seamlessly navigate the vast landscape of academic projects, collaborate with peers, and unlock the full potential of their academic journey.

The journey embarked upon through this project is a testament to our unwavering commitment to education's betterment. It is a declaration of our belief in the power of knowledge, collaboration, and innovation. As we embark on this journey to create an integrated platform for academic projects, we invite the academic community to join hands in shaping the future of education, where innovation, collaboration, and academic integrity reign supreme.

.

LIST OF FIGURES

SR. NO.	NAME OF THE FIGURE	PAGE NO.
1	Use case diagram	13

LIST OF TABLE

SR. NO.	NAME OF THE TABLE	PAGE NO.
1	Literature Survey	2

1. INTRODUCTION

In the pursuit of academic excellence and the advancement of knowledge, innovation stands as a fundamental cornerstone. Educational institutions, particularly universities and colleges, serve as breeding grounds for creative thought, research, and the exploration of novel ideas. At the heart of this academic journey lies the practice of undertaking projects as a vital component of the learning process. These projects not only serve as a means of assessment but also as a vehicle for fostering innovation, critical thinking, and problemsolving skills among students.

Recognizing the transformative potential of these academic projects, our project endeavors to provide a dynamic and forward-thinking solution to catalyze educational innovation. We propose the creation of an integrated platform designed to harness the collective knowledge, creativity, and ingenuity of students from technical and higher educational institutions across India.

This platform, with a sophisticated plagiarism-checking mechanism at its core, aims to bring together the diverse and brilliant projects initiated at various academic levels. By establishing a common knowledge-sharing hub that transcends geographical boundaries and institutional affiliations, we endeavor to pave the way for a dynamic and collaborative ecosystem within the realm of academia.

Our vision for this project is clear and comprehensive. We seek to develop an online integrated platform that will serve as a repository of academic projects undertaken by students in universities and colleges throughout the country. This platform will facilitate knowledge sharing, peer learning, and the collaborative exchange of ideas and research findings among the student community. By promoting cross-functional research and inspiring innovative project works, we aspire to foster an environment where education transcends the boundaries of classrooms and embraces the collective wisdom of diverse academic communities.

2. LITERATURE SURVEY

Sr	Name of paper	Author	Literature Findings
No.	papei		
1.	A survey on	Prasanth S.,	A survey on plagiarism detection systems has
	Plagiarism	Rajshree R.,	been introduced. With the evolution of the
	Detection	Saravana Balaji	internet and the need for information the
			plagiarism continues to be a concern problem to
			universities, teachers, policy-makers and
			students. Concluding that, the need of plagiarism
			detection systems become very important issues
			and the use of plagiarism detection systems in E-
			Learning improve the integrity of academic, and
			also instances of plagiarism can be successfully
			reduced with the help of plagiarism detection
			systems.
2	A Literature	Keerthana T V,	Plagiarism is a ubiquitous problem faced by
	Review on	Pushti Dixit,	practitioners of different fields like academia,
	Plagiarism	Rhuthu Hegde,	journalism, literature, art and so on for decades.
	Detection in	Sonali S K,	The field has been researched intensively since
	Computer	Prameetha Pai	the 1970's. With the advances in technology and
	Programming		the pervasiveness of the world wide web,
	Assignments		everyone has all the information they need at
			their fingertips.
3	Survey on	Survey on	The conclusion underscores the dynamic nature
	Plagiarism	Plagiarism	of the plagiarism detection field. Some areas are
	Challenges	Challenges	making rapid progress, while others remain
			stagnant. It points out that cross-language
			plagiarism detection, once a complex task, now
			benefits from powerful tools and is expected to
			continue evolving. Currently, the most
			challenging task is detecting plagiarism in
			images

4	Plagiarism	Kotha Dinesh	In this research, our aim was to enhance the
	Detection	Reddy	effectiveness of detecting plagiarism between
	using		source and suspicious documents. We
	Enhanced		accomplished this by employing the ERFM
	Relative		approach and successfully achieved the following
	Frequency		objectives: 1. Utilizing word frequencies, as
	Model		opposed to individual words alone. 2. Improving
			the relative frequency model by revising the
			method for calculating similarity values. 3.
			Implementing a stop word removal process to
			reduce computational costs and enhance overall
			efficiency.
5	Plagiarism	Niraj Mohabey1	The literature review discusses different
	detection for	, Yash	techniques for plagiarism detection, including
	project report	Gavanang2,	manual detection, text similarity analysis, and
	using Machine	Abubakkar	automated detection using machine learning. The
	Learning	Khan3, Lavesh	project utilizes methods like Longest Common
		Singh Chib4,	Subsequence (LCS) and Cosine Similarity for
		Bhushan Patil5	detection.
6	Multi-Agents	Samia Zouaoui,	This paper introduces a novel approach for
	Indexing	Khaled Rezeg	detecting plagiarism in Arabic documents. The
	System		primary goal is to leverage a semantic resource
	(MAIS) for		called Arabic ShemNet to semantically index the
	Plagiarism		source documents, aiming to enhance the
	Detection		accuracy of plagiarism detection (PD) results.
			The system demonstrates impressive
			performance, achieving a recall rate of 93% and
			an accuracy score of 82%. It surpasses other
			systems in the PD Tr-ExAra-2015 Arabic corpus,
			boasting an PD f-score of 87%. This showcases
			the system's proficiency in identifying various
			forms of plagiarism, including semantic
			plagiarism

7	Online	Babitha V1,	The project aims to develop a system to check
	assignment	Harshitha M2	and detect plagiarism in students' assignments,
	plagiarism	,Hindumathi A3 ,	with a focus on improving efficiency and
	checker using	Reshma Farhin J	accuracy compared to manual methods. The
	Machine	4	proposed system involves several steps,
	learning		including input processing, tokenization,
			cleaning, stop word removal, stemming,
			similarity analysis, and report generation. The
			goal is to generate a report indicating the
			percentage of plagiarism detected in submitted
			documents.
8	Plagiarism	Mahwish	It covers approaches like Grammar-Based,
	Detection	Abid!!",	SemanticBased, and Hybrid methods, as well as
	Process using	Muhammad	algorithms like the Longest Common
	Data Mining	Usman,	Consecutive Word Algorithm and Match Detect
	Techniques	Muhammad	Reveal (MDR). Additionally, it mentions popular
		Waleed Ashraf	plagiarism detection tools such as Turnitin and
			CopyCatch. The text also highlights the use of N-
			Gram, Bi-Gram, and Tri-Gram techniques for
			text analysis.
9	Online	Priyanshu	This project addresses the critical issue of
	Assignment	Rathore, Rakesh	plagiarism in academic assignments. Plagiarism
	Plagiarism	Nagar, Ritik	undermines the integrity of learning experiences
	Checker	Patidar, Rohit	and affects the quality of education. The
		Mandloi	developed system employs advanced
			technologies like natural language processing and
			data mining to detect instances of copied work
			accurately. Through the use of techniques like
			Term Frequency and Cosine Similarity, the
			system provides a plagiarism percentage for
			submitted assignments.

10	Text and	Sk. Mahaboob	Plagiarism is a growing concern in academia,
	Image	Basha, Pandi	with the internet enabling easy access to a vast
	Plagiarism	Anusha,	amount of information. This has made it simpler
	Detection	Somineni	for students to copy assignments without giving
		Bhargavi,	credit to the original authors. Traditional text-
		Kankanala Indu ,	based plagiarism detection tools do not consider
		Kandimalla	visual content, which is crucial in conveying
		Pravallika	information in research papers. Detecting
			plagiarism in images is challenging due to the
			diverse range of pictures and the volume of
			images present in computer-generated texts. The
			Histogram Model is proposed as a method to
			identify plagiarized images in research papers.
11	Evaluation of	Kamal Mansour	The study on plagiarism detection methods has
	Different	Jambi 1,*, Imtiaz	seen significant advancements in recent years.
	Plagiarism	Hussain Khan 1	Various techniques and platforms have been
	Detection	and Muazzam	developed to address the challenges of
	Methods: A	Ahmed Siddiqui	identifying and preventing plagiarism. The most
	Fuzzy MCDM		common methods include Vector Space Models
	Perspective		(VSM), Stylometry, Non-Textual Feature
			Analysis, N-Gram Comparisons, LSA, ESA,
			Semantic Graph Analysis, and Machine
			Learning.
			The evaluation of different plagiarism detection
			methods using a Fuzzy MCDM perspective has
			provided valuable insights into the strengths and
			limitations of various approaches. The research
			highlights the significance of choosing the most
			appropriate method based on specific criteria and
			priorities.

12	Natural	Irum Naz	The literature survey underscores the vital role of
	Language	Sodhar, Akhtar	Natural Language Processing (NLP) in the field
	Processing:	Hussain Jalbani,	of artificial intelligence and its diverse
	Applications,	Abdul Hafeez	applications. NLP is crucial for understanding
	Techniques	Buller, Azeem	and interpreting human language, making it an
	and	Ayaz Mirani and	integral part of technology and communication in
	Challenges	Anam Naz	today's world. The findings highlight that NLP
		Sodhar	encompasses core areas related to language
			modeling and application areas that address real-
			world challenges. NLP techniques, including
			machine learning algorithms, play a crucial role
			in solving various problems, from text
			classification to machine translation and
			sentiment analysis.
13	Plagiarism	Mahwish	It covers approaches like Grammar-Based,
	Detection	Abid!!",	Semantic-Based, and Hybrid methods, as well as
	Process using	Muhammad	algorithms like the Longest Common
	Data Mining	Usman,	Consecutive Word Algorithm and Match Detect
	Techniques	Muhammad	Reveal (MDR). Additionally, it mentions popular
		Waleed Ashraf	plagiarism detection tools such as Turnitin and
			CopyCatch. The text also highlights the use of N-
			Gram, Bi-Gram, and Tri-Gram techniques for
			text analysis. The proposed methodology focuses
			on automating plagiarism detection through data
			mining techniques. It emphasizes pre-processing
			for standardizing data, using clustering for
			efficient comparison, and generating similarity
			scores. While the approach aims to enhance
			efficiency, its effectiveness may depend on
			factors like dataset characteristics and the
			evolving nature of plagiarism techniques.

14	A Survey of	Mehdi	Plagiarism detection systems have evolved to
	Plagiarism	Abdelhamid1,	address the growing concern of academic
	Detection	Sofiane Batata1	dishonesty in the digital age. Early efforts were
	Systems: Case	and Faiçal	manual and inadequate, prompting the
	of Use with	Azouaou1	development of automated systems. These
	English,		systems employ various techniques, including
	French and		advanced algorithms and machine learning, to
	Arabic		enhance accuracy.
	Languages		
15	Reliable	Mohamed A. El-	Plagiarism detection has become a critical
	plagiarism	Rashidy, Ramy	concern in the face of increasing technological
	detection	G. Mohamed1,	advancements in software, leading to a surge in
	system based	Nawal A. El-	cases of scientific plagiarism. Various research
	on deep	Fishawy, Marwa	efforts have been directed towards addressing
	learning	A. Shouman	this issue, particularly in detecting lexical,
	approaches		syntactic, and semantic text plagiarism. These
			challenges have prompted the creation of a novel
			database encompassing features representing
			diverse forms of text similarity. This database
			serves as the foundation for an intelligent deep
			learning-based plagiarism detection system.
			Different deep learning approaches, including
			convolutional and recurrent neural network
			architectures, were explored during the
			development of this system. A comparative study
			was conducted to evaluate the proposed system
			against benchmark datasets, PAN 2013 and PAN
			2014, demonstrating that the system based on
			long short-term memory (LSTM) achieved
			superior performance compared to contemporary
			ranking systems.

3. LIMITATION OF EXISTING SYSTEM

Lack of Centralization:

Many academic institutions maintain their own separate databases and repositories for academic projects, leading to fragmentation of resources. There is no unified platform to access projects from multiple sources.

Limited Exposure:

Students' academic projects often remain within the confines of their institutions. This lack of exposure restricts the sharing of innovative ideas and research findings with a broader audience.

Difficulty in Knowledge Sharing:

Due to the lack of a common platform, students and researchers find it challenging to share their work with peers from other institutions or disciplines, inhibiting crossfunctional collaboration.

Limited Access to Insights:

Researchers may have limited access to the projects and research conducted in other universities, leading to missed opportunities for gaining insights and building on existing knowledge.

Plagiarism Concerns:

In the absence of a reliable plagiarism-checking mechanism, there is an increased risk of academic dishonesty, making it challenging to maintain the integrity of project submissions.

4. PROBLEM STATEMENT

Innovation is the key to betterment of education and students in the Indian universities/colleges put a lot of efforts on the projects as a part of the academic requirements. If a common knowledge platform (with a facility for plagiarism) is created to bring all project works taken up at various levels by the students in Technical / Higher Educational Institutes and Universities throughout the country, then it will be a great source of knowledge and also will help the student community to take up unique/innovative project works. An integrated platform should be developed where in all the universities/Colleges provide information about the projects done by the students. The information on this platform will help in the peer learning and this will also help in cross functional research between various universities/colleges.

Objective:

To develop an integrated online platform that aggregates and showcases the academic projects undertaken by students across various universities and colleges, fostering innovation, collaboration, and academic integrity.

In the subsequent sections of this report, we will delve into the detailed design, methodology, and implementation of this platform, highlighting the use of cutting-edge technology, including the MERN (MongoDB, Express.js, React, Node.js) stack, and a Model-View-Controller (MVC) architectural pattern. These elements will be intricately woven into the fabric of our platform to ensure its functionality, scalability, and user-friendliness.

Our journey to create this integrated knowledge-sharing platform is a testament to our commitment to fostering innovation, empowering students, and nurturing the boundless potential within the academic community. With this project, we embark on a transformative path toward shaping the future of education by promoting collaboration, creativity, and academic excellence among students in Indian universities and colleges.

5. PROPOSED SYSTEM

5.1.1 Analysis

Project Scope and Objectives

The project scope encompasses the creation of a comprehensive online platform that allows students from various technical and higher educational institutions across India to share and learn from each other's academic projects. The primary objectives include:

- 1. Fostering innovation in academic projects.
- 2. Facilitating peer-to-peer learning.
- 3. Encouraging cross-functional research.

User Analysis

Our target users include students, professors, and researchers. It is essential to understand their needs and preferences to design a platform that caters to their requirements effectively.

Technical Requirements

The project will be developed using the MERN stack, which includes MongoDB, Express.js, React, and Node.js. Machine learning models will be integrated to provide plagiarism detection functionality.

Data Requirements

The platform will collect, store, and process various data types, including project details, user profiles, and data necessary for plagiarism detection. Data security and privacy measures will be implemented to protect user information.

Competitive Analysis

To gain a better understanding of the competitive landscape, we conducted research on existing platforms that offer similar services, identifying strengths and weaknesses to inform our platform's design.

5.1.2 Framework

System Architecture

The proposed system architecture includes the following components:

- 1. Web application for user interaction.
- 2. Database for storing project details and user data.
- 3. Plagiarism checker powered by machine learning.
- 4. User authentication system for data security.

Database Design

The database will be designed to store project details, user profiles, and other pertinent data, ensuring efficient retrieval and management of information.

User Interface (UI) Design

The user interface will be designed to be user-friendly, intuitive, and responsive to cater to the needs of our target audience.

Functionality

The core functionalities of the platform include:

- 1. User registration and profile management.
- 2. Project submission and search capabilities.
- 3. Plagiarism checking with a machine learning model.
- 4. User collaboration features, such as comments and discussion forums.

Machine Learning Integration

Machine learning models for plagiarism detection will be integrated into the system using libraries or frameworks such as TensorFlow or PyTorch.

User Authentication

A robust user authentication system will be implemented to safeguard user data and ensure privacy.

5.1.3 Algorithm

Data Preprocessing

Text data from submitted projects will be preprocessed to remove noise and prepare it for plagiarism analysis.

Feature Extraction

Features will be extracted from the preprocessed text data using techniques such as TF-IDF or word embeddings (Word2Vec or GloVe).

Similarity Measurement

The similarity between submitted projects and existing projects in the database will be computed using metrics like cosine similarity or Jaccard index.

Threshold Setting

A plagiarism similarity threshold will be defined to identify potentially plagiarized content. This threshold can be adjusted to meet specific requirements.

Reporting

Plagiarism reports will be generated for submitted projects, highlighting sections that may contain potential plagiarism.

User Notifications

Users will be notified if their project is flagged for potential plagiarism. Options for reviewing and editing will be provided.

5.2 Design

5.2.1 Use case Diagram

Description:

The use case diagram showcases the functionalities of the application. In this case there are two actors viz. student and Institute. There are various functionalities which can be used by the actors. Students can Login which in turn requires registration. Students can browse through projects. They are provided with the option to search as well as view projects made by other peers. Students are required to approve their projects by using Project proposal functionality. The project proposal includes plagiarism check as well as approval from the institute and finally after project approval they can submit their projects. The Institutes plays the role of authenticating the students during registration so that on false registration takes place. Institute also approves or rejects projects shared by the students.

5.2.2 System Architecture

The architecture of the integrated platform for academic projects is based on the MERN (MongoDB, Express.js, React, Node.js) stack. This choice of technology stack forms the foundation of our system design:

- 1. **MongoDB:** The NoSQL database system will be utilized for efficient and flexible data storage, including project details, user profiles, and authentication data.
- 2. **Express.js:** As the backend framework, Express.js will handle routing, middleware, and interaction with the MongoDB database.
- 3. **React:** Our user interface (UI) will be built using React, providing a responsive and interactive front-end experience.
- 4. **Node.js:** As the runtime environment, Node.js will serve as the server-side platform to run our web application.

5.2.3 User Interface (UI) Design

Our UI design follows the principles of user-friendliness, responsiveness, and intuitiveness. The design process includes:

- 1. Development of responsive UI components using React to ensure compatibility across various devices and screen sizes.
- 2. Utilization of UI design best practices to create a user-friendly and visually appealing interface.
- 3. Iterative design improvements based on user feedback and testing results.

5.3 Methodology

5.3.1 Data Collection

Data for the platform, including project details and user profiles, will be collected through a structured process:

- 1. Project details from universities and colleges will be obtained through a systematic data collection process, ensuring the acquisition of comprehensive and up-to-date information.
- 2. User profiles and authentication data will be gathered following secure registration and authentication procedures.

5.3.2 Development Process

The development process of the platform will adhere to agile software development practices. Specifically, we will follow an iterative development methodology, where sprints, user stories, and frequent releases will be employed to ensure agility and responsiveness to change.

- 1. Git version control will be used to manage code changes, facilitate collaboration, and maintain a history of development.
- 2. Continuous integration and continuous deployment (CI/CD) practices will be employed to automate the build and deployment process.

5.3.3 Machine Learning Model for Plagiarism Detection

The core component of our system is the machine learning model for plagiarism detection, integrated as part of the system's architecture:

- 1. Data preprocessing will involve text cleaning and tokenization to prepare project data for analysis.
- 2. Feature extraction will leverage TF-IDF (Term Frequency-Inverse Document Frequency) and word embeddings.
- 3. Similarity measurement will be carried out using cosine similarity, providing a quantitative measure of document similarity.
- 4. A plagiarism detection threshold will be set to identify potentially plagiarized content, and the system will provide detailed reports highlighting flagged sections.

5.3.4 User Testing and Feedback

Testing and feedback collection are essential aspects of our methodology:

- 1. Thorough testing, including functional, usability, and performance testing, will be conducted to ensure the platform's quality.
- 2. User feedback will be actively sought and collected through surveys, user testing sessions, and feedback forms.
- 3. Feedback will be used to drive iterative improvements and enhancements to the platform.

5.3.5 Security and Privacy Measures

Security and privacy are paramount:

- Robust encryption techniques, access control, and data security protocols will be implemented.
- 2. Privacy policies will be clearly communicated, and user data protection will be strictly observed.

6. TECHNOLOGY USED

6.1 Details

1. ReactJs

React is a free and open-source front-end JavaScript library for building user interfaces based on UI components. It is maintained by Meta and a community of individual developers and companies

2. MongoDB

MongoDB is a source-available cross-platform document-oriented database program. Classified as a NoSQL database program, MongoDB uses JSON-like documents with optional schema.

3. NodeJs

Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that runs on a JavaScript Engine and executes JavaScript code outside a web browser, which was designed to build scalable network applications.

4. Styling Frameworks

Material UI and Tailwind CSS is an open source CSS framework.

6.2 Software and Hardware requirements

Hardware Requirements:

1) **Operating system:** Windows, Linux, or macOS.

2) **RAM:** Recommended 4GB.

3) Hard Disk: Minimum 1GB.

Software Requirements:

1) Frontend: React JS, Material UI, Tailwind CSS

2) Backend: Node JS

3) **Database:** MongoDB(NO-SQL DB)

7. REFERENCES

- 1. Niraj Mohabey, Yash Gavanang, Abubakkar Khan, Lavesh Singh Chib, Bhushan Patil, "PLAGIARISM DETECTION FOR PROJECT REPORT USING MACHINE LEARNING", International Journal of Engineering Technology and Management Sciences,vol no.7, May-June 2023, doi:10.46647/ijetms.2023.v07i03.012 ISSN: 2581-4621.
- 2. Irum Hafeez Sodhar and Abdul Hafeez Buller," *Natural Language Processing: Applications, Techniques and Challenges*", AkiNik Publications, vol no. 7Dec. 2020, https://www.researchgate.net/publication/366384548
- 3. fredri olssson," *A literature survey of active machine learning in the context of natural language processing*", _RISE Research Institutes of Sweden, SICS Technical Report 12009:06 ISSN:1100-3154, https://www.researchgate.net/publication/228682097.
- 4. M Potthast, B Stein, A Eiselt, W Bauhaus, A C Barron, and P Rosso. Overview of the 1st international competition on plagiarism detection. In Proceedings of SEPLN Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse, pages 1–9, Donostia, Spain, 2009.
- 5. Z Ceska, M Toman, and J Karel. Multilingual plagiarism detection. In Proceedings of the 13th international conference on Artificial Intelligence: Methodology, Systems, and Applications, pages 83–92, Varna, Bulgaria, 2008.
- 6. A Barron, P Rosso, D Pinto, and A Juan. On cross-lingual plagiarism analysis using a statistical model. In Proceedings of the ECAI'08 PAN Workshop: Uncovering Plagiarism, Authorship and Social Software Misuse, pages 9–13, Patras, Greece, 2008.
- 7. P Martin, B Alberto, B Stein, and P Rosso. Cross-language plagiarism detection. In Journal of Language Resources and Evaluation, 45(1):45–62, March 2011.
- 8. P David, C Jorge, B C Alberto, J Alfons, and P Rosso. A statistical approach to crosslingual natural language tasks. In Journal of Algorithms, 64(1):51–60, January 2009.
- 9. A Barron and P Rosso. On automatic plagiarism detection based on n-grams comparison. In Proceedings of the 31st European Conference on Information Retrieval, pages 696–700, Toulouse, France, 2009.
- 10. R W Daniel and S J Mike. Sentence-based natural language plagiarism detection. In ACM Journal of Educational Resources, 4(4):1–20, December 2004.
- 11. M Elhadi and A Al-Tobi. Use of text syntactical structures in detection of document duplicates. In Proceedings of the 3rd International Conference on Digital Information Management, pages 520–525, London, U.K., 2008.
- 12. M Elhadi and A Al-Tobi. Duplicate detection in documents and webpages using improved longest common subsequence and documents syntactical structures. In Proceedings of the Fourth International Conference on Computer Sciences and Convergence Information Technology, pages 679–684, Seoul, Korea, 2009.
- 13. Y Li, D McLean, Z A Bandar, J D OShea, and K Crockett. Sentence similarity based on semantic nets and corpus statistics. In IEEE Transactions on Knowledge and Data Engineering, 18(8):1138–1150, Augest 2006.
- 14. R Yerra and Y K Ng. A sentence-based copy detection approach for web documents. In Proceedings of the Second international conference on Fuzzy Systems and Knowledge Discovery, pages 557–570, Changsha, China, 2005.

- 15. G Stefan and N Stuart. Tool support for plagiarism detection in text documents. In Proceedings of the ACM symposium on Applied computing, pages 776–781, Santa Fe, New Mexico, 2005.
- 16. A B Ryul, K Heon, and K M Hyun. An application of detecting plagiarism using dynamic incremental comparison method. In Proceedings of International Conference on Computational Intelligence and Security, pages 864–867, Guangzhou, China, 2006.