Knee Osteoarthritis Prediction using Deep Learning

By Sri Sankeerth Koduru, Ali Irtaza and Anantha

Introduction

- This project aims to develop an automated system for classifying the severity of knee osteoarthritis (OA) using X-ray images.
- Utilizing advanced deep learning models (VGG19 and Xception) with transfer learning and customized weights.
- Implementing a 5-class classification scheme for severity assessment.
- Employing custom image processing techniques for optimal model performance.

Data

Dataset

- Training Data:
 - Total datapoints: 9786
 - Distributed across five classes
 - Split into five classes with noticeable class imbalance
- Validation and Testing:
 - Total datapoints: 7828
 - 65% allocated for validation, 35% for testing
 - Class imbalance present in validation and test data split.

Validation and Test Data Distribution

Sample X-Rays images

Severity class 1

Severity class 3

Severity class 5

Data Pre-Processing

- The images underwent several steps of preprocessing to prepare them for analysis.
- Resized to a consistent dimension and converted to grayscale.
- Pixel values normalized to standardize brightness and contrast.
- Gaussian blurring applied to reduce noise.
- Histogram equalization performed to enhance the visibility of important features.

Sample Processed X-Ray Images

Original Image

Processed Image

Models

Baseline Model

Model Architecture

- Our Approach:
 - We based our project on the VGG19 convolutional neural network (CNN), renowned for image classification.
 - Transfer Learning: Utilized VGG19 with default hyperparameters.
 - Parameters: VGG19 has 20,156,997 parameters, 133,613 trainable.
- Training Strategy:
 - Pre-Trained Weights: Used VGG19's pre-trained ImageNet weights, freezing them.
 - Custom Classification: Included GlobalAveragePooling2D, dense layers with ReLU activations, and a softmax output layer.
- Optimization and Monitoring:
 - Optimizer: Employed 'adam'.
 - Loss Function: Utilized 'sparse categorical crossentropy'.
 - Metric: Tracked 'accuracy' during training.

Metrics

Classification Report:

	precision	recall	f1-score	support
0	0.47	0.96	0.63	1097
1	0.00	0.00	0.00	492
2	0.45	0.25	0.32	733
3	0.50	0.08	0.14	336
4	0.82	0.28	0.42	82
accuracy			0.47	2740
macro avg	0.45	0.31	0.30	2740
weighted avg	0.39	0.47	0.37	2740

VGG19 Model

Callbacks and Checkpoints

ModelCheckpoint:

Monitors validation accuracy (val_acc).

Saves model weights to 'vgg19_best.ckpt'.

Ensures only best-performing weights are saved (save_best_only=True).

Crucial for data loss protection and retaining progress.

EarlyStopping:

Halts training if validation loss (val_loss) stops improving.

Triggered after a specified number of epochs.

Prevents overfitting by terminating training when model's performance degrades.

ReduceLROnPlateau:

Dynamically adjusts learning rate during training.

Monitors validation loss (val_loss).

Reduces learning rate if no improvement for a certain number of epochs.

Aids in fine-tuning training process, facilitating efficient convergence and improving performance.

Model Architecture

- Transfer Learning Strategy:
 - Utilize pre-trained VGG19 model with ImageNet weights.
 - Freeze layers to focus on task-specific adaptation.
- Custom Classification Head:
 - Replaced original VGG19 head with custom architecture.
 - Four convolutional layers with batch normalization.
 - Captures dataset-specific features for improved classification.
- Class Weights for Imbalance:
 - Introduced custom weights to address class imbalances.
 - Higher weights for minority classes prevent overlooking during training.
- Optimization Techniques:
 - Adam optimizer with carefully selected learning rate (0.00001) and weight decay (0.0001).
 - Low learning rate aids fine-tuning, weight decay encourages generalization.
- Loss Function and Metrics:
 - Utilized 'sparse_categorical_crossentropy' loss for multi-class classification.
 - Tracked progress using 'accuracy' metric for percentage of correctly classified examples.

Metrics

Classification Report:								
		precision	recall	f1-score	support			
	0	0.99	0.87	0.93	1097			
	1	0.91	0.96	0.93	492			
	2	0.86	0.99	0.92	733			
	3	0.99	0.99	0.99	336			
	4	1.00	1.00	1.00	82			
acc	uracy			0.93	2740			
macr	o avg	0.95	0.96	0.95	2740			
weighte	d avg	0.94	0.93	0.93	2740			

20

Xception Model

Callbacks and Checkpoints

ModelCheckpoint:

Monitors validation accuracy.

Saves model weights to 'xception_best.ckpt'.

Ensures only best-performing weights are saved

Crucial for data loss protection and retaining progress.

EarlyStopping:

Halts training if validation loss stops improving.

Triggered after a specified number of epochs.

Prevents overfitting by terminating training when model's performance degrades.

ReduceLROnPlateau:

Dynamically adjusts learning rate during training.

Monitors validation loss.

Reduces learning rate if no improvement for a certain number of epochs.

Aids in fine-tuning training process, facilitating efficient convergence and improving performance.

Model Architecture

- Depthwise Separable Convolutions:
 - Decreases computational cost and parameter count.
 - Mitigates overfitting and accelerates training.
- Refined Transfer Learning Approach:
 - Utilizes pre-trained Xception weights from ImageNet.
 - Fine-tunes for specific task while leveraging robust, generalized features.
- Custom Classification Head:
 - Replaces original head with custom architecture.
 - Includes convolutional layers with batch normalization.
 - Promotes effective extraction of dataset's unique patterns for improved performance.
- Class Weights for Imbalance:
 - Assigns higher weights to minority classes to address imbalance.
 - Prevents model from overlooking important classes during training.
- Optimization Techniques:
 - Adam optimizer with carefully selected learning rate (0.00001) and weight decay (0.0001).
 - Encourages generalization and aids fine-tuning of pre-trained model.
- Loss Function and Metrics:
 - Utilizes 'sparse_categorical_crossentropy' loss.
 - Tracks progress using 'accuracy' metric for evaluation.

Metrics

Classification Report:

	precision	recall	f1-score	support
0	0.97	0.95	0.96	1097
1	0.93	0.91	0.90	492
2	0.98	0.99	0.98	733
3	0.96	1.00	0.98	336
4	0.90	1.00	0.95	82
accuracy			0.96	2740
macro avg	0.95	0.97	0.96	2740
weighted avg	0.96	0.96	0.96	2740

Website

Website Examples

Conclusion

Conclusion

- Developed automated system for knee osteoarthritis classification using X-ray images.
- Explored effectiveness of VGG19 and Xception with customized transfer learning and class weights.
- Both models achieved promising results via careful analysis of reports and matrices.
- Xception slightly outperformed due to efficient convolutions.
- Demonstrates deep learning's value in diagnosis.
- Provides reliable, automated tool for medical image assessment.