# Getting acquainted - nonlinear model and linearization

Since the state-space representation is  $\dot{\boldsymbol{x}} = A_c \boldsymbol{x} + B_c \boldsymbol{u}$ , and the vectors  $\boldsymbol{x}, \boldsymbol{u}$  have the following dimensions:  $\boldsymbol{x} \in \mathbb{R}^{12}$  and  $\boldsymbol{u} \in \mathbb{R}^4$ , it is normal that  $A_c \in \mathbb{R}^{12 \times 12}$  and  $B_c \in \mathbb{R}^{12 \times 4}$ .

## 1. Interpretation of structure of matrices $A_c$ and $B_c$

We have the following state-space representation:

Regarding the matrix  $A_c$ , the lines 1 to 3 are stating  $[\dot{x},\dot{y},\dot{z}]=[\dot{x},\dot{y},\dot{z}]$ . It is the same for the derivatives of the variables  $\alpha, \beta$  and  $\gamma$  in the lines 7 to 9.

The lines 4 and 5 are stating  $\ddot{x} = g \cdot \beta$  and  $\ddot{y} = -g\alpha$ , with g the gravitational constant – j. WHY.

Regarding the matrix  $B_c$ :

- Line 6: We have  $\ddot{z} = 3.5 \cdot \sum_{i=1}^{4} u_i$ :

The acceleration of the non-rotational origin  $\ddot{O}_B$  is only present in the z coordinate and is  $\ddot{z}_s = -g + \frac{F}{m}$ , with  $F = k_f \cdot [\sum_{i=1}^4 u_i]$ . By taking the value of  $k_f$  in the first row of quad.K and the value of m in quad.mass, this leads to  $\frac{k_f}{m} = \frac{28}{8} = 3.5$ .

- Lines 10 to 12: 
$$\begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \\ \ddot{\gamma} \end{bmatrix} = \begin{bmatrix} 0 & 0.56 & 0 & -0.56 \\ -0.56 & 0 & 0.56 & 0 \\ 0.73 & -0.73 & 0.73 & -0.73 \end{bmatrix} \boldsymbol{u}:$$

$$\dot{\omega}_s|_{\omega_s=\mathbf{0}} = \begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \\ \ddot{\gamma} \end{bmatrix} \Big|_{\omega_s=\mathbf{0}} = \mathcal{I}^{-1} \begin{bmatrix} M_{\alpha} \\ M_{\beta} \\ M_{\gamma} \end{bmatrix} = \mathcal{I}^{-1} \begin{bmatrix} 0 & k_F L & 0 & -k_F L \\ -k_F L & 0 & k_F L & 0 \\ k_M & -k_M & k_M & -k_M \end{bmatrix} \boldsymbol{u}$$

$$\begin{bmatrix} \ddot{\gamma} \end{bmatrix} \begin{bmatrix} 0.73 & -0.73 & 0.73 & -0.73 \end{bmatrix}$$
 We know that  $\omega_s = \begin{bmatrix} \dot{\alpha}_s \\ \dot{\beta}_s \\ \dot{\gamma}_s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ . We also know that 
$$\dot{\omega}_s|_{\omega_s=\mathbf{0}} = \begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \\ \ddot{\gamma} \end{bmatrix}|_{\omega_s=\mathbf{0}} = \mathcal{I}^{-1} \begin{bmatrix} M_{\alpha} \\ M_{\beta} \\ M_{\gamma} \end{bmatrix} = \mathcal{I}^{-1} \begin{bmatrix} 0 & k_F L & 0 & -k_F L \\ -k_F L & 0 & k_F L & 0 \\ k_M & -k_M & k_M & -k_M \end{bmatrix} \mathbf{u}.$$
 The matrix quad. L gives  $L=0.2$  and quad. km gives  $k_m=11$ . Since quad. I =  $diag(10,15,15)$  and  $k_F=28$ , we have  $\mathcal{I}^{-1}=diag(0.1,0.1,\frac{1}{15})$ . This leads to 
$$\begin{bmatrix} \ddot{\alpha} \\ \ddot{\beta} \\ \ddot{\gamma} \end{bmatrix} = \begin{bmatrix} 0 & 0.56 & 0 & -0.56 \\ -0.56 & 0 & 0.56 & 0 \\ 0.73 & -0.73 & 0.73 & -0.73 \end{bmatrix} \mathbf{u}.$$

## First MPC Controller

### 1. Choice of tuning parameters and motivation for them

First, the matrices Q and R are set to identity matrices. Those parameters give the results in Fig. 1. We see that the roll and pitch angles take far too much time too reach steady-state. Thus, the states  $\alpha$  and  $\beta$  have to be more penalized, namely the state penalty matrix is set to Q = diag(1, 100, 100, 1, 1, 1, 1). The results are shown on Fig. 2.

## 2. Plots of the response to an appropriate initial condition



Figure 1: (a)  $\dot{z}$ , (b)  $\alpha$ ,  $\beta$ , (c)  $\gamma$ , (d)  $\dot{\alpha}$ ,  $\dot{\beta}$ , (e)  $\dot{\gamma}$ , (f) u



Figure 2: (a)  $\dot{z}$ , (b)  $\alpha$ ,  $\beta$ , (c)  $\gamma$ , (d)  $\dot{\alpha}$ ,  $\dot{\beta}$ , (e)  $\dot{\gamma}$ , (f) u

# Reference tracking

### **Deliverables**

Interpretation of the solution  $(\mathbf{x}_r; \mathbf{u_r})$  to system (4) for arbitrary  $\mathbf{r}_1$  plots of the response to a constant reference signal plots of the response to a slowly varying reference signal

## First simulation of the nonlinear model

#### **Deliverables**

plots of a reference tracking response of the nonlinear model

## Offset free MPC

#### **Deliverables**

motivation for the choice of the estimation error dynamics

First, we need to be sure that the system is observable. This is done by verifying that, in the initial system:

$$\begin{cases} x^{+} = A_1 x + B u + B_d \bar{d} \\ \bar{d}^{+} = \bar{d} \\ y = C x + C_d \bar{d} \end{cases}$$

We can identify the matrices  $B_d$ ,  $C = diag(\mathbf{1}_7)$  and  $C_d = diag(\mathbf{0}_7)$ , with  $\mathbf{1}_n$  is a vector of ones  $\in \mathbb{R}^n$  (same for  $\mathbf{0}$ ), and diag(vec) is a matrix with the elements of vec in the diagonal  $\in \mathbb{R}^{|vec| \times |vec|}$ .

We have that the rank of the matrix  $\begin{bmatrix} C \\ CA_1 \\ \vdots \\ CA_1^{N-1} \end{bmatrix}$  is  $n_x = 7$  and the rank of the matrix  $\begin{bmatrix} A_1 - I_7 & I_7 \\ C & C_d \end{bmatrix}$  is  $n_x + n_d = 14$ .

The two conditions are verified using the "rank" command on Matlab.

We are choosing a dead-beat observer: this observer is taking the observability error to 0 in  $n = n_x + n_d$  samples, which corresponds to  $n \cdot T_s = 14 \cdot 0.1 = 1.4s$ .

step reference tracking plots in the presence of disturbance slowly-varying reference tracking plots in the presence of disturbance