M.Sc. (Computer Science) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CA-614-MJ (Soft Computing)

Time: 3 Hours

Max. Marks:35

Q1. Write a program to implement Fuzzy Operations
Union
Intersection
Complement

Q2. Implement Backpropagation in Python.

[15 Marks]

Q3. Viva

[5 Marks]

M.Sc. (Computer Science) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3 Hours	Max. Marks:35
Q1. Build simple Neural network in Python from Keras.	[15 Marks]
Q2. Write a program to implement Fuzzy Operations Union Intersection Complement	[15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CA-615-MJP

Time: 3						N	lax.
Q1. Implement	t Backprop	agat	ion in Pythor	٦.			[15 Marks]
Q2. Write a Composition.	program	to	implement	Max-Min	Composition	and	Max-Product
							[15 Marks]
Q3. Viva							[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CA-615-MJP

Time: 3	Γime: 3				N	lax.	
Q1. Write pyth	on progran	n to	study and a	nalyze gend	etic life cycle		[15 Marks]
Q2. Write a Composition.	program	to	implement	Max-Min	Composition	and	Max-Product
Q3. Viva							[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CA-615-MJP

Time: 3	Max.
Q1. Write a program to implement De Morgan's law	[15 Marks]
Q2 Implement Backpropagation in Python.	[15 Marks]
Q3 . Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CA-615-MJP

Time: 3	Max.
Q1. Implement Backpropagation in Python. Marks]	[15
Q2 Write a program to implement Fuzzy Operations Algebraic sum Algebraic product Cartesian product	[15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CA-615-MJP

Time: 3	Max.
Q1. Write python program to study and analyze genetic life cyc	cle [15 Marks]
Q2. Write a program to implement Max-Min Composition and I Composition.	Max-Product [15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CA-615-MJP

	9: 3	мах.
Q 1.	Write python program to create target string, starting from ra Genetic Algorithm	andom string using [15 Marks]
Q 2.	Build simple Neural network in Python from Keras.	[15 Marks]
Q3. \	/iva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Time: 3 Max.

Q1 Write a program to implement Fuzzy Operations
Algebraic sum
Algebraic product
Cartesian product

Q2Build simple Neural network in Python from Keras.

[15 Marks]

Q3. Viva [5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Write a program to implement lambda cut	[15 Marks]
Q2. Implement Multilayer perceptron algorithm in Python.	[15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Q1. Write python program to study and analyze genetic life cycle

[15 Marks]

Q2. Build simple Neural network in Python from Keras.

[15 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Write python program to create target str Genetic Algorithm	ing, starting from random string using [15 Marks]
Q2. Write a program to implement lambda cu	ut [15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Q1. Write python program to study and analyze genetic life cycle [15 Marks]

Q2. Write a program to implement Fuzzy Operations
Algebraic sum
Algebraic product
Cartesian product
[15 Marks]

Q3. Viva [5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Q1. Write a program to implement De Morgan's law

[15 Marks]

Q2. Write python program to create target string, starting from random string using Genetic Algorithm

[15 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Q1. Write a program to implement Fuzzy Operations

Marks]

Union
Intersection
Complement

Q2 Implement deep learning using Python.

[15 Marks]

Q3. Viva

[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Build simple Neural network in Python from scratch.	[15 Marks]
Q2. Write a program to implement De Morgan's law	[15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Build simple Neural network in Python from scratch.	[15 Marks]
Q2. Write a program to implement Fuzzy Operations Algebraic sum Algebraic product Cartesian product	[15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Write python program to create target string, starting Genetic Algorithm	from random string using
Genetic Algorithm	[15 Marks]
Q2. Write a program to implement De Morgan's law	[15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Build simple Neural network in Python from scratch.	[15 Marks]
Q2. Write a program to implement De Morgan's law Marks]	[15
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Implement deep learning un Python.	[15 Marks]
Q2. Write python program to Implement travelling algorithm	salesman problem using genetic [15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Write python program to create target string Genetic	, starting from random string using Algorithm [15 Marks]
Q2. Write a program to implement De Morgan's l	aw [15 Marks]
Q3. Viva	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Q1. Write python program to Implement travelling salesman problem using genetic algorithm [15 Marks]

Q2. Implement deep learning un Python. [15 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Lab Course on CS-614-MJ (Soft Computing)

Q1. Write a program to implement lambda cut [15 Marks]

Q2. Write python program to create target string, starting from random string using Genetic Algorithm [15 Marks]

Q3. Viva. [5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Write python program to Implement travelling s	salesman problem using
	[15 Marks]
Q2. Write a program to implement lambda cut	[15 Marks]
Q3. Viva.	[5 Marks]

M.Sc. (Computer Application) Sem-III

Practical Examination (2024-2025 Pattern)

SUBJECT: CS-615-MJP

Time: 3	Max.
Q1. Write a program to implement Fuzzy Operations Union Intersection Complement	[15 Marks]
Q2. Write python program to Implement travelling salesm	an problem using genetic
algorithm	[15 Marks]
Q3. Viva	[5 Marks]