ESTRUCTURAS ALGEBRAICAS

Hoja 4. Grupos de permutaciones.

- 1. Demuestra que S_3 es isomorfo a un subgrupo de S_4 .
- **2.** Dado $n \ge 3$, halla dos ciclos que no conmuten en S_n . Halla una potencia de un ciclo que no sea un ciclo en algún $n \ge 4$.
- 3. Escribe las siguientes permutaciones como un producto de ciclos disjuntos:
 - a) (12)(23)(34).
 - **b)** (246)(147)(135).
 - **c)** (12)(53214)(23).
 - **d)** (1234)(2345).
- 4. Escribe las siguientes permutaciones como un producto de trasposiciones:
 - **a)** (14)(27)(523)(34)(1472).
 - **b)** (7236)(85)(571)(1537)(486).
- 5. Halla las órbitas de los elementos de $\Omega = \{1, \dots, 8\}$ bajo la acción de σ por evaluación, para cada permutación σ del ejercicio anterior.
- **6.** Sea $\sigma = (a_1 a_2 a_3 a_4 a_5 a_6) \in S_6$. Encuentra σ^i para cada $i = 1, 2, \dots, 6$.
- 7. Demuestra que el orden de τ es el mínimo común múltiplo de las longitudes de los ciclos disjuntos cuyo producto es τ y calcula el orden de τ^{1000} para cada una de las siguientes permutaciones:
 - **a)** $\tau = (14)(27)(523)(34)(1472)$ y **b)** $\tau = (7236)(85)(571)(1537)(486)$.
- 8. Calcula el orden de cada una de las permutaciones siguientes:
 - **a)** $\alpha = (456)(567)(671)(123)(234)(345)$, **b)** $\beta = (45)(431)$ y **c)** $\gamma = (345)(234)(123)(671)(567)(456)$.
- 9. Demuestra que el subgrupo G de S_4 generado por los elementos $\sigma = (1432)$ y $\tau = (24)$ es isomorfo a D_8 .
- 10. Si σ es un k-ciclo con k impar, demuestra que existe un ciclo τ tal que $\tau^2 = \sigma$.
- 11. Sea σ un k-ciclo de S_n . Demuestra que σ^2 es un ciclo si y solo si k es impar.
- 12. Sea σ un producto de ciclos disjuntos de igual longitud. Demuestra que σ es una potencia de un ciclo.
- 13. Indica cuáles de estas permutaciones son pares:
 - **a)** (2468)
- **b)** (246)(134)
- **c)** (12)(123)(1234)
- 14. Calcula el orden y el signo de la permutación $\sigma = (5739)(42)(385)(164)$ de S_9 . Calcula σ^{26} y σ^{-1} .
- 15. Encuentra la descomposición en ciclos disjuntos de cada una de las potencias del ciclo (123456).
- **16.** Dadas las permutaciones $\alpha = (12)(34)$ y $\beta = (56)(13)$, encuentra una permutación γ tal que $\gamma \alpha \gamma^{-1} = \beta$.
- 17. Demuestra que no existe ninguna permutación α tal que $\alpha(123)\alpha^{-1}=(13)(578)$.

18. Calcula el conjugado de β_i mediante α_i para:

```
\begin{array}{ll} \alpha_1 = (12) & \beta_1 = (12)(23), \\ \alpha_2 = (123) & \beta_2 = (345), \\ \alpha_3 = (14)(23) & \beta_3 = (321)(45), \\ \alpha_4 = (13)(247) & \beta_4 = (256)(143). \end{array}
```

- 19. Sea p un número primo. Demuestra que los únicos elementos de orden p en S_n son los productos de p-ciclos disjuntos.
- **20.** Demuestra que D_{2n} es isomorfo a un subgrupo de S_n , para cada $n \geq 3$.
- **21.** Dado $\sigma \in S_n$, el tipo de σ en S_n es una tupla $\lambda = (\lambda_1, \dots, \lambda_s)$ donde $\lambda_1 \geq \lambda_2 \geq \dots \lambda_s \geq 1$ y $\lambda_1 + \dots + \lambda_s = n$ si σ admite una expresión como producto de s ciclos disjuntos de longitud λ_i (incluyendo "ciclos de longitud uno"). Por ejemplo, $1 \in S_n$ tiene tipo $(1, \dots, 1) = (1^n)$. La tupla λ es una partición de n, y escribimos $\lambda \in \mathcal{P}(n)$.
 - a) Observa que hay tanto tipos de permutaciones en S_n como $|\mathcal{P}(n)|$ particiones de n.
- b) Demuestra que dos elementos $\sigma, \tau \in S_n$ tienen el mismo tipo si, y solo si, son conjugados. Deduce que el número de clases de conjugación en S_n es $|\mathcal{P}(n)|$.
 - c) Indica cuántas clases de conjugación hay en S_4 y en S_5 .
- d) Demuestra que $\{1, (12), (12)(34), (123), (1234)\}$ es un sistema completo de representantes de las clases de conjugación de S_4 .
- e) Halla $|\operatorname{cl}_{S_4}(\sigma)|$ y calcula el subgrupo $\mathbf{C}_{S_4}(\sigma)$ para los distintos representantes en las clases de conjugación de S_4 .
 - f) Demuestra $|\operatorname{cl}_{S_5}((13)(24))| = 15 \text{ y } \mathbf{C}_{S_5}((13)(24)) \cong \mathsf{D}_8.$
- **22.** Fijada la permutación $\sigma = (12345)$ en S_5 :
 - a) Demuestra que $|cl(\sigma)| = 4!$ y $C_{S_5}(\sigma) = \langle \sigma \rangle$.
- b) Observa que el grupo $\langle \sigma \rangle$ contiene 4 elementos de orden 5. Indica, cuántos conjugados tiene el grupo $\langle \sigma \rangle$ y concluye que la inclusión $\mathbf{C}_{S_5}(\sigma) \leq \mathbf{N}_{S_5}(\langle \sigma \rangle)$ es estricta.
- **23.** Demuestra que $\mathbf{Z}(S_n) = 1$ si $n \geq 3$.
- **24.** Demuestra que $\{(12)(34), (13)(24), (14)(23), 1\}$ es normal en S_4 .
- **25.** Prueba que si $n \geq 3$ entonces la acción de A_n por evaluación sobre $\Omega = \{1, \ldots, n\}$ es transitiva.
- **26.** Dado $N \subseteq G$.
 - a) Prueba que N es unión de clases de conjugación de G.
 - **b)** Deduce que A_5 es simple¹.
- **27.** Comprueba que A_5 está generado por los 3-ciclos.
- **28.** Dado $n \ge 5$, prueba que A_n es el único subgrupo normal propio de S_n (usando que A_n es simple).
- **29.** Supongamos que $n \geq 2$. Prueba que si $H \leq S_n$ tiene índice n, entonces $H \cong S_{n-1}$.
- **30.** ¿Cuántos homomorfismos hay de D_6 en A_4 ?

¹Los grupos A_n con $n \ge 5$ son simples, podéis encontrar la prueba de este resultado en el libro de Navarro, por ejemplo.