- **0.1** Indicate the number of orbitals that can have the following designations: (a) 1d (b) n=1 (c) 3d (d) 4f
- **0.6** Among the elements, indicate the element with the largest atomic radius (a) B (b) C (c) F (d) Li (e) Na
- **0.2** Indicate the number of orbitals that can have the following designations: (a) 2s (b) 3p (c) 0p (d) n=4
- **0.7** Among the elements, indicate the element with the largest electronegativity (a) Si (b) P (c) S (d) Se
- **0.3** What is the element with the electron configuration (a) $1s^22s^22p^63s^23p^5$ (b) $1s^22s^22p^63s^23p^4$ (c) $\lceil Kr \rceil 5s^24d^8$
 - 0.8 Among the elements, indicate the element with the largest electronegativity (a) B (b) C (c) F (d) Li
- **0.4** What is the element with the electron configuration (a) $1s^22s^22p^63s^1$ (b) $[Ar]3d^54s^1$ (c) $1s^22s^22p^63s^1$ (d) $1s^22s^22p^63s^23p^63d^24s^2$
 - **0.9** Among the elements, indicate the element with the largest ionization energy (a) Al (b) Si (c) P (d) As (e) Sb
- **0.5** Among the elements, indicate the element with the smallest atomic radius (a) C (b) N (c) O (d) S (e) Se

0.14 Indicate if the following combination of quantum numbers are allowed:

\overline{n}	ℓ	m_ℓ	m_s	Allowed?
4	4	1	$+^{1}/_{2}$	
2	1	4	$+^{1}/_{2}$	
4	2	-2	$-^{1}/_{2}$	

0.15 Use the Bohr equation to: (a) find the energy of the photon emitted when an H atom undergoes a transition from n=1 to n=4. (b) find the wavelength (in nm) of the photon emitted when an H atom undergoes a transition from n=2 to n=4.

0.16 Which of these electron transitions correspond to absorption of energy and which to emission?

- (a) $\Delta E_{1\rightarrow 2}$
- (b) $\Delta E_{2\rightarrow 1}$
- (c) $\Delta E_{3\rightarrow 1}$
- (d) $\Delta E_{3\rightarrow5}$
- (e) $\Delta E_{5\rightarrow3}$
- (f) $\Delta E_{1\rightarrow 3}$

0.10 Among the elements, indicate the element with the smallest ionization energy (a) B (b) C (c) F (d) Li (e) Na	0.17 An electron in the lowest energy level of H atom absorbs a photon of wavelength 96.97 nm. Indicate the final energy level of the electron moved.
0.11 Among the elements, indicate the element with the largest metallic character (a) K (b) Rb (c) Cs (d) Ca	0.18 Use the Bohr equation to find the frequency (in Hz) of the photon emitted when an H atom undergoes a transition from $n=1$ to $n=5$.
0.12 Among the elements, indicate the element with the largest metallic character (a) B (b) C (c) F (d) Li (e) Na	0.19 Calculate the following properties: (a) The wavelength of a radiation with energy 5.34×10^{-16} J? (b) The wavelength of a radiation with frequency of 3.4×10^{14} Hz?
0.13 For each of the following sublevels, give the values of the n and ℓ quantum numbers and indicate the number of orbitals in the sublevel: (a) 6s (b) 4d (c) 2p	0.20 Calculate the following properties: (a) The energy in joules of a radiation with frequency 2.0×10^{18} Hz? (b) The frequency of a radiation with energy 5.6×10^{-20} J? (c) The energy in joules of a radiation with wavelength 653 nm?

more likely to be IR or UV radiation?

0.21 Classify the nature of a radiation (a) A radiation with γ = 3.4×10^8 Hz (b) A radiation with λ = 1×10^{-4} nm

0.22 Calculate the following properties: (a) The color of a radiation with λ = 510nm. (b) Indicate the color of a radiation with λ = 580nm.

0.23 Sections of two electromagnetic waves A and B are represented below. Rank them in order of (a) increasing wavelength; (b) increasing energy; (c) If wave B represents visible radiation, is wave

nm

A more likely to be IR or UV radiation?

0.24 Sections of two electromagnetic waves A and B are represented below. Rank them in order of (a) increasing frequency; (b) increasing energy; (c) If wave B represents visible radiation, is wave A

Answersv. 60 **0.1** (a) 0 orbital (b) 1 orbitals (c) 5 orbital (d) 7 orbital **0.2** (a) 1 orbital (b) 3 orbitals (c) 0 orbital (d) 16 orbitals **0.3** (a) Cl (b) S (c) Pd **0.4** (a) Na (b) Cr (c) Na (d) Ti **0.5** O **0.6** Na **0.7** S **0.8** F **0.9** P **0.10** Na **0.11** Cs **0.12** Li **0.13** (a) 6s (n = 6; $\ell = 0$) (b) 4d (n = 4; $\ell = 2$) (c) 2p (n = 2; $\ell = 1$) **0.14** (a) n = 4; $\ell = 4$; $m_{\ell} = 1$; $m_{s} = +^{1}/_{2}$; Allowed=no (b) n = 2; $\ell = 1$; $m_{\ell} = 4$; $m_{s} = +^{1}/_{2}$; Allowed=no (c) n = 4; $\ell = 2$; $m_{\ell} = -2$; $m_{s} = -^{1}/_{2}$; Allowed=yes **0.15** (a) 2.04×10^{-18} J (b) 485 nm **0.16** (a) Absorption (b) Emission (c) Emission (d) Absorption (e) Emission (f) Absorption **0.17** n = 5 **0.18** 3.16×10^{15} Hz **0.19** (a) 0.37 nm (b) 882 nm **0.20** (a) 1.32×10^{-15} J (b) 8.5×10^{13} Hz (c) 3.03×10^{-19} J **0.21** (a) Microwaves (b) Gamma **0.22** (a) Green (b) Yellow **0.23** (a) $\lambda_{B} < \lambda_{A}$ (b) $E_{A} < E_{B}$ (c) UV **0.24** (a) $\gamma_{A} < \gamma_{B}$ (b) $E_{A} < E_{B}$ (c) IR