COMS 4771 Lecture 15

1. Linear regression

LINEAR REGRESSION

(INTRODUCTION)

EXAMPLE: OLD FAITHFUL GEYSER (YELLOWSTONE)

Time between eruptions seems to be related to duration of previous eruption.

EXAMPLE: OLD FAITHFUL GEYSER (YELLOWSTONE)

Example: Old Faithful Geyser (Yellowstone)

EXAMPLE: OLD FAITHFUL

Linear regression model

(wait time) =
$$w_0$$
 + (last duration) $\times w_1$ + (error)

Multivariate linear regression

Linear regression model in \mathbb{R}^p

- ▶ Input variables $x := (x_1, x_2, ..., x_p)$ ("covariates").
- ► Output variable *y* ("response").
- ▶ Regression coefficients $w := (w_1, w_2, ..., w_p)$, intercept term w_0 .

Modeling equation:

$$y = w_0 + \langle \boldsymbol{x}, \boldsymbol{w} \rangle + \varepsilon$$

where $\varepsilon := y - (w_0 + \langle \boldsymbol{x}, \boldsymbol{w} \rangle)$ is the error term.

MULTIVARIATE LINEAR REGRESSION

Linear regression model in \mathbb{R}^p

- ▶ Input variables $x := (x_1, x_2, \dots, x_p)$ ("covariates").
- ▶ Output variable *y* ("response").
- ▶ Regression coefficients $w := (w_1, w_2, ..., w_p)$, intercept term w_0 .

Modeling equation:

$$y = w_0 + \langle \boldsymbol{x}, \boldsymbol{w} \rangle + \varepsilon$$

where $\varepsilon := y - (w_0 + \langle \boldsymbol{x}, \boldsymbol{w} \rangle)$ is the error term.

Least squares criterion

Given pairs of input/output values, find $(w_0, m{w})$ to minimize $arepsilon^2$ (on average)

LEAST SQUARES IN PICTURES

Red dots: data points.

 $(w_0,w_1,w_2) o$ affine hyperplane.

Vertical length is error.

LEAST SQUARES IN MATRIX/VECTOR FORM

Least squares criterion

Given training data

$$oldsymbol{X} = egin{bmatrix} - & oldsymbol{x}^{(1) op} & - \ - & oldsymbol{x}^{(2) op} & - \ dots \ & dots \ - & oldsymbol{x}^{(n) op} & - \ \end{bmatrix} \in \mathbb{R}^{n imes p}, \qquad oldsymbol{y} = egin{bmatrix} y^{(1)} \ y^{(2)} \ dots \ y^{(n)} \ \end{bmatrix},$$

find $w_0 \in \mathbb{R}$ and $\boldsymbol{w} \in \mathbb{R}^p$ to minimize

$$f_{\mathrm{ls}}(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^n \Bigl(\boldsymbol{y}^{(i)} - \Bigl(w_0 + \langle \boldsymbol{x}^{(i)}, \boldsymbol{w} \rangle \Bigr) \Bigr)^2 \ = \ \frac{1}{n} \left\| \boldsymbol{y} - \begin{bmatrix} \boldsymbol{1} & \boldsymbol{X} \end{bmatrix} \begin{bmatrix} w_0 \\ \boldsymbol{w} \end{bmatrix} \right\|_2^2. \quad \text{Text}$$

add extra 1 column in the matrix X

Simplification

Replace $m{X}$ with $m{1}$ $m{X}$ and $m{w}$ with $(w_0, m{w})$, so least squares criterion is more simply written as

$$f_{\mathrm{ls}}(oldsymbol{w}) = rac{1}{n} \|oldsymbol{y} - oldsymbol{X} oldsymbol{w}\|_2^2.$$

Least squares criterion is convex function of \boldsymbol{w} ; so suffices to find \boldsymbol{w} where gradient is zero.

Least squares criterion is convex function of w; so suffices to find w where gradient is zero.

Take gradient with respect to w:

$$\nabla_{\boldsymbol{w}} f_{\mathrm{ls}}(\boldsymbol{w}) = \nabla_{\boldsymbol{w}} \left\{ \frac{1}{n} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_{2}^{2} \right\} = \frac{2}{n} \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}).$$

Least squares criterion is convex function of w; so suffices to find w where gradient is zero.

Take gradient with respect to w:

$$\nabla_{\boldsymbol{w}} f_{\mathrm{ls}}(\boldsymbol{w}) = \nabla_{\boldsymbol{w}} \left\{ \frac{1}{n} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_{2}^{2} \right\} = \frac{2}{n} \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}).$$

This is zero when

$$(\boldsymbol{X}^{\top}\boldsymbol{X})\boldsymbol{w} = \boldsymbol{X}^{\top}\boldsymbol{y},$$

a linear system of equations in w ("normal equations").

Least squares criterion is convex function of \boldsymbol{w} ; so suffices to find \boldsymbol{w} where gradient is zero.

Take gradient with respect to w:

$$abla_{oldsymbol{w}} f_{\mathrm{ls}}(oldsymbol{w}) =
abla_{oldsymbol{w}} \left\{ \frac{1}{n} \|oldsymbol{y} - oldsymbol{X} oldsymbol{w}\|_2^2
ight\} = rac{2}{n} oldsymbol{X}^{ op} (oldsymbol{X} oldsymbol{w} - oldsymbol{y}).$$

This is zero when

$$(\boldsymbol{X}^{\top}\boldsymbol{X})\boldsymbol{w} = \boldsymbol{X}^{\top}\boldsymbol{y},$$

a linear system of equations in w ("normal equations").

If $X^{\top}X$ is invertible, solution is

$$\hat{\boldsymbol{w}}_{ ext{ols}} := (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

("ordinary least squares").

SQUARES

COLUMN VIEW OF LEAST

Least squares criterion

Let $oldsymbol{x}_j \in \mathbb{R}^n$ be the j-th column of $oldsymbol{X} \in \mathbb{R}^{n imes p}$, so

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1 & oldsymbol{x}_2 & \cdots & oldsymbol{x}_p \end{bmatrix}.$$

Least squares criterion

Let $\boldsymbol{x}_j \in \mathbb{R}^n$ be the j-th column of $\boldsymbol{X} \in \mathbb{R}^{n \times p}$, so

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1 & oldsymbol{x}_2 & \cdots & oldsymbol{x}_p \end{bmatrix}.$$

Find linear combination $\sum_{j=1}^p w_j x_j$ of x_1, x_2, \dots, x_p so as to minimize

$$f_{
m ls}(m{w}) \; = \; rac{1}{n} \|m{y} - m{X}m{w}\|_2^2 \; = \; rac{1}{n} \left\|m{y} - \sum_{j=1}^p w_j m{x}_j
ight\|_2^2.$$

Least squares criterion

Let $\boldsymbol{x}_j \in \mathbb{R}^n$ be the j-th column of $\boldsymbol{X} \in \mathbb{R}^{n \times p}$, so

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1 & oldsymbol{x}_2 & \cdots & oldsymbol{x}_p \end{bmatrix}$$

consist some subspace

Find linear combination $\sum_{j=1}^p w_j x_j$ of x_1, x_2, \dots, x_p so as to minimize

column view

$$f_{\mathrm{ls}}(m{w}) = \frac{1}{n}\|m{y} - m{\lambda} \, m{w}\|_2^2 = \frac{1}{n} \left\|m{y} - \sum_{j=1}^p w_j m{x}_j
ight\|_2^2$$
. Eculian projection

Approximation of y via ordinary least squares (assuming X^TX invertible):

$$\hat{m{y}} = m{X}\hat{m{w}}_{ ext{ols}} = \sum_{j=1}^p \hat{w}_{ ext{ols},j}m{x}_j.$$
 dissect by row!

suppose W(ols) has already been got!

 $\hat{y} = X\hat{w}_{ols}$ is the orthogonal projection of y onto $\operatorname{span}(x_1, x_2, \dots, x_p)$:

$$\hat{\boldsymbol{y}} = \boldsymbol{X} \hat{\boldsymbol{w}}_{\mathrm{ols}} = \underbrace{\boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}}_{\Pi} \boldsymbol{y}.$$

when is the smallest??? The distance is the smallest!!!

distance~~ Thus we should adjust W(ols) to achieve the projection

project all y on the span!

equal to W(ols) to meet this condition.

 $\Pi \in \mathbb{R}^{n \times n}$ is the orthogonal projection operator for $\mathrm{span}(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_p)$.

STATISTICAL LEARNING

PERSPECTIVE

STATISTICAL LEARNING FOR REGRESSION

Linear regression model

▶ Let P be a distribution over $\mathbb{R}^p \times \mathbb{R}$, and $(x,y) \sim P$.

Define

$$m{w}_{\star} := rg \min_{m{w} \in \mathbb{R}^p} \mathbb{E}igg[igg(y - \langle m{x}, m{w}
angle igg)^2 igg] = rg \min_{m{w} \in \mathbb{R}^p} \mathbb{E}igg[igg(\mathbb{E}(y | m{x}) - \langle m{x}, m{w}
angle igg)^2 igg].$$

(Best linear approximation of conditional expectation function $\mathbb{E}(y|x)$.)

STATISTICAL LEARNING FOR REGRESSION

Linear regression model

Let P be a distribution over $\mathbb{R}^p \times \mathbb{R}$, and $(x,y) \sim P$. y's value is also depneds on vector x's value the optimal one, not perfect is accepte.

$$\boldsymbol{w}_{\star} := \operatorname*{arg\,min}_{\boldsymbol{w} \in \mathbb{R}^p} \mathbb{E} \bigg[\Big(y - \langle \boldsymbol{x}, \boldsymbol{w} \rangle \Big)^2 \bigg] = \operatorname*{arg\,min}_{\boldsymbol{w} \in \mathbb{R}^p} \mathbb{E} \bigg[\Big(\mathbb{E}(y | \boldsymbol{x}) - \langle \boldsymbol{x}, \boldsymbol{w} \rangle \Big)^2 \bigg].$$

(Best linear approximation of conditional expectation function $\mathbb{E}(y|x)$.)

▶ **Goal**: given i.i.d. sample S from P, find $w \in \mathbb{R}^p$ so that execess mean squared error

$$\mathbb{E}\bigg[\Big(y - \langle \boldsymbol{x}, \boldsymbol{w} \rangle\Big)^2\bigg] - \mathbb{E}\bigg[\Big(y - \langle \boldsymbol{x}, \boldsymbol{w}_{\star} \rangle\Big)^2\bigg]$$

is small (and $\to 0$ as sample size $\to \infty$).

Ordinary least squares

Ordinary least squares picks ${\pmb w}$ to minimize empirical mean squared error based on i.i.d. sample S:

$$\hat{\boldsymbol{w}}_{\mathrm{ols}} := \operatorname*{arg\,min}_{\boldsymbol{w} \in \mathbb{R}^p} \sum_{(\boldsymbol{x}, y) \in S} (y - \langle \boldsymbol{x}, \boldsymbol{w} \rangle)^2.$$

ORDINARY LEAST SQUARES

Ordinary least squares picks ${\boldsymbol w}$ to minimize empirical mean squared error based on i.i.d. sample S:

$$\hat{\boldsymbol{w}}_{\mathrm{ols}} := \underset{\boldsymbol{w} \in \mathbb{R}^p}{\min} \sum_{(\boldsymbol{x}, y) \in S} (y - \langle \boldsymbol{x}, \boldsymbol{w} \rangle)^2.$$

▶ Not uniquely defined unless $\sum_{(x,y)\in S} xx^{\top}$ is invertible.

ORDINARY LEAST SQUARES

Ordinary least squares picks w to minimize empirical mean squared error based on i.i.d. sample S:

$$\hat{\boldsymbol{w}}_{\text{ols}} := \underset{\boldsymbol{w} \in \mathbb{R}^p}{\min} \sum_{(\boldsymbol{x}, y) \in S} (y - \langle \boldsymbol{x}, \boldsymbol{w} \rangle)^2.$$

- ▶ Not uniquely defined unless $\sum_{(x,y) \in S} xx^{\top}$ is invertible.

there is a requirement over the size of sample n

- ▶ Predictive performance: (with n = |S|)
 - ▶ n < p: Could be rubbish.</p>
 - ▶ $n \ge p$: Excess mean squared error decreases at a rate of $O\left(\frac{p}{n}\right)$ (under some general conditions).

STATISTICAL ESTIMATION

PERSPECTIVE

MAXIMUM LIKELIHOOD INTERPRETATION

Suppose the distribution P of (\boldsymbol{x},y) is such that, conditioned on \boldsymbol{x} ,

$$y|\boldsymbol{x} \sim \mathcal{N}(\langle \boldsymbol{x}, \boldsymbol{w}_{\star} \rangle, \sigma^2).$$

MAXIMUM LIKELIHOOD INTERPRETATION

Suppose the distribution P of (\boldsymbol{x},y) is such that, conditioned on \boldsymbol{x} ,

$$y|\boldsymbol{x} \sim \mathcal{N}(\langle \boldsymbol{x}, \boldsymbol{w}_{\star} \rangle, \sigma^2).$$

▶ Question: Given i.i.d. sample S from P, what is the MLE for w_{\star} ?

MAXIMUM LIKELIHOOD INTERPRETATION

w* is assumed to associate with u of the distributation

Suppose the distribution P of (x, y) is such that, conditioned on x,

$$y|x \sim \mathcal{N}(\langle x, w_{\star} \rangle, \sigma^2)$$
. note the the assumption of linear regression, fix x v condition on x is a Gussian Distribution

- ▶ Question: Given i.i.d. sample S from P, what is the MLE for w_* ?
- ▶ **Answer**: The ordinary least squares estimator.

Log-likelihood of w given S:

$$\sum_{(\boldsymbol{x},y) \in S} \ln \biggl\{ \exp \biggl(-\frac{1}{2} \Bigl(y - \langle \boldsymbol{x}, \boldsymbol{w} \rangle \Bigr)^2 \biggr) \biggr\}$$

(plus terms that don't depend on w).

 \longrightarrow maximizing likelihood \equiv minimizing empirical mean squared error.

ASIDE: LOGISTIC REGRESSION

Suppose P is a distribution over $\mathbb{R}^p \times \{0,1\}$, and $(\boldsymbol{x},y) \sim P$ satisfies

$$\Pr(y = 1 | \boldsymbol{x}) = \frac{1}{1 + \exp(-\langle \boldsymbol{x}, \boldsymbol{w}_{\star} \rangle)}.$$

ASIDE: LOGISTIC REGRESSION

Suppose P is a distribution over $\mathbb{R}^p \times \{0,1\}$, and $({\pmb x},y) \sim P$ satisfies

$$\Pr(y = 1 | \boldsymbol{x}) = \frac{1}{1 + \exp(-\langle \boldsymbol{x}, \boldsymbol{w}_{\star} \rangle)}.$$

▶ Question: Given i.i.d. sample S from P, what is the MLE for w_{\star} ?

ASIDE: LOGISTIC REGRESSION

Suppose P is a distribution over $\mathbb{R}^p \times \{0,1\}$, and $({\boldsymbol x},y) \sim P$ satisfies

$$\Pr(y = 1 | \boldsymbol{x}) = \frac{1}{1 + \exp(-\langle \boldsymbol{x}, \boldsymbol{w}_{\star} \rangle)}.$$

- **Question**: Given i.i.d. sample S from P, what is the MLE for w_* ?
- ► Answer: The empirical minimizer of logistic loss

$$rg\min_{oldsymbol{w} \in \mathbb{R}^p} rac{1}{n} \sum_{(oldsymbol{x}, oldsymbol{y}) \in S} \ell_{\log}(y \langle oldsymbol{x}, oldsymbol{w}
angle).$$

note the difference of minimizer, usually we calculate the classifier in the form of pr(1|w), but at here we should compute w^* .

Taking w_{\star} seriously

Sometimes people seriously interpret the estimated regression coefficients.

Taking w_{\star} seriously

Sometimes people seriously interpret the estimated regression coefficients.

Example:

```
\hat{w}_i = 0 \longrightarrow \text{variable } x_i \text{ has negligible effect on } y \text{ in } w_{\star}.
|\hat{w}_i| \gg 0 \longrightarrow \text{variable } x_i \text{ has significant effect on } y \text{ in } w_{\star}.
```

Taking w_{\star} seriously

Sometimes people seriously interpret the estimated regression coefficients.

Example:

$$\hat{w}_i = 0 \longrightarrow \text{variable } x_i \text{ has negligible effect on } y \text{ in } w_{\star}.$$

 $|\hat{w}_i| \gg 0 \longrightarrow \text{variable } x_i \text{ has significant effect on } y \text{ in } w_{\star}.$

Hypothesis tests for this usually assume $y|x \sim \mathcal{N}(\langle x, w_{\star} \rangle, \sigma^2)$.

Ordinary least squares:

- 1. Affine hyperplane that minimizes least squares criterion.
- 2. Approximates y as linear combination of columns of X.
- 3. In statistical learning, excess mean squared error is O(p/n).
- 4. Maximum likelihood estimator under a Gaussian assumption.

Ordinary least squares:

- 1. Affine hyperplane that minimizes least squares criterion.
- 2. Approximates y as linear combination of columns of X.
- 3. In statistical learning, excess mean squared error is O(p/n).
- 4. Maximum likelihood estimator under a Gaussian assumption.
- ▶ What if p > n?

Ordinary least squares:

- 1. Affine hyperplane that minimizes least squares criterion.
- 2. Approximates y as linear combination of columns of X.
- 3. In statistical learning, excess mean squared error is O(p/n).
- 4. Maximum likelihood estimator under a Gaussian assumption.
- ▶ What if p > n?

Ordinary least squares no longer uniquely defined, and often ill-behaved.

Ordinary least squares:

- 1. Affine hyperplane that minimizes least squares criterion.
- 2. Approximates y as linear combination of columns of X.
- 3. In statistical learning, excess mean squared error is O(p/n).
- 4. Maximum likelihood estimator under a Gaussian assumption.
- ▶ What if p > n?

Ordinary least squares no longer uniquely defined, and often ill-behaved.

Use regularization:

- ▶ force $\|m{w}\|_2^2$ to be small ("ridge regression") o can kernelize this
- force $\|\boldsymbol{w}\|_1$ to be small ("Lasso")
- lacktriangle force w to be sparse ("sparse regression")