MATA49 Programação de Software Básico

Arquitetura dos processadores Intel

Leandro Andrade leandrojsa@ufba.br

- Como sabemos o computador é uma máquina de executar cálculos com números
- Blaise Pascal em 1642 inventou a primeira calculadora mecânica

- Muitas pesquisas sucederam a calculadora de Pascal até que:
 - Charles Babbage em 1822 apresentou primeiro modelo de uma máquina de "diferença" capaz de fazer cálculos necessários para elaborar

uma tabela de logaritmos

- Em 1936 as ideias de Babbage foram comprovadas por Alan Turing no artigo "On computable numbers"
- Turing trabalhou na construção de uma máquina, na segunda Guerra Mundial, para decifrar mensagens trocadas pelos alemães
 - Era o primeiro computador eletromecânico do mundo
 - História contada no filme "O jogo da Imitação"

 Depois surgiram outros modelos, porém esbarravam no problema da velocidade das operações de computação

Eniac I

- A invenção dos transistores de silício, em 1947, alavancou o desenvolvimento dos computadores
 - Reduziam os tamanhos e multiplicaram a velocidade centenas de vezes...

Eniac II

Componente	Eniac	Eniac II Chip	
Tubos de Vácuo	18.000	Não Tem	
Transistors	Não Tem	250.000	
Resistors	170.000	Não Tem	
Capacitores	10.000	Não Tem	
Velocidade do Clock	100 KHz	20 MHz	
Energia para operar	174 Kw	0.5 W	

Relembrando...

- Principais características do processador:
 - A freqüência do relógio (clock)
 - O barramento interno e externo
 - O conjunto de instruções do processador
 - Registradores
 - Linguagem de máquina

Os primeiros processadores Intel

- 4004: Com apenas 4-bits realizava cálculos aritméticos simples (1971)
- 8008: Com 8-bits e capacidade de memória de 16 Kbytes (1972)
- 8080: Com um clock de 2MHz, 6 vezes mais rápido que o anterior (1974)

- Lançado em 1978
- Registradores de 16-bits
- Os endereços de memória poderiam ser acessados por qualquer programa
 - Modo Real
- Memória dos programas divididos em segmentos de 64K

• Estrutura:

Estrutura:

- Clock: sincroniza as operações interna da CPU com outros componentes do sistema
- Unidade de controle (CU): coordena a sequência de passos envolvidos na execução das instruções de máquina
- Unidade de aritmética e lógica (ALU):
 Executa operações aritméticas e lógicas

- Possui 4 registradores de 16-bits de uso geral:
 - AX, BX, CX, DX
 - São principalmente usados para transferência de dados e operações aritméticas
 - Podem ser decomposto em dois registradores de 8-bits
 - Ex: AH (higher) e AL (lower)

- Há dois registradores de índice de 16-bits
 - SI e DI
 - Normalmente são usados como ponteiros, mas podem ser usados para uso geral
 - Não podem ser decompostos em registradores de 8-bits
- Dois registradores de 16-bits para pilha
 - BP (base pointer) SP (stack pointer)

- Registradores 16-bits de segmento de programa
 - Armazenam partes do programa
 - CS (Code Segment), DS (Data Segment),
 SS(Stack Segment) e ES(Extra Segment)
- Um registrador (IP instruction pointer) para indicar a próxima instrução a ser executada

- FLAGS: registrador armazena informações sobre os resultados de instruções anteriores
 - Cada bit possui uma semântica específica.

FLAGS:

- Carry flag (CF): indica se o resultado de uma operação aritmética (sem sinal) extrapolou o tamanho do destino
- Overflow flag (OF): O mesmo que o carry flag, mas para operações com sinal
- Sign flag (SF): Indica se uma operação lógica ou aritmética gera um resultado negativo
- Zero flag (ZF): Indica se uma operação lógica ou aritmética gera um resultado zero

• FLAGS:

- Auxiliary Carry flag (AC): Quando uma operação aritmética provoca um transporte de bit de 3 bits para 4 num operando de 8 bits.
- Parity flag (PF): Indica a paridade do número resultante. Em geral, é utilizado para a verificação de erro, quando existe uma possibilidade de que os dados podem ser alterados ou corrompidos.

Modo Real:

- Memória é limitada a 1Mb
- Acesso por meio de endereço físico
- Um endereço válido varia entre 00000 FFFFF (hexadecimal) 20-bits
- Como os registradores só possuem 16-bits, usa-se dois para expressar o endereço físico
 - Seletor e deslocamento

- Modo Real:
 - Endereço = 16 * seletor + deslocamento

Exemplo: 047C:0048

047C0

+0048

04808

Modo Real:

- Um seletor só pode referenciar 64K de memória, pois é máximo que o registrador de deslocamento permite
 - Limita o tamanho do código do programa a 64K
- Um endereço físico pode ser representado por mais de um endereço segmentado
 - Ex: 04808 pode ser referencia do por 047C:0048, 047D:0038, 047E:0028 ou 047B:0058.

Modo Real:

- Usado até Windows 3.0
- Apresentava problemas, pois como o acesso aos recurso eram diretos eventuais falhas em programas poderiam afetar todo o sistema

- Registradores 16-bits
- Programas não podem acessar dados de outros
 - Modo protegido 16-bits
- Capacidade de memória ampliada para 16Mb
- Programas ainda divididos em segmentos de 64K

- Modo protegido 16-bits:
 - Programa ainda dividido em segmentos
 - O seletor agora é um índice na tabela de descritores
 - Segmentos não possuem mais posição fixa
 - Uso da técnica de memória virtual

- Modo protegido 16-bits:
- Memória Virtual
 - A ideia é manter somente na memória os dados e o código que estão sendo utilizados no momento
 - Outros dados são armazenados temporariamente em disco até serem requisitados
 - Processo transparente para o sistema operacional

- Modo protegido 16-bits:
 - A tabela de descritores contem tudo o que o sistema precisa saber sobre o segmento
 - Se esta memória, endereço físico, permissões
 - A desvantagem é que ainda o deslocamento continua sendo de 16-bits
 - Assim os segmentos continuam sendo de tamanho máximo 64K

- Modo protegido 16-bits:
 - Verificação de:
 - Tipo
 - Limites
 - Restrições de:
 - Endereços acessíveis
 - Pontos de entrada de procedimentos
 - Conjunto de instruções disponíveis

- Modo protegido 16-bits:
 - Verificação de:
 - Tipo
 - Limites
 - Restrições de:
 - Endereços acessíveis
 - Pontos de entrada de procedimentos
 - Conjunto de instruções disponíveis

- Grande evolução de performance
- Surgimento de sistemas operacionais multitarefa
- 4Gb de memória real
- 33MHz

- Registradores estendidos para 32-bits
 - (extended) EAX
 - O AX passa a representar os 16 últimos bits
 - EBX, ECX, EDX, ESI, EDI, EBP ESP, EFLAGS, EIP
- Registradores de segmentação de programa ainda com 16-bits
 - Ganhou mais dois bits para dados temporários na segmentação: FS e GS

Registradores estendidos para 32-bits

Registradores estendidos para 32-bits

32-Bit	16-Bit	8-Bit (High)	8-Bit (Low)
EAX	AX	AH	AL
EBX	BX	ВН	BL
ECX	CX	СН	CL
EDX	DX	DH	DL

- Modo protegido 32-bits:
 - Os deslocamentos são expandidos para 32-bits
 - Agora os segmentos podem ter 4Gb
 - Os segmentos são divididos em páginas de tamanho 4Kb
 - A memória virtual passa a funcionar com páginas
 - Isso permite que parte do segmento fique na memória ao invés de todo ele como no 16-bits

486 e Geração Pentium Intel

- Mantêm a base da arquitetura 32-bits do 386
- Melhorias crescentes na velocidade do processadores
- Melhorias na reprodução de som e imagem
- Inserção de novas instruções para otimização de desempenho