PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07K 5/11, 14/81, A61K 38/07, 38/57

(11) International Publication Number:

WO 99/51624

A1

(43) International Publication Date:

14 October 1999 (14.10.99)

(21) International Application Number:

PCT/US99/07776

(22) International Filing Date:

8 April 1999 (08.04.99)

(30) Priority Data:

60/081,034

8 April 1998 (08.04.98)

US

(71) Applicant: OREGON HEALTH SCIENCES UNIVERSITY [US/US]; 3181 S.W. Sam Jackson Park Road, Portland, OR 97201-3098 (US).

(72) Inventors: JEAN, François; Apartment N302, 8150 S.W. Barnes Road, Portland, OR 97062 (US). THOMAS, Gary; 5210 S.W. Wichita Street, Tualatin, OR 97062 (US).

(74) Agent: NOONAN, Kevin, E.; McDonnell Boehnen Hulbert & Berghoff, 300 South Wacker Drive, Chicago, IL 60606

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: REAGENTS AND METHODS FOR INHIBITING FURIN PROTEASE ACTIVITY

(57) Abstract

This invention relates to methods and reagents for inhibiting furin endoprotease activity and specifically for inhibiting furin endoprotease—mediated maturation of bioactive proteins in vivo and in vitro. The invention specifically provides peptides, peptide analogues, peptide derivatives and peptido—, organo— and chemical mimetics of said peptide inhibitors of furin endoprotease activity. Methods for using furin endoprotease inhibition to attenuate or prevent viral protein maturation, and thereby alleviate viral infections, are provided. Also provided are methods for using furin endoprotease inhibition to attenuate or prevent proteolytic processing of bacterial toxins, thereby alleviating bacterial infections methods are also provided to inhibit proteolytic processing biologically active proteins and peptides. The invention also provides pharmaceutically acceptable compositions of therapeutically effective amounts of furin endoprotease inhibitors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
	AT AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
1	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
	AZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Chad
	RA BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
	BE BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	be BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
	BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
		Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
	CA CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
		-	KB	Kenya	NL	Netherlands	YU	Yugoslavia
	CG	Congo	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
	CH	Switzerland	KP	Democratic People's	NZ	New Zealand		
	a	Côte d'Ivoire	KP	-	PL	Poland		
	CM	Cameroon	I/D	Republic of Korea Republic of Korea	PT	Portugal		
	CN	China	KR	Kazakstan	RO	Romania		
	CU	Cuba	KZ		RU	Russian Federation		
1	CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
1	DE	Germany	u	Liechtenstein				
ı	DK	Denmark	LK	Sri Lanka	SE	Sweden		
	EE	Estonia	LR	Liberia	SG	Singapore		

REAGENTS AND METHODS FOR INHIBITING FURIN PROTEASE ACTIVITY

This application claims priority to U.S. Serial No. 60/081,034, filed April 8, 1998.

This invention was made with government support under DK44629 and DK37274 from the National Institutes of Health. The government has certain rights in the invention.

10

1.5

20

25

30

5

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to endoproteases, particularly a novel endoprotease termed furin endoprotease. The invention specifically relates to inhibitors of furin endoprotease activity. In particular, the invention relates to peptides and peptide mimetics derived from a novel variant of 1-antitrypsin that specifically inhibit furin endoprotease activity. The invention also provides methods for using such inhibitors to attenuate or prevent biological proteolytic maturation of bioactive proteins and peptides in vivo and in vitro, in particular with respect to viral proteins and bacterial toxins. Therapeutic methods and pharmaceutical compositions of such inhibitors are also provided directed towards the alleviation and treatment of disease having microbiological etiology.

2. Background of the Related Art

Most biologically active peptides and proteins are synthesized initially as larger, inactive precursor proteins that are endoproteolytically cleaved during transit through the secretory pathway in the Golgi apparatus in cells expressing such proteins (see Barr, 1991, Cell 66: 1-3 for review). This system comprises an important common mechanism required for synthesis of biologically active proteins and peptides in yeast (Fuller et al., 1988, Ann. Rev. Physiol. 50: 345-362), invertebrates (Scheller et al., 1983, Cell 32: 7-22) and mammalian cells (Sossin et al., 1989, Neuron 2: 1407-1417). Examples of peptides and proteins produced in vivo by exocytotic transport through the

Golgi are precursors of peptide hormones, neuropeptides, growth factors, coagulation factors, serum albumin, cell surface receptors, and adhesion molecules.

Morrison et al., 1985, J. Virol. 53: 851-857 disclose that F protein of Newcastle disease virus is processed through the exocytotic transport pathway in infected cells.

Perez & Hunter, 1987, *J. Virol*. <u>61</u>: 1069-1614 disclose that the Rous sarcoma virus (RSV) glycoprotein is processed through the exocytotic transport pathway in infected cells.

5

10

15

20

25

30

Yamada et al., 1988, Virology 165: 268-273 disclose that F protein of mumps virus is processed through the exocytotic transport pathway in infected cells.

Randolph et al., 1990, Virology 174: 450-458 disclose that the prM protein of flaviviruses is processed through the exocytotic transport pathway in infected cells.

A common structural feature of molecules processed through the exocytotic transport pathway is the presence of basic residues or pairs of basic residues at the proteolytic processing site in the molecule. Examples include serum factors (Factors IX; Bentley et al., 1986, Cell 45:343-348; proalbumin; Knowlese et al., 1980, Science 209: 497-499; pro-von Willibrand factor; Bonthron et al., 1986, Nature 324: 270-273), viral polyproteins (human immunodeficiency virus (HIV) gp160; McCune et al., 1988, Cell 53: 55-67; RSV envelope protein; Perez & Hunter, 1987, J. Virol. 61: 1609-1614; yellow fever virus protein; Rice et al., 1985, Science 229: 726-733; measles virus protein; Richardson et al., 1986, Virology 155: 508-523; mumps virus protein; Waxham et al., 1987, Virology 159: 381-389; human cytomegalovirus protein; Spaete et al., 1990, J. Virol. 64: 2922-2931; varicella zooster virus protein; Keller et al., 1986, Virology 152: 181-191), growth factors (preprotransforming growth factor β; Gentry et al., 1988, Molec. Cell. Biol. 8:4162-4168; epidermal growth factor; Gray et al., 1983, Nature 303: 722-725; pro-β-nerve growth factor (NGF); Edwards et al., 1988, Molec. Cell Biol. 8: 2456-2464), receptors (insulin receptor; Yoshimasa et al., 1988, Science 240: 784-787); and bacterial toxins (see Stephen & Pietrowski, 1986, Bacterial Toxins, 2d ed. (Amer. Soc. Microbiol. Washington, D.C.) for review; anthrax toxin; Singh et al., 1989, J. Biol. Chem. 264: 11099-11102). The proteolytic processing site has been identified in some of these molecules.

Berger & Shooter, 1977, *Proc. Natl. Acad. Sci. USA* <u>74</u>: 3647-3651 disclose the sequence –RSKR- at the proteolytic processing site of pro-β-NGF.

Bentley et al., 1986, ibid., disclose the sequence –RPKR- at the proteolytic processing site of the blood coagulation factor protein Factor IX.

McCune et al., 1988, ibid., disclose the sequence –REKR- at the proteolytic processing site of HIV gp160.

Clepak et al., 1988, Biochem. Biophys. Res. Comm. 157: 747-754 disclose the sequence –RVRR- at the proteolytic processing site of diphtheria toxin.

5

10

15

20

25

30

Vey et al., 1992, Virology 188: 408-413 disclose the sequence -RX(R/K)R- at the proteolytic processing site of influenza hemagglutinin.

Ogata et al., 1990, J. Biol. Chem. 265: 20678-20685 disclose the sequence -RSKR- at the proteolytic processing site of Pseudomonas exotoxin A.

Klimpel et al., 1992, Proc. Natl. Acad. Sci. USA 89: 10277-10281 disclose the sequence -RX(R/K)R- at the proteolytic processing site of anthrax protective antigen.

A cellular endoprotease termed furin has been identified that specifically recognizes the recognition sequence of proteins processed through the exocytotic secretory pathway (Wise et al., 1990, Proc. Natl. Acad. Sci. USA 87: 9378-9382; Bresnanhan et al., 1990, J. Cell Biol. 111: 2851-2859). This endoprotease is a subtilisin-related, calcium-dependent serine protease (Bresnahan et al., ibid.). A complementary DNA copy of the mRNA encoding this endoprotease has been isolated (Wise et al., ibid.) and sequenced (van den Ouweland et al., 1992, Nucleic Acids Res. 18: 664) and expressed in heterologous cells (Bresnahan et al., ibid). These studies have localized furin by fluoresence immunohistochemistry to the Golgi apparatus of cells expressing this endoprotease (Bresnahan et al., ibid.). Furin has been shown to be capable of proteolytically cleaving a number of exocytotically processed proteins.

Bresnahan et al., ibid., disclosure furin-mediated cleavage of pro-β-NGF.

Wise et al., ibid., disclose furin-mediated cleavage of pro-von Willibrand factor and complement factor C3.

Hosaka et al., 1991, J. Biol, Chem. 266: 12127-12130 disclose furin-mediated cleavage of renin.

Steineke-Grober et al., 1992, EMBO J. 11: 2407-2414 disclose furin-mediated cleavage of influenza hemagglutinin.

Klimpel et al., 1992, Proc. Natl. Acad. Sci. USA 89: 10277-10281 disclose furinmediated cleavage of anthrax protective antigen.

Molloy et al., 1992, J. Biol. Chem. 267: 16396-16402 disclose furin-mediated cleavage of anthrax protective antigen.

Klimpel et al., 1992, Annual Meeting, Amer. Soc. Microbiol. Abst. B-32 disclose furin-mediated cleavage of diphtheria toxin.

One of the present inventors has discovered a mutated variant of α_1 -antitrypsin that effectively inhibits furin endoprotease, termed α_1 -antitrypsin Portland (also termed PDX; SEQ ID No.: 1), as disclosed in U.S. Patent 5,604,210, issued February 18, 1997 and International Application, Publication No. WO 94/16073, published July 21, 1994, the complete disclosure of each of which are explicitly incorporated herein in its entirety. This variant has been genetically-engineered to contain Ala₃₅₅ -> Arg₃₅₅ and Met₃₅₈ -> Arg₃₅₈ mutations, whereby the native sequence of α_1 -antitrypsin is changed from -Ala₃₅₅-Ile-Pro-Met₃₅₈- (SEQ ID No. 2) to -Arg₃₅₅-Ile-Pro-Arg₃₅₈- (SEQ ID No. 3) in the Portland variant.

Furin can also be inhibited by specific peptidyl chloroalkylketones (Garten et al., 1989, Virology 172: 25-31; Molloy et al., ibid.; Hallenberger et al., 1992, Nature 360: 358-361), but these substances are toxic in vivo.

In view of the importance of furin endoprotease in activation of bacterial toxins, viral structural proteins and bioactive molecules, there is a need for the development of safe and specific furin inhibitors for prophylaxis, therapy and biological regulation.

20

25

5

10

15

SUMMARY OF THE INVENTION

This invention provides safe, specific and effective inhibitors of furin endoprotease that are peptides and peptide mimetics of novel variants of the naturally-occurring protease inhibitor, a₁-antitrypsin (Heeb et al., 1990, J. Biol. Chem. 265: 2365-2369; Schapira et al., 1987, J. Clin. Invest. 80:582-585). The peptides and peptide mimetics comprise the sequence Arg-Xaa-Xaa-Arg (SEQ ID No. 4) or peptido-, organo-or chemical mimetics thereof.

30

The invention provides methods for inhibiting bacterial infection of human cells comprising contacting such cells with an effective amount of a peptide or peptide mimetic of the invention. In a preferred embodiment, the bacterial infection is caused by *Corynebacterium diptheriae*. In another preferred embodiment, the bacterial

infection is caused by *Bacillus anthracis*. In yet another preferred embodiment, the bacterial infection is caused by *Pseudomonas aeruginosa*.

The invention also provides a method of inhibiting bacterial infection in a human comprising administering a therapeutically effective amount of a peptide or peptide mimetic of the invention in a pharmaceutically acceptable carrier. In a preferred embodiment, the bacterial infection is caused by *Corynebacterium diptheriae*. In another preferred embodiment, that bacterial is caused by *Bacillus anthracis*. In yet another preferred embodiment, the bacterial infection is caused by *Pseudomonas aeruginosa*.

10

15

20

25

5

Another method provided by the invention for treating humans with a bacterial infection comprises administering a combination of a therapeutically effective amount of a peptide or peptide mimetic of the invention and a therapeutically effective amount of a second antibacterial compound in a pharmaceutically acceptable carrier. In a preferred embodiment, the bacterial infection is caused by *Corynebacterium diptheriae*. In another preferred embodiment, the bacterial infection is caused by *Bacillus anthracis*. In yet another preferred embodiment, the bacterial infection is caused by *Pseudomonas aeruginosa*.

Pharmaceutically acceptable compositions effective according to the methods of the invention, comprising a therapeutically effective amount of a peptide or peptide mimetic of the invention capable of blocking endoproteolytic activation of bacterial toxins and a pharmaceutically acceptable carrier or diluent, are also provided.

The invention provides a method of inhibiting viral infection of human cells comprising contacting such cells with an effective amount of a peptide or peptide mimetic of the invention. In preferred embodiments, the viral infection is caused by human cytomegalovirus (HCMV), yellow fever virus, measles virus, mumps virus, influenza virus, varicella zooster virus, or human immunodeficiency virus (HIV-1). In another preferred embodiment, the human cells are hematopoietic cells, most preferably T lymphocytes.

30

The invention also provides a method for inhibiting viral infection in an animal, most preferably a human, comprising administering a therapeutically effective amount of a peptide or peptide mimetic of the invention in a pharmaceutically acceptable carrier. In preferred embodiments, the viral infection is caused by human cytomegalovirus,

yellow fever virus, measles virus, mumps virus, influenza virus, varicella zooster virus, or human immunodeficiency virus.

The invention provides a method of treating humans infected with a virus comprising administering a therapeutically effective amount of a peptide or peptide mimetic of the invention in a pharmaceutically acceptable carrier. In preferred embodiments, the viral infection is caused by human cytomegalovirus, yellow fever virus, measles virus, mumps virus, influenza virus, varicella zooster virus, or human immunodeficiency virus.

5

10

15

20

25

30

The invention provides a method of treating humans infected with a virus comprising administering a combination of a therapeutically effective amount of a peptide or peptide mimetic of the invention and a therapeutically effective amount of a second antiviral compound in a pharmaceutically acceptable carrier. In preferred embodiment, the virus is HIV-1 and the second antiviral compound is azidothymidine. In another preferred embodiment, the virus is HCMV and the second antiviral compound is foscarnet, gancyclovir, or cidofovir.

Pharmaceutically acceptable compositions effective according to the methods of the invention, comprising a therapeutically effective amount of a peptide or peptide mimetic of the invention having antiviral properties and a pharmaceutically acceptable carrier or diluent, are also provided.

The invention also provides a method of inhibiting proteolytic processing of a biologically active protein or peptide in a cell comprising contacting such cells with a peptide or peptide mimetic of the invention. Preferred biologically active proteins are pro-β-nerve growth factor, blood coagulation factor protein Factor IX, pro-von Willibrand factor, complement factor C3 and renin.

Specific preferred embodiments of the present invention will become evident from the following more detailed description of certain preferred embodiments and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A is a computer generated molecular model of the reactive site loop (RSL) portion of the α_1 -antitrypsin Portland (PDX) variant comprising the sequence - Arg_{355} - Ile_{356} - Pro_{357} - Arg_{358} - (SEQ ID No. 3). Figure 1A shows a view in which certain

atoms in the peptide backbone and arginine sidechains have been numbered. Figure 1B shows rotated views from six perspectives of the molecule.

Figure 2 shows the structure of *Pseudomonas aeruginosa* pro-exotoxin A (PEA) and human cytomegalovirus pro-gB (HCMV progB) proteins, including the furin recognition site.

Figure 3 sets forth a schematic diagram of an assay using detection of *P*. aeruginosa exotoxin A-mediated cellular protein synthesis inhibition to detect compounds that inhibit furin-mediated maturation of the exotoxin.

Figure 4 is a graph of the results of the assay described in Example 1 and performed according to the protocol set forth in Figure 3.

Figure 5 is a diagram of the cleavage pattern of HCMV pro-gB protein.

Figure 6 sets forth a schematic diagram of an assay using detection of plaque formation in naive human foreskin fibroblasts (HFF) incubated with the supernatant fluid of an HCMV-infected culture of U373 cells in the presence or absence of a putative furin inhibiting compound.

Figure 7 is a graph of the results of a plaque-forming assay described in Example 1 and performed according to the protocol set forth in Figure 6.

Figure 8 is a Western blot of proteins produced by HCMV-infected U373 cells and probed with a gB-specific antibody.

20

25

30

5

10

15

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For the purposes of this invention, the terms "mimetic," "peptide mimetic," "peptidomimetic," "organomimetic" and "chemical mimetic" are intended to encompass peptide derivatives, peptide analogues and chemical compounds having an arrangement of atoms is a three-dimensional orientation that is equivalent to that of a peptide having the sequence Arg-Xaa-Xaa-Arg (SEQ ID No.: 4). It will be understood that the phrase "equivalent to" as used herein is intended to encompass compounds having substitution of certain atoms or chemical moieties in said peptide with moieties having bond lengths, bend angles and arrangements thereof in the mimetic compound that produce the same or sufficiently similar arrangement or orientation of said atoms and moieties to have the biological function of inhibiting furin endoprotease activity. In the peptide mimetics of the invention, the three-dimensional arrangement of the chemical constituents is

structurally and/or functionally equivalent to the three-dimensional arrangement of the peptide backbone and component amino acid sidechains in the peptide, resulting in such peptido-, organo- and chemical mimetics of the peptides of this invention having substantial biological activity, specifically furin protease inhibiting activity. These terms are used according to the understanding in the art, as illustrated *for example* by Fauchere, 1986, *Adv. Drug Res.* 15: 29; Veber & Freidinger, 1985, *TINS* p.392; and Evans et al., 1987, *J. Med. Chem.* 30: 1229, incorporated herein by reference.

5

10

15

20

25

30

It is understood that a pharmacophore exists for the biological activity of the PDX protein of the invention, said pharmacophore being defined by the -Arg-Xaa-Xaa-Arg- (SEQ ID No. 4) portion of the PDX protein at residues 355-358. A pharmacophore is understood in the art as comprising an idealized, three-dimensional definition of the structural requirements for biological activity. The determination of the three-dimensional structure of the PDX protein provides the structural information to enable production of peptido-, organo- and chemical mimetics of the functional portion of PDX. Peptido-, organo- and chemical mimetics can be designed to fit each pharmacophore with current computer modeling software (computer aided drug design), as described in more detail below. Said mimetics are produced by structure-function analysis, based on the positional information from the crystallographic-derived molecular positional information disclosed herein.

Arg-Xaa-Xaa-Arg. In a preferred embodiment, the peptides of the invention have the sequence Arg-Xaa-Pro-Arg (SEQ ID No. 5). In additional preferred embodiments, the peptide comprises the sequence Arg-Ile-Pro-Arg (SEQ ID No. 4). It will be understood that the use of "Xaa" for these residues is intended to indicate that any amino acid residue can be substituted for Ile or Pro in these positions with no change in the critical dimensions of the rigid reactive site loop (RSL) of the PDX protein, as disclosed herein. Peptide analogues of the invention include embodiments whereby either of the arginine residues are substituted by positively-charged amino acids including lysine, homolysine, hydroxylysine, ornithine, citrulline and canavanine. In preferred embodiments, both

In a first embodiment, the invention provides peptides defined by the sequence

Alternative embodiments of the peptides of the invention include peptides having the sequence B-(Arg-Xaa-Xaa-Arg)-C, wherein "B" and "C" represent amino acid sequences each independently comprising from about 1 to about 40 amino acids, more

arginine residues are substituted by the same alternative amino acid.

preferably from about 5 to about 30 amino acids and most preferably from about 10 to about 25 amino acid residues. In particularly preferred embodiments, the B-(Arg-Xaa-Xaa-Arg)-C peptides of the invention are conformationally-restricted, for example by cyclization or disulfide bond formation, wherein the term "disulfide bond" is intended to encompass sulfide linkages and other disulfide derivatives, particularly those that are more stable than naturally-occurring disulfide bonds. In additional preferred embodiments, the peptides of the invention are derivatized by attachment of sugar moieties to produce glycosylated analogues thereof, wherein the sugar moieties are covalently linked to an asparagine residue ("N-linked" glycosylation) or serine, hydroxyproline, hydroxylysine, or threonine residues ("O-linked" glycosylation). Peptides wherein either the amino or carboxyl termini are derivitized are also within the scope of the peptides of the invention.

Conjugation with sugars (preferably glucose, glucosamine, galactose, galactosamine, mannose, mannosamine, maltose and the like) at the – or C-terminus, at internal asparagine, serine or threonine residues, or at the N-terminus by means of a succinyl linker, serves to stabilize certain conformational motifs, and may increase solubility and bioavailability of the peptide. Similarly, polyethylene glycol (PEG) conjugation at – or C-terminus or on side chains can stabilize peptides and improve pharmacological performance (see, for example, Delgado et al., 1992, Crit. Rev. Ther. Drug Carrier Syst. 9: 249-304). Such modifications may change the in vitro profile of a mimetic, and enhance circulating half-life and in vivo activity.

Peptides as provided by the invention may be advantageously synthesized by any of the chemical synthesis techniques known in the art, particularly solid-phase synthesis techniques, for example, using commercially-available automated peptide synthesizers. The mimetics of the present invention can be synthesized by solid phase or solution phase methods conventionally used for the synthesis of peptides (see, for example, Merrifield, 1963, J. Amer. Chem. Soc. 85: 2149-54; Carpino, 1973, Acc. Chem. Res. 6: 191-98; Birr, 1978, ASPECTS OF THE MERRIFIELD PEPTIDE SYNTHESIS, Springer-Verlag: Heidelberg; THE PEPTIDES: ANALYSIS, SYNTHESIS, BIOLOGY, Vols. 1, 2, 3, 5, (Gross & Meinhofer, eds.), Academic Press: New York, 1979; Stewart et al., 1984, SOLID PHASE PEPTIDE SYNTHESIS, 2d. ed., Pierce Chem. Co.: Rockford, Ill.; Kent, 1988, Ann. Rev. Biochem. 57: 957-89; and Gregg et al., 1990, Int. J. Peptide Protein Res. 55: 161-214, which are incorporated herein by reference in their entirety.)

The use of solid phase methodology is preferred. Briefly, an N-protected Cterminal amino acid residue is linked to an insoluble support such as divinylbenzene cross-linked polystyrene, polyacrylamide resin, Kieselguhr/polyamide (pepsyn K), controlled pore glass, cellulose, polypropylene membranes, acrylic acid-coated polyethylene rods or the like. Cycles of deprotection, neutralization and coupling of successive protected amino acid derivatives are used to link the amino acids from the Cterminus according to the amino acid sequence. For some synthetic peptides, an Fmoc strategy using an acid-sensitive resin may be used. Preferred solid supports in this regard are divinylbenzene cross-linked polystyrene resins, which are commercially available in a variety of functionalized forms, including chloromethyl resin, hydroxymethyl resin, paraacetamidomethyl resin, benzhydrylamine (BHA) resin, 4methylbenzhydrylamine (MBHA) resin, oxime resins, 4-alkoxybenzyl alcohol resin (Wang resin), 4-(2',4'-dimethoxyphenylaminomethyl)-phenoxymethyl resin, 2,4dimethoxybenzhydrylamine resin, and 4-(2',4'-dimethoxyphenyl-FMOC-aminomethyl)phenoxyacetamidonorleucyl-MBHA resin (Rink amide MBHA resin). In addition, acidsensitive resins also provide C-terminal acids, if desired.

5

10

15

20

25

30

A particularly preferred protecting group for alpha. amino acids is base-labile 9fluorenylmethoxycarbonyl (Fmoc). Suitable protecting groups for the side chain functionalities of amino acids chemically compatible with Boc (t-butyloxycarbonyl) and Fmoc groups are well known in the art. When using Fmoc chemistry, the following protected amino acid derivatives are preferred: Fmoc-Cys(Trit), Fmoc-Ser(But), Fmoc-Asn(Trit), Fmoc-Leu, Fmoc-Thr(Trit), Fmoc-Val, Fmoc-Gly, Fmoc-Lys(Boc), Fmoc-Gln(Trit), Fmoc-Glu(OBut), Fmoc-His(Trit), Fmoc-Tyr(But), Fmoc-Arg(PMC(=2,2,5,7,8-pentamethylchroman-6-sulfonyl)), Fmoc-Arg(Boc), Fmoc-Pro, and Fmoc-Trp(Boc). The amino acid residues can be coupled by using a variety of coupling agents and chemistries known in the art, such as direct coupling with DIC (diisopropyl-carbodiimide), DCC (dicyclohexylcarbodiimide), BOP (benzotriazolyl-Noxytrisdimethylaminophosphonium hexa-fluorophosphate), PyBOP (benzotriazole-1-yloxy-tris-pyrrolidinophosphonium hexafluoro-phosphate), or PyBrOP (bromo-trispyrrolidinophosphonium hexafluorophosphate); via preformed symmetrical anhydrides; via active esters such as pentafluorophenyl esters; via performed HOBt (1hydroxybenzotriazole) active esters; by using Fmoc-amino acid fluoride and chlorides; or by using Fmoc-amino acid-N-carboxy anhydrides. Activation with HBTU (2-(1H-

benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) or HATU (2-(1H-7-aza-benzotriazole-1-yl)-(1,1,3,3-tetramethyluronium hexafluorophosphate) in the presence of HOBt or HOAt (7-azahydroxybenztriazole) is preferred.

Solid phase methods can be carried out manually, although automated synthesis on a commercially available peptide synthesizer (e.g., Applied Biosystems 431A or the like; Applied Biosystems, Foster City, CA) is preferred. In a typical synthesis, the first (C-terminal) amino acid is loaded on the chlorotrityl resin. Successive deprotection (with 20% piperidine/NMP (N-methylpyrrolidone)) and coupling cycles according to ABI FastMoc protocols (ABI user bulletins 32 and 33, Applied Biosystems) are used to build the complete peptide sequence. Double and triple coupling, with capping by acetic anhydride, may also be used.

5

10

15

20

25

30

The synthetic mimetic peptide is advantageously cleaved from the resin and deprotected by treatment with TFA (trifluoroacetic acid) containing appropriate scavengers. Many such cleavage reagents, such as Reagent K (0.75 g crystalline phenol/ 0.25 mL ethanedithiol/ 0.5 mL thioanisole/ 0.5 mL deionized water/ 10 mL TFA), can be used. The peptide is separated from the resin by filtration and isolated by ether precipitation. Further purification may be achieved by conventional methods, such as gel filtration and reverse phase HPLC (high performance liquid chromatography). Synthetic mimetics according to the present invention may be in the form of pharmaceutically acceptable salts, especially base-addition salts and including salts of organic bases and inorganic bases. The base-addition salts of the acidic amino acid residues are prepared by treatment of the peptide with the appropriate base, according to procedures well known to those skilled in the art, or the desired salt may be obtained directly by lyophilization out of the appropriate base solution.

Generally, those skilled in the art will recognize that peptides as described herein may be modified by a variety of chemical techniques to produce compounds having essentially the same activity as the unmodified peptide, and optionally having other desirable properties. For example, carboxylic acid groups of the peptide may be provided in the form of a salt of a pharmaceutically-acceptable cation. Amino groups within the peptide may be in the form of a pharmaceutically-acceptable acid addition salt, such as the HCl, HBr, acetic, benzoic, toluene sulfonic, maleic, tartaric and other organic salts, or may be converted to an amide. Thiols can be protected with any one of a number of well-recognized protecting groups, such as acetamide groups. Those

skilled in the art will also recognize methods for introducing cyclic structures into the peptides of this invention so that the native binding configuration will be more nearly approximated. For example, a carboxyl terminal or amino terminal cysteine residue can be added to the peptide, so that when oxidized the peptide will contain a disulfide bond, thereby generating a cyclic peptide. Other peptide cyclizing methods include the formation of thioethers and carboxyl- and amino-terminal amides and esters.

5

10

15

20

25

30

Specifically, a variety of techniques are available for constructing peptide derivatives and analogues with the same or similar desired biological activity as the corresponding peptide compound but with more favorable activity than the peptide with respect to solubility, stability, and susceptibility to hydrolysis and proteolysis. Such derivatives and analogues include peptides modified at the N-terminal amino group, the C-terminal carboxyl group, and/or changing one or more of the amido linkages in the peptide to a non-amido linkage. It will be understood that two or more such modifications can be coupled in one peptide mimetic structure (e.g., modification at the C-terminal carboxyl group and inclusion of a -CH₂- carbamate linkage between two amino acids in the peptide, for example).

Amino terminus modifications include but are not limited to alkylating, acetylating, adding a carbobenzoyl group, and forming a succinimide group. Specifically, the N-terminal amino group can be reacted to form an amide group of the formula RC(O)NH-, where R is alkyl, preferably lower alkyl, and is added by reaction with an acid halide or acid anhydride. Typically, the reaction can be conducted by contacting about equimolar or excess amounts (e.g., about 5 equivalents) of an acid halide to the peptide in an inert diluent (e.g., dichloromethane) preferably containing an excess (e.g., about 10 equivalents) of a tertiary amine, such as diisopropylethylamine, to scavenge the acid generated during reaction. Reaction conditions are otherwise conventional (e.g., room temperature for 30 minutes). Alkylation of the terminal amino to provide for a lower alkyl N-substitution followed by reaction with an acid halide as described above will provide for N-alkyl amide group of the formula RC(O)NR-.

Alternatively, the amino terminus can be covalently linked to succinimide group by reaction with succinic anhydride. An approximately equimolar amount or an excess of succinic anhydride (e.g., about 5 equivalents) are used and the terminal amino group is converted to the succinimide by methods well known in the art including the use of an excess (e.g., ten equivalents) of a tertiary amine such as diisopropylethylamine in a

5

10

15

20

25

30

suitable inert solvent (e.g., dichloromethane), as described in Wollenberg et al., U.S. Pat. No. 4,612,132 which is incorporated herein by reference in its entirety. It will also be understood that the succinic group can be substituted with, for example, C₂- through C₆-(i.e., lower) alkyl or --SR substituents (where R is alkyl, preferably lower alkyl), which are prepared in a conventional manner to provide for substituted succinimide at the Nterminus of the peptide. Such alkyl substituents are prepared by reaction of a lower olefin (C₂- through C₆- alkyl) with maleic anhydride in the manner described by Wollenberg et al., supra., and --SR substituents are prepared by reaction of RSH with maleic anhydride. In other advantageous embodiments, the amino terminus is derivatized to form a benzyloxycarbonyl-NH-- or a substituted benzyloxycarbonyl-NH-group. This derivative is produced by reaction with approximately an equivalent amount or an excess of benzyloxycarbonyl chloride (CBZ-Cl) or a substituted CBZ-Cl in a suitable inert diluent (e.g., dichloromethane) preferably containing a tertiary amine to scavenge the acid generated during the reaction. In yet another derivative, the Nterminus comprises a sulfonamide group by reaction with an equivalent amount or an excess (e.g., 5 equivalents) of R-S(O), Cl in a suitable inert diluent (dichloromethane) to convert the terminal amine into a sulfonamide, where R is alkyl and preferably lower alkyl. Preferably, the inert diluent contains excess tertiary amine (e.g., 10 equivalents) such as diisopropylethylamine, to scavenge the acid generated during reaction. Reaction conditions are otherwise conventional as described above. Carbamate groups are produced at the amino terminus by reaction with an equivalent amount or an excess (e.g., 5 equivalents) of ROC(O)Cl or R-OC(O)OC₆H₄-p-NO₂ in a suitable inert diluent (e.g., dichloromethane) to convert the terminal amine into a carbamate, where R is alkyl, preferably lower alkyl. Preferably, the inert diluent contains an excess (e.g., about 10 equivalents) of a tertiary amine, such as diisopropylethylamine, to scavenge any acid generated during reaction. Reaction conditions are otherwise conventional as described above. Urea groups are formed at the amino terminus by reaction with an equivalent amount or an excess (e.g., 5 equivalents) of RN=C=O in a suitable inert diluent (e.g., dichloromethane) to convert the terminal amine into a urea (i.e., RNHC(O)NH--) group where R is as defined above. Preferably, the inert diluent contains an excess (e.g., about 10 equivalents) of a tertiary amine, such as diisopropylethylamine. Reaction conditions are otherwise conventional as described above.

In preparing peptide mimetics wherein the C-terminal carboxyl group is replaced

5

10

15

20

25

30

by an ester (e.g., -C(O)OR where R is alkyl and preferably lower alkyl), resins used to prepare the peptide acids are employed, and the side chain protected peptide is cleaved with base and the appropriate alcohol, e.g., methanol. Side chain protecting groups are then removed in the usual fashion by treatment with hydrogen fluoride to obtain the desired ester. In preparing peptide mimetics wherein the C-terminal carboxyl group is replaced by the amide -C(O)NR₃R₄, a benzhydrylamine resin is used as the solid support for peptide synthesis, wherein R, and R, are independently alkyl, most preferably lower alkyl. Upon completion of synthesis, hydrogen fluoride treatment to release the peptide from the support results directly in the free peptide amide (i.e., the C-terminus is -C(O)NH₂). Alternatively, use of chloromethylated resin during peptide synthesis coupled with reaction with ammonia to cleave the side chain protected peptide from the support yields the free peptide amide, and reaction with an alkylamine or a dialkylamine yields a side chain protected alkylamide or dialkylamide (i.e., the C-terminus is -C(O)NRR, where R and R₁ are independently alkyl and preferably lower alkyl). Side chain protection is then removed in the usual fashion by treatment with hydrogen fluoride to give the free amides, alkylamides, or dialkylamides.

In another alternative embodiment, the C-terminal carboxyl group or a C-terminal ester can be induced to cyclize by displacement of the -OH or the ester (-OR) of the carboxyl group or ester, respectively, with the N-terminal amino group to form a cyclic peptide. For example, after synthesis and cleavage to give the peptide acid, the free acid is converted in solution to an activated ester by an appropriate carboxyl group activator such as dicyclohexylcarbodiimide (DCC), for example, in methylene chloride (CH₂Cl₂), dimethyl formamide (DMF), or mixtures thereof. The cyclic peptide is then formed by displacement of the activated ester with the N-terminal amine. Cyclization, rather than polymerization, can be enhanced by use of very dilute solutions according to methods well known in the art.

Peptide mimetics as understood in the art and provided by the invention are structurally similar to the paradigm polypeptide comprising the sequence Arg-Xaa-Xaa-Arg (SEQ ID No. 2), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH₂NH--, --CH₂S--, --CH₂CH₂ --, --CH=CH- (in both *cis* and *trans* conformers), --COCH₂--, --CH(OH)CH₂ --, and --CH₂SO--, by methods known in the art and further described in the following references: Spatola,1983, *in* CHEMISTRY AND BIOCHEMISTRY OF AMINO ACIDS, PEPTIDES, AND

PROTEINS, (Weinstein, ed.), Marcel Dekker: New York, p. 267; Spatola, 1983, Peptide Backbone Modifications 1: 3; Morley, 1980, Trends Pharm. Sci. pp. 463-468; Hudson et al., 1979, Int. J. Pept. Prot. Res. 14: 177-185; Spatola et al., 1986, Life Sci. 38: 1243-1249; Hann, 1982, J. Chem. Soc. Perkin Trans. I 307-314; Almquist et al., 1980, J. Med. Chem. 23: 1392-1398; Jennings-White et al., 1982, Tetrahedron Lett. 23: 2533; Szelke et al., 1982, European Patent Application, Publication No. EP045665A; Holladay et al., 1983, Tetrahedron Lett. 24: 4401-4404; and Hruby, 1982, Life Sci. 31: 189-199, each of which is incorporated herein by reference. Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: being more economical to produce, having greater chemical stability or enhanced pharmacological properties (such half-life, absorption, potency, efficacy, etc.), reduced antigenicity, and other properties.

5

10

15

20

25

30

The invention also provides a detailed structural determination of the reactive site loop (RSL) of the PDX protein. The importance of this structure determination, inter alia, relates to the determination that this structure, the RSL, forms a rigid backbone having the positively-charged guanidino residues of each of the Arg residues extending in space away in the same direction from the rest of the PDX protein. This determination results in the capacity to produce peptido-, organo- and chemical mimetics of this portion of the PDX protein structure, said mimetics being capable of inhibiting furin protease activity.

In a second embodiment, the invention provides organic molecules designed to mimic the peptides of the invention by having chemically-similar atoms, moieties or collections thereof in positions analogous to the positions of the atoms, moieties and collections thereof in the Arg-Xaa-Xaa-Arg-comprising peptides of the invention. In a preferred embodiment, these mimetic compounds have the structure:

C(L1-R1)-E-F-G-H-I-J(L2-R2)

wherein "C" is equivalent to the alpha carbon of the first arginine residue, and "J" is equivalent to the alpha carbon of the second arginine residue, in the Arg-Xaa-Xaa-Arg-containing peptides of the invention. Most preferably, "C" and "J" are conformationally hindered as described herein to enable the mimetic to stably adopt the configuration for the (L1-R1) and (L2-R2) substituents present in the Arg-Xaa-Xaa-Arg-containing

5

10

15

20

25

30

peptides of the invention. "E", "G", and "I" represent planar moieties having dimensions similar to those of a peptide bond (as disclosed in Metzler, 1977, BIOCHEMISTRY: THE CHEMICAL REACTIONS OF LIVING CELLS, Academic Press: New York, p.64). Non-limiting examples of such moieties include vinyl groups and substituted vinyl groups. "F" and "H" are equivalent to the alpha carbons of the two "Xaa" residues in the peptides of the invention, and are preferably conformationally-hindered, for example, by having "H" be restricted in a cyclopentane, cyclopentene, furan, tetrahydrofuran, thiophene, pyrrole, or pyrrolidine ring structure, or by covalent linkage to sterically-hindered groups, such as t-butyl, phenyl, benzyl or substituted phenyl or benzyl groups. The structure represented by E-F-G-H-I is most preferably substantially planar and deviates from this planar structure (for example, by bending, defined herein as flexion above or below the plane defined by E-F-G-H-I) by no more than from about 1 to about 20 degrees, more preferably from about 1 to about 10 degrees, and most preferably by no more than about 5 degrees from said plane. The length of the molecule along the distance between the "C" and "J" components (C-E-F-G-H-I-J) is preferably from about 7.5 to about 11.5 Angstroms, more preferably from about 8.5 to about 10.5 Angstroms, and most preferably about 9.5 Angstroms. R1 and R2 are positivelycharged residues linked to "C" and "J", respectively, by linker groups L1 and L2, respectively, wherein the distance between "C" and L1 and the distance between "J" and L2 is substantially equivalent to the distances between the alpha carbon atoms and the guanidino groups of each of the arginine residues in the Arg-Xaa-Xaa-Arg-containing peptides of the invention. Preferably, R1 and R2 are from about 5 to about 7 Angstroms, more preferably from about 5.6 to about 6.7 Angstroms, and most preferably about 6.2 Angstroms away from their respective alpha carbon equivalents, "C" and "J", and the length of L1 and L2 is chosen to maintain this relative positioning in the mimetic molecule. In addition, R1 and R2 are displaced relative to each other along the longitudinal axis of the molecule to subtend an angle of from about 15 to about 25 degrees, more preferably from about 18 to about 21 degrees, and most preferably about 20 degrees. This arrangement is illustrated in Figure 1B, Left and Right, where the arginine sidechains of both arginine residues in the Arg-Ile-Pro-Arg pharmacophore of the preferred peptide of the invention are shown in orange and red.

The invention provides a pharmacophore for the reactive site loop of the α₁antitrypsin variant Portland (SEQ ID No. 1) defined by the sequence Arg₃₅₅-Ile₃₅₆-Pro₃₅₇-

Arg₃₅₈ in this protein. This pharmacophore is represented in Figure 1A, wherein the atom designated "3" is the alpha carbon atom of Arg₃₅₅, and the atom designated "12" is the alpha carbon atom of Arg₃₅₈. These values were derived from the analysis of the crystal structure of the Portland protein as generated by the SYBYL* program (Tripos, Inc., St. Louis, MO); the complete structural information used in these analyses is contained in Appendix A disclosed herewith. The specific portion of these data relating to the sequence Arg₃₅₅-Ile₃₅₆-Pro₃₅₇-Arg₃₅₈ is as follows:

5

MOTA	2635	N	ARG	355	-21.632	17.983	16.258	1.00 29.44
ATOM	2636	CA	ARG	355	-23.045	18.139	16.553	1.00 28.26
ATOM	2637	С	ARG	355	-23.749	16.840	16.270	1.00 30.07
ATOM	2638	0	ARG	355	-24.289	16.646	15.192	1.00 31.20
MOTA	2639	CB	ARG	355	-23.609	19.272	15.673	1.00 0.00
ATOM	2640	CG	ARG	355	-22.959	20.610	16.072	1.00 0.00
ATOM	2641	CD	ARG	355	-23.486	21.721	15.145	1.00 0.00
MOTA	2642	NE	ARG	355	-22.825	22.976	15.457	1.00 0.00
ATOM	2643	CZ	ARG	355	-23.124	24.073	14.823	1.00 0.00
MOTA	2644	NH1	ARG	355	-24.026	24.089	13.887	1.00 0.00
MOTA	2645	NH2	ARG	355	-22.507	25.176	15.134	1.00 0.00
ATOM	2645	N	ILE	356	-23.743	15.932	17.265	1.00 21.27
MOTA	2647	CA	ILE	356	-24.424	14.667	17.057	1.00 19.01
ATOM	2648	С	ILE	356	-25.898	14.621	17.330	1.00 26.05
ATOM	2649	0	ILE	356	-26.268	15.297	18.392	1.00 26.38
ATOM	2650	CB	ILE	356	-23.787	13.551	17.907	1.00 20.54
ATCM	2651	CG1	ILE	356	-22.307	13.409	17.503	1.00 19.50
MOTA	2652	CG2	ILE	356	-24.521	12.219	17.649	1.00 21.25
ATOM	2653	CD1	ILE	356	-21.595	12.415	18.434	1.00 17.49
MOTA	2654	N	PRO	357	-26.758	14.439	16.364	1.00 24.53
MOTA	2655	CA	PRO	357	-29.188	14.615	16.534	1.00 24.83
ATOM.	2656	С	PRO	357	-28.782	13.579	17.447	1.00 33.16
MOTA	2657	0	PRO	357	-28.209	12.517	17.631	1.00 34.40
ATOM	2658	CB	PRO	357	-28.715	14.367	15.106	1.00 25.84
MOTA	2659	CG	PRO	357	-27.572	13.703	14.306	1.00 29.85
ATOM	2660	CD	PRO	357	-26.275	13.877	15.121	1.00 24.59
MOTA	2661	N	ARG	358	-29.953	13.908	18.026	1.00 31.16
ATOM	2662	CA	ARG	358	-30.616	12.936	18.877	1.00 30.88
MOTA	2663	С	ARG	358	-31.428	12.004	18.024	1.00 31.32
MOTA	2664	0	ARG	358	-32.569	12.288	17.695	1.00 31.76
ATOM	2665	CB	ARG	358	-31.466	13.637	19.957	1.00 0.00
MOTA	2666	CG	ARG	358	-32.415	14.682	19.338	1.00 0.00
MOTA	2667	CD	ARG	358	-33.096	15.460	20.478	1.00 0.00
	0.00	470	ARG	358	-34.540	15.347	20.380	1.00 0.00
MOTA	2668	NE CZ	ARG	358	-35.327	16.130	21.061	1.00 0.00
MOTA	2669	_	ARG	358	-34.853	17.034	21.867	1.00 0.00
ATOM	2670			358	-36.616	16.007	20.933	1.00 0.00
MOTA	2671	NH2	AKG	330	- 20.410			

wherein "ATOM" indicates the number of the atom in the analyzed sequence, the residue number is shown in column 5, the chemical identity of the residue at each position is shown in column 4, and the analyzed atom is shown in column 3. In column 3, "N" is a peptide nitrogen, "CA" is the alpha carbon, "C" is the peptide carbonyl carbon, "O" is the peptide carbonyl oxygen, "CB", "CG", and "CD" are sidechain methyl or methylene carbon atoms, "NE" is the imino nitrogen of the guanidino group of arginine, "CZ" is the carbon atom of the guanidino group of arginine, and "NH1" and "NH2" are the amino nitrogen atoms of the guanidino group of arginine. Columns 6, 7 and 8 represent the positional information of each atom in the x, y and z axes, respectively. These aspects of the invention are further illustrated in Figure 1B, which shows perspective views of the SYBYL model of the RSL of PDX.

The positional information relating the atoms in this structure is shown in Tables 1, II and III:

TABLE I

14	
1.	,

5

10

Atom Number	Angle (degrees)
1-2-3	31.64
2-3-3.1	36.93
2-3-4	36.26
3.1-3-4	35.05
3-4-5	29.95
4-5-6	31.94
5-6-7	35.69
6-7-8	29.22
7-8-9	30.85
8-9-10	30.1
9-10-11	31.75
10-11-12	36.07
11-12-12.1	35.72
11-12-13	30.48
12-12.1-13	34.3

25

20

30

TABLE II

Atoms	Distance (Angstroms)
3-3.5	6.18
12-12.5	6.1
3-12	9.48

TABLE III

10

5

Atom	Degrees							
	w	φ (phi)	ψ (psi)					
3	-178.5	-87	85.29					
6	179.09	82.73	126					
9	-177.2	-76.9	157.9					
12	177.45	-76.9	157.9					

15

20

The complete positional data for the PDX protein is disclosed herein in Appendix A.

Mimetic analogs of the Arg-Xaa-Xaa-Arg-containing peptides of the invention may also be obtained using the principles of conventional or rational drug design (see, Andrews et al., 1990, Proc. Alfred Benzon Symp. 28: 145-165; McPherson, 1990, Eur. J. Biochem. 189:1-24; Hol et al., 1989a, in Molecular Recognition: Chemical and Biochemical Problems, (Roberts, ed.), Royal Society of Chemistry; pp. 84-93; Hol, 1989b, Arzneim-Forsch. 39:1016-1018; Hol, 1986, Agnew Chem. Int. Ed. Engl. 25: 767-778, the disclosures of which are herein incorporated by reference).

25

In accordance with the methods of conventional drug design, the desired mimetic molecules are obtained by randomly testing molecules whose structures have an attribute in common with the structure of a "native" Arg-Xaa-Xaa-Arg peptide. The quantitative contribution that results from a change in a particular group of a binding molecule can be determined by measuring the biological activity of the putative mimetic (furin-inhibiting activity) in comparison with the furin-inhibiting activity of the Arg-Xaa-Xaa-Arg-containing peptide. In a preferred embodiment of rational drug design, the mimetic is designed to share an attribute of the most stable three-dimensional conformation of

30

the Arg-Xaa-Xaa-Arg peptide. Thus, for example, the mimetic may be designed to possess chemical groups that are oriented in a way sufficient to cause ionic, hydrophobic, or van der Waals interactions that are similar to those exhibited by the furin-inhibiting peptides of the invention, as disclosed herein.

5

10

15

20

25

30

The preferred method for performing rational mimetic design employs a computer system capable of forming a representation of the three-dimensional structure of the Arg-Xaa-Xaa-Arg-containing peptide, such as those exemplified by Hol, 1989a, *ibid.*; Hol, 1989b, *ibid.*; and Hol, 1986, *ibid.* Molecular structures of the peptido-, organo- and chemical mimetics of the peptides of the invention are produced according to those with skill in the art using computer-assisted design programs commercially available in the art. Examples of such programs include SYBYL 6.5[®], HQSAR[™], and ALCHEMY 2000[™] (Tripos); GALAXY[™] and AM2000[™] (AM Technologies, Inc., San Antonio, TX); CATALYST[™] and CERIUS[™] (Molecular Simulations, Inc., San Diego, CA); CACHE PRODUCTS[™], TSAR[™], AMBER[™], and CHEM-X[™] (Oxford Molecular Products, Oxford, CA) and CHEMBUILDER3D[™] (Interactive Simulations, Inc., San Diego, CA).

The peptido-, organo- and chemical mimetics produced using the positional information disclosed herein using, for example, art-recognized molecular modeling programs are produced using conventional chemical synthetic techniques, most preferably designed to accommodate high throughput screening, including combinatorial chemistry methods. Combinatorial methods useful in the production of the peptido-, organo- and chemical mimetics of the invention include phage display arrays, solidphase synthesis and combinatorial chemistry arrays, as provided, for example, by SIDDCO, Tucson, Arizona; Tripos, Inc.; Calbiochem/Novabiochem, San Diego, CA; Symyx Technologies, Inc., Santa Clara, CA; Medichem Research, Inc., Lemont, IL; Pharm-Eco Laboratories, Inc., Bethlehem, PA; or N.V. Organon, Oss, Netherlands. Combinatorial chemistry production of the peptido-, organo- and chemical mimetics of the invention are produced according to methods known in the art, including but not limited to techniques disclosed in Terrett, 1998, COMBINATORIAL CHEMISTRY, Oxford University Press, London; Gallop et al., 1994, "Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries," J. Med. Chem. 37: 1233-51; Gordon et al., 1994, "Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions," J. Med. Chem. 37: 1385-1401; Look et al., 1996,

Bioorg. Med. Chem. Lett. 6: 707-12; Ruhland et al., 1996, J. Amer. Chem. Soc. 118: 253-4; Gordon et al., 1996, Acc. Chem. Res. 29: 144-54; Thompson & Ellman, 1996, Chem. Rev. 96: 555-600; Fruchtel & Jung, 1996, Angew. Chem. Int. Ed. Engl. 35: 17-42; Pavia, 1995, "The Chemical Generation of Molecular Diversity", Network Science Center, www.netsci.org; Adnan et al., 1995, "Solid Support Combinatorial Chemistry in Lead Discovery and SAR Optimization," Id., Davies and Briant, 1995, "Combinatorial Chemistry Library Design using Pharmacophore Diversity," Id., Pavia, 1996, "Chemically Generated Screening Libraries: Present and Future," Id.; and U.S. Patents, Nos. 5,880,972 to Horlbeck; 5,463,564 to Agrafiotis et al.; 5,331573 to Balaji et al.; and 5,573,905 to Lerner et al.

5

10

15

20

25

30

The invention also provides antibacterial and antiviral methods. The invention provides methods for blocking endoproteolytic activation of bacterial toxins. Bacterial targets of the antibacterial methods provided by this invention include but are not limited to any bacteria that produces an endoproteolytically-activated toxin, such as diphtheria toxin produced by *Corynebacterium diptheriae*, exotoxin A of *Pseudomonas aurigenosa*, tetanus toxin, the enterotoxins of *Escherichia coli* and *Vibrio cholerae*, protective antigen of *Bacillus anthracis* and the neurotoxin and C2 toxin of *Clostridium botulinum*. Preferred toxins are those that are proteolytically processed at a consensus furin recognition site (-Arg-Xaa-Xaa-Arg-). Preferred embodiments include *Corynebacterium diptheriae*, *Pseudomonas aeruginosa* and *Bacillis anthracis*.

Viral targets of antiviral methods provided include but are not limited to picornaviruses (e.g., poliovirus and rhinovirus); orthomyxovirusus (e.g., influenza virus); paramyxoviruses (e.g., measles virus and mumps virus); coronaviruses; rhabdoviruses (e.g., rabies virus and vesicular stomatitis virus); togaviruses (e.g., Semliki Forest virus and yellow fever virus); bunyaviruses (e.g., California encephalitis virus); arenaviruses (e.g., Lassa fever virus); rubella virus; reoviruses (e.g., Colorado tick fever virus); hepatitis viruses; adenoviruses; herpesviruses (e.g., herpes simplex virus); and oncogenic viruses, including papilloma viruses, RNA tumor viruses, or retroviruses, and lentiviruses (e.g., human immune deficiency virus). The most preferred viruses are the human immunodeficiency viruses (HIV-1 and HIV-2) and human cytomegalovirus (HCMV).

Cells intended to be protected by the methods provided by this invention include but are not limited to human, canine, bovine, murine, leporine, porcine, ovine, simian,

feline, hircine, and equine cells. The preferred cells are human cells. More preferred cells are human T lymphocytes (T cells), and the most preferred human T cells are those human T cells expressing the cell surface antigen CD4.

The methods of the present invention may be used to treat donated human blood or plasma to protect transfusion recipients from viral infection from contaminating virus. The methods of the present invention may be used to treat human semen to protect embryos derived from such semen, and mothers bearing such embryos or impregnated with such semen, from contaminating virus. In a preferred embodiment, the contaminating virus is HIV-1. In another preferred embodiment, the contaminating virus is HCMV.

5

10

15

20

25

30

The present invention provides methods for inhibiting bacterial infection in a human. The invention also provided for treating a human infected with a bacteria. These methods provided by the invention comprise the step of administering a therapeutically-effective amount of a peptide or peptide mimetic of the invention to the human, most preferably as a pharmaceutical composition comprising a pharmaceutically-acceptable carrier. The invention also provides pharmaceutically acceptable compositions effective for use with the methods provided by the invention comprising the peptides and peptide mimetics of the invention and a pharmaceutically acceptable carrier.

The present invention provides methods for inhibiting viral infection in a human. The invention also provided for treating a human infected with a virus. These methods provided by the invention comprise the step of administering a therapeutically-effective amount of a peptide or peptide mimetic of the invention to the human, most preferably as a pharmaceutical composition comprising a pharmaceutically-acceptable carrier. Preferred viruses of these embodiments of the invention are HIV-1 and HCMV. The invention also provides pharmaceutically acceptable compositions effective for use with the methods provided by the invention comprising the peptides and peptide mimetics of the invention and a pharmaceutically acceptable carrier.

Another embodiment of the present invention includes methods for treating immunosuppression in a human associated with viral infection. Yet another embodiment of the present invention provides a method of prophylaxis for treating a human exposed to infection with a virus, in a particular those directly at risk of infection as a result of intimate contact with humans infected with a virus of tissues or bodily

fluids contaminated by a virus. The preferred virus of these embodiments of the invention is HIV-1. The invention also provides pharmaceutically acceptable compositions effective for use with the methods provided by the invention comprising the peptides and peptide mimetics of the invention and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

The invention also provides methods for inhibiting proteolytic processing of a biologically active protein or peptide in a cell comprising contacting such cells with the gene therapy delivery system of the invention. The methods of the invention encompass inhibition of proteolytic processing of any biologically active molecule that is proteolytically processed by furin *in vivo* or *in vitro*, including but not limited to peptide hormones, neuropeptides, growth factors, coagulation factors, serum albumin, cell surface receptors, and adhesion molecules. Preferred biologically active proteins are pro-β-nerve growth factor, blood coagulation factor protein Factor IX, pro-von Willibrand factor, complement factor C3 and renin, for alleviation of pathological conditions and disease states in an animal, preferably a human, associated with over-expression, over-production or otherwise inappropriate synthesis of such biologically-active proteins.

Preparation of pharmaceutically acceptable compositions provided by the present invention can be prepared using methods well know to those with skill in the art. Any of the common pharmaceutical-acceptable carriers such as sterile saline solution, plasma, etc., can be utilized for preparing the pharmaceutical compositions provided by the invention. Routes of administration include but are not limited to oral, nasal (including inhalation into the lungs), intravenous, parenteral, rectal, optical, aural and transdermal. The pharmaceutical compositions of the invention may be administered intravenously in any conventional medium for intravenous injection such as a aqueous saline medium, or in blood plasma medium. Such medium may also contain conventional pharmaceutical adjunct materials such as, for example, pharmaceutically acceptable salts to adjust the osmotic pressure, buffers, preservatives and the like. Among the preferred media are normal saline and plasma.

Formulations may further include one or more diluents, fillers, emulsifiers, preservatives, buffers, excipients, and the like, and may be provided in such forms as liquids, powders, emulsions, suppositories, liposomes, transdermal patches and tablets, for example. The agents of the present invention can be formulated according to known

methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES (1980, 16th ed., Osol, ed., Mack Press:Easton PA).

5

10

15

20

25

30

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb a mimetic of the invention. Such controlled delivery may be exercised by selecting appropriate macromolecules (for example polyesters, polyamino acids, polyvinyl pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate) and the concentration of macromolecules as well as the methods of incorporation in order to control release. Another possible method to control the duration of action by controlled release preparations is to incorporate a peptide or peptide mimetic of the invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL **SCIENCES** (1980).

Compositions for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers, adjuncts or occlusive dressings can be used to increase tissue permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include wetting

agents, emulsifying and suspending agents, or sweetening, flavoring, coloring or perfuming agents.

A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

Generally, the dosage needed to provide an effective amount of the composition will vary depending upon such factors as the recipient's age, condition, gender, and extent of disease, if any, and other variables which can be adjusted by one of ordinary skill in the art. The pharmaceutical compositions and medicaments of the invention are preferably in the form of a unit dose in solid, semi-solid and liquid dosage forms such as tablets, pills, powders, liquid solutions or suspensions, and injectable and infusible solutions. Effective dosage ranges from about 100 µg/kg to about 10 mg/kg of body weight are contemplated.

The Examples which follow are illustrative of specific embodiments of the invention, and various uses thereof. They set forth for explanatory purposes only, and are not to be taken as limiting the invention.

20

5

10

15

EXAMPLE 1

Furin Inhibition Assay

In order to assess the biological activity of the mimetics of the invention, a furin inhibition assay was developed as follows.

25

30

A model system was prepared for assaying furin-catalyzed maturation of *Pseudomonas aeruginosa* exotoxion A (PEA), as shown in Figures 2, 3 and 4. *P. aeruginosa* pro-exotoxion A is cleaved at the sequence Arg-Gln-Pro-Arg₂₇₉ in the II + Ib subunit of the toxin in endosomes of infected cells (Figure 2). In the assay, illustrated in Figure 3, A7 cells were incubated in the presence and absence of test PDX mimetics of the invention for 1h under cell culture conditions. The media containing the mimetic was then exchanged for fresh media containing a growth-inhibitory amount of pro-PEA, and incubated under cell culture conditions for 6h. Thereafter, the cells were metabolically labeled with ³⁵S-labeled methionine and/or cysteine for 30min, and

cellular proteins precipitated with trichloroacetic acid. PDX itself or an Arg-Xaa-Xaa-Arg-containing peptide was used as a positive control, and α_1 -antitrypsin Pittsburgh (PIT; SEQ ID No. 6) was used as a negative control in these assays.

The results of a standardized test assay showing the difference in protein synthesis in the presence of PDX or PIT is shown in Figure 4. Preincubation of A7 cells in the presence of increasing concentrations of PDX resulted in increasing levels of protein synthesis in the presence of PEA compared with cells incubated without PDX. In contrast, little or no protective effect was observed by incubating A7 cells with PIT at any concentration tested. These results indicated that the assay was effective in detecting PDX-mediated inhibition of furin-catalyzed maturation of pro-PEA.

5

10

15

20

25

30

An alternative assay was used to demonstrate inhibition of furin-mediated maturation of human cytomegalovirus (HCMV) glycoprotein gB. This assay is illustrated in Figures 2, and 5 through 8. HCMV glycoprotein pro-gB is cleaved at the sequence Arg-Thr-Lys-Arg₄₆₅ in the pro-protein, yielding gp110 and gp55, linked by a disulfide bond, as shown in Figure 5. In the assay, illustrated in Figure 6, U373 cells were infected with HCMV Towne at a multiplicity of infection of about 0.1. After infection, the putative inhibitor was added and incubated with the infected cells for 5 days under cell culture conditions. Cell extracts were then prepared and used to infect a naive culture of human foreskin fibroblasts (HFF), which were incubated in the absence of inhibitor for 7 days. These cells were immobilized under agar using conventional techniques, and the number of infected viral plaques determined by counting. Foscarnet, a phosphate group analog and known HCMV inhibitor, was assayed in parallel as a positive control.

The results of a standardized test assay using PDX and foscarnet are shown in Figure 7. PDX has an ED₅₀ that is about ten-fold lower than foscarnet for plaque formation, illustrating its enhanced inhibitory capacity. These results indicated that the assay was effective in detecting PDX-mediated inhibition of furin-catalyzed maturation of HCMV glycoprotein gB.

In an additional or alternative embodiment of this assay, parallel cultures of infected U373 cells were grown in the presence of inhibitor and cellular proteins isolated after 5 days of infected cell growth. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) was performed on the cellular protein extract, followed by Western blotting and hybridization with an immunological reagent specific for

glycoprotein gB, all techniques performed as described in Sambrook *et al.* (1989, MOLECULAR CLONING: A LABORATORY MANUAL, CSPLP: New York). In these assays PDX itself or an Arg-Xaa-Xaa-Arg-containing peptide was used as a positive control, and α_1 -antitrypsin Pittsburgh (PIT; SEQ ID No. 6) was used as a negative control.

5

The results of a standardized test assay showing the difference in HCMV glycoprotein gB maturation in the presence of PDX or PIT is shown in Figure 8. In the absence of either PDX or PIT, infected cells were observed to contain predominantly gp110 and gp55, separated by treatment with β-mercaptoethanol prior to SDS-PAGE analysis (lane labeled gB/Wt in the Figure). A similar level of cleavage was seen for cells incubated with the PIT variant of α₁-antitrypsin (lane labeled gB/PIT) In contrast, the predominant band observed in the cell extract from infected cells incubated in the presence of PDX was pro-gB (lane labeled gB/PDX). These results indicated that the assay was effective in detecting PDX-mediated inhibition of furin-catalyzed maturation of HCMV glycoprotein gB.

15

10

These assays are used to characterize the furin inhibitory capacity of the mimetic compounds of the invention. Preferably, cells are incubated in varying concentrations of the mimetic, in parallel with a standardized concentration of PDX or an Arg-Xaa-Xaa-Arg-containing peptide. Furin inhibitory capacity of putatuve mimetics of the invention are characterized by quantitative comparisons of the extent of furin inhibition, measured as described herein by ED₅₀ of plaque formation, percent protein synthesis, or K, of furin activity, to PDX or Arg-Xaa-Xaa-Arg-containing peptides of the invention.

20

25

It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications or alternatives equivalent thereto are within the spirit and scope of the invention as set forth in the appended claims. The disclosure of all patents, patent applications and publications are hereby incorporated by reference herein in their entirety.

APPENDIX A

18-MAR-98 HEADER: PROTEIN COMPND: Alphal-PDX; Francois Jean: GENERATED BY SYBYL, A PRODUCT OF TRIPOS AUTHOR: ASSOCIATES, INC. 372 PHE ASN LYS ILE THR PRO ASN LEU ALA GLU PHE ALA PHE SEORES 372 SER LEU TYR ARG GLN LEU ALA HIS GLN SER ASN SER THR SEORES 2 372 ASN ILE LEU PHE SER PRO VAL SER ILE ALA THR ALA PHE SEORES 3 372 ALA MET LEU SER LEU GLY THR LYS ALA ASP THR HIS ASP SEORES 4 372 GLU ILE LEU GLU GLY LEU ASN PHE ASN LEU THR GLU ILE SEORES 5 372 PRO GLU ALA GLN ILE HIS GLU GLY PHE GLN GLU LEU LEU SEORES 6 372 ARG THR LEU ASN GLN PRO ASP SER GLN LEU GLN LEU THR SEQRES 7 372 THR GLY ASN GLY LEU PHE LEU SER GLU GLY LEU LYS LEU SEORES 8 372 VAL ASP LYS PHE LEU GLU ASP VAL LYS LYS LEU TYR HIS SEQRES 9 372 SER GLU ALA PHE THR VAL ASN PHE GLY ASP THR GLU GLU SEQRES 10 372 ALA LYS LYS GLN ILE ASN ASP TYR VAL GLU LYS GLY THR SECRES 11 372 GLN GLY LYS ILE VAL ASP LEU VAL LYS GLU LEU ASP ARG SEQRES 12 372 ASP THR VAL PHE ALA LEU VAL ASN TYR ILE PHE PHE LYS SEQRES 13 372 GLY LYS TRP GLU ARG PRO PHE GLU VAL LYS ASP THR GLU SEQRES 14 372 GLU GLU ASP PHE HIS VAL ASP GLN VAL THR THR VAL LYS SEQRES 15 372 VAL PRO MET MET LYS ARG LEU GLY MET PHE ASN ILE GLN SEQRES 16 SEQRES 17 372 HIS CYS LYS LYS LEU SER SER TRP VAL LEU LEU MET LYS 372 TYR LEU GLY ASN ALA THR ALA ILE PHE PHE LEU PRO ASP SEQRES 18 372 GLU GLY LYS LEU GLN HIS LEU GLU ASN GLU LEU THR HIS SEQRES 19 372 ASP ILE ILE THR LYS PHE LEU GLU ASN GLU ASP ARG ARG SEQRES 20 372 SER ALA SER LEU HIS LEU PRO LYS LEU SER ILE THR GLY SEQRES 21 372 THR TYR ASP LEU LYS SER VAL LEU GLY GLN LEU GLY ILE SEQRES 22 372 THR LYS VAL PHE SER ASN GLY ALA ASP LEU SER GLY VAL SEQRES 23 372 THR GLU GLU ALA PRO LEU LYS LEU SER LYS ALA VAL HIS SEQRES 24 SEQRES 25 372 LYS ALA VAL LEU THR ILE ASP GLU LYS GLY THR GLU ALA SEQRES 26 372 ALA GLY ALA MET PHE LEU GLU ARG ILE PRO ARG SER ILE 372 PRO PRO GLU VAL LYS PHE ASN LYS PRO PHE VAL PHE LEU SEORES 27 372 MET ILE GLU GLN ASN THR LYS SER PRO LEU PHE MET GLY SEQRES 28 372 LYS VAL VAL ASN PRO THR GLN LYS SEQRES 29 -5.833 16.226 -6.690 1.00 23.61 MOTA 1 N PHE 23 -5.581 16.146 -8.162 1.00 22.30 MOTA 2 CA PHE 23 -4.949 14.813 -8.503 1.00 27.28 MOTA 3 C PHE 23 -4.316 14.204 -7.657 1.00 30.22 23 MOTA 4 O PHE -4.683 17.297 -8.647 1.00 23.48 23 MOTA 5 CB PHE -3.343 17.340 -7.974 1.00 24.85 MOTA 6 CG PHE 23 -3.166 18.068 -6.790 1.00 27.54 MOTA 7 CD1 PHE 23 -2.252 16.649 -8.512 1.00 28.27 MOTA 8 CD2 PHE 23 -1.910 18.106 -6.144 1.00 31.11 MOTA 9 CE1 PHE 23 -0.991 16.676 -7.881 1.00 29.35 10 CE2 PHE MOTA 23 -0.819 17.409 -5.694 1.00 29.09 MOTA 11 CZ PHE 23 -5.012 14.457 -9.781 1.00 21.95 12 N ASN 24 MOTA -4.526 13.181 -10.299 1.00 22.18 24 MOTA 13 CA ASN -3.772 13.430 -11.610 1.00 27.00 MOTA 14 C ASN 24 -4.015 14.434 -12.289 1.00 27.82 ASN 24 MOTA 15 0 -5.739 12.281 -10.583 1.00 22.61 MOTA 16 CB ASN 24 -6.844 12.467 -9.568 1.00 53.45 MOTA 17 CG ASN 24 -6.682 12.147 -8.396 1.00 51.94 MOTA 18 OD1 ASN 24 -7.938 13.068 -9.996 1.00 50.72 MOTA 19 ND2 ASN 24 -2.888 12.509 -11.981 1.00 23.21 MOTA 20 N LYS 25 -2.112 12.664 -13.216 1.00 23.36 MOTA 21 CA LYS 25

	22	_	LYS	25	-1.863	11.278	-13.835	1.00 30.07
ATOM	22 23		LYS	25	-2.147		-15.016	1.00 32.07
MOTA	24	CB	LYS	25	-0.780	•	-12.867	1.00 25.58
ATOM ATOM	25		LYS	25	-0.046	• • • • •	-14.012	1.00 44.07
	26	CD	LYS	25	1.032		-13.430	1.00 53.95
MOTA	27	CE	LYS	25	2.011		-14.465	1.00 71.25
ATOM	28	NZ	LYS	25	3.041	16.381	-13.843	1.00 88.52
MOTA	29	N	ILE	26	-1.364	10.360	-13.003	1.00 23.41
ATOM ATOM	30	CA	ILE	26	-1.080		-13.397	1.00 19.71
	31	C	ILE	26	-1.881		-12.454	1.00 22.13
MOTA MOTA	32	0	ILE	26	-1.928		-12.636	1.00 20.14
ATOM	33	СВ	ILE	26	0.431		-13.237	1.00 20.71
ATOM	34	CG1	ILE	26	0.800		-11.759	1.00 18.42
ATOM	35	CG2		26	1.292		-13.907	1.00 22.50
ATOM	36		ILE	26	2.225		-11.516	1.00 7.76
ATOM	37	N	THR	27	-2.535		-11.470	1.00 18.07
ATOM	38	CA	THR	27	-3.312	7.978		1.00 18.05
ATOM	39	c	THR	27	-4.328	7.029	-11.048	1.00 21.15
ATOM	40	ō	THR	27	-4.554		-10.482	1.00 22.20
ATOM	41	СВ	THR	27	-4.013	8.924	-9.507	1.00 30.10
ATOM	42	0G1	THR	27	-5.184	9.463	-10.134	1.00 38.18
MOTA	43	CG2	THR	27	3.080	10.036	-9.116	1.00 31.04
ATOM	44	N	PRO	28	-4.995		-12.147	1.00 16.92
ATOM	45	CA	PRO	28	-5.951		-12.631	1.00 16.23
ATOM	46	С	PRO	28	-5.213		-13.050	1.00 21.85
ATOM	47	0	PRO	28	-5.700		-12.837	1.00 21.37
ATOM	48	CB	PRO	28	-6.672		-13.782	1.00 17.43
HOTA	49	CG	PRO	28	-5.805		-14.120	1.00 23.33
ATOM	50	CD	PRO	28	-5.158		-12.819	1.00 18.87
ATOM	51	N	ASN	29	-3.978	5.350	-13.515	1.00 19.08
MOTA	52	CA	ASN	29	-3.127	4.249		1.00 18.64
MOTA	53	С	asn	29	-2.694		-12.733	1.00 21.94
MOTA	54	0	ASN	29	-2.648		-12.768	1.00 23.88
MOTA	55	CB	ASN	29	-1.899		-14.725	1.00 19.53
MOTA	56	CG	ASN	29	-2.261		-16.027	1.00 48.12
MOTA	57		ASN	29	-2.498		-17.054	1.00 41.88
MOTA	5 B	ND2	ASN	29	-2.252		-15.999	1.00 45.32
MOTA	59	N	LEU	30	-2.441		-11.627	1.00 16.35
MOTA	60	CA	LEU	30	-2.033		-10.392 -9.735	1.00 22.44
MOTA	61	С	LEU	30	-3.195	2.744	-9.735	1.00 23.44
MOTA	62	0	LEU	30	-3.013	1.679 4.464	-9.402	1.00 16.22
MOTA	63	СВ	LEU	30	-1.405 -0.017	5.008	-9.772	1.00 20.92
ATOM	64	CG	LEU	30		6.007	-8.746	1.00 20.56
MOTA	65		LEU	30	0.443	3.875	-9.911	1.00 22.13
MOTA	66		LEU	30	-4.390	3.311	-9.873	1.00 19.06
ATOM	67	N	ALA	31	-5.618	2.752	-9.301	1.00 17.69
MOTA	68	CY	ALA	31	-5.914	1.378	-9.880	1.00 20.90
MOTA	69	C	ALA	31	-6.024	0.387	-9.152	1.00 18.85
ATOM	70	0	ALA	31	-6.790	3.681	-9.570	1.00 18.32
ATOM	71	CB	ALA	31 32	-6.041		-11.198	1.00 19.72
MOTA	72	N	GLU	32 32	-6.316		-11.879	1.00 20.59
ATOM	73 74	CX	GLU	32	-5.190		-11.671	1.00 24.22
ATOM	74	C	GLU		-5.393		-11.765	1.00 25.34
MOTA	75	0	GLU	32	-3.333			

MOTA	76	CB	GLU	32	-6.610	0.341 -13.35	8 1.00 22.34
MOTA	77	CC	GLU	32	-7.765	1.321 -13.58	5 1.00 31.78
ATOH	78	CD	GLU	32	-9.057	0.949 -12.85	
MOTA	79	OE1	GLU	32	-9.177	-0.176 -12.32	8 1.00 28.81
HOTA	80		GLU	32	-9.977	1.790 -12.83	
ATOM	81	N	PHE	33	-4.011	-0.404 -11.35	
ATOM	82	CA	PHE	33	-2.856	-1.244 -11.05	
HOTA	83	C	PHE	33	-3.087	-1.883 -9.66	
ATOH	84	ō	PHE	33	-2.928	-3.091 -9.48	
ATOM	85	СВ	PHE	33	-1.573	-0.406 -11.06	
ATOM	86	CG	PHE	33	-0.397	-1.090 -10.43	
ATOH	87		PHE	33	0.130	-2.245 -10.99	
ATOM	88		PHE	33	0.161	-0.597 -9.26	
ATOM	89		PHE	33	1.203	-2.903 -10.39	
ATON	90		PHE	33	1.228	-1.242 -8.66	
ATOM	91	CZ	PHE	33	1.751	-2.399 -9.22	
ATON	92	N	ALA	34	-3.567	-1.066 -8.74	
ATOM	93	CA	ALA	34	-3.863	-1.492 -7.37	
ATOM	94	C	ALA		-4.936	-2.562 -7.38	
ATOM	95	0	ALA	34			
ATOM	96	СВ	ALA	34	-4.844 -4.319	-3.548 -6.669 -0.311 -6.55	
ATOH	97	N.		34			
ATOM	98	CA	PHE	35	-5.947		
ATOM	99	C	PHE	35	-7.033 -6.574		
ATOM	100	0	PHE	35 35	- · · ·	-4.663 -8.91° -5.740 -8.42°	
ATOH	101	СВ	PHE		-6.896 -8.195		
ATOH	102	CG	PHE	35 35	-8.195	-2.771 -9.100 -1.551 -8.479	
ATOM	103		PHE			-1.392 -7.09	
ATOM	104		PHE	35	-8.854	-0.561 -9.269	
ATOM	105		PHE	35	-9.389	-0.264 -6.52	
ATOM	105		PHE	35 35	-9.437 -9.974	0.568 -8.69	
ATOM	107	CZ	PHE	35 35	-9.974	0.715 -7.329	
ATOM	108	N	SER	35 36	-5.763	-4.558 -9.959	
ATOM	109	CA	SER	36	-5.232	-5.714 -10.659	
ATOM	110	C	SER	36	-4.386	-6.509 -9.689	
ATOH	111	0	SER	36	-4.593	-7.701 -9.491	
ATOM	112	СВ	SER	36	-4.393	-5.258 -11.853	
ATOH	113	OG	SER	36	-4.134	-6.331 -12.735	
ATOM	114	N	LEU	37	-3.499	-5.811 -8.998	
ATOH	115	CA	LEU	3 <i>7</i> 37	-2.626	-6.459 -8.037	
ATON	116	C	LEU	37	-3.417	-7.009 -6.844	
ATOH	117		LEU	3 <i>7</i> 37	-3.014	-7.991 -6.228	
ATOH	118	O CB	LEU	37	-1.536	-5.483 -7.586	
ATOH	119	CG	LEU	37	-0.433	-5.990 -6.656	
ATOM	120	CD1		37	0.354	-7.114 -7.294	
ATOH	121	CD2		37	0.480	-4.836 -6.336	
ATOH	122	N N	TYR	38	-4.602	-6.454 -6.613	
HOTA	123	CA		38	-5.457	-6.869 -5.510	
ATOM	124	C	TYR	38	-6.204	-8.160 -5.836	
ATOM	125	0	TYR				
ATOM	126	CB	TYR	38	-6.054	-9.175 -5.148	
ATOM	127		TYR	38	-6. 44 3	-5.751 -5.153	
		CG	TYR	38	-7.398 7.050	-6.137 -4.054	
MOTA	128	CD1		38	-7.050	-5.991 -2.715	
MOTA	129	CD2	TYR	38	-8.616	-6.744 -4.352	1.00 19.23

ATOM	130		TYR	38	-7.890	-6.453	-1.704	1.00 17.18
ATOM	131	CE2		38	-9.453	-7.203	-3.350	1.00 20.11
MOTA	132	CZ	TYR	38	-9.085	-7.058	-2.037	1.00 24.15
HOTA	133	ОН	TYR	38	-9.915	-7.535	-1.063	1.00 26.53
MOTA	134	N	ARG	39	-6.979	-8.121	-6.913	
MOTA	135	CA	ARG	39	-7.761	-9.263	-7.383	1.00 17.33
ATOM	136	С	ARG	39	-6.856	-10.469	-7.617	1.00 19.96
ATOM	137	0	ARG	39	-7.296		-7.538	1.00 19.48
ATOM	138	CB	ARG	39	-8.526	-8.870	-8.656	1.00 17.17
MOTA	139	CG	ARG	39	-9.451	-7.667	-8.419	1.00 24.64
MOTA	140	CD	ARG	39	-10.224	-7.239	-9.648	1.00 34.67
MOTA	141 142	NE CZ	ARG	39 39	-11.117 -10.927	-6.112	-9.378 -9.849	1.00 66.12
atom Atom	143		ARG ARG		-10.927	-4.885	-10.616	1.00 58.52
ATOM	144		ARG	39 39	-11.786	-3.920	-9.552	1.00 57.78
ATOM	145	N	GLN	40	-5.581		-7.833	1.00 16.43
MOTA	146	CA	GLN	40	-4.525		-8.058	1.00 17.01
ATOM	147	C	GLN	40		-11.145	-6.780	1.00 24.64
ATOM	148	0	GLN	40		-13.176	-6.757	1.00 26.03
ATOM	149	СВ	GLN	40	-3.242		-8.399	1.00 18.53
ATOM	150	CG	GLN	40	-2.028		-8.646	1.00 32.27
ATOM	151	CD	GLN	40		-12.108	-9.853	1.00 65.70
ATOM	152		GLN	40		-11.814		1.00 68.30
ATOM	153		GLN	40	-1.469		-9.876	1.00 60.66
ATOM	154	N	LEU	41	-4.036	-11.213	-5.711	1.00 20.30
MOTA	155	CA	LEU	41	-3.769	-11.784	-4.412	1.00 19.36
ATOM	156	С	LEU	41	-5.054	-12.277	-3.745	1.00 25.88
MOTA	157	0	LEU	41	-5.039	-13.298	-3.048	1.00 26.53
MOTA	158	CB	LEU	41	-3.067	-10.724	-3.540	1.00 18.71
MOTA	159	CG	LEU	41	-1.757	-10.130	-4.089	1.00 23.44
MOTA	160	CD1	LEU	41	-1.403	-8.856	-3.362	1.00 22.82
ATOM	161	CD2	LEU	41	-0.631		-3.986	1.00 26.55
MOTA	162	N	ALA	42	-6.175	-11.626	-4.053	1.00 21.70
ATOM	163	CA	YLY	42	-7.468	-11.968	-3.442	1.00 20.36
MOTA	164	С	ALA	42	-8.019		-3.903	1.00 25.53
MOTA	165	0	ALA	42		-13.955	-3.176	1.00 26.06
ATOM	166	CB	ALA	42		-10.856	-3.683	1.00 20.25
MOTA	167	N	HIS	43		-13.705	-5.130	1.00 20.57
MOTA	168	CX	HIS	43	-8.147		-5.657	1.00 20.04
MOTA	169	С	HIS	43		-16.082	-5.208	1.00 24.10
ATOM	170	0	HIS	43		-17.009	-4.509 -7.186	1.00 23.78
atom Atom	171 172	CB	HIS	43		-14.960	-7.186 -7.708	1.00 21.07
ATOM	173	CG	HIS	43 43		-14.594 -13.285	-7.708	1.00 27.71
ATOM	174		HIS	43		-15.348	-7.974	1.00 26.92
MOTA	175		HIS	43		-13.258	-8.411	1.00 27.25
ATOH	176		HIS	43		-14.495	-8.418	1.00 27.36
MOTA	177	NE2	GLN	44		-15.956	-5.615	1.00 20.85
ATOM	178	CA	GLN	44		-16.901	-5.276	1.00 21.40
ATOM	179	C	GLN	44		-17.227	-3.797	1.00 27.47
ATOM	180	Ö	GLN	44		-18.303	-3.403	1.00 27.52
MOTA	181	СВ	GLN	44		-16.267	-5.590	1.00 23.51
ATOM	182	CG	GLN	44		-16.941	-4.935	1.00 67.92
MOTA	183	CD	GLN	44		-16.070	-4.998	1.00109.81
				-				-

MOTA	184	OE1	GLN	44.	-1.078	-15.031	-5.662	1.00109.42
MOTA	185	NE2	GLN	44	-0.045	-16.469	-4.288	1.00109.97
HOTA	186	N	SER	45	-4.545	-16.255	-2.995	1.00 26.78
MOTA	187	CA	SER	45	-4.570	-16.361	-1.544	1.00 27.70
MOTA	188	С	SER	45	-6.057	-16.282	-1.198	1.00 33.50
MOTA	189	0	SER	45	-6.787	-15.491	-1.800	1.00 37.36
MOTA	190	CB	SER	45	-3.789	-15.194	-0.941	1.00 31.49
ATOH	191	OG	SER	45	-3.343	-15.506	0.359	1.00 47.22
HOTA	192	N	ASN	46	-6.507	-17.107	-0.260	1.00 27.55
MOTA	193	CA	ASN	46	-7.930	-17.130	0.093	1.00 27.41
ATOM	194	С	ASN	46	-8.360	-16.608	1.471	1.00 28.59
MOTA	195	0	ASN	46	-9.262	-15.772	1.567	1.00 29.04
HOTA	196	CB	ASN	46	-8.533	-18.519	-0.183	1.00 33.22
MOTA	197	CG	ASN	46	-7.501	-19.636	-0.130	1.00 74.24
HOTA	198	OD1	ASN	46	-6.480	-19.544	0.577	1.00 66.23
ATOM	199	ND2	ASN	46	-7.767	-20.708	-0.870	1.00 69.34
ATOH	200	N	SER	47	-7.744	-17.107	2.538	1.00 23.10
ATOM	201	CA	SER	47	-8.091	-16.653	3.888	1.00 22.42
ATOM	202	С	SER	47		-15.935	4.568	1.00 27.21
MOTA	203	O	SER	47		-16.296	5.673	1.00 27.54
ATOM	204	СВ	SER	47	-8.578	-17.824	4.742	1.00 24.67
ATOH	205	OG	SER	47		-17.784	4.892	1.00 37.40
ATOM	206	N	THR	48	-6.414	-14.889	3.912	1.00 24.53
MOTA	207	CA	THR	48	-5.269	-14.126	4.410	1.00 24.98
ATOM	208	С	THR	48	-5.488	-12.602	4.367	1.00 29.19
MOTA	209	0	THR	48		-12.102	3.477	1.00 32.29
ATOM	210	СВ	THR	48		-14.482	3.564	1.00 37.64
ATOM	211	OG1	THR	48	-3.640	-15.851	3.794	1.00 44.67
ATOM	212	CG2	THR	48		-13.591	3.903	1.00 37.25
ATOM	213	N	ASN	49	-4.942	-11.874	5.342	1.00 21.11
ATOH	214	CA	ASN	49	-5.067	-10.413	5.342	1.00 20.02
MOTA	215	С	ASN	49	-4.150	-10.014	4.197	1.00 25.63
ATOM	216	0	ASN	49	-3.078	-10.599	4.023	1.00 28.91
MOTA	217	СВ	ASN	49	-4.565	-9.775	6.645	1.00 23.44
ATOM	218	CG	ASN	49	-5.366	-10.201	7.851	1.00 57.54
ATOM	219	QD1	ASN	49	-6.599	-10.128	7.845	1.00 44.13
ATOM	220	ND2	ASN	49	-4.679	-10.672	8.888	1.00 54.42
MOTA	221	N	ILE	50	-4.588	-9.067	3.383	1.00 19.43
ATOM	222	CA	ILE	50	-3.795	-8.628	2.247	1.00 17.16
MOTA	223	С	ILE	50	-3.352	-7.206	2.512	1.00 19.43
MOTA	224	0	ILE	50	-4.120	-6.415	3.043	1.00 20.29
MOTA	225	CB	ILE	50	-4.630	-8.692	0.942	1.00 19.64
ATOM	226	CG1	ILE	50	-5.152	-10.119	0.736	1.00 19.17
MOTA	227	CG2	ILE	50	-3.804	-8.221	-0.252	1.00 19.61
MOTA	228	CD1	ILE	50	-6.136	-10.249	-0.374	1.00 11.82
MOTA	229	N	LEU	51	-2.105	-6.885	2.194	1.00 15.23
MOTA	230	CA	LEU	51	-1.631	-5.526	2.401	1.00 15.02
MOTA	231	С	LEU	51	-0.471	-5.202	1.491	1.00 20.37
MOTA	232	0	LEU	51	0.576	-5.833	1.575	1.00 21.91
MOTA	233	CB	LEU	51	-1.217	-5.303	3.856	1.00 15.01
MOTA	234	CG	LEU	51	-0.860	-3.870	4.258	1.00 19.98
MOTA	235	CD1	LEU	51	-2.033	-2.949	4.017	1.00 19.60
MOTA	236		LEU	51	-0.437	-3.830	5.701	1.00 20.30
MOTA	237	N	PHE	52	-0.666	-4.247	0.594	1.00 15.96

MOTA	238	CX	PHE	52	0.399	-3.844	-0.303	1.00 15.36
MOTA	239	С	PHE	52	0.270	-2.368	-0.613	1.00 19.59
MOTA	240	0	PHE	52	-0.803	-1.788	-0.458	1.00 19.47
MOTA	241	CB	PHE	52	0.390	-4.676	-1.595	1.00 16.46
MOTA	242	CG	PHE	52	-0.890	-4.566	-2.394	1.00 16.66
ATOM	243	CD1		52	-1.957	-5.430	-2.155	1.00 17.01
HOTA	244	CD3		52	-1.014	-3.624	-3.410	1.00 16.97
MOTA	245	CE1		52	-3.108	-5.356	-2.912	1.00 18.40
MOTA	246	CE2		52	-2.165	-3.552	-4.166	1.00 16.88
MOTA	247	CZ	PHE	52	-3.210	-4.419	-3.917	1.00 15.91
MOTA	248	N	SER	53	1.383	-1.761	-1.006	1.00 14.83
MOTA	249	CA	SER	53	1.391	-0.357	-1.365	1.00 14.34
MOTA	250	С	SER	53	1.428	-0.278	-2.891	1.00 21.85
HOTA	251	0	SER	53	2.412	-0.704	-3.515	1.00 22.16
MOTA	252	CB	SER	53	2.609	0.332	-0.738	1.00 13.76
MOTA	253	OG	SER	53	2.700	1.710	-1.076	1.00 14.03
HOTA	254	N	PRO	54	0.317	0.151	-3.519	1.00 19.23
MOTA	255	CA	PRO	54	0.307	0.249	-4.977	1.00 17.87
MOTA	256	С	PRO	54	1.308	1.295	-5.408	1.00 21.51
ATOM	257	0	PRO	54	1.957	1.153	-6.443	1.00 22.63
ATOM	258	CB	PRO	54	-1.129	0.670	-5.276	1.00 18.91
MOTA	259	CG	PRO	54	-1.889	-0.022	-4.200	1.00 23.13
MOTA	260	CD	PRO	54	-1.052	0.321	-2.994	1.00 19.69
ATOM	261	N	VAL	55	1.539	2.243	-4.501	1.00 17.72
MOTA	262	CA	VAL	55	2.461	3.348	-4.717	1.00 17.45
MOTA	263	С	VAL	55	3.930	2.952	-4.583	1.00 23.27
MOTA	264	0	VAL	55	4.702	3.173	-5.511	1.00 22.83
MOTA	265	CB	VAL	55	2.158	4.528	-3.769	1.00 20.90
MOTA	266		VAL	55	3.299	5.529	-3.784	1.00 21.20
MOTA	267		VAL	55	0.882	5.220	-4.199	1.00 20.16
ATOM	268	N	SER	56	4.316		-3.450	1.00 21.09
MOTA	269	CA	SER	56	5.708	1.971	-3.240	1.00 21.01
MOTA	270	С	SER	56	6.175	1.003	-4.318	1.00 22.56
MOTA	271	0	SER	56	7.256	1.172	-4.891 -1.822	1.00 22.87 1.00 23.93
MOTA	272	СВ	SER	56	5.942	1.402		
ATOM	273	OG	SER	56	5.405	0.099	-1.647 -4.664	1.00 27.29
MOTA	274	N	ILE	57	5.312	0.054	-5.680	1.00 13.32
MOTA	275	CA	ILE	57	5.654 5.902	-0.298	-7.053	1.00 17.44
ATOM	276	C	ILE	57 53	6.986	-0.425	-7.615	1.00 17.44
ATOM	277	0	ILE	57 57	4.562	-2.017	-5.806	1.00 18.01
ATOM	278	CB	ILE	57 57	4.511	-2.876	-4.556	1.00 17.03
MOTA	279		ILE	57	4.844	-2.929	-6.974	1.00 20.11
MOTA	280		ILE	57 57	3.466	-3.942	-4.631	1.00 17.46
ATOM	281		ILE	57 50	4.894	0.394	-7.570	1.00 14.71
ATOM	282	N	ALA	5 8	4.959	1.047	-8.866	1.00 15.31
ATOM	283	CA	ALA	58 58	6.147	1.987	-8.999	1.00 22.96
ATOH .	284	С	ALA	58 58	6.987	1.814	-9.885	1.00 25.76
ATOM.	285	0	ALA	58	3.670	1.790	-9.134	1.00 15.90
MOTA	286	CB	ALA	58 59	6.203	2.990	-8.131	1.00 16.71
MOTA MOTA	287	N	THR	59 59	7.287	3.959	-8.132	1.00 14.91
	288	CA	THR	59	8.656	3.253	-8.180	1.00 19.37
MOTA	289 290	C	THR		9.585	3.726	-8.835	1.00 17.29
MOTA		0	THR	59 50	7.168	4.863	-6.887	1.00 11.03
MOTA	291	CB	THR	59	7.100	4.003	0.007	

ATOH	292	OG1	THR	59 .	5.843	5.400	-6.830	1.00 7.10
ATOM	293	CG2		59	8.155	6.014	-6.946	1.00 4.73
ATON	294	N	ALA	60	8.711	2.055	-7.604	1.00 17.18
ATOM	295	CA	ALA	60	9.922	1.246	-7.555	1.00 16.17
ATOM	296	C	ALA	60	10.247	0.670	-8.924	1.00 17.24
ATOM	297	ŏ	ALA	60	11.380	0.744	-9.384	1.00 17.12
ATOM	298	CB	ALA	60	9.762	0.122	-6.551	1.00 16.99
ATOH	299	N	PHE	61	9.244	0.097	-9.571	1.00 13.66
ATOM	300	CA	PHE	61	9.423	-0.497	-10.888	1.00 14.45
MOTA	301	С	PHE	61	9.413		-12.019	1.00 24.16
MOTA	302	0	PHE	61	9.881		-13.122	1.00 25.72
ATOM	303	CB	PHE	61	8.412		-11.119	1.00 15.76
MOTA	304	CG	PHE	61	8.907		-10.671	1.00 17.86
MOTA	305	CD1	PHE	61	8.887	-3.314	-9.320	1.00 19.64
HOTA	306	CD2	PHE	61	9.440		-11.594	1.00 21.88
MOTA	307	CE1	PHE	61	9.396	-4.536	-8.905	1.00 22.58
HOTA	308	CE2	PHE	61	9.952		-11.186	1.00 22.88
MOTA	309	CZ	PHE	61	9.929	-5.421	-9.842	1.00 21.09
MOTA	310	N	ALA	62	8.984		-11.699	1.00 20.90
MOTA	311	CA	ALA	62	8.961		-12.661	1.00 19.14
ATOM	312	С	ALA	62	10.359		-12.637	1.00 26.12
MOTA	313	0	ALA	62	10.842		-13.636 -12.255	1.00 20.12
MOTA	314	CB	ALA	62	7.936		-11.472	1.00 18.82
MOTA	315	N	MET	63	10.987		-11.258	1.00 17.35
MOTA	316	CA	MET	63	12.334 13.304		-11.889	1.00 23.98
MOTA	317	C	MET	63 63	14.313		-12.463	1.00 27.31
MOTA	318	0	MET	63 63	12.588	3.986		1.00 19.12
MOTA	319	CB	MET	63	14.018	4.202	-9.335	1.00 21.76
MOTA	320	CG SD	MET	63	14.350	3.308	-7.827	1.00 25.88
MOTA	321 322	CE	MET	63	14.496	1.636	-8.499	1.00 22.73
MOTA MOTA	323	N	LEU	64	12.946		-11.842	1.00 18.80
ATOM	324	CA	LEU	64	13.771		-12.398	1.00 18.07
MOTA	325	c	LEU	64	13.683	0.510	-13.903	1.00 23.00
ATOM	326	ō	LEU	64	14.634	0.119	-14.573	1.00 24.06
MOTA	327	СВ	LEU	64	13.328	-0.814	-11.853	1.00 17.89
ATOM	328	CG	LEU	64	14.035		-12.384	1.00 22.43
ATOM	329		LEU	64	15.469		-11.924	1.00 22.35
HOTA	330			64	13.307		-11.918	1.00 25.46
MOTA	331	N	SER	65	12.551		-14.437	1.00 20.59
ATOM	332	CA	SER	65	12.361		-15.874	1.00 20.79
MOTA	333	С	SER	65	13.360	1.880	-16.533	
MOTA	334	0	SER	65	13.646		-17.716	1.00 26.49 1.00 24.46
ATOM	335	CB	SER	65	10.947		-16.230	
MOTA	336	OG	SER	65	10.758		-15.960	1.00 37.12 1.00 18.20
MOTA	337		LEU	66	13.887		-15.763	1.00 16.09
MOTA	338		LEU	66	14.848		-16.292 -16.658	1.00 19.61
ATOM	339		LEU	66	16.145		-10.658	1.00 19.51
MOTA	340		LEU	66	16.942		-15.274	1.00 15.19
MOTA	341			66	15.130		-13.274	1.00 17.85
MOTA	342			66	13.921		-13.683	1.00 17.63
MOTA	343		1 LEU	66	14.335 13.251		-15.902	1.00 16.61
MOTA	344		2 LEU	66			-16.096	1.00 18.62
MOTA	345	N	GLY	67	16.370	1.704	-10.030	4.00 10.00

A TOOM	346	CA	GLY	67	17.582	1.159 -16.384	1.00 19.69
MOTA MOTA	347	c	GLY	67	17.302	0.034 -17.361	1.00 25.74
ATOM	348	ō	GLY	67	18.188	-0.756 -17.691	1.00 27.68
ATOM	349	N	THR	68	16.063	-0.038 -17.832	1.00 18.44
ATOM	350	Cλ	THR	68	15.677	-1.079 -18.769	1.00 15.20
ATOM	351	С	THR	68	15.511	-0.525 -20.177	1.00 16.21
ATOM	352	0	THR	68	15.277	0.671 -20.357	1.00 16.20
ATOM	353	СВ	THR	68 .	14.367	-1.777 -18.321	1.00 10.45
ATOM	354	0G1	THR	68	13.305	-0.815 -18.219	1.00 9.49
ATOM	355	CG2	THR	68	14.557	-2.454 -16.987	1.00 1.57
ATOM	356	N	LYS	69	15.575	-1.408 -21.165	1.00 11.62
MOTA	357	CA	LYS	69	15.435	-1.009 -22.557	1.00 12.61
MOTA	358	C	LYS	69	14.490	-1.962 -23.291	1.00 20.44
ATOM	359	0	LYS	69	14.153	-3.029 -22.762	1.00 21.50
MOTA	360	CB	LYS	69	16.815	-1.000 -23.238	1.00 14.74
MOTA	361	CG	LYS	69	17.764	0.048 -22.676	1.00 43.51
MOTA	362	CD	LYS	69	19.066	0.138 -23.445	1.00 64.68
MOTA	363	CE	LYS	69	19.975	1.219 -22.860 1.376 -23.619	1.00 74.82
MOTA	364	NZ	LYS	69	21.244	-1.521 -24.426	1.00 16.85
MOTA	365	N	λĹλ	70	13.948 13.083	-2.372 -25.248	1.00 17.01
ATOM	366	CA	ALA	70 70	11.969	-3.131 -24.526	
MOTA	367	C	ALA	70 70	11.415	-2.636 -23.551	1.00 23.28
ATOM	368	O CB	ALA	70	13.933	-3.341 -26.054	1.00 18.23
MOTA	369 370	N	ASP	71	11.653	-4.333 -25.010	1.00 18.01
ATOM ATOM	371.		ASP	71	10.585	-5.172 -24.451	1.00 18.92
MOTA	372	C	ASP	71	10.616	-5.216 -22.920	1.00 26.30
MOTA	373	ō	ASP	71	9.603	-4.985 -22.263	1.00 27.15
ATOM	374	СВ	ASP	71	10.672	-6.612 -24.988	1.00 22.13
MOTA	375	CG	ASP	71	10.770	-6.686 -26.513	1.00 51.31
ATOM	376		ASP	71	10.518	-5.694 -27.221	1.00 59.09
MOTA	377		ASP	71	11.099	-7.783 -27.013	1.00 60.06
ATOM	378	N	THR	72	11.812	-5.438 -22.371	1.00 24.21
MOTA	379	CA	THR	72	12.044	-5.535 -20.925	1.00 22.94
MOTA	380	С	THR	72	11.427	-4.353 -20.167	1.00 24.66 1.00 24.36
MOTA	381	0	THR	72	10.811	-4.517 -19.112	1.00 24.30
MOTA	382		THR	72	13.569	-5.555 -20.653 -6.639 -21.376	1.00 30.43
MOTA	383			72	14.173	-5.721 -19.167	1.00 28.97
MOTA	384			72	13.862 11.600	-3.172 -20.743	1.00 19.21
ATOM	385		HIS	73	11.120	-1.931 -20.187	1.00 17.25
MOTA	386		HIS	73 73	9.629		1.00 24.90
MOTA	387		HIS	73	8.888	-1.507 -19.441	1.00 25.89
MOTA	388 389			73	11.892	-0.793 -20.848	1.00 16.14
MOTA MOTA	390			73	11.303	0.545 -20.624	1.00 18.99
ATOM	391		1 HIS	73	10.438	1.137 -21.525	1.00 21.51
HOTA	392		2 HIS	73	11.467	1.437 -19.622	1.00 21.38
ATOM	393		1 HIS	73	10.103	2.334 -21.083	1.00 21.60
MOTA	394		2 HIS	73	10.713	2.539 -19.936	1.00 21.99
MOTA	395		ASP	74	9.209	-1.800 -21.656	1.00 21.47
MOTA	396			74	7.814		1.00 19.79
MOTA	397		ASP	74	6.922		1.00 21.39
MOTA	398		ASP	74	5.805		1.00 23.80
MOTA	399				7.650	-1.873 -23.540	1.00 21.48

MOTA	400	CG	ASP	. 74	8.272	-0.790 -24.39	4 1.00 31.57
MOTA	401		1 ASP	74	8.786		
MOTA	402		2 ASP	74	8.230		
MOTA	403	N	GLU	75	7.455		
MOTA	404	CX	GLU	75	6.738		
MOTA	405	C	GLU		6.482		
ATOM	406	0	GLU	.75	5.425		
MOTA	407	CB		75	7.539	-5.989 -20.22	
MOTA	408	CG		75	6.812	-7.174 -19.65	
ATOM	409	CD		75	7.666	-8.413 -19.71	
MOTA	410		1 GLU	75	8.603	-8.484 -18.88	
ATOM	411	OE:		75	7.419	-9.301 -20.548	
ATOM	412	N	ILE	76	7.445	-3.542 -18.196	
MOTA	413	CA	ILE	76	7.290	-3.055 -16.828	
ATOM	414	C	ILE	76	6.214	-1.984 -16.793	
ATOM ATOM	415	0	ILE	76	5.222	-2.122 -16.079	
ATOM	416 417	CB CG:	ILE	76	8.614	-2.476 -16.251	
ATOM	418	CG		76 26	9.663	-3.582 -16.092	
ATOM	419	CD		76 26	8.362	-1.794 -14.914	
ATOM	420	N N	LEU	76 77	10.958 6.382	-3.133 -15.411	
ATOM	421	CA	LEU	77	5.406	-0.941 -17.599	
ATOM	422	c	LEU	77	4.007	0.148 -17.633 -0.357 -17.981	
ATOM	423	ō	LEU	77	3.017	0.042 -17.370	
ATOM	424	СВ	LEU	77	5.839	1.252 -18.602	
ATOM	425	CG	LEU	77	7.174	1.944 -18.299	
MOTA	426	CD1	LEU	77	7.429	3.032 -19.319	
MOTA	427		LEU	77	7.199	2.525 -16.901	
MOTA	428	N	GLU	78	3.930	-1.264 -18.942	
ATOM	429	CA	GLU	78	2.646	-1.819 -19.325	
MOTA	430	С	GLU	78	2.115	-2.691 -18.194	1.00 15.59
MOTA	431	0	GLU	78	0.908	-2.773 -17.979	1.00 13.66
ATOM	432	CB	GLU	78	2.767	-2.619 -20.608	1.00 16.58
MOTA	433	CG	GLU	78	2.803	-1.805 -21.888	1.00 34.30
ATOM	434	CD	GLU	78	3.049	-2.682 -23.092	1.00 66.97
ATOM ATOM	435		GLU	78	2.677	-3.877 -23.057	1.00 63.59
ATOM	436 437		GLU	78	3.629	-2.174 -24.070	1.00 69.86
ATOM	438	N	GLY	79 70	3.027	-3.330 -17.471	1.00 14.27
ATOM	439	CA C	GLY GLY	79 79	2.649	-4.167 -16.341	1.00 16.07
MOTA	440	0	GLY	79 79	2.136 1.340	-3.316 -15.189	1.00 25.07
ATOM	441	N	LEU	80	2.589	-3.768 -14.357 -2.066 -15.140	1.00 27.66
MOTA	442	CA	LEU	80	2.143	-1.135 -14.108	1.00 18.21
MOTA	443	C	LEU	80	0.880	-0.410 -14.555	1.00 14.93 1.00 13.69
MOTA	444	0	LEU	80	0.553	0.668 -14.054	1.00 13.69
ATOM	445	СВ	LEU	80	3.227	-0.115 -13.769	1.00 14.43
MOTA	446	CG	LEU	80	4.536	-0.689 -13.241	1.00 17.68
MOTA	447	CD1	LEU	80	5.522	0.440 -13.082	1.00 17.74
MOTA	448		LEU	80	4.325	-1.444 -11.948	1.00 14.60
ATOM	449	N	asn	81	0.160	-1.027 -15.481	1.00 13.09
MOTA	450	CA	ASN	81	-1.081	-0.470 -15.983	1.00 14.16
ATOM	451	С	asn	81	-0.914	0.888 -16.674	1.00 18.30
ATOM	452	0	ASN	81	-1.660	1.831 -16.409	1.00 16.62
MOTA	453	CB	asn	81	-2.106	-0.407 -14.846	1.00 17.98
							· · ·

HOTA	454	CG	ASN	81	-2.968	-1.649 -14.764	1.00 44.40
HOTA	455	OD1	ASN	81	-4.062	-1.682 -15.329	1.00 52.81
MOTA	456	ND2	ASN	81	-2.504	-2.668 -14.041	1.00 23.67
HOTA	457	N	PHE	82	0.056	0.954 -17.586	1.00 15.78
MOTA	458	CA	PHE	82	0.342	2.158 -18.353	1.00 15.33
MOTA	459	С	PHE	82	0.273	1.836 -19.838	1.00 23.98
ATOM	460	0	PHE	82	1.019	0.993 -20.342	1.00 27.23
ATOH	461	CB	PHE	82	1.729	2.725 -18.027	1.00 16.18
ATOM	462	CG	PHE	82	1.782	3.505 -16.746	1.00 17.62
ATOM	463	CD1		82	1.321	4.808 -16.694	1.00 18.51
HOTA	464	CD2		82	2.292	2.929 -15.584	1.00 21.78
MOTA	465		PHE	82	1.364	5.529 -15.502	1.00 21.96
MOTA	466	CE2		82	2.339	3.642 -14.386	1.00 22.22
MOTA	467	CZ	PHE	82	1.874	4.943 -14.343	1.00 20.41
ATOM	468	N	ASN	83	-0.634	2.502 -20.542	1.00 16.94
ATOM	469	CA	ASN	83	-0.785	2.291 -21.972	1.00 15.03
ATOH	470	C	ASN	83	0.244	3.141 -22.670	
ATOM	471	ō	ASN	83	-0.001	4.310 -22.979	1.00 22.28
ATOM	472	СВ	ASN	83	-2.179	2.689 -22.429	1.00 24.99
ATOM	473	CG	ASN	83	-2.427		1.00 16.41
ATOM	474		ASN	83	-1.513	2.344 -23.868	1.00 38.32
ATOM	475		ASN	83	-3.668	1.946 -24.587	1.00 32.12
ATOM	476	N	LEU	84	1.376	2.490 -24.303	1.00 35.98
ATOM	477	CA	LEU	84	2.474	2.528 -22.978	1.00 17.89
ATOM	478	C	LEU	84		3.248 -23.603	1.00 16.80
ATOM	479	0	LEU	84	2.171	3.967 -24.911	1.00 20.88
ATOM	480	СВ	LEU	84	2.840	4.945 -25.247	1.00 20.85
ATOM	481	CG	LEU		3.679	2.324 -23.764	1.00 15.58
ATOM	482		LEU	84	4.156	1.723 -22.446	1.00 17.53
ATOM	483		LEU	84	5.318	0.790 -22.689	1.00 16.86
ATOM	484	N		84	4.522	2.829 -21.484	1.00 15.95
ATOM	485	CA	THR	85 05	1.136	3.523 -25.610	1.00 18.16
ATOM	486	C	THR	85 05	0.769	4.122 -26.884	1.00 19.35
ATOM	487	0	THR	85	-0.057	5.385 -26.715	1.00 22.48
ATOM	488	СВ	THR	85	-0.248	6.144 -27.658	1.00 22.41
ATOM	489		THR	85	-0.018	3.131 -27.758	1.00 39.97
ATOM	490	OG1 CG2	THR	85	-1.145	2.622 -27.029	1.00 45.76
ATOM	491		THR	85	0.874	1.978 -28.176	1.00 40.70
ATOM		N	GLU	86	-0.544	5.613 -25.507	1.00 18.29
ATOM	492	CX	GLU	86	-1.367	6.777 -25.260	1.00 17.94
ATOM	493 494	С	GLU	86	-0.731	7.802 -24.354	1.00 19.87
		0	GLU	86	-1.012	8.991 -24.480	1.00 20.95
ATOM ATOM	495	CB	GLU	86	-2.721	6.348 -24.717	1.00 20.11
	496	CG	GLU	86	-3.508	5.480 -25.689	1.00 39.84
ATOM	497	CD	GLU	86	-4.902	5.171 -25.209	1.00 72.19
MOTA	498	0E1		86	-5.297	5.685 -24.141	1.00 63.51
ATOM	499	OE2		86	-5.598	4.403 -25.903	1.00 73.21
ATOM	500	N	ILE	87	0.152	7.357 -23.467	1.00 15.47
MOTA	501	CA	ILE	87	0.806	8.283 -22.547	1.00 16.06
MOTA	502	С	ILE	87	2.312	8.307 -22.730	1.00 21.27
ATOM	503	0	ILE	87	2.974	7.247 -22.757	1.00 21.63
MOTA	504	CB	ILE	87	0.446	8.004 -21.050	1.00 19.45
ATOM	505	CG1		87	1.034	9.101 -20.149	1.00 19.82
MOTA	506	CG2		87	0.925	6.624 -20.616	1.00 19.35
MOTA	507	CD1	ILE.	87	0.602	9.016 -18.693	1.00 34.75

ATOM	508	N	PRO	88	2.868	9.508 -22.968	1.00 16.18
ATOM	509	CA	PRO	88	4.310	9.634 -23.152	
MOTA	510	С	PRO	88	5.024	9.177 -21.886	1.00 18.67
HOTA	511	0	PRO	88	4.678	9.590 -20.783	1.00 17.17
MOTA	512	CB	PRO	88	4.522	11.127 -23.440	1.00 16.75
MOTA	513	CG	PRO	. 88	3.199	11.797 -23.254	1.00 21.07
ATOH	514	CD	PRO	88	2.149	10.739 -23.333	1.00 16.27
MOTA	515	N	GLU	89	6.034	8.331 -22.050	1.00 16.19
ATOM	516	CA	GĽU	89	6.781	7.818 -20.908	1.00 16.21
HOTA	517	С	GLU	89	7.333	8.949 -20.063	1.00 22.88
MOTA	518	0	GLU	89	7.497	8.823 -18.842	1.00 22.93
MOTA	519	CB	GLU	89	7.892	6.896 -21.365	1.00 17.75
MOTA	520	CG	GLU	89	7.401	5.618 -22.033	1.00 34.85
ATOM	521	CD	GLU	89	8.539	4.728 -22.483	1.00 61.89
HOTA	522	OE1		89	9.710	5.040 -22.159	1.00 48.17
MOTA	523	OE3		89	8.262	3.710 -23.154	1.00 62.54
HOTA	524	N.	λLλ	. 90	7.636	10.052 -20.731	1.00 20.84
ATOM	525	CA	ALA	90	8.156	11.236 -20.062	1.00 20.22
ATOM	526	C	ALA	90	7.146	11.696 -19.016	1.00 22.01
ATOM	527	0	ALA	90	7.525	12.203 -17.963	1.00 19.24
ATOM ATOM	528	CB	ALA	90	8.392	12.343 -21.082	1.00 21.10
ATOM	529 530	CA.	gln gln	91	5.864 4.773	11.486 -19.316	1.00 19.33
ATOM	531	CA	GLN	91 91		11.860 -18.430	1.00 19.39
ATOM	532	0	GLN	91	4.609	10.862 -17.306	1.00 23.78
ATOM	533	CB	GLN	91	3.452	11.239 -16.197 12.006 -19.184	1.00 24.85
ATOM	534	CG	GLN	91	3.195	13.409 -19.735	1.00 20.95
ATOM	535	CD	GLN	91	1.749	13.610 -20.170	1.00 48.56
ATOM	536	OE1		91	0.907	12.724 -20.002	1.00 73.81
ATOM	537	NE2		91	1.455	14.776 -20.732	1.00 69.27 1.00 63.27
ATOM	538	N	ILE	92	4.932	9.603 -17.578	1.00 63.27
ATOM	539	CA	ILE	92	4.823	8.557 -16.563	1.00 17.45
ATOM	540	С	ILE	92	5.773	8.855 -15.422	1.00 21.60
ATOM	541	ō	ILE	92	5.363	8.946 -14.272	1.00 22.63
ATOM	542	CB	ILE	92	5.160	7.164 -17.136	1.00 17.45
ATOM	543	CG1	ILE	92	4.097	6.754 -18.160	1.00 17.24
ATOM	544	CG2	ILE	92	5.295	6.150 -16.015	1.00 16.93
ATOM	545	CD1	ILE	92	4.330	5.414 -18.814	1.00 23.97
MOTA	546	N	HIS	93	7.035	9.082 -15.763	1.00 17.87
MOTA	547	CA	HIS	93	8.055	9.374 -14.763	1.00 16.61
MOTA	548	С	HIS	93	7.815	10.736 -14.113	1.00 21.94
ATOM	549	0	HIS	93	7.971	10.877 -12.904	1.00 21.04
ATOM	550	CB	HIS	93	9.449	9.289 -15.385	1.00 16.45
MOTA	551	CG	HIS	93	9.768	7.933 -15.949	1.00 19.48
MOTA	552	ND1	HIS	93	9.691	6.775 -15.205	1.00 21.37
MOTA	553		HIS	93	10.138	7.557 -17.191	1.00 21.86
MOTA	554	CE1	HIS	93	9.994	5.737 -15.962	1.00 21.40
MOTA	555		HIS	93	10.271	6.186 -17.177	1.00 22.02
ATOM	556	N	GLU	94	7.382	11.720 -14.901	1.00 21.50
MOTA	557	CA	GLU	94	7.111	13.062 -14.370	1.00 21.71
ATOM	558	С	GLU	94	5.996	12.961 -13.338	1.00 27.52
MOTA	559	0	GLU	94	6.059	13.576 -12.272	1.00 29.26
MOTA	560	CB	GLU	94	6.704	14.023 -15.488	1.00 23.76
MOTA	561	CG	GLU	94	6.268	15.417 -15.028	1.00 46.66

MOTA	562	CD	GLU	94	5.732		-16.166	1.00100.99
MOTA	563	OE1	GLU	94	5.513	15.769	-17.285	1.00110.00
MOTA	564	OE2	GLU	94	5.517	17.493	-15.933	1.00109.77
HOTA	565	N	GLY	95	5.015	12.116	-13.632	1.00 22.71
HOTA	566	CA	GLY	95	3.903	11.932	-12.723	1.00 21.91
ATOM	567	С	GLY	95	4.352	11.312	-11.407	1.00 26.12
HOTA	568	0	GLY	95	3.928	11.757	-10.337	1.00 26.39
ATOM	569	N	PHE	96	5.247	10.324	-11.477	1.00 20.03
ATOM	570	CA	PHE	96	5.755		-10.283	1.00 17.73
MOTA	571	C	PHE	96	6.559	10.556	-9.384	1.00 23.93
ATOM	572	Ō	PHE	96	6.513	10.436	-8.165	1.00 24.37
ATOM	573	CB	PHE	96	6.598		-10.656	1.00 18.46
ATOM	574	CG	PHE	96	5.784		-10.895	1.00 19.16
ATOM	575		PHE	96	5.127	6.543	-9.838	1.00 23.98
ATOM	576		PHE	96	5.627		-12.172	1.00 19.50
ATOM	577		PHE	96	4.323		-10.057	1.00 24.57
ATOM	578	CE2	PHE	96	4.825	5.534		1.00 22.76
ATON	579	cz	PHE	96	4.174	4.920		1.00 21.77
ATOM	580	N	GLN	97	7.273	11.493	-9.994	1.00 20.80
ATOM	581	CA	GLN	97	8.085	12.438	-9.254	1.00 19.78
ATOM	582	c	GLN	97	7.180	13.352	-8.453	1.00 21.06
ATOM	583	0	GLN	97	7.410	13.575	-7.267	1.00 19.65
ATOM	584	CB	GLN	97	8.961	13.243		1.00 21.62
ATOM	585	CG	GLN	97	10.039	12.401	-10.901	1.00 53.46
ATOM	586	CD	GLN	97	10.845		-11.912	1.00 97.50
ATOM	587		GLN	97	10.669	14.400	-12.070	1.00102.38
ATOM	588		GLN	97	11.729	12.499		1.00 92.80
ATOM	589	N E Z	GLU	98	6.099	13.804	-9.078	1.00 18.84
ATOM	590	CA	GLU	98	5.156	14.693	-8.398	1.00 20.12
ATOM	591	C	GLU	98	4.676	14.065	-7.090	1.00 27.71
ATOM	592	0	GLU	98	4.631	14.715	-6.035	1.00 29.41
ATOM	593	СВ	GLU	98	3.927	14.991	-9.276	1.00 21.69
ATOM	594	CG	GLU	98	4.158		-10.419	1.00 43.54
ATOM	595	CD	GLU	98	4.424	17.394	-9.964	1.00 92.78
ATOM	596		GLU	98	4.622	17.646	-8.753	1.00 95.84
ATOM	597	OE2		98	4.448	18.275		1.00103.56
ATOM	598	N	LEU	99	4.384	12.775	-7.171	1.00 21.26
ATOM	599	CA	LEU	99	3.893	11.999	-6.053	1.00 19.05
ATOM	600	C	LEU	99	4.910	11.927	-4.934	1.00 24.77
ATOM	601	0	LEU	99	4.587	12.186	-3.771	1.00 24.94
ATOM	602	СВ	LEU	99	3.552	10.599	-6.541	1.00 18.47
MOTA	603	CG	LEU	99	2.828	9.714	-5.548	1.00 23.63
ATOM	604		LEU	99	1.698	10.478	-4.922	1.00 23.11
ATOM	605		LEU	99	2.360	8.461	-6.253	1.00 27.37
ATOM	506	N	LEU	100	6.155	11.657	-5.303	1.00 21.61
ATOM	607	CA	LEU	100	7.240	11.541	-4.331	1.00 20.15
ATOM	608	C	LEU	100	7.551	12.896	-3.703	1.00 23.60
ATOM	609	0	LEU	100	7.939	12.970	-2.540	1.00 21.36
ATOM		CB		100	8.491	10.962	-5.006	1.00 20.24
	610 611	CG	LEU LEU	100	8.299	9.633	-5.750	1.00 25.35
ATOM				100	9.589	9.234	-6.433	1.00 25.33
ATOM	612		LEU	100	7.823	8.558	-4.797	1.00 26.21
MOTA	613				7.823	13.960	-4.453	1.00 24.56
MOTA	614	N	ARG	101	7.494	15.338	-4.019	1.00 24.50
ATOM	615	CA	ARG	101	1.474		-4.017	1.00 40.30

HOTA	616	C	ARG	101	6.535	15.594	-2.869	1.00 29.95
HOTA	617	0	ARG	101	6.894	16.189	-1.840	1.00 29.61
HOTA	618	CB	ARG	101	7.196	16.303	-5.172	1.00 31.10
HOTA	619	CG	ARG	101	7.540	17.759	-4.904.	1.00 50.33
MOTA	620	CD	ARG	101	6.916	18.678	-5.963	1.00 78.18
ATOM	621	NE	ARG	101	6.993	20.088	-5.582	1.00 97.33
MOTA	622	CZ	ARG	101	6.475	20.588	-4.462	1.00110.00
MOTA	623	NHl	ARG	101	5.838	19.798	-3.606	1.00109.24
MOTA	624	NH2	ARG	101	6.619	21.876	-4.183	1.00 98.32
MOTA	625	N	THR	102	5.322	15.087	-3.046	1.00 26.75
MOTA	626	CA	THR	102	4.297	15.221	-2.042	1.00 27.11
MOTA	627	С	THR	102	4.624	14.273	-0.900	1.00 31.26
MOTA	628	0	THR	102	4.400	14.585	0.236	1.00 34.20
MOTA	629	CB	THR	102	2.907	14.861	-2.598	1.00 46.57
HOTA	630	OG1	THR	102	2.619	15.665	-3.757	1.00 50.68
HOTA	631	CG2	THR	102	1.841	15.098	-1.543	1.00 50.86
HOTA	632	N	LEU	103	5.202	13.122	-1.176	1.00 24.28
MOTA	633	CA	LEU	103	5.490	12.223	-0.080	1.00 21.81
MOTA	634	C	LEU	103	6.731	12.644	0.744	1.00 28.18
MOTA	635	0	LEU	103	6.821	12.344	1.943	1.00 27.87
MOTA	636	CB	LEU	103	5.573	10.784	-0.605	1.00 20.79
MOTA	637	CG	LEU	103	4.304	10.284	-1.322	1.00 24.82
MOTA	638	CD1	LEU	103	4.471	8.845	-1.787	1.00 25.29
MOTA	639	CD2	LEU	103	3.104	10.398	-0.409	1.00 25.55
ATOM	640	N	ASN	104	7.657	13.385	0.127	1.00 26.19
MOTA	641	CA	ASN	104	8.876	13.829	0.822	1.00 26.92
ATOM	642	С	ASN	104	8.494	14.854	1.879	1.00 29.91
MOTA	643	0	ASN	104	8.663	14.622	3.077	1.00 30.79
MOTA	644	CB	ASN	104	9.890	14.438	-0.156	1.00 33.86
MOTA	645	CG	ASN	104	11.321	13.946	0.087	1.00 67.01
MOTA	646	OD1	ASN	104	12.120	13.843	-0.853	1.00 64.96
MOTA	647	ND2	ASN	104	11.647	13.632	1.341	1.00 57.77
ATOM	648	N	GLN	105	7.999	15.994	1.419	1.00 25.50
MOTA	649	CA	GLN	105	7.532	17.062	2.315	1.00 24.94
MOTA	650	С	GLN	105	6.172	17.475	1.746	1.00 28.97
MOTA	651	0	GLN	105	6.061	18.452	0.978	1.00 31.34
MOTA	652	CB.	GLN	105	8.540	18.227	2.379	1.00 26.65
MOTA	653	CG	GLN	105	8.082	19.454	3.220	1.00 66.64
MOTA	654	CD	GLN	105	7.531	19.104	4.601	1.00105.25
MOTA	655	OE1	GLN	105	7.741	18.003	5.110	1.00107.04
MOTA	656	NE2	GLN	105	6.794	20.042	5.200	1.00 99.00
MOTA	657	N	PRO	106	5.125	16.697	2.076	1.00 20.86
ATOM	658	CA	PRO	106	3.741	16.897	1.634	1.00 18.74
MOTA	659	С	PRO	106	3.006	18.152	2.061	1.00 22.19
MOTA	660	0	PRO	106	3.582	19.222	2.292	1.00 21.82
MOTA	661	CB	PRO	106	3.007	15.630	2.128	1.00 19.72
MOTA	662	CG	PRO	106	3.863	15.067	3.172	1.00 24.39
MOTA	663	CD	PRO	106	5.271	15.488	2.912	1.00 20.20
MOTA	664	N	ASP	107	1.686	17.981	2.058	1.00 18.09
MOTA	665	CA	ASP	107	0.701	18.968	2.471	1.00 17.45
MOTA	666	С	ASP	107	0.623	18.789	3.996	1.00 21.97
ATOM	667	0	ASP	107	-0.182	19.441	4.670	1.00 21.75
MOTA	668	CB	ASP	107	-0.637	18.596	1.818	1.00 18.93
MOTA	669	CG	ASP	107	-1.728	19.659	1.968	1.00 27.12

								· •
HOTA	670	OD1	ASP	107	-1.630	20.613	2.757	1.00 27.68
MOTA	671	OD2	ASP	107	-2.746	19.503	1.264	1.00 32.41
MOTA	672	N	SER	108	1.516	17.945	4.522	1.00 18.59
MOTA	673	CA	SER	108	1.615	17.640	5.945	1.00 18.81
MOTA	674	C	SER	108	2.474	16.396	6.169	1.00 24.34
MOTA	675	0	SER	108	2.385	15.429	5.416	1.00 23.92
ATOM	676	CB	SER	108	0.225	17.412	6.549	1.00 22.39
MOTA	677	OG	SER	108	0.291	17.068	7.921	1.00 30.77
MOTA	678	N	GLN	109	3.269	16.416	7.230	1.00 22.70
ATOM	679	CA	GLN	109	4.127	15.294	7.567	1.00 22.48
ATOH	680	С	GLN	109	3.261	14.181	8.176	1.00 28.45
MOTA	681	0	GLN	109	2.765	14.282	9.305	1.00 29.12
ATOM	682	CB	GLN	109	5.228	15.755	8.528	1.00 23.92
MOTA	683	CG	GLN	109	6.103	14.639	9.058	1.00 60.78
ATOM	684	CD	GLN	109	7.177	15.138	10.006	1.00102.33
ATOM	685	OE1	GLN	109	7.171	16.298	10.434	1.00 99.17
ATOM	686		GLN	109	8.106	14.257	10.346	1.00106.94
MOTA	687	N	LEU	110	3.019	13.171	7.352	1.00 23.12
MOTA	688	CA	LEU	110	2.253	11.985	7.702	1.00 21.02
MOTA	689	С	LEU	110	3.304	10.897	7.951	1.00 26.33
ATOM	690	0	LEU	110	4.126	10.628	7.070	1.00 25.47
ATOM	691	CB	LEU	110	1.397	11.615	6.494	1.00 20.21
ATOM	692	CG	LEU	110	0.740	10.249	6.412	1.00 25.95
ATOM	693	CD1	LEU	110	-0.593	10.264	7.141	1.00 26.79
ATOM	694	CD2	LEU	110	0.542	9.904	4.949	1.00 28.71
MOTA	695	N	GLN	111	3.329	10.300	9.143	1.00 24.86
MOTA	696	CA	GLN	111	4.340	9.272	9.397	1.00 25.38
MOTA	697	С	GLN	111	4.256	8.154	8.383	1.00 30.55
MOTA	698	0	GLN	111	3.314	7.360	8.388	1.00 32.78
ATOM	699	CB	GLN	111	4.271	8.702	10.819	1.00 27.74
MOTA	700	CG	GLN	111	4.825	9.658	11.876	1.00 70.63
ATOM	701	CD	GLN	111	5.296	8.965	13.140	1.00107.33
MOTA	702	OE1	GLN	111	5.247	7.736	13.265	1.00106.26
ATOM	703	NE2	GLN	111	5.787	9.758	14.081	1.00107.12
MOTA	704	N	LEU	112	5.222	8.154	7.477	1.00 22.86
ATOM	705	CA	LEU	112	5.289	7.152	6.441	1.00 20.43
MOTA	706	С	LEU	112	6.746	6.771	6.330	1.00 27.64
MOTA	707	0	LEU	112	7.605	7.617	6.082	1.00 31.14
MOTA	708	CB	LEU	112	4.786	7.712	5.108	1.00 19.99
MOTA	709	CG	LEU	112	4.265	6.699	4.092	1.00 25.35
MOTA	710		LEU	112	3.255	5.811	4.769	1.00 27.10
MOTA	711		LEU	112	3.631	7.405	2.930	1.00 27.66
MOTA	712	N	THR	113	7.022	5.500	6.569	1.00 22.74
MOTA	713	CA	THR	113	8.377	4.992	6.497	1.00 21.64
MOTA	714	С	THR	113	8.426	4.105	5.263	1.00 22.88
MOTA	715	0	THR	113	8.173	2.903	5.349	1.00 24.09
MOTA	716	CB	THR	113	8.693	4.173	7.744	1.00 31.66
MOTA	717		THR	113	8.266	4.902	8.901	1.00 32.16
MOTA	718		THR	113	10.178	3.922	7.843	1.00 32.13
MOTA	719	N	THR	114	8.755	4.699	4.121	1.00 16.81
MOTA	720	CA	THR	114	8.790	3.956	2.875	1.00 17.52
MOTA	721	С	THR	114	10.154	4.090	2.247	1.00 23.76
ATOM	722	0	THR	114	10.800	5.126	2.394	1.00 26.47
MOTA	723	CB	THR	114	7.757	4.503	1.897	1.00 30.93

1 mov	724	~~1	THR	114	6.481	4.563	2.551	1.00 42.28
ATOM	725	CG2		114	7.663	3.621	0.647	1.00 27.57
MOTA						3.053	1.550	1.00 16.87
MOTA	726 727	N CA	GLY	115	10.598 11.891	3.139	0.926	1.00 15.61
ATOM			GLY	115			-0.098	1.00 17.27
ATOM	728	C	GLY	115	12.062	2.062		
MOTA	729	0	GLY	115	11.266	1.133	-0.168	1.00 15.25
MOTA	730	N	ASN	116	13.091	2.201	-0.916	1.00 14.85
MOTA	731	CA	ASN	116	13.362	1.224	-1.938	1.00 15.66
ATOH	732	C	ASN	116	14.855	1.125	-1.986	1.00 22.82
ATOM	733	0	ASN	116	15.540	2.139	-2.127	1.00 24.97
MOTA	734	CB	asn	116	12.841	1.707	-3.288	1.00 15.07
MOTA	735	CG	asn	116	12.611	0.571	-4.262	1.00 32.48
MOTA	736	_	asn	116	11.539	-0.044	-4.302	1.00 19.35
MOTA	737		asn	116	13.635	0.269	-5.040	1.00 26.27
ATOM	738	N	GLY	117	15.362	-0.071	-1.725	1.00 18.70
MOTA	739	CY	GLY	117	16.793	-0.279	-1.766	1.00 18.14
MOTA	740	C	GLY	117	17.191	-1.264	-2.837	1.00 19.98
MOTA	741	0	GLY	117	16.601	-2.334	-2.966	1.00 19.82
MOTA	742	N	LEU	118	18.142	-0.863	-3.664	1.00 16.87
MOTA	743	CA	LEU	118	18.639	-1.733	-4.718	1.00 18.55
ATOM	744	С	LEU	118	19.993	-2.254	-4.269	1.00 23.29
ATOM	745	0	LEU	118	20.739	-1.547	-3.596	1.00 24.97
MOTA	746	CB	LEU	118	18.789	-0.962	-6.031	1.00 19.98
ATOM	747	CG	LEU	118	17.502	-0.316	-6.544	1.00 28.09
ATOM	748	CD1	LEU	118	17.780	0.426	-7.840	1.00 29.68
ATOM	749	CD2	LEU	118	16.424	-1.371	-6.744	1.00 32.51
MOTA	750	N	PHE	119	20.280	-3.506	-4.593	1.00 17.89
ATOM	751	CA	PHE	119	21.541	-4.126	-4.210	1,00 16.32
ATOM	752	С	PHE	119	22.134	-4.817	-5.418	1.00 22.19
MOTA	753	0	PHE	119	21.631	-5.857	-5.855	1.00 22.47
ATOM	754	CB	PHE	119	21.313	-5.145	-3.095	1.00 17.42
ATOM	755	CG	PHE	119	20.615	-4.580	-1.895	1.00 19.13
MOTA	756	CD1	PHE	119	19.225	-4.559	-1.835	1.00 22.10
MOTA	757	CD2	PHE	119	21.343	-4.032	-0.838	1.00 21.73
MOTA	758	CE1	PHE	119	18.562	-3.997	-0.742	1.00 23.31
MOTA	759	CE2	PHE	119	20.690	-3.465	0.265	1.00 24.31
ATOH	760	CZ	PHE	119	19.295	-3.447	0.312	1.00 21.97
MOTA	761	N	LEU	120	23.187	-4.228	-5.970	1.00 18.38
ATON .	762	CA	LEU	120	23.844	-4.781	-7.143	1.00 18.54
ATOM	763	С	LEU	120	25.235	-5.300	-6.786	1.00 22.11
ATOM	764	0	LEU	120	25.877	-4.822	-5.850	1.00 22.69
MOTA	765	CB	LEU	120	23.940	-3.719	-8.240	1.00 19.33
MOTA	766	CG	LEU	120	22.655	-3.047	-8.732	1.00 24.92
MOTA	767		LEU	120	22.103	-2.051	-7.721	1.00 26.07
MOTA	768		LEU	120	22.979		-10.008	1.00 28.44
MOTA	769	N	SER	121	25.702	-6.272	-7.556	1.00 16.99
MOTA	770	CA	SER	121	26.993	-6.894		1.00 16.93
HOTA	771	c	SER	121	28.199	-5.956	-7.334	1.00 23.52
ATOM	772	ō	SER	121	28.300	-5.060	-8.172	1.00 25.92
ATOM	773	СВ	SER	121	27.198	-8.031	-8.324	1.00 19.90
ATOM	774	OG	SER	121	28.428	-8.698	-8.114	1.00 30.55
ATOM	775	N	GLU	122	29.083	-6.124	-6.355	1.00 19.64
ATOM	776	CA	GLU	122	30.323	-5.351	-6.313	1.00 19.06
ATOM	777	C	GLU	122	31.114	-5.991	-7.452	1.00 22.25
~ · ~	,,,	•	GLU	144	34.44	2.331	434	

ATOM	778	0	GLU	122	31.417	-7.182	-7.415	1.00 22.67
ATOH	779	СВ	GLU	122	31.073	-5.563	-4.991	1.00 20.98
ATOM	780	CG	GLU	122	30.907	-4.444	-3.958	1.00 39.74
ATOM	781	CD	GLU	122	31.566	-4.756	-2.618	1.00 71.75
ATOM	782	OE1	GLU	122	31.886	-5.935	-2.354	1.00 64.09
MOTA	783	OE2	GLU	122	31.753	-3.819	-1.818	1.00 68.63
MOTA	784	N	GLY	123	31.369	-5.223	-8.497	1.00 18.92
ATOM	785	CA	GLY	123	32.095	-5.750	-9.637	1.00 19.03
MOTA	786	C	GLY	123	31.430		-10.937	1.00 24.70
MOTA	787	0	GLY	123	32.028		-12.005	1.00 25.16
MOTA	788	N	LEU	124	30.169		-10.859	1.00 19.85
MOTA	789	CX	LEU	124	29.457		-12.048	1.00 18.58 1.00 21.59
ATOM	790	С	LEU	124	29.702		-12.249	1.00 21.39
MOTA	791	0	LEU	124	29.545		-11.318	1.00 20.17
MOTA	792	СВ	LEU	124	27.950		-11.928 -11.813	1.00 22.20
MOTA	793	CG	LEU	124	27.479		-11.773	1.00 21.86
MOTA	794		LEU	124	25.964 28.003		-12.962	1.00 25.97
MOTA	795		LEU	124	30.131		-13.451	1.00 18.27
MOTA	796	N	LYS	125	30.384		-13.756	1.00 19.18
MOTA	797	CA	LYS LYS	125 125	29.060	-0.571		1.00 26.77
MOTA	798 799	0	LYS	125	28.658		-15.271	1.00 28.15
ATOM	800	СВ	LYS	125	31.384		-14.901	
ATOM	801	CG	LYS	125	31.786		-15.201	1.00 48.12
ATOM	802	CD	LYS	125	32.644	0.417		1.00 72.20 -
ATOM	803	CE	LYS	125	32.959	1.843	-16.856	1.00 97.06
ATOM	804	NZ	LYS	125	31.717	2.597	-17.188	1.00110.00
ATOM	805	N	LEU	126	28.342	-0.187	-13.059	1.00 20.76
MOTA	806	CA	LEU	126	27.043	0.457	-13.191	1.00 19.13
MOTA	807	С	LEU	126	27.091	1.792		1.00 20.04
MOTA	808	0	LEU	126	28.085		-13.858	1.00 19.63
MOTA	809	CB	LEU	126	26.416		-11.808	1.00 18.62
MOTA	810	CG	LEU	126	26.553		-10.794	1.00 22.87
MOTA	811		LEU	126	25.839	-0.077	-9.531	1.00 24.83
MOTA	812	CD2		126	26.012		-11.344 -14.609	1.00 16.04
MOTA	813	N	VAL	127	25. 99 5 25.861		-15.356	1.00 16.40
MOTA	814	CX	VAL	127	25.538		-14.392	1.00 22.64
ATOM	815	C	VAL	127 127	24.529		-13.696	1.00 24.15
MOTA MOTA	816 817	O CB	VAL	127	24.759		-16.409	1.00 20.46
ATOM	818		VAL	127	24.518		-17.101	1.00 21.01
ATOM	819		VAL	127	25.139		-17.423	1.00 20.09
ATOM	820	N	ASP	128	26.391		-14.367	1.00 19.51
ATOM	821	CA	ASP	128	26.211	6.629	-13.468	1.00 19.12
MOTA	822	С	ASP	128	24.851		-13.620	1.00 23.48
MOTA	823	0	ASP	128	24.201		-12.630	1.00 24.08
MOTA	824	CB	ASP	128	27.329		-13.675	1.00 21.97
MOTA	825	CG	ASP	128	28.701		-13.525	1.00 44.91
ATOM .	826	OD	ASP	128	29.016		-12.448	1.00 47.60
ATOM	827	OD	2 ASP	128	29.467		-14.519	1.00 53.48
MOTA	828	N	LYS	129	24.387		-14.859	1.00 19.51
MOTA	829		LYS	129	23.096		-15.126	1.00 18.71
MOTA	830		LYS	129	21.985		-14.334	1.00 23.17
MOTA	831	0	LYS	129	21.214	8.051	-13.663	1.00 24.46

HOTA	832	CB	LYS	129	22.786	8.008	-16.625	1.00 20.79
MOTA	833	CG	LYS	129	21.453	8.643	-16.990	1.00 25.39
MOTA	834	CD	LYS	129	21.325	10.074	-16.495	1.00 29.03
MOTA	835	CE	LYS	129	19.942	10.622	-16.783	1.00 32.86
HOTA	836	NZ	LYS	129	19.805	12.052	-16.436	1.00 32.94
MOTA	837	N	PHE	130	21.941	6.048	-14.370	1.00 18.58
ATOH	838	Cλ	PHE	130	20.915	5.316	-13.649	1.00 17.25
ATOM	839	С	PHE	130	20.988	5.613	-12.162	1.00 24.40
MOTA	840	0	PHE	130	19.966	5.911	-11.540	1.00 26.31
MOTA	841	CB	PHE	130	21.041	3.819	-13.902	1.00 17.61
MOTA	842	CG	PHE	130	20.051	2.988	-13.133	1.00 18.20
MOTA	843		PHE	130	18.689	3.105	-13.383	1.00 21.03
ATOM	844	CD2	PHE	130	20.480	2.098	-12.150	1.00 20.19
ATOM	845		PHE	130	17.775	2.355	-12.677	1.00 21.90
MOTA	846		PHE	130	19.574	1.344	-11.439	1.00 23.14
HOTA	847	CZ	PHE	130	18.218		-11.701	1.00 22.03
MOTA	848	N	LEU	131	22.198	5.583	-11.607	1.00 19.33
ATOH	849	CA	LEU	131	22.390	5.869	-10.183	1.00 18.53
ATOM	850	C	LEU	131	21.960	7.302	-9.851	1.00 24.96
ATOM	851	Ô	LEU	131	21.547	7.597	-8.726	1.00 25.24
ATOM	852	СВ	LEU	131	23.840	5.617	-9.781	1.00 18.23
MOTA	853	CG	LEU		24.277	4.168	-10.024	1.00 23.10
MOTA	854	CD1	LEU	131	25.72i	3.969	-9.608	1.00 23.85
MOTA	855		LEU	131	23.369	3.231	-9.259	1.00 24.10
MOTA	856	N	GLU	132	22.032	8.174	-10.851	1.00 21.30
ATOM	857	CA		. 132	21.603	9.555	-10.706	1.00 20.49
ATOM	858	С	GLU	132	20.089	9.531	-10.532	1.00 23.24
MOTA	859	0	GLU	132	19.558	10.012	-9.534	1.00 23.12
ATOM	860	CB	GLU	132	21.938	10.364	-11.964	1.00 22.47
ATOM	861	CG	GLU	132	23.416	10.574	-12.279	1.00 39.53
MOTA	862	CD	GLU	132	23.628	11.388	-13.548	1.00 72.71
MOTA	863	OE1	GLU	.132	22.636	11.914	-14.100	1.00 55.71
MOTA	864	OE2	GLU	132	24.788	11.497	-13.995	1.00 75.11
ATOM	865	N	ASP	133	19.420	8.927	-11.510	1.00 19.34
MOTA	866	CA	ASP	133	17.958	8.794	-11.556	1.00 19.85
MOTA	867	С	ASP	133	17.394	8.128	-10.303	1.00 23.58
HOTA	868	0	ASP	133	16.344	8.517	-9.793	1.00 25.19
HOTA	869	CB	ASP	133	17.543		-12.793	1.00 22.71
ATOM	870	CG	ASP	133	17.978		-14.102	1.00 34.26
ATOM	871		ASP	133	18.560		-14.100	1.00 34.70
HOTA	872	OD2	ASP	133	17.719	8.036	-15.158	1.00 38.49
MOTA	873	N	VAL	134	18.110	7.126	-9.806	1.00 17.79
MOTA	874	CA	VAL	134	17.694	6.420	-8.605	1.00 17.47
MOTA	875	C	VAL	134	17.727	7.372	-7.397	1.00 24.76
MOTA	876	0	VAL	134	16.676	7.667	-6.829	1.00 24.51
ATOM	877	CB	VAL	134	18.576	5.171	-8.358	1.00 19.79
ATOM	878		VAL	134	18.265	4.560	-7.010	1.00 18.82
MOTA	879		VAL	134	18.343	4.151	-9.454	1.00 19.60
ATOM	880	N	LYS	135	18.902	7.940	-7.106	1.00 22.54
MOTA	881	CA	LYS	135	19.086	8.846	-5.965	1.00 22.49
ATOH	882	C	LYS	135	18.350	10.174	-6.089	1.00 26.45
ATOM	883	0	LYS	135	17.578	10.556	-5.201	1.00 27.66
ATOM	884	CB	LYS	135	20.573	9.123	-5.734	1.00 25.09
MOTA	885	CG	LYS	135	21.253	8.129	-4.805	1.00 41.63

MOTA	886	CD	LYS	135	21.299	6.711	-5.371	1.00 45.73
MOTA	887	CE	LYS	135	21.886	5.750	-4.341	1.00 58.07
HOTA	888	NZ	LYS	135	21.078	5.726	-3.078	1.00 74.45
ATOM	889	N	LYS	136	18.669	10.916	-7.141	1.00 21.97
ATOM	890	CA	LYS	136	18.044	12.207	-7.389	1.00 22.48
ATOM	891	С	LYS	136	16.573	12.089	-7.757	1.00 26.04
ATOM	892	0	LYS	136	15.709	12.328	-6.918	1.00 27.39
ATOM	893	CB	LYS	136	18.784	12.981	-8.478	1.00 27.45
MOTA	894	CG	LYS	136	20.077	13.637	-8.010	1.00 57.41
MOTA	895	CD	LYS	136	20.843	14.190	-9.193	1.00 70.91
ATOM	896	CE	LYS	136	21.349	13.048	-10.055	1.00 78.67
ATOM	897	NZ	LYS	136	21.862	13.453	-11.389	1.00 83.40
ATOM	898	N	LEU	137	16.289	11.710	-9.001	1.00 19.69
ATOM	899	CA	LEU	137	14.911	11.590	-9.460	1.00 18.86
ATOM	900	c c	LEU	137	13.965	10.854	-8.512	1.00 25.85
ATOM	901	ō	LEU	137	13.037	11.462	-7.987	1.00 31.02
ATOM	902	CB	LEU	137	14.837		-10.842	1.00 18.94
ATOM	903	CG	LEU	137	15.392		-12.026	1.00 25.53
ATOM	904		LEU	137	15.075		-13.276	1.00 26.83
ATOM	905		LEU	137	14.799		-12.098	1.00 28.13
ATOM	906	N	TYR	138	14.227	9.575		1.00 18.00
ATOM	907	CA	TYR	138	13.340	8.793	-7.405	1.00 15.91
ATOM	908	c	TYR		13.736	8.609	-5.950	1.00 19.32
ATOM	909	0	TYR	138	13.063	7.879	-5.225	1.00 16.98
ATOM	910	СВ	TYR	138	13.045	7.441	-8.052	1.00 16.71
ATOM	911	CG	TYR	138	12.114	7.486	-9.256	1.00 19.54
ATOM	912		TYR	138	12.488		-10.449	1.00 23.32
ATOM	913		TYR	138	10.863	6.872	-9.213	1.00 19.58
MOTA	914	CE1		138	11.631		-11.564	1.00 24.91
ATOM	915		TYR	138	10.003		-10.324	1.00 20.03
ATOM	916	CZ	TYR	138	10.396		-11.489	1.00 26.66
ATOM	917	ОН	TYR	138	9.550		-12.570	1.00 26.09
ATOM	918	N	HIS	139	14.787	9.305	-5.507	1.00 17.01
ATOM	919	CA	HIS	139	15.305	9.227	-4.109	1.00 17.20
ATOM	920	c	HIS	139	15.303	7.828	-3.508	1.00 23.60
ATOM	921	ò	HIS	139	14.920	7.649	-2.347	1.00 24.51
ATOM	922	СВ	HIS	139	14.544	10.133	-3.130	1.00 18.62
ATOM	923	CG	HIS	139	14.222	11.495	-3.664	1.00 23.41
ATOM	924		HIS	. 139	15.148	12.292	-4.311	1.00 26.42
ATOM	925		HIS	139	13.067	12.198	-3.645	1.00 25.96
ATOM	926		HIS	139	14.574	13.430	-4.666	1.00 26.28
ATOM	927		HIS	139	13.308	13.397		1.00 26.45
ATOM	928	N	SER	140	15.696	6.842	-4.305	1.00 22.35
ATOM	929	CA	SER	140	15.753	5.455	-3.852	1.00 22.86
ATOM	930	c	SER	140	17.193	5.111	-3.535	1.00 25.96
MOTA	931	0	SER	140	18.123	5.586	-4.187	1.00 26.58
ATOM	932	СВ	SER	140	15.225	4.514	-4.933	1.00 27.27
MOTA	933	OG	SER	140	15.283	3.165	-4.519	1.00 35.77
ATOM	934	N	GLU	141	17.374	4.288	-2.520	1.00 21.11
ATOM	935	CA	GLU	141	18.704	3.893	-2.138	1.00 20.00
ATOM	936	CA	GLU	141	19.142	2.726	-3.038	1.00 26.62
ATOM	937	0	GLU	141	18.301	1.967	-3.531	1.00 29.01
ATOM	938	СВ	GLU	141	18.735	3.551	-0.642	1.00 21.07
ATOM	939	CG	GLU	141	17.921	4.524	0.228	1.00 33.28
VI AU	727	CG	GLU	747	11.741	7.327		

MOTA	940	CD	GLU	141	18.578	4.855	1.554	1.00	69.28
MOTA	941	OEI	GLU	141	19.410		2.035		62.46
HOTA	942	OE2	GLU	141	18.252		2.118		84.87
MOTA	943	N	ALA	142	20.418		-3.418		21.23
HOTA	944	CA	ALA	142	21.024		-4.239		19.58
MOTA	945	С	ALA	142	22.395	1.431	-3.643		25.53
MOTA	946	0	ALA	142	23.119	2.372	-3.296		27.92
MOTA	947	CB	ALA	142	21.149	2.117	-5.696		19.69
MOTA	948	N	PHE	143	22.753	0.162	-3.521		19.73
MOTA	949	CA	PHE	143	24.026	-0.213	-2.914		17.41
MOTA	950	С	PHE	143	24.629	-1.343	-3.709		24.43
MOTA	951	0	PHE	143	23.927	-2.029	-4.445	1.00	26.35
MOTA	952	CB	PHE	143	23.799	-0.748	-1.494		17.55
MOTA	953	CG	PHE	143	22.861	0.076	-0.664	1.00	18.42
MOTA	954	CD1	PHE	143	23.343	1.113	0.126	1.00	20.30
MOTA	955	CD2	PHE	143	21.498	-0.198	-0.649		22.70
MOTA	956	CE1	PHE	143	22.490	1.864	0.926	1.00	23.21
MOTA	957	CE2	PHE	143	20.627	0.551	0.151	1.00	24.05
MOTA	958	CZ	PHE	143	21.130	1.585	0.939	1.00	22.11
MOTA	959	N	THR	144	25.924	-1.555	-3.543	1.00	20.15
MOTA	960	CA	THR	144	26.595	-2.654	-4.215	1.00	19.72
ATOM	961	С	THR	144	27.047	-3.575	-3.088	1.00	24.16
ATOM .	962	0	THR	144	27.576	-3.102	-2.081	1.00	26.93
ATOM	963	CB	THR	144	27.798	-2.159	-5.049	1.00	26.86
ATOM	964	0G1	THR	144	28.633	-1.322	-4.242	1.00	28.49
MOTA	965	CG2	THR	144	27.324	-1.353	-6.228	1.00	29.29
ATOM	966	N	VAL	145	26.726	-4.857	-3.178	1.00	17.10
MOTA	967	CA	VAL	145	27.142	-5.787	-2.134	1.00	16.68
ATOM	968	С	VAL	145	27.894	-6.958	-2.735	1.00	24.06
MOTA	969	0	VAL	145	28.039	-7.051	-3.957	1.00	26.50
MOTA	970	CB	VAL	145	25.944	-6.307	-1.296	1.00	20.66
MOTA	971		VAL	145	25.320	-5.161	-0.516	1.00	21.22
MOTA	972		VAL	145	24.915	-6. 97 3	-2.175	1.00	19.97
ATOM	973	N	ASN	146	28.439	-7.817	-1.882	1.00	19.01
MOTA	974	CA	ASN	146	29.158	-8.981	-2.374		17.59
ATOM	975	С	ASN	146		-10.130	-2.342	1.00	20.14
MOTA	976	0	ASN	146	27.917	-10.694	-1.282		20.83
ATOM	977	CB	ASN	146	30.368	-9.305	-1.497		19.20
MOTA	978	CG	ASN	146		-10.590	-1.906		31.52
ATOM	979		ASN	146		-11.106	-3.005		32.16
MOTA	980		ASN	146		-11.134	-1.007		23.72
ATOM ATOM	981 982	N	PHE	147		-10.476	-3.503		16.06
ATOM	983	CA C	PHE	147		-11.574	-3.564		16.26
ATOM	984	0	PHE	147		-12.918	-3.518		23.42
ATOM	985		PHE	147		-13.954	-3.654		26.61
ATOM	986	CB	PHE	147		-11.471	-4.791		17.81
ATOM	987	CG	PHE	147		-10.406	-4.684		18.52
ATOM	988		PHE	147		-10.612	-3.912		20.66
ATOM	989			147	24.891	-9.206	-5.371		19.12
ATOM	990		PHE	147	22.621	-9.639	-3.836		20.73
ATOM	991	CZ		147	23.909	-8.237	-5.300		21.58
ATOM	992	N	PHE	147	22.772	-8.453	-4.532		19.82
ATOM	993		GLY	148		-12.895	-3.349		17.70
ALUM	773	CA	GLY	148	27.453	-14.132	-3.241	1.00	17.66

MOTA	994	С	GLY	148	29.147 -14.747	-1.884	1.00 23.36
MOTA	995	0	GLY	148	29.266 -15.959	-1.702	1.00 23.54
HOTA	996	N	ASP	149	28.835 -13.887	-0.912	1.00 20.63
MOTA	997	CA	ASP	149	28.469 -14.333	0.426	1.00 20.33
ATOM	998	C	ASP	149	26.958 -14.134	0.578	1.00 25.66
ATOM	999	0	ASP	149	26.498 -13.190	1.232	1.00 26.52
ATOH	1000	CB	ASP	149	29.220 -13.538	1.496	1.00 21.02
MOTA	1001	CG	ASP	149	29.092 -14.150	2.880	1.00 20.27
ATOM	1002	OD1	ASP	149	28.363 -15.132	3.086	1.00 19.33
ATOM	1003	OD2	ASP	149	29.750 -13.624	3.791	1.00 25.46
MOTA	1004	N	THR	150	26.205 -15.062	0.001	1.00 20.32
ATOM	1005	CA	THR	150	24.747 -15.040	0.013	1.00 18.86
ATOM	1006	С	THR	150	24.105 -14.621	1.338	1.00 21.45
MOTA	1007	0	THR	150	23.200 -13.784	1.363	1.00 20.49
ATOM	1008	СВ	THR	150	24.195 -16.417	-0.405	1.00 24.26
ATOM	1009	0G1		150	24.591 -16.690	-1.752	1.00 32.55
MOTA	1010	CG2	THR	150	22.684 -16.457	-0.293	1.00 19.05
MOTA	1011	N	GLU	151	24.601 -15.181	2.436	1.00 18.54
MOTA	1012	CA	GLU	151	24.082 -14.897	3.773	1.00 18.69
ATOM	1013	С	GLU	151		4.195	1.00 22.02
ATOM	1014	0	GLU	151	23.470 -12.821	4.757	1.00 21.78
MOTA	1015	СВ	GLU	151	24.692 -15.857	4.797	1.00 20.69
ATOM	1016	CG	GLU	151	23.943 -17.179	4.947	1.00 32.68
ATOM	1017	CD	GLU	151	22.941 -17.153	6.089	1.00 52.10
ATOM	1018		GLU	151	21.810 -16.675	5.911	1.00 56.21
ATOM	1019		GLU	151	23.309 -17.631	7.187	1.00 41.59
MOTA	1020	N	GLU	152	25.568 -13.001	3.940	1.00 17.95
ATOM	1021	CA	GLU	152	25.977 -11.642	4.274	1.00 17.12
MOTA	1022	C	GLU	152	25.135 -10.625	3.536	1.00 22.64
MOTA	1023	0	GLU	152	24.758 -9.602	4.104	1.00 22.21
MOTA	1024	CB	GLU	152	27.461 -11.430	3.958	1.00 17.92
MOTA	1025	CG	GLU	152	28.005 -10.055	4.315	1.00 15.21
MOTA	1026	CD	GLU	152	27.855 -9.711	5.778	1.00 19.13
MOTA	1027	OE1	GLU	.152	27.469 -10.580	6.595	1.00 11.56
ATOM	1028	OE2	GLU	152	28.127 -8.546	6.116	1.00 14.61
MOTA	1029	N	ALA	153	24.767 -10.957	2.306	1.00 19.83
MOTA	1030	CA	ALA	153	23.931 -10.079	1.508	1.00 19.28
MOTA	1031	C	ALA	153	22.571 -9.958	2.188	1.00 22.30
MOTA	1032	0	ALA	153	22.112 -8.843	2.431	1.00 23.71
MOTA	1033	CB	ALA	153	23.798 -10.601	0.066	1.00 19.78
MOTA	1034	N	LYS	154	21.980 -11.084	2.588	1.00 16.20
ATOM	1035	CA	LYS	154	20.677 -11.029	3.255	1.00 16.61
MOTA	1036	С	LYS	154	20.759 -10.122	4.475	1.00 24.53
MOTA	1037	0	LYS	154	19.916 -9.247	4.655	1.00 25.74
MOTA	1038	CB ·	LYS	154	20.212 -12.391	3.754	1.00 19.25
MOTA	1039	CG	LYS	154	19.848 -13.422	2.730	1.00 18.46
MOTA	1040	CD.	LYS	154	19.395 -14.664	3.474	1.00 21.03
MOTA	1041	CE	LYS	154	19.798 -15.955	2.776	1.00 29.51
MOTA	1042	NZ	LYS	154	19.175 -17.133	3.456	1.00 41.79
MOTA	1043	N	LYS	155	21.741 -10.364	5.342	1.00 21.41
ATOM	1044	CA	LYS	155	21.890 -9.542	6.531	1.00 21.15
MOTA	1045	С	LYS	155	22.018 -8.088	6.094	1.00 26.11
MOTA	1046	0	LYS	155	21.184 -7.253	6.444	1.00 27.67
MOTA	1047	CB	LYS	155	23.102 -9.974	7.369	1.00 22.36

•								
ATON	1048	CC	LYS	155	23.154	-9.290	8.732	1.00 45.02
ATON	1049	CD	LYS	155	24.283	-9.774	9.598	1.00 62.54
MOTA	1050	CE	LYS	155	24.327	-8.992	10.905	1.00 92.82
HOTA	1051	NZ	LYS	155	25.397	-9.487	11.812	1.00110.00
HOTA	1052	N	GLN	156	22.975	-7.847	5.212	1.00 19.93
MOTA	1053	CA	GLN	156	23.264	-6.521	4.679	1.00 19.33
MOTA	1054	C	GLN	156	22.015	-5.809	4.166	1.00 22.80
HOTA	1055	0	GLN	156	21.831	-4.601	4.363	1.00 23.72
MOTA	1056	CB	GLN	156	24.278	-6.652	3.543	1.00 21.20
MOTA	1057	cc	GLN	156	25.363	-5.589	3.538	1.00 57.09
MOTA	1058	CD	GLN	156	26.548	-5.987	2.678	1.00 93.87
MOTA	1059		GLN	156	26.866	-7.171	2.529	1.00 94.48
ATOM	1060		GLN	156	27216	-4.999	2.115	1.00 89.29
MOTA	1061	N	ILE	157	21.142	-6.585	3.543	1.00 17.92
MOTA	1062	CA	ILE	157	19.899	-6.082	2.970	1.00 18.11
MOTA	1063	С	ILE	157	18.868	-5.832	4.062	1.00 25.86
MOTA	1064	0	ILE	157	18.338	-4.723	4.203	1.00 27.68
ATOM	1065	CB	ILE	157	19.330	-7.108	1.970	1.00 21.30
ATOH	1066	CG1		157	20.209	-7.151	0.716	1.00 21.24
ATOM	1067		ILE	157	17.871	-6.825	1.672	1.00 21.77
MOTA	1068	CD1	ILE	157	19.683	-8.024	-0.396	1.00 29.59
MOTA	1069	N	ASN	158	18.578	-6.895	4.804	1.00 20.59
ATOM	1070	CA C	ASN	158	17.632	-6.879	5.901	1.00 19.17
ATOH	1071 1072		asn Asn	158 158	17.949 17.049	-5.804	6.941	1.00 23.91
ATOM ATOM	1073	O CB	ASN	158	17.542	-5.178 -8.284	7.498	1.00 25.85
ATOM	1074	CG	ASN	158	16.834	-9.240	6.492	1.00 15.15
ATOM	1075		ASN	158	15.934	-8.832	5.549 4.806	1.00 28.18
ATOM	1076		ASN	158	17.214	-10.506	5.577	1.00 16.31
ATOM	1077	N	ASP	159	19.230	-5.511	7.097	1.00 17.77
ATOM	1078	CA	ASP	159	19.682	-4.481	B. 020	1.00 16.35
ATOM	1079	c	ASP	159	19.163	-3.153	7.484	1.00 23.88
ATOH	1080	ō	ASP	159	18.614	-2.361	8.230	1.00 25.41
ATOM	1081	СВ	ASP	159	21.204	-4.418	8.066	1.00 17.14
ATOM	1082	CG	ASP	159	21.817	-5.525	8.903	1.00 24.66
ATOM	1083	OD1	ASP	159	21.088	-6.358	9.471	1.00 21.78
ATOM	1084	OD2	ASP	159	23.068	-5.554	8.994	1.00 34.61
ATOM	1085	N	TYR	160	19.309	-2.929	6.178	1.00 18.74
MOTA	1086	CA	TYR	160	18.845	-1.697	5.546	1.00 17.14
MOTA	1087	C	TYR	160	17.381	-1.434	5.876	1.00 21.00
MOTA	1088	0	TYR	160	17.038	-0.379	6.410	1.00 20.20
MOTA	1089	CB	TYR	160	19.051	-1.791	4.034	1.00 17.42
ATOM	1090	CG	TYR	160	18.250	-0.818	3.205	1.00 18.83
ATOM	1091		TYR	160	18.551	0.541	3.195	1.00 21.81
MOTA	1092		TYR	160	17.190	-1.261	2.416	1.00 19.83
MOTA	1093		TYR	160	17.815	1.432	2.420	1.00 24.46
MOTA	1094	CE2	TYR	160	16.449	-0.372	1.638	1.00 20.73
MOTA	1095	CZ	TYR	160	16.770	0.970	1.642	1.00 30.99
MOTA	1096	OH	TYR	160	16.064	1.847	0.853	1.00 40.24
MOTA	1097	N	VAL	161	16.537	-2.417	5.595	1.00 16.86
MOTA	1098	CX	VAL	161	15.113	-2.316	5.850	1.00 16.19
MOTA	1099	C	VAL	161	14.841	-2.067	7.326	1.00 20.13
MOTA	1100	0	VAL	161	14.189	-1.090	7.677	1.00 20.42
ATOM	1101	CB	VAL	161	14.392	-3.605	5.426	1.00 20.73

HOTA	1102	CG	L VAL	161	12.892	-3.492	5.677	1.00 19.90
MOTA	1103	CG	VAL	161	14.667		3.973	
MOTA	1104	N	GLU	162	15.371	-2.934	8.182	
MOTA	1105	CA	GLU	162	15.172	-2.822	9.623	1.00 15.88
ATOM	1106	С	GLU	162	15.533	-1.423	10.102	1.00 22.69
MOTA	1107	0	GLU	162	14.710	-0.736	10.705	1.00 23.11
ATOM	1108	CB	GLU	162	16.013	-3.866	10.338	1.00 17.15
MOTA	1109	CG	GLU	162	15.809	-3.942	11.835	1.00 30.05
MOTA	1110	CD	GLU	162	16.585	-5.079	12.467	1.00 54.95
MOTA	1111	OE1	GLU	162	16.758	-6.127	11.809	1.00 58.16
ATOM	1112	OE2	GLU	162	17.005	-4.924	13.633	1.00 54.90
MOTA	1113	N	LYS	163	16.757	-1.009	9.800	1.00 19.73
ATOM	1114	CA	LYS	163	17.286	0.304	10.145	1.00 19.34
MOTA	1115	С	LYS	163	16.342	1.386	9.625	1.00 22.08
MOTA	1116	0	LYS	163	16.012	2.337	10.332	1.00 22.56
ATOM	1117	CB	LYS	163	18.685	0.441	9.517	1.00 23.21
MOTA	1118	CG	LYS	163	19.222	1.855	9.274	1.00 52.18
MOTA	1119	CD	LYS	163	20.483	1.803	8.401	1.00 69.36
MOTA	1120	CE	LYS	163	21.113	3.174	8.140	1.00 79.02
ATOM	1121	NZ	LYS	163	22.310	3.063	7.249	1.00 90.37
MOTA	1122	N	GLY	164	15.831	1.159	8.422	1.00 18.15
ATOM	1123	CA	GLY	164	14.939	2.107	7.785	1.00 18.81
ATOM	1124	С	GLY	164	13.534	2.111	8.346	1.00 25.15
MOTA	1125	0	GLY	164	12.854	3.127	8.272	1.00 27.19
MOTA	1126	N	THR	165	13.102	0.985	8.910	1.00 19.62
MOTA	1127	CA	THR	165	11.766	0.861	9.492	1.00 18.76
MOTA	1128	С	THR	165	11.944	0.902	11.005	1.00 26.62
ATOM	1129	0	THR	165	11.008	0.645	11.774	1.00 27.29
MOTA	1130	CB	THR	165	11.081	-0.484	9.116	1.00 12.69
MOTA	1131	OG1		165	11.893	-1.582	9.557	1.00 15.15
MOTA	1132	CG2	THR	165	10.842	-0.585	7.611	1.00 3.04
ATOM	1133 1134	N	GLN	166	13.172	1.211	11.409	1.00 23.31
ATOM	1135	CA	GLN	166	13.570	1.276	12.808	1.00 22.33
ATOM	1136	C 0	GLN	166	13.075	0.102	13.664	1.00 27.93
ATOM	1137	CB	GLN GLN	166 166	12.495	0.276	14.752	1.00 29.62
ATOM	1138	CG	GLN	166	13.278 14.291	2.656	13.417	1.00 23.16
ATOM	1139	CD	GLN	166		3.701	12.952	1.00 54.02
ATOM	1140		GLN	166	14.384	4.920	13.852	1.00 89.44
ATOM	1141	NE2	GLN	166	13.958 14.968	4.907	15.011	1.00 87.60
ATOM	1142	N	GLY	167	13.350	5.984 -1.101	13.322	1.00 86.30
ATOM	1143	CA	GLY	167	12.995	-2.305	13.159 13.872	1.00 19.76
ATOM	1144	c	GLY	167	11.645	-2.906	13.872	1.00 17.73
ATOM	1145	ō	GLY	167	11.356	-3.969	14.127	1.00 18.99 1.00 17.55
ATOM	1146	N	LYS	168	10.814	-2.257	12.791	
ATOM	1147	CA	LYS	168	9.497	-2.822	12.791	1.00 18.38
MOTA	1148	c c	LYS	168	9.595	-4.015	11.567	1.00 20.25 1.00 27.25
ATOM	1149	ō	LYS	168	8.819	-4.970	11.667	
ATOM	1150	СВ	LYS	168	8.529	-1.784	11.941	1.00 30.06
MOTA	1151	CG	LYS	168	7.071	-2.206	12.103	1.00 22.56 1.00 39.22
ATOM	1152	CD	LYS	168	6.708	-2.323	13.588	1.00 58.14
MOTA	1153	CE	LYS	168	5.315	-2.908	13.833	1.00 64.40
MOTA	1154	NZ	LYS	168	5.186	-4.343	13.430	1.00 71.27
MOTA	1155	N	ILE	169	10.517	-3.935	10.618	1.00 21.26
								-

ATOM	1156	CA	ILE	169	10.716	-5.031	9.682	1.00, 19.37
MOTA	1157	С	ILE	169	12.096	-5.644	9.941	1.00 23.05
MOTA	1158	0	ILE	169	13.127	-4.966	9.921	1.00 24.91
MOTA	1159	CB	ILÉ	169	10.525	-4.573	8.210	1.00 21.73
MOTA	1160	CG1	ILE	169	9.060	-4.139	7.984	1.00 22.05
MOTA	1161	CG2	ILE	169	10.910	-5.699	7.258	1.00 20.93
MOTA	1162	CD1	ILE	169	8.782	-3.495	6.634	1.00 17.20
MOTA	1163	N	VAL	170	12.096	-6.930	10.242	1.00 16.49
MOTA	1164	CA	VAL	170	13.321	-7.637	10.546	1.00 15.72
MOTA	1165	С	VAL	170	13.470	-8.824	9.597	1.00 19.76
MOTA	1166	0	VAL	170	12.478	-9.461	9.237	1.00 17.77
MOTA	1167	CB	VAL	170	13.279	-8.079	11.998	1.00 20.38
MOTA	1168		VAL	170	13.353	-6.848	12.905	1.00 19.80
MOTA	1169		VAL	170	11.979	-8.823	12.259	1.00 21.00
MOTA	1170	N	ASP	171	14.694	-9.035	9.114	
MOTA	1171	CA	ASP	171		-10.112	8.162	1.00 20.38
MOTA	1172	С	ASP	171		-10.430	7.144 7.179	1.00 23.02
MOTA	1173	0	ASP	171		-11.473	8.832	1.00 23.70
MOTA	1174	CB	ASP	171		-11.359 -12.312	9.480	1.00 42.06
MOTA	1175	CG	ASP	171		-11.929	9.772	1.00 48.32
MOTA	1176		ASP	171		-13.473	9.715	1.00 45.87
MOTA	1177		ASP	171	13.731	-9.474	6.241	1.00 13.07
MOTA	1178	N	LEU	172	12.723	-9.547	5.196	1.00 17.36
MOTA	1179	CA	LEU	172		-10.702	4.250	1.00 24.59
MOTA	1180	C	LEU	172		-11.465	3.915	1.00 26.72
MOTA	1181	0	LEU	172	12.715	-8.238	4.413	1.00 16.47
MOTA	1182	CB	LEU	172	11.669		3.338	1.00 20.87
MOTA	1183	CG	LEU	172 172	10.307		3.853	1.00 20.88
MOTA	1184		LEU	172	11.704	-6.568	2.908	1.00 21.64
ATOM	1185		VAL	172		-10.804	3.812	1.00 19.02
MOTA HOTA	1186 1187	N CA	VAL	173		-11.837	2.892	1.00 16.81
ATOH	1188	C	VAL	173		-13.031	3.701	1.00 20.99
MOTA	1189	ō	VAL	173		-12.901	4.555	1.00 22.14
ATOM	1190	СВ	VAL	173		-11.312	1.970	1.00 19.26
ATOM	1191		VAL	173	16.266	-12.402	1.023	1.00 19.04
ATOM	1192		VAL	173	15.285	-10.109	1.190	1.00 18.18
ATOM	1193	N	LYS	174	14.521	-14.179	3.441	1.00 17.06
ATOM	1194	CA	LYS	174		-15.430	4.118	1.00 17.44
ATOM	1195	C	LYS	174		-16.268	3.331	1.00 25.16
ATOM	1196	0	LYS	174		-17.274	3.841	1.00 27.74
MOTA	1197	СВ	LYS	174		-16.227	4.316	
ATOM	1198		LYS	174		-15.414	4.914	1.00 35.14
ATOM	1199		LYS	174		-15:391	6.423	1.00 47.19
ATOM	1200		LYS	174		-14.373	6.961	1.00 58.72
MOTA	1201		LYS	174		-14.807	8.225	1.00 76.00
MOTA	1202		GLU	175		-15.900	2.074	1.00 19.67
MOTA	1203		GLU	175		-16.614	1.229	1.00 19.84
MOTA	1204		GLU	175		-16.011	-0.162	1.00 26.26
MOTA	1205	0	GLU	175		-15.359	-0.678	1.00 27.25
MOTA	1206	СВ	GLU	175		-18.111	1.131	1.00 21.25
MOTA	1207	CG	GLU	175		-18.481	0.674	1.00 38.11
MOTA	1208	CD	GLU	175		-19.975		1.00 78.80
MOTA	1209		1 GLU	175	15.78	-20.646	1.555	1.00 83.96

MOTA	1210	OE:	GLU	175	14.066 -20.476 0.199 1.00 82.02
ATOM	1211	N	LEU	176	18.398 -16.215 -0.749 1.00 20.61
ATOM	1212	CA	LEU	176	18.719 -15.688 -2.076 1.00 18.97
MOTA	1213	С	LEU	176	19.145 -16.786 -3.038 1.00 23.08
MOTA	1214	0	LEU	176	19.766 -17.779 -2.637 1.00 21.51
ATOM	1215	CB	LEU	176	19.851 -14.657 -2.005 1.00 19.21
MOTA	1216	CG	LEU	176	19.592 -13.270 -1.414 1.00 25.41
MOTA	1217	CDI	LEU	176	20.909 -12.527 -1.314 1.00 24.90
ATOM	1218	CD		176	18.613 -12.504 -2.287 1.00 31.01
ATOM	1219	N	ASP	177	18.817 -16.595 -4.315 1.00 21.83
ATOM	1220	CA	ASP	177	19.174 -17.555 -5.370 1.00 21.94
ATOM	1221	C	λSP	177	20.675 -17.647 -5.524 1.00 28.47
ATOM	1222	ō	ASP	177	21.414 -16.775 -5.070 1.00 31.66
ATOM	1223	СВ	ASP	177	18.545 -17.182 -6.714 1.00 24.78
ATOM	1224	cc	ASP	177	17.025 -17.142 -6.655 1.00 50.17
ATOM	1225		ASP	177	16.363 -18.193 -6.746 1.00 51.41
ATOM	1226		ASP	177	16.483 -16.020 -6.513 1.00 63.80
ATOM	1227	N	ARG	178	21.103 -18.679 -6.236 1.00 22.85
MOTA	1228	CA	ARG	178	
ATOM	1229	C	ARG	178	22.522 -18.958 -6.470 1.00 21.85 23.191 -17.927 -7.386 1.00 24.51
ATOM	1230	ō	ARG	178	24.348 -17.569 -7.189 1.00 26.94
ATOM	1231	СВ	ARG	178 .	22.686 -20.388 -7.036 1.00 24.68
ATOM	1232	CG	ARG	178	21.805 -21.462 -6.360 1.00 36.59
ATOM	1233	CD	ARG	178	20.349 -21.385 -6.826 1.00 61.75
ATOM	1234	NE	ARG	178	19.426 -22.048 -5.902 1.00 86.02
MOTA	1235	CZ	ARG	178	18.120 -21.795 -5.819 1.00109.62
ATOM	1236		ARG	178	17.556 -20.877 -6.589 1.00106.33
ATOM	1237	NH2		178	17.364 -22.485 -4.972 1.00 95.24
ATOM	1238	N	ASP	179	22.444 -17.422 -8.355 1.00 19.98
MOTA	1239	CA	ASP	179	22.946 -16.433 -9.310 1.00 20.64
MOTA	1240	С	ASP	179	22.460 -15.014 -8.999 1.00 26.46
ATOM	1241	0	ASP	179	22.314 -14.174 -9.896 1.00 27.73
MOTA	1242	CB	ASP	179	22.532 -16.813 -10.737 1.00 24.57
ATOH	1243	CG	ASP	179	21.033 -17.092 -10.856 1.00 59.63
MOTA	1244	OD1	ASP	179	20.259 -16.796 -9.918 1.00 65.53
MOTA	1245	OD2	ASP	179	20.639 -17.624 -11.919 1.00 71.83
ATOM	1246	N	THR	180	22.233 -14.739 -7.729 1.00 21.49
MOTA	1247	CA	THR	180	21.760 -13.426 -7.364 1.00 20.37
ATOM	1248	С	THR	180	22.871 -12.388 -7.545 1.00 23.03
MOTA	1249	0	THR	180	23.967 -12.536 -6.998 1.00 22.71
MOTA	1250	CB	THR	180	21.225 -13.396 -5.915 1.00 32.99
ATOM	1251	OG1	THR	180	20.180 -14.370 -5.763 1.00 31.89
ATOM	1252	CG2	THR	180	20.663 -12.024 -5.589 1.00 34.35
MOTA	1253	N	VAL	181	22.607 -11.385 -8.383 1.00 18.85
MOTA	1254	CA	VAL	181	23.554 -10.297 -8.634 1.00 18.00
MOTA	1255	С	VAL	181	22.866 -8.934 -8.541 1.00 21.23
MOTA	1256	0	VAL	181	23.540 -7.901 -8.499 1.00 22.38
MOTA	1257	CB	VAL	181	24.245 -10.404 -10.022 1.00 21.67
MOTA	1258	CG1	VAL	181	25.156 -11.615 -10.072 1.00 21.73
MOTA	1259	CG2	VAL	181	23.209 -10.447 -11.136 1.00 21.58
MOTA	1260	N	PHE	182	21.537 -8.943 -8.454 1.00 15.29
ATOM	1261	CA	PHE	182	20.732 -7.723 -8.378 1.00 14.49
MOTA	1262	С	PHE.	182	19.496 -8.014 -7.527 1.00 20.22
ATOM	1263	0	PHE	182	18.733 -8.929 -7.838 1.00 20.58
					==== 20.00

MOTA	1264	CE	PHE	182	20.337	-7.315	-9.803	1.00 16.32
MOTA	1265	i cc	PHE	182	19.567			
MOTA	1266	i CE	1 PHE	182	19.511	_	-8.845	
MOTA	1267				18.926		-11.093	
MOTA	1268		1 PHE	182	18.802		-8.962	
MOTA	1269	CE	2 PHE	182	18.219		-11.214	1.00 20.48
MOTA	1270	CZ	PHE	182	18.167		-10.154	1.00 18.22
MOTA	1271	. N	ALA	183	19.343		-6.424	1.00 18.30
ATOM	1272	CA	ALA	183	18.203		-5.501	1.00 17.95
MOTA	1273	C	ALA	183	17.461		-5.205	1.00 19.05
HOTA	1274	0	ALA	183	18.074		-4.981	1.00 17.29
ATOH	1275		ALA	183	18.650		-4.190	1.00 18.82
ATOH	1276	N	LEU	184	16.136		-5.163	1.00 16.09
ATOM	1277	CA	LEU	184	15.266		-4.919	1.00 16.36
MOTA	1278	C	LEU	184	14.435	-5.339	-3.673	1.00 17.70
MOTA	1279	0	LEU	184	13.743	-6.354	-3.560	1.00 17.17
MOTA	1280	CB	LEU	184	14.334	-4.850	-6.132	1.00 16.99
MOTA	1281	CC	LEU	184	13.436	-3.594	-6.213	1.00 22.65
MOTA	1282	CD	l LEU	184	12.979	-3.361	-7.627	1.00 21.80
MOTA	1283	CD:	2 LEU	184	12.228	-3.692	-5.287	1.00 28.05
MOTA	1284	N	VAL	185	14.492	-4.403	-2.742	1.00 14.81
MOTA	1285	CA	VAL	185	13.721	-4.520	-1.515	1.00 16.22
MOTA	1286	С	VAL	185	12.849	-3.270	-1.363	1.00 18.85
MOTA	1287	0	VAL	185	13.344	-2.140	-1.295	1.00 16.95
MOTA	1288	CB	VAL	185	14.641	-4.767	-0.294	1.00 20.90
MOTA	1289		VAL	185	13.819	-4.876	0.971	1.00 21.00
ATOM	1290		VAL	185	15.433	-6.048	-0.496	1.00 20.06
MOTA	1291	N	asn	186	11.541	-3.490	-1.382	1.00 16.14
ATOM	1292	CA	asn	186	10.551	-2.427	-1.292	1.00 16.68
MOTA	1293	С	ASN	186	9.653	-2.671	-0.083	1.00 21.69
ATOM	1294	0	asn	186	9.051	-3.733	0.052	1.00 23.15
MOTA	1295	CB	ASN	186	9.734	-2.398	-2.595	1.00 12.94
MOTA	1296	CG	ASN	186	8.838	-1.204	-2.696	1.00 19.95
ATOM	1297		ASN	186	7.664	-1.250	-2.325	1.00 11.91
MOTA	1298	ND2		186	9.391	-0.106	-3.179	1.00 10.24
MOTA MOTA	1299	N	TYR	187	9.578	-1.687	0.801	1.00 15.75
ATOM	1300	CA	TYR	187	8.773	-1.806	2.002	1.00 14.62
ATOM	1301	C	TYR	187	8.078	-0.471	2.290	1.00 22.42
ATOM	1302 1303	0	TYR	187	8.484	0.581	1.772	1.00 23.11
ATOM	1303	CB	TYR	187	9.676	-2.184	3.176	1.00 15.24
ATOM	1304	CG	TYR	187	10.667	-1.084	3.550	1.00 18.84
ATOM	1306		TYR TYR	187	10.268	0.007	4.335	1.00 21.93
ATOM	1307		TYR	187	12.004	-1.132	3.127	1.00 19.78
ATOM	1308	CE2		187	11.171	1.013	4.692	1.00 23.73
ATOM	1309	CZ		187	12.911	-0.128		1.00 20.67
ATOH	1310	ОН	TYR TYR	187	12.484	0.935		1.00 28.94
ATOM	1311	N	ILE	187 188	13.374	1.906		1.00 29.27
MOTA	1312	CA	ILE	188	7.058	-0.517		1.00 19.02
ATOM	1313	CX	ILE	188	6.304	0.673		1.00 18.03
ATOM	1314	0	ILE	188	5.626	0.411		1.00 23.51
ATOM	1315	СВ	ILE	188	4.922	-0.581		1.00 25.66
ATOM	1316	CG1		188	5.238	1.063		1.00 19.71
MOTA	1317	CG2		188	4.464	2.302		1.00 19.85
		CUZ	TUE	100	4.308	-0.091	2.233	1.00 16.85

				188	3.574	2.900	1.869	1.00 28.04
MOTA	1318	CD1		189	5.910	1.256	5.833	1.00 18.63
MOTA	1319	N	PHE	189	5.309	1.119	7.145	1.00 17.30
MOTA	1320	CY	PHE		4.489	2.368	7.452	1.00 18.72
MOTA	1321	C	PHE	189	5.002	3.490	7.368	1.00 16.24
MOTA	1322	0	PHE	189		0.922	8.217	1.00 19.37
HOTA	1323	CB	PHE	189	6.383		9.616	1.00 21.45
MOTA	1324	CC	PHE	189	5.850	1.018	10.199	1.00 23.96
HOTA	1325	CD1		189	5.200	-0.063	10.327	1.00 23.47
MOTA	1326		PHE	189	5.930	2.213		1.00 24.52
MOTA	1327	CEl		189	4.637	0.048	11.459	1.00 25.92
MOTA	1328	CE2	PHE	189	5.366	2.319	11.586	1.00 23.37
MOTA	1329	CZ	PHE	189	4.719	1.237	12.149	1.00 25.57
MOTA	1330	N	PHE	190	3.222	2.168	7.807	1.00 15.41
MOTA	1331	CA	PHE	190	2.340	3.275	8.123	1.00 21.53
MOTA	1332	С	PHE	190	1.589	3.073	9.425	
MOTA	1333	0	PHE	190	1.228	1.957	9.784	1.00 22.76
MOTA	1334	CB	PHE	190	1.335	3.500	7.002	1.00 17.31
MOTA	1335	CC	PHE	190	0.448	4.690	7.222	1.00 18.57
MOTA	1336	CD1	PHE	190	0.996	5.967	7.286	1.00 21.44
MOTA	1337	CD2	PHE	190	-0.927	4.543	7.384	1.00 19.70
MOTA	1338	CE1	PHE	190	0.193	7.067	7.504	1.00 22.32
ATOM	1339	CE2	PHE	190	-1.733	5.647	7.602	1.00 22.76
MOTA	1340	cz	PHE	190	-1.177	6.904	7.662	1.00 21.21
ATOM	1341	N	LYS	191	1.369	4.171	10.130	1.00 19.61
ATOM	1342	CA	LYS	191	0.640	4.168	11.386	1.00 20.03
ATOM	1343	С	LYS	191	0.261	5.617	11.631	1.00 23.60
ATOM	1344	0	LYS	191	0.952	6.344	12.344	1.00 24.22
ATOM	1345	CB	LYS	191	1.514	3.650	12.525	1.00 24.39
MOTA	1346	CG	LYS	191	0.776	3.575	13.844	1.00 51.75
ATOM	1347	CD	LYS	191	1.726	3.537	15.032	1.00 59.10
ATOM	1348	CE	LYS	191	0.934	3.604	16.307	1.00 60.54
ATOM	1349	NZ	LYS	191	0.090	4.820	16.277	1.00 61.59
ATOM	1350	N	GLY	192	-0.751	6.065	10.899	1.00 18.83
MOTA	1351	CA	GLY	192	-1.207	7.431	11.028	1.00 17.89
MOTA	1352	С	GLY	192	-2.017	7.706	12.270	1.00 21.28
MOTA	1353	0	GLY	192	-2.533	6.800	12.925	1.00 21.21
MOTA	1354	N	LYS	193	-2.085	8.980	12.620	1.00 18.93
MOTA	1355	CA	LYS	193	-2.840	9.414	13.779	1.00 20.11
MOTA	1356	С	LYS	193	-4.170	9.929	13.239	1.00 28.57
MOTA	1357	0	LYS	193	-4.200	10.621	12.222	1.00 30.68
ATOM	1358	СВ	LYS	193	-2.066	10.518	14.492	1.00 22.77
ATOM	1359		LYS	193	-0.605	10.152	14.635	
MOTA	1360		LYS	193	0.255	11.289	15.098	1.00 85.61
MOTA	1361		LYS	193	1.716	10.864	15.104	1.00104.77
ATOM	1362		LYS	193	2.595	11.990	15.496	1.00110.00
MOTA	1363		TRP	194	-5.275	9.502	13.842	1.00 22.28
MOTA	1364		TRP	194	-6.580	9.956	13.389	1.00 19.23
ATOM	1365		TRP	194	-6.729	11.449	13.600	1.00 22.08
MOTA	1366		TRP	194	-6.345	11.975	14.642	1.00 20.61
MOTA	1367			194	-7.709	9.232	14.127	1.00 16.80
MOTA	1368			194	-7.820	7.791	13.793	1.00 17.43
MOTA	1369		1 TRP	194	-7.806	6.739	14.660	1.00 20.34
MOTA	1370		2 TRP	194	-7.894	7.235	12.478	1.00 17.41
MOTA	1371		1 TRP	194	-7.850	5.558	13.962	1.00 20.08
AIUM	13/1	. HE						

ATON	1372	CE2	TRP	194	-7.920	5.832	12.633	1.00 21.75
HOTA	1373	CE3	TRP	194	-7.961	7.785	11.198	1.00 18.74
ATOM	1374	CZ2	TRP	194	-7.969	4.977	11.530	1.00 20.89
MOTA	1375	CZ3	TRP	194	-8.009	6.933	10.111	1.00 20.61
HOTA	1376	CH2	TRP	194	-8.028	5.542	10.286	1.00 21.45
HOTA	1377	N	GLU	195	-7.308	12.105	12.578	1.00 18.47
HOTA	1378	CA	GLU	195	-7.643	13.509	12.721	1.00 17.31
MOTA	1379	С	GLU	195	-8.716	13.627	13.767	1.00 24.91
MOTA	1380	0	GLU	195	-8.750	14.601	14.501	1.00 26.50
MOTA	1381	CB	GLU	195	-8.193	13.966	11.359	1.00 17.55
MOTA	1382	CG	GLU	195	-8.065	15.493	11.231	1.00 17.56
ATOH	1383	CD	CLU	195	-8.452	15.898	9.839	1.00 24.67
ATOM	1384		GLU	195	-9.680	15.929	9.553	1.00 8.00
YLON	1385	OE2	GLU	195	-7.532	16.193	9.032	1.00 29.08
MOTA	1386	N	ARG	196	-9.582	12.597	13.838	1.00 20.95
MOTA	1387	CA	ARG	196	-10.576	12.563	14.894	1.00 19.29
MOTA	1388	C	ARG	196	-10.401	11.246	15.606	1.00 19.82
MOTA	1389	0	ARG	. 196	-10.955	10.248	15.172	1.00 17.50
MOTA	1390	CB	ARG	196	-11.967	12.693	14.247	1.00 17.74
MOTA	1391	CG	ARG	196	-12.101	14.095	13.626	1.00 28.49
MOTA	1392	CD	ARG	196	-13.389	14.170	12.788	1.00 44.06
MOTA	1393	NE	ARG	196	-13.398	15.427	12.063	1.00 68.61
MOTA	1394	CZ	ARG	196	-14.509	15.946	11.626	1.00 90.69
ATOM	1395		ARG	196	-15.650	15.352	11.819	1.00 78.16
MOTA	1396		ARG	196	-14.475	17.076	10.984	1.00 79.20
MOTA	1397	N	PRO	197	-9.608	11.228	16.701	1.00 16.16
MOTA	1398	CA	PRO	197	-9.262	9.981	17.351	1.00 14.33
MOTA	1399	Ç	PRO	197	-10.380	9.296	18.090	1.00 19.09
MOTA	1400	0	PRO	197	-11.441	9.847	18.328	1.00 19.66
MOTA	1401	СВ	PRO	197	-8.165	10.412	18.347	1.00 16.11
MOTA	1402	CG	PRO	197	-8.160	11.956	18.384	1.00 22.80
MOTA	1403	CD	PRO	197	-9.018	12.450	17.203	1.00 18.02
MOTA	1404	N	PHE	198	-10.067	8.035	18.439	1.00 15.54 1.00 15.37
ATOM	1405	CA	PHE	198	-10.958	7.199 7.325	19.238 20.641	1.00 25.44
MOTA	1406	C	PHE	198	-10.378	7.366	20.823	1.00 28.47
MOTA	1407	0	PHE	198	-9.150 -10.867	5.717	18.834	1.00 26.47
MOTA MOTA	1408 1409	CB CG	PHE	198 198	-11.560	5.392	17.553	1.00 18.18
ATOM	1410	CD1	PHE	198	-12.931	5.214	17.519	1.00 22.32
ATOM		CD2			-12.931	5.303	16.366	1.00 20.91
ATOH	1411 1412		PHE	198 198	-13.589	4.958	16.321	1.00 23.71
	1413	_	PHE	198	-11.490	5.049		1.00 23.38
ATOM	1414	CZ	PHE	198	-12.866	4.877	15.146	1.00 21.79
ATOM	1415	N	GLU	199	-11.268	7.362	21.648	1.00 21.15
MOTA	1416	CA	GLU	199	-10.759	7.396	23.004	1.00 21.66
MOTA	1417	C	GLU	199	-10.458	6.001	23.469	1.00 25.73
ATOM	1418	0	GLU	199	-11.331	5.146	23.467	1.00 27.78
ATOM	1419	СВ	GLU	199	-11.738	8.127	23.941	1.00 24.14
ATOM	1420	CG	GLU	199	-11.738	9.597	23.490	1.00 44.18
ATOM	1421	CD	GLU	199	-12.328	10.519	24.577	1.00 83.32
MOTA	1422		GLU	199	-12.526	10.035	25.695	1.00 77.92
ATOM	1423		GLU	199	-12.381	11.749	24.309	1.00 89.79
MOTA	1424	N N	VAL	200	-9.187	5.793	23.862	1.00 18.99
ATOM	1425		VAL	200	-8.765	4.484	24.356	1.00 17.54
	-4-7	~~	4 644	* ~ ~	-0.703			

HOTA	1426	С	VAL	200	-9.690	3.888	25.421	1.00 21.63
HOTA	1427	0	VAL	200	-9.879	2.676	25.477	1.00 22.09
MOTA	1428	CB	VAL	200	-7.319	4.539	24.927	1.00 21.35
MOTA	1429	CG1	VAL	200	-6.796	3.147	25.174	1.00 21.50
MOTA	1430	CG2	VAL	200	-6.395	5.278	23.981	1.00 21.61
MOTA	1431	N	LYS	201	-10.319	4.742	26.217	1.00 19.04
HOTA	1432	CA	LYS	201	-11.192	4.262	27.275	1.00 18.50
MOTA	1433	С	LYS	201	-12.267	3.344	26.726	1.00 26.40
ATOM	1434	0	LYS	201	-12.581	2.335	27.342	1.00 26.71
MOTA	1435	CB	LYS	201	-11.833	5.430	28.023	1.00 18.67
MOTA	1436	CG	LYS	201	-12.888	6.216	27.249	1.00 18.75
ATOM	1437	CD	LYS	201	-13.518	7.283	28.119	1.00 18.80
MOTA	1438	CE	LYS	201	-14.672	7.970	27.427	1.00 32.20
MOTA	1439	NZ	LYS	201	-15.326	8.972	28.307	1.00 45.27
MOTA	1440	N	ASP	202	-12.780	3.682	25.544	1.00 25.30
HOTA	1441	CA	ASP	202	-13.834	2.923	24.899	1.00 26.03
MOTA	1442	С	ASP	202	-13.386	1.698	24.117	1.00 30.85
MOTA	1443	0	ASP	202	-14.216	0.984	23.546	1.00 30.98
MOTA	1444	CB	ASP	202	-14.654	3.841	23.990	1.00 28.26
ATOM	1445	CG	ASP	202	-15.464	4.848	24.770	1.00 43.04
MOTA	1446		ASP	202	-16.258	4.401	25.628	1.00 52.14
MOTA	1447	OD2	ASP	202	-15.303	6.060	24.547	1.00 44.22
MOTA	1448	N	THR	203	-12.086	1.451	24.069	1.00 25.69
MOTA	1449	CA	THR	203	-11.587	0.297	23.347	1.00 24.08
MOTA	1450	C	THR	203	-11.707	-0.967	24.179	1.00 28.24
ATOM	1451	0	THR	203	-10.951	-1.189	25.130 22.869	1.00 22.59
MOTA	1452	СВ	THR	-	-10.145	0.504 1.685	22.067	1.00 28.88
MOTA	1453		THR	203	-10.098 -9.678	-0.665	22.029	1.00 18.61
MOTA	1454	CG2		203	-12.760	-1.722	23.891	1.00 23.91
HOTA	1455	N	GLU	204	-13.028	-2.986	24.560	1.00 24.34
MOTA	1456	CA	GLU GLU	204 204	-12.810	-4.070	23.516	1.00 27.16
ATOM	1457 1458	С.	GLU	204	-12.856	-3.820	22.309	1.00 26.99
MOTA	1459	O CB	GLU	204	-14.483	-3.091	25.017	1.00 26.97
ATOM	1460	CG	GLU	204	-15.013	-2.054	25.993	1.00 49.92
ATOM	1461	CD	GLU	204	-16.540	-2.055	26.029	1.00 89.01
ATOM	1462		GLU	204	-17.155	-3.104	25.739	1.00 90.36
ATOM	1463		GLU	204	-17.127	-0.993	26.318	1.00 92.82
ATOM	1464	N	GLU	205	-12.598	-5.287	23.987	1.00 22.43
ATOM	1465	CA	GLU	205	-12.393	-6.423	23.111	1.00 20.55
MOTA	1466	С	GLU	205	-13.775	-6.929	22.733	1.00 21.14
ATOM	1467	0	GLU	205	-14.668	-6.957	23.574	
ATOM	1468	CB	GLU	205	-11.610	-7.503	23.850	1.00 22.04
MOTA	1469	CG	GLU	205	-11.100	-8.624	22.991	1.00 32.94
MOTA	1470	CD	GLU	205	-10.167	-9.514	23.763	1.00 51.62
MOTA	1471	OE	GLU	205		-10.332	24.558	1.00 51.06
MOTA	1472	OE2	GLU	205	-8.939	-9.387	23.610	1.00 38.62
ATOH	1473	N	GLU	206	-13.966	-7.296	21.471	1.00 20.25
ATOM	1474	CA	GLU	206	-15.267	-7.780	21.021	1.00 21.26
MOTA	1475		GLU	206	-15.158	-8.773	19.859	1.00 24.46
MOTA	1476		GLU	206	-14.068	-9.020	19.340	1.00 23.47
HOTA	1477		GLU		-16.196	-6.603	20.673	1.00 23.44
MOTA	1478		GLU		-16.776	-5.848	21.889	1.00 42.83
MOTA	1479	CD	GLU	206	-16.908	-4.339	21.667	1.00 78.90

ATON	1480	OE1	CLII	206	-17.346	-3.915	20.577	1.00 98.65
ATOM	1481		GLU	206	-16.590	-3.576	22.614	1.00 53.79
	1482	N		207	-16.302	-9.356	19.496	1.00 33.79
MOTA			ASP					_
ATON	1483	CA	ASP	207		-10.362	18.430	1.00 21.45
MOTA	1484	C	ASP	207	-16.049	-9.896	17.030	1.00 27.25
MOTA	1485	0	ASP	207	-16.278	-8.748	16.652	1.00 29.30
MOTA	1486	CB	ASP	207	-	-10.885	18.367	1.00 22.21
MOTA	1487	CC	ASP	207		-11.775	19.542	1.00 21.70
MOTA	1488		ASP	207		-11.532	20.674	1.00 16.73
MOTA	1489	OD2	ASP	207		-12.717	19.330	1.00 33.68
MOTA	1490	N	PHE	208		-10.818	16.265	1.00 21.30
HOTA	1491	CA	PHE	208		-10.560	14.894	1.00 19.76
MOTA	1492	С	PHE	208		-11.810	14.089	1.00 22.95
MOTA	1493	0	PHE	208		-12.862	14.262	1.00 22.62
MOTA	1494	CB	PHE	208	-13.577	-10.228	14.786	1.00 21.53
MOTA	1495	CG	PHE	208	-13.176	-9.718	13.424	1.00 23.92
MOTA	1496	CD1	PHE	208	-13.071	-10.586	12.346	1.00 28.21
MOTA	1497	CD2	PHE	208	-12.948	-8.365	13.209	1.00 27.58
MOTA	1498	CE1	PHE	208	-12.747	-10.113	11.072	1.00 31.72
MOTA	1499	CE2	PHE	208	-12.624	-7.885	11.940	1.00 28.80
ATOM	1500	CZ	PHE	208	-12.525	-8.761	10.871	1.00 29.25
MOTA	1501	N	HIS	209	-16.413	-11.687	13.250	1.00 20.52
ATOM	1502	CA	HIS	209	-16.875	-12.769	12.403	1.00 20.85
MOTA	1503	С	HIS	209	-15.919	-13.205	11.306	1.00 23.39
ATOM	1504	0	HIS	209	-15.855	-12.572	10.253	1.00 24.89
MOTA	1505	СВ	HIS	209	-18.212	-12.398	11.764	1.00 22.94
MOTA	1506	CG	HIS	209	-19.393	-12.863	12.551	1.00 27.59
MOTA	1507	ND1	HIS	209	-20.195	-13.902	12.127	1.00 30.09
MOTA	1508	CD2	HIS	209	-19.871	-12.478	13.753	1.00 29.90
MOTA	1509	CE1	HIS	209	-21.115	-14.147	13.041	1.00 29.82
ATOM	1510	NE2	HIS	209	-20.940	-13.294	14.041	1.00 30.00
MOTA	1511	N	VAL	210	-15.185	-14.287	11.554	1.00 17.01
ATOM	1512	CA	VAL	210	-14.271	-14.832	10.556	1.00 14.63
MOTA	1513	С	VAL	210	-15.076	-15.769	9.640	1.00 22.79
MOTA	1514	0	VAL	210	-14.609	-16.154	8.563	1.00 24.05
ATOM	1515	CB	VAL	210	-13.113	-15.601	11.203	1.00 15.44
MOTA	1516	CG1	VAL	210	-12.136	-14.616	11.834	1.00 14.45
ATOM	1517	CG2	VAL	210	-13.639	-16.556	12.243	1.00 15.19
ATOM	1518	N	ASP	211	-16.282	-16.129	10.094	1.00 21.95
ATOM	1519	CA	ASP	211	-17.230	-16.992	9.371	1.00 23.32
ATOM	1520	С	ASP	211		-16.426	9.607	1.00 30.30
ATOM	1521	Ō	ASP	211		-15.509		1.00 30.53
ATOM	1522	СВ	ASP	211			9.919	1.00 25.50
ATOM	1523	CG	ASP	211			9.361	1.00 44.95
ATOM	1524		ASP	211	-14.933	-18.996	9.608	1.00 48.54
ATOM	1525		ASP	211		-20.274	8.704	1.00 52.49
ATOM	1526	N	GLN	212			8.960	1.00 29.03
ATOM	1527	CA	GLN	212			9.148	1.00 29.12
ATOM	1528	C	GLN	212		-17.190	10.451	1.00 34.30
ATOM	1529	ō	GLN	212		-16.770	10.992	1.00 36.41
ATOM	1530	СВ	GLN	212		-17.103	8.026	1.00 30.36
MOTA	1531	CG	GLN	212			6.630	1.00 49.34
ATOM	1532	CD	GLN	212		-15.539		1.00 64.74
MOTA	1533		GLN	212			6.779	1.00 59.48
AIUM	7333	OET	الميدي	414	-23.710	-13.311	9.773	1.00 37.40

MOTA	1534	NE2	GLN	212	-22.340 -14.839	5.091	1.00 56.91
MOTA	1535	N	VAL	213	-20.726 -18.166	10.950	1.00 28.15
HOTA	1536	CA	VAL	213	-21.077 -18.876	12.178	1.00 25.98
HOTA	1537	С	VAL	213	-19.956 -18.912	13.220	1.00 26.83
HOTA	1538	0	VAL	213	-20.164 -19.375	14.339	1.00 24.65
MOTA	1539	CB	VAL	213	-21.491 -20.338	11.870	1.00 28.98
HOTA	1540	CG1	VAL	213	-22.700 -20.351	10.956	1.00 28.50
MOTA	1541	CG2	VAL	213	-20.327 -21.109	11.243	1.00 28.77
MOTA	1542	N	THR	214	-18.784 -18.409	12.851	1.00 23.26
MOTA	1543	CA	THR	214	-17.641 -18.411	13.747	1.00 23.15
HOTA	1544	С	THR	214	-17.196 -16.989	14.050	1.00 27.67
MOTA	1545	0	THR	214	-17.353 -16.090	13.221	1.00 27.31
HOTA	1546	CB	THR	214	-16.461 -19.186	13.136	1.00 31.51
MOTA	1547	0G1	THR	214	-16.968 -20.276	12.347	1.00 28.47
ATOM	1548	CG2	THR	214	-15.551 -19.727	14.227	1.00 32.93
MOTA	1549	N	THR	215	-16.665 -16.793	15.250	1.00 25.25
HOTA	1550	ÇA	THR	215	-16.198 -15.496	15.694	1.00 25.06
ATOM	1551	С	THR	215	-14.836 -15.607	16.353	1.00 26.60
MOTA	1552	0	THR	215	-14.365 -16.697	16.655	1.00 26.58
HOTA	1553	СВ	THR	215	-17.187 -14.856	16.708	1.00 39.80
ATOM	1554	OG1		215	-17.476 -15.787	17.760	1.00 40.04
ATOM	1555	CG2	THR	215	-18.480 -14.468	16.029	1.00 43.19
ATOM	1556	N	VAL	216	-14.205 -14.458	16.537	1.00 21.12
MOTA	1557	CA	VAL	216	-12.907 -14.343	17.166	1.00 19.03
ATOM	1558	C	VAL	216	-12.933 -13.000	17.890	1.00 26.31
ATOM	1559	ō	VAL	216	-13.723 -12.118	17.550	1.00 26.92
ATOM	1560	СВ	VAL	216	-11.782 -14.408	16.122	1.00 20.18
ATOM	1561		VAL	216	-10.557 -13.656	16.590	1.00 19.92
ATOM	1562		VAL	216	-11.434 -15.852	15.873	1.00 19.39
ATOM	1563	N	LYS	217	-12.159 -12.889	18.962	1.00 23.35
ATOM	1564	CA	LYS	217	~12:119 -11.660	19.734	1.00 23.09
ATOM	1565	С	LYS	217	-10.944 -10.809	19.295	1.00 24.17
ATOM	1566	0	LYS	217	-9.854 -11.320	19.004	1.00 21.99
MOTA	1567	СВ	LYS	217	-12.028 -11.978	21.226	1.00 27.15
ATOM	1568	CG	LYS	217	-13.130 -12.891	21.712	1.00 34.17
MOTA	1569	CD	LYS	217	-14.487 -12.239	21.553	1.00 37.75
ATOM	1570	CE	LYS	217	-15.602 -13.250	21.705	1.00 51.12
MOTA	1571	NZ	LYS	217	-15.661 -14.121	20.501	1.00 59.22
ATOM	1572	N	VAL	218	-11.194 -9.509	19.216	1.00 20.37
MOTA	1573	CA	VAL	218	-10.183 -8.538	18.823	1.00 19.85
MOTA	1574	C	VAL	218	-10.486 -7.236	19.547	1.00 19.60
MOTA	1575	0	VAL	218	-11.622 -7.030	19.985	1.00 19.43
ATOM	1576	CB	VAL	218	-10.225 -8.280	17.295	1.00 25.31
MOTA	1577	CG1	VAL	218	-9.764 -9.521	16.540	1.00 26.00
ATOM	1578	CG2	VAL	21,8	-11.625 -7.885	16.853	1.00 24.90
ATOM	1579	N	PRO	219	-9.457 -6.414	19.824	1.00 14.76
ATOH	1580	CA	PRO	219	-9.675 -5.138	20.509	1.00 15.37
ATOM	1581	С	PRO	219	-10.433 -4.208	19.567	1.00 19.72
ATOH	1582	0	PRO	219	-9.870 -3.689	18.594	1.00 22.88
MOTA	1583	CB	PRO	219	-8.258 -4.635	20.760	1.00 16.67
MOTA	1584	CG	PRO	219	-7.487 -5.238	19.644	1.00 20.99
MOTA	1585	CD	PRO	219	-8.020 -6.646	19.644	1.00 15.91
HOTA	1586	N	MET	220	-11.700 -3.990	19.892	1.00 10.54
ATOM	1587	CA	MET	220	-12.589 -3.173	19.097	1.00 7.76

MOTA	1588	С	MET	220	-12.674	-1.738	19.586	1.00 9.93
MOTA	1589	0	MET	220	-13.041	-1.473	20.729	1.00 12.28
MOTA	1590	CB	MET	220	-13.982	-3.801	19.098	1.00 9.32
MOTA	1591	CC	MET	220	-14.911	-3.270	18.038	1.00 12.33
MOTA	1592	SD	MET	220	-14.409	-3.705	16.384	1.00 15.68
MOTA	1593	CE	MET	220	-14.740	-5.479	16.336	1.00 12.17
MOTA	1594	N	MET	221	-12.302	-0.813	18.717	1.00 4.18
MOTA	1595	CA	MET	221	-12.378	0.600	19.036	1.00 3.81
MOTA	1596	C	MET	221	-13.821	1.013	18.717	1.00 8.98
MOTA	1597	0	MET	221	-14.500	0.347	17.929	1.00 7.18
MOTA	1598	CB	MET	221	-11.407	1.403	18.152	1.00 5.88
MOTA	1599	CG	MET	221	-9.995	0.842	18.045	1.00 8.69
ATOM	1600	SD	MET	221	-8.838	1.916	17.171	1.00 11.36
ATOM	1601	CE	MET	221	-9.315	1.597	15.511	1.00 8.44
ATOM	1602	N	LYS	222	-14.306	2.075	19.355	1.00 9.02
ATOM	1603	CA	LYS	222	-15.655	2.573	19.089	1.00 10.15
ATOM	1604	С	LYS	222	-15.826	4.059	19.387	1.00 12.60
MOTA	1605	0	LYS	222	-15.204	4.594	20.306	1.00 12.75
MOTA	1606	СВ	LYS	222	-16.714	1.743	19.823	1.00 15.09
ATOM	1607	CG	LYS	222	-16.512	1.603	21.314	1.00 37.80
MOTA	1608	CD	LYS	222	-17.741	0.947	21.923	1.00 50.19
MOTA	1609	CE	LYS	222	-17.542	0.621	23.389	1.00 62.83
MOTA	1610	NZ	LYS	222	-16.475	-0.403	23.522	1.00 62.90
MOTA	1611	N	ARG	223	-16.682	4.698	18.567	1.00 7.78
ATOM	1612	CA	ARG	223	-16.903	6.122	18.728	1.00 7.43
MOTA	1613	С	ARG	223	-18.216	6.507	18.106	1.00 14.04
MOTA	1614	0	ARG	223	-18.471	6.190	16.955	1.00 14.71
MOTA	1615	CB	ARG	223	-15.760	6.919	18.065	1.00 1.85
MOTA	1616	CG	ARG	223	-16.002	8.432	18.236	1.00 8.27
MOTA	1617	CD	ARG	223	-14.808	9.222	17.674	1.00 12.86
MOTA	1618	NE	ARG	223	-14.917	9.339	16.230	1.00 21.24
MOTA	1619	CZ	ARG	223	-15.401	10.410	15.670	1.00 39.54
ATOM	1620	NH1	ARG	223	-15.826	11.415	16.381	1.00 21.45
MOTA	1621	NH2	ARG	223	-15.459	10.480	14.373	1.00 36.93
ATOM	1622	N	LEU	224	-19.051	7.207	18.895	1.00 11.24
MOTA	1623	CA	LEU	224	-20.281	7.729	18.333	1.00 11.34
MOTA	1624	C	LEU	224	-19.992	9.123	17.859	1.00 17.43
MOTA	1625	0	LEU	224	-19.508	9.931	18.636	1.00 19.15
MOTA	1626	CB	LEU	224	-21.364	7.768	19.430	1.00 11.10
MOTA	1627	CG	LEU	224	-22.618	8.519	18.940	1.00 14.59
MOTA	1628		LEU	224	-23.329	7.707	17.843	1.00 14.40
MOTA	1629	CD2	LEU	224	-23.576	8.750	20.122	1.00 16.42
MOTA	1630	N	GLY	225	-20.287	9.408	16.577	1.00 14.04
MOTA	1631	CA	GLY	225	-20.017	10.748	16.092	1.00 13.48
HOTA	1632	С	GLY	225	-20.422	10.920	14.656	1.00 19.70
MOTA	1633	0	GLY	225	-21.026	10.042	14.062	1.00 22.63
MOTA	1634	N	MET	226	-20.071	12.100	14.109	1.00 11.91
MOTA	1635	CA	MET	226.	-20.423	12.382	12.730	1.00 8.35
MOTA	1636		MET	226	-19.364	11.799	11.838	1.00 11.83
MOTA	1637	0	MET	226	-18.303	12.383	11.677	1.00 10.56
MOTA	1638	CB	MET	226	-20.518	13.910	12.539	1.00 8.55
MOTA	1639	CG	MET	226	-21.405	14.548	13.627	1.00 9.32
MOTA	1640	SD	MET	226	-23.076	13.833	13.531	1.00 10.74
MOTA	1641	CE	MET	226	-23.518	14.429	11.871	1.00 6.35

HOTA	1642	N	PHE	227	-19.665	10.623	11.255	1.00	8.57
HOTA	1643	CX	PHE	227	-18.691				8.12
MOTA	1644	С	PHE	227	-19.003				13.66
MOTA	1645	0	Phe	227	-20.135				12.48
MOTA	1646	CB	PHE	227	-18.639				8.75
MOTA	1647	CG	PHE	227	-18.070	8.192		1.00	8.71
MOTA	1648		1 PHE	227	-16.694	8.013	12.177	1.00	9.74
MOTA	1649	CD:	2 PHE	227	-18.923			1.00	9.32
MOTA	1650	CE:	1 PHE	227	-16.174	7.720			11.09
MOTA	1651	CE	2 PHE	227	-18.402	7.823		1.00	8.85
ATOM	1652	CZ	PHE	227	-17.028	7.622	14.542	1.00	8.29
HOTA	1653	N	asn	228	-17.960	10.148	8.086	1.00	
MOTA	1654	CA	asn	228	-18.159	10.287		1.00	
MOTA	1655	C	asn	228	-18.533	8.882	6.173	1.00	
MOTA	1656	0	ASN	228	-17.936	8.345	5.243	1.00	
MOTA	1657	CB	ASN	228	-16.860	10.754	5.968	1.00	7.09
MOTA	1658	CG	asn	228	-17.041	11.137	4.498	1.00	
ATOM	1659		ASN	228	-16.219	11.868	3.946	1.00	
MOTA	1660		2 ASN	228	-18.085	10.619	3.850	1.00	
MOTA	1661	N	ILE	229	-19.525	8.303	6.841	1.00	
MOTA	1662	CA	ILE	229	-20.001	6.958	6.565	1.00 1	
MOTA	1663	С	ILE	229	-21.244	6.990	5.687	1.00 1	
MOTA	1664	0	ILE	229	-22.059	7.907	5.771	1.00 1	
MOTA	1665	CB		229	-20.336	6.227	7.890	1.00 2	
MOTA	1666		ILE	229	-20.764	4.780	7.631	1.00 2	1.22
MOTA	1667		ILE	229	-21.461	6.970	8.634	1.00 2	1.83
MOTA	1668		ILE	229	-19.660	3.886	7.182	1.00 3	5.66
ATOM	1669	N	GLN	230	-21.374	5.974	4.845	1.00 1	
ATOM	1670	CA	GLN	230	-22.505	5.830	3.939	1.00 1	6.55
ATOM	1671	С	GLN	230	-22.645	4.362	3.585	1.00 2	
ATOM	1672	0	GLN	230	-21.793	3.558	3.938	1.00 1	
ATOM ATOM	1673 1674	CB	GLN	230	-22.339	6.675	2.654	1.00 1	
ATOM	1675	CG	GLN	230	-20.974	6.615	1.965	1.00 2	
ATOM	1676	CD	GLN	230	-19.968	7.619	2.529	1.00 4	
ATOM	1677		gln gln	230	-18.755	7.377	2.537	1.00 3	
ATOM	1678	NEZ N	HIS	230	-20.473	8.748	3.011	1.00 4	
ATOM	1679	CA	HIS	231	-23.752	4.010	2.945	1.00 1	
ATOM	1680	C	HIS	231	-23.979	2.641	2.538	1.00 1	
ATOM	1681	0	HIS	231	-24.244	2.618	1.047	1.00 2	
ATOM	1682	CB	HIS	231 231	-25.347	2.942	0.594	1.00 2	
MOTA	1683	CG	HIS	231	-25.158	2.015	3.277	1.00 2	
MOTA	1684		HIS	231	-25.361 -25.989	0.571 0.157	2.938	1.00 2	
ATOM	1685		HIS	231	-24.980	-0.551	1.784	1.00 2	
ATOM	1686		HIS	231	-25.984		3.585	1.00 29	
ATOM	1687		HIS	231	-25.376	-1.165 -1.617	1.726	1.00 29	
ATOM	1688	N	CYS	232	-23.376 -23.230	2.227	2.814	1.00 29	
ATOM	1689	CA	CYS	232	-23.230	2.227	0.292	1.00 23	
ATOM	1690	C	CYS	232	-24.054	0.898	-1.151 -1.592	1.00 24	
MOTA	1691	0	CYS	232	-23.603	-0.216	-1.392	1.00 28	
ATOM	1692	СВ	CYS	232	-21.946	2.190	-1.319	1.00 27	
ATOM	1693	SG	CYS	232	-21.982	2.445	-3.578	1.00 25	
MOTA	1694	N	LYS	233	-25.186	1.064	-2.260	1.00 30	
HOTA	1695	CA	LYS	233	-25.913	-0.094		1.00 27 1.00 28	
-						V. V.74	-4./5/	1.00 28	. 55

HOTA	1696	С	LYS	233	-25.143	-0.759	-3.884	1.00 3	15 20
ATON	1697	0	LYS	233	-25.045				
MOTA	1698	CB	LYS	233	-27.324				
ATOM	1699	CC	LYS	233	-28.321				
MOTA	1700	CD	LYS	233	-28.466				
ATOM	1701	CE	LYS	233	-29.501		-0.108		
HOTA	1702	NZ	LYS	233	-29.592		0.805		
HOTA	1703	N	LYS	234	-24.536	0.049	-4.753		
ATOM	1704	CY	LYS	234	-23.780		-5.878		
MOTA	1705	C	LYS	234	-22.698	-1.456	-5.434	1.00 3	
MOTA	1706	0	LYS	234	-22.536	-2.517	-6.023	1.00 3	
MOTA	1707	CB	LYS	234	-23.158	0.627	-6.713	1.00 3	
ATOM	1708	CC	LYS	234	-22.409	0.109	-7.938	1.00 4	
ATOM	1709	CD	LYS	234	-22.403	1.126	-9.065	1.00 5	
MOTA	1710	CE	LYS	234	-22.003		-10.385	1.00 6	
MOTA	1711	NZ	LYS	234	-22.208		-11.533	1.00 6	4.53
MOTA	1712	N	LEU	235	-21.951	-1.088	-4.404	1.00 2	
ATOM	1713	CX	LEU	235	-20.893	-1.949	-3.904	1.00 2	5.46
ATOH	1714	С	LEU	235	-21.446	-2.913	-2.859	1.00 2	7.92
MOTA	1715	0	LEU	235	-20.745	-3.816	-2.412	1.00 2	7.78
ATOM	1716	CB	LEU	235	-19.767	-1.108	-3.297	1.00 2	5.05
ATOM	1717	CC	LEU	235	-19.005	-0.163	-4.226	1.00 2	
ATOM	1718		LEU	235	-18.113	0.743	-3.424	1.00 2	9.02
MOTA	1719		LEU	235	-18.198	-0.946	-5.225	1.00 34	
ATOM	1720	N	SER	236	-22.717	-2.751	-2.518	1.00 24	
ATOM	1721 1722	CA	SER	236	-23.363	-3.593	-1.518	1.00 29	
ATOM	1723	C	SER	236	-22.546	-3.589	-0.229	1.00 26	
ATOM	1724	O CB	SER	236	-22.227	-4.649	0.326	1.00 27	
ATOM	1725	OG	SER	236	-23.533	-5.025	-2.033	1.00 31	
ATOM	1726	N	SER SER	236 237	-24.358	-5.069	-3.188	1.00 47	
ATOM	1727	CA	SER	237	-22.230	-2.392	0.260	1.00 19	
ATOM	1728	C	SER	237	-21.440 -21.371	-2.266 -0.879	1.474	1.00 17	
ATOM	1729	ō	SER	237	-21.623	0.124	2.096	1.00 17	
ATOM	1730	CB	SER	237	-20.021	-2.774	1.440	1.00 15	
HOTA	1731	OG	SER	237	-19.642	-2.578	-0.137	1.00 21	
MOTA	1732	N	TRP	238	-21.085	-0.842	3.391	1.00 12	
MOTA	1733	CA	TRP	238	-20.928	0.407	4.112	1.00 12	
MOTA	1734	С	TRP	238	-19.531	0.929	3.774	1.00 13	
MOTA	1735	0	TRP	238	-18.538	0.193	3.867	1.00 11	
MOTA	1736	CB	TRP	238	-21.015	0.167	5.612	1.00 11	
MOTA	1737	CG	TRP	238	-22.403	0.081	6.189	1.00 13	
ATOM	1738		TRP	238	-23.086	-1.049	6.529	1.00 16	
ATOM	1739		TRP	238	-23.214	1.183	6.607	1.00 13	
ATOH	1740		TRP	238	-24.272	-0.716	7.135	1.00 15	
ATOM	1741		TRP	238	-24.382	0.638	7.180	1.00 16	
MOTA	1742		TRP	238	-23.076	2.568	6.527	1.00 15	
ATOH	1743		TRP	238	-25.386	1.444	7.709	1.00 15	
MOTA	1744		TRP	238	-24.076	3.364	7.053	1.00 16	
MOTA	1745	CH2		238	-25.227	2.799	7.620	1.00 16	
MOTA	1746	N	VAL	239	-19.475	2.183	3.341		.68
MOTA	1747	CX	VAL	239	-18.231	2.852	2.968		. 63
MOTA	1748	С	VAL	239	-17.942	4.013	3.944	1.00 10	
HOTA	1749	0	VAL	239	-18.667	5.011	3.981		. 54

ATOH	1750	CB	VAL	239	-18.320	3.369	1.507	1.00 12.66
HOTA	1751	CG1		239	-17.017	4.042	1.084	1.00 12.90
ATOH	1752		VAL	239	-18.671	2.225	0.579	1.00 12.01
ATOM	1753	N	LEU	240	-16.871	3.849	4.720	1.00 10.01
ATOM	1754	CA	LEU	240	-16.427	4.799	5.737	1.00 10.33
ATOM	1755	C	LEU	240	-15.128	5.523	5.387	1.00 15.02
ATOM	1756	Ō	LEU	240	-14.099	4.884	5.166	1.00 14.95
MOTA	1757	СВ	LEU	240	-16.229	4.051	7.057	1.00 10.48
ATOM	1758	CC	LEU	240	-15.548	4.799	8.203	1.00 16.26
MOTA	1759	CD1	LEU	240	-16.472	5.855	8.781	1.00 17.63
MOTA	1760	CD2	LEU	240	-15.124	3.817	9.263	1.00 15.41
MOTA	1761	N	LEU	241	-15.164	6.850	5. 36 6	1.00 12.02
MOTA	1762	CA	LEU	241	-13.962	7.620	5.070	1.00 12.27
MOTA	1763	С	LEU	241	-13.329	8.283	6.298	1.00 18.80
MOTA	1764	0	LEU	241	-13.777	9.334	6.774	1.00 18.43
ATOM	1765	CB	LEU	241	-14.214	8.648	3.964	1.00 11.42
MOTA	1766	CG	LEU	241	-14.176	8.089	2.541	1.00 15.05
MOTA	1767		LEU	241	-15.379	7.211	2.276	
MOTA	1768	CD2	LEU	241	-14.119	9.229	1.547	1.00 16.74
MOTA	1769	N	MET	242	-12.284	7.641	6.806	1.00 17.21
MOTA	1770	CA	MET	242	-11.544	8.120	7.9 67 7.550	1.00 18.01
ATOH	1771	C	MET	242	-10.409 -9.468	9.053 8.668	6.864	1.00 24.19
MOTA	1772	0	MET	242		6.950	8.7 6 6	1.00 20.26
MOTA	1773	CB	MET	242	-10.966 -11.988	6.085	9.455	1.00 22.94
MOTA	1774	CG	MET	242 242	-12.629	6.786	10.951	1.00 25.83
MOTA	1775	SD	MET	242	-11.268	6.581	12.006	1.00 22.11
MOTA	1776 1777	N	LYS	243	-10.562	10.302	8.032	1.00 18.99
MOTA MOTA	1778		LYS	243	-9.548	11.312	7.802	1.00 17.66
ATOM	1779	C	LYS	243	-8.317	11.048	8.622	1.00 17.67
ATOM	1780	ō	LYS	243	-8.398	10.740	9.802	1.00 18.08
ATOM	1781	СВ	LYS	243	-10.105	12.714	8.132	1.00 21.90
ATOM	1782	CG	LYS	243	-10.690	12.755	9.559	1.00 25.80
ATOM	1783	CD	LYS	243	-12.103	12.137	9.582	1.00 18.62
ATOH	1784	CE	LYS	243	-12.461	11.654	11.002	1.00 26.35
MOTA	1785	NZ	LYS	243	-13.822	11.096	11.020	1.00 23.36
MOTA	1786	N	TYR	244	-7.159	11.177	7.954	1.00 13.01
MOTA	1787	CA	TYR	244	-5.890	10.998	8.667	1.00 12.02
MOTA	1788	C	TYR	244	-5.195	12.310	8.951	1.00 19.96
MOTA	1789	0	TYR	244	-5.138	13.207	8.100	1.00 20.97
MOTA	1790	CB	TYR	244	-4.898	10.149	7.870	1.00 11.09
MOTA	1791	CG	TYR	244	-4.867	8.706	8.243 9.553	1.00 12.20
MOTA	1792		1 TYR	244	-4.636	8.316 7.722	7.285	1.00 14.62
MOTA	1793		2 TYR	244	-5.089 -4.637	6.974	9.901	1.00 13.09
MOTA	1794		1 TYR	244	-5.089	6.376	7.624	1.00 12.96
MOTA	1795		2 TYR	244	-4.864	6.016	8.927	1.00 23.64
ATOM	1796	CZ		244 244	-4.858	4.692	9.255	1.00 34.09
ATOM	1797	OH		245	-4.618	12.389	10.141	1.00 18.61
MOTA	1798 1799	N CA	LEU LEU	245	-3.873	13.559	10.553	1.00 19.17
MOTA	1800		LEU	245	-2.578	13.463	9.768	1.00 28.06
MOTA MOTA	1801		LEU	245	-1.675	12.710	10.122	1.00 29.74
HOTA	1802			245	-3.586	13.518	12.056	1.00 18.84
ATOM	1803			245	-2.913	14.754	12.632	1.00 22.04
	_000							

ATOH	1804	CD1	LEU	245	-3.868	15.926	12.519	1.00 21.70
ATOM	1805	CD2	LEU	245	-2.503	14.504	14.070	1.00 21.91
MOTA	1806	N	GLY	246	-2.544	14.157	8.644	1.00 27.56
MOTA	1807	CA	GLY	246	-1.381	14.155	7.782	1.00 28.42
MOTA	1808	C	GLY	246	-1.875	14.635	6.435	1.00 34.25
MOTA	1809	0	GLY	246	-2.143	15.817	6.252	1.00 38.08
MOTA	1810	N	ASN	247	-2.098	13.712	5.517	1.00 26.63
MOTA	1811	CA	asn	247	-2.575	14.073	4.198	1.00 24.75
MOTA	1812	C	asn	247	-3.077	12.827	3.491	1.00 24.56
MOTA	1813	0	asn	247	-3.054	12.741	2.262	1.00 23.68
MOTA	1814	CB	asn	247	-1.458	14.745	3.388	1.00 26.63
MOTA	1815	CC	asn	247	-0.157	13.956	3.414	1.00 38.57
MOTA	1816		asn	247	0.368	13.645	4.487	1.00 45.16
MOTA	1817		asn	247	0.373	13.637	2.237	1.00 10.21
MOTA	1818	N	λLλ	248	-3.538	11.863	4.276	1.00 19.01
MOTA	1819	CX	λLλ	248	-4.063	10.619	3.735	1.00 18.29
ATOM	1820	С	ALA	248	-5.469	10.366	4.300	1.00 17.56
MOTA	1821	0	YLA	248	-5.809	10.858	5.377	1.00 14.85
MOTA	1822	CB	ALA	248	-3.125	9.458	4.064	1.00 19.31
ATOM	1823	N	THR	249	-6.286	9.648	3.535	1.00 11.98
ATOM	1824	CA	THR	249	-7.651	9.314	3.912	1.00 9.23
MOTA	1825	C	THR	249	-7.837	7.808	3.810	1.00 11.01
ATOM	1826	0	THR	249	-7.495	7.187	2.808	1.00 9.71
MOTA	1827	CB	THR	249	-8.689	10.012	2.996	1.00 5.40
MOTA	1828	0G1		249	-8.623	11.435	3.175	1.00 6.92
MOTA	1829	CG2		249	-10.098	9.525	3.302	1.00 1.00
MOTA	1830	N	λLλ	250	-8.331	7.233	4.891	1.00 7.89
MOTA	1831	CA	ALA	250	-8.601	5.819	5.001	1.00 7.37
MOTA	1832	С	ALA	250	-10.008	5.556	4.497	1.00 11.92
ATOM	1833	0	ALA	250	-10.950	6.222	4.927	1.00 14.56
MOTA	1834	CB	ALA	250	-8.504	5.396	6.468	1.00 7.88
ATOM	1835	N	ILE	251 251	-10.146 -11.457	4.646 4.273	3.542 3.030	1.00 5.32 1.00 3.97
MOTA	1836 1837	CA C	ILE	251 251	-11.611	2.810	3.441	1.00 5.37
MOTA MOTA	1838	0	ILE ILE	251	-10.709	1.998	3.225	1.00 6.05
ATOM	1839	CB	ILE	251	-11.564	4.365	1.483	1.00 7.21
ATOM	1840	CGI		251	-11.090	5.725	0.970	1.00 6.26
ATOM	1841	CG2		251	-13.007	4.160	1.052	1.00 10.19
ATOM	1842	CD1		251	-11.354	5.922	-0.507	1.00 1.00
ATOM	1843	N	PHE	252	-12.714	2.501	4.112	1.00 1.97
ATOM	1844	CA	PHE	252	-13.006	1.147	4.572	1.00 1.00
ATOM	1845	c	PHE	252	-14.298	0.701	3.928	
ATOM	1846	ō	PHE	252	-15.267	1.458	3.893	1.00 8.36
ATOM	1847		PHE	252	-13.196	1.112	6.094	1.00 1.68
ATOM	1848	CG	PHE	252	-11.989	1.534	6.877	1.00 1.01
ATOM	1849		PHE	252	-10.907	0.676	7.019	1.00 2.49
ATOM	1850		PHE	252	-11.936	2.785	7.466	1.00 1.00
ATOM	1851		PHE	252	-9.792	1.052	7.745	1.00 2.81
ATOM	1852	CE2		252	-10.827	3.169	8.192	1.00 4.34
ATOM	1853	cz	PHE	252	-9.745	2.302	8.328	1.00 2.20
ATOM	1854	N	PHE	253	-14.333	-0.556	3.507	1.00 3.93
ATOM	1855	Cλ	PHE	253	-15.503	-1.110	2.858	1.00 4.58
ATOM	1856	C	PHE	253	-15.964	-2.354	3.599	1.00 13.67
ATOM	1857	ō	PHE	253	-15.284	-3.388	3.571	1.00 11.49
		_						

HOTA	1858	CB	PHE	253	-15.174	-1.500	1.415	1.00	5.96
ATON	1859	CC	PHE	253	-14.641	-0.377	0.577	1.00	7.08
MOTA	1860	CD1	PHE	253	-15.509	0.475	-0.095	1.00	8.18
MOTA	1861	CD2	PHE	253	-13.274	-0.162	0.465		10.35
MOTA	1862	CEl	PHE	253	-15.021	1.526	-0.863		10.14
MOTA	1863	CE2		253	-12.781		-0.301		10.64
ATOM	1864	CZ	PHE	253	-13.657		-0.965	1.00	8.11
ATOM	1865	N	LEU	254	-17.142		4.212		15.28
ATOM	1866	CA	LEU	254	-17.736		4.954		15.29
ATOM	1867	C	LEU	254	-18.796		4.053		19.45
ATOM	1868	0	LEU	254	-19.908		3.949		20.52
MOTA	1869	СВ	LEU	254	-18.372		6.259		14.77
ATOM	1870	œ	LEU	254	-18.943		7.192		18.06
ATOM	1871		LEU	254	-17.835		7.607		18.39
MOTA	1872		LEU	254	-19.564		8.400		17.27
ATOM	1873	N	PRO	255	-18.459		3.371		14.39
MOTA	1874	CA	PRO	255	-19.415		2.483		14.37
ATOM	1875	c c	PRO	255	-20.653		3.215		22.98
ATOM	1876	ō	PRO	255	-20.571		4.370		23.70
ATOM	1877	СВ	PRO	255	-18.596		1.905		15.27
ATOM	1878	CG	PRO	255	-17.692		3.041		18.40
ATOM	1879	CD	PRO	255	-17.225		3.481		13.45
ATOM	1880	N	ASP	256	-21.794	-6.268	2.532		19.61
ATOM	1881	CA	ASP	256	-23.057		3.108		18.85
ATOH	1882	c	ASP	256	-22.960	-8.236	3.426		24.45
ATOM	1883	0	ASP	256	-21.892	-8.839	3.325		24.45
ATOM	1884	СВ	ASP	256	-24.249	-6.440	2.169		19.61
ATOM	1885	CG	ASP	256	-24.732	-4.970	2.262		23.84
ATOM	1886		ASP	256	-24.129	-4.149	2.985		20.06
ATOM	1887		ASP	256	-25.730		1.570		31.51
ATOM	1888	N	GLU	257	-24.057	-8.818	3.893		23.21
ATOM	1889	CA	GLU	257		-10.240	4.214		23.79
ATOM	1890	c	GLU	257		-10.246	2.909		25.79 26.24
ATOM	1891	0	GLU	257		-10.862	1.953		24.82
ATOM	1892	СВ	GLU	257		-10.629	4.756	1.00	
ATOM	1893	CG	GLU	257		-11.987	5.444	1.00	
ATOM	1894	CD	GLU	257		-12.273	5.968	1.00	
ATOM	1895		GLU	257		-11.331	6.418	1.00	
MOTA	1896		GLU	257		-13.454	5.927	1.00	
ATOM	1897	N	GLY	258		-11.613	2.839	1.00	
ATOM	1898	Cλ	GLY	258		-12.362	1.648	1.00	
ATOM	1899	C	GLY	258		-11.549	0.407		
ATOM	1900	0	GLY	258		-12.107	-0.685	1.00	
MOTA	1901	N	LYS	259		-10.247	0.561	1.00	
ATOM	1902	CA	LYS	259	-21.319	-9.397	-0.581	1.00	
ATOM	1903	C	LYS	259	-19.854	-8.959	-0.663	1.00	
ATOM	1904	0	LYS	259	-19.564	-7.857	-1.134	1.00	
ATOM	1905	СВ	LYS	259	-22.233	-8.171	-0.595	1.00	
ATOM	1906	CG	LYS	259	-23.669	-8.469	-0.980	1.00	
ATOM	1907	CD	LYS	259	-23.822	-8.619	-2.472	1.00	
ATOM	1908	CE	LYS	259	-25.263	-8.844	-2.885	1.00	
ATOM	1909	NZ	LYS	259	-25.263	-8.979	-2.885 -4.358		
ATOH	1910	N	LEU	260	-18.924		-0.262	1.00	
ATOH	1911	CA	LEU	260		-9.825		1.00	
ALUM	4711	CA.	LEU	400	-17.500	-9.474	-0.322	1.00	14.94

					*			
YLOR	1912	С	LEU	260	-16.929	-9.593	-1.732	1.00 26.00
MOTA	1913	0	LEU	260	-16.263	-8.677	-2.213	1.00 27.32
HOTA	1914	CB	LEU	260		-10.294	0.672	1.00 12.73
MOTA	1915	CG	LEU	260		-10.131	0.721	1.00 13.73
MOTA	1916	CD1	LEU	260	-14.696	-8.701	0.938	1.00 11.63
MOTA	1917	CD2	LEU	260	-14.611		1.820	1.00 16.86
MOTA	1918	N	GLN	261		-10.688	-2.414	1.00 25.25
ATOM	1919	CA	GLN	261		-10.894	-3.775	1.00 27.07
MOTA	1920	С	GLN	261	-17.251	-9.774	-4.693	1.00 30.23
MOTA	1921	0	GLN	261	-16.502	-9.238	-5.508	1.00 32.36
MOTA	1922	CB	GLN	261	-17.181		-4.303	1.00 46.56
MOTA	1923	CC	GLN	261	-16.633		-5.683	1.00 84.32
MOTA	1924	CD	GLN	261	-15.127		-5.719 -4.724	1.00 84.95
MOTA	1925	OE1		261	-14.447		-6.873	1.00 87.30
HOTA	1926	NE2	GLN	261	-14.592	-9.392	-4.495	1.00 21.14
MOTA	1927	N	HIS	262	-18.509	-8.333	-5.259	1.00 18.96
MOTA	1928	CX	HIS	262	-19.147	-7.009	-5.079	1.00 20.50
MOTA	1929	С	HIS	262	-18.394	-6.354	-6.052	1.00 19.00
MOTA	1930	0	HIS	262	-18.037 -20.600	-8.177	-4.791	1.00 19.08
MOTA	1931	CB	HIS	262	-20.800	-7.025	-5.418	1.00 21.74
ATOM	1932	CG	HIS	262	-21.323	-7.191	-6.455	1.00 23.34
MOTA	1933		HIS	262	-21.298	-5.701	-5.154	1.00 23.53
MOTA	1934		HIS	262 262	-22.707	-6.018	-6.810	1.00 22.73
MOTA	1935		HIS	262	-22.163	-5.096	-6.034	1.00 23.15
MOTA	1936 1937	NEZ N	HIS LEU	263	-18.170	-6.622	-3.829	1.00 15.36
MOTA	1937	CA	LEU	263	-17.460	-5.391	-3.533	1.00 14.39
MOTA	1939	C	LEU	263	-16.122	-5.351	-4.261	1.00 18.62
MOTA MOTA	1940	0	LEU	263	-15.841	-4.423	-5.023	1.00 17.02
ATOM	1941	СВ	LEU	263	-17.233	-5.281	-2.027	1.00 14.57
ATOM	1942	CG	LEU	263	-16.264	-4.205	-1.525	1.00 19.15
ATOM	1943		LEU	263	-16.837	-2.811	-1.731	1.00 18.55
ATOH	1944		LEU	263	-15.965	-4.450	-0.058	1.00 22.85
ATOM	1945	N	GLU	264	-15.344	-6.412	-4.083	1.00 17.48
MOTA	1946	CA	GLU	264	-14.020	-6.530	-4.686	1.00 17.94
MOTA	1947	С	GLU	264	-14.049	-6.405	-6.205	1.00 23.91
ATOM	1948	0	GLU	264	-13.098		-6.819	1.00 23.40
ATOM	1949	CB	GLU	264	-13.399		-4.306	1.00 18.87
ATOM	1950	CG	GLU	264	-13.258		-2.833	1.00 19.89
MOTA	1951	CD	GLU	264	-12.550		-2.532	1.00 37.72
MOTA	1952		GLU	264	-12.828		-3.201	1.00 44.58
ATOM	1953	OE2	GLU	264	-11.721		-1.603	1.00 30.00
MOTA	1954	N	ASN	265	-15.137		-6.797	1.00 22.09
MOTA	1955	CA	asn	265	-15.314		-8.239	1.00 22.25 1.00 27.73
ATOM	1956	С	ASN	265	-15.950		-8.753 -9.869	1.00 27.73
MOTA	1957		asn	265	-15.660			1.00 22.20
MOTA	1958		ASN	265	-16.130		-8.687 -8.354	1.00 53.15
MOTA	1959		ASN	265	-15.444		-8.455	1.00 57.34
MOTA	1960		ASN	265	-14.220		-7.945	1.00 43.73
MOTA	1961		2 ASN	265	-16.222		-7.925	1.00 23.88
MOTA	1962		GLU	266	-16.765 -17.443		-8.319	1.00 22.90
MOTA	1963		-	266	-17.443		-8.094	1.00 22.66
ATOH	1964		GLU	266	-16.623		-8.582	1.00 22.09
MOTA	1965	0	GLU	266	-10.770	-1.341	- 0 . 302	4.44 50.47

HOTA	1966	CB	GLU	266	-18.799	-3.528	-7.612	1.00 24.33
MOTA	1967	CC	GLU	266	-19.788	-4.625	-7.915	1.00 33.86
MOTA	1968	CD	GLU	266	-19.966	-4.898	-9.389	1.00 49.43
HOTA	1969	OE1	GLU	266	-19.961	-3.949		1.00 53.44
HOTA	1970	OE2	GLU	266	-20.118	-6.089	-9.730	1.00 40.15
MOTA	1971		LEU	267	-15.540	-2.510	-7.344	1.00 17.14
MOTA	1972		LEU	267	-14.677	-1.363	-7.071	1.00 16.91 1.00 17.74
MOTA	1973	С	LEU	267	-14.142	-0.753	-8.354	1.00 17.74
MOTA	1974	0	LEU	267	-13.696	-1.476	-9.237 -6.175	1.00 17.63
MOTA	1975	CB	LEU	267	-13.502	-1.792	-4.711	1.00 21.24
MOTA	1976	CG	LEU	267	-13.838	-2.150	-4.006	1.00 19.84
MOTA	1977	CD1		267	-12.623	-2.724 -0.924	-3.974	1.00 22.52
MOTA	1978	CD2		267	-14.367	0.574	-8.448	1.00 13.80
HOTA	1979	N	THR	268	-14.178 -13.693	1.278	-9.640	1.00 14.54
MOTA	1980	CA	THR	268	-13.074	2.610	-9.214	1.00 18.77
MOTA	1981	C	THR	268	-13.603	3.273	-8.326	1.00 19.12
ATOM	1982	0	THR	268	-14.849		-10.641	1.00 25.88
MOTA	1983	CB	THR	268	-15.647		-10.150	1.00 29.63
MOTA	1984		THR	268 268	-15.740		-10.844	1.00 23.81
MOTA	1985	CG2		268 269	-11.998	3.031	-9.876	1.00 16.16
MOTA	1986	N	HIS	269	-11.353	. 4.297	-9.525	1.00 17.99
ATOM	1987	CA C	HIS HIS	269	-12.393	5.422	-9.484	1.00 28.56
MOTA	1988 1989	0	HIS	269	-12.331	6.298	-8.617	1.00 29.22
MOTA	1990	СВ	HIS	269	-10.222		-10.512	1.00 18.15
MOTA	1991	CG	HIS	269	-9.671		-10.359	1.00 21.26
MOTA MOTA	1992		HIS	269	-9.487		-11.437	1.00 23.32
ATOM	1993		HIS	269	-9.255	6.718	-9.273	1.00 23.72
ATOM	1994		HIS	269	-8.978	8.019	-11.021	1.00 23.01
ATOM	1995		HIS	269	-8.827	7.954	-9.712	1.00 23.46
ATOM	1996	N	ASP	270	-13.376		-10.378	1.00 27.36
ATOM	1997	CA	ASP	270	-14.452	6.318	-10.471	1.00 28.28
ATOM	1998	c	ASP	270	-15.204	6.391	-9.148	1.00 29.01
ATOM	1999	0	ASP	270	-15.198	7.424	-8.484	1.00 28.48
ATOM	2000	CB	ASP	270	-15.415		-11.614	1.00 31.89
MOTA	2001	CG	ASP	270	-16.509		-11.879	1.00 57.52
MOTA	2002	OD1	ASP	270	-16.777		-11.039	1.00 60.70
ATOM	2003	OD2	ASP	270	-17.125		-12.967	1.00 66.96
ATOM	2004	N	ILE	271	-15.783	5.263	-8.748	1.00 23.52
ATOM	2005	CA	ILE	271	-16.561	5.147	-7.513	1.00 22.65 1.00 22.26
ATOM	2006	С	ILE	271	-15.771	5.628	-6.300	1.00 23.05
MOTA	2007	0	ILE	271	-16.306		-5. 42 7 -7.279	1.00 26.80
MOTA	2008	CB	ILE	271	-17.015	3.682	-8.419	1.00 28.03
MOTA	2009		ILE	271	-17.922	3.220	-5.986	1.00 28.26
MOTA	2010		! ILE	271	-17.769	3.546	-8.315	1.00 35.59
MOTA	2011		ILE	271	-18.340	1.771 5.327	-6.280	1.00 15.32
MOTA	2012		ILE	272	-14.479	5.723	-5.169	1.00 13.32
MOTA	2013		ILE	272	-13.629	7.220		1.00 19.00
MOTA	2014		ILE	272	-13.386	7.220		1.00 19.72
MOTA	2015		ILE	272	-13.359	4.890		1.00 14.50
MOTA	2016		ILE	272	-12.333 -12.697	3.447		1.00 13.26
ATOM	2017		1 ILE	272	-11.356	5.477		1.00 14.10
ATOM	2018		2 ILE	272	-11.350	2.478		1.00 24.26
MOTA	2019	CD:	1 ILE	272	-11.332	2.410	- 7	

HOTA	2020	N	THR	273	-13.293	7.785	-6.391	1.00 18.09
ATON	2021	CA	THR	273	-13.097	9.230	-6.518	1.00 19.45
ATOH	2022	C	THR	273	-14.405	9.895	-6.078	1.00 26.47
MOTA	2023	0	THR	273	-14.402	10.942	-5.439	1.00 26.83
HOTA	2024	CB	THR	273	-12.760	9.650	-7.973	1.00 23.14
HOTA	2025	OG1	THR	273	-11.562	8.984	-8.398	1.00 24.17
HOTA	2026	CGZ		273	-12.557	11.157	-8.064	1.00 16.16
MOTA	2027	N	LYS	274	-15.515	9.217	-6.342	
MOTA	2028	CA	LYS	274	-16.835	9.707	-5.975	1.00 24.49
MOTA	2029	C	LYS	274	-16.877	9.833	-4.447	1.00 24.48
ATOM	2030	ō	LYS	274	-17.290	10.858	-3.907	1.00 30.41
ATOM	2031	СВ	LYS	274	-17.880	8.712	-6.462	1.00 32.51
ATOM	2032	CC	LYS	274	-19.293	9.228	-6.588	1.00 26.15
ATOM	2033	CD	LYS	274	-20.187	8.156	-7.193	1.00 50.14
ATON	2034	CE	LYS	274	-19.701	7.754	-8.580	1.00 66.22
HOTA	2035	NZ	LYS	274	-20.447	6.600	-9.135	1.00 82.49
ATON	2036	N	PHE	275	-16.370	8.817		1.00 95.34
ATOM	2037	CA	PHE	275	-16.346		-3.759	1.00 23.58
MOTA	2038	C	PHE	275	-15.431	8.831 9.927	-2.306	1.00 21.54
ATOM	2039	ō	PHE	275	-15.793	10.659	-1.801	1.00 21.45
ATOM	2040	СВ	PHE	275	-15.907	7.471	-0.898	1.00 21.56
ATOM	2041	CG	PHE	, 275	-16.911	6.369	-1.749	1.00 23.59
ATOM	2042		PHE	275	-18.236	6.520	-1.974	1.00 24.46
ATOM	2043		PHE	275	-16.547	5.197	-1.561 -2.609	1.00 26.80
ATOM	2044		PHE	275	-19.176	5.523		1.00 26.12
ATOM	2045			275	-17.488	4.196	-1.778 -2.828	1.00 26.69
ATOM	2046	cz	PHE	275	-18.805	4.364	-2.412	1.00 29.22
ATOM	2047	N	LEU	276	-14.258	10.062	-2.414	1.00 26.65
MOTA	2048	CA	LEU	276	-13.300	11.086	-2.000	1.00 16.44 1.00 15.37
ATOM	2049	C	LEU	276	-13.894	12.484	-2.078	1.00 15.37
MOTA	2050	0	LEU	276	-13.819	13.255	-1.123	1.00 25.62
MOTA	2051	СВ	LEU	276	-12.030	11.019	-2.839	1.00 14.37
ATOM	2052	CG	LEU	276	-11.187	9.776	-2.553	1.00 19.14
MOTA	2053	CD1	LEU	276	-9.889	9.868	-3.336	1.00 19.35
MOTA	2054		LEU	276	-10.887	9.649	-1.054	1.00 22.14
ATOM	2055	N	GLU	277	-14.539	12.781	-3.200	1.00 22.14
ATOM	2056	CA	GLU	277	-15.162	14.077	-3.400	1.00 22.27
MOTA	2057	С	GLU	277	-16.323	14.256	-2.425	1.00 30.33
MOTA	2058	0	GLU	277	-16.852	15.359	-2.275	1.00 34.24
MOTA	2059	CB	GLU	277	-15.651	14.231	-4.848	1.00 23.70
MOTA	2060	CG	GLU	277	-14.592	13.986	-5.934	1.00 37.77
ATOM	2061	CD	GLU	277	-13.401	14.944	-5.905	1.00 65.64
ATOM	2062	0E1	GLU	277	-13.273	15.769	-4.976	1.00 72.39
ATOM	2063	OE2	GLU	277	-12.577	14.856	-6.836	1.00 57.27
MOTA	2064	N	ASN	278	-16.705	13.176	-1.747	1.00 24.83
MOTA	2065	CA	ASN	278	-17.788	13.226	-0.774	1.00 23.02
MOTA	2066	С	ASN	278	-17.337	13.798	0.553	1.00 23.90
MOTA	2067	0	asn	278	-16.453	13.251	1.210	1.00 20.54
MOTA	2068	CB	ASN	278	-18.421	11.851	-0.537	1.00 24.64
ATOM	2069	CC	asn	278	-19.519	11.899	0.505	1.00 63.15
MOTA	2070	OD1		278	-19.716	10.950	1.262	1.00 59.86
ATOM	2071	ND2		278	-20.240	13.018	0.556	1.00 61.71
MOTA	2072	N	GLU	279	-17.974	14.903	0.940	1.00 23.66
ATOM	2073	CA	GLU	279	-17.664	15.588	2.192	1.00 24.15
								

MOTA	2074	C	GLU	279	-18.810	15.596	3.209	1.00 28.94
ATOM	2075	0	GLU	279	-18.790	16.360	4.163	1.00 29.34
MOTA	2076	CB	GLU	279	-17.185	17.004	1.905	1.00 25.78
MOTA	2077	CC	GLU	279	-15.827	17.082	1.214	1.00 44.13
MOTA	2078	CD	GLU	279	-15.420	18.506	0.860	1.00 92.58
MOTA	2079	OE1	GLU	279	-15.927	19.466	1.482	1.00100.65
MOTA	2080	0E2	GLU	279	-14.574	18.664	-0.042	1.00100.57
ATOM	2081	N	ASP	280	-19.791	14.717	3.016	1.00 23.99
MOTA	2082	CA	ASP	280	-20.933	14.607	3.920	1.00 22.02
MOTA	2083	С	ASP	280	-20.564	13.769	5.137	1.00 22.41
MOTA	2084	0	ASP	280	-19.554	13.071	5.138	1.00 22.95
HOTA	2085	CB	ASP	280	-22.108	13.957	3.209	1.00 24.35
MOTA	2086	CC	ASP	280	-22.693	14.833	2.151	1.00 42.62
MOTA	2087	OD1	ASP	280	-23.039	15.985	2.456	1.00 45.44
ATOH	2088	OD2	ASP	280	-22.818	14.362	0.998	1.00 52.57
MOTA	2089	N	ARG	281	-21.420	13.871	6.172	1.00 14.63
ATOH	2090	CA	ARG	281	-21.201	13.094	7.380	1.00 11.86
ATOM	2091	С	ARG	281	-22.517	12.866	8.067	1.00 15.11
MOTA	2092	0	ARG	281	-23.465	13.601	7.840	1.00 15.94
MOTA	2093	СВ	ARG	281	-20.312	13.857	8.381	1.00 10.33
ATOM	2094	CG	ARG	281	-18.855	13.944	7.893	1.00 19.95
MOTA	2095	CD	ARG	281	-18.034	14.659	8.979	1.00 9.99
MOTA	2096	NE	ARG	281	-16.672	14.863	8.523	1.00 12.05
MOTA	2097	CZ	ARG	281	-15.699	14.096	8.926	1.00 20.69
ATOM	2098		ARG	281	-15.913	13.105	9.741	1.00 1.00
ATOM	2099	NH2	ARG	281	-14.491	14.329	8.503	1.00 29.15
MOTA	2100	N	ARG	282	-22.567	11.832	8.927	1.00 10.27
MOTA	2101	CA	ARG	282	-23.782	11.605	9.690	1.00 9.47
MOTA	2102	С	ARG	282	-23.459	10.913	10.984	1.00 16.55
MOTA	2103	0	ARG	282	-22.391	10.338	11.117	1.00 17.04
ATOM	2104	СВ	ARG	282	-24.841	10.828	8.881	1.00 3.07
MOTA	2105	CG	ARG	282	-24.354	9.403	8.551	1.00 5.84
MOTA	2106	CD	ARG	282	-25.536	8.601	7.978	1.00 25.67
ATOM	2107	NE	ARG	282	-25.077	7.326	7.458	1.00 38.49
MOTA	2108	CZ	ARG	282	-25.151	7.044	6.188	1.00 48.45
MOTA	2109	NH1	ARG	282	-25.622	7.902	5.330	1.00 26.72
MOTA	2110	NH2	ARG	282	-24.745	5.883	5.771	1.00 34.81
MOTA	2111	N	SER	283	-24.392	10.980	11.953	1.00 12.72
ATOM	2112	CA	SER	283	-24.123	10.333	13.224	1.00 11.68
ATOM	2113	С	SER	283	-24.128	8.839	13.064	1.00 12.67
MOTA	2114	0	SER	283	-24.929	8.308	12.313	1.00 12.85
MOTA	2115	CB	SER	283	-25.111	10.784	14.317	1.00 17.91
ATOM	2116	OG	SER	283	-26.441	10.375	13.989	1.00 28.36
MOTA	2117	N	ALA	284	-23.205	8.167	13.778	1.00 8.25
ATOM	2118	CA	ALA	284	-23.139	6.721	13.670	1.00 7.48
ATOM	2119	C	ALA	284	-22.279	6.151	14.763	1.00 10.55
ATOM	2120	0	ALA	284	-21.442	6.846	15.319	1.00 7.46
MOTA	2121	CB	ALA	284	-22.601	6.288	12.293	1.00 8.05
MOTA	2122	N	SER	285	-22.513	4.860	15.071	1.00 8.44
MOTA	2123	CA	SER	285	-21.746	4.231	16.131	1.00 10.17
ATOM	2124	C	SER	285	-20.691	3.352	15.519	1.00 16.06
MOTA	2125	ō	SER	285	-20.897	2.161	15.337	1.00 19.28
MOTA	2126	СВ	SER	285	-22.719	3.436	17.021	1.00 17.06
MOTA	2127	OG	SER	285	-23.635	4.344	17.641	1.00 34.64
		_						

								•
HOTA	2128	N	LEU	286	-19.539	3.969	15.197	1.00 8.68
ATOH	2129	CA	LEU	286	-18.495	3.216	14.531	1.00 7.51
HOTA	2130	C	LEU	286	-17.713	2.313	15.464	1.00 13.65
MOTA	2131	0	LEU	286	-17.269	2.749	16.535	1.00 14.46
HOTA	2132	CB	LEU	286	-17.510	4.166	13.833	1.00 7.11
MOTA	2133	CC	LEU	286	-16.310	3.517	13.130	1.00 10.35
MOTA	2134	CD1	LEU	286	-16.783	2.793	11.883	1.00 10.07
HOTA	2135	CD2	LEU	286	-15.277	4.552	12.771	1.00 10.77
HOTA	2136	N	HIS	287	-17.564	1.052	15.060	1.00 10.80
MOTA	2137	CA	HIS	287	-16.767	0.068	15.801	1.00 12.55
MOTA	2138	С	HIS	287	-15.702	-0.357	14.803	1.00 13.43
HOTA	2139	0	HIS	287	-15.989	-1.099	13.871	1.00 14.75
HOTA	2140	CB	HIS	287	-17.580	-1.170	16.170	1.00 14.98
MOTA	2141	CG	HIS	287	-18.581	-0.946	17.257	1.00 19.45
HOTA	2142	ND1	HIS	287	-19.745	-0.235	17.064	1.00 21.98
HOTA	2143	CD2	HIS	287	-18.618	-1.394	18.531	1.00 21.47
HOTA	2144	CE1	HIS	287	-20.462	-0.253	18.172	1.00 21.49
MOTA	2145	NE2	HIS	287	-19.796	-0.953	19.078	1.00 21.79
MOTA	2146	N	LEU	288	-14.479	0.104	15.000	1.00 4.50
MOTA	2147	CA	LEU	288	-13.391	-0.230	14.099	1.00 2.17
ATOH	2148	С	LEU	288	-12.321	-0.947	14.904	1.00 11.97
MOTA	2149	0	LEU	288	-11.891	-0.449	15.943	1.00 12.25
MOTA	2150	CB	LEU	288	-12.841	1.046	13.467	1.00 1.00
MOTA	2151	CG	LEU	288	-11.665	0.921	12.504	1.00 3.34
ATOM	2152	CD1	LEU	288	-12.073	0.170	11.231	1.00 2.56
MOTA	2153	CD2	LEU	288	-11.163	2.312	12.180	1.00 2.67
ATOM	2154	N	PRO	289	-11.911	-2.150	14.469	1.00 13.97
MOTA	2155	CA	PRO	289	-10.883	-2.892	15.200	1.00 15.61
MOTA	2156	С	PRO	289	-9.483	-2.272	15.154	1.00 22.55
MOTA	2157	0	PRO	289	-9.046	-1.715	14.140	1.00 22.15
MOTA	2158	CB	PRO	289	-10.889	-4.257	14.506	1.00 17.38
ATOM	2159	CG	PRO	289	-11.304	-3.925	13.106	1.00 21.04
MOTA	2160	CD	PRO	289	-12.422	-2.953	13.338	1.00 15.79
MOTA	2161	N	LYS	290	-8.779	-2.419	16.262	1.00 19.44
MOTA	2162	CA	LYS	290	-7.421	-1.945	16.392	1.00 18.93
MOTA	2163	С	LYS	290	-6.631	-3.126	15.838	1.00 24.83
MOTA	2164	0	LYS	290	-6.953	-4.279	16.151	1.00 25.89
MOTA	2165	CB	LYS	290	-7.123	-1.718	17.874	1.00 20.28
ATOH	2166	CG	LYS	290	-5.749	-1.192	18.216	1.00 35.38
MOTA	2167	CD	LYS	290	-5.683	-0.954	19.701	1.00 53.02
MOTA	2168	CE	LYS	290	-4.319	-0.512	20.181	1.00 77.66
HOTA	2169	NZ		290		-0.183		1.00 94.71
ATOM	2170	N	LEU	291	-5.663	-2.859		1.00 22.36
ATOM	2171	CA	LEU	291	-4.862	-3.928	14.375	1.00 22.32
ATOM	2172	С	LEU	291	-3.587	-3.451	13.708	1.00 25.74
MOTA	2173	0	LEU	291	-3.507	-2.315	13.271	1.00 26.04
HOTA	2174	CB	LEU	291	-5.695	-4.711	13.356	1.00 22.24
HOTA	2175	CG	LEU	291	-5.983	-4.114	11.974	1.00 26.16
MOTA	2176	CD1		291	-6.823	-5.127	11.218	1.00 26.63
ATOH	2177	CD2		291	-6.688	-2.778	12.043	1.00 28.41
MOTA	2178	N	SER	292	-2.600	-4.335	13.619	1.00 21.54
MOTA	2179	CA	SER	292	-1.343	-4.005	12.973	1.00 22.64
ATOH	2180	С	SER	292	-1.020	-5.132	11.999	1.00 29.52
MOTA	2181	0	SER	292	-0.215	-6.017	12.310	1.00 31.69

MOTA	2182	CB	SER	292	-0.242	-3.869	14.011	1.00 27.63
MOTA	2183	OG	SER	292	-0.234	-5.017	14.832	1.00 48.56
MOTA	2184	N	ILE	293	-1.655	-5.102	10.827	1.00 23.99
MOTA	2185	CA	ILE	293	-1.450	-6.142	9.828	1.00 21.90
MOTA	2186	C	ILE	293	-0.240	-5.896	8.939	1.00 19.80
MOTA	2187	0	ILE	293	0.239	-4.765	8.807	1.00 16.63
ATOM	2188	CB	ILE	293	-2.721	-6.377	8.961	1.00 24.75
MOTA	2189	CG1	ILE	293	-3.077	-5.118	8.167	1.00 22.26
MOTA	2190	CG2	ILE	293	-3.881	-6.807	9.851	1.00 27.40
MOTA	2191	CD1	ILE	293	-4.156	-5.351	7.138	1.00 4.10
MOTA	2192	N	THR	294	0.207	-6.963	8.288	1.00 14.89
MOTA	2193	CA	THR	294	1.360	-6.896	7.416	1.00 14.93
MOTA	2194	С	THR	294	1.078	-7.602	6.098	1.00 19.13
MOTA	2195	0	THR	294	0.112	-8.354	5.977	1.00 18.47
MOTA	2196	CB	THR	294	2.572	-7.552	8.089	1.00 28.48
MOTA	2197	OG1	THR	294	2.622	-7.140	9.462	1.00 35.90
MOTA	2198	CG2	THR	294	3.857	-7.128	7.405	1.00 30.05
MOTA	2199	N	GLY	295	1.900	-7.312	5.099	1.00 16.51
MOTA	2200	CA	GLY	295	1.749	-7.936	3.805	1.00 16.34
ATOM	2201	С	GLY	295	3.122	-8.117	3.200	1.00 19.13
MOTA	2202	0	GLY	295	3.769	-7.137	2.822	1.00 20.78
ATOM	2203	N	THR	296	3.607	-9.354	3.189	1.00 11.65
MOTA	2204	CA	THR	296	4.909	-9.646	2.618	1.00 10.24
MOTA	2205	С	THR	296		-10.381	1.319	1.00 15.86
MOTA	2206	0	THR	296		-11.346	1.293	1.00 17.65
MOTA	2207	CB	THR	296	5.772	-10.506	3.557	1.00 13.92
MOTA	2208	OG1		296		-10.015	4.899	1.00 20.85
MOTA	2209	CG2	THR	296		-10.411	3.153	1.00 6.06
MOTA	2210	N	TYR	297	5.213	-9.884	0.235	1.00 11.45
MOTA	2211	CA	TYR	297		-10.441	-1.089	1.00 10.22
MOTA	2212	С	TYR	297		-10.521	-1.897	1.00 12.07
MOTA	2213	0	TYR	297	7.174	-9.691	-1.737	1.00 10.00
MOTA	2214	CB	TYR	297	4.014	-9.562	-1.871 -1.207	1.00 10.72
MOTA	2215	CG	TYR	297	2.669	-9.442 -10.487	-1.259	1.00 10.33
MOTA	2216	CD1		297		-8.315	-0.460	1.00 12.31
ATOM	2217	CD2	TYR	297	2.332	-10.416	-0.576	1.00 12.44
ATOM	2218	CE1	TYR	297	1.125	-8.243	0.225	1.00 13.17
MOTA	2219	CE2	TYR	297	0.236	-9.301	0.165	1.00 19.37
MOTA	2220	CZ	TYR	297		-9.274	0.854	1.00 21.32
MOTA	2221	ОН	TYR	297	-0.956	-11.523	-2.780	1.00 8.38
ATOM	2222	N	ASP	298		-11.777	-3.721	1.00 7.18
MOTA	2223	CA	ASP	298		-11.149	-5.042	1.00 15.56
MOTA	2224	C	ASP	298 298		-11.728	-5.777	1.00 17.52
MOTA	2225	O	ASP			-13.286	-3.923	1.00 8.20
MOTA	2226	CB ~~	ASP	298		-13.647	-4.958	1.00 13.40
MOTA	2227 2228	CG	ASP ASP	298 298		-12.771	-5.468	1.00 12.72
ATOM	2228		ASP	298 298		-14.855	-5.259	1.00 19.52
MOTA	2229	N	LEU	299	7.546	-9.975	-5.334	1.00 10.89
MOTA MOTA	2230	N CA	LEU	299	7.209		-6.539	1.00 7.89
ATOM	2231	CA	LEU	299	7.509		-7.813	1.00 8.02
ATOM	2232	0	LEU	299	6.818		-8.807	1.00 6.03
ATOM	2234	СВ	LEU	299	7.909		-6.553	1.00 7.31
ATOM	2234	22	LEU	299	7.540		-5.408	1.00 10.69
A.VA	وونوه	~0		-77	40			

HOTA	2236	CDI	LEU	299	8.295	-5.624	-5.553	1.00	9.61
MOTA	2237	CD2	leu	299	6.031	-6.681		1.00	
MOTA	2238	N	LYS	300	8.534	-10.816	-7.778	1.00	5.30
MOTA	2239	CX	LYS	300	8.903	-11.599	-8.948	1.00	6.84
MOTA	2240	C	LYS	300	7.714	-12.453	-9.355	1.00	14.89
MOTA	2241	0	LYS	300	7.308	-12.472	-10.518	1.00	15.15
MOTA	2242	CB	LYS		10.091			1.00	9.49
MOTA	2243	CG	LYS		10.488	-13.488			27.80
HOTA	2244	CD	LYS		11.752	-14.226	-9.292	1.00	44.37
MOTA	2245	CE	LYS		12.067	-15.433	-10.159		56.70
MOTA	2246	NZ	LYS	300	13.235		-9.598	1.00	65.57
MOTA	2247	N	SER			-13.101	-8.359		12.97
MOTA	2248	CA	SER	301		-13.955	-8.553		13.55
MOTA	2249	C	SER	301		-13.125	-8.866		20.42
MOTA	2250	0	SER	301		-13.198	-9.976		21.11
MOTA	2251	CB	SER	301		-14.775	-7.290		16.92
MOTA	2252	OG.	SER	301		-15.458	-7.351		27.19
ATOM	2253	N	VAL	302		-12.294	-7.901		16.40
ATOM ATOM	2254	CA	VAL	302		-11.466	-8.031		15.66
ATOM	2255 2256	C	VAL	302		-10.612	-9.303		20.29
ATOM	2257	O CB	VAL VAL	302	2.143				22.41
ATOM	2258		VAL	302		-10.648	-6.736		19.18
ATOM	2259		VAL	302 302	3.876	-9.559	-6.548		19.85
ATOM	2260	N N	LEU	303	4.145	-10.106 -9.839	-6.741		18.82 15.73
ATOM	2261	CA	LEU	303	4.192		-9.579 -10.777		
MOTA	2262	c	LEU	303	4.363		-12.048		15.23 20.33
ATOM	2263	ō	LEU	303	3.923		-13.121		20.33
MOTA	2264	СВ	LEU	303	5.316		-10.679		14.99
ATOM	2265	CG	LEU	303	5.243	-6.859	-9.616		18.53
ATOM	2266	CD1	LEU	303	6.568	-6.176	-9.539		17.77
MOTA	2267	CD2	LEU	303	4.150	-5.869	-9.915		21.75
ATOM	2268	N	GLY	304	4.988	-10.982			17.32
MOTA	2269	CA	GLY	304	5.185	-11.847			17.32
ATOM	2270	С	GLY	304	3.822	-12.252	-13.578		20.79
ATOM	2271	0	GLY	304	3.581	-12.367	-14.774	1.00	21.89
MOTA	2272	N	GLN	305	2.907	-12.413	-12.636	1.00	14.97
MOTA	2273	CA	GLN	305	1.532	-12.767		1.00	
MOTA	2274	C	GLN	305		-11.600		1.00	22.05
MOTA	2275	0	GLN	305		-11.779		1.00	
MOTA	2276	СВ	GLN	305	0.778	-12.974	-11.625	1.00	
ATOM	2277	CG	GLN	305		-14.084		1.00	
ATOM	2278	CD	GLN	305		-15.437		1.00	
MOTA	2279		GLN	305		-15.582		1.00	
MOTA MOTA	2280		GLN	305		-16.445		1.00	
	2281	N	LEU	306		-10.393		1.00	
MOTA MOTA	2282 2283	CA	LEU	306	0.865	-9.209		1.00	
ATOM	2283	C	LEU	306	1.569	-9.023		1.00 2	
ATOM	2284	O CB	LEU	306	1.346	-8.028		1.00 2	
ATOM	2286	CG	LEU LEU	306 306	1.070	-7.974		1.00 1	
ATOM	2287		LEU	306	0.133	-7.906		1.00 1	
ATOM	2288	CD2		306 306	0.536	-6.803		1.00	
MOTA	2289	N	GLY	307	-1.273	-7.702 ·		1.00 2	
	,	44	JUI	307	2.425	-9.977	-15.797	1.00 1	y.62

ATOH	2290	CA	GLY	307	3.138 -9.908 -17.060 1.00 19.49
ATOH	2291	C	GLY	307	4.564 -9.387 -17.023 1.00 22.62
ATOM	2292	Ö	GLY	307	5.229 -9.365 -18.058 1.00 24.17
ATOM	2293	N	ILE	308	5.039 -8.942 -15.864 1.00 15.79
ATOM	2294	CA	ILE	308	6.416 -8.434 -15.747 1.00 13.45
ATOM	2295	C	ILE	308	7.337 -9.636 -15.472 1.00 17.26
			ILE	308	7.457 -10.073 -14.328 1.00 18.58
ATOM	2296 2297	O CB	ILE	308	6.526 -7.372 -14.612 1.00 14.02
MOTA			ILE	308	5.560 -6.208 -14.903 1.00 13.26
HOTA	2298				7.960 -6.888 -14.480 1.00 12.07
MOTA	2299	CD1	ILE	308	5.541 -5.105 -13.864 1.00 10.43
MOTA	2300		ILE	308	7.956 -10.178 -16.525 1.00 8.26
HOTA	2301	N	THR	309	8.811 -11.360 -16.386 1.00 6.52
ATOM	2302	CA	THR	309	
MOTA	2303	C	THR	309	
MOTA	2304	0	THR	309	
MOTA	2305	CB	THR	309	
MOTA	2306	OG1	THR	309	
MOTA	2307	CG2	THR	309	
MOTA	2308	N	LYS	310	
MOTA	2309	CA	LYS	310	
MOTA	2310	C	LYS	310	12.790 -9.798 -17.837 1.00 19.67 13.943 -10.207 -17.952 1.00 20.38
MOTA	2311	0	LYS	310	
MOTA	2312	CB	LYS	310	11.502 -9.675 -20.017 1.00 19.91 12.456 -10.146 -21.091 1.00 44.14
MOTA	2313	CG	LYS	310	
MOTA	2314	CD	LYS	310	***************************************
ATOM	2315	CE	LYS	310	
MOTA	2316	NZ	LYS	310	
MOTA	2317	N	VAL	311	12.444 -8.869 -16.955 1.00 15.16
MOTA	2318	CA	VAL	311	13.441 -8.219 -16.101 1.00 14.87
MOTA	2319		VAL	311	14.000 -9.193 -15.066 1.00 19.98
ATOM	2320	0	VAL	311	15.159 -9.079 -14.664 1.00 20.15 12.847 -7.020 -15.335 1.00 19.22
MOTA	2321	СВ	VAL	311	
MOTA	2322		VAL	311	
MOTA	2323		VAL	311	11.963 -6.204 -16.239 1.00 20.20 13.180 -10.166 -14.671 1.00 16.07
MOTA	2324	N	PHE	312	
ATOM	2325	CA	PHE	312	13.561 -11.143 -13.661 1.00 15.77 14.280 -12.349 -14.221 1.00 24.43
MOTA	2326	С	PHE	312	
ATOM	2327	0	PHE	312	14.750 -13.207 -13.464 1.00 24.24 12.327 -11.619 -12.896 1.00 16.71
ATOM	2328	CB	PHE	312	11.509 -10.513 -12.332 1.00 17.34
MOTA	2329	CG	PHE	312	11.803 -9.970 -11.087 1.00 19.98
ATOM	2330		PHE	312	10.467 -9.977 -13.068 1.00 20.96
MOTA	2331		PHE	312	11.059 -8.898 -10.593 1.00 23.38
MOTA	2332		PHE	312	9.726 -8.910 -12.577 1.00 22.79
ATOM	2333		PHE	312	-
MOTA	2334	cz	PHE	312	10.022 -8.370 -11.340 1.00 21.30 14.341 -12.437 -15.542 1.00 24.14
MOTA	2335	N	SER	313	14.992 -13.567 -16.166 1.00 25.73
MOTA	2336	CA	SER	313	
ATOM	2337	C	SER	313	
MOTA	2338	0	SER	313	
MOTA	2339	CB	SER	313	14.048 -14.267 -17.144 1.00 35.21
MOTA	2340	OG	SER	313	14.600 -15.519 -17.558 1.00 55.19
HOTA	2341	N	ASN	314	16.911 -14.265 -17.399 1.00 25.09
ATOM	2342	CA	ASN	314	18.178 -14.194 -18.101 1.00 25.01
MOTA	2343	C	ASN	314	18.150 -13.269 -19.303 1.00 31.47

MOTA	2344	0	ASN	314	19.201	-12.842 -19.780	1.00 33.42
MOTA	2345	СВ	ASN	314		-15.592 -18.543	
MOTA	2346	CG	ASN	314		-16.630 -17.466	
ATOH	2347	OD:	1 ASN	314		-16.588 -16.396	
MOTA	2348	ND:	2 ASN	314		-17.540 -17.723	
MOTA	2349	N	GLY	315		-12.986 -19.819	
MOTA	2350	CA	GLY	315		-12.099 -20.966	
MOTA	2351	С	GLY	315		-10.631 -20.600	
ATOH	2352	0	GLY	315	16.510		
MOTA	2353	N	ALA	316	16.777	-10.325 -19.312	
ATOM	2354	CX	ALA	316	16.640	-8.953 -18.847	1.00 13.39
MOTA	2355	С	YLY	316	17.547	-7.974 -19.577	1.00 15.37
MOTA	2356	0	ALA	316	18.752	-8.198 -19.694	1.00 15.22
MOTA	2357	CB	ALA	316	16.894	-8.889 -17.352	1.00 14.28
MOTA	2358	N	ASP	317	16.970	-6.914 -20.127	1.00 12.56
ATOM	2359	CX	ASP	317	17.766	-5.902 -20.802	1.00 12.70
ATOM	2360	C	ASP	317	17.896	-4.735 -19.834	
MOTA	2361	0	ASP	317	17.090	-3.800 -19.858	1.00 18.01
MOTA MOTA	2362	CB	ASP	317	17.103	-5.444 -22.102	1.00 14.59
ATOM	2363	CG	ASP	317	17.990	-4.512 -22.930	
ATOM	2364 2365		ASP	317	18.888	-3.855 -22.359	1.00 27.11
ATOM	2366	N	ASP	317	17.785	-4.424 -24.155	1.00 33.52
ATOM	2367	CA	LEU LEU	318 318	18.904	-4.829 -18.964	1.00 12.04
ATOM	2368	c	LEU	318	19.186	-3.826 -17.945	1.00 10.18
ATOM	2369	0	LEU	318	20.465 21.299	-3.058 -18.277	1.00 10.94
ATOM	2370	CB	LEU	318	19.291	-2.790 -17.414	1.00 6.64
ATOM	2371	CG	LEU	318	18.012	-4.512 -16.577 -5.189 -16.071	1.00 10.05
ATOM	2372		LEU	318	18.236	-5.923 -14.777	1.00 13.27
ATOM	2373		LEU	318	16.961	-4.156 -15.898	1.00 12.27 1.00 19.77
ATOM	2374	N	SER	319	20.567	-2.672 -19.543	1.00 13.77
MOTA	2375	CA	SER	319	21.703	-1.933 -20.069	1.00 15.09
MOTA	2376	С	SER	319	21.872	-0.574 -19.407	1.00 22.50
MOTA	2377	0	SER	319	22.978	-0.038 -19.356	1.00 23.85
MOTA	2378	CB	SER	319	21.547	-1.764 -21.574	1.00 21.82
MOTA	2379	OG	SER	319	21.212	-3.005 -22.174	1.00 36.80
MOTA	2380	N	GLY	320	20.772	-0.025 -18.903	1.00 18.63
MOTA	2381	CA	GLY	320	20.825	1.263 -18.238	1.00 18.09
ATOM	2382	C	GLY	320	21.462	1.095 -16.878	1.00 21.72
ATOM	2383	0	GLY	320	22.005	2.041 -16.303	1.00 21.34
ATOM	2384	N	VAL	321	21.390	-0.127 -16.364	1.00 18.37
ATOM	2385	CA	VAL	321	21.953	-0.431 -15.064	1.00 19.72
ATOM	2386	C	VAL	321	23.424	-0.734 -15.247	1.00 29.96
MOTA	2387	0	VAL	321	24.269	-0.051 -14.671	1.00 30.99
ATOM	2388	CB	VAL	321	21.225	-1.618 -14.366	1.00 22.97
ATOM	2389		VAL	321	21.785	-1.815 -12.978	1.00 22.52
ATOM	2390 2391	CG2		321	19.716	-1.351 -14.274	1.00 22.80
ATOM	2392	N CA	THR THR	322	23.732	-1.727 -16.074	1.00 28.96
ATOM	2393	CA	THR	322 322	25.117	-2.092 -16.347	1.00 29.46
ATOM	2394	0	THR	322	25.196 24.519	-2.459 -17.836	1.00 34.19
ATOM	2395	CB	THR	322	24.518 25.584	-3.382 -18.305	1.00 34.65
ATOM	2396	0G1		322	26.928	-3.251 -15.433 -3.597 -15.735	1.00 40.37
ATOM	2397	CG2		322	24.739		1.00 47.50
			****	J 4 4	44./37	-4.516 -15.594	1.00 38.41

HOTA	2398	N	GLU	323	26.027	-1.706	-18.524	1.00 30.88
MOTA	2399	CA	GLU	323	26.175	-1.771	-19.989	1.00 30.91
HOTA	2400	С	GLU	323	26.718	-3.111	-20.537	1.00 32.45
ATCM	2401	0	GLU	323	26.054	-3.792	-21.330	1.00 32.38
MOTA	2402	CB	GLU	323	27.138	-0.681	-20.464	1.00 32.93
ATOM	2403	CC	GLU	323	26.608	0.735	-20.215	1.00 51.42
ATOM	2404	CD	GLU	323	27.592	1.827	-20.640	1.00 87.20
ATOM	2405	OE1		323	28.662	1.515	-21.289	1.00 93.43
ATOM	2406	OE2		323	27.352	3.061	-20.349	1.00 85.51
ATOM	2407	N	GLU	324	27.916	-3.475	-20.117	1.00 28.18
ATOM	2408	CA	GLU	324	28.644	-4.630	-20.704	1.00 28.79
ATOM	2409	С	GLU	324	28.255	-6.038	-20.184	1.00 29.89
MOTA	2410	ō	GLU	324	28.256	-7.021	-20.939	1.00 31.67
MOTA	2411	СВ	GLU	324	30.145	-4.498	-20.449	1.00 31.18
ATOM	2412	œ	GLU	324	30.965	-4.478	-21.742	1.00 49.76
ATOM	2413	CD	GLU	324	30.289	-3.689	-22.866	1.00 82.83
ATOM	2414		GLU	324	30.090	-2.421	-22.734	1.00 85.65
ATOM	2415		GLU	324	29.917	-4.290	-23.946	1.00 80.14
ATOM	2416	N	ALA	325	27.923	-6.181	-18.914	1.00 21.34
ATOM	2417	CA	ALA	325	27.685	-7.537		1.00 18.64
ATOM	2418	c	ALA	325	26.208	-7.903	-18.150	1.00 20.20
ATOM	2419	o	ALA	325	25.360	-7.029	-17.928	1.00 19.22
ATOM	2420	СВ	ALA	325	28.347	-7.658	-16.975	1.00 19.04
ATOM	2421	N	PRO	326	25.866		-18.305	1.00 15.12
ATOM	2422	CA	PRO	326	24.483		-18.118	1.00 13.67
ATOM	2423	C	PRO	326	24.001		-16.704	1.00 18.85
ATOM	2424	0	PRO	326	24.766	-9.447		1.00 20.47
ATOM	2425	СВ	PRO	326	24.584	-11.155		1.00 13.96
ATOM	2426	CG	PRO	326	26.040	-11.478		1.00 17.87
ATOM	2427	CD	PRO	326		-10.329		1.00 14.49
MOTA	2428	N	LEU	327	22.724	-8.984		1.00 14.79
ATOM	2429	CA	LEU	327	22.111	-8.649		1.00 14.65
ATOM	2430	c	LEU	327	20.612		-15.383	1.00 23.21
ATOM	2431	ō	LEU	327	20.002		-16.439	1.00 25.97
ATOM	2432	СВ	LEU	327	22.346	-7.176	-14.992	1.00 13.29
ATOM	2433	CG	LEU	327	21.934		-13.604	1.00 15.65
ATOM	2434		LEU	327	22.728	-7.487		1.00 16.46
ATOM	2435	CD2		327	22.180	-5.219	-13.444	1.00 14.83
ATOM	2436	N	LYS	328	20.022	-9.268	-14.248	1.00 15.80
ATOM	2437	CA	LYS	328	18.595	-9.530	-14.166	1.00 12.06
MOTA	2438	С	LYS	328	18.190	-9.361	-12.714	1.00 15.70
ATOM	2439	0	LYS	328	19.034	-9.401	-11.821	1.00 14.81
ATOM	2440	СВ	LYS	328	18.287	-10.945	-14.632	1.00 12.41
MOTA	2441	CG	LYS	328	18.745	-12.020	-13.677	1.00 15.34
ATOM	2442	CD	LYS	328		-13.387		1.00 23.38
ATOM	2443	CE	LYS	328		-14.531		1.00 34.78
MOTA	2444	NZ	LYS	328		-15.847		1.00 52.92
ATOM	2445	N	LEU	329	16.893	-9.193	-12.483	1.00 14.22
ATOM	2446	CA	LEU	329	16.362		-11.138	1.00 13.57
MOTA	2447	c	LEU	329	16.019			1.00 18.65
ATOM	2448	0	LEU	329	14.945		-10.685	1.00 17.39
ATOM	2449	СВ	LEU	329	15.143		-11.184	1.00 12.21
MOTA	2450	CG	LEU	329	14.728	-7.426	-9.873	1.00 14.57
ATOM	2451		LEU	329	15.929	-6.837	-9.172	1.00 13.69

ATOM	2452	CD2	LEU	329	13.705	-6.354	-10.180	1.00 14.70
MOTA	2453	N	SER	330		-10.809	-9.680	1.00 15.18
MOTA	2454	CA.	SER	330		-12.071	-8.977	1.00 14.75
MOTA	2455	c	SER	330		-11.963	-7.766	1.00 19.86
ATOM	2456	ō	SER	330		-12.879	-7.482.	1.00 22.85
ATOM	2457	CB	SER	330		-12.532	-8.525	1.00 21.05
ATOM	2458	OG	SER	330	19.203	-12.336	-9.544	1.00 39.22
ATOH	2459	N	LYS	331		-10.838	-7.067	1.00 13.26
MOTA	2460	CA	LYS	331	15.195	-10.653	-5.880	1.00 11.98
HOTA	2461	С	LYS	331	14.383	-9.353	-5.953	1.00 12.78
ATOM	2462	0	LYS	331	14.894	-8.310	-6.348	1.00 11.98
ATOM	2463	CB	LYS	331	16.094	-10.668	-4.622	1.00 13.85
ATOM	2464	CG	LYS	331		-11.219	-3.355	1.00 13.58
MOTA	2465	CD	LYS	331		-12.736	-3.420	1.00 14.30
MOTA	2466	CE	LYS	331		-13.191	-2.567	1.00 17.75
ATOH	2467	NZ	LYS	331		-12.980	-1.115	1.00 46.06
MOTA	2468	N	ALA	332	13.095	-9.444	-5.651	1.00 8.06
MOTA	2469	CX	ALA	332	12.222	-8.274	-5.628	1.00 7.65
MOTA	2470	С	ALA	332	11.167	-8.619	-4.572	1.00 11.68
MOTA	2471	0	ALA	332	10.302	-9.471	-4.785	1.00 9.24 1.00 8.18
MOTA	2472	CB	ALA	332	11.591	-8.033	-6.998	1.00 8.18 1.00 9.58
MOTA	2473	N	VAL	333	11.309	-8.026	-3.394 -2.294	1.00 9.85
MOTA	2474	CA	VAL	333	10.394	-8.297 -7.032	-1.758	1.00 13.40
MOTA	2475	С	VAL	333	9.725	-5.973	-1.684	1.00 12.46
ATOM	2476	0	VAL	333	10.352 11.137	-9.022		1.00 13.78
MOTA	2477	CB	VAL	333	10.172	-9.353		1.00 12.99
MOTA	2478		VAL	333		-10.290		1.00 13.83
MOTA	2479		VAL	333	8.441	-7.152	_	1.00 9.41
MOTA	2480	N	HIS	334	7.669	-6.060		1.00 9.17
MOTA	2481	CA	HIS	334 334	7.117	_		1.00 15.24
MOTA MOTA	2482 2483	0	HIS HIS	334	6.784			1.00 15.50
ATOM	2484	CB	HIS	334	6.493		-1.787	1.00 9.35
ATOM	2485	CG	HIS	334	5.638		-1.254	1.00 11.86
ATOM	2486		HIS	334	5.966		-1.391	1.00 13.40
ATOM	2487		HIS	334	4.461	-4.609	-0.593	1.00 12.02
ATOM	2488		HIS	334	5.025	-2.501	-0.834	1.00 12.10
ATOM	2489		HIS	334	4.101	-3.309		1.00 11.99
HOTA	2490	N	LYS	335	7.064			1.00 12.37
MOTA	2491	CA	LYS	335	6.505			1.00 11.91
MOTA	2492	С	LYS	335	5.866			1.00 15.10
MOTA	2493	0	LYS	335	6.538			1.00 15.49
MOTA	2494	CB	LYS	335	7.562			1.00 15.51 1.00 37.80
MOTA	2495	CC	LYS	335	6.958			1.00 37.80
MOTA	2496	CD	LYS	335	8.018			1.00 44.20
MOTA	2497	CE	LYS	335	7.448			1.00 71.81
MOTA	2498	NZ	LYS	335	6.509			1.00 11.02
MOTA	2499	N	ALA	336	4.550			1.00 10.26
MOTA	2500	CA	ALA	336	3.801			1.00 13.86
MOTA	2501	C	ALA	336	3.301			1.00 13.00
MOTA	2502	0	λLλ	336	2.871			1.00 10.63
MOTA	2503	CB	ALA	336	2.619 3.422			1.00 12.67
MOTA	2504	N	VAL	337				1.00 14.10
MOTA	2505	CA	VAL	337	2.950	, -2.50		24.10

MOTA	2506	С	VAL	337	2.039	-1.664	7.756	1.00 19.06
MOTA	2507	0	VAL	337	2.387		7.411	
ATOM	2508	CB	VAL	337	4.109		8.540	
MOTA	2509	CG1	VAL	337	3.600		9.913	1.00 18.39
HOTA	2510	CG2	VAL	337	5.263	-3.694	8.119	1.00 19.80
HOTA	2511	N	LEU	338	0.851	-1.934	8.285	1.00 13.41
MOTA	2512	CA	LEU	338	-0.119		8.603	1.00 10.68
MOTA	2513	С	LEU	338	-0.648	-1.131	10.001	1.00 15.52
MOTA	2514	0	LEU	338	-1.226	-2.187	10.281	1.00 14.26
HOTA	2515	CB	LEU	338	-1.300	-0.901	7.624	1.00 9.01
ATOH	2516	CG	LEU	338	-2.500	-0.011	7.963	1.00 10.33
MOTA	2517	CD1	LEU	338	-2.406	1.321	7.246	1.00 8.77
MOTA	2518	CD2	LEU	338	-3.787	-0.727	7.599	1.00 12.20
MOTA	2519	N	THR	339	-0.453	-0.142	10.863	1.00 14.69
MOTA	2520	CA	THR	339	-0.914	-0.200	12.240	1.00 15.39
HOTA	2521	С	THR	339	-2.024	0.826	12.458	1.00 19.41
ATOM	2522	0	THR	339	-1.817	2.023	12.230	1.00 20.55
MOTA	2523	CB	THR	339	0.237	0.086	13.221	1.00 21.69
MOTA	2524	OG1	THR	339	1.216	-0.959	13.126	1.00 21.17
MOTA	2525	CG2	THR	339	-0.287	0.161	14.628	1.00 19.87
MOTA	2526	N	ILE	340	-3.204	0.331	12.834	1.00 14.33
MOTA	2527	CA	ILE	340	-4.389	1.141	13.123	1.00 14.67
ATOM	2528	С	ILE	340	-4.735	1.064	14.615	1.00 21.36
MOTA	2529	0	ILE	340	-4.795	-0.032	15.179	1.00 22.46
MOTA	2530	CB	ILE	340	-5.633	0.620	12.344	1.00 18.15
MOTA	2531	CG1	_	340	-5.412	0.751	10.839	1.00 18.38
HOTA	2532		ILE	340	-6.903	1.377	12.757	1.00 18.84
ATOM	2533		ILE	340	-5.170	2.154	10.397	1.00 20.53
MOTA	2534	N	ASP	341	-4.932	2.216	15.256	1.00 18.79
MOTA	2535	CA	ASP	341	-5.310	2.292	16.674	1.00 18.67
MOTA	2536	C	λSP	341	-6.199	3.503	16.941	1.00 19.38
MOTA	2537	0	ASP	341	-6.821	4.008	16.007	1.00 18.48
MOTA MOTA	2538	CB	ASP	341	-4.097	2.221	17.633	1.00 20.46
ATOM	2539	CG	ASP	341	-3.190	3.437	17.549	1.00 30.12
ATOM	2540 2541		ASP	341	-3.500	4.422	16.855	1.00 34.15
ATOM	2542	N	ASP	341	-2.135	3.389	18.213	1.00 30.16
ATOM	2543	ČA	GLU	342	-6.250	3.963	18.194	1.00 14.84
ATOM	2544	C	GLU	342	-7.093	5.095	18.591	1.00 14.95
ATOH	2545	0	GLU	342 342	-6.603 -7. 4 19	6.439	18.049	1.00 21.15
ATOM	2546	СВ	GLU	342	-7.419	7.318 5.157	17.762 20.111	1.00 19.55
ATOM	2547	CG	GLU	342	-8.017	3.973	20.724	1.00 16.06
ATOH	2548	CD	GLU	342	-7.121	2.773		1.00 20.57
MOTA	2549		GLU	342	-5.878	2.880	21.007 20.936	1.00 31.58
ATOM	2550		GLU	342	-7.674	1.705	21.318	1.00 38.56
ATOM	2551	N	LYS	343	-5.282	6.595	17.934	
MOTA	2552	CA	LYS	343	-4.637	7.783	17.359	1.00 20.47 1.00 22.28
ATOM	2553	C	LYS	343	-3.143	7.809	17.574	
MOTA	2554	o	LYS	343	-2.689	8.226	18.638	1.00 35.02 1.00 37.09
ATOM	2555	СВ	LYS	343	-5.202	9.104	17.873	1.00 37.09
ATOM	2556	CG	LYS	343	-4.622	10.289	17.113	1.00 43.22
HOTA	2557	CD	LYS	343	-5.145	11.620	17.618	1.00 43.22
ATON	2558	CE	LYS	343	-4.536	12.800	16.854	1.00 81.87
ATOM	2559	NZ	LYS	343	-5.391	14.019	16.935	1.00 93.57
							~~	

HOTA	2560	N	GLY	344	-2.393	7.401	16.548	1.00 36.10
MOTA	2561	CA	GLY	344	-0.940	7.390	16.605	1.00 37.91
MOTA	2562	С	GLY	344	-0.393	7.219	18.003	1.00 47.44
MOTA	2563	0	GLY	344	-0.635	6.198	18.656	1.00 50.02
MOTA	2564	N	THR	345	0.215	8.279	18.517	1.00 44.73
MOTA	2565	CA	THR	345	0.782	8.240	19.853	1.00 45.38
MOTA	2566	C	THR	345	0.267	9.472	20.581	1.00 48.09
MOTA	2567	0	THR	345	-0.049	10.480	19.946	1.00 47.67
MOTA	2568	CB	THR	345	2.313	8.273	19.797	1.00 62.95
MOTA	2569	0G1	THR	345	2.741	9.424	19.051	1.00 67.56
ATOM	2570	CG2	THR	345	2.840	7.014	19.122	1.00 62.12
MOTA	2571	N	GLU	346	0.163	9.387	21.904	1.00 44.03
MOTA	2572	CA	GLU	346	-0.325	10.518	22.679	1.00 43.30
MOTA	2573	С	GLU	346	0.562	11.738	22.461	1.00 46.46
MOTA	2574	0	GLU	346	1.746	11.732	22.814	1.00 47.39
MOTA	2575	CB	GLU	346	-0.401	10.188	24.165	1.00 45.00
ATOM	2576	CG	GLU	346	-1.182	11.212	24.978	1.00 64.69
ATOM	2577	CD	GLU	346	-1.166	10.927	26.475	1.00108.58
ATOM	2578		GLU	346	-0.692	9.845	26.897	1.00110.00
MOTA	2579		GLU	346	-1.632	11.799	27.237	1.00110.00
MOTA	2580	N	ALA	347	-0.026	12.754	21.832	1.00 40.86
ATOM	2581	CA	ALA	347	0.634	14.021	21.536	1.00 39.63
ATOM	2582	C	ALA	347	-0.460	15.092	21.567	1.00 41.81
ATOM	2583	0	ALA	347	-1.499	14.885	22.205	1.00 42.33
ATOM	2584	CB	ALA	347	1.296	13.970	20.159	1.00 40.47
ATOM	2585	N	ALA	348	-0.235	16.231	20.879	1.00 35.47
MOTA	2586	CA	ALA	348	-1.254	17.271	20.847	1.00 34.53
ATOM	2587	C	ALA	348	-2.568	16.718	20.362	1.00 41.09
MOTA	2588	0	ALA	348	-2.750	16.513	19.173	1.00 34.78
ATOM	2589	СВ	ALA	348	-0.778	18.419	19.934	1.00 34.78
ATOM ATOM	2590 2591	N. CA	GLY GLY	349 349	-3.484 -4.744	16.471 15.826	20.982	1.00 38.13
ATOM	2592	C	GLY	349	-5.574	16.643	20.033	1.00 35.10
ATOM	2593	0	GLY	349	-6.114	16.085	19.091	1.00 42.51
ATOM	2594	N	ALA	350	-5.673	17.965	20.291	1.00 34.71
ATOM	2595	CA	ALA	350	-6.489	18.821	19.442	1.00 33.31
ATOM	2596	c	ALA	350	-7.930	18.421	19.594	1.00 36.83
ATOM	2597	ō	ALA	350	-8.424	17.591	18.846	1.00 37.89
ATOM	2598	СВ	ALA	350	-6.018	18.750	17.975	1.00 33.89
ATOM	2599	N	MET	351	-8.607	19.017	20.593	1.00 30.79
ATOM	2600	CA	MET	351	-9.956	18.566	20.888	1.00 29.73
MOTA	2601	C	MET	351	-10.993	19.259	20.050	1.00 31.90
ATOM	2602	ō	MET	351	-11.024	20.477	19.983	1.00 32.74
ATOM	2603	СВ	MET	351	-10.280	18.653	22.394	1.00 32.16
ATOM	2604	CG	MET	351	-9.025	18.414	23.262	1.00 36.44
ATOM	2605	SD	MET	351	-8.109	16.934	22.720	1.00 41.73
ATOM	2606	CE	MET	351	-9.418	15.696	22.959	1.00 37.83
ATOM	2607	N	PHE	352	-11.848	18.447	19.401	1.00 25.13
ATOM	2608	CA	PHE	352	-12.892	19.029	18.577	1.00 23.52
ATOM	2609	С	PHE	352	-14.245	18.711	19.149	1.00 28.36
MOTA	2610	0	PHE	352	-14.342	18.020	20.150	1.00 30.86
ATOM	2611	CB	PHE	352	-12.778	18.505	17.131	1.00 25.09
ATOM	2612	CG	PHE	352	-12.827	16.979	17.095	1.00 26.88
MOTA	2613		PHE	352	-11.641	16.242	17.183	1.00 29.01

ATOM	2614	CD2	PHE	352	-14.052	16.319	16.972	1.00 28.79
MOTA	2615	CE1	PHE	352	-11.681	14.847	17.145	1.00 31.60
MOTA	2616	CE2	PHE	352	-14.091	14.922	16.939	1.00 29.01
MOTA	2617	CZ	PHE	352	-12.906	14.186	17.018	1.00 28.87
MOTA	2618	N	LEU	353	-15.301	19.224	18.489	1.00 22.95
MOTA	2619	CA	LEU	353	-16.640	18.914	18.957	1.00 21.92
MOTA	2620	С	LEU	353	-17.545	18.669	17.785	1.00 27.04
MOTA	2621	0	LEU	353	-17.391	19.304	16.754	1.00 26.29
MOTA	2622	CB	LEU	353	-17.187	20.058	19.832	1.00 21.66
MOTA	2623	CC	LEU	353	-16.718	19.877	21.288	1.00 26.99
MOTA	2624	CD1	LEU	353	-17.069	21.135	22.102	1.00 27.50
MOTA	2625	CD2	LEU	353	-17.419	18.653	21.907	1.00 29.71
MOTA	2626	N	GLU	354	-18.490	17.723	17.946	1.00 24.92
MOTA	2627	CA	GLU	354	-19.361	17.416	16.825	1.00 25.26
MOTA	2628	C	GLU	354	-20.809	17.510	17.212	1.00 32.64
ATOM	2629	0	GLU	354	-21.177	17.184	18.329	1.00 33.10
MOTA	2630	CB	GLU	354	-19.028	16.040	16.216	1.00 26.34
MOTA	2631	CG	GLU	354	-17.606	16.072	15.624	1.00 41.21
MOTA	2632	CD	GLU	354	-17.189	14.745	15.048	1.00 58.68
ATOM	2633	OE1	GLU	354	-18.020	13.797	15.032	1.00 41.86
MOTA	2634	OE2	GLU	354	-16.014	14.646	14.607	1.00 49.79
MOTA	2635	N	ARG	355	-21.632	17.983	16.258	1.00 29.44
MOTA	2636	CA	ARG	355	-23.045	18.139	16.553	1.00 28.26
ATOM	2637	C	ARG	355	-23.749	16.840	16.270	1.00 30.07
ATOM	2638	0	ARG	355	-24.289	16.546	15.192	1.00 31.20
MOTA	2639	CB	ARG	355	-23.609	19.272	15.673	1.00 0.00
YLOR	2640	CG	ARG	355	-22.959	20.610	16.072	1.00 0.00
MOTA	2641	CD	ARG	355	-23.486	21.721	15.145	1.00 0.00
MOTA	2642		ARG	355	-22.825	22.976	15.457	1.00 0.00
ATOM	2643	Œ	ARG	355	-23.124	24.073	14.823	1.00 0.00
ATOM	2644	RH1	ARG	355	-24.016	24.089	13.887	1.00 0.00
MOTA	2645	NH2	ARG	355	-22.507	25.176	15.134	1.00 0.00
ATOM	2646	N	ILE	356	-23.743	15.932	17.265	1.00 21.27
MOTA	2647	CX	ILE	356	-24.424	14.667	17.057	1.00 19.01
MOTA	2648	С	ILE	356	-25.898	14.821	17.330	1.00 26.05
MOTA	2649	0	ILE	356	-26.268	15.297	18.392	1.00 26.38
MOTA	2650	CB	ILE	356	-23.787	13.551	17.907	1.00 20.54
MOTA	2651	CG1	ILE	356	-22.307	13.409	17.503	1.00 19.50
MOTA	2652	CG2	ILE	356	-24.521	12.219	17.649	1.00 21.25
MOTA	2653	CD1	ILE	356	-21.595	12.415	18.434	1.00 17.49
MOTA	2654	N	PRO	357	-26.758	14.439	16.364	1.00 24.53
MOTA	2655	CA	PRO	357	-28.188	14.615	16.534	1.00 24.80
MOTA	2656	C	PRO	357	-28.782	13.579	17.447	1.00 33.18
ATOM	2657	0	PRO	357	-28.209	12.517	17.631	1.00 34.40
ATOM	2658	CB	PRO	357	-28.715	14.367	15.106	1.00 25.84
ATOM	2659	CG	PRO	357	-27.572	13.703	14.306	1.00 29.85
MOTA	2660	CD	PRO	357	-26.275	13.877	15.121	1.00 24.59
ATON	2561	Ä	YBO	358	-29.953	13.908	18,036	1.00 31.16
MOTA	2662	CY	ABG	358	-30.616	12.936	18,877	1.00 30.88
ATOM	2663	C	Yig.	358	-31.428	12.004	18.924	1.00 31.32
ATOM	2664	0	ARG.	358 358	-32.569	12.288	17.695	1.00 31.76
ATON	2665	Œ	ARG	358		13,637	19.957	
ATOM	2666	CR	APO	358	-37.475		19.338	1.00 0.00
ATOR	2667.		AMO.	358	-33.096	15.460	26.478	1.00 0.00

A 5700M	2668	NE	ANG	358	-34.540	15.347	20.380	1.00	9.00
ATOM	2669	CZ	ARG	358	-35.327	16.130	21.061	1.00	0.00
ATOK	2670			358	-34.853	17.034	21.867	1.00	0.00
ATOM	2671	NH2	-	358	-36.616	16.007	20.933	1.00	0.00
ATOM	2672	N	SER	359	-30.802	10.868	17.668	1.00	25.81
ATOM	2673	CA	SER	359	-31.492	9.894	16.841	1.CO	25.59
MOTA	2674	C	SER	359	-30.701	8.617	16.810	1.00	29.08
MOTA	2675	0	SER	359	-29.493	8.653	16.981	1.00	29.25
MOTA	2676	CB	SER	359	-31.685	10.437	15.412	1.00	27.98
MOTA	2677	OG	SER	359	-30.461	11.009	14.941	1.00	38.24
MOTA	2678	N	ILE	360	-31.397	7.481	16.604	1.00	23.29
MOTA	2679	CA	ILE	360	-30.697	6.207	16.610	1.00	22.07
MOTA	2680	С	ILE	360	-29.703	6.151	15.478	1.00	25.19
MOTA	2681	0	ILE	360	-30.104	6.069	14.327	1.00	26.75
MOTA	2682	CB	ILE	360	-31.722	5.056	16.526	1.00	24.69
MOTA	2683	CG1	ILE	360	-32.516	4.959	17.842	1.00	24.13
MOTA	2684	CG2	ILE	360	-31.021	3.712	16.245	1.00	26.49
MOTA	2685	CD1	ILE	360	-31.577	4.658	19.026	1.00	26.29
MOTA	2686	N	PRO	361	-28.388	6.203	15.788	1.00	18.14
MOTA	2687	CA	PRO	361	-27.382	6.154	14.749	1.00	17.12
MOTA	2688	С	PRO	361	-27.159	4.730	14.317	1.00	19.72
MOTA	2689	0	PRO	361	-27.442	3.822 6.645	15.084 15.500	1.00	17.61
MOTA	2690	CB	PRO	361 361	-26.128 -26.431	6.527	17.010	1.00	19.46 22.84
MOTA MOTA	2691 2692	CG CD	PRO PRO	361	-27.949	6.295	17.163	1.00	18.09
ATOM	2693	N	PRO	362	-26.664	4.511	13.082	1.00	18.02
ATOM	2694	CA	PRO	362	-26.418	3.161	12.620	1.00	16.97
ATOM	2695	ć	PRO	362	-25.189	2.612	13.288	1.00	20.33
MOTA	2696	ō	PRO	362	-24.119	3.188	13.170	1.00	22.46
ATOM	2697	СB	PRO	362	-26.140	3.383	11.119	1.00	18.16
MOTA	2698	CG	PRO	362	-25.951	4.900	10.898	1.00	22.92
MOTA	2699	CD	PRO	362	-26.374	5.617	12.195	1.00	18.39
MOTA	2700	N	GLU	363	-25.357	1.481	14.000	1.00	14.86
MOTA	2701	CA	GLU	363	-24.201	0.856	14.618	1.00	14.21
MOTA	2702	С	GLU	363	-23.427	0.113	13.565	1.00	19.69
MOTA	2703	Ο.	GLU	363	-23.823	-0.962	13.141		23.17
MOTA	2704	CB	GLU	363	-24.670	-0.097	15.732	1.00	15.49
MOTA	2705	CG	GLU	363	-23.453	-0.565	16.554	1.00	25.15
ATOM	2706	CD	GLU	363	-23.913	-1.152	17.857	1.00	36.93
MOTA	2707		GLU	363	-24.787	-2.059 -0.703	17.828 18.918	1.00	27.39 41.90
MOTA	2708		GLU	363	-23.403				
MOTA	2709 2710	N CA	VAL VAL	364 364	-22.304 -21.523	0.719 0.124	13.142		13.08
MOTA MOTA	2711	CA	VAL	364	-20.313	-0.552	12.687		15.73
MOTA	2712	0	VAL	364	-19.420	0.123	13.206		17.08
ATOM	2713	CB	VAL	364	-21.064	1.212	11.055		17.63
ATOM	2714		VAL	364	-20.197	0.604	9.948		18.01
ATOM	2715		VAL	364	-22.276	1.913	10.448		17.73
ATOM	2716	N	LYS	365	-20.321	-1.881	12.718		10.26
MOTA	2717	CA	LYS	365	-19.195	-2.623	13.286	1.00	8.23
HOTA	2718	С	LYS	365	-18.362	-3.308	12.215	1.00	7.79
MOTA	2719	o	LYS	365	-18.872	-4.100	11.434	1.00	6.48
ATOM	2720	СВ	LYS	365	-19.677	-3.699	14.272	1.00	10.38
MOTA	2721	CG	LYS	365	-20.562	-3.220	15.410	1.00	11.40

							16 330	1 00 16 10
ATOM	2722	CD	LYS	365	-20.930	-4.371	16.320	1.00 16.19
MOTA	2723	CE	LYS	365	-22.013	-4.001	17.311	
MOTA	2724	NZ	LYS	365	-22.746	-5.207	17.780 12.164	1.00 50.10
MOTA	2725	N	PHE	366	-17.081	-2.979		1.00 4.94 1.00 5.21
ATOM	2726	CA	PHE	366	-16.163	-3.613	11.226	
MOTA	2727	С	PHE	366	-15.707	-4.870	11.942	1.00 11.04
MOTA	2728	0	PHE	366	-14.558	-4.973	12.395	1.00 9.45
MOTA	2729	CB	PHE	366	-14.990	-2.678	10.860	1.00 6.55
MOTA	2730	CG	PHE	366	-15.339	-1.691	9.761	1.00 7.39
ATOM	2731		PHE	366	-16.106	-0.565	10.039	1.00 10.00
MOTA	2732		PHE	366	-15.010	-1.954	8.436	1.00 8.12
MOTA	2733		PHE	366	-16.542	0.259	9.020	1.00 10.80
HOTA	2734		PHE	366	-15.448	-1.126	7.414	1.00 9.85
MOTA	2735	CZ	PHE	366	-16.213	-0.024	7.706	1.00 8.09
HOTA	2736	N	ASN	367	-16.675	-5.781	12.090	1.00 10.96
MOTA	2737	CX	asn	367	-16.511	-7.057	12.775	1.00 12.66
MOTA	2738	С	asn	367	-16.575	-8.273	11.863	1.00 20.63
MOTA	2739	0	ASN	367	-17.025	-9.343	12.274	1.00 23.39
MOTA	2740	CB	asn	367	-17.570	-7.211	13.873	1.00 14.33
MOTA	2741	CG	asn	367	-18.982	-7.299	13.321	1.00 53.89
MOTA	2742		ASN	367	-19.227	-7.000	12.150	1.00 45.61
MOTA	2743	ND2	asn	367	-19.923	-7.702	14.166	1.00 57.43
MOTA	2744		LYS	368	-16.183	-8.100	10.612	1.00 15.70
ATOM	2745	CA	LYS	368	-16.163	-9.201	9.648	1.00 15.30
MOTA	2746	С	LYS	368	-15.231	-8.792	8.508	1.00 23.90
MOTA	2747	0	LYS	368	-14.900	-7.595	8.372	1.00 25.23
MOTA	2748	CB	LYS	368	-17.577	-9.530	9.149	1.00 14.67
MOTA	2749	CG	LYS	368	-18.279	-8.405	8.423	1.00 5.03
MOTA	2750	CD	LYS	368	-19.624	-8.855	7.894	1.00 2.48
MOTA	2751	CE	LYS	368	-20.409	-7.697	7.293	1.00 26.14
MOTA	2752	NZ	LYS	368	-21.767	-8.081	6.805	1.00 49.97
MOTA	2753	N	PRO	369	-14.826	-9.751	7.652	1.00 18.79
ATOM	2754	CA	PRO	369	-13.927	-9.382	6.567	1.00 17.06
MOTA	2755	С	PRO	369	-14.315	-8.087	5.846	1.00 15.58
MOTA	2756	0	PRO	369	-15.498	-7.832 ·		
MOTA	2757	CB	PRO	369	-13.959		5.682	1.00 18.58
MOTA	2758	CG	PRO	369	-14.067		6.699	1.00 22.28
ATOM	2759	CD	PRO	369	-15.202		7.525	1.00 17.81
ATOM	2760	N	PHE	370	-13.335	-7.198 -5.924	5.698 4.999	1.00 10.74 1.00 9.37
ATOM	2761	CA	PHE	370	-13.554	-5.508	4.178	1.00 7.98
MOTA	2762	C	PHE	370	-12.338 -11.206		4.520	
ATOM	2763	0	PHE	370		-4.795	5.979	1.00 10.78
MOTA	2764	СВ	PHE	370	-13.946 -12.879	-4.437	6.990	1.00 10.78
MOTA	2765	CG	PHE	370	-11.902	-3.492	6.695	1.00 12.76
MOTA	2766		PHE	370		-5.047	8.236	1.00 11.98
MOTA	2767		PHE	370	-12.861	-3.157	7.629	1.00 13.14
MOTA	2768		PHE	370	-10.918 -11.888	-4.725	9.176	1.00 15.00
MOTA	2769		PHE	370	-11.888	-3.779	8.872	1.00 13.00
MOTA	2770	cz	PHE	370		-4.811	3.067	1.00 13.05
MOTA	2771	N	VAL	371	-12.564	-4.329	2.256	1.00 3.40
MOTA	2772	CA	VAL	371	-11.444			1.00 6.84
MOTA	2773	C	VAL	371	-11.239	-2.845	2.601	1.00 6.84
MOTA	2774	0	VAL	371	-12.083	-2.249	3.258	1.00 8.12
MOTA	2775	CB	VAL	371	-11.695	-4.504	0.720	1.00 9.03

MOTA	2776		VAL	371	-12.221	-5.900	0.425	1.00	9.32
MOTA	2777	CG2	VAL	371	-12.624	-3.438	0.175	1.00	8.76
MOTA	2778	N	PHE	372	-10.132	-2.250	2.181	1.00	6.72
MOTA	2779	CA	PHE	372	-9.886	-0.839	2.476	1.00	8.81
MOTA	2780	С	PHE	372	-8.708	-0.283	1.693	1.00	10.01
ATOM	2781	0	PHE	372	-7.897	-1.043	1.163		10.68
ATOM	2782	CB	PHE	372	-9.618	-0.649	3.966		12.58
MOTA	2783	CG	PHE	372	-8.354	-1.286	4.422		15.84
MOTA	2784		PHE	372	-8.308	-2.658	4.636		21.46
MOTA	2785		PHE	372	-7.189	-0.543	4.547		18.60
MOTA	2786	CEI	PHE	372	-7.122	-3.283	4.960	1.00	22.91
MOTA	2787	CE2	PHE	372	-5.997	-1.158	4.869		22.97
MOTA	2788	CZ	PHE	372	-5.966	-2.534	5.075	1.00	22.13
MOTA	2789	N	LEU	373	-8.612	1.040	1.616	1.00	4.88
MOTA	2790	CA	LEU	373	-7.509	1.687	0.895	1.00	4.91
MOTA	2791	C	LEU	373	-7.125	2.944	1.636	1.00	9.95
MOTA	2792	0	LEU	373	-7.918	3.481	2.393	1.00	9.65
MOTA	2793	CB	LEU	373	-7.912	2.092	-0.532	1.00	4.96
MOTA	2794	CG	LEU	3 73	-8.335	1.061	-1.579	1.00	10.99
MOTA	2795		LEU	373	-9.789	0.654	-1.396	1.00	11.13
ATOM	2796		LEU	373	-8.135	1.658	-2.946	1.00	17.94
MOTA	2797	N	MET	374	-5.882	3.368	1.467	1.00	9.56
MOTA	2798	CA	MET	374	-5.394	4.597	2.083	1.00	11.81
MOTA	2799	¢	MET	374	-4.968	5.441	0.890	1.00	14.51
MOTA	2800	0	MET	374	-4.134	5.011	0.082	1.00	12.10
MOTA	2801	CB	MET	374	-4.215	4.349	3.040	1.00	15.63
MOTA	2802	CG	MET	374	-4.611	3.932	4.459		20.55
ATOM	2803	SD	MET	374	-5.417	2.313	4.607		26.18
ATOM	2804	CE	MET	374	-6.308	2.489	6.158		22.81
ATOM	2805	N	ILE	375	-5.608	6.600	0.749		11.32
MOTA MOTA	2806 2807	CA	ILE	375	-5.376	7.518	-0.355		10.65
ATOM	2808	C	ILE	375	-4.724	8.807	0.112		15.85
ATOM	2809	O CB	ILE	375 375	-5.187	9.404	1.076		15.31
ATOM	2810	CG1	ILE	375	-6.727	7.883	-1.039		13.28
ATOM	2811	CG2		375 375	-7.222	6.742	-1.928		13.42
ATOM	2812	CD1		375 375	-6.589	9.148	-1.867		15.20
ATOM	2813	N	GLU	375 376	-7.874 -3.656	5.633	-1.180		22.33
ATOM	2814	CA	GLU	376 376	-3.002	9.238 10.503	-0.563		14.38
ATOM	2815	C	GLU	376	-3.920	11.596	-0.212		14.97
ATOM	2816	ò	GLU	376	-4.048	11.755	-0.767 -1.976		19.93 17.98
ATOM	2817	СВ	GLU	376	-1.603	10.607	-0.842	1.00	
MOTA	2818	CG	GLU	376	-0.710	11.742	-0.291	1.00	
ATOM	2819	CD	GLU	376	-1.097	13.127	-0.798		33.08
MOTA	2820		GLU	376	-1.086	13.331	-2.033	1.00	
ATOM	2821		GLU	376	-1.377	14.023	0.021	1.00	
MOTA	2822	N	GLN	377	-4.550	12.337	0.136	1.00	
MOTA	2823	CA	GLN	377	-5.492	13.396	-0.202	1.00	
MOTA	2824	C	GLN	377	-5.247	14.235	-1.451	1.00	
MOTA	2825	0	GLN	377	-6.191	14.510	-2.197	1.00	
MOTA	2826	CB	GLN	377	-5.676	14.337	0.985	1.00	
MOTA	2827	CG	GLN	377	-6.428	13.737	2.162	1.00	
MOTA	2828	CD	GLN	377	-6.529	14.707	3.319	1.00	
MOTA	2829	OE1	GLN	377	-6.140	15.874	3.205	1.00	
								-	

ATOM	2830	NE2	GLN	377	-7.044	14.235	4.442	1.00 87.27
ATOM	2831	N	ASN	378	-3.994	14.628	-1.686	1.00 25.79
ATOM	2832	CA	ASN	378	-3.653	15.485	-2.837	1.00 26.20
ATOM	2833	С	ASN	378	-3.532	14.842	-4.220	1.00 24.55
MOTA	2834	0	ASN	378	-4.119	15.319	-5.203	1.00 22.77
ATOM	2835	СВ	ASN	378	-2.371	16.277	-2.553	1.00 31.43
MOTA	2836	CG	ASN	378	-2.525	17.214	-1.398	1.00 65.73
MOTA	2837		ASN	378	-3.258	18.197	-1.478	1.00 65.38
ATOM	2838		ASN	378	-1.840	16.920	-0.305	1.00 59.75
ATOM	2839	N	THR	379	-2.750	13.773	-4.281	
ATOM	2840	CA	THR	379	-2.496	13.058	-5.520	1.00 16.72 1.00 14.54
ATOH	2841	С	THR	379	-3.531	11.954	-5.732	
ATOM	2842	ō	THR	379	-3.682	11.435	-6.830	1.00 16.01
ATOM	2843	СВ	THR	379	-1.141	12.415	-5.428	1.00 14.59
ATOM	2844	0G1		379	-1.168	11.474		1.00 27.00
ATOM	2845	CG2		379	-0.078		-4.345	1.00 35.99
ATOM	2846	N	LYS	380	-4.190	13.478	-5.109	1.00 27.54
ATOM	2847	CA	LYS	380	-5.186	11.559	-4.650	1.00 12.96
ATOM	2848	c	LYS	380	-4.569	10.495	-4.669	1.00 11.20
ATOM	2849	0	LYS	380	-5.264	9.158	-5.066	1.00 14.14
ATOM	2850	СВ	LYS		-6.359	8.247	-5.507	1.00 14.84
ATOM	2851	CG		380		10.874	-5.554	1.00 13.33
ATOM	2852	CD	LYS	380	-7.021	12.147	-5.076	1.00 43.92
ATOM	2853	CE	LYS	380	-8.294	12.466	-5.834	1.00 62.33
ATOM	2854	NZ	LYS	380	-8.943	13.746	-5.320	1.00 75.41
ATOM	2855	N N	LYS	380	-10.179	14.084	-6.069	1.00 81.22
ATOM	2856	CA	SER	381	-3.267	9.033	-4.806	1.00 10.76
ATOM	2857	C		381	-2.501	7.829	-5.078	1.00 10.64
ATOM	2858	0	SER	381	-2.826	6.773	-4.043	1.00 17.98
ATOM	2859	CB	SER	381	-2.763	7.035	-2.825	1.00 18.86
ATOM	2860	OG	SER SER	381	-1.009	8.137	-5.013	1.00 12.65
ATON	2861	N	PRO	381 382	-0.681	9.193	-5.890	1.00 24.22
ATOM	2862	CA	PRO	382	-3.165	5.556	-4.498	1.00 15.96
MOTA	2863	C	PRO	382	-3.484	4.522	-3.516	1.00 15.23
ATOM	2864	0	PRO	382	-2.229 -1.428	4.026	-2.787	1.00 15.86
ATOM	2865	СВ	PRO	382	-4.191	3.275	-3.343	1.00 13.97
ATOM	2866	CG	PRO	382	-3.507	3.461	-4.359 -5.698	1.00 16.74
ATOM	2867	CD	PRO	382	-3.367	3.573	_	1.00 21.91
ATOM	2868	N .	LEU	383	-2.046	5.069	-5.880	1.00 17.13
ATOM	2869	CA	LEU	383	-0.918	4.542	-1.572 -0.704	1.00 11.15
ATOM	2870	C	LEU	383	-0.941	4.229 2.803	-0.704	1.00 10.25
ATOM	2871	0	LEU	383	0.078	2.122		1.00 15.69
ATOM	2872	СВ	LEU	383	-0.886	5.190	-0.202	1.00 17.23
MOTA	2873	CG	LEU	383	-0.330	6.617	0.494	1.00 9.55
MOTA	2874	CD1		383	-0.693		0.332	1.00 12.09
ATOM	2875	CD2		383	1.174	7.455	1.530	1.00 11.38
ATOM	2876	N	PHE	384	-2.105	6.596	0.129	1.00 12.37
ATOM	2877	CA	PHE	384	-2.105	2.345	0.221	1.00 9.64
ATOM	2878	C	PHE	384		0.991	0.733	1.00 7.84
ATOM	2879	0	PHE	384 384	-3.581 -4.559	0.451	0.283	1.00 13.29
ATOH	2880	CB			-4.559 -2.270	1.202	0.192	1.00 14.82
ATOM	2881	CG	PHE	384	-2.279	0.989	2.272	1.00 8.59
ATOM	2882		PHE	384	-0.933	1.120	2.952	1.00 9.77
ATOM	2883	CD1		384		-0.013	3.291	1.00 12.34
	T001	CD2	rnE	384	-0.418	2.367	3.311	1.00 11.86

ATOM	2884	CE	l PHE	384	1.004	0.085	3.979	1.00	12.93
ATOH	2885	CE:	2 PHE	384	0.789	2.468	3.997		14.08
MOTA	2886	CZ	PHE	384	1.501				12.25
ATOM	2887	N	MET	385	-3.618	-0.834	-0.042	1.00	
ATOM	2888	CA	MET	385	-4.868			1.00	
MOTA	2889	С	MET	385	-4.769			1.00	
MOTA	2890	0	MET	385	-3.680			1.00	
MOTA	2891	CB	MET	385	-5.069		-1.877	1.00	
MOTA	2892	CG	MET	385	-6.406		-2.150	1.00	
ATOM	2893	SD	MET	385	-7.016		-3.806	1.00	
MOTA	2894	CE	MET	385	-8.683		-3.625	1.00	
MOTA	2895	N	GLY	386	-5.890		0.887	1.00	2.67
MOTA	2896	CA	GLY	386	-5.870		1.597	1.00	2.61
MOTA	2897	С	GLY	386	-7.235		2.027	1.00	8.66
MOTA	2898	0	GLY	386	-8.228		1.761	1.00	8.72
ATOM	2899	N	LYS	387	-7.274		2.658	1.00	9.06
MOTA	2900	CA	LYS	387	-8.501		3.168	1.00	9.44
ATOM	2901	·C	LYS	387	-8.129		4.468		14.80
ATOM	2902	0	LYS	387	-7.091		4.559		14.15
ATOM	2903	СВ	LYS	387	-9.067		2.195		10.21
ATOM	2904	CG	LYS	387	-10.168		2.800		10.21
ATOM	2905	CD	LYS	387	-10.771	-9.628	1.789		17.82
ATOM	2906	CE	LYS	387		-10.614	1.280		30.69
ATOM	2907	NZ	LYS	387		-11.615	0.359		46.30
ATOM	2908	N	VAL	388	-8.937	-7.231	5.493		12.28
ATOM	2909	CA	VAL	388	-8.718	-7.849	6.782		11.26
ATOM	2910	С	VAL	388	-9.748	-8.959	6.904		14.50
ATOM	2911	0	VAL	388	-10.952	-8.720	6.825		12.32
MOTA	2912	CB	VAL	388	-8.852	-6.834	7.952		14.78
ATOM	2913	CG1	VAL	388	-8.686	-7.539	9.285		14.30
MOTA	2914	CG2	VAL	388	-7.802	-5.738	7.818		14.55
MOTA	2915	N	VAL	389	-9.251	-10.186	6.900		14.18
ATOM	2916	CA	VAL	389	-10.092		7.043		15.05
MOTA	2917	С	VAL	389	-10.113		8.545		23.37
MOTA	2918	0	VAL	389	-11.181		9.135		25.50
ATOM	2919	CB	VAL	389		-12.590	6.237		18.20
ATOM	2920	CG1	VAL	389		-12.354	4.747		17.82
MOTA	2921	CG2	VAL	389	-8.089	-12.863	6.580		18.27
MOTA	2922	N	ASN	390	-8.945	-11.515	9.182		20.60
ATOM	2923	CA	ASN	390		-11.769	10.622		20.91
ATOM	2924	С	asn	390	-7.641	-10.999	11.240		23.96
MOTA	2925	0	ASN	390	-6.472	-11.335	11.010	1.00	
MOTA	2926	CB	ASN	390	-8.623	-13.266	10.865	1.00	
MOTA	2927	CG	ASN	390	-8.801	-13.652	12.312	1.00	
MOTA	2928		ASN	390	-8.664	-12.831	13.221	1.00	
MOTA	2929	ND2	asn	390	-9.114	-14.917	12.540	1.00	
ATOM	2930	N	PRO	391		-10.034	12.127	1.00	
MOTA	2931	CA	PRO	391	-6.941	-9.213	12.789	1.00	
MOTA	2932	C	PRO	391	-5.886		13.503	1.00	
ATOM	2933	0	PRO	391		-9.585	13.641	1.00	
ATOM	2934	CB	PRO	391	-7.776	-8.394	13.765	1.00	
MOTA	2935	CG	PRO	391	-9.039	-8.187		1.00 2	
ATOM	2936	CD	PRO	391	-9.286	-9.624		1.00 2	
ATOM	2937	N	THR	392	-6.269			1.00 3	

ATOM	2938	B CA	THR	392		-5.38	3 -	12.134	1	4.630	1 00	35.56	•
ATOM	2939	9 C	THR	392				12.469		3.823		41.19	
ATOM	2940	0	THR	392				12.602		1.379		42.51	
MOTA	2941	CB	THR	392				13.423		5.015		56.77	
MOTA	2942	2 OG1	THR	392				13.091		5.843		59.19	
ATOM	2943	CG2	THR	392				14.371		.764		61.71	
ATOM	2944	N	GLN	393				12.591		.512		36.59	
MOTA	2945	CA	GLN	393				12.891		.639		36.28	
MOTA	2946	C	GLN	393				11.630		.429		43.21	
MOTA	2947	0	GLN	393		-2.894				.321		44.40	
ATOM	2948	CB	GLN	393		-3.684				.290		37.18	
MOTA	2949	CC	GLN	393		-2.609				.206		38.11	
MOTA	2950	CD	GLN	393		-3.165				.853		59.92	
MOTA	2951		GLN	393		-4.385				.634		50.05	
ATOM	2952		GLN	393		-2.275	- :	14.108	6	.921		61.15	
ATOM	2953		LYS	394		-1.029	-:	11.792		.357		41.17	
MOTA	2954		LYS	394		-0.136	-3	10.663		.122		73.90	
MOTA	2955	_	LYS	394		1.066	-1	11.069	10	.275		106.52	
ATOM	2956		LYS	394		1.137	- 1	12.250	9	.864		66.01	
ATOM	2957	CB	LYS	394		0.337	-1	10.042	12	.437		76.30	
ATOM	2958	CG	LYS	394		1.231	-	8.828		. 249		89.36	
ATOM	2959	CD	LYS	394		1.763	-	8.284	13	. 564		97.21	
ATOM	2960	CE	LYS	394		2.652	-	7.066	13	. 337		100.59	
ATOM	2961	NZ	LYS	394		3.234	-	6.531	14	. 594		101.87	
ATOM	2962	OXT	LYS	394		1.924	-1	0.199	9	. 997		66.01	
TER	2963		LYS	394									
HETATM		s	SCC	1		-22.279		4.447	-3.	.715	1.00	31.26	
HETATM		Cl	SCC	1		-23.852		4.645	-4	634		27.60	
HETATM		C2	SCC	1		-23. 9 20		5.944	-5.	448		26.84	
CONECT			2964										
CONECT			2965										
CONECT			2966			•							
CONECT	2966												
MASTER		0	0	0 -	0	0	0	0	0	2965	1	4	29
END													

We claim:

1. A furin endoprotease inhibitor comprising a mimetic compound to that portion of α_1 -antitrypsin Portland that comprises amino acid sequence Arg-Xaa-Xaa-Arg at positions 355 through 358 of the amino acid sequence of α_1 -antitrypsin Portland, wherein the atoms of said mimetic are arranged in three dimensional conformation at positions equivalent to those of the atoms comprising the amino acid sequence Arg-Xaa-Xaa-Arg.

10

5

2. A homogenous composition of matter comprising a mimetic compound to that portion of α_1 -antitrypsin Portland that comprises an amino acid sequence Arg-Xaa-Xaa-Arg at positions 355 through 358 of the amino acid sequence of α_1 -antitrypsin Portland, wherein the atoms of said mimetic are arranged in three dimensional conformation at positions equivalent to those of the atoms comprising the amino acid sequence Arg-Xaa-Xaa-Arg.

15

3. A method of blocking endoproteolytic activation of a bacterial toxin comprising the step of contacting a cell in the presence of the toxin with a furin endoprotease inhibitor according to Claim 1.

20

4. The method of Claim 3 wherein the bacterial toxin is diphtheria toxin of Corynebacterium diptheriae.

25

6.

aeruginosa exotoxin.

5. The method of Claim 3 wherein the bacterial toxin is anthrax toxin of Bacillus anthracis.

The method of Claim 3 wherein the bacterial toxin is Pseudomonas

30

7. A pharmaceutical composition comprising a therapeutically effective amount of a furin endoprotease inhibitor of Claim 1 and a pharmaceutically acceptable carrier or diluent.

8. A method of inhibiting bacterial infection of cells comprising contacting the cells with a furin endoprotease inhibitor according to Claim 1.

- 9. The method of Claim 8 wherein the bacterial toxin is diphtheria toxin of Corynebacterium diptheriae.
 - 10. The method of Claim 8 wherein the bacterial toxin is anthrax toxin of *Bacillus anthracis*.
- 10 11. The method of Claim 8 wherein the bacterial toxin is *Pseudomonas* aeruginosa exotoxin.

15

20

- 12. A method of inhibiting viral infection of cells comprising contacting the cells with a furin endoprotease inhibitor according to Claim 1.
 - 13. The method of Claim 12 wherein the virus is cytomegalovirus.
- 14. A method of blocking endoproteolytic viral protein maturation comprising the step of contacting a cell in the presence of the toxin with a furin endoprotease inhibitor according to Claim 1.
 - 15. The method of Claim 14 wherein the virus is cytomegalovirus.
- 16. A pharmaceutical composition according to Claim 7, further comprisingan antibacterial compound.
 - 17. A pharmaceutical composition according to Claim 7, further comprising an antiviral compound.
- 18. A furin endoprotease inhibitor comprising a mimetic compound having the structure:

C(L1-R1)-E-F-G-H-I-J(L2-R2)

wherein "C" is a mimetic element that is equivalent to a first alpha carbon;

"J" is a mimetic element that is equivalent to a second alpha carbon;

whereby "C" and "J" are conformationally hindered;

5

10

15

20

"E", "G", and "T' are planar moieties having dimensions substantially similar to a peptide bond;

"F" and "H" are mimetic elements that are each equivalent to a conformationally-hindered alpha carbons;

wherein either "F" or "H" are restricted by being integrally covalently linked to a cyclic planar moiety selected from the group consisting of cyclopentane, cyclopentene, furan, tetrahydrofuran, thiophene, pyrrole, or pyrrolidine, or wherein "F" or "H" is covalently linked to a sterically-hindered group;

and whereby E-F-G-H-I is most preferably substantially planar and deviates from this planar structure by no more than from about 1 to about 20 degrees from said plane and wherein the length of the molecule along the distance between the "C" and "J" components (C-E-F-G-H-I-J) is preferably from about 7.5 to about 11.5 Angstroms;

R1 and R2 are each positively-charged residues;

L1 and L2 are each linker moieties selected from the group consisting of methylenes and mimetic elements equivalent thereto;

wherein R1 and R2 are from about 5 to about 7 Angstroms away from their respective alpha carbon equivalents, "C" and "J";

and whereby R1 and R2 are displaced relative to each other along the longitudinal axis of the molecule to subtend an angle of from about 15 to about 25 degrees.

Figure 1A

Figure 1B

Pseudomonas exotoxin A

Pseudomonss seruginoss

Cleaved by furth in endosor

FIGURE 2

Protoxin from Pseudomonas aeruginoss

RTKR465

HCMV glycoprotein gB

Virton-sesociated protein

Cleaved by furth

Human Cytomegalovirus

PEA assay

FIGURE 3

FIGURE 4

FIGURE 5

HCMV plaque reduction assay

FIGURE 6

Inhibition of HCMV plaque formation by $\alpha_1\text{-PDX}$ and foecarnet

FIGURE 7

FIGURE 8

PCT/US99/07776 WO 99/51624

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Jean, Francois Thomas, Gary
 - (ii) TITLE OF INVENTION: Methods and Reagents for Inhibiting Furin Endoprotease
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: McDonnell Boehnen Hulbert & Berghoff
 - (B) STREET: 300 South Wacker Drive
 - (C) CITY: Chicago
 - (D) STATE: IL
 - (E) COUNTRY: USA (F) ZIP: 60606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible

 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE: 08-APR-1999
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Noonan, Kevin E
 (B) REGISTRATION NUMBER: 35,303
 - (C) REFERENCE/DOCKET NUMBER: 92,448-H
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312-913-0001 (B) TELEFAX: 312-913-0002

 - (C) TELEX:
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified site (B) LOCATION: 355..358

 - (C) OTHER INFORMATION: /label=Variant / note="The amino acid sequence is the amino acid sequence of the modified alpha-1-antitrypsin protein, alpha-1-antitrypsin Portland."
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
 - Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His
 - Asp Gln Asp His Pro Thr Phe Asn Lys Ile Thr Pro Asn Leu Ala Glu 20 25 30
 - Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr

Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Gln Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Gln Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr 135 Val Asn Phe Gly Asp Thr Glu Gln Ala Lys Lys Gln Ile Asn Asp Tyr 145 150 155 160 Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu Val Asn Tyr Ile Phe Phe Lys Gly 185 Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp Arg Arg Ser Ala Ser Leu His Leu 280 Pro Lys Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly 290 295 300 Gln Leu Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly 305 310 315 320 Val Thr Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala 330 Val Leu Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Arg Ile Pro Arg Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr Gly Lys

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ala Ile Pro Met

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4 amino acids

 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Arg Ile Pro Arg

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified site
 - (B) LOCATION: 2..3
 - (C) OTHER INFORMATION: /label=Variable site / note="The amino acid Xaa at position 2 can be any amino acid; the amino acid Xaa at position 3 can be any amino acid."
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Arg Xaa Xaa Arg

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:

- (A) NAME/KEY: Modified site (B) LOCATION: 2..3
- (C) OTHER INFORMATION: /label=Variable site / note="The amino acid Xaa at position 2 can be any amino acid."
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Arg Xaa Pro Arg

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Modified site
 - (B) LOCATION: 355..358
 - (C) OTHER INFORMATION: /label=Variant / note="The amino acid sequence is the amino acid sequence of the modified alpha-1-antitrypsin protein, alpha-1-antitrypsin Pittsburgh."
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His
- Asp Gln Asp His Pro Thr Phe Asn Lys Ile Thr Pro Asn Leu Ala Glu
- Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr
- Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu
- Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu
- Asn Phe Asn Leu Thr Gln Ile Pro Glu Ala Gln Ile His Glu Gly Phe
- Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu
- Thr Thr Gly Asn Gly Leu Phe Leu Ser Gln Gly Leu Lys Leu Val Asp
- Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr
- Val Asn Phe Gly Asp Thr Glu Gln Ala Lys Lys Gln Ile Asn Asp Tyr
- Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu
- Asp Arg Asp Thr Val Phe Ala Leu Val Asn Tyr Ile Phe Phe Lys Gly 185

 Lys
 Trp
 Glu 195
 Arg
 Pro
 Phe Glu 200
 Lys
 Asp
 Thr
 Glu 205
 Glu Asp
 Phe Asp
 Phe Phe 215
 Val Lys
 Lys
 Thr
 Glu 220
 Met Lys
 Arg
 Leu Leu 220

 Gly Met Phe Asn Ile 210
 Gln His 230
 His Cys Lys Lys Leu 235
 Lys Leu 235
 Ser Ser Trp Val Leu 240
 Leu 240

 Leu Met Lys Tyr Leu 261
 Gly Asn Ala Thr Ala 250
 Ile Phe Phe Leu Pro Asp 255
 Asp 255
 Glu Gly Lys Leu 260
 Gln His Leu Glu Asn Glu Asn Glu Asn 265
 Glu Leu Thr His Asp 11e Ile 270
 Ile 270
 Ile 1le 270

 Thr Lys Phe Leu Glu Glu Asn Glu Asn Glu Asn 280
 Arg Arg Arg
 Ser Ala Ser Leu His Leu 280
 Ile Leu 285
 Ile Ile 270

 Pro Lys Leu Gly Leu Ser Ile Thr Gly 295
 Thr Tyr Asp Leu Lys 300
 Ser Val Leu Gly 300
 Ser Val Leu Gly 300
 Ile Gly 300

 Gln Leu Gly Leu Gly Jan His Lys 295
 Thr Tyr Asp Leu Lys 300
 Ser Val Leu Gly 325
 Ala 310
 <

Intr Jonal Application No PCT/US 99/07776

IPC 6								
	o International Patent Classification (IPC) or to both national classific	ation and IPC						
	SEARCHED commentation searched (classification system followed by classification	ina cumbola)						
IPC 6	IPC 6 CO7K A61K							
Documentai	Documentation searched other than minimum documentation to the extent that such documents are included in the fleids searched							
Electronic d	ata base consulted during the international search (name of data be	se and, where practical, search terms used	1)					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriate, of the ref	levant passages	Relevant to claim No.					
X,Y	JEAN E.A.: "An internally quench fluorogenic substrate of prohormo convertase 1 and furin leads to a prohormone convertase inhibitor" BIOCHEMICAL JOURNAL, vol. 307, no. 3, 1 May 1995 (1995 pages 689-695, XP002113495 The whole document; see especial	1-17						
Х,Ү	1-17							
X Furti	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.					
Special ca "A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume later th	rmational filing date the application but eory underlying the claimed invention the considered to current is taken alone stailmed invention ventive step when the pre other such docu- us to a person skilled family							
	actual completion of the international search 7 August 1999	Date of mailing of the International second	arch report					
Name and n	nalling address of the ISA European Patent Office, P.B. 5618 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016							

1

Instructioned Application No
PCT/US 99/07776

		PCT/US 99/07776
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,Y	AJOY BASAK ET AL: "PEPTIDYL SUBSTRATES CONTAINING UNNATURAL AMINO ACID AT THE P'1 POSITION ARE POTENT INHIBITORS OF PROHORMONE CONVERTASES" INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH, vol. 46, no. 3/04, 1 September 1995 (1995-09-01), pages 228-237, XP000526318 ISSN: 0367-8377 the whole document	1-17
Y	WO 94 16073 A (OREGON STATE ;THOMAS GARY (US); ANDERSON ERIC D (US); THOMAS LAURE) 21 July 1994 (1994-07-21) cited in the application the whole document	1-17
A	HOL: "Protein crystallography and computer graphics toward rational drug design" ANGEWANDTE CHEMIE, INT ED., vol. 25, no. 9, 1986, pages 767-778, XP002113497 cited in the application the whole document	1-17
Α	WEINSTEIN B: "CHEMISTRY AND BIOCHEMISTRY OF AMINO ACIDS, PEPTIDES AND PROTEINS, PASSAGE", CHEMISTRY AND BIOCHEMISTRY OF AMINO ACIDS, PEPTIDES, AND PROTEINS, VOL. 7, PAGE(S) 266 - 357 XP002032461 cited in the application	1-17
A	JEAN E.A.: "Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 33, 18 August 1995 (1995-08-18), pages 19225-19231, XP002113498 MD US the whole document	1-17

1

amational application No.

PCT/US 99/07776

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	rmational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 3-6,8-15 because they relate to subject matter not required to be searched by this Authority. namely: Remark: Although claims 3-6 and 8-15 encompass a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X	Claims Nos.: 18 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	see FURTHER INFORMATION sheet PCT/ISA/210
јз. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box li	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 18

The claim 18 relates to a "mimetic compound" having furin endoprotease inhibiting activity which is characterized by a general structure composed of "mimetic elements". Said claim lacks any clearly defined constant structural entity which could serve to formulate the subject of a meaningful search, rendering the scope of said claim unclear and speculative in view of Art.6 PCT.

Furthermore the description of the application lacks any experimental data actually to support the content of claim 18. Therefore this claim can also not be considered to represent a permissible generalisation which is fairly based on experimental evidence, that is, it is also not adequately supported by the description (Art.6 PCT). Therefore claim 18 is considered to violate Art.6 PCT to such an extent

Therefore claim 18 is considered to violate Art.6 PCI to such an extent that no meaningful search can be made. (Art.17(2)(a)(ii)) and (b) PCT).

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

information on patent family members

PCT/US 99/07776

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9416073 A	21-07-1994	US 5604201 A AU 6121394 A EP 0678121 A JP 8509361 T	18-02-1997 15-08-1994 25-10-1995 08-10-1996	

Form PCT/ISA/210 (patent family entrex) (July 1992)