Project Weekly report

Topic : - Evaluate Performance of Faster-RCNN and its variants in case of small object

detection

Group Name: Tech Trio

Project Definition: 1

Group Member's names:- Kaushik Gohil, Richa Saraiya, Parth Mevada

Model Analysis for Small Object Detection: -

Model name	Techniques	How it works
 Faster R-CNN with Feature Pyramid Networks (FPN) 	 Feature Pyramid Networks (FPN) 	 Uses multi-scale feature maps to improve small object detection by capturing features at different resolutions.
■ M2F2-RCNN	 Multi-Scale Feature Fusion in Faster R-CNN 	 Enhances Faster R-CNN by integrating multi-scale feature fusion for better accuracy in detecting small objects.
 CNN with Multi-Scale Feature Fusion 	Multi-Scale Feature Fusion in CNN	 Improves small object detection by combining feature information from multiple layers.
 Coarse-to-Fine Proposal Generation Model 	 Coarse-to-Fine Proposal Generation + Imitation Learning 	 Generates initial rough object proposals and refines them iteratively using imitation learning to detect small objects.
■ DCN with Faster R-CNN	 Deformable Convolutions, Adaptive Receptive Fields, Spatial Sampling Offsets 	 Replaces standard convolutions in Faster R- CNN with deformable ones, allowing adaptive receptive fields that improve feature extraction and localization for small objects.

Next week- We will focus on method selection and reading research papers. The aim is to explore different techniques used understanding, their strengths and limitations.