240. Search a 2D Matrix II

Write an efficient algorithm that searches for a value target in an $m \times n$ integer matrix. This matrix has the following properties:

- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.

Example 1:

1	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]],target = 5

Output: true

Example 2:

1	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]],

target = 20

Output: false

Constraints:

- m == matrix.length
- n == matrix[i].length
- 1 <= n, m <= 300
- $-10^9 \le \max[i][j] \le 10^9$
- All the integers in each row are sorted in ascending order.
- All the integers in each column are sorted in ascending order.
- $-10^9 <= \text{target} <= 10^9$