АНАЛІЗ ДАНИХ

Нікіта Скибицький 6 січня 2019 р.

У ваших руках конспект лекцій з нормативного курсу "Вступ до аналізу даних", прочитаного доц., к.ф.-м.н. Слабоспицьким Олександром Сергійовичем на третьому курсі спеціальності прикладна математика факультету комп'ютерних наук та кібернетики Київського національного університету імені Тараса Шевченка восени 2018-го року.

Конспект у компактній формі відображає матеріал курсу, допомагає сформувати загальне уявлення про предмет вивчення, правильно зорієнтуватися в даній галузі знань. Конспект лекцій з названої дисципліни сприятиме більш успішному вивченню дисципліни, причому більшою мірою для студентів заочної форми, екстернату, дистанційного та індивідуального навчання.

Комп'ютерний набір та верстка – Скибицький Нікіта Максимович.

Зміст

1	Вст	уп		4
	1.1	Етапи	и аналізу даних:	4
	1.2	Основ	вні розділи аналізу даних:	4
	1.3	Класи	ифікація змінних	4
	1.4	Групу	ування даних	5
2	Роз	відува	альний аналіз	6
	2.1	Спост	ереження за однією змінною	6
		2.1.1	Пробіт-графік	7
		2.1.2	Імовірнісний графік	8
		2.1.3	Висячі гістобари	8
		2.1.4	Підвішена коренеграма	8
	2.2	Спост	ереження за двома змінними	S
		2.2.1	Діаграми розсіювання	S
		2.2.2	Таблиця спряженості	S
3	Пог	передн	ія обробка	g
	3.1	Харан	ктеристики випадкових (скалярних) величин	10
		3.1.1	Квантилі та процентні точки	10
		3.1.2	Характеристики положення центру значень	11
		3.1.3	Характеристики розсіювання значень	11
		3.1.4	Характеристики скошеності та гостроверхості роз-	
			поділу	12
	3.2	Харан	ктеристики векторних величин	13
		3.2.1	Характеристики положення центру значень	13
		3.2.2	Характеристики розсіювання значень	13
	3.3	Перев	вірка стохастичності вибірки	14
	3.4	Ранго	ь ві критерії однорідності	16
		3.4.1	Статистика для лінійного рангового критерію	16
		3.4.2	Випадок двох вибірок	16
		3.4.3		17
		3.4.4	Перевірка симетрій розподілу ранговими критеріями	18
		3.4.5	Визначення рангів у випадку наявності нерозрізни-	
			мих значень	20
	3.5	Видал	лення аномальних спостережень	20
		3.5.1	Випадок скалярних спостережень	20
		3 5 2	Випалок векторину значень	21

4	Kop	еляційний аналіз	22
	4.1	Випадок кількісних змінних	22
	4.2	Коефіцієнт кореляції	23
	4.3	Характеристика парного статистичного зв'язку в загаль-	
		ному випадку	24
	4.4	Частинний коефіцієнт кореляції	25
	4.5	Множинний коефіцієнт кореляції	27
		4.5.1 Методика використання	27
	4.6	Кореляційний аналіз порядкових змінних	28
		4.6.1 Характеристики парного статистичного зв'язку	28
		4.6.2 Характеристика множинних рангових статистичних зв'язків	31
	4.7	Кореляційний аналіз номінальних змінних	32
	4.8	Інформаційна міра зв'язку	33
5	Дис	персійний аналіз	34
	5.1	Перевірка лінійних гіпотез для регресійної моделі	35
	5.2	Однофакторний дисперсійний аналіз	36
	5.3	Таблиця результатів однофакторного дисперсійного аналізу	38
	5.4	Перевірка контрастів	38
	5.5	Довірчі інтервали для контрастів	38
6	Рег	ресійний аналіз	41
	6.1	Основні етапи розв'язку задачі регресійного аналізу	42
6	6.2	Класичний регресійний аналіз	42
	6.3	Основні припущення класичного регресійного аналізу	43
	6.4	Властивості оцінок	43
	6.5	Довірчі області та інтервали для невідомих параметрів мо-	
		делі	44
	6.6	Перевірка на значимість параметрів моделі	46
	6.7	Довірчі інтервали та області для функції регресії	47
	6.8	Перевірка на адекватність	48
	6.9	Не класичний регресійний аналіз	49
		6.9.1 Випадок корельованих збурень	49
		6.9.2 Оцінки параметрів в умовах мультиколінеарності	50
	6.10	Гребеневі оцінки (ridge-оцінки)	51
	6.11	Нелінійний регресійний аналіз	52
7		аріаційний аналіз	52
	7.1	Двокроковий метод найменших квадратів	53

8	Аналіз часових рядів												
	8.1	Часові ряди з поліномінальними трендами											54

1 Вступ

1.1 Етапи аналізу даних:

- 1. Отримання і збереження даних.
- 2. Обробка даних.
- 3. Аналіз отриманих результатів (найважливіший етап).

1.2 Основні розділи аналізу даних:

- 1. Попередня обробка (включаючи розвідувальний аналіз) даних.
- 2. Кореляційний аналіз застосування наявності зв'язків.
- 3. Дисперсійний аналіз.
- 4. Регресійний аналіз.
- 5. Коваріаційний аналіз.
- 6. Кластерний аналіз.
- 7. Дискримінантний аналіз.
- 8. Аналіз часових рядів.

Пункти 3-5 – побудова математичних моделей зв'язків.

1.3 Класифікація змінних

 $\xi,\,\eta,\,\zeta$ – змінні, які ми спостерігаємо.

 $\{x_i\}_{i\in I},\ \{y_j\}_{j\in J},\ \{z_k\}_{k\in K}$ – спостереження за змінними.

Змінні: кількісні і якісні.

- Кількісні.
- Якісні:
 - ординальні (порядкові);
 - номінальні (класифікаційні).

Ординальні змінні – змінні, що приймають значення з деякої множини, елементи якої називаються градаціями, причому кожен елемент множини апріорі впорядкований відносно інших (задано чіткий порядок)

Приклад. Рівень освіти: бакалавр, спеціаліст, магістр — упорядковані змінні.

Приклад. Військові звання.

Номінальні змінні – змінні, що приймають своє значення з деякої множини, елементи (градації) якої не мають наперед заданого порядку (загальновідомого).

Категоризовані змінні — змінні, для яких апріорі відома множина їх значень (градацій) та алгоритм віднесення конкретного спостереження такими змінними до градації.

Некатегоризовані змінні – змінні, для яких апріорне задана або множина значень, або алгоритм віднесення спостереження до певної градації.

Приклад. Некатегоризовані змінні — назви юр. осіб на даний момент. Влаштувались на роботу, зарплату не заплатили, фірма зникла, на іншій вулиці з'явилась ⇒ градація зникла.

Ще існує поділ на дискретні і неперервні змінні.

1.4 Групування даних

Проводиться при спостереженнях над неперервними змінними (кількість спостережень n>50). У дискретному випадку звертають увагу на кількість змінних m>10.

Ідея підходу: вся вибірка спостережень розбивається на підвибірки і кожен заміняється на типового представника і далі працюють з цими представниками.

Нехай є вибірка. По ній знаходимо тіп і тах значення.

$$\{x_i\}_{i=1}^n : (x_{\min}, x_{\max}).$$

Цей інтервал розбиваємо на s підінтервалів. Зазвичай s вибирають так

$$5 \le s \le 30$$
 i $s = 1 + \lfloor \log_2(n) \rfloor$.

Беруть підінтервали $(C_1^1, C_1^2], (C_2^1, C_2^2], \ldots, (C_s^1, C_s^2)$. Потрібно, щоб в кожен інтервал потрапило більше 5 спостережень. Вибирають з кожного інтервалу єдиного представника.

Поставимо у відповідність $(C_i^1, C_i^2] \mapsto x_i^0$ (як правило середня точка середня точка), v_i — частота попадання.

Тобто переходимо від вибірки $\{x_i\}_{i=1}^n$ до вибірки $\{x_i^0, v_i\}_{i=1}^s$.

Зауваження: для випадкової величини $\xi - F_{\xi}(x) - \phi y$ нкція розподілу.

 $\widehat{F}_{\xi}(x)$ – temnipuчний розподіл, <math>n – oб'єм вибірки.

 $p_s(x), \, \widehat{p}_s^{(n)}(x)$ – неперервний випадок (щільність).

Для дискретного випадку $\{y_i, p_i\}_{i=1}^m \mapsto \{y_i, \widehat{p}_i\}_{i=1}^m - nonison \ vacmom.$

2 Розвідувальний аналіз

Займається розробкою методів попереднього експрес аналізу інформації шляхом представлення її у вигляді таблиць або різного роду графічних зображень.

2.1 Спостереження за однією змінною

Засоби спостереження:

- 1. пробіт-графік;
- 2. імовірнісний графік;
- 3. висячі гістобари;
- 4. підвішена коренеграма;
- 5. зображення "скринька з вусами";
- 6. зображення "стебло-листок".

У випадках 1-2 використовуємо інше зображення функцій розподілу, 3-4 – використання іншого розподілу емпіричних функцій щільності, 5-6 – сімейство розподілів зсув масштабу.

Сімейство розподілів \mathcal{F} — сімейство розподілів типу зсуву масштабу, якщо існує функція розподілу

$$\exists F_0(\cdot) \in \mathcal{F} : \forall F(\cdot) \in \mathcal{F} : \exists a, b \in \mathbb{R}^1, (b > 0) : F(x) = F_0\left(\frac{x - a}{b}\right),$$

де a — параметр зсуву, b — параметр масштабу, F_0 — базова функція для сімейства розподілів \mathcal{F} .

Приклад. Нормальний розподіл $F(x): N(m, \sigma^2)$. Базова функція $\Phi(x)$ з розподілу N(0,1). $a=m, b=\sigma, F(x)=\Phi\left(\frac{x-m}{\sigma}\right)$. Сімейство нормальних розподілів є сімейством зсуву масштабу.

Приклад. Експоненціальний розподіл з параметром $\lambda > 0$. a = 0, $b = \frac{1}{\lambda}$, $F(x) = \Phi_1(\lambda x)$, Φ_1 – базова функція експоненціального розподілу з параметром $\lambda = 1$.

2.1.1 Пробіт-графік

Будується наступним чином:

Маємо на вході вибірку $\{x_i\}_{i=1}^n$.

Обчислимо емпіричну функцію розподілу $\{x_i\}_{i=1}^n \mapsto \widehat{F}(x)$ (Сімейство розподілів $\mathcal F$ з базовою функцією F_0).

Пробіт-графік – графік функції $y = F_0^{-1}(\widehat{F}(x)).$

Використовується для:

1. Перевірки гіпотези $H_0: F_{\xi}(\cdot) \in \mathcal{F}$.

У випадку, коли справедлива гіпотеза $H_0: F_{\xi}(\cdot) \in \mathcal{F}$. пробіт-графік повинен уявляти собою майже пряму.

Пояснення: маємо:

$$y = F_0^{-1}(\widehat{F}_{\xi}(x)) \stackrel{H_0}{\approx} F_0^{-1} \left(F_0 \left(\frac{x-a}{b} \right) \right) = \frac{x}{b} - \frac{a}{b}.$$

2. Виявлення наявності аномальних спостережень у вибірці.

2.1.2 Імовірнісний графік

Ідея та ж сама. Зі спотвореною віссю . Маємо множину $\{x \in \mathbb{R}, y \in [0,1]\}$, яку розтягують за правилом $(x,y) \mapsto (x, F_0^{-1}(y))$, де $y = \widehat{F}_{\xi}(x)$.

Папір, де спотворюється масштаб називається імовірнісним папером.

Якщо в якості розподілу взяти нормальний розподіл, то такий папір називається нормальним імовірнісним папером.

Будуємо графік функції $y = F_{\xi}(x)$ – для спостереження величини ξ .

- 1. У випадку, коли $H_0: F_{\xi}(\cdot) \in \mathcal{F}$, то отримаємо майже пряму.
- 2. Виявляємо наявність *аномальних спостережень*: якщо маємо точки, що лежать осторонь, то перевіряємо їх на аномальність.

2.1.3 Висячі гістобари

Використовується для перевірки нормальності вибірки. Нехай по вибірці ξ : x_1, \ldots, x_n підраховано мат. сподівання $\bar{x}(n)$ та вибіркова дисперсія $s^2(n)$.

Найбільш узгодженим нормальним розподілом для спостережень за ξ будемо називати такий нормальний розподіл $N(x(n), s^2(n))$.

Спочатку будуємо графік щільності з вибірки $\xi: x_1, \ldots, x_n$.

В центрах групування даних до графіка підвішуються прямокутні гістобари, довжина яких пропорційна відносній частоті потрапляння у відповідний інтервал групування. Якщо основа цих гістобар не суттєво відхиляється від осі — гіпотеза про нормальність вибірки приймається.

2.1.4 Підвішена коренеграма

Для кожного інтервалу групування даних визначають v_e — емпірична частота потрапляння в інтервал, а також теоретичне значення частоти v_T згідно гіпотези про найбільш узгоджений нормальний розподіл. Потім на графіку відкладають такі різниці: $\sqrt{v_e} - \sqrt{v_T}$. І якщо ці значення не значно відхиляються від нуля, то гіпотеза про нормальність вибірки приймається.

2.2 Спостереження за двома змінними

Використовуються:

- 1. Діаграма розсіювання.
- 2. Таблиця спряженості.

2.2.1 Діаграми розсіювання

Маємо дві вибірки $\xi: x_1, \ldots, x_n$ та $\eta: y_1, \ldots, y_n$. Використовують для з'ясування класу залежності між парою кількісних змінних, а також для з'ясування наявності аномальних спостережень у вибірці.

2.2.2 Таблиця спряженості

Використовуються для представлення спостережень над номінальними, ординальними, кількісними дискретними (скінченими), кількісними неперервними (згрупованими змінними).

Нехай є змінна ξ яка має r_1 градацій, та змінна ζ яка має r_2 градацій:

	1	2		r_1	\sum
1	n_{11}	n_{12}		n_{1r_1}	n_{1*}
2	n_{21}	n_{22}		n_{2r_1}	n_{2*}
:	•	•	٠	•	•
r_2	n_{r_21}	n_{r_22}		$n_{r_2r_1}$	n_{r_2*}
\sum	n_{*1}	n_{*2}		n_{*r_1}	n_{**}

Де n_{ij} – кількість таких спостережень $\{\xi=i,\zeta=j\}$, позначимо $n_{i*}=\sum_{j=1}^{r_1}n_{ij},\,n_{*j}=\sum_{i=1}^{r_2}n_{ij}.$

3 Попередня обробка

До попередньої обробки відносять:

- розвідувальний аналіз;
- обчислення основних характеристик спостережуваних величин;
- видалення аномалій;

- перевірка основних гіпотез;
- перевірка на стохастичність вибірки.

3.1 Характеристики випадкових (скалярних) величин

3.1.1 Квантилі та процентні точки

Квантилем рівня 0 < q < 1 для неперервної випадкової величини ξ : $F_{\xi}(\cdot)$ називається значення $u_q(F)$: $P\{\xi < u_q(F)\} = q$.

Квантилем рівня 0 < q < 1 для дискретної випадкової величини $\xi : F_{\xi}(\cdot)$ називається будь-яке значення $U_q(F) \in (y_{i(q)}, y_{i(q)+1}]$, для границь якого виконується $P\{\xi < y_{i(q)}\} < q$ та $P\{\xi < y_{i(q)+1}\} \ge q$.

Вибіркові квантилі $\widehat{u}_q(F)$ визначаються як квантилі відповідних емпіричних розподілів.

Q-процентною точкою (0 < Q < 100) для неперервної випадкової величини $\xi : F_{\xi}(\cdot)$ називається значення $\omega_Q(F) : P\{\xi \geq \omega_Q(F)\} = \frac{Q}{100}$.

Q-процентною точкою (0 < Q < 100) для дискретної випадкової величини $\xi : F_{\xi}(\cdot)$ називається довільне значення $w_Q(F) \in (y_{i(Q)}, y_{i(Q)+1}]$, для границь якого виконується $P\{\xi \geq y_{i(Q)}\} > \frac{Q}{100}$ та $P\{\xi \geq y_{i(Q)+1}\} \leq \frac{Q}{100}$.

Квантиль та процентна точка пов'язані певним співвідношенням, а саме

$$\omega_Q(F) = u_{1-\frac{Q}{100}}(F)$$
 ra $u_q(F) = \omega_{(1-q)100}(F)$.

Введемо додаткові характеристики розподілу, похідні від перших двох.

Приклади квантилей:

- 1. Medianow називається квантиль рівня 0.5: $u_{0.5}$.
- 2. $u_{0.75}, u_{0.25}$ верхній та нижній квартилі відповідно.
- 3. Значення $\{u_{\frac{i}{10}}\}_{i=1}^9$ називаються *децилями*.
- 4. $\{u_{\frac{i}{100}}\}_{i=1}^{99} npouehmuni.$
- 5. Інтерквантильною широтою рівня $p:0 називається величина <math>u_{1-p} u_p$.

- 6. $Інтерквартильною широтою називається величина <math>u_{0.75}-u_{0.25}$ тобто p=0.25
- 7. Половина інтерквантильної широти називається *імовірнісним від-*

3.1.2 Характеристики положення центру значень

1. $\it Mame mamuu he cno diвання <math>\it M \xi$, та його вибірковий аналог

$$\bar{x}(n) = \frac{1}{n} \sum_{i=1}^{n} \xi_i.$$

2. Геометричне середне $G_{\xi}=e^{M\ln\xi}$ для $\xi:P\{\xi\leq 0\}=0.$

$$\widehat{G}_{\xi}(n) = \sqrt[n]{\prod_{i=1}^{n} x_i}.$$

3. Середне гармонічне $H=M^{-1}\left(rac{1}{\xi}
ight)$ для $\xi:P\{\xi\leq 0\}=0.$

$$\widehat{H}_{\xi} = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i}\right)^{-1}.$$

- 4. $Moda\ x_{mod} = \arg\max_a P\{\xi = a\}$ для дискретних випадкових величин (визначається за гістограмою) та $x_{mod} = \arg\max_x f(x)$ в неперервному випадку.
- 5. Medianoo називається $x_{\text{med}} = u_{0.5}$.

3.1.3 Характеристики розсіювання значень

Нехай маємо вибірку об'єму n спостережень x_1, x_2, \ldots, x_n над випадковою величиною ξ .

1. Дисперсія $D\xi = M(\xi - M\xi)^2$. Вибіркове значення

$$S^{2}(n) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x}(n))^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}(n) \right).$$

- 2. Стандартне (середньоквадратичне) відхилення $\sqrt{D\xi}$. Вибіркове значення S(n).
- 3. Коефіцієнт варіацій $V_{\xi} = \frac{\sqrt{D\xi}}{M\xi} 100\%$, $M\xi \neq 0$. Вибіркове значення $\widehat{V}_{\xi}(n) = \frac{S(n)}{\overline{x}(n)} 100\%$.
- 4. $Стохастичне \ розсіювання \ ($ імовірнісне відхилення) це половина інтерквартильної широти: $\frac{U_{0.75}-U_{0.25}}{2}$. Вибіркове значення $\frac{\widehat{U}_{0.75}-\widehat{U}_{0.25}}{2}$.
- 5. $Pозмах (широта) вибірки: <math>x_{\text{max}} x_{\text{min}}$, де $x_{\text{max}}, x_{\text{min}}$ найбільше та найменше значення у вибірці.
- 6. Інтервал концентрації $(M\xi 3\sqrt{D\xi}, M\xi + 3\sqrt{D\xi})$. Вибіркове значення $(\bar{x}(n) 3S(n), M\bar{x}(n) + 3S(n))$.

3.1.4 Характеристики скошеності та гостроверхості розподілу

Нехай є розподіл випадкової величини ξ і отримані спостереження x_1 , x_2, \ldots, x_n над нею.

1. *Коефіцієнт асиметрії* – характеристика скошеності розподілу (базується на третьому центральному моменті):

$$\beta_1 = \frac{M(\xi - M\xi)^3}{(M(\xi - M\xi)^2)^{3/2}}, \quad D\xi > 0.$$

Вибіркове значення

$$\widehat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n (x_k - \bar{x}(n))^3}{S^3(n)}.$$

Дисперсія спостережуваної величини $D\xi > 0$.

Якщо розподіл симетричний (наприклад нормальний) то $\beta_1=0$. Якщо $\beta_1>0$, то розподіл скошений вліво, якщо $\beta_1<0$, то вправо.

2. *Коефіцієнт ексцесу* – характеристика гостроверхості розподілу (базується на четвертому центральному моменті):

$$\beta_2 = \frac{M(\xi - M\xi)^4}{(M(\xi - M\xi)^2)^2} - 3, \quad D\xi > 0.$$

Вибіркове значення

$$\widehat{\beta}_2 = \frac{\frac{1}{n} \sum_{i=1}^n (x_k - \bar{x}(n))^4}{S^4(n)} - 3.$$

Для нормального розподілу коефіцієнт ексцесу дорівнює нулю. Якщо $\beta_2>0$, то розподіл більш гостроверхий ніж нормальний, якщо $\beta_2<0$ то відповідно менш гостроверхий.

3.2 Характеристики векторних величин

Аналіз q-вимірних векторних величин, отримано n спостережень над вектором $\vec{\xi}: x_1, x_2, \dots, x_n, x_i \in \mathbb{R}^q, i = \overline{1, n}$.

3.2.1 Характеристики положення центру значень

1. $\mathit{Mame mamuuhe\ cnodisahus}\ ($ теоретичне середнє $)\ M\xi.$ Вибіркове значення

$$\bar{x}(n) = \frac{1}{n} \sum_{i=1}^{n} \vec{x}_i.$$

2. $Moda\ x_{mod}$. У неперервному випадку – це точка максимуму функції щільності ξ . Для дискретного випадку – це значення, яке набуває ξ з найбільшою ймовірністю.

3.2.2 Характеристики розсіювання значень

1. Коваріаційна матриця $\sum = M(\xi - M\xi)(\xi - M\xi)^T$. Вибіркове значення

$$\widehat{\sum}(n) = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \bar{x}(n))(x_k - \bar{x}(n))^T.$$

- 2. Узагальнена дисперсія визначник коваріаційної матриці: $\det \sum$. Вибіркове значення $\det \left(\widehat{\sum}\right)$.
- 3. Слід коваріаційної матриці $\operatorname{tr} \sum$. Вибіркове значення $\operatorname{tr} \left(\widehat{\sum}(n) \right)$.

3.3 Перевірка стохастичності вибірки

Перевіряємо, чи справді вибірка є випадковою, а не знаходиться під впливом деякого систематичного зміщення. Для цього запропоновано критерії:

- Критерій серій на базі медіани
- Критерій зростаючих та спадаючих серій
- Критерій квадратів послідовних різниць (критерій Аббе)

Нехай x_1, x_2, \ldots, x_n – вибірка спостережень, яка досліджується.

Будемо перевіряти гіпотезу H_0 : ця вибірка є стохастичною з рівнем значимості $\alpha(0 < \alpha < 1)$ (рівень значимості – ймовірність допустити помилку першого роду).

1. Критерій серій на базі медіани. Альтернативна гіпотеза H_1 : наявність у вибірці систематичного монотонного зміщення середнього.

Спочатку визначається вибіркове значення медіани \widehat{x}_{med} . Потім під кожним членом вибірки ставимо відповідно

$$\begin{cases} +, & x_i > \widehat{x}_{\text{med}} \\ \text{нічого}, & x_i = \widehat{x}_{\text{med}} \\ -, & x_i < \widehat{x}_{\text{med}} \end{cases}$$

Отримаємо послідовність символів. Cepis - послідовність підряд розташованих однакових символів + чи — . Довжина серії — це кількість членів у ній.

Для отриманої послідовності обчислюємо дві статистики: загальну кількість серій в послідовності v(n), довжину найдовшої серії $\tau(n)$. Запишемо область прийняття нашої гіпотези:

$$\begin{cases} v(n) > v_{\beta}(n) \\ \tau(n) < \tau_{1-\beta}(n) \end{cases}$$

де $v_{\beta}(n)$, $\tau_{\beta}(n)$ – квантилі рівня β статистик v(n), $\tau(n)$ відповідно. При фіксованому значенні β рівень значимості α лежить у межах $\beta < \alpha < 2\beta - \beta^2$. Якщо порушується хоч одна з нерівностей, то гіпотеза відхиляється.

2. Критерій зростаючих та спадаючих серій. Альтернативна гіпотеза H_1 : наявність у вибірці систематичного періодичного зміщення середнього. Спочатку у вибірці замінюємо підряд розташовані однакові виміри одним їх представником. В результаті отримаємо послідовність x'_1, x'_2, \ldots, x'_k . Під кожним членом послідовності ставимо відповідно

$$\begin{cases} +, & x_i' < x_{i+1}' \\ -, & x_i' > x_{i+1}' \end{cases}.$$

Далі для таким чином отриманої послідовності + та -, як і в попередньому випадку, обчислюємо дві статистики: загальну кількість серій в послідовності v(n), довжину найдовшої серії $\tau(n)$. Запишемо область прийняття нашої гіпотези:

$$\begin{cases} v(n) > v_{\beta}(n) \\ \tau(n) < \tau_{1-\beta}(n) \end{cases}$$

де $v_{\beta}(n)$, $\tau_{\beta}(n)$ – квантилі рівня β статистик v(n), $\tau(n)$ відповідно. При фіксованому значенні β рівень значимості α лежить у межах $\beta < \alpha < 2\beta - \beta^2$. Якщо порушується хоч одна з нерівностей, то гіпотеза відхиляється.

3. Критерій квадратів послідовних різниць (критерій Аббе). Він є найбільш потужним на класі усіх нормальних вибірок. Альтернативна гіпотеза H_1 : наявність у вибірці систематичного зміщення середнього.

На основі вибірки підраховуємо наступну статистику:

$$\gamma(n) = \frac{\frac{1}{2(n-1)} \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2}{\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2(n)\right)}.$$

Область прийняття гіпотези для цього критерію має вигляд $\gamma(n) > \gamma_{\alpha}(n)$, де $\gamma_{\alpha}(n)$ – квантиль рівня α статистики $\gamma(n)$, що при $n \leq 60$ визначається з таблиць, а протилежному випадку потрібно скористатися формулою

$$\gamma_{\alpha}(n) = 1 + \frac{u_{\alpha}}{\sqrt{n + 0.5(1 + u_{\alpha}^2)}},$$

де u_{α} – квантиль рівня α нормального розподілу з параметрами 0 та 1.

3.4 Рангові критерії однорідності

Розглянемо випадкові величини $\xi_1, \xi_2, \ldots, \xi_k$ з функціями розподілу $F_1(x), F_2(x), \ldots, F_k(x)$. На їх основі сформуємо об'єднану вибірку $\nu_1, \nu_2, \ldots, \nu_n$, а для кожної змінної ξ_i отримаємо незалежні спостереження $x_1^{(i)}, x_2^{(i)}, \ldots, x_{n_i}^{(i)}, i = \overline{1,k}$. Тоді сформована вибірка буде об'ємом $n = \sum_{i=1}^k n_i$. Для спрощення вважаємо, що всі виміри $\nu_i, i = \overline{1,n}$ різні. Розташувавши ці значення у порядку зростання, отримаємо варіаційний ряд $\nu_{(1)}, \nu_{(2)}, \ldots, \nu_{(n)}$. Члени варіаційного ряду називають порядковими статистиками.

Рангом спостереження ν_i $(i=\overline{1,n})$ називається його порядковий номер у побудованому варіаційному ряді, позначається $R_{i,n}$ – ранг спостереження ν_i $(i=\overline{1,n})$.

3.4.1 Статистика для лінійного рангового критерію

$$K_i = \sum_{j=N_i-n_i+1}^{N_i} \phi(R_{j,n}), \quad N_i = \sum_{j=1}^i n_j, \quad i = \overline{1,k}$$

 K_i – статистика по спостереження над ξ_i , $\phi(R_{i,n})$ – мітка.

Потрібно перевірити гіпотезу $H_0: F_1(x) = F_2(x) = \ldots = F_k(x)$, $\forall x$ з рівнем значимості α (0 < α < 1). Хочемо переконатись зо всі випадкові величини однаково розподілені.

3.4.2 Випадок двох вибірок

Гіпотеза $H_0: F_1(x) = F_2(x), \ \forall x$ з рівнем значимості $\alpha \ (0 < \alpha < 1).$ Альтернативні гіпотези:

$$H_{11}: F_1(x) = F_2(x - \Delta), \forall x, (\Delta \neq 0)$$

 $H_{12}: F_1(x) = F_2(x - \Delta), \forall x, (\Delta > 0)$
 $H_{13}: F_1(x) = F_2(x - \Delta), \forall x, (\Delta < 0)$

Всі критерії розглядаються над першою змінною ξ_1 .

Критерій нормальних міток (Фішера)

 $C = \sum_{i=1}^{n_1} M(R_{i,n},n)$, де M(m,n) – математичне сподівання m-ої порядкової статистики вибірки довжини $n=n_1+n_2$ нормально розподіленої величини з параметрами 0 та 1.

Статистика C має наступні характеристики при справедливості нульової гіпотези:

$$MC = 0, DC = \frac{n_1 n_2}{n(n-1)} \sum_{i=1}^{n} (M(i,n))^2$$

Критерій Ван дер Вардена

Статистика критерію має вигляд $V = \sum_{i=1}^{n_1} \Phi^{-1}\left(\frac{R_{i,n}}{n+1}\right)$, де $\Phi^{-1}(x)$ — функція обернена до функції розподілу з параметрами 0 та 1, причому коли справедлива нульова гіпотеза, то

$$MV = 0, DV = \frac{n_1 n_2}{n(n-1)} \sum_{i=1}^{n} \left(\Phi^{-1} \left(\frac{i}{n+1} \right) \right)^2$$

Критерій Вілкоксона

Статистика критерію має вигляд $S = \sum_{i=1}^{n_1} R_{i,n}$, причому коли справедлива нульова гіпотеза, то

$$MS = \frac{n_1(n+1)}{2}, \quad DS = \frac{n_1n_2n}{12}$$

Процедура використання статистик $C,\,V,\,S$ для перевірки гіпотези H_0 однакова: позначимо через U деяку статистику $(C,\,V,\,$ або $S),\,\bar{U}=\frac{U-MU}{\sqrt{DU}}.$ В залежності від альтернативної гіпотези H_0 приймається якщо:

- $|\bar{U}| < u_{1-\alpha/2}$, якщо альтернатива H_{11} ,
- $\bar{U} < u_{1-lpha}$, якщо альтернатива H_{12} ,
- $\bar{U} > u_{\alpha}$, якщо альтернатива H_{13} ,

де u_{α} – квантиль рівня α для нормального розподілу з параметрами 0 та 1.

По мірі спадання потужності критерії розташовуються так: критерій нормальних міток Фішера, критерій Ван дер Вардена, критерій Вілкоксона.

3.4.3 Загальний випадок

Гіпотеза H_0 : $F_1(x) = F_2(x) = \ldots = F_k(x)$, $\forall x$ з рівнем значимості α $(0 < \alpha < 1)$.

- 1. Будуємо об'єднану вибірку $\nu_1, \nu_2, \dots, \nu_n$ об'єму $n = \sum_{i=1}^k n_i$, а потім відповідний варіаційний ряд $\nu_{(1)}, \nu_{(2)}, \dots, \nu_{(n)}$.
- 2. Для кожної ξ_i підрахуємо статистику $K_i = \sum_{j=N_i-n_I+1}^{N_i} \psi(R_{j,n})$. Для неї підійде будь-яка статистика з попередніх критеріїв:

$$C_{i} = \sum_{j=N_{i}-n_{i}+1}^{N_{i}} M(R_{j,n}, n),$$

$$V_{i} = \sum_{j=N_{i}-n_{i}+1}^{N_{i}} \Phi^{-1}\left(\frac{R_{i,n}}{n+1}\right),$$

$$S_{i} = \sum_{j=N_{i}-n_{i}+1}^{N_{i}} R_{j,n}.$$

3. Далі знаходимо їх стандартизовані значення

$$\bar{K}_i = \frac{K_i - MK_i}{\sqrt{DK_i}}.$$

4. Тепер рахуємо статистику

$$X^2 = \sum_{i=1}^{k} \bar{K}_i^2.$$

Нульова гіпотеза приймається якщо $X^2 < \chi^2_\alpha(k-1)$, де $\chi^2_\alpha(k) - \alpha \cdot 100\%$ процентна точка χ^2 -розподілу з k степенями свободи.

3.4.4 Перевірка симетрій розподілу ранговими критеріями

Маємо ряд незалежних спостережень x_1, x_2, \ldots, x_n над випадковою величиною ξ з функцією розподілу F(x). Перевіримо симетричність розподілу відносно точки x_0 .

Гіпотеза: для дискретної випадкової величини $H_0: F(x_0+x) = 1 - F(x_0-x+0), \forall x$, або ж для неперервної випадкової величини $H_0: p(x_0+x) = p(x_0-x), \forall x$.

Перевірка проводиться з деяким рівнем значимості α (0 < α < 1).

Побудуємо послідовність z_1, z_2, \ldots, z_n , де $z_i = |x_i - x_0|$, $i = \overline{1, n}$, а далі сформуємо варіаційний ряд $z_{(1)}, z_{(2)}, \ldots, z_{(n)}$.

Абсолютним рангом виміру x_i називається порядковий номер значення $x_i = |x_i - x_0|$ у варіаційному ряді $z_{(1)}, z_{(2)}, \ldots, z_{(n)}$, позначатимемо його як $R_{i,n}^+$ $(i = \overline{1,n})$.

Розіб'ємо вибірку x_1, x_2, \ldots, x_n на дві вибірки, в першій всі виміри більше x_0 . в іншій решта. Позначення для індексів з першої вибірки $I^+ = \{i: x_i > x_0, i = \overline{1,n}\}$. Тепер можна порівняти дві наші вибірки на однорідність.

Аналог критерію нормальних міток

Статистика критерію має вигляд $C^+ = \sum_{i \in I^+} M^+(R_{i,n}^+, n)$, при справедливості H_0 :

$$MC^{+} = \frac{n}{\sqrt{2\pi}}, \quad DC = \frac{1}{4} \sum_{i=1}^{n} (M^{+}(i,n))^{2}.$$

Аналог критерію Ван дер Вардена

Статистика критерію має вигляд $V^+ = \sum_{i \in I^+} \Phi^{-1} \left(\frac{1}{2} + \frac{R_{i,n}^+}{2(n+1)} \right)$, при справедливості H_0 :

$$MV^{+} = \frac{1}{2} \sum_{i=1}^{n} \Phi^{-1} \left(\frac{1}{2} + \frac{i}{2(n+1)} \right), \quad DV^{+} = \frac{1}{4} \sum_{i=1}^{n} \left(\Phi^{-1} \left(\frac{1}{2} + \frac{i}{2(n+1)} \right)^{2} \right)$$

Аналог критерію Вілкоксона

Статистика критерію має вигляд $S^+ = \sum_{i \in I^+} R_{i,n}^+$, при справедливості H_0 :

$$MS^{+} = \frac{(n+1)n}{4}, \quad DS^{+} = \frac{n(n+1)(2n+1)}{24}.$$

Нехай U^+ – одна з вищенаведених статистик. Стандартизуємо U^+ :

$$\bar{U}^+ = \frac{U^+ - NU^+}{\sqrt{DU^+}}.$$

Область прийняття гіпотези H_0 : $|\bar{U}^+| < u_{1-\alpha/2}$, де u_{α} – квантиль рівня α нормального розподілу з параметрами 0 та 1.

3.4.5 Визначення рангів у випадку наявності нерозрізнимих значень

Нехай $\nu_1, \nu_2, \dots, \nu_n$ — об'єднана вибірка, побудована на основі спостережень над змінними, що досліджуються. Існує два варіанти однакових спостережень:

- 1. спостереження стосуються однієї змінних, тоді використовується метод випадкового рангу: ранг однакових елементів є довільним числом, яке припало на цю множину значень.
- 2. спостереження стосуються різних змінних, тоді використовують або вже відомий нам метод випадкового рангу, або метод середньої мітки: всім рівним спостереженням присвоюють середнє значення мітки підраховане за множиною рангів, яка відповідає цій групі нерозрізними вимірів.

Корекція алгоритмів рангових критеріїв:

 $DC=rac{n_1n_2}{n(n-1)}\sum_{i=1}^g au_iar{M}_i^2$ для критерію нормальних міток Фішера, для критерію Ван дер Вардена $DV=rac{n_1n_2}{n(n-1)}\sum_{i=1}^g au_i\left(ar{\Phi}_i^{-1}
ight)^2$, де g – кількість груп нерозрізнимих спостережень, au_i – кількість значень у i-ій групі.

3.5 Видалення аномальних спостережень

Критерії розглядаються для нормальних вибірок. Нехай маємо вибірку x_1, x_2, \ldots, x_n . Гіпотеза H_0 : найбільш підозрілий на аномальність вимір не є викидом із рівнем значущості α (0 < α < 1).

3.5.1 Випадок скалярних спостережень

1. Критерій Граббса

Нагадаємо, що $\overline{x}(n)=\frac{1}{n}\sum_{i=1}^n x_i,\, s(n)=\sqrt{\frac{1}{n}\left(\sum_{i=1}^n x_i^2-n\overline{x}^2(n)\right)}.$ Побудуємо послідовність $z_1,\, z_2,\, \ldots,\, z_n,\,$ де $z_i=|x_i-\overline{x}(n)|,\, i=\overline{1,n},\,$ та її варіаційний ряд $z_{(1)},z_{(2)},\ldots,z_{(n)}.$ Введемо допоміжне позначення $z_{(j)}=\left|x_{i(j)}-\overline{x}(n)\right|,\, j=\overline{1,n},\,$ тоді підозралим на аномальність є елемент вибірки що відповідає останньому елементу $z_{(n)}$ варіаційного ряду, тобто $x_{i(n)}.$ Розглянемо статистику

$$T(n) = \frac{x_{i(n)} - \overline{x}(n)}{s(n)}.$$

Областю прийняття гіпотези H_0 буде $|T(n)| < T_{\alpha/2}(n)$, де $T_{\alpha/2}(n) - 100\frac{\alpha}{2}\%$ точка розподілу статистики

$$\frac{x_{i(n)} - \overline{x}(n)}{s(n)}.$$

Якщо спостереження аномальне, то його викидають і так продовжується допоки останній елемент нової вибірки перестає бути аномальним.

2. Критерій Томпсона

Модифікація критерію Граббса із статистикою

$$t(n) = \frac{\sqrt{n-2} \cdot T(n)}{\sqrt{n-1-T^2(n)}}.$$

Область прийняття гіпотези H_0 : $|t(n)| < t_{\alpha/2}(n-2)$, де $t_{\alpha/2}(n-2) - 100\frac{\alpha}{2}\%$ точка розподілу Стьюдента з (n-2) степенями свободи.

3. Критерій Тітьєна-Мура

Дозволяє перевіряти кілька спостережень на аномальність одразу. На базі варіаційного ряду з критерію Граббса обчислюємо статистику:

$$E(n,k) = \frac{\sum_{i=1}^{n-k} (z_{(i)} - \overline{z}(n-k))^2}{\sum_{i=1}^{n} (z_{(i)} - \overline{z}(n))^2},$$

де на аномальність перевіряються останні k членів варіаційного ряду, а $\overline{z}(m) = \frac{1}{m} \sum_{i=1}^m z_{(i)}$. Область прийняття гіпотези H_0 : $E(n,k) \geq E_{1-\alpha}(n,k)$, де $E_{1-\alpha}$ – квантиль рівня α розподілу статистики E(n,k).

3.5.2 Випадок векторних значень

Нехай маємо векторні величини $x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^q, i = \overline{1, n}$. Гіпотеза H_0 : найбільш підозрілий на аномальність вектор не є викидом із рівнем значимості α (0 < α < 1).

Kpumepiŭ на базі F-статистики

Введемо величини

$$\bar{x}_i = \frac{1}{n-1} \sum_{j \neq i} x_j, \quad \widehat{\sum}_i = \frac{1}{n-2} \sum_{j \neq i} (x_j - \bar{x}_i)(x_j - \bar{x}_i)^T, \quad i = \overline{1, n}.$$

Обчислимо вибіркові відстані Махаланобіса:

$$D_i^2 = (x_i - \bar{x}_i)^T \cdot \widehat{\sum}_i^{-1} (x_i - \bar{x}_i), \quad i = \overline{1, n}.$$

Визначимо наступну статистику:

$$F_i = \frac{(n-1)(n-1-q)}{n(n-2)q} D_i^2.$$

Знаходимо індекс i_0 найбільш підозрілого вектора як $i_0 = \arg\max_i F_i$. Гіпотеза H_0 приймається як $F_{i_0} < F_{\alpha}(q,n-1-q)$, де $F_{\alpha}(q,n-1-q) - 100\alpha\%$ точка F-розподілу з q та n-1-q степенями свободи.

4 Кореляційний аналіз

З'ясовує наявність статистичною зв'яжу між змінними, що досліджуються.

Схема по які досліджується наявність статистичного зв'язку:

- 1. Вводиться характеристика статистичного зв'язку.
- 2. Обчислюється точкова чи інтервальна характеристика цієї оцінки.
- 3. Здійснюється перевірка на значимість характеристики статистичного зв'язку.

4.1 Випадок кількісних змінних

Нехай є змінні (скалярні) η , ξ (η – залежна, ξ – незалежна).

Треба з'ясувати по спостереженнях за η , ξ істотність зв'язку між ними. Зв'язок шукається у вигляді функції регресії:

$$f(x) = M(\eta/\xi = x), \quad g(x) = D(\eta/\xi = x)$$

– умовні матсподівання і дисперсія. $D\eta = Df(\xi) + Mg(\xi)$.

 $Iндексом кореляції для змінних <math>\eta$ та ξ називається

$$I_{\eta\xi} = \sqrt{\frac{Df(\xi)}{D\eta}} = \sqrt{1 - \frac{Mg(\xi)}{D\eta}}.$$

Властивості:

- 1. $0 \le I_{\eta\xi} \le 1$.
- 2. якщо $I_{\eta\xi}=0$, то зв'язку між η та ξ немає.
- 3. якщо $I_{\eta\xi}=1$, то є функціональний зв'язок між ними.

Коефіцієнт детермінації $I^2_{\eta\xi}=\frac{Df(\xi)}{D\eta}$ вказує яка частина варіації η визначаються варіацією функцій регресії в точці ξ .

4.2 Коефіцієнт кореляції

Розглянемо нормальний випадок. \mathfrak{C} дві величини ξ та η .

$$\xi \sim N(m_{\xi}, \sigma_{\xi}^{2}), x_{1}, \dots, x_{n} \qquad \eta \sim N(m_{\eta}, \sigma_{\eta}^{2}), y_{1}, \dots, y_{n}$$
$$r_{\eta \xi} = \frac{M(\xi - M\xi)(\eta - M\eta)}{\sqrt{D\xi D\eta}},$$

вибіркове значення:

$$\widehat{r}_{\eta\xi} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}(n))(y_i - \bar{y}(n))}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}(n))^2 \sum_{i=1}^{n} (y_i - \bar{y}(n))^2}}.$$

Можна довести, що $I_{\eta\xi} = |r_{\eta\xi}.$

Властивості:

- 1. $|r_{\eta\xi}| \leq 1$.
- 2. якщо $r_{\eta\xi}=0$ то зв'язок між η і ξ відсутній.
- 3. Якщо $r_{\eta\xi}=\pm 1$ то зв'язок між η і ξ лінійний, причому формула зв'язку: $\eta=m_{\eta}+r_{\eta\xi}\sigma_{\eta}\frac{\xi-m_{\xi}}{\sigma_{\varepsilon}}.$

- 4. Нехай $r_{\eta\xi} > 0$. Якщо $\xi \uparrow$, то і $\eta \uparrow$.
- 5. Нехай $r_{\eta\xi} < 0$. Якщо $\xi \uparrow$, то $\eta \downarrow$.
- 6. Якщо коефіцієнт кореляції прийняв проміжне значення, то перевіряємо гіпотезу H_0 : $r_{\eta\xi}=0,\ 0<\alpha<1$. Для перевірки H_0 будемо розглядати статистику:

$$t(n-2) = \frac{\sqrt{n-2}r_{\eta\xi}}{\sqrt{1-r_{\eta\xi}^2}}.$$

Ця статистика має асимптотичний t-розподіл Стьюдента з (n-2) степенями свободи. Тоді логічно вважати, що H_0 гіпотеза несправедлива, коли статистика приймає екстремальні значення. $|t(n-2)| < t_{\alpha/2}(n-2)$ — область прийняття гіпотези H_0 , де $t_{\alpha}(n)$ — $100\alpha\%$ — точки t-розподілу Стьюдента з v степенями свободи.

4.3 Характеристика парного статистичного зв'язку в загальному випадку

Нехай спостерігаються ξ і η , з'ясуємо наявність зв'язку. Розглянемо 2 випадки:

- випадок групованих (за ξ) даних;
- випадок не згрупованих даних.
- 1. Спостереження над залежною змінною η : $y_{11}, \ldots, y_{1m_1}, \ldots, y_{s1}, \ldots, y_{sm_s}$, s інтервалів групування, в i-му інтервалі m_i спостережень.

 \bar{y}_i – вибіркове середнє спостережень по групі i, \bar{y} – загальне вибіркове середнє.

 S_y^2 — вибіркове значення дисперсії $\eta, S_{y(x)}^2$ — зважене вибіркове значення дисперсії вибіркових середніх \bar{y}_i .

Запишемо оцінку для індексу кореляції (кореляційне відношення):

$$\widehat{p}_{\eta\xi} = \sqrt{\frac{S_{y(x)}^2}{S_y^2}}.$$

Властивості такі ж, як і в індексу кореляції. З'ясувалося, що

$$F = \frac{\widehat{p}_{\eta\xi}^2}{1 - \widehat{p}_{\eta\xi}^2} \cdot \frac{n - s}{s - 1}$$

має асимптотичний розподіл, який тотожньо рівний F(s-1,n-s). Припускаємо, що спостереження нормальні.

Область прийняття гіпотези: $F < F_{\alpha}(s-1,n-s)$, де $F_{\alpha}-100\alpha\%$ -точка F-розподілу з параметрами $s-1,\,n-s$.

2. Функцію регресії f апроксимують на деякому класі параметричних функцій з точністю до вектор-параметру θ . $f(x,\theta), \theta \in \mathbb{R}^p$.

По спостереженням досліджуваних змінних: $\xi: x_1, \dots, x_n, \eta: y_1, \dots, y_n$.

Методом найменших квадратів визначаємо $\widehat{\theta}$, далі отримуємо деяку апроксимацію функції регресії $f(x,\theta)$.

Апроксимація індексу кореляції даних у вигляді:

$$\widehat{I}_{\eta\xi} = \sqrt{1 - \frac{\frac{1}{n-p} \sum_{i=1}^{n} (y_i - f(x_i, \widehat{\theta}))^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}(n))^2}}.$$

Приклад
$$\theta$$
: $f(x,\theta) = \sum_{i=1}^N \theta_i f_i(x)$.

4.4 Частинний коефіцієнт кореляції

Частинним коефіцієнтом кореляції для змінних $x^{(i)}, x^{(j)}$ будемо називати величину:

$$r_{ij}^* = -\frac{R_{ij}}{\sqrt{R_{ii}R_{jj}}},$$

де R_{ij} – алгебраїчне доповнення для елемента (i,j) у звичайній кореляційній матриці:

$$R = \begin{pmatrix} 1 & r_{01} & \dots & r_{0q} \\ r_{10} & 1 & \dots & r_{1q} \\ \vdots & \vdots & \ddots & \vdots \\ r_{q0} & r_{q1} & \dots & 1 \end{pmatrix},$$

де r_{ij} – звичайний коефіцієнт кореляції.

Властивості частинного співпадають з властивостями звичайного коефіцієнта кореляції. Вибіркове значення коефіцієнта кореляції:

$$\widehat{r}_{ij}^* = -\frac{\widehat{R}_{ij}}{\sqrt{\widehat{R}_{ii}\widehat{R}_{jj}}},$$

$$\widehat{R} = \begin{pmatrix} 1 & \widehat{r}_{01} & \dots & \widehat{r}_{0q} \\ \widehat{r}_{10} & 1 & \dots & \widehat{r}_{1q} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{r}_{q0} & \widehat{r}_{q1} & \dots & 1 \end{pmatrix}.$$

При $r_{ij}^* = 0$ зв'язку не існує.

При $r_{ih}^*=\pm 1$ то зв'язок функціональний.

Якщо коефіцієнт прийняв проміжне значення, то перевіряється гіпотеза H_0 : $r_{ij}^*=0, \ \alpha>0$. Використовуємо статистику:

$$t(n-m-2) = \frac{\sqrt{n-m-2} \cdot \hat{r}_{ij}^*}{\sqrt{1-(\hat{r}_{ij}^*)^2}},$$

де m – кількість третіх змінних зафіксованих на певному рівні.

Вона має t-розподіл Стьюдента з n-m-2 степенями свободи. Критична область – обасть великих і малих значень. Область прийняття має вигляд:

$$|t(n-m-2)| < t_{\alpha/2}(n-m-2),$$

де $t_{\alpha/2}(n-m-2)$ – $100\alpha/2\%$ точка t-розподілу Стьюдента з n-m-2 степенями свободи.

4.5 Множинний коефіцієнт кореляції

Розглянемо залежну змінну η і незалежну змінну $\vec{\xi} \in \mathbb{R}^q$. Для з'ясування зв'язку використовується множинний коефіцієнт кореляції:

$$R_{\eta\xi} = \sqrt{D(f\xi)}D\eta = \sqrt{1 - \frac{M(g(\xi))}{D\eta}},$$

де умовні матсподівання і дисперсія визначаються так же як і раніше тільки для векторної ξ .

Множинний коефіцієнт детермінації: $R_{\eta\xi}^2$.

Властивості множинного коефіцієнта кореляції такі ж, як і звичайного коефіцієнта кореляції.

Вибіркове значення. Функцію регресії $f(\vec{x}, \theta)$ апроксимуємо на деякому класі параметричних функцій. $\vec{\xi} : \vec{x}_1, \dots, \vec{x}_n, \ \eta : y_1, \dots, y_n$.

По отриманим спостереженням методом найменших квадратів знаходимо оцінку $\widehat{\theta}$ і підставляємо в апроксимацію. Звідси оцінка нормальна.

$$\widehat{R}_{\eta\xi} = \sqrt{1 - \frac{\frac{1}{n-p} \sum_{i=1}^{n} (y_i - f(\vec{x}, \widehat{\theta}))^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}(n))^2}}.$$

4.5.1 Методика використання

Якщо $R_{n\xi} = 0$, то зв'язок неістотній.

Якщо $R_{\eta\xi}=1$, то зв'язок функціональний.

Якщо $R_{\eta\xi}$ приймає проміжне значення, то перевіряється гіпотеза H_0 .

Проаналізуємо наступну статистику:

$$F = \frac{\widehat{R}_{\eta\xi}^2}{1 - \widehat{R}_{\eta\varepsilon}^2} \cdot \frac{n - p}{n - 1}.$$

Вона має асимптотичний розподіл, який співпадає з F-розоділом з параметрами (p-1,n-p). Тоді область прийняття — це область невеликих значень:

$$F < F_{\alpha}(p-1, n-p).$$

4.6 Кореляційний аналіз порядкових змінних

Нехай η — залежна порядкова змінна і $\vec{\xi} = (\xi_1, \dots, \xi_q)^*$. Нехай $\xi^{(i)}$ — вектор спостережень над i-ою змінною, тобто $\xi_k^{(i)} - i$ -а змінна k-го предмету.

Розяглянемо ранжировку (перестановку чисел від 1 до n): $x^{(i)} = \left(x_1^{(i)}, \dots, x_n^{(i)}\right)^*$, де $x_k^{(i)}$ – ранг k-го предмету по i-ій змінній. Якщо всі прояви об'єктів різні, то маємо $x^{(0)}, x^{(1)}, \dots, x^{(q)}$ – спостереження, $x_*^{(0)}, x_*^{(1)}, \dots, x_*^{(q)}$ – ранжировка.

При наявності по деякій зміні групи об'єктів з однаковим проявом досліджуваної властивості, цим об'єктам присвоюють ранг, який дорівнює середньому арифметичному номерів тих місць, які припали на цю групу об'єктів з нерозрізненими рангами. Такий ранг називається зв'язаний (об'єднаний).

Будується таблиця рангів для доступу до об'єкта:

	$x^{(1)}$	$x^{(2)}$		$x^{(q)}$
1	$x_1^{(1)}$	$x_1^{(2)}$		$x_1^{(q)}$
2	$x_2^{(1)}$	$x_2^{(2)}$		$x_2^{(q)}$
:	:	:	٠	:
n	$x_n^{(1)}$	$x_n^{(2)}$		$x_n^{(q)}$

рядки – об'єкти, стовпчики – змінні.

4.6.1 Характеристики парного статистичного зв'язку

Розглядаємо характеристики $x^{(i)}, x^{(j)}$.

В якості характеристики парного зв'язку між змінними $x^{(i)}$ та $x^{(j)}$ може-

мо використати коефіцієнт Спірмана, який визначається таким чином:

$$\widehat{\tau}_{ij}^{(s)} = 1 - \frac{\left\| x_*^{(i)} - x_*^{(j)} \right\|_2^2}{\frac{n^3 - n}{6}}.$$

Властивості рангу коефіцієнта Спірмана:

- 1. $-1 \le \hat{\tau}_{ij}^{(s)} \le 1$;
- 2. якщо $\widehat{\tau}_{ij}^{(s)} = 0$, то зв'язок відсутній;
- 3. якщо $\hat{\tau}_{ij}^{(s)}=1$, то ранжировки по змінним співпадають, $x_*^{(i)}=x_*^{(j)}$;
- 4. якщо $\hat{\tau}_{ij}^{(s)} = -1$, то ранжировки по змінним протилежні, $x_*^{(i)} = x_*^{(j)}$.

Розглянемо випадок наявності *нерозрізнених рангів*. В цьому випадку використовується *модифікований коефіцієнт*. Ранговий коефіцієнт Спірмана обчислюється за формулою:

$$\widehat{\widehat{\tau}}_{ij}^{(s)} = \frac{\frac{n^3 - n}{6} - \left\| x_*^{(i)} - x_*^{(j)} \right\|_2^2 - T^{(i)} - T^{(j)}}{\sqrt{\left(\frac{n^3 - n}{6} - 2T^{(i)} \right) \left(\frac{n^3 - n}{6} - 2T^{(j)} \right)}},$$

де

$$T^{(i)} = \frac{1}{12} \sum_{g=1}^{m^{(i)}} (n_g^{(i)})^3 - n_g^{(i)}$$

- корегуючий коефіцієнт, $m^{(i)}$ — кількість груп об'єктів з нерозрізненними рангами по змінній $x^{(i)}$, $n_g^{(i)}$ — кількість членів у g-й групі нерозрізнимих рангів по i-й змінній.

Коли коефіцієнт приймає проміжне значення, то перевіряємо гіпотезу $H_0: \hat{ au}_{ij}^{(s)} = 0$. Якщо об'єм вибірки невеликий, то перевіряємо по таблиці, при n=4..10. Якщо ж n>10, то розглядаємо статистику

$$\frac{\sqrt{n-2}\widehat{\tau}_{ij}^{(s)}}{\sqrt{1-\left(\widehat{\tau}_{ij}^{(s)}\right)^2}},$$

що має t-розподіл Стьюдента з (n-2) степенями свободи. Область прийняття гіпотези:

$$\left| \frac{\sqrt{n-2}\widehat{\tau}_{ij}^{(s)}}{\sqrt{1-\left(\widehat{\tau}_{ij}^{(s)}\right)^2}} \right| < t_{\alpha/2}(n-2).$$

Розглянемо іншу характеристику: коефіціент Кендала. Ранговим коефіціентом Кендала для змінних $x^{(i)}$ та $x^{(j)}$ називається величина

$$\widehat{\tau}_{ij}^{(k)} = \frac{4v\left(x_*^{(i)}, x_*^{(j)}\right)}{n(n-1)},$$

де $v\left(x_*^{(i)}, x_*^{(j)}\right)$ – кількість перестановок сусідніх елементів у ранжировці $x_*^{(i)}$, яка приводить її до ражировки $x_*^{(j)}$.

Властивості рангу коефіцієнта Кендала:

- 1. $-1 \le \hat{\tau}_{ii}^{(k)} \le 1$;
- 2. якщо $\widehat{ au}_{ij}^{(k)} = 0$, то зв'язок відсутній;
- 3. якщо $\widehat{\tau}_{ij}^{(k)}=1$, то ранжировки по змінним співпадають, $x_*^{(i)}=x_*^{(j)}$;
- 4. якщо $\hat{\tau}_{ij}^{(k)} = -1$, то ранжировки по змінним протилежні, $x_*^{(i)} = x_*^{(j)}$.

Якщо є наявні нерозрізнені ранжировки, то використовують модифікований коефіцієнт Kendana:

$$\widehat{\widehat{\tau}}_{ij}^{(k)} = \frac{\widehat{\tau}_{ij}^{(k)} - \frac{u^{(i)} - u^{(j)}}{n(n-1)}}{\sqrt{\left(1 - \frac{U^{(i)}}{n(n-1)}\right)\left(1 - \frac{U^{(j)}}{n(n-1)}\right)}},$$

де

$$U^{(i)} = \sum_{g=1}^{m^{(i)}} n_g^{(i)} \left(n_g^{(i)} - 1 \right),$$

 $m^{(i)}$ — кількість груп об'єктів з нерозрізненними рангами по змінній $x^{(i)}$, $n_g^{(i)}$ — кількість членів у g-й групі нерозрізнимих рангів по i-й змінній.

Коли коефіцієнт приймає проміжне значення, то перевіряємо гіпотезу $H_0: \hat{\tau}_{ij}^{(s)} = 0$. Якщо об'єм вибірки невеликий, то перевіряємо по таблиці, при n=4..10. Якщо ж n>10, то використовуємо

$$\left|\widehat{\tau}_{ij}^{(k)}\right| \le U_{\alpha/2} \sqrt{\frac{2(2n+5)}{9n(n-1)}}.$$

4.6.2 Характеристика множинних рангових статистичних зв'язків

Нехай аналізується m змінних $\zeta = (x^{(k_1)}, x^{(k_2)}, \dots, x^{(k_m)})^*$.

В якості характеристики використовується коефіцієнт конкордації. Коефіцієнтом конкордації для змінної $\zeta = \left(x^{(k_1)}, x^{(k_2)}, \dots, x^{(k_m)}\right)^*$ називають величину

$$\widehat{w}_{\zeta} = \frac{12}{m^2(n^3 - n)} \sum_{i=1}^{n} \left(\left(\sum_{j=1}^{m} x_i^{(j)} \right) - \frac{m(n+1)}{2} \right)^2.$$

Властивості:

- 1. $0 \le \hat{w}_{\zeta} \le 1$;
- 2. якщо $\widehat{w}_{\zeta} = 1$, то ранжировки по змінним співпадають:
- 3. якщо $\widehat{w}_{\zeta} = 0$, то відсутній зв'язок між ранжировками.

У випадку двох нерозрізнених рангів використовуємо модифікований коефіцієнт $\widehat{w}_{\mathcal{E}}$:

$$\widehat{\widehat{w}}_{\zeta} = \frac{\left(\left(\sum_{j=1}^{m} x_i^{(k_j)}\right) - \frac{m(n+1)}{2}\right)^2}{\frac{m^2(n^3 + n)}{2} - m\sum_{i=1}^{m} T^{(k_i)}},$$

де

$$T^{(k_j)} = \frac{1}{12} \sum_{g=1}^{m_j} \left(\left(n_g^{(k_j)} \right)^2 - n_g^{(k_j)} \right).$$

Якщо \widehat{w}_{ζ} приймає проміжне значення, то робимо перевірку на значимість $H_0:\widehat{w}_{\zeta}=0,\ 0<\alpha<1.$ Коли $n=3..7,\ m=2..20,$ то за таблицею. Якщо $n>7,\ m>20$, то розглядаємо статистику \widehat{w}_{ζ} :

$$\widehat{w}_{\zeta} < \frac{\chi_{\alpha}^{2}(n-1)}{m(n-1)},$$

має χ^2 -розподіл з (n-1) степенем свободи.

4.7 Кореляційний аналіз номінальних змінних

Нехай є змінна η яка має r_1 градацій, та змінна ξ яка має r_2 градацій:

	1	2		r_1	\sum
1	n_{11}	n_{12}		n_{1r_1}	n_{1*}
2	n_{21}	n_{22}		n_{2r_1}	n_{2*}
:	•	•	٠	•	÷
r_2	n_{r_21}	n_{r_22}		$n_{r_2r_1}$	n_{r_2*}
\sum	n_{*1}	n_{*2}		n_{*r_1}	n_{**}

Де n_{ij} – кількість таких спостережень $\{\eta=i,\xi=j\}$, позначимо $n_{i*}=\sum_{i=1}^{r_1}n_{ij},\,n_{*j}=\sum_{i=1}^{r_2}n_{ij}.$

Вводимо статистику яка називається *квадратичне спряження* і позначається

$$\chi_{\eta\xi}^2 = \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \frac{\left(n_{ij} - \frac{n_{i*}n_{*j}}{n}\right)^2}{\frac{n_{i*}n_{*j}}{n}}.$$

Коефіцієнти:

1. $\phi_{\eta\xi} = \sqrt{\frac{\chi_{\eta\xi}^2}{n}} - cepeдие$ значення квадратичної спряженості;

2.
$$P_{\eta\xi} = \sqrt{\frac{\chi_{\eta\xi}^2}{n + \chi_{\eta\xi}^2}} - \kappa oe \phi i u i e h m \Pi i p c o h a;$$

4.
$$T_{\eta\xi} = \sqrt{\frac{\chi_{\eta\xi}^2}{n\min(r_1 - 1, r_2 - 1)}} - \kappa oe \phi i u i e н m K p амера.$$

Властивості коефіцієнтів

- 1. $k_{\eta\xi} \ge 0$, якщо коефіцієнт $p_{\eta\xi} \le 1$;
- 2. $k_{\eta\xi} = 0$, тоді зв'язок відсутній.

Перевірку на значимість роблять шляхом перевірки гіпотези H_0 : $\chi^2_{\eta\xi}=0$, $0<\alpha<1$. З'ясувалося, що $\chi^2_{\eta\xi}$ має хі-квадрат розподіл з $(r_1-1)(r_2-1)$ степенями свободи.

Тоді критична область – область великих значень, та область прийняття гіпотези: $\chi^2_{\eta\xi} < \chi^2((r_1-1)(r_2-1))$.

4.8 Інформаційна міра зв'язку

 $Eнтропією \ для \ змінної \ \xi$ називають величину

$$H_{\xi} = -\sum_{i} p(x_i) \ln(p(x_i)) = -M \ln(p(\xi)).$$

Позначимо ймовірність, з якою приймається пара значень (x_i, y_j) як $p(x_i, y_j)$, тоді ентропією для пари (ξ, η) називається величина

$$H_{\eta\xi} = -\sum_{i,j} p(x_i, y_j) \ln(p(x_i, y_j)).$$

Інформаційна міра зв'язку визначається як $I_{\eta\xi}=H_{\xi}+H_{\eta}-H\xi\eta.$

Властивості інформаційної міри зв'язку

- 1. $I_{\eta\xi} \geq 0$;
- 2. якщо $I_{\eta\xi}=0$ то зв'язок між ξ та η відсутній.

Спробуємо визначити вибіркове значення. Спочатку визначимо вибіркове значення для ентропії η та ξ :

$$\widehat{H}_{\eta} = -\sum_{i} \frac{n_{i}}{n} \cdot \ln\left(\frac{n_{i}}{n}\right) \qquad \widehat{H}_{\xi} = -\sum_{i} \frac{n_{j}}{n} \cdot \ln\left(\frac{n_{j}}{n}\right),$$

де n_i, n_j – абсолютні частоти прийняття змінними η і ξ відповідно своїх значень. Далі, якщо n_{ij} – абсолютна частота прийняття змінними η і ξ пари відповідних значень, то

$$\widehat{H}_{\eta\xi} = -\sum_{i,j} \frac{n_{ij}}{n} \cdot \ln\left(\frac{n_{ij}}{n}\right),$$

звідки

$$\widehat{I}_{\eta\xi} = \frac{1}{n} \left(\sum_{i,j} n_{ij} \cdot \ln(n_{ij}) - \sum_{i} n_{i} \cdot \ln(n_{i}) - \sum_{j} n_{j} \cdot \ln(n_{j}) + n \ln n \right).$$

При перевірці характеристики на значимість $H_0: \widehat{I}_{\eta\xi}=0,\ 0<\alpha<1.$ $\widehat{\widehat{I}}_{\eta\xi}=2n\widehat{I}_{\eta\xi}-n_0$, де n_0 – кількість нульових елементів у таблиці спряженості.

Виявилось, що така перетворена статистика: $\widehat{\widehat{I}}_{\eta\xi} < \chi^2((r_1-1)(r_2-1)).$

Оскільки ця статистика невід'ємна, то область прийняття гіпотези матиме такий вигляд $\widehat{\widehat{I}}_{\eta\xi} < \chi^2_{\alpha}((r_1-1)(r_2-1)).$

5 Дисперсійний аналіз

Нехай є деяка кількісна скалярна змінна η та є деякий вектор якісних змінних ξ .

Дисперсійний аналіз займається побудовою математичної моделі зв'язку між цими змінними, а також їх аналізом.

Приклад. З'ясувати вплив сорту зернових на врожай.

Залежна змінна — врожайність, якісна змінна — сорт зернових та тип міндобрив. η — врожайність, ξ_1 — сорт зернових, I_1 — всього сортів, ξ_2 — тип міндобрив, I_2 — всього міндобрив.

Позначимо y_{ijk} – врожайність i-го сорт зернових при застосуванні j-го тип міндобрив на k-му полі, α_i – вплив на залежну змінну, β_j – вплив на якісну змінну. Розглянемо тепер модель врожайності

$$y_{ijk} = \mu + \alpha_i + \beta_j + c_{ij} + e_{ijk},$$

де μ , α_i , β_j , c_{ij} — невідомі параметри, e_{ijk} — помилка моделі (наприклад вплив поля), c_{ij} — вплив взаємодії i-ї градації першої змінної та j-ї градації другої змінної на врожайність зернових.

Ця модель лінійна по всім параметрам, тому для її розв'язку напрошується метод найменших квадратів(МНК).

5.1 Перевірка лінійних гіпотез для регресійної моделі

Лінійну регресійну модель в матричному вигляді запишемо так: $\vec{y} = X\vec{\alpha} + \vec{e}$, де $\vec{y} \in \mathbb{R}^N$, $X \in \mathbb{R}^{N \times p}$, $\vec{\alpha} \in \mathbb{R}^p$, $\vec{e} \in \mathbb{R}^N$.

Нехай ранг X дорівнює p (тобто матриця має повний ранг по стовпчикам), а сама оцінка знаходилась з критерію

$$Q(\alpha) = ||y - X\alpha||_2^2 \to \min$$

і має вигляд:

$$\widehat{\alpha} = (X^T X)^{-1} X^T y.$$

Розглянемо таку множину $L = \{\vec{\alpha} : A\vec{\alpha} = \vec{b}, \operatorname{rang} A = q\}$, де $A \in \mathbb{R}^{q \times p}$ (тобто матриця має повний ранг по рядкам).

Розглянемо оптимальну оцінку $\vec{\alpha}$ для лінійної моделі методом найменших квадратів при наявності лінійних обмежень L:

$$\widehat{\alpha}_L = \widehat{\alpha} + (X^T X)^{-1} A^T (A(X^T X)^{-1} A^T)^{-1} (b - A\widehat{\alpha}).$$

Теорема 1. При справедливості гіпотези $H_0: A\vec{\alpha} = b$, rang $A = q, \gamma > 0$ наступна статистика

$$F = \frac{\frac{Q(\widehat{\alpha}_L) - Q(\widehat{\alpha})}{q}}{\frac{Q(\widehat{\alpha})}{N - p}}$$

мае асимптотичний F-розподіл F(q,N-p), а відповідна область прийняття гіпотези: $F < F_{\gamma}(q,N-p)$, де $F_{\gamma}(q,N-p)$ це $100\gamma\%$ точка F-розподілу.

Зауваження. При справедливості гіпотези H_0 : $Q(\widehat{\alpha}_L) - Q(\widehat{\alpha}) = ||X\widehat{\alpha}_L - X\widehat{\alpha}||_2^2$.

Зауваження. Розглянемо наступну гіпотезу: $H: \alpha_i = 0, \ 0 < \gamma < 1,$ тобто перевіряємо, чи суттєво відхиляється від нуля відносний вплив i-ої градації. Тоді статистика, побудована по умовам теореми F_i називається vacmunho cmamucmuno no <math>vacmunho cmamucmuno no i-й vacmunho cmamucmuno no i-й vac

5.2 Однофакторний дисперсійний аналіз

Нехай η — деяка скалярна кількісна змінна, ξ — деяка якісна незалежна змінна, яка має I градацій. При фіксованій i-й градації вважаємо, що є J_i спостережень над залежною змінною, які позначимо через y_{ij} . Розглянемо модель

$$y_{ij} = \mu + \mu_i + e_{ij}, \quad i = \overline{1, I}, \quad j = \overline{1, J}.$$

Припустимо, що помилки моделі:

- 1. нормально розподілені $N(0, \sigma^2), \sigma^2 > 0;$
- 2. незалежні.

Запишемо цю модель в матричному вигляді: $y = X\vec{\mu} + e$, де $X \in \mathbb{R}^{N \times (I+1)}$, $\vec{\mu} = (\mu, \mu_1, \dots, \mu_I)^T$, де $N = \sum_{i=1}^I J_i$ – загальна кількість вимірів. Для існування оцінки $\hat{\mu}$ потрібно rang X = I, тобто

$$\exists w_i : \sum_{i=1}^{I} w_i \mu_i = 0, \quad \sum_{i=1}^{I} w_i = 1, \quad \forall i : w_i > 0.$$

Отримаємо оцінку $\vec{\mu}$ паралельно оцінивши суттєвість впливу однієї змінної на іншу. Математично це рівносильно перевірці гіпотези $H: \mu_1 = \mu_2 = \ldots = \mu_I = 0, \, 0 < \gamma < 1.$

Запишемо цю гіпотезу як $H:A\mu=\vec{0}$, де rang A=I-1, тоді можна скористатися теоремою вище. Згідно теореми область прийняття гіпотези матиме виглял:

$$F = \frac{\frac{Q(\widehat{\mu}_L) - Q(\widehat{\mu})}{I - 1}}{\frac{Q(\widehat{\mu})}{N - I}} < F_{\gamma}(I - 1, N - 1).$$

Зауваження. Якщо I-1 параметр є нульовими, то і I-й параметр теж нульовий, згідно умов із w.

Знайдемо $Q(\widehat{\mu})$. Відомо, що оцінка методом найменших квадратів є розв'язком системи нормальних рівнянь $X^T X \widehat{\mu} = X^T y$. Перепишемо систему в розгорнутому матричному вигляді:

$$\begin{pmatrix} N & J_1 & J_2 & \dots & J_I \\ J_1 & J_1 & 0 & \dots & 0 \\ J_2 & 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ J_1 & 0 & 0 & \dots & J_I \end{pmatrix} \begin{pmatrix} \widehat{\mu} \\ \widehat{\mu}_1 \\ \widehat{\mu}_2 \\ \vdots \\ \widehat{\mu}_I \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^I \sum_{j=1}^{J_i} y_{ij} \\ J_1 \bar{y}_1 \\ J_2 \bar{y}_2 \\ \vdots \\ J_I \bar{y}_I \end{pmatrix},$$

де \bar{y}_i – вибіркове середнє i-ої групи.

Розглянемо окреме рівняння системи, отримаємо

$$\forall i: J_i \widehat{\mu} + J_i \widehat{\mu}_i = J_i \overline{y}_i \Rightarrow \overline{y}_i = \widehat{\mu} + \widehat{\mu}_i,$$

тобто оцінкою абсолютного впливу i-тої градації є \bar{y}_i . Звідси маємо $\hat{\mu}_i = \bar{y}_i - \hat{\mu}$.

3 рівнянь на w знаходиться $\widehat{\mu} = \sum_{i=1}^I w_i \bar{y}_i$, тобто $\widehat{\mu}_i = \bar{y}_i - \sum_{i=1}^I w_i \bar{y}_i$.

Згідно викладеного вище отримаємо

$$Q(\widehat{\mu}) = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_i)^2.$$

L – лінійне обмеження, еквівалентне умовам на w, тому $\widehat{\mu}_L:\widetilde{X}^T\widetilde{X}\widehat{\mu}_L=\widetilde{X}^Ty$, де $\widetilde{X}=(1,\ldots,1)^T$ – вектор стовпчик при обмеженні L, тому

$$\widehat{\mu}_L = \frac{1}{N} \sum_{i=1}^{I} \sum_{j=1}^{I_j} y_{ij} = \bar{y}$$

- загальне середнє по всім вимірам.

Зауважимо що тут ми часто користуємося μ як для позначення вектора $\vec{\mu}$ так і на позначення його першої компоненти, у марних сподіваннях на те що з контексту зрозуміло коли що використовується.

Наслідок/Зауваження: зі структури матриці Х випливає, що

$$Q(\widehat{\mu}_L) - Q(\widehat{\mu}) = \|X\widehat{\mu} - X\widehat{\mu}_L\|_2^2 = \sum_{i=1}^I \sum_{j=1}^{J_i} (\bar{y}_i - \bar{y})^2 = \sum_{i=1}^I J_i (\bar{y}_i - \bar{y})^2.$$

Підставляючи це все в F знайдемо

$$F = \frac{\sum_{i=1}^{I} J_i (y_i - \bar{y})^2}{\frac{I - 1}{\sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_i)^2}} < F_{\gamma}(I - 1, N - I).$$

5.3 Таблиця результатів однофакторного дисперсійного аналізу

Джерело варіацій	Сума квадратів	KCC	CCK	F	γ_*
Між градаціями	S_A	I-1	$\bar{S}_A = \frac{S_A}{I - 1}$	$F = \frac{\bar{S}_A}{\bar{\bar{s}}}$	γ_*
Всередині градацій	S_E	N-I	$\bar{S}_E = \frac{S_E}{N - I}$	S_E	

де

$$S_E = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_i)^2, \qquad S_A = \sum_{i=1}^{I} J_i (\bar{y}_i - \bar{y})^2,$$

 γ_* — максимальна ймовірність при котрій гіпотеза приймається (рівень значимості).

5.4 Перевірка контрастів

Якщо гіпотеза $\vec{\mu}=\vec{0}$ несправедлива, то нас цікавить питання: чи є серед градацій такі, що мають суттєві відхилення від нуля. Намагаємось виявити серед усіх градацій такі їх підмножини, що середні по ним несуттєво відхиляються від середніх сусідніх підмножин.

Абсолютний вплив *i*-ої градації, це $\theta_t = \mu - \mu_i$, та $\widehat{\theta} = \bar{y}_i$. Контрастами будемо називати статистики вище наведеного вигляду для коефіцієнтів яких справедлива умова. Нас цікавить перевірка гіпотези:

$$H_0: \sum_{i} c_i \theta_i = 0, \quad \sum_{i} c_i = 0, \quad \theta_i > 0.$$

Алгоритм перевірки гіпотези

- 1. Будуємо довірчий інтервал з рівнем довіри (1α) .
- 2. Якщо нуль належить цьому інтервалу, то гіпотезу вважаємо справедливою, інакше її відхиляємо.

5.5 Довірчі інтервали для контрастів

1. Якщо c_i – наперед задані, то

$$\left| \sum_{i} c_i \bar{y}_i - \sum_{i} c_i \theta_i \right| < \bar{S}_E \sum_{i} \frac{c_i^2}{J_i} t_{\alpha/2} (N - I),$$

де

$$\left| \sum_{i} c_{i} \bar{y}_{i} - \sum_{i} c_{i} \theta_{i} \right|$$

- усереднена залишкова сума квадратів.
- 2. S-метод Шофе

$$\left|\sum_i c_i \bar{y}_i - \sum_i c_i \theta_i\right| < \sqrt{\bar{S}_E \sum_i \frac{c_i^2}{J_I} (I-1) F_\alpha (I-1, N-I)}.$$

3. T-метод Kьюнi орієнтований на побудову довірчих інтервалів для контрастів статистики $\theta_i - \theta_j$, крім того припускаємо, що кількість вимірів при кожній градації однакова, тобто $\forall i: J_i = J$, тоді

$$|(\bar{y}_i - \bar{y}_j) - (\theta_i - \theta_j)| < \bar{S}_E q_\alpha(I, N - I),$$

де $q_{\alpha}(I,N-I)$ – $100\alpha\%$ -на точка Стьюдентизованого розмаху.

Зауваження. Нехай є η_i , $i=\overline{1,I}$ – нормально розподілені величини з параметрами 0 та 1; статистика $\chi^2(k)$ має χ^2 -розподіл; $\{\eta_i\},\chi^2(k)$ – незалежні.

Тоді величина $\max_i \eta_i - \min_i \sqrt{\chi^2(k)}$ має розподіл Стьюдентизованого розмаху з параметрами i, k.

Нехай є η — залежна кількісна змінна, якісні змінні: T_A приймає значення з I-тої градації, T_B приймає значення з J-тої градації.

Якщо фактор приймає значення з i-тої градації, фактор з j-тої градації, то кількість вимірів $N = \sum_{i=1}^I \sum_{j=1}^J k_{ij}$.

В загальному випадку модель дисперсійного аналізу приймає вигляд:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk},$$

де

- y_{ijk} спостереження за нзалежною змінною η ;
- μ загальне середнє;

- α_i кількісний вираз відносно впливу *i*-тої градації ξ_A на η (головний ефект *i*-того рівня фактору);
- β_j кількісний вираз відносно впливу j-тої градації фактору ;
- γ_{ij} кількісний вираз відносно впливу *i*-тої градації фактору , *j*-ї градації фактору на залежну змінну η ;
- e_{ijk} помилки моделі:

1.
$$e_{ijk} \sim N(0, \sigma^2), \, \sigma^2 > 0;$$

2. e_{ijk} – незалежні.

Нехай ϵ така модель, відомі тільки e_{ijk} та які градації чому відповідають.

Припускаємо:

$$\forall v_i > 0 \exists w_j > 0 : \forall i, j : \sum_{i=1}^{I} v_i \alpha_i = \sum_{j=1}^{J} w_i \gamma_{ij} = \sum_{j=1}^{J} w_j p_j = \sum_{i=1}^{I} v_j \gamma_{ij} = 0$$

Hаявність таких лінійних обмежень дозволяє стверджувати, що методом MHK ми зможемо знайти оцінки вектора невідомих параметрів з цієї моделі.

Зауваження. З метою спрощення виразів розглянемо випадок $\forall i, j: v_i = \frac{1}{I}, w_j = \frac{1}{J}, k_{ij} = k, N = I \cdot J \cdot K$. Перевіремо гіпотези $H_A: \alpha_1 = \alpha_2 = \ldots = \alpha_I, \gamma > 0; H_B: \beta_1 = \beta_2 = \ldots = \beta_J, \gamma > 0; H_{AB}: \forall i, j: \gamma_{ij} = 0, \gamma > 0$.

Оцінки МНК вищезгаданої моделі при наявності вищезгаданих лінійних обмежень обчислюються за формулами (* замість індексу означає, що по цьому індексу береться усереднене):

$$\widehat{\mu} = \overline{y}, \quad \widehat{\alpha}_i = y_{i**} - \overline{y}, \quad \widehat{\beta} = y_{*j*} - \overline{y}, \quad \widehat{\gamma}_{ij} = y_{ij*} - y_{i**} - y_{*j*} + \overline{y}.$$

Введемо величини

$$S_E = \sum_{i,j,k} (y_{ijk} - \bar{y})^2, \quad S_A = JK \sum_i (y_{i**} - \bar{y})^2,$$

$$S_B = IK \sum_j (y_{*j*} - \bar{y})^2, \quad S_{AB} = K \sum_{i,j} (y_{ij*} - y_{i**} - y_{*j*} + \bar{y})^2.$$

Розглянемо таблицю результатів

Джерело варіації	СК	KCC
Головний ефект фактору A	S_A	(I-1)
Головний ефект фактору В	S_B	(J-1)
Головний ефект взаємодії	S_{AB}	(I-1)(J-1)
Загальна сума квадратів	S_E	IJ(K-1)

$$H_A: F_A = \frac{\frac{S_A}{I-1}}{\frac{S_E}{IJ(K-1)}} < F_{\gamma}(I-1, IJ(K-1)).$$

$$H_B: F_B = \frac{\frac{S_B}{J-1}}{\frac{S_E}{IJ(K-1)}} < F_{\gamma}(J-1, IJ(K-1)).$$

$$H_{AB}: F_{AB} = \frac{\frac{S_{AB}}{(I-1)(J-1)}}{\frac{S_E}{IJ(K-1)}} < F_{\gamma}((I-1)(J-1), IJ(K-1)).$$

Зауваження У випадку коли факторів більше двох, тоді в правій частині крім наявності головних ефектів будуть ще й ефекти по всім факторам, тобто $y_{i_1i_2...} = \mu + \alpha_{i_1} + \ldots + w_{i_f}$.

6 Регресійний аналіз

Регресійний аналіз займається побудовою математичної моделі зв'язку з кількісними змінними.

Нехай маємо η – залежну кількісну скалярну змінну, $\xi \in \mathbb{R}^p$ – вектор незалежних змінних.

Зв'язок між змінними істотній. Ми хочемо побудувати математичну модель зв'язку між ними. В кореляційному аналізі його явне задання шукаємо у вигляді функції регресії (теоретично): $f(x) = M(\eta/\xi = x)$.

Лема 1. $Hexaŭ\ M\eta^2<\infty$. Позначимо $\mathcal{R}:\mathbb{R}^q\to\mathbb{R}^1$, modi

$$f(\cdot) = \operatorname*{arg\,min}_{g(\cdot) \in \mathcal{R}} M((\eta - g(\xi))^2).$$

Доведення. Припустимо, що $Mg^2(\xi) < \infty$. Розглянемо

$$M(\eta - g(\xi))^{2} = M(\eta - f(\xi) + f(\xi) - g(\xi))^{2} =$$

$$= M(\eta - f(\xi))^{2} + 2M(\eta - f(\xi))(f(\xi) - g(\xi)) + M(f(\xi) - g(\xi))^{2} \ge$$

$$\ge M(\eta - f(\xi))^{2} + 2M((M(\eta/\xi) - f(\xi))(f(\xi) - g(\xi))) = M(\eta - f(\xi)^{2}).$$

Нехай $\eta=f(\xi)+\epsilon$, позначимо спостереження над η як y(i) і спостереження над $\xi-x(i),\,i=\overline{1,N}.\,y(k)=f(x(k))+e(k),\,k=\overline{1,N}.$

6.1 Основні етапи розв'язку задачі регресійного аналізу

- 1. Вибір класу апроксимуючих функцій $g(x, \alpha) \in \mathcal{J}$.
- 2. Отримання точеної чи множинної оцінки для вектора α невідомих параметрів, а також її характеристики розсіяності. $M(\widehat{\alpha} \alpha)(\widehat{\alpha} \alpha)^T$, де α точне значення, $\widehat{\alpha}$ оцінка для α .
- 3. Перевірка на значимість відхилення параметрів моделі від нуля: $H_0: \alpha_i = 0$ з рівнем значимості $0 < \gamma < 1$.
- 4. Перевірка на адекватність отриманої моделі:

$$M((\eta - g(\xi, \alpha))^2), \quad \frac{1}{N} \sum_{k=1}^{N} (y(k) - g(x(k), \alpha))^2.$$

6.2 Класичний регресійний аналіз

Постановка: в якості апроксимації береться функція, лінійна по параметрах:

$$y(k) = \sum_{i=1}^{p} \phi_i(x'(k))\alpha_i + e(k), \quad k = \overline{1, N}.$$

$$x(k) = (\phi_1(x'(k)), \phi_2(x'(k)), \dots, \phi_p(x'(k)))^T, \quad \alpha = (\alpha_1, \alpha_2, \dots, \alpha_p)^T.$$

$$y(k) = \sum_{i=1}^{p} x_i(k)\alpha_i + e(k) = x^T(k)\alpha + e(k), \quad k = \overline{1, N}.$$

Функції $x_i(k)$ називаються *регресорами*, це просто деякі функції від векторів незалежних змінних. Введемо ще трохи позначень:

$$y = (y(1), \dots, y(N))^T$$
, $e = (e(1), \dots, e(N))^T$, $X = (x^T(1), \dots, x^T(N))^T$.

Тоді модель можна переписати у вигляді $y = X\alpha + e$.

6.3 Основні припущення класичного регресійного аналізу

- 1. Помилки моделі вважати нормально розподіленими $e(k) \sim N(0, \sigma^2)$.
- 2. Вони незалежні.
- 3. X відома, і має повний ранг по стовпчикам rankX = p.
- 4. Немає ніяких обмежень на вектор невідомих параметрів α .

Будемо шукати оцінку мінімізуючи функціонал:

$$\sum_{k=1}^{N} e^{2}(k) = \|y - X\alpha\|_{2}^{2} = \sum_{k=1}^{N} (y(k) - X^{T}(k)\alpha)^{2} \to \min_{\alpha}.$$

Точкою мінімуму буде $\widehat{\alpha} = (X^T X)^{-1} X^T y$.

Доведемо це, враховуючи $\nabla_{\alpha}(\alpha^T \beta) = \beta$, $\nabla_{\alpha}(\alpha^T A \alpha) = (A + A^T)\alpha$.

Розпишемо функціонал: $\|y - X\alpha\|_2^2 = \alpha^T X^T X \alpha - 2\alpha^T X^T y + \|y\|_2^2$.

$$(\nabla_{\alpha} \|y - X\alpha\|_{2}^{2})|_{\alpha = \widehat{\alpha}} = (2X^{T}X\alpha - 2X^{T}y)|_{\alpha = \widehat{\alpha}}.$$

Отже, в системі $X^T X \widehat{\alpha} = X^T Y$, матриця $X^T X$ – не вироджена, тому

$$\widehat{\alpha} = (X^T X)^{-1} X^T y.$$

Таким чином

$$\widehat{y}(k) = X^T(k)\widehat{\alpha}, \quad \widehat{y} = X\widehat{\alpha}, \quad \widehat{\sigma}^2 = \frac{\|y - X\widehat{\alpha}\|_2}{N - p}$$

– незміщена оцінка максимальної правдоподібності.

6.4 Властивості оцінок

- 1. $\widehat{\alpha} \sim N(\alpha, \sigma^2(X^T X)^{-1});$
- 2. стастистика $\frac{(\widehat{\alpha} \alpha)X^TX(\widehat{\alpha} \alpha)}{\sigma^2} \sim \chi^2(p);$
- $3. \ \widehat{y} \sim N(X\alpha, \sigma^2 X(X^TX)^{-1}X^T);$
- 4. $M\widehat{\sigma}^2 = \sigma^2$ незміщена оцінка;

- 5. $\hat{\alpha}$, $\hat{\sigma}^2$ незалежні оцінки (випадкові величини);
- 6. $\widehat{\alpha}$, \widehat{y} , $\widehat{\sigma}^2$ ефективні на класі незміщених оцінок.

Доведемо деякі властивості:

1.

$$\widehat{\alpha} = (X^T X)^{-1} X^T y = (X^T X)^{-1} X^T (X \alpha + e) =$$

$$= (X^T X)^{-1} X^T X \alpha + (X^T X)^{-1} X^T e = \alpha + (X^T X)^{-1} X^T e.$$

Тобто $M\widehat{\alpha} = \alpha$.

$$M(\widehat{\alpha} - \alpha)(\widehat{\alpha} - \alpha)^T = M((X^T X)^{-1} X^T e e^T X (X^T X)^{-1}) = \sigma^2 (X^T X)^{-1} (X^T X) (X^T X)^{-1} = \sigma^2 (X^T X)^{-1}.$$

2. Доведемо спершу лему:

Лема 2. Нехай $\xi \in \mathbb{R}^q$, $\xi \sim N(m,R)$, R>0, тоді виконується

$$(\xi - m)^T R^{-1}(\xi - m) \sim \chi^2(q).$$

Доведення. $M(\xi - m) = \vec{0}$. $R^{1/2}(\xi - m) \sim N(\vec{0}, E_a)$.

$$R = T \begin{pmatrix} \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n \end{pmatrix} T^T$$

 $\|R^{1/2}(\xi-m)\|_2^2 \sim \chi^2(q)$ співпадає з квадратичною формою.

Сама властивість є просто наслідком застосування леми до $\widehat{\alpha}$.

3.
$$\widehat{y} = X\widehat{\alpha} \sim N(X\alpha, \sigma^2 X(X^T X)^{-1} X^T)$$
.

6.5 Довірчі області та інтервали для невідомих параметрів моделі

1. Довірча область для α з рівнем значимості $(1-\gamma)$.

З властивості 2 маємо

$$\chi^{2}(p) = \frac{(\widehat{\alpha} - \alpha)X^{T}X(\widehat{\alpha} - \alpha)}{\sigma^{2}} =$$

$$= \frac{e^{T}X(X^{T}X)^{-1}(X^{T}X)(X^{T}X)^{-1}X^{T}e}{N - p} = \frac{e^{T}X(X^{T}X)^{-1}X^{T}e}{\sigma^{2}}$$

$$\chi^{2}(N - p) \sim \frac{(N - p)\widehat{\sigma}^{2}}{\sigma^{2}}, \text{ де } \widehat{\sigma}^{2} = \frac{\|y - X\alpha\|_{2}^{2}}{N - p}. \text{ Маємо}$$

$$\frac{\|y - X(X^{T}X)^{-1}X^{T}y\|_{2}^{2}}{N - p} = \frac{\|(E - X(X^{T}X)^{-1}X^{T})(X\alpha + e)\|_{2}^{2}}{N - p} =$$

$$\frac{\|PX\alpha + Pe\|_{2}^{2}}{N - p} = \frac{e^{T}P^{T}Pe}{N - p} = \frac{e^{T}P^{2}e}{N - p} = \frac{e^{T}Pe}{N - p},$$

де $P=E-X(X^TX)^{-1}X^T,\ PX=O,\ P^2=P.$ Тобто, маємо $\widehat{\sigma}^2=\frac{e^TPe}{N-p},$ звідки

$$\frac{(N-p)\widehat{\sigma}^2}{\sigma^2} = \frac{(N-p)e^T P e}{(N-p)\sigma^2} = \frac{e^T P e}{\sigma^2}.$$

Лема 3. Нехай $\xi \in \mathbb{R}^n$, $\xi \sim N(m, \sigma^2 E)$, A, B – матриці розмірності $N \times N$, тоді квадратичні форми $\xi^T A \xi$, $\xi^T B \xi$ будуть незалежні тоді і тільки тоді, коли AB = O.

$$\frac{(\widehat{\alpha} - \alpha)^T X^T X(\widehat{\alpha} - \alpha)}{\sigma^2 P} < F_{\gamma}(p, N - p)$$

- довірча область.
- 2. Довірчий інтервал для α_i отримуємо аналогічно:

$$\left| \frac{\widehat{\alpha}_i - \alpha}{\widehat{\sigma} \sqrt{d_i}} \right| < t_{\gamma/2} (N - p).$$

3. Інтервали Бонфероні.

Якщо для кожної компоненти побудувати довірчий інтервал з рівнями довіри $1-\gamma/(\dim \alpha)$ і A_i – ймовірність того, що i-та компонента \in своєму довірчому інтервалу, який побудований за попереднім пунктом. Тоді $\bigcap_{i=1}^p A_i$ – всі компоненти \in своїм довірчим інтервалам. Зрозуміло що

$$P\left\{\bigcap_{i=1}^{p} A_i\right\} \ge 1 - \gamma.$$

6.6 Перевірка на значимість параметрів моделі

1. Перевіряємо гіпотезу: $H_0: \alpha = 0$ – вектор параметрів, γ – рівень довіри.

Якщо H_0 справедлива, то наступна статистика $\frac{\widehat{\alpha}^T X^T X \widehat{\alpha}}{p \widehat{\sigma}^2} \sim F(p, N-p)$.

Критична область – область великих значень. Область прийняття:

$$\frac{\|X\widehat{\alpha}\|_2^2}{p\widehat{\sigma}^2} < F_{\gamma}(p, N - p)$$

- $-100\gamma\%$ точка *F*-розподілу з параметрами (p, N-p).
- 2. Перевіряємо гіпотезу: $H_0: \alpha_i = 0, \ \gamma > 0. \ \frac{\widehat{\alpha}_i \alpha_i}{\widehat{\sigma} \sqrt{d_i}} \sim t(N-p)$. При справедливості H_0 , статистика: $t_i = \frac{\widehat{\alpha}_i}{\widehat{\sigma} \sqrt{d_i}} \sim t(N-p)$, де $d_i i$ -й діагональний елемент матриці $(X^TX)^{-1}$.

Критична область – область дуже малих і дуже великих значень.

Область прийняття:

$$\frac{|\widehat{\alpha}_i|}{\widehat{\sigma}\sqrt{d_i}} < t_{\gamma/2}(N-p).$$

3. Нехай в моделі перший регресор $x_1(K) \equiv 1$. Тоді

$$y(k) = \alpha_1 + \sum_{i=2}^{p} \alpha_i x_i(k) + e(k), \quad k = \overline{1, N}.$$

Потрібно перевірити на значимість всі α_i , $i=\overline{2,p}$. $H_0:\alpha_2=\alpha_3=\ldots=\alpha_p=0,\ \gamma>0$. Якщо H_0 справедлива, то достатньо обмежитись тим, що $y(k)=\alpha_1+e'(k),\ k=\overline{1,N}$.

Або H_0 можна переписати у вигляді: Множина коефіцієнту кореляції залежної змінної, множина незалежної змінної суттєво відхиляються від 0.

Тобто
$$\widehat{\widehat{\alpha}} = \widehat{\widehat{y}}(K) = \overline{y} = \frac{1}{N} \sum_{k=1}^{N} y(k).$$

$$H_0: \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ \cdots & \cdots & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \quad \alpha = (0, \dots, 0)^T, \quad \gamma > 0, \quad \text{rang } A = p-1.$$

Тоді за теоремою про перевірку лінійної гіпотези:

$$F = \frac{Q(\widehat{\alpha}_L) - Q(\widehat{\alpha})}{(p-1)\widehat{\sigma}^2} = \frac{\|X\widehat{\alpha} - X\widehat{\alpha}_L\|_2^2}{(p-1)\widehat{\sigma}^2} = \frac{\sum_{i=1}^N (X^T(k)\widehat{\alpha} - \bar{y})^2}{(p-1)\widehat{\sigma}^2} = F < F_{\gamma}(p-1, N-p).$$

6.7 Довірчі інтервали та області для функції регресії

Нас цікавить довірчий інтервал і область для величин $x^T(k)\alpha$ та для всього $X\alpha$.

1. Довірча область для вектора значень функції регресії $X\alpha$. Враховуючи довірчу область знайдену для $\widehat{\alpha}$ у попередньому пункті, можемо записати:

$$\frac{(\widehat{\alpha} - \alpha)^T X^T X(\widehat{\alpha} - \alpha)}{p\widehat{\sigma}^2} = \frac{\|X\widehat{\alpha} - X\alpha\|_2^2}{p\widehat{\sigma}^2} < F_{\gamma}(p, N - p).$$

2. Довірча область для $x^{T}(k)\alpha$. За властивістю 3:

$$\widehat{y}(k) \sim N(x^T(k)\alpha, \sigma^2 x^T(k)(X^T X)^{-1} x(k)),$$

тому наступна статистика

$$\frac{\widehat{y}(k) - x^T(k)\alpha}{\sigma\sqrt{x^T(k)(X^TX)^{-1}x(k)}} \sim N(0, 1).$$

За властивістю 4:

$$\frac{(N-p)\widehat{\sigma}^2}{\sigma^2} \sim \chi^2(N-p),$$

тому

$$\frac{\frac{\widehat{y}(k) - x^T(k)\alpha}{\sigma\sqrt{x^T(k)(X^TX)^{-1}x(k)}}}{\sqrt{\frac{(N-p)\widehat{\sigma}^2}{(N-p)\sigma^2}}} = \frac{\widehat{y}(k) - x^T(k)\alpha}{\widehat{\sigma}\sqrt{x^T(k)(X^TX)^{-1}x(k)}} \sim t(N-p),$$

тому довірча область має вигляд

$$\left| \frac{\widehat{y}(k) - x^T(k)\alpha}{\widehat{\sigma}\sqrt{x^T(k)(X^TX)^{-1}x(k)}} \right| < t_{\gamma/2}(N - p).$$

6.8 Перевірка на адекватність

Перевірка на адекватність здійснюється шляхом перевірки спільномірності оцінки $\hat{\sigma}$, отриманої на базі основної вибірки, з оцінкою σ^2 на базі спостережень з додаткової вибірки вимірів у фіксованій точці фазового простору.

Випадки неадекватності:

- 1. або більше параметрів;
- 2. або менше параметрів.
- 1. Нехай модель істинна: $My = X\alpha + X_1\alpha_1$, вибрана модель: $My = X\alpha$.

Не всі регресори включені. $\widehat{\alpha} = (X^TX)^{-1}X^Ty$.

Знаходимо оцінки
$$\widehat{\alpha}$$
, $\widehat{\sigma}$: $\widehat{\sigma}^2 = \frac{\|y - X\widehat{\alpha}\|_2^2}{N - p}$.

Оцінка $\widehat{\alpha}$ зміщена, тобто

$$M\widehat{\alpha} = \alpha + \Delta \alpha = \alpha + (X^T X)^{-1} X^T X_1 \alpha_1.$$

 $\widehat{\alpha}$ — неслушна оцінка, $\widehat{\sigma}$ — зміщена оцінка, тобто:

$$M\widehat{\sigma}^2 = \sigma^2 + \Delta \sigma^2$$
.

2. Нехай в істинній моделі менше параметрів, ніж у вибраній, у якій ϵ зайві. Тобто: $My = X\alpha$ істинна, а $My = X\alpha + X_1\alpha_1$ – вибрана.

$$\bar{X} = (X : X_1), \quad \bar{\alpha} = (\alpha, \alpha_1)^T.$$

В цьому випадку: $\hat{\bar{\alpha}}$ – незміщена, і $M\hat{\bar{\alpha}}=(\alpha,O)^T$. $\hat{\bar{\alpha}}$ – слушна оцінка.

Оцінка $\widehat{\sigma}^2$ – незміщена, $M\widehat{\sigma}^2 = \sigma^2$.

Ми втратили точності оцінки у вигляді:

$$M(\widehat{\alpha} - M\widehat{\alpha})(\widehat{\alpha} - M\widehat{\alpha})^T = \sigma^2(X^TX)^{-1} + \Delta u, \quad \Delta u > 0.$$

Точність оцінки може збільшуватись.

6.9 Не класичний регресійний аналіз

Розглянемо тепер випадки, коли деякі з припущень моделі, яку ми розглядали не виконуються.

6.9.1 Випадок корельованих збурень

Для нашої моделі $y = X\alpha + e$, де в класичному регресійному аналізі $e \sim N(\vec{0}, \sigma^2 E)$.

Нехай тепер це не так, а $e \sim N(\vec{0}, R)$, де R > 0 – кореляційна матриця. Спробуємо і для цього випадку отримати оцінку з тими ж хорошими властивостями, як і в класичному випадку.

$$R^{-1/2}y = R^{-1/2}X\alpha + R^{-1/2}e,$$

тоді, згідно властивості лінійного перетворення нормально розподілених випадкових величин $R^{-1/2}e \sim N(\vec{0},E)$, тобто тут помилки уже будуть незалежними.

Ввівши позначення отримаємо нову модель $\widetilde{y}=\widetilde{X}\alpha+\widetilde{e}$ причому $\widetilde{e}\sim N(\vec{0},R)$ і тоді будуємо оцінку класичним методом найменших квадратів :

$$\begin{split} \widehat{\alpha} &= (\widetilde{X}^*\widetilde{X})^{-1}\widetilde{X}^T\widetilde{y} = (X^TR^{-1/2}R^{-1/2}X)^{-1}X^TR^{-1/2}R^{-1/2}y = \\ &= (X^TR^{-1}X)^{-1}X^TR^{-1}y. \end{split}$$

Цю оцінку називають Марківською.

На неї розповсюджуються всі раніше сформульовані властивості, все прекрасно, але радіти рано: треба знати матрицю R, а на практиці вона зазвичай невідома. Часто можна знайти лише деяке наближення до неї, а тоді наближене значення R^{-1} може бути дуже далеко від реального значення, а потім ще й до $X^T R^{-1} X$ треба шукати обернену...

Марківська оцінка має наступні властивості:

- 1. $\hat{\alpha} \sim N(\alpha, (X^T R^{-1} X)^{-1}).$
- $2. \ \widehat{\alpha}$ ефективна на класі всіх незміщених оцінок.
- 3. Якщо кількість вимірів зростає (тобто залежить від об'єму), тоді

$$\widehat{\alpha}(N) = (X_N^T R_N^{-1} X_N)^{-1} X_N^T R_N^{-1} y_N$$

є сильно слушною тоді і тільки тоді, коли

$$(X_N^T R_N^{-1} X_N)^{-1} \xrightarrow[N \to \infty]{} O.$$

Марківську оцінку можна розглядати також як *розв'язок наступної опти*мізаційної задачі:

$$\widehat{\alpha} = \operatorname*{arg\,min}_{\alpha} \|e\|_{R^{-1}}^{2}.$$

Ця оцінка— це фактично один із прикладів, коли теорія— теорією, а практика— практикою.

6.9.2 Оцінки параметрів в умовах мультиколінеарності

Для $y = X\alpha + e$ в класичних припущеннях ми вважали, що rang X = p, тобто повний по стовпчиках ($p = \dim \alpha$). Знімемо це припущення.

Нехай $\operatorname{rang} X = p - q, \ q \geq 1$. Тоді, як результат, отримаємо, що класична оцінка просто не існує, оскільки матриця XX^T буде виродженою. Фактично це означає, що оцінка методом найменших квадратів буде не єдиною, і можна вибрати ту, яка найкраща для нас.

Нехай
$$\exists a_i : Xa_i = \vec{0}.$$

В цьому випадку кажуть, що ми знаходимось в умовах строгої мультиколінеарності. Якщо ж ця умова виконується тільки приблизно, то кажуть, що ми знаходимось в умовах мультиколінеарності.

Проаналізуємо ці випадки:

1. Строга мультиколінеарність: оцінка не єдина, множина оцінок є розв'язком системи

 $X^T X \widehat{\alpha} = X^T y$.

В принципі тут можна використати псевдообернення, але це виходить за рамки нашого курсу.

2. Мультиколінеарність: класична оцінка існує і вона єдина, але це теорія, а на практиці матриця X^TX виходить погано обумовленою (існують власні числа близькі нуля), тому оцінка нестійка та малоефективна ($\sigma(X^TX)^{-1}$ може бути дуже великою).

Є різні підходи до розв'язання цієї проблеми. Викладемо такий:

6.10 Гребеневі оцінки (ridge-оцінки)

Їх запропонував Херл в 1962р. Ідея проста: вводимо параметр θ і збурюємо X^TX :

$$\widehat{\alpha}(\theta) = (X^T X + \theta E)^{-1} X^T y,$$

де $\theta > 0$, але досить мале.

Введення цього зміщення відсуне і результат, але матриця $(X^TX + \theta E)$ вже не буде погано обумовленою. Виявилось також, що при деякому θ ця оцінка буде мати навіть кращі властивості, ніж класична, а саме, – меншу середньоквадратичну помилку.

Теорема 2. Для гребеневої оцінки виконуються наступні властивості:

- 1. $\widehat{\alpha}(\theta)=(E+\theta(X^TX)^{-1})^{-1}\widehat{\alpha}$, де $\widehat{\alpha}$ класична оцінка, $\widehat{\alpha}=(X^TX)^{-1}X^Ty$.
- 2. $\widehat{\alpha}(\theta) = (E \theta(X^TX + \theta E)^{-1})^{-1}\widehat{\alpha}$.
- 3. $M\widehat{\alpha}(\theta) = \alpha + \Delta \alpha$, де зміщення $\Delta \alpha = -\theta B \alpha$, а $B = (X^T X + \theta E)^{-1}$.
- 4. $M(\theta)=M\|\widehat{\alpha}(\theta)-\alpha\|_2^2=M\|\widehat{\alpha}(\theta)-M\widehat{\alpha}(\theta)\|_2^2+\|\Delta\alpha\|_2^2$ (перша рівність просто позначення).

6.11 Нелінійний регресійний аналіз

Моделі $y(k) = f(x(k), \alpha) + e(k), k = \overline{1, N}$, де e(k) – помилка моделі, поділяються на два підкласи:

- 1. Внутрішньо лінійні;
- 2. Внутрішньо нелінійні.

Внутрішнью лінійні— це моделі які шляхом перетворень зводяться до розв'язання деякої лінійної задачі.

Внутрішнью нелінійні— це моделі для яких не існує шляхів зведення до лінійної моделі.

Оцінка $\widehat{\alpha}$ шукається як розв'язок нелінійної (бажано квадратичної) задачі

$$\widehat{\alpha} = \underset{\alpha}{\operatorname{arg\,min}} \sum_{k} e^{z}(k) = \underset{\alpha}{\operatorname{arg\,min}} I(\alpha).$$

7 Коваріаційний аналіз

Треба побудувати модель залежності кількісної змінної від як від якісної так і від кількісної. Специфіка постановки задачі $\vec{\xi}_g \in \mathbb{R}^q$ — вектор незалежних якісних змінних, $\vec{\xi} \in \mathbb{R}^p$ — вектор кількісних змінних, η — залежна скалярна кількісна змінна.

На характеристику впливають як якісні так і кількісні змінні. Нехай y(k) — спостереження над η . Тоді модель класичного коваріаційного аналізу має вигляд:

$$y(k) = \sum_{i=1}^q x_g^{(i)}(k)\alpha_g^{(i)} + \sum_{i=1}^p x^{(i)}(k)\alpha^{(i)} + e(k) = x_g^T(k)\alpha_g + X^T(k)\alpha + e(k), \quad k = \overline{1, N}.$$

Перепишемо модель матричному вигляді: $y = X_g \alpha_g + X \alpha + e$.

Для знаходження оцінок параметрів моделі використовується покроковий метод найменших квадратів.

Основні припущення:

- 1. $e \sim N(\vec{0}, \sigma^2 E)$
- 2. стовпчики матриці X не залежать від умов експерименту.

- 3. вважаємо, що лінійні обмеження враховані, тобто $\operatorname{rang} X_g = q$, $\operatorname{rang} X = p$.
- 4. Немає обмежень на α_q та α .

Для розв'язку задачі коваріаційного аналізу, враховуючи структуру моделі використовують покроковий метод найменших квадратів:

7.1 Двокроковий метод найменших квадратів

- 1. Нехай $\alpha = \theta$, тоді маємо задачу дисперсійного аналізу: знаходимо оцінку $\widehat{\alpha}_g$ методом найменших квадратів: $\widehat{\alpha}_g(\theta) = (X_g^T X_g)^{-1} X_g^T y$ також залишкову суму квадратів $\mathrm{CK}_e(\theta) = y^T Q y$, де $Q = E X_g (X_q^T X_g)^{-1} X_q^T$.
- 2. Заміняємо в y на $y-X\alpha$: $\mathrm{CK}_e(\alpha)=(y-X\alpha)^TQ(y-X\alpha)$. Оцінка $\widehat{\alpha}_g=(X^TQX)^{-1}X^TQy,\quad \mathrm{CK}_q(\widehat{\alpha})=(y-X\widehat{\alpha})^TQ(y-X\widehat{\alpha})$
- 3. Замінюємо y на $y X\widehat{\alpha}$:

$$\widehat{\alpha}_g(\widehat{\alpha}) = (X_q^T)^{-1} X_q^T (y - X \widehat{\alpha}).$$

8 Аналіз часових рядів

Нехай η_t – випадковий процес з дискретним часом, де $t \in I = \{1, 2, 3, \ldots\}$, або = $\{\ldots, -2, -1, 0, 1, 2 \ldots\}$, y_t – спостереження над цим процесом $t \in I$, тобто конкретна реалізація.

Така послідовність спостережень в часі називається *часовим рядом* (інколи η_t називається часовим рядом).

В якості математичної моделі для часового ряду будемо використовувати наступне:

$$\eta_t = f(t) + \xi_t, \quad t \in I,$$

де f(t) – детермінована систематична складова часового ряду ξ_t – стохастична складова часового ряду f(t) ще називається $mpen\partial om$.

Якщо тренд можна апроксимувати на деякому класі параметричних функцій, то використовуються параметричні методи.

Якщо є можливість апроксимувати поліномом високого степеня у околі кожної точки, то можна використати метод ковзного середнього.

8.1 Часові ряди з поліномінальними трендами

Нехай відомо, що для часового ряду $\eta_t = f(t) + \xi_t, t \in I$ функцію тренда можна апроксимувати поліномом високого степеня.

Відносно ξ_t справедливо

- 1. $\forall t : \exists M \xi_t;$
- 2. $\forall t \neq s : \exists M \xi_t \xi_s$.

Задача полягає у:

- 1. знаходженні оцінок параметрів апроксимуючого полінома;
- 2. перевірка коефіцієнтів апроксимуючого полінома на значимість;
- 3. визначити порядок апроксимуючого полінома.