La población carcelaria en Colombia 1991-2017

Sergio Solano Febrero de 2016

Data

El INPEC publica mensualemente la serie población carcelaria, desde 1991 hasta el mese anterior a la publicación. Esta serie se encuentra separada por situación jurídica (condenados, sindicados) y por genero.

Objetivo

El proceso a través del cual las personas pasan de una situación jurídica a otra es conocido, y sin embargo no observado, pues no se publican las series de tiempo que reflejan esta transición (cantidad de personas sentenciadas por mes, cantidad de personas liberadas mes, duración de la condena).

Este ejercicio de demografía, enmarcado en el estudio de poblaciones pequeñas, presenta la oportunidad de comparar la efectividad de diferentes métodos de proyección.

Análisis exploratorio

La población carcelaria total entre 1991 y 2017 se ha cuadruplicado, al pasar de 32.036 a 128.125 internos. Aunque la mayoría son hombres la población carcelaria feminina en el mismo periodo ha crecido a una tasa mayor, pues se ha multiplicado por cinco, de 1633 en 1991 a 7800 en 2017.

Saving 6.5×4.5 in image

Saving 6.5×4.5 in image

El incremento en la población carcelaria podría tomarse como un efecto del crecimiento de la población colombiana. Para validar este supuesto calculamos la tasa de encarcelamiento, que mide la cantidad de personas encarceladas por cada cien mil habitantes. Este indicador pasó de 92 personas por cada cien mil habitantes en enero de 1991 a 242 en enero de 2016. Tal incremento se puede ver tanto en hombres como en mujeres.

La tasa de encarcelamiento ha crecido de forma exponencial, tanto en hombres como en mujeres, y se puede ver en la gráfica siguiente.

Crecimiento de la Población Privada de la Libertad (PPL)

Una primera aproximación al análisis de la población carcelaria, se podría realizar al separar los componentes estacionales, de tendencia y aleatorios de la serie de tiempo. No obstante, es posible inferir que la variabilidad de la serie no es constante. Por esta razón resultaría pertinente analizar la tasa de crecimiento de la población de mes a mes. Una técnica comunmente usada es trabajar con la difencia de los logaritmos de la población, que para variaciones cercanas a cero, se aproxima a la tasa de crecimiento.

Crecimiento de la población privada de la libertad masculida

Crecimiento de la población privada de la libertad femenina

Como se evidencia que componente aleatorio no tiene varianza constante se genera componente lineal, el análisis pertinente es por sindicados y condenados, pues es el que se considera en el resto de la tesis.

```
# Población sindicada a serie de tiempo por situación
ppl_sitjur %>% spread(key = "categoria", value = valor) -> ppl_situacion
# Serie de tiempo de población total
TPPtimeseries <- ts(ppl_situacion$total, frequency=12, start=c(1991,1))
# Serie de tiempo de población sindicada
SPPtimeseries <- ts(ppl_situacion$condenados, frequency=12, start=c(1991,1))
# Serie de tiempo de población condenada
CPPtimeseries <- ts(ppl_situacion$sindicados, frequency=12, start=c(1991,1))

# Ajustar a zoo, para poder hacer gráfica
Total <- as.zoo(diff(TPPtimeseries))
Sindicados <- as.zoo(diff(SPPtimeseries))
Condenados <- as.zoo(diff(CPPtimeseries))
# Gráficar crecimient de las tres
autoplot(merge(Total, Sindicados, Condenados), geom = "line") + ylab("N° de personas") + xlab("Periodo graf_var</pre>
```

Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.

Warning: Removed 11 rows containing missing values (geom_path).


```
ggsave("variacion_intermensual.png")
```

Saving 6.5 x 4.5 in image

```
## Warning: Removed 11 rows containing missing values (geom_path).
# Descomponer variación intermensual
DeltaTPP <- decompose(Total)</pre>
```

Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.

```
## Warning in decompose(Total): Métodos incompatibles ("Ops.zoo", "Ops.ts")
## para "-"
## Warning in structure(list(x = x, seasonal = seasonal, trend = trend, random
## = if (type == : Métodos incompatibles ("Ops.zoo", "Ops.ts") para "-"
```

```
# Asignar
tendencia <- as.zoo(DeltaTPP$trend)
aleatorio <- as.zoo(DeltaTPP$random)
estacional <- as.zoo(DeltaTPP$seasonal)

# Generar gráfica
autoplot(merge(tendencia,estacional, aleatorio), geom = "line") + ylab("N° de personas") + xlab("Period
graf_tendencia_tpp</pre>
```

Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.

Warning: Removed 23 rows containing missing values (geom_path).


```
ggsave("variacion_mensual_total_desc.png")
```

```
## Saving 6.5 \times 4.5 in image
## Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.
## Warning: Removed 23 rows containing missing values (geom_path).
# Descomponer variación intermensual
DeltaSPP <- decompose(Sindicados)</pre>
## Warning in decompose(Sindicados): Métodos incompatibles ("Ops.zoo",
## "Ops.ts") para "-"
## Warning in structure(list(x = x, seasonal = seasonal, trend = trend, random
## = if (type == : Métodos incompatibles ("Ops.zoo", "Ops.ts") para "-"
# Asignar
tendencia <- as.zoo(DeltaSPP$trend)</pre>
aleatorio <- as.zoo(DeltaSPP$random)</pre>
estacional <- as.zoo(DeltaSPP$seasonal)</pre>
# Generar gráfica
autoplot(merge(tendencia, estacional, aleatorio), geom = "line") + ylab("N° de personas, sindicados") +
# gráfica
graf_tendencia_spp
```

Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.

Warning: Removed 23 rows containing missing values (geom_path).


```
## Saving 6.5 x 4.5 in image
## Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.
## Warning: Removed 23 rows containing missing values (geom_path).
# Descomponer variación intermensual
DeltaCPP <- decompose(Condenados)
## Warning in decompose(Condenados): Métodos incompatibles ("Ops.zoo",
## "Ops.ts") para "-"
## Warning in structure(list(x = x, seasonal = seasonal, trend = trend, random
## = if (type == : Métodos incompatibles ("Ops.zoo", "Ops.ts") para "-"
# Asignar
tendencia <- as.zoo(DeltaCPP$trend)
aleatorio <- as.zoo(DeltaCPP$random)
estacional <- as.zoo(DeltaCPP$seasonal)
# Generar gráfica
autoplot(merge(tendencia,estacional, aleatorio), geom = "line") + ylab("N° de personas, condenados") +</pre>
```

Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.
Warning: Removed 23 rows containing missing values (geom_path).

gráfica

graf_tendencia_cpp

ggsave("variacion mensual condenados desc.png")

Saving 6.5×4.5 in image

Don't know how to automatically pick scale for object of type yearmon. Defaulting to continuous.

Warning: Removed 23 rows containing missing values (geom_path).

Procesos ARIMA

Los procesos ARMA son procesos aleatorios de la forma

$$Y_t = \gamma Y_{t-1} + \gamma_2 Y_{t-2} \dots + \epsilon + \theta_1 \epsilon_{t-1}$$

Aunque el termino ϵ no tiene necesariamente una distribución normal, por el resto de documento se asumirá una distribución normal con media μ y varianza σ š, a menos que se especifique lo contrario.

Los procesos ARIMA resultan al considerar una serie de la forma:

$$Y_t = \alpha + Y_{t-1}$$

Tal que el proceso $Y_t - Y_{t-1}$ es un proceso ARMA.

Una primera aproximación a la proyección de poblaciones carcelarias será validar si es posible modelar el proceso como un proceso ARIMA. Con este propósito presentamos las funciones de autocorrelación y autocorrelación parcial de la población total.


```
## Crear variables
# Población carcelaria total
ppl_sitjur %>% dplyr::filter(categoria == "total", !(is.na(valor))) -> ppl_total
ppl_total <- ppl_total$valor
ts_total <- ts(ppl_total, start = 1991, frequency = 12)
# Sindicados
ppl_sitjur %>% dplyr::filter(categoria == "sindicados", !(is.na(valor))) -> ppl_sindi
ppl_sindi <- ppl_sindi$valor
ts_sindi <- ts(ppl_sindi, start = 1991, frequency = 12)
# Condenados
ppl_sitjur %>% dplyr::filter(categoria == "condenados", !(is.na(valor))) -> ppl_conde
```

```
ppl_conde <- ppl_conde$valor
ts_conde <- ts(ppl_conde, start = 1991, frequency = 12)
error = 2/sqrt(length(ppl_conde))

## Población total
# Calcular acf y pacf
acf_total <- as.data.frame(acf2(diff(diff(ts_total), lag = 12), max.lag = 60))</pre>
```

Series: diff(diff(ts_total), lag = 12)


```
# Gráfica acf total
acf_total %>% ggplot() + geom_bar(aes(x = c(1:60), y = ACF), stat = "identity", fill = "steelblue") + s
# Gráfica pacf total
acf_total %>% ggplot() + geom_bar(aes(x = c(1:60), y = PACF), stat = "identity", fill = "steelblue") +
## Población sindicada
# Calcular acf y pacf
acf_sindi <- as.data.frame(acf2(diff(diff(ts_sindi), lag = 12), max.lag = 60))</pre>
```



```
# Gráfica acf sindicados
acf_sindi %>% ggplot() + geom_bar(aes(x = c(1:60), y = ACF), stat = "identity", fill = "steelblue1") +
# Gráfica pacf sindicados
acf_sindi %>% ggplot() + geom_bar(aes(x = c(1:60), y = PACF), stat = "identity", fill = "steelblue1") +
## Población condenada
# Calcular acf y pacf
acf_conde <- as.data.frame(acf2(diff(diff(ts_conde), lag = 12), max.lag = 60))</pre>
```



```
# Gráfica acf condenados
acf_conde %>% ggplot() + geom_bar(aes(x = c(1:60), y = ACF), stat = "identity", fill = "steelblue2") +
# Gráfica pacf condenados
acf_conde %>% ggplot() + geom_bar(aes(x = c(1:60), y = PACF), stat = "identity", fill = "steelblue2") +
#png(file = 'ACF_var_pob.png', height = 750, width = 500, res = 85)
ACF_var_pob <- grid.arrange(graf_acf_total, graf_pacf_total, graf_acf_sindi, graf_pacf_sindi, graf_acf_condenados</pre>
```


TableGrob (3 x 2) "arrange": 6 grobs ## z cells name grob ## 1 1 (1-1,1-1) arrange gtable[layout] ## 2 2 (1-1,2-2) arrange gtable[layout] ## 3 3 (2-2,1-1) arrange gtable[layout] ## 4 4 (2-2,2-2) arrange gtable[layout] ## 5 5 (3-3,1-1) arrange gtable[layout] ## 6 6 (3-3,2-2) arrange gtable[layout] ##dev.copy(png,'ACF_var_pob') #dev.off()

Las funciones de autocorrelación y correlación cruzada, de $Y_t - Y_{t-1} \$ muestran:

- La función de autocorrelación decae, y la función de autocorrelación parcial también decae, sugiriendo un ARMA.
- La función de autocorrelación se encuetra sobre las dos desviaciones estándar, sugiriendo que son significativas.
- La función de autocorrelación tiene un único pico en el periodo doce, la función de autocorrelación parcial decae lentamente, sugiriendo un MA(1)

En estas condiciones podemos ajustar un ARIMA (1,1,1,0,0,1)

Todos los parámetros del modelo tienen un p_value que sugiere que son significativos, excepto por la constante. Sin embargo, la autocorrelación del periodo dos sugiere que podemos estimar un ARIMA (1,1,1,0,0,2)

El nuevo término SA2 resulta siginicativo y presenta criterios de información de valor más pequeño, lo que implica que el modelo ARIMA (1,1,1,0,0,2) resulta más apropiado que el modelo ARIMA (1,1,1,0,0,1). Proyecciones de la población carcelaria del modelo ARIMA (1,1,1,0,0,2) se presentan a continuación:

Se presenta proyección de la población sindicada:

Se presenta proyección de la población condenada:

Limitaciones de los modelos ARIMA en proyección de poblaciones carcelarias

Aunque es posible seguir analizando modelos ARIMA hasta encontrar el que presente mejores criterios de información, detendremos el analisis en este punto, para centrarnos en las limitaciones del enfoque.

- 1. La serie de población carcelarias incluye, por lo menos, dos series de tiempo con un comportamiento diferente: La población condenada y la población sindicada. Estos procesos, son en principio procesos autoregresivos, donde además se podría intuir el error no es independiente (como en la población total).
- 2. Los shocks en el sistema no son necesariamente estables en el tiempo. Las variaciones en los parámetros del modelo dependen de variables exógenas, como la cantidad de personas que ingresan al sistema y la dureza de las penas.
- 3. Los intervalos de confianza crecen rápidamente pues el modelo se ve afectado fuertemente por cambios en el nivel.
- 4. Puesto que el modelo supone unos parámetros fijos no da cuenta de la influencia de variables exógenas en el crecimiento de la población carcelaria.

MODELOS VAR:

```
ts_sincon <- cbind (diff(ts_sin), diff(ts_con))
VARselect(ts_sincon, lag.max=9, type="const")

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)</pre>
```

```
##
##
## $criteria
##
                                2
                   1
## AIC(n) 2.568714e+01 2.567870e+01 2.567962e+01 2.564005e+01 2.566054e+01
## HQ(n) 2.571656e+01 2.572774e+01 2.574827e+01 2.572831e+01 2.576841e+01
## SC(n) 2.576068e+01 2.580127e+01 2.585121e+01 2.586067e+01 2.593018e+01
## FPE(n) 1.431474e+11 1.419456e+11 1.420773e+11 1.365678e+11 1.393981e+11
##
                   6
                                7
                                            8
## AIC(n) 2.566920e+01 2.567951e+01 2.568274e+01 2.568267e+01
## HQ(n) 2.579669e+01 2.582662e+01 2.584946e+01 2.586900e+01
## SC(n) 2.598787e+01 2.604721e+01 2.609946e+01 2.614842e+01
## FPE(n) 1.406175e+11 1.420829e+11 1.425524e+11 1.425561e+11
ts_sincon_mod <- VAR(ts_sincon,p = 1)
forecast_var <- predict(ts_sincon_mod, n.ahead = 60)</pre>
ts_sincon_mod
##
## VAR Estimation Results:
## =========
##
## Estimated coefficients for equation diff.ts_sin.:
## Call:
## diff.ts_sin. = diff.ts_sin..l1 + diff.ts_con..l1 + const
## diff.ts sin..l1 diff.ts con..l1
                                          const
##
        0.1103404
                       0.1373275
                                     36.6481979
##
##
## Estimated coefficients for equation diff.ts_con.:
## diff.ts_con. = diff.ts_sin..l1 + diff.ts_con..l1 + const
## diff.ts_sin..l1 diff.ts_con..l1
                                          const
##
        0.2591926
                       0.3470605
                                     117.6919129
forecast_var
## $diff.ts_sin.
##
            fcst
                    lower
                             upper
                                        CI
  [1,] 76.66558 -1281.091 1434.422 1357.757
   [2,] 73.76214 -1293.174 1440.698 1366.936
##
## [3,] 73.62323 -1295.151 1442.397 1368.774
## [4,] 73.56753 -1295.580 1442.715 1369.148
## [5,] 73.54243 -1295.682 1442.766 1369.224
## [6,] 73.53110 -1295.708 1442.771 1369.240
## [7,] 73.52599 -1295.717 1442.769 1369.243
## [8,] 73.52368 -1295.720 1442.767 1369.243
## [9,] 73.52264 -1295.721 1442.766 1369.244
## [10,] 73.52217 -1295.721 1442.766 1369.244
## [11,] 73.52195 -1295.722 1442.766 1369.244
## [12,] 73.52186 -1295.722 1442.765 1369.244
## [13,] 73.52182 -1295.722 1442.765 1369.244
```

```
## [14,] 73.52180 -1295.722 1442.765 1369.244
## [15,] 73.52179 -1295.722 1442.765 1369.244
## [16,] 73.52178 -1295.722 1442.765 1369.244
## [17,] 73.52178 -1295.722 1442.765 1369.244
## [18,] 73.52178 -1295.722 1442.765 1369.244
## [19,] 73.52178 -1295.722 1442.765 1369.244
## [20,] 73.52178 -1295.722 1442.765 1369.244
## [21,] 73.52178 -1295.722 1442.765 1369.244
## [22,] 73.52178 -1295.722 1442.765 1369.244
## [23,] 73.52178 -1295.722 1442.765 1369.244
## [24,] 73.52178 -1295.722 1442.765 1369.244
## [25,] 73.52178 -1295.722 1442.765 1369.244
## [26,] 73.52178 -1295.722 1442.765 1369.244
## [27,] 73.52178 -1295.722 1442.765 1369.244
## [28,] 73.52178 -1295.722 1442.765 1369.244
## [29,] 73.52178 -1295.722 1442.765 1369.244
## [30,] 73.52178 -1295.722 1442.765 1369.244
## [31,] 73.52178 -1295.722 1442.765 1369.244
## [32,] 73.52178 -1295.722 1442.765 1369.244
## [33,] 73.52178 -1295.722 1442.765 1369.244
## [34,] 73.52178 -1295.722 1442.765 1369.244
## [35,] 73.52178 -1295.722 1442.765 1369.244
## [36,] 73.52178 -1295.722 1442.765 1369.244
## [37,] 73.52178 -1295.722 1442.765 1369.244
## [38,] 73.52178 -1295.722 1442.765 1369.244
## [39,] 73.52178 -1295.722 1442.765 1369.244
## [40,] 73.52178 -1295.722 1442.765 1369.244
## [41,] 73.52178 -1295.722 1442.765 1369.244
## [42,] 73.52178 -1295.722 1442.765 1369.244
## [43,] 73.52178 -1295.722 1442.765 1369.244
## [44,] 73.52178 -1295.722 1442.765 1369.244
## [45,] 73.52178 -1295.722 1442.765 1369.244
## [46,] 73.52178 -1295.722 1442.765 1369.244
## [47,] 73.52178 -1295.722 1442.765 1369.244
## [48,] 73.52178 -1295.722 1442.765 1369.244
## [49,] 73.52178 -1295.722 1442.765 1369.244
## [50,] 73.52178 -1295.722 1442.765 1369.244
## [51,] 73.52178 -1295.722 1442.765 1369.244
## [52,] 73.52178 -1295.722 1442.765 1369.244
## [53,] 73.52178 -1295.722 1442.765 1369.244
## [54,] 73.52178 -1295.722 1442.765 1369.244
## [55,] 73.52178 -1295.722 1442.765 1369.244
## [56,] 73.52178 -1295.722 1442.765 1369.244
## [57,] 73.52178 -1295.722 1442.765 1369.244
## [58,] 73.52178 -1295.722 1442.765 1369.244
## [59,] 73.52178 -1295.722 1442.765 1369.244
## [60,] 73.52178 -1295.722 1442.765 1369.244
##
## $diff.ts_con.
##
             fcst
                      lower
                               upper
   [1,] 208.6590 -1007.066 1424.384 1215.725
##
  [2,] 209.9804 -1066.589 1486.549 1276.569
## [3,] 209.6864 -1078.969 1498.342 1288.655
## [4,] 209.5484 -1081.556 1500.653 1291.104
```

```
[5,] 209.4860 -1082.117 1501.089 1291.603
    [6,] 209.4579 -1082.247 1501.162 1291.704
    [7,] 209.4452 -1082.280 1501.170 1291.725
   [8,] 209.4395 -1082.290 1501.169 1291.729
   [9,] 209.4369 -1082.293 1501.167 1291.730
## [10,] 209.4357 -1082.295 1501.166 1291.730
## [11,] 209.4352 -1082.295 1501.166 1291.730
## [12,] 209.4349 -1082.296 1501.165 1291.730
## [13,] 209.4348 -1082.296 1501.165 1291.730
## [14,] 209.4348 -1082.296 1501.165 1291.730
## [15,] 209.4348 -1082.296 1501.165 1291.730
## [16,] 209.4348 -1082.296 1501.165 1291.730
## [17,] 209.4347 -1082.296 1501.165 1291.730
## [18,] 209.4347 -1082.296 1501.165 1291.730
## [19,] 209.4347 -1082.296 1501.165 1291.730
## [20,] 209.4347 -1082.296 1501.165 1291.730
## [21,] 209.4347 -1082.296 1501.165 1291.730
## [22,] 209.4347 -1082.296 1501.165 1291.730
## [23,] 209.4347 -1082.296 1501.165 1291.730
## [24,] 209.4347 -1082.296 1501.165 1291.730
## [25,] 209.4347 -1082.296 1501.165 1291.730
## [26,] 209.4347 -1082.296 1501.165 1291.730
## [27,] 209.4347 -1082.296 1501.165 1291.730
## [28,] 209.4347 -1082.296 1501.165 1291.730
## [29,] 209.4347 -1082.296 1501.165 1291.730
## [30,] 209.4347 -1082.296 1501.165 1291.730
## [31,] 209.4347 -1082.296 1501.165 1291.730
## [32,] 209.4347 -1082.296 1501.165 1291.730
## [33,] 209.4347 -1082.296 1501.165 1291.730
## [34,] 209.4347 -1082.296 1501.165 1291.730
## [35,] 209.4347 -1082.296 1501.165 1291.730
## [36,] 209.4347 -1082.296 1501.165 1291.730
## [37,] 209.4347 -1082.296 1501.165 1291.730
## [38,] 209.4347 -1082.296 1501.165 1291.730
## [39,] 209.4347 -1082.296 1501.165 1291.730
## [40,] 209.4347 -1082.296 1501.165 1291.730
## [41,] 209.4347 -1082.296 1501.165 1291.730
## [42,] 209.4347 -1082.296 1501.165 1291.730
## [43,] 209.4347 -1082.296 1501.165 1291.730
## [44,] 209.4347 -1082.296 1501.165 1291.730
## [45,] 209.4347 -1082.296 1501.165 1291.730
## [46,] 209.4347 -1082.296 1501.165 1291.730
## [47,] 209.4347 -1082.296 1501.165 1291.730
## [48,] 209.4347 -1082.296 1501.165 1291.730
## [49,] 209.4347 -1082.296 1501.165 1291.730
## [50,] 209.4347 -1082.296 1501.165 1291.730
## [51,] 209.4347 -1082.296 1501.165 1291.730
## [52,] 209.4347 -1082.296 1501.165 1291.730
## [53,] 209.4347 -1082.296 1501.165 1291.730
## [54,] 209.4347 -1082.296 1501.165 1291.730
## [55,] 209.4347 -1082.296 1501.165 1291.730
## [56,] 209.4347 -1082.296 1501.165 1291.730
## [57,] 209.4347 -1082.296 1501.165 1291.730
## [58,] 209.4347 -1082.296 1501.165 1291.730
```

```
## [59,] 209.4347 -1082.296 1501.165 1291.730
## [60,] 209.4347 -1082.296 1501.165 1291.730
# Cite packages
if(nchar(system.file(package="astsa"))) citation("astsa")
## To cite package 'astsa' in publications use:
##
##
     David Stoffer (2016). astsa: Applied Statistical Time Series
##
     Analysis. R package version 1.7.
     https://CRAN.R-project.org/package=astsa
##
##
## A BibTeX entry for LaTeX users is
##
     @Manual{,
##
       title = {astsa: Applied Statistical Time Series Analysis},
##
##
       author = {David Stoffer},
       year = \{2016\},\
##
##
       note = {R package version 1.7},
       url = {https://CRAN.R-project.org/package=astsa},
##
##
     }
##
## ATTENTION: This citation information has been auto-generated from
## the package DESCRIPTION file and may need manual editing, see
## 'help("citation")'.
```

Documento tesis

```
### Total 111002
png(file = 'Arima_total_111002.png', height = 750, width = 500, res = 85)
arima_total_1 <- sarima(ts_total,1,1,1,0,0,2, S = 12, details = FALSE)
dev.off()
## pdf
##
### Total 111001
png(file = 'Arima_total_111001.png', height = 750, width = 500, res = 85)
arima_total_2 <- sarima(ts_total,1,1,1,0,0,1, S = 12, details = FALSE)
dev.off()
## pdf
auto.arima(ts_total)
## Series: ts_total
## ARIMA(3,2,1)(0,0,2)[12]
## Coefficients:
##
                    ar2
                              ar3
                                       ma1
                                              sma1
                                                      sma2
           ar1
##
        0.0520 -0.0864 -0.1553 -0.6756 0.2357 0.1908
## s.e. 0.1034 0.0748
                         0.0712
                                    0.0931 0.0575 0.0491
##
```

```
## sigma^2 estimated as 363346: log likelihood=-2430.23
## AIC=4874.46
                                   AICc=4874.83
                                                                   BIC=4900.64
### Total Auto Arima
png(file = 'Arima_total_321002.png', height = 750, width = 500, res = 85)
arima_total_3 <- sarima(ts_total,3,2,1,0,0,2, S = 12, details = FALSE)
dev.off()
## pdf
##
          2
auto.arima(ts_total, ic = "aic")
## Series: ts total
## ARIMA(3,2,1)(0,0,2)[12]
##
## Coefficients:
                          ar1
                                              ar2
                                                                  ar3
                                                                                     ma1
                                                                                                     sma1
                                                                                                                       sma2
                   0.0520 -0.0864 -0.1553 -0.6756 0.2357 0.1908
##
## s.e. 0.1034 0.0748 0.0712
                                                                            0.0931 0.0575 0.0491
##
## sigma^2 estimated as 363346: log likelihood=-2430.23
## AIC=4874.46
                                    AICc=4874.83
                                                                      BIC=4900.64
### Total 121002
png(file = 'Arima_total_121002.png', height = 750, width = 500, res = 85)
arima_total_4 <- sarima(ts_total,1,2,1,0,0,2, S = 12, details = FALSE)
dev.off()
## pdf
##
Indicadores <- matrix(c(arima_total_1$AIC,arima_total_1$BIC,arima_total_2$AIC,arima_total_2$BIC,arima_t
AIC_total <- AIC(arima_total_1\stackfit, arima_total_2\stackfit, arima_total_3\stackfit, arima_total_4\stackfit)
## Warning in AIC.default(arima_total_1$fit, arima_total_2$fit,
## arima_total_3$fit, : models are not all fitted to the same number of
## observations
BIC_total <- BIC(arima_total_1\frac{1}{5}fit,arima_total_2\frac{1}{5}fit, arima_total_3\frac{1}{5}fit,arima_total_4\frac{1}{5}fit)
## Warning in BIC.default(arima_total_1$fit, arima_total_2$fit,
## arima_total_3$fit, : models are not all fitted to the same number of
## observations
Indicadores\_df \leftarrow cbind(c("(1,1,1,0,0,2)","(1,1,1,0,0,1)","(3,2,1,0,0,2)","(1,2,1,0,0,2)"), round(AIC\_torres\_df) = (AIC\_torres\_df) = (AIC
colnames(Indicadores_df) <- c("ORDEN","AIC","BIC")</pre>
#xtable(Indicadores_df)
\#xtable(arima\_total\_4\$ttable)
#xtable(arima_total_4$ttable, label = "parámetros_121002", caption = "Parámetros del modelo (1,2,1,0,0,
### sindicado 111001
png(file = 'Arima sindi 11101.png', height = 750, width = 500, res = 85)
arima_sindi_1 <- sarima(ts_sindi,1,1,1,0,0,1, S = 12, details = FALSE)
dev.off()
```

pdf

```
##
### sindicado 211001
png(file = 'Arima_sindi_211001.png', height = 750, width = 500, res = 85)
arima_sindi_2 <- sarima(ts_sindi,2,1,1,0,0,1, S = 12, details = FALSE)
dev.off()
## pdf
##
auto.arima(ts sindi, ic = "aic")
## Series: ts_sindi
## ARIMA(0,1,2)(0,0,1)[12]
##
## Coefficients:
##
           ma1
                  ma2
                          sma1
         0.0611 0.160 0.1547
## s.e. 0.0572 0.053 0.0571
## sigma^2 estimated as 467153: log likelihood=-2477.86
## AIC=4963.72 AICc=4963.85
                               BIC=4978.7
### sindicado Auto Arima
png(file = 'Arima_sindi_012001.png', height = 750, width = 500, res = 85)
arima_sindi_3 <- sarima(ts_sindi,0,1,2,0,0,1, S = 12, details = FALSE)
dev.off()
## pdf
##
### Total 121002
png(file = 'Arima_sindi_011000.png', height = 750, width = 500, res = 85)
arima_sindi_4 <- sarima(ts_sindi,0,1,1,0,0,0, S = 12, details = FALSE)
dev.off()
## pdf
##
AIC_sindi <- AIC(arima_sindi_1$fit,arima_sindi_2$fit, arima_sindi_3$fit,arima_sindi_4$fit)
BIC_sindi <- BIC(arima_sindi_1$fit,arima_sindi_2$fit, arima_sindi_3$fit,arima_sindi_4$fit)
Indicadores_df_sindi <- cbind(c("(1,1,1,0,0,1)","(2,1,1,0,0,1)","(0,1,2,0,0,1)","(0,1,1,0,0,0)"),round(...)
colnames(Indicadores_df_sindi) <- c("ORDEN","AIC","BIC")</pre>
xtable(Indicadores_df_sindi)
## % latex table generated in R 3.4.2 by xtable 1.8-2 package
## % Mon Nov 13 21:20:37 2017
## \begin{table}[ht]
## \centering
## \begin{tabular}{rlll}
   \hline
##
## & ORDEN & AIC & BIC \\
   \hline
##
## 1 & (1,1,1,0,0,1) & 4968.8 & 4987.52 \\
##
   2 & (2,1,1,0,0,1) & 4964.1 & 4986.56 \\
## 3 & (0,1,2,0,0,1) & 4964.26 & 4982.98 \\
```

```
4 & (0,1,1,0,0,0) & 4974.16 & 4985.39 \\
##
      \hline
## \end{tabular}
## \end{table}
\#xtable(arima\_total\_4\$ttable)
xtable(arima_sindi_3$ttable, label = "parámetros_sindi_011001", caption = "Parámetros del modelo (0,1,1
## % latex table generated in R 3.4.2 by xtable 1.8-2 package
## % Mon Nov 13 21:20:37 2017
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
     \hline
##
##
   & Estimate & SE & t.value & p.value \\
##
    \hline
## ma1 & 0.06 & 0.06 & 0.99 & 0.32 \\
##
    ma2 & 0.16 & 0.05 & 2.91 & 0.00 \\
     sma1 & 0.15 & 0.06 & 2.57 & 0.01 \\
##
##
     constant & 64.94 & 53.21 & 1.22 & 0.22 \\
##
      \hline
## \end{tabular}
## \caption{Parámetros del modelo (0,1,1,0,0,1)}
## \label{parametros_sindi_011001}
## \end{table}
```

Población condenada

```
### condenada 111001
png(file = 'Arima_conde_111001.png', height = 750, width = 500, res = 85)
arima_conde_1 <- sarima(ts_conde,1,1,1,0,0,1, S = 12, details = FALSE)
dev.off()
## pdf
##
     2
### condenado 211001
png(file = 'Arima_conde_211001.png', height = 750, width = 500, res = 85)
arima_conde_2 <- sarima(ts_conde,2,1,1,0,0,1, S = 12, details = FALSE)
dev.off()
## pdf
##
auto.arima(ts_conde, ic = "aic")
## Series: ts_conde
## ARIMA(1,1,1)(0,0,1)[12] with drift
##
## Coefficients:
##
                                     drift
           ar1
                    ma1
                            sma1
        0.8823 -0.7293 0.0935 198.6161
## s.e. 0.0641
                 0.0935 0.0604
                                  86.2840
## sigma^2 estimated as 384640: log likelihood=-2447.04
```

```
## AIC=4904.08
                AICc=4904.27 BIC=4922.79
### condenado Auto Arima
png(file = 'Arima_conde_012001.png', height = 750, width = 500, res = 85)
arima_conde_3 <- sarima(ts_conde,0,1,2,0,0,1, S = 12, details = FALSE)
dev.off()
## pdf
##
### Total 121002
png(file = 'Arima_conde_011000.png', height = 750, width = 500, res = 85)
arima_conde_4 <- sarima(ts_conde,0,1,1,0,0,0, S = 12, details = FALSE)
dev.off()
## pdf
##
AIC_conde <- AIC(arima_conde_1$fit,arima_conde_2$fit, arima_conde_3$fit,arima_conde_4$fit)
BIC_conde <- BIC(arima_conde_1\fit,arima_conde_2\fit, arima_conde_3\fit,arima_conde_4\fit)
Indicadores_df_conde <- cbind(c("(1,1,1,0,0,1)","(2,1,1,0,0,1)","(0,1,1,0,0,1)","(0,1,1,0,0,0)"),round(
colnames(Indicadores_df_conde) <- c("ORDEN","AIC","BIC")</pre>
xtable(Indicadores_df_conde)
## \% latex table generated in R 3.4.2 by xtable 1.8-2 package
## % Mon Nov 13 21:20:39 2017
## \begin{table}[ht]
## \centering
## \begin{tabular}{rlll}
##
   \hline
## & ORDEN & AIC & BIC \\
##
    \hline
## 1 & (1,1,1,0,0,1) & 4904.08 & 4922.79 \\
   2 & (2,1,1,0,0,1) & 4906 & 4928.46 \\
   3 & (0,1,1,0,0,1) & 4914.84 & 4933.55 \\
     4 & (0,1,1,0,0,0) & 4925.62 & 4936.85 \\
##
      \hline
## \end{tabular}
## \end{table}
#xtable(arima total 4$ttable)
xtable(arima_conde_1$ttable, label = "parámetros_conde_111001", caption = "Parámetros del modelo (1,1,1
## \% latex table generated in R 3.4.2 by xtable 1.8-2 package
## % Mon Nov 13 21:20:39 2017
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## & Estimate & SE & t.value & p.value \\
##
## ar1 & 0.88 & 0.06 & 13.75 & 0.00 \\
    ma1 & -0.73 & 0.09 & -7.80 & 0.00 \\
     sma1 & 0.09 & 0.06 & 1.55 & 0.12 \\
##
     constant & 198.62 & 86.28 & 2.30 & 0.02 \\
```

```
## \hline
## \end{tabular}
## \caption{Parámetros del modelo (1,1,1,0,0,1)}
## \label{parámetros_conde_111001}
## \end{table}
# Proyección
forecast <- sarima.for(ts_total,n.ahead = 36, 1,2,1,0,0,2, S = 12)</pre>
```



```
# data frame
forecast_frame <- data.frame(Proyección=as.matrix(forecast$pred),Error=as.matrix(forecast$se), date=as.
#data histórica
hist_frame <- data.frame(Historico=as.matrix(ts_total), date=as.Date(as.yearmon(time(ts_total))))
# ggplot
ggplot() + geom_ribbon(data = forecast_frame, aes(x = date, ymin = Proyección - 2*Error, ymax = Proyecc
graf_pry_total_4</pre>
```


ggsave("graf_pry_total_4.png")

Saving 6.5 x 4.5 in image

Proyección

forecast <- sarima.for(ts_sindi,n.ahead = 36, 0,1,1,0,0,1, S = 12)</pre>


```
# data frame
forecast_frame <- data.frame(Proyección=as.matrix(forecast$pred),Error=as.matrix(forecast$se), date=as.frame <- data.frame(Historico=as.matrix(ts_sindi), date=as.Date(as.yearmon(time(ts_sindi))))
# ggplot
ggplot() + geom_ribbon(data = forecast_frame, aes(x = date, ymin = Proyección - 2*Error, ymax = Proyecc
graf_pry_total_3</pre>
```


ggsave("graf_pry_sindi_3.png")

Saving 6.5 x 4.5 in image

Proyección

forecast \leftarrow sarima.for(ts_conde,n.ahead = 36, 1,1,1,0,0,1, S = 12)


```
# data frame
forecast_frame <- data.frame(Proyección=as.matrix(forecast$pred),Error=as.matrix(forecast$se), date=as.frame <- data.frame(Historico=as.matrix(ts_conde), date=as.Date(as.yearmon(time(ts_conde))))
# ggplot
ggplot() + geom_ribbon(data = forecast_frame, aes(x = date, ymin = Proyección - 2*Error, ymax = Proyecc
graf_pry_conde_1</pre>
```


Saving 6.5 x 4.5 in image

Método de ratio Correlation.

```
url <- "https://www.dropbox.com/s/94oblxtlc8anlk1/PRY_POB_NAL_DANE_EDAD.csv?dl=1"
destfile <- "POB_NAL_DAN_EDAD.csv"
curl_download(url, destfile)

pob_nal_dane_edad = read.csv("POB_NAL_DAN_EDAD.csv",header = TRUE,sep = ",",stringsAsFactors=FALSE)

pob_nal_dane_edad %<>% gather(Rango_edad, Poblacion, -Año, -Grupos.de.edad) %>% spread(Grupos.de.edad, pob_nal_dane_edad %<>% dplyr::filter(Año>1990)

pob_nal_dane_edad $Rango_edad<- gsub("X","",pob_nal_dane_edad$Rango_edad)

pob_nal_dane_edad $Rango_edad<- gsub("\\.","-",pob_nal_dane_edad$Rango_edad)

pob_nal_dane_edad $Rango_edad<- gsub("\\.","-",pob_nal_dane_edad$Rango_edad)

pob_nal_dane_edad $Rango_edad<- gsub("0-4","00-04",pob_nal_dane_edad$Rango_edad)

pob_nal_dane_edad $Rango_edad<- gsub("5-9","05-09",pob_nal_dane_edad$Rango_edad))

pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, fill = Rango_edad)) + geom_area(stat="identicum pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Total/1000000, colour = Rango_edad)) + geom_line() + theme_pob_nal_dane_edad %
```

```
### Crear columna de participación

pob_nal_dane_edad %<>% group_by(Año) %>% summarise(Totales_año = sum(Total)) %>% right_join(pob_nal_dane)
## Joining, by = "Año"

pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Participacion, fill = Rango_edad)) + geom_area(stat="identi")

pob_nal_dane_edad %>% ggplot(aes(x=Año, y = Participacion, colour = Rango_edad)) + geom_line() + theme_i

# Generar gráfica

#png(file = 'POB_NAL_EDAD.png', height = 850, width = 600, res = 85)

POB_NAL_EDAD <- grid.arrange(pob_total_edad_stack, pob_total_edad_stack_part,pob_total_edad, pob_total_edad.</pre>
```



```
POB_NAL_EDAD
## TableGrob (2 x 2) "arrange": 4 grobs
           cells
                    name
                                    grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
## 4 4 (2-2,2-2) arrange gtable[layout]
#dev.off()
# Cargar datos
pob_nal_dane_edad = read.csv("POB_NAL_DAN_EDAD.csv",header = TRUE,sep = ",",stringsAsFactors=FALSE)
# cambiar estructura donde el genero es columna y los gruposde edad es fila
pob_nal_dane_edad %<>% gather(Rango_edad, Poblacion, -Año, -Grupos.de.edad) %>% spread(Grupos.de.edad,
pob_nal_dane_edad %<>% dplyr::filter(Año>1990)
# Corregir titulos de rango etario
pob_nal_dane_edad$Rango_edad<- gsub("X","",pob_nal_dane_edad$Rango_edad)
pob_nal_dane_edad$Rango_edad<- gsub("\\.","-",pob_nal_dane_edad$Rango_edad)
pob_nal_dane_edad$Rango_edad<- gsub("0-4","00-04",pob_nal_dane_edad$Rango_edad)
pob_nal_dane_edad$Rango_edad<- gsub("400-044","40-44",pob_nal_dane_edad$Rango_edad)
pob_nal_dane_edad$Rango_edad<- gsub("5-9","05-09",pob_nal_dane_edad$Rango_edad)
# Población DANE por edad
pob_nal_dane_edad %>% dplyr::select(Año, Rango_edad, Total) %>% tidyr::spread(Rango_edad, Total) -> pob
# Acumular rangos etarios que se trabajan acumulados
Menor_14 <-apply(pob_dane_edad[,2:4],1,sum)</pre>
Mayor_60 <- apply(pob_dane_edad[,16:18],1,sum)</pre>
# Crear arreglo de regresores
Regresores <- cbind(Menor_14,pob_dane_edad[,5:15],Mayor_60)
# Calcular población total
Pob_total <- apply(Regresores,1,sum)</pre>
# Población total en mayo de cada año
ppl_sitjur %>% dplyr::filter(categoria =="total", mes == 5, !is.na(valor)) %>% dplyr::select(valor, ani
# Calcular tasa de encarcelamiento
registros <- dim(pob_inpec_total)[1]</pre>
tasa_encar <- pob_inpec_total[,1]/Pob_total[1:registros]</pre>
# Guardar modelo de regresión
tasa_regresores <- cbind(tasa_encar = pob_inpec_total[,1],Regresores[1:registros,])</pre>
# Salvar
write.table(tasa_regresores, "tasa_regresores.csv", sep=", ", row.names = FALSE)
```

```
tasa_regresores <- read.table("tasa_regresores.csv", sep = ",", header = TRUE)
ddist <- datadist(tasa_regresores)</pre>
options(datadst = "ddist")
reg <- lm(tasa_encar ~ -1 + X15.19 + X20.24 + X20.24 + X25.29 + X30.34 + X35.39 + X40.44 + X45.49 + X5
summary(reg)
##
## Call:
\# lm(formula = tasa_encar ~ -1 + X15.19 + X20.24 + X20.24 + X25.29 +
      X30.34 + X35.39 + X40.44 + X45.49 + X50.54 + X55.59 + Mayor_60,
##
       data = tasa_regresores)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -6400.3 -2071.5
                    553.5 2342.5 4015.5
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## X15.19
           0.30392
                       0.43261
                                0.703
                                        0.4924
                       0.60210 -0.851
## X20.24
           -0.51218
                                         0.4075
## X25.29
          0.34451
                       0.30270
                                1.138 0.2718
## X30.34
          -0.08413
                       0.04123 -2.040
                                        0.0582 .
## X35.39
           -0.03194
                       0.10434 -0.306
                                        0.7634
## X40.44
          -0.06504
                       0.15230 -0.427
                                        0.6750
## X45.49
          -0.55138
                       0.78359 -0.704 0.4918
## X50.54
           1.44466
                       1.59105
                                0.908
                                        0.3774
## X55.59
           -1.11915
                       0.94639
                               -1.183
                                         0.2543
## Mayor_60 0.18459
                       0.17338
                                1.065
                                        0.3028
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3333 on 16 degrees of freedom
## Multiple R-squared: 0.9987, Adjusted R-squared: 0.9978
## F-statistic: 1199 on 10 and 16 DF, p-value: < 2.2e-16
step(reg,direction="backward")
## Start: AIC=429.18
## tasa encar \sim -1 + X15.19 + X20.24 + X20.24 + X25.29 + X30.34 +
##
       X35.39 + X40.44 + X45.49 + X50.54 + X55.59 + Mayor_60
##
##
                                RSS
             Df Sum of Sq
                                       ATC
## - X35.39
              1
                  1041260 178805793 427.34
## - X40.44
                 2026395 179790928 427.48
              1
## - X15.19
              1 5483392 183247925 427.97
## - X45.49
              1 5501072 183265606 427.98
## - X20.24
              1 8039444 185803977 428.33
## - X50.54
              1 9159867 186924400 428.49
## - Mayor_60 1 12593026 190357559 428.96
## <none>
                          177764533 429.18
## - X25.29
              1 14391585 192156119 429.21
## - X55.59
              1 15536930 193301463 429.36
```

```
## - X30.34 1 46257012 224021545 433.20
##
## Step: AIC=427.34
## tasa_encar ~ X15.19 + X20.24 + X25.29 + X30.34 + X40.44 + X45.49 +
      X50.54 + X55.59 + Mayor_60 - 1
##
             Df Sum of Sq
                               RSS
            1 7344720 186150513 426.38
## - X15.19
## <none>
                          178805793 427.34
## - X45.49
            1 23913369 202719162 428.60
## - X40.44
              1 31494945 210300738 429.55
## - Mayor_60 1 35819565 214625358 430.08
## - X25.29
            1 49683687 228489480 431.71
## - X20.24
            1 56200257 235006051 432.44
## - X50.54 1 90628934 269434727 436.00
## - X30.34
              1 107547727 286353520 437.58
## - X55.59
            1 162171744 340977537 442.12
##
## Step: AIC=426.38
\#\# tasa_encar ~ X20.24 + X25.29 + X30.34 + X40.44 + X45.49 + X50.54 +
##
      X55.59 + Mayor_60 - 1
##
##
             Df Sum of Sq
                             RSS
                                      AIC
## <none>
                          186150513 426.38
## - X40.44
            1 33265218 219415731 428.66
## - X45.49
            1 63901927 250052440 432.06
## - X20.24
              1 82703939 268854452 433.94
## - Mayor_60 1 89833054 275983567 434.62
## - X30.34 1 108096872 294247385 436.29
## - X50.54 1 110567232 296717745 436.51
## - X25.29 1 168976254 355126766 441.18
## - X55.59
            1 222956912 409107425 444.86
##
## Call:
\#\# lm(formula = tasa_encar \sim X20.24 + X25.29 + X30.34 + X40.44 +
##
      X45.49 + X50.54 + X55.59 + Mayor_60 - 1, data = tasa_regresores)
## Coefficients:
## X20.24
             X25.29
                       X30.34
                                 X40.44
                                           X45.49
                                                     X50.54
                                                              X55.59
## -0.23548
           0.33187 -0.08080 -0.06572 -0.15060
                                                    0.77997 -0.90596
## Mayor 60
## 0.28181
```