Model Predictive Control Based Trajectory Generation For Low Speed Scenarios

Krishna Satish November 22, 2021

Abstract

Trajectory generation abstract goes here....

Contents

1	List	t of figures	1
2	List	t of tables	1
3	List	t of abbrivations	1
4	Intr	roduction	1
	4.1	background	1
		4.1.1 Route planner about RRT , A^* and stuff $\dots \dots$	1
		4.1.2 Manoever planner	1
		4.1.3 Path generators	1
		4.1.4 Trajectory generators	1
	4.2	Thesis outline and Objectives	1
5	Veh	nicle Models	1
	5.1	Model types	1
	5.2	Dynamic Bicycle model	1
	5.3	Kinematic Bicycle model	1
6	Tecl	hnical background	1
	6.1	Model Predictive Control	1
		6.1.1 Introduction to MPC	1
		6.1.2 Optimal control problems	1
		6.1.3 Constraints	1
		6.1.4 Non-Linear Programming	1
		6.1.5 Quadratic programming	1
		6.1.6 Fractional programming	1
	6.2	Shooting Methods	1
		6.2.1 Single Shooting	1
		6.2.2 Multiple Shooting	1
		6.2.3 Direct Collocation Shooting	1
7	Imp	olementation	1
	7.1	Tools and Techniques used	1
		7.1.1 MATLAB	1
		7.1.2 CasADi	1
		7.1.3 Carla Simulator	1
		7.1.4 ROS2	1
	7.2	Mehodology	1
8	Vali	idation	1
9	Res	sults and Discussion	1
10	Con	nclusion and Future Scope	1

11 References 1

- 1 List of figures
- 2 List of tables
- 3 List of abbrivations
- 4 Introduction
- 4.1 background
- 4.1.1 Route planner about RRT, A* and stuff
- 4.1.2 Manoever planner
- 4.1.3 Path generators
- 4.1.4 Trajectory generators
- 4.2 Thesis outline and Objectives
- 5 Vehicle Models
- 5.1 Model types
- 5.2 Dynamic Bicycle model
- 5.3 Kinematic Bicycle model
- 6 Technical background
- 6.1 Model Predictive Control
- 6.1.1 Introduction to MPC
- 6.1.2 Optimal control problems
- 6.1.3 Constraints
- 6.1.4 Non-Linear Programming
- 6.1.5 Quadratic programming
- 6.1.6 Fractional programming
- 6.2 Shooting Methods
- 6.2.1 Single Shooting
- 6.2.2 Multiple Shooting
- 6.2.3 Direct Collocation Shooting

7 Implementation

- 7.1 Tools and Techniques used
- **7.1.1** MATLAB
- 7.1.2 CasADi
- 7.1.3 Carla Simulator
- 7.1.4 ROS2
- 7.2 Mehodology
- 8 Validation