# Methods of Proofs



#### This Lecture

Now we have learned the basics in logic.

We are going to apply the logical rules in proving mathematical theorems.

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

#### **Basic Definitions**

An integer n is an even number if there exists an integer k such that n = 2k.

An integer n is an odd number if there exists an integer k such that n = 2k+1.

## Proving an Implication

Method 1: Write assume P, then show that Q logically follows.

The sum of two even numbers is even.

Proof 
$$x = 2m, y = 2n$$
  
 $x+y = 2m+2n$   
 $= 2(m+n)$ 

#### **Direct Proofs**

The product of two odd numbers is odd.

Proof 
$$x = 2m+1, y = 2n+1$$
  
 $xy = (2m+1)(2n+1)$   
 $= 4mn + 2m + 2n + 1$   
 $= 2(2mn+m+n) + 1$ 

If m and n are perfect squares, then m+n+2 $\sqrt{mn}$  is a perfect square.

Proof 
$$m = a^2$$
 and  $n = b^2$  for some integers  $a$  and  $b$   
Then  $m + n + 2\sqrt{mn} = a^2 + b^2 + 2ab$   
 $= (a + b)^2$   
So  $m + n + 2\sqrt{mn}$  is a perfect square.

### This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

### Proving an Implication

Goal: If P, then Q. (P implies Q)

Method 1: Write assume P, then show that Q logically follows.

Claim:

If r is irrational, then  $\sqrt{r}$  is irrational.

How to begin with?

What if I prove "If  $\sqrt{r}$  is rational, then r is rational", is it equivalent?

Yes, this is equivalent, because it is the **contrapositive** of the statement, so proving "if P, then Q" is equivalent to proving "if not Q, then not P".

#### Rational Number

A real number r is rational if there are integers a and b such that



Is 0.281 a rational number?

Yes, 281/1000

Is 0 a rational number?

Yes, 0/1

If m and n are non-zero integers, is (m+n)/mn a rational number?

Yes

Is the sum of two rational numbers a rational number? | Yes, a/b+c/d=(ad+bc)/bd

Is x=0.12121212... a rational number?

Note that 100x-x=12, and so x=12/99.

## Proving the Contrapositive

Goal: If P, then Q. (P implies Q)

Method 2: Prove the contrapositive, i.e. prove "not Q implies not P".

Claim:

If r is irrational, then  $\sqrt{r}$  is irrational.

Proof:

We shall prove the contrapositive - "if  $\sqrt{r}$  is rational, then r is rational."

Since  $\sqrt{r}$  is rational,  $\sqrt{r}$  = a/b for some integers a,b.

So  $r = a^2/b^2$ . Since a,b are integers,  $a^2,b^2$  are integers.

Therefore, r is rational.

Q.E.D.

(Q.E.D.)

"thus it has been demonstrated", or "quite easily done".  $\odot$ 

## Proving an "if and only if"

Goal: Prove that two statements P and Q are "logically equivalent", that is, one holds if and only if the other holds.

Example: For an integer n, n is even if and only if  $n^2$  is even.

Method 1a: Prove P implies Q and Q implies P.

Method 1b: Prove P implies Q and not P implies not Q.

Method 2: Construct a chain of if and only if statement.

## Proof the Contrapositive

For an integer n, n is even if and only if  $n^2$  is even.

Method 1a: Prove P implies Q and Q implies P.

Statement: If n is even, then n<sup>2</sup> is even

Proof: n = 2k

 $n^2 = 4k^2$ 

Statement: If n<sup>2</sup> is even, then n is even

Proof:  $n^2 = 2k$ 

$$n = \sqrt{2k}$$

### Proof the Contrapositive

For an integer n, n is even if and only if  $n^2$  is even.

Method 1b: Prove P implies Q and not P implies not Q.

Statement: If n<sup>2</sup> is even, then n is even

Contrapositive: If n is odd, then  $n^2$  is odd.

#### Proof (the contrapositive):

Since n is an odd number, n = 2k+1 for some integer k.

So 
$$n^2 = (2k+1)^2$$
  
=  $(2k)^2 + 2(2k) + 1 = 2(2k^2 + 2k) + 1$ 

So  $n^2$  is an odd number.

### This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

## **Proof by Contradiction**

$$\frac{\overline{P} \to \mathbf{F}}{P}$$

To prove P, you prove that not P would lead to a ridiculous result, and so P must be true.

## Proof by Contradiction

**Theorem:**  $\sqrt{2}$  is irrational.

Proof (by contradiction):

- Suppose  $\sqrt{2}$  was rational.
- Choose m, n integers without common prime factors (always possible) such that  $\sqrt{2} = \frac{m}{n}$
- Show that m and n are both even, thus having a common factor 2,
   a contradiction!

## Proof by Contradiction

**Theorem:**  $\sqrt{2}$  is irrational.

#### Proof (by contradiction):

Want to prove both m and n are even.

$$\sqrt{2} = \frac{m}{n}$$

$$\sqrt{2}n = m$$

$$2n^2 = m^2$$

so m is even.

so we have 
$$m=2l$$

$$m^2 = 4l^2$$

$$2n^2 = 4l^2$$

$$n^2 = 2l^2$$

so n is even.

Recall that m is even if and only if  $m^2$  is even.

#### Infinitude of the Primes

**Theorem**. There are infinitely many prime numbers.

Proof (by contradiction):

Assume there are only finitely many primes.

Let  $p_1$ ,  $p_2$ , ...,  $p_k$  be all the primes.

- (1) We will construct a number N so that N is not divisible by any  $p_i$ .

  By our assumption, it means that N is not divisible by any prime number.
- (2) On the other hand, we show that any number is divisible by some prime.

This will lead to a contradiction, and therefore the assumption must be false.

So there must be infinitely many primes.

### Divisibility by a Prime

**Theorem**. Any integer n > 1 is divisible by a prime number.

- Let n be an integer.
- If n is a prime number, then we are done.
- Otherwise, n = ab, both a,b are smaller than n.
- If a or b is a prime number, then we are done.
- Otherwise, a = cd, both c,d are smaller than a.
- If c or d is a prime number, then we are done.
- Otherwise, repeat this argument, since the numbers are getting smaller and smaller, this will eventually stop and we will find a prime factor of n.

We will see a better proof by mathematical induction later.

#### Infinitude of the Primes

**Theorem**. There are infinitely many prime numbers.

Proof (by contradiction):

Let  $p_1$ ,  $p_2$ , ...,  $p_k$  be all the primes.

Consider  $p_1p_2...p_k + 1$ .

Claim: if p divides a, then p does not divide a+1.

Proof (by contradiction):

a = cp for some integer c a+1 = dp for some integer d a+1 = (d-c)p, contradiction because p>=2.

So, by the claim, none of  $p_1$ ,  $p_2$ , ...,  $p_k$  can divide  $p_1p_2...p_k + 1$ , a contradiction.

### This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

## Proof by Cases

$$egin{array}{c} pee q\ p o r\ q o r\ \end{array}$$

e.g. want to prove the square of a nonzero number is always positive.

x is positive or x is negative if x is positive, then  $x^2 > 0$ . if x is negative, then  $x^2 > 0$ .  $x^2 > 0$ .

### The Square of an Odd Integer

$$\forall \text{ odd } n, \exists m, n^2 = 8m + 1?$$

Idea 0: find counterexample.

$$3^2 = 9 = 8+1$$
,  $5^2 = 25 = 3\times8+1$  .....  $131^2 = 17161 = 2145\times8 + 1$ , ......

Idea 1: prove that  $n^2 - 1$  is divisible by 8.

$$n^2 - 1 = (n-1)(n+1) = ??...$$

Idea 2: consider  $(2k+1)^2$ 

$$(2k+1)^2 = 4k^2+4k+1 = 4(k^2+k)+1$$

If k is even, then both  $k^2$  and k are even, and so we are done.

If k is odd, then both  $k^2$  and k are odd, and so  $k^2+k$  even, also done.

#### Rational vs Irrational

Question: If a and b are irrational, can ab be rational??

We (only) know that  $\sqrt{2}$  is irrational, what about  $\sqrt{2}^{\sqrt{2}}$ ?

Case 1:  $\sqrt{2}^{\sqrt{2}}$  is rational

Then we are done, a=  $\sqrt{2}$ , b=  $\sqrt{2}$ .

Case 2:  $\sqrt{2}^{\sqrt{2}}$  is irrational

Then  $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^2 = 2$ , a rational number

So  $a = \sqrt{2}^{\sqrt{2}}$ ,  $b = \sqrt{2}$  will do.

So in either case there are a,b irrational and a<sup>b</sup> be rational.

We don't (need to) know which case is true!

### Summary

We have learnt different techniques to prove mathematical statements.

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

Next time we will focus on a very important technique, proof by induction.