Experimentelle Übungen I

Versuchsprotokoll E1

Gleich-und Wechselstrom

Hauke Hawighorst, Jörn Sieveneck Gruppe 9

h.hawighorst@uni-muenster.de

j_siev11@uni-muenster.de

betreut von

Katharina Ritter

10. Januar 2017

Inhaltsverzeichnis

1.	Zusammenfassung	1
2.	Innenwiederstand einer Batterie 2.1. Methoden	
3.	2.2. Daten und Analyse	3
Α.	Anhang A.1. Verwendete Gleichungen	4
Lit	teratur	5

1. Zusammenfassung

[1]

2. Innenwiederstand einer Batterie

Es sollte der Innenwiederstand einer Schaltung aus Akkumulatoren bestimmt werden. Zur Verdeutlichung des Effektes wurde vor jeden Akkumulator ein Widerstand geschaltet.

2.1. Methoden

Zur Bestimmung des Innenwiederstandes wurde die Klemmspannung der Spannungsquelle für verschiedene Außenwiderstände gemessen. Aus Spannung und Widerstand wurden die Spannung U in Abhängigkeit der Stromstärke I (Abb. 1) und die Leistung P in Abhängigkeit des Außenwiederstandes R_a (Abb. 2) berechnet. Aus den Ausgleichskurven folgen jeweils die Klemmspannung ohne Last U_0 sowie der Innenwiederstand R_i . Betrachtet wurden als Spannungsquelle: eine einzelne Monozelle, eine Parallelschaltung sowie eine Reihenschaltung aus drei Monozellen.

Aus der Ableseungenauigkeit des Voltmeters folgt als Standardunsicherheit u(U)=0,2V, die relative Unsicherheit der Steckwiederstände wurde mit 5% abgeschätzt.

2.2. Daten und Analyse

Aus den Messpunkten $U(R_a)$ folgt mit dem Ohmschen Gesetz Abb. 1. Aus $U_{Kl} = U_0 - R_a I$ folgt, dass die Steigung des Ausgleichsgerade dem negativen des Innenwiderstandes entspricht. Ohne Stromfluss gilt $U_0 = U_{Kl}$, deswegen entspricht der Y-Achsenabschnitt der Leerlaufspannung U_0 der "idealen Spannungsquelle" [1]. Die aus den Parametern der Anpassungsgerade gefundenen Werte sind in Tabelle 1 dargestellt.

Tabelle 1: Leerlaufspannung und Innenwiderstand der Spannungsquellen aus den Kennlinien

Schaltung	Index	Leerlaufspannung U_0	Innenwiederstand R_i
Einzelne Monozelle	Ε	$(1,28 \pm 0,01) \mathrm{V}$	$(17.7 \pm 0.4) \Omega$
Parrallelschaltung	Р	$(1,289 \pm 0,003) \mathrm{V}$	$(5,99\pm0,06)\Omega$
Reihenschaltung	R	$(4.03 \pm 0.12) \mathrm{V}$	$(57 \pm 3) \Omega$

Abbildung 1: Spannungsverläufe der Monozelle U_E , der Parallelschaltung von drei Monozellen U_P und der Reihenschaltung von drei Monozellen U_R in Abhängigkeit der Stromstärke I.

In analoger Weise zu Abb. 1 wurde Abb. 2 erstellt. Die Leistung am äußeren Widerstand beträgt

$$P = \frac{U_{Kl}^2}{R_a}$$

$$= U_0^2 \frac{R_a}{(R_a + R_i)^2}.$$
(2.1)

$$=U_0^2 \frac{R_a}{(R_a + R_i)^2}. (2.2)$$

Gleichung 2.1 wurde verwendet um die Leistungen zu berechnen, die Ausgleichskurve wurde nach Gleichung 2.2 erstellt.

Abbildung 2: Leistung P am Lastwiderstand R_a in dessen Abhängigkeit

Tabelle 2: Leerlaufspannung und Innenwiderstand der Spannungsquellen aus der Leistung

Schaltung	Index	Leerlaufspannung U_0	Innenwiederstand R_i
Einzelne Monozelle	Е	$(1,27 \pm 0,02) \mathrm{V}$	$(17.6 \pm 0.6)\Omega$
Parrallelschaltung	Р	$(1,282 \pm 0,007) \mathrm{V}$	$(5,91\pm0,09)\Omega$
Reihenschaltung	R	$(4,26 \pm 0,21) \mathrm{V}$	$(63 \pm 5) \Omega$

3. Schlussfolgerung

A. Anhang

A.1. Verwendete Gleichungen

Literatur

[1] Markus Donath und Anke Schmidt. Begleitkurs zu den Experientellen Übungen I. 2017. URL: https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=28561 (besucht am 13.01.2018).