

#### Análisis Léxico



#### AFN a AFD

- En el diseño de su lenguaje, incluye identificadores, números al menos una sentencia condicional y un ciclo. Elabore AFN que reconozca todos los lexemas de su lenguaje y obtenga los AFD.
- Identificadores
- Números
- Palabras reservadas
- operadores





### Minimización de estados

Algoritmo 3.39: Minimización del número de estados de un AFD.

**ENTRADA:** Un AFD D con un conjunto de estados S, el alfabeto de entrada  $\Sigma$ , el estado inicial  $s_0$  y el conjunto de estados de aceptación F.

**SALIDA:** Un AFD D', que acepta el mismo lenguaje que D y tiene el menor número de estados posible.

|     | a | b    |
|-----|---|------|
| Α   | В | С    |
| В   | В | D    |
| С   | В | С    |
| D   | В | IIE! |
| (E) | В | С    |

### Minimización de estados

| *   | a | b |
|-----|---|---|
| Α   | В | С |
| В   | В | D |
| С   | В | С |
| D   | В | Е |
| (E) | В | С |

|     | а | b |
|-----|---|---|
| Α   | В | Α |
| В   | В | D |
| D   | В | E |
| (E) | В | А |

- Sea AFD D con estados S, alfabeto  $\Sigma$ , S<sub>c</sub> y conjunto de S<sub>f</sub>
  - Obtenga  $\Pi_0$  y  $\Pi_{\text{final}}$
  - Donde  $\Pi_0 = S F$  provenientes de D
  - $\Pi_{nueva}$  = Π siempre y cuando s y t sean parte de Π con las mismas transiciones de Σ
  - Elegir un estado representativo
  - Obtener D'





## Minimización de estados

|   | а | b |
|---|---|---|
| Α | В | Α |
| В | В | D |
| D | В | E |
| E | В | Α |



# Ejercicio

|   | а   | b  |
|---|-----|----|
| Α | В   | С  |
| В | _   | D  |
| С | 150 | D  |
| D | -   | 81 |



$$A = \{1\}$$
  
 $(A,d) = \{2,3,5,10\} = B$ 

$$(A, .) = \{-\}$$

$$(B,d) = \{4,5,10\} = C$$

$$(B_{,.}) = \{6\} = D$$

$$(C,d) = \{-\}$$

$$(C, .) = \{6\} = D$$

$$(D,d) = \{7,8,10\} = E$$

$$(D,.) = \{-\}$$

$$(E,d) = \{8,9,10\} = F$$

$$(E_{,-}) = \{-\}$$

$$(F,d) = \{8,9,10\} = F$$

$$(F_{,.}) = \{-\}$$

|        | D   |   |  |
|--------|-----|---|--|
| A      | В   |   |  |
| B      | С   | D |  |
|        | - 1 | D |  |
| C<br>D | E   | - |  |
| E      | F   | - |  |
| F      | F   | - |  |







| 1 | $A = \{1\}$            |
|---|------------------------|
| 1 | (A,d) = {2,3,5,10} = B |

 $(A,.) = \{-\}$ 

(B,d) = {4,5,10} C

 $(B,.) = \{6\} = D$ 

(C,d) = {-}

 $(C_{,.}) = \{6\} = D$ 

 $(D,d) = \{7,8,10\} = E$ 

 $(D_{,-}) = \{-\}$ 

 $(E,d) = \{8,9,10\} = F$ 

 $(E,.) = \{-\}$ 

(F,d) = {8,9, 10} = F

 $(F_{,-}) = \{-\}$ 

|   | D   |     |
|---|-----|-----|
| Α | В   | 120 |
| В | С   | D   |
| С | 1 - | D   |
| D | E   | -   |
| E | F   | -   |
| F | F   | -   |



## Referencias

- Aho,
- Imágenes
  - Elaboración propia
  - Aho/Setti Text book

