Εργασία 1

Ονοματεπώνυμο: Μανίκα Θεοδώρα

A.M.: 1115202100267

Άσκηση 1: Encoding on the basis of qubit states

Αποφάσεις και Επεξήγηση

- 1. Αρχική Κατάσταση: Ξεκινήσαμε από την κατάσταση |000\.
- 2. **Βήμα 1:** Εφαρμογή Πύλης Hadamard στο q_0 : Η πύλη Hadamard (H) εφαρμόστηκε στο πρώτο qubit (q_0) για να δημιουργηθεί μια υπέρθεση:

$$H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}.$$

Μετά από αυτό, η κατάσταση του συστήματος έγινε:

$$\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|100\rangle.$$

- 3. **Βήμα 2:** Εφαρμογή Πυλών CNOT: Χρησιμοποιήσαμε πύλες CNOT με το q_0 ως qubit ελέγχου για να εναρμονίσουμε τα q_1 και q_2 :
 - Όταν $q_0 = |0\rangle$, τα q_1 και q_2 παραμένουν $|00\rangle$.
 - Όταν $q_0 = |1\rangle$, τα q_1 και q_2 γίνονται $|11\rangle$.

Η τελική κατάσταση μετά τις πύλες CNOT ήταν:

$$\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|111\rangle.$$

4. **Βήμα 3:** Δεύτερη Πύλη Hadamard στο q_0 : Εφαρμόσαμε ξανά μια πύλη Hadamard στο q_0 για να διαχωρίσουμε την υπέρθεση:

$$H\left(\frac{1}{\sqrt{2}}|000\rangle\right) = \frac{1}{2}|000\rangle + \frac{1}{2}|100\rangle,$$

$$H\left(\frac{1}{\sqrt{2}}|111\rangle\right) = \frac{1}{2}|011\rangle + \frac{1}{2}|111\rangle.$$

Η τελική κατάσταση έγινε:

$$\frac{1}{2}|000\rangle + \frac{1}{2}|100\rangle + \frac{1}{2}|011\rangle + \frac{1}{2}|111\rangle.$$

Άσκηση 2: Encoding on the amplitude of qubit states

Αποφάσεις και Επεξήγηση

1. **Κανονικοποίηση**: Το διάνυσμα κανονικοποιήθηκε για να εξασφαλιστεί ότι το άθροισμα των τετραγώνων των συνιστωσών του είναι 1:

Για 1 qubit:
$$norm = \sqrt{x^2 + y^2}$$
, $x_{norm} = \frac{x}{norm}$, $y_{norm} = \frac{y}{norm}$.

Για 2 qubits: $norm = \sqrt{x^2 + y^2 + z^2 + w^2}$, και ομοίως για τις συνιστώσες.

2. Πύλη R_y για 1 Qubit: Χρησιμοποιήθηκε η πύλη $R_y(\theta)$ για να κωδικοποιηθεί το διάνυσμα:

$$\theta = 2\arccos(x_{\text{vorm}}).$$

Η κατάσταση του qubit μετά την εφαρμογή της πύλης είναι:

$$|\psi\rangle = x_{\text{norm}}|0\rangle + y_{\text{norm}}|1\rangle.$$

3. Πύλες R_y και CNOT για 2 Qubits: Για δύο qubits, χρησιμοποιήθηκαν πολλαπλές πύλες R_y και CNOT για να επιτευχθεί η επιθυμητή κωδικοποίηση:

$$|\psi\rangle = x_{\text{vorm}}|00\rangle + y_{\text{vorm}}|01\rangle + z_{\text{vorm}}|10\rangle + w_{\text{vorm}}|11\rangle.$$

Άσκηση 3: Encoding on the time-evolution of qubit states

Αποτελέσματα

Μέθοδος	Πλάτος $ 00\rangle$	Πλάτος 11⟩
HardwareEfficient EmbeddingRx	0.206 - 0.151j	0.238 + 0.141j
ZFeatureMap	0.027 + 0.012j	0.038 + 0.031j
ZFeatureMap qiskit	0.25 + 0.j	0.241 + 0.068j

Πίναχας 1: Σύγχριση μεθόδων χωδιχοποίησης

Ανάλυση Διαφορών στις Τιμές των Αποτελεσμάτων

• Το HardwareEfficient EmbeddingRx χρησιμοποιεί στρώματα R_x και CNOT:

$$U_{custom} = \prod_{i=1}^{2} \left(\bigotimes_{j=1}^{4} R_{x}(\theta_{j}) \right) \cdot \prod_{k=1}^{3} CNOT(k, k+1)$$

Δημιουργώντας μη-γραμμικές αλληλεπιδράσεις μεταξύ qubits.

• Το **ZFeatureMap** εφαρμόζει γραμμικούς μετασχηματισμούς:

$$U_{customZ} = \bigotimes_{i=1}^{4} (H \cdot P(2 \cdot \theta_i) \cdot H \cdot P(2 \cdot \theta_i))$$

Χωρίς εμπλοκή μεταξύ qubits.