Optimization for Data Science Lecture 11: Practical Aspects of Stochastic (Sub-)Gradient, Advanced Stochastic Methods, Fundamentals of Learning

Kimon Fountoulakis

School of Computer Science University of Waterloo

22/10/2019

Outline of this lecture

- Recap: ML loss functions, stochastic (sub-)gradient, iteration complexity
- Practical version of stochastic (sub-)gradient
- Advanced stochastic gradient methods
- Fundamentals of learning

Disclaimer

- Most of these slides have been adapted from slides of M. Schmidt, author of some of the methods that we will talk about today, and Ryan Tibshirani.
- Personally, I do not have a lot of practical experience with advanced stochastic methods since I have never done research on them.

Data

- We are given n data points (a_i, b_i) i = 1, ..., n.
- $a_i \in \mathbb{R}^d$ is a sample/vector of length d, i.e., for each sample we have d features.
- b_i are the given labels. It can be real or binary or more generally an integer.

Finite-sum optimization problems

We consider the following optimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n f_i(x) = \mathbb{E}[f_i(x)] = f(x)$$

$$\underbrace{f(x)}$$

Stochastic Gradient Method

• Assuming that each f_i is differentiable then stochastic gradient is equivalent to:

• Pick randomly a sample i

•
$$x_{k+1} := x_k - \alpha_k \nabla f_i(x)$$

• iteration cost is now independent of *n*, but how many iterations?

Iteration complexity for smooth functions

Gradient Descent

Accelerated Gradient

Stochastic Gradient

Non-convex

$$\mathcal{O}\left(\frac{L}{\epsilon}\right)$$

$$\mathcal{O}\left(e^{\frac{LB^2}{\epsilon}}\right)$$

Convex

$$\mathcal{O}\left(\frac{L}{\epsilon}\right)$$

 $\mathscr{O}\left(\sqrt{rac{L}{\epsilon}}\,
ight)$

$$\mathcal{O}\left(e^{\frac{B^2}{\epsilon}}\right)$$

Strongly convex

$$\mathcal{O}\left(\frac{L}{\delta}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{L}{\delta}\log\frac{1}{\epsilon}\right) \qquad \mathcal{O}\left(\sqrt{\frac{L}{\delta}}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{GB^2}{\delta^2}\frac{1}{\epsilon}\right)$$

Why would we consider stochastic methods?

- For two reasons
 - Extremely cheap iteration cost. Very good when we have millions (or more) data points and each data point is low-dimensional. This is good when we do not want to access all data points at each iteration.
 - Fast convergence to low accuracy. For most AI/ML problems a low accuracy solution to the optimization problem is good enough to obtain high accuracy w.r.t domain metrics of measuring performance, e.g., precision/recall.

Preferred step-sizes

- Practitioners prefer to use constant step-sizes for two reasons:
 - Fast convergence to low accuracy solutions. Remember the rate is $\mathcal{O}(1/t + \alpha)$ for non-convex and convex functions, and $\mathcal{O}((1 (\delta/L))^t + \alpha)$ for δ -strongly convex.
 - For most AI/ML problems a low accuracy solution to the optimization problem is good enough to obtain high accuracy w.r.t domain metrics of measuring performance, e.g., precision/recall.

Termination Criterion of Stochastic Gradient

- Usually we terminate an algorithm if the norm of the gradient is small.
- However, in this algorithm we only access one sample per iteration. This means that we cannot compute the norm of the whole gradient.
- If we do compute the norm of the whole gradient at each iteration, then this defeats the purpose of stochastic gradient.

Some options for terminating stochastic gradient

- Predefined maximum number of iterations
- Predefined upper bound for the running time
- Stop when the norm of the gradient of the chosen sample is small.
- Measure the norm of the whole gradient every n iterations, if it is small then terminate.
- Use your validation data and terminate the algorithm when precision/ recall (or your preferred metric) are large enough.
- Measure validation error every n iterations. Stop if the validation error starts overfitting

Stochastic sub-gradient

We consider the following optimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n f_i(x) = \mathbb{E}[f_i(x)] = f(x)$$

- where we assume that f_i are non-smooth and f is convex.
- The stochastic sub-gradient method is:
 - Pick randomly a sample i
 - $x_{k+1} := x_k \alpha_k g_i(x)$, where $g_i(x) \in \partial f_i(x)$

Iteration complexity: non-smooth functions

Gradient Descent

Accelerated Gradient

Stochastics Sub-Gradient

Non-convex

$$\mathcal{O}\left(\frac{D}{\epsilon^2}\right)$$

$$\widehat{\mathcal{C}}\left(\frac{1}{\epsilon^4}\right) \text{ Just appeared 2018}$$

Convex

$$\mathcal{O}\left(\frac{D}{\epsilon^2}\right)$$

$$\mathcal{O}\left(\frac{\sqrt{D}}{\epsilon}\right)$$

$$\mathcal{O}\left(e^{\frac{\sigma^2}{\epsilon}}\right)$$

Strongly convex

$$\mathcal{O}\left(\frac{D}{\delta\epsilon}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\sqrt{\frac{D}{\delta\epsilon}}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{D}{\epsilon^2}\right) \qquad \mathcal{O}\left(\frac{\sqrt{D}}{\epsilon}\right) \qquad \mathcal{O}\left(e^{\frac{\sigma^2}{\epsilon}}\right)$$

$$\mathcal{O}\left(\frac{D}{\delta\epsilon}\log\frac{1}{\epsilon}\right) \qquad \mathcal{O}\left(\sqrt{\frac{D}{\delta\epsilon}}\log\frac{1}{\epsilon}\right) \qquad \mathcal{O}\left(\frac{G\sigma^2}{\delta^2}\frac{1}{\epsilon}\right)$$

Comments on iteration complexity

- For convex and strongly-convex functions, gradient descent and stochastic sub-gradient have similar complexity, but each iteration of stochastic sub-gradient is n times less expensive!!
- The result for non-convex functions just appeared in 2018 (Damek and Drusvyatskiy 2018). The result is much worse than the one of gradient descent, but practitioners still prefer stochastic sub-gradient.

Stochastic (Sub-)Gradient with Sparse Features

 Consider minimizing the hinge-loss objective (good for binary classification)

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - b_i(x^T a_i)\}$$

• when d in $\alpha_i \in \mathbb{R}^d$ is huge but each a_i has at most z non-zero entries.

Stochastic (Sub-)Gradient with Sparse Features

 Stochastic sub-gradient for a randomly chosen sample requires computing the sub-gradient:

$$g_i(x) = \begin{cases} -b_i a_i & \text{if } 1 - b_i(x^T a_i) > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Then we perform $x_{k+1} = x_k \alpha_k g_i(x_k)$
- Since each a_i has at most z non-zeros, then computing x_{k+1} should take $\mathcal{O}(z)$ FLOPS.

- For many datasets the feature vectors $a_i \in \mathbb{R}^d$ are **very** sparse.
- This means that out of d entries in $a_i \in \mathbb{R}^d$, at most z entries are non-zero.
- If $d \gg z$, then computing the (sub-)gradient for a chosen sample and computing x_{k+1} should cost, ideally, $\mathcal{O}(z)$ FLOPS instead of $\mathcal{O}(d)$.

- To get $\mathcal{O}(z)$ cost per iteration instead of $\mathcal{O}(d)$ we have to store any vectors (say g) that the algorithm uses using a sparse data structure.
- Consider a vector $g = [0\ 0\ 0\ 0.1\ 0.4\ 0\ \dots\ 3\ 0]$, which has z non-zero entries out of d, with $z \ll d$.
- We can store g using $\mathcal{O}(z)$ memory instead of $\mathcal{O}(d)$.

- We can store g using $\mathcal{O}(z)$ memory instead of $\mathcal{O}(d)$.
- Store only the non-zero entries and their indices.
- We need two vectors of length z
 - $g^{values} = [0.1 \ 0.4 \ 3]$
 - $g^{point} = [4 \ 5 \ d 1]$

- Using this compressed representation of vectors we can do standard operations in $\mathcal{O}(z)$ FLOPS.
- Scalar multiplication: αg in $\mathcal{O}(z)$ FLOPS by doing $g^{values}:=\alpha g^{values}$
- Inner product: $w^T g$ in $\mathcal{O}(z)$ FLOPS by multiplying g^{values} by w only at positions g^{point} .

• Consider minimizing the hinge-loss objective minimize $\lambda ||x||_2^2 + \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - b_i(x^T a_i)\}$

• when d in $\alpha_i \in \mathbb{R}^d$ is huge but each a_i has at most z non-zero entries.

 Stochastic sub-gradient for a randomly chosen sample requires computing the sub-gradient:

$$g_i(x) = \begin{cases} -b_i a_i & \text{if } 1 - b_i(x^T a_i) > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Then we perform $x_{k+1} = x_k \alpha_k g_i(x_k) \lambda \alpha_k x_k$
- Because x_k might be dense then computing x_{k+1} might cost $\mathcal{O}(d)$ FLOPS instead of $\mathcal{O}(z)$ (number of non-zeros in $g_i(x_k)$).

- However, because the data samples are extremely sparse, i.e., $d \gg z$, then coordinates in x_k might not get updated often.
- For example, assume that coordinate j in x_k has not been updated for the last 20 iterations. Then

$$[x_k]_j = [x_{k-1}]_j - 0 - \lambda \alpha_k [x_{k-1}]_j$$

$$= (1 - \lambda \alpha_k) [x_{k-1}]_j$$

$$\vdots$$

$$= (1 - \lambda \alpha_k) [x_{k-20}]_i$$

- This means that we can perform 20 iterations for coordinate j in $\mathcal{O}(1)$ FLOPS.
- This trick requires keeping track of the last time each coordinate in x_k was updated.
- It get be generalized to other regularizers as well, but we will work on this later in this course.

Hybrid Deterministic-Stochastic Gradient

- Instead of using only one data point per iteration we can you many, but less than n.
- Deterministic method uses all n gradients at each iteration

$$x_{k+1} = x_k - \alpha_k \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_k).$$

• All stochastic methods that we have seen so far use only one sample per iteration $x_{k+1} = x_k - \alpha_k \nabla f_i(x_k)$.

Hybrid Deterministic-Stochastic Gradient

• A common variant is to use **mini-batching**, a set of samples \mathcal{B}_k (indices of chosen samples) and perform the following update $x_{k+1} = x_k - \alpha_k \frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} \nabla f_i(x_k)$.

• Note that this approach can be easily parallelized. For example, if we have 16 cores, then we can choose 16 samples ($\mathcal{B}_k = 16$), where each gradient for each sample can be computed in parallel.

Convergence rate of Hybrid-Deterministic Stochastic Gradient

Let's view mini-batching as a gradient method with error

$$\frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} \nabla f_i(x_k) = \nabla f(x_k) + e_k$$

• where e_k is the error between mini-batching and full-gradient.

Convergence rate of Hybrid Deterministic-Stochastic Gradient

• Assuming that our problem has Lipschitz continuous gradient with constant L then using the FToC and constant step-sizes $\alpha_k=1/L$ we get

$$f(x_{k+1}) \le f(x_k) \quad -\frac{1}{L} \|\nabla f(x_k)\|_2^2 \quad + \quad \underbrace{\frac{1}{2L} \|e_k\|_2^2}_{\text{negative, thus, good}} + \underbrace{\frac{1}{2L} \|e_k\|_2^2}_{\text{positive, thus, bad}}$$

Convergence rate of Hybrid Deterministic-Stochastic Gradient

- If $e_k=0$, then for convex and non-convex functions the rate is $\mathcal{O}(1/k)$. But now we have $\mathcal{O}(1/k+\|e_k\|_2^2)$. To guarantee rate $\mathcal{O}(1/k)$ we need to have $\|e_k\|_2^2=\mathcal{O}(1/k)$.
- If $e_k=0$, then for δ -strongly convex functions the rate is $\mathcal{O}((1-\delta/L)^k)$. But now we have $\mathcal{O}((1-\delta/L)^k+\|e_k\|_2^2)$. To guarantee rate $\mathcal{O}((1-\delta/L)^k)$ we need to have $\|e_k\|_2^2=\mathcal{O}((1-\delta/L)^k)$.

- It is obvious that if we want to control the rate of the hybrid method, then we need to control the error $||e_k||_2^2$.
- The main way that we have to control the error $||e_k||_2^2$ is through the size of the batch-size $|\mathcal{B}_k|$.

First we need to observe that
$$e_k = \nabla f(x_k) - \frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} \nabla f_i(x_k)$$

Taking expectation of the norm of the error we get

$$\mathbb{E}\left[\|e_k\|_2^2\right] = \mathbb{E}\left[\left\|\nabla f(x_k) - \frac{1}{|\mathscr{B}_k|} \sum_{i \in \mathscr{B}_k} \nabla f_i(x_k)\right\|_2^2\right]$$

 This is the definition of variance! If we can control variance (make it smaller), then we can obtain faster methods.

- Let's assume that the sample size $|\mathcal{B}_k|$ at the beginning of the algorithm.
- If we sample with replacement then $\mathbb{E}\left[\|e_k\|_2^2\right] = \frac{\sigma^2}{\|\mathscr{B}_k\|}$, i.e., the expected norm of the error is equal to the scaled variance.
- This means that the smaller the larger size $|\mathcal{B}_k|$ is the smaller the error at each iteration.
- It also means that if at each iteration we double the sample size then there error gets halved.

- Let's assume that the sample size $|\mathcal{B}_k|$ at the beginning of the algorithm.
- If we sample without replacement then

$$\mathbb{E}\left[\|e_k\|_2^2\right] = \frac{n-|\mathcal{B}_k|}{n} \frac{1}{|\mathcal{B}_k|} \sigma^2, \text{ i.e., the expected}$$

norm of the error is equal to the scaled variance.

• This means that the error goes to zero as $|\mathscr{B}_k| \to n$.

- To obtain sub-linear rate for convex functions we have to do $|\mathscr{B}_{k+1}| = |\mathscr{B}_k| + \text{const.}$
- To obtain linear rate for strongly convex functions we have to do $|\mathscr{B}_{k+1}| = |\mathscr{B}_k|/(1-\delta/L)$.

Batching: growing-batchsize methods

- For fixed sample-size $|\mathcal{B}_k|$, the rate of stochastic gradient is sub-linear.
- For growing-batch-size methods achieve faster rate:
 - Initially iterations are inexpensive.
 - Later iterations converge to full-gradient

Practical performance

• n = 10000, d = 20, all methods use fixed step-sizes.

Practical performance

• n = 10000, d = 20, all methods use fixed step-sizes.

Variance

In earlier slides we defined variance as

$$\mathbb{E}\left[\|e_k\|_2^2\right] = \mathbb{E}\left[\left\| \nabla f(x_k) - \nabla f_i(x_k) \right\|_2^2\right]$$

- For stochastic (sub-)gradient methods we simply assumed that this term is bounded.
- We will now discuss methods that drag variance to zero and this results in faster algorithms (in worst-case).

Variance

- Fix the batch size.
- Loosely: because of non-decreasing variance, we have to decay the step size α_k to zero, which in turn means we can't take "large" steps, and hence the convergence rate is slow.
- Question: can we decrease variance to zero and maintain large step-sizes at the same time?

Stochastic Average Gradient

- For growing-batch-size methods the cost per iteration will depend eventually on all samples.
- Ideally, we would like a stochastic method that only requires computing one gradient for a chosen a sample and has as good convergence rate as full-gradient method.
- The first time that this was achieved was in 2012, by the algorithm: stochastic average gradient (SAG).

Stochastic Average Gradient

To motivate SAG let's view gradient descent as performing the following

$$x_{k+1} = x_k - \alpha_k \frac{1}{n} \sum_{i=1}^n v_i^k$$

- where at each iteration we set $v_i^k = \nabla f_i(x_k)$.
- For SAG at iteration k picks randomly a sample i_k and it sets $v_{i_k}^k = \nabla f_{i_k}(x_k)$.
- All other v_i^k are kept at their previous value.
- Unlike batching, we use gradient for every sample. However, some of the gradients might be out of date (computed at previous iterations).

Efficient Updates

 The cost of one SAG iteration is basically just as efficient as simple stochastic (sub-)gradient, as long as you perform the updates in a clever way:

$$x_{k+1} = x_k - \alpha_k \frac{1}{n} \left(\underbrace{g_{i_k}(x_k) - g_{i_k}(x_{k-1})}_{\text{replace previous with new}} + \underbrace{\sum_{i=1}^n g_i(x_{k-1})}_{\text{old part of the gradient}} \right)$$

Convergence Rate of Stochastic Average Gradient

• Assume that f is convex, f_i 's are differentiable and each $\nabla f_i(x)$ is Lipschitz continuous with constant L (note that this is stronger than saying that the full-gradient is Lipschitz continuous).

• Denote
$$\bar{x}_k = \frac{1}{k} \sum_{l=0}^{k-1} x_l$$

• Initialize the algorithm by $g_i(x_0) := \nabla f_i(x_0) - \nabla f(x_0) \ \forall i = 1,...,n$

• We get
$$\mathbb{E}\left[f(\bar{x}_k)\right] - f^* \le \frac{48\left(f(x_0) - f^*\right)}{\frac{43}{k}} + \frac{128L\|x_0 - x^*\|_2^2}{k}$$

Convergence Rate of Stochastic Average Gradient

- Convergence rate is stated for \bar{x}_k , but a similar result can be shown for x_k^{best} ; the best x_k that has been observed so far.
- The rate of SAG is $\mathcal{O}(1/k)$, which is an improvement over stochastic gradient $\mathcal{O}(1/k + \alpha)$ and similar to full-gradient $\mathcal{O}(1/k)$.
- But the constants are different!

• SAG:
$$\frac{48 \left(f(x_0) - f^*\right) n}{k} + \frac{128L||x_0 - x^*||_2^2}{k}$$

• Full-grad.:
$$\frac{L||x_0 - x^*||_2^2}{2k}$$

• Stochastic. grad.:
$$\frac{L||x_0 - x^*||_2^2}{2k} + \frac{\sigma^2}{L}$$

SAG seems to need n times more iterations compared to full-grad. and stoc. grad. The authors of SAG suggest to find x₀ using the result of n steps of stochastic gradient.

Convergence Rate of Stochastic Average Gradient

- If each gradient $\nabla f_i(x)$ is Lipschitz continuous with constant L
- And the objective function f is δ -strongly convex
- And $\alpha_k = 1/(16L)$
- Then SAG satisfies

$$\mathbb{E}\left[f(x_k) - f^*\right] = \mathcal{O}\left(\left(1 - \min\left\{\frac{\delta}{16L}, \frac{1}{8n}\right\}\right)^k\right)$$

Practical performance

Multiple lines show different trials, 30 re-runs in total. The solid lines demonstrate average behaviour.

Practical performance

- SAG seems to perform well, but practitioners claim that it does not work out of the box. It requires a lot of parameter tuning, which we might not know a-priori.
- The previous plot shows behavior when x_0 is set as the output of n iterations of stochastic gradient.
- Results for stochastic gradient are reported after the n-th iteration, so we can have a fair comparison.
- Initialization of SAG is $g_i(x_0) := \nabla f_i(x_0) \nabla f(x_0) \ \forall i = 1,...,n$
- The results in the previous correspond to highly tuned step-sizes. In particular, the step-size was set as large as possible before SAG diverges.

Stochastic Variance Reduced Gradient

- Initialize with some \tilde{x}_0 and some step-size α
- For k = 1,...
 - Set $\tilde{x} := \tilde{x}_{k-1}$
 - Compute $v := \nabla f(\tilde{x})$
 - Set $x_0 := \tilde{x}$
 - For l = 1...n
 - Pick sample i_l at random
 - $x_l = x_{l-1} \alpha (\nabla f_{i_l}(x_{l-1}) \nabla f_{i_l}(\tilde{x}) + v)$
 - Set $\tilde{x}_k := x_n$

Stochastic Variance Reduced Gradient

- Efficient updates can be performed by SVRG as well
- It can be shown to achieve variance reduction similar to SAG
- Convergence rates are similar to SAG.

AdaGrad

•
$$x_{k+1} = x_k - \alpha_k D^{-1} g_i(x_k)$$

ullet where D is a diagonal matrix. Its j-th diagonal

component is defined as
$$D_{jj} := \sqrt{\gamma + \sum_{l=0}^k \left(\nabla_j f_{i_l}(x_l) \right)^2}$$
 .

- i_l is the index of the sampled data at the l-iteration of the algorithm.
- $\nabla_j f$ denotes the j-th partial derivative of some function f.

Heuristic Extensions of AdaGrad

- RMSprop: variant of AdaGrad where step-sizes do not go to zero (unpublished, first proposed by G. Hinton in his lecture notes)
- Adam: accelerated version of AdaGrad (https://arxiv.org/abs/1412.6980)

Fundamentals of Learning

Kimon Fountoulakis

School of Computer Science University of Waterloo

22/10/2019

Supervised Learning

- Given data a_i and labels b_i for i = 1,...,n
- our objective is to find the parameters x of a function $h(x; a_i)$
- such that $h(x; a_i) \approx b_i$, i.e., function h predicts label b_i .
- We find parameters x by minimizing the loss function $\frac{1}{n} \sum_{i=1}^{n} loss(f(a_i; x), b_i).$
- Connection to previous notation: $loss(h(a_i; x), b_i) = f_i(x)$

Supervised Learning

- Examples of $h(x; a_i)$ are:
- Linear functions: $a_i^T x$ (we will mostly focus on linear functions at this stage)
- Non-linear functions: neural networks etc.

Supervised Learning

- Examples of loss functions are: $loss(h(x; a_i), b_i)$ are:
- Squared error: $\frac{1}{2}(a_i^Tx b_i)^2$
- Absolute error: $|a_i^T x b_i|$, robust to outliers.
- Hinge loss: $\max\{0,1-b_ia_i^Tx\}$, better for binary labels b_i
- **Logistic loss:** $\log(1 + \exp(-b_i a_i^T x))$, better for binary labels b_i and also it's a smooth function.

Goal of Supervised Learning

We are given training data where we know the labels:

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••
	0	0.7	0	0.3	0	0	
Λ -	0.3	0.7	0	0.6	0	0.01	
A -	0	0	0	0.8	0	0	
	0.3	0.7	1.2	0	0.10	0.01	
	0.3	0	1.2	0.3	0.10	0.01	

Sick?	
1	
1	
0	
1	
1	

But the goal is to do well on any possible testing data:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	
0.5	0	1	0.6	2	1	
0	0.7	0	1	0	0	
3	1	0	0.5	0	0	

Sick?
?
?
?

Test Error

- Let $b^i_{model} := h(x^*; a_i)$ be the output label of the trained function h when data-point a_i is given as input.
- The **test error** is defined as the expected error $\mathbb{E}[|b_{model}^i b_{true}^i|]$
- where expectation is taken over the distribution of the datapoints a_i , i.e., we assume that the data-points a_i are random variables.
- Think $\mathbb{E}[|b_{model}^i b_{true}^i|]$ are measuring the error using infinitely many data-points.

Test Set and Test Set Error

- We often approximate the test error by measuring the error on a test set.
- We approximate the **test error** by measuring the **test set**

error:
$$\frac{1}{t} \sum_{i=1}^{t} |b_{model}^{i} - b_{test \ set}^{i}|$$

 where we draw t data-points at random. We call the drawn data-points the test set.

Test Set Error vs Test Error

- Note that the test error is not equal to the test set error.
- The ideal goal would be low test error and not low test set error.
- The "golden rule" of machine learning:
 - You should not use the **test set** in any way that influences finding x^* (training function h).
 - Otherwise, the **test set error** is not an unbiased approximation to the **test error**.
 - If you do that, then you risk "overfitting" to the test set,

Typical Supervised Learning Steps

- Given data (A, b), where A is the data matrix, b is the vector of labels.
- A typical set of supervised learning steps are:
- Data splitting
 - Split the data into training set (A_{train}, b_{train}) and a validation set (A_{valid}, b_{valid})
 - Use the validation set to compute the **test set error** (the approximation to the test error).
- Parameter tuning
 - For each candidate value of the hyper-parameters
 - Find x^* using (A_{train}, b_{train})
 - Evaluate performance using (A_{valid}, b_{valid})
- Choose the model with the best performance on the validation set

Typical Supervised Learning Steps

- Note that because we use the validation to select the best hyper-parameters. This violates the golden rule of machine learning.
- This means that the model that we constructed might overfit the data.
- However, many practitioners do this and sometimes it seems to work.

Test Set Error ≈ Test Error?

• If E_{test} is the test error and E_{valid} is the error on the validation set (the test set error), then:

$$E_{test} = E_{test} - E_{valid} + E_{valid}$$

$$E_{approx}$$

- If E_{approx} is small, then $E_{valid} \approx E_{test}$
- However, we cannot measure E_{test} because we do not know the true distribution of the data.
- So how can we know that E_{approx} is small?

- $\mathbb{P}(E_{approx} > \epsilon) \le 2 \exp(-2\epsilon^2 t)$
- The proof is non-trivial. It requires Hoeffding's inequality.
- This can be proved in the case that we have binary labels and iid data-points and loss is in [0,1].
- The above inequality shows that as the number of data-points t increases, then the probability that E_{approx} is large goes to zero exponentially fast.
- This means that the bigger the validation set is, the better the approximation.

- However, in the standard supervised learning pipeline that we mentioned earlier we select the best hyperparameters using the validation set.
- This "breaks" the result in the previous slide.
- Let ζ be the number of hyper-parameter settings that we try. Then we get

 $\mathbb{P}(E_{approx} > \epsilon \text{ for any hyper-parameter}) \leq 2\zeta \exp(-2\epsilon^2 t)$

- The bound $\mathbb{P}(E_{approx}>\epsilon \text{ for any hyper-parameter}) \leq 2\zeta \exp(-2\epsilon^2 t)$
- means that it is ok to optimize over various parameter settings, as long as t is large.

 $\mathbb{P}(E_{approx} > \epsilon \text{ for any hyper-parameter}) \leq 2\zeta \exp(-2\epsilon^2 t)$

- Examples:
 - If $\zeta = 10$ and t = 1000, then probability that $E_{approx} > 0.05$ is less than 0.14.
 - If $\zeta=10$ and t=10000, then probability that $E_{approx}>0.05$ is less than 10^{-20} .
 - If $\zeta=10$ and t=1000, then probability that $E_{approx}>0.1$ is less than 2.7 (we cannot rule out that E_{approx} will not be small).
 - If $\zeta=100$ and t=100000, then probability that $E_{approx}>0.01$ is less than 10^{-6} .

- Fix the number of samples t. The the last probability result tells us that E_{valid} goes to zero as ζ increases, but E_{approx} increase.
- This implies that we overfit the validation data set.

Learning from data book

Book

Generalization Error

- An alternative measure of performance is the generalization error.
 - Average error over a data set that has not been seen in the training set.
- Test error vs generalization error when labels are deterministic:

Test Error

$$E_{test} = \mathbb{E}[|b_{model}^i - b_{true}^i|]$$

Generalization Error

$$E_{gen} = \frac{1}{t} \sum_{(\alpha_i, b_i) \text{ not in training set}} |b_{model}^i - b_{true}^i|$$

Best and the Good Machine Learning Models

- Question 1: what is the "best" machine learning model?
 - The model that gets the lower generalization error
- Question 2: which models always do better than random guessing?
 - Models with lower generalization error than for random models

- No free lunch theorem:
 - There is no "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.

- Let's show the "no free lunch" theorem in a simple setting:
 - Let $\alpha_i \in \{0,1\}^d$ and $b_i \in \{0,1\}$ be binary
- We define a "learning problem" as a map from each of the 2^d feature combinations to 0 or 1: $\{0,1\}^d \rightarrow \{0,1\}$.

Feature 1	Feature 2	Feature 3
0	0	0
0	0	1
0	1	0

Map 1	Map 2	Map 3	
0	1	0	•••
0	0	1	
0	0	0	
			•••

- Let's pick one of these maps ("learning problems") and:
 - Generate a training set of n iid data-points.
 - Fit model A and model B.

- Define the "unseen" set as the $2^d n$ data-points and their labels not seen in training.
 - Generalization error is the average error on these "unseen" data.
- Suppose that model A got 1% error and model B got 60% error.
- We want to show that model B beats model A on another learning problem.

- Among the set of "learning problems" find the one where:
 - The labels b_i agree on all training data-points.
 - The labels b_i disagree on all "unseen" data-points.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

- Further, across all "learning problems" with this *n* data:
 - Average generalization error of every model is 50% on unseen examples.
 - With "k" classes, the average error is (k-1)/k% (random guessing)

 This is problematic since for general problems, no "machine learning" is better than simply predicting every label to be equal to zero.

Limits of the No Free Lunch Theorem

- The issue with the previous claim is that we allowed any possible set of labels to be generated.
- Fortunately, the world is structured: some "learning" problems are more likely than others.
- For example, it's usually the case that "similar" a_i have similar b_i .
 - Datasets with properties like this are more likely.
 - Otherwise, you probably have no hope of learning.
- Models with the right "similarity" assumptions can beat naive approaches like predicting all labels to be equal to zero.
- With assumptions like this, you can consider consistency:
 - As *n* grows, model A converges to the optimal test error.

Learning from data book

Book