Online Tabular Algorithms

Sean SinclairCornell University

Finite Horizon

A MDP is defined by: $\mathcal{M} = \{S, A, r, T, s_0, H\}$

 \mathcal{S}

State space

 \mathcal{A}

Action space

 $r_h: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$

Reward

 $T_h: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$

Transitions

H

Time horizon

 $\pi_h: \mathcal{S} \to \Delta(\mathcal{A})$

Policy

Bellman Equation

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(S_{h'}, A_{h'}) \mid S_h = s, A_{h'} \sim \pi(S_{h'}), S_{h'+1} \sim T_{h'}(\cdot \mid S_{h'}, A_{h'})\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(S_{h'}, A_{h'}) \mid (S_h, A_h) = (s, a), A_{h'} \sim \pi(S_{h'}), S_{h'+1} \sim T_{h'}(\cdot \mid S_{h'}, A_{h'})\right]$$

The Bellman Equations note that:

$$V_h^{\pi}(s) = \mathbb{E}_{A \sim \pi_h(s)}[r_h(s, A) + \mathbb{E}_{S' \sim T_h(\cdot | s, A)}[V_{h+1}^{\pi}(S')]]$$

$$Q_h^{\pi}(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)}[V_{h+1}^{\pi}(S')]$$

Given a MDP, how do we find the optimal policy?

Fully Known Model

- Reward function, transition distribution fully known
- Understand computational complexity to scale to large problems

Generative Model

- Sample from reward function / transition distribution from arbitrary (state,action)
- Understand statistical complexity to scale to large problems
- No issue of dynamic environment

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Given a MDP, how do we find the optimal policy?

Fully Known Model

- Reward function, transition distribution fully known
- Understand computational complexity to scale to large problems

Generative Model

- Sample from reward function / transition distribution from arbitrary (state,action)
- Understand statistical complexity to scale to large problems
- No issue of dynamic environment

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Unknown transition + reward

Over sequence of episodes:

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over *H* steps in MDP

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over *H* steps in MDP
- Collect dataset and update policy $\{(S_1^k,A_1^k,R_1^k),\ldots,(S_H^k,A_H^k,R_H^k)\}$

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over H steps in MDP
- Collect dataset and update policy

$$\{(S_1^k, A_1^k, R_1^k), \dots, (S_H^k, A_H^k, R_H^k)\}$$

Goal: Minimize regret:

REGRET
$$(K) = \sum_{k=1}^{K} V_1^*(s_0) - V_1^{\pi^k}(s_0)$$

Recall.....

Given a MDP, how do we find the optimal policy?

Fully Known Model

- Reward function, transition distribution fully known
- Understand computational complexity to scale to large problems

Two Approaches

Value Iteration Policy Iteration

Recall.....

Given a MDP, how do we find the optimal policy?

Fully Known Model

- Reward function, transition distribution fully known
- Understand computational complexity to scale to large problems

Two Approaches

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Two Approaches

Value Based Policy Based

Given a MDP, how do we find the optimal policy?

Online Model

- Sample trajectory under current policy, update policy, repeat
- Understand statistical complexity
- "Most complex", additional correlations in estimates

Two Approaches

Value Based Policy Based

Typically done with function approximation, will discuss later

Value Based

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

Value Based

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

Model-Based

- Maintain estimates of reward and transition
- Plug estimates into Bellman equations for estimated V*, Q*
- Play greedy w.r.t. Q*
- Time complexity / storage scales S^2A

Model Free

- Only maintain estimates of V^* , Q^* using fixed point
- Play greedy w.r.t. Q^*
- Better time complexity / storage (only SA)

Value Based

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)}[V_{h+1}^*(S')]$$

Model-Based

- Maintain estimates of reward and transition
- Plug estimates into Bellman equations for estimated V^* , Q^*
- Play greedy w.r.t. Q*
- Time complexity / storage scales S^2A

Model Free

- Only maintain estimates of V^* , Q^* using fixed point
- Play greedy w.r.t. Q^*
- Better time complexity / storage (only SA)

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

At start of episode k, have collected data: \mathcal{D}^k

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

At start of episode k, have collected data: \mathcal{D}^k

Estimate reward and transition via empirical:

$$\overline{r}_{h}^{k}(s,a) = \frac{1}{n_{h}(s,a)} \sum_{(s,a) \in \mathcal{D}^{k}} R_{h}^{k} \qquad \overline{T}_{h}^{k}(\cdot \mid s,a) = \frac{1}{n_{h}(x,a)} \sum_{(s,a,S_{h+1}^{k'}) \in \mathcal{D}^{k}} \delta_{S_{h+1}^{k'}}$$

 $n_h(s,a)$ Number of times (s,a) visited

The Bellman Optimality Equations note that:

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

At start of episode k, have collected data: \mathcal{D}^k

Estimate reward and transition via empirical:

$$\overline{r}_{h}^{k}(s,a) = \frac{1}{n_{h}(s,a)} \sum_{(s,a) \in \mathcal{D}^{k}} R_{h}^{k} \qquad \overline{T}_{h}^{k}(\cdot \mid s,a) = \frac{1}{n_{h}(x,a)} \sum_{(s,a,S_{h+1}^{k'}) \in \mathcal{D}^{k}} \delta_{S_{h+1}^{k'}}$$

 $n_h(s,a)$ Number of times (s,a) visited

Plug estimates into Bellman Optimality Equations

[Azar2017]

Estimate reward and transition via empirical:

$$\overline{r}_{h}^{k}(s, a) = \frac{1}{n_{h}(s, a)} \sum_{(s, a) \in \mathcal{D}^{k}} R_{h}^{k} \qquad \overline{T}_{h}^{k}(\cdot \mid s, a) = \frac{1}{n_{h}(x, a)} \sum_{(s, a, S_{h+1}^{k'}) \in \mathcal{D}^{k}} \delta_{S_{h+1}^{k'}}$$

 $n_h(s,a)$ Number of times (s,a) visited

Plug estimates into Bellman Optimality Equations

$$\begin{split} \overline{V}_h^k(s) &= \max_{a \in \mathcal{A}} \overline{Q}_h^k(s, a) \\ \overline{Q}_h^k(s, a) &= \overline{r}_h^k(s, a) + \mathbb{E}_{S' \sim \overline{T}_h^k(\cdot | s, a)} [\overline{V}_{h+1}^k(S')] \\ \pi_h^k(s) &= \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_h^k(s, a) \end{split}$$

Estimate reward and transition via empirical:

$$\overline{T}_{h}^{k}(s, a) = \frac{1}{n_{h}(s, a)} \sum_{(s, a) \in \mathcal{D}^{k}} R_{h}^{k} \qquad \overline{T}_{h}^{k}(\cdot \mid s, a) = \frac{1}{n_{h}(x, a)} \sum_{(s, a, S_{h+1}^{k'}) \in \mathcal{D}^{k}} \delta_{S_{h+1}^{k'}}$$

 $n_h(s,a)$ Number of times (s,a) visited

Plug estimates into Bellman Optimality Equations

$$\begin{split} \overline{V}_h^k(s) &= \max_{a \in \mathcal{A}} \overline{Q}_h^k(s, a) \\ \overline{Q}_h^k(s, a) &= \overline{r}_h^k(s, a) + \mathbb{E}_{S' \sim \overline{T}_h^k(\cdot | s, a)} [\overline{V}_{h+1}^k(S')] \\ \pi_h^k(s) &= \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_h^k(s, a) \end{split}$$

Empirical value iteration with reward and transition estimates

[Azar2017]

Exploration

Unfortunately this algorithm is missing one key ingredient

Exploration

Unfortunately this algorithm is missing one key ingredient

Without exploration, no reason for algorithm to explore to unobserved (s,a) pairs

[Azar2017]

A Key Lock Structure MDP

$$\begin{split} \overline{V}_h^k(s) &= \max_{a \in \mathcal{A}} \overline{Q}_h^k(s, a) \\ \overline{Q}_h^k(s, a) &= \overline{r}_h^k(s, a) + \mathbb{E}_{S' \sim \overline{T}_h^k(\cdot | s, a)} [\overline{V}_{h+1}^k(S')] + \underbrace{\iota \frac{1}{\sqrt{n_h(s, a)}}}_{a \in \mathcal{A}} \end{split}$$

Empirical value iteration with reward and transition estimates and exploration bonuses

[Azar2017]

$$\overline{V}_{h}^{k}(s) = \max_{a \in \mathcal{A}} \overline{Q}_{h}^{k}(s, a)$$

$$\overline{Q}_{h}^{k}(s, a) = \overline{r}_{h}^{k}(s, a) + \mathbb{E}_{S' \sim \overline{T}_{h}^{k}(\cdot | s, a)} [\overline{V}_{h+1}^{k}(S')] + \iota \frac{1}{\sqrt{n_{h}(s, a)}}$$

$$\pi_{h}^{k}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_{h}^{k}(s, a)$$

Informal Theorem: In a H-step MDP we have that:

$$Regret(K) \le H^2 \sqrt{S^2 AK}$$

- Optimal dependence on K
- Suboptimal time + space complexity
- Dependence on H still current research

$$\begin{split} \overline{V}_h^k(s) &= \max_{a \in \mathcal{A}} \overline{Q}_h^k(s, a) \\ \overline{Q}_h^k(s, a) &= \overline{r}_h^k(s, a) + \mathbb{E}_{S' \sim \overline{T}_h^k(\cdot | s, a)} [\overline{V}_{h+1}^k(S')] + \underbrace{\iota \frac{1}{\sqrt{n_h(s, a)}}}_{a \in \mathcal{A}} \end{split}$$

Regret guarantees are worst case, don't capture specific problem structure

In practice: exploration is done via ϵ exploration or bonus terms are tuned for performance

Model Free

If
$$V_h(s) = \max_{a \in \mathcal{A}} r_h(s,a) + \mathbb{E}_{S' \sim T_h(\cdot | s,a)}[V_{h+1}(S')]$$
 then $V(s) = V^*(s) \forall s$

Model Free

If
$$V_h(s) = \max_{a \in \mathcal{A}} r_h(s,a) + \mathbb{E}_{S' \sim T_h(\cdot|s,a)}[V_{h+1}(S')]$$
 then $V(s) = V^*(s) \forall s$

then
$$V(s) = V^*(s) orall s$$

From stochastic approximation:

Can use "stochastic" root finding algorithms to find the zero of:

$$\Delta_n(s,a) = Q_n(x,a) - Q^*(x,a)$$

[Robbins-Monro]

Stochastic Approximation

Let
$$\Delta_{n+1}(x) = (1 - \alpha_n(x))\Delta_n(x) + \beta_n(x)F_n(x)$$

Converges to zero almost surely if:

- State space finite
- $\|\mathbb{E}[F_n(x)]\| \le \gamma \|\Delta_n(x)\|$

From stochastic approximation:

Can use "stochastic" root finding algorithms to find the zero of:

$$\Delta_n(s,a) = Q_n(x,a) - Q^*(x,a)$$

[Robbins-Monro]

Model Free

Results in following update procedure:

$$\overline{V}_h^k(s) = \max_{a \in \mathcal{A}} \overline{Q}_h^k(s, a)$$

$$\overline{Q}_h^{k+1}(S_h^k, A_h^k) = (1 - \alpha_t) \overline{Q}_h^k(S_h^k, A_h^k) + \alpha_t (R_h^k + \overline{V}_h^k(S_{h+1}^k) + \iota \frac{1}{\sqrt{t}})$$

$$\pi_h^k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_h^k(s, a)$$

Empirical fixed point iteration with exploration bonuses

Model Free

$$\overline{V}_h^k(s) = \max_{a \in \mathcal{A}} \overline{Q}_h^k(s, a)$$

$$\overline{Q}_h^{k+1}(S_h^k, A_h^k) = (1 - \alpha_t) \overline{Q}_h^k(s, a) + \alpha_t (R_h^k + \overline{V}_h^k(S_{h+1}^k) + \iota \frac{1}{\sqrt{t}})$$

$$\pi_h^k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_h^k(s, a)$$

Informal Theorem: In a H-step MDP we have that:

$$Regret(K) \le H^{3/2} \sqrt{SAK}$$

- Strong relation to theory of Stochastic Approximation (Robbins Munro)
- Optimal dependence on K
- Better time + space complexity than model-based algorithms
- Dependence on H still current research

[Jin2018]

Model Free vs Model Based

Some folklore comparisons:

- Model based has better performance than model free due to how information is "propagated" across (s,a) pairs
- Increased computational overhead for model based algorithms
- Model based easier to implement, can use existing code for solving Bellman equations

Model Free vs Model Based

We will see a comparison this afternoon!

References

[Jin2018] Chi Jin, Zeyuan Allen-Zhu, Sebastian Bubeck, Michael Jordan. "Is Q Learning Provably Efficient?" NeurIPS, 2018.

[Sutton2018] Richard Sutton. "Reinforcement Learning: An Introduction." *MIT Press*, 2018.

[Azar2017] Mohammad Gheshlaghi Azar, Ian Osband, Rémi Munos. "Minimax Regret Bounds for Reinforcement Learning". ICML, 2017.