

GAMES 102在线课程

几何建模与处理基础

刘利刚

中国科学技术大学

GAMES 102在线课程:几何建模与处理基础

Bezier曲线

回顾: 函数/曲线拟合

• 逆向工程中的建模问题: 给定产品, 用测量的方法得到产品外形上的一些采样点, 然后通过拟合的方法得到产品外形的表达。

回顾: 函数/曲线拟合

- 从代数观点来看: 从一组基函数所张成的函数空间中, 找一个"好"的函数来拟合给定的采样点。
- 比如幂基 $\{1, x, x^2, ..., x^n\}$
 - (n = 2) 二次多项式: $f(t) = at^2 + bt + c$

• 参数曲线形式: $f(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

使用幂基来表达曲线

• 二次多项式曲线(抛物线):

$$f(t) = at^2 + bt + c$$

$$f(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^2 + \begin{pmatrix} -2 \\ 0 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

几何观点: 系数顶点 基函数为这些顶点的组合权系数

使用幂基来表达曲线

• 二次多项式曲线(抛物线):

$$f(t) = at^2 + bt + c$$

系数顶点与曲线本身无直观的联系: 无几何意义!

不利于用户来交互修改曲线: 设计建模

建模的两种形式

$$f(t) = at^2 + bt + c$$

- 1. 重建(Reconstruction)
 - 逆向工程: 形状已有, 要将其"猜"出来
 - 采样 > 拟合: 需要函数空间足够丰富 (表达能力够)
 - **代数观点**: $\{a,b,c\}$ 作为基函数的组合权系数
- 2. 设计(Design)
 - 自由设计: 凭空产生, 或从一个简单的形状编辑得到
 - 交互式编辑:几何直观性要好
 - **几何观点**: 基函数 $\{t^2, t, 1\}$ 作为控制点的组合权系数

使用Bernstein基函数表达

• 使用Bernstein基函数来改写

$$\mathbf{f}(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^2 + \begin{pmatrix} -2 \\ 0 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$f(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} (1-t)^2 + \begin{pmatrix} 0 \\ 0 \end{pmatrix} 2t(1-t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} t^2$$

使用Bernstein基函数表达

- 系数顶点与曲线关联性强,具有很好的几何意义
- 对于交互式曲线设计更直观

Bernstein基函数

• n次Bernstein基函数: $B = \{B_0^{(n)}, B_1^{(n)}, ..., B_n^{(n)}\}$

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i} = B_{i-\text{th basis function}}^{(\text{degree})}$$

where the binomial coefficients are given by:

$$\binom{n}{i} = \begin{cases} \frac{n!}{(n-i)! \, i!} & \text{for } 0 \le i \le n \\ 0 & \text{otherwise} \end{cases}$$

Examples: The first few

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

$$B_0^{(1)} \coloneqq 1 - t$$

$$B_0^{(0)} \coloneqq 1 \qquad B_1^{(1)} \coloneqq t$$

$$B_0$$

$$B_0$$

$$B_1$$

$$B_0$$

$$B_1$$

$$B_1$$

$$B_1$$

$$B_2$$

$$B_1$$

$$B_2$$

$$B_3$$

$$B_4$$

$$B_1$$

$$B_0^{(2)} \coloneqq (1-t)^2$$

$$B_1^{(2)} \coloneqq 2t(1-t)$$

$$B_2^{(2)} \coloneqq t^2$$

另一个例子

$$\boldsymbol{b}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \boldsymbol{b}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \boldsymbol{b}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$\begin{array}{c} \mathbf{b}_0 \\ \mathbf{b}_0 \end{array}$$

用Bernstein基函数所表达的 曲线具有非常好的几何意义!

Bezier曲线

• n次Bezier曲线: n+1个控制顶点

$$x(t) = \sum_{i=0}^{n} B_i^n(t) \cdot b_i$$
 控制顶点 控制多边形 $\mathbf{b}_0^{(0)}$

Bezier曲线的性质来源于Bernstein基函数的性质 (曲线是控制顶点的线性组合构成的,基函数提供了组合系数)

例子: 3次Bezier曲线

•
$$\boldsymbol{f}(t) = \sum_{i=1}^{3} B_i^3 \boldsymbol{p}_i$$
 , $t \in [0,1]$

例子: 更复杂的Bezier曲线

3D空间的Bezier曲线(单参数)

•
$$f(t) = \sum_{i=1}^{n} B_i^n p_i$$
, $t \in [0,1]$

Bernstein基函数及 Bezier曲线的性质

Bernstein基函数

- Bernstein基函数: $B = \{B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)}\}$
 - n次 (n+1阶) Bernstein基函数: $B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i} = B_{i-\text{th basis function}}^{(\text{degree})}$
 - 对称性: $B_i^n(t) = B_{n-i}^n(1-t)$
 - $B_i^{(n)}(t)$ 在 $t = \frac{i}{n}$ 达到最大值

性质1. 正权性

- 正性(非负性) + 权性
 - $B_i^{(n)}(t) \ge 0$, $\forall t \in [0,1]$
 - $\sum_{i=1}^{n} B_i^{(n)}(t) = 1, \forall t \in [0,1]$

• Bezier曲线的凸包性

性质2. 基性

• $B = \{B_0^{(n)}, B_1^{(n)}, ..., B_n^{(n)}\}$ 是次数不高于n的多项式集合(空间)的一组基

• 与幂基可以相互线性表达:

$$\begin{bmatrix} B_{0,n}(t) & B_{1,n}(t) & \cdots & B_{n,n}(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2 & \cdots & t^n \end{bmatrix} \begin{bmatrix} b_{0,0} & 0 & 0 & \cdots & 0 \\ b_{1,0} & b_{1,1} & 0 & \cdots & 0 \\ b_{2,0} & b_{2,1} & b_{2,2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n,0} & b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{bmatrix}$$

性质3. 递推公式

• 基函数的递推公式

$$B_i^n(t) = (1-t)B_i^{(n-1)}(t) + tB_{i-1}^{(n-1)}(1-t)$$

with $B_0^0(t) = 1$, $B_i^n(t) = 0$ for $i \notin \{0 \dots n\}$
• 由 $\binom{n-1}{i} + \binom{n-1}{i-1} = \binom{n}{i}$ 可推导得到

- 高阶的基函数由2个低阶的基函数"升阶"得到
 - 利于保持一些良好的性质

性质4. 端点插值性

•
$$B_0^n(0) = 1$$
, $B_1^n(0) = \dots = B_n^n(0) = 0$

•
$$B_0^n(1) = \cdots = B_{n-1}^n(1) = 0$$
, $B_n^n(0) = 1$

• Bezier曲线经过首末两个控制顶点 p_0, p_n

性质5. 导数

- $\frac{d}{dt}B_i^{(n)}(t) = n\left[B_{i-1}^{(n-1)}(t) B_i^{(n-1)}(t)\right]$
- $\frac{d^2}{dt^2}B_i^{(n)}(t) = n(n-1)\left[B_{i-2}^{(n-2)}(t) 2B_{i-1}^{(n-2)}(t) + B_i^{(n-2)}(t)\right]$
- Bezier曲线的导数(切线)
 - Given: $p_0, ..., p_n, f(t) = \sum_{i=0}^n B_i^n(t) p_i$
 - $f'(t) = n \sum_{i=0}^{n-1} B_i^{n-1}(t) (p_{i+1} p_i)$
 - $f^{[r]}(t) = \frac{n!}{(n-r)!} \cdot \sum_{i=0}^{n-r} B_i^{n-r}(t) \cdot \Delta^r p_i$

Bezier曲线的端点性质

•端点插值:

$$f(0) = \mathbf{p}_0$$

$$f(1) = \mathbf{p}_n$$

• 端点的切线方向与边相同:

$$f'(0) = n[p_1 - p_0]$$

 $f'(1) = n[p_{n-1} - p_n]$

• 端点的2阶(k)切线与3点(k+1)相关:

$$f''(0) = n(n-1)[\mathbf{p}_2 - 2\mathbf{p}_1 + \mathbf{p}_0]$$

 $f''(1) = n(n-1)[\mathbf{p}_n - 2\mathbf{p}_{n-1} + \mathbf{p}_{n-2}]$

结合几何意义来理解

性质6. 升阶

$$(1-t)B_i^n(t) = (1 - \frac{i}{n+1})B_i^{n+1}(t)$$
$$tB_i^n(t) = \frac{i+1}{n+1}B_i^{n+1}(t)$$

$$f(t) = \sum_{i=0}^{n+1} B_i^{n+1}(t) \left[\frac{n+1-i}{n+1} \mathbf{P}_i + \frac{i}{n+1} \mathbf{P}_{i-1} \right]$$

Bezier曲线的 de Casteljau算法

(Bezier曲线的作图算法与细分)

Algorithm description

- Input: points $\boldsymbol{b}_0, \boldsymbol{b}_1, ... \boldsymbol{b}_n \in \mathbb{R}^3$
- Output: curve $x(t), t \in [0,1]$

• Geometric construction of the points x(t) for given t:

$$\mathbf{b}_{i}^{0}(t) = \mathbf{b}_{i}, \qquad i = 0, ..., n$$

$$\mathbf{b}_{i}^{r}(t) = (1 - t)\mathbf{b}_{i}^{r-1}(t) + t \mathbf{b}_{i+1}^{r-1}(t)$$

$$r = 1, ..., n \qquad i = 0, ..., n - r$$

• Then $m{b}_0^n(t)$ is the searched curve point $m{x}(t)$ at the parameter value t

Repeated convex combination of control points

• Repeated convex combinatio
$$\boldsymbol{b}_i^{(r)} = (1-t)\boldsymbol{b}_i^{(r-1)} + t\boldsymbol{b}_{i+1}^{(r-1)}$$

$$\boldsymbol{b}_0^{(0)}$$

 $b_1^{(0)}$

 $b_2^{(0)}$

 $b_3^{(0)}$

Repeated convex combination of control points

Repeated convex combination of control points

Repeated convex combination of control points

- 计算Bezier曲线x(t)上参数为t的点
 - Bisect control polygon in ratio t:(1-t)
- 良好的几何意义:该点将曲线一分两条子Bezier曲线,其控制顶点是中间生成的点
- 可用于Bezier曲线的离散及求根等许多应用

- 计算Bezier曲线x(t)上参数为t的点
 - Bisect control polygon in ratio t:(1-t)
- 良好的几何意义:该点将曲线一分两条子Bezier曲线,其控制顶点是中间生成的点
- 可用于Bezier曲线的离散及求根等许多应用

- 计算Bezier曲线x(t)上参数为t的点
 - Bisect control polygon in ratio t:(1-t)
- 良好的几何意义:该点将曲线一分两条子Bezier曲线,其控制顶点是中间生成的点
- 可用于Bezier曲线的离散及求根等许多应用

- 计算Bezier曲线x(t)上参数为t的点
 - Bisect control polygon in ratio t:(1-t)
- 良好的几何意义:该点将曲线一分两条子Bezier曲线,其控制顶点是中间生成的点
- 可用于Bezier曲线的离散及求根等许多应用

几何样条曲线

用分段Bezier曲线来插值型值点

• 给定型值点:

$$\mathbf{k}_0$$
, ..., $\mathbf{k}_n \in \mathbb{R}^3$

• 每两点间生成一段Bezier曲线,使得整体曲线满足一定的连续性(C^0 , C^1 , C^2)

问题:两Bezier曲线的拼接条件

• C^0 , C^1 , C^2 ?

回顾: Bezier曲线的端点性质

•端点插值:

$$f(0) = \mathbf{p}_0$$

$$f(1) = \mathbf{p}_n$$

• 端点的切线方向与边相同:

$$f'(0) = n[p_1 - p_0]$$

 $f'(1) = n[p_{n-1} - p_n]$

• 端点的2阶(k)切线与3点(k+1)相关:

$$f''(0) = n(n-1)[\mathbf{p}_2 - 2\mathbf{p}_1 + \mathbf{p}_0]$$

 $f''(1) = n(n-1)[\mathbf{p}_n - 2\mathbf{p}_{n-1} + \mathbf{p}_{n-2}]$

两Bezier曲线的拼接条件

 C^0 连续

G¹连续:三点共线

 C^1 连续: 三点共线

且等长

两Bezier曲线的拼接条件

- C² 连续
 - $d^2/dt^2 \supset (p_2 2p_1 + p_0), (p_n 2p_{n-1} + p_{n-2})$
 - 阴影三角形相似
- *G*² 连续?

构造3次插值Bezier曲线的几何方法

在作业4中也实现下

广义样条曲线

• 分段的多项式曲线(Bezier曲线)

谢 谢!