Package 'BE'

June 18, 2018

Version	n	1	ĺ	n	
version	w		١.'	u	ı

Title Bioequivalence Study Data Analysis

Description Analyze bioequivalence study data in a industrial strength. Sample size could be determined for various crossover designs, such as 2x2 design, 2x4 design, 4x4 design, Balaam design, Two-sequence dual design, and William design.

Reference: Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. (2009, ISBN:978-1-58488-668-6).

Depends R (>= 3.0.0)

Author Kyun-Seop Bae [aut]

Maintainer Kyun-Seop Bae <k@acr.kr>

Copyright 2018, Kyun-Seop Bae

License GPL-3

NeedsCompilation no

LazyLoad yes

Index

Repository CRAN

URL https://cran.r-project.org/package=BE

R topics documented:

be2x2																				2
ci2cv																				3
ci2mse																				3
cv2mse																				4
hodges																				5
mse2cv																				6
NCAResult4BE																				6
plot2x2																				7
pow2x2ci																				8
$pow2x2mse \ \ . \ \ .$																				9
powcv																				10
powmse																				11
ss2x2ci																				12
sscv																				12
ssmse																				14
test2x2																				15
																				16

be2x2

be2x2

Bioequivalence test of a 2x2 study

Description

It performs conventional bioequivalence test for 2x2 study. Input is a file. Basic assumption is that the variable is distributed as log-normal distribution. This is SAS PROC GLM style. If you want PROC MIXED style, use nlme:lme.

Usage

```
be2x2(filename, Columns = c("AUClast", "Cmax", "Tmax"), Plot = TRUE)
```

Arguments

filename Data file name. This should have at least the following columns and variable

columns to be tested. AUC ans Cmax should be all positive values.

GRP: Group or Sequence, 'RT' or 'TR'

PRD : Period, 1 or 2 SUBJ : Subject ID

TRT : Treatment or Drug, 'R' or 'T'

Column names of variables to be tested. This is usually c("AUClast", "Cmax",

"Tmax") or c("AUClast", "AUCinf", "Cmax", "Tmax")

Plot Whether plot on screen is to be done or not.

Details

It performs bioequivalency tests for severval variables of a 2x2 study in a data file.

Value

Returns text output of equivalence test result.

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
test2x2, plot2x2
```

```
write.csv(NCAResult4BE, "temp.csv", quote=FALSE, row.names=FALSE)
print(be2x2("temp.csv", c("AUClast", "Cmax", "Tmax")), na.print="")
```

ci2cv 3

ci2cv	Coefficient of variation (CV) from a confidence interval of previous 2x2 study

Description

It calculates coefficient of variation (CV) from a confidence interval of previous 2x2 study.

Usage

```
ci2cv(n1, n2, LL, UL, Alpha = 0.1)
```

Arguments

n1	Subject count of group 1
n2	Subject count of group 2
LL	Lower limit of confidence interval of geometric mean ratio (Test/Reference)
UL	Upper limit of confidence interval of geometric mean ratio (Test/Reference)
Alpha	Alpha level. This means (1 - alpha/2)*100 % confidence interval is given

Details

It calculates coefficient of variation (CV) from a confidence interval of 2x2 bioequivalence study.

Value

Returns coefficient of variation (CV) in percent (%).

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

```
ci2cv(12, 13, 0.85, 1.11)
```

ci2mse	Mean squared error (MSE) from a confidence interval of previous 2x2
	study

Description

It calculates mean squared error (MSE) from a confidence interval of previous 2x2 study.

Usage

```
ci2mse(n1, n2, LL, UL, Alpha = 0.1)
```

4 cv2mse

Arguments

n1	Subject count of group 1
n2	Subject count of group 2
LL	Lower limit of confidence interval of geometric mean ratio (Test/Reference)
UL	Upper limit of confidence interval of geometric mean ratio (Test/Reference)
Alpha	Alpha level. This means (1 - alpha/2)*100 % confidence interval is given

Details

It calculates coefficient of variation (CV) from a confidence interval of 2x2 bioequivalence study.

Value

Returns mean squared error (MSE).

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

```
ci2mse(12, 13, 0.85, 1.11)
```

cv2mse

Mean squared error (MSE) from coefficient of variation (CV)

Description

It alculates mean squared error (MSE) from oefficient of variation (CV).

Usage

```
cv2mse(cv)
```

Arguments

CV

Coefficient of variation (%) in original scale

Details

coefficient of variation (CV) is percent in original scale and mean squared error (MSE) is log scale.

Value

Returns mean squared error (MSE) in log scale).

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
cv2mse(25)
```

hodges 5

hodges

Hodges-Lehmann estimation for a variable of a 2x2 study

Description

It performs Hodges-Lehmann estimation for 2x2 study. This is usually for Tmax variable.

Usage

```
hodges(bedata, Var)
```

Arguments

bedata Data table name. This should have at least the following columns and a variable

column to be tested.

GRP: Group or Sequence, 'RT' or 'TR'

PRD : Period, 1 or 2 SUBJ : Subject ID

TRT : Treatment or Drug, 'R' or 'T'

Var Variable to be estimated. This should be one of the column names in bedata

table. Usually 'Tmax'

Details

It nonparametrically tests Var variable equivalency from a 2x2 study. This is done for a variable which we cannot assume log-normal distribution.

Value

```
Wilcoxon Signed-Rank Test A \ kind \ of \ nonparametric \ test Hodges-Lehmann Estimate 90\% \ confidence \ interval \ in \ orginal \ scale \ and \ percent \ scale
```

Author(s)

```
Kyun-Seop Bae <k@acr.kr>
```

```
hodges(NCAResult4BE, "Tmax")
```

6 NCAResult4BE

mse2cv

Coefficient of variation (CV) from mean squared error (MSE)

Description

It alculates coefficient of variation (CV) from mean squared error (MSE).

Usage

```
mse2cv(mse)
```

Arguments

mse

Mean square error (MSE) in log scale

Details

coefficient of variation (CV) is percent in original scale and mean squared error (MSE) is log scale.

Value

Returns coefficient of variation (CV) in percent (%).

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

mse2cv(0.06062462)

NCAResult4BE

An Example of Noncompartmental Analysis Result for Bioequivalence Test

Description

Contains Noncompartmental analysis result data from a concentration simulated bioequivalence study.

Usage

RptCfg

plot2x2

Format

A data frame with 48 observations on the following 10 variables.

```
SUBJ Subject ID
```

GRP Group or Sequence character code: 'RT' or 'TR"

PRD Period numeric value: 1 or 2

TRT Treatment or Drug code: 'R' or 'T'
AUClast AUClast positive numeric value

Cmax Cmax positive numeric value
Tmax Tmax positive numeric value

Details

This contains a simulated data for 2x2 bioequivalence study data analysis. Noncompartmental analysis results are from the NonCompart package.

plot2x2

Plot bioequivalence variable of a 2x2 study

Description

It plots two 2x2 plots for a variable.

Usage

```
plot2x2(bedata, Var)
```

Arguments

bedata

Data table name. This should have at least the following columns and a variable column to be plotted.

GRP: Group or Sequence, 'RT' or 'TR'

PRD : Period, 1 or 2 SUBJ : Subject ID

TRT : Treatment or Drug, 'R' or 'T'

Var Variable to be plotted. This should be one of the column names in bedata table.

Details

It plots Var column values according to GRP, PRD, TRT.

Value

It just draws two 2x2 plots for equivalence exploration.

Author(s)

Kyun-Seop Bae <k@acr.kr>

pow2x2ci

Examples

```
plot2x2(NCAResult4BE, "AUClast")
plot2x2(NCAResult4BE, "Cmax")
plot2x2(NCAResult4BE, "Tmax")
```

pow2x2ci

Power using a confidence interval of previous 2x2 study

Description

It calculates power for the bioequivalence test on ratio using a confidence interval of previous 2x2 study.

Usage

```
pow2x2ci(n1, n2, LL, UL, Alpha = 0.1)
```

Arguments

n1	Subject count of group 1
n2	Subject count of group 2
LL	Lower limit of confidence interval of geometric mean ratio (Test/Reference)
UL	Upper limit of confidence interval of geometric mean ratio (Test/Reference)
Alpha	Alpha level. This means (1 - alpha/2)*100 % confidence interval is given

Details

It calculates power of sample size (n per group) with CV.

Value

```
Returns power [0, 1)
```

Author(s)

```
Kyun-Seop Bae <k@acr.kr>
```

```
pow2x2ci(12, 13, 0.85, 1.11)
```

pow2x2mse 9

pow2x2mse Power using mean squared error (MSE) of previous 2x2 study	pow2x2mse	Power using mean squared error (MSE) of previous 2x2 study
--	-----------	--

Description

It calculates power for the bioequivalence test on ratio using mean squared error (MSE of previous 2x2 study.

Usage

```
pow2x2mse(n1, n2, mse, True.R = 1, Alpha = 0.1, ThetaL = 0.8, ThetaU = 1.25)
```

Arguments

n1	Subject count of group 1
n2	Subject count of group 2
mse	Mean squared error
True.R	True ratio of test/reference
Alpha	Alpha level. This means (1 - alpha/2)*100 % confidence interval is given
ThetaL	Lower limit of equivalence criteria
ThetaU	Upper limit of equivalence criteria

Details

It calculates power of sample size (n per group) with CV.

Value

```
Returns power [0, 1)
```

Author(s)

```
Kyun-Seop Bae <k@acr.kr>
```

```
pow2x2mse(12, 13, 0.0756530)
```

10 powcy

powcv

Power using coefficient of variation (CV)

Description

It calculates power for the bioequivalence test on ratio using coefficient of variation (CV).

Usage

```
powcv(n, CV, DesignNo = 1, True.R = 1, Alpha = 0.1, ThetaL = 0.8, ThetaU = 1.25)
```

Arguments

n Sample size, n per group
CV Coefficient of Variation (%)
DesignNo Crossover design number.

Design Number (treatment x sequence x period)

1 2x2x2 : RT TR

2 2x4x2 (Balaam Design) : TT RR RT TR

3 2x2x3 (Two-sequence Dual Design): TRR RTT

4 2x2x4 : TRRT RTTR

5 2x4x4 : TTRR RRTT TRRT RTTR

6 3x6x3 (William Design for 3 treatments) + carry-over effect

: RBA ARB BAR ABR BRA RAB

7~3x6x3 (William Design for 3 treatments) - carry-over effect

: RBA ARB BAR ABR BRA RAB

8 4x4x4 (William Design for 4 treatments) + carry-over effect

: RCAB ARBC BACR CBRA

9 4x4x4 (William Design for 4 treatments) - carry-over effect

: RCAB ARBC BACR CBRA

True .R True ratio of test/reference

Alpha error level

ThetaL Lower limit of equivalence criteria
ThetaU Upper limit of equivalence criteria

Details

It calculates power of sample size (n per group) with CV.

Value

Returns power [0, 1)

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

powcv(12, 25)

powmse 11

powmse

Power using mean squared error (MSE)

Description

It calculates power for the bioequivalence test on ratio using mean squared error (MSE).

Usage

```
powmse(n, mse, DesignNo = 1, True.R = 1, Alpha = 0.1, ThetaL = 0.8, ThetaU = 1.25)
```

Arguments

n Sample size, n per group
mse Mean squared error
DesignNo Crossover design number.

Design Number (treatment x sequence x period)

1 2x2x2 : RT TR

2 2x4x2 (Balaam Design) : TT RR RT TR

3 2x2x3 (Two-sequence Dual Design): TRR RTT

4 2x2x4 : TRRT RTTR

5 2x4x4 : TTRR RRTT TRRT RTTR

6 3x6x3 (William Design for 3 treatments) + carry-over effect

: RBA ARB BAR ABR BRA RAB

7~3x6x3 (William Design for 3 treatments) - carry-over effect

: RBA ARB BAR ABR BRA RAB

8 4x4x4 (William Design for 4 treatments) + carry-over effect

: RCAB ARBC BACR CBRA

9 4x4x4 (William Design for 4 treatments) - carry-over effect

: RCAB ARBC BACR CBRA

True .R True ratio of test/reference

Alpha error level

ThetaL Lower limit of equivalence criteria
ThetaU Upper limit of equivalence criteria

Details

It calculates power of sample size (n per group) with mse.

Value

Returns power [0, 1)

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

powmse(12, 0.06)

12 sscv

ss2x2ci

Sample size using a confidence interval of previous 2x2 study

Description

It calculates sample size for the bioequivalence test on ratio using a confidence interval of previous 2x2 study.

Usage

```
ss2x2ci(n1, n2, LL, UL, Alpha = 0.1)
```

Arguments

n1	Subject count of group 1
n2	Subject count of group 2
LL	Lower limit of confidence interval of geometric mean ratio (Test/Reference)
UL	Upper limit of confidence interval of geometric mean ratio (Test/Reference)
Alpha	Alpha level. This means (1 - alpha/2)*100 % confidence interval is given

Details

It calculates sample size (n per group) with CV, Alpha, and Beta for bioequivalence test.

Value

Returns sample size (n per group) for bioequivalence test with ratio criteria.

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

```
ss2x2ci(12, 13, 0.85, 1.11)
```

SSCV

Sample size using coefficient of variation (CV)

Description

It calculates sample size for the bioequivalence test on ratio using coefficient of variation (CV).

Usage

```
sscv(CV, DesignNo = 1, True.R = 1, Alpha = 0.1, Beta = 0.2,
    ThetaL = 0.8, ThetaU = 1.25, nMax = 999999)
```

sscv 13

Arguments

CV Coefficient of Variation (%)

DesignNo Crossover design number.

Design Number (treatment x sequence x period)

1 2x2x2 : RT TR

2 2x4x2 (Balaam Design) : TT RR RT TR

3 2x2x3 (Two-sequence Dual Design): TRR RTT

4 2x2x4 : TRRT RTTR

5 2x4x4 : TTRR RRTT TRRT RTTR

6 3x6x3 (William Design for 3 treatments) + carry-over effect

: RBA ARB BAR ABR BRA RAB

7 3x6x3 (William Design for 3 treatments) - carry-over effect

: RBA ARB BAR ABR BRA RAB

8 4x4x4 (William Design for 4 treatments) + carry-over effect

: RCAB ARBC BACR CBRA

9 4x4x4 (William Design for 4 treatments) - carry-over effect

: RCAB ARBC BACR CBRA

True . R True ratio of test/reference

Alpha error level

Beta error level

ThetaL Lower limit of equivalence criteria

ThetaU Upper limit of equivalence criteria

nMax Maximum subject number (sample size) per group

Details

It calculates sample size (n per group) with CV, Alpha, and Beta for bioequivalence test.

Value

Returns sample size (n per group) for bioequivalence test with ratio criteria.

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

sscv(25)

14 ssmse

ssmse

Sample size using mean squared error (MSE)

Description

It calculates sample size for the bioequivalence test on ratio using mean squared error (MSE).

Usage

```
ssmse(mse, DesignNo = 1, True.R = 1, Alpha = 0.1, Beta = 0.2, ThetaL = 0.8, ThetaU = 1.25, nMax = 9999999)
```

Arguments

8	
mse	Mean squared error
DesignNo	Crossover design number.
	Design Number (treatment x sequence x period) 1 2x2x2 : RT TR 2 2x4x2 (Balaam Design) : TT RR RT TR 3 2x2x3 (Two-sequence Dual Design): TRR RTT 4 2x2x4 : TRRT RTTR 5 2x4x4 : TTRR RRTT TRRT RTTR 6 3x6x3 (William Design for 3 treatments) + carry-over effect : RBA ARB BAR ABR BRA RAB 7 3x6x3 (William Design for 3 treatments) - carry-over effect : RBA ARB BAR ABR BRA RAB 8 4x4x4 (William Design for 4 treatments) + carry-over effect : RCAB ARBC BACR CBRA 9 4x4x4 (William Design for 4 treatments) - carry-over effect : RCAB ARBC BACR CBRA
True.R	True ratio of test/reference
Alpha	Alpha error level
Beta	Beta error level
ThetaL	Lower limit of equivalence criteria
ThetaU	Upper limit of equivalence criteria
nMax	Maximum subject number (sample size) per group

Details

It calculates sample size (n per group) with mse, Alpha, and Beta for bioequivalence test.

Value

Returns sample size (n per group) for bioequivalence test with ratio criteria.

Author(s)

Kyun-Seop Bae <k@acr.kr>

test2x2

Examples

```
ssmse(0.06)
```

test2x2

Bioequivalence test for a variable of a 2x2 study

Description

It performs conventional bioequivalence test for 2x2 study. Basic assumption is that the variable is distributed as log-normal distribution. This is SAS PROC GLM style. If you want PROC MIXED style use nlme:lme.

Usage

```
test2x2(bedata, Var)
```

Arguments

bedata

Data table name. This should have at least the following columns and a variable column to be tested. Var column values should be all positive values.

GRP : Group or Sequence, 'RT' or 'TR'

PRD : Period, 1 or 2 SUBJ : Subject ID

TRT : Treatment or Drug, 'R' or 'T'

Variable to be tested. This should be one of the column names in bedata table.

Usually 'AUClast' or 'Cmax'

Details

It tests Var variable equivalency from a 2x2 study. Current regulatory requirements is 90% confidence interval of gemotric mean ratio (Test/Reference) should be within [0.8, 1.25].

Value

Author(s)

```
Kyun-Seop Bae <k@acr.kr>
```

```
print(test2x2(NCAResult4BE, "AUClast"), na.print="")
print(test2x2(NCAResult4BE, "Cmax"), na.print="")
```

Index

```
*Topic Plot
    plot2x2, 7
*Topic Power
    pow2x2ci, 8
    pow2x2mse, 9
    powcv, 10
    powmse, 11
*Topic Report
    be2x2, 2
*Topic Sample Size
    ci2cv, 3
    ci2mse, 3
    ss2x2ci, 12
    sscv, 12
    ssmse, 14
*Topic Statistical Test
    hodges, 5
    test2x2, 15
*Topic datasets
    NCAResult4BE, 6
be2x2, 2
ci2cv, 3
ci2mse, 3
cv2mse, 4
hodges, 5
mse2cv, 6
NCAResult4BE, 6
plot2x2, 2, 7
pow2x2ci, 8
pow2x2mse, 9
powcv, 10
powmse, 11
ss2x2ci, 12
sscv, 12
ssmse, 14
test2x2, 2, 15
```