

Today:

Introduce metrics for linear regression;

Introduce metrics for binary dependent variables.

How good is the model?

- We could measure model fit by looking at the 'typical' error of the model when it makes predictions;
- ► Remember how regression works? It finds the β s by minimizing this:

$$\sum_{i} (y_i - (\beta_0 + \beta_1 x_i))^2$$
sum of squared residuals

- We could measure model fit by looking at the 'typical' error of the model when it makes predictions;
- ► Remember how regression works? It finds the β s by minimizing this:

$$\sum_{i} (y_i) - (\beta_0 + \beta_1 x_i)^2$$
total squared error

- We could measure model fit by looking at the 'typical' error of the model when it makes predictions;
- Remember how regression works? It finds the β s by minimizing this:

$$\underbrace{\frac{1}{n} \sum_{i} (y_{i} - \underbrace{\beta_{0} + \beta_{1} x_{i}})^{2}}_{\text{mean squared error}}$$

- We could measure model fit by looking at the 'typical' error of the model when it makes predictions;
- Remember how regression works? It finds the β s by minimizing this:

$$\sqrt{\frac{1}{n} \sum_{i} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}}$$
root mean squared error

- We could measure model fit by looking at the 'typical' error of the model when it makes predictions;
- Remember how regression works? It finds the β s by minimizing this:

$$\sqrt{\frac{1}{n} \sum_{i} (y_{i}) - (\beta_{0} + \beta_{1}x_{i})^{2}}$$
root mean squared error

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

► For HW7 root mean squared error: 3.3907 years.

- We could measure model fit by comparing:
 - 'Typical' model prediction error;
 - Error associated with just predicting the mean of the dependent variable;
- One way to do this would be:

$$R^2 = 1 - rac{ ext{sum of squared residuals}}{ ext{error from predicting mean}}$$

- We could measure model fit by comparing:
 - 'Typical' model prediction error;
 - Error associated with just predicting the mean of the dependent variable;
- One way to do this would be:

$$R^2 = 1 - rac{ ext{sum of squared residuals}}{ ext{error from predicting mean}}$$

- We could measure model fit by comparing:
 - 'Typical' model prediction error;
 - Error associated with just predicting the mean of the dependent variable;
- One way to do this would be:

$$R^2 = 1 - rac{ ext{sum of squared residuals}}{ ext{error from predicting mean}}$$

- We could measure model fit by comparing:
 - 'Typical' model prediction error;
 - Error associated with just predicting the mean of the dependent variable;
- One way to do this would be:

$$R^2 = 1 - \frac{\text{sum of squared residuals}}{\text{error from predicting mean}}$$

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

- We could measure model fit by comparing:
 - 'Typical' model prediction error;
 - Error associated with just predicting the mean of the dependent variable;
- One way to do this would be:

$$R^2 = 1 - \frac{\text{sum of squared residuals}}{\text{error from predicting mean}}$$

► Beware! R² will always increase as you add more independent variables.

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

 We could measure model fit by doing hypothesis testing;

Given a model with some independent variables ask does the model fit the data well?

► H₀:

H_∆:

► Test stat:

► Rejection criterion:

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

 We could measure model fit by doing hypothesis testing;

- Given a model with some independent variables ask does the model fit the data well?
 - ► **H**₀: The fit of the 'intercept-only' model is no different than the fit of the 'intercept-plus-variables' model;
 - ► **H**_A: The fit of the 'intercept-only' model is significantly worse;
 - Test stat:

Rejection	criterion:
rejection	CITCEIIOII.

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

 We could measure model fit by doing hypothesis testing;

- Given a model with some independent variables ask does the model fit the data well?
 - ► H₀: The fit of the 'intercept-only' model is no different than the fit of the 'intercept-plus-variables' model;
 - ► **H**_A: The fit of the 'intercept-only' model is significantly worse;
 - ► **Test stat**: *F*-statistic measures the variation in the dependent variable explained by the model;
 - ► **Rejection criterion**: *p*-value < 0.05.

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

 We could measure model fit by doing hypothesis testing;

- Given a model with some independent variables ask does the model fit the data well?
 - ► H₀: The fit of the 'intercept-only' model is no different than the fit of the 'intercept-plus-variables' model;
 - ► H_A: The fit of the 'intercept-only' model is significantly worse;
 - ► **Test stat**: *F*-statistic measures the variation in the dependent variable explained by the model;
 - **▶ Rejection criterion**: *p*-value < 0.05.

	Estimate	Pr(> t)
Intercept	62.3701	0.0000
health exp % GDP	0.1993	0.0567
log(GNI PC)	1.4278	0.0001
infant mortality	-0.2288	0.0000

Multiple R-squared: 0.8854

F-statistic: *p*-value: < 2.2e-16

Logistic Regression: predictions?

A logit actually outputs a predicted probability when it makes a prediction;

- ► To turn a predicted probability into a **predicted value**:
 - Choose a threshold t;
 - ▶ If predicted probability > t then predict a 1;
 - ▶ If predicted probability < t then predict a 0;

- Once we have predicted values we can start to assess model fit:
 - ▶ **True Positive**: model predicts 1, actual observation is 1;
 - ► True Negative: model predicts 0, actual observation is 0;
 - ▶ False Positive: model predicts 1, actual observation is 0;
 - ► False Negative: model predicts 0, actual observation is 1.

Logistic Regression: predictions?

Note: everything to follow will reference the Titanic example from the logistic regression lecture.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	5.2973	0.5574	9.50	0.0000
Pclass	-1.1777	0.1461	-8.06	0.0000
Age	-0.0435	0.0077	-5.63	0.0000
Male	-2.7573	0.2004	-13.76	0.0000
Siblings/Spouses	-0.4018	0.1107	-3.63	0.0003
Parents/Children	-0.1065	0.1186	-0.90	0.3691
Fare	0.0028	0.0024	1.17	0.2437

Name	Survived	Predicted	Predicted	Туре	
		Probability	Value		
Mr. Owen Harris Braund	0	0.09			
Mrs. John Bradley Cumings	1	0.91			
Miss. Laina Heikkinen	1	0.66			
Mrs. Jacques Heath Futrelle	1	0.91			
Mr. William Henry Allen	0	0.08			
Mr. Timothy J McCarthy	0	0.30			
Master. Gosta Leonard Palsson	0	0.09			
Mrs. Oscar W Johnson	1	0.60			
Mrs. Nicholas Nasser	1	0.88			
Miss. Marguerite Rut Sandstrom	1	0.76			
Miss. Elizabeth Bonnell	1	0.84			
Miss. Hulda Vestrom	0	0.76			
- <u>-</u>	:	:			
'	l		← □ → ← □ → ←		90

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	1	
Mrs. John Bradley Cumings	1	0.91	1	
Miss. Laina Heikkinen	1	0.66	1	
Mrs. Jacques Heath Futrelle	1	0.91	1	
Mr. William Henry Allen	0	0.08	1	
Mr. Timothy J McCarthy	0	0.30	1	
Master. Gosta Leonard Palsson	0	0.09	1	
Mrs. Oscar W Johnson	1	0.60	1	
Mrs. Nicholas Nasser	1	0.88	1	
Miss. Marguerite Rut Sandstrom	1	0.76	1	
Miss. Elizabeth Bonnell	1	0.84	1	
Miss. Hulda Vestrom	0	0.76	1	
<u>:</u>	:	:	:	

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	1	FP
Mrs. John Bradley Cumings	1	0.91	1	TP
Miss. Laina Heikkinen	1	0.66	1	TP
Mrs. Jacques Heath Futrelle	1	0.91	1	TP
Mr. William Henry Allen	0	0.08	1	FP
Mr. Timothy J McCarthy	0	0.30	1	FP
Master. Gosta Leonard Palsson	0	0.09	1	FP
Mrs. Oscar W Johnson	1	0.60	1	TP
Mrs. Nicholas Nasser	1	0.88	1	TP
Miss. Marguerite Rut Sandstrom	1	0.76	1	TP
Miss. Elizabeth Bonnell	1	0.84	1	TP
Miss. Hulda Vestrom	0	0.76	1	FP
:	:	:	:	:

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	0	TN
Mrs. John Bradley Cumings	1	0.91	1	TP
Miss. Laina Heikkinen	1	0.66	1	TP
Mrs. Jacques Heath Futrelle	1	0.91	1	TP
Mr. William Henry Allen	0	0.08	0	TN
Mr. Timothy J McCarthy	0	0.30	1	FP
Master. Gosta Leonard Palsson	0	0.09	0	TN
Mrs. Oscar W Johnson	1	0.60	1	TP
Mrs. Nicholas Nasser	1	0.88	1	TP
Miss. Marguerite Rut Sandstrom	1	0.76	1	TP
Miss. Elizabeth Bonnell	1	0.84	1	TP
Miss. Hulda Vestrom	0	0.76	1	FP
:	:	:	:	:

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	0	TN
Mrs. John Bradley Cumings	1	0.91	1	TP
Miss. Laina Heikkinen	1	0.66	1	TP
Mrs. Jacques Heath Futrelle	1	0.91	1	TP
Mr. William Henry Allen	0	0.08	0	TN
Mr. Timothy J McCarthy	0	0.30	0	TN
Master. Gosta Leonard Palsson	0	0.09	0	TN
Mrs. Oscar W Johnson	1	0.60	1	TP
Mrs. Nicholas Nasser	1	0.88	1	TP
Miss. Marguerite Rut Sandstrom	1	0.76	1	TP
Miss. Elizabeth Bonnell	1	0.84	1	TP
Miss. Hulda Vestrom	0	0.76	1	FP
<u>:</u>	:	:	:	

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	0	TN
Mrs. John Bradley Cumings	1	0.91	1	TP
Miss. Laina Heikkinen	1	0.66	0	FN
Mrs. Jacques Heath Futrelle	1	0.91	1	TP
Mr. William Henry Allen	0	0.08	0	TN
Mr. Timothy J McCarthy	0	0.30	0	TN
Master. Gosta Leonard Palsson	0	0.09	0	TN
Mrs. Oscar W Johnson	1	0.60	0	FN
Mrs. Nicholas Nasser	1	0.88	1	TP
Miss. Marguerite Rut Sandstrom	1	0.76	1	TP
Miss. Elizabeth Bonnell	1	0.84	1	TP
Miss. Hulda Vestrom	0	0.76	1	FP
<u>:</u>	:	:	:	:

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	0	TN
Mrs. John Bradley Cumings	1	0.91	1	TP
Miss. Laina Heikkinen	1	0.66	0	FN
Mrs. Jacques Heath Futrelle	1	0.91	1	TP
Mr. William Henry Allen	0	0.08	0	TN
Mr. Timothy J McCarthy	0	0.30	0	TN
Master. Gosta Leonard Palsson	0	0.09	0	TN
Mrs. Oscar W Johnson	1	0.60	0	FN
Mrs. Nicholas Nasser	1	0.88	0	FN
Miss. Marguerite Rut Sandstrom	1	0.76	0	FN
Miss. Elizabeth Bonnell	1	0.84	0	FN
Miss. Hulda Vestrom	0	0.76	0	TN
<u>:</u>	:	:	:	:

Name	Survived	Predicted	Predicted	Туре
		Probability	Value	
Mr. Owen Harris Braund	0	0.09	0	TN
Mrs. John Bradley Cumings	1	0.91	0	FN
Miss. Laina Heikkinen	1	0.66	0	FN
Mrs. Jacques Heath Futrelle	1	0.91	0	FN
Mr. William Henry Allen	0	0.08	0	TN
Mr. Timothy J McCarthy	0	0.30	0	TN
Master. Gosta Leonard Palsson	0	0.09	0	TN
Mrs. Oscar W Johnson	1	0.60	0	FN
Mrs. Nicholas Nasser	1	0.88	0	FN
Miss. Marguerite Rut Sandstrom	1	0.76	0	FN
Miss. Elizabeth Bonnell	1	0.84	0	FN
Miss. Hulda Vestrom	0	0.76	0	TN
:	:	:	:	:

Logistic Regression: confusion matrix

 We could measure model fit by aggregating TP/TN/FP/FN across the entire data set;

► Add each of these up across the data:

 $\begin{array}{cccc} & & \mathsf{Prediction} \\ & & \mathsf{Survived} & \mathsf{Died} \\ \mathsf{Observation} & \mathsf{Survived} & \#\mathsf{TP} & \#\mathsf{FN} \\ & & \mathsf{Died} & \#\mathsf{FP} & \#\mathsf{TN} \end{array}$

Logistic Regression: confusion matrix

 We could measure model fit by aggregating TP/TN/FP/FN across the entire data set;

Add each of these up across the data:

		Prediction	
		Survived	Died
Observation	Survived	239	103
	Died	73	472

Logistic Regression: accuracy

 We could measure model fit by summarizing the confusion matrix up as a single number;

One way to do this is by using accuracy:

$$\frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

Logistic Regression: accuracy

 We could measure model fit by summarizing the confusion matrix up as a single number;

One way to do this is by using accuracy:

$$\frac{239 + 472}{239 + 472 + 73 + 103} \approx 0.8016$$

Logistic Regression: accuracy

 We could measure model fit by summarizing the confusion matrix up as a single number;

One way to do this is by using accuracy:

$$\frac{239+472}{239+472+73+103}\approx 0.8016;$$

Beware! Accuracy is only useful when each value of the dependent variable is equally important.

Logistic Regression: recall/precision

- We could measure model fit by trying to gauge its ability to identify the survivors and only the survivors;
- Recall: of all the survivors how many did the model identify?

$$R = \frac{TP}{TP + FN}$$

Precision: of all the passengers predicted to survive how many actually did?

$$P = \frac{TP}{TP + FP}.$$

Logistic Regression: recall/precision

- We could measure model fit by trying to gauge its ability to identify the survivors and only the survivors;
- Recall: of all the survivors how many did the model identify?

$$R = \frac{239}{239 + 103} \approx 0.70$$

Precision: of all the passengers predicted to survive how many actually did?

$$P = \frac{239}{239 + 73} \approx 0.77.$$

Why should we care?

Better model fit = better prediction = a more useful, impactful model.