九州大学大学院数理学府 平成23年度修士課程入学試験 数学専門科目問題(数理学コース数学型)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から 2 題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.
- [1] 以下の問に答えよ.
 - (1) 位数4の群はアーベル群であることを証明せよ.
 - (2) 4次対称群 S₄の位数 4の部分群をすべて求めよ.
 - (3) 4次対称群 S_4 の位数 4の正規部分群をすべて求めよ.
- [2] 可換環 A $(A \ni 1)$ と、A の非零因子 d に対し、環 B を B = A[X]/(dX 1) (すなわち A 上の多項式環 A[X] を多項式 dX 1 の生成するイデアル (dX 1) で割った剰余環)と定義する.以下の問に答えよ.
 - (1) 自然な環準同型 $A \to B$ は単射であることを示せ. (以降, これにより A は B の部分環とみなす.)
 - (2) 剰余環 A/dA は 0 以外の巾零元を持たないと仮定する. このとき、もし B の元 b が A 上整(すなわち、ある A 係数のモニック多項式 f(X) に対し f(b) = 0 となる)ならば $b \in A$ であることを示せ.

- [3] \mathbb{Q} の拡大体 $L_1 = \mathbb{Q}(\sqrt{2}), \ L_2 = \mathbb{Q}(\zeta_3, \sqrt[3]{2}), \ L_3 = \mathbb{Q}(\sqrt{2}, \zeta_3, \sqrt[3]{2})$ を考える. ここで ζ_3 は 1 の原始 3 乗根, $\sqrt{2}$ は $X^2 = 2$ の 1 つの根, $\sqrt[3]{2}$ は $X^3 = 2$ の 1 つ の根である.以下の問に答えよ.
 - (1) 体 L_1 , L_2 の $\mathbb Q$ 自己同型群をそれぞれ求めよ.
 - (2) L_2/\mathbb{Q} の中間体をすべて求めよ.
 - (3) 体の拡大 L_3/\mathbb{Q} は正規拡大であるかどうか、理由をつけて答えよ.
- [4] σ を 3 単体とし、その 1 次元以下のすべての辺単体からなる複体を K とする. 以下の問に答えよ.
 - (1) Kのオイラー数を求めよ.
 - (2) K の \mathbb{Z} 係数ホモロジー群を求めよ.
 - (3) 連続写像 $r: \sigma \to |K|$ で,

$$r(a) = a \qquad (\forall a \in |K|)$$

となるものが存在しないことを示せ、ここで $|K| = \bigcup_{\tau \in K} \tau$ は複体 K の定める多面体である.