Building fourteen kinds of highly automated driving scenarios

Lead vehicle cuts out to the right lane

Lead vehicle cuts out to the left lane

Lead vehicle autonomously emergency brakes in a long distance

Lead vehicle autonomously emergency brakes in a short distance

Surrounding vehicle runs on the left lane and not cut in

Surrounding vehicle cuts in from the right lane in a short distance

Surrounding vehicle cuts in from the right lane in a long distance

Surrounding vehicle runs on the right lane and not cut in

Surrounding vehicle cuts in from the left lane in a short distance

Surrounding vehicle cuts in from the left lane in a long distance

Pedestrian crosses the road from right

Pedestrian stands on the right side without crossing the road

Pedestrian crossing the road from left

Pedestrian stand on the left side without crossing the road

An empty scenario, there are no events

Building a signal acquisition system based on hardware-in-loop equipment

Hardware-inloop equipment

Blood oxygen monitoring device

Driving simulator

Scenario information

Stimulation time

Data merge Matlab/Simulink module

Crew status

Status record

Python module

Blood oxygen

Record blood oxygen

OxySoft3.4.9 Software

Host computer

Data Processing

Peripheral equipment

scenarios

fNIRS

the raw intensity data

An fNIRS dataset for driving risk cognition of passengers in highly automated driving scenarios

Passenger

Vehicle data

the vehicle data of position, velocity and acceleration

Machine Intelligence

Experiment

Data

Dataset