Homework 2024-2025

Scene. A piece of forniture is a rectangular parallelepiped, whose width (along the X-axis) is $\boldsymbol{l}=1$. The other dimensions, namely the depth \boldsymbol{m} along the Y axis and the height \boldsymbol{h} along the Z-axis are unknown. In addition, a horizontal circumference (i.e., parallel to the X-Y plane) is visible. Furthermore, an unknown horizontal planar curve is also visible, placed at midheight $\boldsymbol{h}/2$.

Image. A single image is taken of the above rectangular parallelepiped by an uncalibrated, zero-skew, camera. (Its calibration matrix K depends on four unknown parameters, namely f_x , f_y and the two pixel coordinates U_o , V_o of the principal point). A set of lines parallel to X-axis are visible, and their images l_1 , l_2 and l_3 are extracted; a set of lines parallel to the Y-axis are visible and their images m_1 , m_2 , m_3 , m_4 , m_5 , and m_6 are extracted; a set of vertical lines (i.e., parallel to the Z-axis) are also visible and their images l_1 , l_2 , l_3 and l_4 are extracted. In addition, both the image l_3 of the circumference and the image l_3 of the unknown horizontal curve are also extracted.

Part 1 – **Theory**

- 1. From the l_i and m_i lines, find the vanishing line l'_{∞} of the horizontal plane.
- 2. Using the results of the previous point, find a (Euclidean) rectification mapping H_R for a horizontal plane (e.g., the lower horizontal face of the parallelepiped), and compute the depth m of the parallelepiped.
- 3. From the results of the previous points, use the lines h_i to find the calibration matrix K.
- 4. Using the results of the previous points, determine the height h of the parallelepiped.
- 5. Using S and the results of previous points, compute the X-Y coordinates of a dozen points (at your choice) of the unknown horizontal curve.
- 6. Using **K**, localize the camera with respect to the parallelepiped.

Part 2 - Matlab

- 1. Consider the image Look-outCat.png. Using feature extraction techniques (**including** those already implemented in **Matlab**) plus possible manual intervention, extract the images of useful lines and both the image *C*, of the circumference and the image *S* of the other planar curve.
- 2. Write a Matlab program that implements the solutions to problems 1 6 and show the obtained results.
- 3. Plot the rectified curve S and show different views of the recovered 3D model of the rectangular parallelepiped.