1. [punti 6] La rete elettrica di figura definisca un sistema dinamico orientato dalla tensione u (ingresso) alla tensione y (uscita).

Di questo sistema si determini: 1) la funzione di trasferimento, 2) i modi, 3) l'equazione differenziale.

2. [punti 6] Tre carrelli, ciascuno di massa m, e collegati fra di loro con molle di costante elastica pari a k come mostrato in figura costituiscano un sistema dinamico orientato da f ad x_1 , rispettivamente forza applicata e posizione del carrello di sinistra. Nelle condizioni iniziali di quiete e con le molle a riposo si abbia $x_1 = 0$, $x_2 = 0$ e $x_3 = 0$. Trascurando gli attriti si determinino l'equazione differenziale e la funzione di trasferimento di tale sistema.

3. [punti 6]

Dimostrare le seguenti proprietà della trasformata di Laplace:

$$1.L[Df(t)] = sF(s) - f(0+);$$

$$2. L\left[\int_0^t f(v)dv\right] = \frac{1}{s}F(s);$$

3.
$$L[t^n] = \frac{n!}{s^{n+1}}$$

4. [punti 6] Sia dato un generico sistema dinamico orientato da u (ingresso) ad y (uscita) e descritto dall'equazione differenziale $\sum_{i=0}^{n} a_i D^i y(t) = \sum_{i=0}^{m} b_i D^i u(t)$.

Note le condizioni iniziali al tempo 0 – come $y_-, Dy_-, ..., D^{n-1}y_-$ e $u_-, Du_-, ..., D^{m-1}u_-$ e l'azione forzante $u(t), t \ge 0$, determinare la trasformata di Laplace della risposta $y(t), t \ge 0$.

Nota: riportare i ragionamenti e i passaggi che permettono l'individuazione dell'espressione Y(s) cercata.

5. [**punti 6**] Un sistema dinamico abbia funzione di trasferimento $G(s) = \frac{1}{(s+1)^2}$. A partire da condizioni di quiete venga applicato l'ingresso u(t) definito in figura. Determinare y(t) per $t \ge 0$.

6. [**punti 6**] Un sistema dinamico ha funzione di trasferimento $G(s) = \frac{s+3}{(s+1)(s+2)}$. L'ingresso applicato è u(t) = 0 per ogni $t \ge 0$ e dell'uscita si conosce che y(0+) = 0 e Dy(0+) = 1. Determinare y(t) per $t \ge 0$.