Center for Statistics and the Social Sciences Math Camp 2022

Lecture 5: Integrals and probability distributions

Jess Kunke & Erin Lipman

Department of Statistics University of Washington

Fri 16 Sep 2022

Day 1 math

Approximating the area under the curve

Computing integrals graphically

Computing integrals algebraically

Some fancy (and useful) tricks

Motivation for integrals in statistics

Figure: Standard Normal Density (N(0,1)). Approximately 68% of the probability lies within 1 standard deviation and 95% within 2 standard deviations. The area under the whole curve (from $-\infty$ to ∞) is 1.

How do we compute these areas?

Motivation for integrals in statistics

Integral calculus helps us compute...

- areas under curves
- percentile rankings
- probabilities of events
- expected values and variances

Day 1 math

Approximating the area under the curve

Computing integrals graphically

Computing integrals algebraically

Some fancy (and useful) tricks

Approximating the area under the curve

What if we wanted to find the area under the curve from -1 to 1?

Approximating the area under the curve

We could approximate with rectangles or trapezoids.

Approximating the area under the curve

We could approximate with rectangles or trapezoids.

Day 1 math

Approximating the area under the curve

Computing integrals graphically

Computing integrals algebraically

Some fancy (and useful) tricks

Example: birth rate

Example: driving a car

Day 1 math

Approximating the area under the curve

Computing integrals graphically

Computing integrals algebraically

Some fancy (and useful) tricks

Integration

The area under a curve is written:

$$\int_{a}^{b} f(x) dx$$

This formula is called the **definite integral** of f(x) from a to b.

Here a and b are our endpoints of interest. You can think of the integral as the 'opposite' of the derivative.

Integration

More specifically,

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \text{ where } F'(x) = f(x)$$

F(x) is called the **indefinite integral** of f(x). The important relationships between derivatives and integrals are:

$$F'(x) = f(x) & \int f(x)dx = F(x)$$

What is an integral?

You can think of integrating as looking at a derivative and trying to find the original function.

- $\int 3dx$. What function has a derivative equal to 3?
- $\int 2x dx$. What function has a derivative equal to 2x?
- $\int e^x dx$. What function has a derivative equal to e^x ?

In practice, you don't always have to search for the right function. We have handy shortcuts (rules).

Integrating a constant

$$\int cdx = cx$$

- $\int 1 dx$
- ∫ 6*dx*
- ∫ ydx

Integrating a power of x

$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$

- ∫ xdx
- $\int \frac{1}{x^2} dx$

Integrating an exponential and logarithmic functions

Exponential:

$$\int e^x dx = e^x$$

(Natural) Logarithm:

$$\int \frac{1}{x} dx = \log(x)$$

Basic trigonometric functions

Remember,
$$\frac{d}{dx}cos(x) = -sin(x)$$
, thus
$$\int sin(x)dx = -cos(x)$$

and
$$\frac{d}{dx}sin(x) = cos(x)$$
, thus

$$\int \cos(x)dx = \sin(x).$$

Multiple of a function

When you have multiplication by a constant, the constant can just come along for the ride.

$$\int af(x)dx = a \cdot \int f(x)dx = aF(x)$$

- $\int 4x^2 dx$
- $\int \frac{3}{x^2} dx$
- $\int \mu y dy$

Sums of functions

$$\int (f(x) + g(x)) dx = \int f(x)dx + \int g(x)dx = F(x) + G(x)$$

- $\int 4x + 3x^2 dx = \int 4x dx + \int 3x^2 dx = 4 \int x dx + 3 \int x^2 dx = 4 \cdot \frac{1}{2}x^2 + 3 \cdot \frac{1}{3}x^3 = 2x^2 + x^3$

Finding definite integrals

Often we will be interested in knowing the exact area under the curve f(x), not just the function F(x):

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$

$$\int_{0}^{1} x^{2} dx$$

$$\bullet \int_{0}^{\infty} e^{-x} dx$$

$$\int_{2}^{8} \frac{1}{x} dx$$

Day 1 math

Approximating the area under the curve

Computing integrals graphically

Computing integrals algebraically

Some fancy (and useful) tricks

u-substitution

Sometimes the function we are integrating is similar to a simpler function with an easy derivative.

For example, $\int \frac{1}{1-x} dx$ is similar to $\int \frac{1}{x} dx$ which we know is log(x). Can we use that?

u-substitution

Similar to the chain rule, we can think about functions within functions.

Let's set u=1-x. If we differentiate the left with respect to u and the right with respect to x we have du=-1dx. Solving for dx we have dx=-1du. Now we can substitute these values into our original integral.

$$\int \frac{1}{1-x} dx = \int \frac{1}{u} \cdot (-1) du = -1 \int \frac{1}{u} du$$

u-substitution

Now let's take the integral with respect to u:

$$\int \frac{1}{1-x} dx = -1 \int \frac{1}{u} du = -\log(u)$$

Then we can plug in the value for u = 1 - x:

$$\int \frac{1}{1-x} dx = -1 \int \frac{1}{u} du = -log(u) = -log(1-x)$$

Integration by parts

For complicated functions it is often handy to decompose the function into two parts.

$$\int f(x)dx = \int g(x) \cdot h'(x)dx = g(x)h(x) - \int h(x) \cdot g'(x)dx$$

$$\int xe^x dx$$

$$g(x) = x, \qquad h'(x) = e^x dx$$

$$g'(x) = 1, \qquad h(x) = e^x$$

$$\int xe^x dx = x \cdot e^x - \int e^x \cdot 1 dx = xe^x - e^x = e^x(x - 1).$$

Demo

Monte Carlo integration! Let's simulate things!