MA2287: Complex Analysis Exam Notes

Robert Davidson

Contents

1 Question 1:

1.1 Sketch the region in the complex plane determined by the inequality

• |z-4| > 3|z+4| 2023 Q1(a)

 $\bullet \ \ \{z \in \mathbb{C}: |2z-1| < 2|2z-i|\} \\ \underline{2022} \ \ \mathrm{Q1(a)}, \ 2021 \ \ \mathrm{Q1(d)}, \ 2017 \ \ \mathrm{Q1(a)}, \ 2016 \ \ \mathrm{Q1(a)}, \ 2017 \ \$

1.2 Determine all solutions to roots of unity

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2023 Q1(b),2021 Q1(c)

• $z^4 = -81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w}) \neq 0$ 2022 Q1(b),2018 Q1(b)

1.3 Determine and sketch the image under the mapping

• $w = e^z$, $\{z \in \mathbb{C} : \pi/4 \le \text{Im}(z) \le \pi/2\}$ $\underline{2023 \text{ Q1(c)}, 2021 \text{ Q1(a)}, 2017 \text{ Q1(d)}}$

• $w = \text{Log}(z), \{z : |z| > 1, 0 \le \text{Arg}(z) \le \pi/2\}$ 2022 Q1(d), 2018 Q1(d), 2016 Q1(d)

1.4 Find z where the function is 0

• $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ 2022 Q1(d)

1.5 Calculate principal value Log(z)

• $z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and prove e^z is the inverse function of Log(z) 2022 Q1(c), 2018 Q1(c), 2017 Q1(c)

1.6 Prove the following

• Define the complex conjugate (\overline{w}) and prove if w is a zero of a polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ then \overline{w} is also a zero of p(z) 2021 Q1(b), 2018 Q1(a), 2016 Q1(b)

• Define the complex exponential function e^z and prove Eulers Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ 2017 Q1(b)

2 Question 2:

2.1 Determine image of the line

- $f(z) = \frac{1}{z}$ { $z \in \mathbb{C} : \text{Re}(z) = 2$ } 2023 Q2(a), 2021 Q2(b)
- $f(z) = \frac{1}{z}$ $\{z \in \mathbb{C} : \text{Re}(z) = 1\}$ 2022 Q2(a), 2018 Q2(a), 2017 Q2(a)

2.2 State and Use Cauchy-Riemann Equations

- State CRE, and use to prove $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C} \setminus \{0\}$ 2023 Q2(a)
- State CRE, and use to prove $f(z)=z^2$ is holomoprhic on $\mathbb C$ 2022 Q2(b)
- State CRE. Let f = u + iv be holomoprhic on $\Omega \subset \mathbb{C}$. Prove ∇u and ∇v are perpendicular of equal length 2016 Q2(b)

2.3 Show that

- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at $x \in \mathbb{R}$ then f'(x) is real.
- Define that is meant for a function g to be harmonic. If f = u + iv is holomorphic on $\Omega \subset \mathbb{C}$, prove that v(x, y) is a harmonic function, and that ∇u and ∇v are perpendicular of equal length. 2022 Q2(c), 2018 Q2(b)
- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at 0 then the function f'(0) is real.
- Let f(z) = u + iv be holomorphic on an open subset Ω of the complex plane and let h(u, v) be a harmonic function of u and v on $f(\Omega)$. Prove that g(x, y) = h(u(x, y), v(x, y)) is harmonic on Ω (You may assume $\nabla u, \nabla v$ are equal length and perpendicular)
- Define what is meant for a function f(z) to be holomorphic at a point $z_0 \in \mathbb{C}$ and prove that $f(z) = z^2$ is holomorphic and find its derivative there. Hence prove that the product uv is harmonic where f = u + iv 2018 Q2(c)
- Define what is meant for a function f(z) to be holomorphic at a point $z_0 \in \mathbb{C}$ and prove that $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C}\setminus 0$ and find its derivative there (State any theorems used)
- Let h(u,v) be a harmonic function of u,v on $f(\Omega)$ (See 2016 Q2(b)). Prove that g(x,y)=h(u(x,y),v(x,y)) is harmonic on Ω

2.4 Find Mobius Transformation

- $T(z): (-1,1,\infty) \mapsto (-1,-i,1)$ 2023 Q2(d)
- $T(z):(2,1,-1)\mapsto (1,0,\infty)$ 2022 Q2(d)
- $T(z): (-i, -1, 1) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2021 Q2(d)
- $T(z): (-i, -1, i) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2018 Q2(d), 2017 Q2(d)
- $T(z): (-1, \frac{1}{2}, 2) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2016 Q2(d)

Worked Examples - Q1

Example 2023 Q1(a)

Given |z-4| > 3|z+4|Write z = x + iy

$$\begin{aligned} |x+iy-4| &> 3|x+iy+4| \\ |(x-4)+iy| &> 3|(x+4)+iy| \\ \sqrt{(x-4)^2+y^2} &> 3\sqrt{(x+4)^2+y^2} \end{aligned}$$

Square both sides

$$(x-4)^2 + y^2 > 9((x+4)^2 + y^2)$$

$$(x^2 - 8x + 16 + y^2) > 9x^2 + 72x + 144 + 9y^2$$

$$x^2 - 8x + 16 + y^2 - 9x^2 - 72x - 144 - 9y^2 > 0$$

$$-8x^2 - 80x - 8y^2 - 128 > 0$$

$$x^2 + 10x + y^2 - 16 < 0$$

Moving all terms to one side

Simplify

Dividing by -8 and reversing inequality

Focus on x and complete the square

$$x + bx = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 \Rightarrow x^2 + 10x = (x+5)^2 - 25$$
$$(x+5)^2 - 25 + y^2 + 16 < 0$$
$$(x+5)^2 + y^2 + 9 < 0$$
$$(x+5)^2 + y^2 < -9$$

 $Complete\ the\ square$

Substitute back into inequality Simplify

 $Subtract\ 9$

Recall the eqation of a circle

$$(x-a)^2 + (y-b)^2 = r^2 \Rightarrow (x+5)^2 + y^2 < -9$$

Therefore the region is all the points inside circle with radius 3 and center at $(-5,\,0)$

Example 2022 Q1(a), 2021 Q1(d), 2017 Q1(a), 2016 Q1(a)

Given $\{z \in \mathbb{C} : |2z - 1| < 2|2z - i|\}$ Write z = x + iy

$$\begin{aligned} |2x+i2y-1| &< 2|2x+i2y-i| \\ |(2x-1)+i2y| &< 2|2x+i(2y-1)| \\ \sqrt{(2x-1)^2+4y^2} &< 2\sqrt{4x^2+(2y-1)^2} \\ (2x-1)^2+4y^2 &< 4[4x^2+(2y-1)^2] \\ 4x^2-4x+1+4y^2 &< 16x^2+16y^2-16y+4 \\ -12x^2-4x-12y^2+16y-3 &< 0 \\ 12x^2+4x+12y^2-16y+3 > 0 \\ x^2+\frac{1}{2}x+y^2-\frac{4}{2}y+\frac{1}{4} &> 0 \end{aligned}$$

Square both sides

Expand

Move all terms to one side

Multiply by -1 and reverse inequality

Divide by 12

Complete square for x

$$x^{2} + bx = \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} \Rightarrow x^{2} + \frac{1}{3}x = \left(x + \frac{1}{6}\right)^{2} - \left(\frac{1}{36}\right)^{2}$$

Complete square for y

$$y^2 + by = \left(y - \frac{2}{3}\right)^2 - \left(\frac{4}{9}\right)$$

Substitute back into inequality

$$\left(x + \frac{1}{6}\right)^2 - \left(\frac{1}{36}\right) + \left(y - \frac{2}{3}\right)^2 - \left(\frac{4}{9}\right) + \frac{1}{4} > 0$$
$$\left(x + \frac{1}{6}\right)^2 + \left(y - \frac{2}{3}\right)^2 > \frac{2}{9}$$

Substitute back into inequality

Simplify and move constant across

Recall the eqation of a circle

$$(x-a)^2 + (y-b)^2 = r^2 \Rightarrow \left(x + \frac{1}{6}\right)^2 + \left(y - \frac{2}{3}\right)^2 < \frac{2}{9}$$

Therefore the region is all the points OUTSIDE the circle with radius $\frac{\sqrt{2}}{3}$ and center at $(-\frac{1}{6},\frac{2}{3})$

Example Determine all solutions to $z^6 - 1 = 0$ and factor $x^6 - 1$ as a product of linear and quadratic factors

Given
$$z^6-1=0$$

Write $z=e^{i\theta}$ and $1=e^{i2\pi k}$ for $k\in\mathbb{Z}$

$$z^{6} - 1 = 0$$

$$e^{i6\theta} - e^{i2\pi k} = 0$$

$$e^{i6\theta} = e^{i2\pi}$$

$$6\theta = 2\pi k$$

$$\theta = \frac{\pi k}{3}$$

Therefore the solutions are

$$z=e^{i\theta}=e^{i\frac{\pi k}{3}}=\cos\left(\frac{\pi k}{3}\right)+i\sin\left(\frac{\pi k}{3}\right)\quad\text{for}\quad k=0,1,2,3,4,5$$

$$k = 0: w_0 = \cos(0) + i\sin(0) = 1 + i0$$

$$k = 1: w_1 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$k = 2: w_2 = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$k = 3 : w_3 = \cos(\pi) + i\sin(\pi) = -1$$

$$k=4:w_4=\cos\left(\frac{4\pi}{3}\right)+i\sin\left(\frac{4\pi}{3}\right)=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$$

$$k = 5: w_5 = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

We can write:

$$x^{6} - 1 = (x - w_{0})(x - w_{1})(x - w_{2})(x - w_{3})(x - w_{4})(x - w_{5})$$

Rewriting to group complex conjugates

$$x^{6} - 1 = (z - w_{0})(z - w_{3}) \cdot (z - w_{1})(z - w_{5}) \cdot (z - w_{2})(z - w_{4})$$

Note that

$$(w-z)(w-\overline{z}) = w^2 - w\overline{z} - zw + z\overline{z}$$
$$= w^2 - 2(\overline{z}+z) + 1$$

We recall that

$$z = x + iy = e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
$$\overline{z} = x - iy = e^{-i\theta} = \cos(\theta) - i\sin(\theta)$$

Then

$$\overline{z} + z = \cos(\theta) + i\sin(\theta) + \cos(\theta) - i\sin(\theta)$$
$$= 2\cos(\theta)$$

$$(w-z)(w-\overline{z}) = w^2 - 2\cos(\theta) + 1$$

We see that $-\frac{5\pi}{3} = \frac{\pi}{3} - 2\pi$, thus:

We see that
$$-\frac{4\pi}{3} = \frac{\pi}{3} - \pi$$
, thus:

$$(z - w_1)(z - w_5) = (z - e^{i\frac{\pi}{3}})(z - e^{i\frac{5\pi}{3}})$$

$$(z - w_2)(z - w_4) = (z - e^{i\frac{2\pi}{3}})(z - e^{i\frac{4\pi}{3}})$$

$$(z - w_1)(z - w_5) = z^2 - 2\cos\left(\frac{\pi}{3}\right) + 1$$

$$(z - w_2)(z - w_4) = (z - e^{i\frac{2\pi}{3}})(z - e^{i\frac{4\pi}{3}})$$
$$(z - w_2)(z - w_4) = z^2 - 2\cos\left(\frac{2\pi}{3}\right) + 1$$
$$(z - w_2)(z - w_4) = z^2 - z + 1$$

$$(z-w_1)(z-w_5)=z^2+z+1$$
 Therefore

$$(z - w_2)(z - w_4) = z^2 - z + 1$$

$$x^{6} - 1 = (x+1)(x-1)(x^{2} + x + 1)(x^{2} - x + 1)$$

Example : Determine all solutions to $z^4=-81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w})\neq 0$

Given
$$z^4 = -81i$$
, we want to find $z^{4\left(\frac{1}{4}\right)} = w$

$$z^{1/n} = R^{1/n} [\cos \phi + i \sin \phi]$$
 with $\phi = \frac{\theta + 2k\pi}{n}$, $k \in (0, 1, 2, \dots, n-1)$ and $R = |z|$

Thus

$$R = |81i| = \sqrt{0^2 + 81^2} = 81$$

$$\theta = -\frac{\pi}{2}$$

$$\phi = \frac{\theta + 2k\pi}{n} = \frac{-\frac{\pi}{2} + 2k\pi}{4} = \frac{-\pi}{8} + \frac{k\pi}{2}$$

Therefore

Part 2

Given p(z) with complex coefficients has root w and $p(\overline{w}) \neq 0$ In other words, we want p(w) = 0 and $p(\overline{w}) \neq 0$

Using the most simple polynomial, p(z) = z - w and letting $w = 3e^{i\frac{\pi}{8}}$ we have

$$p(z) = z - 3e^{i\frac{-\pi}{8}}$$

$$p(w) = w - w$$

$$= 3e^{i\frac{-\pi}{8}} - 3e^{i\frac{-\pi}{8}}$$

$$= 0$$

$$\begin{split} p(\overline{w}) &= \overline{w} - 3e^{i\frac{-\pi}{8}} \\ &= 3e^{-i\frac{\pi}{8}} - 3e^{i\frac{-\pi}{8}} \\ &= 3\left[\cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right) - \left(\cos\left(\frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{8}\right)\right)\right] \\ &= 3\left[\cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right) - \cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right)\right] \\ &= 3\left[-2i\sin\left(\frac{\pi}{8}\right)\right] \\ &= -6i\sin\left(\frac{\pi}{8}\right) \\ &\approx -2.3i \neq 0 \end{split}$$

Example Determine and sketch the image under the map $w=e^z$, $\{z\in\mathbb{C}:\pi/4\leq \mathrm{Im}(z)\leq \pi/2\}$

$$w = e^{z} = e^{x+iy}$$
$$= e^{x}e^{iy}$$
$$= e^{x}[\cos(y) + i\sin(y)]$$

Recall the polar form of a complex number $z=|z|[\cos(\theta)+i\sin(\theta)]$ We see, e^x acts as the radius, and is always positive, and $[\cos(y)+i\sin(y)]$ acts draws out a section of the unit circle, thus the mapping $w=e^z$ sends the set to:

$$\left\{w \in \mathbb{C} : |w| > 0, \frac{\pi}{4} \le \arg(w) \le \frac{\pi}{2}\right\}$$

