Schemat blokowy:

Nazwa:	Opis:	Założenia:	
1	Zestaw uruchomieniowy	HLR1, HLR8, LLR1	
2	Moduł GSM	HLR4, HLR5, HLR6, HLR7	
3	Moduł GPS/GLONASS	HLR2, LLR2, LLR3	HLR10,
4	Czytnik kart microSD	HLR3, LLR4	HLR11,
5	Zasilanie z akumulatorów 6-7.2V	HLR9, LLR5	HLR12
6	Stabilizator napięcia 5V	LLR7	
7	Stabilizator napięcia 3.3V	LLR6, LLR8, LLR9	
8	Wyprowadzenie masy	LLR10	
9	Wyprowadzenie UART	LLR11	

Założenia:

 $https://github.com/matimich/Project_uC_2018/tree/master/Definicja_za\%C5\%82o\%C5\%BCe\%C5\%84$

Opis urządzeń:

Zestaw uruchomieniowy

Zestaw uruchomieniowy z 32-bitowym mikrokontrolerem odpowiedzialny jest za koordynacje urządzenia. Mikrokontroler odbiera dane z modułu GPS za pomocą interfejsu komunikacyjnego TTL UART i analizuje otrzymane dane. Jeżeli pozycja urządzenia przekroczy wyznaczoną strefę pracy, ustawioną wcześniej przez użytkownika, to

mikrokontroler wysyła informację alarmową poprzez moduł GSM. W przypadku niepożądanej próby nawiązaniu kontaktu z urządzeniem przez osoby trzecie, algorytm mikrokontrolera wykryje taką aktywność i również poinformuje użytkownika. Dodatkowo, mikrokontroler przekazuje dane dalej i zapisuje je na kartę pamięci microSD poprzez interfejs komunikacyjny SPI.

Moduł GPS/GLONASS

Odpowiedzialny za otrzymywanie danych o aktualnej pozycji urządzenia. Informacje te pobierane są w postaci ramki danych NMEA.

Modul GSM:

Moduł GSM pozwala na komunikacje z urządzeniem w czasie rzeczywistym. Użytkownik ma możliwość w wysłania zapytania o pozycję, gdzie w odpowiedzi zwrotnej otrzyma ramkę danych w postaci NMEA. Moduł GSM zapewnia również wygodę pod kątem konfiguracji urządzenia przez użytkownika.

Czytnik kart microSD

Moduł umożliwiający zapis ramki danych NMEA na kartę microSD.

Zasilanie z akumulatorów 6-7.2V

Zasilanie sytemu oparte na sześciu akumulatorach Ni-MH połączonych szeregowo. Pojemność układu 2000mAh co w przypadku małego poboru prądu urządzenia pozwala uzyskać długi czas pracy. Akumulatory powszechnie stosowane w urządzeniach domowych, proste i tanie ładowarki umożliwiają ładowanie ich napięciem sieciowym.

Stabilizator 3.3V

Odpowiedzialny za uzyskanie oczekiwanego napięcia 3.3V, na którym pracuje większość modułów systemu. Maksymalne napięcie wejściowe stabilizatora to 15V, co również pełni funkcję zabezpieczającą.

Stabilizator 5V

Odpowiedzialny za uzyskanie oczekiwanego napięcia 5V, na którym pracuje moduł GSM. Maksymalne napięcie wejściowe stabilizatora to 35V, co również pełni funkcję zabezpieczającą.

Wyprowadzenie masy

W układzie została wyprowadzona masa w celu łatwiejszego badania stanów napięć na płytce.

Wyprowadzenie UART

W układzie zostało wyprowadzone wejście i wyjście sygnału UART w celu podglądu zmiennych otrzymywanych z modułu GPS.