中国运筹学会数学规划分会第十五届全国数学优化学术会议

2025年5月16-19日 | 上海

A Proximal Gradient Method for Composite Multi-Objective Optimization

Yiyang Li (Supervisor: Prof. Xiaojun Chen)

Introduction

Modern machine learning models increasingly require balancing **conflicting objectives** such as accuracy, sparsity, and robustness. Formally, this challenge can be framed as a **composite multi-objective optimization problem**:

$$\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) \tag{1}$$

where $F: \mathbb{R}^n \to \mathbb{R}^m$ is defined as

$$F(x) := egin{bmatrix} f_1(x) \ f_2(x) \ f_m(x) \end{bmatrix} = egin{bmatrix} h_1(x) \ h_2(x) \ h_m(x) \end{bmatrix} + egin{bmatrix} g_1(x) \ g_2(x) \ g_m(x) \end{bmatrix} =: H(x) + G(x).$$

Each component $f_i = h_i + g_i$, where h_i is smooth but nonconvex and g_i is proper, lower semi-continuous, and convex but nonsmooth. Under a machine learning setting,

$$h_i(x) := \frac{1}{N} \sum_{i=1}^{N} h_{i,j}(x) \tag{2}$$

with each $h_{i,j}$ corresponds to one loss objective for one sample. The g_i 's are the regularizers, for example ℓ_1 -norm penalty for sparsity.

Contribution We propose a novel Conflict-Aware, Curvature-Informed Proximal Gradient (CACI-PG) method for composite multi-objective optimization. Our algorithm strategically integrates:

- 1. a conflict-aware gradient aggregation scheme,
- 2. an adaptive curvature-aware scaling to navigate complex landscapes,
- 3. and a proximal regularization step to effectively manage non-smooth convex regularizers.

Experimental Results

Figure: Overview of the Multi-Objective Model and each objective.

Figure: The plots show the results for SGD, PCGGrad, MGDA, CAGrad, and our method. The grey line represents the Pareto front; the star represents the Pareto point that averages the task objectives; and the dots represent the starting points. Each trajectory changes colour from red to yellow as the number of iterations increases.

References

- J.-A. Désidéri, Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, Compt. Rend. Math., 350 (2012), pp. 313–318.
- H. Tanabe, E. Fukuda, and N. Yamashita, *Proximal gradient methods for multiobjective optimization and their applications*, Comput. Optim. Appl., 72 (2019), p. 339–361.

Existing Methods

When $G(x) \equiv 0$,

Figure: The update rules of d at iteration k for the above Bi-Objective Optimization Problem are given by the following different methods:

- 1) GD: $d_k = -\frac{\nabla h_1(x_k) + \nabla h_2(x_k)}{2}$;
- 2) MGDA [1]: $d_k \in \arg\min_{d \in \mathbb{R}^n} \max_{i \in \{1,2\}} \langle \nabla h_i(x_k), d \rangle$ $s.t. ||d|| \leq 1$;
- 3) PCGrad: $d_k = -\frac{\nabla h_{1\perp 2}(x_k) + \nabla h_{2\perp 1}(x_k)}{2}$ where $\nabla h_{i\perp j} = \nabla h_i \frac{\nabla h_i^{\top} \nabla h_j}{\|\nabla h_i\|^2} \nabla h_j$;
- 4) CAGrad: $d_k \in \min_{d \in \mathbb{R}^n} \max_{i \in \{1,2\}} \langle \nabla h_i(x_k), d \rangle$ $s.t. ||d \nabla h_0(x_k)|| \le c ||\nabla h_0(x_k)||$, where $\nabla h_0(x_k) = \frac{1}{2} \sum_{i=1}^2 \nabla h_i(x_k)$, and $c \ge 1$ to ensure the convergence to Pareto stationary point.

When $G(x) \not\equiv 0$, Tanabe [2] proposed a generalized Proximal Gradient Methods that updates d at iteration k by

$$d_k \in \arg\min_{d} \{ \max_{i \in \{1,...,m\}} [g_i(x_k + d) - g_i(x_k) + \langle \nabla h_i(x_k), d \rangle] + \frac{l}{2} ||d||^2 \}.$$

Algorithm Framework of CACI-PG

Require: Initial point $x_0 \in \mathbb{R}^n$, step-size sequence $\{\lambda_k\}$, proximal parameter $\ell > 0$, trust-region radius $\{\Delta_k\}$, tolerance $\epsilon > 0$. Set k = 0

while stopping criterion is not met do

Step 1: Compute task gradients $\{\nabla h_i(x_k)\}_{i=1}^m$.

Step 2: Compute curvature matrix

$$M_k = \frac{1}{m} \sum_{i=1}^m \nabla h_i(x_k) \nabla h_i(x_k)^{\top}.$$

Step 3: Compute descent direction

$$d_{k} = \arg\min_{d \in \mathcal{C}_{M}(x_{k})} \left\{ \max_{i=1,...,m} \left[g_{i}(x_{k}+d) - g_{i}(x_{k}) + \langle \nabla h_{i}(x_{k}), d \rangle \right] + \frac{\ell}{2} \|d\|^{2} \right\}$$
where $\mathcal{C}_{M}(x_{k}) := \{d \in \mathbb{R}^{n} : \|d - \nabla h_{0}(x_{k})\|_{M_{k}} \leq \Delta_{k}\}, \text{ with } \|x\|_{M} := \sqrt{x^{T}Mx}.$

Step 4: Update iterate $x_{k+1} = x_k + \lambda_k d_k$.

if $||d_k|| \leq \epsilon$ then

break

else

k = k + 1

end if

end while

return $x = x_{k+1}$.

Define the function

$$\phi_i(d) := g_i(x_k + d) - g_i(x_k) + \langle \nabla h_i(x_k), d \rangle,$$

$$S(d) := \max_i \phi_i(d) + \frac{\ell}{2} ||d||^2.$$

Introduce $t \in \mathbb{R}$ so that subproblem in step 3 is equivalent to

$$\min_{d,t} t + \frac{\ell}{2} ||d||^{2},$$
s.t. $\phi_{i}(d) - t \leq 0, \quad i = 1, ..., m,$

$$||d - \nabla h_{0}(x_{k})||_{M_{k}}^{2} - \Delta_{k}^{2} \leq 0.$$
(4)

We then calculate a dual form of the subproblem (4) to save computation.