

老叶说事《高阶会员专属-第7期》

IEEE Access期刊跟一般 IEEE期刊有何不同? 导读一篇論文並介紹軸向磁 通電機!

TABLE 1. Comprehensive and concise literature survey.

Topology	Adopted techniques	Motor type	Applications	Reliability	Torque ripple mitigation	Ref
Fault-tolerant control (FTC)	Sensory fault tolerance is improved by detecting the fault using discrete Fourier transform.	10 poles 3 phase BLDC	Industrial and commercial applications.	✓		[15]
Electromagnetic interference (EMI)	A LISN network is used in such a way that it reduces load parasitic elements.	4 poles 3 phase BLDC	Commercial applications.	✓		[16]
Torque ripple reduction using scalar control	Torque ripples are reduced by synthesizing the current wave of power supply.	4 poles 3 phase BLDC	Industry applications.		✓	[17]
Torque ripple reduction using vector control	Torque ripples are reduced by using MPC Scheme.	8 poles 3 phase BLDC	Industry applications.		✓	[18]
Torque ripple reduction using design topology	Torque ripples are reduced by optimizing the stator and rotor structure.	4 poles 3 phase BLDC	Industry applications.	✓	✓	[19]

TABLE 2. Comparison of the inner and outer rotor features.

BLDC motor physical	Inner Rotor	Outer rotor
design Stator	Iron less core stator winding outside.	Iron cored stator winding inside.
Speed	High-speed motors are available.	Low and medium speed motor available.
Inertia	Low inertia	High inertia
Noise	 Quickly changing direction makes noisy. 	Noise less.
Maintenance	Less maintenance.	High maintenance.
Efficiency	High efficiency.	 Less efficiency compares to the inner rotor.
Torque	Minimum torque.	• Produce more torque.
Power to weight ratio	Compare to outer run less.	• High.
Gear box	Gear box required.	No gear box required.
Advantage	 Rotating shaft moment of inertia is small. Heat dissipation efficiency high. Reduce the downsize unit. Compact size. High output power. 	 Increasing the torque capability and current. Reducing heat dissipation. Low cogging force. Large airgap. Increase torque.
Disadvantage	 Requires high magnetic flux density. Need high-performance magnet. High cogging force. 	 Complex to design rotor embedded with magnets. Mechanical stability. Cooling stator winding.

FIGURE 4. Types of BLDC motor and control algorithms.

Content	Surface magnet	Inserted magnet	Buried magnet
PM rotor structure			
Torque/weight ratio	• Very good.	• Very good.	 Very good.
High-speed running capability	• Less preferred for high-speed operation.	 Compared to surface mounted it has a good affinity towards high-speed operations. 	• It shows the best performance at high speed.
Power factor	 Power factor obtained is less. 	• Power factor obtained is less.	 Power factor obtained is good.
Efficiency	 Less compared to buried. 	• Less compared to buried type.	 Very high compared to the other types.

FIGURE 5. Outer rotor (Hub motor).

FIGURE 6. Radial and axial flux.

TABLE 4. Electromagnetic axial and radial flux path difference.

Magnetic flux direction	Axial flux	Radial flux
Flux direction strength	• Flux-path is shorter.	• Flux-path is longer.
Magnetic field	• Strong	• weak
Efficiency	• High	 Compare to axial low.
Power density	• High	Minimum.
Direction	• Flux unidirectional path.	• 2D dimensional path.
Iron loss	Decreasing iron loss.	Iron loss maximum
winding	Minimum heat conductivity.	• Low thermal conductivity.
diameter	• High	Medium
Active length	Minimum	• High
Mass	• Low	• High
Output voltage	• High	• Low.
Outer rotor	High torque.	• Less torque.

single-phase and three-phase motors are used. Three-phase, five-phase, and seven-phase motors are preferred for dynamic

TABLE 5. BLDC stator slotted and slotless structure features.

Stator structure	Slotted	Slotless
Advantages	 Uneven magnetic pull. High power density. Higher order spatial harmonics. Easier to protect. 	 High power density. Low cogging torque Better overload capacity. Limit the operational noise. Increase operating frequency.
Disadvantages	 Volume of the machine size is big. Poor overloading. High cogging torque. Enables to operate at high speed. Less efficiency. Increasing noise and vibration. 	 Low inductance to control motor is challenging. Not suitable for harsh environmental conditions.