

Universidade de Brasília – UnB Faculdade UnB Gama – FGA Engenharia Eletrônica

Título: Subtítulo do Trabalho

Autor: Joselito Prado Marques da Silva

Orientador: Dr. Diogo Caetano Garcia

Brasília, DF 2023

Joselito Prado Marques da Silva

Título: Subtítulo do Trabalho

Monografia submetida ao curso de graduação em Engenharia Eletrônica da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia Eletrônica.

Universidade de Brasília – UnB Faculdade UnB Gama – FGA

Orientador: Dr. Diogo Caetano Garcia

Brasília, DF 2023

Joselito Prado Marques da Silva

Título: Subtítulo do Trabalho/ Joselito Prado Marques da Silva. – Brasília, DF, 2023-

56 p. : il. (algumas color.) ; 30 cm.

Orientador: Dr. Diogo Caetano Garcia

Trabalho de Conclusão de Curso – Universidade de Brasília – Un
B Faculdade Un
B Gama – FGA , 2023.

1. Palavra-chave
01. 2. Palavra-chave
02. I. Dr. Diogo Caetano Garcia. II. Universidade de Brasília. III. Faculdade Un
B Gama. IV. Título: Subtítulo do Trabalho

 $CDU\ 02{:}141{:}005.6$

Joselito Prado Marques da Silva

Título: Subtítulo do Trabalho

Monografia submetida ao curso de graduação em Engenharia Eletrônica da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia Eletrônica.

Trabalho aprovado. Brasília, DF, 01 de junho de 2013 — Data da aprovação do trabalho:

Dr. Diogo Caetano Garcia Orientador

Titulação e Nome do Professor Convidado 01

Convidado 1

Titulação e Nome do Professor Convidado 02

Convidado 2

Brasília, DF 2023

Agradecimentos

A inclusão desta seção de agradecimentos é opcional, portanto, sua inclusão fica a critério do(s) autor(es), que caso deseje(em) fazê-lo deverá(ão) utilizar este espaço, seguindo a formatação de espaço simples e fonte padrão do texto (sem negritos, aspas ou itálico.

Caso não deseje utilizar os agradecimentos, deixar toda este arquivo em branco.

A epígrafe é opcional. Caso não deseje uma, deixe todo este arquivo em branco. "Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

O resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto. O texto pode conter no mínimo 150 e no máximo 500 palavras, é aconselhável que sejam utilizadas 200 palavras. E não se separa o texto do resumo em parágrafos.

Palavras-chave: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 $\mathbf{Key\text{-}words}:$ latex. abntex. text editoration.

Lista de ilustrações

Figura 1 – sinal de tempo contínuo
Figura 2 – sinal de tempo discreto
Figura 3 — Espectro do Sinal Amostrado com Ws>2Wm
Gigura 4 — Quantização de Amplitudes em Tempo Discreto
Cigura 5 — Retentor de Ordem Zero como Amostragem ou Reconstrução de um
Sinal
Gigura 6 – Interpolação Linear entre Amostras
Figura 7 — Ciclo de Propagação do Som
Figura 8 – Rosnie - Inventado por Alex Rosner
Figura 9 – CMA-10-2DL - Primeiro mixer estéreo
Figura 10 – Espectro de Áudio
Tigura 11 – Fio Desbalanceado
Tigura 12 – Fio Balanceado

Lista de tabelas

Lista de abreviaturas e siglas

AD Analógico para digital

CD Compact Disc

CD-R Compact Dicsc-Recordable

DA Digital para analógico

Dj Disc jockey ou discoterário

Lista de símbolos

 Γ Letra grega Gama

 Λ Lambda

 \in Pertence

Sumário

1	INTRODUÇÃO	25
1.1	Contextualização	25
1.2	Definição do Problema e Proposta de Pesquisa	25
1.3	Objetivos	25
1.3.1	Objetivo Geral	25
1.3.2	Objetivos Específicos	25
1.4	Estrutura da Monografia	25
2	FUNDAMENTAÇÃO TEÓRICA E ESTADO DA ARTE	27
2.1	Sinal: Conceito	28
2.2	Sinal Contínuo	28
2.3	Sinal Discreto	29
2.4	Teorema da Amostragem	29
2.4.0.1	Aliasing	31
2.4.1	Teorema da Quantização	31
2.4.2	Reconstrução do Sinal	32
2.4.3	Transformada de Fourier	33
2.5	Som e Música	34
2.5.0.1	Conceito físico	34
2.5.0.2	Audição Humana	35
2.5.0.3	Breve História da Gravação e Reprodução de Som e a Criação de Clubs	35
2.5.0.4	Parâmetros físicos	39
2.5.0.5	Equipamentos	40
2.6	Mixer	42
2.6.1	Potência de Sinal de Áudio	42
2.6.2	Cabeamento	42
2.6.3	Conectores	43
2.6.3.1	1/4"	43
2.6.3.1.1	1/8" ou $3.5~mm$	44
2.6.3.1.2	2.5 mm	44
2.6.3.2	RCA	44
2.6.3.3	XLR	44
2.6.3.4	Protocolos Digitais	44
2.6.4	Amplificação de Potência	45
2.6.5	Equalização	45

2.6.6	Trim e Volume)
2.6.7	Conversão AD/DA	5
2.6.8	PureData	ĵ
2.7	Proposta de Implementação	7
2.7.1	Documentação	7
2.7.2	Levantamento de Requisitos	7
2.7.2.1	Análise do Questionário	9
2.7.2.1.1	Informações Demográficas	9
2.7.2.1.2	Tipo de DJ e Experiência	O
2.7.2.1.3	Setup - Hardware e Software	O
2.7.2.1.4	Estilos musicais e aquisição de músicas	1
2.7.2.1.5	Conclusão acerca do Questionário	1
2.7.3	Diagramas de Subpartes	1
2.7.4	Diagrama de Integração	1
2.7.5	Diagrama de Comunicação	1
2.7.6	Fluxograma	1
2.7.7	Protótipo de Interface de Usuário	1
2.7.8	Documento de Especificação Técnica	1
2.7.9	Documento de Plano de Teste	1
ı	TEXTO E PÓS TEXTO 53	3

1 Introdução

- 1.1 Contextualização
- 1.2 Definição do Problema e Proposta de Pesquisa
- 1.3 Objetivos
- 1.3.1 Objetivo Geral
- 1.3.2 Objetivos Específicos
- 1.4 Estrutura da Monografia

2 Fundamentação Teórica e Estado da Arte

Nessa seção, serão abordados conceitos básicos para a compreensão da monografia (teoria, problema e proposta); a começar pela definição de um sinal segundo a literatura, representado por um sinal elétrico, tanto analógico quanto digital; conceituar música e a importância da mixagem realizada por DJs, culminando no equipamento utilizado, dando enfoque ao mixer, seja na sua história, evolução e no seu estado da arte.

2.1 Sinal: Conceito

"Os sinais, que são funções de uma ou mais variáveis independentes, contêm informações sobre o comportamento ou natureza de algum fenômeno, enquanto os sistemas respondem a algum sinal em particular, produzindo outros sinais ou algum comportamento desejado." (OPPENHEIM; WILLSKY, 2010).

Como exemplifica (OPPENHEIM; WILLSKY, 2010), tensões e correntes ao longo do tempo são funções, ou seja, sinais, enquanto o circuito em si pode ser compreendido como um sistema que reage à entrada aplicada, ao produzir sinais de saída.

Sensores são dispositivos capazes de mensurar grandezas físicas através da captação de sinais elétricos. Dessa forma, a criação desse instrumento permitiu a compreensão de fenômenos físicos. Assim, o monitoramento de grandezas permite que se atue em sistemas físicos a fim de se obter um resultado desejado. [O intuito do parágrafo acima é simplesmente realizar uma ponte entre sinais elétricos e quais compreensões um sensor permite que sejam realizadas. De forma que a atuação em um sistema seja realizada a fim de se chegar a um resultado esperado.]

Com o desenvolvimento de sensores na história da instrumentação, foi possível a obtenção da quantização de parâmetros físicos através de sinais elétricos. E dessa forma, a compreensão de fenômenos físicos e, consonante a isso, a construção de sistemas que podem alterar os sinais conforme a resposta desejada.

2.2 Sinal Contínuo

Dentro das possibilidades do que um sinal pode ser, pode-se classificá-lo como contínuo caso a sua variável independente seja contínua, ou seja, que tenha um valor para cada instante de tempo (variável independente). Por exemplo, entre o intervalo de t a t+1, há infinitos valores tanto de tempo quanto para o parâmetro em função do tempo, (OPPENHEIM; WILLSKY, 2010). Um exemplo pode ser o valor de corrente em um resistor alimentado por uma tensão ou um som que gera uma pressão acústica no ar captados pelo sistema auditivo. A Figura 1 é um exemplo de um gráfico para um sinal contínuo no tempo.

2.3. Sinal Discreto

Figura 1 – sinal de tempo contínuo

2.3 Sinal Discreto

Em contrapartida a um sinal contínuo em relação a sua variável independente, há outra classificação de sinal denominado de discreto. A sua variável independente é o tempo discreto, que pode ser definido por um conjunto de números inteiros. Caso a variável independente não seja inteira, ou seja, n não seja inteiro, não há valor definido. Dessa forma, entre n e n+1, não há infinitos valores como há no tempo contínuo. Um exemplo dessa classificação de sinal pode ser . (OPPENHEIM; WILLSKY, 2010). A figura 2 é um exemplo de um gráfico para um sinal no tempo discreto.

[Quando o senhor diz que ao invés de ser um sinal discreto, é um discretizado, o senhor se refere ao exemplo da variação semanal da bolsa de valores. Ou ao conceito explicado na seção?]

Figura 2 – sinal de tempo discreto

2.4 Teorema da Amostragem

Devido ao desenvolvimento da computação nas últimas décadas e pela conseguinte diminuição de custos de produção e de aquisição de dispositivos capazes de realizar o processamento digital de sinais, tornou-se muito vantajoso a utilização de sinais no tempo discreto, para que possam ser trabalhados digitalmente, e posteriormente, ou não, serem convertidos novamente para o tempo contínuo, sem a perda da informação inicial.

O processo de obter um sinal discreto a partir de um sinal contínuo é denominado de amostragem, e para que, a partir do sinal amostrado, reconstrua-se o sinal contínuo original, o sinal e o processo de amostragem devem preencher alguns requisitos.

Para que um sinal seja amostrado, é necessário que o intervalo de amostragem, ou seja, o espaçamento entre duas amostras seja regular. A cada período T, uma amostra é adquirida, resultando em uma frequência de amostragem f=1/T. Ao passar essa função do domínio do tempo para o domínio da frequência, obter-se-á uma banda de frequências que compõe o sinal no domínio do tempo.

Figura 3 – Espectro do Sinal Amostrado com Ws>2Wm

Ao observar a figura 3, sendo a componente ω_M a maior frequência angular presente no sinal do tempo, ω_s a frequência de amostragem, constata-se que $\omega_M < (\omega_s - \omega_M)$, segundo (OPPENHEIM; WILLSKY, 2010). Dessa forma, $\omega_s > 2\omega_M$. Caso a frequência de amostragem seja menor que ω_M , haverá sobreposição das bandas adjacentes, e, por conseguinte, a reconstrução do sinal não será possível. Ao respeitar esse requisito, o sinal pode ser recuperado ao utilizar um filtro passa-baixas de ganho T, com a frequência de corte maior que ω_M e menor que $\omega_M - \omega_s$. Essa análise é o Teorema de Amostragem que infere que a:

$$\omega_s > 2\omega_M \tag{2.1}$$

em que

$$\omega_s = \frac{2\pi}{T} \tag{2.2}$$

O parâmetro frequência $2\omega_M$, que deve ser menor que a frequência de amostragem $2\omega_s$, segundo (OPPENHEIM; WILLSKY, 2010), é conhecido como taxa de Nyquist. Já a metade dessa taxa recebe o nome de Frequência de Nyquist.

Esse teorema é explicitado na literatura em (SHANNON, 1949) mas foi apontado anteriormente por Nyquist em (NYQUIST, 1928) a suficiência da representação de um sinal pela série de Fourier por 2TW, no qual T é a duração de uma função e W é a frequência mais alta que compõe o sinal.

2.4.0.1 Aliasing

Quando a frequência de amostragem não está de acordo com o critério de Nyquist, ou seja, menor que o dobro da frequência mais alta, não se tem a reconstrução do sinal pois o mesmo deixou de ser recuperável, segundo (OPPENHEIM; WILLSKY, 2010), já que, ao realizar a filtragem passa baixa, na banda ω_M haverá componentes da banda adjacente. Porém, mesmo assim, nos instantes de amostragem, os valores nos instantes de amostragem permanecerão iguais. Mas ao se tentar obter o sinal original, obter-se-á um sinal diferente.

2.4.1 Teorema da Quantização

Assim como o tempo passa a ser discretizado na transformação do espaço contínuo para o espaço discreto, o mesmo processo é realizado com as amplitudes dos sinais. Portanto, as amplitudes passam a ser discretizadas da mesma forma dentro de um intervalo de valores inteiro.

Figura 4 – Quantização de Amplitudes em Tempo Discreto

Para otimizar a quantização, o maior e o menor valor obtido pós amostragem são os limites dos valores de amplitudes discretos. Na figura 4, observa-se o processo a partir do qual, para cada valor obtido na amostragem, há um intervalo correspondente que passará a representar esse sinal.

O intervalo de amplitude discreta da figura 4 varia de -32768 a +32767, totalizando 65536 possíveis amplitudes discretas, ou seja, 2^{16} possíveis amplitudes. Dessa forma, cada amplitude pode ser representada por uma palavra binária de 16 bits. A quantidade de bits a ser utilizada determinará a quantidade de intervalos possíveis, o que, por conseguinte, determinará a precisão da quantização, devido a um erro gerado.

Cada processo de quantização deve levar em conta a precisão necessária e os limites do intervalo de valores possíveis. Ao final, o procedimento de quantização é essencial para

as conversões AD (analógico para digital).

A quantização é descrita pelo Teorema de Quantização de Widrow (WIDROW; KOLLAR; LIU, 1996), segundo (ZÖLZER, 2008).

2.4.2 Reconstrução do Sinal

Muitas vezes é necessária a transformação do sinal do tempo discreto para o tempo contínuo, muitas vezes após algum processamento de sinal realizado. Para essa transformação, utiliza-se, segundo (OPPENHEIM; WILLSKY, 2010), a interpolação entre cada duas amostras.

Para que essa reconstrução aconteça, é necessário que o sinal tenha a banda limitada e que isso tenha utilizado na frequência de amostragem. Uma forma mais simples de implementar a interpolação, segundo (OPPENHEIM; WILLSKY, 2010), é o retentor de ordem zero, que mantém o sinal no mesmo nível até que chegue a próxima amostra, a partir da qual, o nível se alterará para a amplitude desta nova amostra.

Há ordens maiores para os retentores, e, segundo (OPPENHEIM; WILLSKY, 2010), a própria interpolação linear, às vezes, é denominada de retentor de primeira ordem. Um fato a que se deve se atentar é que a reconstrução garante a igualdade entre os valores do sinal inicial e do reconstruído para aqueles instantes em que ocorreram as amostragem. Conforme a necessidade, pode-se aumentar a ordem do retentor.

Na figura 5, há o retentor de ordem zero, que mantém o nível da última amostra por um período T. Método que pode ser utilizado na reconstrução de um sinal.

Figura 5 – Retentor de Ordem Zero como Amostragem ou Reconstrução de um Sinal

Já na figura 6, há a interpolação linear para a reconstrução de um sinal. A linha pontilhada é o sinal original e a linha contínua é o sinal reconstruído.

Figura 6 – Interpolação Linear entre Amostras

2.4.3 Transformada de Fourier

Uma ferramenta matemática crucial para a análise de sinais na frequência é a transformada de Fourier, que realiza uma modificação do termo independente, saindo do tempo ou espaço e indo para frequências, também denominada de equação de análise, que pode ser visualizada na equação 2.3.

De forma análoga, transformada inversa, ou a também chamada de equação de síntese, realiza o processo inverso, modificando o sinal representado no domínio da frequência para o seu domínio original, segundo (OPPENHEIM; WILLSKY, 2010), seja tempo ou espaço. A equação da transformada inversa pode ser visualizada na equação 2.4

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$
(2.3)

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 (2.4)

2.5 Som e Música

Nesta seção, será apresentada uma abordagem histórica, conceitual e técnica acerca da natureza do som, derivando para o campo musical a partir do seu conceito e dos seus parâmetros matemáticos, como o armazenamento de gravações musicais e a discotecagem surgem e quais equipamentos foram utilizados ao longo do tempo, culminando na relação contemporânea com a música a partir do olhar de um dj, que realiza uma seleção musical, e a partir de características de cada música, realiza transições, a fim de se criar uma atmosfera única.

2.5.0.1 Conceito físico

Segundo (NUSSENZVEIG, 2006): "... corpos em vibração produzem sons ...". Dessa forma, é necessário que haja um meio para que esse som se propague. Esse meio pode ser líquido, viscoso, sólido ou gasoso (como a atmosfera). De acordo com o mesmo autor, "... ondas sonoras na atmosfera são ondas longitudinais, associadas a variações de pressão, ou seja, compressões e rarefações ...".

Dessa forma, a oscilação de um objeto, ao provoca constantemente compressão e rarefação, altera a densidade na camada adjacente ao meio pelo qual o som será transmitido, gerando uma diferença de pressão que causará um deslocamento adjacente. Portanto, o ciclo de propagação de um som pode ser visualizado na figura 7.

Figura 7 – Ciclo de Propagação do Som

O autor (NUSSENZVEIG, 2006) cita parâmetros quantitativos que vão influenciar na percepção auditiva, que são: intensidade, altura e timbre. A intensidade se relaciona com a amplitude da onda sonora. A altura se relaciona com a banda na qual aquele som está localizado, seja nas frequências baixas, tendo uma característica grave, sendo aguda, tendo sua banda localizada em altas frequências em relação à banda de frequência audível pelo ouvido humano. Já o timbre são sons que possuem a mesma frequência principal, que o autor chama de "tom fundamental da frequência", porém, possuem outras componentes em frequências menores, o que o som reconhecível, apesar de terem o mesmo tom fundamental da frequência.

2.5. Som e Música 35

2.5.0.2 Audição Humana

Segundo (FARNELL, 2010), apesar de que o corpo humano possa sentir vibrações de 1 a 20Hz, o ouvido humano é capaz de produzir a sensação de som a partir de 20 Hz até 10 kHz ou 20 kHz, dependendo da idade do ouvinte. A banda normal na qual a voz humana se localizada fica entre 300 e 3 kHz, porém, harmônicos advindos de sons reais superam esse limite, inclusive superando os 20 kHz. Dessa forma, ao utilizar o Teorema de Amostragem, presumi-se que a taxa de amostragem mínima para que a reconstrução de um som amostrado seja realizada perfeitamente é de no mínimo 40 kHz.

2.5.0.3 Breve História da Gravação e Reprodução de Som e a Criação de Clubs

A partir do som, a humanidade foi capaz de criar uma expressão artística denominada música, a partir da qual surge a capacidade da expressão de ideias, sentimentos, identificação, cultura e entretenimento. A evolução da tecnologia proporcionou uma difusão da música a partir da possibilidade da gravação e reprodução.

O primórdio da gravação de um som é atribuído ao Thomas Edison, segundo (ROADS, 1996), ao inventar o fonógrafo em 1877. Ao longo da história, aperfeiçoou-se a forma de gravação, armazenamento e reprodução de música, seguido por gramofone, gravadores de fios, fita magnética, vinil. Esses dispositivos utilizavam gravação analógica. O primeiro formato digital amplamente utilizado foi o CD, desenvolvido em colaboração entre a Sony e a Philips. Outros formatos digitais tentaram alcançar a mesma popularidade do CD, como o MiniDisc, DVD de áudio, Blu-Ray áudio; porém, somente os arquivos digitais, utilizando métodos eficientes de compressão e de compartilhamento, conseguiram alcançar e superar a popularidade do CD, tornando-se o principal meio de compartilhamento de música, acompanhando a ampliação do acesso ao computador e de dispositivos digitais capazes de reproduzir música se tornaram acessíveis.

Cada novo formato de mídia possibilitou novas formas de circulação de música. Cada mudança de formato de mídia provocou uma transformação na forma em como a música é apreciada, partindo de apresentações ao vivo, passando reproduções via rádio, culminando em reproduções em qualquer lugar que houvesse um aparelho capaz de reproduzir a mídia. Com isso, surgiram pessoas que eram especializadas em realizar curadoria de músicas, o que influenciou muito e modificou o consumo de música, e transmitiam as músicas advindas de vinis.

Houve uma grande luta, segundo (BREWSTER; BROUGHTON, 2014), para que DJs, que estavam transmitindo sua seleção nas rádios, pudessem ter apoio de gravadoras, porém, após a Segunda Guerra, a Capital Records formalizou esse apoio após perceber o potencial de divulgação de DJs em rádios. Esse sucesso que era localizado, pois cada djde uma região tinha influência sobre o que a população de da região na qual a sua rádio

tinha alcance, teve a potência de desenvolver gêneros e vertentes novas, uma vez que eles eram criadores de tendência.

Porém, uma investigação viria a retirar a credibilidade desses seletores. Um caso chamado Payola, que investigava o pagamento de propina para que os apresentadores de programa de rádio transmitissem determinadas músicas e assim influenciar a venda de discos acabou retirando a crença desses profissionais. Além disso, a criação da transmissão FM, que possibilitou a transmissão em alta qualidade, permaneceu no início na mão de poucas rádios que tinham condições financeiras, segundo (BREWSTER; BROUGHTON, 2014), para financiar a estrutura necessária. Porém, com o movimento hippie americano, a costa oeste dos Estados Unidos decidiu quebrar uma prática que era a criação de um ranking das músicas mais compradas, que era transmitida no lugar dessa seleção feita por DJs. Porém, alguns apresentadores decidiram burlar essa regra ditada pelo comércio e começaram a falsificar essa lista conforme o gosto pessoal do que seria uma boa música. Entretanto, umdjbritânico chamado John Peel foi descoberto e seu programa foi rejeitado pela rádio livre em São Francisco. Dessa forma, ele acabou voltando para Inglaterra, onde implementou sua ideia de programa em uma estação de rádio pirata denominada Radio London, segundo (BREWSTER; BROUGHTON, 2014).

Em 1943, um jovem inglês conectou a saída de um gramofone a um rádio valvulado, como saída do sinal de áudio. Assim, outro jovem teve a ideia de realizar um pequeno salão de dança no qual gravações de jazz seriam tocadas enquanto as pessoas poderiam dançar sem que houvesse a presença de uma banda. E assim se deu o início de um clube, segundo (BREWSTER; BROUGHTON, 2014). Em seu segundo evento, Jimmy Savile trocou o rádio valvulado por um alto falante. A quantidade de pessoas nesse salão cresceu e Jimmy chegou a implementar essa ideia em inúmeros clubes em toda Inglaterra. Em um projeto específico, para diminuir o tempo de transição entre duas músicas, Jimmy teve a ideia de utilizar dois toca discos.

Bob Casey, segundo (BREWSTER; BROUGHTON, 2014), promovia festas em ginásios de escola nas quais utilizava um toca disco conectado a um pequeno alto falante. Utilizando o sistema de áudio do ginásio, posicionava um microfone à saída do alto falante e transmitia em um volume alto o que era tocado nos toca discos. O seu pai, um engenheiro de som, criou um sistema no qual havia dois toca discos, em 1955, com controle de volume para permitir a comutação entre os discos e também permiti-lo comentar acerca do disco enquanto o volume da música era abaixado.

Segundo (BREWSTER; BROUGHTON, 2014), em 1964, durante The World's Fair em Nova Iorque, foi apresentado, por Alex Rosner, primeiro sistema estéreo no qual se utilizou dois canais de áudio, o que representou um grande avanço na experiência de escuta. Inspirados em sistemas de som utilizados na Broadway, David Mancuso e Alex Rosner criaram, para o The Loft, um sistema de som composto por *subwoofer* e

 $2.5. \quad Som \ e \ M\'usica$ 37

textittweeters, ou seja, equipamentos dedicados àos graves, que acabam condensando mais energia. Já em 1971, Alex Rosner criou o primeiro mixer estéreo para dj, o Rosnie, para the Haven Club. Esse equipamento contava com duas saídas: uma para o fone de ouvido e outra para as caixas de som; e foi implementado de forma que era possível selecionar de forma independente quais canais estavam ativos no fone, retorno da música para o dj, e quais estavam na saída principal. Além disso, o mesmo controle on/off foi implementado para o microfone.

Figura 8 – Rosnie - Inventado por Alex Rosner

A criação do mixer possibilitou que, de forma natural, mixassem com dois discos simultaneamente, de forma que as transições realizadas fossem extremamente suaves, muitas vezes não compreendendo quando acabava uma música e começava outra. Além disso, havia uma entrada para microfone e uma saída para o fone de ouvido, configuração ainda utilizada nas controladoras e nos equipamentos atuais. Com a evolução de técnicas de mixagem focado nas transições para que se criasse uma atmosfera de uma música contínua. Louis Bozak, auxiliado por Alex Rosner, criou o CMA-10-2DL em 1971,9, primeiro mixer estéreo comercializado que instantaneamente se tornou padrão nos clubes da época.

Em 1972, a Technics criou o toca-disco SL-1200, que se tornou padrão entre os clubes devido ao driver do motor, que proporcionava durabilidade, estabilidade e precisão, o que auxiliava a mudança do BPM, simplificando o beat matching para a sincronia de duas músicas. A partir de uma colaboração entre duas gigantes da indústria da música, Sony e Phillips criaram o CD em 1979, uma nova mídia capaz de armazenar e reproduzir músicas de forma extremamente compacta, leve e mais barata do que o vinil. No ano seguinte, a mesma colaboração desenvolveu o Red Book Audio, o formato de arquivo que

Figura 9 – CMA-10-2DL - Primeiro mixer estéreo

viria a ser utilizado no CD, que utiliza PCM na sua codificação. Esses desenvolvimentos culminaram em 1982 no início do consumo de CDs, que popularizou ainda mais o consumo de música ao redor do mundo. Em 1986, a empresa Rane criou um mixer focado para djs cuja qualidade aproximava-se bastante àquelas praticadas em estúdios de música, o que possibilitou um aumento na qualidade do som reproduzido em clubes.

Em 1991, segundo (BREWSTER; BROUGHTON, 2014), criou-se o MP3, um formato de permitiu a compressão do arquivo de áudio de forma que eliminasse conteúdo redundante. Rapidamente, esse método permitiu o compartilhamento massivo de músicas pela internet. Nos anos 90, uma empresa que viria a ser a gigante dos equipamentos focados em DJs começou o lançamento de uma série de equipamentos que possibilitou a ampliação e a facilidade da atividade do DJ. Em 1992, a Pioneer criou a primeira CDJ com suporte para CD. Já em 2001, a empresa lançou uma CDJ com leitor de cartões de memória e em 2007 a mesma lançou uma CDJ capaz de ler dispositivos USB; o que possibilitou que DJs não mais precisassem carregar toda sua discografia consigo, necessitando apenas de um pendrive para ter a sua coleção em mãos.

Na década de 2010, grandes empresas possibilitaram odjde tocar músicas que estavam armazenada nas nuvens e músicas que estivessem disponíveis em plataformas de streaming. Em 2024, a Apple lançou o Vision Pro, um óculos de realidade aumentada capaz de emular equipamentos de DJ, que transformou, sendo necessário apenas um óculos de VR para que umdjpudesse demonstrar suas habilidades e sua coleção, advinda de árdua pesquisa.

A mixagem não se limita ao entretenimento em um clube. O papel de um curador de músicas advém do tempo das rádios, e, conforme a tecnologia de reprodução, armazenamento e gravação de música evoluiu, tornou-se mais acessível a qualquer pessoa.

 $2.5. \quad Som \ e \ M\'usica$ 39

A mixagem transcende a mera função de entretenimento em uma balada. Desde a expansão do conceito de música feito por John Cage em (CAGE, 2019), no qual música se torna qualquer som, várias expansões conceituais tanto teóricas quanto práticas foram realizadas. Uma mix pode ser tanto o ato de um produtor musical ponderar a presença de cada instrumento ou cada canal em uma música ou o ato de criar uma nova música a partir de várias, com o ato de criar uma colagem sonora.

Uma mix possui estrutura; início, meio e fim. Enredo. Também diversos propósitos como entretenimento, relaxamento, meditação, cura, dança, apreciação, pesquisa e inúmeros outros. Além disso, os ambientes de circulação são variados, incluindo páginas de streaming, festivais, festas e até mesmo sessões individuais de "bedroom DJ". Nesse cenário, a liberdade do criador se estende para incluir não apenas misturas de músicas de diferentes gêneros, mas também a incorporação de trechos de áudio de entrevistas, livros, filmes, paisagens sonoras e arte sonora, resultando em uma experiência única.

Além disso, a adição de performances ao vivo, com a utilização de sintetizadores e qualquer dispositivo capaz de gerar som, amplia ainda mais as possibilidades criativas. Desde o uso de sinais elétricos provenientes de eletrodos até a integração de elementos inusitados, como performances ao vivo, as opções são verdadeiramente infinitas, limitadas apenas pela imaginação do criador.

2.5.0.4 Parâmetros físicos

Quando umdjmixa músicas, alguns parâmetro são levados em conta durante uma música ou no momento da transição entre duas. Parâmetros como batidas por minuto (BPM), tom, volume, ganho, presença de componentes em bandas de frequência como graves, médios e agudos.

A evolução dos equipamentos de djs pode ser descrita pelo acréscimo do controle de cada parâmetro citados acima, prezando por um design que facilite tomadas de decisões rápidas consonantes a rápida resposta na saída de áudio, e melhorando também o processamento do áudio de forma que tenha a melhor qualidade possível.

Para a construção de uma melhor atmosfera musical, o controle de bandas de frequência é o mais importante; pois ela permite a adição e a subtração de elementos de uma música para a criação de uma nova música, que pode ser usado em um momento de transição entre músicas ou para dar uma nova roupagem a uma música, por exemplo, acrescentar batidas a uma música que não tenha batidas, ou acrescentar vocal a uma música que seja somente instrumental.

O equalizador foi criado, segundo (IZHAKI, 2012), pelo Bell Labs com o intuito de ajustar o que era transmitido e o ouvido devido à atenuação de altas frequências durante a transmissão do sinal pelos fios. Porém, para a produção musical, o equalizador é utilizado

para manipular o conteúdo de bandas de frequências de diversos elementos musicais. Para a produção musical, considera-se sete bandas para a equalização.

Cada banda representa elementos que possuem características semelhantes. Conforme (IZHAKI, 2012), a banda chamada Subgraves corresponderia às frequências entre 20 e 60 Hz onde estão elementos como bumbo e baixo; Graves Baixos de 60 a 120 Hz onde se percebe a tonalidade porém podem ser associados ao bumbo e ao baixo; Médios Graves de 120 a 250 Hz onde se encontram as frequências fundamentais que ditam os tons naturais dos instrumentos; Médios de 250 a 2 kHz onde estão harmônicos de baixa ordem de vários instrumentos; Médios Altos de 2 kHz a 6 kHz onde há harmônicos complexos; e Agudos ou Brilho de 9 kHz até 20 kHz onde há pouca energia para muitos instrumentos porém ainda assim é uma banda importante por estar associada ao brilho na música.

A quantidade de bandas e as definições dos intervalos pode variar entre teóricos, bem como entre equipamentos. Dessa forma, esses intervalos não são a regra. Porém, quando se fala sobre DJs, a maioria dos equipamentos acaba dividindo o espectro de áudio em três bandas: graves cuja banda varia de 20 a 250 Hz; médios de 250 Hz a 4 kHz e agudos de 4 kHz a 20 kHz. A essa escolha de bandas reduzidas se deve a necessidade de simplicidade e rapidez no uso, além de que em cada dessas três bandas há elementos semelhantes bastante definidos, que auxiliam muito na construção de uma boa mixagem. A figura 10 ilustra os dois tipos de divisões de bandas apresentados acima.

Figura 10 – Espectro de Áudio

2.5.0.5 Equipamentos

Os equipamentos utilizados por djs ao longo do tempo evoluíram. Partiram de equipamentos improvisados utilizados para outra finalidade até que foram inventados dispositivos para a finalidade específica foram criados. Há inúmeras configurações possíveis

2.5. Som e Música 41

para que um dj mixe, conforme a sua necessidade. Primeiramente, deve-se saber qual a fonte de música que ele utiliza. Caso ele toque vinis, deve-se utilizar toca-discos. Caso a fonte seja um pendrive, no qual há uma série de músicas organizadas por um software de gerenciamento de música, deve-se utilizar uma CDJ [inserir significado de sigla]. Caso odjqueira fazer performances live na qual ele produz músicas ao vivo, odjpode utilizar notebooks, sintetizadores, samplers ou sequenciadores e inúmeros outros

2.6 Mixer

Um dispositivo que está sempre em qualquer layout montado é o mixer, cuja função é a de misturar e controlar canais de entrada de áudio. Quanto ao controle, inúmeras são as possibilidades mas a mais usual é a de fornecer controle de bandas de frequência para canais de entrada de áudio. Cada dispositivo que reproduz música é lido como um canal de entrada (CDJ, toca-disco, sequenciadores, sintetizadores, instrumentos, notebook ...). E um mixer é capaz de tanto controlar as bandas de frequência quanto somar os sinais de áudio, gerando um sinal de saída, que é ligada a alto falantes.

Os parâmetros para classificar um mixer como bom são muito subjetivos. Podem ser o design do equipamento, qualidade do áudio, distorção do som, manipulação precisa dos botões, ergonomia, portabilidade, preço, recursos como efeitos, referências histórias, integrações com software ou outros equipamentos. Além disso, cada pessoa tem seu gosto pessoal e o seu jeito de mixar prezando determinados aspectos.

O desenvolvimento da conexão entre dispositivos de áudio, segundo (WINER, 2012), deve considerar três pontos: o sinal de áudio, impedâncias (de entrada e saída) e o tipo de conector.

2.6.1 Potência de Sinal de Áudio

Comumente, encontra-se uma entrada "Phono"em mixers, correspondente aos dispositivos como toca-discos ou qualquer outro que emita sinais na ordem de milivolts. Esses sinais necessitam de uma amplificação realizada posteriormente por um amplificador de potência para serem processados pelo sistema do mixer. Alguns dispositivos possuem a tensão de saída tão baixa que necessitam de um pré-amplificador para que o sinal possa estar na faixa ideal para que sua potência seja amplificada, para que esteja em um nível de linha.

Outra entrada comumente encontrada é o "Line", que são sinais que já estão em nível de linha. Segundo (WINER, 2012), esses sinais possuem dois níveis padrões que são -10 dBV, em equipamentos não balanceados, e +4 dBu, para equipamentos balanceados. Equipamentos de linha profissional costumam a ser balanceados, ou seja, tensões RMS em torno de 1.23 V. Enquanto equipamentos não balanceados são de consumo, por exemplo, aparelhos de som, reprodutores de música e TVs, tensões em torno de 0.316 V.

2.6.2 Cabeamento

Condutores balanceados, segundo (BARTLETT; BARTLETT, 2009), apresentam um fio para transmitir o sinal e possuem um terra em comum para gerar a referência. Na figura 12 é possível verificar a transmissão do sinal e do ruído. balanceados, segundo

2.6. Mixer 43

(BARTLETT; BARTLETT, 2009), são cabos que utilizam dois condutores para transmitir o sinal, cobertos por uma blindagem, cujas tensões estão referenciados por um terra.

Figura 11 – Fio Desbalanceado

Já condutores balanceados, segundo (BARTLETT; BARTLETT, 2009), são cabos que utilizam dois condutores para transmitir o sinal, cobertos por uma blindagem, cujas tensões estão referenciados por um terra. Ao final da transmissão, os sinais passam por um diferenciador capaz de extrair boa parte dos ruídos adquiridos nos fios durante a transmissão. Um esquemático dos fios para condutores balanceados se encontra na figura 11.

Figura 12 – Fio Balanceado

2.6.3 Conectores

Para realizar a comunicação entre dispositivos, é necessário que haja tanto a transmissão de sinais elétricos quanto conectores. Cada tipo de conector possui vantagens relacionadas à transmissão de sinais, seja por: quantidade de canais, distância, potência, blindagem e interferência.

$2.6.3.1 \quad 1/4$ "

Um dos conectores mais conhecidos é o 1/4", principalmente utilizado em instrumentos como guitarras, violões, teclados e outros, podem ser encontrados em amplificadores e mixers, ou seja, em geral para o transporte de níveis baixos de potência. Segundo (BARTLETT; BARTLETT, 2009), devido à sua construção física que conta com dois condutores de sinais e um terra, esse tipo de conector pode ser aplicado em sinais estéreos não balanceados ou sinais mono balanceados.

[INSERIR FOTO DE UM PLUG 1/4"]

$2.6.3.1.1 \quad 1/8$ " ou 3.5 mm

Existe uma versão menor da versão 1/4", sendo o 1/8", ou mais conhecido como 3.5 mm. Esse tipo de conector é muito encontrado em celulares, dispositivos de reprodução de música e alto-falantes. Internamente, ele possui a mesma construção do 1/4"e também consegue transmitir os mesmos tipos de sinais.

[INSERIR FOTO DE UM PLUG 1/8"]

2.6.3.1.2 2.5 mm

Outra versão existente é o conector de 2.5 mm; que muitas vezes, ao invés de dois fios para o transmissão de sinais, conta com três; muitas vezes para adicionar o microfone em *headsets*.

2.6.3.2 RCA

O cabo RCA, muito utilizado nos primórdios de sistemas de telefonia, são também chamados de *phono* devido ao seu uso em toca discos fonográficos. Cada cabo RCA tem a capacidade de transmitir, de forma não balanceada, sinais de áudio mono. Dessa forma, caso se queira transmitir um sinal de som estéreo, utiliza-se dois cabos RCA. Caso conecte-se um som mono, internamente, segundo (BARTLETT; BARTLETT, 2009), há um chaveamento capaz de transmitir o sinal que tem apenas uma entrada, mono, e retransmiti-la pelo outro canal, de forma que os dois canais transmitam o mesmo sinal de áudio.

2.6.3.3 XLR

É um tipo de conector de baixa voltagem, segundo (BARTLETT; BARTLETT, 2009), chamado inicialmente de Cannon. Ele foi criado pela empresa Cannon com o intuito de transmissão de sinais balanceados para aplicações profissionais devido a sua rejeição de ruídos e pela integridade do sinal. [INSERIR IMAGEM DE UM XLR]

2.6.3.4 Protocolos Digitais

Conectores para transmissão de dados digitais também são utilizados em mixers e inúmeros outros equipamentos relacionados a áudio. Conectores como Ethernet e Switch, USB, bluetooth e MIDI também são utilizados para diversas configurações de equipamentos.

2.6. Mixer 45

2.6.4 Amplificação de Potência

Os principais níveis de tensões e potência existentes que mais são conectados a mixers são o Phono e nível de linha. A tensão do Phono se encontra em torno de (colocar tensão RMS de phono) e a tensão de um nível de linha se encontra em torno de $2,0\ V_{RMS}$. Segundo (SELF, 2013), é necessário que haja um intervalo de níveis de tensão para que o sinal possua um bom comportamento dentro do amplificado, de forma que não seja baixo o suficiente para que os ruídos sejam maiores e se tornem mais presentes do que os próprios sinais nem altos suficiente para que sejam saturados após a amplificação.

Dessa forma, quando um sinal phono entra no mixer, ele precisa ser amplificado internamente.

2.6.5 Equalização

Conforme visto em seções anteriores, pode-se dividir todas as subbandas de frequência de som audível em três grande bandas: agudos, médios e graves.

Dessa forma, tradicionalmente, após o sinal ser amplificado, dentro do mixer pode haver controle de ganho ou atenuação das bandas.

À medida que a mixagem acontece, determinadas combinações de uso do ganho podem ser acionados. E, num estágio posterior, todos os canais são somados.

2.6.6 Trim e Volume

Quanto à amplitude do sinal de áudio, há dois controles que frequentemente estão presentes em mixers: *trim* e volume. O *trim* é um controle sobre o ganho que um sinal obtém antes de ser processado pelo mixer e passar pelos controles de equalização. Serve para que o usuário consiga ajustar dois tipos de sinais para que apresentem o mesmo nível ou a combinação desejada; uma mais presente que a outra.

Já o volume é geralmente visto em um controle de fader. Esse botão serve para controlar a amplitude do sinal enquanto o sinal é equalizado, ou seja, posteriormente à amplificação do sinal.

2.6.7 Conversão AD/DA

Quanto ao processamento dos sinais de áudio, pode-se dividir o tipo de processamento em dois grandes bloco: analógicos e digitais. Analógicos são feitos por circuitos analógicos e digitais são por computadores, DSPs e outros dispositivos. Porém, a diferença primordial é o estado no qual o sinal, enquanto processado, se encontra. Caso o sinal, enquanto esteja sendo processado, for analógico, o mixer é analógico, e vice-versa.

Dispositivos que reproduzem música como CDJs e toca-discos podem emitir sinais analógicos ou digitais, dependendo do equipamento e da saída utilizada. Dessa forma, caso o *mixer* necessite de sinais digitais e a saída do reprodutor de música for analógico, deve-se realizar a conversão analógico digital. E, vice-versa.

De forma parecida, o sinal de saída do *mixer* deve ser analógica pois passará por um amplificador de potência para que, posteriormente, vá para alto-falantes. Ou seja, caso o processamento seja realizado de forma digital, o sinal deve passar por uma conversão digital analógica.

2.6.8 PureData

Dentro dos sinais digitais, há inúmeras formas de se processar sinais. Pode-se usar diversas linguagens de programação como PureData, MAX, SuperCollider, CSound, Faust e Chuck que são dedicadas a processamento de áudio. Já há outras linguagens de finalidades diversas como JavaScript, C, C++, Rust e outros que também contam com aplicações a áudio.

Cada linguagem possui sua especificidade, vantagens, desvantagens, aplicações e suportes. Por isso, a escolha da linguagem deve levar em conta as especificações dos requisitos que o projeto demanda.

2.7 Proposta de Implementação

Ao analisar a história de mixers e equipamentos e o mercado atual, chega-se a conclusão de que a evolução dos equipamentos foi e é realizada partindo de um modelo que se baseia na mixagem feita em vinil. Ao longo do tempo, acrescentou-se novas funcionalidades e formas de interações, porém, na maioria das vezes, mantendo o jogger para atraso e avanço da música, fadder para volume e knobs para frequências.

Além disso, conforme a evolução da microeletrônica, equipamentos começaram a migrar aos poucos para a eletrônica digital, culminando na utilização de um DSP para o processamento do sinal de áudio para comportar formatos de música com baixa compressão como WAV. e FLAC.

Assim, o que se vê hoje são dois extremos: equipamentos extremamente caros mas que não necessitam da presença de um computador e equipamentos dependentes, que são mais baratos e acabam possuindo melhor qualidade nos processamentos, que dificultam a mobilidade.

Dessa forma, o intuito é conceber um mixer dotado de uma interface inovadora, que se destaque em relação aos modelos tradicionais por sua intuitividade. Para tanto, opta-se pela utilização da Raspberry Pi, aproveitando sua capacidade de processamento de sinais e sua flexibilidade para criar uma interface personalizada. Tal abordagem se mostra vantajosa em comparação com os equipamentos convencionais, como as CDJs, não apenas devido à sua funcionalidade aprimorada, mas também por apresentar um custo mais acessível.

2.7.1 Documentação

Nas seções subjacentes, há uma série de documentações que visam a descrever e delinear o projeto a partir de diferentes óticas. Além disso, a informação contida de forma textual se encontrará melhor descrita graficamente através de diagrama, fluxogramas e outras ferramentas.

2.7.2 Levantamento de Requisitos

Requisitos Funcionais:

- O sistema deve permitir ao DJ ajustar o volume de cada canal de áudio individualmente.
- O sistema deve fornecer controles de equalização (graves, médios, agudos) para cada canal de áudio.
- O sistema deve permitir ao DJ utilizar tanto CDJs quanto toca-discos.

• O sistema deve permitir ao DJ escutar canais não ativados ao público (cue).

Requisitos Não Funcionais:

- O sistema deve ser capaz de responder aos comandos do DJ com latência mínima, garantindo uma experiência de mixagem fluida.
- A interface do usuário do sistema deve ser intuitiva e fácil de usar, permitindo que o DJ faça ajustes rapidamente durante a performance.
- O sistema deve ser confiável e estável, capaz de lidar com longos períodos de uso contínuo sem falhas.
- O sistema deve oferecer uma qualidade de som de alta fidelidade, garantindo que o
 áudio reproduzido seja claro e sem distorções.

Requisitos de Interface do Usuário:

- A interface do mixer deve incluir indicadores visuais, como LEDs ou telas LCD, para mostrar o status dos diferentes canais e configurações.
- A interface do mixer deve ser configurável para facilitar a forma de mixagem do DJ.

Requisitos de Sistema:

- O sistema deve ser compatível com uma variedade de dispositivos de áudio externos, como CDJs e toca-discos.
- O sistema deve ser alimentado por uma fonte de energia padrão, como uma tomada elétrica.
- O sistema deve incluir interfaces de entrada e saída de áudio padrão, como conectores
 RCA ou XLR, para facilitar a conexão com outros equipamentos de áudio.

Requisitos de Desempenho:

- O sistema deve ser capaz de lidar com até dois canais de áudio simultaneamente, sem comprometer a qualidade do som ou a responsividade dos controles.
- O sistema deve suportar uma ampla gama de frequências de áudio, garantindo que os graves sejam reproduzidos com punch e os agudos sejam nítidos e claros.

Requisitos de Interface de Usuário:

- O sistema deve permitir ao DJ personalizar a aparência e layout da interface do usuário para atender às suas preferências individuais.
- O sistema deve ser compatível com dispositivos de entrada externos, como controladores MIDI ou dispositivos de toque, para permitir diferentes estilos de interação do usuário.

Requisitos de Segurança:

 O sistema deve ser projetado para minimizar o risco de danos aos equipamentos de áudio conectados, como proteção contra sobrecarga ou curto-circuito.

Requisitos de Manutenção:

O sistema deve ser projetado para facilitar a manutenção e reparo, com acesso fácil
aos componentes internos e documentação clara sobre procedimentos de serviço.

Requisitos de Compatibilidade:

 O sistema deve ser compatível com uma variedade de formatos de áudio comuns, como WAV, MP3 e FLAC. [VERIFICAR SE A RASP AGUENTA ESSE PROCES-SAMENTO]

2.7.2.1 Análise do Questionário

Um questionário foi aplicado pelo Digital DJ Tips; um portal de notícias e de cursos cuja abrangência possibilitou a coleta de mais de 1500 respostas ao redor do mundo, durante o dezembro de 2023 e janeiro de 2024. O questionário abrangeu informações divididas em seções como: informações demográficas, tipos e experiências, setup (hardware e software), estilos musicais e fontes musicais e, como último, social media. Através da análise do questionário, foi possível levantar algumas histórias de usuários.

2.7.2.1.1 Informações Demográficas

Nesse quesito, obteve-se uma distribuição crescente conforme a idade dos DJs. 25 a 34 anos teve 18,86%, 35 a 44 teve 28,45% e 45 a 54 obteve 32,33%. No questionário, não obteve-se respostas significativas de brasileiros. Dessa forma, esse perfil não corresponderia ao perfil do brasileiro.

Quanto a renda anual em atividades gerais, em dólares, as maiores faixas foram 25k - 50k, 50k - 75k, seguidos por 0 - 15k. Além disso, quanto a renda advindo da atividade de DJ, 40,86% não recebe pela atividade, já para 34,47% dos entrevistados 10% de sua renda advém de discotecagem.

2.7.2.1.2 Tipo de DJ e Experiência

A maioria, 53,92%, havia começado a tocar há mais de 10 anos. Além disso, percebe-se há um aumento de de DJs que permanecem na atividade até 3 anos, porém, depois começa a cair. Porém, percebe-se que a maior faixa é daqueles que permanecem há muito tempo na atividade, há mais de 10 anos.

Outro ponto importante é o tipo de DJ que os entrevistadores são. A maioria, 27,49% toca regularmente em público, já 25,66% toca de vez em quando, logo em seguida estão: pessoas que tocam ocasionalmente para amigos e família.

Outro dado importante é que a maioria dos entrevistados são hobbistas/bedroom ou DJs focados em eventos como casamentos, aniversário, corporativos. Em seguida, encontram-se os que chegam a tocar mas não levam a atividade como fonte de renda. Em seguida, encontram-se os que têm a discotecagem como profissão, como: residentes, djs e produtores. Portanto, a maioria são hobbistas e DJs focados em eventos, sem ser clubes.

Porém, um dado interessante é que a maioria deseja se tornar um dj que vive em tour ou que possui residência em algum clube. Além disso, quanto a transmitir os sets, apenas 10% disnponibiliza online os seus sets produzidos. Porém, quase 50% almeja a transmissão de seus sets pela internet.

Dessa forma, percebe-se todo tipo de estilo de DJ: aqueles que tocam em locais profissionais que provavelmente já contam com os equipamentos profissionais próprios e conforme cai a porcentagem dos resultados, percebe-se a diminuição da complexidade do equipamento devido ao sistema de som local.

2.7.2.1.3 Setup - Hardware e Software

Quanto ao equipamento utilizado, 56% toca através de um notebook e de uma controladora. Em seguida, 15% possui XDJ (All-in-one standalone). Além disso, 56% utiliza Pioneer como marca principal em seus equipamentos, seguido pela Denon.

Quanto ao montante investido no setup, a maioria gastor entre USD 1500 a 3000, seguidos por USD 1000 a 1500 e USD 3000 a 5000.

Outro dado importante, é que 63% das pessoas visam realizar uma atualização do setup a cada ano. Dentre aqueles que não podem, metade desses não fazem devido aos custos relacionados. E mesmo entre esses, 53% gostaria de adquirir Pioneer.

37%dos entrevistados disse que, quando são contratados, devem levar o próprio equipamento.

Quanto à inovação mais interessante, segundo os entrevistados, está a possibilidade, que tem sido vista em controladoras atuais, de separar uma música em elementos e ter a capacidade de tanto separar quanto de aplicar efeitos apenas nesse grupo de elementos em tempo real. Além disso, a possibilidade de utilizar uma biblioteca na nuvem e o desenvolvimento de softwares que mixam automaticamente também deixaram os entrevistadores animados.

Quanto às características mais importantes ao se adquirir novos equipamentos, a qualidade e durabilidade se encontraram em primeiro lugar, seguido de recursos, preços, marcas e integrações.

O software utilizado pelo DJ precisa poder ser integrado ao sistema de mixagem. O software é como a biblioteca é organizada e como o pendrive é organizado. Dessa forma, ao escolher um software, a pessoa deve levar em consideração os equipamentos que ela pode utilizar. Assim, 2/3 dos entrevistados se dividiram entre Rekordbox e Serato DJ.

2.7.2.1.4 Estilos musicais e aquisição de músicas

56% dos DJs mixa utilizando diversos tipos de gêneros. Em contrapartida, 1/4 dos DJs só mixa focado em um estilo. A diferença entre a mixagem entre um estilo e vários é a habilidade de elencar elementos semelhantes ou contrastantes para realizar uma mixagem.

Dentre os gêneros mais tocados, encontram-se house, hip hop, pop, tech house, techno, bass, EDM, disco, deep house e outros. Para servir como base da mixagem, DJs utilizam outros gêneros para servir como construção e presença de elementos. Os gêneros mais utilizados para essa presença são house, disco, hiphop, tech house, deep house, funk e techno. Porém, a presença de gêneros é bem diversa.

2.7.2.1.5 Conclusão acerca do Questionário

- 2.7.3 Diagramas de Subpartes
- 2.7.4 Diagrama de Integração
- 2.7.5 Diagrama de Comunicação
- 2.7.6 Fluxograma
- 2.7.7 Protótipo de Interface de Usuário
- 2.7.8 Documento de Especificação Técnica
- 2.7.9 Documento de Plano de Teste

Parte I

Texto e Pós Texto

Referências

- BARTLETT, B.; BARTLETT, J. Practical Recording Techniques: The Step-by-step Approach to Professional Audio Recording. Focal Press, 2009. ISBN 9780240811444. Disponível em: https://books.google.com.br/books?id=E0uy8adetQoC. Citado 3 vezes nas páginas 42, 43 e 44.
- BREWSTER, B.; BROUGHTON, F. Last Night a DJ Saved My Life: The History of the Disc Jockey. Grove Atlantic, 2014. ISBN 9780802194367. Disponível em: https://books.google.com.br/books?id=MxTnBAAAQBAJ. Citado 3 vezes nas páginas 35, 36 e 38.
- CAGE, J. Silêncio Conferências e escritos de John Cage. [s.n.], 2019. (Literatura / Música). ISBN 9788555911026. Disponível em: https://www.cobogo.com.br/produto/silencio-conferencias-e-escritos-de-john-cage-633. Citado na página 39.
- FARNELL, A. Designing Sound. [S.l.]: The MIT Press, 2010. ISBN 0262014416. Citado na página 35.
- IZHAKI, R. Mixing Audio: Concepts, Practices and Tools. Focal Press, 2012. ISBN 9780240522227. Disponível em: https://books.google.com.br/books?id=f-Rz8c73xh4C. Citado 2 vezes nas páginas 39 e 40.
- NUSSENZVEIG, H. M. Curso de física básica, 2 : fluídos, oscilações e ondas. calor. 4.ed.. ed. São Paulo: Edgard Blücher, 2006. ISBN 9788521207481. Citado na página 34.
- NYQUIST, H. Certain topics in telegraph transmission theory. *Transactions of the American Institute of Electrical Engineers*, v. 47, n. 2, p. 617–644, 1928. Citado na página 30.
- OPPENHEIM, A.; WILLSKY, A. Sinais e Sistemas. 2ª. ed. São Paulo: Pearson, 2010. 592p. p. ISBN 857605504X. Citado 6 vezes nas páginas 28, 29, 30, 31, 32 e 33.
- ROADS, C. *The Computer Music Tutorial*. MIT Press, 1996. (Mit Press). ISBN 9780262680820. Disponível em: https://books.google.com.br/books?id=nZ-TetwzVcIC. Citado na página 35.
- SELF, D. Audio Power Amplifier Design. Focal Press, 2013. ISBN 9780240526133. Disponível em: https://books.google.com.br/books?id=Poh4MAEACAAJ. Citado na página 45.
- SHANNON, C. E. Communication in the presence of noise. *Proceedings of the IEEE*, v. 37, p. 10–21, 1949. Citado na página 30.
- WIDROW, B.; KOLLAR, I.; LIU, M.-C. Statistical theory of quantization. *IEEE Transactions on Instrumentation and Measurement*, v. 45, n. 2, p. 353–361, 1996. Citado na página 32.
- WINER, E. The Audio Expert: Everything You Need to Know about Audio. Focal Press, 2012. ISBN 9780240821009. Disponível em: <a href="https://books.google.com.br/books?id="https://books.google.com.br/bo

S6 Referências

ZÖLZER, U. $Digital\ Audio\ Signal\ Processing.$ [S.l.]: Wiley, 2008. ISBN 9780470997857. Citado na página 32.