|                           | / Uneda \ |
|---------------------------|-----------|
| Name :                    | 🛕 🖊       |
|                           |           |
| Roll No.:                 |           |
|                           |           |
| Invigilator's Signature : |           |

# CS/B.TECH(OLD)/CSE,IT/SEM-3/M-301/2011-12 2011 MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### GROUP - A

### (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following:  $10 \times 1 = 10$ 
  - i) If the R.V. X has p.d.f.  $f(x) = \frac{1}{2}x$ ,  $0 \le x \le 2$ , find the mean value of X.
    - a)  $\frac{4}{3}$

b)  $\frac{7}{8}$ 

c)  $\frac{3}{4}$ 

- d)  $\frac{2}{3}$ .
- ii) If x = 4y + 5 and y = kx + 4 be two regression equations of x on y and y on x respectively, then the value of k lies in the interval
  - a) [4, 5]

b) [0, 4]

c) [0, 5]

d) none of these.

3151-(O)

## CS/B.TECH(OLD)/CSE,IT/SEM-3/M-301/2011-12



- iii) The variable of a uniform distribution with parameters a and b is
  - a)  $\frac{a+b}{2}$

b)  $\frac{a-b}{2}$ 

c)  $\frac{(b-a)^2}{12}$ 

- d)  $\frac{(b+a)^2}{12}$ .
- iv) Probability of type II Error in the case of testing hypothesis, is (notations have their usual meanings)
  - a) Probability of rejection of  $H_0(\theta \neq \theta_0)$  on the hypothesis that  $H_0$  is true
  - b) Probability of acceptance of  $H_0(\theta=\theta_0)$  on the hypothesis that  $(\theta\neq\theta_0)$
  - c) Level of significance of the test
  - d) None of these.
- v) In Tchebycheff's Inequality, where X is an R.V. having mean m and S.D.  $\sigma$ , then for any  $\in >0, P(\mid X-m\mid \ge \in) \le$ 
  - a) σ/∈

b)  $\sigma^2/\in$ 

c)  $\sigma^2/\in^2$ 

- d)  $\sigma/\in^2$
- vi) Under SRSWOR total possible samples of size two from the Population  $\{1, 2, 3\}$  are
  - a) {1, 1}, {2, 2}
- b) {1, 1}, {2, 2}, {3, 3}
- c) {1, 2}, {1, 3}. {2, 3}
- d) {2, 2}, {3, 3}



a)  $\frac{12}{25}$ 

b)  $\frac{6}{25}$ 

c)  $\frac{18}{25}$ 

d) none of these.

viii) A random variable X has the following probability density function

$$f(x) = \begin{cases} 1 & for \ 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

The mean of X is

a)  $\frac{1}{2}$ 

b)  $\frac{1}{3}$ 

c)  $\frac{1}{4}$ 

d) 1

ix) The moment generating function on the Poisson distribution with parameters  $\boldsymbol{\lambda}$  is

a)  $e^{\lambda t}$ 

- b)  $e^{(e^t+1)}$
- c)  $e^{\lambda(e^t-1)}$

d) none of these.

x) If  $S^2$  be the sample variance of a sample of size 10 then an unbiased estimate of the population variance will be

a)  $\frac{10}{9}S^2$ 

b)  $S^2$ 

c)  $\frac{9}{10}S^2$ 

d)  $\frac{11}{9}S^2$ 



xi) A statistic  $t_n$  is called a consistent estimator of  $\theta$  if for arbitrary  $\varepsilon > 0$ 

a) 
$$\lim_{n\to\infty} \{|t_n-\theta| < \varepsilon\} = 0$$

b) 
$$\lim_{n \to \infty} \{ |t_n - \theta| > \varepsilon \} = 0$$

c) 
$$\lim_{n\to\infty} \{|t_n-\theta| = \varepsilon\} = 0$$

- d) none of these.
- xii) If -4 < t < 4 be a region of acceptance for a statistical test of a hypothesis then the critical region of the test is given by
  - a) t < -4

- b) t > 4
- c) -4 < t < 4
- d) none of these.

#### **GROUP - B**

#### (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$ 

2. The distribution function F(x) of a random variable x is defined as follows:

$$F(x) = A$$
,  $-\infty < x < -1$ 

$$= B, -1 \le x < 0$$

$$=C$$
,  $0 \le x < 2$ 

$$=D$$
,  $2 \le x < \infty$ 

where A, B, C, D are constants. Determine the value of A, B, C, D; given  $P(X=0) = \frac{1}{6}$  and  $P(X>1) = \frac{2}{3}$ .

- M-807/2011-12
- 3. Show that if  $S^2$  be sample variance of a sample of size n drawn from a population with mean  $\mu$  and S.D. of then  $E(S^2) = ((n-1)/n)\sigma^2$  (Where population size is infinite or the sample is drawn with replacement).
- 4. If the weekly wage of 10,000 workers in a factory follows normal distribution with mean and S.D. Rs. 70 and Rs. 5 respectively, find the expected number of workers whose weekly wages are (i) between Rs. 66 and Rs. 72, (ii) less than Rs. 66 and (iii) More than Rs. 72. [Given that  $\frac{1}{\sqrt{2\pi}}\int_{0}^{z}e^{-t^{2}/2}dt=0.1554 \text{ and } 0.2881 \text{ according as } z=0.4 \text{ and } z=0.81.$
- 5. Ten individuals are choosen at random from a normal ( $(m, \sigma)$ ) population and their heights in inches are found to be 63, 66, 63, 67, 68, 69. 70,71, 72, 71. On the basis of the above data, obtain 95% confidence interval for the parameter m when  $\sigma$  is unknown. [Given  $P(\chi^2 > 2.7) = 0.975$  and P(t>2.262) = 0.025 for 9 d.o.f.]
- 6. A random sample with observations 65, 71, 64, 71, 70, 69, 64, 63, 67, 68 is drawn from a normal population with S.D.  $\sqrt{7.056}$ . Test the hypothesis that the population mean is 69 at 1% level of significance. [Given that P(0 < z < 2.58) = 0.495].

3151-(O)

#### **GROUP - C**

# ( Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

7. a) A random variable *X* has a density function f(x) is given by  $f(x) = e^{-x}$ ,  $x \ge 0$ 

= 0, elsewhere.

Show that Techebycheff's inequality gives

 $P(|X-1| \ge 2) \le \frac{1}{4}$  and show that actual probability is  $e^{-3}$ .

6

- b) If  $x_1, x_2, x_3, x_4, x_5, x_6$  be an independent simple random sample from a normal population with unknown variable  $\sigma^2$ , Find k so that  $k\left[(x_1-x_2)^2+(x_3-x_4)^2+(x_5-x_6)^2\right]$  is an unbiased estimator.
- c) If X is uniformly distributed in (-1,1), find the density of  $\mid X \mid$ .
- 8. a) Show by Techebycheff's inequality that if a die is thrown 3,600 times, the probability of number of sixes lies between 550 and 650 is at least  $\frac{4}{5}$ .
  - b) If  $X_n$  is mutually independent and identically distributed random variable with mean m and finite variance  $\sigma^2$ , and  $S_n = X_1 + X_2 + ... + X_n$ , then prove that WLLN (Weak Law of Large Numbers) holds for the sequence  $\{S_n\}$ .

3151-(O)

- c) If T is an unbiased estimator of  $\theta$ , show that  $\sqrt{T}$  is biased estimate of  $\sqrt{\theta}$ .
- 9. a) Find the regression coefficient of y on x, of x on y and the correlation coefficient between x and y from the following values:

 $\sum xy=1500, \overline{x}=15, \overline{y}=12, \sigma_x=6.4, \sigma_y=9$  and number of observations is 10 where the notation have their usual meanings.

- b) Find the moment generating function of Normal Distribution  $N(\mu,\sigma)$  with parameters  $\mu$  and  $\sigma$  and from it determine its mean and variance. 5+10
- 10. a) X follows Bi(3, p) i.e. Binomial distribution with parameters 3 and p where 0 .

$$H_0: p = \frac{1}{4}, H_1: P = \frac{3}{4}$$

A test rejects  $H_0$  if  $X \ge 2$ . Find the Type I and Type II errors of this test.

b) A company claims that its light bulbs are superior to those of a competitor on the basis of a study which showed that a sample of 40 of its bulbs had an average life time of 628 hours of continuous use with a standard deviation of 27 hours, while a sample of 30 bulbs made by the competitor had an average life time of 619 hours of continuous use with a standard deviation of 25 hours. Check at 5% level of significance whether this claim is justified.



- 11. a) Show that the weak law of large Nos. does not hold for the sequence of independent random variables  $\{X_n\}$  with the distribution given as  $P(X_n = \pm n) = \frac{1}{2}$ .
  - b) For the variables x and y the equations of the regression lines are 4x 5y + 33 = 0 and 20x 9y = 107. Identify the regression line of y on x and that of x on y. Find the standard deviation of y.
  - c) The probability of a missile hitting a target is  $\frac{1}{4}$ . How many missiles must be sent so that the probability of hitting the Target at least once is greater than  $\frac{2}{3}$ ?

5 + 5 + 5