Pensamento Computacional WEBINAR 03 – Unidade 02

Operadores Aritméticos

■ Soma:

■ Resto de divisão:

%

Subtração:

Parte inteira de uma divisão:

• Multiplicação:

37:12=3 com resto 1

■ Divisão: /

■ Potenciação:

Outros operadores aritméticos:

Operador	Exemplo	Descrição
+=	a += b	Mesmo que: a = a + b
-=	a -= b	Mesmo que: $a = a - b$
*=	a *= b	Mesmo que: a = a * b
/=	a /= b	Mesmo que: a = a / b
%=	a %= b	Mesmo que: a = a % b
**=	a **= b	Mesmo que a = a ** b

Operadores lógicos e relacionais

São utilizados para realização de comparação |

processo decisório!

- Equivalência ou similaridade: igual ou diferente;
- Qualidade: melhor ou pior;
- Dimensão: maior ou menor;
- Quantidade: mais ou menos, muito ou pouco;

■Tipos de operadores relacionais:

- ■A == B (A igual a B)
- ■A != B (A diferente de B)
- ■A > B (A maior do que B)
- ■A >= B (A maior ou igual a B)
- ■A < B (A menor do que B)
- ■A <= B (A menor ou igual a B)
- ■A is B (Mesmo objeto)
- ■A in B (Está contido)

■Tipos de operadores lógicos:

- ■E => and ou &(duas expressões sejam verdadeiras);
- ■Ou => or ou | (pelo menos uma expressão verdadeira);
- Não => not ou ~ (negação de uma expressão)

- Regras de precedência:
 - 1. Expressões entre parênteses;
 - 2. Exponenciação;
 - 3. Multiplicação, divisão, resto e parte inteira;
 - 4. Soma e subtração;
 - 5. Operadores relacionais: <, <=, >, >=, ! =, ==
 - 6. not
 - **7.** and
 - 8. Or

OBS.: Esquerda para direita;

• Qual a sequência das operações abaixo:

• Qual a sequência das operações abaixo:

Implementar algoritmo "Calcular média de dois números inteiros" em Python

```
numero_1=10
numero_2=20
media=(numero_1+numero_2)/2
print(media)
```

Tabela verdade

```
proposicao_a = True
proposicao_b = False
resultado = proposição_a and proposição_b
print(resultado)
```


- Testes de mesa:
 - Servem para garantir a funcionalidade de um algoritmo;
 - Procedimento:
 - Crie uma tabela para:
 - Informar o comando do algoritmo ou código fonte;
 - Dados de entrada;
 - Saída após processamento do comando do algoritmo ou código fonte;
 - Saída esperada
 - Exemplo: realizar um teste de mesa para o algoritmo "Calcular média ponderada das notas de um aluno"

Comando em Python	Dados de entrada	Saída processada	Saída esperada
nota_01 = 9.50	9.50		
peso_01 = 3	3		
nota_02 = 8.50	8.50		
peso_02 = 5	5		
numerador=(nota_01*peso01)+(nota_02*peso_02)		71	71
denominador=(peso_01+peso_02)		8	8
media=numerador/denominador		8.875	8.875

Dicas:

- 1) Utilize uma planilha em Excel para te auxiliar nas operações matemáticas;
- 2) Quebre o algoritmo em mais etapas caso a operação seja muito complexa;
- 3) Cuidado com as precedências ao juntar etapas;

Comando em Python	Dados de entrada	Saída processada	Saída esperada
nota_01 = 9.50	9.50		
peso_01 = 3	3		
nota_02 = 8.50	8.50		
peso_02 = 5	5		
media=(nota_01*peso01)+(nota_02*peso_02)/(peso_01+peso_02)		33.81	8.875

Dicas:

Cuidado com as precedências ao juntar etapas;

Comando em Python	Dados de entrada	Saída processada	Saída esperada
nota_01 = 9.50	9.50		
peso_01 = 3	3		
nota_02 = 8.50	8.50		
peso_02 = 5	5		
media=(nota_01*peso01)+(nota_02*peso_02)/(peso_01+peso_02)		33.81	8.875

Como a operação de divisão tem precedência a operação de soma, ocorre um erro no código. Solução:

Envolva o numerador com parênteses, assim como o denominador!

Comando em Python	Dados de entrada	Saída processada	Saída esperada
nota_01 = 9.50	9.50		
peso_01 = 3	3		
nota_02 = 8.50	8.50		
peso_02 = 5	5		
media=((nota_01*peso01)+(nota_02*peso_02))/(peso_01+peso_02)		8.875	8.875

- Elabore um código em Python para receber do usuário:
 - Nome do aluno;
 - 03 notas;
 - Retorne uma mensagem para o usuário informando a média aritmética desse aluno;
- Elabore um código em Python para executar o cálculo da equação do segundo grau;
- Elabore o teste de mesa para averiguar se o código está processando os dados de maneira correta;

Comando if, elif, else

- Estrutura condicional
 - Executa análise sobre alguma condição:
 - Se a condição for atendida: executa;

■ Implementando algoritmos condicionais em Python

■ Implementar algoritmo "Identificar números pares e ímpares" em Python

```
n = input('Favor insira um número inteiro: ')
n = int(n)
if n%2 == 0:
    print('O número n: {:d}, é par'.format(n))
else:
    print('O número n: {:d}, é ímpar'.format(n))
```

Favor insira um número inteiro: 10 O número n: 10, é par

Comando if, elif, else

Estrutura condicional:

```
Erro de
indentação!
```

```
In [38]: nota = 4.9
   if nota>=9.0:
        print('Aluno tirou nota: A')
   elif (nota >= 8.0) and (nota < 9.0):
        print('Aluno tirou nota: B')
   elif (nota >= 7.0) and (nota < 8.0):
        print('Aluno tirou nota: C')
        elif (nota >= 6.0) and (nota < 7.0):
            print('Aluno tirou nota: D')
        elif (nota >= 5.0) and (nota < 6.0):
            print('Aluno tirou nota: E')
   else:
        print('Aluno tirou nota: F')

File "<ipython-input-38-199068fabd8a>", line 7
        print('Aluno tirou nota: C')
```

IndentationError: expected an indented block

Importante: para executar a ação dentro do bloco if, elif, else, deve-se criar uma indentação;

- Implemente uma nova funcionalidade no código de cálculo de média do aluno para informar se o aluno foi aprovado ou reprovado;
 - Regras de negócio:
 - Aprovado: média >= 6.0
 - Em recuperação: média >= 5.0 e < 6.0</p>
 - Reprovado: média < 5.0</p>

- Elabore um código em Python para classificar o aluno em "A", "B", "C", "D", "E" e "F"
 - Regras:

```
A: média >= 9.5;
B: 8.5 <= média < 9.5;</li>
C: 7.5 <= média < 8.5;</li>
D: 6.0 <= média < 7.5;</li>
E: 5.0 <= média < 6.0;</li>
```

• F: 0.0 <= média < 5.0;

 Junte ambos os códigos para classificar o aluno de acordo com sua nota e informar se o aluno foi aprovado ou reprovado;

