Esercizi su indipendenza lineare, basi e dimensione

Corso di laurea in informatica A.A 2003-2004

Docente: Andrea Loi

Correzione Esercitazione

0. per quali valori di λ i vettori $v_1 = 2\lambda \mathbf{i} + \mathbf{j}$ e $v_2 = \mathbf{j}$ sono linearmente indipendenti?

Soluzione: Consideriamo la matrice $2x^2$ avente come colonne le componenti dei vettori:

$$\begin{pmatrix} 2\lambda & 0 \\ 1 & 1 \end{pmatrix}$$

 $\left(\begin{array}{cc} 2\lambda & 0 \\ 1 & 1 \end{array}\right)$ essi saranno linearmente indipendenti quando il suo rango è 2, ossia quando $\lambda \neq 0$

1. Provare che i vettori $\mathbf{v}_1 = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}, \mathbf{v}_2 = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \mathbf{v}_3 = -\mathbf{i} - 2\mathbf{j} + \mathbf{k},$ sono linearmente indipendenti. Dire inoltre se il vettore \mathbf{j} è esprimibile come combinazione lineare di $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ e, se lo è, dire in quanti modi.

Soluzione:

Consideriamo la matrice 3x3 avente come colonne le componenti dei vettori: $\begin{pmatrix} 2 & -1 & -1 \\ 2 & 2 & -2 \\ 2 & 1 & 1 \end{pmatrix}$, riducendo a gradini (o calcolando direttamente il

$$\left(\begin{array}{ccc}
2 & -1 & -1 \\
0 & 3 & -1 \\
0 & 0 & \frac{8}{3}
\end{array}\right)$$

quindi il rango vale tre, concludiamo che i tre vettori sono lin.indipendenti. Se \mathbf{j} è esprimibile come combinazione lineare di $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ allora esistono a,b,ctali che $\mathbf{j}=a\mathbf{v}_1+b\mathbf{v}_2+c\mathbf{v}_3$ ossi
a $\mathbf{j}=a(2\mathbf{i}+2\mathbf{j}+2\mathbf{k})+b(-\mathbf{i}+2\mathbf{j}+2\mathbf{k})$ $\mathbf{k}) + c(-\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ risolvendo il sistema

$$\begin{cases} 2a - b - c = 0 \\ 2a + 2b - 2c = 1 \\ 2a + b + c = 0 \end{cases}$$

1

si ottiene

$$\begin{cases} a = 0 \\ b = \frac{1}{4} \\ c = -\frac{1}{4} \end{cases}$$

2 Vero o Falso:

- 4 vettori in \mathbb{R}^6 sono sempre linearmente dipendenti;
- 6 vettori in \mathbb{R}^4 sono sempre linearmente dipendenti;
- 4 vettori in \mathbb{R}^6 sono sempre linearmente indipendenti;

Soluzione:

• FALSO: consideriamo ad esempio $\begin{pmatrix} 1\\0\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1\\0\\0\\0 \end{pmatrix}$, essi sono lin.indipendenti.

- VERO: infatti considerata la matrice costituita dai 6 vettori essa possiede al piú rango 4.
- FALSO: esistono vettori lin. indipendenti ma anche lin. dipendenti (esempio: vettori proporzionali)
- 3. Dire se i seguenti vettori di \mathbb{R}^3 sono linearmente indipendenti; scrivere, quando possibile, un vettore come combinazione lineare dei rimanenti:

$$\left(\begin{array}{c}3\\1\\2\end{array}\right), \left(\begin{array}{c}2\\1\\3\end{array}\right), \left(\begin{array}{c}3\\2\\1\end{array}\right)$$

stessa domanda per i vettori:

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\1\\1\end{array}\right)$$

2

Soluzione:

consideriamo la matrice costituita dai primi tre vettori : $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$,

riducendo a gradini si ha $\begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & -3 \\ 0 & 0 & -6 \end{pmatrix}$, pertanto i tre vettori sono

lin. indipendenti. Consideriamo la matrice costituita dai rimanenti tre

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \text{ riducendo a gradini si ha } \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \text{ pertanto i tre}$$

vettori sono lin. dipendenti, infatti possiamo scrivere

$$\begin{pmatrix} 2\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

4. Provare che i vettori:

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\2\\1\end{array}\right)$$

formano una base \mathcal{B} di \mathbb{R}^3 . Esprimere le coordinate del vettore

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

rispetto alla base \mathcal{B} .

Soluzione:

Consideriamo la matrice costituita dai tre vettori $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ Si ha rango(A) = 3 (lo possiamo verificare o calcolando direttamente il determinante e osservando che esso è diverso da zero oppure riducendo la matrice a gradini, i due metodi sono equivalenti.) pertanto i tre vettori essendo linearmente indipendenti formano una base di \mathbb{R}^3 . Per ricavare le componenti del vettore $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ procediamo nel seguente modo:

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \text{ risolvendo si ottiene}$$

$$\begin{cases} a = +x_1 - x_2 \\ b = +2x_1 - x_2 - 2x_3 \\ a = -x_1 + x_2 + x_3 \end{cases}$$

5. Verificare che le soluzioni del seguente sistema omogeneo sono un sottospazio vettoriale di \mathbb{R}^3 :

$$\begin{cases} 2x - 3y + 5z = 0 \\ 5x - 2y + z = 0 \\ 3x + y - 4z = 0 \end{cases}$$

Soluzione:

consideriamo la matrice associata al sistema
$$\begin{pmatrix} 2 & -3 & 5 \\ 5 & -2 & 1 \\ 3 & 1 & -4 \end{pmatrix}$$
, riducendo a gradini si ha $\begin{pmatrix} 2 & -3 & 5 \\ 0 & \frac{11}{2} & -\frac{23}{2} \\ 0 & 0 & 0 \end{pmatrix}$, pertanto lo

infatti presi due suoi elementi $s_1=(\frac{7}{11}t_1,\frac{23}{11}t_1,t_1)$ e $s_2=(\frac{7}{11}t_2,\frac{23}{11}t_2,t_2)$ si ha

$$s_1 + s_2 = (\frac{7}{11}(t_1 + t_2), \frac{23}{11}(t_1 + t_2), t_1 + t_2) \in S$$

e

$$\lambda s_1 = (\frac{7}{11}\lambda t, \frac{23}{11}\lambda t, \lambda t) \in S$$

6. Le soluzioni del seguente sistema sono un sottospazio vettoriale di \mathbb{R}^3 ?

$$\begin{cases} 2x - 3y + 5z = 1\\ 5x - 2y + z = 0\\ 3x + y - 4z = 0 \end{cases}$$

Soluzione:

Consideriamo la matrice associata al sistema:

$$\begin{pmatrix} 2 & -3 & 5 & 1 \\ 5 & -2 & 1 & 0 \\ 3 & 1 & -4 & 0 \end{pmatrix}, \text{ riducendo a gradini si ha} \begin{pmatrix} 2 & -3 & 5 & 1 \\ 3 & 1 & -4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ per}$$

7. Trovare una base del sottospazio vettoriale di \mathbb{R}^4 generato dai vettori:

$$\left(\begin{array}{c}1\\0\\1\\0\end{array}\right), \left(\begin{array}{c}1\\1\\0\\1\end{array}\right), \left(\begin{array}{c}2\\1\\1\\0\end{array}\right).$$

Soluzione:

Consideriamo la matrice costituita dai tre vettori:
$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \text{ riduciamo a gradini: } \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \text{ pertanto una base potrebbe}$$
 essere $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

8. Dimostrare che

$$\left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}1\\2\\3\end{array}\right), \left(\begin{array}{c}1\\1\\1\end{array}\right).$$

è una base \mathcal{B}' di \mathbb{R}^3 . Scrivere inoltre le coordinate del vettore $\begin{pmatrix} 1\\1\\ \end{pmatrix}$ rispetto alla base \mathcal{B}' . Verificare il risultato usando la matrice $M(\mathcal{B}, \mathcal{B}')$ del cambiamento di base dalla base canonica \mathcal{B} alla base \mathcal{B}' . Se $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ sono le coordinate di un vettore rispetto alla base B' quali sono le sue coordinate rispetto alla base \mathcal{B} ?

Soluzione:

Una base di \mathbb{R}^3 è costituita da tre vettori linearmente indipendenti, verifichiamo quindi che la matrice costituita dai tre vettori ha rango tre:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 1 \end{pmatrix}$$
. Per scrivere le componenti del vettore rispetto alla base data possiamo procedere in due diversi modi:

1.
$$a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, risolvendo il sistema si ottiene
$$\begin{cases} a = 0 \\ b = 0 \\ c = 1 \end{cases}$$

2.
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, ottenendo ancora lo stesso risultato.

$$M(\mathcal{B}, \mathcal{B}') = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 1 \end{pmatrix} \text{ mentre il vettore } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ rispetto alla base } \mathcal{B}'$$
 ha componenti $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, ricordando la seguente :

$$M(\mathcal{B}, \mathcal{B}')v_{B'} = v_B$$

si ha

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 1 \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)$$

in accordo con quanto ricavato precedentemente.

Considerando sempre la formula

$$M(\mathcal{B}, \mathcal{B}')v_{B'} = v_B$$

si ha

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$$