Number Theory (N)

	Chapter	Lecture	Assignment
Number Theory	2.5, 4.5, 4.10, 8,4	4	2

3. (6 pts) Which of the following statements is **true**?

33 | 11.

 $\Box -5n \mod 3 = 1$ for all positive integers n.

2. (6 pts) Which of the following statements is **true**?

 $\square 2 \mid (2+c)$ for all positive integers c.

 $\square 24 = lcm(6,4).$

 \square gcd(a,b) = gcd(a,ab) for all positive integers a and b.

3. (6 pts) Which of the following statements is **true**:

 $3 \mid (5 \cdot c)$ for all positive integers c.

 $\square \gcd(9,15) = \gcd(15,21).$

3. (6 pts) Which of the following statements is **true**?

 $A \gcd(11,7n) = 1$ for all positive integers n.

C 33 | 11.

 $\boxed{\mathbb{D}} -5n \mod 3 = 1$ for all positive integers n.

2. (6 pts) Which of the following statements is true?

 $A = 2 \mid (2+c)$ for all positive integers c.

C 24 = lcm(6, 4).

 $\mathbb{D} \gcd(a, b) = \gcd(a, ab)$ for all positive integers a and b.

3. (6 pts) Which of the following statements is **true**:

A $3 \mid (5 \cdot c)$ for all positive integers c.

 $\mathbf{P} \gcd(9,15) = \gcd(15,21).$

C lcm(9, 15) = lcm(15, 21).

 $D = 6 \equiv 12 \pmod{12}$.

Solution: gcd(9, 15) = 3 = gcd(15, 21)

3. (6 pts) Which of the following statements is **true**?

 \square 8 | (8 + c) for all positive integers c.

 $\square \gcd(10,16) = \gcd(16,21).$

3. (6 pts) Which of the following is **true** for all positive integers a, b and q?

 \square If $ab \equiv 0 \pmod{q}$ then either $a \equiv 0 \pmod{q}$ or $b \equiv 0 \pmod{q}$.

 \square If $a^2 \equiv a \pmod{q}$ then $a \equiv 1 \pmod{q}$.

 \square If $a \equiv a + b \pmod{q}$ then $b \equiv 0 \pmod{q}$.

 \square If $a^2 \equiv 0 \pmod{q}$ then $a \equiv 0 \pmod{q}$.

3. (6 pts) Which of the following statements is **true**?

 \mathbf{k} lcm(18, 4) = lcm(12, 9).

 $\mathbb{B} \mid 8 \mid (8+c)$ for all positive integers c.

 $\overline{\mathbb{C}}$ 35 \equiv 11 (mod 9).

D gcd(10, 16) = gcd(16, 21).

Solution: lcm(18, 4) = 36 = lcm(12, 9)

3. (6 pts) Which of the following is **true** for all positive integers a, b and q?

A If $ab \equiv 0 \pmod{q}$ then either $a \equiv 0 \pmod{q}$ or $b \equiv 0 \pmod{q}$.

 $\boxed{\mathbb{D}}$ If $a^2 \equiv 0 \pmod{q}$ then $a \equiv 0 \pmod{q}$.

Solution: $a \equiv a + b \pmod{q}$ implies by Theorem 3 that $q \mid (a - (a + b))$ and thus $q \mid -b$. Consequently, $q \mid b$, which means that $b \equiv 0 \pmod{q}$.

- **2.** (6 pts) Which of the following is **true** for all integers n?

 - $(n^2 + 1) \mod 2 = (n+1)^2 \mod 2$

- **2.** (6 pts) Which of the following is **true** for all integers n?
 - $\overline{\mathbf{A}} (2 \cdot n) \mod 2 = n$
 - $\mathbf{P}(n^2+1) \bmod 2 = (n+1)^2 \bmod 2$
 - $\boxed{\mathbb{C}} (2 \cdot n) \mod 2 = n \mod 2$

Solution: By definition

$$(n^2+1) \bmod 2 = (n+1)^2 \bmod 2$$

is equivalent to

$$(n^2+1) \equiv (n+1)^2 \pmod{2}$$

Using Theorem 3, we need to show that

$$2 | ((n^2 + 1) - (n + 1)^2)$$

This follows from the fact that

$$((n^2+1)-(n+1)^2) = (n^2+1)-(n^2+2n+1) = -2n$$

because $2 \mid (-2n)$.

2. $(1 \mathrm{pt})$ What is the sum of the binary numbers $(110110)_2$ and $(1111)_2$ as a beexpression?	inary 2. What is the sum of the binary numbers $(110110)_2$ and $(1111)_2$ as a binary expression?	
$\Box (1000101)_2$	\mathbf{M} (100 0101) ₂	
$\square \ (100\ 1001)_2$	$\mathbb{B}\ (1001001)_2$	
$\Box (1000001)_2$	$\boxed{\mathbb{C}} (1000001)_2$	
$\Box (1001101)_2$	\square (100 1101) ₂	
3. (1 pt) What is the hexadecimal expansion of (100 1111 1100 0111 0110) ₂ ?	3. What is the hexadecimal expansion of $(1001111110001110110)_2$?	
\square (9F8E6) ₁₆	$ar{ m A} \ (9{ m F8E6})_{16}$	
\square (9F8EC) $_{16}$	$\blacksquare (9F8EC)_{16}$	
$\square (4161476)_{16}$	$\boxed{\text{C}}$ (4161476) ₁₆	
$\square (4FC76)_{16}$	\square (4FC76) ₁₆	
13. (4 pts) Use the Euclidean algorithm to compute the greatest common divisor of and 432.	4 260 13. Use the Euclidean algorithm to compute the greatest common divisor of 4 260 and 432.	
	Solution: If $a = q \cdot b + r$ then $gcd(a, b) = gcd(b, r)$. It then follows that	
	$4260 = 9 \cdot 432 + 372$	
	$432 = 1 \cdot 372 + 60$	
	$372 = 6 \cdot 60 + 12$	
	$60 = 5 \cdot 12 + 0$	

Thus

$$\gcd(4260,432)=\gcd(432,372)=\gcd(372,60)=\gcd(60,12)=\gcd(12,0)=12.$$