

Optimization

Noa Lubin & Lior Sidi

Agenda

- Motivation
- Optimization Theory
- Gradient Descent Toy Example

Motivation

Draw Me a Model

heart attack

No heart attack

In Real Life

Yandex

Mathematical Formulation

Features:

x1 - blood pressure

x2 - activity

f(x1,x2) = Heart Attack if w0 + w1*x1 + w2*x2 >=0
No Heart Attack otherwise

Mathematical Formulation - Matrix Form

Features:

x2 - activity

$$x = <1, x1,x2>$$

w = < w0, w1, w2 >

$$wx = 1*w0+x1*w1+x2*w2$$

This is a linear classifier!

How can we find w?

Loss Function

A loss function or cost function indicates "how wrong" we are with our current hypothesis

For example:

0 - 1 loss: 1 If the classification is incorrect

0 If the classification is correct

$$l(\acute{y},y) = \begin{cases} 0 & y = \acute{y} \\ 1 & y \neq \acute{y} \end{cases} = II\{y \neq \acute{y}\}$$

1-0 loss

Let's guess a model

Activity

1-0 loss

Let's guess a model

1-0 loss

Let's guess a model

heart attack

No heart attack

1-0 loss

Yandex

Can you guess a non - linear model with 1-0 loss = 0?

heart attack

No heart attack

Not Linearly Separable

Activity

1-0 loss

Yandex

This what we call overfitting but we'll get to that later!

heart attack

No heart attack

Not Linearly Separable

Activity

Optimization Theory

Reminder:

ERM principal

Minimize your loss on the observed data (training set)

$$\theta^* = argmin_{\theta} \frac{1}{m} \sum_{j=1}^{m} l(y_j, f_{\theta}(x_j))$$

Optimization

The optimization method is independent of the loss function.

Loss - Where do we want to get?

Optimization - How do we want to get there?

We'll now discuss optimization methods.

Types Of Optimization

- Gradient Descent
- Stochastic Gradient Descent
- Mini-batch Gradient Descent
- Momentum
- AdaGrad
- RMSprop
- Adam
- ...

The idea of gradient descent is:

Take iterative steps to update parameters in the direction of the gradient

Step size / learning rate

Gradient

A collection of partial derivatives

$$\nabla f(x_1, x_2, x_3) = \left(\frac{\partial f(x_1, x_2, x_3)}{\partial x_1} \frac{\partial f(x_1, x_2, x_3)}{\partial x_2} \frac{\partial f(x_1, x_2, x_3)}{\partial x_3}\right)$$

Gradient for multiple inputs

$$\frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}} = \begin{pmatrix} \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[1,1]}} & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[1,2]}} & \cdots & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[1,n]}} \\ \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[2,1]}} & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[2,2]}} & \cdots & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[2,n]}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[m,1]}} & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[m,2]}} & \cdots & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{W}_{[m,n]}} \end{pmatrix}$$

$$\frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{b}} = \begin{pmatrix} \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{b}_{[1]}} & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{b}_{[2]}} & \cdots & \frac{\partial L(\mathbf{\hat{y}}, \mathbf{y})}{\partial \mathbf{b}_{[n]}} \end{pmatrix}$$

Random starting point

A gradient is a vector so it has both magnitude and direction

Until we meet stop criteria

Does Gradient Descent Promise Global Minima?

Does Gradient Descent Promise Global Minima?

No!
Only when f(x) is convex.

1. When do we stop?

- a. Fixed
- b. Early Stopping
 - When the gradient gets close to zero
 - When the loss stops changing much
 - When the parameters stop changing much
 - iv. When performance on held-out validation set plateaus

Early Stopping

Gradient Descent

2. How do we choose step size aka learning rate?

Learning Rate

Learning Rate

Learning Rate

Learning rate is optimal

How can we choose the best LR?

- 1. Start with Large LR and reduce in each step
- 2. Use validation set to empirically choose the LR

Gradient Descent Training

Algorithm 1 Gradient Descent Training

Input:

- Function $f(\mathbf{x}; \Theta)$ parameterized with parameters Θ .
- Training set of inputs $\mathbf{x_1}, \dots, \mathbf{x_n}$ and desired outputs $\mathbf{y_1}, \dots, \mathbf{y_n}$.
- Loss function L.
 - 1: while stopping criteria not met do
 - 2: Compute the loss $\mathcal{L}(\Theta) = \sum_{i} L(f(\mathbf{x_i}; \Theta), \mathbf{y_i})$ <-- slow! goes over all data.
 - 3: $\hat{\mathbf{g}} \leftarrow \text{ gradients of } \mathcal{L}(\Theta)) \text{ w.r.t } \Theta$
- 4: $\Theta \leftarrow \Theta \eta_t \hat{\mathbf{g}}$
- 5: return Θ

Stochastic Gradient Descent Training

Algorithm 2 Online Stochastic Gradient Descent Training

Input:

- Function $f(\mathbf{x}; \Theta)$ parameterized with parameters Θ .
- Training set of inputs $\mathbf{x_1}, \dots, \mathbf{x_n}$ and desired outputs $\mathbf{y_1}, \dots, \mathbf{y_n}$.
- Loss function L.
 - 1: while stopping criteria not met do
 - 2: Sample a training example $\mathbf{x_i}, \mathbf{y_i}$
 - 3: Compute the loss $L(f(\mathbf{x_i}; \Theta), \mathbf{y_i})$
 - 4: $\hat{\mathbf{g}} \leftarrow \text{ gradients of } L(f(\mathbf{x_i}; \Theta), \mathbf{y_i}) \text{ w.r.t } \Theta$
 - 5: $\Theta \leftarrow \Theta \eta_t \hat{\mathbf{g}}$
 - 6: return Θ

Gradient Descent vs Stochastic Gradient Descent

How can we combine both?

Mini-batch Gradient Descent Training

Algorithm 3 Minibatch Stochastic Gradient Descent Training

Input:

- Function $f(\mathbf{x}; \Theta)$ parameterized with parameters Θ .
- Training set of inputs $\mathbf{x_1}, \dots, \mathbf{x_n}$ and desired outputs $\mathbf{y_1}, \dots, \mathbf{y_n}$.
- Loss function L.

```
1: while stopping criteria not met do
2: Sample a minibatch of m examples \{(\mathbf{x_1}, \mathbf{y_1}), \dots, (\mathbf{x_m}, \mathbf{y_m})\}
3: \hat{\mathbf{g}} \leftarrow 0
4: for i = 1 to m do
5: Compute the loss L(f(\mathbf{x_i}; \Theta), \mathbf{y_i})
6: \hat{\mathbf{g}} \leftarrow \hat{\mathbf{g}} + \text{ gradients of } \frac{1}{m}L(f(\mathbf{x_i}; \Theta), \mathbf{y_i}) \text{ w.r.t } \Theta
7: \Theta \leftarrow \Theta - \eta_t \hat{\mathbf{g}}
8: return \Theta
```


Gradient Descent Toy Example

Problem - Two Iterations of GD

3 inputs: x1, x2, x3 (and x0=1)

1 output: y

Initial weights: w0 = -0.7, w1 = 0.2, w2 = 0.7, w3 = 0.9

The true output: 0

The learning rate: 0.2

Let's say the gradient is based on the perceptron rule: (y pred - y true) x

Show 2 iterations of gradient descent

Solution First Iteration

1. Original output:

Wx =
$$w0*x0 + w1*x1 + w2*x2 + w3*x3$$

= $-0.7*1 + 0.2*0 + 0.7*0 + 0.9*1 = 0.2 > 0 \rightarrow Y \text{ observed} = 1$

2. Let's calc the gradient:

a.
$$g0 = (o - t) * x0 = (1 - 0) * 1 = 1$$

 $g1 = (o - t) * x1 = (1 - 0) * 0 = 0$
 $g2 = (o - t) * x2 = (1 - 0) * 0 = 0$
 $g3 = (o - t) * x3 = (1 - 0) * 1 = 1$

3. Update weights:

a.
$$w0 = -0.7 - (0.2 * 1) = -0.9$$

 $w1 = 0.2 - (0.2 * 0) = 0.2$
 $w2 = 0.7 - (0.2 * 0) = 0.7$
 $w3 = 0.9 - (0.2 * 1) = 0.7$

$$X0 = 1$$
, $x1 = 0$, $x2 = 0$, $x3 = 1$
Y true = 0

Iteration 0:

$$W0 = -0.7$$
, $w1 = 0.2$, $w3 = 0.7$, $w4 = 0.9$

$$w^t \leftarrow w^{t-1} - \eta \cdot \frac{\partial \ell}{\partial w^{t-1}}$$
 0.2

Solution Second Iteration

1. Original output:

. . . .

$$X0 = 1, x1 = 0, x2 = 0, x3 = 1$$

Y true = 0

4. New output:

wx = 1 *
$$(-0.9)$$
 + 0 * 0.2 + 0 * 0.7 + 1* 0.7 = -0.2 < 0 \rightarrow Y observed = 0

$$w^t \leftarrow w^{t-1} - \eta \cdot \frac{\partial \ell}{\partial w^{t-1}}$$
0.2

Solution Second Iteration → No Change

1. Original output:

$$wx = 1 * (-0.9) + 0 * 0.2 + 0 * 0.7 + 1*$$

$$0.7 = -0.2 < 0 \rightarrow Y \text{ observed} = 0$$

2. Let's calc the gradient:

a.
$$g0 = (o - t) * x0 = (0 - 0) * 1 = 0$$

 $g1 = (o - t) * x1 = (0 - 0) * 0 = 0$
 $g2 = (o - t) * x2 = (0 - 0) * 0 = 0$
 $g3 = (o - t) * x3 = (0 - 0) * 1 = 0$

3. Update weights:

a.
$$w0 = -0.9 - (0.2 * 0) = -0.9$$

 $w1 = 0.2 - (0.2 * 0) = 0.2$
 $w2 = 0.7 - (0.2 * 0) = 0.7$
 $w3 = 0.7 - (0.2 * 0) = 0.7$

$$X0 = 1$$
, $x1 = 0$, $x2 = 0$, $x3 = 1$
Y true = 1

Iteration 2: W0 = -0.9, w1 = 0.2, w3 = 0.7, w4 = 0.7

Convergence! Gradient and weights didn't change.

Next Week

- Regularization
- Linear Regression
- Logistic Regression
- Code
- Summary