

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

2024 - A 30 años de la Consagración Constitucional de la Autonomía Universitaria en Argentina

Segundo Examen Parcial AMII - 07/06/24

Apellido y nombre: Legajo: Carrera:

- 1. Considere la función $f(x) = \frac{x \frac{1}{2}}{x^3}$.
 - a) Determine el dominio de f y estudie su paridad;
 - b) Determine los intervalos de crecimiento y de decrecimiento y la existencia de extremos relativos;
 - c) Determine los intervalos de concavidad y de convexidad y la existencia de puntos de inflexión;
 - d) Analice la existencia o no de asíntotas horizontales, verticales y/u oblicas para f;
 - e) Construya un boceto de la gráfica de f utilizando la información de los ítems anteriores;
 - f) Analice la existencia de máximo o mínimo absoluto para esta función.
- 2. Seleccione la opción correcta, justificando adecuadamente:
 - a) El volumen del sólido generado al hacer girar la región comprendida entre el eje y y la curva $x=\sqrt{5-y}$ con $1\leqslant y\leqslant 4$, alrededor del eje y se puede calcular como:

$$\Box \pi \int_{1}^{4} \left(\sqrt{5-y}\right)^{2} dy$$

- ☐ La primera y segunda opción son correctas.
- $\hfill \square$ La primera y segunda opción son incorrectas.
- b) Es posible determinar el carácter de $\int_0^{+\infty} \frac{1}{e^{-x} + e^x} \ dx$:
 - $\ \, \square \ \, \mathsf{Probando} \ \, \mathsf{que} \ \, \frac{1}{e^{-x} + e^x} \leqslant \frac{1}{2e^{-x}} \ \, \mathsf{y} \ \, \mathsf{determinando} \ \, \mathsf{el} \ \, \mathsf{carácter} \ \, \mathsf{de} \ \, \int_0^{+\infty} \frac{1}{2e^{-x}} \ \, dx$

 - ☐ Ninguna de las opciones anteriores.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

2024 - A 30 años de la Consagración Constitucional de la Autonomía Universitaria en Argentina

c)	Para determinar $\lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^{x^2}$:
	$\ \square$ Se aplica sustitución directa y se obtiene que vale $1.$
	☐ Se debe romper una indeterminación y se obtiene un límite infinito.
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
d)	Dado $\lim_{x \to +\infty} \frac{x + \sin x}{x + 1}$ se puede afirmar que:
	☐ Aplicando la regla de L'Hôpital, se concluye que vale 1.
	☐ Aplicando la regla de L'Hôpital, se concluye que no existe.
	☐ Sin aplicar la regla de L'Hôpital, se concluye que vale 1.
	☐ Sin aplicar la regla de L'Hôpital, se concluye que no existe.
e)	La ecuación polar $r=\frac{3}{\sin\theta-\cos\theta}$ describe:
	☐ Una cicloide.
	☐ Una flor de 3 pétalos.
	☐ Una circunferencia.
	☐ Una recta.
f)	Si $\lim_{b\to +\infty} \int_{-b}^{b} f(x) \ dx = 0$ entonces $\int_{-\infty}^{+\infty} f(x) \ dx$ es convergente:
	☐ Verdadero.
	☐ Falso.