ES601 - Análise Linear de Sistemas

Resumo Teórico

16 de agosto de 2021

Conteúdo

1	1 Introdução			
	1.1	Model	agem Mecânica	2
			Mola Ideal	
		1.1.2	Amortecedor Ideal	2

1. Introdução

Apresentação Neste documento será descrito as informações necessárias para compreensão e solução de exercícios relacionados a disciplina 1.0.0.0. Note que este documento são notas realizadas por Guilherme Nunes Trofino, em 16 de agosto de 2021.

1.1. Modelagem Mecânica

Definição Modelos básicos para situações usualmente encontradas em sistemas mecânicos simples, descrevendo as equações necessárias para a descrição do movimento.

1.1.1. Mola Ideal

Definição Dispositivo linear que apresenta uma Constante Elástica constante igual a k.

Assim, haverá uma força \vec{F} exercida pela mola proporcional ao seu deslocamento x com sentido oposto, de acordo com a seguinte equação:

$$\vec{F} = -k \vec{x} \tag{1.1.1}$$

Analogamente, no caso Rotacional um torque \vec{T} causa um deslocamento angular θ . Assim, a seguinte equação será válida:

$$\vec{T} = -k \vec{\theta} \tag{1.1.2}$$

1.1.2. Amortecedor Ideal

Definição Dispositivo linear que apresenta uma Constante de Amortecimento constante igual a c.

Assim, haverá uma força \vec{F} exercida pelo amortecedor proporcional a sua velocidade \dot{x} com sentido oposto, de acordo com a seguinte equação:

$$\vec{F} = -c \, \vec{x} \tag{1.1.3}$$

Analogamente, no caso **Rotacional** um torque \vec{T} causa um velocidade angular $\dot{\theta}$. Assim, a seguinte equação será válida:

$$\left| \vec{T} = -k \; \vec{\dot{\theta}} \right| \tag{1.1.4}$$