Comparison Tables: BBOB 2015 Testbed in 5-D

The BBOBies

July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015, see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

testbed algorithm short	paper	reference
name	pupor	rotoronoo
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
- 20	Box Optimization of Separable Continuous Functions	[0]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

Table 2: 05-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	11	12	12	12	12	12	12	15/15
BSifeg	1.6 (0.4)	1.9(0.2)	2.1 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.2)	15/15
BSif	1.6(0.2)	1.9(0.2)	2.1 (0.1)	2.2 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.0)	15/15
BSqi	1.6(0.3)	1.9(0.2)	2.1 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.1)	2.2 (0.2)	15/15
BSrr	1.6(0.2)	1.9(0.2)	2.1 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.1)	2.2 (0.1)	15/15
CMA-CSA	3.8(2)	10(3)	16(2)	22(4)	28(2)	40(4)	52(5)	15/15
CMA-MSR	3.6(3)	12(3)	21(6)	31(4)	41(5)	62(6)	82(8)	15/15
CMA-TPA	3.2(3)	9.2(3)	14(5)	20(4)	24(4)	36(9)	47(6)	15/15
GP1-CMAES	2.3 (0.8)	6.0(1)	9.1(1.0)	12(2)	15(3)	21(4)	30(4)	15/15
GP5-CMAES	1.7 (0.9)	2.9 (0.7)	3.9(0.7)	5.1(0.4)	6.2(0.6)	8.3(1)	44(19)	14/15
IPOPCMAv3p	2.5 (3)	10(2)	15(4)	21(3)	26(6)	38(6)	51(5)	15/15
LHD-10xDef	5.6(4)	10(0.2)	12(0.7)	13(0.7)	15(1)	∞	∞ 250	0/15
LHD-2xDefa	2.1(0.2)	3.4(0.6)	4.9(0.9)	8.8(7)	28(31)	∞	∞ 250	0/15
RAND-2xDef	2.0 (1.0)	3.0(0.7)	4.6(0.5)	8.1(3)	64(72)	∞	∞ 250	0/15
RF1-CMAES	2.8 (1.0)	7.5(1)	13(2)	28(6)	51(69)	225(359)	1483(1882)	1/15
RF5-CMAES	2.4 (1)	42(39)	91(73)	1515(1363)	∞	∞	∞ 1252	0/15
Sifeg	1.6(0.4)	2.1 (0.2)	2.8 (0.1)	4.0(1.0)	5.0(0.9)	6.7(0.8)	7.8(0.4)	15/15
Sif	1.6(0.3)	2.1 (0.2)	2.8(0.2)	4.4(0.9)	5.3(0.8)	6.8(1)	7.7(0.3)	15/15
Srr	1.6(0.4)	2.1(0.2)	2.8(0.2)	3.5(0.1)	4.2(0.2)	5.6(0.2)	6.8(0.3)	15/15

Table 3: 05-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	le0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	83	87	88	89	90	92	94	15/15
BSifeg	$0.64(0.3)_{\downarrow 3}$	0.66(0.1)	40.72(0.2)	30.77(0.2)	3 0.84 (0.1)	0.96 (0.1)	1.0(0.2)	15/15
BSif	$0.63(0.2)_{\downarrow 3}$	0.66(0.1)	40.72(0.1)	3 0.76 (0.1)	$_{.3}$ 0.84 (0.1) $_{\downarrow}$	2 0.95 (0.2)	1.0(0.1)	15/15
BSqi	$0.45(0.0)_{\downarrow 4}$	0.46 (0.0)	40.49(0.1)	$^{2}_{4}$ 0.54 (0.1) $^{\star}_{1}$	$^{2}_{4}$ 0.59 (0.1) $^{*}_{1}$	${}^{3}_{4}$ 0.70 (0.1)	$^{*2}_{14}$ 0.83 (0.1)*	15/15
BSrr	0.56(0.2) _{J.4}							15/15
CMA-CSA	11(2)	13(2)	14(1)	14(1)	15(1)	16(2)	17(2)	15/15
CMA-MSR	12(2)	13(2)	14(2)	15(2)	16(2)	18(3)	20(2)	15/15
CMA-TPA	10(2)	12(3)	14(1)	15(3)	15(2)	17(3)	18(2)	15/15
GP1-CMAES	9.2(4)	15(8)	27(21)	28(33)	33(29)	67(49)	200(130)	1/15
GP5-CMAES	3.8(1)	4.4(1)	5.0(2)	5.3(2)	5.6(1)	6.5(2)	12(8)	11/15
IPOPCMAv3p	26(12) 2	214(313)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	0.75 (0.1) \downarrow 2	0.90(0.2)	0.96 (0.2)	1.1(0.2)	1.1(0.2)	1.3(0.1)	1.3(0.1)	15/15
Sif	$0.74(0.2)_{\downarrow 2}$	0.96 (0.3)	0.99 (0.3)	1.1(0.2)	1.1(0.2)	1.3(0.1)	1.3(0.1)	15/15
Srr	0.72 (0.1) $\downarrow 4$	0.81(0.0)	3 0.88 (0.1)	0.97 (0.1)	1.1(0.1)	1.2(0.1)	1.4(0.1)	15/15

Table 4: 05-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	716	1622	1637	1642	1646	1650	1654	15/15
BSifeg	0.11(0.1)	0.13(0.0)	0.18(0.1)	0.19 (0.1)	0.19 (0.1)	0.19 (0.1)	0.19 (0.1)	15/15
BSif	0.11(0.1)	0.14(0.0)	0.19(0.1)	0.19 (0.1)	0.19 (0.1)	0.19 (0.1)	0.19(0.0)	15/15
BSqi	0.10(0.1)	0.13(0.0)	0.18(0.1)	0.18 (0.1)	0.18(0.1)	0.18(0.1)	0.18(0.1)	15/15
BSrr	0.09(0.0)	0.13 (0.0)	0.16(0.0)	0.17 (0.0)	0.17 (0.1)	0.18(0.0)	0.18(0.1)	15/15
CMA-CSA	1.4 (0.9)	32(19)	623(2223)	622(535)	621(381)	619(1066)	618(607)	5/15
CMA-MSR	1.7(2)	5.7(3)	36(14)	36(88)	36(156)	37(85)	38(83)	14/15
CMA-TPA	0.81(1)	9.3(5)	632(993)	630(912)	629(918)	628(1143)	627(1141)	5/15
GP1-CMAES	1.6 (1)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.6 (3)	∞	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	1.1 (1.0)	5.5(6)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	1.0 (1.0)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.5(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	0.58(0.4)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	3.0(6)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	6.1(7)	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	0.13(0.1)	0.14(0.0)	0.16(0.0)	0.18 (0.0)	0.19 (0.0)	0.20 (0.0)	0.21 (0.0)	15/15
Sif	0.13(0.1)	0.15(0.0)	0.17 (0.0)	0.19 (0.0)	0.20 (0.0)	0.20 (0.0)	0.21 (0.0)	15/15
Srr	0.12(0.1)	0.12 (0.0)	0.14 (0.0)	0.15 (0.0)	0.16 (0.0)	0.17 (0.0)	0.20 (0.0)	15/15

Table 5: 05-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	809	1633	1688	1758	1817	1886	1903	15/15
BSifeg	0.15(0.0) ₁₄	10.22(0.1)	$_{4}$ 0.38 (0.2)	0.37 (0.1)	0.36 (0.1)	0.36 (0.1)	0.38(0.1)	15/15
BSif	0.15(0.1) ₁₄	10.23(0.1)	$_{4}$ 0.37 (0.2)	0.36 (0.1)	0.35 (0.1)	0.35 (0.1)	0.37 (0.1)	15/15
BSqi	0.17(0.1) ₁₄	10.21(0.1)	$_{4}$ 0.33 (0.1)	0.32 (0.1)	0.31 (0.1)	0.31 (0.0)	0.37 (0.1)	15/15
BSrr	0.15(0.1) ₁₄	10.21(0.1)	$_{4}$ 0.29 (0.1)	0.29 (0.1)	0.30 (0.1)	0.32 (0.1)	0.40(0.1)	15/15
CMA-CSA	2.2 (2)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-MSR	2.2 (3)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-TPA	2.7 (1)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
GP1-CMAES	4.4(3)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1254	0/15
IPOPCMAv3p	2.5 (2)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	11(9)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	0.15(0.1) ₄	10.26(0.1)	0.44 (0.1)	0.60(0.2)	0.69(0.2)	0.91 (0.1)	0.94 (0.2)	15/15
Sif	0.15(0.1) ₁	0.27 (0.2)	0.46 (0.1)	0.63 (0.2)	0.71 (0.2)	0.92 (0.1)	0.94 (0.1)	15/15
Srr	0.14(0.0)	10.24(0.1)	$_{4}$ 0.40 $_{(0.1)}$	0.53 (0.2)	0.61(0.2)	0.88 (0.1)	0.94 (0.1)	15/15

Table 6: 05-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	10	10	10	10	10	10	10	15/15
BSifeg	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSif	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSqi	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSrr	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
CMA-CSA	3.6(1)	5.0(2)	5.2(2)	5.2(2)	5.2(2)	5.2(2)	5.2(3)	15/15
CMA-MSR	4.2(2)	5.8(3)	5.9(2)	5.9(3)	5.9(3)	5.9(3)	5.9(3)	15/15
CMA-TPA	4.0(1)	5.0(2)	5.1(2)	5.1(2)	5.1(2)	5.1(2)	5.1(2)	15/15
GP1-CMAES	4.0(4)	15(29)	25(10)	26(36)	26(34)	26(48)	26(23)	15/15
GP5-CMAES	2.8 (0.8)	6.1(4)	6.4(2)	6.4(3)	6.4(3)	6.4(2)	6.4(4)	15/15
IPOPCMAv3p	8.6(5)	17(9)	21(12)	21(18)	21(15)	21(10)	21(21)	15/15
LHD-10xDef	12(0.1)	13(0.3)	13(0.1)	13(0.1)	13(0.2)	13(0)	13(0.1)	15/15
LHD-2xDefa	2.6(0.2)	3.0(0.3)	3.0(0.5)	3.1(0.5)	3.5(0.7)	3.5(0.6)	3.5(3)	15/15
RAND-2xDef	2.6 (0.1)	3.1(0.1)	3.1(0.1)	3.1(0.2)	3.1(0.2)	3.1(0.1)	3.1(0.2)	15/15
RF1-CMAES	9.0(1)	36(14)	42(35)	44(31)	45(38)	45(27)	45(26)	15/15
RF5-CMAES	15(10)	94(131)	123(139)	124(127)	137(149)	137(203)	137(116)	10/15
Sifeg	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
Sif	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
Srr	1.5 (0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15

~1

Table 7: 05-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	114	214	281	404	580	1038	1332	15/15
BSifeg	77(271)	122(184)	346(215)	∞	∞	∞	∞ $5e4$	0/15
BSif	159(142)	485(648)	2383(1877)	∞	∞	∞	∞ $5e4$	0/15
BSqi	68(7)	108(59)	346(593)	821(966)	1219(2062)	∞	∞ $5e4$	0/15
BSrr	59(154)	107(99)	270(337)	1697(5077)	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.0 (0.8)	1.9(0.4)	2.0 (0.3)	1.8(0.2)	1.5(0.2)	1.2(0.2)	1.1(0.2)	15/15
CMA-MSR	2.5(0.7)	2.0 (0.6)	2.1(0.3)	1.9(0.3)	1.6(0.2)	1.2(0.2)	1.2(0.2)	15/15
CMA-TPA	2.2 (0.8)	1.9(0.4)	1.9(0.3)	1.7(0.5)	1.4(0.3)	1.0(0.1)	1.0(0.1)	15/15
GP1-CMAES	2.5 (0.6)	10(11)	67(88)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	6.4(11)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	2.1(1)	2.2(0.7)	2.2 (0.6)	1.9(0.4)	1.9 (1)	2.9(5)	∞ 1258	0/15
LHD-10xDef	16(27)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	9.4(10)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	32(62)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	16(19)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	37(103)	91(109)	176(271)	858(1186)	1217(1128)	∞	∞ $5e4$	0/15
Sif	76(118)	219(129)	716(875)	∞	∞	∞	∞ 5e4	0/15
Srr	43(174)	55(53)	130(246)	∞	∞	∞	∞ 4e4	0/15

Table 8: 05-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	24	324	1171	1451	1572	1572	1597	15/15
BSifeg	735(603)	754(436)	∞	∞	∞	∞	∞ 5e4	0/15
BSif	565(980)	1037(973)	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	376(1139)	726(616)	∞	∞	∞	∞	∞ $5e4$	0/15
BSrr	263(541)	1050(1401)	∞	∞	∞	∞	∞ 5e4	0/15
CMA-CSA	4.8(2)	1.3(1)	0.87 (0.9)	0.80(0.7)	0.80(0.8)	0.80(0.7)	0.86(0.7)	15/15
CMA-MSR	5.3(4)	1.1(1)	0.94 (0.6)	0.90(0.2)	0.90(0.4)	0.90(0.6)	0.92 (0.2)	15/15
CMA-TPA	4.1(2)	0.98 (0.7)	0.93 (0.5)	0.86(0.2)	0.82 (0.4)	0.82 (0.4)	0.83 (0.4)	15/15
GP1-CMAES	3.9 (4)	1.4(1)	0.80(0.5)	2.2 (3)	3.7(4)	3.7(3)	5.6(7)	2/15
GP5-CMAES	2.2 (0.9)	0.82 (1.0)	0.61(0.8)	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	5.1(3)	1.5(0.9)	1.6 (3)	1.8(1)	2.6 (3)	2.6 (5)	3.5(2)	3/15
LHD-10xDef	6.2(4)	5.5(5)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	5.0(4)	11(9)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	4.1(3)	11(13)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	11(22)	10(19)	∞	∞	∞	∞	∞ 1260	0/15
RF5-CMAES	20(42)	17(19)	∞	∞	∞	∞	∞ 1270	0/15
Sifeg	183(177)	276(191)	620(355)	∞	∞	∞	∞ $5e4$	0/15
Sif	128(248)	204(329)	∞	∞	∞	∞	∞ 5e4	0/15
Srr	60(23)	306(220)	621(850)	502(591)	∞	∞	∞ $5e4$	0/15

Table 9: 05-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f8	73	273	336	372	391	410	422	15/15
BSifeg	24(29)	94(180)	594(491)	541(942)	1721(2049)	∞	∞ $5e4$	0/15
BSif	77(114)	74(47)	364(279)	∞	∞	∞	∞ $5e4$	0/15
BSqi	12(17)	57(90)	951(715)	∞	∞	∞	∞ $5e4$	0/15
BSrr	19(11)	52(65)	403(407)	815(822)	∞	∞	∞ 4e4	0/15
CMA-CSA	3.0 (0.8)	5.1(4)	5.3 (5)	5.4 (4)	5.5 (4)	5.7 (2)	6.0 (3)	15/15
CMA-MSR	4.6(3)	3.6 (2)	4.1 (1)	4.3(0.7)	4.3(2)	4.7(2)	5.1(0.5)	15/15
CMA-TPA	4.0(3)	6.0(4)	6.1 (4)	6.2 (3)	6.3 (3)	6.5 (3)	6.7 (2)	15/15
GP1-CMAES	3.2(0.5)	10(12)	56(81)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	10(10)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	4.0(1)	5.6 (5)	18(19)	50(60)	48(39)	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	16(10)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	8.7(7)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	10(5)	68(64)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	254(364)	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	3.0 (3)	61(69)	163(290)	570(597)	1698(2451)	1621(1344)	∞ 4e4	0/15
Sif	4.5(2)	93(164)	172(180)	854(1759)	∞	∞	∞ $5e4$	0/15
Srr	2.1(0.7)	54(68)	178(126)	1660(1249)	∞	∞	∞ 4e4	0/15

Table 10: 05-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	35	127	214	263	300	335	369	15/15
BSifeg	14(7)	663(486)	3062(3652)	∞	∞	∞	∞ $5e4$	0/15
BSif	36(208)	1130(2007)	3088(1712)	∞	∞	∞	∞ $5e4$	0/15
BSqi	11(39)	453(373)	1405(1833)	∞	∞	∞	∞ $5e4$	0/15
BSrr	15(30)	811(766)	2783(2627)	∞	∞	∞	∞ 4e4	0/15
CMA-CSA	5.7 (1)	10(0.7)	7.7 (7)	7.1(5)	6.7 (3)	6.5(4)	6.4(4)	15/15
CMA-MSR	7.2(1)	9.4 (3)	7.5 (8)	6.8 (6)	6.3 (5)	6.3 (0.5)	6.4(0.7)	15/15
CMA-TPA	5.4 (2)	5.8 (3)	5.2(2)	5.0 (2)	4.8 (1)	4.9 (1)	4.8 (1)	15/15
GP1-CMAES	8.2(8)	47(37)	88(100)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	13(9)	67(79)	83(157)	68(48)	60(64)	53(35)	49(45)	1/15
IPOPCMAv3p	7.5(2)	7.3 (2)	14(29)	35(18)	63(41)	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	25(22)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	20(27)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	30(31)	145(136)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	257(370)	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	5.8(10)	500(356)	3141(2802)	∞	∞	∞	∞ $5e4$	0/15
Sif	24(3)	1540(1281)	∞	∞	∞	∞	∞ $5e4$	0/15
Srr	4.5 (3)	327(342)	2886(3593)	∞	∞	∞	∞ 4e4	0/15

Table 11: 05-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	349	500	574	607	626	829	880	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 3e4	0/15
BSif	∞	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	2.5 (0.4)	2.1(0.2)	2.0 (0.2)	2.0(0.1)	2.1(0.1)	1.8(0.1)	1.8(0.1)	15/15
CMA-MSR	2.6 (0.6)	2.1(0.4)	2.1 (0.3)	2.2 (0.3)	2.3(0.2)	2.0 (0.2)	2.2 (0.2)	15/15
CMA-TPA	2.5 (0.2)	2.2 (0.2)	2.1 (0.2)	2.1(0.2)	2.2(0.1)	1.8(0.1)	1.8(0.1)	15/15
GP1-CMAES	2.7 (2)	2.8 (2)	3.7(2)	4.1(4)	4.1(3)	11(13)	21(21)	1/15
GP5-CMAES	0.95 (0.4)	0.86(0.1)	0.83 (0.1)	0.84(0.2)	0.86(0.3)	0.70 (0.2)	1.5(0.5)	10/15
IPOPCMAv3p	6.7(7)	7.0(6)	16(55)	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 1e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 1e4	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 1e4	0/15

Table 12: 05-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f11	143	202	763	977	1177	1467	1673	15/15
BSifeg	919(654)	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
BSif	499(670)	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
BSqi	891(776)	∞	∞	∞	∞	∞	∞ 4e4	0/15
BSrr	633(791)	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	4.9(2)	4.3 (1)	1.3(0.2)	1.1 (0.1)	1.00(0.1)	0.91 (0.1)	0.88(0.1)	15/15
CMA-MSR	5.9(1)	5.0(1)	1.5(0.2)	1.3(0.2)	1.2(0.1)	1.1(0.1)	1.1(0.1)	15/15
CMA-TPA	5.1 (0.9)	4.6(0.4)	1.3(0.1)	1.1(0.1)	1.0(0.1)	0.91 (0.1)	0.89(0.1)	15/15
GP1-CMAES	5.4(1)	6.6(3)	4.7(4)	6.3(5)	8.0(6)	∞	∞ 1258	0/15
GP5-CMAES	3.2 (3)	3.3 (2)	1.2 (1)	1.3 (1.0)	1.1 (1)	0.92(1)	1.4(2)	7/15
IPOPCMAv3p	12(16)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	25(17)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	62(50)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	130(143)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	313(255)	∞	∞	∞	∞	∞	∞ 2e4	0/15
Sif	1013(412)	1493(2875)	∞	∞	∞	∞	∞ 2e4	0/15
Srr	379(683)	∞	∞	∞	∞	∞	∞ 2e4	0/15

Table 13: 05-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	108	268	371	413	461	1303	1494	15/15
BSifeg	75(62)	144(291)	390(435)	∞	∞	∞	∞ 2e4	0/15
BSif	91(125)	157(137)	791(984)	710(202)	∞	∞	∞ 2e4	0/15
BSqi	66(14)	42(18)	120(91)	392(620)	721(917)	∞	∞ 2e4	0/15
BSrr	50(68)	51(77)	210(123)	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	10(9)	7.1(6)	6.9 (5)	7.2 (4)	7.4(8)	3.5(0.7)	3.5 (5)	15/15
CMA-MSR	7.7(6)	5.4(2)	5.5 (5)	5.8 (5)	6.0 (3)	2.7(2)	2.8 (2)	15/15
CMA-TPA	8.3(5)	6.1 (4)	6.0 (8)	6.2 (6)	6.2 (5)	2.7 (2)	2.9 (4)	15/15
GP1-CMAES	4.8(3)	6.2(7)	16(19)	46(58)	∞	∞	∞ 1258	0/15
GP5-CMAES	16(13)	8.5(9)	15(14)	∞	∞	∞	∞ 1258	0/15
IPOPCMAv3p	7.6 (9)	10(17)	15(15)	22(31)	40(33)	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	34(57)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	13(5)	22(9)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	25(23)	50(40)	∞	∞	∞	∞	∞ 6082	0/15
Sif	34(63)	56(67)	∞	∞	∞	∞	∞ 6044	0/15
Srr	7.7(4)	21(29)	33(29)	100(30)	∞	∞	∞ 5870	0/15

Table 14: 05-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	132	195	250	319	1310	1752	2255	15/15
BSifeg	325(264)	1566(1460)	2522(2627)	∞	∞	∞	∞ 4e4	0/15
BSif	463(310)	3275(2682)	∞	∞	∞	∞	∞ 4e4	0/15
BSqi	380(533)	979(1259)	2439(4439)	∞	∞	∞	∞ 4e4	0/15
BSrr	370(382)	1465(810)	1179(995)	∞	∞	∞	∞ 4e4	0/15
CMA-CSA	3.3(1)	3.4(2)	4.1(2)	3.9 (0.9)	1.1(0.2)	1.1(0.2)	1.1(0.2)	15/15
CMA-MSR	3.2(0.8)	3.6(0.7)	3.8 (0.6)	4.0(0.5)	1.2(0.1)	1.2(0.1)	1.1(0.1)	15/15
CMA-TPA	2.9 (1)	3.8(1)	4.2(1)	4.0 (1)	1.2(0.3)	1.3(0.2)	1.2(0.5)	15/15
GP1-CMAES	3.2(5)	20(15)	74(96)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	1.4 (1)	3.5 (5)	10(15)	27(12)	∞	∞	∞ 1260	0/15
IPOPCMAv3p	4.2(2)	8.1(7)	10(15)	59(67)	∞	∞	∞ 1258	0/15
LHD-10xDef	2.2 (1)	6.4(7)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	3.0 (3)	5.9(4)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	3.6(2)	5.9(5)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	16(22)	44(21)	73(55)	58(72)	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	170(363)	660(378)	2385(1486)	∞	∞	∞	∞ 4e4	0/15
Sif	237(165)	492(375)	∞	∞	∞	∞	∞ 4e4	0/15
Srr	181(123)	513(401)	1160(1596)	∞	∞	∞	∞ 4e4	0/15

Table 15: 05-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f14	10	41	58	90	139	251	476	15/15
BSifeg	1.5(1)	6.5(7)	11(8)	30(15)	2532(2043)	∞	∞ 5e4	0/15
BSif	1.5(0.9)	6.5(6)	12(12)	416(354)	5293(5506)	∞	∞ 5e4	0/15
BSqi	1.5(1)	4.6(5)	6.7(4)	24(24)	5089(7040)	∞	∞ 5e4	0/15
BSrr	1.5(0.8)	5.7(6)	10(6)	29(27)	∞	∞	∞ 5e4	0/15
CMA-CSA	1.7(2)	2.7 (1.0)	3.6(0.9)	3.7 (1)	3.8 (0.9)	3.9 (0.3)	3.0 (0.3)	15/15
CMA-MSR	2.5 (3)	3.4(2)	4.7(0.6)	5.0(1)	4.4(0.7)	4.1(0.5)	3.1 (0.3)	15/15
CMA-TPA	2.1(4)	3.3(2)	3.7(2)	3.9(1)	3.9 (1)	4.0(0.7)	3.1(0.2)	15/15
GP1-CMAES	1.6(2)	1.9(0.7)	2.8(0.4)	3.4(2)	6.4(4)	∞	∞ 1258	0/15
GP5-CMAES	1.8(1)	1.5(0.5)	1.7(0.8)	2.2(1)	8.9(9)	∞	∞ 1260	0/15
IPOPCMAv3p	2.4 (2)	3.5(0.9)	4.1(1)	4.2(0.8)	4.6(2)	24(31)	∞ 1258	0/15
LHD-10xDef	1.2(2)	3.3(0.3)	3.4(0.4)	42(22)	∞	∞	∞ 250	0/15
LHD-2xDefa	1.5(1)	1.6(0.5)	3.6(1)	41(41)	∞	∞	∞ 250	0/15
RAND-2xDef	1.4 (1)	2.2 (3)	4.9(9)	∞	∞	∞	∞ 250	0/15
RF1-CMAES	2.1(2)	3.6(5)	5.7(13)	12(10)	30(25)	∞	∞ 1258	0/15
RF5-CMAES	1.2(1.0)	40(37)	152(124)	∞	∞	∞	∞ 1260	0/15
Sifeg	1.5(1.0)	1.8(0.6)	3.0(3)	34(18)	5138(8484)	∞	∞ $5e4$	0/15
Sif	1.5 (1)	1.9(0.8)	2.9 (1)	92(90)	∞	∞	∞ 5e4	0/15
Srr	1.5 (1)	1.5(0.6)	2.0 (0.8)	12(10)	2358(2262)	∞	∞ 5e4	0/15

Table 16: 05-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f15	511	9310	19369	19743	20073	20769	21359	14/15
BSifeg	176(319)	∞	∞	∞	∞	∞	∞ 5e4	0/15
BSif	226(298)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	213(332)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
$_{\mathrm{BSrr}}$	372(312)	∞	∞	∞	∞	∞	∞ 5e4	0/15
CMA-CSA	1.1(0.6)	1.1(0.7)	0.91 (0.3)	0.92 (0.4)	0.92 (0.5)	0.92 (0.5)	0.92 (0.3)	15/15
CMA-MSR	1.9(2)	0.95 (0.8)	0.89(0.6)	0.89 (0.5)	0.91 (0.8)	0.93 (0.8)	0.95 (0.5)	15/15
CMA-TPA	1.9(2)	0.90 (0.8)	0.87 (0.4)	0.88 (0.6)	0.88 (0.7)	0.88 (0.6)	0.89(0.4)	15/15
GP1-CMAES	2.9 (7)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	4.6(6)	∞	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	1.2(0.9)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	1.7(3)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.2(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.7(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	1.0(2)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	11(8)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	51(41)	∞	∞	∞	∞	∞	∞ 5e4	0/15
Sif	98(131)	∞	∞	∞	∞	∞	∞ 4e4	0/15
Srr	72(73)	∞	∞	∞	∞	∞	∞ 5e4	0/15

Table 17: 05-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	120	612	2662	10163	10449	11644	12095	15/15
BSifeg	1.3(1)	158(253)	271(187)	∞	∞	∞	∞ $5e4$	0/15
BSif	10(1)	63(72)	247(102)	∞	∞	∞	∞ $5e4$	0/15
BSqi	2.5 (6)	93(140)	264(242)	∞	∞	∞	∞ $5e4$	0/15
BSrr	1.4 (1)	67(58)	262(237)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.2 (3)	1.9(2)	1.4 (1)	0.49(0.5)	0.54 (0.4)	0.55 (0.2)	0.56 (0.2)	15/15
CMA-MSR	5.9(2)	5.8(5)	4.7(2)	1.6(1.0)	1.6 (2)	1.5 (1)	1.5 ₍₁₎	15/15
CMA-TPA	1.7(2)	3.1 (3)	1.8(0.4)	0.56 (0.8)	0.62 (0.8)	0.62 (0.6)	0.65 (0.6)	15/15
GP1-CMAES	1.2(0.7)	3.8(4)	6.8(11)	1.8(2)	1.8 (4)	∞	∞ 1258	0/15
GP5-CMAES	1.3(3)	4.7(9)	1.5(2)	1.8(3)	∞	∞	∞ 1260	0/15
IPOPCMAv3p	2.4(2)	6.8(4)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	1.5(0.7)	6.1(10)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.2 (3)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.7(2)	6.0(7)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	1.8 (1)	3.6 (2)	3.2(2)	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	1.7(4)	9.0(5)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	0.62 (0.4)	46(61)	47(77)	∞	∞	∞	∞ $5e4$	0/15
Sif	0.69 (0.4)	52(58)	268(296)	∞	∞	∞	∞ 5e4	0/15
Srr	0.68 (0.6)	28(52)	132(162)	∞	∞	∞	∞ $5e4$	0/15

Table 18: 05-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	5.2	215	899	2861	3669	6351	7934	15/15
BSifeg	6.3(12)	174(143)	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	7.0(3)	174(235)	793(1110)	∞	∞	∞	∞ $5e4$	0/15
BSqi	4.1(4)	142(407)	779(486)	∞	∞	∞	∞ $5e4$	0/15
BSrr	4.3(3)	314(641)	408(849)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	4.2(5)	0.98 (0.2)	0.53 (0.3)	1.0(0.7)	1.2(0.5)	1.1(0.4)	1.3(0.5)	15/15
CMA-MSR	4.2(5)	0.93 (0.2)	0.97 (1)	0.83 (0.3)	0.82 (0.5)	0.96(0.8)	1.1(0.1)	15/15
CMA-TPA	24(78)	2.6 (0.5)	1.6(0.9)	0.97 (0.4)	0.94 (0.3)	0.88(0.8)	1.0(0.7)	15/15
GP1-CMAES	4.5(5)	0.67 (0.2)	0.80 (0.9)	0.89(1)	∞	∞	∞ 1258	0/15
GP5-CMAES	3.6(4)	1.8(4)	10(11)	∞	∞	∞	∞ 1258	0/15
IPOPCMAv3p	4.1(3)	1.1(0.4)	0.66 (0.6)	0.46(0.4)	0.95 (0.9)	∞	∞ 1258	0/15
LHD-10xDef	2.1(2)	2.6 (2)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.4 (1)	2.5 (3)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	2.3 (3)	5.3(7)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	3.0(2)	4.0(3)	10(9)	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	4.8(1)	13(16)	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	3.9(3)	128(344)	172(184)	∞	∞	∞	∞ $5e4$	0/15
Sif	3.9(3)	136(256)	360(550)	∞	∞	∞	∞ 5e4	0/15
Srr	3.9(3)	239(208)	226(330)	∞	∞	∞	∞ 5e4	0/15

Table 19: 05-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID (CII)	ac arrage	,	LIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	103	378	3968	8451	9280	10905	12469	15/15
BSifeg	103(145)	159(169)	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	94(165)	229(359)	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	129(257)	553(417)	∞	∞	∞	∞	∞ 4e4	0/15
BSrr	168(301)	213(308)	166(121)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	1.3(2)	2.4 (0.2)	0.61 (0.6)	0.54 (0.5)	0.74(0.5)	0.77 (0.4)	0.90 (0.7)	15/15
CMA-MSR	1.1(0.5)	5.0(7)	1.0(0.8)	0.70 (0.7)	1.0(0.5)	1.2(0.6)	1.3(0.9)	15/15
CMA-TPA	0.92 (0.5)	1.8 (4)	0.67 (0.4)	0.59 (0.3)	0.69 (0.3)	0.70(0.1)	0.85 (0.4)	15/15
GP1-CMAES	1.0(0.4)	1.8(3)	1.4(2)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.0 (3)	14(22)	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	1.2(0.3)	1.3(0.9)	0.47 (0.4)	1.1 (1)	2.0(2)	∞	∞ 1258	0/15
LHD-10xDef	1.4(0.2)	10(11)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.5(2)	9.4(10)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.6(0.5)	10(5)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	0.74(0.5)	5.6(6)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	5.2(11)	24(34)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	22(12)	189(364)	∞	∞	∞	∞	∞ $5e4$	0/15
Sif	27(13)	194(281)	169(129)	∞	∞	∞	∞ $5e4$	0/15
Srr	80(353)	85(125)	∞	∞	∞	∞	∞ $5e4$	0/15

Table 20: 05-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f19	1	1	242	1.0e5	1.2e5	1.2e5	1.2e5	15/15
BSifeg	17(13)	2964(3040)	909(899)	∞	∞	∞	∞ $5e4$	0/15
BSif	16(10)	3125(2054)	694(847)	∞	∞	∞	∞ $5e4$	0/15
BSqi	22(10)	3284(2630)	1440(2280)	∞	∞	∞	∞ $5e4$	0/15
BSrr	17(26)	4781(1994)	925(408)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	19(11)	2971(2324)	153(229)	0.86 (0.6)	0.83(0.6)	0.83 (0.4)	0.84(0.4)	15/15
CMA-MSR	31(96)	2573(1170)	306(581)	67 (86)	∞	∞	$\infty~5e5$	0/15
CMA-TPA	25(18)	959 (846)	84(57)	0.68 (0.6)	0.78(0.4)	0.80(0.5)	0.80(0.8)	15/15
GP1-CMAES	25(18)	2568(1779)	∞	∞	∞	∞	∞ 1260	0/15
GP5-CMAES	15(10)	1496(2424)	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	23(25)	3070(5658)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	39(56)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	23(14)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	20(10)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	24(20)	1868(3073)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	18(15)	1379(1685)	∞	∞	∞	∞	∞ 1262	0/15
Sifeg	14 (12)	5045(2270)	477(576)	∞	∞	∞	∞ $5e4$	0/15
Sif	14 (13)	3090(583)	1385(1390)	∞	∞	∞	∞ 5e4	0/15
Srr	14(12)	3069(523)	671(1401)	∞	∞	∞	∞ 5e4	0/15

Table 21: 05-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	16	851	38111	51362	54470	54861	55313	14/15
BSifeg	2.2 (3)	9.3(5)	18(23)	13(24)	13(9)	13(10)	13(22)	1/15
BSif	2.1(2)	23(19)	5.8(5)	4.3(3)	6.5(6)	6.5(13)	6.5(4)	2/15
BSqi	1.8(1)	8.7(0.5)	8.8(7)	6.6(7)	6.2(8)	6.2(9)	13(20)	1/15
BSrr	1.9(0.7)	11(15)	9.3(17)	7.0(8)	6.6(9)	13(20)	∞ $5e4$	0/15
CMA-CSA	3.7(2)	9.2(4)	1.1(0.2)	0.83 (0.6)	0.80 (0.3)	0.82 (0.2)	0.84 (0.6)	15/15
CMA-MSR	4.8(2)	1666(1484)	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-TPA	3.9(2)	17(19)	2.0 (1.0)	1.5(0.8)	1.5(0.6)	1.5(0.8)	1.5(0.6)	15/15
GP1-CMAES	3.1(1)	11(9)	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.2 (0.7)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	4.2(2)	21(14)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	6.4(2)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.5 (0.8)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	2.5 (0.9)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	4.0(2)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	31(24)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	1.9 (1)	3.1 (0.6)	3.9(5)	2.9 (2)	2.7 (2)	2.8 (4)	2.9 (7)	4/15
Sif	1.9 (1)	6.6 (8)	3.7(5)	2.9 (1)	2.7 (2)	3.7(3)	3.8(9)	3/15
Srr	1.8(1)	2.8 (6)	3.1 (3)	2.3 (3)	2.2 (3)	2.8 (5)	4.0(2)	3/15

Table 22: 05-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	41	1157	1674	1692	1705	1729	1757	14/15
BSifeg	9.3(6)	90(66)	63(156)	62(83)	63(60)	67 (89)	92 (123)	4/15
BSif	77(561)	174(184)	125(217)	196(110)	197(112)	202(355)	208(249)	2/15
BSqi	14(47)	121(176)	84(97)	84(127)	84(139)	121(109)	210(364)	2/15
BSrr	11(6)	67(54)	56(92)	67(52)	67(108)	72(87)	203(240)	2/15
CMA-CSA	1.9 ₍₁₎	55(221)	119(181)	148(117)	147(120)	145(106)	143(256)	9/15
CMA-MSR	5.3(0.7)	206(104)	388(710)	384(517)	382(496)	377(803)	371(674)	6/15
CMA-TPA	2.2 (2)	88(108)	116(126)	115(112)	114(116)	113(109)	112(144)	10/15
GP1-CMAES	1.3(0.7)	1.9 (1)	1.7(3)	1.7(1)	2.2 (3)	2.3 (3)	2.4 (1)	4/15
GP5-CMAES	1.4 (4)	1.4(2)	1.5(0.8)	1.9 ₍₁₎	1.9(3)	10 (15)	∞ 1252	0/15
IPOPCMAv3p	4.3(2)	15(18)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	2.0 (1)	1.0 (1)	2.2(2)	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.3 (0.9)	0.94 (0.7)	2.1 (2)	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.4(0.8)	1.5(2)	2.1(3)	∞	∞	∞	∞ 250	0/15
RF1-CMAES	3.5(8)	4.5(3)	3.2(5)	5.1 (4)	11 (8)	∞	∞ 1258	0/15
RF5-CMAES	3.7(9)	7.8(11)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	1.1 (1)	80(115)	56(37)	55(100)	55(101)	71(61)	94(85)	4/15
Sif	1.2(1)	96(54)	84(127)	84(37)	84(51)	129(61)	206(266)	2/15
Srr	1.1(1)	93(54)	85(97)	84(121)	84(88)	88(80)	129(319)	3/15

Table 23: 05-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	71	386	938	980	1008	1040	1068	14/15
BSifeg	34(109)	80(68)	129(228)	341(574)	710(881)	∞	∞ $5e4$	0/15
BSif	102(7)	236(315)	236(320)	739(1032)	∞	∞	∞ $5e4$	0/15
BSqi	31(7)	55(155)	85(107)	335(307)	333(255)	∞	∞ $5e4$	0/15
BSrr	37(178)	110(184)	129(55)	350(255)	709(633)	∞	∞ $5e4$	0/15
CMA-CSA	4.1(11)	135(99)	345(112)	426(457)	535(719)	519(721)	507(749)	6/15
CMA-MSR	14(30)	457(826)	531(923)	508(335)	494(626)	479(531)	467(720)	7/15
CMA-TPA	2.5 (5)	223(480)	323(743)	310(258)	301(336)	292 (243)	285 (532)	8/15
GP1-CMAES	3.6(5)	9.3(12)	19 (13)	18 (17)	18(22)	17 (13)	17 (22)	1/15
GP5-CMAES	4.3(6)	10(13)	9.2(12)	8.8(11)	8.6(6)	∞	∞ 1254	0/15
IPOPCMAv3p	5.8(9)	5.6(4)	20 (25)	19 (7)	18 (21)	18 (32)	18 (33)	1/15
LHD-10xDef	1.9(0.5)	2.3 (4)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.4(0.5)	3.0 (2)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	0.79(0.5) 4.5(3)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	5.5(0.4)	3.0 (4)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	7.3(12)	21(22)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	123(174)	103(130)	129(49)	724(804)	∞	∞	∞ $5e4$	0/15
Sif	117(348)	131(118)	350(574)	754(868)	∞	∞	∞ $5e4$	0/15
Srr	62(208)	67(74)	67(82)	237(281)	738(769)	∞	∞ $5e4$	0/15

Table 24: 05-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f23	3.0	518	14249	27890	31654	33030	34256	15/15
BSifeg	2.6 (2)	4.3(6)	50(54)	∞	∞	∞	∞ $5e4$	0/15
BSif	2.6 (2)	3.3(4)	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	2.6 (3)	6.6(5)	50(91)	∞	∞	∞	∞ $5e4$	0/15
BSrr	2.6 (3)	3.7(6)	50(53)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.3(2)	13(14)	4.7 (8)	2.5(2)	2.2 (2)	2.2(4)	2.1(2)	15/15
CMA-MSR	2.5(2)	3.2(3)	0.91(1)	0.52 (0.4)	0.48(0.2)	0.51(0.7)	0.53 (0.3)	15/15
CMA-TPA	3.2(3)	16(12)	8.1 (37)	4.2 (6)	3.8 (2)	3.8 (5)	3.7 (8)	13/15
GP1-CMAES	1.9 (1)	4.9(3)	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.4(2)	2.2 (1)	∞	∞	∞	∞	∞ 1252	0/15
IPOPCMAv3p	2.3 (2)	12(6)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	3.9(5)	6.8(5)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	3.1(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	2.5 (1)	7.1(8)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	1.8(2)	∞	∞	∞	∞	∞	∞ 1260	0/15
RF5-CMAES	2.4(2)	∞	∞	∞	∞	∞	∞ 1288	0/15
Sifeg	3.4(5)	2.7 (2)	50(45)	∞	∞	∞	∞ $5e4$	0/15
Sif	3.4(2)	2.8 (1)	∞	∞	∞	∞	∞ $5e4$	0/15
Srr	3.4(5)	2.5(1)	∞	∞	∞	∞	∞ 5e4	0/15

Table 25: 05-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	1622	2.2e5	6.4e6	9.6e6	9.6e6	1.3e7	1.3e7	3/15
BSifeg	21(24)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	41(28)	∞	∞	∞	∞	∞	∞ 4e4	0/15
BSqi	38(103)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSrr	29(31)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.0(2)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-MSR	1.3(2)	33(27)	1.1(2)	∞	∞	∞	$\infty~5e5$	0/15
CMA-TPA	1.3(2)	10(9)	∞	∞	∞	∞	$\infty~5e5$	0/15
GP1-CMAES	2.1 (3)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	1.1(1)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	2.0 (1)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	5.5(7)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	5.2(8)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	15(21)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
Sif	15(19)	∞	∞	∞	∞	∞	∞ 4e4	0/15
Srr	21(33)	∞	∞	∞	∞	∞	∞ 5e4	0/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.