Una función en $L^1([0, 2\pi])$ tal que su serie de Fourier diverge en todas partes.

Andrés David Cadena Simons

5 de marzo de 2025

1. Preliminares

Proposición 1. Existe una sucesión de polinomios trigonométricos $(\varphi_n)_{n=2}^{+\infty}$ tal que para todo $n \in \{2, 3, ...\}$, cumple las siguientes propiedades:

- A) $\varphi_n \geq 0$, para todo $x \in [0, 2\pi]$.
- B) $\int_{[0,2\pi]} \varphi_n d\lambda = \pi$, donde λ es la medida de Lebesgue en la recta.
- C) Sea $v_n \in \mathbb{Z}^+$ el orden del polinomio trigonométrico φ_n . Entonces, es posible determinar números $Q_n \in \mathbb{R}$, $\lambda_n \in \mathbb{Z}^+$ y un conjunto $F_n \subset [0, 2\pi]$ tales que:

$$C.i) \lim_{n \to +\infty} Q_n = +\infty,$$

C.ii)
$$F_2 \subset \cdots \subset \bigcup_{p=2}^{+\infty} F_p = [0, 2\pi],$$

$$C.iii) \lim_{n \to +\infty} \lambda_n = +\infty \ y$$

C.iv) para todo $x \in F_n$, existe un $k := k_x \in \mathbb{Z}^+$ tal que $\lambda_n \le k < v_n$ y

$$S_k(\varphi_n; x) > Q_n$$

donde $S_k(\varphi_n,\cdot)$ es la k-ésima suma parcial de la serie de Fourier de la función φ_n .

2. Teorema

Teorema 1. Teorema de Kolmogórov Existe una función $\Phi \in L^1([0,2\pi])$, tal que si serie de Fourier diverge en todas partes.

Demostración. Consideremos una sucesión estrictamente decreciente de números enteros $(n_{\alpha})_{\alpha \in \mathbb{N}}$, tal que $n_0 \geq 2$ y que para todo $\alpha \in \mathbb{Z}^+$ se cumplen las siguientes propiedades:

- $\lambda_{n_{\alpha}} > v_{n_{\alpha-1}}.$
- $Q_{n_{\alpha}} > 4Q_{n_{\alpha-1}}.$

donde para todo $s \in \{2,3,\cdots\}, \lambda_s, v_s$ y Q_s son los índices de la proposición \square

3. Bibliografía

Referencias