Locality

a semi-formal flow dimension

John Gerth
Stanford University

Outline

- Dress for success
 - Semi-formal attire
- Locals only
 - Friends, acquaintances, and janitors
 - On the street where you live
- All along the (IPv4) watchtower
 - Where'd you say you were from?
 - Getting there is half the fun

What does "semi-formal" mean?

Formal attributes

- IP address, protocol, TTL, ...
- Required and universal

Semi-formal

- By convention service port numbers
- By context TCP flags
- By environment VLAN tag
- Derived or inferred from above

"Semi-formal" examples

SiLK/YAF

- INT/EXT address classification
- Application Labeling

Argus

- Country Codes via Maxmind lookup
- Flow status and state flags

Why have them?

- Filtering
 - Quickly remove extraneous data
- Grouping
 - Focus on flow semantics
- Aggregate Behavior
 - Inputs for modeling

Locality

- Duality
 - both internal and external components
- Scope
 - Most definitely defined by where you sit
- Improve Hierarchy
 - First-order formal definitions
 - Use context to extend with semi-formal levels

First-order Locality

- 0 : announcement
 - Broadcast (normally x.y.z.255)
 - Multicast (224.0.0.0/4)
- 1 : conversational
 - All unicast IP traffic

Extended Internal Locality

- 2 : Enterprise conversational traffic
 - All IP ranges owned by enterprise
 - Includes any RFC 1918 ranges
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
 - And autoconfiguration
 - 169.254.0.0/16

Organizational Locality

- 3 or higher: enterprise sub-domains
 - Likely limited by location of flow collection
 - Could also have multiple levels
 - Could be derived from other value
 - Subnet number
 - VLAN tag
 - Internal department/operating unit designation

Implementation

Goals

- Locality defined by IP address
- First class dimension for filter and aggregation
- Handle partial sub-allocation
- Real-time annotation of flow data

Solution

- ASCII config file
- Generate binary table indexed by IP/24 prefix

Example: Stanford CS

Enterprise Entries

```
38.114.142.0/23 32 2
128.12.0.0/16 32 2
171.64.0.0/14 32 2
204.152.100.0/22 32 2
172.16.0.0/12 32 2
```

Departmental Sub-allocation Override

171.67.76.0/23 32 3816 172.27.76.0/23 32 3816

...

Extended External Hierarchy

Motivation

- Better granularity for classifying traffic
- Mitigate games of Whac-a-Mole in the hairball
- Hierarchical Dimension Choices

(could choose more than one)

- Subnet, e.g. CIDR/16
- Geolocation data
- Autonomous System Number (ASN)

Autonomous Systems

- Formal leaf nodes of the internet
 - Complement geography with "netography"
 - Aggregation point for enterprises
- Drive traffic at the "wholesale" level
 - ASN fuels the BGP tables
- ASNs are highly correlated to ISPs
 - Where most abuse complaints need to go

Mapping IP ranges to ASNs

(rather than monitoring BGP in real-time)

- Maxmind (monthly)
 - http://dev.maxmind.com/geoip/legacy/geolite/
- CAIDA (daily)
 - http://www.caida.org/data/routing/routeviews-prefix2as.xml
- Team Cymru (updates every 4 hours)
 - http://www.team-cymru.org/Services/ip-to-asn.html
- Routeviews (hourly)
 - http://www.routeviews.org/

Locality for Stanford EE/CS

- Observation point
 - Layer 2 entry point switches of three buildings
- Topology
 - Four dozen VLANs shared across buildings
- Locality definition
 - -0, 1, 2, VLAN
- Flow storage
 - SQL-like relational DB

Sample Queries

Monitor overall locality distribution

```
h "select flows:count i, log_appbyte:10 xlog sum t_ab by locality:3 & loc, p:proto from flow where proto<>1"
```


Sample Queries

Top IPs after removing service ASNs

"Top F	Remote except Goo	ogle ((15169)	+ Amazon	(16509)) ''
asn	ripn	nlip	tot	ix	begin	recent
46664	199.168.136.95	832	344328	0.555	20:47	23:59
31042	94.189.239.232	519	191031	0.555	10:29	18:59
21581	108.161.147.110	47	183337	0.376	00:00	23:59
36024	74.50.54.108	45	155905	0.415	00:00	23:59
4134	222.95.211.39	833	124722	0.0851	01:27	12:29
4134	115.231.222.176	149	93499	0.241	11:28	23:59
3842	167.88.124.163	1	86332	-0.000533	00:00	23:59
32934	185.60.216.7	739	84821	-0.189	00:00	23:59
12876	62.210.180.31	86	81358	0.253	00:00	23:51
4134	117.89.17.200	733	78038	0.0784	12:36	16:25

Sample Queries

Chase internal spam source

```
h "select f:count i by vlan from flow where d_ip=171.64.y.z, d_port=25, loc>1"
vlan| f
----
3803 | 57747
3864 | 1451
# Now 'pivot' on vlan
h "select f:count i by ips s_ip from flow where d_ip=171.64.y.z,d_port=25,vlan=3803"
172.24.15.162
                185
172.24.15.164 | 22745
172.24.15.175 | 30287
172.24.15.178
                135
172.24.15.185|
                3205
172.24.15.190
                 63
172.24.15.9
               1127
```


Future Work

- True real-time updates to locality
 - Internal via DNS + DHCP updates
 - External via BGP monitor
- Extending external hierarchy
 - Country code
 - Additional Geolocation
- IPv6

Summary

Every IP has an ASN

- Either the enterprise ASN or the remote ASN when locality is 1
- srcASN = ASmap[srcIP]; dstASN = ASmap[dstIP]

Every flow has a locality

```
(Let uni=:{? unicast dstIP}; then locality:= uni *( uni + (srcASN == dstASN) )
```

- 0: non-unicast
- 1: unicast from outside enterprise
- 2: enterprise unicast outside observation point (optionally)
- 3+: additional granularity inside organizational unit

