

USB Audio Single Chip Solution for Stereo Microphone & Line In

DESCRIPTION

CM6317A is C-Media's new Audio SOC IC. It contains high performance stereo ADC, and have various interface like I2C, allowing all kinds of Microprocessor or DSP to communicate. Especially in advanced VOIP applications. CM6317A could give you low noise and high quality speech input solution, thus, when it comes to conference or public speech, it would be wonderful choice for you. Also, CM6317A integrates all essential analog, 2CH ADC, PLL, regulator, USB transceiver, with EEPROM to customize your own product string, PID and VID. CM6317A support 8 / 11.025 / 16 / 22.05 / 32 / 44.1 / 48 KHz sampling rate and high quality 16-bit resolution and friendly General purpose inputs and outputs for customized functions. Also there are many features could be programmable with external EEPROM and MCU. External MCU / EEPROM could be easily controlled via HID software interface.

FEATURES

具有?USB规范。2.0全速兼容和USB如果认证?USB音频设备类规范。1.0和 USBHD类规范。1.1兼容?支持控制、中断和等色数据传输?USB暂停/恢复和 远程唤醒支持?嵌入式USB收发器和电源重置电路?单12%赫水晶输入芯片PL ?支持系列数字待串操作系统检测?串行EPROM编程接口支持定制VID/PID/? 品字符串/制造字符串FEPROM接口支持24CO2数据格式

- USB spec. 2.0 Full speed compatible and USB IF certification
- USB audio device class spec. 1.0 and USB HID class spec. 1.1 compliant
- Supports control, interrupt and isochroous data transfers
- USB suspend/resume and remote wake-up support
- Embedded USB transceiver and power-on reset circuit
- Single 12MHz Crystal Input with On-chip PLL
- Support series number string for operation system detect
- Serial EEPROM programming interface supports customized VID/PID/Product string/ Manufacture string
- EEPROM interface support 24C02 data format

BLOCK DIAGRAM

USB Audio Single Chip Solution for Stereo Microphone & Line In

TABLE OF CONTENTS

1	Description and Overview	4
2	Features	4
3	Pin Descriptions	6
	3.1 Pin Assignment by Pin Number	6
	3.2 Pin-Out Diagram	6
	3.3 Pin Signal Descriptions	7
4	Block Diagram	9
5	Ordering Information	10
6	USB Audio Topology and Descriptors	11
	6.1 USB Audio Topology	11
	6.2 Device Descriptors	11
	6.3 Configuration Descriptors	12
	6.4 Standard HID Interface Descriptor	13
7	Function Block Descriptions:	14
	7.1 I ² C Interface	14
	7.1.1 Master Mode:	14
	7.1.2 Slave Mode:	15
	7.2 EEPROM Data Format	19
8	Electrical Characteristics:	21
8.1	Absolute Maximum Rating	21
8.2	Operation Conditions	21
8.3	Electrical Parameters	21
9	Analog Performance	22
	9.1 ADC Frequency Response	22
	9.2 ADC THD + N	22
REE	FERENCE	23

USB Audio Single Chip Solution for Stereo Microphone & Line In

Release Note

Revision	Date	Description
		Updated the EEPROM Data Format
1.8	2010/4/26	Address 0x12(Bit2):reserved(0:default)
		Address 0x13:Reserved

CM6317A是一种新型的C-Media集成电路。 它包含高性能立体声ADC,并具有各种接口,如12C,允许各种微处理器或DSD通信。 特别是在高级VOIP应用中。 CM6317A可以为您提供低噪音和高质量的语言输入解决方案,因此,当涉及到会议或公共演讲时,这将是您很好的选择。 此外,CM6317A集成了户有必要的模拟,2CHADC,PLL,调节器,USB收发器,与EEPROM定制您自己的产品字符串,PID和VID。 支持M6317A支持8/11.025/16/22.05/32/44.1/4BK Hz采样率和高质量的16位分辨率和友好的通用较分输出,用于定制功能。 此外,还有许多功能可以编程与外部EEPROM和单片机。 外部MCU/EEPROMF以是EA

CM6317A

USB Audio Single Chip Solution for Stereo Microphone & Line In

1 Description and Overview

This is a highly integrated single chip USB audio solution which comprises more USB audio controller and applications. According to coming more experiences in PC USB Audio peripheral from Vendors' recommend, C-Media aggressively design one single chip to let vendors to come more integration products, and increase more revenues.

CM6317A is C-Media's new Audio SOC IC. It contains high performance stereo ADC, and have various interface like I2C, allowing all kinds of Microprocessor or DSP to communicate. Especially in advanced VOIP applications. CM6317A could give you low noise and high quality speech input solution, thus, when it comes to conference or public speech, it would be wonderful choice for you.

Also, CM6317A integrates all essential analog, 2CH ADC, PLL, regulator, USB transceiver, with EEPROM to customize your own product string, PID and VID. CM6317A support 8 / 11.025 / 16 / 22.05 / 32 / 44.1 / 48 KHz sampling rate and high quality 16-bit resolution and friendly General purpose inputs and outputs for customized functions. Also there are many features could be programmable with external EEPROM and MCU. External MCU / EEPROM could be easily controlled via HID software interface. 2 LED indicator pins provide more flexible behavior with device On / Off / Operation / recording mute / and controllable flash time.

2 Features

- USB spec. 2.0 Full speed compatible and USB IF certification
- USB audio device class spec. 1.0 and USB HID class spec. 1.1 compliant
- Supports control, interrupt and isochroous data transfers
- USB suspend/resume and remote wake-up support
- Embedded USB transceiver and power-on reset circuit
- Single 12MHz Crystal Input with On-chip PLL
- Support series number string for operation system detect
- Serial EEPROM programming interface supports customized VID/PID/Product string/ Manufacture string for device name changed and configuration
- EEPROM interface support 24C02 data format
- 2CH ADC Input

ADC sampling rate 8K / 11.025K / 16K / 22.05K / 32K / 44.1K / 48K Hz, 16-bit resolution

Dynamic Range: 96db, THD+N: -89~96db

Digital Linear Microphone Gain Control function (-16db~45db)

- 1.0 Vrms input swing biased at 2.25V
- Support Microsoft HID functions

Cmedia

CM6317A

USB Audio Single Chip Solution for Stereo Microphone & Line In

- Support I2C (Master/Slave) control interface for external controller used
- I2C MCU read/write support 16 bytes data transfer bandwidth
- I2C interface support extra interrupt pin INT
- MCU / EEPROM / GPIO control via HID / Vender command interface
 USB audio topology has 1 Input Terminals, 1 Output Terminals, 1 Selector Unit, and 1 Feature Units
- Support 2 LED indicator pins:
 - 1. On / Off / Operation
 - 2. Recording mute
- Supported 8 GPIO and 2 GPI pins
- Isochronous transfer uses Adaptive Mode with Internal PLL for Synchronization
- Embedded Power-On-Reset Block
- Single 5V power supply with embedded 5V to 3.3V regulator
- Industry standard LQFP-48 Pin package
- Compatible with Win2000 / WinXP / Vista / Win7 / MAC / OSX / Linux / Wii / XBOX360 / PS2 /PS3
- Support Hardware SDK tool for third-party software development

?支持12C(主/保存)外部控制器控制接口

?120单片机读写支持16字节数据传输带宽

?12C接口支持額外的中断引脚INT?MCU/EEPROM/GPIO通过HID/Vender命令接口控制USB音频拓扑具有1个输入终端、1个输出终端、1个选择器单元和1个特征单元

?支持2个LED指示引脚:1。 开/关/操作2。 记录静音

?支持8个GPIO和2个GPI引脚

?等时传输使用具有内部PLL的自适应模式进行同步?嵌入式电源对位块

?嵌入式5V到3.3V调节器的单个5V电源,行业标准LQ FP-48Pin封装

?兼容Win2000/WinXP/Vista/Win7/MAC/OSX/Linux/Wii/XBOX360/PS2/PS3?支持硬件SDK工具进行第三方软件开发

3 Pin Descriptions

3.1 Pin Assignment by Pin Number

Pin	Signal Name						
1	PDSW	13	N.C.	25	AVSS	37	AVDD
2	N.C.	14	HID_EN	26	MICL	38	REGV_4V5
3	TEST	15	N.C.	27	MICR	39	N.C.
4	GPIO_1	16	N.C.	28	VREF	40	GPI_1
5	GPIO_2	17	I2C_SCLK	29	VBIAS_1	41	GPI_2
6	GPIO_3	18	I2C_SDAT	30	VBIAS_2	42	GPIO_5
7	GPIO_4	19	I2C_INT	31	AVDD	43	GPIO_6
8	LED_1	20	USB_DP	32	AVDD	44	GPIO_7
9	LED_3	21	USB_DM	33	AVSS	45	GPIO_8
10	XTAL_I	22	DVSS	34	AVSS	46	MUTE_REC
11	XTAL_O	23	REGV_3V3	35	N.C.	47	RM_Wake
12	N.C.	24	DVDD5V	36	AVDD	48	DVSS

3.2 Pin-Out Diagram

USB Audio Single Chip Solution for Stereo Microphone & Line In

3.3 Pin Signal Descriptions

No.	Symbol	Туре	Description
4	PDSW	OD EV	Power Down Switch Output
1	PDSW	OD, 5V	(0:Normal Operation; 1:Suspend)
2	N.C.	N.C.	N.C.
3	TEST	ח חח	Test Mode Select
3	1E31	DI, PD	(0:Normal Mode; 1:Test Mode)
4	GPIO_1	DIO	General Purpose I/O Pin
5	GPIO_2	DIO	General Purpose I/O Pin
6	GPIO_3	DIO	General Purpose I/O Pin
7	GPIO_4	DIO	General Purpose I/O Pin
8	LED_1	DO	LED (Play or Record)
9	LED_3	DO	LED (Mute Record)
10	XTAL_I	DI	Input Pin for 12MHz Oscillator
11	XTAL_O	DO	Output Pin for 12MHz Oscillator
12	N.C.	N.C.	N.C.
13	N.C.	N.C.	N.C.
14	HID_EN	DI, PU	HID bottom function enable
	1110_LIT	D1, 1 0	(0:Disable; 1:Enable)
15	N.C.	N.C.	N.C.
16	N.C.	N.C.	N.C.
17	I2C_SCLK	OD, DIO	I2C Serial Clock / EEPROM 24c02 Serial Clock
18	I2C_SDAT	OD, DIO	I2C Serial Data / EEPROM 24c02 Serial Data
19	I2C_INT	DO	I2C Interrupt output
20	USB_DP	AIO	USB D+
21	USB_DM	AIO	USB D-
22	DVSS	Р	Digital Grounding
23	REGV_3V3	AO	5V->3.3V Regulator Output
24	DVDD5V	Р	5V Power Supply to Internal Regulator
25	AVSS	Р	Analog Ground

USB Audio Single Chip Solution for Stereo Microphone & Line In

No.	Symbol	Туре	Description
26	MICL	Al	MICO in left channel
27	MICR	Al	MIC0 in right channel
28	VREF	AO	2.25V reference Voltage output
29	VBIAS_1	AO	MIC bias Voltage
30	VBIAS_2	AO	MIC bias Voltage
31	AVDD	Р	5V Analog Power for Analog Circuit
32	AVDD	Р	5V Analog Power for Analog Circuit
33	AVSS	Р	Analog Ground
34	AVSS	Р	Analog Ground
35	N.C.	N.C.	N.C.
36	AVDD	Р	5V Analog Power for Analog Circuit
37	AVDD	Р	5V Analog Power for Analog Circuit
38	REGV_4V5	AO	4.5V regulator output
39	N.C.	N.C.	N.C.
40	GPI_1	DI, PU	General Purpose Input Pin (VU)
41	GPI_2	DI, PU	General Purpose Input Pin (VD)
42	GPIO_5	DIO	General Purpose I/O Pin
43	GPIO_6	DIO	General Purpose I/O Pin
44	GPIO_7	DIO	General Purpose I/O Pin
45	GPIO_8	DIO	General Purpose I/O Pin
46	MUTE_REC	DI, PU	HID MIC Recording Mute
47	RM_Wake	DI, PU	Remote Wakeup pin to make PC resume from suspend
48	DVSS	Р	Digital Ground

4 Block Diagram

USB Audio Single Chip Solution for Stereo Microphone & Line In

5 Ordering Information

Model Number		Package	Operating Ambient Temperature	Supply Range
CM6317A	48-Pin LQFP 7mm×7mm×1.45mm (Plastic)		0 o C to +70 o C	DVdd = 5V, AVdd = 5V

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	MAX.
А		1.6
A1	0.05	0 15
A2	1.35	1.45
c1	0.09	0.16
D	9.0	00 BSC
D1	7.0	00 BSC
E	9.0	00 BSC
E1	7.0	DO BSC
e	0.5	BSC
ь	0.17	0.27
L	0.45	0.75
L1	1	REF

USB Audio Single Chip Solution for Stereo Microphone & Line In

6 USB Audio Topology and Descriptors

6.1 USB Audio Topology

6.2 Device Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	12	Descriptor length
1	bDescriptorType	1	01	Device Descriptor
2	bcdUSB	2	0110	USB 1.1 compliant
4	bDeviceClass	1	00	Device class specified by interface
5	bDeviceSubClass	1	00	Device subclass specified by interface
6	bDeviceProtocol	1	00	Device protocol specified by interface
7	bMaxPacketSize0	1	10	Endpoint zero packet size
8	idVendor	2	0d8c	Vendor ID
10	idProduct	2	0132	Product ID
12	bcdDevice	2	0100	Device release number
14	iManufacturer	1	03	Index of string descriptor describing manufacturer
15	iProduct	1	01	Index of string descriptor describing product
16	iSerialNumber	1	00 or 03(*)	Index of string descriptor describing serial number
17	bNumConfigurations	1	01	Number of configuration

Note 1: When valid EEPROM is detected, Vendor ID and Product ID will be replaced by the content of EEPROM. Note 2: iSerialNumber will be valid only if external EEPROM contain this info.

注1:当检测到有效的EEPROM时,供应商ID和产品ID将被EEPROM的内容所取代。 注2:i序列号只有在外部EEPROM包含此信息时才有效。

USB Audio Single Chip Solution for Stereo Microphone & Line In

6.3 Configuration Descriptors

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	09	Descriptor length
1	bDescriptorType	1	02	Configuration Descriptor
2	wTotalLength	2	007f~00dd	Total length of data returned for this configuration
4	bNumInterfaces	1	03	Number of interfaces supported by this Configuration: 00: Control 02: ISO-In 03: INT-IN (HID)
5	bConfigurationValue	1	01	Configuration value
6	iConfiguration	1	00	Index of string descriptor describing this configuration
7	bmAttributes	1	a0 or 80 or e0 or c0	Bus Power and support Remote Wakeup: 8'ha0 (PWRSEL_1 = 1, HID_EN = 1) Bus Power and no Remote Wakeup: 8'h80 (PWRSEL_1 = 1, HID_EN = 0) Self Power and support Remote Wakeup: 8'he0 (PWRSEL_1 = 0, HID_EN = 1)) Self Power and no Remote Wakeup: 8'hc0 (PWRSEL_1 = 0, HID_EN = 0))
8	bMaxPower	1	32	Maximum power consumption from bus = 100mA: 8'h32 (50x2 mA) (PWRSEL_2 = 1)

USB Audio Single Chip Solution for Stereo Microphone & Line In

6.4 Standard HID Interface Descriptor

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	09	Descriptor length
1	bDescriptorType	1	04	Interface Descriptor
2	bInterfaceNumber	1	02	Interface number: 02
3	bAlternateSetting	1	00	Alternate interface
4	bNumEndpoints	1	01	Number of endpoint used by this interface
5	bInterfaceClass	1	03	HID Interface Class
6	bInterfaceSubClass	1	00	Subclass code
7	bInterfaceProtocol	1	00	Protocol code
8	iInterface	1	00	Index of string descriptor describing this interface

Class-specific HID Interface Descriptor

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	09	Descriptor length
1	bDescriptorType	1	21	HID descriptor type
2	bcdHID	2	0100	HID class version
4	bCountryCode	1	00	No country code
5	bNumDescriptors	1	01	One HID class descriptor
6	bDescriptorType	1	22	Report Descriptor
7	wDescriptorLength	2	0032 / 001a	HID class descriptor length in byte: 50 / 26 bytes
				(Enable / Disable HID Button)

Standard HID Interrupt In Endpoint Descriptor

Offset	Field	Size	Value (Hex)	Description
0	bLength	1	07	Descriptor length
1	bDescriptorType	1	05	Endpoint Descriptor
2	bEndpointAddress	1	87	IN Endpoint, Endpoint number: 7
3	bmAttributes	1	03	Interrupt Endpoint
4	wMaxPacketSize	2	0010	Maximum packet size: 16 bytes
6	bInterval	1	01	1ms

7 Function Block Descriptions:

7.1 I²C Interface

7.1.1 Master Mode:

7.1.2 Slave Mode:

"7-bit slave address = 7'b0111000"

On the MCU serial interface, the CM6317A can serve as a slave device with bit rates up to 400Kbps (in fast mode). The MCU can write data to the CM6317A or read data from the CM6317A (No size limitations when using the I2C Interface). Since the host side and MCU can both access to the internal registers, access contention- when both host and MCU try to access the same register- should be avoided by the application. The 7-bit slave address of the CM6317A is assigned as 7'b0111000. When data is written by the MCU, the CM6317A will NOT transfer any interrupt to the PC until the INT bit of the I2C control Register has been set by the MCU.

The USB host will keep polling the upward HID report every 1ms. When any button is pressed or released, or MCU data is incoming, the CM6317A will transfer 16 bytes of HID report to the USB host. In I2C Slave Mode, the CM6317A has one open-drain input pin 'SCLK' where it receives the serial clock from the MCU, and one open-drain I/O pin 'SDAT' where it sends or receives serial signals to/from the MCU. As shown below, 'SDAT' should be stable when 'SCLK' is high, and can transition only when 'SCLK' is low.

Bit Transfer on the MCU Interface

START and STOP conditions shown below are the exception. Every transaction begins from a START, and ends with a STOP, or another START (repeated START).

START and STOP Conditions

The figure below demonstrates a typical transaction. After every 8 bits sent by the transmitter, the receiver should send one bit low for positive acknowledgement or one bit high for negative acknowledgement. After the negative acknowledgement, a STOP or repeated START should follow. The next figure shows more details about the acknowledgement bit. Note that 'SCLK' is always driven by the master.

Data Transfer on the MCU Interface

The figure below shows a complete data transfer. After a START, the MCU should send 7-bit slave address (7'b0111000) first, and then the 8th bit denotes a read transfer when it's high; or a write transfer when it's low. The first acknowledgement always comes from the CM6317A.

Cmedia

CM6317A

USB Audio Single Chip Solution for Stereo Microphone & Line In

In the write transfer, the MCU continues to act as the master and the transfer direction is not changed. The following figure gives an example of a write transfer.

MCU write: S 0x70 0 Byte 1 0 addr 0 Byte 0 0 0 0 Р Byte N From CM6317A to MCU From MCU to CM6317A STOP condition START condition 0 Positive acknowledge Negative acknowledge Byte N One byte data

0x70 is the slave address of CM6317A, and it also tells CM6317A that it's receiving a write command. CM6317A regards the first coming DATA byte as the register address. The second DATA byte is the DATA content that MCU writes at the register address. CM6317A will auto-increment the register address to the next register address for the following writes DATA. The figure below shows an example of read transfer. The MCU read command can not set the register address, so the MCU may use a write command to set the register address first and then start the read command. Because the CM6317A auto-increments the register address, the second DATA byte will be the register data on the next address.

MCU read: S 0x70 addr 0 0 S 0 0x71 Byte 0 0 Byte 1 0 0 Byte N From CM6317A to MCU From MCU to CM6317A S Ρ START condition STOP condition 0 Positive acknowledge Negative acknowledge 1 Byte n One byte data

The figure below gives a complete picture of a typical transaction between the MCU and CM6317A. After a START, the MCU should send a 7-bit slave address (7'b0111000) first, and then the 8th bit denotes a read transfer when it's high; or a write transfer when it's low.

Cmedia

CM6317A

USB Audio Single Chip Solution for Stereo Microphone & Line In

MCU write:													
S	0x70	0	addr	0	Byte 0	0	Byte 1	0		0	Byte N	0	Р
MCU r	ead:												
S	0x70	0	addr	0									
S	0x71	0	Byte 0	0	Byte 1	0		0	Byte N	1	Р		
			From CM6317A to MCU			CU			From	ı MCU t	co CM631	7A	
	S		START condition					Р	STOP condition				
	0		Positive acknowledge			ge	1 Negative acknowledge						
	Byte N					(One byte	data					

During a write transfer, the MCU continues acting as the transmitter. The CM6317A regards the first DATA byte as the start register address. The following DATA bytes are the content of the registers that the MCU requests. In a read transfer, two transactions are necessary. The MCU resets the start register address by the first transaction, then direction changes to get N of data.

7.2 **EEPROM Data Format**

address	description					
0x00	Magic Word ("C", 8'h43)					
0x01	Magic Word ("M", 8'h4D)					
	EEPROM Content Setting (EEPROM_OPTION_1)					
	bit0: Manufacture String Valid? (0: No, 1: Yes)					
	bit1: Product String Valid? (0: No, 1: Yes)					
	bit2: Serial Number Valid? (0: No, 1: Yes)					
0x02	bit3: reserved					
	bit4: Recording (ADC) initial control Valid? (0: No, 1: Yes)					
	bit5: ADC gain range Control Valid? (0: No, 1: Yes)					
	bit6: Disable Selector unit (0: No, 1: Yes)					
	bit7: Enable Remote Wakeup? (0: Disable, 1: Enable)					
	Recording (ADC) initial-L (EEPROM_OPTION_2)					
	bit[5:0]: ADC(unit Fa) initial Volume L-byte					
0x03	(6'h2E ~ 6'h00, 30~ -16dB, -1dB/step)					
	bit6: Mute_fa (ADC) initial Value (0: Un-Mute, 1: Mute)					
	bit7: Line-in/Mic-in claim (1: Line-in , 0 : Mic-in)					
	Recording (ADC) initial-H (EEPROM_OPTION_3)					
	bit[3:0]: ADC (Unit Fa) initial Volume H-byte					
004	(4'hf ~ 4'h0, 15 ~ 0dB, -1dB/step)					
0x04	Bit[4]: control ADC HP filter by EEPROM (0: No, 1: Yes)					
	Bit[5]: ADC HP filter enable (0 : disbale, 1 : enable)					
	Bit[7:6]: reserved					
0x05	Recording (ADC) max range Control_L (EEPROM_OPTION_4)					
UXUS	bit[7:0]: ADC (Unit fa) max Volume[7:0]					
0x06	Recording (ADC) max range Control_H (EEPROM_OPTION_5)					
0.006	bit[7:0]: ADC (Unit fa) max Volume[15:8]					
0x07	Recording (ADC) min range Control_L (EEPROM_OPTION_6)					
UXU/	bit[7:0]: ADC (Unit fa) min Volume[7:0]					
0x08	Recording (ADC) min range Control_H (EEPROM_OPTION_7)					
UXU6	bit[7:0]: ADC (Unit fa) min Volume[15:8]					
0x09	Reserved					

USB Audio Single Chip Solution for Stereo Microphone & Line In

0x0a	Reserved				
0x0b	Manufacture String 1 length; this number doesn't include the first 2 bytes of				
OXOD	string descriptor and its unit is one Unicode word (EEPROM_OPTION_A)				
00	Product String 2 length; this number doesn't include the first 2 bytes of string				
0x0c	descriptor and its unit is one Unicode word (EEPROM_OPTION_B)				
004	serial number string 3 length; this number doesn't include the first 2 bytes of				
0x0d	string descriptor and its unit is one Unicode word (EEPROM_OPTION_C)				
0x0e	VID (Low Byte) (EEPROM_OPTION_D)				
0x0f	VID (High Byte) (EEPROM_OPTION_E)				
0x10	PID (Low Byte) (EEPROM_OPTION_F)				
0x11	PID (High Byte) (EEPROM_OPTION_10)				
	misce reg (EEPROM_OPTION_11)				
0x12	Bit0 : boot gain(volume boot gain 18dB)				
UX1Z	Bit1: enable PLL adjustment (0: No, 1: Yes)				
	Bit2 : reserved (0 :default)				
0x13	Reserved				
0x14 ~ 0x4f	Reserved (60 bytes)				
0x50 0x(50 x X 4)	Manufacture String (X bytes);only fill one byte of Unicode in this content, HW				
0x50 ~0x(50+X-1)	will add the other byte 0x00				
0x(50+X)~	Product String (Y bytes) ;only fill one byte of Unicode in this content, HW will				
0x(50+X+Y-1)	add the other byte 0x00				
0x(50+X+Y)~	String of Serial Number (Z bytes) ;only fill one byte of Unicode in this content,				
0x(50+X+Y+Z-1)	HW will add the other byte 0x00				
Others	Reserved				

8 Electrical Characteristics:

8.1 Absolute Maximum Rating

Symbol	Parameter	Value	Unit
Dvmin	Min Digital Supply Voltage	- 0.3	٧
Dvmax	Max Digital Supply Voltage	+ 6	٧
Avmin	Min Analog Supply Voltage	- 0.3	٧
Avmax	Max Analog Supply Voltage	+ 6	٧
Dvinout	Voltage on any Digital Input or Output Pin	-0.3 to +5.5	٧
Avinout	Voltage on any Analog Input or Output Pin	-0.3 to +5.5	٧
T _{stg}	Storage Temperature Range	-40 to +125	0C
Tj	Junction Operating Temperature (Commercial)	0~+115	°C
ESD (HBM)	ESD Human Body Mode	4000	٧
ESD (MM)	ESD Machine Mode	400	٧
Latch Up	Class-3	200	mA

8.2 Operation Conditions

Operation conditions								
	Min	Тур	Max	Unit				
Analog Supply Voltage	4.5	5.0	5.5	٧				
Digital Supply Voltage	4.5	5.0	5.5	٧				
Operation Power Consumption	-	33	-	mA				
Standby Power Consumption	-	28	-	mA				
Suspend Mode Power Consumption	-	410	-	uA				
Operating ambient temperature	0	-	70	٥C				

^{*}Notes: Test Environment Under 25°C, 5.0V, 48K Sample Rate, Max Output is Playing 1K Full Scale Sin Wave, Typical Output is Playing Music.

8.3 Electrical Parameters

	Min	Тур	Max	Unit
THD + N (20 ~ 20KHz)	-89	-	-96	dB
Dynamic Range	-	96	-	dB
Frequency Response 48KHz	20	-	20K	Hz
Frequency Response 44.1KHz	20	-	20K	Hz
Input Voltage (rms)	-	1.2	-	Vrms

05/15/08 12:25:49

USB Audio Single Chip Solution for Stereo Microphone & Line In

9 **Analog Performance**

ADC Frequency Response

Audio Precision A-D FREQUENCY RESPONSE 05/15/08 12:27:17

Sweep Ti	гасе	Color	Line Style	Thick	Data	Axis	Comment
1 1 1 1 2		Yellow Green Cvan	Solid Solid Solid	1 1	DSP Anir.Level A DSP Anir.Level B DSP Anir.Level B	Right	

Msta-A-D Frequency Response .at2 c

ADC THD + N

Audio Precision +0 Aρ -20 -40 d B F S -60 -80 -100 -120 20k 20 50 100 200 500 2k 10k

A-D THD+N vs FREQUENCY

Sweep	Тгасе	Color	Line Style	Thick	Data	Axis	Comment
1	1	Yellow	Solid	1	DSP Anir.THD+N Ampl A		
1	2	Cyan	Solid	1	DSP Anir.THD+N Ampl B	Le ft	

Msta-AD THD+N.at2c

USB Audio Single Chip Solution for Stereo Microphone & Line In

REFERENCE

USB Specification, Revision 2.0, USB Audio Device Class Specification, Revision 1.0,

USB Audio Single Chip Solution for Stereo Microphone & Line In

-End of Specifications -

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106 R.O.C.

TEL: +886-2-8773-1100 FAX: +886-2-8773-2211

E-MAIL: sales@cmedia.com.tw

Disclaimer

Information furnished by C-Media Electronics Inc. is believed to be accurate and reliable. However, no responsibility is assumed by C-Media Electronics Inc. for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of C-Media. Trademark and registered trademark are the property of their respective owners.