EFIT 针对 ENN EXL 的使用说明

2018年11月30日 8·20

%%%李强,张凯,袁保山等老师整理,经陈彬修改后可以应用到 ENN EXL 的平衡计算%%%

1、Fortran 版 EFIT 在 Win7 上的使用说明

在 ftp 的 incoming 文件夹下/incoming/chenbin/EFIT 可以下载针对 EXL 装置的 L.L. Lao 83 年首版,2001 年最后修订版的 win7/winXP Fortran 版 EFIT 程序。登录 ftp://10.1.141.212 用户名 fri,密码无,即可以往 incoming 文件夹里拷贝。注意不能用网页打开,直接将 FTP 地址复制到《我的电脑》地址栏,然后点击右键,选择登录。如果想要在 Win7 上配置 EFIT 需要注意 Intel visual Fortran 编译器和 visual studio 对 Windows 不同版本兼容性问题。在不同版本的 windows 操作系统安装 IVF 和 VS 需要注意图 1.0 显示的兼容性问题。已经调试通过了 parallel_studio_xe_2015_update5_setup.exe 和 vs2015.3.com_chs.iso。在 Win7 安装完以上两个软件以后才能安装 Compaq Visual Fortran 6.6,否则 Compaq Visual Fortran 6.6 无法正常启动。需要注意,如果 Compaq Visual Fortran 6.6 安装在 Windows XP 上,则不需要安装以上两个软件就能正常运行。

IVF VS		2003	2005	2000	2010	2012	2013	2015	2017	Windows	
IVF	vs	2003	2005	2008	2010	2012	2013	2015	2017	ХP	7/8/10
9.1		✓	✓	х	×	×	×	х	х	✓	х
10.0		✓	✓	×	×	×	×	×	×	✓	×
10.1		\checkmark	✓	>	×	×	×	×	×	✓	×
11.0		\checkmark	✓	\	×	×	×	×	×	✓	×
11.1.048		×	✓	✓	×	×	×	×	×	✓	✓
XE2011		×	✓	✓	\checkmark	×	×	×	×	✓	✓
XE2013		×	×	✓	✓	✓	×	×	×	✓	✓
	SP1 update1	×	×	✓	✓	✓	✓	×	×	✓	✓
XE2015		×	×	×	✓	✓	✓	×	×	✓	✓
	update4	×	×	×	✓	✓	✓	✓	×	✓	✓
XE2016		×	×	×	✓	✓	✓	✓	×	×	✓
XE2017		×	×	×	×	✓	✓	✓	×	×	✓
	update4	×	×	×	×	✓	✓	✓	✓	×	✓
XE2018		×	×	×	×	✓	✓	✓	✓	×	✓

图 1.0 IVF vs visual studio 对 Windows 不同版本兼容性问题

EFIT 是著名的平衡反演/计算程序,下面简单介绍了 EFIT 的使用方法以及注意事项。 EFIT 程序包括两个组成部分,EFUND 和 EFIT。使用 Compaq Visual Fortran 6.6 调试通过。完成平衡计算工作,需要建立两个工程,最终要生成两个可执行文件。

1.1 EFOUND

EFOUND 工程用来生成 GREEN 函数表,工程建立正确,编译执行后生成系列文件,以备后面平衡计算时候引用。所以只要装置的线圈结构不发生变化,这个工程只运行 1 次就行了。工程很简单,可以直接打开.../efund/EFUND. dsw,只有一个 SOURCE 文件 EFUNDU.f。

注意工程需要的 INCLUDE 文件,一共有两个: comn.inc 和 exparm2.inc。工程文件如图 1.1 所示。

该工程需要 efundu.f 的输入文件 mhdin. dat,线圈的几何参数数据在此文件设置,保存在 efund 文件夹下。下面详细说明该文件的修改(注意,任何错误的修改和格式可能对应不能正确编译和执行,包括多余的空格)。没有说明的是不能修改的。

!E-coils 部分是欧姆线圈参数。因为 EXL 是球形托卡马克,没有欧姆线圈,可以按默认设置,只不过线圈电流需要设置为 0。

!F-coils 部分是极向场线圈系统参数。注意线圈"并"和"匝"的概念,并往往指固定在一起的线圈,一并线圈可以包含多匝,也可以只有 1 匝。以 HL-2A(ASDEX)来说,我们把其欧姆中心螺线管 OH1 叫一并,事实上这并线圈包含 5 匝。

其中 RF 是每一并线圈的 R 坐标, ZF 是每一并线圈的 Z 坐标, WF 是每一并线圈的水平宽度, HF 是每一并线圈的垂直高度, FCTURN 是每一并线圈的匝数。注意,输入这些参数的时候,这些参数在顺序上一一对应,举例说,第三个 RF 对应第三并线圈的 R 坐标,则第三个 ZF 也对应着第三并线圈的 Z 坐标,依此类推 WF、HF 和 FCTURN。

FCID 是各并线圈的编号,在每并线圈的电流各不相同时候,依次编写,注意理解写法,例如"1*5.",意味着被编号为 5 的线圈只有 1 并。

最后按照上面划分的 PFCOIL 的并数,修改 exparm2.inc 文件中的线圈个数等参数 "parameter (nfcoil=?"等语句。

确保上述正确以后,编译,执行,程序运行后生成系列文件。

1.2 EFIT 工程

该工程是 EFIT 程序中的关键,其核心就是求解平衡方程。

- I. 工程建立,可以直接打开.../efit2a/efit2a.dsw。建立工程后,一共在 source files 中有 22 个文件,在 external dependencies 中有 9 个文件,这些文件来自文件夹"...\HL-2A"。
- II. 按照 mhdin.dat 中所划分的线圈数量和修改 exparm.inc 文件中的"parameter (nfcoil=?"等语句。
 - III. 拷贝 efound 工程生成的下列五个文件

ec3333.d3d

ep3333.d3d

fc3333.d3d

re3333.d3d

rfcoil.d3d

到 P2A 文件夹。该文件夹中同时还有一个"dprobe.dat"的文件,加上述 5 个文件,一共 6 个必须文件。

- IV. 拷贝 efound 工程的输入文件 mhdin.dat 文件到 efit2a 目录,任意命名,例如"input.dat"。按照其格式进行修改。如果原来工程中已经有相应的文件,本步可以忽略,这两文件的格式差别还是很大。
- V. 输入文件"input.dat"。这个文件尤其重要,而且在程序使用中,每次都需要进行修改。该文件是程序使用时由用户输入,换句话说,文件的名字是可以改变的,这里暂时用"input.dat"。

该文件中, PLASMA 是等离子体电流:

BETAPO 是极向 Beta 值,希望程序按照这个参数进行叠代和计算,程序最后的输出是大约在这个范围;

LIMITR 是孔拦位置点,本来是一个很常规的参数,在程序调试过程中发现,EFIT 对孔 拦的位置很敏感,孔拦数目多少,输入顺序(顺/逆时针)等都对计算结果有很大影响,甚至影响程序最终是否有输出结果;

BRSP 是各外极向场线圈电流值,输入的顺序是在 efound 工程的输入文件 MHDIN.DAT 中编排好的顺序:

ERROR 和 ERRMIN 是程序叠代的收敛误差,缺省值是 1e-4,程序叠代过程中会显示叠代的误差变化情况,当误差小于这个参数时,程序叠代完成;

NXITER 是程序最大的叠代次数;

IOUT 是输出方式。

VI. 编译并运行程序。按照程序提示菜单,分别输入"2",再输入"1",然后输入上述步骤 V 中的文件名 input.dat,或拟合的输入文件,程序开始叠代计算。

VII. 程序输出及其校验。程序运算完成后不会提示运行结果,但运行过程中出现任何错误程序都会给出提示。在 V 中的 IOUT=1 时,会生成文件 fitout.dat,该文件中给出了程序的最后平衡参数。

EFIT 文件夹放在 E 盘里。

操作步骤如下:

打开 E:\EFIT\efit2a/efit2a.dsw,主程序: efitdu.f,使用的子程序如图 1.2 所示。

运行 efit2a.exe 文件

Type mode?

选择2

Number of time slices?

选择1(可以大于1)

Type input file names?

输入文件名(输入文件名必须在 efit2a 目录下,文件取名随意)

图 1.2 efitdu.f 工程文件列表

```
- 0
"E:\EFIT\efit2a\Debug\efit2a.exe"
          EFITD 129x129 Version 05/08/2002
type mode (2=file, 3=snap, 4=time, 5=input, 6=com file, 7=snap_ext):
number of time slices?
                                                                                    Ε
type input file names:
input
      - time =
                100 ms --
     1 chi2=0.00E+00 zm=-1.73E-08 err=3.505E+00 dz=-1.733E-08
it=
     2 chi2=0.00E+00 zm=-1.84E-07 err=2.337E-01 dz=-1.671E-07
it=
     3 chi2=0.00E+00 zm= 4.51E-07 err=1.581E-01 dz= 6.356E-07
it=
it =
     4 chi2=0.00E+00 zm= 1.11E-07 err=1.566E-01 dz=-3.402E-07
     5 chi2=0.00E+00 zm= 1.44E-07 err=1.434E-01 dz= 3.340E-08
it=
     6 chi2=0.00E+00 zm=-5.12E-10 err=1.269E-01 dz=-1.450E-07
it=
it=
       chi2=0.00E+00 zm=-6.15E-07 err=1.103E-01 dz=-6.145E-07
it=
     8 chi2=0.00E+00 zm=-1.15E-07 err=9.497E-02 dz= 5.005E-07
     9 chi2=0.00E+00 zm= 1.27E-07 err=8.105E-02 dz= 2.417E-07
it=
it= 10 chi2=0.00E+00 zm=-5.00E-08 err=6.883E-02 dz=-1.772E-07
it= 11 chi2=0.00E+00 zm= 0.00E+00 err=5.810E-02 dz= 5.003E-08
it= 12 chi2=0.00E+00 zm=-6.05E-08 err=4.872E-02 dz=-6.054E-08
it= 13 chi2=0.00E+00 zm=-3.41E-07 err=4.061E-02 dz=-2.801E-07
it= 14 chi2=0.00E+00 zm=-1.05E-07 err=3.339E-02 dz= 2.358E-07
it= 15 chi2=0.00E+00 zm=-2.70E-07 err=2.728E-02 dz=-1.647E-07
it= 16 chi2=0.00E+00 zm= 5.24E-07 err=2.187E-02 dz= 7.933E-07
it= 17 chi2=0.00E+00 zm=-1.50E-07 err=1.750E-02 dz=-6.739E-07
it= 18 chi2=0.00E+00 zm=-1.56E-08 err=1.373E-02 dz= 1.346E-07
it= 19 chi2=0.00E+00 zm= 7.10E-08 err=1.047E-02 dz= 8.657E-08
it= 20 chi2=0.00E+00 zm=-7.30E-09 err=7.910E-03 dz=-7.832E-08
it= 21 chi2=0.00E+00 zm=-3.69E-07 err=6.786E-03 dz=-3.615E-07
it= 22 chi2=0.00E+00 zm= 3.15E-07 err=5.816E-03 dz= 6.843E-07
it= 23 chi2=0.00E+00 zm=-1.03E-07 err=4.959E-03 dz=-4.190E-07
it= 24 chi2=0.00E+00 zm= 4.26E-08 err=4.222E-03 dz= 1.461E-07
it= 25 chi2=0.00E+00 zm=-7.30E-07 err=3.582E-03 dz=-7.725E-07
it= 26 chi2=0.00E+00 zm=-1.37E-07 err=3.032E-03 dz= 5.930E-07
it= 27 chi2=0.00E+00 zm= 2.56E-08 err=2.559E-03 dz= 1.626E-07
it= 28 chi2=0.00E+00 zm=-4.70E-07 err=2.166E-03 dz=-4.954E-07
it= 29 chi2=0.00E+00 zm=-7.86E-07 err=1.848E-03 dz=-3.162E-07
it= 30 chi2=0.00E+00 zm=-6.86E-07 err=1.602E-03 dz= 9.980E-08
it= 31 chi2=0.00E+00 zm= 3.19E-07 err=1.432E-03 dz= 1.005E-06
it= 32 chi2=0.00E+00 zm= 4.94E-07 err=1.327E-03 dz= 1.749E-07
it= 33 chi2=0.00E+00 zm=-1.65E-07 err=1.249E-03 dz=-6.593E-07
it= 34 chi2=0.00E+00 zm=-4.60E-07 err=1.166E-03 dz=-2.949E-07
it= 35 chi2=0.00E+00 zm=-1.45E-07 err=1.079E-03 dz= 3.148E-07
it= 36 chi2=0.00E+00 zm=-3.08E-07 err=9.805E-04 dz=-1.629E-07
it= 37 chi2=0.00E+00 zm= 7.36E-07 err=8.847E-04 dz= 1.044E-06
it= 38 chi2=0.00E+00 zm=-1.11E-07 err=7.888E-04 dz=-8.477E-07
it= 39 chi2=0.00E+00 zm= 4.59E-08 err=6.962E-04 dz= 1.573E-07
it= 40 chi2=0.00E+00 zm= 6.42E-08 err=6.102E-04 dz= 1.837E-08
it= 41 chi2=0.00E+00 zm=-5.70E-07 err=5.318E-04 dz=-6.342E-07
it= 42 chi2=0.00E+00 zm= 7.53E-08 err=4.583E-04 dz= 6.452E-07 it= 43 chi2=0.00E+00 zm=-2.39E-07 err=3.910E-04 dz=-3.147E-07
 3.5410209E-03 3.2087944E-02
                                 1.099774
                                                0.3320000
                                                                 1.415474
-1.0728836E-06
 fit errors, shot 96000 100
Error #7 Rout large, small
                             100. msec. no eqdsks will be written
Press any key to continue
```

图 1.3 平衡计算运行时信息

输出文件都在 efit2a 目录下,输出数据文件

g-file: g096000.00100 基本包括了所有的平衡计算输出信息。g-file 的数据格式见官网或文件 G EQDSK Files。efitdu.f 给出等离子体计算参数,文件为 fitout.dat。shipit()输出 lp 形状的参数,weqdsku()子程序输出计算结果数据。129 表示 129x129 格点。受到 Buneman 算法的限制网格只能分成 2n+1(n=1,2,3,....n).

fort.55 给出格点的通量函数值 psirz(),边界通量函数,磁轴通量函数。用于画磁通等值线图。

out.dat1 给出格点坐标(R,Z)和通量函数值 psirz() q.dat2 给出 q 归一化数据。

1.3 后数据处理

主要有两个数据处理和作图程序:用 windows 下 Fortran (Intel visual fortran 或 Compaq visual fortran 编译器)编写的画图的工程文件 plot_ncst4m. f90 在 plot_IVFD 文件夹里;和 read_gfile. f90 等程序在 read_gfile 文件夹里。

EFIT 的重要输出文件 Gfile(g 开头的文件如 EFIT 2015 版为 g000000.00000,EFIT 2013 版为 g096000.00100)给出了等离子体的几何参数,磁面函数,P,P',F,F'和q等重要物理量的分布参数。这是没有做任何标示的全数字文件。为了识别文件给出的各物理量,用Fortran QuickWin 编写了一个程序读取它,结果放在 outfile 文件夹里,并画出图形来,横坐标为归一化小半径。下面对各文件夹及其文件做一说明。

项目文件里用的程序

共有下面4个程序,

gfile_cfetr_b.f90 主程序, open (10,) 修改不同装置的极向场线圈的参数,画出极向截面,线圈和磁通等值线;

plotaxis.f90 子程序,画坐标轴;

Plotcurve_b.f90 子程序, 画各物理量的曲线;

read_gfile.f90 子程序,读取 gfile 文件,open(10,....)修改读取 gfile 的文件名称。 读取后的 gfile 文件为 gfile out.dat,对各物理量分别给出单个数据文件,这些文件都放在 outfile 文件里。

data 输入文件夹 存放装置的极向场线圈等参数文件。

cfetr pf 13coils.dat 585 设计 cfetr 的 13 个极向场线圈等参数文件;

cfetr pf 14coils.dat 585 设计 cfetr 的 14 个极向场线圈等参数文件;

cfetr pf hf.dat 合肥设计 cfetr 极向场线圈等参数文件;

HL-2M pf coils.dat HL-2M 极向场线圈等参数文件;

g000000.00000 2013 版 efit 的 gfile 文件;

g096000.0100 2015 版 efit 的 gfile 文件。

g096000.0010 2004版 efit的 gfile文件。

program 文件夹 存放使用的程序。

由于计算的装置大小不同,计算区域不同,极向场线圈不同,不能使用一个主程序。 这里对 HL-2M,CFETR(585),CFETR(合肥 hf)给出了 3 个主程序。每一个程序里对于计算区域和网格划分,调用的画图输入文件都给出了明确的规定。网格都是 129 x 129。

gfile_cfetr_rou.f90 主程序, open(10,)修改不同装置的极向场线圈的参数,画出极向截面,线圈和磁通等值线;

gfile_cfetr_hf rou.f90 主程序, 计算合肥 CFETR 的 gfile 文件;

gfile_hl2m rou.f90 主程序, 计算 HL-2M。 plotaxis.f90 子程序, 画坐标轴; plotcurve.f90 子程序, 画各物理量的曲线;

read_gfile.f90 子程序,读取 gfile 文件,open(10,…)修改读取 gfile 的文件名称。 读取后的 gfile 文件为 gfile out.dat,对各物理量分别给出单个数据文件,这些文件都放在 outfile 文件里。

outfile 输出文件夹 存放输出文件 boundary.dat 等离子体边界坐标值(R,Z); ffprim.dat F'随归一化小半径变化的分布值; fpol.dat F 随归一化小半径变化的分布值; gfile out.dat 将 gfile 内的数值标出物理量名称; pprim.dat 压强微分 P' 随归一化小半径变化的分布值; pres.dat 压强 P 随归一化小半径变化的分布值; qpsi.dat 安全因子 q 随归一化小半径变化的分布值; Temp.dat

1.4 计算示例

图 1.4 是 EFIT 计算合肥 CFETR 的结果(下单零)。图 1.5 是计算 585 CFETR 的结果。图 1.6 为 HL-2M 的上单零位形(李佳鲜用 2015 版 EFIT 计算的 gfile)

图 1.4 计算合肥 CFETR 的结果

图 1.5 计算 585 CFETR 的结果(近似标准雪花位形,有边缘输运垒 ETB)

图 1.6 HL-2M 的上单零位形 (有边缘输运垒 ETB)

使用的注意事项:

- 1 计算的区域;
- 2 网格的划分数,这里使用的是 129 x 129; 使用时可能会出现各种问题,请及时沟通。

最后补充说明,有些时候源码是需要修改的,例如程序输出输入文件名和文件夹,所以作者应当具备源码的修

改能力,以及开发平台的基本使用能力。另外,关于 EXL 的反演计算还未开展······。

2、2015 EFIT 在 ENN cluster Debye 上的使用说明

基于等离子体所罗正平老师给的 2015-06 Linux 版本的 EFIT,在 ENN linux 服务器 Debye 上的安装、调试过程(设置库函数的路径,修改几个程序等)。使用玄龙 EXL(6个 PF Coils/22 匝)装置参数调试。安装完成以后,在此 EFIT 的基础上修改输入文件 mhdin.dat 和 rtest 两个文件以及其他修改文件而成。适用于在 ENN Cluster 机上做固定边界平衡计算用,改到其他集群机上用还会碰到修改库函数的问题。

2.1 前期准备

安装 pgi 编译器到/opt/pgi/linux86-64/18.4

安装 mdsplus 到/home/chenbin/local/build

安装 NETCDF 到/home/chenbin/local/netcdf

编译器 pgi 目前安装的版本是免费版 pgilinux-2018-184-x86-64. tar. gz, netcdf 安装的是 netcdf-4.1.3. tar. gz, mdsplus 安装的是 mdsplus-repo-7.47-0. el7. noarch. rpm。安装完成以后配置环境变量,在.bash_profile 中,例如:

```
export PATH=/usr/bin:$HOME/local/bin:$PATH
export PATH=$PATH:$HOME/.local/bin:$HOME/bin
```

export LD LIBRARY PATH=/usr/lib:\$HOME/local/lib:\$LD LIBRARY PATH

export OPENMPI=\$HOME/local/openmpi-1.6

export LD LIBRARY PATH=\$OPENMPI/1ib:\$LD LIBRARY PATH

export PATH=\$OPENMPI/bin:\$PATH

export PATH=\$HOME/local/netcdf/bin:\$PATH

export LD_LIBRARY_PATH=\$HOME/local/netcdf/lib:\$LD_LIBRARY_PATH

export DYLD_LIBRARY_PATH=\$HOME/local/netcdf/lib:\$DYLD_LIBRARY_PATH

export FFTW=\$HOME/local/fftw

export LD LIBRARY PATH=\$FFTW/lib:\$LD LIBRARY PATH

export PATH=\$FFTW/bin:\$PATH

export LD LIBRARY PATH=\$LD LIBRARY PATH:/usr/local/lib

export PGI=/opt/pgi

export PATH=/opt/pgi/linux86-64/18.4/bin:\$PATH

export MANPATH=\$MANPATH:/opt/pgi/linux86-64/18.4/man

export LM LICENSE FILE=\$LM LICENSE FILE:/opt/pgi/license.dat

环境变量配置完成以后,进入 EFIT 文件夹中的 green/u 编译生成 efundud 程序。在此文件夹中的 Makefile 已经配置好,无需改变,可以直接在命令行输入: make 指令。编译完成以后如图 2.1 所示。

```
[chenbin@Debye u]$ make
pgf90 -Mbyteswapio -fast -c ../src/exparm.f90
pgf90 -Mbyteswapio -fast -c ../src/bfgrid.f90
pgf90 -Mbyteswapio -fast -c ../src/cacoil.f90
pgf90 -Mbyteswapio -fast -c ../src/cecoil.f90
pgf90 -Mbyteswapio -fast -c ../src/filech.f90
pgf90 -Mbyteswapio -fast -c ../src/coilsp.f90
pgf90 -Mbyteswapio -fast -c ../src/consta.f90
pgf90 -Mbyteswapio -fast -c ../src/cvesel.f90
pgf90 -Mbyteswapio -fast -c ../src/fcoil.f90
pgf90 -Mbyteswapio -fast -c ../src/vas sub1.f90
pgf90 -Mbyteswapio -fast -c ../src/fshift.f90
pgf90 -Mbyteswapio -fast -c ../src/input.f90
pgf90 -Mbyteswapio -fast -c ../src/mprobe.f90
pgf90 -Mbyteswapio -fast -c ../src/nio.f90
pgf90 -Mbyteswapio -fast -c ../src/pmodel.f90
pgf90 -Mbyteswapio -fast -c ../src/rogowl.f90
pgf90 -Mbyteswapio -fast -c ../src/siloop.f90
pgf90 -Mbyteswapio -fast -c ../src/efundud.f90
pgf90 -Mlfs -o efundud exparm.o bfgrid.o cacoil.o cecoil.o filech.o coils
p.o consta.o cvesel.o fcoil.o vas subl.o fshift.o input.o mprobe.o nio.o
pmodel.o rogowl.o siloop.o efundud.o
EFUND BUILT
[chenbin@Debye u]$
```

图 2.1 efund 的编译安装

当安装完成 efund 程序以后,进入 efitbuild 文件夹,编译安装 efit 主程序。此文件夹中的 Makefile 无法在 ENN 服务器 Debye 上使用,需要修改,例如:

```
/opt/fortran90/lib/libF90.a
DDLIBS=$(DLIBS) ./lin-dp.a/d/hp/lib/liblapack3.a/d/hp/lib/libblas3.a \
MDSINC = /f/mdsplus/hp/mdsplus/include
FFLAGS=-K +U77 +02 -w -v
LDFLAGS=-K +U77 +O1 -w -v
ifeq ($(EXP), ENN)
# 4 Debye-enn
     ifeq ($(MACHINE), Linux)
          PGI_DIR = /opt/pgi/linux86-64/18.4
          MDS_DIR = /home/chenbin/local/build
                      DDLIBS = $(PGI DIR)/lib/libblas.a
$(PGI_DIR)/lib/liblapack.a \
                                                        $(NETCDF DIR)/lib/libnet
                                $(MDS DIR)/lib64/libMdsLib client.a
                                -L$(RELA_DIR) -1mselinux64 -1d3 -1m
        DDLIBS = -L$ (RELA DIR) -L$ (MDS DIR) /1ib64 -L$ (NETCDF DIR) /1ib \
               -lblas -llapack -lnetcdf -lMdsLib_client \
     #FC=gfortran
                      # DEFAULT >>>
                      FFLAGS= -byteswapio -Mpreprocess -Ktrap=divz
                      # DEBUG >>>
                      #FFLAGS= -cpp -fdollar-ok
                      # OPTIMIZED >>>
                      #FFLAGS= -byteswapio -Mpreprocess -Ktrap=divz -fastsse -
Mvect=sse -Msmartalloc -Msmart -Mprefetch
                      LD=\$(FC)
                      NETCDF=$ (NETCDF DIR) / include
                      MDSINC=$ (MDS_DIR) / include
                      FCOM=$ (FC)
```

```
echo $ (FC)
     echo $ (MACHINE)
# determine the name of final executable
EFIT = EFIT
# source files
SOURCES = psicald.f90 lsolved.f90 subs_d_pt_linux.f90 modules-efit.f90 \
           bunemad.f90 getdiau.f90 getfnmdud.f90 ecom1-mods.f90 \
          zplined.f90 dgglse.f90 ecom2-mods.f90 vas sub1.f90 \
          efitdud129.f90 boundud129.f90 chkeud129.f90 splineud129.f90 \
          weqdud129.f90 \
       pltdatud129.f90 getecdud129.f90 getneud129.f90 ppbasisfuncud129.f90 \
       ffbasisfuncud129.f90 wwbasisfuncud129.f90 tearingd129.f90 \
#0BJECTS = $(SOURCES:.f90=.o) lin-dp.a
  OBJECTS = $(SOURCES:.f90=.o) lin-dp.a mds_rg.a
#
lin-dp. a: lin-dp. f90
     $(FC) -c $(FFLAGS) $(VPATH)/1in-dp. f90
     ar r lin-dp. a lin-dp. o
# ALL:$(EFIT)
all:$(EFIT)
$(EFIT): $(OBJECTS)
     $ (FC) $ (LDFLAGS) -o $@ $^ $ (DDLIBS)
     @mv EFIT efitd$ (FCOM)
     @if test "X$(MPIVERSION)" = "Xno"; then \
                    mv efitd$(FCOM) $(EFITRUN) ; \
#
                    mv efitd90 $(EFITRUN) ; \
        echo 'Built executable : efitd90 -> ' efitd$(FCOM) ; \
        rm -f efitdmpi90 ; \
        ln -sf efitd$(FCOM) efitdmpi90 ; \
        echo 'Built executable : efitdmpi90 \rightarrow ' efitd$(FCOM) ; \
ifeq ($(FCOM), mpilf95)
# with include file
wegdud129 mpi.o:wegdud129.f90
     $ (FC) -c $ (FFLAGS) $ < -I$ (NETCDF)
getecdud129_mpi.o:getecdud129.f90
#vas for pgf90 $(FC) -c $(FFLAGS) $< -I$(MDSINC)
     $(FC) -c $(FFLAGS) $<
```

```
# with include file
weqdud129.o:weqdud129.f90
    $(FC) -c $(FFLAGS) $< -I$(NETCDF)
getecdud129.o:getecdud129.f90
#vas for pgf90 $(FC) -c $(FFLAGS) $< -I$(MDSINC)
    $(FC) -c $(FFLAGS) $<
endif

# default compiling options
%.o:%.f90
    $(FC) -c $(FFLAGS) $<

#
ifeq ($(MACHINE), Linux)
mds_rg.a:
    (cd ../cerlib && make FC=$(FCOM) mds_rg.a)
    cp ../cerlib/mds_rg.a .
    (cd ../cerlib && make clean)
endif

# clean
clean:
    @rm -f *o *.a *.mod</pre>
```

修改完成以后在命令行中输入 make all 命令,会出现如下错误

```
[chenbin@Debye efitbuild]$ make all
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/psicald.f90
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/lsolved.f90
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/subs_d_pt_linux.f90
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/modules-efit.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/getdiau.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/getfnmdud.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/ecoml-mods.f90 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/zplined.f90 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/dgglse.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap-divz ../src/ecom2-mods.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap-divz ../src/ecom2-mods.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap-divz ../src/efitdud129.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/boundud129.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/chkeud129.f90 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/splineud129.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/weqdud129.f90 -I/home/chenbin/local/netcdf/include
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/pltdatud129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/getecdud129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/getneud129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/ppbasisfuncud129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/ffbasisfuncud129.f90
 ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/wwbasisfuncud129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/tearingd129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/expdataud129.f90
ogf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/lin-dp.f90
ar r lin-dp.a lin-dp.o
ar: creating lin-dp.a
ranlib lin-dp.a
(cd ../cerlib && make FC=pgf90 mds_rg.a)
(cd ./cerlib && make FC=pgf90 mds_rg.a)
make[1]: Entering directory `/home/chenbin/efitj14/cerlib'
/opt/pgi/linux86-64/10.3/bin/pgf90 -c -Mbackslash -Ktrap=divz mds_rg.f90
make[1]: /opt/pgi/linux86-64/10.3/bin/pgf90: Command not found
make[1]: *** [mds_rg.o] Error 127
make[1]: Leaving directory `/home/chenbin/efitj14/cerlib'
make: *** [mds_rg.a] Error 2
[chenbin@Debye efitbuild]$
```

图 2.2 EFIT 的编译错误 1

```
此时需要前往 cerlib 文件夹,修改 Makefile 中的 PGI_DIR 和 MDS_DIR 分别为:
PGI_DIR = /opt/pgi/linux86-64/18.4
MDS_DIR = /home/chenbin/local/build
修改完成以后,回到 efitbuild 文件夹,编译 efit 主程序
make clean
make all
出现如下问题
```

```
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/expdataud129.f90 pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/lin-dp.f90
ar r lin-dp.a lin-dp.o
ar: creating lin-dp.a
ranlib lin-dp.a
(cd ../cerlib && make FC=pgf90 mds_rg.a)
make[1]: Entering directory `/home/chenbin/efitj14/cerlib'
/opt/pgi/linux86-64/18.4/bin/pgf90 -c -Mbackslash -Ktrap=divz mds_rg.f90
opt/pgi/linux86-64/18.4/bin/pgf90 -c -Mbackslash -Ktrap=divz mds mtanh.f90
opt/pgi/linux86-64/18.4/bin/pgf90 -c -Mbackslash -Ktrap=divz mds mtanh rdts.f90
ar r mds_rg.a mds_rg.o mds_mtanh.o mds_mtanh_rdts.o ar: creating mds_rg.a
ranlib mds rg.a
make[1]: Leaving directory `/home/chenbin/efitj14/cerlib'
cp ../cerlib/mds_rg.a . (cd ../cerlib && make clean)
make[1]: Entering directory `/home/chenbin/efitj14/cerlib'
make[1]: Leaving directory `/home/chenbin/efitj14/cerlib'
pgf90 -o EFIT psicald.o lsolved.o subs_d_pt_linux.o modules-efit.o bunemad.o getdias_subl.o efitdud129.o boundud129.o chkeud129.o splineud129.o weqdud129.o pltdatud1
\overline{	t d129.o} wwbasisfuncud129.o tearingd129.o expdataud129.o lin-dp.a \overline{	t mds} rg.a -L../rela-
cdf/lib -lblas -llapack -lnetcdf -lMdsLib client -lmselinux64 -ld3 -lm
../rela-lib/libMdsLib_client.so: undefined reference to `mds_inflateEnd'
../rela-lib/libMdsLib_client.so: undefined reference to `mds_deflate'
../rela-lib/libMdsLib_client.so: undefined reference to `mds_deflateEnd'
../rela-lib/libMdsLib client.so: undefined reference to `mds deflateInit
 ./rela-lib/libMdsLib_client.so: undefined reference to `mds_inflate'
 ../rela-lib/libMdsLib_client.so: undefined reference to `mds_inflateInit_'
 nake: *** [EFIT] Error 2
[chenbin@Debye efitbuild]$
```

图 2.3 EFIT 的编译错误 2

该问题是程序自带的 libMdsLib_client. so 库有问题,需要自己下载安装一个同样的 libMdsLib_client. so 库,下载安装完成以后把自己下载的 libMdsLib_client. so 库,拷贝到 rela-lib 文件夹中替代原来的库,再编译 efit 主程序,得到如下结果

```
cd ../cerlib && make of.

make[1]: Entering directory `/home/chenbin/efit/cerlib'

lealing directory `/home/chenbin/efit/cerlib'
                                   /home/chenbin/efit/cerlib'
make[1]: Leaving directory `/home/chenbin/efit/cerlib'
pgf90 -Bstatic_pgi -o EFIT psicald.o lsolved.o subs_d_pt_linux.o modules-efit.o bunemad.o get
m2-mods.o vas_sub1.o efitdud129.o boundud129.o chkeud129.o splineud129.o weqdud129.o pltdatu
fbasisfuncud1\overline{2}9.0 wwbasisfuncud129.0 tearingd129.0 expdataud129.0 lin-dp.a mds rg.a -L../rel
n/local/netcdf/lib -lblas -llapack -lnetcdf -lMdsLib client -lmselinux64 -lm
getdiau.o: In function `dlcomp_':
/home/chenbin/efit/efitbuild/../src/getdiau.f90:214: undefined reference to
home/chenbin/efit/efitbuild/../src/getdiau.f90:267: undefined reference to
home/chenbin/efit/efitbuild/../src/getdiau.f90:271: undefined reference to
getecdud129.o: In function `getdat '
home/chenbin/efit/efitbuild/../src/getecdud129.f90:1891: undefined reference to `ptdata_
home/chenbin/efit/efitbuild/../src/getecdud129.f90:1913: undefined reference to
home/chenbin/efit/efitbuild/../src/getecdud129.f90:2008: undefined reference to
                                 `rev_wait_
home/chenbin/efit/efitbuild/../src/getecdud129.f90:2848: undefined reference to `shotno_'
./rela-lib/libmselinux64.a(mse_lib2.o): In function
                                                                 `read_phy_data_':
u/meyer/tmp/mse/source/./mse_lib2.f:2941: undefined reference to ./rela-lib/libmselinux64.a(mse lib2.o): In function `read spatia
                                                                                 `ptdata
                                                                 `read spatial average '
u/meyer/tmp/mse/source/./mse_lib2.f:3855: undefined reference to
 ./rela-lib/libmselinux64.a(mse_lib2.o): In function
                                                                 `read mse
u/meyer/tmp/mse/source/./mse_lib2.f:3957: undefined reference to `ptgetenv
 ./rela-lib/libmselinux64.a(getdat camac.o): In function
                                                                      `qetdat camac
u/meyer/tmp/mse/source/./getdat camac.f:367: undefined reference to
                                                                                     ptchkl
'u/meyer/tmp/mse/source/./getdat_camac.f:426: undefined reference to 'u/meyer/tmp/mse/source/./getdat_camac.f:490: undefined reference to 'u/meyer/tmp/mse/source/./getdat_camac.f:693: undefined reference to
                                                                                     ptdata
                                                                                     ptdata
                                                                                     ptdata64
u/meyer/tmp/mse/source/./getdat_camac.f:886: undefined reference to
                                                                                     ptdata
           [EFIT] Error 2
 chenbin@Debve efitbuild]$
```

图 2.4 EFIT 的编译错误 3

根据错误信息,发现是 src 中的部分源程序中有函数未定义,需要分别定义。

```
子程序 getecdud129. f90 中在第 2326 行插入函数定义:
    subroutine ptdata
    end
    subroutine ptdata64
    end
    subroutine shotno
    end
    子程序 efitdud129. f90 中在第 14799 行 end 后面插入函数定义:
    subroutine set_mse_beam_logic(mse_strict, max_beamOff, ok_2101t, ok_30rt)
    end
    subroutine
stark2 (ishot, atime, ktime, avem, msefitfun, tanham, sigham, rrham, zzham, a1ham, a2ham, a
3ham, a4ham, a5ham, a6ham, a7ham, iergam, msebkp, mse quiet)
    subroutine get mse spatial data(spatial avg ham)
end
    subroutine get mse calibration
end
```

子程序 modules-efit.f90 中第 99 行把 data table_dir /'/link/efit/2006/'/改为 data table_dir /'/home/chenbin/efit/green_table/'/; 把第 107-108 行 data input_dir /'/link/efit/'/和 data store_dir /'/link/store/'/改为 data input_dir /'/home/chenbin/efit/'/和 data store dir /'/home/chenbin/efit/store/'/。

以上修改源程序完成后,再编译 efit 主程序,得到如下结果。说明成功编译主程序, 生成了 efitdpgf90 可执行文件。

```
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/tearingd129.f90
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/expdataud129.f90
pgf90 -c -byteswapio -Mpreprocess -Ktrap=divz ../src/lin-dp.f90
ar r lin-dp.a lin-dp.o
ar: creating lin-dp.a
ranlib lin-dp.a
(cd ../cerlib && make FC=pqf90 mds rq.a)
make[1]: Entering directory `/home/chenbin/efitj14/cerlib'
/opt/pgi/linux86-64/18.4/bin/pgf90 -c -Mbackslash -Ktrap=divz mds_rg.f90
/opt/pgi/linux86-64/18.4/bin/pgf90 -c -Mbackslash -Ktrap=divz mds_mtanh.f90
/opt/pgi/linux86-64/18.4/bin/pgf90 -c -Mbackslash -Ktrap=divz mds_mtanh_rdts.f90
ar r mds rg.a mds rg.o mds mtanh.o mds mtanh rdts.o
ar: creating mds rg.a
ranlib mds_rg.a
make[1]: Leaving directory `/home/chenbin/efitj14/cerlib'
cp ../cerlib/mds rg.a .
(cd ../cerlib && make clean)
make[1]: Entering directory `/home/chenbin/efitj14/cerlib'
make[1]: Leaving directory `/home/chenbin/efitj14/cerlib'
pgf90 -Bstatic_pgi -o EFIT psicald.o lsolved.o subs_d_pt_linux.o modules-efit.o btom2-mods.o vas_sub1.o efitdud129.o boundud129.o chkeud129.o splineud129.o weqdud12fbasisfuncud129.o wwbasisfuncud129.o tearingd129.o expdataud129.o lin-dp.a mds_rg
../rela-lib/liblapack.a ../rela-lib/libnetcdf.a ../rela-lib/libMdsLib client.so
Built executable : efitdmpi90 -> efitdpgf90
[chenbin@Debye efitbuild]$
```

图 2.5 EFIT 的编译成功过程截图

2.2 程序设置和运行

EFIT 程序共有如下 10 个文件夹,分为前处理 efund 和 efit 两部分。efund 含有 green 和 green_table 两个文件夹,为 efit 提供计算用到的磁场,磁通系数等。其余 8 个文件夹为 efit。新版已经将只能做串行运算的老程序修改为并行计算程序。

```
efund 程序相关文件夹:
   green 有 3 个文件夹 run,src 和 u
    green/run 输入数据,如 EXL enn, mhdin.dat 等;
    green/src 计算 green 函数(磁场,磁通系数)的主程序 efundud.f90 和子程序
    green/u 存放 efundud.f90 程序编译生成的中间文件;
   green table 存放 efund 计算结果,
dprobe.dat,ec129129.ddd,ep129129.ddd,re129129.ddd,rfcoil.ddd;
   efit 主程序相关文件夹:
   cerlib 平衡计算文件夹;
   efitbuild 主程序 efitdud129.f90 编译生成的中间文件;
   FILES EFIT 输入文件 rtest 和输出文件 afile, gfile 和 fitout.dat 等;
   rela-lib 库函数;
   runefit
        存放 efit 的主程序 efitdud129.f90 和子程序;
   src
   test
```

visualizationscript Linux 生成的文件夹。

这里以 EXL50 玄龙装置(共有 6 个 PF 线圈)为例,说明如何设置等离子体平衡计算需要的参数,记录重要的修改或者容易忘记以及忽略的地方,主要是 PF 线圈的几何参数,个数等。这里是要改为只有 6 个 PF 线圈的装置,就是改为 efitj6_enn 做固定边界平衡计算。

2.2.1 修改文件

新装置做固定边界平衡计算需要做这一步,在计算区域划分 129x129 个网格点。

(1) green/run 文件夹里

mhdin.dat 和 EXL_enn 是前处理主程序 efundud.f90 用的输入文件,原来只有mhdin.dat,现在加上 EXL_enn 和程序做一点修改,就可以自动将 efundud.f90 计算结果(dprobe.dat,ec129129.ddd,ep129129.ddd,re129129.ddd,rfcoil.ddd)移动到 green_table 文件夹了。这两个文件完全一样,修改时必须同时修改。修改的内容是计算的网格参数、区域定义、PF 线圈的几何参数等。

注意:

不要增减行,因为 dprobe 文件直接根据这个文件剪切而成,如新建文件则将 runefund 文件中的 EXL_enn 替换为新文件名,新文件名不要取 mhdin.dat。使用时要保持 EXL_enn 与 mhdin.dat 内容和格式完全一样。

green/src 里修改 exparm.f90 中线圈个数等; nfcoil=6,

(2) FILES 文件夹里

rtest 文件,这是 EFIT 计算用的输入文件,修改 limiter(XLIM/YLIM),等离子体参数,边界坐标点及其个数,压强分布参数等。

(3) src (efit 计算源程序)文件夹

modules-efit.f90 修改线圈参数等.nfcoil=6, nfsum=1(缺), mfcoil=6, necoil=1, nesum=1… 共有 2 处

ecom1-mods.f90 (p431 修改线圈序号 fcid,line 459.)

getecdud129.f90 (修改 fcname 线圈个数对应 line61,磁探针 line2492,data maskpol/60*1., 16*0./其中 magpr2=magpri=60+16,磁通环 line2498,其中 nsilop=44,mask*中的数组 dimension 必须要等于 nsilop 的值)

ecom2-mods.f90 (ecurrt 被 zhangkai 注释掉) efitdud129.f90 (zhangkai 修改了部分程序) pltdatud129.f90 (zhangkai 修改读入数据格式)

2.2.2 Green 函数系数的计算

如果在 green/src 的*.f90 文件有修改,在 green/u 文件夹里(有 makefile 文件),先执行 make clean 清除*.o,*.mod 文件,再执行命令 make 生成执行文件。

在 green/run 文件夹里执行计算命令./runefund

计算自动执行 run 文件夹里 runefund 批处理文件,将结果中

dprobe.dat

rfcoil.ddd

ep129129.ddd

re129129.ddd

ec129129.ddd

共 5 个文件存放到 green table 文件夹里。这是罗正平老师写的 batch 文件。

2.2.3 EFIT 运行

在 efitbuild 文件夹里执行命令 make EFIT/make all 生成 efitdpgf90.exe 接续在 FILES 文件夹里执行命令../efitbuild/efitdpgf90 129;接着按 2 回车,按 1 回车,输入文件。

最后结果在 FILES 文件夹里 g000000.00000 gfile 文件 a000000.00000 afile 文件 x000000.00001 m000000.00001

fitout.dat 计算出的等离子体几何参数, PF 线圈的电流。

在服务器上文本编辑命令"vi 文件名","vim 文件名","emacs 文件名","gedit 文件名"都可以,也可以使用 WinSCP 编辑文件。

2.3 计算实例

图 2.6 是 EFIT 计算 ENN 玄龙的结果(双零,用 2015 linux 版 EFIT 计算)

图 2.6 计算 ENN 玄龙的结果(双零偏滤器位形,有边缘输运垒 ETB)

2.4 其它

有关程序结构,符号说明等可以参考老版本的说明,或到 EFIT 网上查阅 EFIT 网址: https://fusion.gat.com/theory/Efit

```
EFIT Fortran 程序中的符号
green/src 中 nio.f90
nin=11,nout=10,ntty=5,nrsppc=25,nrspfc=26,ncontr=35
Green\src\exparm.f90
!
! magpr2 total number of magnetic probes (magpri in EFIT)
! nacoil number of advance divertor coils
```

```
necoil number of ohmic heating coils
!
   nesum number of o.h. coil groups
   nfcoil number of p.f. coils
!
!
   nfsum number of p.f. coil groups
  nvsum number of vessel segement groups
              number of partial rogowski loops
! nrogow
  nsilop number of flux loops
ļ
   nvesel number of vessel segements
Src\modules-efit.f90
ļ
               number of magnetic detectors at toroidal angle "1"
!
   magpri67
               number of magnetic detectors at toroidal angle "2"
  magpri322
  magprirdp number of magnetic detectors for radiative divertor
!
   magpri
             total number of magnetic detectors
             number of pressure data points
   mpress
   mse315
ļ
   mse45
! mse15
! mse210
! nstark
            total number of mse channels
!
   ngam vars, ngam u, ngam w dimensions of mse spatial averaging data
!heng necein total number of ece channels
   nacoil
           number of advance divertor coils
             dimension of poloidal sxr, first part of xangle,zxray,rxray
!
   nangle
             dimension of toroidal xray, last part of xangle,zxray,rxray
!
   ntangle
  necoil
            number of ohmic heating coils
!
  nesum number of p.f. coil groups
   nfbcoil
             (obsolete)
!
   nfcoil
           number of p.f. coils
   nlimbd number of 'outer' limiter points
            maximum number of limiter points
ļ
   nlimit
            number of flux loops
   nsilop
   nvesel
            number of vessel segements
更改装置做自由边界计算
```

EFIT(2002 版)修改 exparm.inc 和 expath.inc 中 nfcoil; efund 中的输入文件 mhdin.dat FILES 中的输入文件 rtest 就可以正常运行。