

ComparativeMarkerSelection Documentation

Module name: ComparativeMarkerSelection

Description: Computes significance values for features using several metrics,

including FDR(BH), Q Value,, FWER, Feature-Specific P-Value,

and Bonferroni.

Joshua Gould, Gad Getz, Stefano Monti (Broad Institute) **Author:**

gp-help@broad.mit.edu

The ComparativeMarkerSelection module includes several approaches to determine the features that are most closely correlated with a class template and the significance of that correlation. The module outputs a file containing the following columns:

- 1. Rank The rank of the feature within the dataset based on the value of the test statistic. If a two-sided p value is computed, the rank is with respect to the absolute value of the statistic.
- 2. Feature The feature name.
- 3. Score The value of the test statistic.
- 4. **Feature P** The feature-specific p value based on permutation testing.
- 5. FWER (Family Wise Error Rate) the probability of at least one null hypothesis/feature having a score better than or equal to the observed one. This measure is not featurespecific.
- 6. FDR (BH) An estimate of the false discovery rate by the Benjamini and Hochberg procedure (3). The FDR is the expected proportion of erroneous rejections among all rejections.
- 7. Bonferroni The value of the Bonferroni correction applied to the feature specific p value.
- 8. Q Value An estimate of the FDR using the procedure developed by Storey and Tibshirani (4).
- **9.** maxT The adjusted p-values for the maxT multiple testing procedure described in (5), which provides strong control of the FWER.

The results from the ComparativeMarkerSelection algorithm can be viewed with the ComparativeMarkerSelectionViewer.

Parameters:

Name	Description
input filename	The input fileres, .gct, .odf type=Dataset
cls filename	The class filecls
confound variable cls	The class file containing the confounding variablecls
filename	
test direction	The test to perform (up-regulated for class 0, up-regulated for class 1, two-sided)
test statistic	The statistic to use
min std	The minimum standard deviation if test statistic is T-Test (min std)
number of permutations	The number of permutations to perform
complete	Whether to perform all possible permutations

balanced Whether to perform balanced permutations random seed The seed of the random number generator

smooth p values Whether to smooth p-values

significance booster Whether to attempt to increase the p-value confidence for

significant features

theta Value for removing features when using significance booster

Return Value:

An odf file of type ComparativeMarkerSelection

References:

1. Golub, T.R., et al., *Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression.* Science, 1999. **286**(5439): p. 531-537.

- 2. Slonim, D.K., et al., Class Prediction and Discovery Using Gene Expression Data, in RECOMB 2000: The Fourth Annual International Conference on Research in Computational Molecular Biology. 2000: Tokyo, Japan. p. 263-272.
- 3. Benjamini, Y. and Y. Hochberg, *Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.* Journal of the Royal Statistical Society. Series B (Methodological), 1995. **57**(1): p. 289-300.
- 4. Storey, J.D. and R. Tibshirani, *Statistical significance for genomewide studies*. PNAS, 2003. **100**(16): p. 9440-9445.
- 5. Westfall, P.H. and S.S. Young, *Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment*. Wiley Series in Probability and Statistics. 1993, New York: Wiley.

Platform dependencies:

Task type: Gene List Selection

CPU type: any
OS: any
Java JVM level: 1.4
Language: Java, R