Bootstrapping in R – A Tutorial

Eric B. Putman

Department of Ecosystem Science and Management

Bootstrapping

- Resampling technique with replacement
 - "The population is to the sample as the sample is to the bootstrap samples"
- Allows estimation of the sampling distribution of a statistic
 - Confidence intervals, bias, variance, etc.

Procedure

- Resample a dataset a given number of times
- Calculate a statistic from each sample
- Accumulate the results and calculate sample distribution of the statistic

Objective

- Calculate a series of linear regressions to determine which variable or combination of variables best explains the volume of black cherry trees
 - Comparisons made using coefficient of determination (R-squared)
- Bootstrap the linear regressions (for each bootstrap sample) to determine 95% confidence intervals of their respective Rsquared values

Data

- "trees" dataset (included in R)
- Volume (cubic feet), girth (diameter in inches, measured at breast height), and height (feet) measurements of 31 felled black cherry trees

help(trees)

Code Walkthrough

- Load the boot library
 - Contains functions to conduct bootstrapping

```
library(boot)
```

Investigate the "trees" dataset

```
head(trees)
```

```
Girth Height Volume
  8.3
          70
               10.3
  8.6
          65
               10.3
8.8
               10.2
          63
10.5
          72
               16.4
10.7
               18.8
          81
10.8
          83
               19.7
```


Explore relationships between volume, girth, and height

```
plot(trees$Volume~trees$Height, main = 'Black Cherry Tree Volume
Relationship', xlab = 'Height', ylab = 'Volume', pch = 16, col =
'blue')
```

```
plot(trees$Volume~trees$Girth, main = 'Black Cherry Tree Volume
Relationship', xlab = 'Girth', ylab = 'Volume', pch = 16, col =
'blue')
```

Black Cherry Tree Volume Relationship

Black Cherry Tree Volume Relationship

- Create a function that will calculate a statistic (or multiple statistics) on each bootstrap sample
- Function syntax in R

```
foo = function(parameter, parameter, marameter,) {
  bar = *do something to data passed as parameters*
  return(bar)
}
```


 Statistic-calculation function for the boot package takes two specific parameters (simple example) and will be applied to each bootstrap sample

```
sample_mean = function(data, indices){
  sample = data[indices, ]
  bar = mean(sample)
  return(bar)
}
```

Calculate the mean of the bootstrap sample

Creates the bootstrap sample (i.e., subset the provided data by the "indices" parameter). "indices" is automatically provided by the "boot" function; this is the sampling with replacement portion of bootstrapping

Or, more concisely:

```
sample_mean = function(data, indices) {
  return(mean(data[indices]))
}
```


- Create a function to calculate linear regressions of several variable combinations and return their respective R-squared values
 - Height only,
 - Girth only
 - Girth / height ratio
 - Girth and height
 - Girth, height, and girth / height ratio
- Note that we are calculating (and returning) multiple statistics simultaneously

These statistics will be calculated for each bootstrap sample

```
volume_estimate = function(data, indices) {
    d = data[indices, ]
    H_relationship = lm(d$Volume~d$Height, data = d)
    H_r_sq = summary(H_relationship)$r.square
    G_relationship = lm(d$Volume~d$Girth, data = d)
    G_r_sq = summary(G_relationship)$r.square
    G_H_ratio = d$Girth / d$Height
    G_H_relationship = lm(d$Volume~G_H_ratio, data = d)
    G_H_r_sq = summary(G_H_relationship)$r.square
    combined_relationship = lm(d$Volume~d$Height + d$Girth, data = d)
    combined_r_sq = summary(combined_relationship)$r.square
    combined_2_relationship = lm(d$Volume~d$Height + d$Girth + G_H_ratio, data = d)
    combined_2_r_sq = summary(combined_2_relationship)$r.square
    relationships = c(H_r_sq, G_r_sq, G_H_r_sq, combined_r_sq, combined_2_r_sq)
    return(relationships)
}
```


Conduct the bootstrapping

- Use "boot" function

results = boot(data = trees, statistic = volume_estimate, R = 5000)

Dataset from which statistics will be calculated

Function we created to calculate statistics on each bootstrap sample

Number of bootstrap samples (i.e., iterations)

View some calculated statistics of boot object

print(results)

ORDINARY NONPARAMETRIC BOOTSTRAP

```
call:
boot(data = trees, statistic = volume_estimate, R = 5000)
```

Bootstrap Statistics :

original bias std. error t1* 0.3579026 0.0024051943 0.12025420 t2* 0.9353199 0.0005495767 0.01751679 t3* 0.7309204 0.0025156062 0.08064029 t4* 0.9479500 0.0032851681 0.01210484 t5* 0.9732894 0.0005447157 0.01042662

t* corresponds to index of "relationships" vector (e.g., t1* refers to height only R-squared value

Plot the boot objects

- Provides histogram and Q-Q plot

$$plot(results, index = 1)$$

The index parameter corresponds to the indices of the vector ("relationships") returned by the "volume_estimation" function (e.g., index 1 is the first item in the vector, which is the height only R-squared value)

Height only R-squared distribution:

- Calculate 95% confidence intervals for each of the bootstrapped R-squared values
 - Using "Bias Corrected and Accelerated" (BCa) method

Specify index corresponding to position in vector for each statistic

```
confidence_interval_H = boot.ci(results, index = 1, conf = 0.95, type = 'bca')
print(confidence_interval_H)
ci_H = confidence_interval_H$bca[ , c(4, 5)]
print(ci_H)
```

Store confidence intervals in a variable in order to plot later

```
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates

CALL:
boot.ci(boot.out = results, conf = 0.95, type = "bca", index = 1)

Intervals:
Level BCa
95% ( 0.1415,  0.6123 )
Calculations and Intervals on Original Scale
> ci_H = confidence_interval_H$bca[ , c(4, 5)]
> print(ci_H)

0.1414861 0.6122950
```


- View histograms (frequency and density)
- Add kernel density line (blue)
- Add 95% confidence intervals (red)

```
hist(results$t[,1], main = 'Coefficient of Determination: Height', xlab = 'R-
    Squared', col = 'grey')
hist(results$t[,1], main = 'Coefficient of Determination: Height', xlab = 'R-
    Squared', col = 'grey', prob = T)
lines(density(results$t[,1]), col = 'blue')
abline(v = ci_H, col = 'red')
```

Note syntax to call desired sample distribution

Can also call the entire sample distribution to further manipulate, save, etc.

results\$t[, 1]————

Access the sample statistics of each bootstrap sample

R-squared values of height only linear regression:

Subset to particular statistic; first column of the boot object "t" corresponds to the first item in the vector returned by the "volume_esitmate" function

```
> results$t[,1]
```

```
[1] 0.207990443 0.363816239 0.579971818 0.423443272 0.336572704 0.417656521 0.251820295 0.343777274 [9] 0.270477273 0.480302587 0.564330760 0.474092665 0.174531538 0.300817972 0.502245182 0.359519760 [17] 0.367795668 0.435299147 0.243218209 0.180413913 0.428146329 0.568726861 0.399806911 0.195195281 [25] 0.255877036 0.416366115 0.315921685 0.541198595 0.272757355 0.628962441 0.350397269 0.192770891 [33] 0.266364939 0.310743438 0.613576574 0.696147632 0.488130237 0.388040468 0.344063541 0.399933017 [41] 0.255363943 0.395594597 0.318028661 0.391665068 0.356077907 0.188440159 0.421280357 0.072206043 [49] 0.449664202 0.462657862 0.413759773 0.446951604 0.369800075 0.468153637 0.182068140 0.375718017 [57] 0.151727603 0.237096695 0.293074927 0.476329686 0.308111480 0.218648993 0.265019573 0.204667380 [65] 0.651896672 0.639127085 0.478180644 0.315661237 0.630257581 0.426617868 0.352848563 0.333865284
```


Results

- Linear regression with explanatory variables of girth, height, and girth / height ratio provided best coefficients of determination to model the volume of black cherry trees
- 5,000 sample bootstrap allowed estimation of R-squared sampling distribution
 - Could have also bootstrapped values of coefficients, additional models, etc.

Estimating Black Cherry Tree Volume - Linear Regression Coefficients of Determination				
	Original Value	Bias	Std. Error	95% Confidence Interval
Height Only	0.3579026	0.002405194	0.1202542	0.1414861 - 0.6122950
Girth Only	0.9353199	0.000549577	0.01751679	0.8770796 - 0.9582597
Girth / Height	0.7309204	0.002515606	0.08064029	0.4782823 - 0.8421099
Girth and Height	0.94795	0.003285168	0.01210484	0.9052392 - 0.9647783
Girth, Height, and Girth / Height	0.9732894	0.000544716	0.01042662	0.9418756 - 0.9868528

References

http://www.statmethods.net/advstats/bootstrapping.html
http://www.mayin.org/ajayshah/KB/R/documents/boot.html
http://www.r-bloggers.com/bootstrap-example/
http://cran.r-project.org/web/packages/boot/boot.pdf

