• ¹³C核磁共振与¹H核磁共振的比较:

• ¹³C核磁共振与¹H核磁共振的比较:

• ¹³C核磁共振的灵敏度差:

$$\left(\frac{\gamma_{\rm H}}{\gamma_{\rm C}}\right)^3 = 64$$

- ❖ 由于磁旋比的差异,¹H比¹³C灵敏度在理论上要高64x倍,
- ◆ 由于¹³C的自然丰度只有1.1% ,¹H的相对灵敏度是¹³C的 ~6,400 x

- ¹³C核磁共振的化学位移大:
- ❖ 范围:0~250ppm;核对周围化学环境敏感,重叠少
- ❖ 主要取决与¹3C原子的杂化态和取代基的电负性:

Increasing electronegativity

Q:为什么¹³C的化学位移大?

- 13C核磁共振的化学位移主要取决于杂化态和取代基:
- ❖ 烷烃中的¹³C的化学位移:
 - → 碳数n >4 端甲基 δ_{CH3} = 13 14
 - $\rightarrow \delta_{\text{C}} > \delta_{\text{CH}} > \delta_{\text{CH2}} > \delta_{\text{CH3}}$
 - \rightarrow 邻碳上取代基增多 $\delta_{\rm C}$ 越大

- 13C核磁共振的化学位移主要取决于杂化态和取代基:
- ❖ 烯烃中的¹³C的化学位移:
 - → $\delta_{\rm C}$ = 100 150 (成对出现)
 - → 端碳δ _{=CH2} ≈ 110
 - \rightarrow 邻碳上取代基增多 $\delta_{\rm C}$ 越大

- 13C核磁共振的化学位移主要取决于杂化态和取代基:
- ❖ 炔烃中的¹³C的化学位移:

$$\rightarrow \delta_{\rm C}$$
 = 65 - 90 (成对出现)

$$H_3C-CH_2-C\equiv CH$$
 $H_3C-C\equiv C-CH_3$ 84.7 67.0 73.6 $H_3C-CH_2-CH_2-CH_2-C\equiv CH$ 12.9 21.2 29.9 17.4 82.8 67.4 $HC\equiv C-OCH_2CH_3$ $H_3C-C\equiv C-OCH_3$ 23.9 89.4 28.0 88.4

• ¹³C核磁共振能够一定程度上鉴定功能团:

• ¹³C核磁共振与红外光谱的功能团信息相佐证:

• ¹³C核磁共振的谱图偶合严重, 谱图复杂:

Q:相邻的C是否偶合?

A: ¹³C-¹³C偶合的几率很小(¹³C天然丰度1.1%)

• ¹³C核磁共振的谱图偶合严重, 谱图复杂:

• ¹³C核磁共振的谱图通常需要去偶:

对¹H去偶谱图:

未去偶谱图:

- 什么是去偶?
- ❖ 以1H谱为例:
- → 由于受到6个 -CH₂- 的偶合, CH 的信号分成7个裂分峰, \$\frac{1}{2}\fr
- → 如针对 -CH₂- 去偶:

CH(CH₂CH₃)₃

→ 如针对 CH 去偶:

- 怎么理解去偶的物理原理?
- ❖ 施加一个针对¹H的额外的电磁波;
- → 使¹H原子核的净磁矩保持在xy平面,并趋于零;
 - → 从而失去与¹³C核的相互作用;
- ❖ 从量子物理学角度理解,额外的电磁波 使¹H原子在两种自旋态中快速转换;
- → 从而与¹³C原子核之间的偶合关系消失

• Broad-band decoupling: 宽频去偶

Channel 1 Observe 13C

Channel 2
BB decoupling
1H

Q:为什么对1H的饱和照射不会影响到13C?

• 全波段去偶与窄频去偶:

Completely ¹H coupled

Completely ¹H decoupled (WALTZ)

¹H decoupled at single (10 ppm) frequency

Only partial "collapse" of some spin systems

联合解谱练习:

联合解谱练习:

- ❖ 不饱和度:1
- ◆ ¹³C : 178.6ppm → -C=O
- ❖ IR: 1717 → -C=O
- ⁴ H: 10.6ppm → 可交换
 氢 → 杂原子氢 → 有可能是羧酸
 - 2.95ppm, 3.6ppm 各 三重峰 → -CH2-CH2

