Bezier Extraction

Figure 1. A cubic NURBS curve: (a) the curve and its control net and (b) the basis functions of the curve. The knot vector for the curve is $\{0,0,0,0,1,2,3,4,4,4,4\}$.

Figure 2. The sequence of basis functions created by inserting the knots $\{1, 1, 2, 2, 3, 3\}$ into the knot vector for the curve in Figure 1. The final set of basis functions in (f) is a collection of piecewise cubic Bézier basis functions. The numbers in (f) denote the numbering scheme of the Bézier basis functions.

Localizing to the first nonempty knot span, or element:

Figure 3. The basis functions over the knot span [0, 1[from (a) the NURBS basis in Figure 1 and (b) the Bernstein basis in Figure 2(f).

Localizing to the first element:

(17.)	`	1	0	0	0	0	0	0	0	0	0	0	0	0
N_2		0	1	$\frac{1}{2}$	$\frac{1}{4}$	0				0				0
N_2 N_3		0	0	$\frac{1}{2}$	$\frac{7}{12}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	0	0	0	0	0	0
$\begin{cases} N_4 \end{cases}$	=	0	0	0	$\frac{7}{12}$ $\frac{1}{6}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	0	0	0
N_5		0			0	0	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{7}{12}$	$\frac{1}{2}$	0	0
$\begin{bmatrix} N_6 \\ N_7 \end{bmatrix}$		0	0	0				0			$\frac{1}{4}$			0
(N_7)		0	0	0	0			0		0				1

 B_5

 B_6

 B_7

 B_8

B9

 B_{11}

Localizing to the first element:

Local *Element* Extraction Operator

 B_2

 B_3

 B_4

 B_5

 B_6

 B_7

 B_8

B9

 B_{10}

 B_{11}

(<i>M.</i>)	1	0	0	0	0	0	0	0	0	0	0	0	0
	N_2	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	0	0	0	0	0	0	0	0
İ	N_2	0			$\frac{7}{12}$		$\frac{1}{3}$	$\frac{1}{6}$	0	0	0	0	0	0
Į			0	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$				0
	N_5			0							$\frac{7}{12}$			0
İ	No													
I	$\begin{bmatrix} N_6 \\ N_7 \end{bmatrix}$	0	0	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$		0
l	1 V 7 J		0	0	0	0	0	0	0	0	0	0	0	1

Figure 4. After knot insertion the original basis functions can be written as a linear combination of the basis functions for the Bézier elements.

Localizing to the second element:

	N_1		\[1	0	0	0	0	0	0	0	0	0	0	0	0
	N_2				$\frac{1}{2}$						0	0	0	0	0
	N_3		0	0	$\frac{1}{2}$	$\frac{7}{12}$	$\frac{2}{3}$	$\frac{1}{3}$	<u>1</u>	0	0	0	0	0	0
}	N_4	=	0	0	0	<u>1</u> 6	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	0	0	0
	N_5		0	0	0							$\frac{7}{12}$			0
	N_6		0	0	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	1	0
	N_7		0	0	0	0	0	0	0	0	0	0	0	0	1

 B_2

 B_3

 B_4

 B_5

 B_6

 B_7

 B_8

 B_9

 B_{10}

 B_{11}

 B_{12}

Localizing to the third element:

ſ	N_1		Γ1	0	0	0	0	0	0	0	0	0	0	0	$\lceil 0 \rceil$
	N_2		0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	0	0	0	0	0	0	0	0
	N_3		0	0	$\frac{1}{2}$	$\frac{7}{12}$	$\frac{2}{3}$	$\frac{1}{3}$	<u>1</u>	0	0	0	0	0	0
{	N_4	=	0	0	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	0	0	0
	N_5		0	0	0	0	0	0	<u>1</u>	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{7}{12}$	$\frac{1}{2}$	0	0
	N_6		0	0	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	1	0
	N_7		0	0	0	0	0	0	0	0	0	0	0	0	1_

 B_2

 B_3

 B_4

 B_5

 B_6

 B_7

B9

 B_{11}

 B_{12}

Localizing to the fourth element:

(N_1))	Γ1	0	0	0	0	0	0	0	0	0	0	0	0
N_2		0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	0	0	0	0	0	0	0	0
N_3		0	0	$\frac{1}{2}$	$\frac{7}{12}$	$\frac{2}{3}$	$\frac{1}{3}$	<u>1</u>	0	0	0	0	0	0
N_4	=	0	0	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	<u>1</u>	0	0	0
N_5		0	0	0	0									0
N_6		0	0	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	1	0
N_7		0	0	0	0	0	0	0	0	0	0	0	0	1

 B_7

 B_9

$$\begin{cases}
N_1^1 \\
N_2^1 \\
N_3^1 \\
N_4^1
\end{cases} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{7}{12} \\
0 & 0 & 0 & \frac{1}{6}
\end{bmatrix}
\begin{cases}
B_1^1 \\
B_2^1 \\
B_3^1 \\
B_4^1
\end{cases} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
N_1^2 \\
N_2^2 \\
N_3^2 \\
N_4^2
\end{cases} = \begin{bmatrix}
\frac{1}{4} & 0 & 0 & 0 \\
\frac{7}{12} & \frac{2}{3} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
B_1^2 \\
B_2^2 \\
B_3^2 \\
B_4^2
\end{cases}$$

$$\begin{cases}
N_1^3 \\
N_2^3 \\
N_3^3 \\
N_4^3
\end{cases} = \begin{bmatrix}
\frac{1}{6} & 0 & 0 & 0 \\
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3} & \frac{2}{3} & \frac{7}{12} \\
0 & 0 & 0 & \frac{1}{4}
\end{bmatrix} \begin{cases}
B_1^3 \\
B_2^3 \\
B_3^3 \\
B_4^3
\end{cases} = \begin{bmatrix}
N_1^4 \\
N_2^4 \\
N_3^4 \\
N_4^4
\end{cases} = \begin{bmatrix}
\frac{1}{6} & 0 & 0 & 0 \\
\frac{7}{12} & \frac{1}{2} & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{cases}
B_1^4 \\
B_2^4 \\
B_3^4 \\
B_4^4
\end{cases}$$

$$\begin{bmatrix}
N_1^1 \\
N_2^1 \\
N_3^1 \\
N_4^1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{7}{12} \\
0 & 0 & 0 & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
B_1^1 \\
B_2^1 \\
B_3^1 \\
B_4^1
\end{bmatrix}
\begin{bmatrix}
N_1^2 \\
N_2^2 \\
N_3^2 \\
N_4^2
\end{bmatrix} = \begin{bmatrix}
\frac{1}{4} & 0 & 0 & 0 \\
\frac{7}{12} & \frac{2}{3} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & 0 & 0 & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
B_1^2 \\
B_2^2 \\
B_3^2 \\
B_4^2
\end{bmatrix}$$

