

Deep Biaffine Attention for Neural Dependency Parsing

Timothy Dozat Christopher D. Manning

Stanford University

Goals

- Much research has been devoted to developing neural dependency parsers with complex, task-specific architecture
- ► Typical approach: use specialized neural networks to predict discrete actions in a dedicated, transition-based parsing algorithm SyntaxNet AKA Parsey McParseface (Andor et al., 2016): Feedforward network with beam search and CRF loss Ablated RNN Grammar (Kuncoro et al., 2016): Stack-LSTM with bidirectional LSTM for phrase composition (SOTA)
- ► Can we get competitive (or even superior) parsing results with a simple architecture using general-purpose components?

Dependency Parsing

Automatically annotate sentences, focusing on the functional role each phrase plays

Head: Edge source, more contentful role (predicate \rightarrow arguments) Dependent: Edge target

Label: Edge type (Nominal SUBJect, Adjectival CLause)

- Particularly useful for NLU tasks, such as semantic parsing or knowledge base population
- Graph-based approach to parsing: assign weights to each possible edge, construct a maximum spanning tree

LSTM

Step one: BiLSTM over the sequence of word and part of speech tag embeddings, take all topmost LSTM states R (= stack $_{i=1}^{n}(\mathbf{r}_{i})$)

Variable-class classification (= attention)

- We want to predict heads (classes) given dependents (inputs), but the number of possible heads changes from sentence to sentence
- ▶ Thus, we want to predict $P(y_i^{(edge)} = j | \mathbf{r}_i; \mathbf{r}_j)$
- ightharpoonup softmax $(RU^{(1)}\mathbf{r}_i+R\mathbf{u}^{(2)})$ achieves this naturally

- \blacktriangleright After deciding on an edge from j to i, we want to predict the label
- lacksquare This time, we want to predict $P(y^{(label)} = l | \mathbf{r}_i, \mathbf{r}_{y^{(edge)}})$
- lackbox We can use softmax $(\mathbf{r}_{y_i}^{ op}\mathbf{U}^{(1)}\mathbf{r}_i+U^{(2)}(\mathbf{r}_{y_i}\oplus\mathbf{r}_i)+\mathbf{b})$ to model this $P(l|\mathbf{r}_i, \mathbf{r}_{y_i^{(edge)}}) \propto \exp{(\mathbf{r}_i^{\mathsf{T}} U_l^{(1)} \mathbf{r}_{y_i})} \exp{(\mathbf{r}_i^{\mathsf{T}} \mathbf{u}_l^{(2)})} \exp{(\mathbf{r}_j^{\mathsf{T}} \mathbf{u}_l^{(3)})} \exp{(b_l)}$
- Closely related to linear models with interactions

scores ~ head.vector * dep.vector

Practical modifications

- Everything is so big!
- ▶ We can get more control over the tradeoffs between speed, overfitting, and underfitting by shrinking \mathbf{r}_i with smaller MLPs before the biaffine output layers (deep biaffine model as opposed to shallow biaffine)
- Result: four representations for each word
- Naturally reflects the intuition that the relationships we want to capture are asymmetric

Final model (edge scorer)

Hyperparameters

Param	Value	Param	Value
Embedding size	100	Embedding dropout	33%
LSTM size	400	LSTM dropout	33%
Edge MLP size	500	Edge MLP dropout	33%
Label MLP size	100	Label MLP dropout	33%
LSTM depth	3	MLP depth	1
α	$2e^{-3}$	eta_1 , eta_2	.9
Annealing	$.75^{\frac{t}{5000}}$	t_{max}	50,000

- ightharpoonup Relatively large network (other models use \sim 100 LSTM dims)
- Highly regularized with dropout
- Reducing Adam's β_2 from .999 to .9 significantly improved performance (p < .05)

Related work

Transition-based

Nivre et al. (2006): Feature-based

Chen and Manning (2014): First successful neural parser Andor et al. (2016): Extend with beam search / CRF loss Kuncoro et al. (2016): Extend with LSTMs (SOTA)

Graph-based McDonald and Pereira (2006): Feature-based Kiperwasser and Goldberg (2016): First neural graph-based parser Cheng et al. (2016): Keep track of previous decisions Hashimoto et al. (2016): Jointly learn tagging & chunking

PTB Results

		SD 3	3.3.0	CI	В
Type	Model	UAS	LAS	UAS	LAS
Transition	Ballesteros et al. (2016)	93.6	91.4	87.7	86.2
	Andor et al. (2016)	94.6	92.8	_	_
	Kuncoro et al. (2016)	95.8	94.6	_	_
Graph	Kiperwasser and Goldberg (2016)	93.9	91.9	87.6	86.1
	Cheng et al. (2016)	94.1	91.5	88.1	85.7
	Hashimoto et al. (2016)	94.7	92.9	_	_
	Deep biaffine	95.7	94.1	89.3	88.2

CoNLL 09 Results

Catalan Chinese Czech UAS LAS UAS LAS UAS LAS Model

92.7 89.8 84.7 80.9 88.9 84.6 Andor et al. Deep biaffine 94.7 92.0 88.9 85.4 92.1 87.4

English German Spanish UAS LAS UAS LAS UAS LAS Model

Andor et al. 93.2 91.2 90.9 89.2 92.6 90.0 Deep biaffine 95.2 93.2 93.5 91.4 94.3 91.7

Affect of classifier type (SD 3.5.0)

Classifier UAS LAS Sents/sec Model 95.8 94.2 410.9 Deep biaffine 95.7 94.0* 299.0 Shallow biaffine Shallow b. (50% MLP dropout) 95.7 94.1* 300.1 Shallow b. (300d LSTM) 95.6* 93.9* 373.2 95.5* 93.9* 367.4 Traditional attention

(Statistical significances are marked with an asterisk)

Conclusion

- Our simple, straightforward parser uses only neural components, effectively no task-specific architecture
- Substantially outperforms most more complex neural transition-based parsers
- Substantially outperforms all other neural graph-based parsers
- ► The biaffine approach to attention is theoretically justified, here beats the more traditional approach
- Adding final MLP layers to the LSTM helps to maximize speed and performance, captures head-dependent asymmetries
- ► This work provides a fast, simple, high-performing baseline against which to test more complex architectures

References

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and Collins, M. (2016). Globally normalized transition-based neural networks. In Association for Computational Linguistics.

Ballesteros, M., Goldberg, Y., Dyer, C., and Smith, N. A. (2016). Training with exploration improves a greedy stack-LSTM parser. Proceedings of the conference on empirical methods in natural language processing. Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural networks. In *Proceedings of the*

conference on empirical methods in natural language processing, pages 740-750.

Cheng, H., Fang, H., He, X., Gao, J., and Deng, L. (2016). Bi-directional attention with agreement for dependency parsing. arXiv preprint arXiv:1608.02076.

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. (2016). A joint many-task model: Growing a neural network for multiple nlp tasks. arXiv preprint arXiv:1611.01587.

Kiperwasser, E. and Goldberg, Y. (2016). Simple and accurate dependency parsing using bidirectional LSTM feature representations. Transactions of the Association for Computational Linguistics, 4:313–327.

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., Neubig, G., and Smith, N. A. (2016). What do recurrent neural network grammars learn about syntax? *CoRR*, abs/1611.05774.

McDonald, R. T. and Pereira, F. C. (2006). Online learning of approximate dependency parsing algorithms. In EACL. Nivre, J., Hall, J., and Nilsson, J. (2006). Maltparser: A data-driven parser-generator for dependency parsing. In Proceedings of *LREC*, volume 6, pages 2216–2219.