1/42 TRANSLATED PROTEIN - NUCLEOTIDE 65 TO 598

- 1 AATTCGGTACGAGGCTGGGGTTCAGGCGGGCAGCAGCTGCAGGCT
- 46 GACCTTGCAGCTTGGCGGAATGGACTGGCCTCACAACCTGCTGTT MetAspTrpProHisAsnLeuLeuPh
- 91 TCTTCTTACCATTTCCATCTTCCTGGGGCTGGGCAGCCAGGAGCC eLeuLeuThrlleSerIlePheLeuGlyLeuGlySerGlnGluPr
- 136 CCAAAAGCAAGAGGAAGGGGCCAAGGGCCCTGGCCTG oGlnLysGlnGluGluGlyAlaArgAlaAlaTrpAlaLeuAlaTr
- 181 GCCTCACCAGGTGCCACTGGACCTGGTGTCACGGATGAAACCGTA pProHisGlnValProLeuAspLeuValSerArgMetLysProTy
- 226 TGCCCGCATGGAGGAGTATGAGAGGAACATCGAGGAGATGGTGGC rAlaArgMetGluGluTyrGluArgAsnIleGluGluMetValAl
- 271 CCAGCTGAGGAACAGCTCAGAGCTGGCCCAGAGAAAGTGTGAGGT aGlnLeuArgAsnSerSerGluLeuAlaGlnArgLysCysGluVa
- 316 CAACTTGCAGCTGTGGATGTCCAACAAGAGGGGCCTGTCTCCCTG
 lAsnLeuGlnLeuTrpMetSerAsnLysArgSerLeuSerProTr
- 361 GGGCTACAGCATCAACCACGACCCCAGCCGTATCCCCGTGGACCT pGlyTyrSerIleAsnHisAspProSerArgIleProValAspLe
- 406 GCCGGAGGCACGGTGCCTGTGTCTGGGCTGTGTGAACCCCTTCAC uProGluAlaArgCysLeuCysLeuGlyCysValAsnProPheTh
- 451 CATGCAGGAGGACCGCAGCATGGTGAGCGTGCCGGTGTTCAGCCA rMetGlnGluAspArgSerMetValSerValProValPheSerGl
- 496 GGTTCCTGTGCGCCGCCGCCTCTGCCCGCCACCGCCCCGCACAGG nValProValArgArgArgLeuCysProProProProArgThrGl
- 541 GCCTTGCCGCCAGCGCGCAGTCATGGAGACCATCGCTGTGGGCTG yProCysArgGlnArgAlaValMetGluThrIleAlaValGlyCy
- 586 CACCTGCATCTTCTGAATCACCTGGCCCAGAAGCCAGGCCAGCAG sThrCysllePhe
- 631 CCCGAGACCATCCTCCTTGCACCTTTGTGCCAAGAAAGGCCTATG
- 676 AAAAGTAAACACTGACTTTTGAAAGCAAAAAAACCCCAGGAAGCT
- 721 TCGGCTGGGTTCCAGACACATGGAAAACAGACTTCCTGTGCCAGC
- 766 GCATGCTGATCCCTTCAGCAGCCGCTTCTCCACCCTTGGGGCTGC
- 811 TCTCCAGCACCTGGCAGTGTCCAGAGCGGATAGGGGCGCCGTGTT
- 856 TGGTGAATGAGTGCACAGACGCCTCTAGGGGGAGCCCAAGATCTG
- 901 CCTCCTGCCTCCTCTATTATGCCTTCATAGGTGGGTCAGAACAA
- 946 AGAATTCCTTATCAACCTCCCGGGTCCCCCACTGCCAATCACCCA
- 991 CCTCCATTCTACCCTCTACAGCTGCCCCTTATCCCCCAAAGTCCT
- 1036 GAAATTTTGCTTGGGTCACCTGCTCCAGGAGGCAGAGTTCCCATG
- 1081 AAGGGTATTAAACGTCTACTACACTGC

TRANSLATED PROTEIN - NUCLEOTIDE 92 TO 1123

- 91 CATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGC MetLysThrIleGlnProLysMetHlsAsnSerIleSerTrpAl
- 136 AATCTTCACGGGGCTGGCTGCTCTGTGTCTCTCCAAGGAGTGCC allePheThrGlyLeuAlaAlaLeuCysLeuPheGlnGlyValPr
- 181 CGTGCGCAGCGGAGATGCCACCTTCCCCAAAGCTATGGACAACGT oValArgSerGlyAspAlaThrPheProLysAlaMetAspAsnVa
- 226 GACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTATTGA lThrValArqGlnGlyGluSerAlaThrLeuArgCysThrIleAs
- 271 CAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCT pAsnArgValThrArgvalAlaTrpLeuAsnArgSerThrIleLe
- 316 CTATGCTGGGAATGACAAGTGGTGCCTGGATCCTCGCGTGGTCCT uTyrAlaGlyAsnAspLysTrpCysLeuAspProArgValValLe
- 361 TCTGAGCAACACCCAAACGCAGTACAGCATCGAGATCCAGAACGT uLeuSerAsnThrGlnThrGlnTyrSerIleGluIleGlnAsnVa
- 451 CAACCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATC pAsnHisProLysThrSerArgValHisLeuIleValGlnValSe
- 496 TCCCAAAATTGTAGAGATTTCTTCAGATATCTCCATTAATGAAGG rProLysileValGluIleSerSerAspIleSerIleAsnGluGl
- 541 GAACAATATTAGCCTCACCTGCATAGCAACTGGTAGACCAGAGCC yAsnAsnIleSerLeuThrCysIleAlaThrGlyArgProGluPr
- 586 TACGGTTACTTGGAGACACATCTCTCCCAAAGCGGTTGGCTTTGT oThrValThrTrpArgHisIleSerProLysAlaValGlyPheVa
- 631 GAGTGAAGACGAATACTTGGAAATTCAGGGCATCACCCGGGAGCA lSerGluAspGluTyrLeuGluIleGlnGlyIleThrArgGluGl
- 676 GTCAGGGGACTACGAGTGCAGTGCCTCCAATGACGTGGCCGCCC nSerGlyAspTyrGluCysSerAlaSerAsnAspValAlaAlaPr

- 721 CGTGGTACGGAGAGTAAAGGTCACCGTGAACTATCCACCATACAT oValValArgArgValLysValThrValAsnTyrProProTyrI1
- 766 TTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGAC eSerGluAlaLysGlyThrGlyValProValGlyGlnLysGlyTh
- 811 ACTGCAGTGTGAAGCCTCAGCAGTCCCCTCAGCAGAATTCCAGTG rLeuGlnCysGluAlaSerAlaValProSerAlaGluPheGlnTr
- 856 GTACAAGGATGACAAAAGACTGATTGAAGGAAAGAAAGGGGTGAA pTyrLysAspAspLysArgLeuIleGluGlyLysLysGlyValLy
- 901 AGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTTCAATGT sValGluAsnArgProPheLeuSerLysLeuIlePhePheAsnVa
- 946 CTCTGAACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAA 1SerGluHisAspTyrGlyAsnTyrThrCysValAlaSerAsnLy
- 991 GCTGGGCCACACCAATGCCAGCATCATGCTATTTGGTCCAGGCGC sLeuGlyHisThrAsnAlaSerIleMetLeuPheGlyProGlyA1
- 1036 CGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGGCTGCGT aValSerGluValSerAsnGlyThrSerArgArgAlaGlyCysVa
- 1081 CTGGCTGCCGCCTCTTCTGGTCTTGCACCTGCTTCTCAAATTTTG lTrpLeuProProLeuLeuValLeuHisLeuLeuLeuLysPhe
- 1126 ATGTGAGTGCCACTTCCCCACCCGGGAAAGGCTGCCGCCACCACC
- 1171 ACCACCAACACACACAGCAATGGCAACACCGACAGCAACCAATCAG
- 1216 ATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA
- 1261 AATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGAAAAGAGTT
- 1306 TTAAAAAGAAATTGAAAATTGCCTTGCAGATATTTAGGTACAAT
- 1351 GGAGTTTTCTTTTCCCAAACGGGAAGAACACAGCACACCCGGCTT
- 1396 GGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGT
- 1441 GGGCAAGGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGA
- 1486 ACATTCTGGAGCTGGCCATCCCAAATTCAATCAGTCCATAGAGAC
- 1531 GAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGGGCACT
- 1576 TTGGTAGACTGTGCCACCACGGCGTGTG

Fig. 2 (continued)

TRANSLA	ATED PROTEIN - FRAME: 3 - NUCLEOTIDE 501 TO 1532
1	
46	GCCAGGGAATGCCAGGGGGAAAGGGATTTTCTGATACTCAGAAGA
04	CTCAGAGACTGTCAGTTTAAAAAATGAAAGTAATATAGAAGGGGC
91	AAAGTGGCATTTATCATTCTATCTCTCCAGGCTCCTGTCTCTTTA
136	ATCAGCTAGCCTGATTTGCCCAGTAAATGATTCCTGAGAGTGTGT
181	ATCAGCTAGCCTGATTTGCCCAGTAAATGATTCCTGAGAGTGTGT
226	GTGCGTGTGTGTGTGTGTGTGCCCGCGCGCGTGTGTTGTAGCT
	${\tt CTGTCAATCCTTGGATTAGAACCAATGATTGCAGCTTGTAAGAGG}$
271	GCTGTCCAGGGCCAGATTGTACAATGTGTCTCAGTGCCAGAGTAT
316	
361	GAGTGGAGATAATTACGGAGAAGTCATACTCTCTCACACCCTCGG
406	${\tt CTTTCTTGTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCT}$
400	TGCACAAGCTTGAGAGCAACACAATCTATCAGGAAAGAAA
451	AAAAAAACCGAACCTGACAAAAAAGAAGAAGAAAAAGAAGAAGAAAAA
496	
	AAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTT
541	MetLysThrIleGlnProLysMetHisAsnSerIleSerT
	GGGCAATCTTCACGGGGCTGGCTGTCTCTGTGTCTCTTCCAAGGAG
586	${\tt rpAlaIlePheThrGlyLeuAlaAlaLeuCysLeuPheGlnGlyV}$
200	TGCCCGTGCGCAGCGGAGATGCCACCTTCCCCAAAGCTATGGACA
	alProValArgSerGlyAspAlaThrPheProLysAlaMetAspA
631	
	ACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTA
676	snValThrValArgGlnGlyGluSerAlaThrLeuArgCysThrI
0/0	TTGACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCA
	leAspAsnArqvalThrArqvalAlaTrpLeuAsnArqSerThrI
721	
	TCCTCTATGCTGGGAATGACAAGTGGTGCCTGGATCCTCGCGTGG
766	leLeuTyrAlaGlyAsnAspLysTrpCysLeuAspProArgValV
/00	TCCTTCTGAGCAACACCCAAACGCAGTACAGCATCGAGATCCAGA
	alLeuLeuSerAsnThrGlnThrGlnTyrSerIleGluIleGlnA
811	
	ACGTGGATGTATGACGAGGGCCCTTACACCTGCTCGGTGCAGA
056	${\tt snValAspValTyrAspGluGlyProTyrThrCysSerValGlnT}$
856	C
	CAGACAACCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAG hrAspAsnHisProLysThrSerArgValHisLeuIleValGlnV

Fig. 3

Fig. 3 (continued)

1576	
1621	CACCACCACCACACACAGCAATGGCAACACCGACAGCAACCAA
	TCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGA
1666	CAGAAATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGAAAAG
1711	AGTTTTAAAAAAGAAATTGAAAATTGCCTTGCAGATATTTAGGTA
1756	
1801	CAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGCACACCCG
L8 4 6	GCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCA
L891	GTGTGGGCAAGGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACG
L936	${\tt TGGAACATTCTGGAGCTGGCCATCCCAAATTCAATCAGTCCATAG}$
	AGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGGG
1981	CACTTTGGTAGACTGTGCCACCACGGCGTGTG

Fig. 3 (continued)

TRANSI ATFO	PROTFIN -	. NI ICLEOTIDE	529 TO 10	126

- 1 GCTCTTCCTGAAGGAAGATCCAGTGGCATATCTCCATGGCTGCCA
- 46 GACAGAGTAGAGAAATGGAACTTATCGGTGTCTCTTCAGAAGTTT
- 91 TGTTACAAATATCCAGAAATATTTCTATAATCTAATCAGCAGATT
- 136 ATGAATATATGCATTAGACTTTAGTTTTTGGTGCAATCACATGAAT
- 181 TCCATTTTGTGGAGTAAGAGGTGACTGGGGTATAGGGTACAACCC
- 226 ATAGCCATCCATGTTCATCTTTGTTTTGAATATAATTGGCTAGAA

- 406 GCCAGTAAGGCAGGAAAGACCCTCCGTGACAAAGGGGCAGGGAAC
- 451 AGAACTCAAACATTTAATGGCAGGTAACCCAGGTTAGAATGGTAA
- 496 ATTGAAAGGTGAATATAAAGGGAGAATGGTGAAATGAATTTTCTG
 MetAsnSheLeu
- 541 AAATTAATTGCTGTGTTTATAGTTTTTAGCCATGCATCGGAATCA LysLeuIleAlaValPheIleValPheSerHisAlaSerGluSer
- 586 CCTCAGGACTCCACTCCCAATCAATTATATATCTGGGGGAGGACC ProGlnAspSerThrProAsnGlnLeuTyrIleTrpGlyArgThr
- 631 AAGGCGTTGGTATTTTTCAGAAGCTCCACTGGTGATTCTGACAGC LysAlaLeuValPhePheArgSerSerThrGlyAspSerAspSer
- 676 ACAGCTAGGATTAAGAAACTGATCAATGGGAACGGCATGCCTGTT ThrAlaArgIleLysLysLeuIleAsnGlyAsnGlyMetProVal
- 721 GCAGAGGAGCTTCCCTGGGAAATGTCACACACAGAACATCAATCT AlaGluGluLeuProTrpGluMetSerHisThrGluHisGlnSer
- 766 TCCTTCCCCACTCCTGAGATCCCTCATTCTTTGGCACCAGGAACA SerPheProThrProGluIleProHisSerLeuAlaProGlyThr
- 811 GTTGCAATTAGTAAACCCTGGTTCCCTGCTGTCTCACAAATCGCA ValAlaIleSerLysProTrpPheProAlaValSerGlnIleAla
- 856 AGAGTCCAACGTGTGGATATAAACTTTTGTTCATGGGAGGATCTT ArgValGlnArgValAspIleAsnPheCysSerTrpGluAspLeu
- 901 TCTCCCAGTGGAAAAGCAACTGGGAAAAGCAGGACACACTGCACA SerProSerGlyLysAlaThrGlyLysSerArgThrHisCysThr
- 946 GTGACTGCAGTTTCATCCAATGCCACCCATGCAGGCATAAAT ValThrAlaValSerSerAsnAlaThrThrHisAlaGlyIleAsn
- 991 AATGAACATGGATGGGGGAGTCTGGAGCTGCTGAATTGAGGAAGA AsnGluHisGlyTrpGlySerLeuGluLeuLeuAsn
- 1036 AAGAACACAGAAATTAAAATTCTCACAAAGGTTACCATTAAGCTA
- 1081 GAGGAAGACCACCACTGTGTGTCCACAAAGATACAGAGCCAGG
- 1126 CCGGGTTCAGCCATGCTGGTCATCTGCTCTATATAATACAATTAT
- **1216 AAAAAAAAAA**

TRANSLATED PROTEIN - NUCLEOTIDE 410 TO 889

- 1 ACGCGTCACATAAAGGAAAGATACGTTTTAATCATCTTTACAAGT
- 46 GCGTCCTTGTACCTTTCGGGATAACCTGTACTGATTTCTCTGCAG
- 91 GACCTTTTCAAAGAATCCTCTTCAAGAGAGAAACAAATTTTAGGC
- 136 TGACGACTTCACGGAGAGGCAGGTTCTGCTGTTGCCAATGAACGA
- 181 GAACTTTCTACTAGGCTGGCGGCATGCAGAGCCCACGTCTGTCAG
- 226 CTGCCACCTTCGTAAAGCACACGTTTCACATGCATGAGCTCGAGT
- 271 GGCTAGAACTTCAAAACTGTGCTCAGGTTTTTGTTTTGGAAGTTA
 316 TAAAAAAGTTGCTCACAAACAATAGTTATTGCCTTTTATATCTTT
- 361 TATGTTAGTCTACTAGTCAGCATTCTGCCCAAAATGGAAAGCCAC
- 406 TCCCATGGGAAGGGAGGGGGTAGCAGCTGGGAGTCTGCTCTTCCA MetGlyArgGluGlyValAlaAlaGlySerLeuLeuPheGl
- 451 GCTGGGGGCCCTCCCACCCCCATGGGGAGAAGACGTCAAGCTC nLeuGlyAlaLeuProProProTrpGlyGlyLysThrSerSerSe
- 496 CAGCCACTGGCCCCGGTGGGTCCCAAAGCCCCACCCCTCATGCTC rSerHisTrpProArgTrpValProLysProHisProSerCysSe
- 541 TCCTCTGGTCACCTCTATTTACGCTCACATGCCCCTTCCTGTCCT rProLeuValThrSerIleTyrAlaHisMetProLeuProValLe
- 631 GGTGAAAACCTGGAGAACAAGAGCGGAGTCTAAGAGAGATGTAAA uVallysThrTrpArgThrArgAlaGluSerLysArgAspValAs
- 676 TGAAAACACAGATCAACAGACACCAGAAGGGAAGCGTTGTTTC nGluAsnThrAspGlnGlnThrHisGlnLysGlySerValValSe
- 721 CGCGGGAAAGGAGATGGAAAGGGGAAGAAGTGAAGAATTCTG rAlaGlyLysGlyAspGlyLysGlyLysArgSerGluGluPheCy
- 766 CGCCCGAAGCTCGGGTTGGTGTTTGCTCAACTGCTTTACTCATTT sAlaArgSerSerGlyTrpCysLeuLeuAsnCysPheThrHisPh
- 811 TAACCCTTTCACCTATCCTGGGAGAAACCCAGGCTTGTCACCTTT eAsnProPheThrTyrProGlyArgAsnProGlyLeuSerProPh
- 856 TCATGTTGGGTTGTTTATTGGCCTCTTAAGTGAGAATTGAT eHisValGlyLeuPheValTyrTrpProLeuLys
- 901 CCGTGAAGGGAAACAGACAGGAGGAGGTCAGATTGCGAATACCTG
- 946 GGGCTTCCTAGGGTCCAGTGCGGCAGTTACCGCACCTGCCTTCAC
- 991 CGGTGAACCTTTAGCCAGCTGAACAACCACCAAAGCGCCCTGCAG

1036 AGACAAGTCATCCAGCCCTCTGGCATGTCCCTGGTAGCCCGGGCA 1081 CCAGCCGCTGCGGCTTGTGAGGGGCACCATGCTCCACCCCACGGG 1126 GACCTTCACAGTTGGAAAAAAGAAGAGGAAAAACTAATTCCTTCG 1171 GTAACAGTTTATTTTCATTTTTGGGAAAGGCAAAACCACTACCTG 1216 GAACTCGGTGCCTCCGTGGTTAACTTTCCTATTTTGCTTGTGATT 1261 TAAAGGCTGTTCTGGGTCAGGGGGGAAAAGGTGTCTCCTTCGGTA 1306 GGGAATATATAACGTGGTGATAACCTGTCACTAGGCAGAAGCATC 1351 CACTCTGCAGGGACAGTGGCCCCTCAGGAAAGCCCGCCGCTCCTG 1396 GCCAAGGCCTCTCTGCAGACTCCACGGGGGCTCACCCTCTGCCGT 1441 CAGGCGACTCTGAAATTCCGACATTTCTCCCTTAAAGTCTCAACA 1486 GACACAAGAGAAGTTTCCATCAAGCAAGCACTGACATATTTATAT 1531 TAAAAAATAGTGCAAAATCTCAACATTTATATAAATAACTCTAAA 1576 CCCCTGCTTTGTAATTTTTTTTTTTACAAGGTAATACACACTTTC 1621 TGACTTGGCACTCAAAAATTGCCATTTTTTTCCTCTTCTAGTTCA 1666 GAAAACAACTTTTTTTTTTAATAGGCCTCTTCTAATACAAAAATA 1756 TATATATATATTGCAGATCTTTAAACAAAGGTTTTGTGCAAATA 1801 TGTCTTTAAAGTTAAGTGAAATTATCATAAACAAAAGAAAATAAG 1846 CATTCACGCACGCAGCTCAACTAGAAACAAGAAAGACTACTGTAG 1891 AAATTTTTTTTTTTTTGCCTTCAAGAC

Fig. 5 (continued)

TRANSLATED PROTEIN - NUCLEOTIDE 410 TO 892

- 1 ACGCGTCACATAAAGGAAAGATACGTTTTAATCATCTTTACAAGT
- 46 GCGTCCTTGTACCTTTCGGGATAACCTGTACTGATTTCTCTGCAG
- 91 GACCTTTCAAAGAATCCTCTTCAAGAGAGAAACAAATTTTAGGC
- 136 TGACGACTTCACGGAGAGGCAGGTTCTGCTGTTGCCAATGAACGA
- 181 GAACTTTCTACTAGGCTGGCGGCATGCAGAGCCCACGTCTGTCAG
- 226 CTGCCACCTTCGTAAAGCACACGTTTCACATGCATGAGCTCGAGT
- 271 GGCTAGAACTTCAAAACTGTGCTCAGGTTTTTGTTTTGGAAGTTA
- 316 TAAAAAAGTTGCTCACAAACAATAGTTATTGCCTTTTATATCTTT
- 361 TATGTTAGTCTAGTCAGCATTCTGCCCAAAATGGAAAGCCAC
- 406 TCCCATGGGAAGGGAGGGGGTAGCAGCTGGGAGTCTGCTCTTCCA
 MetGlyArgGluGlyValAlaAlaGlySerLeuLeuPheGl
- 451 GCTGGGGCCCTCCCACCCCATGGGGAGGAAAGACGTCAAGCTC nLeuGlyAlaLeuProProTrpGlyGlyLysThrSerSerSe
- 496 CAGCCACTGGCCCCGGTGGGTCCCAAAGCCCCACCCCTCATGCTC rSerHisTrpProArgTrpValProLysProHisProSerCysSe
- 541 TCCTCTGGTCACCTCTATTTACGCTCACATGCCCCTTCCTGTCCT rProLeuValThrSerIleTyrAlaHisMetProLeuProValLe
- 631 GGTGAAAACCTGGAGAACAAGAGCGGAGTCTAAGAGAGATGTAAA uValLysThrTrpArgThrArgAlaGluSerLysArgAspValAs
- 676 TGAAAACACAGATCAACAGACACCAGAAGGGAAGCGTTGTTTC nGluAsnThrAspGlnGlnThrHisGlnLysGlySerValValSe
- 721 CGCGGGAAAGGAGATGGAAAGGGGAAGAAGTGAAGAATTCTG rAlaGlyLysGlyAspGlyLysGlyLysArgSerGluGluPheCy
- 766 CGCCCGAAGCTCGGGTTGGTGTTTGCTCAACTGCTTTACTCATTT sAlaArgSerSerGlyTrpCysLeuLeuAsnCysPheThrHisPh
- 811 TAACCCTTTCACCTATCCTGGGAGAAACCCAGGCTTGTCACCTTT eAsnProPheThrTyrProGlyArgAsnProGlyLeuSerProPh
- 856 TCATGTTGGGTTGTTTATTGGCCTCTTAAGTGAGAATTGATCCGT eHisValGlyLeuPheIleGlyLeuLeuSerGluAsn
- 901 GAAGGGAAACAGACAGGAGGAGGTCAGATTGCGAATACCTGGGGC
- 946 TTCCTAGGGTCCAGTGCGGCAGTTACCGCACCTGCCTTCACCGGT
- 991 GAACCTTTAGCCAGCTGAACAACCACCAAAGCGCCCTGCAGAGAC
- 1036 AAGTCATCGAGCCCTCTGGCATGTCCCTGGTAGCCCGGGCACCAG
- 1081 CCGCTGCGGCTTGTGAGGGGCACCATGCTCCACCCCACGGGGACC
- 1126 TTCACAGTTGGAAAAAGAAGAGGGAAAAACTAATTCCTTCGGTAA
- 1171 CAGTTTATTTTCATTTTTGGGAAAGGCAAAACCACTACCTGGAAC
- 1216 TCGGTGCCTGNGANNTCTTANNTNCTNNCTNAGNCNNATNNGNNA
- 1261 NNNNTNNNNNANNCTTNNA

TRANSLATED PROTEIN - NUCLEOTIDE 199 TO 1146

- 1 TAGAATTCAGCGGCCGCTTAATTCTAGAACGAATGCCAGTGCCTG
- 46 GAGGCATGCAGGCCCAGCTACGTGCCTGTGTGCGGCTCTGATGGG
- 91 AGGTTTTATGAAAACCACTGTAAGCTCCACCGTGCTGCTTGCCTC
- 136 CTGGGAAAGAGGATCACCGTCATCCACAGCAAGGACTGTTTCCTC
- 181 AAAGGTGACACGTGCACCATGGCCGGCTACGCCCGCTTGAAGAAT MetAlaGlyTyrAlaArgLeuLysAsn
- 226 GTCCTTCTGGCACTCCAGACCCGTCTGCAGCCACTCCAAGAAGGA ValLeuLeuAlaLeuGlnThrArgLeuGlnProLeuGlnGluGly
- 271 GACAGCAGACAAGACCCTGCCTCCCAGAAGCGCCTCCTGGTGGAA AspSerArgGlnAspProAlaSerGlnLysArgLeuLeuValGlu
- 316 TCTCTGTTCAGGGACTTAGATGCAGATGGCAATGGCCACCTCAGC SerLeuPheArgAspLeuAspAlaAspGlyAsnGlyHisLeuSer
- 361 AGCTCCGAACTGGCTCAGCATGTGCTGAAGAAGCAGGACCTGGAT SerSerGluLeuAlaGlnHisValLeuLysLysGlnAspLeuAsp
- 406 GAAGACTTACTTGGTTGCTCACCAGGTGACCTCCTCCGATTTGAC GluAspLeuLeuGlyCysSerProGlyAspLeuLeuArgPheAsp
- 451 GATTACAACAGTGACAGCTCCCTGACCCTCCGCGAGTTCTACATG AspTyrAsnSerAspSerSerLeuThrLeuArgGluPheTyrMet
- 496 GCCTTCCAAGTGGTTCAGCTCAGCCTCGCCCCGAGGACAGGGTC AlaPheGlnValValGlnLeuSerLeuAlaProGluAspArgVal
- 541 AGTGTGACCACAGTGACCGTGGGGCTGAGCACAGTGCTGACCTGC SerValThrThrValThrValGlyLeuSerThrValLeuThrCys
- 586 GCCGTCCATGGAGACCTGAGGCCACCAATCATCTGGAAGCGCAAC AlaValHisGlyAspLeuArgProProIleIleTrpLysArgAsn
- 631 GGGCTCACCCTGAACTTCCTGGACTTGGAAGACATCAATGACTTT GlyLeuThrLeuAsnPheLeuAspLeuGluAspIleAsnAspShe
- 676 GGAGAGGATGATTCCCTGTACATCACCAAGGTGACCACCATCCAC GlyGluAspAspSerLeuTyrIleThrLysValThrThrIleHis
- 721 ATGGGCAATTACACCTGCCATGCTTCCGGCCACGAGCAGCTGTTC MetGlyAsnTyrThrCysHisAlaSerGlyHisGluGlnLeuPhe
- 766 CAGACCCACGTCCTGCAGGTGAATGTGCCGCCAGTCATCCGTGTC GlnThrHisValLeuGlnValAsnValProProValIleArqVal

- 856 AGATGCCATGCTGAGGGCATTCCCATGCCCAGAATCACTTGGCTG ArgCysHisAlaGluGlyIleProMetProArgIleThrTrpLeu
- 901 AAAAACGGCGTGGATGTCTCAACTCAGATGTCCAAACAGCTCTCC LysAsnGlyValAspValSerThrGlnMetSerLysGlnLeuSer
- 946 CTTTTAGCCAATGGGAGCGAACTCCACATCAGCAGTGTTCGGTAT LeuLeuAlaAsnGlySerGluLeuHisIleSerSerValArgTyr
- 991 GAAGACACAGGGGCATACACCTGCATTGCCAAAAATGAAGTGGGT GluAspThrGlyAlaTyrThrCysIleAlaLysAsnGluValGly
- 1036 GTGGATGAAGATATCTCCTCGCTCTTCATTGAAGACTCAGCTAGA ValAspGluAspIleSerSerLeuPheIleGluAspSerAlaArg
- 1081 AAGACCCTTGCAAACATCCTGTGGCGAGAGGAAGGTACCAAGCTT LysThrLeuAlaAsnIleLeuTrpArgGluGluGlyThrLysLeu
- 1126 CATTGTTTTGCGTCATGCCTGTGATCACGTGTGTTTTGGTTCTATG HisCysPheAlaSerCysLeu
- 1171 ATGGGCCGTCTTTCCATGATCTGCCACCAGCTTTCCCACACAAAG
- 1216 CAGCCCTATGGGAGCAGGAAGTCAATGTCAAATTCAAGTGGCATA
- 1261 TGCATTGAATCAAATTTAAAATGTACTCCTGTCTTTAATGAGAAA
- 1306 TTTTTAAATGCAAAGCTTTCATTAAAAGTGGCTTGTAACCTCTGC
- 1351 TGAAGCAGAACAGTTGGTAAGGGTTCCTGGTCAGATCTGGGCCTT
- 1396 AAACTTTTTTCCAGTAGCTGACTGGTGTTTGGGTTTAGTGTTTTTGC
- 1441 CTATCTTGTGTGTGTTTTAAAAAGACAAAACAAGTTGTAGATCTCT
- 1486 ACTAGATAGTCACTGTACCTTAAATATGCTTTGATTGAGGAAAAC
- 1531 CCGAGGAAAAAGCTGCCATGATTTCTGCCAATGTATATTTTTAAA
- 1576 TGTATAGATGTTTAGAAACATATTTATCAAGCAAATCTTTAGTAA
- 1621 GTTGAGCCATATGAAGTTGCCATTTTTGTGCATCAAAGTGGTCTA
- 1666 AGATTGACAATTTCATATGGCTGA

Fig. 7 (continued)

1 GGAGAGGCTGCATTGCTGCTCACTGACCTTCTTTTATGCTGGCCTTTGGTTCAGAATGGCACATCATTCCTCGTTT 81 TTGGCCCTCCAGCTGAACACCTGTTCTCTGTGGCACTGACTCCTCTTTCCATAGGGACATCATACAACAGTCGCCTTTAT 161 CTGAGGTTGTGCAAAGAGGGATGGAGGAAAACAATGGAGAATCCCTGGCAGATTTCCCCAGGACGAGAGAAGGA**TA**TC 241 CAATTGCTCATCAGGGAAGGTGCTAGGTCTCCCAGCCAGACGCCCTCAGAGGCCGGTGTCAAGTCTCCCTCACCTCTGTG 321 ATGTGAAGTCAGCTCGTTCATGACCTGGGCAGGCAGAGGGGTCAGAGGGGCAGATGGAGCACTCCTGGCCTGATGAAGACT MetLysProGlyGlyPheTrpLeuHisLeuThrLeuLeuGlyAlaSerLeuProAlaAlaLeuGlyTrpMetA 481 ACCCAGGAACCAGCAGAGGCCCGGATGTGGGTGTGGGGGAGTCACAGGCAGAGGAGCCCCAGAAGCTTTGAAGTCACAAGA spProGlyThrSerArgGlyProAspValGlyValGlyGluSerGlnAlaGluGluProArgSerPheGluValThrArg ArgGluGlyLeuSerSerHisAsnGluLeuLeuAlaSerCysGlyLysLysPheCysSerArgGlySerArgCysValLe 641 CAGCAGGAAGACAGGGGAGCCCGAATGCCAGTGCCTGGAGGCATGCAGGCCCAGCTACGTGCCTGTGTGCGGCTCTGATG $uSer \texttt{ArgLysThrGlyGluProGluCysGlnCysLeuGluAlaCysArgProSerTyrValProValCysGlySer \texttt{AspGluSer$ 721 GGAGGTTTTATGAAAACCACTGTAAGCTCCACCGTGCTGCTTGCCTCCTGGGAAAGAGGATCACCGTCATCCACAGCAAG lyArgPheTyrGluAsnHisCysLysLeuHisArgAlaAlaCysLeuLeuGlyLysArgIleThrValIleHisSerLys 801 GACTGTTTCCTCAAAGGTGACACGTGCACCATGGCCGGCTACGCCCGCTTGAAGAATGTCCTTCTGGCACTCCAGACCCG AspCysPheLeuLysGlyAspThrCysThrMetAlaGlyTyrAlaArgLeuLysAsnValLeuLeuAlaLeuGlnThrAr 881 TCTGCAGCCACTCCAAGAAGGAGACAGCAGACAAGACCCTGCCTCCCAGAAGCGCCTCCTGGTGGAATCTCTGTTCAGGG gLeuGlnProLeuGlnGluGlyAspSerArgGlnAspProAlaSerGlnLysArgLeuLeuValGluSerLeuPheArgA 961 ACTTAGATGCAGATGGCAATGGCCACCTCAGCAGCTCCGAACTGGCTCAGCATGTGCTGAAGAAGCAGGACCTGGATGAA spLeuAspAlaAspGlyAsnGlyHisLeuSerSerSerGluLeuAlaGlnHisValLeuLysLysGlnAspLeuAspGlu 1041 GACTTACTTGGTTGCTCACCAGGTGACCTCCTCCGATTTGACGATTACAACAGTGACAGCTCCCTGACCCTCCGCGAGTT AspLeuLeuGlyCysSerProGlyAspLeuLeuArgPheAspAspTyrAsnSerAspSerSerLeuThrLeuArgGluPh 1121 CTACATGGCCTTCCAAGTGGTTCAGCTCAGCCTCGCCCCCGAGGACAGGGTCAGTGTGACCACAGTGACCGTGGGGCTGA $\verb|eTyrMetAlaPheGlnValValGlnLeuSerLeuAlaProGluAspArgValSerValThrThrValThrValGlyLeuS| \\$ 1201 GCACAGTGCTGACCTGCGCCGTCCATGGAGACCTGAGGCCACCAATCATCTGGAAGCGCAACGGGCTCACCCTGAACTTC erThrValLeuThrCysAlaValHisGlyAspLeuArgProProIleIleTrpLysArgAsnGlyLeuThrLeuAsnPhe 1281 CTGGACTTGGAAGACATCAATGACTTTGGAGAGGATGATTCCCTGTACATCACCAAGGTGACCACCATCCACATGGGCAA LeuAspLeuGluAspIleAsnAspPheGlyGluAspAspSerLeuTyrIleThrLysValThrThrIleHisMetGlyAs 1361 TTACACCTGCCATGCTTCCGGCCACGAGCAGCTGTTCCAGACCCACGTCCTGCAGGTGAATGTGCCGCCAGTCATCCGTG nTyrThrCysHisAlaSerGlyHisGluGlnLeuPheGlnThrHisValLeuGlnValAsnValProProValIleArgV alTyrProGluSerGlnAlaGlnGluProGlyValAlaAlaSerLeuArgCysHisAlaGluGlyIleProMetProArg 1521 ATCACTTGGCTGAAAAACGGCGTGGATGTCTCAACTCAGATGTCCAAACAGCTCTCCCTTTTAGCCAATGGGAGCGAACT IleThrTrpLeuLysAsnGlyValAspValSerThrGlnMetSerLysGlnLeuSerLeuLeuAlaAsnGlySerGluLe 1601 CCACATCAGCAGTGTTCGGTATGAAGACACAGGGGCATACACCTGCATTGCCAAAAATGAAGTGGGTGTGGATGAAGATA uHisIleSerSerValArgTyrGluAspThrGlyAlaTyrThrCysIleAlaLysAsnGluValGlyValAspGluAspI 1681 TCTCCTCGCTCTTCATTGAAGACTCAGCTAGAAAGACCCTTGCAAACATCCTGTGGCGAGAGGAAGGCCTCAGCGTGGGA leSerSerLeuPheIleGluAspSerAlaArgLysThrLeuAlaAsnIleLeuTrpArgGluGluGlyLeuSerValGly ${\tt AsnMetPheTyrValPheSerAspAspGlyIleIleValIleHisProValAspCysGluIleGlnArgHisLeuLysProValAspCysGluI$ 1841 CACGGAAAAGATTTTCATGAGCTATGAAGAAATCTGTCCTCAAAGAGAAAAAAATGCAACCCAGCCCTGCCAGTGGGTAT oThrGluLysIlePheMetSerTyrGluGluIleCysProGlnArqGluLysAsnAlaThrGlnProCysGlnTrpvalS erAlaValAsnValArgAsnArgTyrIleTyrValAlaGlnProAlaLeuSerArgValLeuValValAspIleGlnAla 2001 CAGAAAGTCCTACAGTCCATAGGTGTGGACCCTCTGCCGGCTAAGCTGTCCTATGACAAGTCACATGACCAAGTGTGGGT GlnLysValLeuGlnSerIleGlyValAspProLeuProAlaLysLeuSerTyrAspLysSerHisAspGlnValTrpVa 2081 CCTGAGCTGGGGGGACGTGCACAAGTCCCGACCAAGTCTCCAGGTGATCACAGAAGCCAGCACCGGCCAGAGCCAGCACC lLeuSerTrpGlyAspValHisLysSerArgProSerLeuGlnValIleThrGluAlaSerThrGlyGlnSerGlnHisL 2161 TCATCCGCACACCCTTTGCAGGAGTGGATGATTTCTTCATTCCCCCAACAACCTCATCATCAACCACATCAGGTTTGGC euIleArgThrProPheAlaGlyValAspAspPhePheIleProProThrAsnLeuIleIleAsnHisIleArgPheGly

Fig. 8

2241 TTCATCTTCAACAAGTCTGATCCTGCAGTCCACAAGGTGGACCTGGAAACAATGATGCCCCTCAAGACCATCGGCCTGCA PheIlePheAsnLysSerAspProAlaValHisLysValAspLeuGluThrMetMetProLeuLysThrIleGlyLeuHi 2321 CCACCATGGCTGCCCCAGGCCATGGCACACCCCACCTGGGCGGCTACTTCTTCATCCAGTGCCGACAGGACAGCC sHisHisGlyCysValProGlnAlaMetAlaHisThrHisLeuGlyGlyTyrPhePheIleGlnCysArgGlnAspSerP 2401 CCGCCTCTGCTGCCCGACAGCTGCTCGTTGACAGTGTCACAGACTCTGTGCTTGGCCCCAATGGTGATGTAACAGGCACC roAlaSerAlaAlaArgGlnLeuLeuValAspSerValThrAspSerValLeuGlyProAsnGlyAspValThrGlyThr 2481 CCACACACATCCCCCGACGGGCGCTTCATAGTCAGTGCTGCAGCTGACAGCCCCTGGCTGCACGTGCAGGAGATCACAGT ProHisThrSerProAspGlyArgPheIleValSerAlaAlaAlaAspSerProTrpLeuHisValGlnGluIleThrVa 2561 GCGGGGCGAGATCCAGACCCTGTATGACCTGCAAATAAACTCGGGCATCTCAGACTTGGCCTTCCAGCGCTCCTTCACTG ${\tt lArgGlyGluIleGlnThrLeuTyrAspLeuGlnIleAsnSerGlyIleSerAspLeuAlaPheGlnArgSerPheThrG}$ 2641 AAAGCAATCAATACAACATCTACGCGGCTCTGCACACGGAGCCGGACCTGCTGCTGCTGGAGCTGTCCACGGGGAAGGTG ${\tt luSerAsnGlnTyrAsnIleTyrAlaAlaLeuHisThrGluProAspLeuLeuPheLeuGluLeuSerThrGlyLysVal}$ GlyMetLeuLysAsnLeuLysGluProProAlaGlyProAlaGlnProTrpGlyGlyThrHisArgIleMetArgAspSe 2801 TGGGCTGTTTGGACAGTACCTCCTCACACCAGCCCGAGAGTCACTGTTCCTCATCAATGGGAGACAAAACACGCTGCGGT ${ t rGlyLeuPheGlyGlnTyrLeuLeuThrPro\lambdalaArgGluSerLeuPheLeuIleAsnGlyArgGlnAsnThrLeuArgC}$ ysGluValSerGlyIleLysGlyGlyThrThrValValTrpValGlyGluVal 2961 CAAGGAACACCCCCTAGTCCTGACACTGCAGCCTCAAGCAGGTACGCTGTACATTTTTTACAGACAAAAGCAAAAACCTGT 3041 ACTCGCTTTGTGGTTCAACACTGGTCTCCTTGCAAGTTTCCTAGTATAAGGTATGCGCTGCTACCAAGATTGGGGTTTTT 3121 TCGTTAGGAAGTATGATTTATGCCTTGAGCTACGATGAGAACATATGCTGCTGTGTAAAGGGATCATTTCTGTGCCAAGC 3201 TGCACACCGAGTGACCTGGGGACATCATGGAACCAAGGGATCCTGCTCTCCAAGCAGACACCTCTGTCAGTTGCCTTCAC 3281 ATAGTCATTGTCCCTTACTGCCAGACCCAGCCAGACTTTGCCCTGACGGAGTGGCCCGGAAGCAGAGGCCGACCAGGAGC 3361 AGGGGCCTCCCTCCCGAACTGAAAGCCCATCCGTCCTCGCGTGGGACCGCATCTTCTCCCTCGCAGCTGCTTCTTGCTTT 3521 TTTATTTTGGAAATTTTTGATTAAAAAAAATTTTATAATCTCAAATGCTAGTAAGCAGAAAGATGCTCTCCGAGGTCCA 3681 TCTGAGAATACTGGCCCTGTCGACTATTGCCACCCTGCTTCTCCAAGAGCAGACCAGGCCACCTCATCCGTAAGGACTCG 3761 GTTCTGTGTTGGGACCCCAAAAAACCAGAACAAGTTCTGTGTGCCTCCTTTCAGCACAGAAGGGAACATCTCATTAGTC 3841 AGGTCTGGTACCCCAGATTCAGGGCAGACTGGGCTTGCCTGGCAAGGTATGGGTGGCCTCCAGGCTCAATGCAGAAACCC 3921 CAAGGACACGAGTGGGGCCAGGTGAGTTCCTGAAGCTATACCTTTTCAAAACAGATTTTGTTTTCCTACCTGTGGCCCAT 4001 CCACTCCTCTCTGGTACCCCATCCCCGCATCAGCACTGCAGAGAGAACACATTTCGGCGAGGGTTTTCTTACCCACATTC 4161 GGCTGTGGTGACTCTCACATGGGCATCGAAGAAGTACAACCCACATAGCCCTCTGGAGACCGCCTAGATCAGAGACTCAG 4241 CAAAAACAGGCTCGCCTTCCCTCTCCCACATATGAGTGGAACTTACATGTGTCCTGGTTTGAATGATCATTTTGCAAGCC 4321 ACACGGGTTGGGAGAGGTGGTCTCACCACAGACGTCTTTGCTAATTTGGCCACCTTCACCTACTGACATGACCAGGATTT 4561 CTTGGTCCACCAAACGCCTGTCCCCTGTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTATTTTAAAAGAT 4641 ATGCTATGTAGATATAAGTTGAGGAAGCTCACCTCAAAAGCCTAGAATGCAGTTTCACAGTAGCTGGGATGCATGGATGA 4721 CCCATCTCACCCCTTTTTTTTCCTGCCTCAATATCTTGATATGTTATGTTTACCCCAATCTCCCATTTTTACCACTAA 4801 AATTCTCCAACTTTCATAAACTTTTTTTTGGAAAAATTTCCATTGTATCAGCCCCTGACAGAAAAAGGATCTCTGAGCCT 4881 AAAGGAGGAAAAGTCCCACCAACTACCAGACCAGAACACGAGCCCCTCTGGGCAGCAGGATTCCTAAGTCAAAGACCAGT 4961 TTGACCCAAACTGGCCTTTTAAAATAATCAGGAGTGACAGAGTCAACTTCTGCAGCACCTGCTTCTCCCCCACTGTCCCT 5041 TCCATCTTGGAATGTGTCTAAAAAAGCATAGCTGCCCTTTGCTGTCCTCAGAGTGCATTTCCTGGAGACGGCAGGCTTAG 5121 GTCTCACTGACAGCATGCCAGACACAACTGAATCGAAGCAGGCCTGAAGCCTAGGTCAGGGTTTCAGGAGTCCAGCCCCA 5281 GTGGGAGGAAGAGGAGGAAGAGGAGGCCAGACTGGCCTGCCCTTTCTCCCATACTTCACCCCAGCAGAGGTTCATG 5361 GGACACAGTTGGAAAGCCACTGGGAGGAAATGCCTCACTACAGGGGGGGCCTCCTGTAGCAAGCCCAGCCGGTAATCCTCC 5441 TAATGAACCCACAAGGTCAATTCACAACTGATATCTTAGCTATTAAAGAAGTACTGACTTTACCAAAAGAATCATCAAGA

Fig. 8 (continued)

15/32
FRAME: 3 - NUCLEOTIDE 420 TO 2864
1
CAATTTCACACAGGAAACAGCTATGCCATGATTACGCAAGTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGT
TGCTGGAATTCGGCTTACTCACTATAGGGCTCGAGCGGCTGCCCGGGCAGGTCATTAATTCCATTTCTTTTTAGAGTAT
ACAGCTTTCTCCTTCACTGACCACCCTTTGCTTCCTGTCAGAAAGCCCTGGACAGAACTCTCTGTGGGATTCTGCCCAT
TTTCTGAGATATCGCCTCAATTGTCCTGGCTGGGCTGTCGGGTCTGCCCGTTTTACAGATGGGCAAACTGGAGTGGGAA
TATCCGGGTGGCTTCCTCAGGCCTGCAGCTGGTGGAGCAGCTACTGAAACAATCAGGAGCCCAGAAGCTTTGAAGTCAC
AGAAGAGAAGACTCCCAGAATGCAGTGTGATGTTGGTGATGGACGCCTGTTTCGCCTTTCACTTAAACGTGCCCTTTCCC MetGlnCysAspValGlyAspGlyArgLeuPheArgLeuSerLeuLysArgAlaLeuSer
481
GCTGCCCTGACCTCTTTGGGCTTTCCAGCCGCAACGAGCTGCTGGCCTCCTGCGGGAAGAAGTTCTGCAGCCGAGGGAG erCysProAspLeuPheGlyLeuSerSerArgAsnGluLeuLeuAlaSerCysGlyLysLysPheCysSerArgGlySe 561
CGGTGCGTGCTCAGCAGGAAGACAGGGGAGCCCGAATGCCAGTGCCTGGAGGCATGCAGGCCCAGCTACGTGCCTGTGT ArgCysValLeuSerArgLysThrGlyGluProGluCysGlnCysLeuGluAlaCysArgProSerTyrValProValC
641
CGGCTCTGATGGGAGGTTTTATGAAAACCACTGTAAGCTCCACCGTGCTGCTTGCCTCCTGGGAAAGAGGATCACCGTC
sGlySerAspGlyArgPheTyrGluAsnHisCysLysLeuHisArgAlaAlaCysLeuLeuGlyLysArgIleThrVal
721
TCCACAGCAAGGACTGTTTCCTCAAAGGTGACACGTGCACCATGGCCGGCTACGCCCGCTTGAAGAATGTCCTTCTGGC
leHisSerLysAspCysPheLeuLysGlyAspThrCysThrMetAlaGlyTyrAlaArgLeuLysAsnValLeuLeuAl
801
CTCCAGACCCGTCTGCAGCCACTCCAAGAAGGAGACAGCAGACAAGACCCTGCCTCCCAGAAGCGCCTCCTGGTGGAAT
LeuGlnThrArgLeuGlnProLeuGlnGluGlyAspSerArgGlnAspProAlaSerGlnLysArqLeuLeuValGluS
881
TCTGTTCAGGGACTTAGATGCAGATGGCCACTCAGCAGCTCCGAACTGGCTCAGCATGTGCTGAAGAAGCAG
rLeuPheArgAspLeuAspAlaAspGlyAsnGlyHisLeuSerSerSerGluLeuAlaGlnHisValLeuLysLysGln
961
ACCTGGATGAAGACTTACTTGGTTGCTCACCAGGTGACCTCCTCCGATTTGACGATTACAACAGTGACAGCTCCCTGAC
spLeuAspGluAspLeuLeuGlyCysSerProGlyAspLeuLeuArgPheAspAspTyrAsnSerAspSerSerLeuTh
CTCCGCGAGTTCTACATGGCCTTCCAAGTGGTTCAGCTCAGCCTCGCCCCCGAGGACAGGGTCAGTGTGACCACAGTGA
LeuArgGluPheTyrMetAlaPheGlnValValGlnLeuSerLeuAlaProGluAspArgValSerValThrThrValT
CGTGGGGCTGAGCACAGTGCTGACCTGCGCCGTCCATGGAGACCTGAGGCCACCAATCATCTGGAAGCGCAACGGGCTC
rValGlyLeuSerThrValLeuThrCysAlaValHisGlyAspLeuArgProProIleIleTrpLysArgAsnGlyLeu
1201
CCCTGAACTTCCTGGACTTGGAAGACATCAATGACTTTGGAGAGGATGATTCCCTGTACATCACCAAGGTGACCACCAT
hrLeuAsnPheLeuAspLeuGluAspIleAsnAspPheGlyGluAspAspSerLeuTyrIleThrLysValThrThrIl

Fig. 9

 ${\tt HisMetGlyAsnTyrThrCysHisAlaSerGlyHisGluGlnLeuPheGlnThrHisValLeuGlnValAsnValProPrince} \\$

16/42 1361 AGTCATCCGTGTCTATCCAGAGAGCCAGGCACAGGAGCCTGGAGTGGCAGCCTAAGATGCCATGCTGAGGGCATTC $oValIle \texttt{ArgValTyrProGluSerGlnAlaGlnGluProGlyValAlaAlaSerLeu ArgCys \texttt{HisAlaGluGlyIleP}$ 1441 ${\tt CCATGCCCAGAATCACTTGGCTGAAAAACGGCGTGGATGTCTCAACTCAGATGTCCAAACAGCTCTCCCTTTTAGCCAAT}$ ${\tt roMetProArgIleThrTrpLeuLysAsnGlyValAspValSerThrGlnMetSerLysGlnLeuSerLeuLeuAlaAsn}$ 1521 GGGAGCGAACTCCACATCAGCAGTGTTCGGTATGAAGACACAGGGGCATACACCTGCATTGCCAAAAATGAAGTGGGTGT ${\tt GlySerGluLeuHisIleSerSerValArgTyrGluAspThrGlyAlaTyrThrCysIleAlaLysAsnGluValGlyV$ 1601 lAspGluAspIleSerSerLeuPheIleGluAspSerAlaArgLysThrLeuAlaAsnIleLeuTrpArgGluGluGlyL 1681 euSerValGlyAsnMetPheTyrValPheSerAspAspGlyIleIleValIleHisProValAspCysGluIleGlnArg 1761 ${\tt CACCTCAAACCCACGGAAAAGATTTTCATGAGCTATGAAGAAATCTGTCCTCAAAGAGAAAAAAATGCAACCCAGCCCTG}$ ${\tt HisLeuLysProThrGluLysIlePheMetSerTyrGluGluIleCysProGlnArgGluLysAsnAlaThrGlnProCy}$ 1841 sGlnTrpValSerAlaValAsnValArgAsnArgTyrIleTyrValAlaGlnProAlaLeuSerArgValLeuValValA 1921 ${\tt splleGlnAlaGlnLysvalLeuGlnSerIleGlyValAspProLeuProAlaLysLeuSerTyrAspLysSerHisAspLysLeuSerHisAspLysLeuSerHi$ 2001 CAAGTGTGGGTCCTGAGCTGGGGGGACGTGCACAAGTCCCGACCAAGTCTCCAGGTGATCACAGAAGCCAGCACCGGCCA ${\tt GlnValTrpValLeuSerTrpGlyAspValHisLysSerArgProSerLeuGlnValIleThrGluAlaSerThrGlyGluAlaSerThrG$ 2081 GAGCCAGCACCTCATCCGCACACCCTTTGCAGGAGTGGATGATTTCTTCATTCCCCCCAACAAACCTCATCATCAACCACA ${\tt nSerGlnHisLeuIleArgThrProPheAlaGlyValAspAspPhePheIleProProThrAsnLeuIleIleAsnHisI}$ 2161 TCAGGTTTGGCTTCATCTTCAACAAGTCTGATCCTGCAGTCCACAAGGTGGACCTGGAAACAATGATGCCCCTCAAGACC ${\tt leArgPheGlyPheIlePheAsnLysSerAspProAlaValHisLysValAspLeuGluThrMetMetProLeuLysThr}$ 2241 ${\tt ATCGGCCTGCACCACGCTGCCTGCCCCAGGCCATGGCACACCCCACCTGGGCGGCTACTTCTTCATCCAGTGCCG}$ 2321

IleGlyLeuHisHisHisGlyCysValProGlnAlaMetAlaHisThrHisLeuGlyGlyTyrPhePheIleGlnCysAr

ACAGGACAGCCCCGCCTCTGCCCGACAGCTGCTCGTTGACAGTGTCACAGACTCTGTGCTTGGCCCCAATGGTGATG ${\tt gGlnAspSerProAlaSerAlaAlaArgGlnLeuLeuValAspSerValThrAspSerValLeuGlyProAsnGlyAspV}$ 2401

TAACAGGCACCCCACACACATCCCCCGACGGGCGCTTCATAGTCAGTGCTGCAGCTGACAGCCCCTGGCTGCACGTGCAG ${\tt alThrGlyThrProHisThrSerProAspGlyArgPheIleValSerAlaAlaAlaAspSerProTrpLeuHisValGln}$ 2481

2561

 $\tt CTCCTTCACTGAAAGCAATCAATACAACATCTACGCGGCTCTGCACACGGAGCCGGACCTGCTGCTCCTGGAGCTGTCCA$ ${\tt gSerPheThrGluSerAsnGlnTyrAsnIleTyrAlaAlaLeuHisThrGluProAspLeuLeuPheLeuGluLeuSerThrGluProAspLeuGluProAspLeuGluDProAsp$

Fig. 9 (continued)

2641 CGGGGAAGGTGGGCATGCTGAAGAACTTAAAGGAGCCACCCGCAGGGCCAGCTCAGCCCTGGGGGGGTACCCACAGAATC hrGlyLysValGlyMetLeuLysAsnLeuLysGluProProAlaGlyProAlaGlnProTrpGlyGlyThrHisArgIle 2721 ATGAGGGACAGTGGGCTGTTTGGACAGTACCTCCTCACACCAGCCCGAGAGTCACTGTTCCTCATCAATGGGAGACAAAA MetArgAspSerGlyLeuPheGlyGlnTyrLeuLeuThrProAlaArgGluSerLeuPheLeuIleAsnGlyArgGlnAs 2801 nThrLeuArgCysGluValSerGlyIleLysGlyGlyThrThrValValTrpValGlyGluVal 2881 GAGCCCTGGGCCAAGGAACACCCCCTAGTCCTGACACTGCAGCCTCAAGCAGGTACGCTGTACATTTTTACAGACAAAAG 2961 CAAAAACCTGTACTCGCTTTGTGGTTCAACACTGGTCTCCTTGCAAGTTTCCTAGTATAAGGTATGCGCTGCTACCAAGA 3041 TTGGGGTTTTTTCGTTAGGAAGTATGATTTATGCCTTGAGCTACGATGAGAACATATGCTGCTGTGTAAAGGGATCATTT 3121 CTGTGCCAAGCTGCACACCGAGTGACCTGGGGACATCATGGAACCAAGGGGATCCTGCTCTCCAAGCAGACACCTCTGTCA 3201 3281 CGACCAGGAGCAGGGCCTCCCTCCCGAACTGAAAGCCCATCCGTCCTCGCGTGGGACCGCATCTTCTCCCTCGCAGCTG 3361 CTTCTTGCTTTTCCATTTGACTTGATAAGCCTGAGGGAGAGCCAACAAGACTTACTGCATCTTGGGGGATGGGG 3441 3521 TCCGAGGTCCAACTATATCCTTCCCTGCCTTAGGCCGAGTCTCGGGGGGTGGTCACAACCCCACATCCCACAGCCAGAAAG 3601 AACAATGGTCATCTGAGAATACTGGCCCTGTCGACTATTGCCACCCTGCTTCTCCAAGAGCAGACCAGGCCACCTCATCC 3681 GTAAGGACTCGGTTCTGTGTTGGGACCCCAAAAAACCAGAACAAGTTCTGTGTGCCTCCTTTCAGCACAGAAGGGAGACA 3761 TCTCATTAGTCAGGTCTGGTACCCCAGATTCAGGGCAGACTGGGCTTGCCTGGCAAGGTATGGGTGGCCTCCAGGCTCAA 3841 TGCAGAAACCCCAAGGACACGAGTGGGGCCAGGTGAGTTCCTGAAGCTATACCTTTTCAAAACAGATTTTGTTTTCCTAC 3921 CTGTGGCCCATCCACTCCTCTCTGGTACCCCATCCCCGCATCAGCACTGCAGAGAGACACATTTCGGCGAGGGTTTTCT 4001 TACCCACATTCCCCAATCAATACACACACACTGCAGAACCCAGAACAGAAGGCCACAGGCTGGCACTACTGCATTCTCCT 4081 TATGTGTCTCAGGCTGTGGTGACTCTCACATGGGCATCGAAGAAGTACAACCCACATAGCCCTCTGGAGACCGCCTAGAT 4161 CAGAGACTCAGCAAAAACAGGCTCGCCTTCCCTCTCCCACATATGAGTGGAACTTACATGTGTCCTGGTTTGAATGATCA 4241 TTTTGCAAGCCACACGGGTTGGGAGAGGTGGTCTCACCACAGACGTCTTTGCTAATTTGGCCACCTTCACCTACTGACAT 4401

Fig. 9 (continued)

4481	
	${\tt GTCTCACGCAACTTGGTCCACCA_ZACGCCTGTCCCCTGTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTAACTCCTAGGGGTGCGCCCTAGACAGGTACGTCTGTTTTTTAACTCCTAGGGGTGCGCCCTAGACAGGTACGTCTGTTTTTTTAACTCCTAGGGGTGCGCCCTAGACAGGTACGTCTGTTTTTTTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTAACTTCCTAGGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTTT$
4561	
4641	TTTTAAAAGATATGCTATGTAGATATAAGTTGAGGAAGCTCACCTCAAAAGCCTAGAATGCAGTTTCACAGTAGCTGGGA
	TGCATGGATGACCCATCTCACCCCTTTTTTTTCCTGCCTCAATATCTTGATATGTTATGTTTACTCCCAATCTCCCATT
4801	TTTACCACTAAAATTCTCCAACTTTCATAAACTTTTTTTT
4881	TCTCTGAGCCTAAAGGAGGAAAAGTCCCACCAACTACCAGACCAGAACACGAGCCCCTCTGGGCAGCAGGATTCCTAAGT
4961	CAAAGACCAGTTTGACCCAAACTGGCCTTTTAAAATAATCAGGAGTGACAGAGTCAACTTCTGCAGCACCTGCTTCTCCC
5041	CCACTGTCCCTTCCATCTTGGAATGTGTCTAAAAAAGCATAGCTGCCCTTTGCTGTCCTCAGAGTGCATTTCCTGGAGAC
5121	GGCAGGCTTAGGTCTCACTGACAGCATGCCAGACACAACTGAATCGAAGCAGGCCTGAAGCCTAGGTCAGGGTTTCAGGA
5201	GTCCAGCCCCAGGAGGCAAAGTCACCAATGCAGGGAGGTAAATGCCTTTTGGCAGGAAAACCAATAGAGTTGGTTG
5281	GGGAGTCAGGGGTGGGAGGAAGGAGGAAGAGGAGGAAGGCCAGACTGGCCTTTCTCCCATACTTCACCCCAGC
5361	AGAGGTTCATGGGACACAGTTGGAAAGCCACTGGGAGGAAATGCCTCACTACAGGGGGGGCCTCCTGTAGCAAGCCCAGCC
5441	GGTAATCCTCCTAATGAACCCACAAGGTCAATTCACAACTGATATCTTAGCTATTAAAGAAGTACTGACTTTACCARAAG
	AATCATCAAGAAAGCTATTTATATAAACCCCCCTCAGTCATTTTGAAATAAAATTAAATTTAA

Fig. 9 (continued)

TRANSLATED PROTEIN - NUCLEOTIDE 124 TO 1089

- 1 CTTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTA
- 46 CAGCCTGTTCCAAGTGTGGCTTAATCCGTCTCCACCACCAGATCT
- 136 GTAACCCGCACCACCACCACCACCACGACGTCATCTTCGGGC ValThrArgThrThrIleThrThrThrThrThrThrSerSerSerGly
- 181 CTGGGGTCCCCCATGATCGTGGGGTCCCCTCGGGCCCTGACACAG LeuGlySerProMetIleValGlySerProArgAlaLeuThrGln
- 226 CCCCTGGGTCTCCTTCGCCTGCTGCAGCTGGTGTCTACCTGCGTG ProLeuGlyLeuLeuArgLeuLeuGlnLeuValSerThrCysVal
- 271 GCCTTCTCGCTGGTGGCTAGCGTGGGCGCCTGGACGGGGTCCATG AlaPheSerLeuValAlaSerValGlyAlaTrpThrGlySerMet
- 316 GGCAACTGGTCCATGTTCACCTGGTGCTTCTCCGTGACC GlyAsnTrpSerMetPheThrTrpCysPheCysPheSerValThr
- 361 CTGATCATCCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTC LeullelleLeulleValGluLeuCysGlyLeuGlnAlaArgPhe
- 406 CCCCTGTCTTGGCGCAACTTCCCCATCACCTTCGCCTGCTATGCG ProLeuSerTrpArgAsnPheProIleThrPheAlaCysTyrAla
- 451 GCCCTCTTCTGCCTCTCGGCCTCCATCATCTACCCCACCACCACCTAT AlaLeuPheCysLeuSerAlaSerIleIleTyrProThrThrTyr
- 496 GTCCAGTTCCTGTCCCACGGCCGTTCGCGGGACCACGCCATCGCC ValGlnPheLeuSerHlsGlyArgSerArgAspHisAlaIleAla
- 541 GCCACCTTCTCCTGCATCGCGTGTGTGGCTTACGCCACCGAA AlaThrPhePheSerCysIleAlaCysValAlaTyrAlaThrGlu
- 586 GTGGCCTGGACCCGGGCCCGGCCGGCGAGATCACTGGCTATATG ValAlaTrpThrArgAlaArgProGlyGluIleThrGlyTyrMet
- 631 GCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCC AlaThrValProGlyLeuLeuLysValLeuGluThrPheValAla

- 721 CAGCCGGCCCTGGAGTGGTGCGTGCGGTGTACGCCATCTGCTTC GlnProAlaLeuGluTrpCysValAlaValTyrAlaIleCysPhe
- 766 ATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGGGAGTGCACC IleLeuAlaAlaIleAlaIleLeuLeuAsnLeuGlyGluCysThr
- 811 AACGTGCTACCCATCCCCTTCCCCAGCTTCCTGTCGGGGCTGGCC AsnValLeuProIleProPheProSerPheLeuSerGlyLeuAla
- 856 TTGCTGTCTCTCTCTATGCCACCGCCCTTGTTCTCTGGCCC LeuLeuSerValLeuLeuTyrAlaThrAlaLeuValLeuTrpPro
- 901 CTCTACCAGTTCGATGAGAAGTATGGCGGCCAGCCTCGGCGCTCG LeuTyrGlnPheAspGluLysTyrGlyGlyGlnProArgArgSer
- 946 AGAGATGTAAGCTGCAGCCGCAGCCATGCCTACTACGTGTGTGCC ArgAspValSerCysSerArgSerHisAlaTyrTyrValCysAla
- 991 TGGGACCGCCGACTGGCTGTGGCCATCCTGACGGCCATCAACCTA TrpAspArgArgLeuAlaValAlaIleLeuThrAlaIleAsnLeu
- 1036 CTGGCGTATGTGGCTGACCTGGTGCACTCTGCCCACCTGGTTTTT LeuAlaTyrValAlaAspLeuValHisSerAlaHisLeuValPhe
- 1081 GTCAAGGTCTAAGACTCTCCCAAGAGGCTCCCGTTCCCTCTCCAA ValLysVal
- 1126 CCTCTTTGTTCTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTT
- 1171 TCCTCCGCCTTTCCTCTGTTTTCCTCTCTCTCTCCCC

Fig. 10 (continued)

TRANSLATED PROTEIN - NUCLEOTIDE 587 TO 1012

1	GGAAGAAGAAGGAGGAGGAGAAGAAGAAGAAGAAGA
46	ACGCAAGACTTCGTCTCAAAAAAAAAGAAGAAAAATTTAAATAC
91	ATTTAAAAAAGAAGGTTGCATGCTGTGGAGCAACCAGACAATTGT
136	GATGAAATGTGAAGCACAAGGCACCAGCTGTGACGTGTTTTTGCC
181	AAGAAGTCAAACCACGTTCCAACTAAACCTCTAGAGCAAACTTTC
226	<u>ቅጥጥጥር እርር እ እ አጥጥርር እ እር እ እ እ እር እርርር እ አመለ አመርመል እ አመር እርርርርር</u>

- TCAGCAAATTCGAAGAAAAGAGGAATAATGTAAATGACCCC 271 ACAGGGAAACAGACAAACCCTGAATGTGGAGCATTTCACAGGACA
- 361 GCATGACAGAGAACTTTGGTTTCCTTTAATGTGACTGTAGACCTG
- 406 GCAGTGTTACTATAAGAATCACTGGCAATCAGACACCCGGGTGTG
- 451 CTGAGCTGGCACTCAGTGGGGGGGGCGCTACTGCTCATGTGATTGTG
- 496 GAGTAGACAGTTGGAAGAAGTACCCAGTCCATTTGGAGAGTTAAA
- 541 ACTGTGCCTAACAGAGGTGTCCTCTGACTTTTCTTCTGCAAGCTC
- 586 CATGTTTCACATCTTCCCTTTGACTGTGTCCTGCTGCTGCTGCT MetPheSerHisLeuProPheAspCysValLeuLeuLeuLeuLe
- 631 GCTACTACTTACAAGGTCCTCAGAAGTGGAATACAGAGCGGAGGT uLeuLeuLeuThrArgSerSerGluValGluTyrArgAlaGluVa
- 676 CGGTCAGAATGCCTATCTGCCCTGCTTCTACACCCCAGCCGCCCC lGlyGlnAsnAlaTyrLeuProCysPheTyrThrProAlaAlaPr
- 721 AGGGAACCTCGTGCCCGTCTGCTGGGGGCAAAGGAGCCTGTCCTGT oGlyAsnLeuValProValCysTrpGlyLysGlyAlaCysProVa
- 766 GTTTGAATGTGGCAACGTGGTGCTCAGGACTGATGAAAGGGATGT ${\tt lPheGluCysGlyAsnValValLeuArgThrAspGluArgAspVa}$
- 811 GAATTATTGGACATCCAGATACTGGCTAAATGGGGATTTCCGCAA lAsnTyrTrpThrSerArgTyrTrpLeuAsnGlyAspPheArgLy
- 856 AGGAGATGTGTCCCTGACCATAGAGAATGTGACTCTAGCAGACAG sGlyAspValSerLeuThrIleGluAsnValThrLeuAlaAspSe
- ${\tt rGlyIleTyrCysCysArgIleGlnIleProGlyIleMetAsnAs}$
- 946 TGAAAAATTTAACCTGAAGTTGGTCATCAAACCAGGTGAGTGGAC pGluLysPheAsnLeuLysLeuValIleLysProGlyGluTrpTh
- 991 ATTTGCATGCCATCTTTATGAATAAGATTTATCTGTGGATCATAT rPheAlaCysHisLeuTyrGlu
- 1036 TAAAGGTACTGATTGTTCTCATCTCTGACTTCCCTAATTATAGCC
- 1081 CTGGAGGAGGCCCACTAAGACCTAAAGTTTAACAGGCCCCATTGG
- 1126 TGATGCTCAGTGATATTTAACACCTTCTCTCTGTTTTAAAACTCA
- 1171 TGGGTGTGCCTGGGCGTGGTGGCTCACACCTCT

TRANSI ATED	PROTFIN -	NUCLEOTIDE	494 TO 760
	I KOILHY -	NUCLEUTIDE	474 11 / / / / /

1 T	PAGAACATTCTCCAGCCCTTTTTTTCTTTTGCTCTTTTATGAC
-----	---

- 46 ATTGACATGAAGAGTCCGGGCCAGTTGTTCTGGATTTGTCTGATT
- 91 GCTTCTCCCTGGTTGGAGTCAGGTGGAACAGCTCTGGCAGGAACG
- 136 CCCCCCGGGCAATGCAGAGTCCTCCTCCAGGAGGCACTTAGTGT
- 181 CCATGCGTCACCTTGCTGGTGATGCTTCACTGGATCACTTGGTTC
- 271 TTTCCAATTAGCCTGTGGGATGGGACTTGGAAGCTGTGTCTCT
- 316 TGCTCCACTGGCAACCTTTTCTTCAATGACTTAAGCTGGTGTTTT
- 361 GCCATTTTCCATACTCTATCATGGGGAGTGTTCAGTATCGGCATC
- 406 TAGAGATCTCCCCTGGCCCCATCACAGCTAGAGCTATGCTGTCCC
- 451 CTTTCAGGGACATCTTGTAATTTATCCACCCAGCCCCCAACTGAT
- 541 CACTGCAGGGACTGTCCTGCTGTGTTTTTTTAAGGCATGGGTACT rThrAlaGlyThrValLeuLeuCysPhePheLysAlaTrpValLe
- 586 CCAGAAGCAGTTGCTCAGCTGCACCCCCAAGGTTGAGTGGAAGTC uGlnLysGlnLeuLeuSerCysThrProLysValGluTrpLysSe
- 631 CCTCGGTAAAGGAGGAGAGAGAGTGTGAAGGGAATGGCAAGGCG rLeuGlyLysGlyGlyGlyGluSerValLysGlyMetAlaArgAr
- 676 GGGAGGGAGACAGGCACAGGTGTCCTGGCAACAGCAGATGGGAA gGlyGlyArgGlnGlyThrGlyValLeuAlaThrAlaAspGlyLy
- 721 ACAGGTCTGGCTAAGGTACCAGAAGCCAACAAGTCCCAGAAAGGT sGlnValTrpLeuArgTyrGlnLysProThrSerProArgLysVa
- 766 CAAGTGACTTTCCCAAGGTCACACAGCAAGTTGATGGCAGAGCTG
 1Lys
- 811 GGTACAGGACTCAGA

TRANSLATED PROTEIN - NUCLEOTIDE 83 TO 889

- 1 CTAGAATTCAGCGGCCGCTGAATTCTAGTGCAGAGTGAGCAAGGG
- 46 CCGCCTCATCCAGCTTCTCTCTGAGAGCCAGGGCCACATGGCTCA
 MetAlaHi
- 91 CCTGGTGAACTCCGTCAGCGACATCCTGGATGCCCTGCAGAGGGA sLeuValAsnSerValSerAspIleLeuAspAlaLeuGlnArgAs
- 136 CCGGGGCTGGGCCGGCCCCGCAACAAGGCCGACCTTCAGAGAGC pArgGlyLeuGlyArgProArgAsnLysAlaAspLeuGlnArgAl
- 181 GCCTGCCCGGGGAACCCGGCCCCGGGGCTGTGCCACTGGCTCCCG aProAlaArgGlyThrArgProArgGlyCysAlaThrGlySerAr
- 226 GCCCCGAGACTGTCTGGACGTCCTCCTAAGCGGACAGCAGGACGA gProArgAspCysLeuAspValLeuLeuSerGlyGlnGlnAspAs
- 316 GGTGTACTGTGACATGCGCACGGACGGCGGCGGCTGGACGGTGTT nValTyrCysAspMetArgThrAspGlyGlyGlyTrpThrValPh
- 361 TCAGCGCCGGGAGGACGCTCCGTGAACTTCTTCCGGGGCTGGGA eGlnArgArgGluAspGlySerValAsnPhePheArgGlyTrpAs
- 406 TGCGTACCGAGACGGCTTTGGCAGGCTCACCGGGGAGCACTGGCT pAlaTyrArgAspGlyPheGlyArgLeuThrGlyGluHisTrpLe
- 451 AGGGCTCAAGAGGATCCACGCCCTGACCACACAGGCTGCCTACGA uGlyLeuLysArgIleHisAlaLeuThrThrGlnAlaAlaTyrGl
- 496 GCTGCACGTGGACCTGGAGGACTTTGAGAATGGCACGGCCTATGC uLeuHisValAspLeuGluAspPheGluAsnGlyThrAlaTyrAl
- 541 CCGCTACGGGAGCTTCGGCGTGGGCTTGTTCTCCGTGGACCCTGA aArgTyrGlySerPheGlyValGlyLeuPheSerValAspProGl
- 586 GGAAGACGGGTACCCGCTCACCGTGGCTGACTATTCCGGCACTGC uGluAspGlyTyrProLeuThrValAlaAspTyrSerGlyThrAl
- AGGCGACTCCCTGAAGCACAGCGGCATGAGGTTCACCACCAA aGlyAspSerLeuLeuLysHisSerGlyMetArgPhethrThrLy
- 676 GGACCGTGACAGCGACCATTCAGAGAACAACTGTGCCGCCTTCTA sAspArgAspSerAspHisSerGluAsnAsnCysAlaAlaPheTy

- 721 CCGCGGTGCCTGGTGGTACCGCAACTGCCACACGTCCAACCTCAA rArgGlyAlaTrpTrpTyrArgAsnCysHisThrSerAsnLeuAs
- 766 TGGGCAGTACCTGCGCGGTGCGCACGCCTCCTATGCCGACGGCGT nGlyGlnTyrLeuArgGlyAlaHisAlaSerTyrAlaAspGlyVa
- 811 GGAGTGGTCCTCCTGGACCGGCTGGCAGTACTCACTCAAGTTCTC lGluTrpSerSerTrpThrGlyTrpGlnTyrSerLeuLysPheSe
- 856 TGAGATGAAGATCCGGCCGGTCCGGGAGGACCGCTAGACCGGTGC rGluMetLysIleArgProValArgGluAspArg
- 901 ACCTTGTCCTTGGCCCTGCTGGTCCCCGATCCCCGACC
- 946 CCACCTCACTCTTTCGTGAATGTTCTCCACCCACCTGTGCCTGGC
- 991 GGACCCACTCTCCAGTAGGGAGGGCCGGGCCATCCCTGACACGA
- 1036 AGCTCCCTGGGCCGGTGAAGTCACACATCGCCTTCTCGCCGTCCC
- 1081 CACCCCTCCATTTGGCAG

Fig. 13 (continued)

25/42

TRANSLATED PROTEIN - FRAME: 2 - NUCLEOTIDE 38 TO 844
1
CCGCCTCATCCAGCTTCTCTCTGAGAGCCAGGGCCACATGGCTCA
MetAlaHi
46
CCTGGTGAACTCCGTCAGCGACATCCTGGATGCCCTGCAGAGGGA
${ t sLeuValAsnSerValSerAspIleLeuAspAlaLeuGlnArgAs}$
91
CCGGGGGCTGGGCCGGCCCGCAACAAGGCCGACCTTCAGAGAGC
pArgGlyLeuGlyArgProArgAsnLysAlaAspLeuGlnArgAl
GCCTGCCCGGGGAACCCGGCCCCGGGGCTGTGCCACTGGCTCCCG
aProAlaArgGlyThrArgProArgGlyCysAlaThrGlySerAr
181
GCCCCGAGACTGTCTGGACGTCCTCCTAAGCGGACAGCAGGACGA
gProArgAspCysLeuAspValLeuLeuSerGlyGlnGlnAspAs
226
TGGCGTCTACTCTGTCTTTCCCACCCACTACCCGGCCGGC
pGlyValTyrSerValPheProThrHisTyrProAlaGlyPheGl
271
GGTGTACTGTGACATGCGCACGGACGGCGGCGGCTGGACGGTGTT
nValTyrCysAspMetArgThrAspGlyGlyGlyTrpThrValPh 316
TCAGCGCCGGGAGGACGCTCCGTGAACTTCTTCCGGGGCTGGGA
eGlnArgArgGluAspGlySerValAsnPhePheArgGlyTrpAs
361
TGCGTACCGAGACGGCTTTGGCAGGCTCACCGGGGAGCACTGGCT
pAlaTyrArgAspGlyPheGlyArgLeuThrGlyGluHisTrpLe
406
AGGGCTCAAGAGGATCCACGCCCTGACCACACAGGCTGCCTACGA
uGlyLeuLysArgIleHisAlaLeuThrThrGlnAlaAlaTyrGl
451
GCTGCACGTGGACCTGGAGGACTTTGAGAATGGCACGGCCTATGC uLeuHisValAspLeuGluAspPheGluAsnGlyThrAlaTyrAl
496
CCGCTACGGGAGCTTCGGCGTGGGCTTGTTCGCCGTGGACCCTGA
aArgTyrGlySerPheGlyValGlyLeuPheAlaValAspProGl
541
GGAAGACGGCACCCGCTCACCGTGGCTGACTATTCCGGCACTGC
uGluAspGlyHisProLeuThrValAlaAspTyrSerGlyThrAl
586
AGGCGACTCCCTGAAGCACAGCGGCATGAGGTTCACCACCAA
aGlyAspSerLeuLeuLysHisSerGlyMetArgPheThrThrLy

Fig. 14

 ${\tt GGACCGTGACAGCGACCATTCAGAGAACAACTGTGCCGCCTTCTA}\\ {\tt sAspArgAspSerAspHisSerGluAsnAsnCysAlaAlaPheTy}$

	676
	CCGCGGTGCCTGGTGGTACCGCAACTGCCACACGTCCAACCTCAA
	rArgGlyAlaTrpTrpTyrArgAsnCysHisThrSerAsnLeuAs
	721
	TGGGCAGTACCTGCGCGGTGCGCACGCCTCCTATGCCGACGGCGT
	nGlyGlnTyrLeuArgGlyAlaHisAlaSerTyrAlaAspGlyVa
	766
	GGAGTGGTCCTCCTGGACCGGCTGGCAGTACTCACTCAAGTTCTC
	lGluTrpSerSerTrpThrGlyTrpGlnTyrSerLeuLysPheSe
	811
	TGAGATGAAGATCCGGCCGGTCCGGGAGGACCGCTAGACCGGTGC
	rGluMetLysIleArgProValArgGluAspArg
	856
	ACCTTGTCCTTGGCCCTGCTGGTCCCTGTCGCCCCATCCCCGACC
	901
	CCACCTCACTCTTTCGTGAATGTTCTCCACCCACCTGTGCCTGGC
	946
	GGACCCACTCTCCAGTAGGGAGGGGCCGGGCCATCCCTGACACGA
	991
	AGCTCCCTGGGCCGGTGAAGTCACACATCGCCTTCTCGCCGTCCC
1	1036
	CACCCCTCCATTTGGCAG

Fig. 14 (continued)

Fig. 15

Fig. 16

Fig. 17

FRAN	NE: 1 - NUCLEOTIDE 1 TO 498
	1
	ATGAATTTCTGAAATTAATTGCTGTGTTTATAGTTTTTAGCCAT MetAsnPheLeuLysLeuIleAlaValPheIleValPheSerHis
4	16
	GCATCGGAATCACCTCAGGACTCCACTCCCAATCAATTATATATC
	AlaSerGluSerProGlnAspSerThrProAsnGlnLeuTyrIle
9	1
	TGGGGGAGGACCAAGGCGTTGGTATTTTTCAGAAGCTCCACTGGT
	TrpGlyArgThrLysAlaLeuValPhePheArgSerSerThrGly
13	6
	GATTCTGACAGCACAGCTAGGATTAAGAAACTGATCAATCCCAAC

GATTCTGACAGCACAGCTAGGATTAAGAAACTGATCAATGGGAAC AspSerAspSerThrAlaArgIleLysLysLeuIleAsnGlyAsn 181

GAACATCAATCTTCCTTCCCCACTCCTGAGATCCCTCATTCTTTG GluHisGlnSerSerPheProThrProGluIleProHisSerLeu 271

GCACCAGGAACAGTTGCAATTAGTAAACCCTGGTTCCCTGCTGTC AlaProGlyThrValAlaIleSerLysProTrpPheProAlaVal 316

TCACAAATCGCAAGAGTCCAACGTGTGGATATAAACTTTTGTTCA SerGlnIleAlaArgValGlnArgValAspIleAsnPheCysSer

361 TGGGAGGATCTTTCTCCCAGTGGAAAAGCAACTGGGAAAAGCAGG TrpGluAspLeuSerProSerGlyLysAlaThrGlyLysSerArg

ACACACTGCACAGTGACTGCAGTTTCATCCAATGCCACCACT ThrHisCysThrValThrAlaValSerSerAsnAlaThrThrHis

451
GCAGGCATAAATAATGAACATGGATGGGGGAGTCTGGAGCTGCTG
AlaGlyIleAsnAsnGluHisGlyTrpGlySerLeuGluLeuLeu
496

AAT Asn

Fig. 19

31/42

RELATIVE EXPRESSION (%)

TISSUE SOURCE OF RNA Fig. 20 (PANEL B)

1000

TONG CA. (SQUAM.) NCI-H596

Fig. 20 (PANEL C)

35/42

Him to

TISSUE SOURCE OF RNA

-IG. ZZ (PANEL A)

.

38/42

39/42

40/42

41/42

TISSUE SOURCE OF RNA FIG. 23 (PANEL C)

UACC-257

2K-WET-28

IVMIXO1

UACC-62

T.(A)8832H

TESTIS

PROSTATE PLACENTA **UTERUS**

MYOMETRIUM

ICKON-1

OVCAR-5

OVCAR-4

blW

(WEI) 2K-WEF-2

T.(8)886zh (Tem) *Amonajam

PROSTATE CA.* (BONE MET) PC-3

OVARIAN CA.* (ASCITES) SK-0V-3

MELANOMA

MELANOMA

*AMONAJ3M

MELANOMA

MELANOMA

MELANOMA

MELANOMA

OVARIAN CA.

OVARIAN CA.

OVARIAN CA.

OVARIAN CA.

OVARIAN CA.

BREAST CA.

BREAST CA.