SOC Assignment-1

Dive into Digital image processing

Aman Verma 22B3929 Code:import numpy as np from PIL import Image # Make sure that the image you want to get output from is present $\mbox{\it\#}$ in the same folder as the python file. Run this code using different images too :) image_name = "WIN_20230326_10_12_27_Pro.png" # Open the image file img = Image.open(image_name) $\hbox{\# Convert the image to a numpy array and extract the grayscale values \ (ravel() extracts the grayscale values) } \\$ img_array = np.array(img) gray_values = img_array.ravel() # Now numpy array gray_values contains gray value of each pixel. ##### TO DO ##### # Using Introduction.py see If image contains all pixel values are zero or not. # Convert the given black image (Image is black because all grayscale values are near to zero) into $\ensuremath{\mbox{\# img_stretched}}$ so that our eyes can see what's actually there in the image. $\hbox{\it\# This process is a real life application in Biology using Digital Image Processing.}$ # Change something in img_array :) $\ensuremath{\text{\#}}$ Run your code with given 3 images by changing Image name in the code. # HINTS # 1. Increase the contrast (Read last week theory- Histogram Stretching) # 2. min_value = np.min(gray_values) - This gives minimum value from the numpy array gray_values. Similarly you can find maximum value :) # ACTIVITY $\hbox{\tt\#I have given three images a.png, b.png, c.png. The time order of taking this image is as follows:}$ # a.png b.png c.png # t t+T t+2T # Can you guess process? #yes,the process is cell division.

WRITE YOUR CODE HERE

#histogram stretching

Can be clearly seen it is cell division.