Markov Decision Processes Finite Horizon Problems

Alan Fern

Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model

Example MDP

Goal
win the game or
play max # of cards

Action are the different legal card movements

$$T(s_0, a_0, s_0) = Pr(s_0|s_0, a_0) = 0.2$$

$$T(s_0, a_0, s_1) = Pr(s_1|s_0, a_0) = 0.8$$

$$T(s_0, a_1, s_0) = Pr(s_0|s_0, a_1) = 1.0$$

$$T(s_0, a_1, s_1) = Pr(s_1|s_0, a_1) = 0.0$$

$$T(s_1, a_0, s_0) = Pr(s_0|s_1, a_0) = 0.9$$

$$R(s_0, a_0) = R(s_0, a_1) = 0$$

 $R(s_1, a_0) = R(s_1, a_1) = 1$

. . . .

What actions should we do in each state?

What actions should we do in each state?

- An MDP has four components: S, A, R, T:
 - finite state set S (|S| = n)
 - finite action set A (|A| = m)
 - - Probability of going to state s' after taking action a in state s
 - How many parameters does it take to represent?

$$m \cdot n \cdot (n-1) = O(mn^2)$$

- bounded, real-valued reward function R(s,a)
 - Immediate reward we get for being in state s and taking action a
 - Roughly speaking the objective is to select actions in order to maximize total reward
 - For example in a goal-based domain R(s,a) may equal 1 when in the goal state and 0 otherwise (or -1 reward for non-goal states)

Assumptions

St is the state at time t, At is the action at time t

- First-Order Markovian dynamics (history independence)
 - Arr Pr(St+1|At,St,At-1,St-1,...,S0) = Pr(St+1|At,St)
 - Next state only depends on current state and current action

State-Action Dependent Reward

- Arr R^t = R(S^t, A^t)
- Reward is a deterministic function of current state and action

Stationary dynamics

- Arr Pr(St+1|At,St) = Pr(Sk+1|Ak,Sk) for all t, k
- The world dynamics and reward function do not depend on absolute time

Full observability

Though we can't predict exactly which state we will reach when we execute an action, after the action is executed, we know the new state

Sutton & Barto Notation vs. Ours

- Our notation: S, A, R, T
 - ▲ S: finite set
 - ▲ A : finite set
 - R(s,a): deterministic function of states and actions
 - ↑ T(s,a,s') = Pr(s' | s,a) : conditional distribution over next states

- Sutton & Barto notation: S, A, p
 - ◆ S: finite set
 - A(s): function returning finite set of actions for state s
 - Usually the book ignores this difference and just uses same set of actions for all states (like us)
 - p(s', r | s, a): probability of seeing state s' and reward r after taking action a in state s
 - Very general way of specifying an MDP

Sutton & Barto Notation vs. Ours

 For most of our algorithms and definitions we can convert between the notations without any loss of generality

- Converting Sutton & Barto to Ours
 - ^ Sutton & Barto give us p(s', r | s, a)
 - lacktriangle Define $R(s,a) = \sum_{s'} \sum_{r} p(s',r \mid s,a) \cdot r = E_p[r \mid s,a]$
 - R(s,a) is expected value of reward given we take a in s
 - Define $T(s, a, s') = \sum_{r} p(s', r \mid s, a) = p(s' \mid s, a)$
 - Marginalize out reward
 - Using R(s,a) and T(s,a,s') will generally yield the same results as if we used Sutton & Barto's p(s', r | s, a) directly
- Converting Ours to Sutton & Barto
 - Trivial since Sutton & Barto's notation is so general

Define an MDP that represents the game of Tetris.

$$A = ?$$

$$S = ?$$

$$T(s,a,s') = ?$$

$$R(s,a) = ?$$

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: ????

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: ????

- One Answer: Suppose we are given an initial starting state s_0 .
 - An open-loop plan from s_0 is a sequence of actions $(a_1, a_2, a_0, ...)$ that will be executed by the agent
- Should the solution to an open-loop plan in general?
 - Consider a single player card game like Blackjack/Solitaire.

Example

Starting from s_0 can an optimal solution just be a sequence of actions? (e.g. $[a_0, a_0, a_0, a_1, a_1,]$)

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: ????

- Should the solution to an MDP from an initial state be just a sequence of actions such as (a1,a2,a3,)?
 - Consider a single player card game like Blackjack/Solitaire.
- No! In general an action sequence is not sufficient
 - Actions have stochastic effects, so the state we end up in is uncertain
 - This means that we might end up in states where the remainder of the action sequence doesn't apply or is a bad choice
 - A solution should tell us what the best action is for any possible situation/state that might arise

Policies: Non-Stationary (time dependent)

Assume a bounded number of time steps (i.e. finite horizon).

A non-stationary policy selects an action at each state that may depend on the number of time steps remaining.

Policies: Non-Stationary (time dependent)

k is # of steps remaining

Written as $\pi(s_0, 1) = a_1$

Policies: Stationary

What if we are not given a bound on the time steps?

A **stationary policy** selects an action for each state.

(essentially prunes the MDP)

Policies: Stationary

Example policy #1

Policies: Stationary

Example policy #2

Policies ("plans" for MDPs)

- A solution to an MDP is a policy
 - Two types of policies: nonstationary and stationary

- Nonstationary policies are used when we are given a finite planning horizon H
 - I.e. we are told how many actions we will be allowed to take

- Nonstationary policies are functions from states and times to actions
 - \bullet π :S x K \rightarrow A, where K is the non-negative integers
 - \bullet π (s,k) tells us what action to take at state s when there are k stages-to-go (note that we are using the convention that k represents stages/decisions to go, rather than the time step)

Policies ("plans" for MDPs)

- What if we want to continue taking actions indefinately?
 - Use stationary policies

- A Stationary policy is a mapping from states to actions
 - $\Lambda:S \to A$
 - \bullet π (s) is action to do at state s (regardless of time)
 - specifies a continuously reactive controller

- Note that both nonstationary and stationary policies assume or have these properties:
 - full observability of the state
 - history-independence
 - deterministic action choice

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: a policy such that ????

We don't want to output just any policy

We want to output a "good" policy

One that accumulates a lot of reward

Value of a Policy

- How good is a policy π?
 - lacktriangle How do we measure reward "accumulated" by π ?
- Value function $V: S \to \mathbb{R}$ associates value with each state (or each state and time for non-stationary π)
- $V_{\pi}(s)$ denotes value of policy π at state s
 - lacktriangle Depends on immediate reward, but also what you achieve subsequently by following π
 - An optimal policy is one that is no worse than any other policy at any state
- The goal of MDP planning is to compute an optimal policy

Value Functions

Example stationary policy $\pi(s_0) = a_1$, $\pi(s_1) = a_0$

 $V_{\pi}(s_0) = 0$ for any reasonable definition of value function $V_{\pi}(s_1)$ depends on the specific type of value function we use

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: a policy that achieves an "optimal value"

This depends on how we define the value of a policy

 There are several choices and the solution algorithms depend on the choice

- We will consider two common choices
 - Finite-Horizon Value
 - Infinite Horizon Discounted Value

Finite-Horizon Value Functions

- We first consider maximizing expected total reward over a finite horizon
- Assumes the agent has H time steps to live (that is, it gets to take H actions)

Finite-Horizon Value Functions

- We first consider maximizing expected total reward over a finite horizon
- Assumes the agent has H time steps to live (that is, it gets to take H actions)
- To act optimally, should the agent use a stationary or non-stationary policy?
 - ▲ I.e. Should the action it takes depend on absolute time?
- Put another way:
 - ◆ If you had only one week to live would you act the same way as if you had fifty years to live?

Consider what we should do in s_0 for H = 3 versus $H = 10^6$?

Finite Horizon Problems

- Value depends on stage-to-go
 - Hence use a nonstationary policy!
- $V_{\pi}^{k}(s)$ is k-stage-to-go value function for non-stationary π
 - expected total reward for executing π starting in s for k time steps

k is # of steps remaining

$$V_{\pi}^{1}(s_{0}) = ?$$
 $V_{\pi}^{1}(s_{1}) = ?$ $V_{\pi}^{2}(s_{0}) = ?$ $V_{\pi}^{2}(s_{1}) = ?$ $V_{\pi}^{3}(s_{1}) = ?$

Finite Horizon Problems

- Value depends on stage-to-go
 - Hence use a nonstationary policy!
- $V_{\pi}^{k}(s)$ is k-stage-to-go value function for non-stationary π
 - expected total reward for executing π starting in s for k time steps

$$V_{\pi}^{k}(s) = E\left[\sum_{t=0}^{k-1} R^{t} \mid \pi, s\right]$$

$$=E\left[\sum_{t=0}^{k-1}R(S^{t},a^{t})\,|\,a^{t}=\pi(S^{t},k-t),S^{0}=s\right]$$

- Here R^t and S^t are random variables denoting the reward received and state at time-step t when starting in state s
 - These are random variables since the world is stochastic

Computational Problems

There are two problems that we will be interested in solving

Policy evaluation:

- ightharpoonup Given an MDP and a nonstationary policy π
- lacktriangle Compute finite-horizon value function $V_\pi^k(s)$ for any k

Policy optimization:

- Given an MDP and a horizon H
- Compute the optimal finite-horizon policy
- We will see this is equivalent to computing optimal value function

Evaluate policy $\pi(s, k)$ over action space $A = \{\text{orange}, \text{black}\}\$

$$V^{0}(s) = 0$$
, for all s
 $V^{1}(s_{4}) = R(s_{4}, \pi(s_{4}, 1)) + 0.7 V^{0}(s_{1}) + 0.3 V^{0}(s_{4})$

$$V^{0}(s) = 0, \text{ for all } s$$

$$V^{1}(s_{4}) = R(s_{4}, \pi(s_{4}, 1)) + 0.7 V^{0}(s_{1}) + 0.3 V^{0}(s_{4})$$

$$V^{2}(s_{4}) = R(s_{4}, \pi(s_{4}, 2)) + 0.7 V^{1}(s_{1}) + 0.3 V^{1}(s_{4})$$

$$V^{0}(s) = 0, \text{ for all } s$$

$$V^{1}(s_{4}) = R(s_{4}, \pi(s_{4}, 1)) + 0.7 V^{0}(s_{1}) + 0.3 V^{0}(s_{4})$$

$$V^{2}(s_{4}) = R(s_{4}, \pi(s_{4}, 2)) + 0.7 V^{1}(s_{1}) + 0.3 V^{1}(s_{4})$$

- Can use dynamic programming to compute $V_{\pi}^{k}(s)$
 - Markov property is critical for this

(k=0)
$$V_{\pi}^{0}(s) = 0$$
, $\forall s$

$$(k>0) V_{\pi}^{k}(s) = R(s,\pi(s,k)) + \sum_{s'} T(s,\pi(s,k),s') \cdot V_{\pi}^{k-1}(s'), \forall s$$

immediate reward

expected future payoff with *k*-1 stages to go

What is total time complexity? $O(Hn^2)$

Computational Problems

There are two problems that we will be interested in solving

Policy evaluation:

- lacktriangle Given an MDP and a nonstationary policy π
- lacktriangle Compute finite-horizon value function $V_\pi^k(s)$ for any k

Policy optimization:

- Given an MDP and a horizon H
- Compute the optimal finite-horizon policy
- We will see this is equivalent to computing optimal value function
- How many finite horizon policies are there?

 - So can't just enumerate policies for efficient optimization

Policy Optimization: Bellman Backups

How can we compute the optimal Vk+1(s) given optimal Vk?

$$V^{k+1}(s) = \max \{R(s,a1) + 0.7 V^k(s1) + 0.3 V^k(s4) \blacksquare$$

 $R(s,a2) + 0.4 V^k(s2) + 0.6 V^k(s3) \blacksquare \}$

Value Iteration

$$V^{1}(s4) = max \{ R(s4,a0) + 0.7 V^{0}(s1) + 0.3 V^{0}(s4) \square$$

 $R(s4,a1) + 0.4 V^{0}(s2) + 0.6 V^{0}(s3) \square \}$

Value Iteration

Value Iteration: Finite Horizon Case

- Markov property allows exploitation of DP principle for optimal policy construction
 - ◆ no need to enumerate |A|Hn possible policies
- Value Iteration

Bellman backup

$$V^0(s) = 0, \quad \forall s$$

$$V^{k}(s) = \max_{a} R(s, a) + \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$$

$$\pi^*(s,k) = \arg\max R(s,a) + \sum_{s'} T(s,a,s') \cdot V^{k-1}(s')$$

 V^k is optimal k-stage-to-go value function $\Pi^*(s,k)$ is optimal k-stage-to-go policy

Value Iteration: Complexity

- Note how DP is used
 - optimal soln to k-1 stage problem can be used without modification as part of optimal soln to k-stage problem

- What is the computational complexity?
 - H iterations
 - At each iteration, each of n states, computes expectation for m actions
 - Each expectation takes O(n) time
- Total time complexity: O(Hmn²)
 - ◆ Polynomial in number of states. Is this good?

Summary: Finite Horizon

Resulting policy is optimal

$$V_{\pi^*}^k(s) \geq V_{\pi}^k(s), \quad \forall \pi, s, k$$

convince yourself of this (use induction on k)

- Note: optimal value function is unique.
- Is the optimal policy unique?
 - No. Many policies can have same value (there can be ties among actions during Bellman backups).