DE MATHEMATICA PURA

On Pure Mathematics

Harry Han

February 4, 2023

INDEX

1	Notation	1
2	Analysis	2
3	Algebra	4
T	Latin and Abbreviations	6

Abstract

These are my notes when taking the class Fundamentals of Pure Mathematics at the University of Edinburgh. They are not a replicate of the lecture notes: they are my thoughts and explorations. Terms like "Theorem, Proposition" are coined in Latin. As the English terms descended from Latin, most of them are self-explanatory.

Caput 1

Notation

- The \mathbb{T} fonts are used to denote sets. (\mathbb{S} , \mathbb{Y} , etc.)
- $\mathbb{A} \succ \mathbb{B}$ denotes there exits a surjective function $f: A \to B$. \prec, \simeq denotes injective, bijective, respectively.
- \bullet e is used to denote the identity of a group.
- When there is no ambiguity, the notation for the operation of group is ommited. (i.e., $a \odot b = ab$). a^{-1} is used to denote the inverse of a.

Caput 2

Analysis

Axioma 2.0.1 (The "Smallest" Infinite Set). A set S is infinite iff $S \succ N$.

Observatio 2.0.1. Although FPM is a pure mathematic class with emphasis on rigor, no rigorous definition for the infinite set has been proposed. This definition/axiom is of my own conception.

Definitio 2.0.1 (Countable Set). A set \mathbb{S} is countable iff $\mathbb{N} \times \mathbb{S}$ (there exists a bijection $f : \mathbb{N} \to \mathbb{S}$).

Corollarium 2.0.1 (At Most Countable). Let \mathbb{A} be an infinite set. $(\mathbb{A} \prec \mathbb{N})$ iff $(\mathbb{A} \simeq \mathbb{N})$.

Proof. We want to prove $\mathbb{A} \prec \mathbb{N}$ is equivalent to $\mathbb{A} \simeq \mathbb{N}$. $\mathbb{A} \simeq \mathbb{N} \to \mathbb{A} \prec \mathbb{N}$ is by definition. We only need to prove the other direction; i.e., provided $\mathbb{A} \prec \mathbb{N}$, find a bijective function $h : \mathbb{A} \to \mathbb{N}$.

Let $f: \mathbb{A} \to \mathbb{N}$ be an injective mapping. If f is bijective, we are done. If f is injective but not bijective, let \mathbb{N}^- be the range of f. As \mathbb{A} is infinite, \mathbb{N}^- is also infinite. Let $f': \mathbb{A} \to \mathbb{N}^-$ such that f(a) = f'(a). f' is an bijective mapping.

Thus we only need to show there exists a mapping $g: \mathbb{N}^- \to \mathbb{N}$ that is bijective.

g can be constructed by such: sort \mathbb{N}^- and \mathbb{N} in ascending order. Let the first element in the sorted \mathbb{N}^- maps to the first in the sorted \mathbb{N} , the secound to secound, etc. As \mathbb{N}^- is infinite, g must be bijective.

Indeed $h = g \circ f' : \mathbb{A} \to \mathbb{N}$ is the bijective mapping we seek. Q.E.D.

Theorema 2.0.1 (List of Countable and Uncountable Sets). Any of the following sets are countable.

1. \mathbb{Z}, \mathbb{Q}

- ${\it 2. \ Any \ infinite \ subset \ of \ countable \ sets.}$
- 3. Any products of countable sets. If \mathbb{S} is countable, $\{\mathbb{S} \times \mathbb{S}\}, \{\mathbb{S} \times \mathbb{S} \times \cdots \times \mathbb{S}\}$ are also countable.

Caput 3

Algebra

Definitio 3.0.1 (Group). Group is a set \mathbb{S} with an operation \odot that fulfills the following four properties:

- 1. Closure
- 2. Associtivity: $(a \odot b) \odot c = a \odot (b \odot c)$;
- 3. Identity
- 4. Inverse

Theorema 3.0.1 (Consequence of the Definition). There are many non-obvious properties that directly follows the definition.

- 1. General Associtivity: Parenthesis does not matter, as long as the order is the same: $a \odot b \odot c \odot d \odot e \odot f \odot g \cdots = (a \odot ((b \odot c) \odot e (\odot f \odot g) \cdots) = \cdots$
- 2. Order of Inverse: $(a \odot b)^{-1} = b^{-1} \odot a^{-1}$.

Here are some examples of groups.

- 1. $S = \{e\}$
- 2. $\mathbb{S} = \{e, a, b, c\}$. With the following operation: 1. All elements are their own inverse; 2. The group is abelian. 2. $a \odot b = c, a \odot c = b, b \odot c = a$.

Coniectura 3.0.1. These are some of my hypothesis and thoughts.

- 1. different properties of odd finite groups and even finite groups
- 2. If defining the reverto of the operation \odot to be \oslash as such: $a \odot b = a \oslash b^{-1}$. What are the sets such that it would be a group under both $\odot \& \oslash$?

3. Can we have a set \mathbb{S} , such that under the operation \odot we have $\forall a, b \in \mathbb{S}, a \odot b = b \odot a$ but without associtivity? (Community without associtivity?)

Definitio 3.0.2 (Order of Group and element). The order of the group \mathbb{S} is $|\mathbb{S}|$ (How many elements it has).

The order of an element $s \in \mathbb{S}$ is the smallest integer i such that $s^i = e$. (If such i exists)

Definitio 3.0.3 (Cyclic Group). Let \mathbb{G} be a group and g one of its element. Considering the set:

$$\mathbb{S} = \{ \cdots g^{-2}, g^{-1}, e, g, g^1, g^2 \cdots \}$$

If S is finite, it is called a cyclic group. (It can be shown that it must be a subgroup of G.

Appendix I Latin and Abbreviations

Theorema: Theorem