Harrison Zeldovich Prescription

Harrison(1970) & Zeldovich(1972)

1 Harrison Zeldovich Prescription

All perturbations that come into the horizon have the same amplitude.

$$\Delta(k_i, t_i) = \Delta(k_e, t_e) = \text{Const.} \tag{1}$$

Attention $k = 2\pi/L$ is the comoving wavenumber.

1.1 What does that mean? & Evolution of This Prescription.

One kind of understanding of the assumption is

- 1. The perturbations are generated to be the same value (comoving value).
- 2. When the perturbations are outside of the horizon, their comoving measurement do not evolve.

However, this might be wrong (and it is wrong 1). This only gives us a intuitive inspiration. The only thing we know is 1.

Am I wrong?

The assumption firstly used is $\delta_0 = \beta_E N^{-n}$. Or equivalently, $\delta_0 \propto L^{-3n}$. Since Harrison proved that there is a throshold epoch where the initial perturbations are located, all the perturbations generated at that epoch can be discribed as $\delta_0 \sim L^{-3n} \sim k^{3n}$ and $n = \frac{2}{3}$. i.e., primiordial perturbations are $\delta_0 \sim L_0^{-2} \sim a(t_H)^2/L_{H-physical}^2$. [t_0 denotes the time when the perturbation are generated. t_H is the time of horizon crossing, i.e., $2ct_H = \lambda_H$.]

During RD, $a(t)^2 = 2\sqrt{C}t$, then $\delta_H \sim a(t_H)^2/t_H^2 \sim a(t_H)^2/a(t_H)^4 \sim 1/t_H$. The amplitude of the perturbations are time dependent because the moment of horizon crossing t_H are different for different perturbations. So what are the mistakes here?

If $\delta_H \sim k_H^2$ remains the same for all perturbations and $P(k_H) \sim k_H$, from the defination of another measurement of perturbations

$$\Delta(k) = \frac{k^3}{2\pi^2} P(k),\tag{2}$$

we have $\Delta^2 = \delta_H^2$ when the perturbation comes into the horizon $(k = \lambda_H)$, which indicates 1. Generally speaking, one would choose the initial power spectrum to be power law form, i.e., $P(k) \propto k^n$, or evern more simple, scale free Zeldovich spectrum, $P(k) \propto k$.

1.1.1 Primitive Spectrum

It is expected that Δ is scale free. The primitive spectrum given by inflation (or just a dimension analysis) is

$$P_{\Phi}(k) = \frac{50\pi^2}{9k^3} \left(\frac{k}{H_0}\right)^{\hat{n}-1} \delta_H^2 \left(\frac{\Omega_m}{D_1(a=1)}\right)^2 \tag{3}$$

When $\hat{n} = 1$, that is exact a scale invariant perturbation, i.e., $P(k) \sim k^{-3}$

THE PROBLEM IS, How do the original $\mu_0 \sim L_0^{-3n} \sim k_0^2$ evolve to $P(k_0) \sim k_0$?

$$P(k_0) \sim \mu_0^2 / k_0^3 \sim k_0.$$
 (4)

¹Even the largest scale potential perturbations damp to 9/10 of their original value.

²http://fisica.usac.edu.gt/public/curccaf_proc/borganihtml/node5.html