

United States Air Force

Installation Restoration ProgramWork Plan 45th Space Wing Facilities

Cape Canaveral Air Station, Florida

DRAFT PILOT STUDY REPORT PERMEABLE REACTIVE TREATMENT (PeRT)

WALL PILOT STUDY

→ November 1999

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20000830 021

Walton, Norman

From: Hansen, Jerry E, Mr, HQAFCEE [Jerry.Hansen@HQAFCEE.brooks.af.mil]

Sent: Tuesday, August 08, 2000 10:16 AM

To: 'nwalton@dtic.mil'

Subject: Distribution statement for AFCEE/ERT reports

Norman, This is a followup to our phone call. The eight boxes of reports you received from us are all for unlimited distribution. If you have any questions, you can contact me at DSN 240-4353.

Rust Environment & Infrastructure Inc. RUKT

A Rust International Company 10 Patewood Drive Bldg VI Suite 500

Phone 864.234.3000 Fax 864 234 3069

Greenville, SC 29615

November 30, 1999

Mr. Jerry Hansen AFCEE/ERT 3207 North Road Brooks AFB, Texas 78235-5363

Subject:

Cape Canaveral Pilot Testing of PeRT Wall

AFCEE Contract No. 41624-94-D-8048 Draft Final Pilot Study Report, Version 2

Delivery Order No. 10 Rust Project No. 29515

Dear Mr. Hansen:

Enclosed are three copies of the draft final Pilot Study Report. An electronic copy of the report is also enclosed. This report includes the comments received from Major Marchand, EPA (by Gannett Flemming, Inc.), and Dr. Theodore Meiggs of Foremost Solutions. Responses to these comments are included also. It is understood that there were comments developed by Mr. Robert Edwards, but these have not been received by Rust.

If you have any questions do not hesitate to contact me at 864-234-8910.

Sincerely:

Killen A. Mchi Kathleen A. McNelis

Project Manager

Enclosures

Copy: Joe Harrigan

Project File 29515

Response to EPA COMMENTS ON PILOT STUDY REPORT PERMEABLE REACTIVE TREATMENT (PeRT) WALL PILOT STUDY CAPE CANAVERAL AIR STATION DRAFT FINAL, DATED JUNE 1999

NO.	PAGE	PARAGRAPH	
1	2-9	Section 2.3	COMMENT: OVA readings were described as being in the
		20011011 2.5	100 to 300 ppm range. The boring log for monitor well
			HGRK-PRTMW-18 indicated 400 ppm detected in the
			samples collected at both 35 and 40 feet in depth. Check the
			original field notes and revise accordingly.
-			
1			RESPONSE: Text will be modified to list the maximum
			concentration as 450 ppm (as noted at HGRK-PRTMWD01)
2	3-4	Section 3.4	COMMENT
-	3-4	Section 5.4	COMMENT: The text states that a PeRT wall converts
			chlorinated VOCs to non-toxic compounds without removing them from the ground. Please revise to say that a PeRT wall's
ĺ			design purpose is to convert chlorinated VOCs to non-toxic
			compounds without removing them from the ground. As
			stated in the conclusions, it is not clearly demonstrated that
		1	this PeRT wall at this location is achieving its design purpose.
2			
2	1,		RESPONSE: Text will be modified as requested.
3		Figure 3-4	COMMENT. This same is a second of
		1 iguie 3-4	COMMENT: This figure is missing the 10-foot contour line. Please revise accordingly.
			rease levise accordingly.
3			RESPONSE: Figure will be edited to include the 10-foot
			contour line.
4	4.6		
4	4-6	Section 4.3.1	COMMENT: Include the EPA method for VOC analysis.
			Additionally, it is significant that TCE was not widely detected
			in the samples collected from other monitoring wells and
			installed for this study, but was detected in samples collected from other monitoring wells and direct push locations in the
			area. As described in Section 5 of this report, TCE is
			suspected to be the parent product for the other VOCs detected
			in this study. A decreased TCE concentration in conjunction
			with a corresponding increase in levels of daughter products
			noted across the various sections of the PeRT wall would be
			important evidence that the PeRT wall is performing as
]			designed. Provide a discussion regarding the absence of TCE
			here or in Section 7.
4			RESPONSE: Text will be modified to include citation of the
ĺ			EPA method of analysis (SW-846 8260B).
			TCE was detected at only four direct push locations, and
			historically, in 11 monitoring wells, all of which are
			upgradient of the wall. The concentration of TCE in the direct

1

7		Table 4-34	COMMENT: C/E DCE should be C/T DCE. Please revise.
7			RESPONSE: Text will be modified as requested.
8		Figures 4-18, 4-19, and 4-20	COMMENT: The text labels associated with the monitoring wells and other objects is illegible. Please revise the figures to either increase the font size of the labels or reduce the scale of the map and adjust the labels accordingly.
8			RESPONSE: the three figures are being edited to show the wells used to construct the potentiometric surface, and refer to smaller scale maps for identification of the numerous wells around the PeRT wall. Reducing the scale of the map would render its purpose useless of showing the potentiometric surface for the whole area.
9	7-1	Section 7.1	COMMENT: Correct the reference to high OVA readings as per comment one.
9			RESPONSE: Text will be modified to list the maximum concentration as 450 ppm (as noted at HGRK-PRTMWD01).
10	7-1	Section 7.1	COMMENT: The sentence on the seventh line with starts with 'AS water flows' is incomplete and should be revised appropriately.
10			RESPONSE: The sentence will be edited to complete and clarify its intent, as follows: As water flows through a wall segment, and is treated, it could be flushing additional chlorinated VOCs, which may be desorbed from the soil down-gradient of the wall.
11	8-1	Section 8.0	COMMENT: While this project is not 'natural' attenuation, the AFCEE Technical Protocols (1996) is one of the bases for this pilot study. The technical protocols list many parameter and associated detection limits, which may be monitored to determine if attenuation is occurring. This list should be reviewed and a revised list of monitoring parameters, detection limits and frequency (i.e. a sampling schedule) should be proposed and agreed upon prior to additional monitoring activities.
11			RESPONSE: It is assumed that a Work Plan will be submitted for review prior to undertaking further monitoring activities. The details regarding monitoring parameters, detection limits and frequency should be provided in this Work Plan. Since others will perform this work, we do not have the information requested.

Response to Foremost Solutions Comments on Draft Final Pilot Study Report, Cape Canaveral Air Station PeRT Wall Pilot Study.

Section 2

Executive Summary PeRT Wall Installation:

Comment Page 2-3

The dimensions are incorrect.

Response:

As discussed with Dr. Meiggs by phone conversation (7/19/99), the dimensions were measured following installation and were not calculated as he indicates below. We feel that the actual measurements are a more appropriate means of stating length of installed walls and therefore the information on page 2-3 will not be revised.

Comment Page 2-4

For the Mandrel, page 2-4 indicates that 32 panels were installed overlapping 4 inches. Total length of each segment installed is 30 - 4 = 26 inches. Consequently the Mandrel dimensions for the long PeRT wall should be 48 feet. Each short wall should be 11.2 feet not 12 feet. The JAG PeRT wall was 48.3 feet long and each short segment was 8.3 feet.

Response:

See response above

Comment Page 2-6

In the General Comparison Table on Page 2-6, the Mandrill installed total length was 70.4 feet not 75.5. The JAG was 64.9 feet plus 8.3 feet in the test panel for a total 73.2 feet.

Response:

See response above.

Comment Page 2-6

The test panels were installed for the JAG project because that was required in the contract. It would not normally be done on a commercial project. Consequently it should be counted as an additional PeRT wall installed.

Response:

Test panels were a requirement on this project because there was no other method proposed to determine the slurry injection rate or pressure required to install a wall of 4" thickness. The results of this test (see page 6-13) indicate that it was necessary. The first test panel was approximately 1.5-inches thick, the second 1-inch thick and the third 3-4-inches thick. Therefore, if we were using this technology on a commercial basis, we would require the test panels or some other means of determining the same information. Where costs are presented in this report, the cost associated with the test area are separated. Thus it is possible to determine installation costs without the use of the test panels.

Comment Page 2-8

You should include a statement that only trace amounts of chlorinated solvents were observed shallower than 30 feet bls.

Response:

Concentrations are reported in the monitoring wells screened 15 to 20 feet bls in this report (Tables 4-2 through 4-5). As many of the concentrations exceed drinking water MCLs, it would not be appropriate to characterize the detections as "only trace amounts". It would be appropriate to add text regarding the trends in the intermediate zone wells. Proposed text addition is as follows:

"The same general trends of vinyl chloride increasing and other chlorinated solvent concentrations decreasing as water flows across wall segments were noted in wells screened in the intermediate zone. The concentrations upgradient and downgradient are significantly lower in this zone than in the deep zone."

Comment Page 2-9

You should add the following: The JAG technology was less expensive to install, but took longer and produced substantial amounts of spoils when compared to the Mandrel. Spoils were only produced when injecting into shallower depths. The JAG process would have produced little or no spoils if the wall was installed between 15 and 45 feet. Since most of the contamination was observed between 30 and 45 feet, this would have reduced costs and not impacted the actual treatment zone.

Response:

One of the primary objectives of this project was to demonstrate the effectiveness and learn the limitations of the two emplacement technologies. While we did not measure groundwater concentrations above 15 feet, there will probably be applications where this type reactive wall will be installed 15 feet or shallower. The depths where breakout of slurry occurs are discussed in the detailed account in Section 6. It is stated in Section 6 that slurry broke out at depths ranging from 15 to 24 feet bls, that the highest concentrations of contaminants at this site were below these depths and that the largest amount of spoils was produced during this break-out. We think the information is already presented in the report and that this is too detailed for the executive summary (Section 2). It would not be balanced to present this level of detail in an otherwise very general discussion of conclusions.

Section 3

Comment Page 3-5

There is a discussion of the historic uses of the Mandrel. However, there is no discussion of the historic use of the Jetted Beam. This is due to the fact that the jetted beam approach is new and has not been used in this manner previously. It's not surprising that it took a little more time to work out the installation procedures.

Response

We propose the addition of a sentence: "The JAG technology has not

previously been used to install iron".

Comment Figure 3.3

The legend shows the PeRT wall as a solid black line. It should read "Mandrel installed PeRT Wall" and the broken black line should read as the "JAG PeRT Wall installed."

Response:

The figure will be revised to show only generalized "PeRT wall location"

Section 4

Comment Page 4.2

Dimensions on Plan View should be changed. The Mandrel was 48.0 feet and 11.2 feet. The JAG was 48.3 feet and 8.3 feet.

Response

See response to first comment regarding lengths.

Comment Page 4-4

Dimensions for the Mandrel and JAG installations should be corrected as described above.

Response

See response to first comment regarding lengths.

Section 5

Comment Page 5-1

Comment: It is not likely that either ethene or acetylene will stay around long enough to be reduced to ethane.

Response:

It is generally accepted that some concentrations of these gases will remain

dissolved in the groundwater – i.e. not all will be released as gas.

Comment Page 5-3

You suggest that reaction rates may be lower when VOC concentrations are very high. This possibility is likely and is supported by your data.

Response:

Noted.

Comment Figure 5-1

You can't tell which line is DCE and which line is VC.

Response:

The figure will be revised to clarify.

Section 6

Comment Page 6-3

Dimensions of the panels installed should be corrected.

Response

See response to first comment regarding lengths.

Comment Page 6-4

You indicate that the Mandrel installed iron from 1 foot to 45 feet bls. Iron installed above the water table was unnecessary and wasteful because: 1) It won't treat VOC's; and 2), It will turn to rust as it reacts with oxygen in the vadose zone. Installation of iron shallower than 15 to 20 feet bls was not necessary or useful for treating VOC's for this project. A short discussion of this issue should be included.

Response:

As stated above, one of the primary objectives of this project was technology demonstration. This was not a remediation of the plume. We did obtain useful information regarding technology limitations at depths shallower than 15 feet.

The water table in this vicinity was measured as high as 2.65 feet bls during the monitoring period and quite likely is present even shallower at some times. This is not atypical of what we see in coastal areas. The determination of what depths should be included for an actual remediation using this technology would need to be made on a site specific basis. It is beyond the scope of this report to speculate what those conditions may be.

Comment Page 6-6

You need to add a fourth limitation as follows: This approach overlooks the fact that we are dealing with very high concentrations of cis- DCE and VC and very small concentrations of trans-DCE and 1,1-DCE.

Response:

The approach referred to is the method of calculation of percent degradation. The limitations apply to both the calculations for deep and intermediate aquifer zones. The terms "very high" and "very small" are not applicable.

Comment Page 6-10

Costs should be adjusted based on installing a total of 70.4 feet instead of 75.4 feet.

Response

See response to first comment regarding lengths.

Comment Page 6-18

There are a number of references in this report to alignment requirements. However, there is no discussion of the necessity for these requirements. Since the reactive wall is more permeable than the surrounding formation, ground water will prefer to move through the wall. Consequently strict alignment specifications are not necessary and added additional expense to the project.

Response:

Actually there were two parameters considered essential for installation: wall alignment and thickness. The details of quality control measurement are provided in Section 6. Propose adding text to Section 4.1, page 4-2 in first paragraph of text:

"Two parameters that were considered critical in the installation were that the wall thickness be nearly uniformly 4-inches thick and that the wall be continuously overlapped from top to bottom of installed panel. In the mandrel installation, the thickness installed was determined by the set thickness of the mandrel opening (approximately 4-inches). The thickness of wall installed by the JAG emplacement equipment was determined by varying injection rates and pressures in a test area on-site prior to installation of the pilot scale PeRT walls. For both installations, alignment was measured using a 4-foot level. The tolerance was determined to be \pm 7-inches of deviation at depth. This would be sufficient to ensure at least a 1-inch overlap at the bottom of the panel. This means that in the four feet measured by the level, the maximum allowable deviation would be $\frac{1}{2}$ - inch from level."

Comment:

Essentially all the contamination at the site was below the depths at which thinning of the wall occurred. It is clear that the jetted beam approach will produce varying amounts of spoils when injecting at depths less than 15 feet.

Response: These points are all made on Page 6-18, bottom paragraph.

Comment:

Somewhere in this document there should be a discussion about the need to place iron at the depths where contamination is encountered. In addition, installing iron at shallow depths encounters more oxygen, which deactivates the iron and produces rust.

Response:

That was not a design parameter for this project. It may be for other projects, but the parameters would be determined by site specific conditions. Discussions of potential site specific conditions and design criteria are beyond the scope of this Report.

Comment:

An additional discussion that was made in the video, but not in this document, is the fact that slurry injection of iron places more iron in permeable soil areas and less in tight soil areas. Which is a benefit not a drawback. The Mandrel can not do this.

Response:

This report does not present a direct comparison of the two technologies. In theory, the comment makes sense. However, we did not test this theory during the pilot study and therefore cannot present it as a result.

Page 6-19

I don't understand #4. Please clarify. Costs should be based on installing 73.2 linear feet of reactive wall not 64. You should have a discussion that the costs encountered here were for a demonstration project and are likely to be quite different from those for a routine commercial project.

Response:

See comments above regarding lengths of walls and necessity for installation of test panels. Where we present costs, we break-out the details so that the information may be used to account for economy of scale. For example,

mobilization, demobilization, and pre-installation testing are broken out as line items. Costs per linear foot are presented both including and excluding these items. This should allow the cost information to be scaled to larger size projects where the economy of scale will result in the one-time costs (mobilization, demobilization and pre-installation testing) becoming a lower percentage of total installed cost.

Section 7

Comment Page 7-2

There are a number of additional conclusions that can be made from this project. Call and let's discuss.

Response:

Based on discussions with Dr. Meiggs on July 19, 1999, the additional conclusions could include a discussion of pros and cons of each installation technique, and a discussion of mounding. It was decided that the report presents a factual discussion of equipment and installation events for each emplacement technique. After a review of the potentiometric surface data with Dr. Meiggs, it was determined that mounding had been addressed as far as the data would allow (Section 4.4.4).

Section 8

Comment Page 8-2

A number of people have been concerned that both the Mandrel and Jetted Beam techniques compress the surrounding soil due to the vibration from the vibratory hammers. This could effect flow into and around the PeRT walls. The magnitude of this possible effect should be measured if possible.

Response:

In Section 8 of the report, we recommend that additional water levels be measured to determine if the possible mounding effect noted in Section 4.4.4 is a trend. It is further recommended that if results are inconclusive after a longer study time, an aquifer pump test be performed to determine if the wall presents a barrier to flow.

Comment:

The detrimental effect of oxygen on the iron installed near the ground surface should be evaluated and quantified.

Response:

Based on discussions with Dr. Meiggs on July 19, 1999, the concern is rusting of the iron. As no monitoring wells are installed near ground surface, this would require intrusive coring/excavation activities. At this time, it is not our recommendation to perform intrusive activities until the performance of the pilot test has been further evaluated with data collected in Section 8 of the Report.

Responses to Major Marchand's Comments

Major Marchand's comments on the "Draft Final Pilot Study Report Permeable Reactive Treatment (PeRT) Wall Pilot Study" dated May 1999 for Cape Canaveral Air Station, Florida

1. Page 2-2, third bullet on page, last line of bullet item. Change c/t-DCE to TCE.

Response: The report will be revised per the comment.

2. Page 2-6, table on the page. Under the JAG column for the "Tons of iron emplaced" replace "injected" with "pumped". Also under the Parameter column, change the dates things began, not begun (testing and installation).

Response: The report will be revised per the comment.

3. Page 4-1. At the bottom of the page you need to add some text as to why the given layout was used. It is clear to me, just not the reader. This was an item from the draft comments. Send an email with the text for review.

Response: Attached is a draft explanation of the PeRT wall segment.

The 100-foot total length of the two overlapped pilot scale PeRT Walls was thought to be adequate for a Pilot Study for evaluating the emplacement methodologies. Since the PeRT walls are not keyed into any confining soils on either end, it was important that the installation process did not reduce the permeability of the soils in the vicinity of the emplacement. Reducing the permeability of soils in the vicinity of the PeRT walls could divert the flow of groundwater such that it did not pass through the PeRT walls. Since both emplacement methods used in this pilot study displace soils into the formation (see Section 6 for detailed information on emplacement methods), it was decided that the best way to limit compaction of soils was to limit the thickness of the PeRT walls. For this reason, the thickness of the walls was limited to 4-inches.

Preliminary estimates of required VOC retention time in the reactive iron indicated that an approximately one-foot thickness of iron would be required for complete destruction of the VOC contaminants in the groundwater. Since the thin-wall technology to be tested would result in a four-inch thick wall of iron, it would take three segments to total the necessary 12 inches of iron thickness. Using concentration data along the anticipated flow line through the entire thickness of reactive iron will permit an evaluation of the degradation rate. For this reason, 3 of the 4-inch walls were installed in such a configuration that a concentration profile could be developed as groundwater flowed between wall segments. The PeRT wall segments were placed 4-feet apart to allow the installation of groundwater monitoring wells between the segments.

End of Comments Major Ed Marchand AFCEE/ERT

DRAFT FINAL

PILOT STUDY REPORT CAPE CANAVERAL AIR STATION

PERMEABLE REACTIVE TREATMENT (PeRT) WALL PILOT STUDY

Prepared for:

THE AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE

Prepared By:

RUST ENVIRONMENT & INFRASTRUCTURE GREENVILLE, SOUTH CAROLINA

Rust Project No. 29515

Contract No. F41624-94-D-8048 Delivery Order No. 10

Revision 2

NOTICE

This Pilot Study Report has been prepared for the United States Air Force (USAF) by Rust Environment & Infrastructure (Rust) for the purpose of aiding in the implementation of a final remedial action plan under the Air Force Installation Restoration Program (IRP). As the Pilot Study Report relates to actual or possible releases of potentially hazardous substances, its release prior to an Air Force final decision on remedial action may be in the public's interest. The limited objectives of this Pilot Study Report and the ongoing nature of the IRP, along with the evolving knowledge of site conditions and chemical effects on the environment and health, must be considered when evaluating this report since subsequent facts may become known that may make this report premature or inaccurate.

Copies of this report may be purchased from:

- a. Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies of this report to: Defense Technical Information Center, Cameron Station, Alexandria, VA, 22304.
- Non-Government agencies may purchase copies of this document from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

TABLE OF CONTENTS

SEC	CTIO	<u>N</u>	PAGE
LIS	T OF	TABLES	iv
LIS	т оғ	FIGURES	vi
LIS	T OF	APPENDICES	viii
LIS	T OF	ACRONYMS AND ABBREVIATIONS	ix
1.0		TRODUCTION	
2.0	EXI	ECUTIVE SUMMARY	2-1
	2.1	PILOT STUDY IMPLEMENTATION	2-2
,		2.1.1 Site Preparation	2-3
		2.1.2 PeRT Wall Installations	
		2.1.3 Flow Sensor Installation	
		2.1.4 Monitoring Well Installation	
		2.1.5 <u>Site Restoration</u>	2-7
	2.2	MONITORING PROGRAM	
	2.3	CONCLUSIONS	2-9
3.0	SIT	E BACKGROUND	3-1
	3.1	REGIONAL GEOLOGY	3-1
	3.2	PREVIOUS STUDIES	
	3.3	GROUNDWATER OCCURENCE	3-3
	3.4	HISTORICAL BACKGROUND OF PeRT WALL TECHNOLOGY	3-4
4.0	PeR	T WALL PILOT STUDY IMPLEMENTATION	4-1
	4.1	PILOT STUDY OBJECTIVES	4-1
	4.2	INSTALLATION	
	4.3	MONITORING	4-6
		4.3.1 Groundwater VOC Analyses	
		4.3.2 Field Chemistry Measurements	
		4.3.3 Water Level Measurements	
		4.3.4 Flow Sensor Data	4-8
	4.4	HYDROGEOLOGY	4-9
		4.4.1 PeRT Wall Area Stratigraphy	4-9

i

TABLE OF CONTENTS (Continued)

<u>SE</u>	CTIC	<u>N</u>		PAGE
		4.4.2	Aquifer Zones Monitored	4-10
		4.4.3	Precipitation	4-10
		4.4.4	Potentiometric Head Relationships	4-11
	4.5	FLOW	SENSOR RESULTS	4.14
	4.6	USEFU	JL LIFETIME OF PERT WALLS	4~14 4.15
	4.7	MONIT	FOR WELL HEADSPACE SCREENING	4-13
5.0	RE	ACTION	MECHANISMS	5-1
	5.1	REACT	TION RATES	5-2
	5.2	INORG	ANIC REACTIONS	5-4
	5.3	NATUR	RAL ATTENUATION	5-5
6.0	AP	PROACH	HES	6-1
	6.1	MANDI	REL	6-1
		6.1.1 <u>I</u>	Description of Equipment	6-1
		6.1.2	Operations	6-2
		6.1.3 N	Monitoring Results	
		6.1.4 I	Lessons Learned	
		_	Costs	6-10
	6.2	JET ASS	SISTED GROUTING	6-10
		6.2.1 I	Description of Equipment	6-10
		6.2.2 C	Operations	6 12
		6.2.3 N	Monitoring Results	
		_	essons Learned	0-14
		_	Costs	6-18
	6.3	GROUN	IDWATER PUMP AND TREAT	6-20
		6.3.1 <u>A</u>	Assumptions	6-20
		6.3.2 <u>C</u>	Comparison of PeRT Wall to Pump and Treat Cost	6-21
7.0	CON	NCLUSIO	ONS	7-1
	7.1	VOC DE	EGRADATION	7 1
	7.2	USEFUI	LIFETIME OF THE PeRT WALLS	/-1
	7.3	EMPI AC	CEMENT TECHNOLOGIES	/-1
	7.4	COMPA	CEMENT TECHNOLOGIESRISON WITH GROUNDWATER PUMP AND TREAT	7-1
	, . -	COMITA	ALGON WITH GROUNDWATER PUMP AND TREAT	7-2

TABLE OF CONTENTS (Continued)

SEC	CTION	PAGE
8.0	RECOMMENDATIONS	8-1
9.0	REFERENCES	9-1

LIST OF TABLES

TABLE	TITLE
3-1	HISTORICAL CHLORINATED VOC DATA
3-2	DIRECT PUSH SCREENING DATA SUMMARY
3-3	SUMMARY OF PeRT WALLS USING FE ⁺⁰ TO TREAT CHLORINATED
	VOCs
4-1	PILOT STUDY MONITOR WELL CONSTRUCTION DETAILS
4-2	VINYL CHLORIDE CONCENTRATION SUMMARY
4-3	trans-1,2-DICHLORETHENE CONCENTRATION SUMMARY
4-4	cis-1,2-DICHLOROETHENE CONCENTRATION SUMMARY
4-5	1,1-DICHLOROETHENE CONCENTRATION SUMMARY
4-6	DATA QUALIFIER EXPLANATIONS
4-7	FIELD PARAMETER MEASUREMENTS
4-8	WATER TEMPERATURE SUMMARY
4-9	pH SUMMARY
4-10	ELECTRICAL CONDUCTIVITY SUMMARY
4-11	TURBIDITY SUMMARY
4-12	TOTAL IRON CONCENTRATION SUMMARY
4-13	Fe ⁺² CONCENTRATION SUMMARY
4-14	HARDNESS (mg/L as CaCO ₃) CONCENTRATION SUMMARY
4-15	OXIDATION-REDUCTION POTENTIAL SUMMARY
4-16	SULFATE CONCENTRATION SUMMARY
4-17	DISSOLVED OXYGEN CONCENTRATION SUMMARY
4-18	ALAKLINITY (mg/L as CaCO ₃) CONCENTRATION SUMMARY
4-19	EXLOSIMETER READING (%) SUMMARY
4-20	WATER LEVEL MEASUREMENTS
4-21	FLOW SENSOR DATA
4-22	RESULTS FOR FLOW SENSOR AT LOCATION PRT 03
4-23	RESULTS FOR FLOW SENSOR AT LOCATION PRT 05

LIST OF TABLES (CONTINUED)

TABLE	TITLE
4-24	RESULTS FOR FLOW SENSOR AT LOCATION PRT 10
4-25	RESULTS FOR FLOW SENSOR AT LOCATION PRT 15
4-26	RESULTS FOR FLOW SENSOR AT LOCATION PRT 16
4-27	RESULTS FOR FLOW SENSOR AT LOCATION PRT 21
4-28	GROUNDWATER FLOW DIRECTIONS AT THE PeRT WALL
4-29	GROUNDWATER ELEVATIONS AND HORIZONTAL HEAD
	DIFFERENCES BY WELL SETS, IN INTERMEDIATE AND DEEP
	WELLS AT THE PeRT WALL, BY MEASUREMENT DATE
4-30	GROUNDWATER FLOW DIRECTIONS IN HANGAR K AREA
4-31	HORIZONTAL SLOPE AND VELOCITY FOR PeRT WALL
	MONITORING WELL SETS
4-32	DEEP GROUNDWATER HORIZONTAL SLOPE AND VELOCITY
4-33	SUMMARY OF FLOW SENSOR DATA
4-34	ESTIMATED DISSOLVED IRON GENERATED BY CORROSION OF
	FE ⁺⁰
4-35	CHANGES IN SELECTED INORGANIC FIELD CHEMISTRY
	PARAMETERS ACROSS THE MAIN PeRT WALL, NOVEMBER 1998
5-1	INORGANIC REACTIONS THAT OCCUR IN GROUNDWATER
	CONTACTING FE ⁺⁰
6-1	MANDREL INSTALLATION FIELD QUALITY CONTROL
6-2	MANDREL INSTALLATION COSTS
6-3	JAG INSTALLATION VARIABLE PARAMETERS
6-4	JAG INSTALLATION FIELD QUALITY CONTROL
6-5	JAG ASSISTED GROUTING INSTALLATION COSTS
6-6	GROUNDWATER PUMP AND TREAT COST ESTIMATE
6-7	COST COMPARISON, PeRT WALL vs. PUMP AND TREAT

LIST OF FIGURES

<u>FIGURE</u>	TITLE
3-1	LOCATION OF CAPE CANAVERAL AIR STATION
3-2	LOCATION OF HANGAR K AND INDUSTRIAL AREA
3-3	PILOT SCALE PERT WALL LOCATION
3-4	TOTAL CHLORINATED VOC CONCENTRATIONS IN THE
	INTERMEDIATE ZONE OF THE UPPERMOST AQUIFER, FEBRUARY
	AND MARCH 1997
3-5	TOTAL CHLORINATED VOC CONCENTRATIONS IN THE DEEP ZONE OF
	THE UPPERMOST AQUIFER, FEBRUARY AND MARCH 1997
3-6	TOTAL c/t-DCE AND TCE CONCENTRATIONS 32 TO 35 FEET BLS,
	JULY 1997
3-7	TOTAL c/t-DCE AND TCE CONCENTRATIONS DEEP ZONE, BELOW
	38 FEET, JULY 1997
3-8	POTENTIOMETRIC SURFACE MAP: SHALLOW ZONE OF THE
	UPPERMOST AQUIFER (APRIL 4, 1996)
3-9	POTENTIOMETRIC SURFACE MAP: DEEP ZONE OF THE
	UPPERMOST AQUIFER (APRIL 4, 1996)
4-1	GENERALIZED PeRT WALL LAYOUT
4-2	UTILITIES IN VICINITY OF WORK
4-3	MANDREL WALL LAYOUT
4-4	SECTION THROUGH MANDREL WALL
4-5	JAG WALL LAYOUT
4-6	SECTION THROUGH JAG WALL
4-7	FLOW SENSOR WIRING AND CONTROL LAYOUT
4-8	ELECTRICAL AND CONTROL WIRE SCHEMATIC
4-9	TYPICAL WELL CONSTRUCTION DETAIL, INTERMEDIATE WELL
4-10	TYPICAL WELL CONSTRUCTION DETAIL, DEEP WELL
4-11	TYPICAL WELL DEVELOPMENT RECORD, INTERMEDIATE WELL
4-12	TYPICAL WELL DEVELOPMENT RECORD, DEEP WELL

LIST OF FIGURES (CONTINUED)

FIGURE	TITLE
4-13	SOUTHWEST TO NORTHEAST GEOLOGIC SECTION ALONG THE
	PeRT WALL
4-14	MONITORING WELL SCREENED INTERVALS, HANGAR K VICINITY
4-15	PRECIPITATION DATA
4-16	POTENTIOMETRIC SURFACE MAP FEBRUARY 1998, WELLS
	SCREENED 15 TO 20 FEET BLS
4-17	POTENTIOMETRIC SURFACE MAP FEBRUARY 1998, WELLS
	SCREENDED 35 TO 40 FEET BLS
4-18	POTENTIOMETRIC MAP FOR DEEP AQUIFER ZONE, 2/19/98
4-19	POTENTIOMETRIC MAP FOR DEEP AQUIFER ZONE, 11/16/98
4-20	POTENTIOMETRIC MAP FOR AQUIFER ZONE BELOW THE PeRT
	WALL, 11/16/98
4-21	HYDROGRAPH OF WELL PAIR HGRK PRTMWII1 AND D11
4-22	HYDROGRAPH OF WELL PAIRS HK20S/20D AND HGRK
	PRTMWI20/D20
5-1	PLOT OF THEORETICAL CONCENTRATION REDUCTION OVER
	TIME
6-1	LAYOUT OF MANDREL WALL PANELS
6-2	VOC CONCENTRATION IN WELLS SCREENED 15 TO 20 FEET BLS
6-3	VOC CONCENTRATION IN WELLS SCREENED 35 TO 40 FEET BLS
6-4	LAYOUT OF JET ASSISTED GROUTING WALL PANELS
6-5	CONCEPTUAL LAYOUT OF GROUNDWATER PUMP AND TREAT
	SYSTEM

LIST OF APPENDICES

APPENDIX A	HISTORICAL MONITOR WELL CONSTRUCTION DETAILS
APPENDIX B	REPRESENTATIVE SOIL BORING LOGS
APPENDIX C	ANALYTICAL DATA SUMMARY REPORT
APPENDIX D	CALCULATIONS
	1. GROUNDWATER PUMP AND TREAT SYSTEM ASSUMPTIONS
	AND CALCULATIONS
	2. GEOCHEMICAL PARAMETERS

LIST OF ACRONYMS AND ABBREVIATIONS

AFCEE Air Force Center for Environmental Excellence

ARARs Applicable or Relevant and Appropriate Requirements

bls Below Land Surface

CCAS Cape Canaveral Air Station

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CMS Corrective Measures Study

CPT Cone Penetrometer Technology

DCA 1,1-dichloroethane

DCE 1,1-dichloroethene

DCB dichlorobenzene

c-DCE cis isomer of 1,2-dichloroethene

c/t-DCE total of cis and trans isomers of 1,2-dichloroethene

t-DCE trans isomer of 1,2-dichloroethene

DEQPPM Defense Environmental Quality Program Policy Memorandum

DO Dissolved Oxygen

DOD Department of Defense

DOT Department of Transportation

DTIC Defense Technical Information Center

EPA United States Environmental Protection Agency

ETI EnviroMetal Technologies, Inc.

Fe⁺⁰ Iron, zero valent

Fe⁺² Iron, II valent

ID Internal Diameter

IDW Investigation Derived Waste

IRP Installation Restoration Program

IRPIMS Installation Restoration Program Management Information System

JAG Jet Assisted Grouting

MCL Maximum Contaminant Level

msl Mean Sea Level

NCP National Contingency Plan

LIST OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

ND Non-Detect

O&M Operating and Maintenance

ORP Oxidation-Reduction potential

OU Operable Unit

OVA Organic Vapor Analyzer

Parsons ES Parsons Engineering Science

PeRT Permeable Reactive Treatment

PVC Polyvinyl Chloride

RCRA Resource Conservation and Recovery Act of 1976

RFI RCRA Facilities Investigation

RI/FS Remedial Investigation/Feasibility Study

Rust Environment & Infrastructure

SARA Superfund Amendments Reauthorization Act of 1986

SOW Statement of Work

SSI Slurry Systems, Inc.

TCA 1,1,1-Trichloroethane

TCE Trichloroethene

TDS Total Dissolved Solids
USAF United States Air Force

VOC Volatile Organic Compounds

UNITS OF MEASURE ABBREVIATIONS

μg/L Micrograms per Liter

° Degrees

°C Degrees Centigrade

cf Cubic foot or cubic feet

gpm Gallons per minute

psi Pounds per square inch (gage unless otherwise stated)

mv Milli-volts

LIST OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

UNITS OF MEASURE ABBREVIATIONS (CONTINUED)

°F

Degrees Fahrenheit

mg/L

Milligrams per Liter

%

Percent

umhos/cm

.Micro-mhos per centimeter

S.U.

Standard Units

1.0 INTRODUCTION

This Pilot Study Report has been prepared for the Permeable Reactive Treatment (PeRT) Wall Pilot Study conducted at the Cape Canaveral Air Station (CCAS), Florida. The requirements for this work are specified in the December 1997 Statement of Work (SOW) for Delivery Order No. 0010 of Contract No. F41624-94-D-8048. The pilot study activities were conducted for the Air Force Center for Environmental Excellence (AFCEE). The purpose of this pilot study was to evaluate two new methods for emplacing reactive materials at depth.

The two methods of emplacement were demonstrated at the CCAS facility in a period between September and December of 1997. The pilot scale PeRT walls were installed to a depth of 45 feet below land surface within a chlorinated solvent plume. Following emplacement of the pilot scale PeRT walls, groundwater monitoring wells were installed in the vicinity to obtain water quality samples. Groundwater samples were collected during a period between February and November of 1998. The resulting data was used to evaluate the performance of the PeRT walls.

The remainder of this report is organized as follows:

- Section 2: EXECUTIVE SUMMARY. This section presents a summary of the pilot study installation, monitoring and results.
- Section 3: SITE BACKGROUND. This section presents a summary of site conditions, groundwater flow directions and quality prior to the installation of the pilot scale PeRT walls.
- Section 4: PeRT WALL PILOT STUDY IMPLEMENTATION. This section presents the details of the overall installation effort, monitoring methodology and hydrogeologic results.
- Section 5: REACTION MECHANISMS. This section presents a discussion of the reaction mechanisms and rates for destruction of chlorinated compounds using zero valent iron (Fe⁺⁰).
- Section 6: APPROACHES. This section presents a detailed discussion of the equipment, operations, results and lessons learned from each of the two emplacement technologies. This section also includes a conceptual design and cost estimate for a groundwater pump and treat system which would be equal in treatment capacity with the PeRT walls emplaced in this pilot study.

Section 7: CONCLUSIONS. This section presents a discussion of the conclusions reached during the pilot study and evaluation of groundwater data, including VOC degradation, useful lifetime of the PeRT walls, emplacement methods and comparison with groundwater pump and treat technology.

Section 8: RECOMMENDATIONS. This section presents recommendations for long-term monitoring and evaluation of the pilot scale system.

Section 9: REFERENCES. This section lists the references cited in the report.

2.0 EXECUTIVE SUMMARY

This report presents a description of the installation and monitoring results from pilot scale testing of Permeable Reactive Treatment (PeRT) walls at the Cape Canaveral Air Station (CCAS). The pilot testing was performed in the Industrial Area Operable Unit (OU) near Hangar K. The overall objective of this pilot study was to test two new methods for emplacing reactive materials at depth. The specific goals of the pilot study were to:

- Determine the extent of chlorinated volatile organic compound (VOC) degradation resulting from use of the PeRT walls;
- Determine the useful lifetime of the PeRT walls;
- Develop defensible data to illustrate the effectiveness of this technology in enhancing the remediation of contaminated soil and groundwater;
- Evaluate the effectiveness of emplacement technologies that can go to depths greater than 40 feet; and
- Compile data and evaluate of the applicability, cost, and performance of this technology, as it compares to traditional "pump and treat" methods of groundwater remediation.

Pilot scale PeRT walls were created using zero valent iron (Fe⁺⁰) filings, installed in the ground. For purposes of comparing two installation methods, two sets of walls were installed. The first was installed by mandrel emplacement; the second by Jet Assisted Grouting (JAG). Historical data on groundwater flow and contaminant plume configuration were used to locate and orient the walls. An attempt was made to orient the walls perpendicular to groundwater flow. The contaminants of concern are trichloroethene (TCE), cis- and trans-1,2- dichloroethene (c/t-DCE), 1,1-dichloroethene (DCE), and vinyl chloride. The walls were installed in the uppermost aquifer, from a few feet below land surface (bls) to 45 feet bls.

Previous studies (Parsons ES, 1996a) divided the uppermost aquifer into three zones: shallow (from water table to 25 feet bls), intermediate (from 25 to 35 feet bls) and deep (from 35 to 50 feet bls). The highest concentrations of chlorinated compounds were detected in the deep zone (up to 696,100 μ g/L total VOCs). The intermediate zone also contained measurable concentrations (up to 95,600 μ g/L total VOCs). In most of the wells screened in the shallow zone, chlorinated compounds were detected at very low concentrations or not at all.

A field screening effort using direct push technology was initiated by the Air Force Center for Environmental Excellence (AFCEE) in April and July 1997. The purpose of this investigation was to collect additional data in the vicinity where the pilot scale PeRT walls were to be installed. The depth interval terminology used in this screening effort differs from the previous studies. The "shallow" samples were collected primarily from the interval of 32 to 35 feet bls. The exception is HK5S which was collected from 38 to 41 feet bls. The "deep" samples were collected from various depth intervals, ranging from 37 to 40 feet bls and 52 to 55 feet bls. The results of this screening effort indicated the following:

- The c/t-DCE concentrations in the "shallow" samples (generally 32 to 35 feet bls) were generally higher than the concentrations in the "deep" samples (ranging from 37 to 55 feet bls). The average c/t-DCE concentration in the "shallow" samples was approximately 93,000 µg/L. The average c/t-DCE concentration in the "deep" samples was approximately 31,000 µg/L.
- c/t-DCE was more prevalent in the "shallow" samples than in the "deep" samples. c/t-DCE was detected in 91% of the "shallow" samples (20 detections in 22 samples) and 29% of the "deep" samples (5 detections in 17 samples).
- The TCE concentrations in the "shallow" samples were generally higher than in the "deep" samples. The average TCE concentration in the "shallow" samples was approximately 3,900 μ g/L. The average TCE concentration in the "deep" samples was approximately 700 μ g/L.
- TCE was not prevalent in either the "shallow" or "deep" samples. TCE was detected in 9% of samples (2 detections in 22 samples) in the "shallow" and 12% of the "deep" samples (2 detections in 17 samples).
- Vinyl chloride was detected in similar magnitude and frequency in the "shallow" and "deep" samples.
- The distribution of c/t-DCE, TCE and vinyl chloride was not homogeneous.
- A semi-confining layer was present at approximately 45 feet bls.

The initial intention of the pilot study was to install the pilot scale PeRT walls to a depth of 60 feet bls. The presence of the semi-confining layer at 45 feet bls and the absence of contamination at deeper depths according to the field screening efforts made a revision necessary. It was decided that this semi-confining layer should not be breached, so the walls should not penetrate below 45 feet bls.

2.1 PILOT STUDY IMPLEMENTATION

Implementation of the pilot study proceeded in the following sequence:

- 1 Site Preparation
- 2 Mandrel wall installation
- 3 JAG wall installation
- 4 In-situ flow sensors installation
- 5 Monitoring well installation
- 6 Site restoration
- 7 Monitoring, sampling and analysis

2.1.1 Site Preparation

Pavement in the area was removed and stockpiled. A trench was excavated along the centerline of the walls to clear utilities and stakes were placed to mark the wall terminations. Roll-off boxes and a portable tank were delivered and staged for collection of potentially contaminated Investigation Derived Waste (IDW).

2.1.2 PeRT Wall Installations

The mandrel wall segments were installed first, followed by the JAG wall segments. The layout for each installation was the same as shown in the TOP VIEW figure, below, the longest section was located upgradient. Approximately 4 feet down-gradient of each of the longest section, a shorter section was installed. Approximately 4 feet down-gradient of each of the shorter sections, another short section was installed. The longest (up-gradient) segments of the mandrel and JAG walls overlap in the center to form a continuous treatment zone along the length of wall. The dimensions noted were measured after construction.

Slurry Systems, Inc. (SSI) of Gary, Indiana installed the pilot scale mandrel walls. The mandrel used in this project was adapted from the construction industry mandrels used to install wick drains. SSI fabricated the mandrel from square steel tubing, as shown in the PLAN VIEW figure below. The mandrel was designed to create a 60-foot deep iron panel of approximately 30-inches by 4 inches. Slots were cut through the interior sections of the square steel tubes at intervals along the bottom 12 feet to allow iron to flow between the internal tubing sections. The outside footprint is approximately 33-inches by 6-inches. Eight inch fins were welded near the bottom of the mandrel along one edge for alignment of the beam with the previously driven section:

PLAN VIEW

To create the continuous wall segments, a total of 32 panels were installed, overlapping approximately 4-inches with the adjoining panels. To install each panel, the mandrel was fitted with detachable driving shoes at the bottom (leading edge) of the mandrel. These shoes prevented soil from filling the void spaces in the tubes as the mandrel was driven into place with a 22-ton hammer. Once at depth, iron was poured into the hollow tubing sections and the shoe was knocked loose of the mandrel with the detachment rod. Additional iron was poured as the beam was withdrawn. An average of 6,000 pounds of iron was placed in each panel. The up-gradient wall segment is made from 22 overlapped panels and each down-gradient segment is made up of 5 overlapped panels.

The iron installed in the mandrel wall segments was Peerless Cast Iron Aggregate 8/50 (100% passing an U.S. Standard No. 8 sieve and 90% to 100% retained on an U.S. Standard No. 50 sieve).

The JAG wall segments were installed by Geocisa/Geobase, under contract to Foremost Solutions. This installation technique required injection of a high viscosity iron slurry.

The guar gum was mixed with water in batches in a stirred open top tank to form 2 to 3% solutions. The guar gum solution was pumped first to a holding tank, then into a truck-mounted batch mixing plant. A positive displacement pump controlled the feed rate of guar gum to the batch mixing plant. The pump discharged the guar gum solution into an auger screw mixer. Iron filings were poured into the top of the batch mixing plant. An aggregate belt feed, synchronized to the guar gum pump, was used to add the iron filings to the screw auger mixer. In addition, an enzyme and a thickener were added with a metering pump. The screen mixer discharged into a grout pump hopper. The grout pump hopper fed a diesel powered grout pump with two 4-inch diameter swing-tube cylinders. The discharge was to hoses that fed the down-hole injection equipment.

The down-hole injection equipment used to install the wall segments consisted of a 48-foot long, 1-inch thick, 36-inch by 12-inch wide-flange steel beam with tubing welded to the web for water and iron slurry injection, shown below:

PLAN VIEW

SECTION VIEW AT BOTTOM

The beam was driven to depth with a 7-ton hammer. Water was jetted during driving to open a channel under the beam. The water jet assembly was attached to the leading edge of the beam web, with nozzles

oriented horizontally to direct spray at the inside surfaces of the flanges at either end. During driving, the water was injected at flows of up to 20-gpm and 6,000-psi pressure. The iron-slurry injection tubing was fitted with a bottom plug. A short steel rod suspended on a rope was used to knock the plug free when the beam was at depth. The amount of slurry pumped down-hole was measured by counting the number of strokes of the pump. The rate of slurry placement in the ground was controlled by the speed at which the beam was withdrawn.

The iron installed in the JAG wall segments was peerless P1 Cast Iron Aggregate, -16 to dust (100% passing a standard No. -16 sieve to dust).

The following presents a general comparison summary of the two wall installations:

PARAMETER	MANDREL	JAG
Installation Contractor	Slurry Systems, Inc	Geocisa/Geobase under contract to
		Foremost Solutions
Depth of wall emplaced	From ~1 to 45 feet bls	From ~3 to 45 feet bls
Total Length of 3 wall segments	75.5 feet	64 feet
Tons of iron emplaced	98 tons	93 tons pumped, approximately
		83 tons emplaced and 10 tons spoils.
Type of Iron	Peerless 8/50	Peerless P1 (-16 to dust)
Date contractor arrived on site	29 Sept 1997	3 Nov 1997
Date set-up completed	4 Oct 1997	7 Nov 1997
Date testing began	Not Applicable	8 Nov 1997
Date testing completed	Not Applicable	12 Nov 1997
Date pilot installation began	6 Oct 1997	13 Nov 1997
Date pilot installation completed	15 Oct 1997	26 Nov 1997
Date demobilization completed	21 Oct 1997	1 Dec 1997
Total Installed Cost	\$307,712	\$306,538
Mobilization	\$75,000	\$40,000
Pre-Installation Testing	\$0	\$30,900
Cost per linear foot - excluding	\$3,082	\$3,682
mobilization and testing		
Cost per linear foot - including	\$4,076	\$4,790

PARAMETER	MANDREL	JAG
mobilization and testing		
Square feet installed	3,322	2,688
Cost per square foot - excluding	\$70	\$88
mobilization and testing		
Cost per square foot - including	\$93	\$114
mobilization and testing		

2.1.3 Flow Sensor Installation

Six in-situ groundwater flow sensors were installed to monitor the groundwater flow velocity and direction during the pilot study. Each flow sensor consists of a probe approximately 30 inches long and 2 inches in diameter. A heater inside of the probe heats groundwater as it flows past the probe. Each flow sensor probe has an array of temperature sensors on its surface. Groundwater is heated as it flows past the probe and these temperature sensors detect the temperature differences. The data is transmitted to a data logger. Software converts the temperature readings to groundwater velocity and direction components.

The flow sensors were installed by direct burial in the aquifer. A 3.25-inch hollow-stem auger was used to advance the 6 borings. Each flow sensor was installed at a depth of approximately 40 feet. An existing electrical unistrut was modified to mount a DC power converter (the power supply to the flow sensors) and data logger. Control and signal wires were run below-grade in conduit to the power supply and data logger.

2.1.4 Monitoring Well Installation

Sixteen pairs of monitoring wells were installed in vicinity of the pilot scale PeRT walls. Each pair consists of well screened from 15 to 20 feet bls (intermediate well) and a well screened from 35 to 40 feet bls (deep well).

2.1.5 <u>Site Restoration</u>

Site restoration included the following:

- Testing, removal and disposal of IDW generated during the JAG wall and monitoring well
 installations and monitoring well development;
- Clean-up of iron spilled during installation;
- Replacement of asphalt in parking area; and
- Seeding and placing sod in disturbed grass areas.

2.2 MONITORING PROGRAM

Key performance indicators were monitored over a 10-month period following installation of the pilot scale PeRT wall sections. These indicators included:

- Analysis of VOCs in groundwater on a quarterly basis to determine the effectiveness of the wall and the extent of VOC degradation;
- Monthly field measurements of groundwater pH, electrical conductivity, turbidity, hardness, oxidation-reduction potential, alkalinity, and concentrations of total Iron, Iron II valent (Fe⁺²), and sulfate;
- Monthly water levels in surrounding monitoring wells to determine effect of wall on groundwater flow; and
- Monthly evaluation of in-situ flow sensor data.

During the pilot test, the water table ranged from 3.78 to 6.25 feet below ground surface at the monitoring well measuring points (2.66 to 4.95 feet above mean sea level [msl]).

Monitoring results indicate the following general trends for both sets of pilot test PeRT walls in the deep wells (screened 35 to 40 feet bls):

- The concentrations of cis-1,2 dichloroethene (c-DCE), trans-1,2 dichloroethene (t-DCE) and DCE generally decrease as groundwater moves through the wall segments;
- 2. The concentration of vinyl chloride generally increases; and
- 3. The average influent concentration (total VOCs) reaching the main reactive wall increased by 35 percent during the monitoring period.

The same general trends of vinyl chloride increasing and other chlorinated solvent concentrations decreasing as water flows across wall segments were noted in wells screened in the intermediate zone.

The concentrations upgradient and downgradient are significantly lower in this zone than in the deep zone.

Groundwater flow in the PeRT Wall/Hangar K area is generally to the west-northwest. Horizontal flow gradients and velocities vary across the site, with the highest velocities through the PeRT Wall. In the overall Hangar K area, the deep aquifer horizontal flow gradients and velocities are one-fifth the values through the PeRT Wall, and slightly less than this value for the aquifer zone below the PeRT Wall.

It appears that the head differences between intermediate (from 15 to 20 feet bls) and deep (from 35 to 40 feet bls) PeRT Wall wells are very small, indicating little, if any downward flow gradient. Hydraulic sections indicate that there is as much as 0.6 feet of downward head from the deep PERT wall wells to the aquifer zone below the wall. This was the case before and following the wall installations.

2.3 CONCLUSIONS

The two emplacement techniques, mandrel and JAG, were successfully demonstrated to emplace reactive materials at depths exceeding 40 feet.

The monitoring results collected during the first year of operation were insufficient to determine the effectiveness of the PeRT walls on groundwater restoration. Two of the reasons for inconclusive results include the slow rate of groundwater flow and the high variability of the influent chlorinated VOC concentrations. During installation of the monitoring wells, it was noted that the soils at 35 to 40 feet bls in this area are silty to clayey sands. High organic vapor analyzer (OVA) readings (between 100 and 450 ppm) were noted on soil samples from these depth intervals. It is therefore likely that the chlorinated solvents at this depth are adsorbed onto the soils. As water flows through a wall segment and is treated, additional chlorinated VOCs may desorb from the soil down-gradient of the wall. With the slow rate of groundwater flow in the area, this could continue for a prolonged period of time. Therefore, additional monitoring is recommended to determine if further degradation of the chlorinated VOCs occur with time.

The potentiometric map created with the final round (November 1998) of water level measurements for the deep zone suggest that mounding may be starting to develop at the wall. This mound, however, is in the range of 0.04 feet and may be totally attributable to uncertainties in survey and water-level measurement. The tolerances for the survey readings is +/- 0.01 foot and the accuracy of any water-level

measurement may be in the range of +/- 0.05 feet. However, this possible mounding trend should be investigated in future water-level data analysis.

Conservative estimates of mineral precipitation suggest that over a 100 year period the following are maximum percentages of the available pore space that could be filled: carbonates, 20%; sulfides, 6%; and hydroxides, 17%. If these rates of mineral formation persist, porosity in the wall would decrease to zero in about 400 years and groundwater flow may be significantly diverted earlier. These estimates are preliminary and should be reevaluated after another year of groundwater monitoring.

An estimate comparing capital and operating and maintenance (O&M) with conventional groundwater "pump and treat" systems indicates that the savings in O&M cost associated with the PeRT Walls could off-set the higher capital cost in less than 4 years.

TABLE 3-1 HISTORICAL CHLORINATED VOC DATA

Well ID	Date Sampled	ТСЕ (нg/L)	DCA (µg/L.)	c/t-DCE (µg/L)	1,1,1- Trichloroethane (µg/L)	Vinyl Chloride (µg/L)	Total Chlorinated VOCs (µg/L)
Deep Wells 1724MWD01	1/25/94	ΔN	V.V.	7767	;		
1724MWD01	12/31/95	CN	Z Z	4,244	Y :	V.	4,244
1724MWD01	April 1996	<u> </u>	V V	2,200 5	A S	Q	2,200
1724MWD01	Mar 1997	28	\$ Z	7.200	Y X	QN S	2,237
IC0024	6/21/90	S	Y X	CN.	K Z	 	4,791.1
IC0024	6/3/94	ND	AN	2	V AN		0 6
IC0024	12/13/95	ND	AN	5.2	C Z	2 2	7
IC0024	April 1996	ON	NA	9	Y Z	2 5	3.2
IC0025	06/61/9	780	420	2,200	Y X	300	0 007 11
IC0025	6/1/94	62,000	NA	130,000	Y X	3,600	105,600
IC0025	12/12/95	94,000	NA	170,000	Y X	5 100 F	000,661
C20025	April 1996	10,270	NA VA	17,380	NA.	3.220	33 144
100026	6/20/90	=	AN	7	NA	4.900	4 918
100026	6/6/94	2,600	Y.	10,000	310	3,900	16.810
100026	56/71/71	24,000	NA A	23,000	NA	S	47,000
INDAROGAT	April 1996	3,250	NA.	8,274	NA	5,310	17.420
INDAROSAT	1/10/90 April 1006	2 5	NA	ND	NA	QN	QN
INDAMWD03	April 1990	2 5	V.	ON	NA	ND	QX
INDAMWD04	April 1996	S C	Y ;	QN	NA	ND	ND
INDAMWD04	Feb 1997	è C	Y X	2,386	Y.	120	2,679
INDAMWD16	April 1996	6150		ON 00	Y ;	6.1	6.1
INDAMWD16	Feb 1997	31,430	Y X	20,060	Y	3,370	31,861
INDAMWD16*	April 1997	000,710	4 8 8 8	77,720	Y ;	3,980	63,130
INDAMWDD16*	April 1997	94 000		3,000	YN ;	NA V	266,000
INDAMWD17	April 1996	1,000	Y 1	3,000	NA	NA	000'26
INDAMWD17	Feb 1997	2 8	NA N	7767	AN :	6,720	12,601
INDAMWD22	Feb 1997	S	Z Z	12,200	Y ;	7,100	19,300
			VVI	0.0	NA	10	18.6

TABLE 3-1 (Concluded) HISTORICAL CHLORINATED VOC DATA

Well ID	Date Sampled	ТСЕ (нg/L)	DCA (µg/L)	c/t-DCE (µg/L)	1,1,1- Trichloroethane (µg/L)	Vinyl Chloride (µg/L)	Total Chlorinated VOCs (µg/L)
Intermediate Wells							
1724MWD02	12/20/94	ND	NA	15.000	AN	S	000 \$1
1724MWD02	12/13/95	20,000	NA	22.000 J	Y Z	S	42,700
1724MWD02	April 1996	20,000	NA	22,000	Y.	e S	42 730
1724MWD02	Mar 1997	21,720	NA	15,430	Y Z	72	37,72
INDAMWI04	April 1996	QN.	NA	86,900	N N	2 800	05,600
INDAMWI04	Feb 1997	170	NA	20,520	Y Z	3,620	24 310
INDAMWI16	April 1996	ND	NA	1,236	N N	380	1697
INDAMWI16	Feb 1997	91	NA	936	Y X	370	1,322
INDAMWI16*	April 1997	<1,000	NA	<1,000	AN	N N	0001>
INDAMW117	April 1996	006'9	NA	11,780	N A	940	21.054
INDAMW117	Feb 1997	27,000	NA	45,700	AN	170	72,57
INDAMWI22	Feb 1977	ND	NA	11,810	AN	2,750	14.560

Notes: NA - Data Not Available ND - Not Detected; below instrument detection limit

* - Based on April 1997 Field Lab Data

TABLE 3-2 (Concluded) DIRECT PUSH SCREENING DATA SUMMARY¹

Drect Fush Well Point ID	Northing	Easting	Top of Casing Elevation (msl)	Screened Interval (feet bls)	Screened Interval (msl)	c/t-DCE¹ Concentration (ug/L)	TCE ¹ Concent ration (ug/L)	Total c/t-DCE & TCE Concentration (ug/L)	Vinyl Chloride Concentration (ug/L)
HK1D*				47 to 50		<1000	<1000	<1000	Z
HK2D	1511781	108061	8.36	47 to 50	-38.6 to -41.6	<1000	<1000	<1000	NT
HK3D	1511745	790779	8.37	47 to 50	-38.6 to -41.6	<1000	<1000	<1000	TN
HK4D*				47 to 50		<1000	<1000	<1000	NT
HKSD	1511808	790821	8.57	52 to 55	-43.4 to -46.4	<1000	<1000	<1000	NT
HK7D	1511714	790894	9:36	52 to 55	-42.6 to -45.6	<1000	<1000	<1000	L
HK10D	1511835	790790	9.13	38 to 41	-28.9 to -31.9	115000	8000	123000	L
HK14D	1511860	790809	9.18	41 to 44	-31.8 to -34.8	62000	4000	00099	L
HK15D	1511713	790753	8.30	48 to 51	-39.7 to -42.7	QN	QN	ON	0.00
HK16D	1511892	790881	8.64	48 to 51	-39.4 to -42.4	QN	QN	QX	ND
HK17D	1511758	790836	8.03	47 to 50	-39.0 to -42.0	QN	QN	ND	ND
HK18D	1511927	790830	9.18	37 to 40	-27.8 to -30.8	00099	ON	00099	ND
HK19D	1511955	790790	8.85	38 to 41	-29.2 to -32.2	269000	ND	269000	ND
HK20D	1512012	790818	8.58	48 to 51	-39.4 to -42.4	QN.	QN	ND	ND
HK2ID	1511845	790713	8.72	48 to 51	-39.3 to -42.3	ND	QN	ND	ND
HK22D	1512022	790346	9.41	48 to 51	-38.6 to -41.6	QN	ND	NO.	ND
HK23D	1511718	790746	8.35			14000	QN QN	14000	10000
Average ² of									
concentrations from						30,941	706	31,647	1:111
the deep zone									
Maximum of									
concentrations from						269,000	8,000	269,000	10,000
the deep zone									

Notes:

* Not Completed as a Well Point

ND - Not Detected at instrument detection level

NT - Not Tested

Where two values are presented, separated by a "f" symbol, the second number in the sequence is a duplicate sample.

For averaging purposes, not detected values were considered zero and not tested values were not included. For samples where duplicates were recorded, the average of the duplicate values was used.

SUMMARY OF PeRT WALLS USING FE⁺⁰ TO TREAT CHORINATED VOCs TABLE 3-3

No.	Country/State/ Prov	Site	Contaminants	Install Date	Status	Depth	Reactant	Type	Designation
_	Alabama	Maxwell AFB	cvoc	8661	Operating	75 ft	FE ⁺⁰	Frac/Jet	Pilot
2	California	Alameda	cVOC	12/96	Operating		FE ⁺⁰	F&G	Pilor
3	California	Moffat Field	cVOC	4/96	Operating	20 ft	FE ⁴⁰	F&G	Pilot
4	California	Mountain View	cVOC	9/95	Operating	20 ft	FE ⁺⁰	Trench	Commercial
2	California	Newbury Park	cVOC		Operating	87 ft	FE ⁺⁰ foam	Fracing	Pilot
9	California	Sunnyvale	cVOC	1/95	Operating	30 ft	PE+0	F&G	Commercial
7	Colorado	Federal Center	cVOC	96/01	Operating	25 ft	0+514	F&G	Commercial
œ	Colorado	Lowry AFB	cVOC		Operating	25 ft	Œ	F&G	Pilot
6	Colorado	Rocky Flats	cVOC, U	86/6	Operating	5 ft	FE ⁺⁰	Cannister	Commercial
9	Delaware	Dover AFB	cVOC		Operating		压也	F&G	Pilot
=	Florida	Cape Canaveral	cVOC	10/97	Operating	45 ft	FE +0	Mandrel	Pilot
12	Florida	Cape Canaveral	cVOC	11/97	Operating	45 ft	PE ⁺⁰	IAG	Pilot
13	Florida	Cape Kennedy	cvoc		Operating		FF ⁺⁰ /Sonic	Deen Mixing	Pilot
4	Ireland	Belfast	cVOC	12/95	Operating	40 ft	FE ⁺⁰	Cannister	Commercial
15	Kansas	Coffeyville	cVOC	96/1	Operating	28 ft	0+44	F&G	Commercial
91	Kentucky	Paducah	cvoc	1995	Operating		FF ⁺⁰ /+	Lacaona	Dilot
17	Massachusetts	MMR	cvoc	8661	Operating	120 ft	FF. ⁴⁰	Fracing	Pilot
18	New Hampshire	Summersworth	cVOC	1997	Operating		FF+0	F&G.	Dilot
61	New Jersey	Caldwell	cVOC	3/98	Operating		FE ⁺⁰	Fracing	Commercial
		Trucking					1	9	Commercial
20	New Jersey	Fairfield	cVOC	86/6	Operating	25 ft	FE+0/Sand	Trench	Commercial
71	New Mexico	Sandia	Cr/TCE/CC14	1997	Completed	8 fi	FE ⁺⁰ /GAC/	Jetting	Demonstration
22	New York	Sherhume	JON	17/07	Onstanting	16.00	+		
23	North Carolina	Flizabeth City	2000	7077	Operating	11.511	FE	F&G	Commercial
2	2000	D. J. Otto	ייסטר, כו	0//0	Operating	26 ft	FE	Cont. trencher	Commercial
\$ 2	Ontario	Borden CFB	cvoc	1993	Completed	8 ft	FE ⁺⁰ /Sand	F&G	Pilot
3	Oregon	Unnamed	cVoc	1998	Operating	30 ft	压也	Cont.	Commercial
26	South Carolina	SRS-Siphon	TCF	7/07	Onomotina	7 31	9	rencher	
27	South Carolina	Manning	30/15	1000	Operating	11 (1	rE	Geosiphon	Pilot
1	John Carollia	Manning	cvoc	8661	Operating	29 ft	田	Cont Trencher	Commercial

Notes:

FE⁺⁰ = zero-valent iron, F&G = funnel and gate, Sonic = sonication, + = other materials, Cont = continuous, jet = jetting, JAG = jet assisted grouting

RUST ENVIRONMENT & INFRASTRUCTURE

FIGURE 3-2 LOCATION OF HANGAR K AND INDUSTRIAL AREA

CAPE CANAVERAL AIR STATION, FLORIDA PROJECT NO. 29515.000

4.0 Pert Wall Pilot Study implementation

4.1 PILOT STUDY OBJECTIVES

The overall objective of this pilot study was to pilot test two new methods for emplacing reactive material at depth.

The specific goals of the pilot study were to:

- 1. Determine the extent of chlorinated VOC degradation resulting from use of the PeRT walls;
- 2. Determine the useful lifetime of the PeRT walls:
- 3. Develop defensible data to illustrate the effectiveness of this technology in enhancing the remediation of contaminated soil and groundwater;
- 4. Evaluate the effectiveness of emplacement technologies that can go to depths greater than 40 feet; and
- 5. Compile data and evaluate of the applicability, cost, and performance of this technology, as it compares to traditional "pump and treat" methods of groundwater remediation.

Initially, the intention of the pilot study was to install the PeRT walls to a depth of 60 feet bls. When the semi-confining layer was discovered, it was decided that the maximum depth of each wall and well should not penetrate the semi-confining layer. The maximum installation depth was therefore restricted to 45 feet bls.

Two sets of pilot scale PeRT walls were installed in the vicinity of Hangar K (Figure 3-3). The walls were installed using two techniques: mandrel and JAG emplacement. The mandrel wall segments were installed first, followed by the JAG wall segments. The layout for each installation was the same, as shown on the PLAN VIEW figure below: the longest (approximately 50-foot long) section was located up-gradient. Approximately 4 feet down-gradient of each of the longest section, a shorter (approximately 10-foot long) section was installed. Approximately 4 feet down-gradient of each of the shorter sections, another short (approximately 10-foot long) section was installed. The longest (up-gradient) segments of the mandrel and JAG walls overlap in the center to form a continuous treatment zone along the length of wall.

The 100-foot total length of the two overlapped pilot scale PeRT Walls was thought to be adequate for a Pilot Study for evaluating the emplacement methodologies. Since the PeRT walls are not keyed into any

confining soils on either end, it was important that the installation process did not reduce the permeability of the soils in the vicinity of the emplacement. Reducing the permeability of soils in the vicinity of the PeRT walls could divert the flow of groundwater such that it did not pass through the PeRT walls. Since both emplacement methods used in this pilot study displace soils into the formation (see Section 6 for detailed information on emplacement methods), it was decided that the best way to limit compaction of soils was to limit the thickness of the PeRT walls. For this reason, the thickness of the walls was limited to 4-inches.

Preliminary estimates of required VOC retention time in the reactive iron indicated that an approximately one-foot thickness of iron would be required for complete destruction of the VOC contaminants in the groundwater. Since the thin-wall technology to be tested would result in a four-inch thick wall of iron, it would take three segments to total the necessary 12 inches of iron thickness. Using concentration data along the anticipated flow line through the entire thickness of reactive iron will permit an evaluation of the degradation rate. For this reason, 3 of the 4-inch walls were installed in such a configuration that a concentration profile could be developed as groundwater flowed between wall segments. The PeRT wall segments were placed 4-feet apart to allow the installation of groundwater monitoring wells between the segments.

PLAN VIEW

Historical groundwater levels and concentration data were used to locate the wall in an area of high VOC concentrations, roughly perpendicular to groundwater flow. Following installation of the PeRT walls, monitoring wells and flow sensors were installed in the vicinity and sampled for approximately one year

to evaluate PeRT wall performance. Figure 4-1 shows a generalized layout of the wall sections, flow sensor and monitoring well placement. Section 6 of this report provides details on the methods of installation. Two parameters that were considered critical in the installation were that the wall thickness be nearly uniformly 4-inches thick and that the wall be continuously overlapped from top to bottom of installed panel. In the mandrel installation, the thickness installed was determined by the set thickness of the mandrel opening (approximately 4-inches). The thickness of wall installed by JAG emplacement equipment was determined by varying injection rates and pressures in a test area on-site prior to installation of the pilot scale PeRT walls. For both installations, alignment was measured using a 4-foot level. The tolerance was determined to be \pm 7-inches of deviation at depth. This would be sufficient to ensure at least a 1-inch overlap at the bottom of the panel. This means that in the four feet measured by the level, the maximum allowable deviation would be ½-inch from level.

In order to measure groundwater flow velocities and directions, six flow sensors, manufactured by Hydrotechnics, Inc., were installed at locations shown on Figure 4-1 at a depth of approximately 40 feet bls. The flow sensors are coupled to 2-inch poly vinyl chloride (PVC) pipe (which acts as a conduit for power and control cables), and are buried directly into soil. Each flow sensor consists of a probe approximately 30 inches long and 2 inches diameter. An 80 -Watt heater inside of the probe heats groundwater as it flows past the buried flow sensor. Each flow sensor has an array of 30 temperature sensors (thermistors) on its surface. The heater increases the temperature of the groundwater flowing past the probe and the temperature sensors detect the resulting gradients in groundwater temperature. Temperature data at each probe is transmitted to a data logger that averages data over a half-hour period. Software developed by Hydrotechnics, HTFLOW[©], converts the temperature results to vertical and horizontal components of groundwater flow velocity and provides the azimuth direction (in degrees from North). The thermistors are calibrated prior to shipment such that the measured differences between temperature sensors are accurate to within ± 0.01 °C.

Sixteen pairs of monitoring wells were installed at locations shown on Figure 4-1. Each pair consists of well screened in the intermediate zone of the uppermost aquifer (intermediate well) and a well screened in the deep zone of the upper most aquifer (deep well). The intermediate wells are approximately 20 feet deep and screened from approximately 15 to 20 feet bls. The deep wells are approximately 40 feet deep and screened from approximately 35 to 40 feet bls.

4.2 INSTALLATION

The sequence for construction of the pilot study was as follows:

- 1 Site Preparation
- 2 Mandrel wall installation
- 3 JAG wall installation
- 4 In-situ flow sensors installation
- 5 Monitoring well installation
- 6 Site restoration

Site Preparation

The areas to be disturbed during the installation were laid out and marked. CCAS Base personnel located utilities within the marked areas. An electrical line and a sewer pipe were found in the grass area where the in-situ flow sensor power and control cables were to be placed for the pilot study. Figure 4-2 shows the location of utilities in the vicinity of work.

Barricades were set up around the work area to prevent traffic from entering the affected area of parking lot. Approximately 1,000 square yards of asphalt were removed for installation of the walls, wells and flow sensor wiring. Kemron Environmental Services performed the site preparation work. A trench was excavated along the centerline of the walls to clear utilities and stakes were placed to mark the wall terminations.

Roll-off boxes were staged for collection of solid IDW. Initially drums were used to contain liquid IDW, then as the volume of liquid exceeded estimates, a tank was rented for collection of liquid IDW. Roll-off boxes, transportation and disposal of solid IDW was performed by Fenn-Vac. The portable tank was rented from Baker Tanks. Non-hazardous waste liquid IDW was transported to the Base water treatment facility. Hazardous waste liquid IDW was transferred into drums and transported by Intersol for treatment at Fisher Industrial Service.

Mandrel Wall Installation

The pilot scale mandrel walls were emplaced by SSI. The location of the Mandrel wall installation is shown on Figure 4-3. Figure 4-4 presents a cross section through the three wall segments. Details regarding the emplacement methods are presented in Section 6.1. The furthest up gradient (longest) wall section is 51 ½ feet long, 4-inches wide and 45 feet deep (extending from approximately 1-foot bls to 45-feet bls). Approximately 4 feet down-gradient of the longest wall, a 12-feet, 1-inch long, 4-inch wide, 45 feet deep wall is installed parallel to the first. Approximately 8 feet down-gradient of the longest wall, a third wall, 11-feet, 11-inches long, 4 inch wide and 45 feet deep wall was installed parallel to the first two.

Jet Assisted Grouting Wall Installation

The pilot scale JAG walls were emplaced by Geocisa/Geobase, under contract to Foremost Solutions. The location of the JAG wall installation is shown on Figure 4-5. Figure 4-6 presents a cross section through the three wall segments. Details regarding the emplacement methods are presented in Section 6.2. The furthest up gradient (longest) wall section is approximately 48 feet long, 4-inches wide and 45 feet deep (extending from 3 to 5 feet bls to 45 feet bls). Approximately 4 feet down-gradient of the longest wall, an 8-foot long, 4-inch wide and 45-foot deep wall is installed parallel to the first. Approximately 8 feet down-gradient of the longest wall, a third wall, 8-foot long, 4 inches wide and 45 feet deep wall was installed parallel to the first two.

In-Situ Flow Sensor Installation

Drilling and electrical installation services for the flow sensor installation were provided by U.S. Environmental. The flow sensor manufacturer, Hydrotechnics, was on-site to oversee the installation of the sensors and to ensure proper alignment. For each flow sensor installation, a 3.25-inch internal diameter (I.D.) hollow stem auger was advanced to a depth of approximately 40 feet. The flow sensors were installed through the center of the hollow stem auger. PVC pipe was coupled to the flow sensors as a conduit to contain the power cable to the heater and control wires from the temperature sensors. The 3.25-inch auger was selected because it was the smallest diameter auger that would allow installation of the probe. Hydrotechnics determined the initial probe alignment relative to true North. This measurement is reported to be accurate to within \pm 10° from North (Ballard, 1996). Wiring was run below grade in conduits to the power supply and data logger. The heater power supply and the data

logger were installed at an existing power supply at the location shown on Figure 4-7. Figure 4-8 shows the electrical installation at the power supply and data logger.

Monitoring well installation

Monitoring wells were installed by U.S. Environmental at locations shown in Figure 4-1. Drilling was performed using a rotary flight auger. The auger was a 4.25-inch ID hollow stem auger. This auger produces an 8-inch diameter boring.

Construction details for each well are summarized in Table 4-1. Each well was constructed of 1½-inch PVC, expanded to 2 inches at the surface to allow for installation of a locking cap. Well screens consist of 1½-inch continuous slot wire wrapped, schedule 40 PVC, 5-foot long sections, total screen length of 5-foot. The filter pack was 20/30-gradation silica sand, emplaced from the bottom up through the hollow stem augers. Bentonite pellets were placed above the filter pack and cement grout was installed through the augers. Well construction details are shown in Figure 4-9 and 4-10 for a typical well pair. Monitoring well development records are shown as Figure 4-11 and Figure 4-12 for a typical well pair. As these wells were installed in a parking lot, all wells were terminated below grade and finished at the surface with a 8-inch traffic rated manhole set into a concrete pad. Monitoring well identification tags were installed in the concrete pads.

Soil lithology was logged by a Rust geologist registered in the State of Florida. Representative logs are included in Appendix B.

Site Restoration

Site restoration work was performed by Kemron. The trench was backfilled with soil. The sub-base and asphalt were replaced in the parking lot and the parking area was resurfaced and striped. Sod or seed was placed in grass areas disturbed by the installation work.

4.3 MONITORING

Key performance indicators were monitored over a 10-month period following installation of the pilot scale PeRT wall sections. These indicators included water quality, water levels and flow data. The following tasks were used to obtain these indicators:

- Collection and analyses of groundwater samples for analysis of VOCs on a quarterly basis to determine the effectiveness of the wall to the extent of VOC degradation;
- Monthly field measurements of groundwater pH, electrical conductivity, turbidity, hardness, oxidation-reduction potential, alkalinity, and concentrations of total iron, Fe⁺², and sulfate;
- Monthly water levels in surrounding monitoring wells to determine effect of wall on groundwater flow; and
- Monthly evaluation of in-situ flow sensor data.

4.3.1 Groundwater VOC Analyses

Samples were collected from the pilot study monitoring wells quarterly for analysis of VOCs by EPA Method SW-846 8260B. For the first and third quarters, all of the wells were sampled and analyzed. For the second and fourth quarters, only the deep wells were sampled and analyzed. Results are presented in Appendix C. Four chlorinated VOCs were consistently detected during this monitoring: vinyl chloride, t-DCE, c-DCE and DCE. The data for each of the detected parameters is summarized in table form as follows:

- Table 4-2: Vinyl Chloride Summary
- Table 4-3: trans-1,2-Dichloroethene Summary
- Table 4-4: cis -1,2-Dichloroethene Summary
- Table 4-5: 1,1-Dichloroethene Summary
- Table 4-6: Data Qualifier Explanations

4.3.2 Field Chemistry Measurements

Samples were collected monthly from each monitoring well. Field instruments and colorometric test kits were used to obtain the water chemistry data presented in Table 4-7. In August 1998, two sampling events were performed. A full round of field parameters was measured for the samples collected for the first sampling event, the week of August 10, 1998. This round of sampling coincided with the third round of groundwater VOC sample collection. Due to weather related delays, Federal Express did not deliver the samples to the laboratory for three days. When the samples were received at the laboratory, the temperatures were above the range acceptable for VOC analyses. Therefore, a second sampling event was implemented the week of August 24, 1998. For this event, only parameters needed to measure purging were measured and recorded.

A summary of each parameter is presented in tabular form, with averages and standard deviations by well and by month. These data are presented as follows:

- Table 4-8: Water Temperature Summary
- Table 4-9: pH Summary
- Table 4-10: Electrical Conductivity Summary
- Table 4-11: Turbidity Summary
- Table 4-12: Total Iron Concentration Summary
- Table 4-13: Fe⁺² Concentration Summary
- Table 4-14: Hardness Concentration Summary
- Table 4-15: Oxidation- Reduction Potential Summary
- Table 4-16: Sulfate Concentration Summary
- Table 4-17: Dissolved Oxygen Concentration Summary
- Table 4-18: Alkalinity Concentration Summary
- Table 4-19: Explosimeter Reading Summary

4.3.3 Water Level Measurements

Water levels were measured monthly in the pilot study monitoring wells and surrounding wells. Table 4-20 presents the results of the water level measurements. The data from 8/7/97 were collected prior to installation of the PeRT walls and pilot study monitoring wells.

4.3.4 Flow Sensor Data

Data from the flow sensors were downloaded monthly during well sampling. Monthly results are presented in Table 4-21 with the calculated error root mean square (ERMS). For two of the sensors (installed at locations PRT 03 and PRT 16) the ERMS was above 0.3 for all readings, thus the data is not considered valid. Results are summarized by flow sensor location as follows:

- Table 4-22: Results for Flow Sensor at Location PRT 03
- Table 4-23: Results for Flow Sensor at Location PRT 05
- Table 4-24: Results for Flow Sensor at Location PRT 10
- Table 4-25: Results for Flow Sensor at Location PRT 15

- Table 4-26: Results for Flow Sensor at Location PRT 16
- Table 4-27: Results for Flow Sensor at Location PRT 21

The ERMS value is a comparison of the actual data with the results from previously generated theoretical velocity profiles. The lower the ERMS value, the better the actual data fits a theoretical profile. This is calculated based on instantaneous readings, and is not a comparison of changes in flow over time. The changes in flow over time are reported as a \pm amount. High ERMS values indicate that the actual data does not match a single velocity profile. The probes measure a temperature profile over a 1-cubic meter area. The software will average the data to perform the curve fit. If the velocity is different at the bottom of the probe than at the top, or on either side of the probe, the ERMS value will be high.

Possible causes of high ERMS values in this installation include:

- The lithologies may differ from bottom to top of probe, creating different velocities;
- The probe may have been installed close enough to the wall(s) that the thermal properties of the wall(s) are creating the heterogeneity in temperature profile; or
- There may not have been good "collapse" of soils into the hole augered for installation of the probes.

4.4 HYDROGEOLOGY

4.4.1 PeRT Wall Area Stratigraphy

The 18 borings advanced to 40-foot depths around the PeRT Wall (Deep monitoring wells at locations HGRK-PRTMW -01, -02, -03, -04, -05, -07, -09, -11, -12, -13, -14, -15, -16, -17, -18, -20 and flow sensors at locations PRT -10 and -21) provided detailed sub-surface stratigraphic descriptions. The geologic materials observed were similar to those seen throughout the Hangar K area. In the immediate vicinity of the PeRT wall the subsurface stratigraphy consists of very fine to coarse grained sands with silt and clay, and sandy clay and silt. Figure 4-13 is a geologic section, oriented from southwest to northeast, along the PeRT Wall. Geologic sections perpendicular to 4-13 are presented on Figures 4-4 and 4-6. As shown in these figures, there is no consistent layering of these materials with shallow depth across the site. For the most part, PeRT wall wells are screened in fine-grained silty sand with some wells screened partially in fine to medium sand.

Boring logs (BOSA01) and cone penetrometer technology (CPT) logs (1 to 7HKF) of nearby, deeper wells indicates that a clay layer occurs at a depth of 40 to 50 feet. These CPT borings are all on the

upgradient (southeast) side of the PeRT wall and BOSA01 on the downgradient side. It is not known if this clay layer is continuous across the Hangar K area.

4.4.2 Aquifer Zones Monitored

Previous studies (Parsons ES, 1996a) divided the aquifer into three zones. Figure 4-14 shows the wells by screen elevations (this figure is intended for grouping of well screens by elevation and not as a cross section). According to Parsons aquifer designations, the HGRK-PRTMWI wells monitor the shallow zone, 15 to 20 feet deep (-05 to -10 feet MSL).

The HKS wells, along with the MWI wells monitor the intermediate zone (25 to 35 feet bls). The HGRK-PRTMWD wells monitor the top of the deep zone (35 to 40 feet bls and 25 to 30 feet msl) and the HKD wells generally monitor the base of the deep zone, along with several MWD wells.

For the purposes of this report, the aquifer designations will be changed slightly. The HGRK-PRTMWI wells will be called intermediate and the HGRK-PRTMWD wells will be called deep. These designations are used because these wells serve to monitor the PeRT Wall at depths intermediate and deep relative to the wall itself.

4.4.3 Precipitation

Rainfall data for 1997 and 1998 were obtained in order to evaluate aquifer responses to precipitation. The data were obtained from two stations in the vicinity of Cape Canaveral; the NOAA weather station at Titusville, FL, and from the Base weather station. The Titusville, FL station data includes the long-term data upon which the monthly 30-year normal rainfall values are based. The monthly 30-year normal rainfall values are used to calculate the cumulative departure from normal rainfall.

Both station's monthly rainfall totals follow a similar trend over the past two-year period (see top plot in Figure 4-15). However, the Base rainfall total for the two years is only 80 percent of that for the Titusville, FL station. To allow the evaluation of rainfall trends for the Base rainfall amounts, the Titusville, FL monthly 30-year normal rainfall values were multiplied by 80 percent to normalize them with the Base station precipitation values. As shown on the lower plot of Figure 4-15, a significant above-normal period of rainfall occurred between October 1997 and February 1998. Following this was a drought until December 1998, interrupted by above normal rainfall in September 1998.

4.4.4 Potentiometric Head Relationships

During the course of this study, twelve sets of water-level measurements were collected from most of the wells in the Hangar K area. Ten sets of measurements were collected from the HGRK-PRTMW wells. Potentiometric maps of three zones have been prepared, including the intermediate zone at the top and base of the deep zone. The base of the deep zone is actually below the PeRT wall and provides information on flow in the zone beneath the wall. The intermediate zone plot is limited to the immediate vicinity of the PeRT wall covering an area of approximately 10 feet by 100 feet. The top of the deep aquifer zone covers a much larger area, approximately 725 feet by 300 feet. The base of the deep aquifer map covers approximately the same area as the deep wells.

Groundwater flow directions in the immediate vicinity of the PeRT Wall are quite variable. In the intermediate zone, the flow ranges from northwest to southeast, or reverse to the anticipated flow direction. Figure 4-16 shows the potentiometric surface of the intermediate depth-zone wells for February 19, 1998. Based upon the potentiometric maps, the flow directions are as follows:

- away from the wall (reversed upgradient) along the southwest end
- parallel to the wall from the southwest end to the center of the wall
- through the wall along the center of the JAG wall

The reversed flow apparent at the southwest end of the wall between wells HGRK-PRTMWI01 and -I02, may be the result of groundwater flow around the edge of the wall. This type of flow could occur if the wall was plugged near its end. Groundwater may not mound but instead, may flow around the end of the wall. If the wall is plugged between these two wells, then the flow is not reversed but is flowing parallel to the wall on both its up and down gradient sides. Table 4-28 lists the flow directions for eleven segments of the wall, for each of the ten sets of water level measurements. Table 4-29 lists the water-level elevations and the horizontal head differences for each of the six pairs of wells located across the PeRT wall from each other. The range of horizontal head differences between these six well sets range from -0.04 to +0.07 feet, with an average of 0.02 feet. The head difference between these two wells (I01/I02) range from -0.04 to -0.01 feet, with most being -0.02 feet. Given the limitations in accuracy of surveying, +/- 0.01 foot, and water level measurement, +/- 0.05 foot, it is possible that the water levels were actually flat and a .01 or .02 foot error in measurement occurred.

Flow directions at the top of the deep depth-zone are fairly consistent though some variability exists (Table 4-28). Flow directions are predominantly northwest to northeast, with reversed flow apparently

occurring at one location near the southwest extent of the JAG wall. Figure 4-17 shows the potentiometric surface of the top of the deep zone on February 19, 1998. Flow appears to be reversed at wells HGRK-PRTMWD13 and D14. This phenomenon occurs on 70% of the measurements. As shown in Table 4-29, the horizontal head differences between these six deep-well sets range from -0.05 to +0.18 feet, with an average of 0.025 feet. The head difference between well set HGRK-PRTMWD13 and D14 wells range from -0.05 to +0.05 feet. Two of the other three times the head measurements were taken, the difference was 0.00 feet. It could be that the water levels at this location were actually flat and a .01 or .02 foot error in measurement occurred.

Flow directions for most of the deep zone wells, listed in Table 4-30, are less variable than for the deep zone wells immediately around the PeRT Wall. Figures 4-18 and 4-19 show the deep aquifer-zone potentiometric maps for the Hangar K/PeRT Wall area, for February 19, 1998 and November 16, 1998, respectively. These water-surface shapes are fairly typical for this aquifer zone during the 14-month period. The highest water elevation is at well HK7S, with the next highest being at well MWI16. For both maps, some radial flow components are evident, generally trending towards the west, northwest, and northeast. On the November 16, 1998 potentiometric surface shown in the figure, flow is from the middle of the PeRT Wall area to the southeast, towards well HK10S, which is an exception to the earlier data shown in Figure 18. At this well the water elevation is 0.03 feet lower than well HGRK-PRTMWD13, located at the wall. This apparent flow reversal, given the small head differences, may be indicative of a flat water-surface in this area. It may also indicate that the water is starting to back up behind the wall, and ultimately force water around or below it. This may be evidence that wall is plugging; however, more water-level data collection and evaluation will be necessary to reveal if this trend exists and continues. Additional monitoring by others is being done.

The flow direction at the base of the deep zone (below the PeRT walls) ranges from west to northwest for nearly all the contoured area, see Table 4-30. Figure 4-20 shows the potentiometric map for the Hangar K/PeRT Wall area, for November 16, 1998. This water-surface shape is fairly typical of the 14-month period. The flow direction in this deeper zone is not radial but predominantly from east to west. This flow direction is consistent throughout the period of water-level measurements. These potentiometric surface maps do not show any apparent influence from the PeRT Wall.

Tidal influence on groundwater elevations and flow direction was not evaluated as part of this investigation. An investigation of Banana River influence on wells west of Hangar K was performed in 1996 (Parsons ES, 1996b). This seven week study showed a maximum river influence on shallow and intermediate depth wells to be 1.3 feet. These fluctuations were over several days not 12-hours as the

tidal cycle at Cape Canaveral. Within the continuous water level data plot are short-duration (approximately 12-hours), fairly regular fluctuations that may be tidal influence. These fluctuations are of the order of magnitude of 0.10 to 0.15 feet. Since most sets of water levels were collected within a three-hour period (or one-half a tidal rise or fall period) during the PeRT wall pilot study, the impact would be even less than the full cycle. The tidal effects have not been evaluated as far inland as Hangar K. Therefore, no conclusions have been made regarding possible tidal influence on pilot study results.

Hydrographs were prepared to evaluate water level fluctuations over time. Figure 4-21 and 4-22 are selected hydrographs. Figure 4-21 shows water level trends impacted by recharge conditions that changed from relatively normal to drought and returned to normal. However, no changes that were caused by the PeRT Wall are apparent.

Figure 4-22 shows hydrographs from selected well pairs. Note that the water level at well HK20S tracks nearly on top of those for HGRK-PRTMWI20 and D20 for most of the plot. These well pairs are 95 feet apart. This data indicates that no change in the head relationships due to the wall has occurred. However, on November 16, 1998, the water levels at HGRK-PRT MWI20 and D20 are higher than the water level at wall HK20S. The head differences across the wall are slight because of small distances between wells. These higher water levels may indicate that some mounding may be beginning to occur near the northeast end of the wall. Further data is being collected by others to verify this trend.

Groundwater flow gradients at the Hangar K area are low. Table 4-31 lists the horizontal flow gradients for the well sets at the PeRT Wall. The gradients in the intermediate zone range from -0.00965 to 0.0585 feet per foot, with an average of 0.0082 feet per foot. The negative value indicates a reversed flow direction. These negative gradients may not be valid if the PeRT Wall is plugged in that area since the wells would not be interconnected hydraulically. In the deep zone, gradients range from -0.0021 to 0.053 feet per foot, with an average of 0.0074 feet per foot. Horizontal flow velocities, assuming a hydraulic conductivity of 1.0 feet per day, range from -0.039 to 0.068 feet/day in the intermediate zone and from -0.053 to 0.083 feet/day in the deep zone. Average velocity is 0.03 feet/day in the intermediate zone and 0.03 feet/day in the deep zone. This average velocity indicates that the groundwater travels one foot in approximately 33 days in both zones.

A similar evaluation of groundwater horizontal flow gradients and velocities was performed for the deep and bottom aquifer zones over the broader, Hangar K area. The groundwater horizontal flow gradients and velocity for deep wells, see Table 4-32, are much lower than through the PeRT Wall. In the downgradient (west) area, horizontal flow gradients range from 0.00109 to 0.00171 feet/foot, averaging

0.0014 feet/foot. Horizontal flow velocities range from 0.0055 to 0.0085 feet/day, averaging 0.0072 feet/day. In the PeRT Wall area, horizontal flow gradients range from 0.00045 to 0.0013 feet/foot, averaging 0.00092 feet/foot. Horizontal flow velocities range from 0.0023 to 0.0064 feet/day, averaging 0.0046 feet/day. In the upgradient (east) area, horizontal flow gradients and horizontal flow velocities were not estimated because of the radial flow pattern. The flow in the eastern area is away from the PeRT Wall area and, therefore, considered to not be of importance to this study. The downgradient area has a greater flow velocity than the area below the PeRT Wall. This pattern has been consistent throughout the 14-month period, beginning before the PeRT Wall was installed. This average velocity means the groundwater travels one foot in over 139 days in the downgradient area and travels one foot in over 218 days in the PeRT Wall area.

The estimated horizontal gradient and flow velocities in the immediate area of the PeRT Wall are approximately six to seven times greater than the those in the regional deep and base aquifer zones. This could be the result of the influence of the geologic material the wells are screened in. Given the low groundwater gradient in the area, and the closeness of the wells, geologic variation could have a significant impact on water levels.

4.5 FLOW SENSOR RESULTS

The flow sensors were installed, as described in Section 4.0, at six locations at a depth of 40 feet. This places these flow sensors in the deep aquifer zone. The sensor locations are upgradient and downgradient of each of the two PeRT Wall segments, and one beyond either end of the entire PeRT Wall. Summarized results for six flow sensors are presented in tables 4-22 to 4-27. Two of the sensors, PRT 03 and PRT 16, had ERMS values greater than 0.30, indicating that the uncertainty in fitting the data to the theoretical curve is unacceptably high.

Shown at the bottom of the six tables 4-22 through 4-27 are three plots. On the left is a plot of the direction and magnitude of the horizontal flow component for each of the dates listed in the table. The PeRT wall segments are oriented at North 41° East. The dark line labeled as the PeRT wall in the left-hand figure relates the flow direction arrows to the actual wall position. In the middle is a schematic map showing the position of the flow sensor, relative to the PeRT wall segments. On the right is a plot of the direction and magnitude of the vertical flow component.

The plots show that on the upgradient side of the Mandrel PeRT wall (PRT03), the flow is up and at an angle to the wall. On the downgradient side of the wall (PRT05) flow is down and rotated 135° counter

clockwise from the upgradient side. On the south west end of the wall (PRT10), flow is down and roughly perpendicular to the wall. On the upgradient side of the JAG PeRT wall (PRT15) flow is down and again at an angle to the wall. On the downgradient side of the wall (PRT16) flow is upward and reverse, i.e., back towards the wall. On the northeast end of the wall (PRT21) flow is down and at an angle to the wall.

These data indicate the flow around the PeRT wall segments is quite variable, while being fairly consistent in direction and magnitude at each sensor location. The reverse flow direction at PRT16 may indicate flow around the short JAG wall segment downgradient of the main PeRT wall. It should be noted that the results for sensors PRT03 and PRT16 are highly questionable, as the ERMS values exceeded 0.30 (see Section 4.3.4 for discussion of ERMS significance).

Table 4-33 summarizes the average values for all six sensors. There is no hydraulic conductivity data (horizontal or vertical) available for this area. Therefore, no calibration is possible for the various flow values recorded. In many cases the vertical flow velocity appears to be greater than the horizontal velocity. The horizontal flow velocities are in the same range as those estimated from the groundwater elevation data (estimated average horizontal flow velocity of 0.030 compared to flow sensor horizontal flow velocity of 0.059 feet/day). For a given sensor, the horizontal velocity may be tangential to the wall.

4.6 USEFUL LIFETIME OF PERT WALLS

There are three issues that can potentially limit the longevity of a PeRT wall: (1) dissolution, (2) clogging, and (3) passivation. Dissolution of Fe⁺⁰ occurs during the corrosion process and leads to a decrease in the amount of Fe⁺⁰ available to degrade chlorinated VOCs. Clogging refers to the disruption of groundwater flow by mineral precipitation, microbial growth, or gas formation. If permeability in the PeRT wall decreases significantly, groundwater may be diverted and bypass the reactive zone without being treated. Passivation refers to the decreasing reactivity of the Fe⁺⁰. Decreasing reactivity is attributed to the formation of minerals on the surfaces of the Fe⁺⁰ particles.

Estimates of mineral precipitation and dissolution are made based on observed groundwater chemistry and assumed reaction mechanisms. No theoretical base is available to reliably estimate the effects of surface passivation, so no calculations are presented. For this same reason, the effects of gas formation on clogging have not been estimated. As discussed above, the observed groundwater chemistry may be

misinterpreted due to the slow rate of groundwater flow. Therefore, the calculations presented in this section should be considered as rough approximations.

Biological activity may also contribute to the decrease in effectiveness of PeRT walls. Hydrogen gas produced by Fe⁺⁰ corrosion is capable of donating electrons to microbial acceptors. Biomass and biogenic gasses could cause clogging of pores. There is currently only a limited understanding of the effects of these microbial processes in PeRT walls. A few microbial investigations have been performed at other sites and have suggested that microbes are not likely to play a significant role in PeRT wall performance (Gavaskar et al., 1998). Therefore, the discussion below is limited to abiotic processes.

There is limited operational history with which to reliably assess the length of time that PeRT walls will remain functional. The first demonstration of a Fe⁺⁰ PeRT wall was at the Canadian Forces Base Borden site. After almost 5 years of operation, the Fe⁺⁰ at this site still had a fresh appearance and there was minimal amount of mineral precipitation clogging pores (O'Hannesin and Gillham, 1998). The first commercial installation of Fe⁺⁰ in a PeRT wall was at the Intersil site at Sunnyvale, California. This wall has been successfully treating VOCs for over 4 years. Groundwater mounding behind PeRT walls has been reported at some sites, such as at the Denver Federal Center, which may be the result of clogging within the wall. Alternatively, the mounding may be due to a low permeability zone caused by the smearing of clays as the sheet pilings were driven during installation.

The concentration of total dissolved iron is less than 1 mg/L in most groundwater samples at the CCAS PeRT wall site and does not show a consistent trend from upgradient to downgradient of the wall. If the iron dissolved from the PeRT wall remained in solution, the dissolution rate could be easily calculated from the dissolved concentrations. However, as discussed in Section 5.2, the Fe²⁺ can precipitate in carbonate, sulfide, and hydroxide minerals. Therefore, theoretical calculations must be used to estimate Fe⁺⁰ dissolution. Four corrosion agents were evaluated to estimate their affect on Fe⁺⁰ dissolution: (1) dissolved oxygen, (2) water, (3) c/t DCE, and (4) vinyl chloride.

The dissolved oxygen concentration is about 0.3 mg/L and does not show a consistent trend from upgradient to downgradient of the PeRT wall. Since the redox state indicates reduction occurs across the wall, it is likely that the dissolved oxygen measurements were influenced by oxygen from the atmosphere

during sampling. If we assume that the entire 0.3 mg/L of oxygen is being reduced by Fe⁺⁰, 0.53 mg of iron per liter of groundwater would be dissolved.

Since water is in unlimited supply, the oxidation of Fe⁺⁰ with water could be substantial. However, because a mole of hydroxyl is generated for every mole of water reduced, the amount of iron released by the reduction of water can be estimated from the maximum pH. The maximum pH on the downgradient side of the PeRT wall is about 9.5. About 0.9 mg/L of iron is liberated with an increase in pH to 9.5. This estimate assumes that no acid-generation is occurring due to silicate reactions such as described by Powell and Puls (1997). If acid-generation occurs, additional Fe⁺⁰ will dissolve.

The concentration of c/t-DCE in the groundwater is about 115 mg/L. About 66 mg/L of dissolved iron is generated from the reductive dechlorination of this c/t-DCE. Similarly, about 51 mg/L of iron is generated from reductive dechlorination of vinyl chloride.

A total of 118 mg/L of iron is dissolved from all 4 processes, mostly from reductive dechlorination (Table 4-34). If 118 mg/L of iron is lost, it requires 1,067 years to dissolve a 4-inch thick wall of Fe⁺⁰ at a groundwater flow rate of 0.025 ft/day.

Changes in inorganic chemistry that occur from upgradient to downgradient of the PeRT wall can be used to partially evaluate the potential for the wall to clog. Average groundwater chemistry from November 1998 indicates that the redox state and alkalinity decrease, and that pH increases across the wall (Table 4-35). These chemical changes are characteristic of reactions with Fe⁺⁰ as discussed above, indicating that the groundwater was influenced by the PeRT wall. Maximum concentrations of carbonate, sulfide, and hydroxide minerals that can precipitate in the CCAS PeRT wall are estimated in this subsection.

In general, the groundwater alkalinity decreases from upgradient to downgradient wells, although on the average in deep wells the decrease is less than the standard deviation of the measured monthly readings (Table 4-18). As observed in the most recent data set (November 1998), the average alkalinity in the deep zone decreased across the PeRT wall by about 53 mg/L (as CaCO₃) (Table 4-34). The decrease in alkalinity is caused by the precipitation of carbonate minerals. Much of the carbonate has probably precipitated as calcite (CaCO₃) but other carbonate minerals such as siderite (FeCO₃) or magnesium

carbonate (MgCO₃) may have formed as well. A reasonable assessment of the potential for clogging can be calculated by assuming all of the decrease in alkalinity is due to calcite precipitation. Using this assumption, calcite will clog approximately 0.2% of the available pore space per year. The entire available pore space would be filled with calcite in 459 years. Alkalinity decreases across the PeRT wall in the intermediate zone by approximately the same amount indicating that a similar amount of calcite would be deposited there.

The sulfate concentration in the groundwater was consistently below the detection limit of 50 mg/L on both the upgradient and downgradient sides of the PeRT wall. Assuming that all 50 mg/L was precipitated as FeS in the wall (an unlikely scenario), the available pore space would decrease by 0.06% per year. At this rate, it would take 1,785 years to clog all available pore space with FeS.

If all of the dissolved iron (118 mg/L) were deposited as ferrous hydroxide [Fe(OH)₂], the available pore space would decrease by 0.17% per year. This calculation corrects for the pore volume that is gained due to dissolution of the Fe⁺⁰. At this rate it would take 581 years to fill all the available pore space with $Fe(OH)_2$.

Existing PeRT walls at other sites have operated effectively for over 5 years. About 118 mg/L of iron is expected to be released from the CCAS PeRT wall, most of which is likely to precipitate within or just downgradient of the PeRT wall. At this rate of dissolution, the Fe⁺⁰ in a 4-inch wall will completely dissolve in about 1,000 years. The wall would become ineffective for degrading chlorinated VOCs to their MCLs prior to that time.

Conservative estimates of mineral precipitation suggest that over a 100 year period the following are maximum percentages of the available pore space that could be filled: carbonates, 20%; sulfides, 6%; and hydroxides, 17%. If these rates of mineral formation persist, porosity in the wall would decrease to zero in about 400 years and groundwater flow may be significantly diverted earlier. These estimates are preliminary and should be reevaluated after another year of groundwater monitoring.

4.7 MONITOR WELL HEADSPACE SCREENING

Samples of vapors in the headspaces of monitoring wells HGRK-PRTMWI16 and HGRK-PRTMWI17 were tested with detector tubes during the June, July and August 1998 sampling events. The samples were collected for Health and Safety purposes to protect sample collection personnel from potential harmful atmosphere. The samples were collected as follows:

- 1. The well cap was removed and replaced with a cap that has tubing from a pre-drilled hole in the center of the cap.
- 2. The explosimeter was used to evacuate the tubing and to obtain a % of LEL reading.
- 3. Draeger and Sensidyne tubes were opened and attached to the tubing, using a hand pump to draw samples.
- 4. For the June and July events, Draeger tubes were used in the following order: hydrogen, vinyl chloride and ethylene.
- For the August event, Sensidyne and Draeger tubes were used as follows:
 First event: acetylene (Sensidyne), hydrogen (Draeger) and vinyl chloride (Draeger); Second event: ethylene (Draeger).

The results of the June sampling were as follows:

PARAMETER	HYDROGEN	VINYL CHLORIDE	ETHYLENE	% LEL
Standard Range	0.2 to 2 %	0.5 to 3 ppm	0.2 to 5 ppm	
HGRK-PRTMWI16	Not detected	0.5 ppm	Not detected	22
HGRK-PRTMWI17	Not detected	Not detected	>3.5 and < 15 ppm*	244

^{*} The range is based on 3.5 ppm at half of the required strokes (10 out of 20) for the 0.2 ppm range. The results indicated the concentration was less than the upper end (15 ppm) of the scale for the 5-stroke range.

The Results of the July Sampling were as follows:

PARAMETER	HYDROGEN	VINYL CHLORIDE	EŢHYLENE	% LEL
Standard Range	0.2 to 2 %	0.5 to 3 ppm	0.2 to 5 ppm	
HGRK-PRTMWI16	Not detected	2 ppm	0.2 ppm	122
HGRK-PRTMWI17	Not detected	Not detected	4.5 ppm	241

The Results of the first August Sampling were as follows:

PARAMETER	ACETYLENE	HYDROGEN	VINYL CHLORIDE	% LEL
Standard Range	32.5 to 1,000 ppm	0.2 to 2 %	0.5 to 3 ppm	
HGRK-PRTMWI16	50 ppm	Not detected	0.5 ppm	105
HGRK-PRTMWI17	80 ppm	Not detected	Not detected	80

The Results of the second August Sampling were as follows:

PARAMETER	ETHYLENE	% LEL
Standard Range	0.2 to 5 ppm	
HGRK-PRTMWI16	Not detected	43
HGRK-PRTMWI17	0.5	105

This testing was intended as a field screening primarily for health and safety purposes. Many of these type detector tubes are "cross sensitive" with other compounds. According to Draeger and Sensidyne, the following compounds will also give positive readings in the indicated tubes:

- Acetylene Tubes: Butane, carbon monoxide, butylene, propylene, pentane and hydrogen will show as acetylene in this tube.
- Hydrogen Tubes: No know interference from other compounds in this tube.
- Vinyl Chloride Tubes: Other halogenated hydrocarbons will show as vinyl chloride in this tube.
- Ethylene Tubes: Other compounds with Carbon-Carbon double bonds will show as ethylene in this tube.

TABLE 4-1
PILOT STUDY MONITOR WELL CONSTRUCTION DETAILS

Installed (feet bls) (max) Diammeter (inches) Longinal (feet bls) (feet bls) (max) Diammeter (inches) Longinal (feet bls) (feet bls) (max) Diammeter (inches) Longinal (feet bls)		Date	Total We	Total Well Depth	Screen and Casing	Screen	Riser	Screened Interval	Interval	Screened Interval		-	Top of	Top of Bentonite	-
1/18/98 39.02 30.02 30.02 1.25 5 34.02 34.02 0. 39.02 25.56 0. 30.05 32.8 31.5 1/18/98 39.64 30.05 1.25 5 34.45 34.45 0. 39.45 25.65 0. 30.05 32.8 31.5 1/18/98 39.64 30.05 1.25 5 34.45 34.45 0. 39.45 25.65 0. 30.05 32.8 31.5 1/18/98 39.64 30.05 1.25 5 34.45 34.54 0. 39.54 25.74 0. 30.07 32.5 31.5 1/18/98 39.64 30.05 1.25 5 34.35 34.35 0. 39.38 25.61 0. 30.07 33. 32.5 1/18/98 39.85 30.05 1.25 5 34.35 34.81 0. 39.3 25.61 0. 29.07 33. 31.75 1/18/98 39.87 30.05 1.25 5 34.15 34.81 0. 39.3 25.61 0. 29.05 33. 31.75 1/18/98 39.87 30.05 1.25 5 34.10 34.15 0. 39.15 25.05 0. 30.07 32.5 1/18/98 39.87 30.05 1.25 5 34.10 34.10 0. 39.10 25.47 0. 30.07 32.5 1/18/98 39.87 30.05 1.25 5 34.10 34.10 0. 39.10 25.47 0. 30.07 32.5 1/18/98 39.94 30.05 1.25 5 34.10 34.10 39.14 25.50 0. 30.07 32.5 1/18/98 39.94 30.05 1.25 5 34.10 34.10 39.14 25.50 0. 30.07 32.5 1/18/98 39.94 30.05 1.25 5 34.10 34.10 39.07 25.24 0. 30.07 32.5 1/18/98 19.00 1.20 1.25 5 34.10 34.14 0. 39.14 25.50 0. 30.07 32.5 1/18/98 19.00 10.05 1.25 5 34.14 34.14 0. 39.14 25.50 0. 30.07 32.5 1/18/98 19.00 10.05 1.25 5 34.14 34.14 0. 39.14 25.50 0. 10.05 31.5 1.5 1/18/98 19.00 10.05 1.25 5 34.14 34.14 0. 39.14 25.50 0. 10.05 1.25 1.5 1/18/98 19.00 10.05 1.25 5 34.14 34.14 0. 39.14 25.50 0. 10.05 1.25 1.5 1/18/98 19.00 10.05 1.25 5 14.00 14.00 19.00 25.4 0. 10.05 1.25 1.5 1/18/98 19.00 10.05 1.25 5 14.00 14.00 19.00 25.4 0. 10.05 1.25 1.15 1/18/98 19.00 10.05 1.25 5 14.00 14.00 19.00 25.4 0. 10.05 1.15 1.15 1/18/98 19.00 10.04 1.25 5 14.20	well number	Installed	(feet bls)	(Ism)	Diameter (inches)	(feet)	(feet)	(feet	ols)	(msl)			(feet bis)	Seal (feet bls)	Date Developed
11 11899 39902 3006 125 5 3402 3402 500 2526 6 -3005 2326 345 3445 9480 2686 2686 3689 3689 3689 3689 3689 3689 3689 3689 3689 3689 3689 3000 312 37 37 3 1/21098 3948 -3069 1.25 5 3445 3441 9345 2554 0 -3065 33 3 3 4 1/17098 3958 -3078 1.25 5 3431 3431 0 394 2554 0 -3069 3 </td <td></td>															
2 112998 39.66 -30.93 1.25 34.68 34.68 0.36.66 25.56 10.30.93 32.8 31 3 1/12/98 39.45 -30.66 1.25 5 34.45 34.45 34.51 25.74 0. 30.74 32.5 31.5 4 1/17/98 39.45 -30.66 1.25 5 34.45 1.05.74 0. 30.43 32.54 3.37 3.37 31.5	HGRK-PRTMWD01	1/18/98	39.02	-30.26	1.25	5	34.02			to	10.26	32.6	31.5	29.5	1/24/98
3 1/21/98 39.45 -30.65 1/25 5 34.45 93.45 -25.74 10.30.65 33.2 31.2 7 1/17/98 39.54 -30.74 1/25 5 34.54 10.351 -25.78 10.30.6 33 32.5 31.5 9 1/10/98 39.54 -30.74 1.25 5 34.54 10.351 -25.78 10.30.6 33 32.5 31.5 1 1/11/98 39.38 -30.61 1.25 5 34.82 10.398 25.61 1030.61 32.5 31.5 1 1/11/98 39.81 -32.86 1.25 5 34.16 1.249 10.20.8 31.5 31.7 1 1/11/98 39.81 -30.28 1.25 5 34.16 34.81 2.56.81 5 31.5 31.5 2 1/11/98 39.80 -30.28 1.25 5 34.16 34.81 36.81 32.5 31.5 31.5	HGRK-PRTMWD02	1/22/98	39.68	-30.93	1.25	5	34.68			9	10.93	32.8	31	29	1/24/98
9 112998 3954 3074 125 3451 3451 0.3574 0.3574 0.3578 <th< td=""><td>HGRK-PRTMWD03</td><td>1/21/98</td><td>39.45</td><td>-30.65</td><td>1.25</td><td>5</td><td>34.45</td><td></td><td></td><td>5</td><td>59.01</td><td>33</td><td>32</td><td>30</td><td>1/24/98</td></th<>	HGRK-PRTMWD03	1/21/98	39.45	-30.65	1.25	5	34.45			5	59.01	33	32	30	1/24/98
7 11/19/98 39.54 -30.78 1 45.4 34.54 9.34 0.578 030.78 33.2 32.5 9 11/698 38.54 -30.61 1.25 5 34.54 18.48 1.05.98 25.61 030.61 33 31.75 1 11/698 38.81 -28.98 -30.28 1.25 5 34.81 0. 38.81 -30.61 3.2 31.75 1 11/198 38.96 -30.28 1.25 5 34.16 1.0 93.62 -50.68 3.1 31.71 34.81 3.81 3.81 -30.88 3.3 31.75 3.4	HGRK-PRTMWD05	1/20/98	39.51	-30.74	1.25	5	34.51			to	10.74	32.5	31.5	29.5	1/24/98
9 1116/98 39.38 -30.61 1.125 5 34.38 13.81 0.383 25.61 030.61 32 31.75 1 11/15/98 38.81 -29.96 1.125 5 34.16 34.16 0.381 -24.96 03.08 31.75 3 1/14/39 39.86 -30.28 1.25 5 34.16 34.16 0.39.16 -30.28 32.5 31.5 31.5 4 1/11/298 39.30 -30.47 1.25 5 34.30 9.30 -25.71 030.87 31.5 31.5 5 1/10/98 39.00 -30.14 1.25 5 34.31 9.31 -25.21 030.28 31.5 31.5 6 1/10/98 39.14 -30.20 1.25 5 34.41 9.31 -25.21 030.38 32.5 31.5 7 1/10/98 39.14 -30.20 1.25 5 34.41 0.34.61 25.30 030.31 32.5	HGRK-PRTMWD07	1/17/98	39.54	-30.78	1.25	5	34.54			to	80.78	33	32	30	1/18/98
11 11/15/98 38.81 1.28.96 1.25 3.38.1 33.81 10.88.81 24.96 0.29.96 33 31.75 2 11/13/98 39.16 30.26 1.25 3.482 3.282 1.30.8 3.25 31.75 4 1/13/98 39.16 30.22 1.25 5 34.30 1.41.0 30.91 2.52.81 0.30.29 3.25 31.75 31.75 3.25 0.30.8 3.25 31.75 31.75 0.30.8 0.30.9 32.5 3.25 31.75 31.75 0.30.9 2.54.7 0.30.4 31.5 31.74 0.39.7 -25.52 0.30.2 31.5 31.74 0.39.7 -25.52 0.30.2 31.5 31.74 0.39.7 -25.52 0.30.2 31.5 <td< td=""><td>HGRK-PRTMWD09</td><td>1/16/98</td><td>39.38</td><td>-30.61</td><td>1.25</td><td>5</td><td>34.38</td><td></td><td></td><td>to</td><td>19:01</td><td>32</td><td>31</td><td>59</td><td>1/18/98</td></td<>	HGRK-PRTMWD09	1/16/98	39.38	-30.61	1.25	5	34.38			to	19:01	32	31	59	1/18/98
2 114498 3982 3100 125 3482 3482 3482 3682 2608 to 3108 32 315	HGRK-PRTMWD11	1/15/98	38.81	-29.96	1.25	5	33.81			to	96.6	33	31.75	29.75	1/16/98
3 I/I398 3916 -3028 I.25 5 34.16 0.316 -35.28 to -30.47 33 3.5 4 I/I298 393.0 -30.47 1.25 5 34.30 34.30 -35.47 to -30.47 33 3.5 31.5 5 I/I1/98 383.0 -30.42 1.25 5 34.37 1.31.40 0.39.0 -25.47 to -30.42 3.5 3.15 3.2 3.15 7 I/I/98 38.00 -30.14 1.25 5 34.14 3.14 0.39.1 -24.88 to -30.42 3.2 3.15 3.2 3.15 8 I/I/198 39.04 -30.60 1.25 5 34.14 3.14.1 0.39.14 -24.88 to -30.30 3.2 3.1 9 I/I398 39.04 -30.60 1.25 5 34.14 3.14.4 0.39.14 -24.88 0.20.30 3.2 3.1 1 I/I398 19.02 1.02.1	HGRK-PRTMWD12	1/14/98	39.82	-31.08	1.25	5	34.82			to	80.11	32	31	29	86/91/1
4 1/12/98 383.00 -30.47 1.25 5 34.30 0.93.00 -254.7 0.30.47 33.3 32.5 31.5 32.5 10.00 33.3 33.2 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.6 33.7 35.5 10.05 32.5 10.05 32.5 33.5 33.5 33.7 33.5 <td>HGRK-PRTMWD13</td> <td>1/13/98</td> <td>39.16</td> <td>-30.28</td> <td>1.25</td> <td>5</td> <td>34.16</td> <td></td> <td></td> <td>to</td> <td>10.28</td> <td>32.5</td> <td>31.5</td> <td>29.5</td> <td>1/14/98</td>	HGRK-PRTMWD13	1/13/98	39.16	-30.28	1.25	5	34.16			to	10.28	32.5	31.5	29.5	1/14/98
5 1/11/98 39.37 -30.52 1.25 9.37 0.30.52 1.25 0.30.72 25.52 10.30.52 13.53 13.15 13.17 10.39.34 -25.42 1030.52 31.55 31.5	HGRK-PRTMWD14	1/12/98	39.30	-30.47	1.25	5	34.30			to	80.47	33	32	30	1/14/98
5 1/10/98 38.74 -29.86 1.25 5 33.74 13.74 10.87 29.86 32.5 31.7 33.74 33.74 23.80 -29.88 32.5 31. 32. 31. 32	HGRK-PRTMWD15	1/11/98	39.37	-30.52	1.25	5	34.37			ţ	10.52	32.5	31.5	29.5	1/13/98
7 1/9/98 39.00 -30.14 1.25 5 34.00 25.14 0 -25.14 0 -30.14 33 32 8 1/7/98 39.14 -30.30 1.25 5 34.14 34.14 0.39.14 -25.30 0 -30.30 32 31 9 1/7/98 39.44 -30.40 1.25 5 34.41 34.41 0.39.41 -25.60 0 -30.60 31 32 1/1/2/98 19.02 -10.25 1.25 3 4.40 10 99.04 -25.60 0 -30.60 31 32 32 1/1/2/98 19.02 -10.25 1.25 3 4.40 10 99.04 -25.70 0 10.23 11.5 1/12/98 19.04 -10.25 5 14.42 14.42 10 10 90 5.24 0 10.25 11.5 1/12/98 19.04 -10.25 5 14.20 10 <t< td=""><td>HGRK-PRTMWD16</td><td>86/01/1</td><td>38.74</td><td>-29.88</td><td>1.25</td><td>5</td><td>33.74</td><td></td><td></td><td>to</td><td>88.66</td><td>32.5</td><td>31</td><td>29</td><td>1/13/98</td></t<>	HGRK-PRTMWD16	86/01/1	38.74	-29.88	1.25	5	33.74			to	88.66	32.5	31	29	1/13/98
8 17798 39.14 -30.30 1.25 5 34.14 6 39.14 25.30 6 -30.30 32 31 9 17798 39.34 -30.42 1.25 5 34.14 34.14 0 39.14 -25.42 0 -30.42 32 31 32 32 1 17298 39.41 -30.60 1.25 5 34.41 0 39.41 -25.42 0 -30.42 32 32 32 1 1/2298 19.00 -10.24 1.25 5 14.40 14.00 0 19.00 -5.24 0 -10.24 11.5 1 1/21/98 19.00 -10.25 5 14.00 19.00 -5.25 10.02 11.5 11.5 11.5 1 1/17/98 19.04 -10.25 5 14.04 19.04 5.25 10.02 11.5 11.5 11.5 1/14/98 20.30 -11.54 1.25 <td>HGRK-PRTMWD17</td> <td>1/9/98</td> <td>39.00</td> <td>-30.14</td> <td>1.25</td> <td>5</td> <td>34.00</td> <td></td> <td></td> <td>to</td> <td>10.14</td> <td>33</td> <td>32</td> <td>30</td> <td>1/16/98</td>	HGRK-PRTMWD17	1/9/98	39.00	-30.14	1.25	5	34.00			to	10.14	33	32	30	1/16/98
9 1/3/98 39.34 -30.42 1.55 34.34 34.34 io. 39.34 -25.42 to -30.42 33 32 0 1/298 39.41 -30.60 1.25 5 34.41 34.41 5.34 -25.42 to -30.60 31 30 1/12/98 19.00 -10.24 1.25 5 14.00 14.00 5.24 to -10.24 11.5 11.5 1/12/98 19.05 -10.25 1.25 5 14.05 14.05 5.25 to -10.25 11.5 1/17/98 19.04 -10.25 1.25 5 14.05 19.04 5.25 to -10.25 11.5 1/17/98 19.04 -10.25 1.25 5 14.04 19.04 5.25 to -10.25 11.5 1/17/98 19.04 -10.25 1.25 5 14.04 10.90 5.25 to -10.25 11.5 1/11/98 19.05 -10.25 5 12.04 10.05 5.25	HGRK-PRTMWD18	1/7/98	39.14	-30.30	1.25	5	34.14			to	30.30	32	31	59	1/16/98
10.1798 39.41 -30.60 1.25 5 34.41 6 39.41 -25.60 10 -30.60 31 30 1/18/98 19.00 -10.24 1.25 5 14.00 14.00 -52.4 0 -10.24 13 12 1/12/98 19.02 -10.25 5 14.00 14.00 -52.4 0 -10.57 11.5 11.5 1/12/98 19.02 -10.25 5 14.00 19.00 -5.25 0 -10.25 11.5 <	HGRK-PRTMWD19	1/3/98	39.34	-30.42	1.25	5	34.34			to	30.42	33	32	30	86/9/1
1/18/98 19.00 -10.24 1.25 5 14.00 14.00 -5.24 10.24 13 12 1/22/98 1942 -10.67 1.25 5 14.02 14.02 -5.67 10.67 12.5 11.5 1/21/98 19.05 -10.67 1.25 5 14.05 14.05 10.05 -5.25 10.057 12.8 11.5 1/20/98 19.20 -10.43 12.5 5 14.05 10.05 -5.43 10.043 12 11.5 1/17/98 19.04 -10.25 5 14.04 10 10.04 -5.25 10.043 12 11.5 1/15/98 19.04 -10.25 5 14.04 10 10.04 -5.55 10 10.5 11.5 1/11/98 20.30 -11.54 11.25 5 15.00 10.05 -5.25 10 11.5 11.5 1/11/98 19.40 10.05 13.90 13.90 -5.25 <td< td=""><td>HGRK-PRTMWD20</td><td>1/2/98</td><td>39.41</td><td>-30.60</td><td>1.25</td><td>5</td><td>34.41</td><td></td><td>- 1</td><td>to</td><td>09.08</td><td>31</td><td>30</td><td>28</td><td>86/9/1</td></td<>	HGRK-PRTMWD20	1/2/98	39.41	-30.60	1.25	5	34.41		- 1	to	09.08	31	30	28	86/9/1
1/22/98 19.42 -10.67 1.25 6 14.22 14.42 19.42 -5.67 10.067 1.25 11.57 11.52/98 19.42 -10.65 12.5 12.5 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 16.05 17.5 16.05 17.5 <td>HGRK-PRTMW101</td> <td>86/81/1</td> <td>19.00</td> <td>-10.24</td> <td>1.25</td> <td>5</td> <td>14.00</td> <td></td> <td></td> <td>to</td> <td>10.24</td> <td>13</td> <td>12</td> <td>10</td> <td>1/24/98</td>	HGRK-PRTMW101	86/81/1	19.00	-10.24	1.25	5	14.00			to	10.24	13	12	10	1/24/98
1/21/98 19.05 -10.25 1.21/98 14.05 14.05 10.05 -5.45 10.25 10.25 10.20/98 11.21/98 11.20/98 19.04 -10.25 12.0 14.20 10.10/30 -5.43 1010.43 11.5 12.5 12.0 12	HGRK-PRTMWI02	1/22/98	19.42	-10.67	1.25	5	14.42			to	10.67	12.5	11.5	9.5	1/24/98
1/20/98 19.20 -10.43 1.25 5 14.20 14.20 19.20 -5.43 10 10.43 13 12 1/17/98 19.04 -10.25 1.25 5 14.04 10 19.04 -5.25 10 -10.25 13 12	HGRK-PRTMWI03	1/21/98	19.05	-10.25	1.25	5	14.05			10	10.25	12.8	11.5	9.5	1/24/98
1/17/98 19.04 -10.25 1.25 14.04 10.14/10/98 -5.25 10.10.25 13 12	HGRK-PRTMW105	1/20/98	19.20	-10.43	1.25	5	14.20			to	0.43	13	12	10	1/24/98
1/16/98 20.30 -11.54 1.25 5 15.30 15.30 6.54 1011.54 12.8 11.5 1/15/98 18.92 -10.08 1.25 5 13.92 13.92 16.08 10.78 11.75 11.75 1/14/98 20.01 -11.17 1.25 5 15.01 15.01 6.00 -6.17 1011.7 12.3 11.75 1/12/98 19.40 -10.54 1.25 5 14.40 10 20.01 -6.17 10 11.75	HGRK-PRTMW107	1/17/98	19.04	-10.25	1.25	5	14.04			9	10.25	13	12	10	1/18/98
1/15/98 18.92 -10.08 1.25 5 13.92 10.92 6.892 -5.08 to -10.08 12.75 11.75 1/14/98 20.01 -11.17 1.25 5 15.01 15.01 6.00 -6.17 10 -11.17 12.3 11 1/13/98 19.40 -10.54 1.25 5 14.40 10 19.40 -5.54 10 -10.54 13 12 1/12/98 19.32 -10.50 1.25 5 14.40 10 19.02 -5.54 10 -10.54 13 12 1/11/98 19.32 -10.50 1.25 5 14.30 19.32 -5.50 10 -10.50 13 12 1/11/98 19.38 -10.42 1.25 5 14.30 19.30 -5.42 10 -10.42 12 12 1/10/98 19.04 -10.44 1.25 5 14.04 10 19.04 -5.44 10 -10.44 12 11 1/7/98 19.02	HGRK-PRTMW109	1/16/98	20.30	-11.54	1.25	5	15.30			9	1.54	12.8	11.5	9.5	1/18/98
1/14/98 20.01 -11.17 1.25 5 15.01 15.01 6.00 -6.17 10 -11.17 12.3 11 1/13/98 19.40 -10.54 1.25 5 14.40 10 19.40 -5.54 10 -10.54 13 12 1/12/98 19.32 -10.50 1.25 5 14.30 19.32 -5.50 10 -10.50 13 12 1/11/98 19.30 -10.42 1.25 5 14.30 19.30 -5.42 10 10.20 12 12 1/10/98 19.08 -11.04 1.25 5 14.30 19.30 -5.42 10 10 12	HGRK-PRTMWIII	1/15/98	18.92	-10.08	1.25	5	13.92			to	80.0	12.75	11.75	9.75	1/16/98
1/13/98 19.40 -10.54 1.25 5 14.40 10.40 6.19.40 -5.54 10 -10.54 13 12 1/12/98 19.32 -10.50 1.25 5 14.32 14.32 19.32 -5.50 10 -10.50 13 12 1/11/98 19.30 -10.42 1.25 5 14.30 19.30 -5.42 10 10.42 12 12 1/10/98 19.08 -11.04 1.25 5 14.88 10 19.88 -6.04 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 14 <td< td=""><td>HGRK-PRTMWI12</td><td>1/14/98</td><td>20.01</td><td>-11.17</td><td>1.25</td><td>5</td><td>15.01</td><td></td><td></td><td>10</td><td>11.17</td><td>12.3</td><td>11</td><td>6</td><td>1/16/98</td></td<>	HGRK-PRTMWI12	1/14/98	20.01	-11.17	1.25	5	15.01			10	11.17	12.3	11	6	1/16/98
1/12/98 19.32 -10.50 1.25 5 14.32 14.32 19.32 -5.50 10 -10.50 13 12 1/11/98 19.30 -10.42 1.25 5 14.30 19.30 -5.42 10 -10.42 13 12 1/10/98 19.88 -11.04 1.25 5 14.88 19.88 -6.04 10 -11.04 13 12 1/10/98 19.04 -10.44 1.25 5 14.04 10 19.04 -5.44 10 -10.44 12.5 11 1/7/98 19.02 -10.22 1.25 5 14.04 10 19.04 -5.44 10 -10.44 12.5 11 1/3/98 19.02 -10.22 1.25 5 14.02 14.02 19.02 -5.22 10 -10.22 11.35 1/3/98 19.00 -10.08 1.25 5 14.00 19.00 -5.08 10 -10.08 11.5 11.5 1/2/98 19.21 -10.30 1.25 5	HGRK-PRTMWI13	1/13/98	19.40	-10.54	1.25	5	14.40			to	10.54	13	12	10	1/14/98
1/11/98 19.30 -10.42 1.25 5 14.30 19.30 -5.42 10.10/42 13 12 17 12	HGRK-PRTMW114	1/12/98	19.32	-10.50	1.25	5	14.32			10	0.50	13	12	10	1/14/98
1/10/98 19.88 -11.04 1.25 5 14.88 14.88 10.98 -6.04 1011.04 13 12 12 12 12 12 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12	HGRK-PRTMW115	1/11/98	19.30	-10.42	1.25	5	14.30			9	10.42	13	12	10	1/13/98
1/9/98 19.04 -10.44 1.25 5 14.04 10.04 10.04 10.24 10.24 12.5 11 1/7/98 19.02 -10.22 1.25 5 14.02 14.02 10.02 -5.22 10.10.22 12.8 11.75 1/3/98 19.00 -10.08 1.25 5 14.00 14.00 10.00 -5.08 10.10.08 12.5 11.5 1/2/98 19.21 -10.30 1.25 5 14.21 10.21 -5.30 10.10.30 12.75 11.75	HGRK-PRTMW116	1/10/98	19.88	-11.04	1.25	5	14.88			ō	1.04	13	12	10	1/13/98
1/7/98 19.02 -10.22 1.25 5 14.02 10.02 19.02 -5.22 1010.22 12.8 11.75 1/3/98 19.00 -10.08 1.25 5 14.00 14.00 10.00 -5.08 1010.08 12.5 11.5 1/2/98 19.21 -10.30 1.25 5 14.21 14.21 10.21 -5.30 1010.30 12.75 11.75	HGRK-PRTMWII7	86/6/1	19.04	-10.44	1.25	5	14.04			10	0.44	12.5	=	6	1/16/98
1/3/98 19.00 -10.08 1.25 5 14.00 14.00 10 19.00 -5.08 to -10.08 12.5 11.5 1/2/98 19.21 -10.30 1.25 5 14.21 14.21 to 19.21 -5.30 to -10.30 12.75 11.75	HGRK-PRTMWII8	1/7/98	19.02	-10.22	1.25	5	14.02			9	10.22	12.8	11.75	9.75	1/16/98
1/2/98 19.21 -10.30 1.25 5 14.21 14.21 to 19.21 -5.30 to -10.30 12.75 11.75	HGRK-PRTMWI19	1/3/98	19.00	-10.08	1.25	5	14.00	- 1	- 1	9	80.01	12.5	11.5	9.5	86/9/1
	HGRK-PRTMWI20	1/2/98	19.21	-10.30	1.25	5	14.21			to	10.30	12.75	11.75	9.75	1/6/98

TABLE 4-2 VINYL CHLORIDE CONCENTRATION SUMMARY

		VINYL	. CHLORIDE CONCEN	NTRATION (ug/L)		
Well No.	Feb-98	May-98	Aug-98	Nov-98	Average	Standard Deviation
HGRK-PRTMWD01	58,000 D/	33,000	70,000	70,900 /KT	57,975	17,65
HGRK-PRTMWD01a		43,000		70,000 //(1	37,373	17,00
HGRK-PRTMWD02	20,000 D/	47,000	91,000	71,400 /KT	57,350	30,72
HGRK-PRTMWD03	5,700 D/JI	42,000	55,600	67,400 /KT	42,675	26,74
HGRK-PRTMWD03a	7,000 D/	,	60,000	70,900 /KT	45,967	34.18
HGRK-PRTMWD05	54,000 D/	55,000	82,000	69,300 /KT	65,075	13,27
HGRK-PRTMWD07	45,000 D/	35,000	68,000	43,800 /KT	47,950	14.09
HGRK-PRTMWD09	62,000 D/	42,000	71,000	58,900 /KT	58,475	12.12
HGRK-PRTMWD11	9,800 D/JI	31,000	30,500	63,000 /KT	33,575	21,96
HGRK-PRTMWD11a	-,	28,000	50,500	03,000 /1/1	33,375	21,90
HGRK-PRTMWD12	4,800	33,000	68,000	95,200 /LT	50,250	39,57
HGRK-PRTMWD13	29,000 D/JI	26,000	25,100	35,100 /KT		
HGRK-PRTMWD13a	27,000 D/JI	20,000	23,600	33,100 /KT	28,800	4,51
HGRK-PRTMWD14	38,000 D/	40,000	64,000	47,000 /KT	47,250	11.01
HGRK-PRTMWD15	34,000	33,000	34,700	71,400 /KT	43,275	11,81
HGRK-PRTMWD15a		34,000	54,700	71,400 /K1	43,275	18,76
HGRK-PRTMWD16	63,000 D/	67,000	98,600	86,100 /KT	78,675	10.07
HGRK-PRTMWD17	1,600 D/JI	53,000	120,000	86,000 /KT		16,67
HGRK-PRTMWD18	37,000	49,000	110,000	89,300 /KT	65,150 71,325	50,43
HGRK-PRTMWD19	15,000 D/JIA	22,000	33,400	34,700 /KT	26,275	34,13
HGRK-PRTMWD19a	35,000 /JI	22,000	24,600	36,400 /KT	32,000	9,43
HGRK-PRTMWD20	43,000 D/	39,000	100,000	83,400 /KT	66,350	6,447
HGRK-PRTMWI01 <		NS	< 1.1	NS		30,090
HGRK-PRTMWI02	52.0	NS	0.57 F/	NS	1.1 26.3	0.0
HGRK-PRTMWI03 <		NS	< 1.1	NS	1.1	36.4
HGRK-PRTMWI05	25.0	NS	< 1.1	NS	13.1	0.0
HGRK-PRTMWI07	66.0	NS	< 1.1	NS	33.6	16.9 45.9
HGRK-PRTMWI09	60.0	NS	< 1.1	NS NS	30.6	
HGRK-PRTMWI11	0.9 F/JI	NS	< 1.1	NS NS	1.0	41.6
HGRK-PRTMWI12	8.4	NS	< 1.1	NS	4.8	0.1
HGRK-PRTMWI13	2.5	NS	1.5	NS	2.0	5.2 0.7
HGRK-PRTMWI14	210 D/	NS	5.3	NS	107.7	
HGRK-PRTMWI15	29.0 /JI	NS	1.6	NS NS		144.7
HGRK-PRTMWI16	210 D/	NS	47.9	NS NS	15.3	19.4
HGRK-PRTMWI17	370	NS	5.5	NS NS	129.0	114.6
HGRK-PRTMWI18	490 D/	NS	3.4	NS NS	187.8	257.7
HGRK-PRTMWI19	220 D/	NS	4.9	NS NS	246.7	344.1
HGRK-PRTMWI20	100	NS	1.1 F/	NS NS	112.5 50.6	152.1 69.9

Notes:

- 1. See Table 4-6 for Data Qualifier Explanation.
- 2. If no value is listed, analyses were not performed for sample during specific event.
- 3. Sample numbers followed by an "a" are field duplicate samples.

NS = Not Sampled

TABLE 4-3 trans-1,2-DICHLOROETHENE CONCENTRATION SUMMARY

		trans-1,2-DIC	HLOR	OETHENE CO	NCENTRATION (ug/L)		
Well No.	Feb-98	May-98		Aug-98	Nov-98	Average	Standard Deviation
HGRK-PRTMWD01	490	800 F/		1,470	1,160	980	426
HGRK-PRTMWD01a		1,100		.,,,,,	.,,,,,,	- 555	72.
HGRK-PRTMWD02	570 D/	860 F/	1	790	1,160	845	244
HGRK-PRTMWD03	1,600 /JI	1,600	1	1,750	1,580	1,633	79
HGRK-PRTMWD03a	1,600	7,555	1	1,800	1,620	1,673	110
HGRK-PRTMWD05	930	790	_	750	1,080	888	150
HGRK-PRTMWD07	190	< 500	 	220	261	293	141
HGRK-PRTMWD09	770	760 F/	+	770	715	754	26
HGRK-PRTMWD11	1,700 /JI	1,900	+	1,790	1,870	1,815	90
HGRK-PRTMWD11a		2,000	+	1,700	1,070	1,013	30
HGRK-PRTMWD12	190	< 500	1	200	644 F/	384	225
HGRK-PRTMWD13	1,700 /JI	2,200	+	1,970	2,020	1,973	207
HGRK-PRTMWD13a	1,800 /JI		1	1,870	1,910	1,373	201
HGRK-PRTMWD14	670	990 F/		800	710	793	142
HGRK-PRTMWD15	1,900	2,300	-	1,440	1,700	1,835	363
HGRK-PRTMWD15a		2,300	 	., , , , ,	1,700	1,000	300
HGRK-PRTMWD16	640	1,300	\vdash	630	469	760	369
HGRK-PRTMWD17	740 D/JI	2,000	 	1.300	645	1,171	624
HGRK-PRTMWD18	1,500	1,400		990	871	1,190	307
HGRK-PRTMWD19	2,200 /JI	2,500	1	2,260	2,380	2,335	133
HGRK-PRTMWD19a	1,900 /JI			2,440	2,380	2,240	296
HGRK-PRTMWD20	950	1,900		790	1,860	1,375	587
HGRK-PRTMWI01	0.44 F/	NS		0.40 F/	NS	0.42	0.03
HGRK-PRTMWI02 <	0.50	NS	<	0.50	NS	0.50	0.00
HGRK-PRTMWI03 <	0.50	NS		0.45 F/	NS	0.48	0.04
HGRK-PRTMWI05	0.24	NS	<	0.50	NS	0.37	0.18
HGRK-PRTMWI07	0.13 F/	NS	<	0.50	NS	0.32	0.26
HGRK-PRTMWI09 <	0.50	NS	<	0.50	NS	0.50	0.00
HGRK-PRTMWI11	0.73 F/JI	NS		0.42 F/	NS	0.58	0.22
HGRK-PRTMWI12 <	0.50	NS	<	0.50	NS	0.50	0.00
HGRK-PRTMWI13	1.80	NS		1.40	NS	1.60	0.28
HGRK-PRTMWI14	2.00	NS	<	0.50	NS	1.25	1.06
HGRK-PRTMWI15	4.50 /JI	NS		1.80	NS	3.15	1.91
HGRK-PRTMWI16	1.80	NS		4.95	NS	3.38	2.23
HGRK-PRTMWI17	1.90	NS	<	0.50	NS	1.20	0.99
HGRK-PRTMWI18	13.00	NS	<	0.50	NS	6.75	8.84
HGRK-PRTMWI19	2.50	NS		1.30	NS	1.90	0.85
HGRK-PRTMWI20	2.00	NS	<	0.50	NS	1.25	1.06

Notes:

- 1. See Table 4-6 for Data Qualifier Explanation.
- 2. If no value is listed, analyses were not performed for sample during specific event.
- 3. Sample numbers followed by an "a" are field duplicate samples.

NS = Not Sampled

TABLE 4-4 cis-1,2-DICHLOROETHENE CONCENTRATION SUMMARY

		cis-1,2-DICHL	OROETHENE CONC	ENTRATION (ug/L)		
Well No.	Feb-98	May-98	Aug-98	Nov-98	Average	Standard Deviation
HGRK-PRTMWD01	93,000 D/	57,000	89,900	69,800 /KFT	77,425	17,064
HGRK-PRTMWD01a		73,000		00,000 // (/	77,120	17,00
HGRK-PRTMWD02	40,000 D/	45,000	41,000 M/	49,100 /KFT	43,775	4,156
HGRK-PRTMWD03	35,000 D/JI	100,000	121,000	103,000 /KFT	89.750	37,660
HGRK-PRTMWD03a	41,000 D/	7.5.7.5.5	120,000	105,000 /KFT	88.667	41,956
HGRK-PRTMWD05	93,000 D/	45,000	39,000 M/	47,400 /KFT	56,100	24,852
HGRK-PRTMWD07	52,000 D/	17,000	15,000 M/	9,890 /KFVT	23,473	19,253
HGRK-PRTMWD09	68,000 D/	47,000	50,000 M/	31,300 /KFT	49,075	15,047
HGRK-PRTMWD11	75,000 D/JI	140,000	147,000	134,000 /KFT	124,000	33,096
HGRK-PRTMWD11a		150,000 M/	, , , , ,	104,000 /101	124,000	55,030
HGRK-PRTMWD12	87,000 D/	48,000	23,000	3,270 /LFT	40,318	36,105
HGRK-PRTMWD13	59,000 D/JI	150,000 M/	151,000	142,000 /KT	125,500	44,516
HGRK-PRTMWD13a	59,000 D/JI		145,000	144,000 /KT	120,000	44,510
HGRK-PRTMWD14	47,000 D/	51,000	33,000 M/	19,100 /KFT	37,525	14,506
HGRK-PRTMWD15	160,000	160,000 M/	96,800	101,000 /KT	129,450	35,318
HGRK-PRTMWD15a		150,000 M/	55,555	101,000 //(1	123,430	33,310
HGRK-PRTMWD16	28,000 D/	69,000	11,800 M/	4,450 /KFT	28,313	28,854
HGRK-PRTMWD17	5,000 D/JI	98,000	40,000 M/	3,270 /KFT	36,568	44,313
HGRK-PRTMWD18	97,000	76,000	17,000 M/	12,100 /KFT	50,525	42,463
HGRK-PRTMWD19	170,000 D/JI	150,000 M/	145,000	137,000 /KT	150,500	14.059
HGRK-PRTMWD19a	190,000 D/JI		146,000 /M	142,000 M/KT	159,333	26,633
HGRK-PRTMWD20	42,000 D/	110,000	14,000 M/	107,000 /KFT	68,250	47,877
HGRK-PRTMWI01	0.9 F/	NS	1.2 F/	NS	1.1	0.2
HGRK-PRTMWI02	93	NS	2.6	NS	47.8	63.9
HGRK-PRTMWI03 <	1.2	NS	1.4	NS	1.3	0.1
HGRK-PRTMWI05	38	NS	0.7 F/	NS	19.4	26.4
HGRK-PRTMWI07	210 D/	NS	3.0	NS	106.5	146.4
HGRK-PRTMWI09	48	NS	2.2	NS	25.1	32.4
HGRK-PRTMWI11	3.5 /JI	NS	9.5 M/m	NS	6.5	4.2
HGRK-PRTMWI12	38	NS	1.8	NS	19.9	25.6
HGRK-PRTMWI13	16	NS	6.1 M/	NS	11.1	7.0
HGRK-PRTMWI14	250 D/	NS	2.6	NS	126.3	174.9
HGRK-PRTMWI15	65 /JI	NS	7.6 M/	NS	36.3	40.6
HGRK-PRTMWI16	170 D/	NS	67.5	NS	118.8	72.5
HGRK-PRTMWI17	65	NS	1.6	NS	33.3	44.8
HGRK-PRTMWI18	470 D/	NS	1.6	NS	235.8	331.2
HGRK-PRTMWI19	160 D/	NS	6.2 M/	NS	83.1	108.8
HGRK-PRTMWI20	98	NS	0.6 F/	NS	49.3	68.8

Notes:

- 1. See Table 4-6 for Data Qualifier Explanation.
- 2. If no value is listed, analyses were not performed for sample during specific event.
- 3. Sample numbers followed by an "a" are field duplicate samples.

NS = Not Sampled

TABLE 4-5 1,1-DICHLOROETHENE CONCENTRATION SUMMARY

				1,1-DICHLO	ROE	THENE CON	ENT	RATION (ug/L)		
Well No.		Feb-98		May-98		Aug-98		Nov-98	Average	Standard Deviation
HGRK-PRTMWD01	<	120	<	1,200		173		142	409	500
HGRK-PRTMWD01a			~	1,200	+-	173	+-	142	409	528
HGRK-PRTMWD02	<	120	<	1,200	-	27 F/	+-	110	201	
HGRK-PRTMWD03		190 /JI	<	1,200	+	231	+-	212	364	559
HGRK-PRTMWD03a		190	+	1,200	+-	240	╁		458	495
HGRK-PRTMWD05	<	120	<	1,200	+	50 F/	+-	213	214	25
HGRK-PRTMWD07	<	120	~	1,200	<	120	-	105	369	555
HGRK-PRTMWD09	+	80 F/	<	1,200	+	33 F/	<	120	390	540
HGRK-PRTMWD11	_	250 /Ji	<	1,200	+	316	-	57 F/	342	572
HGRK-PRTMWD11a	1-	200 701	<	1,200	+	310	-	294	515	457
HGRK-PRTMWD12	<	120	<	1,200	<	120	-	1.000		
HGRK-PRTMWD13	-	270 /JI	+	270 F/	1	318	<	1,200	660	624
HGRK-PRTMWD13a	-	280 /JI	+	270 F/	+		<	120	245	86
HGRK-PRTMWD14	<	120	-	1,200	+	303 38 F/	-	335		
HGRK-PRTMWD15	 	240	+	300 F/	+	193	-	25 F/	346	571
HGRK-PRTMWD15a	┼─	240	+	300 F/	+-	193	-	245	245	44
HGRK-PRTMWD16	<	120	<	1,200	+	100	 			
HGRK-PRTMWD17		260 1/JI	<	1,200	<	120	<_	120	390	540
HGRK-PRTMWD18		140	<	1,200	<	39 F/	<	120	405	538
HGRK-PRTMWD19	_	260 /JI	<	1,200		120	<	120	395	537
HGRK-PRTMWD19a	<	600	+	1,200	+	280 321		340	520	455
HGRK-PRTMWD20	<	120	<	1,200	+-		-	338	420	156
HGRK-PRTMWI01	<	1.2	-	NS	<	120	-	222	416	525
HGRK-PRTMWI02	<	1.2	+	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI03	<	1.2	+	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI05	<	1.2	+	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI07	<	1.2	-	NS	<	1.2	-	NS	1.2	0.0
HGRK-PRTMWI09	<	1.2	-	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI11	<	1.2	+-	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI12	<	1.2	+	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI13	<	1.2	+	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI14	<	1.2	-	NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI15	<	1.2	-		<	1.2		NS	1.2	0.0
HGRK-PRTMWI16	<	1.2	+	NS NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI17	<	1.2	-		<	1.2		NS	1.2	0.0
HGRK-PRTMWI18	`	0.75 F/		NS	<	1.2		NS	1.2	0.0
HGRK-PRTMWI19		0.75 F/ 0.26 F/		NS	<	1.2		NS	1.0	0.3
HGRK-PRTMWI20	<	1.2	-	NS .	<	1.2		NS	0.7	0.7
	_	1.6		NS	<	1.2		NS	1.2	0.0

Notes:

^{1.} See Table 4-6 for Data Qualifier Explanation.

If no value is listed, analyses were not performed for sample during specific event.
 NS = Not Sampled

TABLE 4-6 DATA QUALIFIER EXPLANATIONS

Modifier	Description
<	Indicates not detected at the reporting limit indicated. If "J" flags are utilized in the reporting, the
	"<" indicates not detected down to 10% of the reporting limit indicated.
/	Separates the analytical laboratory data qualifier from the Rust data qualifier (ex., Kemron/Rust).
Kemron Data	Flag Descriptions
D	The analyte was quantified at a secondary dilution factor.
F	Present below nominal reporting limit (AFCEE only).
I	Semi-quantitative result, out of instrument calibration range.
M	A matrix effect was present.
R	The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
x	m-Xylene and p-Xylene are unresolvable compounds.
Rust Data Fla	g Descriptions
A	Field duplicate RPDs exceeded established criteria.
С	Laboratory control recovery below established criteria.
F	Detected in the associated field (i.e., ambient) blank.
I	Surrogate recovery above the upper limit.
J	Estimated value.
К	Common laboratory artifact detected at a concentration greater than 10X that detected in the
	associated field or laboratory blanks, or some other artifact detected at a concentration greater than
	5X that detected in the associated field or laboratory blanks. Professional judgment must be used
	to determine if the detect is site-related.
L	Common laboratory artifact detected at less than 10X that detected in the associated field or
	laboratory blanks, or some other artifact detected at less than 5X that detected in the associated
	field or laboratory blanks. Not considered site-related per EPA data evaluation guidance.
m	Matrix spike sample percent recovery below established limits.
R	The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
Т	Detected in the associated trip blank.
V	Detected in the associated equipment rinsate blank.

TABLE 4-7 FIELD PARAMETER MEASUREMENTS

Denth to	Water (ft.	below TOC)	3.8	3.92	2 99	3.26	4.55	3.01	3.05	3.29	3.17	3.4	07	3.41	4.00	4.26	3.15	3.06	18	3.78	3.82	3.86	3.85	3.84	16	3.91	4.05	96	3.94	93	3.85	3.9	120	40.4
	_	_	3.	3	7	-	4	- (-	3	6	3.	3	3.	.3	4	4	-	<u>س</u>	3	-	3.	۳,	3	3	3.	3	4	3	3.	۳.	3		4	4
	Explosimeter	(% of L.E.L.)	2%	4%	4%	2%	17%	200	2%	%1	%0	3%	%0	3%	%0	%0	20	80	%0	%0	%0	%0	%0	1%	1%	260	260	7%	2%	44%	14%	%1	15%	%0
Alkallalla	(mg/L as	CaCO	440	360	420	440	260	380	360	280	420	320	420	360	320	260	360	420	187	45	187	09	40	40	200	15	180	08	200	300	800	135	160	238
Dissolved	Oxygen	(mg/L)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.2	0.4	0.2	0.4	0.2	0.4	0.4	0.4	0.2	0.2	0.4	0.2	8.0	0.2	0.4	0.4	0.4	0.2	0.4	0.4	0.2	0.2	0.2	0.4	0.2
	Sulfate	(mg/L)	<50	<50	<50	<50	<50	125	100	96	65	<\$0	<50	20	150	175	<50	\$0	<50	<50	<50	<50	\$	<\$0	<50	<50	<50	<50	<50	<50	\$	<50	<50	<50
	ORP	(mv)	-109	-139	19-	-150	-240	-200	-120	-216	-146	-204	-174	-215	-197	-204	-152	-148	14	-193	-42	-165	-158	-218	-42	-157	-109	-98	-104	-109	-137	-201	-150	-78
Hardness	(mg/L as	CaCO ₃)	480	400	420	460	280	480	460	440	480	440	480	460	460	380	340	520	188.1	34.2	205.2	32	61	23	205.2	27	188.1	136.8	205.2	290.7	513	119.7	170	290.7
	FE (+2)	(mg/L)	0.7	0	0	4.0	9.0	0.5	6.4	0.2	0.4	0	9.4	0	0.5	0	0	9.0	0.4	0	9.4	0	0	0	0.5	0	0.4	0	0.2	0.4	0	0	0.2	0.2
	Total Iron	(mg/L)	9.0	0	0	0.5	4:1	0.5	0.4	0.2	0.4	0	0.4	0	0.2	0	0	0.7	0.4	0	4.0	0	•	0	9.0	0	9.0	0	0.5	4.0	0	0	0	9.0
	Α.	(N.T.U.)	2.4	1.8	1.5	9.1	260	5.3	2.1	1.7	0.92	1.7	4.	0.1	4.1	3.7	3.5	1.8	-:	62.3	0.7	3.8	6.2	6.9	0.1	=	3.7	9.0	Ξ	4.1	1.5	4.75	2.8	8.0
Electrical	Conductivity	(umhos/cm)	815	747	810	810	730	810	810	810	815	800	820	820	812	790	800	815	310	130	325	135	901	120	305	130	405	280	399	575	750	370	375	570
	ЬH	(S.U.)	7.42	8.27	8.41	7.73	8.69	7.29	7.80	8.14	7.87	8.60	7.63	8.84	7.73	9.23	9.36	7.60	7.72	9.34	7.72	9.41	9.43	9.81	7.71	7.50	7.89	9.58	8.80	8.08	8.00	9.10	8.45	8.95
Water	Temperature	(*F)	77.0	78.1	79.5	80.4	79.9	79.9	77.4	80.6	80.1	81.3	82.9	25.0	79.2	82.9	80.2	81.0	80.2	87.4	81.0	87.1	86.8	89.6	81.0	80.6	81.3	82.2	81.7	83.8	88.3	88.5	0.18	81.0
Total Well	Depth (ft.	bls)	39.02	39.68	39.45	39.51	39.54	39.38	38.81	39.82	39.16	39.30	39.37	38.74	39.00	39.14	39.34	39.41	19:00	19.42	19.05	19.20	19.04	20.30	18.92	20.01	19.40	19.32	19.30	19.88	19.04	19.02	00.61	19.21
V	Sample	Time	1160	9101	0947	1057	1558	1430	1039	1217	1124	1256	1240	1334	0932	1211	1313	1355	4	1 <u>X</u> 4	1420	0191	/551	1320	200	CIO	6661	6	71917	757	1514	1437	6	1305
	Sample	Date	2/23/98	2/20/98	2/23/98	2/20/98	2/19/98	2/16/68	2/23/98	2/20/98	2723/98	2/20/98	86/87/7	2720798	86/07/7	2/19/98	86/57/7	2/23/98	86/81/7	2/17/98	2/18/98	86//1/2	86/11/7	86// 1/7	2/19/90	2/18/06	2/18/98	86/8177	86/81/7	86/81/7	86/11/2	2/17/98	86/81/7	2/18/98
		Well Number	HGKK-PKTMWD01	HGKK-PKTMWD02	HGRK-PRTMWD03	HGRK-PRTMWD05	HGRK-PRTMWD07	HGRK-PRTMWD09	HGRK-PRTMWD11	HGRK-PRTMWD12	HOKK-PKI MWDI3	HOKK-PKI MWD14	HOKA-PKI MWDIS	HOKK-PKI MWDIO	HOKA-PKI MWDI /	HGKK-PKI MWD18	HOKK-PKI MWD19	HGRK-PRTMWD20	HOKK-PKI MWIOI	HGKK-PKTMW102	HCRK-PKI MWI03	HOKA-PKI MWIUS	HGBV DDTAMTOO	HGDV DDTMW111	HGDV DDTMUIL	HCDV DDTMM112	HGDV DDTAWALL	HODE DETAINED	HCDV DDTMWHY	HORN-TRIMWIIO	HOKK-PKIMWII/	HUKK-PKI MWII8	HORN-FRIMWII9	HGKK-PKIMWI20

The turbidity reading for HGRK-PRTMWD07 in February is believed to be accurate. Althought subsequent clearing occurred, the development records show that during the first sampling event the purge water had color. Readings and descriptions for each purge volume are as follows: 1) 36.2 N.T.U, no color; 2) 3,500 N.T.U, medium grey; 3) 790 N.T.U, light grey.

200

TABLE 4-7
FIELD PARAMETER MEASUREMENTS

		_		Ι_		_	_	Г		_		_				_				_		_		_	_			_			_		_
Depth to	Water (ft. below TOC)	4.36	4.24	4.35	4.65	5.09	4.24	4.37	4.21	4.35	4.32	4.36	4.41	4.4	4.64	4.37	4.35	4.00	3.97	4.03	4.01	4.04	4.08	4.11	4.10	4.23	4.15	4.15	4.13	4.15	4.14	4.21	474
	Explosimeter (% of L.E.L.)	261	0%0	961	20%	%06	4%	260	1%	260	260	260	4%	961	361	260	260	%0	1%	260	2%	260	3%	260	0%	260	3%	260	22%	71%	1%	%9	20%
Alkalinity	(mg/L as CaCO ₃)	480	400	440	480	260	340	420	260	420	380	380	400	400	340	380	440	180	40	180	35	35	119	200	119	200	65	200	140	220	110	180	240
Dissolved	Oxygen (mg/L)	0.2	0.3	0.3	0.2	0.4	0.2	0.2	0.3	6.0	0.1	0.2	0.1	0.4	0.2	0.2	0.3	6.0	0.4	0.2	0.2	0.3	0.4	0.2	0.3	0.2	0.3	0.1	0.2	0.3	0.3	0.1	70
	Sulfate (mg/L)	<50	<50	<50	\$	0\$>	70	80	€0	€50	65	<50	75	70	125	<50	<50	<50	€00	0\$>	\$0	\$0	<50	€20	<50	~20	<50	€50	00 00 00 00 00 00 00 00 00 00 00 00 00	\$0	<50	€0	9
į	ORP (mv)	-114	-170	-102	-156	-209	-139	-130	-225	-138	-205	-176	-213	-210	-207	-158	-145	-83	-191	-85	-174	-157	-170	-109	-175	-70	-164	-131	-141	-126	-170	-164	100
Hardness	(mg/L as CaCO ₃)	480	420	440	480	320	440	480	420	520	480	480	520	240	420	420	520	188	24	205	59	91	91	881	20	188	51	205	120	274	160	171	120
	FE (+2) (mg/L)	0.7	0	0	0.3	9.0	0.5	0.2	0	0.2	0	0.2	0	0	0	0	0.5	0.2	0	0.2	0	0	0	0.3	0	0	0	0	0	0.5	0	0	
	Total Iron (mg/L)	0.7	0	0	0.5	1.5	0.4	0.5	0	0.3	0	0.2	0	0	0	0	9.0	0.4	0	0.5	0	0	0	0.7	0	9'0	0	9'0	0	0.5	0	0.4	90
	Turbidity (N.T.U.)	3	-	0	0	6	-	2	0	0	0	-	0	_	0	0	1	0	-	0		_	9	0	2	0	1	0	-	2	3	3	,
Electrical	Conductivity (umhos/cm)	1266	1190	1240	1366	1085	1166	1270	1247	1230	1357	1292	1457	1435	1223	1116	1316	340	108	364	130	95	118	369	146	474	249	467	398	714	529	414	210
	pH (S.U.)	7.70	8.32	8.23	7.83	8.48	7.70	7.92	8.34	8.03	8:38	7.84	99.8	<u>8.</u>	9.07	9.22	7.71	8.02	10.6	7.75	9.42	6.61	10.34	1.70	19.6	7.85	9.12	8.62	8.45	7.92	9.52	9.13	200
Water	Temperature (*F)	78.2	81.0	80.0	83.9	79.5	79.1	78.3	80.0	78.4	82.9	80.0	86.8	6.18	78.6	77.5	79.2	80.7	19.9	81.2	83.8	6.77	78.6	79.3	83.0	9.08	82.7	1.61	82.1	79.2	6.77	78.3	> 00
	e	39.02	39.68	39.45	39.51	39.54	39.38	38.81	39.82	39.16	39.30	39.37	38.74	39.00	39.14	39.34	39.41	19.00	19.42	19.05	19.20	19.04	20.30	18.92	20.01	19.40	19.32	19.30	19.88	19.04	19.02	19.00	10.01
	Sample Time	1328	0952	1350	1026	6060	1625	1413	1056	1439	1119	1504	1143	0933	1653	1535	1258	1400	1117	1415	1219	1032	0938	1438	1234	1459	1252	1427	1318	1057	1009	1550	1241
	Sample Date	3/18/98	3/18/98	3/18/98	3/18/98	3/18/98	3/17/98	3/18/98	3/18/98	3/18/98	3/18/98	3/18/98	3/18/98	3/18/98	3/17/98	3/18/98	3/18/98	3/11/98	3/17/98	3/17/98	3/17/98	3/11/98	3/17/98	3/11/98	3/17/98	3/11/98	3/11/98	3/17/98	3/17/98	3/17/98	3/17/98	3/17/98	2/17/NO
	Well Number	HGRK-PRTMWD01	HGRK-PRTMWD02	HGRK-PRTMWD03	HGRK-PRTMWD05	HGRK-PRTMWD07	HGRK-PRTMWD09	HGRK-PRTMWD11	HGRK-PRTMWD12	HGRK-PRTMWD13	HGRK-PRTMWD14	HGRK-PRTMWD15	HGRK-PRTMWD16	HGRK-PRTMWD17	HGRK-PRTMWD18	HGRK-PRTMWD19	HGRK-PRTMWD20	HGRK-PRTMWI01	HGRK-PRTMWI02	HGRK-PRTMWI03	HGRK-PRTMWI05	HGRK-PRTMWI07	HGRK-PRTMWI09	HGRK-PRTMWIII	HGRK-PRTMW112	HGRK-PRTMWII3	HGRK-PRTMWI14	HGRK-PRTMWI15	HGRK-PRTMWII6	HGRK-PRTMWII7	HGRK-PRTMWI18	HGRK-PRTMWI19	CLUBY DETAINING

PeRT Wall Pilot Study Cape Canaveral Air Station, Florida

TABLE 4-7

FIELD PARAMETER MEASUREMENTS

Depth to	Water (fl.	below TOC)	195	5.35	5.28	6.38	6.41	5.38	4.66	6.11	4.72	5.28	NC	5.60	5.40	6.30	NC	5.34	4.68	4.60	4.70	4.67	4.56	4.67	4.78	4.77	4.94	4.82	4.84	4.86	4.96	4.87	4.94	907
		Explosimeter (% of L.E.L.)	2%	2%	3%	13%	%9	19%	4%	5%	%0	2%	2%	4%	1%	1%	1%	0%	%0	%0	%0	%0	% 0	13%	%0	%0	%0	2%	2%	372%	160%	3%	2%	
	Alkalinity	(mg/L as	440	400	460	440	240	320	400	NC	NC	320	380	360	400	320	400	440	180	30	160	35	30	34	205	35	091	55	180	80	260	180	160	
	Dissolved	Oxygen (mg/L)	0.4	0.2	0.4	0.2	0.3	0.4	0.3	0.3	0.5	0.4	0.2	0.3	0.2	0.3	0.2	0.5	0.2	0.5	0.2	0.4	8.0	6.0	0.4	0.4	0.4	0.3	0.2	0.3	0.4	0.4	0.3	
		Sulfate (mg/L)	\$50	\$0	\$50	\$0	€	<50	\$0	NC	NC	65	05>	\$0	\$0	80	0\$>	<50	0\$>	<50	0\$>	€50	05>	\$50	\$0 \$0	<50	<50	<50	\$	\$	<50	<50	<50	
		ORP (mv)	-113	-154	-109	-149	-166	-170	86-	NC	NC	-222	-171	-214	-189	-189	-116	-145	-109	-170	-108	-179	-181	-130	-125	-182	-122	-186	-120	-197	-114	-171	-147	
;	Hardness	(mg/L as CaCO ₁)	500	460	460	520	320	380	460	NC	NC	480	480	480	240	440	400	480	205	28	188	24	21	16	205	17	202	51	188	89	274	137	154	•
		FE (+2) (mg/L)	0.3	0	0	9.0	0.5	0.2	0	NC	0.2	0	0	0	0	0	0	0.2	0.4	0	9.0	0	0 (٥). ()	5	4.0	0	9.0	0	0.7	0	0	
-	T OLD	Iron (mg/L)	9.0	0	0	0.5	8.1	0	0.4	NC	0.4	0	0	0	0	0	0	0.5	9.0	0	0.7	0	0 0	0 3); °	ء ا	4.0	0	4.0	0	9.0	0	0.2	•
		Turbidity (N.T.U.)	2	7	_	_	7	1	-	-	7	0	-	0	_	-	-	-	_	7	_	-	- (5	- (7	-	7		7	m	2	7	
Pleatedool		(umhos/cm)	1230	1282	1198	1378	1145	1180	1235	1251	1245	1289	1302	1375	1495	1306	1146	1277	352	94	364	119	08:	1111	205	143	004	222	205	288	624	379	431	
		pH (S.U.)	7.17	6.49	7.11	6.46	6.42	6.51	7.26	6.81	7.17	7.52	7.30	7.37	6.57	6.47	7.19	7.33	5.34	89.9	5.28	7.22	6.90	0.94	04.6	0.03	3.74	6.07	2.63	6.22	6.79	6.99	5.93	2
Wotor	T	ure (°F)	82.3	81.0	84.3	81.8	83.8	83.8	82.7	78.9	89.5	78.6	89.5	82.9	82.4	81.6	84.8	80.9	82.7	77.4	82.6	78.8	6.6/	4.10	7.70	4.0.4	65.3	8.67	84.9	81.1	0.08	\$0.5	84.5	
Lotal	Don't Co	bls) ure (°F)	39.02	39.68	39.45	39.51	39.54	39.38	38.81	39.82	39.16	39.30	39.37	38.74	39.00	39.14	39.34	39.41	19.00	19.42	19.05	19.20	20.04	18.00	20.00	10.01	19.40	25.61	06.61	19.88	19.04	19.02	00.61	10.01
		Time	1048	1608	1114	1633	1506	1420	1140	1659	1252	938	1315	0001	1440	1446	1339	1022	1133	1041	1154	253	1504	1310	051	1225	1016	CIOI	1931	1000	0701	1340	1349	
	Commis	Date	4/15/98	4/14/98	4/12/98	4/14/98	4/14/98	4/14/98	4/15/98	4/14/98	4/15/98	4/15/98	4/15/98	8/(1//	4/14/98	4/14/98	4/15/98	4/15/98	4/14/98	4/13/98	4/14/98	4/14/98	4/13/98	4/14/08	4/14/08	4/14/08	4/14/08	4/14/90	4/14/90	96/61/4	4/13/06	06/51/4	4/14/98	AUL AUL
		Well Number	HGRK-PRTMWD01	HGRK-PRTMWD02	HGRK-PRTMWD03	HGRK-PRTMWD05	HGRK-PRTMWD07	HGRK-PRTMWD09	HGRK-PRTMWD11	HGRK-PRTMWD12	HGKK-PKIMWDI3	HUKK-PKIMWDI4	HOKK-PKIMWDIS	HOKK-PKIMWDIO	HOKK-PKIMWDI/	HUKK-PKIMWDI8	HGKK-PKIMWD19	HUKK-PKI MWD20	HGKK-PKIMWI01	HGRN-FRIMWI02	HOKK-PKIMWI03	HCEPY DETAINED	HGRK-PRTMWI09	HGRK-PRTMWIII	HGRK-PRTMWI12	HGRK-PRTMWI13	HGPK DDTMWIIA	HGDV DDTWWII4	HCDV DDTAWING	HCPV DDTAWILD	HGRK DDTAWII9	UCDV DDTAWIIO	HORA-PRIMIMIN	

NC=

Not Collected

TABLE 4-7
FIELD PARAMETER MEASUREMENTS

Depth to Water (ft.	TOC)	6.17	6.04	6.17	99	6.79	6.10	6.03	5.81	5.93	94	88	6.20	.07	6.71	90.9	5.92	.38	5.33	5.70	5.40	5.41	5.40	5.48	5.50	99.5	5.58	5.54	5.83	5.70	5.57	5.63
			_			-	9	°	-	2	2	5	9	9	9	9	2	S	~	5		2	5	2	5	2	8	5	35	8	5	5
Fynlosimoter	(% of L.E.L.)	%0	0%	%0	200	18%	1%	%0	0%	%0	1%	%0	1%	%0	%0	% 0	260	260	0%0	260	%0	% 0	269	%0	260	%0	0%0	%0	29%	349%	0%0	%0
Alkalinity	(mgr as	420	380	460	400	220	360	400	200	400	320	400	320	420	360	340	400	180	40	180	35	35	180	180	35	200	65	220	99	240	35	160
Dissolved	(mg/L)	0.4	0.3	0.3	0.3	0.2	0.3	NC	0.3	NC	0.3	NC	0.3	0.2	0.2	NC	0.3	0.2	0.4	0.2	0.2	8.0	0.4	0.2	9.0	0.2	0.2	0.2	0.2	0.4	0.5	0.5
Sulfate	(mg/L)	<50	<50	<50	<50	<50	<50	<50	<50	<50	9	<50	\$ \$	\$ \$	9	<50	<50	<50	<50	<50	<50	<50	<50	<20	<50	< 20	<50	<\$0	\$	<50	<50	<50
ORP	(mv)	-130	-146	-91	-128	-105	-116	62-	-185	-121	-184	-145	-205	-195	-186	-113	-129	-112	-145	-101	-157	-156	-172	-108	-139	\$ 	-166	-103	-104	-136	-153	-129
Hardness (mo/l as	CaCO ₃)	479	428	479	496	325	410	445	342	462	496	479	564	547	445	376	496	171	25	171	2	91	137	88	1.1	881	41	188	34	239	17	137
FE (+2)	(mg/L)	9.0	0.4	0	0.4	0.2	0	0.4	0	4.0	0	0	0	0	0	0	4.0	0.7	0	0.7	0	0	0	9.0	٥	0.1	0	0.3	0	9.0	0	0
Fotal Iron	(mg/L)	0.7	0	0	9.0	1.9	0	0.5	0	4.0	٥	0	0	0	0	0	4.0	9.0	٥	0.5	0	0 (٥); (٦	Ç	0	9.0	0	0.5	٥	0.5
Turbidity Total Iron	(N.T.U.)	3	2	-	_	16	4	-	0		0	_	-	_	2	_	-	0	2	0		4 ;	2	- ·	-	- ·	7	0	7	en .	-	4
Electrical Conductivity	(umhos/cm)	1204	1180	1238	1326	1049	880	9911	1174	1147	1318	1204	1407	1356	1159	1040	1254	337	113	348	101	8 3	871	333	771	774	761	455	215	598	3/4	391
	pH (S.U.)	7.40	7.88	1.67	7.50	8.29	7.56	7.62	7.96	7.60	8.00	7.54	8	7.82	8.51	8.10	7.40	7.67	9.52	7.62	79.6	10.22	10.44	70.7	7.05	57.7	1776	4 5	9.35	10.55	2.63	8.66
Water	(•F)	87.8	87.4	89.5	8.06	88.7	85.7	84	89.5	84.9	88.2	86.4	87.0	8.68	87.5	82.8	85.4	83.9	84.7	84.3	86.2	2.58	94.2	2.4.6	94.1	04.1	61.5	80.0	85.3	84.2	0.70	83.8
Total Well	Depth (ft. bls)	39.00	39.68	39.45	39.51	39.54	38.34	38.80	39.82	37.78	39.29	39.37	38.71	38.39	39.14	39.34	39.09	18.99	19.41	19.05	19.19	19.03	18 07	20.00	10.37	18.37	10.32	97.61	19.36	19.30	10.01	16.99
Sample	Time	1548	1250	1612	1314	1104	1004	948	1342	967	1410	5501	1454	1130	2501	1100	1322	1433	11.14	1438	1130	947	1518	1251	1537	1312	7767	1333	1332	1030	2021	1020
Sample	Date	2/20/98	2/20/98	2/20/98	86/02/9	\$/20/98	2/20/98	5/21/98	86/07/5	5/17/19	86/07/6	86/17/6	86/07/5	86/07/6	86/07/5	8/17/6	8/107/6	8/1/1/2	6/17/70	86/61/6	5/15/50	80/61/5	\$/10/08	8/16/68	\$0/01/5	80/01/5	6/10/05	6/10/08	6/16/16	5/10/08	5/10/06	6/10/06
	Well Number	HGRK-PRTMWD01	HGRK-PRTMWD02	HGKK-PKTMWD03	HGKK-PRTMWD05	HGRK-PRTMWD07	HGKK-PKTMWD09	HGKK-PKTMWDII	HGKK-PKI MWD12	UGDV DDTMWD13	HCDV DDTVAND16	HORN-PRIMWDIS	HORN-PRIMWDIO	HCDV DOTTANDI	UCDV DDTMMD18	UGDV DDTVANDO	UCDV DDTAMINO	UCDV DDTAMOO	UCDV DDTMINO	HCDV DDTAWIOS	HGRK PPTMMI02	HGRK-PRTMWI09	HGRK-PRTMW111	HGRK-PRTMW112	HGRK-PRTMW113		┿		_		HGRK DRTMM10	HGPK PPTMM120

NC = Not Collected

FIELD PARAMETER MEASUREMENTS TABLE 4-7

		Depth to	Water		In the state of the		Ę							
Sample	Sample	below	water Temperature		Conductivity	Turkidity	Lota	(C) 33	Hardness	9	016.4	Dissolved	Alkalinity	
Date	Time	TOC)	(*F)	pH (S.U.)			(mg/L)	(mg/L)	(mg/L as CaCO ₃)		Sulfate (mg/L)	Oxygen (mg/L)	(mg/L as	Explosimeter (% of L.E.L.)
96/11/9	1239	7.03	83.9	7.84	1125	-	6.0	9.0	496	-106	\$	NC	460	%0
86/11/9	942	6.85	83.0	7.99	1083		0.2	0.4	445	-165	\$	SC	380	2%
86/11/9	1302	7.02	85.7	8.18	1165	0	0.4	0.4	462	-105	\$	NC	460	1%
86/11/9	1005	7.33	84.2	7.73	1205	_	0.8	9.0	530	-130	<50	N N	420	2 6
86/91/9	1650	7.29	83.8	8.58	1002	4	2	0	291	-104	050) Z	240	%5
86/91/9	1551	6.55	83.1	7.91	1115	_	0	0	428	-146	Ş0 Ş0	N C	380	3,6
86/11/9	1324	7.81	82.7	8.34	1071	-	0.5	0	496	-89	\$50	NC	440	19%
86/11/9	1032	6.42	82.5	8.24	1043	0	0	0	359	-192	0\$>	NC	220	3%
6/17/98	1350	6.62	83.2	8.04	1062	0	0.4	9.0	462	-110	0\$>	NC	400	1%
86/11/9	1114	6.59	83.7	8.23	1204	0	0	0	513	-196	<50	NC	340	3%
6/11/98	1414	6.54	86.1	7.73	1141	1	0	0	479	-145	<50	NC	400	1%
86/11/9	1140	6.73	86.4	7.89	1366	0	0	0	599	-187	<50	NC	440	14%
96/11/9	917	6.78	84.5	7.81	1262	-	0.2	0	530	-205	<50	SC	380	1%
86/91/9	1618	7.12	83.4	8.96	1239	-	0	0	513	-176	€	NC	360	8
86/11/9	1442	99.9	83.8	8.02	926	1	0	0	410	-93	<50	NC	360	1%
86//1/0	1157	6.52	83.7	7.60	1151	0	0.5	9.0	496	-159	<50	NC	440	1%
86/91/9	1332	5.99	84.1	7.82	330	0	9.0	0.4	171	69-	0\$>	NC	180	1%
86/01/0	1054	6.01	85.6	9.72	=	-	0	0	16	-148	0\$>	NC	35	1%
86/91/9	1355	6.03	84.6	7.82	340	0	0.4	0.4	171	-92	0\$>	NC	180	1%
86/01/0		6.02	84.0	9.80	103	-	0	0	24	-151	\$	NC	35	1%
6/10/98	1017	6.05	84.2	10.47	115	3	0	0	15	-142	\$50	NC	35	1%
0/10/78	248	0.03	84.4	10.61	131	9	٥	0	15	-146	<50	NC	35	5%
86/01/0	1414	6.10	83.8	7.82	347	0	0.7	0.4	171	-94	<50	NC	180	1%
0/10//0	1133	6.12	83.1	9.64	131	-	0	0	19	-144	<50	NC	35	1%
86/01/0	1430	6.27	24.1	7.92	413	0	0.5	0.4	188	-116	\$5 0 0 0 0 0 0	NC	200	%1
86/01/0	120/	6.19	83.1	9.50	190	2	0	0	43	-146	\$0	NC	8	2%
86/01/0	1454	6.16	83.5	7.75	447	0	0.7	0.5	188	-116	6 50	NC	220	1%
86/01/0	1621	0.23	83.8	9.34	246	7	0	0	47	-148	<50	NC	65	22%
0/10/70	1000	0.30	84.3	8.16	409	7	0.4	0	188	-109	\$0	NC	140	244%
06/01/	7001	0.19	84.8	8.70	391	2	0	0	154	-119	<50	NC	180	1%
86/01/0	2151	6.23	83.6	8.80	389	7	0.4	0	154	-129	\$50	NC	160	1%
0/10/98	1312	6.38	84.5	7.41	910	5	5.6	2.0	359	-117	\$20	CZ	440	%99

Note: Dissolved Oxygen meter malfunctioned during the June 1998 sampling event. No D.O. data available for June 1998.

NC = Not Collected

FIELD PARAMETER MEASUREMENTS TABLE 4-7

	,		Depth to	Water		Electrical		Total		Hardness			Dissolved	Alkalinity	
Well Number	Sample Date	Sample	Water (ft.	Temperature	(H 3) H =	Conductivity	Turbidity	Iron	FE (+2)	(mg/L as	ORP	Sulfate	Oxygen	(mg/L as	Explosimeter
HGRK.PRTMWD01	20/91/2	1107	6.40	(1)		(umnos/cm)	(N.1.U.)	(mg/L)	(mg/L)	CaCO ₃)	(mv)	(mg/L)	(mg/L)	$CaCO_3)$	(% of L.E.L.)
HGPK DPTMWD01	7/15/09	710	0.49	0.78	86.7	1169	-	6.0	9.0	479	-120	\$	0.5	440	%0
HORY PREMIESS	7115/90	716	0.10	9778	5.30	1118	-	0	0.2	410	-164	\$	NC	380	200
HUKK-PKIMWD03	86/91//	1137	6.51	84.7	8.00	1224	0	0.2	0	496	-84	-So	0.5	440	%0
HUKK-PKIMWD03	86/51//	931	7.77	83.6	7.72	1249	,	9.0	0.5	462	-114	<50	NC	380	%0
HCKK-PKIMWD07	7/14/98	1654	7.99	85.8	6.87	1102	7	0.2	9.0	393	-138	<50	N.	220	%0
HGKK-PKTMWD09	7/14/98	1610	6.53	8.98	6.31	1090	2	0	0	410	-136	<50) Z	360	%0
HGKK-PKTMWD11	2/16/98	1257	6.36	83.5	7.97	1130	0	0.4	0.2	462	-106	\$50	0.4	400	000
HGKK-PKIMWDI2	7/15/98	958	6.49	81.2	7.44	1083	-	0	0	342	-190	<50	SC	180	% 4
HORN-PRIMWDIS	86/91//	1322	6.20	84.1	7.77	1118	0	0.4	0.2	462	-103	05>	0.7	420	%0
UCDV DDTMWD14	86/01//	1207	5.97	81.1	7.79	1234	-	0	0	513	-186	<50	9.0	320	%0
UCDV DDTAWDIS	2/10/10	1347	6.13	88.1	7.62	1031	0	0	0	513	-142	0\$>	9.0	380	%0
HGDV DDTWWD10	86/01//	1016	6.41	86.2	8.28	1020	-	0	0	564	-166	<50	2.2	380	29%
HGPK DPTMWD19	7/14/00	100	0.74	82.6	3.92	1358	-	0	0	513	-211	<50	SC	400	%0
UCDV DPTMWDIO	7/1/100	1631	7.04	86.9	7.87	1326	-	0	0	564	-167	<50 <	NC	340	0%0
HCDV PRTAWOO	26/01//	1414	6.29	83.5	7.96	882	0	0	0	393	-52	\$ \$0	0.7	380	0%0
UCDV DDTAWTO	1/16/98	1042	6.29	82.9	7.88	1187	0	0.4	0.2	513	-152	<50	0.8	400	%0
HCDV DDTAWNO	7114/98	1470	5.89	88.2	6.15	333	0	0.5	0.4	100	-110	<\$0 \$	NC	160	0%0
UCDV DDTAWIO2	7/14/98	571	5.96	86.0	9.29	106		0	0	17	-145	<50	NC	35	0%
HGRK-PRTMW105	7/14/00	1434	5.94	87.5	6.19	342	-	0.5	0.5	171	-106	<50	NC	180	%0
HGRK-PRTMWIO7	7/14/00	1043	0.50	85.9	9.20	101	_	0	0	20	-144	<50	NC	30	%0
HGRK-PRTMWI09	7/14/98	1000	29.6	85.9	10.39	123	ю ·	0	0	14	-115	<50	NC	30	38%
HGRK-PRTMWII1	7/14/08	1453	00.5	04.3	16.6	134	S	0	0	14	-145	<50	NC	30	200
HGRK-PRTMWI12	7/14/98	1258	5 97	90.4	0.10	347	_ ·	0.5	9.0	188	-109	2 0	SC	180	%0
HGRK-PRTMWI13	7/14/98	1514	6.07	2003	0.42	130	-	ء	0	21	-92	0 0 0 0 0	NC	35	0%0
HGRK-PRTMW114	7/14/08	1323	10.9	09.3	0.33	410	- 1	C.S	0.4	171	-137	~ 20	NC	180	%0
HGRK-PRTMW115	7/14/08	1570	6.07	69.7	8.20	193	6			37	-154	<50	NC	09	1%
HGRK-PRTMWII6	7/14/08	1341	6.07	4.00	67.7	433	0	0.5	0.4	205	-133	<50	NC	200	%0
HGRK-PRTMWII7	7/14/08	1101	416	0.70	8.74	238	_	0		41	-166	\$0	SC	65	122%
HGRK-PRTMWI18	7/14/08	1023	6.03	7.50	15.	334	7	0	0	103	-126	~ \$0	S	. 120	241%
HGRK-PRTMWI19	7/14/08	1547	70.0	0.00	0.49	333	2	٥		102	-156	<50	NC	140	2%
HGRK-PRTMWI20	7/14/08	1358	6.76	07.0	67.9	389	-	0.4	0.5	154	-108	<50	NC	160	5%
A	02/121/1	1330	0.20	87.9	6.98	935	3	3.1	2.1	400	-116	<50	NC	380	141%

NC =

Not Collected

Note: Dissolved Oxygen meter malfunctioned during the July 1998 sampling event.

2.2 The DO reading for this sampling event is believed to be in error since it is an order of magnitude higher than other results in this well.

TABLE 4-7

FIELD PARAMETER MEASUREMENTS

			Total Well	Water (ft.	Water		Electrical						Dissoluted		
	Sample	Sample		below	Temperature	Hd	2	Turbidity	Turbidity Total Iron	FE (+2)	mardness (mo/L ac	ORP	Oxygen	Alkalinity (mg/l ac	Explosimeter
Well Number	Date	Time	bls)	TOC)	(F)	(S.U.)	_	(N.T.U.)		(mg/L)	CaCO ₃)	(mv)	(mg/L)	CaCO ₁)	(% of L.E.L.)
HGRK-PRTMWD01	8/13/98	1027	39.15		82.7	_	1173	2	1.2	0.4	496	-120	0.2	L	020
HGRK-PRTMWD02	8/17/98	1542	39.79			7.92	1028	0.0	0.5	0.7	427	-162	0.4		%0
HGRK-PRTMWD03	8/13/98	1100	39.44	6.19	œ		1248	0.71	0.2	0.2	479	-104	0.2		200
HGRK-PRTMWD05	8/17/98	1604	39.51	6.18		7.55	1145	0.95	9.0	9.0	496	-140	0.4		3%
HGRK-PRTMWD07	8/17/98	1453	39.69	6.17	9.98		1049	7.42	2.3		359	961-	9.0		32%
HGRK-PRTMWD09	8/12/98	1325	38.45	6.17		7.68	1032	16.0	0	0	427	-163	0.5		2%
HGRK-PRTMWD11	8/13/98	1127	38.93	6.26	83	7.91	1136	0.95	0.2	0.2	479	-113	0.2		0%0
HGRK-PRTMWD12	8/13/98	847	39.95	6.17			1071	-	0	0	393	-146	9.0		%0
HGRK-PRTMWD13	8/13/98	1238	39.45	6.44	84.6	99'L	1102	0.0		0.2	462	101-	0.3	420	%0
HGRK-PRTMWD14	8/13/98	911	39.43	6.23		8.11	1272	0.7		0	513	861-	0.4		3%
HGRK-PRTMWD15	8/13/98	1304	39.51	6.27			1777	0.93		0	380	-154	0.3		0%0
HGRK-PRTMWD16	8/13/98	935	38.82	6.31			1580	0.96		0.4	684	-109	0.5	410	5%
HGRK-PRTMWD17	8/13/98	1517	39.11	6.27			1290	0.74	0	0	581	-210	0.3		0%0
HGRK-PRTMWD18	8/12/98	1418	39.28	3.29			1310	1.03	0	0	633	-209	0.4		%1
HGRK-PRTMWD19	8/13/98	1332	39.47	6.37	84.5	7.83	6111	8.0	0	0	427	-147	0.2		260
HGKK-PKTMWD20	8/13/98	1000	39.8	6.29			1222	0.57		0.4	462	-158	0.2		1%
HGRK-PRTMWI01	8/17/98	917	19.14	6.12		7.66	312	0.58	9.0	9.0	171	-86	0.5		260
HGRK-PRIMWI02	8/11/8	1446	19.53	90.9	~	9.79	115	2.12	0	0	21	-142	0.5		%0
HGKK-PKIMWI03	8/17/98	938	19.18	6.13		7.71	317	0.58	0.7	9.0	171	%-	0.5		%0
HGKK-PKI MWI05	86/11/8	1515	19.3	60.9		69.6	114	1.57	0	0	26	-132	0.4		0%0
HGKK-PKTMWI07	8/11/8	1354	19.16	6.12	89.3	10.65	133	2.43	0	0	91	-106	0.5	35	%0
HGKK-PKI MWIU9	8/11/8	1250	20.42	6.12		10.8	143	4.27	0	0	91	-109	0.5		260
HOKK-PKI MWIII	8/17/8	955	19.02	6.2	85.1	7.79	317	0.48	0.7	0.5	171	98-	9.0		260
HOKK-PKI MWIIZ	8/11/98	1539	22.2	6.18		9.32	137	69.0	0	0	20	-93	9.0	35	260
HCKK-PKI MWIIS	86/71/8	1023	19.42	6.24	85.9	7.83	369	0.52	9.0	0.7	188	-151	0.5	200	060
HOKK-PKI MWII4	8/11/98	1001	18.47	6.21		9.43	185	2.84	0	0	39	-175	0.5	09	1%
HGKK-PKI MWIIS	8/17/98	1040	19.41	6.24		7.67	396	9.0	8.0	0.7	205	-127	9.0	200	260
HGKK-PKI MWII6	8/11/8	1619	19.61	6.2		9.21	217	2.48	0	0	41	-172	0.5	09	105%
HOKK-PKI MWII/	86/11/8	1420	19.4	6.22	87.7	8.55	315	1.97	0	0	103	-146	9.0	25	71%
HOKK-PKI MWII8	8/11/8	1321	19.15	6.19		9.3	360	8.1	0	0	86	-138	9.0	110	260
HOKK-PKI MWII9	86/71/8	0111	19.12	6.32	86.1	8.37	359	1.07	0.5	0.2	154	-134	0.3	180	46%
HUKK-PKI MWI 20	8/11/8	1640	19.33	6.29		7.23	827	3.61	2.5	2.1	363	-139	0.5	400	3%

3.29 The water level recorded for well HGRK-PRTMWD18 is thought to be in error by -3 feet.

NOTES:

TABLE 4-7
FIELD PARAMETER MEASURMENTS

	Explosimeter	200	267	00	3%	12%	4%	100	200	0%0	7%	1%	10%	0%0	3%	00%	0%0	140	0%0	1%	49,	%0	2%	960	2%	1%	%9	1%	43%	105%	6%	35%	0.00
Alkolinity		1	Z	NC	N.	Z	Z	Ų.	SC	NC	NC	NC	NC	NC	Z Z	J.N.	NC NC	NC	NC.	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	N.C.	NC.	NC	2
Dissolved		+	Z	NC	NC	N.	NC	NC	S	NC	NC	NC	NC	NC	N.	S	ZC Z	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	CN
	Sulfate (mo/L)	, JZ	Z	NC	NC	NC	NC	NC	Z	NC	NC	NC	NC	NC	S	NC	S Z	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC NC	NC	NC	NC	CZ.
	ORP (mv)	NC	NC N	SC	NC	SC	NC	SC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC	Z												
Hardness	(mg/L as	NC	SC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	Z																			
	FE (+2)	NC	SC	NC	NC	NC	NC	SC	NC	NC	SC	NC	NC	NC	NC	NC	NC	NC	SC	NC	NC	CZ											
Total	Iron (me/L)	NC	NC	NC	NC	NC	SC	SC	NC	NC	NC	NC NC	SC	NC	NC	NC	NC	NC	NC	NC	NC	NC	S N	NC	NC NC	NC							
	Turbidity (N.T.U.)	NC	NC	NC	SC	NC	SC	SC	NC	NC	NC	NC NC	N N	NC	NC	NC	NC	NC	NC	NC	NC	SC SC	NC	NC	NC	S							
Electrical	Conductivity (umhos/cm)	1112	1453	1172	1252	1168	1134	1179	1058	1079	1222	1202	1549	1450	1472	1045	1151	351	114	356	102	611	138	361	140	411	185	436	210	331	314	398	176
	pH (S.U.)	7.98	7.89	8.14	7.61	8.27	7.72	8.12	8.05	7.84	8.1	7.72	7.7	1.71	8.07	8.09	7.97	1.1	89.6	7.74	62.6	10.39	10.55	7.78	9.35	7.83	9.53	7.68	9.51	8.46	9.39	8.01	7.45
Water	Temperature (*F)	82.8	87	85.2	87.3	98	85.4	83.3	82.2	83.7	82.9	8.7	85.8	86.5	85.4	84	83.1	9.78	85.2	88.3	82.8	84.9	85.1	89.5	85.4	67.8	86.4	87.5	86.4	84.6	86.2	87.3	9.7.8
	Depth to Water (ft. below TOC)	5.75	5.65	5.74	6.03	6.23	89.6	5.72	5.65	5.85	5.8	5.75	5.87	5.81	6.03	5.86	5.81	5.52	5.48	5.54	5.51	5.65	5.57	19:0	3.01	2.63	5.65	5.67	2.63	5.72	5.73	6.74	5.75
	Sample Time	1033	1515	1057	1603	1432	1351	1120	908	1142	921	7171	942	1456	1412	1236	1002	ISI	952	1207	1016	8	1451	553	1032	1254	1048	1311	5011	87.8	1514	1323	1127
	Sample Date	86/17/8	8/26/98	8/27/98	8/26/98	8/26/98	8/26/98	8/21/98	8/27/98	8/21/98	8/21/98	86/17/8	8/21/98	8/756/98	8/26/98	8/27/98	8/27/98	8/70/8	8/26/98	8/26/98	8/72/8	8/707/8	86/57/8	86/07/9	8470748	86/07/9	8/707/8	86/97/8	86/97/8	8/75/98	8/75/98	86/07/8	8/707/8
	Well Number	HGRK-PRTMWD01	HGRK-PRTMWD02	HGRK-PRTMWD03	HGRK-PRTMWD05	HGRK-PRTMWD07	HGRK-PRTMWD09	HGKK-PKTMWD11	HGKK-PKTMWD12	HOKK-PKIMWDI3	HOKK-PKIMWDI4	HORN-PRIMWDIS	HOKK-PKIMWDI6	HOKK-PKIMWDI/	HGKK-PKIMWDI8	HGKK-PKIMWDI9	HGKK-PKTMWD20	HOKK-PKIMWIUI	HGKK-PKIMWI02	HUKK-PKIMWI03	HUKKI-PKIMWIUS	HOKK-PKIMWIO/	HORK-PKI MWI09	UCOK POTAWILI	LICENT DETAINED	HCDV DUTAWILL	HORN-PRIMWII4	HOKK-PKIMWIIS	HODE DETAINED	HORK-PKIMWII/	UCDV PPTAMMIS	HCDV DDTAMES	HOKK-PKIMWI20

NC =

Not Collected

FIELD PARAMETER MEASUREMENTS TABLE 4-7

			Don'th to												
			Water (ft.	Water	pH (S.U.)	Electrical				Hardness			Dissolved	Alkalinfty	
	Sample	Sample	below	ıre	(see Note	Conductivity	Turbidity Total Iron	Total Iron	FE (+2)	(me/L as		Sulfate	Oxygen	(mg/L as	Explosimeter
Well Number	Date	Time	TOC)	(. E)	below)	(umhos/cm)	(N.T.U.)	(mg/L)	(mg/L)	CaCO	ORP (mv)	(mg/L)	(mg/L)	CaCO,	(% of L.E.L.)
HGRK-PRTMWD01	86/91/6	1646	4.34	81.4	19.6	1302	_	0.1	6.0	479	-163	<50	NC	460	%0
HGRK-PRTMWD02	86/91/6	1324	4.45	82.7	9.29	1135	_	0.2	0.2	427	-195	<50	NC	380	%0
HGRK-PRTMWD03	86/91/6	1720	4.38	83.6	9.6	1363	-	NC	NC	NC	NC	NC	NC	NC	%0
HGRK-PRTMWD05	86/91/6	1352	4.72	84.7	7.75	1269	_	0.7	0	462	\$	ş	NC	400	%0
HGRK-PRTMWD07	86/91/6	1240	4.81	83.3	10.6	1179	2	5.6	_	393	-180	\$	NC	260	%0
HGRK-PRTMWD09	86/51/6	1602	5.03	83.3	1.71	1078	_	NC	NC	NC	NC	NC	NC.	Z	2%
HGRK-PRTMWD11	86/91/6	1752	4.42	80.8	10.88	1260	-	0.5	0.4	445	-125	<50	NC	400	200
HGRK-PRTMWD12	86/91/6	1416	4.37	82.9	8.17	1132	_	0.2	0	342	-197	\$	NC	400	%8
HGRK-PRTMWD13	86/91/6	1824	4.52	9.08	15.94	1248	-	6.4	0.4	427	-113	<50	NC	400	260
HGRK-PRTMWD14	86/91/6	1440	4.52	83.3	8.28	1425	-	0	0	530	-228	<50	NC	320	7%
HGRK-PRTMWD15	86/91/6	1852	4.41	83.2	15.97	1385	1	0	0	479	-151	<50	NC	400	950
HGRK-PRTMWD16	86/91/6	1506	4.52	98	8.76	1846	-	0.4	0.4	752	-193	<50	NC NC	420	269
HGRK-PRTMWD17	86/91/6	1300	4.59	83.6	8.25	1481	-	0	0	633	-218	<50	NC	480	9%0
HGRK-PRTMWD18	9/12/98	1620	5.25	82.6	8.12	1464	-	0	0	701	-202	<50	NC	460	20
HGRK-PRTMWD19	86/91/6	1914	4.51	81.3	15.90	1234	NC	0	0	410	-166	<50 50	NC	420	260
HGKK-PKTMWD20	86/91/6	1542	4.44	82.2	10.38	1366	-	0.2	0.2	496	-131	<50	NC	380	%0
HGRK-PKTMWI01	86/12/6	1357	4.87	87.3	7.82	356	0	0.5	0	154	68-	<50	NC	180	950
HGKK-PRTMWI02	9/12/98	1140	4.95	86.2	69.6	118	-	0	0	21	-116	<50	NC	40	20
HGRK-PRTMWI03	86/51/6	1412	4.97	6.98	7.82	343	0	0.5	9.4	171	86-	0\$>	NC	180	%0
HGRK-PRTMWI05	86/17/6	1159	4.89	86.1	9.85	801	_	0	0	21	-135	<50	NC	35	%9
HGKK-PKTMWI07	9/15/98	8	4.90	9.98	10.33	120	-	0	0	20	<u>1</u>	05>	NC	35	%0
HGKK-PKI MW109	9/12/98	1025	4.98	85.6	10.57	137	4	4.0	٥	15	-99	<50	NC	35	7%
HGKK-PKIMWIII	86/51/6	1437	4.99	86.2	7.7.7	355	0	9.0	6.4	171	-102	<50	NC	180	%0
HOKK-PRIMWIIZ	9/12/98	1210	2.00	85.6	9.47	137	-	٥	0	22	-118	<50	NC	40	2%
HOKK-PKIMWII3	9/15/98	1456	4.97	86.3	7.93	397	-	0.5	0.5	188	-146	<50	NC	180	%0
HUKK-PKI MWII4	86/51/6	1244	5.08	86.5	9.56	178	2	٥	0	33	-136	<50	NC	55	%6
HUKK-PKI MWIIS	86/01/6	1206	86.4	86.1	8.03	434	_	0.7	4:0	171	86-	<50	NC	180	%0
HGKK-PKI MWII6	86/51/6	1303	5.03	86.3	00.01	207	е	0	0	30	-180	<50	NC	20	47%
HGKK-PKTMWII7	86/51/6	8 .	5.03	85.9	8.54	334	2	0	0	82	-101	<50	NC	80	85%
HORN-FRI MWII8	86/91/6	9761	5.32	84.2	15.88	NC	-	0	0	58	-200	<50	NC	100	261
HOKK-PKI MWII9	86/21/6	1526	5.09	86.2	8.12	400	_	4.0	0.3	154	-155	O\$>	NC	160	224%
JRA-FRIMWI20	86/01/6	1320	3.11	86.5	1.12	709	2	2.0	0.5	256	-111	\$0	NC	320	200

NOTES:

15.88 The pH readings for this event should not be used for comparison with historical data. The readings were sufficient to determine stabilization requirements for well purging, but the samples were collected in rainy conditions and the moisture affected the pH meter to the point that it could not be corrected through re-calibration.

NC=

TABLE 4-7

FIELD PARAMETER MEASUREMENTS

	<u> </u>	T	_	Т				Г				_			_			_		Т			_	_	_			_	_			Г	_
	Explosimeter	%0	%0	%0	38%	%0	%0	%0	%0	%0	40%	%0	%0	1%	25%	%0	%1	%0	%0	%0	%0	%0	%0	%0	7%	%0	11%	%0	%86	145%	%0	339%	417%
Alkalinity	(mg/L as	400	360	440	400	240	300	400	180	380	320	400	200	400	440	360	400	180	40	180	40	45	35	180	35	180	45	180	20	120	120	091	340
Dissolved	Oxygen (me/L)	0.22	0.58	0.11	0.31	0.56	0.36	0.24	0.22	0.23	0.24	0.28	0.21	0.61	0.17	0.23	0.23	0.4	0.33	0.32	0.35	0.48	1.06	0.19	0.38	0.29	0.4	0.44	0.58	0.41	0.43	0.26	0.32
	Sulfate (mg/L)	<50	<50	<50	20	<50	<50	<\$0 \$	\$	6 50	<50	<50	\$0	€50	<50	<50	<50	<50	<50	<50	<\$0	\$50	°20	- 20	<50	€50	<\$0	0\$>	\$	<\$0	<50	<50	<50
	ORP (mv)	-123	-125	-104	-153	-72	-138	-123	-200	-121	-221	-188	-141	-145	-180	-145	-148	-112	-135	9 <i>L</i> -	-166	-122	-130	-135	101-	08-	-147	-137	-178	-157	-141	101-	-146
Hardness	(mg/L as	462	428	496	462	342	359	462	359	428	564	513	736	299	299	410	513	881	30	881	21	33	17	881	21	171	29	171	43	98	86	154	325
	FE (+2) (mg/L)	9.0	0.2	0.2	0.7	0.2	0	0.2	0	0.3	0	0	9.0	0.2	0	0.2	0.2	0.4	0	0.2	0	0	0	6.0	0	0.2	0	0.7	0	0	0	0.2	6.1
Total	Iron (me/L)	8.0	0.2	0.5	9.0	2.5	0	0.2	0	0.3	0	0	9.0	0.2	0	0.4	0.3	0.5	0	0.5	0	0	0	0.7	0	0.3	٥	0.5	0	0	0	0.3	2.1
	Turbidity (N.T.U.)	0	0	0	0	4	-	0	0	0	0	0	_	0	0	0	0	0	0.76	0	1.28	0.46	3.92	0	-	0	2	0	S	4.03	8: -	0	_
Electrical	Conductivity (umhos/cm)	6111	1115	1189	1232	0101	1028	1132	1121	1110	1255	1214	1639	1454	1422	1095	1239	371	130	365	122	130	139	374	137	405	175	437	314	379	313	411	784
	pH (S.U.)	7.63	7.78	7.59	7.5	8.22	7.85	7.54	œ	7.8	8.03	7.51	7.45	7.94	8.03	7.9	7.32	7.72	9.46	7.79	9.79	9.84	10.53	7.77	9.44	7.91	9.52	7.85	10.87	8.42	10.15	8.21	7.43
Water	Temperature ("F)		83.1	85.7	84.8	84	83	82.6	83.2	82.9	83.3	85.5	87.2	83.5	82.3	83	83.9	87.1	86.2	86.7	9.98	86.4	98	86.1	87	85.7	86.9	82.9	86.7	98	98	85.9	86.3
Depth to Water	(ft. below TOC)	4.06	4.15	4.14	4.37	4.32	4.09	4.11	4.05	4.24	4.22	4.16	4.21	4.47	4.21	4.26	4.19	4.01	3.84	3.96	3.89	3.95	5.93	5. 5	4.03	4.	4.05	69	4.05	60.	4 2	4.18	4.19
	Sample Time	1314	1016	1338	1036	938	1633	\$	28	1434	130	1452	1154	858	1654	1512	1249	1433	1130	1452	148	046	/03/	CICI	1314	1530	1339	1552	1354	0 1	1024	909	1410
	Sample Date	10/14/98	10/14/98	10/14/98	10/14/98	10/14/98	10/13/98	10/14/98	10/14/98	10/14/98	10/14/98	10/14/98	10/14/98	10/14/98	10/13/98	10/14/98	10/14/98	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98	96/51/01	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98	10/13/98
	Well Number	HGRK-PRTMWD01	HGRK-PRTMWD02	HGRK-PRTMWD03	HGRK-PRTMWD05	HGRK-PRTMWD07	HGRK-PRTMWD09	HGRK-PRTMWD11	HGRK-PRTMWD12	HGRK-PRTMWD13	HGRK-PRTMWD14	HGRK-PRTMWD15	HGRK-PRTMWD16	HGRK-PRTMWD17	HGKK-PKIMWDI8	HGKK-PKTMWD19	HGRK-PRIMWD20	HGRK-PRTMW101	HGRK-PRTMWI02	HGRK-PRTMWI03	HGRK-PRTMWI05	HGKK-PKIMWIO/	HOKK-PKI MWIU9	LCDV PRTMWIII	HORN-PRIMWILL	HOKK-PKIMWIIS	HCKK-PKIMWII4	HGKK-PKIMWIIS	HCKK-PKIMWII6	HCKK-PKTMWII7	+		HGRK-PRTMWI20

TABLE 4-7
FIELD PARAMETER MEASUREMENTS

				Water		Electrical				Hardness			Dissolved	Alkalinity	
	Sample	Sample	Depth to Water	Temperature	Ha	Conductivity	Turbidity	Turbidity Total Iron	FE (+2)	se Lom)		Sulfate	Oxvoen	o Mami	Fynlosimeter
Well Number	Date	Time	(ft. below TOC)	(*F)	(S.U.)	(umhos/cm)	(N.T.U.)	(mg/L)	(mg/L)		ORP (mv)	(mg/L)	(mg/L)	CaCO ₁)	(% of L.E.L.)
_	11/18/98	1432	4.83	82.8	7.64	8111	_	0.2	6.0	428	-143	<50	0.3	420	%0
	11/18/98	1052	4.68	82.0	7.74	1095	-	0	0.2	410	-170	<50	0.2	360	%01
	11/18/98	1510	4.77	84.5	7.68	1183	-	0.5	0.2	496	-118	0\$>	0.3	460	200
HGRK-PRTMWD05	86/81/11	6111	4.99	83.4	7.52	1224	_	9.0	9.0	428	-150	0\$>	0.2	400	10%
_	86/81/11	1002	4.94	82.7	8.19	1005	7	2.4	0.5	342	-160	<50	0.2	220	%9
0	11/18/98	907	4.68	82.2	7.53	1044	-	0	0	376	-145	<50	0.2	280	1%
	11/18/98	1546	4.77	81.7	99.2	9111	-	0.4	0.2	614	-113	<50	0.2	400	950
_	11/18/98	1145	4.7	81.3	7.96	6901	-	0	0	325	-188	50	0.2	160	%0
	86/61/11	954	4.86	83.7	7.5	1022	0	0.4	0.2	445	-73	<50	0.2	380	260
4	11/18/98	1250	4.81	6.18	8.01	1251	0	0	0	496	-197	0\$>	0.2	300	269
	11/19/98	1024	4.76	85.8	7.38	1135	-	0	0	462	-178	<50	0.2	380	951
	11/18/98	1324	4.84	85.6	7.46	1694	-	6.0	9.0	736	-156	\$5	0.3	520	25%
	11/18/98	1026	4.9	83.1	7.54	1555	_	0.2	0.2	101	-183	\$	0.3	440	%0
4	11/18/98	878	4.94	82.5	7.69	1416	-	0.2	0.2	581	-174	<50	0.2	380	%0
_	86/61/11	1054	4.87	84.5	7.57	1029	0	0.2	0.2	393	-152	\$\$	0.2	380	%0
-	11/18/98	1355	4.77	82.8	7.44	1237	0	0.5	0.4	496	167	<\$0	0.2	360	3%
	11/17/98	1424	4.53	86.2	7.62	330	0	9.0	0.4	171	69-	<50	0.3	160	%0
-	11/17/98	1123	4.49	84.8	9.17	122	-	0	0	37	-157	55	9.0	50	%0
	11/17/98	1455	4.55	8.98	7.60	335	0	0.5	0.3	171	-53	<50	0.4	081	%0
_	11/17/98	4	4.57	85.1	9.27	123	•	0	0	31	-133	\$	0.3	45	%0
	86/1/11	1046	4.57	85.0	9.49	4	0	0	0	34	-52	\$0	9.0	40	8%
+	86//1/11	1014	4.54	85.1	10.28	125	2	0	0	16	-103	<50	9.0	30	27%
	86/11/11	1525	4.61	85.5	7.54	335	0	0.7	9.0	188	-108	<50	0.4	160	% 0
-	86/21/11	1201	4.64	84.9	9.25	128	0	0	0	24	-75	<50	0.2	45	7%
	11/17/98	1540	4.67	6.48	7.62	351	0	0.5	0.4	171	-120	<50	0.4	160	%0
4	11/17/98	1322	4.65	6.98	9.41	148	2	0	0	28	-139	0\$>	0.2	40	3%
_	86/11/11	1604	4.65	85.8	7.54	392	0	0.4	9.0	171	-136	<50	0.4	180	%0
_	86/11/11	1334	4.66	86.5	10.74	295	S	0	0	39	-171	<50	0.2	65	58%
_	86/21/11	1103	4.69	84.0	8.46	278	_	0	0	89	-154	<50	0.4	100	138%
+	86//1/11	1030	4.65	84.7	9.74	243	_	0	0	38	-118	<50	9.0	100	1%
	86// 1/11	1624	4.74	85.0	7.82	386	0	0.3	0.2	137	-147	<50	0.2	091	324%
HGRK-PRTMWI20 1	11/17/98	1400	4.77	86.0	7.41	029	2	2.0	1.3	239	-138	<50	0.2	320	2%

NOTES:

167 The measurement is believed to be in error.

TABLE 4-8 WATER TEMPERATURE SUMMARY

	>	VATER T	WATER TEMPERATURE (°F) EACH SAMPLING EVENT	TURE (°F	EACH S	AMPLIN	EVENT			Average for each	Average Standard Deviation of or each each monthly reading
										well, all	well, all from the 10-month
Mar-98	\dashv	Apr-98	May-98	Jun-98	Parl-98	Aug-98	Sep-98	Oct-98	Nov-98	months	Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well

MANDREI WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD01	Ц	78.2	82.3	87.8	82.6	82.6	82.7	81.4	83.8	82.8	82.1	3.0
HGRK-PRTMWD03		80.0	84.3	89.5	84.7	84.7	84.8	83.6	85.7	84.5	84.1	2.8
HGRK-PRTMWDII		78.3	82.7	84.0	83.5	83.5	83.0	80.8	82.6	81.7	81.7	2.3
Average for Deep Wells		78.8	83.1	87.1	83.6	83.6	83.5	81.9	84.0	83.0	82.7	2.6
Standard Deviation	1.4	0.1	1.1	2.8	1.1	1.1	1.1	1.5	9.1	1.4	1.3	
HGRK-PRTMWI01		80.7	82.7	83.9	88.2	88.2	86.0	87.3	1.78	86.2	85.1	3.0
HGRK-PRTMWI03		81.2	82.6	84.3	87.5	87.5	85.0	6.98	86.7	86.8	84.9	2.6
HGRK-PRTMWILI		79.3	82.2	84.2	88.4	88.4	85.1	86.2	86.1	85.5	84.6	3.0
Average for Intermediate Wells	80.7	80.4	82.5	84.1	88.0	0.88	85.4	86.8	86.6	86.2	84.9	2.8
Standard Deviation	0.4	1.0	0.3	0.2	0.5	0.5	9.0	9.0	0.5	0.7	0.2	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	r wall se	GMENT										
HGRK-PRTMWD02		81.0	0.18	87.4	82.6	82.6	85.6	82.7	83.1	82.0	82.7	2.7
HGRK-PRTMWD05		83.9	81.8	8.06	83.6	83.6	87.0	84.7	84.8	83.4	84.4	2.8
HGRK-PRTMWD12	9.08	80.0	78.9	89.5	81.2	81.2	81.3	82.9	83.2	81.3	82.0	2.9
Average for Deep Wells		81.6	80.6	89.2	82.5	82.5	84.6	83.4	83.7	82.4	83.0	2.6
Standard Deviation	1.4	2.0	1.5	1.7	1.2	1.2	3.0	1.1	1.0	1.5	1.2	
HGRK-PRTMW102		79.9	77.4	84.7	0.98	0.98	9.98	86.2	86.2	84.8	84.5	3.2
HGRK-PRTMW105		83.8	78.8	86.2	85.9	85.9	86.2	1.98	9.98	85.1	85.2	2.4
HGRK-PRTMWII2		83.0	78.4	82.1	88.3	88.3	85.7	85.6	87.0	84.9	84.4	3.3
Average for Intermediate Wells		82.2	78.2	84.3	86.7	86.7	86.2	86.0	86.6	84.9	84.7	2.7
Standard Deviation	3.8	2.1	0.7	2.1	1.4	1.4	6.5	0.3	0.4	0.2	0.4	
Como do minute a distribute of regim												
WELLS DOWNGRADIEN! OF SECOND WALL SEGMENT	ND WALL	SECMENT										
HGRK-PRTMWD07	6.62	79.5	83.8	88.7	85.8	85.8	9.98	83.3	84.0	82.7	84.0	2.9
HGRK-PRTMWI07	868	77.9		85.2	6.58	85.9	89.3	9.98	86.4	85.0	85.2	3.0
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT										
HGRK-PRTMWD09	79.9	1.62	83.8	85.7	8.98	86.8	87.5	83.3	83.0	82.2	83.8	29
HGRK-PRTMW109	9.68	78.6	81.4	83.4	84.5	84.5	9.88	85.6	86.0	85.1	84.7	3.2
Average - all wells for each month	81.8	80.3	81.4	86.1	85.3	85.3	85.7	84.6	85.1	84.1	84.0	2.1
Standard Deviation of individual	43	-		,	,	•	;		,	,	,	
age to the mount of the age.	*	. :	7.7	7.0	7.7	2.2	2.1	2.0	9.1	1.7	1.2	

TABLE 4-8 WATER TEMPERATURE SUMMARY

Well No			WATER TEMPERATURE (°F) EACH SAMPLING EVENT	EMPERA	TURE (°F	EACH	AMPLIN	G EVENT			Average for each	Average Standard Deviation of or each monthly reading
											well, all	well, all from the 10-month
	Feb-98	Mar-98	Apr-98	May-98	Mon-98	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	months	Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well

JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD13	80.1	78.4	89.5	84.9	84.1	84.1	84.6	9.08	82.9	83.7	83.3	3.1
HGRK-PRTMWD15	82.9	80.0	89.5	86.4	88.1	1.88	87.4	83.2	85.5	82.8	85.7	2.9
HGRK-PRTMWD19	80.2	77.5	84.8	85.8	83.5	83.5	84.5	81.3	83.0	84.5	82.9	2.5
Average for Deep Wells	81.1	78.6	87.9	85.7	85.2	85.2	85.5	81.7	83.8	84.7	83.9	2.7
Standard Deviation	1.6	1.3	2.7	8.0	2.5	2.5	1.6	1.3	1.5	==	1.5	
HGRK-PRTMWII3	81.3	9.08	83.5	84.1	89.3	89.3	85.9	86.3	85.7	84.9	85.1	2.9
HGRK-PRTMW115	81.7	79.7	84.9	9.98	88.4	88.4	85.9	86.1	85.9	85.8	85.3	2.7
HGRK-PRTMWI19	81.0	78.3	84.5	85.8	87.7	87.7	1.98	86.2	85.9	85.0	84.8	3.2
Average for Intermediate Wells	81.3	79.5	84.3	85.5	88.5	88.5	86.0	86.2	85.8	85.4	85.1	2.8
Standard Deviation	0.4	1.2	0.7	1.3	8.0	9.0	0.1	0.1	0.1	9.0	0.3	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	F WALL SE	GMENT										
HGRK-PRTMWD14	81.3	82.9	9'8'	88.2	81.1	81.1	82.1	83.3	83.3	81.9	82.4	2.5
HGRK-PRTMWD16	84.0	8.98	82.9	87.8	86.2	86.2	85.5	86.0	87.2	85.6	85.8	1.5
HGRK-PRTMWD20	81.0	79.2	80.9	85.4	82.9	82.9	82.7	82.2	83.9	82.8	82.4	1.7
Average for Deep Wells	82.1	83.0	80.8	87.1	83.4	83.4	83.4	83.8	84.8	83.4	83.5	1.7
Standard Deviation	1.7	3.8	2.2	1.5	2.6	2.6	1.8	2.0	2.1	1.9	2.0	
HGRK-PRTMWI14	82.2	82.7	79.8	81.5	89.7	89.7	6.98	86.5	6.98	6.98	85.3	3.5
HGRK-PRTMWI16	83.8	82.1	81.1	85.3	87.8	87.8	86.2	86.3	2.98	86.5	85.4	2.3
HGRK-PRTMWI20	81.0	82.5	83.1	85.2	6.78	6.78	9.98	86.5	86.3	86.0	85.2	2.5
Average for Intermediate Wells	82.3	82.4	81.3	84.0	88.5	88.5	9.98	86.4	86.6	86.7	85.3	2.6
Standard Deviation	1.4	0.3	1.7	2.2	1.1	1.1	0.4	0.1	0.3	0.3	0.1	
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT										
HGRK-PRTMWD17	79.2	81.9	82.4	8.68	82.6	82.6	85.9	83.6	83.5	83.1	83.5	2.8
HGRK-PRTMW117	88.3	79.2	80.0	84.2	85.2	85.2	87.7	85.9	86.0	84.0	84.6	3.1
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT										
HGRK-PRTMWD18	82.9	78.6	91.6	87.5	6.98	6.98	86.2	82.6	82.3	82.5	83.8	2.9
HGRK-PRTMWII8	88.5	77.9	80.5	82.6	85.6	85.6	88.5	84.2	86.0	84.7	84.4	3.3
Average - all wells for each month	82.5	80.5	82.9	85.8	85.8	85.8	85.8	84.3	85.0	84.5	84.3	e:
Standard Deviation of individual												
results from monthly average	2.8	2.6	3.3	2.1	2.5	2.5	1.7	2.0	1.7	1.7	1.2	

> TABLE 4-9 pH SUMMARY

NI II N)Hd	pH (Standard Units) EACH SAMPLING EVENT	Units) EAC	CH SAMP	LING EV	ENT				Standard Deviation of each monthly reading
Well NO.	Feb-98	Mar-98	Apr-98	May-98	86-unf	96-Inf	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD01	7.4	7.7	7.2	7.4	7.8	8.0	7.8	Err	7.6	7.6	7.6	0.3
HGRK-PRTMWD03	8.4	8.2	7.1	7.7	8.2	8.0	8.0	Err	7.6	7.7	7.9	0.4
HGRK-PRTMWD11		7.9	7.3	9.7	€'8	8.0	7.9	Err	7.5	1.7	7.8	0.3
Average for Deep Wells	6.7	8.0	7.2	7.6	8.1	8.0	7.9	Err	7.6	7.7	7.8	0.3
Standard Deviation	1 0.5	0.3	0.1	0.1	0.3	0.0	0.1	Err	0.0	0.0	0.1	
HGRK-PRTMW101		8.0	5.3	7.7	7.8	6.2	7.7	Err	7.7	7.6	7.3	6.0
HGRK-PRTMW103	1.7	7.8	5.3	7.6	7.8	6.2	7.7	Err	7.8	7.60	7.2	1.0
HGRK-PRTMWIII	7.7	7.7	5.4	7.6	7.8	6.1	7.8	Err	7.8	7.5	7.3	6.0
Average for Intermediate Wells	1.7	7.8	5.3	9.7	7.8	6.1	7.7	Err	7.8	7.6	7.3	0.9
Standard Deviation	0.0	0.2	0.1	0.0	0.0	0.0	0.1	Err	0.0	0.1	0.0	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD02	8.3	8.3	6.5	7.9	0.8	5.3	7.9	Err	7.8	7.7	7.5	1.0
HGRK-PRTMWD05	7.7	7.8	6.5	7.5	7.7	7.7	7.6	Err	7.5	7.5	7.5	0.4
HGRK-PRTMWD12	8.1	8.3	8.9	8.0	8.2	7.4	8.1	Err	8.0	8.0	7.9	0.5
Average for Deep Wells	8.0	8.2	9.9	7.8	8.0	8.9	7.8	Err	7.8	7.7	9.7	9.0
Standard Deviation	0.3	0.3	0.2	0.2	0.3	1.3	0.3	Err	0.3	0.2	0.2	
HGRK-PRTMW102		0.6	6.7	9.5	6.7	9.3	9.6	Err	9.5	9.2	9.1	6.0
HGRK-PRTMW105	9.4	9.4	7.2	6.7	8.6	9.2	9.7	Err	9.6	9.3	9.3	8.0
HGRK-PRTMW112	7.5	6.7	6.7	9.6	9.6	8.4	9.3	Err	9.4	9.3	8.8	-:-
Average for Intermediate Wells	8.8	9.4	6.9	9.6	9.7	9.0	9.6	Err	9.6	9.2	9.1	6.0
Standard Deviation	=	0.3	0.3	0.1	0.1	0.5	0.2	Er	0.2	0.1	0.2	
WELLS DOWNGRADIENI OF SECOND WALL SEGMENI	OND WALL	SEGMEN		ç	, 0			-		6		
HGKK-PKIMWDU/	8./	6.5	6.4	8.3	0.0	6.0	8.3	17	7.9	7.9	0.0	0.8
HGRK-PRTMWI07	9.4	10.0	6.9	10.2	10.5	10.4	10.7	臣	8.6	9.5	9.7	
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	OND WALL	SEGMENT										
HGRK-PRTMWD09	7.3	7.7	6.5	7.6	7.9	6.3	7.7	Err	7.9	7.5	7.4	9.0
HGRK-PRTMW109	8.6	10.3	6.9	10.4	9.01	9.5	10.8	占	10.5	10.3	6.6	1.2
Average - all wells for each month	8.3	8.5	6.5	8.4	8.7	7.7	8.5	Err	4.8	8.3	9.1	6.0
Standard Deviation of individual results from monthly average	œ	0	0.7	=	9	31	=	E .	01	0.0	0.7	
ABOATE CHILDREN HER IS DESCRIBED IN		;	ì	:	?	3	:		•	ì	;	

Suspected Instrument Malfunction so data not included in average, standard deviation analysis.

TABLE 4-9 pH SUMMARY

Pilot Study Report
PeRT Wall Pilot Study
Cape Canaveral Air Station, Florida

oN II oN) Hd	pH (Standard Units) EACH SAMPLING EVENT	Units) EA	CH SAMP	LING EV	ENT			Average for each	Standard Deviation of each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	96-unf	86-Inf	86-8nV	86-dəS	96-toO	Nov-98	well, all months	from the 10-month average by well
# # V 4 # # V 4 # #												
JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD13		8.0	7.2	7.6	8.0	7.8	7.7	Err	8.7	7.5	7.7	0.3
HGRK-PRTMWD15		7.8	7.3	7.5	7.7	7.6	7.5	Er	7.5	7.4	7.6	0.2
HGRK-PRTMWD19	9.4	9.2	7.2	1.8	8.0	8.0	7.8	Err	7.9	7.6	8	0.7
Average for Deep Wells	8.3	8.4	7.2	1.7	7.9	7.8	7.7	Err	7.7	7.5	7.8	0.4
Standard Deviation	6.0	0.7	0.1	0.3	0.2	0.2	0.1	占	0.2	0.1	0.3	
HGRK-PRTMWII3		7.9	5.7	7.8	7.9	6.3	7.8	Err	7.9	7.6	7.4	0.8
HGRK-PRTMWIIS		9.8	5.7	7.6	7.8	7.3	7.7	垣	7.9	7.5	7.6	0.0
HGRK-PRTMWI19		1.6	5.9	8.7	8.8	8.9	8.4	Err	8.2	7.8	8.0	0.1
Average for Intermediate Wells		8.5	5.8	8.0	8.2	8.9	8.0	Err	8.0	7.7	7.7	0.9
Standard Deviation	0.5	9.0	0.1	9.0	9.0	0.5	0.4	Err	0.2	0.1	0.3	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	r wall se	GMENT										
HGRK-PRTMWD14		8.4	7.5	8.0	8.2	7.8	8.1	Err	8.0	8.0	8.1	0.3
HGRK-PRTMWD16		8.7	7.4	8.0	7.9	8.3	7.7	Err	7.5	7.5	8.0	0.5
HGRK-PRTMWD20		7.7	7.3	7.4	7.6	7.9	7.6	Err	7.3	7.4	7.5	0.2
Average for Deep Wells	8.3	8.3	7.4	7.8	7.9	8.0	7.8	Err	7.6	7.6	7.9	0.3
Standard Deviation	0.7	0.5	0.1	0.4	0.3	0.3	0.3	Er	0.4	0.3	0.3	
HGRK-PRTMWII4		9.1	6.1	9.3	9.5	8.2	9.4	Err	9.5	9.4	6.8	=
HGRK-PRTMWI16		8.5	6.2	9.4	9.3	8.7	9.5	Err	10.9	10.7	9.0	1.4
HGRK-PRTMWI20		8.9	6.1	7.4	7.4	7.0	7.2	Еп	7.4	7.4	7.5	6.0
Average for Intermediate Wells		æ.	6.1	8.7	œ.	8.0	8.6	Err	9.3	9.5	8.5	1.0
Standard Deviation	0.8	0.3	0.1	=	1.2	6.0	1.2	Err	1.7	1.7	8.0	
WELLS DOWNGRADIENT OF SECOND WALL SECMENT	ND WALL	SECMENT										
HGRK-PRTMWD17	7.7	~	99	7.8	7.8	3.0	7.7	D	10	3 "	,	
HGRK-PRTMW117	8.0	7.9	8 9	901	6.8	7.3	7.0		6.4	C. /	7.7	6.1
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT		200	9:0	 	0.0	100	4.0	6.3	2.8	1.0
HGRK-PRTMWD18	9.2	1 6	6.5	5 8	0.0	7.0	6.0		0		Ç	
HGRK-PRTMWII8	9.1	9.5	7.0	0 %	8.7	8.5	0.3		0.0	1.1	7.0	6.0
								3	7.0.	7.	2.0	0.9
Average - all wells for each month	8.5	8.5	6.7	8.3	8.2	7.5	8.1	Err	8.3	8.1	8.0	9.0
Standard Deviation of individual	ļ											
results from monthly average	0.7	9.0	9.0	6.0	9.0	::	0.7	Err	0.1	1.0	9.0	

Suspected Instrument Malfunction so data not included in average, standard deviation analysis.

TABLE 4-10 ELECTRICAL CONDUCTIVITY SUMMARY

Average Standard Deviation of for each each monthly reading	Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well
Avera for ea	well, a
	Nov-98
EVENT	Oct-98
MPLING	Sep-98
CTRICAL CONDUCTIVITY (umhos/cm) EACH SAMPLING EVENT	Aug-98
nhos/cm)	96-Inf
IVITY (ur	Jun-98
ONDUCT	May-98
RICAL C	Apr-98
ELECT	Mar-98
	Feb-98
N III	

MANDREL WALL													
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS												
HGRK-PRTMWD01		1266	1230	1204	1125	1169	1112	1302	6111	8111	1146	134	
HGRK-PRTMWD03		1240	1198	1238	1165	1224	1172	1363	6811	1183	1178	141	
HGRK-PRTMWD11		1270	1235	1166	1071	1130	1179	1260	1132	9111	1137	132	
Average for Deep Wells	812	1259	1221	1203	1120	1174	1154	1308	1147	1139	1154	134	
Standard Deviation	3	16	20	36	47	47	37	52	37	38	22		_
													_
HGRK-PRTMWI01	310	340	352	337	330	333	351	356	371	330	341	17	_
HGRK-PRTMW103		364	364	348	340	342	356	343	365	335	348	4	
HGRK-PRTMWIII	305	369	382	353	347	347	361	355	374	335	353	22	
Average for Intermediate Wells	313	358	366	346	339	341	356	351	370	333	347	17	
Standard Deviation	01	16	15	8	6	7	2	7	S	3	9		
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	r wall se	GMENT											_
HGRK-PRTMWD02	747	1190	1282	1180	1083	1118	1453	1135	1115	1095	1140	771	
HGRK-PRTMWD05	810	1366	1378	1326	1205	1249	1252	1269	1232	1224	1231	160	
HGRK-PRTMWD12		1247	1251	1174	1043	1083	1058	1132	1121	6901	1099	125	_
Average for Deep Wells		1268	1304	1221	1110	1150	1254	1179	1156	1129	1157	144	
Standard Deviation	36	96	99	98	84	88	198	78	99	83	89		_
HGRK-PRTMWI02	130	108	94	113	111	106	114	118	130	122	115	=	
HGRK-PRTMWI05	135	130	119	101	103	101	102	108	122	123	114	13	
HGRK-PRTMWII2	130	146	143	122	131	138	140	137	137	128	135	7	
Average for Intermediate Wells	132	128	119	112	115	115	611	121	130	124	121	7	
Standard Deviation	3	19	25	=	14	20	61	15	8	3	12		
WELLS DOWNGRADIENT OF SECOND WALL SECME	ND WALL	SECMENT											
HGRK-PRTMWD07	730	1085	1145	1049	1002	1103	1168	1170	0101	3001	1040	07.1	
HGRK-PRTMWI07	901	95	08	36	115	123	01	130	130	5001	95	130	
WELLS DOWNGRADIENT OF SECOND WALL SEGME	ND WALL	SEGMENT						2	OC.		103	01	
HGRK-PRTMWD09	810	9911	1180	088	1115	0601	1134	1078	1028	1044	1053	121	
HGRK-PRTMWI09	120	118	Ξ	128	131	134	138	137	139	125	128	0	
Average - all wells for each month	494	719	722	929	651	674	701	712	049	654	299	485	_
Standard Deviation of individual results from monthly average	317	537	543	207	474	405	630	630	727	724	,		
D	;		2	•	,	275	240	230	4/4	4/0	2		

ELECTRICAL CONDUCTIVITY SUMMARY **TABLE 4-10**

Well No		ELECT	RICAL C	ONDUCT	FRICAL CONDUCTIVITY (umhos/cm) EACH SAMPLING EVENT	nhos/cm)	EACH SAI	MPLING	EVENT		Average for each	Average Standard Deviation of for each each monthly reading
			1								well, all	from the 10-month
	35827	35857	35887	35917	35947	35977	36009	36039	36069	36101	months	average by well
JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD13	815	1230	1245	1147	1062	8111	1079	1248	1110	1022	1108	130
HGRK-PRTMWDIS		1292	1302	1204	1141	1031	1202	1385	1214	1135	1173	159
HGRK-PRTMWD19		1116	1146	1040	916	882	1045	1234	1095	1029	1036	127
Average for Deep Wells	812	1213	1231	1130	1060	1010	1109	1289	1140	1062	1106	134
Standard Deviation	10	68	62	83	83	119	83	83	65	63	89	
HGRK-PRTMWII3		474	466	422	413	410	411	397	405	351	415	35
HGRK-PRTMWIIS		467	502	455	447	433	436	434	437	392	440	32
HGRK-PRTMWII9		414	431	168	389	389	398	400	411	386	398	91
Average for Intermediate Wells		452	466	423	416	411	415	410	418	376	418	26
Standard Deviation	91	33	36	32	29	22	19	21	17	22	21	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD14	800	1357	1289	1318	1204	1234	1222	1425	1255	1251	1236	167
HGRK-PRTMWD16		1457	1375	1407	1366	1020	1549	1846	1639	1694	1417	307
HGRK-PRTMWD20		1316	1277	1254	1151	1187	1151	1366	1239	1237	1199	151
Average for Deep Wells		1377	1314	1326	1240	1147	1307	1546	1378	1394	1284	196
Standard Deviation	10	73	53	77	112	112	212	262	226	260	117	
HGRK-PRTMWII4		249	222	192	190	193	185	178	175	148	201	39
HGRK-PRTMWI16		398	288	215	246	238	210	207	314	295	299	114
HGRK-PRTMWI20		710	801	068	016	935	9//	402	784	029	776	115
Average for Intermediate Wells		452	437	432	449	455	390	365	424	371	425	38
Standard Deviation	169	235	317	397	401	416	334	299	319	269	307	
WELLS DOWNGRADIENT OF SECOND WALL SECUENT	NO WALL	CECMENT										
HGRK-PRTMWD17	613	1435	1405	7367	6761	0361	037	1071	1211		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
HGRK-PRTMWII7	750	712	767	002	707	1330	1430	1401	1434	ccci	1300	212
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	NO WALL	CECMENT	470	396	409	334	155	334	3/9	278	475	177
UCDV DDTAWNING	200	TOUR TOUR	2001									
UCDV pp.TAMILLO	730	1223	1300	6511	1239	1326	1472	1464	1422	1416	1282	203
HURA-PRIMWII8	3/0	529	379	374	391	335	314	SC	313	243	361	78
Average - all wells for each month	637	668	884	839	800	776	827	941	853	819	824	440
Standard Deviation of individual												
results from monthly average	706	438	457	445	423	426	493	571	497	527	83	

TURBIDITY SUMMARY **TABLE 4-11**

Well No			Tur	Turbidity (N.T.U.) EACH SAMPLING EVENT	r.u.) eac	H SAMPI	ING EVE	TN			Average for each	Standard Deviation of each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	96-unf	96-Inf	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGME	EGMENTS											
HGRK-PRTMWD01	2.4	3.0	2.0	2.0	0.1	0.1	2.0	1.0	0.0	0	-	60
HGRK-PRTMWD03	1.5	0.0	0.1	1.0	0.0	0.0	0.7	0.1	0.0	0	90	90
HGRK-PRTMWD11	2.1	2.0	0.1	1.0	1.0	0.0	0.1	0	00	9	3 =	0.0
Average for Deep Wells	2.0	1.7	1.3	1.3	0.7	0,3	1.2	0.1	0.0	2	-	90
Standard Deviation		1.5	9.0	9.0	9.0	9.0	0.7	0.0	0.0	0.0	0.5	200
HGRK-PRTMW101	Ц	0.0	1.0	1.0	0.0	0.0	9.0	0.0	0.0	0.0	0.4	0.5
HGRK-PRTMW103		0.0	1.0	1.0	0.0	0.1	9.0	0.0	0.0	0.0	0.4	0.5
HGRK-PRTMWIII		0.0	1.0	1.0	0.0	0.0	0.5	0.0	0.0	0.0	0.3	0.4
Average for Intermediate Wells		0.0	1.0	1.0	0.0	0.3	0.5	0.0	0.0	0.0	6.4	0.4
Standard Deviation	0.5	0.0	0.0	0.0	0.0	9.0	0.1	0.0	0.0	0.0	0.1	
WELLS DOWNGRADIENT OF FIRST WAL		L SEGMENT										
HGRK-PRTMWD02	8.1	1.0	2.0	2.0	1.0	1.0	6.0	0.1	0.0	0.1	1.2	9.0
HGRK-PRTMWD05		0.0	1.0	0.1	1.0	1.0	0.1	1.0	0.0	0.1	6.0	0.5
HGRK-PRTMWD12		0.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.1	8.0	9.0
Average for Deep Wells		0.3	1.3	1.3	0.7	1.0	0.1	1.0	0.0	0.1	6.0	0.5
Standard Deviation	-0	9.0	9.0	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.2	
HGRK-PRTMW102		1.0	2.0	2.0	1.0	1.0	2.1	1.0	8.0	0.	7.4	19.3
HGRK-PRTMWI05	3.8	0.1	1.0	1.0	1.0	1.0	9.1	1.0	1.3	0.0	1.3	0.1
HGRK-PRTMWII2	\perp	2.0	2.0	2.0	1.0	1.0	0.7	1.0	0.1	0.0	1.2	9.0
Average for intermediate Wells		1.3	1.7	1.7	0.1	1.0	1.5	1.0	1.0	0.3	3.3	6.7
Standard Deviation	34.6	9.0	9.0	9.0	0.0	0.0	0.7	0.0	0.3	9.0	3.6	
WELLS DOWNGRADIENT OF SECOND WALL SECMENT	NO WALL	CECMENT										
HGRK-PRTMWD07	790	00	10	0.1	0,	0,0	, ,	,				
HGRK PRTAWIN	2,7		9	2 .	4.0	7.0	*!	2.0	4.0	0.7	84.2	248.0
WELLS DOWNGRADIENT OF SECOND W	ND WALL	ALI CECMENT	O.	0.1	3.0	3.0	2.4	0.	0.5	0.0	6:1	1.8
TODE DETAINING	The state of the s	Name of										
UCDV DDTAMIOS	5.5	0.1	0-	0.1	0.1	2.0	6.0	0.1	0.1	1.0	1.5	1.4
HUNN-FRIMWIUS	6.9	0.0	9.0	9.0	0.9	5.0	4.3	4.0	3.9	2.0	5.6	2.3
Average - all wells for each month	55.5	1.7	2.1	2.1	1.3	1.3	1.7	13	8.0	17	6 9	20.7
Standard Deviation of Individual												20.0
results from monthly average	196.4	2.5	2.4	2.4	1.7	1.3	8.1	1.3	1.3	1.7	17.1	

NC.

86

The turbidity reading for HGRK-PRTMWD07 in February is believed to be accurate. Althought subsequent clearing occurred, the development records show that during the first sampling event the purge water had color. Readings and descriptions for each purge volume are as follows: 1) 36.2 N.T.U. no color; 2) 3,500 N.T.U. medium grey; 3) 790 N.T.U. light grey.

TABLE 4-11
TURBIDITY SUMMARY

Average Standard Deviation of for each each monthly reading	well, all from the 10-month	1-98 Mar-98 Apr-98 May-98 Jun-98 Jun-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well
Aver	well,	mom
		Nov-98
		Oct-98
INI		Sep-98
ING EVE		Aug-98
Turbidity (N.T.U.) EACH SAMPLING EVENT		96-Inf
.U.) EAC		Jun-98
idity (N.1		May-98
Turb		Apr-98
		Mar-98
		Feb-98
Well No.		

JAG WALL												
WELLS UPGRADIENT OF WALL SEGM	EGMENTS											
HGRK-PRTMWD13	6.0	0.0	2.0	2.0	0.0	0.0	6.0	1.0	0.0	0.0	0.7	0.8
HGRK-PRTMWD15		1.0	1.0	1.0	1.0	0.0	6.0	1.0	0.0	1.0	8.0	0.5
HGRK-PRTMWD19		0.0	1.0	1.0	0.1	0.0	8.0	NC	0.0	0.0	8.0	
Average for Deep Wells		0.3	1.3	1.3	0.7	0.0	6.0	1.0	0.0	0.3	8.0	0.0
Standard Deviation	1.4	9.0	9.0	9.0	9.0	0.0	0.1	0.0	0.0	9.0	0.1	
HGRK-PRTMWII3	3.7	0.0	1.0	1.0	0.0	1.0	0.5	0.1	0.0	0.0	8.0	1.1
HGRK-PRTMWIIS	=:	0.0	1.0	0.1	0.0	0.0	9.0	0.1	0.0	0.0	0.5	0.5
HGRK-PRTMWI19		3.0	2.0	2.0	2.0	1.0	=	0.	0.0	0.0	5	1.0
Average for Intermediate Wells		1.0	1.3	1.3	0.7	0.7	0.7	1.0	0.0	0.0	6.0	0.7
Standard Deviation	1.3	1.7	9.0	9.0	1.2	9.0	0.3	0.0	0.0	0.0	0.5	
WELLS DOWNGRADIENT OF FIRST W.	ALL	SEGMENT										
HGRK-PRTMWD14		0.0	0.0	0.0	0.0	0.1	0.7	1.0	0.0	0.0	0.4	90
HGRK-PRTMWD16		0.0	0.0	0.0	0.0	1.0	1.0	0	0.1	0 1	90	0.5
HGRK-PRTMWD20	1.8	1.0	1.0	1.0	0.0	0.0	9.0	1.0	0.0	0.0	9.0	9.0
Average for Deep Wells	1.5	0.3	0.3	6.3	0.0	0.7	0.7	1.0	0.3	0.3	9.0	0.4
Standard Deviation	0.4	9.0	9.0	9.0	0.0	9.0	0.2	0.0	9.0	9.0	0.1	
HGRK-PRTMWII4	9.0	1.0	2.0	2.0	2.0	3.0	2.8	2.0	2.0	2.0	67	0.7
HGRK-PRTMW116	4.	1.0	2.0	2.0	2.0	1.0	2.5	3.0	5.0	5.0	2.5	1.5
HGRK-PRTMWI20	8.0	2.0	4.0	4.0	5.0	3.0	3.6	2.0	0.1	2.0	2.7	1.4
Average for Intermediate Wells	6.0	1.3	2.7	2.7	3.0	2.3	3.0	2.3	2.7	3.0	2.4	0.7
Standard Deviation	0.4	9.0	1.2	1.2	1.7	1.2	9.0	0.6	2.1	1.7	0.4	
WELLS DOWNGRADIENT OF SECOND	ND WALL	SECMENT										
HGRK-PRTMWD17	1.4	0.1	0.1	0.1	1.0	0.1	0.7	0	0.0	0	60	0.4
HGRK-PRTMW117	1.5	2.0	3.0	3.0	2.0	2.0	2.0	2.0	4.0	0	23	0.0
WELLS DOWNGRADIENT OF SECOND	_	SEGMENT										
HGRK-PRTMWD18	3.7	0.0	1.0	1.0	1.0	0.1	0.1	1.0	0.0	1.0	=	0.1
HGRK-PRTMWII8	4.8	3.0	2.0	2.0	2.0	2.0	8.	1.0	1.8	1.0	2.1	-

Average - all wells for each month	2.0	6.0	1.5	1.5	1.2	=	1.3	1.3	6.0	6.0	2.0 0.9 1.5 1.5 1.2 1.1 1.3 1.3 0.9 0.9 1.3 0.8	8.0
results from monthly average	1.3	Ξ	1.1 1.0 1.0		1.3 1.0	1.0	0.9	0.9 0.6 1.6 1.3 0.3	9:	1.3	0.3	
790	The turbidity during the fire	reading for st sampling	HGRK-PRT	MWD07 in F	ebruary is be color. Readi	lieved to be	accurate. Al	thought subse each purge vo	quent clearin lume are as f	g occurred, t ollows: 1) 3	the developmen 16.2 N.T.U, no	The turbidity reading for HGRK-PRTMWD07 in February is believed to be accurate. Althought subsequent clearing occurred, the development records show that during the first sampling even the purge water had color. Readings and descriptions for each purge volume are as follows: 1) 36.2 N.T.U, no color; 2) 3,500
NC=	Not Collected	um grey; 3) 1	790 N. F.O.	ight grey.								

TABLE 4-11: TURBIDITY SUMMARY SHEET 2 of 2

TABLE 4-12 TOTAL IRON CONCENTRATION SUMMARY

Well No			TOTA	L IRON	CONCE	TRATIC	TOTAL IRON CONCENTRATION SUMMARY	MARY			Average	Average Standard Deviation of
	Feb-98	Mar-98	Apr-98	May. 98	90	11	9	9			well, all	from the 10-month
					OC-1100	Jul-70	Aug-76	Sep-98	86-130	Nov-98	THE COLUMN	average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD01	9.0	0.7	9.0	0.7	60	0.0	13	-	0			
HGRK-PRTMWD03	0.0	0.0	0.0	0.0	0.4	0.0	2,0	0.1	8.0	0.2	0.7	0.3
HGRK-PRTMWDII	0.4	0.5	0.4	0.5	50	7.0	7.0	2 2	50	0.5	0.5	0.2
Average for Deep Wells	0.3	0.4	0.3	0.4	90	20	2.0	0.0	0.7	0.4	4.0	0.1
Standard Deviation		0.4	0.3	0.4	0.3	0.4	90	0.0	6.0	4.	4.0	0.1
							2.0	2	6.3	7.0	6.3	
HGRK-PRTMWI01	0.4	0.4	9.0	9.0	9.0	0.5	90	50	30	30	,	
HGRK-PRTMW103	0.4	0.5	0.7	0.5	0.4	0.5	0.7	0.5	200	0.0	0.0	0.1
HGRK-PRTMWIII		0.7	0.7	0.7	0.7	0.5	0.1	90	50	5.0	CO	0.1
Average for Intermediate Wells	0.5	0.5	0.7	9.0	9.0	0.5	0.7	0.0	0.7	200	0.7	0.1
Standard Deviation	L	0.2	0.1	-	0.0	00		6.5	0.0	0.0	0.0	0.1
					3.5	n:n	1.5	1.0	1.0	0.1	0.1	
WELLS DOWNGRADIENT OF FIRST WALL SECMENT	F WALL SE	CMENT										
HGRK-PRTMWD02	0.0	0		000	Š							
HGRK.PRTMWD05		0.0	0.0	0.0	0.2	0.0	0.2	0.2	0.2	0.0	0.1	0.1
HGRK-PRTMWD13		0.0	C.O.	0.0	8.0	9.0	9.0	0.7	9.0	9.0	9.0	0.1
Average for Deen Wells	0.0	0.0	NC 83	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1
Standard Deviation	0.3	0.2	6.5	2.0	6.3	0.2	0.3	9.4	0.3	0.2	0.7	0.1
	Co	3	4.0	5	0.4	0.3	0.3	0.3	0.3	0.3	0.3	
HGRK-PRTMW102	00	00	00	0	00	6						
HGRK-PRTMW105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HGRK-PRTMWII2	0.0	00		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Average for Intermediate Wells	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Standard Deviotion	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TO THE PARTY OF TH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WELLS DOWNGRADIENT OF SECOND WALL SECREM	ND WALL	CECACENT										
HGRK-PRTMWD07	7	SECTIVIEN										
HGRK-PRTMW107	4. 6	C. 1	œ. (6.	2.0	0.2	2.3	2.6	2.5	2.4	1.9	0.7
WELLS DOWNGRADIENT OF SECOND WALL SECONDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HGRK-PRTMWD00	WALL	SEGMENT										
HCDK-DDTAWING	0.0	0.4	0.0	0.0	0.0	0.0	0.0	NC	0.0	0.0	-	0.3

0.2

0.0

0.0

0.0

N 4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

HGRK-PRTMWI09

0.5

9.0

6.0

0.0

0.7

0.6

0.3

0.5

0.3

0.5

6.9

0.3

Average - all wells for each month Standard Deviation of individual results from monthly average NOT COLLECTED

NC.

TOTAL IRON CONCENTRATION SUMMARY **TABLE 4-12**

Well No			TOTA	L IRON	TOTAL IRON CONCENTRATION SUMMARY	TRATIC	N SUMI	AARY			Average for each	Standard Deviation of
	Eo. 60	Mar. 00	90		,						well, all	_
	ren-20	Mar-98	Apr-98	May-98	Nun-98	36-Inf	Aug-98	Sep-98	Oct-98	Nov-98	months	average by well
IAG WALL												
WELLS LIPGRADIENT OF WALL SEGMENTS	CMENTE											
HGRK-PRTMWD13	0.4	0.3	70	7.0		į	į					
HGRK-PRTMWD15	L	500	4.0	4.0	4.0	0.4	0.4	0.4	0.3	0.4	0.4	0.0
HGRK-PRTMWD19		2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Average for Deen Wells	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.2	0.1	0.1
Charles Decision	0.0	7.0	0.1	1.0	0.1	0.1	0.1	0.1	0.2	0.2	0.7	0.0
Standard Deviation	0.7	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.7	0.7	0.2	
CHARACTER AND A		ļ										
HORK-PRIMWIIS	0.6	9.0	0.4	0.5	0.5	0.5	9.0	0.5	0.3	0.5	0.5	0.1
HOKK-PKI MWIIS	0.2	0.5	0.4	9.0	0.7	0.5	8.0	0.7	0.5	0.4	0.5	0.2
HUKK-PKIMWII9	0.0	0.4	0.2	0.5	0.4	0.4	0.5	0.4	0.3	0.3	0.3	0.2
Average for Intermediate Wells	0.3	0.5	0.3	0.5	0.5	0.5	9.0	0.5	0.4	0.4	0.5	0.1
Standard Deviation	0.3	0.1	0.1	0.1	0.7	0.1	0.7	0.7	0.1	0.1	0.1	
TO THE POST OF THE PARTY OF THE												
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	WALLSE	GMENT										
HGKK-PRTMWD14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HGKK-PRIMWD16	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.4	9.0	6.0	03	0.3
HGRK-PRTMWD20	0.7	9.0	0.5	0.4	0.5	0.4	0.4	0.2	0.3	0.5	0.5	0.1
Average for Deep Wells	0.2	0.2	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.5	0.2	10
Standard Deviation	6.4	0.3	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.5	0.2	0.0
HGRK-PRTMWII4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0
HGKK-PKTMWI16	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.1
HCKK-PKI MWI20	9.0	0.5	0.1	2.0	2.6	3.1	2.5	2.0	2.1	2.0	8.	0.1
Average for Intermediate Wells	5.0	0.2	0.3	0.7	6.0	1.0	8.0	0.0	0.7	0.0	9.0	9.4
uguriaga Dirminga	6.0	6.3	9.0	1:2	1.5	1.8	1.4	0.0	1.2	0.0	1.0	
WELLS DOWNER ADIENT OF SECOND WALL SECURES	I I VAL											
HGRK-PRTMWD17	0.0	SECIMENT	000	00								
HCRK-DDTMW117	7.0	0.0	O.O	0.0	7.0	0.0	0.0	0.0	0.2	0.2	0.1	0.1
WELLS DOWNGRADIENT OF SECOND WALL SECURES	0.0	U.S	0.0	0.5	0.4	0.0	0.0	0.0	0.0	0.0	0.2	0.3
UCDV DDTAWNIG	TO WALL	SECMENI										
HORN-FRIMWDI8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	10
HOKKI-PKI MWII8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
Average - all wells for each month	0.2	0.2	0.2	0.3	6.4	0.3	0.4	0.2	0.3	0.2	=	0.4
Standard Deviation of Individual results from monthly average	0.1				``	0						
	}	3	C.O	c.	0.0	×.	9.0	0.7	0.5	0.3	0.1	

NOT COLLECTED

SC.

Fe +2 CONCENTRATION SUMMARY **TABLE 4-13**

W. II W.			FE	+2 (mg/L	FE +2 (mg/L) EACH SAMPLING EVENT	SAMPLI	NG EVE	IN			Average for each	Standard Deviation of each monthly reading
, ACH 140.	Feb-98	Mar-98	Apr-98	May-98	86-unf	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD01	0.7	0.7	0.3	9.0	9.0	9.0	0.4	6.0	9.0	6.0	9.0	0.2
HGRK-PRTMWD03	0.0	0.0	0.0	0.0	0.4	0.0	0.2	NC	0.2	0.2	0.1	0.1
HGRK-PRTMWDII		0.2	0.0	0.4	0.0	0.2	0.2	0.4	0.2	0.2	0.2	0.1
Average for Deep Wells	0.4	0.3	0.1	0.3	0.3	0.3	0.3	0.7	0.3	0.4	0.3	0.1
Standard Deviation	0.4	0.4	0.2	0.3	0.3	0.3	0.1	0.4	0.2	0.4	0.3	
HGRK-PRTMWI01		0.2	0.4	0.7	0.4	0.4	9.0	0.0	0.4	0.4	0.4	0.2
HGRK-PRTMW103	0.4	0.2	0.6	0.2	0.4	0.5	9.0	0.4	0.2	0.3	0.4	0.2
HGRK-PRTMWILL	0.5	0.3	0.7	9.0	0.4	9.0	0.5	0.4	6.0	9.0	9.0	0.2
Average for Intermediate Wells	0.4	0.2	9.0	0.5	0.4	0.5	9.0	0.3	0.5	0.4	0.4	0.1
Standard Deviation	0.1	0.1	0.2	0.3	0.0	0.1	0.1	0.2	0.4	0.2	0.1	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD02	0.0	0.0	0.0	0.4	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.1
HGRK-PRTMWD05		0.3	9.0	0.4	9.0	0.5	9.0	0.0	0.7	9.0	0.5	0.2
HGRK-PRTMWD12		0.0	NC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Average for Deep Wells		6.1	0.3	0.3	0.3	0.2	0.3	0.1	0.3	0.3	0.2	0.1
Standard Deviation	0.2	0.2	6.4	0.2	0.3	0.3	0.3	0.1	0.4	0.3	0.2	
HGRK-PRTMWI02		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HGRK-PRTMW105		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HGRK-PRTMWII2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Average for Intermediate Wells		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Standard Deviation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WELLS DOWNGRADIENT OF SECOND WALL SECMEN	NO WALL	CECACENT										
HGRK-PRTMWD07	90	90	50	0.0	000	70	0			200	30	***
HGRK-PRTMWI07	0.0	0.0	00	270	0.00	0.0	0.0	0.0	7.0	0.0	0.0	0.3
VELLS DOWNGRADIENT OF SECON	ND WALL	SECMENT	9.0	2.5	200	0.0	0:0	0.0	0.0	0.0	0.0	0.0
HGRK-PRTMWD09 05 05	0.5	50	0.0	00	00	00	00	CIA	000	00	- 0	
HGRK-PRTMWI09	0.0	00	0.0	0.0	0.0	0.0	0.0	٥	0.0	0.0	1.0	0.0
					2	2		0.0	0.0	2.0	0.0	0.0
Average - all wells for each month	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2
Standard Deviation of individual results from monthly average	0.3	0.2	0.3	0.3	6	۲.	10	. 0	0 3	0.1	0 0	
•	!	!	;	}	;	}	5	Ç)	?	•	

NC=

NOT COLLECTED

Fe +2 CONCENTRATION SUMMARY **TABLE 4-13**

N II W			FE	+2 (mg/L) EACH	SAMPLI	FE +2 (mg/L) EACH SAMPLING EVENT	LN.			Average for each	Standard Deviation of each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	86-unf	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD13		0.2	0.2	9.0	0.4	0.2	0.2	0.4	0.3	0.0	03	10
HGRK-PRTMWD15		0.2	0.0	0.0	0.0	0.0	0.0	0.0	00	00		5
HGRK-PRTMWD19		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	500	5 6
Average for Deep Wells	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	-	
Standard Deviation	0.2	0.1	0.1	0.7	0.2	0.1	0.1	0.2	0.2	0.1	-	1.0
HGRK-PRTMWII3		0.0	0.4	0.1	0.4	9.0	0.7	0.5	0.2	0.4	0.4	0.0
HGRK-PRTMWII5		0.0	9.0	0.3	0.5	0.4	0.7	0.4	0.7	0.6	0.4	0.0
HGRK-PRTMWII9	0.2	0.0	0.0	0.0	0.0	0.2	0.2	0.3	0.2	0.2	-	7.0
Average for Intermediate Wells	0.3	0.0	0.3	0.1	0.3	0.3	0.5	0.4	0.4	0.4	0.3	
Standard Deviation	0.1	0.0	0.3	0.2	0.3	0.1	0.3	0.1	0.3	0.2	0.2	1:0
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	WALL SE	GMENT										
HGRK-PRTMWD14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	00
HGRK-PRTMWD16	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.4	90	90	0.0	0.3
HGRK-PRTMWD20	9.0	0.5	0.2	0.4	9.0	0.2	0.4	0.2	0.2	0.4	0.4	0.5
Average for Deep Wells	0.2	0.2	0.1	0.1	0.2	0.1	0.3	0.7	0.3	0.3	0.2	0.1
Standard Deviation	0.3	0.3	0.1	0.2	0.3	0.1	0.2	0.2	0.3	0.3	0.7	
Tag Maga												
HORK-PRIMWIIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HOKK-PKI MWII6	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
HGKK-PKIMWI20	0.2	0.2	0.	=	2.0	2.1	2.1	0.5	1.9	1.3	1.2	0.8
Average for intermediate Wells	7.0		0.3	4.0	0.7	0.7	0.7	0.2	9.0	0.4	6.0	0.2
Stallgard Deviation	7.0	6.1	9.0	9.0	1.2	1.2	1.2	0.3	1.1	8.0	0.7	
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	FCMENT										
HGRK-PRTMWD17	0.0	0.0	00	00	0.0		00	00	į			
HGRK-PRTMW117	00	200	0.0	900	0.0	0.0	0.0	0.0	0.5	0.2	0.1	0.1
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	EGMENT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3
HGRK-PRTMWD18	0.0	0.0	0.0	00	00	00	000	00	9.0	į		
HGRK-PRTMWII8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.1
			,,,	;	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Average - all wells for each month	0.2	0.1	0.2	0.2	0.7	0.2	0.3	0.2	0.3	0.3	0.2	6.3
standard Deviation of Individual		;										
cours from monthly average	0.2	0.7	0.3	0.3	0.5	0.5	0.5	0.2	0.5	0.3	0.1	

L:\workconcept\39748\report\draft final\table4-13.xls

NOT COLLECTED

NC.

TABLE 4-14

HARDNESS (mg/L as CaCO3) CONCENTRATION SUMMARY

Well No			HARDNE	SS (mg/L	as CaCO3	EACH S	HARDNESS (mg/L as CaCO3) EACH SAMPLING EVENT	S EVENT			Average for each	Standard Deviation of each monthly reading
.001	Feb-98	Mar-98	Apr-98	May-98	86-unf	30-Inf	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD01		480	200	479	496	479	496	479	462	428	478	21
HGRK-PRTMWD03	_	440	460	479	462	496	479	NC	496	496	470	27
HGRK-PRTMWD11		480	460	445	496	462	479	445	462	479	467	91
Average for Deep Wells		467	473	468	485	479	485	462	473	468	471	01
Standard Deviation	31	23	23	20	20	17	10	24	20	35	9	
	1											
HGRK-PRTMWI01		88	205	171	171	100	171	154	188	171	171	29
HGRK-PRTMWI03		205	188	171	171	171	171	171	188	171	181	4
HGRK-PRTMWIII		188	205	188	171	188	171	171	188	188	981	13
Average for Intermediate Wells		194	199	177	171	153	171	165	188	177	179	15
Standard Deviation	10	10	10	10	0	47	0	9	0	10	∞	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD02		420	460	428	445	410	427	427	428	410	426	17
HGRK-PRTMWD05		480	520	496	530	462	496	462	462	428	480	31
HGRK-PRTMWD12		420	NC	342	359	342	393	342	359	325	369	40
Average for Deep Wells	433	440	490	422	445	405	439	410	416	388	425	28
Standard Deviation	31	35	42	11	98	09	52	62	52	55	55	
HGRK-PRTMW102		24	28	25	91	17	21	21	30	37	25	7
HGRK-PRTMWI05		29	24	24	24	20	26	21	21	31	25	4
HGRK-PRTMWII2		20	17	17	19	21	20	22	21	24	21	3
Average for Intermediate Wells		24	23	22	20	19	22	21	24	31	74	4
Standard Deviation	4	5	9	4	4	2	3	-	5	7	£	
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SECMENT										
HGRK-PRTMWD07	280	320	320	308	196	303	350	303	24.0	243	227	90
HGRK-PRTMW107	61	16	210	1	15	14	1	200	332	346	100	30
WELLS DOWNGRADIENT OF SECOND WALL SEGMEN	ND WALL	SEGMENT		2	2		2	77	33	*	07	,
HGRK-PRTMWD09	480	440	380	410	428	410	427	NC	350	376	412	37
HGRK-PRTMW109	23	91	91	137	15	14	91	15	17	91	29	38
Average - all wells for each month	260	260	254	260	257	250	192	225	254	747	356	101
Standard Deviation of individual										1	100	101
results from monthly average	189	194	200	185	203	198	200	161	187	181	=	
- ZC	NOT COLLECTED	CTED										

TABLE 4-14: HARDNESS CONCENTRATION SUMMARY
SHEET 1 of 2

PeRT Wall Pilot Study
Cape Canaveral Air Station, Florida

TABLE 4-14

HARDNESS (mg/L as CaCO3) CONCENTRATION SUMMARY

Well No			HARDNE	SS (mg/L	as CaCO3	HARDNESS (mg/L as CaCO3) EACH SAMPLING EVENT	AMPLING	EVENT			Average for each	Standard Deviation of each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	86-unf	86-Inf	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD13	3 480	520	NC	462	462	462	462	427	428	445	461	28
HGRK-PRTMWD15		480	480	479	479	513	380	479	513	462	475	37
HGRK-PRTMWD19	340	420	400	376	410	393	427	410	410	393	398	25
Average for Deep Wells	Ì	473	440	439	450	456	423	439	450	433	444	14
Standard Deviation	18	50	57	55	36	09	41	36	55	36	41	
HGRK-PRTMWII3		188	205	881	881	171	881	881	171	171	185	
HGRK-PRTMWII5		205	188	881	188	205	205	171	171	171	190	15
HGRK-PRTMWII9		171	154	137	154	154	154	154	154	137	154	=
Average for Intermediate Wells		188	182	171	117	177	182	171	165	160	176	6
Standard Deviation	18	17	26	29	20	26	26	17	10	20	19	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD14		480	480	496	513	513	513	530	564	496	503	33
HGRK-PRTMWD16		520	480	564	899	564	684	752	736	736	019	011
HGRK-PRTMWD20		520	480	496	496	513	462	496	513	496	499	-18
Average for Deep Wells		507	480	519	536	530	553	593	604	576	537	45
Standard Deviation	1 42	23	0	39	55	29	116	139	117	139	63	
HGRK-PRTMWII4		51	51	41	43	37	39	33	29	28	49	32
HGRK-PRTMWI16		120	89	34	47	41	41	30	43	39	75	80
HGRK-PRTMW120		257	291	342	359	400	363	256	325	239	312	54
Average for Intermediate Wells		143	137	139	150	159	148	106	132	102	146	38
Standard Deviation	88	105	134	176	181	208	186	130	167	611	145	
WELLS DOWNGRADIENT OF SECOND WALL SEGMEN	OND WALL	SEGMENT										
HGRK-PRTMWD17	460	540	540	547	530	513	185	633	199	107	571	74
HGRK-PRTMWII7	513	274	274	239	188	103	103	85	86	89	193	138
WELLS DOWNGRADIENT OF SECOND WALL SEGMEN	ND WALL	SEGMENT										
HGRK-PRTMWD18	380	420	440	445	513	564	633	101	199	581	534	112
HGRK-PRTMWII8	120	160	137	17	154	701	98	58	98	38	96	48

Average - all wells for each month Standard Deviation of individual results from monthly average

NOT COLLECTED

SC.

TABLE 4-15 OXIDATION-REDUCTION POTENTIAL SUMMARY

William			OXIDA	TION-RE	DUCTION	OXIDATION-REDUCTION POTENTIAL SUMMARY	TAL SUM	MARY			Average for each	Average Standard Deviation of for each each monthly reading
Well No.											well, all	well, all from the 10-month
	Feb-98	Mar-98	Apr-98	May-98	96-unf	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	months	ar-98 Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well

MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD01	601-	-114	-113	-130	-106	-120	-120	-163	-123	-143	-124	17
HGRK-PRTMWD03	<i>L9-</i>	-102	-109	16-	-105	-84	101-	NC	-104	-118	86-	15
HGRK-PRTMWDII		-130	-98	62-	-89	-106	-113	-125	-123	-113	-110	17
Average for Deep Wells		-115	-107	-100	-100	-103	-112	-144	-117	-125		14
Standard Deviation	28	14	80	7.7	10	18	8	27	11	16	13	
HGRK-PRTMW101	14	-83	-109	-112	69-	-110	98-	-89	-112	69-	-83	38
HGRK-PRTMW103	-42	-85	-108	-101	-92	-106	96-	86-	9/-	-53	-86	22
HGRK-PRTMWIII	-42	-109	-125	-108	-94	-109	98-	-102	-135	-108	-102	25
Average for Intermediate Wells	-23	76-	-114	-107	-85	-108	68-	%-	-108	-77-	06-	26
Standard Deviation	32	14	10	9	14	2	9	7	30	28	01	
WELLS DOWNGRADIENT OF FIRST WALL SEGMI	WALL SE	GMENT										
HGRK-PRTMWD02	-139	-170	-154	-146	-165	-164	-162	-195	-125	-170	-159	61
HGRK-PRTMWD05	-150	-156	-149	-128	-130	-114	-140	-84	-153	-150	-135	22
HGRK-PRTMWD12	-216	-225	NC	-185	-192	-190	-146	-197	-200	-188	-193	22
Average for Deep Wells	-168	-184	-152	-153	-162	-156	-149	-159	-159	-169	-163	10
Standard Deviation	42	36	4	59	31	39	11	65	38	19	29	
HGRK-PRTMWI02	-193	-191	-170	-145	-148	-145	-142	-116	-135	-157	-154	24
HGRK-PRTMWI05	-165	-174	-179	-157	-151	-144	-132	-135	991-	-133	-154	17
HGRK-PRTMW112	-157	-175	-182	-139	-144	-92	-93	-118	101-	-75	-128	37
Average for Intermediate Wells	.172	-180	-171	-147	-148	-127	-122	-123	<u>4</u>	-122	-145	23
Standard Deviation	6	10	9	6	4	30	26	10	33	42	15	
WELLS DOWNGRADIENT OF SECOND WALL SEG	ND WALL:	SEGMENT										
HGRK-PRTMWD07	-240	-209	991-	-105	-104	-138	961-	-180	-72	-160	-157	53
HGRK-PRTMWI07	-158	151-	181-	-156	-142	-115	901-	-104	-122	-52	-129	37
WELLS DOWNGRADIENT OF SECOND WALL SEG	ND WALL:	SEGMENT										
HGRK-PRTMWD09	-200	-139	-170	-116	-146	-136	-163	NC	-138	-145	-150	24
HGRK-PRTMW109	-218	-170	-130	-172	-146	-145	-109	-99	-130	-103	-142	37
Average - all wells for each month	-138	-149	-143	-129	-126	-126	-125	-129	-126	121-	181.	ş
Standard Deviation of individual												3
results from monthly average	73	43	31	99	33	28	32	30	=	42	•	
			1	1	1	ì	3	ŝ	•	;	•	

NC= NOT COLLECTED

167 Measurement believed to be in error.

OXIDATION-REDUCTION POTENTIAL SUMMARY **TABLE 4-15**

ON HOW			OXIDA	OXIDATION-REDUCTION POTENTIAL SUMMARY	DUCTION	POTENT	FIAL SUM	IMARY			Average for each	Average Standard Deviation of for each each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	86-unf	30-Inf	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD13	-146	-138	NC	-121	-110	-103	101-	-113	-121	-73	-114	21
HGRK-PRTMWD15	-174	-176	-171	-145	-145	-142	-154	-151	-188	-178	-162	17
HGRK-PRTMWD19	-152	-158	911-	-113	-93	-52	-147	991-	-145	-152	-129	36
Average for Deep Wells	-157	-157	-144	-126	-116	66-	-134	-143	151-	134	-135	19
Standard Deviation	15	19	39	17	27	45	29	27	34	55	25	
HGRK-PRTMWII3	-109	.70	-122	68-	-116	-137	-151	-146	-80	-120	-114	27
HGRK-PRTMWIIS	-104	-131	-120	-103	-116	-133	-127	86-	-137	-136	-121	15
HGRK-PRTMWI19	-150	-164	-147	-129	-129	-108	-134	-155	101-	-147	-136	20
Average for Intermediate Wells	-121	-122	-130	-107	-120	-126	-137	-133	-106	-134	-124	11
Standard Deviation	25	48	15	20	90	16	12	31	29	14	12	

	01	82	33	42	32	37	34	37	37	81	4	results from monthly average
6												Standard Deviation of individual
11	.147	-129	-149	-158	-154	-142	-142	-141	-162	-143	-152	Average - all wells for each month
29	-157	-118	-141	-200	-138	-156	-119	-153	-171	-170	-201	HGRK-PRTMWII8
15	681-	-174	-180	-202	-209	-167	-176	-186	-189	-207	-204	HGRK-PRTMWD18
										SEGMENT	ND WALL:	WELLS DOWNGRADIENT OF SECOND WALL SEGN
61	-131	-154	-157	101-	-146	-126	-109	-136	-114	-126	-137	HGRK-PRTMWII7
21	-196	-183	-145	-218	-210	-211	-205	-195	-189	-210	-197	HGRK-PRTMWD17
										SEGMENT	ND WALL	WELLS DOWNGRADIENT OF SECOND WALL SEGN
	33	19	81	35	20	97	17	37	37	191	16	Standard Deviation
34	451-	-149	-157	-142	-162	-145	-137	-123	-170	09-	-95	Average for Intermediate Wells
80	-95	-138	-146	Ξ	-139	-116	-117	66-	-128	126	-78	HGRK-PRTMWI20
31	-157	-171	-178	-180	-172	-166	-148	-104	-197	-141	-109	HGRK-PRTMWI16
25	-151	-139	-147	-136	-175	-154	-146	991-	-186	-164	86-	HGRK-PRTMWII4
	46	199	4	49	45	17	61	39	42	37	36	Standard Deviation
38	-166	-62	-170	-184	-155	891-	-181	-173	-194	-188	-189	Average for Deep Wells
90	-115	167	-148	-131	-158	-152	-159	-129	-145	-145	-148	HGRK-PRTMWD20
36	-180	-156	-141	-193	601-	991-	-187	-205	-214	-213	-215	HGRK-PRTMWD16
15	-204	161-	-221	-228	861-	-186	961-	-184	-222	-205	-204	HGRK-PRTMWD14
										GMENT	WALL SE	WELLS DOWNGRADIENT OF FIRST WALL SEGMENT

NOT COLLECTED

Measurement believed to be in error. NC=

SULFATE CONCENTRATION SUMMARY **TABLE 4-16**

Average Standard Deviation of for each monthly reading	Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well
Aver for es	well,
	Nov-98
	Oct-98
VENT	Sep-98
SULFATE (mg/L) EACH SAMPLING EVENT	Aug-98
H SAMP	86-Inf
(L) EAC	96-unf
ATE (mg	May-98
SULF	Apr-98
	Mar-98
	Feb-98
Well No	

Well No.			SULF	ATE (mg	(L) EAC	H SAMP	SULFATE (mg/L) EACH SAMPLING EVENT	ENT.			for each	each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	Jun-98	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD01		<50	<50	<50	<50	<50	NC	<50	<50	<50	\$50	AN
HGRK-PRTMWD03		<50	<50	<50	<50	<50	NC	NC	<50	<50	\$50	AN
HGRK-PRTMWD11		08	<50	<50	<50	<50	NC	<50	0\$>	<50	659	Ϋ́
Average for Deep Wells	Ì	09>	<50	<50	<50	<50	Y.	<50	<50	<50	\$3	A'N
Standard Deviation	29	17	NA	NA	NA	NA	NA	NA	NA	NA	Y.	
HGRK-PRTMW101		<50	<50	<50	<50	<50	NC	<50	<50	<50	~50	NA
HGRK-PRTMW103		<50	<50	<50	<50	<50	NC	<50	<50	<50	<50	AN
HGRK-PRTMWIII		<50	<50	<50	<50	<50	NC	0 \$>	<50	<50	<50	AN
Average for Intermediate Wells		<50	<50	<50	<50	<50	Ϋ́Z	<50	<50	<50	<50	NA AN
Standard Deviation	NA	NA	NA	NA	NA	AA	¥Z.	Ϋ́	NA A	AN	Y.	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD02		<50	<50	<50	<50	<50	NC	<50	<50	<50	\$50	ΑN
HGRK-PRTMWD05	Ì	<50	<50	<50	<50	<50	NC	<50	<50	<50	0\$	4Z
HGRK-PRTMWD12		<50	NC	<50	<50	<50	NC	<50	<50	<50	555	ĄZ
Average for Deep Wells	Ì	<50	<50	<50	<50	<50	VV	<50	<50	<50	<52	AX.
Standard Deviation	23	NA	NA	NA	AN	AN	AN	NA A	AN	AN	¥Z.	
HGRK-PRTMW102		<50	<50	<50	<50	<50	NC	<50	\$50	55	5	ΑN
HGRK-PRTMW105	<50	<50	<50	<50	<50	<50	NC	<50	<50	<50	\$	NA AN
HGRK-PRTMWI12		<50	<50	<50	<50	<50	NC	<50	<50	<50	950	NA AN
Average for Intermediate Wells		<50	<50	<50	<50	<50	NA	<50	-S0	<52	<50	AN
Standard Deviation	ΝΑ	NA V	AN	NA	NA	NA	NA	NA	NA	NA	V.	
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT										
HGRK-PRTMWD07	<50	<50	<50	<50	<50	<50	NC	<50	<50	<50	950	AN
HGRK-PRTMW107	<50	<50	<50	<50	<50	€50	NC	<50	0 0 0 0	\$50	0 0 0 0 0 0	NA A
WELLS DOWNGRADIENT OF SECOND WALL SEGMEN	ND WALL	SEGMENT										
HGRK-PRTMWD09	125	70	<50	<50	<50	050	NC	NC	050	<50	<62	AN
HGRK-PRTMW109	<50	<50	<50	<50	<50	<50	NC	<50	\$50	<50	\$50	A'N
Average - all wells for each month	<105	<75	<50	<50	<50	<50	NC	<50	<50	653	<52	*2
Standard Deviation of individual	1	1										
	¥.	¥.	¥.	¥	¥ Z	Y Z	¥Z	¥	¥ Z	¥ Z	Š	V
NC=	NOT COLLECTED	CTED										

TABLE 4-16: SULFATE CONCENTRATION SUMMARY
SHEET 1 of 2

L:\work\concepi\39748\report\draft final\table4-16.xls

TABLE 4-16 SULFATE CONCENTRATION SUMMARY

verage Standard Deviation of	or each each monthly reading	well, all from the 10-month	ge by well
Standard	each moi	from th	avera
Average	ior each	well, all	months
			Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well
			Oct-98
VENT			Sep-98
SULFATE (mg/L) EACH SAMPI ING EVENT			Aug-98
HSAMI			36-Inf
e/L) EAC	,		86-unf
ATE (m			May-98
SULF			Apr-98
			Mar-98
			Feb-98
V. II M.	well ino.		

													1
JAG WALL WELLS LIBERARIES WALL SECURETES	Character												
TO THE PARTY OF TH	CWENTS												
HOKK-PKI MWDI3		<50	NC	<50	<50	<50	NC	<50	<50	<50	<52	AN.	1
HOKK-PKI MWDIS		<\$0 \$	\$20	<50	<50	<50	NC	<50	<50	<50	\$ \$	AN	1
HGKK-PKTMWDI9		<50	<50	<50	<50	<50	NC	<50	<50	<50	<50	AN	1
Average for Deep Wells		<50	<50	<50	<50	<50	¥Z	<50	<50	<50	<51	AN	1
Standard Deviation	Y.	¥	Y.	NA	NA	NA	NA	AN	NA	¥Z.	¥		
HGRK-PRTMWII3	<50	<50	<50	<50	<50	<50	NC	<50	<50	050	05/	V.V	
HGRK-PRTMW115	<50	<50	<50	<50	<50	<50	NC	<50	<50	250	9	V V	,
HGRK-PRTMWI19	<50	<50	<50	<50	<50	\$50	NC.	05>	052	9	9	47	
Average for Intermediate Wells	<50	<50	<50	<50	<50	<50	ž	050	99	9	9	42	
Standard Deviation	NA	NA	Y'N	¥Z	Ϋ́Z	Ϋ́	Y.	¥Z	AM	NA.	Ž	WI	
											WAT		
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	WALL SE	GMENT											E
HGRK-PRTMWD14	<50	65	65	09	O\$>	750	JN	760	035	0.9	1 23		- 1
HGRK-PRTMWD16	70	75	\$\sqrt{20}	250	950	9		065	000	000	ô	AN	- 1
HGRK-PRTMWD20	<50	057	55/	Ş	2		יוֹט	OC S	OC>	00	g Ç	AA	
Average for Deen Wells	157	297	3	000	000	OC S	ر د د	0\$2 1	<50	<50	<50	NA	1
Ctondord Denietie		3	3	CCV	OC>	OC>	A.	<50	<50	<50	<54	AN	
Standard Deviation	NA NA	ž	Y.	¥	¥	AN	AN	NA	NA	NA	NA VA		1
THE PROPERTY OF THE PROPERTY O													1
HORN-FRIMWII4		Q\$0	<50	2 90	<50	<50	NC	05>	<50	<50	<50	Ϋ́Υ	1 -
HGKK-PKI MWII6	9	<50	<50	<50	<50	<50	NC	<50	<50	<50	<50	AN	1
HGKK-PKIMWI20	\$0 \$0	€	<50	<50	<50	<50	NC	0\$>	<50	<\$0 \$	<50	Ϋ́	
Average for intermediate Wells	<50	<50	<50	<50	<50	<50	NA	<50	<50	<50	05>	AZ	
Standard Deviation	Y	¥	NA	AN	NA	NA	NA	NA	NA	AN	Y.		1
WELLS DOWNGRAPIENT OF SECOND WALL SECH	ND WALL												
HCDV PDTMWN17	200	TAIS OF STAIR	L										
UCBV DPTAMILE	130	0/	~20	<50	<50	<50	NC	<50	<50	<50	<65	NA	
WELLS DOWNOR A PIETE OF SECOND	OC>	06>	<50	<50	<50	<50	NC	<50	<50	<50	<50	AN	
WELLS BOWINGRADIENI OF SECOND WALL SEGM	ND WALL	SECMENT											
HGKK-PKIMWDI8	175	125	80	09	05>	05>	NC	<50	<50	05>	280	ΔN	1
HGRK-PRTMWII8	<50	<50	<50	05>	<50	<50	S	05>	08/	05/	05/	VI	-
									3	3	AC.	Y.	7
A section of the sect	,												
Standard Deviation of individual	99>	\$\$ \$	<53	\$51	<50	<50	:	<50	<50	<50	<53	X	
results from monthly average	Ž	Ž	Ž	V.	ž	ž							
					110	TA.	WA	WA	NA NA	AA	YZ		

L:\workvoncept\39748\veport\draft final\table4-16.xls

NOT COLLECTED

NC

PeRT Wall Pilot Study
Cape Canaveral Air Station, Florida

DISSOLVED OXYGEN CONCENTRATION SUMMARY **TABLE 4-17**

Well No. DISSOLVED OXYGEN (mg/L) EACH SAMPLING EVENT reach monthly reading well, all from the 10-month reach monthly reading well, all from the 10-month
86-vo/N
86-A0N
Well No. DISSOLVED OXYGEN (mg/L) EACH SAMPLING EVENT Feb-98 Mar-98 Apr-98 Jun-98 Jun-98 Jul-98 Sep-98 Oct-98
Well No. DISSOLVED OXYGEN (mg/L) EACH SAMPLING EVF Feb-98 Mar-98 Apr-98 Jun-98 Jun-98 Jun-98 Sep-98
Well No. DISSOLVED OXYGEN (mg/L) EACH SAMPL. Feb-98 Mar-98 May-98 Jun-98 Jul-98 Aug-98
Well No. DISSOLVED OXYGEN (mg/L) EACH Feb-98 Mar-98 May-98 Jun-98 Jul-98
Well No. DISSOLVED OXYGEN (mg/l Feb-98 Mar-98 Apr-98 Jun-98
Well No. Ecb-98 Mar-98 Apr-98 May-98
Well No. Feb-98 Mar-98 Apr-98
Well No. Feb-98 Mar-98
Well No.
Well No.

		100000000000000000000000000000000000000			0	-						
	Feb. 08	Mor-08	90	Me 00	1	90 1	00	9			well, all	from the 10-month
			or and	02-684	Jun-70	Jul-70	Aug-95	Sep-98	Oct-98	Nov-98	an Outre	average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD01	0.4	0.2	0.4	0.4	NC	0.5	0.2	NC	0.2	0.3	0.3	0.1
HGRK-PRTMWD03	0.4	0.3	0.4	0.3	NC	0.5	0.2	NC	0.1	0.3	03	0
HGRK-PRTMWDII	0.4	0.2	0.3	NC	NC	0.4	0.2	NC	0.2	0.2	03	10
Average for Deep Wells	0.4	0.7	0.4	0.4	YZ.	0.5	0.2	Ϋ́Z	0.2	0.3	6	0.1
Standard Deviation	0.0	0.1	0.1	0.1	NA	0.1	0.0	AA	0.1	0.1	0.0	
HGRK-PRTMWI0I	0.2	0.3	0.2	0.2	NC	NC	0.5	NC	0.4	0.3	0.3	0.1
HGRK-PRTMWI03	0.2	0.2	0.2	0.2	NC	NC	0.5	NC	0.3	0.4	0.3	10
HGRK-PRTMWIII	0.4	0.2	0.4	0.2	NC	NC	9.0	NC	0.2	0.4	0.3	0.2
Average for Intermediate Wells	0.3	0.2	0.3	0.2	AN.	NA.	0.5	VV	0.3	0.4	0.3	0.1
Standard Deviation	0.1	0.1	0.1	0.0	NA	NA	0.1	AN	0.1	0.1	0.0	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	WALL SE	MENT										
HGRK-PRTMWD02	0.4	0.3	0.2	0.3	NC	NC	0.4	NC	9.0	0.2	0.3	10
HGRK-PRTMWD05	9.4	0.2	0.2	0.3	NC	NC	0.4	NC	0.3	0.2	03	10
HGRK-PRTMWD12	0.2	0.3	0.3	0.3	NC	NC	9.0	NC	0.2	0.2	03	10
Average for Deep Wells	0.3	0.3	0.2	0.3	NA	Y.	0.5	٧X	0.4	0.2	0.3	0.1
Standard Deviation		0.1	0.1	0.0	NA	NA	0.1	NA	0.2	0.0	0.0	
HGRK-PRTMW102	0.4	0.4	0.5	0.4	NC	NC	0.5	NC NC	0.3	9.0	0.4	10
HGRK-PRTMWI05	8.0	0.2	0.4	0.2	NC	NC	0.4	NC	0.4	0.3	0.4	0.2
HGRK-PRTMWII2	4.0	0.3	0.4	9.0	NC	NC	9.0	NC	0.4	0.2	0.4	0.1
Average for Intermediate Wells	0.5	0.3	0.4	0.4	VV	NA	0.5	Y.	0.4	0.4	4.0	0.1
Standard Deviation	0.2	0.1	-0 -	0.2	AN	NA	0.1	NA	0.0	0.2	0.0	
WELLS DOWNGRADIENT OF SECOND WALL SECMENT	JD WALLS	FCMENT										
HCDV DDTMWD07	70	D. J.		,								
HCBK DDTMWIO7	4.0	4.0	0.3	0.5	2	Ş	9.0	NC	9.0	0.2	0.4	0.2
WELLS DOWNGRADIENT OF SECON	ID WALLS	U.3	0.8	0.8	NC	NC	0.5	NC	0.5	9.0	0.5	0.2
HODE DETAMINA	2000	COMENI	ļ									
HONN-TRIMWOOD	0.4	0.2	0.4	0.3	NC	NC NC	0.5	NC	0.4	0.2	0.3	0.1
DORN-FRIMWIOS	0.4	0.4	6.0	0.4	NC	NC	0.5	NC		9.0	9.0	0.3
Average - all wells for each month	4.0	0.3	0.4	1	2		40	Ç.	. 0	·	;	
Standard Deviation of individual				200		60	C'A	INC	200	0.3	6.4	0.1
results from monthly average	0.1	0.1	0.2	0.2	NC	0.1	0.1	NC	0.1	0.2	-	
							!)	;	4.5	7.	

The state of the s

NOT COLLECTED

DISSOLVED OXYGEN CONCENTRATION SUMMARY **TABLE 4-17**

W. II.			OXIDA	DXIDATION-REDUCTION POTENTIAL SUMMARY	DUCTION	POTEN	TAL SUM	MARY			Average for each	Average Standard Deviation of for each each monthly reading
W CH 140.											well, all	well, all from the 10-month
	Feb-98	Mar-98	Apr-98	May-98	Jun-98	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	months	ir-98 Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well

JAG WALL WELLS LIPGRAPHENT OF WALL SECMENTS	CMENTS												
HGRK-PRTMWDI3	0.4	0.3	0.5	NC	NC	0.7	0.3	NC	0.0	0.0	0.4	0.3	T
HGRK-PRTMWDIS		0.2	0.2	NC	NC	9.0	0.3	N.	0.3	0.2	0.3	10	T
HGRK-PRTMWD19		0.2	0.2	NC	NC	0.7	0.2	NC	0.2	0.2	03	0.5	T
Average for Deep Wells	0.4	0.2	0.3	AN	AN	0.7	0.3	Y.	0.2	0.2	0.3	0.2	T
Standard Deviation	0.0	0.1	0.2	NA	NA	0.1	0.1	NA A	0.0	0.0	0.0		Γ
HGRK-PRTMWII3	0.2	0.2	0.4	0.2	NC	NC	0.5	NC	0.3	0.4	0.3	0.0	Γ
HGRK-PRTMWII5	0.4	1.0	0.2	0.2	NC	NC	9.0	NC	0.4	0.4	0.3	0.2	
HGRK-PRTMWI19	0.4	0.1	0.3	0.2	NC	NC	0.3	NC	0.3	0.2	0.3	0.1	
Average for Intermediate Wells		0.1	0.3	0.2	NA	V.	6.6	NA	0.3	0.3	0.3	0.1	
Standard Deviation	0.1	0.1	0.1	0.0	NA	NA	0.2	NA	0.1	0.1	0.0		Γ
													Γ
WELLS DOWNGRADIENT OF FIRST WALL SEGME	T WALL SE	GMENT											Γ
HGRK-PRTMWD14	0.2	0.1	0.4	0.3	NC	9.0	0.4	NC	0.2	0.2	0.3	0.2	
HGRK-PRTMWD16	0.2	0.1	0.3	0.3	NC	田田	0.2	NC	0.2	0.3	0.2	0.1	
HGRK-PRTMWD20	0.2	0.3	0.5	0.3	SC	8.0	0.2	NC	0.2	0.2	0.3	0.2	
Average for Deep Wells		0.2	0.4	0.3	NA	0.7	0.3	NA	0.2	0.2	0.3	0.2	
Standard Deviation	0.0	0.1	0.1	0.0	NA	0.1	0.1	ĄN	0.0	0.1	0.1		
HGRK-PRTMW114	4.0	0.3	0.3	0.2	NC	NC	0.5	NC	0.4	0.2	0.3	0.1	
HGRK-PRTMW116		0.2	0.3	0.2	NC	NC	0.5	NC	9.0	0.2	0.3	0.2	
HGRK-PRTMWI20		0.4	0.2	0.4	NC	NC	0.5	NC	0.3	0.2	0.3	0.1	
Average for Intermediate Wells		0.3	0.3	0.3	NA	NA	0.5	NA	0.4	0.2	0.3	0.1	
Standard Deviation	0.1	0.1	0.1	0.1	NA	NA	0.0	NA	0.1	0.0	0.0		
WELLS DOWNGRADIENT OF SECOND WALL SEGN	ND WALL	SEGMENT											
HGRK-PRTMWD17	0.4	0.4	0.2	0.2	NC	NC	0.3	NC	9.0	0.3	0.3	0.1	Γ
HGRK-PRTMW117	0.2	0.3	0.4	0.4	NC	NC	9.0	NC	0.4	0.4	0.4	0.1	Γ
WELLS DOWNGRADIENT OF SECOND WALL SEGN	ND WALL	SEGMENT											
HGRK-PRTMWD18	0.4	0.2	0.3	0.2	NC	NC	0.4	NC	0.2	0.2	0.3	0.1	Γ
HGRK-PRTMWI18	0.2	0.3	0.4	0.5	NC	NC	9.0	NC	0.4	9.0	0.4	0.1	
Average - all wells for each month	0.3	0.2	0.3	0.3	NC	0.7	0.4	NC	0.3	0.3	0.3	0.1	
Standard Deviation of individual													
results from monthly average	0.1	0.1	0.1	0.1	NC	0.1	0.1	NC	0.1	0.1	0.1		

NOT COLLECTED Note: The July 1998 DO for Monitoring well HGRK-PRTMWD16 is believed to be in error.

ALKALINITY (mg/L as CaCO3) CONCENTRATION SUMMARY **TABLE 4-18**

Average Standard Deviation of for each monthly reading	well, all from the 10-month	Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well
Averag for eac	well, a	month
		Nov-98
T		Oct-98
4G EVEN		Sep-98
SAMPLIN		Aug-98
3) EACH		Jul-98
as CaCO		96-unf
ALKALINITY (mg/L as CaCO3) EACH SAMPLING EVENT		May-98
LKALINI		Apr-98
*		Mar-98
		Fep-98
Well No.		

											well, all	from the 10-month
	Fep-98	Mar-98	Apr-98	May-98	Pan-98	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	months	average by well
MANDREL WALL			6									
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD01	440	480	440	420	460	440	460	460	400	420	442	24
HGRK-PRTMWD03		440	460	460	460	440	440	NC	440	460	447	14
HGRK-PRTMWD11		420	400	400	440	400	440	400	400	400	406	23
Average for Deep Wells	`	447	433	427	453	427	447	430	413	427	432	15
Standard Deviation	42	31	31	31	12	23	12	42	23	31	22	
	اِ											
HGKK-PKI MWI01		180	180	180	180	160	180	180	180	160	177	6
HGRK-PRTMW103		081	160	180	180	180	180	180	180	180	179	7
HGRK-PRTMWIII		200	205	180	180	180	180	180	180	160	185	13
Average for Intermediate Wells		187	182	180	180	173	180	180	180	167	180	7.
Standard Deviation	80	12	23	0	0	12	0	0	0	12	4	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD02		400	400	380	380	380	360	380	360	360	376	91
HGRK-PRTMWD05		480	440	400	420	380	440	400	400	400	420	30
HGRK-PRTMWD12		260	NC	200	220	081	200	400	180	091	231	74
Average for Deep Wells		380	420	327	340	313	333	393	313	307	342	38
Standard Deviation	80	111	28	110	106	115	122	12	117	129	86	
HGRK-PRTMWI02		40	30	40	35	35	35	40	40	20	39	9
HGRK-PRTMWI05		35	35	35	35	30	35	35	40	45	39	6
HGRK-PRTMWII2		119	35	35	35	35	35	40	35	45	43	28
Average for Intermediate Wells		65	33	37	35	33	35	38	38	47	9	6
Standard Deviation	23	47	-	6	0	3	0	3	3	3	2	
With I C DOMING A LINE A MINING OF THE WAY												
WELLS DOWNGRADIEN! OF SECOND WALL SEGMEN	ND WALL	SEGMENT										
HGRK-PRTMWD07	260	260	240	220	240	220	760	260	240	220	242	18
HGRK-PRTMWI07	40	35	30	35	35	30	35	35	45	40	36	5
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT										
HGRK-PRTMWD09	380	340	320	360	380	360	380	NC	300	280	344	37
HGRK-PRTMW109	40	611	34	180	35	30	40	35	35	30	28	51
Average - all wells for each month	232	249	227	3.13	ııı	316	111	31.6	ì			
Standard Deviation of individual				200	404	017	167	017	017	213	677	158
results from monthly average	157	160	171	152	169	160	891	165	151	154	Ξ	
					1		,	,	•	2	:	

NOT COLLECTED

NC

TABLE 4-18: ALKALINITY CONCENTRATION SUMMARY SHEET 1 of 2

ALKALINITY (mg/L as CaCO3) CONCENTRATION SUMMARY **TABLE 4-18**

			ALKALINITY (mg/L as CaCO3) FACH SAMPLING EVENT	ITY (m9/I	ODEC CACO	3) EACH	SAMPLIN	C EVEN	-		Average	Standard Deviation of
well No.	Feb-98	Mar-98	Apr-98	May-98	Jun-98	Jul-98	86-8n	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
TAS WALL												
WELLS HECKENTROP WALL SECURENTS	OCTATION TO											
HGRK-PRTMWD13	420 420	420	JN	400	400	000	007	400	200	000	707	
HGRK-PRTMWDIS		380	380	400	400	380	400	400	400	380	30.	1/
HGRK-PRTMWD19		380	400	340	360	380	360	420	360	380	374	23
Average for Deep Wells	400	393	390	380	387	393	393	407	380	380	391	6
Standard Deviation	35	23	14	35	23	23	31	12	20	0	15	
HGRK-PRTMWII3		200	160	200	200	180	200	180	180	160	184	91
HGRK-PRTMW115		200	180	220	220	200	200	180	180	180	961	91
HGRK-PRTMWI19		<u>8</u>	160	160	091	091	180	160	160	160	164	8
Average for Intermediate Wells		193	167	193	193	180	193	173	173	167	181	11
Standard Deviation	20	12	12	31	31	20	12	12	12	12	91	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD14		380	320	320	340	320	320	320	320	300	326	21
HGRK-PRTMWD16		400	360	320	440	380	410	420	500	520	411	63
HGRK-PRTMWD20		440	440	400	440	400	410	380	400	360	409	27
Average for Deep Wells		407	373	347	407	367	380	373	407	393	382	21
Standard Deviation	20	31	61	46	58	42	52	50	06	114	49	
THE PROPERTY OF THE PROPERTY O		ļ	,	,								
HOKK-PKI MWII4		65	55	65	09	09	09	55	45	40	59	11
HGRK-PRTMWII6		140	80	65	65	65	09	20	70	65	96	76
HUKK-PKI MWI 20		240	300	380	440	380	400	320	340	320	336	99
Average for intermediate Wells		148	145	170	881	168	173	142	152	142	163	22
Standard Deviation	EII.	200	135	182	218	183	136	154	164	155	150	
WELLS DOWNGRADIENT OF SECOND WALL SEGME	ND WALL	SEGMENT										
HGRK-PRTMWD17	320	400	400	420	380	400	460	480	400	740	410	44
HGRK-PRTMWII7	800	220	260	240	140	120	3,5	08	120	2	2	1000
WELLS DOWNGRADIENT OF SECOND WALL SEGME	OND WALL	SEGMENT						3		8	7	077
HGRK-PRTMWD18	260	340	320	360	360	340	460	460	440	380	117	59
HGRK-PRTMWII8	135	110	180	35	081	140	011	001	120	8	121	42
Average - all wells for each month	311	281	266	270	287	270	280	275	276	267	279	128
Standard Deviation of Individual									,			160
results from monthly average	168	124	123	132	137	132	157	156	147	150	13	

NOT COLLECTED NC

TABLE 4-19 EXPLOSIMETER READING % SUMMARY

Average Standard Deviation of for each	Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 months average by well
Average for each	well, all months
	86-voN
EVENT	Oct-98
MPLING	Sep-98
DSIMETER READING (% OF LEL) EACH SAMPLING EVENT	Aug-98
F LEL) E	Jul-98
VG (% O)	Jun-98
READIN	May-98
IMETER	Apr-98
EXPLOS	Mar-98
	Feb-98

	Feb-98	Mar-98	Apr-98	May-98	Mun-98	Pal-198	Aug-98	Sep-98	Oct-98	Nov-98	months	average by well
MANDREL WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	EGMENTS											
HGRK-PRTMWD01	2%	%!	1%	%0	0%	%0	%0	%0	%0	%0	%0	1%
HGRK-PRTMWD03		1%	1%	%0	1%	%0	%0	%0	%0	%0	%1	1%
HGRK-PRTMWDII		0%	%0	%0	1%	%0	%0	0%	%0	%0	%0	%
Average for Deep Wells	3%	1%	1%	0%0	1%	%0	%0	260	260	%0	%0	1%
Standard Deviation	1%	1%	1%	0%0	1%	%0	%0	0%	0%	0%0	0%	
HGRK-PRTMWI01	0%	%0	%0	%0	1%	%0	260	%0	%0	%0	%0	%0
HGRK-PRTMW103		%0	%0	%0	1%	%0	%0	%0	%0	%0	%0	200
HGRK-PRTMWIII		%0	%0	%0	1%	%0	260	%0	%0	%0	%0	%0
Average for Intermediate Wells		0%0	0.00	260	1%	%0	%0	%0	0%	%0	%0	200
Standard Deviation	1%	%0	%0	%0	0%	%0	% 0	0%0	%0	%0	%0	
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	T WALL SE	GMENT										
HGRK-PRTMWD02		%0	%0	%0	2%	%0	%0	%0	%0	10%	2%	3%
HGRK-PRTMWD05		7%	7%	%0	1%	%0	3%	%0	38%	10%	266	12%
HGRK-PRTMWD12	1%	%	1%	%0	3%	4%	260	8%	%0	%0	2%	3%
Average for Deep Wells		3%	3%	%0	2%	1%	. %1	3%	13%	1%	3%	4%
Standard Deviation	2%	4%	4%	%0	1%	2%	2%	2%	22%	%9	3%	
HGRK-PRTMWI02		1%	8	%0	1%	%0	%0	%0	%0	%0	260	%0
HGRK-PRTMWI05		2%	2%	%0	1%	0%	%0	%9	%0	%0	1%	2%
HGRK-PRTMWI12		260	%0	%0	1%	0%	% 0	2%	266	7%	2%	3%
Average for Intermediate Wells		1%	1%	0.60	1%	0.0	260	3%	2%	2%	1%	1%
Standard Deviation	0%	1%	1%	%0	%0	%0	%0	3%	4%	4%	1%	
WELLS DOWNGRADIENT OF SECOND WALL SEGMEN	ND WALL	SEGMENT										
HGRK-PRTMWD07	17%	%06	%06	18%	5%	%0	32%	%0	%0	%9	26%	35%
HGRK-PRTMWI07	%0	%0	%0	%0	1%	38%	%0	%0	%0	8%	2%	12%
WELLS DOWNGRADIENT OF SECOND WALL SEGMENT	ND WALL	SEGMENT										
HGRK-PRTMWD09	2%	4%	4%	1%	3%	%0	2%	2%	%0	1%	2%	1%
HGRK-PRTMW109	1%	3%	3%	%9	2%	%0	%0	7%	%0	27%	2%	8%
Average - all wells for each month	2%	7%	1%	2%	2%	3%	2%	2%	3%	4%	3%	%9
Standard Deviation of individual												
results from monthly average	%	22%	22%	2%	1%	%6	%8	3%	%01	1%	2%	

EXPLOSIMETER READING % SUMMARY **TABLE 4-19**

Well No.		EXPLOS	OSIMETER READING (% OF LEL) EACH SAMPLING EVENT	READIN	NG (% O)	F LEL) E	ACH SA	MPLING	EVENT		Average for each	Standard Deviation of each monthly reading
	Feb-98	Mar-98	Apr-98	May-98	96-unf	Jul-98	Aug-98	Sep-98	Oct-98	Nov-98	well, all months	from the 10-month average by well
JAG WALL												
WELLS UPGRADIENT OF WALL SEGMENTS	GMENTS											
HGRK-PRTMWD13	%0	20	%0	%0	%	%0	260	%0	200	00%	00%	000
HGRK-PRTMWD15		%0	%0	%0	1%	%0	%0	00%	200	201	00%	0.00
HGRK-PRTMWD19		0%	%0	%0	%	%0	%0	%0	200	200	00%	0%
Average for Deep Wells		0.20	%0	%0	1%	%0	0%	0%	%0	200	200	0.00
Standard Deviation	0%0	%0	%0	%0	%0	%0	0%0	0%0	0%0	1%	%0	9/0
CHANATAG AGAIL		200										
HOKK-PKI MWIIS		%0	%0	%0	2%	%0	%0	0%0	0%	%0	%0	%0
CINWELL MANIE		%0	%0	%0	1%	200	%0	%0	260	%0	%0	%]
HUKKI-PKI MWII9		%9	%9	%0	1%	5%	46%	224%	339%	324%	97%	141%
Average for Intermediate Wells	96.90	2%	2%	%0	1%	2%	15%	75%	113%	108%	32%	47%
Standard Deviation	2%	3%	3%	0.0	%0	3%	27%	129%	196%	187%	26%	
TO THE POWER OF THE PARTY OF TH												
WELLS DOWNGRADIENT OF FIRST WALL SEGMENT	WALL SE	GMENT										
HGRK-PRTMWDI4	3%	%0	200	1%	3%	%0	3%	1%	40%	%9	%9	120%
HGRK-PRTMWD16	3%	4%	4%	1%	14%	29%	5%	%9	%0	25%	90%	201
HGRK-PRTMWD20	%0	%0	%0	%0	%1	%0	1%	%0	1%	3%	10%	10%
Average for Deep Wells	2%	1%	1%	1%	269	10%	3%	4%	14%	11%	5 0%	500
Standard Deviation	2%	2%	2%	1%	7%	17%	2%	4%	23%	12%	4%	0/ 5
THE THE AUDIT												
HCKK-PRIMWII4	7%	3%	3%	260	2%	%1	%	%6	11%	3%	4%	49%
HGKK-PKI MWII6	44%	22%	22%	29%	22%	122%	105%	47%	%86	58%	57%	38%
A SOURCE STATE OF THE STATE OF	0%	2%	2%	%6	%9	141%	3%	200	412%	2%	58%	132%
Average for intermediate wells	17%	%6	%6	13%	10%	88%	36%	19%	174%	21%	40%	53%
Standard Deviation	74%	11%	11%	15%	11%	26%	26%	25%	211%	32%	31%	
WELLS DOWNGRADIENT OF SECOND WALL SECMENT	ND WALL	CECAFENT										
HGRK-PRTMWD17	0%	10%	10%	000	100	200						
HGRK-PRTMWII7	1400	710	210	2400	%	%0	%0	%0	1%	%0	%0	1%
WELLS DOWNGRADIENT OF SECOND WALL SECMENT	ND WAT	SEC MENT	0.17	349%	744%	241%	71%	85%	145%	138%	143%	104%
HGRK-PRTMWD18	00%	10.	10	200		200						
HGRK-PRTMW118	10%	0, 10	0%	%0	%	%0	%	%0	25%	%0	3%	8%
	0.1	0,	%	%0	1%	2%	%0	%1	%0	961	% 1	961
Average - all wells for each month Standard Deviation of individual	%9	7%	7%	24%	19%	34%	15%	24%	67%	35%	24%	43%
results from monthly average	11%	18%	18%	87%	%09	710%	310	£80%	2000	2000	20,	
			:	:	•	0/ 1/	31.70	20.00	%871	85%	%61	

TABLE 4-19: EXPLOSIMETER READING SUMMARY
SHEET 2 of 2

WATER LEVEL MEASUREMENTS **TABLE 4-20**

		MEASURING	TOTAL			WATER LEV	EL MEASU	JREMENT	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	LING EVENT	_	
NORTHING	EASTING	POINT ELEVATION	WELL DEPTH (Feet)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)
1811181	108062	8.36	50.00	16/1/8	5.42		2/19/98	4.33	4.03	3/16/98	_	3.87
1511782	790801	8.46	35.00	16/1/8	4.73	3.73	2/19/98	3.47	4.99	3/16/98	3.67	4.79
1511810	790817	8.72	41.00	8/7/97	4.98	3.74	2/19/98	3.77	4.95	3/16/98	3.91	4.81
1511790	790858	8.14	35.00	8/7/97	4.39	3.75	2/19/98	3.17	4.97	3/16/98	3.33	4.81
1511716	790893	9.43	35.00	8/1/97	5.61	3.82	86/61/7	4.38	5.05	3/16/98	4.52	4.91
1511859	790855	8.91	35.00	161178	5.17	3.74	2/19/98	3.97	4.94	3/16/98	4.13	4.78
1511835	790790	9.13	41.00	16/1/8	5.40	3.73	2/19/98	4.23	4.90	3/16/98	4.36	4.77
1511836	790790	9.10	35.00	16/1/8	5.36	3.74	2/19/98	4.13	4.97	3/16/98	4.34	4.76
1511822	790744	9.18	35.00	8/7/97	5.50	3.68	2/19/98	4.24	4.94	3/16/98	4.40	4.78
1511713	790753	8.30	51.00	16/1/8	5.38	2.92	2/19/98	4.32	3.98	3/16/98	4.50	3.80
1511714	790754	8.26	35.00	8/7/97	4.50	3.76	2/19/98	3.28	4.98	3/16/98	3.42	4.84
1511892	790881	8.64	51.00	8/7/97	5.65	2.99	2/19/98	4.63	4.01	3/16/98	4.77	3.87
1511892	790881	8.64	35.00	8/7/97	4.91	3.73	2/19/98	3.72	4.92	3/16/98	3.94	4.70
1511758	790836	8.03	50.00	8/7/97	5.17	2.86	2/19/98	4.01	4.02	3/16/98	4.19	3.84
1511927	790830	9.18	40.00	16/1/8	5.51	3.67	2/19/98	4.36	4.82	3/16/98	4.48	4.70
1511926	790830	61.6	35.00	8/7/97	5.50	3.69	2/19/98	4.28	4.91	3/16/98	4.48	4.71
1511955	790790	8.85	41.00	8/7/97	5.18	3.67	86/61/7	4.06	4.79	3/16/98	4.20	4.65
1511954	790789	8.80	35.00	8/7/97	5.11	3.69	2/19/98	3.96	4.84	3/16/98	4.14	4.66
1512012	790818	8.58	51.00	8/7/97	5.61	2.97	2/19/98	4.63	3.95	3/16/98	4.80	3.78
1512012	790818	8.54	35.00	16/1/8	4.84	3.70	2/19/98	3.72	4.82	3/16/98	3.91	4.63
1511845	790713	8.72	51.00	8/7/97	5.78	2.94	2/19/98	4.81	3.91	3/16/98	4.96	3.76
1511844	790712	8.79	35.00	8/7/97	5.15	3.64	86/61/7	3.91	4.88	3/16/98	4.09	4.70
1512022	790346	9.41	51.00	8/7/97	6.85	2.56	2/19/98	5.96	3.45	3/16/98	6.20	3.21
1512021	790347	9.46	35.00	16/1/8	6.29	3.17	2/19/98	5.22	4.24	3/16/98		4.11
1511992	791043	8.55	34.00	877/97	4.62	3.93	2/19/98	3.78	4.77	3/16/98	3.92	4.63
1511748	790830	7.85	54.00	8/7/97	4.83	3.02	86/61/7	3.83	4.02	3/16/98	3.92	3.93
1511752	790832	7.74	40.00	8/7/97	3.99	3.75	86/61/7	2.82	4.92	3/16/98	2.91	4.83

WATER LEVEL MEASUREMENTS TABLE 4-20

			MEASURING	TOTAL			WATER LEV	EL MEASU	REMENT	S: EACH SAN	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	1	
MONITORING WELL	NORTHING	EASTING	POINT	WELL									
			ELEVATION	(Feet)		Depth to	Ground Water		Depth to	Ground		Depth to	Ground
					Date	(ij)	Elevation (ft)	Date	water (ft)	Elevation (ft)	Date	water (ft)	Elevation (ft)
MWI16	1511756	790835	7.69	33.00	8/7/97	3.90	3.79	2/19/98	2.72	4.97	3/16/98	8 2.81	4.88
WWI19	1512029	969062	8.60	36.00	8/7/97	5.08	3.52	2/19/98	3.97	4.63	3/16/98	8 4.07	4.53
MWI20	1511801	791102	10.90	35.00	8/7/97	7.14	3.76	2/19/98	90.9	4.84	3/16/98	91.9	4.74
MWD20	1511796	791099	10.73	49.00	8/7/97	11.7	3.62	86/61/2	6.05	4.68	3/16/98	8 6.15	4.58
MWI22	1511887	790958	9.36	32.50	16/1/8	5.58	3.78	86/61/7	4.50	4.86	3/16/98	8 4.62	4.74
MWD22	1511894	790962	9.43	50.50	8/7/97	6.23	3.20	86/61/7	5.27	4.16/LL	71 3/16/98	8 5.38	4.05
MWI23	1511932	791137	9.03	32.00	8/7/97	5.28	3.75	2/19/98	NC	NC	3/16/98	8 4.42	4.61
MWD23	1511935	791133	8.91	48.00	8/7/97	5.25	3.66	86/61/7	4.18	4.73	3/16/98	4.31	4.60
MWI24	1512221	790985	09.6	35.50	8/7/97		NC	86/61/7	NC	NC	3/16/98	8 5.18	4.42
HGRK-PRTMWD01	1511851	190761	8.76	39.02	Z	Z	Z	86/61/7	3.94	4.82	3/16/98	3.97	4.79
HGRK-PRTMW101	1511852	790762	8.76	19.00	Z	Z	Z	2/19/98	3.89	4.87	3/16/98	3.97	4.79
HGRK-PRTMWD02	1511854	790757	8.75	39.68	Z	Z	Z	86/61/2	3.92	4.83	3/16/98	3.97	4.78
HGRK-PRTMWI02	1511856	790758	8.75	19.42	Z	Z	Z	86/61/7	3.84	4.91	3/16/98	3.94	4.81
HGRK-PRTMWD03	1511860	692062	8.80	39.45	Z	Z	Z	86/61/2	3.91	4.89	3/16/98	8 4.01	4.79
HGRK-PRTMW103	1511861	790770	8.80	19.05	Z	Z	Z	86/61/7	3.91	4.89	3/16/98	3.99	4.81
HGRK-PRTMWD05	1511864	T9T09T	8.77	39.51	Z	Z	Z	86/61/2	3.93	4.84	3/16/98	8 4.03	4.74
HGRK-PRTMW105	1511866	892062	8.77	19.20	Z	Z	Z	86/61/7	3.89	4.88	3/16/98	3.97	4.80
HGRK-PRTMWD07	1511866	790764	8.76	39.54	Z	Z	Z	2/19/98	3.92	4.84	3/16/98	8 4.02	4.74
HGRK-PRTMW107	1511868	790765	8.79	19.04	Z	IZ	N	86/61/7	3.91	4.88	3/16/98	8 4.01	4.78
HGRK-PRTMWD09	1511870	19042	8.77	39.38	Z	Z	Z	2/19/98	3.95	4.82	3/16/98	4.04	4.73
HGRK-PRTMW109	1511870	790762	8.76	20.30	Z	Z	Z	86/61/7	3.91	4.85	3/16/98	8 4.00	4.76
HGRK-PRTMWD11	1511873	790782	8.85	38.81	Z	ž	Z	2/19/98	3.99	4.86	3/16/98	4.07	4.78
HGRK-PRTMWIII	1511875	790783	8.84	18.92	Z	Z	Z	86/61/7	3.99	4.85	3/16/98	3 4.07	4.77
HGRK-PRTMWD12	1511877	790778	8.74	39.82	Z	Z	Z	2/19/98	3.92	4.82	3/16/98	3 4.00	4.74
HGRK-PRTMWII2	1511879	790779	8.84	20.01	Z	Z	Z	86/61/7	3.99	4.85	3/16/98	3 4.08	4.76
HGRK-PRTMWD13	1511888	790795	8.88	39.16	Z	Z	Z	2/19/98	4.09	4.79	3/16/98	4.18	4.70
HGRK-PRTMWII3	1511889	962062	8.86	19.40	ž	ž	Z	86/61/7	4.12	4.74 /C	3/16/98	3 4.20	4.66 /C

TABLE 4-20: WATER LEVEL MEASUREMENTS
SHEET 2 of 9

TABLE 4-20 WATER LEVEL MEASUREMENTS

			MEASURING	TOTAL			WATER LEV	EL MEASU	IREMENT	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	LING EVENT		
MONITORING WELL IDENTIFICATION	NORTHING	EASTING	POINT ELEVATION	WELL DEPTH (Feet)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)
HGRK-PRTMWD14	1511891	790792	8.83	39.30	ī	N	N	2/19/98	4.01	4.82	3/16/98	4.12	4.71
HGRK-PRTMWI14	1511892	790794	8.82	19.32	Z	ï	Z	2/19/98	4.02	4.80	3/16/98	4.10	4.72
HGRK-PRTMWD15	1511897	790803	8.85	39.37	Z	Z	Z	86/61/2	4.00	4.85	3/16/98	4.10	4.75
HGRK-PRTMW115	1511898	790804	88.88	19.30	Z	Z	Z	2/19/98	4.01	4.87	3/16/98	4.10	4.78
HGRK-PRTMWD16	1511901	108061	8.86	38.74	Z	N	N	2/19/98	4.03	4.83	3/16/98	4.14	4.72
HGRK-PRTMWI16	1511902	790803	8.84	19.88	Z	Z	Z	2/19/98	4.01	4.83	3/16/98	4.10	4.74
HGRK-PRTMWD17	1511903	790797	8.86	39.00	Z	Z	Z	2/19/98	4.04	4.82	3/16/98	4.14	4.72
HGRK-PRTMWII7	1511904	790799	8.86	19.30	Z	Z	Z	2/19/98	4.04	4.82	3/16/98	4.12	4.74
HGRK-PRTMWD18	1511906	790795	8.84	39.14	Z	Z	Z	2/19/98	4.03	4.81	3/16/98	4.14	4.70
HGRK-PRTMW118	1511907	961061	8.80	19.02	Z	Z	Z	86/61/2	4.01	4.79	3/16/98	4.10	4.70
HGRK-PRTMWD19	1511911	790816	8.92	39.34	Z	Z	Z	2/19/98	4.09	4.83	3/16/98	4.19	4.73
HGRK-PRTMW119	1511912	790817	8.92	19.00	Z	Z	Z	2/19/98	4.09	4.83	3/16/98	4.19	4.73
HGRK-PRTMWD20	1511913	790812	8.81	39.41	ž	Z	Z	2/19/98	4.02	4.79	3/16/98	4.10	4.71
HGRK-PRTMW120	1511915	790814	8.91	19.21	Z	N	Z	2/19/98	4.11	4.80	3/16/98	4.21	4.70
Notes								1. Heavy	Rain on 2	. Heavy Rain on 2/15 and 2/16	-		
								on h	iistorical i	on historical information.	,		

NC= Data not collected

NI = Wells not installed at time of measurement

IC = Water Levels from HGRK-PRTWM113 not used for Feb 98 to August 98. It was determined that the casing had been pulled taxase in the well vault. Data from August 1998 currect after cap reset and surveyed.

A = Water Level measuremetents believed to be inaccurate - possible malfuction with water level tape reading 9.xx when it should have read 6.xx. Data not used for water level contours.

ALL = Water Level measuremetents believed to be inaccurate. Data not used for water level continuts.

PeRT Wall Pilot Study PeRT Wall Pilot Study Cape Canaveral Air Station, Florida

WATER LEVEL MEASUREMENTS TABLE 4-20

						WATER LEV	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	AENTS: EACH	SAMPLING EV	VENT			
MONITORING WELL IDENTIFICATION	å	Depth to	Ground			Depth to ground water	Ground		Depth to ground water	Ground		Depth to ground water	Ground
Sec.	Date	water (II)	Elevatio	\dagger	Date	(E)	Elevation (ft)	Date	(tr)	Elevation (ft)	Date	(ij)	Elevation (ft)
HKZD	4/13/98	2.00	3.36	1	2/18/98	NC	NC	86/12/98	NC	NC	7/13/98	NC	NC
HK2S	4/13/98	4.19	4.27	\dashv	8/18/98	NC	NC	86/11/98	NC	NC	7/13/98	NC	NC
HK5S	4/13/98	4.46	4.26		8/18/98	NC	NC	86/12/98	NC	NC	7/13/98	NC	NC
HK6S	4/13/98	3.87	4.27		5/18/98	NC	NC	8/12/98	NC	NC	7/13/98		N.
HK7S	4/13/98	5.08	4.35		8/18/98	NC	NC	86/12/98	NC	NC	7/13/98	NC	N N
HK9S	4/13/98	4.70	4.21		2/18/98	NC	NC	86/51/9	NC	NC	7/13/98	NC	N N
HK10D	4/13/98	4.92	4.21	\dashv	86/81/5	NC	NC	86/12/98	NC	NC	7/13/98	NC	N.
HK10S	4/13/98	4.87	4.23		86/81/9	NC	NC	86/12/98	NC	NC	7/13/98	NC	NC
HKIIS	4/13/98	4.96	4.22	+	5/18/98	NC	NC	86/51/9	NC	NC	7/13/98	NC	NC.
HKISD	4/13/98	4.99	3.31		86/81/9	NC	NC	86/51/9	NC	NC	7/13/98	NC	NC NC
HKISS	4/13/98	3.98	4.28	\dashv	86/81/5	NC	NC	86/12/98	NC	NC	7/13/98	NC	NC
HK16D	4/13/98	5.32	3.32		86/81/9	NC	NC	86/51/9	6.28	2.36	7/13/98	6.23	2.41
HK16S	4/13/98	4.43	4.21		86/81/9	NC	NC	86/51/9	NC	NC	7/13/98	NC	NC
HK17D	4/13/98	4.68	3.35		86/81/9	NC	NC	86/12/98	NC	NC	7/13/98	NC	NC
HK18D	4/13/98	5.02	4.16	\dashv	86/81/9	NC	NC	86/12/98	NC	NC	7/13/98	NC	NC
HK18S	4/13/98	5.01	4.18		86/81/9	NC	NC	86/51/9	NC	NC	7/13/98	NC	NC NC
HK19D	4/13/98	4.73	4.12	+	5/18/98	NC	NC	6/12/98	6.04	2.81	7/13/98	16.5	2.94
HK19S	4/13/98	4.68	4.12		5/18/98	NC	NC	86/1/9	NC	NC	7/13/98	NC.	N.
HK20D	4/13/98	5.21	3.37		86/81/9	NC	NC	86/1/9	6.27	2.31	7/13/98	6.25	2.33
HK20S	4/13/98	4.45	4.09		86/81/9	NC	NC	86/1/9	5.74	2.80	7/13/98	5.57	2.97
HK21D	4/13/98	4.45	4.27 /I	1T	8/18/98	5.90	2.82	86/1/9	6.38	2.34	7/13/98	6.39	2.33
HK21S	4/13/98	4.61	4.18		86/81/9	5.25	3.54	86/17/9	5.92	2.87	7/13/98	5.76	3.03
HK22D	4/13/98	69.9	2.72		86/81/9	NC	NC	86/17/98	7.47	1.94	7/13/98	7.43	1.98
HK22S	4/13/98	5.90	3.56	\dashv	86/81/9	NC	NC	86/51/9	7.10	2.36	7/13/98	6.92	2.54
MWI04	4/13/98	4.40	4.15	\dashv	86/81/9	5.03	3.52	86/17/98	5.68	2.87	7/13/98	5.57	2.98
MW16DD	4/13/98	4.42	3.43	+	86/81/9	4.92	2.93	86/12/98	5.45	2.40	7/13/98	5.47	2.38
MWD16	4/13/98	3.46	4.28	\dashv	86/81/9	4.15	3.59	86/12/98	4.79	2.95	7/13/98	4.69	3.05

TABLE 4-20: WATER LEVEL MEASUREMENTS
SHEET 4 of 9

TABLE 4-20 WATER LEVEL MEASUREMENTS

					WATER LEV	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	IENTS: EACH S	AMPLING EV	ENT			
MONITORING WELL IDENTIFICATION	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water	Ground Water Elevation (ft)	Date	Depth to ground water	Ground Water
MWI16	4/13/98	3.37	4.32	2/18/98	4.05		8/12/98	4.70	2.99	7/13/98	4.59	3.10
MWI19	4/13/98	4.62	3.98	2/18/98	5.92	2.68	86/51/9	5.90	2.70	7/13/98	5.80	2.80
MW120	4/13/98	6.62	4.28	5/18/98	7.26	3.64	86/51/9	16.7	2.99	7/13/98	7.86	3.04
MWD20	4/13/98	19:9	4.12	2/18/98	7.22	3.51	86/51/9	7.86	2.87	7/13/98	7.81	2.92
MW122	4/13/98	5.13	4.23	2/18/98	5.79	3.57	86/51/9	6.31	3.05	86/£1//	6.32	3.04
MWD22	4/13/98	5.86	3.57	2/18/98	6.40	3.03	86/12/98	96.9	2.47	7/13/98	6.93	2.50
MW123	4/13/98	4.85	4.18	2/18/98	5.47	3.56	86/12/98	5.99	3.04	7/13/98	6.03	3.00
MWD23	4/13/98	4.76	4.15	8/81/5	5.37	3.54	86/12/98	10.9	2.90	7/13/98	5.94	2.97
MW124	4/13/98	5.67	3.93	2/18/98	6.27	3.33	6/12/98	6.93	2.67	7/13/98	6.83	2.77
HGRK-PRTMWD01	4/13/98	4.54	4.22	8/18/8	5.21	3.55	6/15/98	5.84	2.92	7/13/98	5.72	3.04
HGRK-PRTMW101	4/13/98	4.53	4.23	8/18/98	5.22	3.54	86/17/98	5.85	2.91	7/13/98	5.74	3.02
HGRK-PRTMWD02	4/13/98	4.53	4.22	8/18/98	5.21	3.54	86/51/9	5.85	2.90	7/13/98	5.73	3.02
HGRK-PRTMW102	4/13/98	4.50	4.25	5/18/98	5.19	3.56	86/12/98	5.83	2.92	1/13/98	17.5	3.04
HGRK-PRTMWD03	4/13/98	4.57	4.23	5/18/98	5.24	3.56	86/12/98	5.89	2.91	1/13/98	5.77	3.03
HGRK-PRTMW103	4/13/98	4.55	4.25	5/18/98	5.24	3.56	86/17/98	5.87	2.93	7/13/98	5.77	3.03
HGRK-PRTMWD05	4/13/98	4.58	4.19	5/18/98	5.24	3.53	86/17/98	5.89	2.88	7/13/98	5.76	3.01
HGRK-PRTMW105	4/13/98	4.54	4.23	5/18/98	5.23	3.54	86/51/9	5.86	2.91	7/13/98	5.75	3.02
HGRK-PRTMWD07	4/13/98	4.58	4.18	5/18/98	5.24	3.52	86/12/98	5.88	2.88	1/13/98	5.76	3.00
HGRK-PRTMWI07	4/13/98	4.54	4.25	86/81/5	5.27	3.52	86/51/9	5.90	2.89	86/E1/L	5.77	3.02
HGRK-PRTMWD09	4/13/98	4.59	4.18	5/18/98	5.27	3.50	86/51/9	5.90	2.87	7/13/98	5.79	2.98
HGRK-PRTMWI09	4/13/98	4.56	4.20	5/18/98	5.26	3.50	86/12/98	5.89	2.87	86/81/1	5.77	2.99
HGRK-PRTMWD11	4/13/98	4.63	4.22	5/18/98	5.31	3.54	86/51/9	5.93	2.92	86/81/1	5.82	3.03
HGRK-PRTMWIII	4/13/98	4.63	4.21	2/18/98	5.31	3.53	86/12/98	5.94	2.90	86/E1/L	5.83	3.01
HGRK-PRTMWD12	4/13/98	4.56	4.18	2/18/98	5.23	3.51	86/12/98	5.85	2.89	7/13/98	5.75	2.99
HGRK-PRTMWI12	4/13/98	4.64	4.20	2/18/98	5.31	3.53	6/12/98	5.96	2.88	2/13/98	5.84	3.00
HGRK-PRTMWD13	4/13/98	4.73	4.15	86/81/5	5.41	3.47	86/21/9	6.04	2.84	7/13/98	5.93	2.95
HGRK-PRTMWI13	4/13/98	4.75	4.11 /C	5/18/98	5.44	3.42 /C	86/51/9	6.07	2.79 /C	7/13/98	5.87	2.99 /C

TABLE 4-20 WATER LEVEL MEASUREMENTS

	Depth to Ground ground water Water (ft)	5.86		5.85 3.00	5.86 3.02	5.87 2.99	5.85 2.99	5.88 2.98	5.87 2.99	5.87 2.97	5.86 2.94	5.87 3.05	5.96 2.96	5.94 2.87	5.94 2.97	
	Bate	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	7/13/98	
ENT	Ground Water Elevation (ft)	2.89	2.83	2.88	2.91	2.86	2.86	2.86	2.87	2.83	2.83	2.87	2.87	2.84	2.84	
AMPLING EV	Depth to ground water (ft)	5.94	5.99	5.97	5.97	00.9	5.98	90.9	5.99	10.9	5.97	6.05	6.05	5.97	6.07	
ENTS: EACH S	Date	86/51/9	96/12/98	8/12/98	86/51/9	86/12/98	86/12/98	6/15/98	86/12/98	86/51/9	86/12/98	86/12/98	86/51/9	86/51/9	86/51/9	
WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	Ground Water Elevation (ft)	3.48	3.48	3.53	3.55	3.51	3.51	3.48	3.50	3.46	3.46	3.51	3.51	3.47	3.47	
WATER LEVE	Depth to ground water (ft)	5.35	5.34	5.32	5.33	5.35	5.33	5.38	5.36	5.38	5.34	5.41	5.41	5.34	5.44	
>	Date	2/18/98	8/18/98	2/18/98	86/81/5	86/81/5	8/18/98	86/81/5	86/81/9	86/81/9	86/81/5	86/81/9	86/81/9	86/81/9	86/81/5	
	Ground Water Elevation (ft)	4.16	4.16	4.21	4.23	4.17	4.18	4.10	4.18	4.14	4.16	4.18	4.15	4.15	4.15	
	Depth to ground water (ft)	4.67	4.66	4.64	4.65	4.69	4.66	4.76	4.68	4.70	4.64	4.74	4.77	4.66	4.76	
	Date	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	4/13/98	
	MONITORING WELL IDENTIFICATION	HGRK-PRTMWD14	HGRK-PRTMW114	HGRK-PRTMWD15	HGRK-PRTMW115	HGRK-PRTMWD16	HGRK-PRTMW116	HGRK-PRTMWD17	HGRK-PRTMW117	HGRK-PRTMWD18	HGRK-PRTMWI18	HGRK-PRTMWD19	HGRK-PRTMWI19	HGRK-PRTMWD20	HGRK-PRTMWI20	Notes

NC= Data not collected

NI = Wells not installed at time of measurement

IC = Water Levels from HGRK-PRTWM113 not used for Feb 98 to August 98. It was determined that the casing had been pulled loose in the well vault. Data from August 1998 correct after cap reset and surveyed.

L = Water Level measuremetents believed to be inaccurate - possible malfuction with water level tape reading 9.xx when it should have read 6.xx. Data not used for water level contours.

ALE = Water Level measuremetents believed to be inaccurate. Data not used for water level contours.

TABLE 4-20 WATER LEVEL MEASUREMENTS

MONITORING WELL IDENTIFICATION	Date	Depth to ground water (ft)	Ground Water Elevation		Depth to ground water	Ground Water Elevation	32	Depth to ground water	Ground Water Elevation	30	Depth to ground water	Ground Water Elevation
HK2D	86/01/8	NC	NC	9/14/98		NC	10/12/98	NC	NC	11/16/98	5.03	3.33
HK2S	8/10/98	5.69	2.77	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.18	4.28
HKSS	8/10/98	5.97	2.75	9/14/98	NC	NC	10/12/98	NC	NC	86/91/11	4.41	4.31
HK6S	8/10/8	5.39	2.75	9/14/98	NC	NC	10/12/98	NC	NC	86/91/11	3.82	4.32
HK7S	8/10/8	09.9	2.83	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	5.02	4.41
нк98	8/10/8	6.17	2.74	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.62	4.29
HK10D	8/10/8	6.41	2.72	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.89	4.24
HK10S	8/10/8	6.35	2.75	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.91	4.19
HKIIS	8/10/98	6.45	2.73	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.91	4.27
HK15D	8/10/98	NC	NC	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.99	3.31
HKI5S	8/10/8	NC	NC	9/14/98	NC	NC	10/12/98	NC	NC	86/91/11	3.92	4.34
HK16D	8/10/98	6.42	27.7	9/14/98	5.48	3.16	10/12/98	4.74	3.90	11/16/98	5.27	3.37
HK16S	8/10/98	5.92	2.72	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.41	4.23
HK17D	8/10/98	5.80	2.23	9/14/98	4.90	3.13	10/12/98	4.16	3.87	11/16/98	4.70	3.33
HK18D	8/10/98	6.56	2.62	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.98	4.20
HK18S	8/10/98	6.55	2.64	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.97	4.22
HK19D	8/10/98	6.21	2.64	9/14/98	5.05	3.80	10/12/98	4.02	4.83	11/16/98	4.72	4.13
HK19S	8/10/8	6.14	2.66	9/14/98	NC	NC	10/12/98	NC	NC	11/16/98	4.71	4.09
HK20D	8/10/8	6.40	2.18	9/14/98	5.53	3.05	10/12/98	4.78	3.80	11/16/98	5.27	3.31
HK20S	8/10/8	5.92	2.62	9/14/98	4.72	3.82	10/12/98	3.70	4.84	11/16/98	4.46	4.08
HK21D	8/10/8	6.53	2.19	9/14/98	5.69	3.03	10/12/98	4.93	3.79	11/16/98	5.44	3.28
HK21S	86/01/8	6.09	2.70	9/14/98	4.87	3.92	10/12/98	3.82	4.97	11/16/98	4.56	4.23
HK22D	86/01/8	7.50	16.1	9/14/98	6.73	2.68	10/12/98	80.9	3.33	11/16/98	6.54	2.87
HK22S	86/01/8	7.20	2.26	9/14/98	90.9	3.40	10/12/98	5.04	4.42	11/16/98	5.82	3.64
MWI04	86/10/8	8.88	-0.33 /L	9/14/98	4.73	3.82	10/12/98	3.82	4.73	11/16/98	3.39	5.16
MW16DD	86/01/8	5.59	2.26	9/14/98	4.77	3.08	10/12/98	3.97	3.88	11/16/98	4.41	3.44 /LL
MWD16	8/10/98	4.99	2.75	9/14/98	3.81	3.93	10/12/98	2.76	4.98	11/16/98	3 40	4 34

WATER LEVEL MEASUREMENTS TABLE 4-20

				>	VATER LEVEI	, MEASUREM.	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	AMPLING EV	ENT				
MONITORING WELL IDENTIFICATION		Depth to	Ground		Depth to	Ground Water		Depth to	Ground Water		Depth to	Ground Water	Γ
	Date	ground water (ft)	Elevation (ft)	Date	ground water (ft)	Elevation (ft)	Date	ground water (ft)	Elevation (ft)	Date	ground water (ft)	Elevation (ft)	
MW116	86/01/8	4.90	2.79	9/14/98	3.71	3.98	10/12/98	2.65	5.04	11/16/98	3.29	4.40	
WW119	86/01/8	00.9	2.60	9/14/98	4.95	3.65	10/12/98	3.90	4.70	11/16/98	4.57	4.03	
MW120	86/01/8	8.14	2.76	9/14/98	7.00	3.90	10/12/98	6.05	4.85	11/16/98	09.9	4.30	
MWD20	86/01/8	8.01	2.72	9/14/98	86.9	3.75	10/12/98	6.05	4.68	11/16/98	19'9	4.12	
MW122	86/01/8	6.64	2.72	9/14/98	5.47	3.89	10/12/98	4.49	4.87	11/16/98	5.09	4.27	
MWD22	86/01/8	7.10	2.33	9/14/98	91.9	3.27	10/12/98	5.36	4.07	11/16/98	5.86	3.57	
MWI23	8/10/8	9.33	-0.30 AL	9/14/98	5.20	3.83	10/12/98	4.33	4.70	11/16/98	4.94	4.09	
MWD23	8/10/8	9.23	-0.32 /L	9/14/98	5.11	3.80	10/12/98	4.24	4.67	11/16/98	4.75	4.16	
MW124	8/10/8	7.09	2.51	9/14/98	5.96	3.64	10/12/98	5.08	4.52	11/16/98	5.64	3.96	
HGRK-PRTMWD01	86/01/8	6.03	2.73	9/14/98	4.85	3.91	10/12/98	3.80	4.96	11/16/98	4.46	4.30	
HGRK-PRTMW101	8/10/8	6.03	2.73	9/14/98	4.87	3.89	10/12/98	3.81	4.95	11/16/98	4.45	4.31	
HGRK-PRTMWD02	86/01/8	6.03	2.72	9/14/98	4.85	3.90	10/12/98	3.80	4.95	11/16/98	4.46	4.29	
HGRK-PRTMW102	8/10/8	9.00	2.75	9/14/98	4.84	3.91	10/12/98	3.78	4.97	11/16/98	4.43	4.32	
HGRK-PRTMWD03	8/10/8	90.9	2.74	9/14/98	4.88	3.92	10/12/98	3.84	4.96	11/16/98	4.51	4.29	
HGRK-PRTMW103	86/01/8	9.00	2.80	9/14/98	4.91	3.89	10/12/98	3.83	4.97	11/16/98	4.48	4.32	
HGRK-PRTMWD05	8/10/98	6.04	2.73	9/14/98	4.89	3.88	10/12/98	3.84	4.93	11/16/98	4.51	4.26	
HGRK-PRTMW105	8/10/8	6.04	2.73	9/14/98	4.88	3.89	10/12/98	3.83	4.94	11/16/98	4.47	4.30	
HGRK-PRTMWD07	8/10/98	6.05	2.71	9/14/98	4.89	3.87	10/12/98	3.82	4.94	11/16/98	4.49	4.27	
HGRK-PRTMW107	8/10/98	6.05	2.74	9/14/98	4.91	3.88	10/12/98	3.85	4.94	11/16/98	4.50	4.29	
HGRK-PRTMWD09	8/10/8	80.9	2.69	9/14/98	4.91	3.86	10/12/98	3.86	4.91	11/16/98	4.52	4.25	
HGRK-PRTMW109	8/10/8	90.9	2.70	9/14/98	4.91	3.85	10/12/98	3.85	4.91	11/16/98	4.49	4.27	
HGRK-PRTMWD11	8/10/8	6.05	2.80	9/14/98	4.95	3.90	10/12/98	3.91	4.94	11/16/98	4.56	4.29	
HGRK-PRTMW111	8/10/98	6.10	2.74	9/14/98	4.96	3.88	10/12/98	3.92	4.92	11/16/98	4.55	4.29	
HGRK-PRTMWD12	8/10/8	6.03	2.71	9/14/98	4.89	3.85	10/12/98	3.84	4.90	11/16/98	4.49	4.25	
HGRK-PRTMW112	8/10/8	6.14	2.70	9/14/98	4.99	3.85	10/12/98	3.93	4.91	11/16/98	4.57	4.27	
HGRK-PRTMWD13	8/10/8	6.15	2.73	9/14/98	5.06	3.82	10/12/98	4.02	4.86	11/16/98	4.66	4.22	
HGRK-PRTMWII3	8/10/98	91.9	2.70	9/14/98	5.00	3.86	10/12/98	3.96	4.90	11/16/98	4.59	4.27	

TABLE 4-20 WATER LEVEL MEASUREMENTS

				>	VATER LEVE	L MEASUREM	WATER LEVEL MEASUREMENTS: EACH SAMPLING EVENT	AMPLING EV	ENT			
MONITORING WELL IDENTIFICATION	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)	Date	Depth to ground water (ft)	Ground Water Elevation (ft)
HGRK-PRTMWD14	8/10/98			9/14/98	5.01	3.82	10/12/98	3.97	4.86	11/16/98	4.60	4.23
HGRK-PRTMWI14	8/10/98	6.16	2.66	9/14/98	5.01	3.81	10/12/98	3.96	4.86	11/16/98	4.60	4.22
HGRK-PRTMWD15	8/10/8	6.12	2.73	9/14/98	4.99	3.86	10/12/98	3.95	4.90	11/16/98	4.58	4.27
HGRK-PRTMW115	8/10/98	6.15	2.73	9/14/98	5.00	3.88	10/12/98	3.96	4.92	11/16/98	4.60	4.28
HGRK-PRTMWD16	8/10/98	6.15	2.71	9/14/98	5.01	3.85	10/12/98	3.99	4.87	11/16/98	4.63	4.23
HGRK-PRTMW116	8/10/8	6.15	2.69	9/14/98	5.00	3.84	10/12/98	3.95	4.89	11/16/98	4.59	4.25
HGRK-PRTMWD17	8/10/98	6.18	2.68	9/14/98	5.02	3.84	10/12/98	3.99	4.87	11/16/98	4.63	4.23
HGRK-PRTMWII7	8/10/98	6.17	2.69	9/14/98	5.01	3.85	10/12/98	3.98	4.88	11/16/98	4.62	4.24
HGRK-PRTMWD18	86/01/8	6.20	2.64	9/14/98	5.02	3.82	10/12/98	3.98	4.86	11/16/98	4.63	4.21
HGRK-PRTMWI18	86/01/8	6.15	2.65	9/14/98	5.00	3.80	10/12/98	3.95	4.85	11/16/98	4.59	4.21
HGRK-PRTMWD19	8/10/8	6.23	2.69	9/14/98	5.07	3.85	10/12/98	4.04	4.88	11/16/98	4.68	4.24
HGRK-PRTMWI19	86/01/8	6.23	2.69	9/14/98	5.08	3.84	10/12/98	4.05	4.87	11/16/98	4.67	4.25
HGRK-PRTMWD20	8/10/8	6.15	2.66	9/14/98	4.99	3.82	10/12/98	3.98	4.83	11/16/98	4.60	4.21
HGRK-PRTMW120	8/10/98	6.25	2.66	9/14/98	5.10	3.81	10/12/98	4.07	4.84	11/16/98	4.70	4.21
Notes												

NC= Data not collected

NI = Wells not installed at time of measurement

IC = Water Levels from HGRK-PRTWM113 not used for Feb 98 to August 98. It was determined that the casing had been pulled toose in the well vault. Data from August 1998 correct after cap reset and surveyed.

L = Water Levet measuremetents believed to be inaccurate - possible malfuction with water level tape reading 9.xx when it should have read 6.xx. Data not used for water level contours.

ALL = Water Level measuremetents believed to be inaccurate. Data not used for water level contours.

TABLE 4-21 FLOW SENSOR DATA

NOL	PRT15 PRT16 PRT21	-3.74 +/- 0.59 6.67 * -9.90 +/- 1.84		-	* 76.95				+/- 0.76 1.38 *	1.40 +/- 1.81	24.61 79.80 * -67.12 +/-			-5.08 +/- 0.76 7.69 * -10.81 +/- 2.02	+/- 0.73 1.33 * 4.58 +/-	+	-51.44 +/- 24.57 80.19 * -67.04 +/- 29.56	10.21 +/- 11.6 123.1 * 10.77 +/- 22.0	0.13 0.49 0.20	-4.66 +/- 0.68 7.45 * -11.37 +/- 2.12	3.55 +/- 0.66 1.18 * 4.75 +/- 1.69	5.86 +/- 6.80 7.54 * 12.32 +/- 14.95	+/- 24.95 81.00 *	10.52 +/- 12.0 128.5 * 7.62 +/- 21.4	0.12 0.48 0.20	3.44 +/- 0.49 7.45 * 11.45 +/- 2.08	1.08 * 4.49 +/-	* 12.30 +/- 1	ı	8.82 +/- 12.6 144.5 * 0.89 +/- 22.2	0.10
SENSOR LOCATION	03	1.85 * -0.24 +/- 0.32 -0.68 +/- 0.20	0.78 * 0.37 +/- 0.34 1.50 +/- 0.25	*	*	23.4 * 227.5 +/- 72.8 341.3 +/- 10.2	0.34 0.11 0.04	1.80 * 07.0 85.0 ./+ 85.0 * 08.1	* 0.38 +/- 0.33 1.55 +/-	1.70 +/-	* -40.97 +/- 2	24.0 * 237.2 +/- 75.6 344.2 +/- 10.2	0.34 0.11 0.04	* -0.34 +/- 0.34	* 0.43 +/- 0.35 1.55 +/-	* 0.55 +/-	* -38.33 +/- 25.44	* 242.3 +/- 66.5	0.34 0.12 0.04	1.88 * -0.38 +/- 0.35 -0.83 +/- 0.21	* 0.44 +/- 0.35 1.60 +/-	* 0.58 +/- 1.08 1.80 +/-	* -40.82 +/- 26.14 -27.42 +/- 15	* 244.7 +/- 66.3 3	0.34 0.12 0.04	1.99 * -0.40 +/- 0.36 -0.90 +/- 0.21	0.50 * 0.59 +/- 0.38 1.56 +/- 0.23	2.05 * 0.71 +/- 1.23 1.80 +/- 2.11	* -34.14 +/- 23.00 -29.98 +/- 1	* 245.1 +/- 49.9 3	0.35
End Parameter		15:25	Horizontal flow (cm/day)	Total flow (cm/day)	Degrees from Horizontal	Azimuth (° from North)	ERMS	98 13:13 Vertical flow (cm/dav)	Horizontal flow (cm/day)	Total flow (cm/day)	Degrees from Horizontal	Azimuth (° from North)	ERMS	9:56	Horizontal flow (cm/day)	Total flow (cm/day)	Degrees from Horizontal	Azimuth (° from North)	EKMS	8:00	Horizontal flow (cm/day)	l otal flow (cm/day)	Degrees from Horizontal	Azimuth (* Irom North)	EKMS	7:00 Vertical flow (cm/day)	Horizontal flow (cm/day)	Total flow (cm/day)	Degrees from Horizontal	Azimuth (* from North)	EKMS
Start Start End Date Time Date		2/22/98 2:33 2/23/98						3/8/98 0:14 3/9/98						3/16/98 20:45 3/18/98						3/25/98 14:30 4/15/98						4/15/98 8:30 5/14/98		-			

TABLE 4-21 FLOW SENSOR DATA

Start Date	Start Time	End Date	End	Parameter						SEN	SOR LO	SENSOR LOCATION	z						
					PRT03		PRT05	05	Ь	PRT10	H	PF	PRT15	H	PRT16		PR	PRT21	
5/27/98	7:31	86/51/9	11:31	11:31 Vertical flow (cm/day)	1.67	*	-0.59 +/-	0.38	-0.94	+	0.21	-3.37 +/-		0.45	89.9	*	-11.85		2.09
				Horizontal flow (cm/day)	0.44	*	0.58 +/-	0.38	1.35 +/-	-/+	0.22	2.24 +/-		0.46		*	3.96 +/-		1.62
				Total flow (cm/day)	1.73	*	0.83 +/-	1.36	-/+ 59:1	-/+	1.95	4.05 +/-		4.68	92.9	*	12.49 +/-		15.02
				Degrees from Horizontal	75.24	*	-42.49 +/-	26.26	-34.85	-/+	18.68	-56.39 +/-		25.97	81.32	*	-71.52 +/-		30.45
				Azimuth (° from North)	23.3	*	247.9 +/-	53.9	329.2	-/+	11.2	99.6	-/+	13.3	148.6	*		-/+	26.7
				ERMS	0.33	+	0.11		0.04			0.10		H	0.47	Н	0.19		
86/81/9	×2	7/23/98	10:00	10:00 Vertical flow (cm/dav)	1 08	*	0.53	At 0	7+ 580-	74	0.21	3111		0.40	7.31	*	0.03		76
				Horizontal flow (cm/day)	0.50	*	0.48 +/-		1.27	+	0.22	2.07 +/-	ı	0.43		\vdash	3 47 +/-		4
Note: 6/15-17/98 and	5-17/98	pur		Total flow (cm/day)	2.04	*	0.72 +/-		1.53	+	1.83	3.74 +/-		4.33	1		10.52 +/-	l	12.69
36/91-81//	8 remove	7/13-16/98 removed from data		Degrees from Horizontal	75.83	*	-47.83 +/-	27.22	-33.79	-/+	18.41	-56.35 +/-		25.97	81.44	*	-70.74 +/-		30.24
set, during well sampling.	g well sa	mpling.		Azimuth (° from North)	20.9	*	245.3 +/-	63.3	330.4	-/+	11.3	_	-/+	13.5	144.9	*		-/+	27.3
				ERMS	0.34		0.11		0.04			01.0		_	0.49		0.20		
100			i i			-										_			Г
1123198	06:01	8/11/9	06:7	7:30 Vertical flow (cm/day)	2.04		-0.53 +/-		-/+ 66.0-	÷	0.24	-3.08 +/-				4	-9.37 +/-	ا	1.66
				Horizontal flow (cm/day)	0.52	*	0.44 +/-		-/+ 60.1	-/+	0.24	2.05 +/-					3.19 +/-	-/	1.43
				Total flow (cm/day)	2.11	\dashv	-/+ 69.0	1.19	1.47 +/-		1.81	3.70 +/-		4.28	7.47	×	-/+ 06.6		11.96
				Degrees from Horizontal	75.70	*	-50.30 +/-	27.94	-42.25 +/-		22.00	-56.35 +/-		26.00 8	81.84	*	-71.20 +/-		30.31
				Azimuth (° from North)	21.9	*	243.9 +/-	9.89	330.9	-/+	14.5	6.98 ₁	1 -/+	13.5	140.5	*	1.26 +	-/+	29.6
				ERMS	0.35		0.11		0.04			0.09			0.49	Ц	0.20		
8/14/98	00.8	9/14/08	8.30	8:30 Vertical flow (cm/day)	2.04		/ 1150	26.0	1. 136.0	`	100	٠. ١٢٠ د		67.0	62.6	*	, 121.0		
				Horizontal flow (cm/day)	0.68	*	0.35 +/-		1.17	‡	0.22	2.18 +/-				+	3 11 4		CO: 14
				Total flow (cm/day)	2.15	*	0.62 +/-	Ξ	1.39 +/-	-/+	1.69	3.85 +/-			L	*			11.71
				Degrees from Horizontal	71.57		-55.54 +/-	29.86	-32.66	-/+	18.17	-55.48 +/-	7	~	81.90	*	-71.27 +/-		30.32
				Azimuth (° from North)	20.9		244.8 +/-	84.6	336.1	-/+	12.1	9.9	+/-	13.1	137.7	*	+ 6.0		30.2
				ERMS	0.35		0.11		0.04			60.0		H	0.49	L	0.20		
9/11/68	0.00	0.00	7.30	7.30 Vertical flow (cm/day)	1 97		1. 1010	0.37	1. 1000		100	. hav		-5	2 20		. Jazor		
	3			Horizontal flow (cm/dav)		*	0.23 +/-		1 30 +/-	÷ ‡	0.24	3 53 1/-	ı	0.07		+	4 22 4/		76.1
				Total flow (cm/dav)	2 20	*	0.54 +/-		1+ 69 1	:	6	77 50 9	١			*	11 46 11	Т	13.84
				Degrees from Horizontal	58.41	*	-64.86 +/-	32.19	-30.84 +/-	+	17.02	-54.29 +/-				*	-68.38 +/-		29.79
				Azimuth (° from North)	6.81	*	257.0 +/-	120.9	344.1	-/+	8.01	8.35				*	7.2 +		22.9
				ERMS	0.34		0.11		0.04			0.12			0.50		0.19		

FLOW SENSOR DATA **TABLE 4-21**

Start Date	Start Time	End Date	End Time	Parameter						SENSOR LOCATION	R LOC	CATIO	7					
					PRT03		PRT05	-	Ā	PRT10	H	PR	PRT15	E E	PRT16		PRT21	
						H					H			L	L			
10/15/98	0:00	86/91/11	11:30	0:00 11/16/98 11:30 Vertical flow (cm/day)	2.01	*	-0.38	0.34	-0.78 +/-		0.21	-4.76 +/-	99:0 -/-	6 7.17	*	-11.28 +/-	-/+ 2	2.06
				Horizontal flow (cm/day)	1.03	*	0.33 +/-	0.34	1.45	0 -/+ 9	0.24	3.53 +/-	14- 0.63		1.13	4.70	7	1.66
				Total flow (cm/day)	2.26	*	0.50	86.0	1.65 +/-		1.96	5.93 +/-	-/- 6.83	3 7.26	* 96	12.22	+	14.78
				Degrees from Horizontal	62.87	*	-49.03 +/- 2	28.96	-28.28 +/-		15.94	-53.44 +/-	-/- 25.14	4 81.04	*	-67.38 +/-	7+ 1	29.61
				Azimuth (° from North)	16.2	*	258.9 +/-	616	340.0 +/-		10.5	7+ 9.7	11.	6 121.7	* 1	4.8	-/+	21.4
				ERMS	0.34		0.11		0.04			0.12		0.50	00	0.19		

Notes:

1: * indicates no uncertainty calculated because ERMS value is above 0.30.
2: ERMS indicates Error Root Mean Square. It is derived by fitting the data to a theoretical curve.
3: An additional ± 10% error should be added to the azimuth related to installation of the probes (Ballard, 1996)

TABLE 4-22

RESULTS FOR FLOW SENSOR AT LOCATION PRT 03

							Parameter				
											T
Start Date	Start Time	End Date	End Time	Vertical flow (cm/day)	Horizontal flow (cm/day)	Total flow (cm/day)	Degrees from Horizontal		Azimuth (° from North)	m ERMS	S
2/22/98	2:33	2/23/98	15:25	1.85 +/- *	* -/+ 82	2	77 1 29		33.4/		
3/8/88	0:14	3/6/68	13:13	* -/+ 08.1	1.05 +/- *	* -/- *	507 +/-	*	* // 0 //		0.34
3/16/98	20:45	3/18/98	9:56	1.84 +/- *	* -/+ 96.0	2.08 +/- *	62 4 +1-	*	73 3 +/ *		0.34
3/25/98	14:30	4/15/98	8:00	* -/+ 88.1	0.84 +/- *	2.06 +/- *	65 9 +/-	*	* 7-1-1-00	1	0.34
4/15/98	8:30	5/14/98	00:2	* -/+ 66:1	0.50 +/- *	2.05 +/- *	75 9 +/-	*	* 17 8 11		0.34
5/27/98	7:31	86/12/98	11:31	* -/+ 21	0.44 +/- *	1.73 +/- *	75.2 +/-	*	73 3 1/ *	-	0.50
6/18/98	6:18	7/23/98	10:00	* -/+ 86.1	0.50 +/- *	2.04 +/- *	75.8 ±/-		* / 000		0.50
7/23/98	10:30	86/11/8	7:30	2.04 +/- *	0.52 +/- *	211 +/- *	757	*	20.9 +/-		0.34
8/14/98	8:00	9/14/98	8:30	2.04 +/- *	* -/+ 89:0	2.15 +/- *	71.6 ±/-	*	* -/+ 6.12		0.35
9/11/6	0:00	10/13/98	7:30	* -/+ 2	1.15 +/- *	2.20 +/- *	58.4 +/-	*	18 0 1/ *		0.33
10/15/98	0:00	11/16/98	11:30	2.01 +/- *	1.03 +/- *	2.26 +/- *	62.9 +/-	*	* -/+ 291		4.0 2.0 2.0 2.0
											10.0
Average				1.91 +/- *	* -/+ 2	2.07 +/- *	68 3 ±/-	*	* / ' ' ' '		,,
Standard Deviation	ation			0.116	0.26	0.13	6.9	•	-/+ 7:17		0.34
Notes:	1: * indicates r	o uncertaint	V calculated b	1: * indicates no uncertainty calculated because CDMC i	0.0			$\frac{1}{2}$	4ك		0.01

tes: 1: * indicates no uncertainty calculated because ERMS value is above 0.30.

JAG

Mandrel

PRT 03: Vertical Flow

NOTE: PeRT Wall Oriented at North 410 East

PRT 03 -->

L:\work\concept\39748\report\draft final\Sensorsm.xls

RESULTS FOR FLOW SENSOR AT LOCATION PRT 05 **TABLE 4-23**

								Para	Parameter				
Start Date S	Stort Time	Fnd Data	Fnd Time	Vertical flow	Horizontal	tal	Total flow	*	Degrees from	mo.	Azimuth (° from	from	FDMC
		T	anna mica	(Cingday)	now (chipday)	(aay)	(CIII/Uay)	+	norizontai	. T	North		CIMINIS
2/22/98	2:33	2/23/98	15:25	-0.24 +/- 0.32 0.37 +/- 0.34 0.44 +/- 0.90	2 0.37 +/-	0.34 0	.44 +/-	06.0	-33.0 +/-	24.6	227.5 +/-	72.8	0.11
3/8/88	0:14	3/6/6	13:13	-0.33 +/- 0.33 0.38 +/- 0.33 0.50 +/-	3 0.38 +/-	0.33 0		0.97	-41.0 +/-	26.6	237.2 +/-	75.6	0.11
3/16/98	20:45	3/18/98	9:56	-0.34 +/- 0.34	0.43 +/-	0.35 0	0.55 +/-	1.03	-38.3 +/-	25.4	242.3 +/-	66.5	0.12
3/25/98	14:30	4/12/98	8:00	-0.38 +/- 0.35	0.44 +/-	0.35 0	0.58 +/-	1.08	-40.8 +/-	26.1	244.7 +/-	66.3	0.12
4/12/98	8:30	5/14/98	7:00	-0.40 +/- 0.36 0.59 +/- 0.38 0.71 +/-	6 0.59 +/-	0.38 0	.71 +/-	1.23	-34.1 +/-	23.0	245.1 +/-	49.9	0.12
5/27/98	7:31	6/12/98	11:31	-0.59 +/- 0.38	3 0.58 +/- 0.38		0.83 +/-	1.36	-45.5 +/-	26.3	247.9 +/-	53.9	0.11
86/81/9	6:18	7/23/98	10:00	-0.53 +/- 0.36	5 0.48 +/- 0.37		0.72 +/-	1.23	-47.8 +/-	27.2	245.3 +/-	63.3	0.11
7/23/98	10:30	8/11/8	7:30	-0.53 +/- 0.35 0.44 +/-	5 0.44 +/-	0.36 0.69 +/-	-/+ 69:	1.19	-50.3 +/-	27.9	243.9 +/-	9.89	0.11
8/14/98	8:00	9/14/98	8:30	-0.51 +/- 0.35	5 0.35 +/- 0.35 0.62 +/- 1.11	0.35 0	.62 +/-	Ξ	-55.5 +/-	29.9	244.8 +/-	84.6	0.11
86/11/6	0:00	10/13/98	7:30	-0.49 +/- 0.32	0.23 +/-	0.32 0	0.54 +/-	86.0	-64.9 +/-	32.2	257.0 +/-	120.9	0.11
10/15/98	0:00	11/16/98	11:30	-0.38 +/- 0.34	0.33 +/-	0.34 0	0.50 +/-	86.0	-49.0+/-	29.0	258.9 +/-	616	0.11
Average				-0.43 +/- 0.35 0.42 +/- 0.35 0.61 +/- 1.10	6 0.42 +/-	0.35 0	-/+ 19:	1.10	-45.5 +/-	27.1	245.0 +/-	74.0	0.11
Standard Deviation	ıtion			0.11	0.11	0	0.12		9.5		8.5		0.0
PRT 06 Horizo	PRT 06 Horizontal Flow Direction in Degrees From Horizontal	i in Degrees From	Horizontal							100			

NOTE: PeRT Wall Oriented at North 410 East

105

356

TABLE 4-23: RESULTS FOR FLOW SENSOR AT LOCATION PRT 05

TABLE 4-24

RESULTS FOR FLOW SENSOR AT LOCATION PRT 10

Start Time End Date Centical flow Horizontal Total flow Cendday) Cendday Cendda										Par	Parameter				
2:33 2/23/98 15:25 -0.68 +/- 0.20 1.55 +/- 0.25 1.65 +/- 1.96 -24.4 +/- 14.1 341.3 +/- 10.2 0:14 3/9/98 13:13 -0.70 +/- 0.21 1.55 +/- 0.25 1.70 +/- 2.02 -24.3 +/- 14.2 344.2 +/- 10.2 20:45 3/18/98 9:56 -0.74 +/- 0.21 1.55 +/- 0.25 1.70 +/- 2.02 -24.3 +/- 14.7 342.4 +/- 10.2 14:30 4/15/98 8:00 -0.83 +/- 0.21 1.65 +/- 0.23 1.72 +/- 2.04 -25.5 +/- 15.4 342.4 +/- 10.1 8:30 6/15/98 8:00 -0.90 +/- 0.21 1.60 +/- 0.23 1.80 +/- 2.11 -27.4 +/- 15.4 38.9 +/- 9.6 6:18 7/23/98 10:00 -0.98 +/- 0.21 1.55 +/- 0.22 1.53 +/- 1.83 -34.8 +/- 18.7 330.4 +/- 11.3 6:18 7/23/98				End Time	Vertical fle		Horizont Now (cm/d	la l	Total fle	* 3	Degrees fr Horizont	mo Ja	Azimuth (° f North)	rom	ERMS
0:14 3/9/98 13:13 -0.70 +/- 0.21 1.75 +/- 2.02 -24.3 +/- 14.2 344.2 +/- 10.2 20:45 3/18/98 9:56 -0.74 +/- 0.21 1.55 +/- 0.25 1.72 +/- 14.7 342.4 +/- 10.1 20:45 3/18/98 8:00 -0.83 +/- 0.21 1.55 +/- 0.24 1.80 +/- 2.11 -27.4 +/- 15.4 342.4 +/- 10.1 8:30 4/15/98 8:00 -0.83 +/- 0.21 1.60 +/- 0.23 1.80 +/- 2.11 -27.4 +/- 15.4 338.9 +/- 9.8 6:18 7/23/98 11:31 -0.94 +/- 0.21 1.55 +/- 0.22 1.65 +/- 1.95 -34.8 +/- 18.7 330.4 +/- 11.3 10:30 8/11/98 7:30 -0.99 +/- 0.21 1.74 +/- 1.81 -32.7 +/- 18.7 349.4 +/- 11.3 0:00 10/13/98 7:30 -0.99 +/- 0.21 1.74 +/- 1.94 -1.95	00	2:33	2/23/98) -/+ 89:0-	0.20	1.50 +/- (9.25	1.65 +/-	1.96	-24.4 +/-	14.1	341.3 +/-	10.2	0.04
20:45 3/18/98 9:56 -0.74 +/- 0.21 1.55 +/- 0.25 1.72 +/- 2.04 -25.5 +/- 14.7 342.4 +/- 10.1 10.1 14:30 4/15/98 8:00 -0.83 +/- 0.21 1.60 +/- 0.24 1.80 +/- 2.11 -27.4 +/- 15.4 338.9 +/- 9.6 9.6 8:30 5/14/98 7:00 -0.90 +/- 0.21 1.56 +/- 0.23 1.80 +/- 2.11 -30.0 +/- 16.5 331.1 +/- 9.8 7:31 6/15/98 11:31 -0.94 +/- 0.21 1.35 +/- 0.22 1.65 +/- 1.95 -34.8 +/- 18.7 330.4 +/- 11.3 6:18 7/23/98 10:00 -0.85 +/- 0.21 1.27 +/- 0.22 1.53 +/- 1.83 -33.8 +/- 18.4 330.4 +/- 11.3 10:30 8/11/98 7:30 -0.94 +/- 0.24 1.09 +/- 0.24 1.47 +/- 1.81 -42.2 +/- 22.0 330.9 +/- 14.5 8:00 9/14/98 8:30 -0.75 +/- 0.21 1.77 +/- 0.22 1.39 +/- 1.69 -32.7 +/- 18.2 336.1 +/- 10.8 0:00 11/16/98 11:30 -0.78 +/- 0.21 1.45 +/- 0.24 1.65 +/- 1.93 -30.8 +/- 15.9 340.0 +/- 10.5 0:00 <td>3/8/88</td> <td>0:14</td> <td>3/6/6/8</td> <td></td> <td>-0.70 +/- (</td> <td>0.21</td> <td>1.55 +/- (</td> <td>0.25</td> <td>1.70 +/-</td> <td>2.02</td> <td>-24.3 +/-</td> <td>14.2</td> <td>344.2 +/-</td> <td>10.2</td> <td>0.04</td>	3/8/88	0:14	3/6/6/8		-0.70 +/- (0.21	1.55 +/- (0.25	1.70 +/-	2.02	-24.3 +/-	14.2	344.2 +/-	10.2	0.04
14:30 4/15/98 8:00 -0.83 +/- 0.21 1:60 +/- 0.21 1:80 +/- 2.11 -27.4 +/- 15.4 338.9 +/- 9.6 8:30 5/14/98 7:00 -0.90 +/- 0.21 1.56 +/- 0.23 1.80 +/- 2.11 -30.0 +/- 16.5 331.1 +/- 9.8 7:31 6/15/98 11:31 -0.94 +/- 0.21 1.25 +/- 0.22 1.65 +/- 1.95 -34.8 +/- 18.7 330.2 +/- 11.2 6:18 7/23/98 10:00 -0.85 +/- 0.21 1.27 +/- 0.22 1.53 +/- 1.83 -33.8 +/- 18.7 330.9 +/- 11.3 10:30 9/14/98 8:30 -0.75 +/- 0.24 1.67 +/- 1.69 -32.7 +/- 18.2 336.1 +/- 10.8 0:00 11/16/98 7:30 -0.83 +/- 0.21 1.45 +/- 0.24 1.65 +/- 1.96 -28.3 +/- 15.9 340.0 +/- 10.5 0:00 11/16/98 11:30 -0.21	3/16/98	20:45		9:56	-0.74 +/- (0.21	1.55 +/- (1		2.04	-25.5 +/-	14.7	342.4 +/-	10.1	0.04
8:30 5/14/98 7:00 -0.90 +/- 0.21 1.56 +/- 0.22 1.80 +/- 2.11 -30.0 +/- 16.5 331.1 +/- 9.8 7:31 6/15/98 11:31 -0.94 +/- 0.21 1.55 +/- 1.95 -34.8 +/- 18.7 329.2 +/- 11.2 6:18 7/23/98 10:00 -0.85 +/- 0.21 1.27 +/- 0.22 1.53 +/- 1.83 -33.8 +/- 18.7 329.2 +/- 11.3 10:30 -0.85 +/- 0.21 1.27 +/- 0.22 1.53 +/- 1.83 -33.8 +/- 18.7 330.9 +/- 11.3 8:00 9/14/98 8:30 -0.75 +/- 0.21 1.7 +/- 0.22 13.7 +/- 1.65 -7.7 +/- 18.2 336.1 +/- 10.8 0:00 10/13/98 7:30 -0.83 +/- 0.21 1.45 +/- 0.24 1.65 +/- 1.96 -28.3 +/- 15.9 340.0 +/- 10.5 0:00 11/16/98 11:30 -0.21 1.41 +/- 0.24	3/25/98	14:30	4/12/98	8:00	-0.83 +/- (0.21	1.60 +/- (1.80 +/-	2.11	-27.4 +/-	15.4	338.9 +/-	9.6	0.04
7:31 6/15/98 11:31 -0.94 +/- 0.21 1.55 +/- 0.22 1.65 +/- 1.95 -34.8 +/- 18.7 329.2 +/- 11.2 6:18 7/23/98 10:00 -0.85 +/- 0.21 1.27 +/- 0.22 1.53 +/- 1.83 -33.8 +/- 18.4 330.4 +/- 11.3 10:30 8/11/98 7:30 -0.99 +/- 0.24 1.47 +/- 1.81 -42.2 +/- 22.0 330.9 +/- 11.3 8:00 9/14/98 8:30 -0.75 +/- 0.24 1.47 +/- 1.81 -42.2 +/- 22.0 330.9 +/- 14.5 0:00 10/13/98 7:30 -0.75 +/- 0.24 1.62 +/- 1.93 -32.7 +/- 18.2 336.1 +/- 10.8 0:00 11/16/98 11:30 -0.78 +/- 0.24 1.65 +/- 1.95 -28.3 +/- 15.9 340.0 +/- 10.5 -0.82 +/- 0.28 +/- 0.24 1.65 +/- 1.95 -30.4 +/- 15.9 337.1 +/- 10.9	4/12/98	8:30	5/14/98	7:00) -/+ 06:0-	0.21	1.56 +/- (1.80 +/-	2.11	-30.0 +/-	16.5	331.1 +/-	8.6	0.04
6:18 7/23/98 10:00 -0.85 +/- 0.21 1.27 +/- 0.22 1.53 +/- 1.83 +/- 18.4 330.4 +/- 11.3 10:30 8/11/98 7:30 -0.99 +/- 0.24 1.47 +/- 1.81 -42.2 +/- 22.0 330.9 +/- 14.5 8:00 9/14/98 8:30 -0.75 +/- 0.21 1.17 +/- 0.22 1.39 +/- 1.69 -32.7 +/- 18.2 336.1 +/- 12.1 0:00 10/13/98 7:30 -0.75 +/- 0.21 1.17 +/- 0.24 1.65 +/- 1.93 -30.8 +/- 17.0 344.1 +/- 10.8 0:00 11/16/98 11:30 -0.78 +/- 0.21 1.65 +/- 1.95 -28.3 +/- 15.9 340.0 +/- 10.5 -0.82 +/- 0.22 1.63 +/- 1.95 -30.4 +/- 15.9 340.0 +/- 10.5 -0.82 +/- 0.21 1.41 +/- 0.24 1.63 +/- 1.95 -30.4 +/- 15.9 337.1 +/- 10.9	5/27/98	7:31	6/12/98	11:31	-0.94 +/- (1.35 +/- (0.22	1.65 +/-	1.95	-34.8 +/-	18.7	329.2 +/-	11.2	0.04
10:30 8/11/98 7:30 -0.99 +/- 0.24 1.09 +/- 0.24 1.47 +/- 1.81 -42.2 +/- 22.0 330.9 +/- 14.5 14.5	86/81/9		7/23/98	10:00	-0.85 +/- (0.21	1.27 +/- (1.53 +/-	1.83	-33.8 +/-	18.4	330.4 +/-	11.3	0.04
8:00 9/14/98 8:30 -0.75 +/- 0.21 1.17 +/- 0.22 1.39 +/- 1.69 -32.7 +/- 18.2 336.1 +/- 12.1 0:00 10/13/98 7:30 -0.83 +/- 0.21 1.39 +/- 0.24 1.62 +/- 1.93 -30.8 +/- 17.0 344.1 +/- 10.8 0:00 11/16/98 11:30 -0.78 +/- 0.21 1.45 +/- 0.24 1.65 +/- 1.96 -28.3 +/- 15.9 340.0 +/- 10.5 -0.82 +/- 0.21 1.41 +/- 0.24 1.63 +/- 1.95 -30.4 +/- 16.8 337.1 +/- 10.9 8.3 5.4 5.8 8.3	7/23/98		86/11/8) -/+ 66:0-	0.24	1.09 +/- (1.47 +/-	1.81	-42.2 +/-	22.0	330.9 +/-	14.5	0.04
0:00 10/13/98 7:30 -0.83 +/- 0.24 1.62 +/- 1.93 -30.8 +/- 10.8 -1.95 344.1 +/- 10.8 0:00 11/16/98 11:30 -0.78 +/- 0.21 1.45 +/- 0.24 1.65 +/- 1.96 -28.3 +/- 15.9 340.0 +/- 10.5 -0.82 +/- 0.21 1.41 +/- 0.24 1.63 +/- 1.95 -30.4 +/- 16.8 337.1 +/- 10.9 0.099 0.17 0.13 5.4 5.4 5.8 8.3	8/14/98	8:00	9/14/98	8:30	.0.75 +/- (1.17 +/- (1.39 +/-	1.69	-32.7 +/-	18.2	336.1 +/-	12.1	0.04
0:00 11/16/98 11:30 -0.78 +/- 0.21 1.45 +/- 0.24 1.65 +/- 1.95 -28.3 +/- 15.9 340.0 +/- 10.5 1.61 +/- 10.24 1.63 +/- 1.95 -30.4 +/- 16.8 337.1 +/- 10.9 8.3	86/11/6	0:00		7:30	-0.83 +/- (0.21	1.39 +/- (1.62 +/-	1.93	-30.8 +/-	17.0	344.1 +/-	8.01	0.04
-0.82 +/- 0.21 1.41 +/- 0.24 1.63 +/- 1.95 -30.4 +/- 16.8 337.1 +/- 10.9 8.3 0.17 0.13 5.4 5.8 8.3	10/15/98	00:00		11:30	-0.78 +/- (0.21	1.45 +/- (0.24	1.65 +/-	1.96	-28.3 +/-	15.9	340.0 +/-	10.5	0.04
-0.82 +/- 0.21															
0.099 0.17 0.13 5.4 5.8	Average				-0.82 +/- (0.21	1.41 +/- (0.24	1.63 +/-	1.95	-30.4 +/-	16.8		10.9	0.04
	Standard Dev	iation			0.099		0.17	_	0.13		5.4		5.8		8.3E-10

TABLE 4-25

RESULTS FOR FLOW SENSOR AT LOCATION PRT 15

									Par	Parameter				
Start Date	Start Time	End Date	End Time	Vertical flow (cm/day)		Horizontal flow (cm/day)	tal lav)	Total flow (cm/dav)	% ()	Degrees from Horizontal	m -r	Azimuth (° from North)	from	ERMS
2/22/98	2:33	2/23/98		15:25 -3.74 +/- 0.59 3.09 +/- 0.58 4.85 +/- 5.68	0.59	3.09 +/- (0.58	4.85 +/-	5.68	-50.4 +/-	24.3	10.2 +/-	12.3	0 11
3/8/88	0:14	3/9/98		-5.26 +/- 0.79	0.79	4.18 +/- 0.76 6.72 +/-	0.76	6.72 +/-	7.81	-51.5 +/-	24.6	10.8 +/-	10.8	0.14
3/16/98	20:45	3/18/98	9:56	-5.08 +/-	0.76	4.05 +/- (0.73	6.50 +/-	7.55	-51.4 +/-	24.6	10.2 +/-	11.6	0.13
3/25/98	14:30	4/15/98	8:00	-4.66 +/-	89.0	3.55 +/- (99.0	5.86 +/-	08.9	-52.7 +/-	25.0	10.5 +/-	12.0	0.12
4/15/98	8:30	5/14/98	7:00	-3.44 +/- 0.49 2.54 +/- 0.49	0.49	2.54 +/- (0.49	4.28 +/-	4.96	-53.6 +/-	25.2	8.8 +/-	12.6	0.10
5/27/98	7:31	86/12/98	11:31	-3.37 +/- 0.45		2.24 +/- 0.46 4.05 +/-	0.46	4.05 +/-	4.68	-56.4 +/-	26.0	-/+ 1.6	13.3	0.10
86/81/9	6:18	7/23/98	10:00	-3.11 +/-	0.42	2.07 +/- 0.43		3.74 +/-	4.33	-56.4 +/-	26.0	7.2 +/-	13.5	0.10
7/23/98	10:30		7:30	-3.08 +/-	0.42	2.05 +/- 0.42		3.70 +/-	4.28	-56.4 +/-	26.0	7.0 +/-	13.5	0.00
8/14/98	8:00	9/14/98	8:30	-3.17 +/- 0.43 2.18 +/- 0.44	0.43	2.18 +/- (3.85 +/-	4.45	-55.5 +/-	25.7	-/+ 9:9	13.1	0.0
86/11/6	0:00	10/13/98	7:30	-4.91 +/- 0.67 3.53 +/- 0.64	79.0	3.53 +/- (6.05 +/-	6.97	-54.3 +/-	25.4	8.4 +/-	11.7	0.12
10/15/98	0:00	11/16/98	11:30	-4.76 +/- 0.66 3.53 +/- 0.63	99.0	3.53 +/- (0.63	5.93 +/-	6.83	-53.4 +/-	25.1	7.6 +/-	11.6	0.12
Average				-4.05 +/- 0.58 3.00 +/- 0.57 5.05 +/- 5.85	.58	3.00 +/- (0.57	5.05 +/-	5.85	-53.8 +/-	25.3	8.8 +/-	12.4	0.11
Standard Deviation	/iation			0.876		0.81		1.18		2.2		1.6		0.02
DET 15 Decisors	DOT 15 Harisanis Elem Dissels in D.													

NOTE: PeRT Wall Oriented at North 410 East

TABLE 4-25: RESULTS FOR FLOW SENSOR AT LOCATION PRT 15

TABLE 4-26

RESULTS FOR FLOW SENSOR AT LOCATION PRT 16

							Par	Parameter				
Start Date	Start Time	End Date	End Time	Vertical flow (cm/day)	Horizontal flow (cm/day)	Total flow (cm/day)	* (Degrees from Horizontal	om al	Azimuth (° from North)	mo.	ERMS
2/22/98		2/23/98	15:25	15:25 6.67 +/- *	* -/+ 90:1	9	*	81.0 +/-	*	114.9 +/-	*	0.50
3/8/98	0:14		13:13	* -/+ L9.L	1.38 +/- *	7.79 +/-	*	79.8 +/-	*	120.8 +/-	*	0.49
3/16/98	20:45	3/18/98	9:56	* -/+ 69.7	1.33 +/- *	7.80 +/-	*	80.2 +/-	*	123.1 +/-	*	0.49
3/25/98	14:30	4/12/98	8:00	7.45 +/- *	1.18 +/- *	7.54 +/-	*	81.0 +/-	*	128.5 +/-	*	0.48
4/12/98	8:30	5/14/98	7:00	7.45 +/- *	* -/+ 80:1	7.53 +/-	*	81.8 +/-	*	144.5 +/-	*	0.48
2/21/98	7:31	86/12/98	11:31	* -/+ 89.9	1.02 +/- *	-/+ 9/-9	*	81.3 +/-	*	148.6 +/-	*	0.47
86/81/9	6:18	7/23/98	10:00	7.31 +/- *	* -/+ 01.1	7.39 +/-	*	81.4 +/-	*	144.9 +/-	*	0.49
7/23/98	10:30	8/11/8	7:30	7.39 +/- *	* -/+ 90:1	7.47 +1-	*	81.8 +/-	*	140.5 +/-	*	0.49
8/14/98	8:00	9/14/98	8:30	7.52 +/- *	* -/+ -/-	-/+ 09.7	*	-/+ 6:18	*	137.7 +/-	*	0.49
86/11/6	00:0	10/13/98	7:30	7.29 +/- *	1.16 +/- *	7.38 +/-	*	81.0 +/-	*	114.7 +/-	*	0.50
10/15/98	00:00	11/16/98	11:30	7.17 +/- *	1.13 +/- *	7.26 +/-	*	-/+ 0.18	*	121.7 +/-	*	0.50
Average				7.30 +/- *	1.14 +/- *	7.39 +/-	*	81.1 +/-	*	130.9 +/-	*	0.49
Standard Deviation	viation			0.345	0.12	0.35		0.7		12.7		0.01
Notes:	1: * indicates	no uncertaint	y calculated b	1: * indicates no uncertainty calculated because ERMS value is above 0.30	value is above 0.	30.			PF	PRT 15: Vertical Flow	ΜO	

1: * indicates no uncertainty calculated because ERMS value is above 0.30. PRT16 --> Mandre PRT 16 Horizontal Flow Direction in Degrees From Horizontal

NOTE: PeRT Wall Oriented at North 410 East

RESULTS FOR FLOW SENSOR AT LOCATION PRT 21 **TABLE 4-27**

									Parameter	neter				
Start Date	Start Time	End Date	Fnd Time	Vertical flow	wol	Horizontal	tal	Total flow	MO (Degrees from	u o	Azimuth (° from	from	EDMC
						TOW (CITE)	À	CHIVE		HOFIZORIA	3	North		CMMS
2/22/98	2:33	2/23/98	15:25	6-	1.84	3.81 +/-	1.56	.90 +/- 1.84 3.81 +/- 1.56 10.61 +/- 12.91	12.91	-/+ 0.69-	29.9	5.5 +/-	25.1	0.20
3/8/88	0:14	3/9/98	13:13	-10.50 +/-	1.96	4.43 +/-	1.63	11.40 +/-	13.86	-67.1 +/-	29.6	12.5 +/-	225	0.20
3/16/98	20:45	3/18/98	9:56	-/+ 18:01-	2.02	4.58 +/-	99.1	11.74 +/-	14.27	-/+ 0.79-	29.6	10.8 +/-	22.0	0.00
3/25/98	14:30	4/15/98	8:00	-11.37 +/-	2.12	4.75 +/-	1.69	12.32 +/-	14.95	-67.3 +/-	29.6	76 +/-	214	02.0
4/15/98	8:30	5/14/98	7:00	-11.45 +/-	2.08	4.49 +/-	1.66	1.66 12.30 +/-	14.86	-/+ 9.89-	29.9	-/+ 6:0	22.2	0.20
5/27/98	7:31	86/12/98	11:31	-11.85 +/-	5.09	3.96 +/-	1.62	12.49 +/-	15.02	-71.5 +/-	30.4	1.8 +/-	767	0.10
86/81/9	6:18	7/23/98	10:00	-9.93 +/-	1.76	3.47 +/-	1.48		12.69	-70.7 +/-	30.2	0.1 +/-	27.3	0.00
7/23/98	10:30	86/11/8	7:30		1.66		1.43		11.96	-71.2 +/-	303	13 +/-	206	0.20
8/14/98	8:00	86/11/6	8:30		1.63		1.41	-/+ 89.6	11.71	-71.3 +/-	30.3	-/+ 60	30.5	0.20
86/11/6	00:0	10/13/98	7:30	-10.65 +/-	1.92	4.22 +/-	1.58	11.46 +/-	13.84	-68.4 +/-	29.8	7.2 +/-	22.0	01.0
10/15/98	0:00	11/16/98	11:30	-11.28 +/-	2.06	4.70 +/-	1.66	12.22 +/-	14.78	-67.4 +/-	29.6	4.8 +/-	21.4	0.19
Average				10.57.17	201	7 06 17	1 60	77 66 11			9			
Standard Daviation	noite:			-/+ /5'01-	1.32	+.U0 +/-	00.1	13.71 -/+ 55.11 86.1 -/+ 00.4 -/- 13.71	13./1	-/+ 0.60-	79.9	4.9 +/-	24.7	0.20
Stalldald Dev	Idilon			0.89		0.6		1.01		1.8		4.3		0.0047
PRT 21 Horizos	PRT 21 Horizontal Flow Direction in Degrees From Horizontal	Degrees From Ho	rizontal											

NOTE: PeRT Wall Oriented at North 410 East

255

286

L:\work\concept\39748\report\draft final\Sensorsm.xls

GROUNDWATER FLOW DIRECTIONS **TABLE 4-28**

					INTER	INTERMEDIATE WELLS	WELLS				
					PeRl	PeRT Wall Segments	nents				
Date	101 / 102	Between*	109 / 103	Between*	112/111	Between*	114/113	Between*	118/115	Between*	120 / 119
2/19/98	SE	NE	NE to N	NE to N	NE to N	NE to N	z	N to NW	NW to N	z	z
3/16/98	SE	NE	N to NE	NE	z	MNN	NW	×	NW to N	Z	Z
4/13/98	SE	NE	N to NE	NE to N	z	NNN	WN	WNW	W to N	NE	NE
2/18/98	SE	NNN	N.	MN	NE to NW	NE to N	MN	≽	MN	z	Z
96/11/9	SE	MN	MNN	MNN	NNN	NE to NW	MM	W to NW	MN	N to NW	MNN
7/13/98	SE	NE	z	z	z	N to NE	MN	NW to W	WN	N to NE	SE
8/10/98	SE	WN	WN	MNN	MNN	NNW to N	MN	*	WN	N to NNW	NN N
9/14/98	SE	ENE to NE	N to NE	MNN	NNN	NNW to N	NN	×	WN	NNW to N	N N
10/12/98	SE	NNW	MNN	z	z	NE	NW to N	WNW	MN	N to NNW	NNN
11/16/98	SE	NNW	NNN	NNW	NNW	N to NE	NW	W	NW	MNN	NW

					D	DEEP WELLS	S,				
					PeR	PeRT Wall Segments	nents				
Date	D01 / D02	Between*	D09 / D03	Between*	D12/D11	Between* D14/D13	D14/D13	Between*	D18/D15	Between*	D20 / D19
2/19/98	SE	M	MN	NNW	MN	NW to NE	SE	WNW	WN	MNN	WN
3/16/98	MN	NNN	NNN	ΝX	NW	NW to NE	SE	NW to W	MN	NNN	NW
4/13/98	MN	z	NNN	ΝX	MN	NW to NE	SE	NW to W	NW	MN	×
2/18/98	NW	MN	WN	NNN	MNN	NW to NE	SE	NW to W	N/N	MNN	×
86/12/98	NW	NNW	NNN	MN	N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/	NW to NE	SE	NW to NNE	z	ΝX	×
7/13/98	N N	MN	MN	MN	MN	NW to NE	SE	W to SW	MN	NW to N	MN
8/10/8	MN	MN	NW to W	W to NW	MN	NN	MN	NNN	N.	NNN	NN X
9/14/98	MN	NNN	NNW	NNN	MN	NW to NE	NW & NE	*	ΝX	NNN	NNN
10/12/98	MN	NW	N to NE	MN	NNN	NW to NE	NW & NE	W to NW	×	MN	×
11/16/98	NW	NNW	N to NE	NW	WN	NW to NE	SE	W to SW	NW to N	NNN	NNN

PeRT Wall trends SW to NE

Flow perpendicular to wall would have NW flow direction.

A flow direction of SE would be reverse of anticipated flow direction.

Between* Between Well Sets listed to the left and right

TABLE 4-29

GROUNDWATER ELEVATIONS AND HORIZONTAL HEAD DIFFERENCES BY WELL SETS, IN INTERMEDIATE AND DEEP WELLS AT THE PeRT WALL, BY MEASUREMENT DATE

INTERMEDIATE WELLS

11/16/98		H del H	000	1	0 00	┦┍	2000		2 0.05		5 0.03	_	000	-		7 0.02	H	1 0.03		11/16/98	lev del H	0	+		┥┍┼	┨┍╂	┨┌	0.03
L		T GW ellev		$\perp \perp$	4.30	\perp	4.27	\perp 1	422	4 20			L	_	4 20	L		L		L	S						\perp	4.21
10/12/98		N del H	-0.02	1 г	0.03	1 _	100	٦ ٦	9.0	_	0.03	┨┌	0.03	0.02	-	0.03	H	0.03		10/12/98	v del H	100				3	3 -	0.05
ē	1	4 95	丄		4.94	1		11	4.86	48		4 87	L	ı	4 94			4.85		ş	GW elev				$\perp \perp \perp$	6.90	88.4	4.83
09/14/98	100		-0.02	_		_	0.03	_	0.05	_	0.0	_	0.03	0.0	L	0.03		0.05		885	del H	000		300	8	3		0.03
/60	CW plan	3.89	L	8	L	$\perp \perp$	L		3.81	3.88	3.84	3.84	3.81		3.88	3.85	3.85	3.80		09/14/98	GW elev	3.91	3.92	3.90	3.82	3.86	3.85	3.82
96/0	1100	-	-0.02		0.07	_	0.04	_			0.0		0.03	0.03		9.0		0.04		88/	del H	100		900	800			0.03
08/10/98	GW alov	2.73	2.75	oa c	2.73	27.6	2.70	2.70	2.66	2.73	2.69	2.69	2.66		2.74	2.70	5.69	2.65		08/10/98	GW elev del H	2.73	2.74	2.80	2.73	2.73	2.69	2.66
96	High	3	-0.02		0.0		0.0				0.03		-0.01	8		0.03		0.05			del H	20.0	8	a a	9	000		0.18
07/13/98	GW elev	3.02	3.04	3.03	3.02	304	3.00		2.95	3.02	2.99	2.96	2.97		3.02	2.99	2.99	2.94		07/13/98	≥	3.04	3.03	3.03	2.95	3.00	3.05	2.87
96	High	_	-0.01		0.02		0.02		П		0.05		0.03	0.02		0.05		0.04		-	del H	0.02						0.03
06/15/98	GW elev	2.91	26.2	2.93	2.91	2.90	2.88		2.83	2.91	2.86	2.87	2.84		2.89	2.87	2.87	2.83		06/15/98	2	2.92	2.91	2.92	1	1	2.87	2.84
86	del H	-	-0.02		0.05		0				0.04		0.04	0.02	F	0.02		0.04		-	del H	0.01			-0.01	0.02		0.04
05/18/98	GW elev	3.54	3.56	3.56	3.54	3.53	3.53		3.48	3.55	3.51	3.51	3.47		3.52	3.50	3.50	3.46		05/16/96	2	3.54	3.56	3.54	3.48	3.53	1 H	\dashv
86	del H		-0.05		0.05		0.01			- 1	0.05		0	0.01	H	0.05		0.02		-	del H	0.00	900		-0.01	20.0	$\perp \downarrow \downarrow$	0.03
04/13/98	GW elev		4.25	4.25	4.23	4.21	4.2		4.16	4.23	4.18	4.15	4.15		4.25	4.20	4. E	4.16		04/13/98	2	4.22	4.23	-	4.15	4.21	4.18	\dashv
88	-	_	-0.05		0.01		0.01				0.04		0.03	0.01	H	0.02		0.04			del H	0.01	0.05	90.0	-0.01	0.03		0.02
03/16/98	GW elev del H	4.79	4.81	4.81	4.8	4.77	4.76		4.72	4.78	4.74	4.73	4.7		4.78	4.76	4.74	4.70		03/16/98	2	4.78	4.79	4.74	4.70	4.75		4.71
98	HIB		-0.04		0.01		0.00		+		0.04	1	0.03	0.0	H	0.03	_	0.03			E HIG	-0.01	0.05	0.04	-0.03	0.02	\Box	50.0
2/19/98	GW clev	4.87	4.91	4.89	4.88	4.85	4.85		4.80	4.87	4.83	4.83	4.80		4.88	4.85	4.82	4.79		02/18/98	1	4.83	4.84	4.86	4.79	4.83	83	2/3
<u>≒</u> 8	13.		5.181		5.165		5.315		3.907		4.273		4.213	Average:		3.673		4.541			dist	4.713	5.193	5.435	4.728	4.279	-1-1	_
Well Pair Separation	^		12.10	4.67	21.81	-3.63	13.19	-2.61	7.02	8.7	15.67	3.01	•	Ž			-3.02			Well Pair Separation	> 3	3	23.54	-3.42	3.07	3.83		*
	×		£7.	22	4.87	3.	15.08	271	¥.	<u>.</u>	2.59	2.8	6.67		2.77	8	330				× 5	13.66	3.43	4.22	3.60	1.70	98 8	
NORTHING EASTING		790762	790758	790770	790768	790783	790779	790796	790794	790804	790803	718067	790814		790765	790762	200000	06/06/		NORTHING EASTING	700761	790757	790769 790767	790782 790778	790795 790792	790803 790801	790816	
THING	1		1511856	Н	1511866	Н	1511879	П	1511892	H	7	H	٦		H	+	T	7		HING	ŀ	⊣		\vdash	\vdash	H	-	1
-	Н	+	-	Н	\dashv	H	-	H	-	\vdash	1511902	\vdash	1511915	-	┝	0/81161	+	-			1511	1511854	1511860 1511864	1511873 1511877	1511888 1511891	1511897	1511911	
NG WEL		TMWIOI	TMW102	TMW103	TMWIOS	TMWIII	TMWI12	TMW113	TWE!	TMWIIS	MWII6	TMW[19	MW120	nt of wal	CMWI07	MWICH	A444/810	0114	ELLS	ATION	MWD01	MWD02	MWD03 MWD05	MWD11 MWD12	MWD13 WWD14	WWD15 WWD16	WWD19	
MONITORING WELL IDENTIFICATION		HGRK-PRTMWI01	HGRK-PRTMW102	HGRK-PRTMW103	HGRK-PRTMW105	HGRK-PRTMWILL	HGRK-PRTMW112	HGRK-PRTMWII3	HGRK-PRTMWII4	HGRK-PRTMWIIS	HCKK-PKIMWII6	HGRK-PRTMWII9	HCKK-PKIMWI20	Downgradient of wal	HGRK-PRTMW107	HCBY DETAMIN	HCDK DDTMWIIG	N L	DEEP WELLS	MONITORING WEL	HGRK-PHTMWD01	HGRK-PRTMWD02	HGRK-PRTMWD03 HGRK-PRTMWD05	HGRK-PRTMWD11 HGRK-PRTMWD12	HGRK-PRTMWD13 HGRK-PRTMWD14	HGRK-PRTMWD15 HGRK-PRTMWD16	HGRK-PRTMWD19	
MC		Ĭ.	Ï	Ξ	Ī	Ξ	Ĩ	Ħ	Ĭ	Ĭ	Ĕ	Ξ	Ĭ	Dov	E		=			Ψ Q Q	H	Η̈́	윤	운 운	5 5 5	윤현	HG	

TABLE 4-30 GROUNDWATER FLOW DIRECTIONS

Hangar K Area DEEP Wells

	Hangai Is	Alea DEEL Wells	
Date	West (Downgradient)	Middle (PeRT Wall Area	East (Upgradient)
8/7/97	WNW	WNW	N&S
2/2/98	WNW	NW	NE
2/19/98	WNW	NNW	NNE
3/16/98	NW	NNW	N to NNE
4/13/98	NW	NNW	NNE
5/18/98		NW	NNW
6/15/98	NW	NW	NNW
7/13/98	NW	NW	N
8/10/98	WNW	NW	N
9/14/98	NW	NW	NNE
10/12/98	NNW	NW .	NE
11/16/98	NW	SE & NE	NNW to NNE

Hangar K Area Below PeRT Wall Wells

		DCIOW I CICI VI AII VV	
Date	West (Downgradient)	Middle (PeRT Wall Area	East (Upgradient)
8/7/97	WNW	W	W
2/2/98	WNW	NW	NW
2/19/98	WNW	NW	W
3/16/98	WNW	NW	w
4/13/98	W	NNW	WNW
5/18/98			WNW
6/15/98	NW	NW	NW
7/13/98	NW	NW	NW
8/10/98	NW	NW	NW
9/14/98	WNW	WNW	W
10/12/98	WNW	WNW	WNW
11/16/98	WNW	WNW	WNW

TABLE 4-31

HORIZONTAL SLOPE AND VELOCITY FOR PERT WALL MONITORING WELL SETS

INTERMEDIATE WELLS					Horizontal Slope	if Slope										Horizontal Valocity	Velocity				
MONITORING WELL IDENTIFICATION	2/19/98	03/16/96	04/13/96	06/16/98	96/11/90	07/13/96	08/10/98	09/14/98	10/12/98	11/16/98		2/19/98	03/16/98	04/13/96	06/18/96	96/15/98	07/13/98	08/10/98	09/14/98	10/12/98	11/16/96
					Slope in FL/FL	FIFE					BAR					Velocity, in Feet/Day	Feet/Day		1]
HGRK-PRTMWI01 HGRK-PRTMWI02	-0.00772	-0.00772 -0.00386	-0.00386	-0.00386	-0.00965	-0.00386	-0.00386	-0.00386	-0.00386	-0.00193	0.00463	-0.03860	0.01930	-0.01930	-0.01930	-0.00193	-0.01830	-0.01930	-0.01930	-0.01930	-0.00965
HGRK-PRTMWI03 HGRK-PRTMWI05	0.00194	0.00184	0.00387	0.00387	0.01936	0.00194	0.01355	0.0000	0.00581	0.00387	0.00561	0.00968	0.00968	0.01936	0.01936	0.00387	0.00968	0.06777	0.00000	0.02904	0.01936
HGRK-PRTMWIII HGRK-PRTMWII2	0.00000	0.00188	0.00188	0.00188	0.01881	0.00188	0.00753	0.00564	0.00188	0.00376	0.00452	0.0000	0.00941	0.00941	0.00941	0.00376	0.00041	0.03763	0.02822	0.00941	0.01881
HGRK-PRTMW113 HGRK-PRTMW114	:	:	•	:	:	:	:	0.01280	0.01024	0.01280	0.01195	:	:	:	:	:		:	0.06399	0.05119	0.06399
HGRK-PRTMWIIS HGRK-PRTMWII6	0.00936	0.00838	0.01170	0.01170	0.05850	0.00702	0.00936	0.00936	0.00702	0.00702	0.01404	0.04680	0.04680	0.05850	0.05850	0.01170	0.03510	0.04680	0.04680	0.03510	0.03510
HORK-PRTMWII9	0.00712	0.00712 0.00712	0.0000	0.0000	0.03561	-0.00237	0.00712	0.00712	0.00712	0.00950	0.00831	0.03561	0.03561	0.0000	0.00000	0.00712	-0.01187	0.03561	0.03561	0.03561	0.04748
Average:	Average: 0.00214	0.00329	0.00272	0.00272	0.02463	0.00092	0.00674	0.00618	0.00470	0.00584	0.00818 Average	Average: 0.02614	0.02416	0.02131	0.02131	0.02839	0.01707	0.04142	0.03232	0.02994	0.03240
Downgradient of wall HGRK-PRTMWIIIT HGRK-PRTMWIII	0.00817	0.00546	0.01361	0.01361	0.02723	0.00817	0.01089	0.00817	0.00817	0.00545	0.01089	0.04084	0.02723	0.06807	0.06807	0.00545	0.04084	0.05446	0.04084	0.04084	0.02723
HGRK-PRTMWII3 HGRK-PRTMWII8	0.00661	0.00881	0.00440	0.00440	0.04404	0.01101	0.00881	0.01101	0.00661	0.00661	0.01123	0.03303	0.04404	0.02202	0.02202	0.00881	0.05505	0.04404	0.05505	0.03303	0.03303

	11/16/06		0.01061	0.02888	0.03680	-0.01058	0.04674	0.03485	0.02506	0.02274	0.02523
	10/12/96	1	0.01061	0.02888	0.03680	0.00000	0.03506	0.05808	0.02824	0.03411	0.01262
	98/14/98		0.01061	0.03851	0.04600	0.00000	0.01169	0.03485	0.02361	0.01137	0.02523
	06/10/98		0.01061	0.00963	0.08280	0.01058	0.00467	0.00697	0.03569	0.02274	0.05047
Velocity	90/11/1/0	Feet/Dey	0.02122	0.01926	0.03680	-0.02115	0.01169	0.20910	0.05320	0.02274	0.01262
Horizontal Valocity	06/15/98	Velocity, in Feet/Day	0.02122	0.02888	0.02760	-0.05288	0.02337	0.03485	0.03147	0.01137	0.03785
	96/18/90		0.01061	0.02888	0.02760	-0.01058	0.02337	0.04647	0.02458	0.02274	0.02523
	04/13/96		0:0000	0.03851	0.03680	-0.01058	0.04674	0.03485	0.02781	0.0000	-0.05047
	03/16/96		0.01061	0.04814	0.03680	-0.01058	0.03506	0.02323	0.02740	0.01137	0.02523
	2/19/98		-0.01061	0.04814	0.03680	-0.03173	0.02337	0.04647	Average: 0.03285	0.02274	0.01262
									Average		
			0.00233	0.00635	0.00810	0.00825	0.00748	0.01394	0.00774	0.00364	0.00555
	11/16/98		0.00212	0.00578	0.00736	-0.00212	0.00935	0.00697	0.00491	0.00455	0.00505
	10/12/98		0.00212	0.00578	0.00736	0.00000	0.00701	0.01162	0.00665	0.00682	0.00252
	09/14/96		0.00212	0.00770	0.00920	0.00000	0.00234	0.00697	0.00472	0.00227	0.00505
	08/10/98		0.00212	0.00193	0.01656	0.05288	0.02337	0.03485	0.02195	0.00455	0.01009
Horizontal Slope	07/13/80	*	0.00424	0.00385	0.00736	-0.00423	0.00234	0.04182	0.00023	0.00455	0.00252
Horizo	8		0.00424	0.00578	0.00552	-0.01058	0.00467	0.00697	0.00277	0.00227	0.00757
	05/18/96	- 1	0.00212	0.00578	0.00552	-0.00212	0.00467	0.00929	0.00421	0.00455	0.00506
	04/13/96		0.00000	0.00770	0.00736	-0.00212	0.00835	0.00697	0.00488	0.00000	-0.01000
	03/16/96		-0 00212 0.00212	0.00963	0.00736	-0.00212	0.00701	0.00465	0.00478	0.00227	0.00505
	2/19/98		0 00212	\$80 00 0	0.0078	90000	0.00467	0.00628	Average: 0.00375	99700	0.00252
DEEP WELLS	MONITORING WELL IDENTIFICATION		HGRK-PRIMWD02	HGRK-PRTMWD03 HGRK-PRTMWD05	HGRK-PRTMWD11 HGRK-PRTMWD12	HGRK-PRTMWD13 HGRK-PRTMWD14	HGRK-PRTMWD15 HGRK-PRTMWD16	HGRK-PRTMWD19 HGRK-PRTMWD20	Average	Downgradient of wali HGRK-PRTMWD09 HGRK-PRTMWD09	HGRK-PRTMWD17 HGRK-PRTMWD18

TABLE 4-32 DEEP GROUNDWATER HORIZONTAL SLOPE AND VELOCITY

		T				_								1
	Velocity	0.00227	0.00200	0.00625	0.00455	0.00490		0.00641	0.00417	0.00292	0.00500	0.00439		0.00458
wall area	Gradient	0.00045	0.00100	0.00125	0.00091	0.00098		0.00128	0.00083	0.00058	0.00100	0.00088	:	0 00000
wall	Run	110	100	80	55	51	, ,	78	09	120	50	57		Average:
	Rise	0.05	0.1	0.1	0.05	0.05	:	0.1	0.05	0.07	0.05	0.05		
	Velocity	0.00583	0.00786	0.00854	0.00745	0.00645	i	0.00648	0.00721	0.00545	0.00761	0.00854	0.00755	0.00718
st	Gradient	0.00117	0.00157	0.00171	0.00149	0.00129	:	0.00130	0.00144	0.00109	0.00152	0.00171	0.00151	0.00144
west	Run	300	350	205	302	310	1	270	208	275	230	205	265	Average:
	Rise	0.35	0.55	0.35	0.45	0.4	:	0.35	0.3	0.3	0.35	0.35	0.4	
	Date	L6/L/8	2/2/98	2/19/98	3/16/98	4/13/98	86/81/9	86/51/9	1/13/98	86/01/8	9/14/98	0/12/98	7 86/91/11	

TABLE 4-33 SUMMARY OF FLOW SENSOR FLOW DATA

		Verti (Ft	Vertical flow (Ft/day)	wo	Horiz (1	Horizontal flow (Ft/day)	flow (Total flow (Ft/day)	w (Ft	day)	Degrees from Horizontal	Degrees fron Horizontal	m -	Azimuth (° from	nuth (° fi	m o.	ERMS
PRT 03	Average	0.063	†	*	* -/+ *	+	*	* -/+ 890:0	+/+	*	68.251 +/- *	/+	. *	21.155 +/- *	+	*	0.342
DDT 05		7100	- 1	200													
LAI 03	Average	-0.014	- 1	+/- 0.35	0.014	÷	0.014 +/- 0.35	0.020 +/- 1.10	'	01.1	-45.479 +/- 27.11	‡	27.11	244.964 +/- 74.03	-/+	74.03	0.113
27																	
PK1 10	Average	-0.027	¥	+/- 0.21	0.046		+/- 0.24	0.054 +/- 1.95	-/+	1.95	-30.389 +/- 16.82	+	16.82	337.145 +/- 10.94	‡	10.94	0.040
PRT 15	Average	-0.133	+	+/- 0.21	0.098		+/- 0.24	0.166 +/- 1.95	- /+	1.95	-30.389 +/- 16.82	7		337.145 +/- 10.94	+	10.94	0.040
PKT 16	Average	0.239	¥	*	0.037	÷	*	0.242	-/+	*	81.110 +/-	+	*	130.900 +/-	÷	*	0.489
PRT 21	Average	-0.347		+/- 1.92	0.133	-/+	1.58	0.372 +/- 13.71	' +	13.71	-69.047 +/- 29.94	 	29.94	4.850 +/- 24.66	;	24.66	0.197

179.36

54.11

0.154

0.059

0.137

Average:

TABLE 4-34 ESTIMATED DISSOLVED IRON GENERATED BY CORROSION OF FE⁺⁰ AT CAPE CANAVERAL PERT WALL

Corrosion Agent	Fe Generated(mg/L)
Dissolved Oxygen	0.5
Water	0.9
C/T DCE	66
Vinyl Chloride	51
TOTAL	118

TABLE 4-35 CHANGES IN SELECTED INORGANIC FIELD CHEMISTRY PARAMETERS ACROSS THE MAIN PERT WALL NOVEMBER 1998

	pН	ALKALINITY	ORP
		mg/L CaCO3	mV
Deep, Upgradient ^a	7.57	403	-130
Deep, Downgradient ^b	7.69	350	-171
Intermed, Upgradient ^a	7.62	166	-106
Intermed, Downgradient ^b	9.21	94	-136

^aUpgradient = average of wells 01, 03, 11, 13, 15, and 19

ORP = oxidation reduction potential

^bDowngradient = average of wells 02, 05, 12, 14, 16, and 20

RUST ENVIRONMENT & INFRASTRUCTURE

GROUNDWATER MONITORING INSTALLATION DETAIL PROJECT: CCAS: PERT WALL PILOT STUDY JOB NO. _ 39748 . 10800 LOCATION: CAPE CANAVERAL AIR STATION INSTALLATION NO. HGRK-PRTMWI01 CLIENT:_ TYPE OF INSTALLATION -US AIR FORCE 1.25 inch well CONTRACTOR: US ENVIRONMENTAL BORING NO. HGRK-PRTMWI01 DRILLER: T. BURKE CERTIFICATION NO: FL-9164 LOCATION Hangar K RUST FIELD REPRESENTATIVE: C. JACKSON INSTALLATION DATE 01/18/98 SURVEY NGVD DATUM-GROUND SURFACE ELEVATION: 8.93 ft. TYPE OF PROTECTIVE CASING 8-INCH FLUSH MOUNTED THICKNESS OF SURFACE SEAL 10.00 ft. BACKFILL AND SEALS (NOT TO SCALE) TOP OF WELL CASING OR RISER PIPE STICKUP NOTE: CASING IS EXPANDED TO 2 INCH PVC AT SURFACE TO ACCOMODATE A LOCKING CAP. 10 ft. Sand TYPE OF WELL CASING OR RISER PIPE INSIDE DIAMETER 10.00 ft. 1.25 in APPROXIMATE DIAMETER OF BOREHOLE 12.00 ft.-15 ft. Sand Fine Sand (30/65) CONDITIONS, 13.00 ft ~ TOP OF SCREENED INTERVAL EL. ____-5.24 ft. TYPE OF SCREEN SOIL Wire Wrap PVC SCREEN GAUGE OR SIZE OF OPENINGS Filter Pack Sand INSIDE DIAMETER 1.25 in. 20 ft Sand (20/30)TYPE OF BACKFILL AROUND SCREEN MMARIZE Filter Sand (20/30) BOTTOM OF SCREENED INTERVAL EL. -10.24 ft DEPTH 19.00 ft. BOTTOM OF WELL -10.24 ft. DEPTH EL. BOTTOM OF BOREHOLE 19.00 R. • FIGURES ABOVE REFER TO DEPTH IN FEET • ALL DEPTHS ARE REFERENCED TO TOP OF WELL CASING 20.00 £ NOT TO SCALE GROUT 14.00 ft. 5.00 ft. BENTONITE SEALS LENGTH OF RISER PIPE LENGTH OF SCREEN FILTER PACK

FIGURE 4-9
TYPICAL WELL CONSTRUCTION DETAIL
INTERMEDIATE WELL

CAPE CANAVERAL AIR STATION, FLORIDA PROJECT NO. 29515

RUST ENVIRONMENT & INFRASTRUCTURE

	IDWATER MOI			DETAIL	
PROJECT:	CCAS:	PERT WALL PILOT S	TUDY	JOB NO39	748 . 10800
LOCATION:_	CAPE (INSTALLATION NOHGRK-PRTMWD01			
CLIENT:		TYPE OF INSTALLATION -			
CONTRACTO	ONTRACTOR: US ENVIRONMENTAL				well
	•			BORING NO. HGR	K-PRTMWD01
	T. BURKE			LOCATION	
SURVEY	REPRESENTATIVE:	C. JAC	KSON	INSTALLATION DATE	01/18/98
DATUM: GROUND			707		
SURFACE ELEV	/ATION: 8.93 ft.		TYPE OF PROTECTIVE	CASING 8-INCH F	LUSH MOUNTED
	100	DAG DAGA	D .		
<u> </u>			THICKNESS OF	SURFACE SEAL	29.50 ft
10 ft. Sand			TOP OF WELL CASING	8 76 4	-0.17 ft.
10 ft. Sand 10 ft. Sand 15 ft. Zero R 20 ft. Sirty Sa	lecovery		NOTE: CASING IS EXPAND PVC AT SURFACE TO ACCI A LOCKING CAP.	PED TO 2 SNCH OMODATE	
20 ft. Sity Sa ADD 25 ft. Very Si 25 ft. Very Si	ity Sand 29.50 ft. ——		TYPE OF WELL CASING	OR RISER PIPE	PVC 1.25 in.
OY OY 30 ft. Sandy	Bentonite 31.50 ft. —— Fine Sand (30/ 32.60 ft. ——	35)	- APPROXIMATE DIAMET	ER OF BOREHOLE	8.0 in.
			- TOP OF SCREENED INT		
30 ft. Sandy S				-25.26 ft DEPTH	
			TYPE OF SCREEN SCREEN GAUGE OR SIZ	Wire Wrap PV	0.010 in.
n l	Filter Pack Sa (20/30)	~ (∕∰∕)	INSIDE DIAMETER	OUND SCREEN Filter S	4.05 :
40 ft. Sitty Sai	nd		BOTTOM OF SCREENED		
40 ft. Silty Sal			EL_	-30.26 ft DEPTH	39.02 ft.
	·		BOTTOM OF WELL	-30.26 ft. DEPTH	39.02 ft.
FIGURES ABOV TO DEPTH IN FE		LL CASING			40.02 ft.
*NOT TO SCALE GROUT					
34.02 ft. NGTH OF RISER PIF	5.00 ft.	39.02 ft.		GROUT BENTONITE SEALS FINE SAND FILTER PACK	111111
				CONCRETE	4000
					26/96 3 06:04 PM

FIGURE 4-10
TYPICAL WELL CONSTRUCTION DETAIL
DEEP WELL

CAPE CANAVERAL AIR STATION, FLORIDA PROJECT NO. 29515

RUST ENVIRONMENT& INFRASTRUCTURE

MONITORING WELL DEVELOPMENT LOG

98/1/24

Date Completed (yr/mo/dy)

98/1/24

Date Started (yr/mo/dy)

Field Personnel

Project

CRAIG JACKSON

CCAS: PERT WALL PILOT STUDY

HANGAR K 39748

Site Name RUST Job #

Well ID #

ō

Page 1

1/100 ft 1/100 ft 1/100 ft gailons gallons gallons SWABBING AND PUMPING 0.90 15.00 5.00 8 20.00 4.50 0.060 Length of Water Column (LWC) = TWD - DGW = Total Volume of Water Removed 1 Casing Volume (OCV) = LWC X Method of Well Development Depth to Groundwater (DGW) = From Top of Well Casing Total Well Depth (TWD) = From Top of Well Casing 5 Casing Volumes =

☐ Upgradient ☐ Downgradient ☐ Sidegradient ☐ Source

Weather Conditions Air Temperature

HGRK-PRTMWI01

Remarks	BEGIN DEVELOPING			STOP DEVELOPING NOTE: 1) WATER CLEAR				
Sand Content (%)	1	+	ı	1				
Turbidity/Color (NTU's)		3.8	5.76	5.51				
Electric Conductivity (mmho)		0.340	0.343	0.346				
Ŧ		8.25	8.48	8.62		·		
Water Temp (*C)		25.5	25.6	25.7				
Cumulative Volume Purged (gal)	0	40	09	90			:	
Discharge Rate (gpm)		6.7	6.7	6.7				
me ilkary)	0832	0938	0941	0944				
Date/Time yr/mo/dy/Military)	98/1/24	98/1/24	98/1/24	98/1/24				

COMMENTS/ OBSERVATIONS 6/10/98 9:46:12 AM

MWDEV

ENVIRONMENT & INFRASTRUCTURE

FIGURE 4-11
TYPICAL WELL DEVELOPMENT RECORD
INTERMEDIATE WELL

CAPE CANAVERAL AIR STATION, FLORIDA PROJECT NO. 29515

ALST ENVIRONMENT'& INFRASTRUCTURE

MONITORING WELL DEVELOPMENT LOG

Date Completed (yr/mo/dy)

98/1/24

Date Started (yr/mo/dy)

Field Personnel

Project

CRAIG JACKSON

CCAS: PERT WALL PILOT STUDY

HANGAR K

RUST Job# Site Name

Well ID #

1/100 ft 1/100 ft gallons 1/100 ft gailons gailons ō SWABBING AND PUMPING 2.10 35.00 Page 5.00 120 40.00 10.50 0.060 Length of Water Column (LWC) = TWD - DGW = **Total Volume of Water Removed** 1 Casing Volume (OCV) = LWC X Method of Well Development Depth to Groundwater (DGW) From Top of Well Casing Total Well Depth (TWD) = From Top of Well Casing 5 Casing Volumes = 98/1/24

\$	LOPING				LOPING ER CLEAR			
Remarks	BEGIN DEVELOPING				STOP DEVELOPING NOTE: 1) WATER CLEAR			
Sand Content (%)	ı	1						
Turbidity/Color (NTU's)		40.03	15.94	12.37	11.13			
Electric Conductivity (mmho)		1.15	1.17	1.17	1.17			
Ħ		8.63	8.57	8.56	8.54			
Water Temp (°C)		25.5	25.6	25.8	25.7			
Cumulative Volume Purged (gal)	0	40	80	100	120			
Discharge Rate (gpm)		4.4	4.4	4.0	4.0			
me lilitary)	1048	1057	1106	1111	1116			
Date/Time (yr/mo/dy/Military)	98/1/24	98/1/24	98/1/24	98/1/24	98/1/24			

COMMENTS/ OBSERVATIONS

9:46:21 AM

6/10/96

MWDEV

ENVIRONMENT & INFRASTRUCTURE

☐ Upgradient ☐ Downgradient ☐ Sidegradient ☐ Source

Weather Conditions Air Temperature

HGRK-PRTMWD01

FIGURE 4-12 TYPICAL WELL DEVELOPMENT RECORD DEEP WELL

CAPE CANAVERAL AIR STATION, FLORIDA PROJECT NO. 29515

Aug-87

Bep-87

How-87 Des-87 Jan-8 7 2 a . i . z 160-18 =

= Apr-11

0

FIGURE 4-15 Precipitation Data

Cape Canaveral Air Station, Florida

Rust Environment & Infrastructure

FIGURE 4-16
Potentiometric Surface Map
February 1998, Wells Screened 15 to 20 feet bis

Cape Canaveral Air Station, Florida

Rust Environment & Infrastructure

FIGURE 4-17
Potentiometric Surface Map
February 1998, Wells Screened 35 to 40 feet bis

Cape Canaveral Air Station, Florida

5.0 REACTION MECHANISMS

The primary reaction is believed to be an oxidation of the Fe⁰ to Fe⁺² or Fe⁺³ and subsequent reduction of the chlorinated organics. In a U.S. EPA Remedial Technology Fact Sheet (U.S. EPA, 1997), the progressive reduction of TCE to c-DCE, and vinyl chloride to ethene, ethane and acetylene are shown as two competing reactions:

A: Sequential Hydrogenolysis

B: Reductive β elimination

Some c-DCE will undergo a "beta" elimination, but the proportions will be less than for TCE (Roberts, et. al., 1996).

5.1 REACTION RATES

The most highly concentrated chlorinated VOCs at the Cape Canaveral PeRT wall site are c-DCE and vinyl chloride. Fe⁺⁰ degrades these compounds to non-chlorinated hydrocarbons such as ethene by reductive dechlorination by the pathways discussed above. The rate of decrease in concentration of chlorinated VOCs by Fe⁺⁰ follows a first order rate equation (Matheson and Tratnyek, 1994; Johnson et al., 1996):

$$C = C_0 e^{-kt}$$

where

C = concentration at time t

 C_o = initial concentration

k = a rate constant

t = time

The rate constant can be calculated from the half-life (t_{1/2}) as:

$$k = 0.693/t_{1/2}$$

The rate constants vary somewhat with temperature, surface area of Fe⁺⁰, and solution composition, and are determined under controlled laboratory conditions. It has been shown that rate constants measured for a wide variety of solution compositions at room temperature are similar if they are normalized to Fe⁺⁰ surface area (Johnson et al., 1996). Values of half-lives from the literature were used to estimate rate constants in lieu of determining site-specific constants. The half-lives presented below were provided by EnviroMetal Technologies, Inc. (ETI). These half-lives are twice the laboratory values to adjust for possible temperature variation between the laboratory and the in situ conditions. Initial concentrations used in the calculations are averages of the concentrations in the six up-gradient wells in November 1998. An experimentally determined conversion factor was used to account for the amount of c-DCE

that transforms to vinyl chloride. A conversion factor of 2% was determined by ETI from numerous experiments using contaminated groundwater from other sites:

Parameters Used in the Residence Time Calculations

VOC	Initial Conc. (ug/L)	Half Life (hr)	Conversion Factor
c-DCE	115,300	8.3	2%
vinyl chloride	57,083	12.8	na

na = not applicable

Using the parameters above, the concentrations of c-DCE and vinyl chloride over a 200 hour period were calculated (Figure 5-1). Concentrations of c-DCE and vinyl chloride are reduced by 95% in 36 and 58 hours, respectively. Concentrations of c-DCE and vinyl chloride are reduced to the EPA Maximum Contaminant Levels (MCLs) for drinking water (7 ug/L for c-DCE and 2 ug/L for vinyl chloride) in 117 and 192 hours, respectively. Thus, a theoretical reaction time of 192 hours is required to reduce all chlorinated VOCs to below MCLs. There are limited data that suggest reaction rates may be lower when VOC concentrations are very high. The c-DCE and vinyl chloride concentrations measured in this pilot study are high enough that their reaction rates could be affected, although no correction has been made for this possibility.

Residence time refers to the length of time that the groundwater is in contact with the Fe⁺⁰. Residence time is calculated from the thickness of the Fe⁺⁰ wall and the groundwater flow rate. The groundwater flow rate at the PeRT wall site is estimated at 0.025 ft/day (see Section 4). For this flow rate, the residence time in a 4-inch wall is 320 hours. Thus, a single 4-inch wall of Fe⁺⁰ should be capable of degrading the chlorinated VOCs to concentrations less than their MCLs. However, this also means that it would take almost a year for a water molecule to travel from the start of the first wall to exit the third wall, assuming flow follows a straight path between the three PeRT wall segments.

The half-lives used in the calculations are conservative and it is likely that the required residence time of 192 hours is overestimated. Even this conservative estimate, however, indicates that c-DCE and vinyl chloride should degrade substantially more than is observed. Concentrations are observed to decrease only a small amount (and in many cases they increase) across the 4-inch Fe⁺⁰ walls. Possible explanations for the elevated concentrations observed down-gradient of the PeRT walls are discussed in Section 4.

5.2 INORGANIC REACTIONS

Chemical reactions that occur in the wall can lead to mineral precipitation and gas formation. The reaction products can decrease the ability to degrade chlorinated VOC. The inorganic reactions are listed in Table 5-1.

During reductive dehalogenation, chlorinated VOCs accept electrons and protons which leads to a decrease in oxidation potential and an increase in pH (Reactions A. and B. above). The electrons are provided by the dissolution of Fe⁺⁰ (Table 5-1, Reaction 1). In addition to the organic reactions, a number of inorganic reactions occur during the corrosion of Fe⁺⁰. Chemical reduction can lead to the precipitation of reduced mineral phases such as sulfides (e.g. Reaction 2). Because of the slow abiotic rate of sulfate reduction, the formation of sulfide minerals is not likely to be significant unless the reaction is catalyzed by sulfate-reducing bacteria.

The corrosion process causes an increase in pH as dissolved O₂ (Reaction 3) and water (Reaction 4) are reduced. Hydrogen is generated and may form a separate gas phase (Reaction 4). Fe⁺² is released during the corrosion of Fe⁺⁰ (Reaction 1, 3 and 4) and by the dehalogenation of chlorinated VOCs (Section 5.0). The Fe⁺² may remain in solution or be precipitated by reactions with carbonate, sulfide, or hydroxyl. The pH of Fe⁺⁰ in PeRT walls at other sites and in laboratory experiments is usually elevated over 9, and often to over 10. The elevated pH causes carbonate minerals to precipitate (Reactions 5 and 6). Hydroxyl ions can combine with Fe⁺² to form ferrous hydroxide minerals (Reaction 7). If conditions are sufficiently oxidizing, ferric hydroxides similar to common rust will form (Reaction 8).

5.3 NATURAL ATTENUATION

It should be noted that a similar mechanism for chlorinated VOC destruction has been shown as for Natural Attenuation by Reductive Dehalogenation (AFCEE, 1996):

The AFCEE Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater (AFCEE, 1996) states that tetrachloroethene is most susceptible to reductive dechlorination because it is the most oxidized. Conversely, vinyl chloride is the least susceptible to reductive dechlorination because it is the least oxidized. This is believed to explain situations where an increase in vinyl chloride concentration is observed over time in chlorinated solvent plumes.

TABLE 5-1 INORGANIC REACTIONS THAT OCCUR IN GROUNDWATER CONTACTING FE⁺⁰

Number	Reaction
1	$Fe^0 = Fe^{2+} + 2e^{-}$
2	$Fe^{2+} + SO_4^{2-} = FeS + 2O_2$
3	$Fe^0 + 2H^+ + 1/2 O_2 = Fe^{2+} + H_2O$
4	$Fe^0 + 2H^+ = Fe^{2+} + H_2$
5	$Ca^{2+} + HCO_3^- = CaCO_3 + H^+$
6	$Fe^{2+} + HCO_3^- = FeCO_3 + H^+$
7	$Fe^{2+} + 2H_2O = Fe(OH)_2 + 2H^+$
8	$4\text{Fe}(\text{OH})_2 + 2\text{H}_2\text{O} + \text{O}_2 = 4\text{Fe}(\text{OH})_3$

6.0 APPROACHES

This section provides details regarding the approaches used to install the mandrel and JAG walls as well as the basis for the conceptual groundwater pump and treatment system used as a cost comparison for the treatment technologies.

6.1 MANDREL

The mandrel wall segments were located as shown on Figure 4-1. The wall segments were placed in series, beginning at the southern end of the wall. The most up-gradient wall is 51 ½ feet in length along the ground surface. The second and third walls are respectively 12-feet, 1-inch and 11-feet, 11-inches long and are each located 4 feet down-gradient from the preceding wall segment. All the wall segments are 45 feet deep (extending from approximately 1-foot bls to a depth of 45-feet bls) and are 4 inches thick in the direction of groundwater flow.

6.1.1 Description of Equipment

The mandrel used in this project was adapted from the construction industry mandrels used to install wick drains. SSI of Gary, Indiana installed the pilot scale mandrel walls. SSI fabricated the mandrel from three sections of square steel tubing. The inside dimension (where iron is placed) is a panel of approximately 30-inches by 4 inches. Slots were cut through the interior sections of the square steel beams at intervals along the bottom 12 feet to allow iron to flow between the internal tubing sections. The outside footprint of the mandrel is approximately 33-inches by 6-inches. The total length of the fabricated mandrel was approximately 60 feet. Eight inch fins were welded near the bottom of the mandrel along one edge for alignment of the beam with the previous driven section:

PLAN VIEW

The beam was fitted with detachable driving shoes that were fitted to the bottom (leading edge) of the beam. These shoes prevented soil from filling the void spaces in the beam as the beam was driven into place with a 22-ton hammer. A rod in the center tubing section was used to knock the shoe loose. Once at depth, iron was poured into the hollow tubing sections and the shoe was knocked loose of the beam. The shoes remain in place beneath the installed iron. The major equipment was as follows:

- 180-Ton Crane with 80 foot boom to guide mandrel
- 120-Foot guide lead for hammer
- 140-Ton Crane to assist with insertion and extraction
- 22-Ton hammer, driven by 4-75 Hp electric motors
- Electricity provided by a 500 kw, 480 V Caterpillar Generator
- 60-foot long, 7 ton mandrel
- Hopper with chute for iron
- 32 detachable shoes

6.1.2 Operations

Iron was purchased from Peerless Metal Powders & Abrasives in Detroit, Michigan. Approximately 98 tons of Peerless Cast Iron Aggregate 8/50 (100% passing a U.S. Standard No. 8 sieve and 90% to 100% retained on a U.S. Standard No. 50 sieve) were emplaced in the 3 wall segments in 9 days. Iron was delivered in 3,000 pound bags, strapped to palates. The Base provided a forklift and operator to unload the iron.

The large crane was delivered on 6 trailers and required a crew of 14 to assemble in one day. The mandrel guide leads and ancillary equipment arrived on 4 trailers and required 4 days (including weather delays) for a crew of five to assemble. The small crane was delivered assembled.

Installation began at the northern most end of the up-gradient wall. Figure 6-1 shows the layout of individual panels. Panels were overlapped a nominal 4-inches to ensure a continuous treatment zone. To install iron in each panel, the following sequence was used:

- 1. Position bottom of mandrel over location
- 2. Hammer on bottom shoe
- 3. Use 4-foot level to determine vertical and horizontal alignment
- 4. Reposition mandrel as necessary to achieve straight vertical and horizontal alignment
- 5. Drive mandrel to depth (checking level during drive)
- 6. Pour in 1 bag of iron
- 7. Knock off shoe with pneumatic pump
- 8. Vibrate beam to settle the first bag of iron
- 9. Pull out slowly while vibrating (checked iron drop in mandrel first few panels)
- 10. Pour in second bag of iron
- 11. Continue to extract mandrel while vibrating
- 12. Add additional iron if needed
- 13. Fully extract mandrel
- 14. Visually inspect iron pattern at surface for continuity and orientation

The up-gradient wall segment is made up of 22 overlapped panels. The final measured length was 51-feet, 6-inches. The second wall segment was installed 4-feet down-gradient of the first. It was made up of 5 panels and measured 12-feet, 1-inches long. The third wall segment was installed 3-feet 8-inches down-gradient of the second and 7-feet, 8-inches down-gradient of the first. It was made up of 5 panels and measured 11-feet, 11-inches long.

During the installation, noise of 92 to 95 decibels were measured at a distance of approximately 100 feet away outside the south door of the nearest building. Inside the building, the maximum noise detected was 67 decibels. Vibrations were noted by workers in the same building, and to a lesser extent up to 200 feet away, but no structural damage was observed.

A Foxboro OVA was used to monitor VOC emissions. VOC emissions were not detected above background concentrations during this installation.

Prior to installation, it was not known if the installation technique would create a wall 4-inches wide (the inside dimensions of the mandrel), or if the width would be wider (up to the outside dimension of 6-inches). A field check of iron density (prior to placement) indicated that the as-received iron density was

151.5 lb/ft³ and specific gravity was 2.52. A total of 65 bags (98 tons) of iron were installed in 32 panels, for an average of 2 bags (3 tons) of iron in each panel. The inside void space for iron was 4-inches wide. The total depth of the installation was from approximately 1-foot bls to 45-feet bls (44 feet total) over a total length of 75 feet, 6 inches for all three wall segments. This results in a theoretical volume of 1,107 cubic feet. Dividing the total weight of 98 tons by the theoretical volume results in an installed iron density of 177 lb/ft³. Personnel from Peerless Metals and Abrasives, Inc., stated that this iron has a density of approximately 180 lb/ft³ when subjected to a moderate tamp. The similarity of the calculated density of 177 lb/ft³ to the expected value indicates that the iron is probably installed at a 4-inch thickness.

During installation, both horizontal and vertical deviations were measured. When detected prior to driving, the mandrel was adjusted to remove the deviation. The deviations that occurred were as a result of the beam traveling during the installation. Table 6-1 presents a listing of deviations that were not corrected prior to installation.

Installation of 2-inch monitoring wells within the wall was attempted in Panels 12, 27 and 32. In Panel 12, a 7-foot long galvanized steel riser was welded to the inside shoe of the center steel tube section. The well screen, a 20-foot long section of Number 10 slot galvanized pipe, was attached to the bottom riser. This was topped with approximately 18-foot length of solid galvanized steel riser to reach ground surface. Centralizers were welded to the riser so that the well would remain in the center of the iron when the beam was extracted. The plan was to drive the well in with the beam, detach the shoe leaving the well in place, and pour the iron around the well. When the beam was extracted, the well was not visible. A 5-foot deep hole was dug to look for the well but nothing was found. Several mechanisms were considered possible causes for the failure of the well:

- The centralizers may have hung on the slots cut into the beam to allow iron to flow through. This may have pulled the jointed sections of the well apart as the mandrel was withdrawn. The pipe sections could then have dropped back into the iron due to the vibrations. Based on this possibility, the centralizers were only installed on the up-gradient side of the wells installed in Panels 27 and 32.
- The well had been placed in the center steel tube with the rod that drives off the shoe. The rod may
 have played a role in breaking the well. Subsequent panels were installed in the southern-most steel
 tube to address this possibility.

• The wire-wrapped screen may not have been rigid or strong enough to withstand the force of the iron as it was poured, or the vibrations during withdrawal of the beam. A change was made for wells installed in Panels 27 and 32. A PVC screen was threaded onto the bottom 7-foot riser, and solid PVC casing was used above the PVC screen.

Installation of a well in Panel 27 was attempted using a 7-foot riser welded to the shoe. A 20-foot long threaded PVC screen was attached to this riser and a solid PVC riser was attached to the PVC screen. When the beam was removed following installation of the iron, the top PVC riser portion was in the steel tubing. It fell to the ground as the beam was withdrawn so it was not possible to see what, if anything, it had become attached to inside of the steel tube. Although the riser had been securely threaded into the screen section, the male threads at the end of the riser did not appear to be damaged. The failure could have occurred by cracking of the female portion of the joint that remained below grade.

Installation of a well in panel 32 was attempted using the same procedure as in Panel 27. This time, the entire well pulled loose of the weld at the shoe and remained stuck inside the beam.

6.1.3 Monitoring Results

Monitor well construction and installation is discussed in Section 4.2. Monitoring wells and in-situ flow sensors were laid out as follows:

The prefix "HGRK-PRTMWD" indicates a "deep" (screened from 35 to 40 feet bls) monitoring well. The prefix "HGRK-PRTMWI" indicates an "intermediate (screened from 15 to 20 feet bls) monitoring well. The prefix "PRT" indicates an in-situ flow sensor installed at approximately 40 feet bls. Samples from the intermediate wells were collected twice (February and August 1998) during the pilot test and analyzed for VOCs. Samples from the deep wells were collected quarterly (February, May, August and November 1998) for analysis of VOCs. The results are presented in Appendix C. Figure 6-2 shows the decrease or increase in VOC concentrations across the wall segments for samples collected in the intermediate wells. Figure 6-3 presents the decrease or increase in VOC concentrations across the wall segments for samples collected in the deep wells. On each sheet of these figures, the percent reduction or increase is calculated for pairs of wells as follows:

100% x (up-gradient concentration minus down-gradient concentration) up-gradient concentration

The results are averaged for the mandrel and JAG walls individually.

There are limitations in this approach which make true quantitative comparisons impractical. Some of these limitations are as follows:

- 1. This approach assumes that the groundwater flow directions is squarely perpendicular to the wall in all locations. As discussed in Section 4, the direction of groundwater flow at any given well pair location is variable and not squarely perpendicular to the wall.
- The upgradient concentrations were not uniform along the length of the wall or over time. Thus, it is not known exactly what upgradient concentration would be representative for the concentrations measured downgradient.
- 3. Since groundwater flow is not squarely perpendicular to the wall, there is a possibility that the concentrations reflect a mixture of water that has been treated with groundwater that has not passed through the treatment zone. The well pairs considered least likely to be influenced by mixing are the centrally located wells along the main wall. These are wells HGRK-PRTMWD11, I11, D12 and I12 for the mandrel wall.

While the limitations discussed above make exact quantitative comparison suspect, the evaluation is useful to determine general trends. The percent reduction results calculated for the average in all wells and for the centrally located well pair in the intermediate zone are as follows:

INTERMEDIATE WELL VOC RESULTS						
Parameter	Sampling Event	Average % Reduction or Increase across the wall segments	Center Wells % Reduction or Increase across the main wall segment			
Vinyl Chloride	February 1998	-1558% (increase)	-833% (increase)			
•	August 1998	+ 0% (no change)	+ 0% (no change)			
trans-1,2	February 1998	+15% (decrease)	+32% (decrease)			
Dichloroethene	August 1998	+ 0% (no change)	+ 0% (no change)			
cis-1,2	February 1998	-2932% (increase)	-986% (increase)			
Dichloroethene	August 1998	-54% (increase)	+81% (decrease)			
1,1-	February 1998	+0% (no change)	+ 0% (no change)			
Dichloroethene	August 1998	+ 0% (no change)	+ 0% (no change)			

The +0% values are representative of situations where both the up-gradient and down-gradient concentrations were less than detection.

For the February 1998 results in the intermediate wells, it appears that the concentrations of vinyl chloride and c-DCE increase as the groundwater moves through the wall segments. The concentration of t-DCE generally decreases as the groundwater flows through the wall segments. Concentrations of DCE did not exceed detection levels either up-gradient or down-gradient.

For the August 1998 results in the intermediate wells, the concentrations of vinyl chloride, t-DCE and DCE did not exceed detection levels either up-gradient or down-gradient. For the average results, the concentration of c-DCE appeared to increase as the groundwater moved through the wall. However, the analytical results for the centrally located pair indicates that the concentration decreases.

The percent reduction results for the average in all wells and for the centrally located well pair in the deep zone are as follows:

DEEP WELL VOC RESULTS						
Parameter	Sampling Event	Average % Reduction or Increase across the wall segments	Center Wells % Reductio or Increase across the main wall segment			
Vinyl Chloride	February 1998	-150% (increase)	+51% (decrease)			
	May 1998	-13% (increase)	-6% (increase)			
	August 1998	-38% (increase)	-123% (increase)			
	November 1998	-10% (increase)	-51% (increase)			
trans-1,2	February 1998	-22% (increase)	+89% (decrease)			
Dichloroethene	May 1998	+20% (decrease)	+74% (decrease)			
	August 1998	+3% (decrease)	+89% (decrease)			
	November 1998	+0% (no change)	+66% (decrease)			
cis-1,2	February 1998	-22% (increase)	-16% (increase)			
Dichloroethene	May 1998	+6% (decrease)	+66% (decrease)			
	August 1998	+7% (decrease)	+84% (decrease)			
	November 1998	+9% (decrease)	+98% (decrease)			
1,1-	February 1998	+ 18% (decrease)	+ 52% (decrease)			
Dichloroethene	May 1998	+ 0% (no change)	+ 0% (no change)			
	August 1998	+45% (decrease)	+62% (decrease)			
	November 1998	+15% (decrease)	+0% (no change)			

The +0% values are representative of situations where both the up-gradient and down-gradient concentrations were less than detection.

In February, the average concentrations of vinyl chloride, t-DCE, and c-DCE appear to increase as groundwater moves through the wall. The concentration of DCE appears to decrease. The results for the centrally located well pair indicates somewhat different results; a decrease in concentration of vinyl chloride, t-DCE and DCE and an increase in concentration of c-DCE as the groundwater moves through the wall.

In May, August and November, the results of the average concentrations and center well concentrations show the same general trends: an increase in vinyl chloride, and a decrease in t-DCE, c-DCE and DCE as groundwater moves through the wall. DCE was not present above detection levels so comparison was not possible in May.

The trends noted for May, August and November in the deep zone of the uppermost aquifer seem consistent. It seems reasonable to disregard the February 1998 results, as these were the first samples

collected and groundwater collected from the down-gradient wells may not have passed through the treatment wall. In general, it appears that as groundwater flows through the mandrel wall segments, the concentrations of c-DCE, t-DCE and DCE decrease while the concentration of vinyl chloride increases.

The monitoring results collected during the first year of operation were insufficient to determine the effectiveness of the PeRT walls on groundwater restoration. Two of the reasons for inconclusive results include the slow rate of groundwater flow and the high variability of the influent chlorinated VOC concentrations. During installation of the monitoring wells, it was noted that the soils at 35 to 40 feet bls in this area are silty to clayey sands. High OVA readings (between 100 and 300 ppm) were noted on soil samples from these depth intervals. It is therefore likely that the chlorinated solvents at this depth are adsorbed onto the soils. As treated water flows through a wall segment, it could be flushing additional chlorinated VOCs from the soil down-gradient of the wall. With the slow rate of groundwater flow in the area, this could continue for a prolonged period of time. Therefore, additional monitoring is recommended to determine if further degradation of the chlorinated VOCs occur with time.

6.1.4 Lessons Learned

The mandrel was fabricated to install a wall to a total depth of 60 feet bls. If the mandrel had been fabricated to install a wall to only 45 feet (the depth needed on this project), smaller equipment could have been used to hold and drive the mandrel. This could have resulted in both cost savings and potentially lower noise and vibration levels during the installation.

Initial alignment of the mandrel over the wall was time consuming. A guide at ground surface might make initial alignment easier. Once aligned, the beam stayed true when driven to depth. Based on this pilot study, this method of installation should be appropriate for depths of 60 feet or greater. More precise alignment and measuring/tracking tools should be used to ensure that the wall is within tolerance limits for deeper installations.

There were several unknowns in estimating the quantity of iron required for installation. A range of bulk iron densities were provided, but is was not known to what degree the iron would compact during the installation process and to what degree the soil would rebound and fill the void space as the mandrel was removed. The mandrel created a 6-inch wide opening on the outside to allow a 4-inch opening for iron.

The lead-time for delivery of iron was long – minimum of 1 week after order, 2 weeks preferred. As stand-by costs for equipment and crews were high, a conservatively high quantity of iron was ordered and there was left over iron to return. This probability had been foreseen, and arrangements had been made with the supplier to take the iron back. There were costs associated with shipping the iron both ways and a restocking charge by the supplier. The in-place density is now known, and more accurate estimates could be made for quantity of iron required.

Visual observations indicated that some degree of subsidence may have occurred in an area as large as 50 feet by 10 feet. The maximum depression in this area was estimated to be approximately 6 to 8 inches and occurred at the insertion point.

6.1.5 Costs

Estimated costs associated with the mandrel wall installation are presented in Table 6-2. Excluding mobilization, the total installed cost for the mandrel wall was \$232,712. Based on installing 75.5 linear feet, the cost per linear foot installed was \$3,082 per linear foot. The total installed cost including mobilization was \$307,712. When mobilization is included, this cost rises to \$4,076 per linear foot.

6.2 JET ASSISTED GROUTING

The JAG wall segments were located as shown on Figure 4-1. Prior to installing the pilot test wall segments, mix ratios and jet pressures were optimized in a test area. Iron was emplaced as slurry, mixed with guar gum and a binder.

6.2.1 <u>Description of Equipment</u>

The JAG wall segments were installed by Geocisa/Geobase, under contract to Foremost Solutions. This installation technique required injection of high viscosity iron slurry. The slurry was made from mixing iron, guar gum, an enzyme and borax.

The guar gum was Hercules Supercol[™] food grade fine (200-mesh size) powder. It was mixed with water in 120-gallon batches in a stirred open top tank to form 2 to 3% solutions. The guar solution was

pumped first to a holding tank, then into a truck-mounted batch mixing plant. The feed rate of guar gum was controlled by a positive displacement pump that discharged into an auger screw mixer. Iron filings were poured from the 3000-pound bags into the top of the batch mixing plant. The iron filings were added to the screw auger mixer using an aggregate belt feed with adjustable height screeds and variable speed control. In addition, an enzyme and a thickener were added with a metering pump. The screw mixer discharged into a grout pump hopper. The grout pump hopper fed a diesel powered grout pump with two 4-inch diameter swing-tube cylinders. The discharge was to hoses that fed the down-hole injection equipment. The quantity of slurry pumped down-hole was measured by counting the number of strokes of the pump. The rate of pumping was constant so the amount of iron emplaced was controlled by the speed at which the beam was withdrawn.

Initially, a 3% guar solution was used. This tended to bridge in the lines to the down-hole injection equipment. The solution was diluted to 2% guar gum in water, and borax was used as a thickener. The enzyme (Liquid Cellulose, Gencor Product Code A03107G121) was mixed with water at a ratio of 1-quart of enzyme to 25-gallons of water. Borax was added and the enzyme solution was added to the guar gum and iron slurry at a rate of 0.6 to 0.7 gpm. Table 6-3 presents the concentration of guar and quantity of borax added for each panel installed.

The down-hole injection equipment used to install the wall segments consisted of a 36-inch by 12-inch wide-flange steel beam, 48-foot long, 1-inch thick, with tubing welded to the web for water and iron slurry injection:

PLAN VIEW

SECTION VIEW AT BOTTOM

A guide on the ground in the line of the wall was fabricated from steel I-beams to assist in alignment and location of each panel installed. This guide was laid along the ground surface during panel installation. Water was jetted during driving to open a channel under the beam. The water jet assembly was attached to the leading edge of the beam web, with nozzles oriented horizontally to direct spray at the inside surfaces of the flanges at either end. During driving, water was injected at flows of up to 20-gpm and 6,000-psi pressure. The iron-slurry injection tubing was fitted with a bottom plug. A short steel rod was used to knock the plug free when the beam was at depth.

6.2.2 Operations

Iron was delivered in 3,000-pound bags, strapped to palates. The Base provided a forklift and operator to unload the iron. Iron was purchased from Peerless Metal Powders & Abrasives in Detroit, Michigan. Approximately 107 tons of Peerless Cast Iron Aggregate P1 (100% passing a Standard No. -16 sieve to dust) was used in the 3 wall segments in 24 days. Approximately 93 tons of iron was injected in the pilot test area. Approximately 24 tons of an iron/soil mixture was subsequently disposed as spoils, resulting in an estimated 83 tons emplaced.

The crane used in this installation was delivered assembled. The JAG equipment was delivered on 3 trucks and required 5 days to assemble.

In order to determine the amount of slurry that would need to be injected into each panel, a test was performed in an area to the south of the parking lot. Three panels were installed. A backhoe was then used to excavate down to the top of the panels so that the installed thickness could be observed.

As the beam had a high potential to deflect as it was driven to depth, the first and third test panels were installed prior to the second. This equalized the forces at either flange end of the beam during installation (either slurry would not be present at either end or it would be present at both ends). Approximately 1 cubic foot (cf) of slurry was injected per linear foot of depth, for a total of 41 cf of slurry in test panel number 1 and 46 cf of slurry in test panel number 3. In test panel number 2, approximately 1.4 cf of slurry was injected per linear foot of depth, for a total of 58 cf of slurry.

Following installation of the test panels, overburden soil was excavated to visually observe the installation patterns. Test panel 1 was approximately 1.5-inches thick, and bulged in the center where the slurry was injected. The area cut by the flanges also filled with slurry. Test panel number 3 was approximately 1-inch thick on the end furthest from test panel 2, and bulged in the middle. Test panel number 2 was approximately 3 to 4 inches thick.

Based on this testing, the quantity of iron needed to create a 4-inch thick wall was estimated to be 8,400 pounds of iron (approximately 60 cf of slurry) per panel during installation of the pilot scale JAG walls. Table 6-3 presents the actual amount of slurry injected during installation of each panel. Note that the total volume injected does not equal the total volume placed, as an estimated 2 to 5 cf of slurry per panel became spoil due to the excess coming to the surface and the residuals in the pumping lines. The volumes of slurry injected ranged from 46.4 to 65.4 cf of slurry. It is believed that the panels are thicker at the bottom than at the top. The rate of slurry placement was determined by the speed at which the beam was withdrawn (pumping rate being constant). The slurry would break out of the surface prior to fully withdrawing the beam (see Table 6-3 for depth at which slurry broke out for each panel). After a break out of slurry was noticed, the beam was withdrawn at a faster rate, thus less iron was installed from the point of breakout to surface.

Installation of the 3 pilot test wall segments began on the longest (up-gradient) wall segment and proceeded generally from South (adjoining the mandrel wall segment) to North. As in the test area, beams were installed by skipping and returning to locations so that for each beam installed the forces on either side would be equal (either no slurry on either side or slurry on both sides). Figure 6-4 shows the layout and the sequence of installation for the individual panels.

During installation, deviations were measured with a 4-foot level. Table 6-4 presents the amount of deviation measured in each panel. On several occasions, the beam was driven then withdrawn and reinserted to attempt to bring the deviation to tolerance.

6.2.3 Monitoring Results

Monitor well construction and installation is discussed in Section 4.2. Monitoring wells were laid out as follows along the JAG walls:

The prefix "HGRK-PRTMWD" indicates a "deep" (screened from 35 to 40 feet bls) monitoring well. The prefix "HGRK-PRTMWI" indicates an "intermediate (screened from 15 to 20 feet bls) monitoring well. The prefix "PRT" indicates an in-situ flow sensor installed at approximately 40 feet bls.

Samples from the intermediate wells were collected twice (February 1998 and August 1998) during the pilot test and analyzed for VOCs. Samples from the deep wells were collected quarterly for analysis of VOCs. The results are presented in Appendix C. Figure 6-2 shows the decrease or increase in VOC concentrations across the wall segments for samples collected in the intermediate wells. Figure 6-3 presents the decrease or increase in VOC concentrations across the wall segments for samples collected in the deep wells. On each sheet of these figures, the percent reduction or increase is calculated for pairs of wells as follows:

100% x (up-gradient concentration minus down-gradient concentration)
Up-gradient concentration

The results are averaged for the mandrel and JAG walls individually.

There are limitations in this approach which make true quantitative comparisons impractical. Some of these limitations are as follows:

- 1. This approach assumes that the groundwater flow directions is squarely perpendicular to the wall in all locations. As discussed in Section 4, the direction of groundwater flow at any given well pair location is variable and not squarely perpendicular to the wall.
- The upgradient concentrations were not uniform along the length of the wall or over time. Thus, it is not known exactly what upgradient concentration would be representative for the concentrations measured downgradient.
- 3. Since groundwater flow is not squarely perpendicular to the wall, there is a possibility that the concentrations reflect a mixture of water that has been treated with groundwater that has not passed through the treatment zone. The well pairs considered least likely to be influenced by mixing are the centrally located wells along the main wall.

While the limitations discussed above make exact quantitative comparison suspect, the evaluation is useful to determine general trends. These are wells HGRK-PRTMWD13, I13, D14 and I14 for the JAG wall. The percent reduction results for the average in all wells and for the centrally located well pair are as follows:

INTERMEDIATE WELLS VOC RESULTS							
Parameter	Sampling Event	Average % Reduction or Increase across the wall segments	Center Wells % Reduction or Increase across the main wall segment				
Vinyl Chloride	February 1998	-1796% (increase)	-8300% (increase)				
	August 1998	-586% (increase)	-253% (increase)				
trans-1,2	February 1998	-104% (increase)	-11% (increase)				
Dichloroethene	August 1998	+ 8% (decrease)	+ 64% (decrease)				
cis-1,2	February 1998	-429% (increase)	-1463% (increase)				
Dichloroethene	August 1998	-109% (increase)	+57% (decrease)				
1,1-	February 1998	+ 0% (no change)	+ 0% (no change)				
Dichloroethene	August 1998	+ 0% (no change)	+0% (no change)				

The +0% values are representative of situations where both the up-gradient and down-gradient contaminant concentrations were less than detection.

In February, concentrations of vinyl chloride, t-DCE and c-DCE appear to increase as groundwater moves through the wall segments. DCE was not present in detectable concentrations either up-gradient or down-gradient.

In August, the average concentrations of vinyl chloride and c-DCE appear to increase as groundwater moves through the wall. The concentration of c-DCE in the center well pair appears to decrease. Concentrations of t-DCE appear to decrease as groundwater moves through the wall for both the average and center well results. DCE was not present in detectable concentrations either up-gradient or downgradient.

DEEP WELLS VOC RESULTS							
Parameter	Parameter Sampling Event Average % Reduction or Increase across the wall segments		Center Wells % Reduction or Increase across the main wall segment				
Vinyl Chloride	February 1998	-484% (increase)	-31% (increase)				
	May 1998	-41% (increase)	-54% (increase)				
	August 1998	-110% (increase)	-155% (increase)				
	November 1998	-40% (increase)	-140% (increase)				
trans-1,2	February 1998	+13% (decrease)	+61% (decrease)				
Dichloroethene	May 1998	+20% (decrease)	+55% (decrease)				
	August 1998	+20% (decrease)	+59% (decrease)				
	November 1998	+17% (decrease)	+22% (decrease)				
cis-1,2	February 1998	-316% (increase)	+20% (decrease)				
Dichloroethene	May 1998	+26% (decrease)	+66% (decrease)				
	August 1998	+15% (decrease)	+78% (decrease)				
	November 1998	-8% (increase)	+22% (decrease)				
1,1-	February 1998	+ 18% (decrease)	+ 56% (decrease)				
Dichloroethene	May 1998	+ 0% (no change)	+ 0% (no change)				
	August 1998	+37% (decrease)	+88% (decrease)				
	November 1998	+17% (decrease)	+35% (decrease)				

The +0% values are representative of situations where both the up-gradient and down-gradient contaminant concentrations were less than detection.

In February, average concentrations of vinyl chloride and c-DCE appear to increase as groundwater moves through the wall segments. For the center well pair, vinyl chloride appears to increase and c-DCE appears to decrease. For both the average and center well pair, concentrations of t-DCE and DCE appear to decrease.

In May, the trends are consistent for the average and center well pair: The concentrations of vinyl chloride increases and the concentrations of t-DCE and c-DCE decrease. DCE was not present in detectable concentrations either up-gradient or down-gradient.

In August, the trends are consistent for the average and center well pair: The concentrations of vinyl chloride increases and the concentrations of t-DCE, c-DCE and DCE decrease.

In November, there is a possible deviation from the trends noticed in May and August; the average c-DCE concentration appears to increase as groundwater flows through the wall. The concentration of c-DCE in the center wells follows the previous trend and decreases as groundwater flows through the wall.

The general trends noted for May, August and November in the deep zone of the uppermost aquifer seem consistent. It seems reasonable to disregard the February 1998 results, as these were the first samples collected and groundwater collected from the down-gradient wells may not have passed through the treatment wall. In general, it appears that the JAG wall segments decrease the concentrations of c-DCE, t-DCE and DCE but increase the concentration of vinyl chloride.

The monitoring results collected during the first year of operation were insufficient to determine the effectiveness of the PeRT walls on groundwater restoration. Two of the reasons for inconclusive results include the slow rate of groundwater flow and the high variability of the influent chlorinated VOC concentrations. During installation of the monitoring wells, it was noted that the soils at 35 to 40 feet bls in this area are silty to clayey sands. High OVA readings (between 100 and 300 ppm) were noted on soil samples from these depth intervals. It is therefore likely that the chlorinated solvents at this depth are adsorbed onto the soils. As treated water flows through a wall segment, it could be flushing additional chlorinated VOCs from the soil down-gradient of the wall. With the slow rate of groundwater flow in the area, this could continue for a prolonged period of time. Therefore, additional monitoring is recommended to determine if further degradation of the chlorinated VOCs occur with time.

6.2.4 Lessons Learned

There were two injuries requiring medical treatment during the JAG wall installation. The first injury occurred when iron was being poured into the batch mixing plant to mix with guar gum for the first pilot scale PeRT wall panel installed (Panel number 2). Fine iron dust blew outside of the loading area into the eye of an observer at the site. Following this incident, safety goggles were required whenever the dry iron was handled.

The second injury was related to the high-pressure water hose. After the beam had been driven to depth and the bottom plug knocked out, the slurry jet tubing filled with sand. The crew used a high-pressure water line to free the clog. A high-pressure water hose was run down into the clogged slurry jet tubing, without the water running. The high-pressure water hose became clogged as well. When the water was turned on, the clog was noticed. The crew began pulling up the water line, with the line under pressure. When the hose reached the surface, the clog broke free. The decrease in line pressure caused the hose to whip around, breaking the wrist and cutting the forearm of a crewmember. Following the incident, the slurry injection tube was filled with water prior to knocking the plug off so that sand would not fill in the tube. The accident could also have been avoided with strict adherence to safety procedures when using high-pressure hoses (bleed pressure before handling).

The beam had a high potential to deflect as it was driven. Although several different hammers and driving speeds were utilized, the difficulty persisted. It may be a function of the geometry of the beam used in this installation method or the absence of leads to guide the hammer. For the depth and thickness of wall in this pilot test, a ½-inch deviation over 4 feet was considered acceptable. It was difficult to achieve this precision, and deeper installations would be even more difficult to keep within tolerances.

During installation, the slurry was injected as the beam was withdrawn. Iron slurry would rise to the surface while the beam was still below the water table. The water table was approximately 3 feet below the installation trench. Slurry broke out at depths ranging from 15 to 24 feet bls. When breakout was observed, the beam was withdrawn at a faster rate and consequently less iron was installed in the upper portion of the wall. The highest concentrations of contaminants at this site were below the depths at which this thinning of the wall occurred.

The amount of spoils generated was underestimated so adequate provisions had not been made to collect and separate solids and liquids. Spoils were generated in several ways:

- 1) Batches of iron/guar mix would harden if not used soon after mixing.
- 2) Iron and guar mixture would break out at the surface after the slurry was injected.
- Water was used for cleaning equipment so that the slurry would not set up in pumps, hoses, etc.
- 4) As solids removed during the driving step.

The largest quantity of spoils (24 tons) was produced by the slurry breaking out of the ground before the beam had been withdrawn the full distance. An estimated 2 to 5 cubic feet of iron spoil was generated at each beam. Since this slurry had been in contact with contaminated groundwater, it was containerized sampled and disposed in accordance with Base IDW practices.

An unmeasured quantity of slurry was also lost prior to injection into the ground. After the subcontractor had demobilized the mixing equipment, numerous small clumps of iron were found in the vicinity. These were found in the area of the parking lot where mixing had been performed and were scraped up prior to resurfacing the parking lot. Even so, small flakes of iron remained and the resurfacing layer of the parking lot in that area chipped off after a few months. Clumps were also found in the grassed area around the parking lot. These were removed by hand excavating and disposed.

Production was slow due to numerous equipment problems. Some of these were related to the difficulty in pumping the abrasive slurry. The iron filings abraded the wear plates in the pump, allowing large clumps to pass through into the injection tubing. These had a tendency to bridge in the hoses to the injection point. There were also problems with the plug in the bottom of the iron injection tubing. As the beam was driven, the force of the soil pushed up on the plug. It was difficult to push out to allow iron to be injected. Additional slow-downs were encountered due to alignment problems. Often, the beam had to be driven more than once due to high deviations from vertical.

6.2.5 <u>Costs</u>

Estimated costs associated with the JAG wall installation are presented in Table 6-5. Excluding mobilization and pre-installation testing, the total installed cost for the JAG wall was \$235,639. Based

on installing 64 linear feet, the cost per linear foot installed was \$3,682 per linear foot. The total installed cost including mobilization and pre-installation testing was \$306,538. When mobilization is included, this cost rises to \$4,790 per linear foot.

6.3 GROUNDWATER PUMP AND TREAT

6.3.1 <u>Assumptions</u>

One objective of the pilot study was to compare the cost of the PeRT wall treatment system with a typical groundwater pump and treat system. The basis of comparison was selected to be a groundwater pump and treat system sized such that the length of the capture zone would approximate the 100-foot PeRT wall treatment length. Simple groundwater modeling was performed to estimate the volume of water that would need to be extracted in order to create a 100-foot length capture zone. A discussion of the model assumptions and results is presented in Appendix D. The estimated required extraction rate was 14 gpm.

The primary treatment processes selected were air stripping followed by activated carbon polishing of water and adsorption of the air emissions onto vapor phase carbon. Since vinyl chloride is not readily adsorbed onto carbon, a great deal of carbon will be used for this application. It is quite likely that there are much more economical treatment alternatives for treatment of this water. However, this is considered reliable technology that has been tested often enough to provide an accurate cost estimates without treatability study. This treatment should remove 99% or more of the influent concentrations. Wherever possible, unit rate costs were obtained from actual costs at the Cape Canaveral Air Station. The following presents the basic components of the conceptual groundwater pump and treat system:

- Site Preparation consisting of asphalt removal and trenching for pipes;
- One 4-inch diameter stainless steel extraction well, 15-foot long screened section to achieve a
 capture zone similar to the 100 linear foot up-gradient wall and a total flow rate of 14 gpm;
- One submersible groundwater pump and controls, all installed sub-grade with explosion proof electrical and controls;
- One well vault with cover, capable of supporting traffic loads;
- Installation of 4 groundwater monitoring wells;

- One air stripper (Delta Vanguard® Model ΔS1-100) with explosion proof electrical, blower motor and controls;
- Calgon Vapor Pac Units for adsorption of stripped VOCs. Each Vapor Pac unit contains 1,800 lbs of carbon. Estimated use of 12 Vapor Pacs over 10 months at worst case conditions;
- Calgon Cyclesorb FP-2 liquid phase GAC units. Each contains 2,000 pounds of carbon and an estimated 17 units will be required for this project;
- Weekly checks of emissions from the first vapor phase carbon cell in series with an OVA;
- Weekly analysis of grab samples from the first liquid phase carbon cell in series for analysis of vinyl chloride;
- Monthly effluent sampling and analysis; and
- Quarterly monitor well sample collection and analysis for VOCs.

A conceptual layout of wells and equipment is shown in Figure 6-5. Table 6-6 presents a cost estimate for the installation, operation and monitoring of the system. The estimate includes costs components that were included for the PeRT wall costs. The period of operation was assumed to be the same as for the PeRT wall pilot study.

6.3.2 Comparison of PeRT Wall to Pump and Treat Cost

Table 6-7 presents a comparison of actual PeRT wall installation and estimated monitoring costs (for both walls) with the estimated cost for groundwater pump and treat over the same time period for the same volume of water collected. The actual monitoring costs during the pilot study were not used in this comparison since the same level of information would not be needed to monitor a remedial action. Instead, monitoring was made consistent with the groundwater "pump and treat" system. The estimated time required for the savings in O&M to off-set the higher capital cost is 4 years. This is considered a conservative estimate since other savings could be realized as well (not installing flow sensors, installing flower monitoring wells, not installing the downgradient wall sections).

TABLE 6-1 MANDREL INSTALLATION FIELD QUALITY CONTROL

			Horizontal Deviation	
Wall	Panel		(inches from wall layout	Vertical Deviation
Segment	Number	Date	centerline over length of	(inches from vertical
Segment	Number	Date	panel) (Note 3)	over 4-feet) ^(Note 3)
	1	10/06/1997	paner	0101 4-1001)
	2	10/06/1997		
	3	10/06/1997	2	
	4	10/07/1997	½ to 1	
	5	10/07/1997		
	6	10/07/1997		
	7	10/07/1997		
	8	10/07-08 /1997	1	1/2
	9	10/08/1997		
	10	10/08/1997		
Up-Gradient	11	10/08/1997		
,	12 ^(Note 1)	10/11/1997		
	13	10/08/1997		
	14	10/08/1997		
	15	10/09/1997		
	16	10/09/1997		
	17	10/09/1997		
:	18	10/09/1997		
	19	10/11/1997		
	20	10/11/1997		
	21	10/11/1997		
	22	10/11/1997		
	23	10/11/1997		1/8
	24	10/11/1997		
First Down-	25	10/14/1997		
Gradient	26	10/14/1997		
	27 ^(Note 2)	10/14/1997		
	28	10/14/1997		
Second	29	10/14/1997		
Down-	30	10/14/1997		
Gradient	31	10/14/1997		
	32 ^(Note 2)	10/15/1997		

Note 1: Panel 12 was the first location where installation of a well inside the wall was attempted. It was not installed in sequence. Panel 11 was installed and space was left for panel 12. Panels 13 through 18 were installed then Panel 12. This was due to material delivery schedule for the well components.

Note 2: Panels 27 and 32 were the locations in down-gradient walls where well installation was attempted inside the wall.

Note 3: The deviation measurements represent "as installed" values. Deviations that were corrected prior to installation are not noted. If no value is listed, no measurable deviation was noted.

TABLE 6-2 MANDREL INSTALLATION COSTS

SUB	CONTRACTOR CHARGES (SS	I & PEERLES		313	
	,				
	lization/Demobilization:				\$ 75,000
Instal		\$154,100			
Bondi	ing				\$ 4,600
Iron					\$ 56,000
SUBT	TOTAL SUBCONTRACTORS:				\$289,700
INCI	DENTAL COSTS (Based on 21 d	lays elapsed tim	e on site)	w	
	ITEM	UNITS	\$/UNITS	NO. UNITS	TOTAL \$
Temp	orary Facilities				
	Port-O-let	Month	\$73.67	0.70	\$51.57
2	Barricades	Month	\$386.37	0.70	\$270.46
	Subtotal				\$322.03
Const	ruction Oversight				
	Phone	Month	\$336.37	0.70	\$235.46
4	Noise Monitor	Month	\$100.00	0.70	\$70.00
5	Ford F150	Day	\$46.08	21.00	\$967.68
6	Explosimeter	Week	79.60	3.00	\$238.80
7	Field Oversight	Day	\$593		\$10,674.00
8	Engineering Inspection	Each	\$2,500	1	\$2,500.00
9	Rust Personnel Unload Iron	Total	\$1,500	1	\$1,500.00
10	Daily Expenses	Day	\$28	18	\$504.00
11	Miscellaneous field supplies	Each	\$1,000	1	\$1,000.00
	Subtotal				\$17,689.94
SUBT	OTAL INCIDENTALS				\$18,011.96
TOTA	 AL ESTIMATED INSTALLATION	ON COST			\$307,711.96

TABLE 6-3 JAG INSTALLATION VARIABLE PARAMETERS

				AMADLE			
Wall Segment	Panel Number	Order of Installation	% Guar	Quantity of	Density (lb	Volume Injected ²	Depth where iron
Segment	Number	Instanation	in	Borax ¹	iron/ft ³)	(cf)	1
			water	(number	HOIDIL)	(CI)	breaks out at surface
i			water	of boxes			(feet) ³
	1	3	2.0	1.5	••	55.6	-15
	2	1	3.0	None		55.0	-15
	3	4	2.0	1.5		 	-15
	4	2	2.0			55.8	
}	5	7		1.5		51.8	-17
			2.0	1		46.4	-20
	6	5	2.0	1		49.8	-19
]	7	8	2.0	1/3	143	65.4	-19
	8	6	2.0	1	147	54.5	-23
	9	11	2.0	1/3		57	-16
T T	10	9	2.0	1/3	154	55.2	-19
Up- Gradient	11	12	2.0	1/3		44.5	-16
Gradient	12	10	2.0	1/3		57.8	-18
	13	15	2.0	1/4	129	56.5	-17
	14	13	2.0	1/3		53.4	-14
	15	16	2.0	1/4	156	48	-18
	16	14	2.0	1/3	150	54.9	-15
Ī	17	18	2.0	1/4	152	55.2	-21
	18	17	2.0	1/4	144	56	-17
First	19	19	2.0	1/4	147	52	-18
Down-	20	21	2.0	1/4	153	45	-24
Gradient	21	20	2.0	1/4	142	51.6	-14
Second	22	22	2.0	1/4		51	-18
Down-	23	24	2.0	1/4	136	46	-17
Gradient	24	23	2.0	1/4		53	-24

Notes:

- 1. Each box of Borax contained 76 ounces. The quantities listed are the amount mixed into each 25- gallon batch of enzyme and water mixture.
- 2. This represents the volume pumped into each panel. Approximately 2 to 5 cubic feet of spoils were created at each panel due to excess slurry rising to the surface.
- 3. This depth represents the distance from the beam to land surface when iron began rising up from the excavation. From this point upward, the amount injected is smaller.

TABLE 6-4 JAG INSTALLATION FIELD QUALITY CONTROL

JAG INSTALLATION FIELD QUALITY CONTROL								
			VERTICAL DEVIATION					
Wall	Panel		Perpendi		Parallel to center line of wall			
Segment	Number	Date	center lin	e of wall				
			Inches	Total	Inches	Total		
			over a 4-	deviation	over a 4-	deviation		
			foot length	(inches)	foot length	(inches)		
	11	11/15/1997	3/8	4 7/32	3/4	8 7/16		
	2	11/13/1997	1/8	1 13/32	1/8	1 13/32		
	3	11/15/1997	1/4	2 13/16	1/4	2 13/16		
	4	11/14-15/1997	3/8	4 7/32	1/4	2 13/16		
	5	11/17/1997	1/8	1 13/32	1/8	1 13/32		
	6	11/16-17/1997	1/2	5 5/8	1/4	2 13/16		
	7	11/17-20/1997	1/8	1 13/32	0	0		
	8	11/17/1997	1/8	1 13/32	0	0		
	9	11/20/1997	1/4	2 13/16	1/4	2 13/16		
	10	11/20/1997	0	0	1/8	1 13/32		
Up-Gradient	11	11/20-21/1997	1/4	2 13/16	0	0		
	12	11/20/1997	1/4	2 13/16	1/4	2 13/16		
	13	11/21-22/1997	1/2	5 5/8	1/4	2 13/16		
	14	11/21/1997	1/4	2 13/16	1/8	1 13/32		
	15	11/22/1997	3/8	4 7/32	1/4	2 13/16		
	16	11/21/1997	3/8	4 7/32	1/4	2 13/16		
	17	11/22-25/1997	1/8	1 13/32	1/4	2 13/16		
	18	11/22/1997	3/8	4 7/32	3/8	4 7/32		
First Down-	19	11/25/1997	3/8	4 7/32	1/8	1 13/32		
Gradient	20	11/26/1997	1/4	2 13/16	1/4	2 13/16		
	21	11/25/1997	1/4	2 13/16	0	0		
Second	22	11/26/1997	1/4	2 13/16	3/8	4 7/32		
Down-	23	11/28/1997	1/4	2 13/16	1/4	2 13/16		
Gradient	24	11/26/1997	1/4	2 13/16	3/8	4 7/32		

TABLE 6-5 JET ASSISTED GROUTING INSTALLATION COSTS

JET ASSISTED GRO	DUTING INS	TALLATION	N COSTS	
SUBCONTRACTOR CHARGES (FOR	EMOST & P	EERLESS)		
Mobilization:				\$ 40,000.00
Test Area (including estimated cost of iror	used in testin	9)		\$ 30,899.01
Demobilization:	. used in testin	5/		\$ 20,000.00
Installation:				\$ 80,000.00
Iron (Excluding iron used for testing):				\$ 73,563.12
				\$ 75,505.12
SUBTOTAL SUBCONTRACTORS:				\$244,462.13
				· · · · · · · · · · · · · · · · · · ·
Incidental Costs(Based on 41 days elapse	ed time on site,	, plus 2 weeks d	elay in mobi	lization)
ITEM	UNITS	\$/UNITS	NO.	TOTAL \$
			UNITS	•
T				
Temporary Facilities				
1 Port-O-let	Month	\$73.67	1.83	\$135.06
2 Barricades	Month	\$386.37	1.83	\$708.35
S-harat				
Subtotal				\$843.41
Construction Oversight				
3 Phone	1	2226.25		
4 Noise Monitor	Month	\$336.37	1.37	\$459.70
5 Ford F150	Month	\$100.00	1.83	\$183.33
6 Explosimeter	Day	\$46.08	41.00	\$1,889.28
	Week	\$79.60	5.86	\$466.23
7 Field Oversight	Day	\$593.00	38	\$22,534.00
8 Daily Expenses	Day	\$28.00	38	\$1,064.00
9 Engineering Inspection	Each	\$2,500.00	2	\$5,000.00
10 Rust Personnel Unload Iron	Total	\$1,500.00	1	\$1,500.00
11 Review and approve contractor	Total	\$6,000.00	1	\$6,000.00
design changes, field oversight				
during delays caused by changes and				ĺ
safety training for contractor personnel.				
	-	41.500.00		
12 Miscellaneous field supplies	Ea.	\$1,500.00	1	\$1,500.00
Subtotal				
Subtotal				\$40,596.54
DW Management, Disposal				
13 Roll off delivery, each	Ea.	\$1.250.00		£2.700.00
14 Roll-off rental	Ea./day	\$1,250.00	2	\$2,500.00
15 Haul Non-haz load	Ea./day Each	\$10.00	105	\$1,050.00
16 Dispose IDW solid	Ton	\$1,250.00	24.00	\$2,500.00
10 2 ispose ID ii sollu	1011	\$35.00	24.08	\$842.80

TABLE 6-5
JET ASSISTED GROUTING INSTALLATION COSTS (CONCLUDED)

ULI TIDDIDI	ED GROCIII GI	TIDETERMENT	TION COST	D (CONCL	ODLD)
ITE	M	UNITS	\$/UNITS	NO. UNITS	TOTAL \$
17 IDW analysis – s	solid	Each	\$1,262.50	1	\$1,262.50
18 IDW analysis – 1	iquid	Each	\$775.00	1	\$775.00
19 Data Validation,	IDW samples	Total	\$646.00	2	\$1,292.00
20 Baker Tank Rent	tal	Total	\$3,411.00	1	\$3,411.00
21 Transfer drums i move soils, US F		Hr	\$35.00	51.5	\$1,802.50
22 Rust sampling, o	versight of IDW	Total	\$2,500.00	1	\$2,500.00
23 Kemron, collect	IDW from trench	Total	\$300.00	1	\$300.00
Subtotal					\$18,235.80
Additional Restoration					
24 Additional Resto up after Foremos	ration Work, Clean- t Left, Rust	Total	\$1,500.00	1	\$1,500.00
25 Additional saw c	ut, seeding, Kemron	Total	\$900.00	1	\$900.00
Subtotal					\$2,400.00
SUBTOTAL INCIDE	NTALS				\$62,075.75
TOTAL INSTALLAT	TION OF JAG WAI	LL			\$306,537.88

TABLE 6-6 GROUNDWATER PUMP AND TREAT COST ESTIMATE

	UMP AN	DIKEA	1 COST	ESTIMATE
Costs				
Units	No.	Unit	Cost	Source
	Units	Cost	<u></u>	
	T		1	
1.0		¢1 100	61 100	C P.PTWII
	 			Cost on PeRT Wall project
LS	1	\$1,700	\$1,700	Cost on PeRT Wall project
T.C.	1	60.000	62.260	C . D DTW
				Cost on PeRT Wall project
				Echos, 97, 18 02 0322
				Cost on PeRT Wall project
				Cost on PeRT Wall project
LS	1	\$150	\$150	Cost on PeRT Wall project
			\$12,691	
uent Pipir	ng and Co	ntrols Inst	tallation	<u></u>
			-	Cost on PeRT Wall project
				Echos, 97, 33 23 0122
	15			Echos, 97, 33 23 0222
Each	1	\$5,715	\$5,715	Echos, 97, 33 23 0602
Each	1	\$420	\$420	Echos, 97, 33 23 0811
LF	40	\$55	\$2,200	Echos, 97, 33 23 1143
Each	1	\$7,052	\$7,052	Echos, 97, 33 23 1302
Each	1	\$3,319	\$3,319	Echos, 97, 33 23 1302
LF	200	\$13.30	\$2,660	Echos, 97, 33 26 0231
			\$24.091	
			1 - 1,0-2	
piping and	controls	Installatio	n	
			Ī	
Each	1	\$7,500	\$7,500	Delta Cooling Towers
				Delta Cooling Towers
				Delta Cooling Towers
Each	1	\$3,130	\$3,130	Delta Cooling Towers
	LS LS SF SY LS uent Pipin LS LF Each Each LF Each Each LF Each Each LF Each	Units No. Units LS	Costs Vinits No. Unit Cost	Units

TABLE 6-6
GROUNDWATER PUMP AND TREAT COST ESTIMATE (Continued)

GROUNDWATE!	Units	No.	Unit	Cost	Source
rtem .	Units	Units	Cost	Cust	Source
Air Stripper, Install	Each	1	\$39,705	\$39.705	Assume equip = 1/4 installed
Liquid GAC Deliver 2 cells	Each	2	\$1,800	\$3,600	
Liquid GAC rental fee	Each	2	\$790		Calgon
Liquid GAC testing fee	Each	1	\$1,000		Calgon
Vapor GAC deliver 2 cells	Each	2	\$3585		Calgon
Vapor GAC rental fee	Each	2	\$275	\$550	Calgon
Vapor GAC testing fee	Each	1	\$1,000	_	Calgon
Discharge piping to sewer	LF	75	\$5.65	\$424	Echos, 97, 19 02 0101
Precast manhole	Each	3	\$612.95	-	
550 Gal Steel Sump	Each				Echos, 97, 19 02 0201
Backflow Preventor		1	\$1,110		Echos, 97, 19 04 0602
Dackflow Flevellor	Each	1	\$1,000	\$1,000	Previous Project Costs
Subtotal				\$72,213	
Monitoring Well Installation					
Total Installation per well	Each	4	\$1,419	\$5,676	Cost on PeRT Wall project
Construction Oversight					
Construction oversight - labor	Day	60	\$593	\$35,580	Cost on PeRT Wall project
Construction oversight -	Month	3	\$2,556	\$7,668	Cost on PeRT Wall project
expenses					• •
Subtotal				\$43,248	
Miscellaneous Other Direct (Costs				
IDW I'			41.414		
IDW sampling	Each	3	\$1,262	\$3,786	Cost on PeRT Wall project
IDW storage	Month	1	\$300	\$300	Cost on PeRT Wall project
IDW transport	Each	1	\$1,250	\$1,250	Cost on PeRT Wall project
IDW disposal	Ton	10	\$55	\$550	Cost on PeRT Wall project
Port-O-Lets	Month	3	\$74	\$222	Cost on PeRT Wall project
Barricades	Month	3	\$386	\$1,158	Cost on PeRT Wall project
Subtotal				\$7,266	
TOTAL INSTALLED COST	1			\$165,185	
				7.00,100	
Part 2: Operations and Mair	itenance -	10 Month	S		
Destrict Destrict	-				
Packing Recondition	EA	0	\$2,094	\$0	Echos, 97, 33 13 0701
Blower and Motor maintenance	EA	1	\$356	\$356	Echos, 97, 33 41 0201

TABLE 6-6
GROUNDWATER PUMP AND TREAT COST ESTIMATE (Continued)

Item	Units	No. Units	Unit	Cost	Source
			Cost		
Pump Maintain	EA	1	\$356	\$356	Echos, 97, 33 41 0101
Electrical	kWh	9,274	\$0.03	\$306	Typical
Sewage Surcharge	Gal	6,048,000	\$0.01	\$60,480	Typical
Carbon Change out - liquid	EA	15	\$1,800	\$27,000	Calgon
Liquid phase rental	EA	15	\$790	\$11,850	Calgon
Carbon Change out - vapor	EA	10	\$3,585	\$35,850	Calgon
Vapor phase rental	EA	10	\$275	\$2,750	Calgon
Subtotal O&M				\$139,000	
	- · · · · · · · · · · · · · · · · · · ·				
Monitoring - Quarterly Sam	pling, mo	nthly efflue	ent and car	bon breakt	hrough
Labor	Each	4	\$10,695	\$42,780	Cost on PeRT Wall project
Laboratory Analysis, 5 samples	Event	4	\$550	\$2,200	Cost on PeRT Wall project
Monitoring - Monthly Effluent	and Carb	on Breakthr	ough		
Labor	Each	6	\$400	\$2,400	Estimated cost travel, sampling
Laboratory Analysis, 10 samples	Each	10	\$110	\$1,100	Cost on PeRT Wall project
Monitoring - Weekly Carbon v	apor and	liquid phase	breakthrou	gh	
Labor	Each	33	\$400	\$13,333	Estimated cost travel, sampling
Laboratory Analysis, 10 samples	Each	33	\$110	\$4,767	Cost on PeRT Wall project
Subtotal Monitoring				\$66,580	

TABLE 6-7
COST COMPARISON, PERT WALL vs. PUMP AND TREAT

COST COM A		ALL vs. PUMP AND TR	CAI
Item	Pert Wall Cost - Both Pilot Test Walls (Actual)	Groundwater Pump And Treat – Basis Equal Volume Treated (Estimated)	Difference
INSTALLATION			
Cita Dana and Dantamai	#57.200	010.700	
Site Prep and Restoration	\$57,200	\$12,700	
Monitoring Well Installation	\$45,400	\$5,700	
Flow Sensors	\$36,300	\$0	
Install System	\$534,200	\$96,300	
Construction Oversight	\$58,300	\$43,200	
IDW Handling/Disposal	\$18,200	\$5,900	
Other ODCs	\$1,200	\$1,400	
TOTAL INSTALLATION	\$750,800	\$165,200	\$585,600
OPERATION AND MAINTENANCE (10 MONTHS)			
Sampling and Analysis*	\$47,600	\$66,600	
Equipment O&M	\$0	\$700	
Utilities (electric, sewer)	\$0	\$60,800	
Carbon Use	\$0	\$77,500	
TOTAL O&M (10 Months)	\$47,600	\$205,600	\$-158,000
TOTAL INSTALLATION &	##00.400	44-1-1-1-1	
O&M FOR 10 MONTHS	\$798,400	\$370,800	
ESTIMATED TIME REQUIRED FOR O&M SAVINGS TO OFFSET ADDITIONAL CAPITAL COST	4 YEARS	N/A	

*NOTE: The actual cost of monitoring during the pilot study was approximately \$200,000. However, this was much more than would be required during a remedial action. Therefore, the cost of \$47,600 was used to represent an equal monitoring level with the "pump and treat" technology (see Table 6-6).

100 220 0 JET ASSISTED GROUT 0490 0210 0370 029 210_O 2.5 Groundwater Flow 8.4 O 0.9 MANDREL o<u>^</u> 990 922 ₈0 0 0 ^ 1:1 22

Performance Across 4" thickness

% Reduction or increase	-8300%	-624%	-76%	-35%	22%	-1796%
Down- Gradient Re Well or i	210	210	370	490	100	
Up- Gradient G Well	2.5	29	210	370	220	
Jet Assisted Grout						
% Reduction or increase	·	·		%6		-1558%
Down- Gradient Well	52	52	99	9	8.4	
Up-Gradient Well	17	<u> </u>	25	99	0.9	
Mandrel						Average

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 1 of 8: Vinyl chloride, February 1998
Cape Canaveral Air Station, Florida

Ξ 0 0 JET ASSISTED GROUT 0,47.9 05.5 0.1.6 Vinyl Chloride, August 1998 5.3 1.50 Groundwater Flow o 1.1 o o 1.1 o MANDREL o^ 1:1 0 0 0.57 < 1.1 <

Performance Across 4" thickness

Mandrel	Up-Gradient Well	Down- Gradient Well	% Reduction or increase	Jet Assisted Grout	Up- Gradient Well	Down- Gradient Well	% Reduction or increase	
	77	0.57	* %0		1.5			
	1.1	17	* %0		1.6	47.9	-2894%	
	1.1	1.1	* %0		47.9			
	Ξ:	1.1	* %0		5.5			
	Ξ.		. %0		4.9			
Average			%0				-589%	

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 2 of 8: Vinyl chloride, August 1998

			Performant	Performance Across 4" thickness			
Mandrel	Down- Up-Gradient Gradient Well Well	Down- Gradient Well	% Reduction or increase	Jet Assisted (Up- Gradie Well	Down- nt Gradient Rec Well or in	% Reduction or increase
	0.44				1.8	8	-11%
	0.5	0.24	* %0		4.5	1.8	%09
	0.24				1.8	1.9	
	0.13				1.9	13	-584%
	0.73				2.5	2	50%
Average			15%				-104%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 3 of 8: trans-1,2 DCE, February 1998
Cape Canaveral Air Station, Florida

< 0.5 . 0 0 JET ASSISTED GROUT 04.95 0 1.4 0 0.5 **Groundwater Flow** 0.5 0.420 MANDREL 0.45 \$^{0.5} < 0.5 0 0 < 0.5

trans-1,2 Dichloroethene, August 1998

		Down-	%	Jet	å	Down-	%
	Up-Gradient	Gradient	Up-Gradient Gradient Reduction	Assisted		Gradient	
Mandrel	Well	Well	or increase	Grout	Well	Well	or increase
	0.4				1.4		
	0.45				1.8		•
	0.5	0.5	• %0		4.95	0.5	. %06
	0.5				0.5		
	0.42				1.3		
Average			%0				%8

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 4 of 8: trans-1,2 DCE, August 1998

cis-1,2 Dichloroethene, February 1998

Performance Across 4" thickness

		Down-	%	Jet	å	Down-	%
	Up-Gradient	Gradient	Reduction	Assisted	Gradient	Gradient	
Mandrel	Well	Well	or increase	Grout	Well	Well	or increase
	0.0	93	-10233%		16		•
	1.2	38			65	170	-162%
	38	210	-453%		170		
	210	48			65		
	3.5	38			160		
Average			-2932%				429%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 5 of 8: cis-1,2 DCE, February 1998

0.64 0 0 JET ASSISTED GROUT 67.5 9.6 2.6 6.10 Groundwater Flow 1.8 9.5 MANDREL 0.73 01.4 0 0 2.6

cis-1,2 Dichloroethene, August 1998

	% Reduction or increase		•	%86			-109%
	Down	2.6	67.5	1.6	1.6	0.64	
	å	6.1	7.6	67.5	1.6	6.2	
ss 4" thickness	Jet Assisted Grout						
Performance Across 4" thickness	% Reduction or increase	-117%	48%	-311%	27%	81%	-54%
	Down	2.6	0.73	က	2.5	1.8	
	ф	1.2	1.4	0.73	က	9.2	
	Mandrel						Average

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

を

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 6 of 8: cis-1,2 DCE, August 1998

u	ľ
U	١
ā	Ľ
ē	
- 5	
thickness	
٠.٧	
-	
-	
4.	
÷	١
_	
-	i
ĕ	Ė
~	í
- 2	•
c	3
Arroce	ř
_	۰
a	d
970	ì
>	
-	
- 2	
F	۰
- 5	
c	1
4	
ā	١
Performan	
щ	•

		*		*	*	*	٠.
%	Reduction or increase	%0	%0	. %0	%0	%0	%0
	Gradient Well	1.2	1.2	1.2	0.75	1.2	
ģ	Gradient Well	1.2	1.2	1.2	1.2	0.26	
Jet	Assisted Grout						
%	Reduction or increase	. %0	* %0	. %0	* %0	* %0	%0
own-	adient Well	1.2	1.2	1.2	1.2	1.2	
	Up-Gradient Gr Well	1.2	1.2	1.2	1.2	1.2	
	Mandrel						Average

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened
15 to 20 feet bls
Sheet 7 of 8: 1,1-DCE, February 1998

Performance Across 4" thickness

			*			
% Reduction or increase	%0	%0	%0	. %0	%0	%0
Down- Gradient Well	1.2	1.2	1.2	1.2	1.2	
Up- Gradient Well	1.2	1.2	1.2	1.2	1.2	
Jet Assisted Grout						
% Reduction or increase	. %0	* %0	. %0	* %0	* %0	%0
Down- Gradient Well	1.2	1.2	1.2	1.2	1.2	
Up-Gradient Well	1.2	1.2	1.2	1.2	1.2	
Mandrel						Average

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to down-gradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-2
VOC Concentration in wells screened

VOC Concentration in wells screened 15 to 20 feet bls Sheet 8 of 8: 1,1-DCE, August 1998 Cape Canaveral Air Station, Florida

43000 15000 97% -31% -85% -2213% -187% Reduction or increase 0 JET ASSISTED GROUT 38000 63000 1600 37000 43000 Gradient Well 037000 034000 00000 01600 34000 29000 63000 1600 15000 Gradient Well Vinyl Chloride, February 1998 38000 29000 Jet Assisted Grout Performance Across 4* thickness 0 Groundwater Flow 4800 9800 0 0 -38% 51% -847% 17% or increase Reduction 5700 045000 062000 0 54000 MANDREL 0 54000 45000 62000 4800 20000 Gradient Down-Well 58000 5700 54000 45000 9800 Up-Gradient 20000 O S8000 O Well Mandrel

For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For

-150%

Average

484%

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 1 of 16: Vinyl Chloride, February 1998
Cape Canaveral Air Station, Florida

co
ŝ
nes
~
≂
ਹ
.≃
=
-
*.
4" thic
m
76
ő
=
ပ
ĕ
e Acr
æ
nce
5
Œ
F
=
.0
Ξ
Ф
Perfor
_

Mandrel	Up-Gradient Weli	Down- Gradient Well	% Reduction or increase	Jet Assisted Grout	Up- Gradient Well	Down- Gradient Well	% Reduction or increase	
	33000	47000	45%		26000	40000	-54%	
	42000	55000	-31%		33000	67000	-103%	
	55000	32000	36%		67000	53000	21%	
	32000	42000	-50%		53000	49000	8%	
	31000	33000	%9-		22000	39000	<i>%LL-</i>	
Average			-13%				41%	

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 2 of 16: Vinyl Chloride, May 1998
Cape Canaveral Air Station, Florida

Performance Across 4" thickness

% Reduction or increase	-155%	-184%	-22%	8%	-199%	-110%
Down- Gradient Well	64000	98600	120000	110000	100000	
Up- Gradient Well	25100	34700	00986	120000	33400	
Jet Assisted Gra						
% Reduction or increase	-30%	-47%	17%	-4%	-123%	-38%
Down- Gradient Well	91000	82000	68000	71000	00089	
Up-Gradient Well	70000	22600	82000	00089	30500	
Mandrel						Average

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 3 of 16: Vinyl Chloride, August 1998
Cape Canaveral Air Station, Florida

Performance Across 4" thickness

% Reduction or increase	-34%	-21%	%0	4%	-140%	40%
Down- Gradient Well	47000	86100	86000	89300	83400	
Up- Gradient Well	35100	71400	86100	86000	34700	
Jet Assisted Grout						
% Reduction or increase	-1%	-3%	37%	-34%	-51%	-10%
Down- Gradient Well	71400	69300	43800	28900	95200	
Up-Gradient Well	20900	67400	00669	43800	93000	
landrel						verage

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 4 of 16: Vinyl Chloride, November 1998

JET ASSISTED GROUT o1500 Groundwater Flow MANDREL

trans-1,2 Dichloroethene, February 1998

thickness
4
Across
Performance

			/9				
		-Down-	%		ģ		
Aandrei	Up-Gradient Gradient Well Well	Gradient Well	Reduction or increase	Jet Assisted Gra Grout M	Gradient Well	Gradient Well	Reduction or increase
	490		-16%		1700	670	
	1600	930	45%		1900	640	
	930		%08		640	740	
	190		-305%		740	1500	•
	1700		%68		2200	950	21%
Werage			-22%				13%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 5 of 16: trans-1,2 DCE, February 1998
Cape Canaveral Air Station, Florida

1900 2500 0 JET ASSISTED GROUT o1400 02300 05000 1300 990 2200 0 0 Groundwater Flow o < 500 1900 0 01600 MANDREL 0620 0 0 8

trans-1,2 Dichloroethene, May 1998

cn
Ġ
õ
_
×
뜮
4
-
4
-
ဟ္
Š
2
Acros
⋖
Φ
Ö
⊆
Œ
Ε
≂
₽
Perf
ď
_

Up						verage
Down- Jp-Gradient Gradient Well Well	800	1600	790	200	1900	
Down- Gradient Well			200			
 nt Reduction or increase	%8-	51%	37% *	-52% *	74% *	20%
Jet Assisted Gra						
Up- adient Vell	2200	2300	1300	2000	2500	
Down- Gradient F Well o	066	1300	2000	1400	1900	
% Reduction or increase			·		24%	20%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

Sheet 6 of 16: trans-1,2 DCE, May 1998 VOC Concentration in wells screened Cape Canaveral Air Station, Florida 35 to 40 feet bls FIGURE 6-3

2260 790 0 JET ASSISTED GROUT 0,1440 01300 060 0 0690 trans-1,2 Dichloroethene, August 1998 800 1970 0 0 Groundwater Flow 200 1790 0 0 01750 MANDREL 0770 0250 0750 0 0 1470 790

Performance Across 4" thickness

		Down-	%		ģ	Down-	
fandrei	Up-Gradient Gradent Well	Gradient Re Well or	Reduction or increase	Jet Assisted Grout	Gradient Well	Gradient	Reduction or increase
	1470		46%		1970	800	
	1750	750	21%		1440	630	
	750		71%		630	1300	Ċ
	220		-550%		1300	066	
	1790		%68		2260	790	65%
verage			3%				20%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 7 of 16: trans-1,2 DCE, August 1998

Performance Across 4" thickness

Mandrei	Up-Gradient Gra Well	Down- Gradient Well	% Reduction or increase	Jet Assisted Grout	Up- Gradient Well	Down- Gradient Well	% Reduction or increase
	1160	1160			2020		
	1580	1080	32%		1700	469	72%
	1080	261			469		·
	261	715	•	t	645		·
	1870	644			2380		
lverage			%0				17%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 8 of 16: trans-1,2 DCE, November 1998

170000 42000 0 0 JET ASSISTED GROUT 0160000 97000 028000 02000 cis-1,2 Dichloroethene, February 1998 O 59000 o 47000 Groundwater Flow O 75000 87000 0 035000 93000 025000 MANDREL 40000 O 93000 O

thickness
4"
4
Across
rformance
Pe

		Down-	%		ģ	Down-	%
Mandrel	Up-Gradient Well	Gradient Well	Reduction or increase	Jet Assisted Grout	0	Gradient Well	Reduction or increase
	93000	40000	22%		29000	47000	20%
	32000	93000	-166%		160000	28000	83%
	93000	52000	44%		28000	2000	82%
	52000	00089	-31%		2000	97000	-1840%
	75000	87000	-16%		170000	42000	75%
Average			%66-				-316%

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 9 of 16: cis-1,2 DCE, February 1998
Cape Canaveral Air Station, Florida

Penormance Across 4" Inickness	Up- Down- % Jet Assisted Gradient Gradient Reduction Grout Well or increase	51000	160000 69000 57%	98000	76000	_	
renorman	% Reduction or increase	21%	22%	62%	-176%	%99	į
	Down- Gradient Well	45000	45000	17000	47000	48000	
	Up-Gradient Well	57000	100000	45000	17000	140000	
	Mandrel						

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 10 of 16: cis-1,2 DCE, May 1998
Cape Canaveral Air Station, Florida

example, a

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

Sheet 11 of 16: cis-1,2 DCE, August 1998 VOC Concentration in wells screened Cape Canaveral Air Station, Florida 35 to 40 feet bis FIGURE 6-3

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 12 of 16: cis-1,2 DCE, November 1998
Cape Canaveral Air Station, Florida

% Reduction or increase	26%	20%	-117%	46%	24%	18%
Down- Gradient Well	120	120	260	140	120	
Up- Gradient Well	270	240	120	260	260	
Jet Assisted Gr Grout						
% Reduction or increase	• %0	32% *	• %0	* %0	52% *	18%
Down- Gradient Well	120	120	120	80	120	
Up-Gradient Well	120	190	120	120	250	
Mandrel						Average

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 13 of 16: 1,1-DCE, February 1998
Cape Canaveral Air Station, Florida

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 14 of 16: 1,1-DCE, May 1998
Cape Canaveral Air Station, Florida

hickness
<u>.</u>
Across 4
formance
æ

tion	88%	38% *	. %0	* %0	. %19	37%
% Reduction or increase						
Down- Gradient Well	38	120	39	120	120	
Up- Gradient Well	318	193	120	39	280	
Jet Assisted Grout						
% Reduction or increase	84%	78%	* %0	. %0	%29	45%
Down- Gradient Well	27	20	120	33	120	
Up-Gradient Well	173	231	20	120	316	
Mandrei						Average

Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 15 of 16: 1,1-DCE, August 1998
Cape Canaveral Air Station, Florida

222 340 0 0 JET ASSISTED GROUT 0245 < 120 0 < 120 O °, 120 1,1-Dichloroethene, November 1998 24.5 <120 0 0 Groundwater Flow o <1,200 294 MANDREL <0120 0 0105 0212 0 0

Performance Across 4" thickness

į.	*	*	٠	*		. 0
% Reduction or increase	%0	51%	%0	%0	35%	17%
Down- Gradient Well	24.5	120	120	120	222	
Up- Gradient Well	120	245	120	120	340	
Jet Assisted Gr Grout						
% Reduction or increase	23%	20%	. %0	* %0	* %0	15%
Down- Gradient Well	110	105	120	56.8	1200	
Up-Gradient Well	142	212	105	120	294	
Mandrel						Average

* For concentrations reported as a less than detection level, the detection value is used to calculate % reduction, unless it is being compared with a number that has been reported as an estimated value that is less than the detection level. For example, a Note: A negative number in the "% Reduction or Increase" column indicates an increase in concentration from up-gradient to downgradient wells. A positive number indicates a decrease in concentration from up-gradient to down-gradient wells.

Note: Concentrations in ug/l

Rust Environment & Infrastructure

FIGURE 6-3
VOC Concentration in wells screened
35 to 40 feet bls
Sheet 16 of 16: 1,1-DCE, November 1998
Cape Canaveral Air Station, Florida

PANEL 2 | PANEL 3 | PANEL 4 | PANEL 5 | PANEL 6 | PANEL 7 | PANEL 8 | PANEL 8 | PANEL 10 | PANEL 13 | PANEL 14 | PANEL 15 | PANEL 17 | PANEL 18 | S PRT21 FIGURE 6-4 LAYOUT OF JET ASSISTED GROUTING WALL PANELS HGRK-PRTMWI20
 HGRK-PRTMWD20 HGRK-PRTMW19 HGRK-PRTMWD19 GROUNDWATER FLOW DIRECTION FLOW SENSOR LEGEND PANEL NO. 1 WELL PAIR 4 PAKEL 1 8 9 5 5 8 50 24 1 8 4 <u>₽</u> RUST ENVIRONMENT & INFRASTRUCTURE ORDER OF INSTALLATION 6 22 23 9 200 21 80 # छ 42 ● HGRK-PRTMW116 HGRK-PRTMWD16 HGRK-PRTMWI15 HGRK-PRTMWD15 HGRK-PRTMWI17 HGRK-PRTMWD17 PANEL 22 PANEL 23 PANEL 24 PANEL 19 | PANEL 20 | PANEL 21 NOT TO SCALE 유 20 œ σ ORDER OF INSTALLATION 7 9 PRT16 🛇 PRT15 ⊗ 9 5 22 6 œ ORDER INSTALLED ORDER INSTALLED ß HGRK-PRTMW114 HGRK-PRTMWD14 HGRK-PRTMWII3 HGRK-PRTMWDI3 4" OVERLAP WITH ADJOINING PANELS PANEL 36" PANEL 1 END MANDREL WALL ORDER INSTALLED MANDREL WALL

HGRK-PRTMW18 HGRK-PRTMW018 N:\39748\9748HK14.DGN

CAPE CANAVERAL AIR STATION, FLORIDA PROJECT NO. 29515

7.0 CONCLUSIONS

7.1 VOC DEGRADATION

The monitoring results collected during the first year of operation were insufficient to determine the effectiveness of the PeRT walls on groundwater restoration. Two of the reasons for inconclusive results include the slow rate of groundwater flow and the high variability of the influent chlorinated VOC concentrations. During installation of the monitoring wells, it was noted that the soils at 35 to 40 feet bls in this area are silty to clayey sands. High OVA readings (between 100 and 450 ppm) were noted on soil samples from these depth intervals. It is therefore likely that the chlorinated solvents at this depth are adsorbed onto the soils or exist as residual saturation. As water flows through a wall segment and is treated, it could be flushing additional chlorinated VOCs which may be desorbed from the soil downgradient of the wall. With the slow rate of groundwater flow in the area, this could continue for a prolonged period of time.

7.2 USEFUL LIFETIME OF THE PERT WALLS

Existing PeRT walls at other sites have operated effectively for over 5 years. About 118 mg/L of Fe are expected to be released from the CCAS PeRT wall, most of which is likely to precipitate within the PeRT wall. At this rate of dissolution, the Fe⁺⁰ in a 4-inch wall will completely dissolve in about 1,000 years. The wall would become ineffective for degrading chlorinated VOCs to their MCLs prior to that time.

Conservative estimates of mineral precipitation suggest that over a 100 year period the following are maximum percentages of the available pore space that could be filled: carbonates, 20%; sulfides, 6%; and hydroxides, 17%. If these rates of mineral formation persist, porosity in the wall would decrease to zero in about 400 years and groundwater flow may be significantly diverted earlier. These estimates are preliminary and should be reevaluated after another year of groundwater monitoring.

7.3 EMPLACEMENT TECHNOLOGIES

Both emplacement techniques involved installing overlapping "panels" of iron. The walls emplaced in this pilot test were approximately four inches thick. To ensure continuity at the bottom of the treatment zone (45 feet bls), the maximum deviation allowable of any given overlapped panel was set at ¼ inches over 4 feet.

There were very few deviations noted in the mandrel emplacement. The equipment used was designed to install a wall of 60 foot depth. Based on the results of this pilot study, it is believed that a 60-foot depth installation could be achieved for a 4-inch thick wall, and greater depths would be possible for wider walls.

There were alignment difficulties with the JAG wall installation; however, deeper installation would be possible for thicker wall sections.

7.4 COMPARISON WITH GROUNDWATER PUMP AND TREAT

The capital cost of the PeRT wall installations is higher than a comparable groundwater "pump and treat" system. The cost estimate presented in Section 6.3 indicates that the O&M costs for the PeRT wall could be significantly less than groundwater pump and treat. Conservatively, the O&M savings could off-set the higher installation costs within four years following installation.

8.0 RECOMMENDATIONS

Additional monitoring and evaluation is recommended for a period of two years. The following sampling frequency and analyses are recommended:

- Quarterly samples for analysis of chlorinated VOCs
- Quarterly water levels
- Quarterly field chemistry, including ORP, pH, electrical conductivity, total and dissolved iron, hardness, dissolved oxygen and alkalinity
- Twice annually for common ions
- At least once for dissolved ethane, ethene and acetylene

It is recommended that additional monitoring wells be installed up-gradient of the wall so that samples can be collected and analyzed for chlorinated VOCs. This will be useful in determining the rate of natural attenuation of the chlorinated VOCs.

In the event the results are inconclusive after an additional two years of sampling, it is recommended that a pumping well be installed down-gradient of the walls. An aquifer pump test can then be performed to determine conclusively if the wall presents a barrier to groundwater flow.

Major-ion chemistry should be determined for some of the future sampling events. Major ion chemistry data can be used to calculate mineral saturation indices, information that can be used to predict the nature of mineral precipitates that could clog the wall.

An additional round of water levels should be measured to determine if the potential mounding phenomenon mentioned in Section 4 is a trend or merely a one-time anomaly. This should be done using an accurate water level measuring technique, such as chalked steel tape.

Continue downloading flow sensor data. The average period would need to be adjusted if more than one month's data is to be stored (say for quarterly downloads).

An evaluation of tidal influence be conducted at the Hangar K area to evaluate the magnitude of water level influence in all the aquifer zones of concern.

Collect soil samples from the two zones monitored (intermediate at 15 to 20 feet bls and deep at 35 to 40 feet bls) in the vicinity of the walls. Analyze soil samples VOCs. This will enable further evaluation of the potential for residual saturation skewing results.

Perform hydraulic conductivity tests on soils from the two zones. This will allow refinement of the hydraulic velocity calculations.

9.0 REFERENCES

- AFCEE 1993. Department of the Air Force, Headquarters, Air Force Center for Environmental Excellence (AFCEE): <u>Handbook for the Installation Restoration Program (IRP) Remedial Investigations and Feasibility Studies (RI/FS)</u>, September 1993.
- AFCEE, 1996. <u>Technical Protocols for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater</u>. AFCEE, November 1996.
- Ballard, 1998. "The In Situ Permeable Flow Sensor: A Ground-Water Flow Velocity Meter", Sanford Ballard, <u>GROUNDWATER</u>, Vol. 34, No. 2, March-April 1996.
- Gavaskar, A. R., Gupta, N., Sass, B. M., Janosy, R. J., O'Sullivan, D., 1998. <u>Permeable Barriers for Groundwater Remediation</u>, Battelle Press, Columbus, Ohio, 176 pp.
- Johnson, T. L., Scherer, M. M., and Tratnyek, P. G., 1996. <u>Kinetics of Halogenated Organic Compound Degradation by Iron Metal</u>, *Environ. Sci. Technol.*, v. 30, pp. 2634-2640.
- Matheson, L. J. and Tratnyek, P. G., 1994. <u>Reductive Dechlorination of Chlorinated Methanes by Iron Metal</u>, *Environ. Sci. Technol.*, v. 28, pp. 2045-2053.
- MSE, 1996 Analysis of Technologies for the Emplacement and Performance Assessment of Subsurface

 Reactive Barriers and DNAPL Containment, May 1996.
- O'Hannesin, S. F. and Gillham, R. W., 1998. Long-Term Performance of an In Situ "Iron Wall" for Remediation of VOCs, Groundwater, v. 36, pp. 164-170.
- Parsons ES, 1995. <u>Preliminary Assessment #3, Preliminary Assessment and Field Sampling Strategy</u>. Revision 1, October 1994. Revision 2, March 1995.
- Parsons ES, 1996a. RCRA Facility Investigation/Corrective Measures Study Work Plan for Hangar K Area (DP-35), Hangar I (DP-34), Facility 1381 (DP-32), Facility 1798 (DP-48), Facility 49835 (DP-39), Facility 84920 (DP-33), September 1996.

- Parsons ES, 1996b. <u>Hydrogeologic Investigation of the Industrial Area Groundwater Investigation and Modeling Report</u>, November 1996.
- Powell, R. M. and Puls, R. W., 1997. Proton Generation by Dissolution of Intrinsic or Augmented Aluminosilicate Minerals for in Situ Contaminant Remediation by Zero-Valent-State Iron, Environ. Sci. Technol., v. 31, pp. 2244-2251.
- Roberts, A.L., Tollen, L.A., Arnold, W.A., Burris, D.R., and Campbell, T. J. Chlorinated Ethylenes by Zero-valent Metals, Environ. Sci. Technol., v. 30, pp. 2654-2659.
- Rust, 1997. <u>Final Work Plan Prepared for Cape Canaveral Air Station, PeRT Wall Pilot Study</u>. Revision 1, July 1997.
- USAF IRP, 1995. United States Air Force Investigation Derived Waste Management Plan, 45th Space
 Wing Facilities at Cape Canaveral Air Station and Patrick Air Force Base, Florida, November 1995.
- U.S. EPA, 1997. <u>Permeable Reactive Subsurface Barriers for the Interception and Remediation of Chlorinated Hydrocarbons and Chromium (VI) Plumes in Groundwater, U.S. EPA Remedial Technology Fact Sheet</u>. EPA/600/F-97/008, July 1997.

APPENDIX A HISTORICAL MONITOR WELL CONSTRUCTION DETAILS

APPENDIX A HISTORICAL MONITOR WELL CONSTRUCTION DETAILS (Monitor Wells Installed prior to PeRT Wall Pilot Study)

	Installation Date	Ground Surface Elevation (msl)	Top of Casing Elevation (msl)	Borehole Depth (feet bls)	Well Depth (feet bls)	Screened Interval (feet bls)	Scree	Screened Interval (msl)	erval	Well Type	Casing Diameter (inches)
Deep Wells					(200			r			
1724MWD01	1/18/94	11.28	11.44	54.00	53.00	41.00 to 51.00	-29.56	£	-39.56	Ľ	2.00
1740MWD02	12/6/94	8.83	8.83	37.00	37.00	25.00 to 35.00	-16.17	9	-26.17	Ľ,	2.00
1748DW1	10/20/92	9.57	00.6	35.00	35.00	25.00 to 35.00	91-	9	-26	Ľ.	2.00
1798MWD03	10/11/95	9.50	9.52	91.00	91.00	86.00 to 91.00	-76.48	Q	-81.48	AG	2.00
49835MWD01	11/15/93	8.06	8.07	59.00	58.00	46.00 to 56.00	-37.93	9	-47.93	ш,	2.00
49835MWD04	11/16/93	6.92	9.76	44.00	43.00	31.00 to 41.00	-21.24	₽	-31.24	AG	2.00
HGRIMWD02	11/7/93	8.72	11.52	45.00	44.00	32.00 to 42.00	-20.48	9	-30.48	ΑG	2.00
HGRIMWD03	11/6/93	10.44	10.28	46.00	45.00	33.00 to 43.00	-22.72	p	-32.72	Ľ	2.00
IC0024	6/14/90	11.08	16.01	49.00	49.00	39.00 to 49.00	-28.09	Q	-38.09	Ľ	2.00
IC0025	06/11/90	8.81	8.97	46.00	46.00	33.50 to 46.00	-24.53	£	-37.03	Ľ	2.00
IC0026	06/51/9	9.21	9.39	52.00	50.00	35.00 to 50.00	-25.61	ರಿ	-40.61	<u></u>	2.00
IC0027	06/51/9	8.84	8.77	53.00	51.00	36.00 to 51.00	-27.23	₽	-42.23	Ľ,	2.00
IC0033	6/13/90	89.8	8.73	45.00	45.00	35.00 to 45.00	-26.27	9	-36.27	Έ,	2.00
INDABOSAI	56/6/01	9.10	9.14	92.50	92.00	87.00 to 92.00	-77.86	ᅌ	-82.86	ш	2.00
INDAMWD03	2/23/96	10.57	10.41	77.00	76.50	71.00 to 76.00	-60.59	Q	-65.59	Œ	2.00
INDAMWD04	3/2/6	9.12	8.84	51.00	50.80	45.80 to 50.80	-36.96	0	-41.96	ഥ	2.00
INDAMWD08	96/9/8	96.6	10.01	53.50	53.50	48.00 to 53.00	-37.93	9	-42.93	Ľ.	2.00
INDAMWD09	3/14/96	8.50	8.51	53.20	53.20	47.70 to 52.70	-39.19	9	-44.19	Ľ	2.00
INDAMWD16	96/8/9	8.17	7.95	42.00	40.00	35.00 to 40.00	-27.05	0	-32.05	ц,	2.00
INDAMWDD16	96/11/6	8.12	7.83	26.00	54.00	49.00 to 54.00	-41.17	Q	-46.17	Ľ,	2.00
INDAMWD17	96/2/9	9.53	60.6	44.00	43.00	38.00 to 43.00	-28.91	Q	-33.91	T	2.00
INDAMWD22	2/12/97	68.6	89.6	50.50	50.00	45.00 to 50.00	-35.32	٥	-40.32	Ľ	2.00
Intermediate Wells	S										
1724MWD02	12/12/94	7.14	10.02	37.00	35.00	25.00 to 35.00	-14.98	o	-24.98	AG	2.00
INDAMWI04	3/2/6	8.99	9.05	34.00	34.00	29.00 to 34.00	-19.98	o 2	-24.98	ш	2.00
INDAMWI16	2/20/96	8.23	7.74	33.00	33.00	28.00 to 33.00	-20.26	ç	-25.26	Ľ.	2.00
INDAMWI17	2/28/96	9.44	9.23	34.00	34.00	29.00 to 34.00	-19.77	£	-24.77	Œ	2.00
INDAMW122	2/12/97	9.87	9.59	33.50	32.50	27.50 to 32.50	-17.91	9	-22.91	щ	2.00

APPENDIX A (Continued)

0n Date S Vells 1/21/94 EI (02 6/13/94 6/13/94 6/13/94 6/13/94 60/13/12/94 60/13/94 60/12/12/94 60/12/12/94 60/12/12/94 60/9		Jeet bls) (feet bls) 17.00 12.00 14.00 18.50 12.00 12.00 13.00	feet bls) 16.50 12.00 13.00 13.00 13.00 17.50 17.50 17.50	(feet bls) 4.50 to 14.50 2.00 to 12.00 3.00 to 13.00 5.50 to 15.50 5.50 to 15.50 7.00 to 12.00 5.50 to 15.50 7.00 to 12.00 3.00 to 12.00	6.82 8.1 5.95 6.35 3.79 3.06 1.47		T. T	Type I	(inches) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0
1/21/94 6/13/94 12/12/94 12/12/94 1/20/94 1/20/94 1/20/94 12/5/94 12/5/94 12/5/94 12/5/94 2/15/95 2/15/95 2/15/95 10/19/92 10/19/92 10/19/92 10/19/95	(mst) 11.32 10.10 8.95 9.35 9.29 8.56 8.73 9.30 9.99 8.68	17.00 12.00 14.00 18.50 18.50 12.00 13.00	16.50 12.00 13.00 13.00 18.50 17.50 17.50 12.00	222222222	6.82 8.1 5.95 6.35 3.79 3.06				2.00 2.00 2.00 2.00 2.00 2.00 2.00
1/21/94 6/13/94 12/12/94 12/12/94 1/20/94 1/20/94 1/20/94 12/6/94 12/5/94 12/5/94 12/5/94 2/15/95 2/15/95 2/15/95 10/19/92 10/19/92 10/19/92 10/19/92	11.32 10.10 8.95 9.35 9.29 8.56 8.47 8.73 9.99 8.68	17.00 12.00 14.00 14.00 18.50 12.00 12.00 13.00	16.50 12.00 13.00 13.00 13.00 17.50 17.50 17.50	22222222	6.82 8.1 5.95 6.35 3.79 3.06			7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.00 2.00 2.00 2.00 2.00 2.00 2.00
(01) 1/21/94 (02) 6/13/94 (03) 12/12/94 (03) 1/20/94 (03) 1/20/94 (04) 1/20/94 (05) 12/6/94 (06) 12/6/94 (07) 12/6/94 (08) 12/6/94 (09) 12/5/94 (10) 2/15/95 (11) 2/15/95 (12) 10/19/92 (10/19/92 (10/19/92 (10/19/92 (10/19/92	11.32 10.10 8.95 9.35 9.29 8.47 8.73 9.99 8.68	17.00 12.00 14.00 14.00 18.50 12.00 12.00 13.00	16.50 12.00 13.00 13.00 13.00 17.50 17.50 17.50	2 2 2 2 2 2 2 2 2 2	6.82 8.1 5.95 6.35 3.79 3.06 1.47				2.00 2.00 2.00 2.00 2.00 2.00 2.00
602 6/13/94 603 12/12/94 604 1720/94 605 1720/94 606 1720/94 606 1726/94 607 12/5/94 608 12/5/94 609 12/5/95 609	8.95 9.35 9.29 8.56 8.73 9.30 9.99 8.68	12.00 14.00 18.50 18.50 12.00 13.00	12.00 13.00 13.00 18.50 17.50 17.50 17.50	2 2 2 2 2 2 2 2 2	8.1 5.95 6.35 3.79 3.06 1.47	1 1 1 1 1 1		<u> </u>	2.00 2.00 2.00 2.00 2.00 2.00 2.00
(03) 12/12/94 (04) 17/20/94 (02) 1/20/94 (03) 1/21/94 (04) 1/20/94 (05) 1/2/6/94 (06) 12/6/94 (07) 12/5/94 (09) 12/5/94 (10) 2/15/95 (11) 2/15/95 (11) 2/15/95 (11) 2/15/95 (10) 19/92 (10/19/92 (10/19/92 (10/19/95	8.95 9.35 9.29 8.56 8.73 9.30 9.99 8.68	14.00 18.50 18.50 12.00 12.00 13.00	13.00 13.00 18.50 17.50 12.00 12.00	2222222	5.95 6.35 3.79 3.06 1.47				2.00 2.00 2.00 2.00 2.00 2.00
(04 12/12/94 12/12/94 1720/94 1720/94 1720/94 1720/94 1720/94 1720/94 12/6/94 12/6/94 12/5/94 12/5/94 12/5/94 12/5/94 12/5/95 111 2/15/95 10/19/92 10/19/92 10/19/92 10/19/95 10	9.35 9.29 8.56 8.47 9.30 9.99 8.68	14.00 18.50 12.00 12.00 13.00	13.00 18.50 17.50 12.00 12.00	2 2 2 2 2 2 2	6.35 3.79 3.06 1.47		5.21 5.94 1.533 1.537 1.277		2.00 2.00 2.00 2.00 2.00
01 1/20/94 02 1/20/94 03 1/21/94 04 1/20/94 05 12/6/94 06 12/6/94 07 12/5/94 09 12/5/94 10 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 10/19/92 10/19/92 10/19/92	9.29 8.56 8.47 8.73 9.30 9.99 8.68	18.50 12.00 12.00 12.00 13.00	18.50 17.50 12.00 17.50 12.00	3 3 3 3 3 3	3.79 3.06 1.47		5.21 1 5.94 1 3.53 1 5.77 1 -2.7 1		2.00 2.00 2.00 2.00 2.00
02 1/20/94 03 1/21/94 04 1/20/94 05 12/6/94 06 12/6/94 07 12/5/94 09 12/5/94 10 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 10/19/92 10/19/92 10/19/92	8.56 8.47 8.73 9.30 9.99 8.68	18.50 12.00 18.50 12.00 13.00	17.50 12.00 17.50 12.00	3 3 3 3 3	3.06		5.94 I 3.53 I 5.77 I -2.7	r r r r r r	2.00 2.00 2.00 2.00
03 1/21/94 04 1/20/94 05 12/6/94 06 12/6/94 07 12/5/94 09 12/5/94 10 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 10/19/92 10/19/92 10/19/92	8.47 8.73 9.30 9.99 8.68	12.00 18.50 12.00 13.00	12.00	2 2 2 2	1.47	' '	5.53 1 5.77 1 1.2-2.7 1		2.00
04 1/20/94 05 12/6/94 06 12/6/94 07 12/5/94 09 12/5/94 10 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 10/19/92 10/19/92 10/19/92 10/19/92	8.73 9.30 9.99 8.68 8.63	18.50 12.00 13.00	17.50	2 2 2	3 23		1 77.	r. r. r. r	2.00
05 12/6/94 06 12/6/94 07 12/5/94 08 12/5/94 10 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 10/19/92 10/19/92 10/19/92 10/19/92	9.30 9.99 8.68 8.63	12.00	12.00	5 5	7.1.0		2.7	ппп	2.00
06 12/6/94 07 12/5/94 08 12/5/94 10 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 11 2/15/95 10/19/92 10/19/92 10/19/92 10/19/92 10/19/92	9.99 8.68 8.63	13.00		9	7.3	_ _	101	T I	000
07 12/5/94 08 12/5/94 09 12/5/94 10 2/15/95 11 2/15/95 13 3/23/95 10/19/92 10/19/92 10/19/92 10/19/92 10/19/92	89.8		13.00		66.9	to -3		ū	7.00
08 12/5/94 09 12/5/94 10 2/15/95 11 2/15/95 12 3/23/95 13 3/23/95 10/19/92 10/19/92 10/19/92 10/19/92	8.63	17.00	15.00	3.00 to 13.00	5.68	to -4	-4.32	_	2.00
09 12/5/94 110 2/15/95 111 2/15/95 112 2/15/95 113 3/23/95 10/19/92 10/19/92 NA 4/10/95		17.00	15.00	3.00 to 13.00	5.63	to 4	-4.37	Ľ,	2.00
110 2/15/95 111 2/15/95 112 2/15/95 113 3/23/95 10/19/92 10/19/92 10/19/92 NA 4/10/95	8.77	00.6	00.6	4.00 to 9.00	4.77	<u>و</u>	-0.23	ш	2.00
2/15/95 112 2/15/95 13 3/23/95 10/19/92 10/19/92 10/19/92 NA 4/10/95	9.63	15.00	15.00	3.00 to 13.00	6.63	to -3	-3.37	Ľ.	2.00
112 2/15/95 13 3/23/95 10/19/92 10/19/92 10/19/92 NA 4/10/95	9.29	15.00	15.00	3.00 to 13.00	6.29	to -3	-3.71	<u></u>	2.00
13 3/23/95 10/19/92 10/19/92 NA 4/10/95 4/10/95	10.6	15.00	15.00	3.00 to 13.00	10.9	to -3	-3.99	ш.	2.00
10/19/92 10/19/92 NA 4/10/95 4/10/95	9.25	15.00	15.00	3.00 to 13.00	6.25	to -3	-3.75	<u></u>	2.00
10/19/92 10/19/92 NA 4/10/95 4/10/95	8.85	12.00	12.00	2.00 to 12.00	6.85	to -3	-3.15		2.00
10/19/92 NA 4/10/95 4/10/95	8.93	12.00	12.00	2.00 to 12.00	6.93	to -3	-3.07	Ľ.	2.00
NA 4/10/95 4/10/95	8.54	12.00	12.00	2.00 to 12.00	6.54	to -3	-3.46	<u> </u>	2.00
4/10/95	60.6	12.00	12.00	2.00 to 12.00	7.09	to	-2.91	Ľ,	2.00
4/10/95	8.35	13.60	13.60	3.60 to 13.60	4.75	to -5	-5.25	<u></u>	2.00
20/01/7	9.43	13.60	13.60	3.60 to 13.60	5.83	to 4	-4.17	ц.	2.00
4/10/95	8.86	13.62	13.62	3.62 to 13.62	5.24	to t	-4.76	Ľ	2.00
5703 1/4/89	12.31	NA	11.50	1.50 to 11.50	10.81	0	O.81 A	AG	2.00
12/4/92	9.30	00.11	00.11	6.00 to 11.00	3.3	<u>۔</u> و	-1.7	Ĺ,	2.00
12/3/92	9.30	12.00	11.00	6.00 to 11.00	3.3	<u>.</u>		ī.	2.00
1/14/93	89.6	11.50	10.50	5.50 to 10.50	4.18	<u>و</u>	-0.82	T.	2.00
60425TW04 1/14/93 9.94	9.83	12.00	11.00	6.00 to 11.00	3.83	to -	-1.17	ľ.	2.00

APPENDIX A (Concluded)

Well ID	Installation Date	Ground Surface Elevation (msl)	Top of Casing Elevation (msl)	Borehole Depth (feet bls)	Well Depth (feet bls)	Screened Interval (feet bls)	Scree	Screened Interval (msl)	rval	Well Type	Casing Diameter (inches)
IC0001	06/11/5	9.40	9.12	15.00	15.00	5.00 to 15.00	4.12	t	-5.88	Ħ	2.00
IC0002	2/11/90	09:01	10.46	15.00	15.00	5.00 to 15.00	5.46	Q	-4.54	ĬĽ,	2.00
IC0003	2/11/90	10.38	10.11	15.00	15.00	5.00 to 15.00	5.11	Q.	-4.89	Ľ	2.00
IC0004	2/11/90	9.31	9.32	15.00	15.00	5.00 to 15.00	4.32	Q	-5.68	II.	2.00
IC0005	2/11/90	9.49	9.15	14.00	14.00	4.00 to 14.00	5.15	9	-4.85	II.	2.00
IC0006	2/11/90	8.67	8.32	12.00	12.00	2.00 to 12.00	6.32	Q.	-3.68	Ľ	2.00
IC0007	2/11/90	8.26	11.15	15.00	15.00	5.00 to 15.00	6.15	o Q	-3.85	ΑG	2.00
IC0008	2/11/90	9.40	91.6	14.00	14.00	4.00 to 14.00	5.16	o Q	-4.84	Ľ	2.00
IC0009	2/11/90	16.6	9.71	14.00	14.00	4.00 to 14.00	5.71	o Q	-4.29	Ľ.	2.00
IC0010	2/11/90	80.6	8.89	14.00	14.00	4.00 to 14.00	4.89	o 2	-5.11	Ľ,	2.00
IC0013	5/30/90	10.74	10.74	14.00	14.00	4.00 to 14.00	6.74	9	-3.26	Ľ,	2.00
IC0014	5/30/90	11.14	11.05	15.00	15.00	5.00 to 15.00	6.05	Q.	-3.95	Ľ,	2.00
IC0015	2/30/90	8.62	10.84	12.00	12.00	2.00 to 12.00	8.84	Q.	-1.16	AG	2.00
IC0017	5/30/90	10.95	10.82	15.00	15.00	5.00 to 15.00	5.82	9	-4.18	Ľ	2.00
100018	5/30/90	86.8	8.99	15.00	15.00	5.00 to 15.00	3.99	9	-6.01	Ľ.	2.00
IC0021	5/31/90	8.58	8.57	12.00	12.00	2.00 to 12.00	6.57	2	-3.43	Ľ.	2.00
IC0029	06/51/9	10.97	10.94	15.00	15.00	5.00 to 15.00	5.94	Q	-4.06	Ľ	2.00
IC0030	6/14/90	10.02	6.77	12.50	12.50	2.50 to 12.50	7.27	Q	-2.73	Ľ,	2.00
IC0031	6/14/90	11.02	19.01	15.00	15.00	5.00 to 15.00	19.5	2	-4.39	Ľ,	2.00
IC0034	5/31/90	98.6	69.6	13.00	13.00	3.00 to 13.00	69.9	9	-3.31	Ľ	2.00
IC0035	5/31/90	17.6	9.56	10.00	10.00	2.50 to 10.00	7.06	2	-0.44	Ľ,	2.00
IC0036	06/91/9	11.09	10.72	15.00	15.00	5.00 to 15.00	5.72	Q	-4.28	Ľ	2.00
IC0038	06/91/9	10.11	11.14	17.00	17.00	7.00 to 17.00	4.14	Q	-5.86	Ľ,	2.00
INDAPZ02	11/9/95	9.02	10.67	8.50	8.50	3.50 to 8.50	7.17	Q	2.17	AG	2.00

Notes:

AG - Above Ground Well Installation F - Flush-Mount Well Installation NA - Data Not Available

APPENDIX B REPRESENTATIVE SOIL BORING LOGS

LIST OF TEST BORING REPORTS

HGRK-PRTMWD01

HGRK-PRTMWD03

HGRK-PRTMWD05

HGRK-PRTMWD07

HGRK-PRTMWD09

HGRK-PRTMWD11

HGRK-PRTMWD13

HGRK-PRTMWD15

HGRK-PRTMWD16

HGRK-PRTMWD17

HGRK-PRTMWD18

Г											
	R	ST EN	IVIRON FRASTR	MENT & UCTURI	E TI	EST B	ORING	REP	ORT	BORING NO. H	GRK-PRTMWD0
t	PROJ	JECT:			CC	AS: Pert W	all Pilot Stud	ly		JOB NO:	39748
	CLIEN						al Air Station			PAGE NO:	1 OF 2
		racto				US Enviro					
	EQUI	PMENT	JSED:		D-12	0 with Hollo	w Stem Aug	er		LOCATION:	Hangar K
	GROUN	D WATER		DEPTH TO):		CASING	SAMPLER	CORE BARREL	ELEVATION:	~8.9 feet
Г	DATE	HRS AFTER	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE		s		DATE START:	12/23/97
			~5'	J. G. D	~40.0	SIZE ID		3		DATE FINISH:	12/23/97
L						HAMMER WT	1	140 lbs.		DRILLER:	T. Burke
-						HAMMER FAL	L	30 inch		PREPARED BY:	C. Jackson
	DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		Fil	LD CLAS	SIFICATIO	N AND REMARKS	S
	- 5					No sampl	le collected from	5 foot interva	al.		
	10		5 10			to subang	ale yellow (Hue: ular; slight trace A w/o filter 0 pp	of small she	se; wet; high g Il fragments.	raded; fine to medium g	grained; rounded
	15		17			Zero reco	very.				
	20		37			grained; ro	<u>D:</u> Greenish gr ounded. A w/o filter 3 ppr		for GLEY-6/1)	; medium dense; wet; h	ligh graded; fine
\vdash	25 -	S/FT. DEN VERY LOOS	33 61 SITY	BLOWS/	FT. CON VERY S	ISISTENCY	SAMPLI S SPLIT SPOO		COMPONENT MOSTLY 50.10		NATER ABBREV.

U UNDISTURBED PISTON

S SPLIT SPOON

G GRAB SAMPLE

NR NO RECOVERY

T TUBE

X OTHER

5-10

11-30

31-50

51+

LOOSE

DENSE

MEDIUM DENSE

VERY DENSE

3-4

5-8

9-15

16-30

+31

MEDIUM STIFF

VERY STIFF

SOFT

STIFF

HARD

MOSTLY 50-100%

LITTLE 15-25%

FEW 5-10% TRACE <5%

BORING NO. HGRK-PRTMWD01

WD - WHILE DRILLING

UR - NOT READ

NE - NOT ENCOUNTERED

VERY DENSE

16-30

+31

VERY STIFF

HARD

X OTHER

NR NO RECOVERY

TEST BORING REPORT

BORING NO. HGRK-PRTMWD01

BORING NO. HGRK-PRTMWD01

PAGE NO:

2 OF 2

DEPTH IN FEET	CASING BLOWS BLOWS PER PER FOOT FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE	FIELD CL	ASSIFICATION A	ND REMARKS
— 25			graine	Silty SAND: Greenish gray (i d; rounded; slight trace of sm OVA w/o fitter 2 ppm	Diagram 1 for GLEY-5 all shell fragments.	(/1); dense; wet; high graded; fine
30	39 60			<u>' SILT;</u> Greenish gray (Diagra OVA w/o filter 30 ppm OVA w/ filter 4 ppm	am 2 for GLEY-5/1); de	ense; wet; high graded.
— 35	8		subang	Dark olive brown (Hue 2.5Y gular; trace of organic clay. DVA w/o filter 225 ppm DVA w/ filter 18 ppm	-3/3); loose; wet; high	graded; fine grained; rounded to
- 4 0	31		grained	<u>AND:</u> Light gray (Hue 2.5Y-7 ; rounded; trace of small shel DVA w/o filter 450 ppm DVA w/ filter 50 ppm	7/2); medium dense to I fragments.	dense; wet; high graded; fine
- 4 5						
- 50						
- 55				1) New charcoal (2) Greenish gray <u>Clayey SA</u>	<u>ND</u> encountered at ∼3.	4 feet BLS.
-4 \ -10 L	FT. DENSITY VERY LOOSE LOOSE MEDIUM DENSE	BLOWS/F 0-2 3-4	T. CONSISTENCY VERY SOFT SOFT MEDIUM STAFF	SAMPLE ID 8 SPLIT SPOON T TUBE U UNDISTURBED PISTON	COMPONENT % MOSTLY 80-100% LITTLE 18-25% PEW 8-10%	GROUND WATER ABBREY. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ

110		FKASIR	UCTURE		EST BO	KING	KEPC	ואל	BORING NO. H	GRK-PRTMW[
PROJ	_			CC	AS: Pert Wall	Pilot Stud	У		JOB NO:	39748
CLIEN				Ca	pe Canaveral				PAGE NO:	1 OF 2
	RACTO				US Environr				LOCATION:	Hanger K
	PMENT				0 with Hollow		er	CORE	ELEVATION:	~8.8 feet
	HRS AFTER		DEPTH TO	BOTTOM		CASING	SAMPLER	CORE BARREL	DATE START:	12/19/97
DATE	COMP	WATER	OF CASING	OF HOLE	TYPE		S			
		~5'		~40.5	SIZE ID				DATE FINISH:	12/19/97
					HAMMER WT		140 lbs. 30 inch		DRILLER: PREPARED BY:	T. Burke
DEPTH	CASING	SAMPLER	SAMPLE	SAMPLE	NAMIMEN PALL		30 inch		PREPARED BT:	C. Jackson
FEET	PER FOOT	BLOWS PER FOOT	NUMBER	DEPTH RANGE		FII	ELD CLASS	SIFICATIO	N AND REMARK	S
								ſ		
- 5										
					No sample o	collected from	5 foot interva	l.		
-		9								
- 10		22								
	ł				SAND: Pale	yellow (Hue	2.5Y-7/3); me	dium dense;	wet; high graded; fine t	o medium
						w/o filter 0 pp		ace or small	shell fragments.	
+										
		25								
45	ŀ	36								
15					SAND: Ligh	nt yellowish b	own (Hue 2.5)	Y-6/4); mediu	ım dense; wet; high gra	ded; fine to
-					medium grai	ined; rounded	to subangular	; trace of sm	all shell fragments.	
ŀ					OVA	w/o filter <1 p	pm			
	Ţ	16	ļ							
ŀ										
20		33			Clickty City	HEAND C	aniah ass. 48		OLEV 640	
					graded: fine	grained: rour	eenish gray (C ded to subano	nagram 1 för ular: slight te	GLEY-6/1); medium de ace of small shell fragm	ense; wet; high
- 1	1		- 1		OVA				or orner onen nen nañn	witte.

0-4 5-10 11-30 31-50

25

BLOWS/FT. DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE

30 75

> BLOWS/FT. CONSISTENCY 0-2 VERY SOFT 3-4 SOFT 5-8 9-15 STIFF 16-30 VERY STIFF +31 HARD

SAMPLE ID S SPLIT SPOON T TUBE MEDIUM STIFF U UNDISTURBED PISTON G GRAB SAMPLE X OTHER NR NO RECOVERY

COMPONENT % MOSTLY 50-100% LITTLE 15-25% FEW 5-10% TRACE <5%

GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ

BORING NO. HGRK-PRTMWD03

TEST BORING REPORT

BORING NO. HGRK-PRTMWD03

PAGE NO:

2 OF 2

DEP	TH CASING	SAMPLER	SAMPLE	BAMPLE		P	PAGE NO: 2 OF 2	
FEE	BLOWS	BLOWS PER FOOT	NUMBER	DEPTH RANGE	FIELD CL	ASSIFICATION A	AND REMARKS	
25					<u>Silty SAND:</u> Greenish gray (Diagr grained; rounded; slight trace of sm OVA w/o filter 2 ppm	am 1 for GLEY-6/1); nall shell fragments.	dense; wet; high graded; fine	
30		28 43						
					Sandy SILT: Greenish gray (Diagrof small shell fragments. OVA w/o filter 180 ppm OVA w/ filter 10 ppm	am 2 for GLEY-5/1);	dense; wet; high graded; slight trace	
		11						
3 5		13			Clayey SAND: Grayish brown (Hur rounded; trace of small shell fragme OVA w/o filter 180 ppm OVA w/ filter 8 ppm	e 10YR-5/2); loose; w ents; trace of clay strin	ret; high graded; fine grained; ngers.	
— 40		23			<u>Silty SAND:</u> Light gray (Hue 2.5Y-7 of small shell fragments. OVA w/o filter 100 ppm	7/2); dense; wet; high	graded; fine grained; rounded; trace	
					OVA w/ filter 12 ppm			
— 45								
— 5 0								
— 5 5					lote: (1) Gray sandy SILT in tip of s	ooon at 40 feet.		
	NS/FT. DENS	SITY	BLOWS/F	T. CONSIST	ENCY SAMPLE ID	COMPONENT		
0-4 5-10 11-30 31-50 51+	VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE		0-2 3-4 6-8 8-15 16-30	VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF	S SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB SAMPLE	COMPONENT % MOSTLY 80-100% LITTLE 18-26% FEW 8-10% TRACE <5%	GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ	

BORING NO. HGRK-PRTMWD03

16-30

+31

VERY STIFF

HARD

X OTHER

NR NO RECOVERY

ENVIRON	MENT &
INFRASTR	TOTTINE
TALK WOLK	UCTURE

TEST BORING REPORT

BORING NO. HGRK-PRTMWD05

							· //L: \			
	JECT:				AS: Pert Wa				JOB NO:	39748
CLIE				Ca	ape Canavera		1		PAGE NO:	1 OF 2
	TRACTO			D 11	US Environ				LOCATION:	Hanger K
	IPMENT L	1	DERTH TO		20 with Hollov			CORE	ELEVATION:	~8.9 feet
	HRS AFTER		BOTTOM	D: BOTTOM		CASING	SAMPLER	CORE BARREL	DATE START:	12/19/97
DATE	COMP	WATER	OF CASING	OF HOLE	TYPE		s		-	
		~5		~40.5'	HAMMER WT				DATE FINISH:	12/19/97
	1		+'		HAMMER WI		140 lbs. 30 inch		DRILLER: PREPARED BY:	T. Burke C. Jackson
DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE				SIFICATIO	N AND REMARKS	
— 5 — 10		8				e collected from			raded; fine to medium g	
		9			to subangu OVA	ging gray (Hue 2 ular; slight trace A w/o filter 55 pp A w/ filter 20 ppi	e of small shel opm	se; wei, myn yn Il fragments; sli	aded; fine to medium g ight trace of sandy lime	rained; rounded stone fragments.
— 15		10			to subangui OVA	ght gray (Hue 2 ular; trace of sm A w/o filter 70 pp A w/ filter 26 ppr	nali sheli fragn pm	e; wet; high granents.	aded; fine to medium gi	rained; rounded
- 20 - 25		13			grained; rou	ilty SAND: Gre unded. a w/o filter 22 pp		Diagram 1 for G	GLEY-6/1); loose; wet; h	nigh graded; fine
	S/FT. DEN		BLOWS/	/FT. CON	NSISTENCY	SAMPLE	FID	COMPONENT	e/ GPOUND	AVATED ARREST
0-4 5-10 11-30 31-50 51+	VERY LOOSE LOOSE MEDIUM DEN DENSE VERY DENSE	NSE	0-2 3-4 5-8 9-15 16-30 +31	VERY S	SOFT IM STIFF STIFF	S SPLIT SPOOR T TUBE U UNDISTURBE G GRAB SAMP X OTHER NR NO RECOVE	BED PISTON PLE	MOSTLY 50-100 LITTLE 15-25% FEW 5-10% TRACE <5%	WD - WHILE DR NE - NOT ENCO UR - NOT READ	DUNTERED

VERY DENSE

16-30

+31

VERY STIFF

HARD

X OTHER

NR NO RECOVERY

TEST BORING REPORT

BORING NO. HGRK-PRTMWD05

BORING NO. HGRK-PRTMWD05

PAGE NO:

2 OF 2

DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIELD CL	ASSIFICATION A	ND REMARKS
— 25					grained; r	ounded; trace of shell frag		Y-6/1); loose; wet; high graded; fine
					Ov	/A w/o filter 10 ppm		
		13						
3 0					high grade	<u>v SAND:</u> Greenish gray (ed; fine grained; rounded; 'A w/o filter 8 ppm		/1); loose to medium dense; wet; nell fragments.
		13						
- 35		7			medium p OV:	<u>AY:</u> Dark greenish gray plasticity; slight trace of sm A w/o fitter 90 ppm A w/ fitter 11 ppm		4/1); loose; wet; high graded;
		5			OV	A w/ inter 11 ppm		
- 40		25			fine graine OV	ed; rounded; trace of clay A w/o filter 140 ppm		edium dense; wet; high graded; shell fragments.
					OV.	A w/ filter 14 ppm		
45								
50								
55						New charcoal Medium clay beginning (⊉ 34.5 feet	
BI OWO	FT. DEN	CITY	DI GYAS		NOTE LEV		1	
4 10	VERY LOOSE LOOSE		0-2 3-4	FT. CONS VERY SOF SOFT	FT	SAMPLE ID S SPLIT SPOON T TUBE	MOSTLY 50-100% LITTLE 18-25%	GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED
	MEDIUM DENS DENSE	sé .	5-8 9-15	MEDIUM 8	FTIFF	U UNDISTURBED PISTON G GRAB SAMPLE	FEW 8-10% TRACE <5%	UR - NOT READ

PROJ	JECT:			CC	AS: Pert Wal	Il Dilot Studi			100.110	
CLIEN	_				ape Canavera				JOB NO:	39748
	TRACTO	R:			US Environ				PAGE NO:	1 OF 2
	PMENT L			D-12	20 with Hollow		er		LOCATION:	Hanger K
GROUNE	D WATER		DEPTH TO					CORE BARREL	ELEVATION:	~8.9 feet
DATE	HRS AFTER	1	BOTTOM	BOTTOM	TYPE			BARKEL	DATE START:	12/19/97
	COMP	~5'	OF CASING		SIZE ID	++	S		DATE FINISH:	12/19/97
				~40.5	HAMMER WT	++	140 lbs.		DRILLER:	T. Burke
					HAMMER FALL		30 inch		PREPARED BY:	C. Jackson
DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIE	LD CLASSIF	ICATION	N AND REMARKS	
- 5					No sample	e collected from 5	5 foot interval.			
- 10		22			ovA	ght gray (Hue 2.5 subangular; trac w/o filter 65 ppm w/ filter 6 ppm	ce of sandy limest	dense; wei	et; high graded; fine to ments; trace of small sho	nedium grained; ell fragments.
15		45			graded; fine OVA	iht greenish gray e to medium grai w/o filter 60 ppn w/ filter 20 ppm	ined; rounded to s m	GLEY-7/1); subangular	; medium dense to dens r; little shell fragments.	se; wet; high
20		51			grained; rour	Ity SAND: Gree inded; slight trac w/o filter 6 ppm	ce of small shell fr	am 1 for Gi ragments.	LEY-6/1); dense; wet; h	nigh graded; fine
25		32								
										VATER ABBREV.
10 L	DWS/FT. DENSITY BLOWS/FT. CONSISTENCY SAMPLE ID COMPONE VERY LOOSE 0-2 VERY SOFT S SPLIT SPOON MOSTLY S. LOOSE 3-4 SOFT T TUBE LITTLE 15- MEDIUM DENSE 5-8 MEDIUM STIFF U UNDISTURBED PISTON FEW 5-15 DENSE 9-15 STIFF G GRAB SAMPLE									ILLING

NR NO RECOVERY

X OTHER

VERY DENSE

16-30

+31

HARD

VERY STIFF

BORING NO. HGRK-PRTMWD07

TEST BORING REPORT

BORING NO. HGRK-PRTMWD07

PAGE NO: 2 OF 2

Silty SAND: Greenish gray (Diagram 1 for GLEY-6/1); medium dense; wet; high grade fine to very fine grained; rounded; slight trace of shell fragments. OVA w/o filter 15 ppm 34 35 SET Vary Silty SAND: Greenish gray (Diagram 2 for GLEY-5/1); dense; wet; high grade very fine grained; rounded. OVA w/o filter 13 ppm Clayer SAND: Greenish gray (Diagram 2 for GLEY-5/1); medium dense; wet, high fine grained; rounded, trace of shell fragments. OVA w/o filter 11 ppm OVA w/ filter 11 ppm 21 68 Silty SAND: Light greenish gray (Diagram 1 for GLEY-7/1); dense; wet; high graded grained; rounded to subangular; trace of small shell fragments. OVA w/o filter 225 ppm OVA w/ filter 30 ppm Notes: (1) New charcoal (2) Medium dense clay noted at 34.5 feet.	IN BLO	SING SAMPLER DWS BLOWS ER PER DOT FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE	FIELD CLA	ASSIFICATION AN	ND REMARKS
Very Silty SAND: Greenish gray (Diagram 2 for GLEY-5/1); dense; wet; high grade very fine grained, rounded. OVA w/o filter 13 ppm	25			fine to ve	ery fine grained; rounded; sl	m 1 for GLEY-6/1); mo	edium dense; wet; high graded; nents.
OVA w/o filter 13 ppm 29 24 Clayey SAND: Greenish gray (Diagram 2 for GLEY-5/1), medium dense; wet; high fine grained; rounded; trace of shell fragments. OVA w/o filter 125 ppm OVA w/ filter 11 ppm 35 Silty SAND: Light greenish gray (Diagram 1 for GLEY-7/1); dense; wet; high graded grained; rounded to subangular; trace of small shell fragments. OVA w/o filter 225 ppm OVA w/ filter 30 ppm 45 Notes: (1) New charcoal	30					Diagram 2 for GLEY-5/	1); dense; wet; high graded; fine to
Clavey SAND: Greenish gray (Diagram 2 for GLEY- 5/1); medium dense; wet; high fine grained; rounded; trace of shell fragments. OVA w/o filter 125 ppm OVA w/ filter 111 ppm Silty SAND: Light greenish gray (Diagram 1 for GLEY-7/1); dense; wet; high graded grained; rounded to subangular; trace of small shell fragments. OVA w/o filter 225 ppm OVA w/ filter 30 ppm Notes: (1) New charcoal		29					
Silty SAND: Light greenish gray (Diagram 1 for GLEY-7/1); dense; wet; high graded grained; rounded to subangular; trace of small shell fragments. OVA w/o filter 225 ppm OVA w/ filter 30 ppm Notes: (1) New charcoal	35	24		fine grain	ned; rounded; trace of shell VA w/o filter 125 ppm	iram 2 for GLEY- 5/1); fragments.	medium dense; wet; high graded;
Silty SAND: Light greenish gray (Diagram 1 for GLEY-7/1); dense; wet; high graded grained; rounded to subangular; trace of small shell fragments. OVA w/o filter 225 ppm OVA w/ filter 30 ppm 45 Notes: (1) New charcoal	40						
Notes: (1) New charcoal				grained; (O)	rounded to subangular; trac /A w/o filter 225 ppm	agram 1 for GLEY-7/1 e of small shell fragme); dense; wet; high graded; fine nts.
Notes: (1) New charcoal	15						
	io						
	5					at 34.5 feet.	
BLOWS/FT. DENSITY BLOWS/FT. CONSISTENCY SAMPLE ID COMPONENT % GROUND WATER / VERY LOOSE 0-2 VERY SOFT 8 SPLIT SPOON MOSTLY SO-100% MID WATER / WENT LOOSE 0-2 VERY SOFT 8 SPLIT SPOON MOSTLY SO-100% MID WATER / WENT LOOSE 0-2 VERY SOFT 8 SPLIT SPOON MOSTLY SO-100% MID WATER / WENT LOOSE 0-2 VERY SOFT 8 SPLIT SPOON MID WATER / WENT LOOSE 0-2 VERY SPOON MID WATER / WENT LOOSE 0-2			BLOWS/F		SAMPLE ID	COMPONENT %	GROUND WATER ABBREV.

U UNDISTURBED PISTON

G GRAB SAMPLE

NR NO RECOVERY

X OTHER

LITTLE 18-25%

FEW \$-10%

TRACE 45%

NE - NOT ENCOUNTERED

BORING NO. HGRK-PRTMWD07

UR - NOT READ

11-30

31-50

51+

DENSE

MEDIUM DENSE

VERY DENSE

34

5-8

9-15

18-30

+31

STIFF

HARD

MEDIUM STIFF

VERY STIFF

PRO	ECT:			00	AC: Do-141-11	Dilet Ot 1			100.00	
CLIEN					AS: Pert Wall				JOB NO:	39748
	RACTO	R:		Ca	pe Canaveral US Environn				PAGE NO:	1 OF 2
	PMENT	_		D-12	0 with Hollow		er		LOCATION:	Hanger K
	D WATER		DEPTH TO			CASING	SAMPLER	CORE	ELEVATION:	~8.9 feet
DATE	HRS AFTER	WATER	BOTTOM	BOTTOM	TYPE	CASING	SAMPLER	BARKEL	DATE START:	12/17/97
	COMP		OF CASING	OF HOLE	SIZE ID		S		DATE FINISH:	12/17/97
		~5'		~40.4'	HAMMER WT		140 ibs.		DRILLER:	T. Burke
					HAMMER FALL		30 inch		PREPARED BY:	C. Jackson
EPTH IN FEET	BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIE	LD CLASS	SIFICATIO	N AND REMARKS	3
					No samples	collected for	OVA screenin	g. OVA inop	erable.	
								•		
5					No commission	-1141-6				
					No sample c	ollected from	5 foot interval			
		19								
10		41	İ							
	-				SAND: Ligh	t gray (Hue 2	.5Y-7/1); med	um dense; w	et; high graded; fine to	medium grained;
					rounded to s	ubangular; si	ight trace of sr	nall shell frag	ments.	
		- 1								
		28								
15		28 52			<u>SAND:</u> Ligh	t greenish gra	ay (Diagram 1	for GLEY-7/1	i); dense: wet: high grac	ded: fine
15					SAND: Ligh	t greenish gra	ay (Diagram 1 ngular; trace of	for GLEY-7/1 small shell fi	i); dense; wet; high grad ragments; trace of silt.	ded; fine
15				. •	SAND: Ligh grained; rour	t greenish gra ided to subar	ay (Diagram 1 gular; trace of	for GLEY-7/1 small shell fi	(); dense; wet; high grad ragments; trace of silt.	ded; fine
15				. •	SAND: Ligh grained; rour	t greenish gra ided to subar	ay (Diagram 1 ngular; trace of	for GLEY-7/1 small shell fi	i); dense; wet; high grac ragments; trace of silt.	ded; fine
15		52		. •	<u>SAND:</u> Ligh grained; rour	t greenish gra ded to subar	ay (Diagram 1 Igular; trace of	for GLEY-7/1 small shell fi	i); dense; wet; high grad ragments; trace of silt.	ded; fine
15					SAND: Ligh grained; rour	t greenish gra ded to subar	ay (Diagram 1 ngular; trace of	for GLEY-7/1 small shell fi	(); dense; wet; high grad ragments; trace of silt.	ded; fine

BLOWS/F		BLOWS	/FT. CO	NSISTENCY		SAMPLE ID	COMP	ONENT %	GROUND WATER ABBREV.
	RY LOOSE IOSE	0-2	VERY	SOFT	S	SPLIT SPOON		Y 50-100%	WD - WHILE DRILLING
3	EDIUM DENSE	3-4 5-8	SOFT	IM STIFF	[TUBE UNDISTURBED PISTON	LITTLE		NE - NOT ENCOUNTERED
	NSE	9-15	STIFF		G	GRAB SAMPLE	FEW TRACE	5-10% <5%	UR - NOT READ
51+ VE	RY DENSE	16-30	VERY	STIFF	X	OTHER			BORING NO. HGRK-PRTMWD09
		+31	HARD		NF.	NO RECOVERY			

TEST BORING REPORT

BORING NO. HGRK-PRTMWD09

PAGE NO:

2 OF 2

							P	AGE NO: 2 OF 2
DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIELD CLA	ASSIFICATION A	ND REMARKS
- 2 5						ND: Greenish gray (Diagra		ense; wet; high graded; fine
					granital,	. ==/reduct, engite trace of STN	an enen Hagmetillb.	
	,	32						
- 30		42						for GLEY-6/1); dense; wet; high
					graded; v	ery fine grained; rounded; s	slight trace of small sh	nell fragments.
		7						
- 3 5		5			SAND: I	ark olive brown (Hue 2 5V	(-3/3): loose: wet his	n graded; fine grained; rounded to
					subangul	ar; trace of slightly fibrous of fragments.	organic material; sligh	t trace of organic clay; slight trace of
- 40		51			Ciley CAR	ID: Grappish assu /Discour	m 4 for OLEV 040	
					rounded to	o subangular; trace of sligh	m 1 for GLEY 6/1); de tly calcareous clay; si	ense; wet; high graded; fine grained; ight trace of small shell fragments.
- 45				:				
- 50								
~ [
-								
						Clayey SAND observed at		
55						Stiff CLAY noted in tip of a At 30 feet, augers deflected		angled northerly (towards building).
PI ONE	/ET DO	CITO	DI 01111					
	VERY LOOSE	3117	BLOWS/	FT. CONS		SAMPLE ID 8 SPLIT SPOON	COMPONENT %	GROUND WATER ABBREV.
10 1-30	LOOSE MEDIUM DENS	SE .	34 84	SOFT MEDIUM ST		T TUBE	LITTLE 18-25% FEW 8-10%	WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ
	DENSE		9-15	9-15 STEFF		G GRAB SAMPLE T	TRACE 45%	
1+	VERY DENSE		16-30 +31	VERY STIF	F	X OTHER NR NO RECOVERY		BORING NO. HGRK-PRTMWD

PROJ	JECT:			CC	AS: Pert Wal	l Pilot Stud	ly		JOB NO:	39748
CLIEN	NT:			Ca	pe Canaveral	Air Station)		PAGE NO:	1 OF 2
	TRACTO	_	-		US Environ	mental			LOCATION:	
EQUI	PMENT L	JSED:		D-12	0 with Hollow	Stem Aug	er			Hanger K
ROUN	D WATER		DEPTH TO	:		CASING	SAMPLER	CORE BARREL	ELEVATION:	~9.0 feet
DATE	HRS AFTER	WATER	BOTTOM OF CASING	OF HOLE	TYPE				DATE START:	12/17/97
		~5'	Or CASING	~39.8	SIZE ID		S		DATE FINISH:	12/17/97
					HAMMER WT		140 lbs.		DRILLER:	T. Burke
					HAMMER FALL		30 inch		PREPARED BY:	C. Jackson
DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIE	ELD CLAS	SSIFICATIO	N AND REMARKS	3
					No sample	s collected for	OVA sample	es; OVA inopera	ible.	
- 5		13			No sample	collected from	n 5 foot interv	/al .		
10		23			SAND: Pal grained; rou	e yellow (Hue unded to angu	2.5Y-7/3); n lar; slight tra	nedium dense; ce of small shel	wet; high graded; fine to I fragments.	o medium
15		15 29								
2					<u>Silty SAND</u> graded; fine	Light green grained; trace	ish gray (Dia e of small sh	gram 1 for GLE ell fragments.	Y-7/1); medium dense;	wet; high
20		32 62			<u>SAND:</u> Gre	enish gray (D Inded to subar	iagram 1 for ngular; trace	GLEY-6/1); der of silt; trace of e	nse; wet; high graded; fi small shell fragments.	ine to medium
25		38								
	S/FT. DEN				NSISTENCY	SAMPL		COMPONENT	GROUND	WATER ABBREV.
0 30 50	VERY LOOS LOOSE MEDIUM DE DENSE	E	0-2 3-4 5-8 9-15 16-30	VERY S	M STIFF	S SPLIT SPOX T TUBE U UNDISTURE G GRAB SAM X OTHER	DN BED PISTON	WD - WHILE DI NE - NOT REAL	RILLING DUNTERED	

+31

HARD

NR NO RECOVERY

BORING NO. HGRK-PRTMWD11

PAGE NO:

2 OF 2

BORING NO. HGRK-PRTMWD11

DEPTH	CASING	SAMPLER	SAMPLE	SAMPLE		F	PAGE NO: 2 OF 2
IN FEET	BLOWS PER FOOT	BLOWS PER FOOT	NUMBER	DEPTH RANGE	FIELD CL	ASSIFICATION	AND REMARKS
 2 5				<u>Silta</u> grain	<u>/ SAND:</u> Greenish gray (Diag ned; rounded to subangular; sl	ram 2 for GLEY-6/1); ight trace of shell frag	dense; wet; high graded; fine ments.
- 30		34		Clay fine t	<u>ev \$ILT:</u> Greenish gray (Diag silica sand.	gram 2 for GLEY-5/1);	dense; wet; high graded; trace of
35		9 11		<u>SAN</u> to sul	<u>O:</u> Very dark brown (Hue 7.5) bangular; trace of colloidal org	/R-2.5/2); loose; wet; anic material.	high graded; fine grained; rounded
40		23 62		<u>Silty</u> subar	<u>SAND:</u> Light gray (Hue 2.5Y- ngular; trace of small shell frag	7/2); dense; wet; high iments.	graded; fine grained; rounded to
45							
50							
55					1) In tip of spoon at 40 feet, e	ncountered bluish gra	y clayey SAND.
	FT. DENS	SITY	BLOWS/F1	CONSISTENCY		COMPONENT %	GROUND WATER ABBREV.
0 M	OOSE IEDIUM DENS IENSE	E	9-4 8-8 8-15	SOFT MEDIUM STIFF STIFF	S SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB SAMPLE	MOSTLY 80-100% LITTLE 18-25% FEW 8-10% TRACE <5%	WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ
· v	ERY DENSE		16-30	VERY STIFF	X OTHER	TRACE 45%	POPING NO HODY POTMING

	ST EN	FKASIK	UCTURE		EST BO			URI	BORIN	IG NO. H	GRK-PRTMWD1
PROJECT: CCAS: Pert Wall Pilot Study									JOB NO):	39748
	CLIENT: Cape Canaveral Air Station								PAGE	10:	1 OF 2
	CONTRACTOR: US Environmental EQUIPMENT USED: D-120 with Hollow Stem Auger								LOCATI	ON:	Hanger K
					U WILL HOLLOY		er	CORE	ELEVA	ION:	~9.0 feet
-	D WATER		DEPTH TO	BOTTOM		CASING	SAMPLE	R BARREL	DATES		12/17/97
DATE	COMP	WATER	OF CASING	OF HOLE	TYPE		s			_	12/17/97
	 	~5		~40.2	SIZE ID				DATE F		
	-				HAMMER FALL		140 lbs. 30 inch		DRILLE	RED BY:	T. Burke C. Jackson
DEPTH	CASING	SAMPLER	SAMPLE	SAMPLE	TONIME TO TAKE		30 Inch		FREFA	KED BT.	C. Jackson
FEET	BLOWS PER FOOT	BLOWS PER FOOT	NUMBER	DEPTH RANGE		Fil	ELD CLA	SSIFICATIO	N AND F	REMARKS	i
 5					No sample	collected from	5 foot inter	val.			
— 10)		12 28			rounded to	ght gray (Hue 2 subangular; tr A w/o filter 3.5 (ace of small	edium dense; w i shell fragments	ret; high gra s.	ded; medium	n to fine grained;
— 15		46			graded; fin OVA	ght greenish gr e to medium gr w/o filter 20 p w/ filter 7 ppm	ained; roun pm	i 1 for GLEY-7/1 ded to angular; t	l); medium trace of sma	dense to den all shell fragn	ise; wet; high nents; trace of silt.
— 2 0		16 37 23			fine grained	O: Greenish gr d; rounded to s w/o fitter 5 ppi	ubangular; t	n 1 for GLEY-6/ [*] race of small sh	1); medium ell fragmen	dense; wet; I ts.	high graded;
— 25		45		-							
0-4 5-10	S/FT. DEN VERY LOOS LOOSE		BLOWS 0-2 3-4	VERY S	NSISTENCY SOFT	SAMPL S SPLIT SPOO T TUBE		MOSTLY 50-10	00%	GROUND V	

VERY DENSE

16-30

+31

VERY STIFF

HARD

MEDIUM DENSE U UNDISTURBED PISTON FEW 5-10% TRACE <5% 5-8 MEDIUM STIFF UR - NOT READ DENSE 9-15 STIFF

NR NO RECOVERY

X OTHER

G GRAB SAMPLE

BORING NO. HGRK-PRTMWD13

VERY DENSE

DENSE

9-15

16-30

+31

VERY STIFF

STEF

31-60

51+

TEST BORING REPORT

BORING NO. HGRK-PRTMWD13

PAGE NO: 2 OF 2

BORING NO. HGRK-PRTMWD13

UR - NOT READ

DEPTH IN FEET	BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIELD CLA	ASSIFICATION A	ND REMARKS
- 2 5					Silty SAND: Gree graded; very fine g OVA w/o filt	rained; rounded;	nm 2 for GLEY-6/1); m slight trace of small sh	edium dense to dense; wet; high ell fragments.
		10						
- 30		10			medium plasticity; OVA w/o filt	slight trace of sm er 50 ppm	(Diagram 2 for GLEY- all shell fragments.	5/1); loose; wet; high graded;
		2			OVA w/ filter	o ppm		
35		5			Clavey SAND: Gr grained; rounded; a OVA w/o filter OVA w/ filter	light trace of sma er 160 ppm	ram 2 for GLEY-5/1); ill shell fragments.	very loose; wet; high graded; fine
40		43						
40					Silty SAND: Gree grained; rounded to OVA w/o fitter OVA w/ fitter	subangular; trace r 225 ppm	m 1 for GLEY-6/1); de e of small shell fragme	nse; wet; high graded; fine ents.
45								
50								
55					Note: (1) New chard (2) 2 inch laye	oal er of clay at appro	ximately 33 feet.	
	/FT. DENS	SITY	BLOWS/F	T. CONSI	TENCY S	AMPLE ID	COMPONENT %	GROUND WATER ABBREV.
	LOOSE MEDIUM DENS		3-4 8-8	SOFT MEDIUM ST	7 TUBE		LITTLE 18-25%	WD - WHILE DRILLING NE - NOT ENCOUNTERED

U UNDISTURBED PISTON

G GRAB SAMPLE

NR NO RECOVERY

X OTHER

FEW \$-10% TRACE 45%

PROJ	ECT:			CC	AS: Pert Wall	Pilot Stud	lv		JOB NO:	20740
CLIEN	_				pe Canaveral					39748
	RACTO	R:			US Environm				PAGE NO:	1 OF 2
EQUIF	PMENT L	JSED:		D-12	0 with Hollow		er		LOCATION:	Hanger K
ROUN	WATER		DEPTH TO			CASING	SAMPLER	CORE	ELEVATION:	~9.0 feet
DATE	HRS AFTER	WATER	BOTTOM OF CASING	BOTTOM	TYPE				DATE START:	12/16/97
	COMP	~5'	OF CASING	OF HOLE ~40.4'	SIZE ID		S		DATE FINISH:	12/17/97
				40.4	HAMMER WT		180 ibs.		DRILLER:	T. Burke
					HAMMER FALL		30 inch		PREPARED BY:	C. Jackso
EPTH IN FEET	BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		Fil	ELD CLASS	SIFICATIO	N AND REMARKS	3
	P001	F001			No OVA san		ed from 10 to 2			
_										
5					No sample o	ollected from	5 foot interva	l.		
		7	1							
		10								
10		10			SAND: Light	t gray (Hue 2	2.5Y-7/2); loos	e: wet: high a	raded; fine to medium g	rained: rounded
			ł		to subangula	r; trace of sn	nali sheli fragn	nents.	,	
	ŀ	9								
	r	12			Silty SAND:	Greenish a	ray (Diagram 1	for GI EV-6/	1); loose; wet; high grad	ladi sami fina
15					graded; round	ded.	ay (Diagram i	IOI GLE 1-0/	r), loose, wet, night grad	led; very fine
15										
15										
15										
15										
15		21								
15		21 24								
					Silty SAND:	Greenish gr	ay (Diagram 1 ; slight trace of	for GLEY-5/	1); medium dense; wet;	high graded;

	 2 5						
TES 00:40	BLOW 0-4 5-10 11-30 31-50 51+	S/FT. DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE	BLOWS/F 0-2 3-4 5-8 9-15 16-30 +31	T. CONSISTENCY VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF HARD	SAMPLE ID S SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB SAMPLE X OTHER NR NO RECOVERY	COMPONENT % MOSTLY 50-100% LITTLE 15-25% FEW 5-10% TRACE <5%	GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ BORING NO. HGRK-PRTMWD15

TEST BORING REPORT

BORING NO. HGRK-PRTMWD15

PAGE NO: 2 OF 2

DEPTH IN FEET	BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE	FIELD CL	ASSIFICATION A	ND REMARKS
25				He Or	eaving sands at 25 feet (moving to 12/16 and 12/17; heaving sand	to another hole to allow is prevented collecting	v to stabilize). soils from this interval.
30		5		<u>Ve</u> me	ry Sandy CLAY: Greenish gray dium plasticity; slight trace of sh OVA w/o filter 50 ppm Ova w/ filter 2 ppm	/ (Diagram 2 for GLEY ell fragments.	-5/1); loose; wet; high graded;
— 35		18	·	<u>SA</u> rou	ND: Very dark brown (Hue 7.5Y nded to subangular; trace of coll OVA w/o filter 250 ppm OVA w/ filter 5 ppm.	'R-2.5/2); medium den oidal organic material	se; wet; high graded; fine grained;
— 40		18 72		<u>Silt</u> grai	v SAND: Greenish gray (Diagra ned; rounded to subangular; trac OVA w/o filter 175 ppm OVA w/ filter 5 ppm	am 1 for GLEY-6/1); do	ense; wet; high graded; fine ents.
— 4 5							
— 5 0							
— 5 5					es: (1) New charcoal (2) 2 inch layer of clay at 34 (feet.	
BLOW 0-4 5-10 11-30 31-80 81+	S/FT. DEN: VERY LOOSE LOOSE MEDIUM DENS DENSE VERY DENSE		BLOWS/ 0-2 3-4 6-9 9-15 18-30 +31	FT. CONSISTENCE VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF HARD	SAMPLE ID S SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB SAMPLE X OTHER NR NO RECOVERY	COMPONENT % MOSTLY 80-100% LITTLE 18-25% FEW 8-10% TRACE <5%	GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ BORING NO. HGRK-PRTMWD

	ST EN				EST BO	. 11110	IVE C		BORING NO. H	O1/17-F K 1 M/V/
	IECT:				AS: Pert Wall				JOB NO:	39748
CLIEN				Ca	pe Canaveral				PAGE NO:	1 OF 2
	TRACTO				US Environr				LOCATION:	Hanger K
_	PMENT (0 with Hollow	Stem Aug	er .			
ROUN	D WATER		DEPTH TO			CASING	SAMPLER	CORE BARREL	ELEVATION:	~9.0 feet
DATE	HRS AFTER	WATER	OF CASING	OF HOLE	TYPE		s		DATE START:	12/16/97
		~5'		~39.7	SIZE ID				DATE FINISH:	12/16/97
					HAMMER WT		180 lbs.		DRILLER:	T. Burke
DEPTH	040010				HAMMER FALL	<u></u>	30 inch		PREPARED BY:	C. Jackso
IN FEET	BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		FIE	LD CLASS	SIFICATIO	N AND REMARKS	3
					No OVA sar	nples collecte	d from 25 to 4	0 feet; OVA i	noperable.	
		-								
		~·								
5					No sample o	collected from	5 foot interval			
		5								
										-
10		17			SAND: Ligh	t brownish and	(2 EV 62)			
					grained; rou	nded to angula	sy (2.51-6/2); ar: slight trace	medium dens	e; wet; high graded; fin	e to medium
						w/o filter 7 ppr			wagments.	
	-									
Ī										
+		32								
15		37								
				-	Silty SAND: grained; rour	Greenish gra	y (Diagram 1	for GLEY-6/1); dense; wet; high grad	ded; very fine
	-					v/o filter 3 ppn	1			
Ī						•				
F										
		12								
	-	26								
20		20								
20		20			SAND: Gree	nish gray (Dia	gram 1 for GI	EY-6/1); med	dium dense; wet; high g shell fragments.	raded: fine to

0-4 5-10 11-30 31-50

BLOWS/FT. DENSITY BLOWS/FT. CONSISTENCY SAMPLE ID VERY LOOSE 0-2 VERY SOFT S SPLIT SPOON LOOSE 3-4 SOFT T TUBE MEDIUM DENSE 5-8 MEDIUM STIFF DENSE 9-15 STIFF G GRAB SAMPLE 51+ VERY DENSE 16-30 **VERY STIFF**

HARD

+31

24 31

> COMPONENT % MOSTLY 50-100% LITTLE 15-25% U UNDISTURBED PISTON FEW 5-10% TRACE <5% X OTHER NR NO RECOVERY

GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ

BORING NO. HGRK-PRTMWD16

TEST BORING REPORT

BORING NO. HGRK-PRTMWD16

PAGE NO:

2 OF 2

	EPTH IN EET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	BAMPLE DEPTH RANGE		FIELD CLA	SSIFICATION A	ND REMARKS
-:	25						Greenish gray (Diagram 1 fo		n dense; wet; high graded; fine to
			22						
- 3	30		27		•		ND: Greenish gray (Diagramed; rounded; slight trace of		edium dense; wet; high graded;
			7						
- 3	35		15				<u>ID:</u> Greenish gray (Diagrar o subangular; trace of smal		ose; wet; high graded; fine grained;
	,		29						
4	ю		43				breenish gray (Diagram 1 fo o subangular; little small sh		wet; high graded; fine grained; silt.
	-					·			
4	5								
50									
55	5					Note: (1) h	Heaving sands encountered	I near 25 feet BLS.	
		/FT. DEN	ISITY	BLOWS	FT, CON	NSISTENCY	SAMPLE ID	COMPONENT %	GROUND WATER ABBREV.
5-10 11-30 31-50 81+		VERY LOOSE LOOSE MEDIUM DEN DENSE VERY DENSE	ISE	0-2 3-4 5-8 9-15 16-30	VERY SO SOFT MEDIUM STIFF VERY ST	OFT LETHFF	S SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB EAMPLE X OTHER	MOSTLY 50-100% LITTLE 15-25% FEW 6-10% TRACE <5%	WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ
				+31	HARD		NR NO RECOVERY		BORING NO. HGRK-PRTMWD16

RUST	ENVIRONMENT & INFRASTRUCTURE
	,

+31

HARD

TEST BORING REPORT

BORING NO. HGRK-PRTMWD17

I	IECT:			CC	AS: Pert Wa	Il Pilot Stud	iy		JOB NO:	39748	
CLIE				Ca	pe Canavera		1		PAGE NO:	1 OF 2	
	RACTO				US Environ				LOCATION:	Hanger K	
	PMENT L				0 with Hollow			CORE	ELEVATION:	~9.0 feet	
	HRS AFTER		DEPTH TO	BOTTOM		CASING	SAMPLE	CORE BARREL	DATE START:	12/16/97	
DATE	COMP	WATER	OF CASING	OF HOLE	TYPE		s				
		~5'		~40.0	SIZE ID				DATE FINISH:	12/16/97	
					HAMMER WT		140 lbs. 30 inch		DRILLER:	T. Burke	
DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE	TANMER PALL			SSIFICATIO	N AND REMARK	C. Jackson	
— 5											
		32			No sample	collected from	n 5 foot inter	<i>r</i> al.			
		51			SAND: Light brownish gray (Hue 2.5Y-6/2); dense; wet; high graded; fine to medium grained; rounded to angular; slight trace of small shell fragments. OVA w/o filter 4 ppm SAND: Greenish gray (Diagram 1 for GLEY-6/1); dense; wet; high graded; very fine grained;						
— 15		63			rounded; sl	eenish gray (D ight trace of si A w/o filter 5 p	mali sheli fra	GLEY-6/1); de gments.	nse; wet; high graded;	very fine grained;	
— 2 0		29			grained; an	eenish gray (D gular to suban A w/o filter 2 p	gular; slight:	GLEY-6/1); dei trace of shell fra	nse; wet; high graded; agments.	fine to medium	
BLOW:	S/FT. DEN		BLOWS		NSISTENCY	SAMPL		COMPONENT		WATER ABBREV.	
5-10 11-30 31-50 51+	LOOSE MEDIUM DE DENSE VERY DENS	NSE	0-2 3-4 5-8 9-15 16-30	SOFT MEDIU STIFF VERY	M STIFF	S SPLIT SPOO T TUBE U UNDISTURI G GRAB SAM X OTHER	BED PISTON	MOSTLY 50-10 LITTLE 15-25% FEW 5-10% TRACE <5%	NE - NOT ENC UR - NOT REA	COUNTERED	

NR NO RECOVERY

16-30

+31

51+

VERY DENSE

HARD

VERY STIFF

TEST BORING REPORT

BORING NO. HGRK-PRTMWD17

PAGE NO: 2 OF 2

	DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	BAMPLE DEPTH RANGE		FIELD CLA	ASSIFICATION A	ND REMARKS	
	— 2 5						overy; no sample described OVA w/o filter 2 ppm			
	30		13			very fine O\	SAND: Greenish gray (Diag grained; rounded; trace of a /A w/o fitter 140 ppm /A w/ fitter 3 ppm		; medium dense; wet; high graded Il fragments.	;
	— 3 5		9 19			rounded (/ery dark brown (Hue 7.5Yi to subangular; trace of collo /A w/o filter 175 ppm /A w/ filter 4 ppm		se; wet; high graded; fine grained;	;
	- 4 0		31 39			rounded; OV	Greenish gray (Diagram 1 fo trace of sitt; little small shel 'A w/o filter 175 ppm 'A w/ filter 3 ppm	or GLEY-6/1); dense; \ I fragments.	wet; high graded; fine grained;	
	- 4 5									
	- 50	-								
	- 55					Note: (1) I	New charcoal			
1	BLOW: 0-4 0-10 11-30 11-50	S/FT. DEN VERY LOOSE LOOSE MEDIUM DEN DENSE	SE .	BLOWS/ 9-2 3-4 8-8 9-15	FT, CONS VERY SOF SOFT MEDIUM ST STIFF	T Tiff	SAMPLE ID 8 SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB SAMPLE	COMPONENT % MOSTLY 80-100% LITTLE 18-25% FEW 8-10% TRACE <5%	GROUND WATER ABBRE WD - WHILE DRILLING ME - NOT ENCOUNTERED UR - NOT READ	·V.

NR NO RECOVERY

X OTHER

BORING NO. HGRK-PRTMWD17

ENVIRONMENT &
INFRASTRUCTURE

TEST BORING REPORT

BORING NO. HGRK-PRTMWD18

	· · · · · · · · · · · · · · · · · · ·									
	JECT: _			CC	AS: Pert Wall	I Pilot Stud	Jy		JOB NO:	39748
CLIE				Ca	ape Canaveral		n		PAGE NO:	1 OF 2
1	TRACTO				US Environr				LOCATION:	
	IPMENT L	JSED:		D-12	20 with Hollow	Stem Aug	jer			Hanger K
GROUN	ND WATER		DEPTH TO			CASING	SAMPLER	CORE BARREL	ELEVATION:	~9.0 feet
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TVDE		S		DATE START:	12/13/97
		~5'		~40.1'	SIZE ID				DATE FINISH:	12/13/97
			<u> </u>		HAMMER WT		180 lbs.		DRILLER:	T. Burke
	CASING		7		HAMMER FALL		30 inch		PREPARED BY:	C. Jackson
DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE		Fil	ELD CLAS	SIFICATIO	N AND REMARKS	3
			<u> </u>							
ĺ			- 1							
		14	1 1							
			1 1	1						
- 5		28	1	1	SAND: WI	hito (Hue 2.5)		- dones wat t	high graded; fine to med	di manda nadi
1]	1	angular to s		*0/ I), IIIGGIG) Delibe, Wes,	ligh graded, line to mod	lium grained;
			∮ !	ĺ		w/o filter <1.0) ppm			
			1	1						
]	1						
İ		20	- 1	ĺ						
— 10		49]							
			1	l					dense; wet; high grade	d; fine to
			1	ı		ained; angular w/o filter 3.0 j		; trace or small	ill shell fragments.	
			1	l			PP			
			1	ŀ						
		40	1	1						
45		83	1	ļ						
— 15 —			1	ı I	SAND: Ligh	ht gray (Hue 7	2.5Y-7/1); den	se; wet; high ç	graded; fine to medium ;	orained; angular;
	-		1	·	trace of sma	ali sheli fragm	nents.		,	,
İ			1		OVA	w/o filter 4.0 p	ppm			
			1	,						
		22	1							
			1							
20		59	ı		SAND. Gre	ish arey (T	4 for f		t til to omederate t	
			.	1	grained; rou	enish gray (U	Diagram 1 for G ingular; trace of	3LEY-6/1); der of small shell fr	nse; wet; high graded; f	ine to medium
İ			ı	1	OVA	w/o filter 4.0 p	ppm	1 Olifon with	agments.	
			,	!						
	-		ı [1	1					
ĺ		22	ı	1	1					
— 2 5		43		J	1					
BLOW 0-4	VS/FT. DEN		BLOWS 0-2	VERY	NSISTENCY	SAMPL		COMPONENT		WATER ABBREV.
5-10	LOOSE		3-4	SOFT		S SPLIT SPOO		MOSTLY 50-10		
11-30 31-50	MEDIUM DE DENSE	NSE	5-8 9-15	MEDIU		U UNDISTURE	BED PISTON	FEW 5-10%		
51+	VERY DENS	Æ	16-30 +31	VERY S	STIFF	G GRAB SAM X OTHER NR NO RECOV		TRACE <5%	BORING NO.	HGRK-PRTMWD18

TEST BORING REPORT

BORING NO. HGRK-PRTMWD18

PAGE NO:

2 OF 2

DEPTH IN FEET	CASING BLOWS PER FOOT	SAMPLER BLOWS PER FOOT	SAMPLE NUMBER	SAMPLE DEPTH RANGE	FIELD CL	ASSIFICATION A	AND REMARKS
— 25					<u>Silty SAND:</u> Greenish gray (Diagra fine grained; rounded; trace of smal OVA w/o filter 5.0 ppm		
— 30		11 18			Clayey SILT: Greenish gray (Diagrahell fragments. OVA w/o filter 150 ppm OVA w/ filter 4.0 ppm	ram 2 for GLEY-5/1);	loose; wet; high graded; trace of
— 35		7 18			Slightly Clavey SAND: Greenish gine grained; rounded; trace of small OVA w/o fitter 400 ppm	gray (Diagram 2 for G I shell fragments.	LEY-5/1); loose; wet; high graded;
— 4 0		19			Silty SAND: Greenish gray (Diagra fine grained; rounded; little small she OVA w/o filter 400 ppm OVA w/ filter 8.0 ppm	im 1 for GLEY-5/1); rr ell fragments.	nedium dense; wet; high graded;
— 4 5							
50							
55					Notes: (1) New charcoal (2) Possible slight trace of ire	on shavings detected	20 feet BLS sample.
0-4 5-10 11-30 31-50	S/FT. DEN VERY LOOSE LOOSE MEDIUM DEN DENSE VERY DENSE	SE	BLOWS/ 0-2 3-4 5-8 9-15 16-30 +31	FT. CONS!: VERY SOFT SOFT MEDIUM STI STIFF VERY STIFF HARD	8 SPLIT SPOON T TUBE U UNDISTURBED PISTON G GRAB SAMPLE	COMPONENT % MOSTLY 80-100% LITTLE 18-25% FEW 8-10% TRACE <5%	GROUND WATER ABBREV. WD - WHILE DRILLING NE - NOT ENCOUNTERED UR - NOT READ BORING NO. HGRK-PRTMWD18

APPENDIX C ANALYTICAL DATA SUMMARY REPORT

1.0 DATA VALIDATION INTRODUCTION

Groundwater sampling activities in support of monitoring the Permeable Reactive Treatment (PeRT) Wall at the Cape Canaveral Air Station (CCAS) were conducted monthly from February through November 1998. Samples were collected quarterly in February, May, August, and November 1998 for laboratory analysis of volatile organic compounds (VOCs). This data validation report addresses the data quality of the quarterly samples analyzed for VOCs.

Rust Environment & Infrastructure (Rust) has performed independent quality control (QC) checks of the field and laboratory procedures that were used in collecting and analyzing the data collected at Cape Canaveral Air Station during 1998. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the data quality objectives (DQOs) were met. The analytical procedures were evaluated with respect to guidelines adapted from the most current editions of Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, EPA/SW-846, 3rd Edition (1986) and Update III (1996), and the Air Force Center for Environmental Excellence (AFCEE) Quality Assurance Project Plan (QAPP), Version 2.0 (AFCEE, January 1997) and updates to Version 2.0 dated 25 February, 1997. Analytical results were validated based on a review of custody information, method blanks, laboratory single control samples and duplicate control samples (SCS/DCS), surrogate spikes, and matrix spike/matrix spike duplicates (MS/MSD). The field activities and laboratory procedures are discussed in the following sections.

2.0 ASSESSMENT OF DATA QUALITY INDICATORS

The assessment of the data quality indicators determines the data usability. The assessment of data quality indicators for either sampling or analysis involves the evaluation of five indicators: precision, accuracy, representativeness, completeness, and comparability. The indicators are commonly referred to as the PARCC parameters.

Precision is a measure of the repeatability of measurements under a given set of conditions. Specifically, it is the quantitative measure of the variability of a group of measurements

compared to the average value. The overall precision of measurement data is a mixture of sampling and analytical factors and is evaluated from the results of duplicate samples. Poor precision can result from poor instrument performance, inconsistent method protocols, or difficult, heterogeneous sample matrix. Analytical precision is much easier to control and quantify than sampling precision. The analytical results from laboratory DCS and MSD samples provide data on analytical precision. The analytical results from field duplicate samples provide data on sampling precision. These samples provide relative percent difference (RPD) data that can be used to review the precision in sampling and analytical activities.

Accuracy measures the bias in a measurement system. Accuracy is difficult to measure for the entire data collection activity. Sampling accuracy is influenced by the sample collection process, sample handling, preparation and preservation procedures, field contamination, and sample matrix. A review of cooler temperature, sample pH, sample holding time, and trip blank results provide information about sampling accuracy. Analytical accuracy is assessed through use of known and unknown QC samples and spike samples. Accuracy determinations by known samples include the use of laboratory SCS, laboratory method blanks, and split samples. Analytical accuracy determinations by unknown samples include the analysis of MS samples and surrogate spikes. These samples provide percent recovery results that can be used to determine the effects of sample matrix and laboratory methodology on analytical accuracy.

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter that is most concerned with the proper design of the sampling program. Sampling representativeness is best achieved by making certain that sampling locations are selected properly and a sufficient number of samples are collected. Analytical representativeness can be determined by review of laboratory method blanks. Laboratory method blanks are used to ensure that sample results (clean or contaminated) are representative of site conditions and not laboratory conditions.

Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is essentially the same for all data uses: that a sufficient amount of valid data be generated. It is important that critical samples are collected and valid data achieved. A change in the number of samples collected from the number specified in a work plan can affect the sampling completeness. Analytical completeness is defined as the number of chemical-specific data results that are determined acceptable after data review.

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Sample data should be comparable with other measurement data for similar samples and sample conditions. This goal is achieved through using standard techniques to collect and analyze representative samples and reporting analytical results in appropriate units. Comparability is limited to other PARCC parameters because only when precision and accuracy are known can data sets be compared with confidence.

3.0 FIELD SAMPLING ACTIVITIES

Groundwater sampling activities at Cape Canaveral Air Station were conducted in February, May, August, and November 1998. The major activity in determining the usability of data based on sampling is assessing the effectiveness of the sampling operations performed.

Sampling precision was monitored through the use of field duplicate samples. Duplicates were collected at a rate of approximately one per ten samples. Comparison of the duplicate sample to the primary sample was performed by calculating the RPD as follows:

$$RPD = [(A-B)/((A+B)/2)] * 100$$

Where:

A = Result of Primary Sample

B = Result of Duplicate Sample

A RPD was not calculated if a data set contained an estimated value (data qualified with "J"). The data qualifier "/A" was added to sample results in cases when the RPD between the primary and duplicate sample was above review guidelines.

Holding times, sample preservation, trip blanks, and equipment rinsate blanks provide information regarding the sampling accuracy. The sampling holding time guidelines used during validation procedures are those established in EPA Test Methods for Evaluating Solid Waste (SW-846), 3rd Edition (1986) and Update III (1996). All samples collected for VOC analyses were analyzed within the established holding time limit and no data qualifiers were required.

Representativeness is primarily a planning concern and is addressed in the design of a sampling

plan that is deemed representative of the project objectives. Other indicators of representativeness are the trip blank, the ambient field blank, and the equipment rinsate blank. Trip blanks are vials of certified clean water which are transported with the sample from sample collection to log-in at the laboratory to sample analysis. Contamination detected in the trip blank may be an indication that the integrity of the sample has been compromised during shipping and handling or storage of the samples. Sample results flagged with a "/T" indicate the parameter was detected in the associated trip blank. Results for trip blank samples are provided on the attached data summary tables.

An equipment rinsate blank is a sample of certified clean water that was used as a final rinse during the decontamination of sampling equipment. Contamination detected in an equipment rinsate blank may be an indication that the integrity of a sample has been compromised through the use of poorly decontaminated field equipment. Sample results flagged with a "/V" indicate the parameter was detected in the associated equipment rinsate blank. Results for equipment rinsate blank samples are provided on the attached data summary tables.

Ambient field blanks are vials of certified clean water which are taken into the field and exposed to the ambient conditions at the site during collection of a site sample. Contamination detected in the ambient field blank may be an indication that the integrity of the sample has been affected through exposure to the atmosphere during the sampling process. Analytical results flagged with a "/F" indicate the parameter was detected in the associated ambient field blank. Results for contaminants detected in field blank samples are provided on the attached data summary tables.

The measure of completeness is useful for data collection and analysis management. Any decrease in the number of samples specified in the project work plans may the final results. All samples were collected as specified in the associated project work plan.

Comparability issues have little impact on performance measures associated with sampling provided that the sample design is unbiased, and the sample design or analytical methods have not changed over time. Comparability was achieved by following the sample design as described in the project work plans. The field sampling activities were performed as specified in the associated project work plan.

4.0 ANALYTICAL LABORATORY PROCEDURES

The purpose of this section is to provide a data validation summary of the analytical procedures performed at the off-site laboratory Kemron Environmental Services (Kemron). The QC procedures performed at Kemron included method blanks, SCS/DCS, MS/MSD, and surrogate spikes. Determining the usability of analytical results begins with the review of QC samples and data acceptance criteria. The review is used to determine an overall assessment of analytical performance as determined by the laboratory and method performance.

4.1 Method Blanks

Analytical representativeness involves the review of laboratory method blanks. As discussed in the Contract Laboratory Program (CLP) Statement of Work (SOW) for Organics Analysis (EPA, 1991) and the National Functional Guidelines for Organic Data Review (1994), acetone, 2-butanone (methyl ethyl ketone), and methylene chloride are considered to be common laboratory contaminants. In accordance with the EPA data review guidelines, site sample results of common laboratory artifacts should be considered positive results (i.e., site-related) only if the concentrations in the site sample exceed ten times the maximum amount detected in any associated blank. If the blank contains detectable levels of one or more chemicals not considered common laboratory contaminants, then site sample results are considered positive only if the concentration in the site sample exceeds five times the maximum amount detected in any associated blank. Only those results indicating concentrations exceeding the blank concentration determined by the five or ten times rules, as appropriate, are considered to be potentially site-related.

In evaluating the blank samples, an "/L" flag was added to sample results in which common laboratory contaminants were identified at levels less than ten times the amount detected in the corresponding blank or less than five times the amount detected in the corresponding blank for all other contaminants. This "/L" flag indicates that the detection is not site-related per the EPA blank evaluation criteria discussed above. Sample results containing common laboratory artifacts detected at a concentration greater than ten times that detected in the associated blank or some other contaminant detected at a concentration greater than five times that detected in the associated blank are flagged with a "/K". Professional judgment must be used to determine if the detected compound is site related.

4.2 <u>Surrogate Spikes</u>

All samples analyzed for VOCs were spiked with surrogate compounds as a measure of accuracy in regard to matrix interference. In accordance with data review guidelines, detections of organic compounds in a sample were qualified "/\(T\)" when the surrogate had a recovery greater than the upper acceptance limit (to indicate bias high). No data qualifier was added when a surrogate had a percent recovery exceeding the upper or lower limit by a value of one.

4.3 <u>Laboratory Control Samples</u>

In cases when the laboratory single control sample percent recovery was less than the lower limit, the data qualifiers "/Jc" were assigned to all sample detects, and the data qualifiers "/Rc" were assigned to all sample non-detects for the associated compounds. If more than half of the compounds in the laboratory single control sample were not within the percent recovery limits, the data qualifier "/J" was assigned to all sample detects, and the data qualifier "/R" was assigned to all sample non-detects of the associated compounds.

4.4 <u>Matrix Spike/Matrix Spike Duplicates</u>

MS/MSD samples were analyzed for each laboratory batch. MS/MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS is used to evaluate the effect of the sample matrix on the accuracy of the analysis. The MSD samples are processed separately and the results compared to determine the effects of the matrix on the precision and accuracy of the analysis. Results are expressed as percent recovery and RPD. In cases when the percent recovery of the MS sample was below the established criteria, the data qualifier "/m" was assigned to the detect or non-detect of the specific parameter in the associated parent sample. However, these data alone cannot be used to evaluated the precision and accuracy of individual samples.

4.5 <u>Completeness</u>

The completeness for analytical data is defined as the number of chemical-specific data results that are determined acceptable after data review. Sample results that should be considered estimated values after validation review were flagged "J". Approximately 1.3% of all analytical results were assigned the data qualifier "J". Sample results that have been determined to be unacceptable after validation review were flagged with the "R" qualifier. Approximately 0.6% of all analytical results were assigned the data qualifier "R".

4.6 Comparability

Comparability is a very important qualitative data indicator for analytical assessment and is a critical parameter when considering the combination of data sets from different analyses for the same chemicals of potential concern. The analytical methods used provided common analytical parameters, identical units of measure, and similar detection limits.

5.0 DATA SUMMARY AND CONCLUSIONS

Quarterly groundwater sampling activities at the CCAS were conducted in February, May, August, and November 1998 and included the collection of groundwater samples for analysis of VOCs. Sampling activities were conducted in accordance with the project work plan. Kemron Environmental Services (Marietta, Ohio) performed the analyses. Field QC samples included trip blanks, equipment rinsate blanks, ambient field blanks, and field duplicates. Analytical QC samples included method blanks, SCS/DCS samples, and MS/MSD samples. All samples for VOCs analyses were spiked with surrogate compounds.

Analytical results were validated based on a review of custody information, method blanks, laboratory single control samples and duplicate control samples (SCS/DCS), surrogate spikes, and matrix spike/matrix spike duplicates (MS/MSD). Where applicable, the analytical results were evaluated with respect to guidelines adapted from the most current editions of Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, EPA/SW-846, 3rd Edition (1986) and Update III (1996) and the Air Force Center for Environmental Excellence (AFCEE) Quality Assurance Project Plan (QAPP), Version 3 (AFCEE, March 1998). EPA "ten times" and "five times" rules were used to discount both field- and laboratory-induced contaminants from being site-related. The "L" flag was applied to data that were determined not to be site-related based on EPA data evaluation guidance. The "K" data qualifier was applied to data in cases when professional judgment must be used to determine if the detect is site-related. Analytical results flagged with the "R" data qualifier have been rejected due to deficiencies in the ability of the laboratory to analyze the sample and meet established QC criteria.

The data quality objectives for the analytical data as discussed in this report were met, and the data can be used for the purpose stated in the Work Plan.

Summary of Analytical Test Results Intermediate Monitoring Wells Cape Canaveral Air Station February 1998 Sampling

Date Collected 2/1 Lab Sample ID L980.	2/18/98	2/17/98	217768 2118.08 2118.08 2117.08	201	OF THE PARTY OF TH		OI WHITE LAW	,	O W WIND I-VI		UND-FRIMW
ID mg/L ng/L 1-67260		02/01/7		2/17/98		2/17/98		2/17/08		2/18/08	
y Jan > Jan > Jan > Jan > Jan > Jan > Jan	77.77	L9802372-05	L9802372-12	-	L9802372-06	F3	L9802372-03	F 198	L9802372-01		L9802372-13
ug/L < use the control of the contro	NA	VA	180	-	52		52		NA		VV
ethane ug/L < ug/L < ug/L < ug/L < ug/L < ug/L < ug/L <	0.5	< 0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
ne ug/L < ug/L < ug/L < ug/L < ug/L < ug/L <	0.5	< 0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
ugl. < c	-	- >	- v	V	-	v	-	v	1	v	-
> J/gn	0.5	< 0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
> Tool	1.2	< 1.2	< 1.2	V	1.2	v	1.2	v	1.2	v	1.2
			< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
propane ug/L <	0.5	< 0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
ng/L <	0	> 10	> 10	V	10	v	10	v	10	v	10
	10	< 10	01	V	10	v	10	v	10	v	10
1-2-pentanone ug/L <		> 10	< 10	V	10	v	10	v	10	v	10
ng/L <	10		F/ < 10		3 F/	_	8.9 F/		4.2 F	F/ <	10
ng/L <	0.5	< 0.5	< 0.5		0.13 F	_	0.14 F/	v	0.5	V	0.5
romethane	-	- 1	- ~	V	-	v	1	v	_	V	-
ng/L <	1.2	< 1.2	< 1.2	V	1.2	v	1.2	v	1.2	٧	1.2
> J/8n	<u> </u>			V	=	v	1.1	v	1.1	V	1.1
Carbon disulfide ug/L <	٠	< >	< >		0.11 F	F/ <	S	v	S	v	8
oride ug/L <		< 2.1	< 2.1	v	2.1	v	2.1	v	2.1	v	2.1
> Jan			< 0.5	v	0.5	v	0.5	v	0.5	v	0.5
omethane ug/L <	0.5	< 0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
e ug/L <			-	V		v	-	v	_	v	-
ng/L <				V	0.5	v	0.5	v	0.5	v	0.5
> John			F/ < 1.3	V	1.3			v	1.3	v	1.3
ng/L	0.9 F/	93	< 1.2		38		210 D/		48		3.5 /JI
> J/gu volument	0.5	< 0.5	0.73	V	0.5	v	0.5	v	0.5	v	0.5
Jøn	<u>.</u>	- 1	-	V	1	v		v		v	-
> Jan		- ~	-	V	-	v	-	v	-	٧	-
e chloride ug/L <	0.5	Ū	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5
> 7/8n	<u>·</u>	< 1.1 <	- 1.1	V	=	v	1:1	v	1.1	v	1.1
	_		- v	V		v		v	-	v	-
xoethene ug/L <		> 1.4	> 1.4	<u>v</u>	1.4	v	1.4	v	1.4	v	1.4
> 7/8n		< 1.2	< 1.2	V	1.2	v	1.2	v	1.2	v	1.2
J/8n	F	< 0.5	< 0.5		0.24 F/	_	0.13 F/	V.	0.5		0.73 F/JI
ropropene ug/L <	0.5	< 0.5	0.34	Y V	0.5	v	0.5	v	0.5	v	0.5
e ug/L	- ;		0.32	V ∑	_	v	-	v	1		_
Vinyl chloride ug/L < 1	1.1	52	× 1.1	\dashv	25		99		09		0.9 F/JI

Summary of Analytical Test Results Intermediate Monitoring Wells Cape Canaveral Air Station February 1998 Sampling

Date Collected 2/18/98 2/18/98 Total Dissolved Solids (mg/L) mg/L NA NA 1.1.3-Trichlorocthane ug/L 0.5 0.5 1.1.2-Trichlorocthane ug/L 0.5 0.5 1.1.2-Trichlorocthane ug/L 0.5 0.5 1.1.Dichlorocthane ug/L 0.5 0.5 1.1.Dichlorocthane ug/L 0.5 0.5 1.2-Dichlorocthane ug/L 0.5 0.5 1.2-Dichlorocthane ug/L 0.5 0.5 1.2-Dichlorocthane ug/L 0.5 0.5 2-Butanone ug/L 0.5 0.5 2-Hexanone ug/L 0.5 0.5 Acchone ug/L 0.5 0.5 Acchone ug/L 0.5 0.5 Bromornethane ug/L 0.5 0.5 Chlorochenzene ug/L 0.5 0.5 Chlorochane ug/L 0.5 0.5 Chlorochane ug/L 0.	18/98 2372-14 NA 0.5 0.5 1 0.5 1.2	2/18/98 L9802372-08 NA	-	7	2/18/98	2 2	2/18/98 2/17/98	51-2	2/17/98
Lab Sample ID Ly802372-07 issolved Solids (mg/L) mg/L NA richloroethane ug/L 0.5 richloroethane ug/L 1.2 hloroethane ug/L 1.2 hloroethane ug/L 1.2 hloroethane ug/L 1.2 hloroethane ug/L 1.0 one ug/L 1.0 one ug/L 1.1 one ug/L 1.1 one ug/L 1.1 cenzene ug/L 1.1 disulfide ug/L 1.3 disulfide ug/L 0.5 enzene ug/L 0.5 cenzene ug/L 0.5 chtane ug/L 1.4 chtoroethene ug/L 1.4 chtoroethene ug/L <th>2372-14 NA 0.5 0.5 1 1 1.2 0.5</th> <th>L9802372-</th> <th>-</th> <th>7</th> <th>06/01/</th> <th>7</th> <th>118/98</th> <th>_</th> <th>86//1/7</th>	2372-14 NA 0.5 0.5 1 1 1.2 0.5	L9802372-	-	7	06/01/	7	118/98	_	86//1/7
issolved Solids (mg/L) richloroethane ug/L < 0.5 Tetrachloroethane ug/L < 0.5 richloroethane ug/L < 0.5 richloroethane ug/L < 0.5 richloroethane ug/L < 0.5 richloroethane ug/L < 0.5 rone ug/L < 0.	NA 0.5 0.5 1 1 0.5 0.5	₹Z	- 80	1.08	1.9802372-15	1 08	1 0802772 00	-	1 000000
richloroethane richloroethane	0.5 0.5 0.5 1.2 0.5			2	NA		NA	2	27576
Tetrachloroethane ug/L 0.5 hloroethane ug/L 1.2 hloroethane ug/L 0.5 hloroethane ug/L 0.5 hloropropane ug/L 0.5 one ug/L 1.0 one ug/L 1.0 cone ug/L 1.0 cone ug/L 1.1 cone ug/L 1.1 cone ug/L 1.1 contract ug/L 1.1 contract ug/L 0.5 contents ug/L 0.5 contents ug/L 0.5 contents ug/L 0.5 contents ug/L	0.5 0.5 1.2 0.5	50			¥0	,	¥ ¥	,	¢ 4
richloroethane ug/L 1 hloroethane ug/L 1.2 hloroethane ug/L 1.2 hloroethane ug/L 1.2 hloropropane ug/L 10 one ug/L 10 vore ug/L 11 vore ug/L 11.1 cenzene ug/L 11.1 disulfide ug/L 11.1 enzene ug/L 0.5 cenzene ug/L 0.5 chlane ug/L 0.5 chlane ug/L 0.5 chloropropene ug/L 1.1 chloroethene ug/L 1.1 ug/L 1.1 ene chloride ug/L 1.1 ug/L 1.2 ug/L	00.5	0.5			. •	, _\		/ \	0.3
hloroethane ug/L < 0.5 hloroethane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 10 hloroptopane ug/L < 10 hloroptopane ug/L < 10 hloroptopane ug/L < 10 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 0.5 hloroptopane ug/L < 11 hloroptopane ug/L < 11 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 1 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloroptopane ug/L < 0.5 hloro	0.5 1.2 0.5	} -	<u> </u>	5	? _	<u> </u>		v '	c
hlorocthene ug/L 1.2 hlorocthane ug/L 0.5 one ug/L 0.5 one ug/L 10 r-2-pentanone ug/L 10 v-2-pentanone ug/L 10 v-2-pentanone ug/L 10 v-2-pentanone ug/L 11 v-2-pentanone ug/L 0.5 v-2-pentanone ug/L 0.5	1.2	, , ,		· c	_ •		- 2	v '	- `
hlorocthane ug/L < 0.5 hloropropane ug/L < 0.5 cone ug/L < 10 cone ug/L < 10 cone ug/L < 10 cone ug/L < 10 cone ug/L < 10 cone ug/L < 10 cone ug/L < 10 cone ug/L < 10 cone ug/L < 1.2 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone ug/L < 1.1 cone	5.0			٠ د	,	<i>v</i>	0.5	v	0.5
Note	C.0	7:1	<u>v</u>	_	.7	v	1.2	v	1.2
100 100		5.0	v	Ó	٠.	v	0.5	v	0.5
100 100	0.5	< 0.5	<u>v</u>	0	ن,	v	3.5	v	0.5
volume vg/L 10 vl-2-pentanone vg/L 10 vg/L 10 vg/L 0.5 vg/L 1.1 orm vg/L 1.1 disulfide vg/L 2.1 disulfide vg/L 0.5 chthane vg/L 0.5 vchthane vg/L 0.5 vchthoropene vg/L 0.5 vc	01	10		~	10		31		120
vi-2-pentanone ug/L < 10 < vg/L < 10 < ichloromethane ug/L < 1.1 < orm ug/L < 1.1 < orm ug/L < 1.1 < disulfide ug/L < 5 disulfide ug/L < 2.1 enzene ug/L < 0.5 certachloride ug/L < 0.5 chhane ug/L < 0.5 chromomethane ug/L < 0.5 < chromomethane ug/L < 0.5 chromomethane ug/L < 0.5 chromomethane ug/L < 0.5 < chromomethane ug/L < 0.5 < chromomethane ug/L < 0.5 chromomethane ug/L < 0.5 < chromomethane ug/L < 0.5 chromomethane ug/L <	10	10		10	0	v	10	V	
ug/L 10 ichloromethane ug/L 0.5 orm ug/L 1.1 orm ug/L 1.1 disulfide ug/L 1.1 disulfide ug/L 2.1 enzene ug/L 0.5 enzene ug/L 0.5 chram ug/L 0.5 bichloroethene ug/L 0.5 bichloroethene ug/L 0.5 e ug/L 1.1 e ug/L 1.1 coothene ug/L 1.1 ug/L 1.1 ug/L 1.2 bichloropethene ug/L 1.4 <td< th=""><th>10</th><th>10</th><th></th><th>_</th><th>0</th><th>v</th><th>10</th><th>· v</th><th>2 2</th></td<>	10	10		_	0	v	10	· v	2 2
ug/L 0.5 orm ug/L 1 orm ug/L 1.1 disulfide ug/L 1.1 disulfide ug/L 2.1 enzene ug/L 0.5 enzene ug/L 0.5 ibromonethane ug/L 0.5 cenzene ug/L 0.5 chhane ug/L 0.5 chhane ug/L 0.5 pichloroptopene ug/L 0.5 ug/L 0.5 ug/L 0.5 ug/L 0.5 ug/L 0.5 ug/L 0.5 ug/L </th <th>10</th> <th>4.6</th> <th>F/LVF</th> <th>7</th> <th>FALVEI</th> <th></th> <th>11 A.VF</th> <th></th> <th>15</th>	10	4.6	F/LVF	7	FALVEI		11 A.VF		15
ichloromethane ug/L 1 orm ug/L 1.1 disulfide ug/L 2.1 disulfide ug/L 2.1 enzene ug/L 0.5 enzene ug/L 0.5 ibromomethane ug/L 0.5 chhane ug/L 0.5 chhane ug/L 0.5 pichloropethene ug/L 0.5 ug/L 0.5 ug/L 1.1 ug/L 1.1 ug/L 1.4 ug/L 1.4 ug/L 1.4 ug/L 1.4 <th>0.5</th> <th>5 0.5</th> <th></th> <th>0.5</th> <th></th> <th>0</th> <th>0.31 E/</th> <th></th> <th>0.44 E/</th>	0.5	5 0.5		0.5		0	0.31 E/		0.44 E/
ortm ug/L 1.2 disulfide ug/L 1.1 disulfide ug/L 2.1 enzene ug/L 2.1 enzene ug/L 0.5 ibromonethane ug/L 0.5 chhane ug/L 0.5 chhane ug/L 0.5 pichloropthene ug/L 0.5 vzene ug/L 0.5 ug/L 1.1 ug/L 1.1 ug/L 1.1 ug/L 1.4 ug/L 0.5 ug/L 1.4 ug/L 1.4 ug/L 0.5 u	_					· •		V	
letrache ug/L 1.1 disulfide ug/L 5 enzene ug/L 2.1 enzene ug/L 0.5 ibromornethane ug/L 0.5 ibromornethane ug/L 1 orm ug/L 1.3 bichloroethene ug/L 1.3 orchloropropene ug/L 1 lene ug/L 1 orcoethene ug/L 1.1 ug/L 1.1 ug/L 1.1 ug/L 1.4 ug/L 1.4 ug/L 1.4 ug/L 1.4	1.2	: 1.2	V	-	2		1.2	, _V	1.2
disulfide ug/L 5 tetrachloride ug/L 2.1 enzene ug/L 0.5 ibromornethane ug/L 0.5 thane ug/L 1.3 oxm ug/L 1.3 pichloroethene ug/L 1.3 pichloropropene ug/L 1 ne chloride ug/L 1 ne chloride ug/L 1.1 oroethene ug/L 1.1 ug/L 1.1 ug/L 1.1 ug/L 1.4 ug/L 1.2 ug/L 1.4 ug/L 1.4 </th <th></th> <td>1.1</td> <td></td> <td></td> <td>-</td> <td>· •</td> <td></td> <td>, v</td> <td>! -</td>		1.1			-	· •		, v	! -
tetrachloride	s	3		3			v	, v	
cenzene ug/L 0.5 thane ug/L 0.5 xm ug/L 1 xethane ug/L 1.3 ychloroethene ug/L 1.3 ychloroethene ug/L 0.5 ychloropropene ug/L 1 ne chloride ug/L 1.1 oroethene ug/L 1.1 ug/L 1.4 ug/L 1.4 ug/L 1.4 ug/L 1.4 Dichloroethene ug/L 1.2 Ug/L 0.5 Ug/L 0.5 Ug/L 0.5	2.1	2.1	v	2.1	1	· ·	2.1	, v	2.1
thromomethane ug/L 0.5 Arm ug/L 1	> >	: 0.5	V	0.5	5	v	0.5		5.0
thane ug/L 1 xethane ug/L 0.5 yethane ug/L 1.3 yichloroethene ug/L 0.5 yizene ug/L 1 lene ug/L 1 ne chloride ug/L 1.1 coroethene ug/L 1.4 vooethene ug/L 1.2 Dichloropropropene ug/L 0.5	> 2.5	: 0.5		0.5	2	v	0.5	· v	0.5
wethane ug/L 0.5 Nethane ug/L 1.3 Nichloroethene ug/L 0.5 Nizene ug/L 1 Iene ug/L 1 ne chloride ug/L 1.1 e ug/L 1.1 oroethene ug/L 1.4 Uchloropropene ug/L 1.2 Uchloropropene ug/L 0.5		-	v	-		v	-	· v	; -
rethane ug/L 1.3 Dichloroethene ug/L 38 Dichloropropene ug/L 0.5 nzene ug/L 1 lene ug/L 1 ne chloride ug/L 1.1 e ug/L 1.4 oroethene ug/L 1.2 -Dichloropropene ug/L 0.5	> <	: 0.5	v	0.5	2	v	0,5	v	0.5
Dichloroethene ug/L 38 Dichloropropene ug/L 0.5 nizene ug/L 1 lene ug/L 1	.3	1.3	V	1.3	3		1.3	v	1.3
10 10 10 10 10 10 10 10	91	250	Ď	65	S //II	_	170 D/		65
Vertect	.5	. 0.5	V	0.5	2	· ·	0.5	v	0.5
100 100	_		V	_		v		v	_
10 10 10 10 10 10 10 10		_	V	-		0	0.44 FXV	v	-
ug/L 1.1 oroethene ug/L 1.4 -Dichloroethene ug/L 1.2 -Dichloropropene ug/L 0.5	>.5	. 0.5	V	0.5	2	v	0.5		0.12 F/
ug/L 1 oroethene ug/L 1.4 -Dichloroethene ug/L 1.2 -Dichloropropropene ug/L 0.5	<u>~</u>	1.1	V	-	_	_	1.1	v	
vg/L 1.4 ug/L 1.2 Dichloroethene ug/L 0.5 Dichloropropene ug/L 0.5	<u>v</u>	-	V	_		v	-	v	_
Ug/L < 1.2 < Dichloroethene ug/L < 0.5 Dichloropropene ug/L < 0.5 <	4.	4.1	V	÷	4	_	1.4	v	4.1
ug/L < 0.5	.2	1.2	V	1.2	2	0	0.66 F/		0.39 F/
ug/L < 0.5 <	8 0.	7		4.5	S /JI	_	1.8		
		0.5	v	0.5	S	O	0.63	v	0.5
> Tight	.54 F/ <			0.49	F/JI	v	1	v	1
Vinyl chloride ug/L 8.4 2.5	5	210	2	29	10/	2	210 D/		370 D/

Summary of Analytical Test Results Intermediate Monitoring Wells Cape Canaveral Air Station February 1998 Sampling

Ol olemen		C	ATTOO VOST	011/1	3	שמת שמטו	0111111		Transition in	001111
Sample ID		ز	C-DORN-PRIMWIIS C-HOKK-PRIMWIIS C-HOKK-PRIMWIZO	2 X	ڌ	JOKK-PKI	MWIIY	ن	HGKK-PKIN	1 W 120
Date Collected			2/17/98			2/18/98			2/18/98	
Lab Sample ID			L9802372-02			L9802372-16	91		L9802372-10	0
Total Dissolved Solids (mg/L)	mgL		VV			NA		L	AN	
1,1,1-Trichloroethane	ng/L	v	0.5		v	0.5		v	0.5	
1,1,2,2-Tetrachloroethane	ng/L	٧	0.5		v	0.5		v	0.5	
1,1,2-Trichloroethane	ngL	V	-		v	-		v	-	
1,1-Dichloroethane	ngL	٧	0.5		v	0.5		v	0.5	
1,1-Dichloroethene	ng/L		0.75	Ŧ		0.26	Ħ	٧	1.2	
1,2-Dichloroethane	ugL	٧	0.5		v	0.5		v	0.5	
1,2-Dichloropropane	ug/L	٧	0.5		v	0.5		v	0.5	
2-Butanone	ug∕l.		3.2	E/	v	10			50	
2-Hexanone	ug/L	٧	10		v	10		v	10	
4-Methyl-2-pentanone	ug/L	٧	10		v	10		v	10	
Acetone	ug/L		4.7	E/	v	10			28	LVF
Benzene	ug/L		0.11	F	v	0.5			1.7	
Bromodichloromethane	ng/L	v	-		v	-		v	-	
	ng/L	v	1.2		v	1.2		٧	1.2	
Bromomethane	ngL	٧	1.1		v	1.1		v	1.1	
Carbon disulfide	ng/L	ν	5		v	S		v	v o	
Carbon tetrachloride	ngL	V	2.1		v	2.1		v	2.1	
	ng/L	٧	0.5		v	0.5		v	0.5	
omethane	ng/L	v	0.5		٧	0.5		v	0.5	
Chloroethane	ng/L	٧	-		v	-		٧	-	
Chloroform	ng/L	٧	0.5		v	0.5		v	0.5	
Chloromethane	ugL	V	1.3		v	1.3		٧	1.3	
cis-1,2-Dichloroethene	ng/F		470	Δ		160	Δ		86	
cis-1,3-Dichloropropene	ug/L	ν	0.5		v	0.5		٧	0.5	
•	ugL	v	-		v	-			0.56	FV
	ngL	٧	-		v	-			0.86	FX/
e chloride	Ug/L	٧	0.5		v	0.5		v	0.5	
9	ugL	V	1.1		v	Ξ:			0.27	F/
	ug/L	v	-		v	_		v	-	
roethene	ng/L	٧	1.4		v	1.4		ν	1.4	
	ug/L		0.19	F/	v	1.2			2.2	
	ug/L		13			2.5			2	
ropropene		v	0.5		v	0.5		v	0.5	
9	ng/L	v	-		v	-		v	-	
Vinyl chloride	ng/L		490	2		220	D/		100	Ω
		١		l			1	l		1

Summary of Analytical Test Results Deep Monitoring Wells Cape Canaveral Air Station February 1998 Sampling

CT Aldring	C-HURN-FR	M W L		7 200	-HGKK-PRIM	WD03	4WD02 C-HGRK-PRTMWD03 C-HGRK-PRTMWD03-a C-HGRK-PRTMWD05)3-a C	3-HGRK-PRTMWD05	C-H	C-HGRK-PRTMWD07 C-HGRK-PRTMWD09	7 C-HG	RK-PRTMW	'D09
Date Collected	2/23/98	ac	2/20/98		2/23/98		2/23/98		2/20/98		2/19/98		2/19/98	
Lab Sample ID	L9802427-08	-08	L9802427-02		L9802427-09	6	L9802427-10		L9802427-03	_	L9802372-22		1.9802372-20	
Fotal Dissolved Solids (mg/L)	Y V		NA		550		VN	H	530		490		٧Z	T
I,I,I-Trichloroethane	> 20		> 50	V	20		> 20		20.	V	20	V	5 0	
1,1,2,2-Tetrachloroethane	> 50		> 50	v	50		> 50		\$0		20	, v	20	
1,1,2-Trichloroethane	100		> 100		100		100		100	· v	001	, _V	201	
1,1-Dichloroethane	> 50		< 50	V	50		> 50		50	· v	20	, v		
1,1-Dichloroethene	< 120		< 120		190	11/	190		120	· v	120	,	06	ú
1,2-Dichloroethane	< 50		< 50	V	50		> 50		20	′ v	05	V) }	ζ,
1,2-Dichloropropane	> 50		< 50	V	50		> 50		50	· v	20	, v) (
2-Butanone	< 1000		< 1000	V	1000		> 1000		1000	· v	1000	, <u>v</u>	001	
2-Hexanone	< 1000		< 1000	v	1000		> 1000	v	1000	· v	1000	/ V	1000	
4-Methyl-2-pentanone	× 1000		< 1000	V	1000		> 1000		1000	·	1000	, v	1000	
Acetone	1000		> 1000	V	1000		< 1000	V	1000	v	1000	· v	1000	
	> 20		< 50	V	20		< 50		50	v	20	· V	\$0	
Bromodichloromethane	00I		> 100	V	100		001		001		2 2	′ ∨	201	
Bromoform	< 120	-	< 120	V	120		< 120		120		120	, v	120	
Bromomethane	2 110		< 110	V	110		> 110		110	· v	110	′ <u>v</u>	2 -	
Carbon disulfide	200		> 500	V	200		> 500		500	v	200	· v	200	
Carbon tetrachloride	< 210	-	< 210	v	210		< 210		210	v	210	v	210	
Chlorobenzene	20	_	> 50	V	50		> 50		50		50	v	50	
omethane	> 20	-	< 50	v	50		> 50		50	v	50	· v	20	
Chloroethane	100		> 100	V	100		001 >		100	v	100	· v	200	
Chloroform	20		< 50	V	20		> 50		50	v	50	v	50	
Chloromethane	130			V	130		< 130	v	130	v	130	· v	130	
cis-1,2-Dichloroethene	93000	À	0	2	35000	D/JI	41000	Ď	93000 D/		\$2000 D/		68000	2
cts-1,3-Dichloropropene	20	•	> 50	v	20		> 50	v	50	v		v	50	i
•		-	001 >	V	100		> 100	V	100	v	100	v	100	
m-,p-xylene		•	v 100	v	100		> 100	v	100	v	100	v	100	
Methylene chloride	20	-	> 50	V	20		> 50	v	50	v	50	v	20	
o-Xylene	110	•	< 110	v	110		> 110	<u> </u>	110	v	110	v	110	
Styrene	200	•	v 100	V	100		100		100	v	100	v	100	
letrachloroethene		<u>-</u>	< 140	V	140		< 140	v	140	v	140	v	140	
loluene	120	<u>-</u>		<u> </u>	120		< 120	V	120	v	120	v	120	
	•			À	1600	17/	1600		930		190		770	
topropene		<u>*</u>	> 20	v	20	<u> </u>	< 50	<u>v</u>	50	v	20	v	20	
I richioroethene				V	100		> 100	V	100	v	100	v	100	
v inyi chionde	28000)	20000	D/	2700	II/O	7000	<u>/</u>	54000 D/		45000	_	00000	2

Summary of Analytical Test Results
Deep Monitoring Wells
Cape Canaveral Air Station
February 1998 Sampling

Lab Sample ID Total Dissolved Solids (mg/L)		Collected 2/23/09 2/20/00	_	20000		00/10/1		OLONIA MINIMA CHICANA MANAGAMA								;
Total Dissolved Solids (mg/L)		1 0802427.11		1 080777		1 0003437		2023/98	· •	٠	86/07/7		2/23/98		2/20/98	
indi Dissolved Solids (IIIg/L)	L	MA	+	17000721-04	1	71-17470067		L9802421-13	-13		L9802427-05	1	L9802427-14		L9802427-06	
		VA				Y.		V			Y X		NA V		٧٧	
1,1,1-1richiocemane	v	00 (v		v	20		> 20		v	20	•	> 50	v	50	
1,1,2,2-1 etrachloroethane	v	20	V	20	v	20		< 50		v	50	•	> 50	v	50	
1,1,2-Trichloroethane	v	100	V	100	v	100		> 100		v	100		> 100	V	100	
1,1-Dichloroethane	v	20	V	20	v	50		< 50		v	50		20	V	95	
1,1-Dichloroethene		250	/II/	120		270	II/	280	11/	v	120			v	120	
1,2-Dichloroethane	ν	20	V	20	V	20		> 50		v	50		20	, v	£ 5	
1,2-Dichloropropane	٧	20	V	20	v	20		> 50		v	50		. O.	, v	£ 5	
2-Butanone	v	1000	V	1000	ν	1000		> 1000		v	1000		1000	′ v	1000	
2-Hexanone	v	1000	V	1000	V	1000		> 1000		v	1000		1000	<u> </u>	1000	
4-Methyl-2-pentanone	v	1000	v	1000	V	1000	<u> </u>	> 1000		v	1000		1000	v	1000	
Acetone	v	1000	V	1000	v	1000		> 1000		v	1000		1000		1000	
Benzene	v	20	V	20	V	20		> 50		v	50		20	v	20	
Bromodichloromethane	v	100	V	100	V	100		> 100		v	100		100	V	100	
Bromoform	v	120	V	120	v	120	•	< 120		v	120		120	V	120	
Bromomethane	v	110	V	110	v	110	<u> </u>	> 110		v	110		110	V	110	
Carbon disulfide	v	200	V	200	v	200	_	> 500		٧	500	<u>v</u>	200	V	200	
Carbon tetrachloride	v	210	V	210	v	210	•	< 210		v	210		210	V	210	
Chlorobenzene	v	20	V	20	v	20		> 50		v	50	V	50	V	50	
Chlorodibromomethane	v	50	v	20	v	50		> 50		v	50		20	V	50	
Chloroethane	v	100	V	100	v	100	<u>,</u>	< 100		v	100		100	V	100	
Chloroform	v	50	V	20	V	50		< 50		v	20		20	v	20	
Chloromethane	v		V	130	v	130	<u> </u>	< 130		v	130	_ <u>v</u>	130	v	130	
cis-1,2-Dichloroethene		0	D/JI	87000	Ď	29000	D/JI	29000	D/JI		47000	Ď	160000 D	Δ	28000	Ď
cis-1,3-Dichloropropene	v	20	V	20	v	20	•	> 50		v	20		50	v	50	i
Ethylbenzene	v	100	V	100	v	100	<u> </u>	v 100		v	100		100	V	100	
m-,p-Xylene	v	100	V	100	v	100	<u> </u>	v 100		v	100	v	100	٧	100	
Methylene chloride	v	20	V	20	v	50	<u> </u>	< 50		v	50	<u></u>	50	V	50	
o-Xylene	v	110	v	110	v	110	<u> </u>	110		v	110	<u></u>	110	V	110	
Styrene	v	100	V	100	v	100	_	100		v	100		100	V	100	
Tetrachloroethene	v	140	V	140	v	140		< 140		v	140		140	V	140	
Toluene	v	120	v	120	v	120	•	< 120		v	120	<u>v</u>	120	V	120	
trans-1,2-Dichloroethene		1700	II/	190		1700	II/	1800	II/		670		1900		640	
trans-1,3-Dichloropropene	v	20	V	20	v	50		> 50		v	50		50	V	50	
Trichloroethene	v		V	100	v	100		100		v	100		100	v	100	
vinyi chioride		0800	D/II	4800		29000	D/JI	27000	D/II		38000	Δ	34000 D	Δ	63000	D/

Summary of Analytical Test Results Deep Monitoring Wells Cape Canaveral Air Station February 1998 Sampling

Sample 1D		C-HGRK-PRTMWD17 C-HGRK-PRTMWD18	C	HGRK-PRTMWDI		C-HGRK-PRTMWD19		C-HC	C-HGRK-PRTMWD19-a C-HGRK-PRTMWD20	I C.H	GRK-PRTMWD20
Date Collected	P	2/20/98		2/19/98		2/23/98			2/23/98		2/23/98
Lab Sample ID		L9802427-01		L9802372-21		L9802427-15			L9802427-16		L9802427-07
Total Dissolved Solids (mg/L)		NA		ΥN	-	VΑ			NA	L	NA
1,1,1-Trichloroethane	V	0.5	V	20	V	50	_	v	250	V	50
1,1,2,2-Tetrachloroethane	v	0.5	٧	20	V	50		v	250	v	50
1,1,2-Trichloroethane	V	-	٧	100	V	100		v	500	v	100
1,1-Dichloroethane		13 /11	<u>v</u>	50	V	20		v	250	v	20
1,1-Dichloroethene		260 1/11	_	140		260	11/	v	009	v	120
1,2-Dichloroethane	v	0.5	٧	50	V	50		v	250	v	50
1,2-Dichloropropane	V	6.5	V	20	V	50		v	250	v	50
2-Butanone	v	10	٧	1000	V	1000		v	2000	v	1000
2-Hexanone	v	10	٧	1000	V	1000		v	2000	v	1000
4-Methyl-2-pentanone	v	10	٧	1000	V	1000		v	2000	ν	1000
Acetone	v	10	V	1000	V	1000		v	2000	v	1000
Benzene	v	0.5	V	20	V	50		v	250	v	50
Bromodichloromethane	v	-	٧	100	V	100		v	200	v	001
Bromoform	v	1.2	٧	120	V	120		v	009	v	120
Bromomethane	v	1:1	٧	110	V	110		v	550	v	110
Carbon disulfide		5.4 /JI	v	200	V	200		v	2500	v	200
Carbon tetrachloride	v	2.1	V	210	V	210		v	1100	v	210
Chlorohenzene	v	0.5	٧	20	V	20		v	250	v	20
Chlorodibromomethane	v	0.5	٧	20	V	20		v	250	v	20
Chloroethane	٧		٧	100	V	100		v	200	v	100
Chloroform	v	0.5	٧	20	V	20		v	250	v	20
Chloromethane	v		٧	130	V	130		v	650	v	130
cis-1,2-Dichloroethene		5000 D/JI	=	0	Δ	170000	D/II		190000 D/JI	_	42000 D/
cis-1,3-Dichloropropene	v	0.5	v	20	V	20		v	250	v	20
Ethylbenzene	v	-	٧	00	V	100		v	200	v	100
m-,p-Xylene	v		V	100	V	100		v	200	v	100
Methylene chloride		0.5	<u>v</u>	20	V	20		v	250	v	50
o-Xylene	v	1:1	v	110	V	110		v	550	v	110
Styrene	v	_	V	100	V	100		v	200	v	100
Tetrachloroethene	v	1.4	٧	140	V	140		v	700	v	140
Toluene		2.5 /JI	v _	120		120		v	009	v	120
trans-1,2-Dichloroethene		740 D/JI	=	1500	_	2200	II/		11/0001		950
trans-1,3-Dichloropropene	v		٧	20	V	20		v	250	v	20
Trichloroethene		5.8	<u>v</u>	100	V	100		v	200	v	100
Vinyl chloride	4	1600 D/JI		37000	à	15000	D/IIA		35000 /JI		43000 D/

Summary of Analytical Test Results QA/QC Samples Cape Canaveral Air Station February 1998 Sampling

Sample II	C-H	Sample ID C-HGRK-PRTAMBK01 C-HGRK-PRTAMBK02	C-HGF	R-PRTAMBK02	C-HGRK-PRTEQBK01	EQBK01	C-HGRK-PR	TEQBK02	C-HGR	K-PRTTPBK01	C-HGR	C-HGRK-PRTEQBK02 C-HGRK-PRTTPBK01 C-HGRK-PRTTPBK02
Date Collected	P	2/18/98		2/23/98	2/18/98	\$	2/23/98			2/18/98		30/1/16
Lab Sample ID	إ	L9802372-18	LS	L9802427-18	L9802372-17	2-17	L9802427-17	7-17	167 176	L9802372-19	1.9	1.9802427-19
I, I, I-Trichloroethane	v	0.5	v	0.5	< 0.5		< 0.5		V	0.5	v	0.5
1,1,2,2-Tetrachloroethane	v	0.5	v	0.5	< 0.5		< 0.5		v	0.5		
1,1,2-Trichloroethane	V	-	v	-	- ~		-		V	! -	<u>'</u> \	} -
1,1-Dichloroethane	v	0.5	v	0.5	< 0.5		>0.5		, ,	. 0	<u>/ \</u>	
1,1-Dichloroethene	v	1.2	v	1.2	< 1.2		< 1.2		, v	1.3		7.7
1,2-Dichloroethane	٧	0.5	· V	0.5	< 0.5		. v		′ \	1 0	<u></u>	7 0
1,2-Dichloropropane	v	0.5	v						/ \	50	/ \	0.0
2-Butanone	v	10	V						<u>/ \</u>	5	v '	U.5
2-Hexanone	v	10	v						/ \	2 2	v '	2 :
4-Methyl-2-pentanone	v	10	v	10	•				<u>/ \</u>	2 2	v	2 9
Acetone		21	v	10	•				<i>,</i> ,	2 5	<u> </u>	0 9
Benzene	v	0.5	v		< 0.5				/ V	2 6	<u>/ \</u>	2
Bromodichloromethane	v	-	v	-	-		-		, ^	-	<u>/ \</u>	
Bromoform	v	1.2	v	1.2	< 1.2		< 1.2		′ √	12	<u>/ \</u>	- :
Bromomethane	v	1.1	v	=	1.1		-		′ \	<u> </u>	<u>/ \</u>	7:-
Carbon disulfide	v	2	v	٠,	< > >		•		, v		/ \	-
Carbon tetrachloride	v	2.1	v	2.1	< 2.1				, v	2.1	/ \	
Chlorobenzene	v	0.5	v	0.5	< 0.5		< 0.5		, v		<i>,</i> \	
Chlorodibromomethane	v	0.5	v	0.5	< 0.5	-	< . 0.5		v	0.5	'_v	50
Chloroethane	v		v		-		- v		v	-	' V	; -
Chloroform	v	0.5	v		< 0.5		< 0.5		v	0.5	· v	0.5
Chloromethane	v	1.3	v		< 1.3	-	< 1.3		v	1.3		1.3
cts-1,2-Dichloroethene	v	1.2	v		< 1.2	•	< 1.2		v	1.2	v	1.2
cis-1,3-Dichloropropene	v	0.5	v	0.5	< 0.5		< 0.5		v	0.5	v	0.5
Ethylbenzene	v	_	v	_	-	•	-		v	_	v	-
Medical Control of the Control of th	<u>v</u>	- ;	v		-		^		v	_	v	_
Memylene chloride	v	0.5	v	0.5	< 0.5	•	< 0.5		v	0.5	v	0.5
O-Aylene	v		v		1:1		< I.1		v	1:1	v	1.1
Styrene	v	-	v	_	- -	-	- ~	-	v	-	v	
I etrachloroethene	v	4.1	v		< 1.4 +:1	-	< 1.4		v	1.4	V	1.4
louene	v	1.2	v	1.2		<u> </u>	< 1.2	-	v	1.2	V	1.2
uans-1,2-Dichioroemene	v	0.5	v	0.5		,	< 0.5		v	0.5	v	0.5
trans-1,3-Dichloropropene	<u> </u>	0.5	v	0.5	c 0.5		< 0.5		v	0.5	v	0.5
View	v	- ;	v	_ ;	-	<u> </u>	^		v	_	v	_
villyi chionae	v		V	1.1	1:1	v	1.1		v	1.1	v	1:1

Summary of Analytical Results Deep Monitoring Wells Cape Canaveral Air Station May 1998 Sampling

Date Collected 5/20/98 Lab Sample ID L9805421-1,1,1-Trichloroethane < 500 1,1,2,2-Tetrachloroethane < 500 1,1,2-Trichloroethane < 500 1,1-Dichloroethane < 500 1,1-Dichloroethane < 500 1,1-Dichloroethane < 500 1,1-Dichloroethane < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500			,	JUNE TO A PART OF THE PART OF	<u>こ</u>	CHAPTER CONTRACTOR OF THE WIND TO THE WORLD CONTRACTOR OF THE WORLD CONTRACTOR			-	TIKE TE	1 X X
ample ID L9805421 ne		5/20/98		5/20/98		5/20/98		5/20/98		5/20/98	
cthane < need to be a considered on the consider	1-01	L9805421-02		L9805421-03		L9805421-04		L9805421-05		L9805421-06	
ethane < ne < v		> 500	v	500	V	200	ľ	500	V	500	
V V V		> 500	V	200	V	200		200	V	200	_
<u> </u>		> 1000	v	1000	V	1000		1000	V	1000	
V		> 500	V	200	V	200		200		500	
		< 1200	V	1200	v	1200		1200	v	1200	
v		> 500	V	200	V	500	v	500	V	200	
v		> 500	v	200	V	200		500	V	500	
v v		> 1000	v	1000	V	1000		1000	V	1000	
oride <		< 2100	v	2100	V	2100		2100	V	2100	
V		> 500	v	200	v	200	v	200		500	
V		> 1000	V	1000	V	1000		1000	٧	1000	
V		> 200	V	200	v	500		200	V	500	
v	W/W		× /w	1300	W/W	1300	× ×		× ×	1300	×
cis-1,2-Dichloroethene 57000		73000		45000		100000		45000		17000	
v	-	> 200	V	200	v	200		500	V	200	
hane <	-	> 500	v	200	v	200	v	200	V	500	
v	-	> 200	v	200	V	200	<u>v</u>	200	V	200	
v	- -	< 1400	V	1400	V	1400	v	1400	V	1400	
_	F	1100		860	F/	1600		790	٧	200	
ropropene <		> 500	V	200	V	200		200	٧	500	
Trichloroethene < 1000	_	> 1000	v	1000	v	1000		1000	٧	1000	
Vinyl chloride 33000		43000		47000		42000		55000		35000	

Date Collected		Sample ID C-HCRK-PRIMWD	_	-IIOUP-LUINIWI			MWDII-8	<u>ت</u>	MIN WON CHONGER MADDIN CHORREPRIMADINA CHORREPRIMADIN CHORREPRIMADIN	716	- HCKN-17		Ü	C-HGRK-PRTMWD1	VD 4
		5/20/98		5/21/98		5/21/98			5/20/98		5/21/98			\$/20/98	
Lab Sample ID		L9805421-07		L9805421-08		L9805421-09	60-		L9805421-10		L9805421-1	=		L9805421-12	
1,1,1-Trichloroethane	v	500	ť	500		< 500		v	500	Ť	500		V	500	
1,1,2,2-Tetrachloroethane	v	200	v	200		> 500		v	500		200		v	200	
1,1,2-Trichloroethane	v	1000	<u>v</u>	1000		> 1000		v	1000		1000		v	1000	
1,1-Dichloroethane	v	200		200	_	> 500		٧	200		500		v	500	
1,1-Dichloroethene	v	1200	V	1200		< 1200		v	1200		270	F/	v	1200	
1,2-Dichloroethane	v	200	V	200		300	F	V	200		500		v	200	
1,2-Dichloropropane	v	200	V	200		> 500		v	200		200		v	500	
Bromodichloromethane	v	1000	V	1000		< 1000		v	1000		1000		v	1000	
Carbon tetrachloride	v	2100	<u>v</u>	2100		< 2100		v	2100		2100		v	2100	
Chlorobenzene	v	200	<u> </u>	200	•	> 500		v	200		200		v	200	
Chloroethane	v	1000	v	1000		< 1000		v	1000		1000		v	1000	
Chloroform	v	200	V	200	Ť	> 500		v	200		200		v	500	•
Chloromethane	v		× ×	1300	× ×		Ä	× /W	1300	¥	.,	×	v	1300	×
cis-1,2-Dichloroethene		47000		140000		150000	W/		48000		150000	Ž		51000	
cis-1,3-Dichloropropene	v	200	V	200		> 500		v	200		500		v	500	
Dibromochloromethane	v	200	V	200	·	> 500		v	200	v	500		v	500	
Methylene chloride	v	200		200	·	< 500		v	200		200		v	200	
Tetrachloroethene	v	1400	V	1400		< 1400		v	1400		1400		v	1400	
trans-1,2-Dichloroethene		760 F	F/	1900		2000		v	200		2200			066	Ē
trans-1,3-Dichloropropene	v	200	v	200	·	> 200		v	200		200		v	200	
Trichloroethene	v	1000	<u> </u>	1000	Ť	< 1000	m/	/m/	1000		1000		v	1000	
Vinyl chloride		42000	_	31000	_	28000			33000		26000			40000	

ept/39748\report\all-98

Summary of Analytical Results
Deep Monitoring Wells
Cape Canaveral Air Station
May 1998 Sampling

Sample ID	C-HGRK-PR	TMWD15	C-HGR	K-PRTMWD15-a	C-HG	2K-PRTMWD16	C-HC	RK-PRTMW	01710	Sample ID C.HGRK-PRTMWD15 C.HGRK-PRTMWD15-a C.HGRK-PRTMWD16 C.HGRK-PRTMWD17 C.HGRK-PRTMWD18 C.HGRK-PRTMWD18	1810	HGDV DDTAWN	010	DETAIL VIOLE	0000
Date Collected	5/21/98	•		5/21/98		5/20/98		5/20/98	-	50008) 	-11GRA-FRIMWD	7	FICKN-PKIM	070 M
Lab Sample ID	L9805421-13	1-13	F3	L9805421-14	1.9	L9805421-15		1.9805421-16		1 9805421-17		1 0805421 19		1 0005431 10	
1,1,1-Trichloroethane	< 200		v	500	v	500	V	200		500	ť	800	+	E3003451-19	T
1,1,2,2-Tetrachioroethane	< 500		v	200	v	200	· v	200	' V	200	<u>/ \</u>	900	<u> </u>	200	
1,1,2-Trichloroethane	< 1000		v	1000	v	1000	· v	1000	<u> </u>	1000		900	V 1	2000	
1,1-Dichloroethane	< 500		v	500	v	200	′ V	200	<u>/ v</u>	20,5		220	v v	000	
1,1-Dichloroethene	300	F		300 F/	v	1200	v	1200	<u></u>	1200		1200	/ \	1200	
1,2-Dichloroethane	< 500		v	200	v	500	v	200		200		200	/ \	200	
1,2-Dichloropropane	< 500	-	v	200	v	200	v	500	V	200		200		200	
Bromodichloromethane	> 1000	-	v	1000	v	1000	v	1000		1000		1000	<u> </u>	1000	
Carbon tetrachloride	< 2100		v	2100	v	2100	v	2100	v	2100		2100	′ v	2100	
Chlorobenzene	> 500		v	200	v	200	v	500	٧	200		200	<u> </u>	500	
Chloroethane	< 1000	-	v	1000	v	1000	v	1000	V	1000		1000	<u> </u>	1000	
Chloroform	> 500	•	v	200	v	200	v	500	V	200		200		200	-
Chloromethane	< 1300	W/W	v	1300 M/	v	1300 M/	v	1300	× ×	1300	×		<u>/ \</u>	1300	X
cis-1,2-Dichloroethene	160000	×		150000 M/		00069		00086		76000		_	<u> </u>	110000	ì
cis-1,3-Dichloropropene	> 200	-	v	200	v	200	v	200		200	V		V	500	
Dibromochloromethane	> 200	•	v	200	v	200	v	500	V	200	V	200		200	
Methylene chloride	> 200		v	200	v	200	v	200	V	500	v	200		200	
Tetrachloroethene	< 1400		v	1400	_v	1400	v	1400		1400	V	1400	<u> </u>	1400	
trans-1,2-Dichloroethene	2300			2300		1300		2000		1400	-	2500	_	1900	
trans-1,3-Dichloropropene	> 500	<u>,</u>	v	200	v	200	v	500	V	200		200	\	\$00 .	
Trichloroethene	< 1000	•	v	1000	v	1000	v	1000	V	1000		1000		1000	
Vinyl chloride	33000			34000		00029		53000	_	49000		22000		39000	-

Summary of Analytical Results QA/QC Samples Cape Canaveral Air Station May 1998 Sampling

Lab Sample ID L20098 5/21/98 5/20/98	Sample II	O C	HGRK-PRTAMB	K03	C-HGRK	-PRTAMBK	F	Sample ID C-HGRK-PRTAMBK03 C-HGRK-PRTAMBK04 C-HGRK-PRTEQBK03 C-HGRK-PRTEQBK04 C-HGRK-PRTTPBK03	:03	C-HGRK	-PRTEOBI	8	C-HGR	K-PRTTPE	K03
D L9805421-22 L9805421-23 L9805421-21 L9805421-21 L9805421-21 L9805421-22 L9805421-21 L9805421-22 L9805421-2	Date Collected	70	5/20/98	_	5	/21/98	_	5/20/98		Š	121/98			5/20/98	
6 0.5 6 0.5 <td< th=""><th>Lab Sample II</th><th>0</th><th>L9805421-22</th><th></th><th>F 198</th><th>05421-23</th><th></th><th>L9805421-20</th><th></th><th>F98</th><th>05421-21</th><th></th><th>19</th><th>805421-24</th><th></th></td<>	Lab Sample II	0	L9805421-22		F 198	05421-23		L9805421-20		F98	05421-21		19	805421-24	
\$\color 0.5\$ \$\color 0.5\$ <td< th=""><th>1,1,1-Trichloroethane</th><th>V</th><th>0.5</th><th>Ť</th><th>V</th><th>0.5</th><th>٧</th><th>0.5</th><th>Ť</th><th>V</th><th>0.5</th><th></th><th>V</th><th>0.5</th><th>Γ</th></td<>	1,1,1-Trichloroethane	V	0.5	Ť	V	0.5	٧	0.5	Ť	V	0.5		V	0.5	Γ
6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 7 1 6 1 7 1	1,1,2,2-Tetrachloroethane	٧	0.5	Ť	v	0.5	V	0.5		v	0.5		v	0.5	
\$\color{1.2}\$ \$\color{1.2}\$<	1,1,2-Trichloroethane	٧	_	<u> </u>	v	-	V	1	<u> </u>	v	_		v	,	
6 1.2 M/ 1.3 M/	1,1-Dichloroethane	٧	0.5	-	v	0.5	V	0.5	<u> </u>	v	0.5		V	0.5	
\$\color{1}{0}\$ \$\col	1,1-Dichloroethene	٧	1.2	Ž	v	1.2 M	<u>×</u>	1.2	×	v	1.2	ž	v	1.2	×
\$\color{1}{2}\$ \$\col	1,2-Dichloroethane	٧	0.5	Ť	v	0.5	٧	0.5		v	0.5		v	0.5	
\$\leq 2.1\$ \$\leq 2.1\$ \$\leq 2.1\$ \$\leq 2.1\$ \$\leq 2.1\$ \$\leq 2.1\$ \$\leq 2.1\$ \$\leq 0.5\$ \$\leq 0.5\$ <th>1,2-Dichloropropane</th> <th>٧</th> <th>0.5</th> <th><u> </u></th> <th>v</th> <th>0.5</th> <th>V</th> <th>0.5</th> <th><u> </u></th> <th>v</th> <th>0.5</th> <th></th> <th>v</th> <th>0.5</th> <th></th>	1,2-Dichloropropane	٧	0.5	<u> </u>	v	0.5	V	0.5	<u> </u>	v	0.5		v	0.5	
\$\circ\$ 2.1 \$\circ\$ 2.1 \$\circ\$ 2.1 \$\circ\$ 0.5	Bromodichloromethane	٧	_		v	-	٧	-	<u> </u>	v	_		v	-	
\$\color{1}{2}\$ \$\col	Carbon tetrachloride	٧	2.1	•	v	2.1	V	2.1	<u> </u>	V	2.1		v	2.1	
6 1 6 1 6 1 6 0.5 6 0.5 6 0.5 6 1.2 M/ c 1.2 M/ c 1.2 7 0.5 0.5 0.5 0.5 0.5 8 0.5 0.5 0.5 0.5 0.5 9 0.5 0.5 0.5 0.5 0.5 14 0.5 1.4 0.5 0.5 0.5 10 0.5 0.5 0.5 0.5 0.5 11 11 11 11 0.5 0.5 11 11 11 11 0.5 0.5 11 11 11 11 11 0.5 0.5	Chlorobenzene	٧	0.5	Ť	v	0.5	V	0.5		v	0.5		v	0.5	
\$\circ\$ 0.5\$ \$\circ\$ 0.5\$ \$\circ\$ 0.5\$ \$\circ\$ 0.5 \$\circ\$ 0.5 <th>Chloroethane</th> <th>٧</th> <th>-</th> <th>Ť</th> <th>v</th> <th>-</th> <th>V</th> <th>_</th> <th></th> <th>v</th> <th>_</th> <th></th> <th>v</th> <th>-</th> <th></th>	Chloroethane	٧	-	Ť	v	-	V	_		v	_		v	-	
1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2<	Chloroform	v	0.5		v	0.5	V	0.5	<u> </u>	v	0.5		v	0.5	
< 1.2 M/ 1.2 M/ 1.2 M/ 1.2 M/ 1.2 M/ 1.2 M/ 0.5 </th <th>Chloromethane</th> <th>٧</th> <th>1.3</th> <th>•</th> <th>v</th> <th>1.3</th> <th>V</th> <th>1.3</th> <th><u>v</u></th> <th>v</th> <th>1.3</th> <th></th> <th>v</th> <th>1.3</th> <th></th>	Chloromethane	٧	1.3	•	v	1.3	V	1.3	<u>v</u>	v	1.3		v	1.3	
< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.4 < 1.4 < 1.4 < 1.4 < 0.5 M/ < 0.5 M/ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1 < 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1	cis-1,2-Dichloroethene	٧	1.2	Ì	v		<u>×</u>		ž	v	1.2	Ž	v	1.2	ž
\$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 1.4 \$\leq\$ 1.4 \$\leq\$ 1.4 \$\leq\$ 1.4 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 0.5 \$\leq\$ 1.1 \$\leq\$ 1.1 \$\leq\$ 1.1 \$\leq\$ 1.1 \$\leq\$ 1.1 \$\leq\$ 1.1 \$\leq\$ 1.1 \$\leq\$ 1.1	cis-1,3-Dichloropropene	V	0.5	•	v	0.5	V	0.5	v	v	0.5	-	v	0.5	
< 0.5 < 0.5 < 0.5 < 0.5 < 1.4 < 1.4 < 1.4 < 1.4 < 0.5 M/ < 0.5 M/ < 0.5 M/ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1 < 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1	Dibromochloromethane	٧	0.5	·	v	0.5	V	0.5	v	٧,	0.5	_	v	0.5	
< 1.4 < 1.4 < 1.4 < 1.4 < 0.5 M/ < 0.5 M/ < 0.5 M/ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1 < 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1	Methylene chloride	V	0.5	Ť	v	0.5	V	0.5	v	٧,	0.5	-	v	0.5	
 0.5 M/ < 0.5 M/ < 0.5 M/ < 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.5 0.8 0.5 0.9 0.5 0.1 M/ < 1 M/ < 1 0.1 M/ < 1.1 M/ < 1.1 	Tetrachloroethene	v	1.4	•	v	1.4	٧	1.4	<u>v</u>	v	1.4		v	1.4	
< 0.5	trans-1,2-Dichloroethene	V	0.5	Ì	v		<u>v</u>		ž	v	0.5	×	v	0.5	×
c < 1 M/ < 1 M/ < 1 M/ < 1 M/ < 1 M/ < 1 M/ < 1.1	trans-1,3-Dichloropropene	v	0.5	Ť	v	0.5	V	0.5		v	0.5	•	v	0.5	
< 1.1 M/ < 1.1 M/ < 1.1 M/ < 1.1	Trichloroethene	V	-	Ž	V	1 M	٧ <u>></u>	-	Ž	.,	_	×	v	-	×
	Vinyl chloride	v	1.1	×	v	1.1 M	<u>v</u>	1.1	Ž	v	1.1	×	v	Ξ	X

Jah Sample ID		C-HGRK-PRTM	PRTMWI01	<u>ت</u>	C-HGRK-PRTMWI01 C-HGRK-PRTMWI02	_	C-HGRK-PRTMWI03	C.H.	C-HGRK-PRTMWI05	\vdash	C-HGR	C-HGRK-PRTMW107	-	C-HGRK-PRTMWI09	C.H.C	C.HGRK PDTMWIII	400/111
Date Collected		8/76/98	61-66		L9808499-07		L9808499-14	-	L9808499-08		67	L9808499-05		L9808499-01		L9808499-15	2
1.1.1-Trichloroethane	1/011	,	200		96/07/9		8/56/98		8/26/98		~	8/26/98		8/25/98		8/76/08	,
1 2 2-Tetrachlorosthans		, ,		v	0.5	v	0.5	v	0.5	Ť		0.5	ľ	0.5		0 5 0 70	
1 1 2 Trichlorother				v	0.5	v	0.5	v	0.5			0.5		80	, ,	3 6	
1,1,2-111CHOLOGUIANE	ng/L	~ v		v	-	v	_	_	_				_	C: 7	v	C.O	
I, I-Dichloroethane	ng/L	< 0.5		v	0.5			, ,	- 2	<u> </u>	.,	- ;	V	_	v	_	
1, I-Dichloroethene	ug/L	v		_				v_	0.5	<u> </u>	.,	0.5	V	0.5	v	0.5	
1,2-Dichloroethane		20		/ \	7. 0	v	7:1	v		<u>×</u> E/		1.2	V	1.2	V	2	
1,2-Dichloropropane						<u>v</u>	0.5	v	0.5	V		0.5	V	0.5		5	
2. Butanana				v	0.5	v	0.5	v	0.5			0.5	_	•	, ,	9	
2-Dutailone	_	<u>0</u>		v	0	v	9	_	2				/	C.O.	v	0.5	
2-Hexanone	Ug/L	01 >		v	01	· V	2 2	<u> </u>	2 2	<u> </u>		0 :	V	01	v	<u>0</u>	
4-Methyl-2-pentanone	Ug/L	01 >		v	9		2 5	<u> </u>	2 9	<u>v</u>		2 :	V	0	v	0	
Acetone	ug/L	0 >	/Rc		2.6 E/Ic	<u></u>		v		v	.,	0	v	01	v	01	
Benzene	ug/L	< 0.5		_ \	0.5	<u>/ \</u>) / KC		2.4 F/Jcm	Ę			F/Jc	2.3 F/Jc	v	01	/Rc
Bromodichloromethane	ug/L	_		٠,	; -		· ·	v	0.5	v		0.5	٧	0.5	v	0.5	
Вготобот		< 1.2				v '	- :	v	- ;	<u>v</u>		-	V		v	_	
ane		! =		<u> </u>	7: -	v .	7.1	v	1.2	V		1.2	v	1.2	v	1.2	
Carbon disulfide		· ·		<u> </u>	<u>:</u> •	v -	= ,	v	I.I	<u>v</u>		1.1	v	Ξ	v	=	
Carbon tetrachloride		< 2.1		<u>_</u> \	. ر	v .	٠;	v	s /m	<u>v</u>		S	v	S	v	8	
Chlorobenzene	ug/L	< 0.5				<u> </u>	1.7	v	2.1	v		2.1	V	2.1	v	2.1	
Chloroethane	ug/L	- v		<u>_</u> \	; -	<u> </u>	C	v	0.5	<u>v</u>	_	0.5	<u> </u>	0.5	v	0.5	
Chloroform	ug/L	< 0.5		<u>_</u> v		<u> </u>		v	- ;	<u>v</u>		-	v	-	v	_	
Chloromethane	Ng/L			, ,	. .	<u>/ \</u>		v		V	_	0.5	V	0.5	v	0.5	
	U.S.	1.2	Ħ	<u>,</u>	2,6	v	2 3	v	1.3 /m	v		1.3	v	1.3	v	1.3	
cis-1,3-Dichloropropene	UEL	< 0.5		_		,	+ •	,	_	_		3		2.2		9.5	M/E
Dibromochloromethane	Ug/L <			, v	50	<u>/ \</u>		v [,]	0.5	v	_	0.5	v	0.5	v	0.5	
	WEAL A			, v	; -	<u> </u>	C: -	v ,	0.5	v	_	0.5	v	0.5	v	0.5	
m-,p-Xylene	ug/L <	_				<u> </u>		v		v		_	v	-	v	-	
e chloride	NB/L	0.5		, v	. 0	<u>/</u> \		v	- ;	v		_	V	_	v	_	
o-Xylene	ng/L			,		, ,		v	0.5	٧	_	0.5	v	0.5	v	0.5	
	ur/L <	-		<i>,</i> ,	-	v		v	=	<u> </u>	_	=	v	-:	v	=	
Tetrachloroethene	ug/L	7		/ \		v	- :	v	-	v		_	v	-	v	_	
		2		<i>,</i> ,	÷ :	v	4	v	4.	<u> </u>	_	4.	v	4.	v	4.	
trans-f,2-Dichloroethene	ug/L	0.4	ù	/ \	7. 0	v		v	1.2	<u> </u>	_	1.2	v	1.2	v	1.2	
	US/L		_	/ \			0.45 F/	v	0.5	V	ی	0.5	v	0.5		0.42	E/
_	UE/L			, ,	· -	v	c.n	v	0.5	v	S	.5	v	0.5	v	0.5	
	Van	. :	-	,		v	- :	v	-	٧		_	v	_		-	
					U.3/ F/	v	-		=	Y			v	=	v	. =	

Summary of Analytical Results Intermediate Monitoring Wells Cape Canaveral Air Station August 1998 Sampling

Lab Sample ID 1.9 Date Collected 1.1.1-Trichloroethane 1.1.2-Tetrachloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.3-Dichloroethane	L9808499-09		-		_	C-HGKK-PRIMWIIS		C-HGRK-PRIMWII6	5	C-HGKK-PKIMWII7	_	C-EGRE-TRIMMIS	2
131	00/20/0	L9808499-16		L9808499-10		L9808499-17		L9808499-11	F3	L9808499-06		L9808499-02	
	96/07/9	86/07/9	+	86/97/8		8/26/98	4	8/56/98		8/56/98		8/25/98	
	0.5	< 0.5	<u>v</u>	0.5	v	0.5	v	0.5	v	0.5	v	0.5	Γ
	0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5	v	0.5	
	_	- >	V	_	v	_	٧	_	v	_	v	_	
	0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5	v	0.5	
	1.2	< 1.2	V	1.2	v	1.2	V	1.2	v	1.2	v	1.2	
	0.5	< 0.5	V	0.5	v	0.5	v	0.5	v	0.5	v	0.5	
	0.5	< 0.5	v	0.5	ν	0.5	٧	0.5	v	0.5	· v	0.5	
2-Butanone	01	01 >	v	9	v	01	v	01		1.4 F/	· v	2	
2-Hexanone	01	01 >	v	01	v	01	v	01		9	v	<u> </u>	
4-Methyl-2-pentanone <	0	01 >	v	9	v	01	٧	10	٧	01	· v	0	
Acetone <	10 /Rc	2.5	F/Jc	2.3 F/Jc	V	10 /Rc	Ü	2.28 F/Jc		4 F/Jc		4.6	E/Ic
Benzene <	0.5	< 0.5	V	0.5	v	0.5	v			0.42 F/		0.31	Ē
Bromodichloromethane <	_	- >	v	_	v	_	٧	_	v		v	-	:
Bromoform <	1.2	< 1.2	V	1.2	v	1.2	v	1.2	v	1.2	V	1.2	
Bromomethane <	=	1.1	V	=	٧	=:	٧	=	v	=	· v	! =	-
Carbon disulfide <	2	> 5	V	5	v	S	٧	٠,	v	8		8	
Carbon tetrachloride <	2.1	< 2.1	v	2.1	v	2.1	v	2.1	v	2.1	v	2.1	_
9	0.5	< 0.5	V	0.5	v	0.5	٧	0.5	v	0.5	v	0.5	
ē		- v	V	_	v	_	٧	_	v	_	v	_	
Chloroform		< 0.5	V	0.5	v	0.5	٧	0.5	v	0.5	v	0.5	
		< 1.3	V	1.3	v	1.3	v	1.3	v	1.3	v	1.3	
cis-1,2-Dichloroethene	8:	6.1	ž	2.6		7.6 M/	_	67.5		1.6	,	9.1	
cis-1,3-Dichloropropene		< 0.5	V	0.5	٧	0.5	v	0.5	v	0.5	v	0.5	
omethane	0.5	< 0.5	V	0.5	v	0.5	٧	0.5	v	0.5	v	0.5	
	<u> </u>		V		v	_	v	-	v	_	v	_	
	-		V	_	v	-	٧	_	v	_	v	_	
e chloride	0.5	Ū	V	0.5	v	0.5	v	0.5	v	0.5	v	0.5	
o-Xylene	=	Ξ.	v	=	v	=	v	=	v		v	Ξ	
	<u> </u>		v	-	v	_	٧	_	v	_	v	_	
Tetrachloroethene	4.	_	V	4.1	v	4.	٧	4.1	v	4.	v	4.1	
Loluene		1.2	V	1.2	v	1.2	v	1.2		0.27 F/		0.5	F
trans-1,2-Dichloroethene	0.5	1.4	v	0.5		8.		4.95	v	0.5	v	0.5	
trans-1,3-Dichloropropene <	0.5		V	0.5	v	0.5	v	0.5	v	0.5	v	0.5	
Trichloroethene <	_	0.51	F/ <	_		0.39 F/	v	_	v	_	v		
Vinyl chloride <	1.1	.5		5.3		1.6		47.9		5.5		3.4	

Sample ID		C-HGRK-PRTMWI19		C-HGRK-PRTMW120	1W120
Lab Sample ID		L9808499-18		L9808499-12	2
Date Collected		8/56/98		8/26/98	
1,1,1-Trichloroethane	٧	0.5	v	0.5	
1,1,2,2-Tetrachloroethane	v	0.5	v	0.5	
1,1,2-Trichloroethane	٧	_	v	_	
1,1-Dichloroethane	v	0.5	v	0.5	
1,1-Dichloroethene	v	1.2	v	1.2	
1.2-Dichloroethane	٧	0.5	v	0.5	
1,2-Dichloropropane	ν	0.5	٧	0.5	
2-Butanone	v	10	v	01	
2-Hexanone	٧	01	v	10	
4-Methyl-2-pentanone	٧	01	v	01	
Acetone		2.3 F/Jc	v	01	/Rc
Benzene	v	0.5		0.49	F
Bromodichloromethane	v	_	v	_	
Вготобот	v	1.2	v	1.2	
Bromomethane	٧	Ξ	v	Ξ	
Carbon disulfide	٧	5	v	S	
Carbon tetrachloride	v	2.1	v	2.1	
Chlorobenzene	v	0.5	v	0.5	
Chloroethane	v	_	v	_	
Chloroform	v	0.5	v	0.5	
Chloromethane	v	1.3	v	1.3	
cis-1,2-Dichloroethene		6.2 M/		0.64	F
cis-1,3-Dichloropropene	v	0.5	v	0.5	
Dibromochloromethane	v	0.5	v	0.5	
Ethylbenzene	v	_	v	_	
m-,p-Xylene	٧	_	v	-	
Methylene chloride	v	0.5	v	0.5	
o-Xylene	٧		v	=	
Styrene	v	_	v	-	
Tetrachloroethene	v	1.4	v	1.4	
Toluene	v	1.2		0.64	F/
trans-1,2-Dichloroethene		1.3	v	0.5	
trans-1,3-Dichloropropene	v	0.5	٧	0.5	
Trichloroethene	v	_	v	-	
Vinyl chloride		4.9		Ξ	Ę
			ĺ		

Summary of Analytical Results Deep Monitoring Wells Cape Canaveral Air Station August 1998 Sampling

Sample ID		C-HGR	RK-PRTMWD01	E-S	C-HGRK-PRTMWD01 C-HGRK-PRTMWD02 C-HGRK-PRTMWD03 C-HGRK-PRTMWD03-a C-HGRK-PRTMWD05	CH	GRK-PRTMWD	03 C	-HGRK-PRTMW	D03-a	C-HG	RK-PRTMWD		C-HGRK-PRTMWD07	_	C-HGRK-PRTMWD09
Lab Sample ID		67	L9808499-30		L9808499-23		L9808499-31		L9808499-32		_	L9808499-24		L9808499-21		L9808499-19
Date Collected			8/27/98		8/56/98		8/21/98	-	8/21/98			8/56/98		8/26/98		8/26/98
1,1,1-Trichloroethane	ug/L	v	20	v	50	v	50	_	. 50		v	. 20	٧	20	v	50
1,1,2,2-Tetrachloroethane	ng/L	v	20	v	20	v	20		. 50		v	50	V	20	v	50
1,1,2-Trichloroethane	ng/L	v	001	v	001	v	901		001		v	001	V	100	v	100
1,1-Dichloroethane	ug/L	v	20	v	50	v	20		50		v	20	V	20	v	50
I, I-Dichloroethene	ug/L		173		27 F/		231		240			50 F	F/	120		33
1,2-Dichloroethane	ng/L	v	20	v	20	v	20		. 20		v	50	V	.50	v	50
1,2-Dichloropropane	ug/L	v	50	v	20	v	20		50		v	50		50	V	50
2-Butanone	ug/L	v	1000	v	1000	٧	1000	<u> </u>	1000		v	1000		1000	٧	1000
2-Hexanone	ng/L	v	1000	v	1000	v	1000	<u> </u>	1000		v	1000		1000	٧	1000
4-Methyl-2-pentanone	ug/L	v	1000	v	1000	v	1000		0001		v	1000		0001	v	1000
Acetone	ug/L	v	1000 /Rc	v	1000 /Rc	v	1000 /R	/Rc / <	0001	/Rc	v	1000	/Rc <	1000 /Rc		89
Benzene	ug/L	v	50	v	20	v	50		. 20		v	20		20	٧	20
Bromodichloromethane	ug/L	v		v	001	v	001		100		v	001	<u> </u>	100	٧	100
Bromoform	ug/L	v	120 RV	v	120	v	120 R	<u>∨</u> ≥	120	2	v	120	V	120	٧	120
Bromomethane	ug/L	v	110	v	110	٧	011		110		v	110	V	110	v	110
Carbon disulfide	ug/L	v	200	v	200	v	200		200		v	200	V	200	٧	200
Carbon tetrachloride		v	210	v	210	v	210		210	-	v	210	V	210	v	210
Chlorobenzene		v	50	v	50	v	20		. 20		v	50	٧	20	٧	50
Chloroethane		v	90	v	100	v	100		001		v	001	V	001	v	100
Chloroform		v	20	v	20	v	20	<u>v</u>	20		v	20	v	20	٧	20
Chloromethane	_	v	130	v		v	130		130		v	130	<u> </u>	130	٧	130
cis-1,2-Dichloroethene	ng/L		00668		41000 M/		121000		120000			39000 N	×	15000 M/		20000
cis-1,3-Dichloropropene		v	20	v	20	v	20	v	20		v	50	V	20	v	50
Dibromochloromethane	ug/L	v	20	v	20	v	20	<u></u>	20		v	50	V	20	V	50
Ethylbenzene		v	001	v	00	v	001	<u> </u>	<u>80</u>		v	001	V	100	٧	100
m-,p-Xylene		v	00	v	200	v	001	<u>v</u>	001		v	001	V	001	v	100
Methylene chloride		v	20	v	20	v	20	<u> </u>	20		ν	20		20	v	20
o-Xylene		v	011	v	0=	v	110		011		v	110	V	110	٧	110
Styrene		v	001	v	001	v	001	<u>v</u>	001		v	100	٧	100	v	100
Tetrachloroethene		v	140	v	140	v	140	<u> </u>	140		v	140	V	140	v	140
Toluene	_	v	120	v	120	v	120	<u> </u>	120		v	120	<u> </u>	120	v	120
trans-1,2-Dichloroethene	ng/L		1470		790		1750		1800			750		220		770
trans-1,3-Dichloropropene		V	50	v	20	v	20	V	20		v	50	V	20	v	20
Trichloroethene		v	100	v	001	v	001	<u> </u>	001		v	001	V	001	٧	001
Vinyl chloride	ng/L		10000		00016		25600	\dashv	00009			82000		00089	_	71000

5 of 22

Summary of Analytical Results Deep Monitoring Wells Cape Canaveral Air Station August 1998 Sampling

Sample ID	ပ် ၁ ရ	Sample ID C-HGRK-PRTMWDII		C-HGRK-PRTMWD12	MWDIZ	J.	C-HGRK-PRTMWD13		C-HGRK-PRTMWD13-a		C-HGRK-PRTMWD14		C-HGRK-PRTMWD15	VDIS
Date Collected	7	8/77/08	_	L9808499-25	3		L9808499-34		L9808499-35		L9808499-26		L9808499-36	
1 1 Triphlomosthan	-	0/7/1/20	\dagger	0/7/1/90			8/17/8	4	8/21/98	_	8/21/98	_	8/27/98	
1,1,1-1 remore than e	v	20	<u> </u>	20		v	20	v	20	<u> </u>	50	ť	05	Γ
1,1,2,2-1 etrachioroethane	v	20	<u> </u>	50		v	20	<u> </u>	20	٧	20		\$	
1,1,2-Trichloroethane	v	<u>8</u>	<u> </u>	001		v	100	v	001	· V	2		3 2	
1,1-Dichloroethane	v	20	<u></u>	50		v	20	v	20	V	205		5	
1,1-Dichloroethene		316	<u> </u>	: 120			318	_	303		38 E/	<u></u>	2 5	
1.2-Dichloroethane	v	20		50		v	20	V	05	_	9.5		£ 5	
1,2-Dichloropropane	v	20	<u></u>	50		v	20		2 92		9 5		DC \$	
2-Butanone	٧	1000		1000		v	1000		000	/ \	0001	<u> </u>	000	
2-Hexanone	v	1000	<u> </u>	1000		v	0001	<u> </u>	9001	/ \	0001		0001	
4-Methyl-2-pentanone	٧	1000		0001		v	1000		0001	/ \	9901	v '	0001	
Acetone	٧	1000	/Rc/	1000	/Rc	· v	1000 /Rc	/ V	0001	/ \		v '	000	
Benzene	٧	20		50		v				<u> </u>	200 / 180	<u>v</u>	000	/Kc
Bromodichloromethane	V	001		100		· v	2 2	′ \	2 2	<u> </u>	2. 5	<u>v</u>	000	
Вготобогт	v	120	<u>~</u> ≈	120		· v	120 B/	<u>_</u>	130	/ \	36	<u> </u>	200	-
Bromomethane	٧	011		011		· v				<u> </u>	071	v '	071	⊋
Carbon disulfide	v	200		200		v	90	<u> </u>	900	<u> </u>	0.2	<u>v</u>	0110	
Carbon tetrachloride	ν	210		210		′ V	210	<u></u>	010	v '	000	v	200	
Chlorobenzene	v	20		20		, _v	9	<u> </u>	0.5	v '	017	<u>v</u>	210	
Chloroethane	v	8		2 2		, ,	2 5		200	v	06.5	<u> </u>	20	
Chloroform	v	20		9		/ \	3 5	/ \	3 5	V	8 5	<u>v</u>	<u>00</u>	
Chloromethane	v		<u>~</u>	130		, _\	130	<u> </u>		V	2 5	<u> </u>	08	_
cis-1,2-Dichloroethene			_	23000	ž	,		/	130 K	v		<u>v</u>	130	2
cis-1,3-Dichloropropene	v	50		50		v	50	V	50		550X0 M/		00896	
Dibromochloromethane	v	20		20		v	20	, v	? ?	<u>/ \</u>	e S	v '	00.00	-
Ethylbenzene	v	100	V	001		v	100	· v	200	<u> </u>	3 5	<u> </u>		
mp-Xylene	v	8	V	001		v	100	v	001	v	200	_		ú
Methylene chloride	v	20	V	20		v	50	v	20	<u> </u>	5			=
o-Xylene	v	011	<u></u>	110		v	110	v	110	<u> </u>	011		2.	
Styrene	v	00	V	001		v	001	v	100	v	90			
l etrachioroethene	v	140	v	140		v	140	v	140	v	140			
toluene	v	120	v	120		v	120	v	120	٧	120	<u> </u>		
trans-1,2-Dichloroethene		1790	_	200			1970		1870		800		_	
trans-1,3-Dichloropropene	v	20	٧	20		v	20	v	50	٧	50			
View of the state	v	001	<u> </u>	00		v	00	v	901	٧	100			
Vinyi chionde		30500	┥	00089			25100	ightert	23600		64000	_	34700	

Summary of Analytical Results Deep Monitoring Wells Cape Canaveral Air Station August 1998 Sampling

		C-HGRK-PRTMWD16 L9808499-28		C-HGI	C-HGRK-PRTMWD17 L9808499-22		C-HGRK-PRTMWD18 L9808499-20	TMWD18		C-HGRK-PRTMWD19 L9808499-38		C-HGRK-PRTMWD19-a L9808499-39	TMWD1	9-a	C-HGRK-PRTMWD20 L9808499-29	AWD20 29
Date Collected		8/21/98	1		8/56/98		8/26/98	86		8/22/8		8/27/98	86		8/27/98	
1,1,1-Trichloroethane	v	50	Ť	v	50	<u> </u>	< 50		v	50	Ė	< 50		٧	50	
1,1,2,2-Tetrachloroethane	v	20	<u> </u>	v	20		< 50		v	20	Ť	> 50		٧	20	
1,1,2-Trichloroethane	v	001	<u> </u>	v	100	v	> 100		v	001	_	> 100		V	100	
1,1-Dichloroethane	v	20	·	v	50	٧	> 50		v	20	Ť	> 50		V	20	
1,1-Dichloroethene	v	120			39	F	< 120			280		321		V	120	
1,2-Dichloroethane	v	20	<u> </u>	v	50		< 50		v	50	<u> </u>	< 50		V	20	
1,2-Dichloropropane	v	20		v	50		20		v	50		> 50		V	20	
2-Butanone	v	1000		v	1000		0001		v	1000		0001	_	V	1000	
2-Hexanone	v	0001		v	0001	·	2 1000		v	0001		0001 >	_	V	1000	
4-Methyl-2-pentanone	v	1000	·	v	1000		> 1000		v	1000		> 1000	_	V	1000	
Acetone	v	1000	/Rc_	v	1000	Rc.	> 1000	/Rc	v	/ 0001	/Rc	> 1000		/Rc <	1000	/Rc
Benzene	v	20	<u> </u>	v	50	v	< 50		v	50		> 50		٧	50	
Bromodichloromethane	v	001		v	001	<u>v</u>	200		v	001		> 100		V	100	
Bromoform	v	120 F	<u>~</u> ≥	v	120		< 120		v	120	≥	< 120		≥	120	2
Bromomethane	v	110		v	110		011		v	011		> 110		V	110	
Carbon disulfide	v	200	<u> </u>	v	200		> 500		v	200		< 500		V	200	
Carbon tetrachloride	v	210	<u> </u>	v	210	<u></u>	< 210		v	210		< 210		V	210	
9	v	20	Ť	v	50		> 50		v	20	•	> 50		V	20	
2	v	001	<u> </u>	v	001		001		v	<u>8</u>	·	v 100		V	100	
Chloroform	v	20	· <u>·</u>	v	50	<u> </u>	< 50		v	20	_	> 50		V	20	
Chloromethane	v	130		v	130	v	< 130		v	130	8	< 130		<u>∨</u>	130	
cis-1,2-Dichloroethene		11800 N	È		40000 N	Ì	17000	¥		145000	_	146000		¥	14000	Ž
cis-1,3-Dichloropropene	v	20	•	v	20	<u> </u>	< 50		v	20		< 50		٧	20	
Dibromochloromethane	v	20		v	20	<u> </u>	< 50		v	20		> 50		V	20	
Ethylbenzene	v	90	·	v	00		001		v	<u>00</u>	<u> </u>	> 100		V	001	
	v	001	•	v	<u>8</u>	<u> </u>	001		v	001	Ť	v 100		V	901	
e chloride	v	20	<u> </u>	v	50		> 20		v	20		> 50		V	50	
	v	110	· ·	v	011		0110		v	110	÷	0110		V	110	
	v	00	V	v	<u>8</u>	·	001		v	100	<u> </u>	001		V	100	
proethene	v	140	<u> </u>	v	140	<u> </u>	c 140		v	140	<u>.</u>	< 140		V	140	
	v	120	*	v	120	<u> </u>			v	120	Ť	< 120		V	120	
trans-1,2-Dichloroethene		630			1300		066			2260		2440	_		790	
ropropene	v	20	<u> </u>	v	50	<u>v</u>			v	20	Ť	< 50		V	20	
· ·	v	001	<u> </u>	v	100	<u>v</u>			v	100	<u></u>	001 >		V	001	
Vinyl chloride		00986	-	_	120000		1000	-		33400		24600	-		10000	

Summary of Analytical Test Results QA/QC Samples Cape Canaveral Air Station August 1998 Sampling

Sample ID		C-HGRK-PRTAMBK07 C-HGRK-PRTAMBK08 C-HGRK-PRTEQBK07 C-HGRK-PRTEQBK07 C-HGRK-PRTTPBK05	1BK07	C-HGRK-PR	TAMBK08	C-HC	GRK-PRTEQ	BK07	C-HGI	K-PRTEQBI	K07	-HGRK	PRTTPBK05		C-HGRK-PRTTPBK06	PBK06
Lab Sample ID		L9808499-03	3	L9808499-27	19-27		L9808499-04		<u> </u>	L9808499-37		F 1980	L9808499-40	_	L9808499-41	=
Date Collected		8/26/98		8/21/98	86		8/56/98			8/27/98		/8	8/27/98		8/27/98	
1,1,1-Trichloroethane	ug/L <	0.5	v	< 0.5		v	0.5		V	0.5	ľ		0.5	v	0.5	
1,1,2,2-Tetrachloroethane	ng/L <	0.5	<u></u>	< 0.5		v	0.5		v	0.5	<u> </u>		0.5	v	0.5	
1,1,2-Trichloroethane	ug/L <	-		-		v			v	_	<u> </u>		_	v	_	
1,1-Dichloroethane	ng/L <	0.5		< 0.5		v	0.5		v	0.5			0.5	v	0.5	
1,1-Dichloroethene	ng/L <	1.2	<u> </u>	c 1.2		v	1.2		v	1.2		_	1.2	v	1.2	
1,2-Dichloroethane	ug/L <	0.5		< 0.5		v	0.5		v	0.5	<u> </u>		0.5	V	0.5	
1,2-Dichloropropane	ng/L <	0.5		< 0.5		v	0.5		v	0.5			0.5	٧	0.5	
2-Butanone	ng/L <	10		01		v	10			1.35	<u>√</u>		01	v	01	
2-Hexanone	ng/L <	10		01		v	01		v	10			01	v	10	
4-Methyl-2-pentanone	ng/L <	10		01		v	10		v	01			10	v	01	
Acetone	ug/L	3.4	F/Jc	7.5	F/Jc		3.7	F/Jc		24.8	/Jc <		10 /Rc	V	10	/Rc
Benzene	ng/L <	0.5	v	< 0.5		v	0.5		v	0.5			0.5	v	0.5	
Bromodichloromethane	ng/L <	_	<u>v</u>	-		v	-		v	_			_	v	_	
Bromoform	ug/L <	1.2		1.2	R	v	1.2		v	1.2			1.2	v	1.2	æ
Bromomethane	> J/an	=	v	_		v			v	-			-:	v	=	
Carbon disulfide	ng/L <	S	v	, S		v	S		v	5			2	v	ν,	
Carbon tetrachloride	ug/L <	2.1		2.1		v	2.1		v	2.1			2.1	v	2.1	
Chlorobenzene	ng/L <	0.5		< 0.5		v	0.5		v	0.5			0.5	v	0.5	
Chloroethane	ng/L <	-		-		v	-		v	_			_	v	_	
Chloroform	ng/L <	0.5	v			v	0.5		v	0.5			0.5	v	0.5	
Chloromethane	ng/L <	<u>1.3</u>	v			v	1.3		v	1.3			<u></u>	v	1.3	2
cis-1,2-Dichloroethene	ng/L <	1.2	v			v	1.2		v	1.2			1.2		0.47	F/
cis-1,3-Dichloropropene	ng/L <	0.5	<u> </u>			v	0.5		v	0.5			0.5	v	0.5	
Dibromochloromethane	ng/L <	0.5	<u>v</u>	د 0.5		v	0.5		v	0.5	v		0.5	v	0.5	
Ethylbenzene	ng/L <	_	v	-		v			v	_	<u></u>		-	v	-	
m-,p-Xylene	ng/L <	_	<u>v</u>	-		v			v	_			_	v	-	
Methylene chloride	ng/L <	0.5	<u> </u>	د 0.5		v	0.5		v	0.5			0.5	v	0.5	
o-Xylene	ng/L	Ξ	v	=		v	=		v	Ξ		_	_	v	Ξ	
Styrene	~ 7/8n	_	v			v	_		v	_			_	v	-	
Tetrachloroethene	ng/L <	4.	<u> </u>	-		v	4.1		v	4.1		_	4.	v	4.1	
Toluene	~ 7/8n	1.2	<u>v</u>			v	1.2		v	1.2			2	v	1.2	
trans-1,2-Dichloroethene	ng/L <	0.5	<u>v</u>			v	0.5		v	0.5	<u> </u>		0.5	v	0.5	
trans-1,3-Dichloropropene	ng/L <	0.5	<u> </u>	c 0.5		v	0.5		v	0.5			.5	v	0.5	
Trichloroethene	ng/L <	-	V	-		v	_		v	-			_	v		
Vinyl chloride	ng/L <		Ť	=		٧	1.1		v	-:			<u>-</u> :	v	Ξ	

Summary of Analytical Test Results
Deep Monitoring Wells
Cape Canaveral Air Station
November 1998 Sampling

Sample ID		C-HGRK-PRTM	WD01	C-HGRK-PRT	MWD02 C	HGRK-PRTN	4WD03	C-HGRK-PRTMWD01 C-HGRK-PRTMWD02 C-HGRK-PRTMWD03 C-HGRK-PRTMWD03-a	VD03-a	C-HGRK-PRTMWD05 C-HGRK-PRTMWD07 C-HGRK-PRTMWIM	WD05	C-HGRK-PR	TMWD07	C-HG	RK-PRTM	WD09
Date Collected		11/18/98		11/18/98	a c	11/18/98		11/18/98		11/18/98		11/18/98	86/		11/18/08	
Lab Sample ID		L9811380-14	4	L9811380-	-05	L9811380-15	15	L9811380-16	9	L9811380-06	92	L9811380-04	80-0 4	_	1 9811380-02	,
Bromodichloromethane	ng/L <	001		> 100	~	100		100	Ť	100	ľ	100			100	
Carbon tetrachloride	> J/gn	< 210	_	< 210		210		< 210		< 210		210		<u>/ \</u>	310	
Chlorobenzene	Ng/L	< 50		< 50		20		> 20		9		, .		<u>/ \</u>	217	
Chloroethane	ng/L <	100		> 100		100		100		2 2		2 2		/ \	3 5	
Chloroform	ng/L <		<u> </u>	< 50		50		> 50		> 20		205		/ V	3 5	
Chloromethane	Ng/L <			< 130		130		< 130		< 130		130		, v	130	
Dibromochloromethane	ng/L <	> 50		< 50		20		> 50		50		20		· v	£ 5	
	ng/L <	< 50		> 50	v	50		> 50		50		90		′ \	Ş Ş	
1,2-Dichloroethane	ng/L <	20		د 50		50		> 20		05		905		<u> </u>	20	
1,1-Dichloroethene	ngL	142		110		212		213		105		120		,		ù
cis-1,2-Dichloroethene	ng/L	00869	KFT	49100	/KFT	103000	KFT	105000	KFF		KFT /	086	KEVT	,		7.7
trans-1,2-Dichloroethene	ng/L	1160		1160		1580		1620				261		7		-
1,2-Dichloropropane	ng/L <	20	v	50		20		> 50		20		205		_		
cis-1,3-Dichloropropene	ng/L	50	<u>v</u>	> 50	V	50		> 50		205	· v	9.5		<u>/ \</u>	8 5	
ropene	ng/L	20	v	20		20	<u> </u>	> 50		20		20		/ V	8 6	
	ng/L <	: 50		32.9	F/LT <	50		> 50		50.		20		′ v	S 5	_
oethane	ng/L <	50	v	20	V	20	•	> 50		50		20		, v	200	
Je J	ng/L <	140	V	140	V	140	•	< 140		: 140		140		v	140	
	ng/L <	100	V	100	<u> </u>	100		> 100		100		100		′ \	2 2	
	ng/L	50	V	50	V	50		> 50		20		۶		, v	3 5	
1,1,2-Trichloroethane	> J/gn	100		100		100		> 100		100		2		, \	3 2	
Vinyl chloride	ng/L	70900	ЖT	71400	/KT	67400	/KT	70900	/KT	_	/KT	43800	/KT	,		/KT

Summary of Analytical Test Results Deep Monitoring Wells Cape Canaveral Air Station November 1998 Sampling

Sample ID	Г	C-HGRK-PRT	MWD11	C-HC	RK-PRTMWD	12 C	C-HGRK-PRTMWD11 C-HGRK-PRTMWD12 C-HGRK-PRTMWD13	7D13	C-HG	C-HGRK-PRTMWD13-a	113-a	C.HC	C-HGRK-PRTMWD14	\vdash	C.HGRK.PRTMWD15	WDIS
Date Collected		11/18/98	8		11/18/98		11/19/98			11/19/98			11/18/98		11/19/98	
Lab Sample ID		L9811380-17	117		L9811380-09		L9811380-20		•	L9811380-21			L9811380-11		1.9811380-22	22
Bromodichloromethane	> 7/8n	< 100		v	1000	×	100		v	100		V	100	ľ	100	
Carbon tetrachloride	ng/r	< 210		v	2100	V	210		v	210		v	210		210	
Chlorobenzene	ng/L <	< 50		v	200	V	50		V	50		v	50		905	
Chloroethane	ng/L <	> 100		v	1000	V	100		v	100		· v	001	· V	001	
Chloroform	ng/L <	< 50		v	500	V	50		v	50		· v	20	· v	05	
Chloromethane	ng/L <	< 130		v	1300	v	130		v	130		v	130		130	
Dibromochloromethane	ng/L <	< 50		v	200	v	20		v	50		v	50		205	
1,1-Dichloroethane	ng/L <	< 50		v	200		360		v	50		v	50		205	
1,2-Dichloroethane	ng/L <	> 50		v	200	v	20	Ì	v	50	×	· v	50		9	×
1,1-Dichloroethene	ng/L	294		v	1200	V	120			335			24.5	Æ	245	
	ugL	134000	KFT			LFT.	142000	ЖT		144000	ЖT		19100	/KFT	101000	/KT
ene	ngT	1870			644 I	F/	2020			1910	•		710		1700	
	nøL	< 50		v	200	v	50		v	50	-	v	,20		50	
	ng/L <	< 50		v	200	V	20		٧	50		v	50		20	
ropene	ng/L <	< 50		v	200	v	50		v	50		v	50		205	
Methylene chloride	ng/L	20		v	200	V	20		v	50		v	50		20	
1,1,2,2-Tetrachloroethane	ng/L	20		v	200	V	50		v	50		v	50		05	
2	ng/L <	140		v	1400	v	140		v	140	_	v	140	V	140	
	ng/L	100		v	1000		40.4	¥		39.4	Ž	v	100		100	×
	ng/L <	20		v	200	V	50		v	50		v	20	v	50	
ethane	ng/L	100		v	1000	v	100		v	100		v	100	v	100	
Vinyl chloride	ng/L	63000	ÆТ		95200 AL	ΛT	35100	ЖT		33100	/KT		47000	/KT	71400	/KT

Summary of Analytical Test Results Deep Monitoring Wells Cape Canaveral Air Station November 1998 Sampling

Or aldure		C-HGRK-PRTMWD16	MWD16		C-HGRK-PRTMWD17	_	C-HGRK-PRTMWD18 C-HGRK-PRTMWD19	VD18	C-HGR	K-PRTMWI		C-HGRK-PRTMWD19-a C-HGRK-PRTMWD20	19-a	C-HGRK-PRT	MWD20
Date Collected		11/18/98	8		11/18/98		11/18/98		1	86/61/11		11/19/98		11/18/98	86
Lab Sample ID		L9811380-17	-12	L	L9811380-08		L9811380-03	_	76 7	L9811380-23		L9811380-24		L9811380-13	0-13
Bromodichloromethane	ng/L	< 100		v	100	V	100	Ė	V	100	ľ	100	Ť	100	
Carbon tetrachloride	ng/L <	< 210	⊋	v	210	v	210	•	v	210		210		< 210	
Chlorobenzene	ng/L <	< 50		v	50	V	50	•	v	50	V	50		> 50	
Chloroethane	ng/L <	> 100		v	100	v	100		v	100	V	100		100	
Chloroform	ng/L <	< 50		v	50	v	50	•	v	20	V	50		> 50	
Chloromethane	ng/L <	< 130		v	130	v	130		v	130	V	130		< 130	
Dibromochloromethane	ng/L <	< 50		v	50	v	50		v	50	V	50		< 50	
1,1-Dichloroethane	ng/L <	> 50		v	50	v	50	•	v	50	v	50		> 50	
1,2-Dichloroethane	ng/L <	< 50		v	50	v	50		v	50	× ×	20	·	< 50	
1,1-Dichloroethene	ng/L <	< 120		v	120	v	120			340	-	338		222	
cis-1,2-Dichloroethene	ng/L	4450	KFT		3270 /KFT	Ŀ	12100	/KFT	-	37000 /	/KT	0	M/KT	107000	KFT
trans-1,2-Dichloroethene	ng/L	469			645		871		. •	2380		2380		1860	
1,2-Dichloropropane	ng/L <	> 50		v	50	v	50		v	50	v	50		50	
cis-1,3-Dichloropropene	ng/L <	> 50		v	50	v	50		v	20		20		50	
trans-1,3-Dichloropropene	ng/L	< 50		v	50	v	50		v	50		20		50	
Methylene chloride	ng/L	< 50		v	50		25.7	FÆT	v	50		50		50	
1,1,2,2-Tetrachloroethane	ng/L <	< 50		v	50	v	50		v	50	v	20	v	50	
Tetrachloroethene	ng/L <	< 140		v	140	v	140		v	140	V	140		140	
Trichloroethene	ng/L <	001		v	100	V	100		v	100	× ×	100		100	
1,1,1-Trichloroethane	ng/L <	< 50		v	50	v	50	<u>,</u>	v	50	V	50	<u> </u>	50	
1,1,2-Trichloroethane	ng/L <	100		v	100	v	100		v	100		100		100	
Vinyl chloride	ng/L	86100	/KT	~	86000 /KT		89300	/KT	6	34700 /	/KT	36400	ЖT	83400	/KT

Summary of Analytical Results QA/QC Samples Cape Canaveral Air Station November 1998

Sample ID		C-HGRK-PRTAMBK09 C-HGRK-PRTAMBK10 C-HGRK-PRTEOBK07 C-HGRK-PRTEOBK08 C-HGRK-PRTTPRK07	\ddot{c}	IGRK-PRTAMBK10	C	HGRK-PRTEOBKO	7 C	HGRK-PRTEOBK	C 80	HGRK-PRTIPR	202
Date Collected		11/18/98		11/19/98		11/18/98		11/19/98		11/18/98	
Lab Sample ID		L9811380-01		L9811380-18		L9811380-07		L9811380-19		L9811380-10	
Bromodichloromethane	ngL	< 1.0	v	1.0	v	1.0	٧	1.0	<u> </u>	1.0	Γ
Carbon tetrachloride	ng/L	v	v	2.1	٧	2.1	٧	2.1		2.1	
Chlorobenzene	ugL	< 0.50	٧	0.50	٧	0.50	v	0.50	V	0.50	_
Chloroethane	ng/L	0.1	v	1.0	٧	1.0		1.0	v	1.0	
Chloroform	ng/L <	5	v	0.50	٧	0.50	V	0.50		0.50	
Chloromethane	ng/L <		v	1.3	v	1.3	V	1.3	v	1.3	
Dibromochloromethane	> J/gn		v	0.50	v	0.50	V	0.50	<u> </u>	0.50	
1,1-Dichloroethane	ng/L <		v	0.50	v	0.50	٧	0.50		0.50	
1,2-Dichloroethane	ng/L <	_	v	0.50 M/	v	0.50	V		× ×	0.50	
1,1-Dichloroethene	ng/L <	< 1.2	v	1.2	٧	1.2	V	1.2		1.2	
cis-1,2-Dichloroethene	ng/L	0.720 F/ <	v	1.2			F/	1.2		5.83	
trans-1,2-Dichloroethene	ng/L <		v	0.50	v	0.50	٧	0.50	v	0.50	
1,2-Dichloropropane	ng/L <		v	0.50	v	0.50	٧	0.50	V	0.50	
cis-1,3-Dichloropropene	ng/L <		v	0.50	v	0.50	٧	0.50	V	0.50	_
trans-1,3-Dichloropropene	ng/L <		v	0.50	٧	0.50	V	0.50	V	0.50	
Methylene chloride	ng/L <		v	0.50	v	0.50	٧	0.50		0.290	Ä
1,1,2,2-Tetrachloroethane	Ng/L	< 0.50	v	0.50	٧	0.50	٧	0.50	V	0.50	
Tetrachloroethene	ng/L <		v	1.4	٧	4:1	٧	1.4	V	1.4	
Trichloroethene	ng/L <		v	1.0 M/	V	1.0	٧	1.0	× ×	1.0	
1,1,1-Trichloroethane	ng/L <	v	v	0.50	V	0.50	V	0.50	V	0.50	
1,1,2-Trichloroethane	ng/L	0.1	v	1.0	v	1.0	٧	1.0	V	1.0	
Vinyl chloride	ng/L <	< 1.1	v	1.1	V	==	٧	1.1		45.8	
							l		l		1

Data Qualifier Explanations Cape Canaveral Air Station 1998 Sampling Events

Modifier	Description
<	Indicates not detected at the reporting limit indicated. If "J" flags are utilized in the reporting, the "<"
	indicates not detected down to 10% of the reporting limit indicated.
,	Separates the analytical laboratory data qualifier from the Rust data qualifier (ex., Kemron/Rust).
Kemron Data	Flag Descriptions
D	The analyte was quantified at a secondary dilution factor.
F	Present below nominal reporting limit (AFCEE only).
I	Semi-quantitative result, out of instrument calibration range.
M	A matrix effect was present.
R	The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
x	m-Xylene and p-Xylene are unresolvable compounds.
Bust Data Ela	a Descriptions
A A	g Descriptions Field duplicate RPDs exceeded established criteria.
	•
F C	Laboratory control recovery below established criteria.
I	Detected in the associated field (i.e., ambient) blank.
1	Surrogate recovery above the upper limit. Estimated value.
K	
K	Common laboratory artifact detected at a concentration greater than 10X that detected in the associated field or laboratory blanks, or some other artifact detected at a concentration greater than 5X that detected
	in the associated field or laboratory blanks. Professional judgment must be used to determine if the detect
	is site-related.
L	Common laboratory artifact detected at less than 10X that detected in the associated field or laboratory
	blanks, or some other artifact detected at less than 5X that detected in the associated field or laboratory
	blanks. Not considered site-related per EPA data evaluation guidance.
m	Matrix spike sample percent recovery below established limits.
R	The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
T	Detected in the associated trip blank.
v	Detected in the associated trip blank. Detected in the associated equipment rinsate blank.
	Detected in the associated equipment finsate blank.

APPENDIX D CALCULATIONS

GROUNDWATER PUMP AND TREAT SYSTEM ASSUMPTIONS AND CALCULATIONS

RESULTS OF WELFLO MODEL.

The analytical model developed by William Walton, called WELFLO, was used to estimate a single-well drawdown. WELFLO calculates the drawdown for each grid cell specified in the input. A grid area 200 feet wide was specified with each grid cell 10-foot by 10-foot each. The drawdown was output for each of these cells, as influenced by the pumping well. Drawdown is derived from Theis equation calculations. These are not capture-zone calculations, but we assumed that the capture zone extends out to where one-half foot of the pumping-well drawdown remains.

Other assumptions with the use of this analytical model:

- No recharge is added; however, since most of the immediate area is paved, very little recharge reaches the area;
- One hydraulic conductivity value is input; therefore, a homogenized hydraulic conductivity value was used. A weighted average K was estimated using the K values for the specified depth ranges in Table 3.2 of the 11/96 Hydrogeologic Investigation of the Industrial Area (Parsons). Also, this K-value was applied to the entire thickness of the aquifer.
- A sensitivity analysis was performed on the K-value by calculating K-values five times and one fifth that estimated. All three values were used for the WELFLO calculations.
- There is **no ground-water gradient** included. However, since the gradient is so flat at this location, it should not have a significant detrimental influence.

The WELFLO analytical model was run using a range of hydraulic conductivity values (see attached spreadsheet). At a flow rate of 10 gpm, the drawdown at either end of wall length is predicted to be between 0.5 and 0.7 feet with the average hydraulic conductivity (K value). If the K value is greater than average, the results would be less than 0.5 feet.

At 14 gpm, the least amount of drawdown calculated at the ends of the wall lengths was 0.5 feet (using maximum K value and 20x the storage coefficient). This fits our criteria for required drawdown.

This result was then checked using capture-zone width calculations at the average K value and 14 gpm. The result was a 103-foot wide capture zone.

HANGAR K WELFLO RESULTS

14 gpm		Average K	eК	Minimum k	X	Maximum K		low Zone K
Aquifer Thickness	(feet)	31	31	31	31	31	31	31
×	(ft/d)	101.83	101.83	60.84	60.84	142.83	142.83	13
Storativity		0.001	0.05	0.001	0.05	0.001	0.05	
Flow Rate	(mdb)	14	14	14	14	14	14	
Pumping Period ((days)	272	272	272	272	272	272	272
Maximum Drawdown	(feet)	1.64	1.43	2.68	2.34	1.18	1.04	
Drawdown @ 50 Feet	(feet)	0.92	0.72	1.44	1.14	0.67	0.53	,

Aquifer Thickness K Storativity Flow Rate	(feet) (ft/d) (gpm) (days)	Average K 31 101.83 10 0.001 10 272	31 101.83 0.02 10 272
Maximum Drawdown	(feet)	1.17	1.02
Drawdown @ 50 Feet	(feet)	99.0	0.51

NOTE:

Four K values were used, the fourth, 13 ft/d, is the K for the zone 23 to 37 feet below ground surface. Two calculations were made for each K, one for the storage coefficient listed and one, 20x greater, for sensitivity.

The 14 gpm appears to have drawdown to have influence over a 100 foot width, for all Ks.

Purpose: The basis of comparison will be equal volumes of water through the systems.

The basis of wastewater treatment will be air stripping. In order to perform air stripping, estimates of VOC emissions will be required. Activated carbon may be needed to adsorb stripped VOCs. For this estimate, we have assumed carbon is required.

Data:

1. Analytical data collected during the pilot study from wells upgradient of the walls.

Vinyl Chloride (ug	yrL), Silallov	v wells				
Date	MWI01	MWI03	MWI11	MWI13	MWI15	MWI19
Feb-98	0	0	1	3	29	220
Aug-98	0	0	0	2	2	5
Average	0	0	0	2	15	112
Overall Average						22

Vinyl Chloride (u	g/L), Deep w	ells				
Date	MWD01	MWD03	MWD11	MWD13	MWD15	MWD19
Feb-98	58,000	5,700	9,800	29,000	34,000	15,000
May-98	33,000	42,000	31,000	26,000	33,000	22,000
Aug-98	70,000	55,600	30,500	25,100	34,700	33,400
Nov-98	70,900	67,400	63,000	35,100	71,400	34,700
Average	57,975	42,675	33,575	28,800	43,275	26,275
Overall Average						38,763

cis-1,2-Dichloroe	thene (ug/L)	, Shallow wells	5			
Date	MWI01	MWI03	MWI11	MWI13	MWI15	MWI19
Feb-98	. 1	0	4	16	65	160
Aug-98	1	1	10	6	8	6
Average	1	1	7	11	36	83
Overall Average						23

Date	MWD01	MWD03	MWD11	MWD13	MWD15	MWD19
Feb-98	93,000	35,000	75,000	59.000	160,000	170,000
May-98	57,000 °	100,000	140,000	150,000	160,000	150,000
Aug-98	89,900	121,000	147,000	151,000	96,800	145,000
Nov-98	69,800	103,000	134,000	142,000	101,000	137,000
Average	77,425	89,750	124,000	125,500	129,450	150,500
Overall Average						116,104

trans-1,2-Dichlor	oethene (ug/	L), Shallow we	ells			
Date	MWI01	MWI03	MWI11	MWI13	MWI15	MWI19
Feb-98	. 0	0	1	2	5	3
Aug-98	0	0	0	1	2	1
Average	0	0	1	2	3	2
Overall Average						1

trans-1,2-Dichlor	oethene (ug.	/L), Deep wells	3			
Date	MWD01	MWD03	MWD11	MWD13	MWD15	MWD19
Feb-98	490	1,600	1,700	1,700	1,900	2,200
May-98	800	1,600	1,900	2,200	2,300	2,500
Aug-98	1,470	1,750	1,790	1,970	1,440	2,260
Nov-98	1,160	1,580	1,870	2,020	1,700	2,380
Average	980	1,633	1,815	1,973	1,835	2,335
Overall Average						1,762

1,1-Dichloroethe	ne (ug/L), St	nallow wells				
Date	MWI01	MWI03	MWI11	MWI13	MWI15	MWI19
Feb-98 Aug-98		0 0	0	0	0	0
Aug-96	0	0	0	0	0	0
Overall Average		O	0	0	0	o o

1,1-Dichloroether	ne (ug/L), De	eep wells				
Date	MWD01	MWD03	MWD11	MWD13	MWD15	MWD19
Feb-98	0	190	250	270	240	260
May-98	0	0	0	270	300	0
Aug-98	173	231	316	318	193	280
Nov-98	142	212	294	0	245	340
Average	79	158	215	215	245	220
Overall Average						189

Assumptions:

- 1. Non-detects assumed concentration = 0.
- 2. Concentrations from shallow wells apply to upper 30 feet of capture zone
- 3. Concentrations from deep wells apply to lower 15 feet of capture zone

Mass Flow Rates:

Upper 30 Feet Flowrate	= .	10.8 gpm 90 lbs/min 129704 lbs/day
Constituent	Concentration (ug/L)	Mass (lbs/day)
vinyl chloride	22	0.002815
cis-1,2-dichloroethene	23	0.002998
trans-1,2-dichloroethene	1	0.00017
1,1-dichloroethene	0	0

Lower 15 Feet Flowrate	=	2.8 gpm 23 lbs/min 33627 lbs/day
Constituent	Concentration (ug/L)	Mass (lbs/day)
vinyl chloride	22	0.000730
cis-1,2-dichloroethene	23	0.000777
trans-1,2-dichloroethene	1	0.000044
1,1-dichloroethene	0	0.000000

Layer 3:	Flowrate :	=	0.4	gpm
			3	lbs/min
			4804	lbs/day
Constituent		Concentration (ug/L)		Mass (lbs/day)
vinyl chloride		38,763		0.19
cis-1,2-dichloroet	thene	116,104		0.56
trans-1,2-dichlore		1,762		0.01
1,1-dichloroether	ne	189		0.00

OVERALL Flowrate	=	gpm lbs/min lbs/day
Constituent	Weighted Average Concentration (ug/L)	Mass (lbs/day)
vinyl chloride	38,039	0.19
cis-1,2-dichloroethene	115,324	0.56
trans-1,2-dichloroethene	1,718	0.01
1,1-dichloroethene	189	0.00

ESTIMATE GROUNDWATER TREATMENT REQUIREMENTS

Purpose:

To provide a comparison of costs for groundwater pump and treatment.

Determine requirements of treatment system to process an equal volume of water

Data:

Estimated volume of water through the PeRT walls for a period of 10 months

Analytical results from grounwater sampling.

Flowrate =	14 gpm	
vinyl chloride	38,039 ug/L	0.19 lbs/day
cis-1,2-dichloroethene	115,324 ug/L	0.56 lbs/day
trans-1,2-dichloroethene	1,718 ug/L	0.01 lbs/day
1,1-dichloroethene	189 ug/L	0.00 lbs/day

Define System

1: Air Stripper followed by liquid and vapor phase carbon

2: Liquid phase carbon polish

Assumptions:

1. Assume air stripping is 95% effective at removing VOCs from water.

2. Assume all stripped VOCs to vapor phase carbon, removed to no detectable emissions

3. Assume all VOCs remaining ion water after air stripping are collected on liquid phase GAC.

Mass Flows:

Constituent	To Air Stripper (Ibs/day)	To Vapor Phase GAC (lbs/day	To Liquid Phase GAC (lbs/day)
vinul oblorido	0.40	0.4000	
vinyl chloride	0.19	0.1803	0.0095
cis-1,2-dichloroethene	0.56	0.5334	0.0281
trans-1,2-dichloroethene	0.01	0.0082	0.0004
1,1-dichloroethene	0.00	0.0009	0.0000
Total VOCs	0.76	0.72	0.04

Recommendations from Calgon Carbon:

Vapor Phase: 1,800 lb plastic units Need 12 over 10 months

Each cost for delivery, return, placement: \$3,585 monthy rental fee per unit \$275 Acceptance testing \$1,000

Liquid Phase - cyclesorb FP-2 Unit, 2,000 lbs 17 Units over 10 months

ESTIMATE GROUNDWATER TREATMENT REQUIREMENTS

Each cost for delivery, return, placement: \$1,800 monthy rental fee per unit \$790 Acceptance testing \$1,000

Part 1: Installed Equipment Costs

Item Site Prep/Restoration	Units	No. Units	Unit Cost	Cost	Source
Mobilization Cut asphalt for wells & pipe trench Trenching/Backfill Slab on Grade, 6" Remove/Dispose asphalt	LS LS LS SF SY	1 1 1 1250 67	\$1,100 \$1,700 \$2,268 \$4.28 17.75	\$1,100 \$1,700 \$2,268 \$5,350 \$1,183	Cost on PeRT Wall project Cost on PeRT Wall project Cost on PeRT Wall project Echos, 97, 18 02 0322 Cost on PeRT Wall project
Replace Asphalt Reseeding	SY LS	67 1	14.09 \$150	\$939 \$150	Cost on PeRT Wall project Cost on PeRT Wall project
Subtotal	•			\$12,691	, ,
Extraction Wells, Vaults, Influent Piping a	and Cont	trois Instalia	tion		
Driller Mobilization	LS	1	\$400	\$400	Cost on PeRT Wall project
4" Stainless Steel well casing	LF	25	\$54	\$1,350	Echos, 97, 33 23 0122
4" Stainless Steet well screen	LF	15	\$65	\$975	Echos, 97, 33 23 0222
3/4 HP pumps, 230V, controls	Each	1	\$5,715	\$5,715	Echos, 97, 33 23 0602
Explosion proof electrical	Each	1	\$420	\$420	Echos, 97, 33 23 0811
Drill & Test wells	LF	40	\$55	\$2,200	Echos, 97, 33 23 1143
Control Panel, at treatment equipmen	Each	1	\$7,052	\$7,052	Echos, 97, 33 23 1302
Well vaults, traffic load	Each	i	\$3,319	\$3,319	Echos, 97, 33 23 1302
Piping, 1" stainless steel +M fittings	LF	200	\$13.30	\$2,660	Echos, 97, 33 26 0231
Subtotal				\$24,091	
Treatments System, effluent piping and o	controls I	nstallation			
Air Stripper, Purchase	Each	1	\$7,500	\$7,500	Delta Cooling Towers
Level Controls (NEMA 7)	Each	1	\$1,080	\$1,080	Delta Cooling Towers
Explosion proof fan motor	Each	1	\$525	\$525	Delta Cooling Towers
Control Panel	Each	1	\$3,130	\$3,130	Delta Cooling Towers
Shipping	Each	1	\$1,000	\$1,000	Delta Cooling Towers
Air Stripper, Install	Each	1	\$39,705	\$39,705	Assume equip = 1/4 installed
Liquid GAC Deliver initial cells	Each	2	\$1,800	\$3,600	Calgon
Liquid GAC rental fee, each unit	Each	2	\$790	\$1,580	Calgon
Liquid GAC Testing fee	Each	1	\$1,000.00	\$1,000	Calgon
Vapor GAC Deliver initial cells	Each	2	\$3,585.00	\$7,170	Calgon
Vapor GAC rental fee, each unit	Each	2	\$275.00	\$550	
Vapor GAC Testing fee	Each	1	\$1,000.00		Calgon
Discharge piping to sewer	LE	75		\$1,000	Calgon
Precast manhole	Each	3	\$5.65 \$612.05	\$424	Echos, 97, 19 02 0101
550 Gal Steel Sump	Each	1	\$612.95	\$1,839	Echos, 97, 19 02 0201
Backflow Preventor	Each	1	\$1,110 \$1,000	\$1,110 \$1,000	Echos, 97, 19 04 0602 Guess
Subtotal				\$72,213	
Monitoring Well Installation					
Total Installation per well	Each	4	\$1,419	\$5,677	Cost on PeRT Wall project

Construction	Oversight

Construction oversight - labor Construction oversight - expenses	Day Month	60 3	\$593 \$2,556	\$35,580 \$7,668	Cost on PeRT Wall project Cost on PeRT Wall project
Subtotal				\$43,248	, ,
fiscellaneous Other Direct Costs					
IDW sampling	Each	3	\$1,262	\$3,786	Cost on PeRT Wall project
IDW storage	Month	1	\$300	\$300	Cost on PeRT Wall project
IDW transport	Each	1	\$1,250	\$1,250	Cost on PeRT Wall project
IDW disposal	·Ton	10	\$55	\$550	Cost on PeRT Wall project
Port-O-Lets	Month	3	\$74	\$222	Cost on PeRT Wall project
Barricades	Month	3	\$386	\$1,158	Cost on PeRT Wall project
Subtotal				\$7,266	
TOTAL INSTALLED COST				\$165,187	1

Packing Recondition Blower and Motor maintenance Pump Maintain	EA EA	0	\$2,094 \$356	\$0 \$356	Echos, 97, 33 13 0701 Echos, 97, 33 41 0201
Electrical	EA	0.074	\$356	\$356	Echos, 97, 33 41 0101
	KWH	9,274	\$0.03	\$306	Typical Industrial Rates
Sewage Surcharge	Gal	6,048,000	\$0.01	\$60,480	Typical Water Treatment Rates, large volume, good quality.
Carbon Change out - liquid phase	Each	15	\$1,800.00	\$27,000	Calgon
Liquid Phase rental units	Each	15	\$790.00	\$11,850	Calgon
Carbon Change out - vapor phase	Each	10	\$3,585.00	\$35,850	Calgon
Vapor Phase rental units	Each	10	\$275.00	\$2,750	Calgon
Subtotal O&M				\$138,948	
Monitoring - Quarterly Sampling					
Labor	Each	4	\$10,695	\$42,780	Cost on PeRT Wall project
Laboratory Analysis, 5 samples	Event	4	\$550	\$2,200	Cost on PeRT Wall project
Monitoring - Effluent - collect monthly sai	mples. I	Four events of	combined wi	th quarterly	sampling
Labor (monthly combine with 4 above	Each	6	\$400	\$2,400	Estimated cost travel, sampling
Laboratory Analysis, 10 samples	Each	10	\$110	\$1,100	Cost on PeRT Wall project
Monitoring - Carbon emissions. Weekly	OVA ch	ecks, weekly	liquid grab.	Combine v	with monthly events
Labor (Weekly - combine with above)	Each	33.33333	\$400	\$13,333	Estimated cost travel, sampling
Laboratory Analysis, grab samples	Each	43.33333	\$110	\$4,767	Cost on PeRT Wall project
Subtotal Monitoring				\$66,580	

Delta Cooling Towars, Inc. 134 Clinton Road P.O. Box 952 Fairfield, New Jersey 07004 Telephone 201/227-0300 Fax 201/227-0458

Delta Cooling Towers

FAX: 864-234-3069

November 20, 1998

Ms. Kathleen McNelis Earth Tech 15 Brendan Way Greenville, SC 29356

Subject: Vanguard® Air Stripper

Dear Ms. McNelis,

Thank you for the subject RFQ faxed to me on 11/18, through Delta's web site and for the opportunity to submit a Delta air stripper proposal for your consideration.

Delta can provide a Vanguard® Model \triangle S1-100 air stripper for this application designed to reduce cis-1,2 dichloroethene, trans-1,2 dichloroethene, 1,1 DCE and vinyl chloride <95% at an influent flow rate of 14 gpm of contaminated water @ 80 to 90° F.

This air stripper is a 1' diameter FRP packed column with 10 feet of Delta-Pak® structured packing, and a TEFC 480/3/60 blower/motor assembly.

The budget price for this stripper, FOB Fairfield, N. J., including an aluminum ladder and safety cage, and guy wire attachments, is \$7,500.00.

Shipment can be made approximately 6-8 weeks after receipt of formal authorization to proceed with fabrication. Our general air stripper literature and specification data sheets are attached for your reference.

I trust this proposal is complete and satisfies your requirements, however if there are any questions, or if we can be of further assistance please do not hesitate to contract us.

Thank you for your interest in Delta and its products, and for the opportunity to be of service.

Sincerely, John T. Halligan

John T. Halligan

Vice President

14:45

Delta Cooling Towers Inc. 134 Clinton Road P.O. Box 952 Fairfield, New Jersey 07004-2970 Telephone 973/227-0300 Fax 973/227-0458

Delta Cooling Towers

Delta Cooling Towers, Inc. was founded to manufacture and market the initial concept of a maintenance free seamless one-piece non-corrosive Polyethylene cooling tower, and sold its first units in June, 1971.

In 1981 Delta entered the air stripper market and currently markets a standard line of VANGUARD® air strippers from 1' through 5' diameter. Larger custom system designs can been provided up to 15' diameter.

Delta prides itself in its ability to provide the technical expertise necessary to meet the requirements of any application with respect to stripper design, materials of construction, type of packing and total system capability. Some of our recent systems, for both easy and difficult stripping applications, are discussed in our general literature.

Delta's PIONEER® forced draft cooling tower line is factory assembled in single modules from 10 through 100 tons of cooling capacity.

Delta's PARAGON^e induced draft cooling towers are also factory assembled in single modules, from 100 to 250 tons in single modules.

Delta's PREMIER™ induced draft cooling towers are provided "factory complete", no field assembly required, designed for ease of installation to span existing cooling tower structural supports, from 250 to 500 tons where larger capacity is required.

For more information about Delta and its products call (973) 227-0300, or fax your request to (973) 227-0458.

You may also visit our Web Site: http://www.deltacooling.com, or reach us by E-mail: deltacooling@worldnet.att.net.

Thank you for your interest in Delta and its products.

Datta Cooling Towers Inc.
134 Clinton Road
P.O. Box 952
Fairfield, New Jersey 07004-2970
Telephone 973/227-0300
Fax 973/227-0458

Delta Cooling Towe

DELTA AIR STRIPPERS-BENEFITS

- *VANGUARD®-standard models-proven design, economics, short delivery.
- *CUSTOM strippers-up to 10 ft. diameter, 2000 gpm water flow.
- *Basic MATERIALS OF CONSTRUCTION:
- -high performance structured modular packing.
- -film type, PVC.
- *STATIC PRESSURE LOSSES of DELTA-PAK®:
- -about 4 to 30 times lower than dumped packings, depending on type and conditions.
- -fan horsepower requirements are typically lower than those of competing systems (lower operating costs).
- *FLOODING CHARACTERISTICS of DELTA-PAK®:
 - -superior to dumped packings.
 - -water loadings in excess of 20 gpm/sq. ft. can be handled at air flow rates 600 to 700 cfm/sq. ft. (about 3000 lb/hr. sq. ft.) and higher.
- *HIGH MASS TRANSFER coefficients.
- *REMOVAL RATES-correspondingly high:
- -99.9% and higher in a single stripper (1) at only 20 to 25 foot overall height, 1,000,000 to 1 or higher contaminant reduction in two stripping stages is possible (1).
- *Stripping of "HARD-TO-STRIP" compounds (4):
- -often very efficient with DELTA VANGUARD® air strippers, without preheating, with low blower HP. Consult others.
- *MODULAR construction (2): utilizing prepacked, preassembled standardized sections.
- *FUTURE UPGRADING is possible on most models.
- *ERECTION TIME-normally hours (3). LIGHT WEIGHT.
- *ACCESSORIES, CONTROLS are available. SYSTEMS can be supplied.
- *ASSISTANCE, SERVICE, SUPPORT
- 1) Removal of TCE, PCE, benzene and many other compounds, subject to water flow treated.
- 2) Dolta VANGUARD® standard air strippers.
- 3) Particularly in skid mounted stripper installations.
- 4) Compounds with low Henry's law constant, generally.

14:45

D04

Delta Cooling Towers Inc. 134 Clinton Road P.O. Box 952 Fairfield, New Jersey 07004-2970 Telephone 973/227-0300 Fax 973/227-0458

Delta Cooling Towers

July 1992

TECHNICAL SPECIFICATIONS DELTA VANGUARD AIR STRIPPERS (FORCED DRAFT TYPE)

Delta Air Strippers are designed to remove volatile organic chemicals and certain other substances from water.

A blower, ducted into the sump plenum provides air at a slight positive pressure and forces it to flow upward against the downward trickling water. This is a countercurrent forced draft design.

As the air passes over the water, spread over the packing surface as a thin film, the molecules of contaminant cross the air/water interface and enter the air stream. The air then exits the column either to atmosphere or to some means of vapor phase remediation process.

Delta VANGUARD[®] Air Strippers possess known, predetermined stripping performance and operational characteristics based upon field test data obtained from independent sources.

Stripper shell. The shell material is a hand lay-up FRP isophthalic polyester resin of sufficient thickness to withstand the specified operating conditions, as well as external loads imposed from carthquake Zone 4 and 120 mile/hour wind loading. Guy wiring is standard; free-standing design is available as an option. The shells are designed using the ASME/ANSI RTP-1-1989 Rev. 1991 Standards as a guide.

Treated water collection sump is integral with lower part of the shell, forming a one piece, seamless component. The sump is provided with outlet and other required connections, and incorporates a blower duct for air supply to the stripper. Access and inspection port is provided in the sump plenum.

Connections (outlet, inlet and others) are constructed of FRP and are fully gasketed with neoprene gaskets. 3" and larger connection sizes are flanged (150# flanges), smaller than 3" size connections are NPTF. All flanges up to and including 4"are gussetted.

Page 2

Water distribution system is constructed of Type 1 PVC. Uniform water distribution is effected (on ASS Series Air Strippers and smaller) by a single full cone, nonclog PVC spray nozzle which provides uniform water loading to the entire packing surface. The typical nozzle flow turn - down ratio is 2/1. For flows up to 350 GPM the nozzle is threaded into the inlet header via an NPTM thread and can be readily removed and replaced. Nozzles for flows greater than 350 GPM are 6" 150# flange connections.

Packing. Delta Pako, used in all standard stripper models, is a high performance structured packing constructed of Type 1 PVC material protected against UV degradation.

Applicable data below is for air - water atmospheric system:

Surface area:

90 sq. ft./cu.ft.

Void space:

Higher than 98%

Open cross-section:

Higher than 98%

Maximum air flow before flooding, at 20 gpm/sq.ft.:

750 scfm/sq. ft. or higher

Static pressure loss at 20 gpm/sq.ft. and 500 scfm/sq. ft. air flow:

0.10 in. W.C./ft. or lower

Orientation of corrugation:

Vertical ("see - through")

Nominal corrugation size:

Approx. 3/4 in.

"Channelling" characteristics:

No channeling occurs.

Packing construction prevents any radial transfer of mass, due to its spirally wound configuration. Transfer in tangential direction is negligible.

"Clogging" and "fouling" characteristics:

The absence of any horizontally oriented surfaces reduces accumulation of precipitates and deposition of suspended solids. Most solids including precipitates pass freely through packing along vertical corrugations. Page 3

Standard packing layer heights:

12.6 in. and 6.3 in.

Mist eliminator is Delta AB mist eliminator, constructed of Type 1 PVC material, compounded with carbon black for UV resistance. The eliminator is designed to minimize drift loss to lower than 0.02% of the water flow.

Depth:

12 in.

Type:

Crimped plate, impingement type

Blower $\triangle S1$ and $\triangle S1.5$ use a cast aluminum/bronze radial bladed wheel. The unit is arrangement 4 and is directly driven by a 3450 RPM motor. $\triangle S2$ uses a backwardly inclined centrifugal blower wheel. The unit is arrangement 10 and is belt driven by a 3450 RPM TEFC motor. $\triangle S3$ through $\triangle S5$ uses an airfoil blade design for most efficient and quiet operation. The unit is arrangement 10 and is belt driven with an 1800 RPM TEFC motor.

Skid used with skid-mounted strippers (an option) is a welded steel frame with 10 ga, plate decking, coated with black air dried phenolic paint.

Fasteners and other hardware: Type 304 SS

Standard features:

- Motors are TEFC design with a minimum 1.15 SF.
- Provided with a motor/drive weather enclosure or guard (\$\Delta S5)
- Belt drive units are provided with vibration isolation and blower to duct neoprene bellows.
- Designed based upon tests made in accordance with ASHRAE Standard 51 and AMCA Standard 210-74, and are licensed to carry the AMCA SEAL.
- Factory dynamically balanced and checked against the acceptable levels on the Rathbone Chart.
- Standard coating is an industrial baked enamel. Other coatings are available and provided based upon AMCA Recommended Practice NO. 2601-66

Delta Vanguard® Air Strippers

Delta Delivers Clean Clear Water

Recent recognition of the massive scale of groundwater contamination has given rise to the development of specific treatment technologies. Adapting the proven mass transfer process of air stripping to remediation of contaminated groundwater has proven to be the most economical. Early on, Delta applied its strong design expertise to this problem and now has a decade of practical experience with field installations throughout the United States.

Delta Experience

Since Delta received its first groundwater remediation air stripper order in 1981 it has provided hundreds of innovative and economical solutions for stripping applications. Air stripping has become the preferred water remediation technology for removal of organic solvents, chlorinated hydrocarbons, fuel/gasoline hydrocarbons. degreasers, and certain other volatile organic chemicals (VOCs), because it is the most cost effective with respect to initial, operating and maintenance costs. Delta's broad knowledge and experience enabled the company to design and develop the Delta Vanguard® line of standard air strippers, which are sultable for most applications. Della's Vanquard® air stripper systems are preferred for routine as well as for many applications with difficult to strip compounds. The equipment selection process is simpler and often less costly.

Air Stripping — The Packing

The heart of any air stripper is the packing. Operational parameters, such as a compound's ease of removal, the mineral content of the water which can induce fouling, and air flow requirements as related to the necessity for vapor phase treatment, often dictate a preferred packing media. Delta designs and supplies strippers utilizing all packing types and will recommend the most suitable for your specific situation. Delta can provide any type and size of commercially available random packing, in addition to Delta-Pak®. This proprietary structured packing manufactured by Delta is often the preferred mass transfer media.

Delta-Pak® — Major Advantages

Della-Pak® is a specially formed PVC. spirally wound structured packing media, which, when installed in an air stripper, becomes a series of long, parallel tubes the length and diameter of the column. This design permits a large volume of uncontaminated airflow, which in turn facilitates efficient stripping. This unique Delta-Pak® media has proven very successful removing compounds that have low Henry's Law Constants. (a relative measure of volatility), such as ammonia and pesticides, which are considered difficult to strip.

Front Cover:

\(\Delta S5 - 210\) air stripper, 5' Dia. \(\text{\$31' - 9 } \) 1/2' high,

\(\text{350 OPM - Benzene 99.4% removal.} \)

MTBE 97.5% removal, Napthalene 91.4% removal.

AS9-190 Ammonia air stripper, 9' Dia: x 33'-10' high.
70 GPM-250.000 ppb influent. 50.000 pph effuent. 80%
removal.

Another significant advantage of Delta-Pak® is its resistance to fouling. Mineral buildup restricts airflow which reduces efficiency. Since Delta-Pak® is designed to operate at much higher air flows than random packing, contaminant removal efficiency remains high by comparison, and the problems of flooding, bridging, etc. are significantly reduced. Delta-Pak® has become the packing of choice when groundwater contains high mineral content. Actual experience with applications containing high levels of dissolved iron has demonstrated that Delta-Pak® structured packing operates efficiently several times longer than random packing.

Delta Provides a Wide Range of Custom Solutions

Over the years. Delta has developed a wide range of standard options and accessories to meet the demanding requirements of air stripper systems. Delta's experience and technical expertise guarantees the design and manufacture of custom components that will meet environmental compliance requirements.

Air Emission Controls — Delta offers appropriate vapor recovery systems including carbon adsorbers.

Chemical Cleaning Systems — Delta developed this option to ensure long term operation, at maximum efficiency, and to minimize or eliminate packing replacement. Instrumentation, Controls and Telemetry — Delta provides systems to Integrate pressure, flow, overflow, fall-safe and transfer control systems for remote monitoring and data collection.

Corrosive Environments — Delta designs major components in Fiberglass (FRP), Stainless Steel or Aluminum.

Extreme Winter Conditions — Delta has the experience necessary for successful cold weather applications, which are a particular challenge to air strippers.

A dual Vanguard model \(\triangle S1-145 \) air stripping system skid mounted pre-piped and pre-wired. 5 GPM-Methylene Chloride and 1.1.1.TCA 99.09% removal, Benzene 96.2% removal, Toluene 88.9% removal.

11/20/98

DELTA, PROVIDING PRODUCTS FOR A SAFE ENVIRONMENT

[1] (6)\\S9-100 Hydrogen Sulfide Strippers. 9' Dis. x 24' High, 1500 GPM each unit · 8,000 ppb influent. 400 ppb effluent. 95% removal. [2] AS7-235 with dual blowers, 1000 GPM -TCE 99.7% removal. 1.1.1. TCA 97.1% removal, 1.1.2, DCE, Chloroform, Xylenes 90% removal. [3] (2) 554-1857, 210 GPM-1,1,1,TCA, 1,1,DCE, 1,1, Dichloroethane. PCE 99.95% removal. (4) AS2-145 Ammonia Air Stripper. 12 GPM-90% removal of NH₃. (5) AS2-145, 50 GPM-t.1.2.DCE,TCE. 1.1.1.TCA, 1.1.DCE, 1.1.DCA 95.7% removal. (6)(2)\(\Delta S6-150. 6' Dia. x 25'-9' High, 625 GPM-Total Xylenes 97.6% removal, Chlorobenzene 96.6% removal, Benzene 94.8% removal, Napthalene 92.3% removal.

Delta Experience

Delta Air Strippers have been provided

- ·As custom designed systems tailored to specific needs
- ·As integrated equipment systems with automatic process controls, completely pre-assembled, skid mounted, pre-piped, pre-wired and hydrostatically/electrically factory tested
- ·With vapor phase air emission control devices
- -With chemical cleaning, and other system pack
- · Par pilot test systems

For Further Information:

Delta Cooling Towers, Inc. 134 Clinion Road P.O. Box 952 Fairfield, New Jersey 07004-2970 Telephone 973/227-0300 Fax 973/227-0458 E-mail delucooling @ worldner.att.ncs Website www.deltacooling.com

Major Benefits

Delta air strippers

- Are constructed of l'iberglass, Stainless Steel or Aluminum
- ·Are available with skid mounted options
- ·Can be provided free standing or guy wired
- ·Are provided with proven packing design, usually pre-packed in column prior to ahipment
- ·Are modular, pre-assembled and lightweight for simple, fast, economical installation
- Apply modular design concepts for easy upgrade
- ·Have demonstrated effective removal of contaminants considered difficult, and in some circles, impossible to strip
- Are usually the most economical treatment option

Delta Cooling Towers

AR RIGHTS PROSESSES

endations, and upinions sot forth heroth are offered solely for your conon, and are not, in part or total, to be construed as constituting a warranty of on assume legal responsibility. Nothing contained herein is to be interpreted

Request for Information and Budget Quote

Requested by:

Kathleen McNelis

Earth Tech

15 Brendan Way

Greenville, SC 29615 Phone: 864-234-8910

Fax: 864-234-3069

Liquid and Vapor Phase carbon

Project: Groundwater treatment, effluent and air emissions from an air stripper

Duration: 10 months

Location: Cape Canaveral, Florida

Liquid: Groundwater temperature = 80F, Flow rate = 14 gpm

Vapor: Air temperature = 90F, 300 cfm, saturated

Hours of operation, 24/day, 7,300 total in 10 months (project duration)

Constituents to be adsorbed:

Chemical	lbs/day to vapor phase	lbs/day to liquid phase	
vinyl chloride	0.1803	0.0095	
cis-1,2-dichloroethene	0.5334	0.0281	
trans-1,2-dichloroethene	0.0082	0.0004	
1,1-dichloroethene	0.0009	0	

Information requested:

- 1. Estimated rate of usage of each type carbon
- 2. Recommended vessel for each carbon type
- 3. Estimated cost for each type carbon
- 4. Rental rates on vessels (if rental available)
- 5. Cost to deliver carbon
- 6. Cost to reclaim carbon

CALGON CARBON CORPORATION 1120 ROUTE 22 EAST BRIDGEWATER, NEW JERSEY 08807-2985

(908) 526-4646 PHONE

(908) 526-2467 FAX

FAX MEMO

TO: Kathleen McNelin	DATE: 5-21-99
ATTN: Earth Tech	NO. OF PAGES WITH COVER3
FROM: Stephone Com	WITH COVER
FROM: Stephenie Can James McNeill	TRANSMISSION ERROR CALL NUMBER ABOVE
SUBJECT: Gw Treatmen	+ Cape Canaveral F1.
MESSAGE: Revision 2 -	5/14/99
() Vapor - 3 ou cfm, Esten	ited carbon usago is
74 lbs. Pellet	Do corpu / V
(2) Liquid - 14000	
Vingl chloride	is still first
compound to be	eak through ax
estinated usag	se rate of 116 165. reach
freat for VC, +	you do not need to then next. species

at 28 16 Recet Combon / Day
The state of the s
So for Vingle chloride Condell Voc remale Cyclesale FP-2 (2000 lbs.) every 17 Days
or Boned on allowing VC to bookthony 4
trans, cyclson's FP-1 (love # conton unit)
or 5 units fromouths
FP-1 pricing (service) on Follows:
FP-1 1000 lbs. react corbin placement Fee \$ 1200 / unit
19
Monthly Service Fee # 400 /wo fee.
Plus coxhar acceptance test see as before
Plus corbon acceptance test see as before and spent return Sneight (tr Masone Ky)
to the second of

Request for Information and Budget Ouote

Requested by:

Kathleen McNelis

Earth Tech

15 Brendan Way Greenville, SC 29615

Phone: 864-234-8910

Fax: 864-234-3069

Liquid and Vapor Phase carbon

Project: Groundwater treatment, effluent and air emissions from an air stripper

Duration: 10 months

Location: Cape Canaveral, Plorida

Liquid: Groundwater temperature = 80F, Flow rate = 14 gpm

Vapor: Air temperature = 90F, 300 cfm, saturated

Hours of operation, 24/day, 7,300 total in 10 months (project duration)

Constituents to be adsorbed:

300 cfm

14 GAN

Chemical	lbs/day to vapor phase	lbs/day to liquid phase
	PPAV	PPM
to vinyl chloride	0.1803 2,7	0.0095 ,056
cis-1,2-dichloroethene	0.5334	0.0281 ./67
trans-1,2-dichloroethene	0.0082	0.0004 .002
1,1-dichloroethene	0.0009 .009	0

Information requested:

Estimate 74 Corbon
Day
12 Vapor Pacs /10 Months

- Estimated rate of usage of each type carbon
- 2. Recommended vessel for each carbon type
- Estimated cost for each type carbon
- 4. Rental rates on vessels (if rental available)
- Cost to deliver carbon 5.
- б. Cost to reclaim carbon

CALGON CARBON CORPORATION VAPOR PAC SERVICE PRICING

With the Vapor Pac Service, Calgon Carbon provides the adsorber, the vapor phase carbon, spent carbon handling and reactivation. The adsorber is easily transportable and normally contains 1,800 pounds of carbon, but can also be supplied with 1,000 lbs. of carbon. The unit is available in 2 basic designs: polyethylene (plastic) and stainless steel. The attached product bulletin provides additional information regarding the 2 units.

Pricing

Pricing excludes any applicable taxes.

Pricing excludes freight charges.

Payment terms are net 30 days.

Equipment is owned and maintained by Calgon Carbon Corporation.

Monthly Fee		
	\$275.00 (Plastic Un	íŧ۱
*********	WE1 0.00 (1 100110 011	"

Carbon Acceptance Fee

Prior to return of the first unit for reactivation, we are required to sample the spent carbon to ensure a safe reactivation process. This is a one time per site charge.

Non-RCRA Acceptance	\$400.00
RCRA Acceptance	

Freight

Above pricing is F.O.B. Calgon Carbon Corporation

CALGON CARBON CORPORATION CYCLESORB SERVICE AND CYCLESORB PRICING

With the Cyclesorb Service, Calgon Carbon provides the adsorber, the liquid phase activated carbon, spent carbon handling and reactivation. The unit is available in three basic designs, Cyclesorb FP-1, Cyclesorb FP-2 and Cyclesorb S.S.. The FP-1 contains 1,000 lbs. of carbon and FP-2 contains 2,000 lbs., and both are made from corrosion resistant fiberglass-wrapped polyethylene, with an operating pressure rating of 75 psig at 140 degree F. The Cyclesorb S.S. contains 2,000 lbs. of carbon and is made from 316 stainless steel, with an operating pressure rating of 15 psig.

Pricing

Pricing excludes any applicable taxes and freight charges. Payment terms are net 30 days.

Standard Service	FP-2
Placement/exchange fee-react (includes reaction) Monthly fee	\$ 1800 \$ 790

Carbon Acceptance Fee

Prior to return of first unit for reactivation, we are required to evaluate a spent carbon sample to ensure a safe reactivation. There is a one-time charge for each application, as follows:

Non-RCRA spent carbon acceptance	\$400
	64000
RCRA spent carbon acceptance	\$1000
RCRA SDEIL CAIDON SCOOPIE	•

\$2,468 Optional Cyclesorb Pipe Rack

(4-6 wks delivery)

The pipe rack will allow two Cyclesorbs to be operated in parallel series, (with either adsorber placed in first stage).

Calgon Carbon's Vapor Pac Service meets industrial needs for cost-effective removal of volatile organic compounds (VOCs) at air emission sources.

The Vapor Pac Service features a small, easily transportable adsorber which contains 1,800 pounds of activated carbon. The adsorber can handle air flows up to 1,000 cfm.

Designed to remove both toxic and non-toxic VOCs, the adsorption system is especially useful for short-term projects and for treatment of low volume flows that contain low to moderate VOC concentrations. Common applications include VOC removal from process vents, soil remediation vents, and air stripper off-gases.

To accommodate a wide variety of process conditions, Vapor Pac adsorbers are available in two basic designs: a polyethylene model that offers excellent corrosion-resistance, and a stainless steel model that can withstand higher temperatures, and slight pressure or vacuum conditions.

Calgon Carbon provides the adsorber, carbon, spent carbon handling and carbon reactivation (after the carbon meets the company's acceptance criteria) as part of the Vapor Pac Service. Ductwork and fans are the only equipment requiring a capital expenditure by the user.

When carbon becomes saturated with VOCs, the system is replaced with another adsorber containing fresh carbon.

By utilizing this unique service, users can generally achieve VOC removal and regulatory compliance objectives, minimize operating costs, and eliminate maintenance costs* (as the equipment is owned and maintained by Calgon Carbon). Furthermore, because organic compounds are safely destroyed through the carbon reactivation process, costs and regulations typically associated with waste disposal can be eliminated.

Please contact a Calgon Carbon Technical Sales Representative to learn more about the advantages of the Vapor Pac Service for your specific VOC control needs.

*Damage to Vapor Pac Unit caused by negligence or misapplication is the responsibility of the user.

FEATURES AND BENEFITS OF VAPOR PAC SERVICE

- Adsorbers are specifically designed for ease of installation and operation.
- Adsorbers are available in plastic (polyethylene) and metal (stainless steel) construction to accommodate a wide variety of applications.
- System can be operated in series or parallel mode or a combination of both modes to handle a variety of flows and concentrations.
- System exchange eliminates on-site carbon handling.
- Recycling of spent carbon eliminates disposal problems.
- Capital expenditure is eliminated since Calgon Carbon Corporation owns and maintains equipment.

VAPOR PAC (PLASTIC) SPECIFICATIONS

Vessel dimensions:	44'/4" x 44'/4" x 89°/4"
Inlet & discharge connections:	
Carbon volume:	
System shipping weight:	
•	Spent - 4200 lbs
Temperature rating:	150°F max
Static pressure rating above carbon level:	
Vacuum pressure rating above carbon level:	2ª W.C. max

All units shipped F.O.B., Pittsburgh, Pennsylvania

MATERIALS OF CONSTRUCTION

Vessel:	Polyethylene
Frame:Epoxy or injet flanges, elbow, septum:	pated carbon steel
Discharge flange:	Polyethylene
Fasteners & bottom valve support plate:	Steel, plated
Sample fittings & sample canister:	PVC

VAPOR PAC (STAINLESS STEEL) SPECIFICATIONS

Vessel dimensions, diameter height:	7 ¹
Inlet & discharge connections:	60 cu. ft. approx. (1800 lbs)
Static pressure rating above carbon level:	15 psig
Vacuum pressure rating above carbon level:	Full

All units shipped F.O.B., Pittsburgh, Pennsylvania

MATERIALS OF CONSTRUCTION

Vessel:	316L stainless steel
Skid and support frame:	304 stainless steel
Inlet flanges, elbow, septum:	316L stainless steel
Discharge flange:	316L stainless steel
Fasteners & bottom valve:	300 series stainless steel
Sample fittings & sample canister:	

VAPOR PAC - STAINLESS STEEL

VAPOR PAC - PLASTIC

CAUTION

Wet activated carbon preferentially removes oxygen from air. In closed or partially closed containers and vessels, oxyg depletion may reach hazardous levels. If workers are to entervessel containing activated carbon, appropriate sampling and work procedures should be followed, including all applicable federal and state requirements.

For information regarding human and environmental exposure, call Calgon Carbon's Regulatory and Trade Affairs personnel at (412) 787-6700.

INSTALLATION INSTRUCTIONS

See Bulletin #LS-27-0199 for details on how to install a Vapor Pac.

SAFETY CONSIDERATIONS

See Safety Bulletin #TI-006-08/94 for important safety considerations.

OPTIONAL EQUIPMENT

inlet and outlet flange adaptors for ANSI flange or stub hose connections.

For additional information, contact Calgon Carbon Corporation, Box 717, Pittsburgh, PA 15230-0717, Phone 1-800-4-CARBON

EQUIPMENT BULLETIN

CYCLESORB™ FP2

GENERAL DESCRIPTION

Calgon Carbon's Cyclesorb FP2 is a compact, portable liquid treatment unit that contains all the essential elements of a full scale carbon adsorption system. Containing 2000 pounds of granular activated carbon, the Cyclesorb FP2 can treat up to 60 gpm for removal of dissolved organic contaminants. When treatment is complete, the Cyclesorb FP2 becomes a convenient shipping container which can be returned to Calgon Carbon for safe reactivation of the spent carbon.

The Cyclesorb FP2 is ideal for many low flow or short duration treatment projects, including:

- Groundwater contaminated by leaking underground storage tanks
- Wastewater stored in tanks or lagoons
- Chemical spills
- Small wastewater or process streams
- · Storage tank or pipeline washing
- Off-spec product batches
- · Dechlorination or decolorization
- Pump tests
- · Feasibility or pilot plant studies

FEATURES

Flexibility - The Cyclesorb FP2 treats the liquid downflow through a fixed bed of granular activated carbon, and therefore can handle varying flows and on-off operating conditions. The units can be arranged in parallel to treat higher flows, or can be connected in series to optimize carbon usage.

Recommended Design - The Cyclesorb FP2 has flexible connections to the FRP vessel to eliminate potential for piping stress on the vessel, and a metal frame to protect the FRP vessel from damage during shipping and handling.

Corrosion Resistance - The Cyclesorb FP2 adsorber is made from fiberglass-wrapped polyethylene, and the piping and other accessories are made from industrial plastics to give the system the capability to handle a wide range of corrosive wastewaters or liquids.

Higher Operating Pressures - The Cyclesorb FP2 adsorber vessel is rated to 150 psig in accordance with NSF-44 Standards, and the prepiped assembly has a maximum operating pressure of 75 psig at 140°F.

Granular Activated Carbon - The Cyclesorb FP2 unit can be provided with any of Calgon Carbon's extensive product line of granular activated carbon. Calgon Carbon's Technical Service Representative can assist in selecting the most cost effective carbon for specific applications.

Safe Spent Carbon Handling - When treatment is complete, the Cyclesorb FP2 becomes the shipping container for the return of the spent carbon to a Calgon Carbon reactivation facility. This feature eliminates the need to handle spent carbon at the site. When returned to Calgon Carbon, the spent carbon is safely reactivated, and all the adsorbed contaminants are thermally destroyed.

Service or Purchase Options - The Cyclesorb FP2 is available on a service or purchase basis. With the service option, Calgon Carbon retains ownership of the unit, takes responsibility for inventory and maintenance, and provides a new unit when the spent unit is to be removed so continuous treatment is assured. If the Cyclesorb FP2 is purchased, Calgon Carbon can provide refill and maintenance service.

SPECIFICATIONS

0, 20
Granular activated carbon per unit2,000 lb (908 kg) Maximum operating pressure75 psig (517 kPa) @140°F Pressure relief
Vacuum rating Must be protected against vacuum Temperature rating
Wetted parts materialsHigh density polyethylene polypropylene, PVC, graphite, viton ethylene propylene rubber
Connections
2" Kamlock (carbon fill) 3" FNPT (carbon discharge)
Frame
(1750 mm x 1750 mm x 2337 mm neight) Lifting Fork lift truck or crane (2 eyelets provided)
Weights Empty: 1,750 lb. (795 kg) With dry carbon (ship): 3,750 lb. (1700 kg)
With wet, drained carbon (return): 5,750 lb. (2610 kg) Operating: 8,100 lb. (3675 kg)

RETURN FOR REACTIVATION

The Cyclesorb FP2 unit serves as a safe and convenient shipping container to return the spent carbon to Calgon Carbon for reactivation. Spent carbon reactivation is an integral component of the Service Agreement where Calgon Carbon provides a unit with fresh carbon to replace the unit being returned. If the unit is purchased, Calgon Carbon still is able to offer exchange services incorporating most of the return and refill elements of the Cyclesorb Service.

Prior to reactivation, an acceptability test is conducted on a small carbon sample provided with the initial Cyclesorb FP2 adsorber, which is exposed to the water or wastewater to simulate spent carbon characteristics. After this test is complete, carbon acceptance documentation is provided to allow return of the initial and subsequent Cyclesorb FP2 units used in the same service.

When treatment is complete, the Cyclesorb FP2 adsorber is drained of liquid, capped and shipped back to a Calgon Carbon reactivation facility. Calgon Carbon's Flexible Service Plan also offers services such as transportation assistance and on-site exchange Services. A Technical Sales Representative will be able to review the many options available for purchase, service, return and carbon exchange.

At the reactivation facility, the spent carbon is thermally reactivated and the adsorbed organic contaminants are destroyed. The Cyclesorb FP2 units are cleaned, inspected, maintained and returned to inventory. Cyclesorb FP2 units are then taken from ready inventory, filled with the specified carbon and provided to the next Service customer for replacement or start of treatment.

PRECAUTIONARY STATEMENTS

Do not strike vessel or subject it to impact, as such practices will damage the structural integrity of the unit.

The rupture disk must not be plugged or restricted, as the system must be able to relieve overpressurization to prevent component failure or vessel rupture. The installation must include vacuum relief, as vacuum created by a siphon loop or other means will cause collapse of the internal vessel wall and leakage.

The system includes flexible connections on the inlet and outlet. These flexible connectors should not be replaced by rigid piping, as expansion of the vessel under pressure could cause damage to the piping or the vessel.

CAUTION Wet activated carbon preferentially removes oxygen from the air. In closed or partially closed containers and vessels, oxygen depletion may reach hazardous levels. If workers are to enter a vessel containing carbon, appropriate sampling and work procedures should be followed, including all applicable federal and state requirements. For information regarding human and environmental exposure, call (412) 787-6700 and request to speak to Regulatory and Trade Affairs.

For detailed information on the products described in this bulletin, please contact one of our Regional Sales Offices located nearest to you:

Region I Bridgewater, NJ Tel (908) 526-4646 Fax (908) 526-2467

Region II Pittsburgh, PA Tel (412) 787-6700 800/4-CARBON

Fax (412) 787-6676

Region III Lisle, IL Tel (708) 505-1919 Fax (708) 505-1936 Latin America/Australasia/ Philippines

Tel (412) 787-4519 Fax (412) 787-4523

Pittsburgh, PA

Canada

Singapore/Asia Pacific Calgon Carbon Corp. Tel (65) 221-3500 Fax (65) 221-3554

Region IV Burlingame, CA Tel (415) 548-2040 Fax (415) 344-2029

Region V Houston, TX Tel (713) 690-2000 Fax (713) 690-7909

Europe Chemviron Carbon Brussels, Balgium Tel 32 2 773 02 11 Fax 32 2 770 93 94

Region VI Carlsbad, CA Tel (819) 431-5550 Fax (619) 431-8169

If at any time our products or services do not meet your requirements or expectations, or if you would like to suggest any ideas for improvement, please call us at 1-800-548-1999. From outside the U.S. please call +1-412-787-6700.

GEOCHEMICAL PARAMETERS

Colculation of the amount of Fe dissolved AND Clogging by Te (OH)2

Due to meachin w/ Dissolved organ

Fe⁰ + 2H^t + 1/2O₂ = Fe²⁺ + 11/2O

2 mol of Fe⁰ dissolves per mol of O₂

Assumption 0.3 mg/L 02 goes to 0 mg/L 02

 $\frac{0.3 \text{ mg/L}}{L} \times \frac{56 \text{ mg Fe}}{32 \text{ mg Oz}} = 0.53 \text{ mg Fe}$

Due to reaction with water
Assume maximum pH is 9.5 (+H=7.5)

Fe + 21/20 = Fe 2+ + H_L + 20H

TOH = 10 (3.16 × 10.5 mol/L)

2 mol 5 07 + 4 mol Te

3.16+105/2 = 1.58 × 105 mul Feb /2

1.58×105 mul Feb × 56,000 = 0.89 my/2

(3) Due to Readon w/ DCE

Assume c'= 115 mg/L

Fe'+H2C2C12 + H1 = Fe2+ + C3 H3CE + C4
moisot= 97

I mol Fe' per mol DCE

115 mg DE x 56 mg Fe = 66 mg Fe L

Litetime Calculation

Flux = 27.8'L/4 through I dm Pro7g/mc 0.5 L ZVI x 70009 ZVI = 35009 of ZVI 3500 g yr x 1 = \ 1067 years

Clogging by Fe (OH)2 Fea+ 21/20 = Fe (OH)2 + 2H+

Volume 118 mg Fe 40 mg Fe (CH)2 mc Fe (OH)2

The clark L × 56 mg Fe 4000 mg Fe (OH)2

L × 56 mg Fe 4000 mg Fe (OH)2

QF0=7.59 lec

ASSUME R= 43/LL(FrLOH).)

D7. 8 L

O.031 = 0.86 mL Fe(H).

F= 0.01

TYT X 0.017 mL = 0.86 mL Fe(H).

Volume of Fe° dissolved

118 mg Fe mL = 0.016 mL Fe

1500mg = 0.016 mL Fe

Net Vol 1057: 0.047-0.016 = 0.031-

% of Avail pour space per yr = 6.86 ml x 500cm 3 x100 = 0.17% (17 % in 100 ye Time to use all perspace = 18 x 500cm = 581 yis

(reter to Calcula calculation)

Density of FeS = 4.6 g/cc

MAX change in SO4 concentration across wall = 50 mg/L (all values were below this level)

×
$$\frac{cm^3}{4600 \text{ mg}} = 0.01 \text{ cm}^3 \text{ FeS}$$
 Volume of FeS per L of 5w:

Volume of Feb deposited per don't of wall:

To of available pour space per year:

Time to use all available por space:

CALCULATION of Closging by CALCUTE ppt in Deep zone

Flow rate = 0.025 fr/day (9.1 fr/year) (27.8 dm/year)
Porosity in ZUI = (assumed) 50%

I dm Idm

Ca+ HCO3 = CaCO3 +1++

1 mol HCO3 = 1 mol CaCO3

Thickness = 4 inches (1.0: dm)

Flux through a 1 dm² section of wall = 27.8 dm³ (27.8 L/year)

Pore Volume of 10m² section = 0.5 x 1dm³ = 0.5 L. (500 cm³)

Decrease in AIK for Deep Zone acress main wall (using Aug values for Mov. 1998): 403-350 = 53 mg/L CaCO3 the Amount of calcile deposited is approximately twice 74is value (if Drederinance in HO):

53 mg(a(c)) $\times \frac{\text{mea}(0)^{-2}}{100 \text{mg}(a(0))} \times \frac{2 \text{mea}(0)^{-2}}{\text{mea}(0)^{-2}} \times \frac{100 \text{ mg}(a(0))(colorly)}{\text{mea}(0)^{-2}} = 106 \text{mg}$ Calcide

Density of calcite = 2.7 g/cm3

Volume of calcite deposited per L & gw:

106 mg crise

2700 mg = 0.039 cm³ calcite

Volume of calcite deposited per dot of wall;

 $\frac{27.8 L}{yr} \times \frac{0.039 \text{ cm}^3 \text{ calcile}}{L} = 1.09 \text{ cm}^3$

90 of Available pore space per yeur:

1.09 cm × 100% = 0.22% per year

Time to use all Available pore space:

1.09 cm3 = 500 cm3 = 459 years

'I qui eccos for Intermediate tore: in Interendict sore I Time for complete clossicis in Interendict sore is 5% of & 272 years = 124 years