ЧАСТЬ І

Перед началом работы получите с двигателя данные, которые позволят идентифицировать параметры его упрощенной модели. Фактически, вам нужно просто узнать, сколько вольт соответствуют 100% в том двигателе, который вы взяли в этот раз. Поскольку коэффициент k_e вы уже знаете из предыдущей лабораторной работы, сделать это будет несложно: достаточно узнать, чему равно $\omega_{\rm уст}$ при U=100% и умножить это значение на k_e . Результат пригодится вам при построении схемы моделирования.

Выберите любой угол от 180° до 900° , это будет ваше θ^* – заданное значение угла поворота двигателя. Мы будем использовать различные регуляторы для поворота двигателя на этот угол и удержания его в этом положении.

- 1. Релейный регулятор.
 - 1.1. Сформируйте закон управления в виде

$$U = \begin{cases} 100\%, & \theta < \theta^*, \\ 0, & \theta = \theta^*, \\ -100\%, & \theta > \theta^*. \end{cases}$$

- 1.2. Получите экспериментальный график $\theta(t)$, сравните его с графиком, полученным со схемы моделирования. *Необязательное дополнение*: попробуйте добавить в схему моделирования задержку сигнала управления, приблизительно равную времени одной итерации цикла программы, запускаемой на брике, чтобы добиться большего сходства между графиками.
- 2. П-регулятор.
 - 2.1. Сформируйте П-регулятор, работающий по формуле

$$U = k_p(\theta^* - \theta).$$

Если U выходит за границы допустимого отрезка значений [-100%, 100%], следует подавать соответствующее граничное значение.

- 2.2. Подберите «маленький» коэффициент k_p , при котором в системе присутствует существенная установившаяся ошибка. Получите экспериментальный график $\theta(t)$, сравните его с графиком, полученным со схемы моделирования. Необязательное дополнение: попробуйте добавить в схему моделирования силу трения, чтобы добиться большего сходства между графиками.
- 2.3. Подберите «большой» коэффициент k_p , при котором в системе присутствует существенное перерегулирование, но колебания в итоге затухают. Получите экспериментальный график $\theta(t)$, сравните его с графиком, полученным со схемы моделирования.

- 2.4. Подберите «хороший» коэффициент k_p , при котором перерегулирование, время переходного процесса и установившаяся ошибка достаточно малы, чтобы удовлетворить ваше эстетическое чувство. Получите экспериментальный график $\theta(t)$, сравните его с графиком, полученным со схемы моделирования.
- 3. ПИД-регулятор.
 - 3.1. Сформируйте ПИД-регулятор, работающий по формуле

$$U(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \dot{e}(t), \qquad e(t) = \theta^* - \theta(t).$$

Интегральную составляющую можно реализовать с помощью численного интегрирования, дифференциальную – с помощью численного дифференцирования.

- 3.2. Исследуйте влияние $\kappa a \rightarrow c \partial o o o$ из коэффициентов k_p , k_i , k_d на $\kappa a \rightarrow c \partial y o$ из следующих величин: время переходного процесса, перерегулирование, модуль установившейся ошибки. Подкрепите результаты своего исследования экспериментальными графиками и сравните их с графиками, полученными со схемы моделирования. Проведите исчерпывающее исследование, сформулируйте и оформите выводы.
- 3.3 Для каждого экспериментального графика, полученного в ходе выполнения пункта 3.2, приведите численные значения времени переходного процесса $t_{\rm n}$, установившейся ошибки $e_{\rm ycr}$ и перерегулирования σ .

ЧАСТЬ II

Соберите робота-машинку в одном из двух вариантов: такую, как показана «Дополнительном материале 1», либо такую, как показана «Дополнительном материале 2». В первом случае, машинка должна будет удерживать заданное расстояние до фронтального препятствия. Во втором случае — ехать параллельно стене и удерживать заданное расстояние до неё. Для достижения цели используйте ПИД-регулятор.

Постарайтесь найти наилучшие коэффициенты k_p , k_i , k_d . Разрешается использовать anti-windup и любые стандартные методы настройки ПИД-регулятора (метод Циглера-Никольса и другие). Добейтесь переходного процесса, который вам понравится. Получите столько графиков, сколько захочется. Снимите процесс на видео.

Необязательное дополнение: Проведите экспериментальное исследование влияния коэффициентов регулятора на характер переходного процесса в этой системе.