Metallicity Gradients In Simulated Dwarf Galaxies

Francisco Mercado UCI GalFRESCA 2018

Andrew Graus (UT Austin)

Alex Fitts (UT Austin)

Mike Boylan-Kolchin (UT Austin)

James Bullock (UCI)

Metallicity gradients in LG dwarf galaxies

- MDFs from spectroscopic & photometric data (e.g. Grebel et al. 2003; Kirby et al. 2013)
- Metallicity gradients observed in LG dwarfs (Tolstoy et al. 2004; Koch et al. 2006; Kacharov et al. 2016)
- Often data taken from small regions of galaxies may not reflect their true global metallicities.

Kacharov et al. (2016)

Simulations

- 11 presented in Fitts et al. (2017)
 - \star mbaryon = 500 Msun
 - \star m_{dm} = 2500 M_{sun}
 - * $8.5e9 M_{sun} < M_{vir} < 1.3e10 M_{sun}$
 - \star 10⁵ M_{sun} < M_{star} < 10⁷ M_{sun}

- 17 presented in Graus et al. (in prep)
 - \star mbaryon = 4000 Msun
 - \star m_{dm} = 20000 M_{sun}
 - \star 10¹⁰ $M_{sun} < M_{vir} < 10^{10.9} M_{sun}$
 - \star 10⁶ M_{sun} < M_{star} < 10⁸ M_{sun}

Mhalo-Mstar VS. Vmax-Mstar

Explored a Few Relationships

- Probed relationships between z gradient and...
 - ★ Age
 - ★ Median metallicity
 - ★ Mstar
 - * Mhalo
 - ★ V_{max}

Metallicity: weak correlation with age

Metallicity: weak correlation with age

Z Gradients

Metallicity gradients correlate with age

Older galaxies => Steeper Gradients

Age gradients correlate with age

Metallicity gradients: some correlation with Z

Summary and Future Questions

- ★ Metallicity gradients (& age gradients) correlate with age:
 - ★Older galaxies have stronger gradients.
 - **★** To do: Evidence for this in data?
- ★ Galaxies with stronger age gradients should also have stronger metallicity gradients
- ★Z gradients mostly correlate with Z (some outliers)
- Questions:
 - What mechanisms bring about these gradients & correlations?
 - Outer, low-Z stars from mergers/accretions?
 - Outer, low-Z stars kicked out? (El-Badry el al. 2016; Yu et al. in prep)

El-Badry el al. 2016

Thank you!

Graus et al.

