1

1

2

3

1

2

3

1

2

3

4

1

2

3

4

5

What is claimed is:

1	1. A method for coating an implant comprising the							
2	steps of							
3	(a) contacting the implant with an aqueous							
4	solution of magnesium, calcium, and phosphate ions;							
5	(b) passing a gaseous weak acid through the							
6	aqueous solution;							
7	(c) degassing the aqueous solution; and							
8	(d) allowing the magnesium, calcium, and							
9	phosphate ions to precipitate onto the implant to form a							
10	coating.							

- The method of claim 1 wherein the gaseous weak acid is carbon dioxide.
- The method of claim 1 wherein the implant is formed from one or more of metal, organic material, polymer or ceramic.
- The method according to claim 1 wherein the calcium and phosphate ions are present in the aqueous solution in a molar ratio of between about 1 to about 3.
- 5. The method according to claim 1 wherein the calcium and phosphate ions are present in the aqueous solution in a molar ratio of between about 1.5 to about 2.5.
- The method according to claim 1 wherein the aqueous solution comprises about 0.5 to about 50 mM calcium ions and about 0.5 to about 20 mM phosphate ions.
- The method according to claim 1 wherein the aqueous solution comprises about 2.5 to about 25 mM calcium ions and about 1.0 to about 10 mM phosphate ions.

3

1

2

3

1

2

3

1

2

3

1

2

3

- 1 8. The method according to claim 1 wherein the 2 aqueous solution comprises about 0.1 to about 20 mM magnesium ions.
- 1 9. The method according to claim 1 wherein the 2 aqueous solution comprises about 1.5 to about 10 mM magnesium ions.
- 1 10. The method according to claim 1 wherein the 2 aqueous solution comprises no carbonate ions or less than 3 about 50 mM carbonate ions.
 - 11. The method according to claim 1 wherein the aqueous solution comprises no carbonate ions or less than about 42 mM carbonate ions.
 - 12. The method according to claim 1 wherein the aqueous solution comprises an ionic strength in the range of about 0.1 to about 2 M.
 - 13. The method according to claim 1 wherein the aqueous solution comprises an ionic strength in the range of about 0.15 to about 1.5 M.
 - 14. The method according to claim 1 wherein the gaseous weak acid is passed through the aqueous solution at a pressure of about 0.1 to about 10 bar.
 - 15. The method according to claim 1 wherein the gaseous weak acid is passed through the aqueous solution at a pressure of about 0.5 to about 1.5 bar.
- 1 16. The method according to claim 1 wherein the 2 aqueous solution has a temperature in the range of between 3 about 5°C to about 80°C.

17.	The	method	according	to	claim	1	where	in	the
aqueous s	oluti	on has a	temperatu	re i	n the	rang	ge of	bet	ween
about 5°C	to a	bout 50°	C.						

- 18. The method according to claim 1 wherein the implant is treated by a mechanical or chemical surface treatment prior to contacting the implant with the aqueous solution.
- 19. The method of claim 18 wherein the implant is treated by sand-blasting, scoring, polishing or grounding.
- 20. The method of claim 18 wherein the implant is treated by contacting with strong mineral acid or an oxidizing agent in a manner to etch the implant.
- 21. The method of claim 1 wherein the coating comprises magnesium ions, calcium ions and phosphate ions and one or more ions selected from the group consisting of hydroxide, carbonate, chloride, sodium and potassium.
- 22. The method of claim 1 wherein the coating comprises one or more of amorphous carbonate calcium phosphate, hydroxyapatite, calcium deficient and hydroxyl carbonate apatite, oroctacalcium phosphate, dicalcium phosphate dihydrate or calcium carbonate.
- 1 23. The method of claim 1 wherein the coating has a 2 thickness of about 0.5 to about 100 microns.
- 1 24. The method of claim 1 wherein the coating has a 2 thickness of about 0.5 to about 50 microns.

25. The method of claim 1 further comprising the sto	eŗ
of contacting a coated implant with a calcifying solution	or
comprising calcium and phosphate ions, and allowing	â
precipitate layer of calcium and phosphate ions to form $\boldsymbol{\alpha}$	or
the coated implant.	

- 26. A device for coating an implant comprising
 - (a) reactor vessel;
- (b) heating element operatively connected to the reactor vessel;
 - (c) implant support;
 - (d) stirrer disposed within the reactor vessel;
- (f) inlet and outlet operatively connected to the reactor vessel; and
- (g) controlled source of carbon dioxide operatively connected to the inlet.

1001 11 1