디지털 영상처리 연구실 연구보고서

정지우

특징 추출

이미지에서 직선, 원 추출과정

입력영상

추출된 에지

우선 영상에서 에지를 추출하고,

추출된 에지의 특정부분에서

이 보라색 한점을 지나는 모든 직선을 표현하면,

$$y = ax + b$$

이렇게 겹치는 지점에 보팅(투표)를 해서 임계점이상의 득표를 얻은 것을 직선으로 간주한다

직선의추출

Basic HT Algorithm

- S1. (a,b) space 를H[a][b] 배열에mapping (초기치는모두0)
- S2. edge point 를지나는모든직선에대한(a,b) 값을구하여 H 배열에plotting (또는voting) (H[a][b] = H[a][b]+1)
 - S3. 모든edge point에대하여, S2. 수행후 임계점 이상의 원소선택

(문제점) S2에서a 값의범위가 -∞ 에서∞ 이므로실제알고리즘구현어려움

기울기(a) = dy/dx = 숫자/0 = ∞

직선의 추출

х	у	(x, y) space	(a,b) space
1	3	3 = 1 a + b	b = -1 a + 3
2	2	2 = 2 a + b	b = -2 a + 2
4	3	3 = 4 a + b	b = -4 a + 3
4	0	0 = 4 a + b	b = -4 a

$$(a^*, b^*) = (-1, 4)$$

 $\rightarrow y = -x + 4$

직선의 추출

Practical HT Algorithm

$$\rho = x \cos \theta + y \sin \theta$$
 : (x, y) space (ρ, θ) space \leftarrow parameter space

기울기 = $-\cos(\theta)/\sin(\theta)$ = $-\cos(\theta)/\cos(90$ 도 $-\theta)$ = $-(\rho/dx)/(\rho/dy)$ = -dy/dx

Y 절편 =
$$\rho/\sin(\theta) = \rho/\cos(90$$
도- $\theta) = \rho/(y/\rho) = y$

$$\begin{cases}
7|울7| = -\frac{\cos\theta}{\sin\theta} \\
y절편 = \frac{\rho}{\sin\theta}
\end{cases}$$

$$y = -\frac{\cos \theta}{\sin \theta} x + \frac{\rho}{\sin \theta}$$

$$\rightarrow x\cos\theta + y\sin\theta = \rho$$

원은 $(x-a)^2+(y-b)^2=r^2$ 으로 3개의 파라미터를 가진다. 이를 허프 그래디언트 방법으로 원을 검출한다.

이를 다시 이미지 내 임의의 에지점 (x,y)에 대하여 원의 중심위치를 나타내면,

 $Cx = x + rsin \theta$

Cy = y+rcos θ

즉, (Cx, Cy, r)에 관하여 3차원 보팅을 하고 임계점이상의 파라메터를 추출하면 특정위치의 원이 그려진다.

