第九章作业题解答

1.利用教材 284 页例 9.2.2 的结论证明图 9-1 中没有同时包含边 x 和 y 的哈密顿 圈。

【证明】采用反证法。假设图 9-1 中有一个同时包含边 x 和 y 的哈密顿圈,则把 x, y 两边缩为两点 s 和 t 得到图 9-1-1 所示的图,于是,u,v 变成度为 2 的顶点,其两个邻边在哈密顿圈上,将 sur 和 tvp 看作一条边就可得到图 9.2.2,它们在一个哈密顿圈上,矛盾。

2.利用上面第 1 题的结论证明图 9-2 所示的 Tutte 图不是哈密顿图。

图 9-2 Tutte 图

【证明】假设 Tutte 图是哈密顿图,则有哈密顿圈 C,因为 deg u = 3,所以与 u 关联的 3 条边只能有 2 条在 C 上,不妨设 uv_1 不在 C 上,则 $G - uv_1$ 仍有哈密顿圈 C,此时 $deg v_1 = 2$,因此 v_1v_2 和 v_1v_3 都在 C 上。 $G - uv_1$ 中如果去掉 v_4v_5 则 v_6v_7 将变成桥,故 v_4v_5 和 v_6v_7 均在 C 上,且 v_4v_5 … v_7v_6 是 C 上的一条路,将其收缩为 v_4v_6 后得到的图为哈密顿图,从而有哈密顿圈 C_1 ,且 v_4v_6 在 C_1 上, v_1v_2 和 v_1v_3 亦在 C_1 上,将 v_1v_2 和 v_1v_3 收缩为 v_2v_3 后仍在 C_1 上,即 v_2v_3 和 v_4v_6 在同一个哈密顿圈 C_1 上,根据第 1 题的结论这是不可能的,所以,Tutte 图不是哈密顿图。

- 3.设 G 是具有 p 个顶点的平面连通图, 面数为 f, 则
 - 1)如果 $p \ge 3$,则 $f \le 2p-4$;
 - 2)如果 $\delta(G)$ =4,则G中至少有6个顶点的度小于等于5。

【证明】

- (1) 因为 p-q+f=2, 所以 f=q+2-p, 又因为 $q \le 3p-6$, 所以 $f \le 2p-4$ 。
- (2) 采用反证法。假设 G 中至多含有 5 个度小于等于 5 的顶点,则因为 $\delta(G)=4$,所以 $2q=\sum_{v\in V}\deg v\geq 5\times 4+6\times (p-5)$,亦即 $q\geq 3p-5$,这与 $q\leq 3p-6$

矛盾。因此,G中至少有6个顶点的度小于等于5。

4.设 G=(V, E),色数 $\kappa(G)=k$,则 G 中至少有 k(k-1)/2 条边。

【证明】设 G 着 c_1, c_2, \cdots, c_k 色的顶点集为 V_1, V_2, \cdots, V_k ,则对 $\forall i \forall j (i \neq j)$, $V_i 与 V_j$ 间至少有一条边,否则 V_i 与 V_j 可以着同一色,于是 $\kappa(G) = k - 1$,这与 $\kappa(G) = k$ 矛盾。因此,G 中至少有 $C_k^2 = k(k-1)/2$ 条边。