import pandas as pd

import numpy as np

df=pd.read_csv("uber.csv")

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200000 entries, 0 to 199999

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200000 non-null	int64
1	key	200000 non-null	object
2	fare_amount	200000 non-null	float64
3	pickup_datetim	ie 200000 non-null	object
4	pickup_longitud	de 200000 non-null	float64
5	pickup_latitude	200000 non-null	float64
6	dropoff_longitu	ide 199999 non-null	float64
7	dropoff_latitud	e 199999 non-null	float64
8	passenger_cou	nt 200000 non-null	int64
dty	pes: float64(5),	int64(2), object(2)	

memory usage: 13.7+ MB

df.describe()

	Unnamed	fare_amo	pickup_lon	pickup_lat	dropoff_lon	dropoff_lat	passenger_
	: 0	unt	gitude	itude	gitude	itude	count
cou nt	2.000000 e+05	200000.00 0000	200000.000	200000.00 0000	199999.000 000	199999.00 0000	200000.00 0000
me an	2.771250 e+07	11.359955	-72.527638	39.935885 -72.525292		39.923890	1.684535
std	1.601382 e+07	9.901776	11.437787	7.720539 13.11740		6.794829	1.385997
min	1.000000 e+00	52.000000	1340.64841 0	- 74.015515	3356.66630 0	881.98551 3	0.000000
25 %	1.382535 e+07	6.000000 -73.992065		40.734796	-73.991407	40.733823	1.000000
50 %	2.774550 e+07	8.500000 -73.98182		40.752592	-73.980093	40.753042	1.000000
75 %	4.155530 e+07	12.500000	-73.967154	40.767158	-73.963658	40.768001	2.000000

	Unnamed : 0	fare_amo unt	pickup_lon gitude	pickup_lat itude	dropoff_lon gitude	dropoff_lat itude	passenger_ count
ma	5.542357	499.00000	57.418457	1644.4214	1153.57260	872.69762	208.00000
x	e+07	0		82	3	8	0

df.isnull().sum()

Unnamed: 0 0 0 key fare_amount 0 pickup_datetime 0 pickup_longitude 0 pickup_latitude 0 dropoff_longitude 1 dropoff_latitude 1 passenger_count 0

dtype: int64

df['dropoff_latitude'].fillna(value=df['dropoff_latitude'].mean(),inplace = True)

df['dropoff_longitude'].fillna(value=df['dropoff_longitude'].median(),inplace = True)

df.isnull().sum()

Unnamed: 0 0 key 0 fare_amount 0 pickup_datetime 0 pickup_longitude 0 pickup_latitude 0 dropoff_longitude 0 dropoff_latitude 0 passenger_count 0

dtype: int64

df

	Unn ame d: 0	key	fare_a moun t	pickup_ datetim e	pickup_l ongitud e	pickup_ latitude	dropoff_ longitud e	dropoff _latitud e	passeng er_coun t
0	2423 8194	2015-05- 07 19:52:06. 0000003	7.5	2015- 05-07 19:52:0 6 UTC	73.9998 17	40.738 354	73.9995 12	40.7232 17	1

	Unn ame d: 0	key	fare_a moun t	pickup_ datetim e	pickup_l ongitud e	pickup_ latitude	dropoff_ longitud e	dropoff _latitud e	passeng er_coun t
1	2783 5199	2009-07- 17 20:04:56. 0000002	7.7	2009- 07-17 20:04:5 6 UTC	- 73.9943 55	40.728 225	- 73.9947 10	40.7503 25	1
2	4498 4355	2009-08- 24 21:45:00. 00000061	12.9	2009- 08-24 21:45:0 0 UTC	74.0050 43	40.740 770	73.9625 65	40.7726 47	1
3	2589 4730	2009-06- 26 08:22:21. 0000001	5.3	2009- 06-26 08:22:2 1 UTC	73.9761 24	40.790 844	73.9653 16	40.8033 49	3
4	1761 0152	2014-08- 28 17:47:00. 00000018 8	16.0	2014- 08-28 17:47:0 0 UTC	73.9250 23	40.744 085	73.9730 82	40.7612 47	5
•••			•••						
199 995	4259 8914	2012-10- 28 10:49:00. 00000053	3.0	2012- 10-28 10:49:0 0 UTC	73.9870 42	40.739 367	- 73.9865 25	40.7402 97	1
199 996	1638 2965	2014-03- 14 01:09:00. 0000008	7.5	2014- 03-14 01:09:0 0 UTC	- 73.9847 22	40.736 837	74.0066 72	40.7396 20	1
199 997	2780 4658	2009-06- 29 00:42:00. 00000078	30.9	2009- 06-29 00:42:0 0 UTC	73.9860 17	40.756 487	- 73.8589 57	40.6925 88	2
199 998	2025 9894	2015-05- 20 14:56:25. 0000004	14.5	2015- 05-20 14:56:2 5 UTC	73.9971 24	40.725 452	73.9832 15	40.6954 15	1
199 999	1195 1496	2010-05- 15 04:08:00. 00000076	14.1	2010- 05-15 04:08:0 0 UTC	- 73.9843 95	40.720 077	73.9855 08	40.7687 93	1

```
import matplotlib.pyplot as plt
plt.figure(figsize=(5,4))
plt.boxplot(df['fare_amount'])
plt.xlabel('Fare Amount')
plt.ylabel('Fare')
plt.title('Detecting Outliers in Fare Amount')
plt.show()
```


def remove_outliers(df, columns):

looping through each column
for col in columns:
 feature = df[col]
 q1 = feature.quantile(0.25)

```
q3 = feature.quantile(0.75)
    IQR = q3 - q1
    lower_bound = float(q1 - 1.5 * IQR) # Cast to float
    upper_bound = float(q3 + 1.5 * IQR) # Cast to float
    # replacing outliers with bounds
    df[col] = np.where(df[col] < lower_bound, lower_bound, df[col])</pre>
    df[col] = np.where(df[col] > upper_bound, upper_bound, df[col])
  return df
df = remove_outliers(df, ['fare_amount'])
# plotting the boxplot for cleaned data
plt.figure(figsize=(5, 4))
plt.boxplot(df['fare_amount'])
plt.xlabel('Fare Amount')
plt.ylabel('Fare')
plt.title('Fare Amount after removal of Outliers')
plt.show()
```

Fare Amount after removal of Outliers

df=df.drop(['Unnamed: 0','key'],axis=1)

df.head()

	fare_am ount	pickup_dat etime	pickup_long itude	pickup_lati tude	dropoff_lon gitude	dropoff_lat itude	passenger_ count
0	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1
1	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1
2	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5

df

	fare_am ount	pickup_dat etime	pickup_lon gitude	pickup_lat itude	dropoff_lon gitude	dropoff_la titude	passenger_ count
0	7.50	2015-05-07 19:52:06+0 0:00	-73.999817	40.73835 4	-73.999512 40.723217		1
1	7.70	2009-07-17 20:04:56+0 0:00	-73.994355	40.72822 5	-73.994710	40.750325	1
2	12.90	2009-08-24 21:45:00+0 0:00	-74.005043	40.74077 0	-73.962565	40.772647	1
3	5.30	2009-06-26 08:22:21+0 0:00	-73.976124	40.79084 4	-73.965316	40.803349	3
4	16.00	2014-08-28 17:47:00+0 0:00	-73.925023	40.74408 5	-73.973082	40.761247	5
1999 95	3.00	2012-10-28 10:49:00+0 0:00	-73.987042	40.73936 7	-73.986525	40.740297	1
1999 96	7.50	2014-03-14 01:09:00+0 0:00	-73.984722	40.73683 7	-74.006672	40.739620	1
1999 97	22.25	2009-06-29 00:42:00+0 0:00	-73.986017	40.75648 7	-73.858957	40.692588	2
1999 98	14.50	2015-05-20 14:56:25+0 0:00	-73.997124	40.72545 2	-73.983215	40.695415	1
1999 99	14.10	2010-05-15 04:08:00+0 0:00	-73.984395	40.72007 7	-73.985508 40.76879		1

200000 rows × 7 columns

df['month']=df['pickup_datetime'].dt.month
df['year']=df['pickup_datetime'].dt.year

df['date']=df['pickup_datetime'].dt.day
df['hour']=df['pickup_datetime'].dt.hour
df['min']=df['pickup_datetime'].dt.minute
df['sec']=df['pickup_datetime'].dt.second
df['weekday']=df['pickup_datetime'].dt.weekday
df=df.drop(['pickup_datetime'],axis=1)
df.head()

	fare_a moun t	pickup_l ongitud e	pickup _latitu de	dropoff_ longitud e	dropoff _latitud e	passeng er_coun t	mo nt h	ye ar	d at e	h o u	m in	s e c	wee kda y
0	7.5	73.9998 17	40.738 354	73.9995 12	40.7232 17	1	5	2 0 1 5	7	1 9	5	6	3
1	7.7	- 73.9943 55	40.728 225	73.9947 10	40.7503 25	1	7	2 0 0 9	1 7	2	4	5	4
2	12.9	74.0050 43	40.740 770	73.9625 65	40.7726 47	1	8	2 0 0 9	2	2	4 5	0	0
3	5.3	73.9761 24	40.790 844	73.9653 16	40.8033 49	3	6	2 0 0 9	2	8	2	2	4
4	16.0	73.9250 23	40.744 085	73.9730 82	40.7612 47	5	8	2 0 1 4	2	1 7	4 7	0	3

import seaborn as sns

corr=df.corr()

plt.figure(figsize=(15,8))

co=sns.heatmap(corr,annot=True)

import math

```
def haversine_distance(lat1, lon1, lat2, lon2):

"""

Calculate the great circle distance between two points

on the earth (specified in decimal degrees)

"""

# Convert decimal degrees to radians

lon1, lat1, lon2, lat2 = map(math.radians, [lon1, lat1, lon2, lat2])

# Haversine formula

dlon = lon2 - lon1

dlat = lat2 - lat1

a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2

c = 2 * math.asin(math.sqrt(a))
```

```
# Radius of earth in kilometers is 6371
  km = 6371 * c
  return km
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_squared_error
# Assuming df is your dataframe containing the Uber ride data
# Calculate distance using Haversine formula
df['distance_km'] = df.apply(lambda row: haversine_distance(row['pickup_latitude'],
row['pickup_longitude'],
                                row['dropoff_latitude'], row['dropoff_longitude']), axis=1)
# Split data into training and testing sets
X = df[['distance_km']]
y = df['fare_amount']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize models
linear_reg = LinearRegression()
rf_reg = RandomForestRegressor()
# Fit models
linear_reg.fit(X_train, y_train)
rf_reg.fit(X_train, y_train)
```

```
# Predict on test set

y_pred_Ir = linear_reg.predict(X_test)

y_pred_rf = rf_reg.predict(X_test)

# Evaluate models

r2_Ir = r2_score(y_test, y_pred_Ir)

rmse_Ir = mean_squared_error(y_test, y_pred_Ir, squared=False)

r2_rf = r2_score(y_test, y_pred_rf)

rmse_rf = mean_squared_error(y_test, y_pred_rf, squared=False)

print(f"Linear Regression R2: {r2_Ir}, RMSE: {rmse_Ir}")

print(f"Random Forest Regression R2: {r2_rf}, RMSE: {rmse_rf}")

Linear Regression R2: 0.0001380597101960923, RMSE: 5.454139357692611

Random Forest Regression R2: 0.6633839737169384, RMSE: 3.1646348482147735
```