MATH 307 — Worksheet #2

1. Let $\sqrt{\cdot}$ denote the branch of the square root defined by

$$\sqrt{re^{i\theta}} = \sqrt{r}e^{i\theta/2}, \quad \theta \in [0, 2\pi)$$

For which z does the identity $\sqrt{z^2} = z$ hold?

- 2. Find all values.
 - (a) log 1
 - (b) $\log(1+i)$
 - (c) $(1+i)^{1+i}$
- 3. Let $z = re^{i\theta}$. Express all values of z^z in the form x + iy.
- 4. Compute the limit or argue that it don't exist.
 - (a) $\lim_{x \to \infty} e^{x+iy}$ (fixed y)
 - (b) $\lim_{x \to -\infty} e^{x+iy}$ (fixed y)
 - (c) $\lim_{y \to \infty} e^{x+iy}$ (fixed x)
 - (d) $\lim_{y \to -\infty} e^{x+iy}$ (fixed x)
 - (e) $\lim_{|z| \to \infty} e^z$
 - (f) $\lim_{|z| \to \infty} |e^z|$
- 5. (a) Prove that $|a^b| = |a|^b$ for $a \in \mathbb{C}$ and $b \in \mathbb{R}$.
 - (b) Prove that, for a fixed branch of log, $a^{b+c} = a^b a^c$.
 - (c) Prove that, for a fixed branch of log, $(ab)^c = a^c b^c$ valid for all complex a, b, c such that $\log(ab) = \log a + \log b$.

6. Determine the set on which the function is analytic and compute its derivative.

(a)
$$\frac{1}{(z^3-1)(z^2+2)}$$

(b)
$$\frac{1}{z+z^{-1}}$$

(c)
$$\frac{z}{z^n-2}$$

7. Let

$$f(z) = \begin{cases} z^5/|z|^4 & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

(a) Show that

$$\lim_{z \to 0} \frac{f(z)}{z}$$

does not exist.

(b) Let u = Re f, v = Im f. Show that

$$u(x,0) = x$$
, $u(0,y) = 0$, $v(x,0) = 0$, $v(0,y) = y$.

- (c) Conclude that the partial derivatives of u and v with respect to x and y exist, that the Cauchy-Riemann equations are satisfied, but f'(0) does not exist. Why does this not contradict the Cauchy-Riemann theorem?
- 8. Find the real and imaginary parts of the function and verify that they satisfy the Cauchy-Riemann equations.

(a)
$$f(z) = z^3$$

(b)
$$ze^{-z}$$

(c)
$$\cos 2z$$