Task 1

| Panel with air gap 13mm | U-Value | Effect % |
|-------------------------|---------|----------|
| D-Pg air between N-     | 2.80    | 0%       |
| coating                 |         |          |
| D-P argon N-coating     | 2.65    | 5%       |
| D-P krypton N-coating   | 2.60    | 7%       |
| D-P air coating IP      | 1.80    | 36%      |
| D-P argon coating IP    | 1.55    | 45%      |
| D-P krypton coating IP  | 1.40    | 50%      |
| T-P air no-coating      | 1.80    | 36%      |
| T-P argon no-coating    | 1.65    | 41%      |
| T-P krypton no-coating  | 1.53    | 45%      |
| T-P air coating IP      | 1.00    | 64%      |
| T-P argon coating IP    | 0.8     | 71%      |
| T-P air coating IP      | 1.00    | 64%      |
| T-P argon coating IP    | 0.8     | 71%      |
| T-P krypton coating IP  | 0.70    | 75%      |
|                         |         |          |





Task 2

 $Q_{heating\_window_{west}} = HF_{window_{west}} \times A_{window_{west}}$ 

 $HF_{window_{west}} = U_{window_{west}} \times \Delta T_{heating} = 2.84 \times 24.8 \approx 70.44 \frac{W}{m2}$ 

 $Q_{heating\_window_{west}} = 70.44 \times 14.4 \approx 1014.34 W$ 

 $Q_{cooling\_window_{west}} = \mathit{CF}_{window_{west}} \times A_{window_{west}}$ 

 $CF_{window_{west}} = U_{window_{west}} \left( \Delta T_{cooling} - 0.46DR \right) + PXI_{window_{west}} \times SHGC_{window_{west}} \times IAC_{window_{west}} \times FF_{3\ window_{west}} \right)$ 

= 2.84 (7.9 - 0.46 × 11.9) + 747 × 0.54 × 1 × 0.56 
$$\approx$$
 226  $\frac{W}{m2}$  
$$Q_{cooling} = 190 \times 14.4 \approx 3255 W$$

$$Q_{heating\_window_{south-f}} = HF_{window_{south-f}} \times A_{window_{south-f}}$$

$$HF_{window south-f} = U_{window south-f} \times \Delta T_{heating}$$

$$= 2.84 \times 24.8 \approx 70.44 \frac{W}{m2}$$

$$Q_{heating\_window_{south-f}} = 70.44 \times 3.6 \approx 254 W$$

$$Q_{cooling\_window_{south-f}} = CF_{window_{south-f}} \times A_{window_{south-f}}$$

$$CF_{window_{south-f}} = U_{window_{south-f}} (\Delta T_{cooling} - 0.46DR) +$$

$$PXI_{window_{south-f}} \times SHGC_{window_{south-f}} \times IAC_{window_{south-f}} \times$$

FF<sub>3</sub> 
$$window_{south-f} = 2.84 (7.9 - 0.46 \times 11.9) + 557 \times 0.54 \times 1 \times 0.47 \approx 149 \frac{W}{m2}$$
  
 $Q_{cooling} = 149 \times 3.6 = 536.4 W$ 

$$Q_{heating\_window_{south-o}} = HF_{window_{south-o}} \times A_{window_{south-o}}$$

$$HF_{window_{south-o}} = U_{window_{south-o}} \times \Delta T_{heating} = 2.87 \times 24.8 \approx 71.2 \frac{W}{m^2}$$

$$Q_{heating\_window_{south-f}} = 71.2 \times 3.6 \approx 257 W$$

$$Q_{cooling\_window_{south-o}} = CF_{window_{south-o}} \times A_{window_{south-o}}$$

$$CF_{window\,south-o} = U_{window\,south-o} \left( \Delta T_{cooling} - 0.46DR \right) + PXI_{window\,south-o} \times SHGC_{window\,south-o} \times IAC_{window\,south-o} \times FF_{3\,window\,south-o} \right)$$

$$= 2.87 \left( 7.9 - 0.46 \times 11.9 \right) + 557 \times 0.46 \times 1 \times 0.47 \approx 127.43 \frac{w}{m^2} \qquad Q_{cooling} = 127.43 \times 3.6 = 458.8 \, W$$

## The values for Aluminum frames:

$$Q_{heating\_window_{west}} = HF_{window_{west}} \times A_{window_{west}}$$

$$HF_{window_{west}} = U_{window_{west}} \times \Delta T_{heating} = 3.61 \times 24.8 \approx 90 \frac{w}{m^2}$$

$$Q_{heating\_window_{west}} = 90 \, \times 14.4 \approx 1300 \, W$$

```
Q_{cooling\_window_{west}} = CF_{window_{west}} \times A_{window_{west}}
```

$$CF_{window_{west}} = U_{window_{west}}$$
 (  $\Delta T_{cooling}$  - 0.46DR) +  $PXI_{window_{west}} \times SHGC_{window_{west}} \times IAC_{window_{west}} \times FF_{3\ window_{west}}$ 

= 3.61 (7.9 - 0.46 × 11.9) + 747 × 0.56 × 1 × 0.56 
$$\approx$$
 243  $\frac{W}{m^2}$ 

$$Q_{cooling} = 190~\times 14.4 \approx 3500~W$$

$$Q_{heating\_window_{south-f}} = HF_{window_{south-f}} \times A_{window_{south-f}}$$

$$HF_{window_{south-f}} = U_{window_{south-f}} \times \Delta T_{heating}$$

$$= 3.61 \times 24.8 \approx 90 \frac{W}{m^2}$$

$$Q_{heating\_window_{south-f}} = 90 \times 3.6 \approx 324 W$$

$$Q_{cooling\_window_{south-f}} = CF_{window_{south-f}} \times A_{window_{south-f}}$$

$$CF_{window\,south-f} = U_{window\,south-f} \left( \Delta T_{cooling} \text{- 0.46DR} \right) + PXI_{window\,south-f} \times SHGC_{window\,south-f} \times IAC_{window\,south-f} \times \text{FF}_{3\,\,window\,south-f} \times \text{FF}_{3\,\,window\,south-$$

= 3.61 (7.9 - 0.46 × 11.9) + 557 × 0.56 × 1 × 0.47 
$$\approx$$
 155.4  $\frac{W}{m2}$ 

$$Q_{cooling} = 155.4 \times 3.6 \approx 560 \; W$$

$$Q_{heating\_window_{south-o}} = \mathit{HF}_{window_{south-o}} \times A_{window_{south-o}}$$

$$HF_{window_{south-o}} = U_{window_{south-o}} \times \Delta T_{heating}$$

$$= 4.62 \times 24.8 \approx 114.58 \frac{W}{m2}$$

$$Q_{heating\_window_{south-f}} = 114.58 \times 3.6 \approx 413 W$$

$$Q_{cooling\_window_{south-o}} = CF_{window_{south-o}} \times A_{window_{south-o}}$$

$$CF_{window\,south-o} = U_{window\,south-o} \left( \Delta T_{cooling} \text{- } 0.46DR \right) + \\ PXI_{window\,south-o} \times SHGC_{window\,south-o} \times IAC_{window\,south-o} \times \text{FF}_{3\,\,window\,south-o} \right) + \\ PXI_{window\,south-o} \times SHGC_{window\,south-o} \times IAC_{window\,south-o} \times \text{FF}_{3\,\,window\,south-o} \times \text$$

= 4.62 (7.9 - 0.46 × 11.9) + 557 × 0.55 × 1 × 0.47 
$$\approx$$
 155.21  $\frac{W}{m^2}$ 

$$Q_{cooling} = 155.21 \times 3.6 = 559 W$$