Let's break down the equation and example for the _calculateSuccessProbability function:

Equations

1. Initial Enemy Strength (E_s):

 E_s = enemyManpower × enemySkills

2. Total Unit Strength (T_u):

$$T_u = \sum_{i=1}^{n} (\text{unitManpower}_i \times \text{unitSkills}_i)$$

Where n is the number of units.

3. Weapon Effectiveness:

For each weapon within range:

Weapon Effectiveness = weaponBlast

Track affected enemies based on weapon range and blast radius.

4. Total Effective Damage:

For each affected enemy:

Effective Damage_j = affectedEnemyStrength_j - reducedStrength_j

Where:

 $reducedStrength_i = affectedEnemyStrength_i - damage_i$

And

Effective Damage_i = affectedEnemyStrength_i - reducedStrength_i

5. Total Effective Damage Calculation:

Total Effective Damage = $\sum_{j=1}^{m}$ (Effective Damage_j)

Where m is the number of affected enemies.

6. Modified Enemy Strength (E'_s) :

$$E'_s = E_s$$
 – Total Effective Damage
If $E'_s < 0$:
 $E'_s = 0$

7. Success Probability:

Success Probability =
$$\frac{T_u}{T_u + E_s'} \times 100$$

Example Calculation

Let's use the following example data:

Data

- Enemy Data:
 - Enemy Manpower: 500
 - Enemy Skills: 4
- Unit Data:
 - Unit 1: Manpower = 300, Skills = 5

- Unit 2: Manpower = 200, Skills = 3
- Weapon Data:
 - Weapon 1: Range = 1000 meters, Blast = 50
 - Weapon 2: Range = 1500 meters, Blast = 100
- Weapon and Enemy Positions:
 - Weapon 1 Position: (0, 0)
 - Weapon 2 Position: (1200, 0)
 - Enemy Position: (500, 0)

Steps

1. Calculate Initial Enemy Strength (E_s):

$$E_s = 500 \times 4 = 2000$$

2. Calculate Total Unit Strength (T_u):

For Unit 1:

Unit Strength₁ =
$$300 \times 5 = 1500$$

For Unit 2:

Unit Strength₂ =
$$200 \times 3 = 600$$

Total Unit Strength:

$$T_u = 1500 + 600 = 2100$$

3. Calculate Weapon Effectiveness:

Weapon 1:

- Distance to Enemy = 500 meters
- Weapon Range = 1000 meters (within range)
- Weapon Blast = 50

Weapon 2:

- Distance to Enemy = 1200 meters
- Weapon Range = 1500 meters (within range)
- Weapon Blast = 100

Assume:

• All enemies are affected by the weapons (simplification).

Affected Enemies:

- Enemy 1: Manpower = 200
- Enemy 2: Manpower = 150
- Enemy 3: Manpower = 100

Total Effective Damage:

For Weapon 1:

Total Weapon Effectiveness = 50

For Weapon 2:

Total Weapon Effectiveness = 100

Affected Enemies' Strength:

Total Affected Enemies = 200 + 150 + 100 = 450

Effective Damage:

Total Effective Damage:

Total Effective Damage = 450

4. Calculate Modified Enemy Strength ($E_s^{'}$):

$$E'_s = E_s$$
 – Total Effective Damage $E'_s = 2000 - 450 = 1550$

5. Calculate Success Probability:

Success Probability =
$$\frac{T_u}{T_u + E_s} \times 100$$

Success Probability = $\frac{2100}{2100 + 1550} \times 100$
Success Probability = $\frac{2100}{3650} \times 100 \approx 57.53\%$

Summary

In this example, the success probability of the units in battle is approximately 57.53%.