14/02/24, 21:34 OneNote

Capitolo 1.4

domenica 24 dicembre 2023 13:14

Home

Logica del primo ordine

A differenza della logica proposizionale abbiamo più dettagli, come l P e Q e x e y sono individuali del dominio

P e Q assumono delle proprietà che hanno x e y

ESEMPIO:

Dominio: persone

P=sono femmine

Q= sono omini

P(x)=x sono femmine

Q(x)=x sono omini

Abbiamo la stessa roba della logica proposizionale ma abbiamo ancł 크

Applicando le formule otterremo le costanti cioè elementi che indica del dominio

Esempio:

 $\exists x P(x) = P(a)$

TERMINE:

Un termine rappresenta un individuale(variabile) o un

FORMULE BEN FORMATE:

14/02/24, 21:34 OneNote

Una f.b.f lo è se abbiamo una lettera predicativa con n termini, che regole:

- 1. Fè una f.b.f se la sua negazione viene una f.b.f
- 2. Se F e G sono f.b.f allora anche i connettivi tra loro sono f.b.f, tipo
- 3. Se F è una f.b.f allora anche \forall x F e \exists x F sono f.b.f

INTERPRETAZIONI:

Per dare una corretta interpretazione bisogna rispettare questi 4 pu

- Un insieme non vuoto D che chiamiamo dominio;
- Una proprietà o una relazione per ogni lettera predicativa P in F;
- Una funzione per ogni lettera funzionale f in F;
- Un elemento del dominio per ogni costante a in F.

ESEMPI:

$$\forall x \exists y P(f(x, a), y)$$

DOMINIO:NATURALI

P(x, y)="x è uguale a y"

F(x, y)=x elevato alla y; a=2

E si legge per ogni x esiste una x elevata a uguale alla y

VARIABILI LIBERE E VINCOLATE:

Se la variabile sta in un quantificatore è Vincolata Se non ci sta è libera È chiusa se ci sono tutte le variabili vincolate

FORMULE VALIDE VS TAUTOLOGIE:

Una formula f è valida se è vera per ogni sua interpretazione(tableau È tautologia se sostituendo con la logica proposizionale deve uscire:

14/02/24, 21:34 OneNote

tazione. Nella logica del primo ordine si chiamano tautologie le formule che di tautologie della logica proposizionale. Per esempio, la formula

$$\forall x P(x) \to (\exists x Q(x) \to \forall x P(x))$$

Si ottiene dalla formula $X \to (Y \to X)$ sostituendo $\forall x P(x)$ a X e formule (7) pertanto è una tautologia mentre, per esempio la (3), pur essenc è una tautologia.

Si noti che una tautologia è vera in ogni interpretazione indipendenteme ficato che hanno i quantificatori, mentre una formula valida che non è una vera in ogni interpretazione per il significato che hanno i quantificatori.

Interdipendenza dei quantificatori:

I due quantificatori \forall e \exists non sono indipendenti, nel "definire" uno in funzione dell'altro. Per esempio, la equivalente 1 alla formula \forall x \neg P (x). Infatti, data un interpretazione, la prima sta dicendo che "non esiste dominio per cui vale la proprietà P", la seconda sta di ogni elemento del dominio non vale la proprietà P".

TABLEAUX LOGICA DEL PRIMO ORDINE

Sono come i tableaux a capitolo 1.2

Ci sono le formule universali e esistenziali.

UNIVERSALI: ESISTENZIALI:

ORA PASSIAMO AI TABLEA

- 1. $\forall x P(x) \lor \forall x Q(x) \to \forall x [P(x)]$
- 2. $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$
- 3. $\forall x P(x) \rightarrow [\exists x Q(x) \rightarrow \forall x P(x)]$
- 4. $\exists y \forall x P(x,y) \rightarrow \forall x \exists y P(x,y)$

7 4 4 4 ((x,r)) 7 4 4 4 ((x,r)) 7 7 4 4 ((x,r))

Y((b, r) P(b,e) X

 $\frac{1}{2} + \frac{1}{2} = \frac{1}$

JACH JACH

TXRIX

1/x(c) 1(a) 1(b) (b) (a)

 $3/4x(x,y) \rightarrow 4x$

 $(10)^{2} + (10)^{2}$

7 (b pa)
1 (b pa)

PROVA 7.

(YIX) DYYXEN (YX) PYYKE

DY FXEN (1/1) 9 Y FXE W(1/1) 9 Y FXE (1/1) 9 Y FXE (1/1) 9 Y FXE

AyQ(x)a)n3xQ A(3xe(x)a)n3xQ

 $\begin{array}{c}
\sqrt{2} \\
\sqrt$

Jy E V (4/4) 9 y E) X H

1

1 / / 1 / (1 / (