V Variational Formulation

10

10.1

Traction Equilibrium Condition: Weak Form

Virtual power balance,

$$\int_{\mathcal{B}} (\operatorname{sym} \nabla \mathbf{w}) : \mathbb{C} (\operatorname{sym} \nabla \mathbf{u}) dv - \int_{\mathcal{S}_2} \hat{\mathbf{t}} \cdot \mathbf{w} da - \int_{\mathcal{B}} \mathbf{b} \cdot \mathbf{w} dv = 0 \quad \forall \text{ admissible w}.$$

is satisfied if and only if $div\,\sigma+b=0\ in\ \mathcal{B}$ and $\sigma\mathbf{n}=\hat{\mathbf{t}}$ on \mathcal{S}_2

Where ${\bf w}$ is a virtual velocity field such that ${\bf w}={\bf 0}$ on ${\cal S}_1.$

10.2

Elastostatic Displacement Problem: Weak Form

Given \mathbb{C} , \mathbf{b} , and boundary data $\hat{\mathbf{u}}$ and $\hat{\mathbf{t}}$, find a displacement field \mathbf{u} equal to $\hat{\mathbf{u}}$ on \mathcal{S}_1 such that:

$$\int_{\mathcal{B}} (\operatorname{sym} \nabla \mathbf{w}) : \mathbb{C} (\operatorname{sym} \nabla \mathbf{u}) dv - \int_{\mathcal{S}_2} \hat{\mathbf{t}} \cdot \mathbf{w} da - \int_{\mathcal{B}} \mathbf{b} \cdot \mathbf{w} dv = 0 \quad \forall \text{ admissible w}.$$