Mapa de Karnaugh

Dentro de circuitos lógicos, muitas vezes temos uma solução lógica muito grande ou de difícil tradução, em virtude disso, usualmente utilizamos algumas técnicas com o intuito de simplificação dessa expressão, uma delas é o mapa de Karnaugh. Esse método gráfico é usado para simplificar uma equação lógica ou converter uma tabela verdade no seu circuito lógico correspondente. Normalmente utilizamos para simplificação até 4 entradas, pois acima desse valor o método se torna muito complicado sendo melhor fazer a análise por meio de programas de computador. Seja:

Tabela 1: Tabela de Equivalência Lógica

	Propriedade	Equivalência Lógica
		$p \wedge V \equiv p$
		$p \lor F \equiv p$
1	Identidades	$p \leftrightarrow V \equiv p$
		$p\underline{\vee}F \equiv p$
2	Dominação	$p \lor V \equiv V$
		$p \wedge F \equiv F$
3	Leis da idempotência	$p \lor p \equiv p$
		$p \wedge p \equiv p$
4	Dupla negação	$\sim (\sim p) \equiv p$
5		$p \vee q \equiv q \vee p$
3	Comutativa	$p \wedge q \equiv q \wedge p$
		$p \leftrightarrow q \equiv q \leftrightarrow p$
		$(p \lor q) \lor r \equiv p \lor (q \lor r)$
6	Associativa	$(p \land q) \land r \equiv p \land (q \land r)$
	N ~ Y	$(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$
7	Negação ou Inversa	$p \lor \sim p \equiv V$
	Total de la collección	$p \land \sim p \equiv F$ $(p \to q) \equiv (\sim p \lor q) \equiv \sim (p \land \sim q)$
8	Leis da implicação	,,,
	Leis da equivalência	$\sim (p \rightarrow q) \equiv (p \land \sim q)$ $(p \leftrightarrow q) \equiv (p \rightarrow q) \land (q \rightarrow p)$
9	Leis da equivalencia	(1 - 1) (1 - 1)
	Distributiva	
10	Distributiva	$p \land (q \land r) \equiv (p \land q) \land (p \land r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
	Leis de De Morgan	$\sim (p \lor q) \equiv \sim p \land \sim q$
11	neis de De Morgan	$\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \land q) \equiv \sim p \lor \sim q$
	Absorção	$p \lor (p \land q) \equiv p$
12		$p \land (p \lor q) \equiv p$
13	Lei da contrapositiva	$(p \to q) \equiv (\sim q) \to (\sim p)$
14	Lei da redução ao absurdo	$p \to q \equiv (p \land \sim q) \to F$
	3	1 1 Vr. 1/ -

Autor: Lógica para computação. Godoy, Edvania Gimenes de Oliveira. Pág 29

Tabela 2: Quadro de analogia dos conectores

Isso é similar	A isso
F	0
V	1
~A	$ar{A}$
≡	Equivalente
+	Ou
•	E

Fonte: Autor

Como vimos anteriormente, as variáveis booleanas são representadas através de letras ou números, podendo assumir os valores 0 e 1. A seguir apresentaremos os postulados da complementação, da adição e da multiplicação da Álgebra de boole e suas respectivas identidades resultantes.

1. Postulado da Complementação

Vamos partir do pressuposto que F = 0 e que V = 1

1º Se
$$A=0 \rightarrow \bar{A}=1$$

2º Se
$$A=1 \rightarrow \bar{A}=0$$

2. Postulado da dupla negação

Vamos partir do pressuposto que $\sim A = \bar{A}$ e que $\sim \sim A = \bar{\bar{A}}$

$$\bar{\bar{A}} = A$$

Se
$$A=1$$
, $temos: \bar{A}=0$ e se $\bar{A}=0 \to \bar{\bar{A}}=1$

Se
$$A=0$$
, $temos: \bar{A}=1$ e se $\bar{A}=1 \to \bar{\bar{A}}=0$

Com esse postulado podemos dizer que A = A.

Ou Seja, quando temos uma dupla negativa ou dupla negação, uma negativa anula a outra.

Provando o postulado acima, propriedade 4 da tabela acima, teremos:

$$\sim (\sim p) \equiv p$$

р	~P	~(~p)
V	F	V
V	F	V
F	V	F
F	V	F

3. Postulado da adição

Este postulado, mostra como são as regras da adição dentro da Álgebra de Boole.

$$1^{\circ} 0 + 0 = 0$$

$$2^{\circ} 0 + 1 = 1$$

$$3^{\circ} 1 + 0 = 1$$

$$4^{\circ} 1 + 1 = 1$$

Através deste postulado, podemos estabelecer as seguintes identidades:

$$A + 0 = A$$

Mas devemos considerar que A pode ser 0 ou 1, vejamos, então, todas as possibilidades:

$$A = 0 \rightarrow 0 + 0 = 0$$

$$A = 1 \rightarrow 1 + 0 = 1$$

Podemos notar que o resultado será sempre igual à variável A. De igual forma se:

$$A + 1 = 1$$

Teremos:

$$A = 0 \rightarrow 0 + 1 = 1$$

$$A = 1 \rightarrow 1 + 1 = 1$$

Notamos que se somarmos 1 a uma variável, o resultado será sempre 1. Agora:

$$A + A = A$$

Teremos:

$$A = 0 \rightarrow 0 + 0 = 0$$

$$A = 1 \rightarrow 1 + 1 = 1$$

Notamos que se somarmos a mesma variável, o resultado será ela mesma. Seja:

$$A + \bar{A} = 1$$

Vejamos as possibilidades:

$$A=0\to \bar A=1\to 0+1=1$$

$$A = 1 \rightarrow \bar{A} = 0 \rightarrow 1 + 0 = 1$$

Notamos que sempre que somarmos a uma variável o seu complemento, teremos como resultado 1. O bloco lógico que executa o postulado da adição é o OU.

4. Postulado da Multiplicação

É o postulado que determina as regras da multiplicação booleana.

$$1^{\circ} 0.0 = 0$$

$$2^{\circ} 0.1 = 0$$

$$3^{\circ} 1.0 = 0$$

$$4^{\circ} 1.1 = 1$$

Através deste postulado, podemos estabelecer as seguintes regras. Se:

$$A.0 = A$$

Podemos confirmar, verificando todas as possibilidades.

$$A = 0 \rightarrow 0.0 = 0$$

$$A = 1 \rightarrow 1.0 = 0$$

Notamos que todo número multiplicado por 0 é 0. Seja:

$$A.A = A$$

Teremos:

$$A = 0 \rightarrow 0.0 = 0$$

$$A = 1 \rightarrow 1.1 = 1$$

Notamos que os resultados serão sempre iguais a A. Agora:

$$A.\bar{A}=0$$

Vejamos as possibilidades:

$$A=0\to \bar{A}=1\to 0.1=0$$

$$A = 1 \rightarrow \bar{A} = 0 \rightarrow 1.0 = 0$$

Notamos que para ambos os valores possíveis que a variável pode assumir, o resultado da expressão será 0. O bloco lógico que executa o postulado da multiplicação é o E.

5. Propriedades

Estabelecido os conceitos iniciais, podemos descrever algumas propriedades algébricas, úteis, principalmente no manuseio e simplificação de expressões. Partindo das propriedades já conhecidas, vamos descrever e exemplificar as propriedades comutativa, distributiva e associativa, muito utilizadas na Álgebra de Boole.

Tabela 3: Regras de Inferência

_			
		$p \Rightarrow p \lor q$	Lei de adição
1	2.	$p \wedge q \Rightarrow p$	Leis de simplificação
		$p \wedge q \Rightarrow q$	
		$(p \to q) \land p \Rightarrow q$	Modus Ponens
- 4	4.	$(p \to q) \wedge \sim q \Rightarrow \sim p$	Modus Tollens
	5.	$(p \vee q) \wedge \sim p \Rightarrow q$	Silogismo disjuntivo
1	6.	$(p \to q) \land (q \to r) \Rightarrow (p \to r)$	Silogismo hipotético
Ľ	7.	$p \to F \Rightarrow \sim p$	Demonstração por absurdo

Autor: Lógica para computação. Godoy, Edvania Gimenes de Oliveira. Pág 29

5.1 Propriedade Comutativa

Adição A + B = B + A

Multiplicação A.B = B.A

Prova do item 5 da tabela 1:

 $5.1.1\,p\vee q\equiv q\vee p$

р	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	$q \lor p$
V	٧	V
V	F	V
F	V	V
F	F	F

 $5.1.2 p \land q \equiv q \land p$

р	q	$p \wedge q$
V	٧	٧
V	F	F
F	V	F
F	F	F

р	q	q∧p
V	V	V
V	F	F
F	V	F
F	F	F

$$5.1.3 p \leftrightarrow q \equiv q \leftrightarrow p$$

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	٧	F
F	F	V
р	q	$q \leftrightarrow p$
V	٧	V
V	F	F
F	٧	F
F	F	V

5.2 Propriedade Associativa

Adição
$$A + (B + C) = (A + B) + C = A + B + C$$

Multiplicação
$$A.(B.C) = (A.B).C = A.B.C$$

Prova do item 6 da tabela 1:

$5.2.1 (p \lor q) \lor r \equiv p \lor (q \lor r)$

р	q	r	$p \lor q$	$(p \lor q) \lor r$
V	V	V	٧	V
V	V	F	V	V
V	F	V	V	V
V	F	F	V	V
F	V	V	V	V
F	V	F	V	V
F	F	V	F	V
F	F	F	F	F

р	q	r	$(q \lor r)$	$p \lor (q \lor r)$
V	V	V	V	V
V	V	F	٧	V
V	F	V	V	V
V	F	F	F	V
F	V	V	V	V
F	V	F	V	V
F	F	V	V	V
F	F	F	F	F

$5.2.2 (p \land q) \land r \equiv p \land (q \land r)$

р	q	r	$(p \land q)$	$(p \land q) \land r$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	F
V	F	F	F	F
F	V	V	F	F
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

р	q	r	$(q \wedge r)$	$p \wedge (q \wedge r)$
V	V	٧	٧	V
V	V	F	F	F
V	F	V	F	F
V	F	F	F	F
F	V	V	٧	F
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

5.2.3 $(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$

р	q	r	$(p \leftrightarrow q)$	$(p \leftrightarrow q) \leftrightarrow r$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	F
V	F	F	F	V
F	V	V	F	F
F	V	F	F	V
F	F	V	V	V
F	F	F	V	F

р	q	r	$(q \leftrightarrow r)$	$p \leftrightarrow (q \leftrightarrow r)$
V	V	V	V	V
V	V	F	F	F
V	F	V	F	F
V	F	F	V	V
F	V	V	V	F
F	V	F	F	V
F	F	V	F	V
F	F	F	V	F

5.3 Propriedade Distributiva

$$A.(B+C) = A.B + A.C$$

Prova do item 10 da tabela 1:

$$5.3.1\,p\vee(q\wedge r)\equiv(p\vee q)\wedge(p\vee r)$$

р	q	r	$(q \wedge r)$	$p \lor (q \land r)$
V	V	V	V	V
V	V	F	F	V
V	F	V	V	V
V	F	F	F	V
F	V	V	F	F
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

р	q	r	$(p \lor q)$	(<i>p</i> ∨ <i>r</i>)	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V
V	V	F	V	V	V
V	F	V	V	V	V
V	F	F	V	V	V
F	V	V	V	V	V
F	V	F	V	F	F
F	F	V	F	V	F

-	-	-	ı –	-	I

 $5.3.2 p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

р	q	r	$(q \lor r)$	$p \wedge (q \vee r)$
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	F	F
F	V	V	V	F
F	V	F	V	F
F	F	V	V	F
F	F	F	F	F

р	q	r	$(p \wedge q)$	$(p \wedge r)$	$(p \land q) \lor (p \land r)$
V	V	٧	٧	V	V
V	V	F	V	F	V
V	F	V	F	V	V
V	F	F	F	F	F
F	V	V	F	F	F
F	V	F	F	F	F
F	F	V	F	F	F
F	F	F	F	F	F

5.4. Teorema de De Morgan

O complemento da soma é igual ao produto dos complementos. Este teorema é uma extensão do primeiro teorema de De Morgan.

1º Teorema

$$(\overline{A.B}) = \overline{A} + \overline{B}$$

Podemos reescrevê-lo da seguinte maneira:

$$A.B = (\overline{\overline{A} + \overline{B}})$$
 (1)

Podemos notar que A é o complemento de \bar{A} e que B é o complemento de \bar{B} . Se chamarmos \bar{A} de X e \bar{B} de Y, da expressão acima teremos:

$$A.B = \left(\overline{A} + \overline{B}\right)$$

$$(\bar{X}.\bar{Y}) = (\bar{X} + \bar{Y})$$

Substituindo X por A e Y por B novamente, teremos:

$$(\overline{X}.\overline{Y}) = (\overline{X+Y})$$

$$(\bar{A}.\bar{B}) = (\overline{A+B})$$

Logo, temos o 2º teorema de De Morgan

2º teorema de De Morgan

$$(\bar{A}.\bar{B}) = (\overline{A+B})$$

Que é o segundo teorema de De Morgan. Com essa expressão acima, podemos generalizar a quantas expressões quisermos, do tipo:

$$(\overline{A+B+C+\cdots+N}) = \overline{A} + \overline{B} + \overline{C} + \cdots + \overline{N}$$

Prova do item 11 da tabela 1:

$$5.4.1 \sim (p \lor q) \equiv \sim p \land \sim q$$

р	q	$(p \lor q)$	$\sim (p \lor q)$
٧	٧	V	F
V	F	V	F
F	V	V	F
F	F	F	V

р	q	~p	~q	$\sim p \land \sim q$
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

$$5.4.2 \sim (p \land q) \equiv \sim p \lor \sim q$$

р	q	$(p \wedge q)$	$\sim (p \wedge q)$
V	V	V	F
V	F	F	V
F	V	F	V
F	F	F	V

р	q	~p	~q	$\sim p \vee \sim q$
V	٧	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Resumindo teremos:

Tabela 4: Resumo das Propriedades

	Propriedade	ου	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
P6	Comutatividade	X + Y = Y + X	$X \cdot Y = Y \cdot X$
P7	Associatividade	(X+Y)+Z=X+(Y+Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
P8	Distributividade	$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$	$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$
Р9	Cobertura	$X\cdot (X+Z)=X$	$X + (X \cdot Y) = X$
P10	Combinação	$(X \cdot Y) + \left(X \cdot \overline{Y}\right) = X$	$(X+Y)\cdot \left(X+\overline{Y}\right)=X$
P11	Consenso	$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$ = $(X \cdot Y) + (\overline{X} \cdot Z)$	$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z)$ = $(X + Y) \cdot (\overline{X} + Z)$
P12	De Morgan	$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$	$\overline{(X\cdot Y)} = \overline{X} + \overline{Y}$

Fonte: https://www.inf.ufpr.br/kunzle/disciplinas/ci068/2019-2/slides/aula9_mapa_de_karnaugh.pdf

Vamos ver alguns exemplos:

1. Simplifique a expressão abaixo através das propriedades algébricas lógicas.

$$(A + B).(A + C)$$

Resolução

$$(A + B).(A + C)$$

$$A.A + A.C + B.A + B.C$$
 (Propriedade Distributiva)

$$A + A.C + B.A + BC$$
 (Propriedade $A.A = A$)

$$A.(1+C+B)+BC$$
 (Propriedade Distributiva)

$$A.(1+B) + B.C$$
 (Postulado da soma considerando que $1+C=1$)

$$A.(1) + B.C$$
 (Postulado da soma considerando que $1 + B = 1$)

$$A. 1 + B. C = A + B. C$$

Para demonstrar a veracidade da expressão podemos fazer a tabela verdade

$$(A + B).(A + C)$$

Α	В	С	(A+B)	(A+C)	(A+B).(A+C)

V	>	>	V	V	V
V	>	F	V	V	V
V	F	>	V	V	V
V	F	F	V	V	V
F	>	>	V	V	V
F	>	F	V	F	F
F	F	٧	F	٧	F
F	F	F	F	F	F

De igual forma:

A + B.C

Α	В	С	B.C	A+B.C
V	>	٧	V	V
V	>	F	F	V
V	F	٧	F	V
V	F	F	F	V
F	V	٧	V	V
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

2. Simplifique a expressão abaixo através das propriedades algébricas lógicas.

$$A + \overline{A}.B$$

Resolução

$$A + \overline{A}.B$$

$$(\overline{\overline{A} + \overline{A}.B})$$
 (Identidade $\overline{X} = X$)

$$\left| \overline{A.} \, \overline{(\overline{A} + B)} \right| (2^{\underline{o}} \, Teorema \, de \, De \, Morgan \, \overline{X.Y} = \overline{X}.\overline{Y})$$

$$\overline{\left[\bar{A}.\left(\bar{A}+\bar{B}\right)\right]}(Identidade\,\bar{X}=X)$$

$$\overline{[\bar{A}.(A+\bar{B})]}(1^{\circ} \, Teorema \, de \, De \, Morgan \, \overline{X.Y} = (\bar{X}+\bar{Y})$$

$$\left[\overline{A}.\,A + \overline{A}\overline{B}
ight]$$
 (Propriedade de Distributiva)

$$(\overline{0 + \overline{A}\overline{B}})$$
 (Identidade \overline{A} . $A = 0$)

 $(\overline{A}.\overline{B})$

 $\overline{\overline{A+B}}$ (1º Teorema De Morgan)

$$A + B$$
 (Identidade $\overline{X} = X$)

$$Logo\,A + \overline{A}.\,B = A + B$$

Para a tabela verdade de $A + \overline{A}$. B

Α	В	\bar{A}	\overline{A} . B	$A + \overline{A}.B$
V	V	F	F	V
V	٧	F	F	V
V	F	F	F	V
V	F	F	F	V
F	٧	٧	V	V
F	٧	٧	V	V
F	F	V	F	F
F	F	V	F	F

Para a tabela A + B

Α	В	A + B
V	V	V
V	V	V
V	F	V
V	F	V
F	٧	V
F	٧	V
F	F	F
F	F	F

Mapa de Karnaugh ou Mapa K

Vimos anteriormente que uma expressão lógica, pode ser simplificada utilizando algumas propriedades e postulados, mas dependendo da situação ou da proposição não seria uma estratégia tão fácil. O mapa de Veitch-Karnaugh, ou simplesmente mapa de Karnaugh, é uma tabela montada de forma a facilitar o processo de minimização das expressões lógicas.

Os mapas de Karnaugh permitem a simplificação de expressões com duas, três, quatro, cinco ou mais variáveis onde suas células vão ter um número de 2^n (n é o número de variáveis de entrada). Algumas regras são seguidas no desenvolvimento do mapa de Karnaugh:

- 1. Todos "1" devem ser lidos pelo menos uma vez.
- 2. Grupos de "1" em potência de 2, e retangulares formam uma leitura.
- 3. O grupo deve ser o maior possível.
- 4. Deve-se ter o menor número possível de leituras.
- 5. A leitura corresponde às variáveis que se mantiverem constantes

Para os nossos exemplo, adotaremos ! como substituição do ~.

Seja a tabela dada abaixo:

O que podemos perceber em um primeiro momento é que não temos a sentença lógica, temos apenas a função f(A,B,C) que nos dá o resultado final de nossa proposição. Outra pergunta que nós fazemos é: Como determinar então uma expressão que traduza a nossa função? Vamos por partes. Primeiramente sabemos o seguinte:

```
A B C f
0 0 0 0 0
0 1 0 1 <= !A · B · !C
0 1 1 1 <= !A · B · !C
1 0 0 1 <= A · !B · !C
1 0 1 0
1 1 0 0
1 1 1 0 0
1 1 1 1 <= A · B · C
```

Para a terceira linha temos que o A é zero, portanto é Falso, o B é 1, portanto é Verdadeiro e o C é zero, portanto é Falso. Na quarta linha temos 0,1,1 ou seja, Falso, Verdadeiro,

Verdadeiro e podemos fazer essa analise para todas as linhas de nossa tabela. Agora o que vamos fazer é traduzir essas informações para uma matriz. A matriz de Karnaugh terá todas as possíveis combinações de nossas proposições, se estivermos trabalhando com uma expressão logica com duas proposições apenas, teremos $2^2 = 4$, teremos uma matriz com 2 linhas e 2 colunas, ou seja, 2x2=4, se tivermos 3 proposições, teremos $2^3 = 8$, teremos uma matriz de 2 linhas e 4 colunas, e assim sucessivamente.

A matriz terá a seguinte característica:

Matriz com duas proposições:

A	0	1
0		
1		

Matriz com três proposições:

AB C	0	1
00		
01		
11		
00		

Matriz com quatro proposições:

AB CD	00	01	11	10
00				
01				
11				
10				

Existem várias formatações da tabela de Karnaugh, porém vamos trabalhar com essas dadas acima. Como funciona o processo:

Obtenção da Expressão

- Unir blocos de 1's adjacentes;
- Deve-se buscar a formação de blocos com a maior quantidade possível de 1's respeitando a regra de $N=2^n$ onde N é a quantidade de 1's no bloco com formação, com agrupamentos de dois (Pares), quatro (Quarteto) e oito (octetos);
- Expressão final = " soma " das expressões de cada bloco;

Simplificação da Expressão

- Usar o menor número de blocos possível;
- Na expressão de cada bloco, eliminam-se as variáveis que mudam de estado dentro do bloco;
- As variáveis que não mudam de estado são mantidas na expressão, representando o seu respectivo valor fixo no bloco $(A=1 \rightarrow A, A=0 \rightarrow \sim A)$
- Quanto maior o bloco, maior o número de variáveis eliminadas e mais simplificada fica a expressão final:

Exemplos

1.

2.

3.

4.

Exercícios

1. Variáveis booleanas são representadas através de letras e podem assumir dois e apenas dois valores 0 e 1. Através de postulados, propriedades, teoremas fundamentais e identidades da álgebra de Boole é possível a simplificação das expressões que representam os circuitos lógicos. Levando em consideração as simplificações de expressões lógicas, pode-se dizer que a expressão simplificada da proposição dada é:

$$S = ABC + A\bar{C} + A.\bar{B}$$

RESPOSTA COMENTADA

Α	В	С	Ē	\bar{B}	ABC	ΑŌ	$A.ar{B}$	$ABC + A\bar{C} + A.\bar{B}$
V	٧	V	F	F	V	F	F	V
V	٧	F	٧	F	F	٧	F	V
V	F	٧	F	V	F	F	V	V
V	F	F	٧	V	F	V	V	V
F	V	٧	F	F	F	F	F	F
F	V	F	٧	F	F	F	F	F
F	F	٧	F	V	F	F	F	F
F	F	F	٧	V	F	F	F	F

Mapa de Karnaugh

A BC	00	01	11	10
0	0	0	0	0
1	1	1	1	1

Portanto Teremos:

S = A

2. Variáveis booleanas são representadas através de letras e podem assumir dois e apenas dois valores 0 e 1. Através de postulados, propriedades, teoremas fundamentais e identidades da álgebra de Boole é possível a simplificação das expressões que representam os circuitos lógicos. Levando em consideração as simplificações de expressões lógicas, considerando a tabela verdade abaixo, pode-se dizer que a expressão mais simples da expressão dada é:

Α	В	С	S
٧	٧	٧	٧
٧	٧	F	٧
٧	F	V	F
٧	F	F	V
F	>	>	F
F	٧	F	F
F	F	٧	F
F	F	F	F

RESPOSTA COMENTADA

Seja:

Α	В	С	S
V	V	V	V
V	V	F	V
V	F	V	F
V	F	F	V
F	٧	٧	F
F	>	F	F
F	F	٧	F
F	F	F	F

A BC	00	01	11	10
0	0	0	0	0
1	1	0	1	1

$$S = AB + A\bar{C}$$

Comprovação

1	^	В	С	Ē	AB	ΑĒ	$AB + A\bar{C}$
	Α	D	C	U	AD	AC	AD + AC
	V	٧	٧	F	V	F	V
	V	٧	F	٧	V	V	V
	٧	F	V	F	F	F	F
	٧	F	F	٧	F	V	V
	F	٧	٧	F	F	F	F
	F	٧	F	٧	F	F	F
	F	F	V	F	F	F	F
	F	F	F	V	F	F	F

3. Em eletrônica digital, os teoremas podem ser utilizados em uma técnica de simplificação de equações lógicas, que agora podemos chamar também de equações Booleanas, denominada simplificação algébrica. O objetivo de um processo de simplificação de uma equação lógica é obter uma equação equivalente à original, porém mais simples diminuindo a quantidade de blocos lógicos. Considere a seguinte expressão lógica:

$$S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.\overline{B}.C$$

Podemos dizer que uma expressão análoga à essa, porém mais simplificada é melhor representada em:

RESPOSTA COMENTADA

Seja a seguinte expressão:

$$S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.\overline{B}.C$$

Tirando \bar{A} . \bar{C} em Evidencia nos dois primeiros termos:

$$S = \overline{A}.\overline{C}.(B + \overline{B}) + A.\overline{B}.C$$

Aplicando $\bar{B} + B = 1$, teremos:

$$S = \bar{A}.\bar{C}.(1) + A.\bar{B}.C$$

$$S = \bar{A}.\bar{C} + A.\bar{B}.C$$