Centralized DDD Algorithm

Assignment 07

Centralized DDD Algorithm

- Each site maintains 2 status tables: resource status table and process status table.
 - Resource status table: Resources locked by or requested by processes.
 - Process status table: Processes that are locked or are waiting for resources.
- Controller periodically collects these tables from each site.

Centralized DDD Algorithm

- Controller constructs a WFG from transactions common to both the tables.
- If there is no cycle, then no deadlock is detected.
- A cycle means a deadlock.

Hints

- Start with 3 to 4 nodes in a graph
- Assume a set of resources and a set of processes for each node
- Populate two status tables for each of these nodes as described in the algorithm only for local resources and processes

Process Status Table at Site 1

	R ₂ 0	R ₃	R ₆	R ₇
P ₂	0	0	0	0
P ₂ P ₃ P ₄	1	0	0	1
P ₄	0	1	1	0
P ₇	1	0	0	0

Resource Status Table at Site 1

Local Resources are R₁, R₅, and R₈

	P ₁	P ₄	P ₅	P ₈	P ₉
R_1	-1	1	0	0	0
R_5	0	0	0	0	0
R ₈	0	0	1	-1	-1

Hints

- Collect these status table data
- Count total number of processes
- Build wait for graph matrix from process to resource request data and resource to process assignment data
- Check for cycle and infer accordingly