

Web Security

PART I: PKI

2: TLS

3: HTTPS

Dr. Bheemarjuna Reddy Tamma

IIT HYDERABAD

Secure Communication

Public-key encryption of messages:

- Bob generates the key pair (SK_{Bob}, PK_{Bob})
- Using PK_{Bob} Alice encrypts messages & only Bob can decrypt them
- Any attacks possible?

Certificates: Signed Public Keys

How does Alice (browser) obtain PK_{Bob}?

Alice & Bob rely on a trusted 3rd party in web PKI: Cert Authority

Bob gets Cert from CA attesting to his PK for an extended period³

Obtaining Certificate from a CA

Applications

- TLS certificates for authenticated and encrypted browsing
- S/MIME certificates for signing and encrypting emails
- Code signing certificates
- Document signing certificates
- Client authentication certificates
- Government-issued electronic IDs

Digital Certificates

- A certificate is a signed data structure that binds a public key to an entity.
- Digital Certificates (also called X.509 certificates), as well as many other things in the X.509 standard, are described using <u>Abstract</u> <u>Syntax Notation One (ASN.1)</u>
 - ASN.1 is a standard used to exchange information between systems independently of their encoding techniques
- Digital certificates are defined using ASN.1 and encoded using Distinguished Encoding Rules (DER) or PEM
- The signature Value field in X.509 certificate contains a digital signature computed upon the ASN.1 DER encoded tbsCertificate structure in the certificate
 - tbs: tobesigned

Structure of Digital Certificate

version

signature

issuer

validity subject

OPTIONAL,

OPTIONAL,

extensions

serialNumber

-- X.509 signed certificate

```
SignedContent ::= SEQUENCE
                     CertificateToBeSigned,
 tbsCertificate
 signatureAlgorithm
                     Algoldentifier,
 signatureValue
                     BITSTRING
```

https://cipherious.wordpress.com/2013/05/13/con structing-an-x-509-certificate-using-asn-1/

RFC 5280

https://docs.microsoft.com/enus/windows/desktop/seccertenroll/about-x-509public-key-certificates

-- X.509 certificate to be signed

Structure of Digital Certificate

X.509 Certificates: An example

Important fields:

Refer: https://www.sslsupportdesk.com/details-digital-certificate-mean/

- CAs are trusted signers of public keys in web PKI
- Many browsers/OSes have root stores /w pre-installed certs of root and intermediate CAs
- Google operates several root and intermedia CAs: https://pki.goog/

CAs and Root Stores

Browsers/OSes are preloaded with certs of several root and intermediate CAs

- GTS Root R3
- DigiCert
- GoDaddy

Root CAs ≈ 165

Intermediate CAs ≈ 3100

CA/BROWSER FORUM

https://cabforum.org/

TLS/SSL Certificate Types

Subject's CommonName (CN) or SubjectAlternativeName (SAN) can be:

- I. Single domain cert (explicit name) e.g. cse.iith.ac.in, iith.ac.in or
- II. Wildcard cert, e.g. *.iith.ac.in or cse*.iith.ac.in or

Matching rules: "*" must occur in leftmost component, does not match "." example: *.a.com matches x.a.com but not y.x.a.com

- III. Multi-Domain (SAN/UCC) cert allows 250-500 unique domains in a single cert
 - For compatibility, primary FQDN (fully qualified domain name) in CN, and the full list of FQDNs in SAN E.g., https://www.nsa.gov/
- IV. Multi-Domain Wildcard Certificates
 - FQDNs/wildcard domains in SAN list E.g., X.509 Wikipedia

TLS/SSL Certificate Validation Levels

Based on thoroughness in validation process by the CA:

- I. DV (Domain validation) Cert
 - Prove that you own the domain
- II. OV (Organization Validation) Cert
 - A manual vetting process by CA, so expensive
 - Enterprises
- III. EV (Extended Validation Cert)
 - Full background check, very expensive
 - banks/ecommerce

Certificate Life Cycle

Certificate Revocation

- Two mechanisms: CRL and OCSP
- Certificate Revocation List (CRL)
 - CA periodically publishes/updates CRLs which are time-stamped & signed
 - Each revoked certificate is identified in a CRL by its serial number
 - CRL might be distributed by posting at known URL or from CA's own X.500 directory entry, specified in the certificate
 - Browsers have to download a large amount of cert revocation info from the updated CRLs
 - What if CRL server is down?

Certificate Revocation

- OCSP (Online Certificate Status Protocol)
 - No need of downloading & searching
- Browser (Alice) queries CA's OCSP server about status of webserver's (Bob) cert before trusting it
- OCSP Stapling
 - Bob queries OCSP servers & caches it
 - Bob includes recent OCSP status when performing TLS handshake with Alice
 - Avoids delay due to OCSP TLS negotiation with CA by piggybacking in Bob's TLS pipe
 - Addresses privacy issues with CA

Let's Encrypt & ACME protocol

- Let's Encrypt is a free, automated, and open CA from non-profit ISRG (Internet Security Research Group)
- Certificates need to be requested, installed, and maintained frequently, which is time-consuming & boring!
- So, Let's Encrypt uses an open protocol to automate the deployment of certificates: <u>ACME</u> (Automated Certificate Management Environment)
 - ACME implements automated interactions between CA and web servers, removing all the burden of getting and maintaining certificates
- Many tools based on ACME
 - Certbot: client to fetch, install, renew certificates
 - Caddy: Open source, webserver

Let's Encrypt (LE)

- ACME protocol automates requests, installation & maintenance of TLS/SSL certificates
- Agent s/w on webserver has to solve challenges posed by LE CA to prove ownership of the domain name
 - HTTP-01 challenge: a specified file in a specified location on a webserver accessible on port 80 and sign a token
 - TLS-SNI-01 challenge: a special temporary certificate on a webserver accessible on port 443
 - DNS-01 challenge: set up a specified DNS record

Let's Encrypt (LE): Domain Validation

- Agent identified by the public key (A) is authorized to do certificate management for example.com
 - The key pair the agent used is an "authorized key pair" for example.com

Let's Encrypt (LE): Cert Issuance

 Agent generates CSR signed /w private key (S) of webserver which is in turn signed /w private key of Agent (A)

Let's Encrypt (LE): Cert Revocation

Agent generates cert revocation request signed /w private key of Agent

Source: Let's Encrypt

Online tools to test SSL/TLS security

- https://www.digicert.com/help/
- https://www.thesslstore.com/ssltools/ssl-checker.php
 - CAs have become hacking targets too☺
 - 2011: Comodo & Diginotar issued fraudulent certs for Hotmail, Gmail, Skype, Yahoo Mail, Firefox
 - 2013:TurkTrust issued cert for gmail
 - 2014: Indian NIC issued certs for Google and Yahoo!
 - Google stopped trusting Symantec, GeoTrust, Thawte, VeriSign, Equifax, and RapidSSL issued certs, prior to June 2016, by removing them from Trusted Root Certification Authorities store on Chrome 66 browser
 - Needed to replace /w DigiCert issued certificates
 - More details at Google's security blog

CCA: Root CA of India

PKI Framework Root CA of India Licensed CAs Root Certificate CA Certificates eSign

Home » CA Services Overview

Overview of Services offered by licensed CAs

Licensed CAs	Class 1 -3 DSCs	eSign	SSL and Code Signing Certificates	Time Stamping
Safescrypt	1	1		1
IDRBT	✓ Only to B anks	,	✓ Only to Banks	✓ Only to Banks
(n)Code Solutions	1	1	√ ∗	1
e-Mudhra	1	1	/ *	1
CDAC		1		
Capricom	1	1		1
NSDL e-Gov		/		
Vsign (Verasys)	1	1		
Indian Air Force	✓ Only to IAF			✓ Only to IAF
CSC		1		
RISL (RajComp)	1	/	1	1
Indian Army	✓ Only to Army		✓ Only to Army	✓ Only to Army
IDSign .	1	1		1
CDSL Ventures		1		
Pantasign	1	1		

^{*} The Root CA Certificate of India is listed only in Microsoft products (Including IE)

10. CSC 11. RISL (RajComp) 12. Indian Army 13. IDSign 14. CDSL Ventures

Safescrypt
 IDRBT

Capricorn
 NSDL e-Gov
 Vsign (Verasys)
 Indian Air Force

15. Panta Sign

3. (n)Code Solutions4. e-Mudhra5. CDAC

CA Services Overview

Closed CAs

Licensed CAs	Class 1 -3 DSCs	SSL and Code Signing Certificates
MTNL	NA	NA
iCERT	NA	NA
TCS	NA	NA
NIC	NA	NA

Summary

- Public key crypto is a powerful tool
 - Underlies https, ssh, virtually all software updates, etc
 - But does n't solve the key distribution problem
- Certificate authorities (CA) occupy a very key (and trusted) role
 - 3rd party attestation of identity or access
 - Public, private and open CAs
 - Let's Encrpt made them affordable to all
 - Other uses of certificates: digital signs, code signing, timestamping, etc
 - Ongoing efforts to police CAs

References

- Public Key Infrastructure | Microsoft Docs
- X.509 std: RFC 5280 and ACME https://tools.ietf.org/html/rfc8555
- X.509 debugger: https://phpseclib.sourceforge.net/x509/decoder.php
- ASN.1 parsers
 - http://lapo.it/asn1js/#
 - https://phpseclib.sourceforge.net/x509/asn1parse.php
- https://aka.ms/RootCert
- https://support.apple.com/en-in/HT209143
- https://pki.goog/
- Basics of Digital Certificates and Certificate Authority Web Service Security Tutorial
- https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
- https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.h
 tml
- https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/
- https://cipherious.wordpress.com/2013/05/13/constructing-an-x-509-certificate-using-asn-1/
- https://www.sslsupportdesk.com/category/ssl-library/
- https://letsencrypt.org/how-it-works/ & https://letsencrypt.org/certificates/