Práctica 1: Cálculo de la eficiencia de algoritmos

Santiago Carbó García y Carlos García Segura

Universidad de Granada, España

1 Algoritmo 1: MaximoMinimoDyV

1.1 Variables que influyen en el tamaño del caso

El tamaño del problema viene determinado por el tamaño del vector "A" y las variables "Cini" y "Cfin". Aunque el tamaño del vector sea uno, las variables "Cini" y "Cfin" son determinantes, ya que ellas indican cuánto se va a recorrer del vector.

1.2 Eficiencia teórica

```
Función [Max, Min] = MaximoMinimoDyV(A, Cini, Cfin)
Entradas:
     A: Vector de N componentes de tipo T, indexadas de 1 a N
     Cini: Componente inicial de A donde se inicia la búsqueda. Cini>=1
     Cfin: Componente final de A donde se finaliza la búsqueda. Cini<Cfin<=N
Salidas:
     Max: Máximo elemento de A entre A[Cini]... A[Cfin]
     Min: Mínimo elemento de A entre A[Cini]... A[Cfin]
INICIO-Algoritmo
     Si Cini < Cfin-1, hacer:
           mitad= parte entera de (Cini+Cfin)/2
           [Max1, Min1]= MaximoMinimoDyV(A, Cini, mitad)
           [Max2, Min2]= MaximoMinimoDyV(A, mitad+1, Cfin)
           Max= Máximo entre Max1 y Max2
           Min= Mínimo entre Min1 y Min2
     En otro caso, Si Cini=Cfin, hacer:
           Max=A[Cini], Min= A[Cini]
     En otro caso, hacer:
           Max= Máximo entre A[Cini] y A[Cfin]
           Min= Mínimo entre A[Cini] y A[Cfin]
     Devolver Max, Min
FIN-Algoritmo
```

Es un algoritmo recursivo. Existen tres casos (dos casos base y un caso general):

- Caso base 1: Cuando "Cini == Cfin" (Sentencia 7 del pseudocódigo). La ejecución del algoritmo termina después de salir del "if" ya que, al entrar en el caso base, no se producen más llamadas recursivas. Las dos asignaciones de dentro son O(1), y la evaluación de la condición es O(1), de forma que max(O(1), O(1), O(1)) = O(1).
- Caso base 2: Cuando "Cini > Cfin" (Sentencia 9 del pseudocódigo). La ejecución del algoritmo termina después de salir del "if" ya que, al entrar en el caso base, no se producen más llamadas recursivas. Dentro, calcula en dos sentencias el máximo y el mínimo entre dos números, lo cuál son realmente dos "if", declarados de esta forma:

```
if(A[Cini]>A[Cfin])
    max = A[Cini];
else
    max = A[Cfin];
if(A[Cini]<A[Cfin])
    min = A[Cini];
else
    min = A[Cfin];</pre>
```

Cada una de las sentencias de asignación es O(1), y la evaluación de la condición es O(1), de forma que cada uno de los "if" por separado es max(O(1), O(1)) = O(1). Sin embargo, al tratarse de dos declaraciones "if-else" estamos hablando de O(1 + 1) = O(2).

- Caso general: Cuando "Cini < Cfin-1" (Sentencia 1 del pseudocódigo). Dispone de lo siguiente:
 - El algoritmo calcula la parte central del subvector en "mitad". Esta operación es O(1).
 - En la siguiente sentencia (Sentencia 3 del pseudocódigo) hace una llamada recursiva para resolver un subproblema desde "Cini" y "mitad" (es decir, calcular el máximo y el mínimo de ese subproblema). Si T(n) es el tiempo que tarda el algoritmo en resolver un problema de tamaño n, entonces la llamada recursiva tendrá un tiempo de ejecución T(n/2).
 - O A continuación (Sentencia 4 del pseudocódigo) hace otra llamada recursiva para resolver un subproblema desde "mitad+1" y "Cfin" (es decir, calcular el máximo y el mínimo de ese subproblema). Si T(n) es el tiempo que tarda el algoritmo en resolver un problema de tamaño n, entonces la llamada recursiva tendrá un tiempo de ejecución T(n/2).
 - Finalmente (en las sentencias 5 y 6 del pseudocódigo), se calcula, en dos sentencias, el máximo y el mínimo entre dos números, lo cuál son realmente dos "if", declarados, también, de esta forma:

Cada una de las sentencias de asignación es O(1), y la evaluación de la condición es O(1), de forma que cada uno de los "if" por separado es max(O(1), O(1)) = O(1). Sin embargo, al tratarse de dos declaraciones "if-else" estamos hablando de O(1 + 1) = O(2).

Concluimos en que obtenemos una Recurrencia Lineal No Homogénea, la cuál sería la siguiente:

$$T(n) = 2T(n/2) + 2$$

Como la ecuación no tiene las variables de la forma requerida por la ecuación característica, tenemos que hacer el siguiente cambio de variable:

$$n = 2^m ; m = log_2 n$$

De forma que la ecuación quedaría así:

$$T(2^m) = 2T(2^{m-1}) + 2$$

Despejamos, y quedaría así:

$$T(2^m) - 2T(2^{m-1}) = 2$$

Resolvemos la parte homogénea:

$$T(2^{m}) - 2T(2^{m-1}) = 0$$

$$x^{m} - 2x^{m-1} = 0$$

$$x^{m-1}(x-2) = 0$$

Obteniendo la parte homogénea del polinomio característico: $P_{\mu}(x) = (x - 2)$

Para resolver la parte no homogénea, debemos conseguir un escalar $\boldsymbol{b}_{_1}$ y un polinomio $\boldsymbol{q}_{_m}$:

$$2 = b_1^m q_1(m)^{d_1}$$

donde podemos ver que $b_1 = 2$ y $q_1(m) = 1$, donde el grado del polinomio es $d_1 = 0$

El polinomio característico se obtiene como: $P(x) = P_H(x)(x - b_1)^{d_1+1} = (x - 2)(x - 2) = (x - 2)^2$

Tenemos r=1 (ya que solo tenemos una raíz diferente), con valor $R_1=2$ y multiplicidad $M_1=2$

Si aplicamos la fórmula de la ecuación característica, tenemos que el tiempo de ejecución (expresado en términos de 2^m) es el siguiente:

$$T(2^m) = \sum_{i=1}^{m} \sum_{j=0}^{M_i-1} c_{ij} R_i^m m^j = c_{10}^m 2^m + c_{11}^m 2^m m^j$$

Deshacemos el cambio de variable:

$$T(n) = c_{10}^{n} n + c_{11}^{n} n \log_2(n)$$

Aplicando la **regla de la suma**, es decir, eligiendo el máximo, obtenemos que el orden de eficiencia del algoritmo en el peor de los casos es O(n * log(n)).

1.3 Eficiencia práctica

Tam. Caso	Tiempo (us)
10000	1281
20000	1531
30000	2212
40000	3247
50000	4368
60000	4535
70000	5217
80000	6540
90000	7646
100000	9322

1.4 Eficiencia híbrida

K=Tiempo/f(n)	Tiempo teórico estimado= K*f(n)
0,032025	744,7524835
0,017798062	1601,601386
0,016468916	2500,76038
0,01763884	3427,395608
0,018591308	4374,461976
0,015818531	5337,810016
0,015382263	6314,697897
0,016673159	7303,17689
0,017148041	8301,789929
0,018644	9309,406044
K promedio	0,018618812

Fig. 1. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo MaximoMinimoDyV

Conclusión: El tiempo práctico se encuentra por debajo del tiempo teórico estimado (exceptuando el primer valor), el cuál es el tiempo teórico utilizando la constante oculta de nuestro ordenador. Además, sigue la tendencia de una función nlog(n), lo cual nos confirma que el proceso de análisis se ha realizado correctamente.

2 Algoritmo 2: insertarEnPos y reestructurarRaiz

2.1 Variables que influyen en el tamaño del caso (insertarEnPos)

El tamaño del problema viene determinado por el tamaño del vector "apo" y la variable "pos". Aunque el tamaño del vector sea uno, la variable "pos" es determinante, ya que ella indica cuánto se va a recorrer del vector. Se va a recorrer un camino del Árbol Parcialmente Ordenado, y cuanto más grande sea "pos" más largo será el camino.

2.2 Eficiencia teórica (insertarEnPos)

```
void insertarEnPos(double *apo, int pos){
  int idx = pos-1;
  int padre;
  if (idx > 0) {
    if (idx%2==0) {
      padre=(idx-2)/2;
    }else{
      padre=(idx-1)/2;
    }
  if (apo[padre] > apo[idx]) {
      double tmp=apo[idx];
      apo[idx]=apo[padre];
      apo[padre]=tmp;
      insertarEnPos(apo, padre+1);
    }
}
```

Es un algoritmo recursivo. El algoritmo, en esencia, va comparando, de abajo hacia arriba del árbol, los nodos hijos con los nodos padres, y si la etiqueta del nodo hijo es menor que la del nodo padre, entonces se intercambian sus etiquetas de valor. Es decir, recorre, como máximo, un único camino. Existen tres casos:

- Primer caso: Cuando "(idx \leq 0)" (Sentencia 3 del pseudocódigo). La ejecución del algoritmo termina después de este caso, ya que no entra al "if" principal. La primera declaración es O(1), la segunda declaración es O(1) y la evaluación de la condición es O(1), de forma que max(O(1), O(1), O(1)) = O(1).
- Segundo caso: Cuando "(idx > 0) AND (apo[padre] <= apo[idx])" (Sentencias 3 y 10 del pseudocódigo). La ejecución del algoritmo también termina ya que, aunque entra al "if" principal, no entra al segundo "if" (el cuál es el importante). Las dos asignaciones de "if" y "else" son O(1), y la evaluación de la condición del segundo "if" es O(1), de forma que max(O(1), O(1), O(1)) = O(1). Comparándola con la parte que hemos hecho antes, fuera del "if" principal, que también es O(1), quedaría finalmente max(O(1), O(1)) = O(1). Es importante añadir que la variable "padre" se reduce, aproximadamente, a la mitad. Esto es importante para el siguiente caso.

- Tercer caso (caso general): Cuando "(idx > 0) AND (apo[padre] > apo[idx])" (Sentencias 3 y 10 del pseudocódigo). Dispone de lo siguiente:
 - La primera sentencia de este último "if" es una declaración y asignación de una variable, de forma que es O(1).
 - La segunda y la tercera sentencia son asignaciones de una variable, de forma que son O(1).
 - Finalmente hacemos la llamada recursiva, pasándole como parámetros el vector y "padre +1". Cómo he indicado en el punto anterior, padre se reduce a la mitad en el "if" anterior. La llamada recursiva resuelve un subproblema desde el principio del vector hasta "padre+1". Si T(n) es el tiempo que tarda el algoritmo en resolver un problema de tamaño n, entonces la llamada recursiva tendrá un tiempo de ejecución T(n/2).

Concluimos en que obtenemos una Recurrencia Lineal No Homogénea, la cuál sería la siguiente:

$$T(n) = T(n/2) + 1$$

Como la ecuación no tiene las variables de la forma requerida por la ecuación característica, tenemos que hacer el siguiente cambio de variable:

$$n = 2^m$$
; $m = \log_2 n$

De forma que la ecuación quedaría así:

$$T(2^m) = T(2^{m-1}) + 1$$

Despejamos, y quedaría así:

$$T(2^m) - T(2^{m-1}) = 1$$

Resolvemos la parte homogénea:

$$T(2^m) - T(2^{m-1}) = 0$$

$$x^m - x^{m-1} = 0$$

$$x^{m-1}(x-1) = 0$$

Obteniendo la parte homogénea del polinomio característico: $P_{H}(x) = (x - 1)$

Para resolver la parte no homogénea, debemos conseguir un escalar b_1 y un polinomio q_m :

$$1 = b_1^m q_1(m)^{d_1}$$

donde podemos ver que $b_1 = 1$ y $q_1(m) = 1$, donde el grado del polinomio es $d_1 = 0$

El polinomio característico se obtiene como: $P(x) = P_H(x)(x - b_1)^{d_1+1} = (x - 1)(x - 1) = (x - 1)^2$

Tenemos r=1 (ya que solo tenemos una raíz diferente), con valor $R_1=1$ y multiplicidad $M_1=2$

Si aplicamos la fórmula de la ecuación característica, tenemos que el tiempo de ejecución (expresado en términos de 2^m) es el siguiente:

$$T(2^m) = \sum_{i=1}^{m} \sum_{j=0}^{M_i-1} c_{ij} R_i^m m^j = c_{10} 1^m + c_{11} 1^m m$$

Deshacemos el cambio de variable:

$$T(n) = c_{10} + c_{11} log_2(n)$$

Aplicando la **regla de la suma**, es decir, eligiendo el máximo, obtenemos que el orden de eficiencia del algoritmo en el peor de los casos es O(log(n)).

2.3 Variables que influyen en el tamaño del caso (reestructurarRaiz)

El tamaño del problema viene determinado por el tamaño del vector "apo", la variable "pos" y la variable "tamapo". Aunque el tamaño del vector sea uno, las variables "pos" y "tamapo" son determinantes, ya que ellas indican cuánto se va a recorrer del vector. Se va a recorrer un camino del Árbol Parcialmente Ordenado, y cuanta más distancia exista entre "pos" y "tamapo" más largo será el camino. Se escoge siempre el camino con el nodo hijo mínimo.

2.4 Eficiencia teórica (reestructurarRaiz)

```
void reestructurarRaiz(double *apo, int pos, int tamapo){
  int minhijo;
  if (2*pos+1< tamapo) {
    minhijo=2*pos+1;
    if ((minhijo+1 < tamapo) && (apo[minhijo]>apo[minhijo+1])) minhijo++;
    if (apo[pos]>apo[minhijo]) {
        double tmp = apo[pos];
        apo[pos]=apo[minhijo];
        apo[minhijo]=tmp;
        reestructurarRaiz(apo, minhijo, tamapo);
    }
  }
}
```

Es un algoritmo recursivo. El algoritmo, en esencia, va comparando, de arriba hacia abajo del árbol, el mínimo de los dos nodos hijo con el nodo padre. Si la etiqueta de éste es menor que la etiqueta del nodo padre, intercambia sus valores. Existen tres casos:

- Primer caso: Cuando " $(2*pos+1 \ge tamapo)$ " (Sentencia 2 del pseudocódigo). La ejecución del algoritmo termina después de este caso, ya que no entra al "if" principal. La declaración es O(1), la y la evaluación de la condición es O(1), de forma que max(O(1), O(1)) = O(1).
- Segundo caso: Cuando "(2*pos+1 < tamapo) AND (apo[pos] <= apo[minhijo])" (Sentencias 2 y 5 del pseudocódigo). La ejecución del algoritmo también termina ya que, aunque entra al "if" principal, no entra al segundo "if" (el cuál es el importante). La primera asignación es O(1). A continuación, nos encontramos con un "if" (cuyo objetivo es elegir al menor de los dos nodos hijo). El incremento de dentro del "if" es O(1) y la evaluación de la condición es O(1), de modo que max(O(1), O(1)) = O(1). La evaluación de la condición del "if" al que no se puede entrar es O(1), de modo que, finalmente, tenemos max(O(1), O(1)) = O(1). Es importante añadir que la variable "minhijo" va, aproximadamente, en el doble. Esto es importante para el siguiente caso.
- Tercer caso (caso general): Cuando "(2*pos+1 < tamapo) AND (apo[pos] < apo[minhijo])" (Sentencias 2 y 5 del pseudocódigo). Dispone de lo siguiente:
 - La primera sentencia de este último "if" es una declaración y asignación de una variable, de forma que es O(1).
 - La segunda y la tercera sentencia son asignaciones de una variable, de forma que son O(1).
 - Finalmente hacemos la llamada recursiva, pasándole como parámetros el vector, "minhijo" y "tamapo". Cómo he indicado en el punto anterior, minhijo va aumentando en el doble, de forma que la llamada recursiva resuelve un subproblema desde "minhijo" hasta "tamapo". Si T(n) es el tiempo que tarda el algoritmo en resolver un problema de tamaño n, entonces la llamada recursiva tendrá un tiempo de ejecución T(n/2).

Concluimos en que obtenemos una Recurrencia Lineal No Homogénea, la cuál sería la siguiente:

$$T(n) = T(n/2) + 1$$

Como la ecuación no tiene las variables de la forma requerida por la ecuación característica, tenemos que hacer el siguiente cambio de variable:

$$n = 2^m$$
; $m = \log_2 n$

De forma que la ecuación quedaría así:

$$T(2^m) = T(2^{m-1}) + 1$$

Despejamos, y quedaría así:

$$T(2^m) - T(2^{m-1}) = 1$$

Resolvemos la parte homogénea:

$$T(2^m) - T(2^{m-1}) = 0$$

$$x^m - x^{m-1} = 0$$

$$x^{m-1}(x-1) = 0$$

Obteniendo la parte homogénea del polinomio característico: $P_{H}(x) = (x - 1)$

Para resolver la parte no homogénea, debemos conseguir un escalar $\boldsymbol{b}_{_1}$ y un polinomio $\boldsymbol{q}_{_m}$:

$$1 = b_1^{\ m} q_1(m)^{d_1}$$

donde podemos ver que $b_1 = 1$ y $q_1(m) = 1$, donde el grado del polinomio es $d_1 = 0$

El polinomio característico se obtiene como: $P(x) = P_H(x)(x - b_1)^{d_1+1} = (x - 1)(x - 1) = (x - 1)^2$

Tenemos r=1 (ya que solo tenemos una raíz diferente), con valor $R_1=1$ y multiplicidad $M_1=2$

Si aplicamos la fórmula de la ecuación característica, tenemos que el tiempo de ejecución (expresado en términos de 2^m) es el siguiente:

$$T(2^m) = \sum_{i=1}^{m} \sum_{j=0}^{M_i-1} c_{ij} R_i^m m^j = c_{10} 1^m + c_{11} 1^m m$$

Deshacemos el cambio de variable

$$T(n) = c_{10} + c_{11} log_2(n)$$

Aplicando la **regla de la suma**, es decir, eligiendo el máximo, obtenemos que el orden de eficiencia del algoritmo en el peor de los casos es O(log(n)).

2.5 Eficiencia práctica (insertarEnPos)

Tiempo (ns)
2204
2355
2555
2676
2755
2845
2845
2835
2735
2725
2966
2885
2846
2975
3086
2935
2986
3025

2.6 Eficiencia práctica (reestructurarRaiz)

Tam. Caso Tiempo (ns) 100000000 3647 200000000 3727 300000000 4208 400000000 4157 500000000 4238 60000000 4227 700000000 4298 800000000 4448 900000000 4309 1000000000 4247		
200000000 3727 300000000 4208 400000000 4157 500000000 4238 600000000 4227 700000000 4298 800000000 4448 900000000 4309	Tam. Caso	Tiempo (ns)
300000000 4208 400000000 4157 500000000 4238 600000000 4227 700000000 4298 800000000 4448 900000000 4309	100000000	3647
400000000 4157 500000000 4238 600000000 4227 700000000 4298 800000000 4448 900000000 4309	200000000	3727
500000000 4238 600000000 4227 700000000 4298 800000000 4448 900000000 4309	300000000	4208
600000000 4227 700000000 4298 800000000 4448 900000000 4309	400000000	4157
700000000 4298 800000000 4448 900000000 4309	500000000	4238
800000000 4448 900000000 4309	600000000	4227
900000000 4309	700000000	4298
	800000000	4448
1000000000 4247	900000000	4309
1	1000000000	4247
1100000000 4439	1100000000	4439
1200000000 4468	1200000000	4468
1300000000 4569	1300000000	4569
1400000000 4668	1400000000	4668
1500000000 4549	1500000000	4549
1600000000 4699	1600000000	4699
1700000000 4548	1700000000	4548
1800000000 4520	1800000000	4520

2.7 Eficiencia híbrida (insertarEnPos)

K=Tiempo/f(n)	Tiempo teórico estimado= K*f(n)
82,93376381	2510,960002
85,40212963	2605,444287
90,73028636	2660,714051
93,64690193	2699,928572
95,33745232	2730,345718
97,56386205	2755,198335
96,82542057	2776,210924
95,85661146	2794,412857
91,94714542	2810,468099
91,14519313	2824,830003
98,75192885	2837,821925
95,65527044	2849,68262
94,00227043	2860,593403
97,91730813	2870,695209
101,2390287	2880,099766
95,99212515	2888,897142
97,38156559	2897,161006
98,38886282	2904,952384
K promedio	94,48428482

Fig. 2. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo insertarEnPos

Conclusión: Al medir en nanosegundos, el ruido causado por la precisión de medir en esta unidad se hace mucho más notoria, lo que causa, que, la gráfica del tiempo práctico se sitúe, en muchos casos, por encima de la gráfica del tiempo teórico estimado. Sin embargo, sigue claramente la tendencia de la misma, de forma que podemos confirmar que esto es a causa del ruido. Por otra parte, podemos observar que, tanto el tiempo empírico como el teórico estimado, recorren una función log(n), lo cual nos confirma que el proceso de análisis se ha realizado correctamente.

2.8 Eficiencia híbrida (reestructurarRaiz)

K=Tiempo/f(n)	Tiempo teórico estimado= K*f(n)
137,2320493	3899,557536
135,1565763	4046,29301
149,4297632	4132,127759
145,474653	4193,028483
146,6570319	4240,266754
144,9569226	4278,863233
146,2761538	4311,49609
150,395135	4339,763957
144,8629797	4364,697982
142,0527102	4387,002228
147,7949468	4407,178873
148,1413339	4425,598706
150,9122887	4442,54331
153,639662	4458,231563
149,2340705	4472,836978
153,6855183	4486,49943
148,3226257	4499,333331
147,0141025	4511,433456
	_
K promedio	146,7354735

Fig. 3. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo reestructurarRaiz

Conclusión: Al medir en nanosegundos, el ruido causado por la precisión de medir en esta unidad se hace mucho más notoria, lo que causa, que, la gráfica del tiempo práctico se sitúe, en muchos casos, por encima de la gráfica del tiempo teórico estimado. Sin embargo, sigue claramente la tendencia de la misma, de forma que podemos confirmar que esto es a causa del ruido. Por otra parte, podemos observar que, tanto el tiempo empírico como el teórico estimado, recorren una función log(n), lo cual nos confirma que el proceso de análisis se ha realizado correctamente.

3 Algoritmo 3: HeapSort

3.1 Variables que influyen en el tamaño del caso

El tamaño del problema viene determinado por el parámetro "n", que indica cuántas veces se van a recorrer los bucles y el tamaño del vector.

3.2 Eficiencia teórica

```
void HeapSort(int *v, int n){
  double *apo=new double [n];
  int tamapo=0;

for (int i=0; i<n; i++){
    apo[tamapo]=v[i];
    tamapo++;
    insertarEnPos(apo,tamapo);
}

for (int i=0; i<n; i++) {
    v[i]=apo[0];
    tamapo--;
    apo[0]=apo[tamapo];
    reestructurarRaiz(apo, 0, tamapo);
}
  delete [] apo;
}</pre>
```

Calculamos el algoritmo HeapSort como un algoritmo iterativo, ya que tenemos la eficiencia de los algoritmos insertarEnPos y reestructurarRaiz, los cuáles son recursivos. Lo analizaremos de dentro hacia fuera.

Dentro del primer bucle "for" tenemos una asignación, la cuál es O(1), el incremento de una variable, el cuál es O(1), y la ejecución del algoritmo insertarEnPos, la cuál, como ya hemos visto anteriormente, tiene una eficiencia de $O(\log(n))$. De forma que $\max(O(1), O(1), O(\log(n))) = O(\log(n))$. Además el bucle se ejecuta siempre "n" veces, de forma que $n * (O(\log(n))) = O(n * \log(n))$.

Dentro del segundo bucle "for" tenemos una asignación, la cuál es O(1), el decremento de una variable, el cuál es O(1), y la ejecución del algoritmo reestructurarRaiz, la cuál, como ya hemos visto anteriormente, tiene una eficiencia de $O(\log(n))$. De forma que $\max(O(1), O(1), O(\log(n))) = O(\log(n))$. Además el bucle se ejecuta siempre "n" veces, de forma que $n * (O(\log(n))) = O(n * \log(n))$.

Las primeras dos sentencias de algoritmo consisten en la declaración de un vector y una variable, la cuáles son O(1). La última sentencia consiste en la llamada al operador "delete" para desasignar memoria dinámica. Como no sabemos cómo está implementado, pensamos en el peor de los casos, es decir, que consista en un bucle "for" que recorra "apo" y vaya eliminando sus valores, siendo su eficiencia de O(n).

Finalmente, podemos comprobar que max(O(1), O(1), O(n * log(n), O(n * log(n), O(n) = O(n * log(n)). Obtenemos que el orden de eficiencia del algoritmo en el peor de los casos es O(n * log(n)).

3.3 Eficiencia práctica

Tiempo (us)
517
1030
1556
2153
2774
1216
1280
1491
1682
2875
4093
6353
8731
11180
13761
16534
18858
21404
24234

3.4 Eficiencia híbrida

K=Tiempo/f(n)	Tiempo teórico estimado= K*f(n)
0,172333333	150,920917
0,156011912	332,1296494
0,149165539	524,7703283
0,149428383	724,8349294
0,149987699	930,4199085
0,053641756	1140,404103
0,047555912	1354,046685
0,047750629	1570,82112
0,04726288	1790,333717
0,071875	2012,278894
0,047581626	4327,43594
0,047299739	6756,912454
0,047429847	9260,628187
0,047584896	11819,5477
0,047999736	14422,45937
0,048750304	17061,95492
0,048076825	19732,76899
0,048003751	22430,96468
0,048468	25153,48617
K promedio	0,050306972

Fig. 4. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo HeapSort

Conclusión: El tiempo práctico se encuentra por debajo del tiempo teórico estimado (exceptuando los primeros casos), el cuál es el tiempo teórico utilizando la constante oculta de nuestro ordenador. Además, sigue la tendencia de una función nlog(n), lo cual nos confirma que el proceso de análisis se ha realizado correctamente.

4 Comparación en eficiencia teórica e híbrida de los algoritmos Burbuja, MergeSort y HeapSort

Burbuja:

Fig. 5. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo Burbuja

Mergesort:

Fig. 6. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo MergeSort

Heapsort:

Fig. 7. Comparación entre tiempo práctico y tiempo teórico estimado del algoritmo HeapSort

Gráfica Comparativa:

Fig. 8. Tabla comparativa de los algoritmos Burbuja, MergeSort y HeapSort

Como podemos observar, en términos generales, el algoritmo MergeSort es el más eficiente, aunque muy empatado con el HeapSort. El algoritmo Burbuja, en el caso de nuestro ordenador, no es más eficiente que ninguno de los otros dos en ningún caso (tampoco para casos pequeños), y hemos supuesto que esto se debe a la constante oculta, ya que la potencia de los ordenadores actuales ha cambiado considerablemente.