How does the machine

Learn the new things from data?

C.S Wang 2019. 07. 18

K Nearest Neighbor

K Nearest Neighbor

K is the Parameter

Depend on Top-K neighbors Ensemble

Distance Calculation

ex: Euclidean distance

K-Means

Naive Bayes

Likelihood Prior

Posterior

$$P(y \mid x) = \frac{P(x \mid y)P(y)}{\text{Evidence}}$$

$$P(x \mid x) = \frac{P(x \mid y)P(y)}{P(x)}$$

Before we start...

Some things you should know. One of most important thing is **creating a table** for your data.

Basic things

Step by Step

Prior

+ -

390/1000 610/1000

Likelihood

+	<u>50</u>	<u>70</u>	250	<u>190</u>	250	270
	150	230	500	191	660	530
-	100	160	250	1	410	260
	150	230	500	191	660	530

Likelihood

Informal, as a synonym for probability

- How well the data summarizes these parameter θ
- It represented by $L(\theta|x)$

$$L(\theta \mid x) = P(x \mid \theta)$$

Toy Example

Observed Data: HHTHTTH

What is θ ? How to estimated it?

+(Positive) or -(Negative)?

Naive Bayes

Inference

$$P(y \mid x) = \frac{P(x \mid y)P(y)}{P(x)}$$

Prior

+ -

390/1000 610/1000

Likelihood

Decision Tree

Decision Tree

To see how to make a decision

■ First, the data should be discrete

Transforming it, if it was continuous

How to find the suitable node to split it?

Information gain & Entropy

Basic idea! Information

Probability of event occurred

Information gain for event

Information Gain

Evaluated your information

Which is more important?

Event A has 95% to occur Event B has 5% to occur

■ (Shannon) Information Gain

$$IG(E) = -logP(E)$$

Entropy

Information overall uncertainty

Expectation of information gain

$$H(X) = -\sum_{i=1}^{n} P(x_i) log P(x_i)$$

■ Fair dice vs unfair dice

Does large value means better?

Noooooo!! it's more uncertainty

Logistic Regression

Logistic Regression

The significance of weight

- How to split these data into two parts?Assume this is a binary classifier
- Logistic Function

$$h(x) = \frac{1}{1 + e^{-W^T X}}$$

Weight update

Gradient descent

How about linear regression?

$$h(x) = W^T X + b$$

Support Vector Machine

- Support Vector Machine
 Going into high dimension space
- Why we need this?(Don't forget logistic regression)
- Support Vector & Support Plane

How to calculate the similarity in high dimension space?

Using Kernel Function ex: linear, Polynomial, RBF