Problem Set 22: 布尔代数引论

提交截止时间: 5月27日10:00

Problem 1

设 B 是布尔代数, B 中的表达式 f 是 $(a \land b) \lor (a \land b \land c) \lor (b \land c)$.

- (1) 化简 f;
- (2) 求 f 的对偶式 f^* .

Problem 2

设 $< B, \land, \lor, ', 0, 1 >$ 是布尔代数, 证明 $\forall a, b \in B$ 有以下命题成立

- $(1) \ a \lor (a' \land b) = a \lor b$
- (2) $a \wedge b' = 0 \Leftrightarrow a' \vee b = 1 \Leftrightarrow a \leq b$

Problem 3

设 B 是布尔代数, $\forall a,b,c \in B$,若 $a \preceq c$,则 $a \lor (b \land c) = (a \lor b) \land c$,称这个等式为模律。证明布尔代数适合模律。

Problem 4

设 B 是布尔代数, $a_1, a_2, \dots, a_n \in B$, 证明:

- $(1) (a_1 \vee a_2 \vee \cdots \vee a_n)' = a_1' \wedge a_2' \wedge \cdots \wedge a_n'$
- $(2) (a_1 \wedge a_2 \wedge \cdots \wedge a_n)' = a_1' \vee a_2' \vee \cdots \vee a_n'$

Problem 5

设 $(B, \lor, \land, -, 0, 1)$ 和 $(S, +, *, \neg, \hat{0}, \hat{1})$ 是两个布尔代数, f 是 B 到 S 的映射。

证明: 如果对于任意的 $a,b \in B$, 有

- $(1) f(a \wedge b) = f(a) * f(b)$
- (2) $f(\bar{a}) = \neg f(a)$

则 f 是一个同态映射。

Problem 6

设 $< B, \land, \lor, ', 0, 1 >$ 是布尔代数, 在 B 上定义二元运算 $\oplus, \forall x, y \in B$ 有

$$x \oplus y = (x \wedge y') \vee (x' \wedge y).$$

证明 $\langle B, \oplus \rangle$ 是交换群, 并且 $\forall x, y, z \in B$ 有

$$(x \oplus y) \wedge z = (x \wedge z) \oplus (y \wedge z),$$

$$x \wedge (y \oplus z) = (x \wedge y) \oplus (x \wedge z).$$

注记: 这个练习给出了布尔代数上的环结构。

Problem 7

设 S 是命题逻辑中的全体公式,在其上定义定价关系 ~ 如下: 称 $\phi \sim \psi$, 如果 $\phi \leftrightarrow \psi$ 是重言式。记 S 在 ~ 下的全体等价类为 S/\sim , 试在 S/\sim 上定义 $\wedge,\vee,'$ 0,1 使其成为一个布尔代数。

Problem 8

设 $(B, \lor, \land, -, 0, 1)$ 是一个布尔代数, n 元集合 $A \subseteq B$ 。记

$$A^* = \bigcap \{X | A \subseteq X \subseteq B \ X \in B$$
的子布尔代数}

证明 A^* 的基数不超过 2^{2^n} 。