Employee Data Analysis

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings	age	previous_year_rating	length_of_service	KPIS_Met >80%	awards _.
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1	35	5.0	8	1	
1	65141	Operations	region_22	Bachelor's	m	other	1	30	5.0	4	0	
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1	34	3.0	7	0	
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2	39	1.0	10	0	
4	48945	Technology	region_26	Bachelor's	m	other	1	45	3.0	2	0	
4												

```
In [5]: test.head()
Out[5]:
                                                                                                                                                     KPIs_met >80%
                                          region education gender recruitment_channel no_of_trainings age previous_year_rating length_of_service
              employee_id department
                                                                                                                                                               awards
           0
                            Technology
                                       region 26 Bachelor's
                                                                                sourcing
                                                                                                      1
                                                                                                          24
                                                                                                                             NaN
                                                                                                                                                  1
                     8724
                                                                                                                                                            1
                                                                 m
                                        region 4 Bachelor's
           1
                    74430
                                   HR
                                                                  f
                                                                                   other
                                                                                                          31
                                                                                                                              3.0
                                                                                                                                                  5
                                                                                                                                                            0
                               Sales &
                                       region 13 Bachelor's
           2
                    72255
                                                                                                          31
                                                                                                                              1.0
                                                                                                                                                  4
                                                                                                                                                            0
                                                                 m
                                                                                   other
                             Marketing
```

other

sourcing

3

31

30

2.0

4.0

9

7

0

0

38562 Procurement

'avg training score'],

dtype='object')

64486

region 2 Bachelor's

Finance region 29 Bachelor's

f

m

3

4

In [9]: train.describe()

Out[9]:

	employee_id	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?	avg_training_score	is_promoted
count	54808.000000	54808.000000	54808.000000	50684.000000	54808.000000	54808.000000	54808.000000	54808.000000	54808.000000
mean	39195.830627	1.253011	34.803915	3.329256	5.865512	0.351974	0.023172	63.386750	0.085170
std	22586.581449	0.609264	7.660169	1.259993	4.265094	0.477590	0.150450	13.371559	0.279137
min	1.000000	1.000000	20.000000	1.000000	1.000000	0.000000	0.000000	39.000000	0.000000
25%	19669.750000	1.000000	29.000000	3.000000	3.000000	0.000000	0.000000	51.000000	0.000000
50%	39225.500000	1.000000	33.000000	3.000000	5.000000	0.000000	0.000000	60.000000	0.000000
75%	58730.500000	1.000000	39.000000	4.000000	7.000000	1.000000	0.000000	76.000000	0.000000
max	78298.000000	10.000000	60.000000	5.000000	37.000000	1.000000	1.000000	99.000000	1.000000

In [15]: train.shape

Out[15]: (54808, 14)

Missing data/values

```
In [22]: train.isnull().sum()
Out[22]: employee id
                                     0
         department
                                     0
         region
                                     0
         education
                                 2409
         gender
         recruitment channel
                                     0
         no of trainings
                                     0
         age
                                     0
         previous year rating
                                 4124
         length of service
                                     0
         KPIs_met >80%
         awards won?
                                     0
         avg training score
         is promoted
         dtype: int64
```

Handling missing values

```
In [17]: #filling the missing values for categorical terms - mode()
    train['education'] = train['education'].fillna(train['education'].mode()[0])
    #filling the missing values for numerical terms - mean()
    train['previous_year_rating'] = train['previous_year_rating'].fillna(train['previous_year_rating'].mean())
```

```
In [18]: train.isnull().sum()
Out[18]: employee_id
                                  0
         department
                                  0
         region
                                  0
         education
                                  0
         gender
                                  0
         recruitment_channel
                                  0
         no_of_trainings
                                  0
                                  0
         age
         previous_year_rating
                                  0
         length_of_service
                                  0
         KPIs met >80%
                                  0
         awards_won?
                                  0
         avg_training_score
                                  0
         is promoted
         dtype: int64
```

Building Baseline model

Calculate the arithmetic mean of the Train data set

```
In [7]: hist_mean = np.mean(train.avg_training_score)
hist_mean
```

Out[7]: 63.38675010947307

```
In [8]: test.age
 Out[8]: 0
                    24
                    31
                    31
          2
                    31
                    30
                    . .
          23485
                    24
          23486
                    31
          23487
                    26
          23488
                    27
          23489
                    40
          Name: age, Length: 23490, dtype: int64
In [36]: pred_hist_mean = pd.DataFrame()
In [42]: # Defining the columns of the Dataframe
          pred_hist_mean["Age"] = test.age
pred_hist_mean["Pred"] = 63.38
```

```
In [43]: pred_hist_mean
Out[43]:
                Age Pred
                 24
                     63.38
                  31 63.38
                  31 63.38
                  31 63.38
                  30
                    63.38
                  24 63.38
          23485
          23486
                  31 63.38
                  26 63.38
          23487
                  27 63.38
          23488
          23489
                  40 63.38
         23490 rows × 2 columns
In [40]: def mape(y_true, y_pred):
              return np.mean(np.abs((y_true - y_pred)/y_true))*100
In [45]: pred_error = mape(test.avg_training_score, pred_hist_mean.Pred)
In [46]: pred_error
Out[46]: 18.78485287924473
```

This baseline model has 18% error, so it's a better model.

```
In [14]: train['department'].value counts()
Out[14]: Sales & Marketing
                              16840
         Operations
                              11348
         Technology
                               7138
         Procurement
                               7138
         Analytics
                               5352
         Finance
                               2536
         HR
                               2418
         Legal
                               1039
         R&D
                                999
         Name: department, dtype: int64
```

Percentage of people who got promoted from each department

```
In [16]: plt.rcParams['figure.figsize'] = [10, 5]
         ct = pd.crosstab(train.department,train.is_promoted,normalize='index')
         ct.plot.bar(stacked=True)
         plt.legend(title='is_promoted',bbox_to_anchor=(1,0.5))
```

Out[16]: <matplotlib.legend.Legend at 0x1da4e950790>

Technology department had highest percentage of employees getting promoted, Legal department has the least number. But we don't see major differences in terms of percentages.

Distribution of promotions among people with different Educational backgrounds

```
In [17]: plt.rcParams['figure.figsize'] = [5, 5]
    edu = pd.crosstab(train.education,train.is_promoted,normalize='index')
    edu.plot.bar(stacked=True)
    plt.rcParams['figure.figsize'] = [5, 5]
    plt.legend(title='is_promoted',bbox_to_anchor=(1,0.5))
```

Out[17]: <matplotlib.legend.Legend at 0x1da4e950430>

percentages are pretty much the same aross different educational backgrounds.

Distribution of average training score

```
In [19]: bins = [30,40,50,60,70,80,90,100]
         labels = ['30-40','40-50','50-60','60-70','70-80','80-90','90-100']
         train['score binned'] = pd.cut(train['avg training score'], bins=bins, labels=labels)
         train['score binned'].value counts()
Out[19]: 50-60
                   16020
         40-50
                   11996
         60-70
                    9973
         80-90
                    8739
         70-80
                    7494
         90-100
                     579
         30-40
         Name: score binned, dtype: int64
```

While most of the employees have score in the range of 50-60, the least score bin has very faint number

Mean score of employees with different educational background

Mean training score doesn't vary with education

Filling the missing values

```
In [22]: train.isnull().any()
Out[22]: employee id
                                  False
         department
                                  False
         region
                                  False
         education
                                   True
         gender
                                  False
         recruitment channel
                                  False
         no of trainings
                                  False
         age
                                  False
         previous year rating
                                   True
         length of service
                                  False
         KPIs met >80%
                                  False
         awards won?
                                  False
         avg training score
                                  False
         is promoted
                                  False
         score_binned
                                  False
         dtype: bool
         Fill missing values of 'previous year rating' with mean based on 'KPIs met >80%' and 'education' with median based on 'department'
In [57]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
In [60]: data = pd.read_csv("C:/Users/Radhakrishnan Nair/Downloads/startup_funding.csv")
In [61]: data.columns
Out[61]: Index(['Sr No', 'Date dd/mm/yyyy', 'Startup Name', 'Industry Vertical',
                 'SubVertical', 'City Location', 'Investors Name', 'InvestmentnType',
                 'Amount in USD', 'Remarks'],
                dtype='object')
```

In [62]: data.head()

Out[62]:

:	S No		Date dd/mm/yyyy	Startup Name	Industry Vertical	SubVertical	City Location	Investors Name	InvestmentnType	Amount in USD	Remarks
_	0	1	09/01/2020	BYJU'S	E-Tech	E-learning	Bengaluru	Tiger Global Management	Private Equity Round	20,00,00,000	NaN
,	1 :	2	13/01/2020	Shuttl	Transportation	App based shuttle service	Gurgaon	Susquehanna Growth Equity	Series C	80,48,394	NaN
:	2 :	3	09/01/2020	Mamaearth	E-commerce	Retailer of baby and toddler products	Bengaluru	Sequoia Capital India	Series B	1,83,58,860	NaN
;	3 4	4	02/01/2020	https://www.wealthbucket.in/	FinTech	Online Investment	New Delhi	Vinod Khatumal	Pre-series A	30,00,000	NaN
	4 :	5	02/01/2020	Fashor	Fashion and Apparel	Embroiled Clothes For Women	Mumbai	Sprout Venture Partners	Seed Round	18,00,000	NaN

In [63]: data.tail(20)

Out[63]:

•		Sr No	Date dd/mm/yyyy	Startup Name	Industry Vertical	SubVertical	City Location	Investors Name	InvestmentnType	Amount in USD	Remarks
	3024	3025	20/01/2015	HealthyWorld.in	NaN	NaN	NaN	Group of Angel Investors	Seed Funding	2,00,000	NaN
;	3025	3026	21/01/2015	Simplilearn	NaN	NaN	NaN	Mayfield India, Kalaari Capital, Helion Ventures	Private Equity	1,47,50,000	NaN
	3026	3027	21/01/2015	MyDreamStore	NaN	NaN	NaN	Undisclosed Investors	Seed Funding	3,25,000	NaN
;	3027	3028	21/05/2015	Knit	NaN	NaN	NaN	Rohit Jain, Amit Rambhia & Others	Seed Funding	NaN	NaN
	3028	3029	21/05/2015	Villgro	NaN	NaN	NaN	Michael & Susan Dell Foundation	Seed Funding	32,50,000	To fund edu startups
;	3029	3030	22/01//2015	Corporate360	NaN	NaN	NaN	Group of Angel Investors	Seed Funding	2,00,000	NaN
;	3030	3031	22/01/2015	Freshmonk	NaN	NaN	NaN	August Capital Partners, Michael Blakey	Seed Funding	NaN	NaN
	3031	3032	22/01/2015	Englishleap.com	NaN	NaN	NaN	ANALEC	Private Equity	NaN	Majority Stake
	3032	3033	22/01/2015	Antuit	NaN	NaN	NaN	Goldman Sachs, Zodius Capital	Private Equity	5,60,00,000	NaN
;	3033	3034	22/01/2015	Caratlane.com	NaN	NaN	NaN	Tiger Global	Private Equity	3,10,00,000	Series D
	3034	3035	24/01/2015	Aasaanjobs	NaN	NaN	NaN	Inventus Capital Partners, IDG Ventures	Seed Funding	15,00,000	NaN
	3035	3036	24/01/2015	Impartus	NaN	NaN	NaN	Kaizen Private Equity	Private Equity	NaN	Series A
	3036	3037	25/01/2015	Thrill App	NaN	NaN	NaN	People Group (Shaadi.com)	Private Equity	10,00,000	Strategic Funding
	3037	3038	27/01/2015	CarDekho.com	NaN	NaN	NaN	Hillhouse Capital, Tybourne Capital	Private Equity	5,00,00,000	Series B
	3038	3039	28/01/2015	Grabhouse.com	NaN	NaN	NaN	Kalaari Capital, Sequoia Capital	Private Equity	25,00,000	Series A
	3039	3040	29/01/2015	Printvenue	NaN	NaN	NaN	Asia Pacific Internet Group	Private Equity	45,00,000	NaN
	3040	3041	29/01/2015	Graphene	NaN	NaN	NaN	KARSEMVEN Fund	Private Equity	8,25,000	Govt backed VC Fund
;	3041	3042	30/01/2015	Mad Street Den	NaN	NaN	NaN	Exfinity Fund, GrowX Ventures.	Private Equity	15,00,000	NaN
:	3042	3043	30/01/2015	Simplotel	NaN	NaN	NaN	MakeMyTrip	Private Equity	NaN	Strategic Funding, Minority stake
;	3043	3044	31/01/2015	couponmachine.in	NaN	NaN	NaN	UK based Group of Angel Investors	Seed Funding	1,40,000	NaN

```
In [64]: data.shape
Out[64]: (3044, 10)
In [65]: data.describe()
```

Out[65]:		Sr No
	count	3044.000000
	mean	1522.500000
	std	878.871435
	min	1.000000
	25%	761.750000
	50%	1522.500000
	75%	2283.250000
	max	3044.000000

```
In [67]: data['Date dd/mm/yyyy'][data['Date dd/mm/yyyy']=='12/05.2015'] = '12/05/2015'
         data['Date dd/mm/yyyy'][data['Date dd/mm/yyyy']=='13/04.2015'] = '13/04/2015'
         data['Date dd/mm/yyyy'][data['Date dd/mm/yyyy']=='15/01.2015'] = '15/01/2015'
         data['Date dd/mm/vvvv'][data['Date dd/mm/vvvv']=='22/01//2015'] = '22/01/2015'
         <ipython-input-67-14249c5b0153>:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-vers
         us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)
           data['Date dd/mm/yvvv'][data['Date dd/mm/yvvv']=='12/05.2015'] = '12/05/2015'
         <ipython-input-67-14249c5b0153>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-vers
         us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)
           data['Date dd/mm/yyyy'][data['Date dd/mm/yyyy']=='13/04.2015'] = '13/04/2015'
         <ipython-input-67-14249c5b0153>:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-vers
         us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)
           data['Date dd/mm/yyyy'][data['Date dd/mm/yyyy']=='15/01.2015'] = '15/01/2015'
         <ipython-input-67-14249c5b0153>:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-vers
         us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
           data['Date dd/mm/yyyy'][data['Date dd/mm/yyyy']=='22/01//2015'] = '22/01/2015'
In [72]: totalStartupCount = sum(data['Startup Name'].value_counts())
         print("Total Number of startUps:", totalStartupCount)
```

Total Number of startUps: 3044

EDA on this dataset

```
In [76]: #Lets check first in which year how many funding is received by all startups together
         yearCount = data['Date dd/mm/yyyy'].value_counts()
         print(yearCount)
         08/07/2015
                       11
         02/02/2015
                       11
         30/11/2016
                       11
         04/10/2016
                       10
         29/01/2016
                       9
         09/01/2017
                       1
         13/03/2018
                        1
         18/03/2016
                       1
         19/07/2018
                       1
         22/01/2017
                        1
```

Name: Date dd/mm/yyyy, Length: 1032, dtype: int64

```
In [84]: plt.figure(figsize=(12,6))
    sns.barplot(yearCount.index, yearCount.values, alpha=0.8)
    plt.xticks(rotation='vertical')
    plt.xlabel('Year of Funding', fontsize=12)
    plt.ylabel('Number of Fundings', fontsize=12)
    plt.title("Year Distribution", fontsize=16)
    plt.show()
```



```
In [89]: #Now Lets check which Location recieved higest startup
    cityCount = data['City Location'].value_counts()[:10]
    print(cityCount)

Bangalore 700
    Mumbai 567
    New Delhi 421
```

Gurgaon 287
Bengaluru 141
Pune 105
Hyderabad 99
Chennai 97
Noida 92
Gurugram 50

Name: City Location, dtype: int64

```
In [90]: plt.figure(figsize=(12,6))
    sns.barplot(cityCount.index, cityCount.values, alpha=0.8)
    plt.xticks(rotation='vertical')
    plt.xlabel('Location', fontsize=12)
    plt.ylabel('Number of Startups', fontsize=12)
    plt.title("Location of Startups", fontsize=16)
    plt.show()
```


- We can see here that Banglore the electronic city of india is hot favourite for startups
- Difference between Banglore and Mumbai is having huge number of difference compare to difference between other cities

```
In [92]: data['InvestmentnType'][data['InvestmentnType']=='SeedFunding'] = 'Seed Funding'
data['InvestmentnType'][data['InvestmentnType']=='PrivateEquity'] = 'Private Equity'
data['InvestmentnType'][data['InvestmentnType']=='Crowd funding'] = 'Crowd Funding'
investTypes = data['InvestmentnType'].value_counts()
print(investTypes)
```

Private Equity	1357
Seed Funding	1355
Seed/ Angel Funding	60
Seed / Angel Funding	47
Seed\\nFunding	30
Debt Funding	25
Series A	24
Seed/Angel Funding	23
Series B	20
Series C	14
Series D	12
Angel / Seed Funding	8
Seed Round	7
Pre-Series A	4
Private Equity Round	4
Seed	4
Seed / Angle Funding	3
Corporate Round	2
pre-Series A	2
Series F	2 2
Equity	2
Crowd Funding	2
Venture Round	2
Series E	2
Series H	1
Angel Funding	1
Angel	1
Series J	1
Debt-Funding	1
Single Venture	1
Maiden Round	1
Debt and Preference capital	1
Pre Series A	1
pre-series A	1
Venture - Series Unknown	1
Mezzanine	1
Structured Debt	1
Debt	1
Angel Round	1

```
Bridge Round
                                  1
                                  1
Term Loan
Seed funding
                                  1
Seed Funding Round
                                  1
Venture
                                  1
Private Funding
                                  1
Equity Based Funding
                                  1
Series B (Extension)
                                  1
Funding Round
                                  1
Inhouse Funding
                                  1
Series G
                                  1
Private
                                  1
Pre-series A
                                  1
Private\\nEquity
Name: InvestmentnType, dtype: int64
<ipython-input-92-abab9ef6bd52>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-vers
us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)
  data['InvestmentnType'][data['InvestmentnType']=='SeedFunding'] = 'Seed Funding'
<ipython-input-92-abab9ef6bd52>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-vers
us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)
  data['InvestmentnType'][data['InvestmentnType']=='PrivateEquity'] = 'Private Equity'
<ipython-input-92-abab9ef6bd52>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-vers
us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)
  data['InvestmentnType'][data['InvestmentnType']=='Crowd funding'] = 'Crowd Funding'
```

```
In [94]: plt.figure(figsize=(12,6))
    sns.barplot(investTypes.index, investTypes.values, alpha=0.8)
    plt.xticks(rotation='vertical')
    plt.xlabel('Funding Type', fontsize=12)
    plt.ylabel('Number of Startups', fontsize=12)
    plt.title("Funding types distribution", fontsize=16)
    plt.show()
```


Seed Funding and Private Equity funding are the two major funding types of investment in startups

Undisclosed 11 Name: Investors Name, dtype: int64

15

12

12

Group of Angel Investors

Undisclosed Investor

Accel Partners

```
In [97]: plt.figure(figsize=(12,6))
    sns.barplot(investorCounts.index, investorCounts.values, alpha=0.8)
    plt.xticks(rotation='vertical')
    plt.xlabel('Investors', fontsize=12)
    plt.ylabel('Number of Startups', fontsize=12)
    plt.title("Investors distribution", fontsize=16)
    plt.show()
```


We have some ambiguity here i	in name 'Undisclosed Investors' we need to e	remove this duplication from our dataset	we'll process this attribute and make all

```
In [99]: data['Industry Vertical'][data['Industry Vertical']=='eCommerce'] = 'ECommerce'
         industryCounts = data['Industry Vertical'].value counts()[:15]
         print(industryCounts)
         Consumer Internet
                              941
         Technology
                              478
                              247
         ECommerce
         Healthcare
                               70
         Finance
                               62
         Logistics
                               32
         E-Commerce
                               29
                               24
         Education
         Food & Beverage
                               23
         Ed-Tech
                               14
         E-commerce
                               12
         FinTech
                                9
                                8
         ΙT
         Ecommerce
                                8
         Real Estate
         Name: Industry Vertical, dtype: int64
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-vers

us-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy)

<ipython-input-99-24a1da23a2b3>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

data['Industry Vertical'][data['Industry Vertical']=='eCommerce'] = 'ECommerce'

```
In [100]: plt.figure(figsize=(12,6))
    sns.barplot(industryCounts.index, industryCounts.values, alpha=0.8)
    plt.xticks(rotation='vertical')
    plt.xlabel('Industry', fontsize=12)
    plt.ylabel('Number of Startups', fontsize=12)
    plt.title("Industry distribution", fontsize=16)
    plt.show()
```


- Majority of startups are working in 'Consumer Internet'
- 2nd heighest that is 'technology' some startups interested in developing technologies

Food Delivery Platform 8
Education 5
Online Lending 5

Name: SubVertical, dtype: int64

• Online Pharmacy is the main concentartion followed by Food Delivery platform for new startups

Outputs

- estimating the percentage error to find the best baseline model
- Percentage of people who got promoted from each department
- Distribution of promotions among people with different Educational backgrounds
- · Mean score of employees with different educational background
- Filling the missing values

Final EDA

- Q.Which are the best Cities for Startups in India?
- A. Banglore the electronic city of india is hot favourite for startups followed by Mumbai and New Delhi.
- Q.Which type of funding is done in India for startups Ecosystem?
- A.Seed Funding and Private Equity funding are the two major funding types of investment in startups
- Q.Which are the Top domains where new startups are Imerging?

A.Majority of startups are working in Consumer Internet,

2nd heighest that is technology some startups interested in developing new technologies

Q. Which types of services are the main concentation for new satrtups?

A.Online Pharmacy is the main concentartion followed by Food Delivery platform for new startups