QUALIFYING EXAM IN ANALYSIS AUGUST 1993

1. Let E and F be disjoint closed subsets of a metric space (X,d). Show that there is a continuous function $f: X \to [0,1]$ such that

$$f(x) = \begin{cases} 0 & \text{for all } x \in E, \\ 1 & \text{for all } x \in F. \end{cases}$$

2. Let E be a measurable subset of $\mathbb R$ with $m(E)<\infty$. Prove that given $\epsilon>0$, there exists a compact set $F\subset E$, such that

$$m(E \sim F) < \epsilon$$
.

- 3. State and prove Egoroff's theorem.
- 4. Let $f \in L^1(\mathbb{R})$ and define $g: \mathbb{R} \to \mathbb{C}$ by

$$g(t) = \int_{\mathbb{R}} f(x) e^{itx} dx.$$

Prove that if $xf(x) \in L^1(\mathbb{R})$, then g is differentiable on \mathbb{R} and

$$g'(t) = \int_{\mathbb{R}} ix e^{itx} f(x) dx.$$

- 5. Let $\{p_n\}$ be a sequence of 2π -periodic measurable functions on $\mathbb R$ satisfying
 - (a) $p_n(t) \ge 0$ for all n and t,
 - (b) $\int_{-\pi}^{\pi} p_n(t)dt = 1,$
 - (c) For each $\delta > 0$, $\lim_{n \to \infty} \int_{\delta \le |t| \le \pi} p_n(t) dt = 0$.

For f continuous and 2π -periodic on $\mathbb R$, set

$$f_n(x) = \int_{-\pi}^{\pi} p_n(x-t)f(t)dt.$$

Prove that $\lim_{n\to\infty} f_n(x) = f(x)$ uniformly on $\mathbb R$.

6. Definition. $f:[a,b] \to \mathbb{R}$ is in $Lip_1([a,b])$ if there exists a positive constant M such that $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in [a,b]$.

a. Prove that if $f \in Lip_1([a,b])$, then f is absolutely continuous on [a,b].

- b. If f is absolutely continuous on [a,b], prove that $f \in Lip_1([a,b])$ if and only if $f' \in L^{\infty}([a,b])$.
- 7. Let f be defined by

$$f(x) = \begin{cases} x^{-1/3}, & 0 < |x| < 1, \\ 0, & x = 0, \text{ or } |x| \ge 1, \end{cases}$$

and let $\{r_n\}$ be an enumeration of the rationals in $\mathbb R$.

a. Prove that

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x - r_n)$$

converges almost everywhere and that the function F is integrable.

- b. Compute $\int_{-\infty}^{\infty} F(x) dx$.
- 8. True or False! If the result is true, prove it; if the result is false, provide a counterexample.
 - a. If f is monotone increasing on [a,b] and f'(x) = 0 a.e. on [a,b], then f is constant on [a,b].
 - b. If f is monotone on [a,b] and f' exists a.e. on [a,b], then $f' \in L^1([a,b])$.
 - c. If f is differentiable on (a,b), $c \in (a,b)$, then

$$\lim_{x\to c}f'(x)=f'(c).$$

- d. If f is non-constant and analytic in the open disk $D=\{z:|z-3|<2\}$ and continuous on the closed disk $\overline{D}=\{z:|z-3|\leq 2\}$, then the minimum value $m=\min\{|f(z)|:z\in\overline{D}\}$ cannot be attained by |f| at any point inside D.
- 9. State and prove (using complex methods) the Fundamental Theorem of Algebra.
- 10. a. State the Residue Theorem.
 - b. Evaluate $\int_{\Gamma} \frac{z}{z^4 1} dz$, where Γ is the ellipse (counterclockwise orientation)

$$\frac{x^2}{3} + 4y^2 = 1.$$