import pandas as pd
import numpy as np
import numpy.random as rd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

df=pd.read_csv('airquality1.txt',index_col=0)
df

	Ozone	Solar.R	Wind	Temp	Month	Day
1	41.0	190.0	7.4	67	5	1
2	36.0	118.0	8.0	72	5	2
3	12.0	149.0	12.6	74	5	3
4	18.0	313.0	11.5	62	5	4
5	NaN	NaN	14.3	56	5	5
•••	•••	•••	•••	•••	•••	•••
149	30.0	193.0	6.9	70	9	26
150	NaN	145.0	13.2	77	9	27
151	14.0	191.0	14.3	75	9	28
152	18.0	131.0	8.0	76	9	29
153	20.0	223.0	11.5	68	9	30

153 rows × 6 columns

df.isnull().sum()

Ozone 37
Solar.R 7
Wind 0
Temp 0
Month 0
Day 0
dtype: int64

mean=df.mean() mean

Ozone 42.129310 Solar.R 185.931507 Wind 9.957516 Temp 77.882353 Month 6.993464 Day 15.803922

dtype: float64

```
mean_Ozone=df['Ozone'].mean()
mean_Ozone
```

42.12931034482759

```
df2=df['Ozone'].replace(np.nan,mean_Ozone)
df2
```

```
41.00000
1
2
    36.00000
     12.00000
3
4
     18.00000
5
    42.12931
       . . .
149 30.00000
150 42.12931
151 14.00000
152 18.00000
153
     20.00000
Name: Ozone, Length: 153, dtype: float64
```

df2=df.replace(np.nan,mean)

df2

	Ozone	Solar.R	Wind	Temp	Month	Day
1	41.00000	190.000000	7.4	67	5	1
2	36.00000	118.000000	8.0	7 2	5	2
3	12.00000	149.000000	12.6	74	5	3
4	18.00000	313.000000	11.5	62	5	4
5	42.12931	185.931507	14.3	56	5	5
•••	•••		• • •	•••	•••	•••
149	30.00000	193.000000	6.9	70	9	26
150	42.12931	145.000000	13.2	77	9	27
151	14.00000	191.000000	14.3	7 5	9	28
152	18.00000	131.000000	8.0	76	9	29
153	20.00000	223.000000	11.5	68	9	30
153 rows × 6 columns						

sns.lineplot(data=df2,x='Temp',y='Ozone')

<matplotlib.axes._subplots.AxesSubplot at 0x7f6b86c07d90>

#sns.lineplot(data=df, x="Temp", y="Day", hue="Month")
sns.scatterplot(data=df2,x="Temp",y="Day",hue="Month")

<matplotlib.axes._subplots.AxesSubplot at 0x7f6b86aee590>

X=df2[['Temp']]
y=df2[['Ozone']]
X,y

```
5 42.12931
... ...
149 30.00000
150 42.12931
151 14.00000
152 18.00000
153 20.00000
[153 rows x 1 columns])
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
```

X_train

	Temp	7
127	93	
103	86	
93	81	
23	61	
67	83	
•••	•••	
10	69	
104	86	
68	88	
118	86	
48	72	
122 r	ows × 1 colu	umns

X_test

	Temp	
27	57	
136	77	
64	81	
106	80	
25	57	
8	59	
45	80	
102	92	
113	77	
55	76	
87	82	
95	82	
84	82	
140	67	
105	82	
41	87	
34	67	
112	78	
70	92	
120	97	
57	78	
9	61	
137	71	
81	85	

y_train

Ozone	2
91.00000	
42.12931	
39.00000	
4.00000	
40.00000	
	91.00000 42.12931 39.00000 4.00000

y_test

```
Ozone
      27
            42.12931
      136
            28.00000
      64
            32.00000
            65.00000
      106
            42.12931
      25
       8
            19.00000
from sklearn.linear model import LinearRegression
regressor=LinearRegression()
regressor.fit(X_train,y_train)
     LinearRegression()
y_predict=regressor.predict(X_test)
y_predict
     array([[7.05931271e-02],
            [4.04125964e+01],
            [4.84809970e+01],
            [4.64638969e+01],
            [7.05931271e-02],
            [4.10479345e+00],
            [4.64638969e+01],
            [7.06690988e+01],
            [4.04125964e+01],
            [3.83954962e+01],
            [5.04980972e+01],
            [5.04980972e+01],
            [5.04980972e+01],
            [2.02415948e+01],
            [5.04980972e+01],
            [6.05835980e+01],
            [2.02415948e+01],
            [4.24296965e+01],
            [7.06690988e+01],
            [8.07545996e+01],
            [4.24296965e+01],
            [8.13899378e+00],
            [2.83099954e+01],
            [5.65493977e+01],
            [5.04980972e+01],
            [6.46177983e+01],
            [2.83099954e+01],
            [5.25151974e+01],
            [4.84809970e+01],
            [4.04125964e+01],
            [1.82244946e+01]])
```

plt.scatter(X_train, y_train,color='g')

plt.plot(X_test, y_predict,color='k')

from sklearn.metrics import mean_squared_error
MSE=mean_squared_error(y_test,y_predict)
MSE

483.6166845156324

from sklearn.metrics import mean_squared_error
RMSE=mean_squared_error(y_test,y_predict,squared=False)
RMSE

21.991286558899468

import sklearn.metrics as met
r2score=met.r2_score(y_test,y_predict)
r2score

0.18150617685884907

```
X2=df2[["Temp","Solar.R","Wind"]]
y2=df2[["Ozone"]]
X2
```

	Temp	Solar.R	Wind	7
1	67	190.000000	7.4	
2	72	118.000000	8.0	
3	74	149.000000	12.6	
4	62	313.000000	11.5	

y2

	Ozone	7
1	41.00000	
2	36.00000	
3	12.00000	
4	18.00000	
5	42.12931	
•••	•••	
149	30.00000	
150	42.12931	
151	14.00000	
152	18.00000	
153	20.00000	
153 r	ows × 1 columns	

X2.shape

(153, 3)

 $\label{lem:condition} X2_train, X2_test, y2_train, y2_test=train_test_split(X2, y2, test_size=0.2, random_state=0)$

y2.shape

(153, 1)

X2_train

	Temp	Solar.R	Wind	1
127	93	189.0	4.6	
103	86	137.0	11.5	
93	81	83.0	6.9	
23	61	25.0	9.7	
67	83	314.0	10.9	
•••	•••	•••	•••	
10	69	194.0	8.6	
104	86	192.0	11.5	
68	88	276.0	5.1	

X2_test

	Temp	Solar.R	Wind	1
27	57	185.931507	8.0	
136	77	238.000000	6.3	
64	81	236.000000	9.2	
106	80	157.000000	9.7	
25	5 7	66.000000	16.6	
8	59	99.000000	13.8	
45	80	332.000000	13.8	
102	92	222.000000	8.6	
113	77	259.000000	15.5	
55	76	250.000000	6.3	

y2_train

Ozone

1

103 42.12931

93 39.00000

4.00000

67 40.00000

...

10 42.12931

104 44.00000

68 77.00000

118 73.00000

48 37.00000

122 rows × 1 columns

y2_test

	Ozone
27	42.12931
136	28.00000
64	32.00000
106	65.00000
25	42.12931
8	19.00000
45	42.12931
102	42.12931
113	21.00000
55	42.12931
87	20.00000
95	16.00000
84	42.12931
140	18.00000
105	28.00000
41	39.00000
34	42.12931
112	44.00000
70	97.00000
120	76.00000
57	42.12931
9	8.00000
137	9.00000
81	63.00000
38	29.00000

```
MSE2=mean_squared_error(y2_test,y2_predict)
MSE2
```

483.6166845156324

99 122.00000

52 ДЭ 12021

RMSE2=mean_squared_error(y2_test,y2_predict,squared=False)
RMSE2

r2score2=met.r2_score(y_test,y_predict)
r2score2

0.18150617685884907

Colab paid products - Cancel contracts here

×

✓ 0s completed at 2:08 PM