Data Continuity Matters

Improving Sequence Modeling with Lipschitz Regularizer

Eric Qu¹² Xufang Luo¹ Dongsheng Li¹

²Duke Kunshan University

May 3, 2023

Sequence Models Works Well On Specific Tasks

Transformers

Text Gene

State Space Models

Audio Time-series

But Why?

Sequence models have preferences in **Data Continuity**

- ► Transformers → Discrete Data
- ▶ State Space models → Continuous Data

- ► Proof of Concept Experiment
 - Generate discrete and continuous input sequence
 - Map them to the output sequence with the same function
 - Use Transformer and S4 Model to learn this mapping

Motivation

Output Input

175 200

175 200

Ground Truth Transformer

(a) High Continuity

(b) Low Continuity

Motivation

Sequence Models + Unpreferred Data Continuity $\downarrow \downarrow$ Deteriorated Performance

- ► Solution: a regularizer that alters input data continuity!
- ► Apply the regularizer to the input embedding

Lipschitz Regularizer

- ► Continuity Measure: Lipschitz Constant
- For a sequence x_0, x_1, \ldots, x_n , view it as a sample of f(t):

$$f(t_0) = x_0, \ f(t_1) = x_1, \ \dots \ f(t_n) = x_n,$$

where t_0, t_1, \ldots, t_n are time steps.

▶ The Lipschitz constant L_f of f(t) is

$$L_f = \max_{t_i, t_j \in \{0, 1, \dots, n\}} \frac{|f(t_i) - f(t_j)|}{|t_i - t_j|} = \max_{i, j \in \{0, 1, \dots, n\}} \frac{|x_i - x_j|}{|i - j|}.$$

By Mean Value Theorem

$$L_f = \max_{i,j \in \{0,1,\dots,n\}} \frac{|x_i - x_j|}{|i - j|} = \max_{k \in \{0,1,\dots,n-1\}} |x_{k+1} - x_k|.$$

Lipschitz Regularizer

- ▶ To help with optimization, we introduce a surrogate:
 - ightharpoonup Max ightharpoonup Mean
 - ightharpoonup L1 norm ightharpoonup L2 norm

Definition 1: Lipschitz Regularizer

Suppose the sequence is x_0, x_1, \ldots, x_n . We define the Lipschitz Regularizer as follows:

$$\mathcal{L}_{\text{Lip}} = \frac{1}{n} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2$$
 (1)

State Space Model

- ► State Space models prefer continuous input
 - Assumption: input is a discrete sample of a continuous func
 - ► Higher input continuity → Lower HiPPO Leg-S error rate
- Use LipReg to make input continuous
 - Introduce a 1D Convolution embedding layer
 - Apply LipReg on the embedding

$$\mathcal{L}(y, \hat{y}, \hat{l}) = \mathcal{L}_{S4}(y, \hat{y}) + \lambda \mathcal{L}_{Lip}(\hat{l})$$

	ListOps	Text	Retrieval	Image	Image-c	Path	Path-c	PathX	PathX-c
S4	59.53	86.51	91.07	88.54	84.27	94.02	89.11	96.03	92.41
S4 + Emb	58.94	87.12	90.28	87.25	85.13	92.37	90.32	93.87	92.81
S4 + Emb + Lip	61.37	89.74	93.83	89.19	88.43	93.52	91.39	95.72	94.36

Transformers Time Series Prediction

$$\mathcal{L}(y, \hat{y}, \hat{l}) = \mathcal{L}_{\text{Transformer}}(y, \hat{y}) - \lambda \mathcal{L}_{\text{Lip}}(\hat{l})$$

Methods		Transformer		Transformer + Lip		Informer		Informer + Lip		Autoformer		Autoformer + Lip	
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh	24	0.07047	0.20586	0.07019	0.20570	0.09842	0.24747	0.08882	0.23674	0.05567	0.18596	0.05504	0.18495
	48	0.18902	0.37046	0.16716	0.34974	0.15845	0.31907	0.12615	0.28333	0.07860	0.22324	0.07422	0.21398
	168	0.39773	0.55569	0.30811	0.48183	0.18314	0.34619	0.10579	0.25552	0.09232	0.24037	0.08983	0.23544
	336	0.41523	0.56902	0.41324	0.56402	0.22164	0.38720	0.11810	0.26959	0.10462	0.25484	0.10461	0.25483
	720	0.65586	0.75324	0.62233	0.73160	0.26883	0.43506	0.13131	0.28731	0.12069	0.27791	0.12394	0.27833
ETTh ₂	24	0.09449	0.24259	0.07560	0.20989	0.09309	0.24015	0.08626	0.22559	0.11136	0.26315	0.09345	0.25515
	48	0.15016	0.30996	0.13229	0.29278	0.15483	0.31445	0.13684	0.28936	0.15137	0.30316	0.14945	0.30129
	168	0.25197	0.41087	0.21046	0.37453	0.23193	0.38947	0.30071	0.43671	0.20403	0.35646	0.18370	0.33714
	336	0.22258	0.38170	0.20867	0.37298	0.26321	0.41659	0.24875	0.40827	0.22188	0.37417	0.21195	0.36425
	720	0.21932	0.38844	0.18445	0.35793	0.27722	0.43063	0.23646	0.39648	0.25612	0.40089	0.25604	0.40085
ETTm1	24	0.01279	0.08410	0.01210	0.08312	0.03016	0.13717	0.01815	0.09147	0.02317	0.11778	0.02300	0.10107
	48	0.08974	0.25869	0.02872	0.12820	0.06944	0.20255	0.05848	0.19686	0.04130	0.15783	0.03931	0.15601
	96	0.05341	0.17696	0.05182	0.15017	0.19414	0.37236	0.13336	0.30091	0.05432	0.18033	0.05258	0.17605
	288	0.22354	0.40455	0.13780	0.29825	0.40140	0.55355	0.30266	0.46864	0.11893	0.27181	0.07521	0.21728
	672	0.40726	0.55824	0.40726	0.55826	0.51164	0.64390	0.27543	0.45377	0.09156	0.23690	0.09280	0.23621
Weather	24	0.00223	0.03468	0.00154	0.02497	0.11676	0.25142	0.11256	0.23844	0.00740	0.06422	0.00736	0.06329
	48	0.00422	0.04106	0.00292	0.03026	0.17822	0.31846	0.19134	0.32408	0.01002	0.07648	0.00978	0.07727
	168	0.00537	0.05975	0.00319	0.04464	0.26585	0.39764	0.25138	0.37400	0.01038	0.07082	0.00528	0.05638
	336	0.00524	0.05772	0.00417	0.03673	0.29713	0.41571	0.24748	0.37725	0.00729	0.06492	0.00566	0.05888
	720	0.00933	0.07630	0.00272	0.03823	0.35875	0.46647	0.26479	0.39214	0.00960	0.08758	0.00925	0.07136
Count		2		39		4		36		4		36	

- ▶ Left: Change of L_f during training (ETTh₂, 24h)
 - LipReg effectively altered input continuity
- Right: MSE with different λ (ETTh₂)
 - ► Transformers prefer low continuity

Left: original; Right: with LipReg

More Experiments

- ► More Experiments:
 - ► Fine-tune Vision Transformers
 - Speech Transformers
 - ► Neural ODE

Lipschitz Regularizer

In the Frequency Domain, the Lipschitz Regularizer is:

$$\sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \approx \int_{\mathbb{R}} \left(\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right)^2 \mathrm{d}t$$
$$= \int_{\mathbb{R}} (2\pi i \xi)^2 \hat{f}^2(\xi)(-\mathrm{d}\xi)$$
$$= 4\pi^2 C \mathbb{E}_{p(\xi)}[\xi^2]$$

- An expectation over the frequency of the function
- Use it to penalize the frequency of the neural network

Spectral Bias

- Spectral Bias: low-frequency part is learned first
- Use LipReg to penalize the low-frequency part of NN

$$\mathcal{L}(y, \hat{y}) = \mathcal{L}_{MSE}(y, \hat{y}) - \lambda e^{-\epsilon t} \mathcal{L}_{Lip}(\hat{y})$$

- Experiment: Curve fitting with ReLU Network
 - Training Iteration & Error in Frequency
 - Significantly reduce Spectral Bias

(a) Without LipReg

(b) With LipReg

(c) Training Loss

Thank you for your attention!

Link to Paper

Link to Code

Poster No. 66