Homework 7

01 February 2023 13:56

Name: TRAN, Thanh Cong Student ID: 2210421

5.7.1.8)

minimize -
$$log(3+x_1)$$
 - $log(9+x_2)$ = $J(x)$
S.t $x_1 + x_2 = 5$ = $h(x)$
 $x_1 > 0$ = $g_1(x)$
 $x_2 > 0$ = $g_2(x)$

a) The jirst-older KKT conditions jollow:

If $x^* = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is a local optimum then exists λ , μ_1 , μ_2 which satisfied:

$$\left(\begin{array}{c}
-1 \\
(S+x_1) \ln 10 \\
-1 \\
(9+x_2) \ln 10
\end{array}\right) + \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \mu_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \mu_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \quad (1)$$

$$x_1 + x_2 - 5 = 0$$
 (2)

$$\chi_{\Lambda}$$
 χ_{O} (3)

$$\chi_2 \qquad > 0 \tag{4}$$

$$\chi_{2}$$
 χ_{0}
 χ_{1} χ_{0}
 χ_{1} χ_{1} χ_{2} χ_{2} χ_{2} χ_{3}
 χ_{1} χ_{2} χ_{3} χ_{4} χ_{5} χ_{5}

$$\mu_1 \chi_1 = 0$$

bcd). Assume go is active and go is inactive:

(2)
$$\rightleftharpoons$$
 $\chi_2 = 5$

$$(N) \rightleftharpoons \begin{cases} \frac{-1}{3 \ln 10} \\ \frac{-1}{14 \ln 10} \end{cases} + \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \mu_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$

$$\begin{cases} \frac{1}{\lambda \ln 10} - 3 + \frac{1}{\lambda \ln 10} - 9 = 5 \\ \frac{1}{\lambda \ln 10} = \frac{1}{\lambda \ln 10} - 3 \\ \frac{1}{\lambda \ln 10} = \frac{1}{\lambda \ln 10} - \frac{1}{\lambda \ln 10} \end{cases}$$

$$\begin{array}{cccc}
\lambda & = & \frac{2}{17 \ln 10} \\
\chi_1 & = & \frac{11}{2} \\
\chi_2 & = & \frac{-1}{2}
\end{array}$$

Be cause
$$x_2 = \frac{-1}{Z}$$
 not satisfied $g_2(x)$, reject this solution

The ginal solution is
$$x^* = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
, $\lambda = \frac{1}{8 \ln 10}$, $\mu_1 = 0$, $\mu_2 = \frac{1}{8 \ln 10} = \frac{1}{9 \ln 10}$