JÄYKÄN KAPPALEEN TASOKINEMATIIKKA

TASOLIIKKEEN LUOKITTELU

TRANSLAATIO

Translaatiossa kaikki pisteet liikkuvat samalla tavalla eli kappaleen liiketilan tuntemiseen riittää sen yhden pisteen (esim. massakeskiön G) liiketilan tunteminen.

Jäykän kappaleen translaatioliike voidaan käsitellä partikkelin kinematiikalla.

TASOLIIKKEEN KULMA-ASEMA, -NOPEUS JA -KIIHTYVYYS

Suorien 1 ja 2 kulma-asemat ovat θ_1 ja θ_2 . Suorien välinen kulma β ei muutu.

$$\theta_2 = \theta_1 + \beta \implies$$

$$\dot{\theta}_2 = \dot{\theta}_1 \qquad \ddot{\theta}_2 = \ddot{\theta}_1$$

Jäykän kappaleen tasoliikkeessä kaikilla kappaleen suorilla on sama kulmaaseman muutos, kulmanopeus ja kulmakiihtyvyys.

Jäykän kappaleen pyörimisliikkeen kulmanopeus $\dot{\theta} = \omega$ ja kulmakiihtyvyys $\ddot{\theta} = \dot{\omega} = \alpha$ ovat mielivaltaisen suoran kulma-aseman θ ensimmäinen ja toinen derivaatta ajan suhteen.

$$\omega = \frac{d\theta}{dt} = \dot{\theta} \qquad \alpha = \frac{d\omega}{dt} = \dot{\omega} = \frac{d^2\theta}{dt^2} = \ddot{\theta}$$
$$\omega d\omega = \alpha d\theta \quad \text{eli} \quad \dot{\theta} d\dot{\theta} = \ddot{\theta} d\theta$$

Kolmas yhtälö on rotaation energiadifferentiaaliyhtälö. Suureilla θ , ω ja α on sama positiivinen suunta, joksi sovitaan vastapäivään.

Tasaisesti kiihtyvä rotaatio:

$$\omega = \omega_0 + \alpha (t - t_0) \qquad \omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$$

$$\theta = \theta_0 + \omega_0 (t - t_0) + \frac{1}{2}\alpha (t - t_0)^2$$

ROTAATIO

Rotaatio on pyörimisliikettä kiinteän rotaatioakselin ympäri.

Kappaleen pisteet liikkuvat rotaatioakselia vastaan kohtisuorassa tasossa pitkin ympyrän kaaria.

Rotaatioakselin ja liiketason (sisältää massakeskiön G) leikkauspistettä sanotaan rotaatiokeskukseksi.

NOPEUDEN JA KIIHTYVYYDEN KOMPONENTIT

$$\begin{aligned} v_P &= r_{P/O} \, \omega \\ a_{Pt} &= r_{P/O} \, \alpha \\ a_{Pn} &= r_{P/O} \, \omega^2 = v^2 \, / \, r_{P/O} \end{aligned}$$

NOPEUS- JA KIIHTYVYYSVEKTORI

$$\vec{v} = \dot{\vec{r}}_{P/O} = \vec{\omega} \times \vec{r}_{P/O}$$

$$\begin{split} \vec{a}_{P} &= \dot{\vec{v}}_{P} = \vec{\omega} \times \dot{\vec{r}}_{P/O} + \dot{\vec{\omega}} \times \vec{r}_{P/O} \\ &= \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/O}) + \vec{\alpha} \times \vec{r}_{P/O} \quad \Longrightarrow \quad \end{split}$$

$$\begin{aligned} \vec{a}_{P} &= \vec{a}_{Pn} + \vec{a}_{Pt} \\ &= \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/O}) + \vec{\alpha} \times \vec{r}_{P/O} \end{aligned}$$

on kulmanopeusvektori

 $\vec{\alpha} = \dot{\vec{\omega}}$ on kulmakiihtyvyysvektori

YLEINEN TASOLIIKE

SUHTEELLINEN NOPEUS

Partikkelin A ja B nopeuksien välillä pätee kaava

$$\vec{v}_A = \vec{v}_B + \vec{v}_{A/B}$$

 $\overline{V}_{A/B}$ on partikkelin A suhteellinen nopeus partikkeliin B nähden. Kun A ja B ovat saman jäykän kappaleen kaksi partikkelia, partikkelin A liike partikkeliin B nähden voi olla vain rotaatiota.

Suhteellinen nopeus $\vec{v}_{A/B}$ on kohtisuorassa janaa AB vastaan ja sen suuruus on

$$V_{A/B} = r_{A/B} \omega$$

 $r_{\text{A/B}}$ on janan AB pituus ja ω kappaleen kulmanopeuden suuruus.

Suhteellinen nopeus voidaan esittää suhteellisen paikkavektorin $\vec{r}_{A/B}$ ja kappaleen kulmanopeusvektorin $\vec{\omega}$ avulla, jolloin seuraa

$$\vec{v}_A = \vec{v}_B + \vec{\omega} \times \vec{r}_{A/B}$$

Yleinen tasoliike voidaan tulkita translaation ja rotaation summaksi. Pisteen A nopeus on vertailupisteen B translaationopeuden \vec{v}_B ja suhteellisen rotaationopeuden $\vec{v}_{A/B} = \vec{\omega} \times \vec{r}_{A/B}$ summa.

NOPEUSNAPA

Tasoliike on vertailupisteen B mukaisen translaation ja tämän ympäri tapahtuvan rotaation yhdistelmä.

Translaatiosta aiheutuvan nopeuden määrää vertailupisteen nopeus \vec{v}_B ja rotaatiosta aiheutuvan nopeuden kulmanopeus $\vec{\omega}$.

Pisteen B nopeus olisi sama, jos kappa-

le pyörisi kulmanopeudella $\bar{\omega}$ sellaisen pisteen C ympäri, joka on vektorin \bar{V}_B normaalilla etäisyydellä $r = v_B/\omega$ pisteestä B. Pistettä C sanotaan nopeusnavaksi.

Kappaleen kaikkien pisteiden nopeudet saadaan laskettua ajattelemalla sen olevan rotaatiossa nopeusnavan ympäri kulmanopeudella ō.

Nopeusnavan määritys:

- (a) tunnetaan kappaleen kahden pisteen A ja B nopeuksien suunnat, jolloin nopeusnapa on näiden suuntien normaalien leikkauspisteessä.
- (b) ja (c) tunnetaan janaa AB vastaan kohtisuorien nopeusvektoreiden suuruudet v_A ja v_B . Nopeusnapa on suunnan AB sekä vektoreiden \bar{v}_A ja \bar{v}_B kärkien määräämän suunnan leikkauspisteessä.

Kappaleen pisteiden kiihtyvyyksiä ei voi laskea ajattelemalla sen olevan rotaatiossa nopeusnavan ympäri, sillä nopeusnavan kiihtyvyys ei ole nolla.

SUHTEELLINEN KIIHTYVYYS

Partikkelin A ja B kiihtyvyyksien välillä pätee kaava

$$\vec{a}_{A} = \vec{a}_{B} + \vec{a}_{A/B} = \vec{a}_{B} + \vec{a}_{A/B}^{t} + \vec{a}_{A/B}^{n}$$

 $\bar{a}_{A/B}$ on partikkelin A suhteellinen kiihtyvyys partikkeliin B nähden. Kun A ja B ovat saman jäykän kappaleen kaksi partikkelia, partikkelin A liike partikkeliin B nähden voi olla vain rotaatiota.

Suhteellisella kiihtyvyydellä $\bar{a}_{A/B}$ on komponentti $\bar{a}_{A/B}^t$ kohtisuoraan janaa AB vastaan ja komponentti $\bar{a}_{A/B}^n$ janan AB suunnassa kohti pistettä B ja niiden suuruudet ovat

$$a_{A/B}^t = r_{A/B} \alpha$$
 $a_{A/B}^n = r_{A/B} \omega^2$

 $r_{A/B}$ on janan AB pituus, ω kappaleen kulmanopeuden ja α kulmakiihtyvyyden suuruus.

Suhteellisen kiihtyvyyden kaava menee vektorimuotoon suhteellisen paikkavektorin $\vec{r}_{A/B}$, kulmakiihtyvyysvektorin $\vec{\alpha}$ ja kulmanopeusvektorin $\vec{\omega}$ avulla

$$\vec{a}_{A} = \vec{a}_{B} + \vec{\alpha} \times \vec{r}_{A/B} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{A/B})$$

Partikkelin A kiihtyvyys on vertailupisteen translaatiokiihtyvyyden \bar{a}_B ja suhteellisen rotaatiokiihtyvyyden $\bar{a}_{A/B}$ summa. Rotaatiokiihtyvyys voidaan jakaa normaali- ja tangentiaalikomponenttiin $\bar{a}_{A/B}^n$ ja $\bar{a}_{A/B}^t$.

PARTIKKELIN LIIKE LIIKKUVASSA KAPPALEESSA

B on kappaleen κ partikkeli ja xykoordinaatisto on kiinnitetty siihen ja pyörii siis kappaleen κ kulmanopeudella $\bar{\omega}$ ja kulmakiihtyvyydellä $\bar{\alpha}$. P on toisen kappaleen partikkeli, joka liikkuu kappaleen κ suhteen. Partikkelin P suhteellista liikettä havaitaan xy-koordinaatistossa.

Partikkelin P absoluuttinen paikkavektori on $\vec{r}_P = \vec{r}_B + \vec{r}_{P/B} = \vec{r}_B + (x \vec{i} + y \vec{j})_{,j}$ jolloin \vec{i} ja \vec{j} ovat xy-koordinaatiston yksikkövektorit ja x ja y pisteen P koordinaatit xy-koordinaatistossa.

Partikkelin P absoluuttinen nopeus on $\vec{v}_P = \dot{\vec{r}}_P$ ja absoluuttinen kiihtyvyys $\vec{a}_P = \ddot{\vec{r}}_P$. Derivoinnissa on huomattava, että yksikkövektorit \vec{i} ja \vec{j} pyörivät xy-koordinaatiston mukana, eivätkä ole vakiovektoreita. Vektoreiden \vec{i} ja \vec{j} aikaderivaatat ovat kuvien (a) ja (b) perusteella

$$\dot{\vec{i}} = \vec{\omega} \times \vec{i} \qquad \dot{\vec{j}} = \vec{\omega} \times \vec{j}$$

Partikkelin P absoluuttiselle nopeudelle saadaan

$$\vec{v}_{P} = \dot{\vec{r}}_{P} = \dot{\vec{r}}_{B} + (x \dot{\vec{i}} + y \dot{\vec{j}}) + (\dot{x} \dot{\vec{i}} + \dot{y} \dot{\vec{j}}) = \dot{\vec{r}}_{B} + (x \dot{\omega} \times \dot{\vec{i}} + y \dot{\omega} \times \dot{\vec{j}}) + (\dot{x} \dot{\vec{i}} + \dot{y} \dot{\vec{j}}) \implies$$

$$\vec{v}_{P} = \vec{v}_{B} + \vec{\omega} \times \vec{r}_{P/B} + \vec{v}_{rel}$$

jossa $\vec{v}_{rel} = \dot{x} \, \hat{i} + \dot{y} \, \hat{j}$ on partikkelin P nopeus havaittuna liikkuvassa xy-koordinaatistossa.

Nopeuden kaavan voidaan tulkita olevan muotoa $\vec{v}_P = \vec{v}_K + \vec{v}_{rel}$, jossa $\vec{v}_K = \vec{v}_B + \vec{\omega} \times \vec{r}_{K/B}$ on sen kappaleen κ partikkelin K nopeus, joka on partikkelin P kohdalla tarkasteluhetkellä. Pistettä K sanotaan kuljetuspisteeksi.

Partikkelin P absoluuttiselle kiihtyvyydelle saadaan

$$\begin{split} \vec{a}_{P} &= \dot{\vec{v}}_{P} = \dot{\vec{v}}_{B} + \dot{\vec{\omega}} \times \vec{r}_{P/B} + \vec{\omega} \times \dot{\vec{r}}_{P/B} + \dot{\vec{v}}_{rel} \\ \vec{\omega} \times \dot{\vec{r}}_{P/B} &= \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/B} + \vec{v}_{rel}) = \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/B}) + \vec{\omega} \times \vec{v}_{rel} \\ \dot{\vec{v}}_{rel} &= (\dot{x} \dot{\vec{i}} + \dot{y} \dot{\vec{j}}) + (\ddot{x} \dot{\vec{i}} + \ddot{y} \dot{\vec{j}}) \\ &= (\dot{x} \dot{\vec{\omega}} \times \ddot{\vec{i}} + \dot{y} \dot{\vec{\omega}} \times \dot{\vec{j}}) + (\ddot{x} \dot{\vec{i}} + \ddot{y} \dot{\vec{j}}) = \vec{\omega} \times \vec{v}_{rel} + \vec{a}_{rel} \end{split}$$

jossa $\vec{a}_{rel} = \ddot{x} \vec{i} + \ddot{y} \vec{j}$ on partikkelin P kiihtyvyys havaittuna liikkuvassa xykoordinaatistossa ja $\dot{\vec{\omega}} = \vec{\alpha}$ kulmakiihtyvyys. Partikkelin P absoluuttiselle kiihtyvyydelle tulee lauseke

$$\vec{a}_{P} = \vec{a}_{B} + \vec{\alpha} \times \vec{r}_{P/B} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/B}) + 2\vec{\omega} \times \vec{v}_{rel} + \vec{a}_{rel}$$

Termiä $\vec{a}_C = 2\vec{\omega} \times \vec{v}_{rel}$ sanotaan Coriolis-kiihtyvyydeksi. Se on kohtisuorassa suhteellista nopeutta \vec{v}_{rel} vastaan.

Kiihtyvyyden kaavan voidaan tulkita olevan muotoa $\vec{a}_P = \vec{a}_K + \vec{a}_C + \vec{a}_{rel}$, missä termi $\vec{a}_K = \vec{a}_B + \vec{\alpha} \times \vec{r}_{K/B} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{K/B})$ on kuljetuspisteen P kiihtyvyys. Partikkelin A kiihtyvyys on sen kuljetuspisteen P kiihtyvyyden, Corioliskiihtyvyyden ja pyörivässä koordinaatistossa havaitun kiihtyvyyden summa.