PROBLEM SET 2

MARK DITSWORTH

1. Problem 1

Given graph G=(V,E,W) consider a random walk on V with transition probabilities $M_{ij}=PX(t+1)=j|X(t)=i=\frac{w_{ij}}{\deg(i)}$.

Partition the vertex set as $V = V_+ \cup V_- \cup V_*$. Suppose that every node in V_* is connected to at least one node in either V_+ or V_- . Given a node $i \subset V$ let g(i) be the probability that a random walker starting at i reaches a node in V_+ before reaching one in V_- . If $i \in V_+$, then g(i) = 1 and if $i \in V_-$, then g(i) = 0. Find g(i) for $i \in V_*$.

There are two scenarios in which the random walker will reach a node in V_+ before one in V_- : Moving from V_* to V_+ immediately, or moving from V_* to V_* repeatedly until moving to V_+ . We essentially view leaving V_* as an absorbing barrier, and want the probability that we end in V_+ , which is the sum of all probabilities that will end in that scenario:

$$\sum_{j \in V_+} M_{ij} + \sum_{j \in V_*} \sum_{k \in V_+} M_{ij} M_{jk} + \sum_{j \in V_*} \sum_{k \in V_*} \sum_{l \in V_+} M_{ij} M_{jk} M_{kl} + \dots$$