2008

Annual Tropical Cyclone Report

U.S. Naval Maritime Forecast Center/ Joint Typhoon Warning Center Pearl Harbor, Hawaii

MODIS visible image of Typhoon Rammasun (03W) in the eastern Philippine Sea showing multiple vorticies in the well defined eye. Image courtesy of NASA Earth Observatory.

G. A. Cooper

Captain, United States Navy Commanding Officer

ROBERT J. FALVEY

Director, Joint Typhoon Warning Center

LCDR Michael Vancas, USN - Editor

Executive Summary

The Annual Tropical Cyclone Report is prepared by the staff of the Joint Typhoon Warning Center (JTWC), a combined Air Force/Navy organization operating under the command of the Commanding Officer, U.S. Naval Maritime Forecast Center/Joint Typhoon Warning Center (NMFC/JTWC), Pearl Harbor, Hawaii. JTWC was established in April 1959 when USCINCPAC directed USCINCPACFLT to provide a single tropical cyclone warning center for the western North Pacific region. The operations of JTWC are guided by USPACOM Instruction 0539.1. JTWC will celebrate its 50th Anniversary in a ceremony on Ford Island, Oahu, on 29 April 2009.

This edition continues our effort to provide standard tropical cyclone summaries by basin and detailed reviews of operationally or meteorologically significant tropical cyclones to document significant challenges and/or shortfalls in the tropical cyclone warning system to serve as a focal point for research and development efforts.

Year 2008 continued the below normal activity in the western North Pacific, with 27 tropical cyclones occurring compared to an average of 31. The South Indian Ocean and South Pacific activity was right on average with 29 cyclones. The North Indian Ocean was slightly above normal with 7 cyclones compared to an average of 5. Of significance in the North Indian Ocean was TC 01B, Nargis. Nargis formed in the central Bay of Bengal and tracked northwestward then turned east-northeastward, making landfall along the souther tip of Myanmar after reaching peak intensity of 115 knots. Other significant cyclones include Typhoon 07W, Fengshen, and Typhoon 15W, Sinlaku. Fengshen was significant because despite its continuous west-northwest track, all the numerical modes forecast it to turn north, some at right angles to the final track. Sinlaku was significant because it underwent two periods of rapid intensification, neither which was captured by the intensity guidance available to the JTWC forecasters.

Weather satellite data continued to be the mainstay for the tropical cyclone reconnaissance mission at JTWC, although limited aircraft reconnaissance was available for August and Septemer. Satellite analysts exploited a wide variety of conventional and microwave satellite data to produce nearly 9,200 position and intensity estimates. A total of 4,639 fixes were done using microwave imagery, amounting to just over half of the total number of fixes. The USAF primary weather satellite direct readout system, Mark IVB, and the USN FMQ-17 continued to be invaluable tools in the tropical cyclone reconnaissance mission.

During August and September of 2008, the THORPEX Pacific Asian Regional Campaign (T-PARC) and Tropical Cyclone Structure 2008 (TCS-08) brought together an international group of researchers and operators to conduct an intense tropical cyclone data collection effort. This experiment enlisted a wide variety of data collection platforms including the USAFR WC-130J with its dropsondes and step frequency microwave radiometer (SMRF), the NRL P-3 with its ELDORA radar, the Taiwanese DOTSTAR with its dropsondes, and the German Falcon. Additionally, drifting bouys, and other insitu instruments were launched from various platforms including unmanned balloons launched from Hawaii.

Continuing dialogue and interaction with TC forecast support and research organizations such as the Fleet Numerical Meteorology and Oceanography Center, Naval Research Laboratory, Monterey, Naval Post Graduate School, and the Office of Naval Research for continued development of numerical TC models and forecast aids, including continued improvements to the Navy's version of the Geophysical Fluid Dynamics Lab (GFDL) mesoscale hurricane model (GFDN) occurred in 2008 and will continue into 2009. Additionally, a tropical cyclone version of COAMPS, designated COAMPS-TC was developed by NRL Monterey. COAMPS-TC was run experimentally during T-PARC and will be operationally tested by JTWC in 2009. Hurricane WRF (H-WRF) to support JTWC was also pursued, however, resource constraints will delay running this community model in the JTWC area of responsibility until at least 2010.

Behind all these efforts are the dedicated men and women of JTWC who continued their quest to remain the premier tropical cyclone reconnaissance and forecasting center in the Pacific and Indian Oceans. The civilianization of a large portion of the USAF members assigned to JTWC was completed in 2008, although the hiring process continued into 2009. Manning reductions as part of the larger DoD drawdown will result in the loss of 2 enlisted authorizations in 2009, brining the USAF contribution to the JTWC mission to 14 personnel. The USN provided 3 Typhoon Duty Officers, the JTWC Operations Officer, and the JTWC Technical Advisor.

Thanks to the entire Naval Maritime Forecast Center/Joint Typhoon Warning Center N6 Department for their continued outstanding IT support with special thanks to Mr. Angelo Alvarez for his tireless efforts to keep the computers, communications and numerous websites working. Thanks also to the Navy and Air Force personnel across the Pacific who support our reconnaissance and forecasting functions, the researchers and programmers helping develop our knowledge base and tool kit to better forecast tropical cyclones. Without an integrated effort, the challenging task of locating and forecasting the movement and structure of tropical cyclones would be considerably more difficult. That entire TC community will continue to focus all available science and technology on providing the best possible support to you, our customers, who stand in harm's way.

As always, thanks to our supporting commands and organizations: Fleet Numerical Meteorology and Oceanography Center (FNMOC) for their operational support; the Naval Research Laboratory for its dedicated research; the Air Force Weather Agency (AFWA) and National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) for satellite support; for their high quality support; all the men and women of the ships and facilities ashore throughout the JTWC area of responsibility (AOR); Dr. John Knaff, Dr. Jeff Hawkins, Dr Mark DeMaria, and Chris Veldon for their continuing efforts to exploit remote sensing technologies in new and innovative ways; Mr. Charles R. "Buck" Sampson and Ann J. Schrader for their support and continued development of the Automated Tropical Cyclone Forecasting (ATCF) system, which remains the backbone of production at JTWC.

Chapter 1	Western North Pacific Ocean Tropical Cyclones	6
Section 1	Informational Tables	
Section 2	Cyclone Summaries	
	AL STORM 01W	
	N 02W (Neoguri)	
SUPER T	YPHOON 03W (Rammasun)	17
	AL STORM 04W (Matmo)	
	N 05W (Halong)	
	N 06W (Nakri)	
	N 07W (Fengshen)	
	N 08W (Kalmaegi) N 09W (Fung-Wong)	
	AL STORM 10W (Kammuri)	
	AL STORM 11W	
	AL STORM 12W (Vongfong)	
	N 13W (Nuri)	
	AL STORM 14W	
	N 15W (Sinlaku)	
	AL STORM 16W	
	AL STORM 17W	
	N 18W (Hagupit)	
	YPHOON 19W (Jangmi)	
	AL STORM 20W (Mekkhala)AL STORM 21W (Higos)	
	AL STORM 22WAL STORM 22W	
	AL STORM 23W (Bavi)	
	AL STORM 24W (Maysak)	
	AL STORM 25W (Haishen)	
	AL STORM 26W (Noul)	
ТҮРНОО	N 27W (Dolphin)	41
Section 3	Detailed Cyclone Reviews	42
	07W (Fengshen)	
Typhoon	15W (Sinlaku)	43
Chapter 2	North Indian Ocean Tropical Cyclones	46
Section 1	Informational Tables	
Section 2	Cyclone Summaries	
	Cyclone 01B (Nargis)	
	Cyclone 02B	
	Cyclone 03A	
Tropical (Cyclone 04B (Rashmi)	53
	Cyclone 05B (Khai-Muk)	
_	Cyclone 06B (Nisha)	
•	Cyclone 07B	
Chapter 3	South Pacific and South Indian Ocean Tropical Cycl	ones57
Section 1	Informational Tables	57
Section 2	Cyclone Summaries	60
Tropical (Cyclone 01S	61
Tropical (Cyclone 02P (Guba)	62
_	Cyclone 03S (Lee-Ariel)	
	Cyclone 04S (Bongwe)	
	Cyclone 06S (Celina)	
	Cyclone 07S (Dama)	
_	Cyclone 08S (Melanie)	
_	Cyclone 09S (Elnus)	
•	Cyclone 11P (Elisa)	
_	Cyclone 12P (Funa)	
	Cyclone 13S (Fame)	

Tropical	l Cyclone 14S (Gula)	74
	l Cyclone 15P (Gene)	
	l Cyclone 16S (Hondo)	
	l Cyclone 17S	
Tropical	l Cyclone 18S (Ivan)	78
	l Cyclone 19S (Nicholas	
Tropical	l Cyclone 20P	80
Tropical	l Cyclone 21S (Ophelia)	81
Tropical	l Cyclone 22S (Jokwe)	82
Tropical	l Cyclone 23S (Kamba)	83
Tropical	l Cyclone 24P	84
	l Cyclone 25S (Lola)	
Tropical	l Cyclone 26S (Pancho)	86
	l Cyclone 27P	
Tropical	l Cyclone 28S (Rosie)	88
Tropical	l Cyclone 29S (Durga)	89
Section 3	Detailed Cyclone Reviews	90
Tropical	cyclones 13S and 14S-Direct Cyclone Interaction	90
Chapter 4	Tropical Cyclone Fix Data	93
Chapter 5	Summary of Forecast Verification	96
-	. Annual Forecat Verification	
Section 2	. Objective Aid Comparison	102
	-	

Chapter 1 Western North Pacific Ocean Tropical Cyclones

Section 1 Informational Tables

Table 1-1 is a summary of Tropical Cyclone activity in the western North Pacific Ocean (NWP) during the 2008 season. JTWC issued warnings on 27 cyclones. Table 1-2 shows the monthly distribution of Tropical Cyclone activity summarized for 1959 - 2007 and Table 1-3 shows the monthly average occurrence of tropical cyclones separated into: (1) typhoons and (2) tropical storms and typhoons. Table 1-4 summarizes Tropical Cyclone Formation Alerts issued. The annual number of tropical cyclones of tropical storm strength or higher appears in Figure 1-1, while the number of tropical cyclones of Super Typhoon intensity appears in Figure 1-2. Figure 1-3 illustrates a monthly average number of cyclones based on intensity categories. Graphics showing 2008 tropical cyclone best tracks appear following Figure 1-3.

Table 1-1										
WESTERN NORTH PACIFIC SIGNIFICANT TROPICAL CYCLONES FOR 2008										
(01 JAN 2008 - 31 DEC 2008)										
TC	NAME*	PERIOD**	WARNINGS ISSUED	EST MAX SFC WINDS KTS	MSLP (MB)***					
TS 01W		13 - 16 JAN	13	40	992					
TY 02W	Neoguri	14 - 20 APR	23	100	948					
STY 03W	Rammasun	7 - 12 MAY	23	135	921					
TS 04W	Matmo	14- 16 MAY	9	40	992					
TY 05W	Halong	15 - 20 MAY	19	75	966					
TY 06W	Nakri	27 MAY - 3 JUN	29	125	929					
TY 07W	Fengshen	18 - 25 JUN	29	110	940					
TY 08W	Kalmaegi	14 - 18 JUL	19	90	955					
TY 09W	Fung-Wong	24 - 28 JUL	18	95	951					
TS 10W	Kammuri	4 - 6 AUG	12	50	985					
TS 11W		13 - 14 AUG	7	35	996					
TS 12W	Vongfong	14 - 16 AUG	9	55	981					
TY 13W	Nuri	17 - 22 AUG	24	100	948					
TS 14W		26 - 28 AUG	7	35	996					
TY 15W	Sinlaku	8 - 20 SEP	47	125	929					
TS 16W		10 - 11 SEP	8	35	996					
TS 17W		14-Sep	1	40	992					
TY 18W	Hagupit	18 - 24 SEP	24	125	929					
STY 19W	Jangmi	23 SEP - 1 OCT	29	145	914					
TS 20W	Mekkhala	28 - 30 SEP	7	55	981					
TS 21W	Higos	29 SEP - 4 OCT	21	45	988					
TS 22W		14 - 15 OCT	6	35	996					
TS 23W	Bavi	18 - 20 OCT	6	50	985					
TS 24W	Maysak	7 - 10 NOV	14	55	981					
TS 25W	Haishen	15 - 16 NOV	4	40	992					
TS 26W	Noul	16 - 17 NOV	7	40	992					
TY 27W	Dolphin	10 - 18 DEC	33	90	955					
		* As Designate	ed by RSMC Tok	yo						
	** Date	es are based on the issu	ance of JTWC wa	rnings on system.						
***MSLP	** Dates are based on the issuance of JTWC warnings on system. ***MSLP converted from estimated maximum surface winds using Knaff-Zehr wind-pressure relationship.									

	_	_	_		_	Tak	la 1 2	_	_	_	_	_	
	DICT	DIDIII	TON (NE VI	CTED		le 1-2		C TDA	DICA	I CVC	וואס זי	
	D151	KIBU I	ION	JF VVI		N NOR			CIKU	PICA	LCYC	LUNI	LS
MEAD	TANT	EED	3.64 D	4 DD		FOR 19			GED	O CITE	MON	DEG	TOTAL C
YEAR	JAN 0	FEB	MAR	APR	MAY 0	JUN	JUL 3	AUG 8	SEP 9	OCT 3	NOV 2	DEC 2	TOTALS 31
1959	000	010	010	1 1 0 0	000	0 0 1	111	512	423	210	200	200	17 7 7
	1	0	1	1	1	3	3	9	5	4	1	1	30
1960	001	000	001	100	010	210	210	810	041	400	100	100	19 8 3
	1	1	1	1	4	6	5	7	6	7	2	1	42
1961	010	010	100	010	2 1 1	114	320	313	510	3 2 2	101	100	20 11 11
	0	1	0	1	3	0	8	8	7	5	4	2	39
1962	000	010	000	100	2 0 1	000	5 1 2	7 0 1	3 1 3	311	3 0 1	020	24 6 9
40.62	0	0	1	1	0	4	5	4	4	6	0	3	28
1963	000	000	001	100	000	3 1 0	3 1 1	3 0 1	220	510	000	210	19 6 3
1064	0	0	0	0	3	2	8	8	8	7	6	2	44
1964	000	000	000	000	2 0 1	200	611	350	5 2 1	3 3 1	4 2 0	101	26 13 5
1965	2	2	1	1	2	4	6	7	9	3	2	1	40
1703	110	020	010	100	101	3 1 0	4 1 1	3 2 2	5 3 1	201	110	010	21 13 6
1966	0	0	0	1	2	1	4	9	10	4	5	2	38
1700	000	000	000	100	200	100	3 1 0	5 3 1	5 3 2	112	1 2 2	101	20 10 8
1967	1	0	2	1	1	1	8	10	8	4	4	1	41
1507	010	000	110	100	010	100	3 3 2	3 4 3	5 3 0	2 1 1	400	010	20 15 6
1968	0	1	0	1	0	4	3	8	4	6	4	0	31
	000	001	000	100	000	202	1 2 0	3 4 1	400	510	400	000	20 7 4
1969	1	0	1	1	0	0	3	3	6	5	2	1	23
<u>'</u>	100	000	010	100	000	000	2 1 0	210	204	410	110	010	13 6 4
1970	0 0 0	1 0 0	0	0	0	2	3 0 2 1	7	4	6 3 2 1	1 2 0	0	27
	1	100	000	000	000	110	8	4 2 1	220	4	130	000	12 12 3
1971	010	000	010	200	230	200	620	311	511	310	110	000	24 11 2
	1	0	1	0	0	4	5	5	6	5	2	3	32
1972	100	000	001	000	000	2 2 0	410	320	411	410	200	210	22 8 2
	0	0	0	0	0	0	7	6	3	4	3	0	23
1973	000	000	000	000	000	000	430	231	201	400	030	000	12 9 2
40=4	1	0	1	1	1	4	5	7	5	4	4	2	35
1974	010	000	010	010	100	1 2 1	230	232	3 2 0	400	2 2 0	020	15 17 3
1075	1	0	0	1	0	0	1	6	5	6	3	2	25
1975	100	000	000	001	000	000	010	411	410	3 2 1	210	020	14 6 5
1976	1	1	0	2	2	2	4	4	5	0	2	2	25
1770	100	010	000	110	200	200	220	130	410	000	110	020	14 11 0
1977	0	0	1	0	1	1	4	2	5	4	2	1	21
2777	000	000	010	000	0 0 1	010	3 0 1	020	230	310	200	100	11 8 2
1978	1	0	0	1	0	3	4	8	4	7	4	0	32
	010	000	000	100	000	030	3 1 0	3 4 1	310	412	1 2 1	000	15 13 4
1979	1	0	1	1	2	0	5	4	6	3	2	3	28
	100	000	1 0 0	100	011	000	5	202	3 3 0	210	1 1 0	111	14 9 5
1980	0 0 0	000	001	010	220	010	3 1 1	3 2 0 1	5 1 1	220	1 0 0	010	28 15 9 4
	0	0	1	1	1	2	5	8	4	2 2 0	3	2	29
1981	000	000	100	010	010	200	230	251	400	110	210	200	16 12 1
	0	0	3	0	1	3	4	5	6	4	1	1	28
1982	000	000	210	000	100	120	220	500	3 2 1	301	100	100	19 7 2
	000	000	210	000	100	1 2 0	220	500	J 4 I	501	100	100	1) 1 4

1000	0	0	0	0	0	1	3	6	3	5	5	2	25
1983	000	000	000	000	000	010	300	2 3 1	111	320	3 2 0	020	12 11 2
1004	0	0	0	0	0	2	5	7	4	8	3	1	30
1984	000	000	000	000	000	020	410	2 3 2	130	5 4 1	300	100	16 11 3
1985	2	0	0	0	1	3	1	7	5	5	1	2	27
1703	020	000	000	000	100	201	100	5 2 0	3 2 0	410	010	110	17 9 1
1986	0	1	0	1	2	2	2	5	2	5	4	3	27
1700	000	100	000	100	110	110	200	410	200	3 2 0	2 2 0	210	19 8 0
1987	1	0	0	1	0	2	4	4	7	2	3	1	25
1707	100	000	000	010	000	110	400	310	5 1 1	200	120	100	18 6 1
1988	1	0	0	0	1	3	2	5	8	4	2	1	27
1700	100	000	000	000	100	111	110	230	260	400	200	010	14 12 1
1989	1	0	0	1	2	2	6	8	4	6	3	2	35
	010	000	000	100	200	110	2 3 1	3 3 2	220	600	300	101	21 10 4
1990	1	0	0	1	2	4	4	5	5	5	4	1	32
	100	000	000	010	110	2 1 1	220	500	410	230	3 1 0	100	21 10 1
1991	0	0	2	1	1	1	4	8	6	3	6	0	32
	000	000	110	010	100	100	400	3 3 2	420	300	330	000	20 10 2
1992	1	1	0	0	0	3	4	8	5	6	5	0	33
	100	010	000	000	000	2 1 0	220	440	410	510	3 1 1	000	21 11 1
1993	0	0	2	2	1	2	5	8	5	6	4	3	38
	000	000	011	002	010	101	3 2 0	611	410	3 2 1	112	300	21 9 8
1994	1	0	1 0 0	0	2	2	9	9	8	7	0	2	41
	0 0 1	000	100	0 0 0	101	0 2 0	3 4 2	630	4 4 0	5 1 1	000	110	21 15 5
1995	0 0 1	000	000	000	010	020	210	421	412	512	020	012	15 11 8
	1	1	0	2	2	0	7	10	7	5 1 2	6	3	43
1996	0 0 1	001	000	011	110	000	610	4 3 3	610	212	132	111	21 12 10
	1	0	0	2	3	3	4	8	4	6	1 3 2	1	33
1997	010	000	000	110	120	300	310	611	310	411	100	100	23 8 2
	0	0	0	0	0	0	3	3	8	6	3	4	27
1998	000	000	000	000	000	000	012	210	413	2 1 3	030	112	9 8 10
	1	1	0	3	0	1	5	9	6	2	3	3	34
1999	010	010	000	210	000	100	113	423	240	110	111	003	12 12 10
	0	0	0	0	4	0	8	9	6	3	3	1	34
2000	000	000	000	000	112	000	233	4 3 2	411	2 1 0	1 1 1	100	15 10 9
2004	0	1	0	1	1	2	6	7	5	3	3	4	33
2001	000	001	000	001	010	200	411	3 3 1	500	300	1 2 0	220	20 9 4
2002	1	1	1	1	2	3	6	8	3	5	1	1	33
2002	010	100	0 0 1	001	101	300	3 2 1	4 3 1	120	302	100	100	18 8 7
2002	1	0	0	1	3	2	2	5	3	6	3	1	27
2003	010	000	000	100	111	110	200	410	300	213	300	010	17 6 4
2004	0	1	1	1	3	5	2	9	3	3	2	2	32
2004	000	010	010	100	210	500	110	621	111	300	200	020	21 9 2
2005	1	0	1	1	0	1	4	6	5	3	2	1	25
2003	100	000	100	100	000	100	1 3 0	600	410	201	110	010	18 6 1
2006	0	0	1	0	1	1	3	8	5	4	2	2	27
2000	000	000	010	000	100	010	210	3 4 1	302	2 1 1	200	101	14 8 5
2007	0	0	1	0	1	0	3	5	5	5	6	0	26
2007	000	000	100	000	100	000	210	3 2 1	2 2 1	3 2 0	3 1 2	000	15 8 4
2008	1	0	0	1	4	1	2	5	6	3	3	1	27
	010	000	000	100	3 1 0	100	200	140	3 3 0	030	030	100	12 15 0
The criteria used in TABLE 1-2 are as follows:													

- 1) If a tropical cyclone was first warned on during the last two days of a particular month and continued into the next month for longer than two days, the system was attributed to the second month.
- 2) If a tropical cyclone was warned on prior to the last two days of a month, it was attributed to the first month, regardless of how long the system lasted.
- 3) If a tropical cyclone began on the last day of the month and ended on the first day of the next month, that system was attributed to the first month. However, if a tropical cyclone began on the last day of the month and continued into the next month for only two days, it was attributed to the second month.

TABLE 1-2 Legend							
Total month/year							
GTE 64 knots (Typhoon)	34 - 63 knots (Tropical Storm)	LTE 33 knots (Tropical Depression)					

	TABLE 1-3 WESTERN NORTH PACIFIC TROPICAL CYCLONES												
TYPHOONS (1945 - 1958)													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.4	0.1	0.3	0.4	0.7	1.1	2	2.9	3.2	2.4	2	0.9	24.4
CASES	5	1	4	5	10	15	28	41	45	34	28	12	228
	TYPHOONS (1959 - 2008)												
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.2	0.1	0.2	0.4	0.8	1.1	2.6	3.5	3.3	3.0	1.6	0.7	17.6
CASES	11	3	10	20	38	55	126	170	162	148	78	35	856
			TRO	PICAI	STOR	MS AN	D TYP	HOONS	S (1945 ·	1958)			
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.4	0.1	0.5	0.5	0.8	1.6	2.9	4	4.2	3.3	2.7	1.2	22.2
CASES	6	2	7	8	11	22	44	60	64	49	41	18	332
	TROPICAL STORMS AND TYPHOONS (1959 - 2008)												
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.5	0.2	0.4	0.6	1.1	1.6	3.8	5.2	4.8	3.8	2.5	1.2	25.7
CASES	23	9	20	31	53	76	187	257	233	188	123	57	1257

TABLE 1-4 TROPICAL CYCLONE FORMATION ALERTS FOR THE WESTERN NORTH PACIFIC OCEAN 1976 - 2008

YEAR	INITIAL TCFAS	TROPICAL CYCLONES WITH TCFAS	TOTAL TROPICAL CYCLONES	PROBABILITY OF TCFA WITHOUT WARNING*	PROBABILITY OF TCFA BEFORE WARNING				
1976	34	25	25	36%	100%				
1977	26	20	21	29%	95%				
1978	32	27	32	16%	84%				
1979	27	23	28	14%	82%				
1980	37	28	28	32%	100%				
1981	29	28	29	3%	97%				
1982	36	26	28	36%	93%				
1983	31	25	25	24%	100%				
1984	37	30	30	23%	100%				
1985	39	26	27	48%	96%				
1986	38	27	27	41%	100%				
1987	31	24	25	28%	96%				
1988	33	26	27	26%	96%				
1989	51	32	35	54%	91%				
1990	33	30	31	10%	97%				
1991	37	29	31	26%	94%				
1992	36	32	32	13%	100%				
1993	50	35	38	39%	92%				
1994	50	40	40	25%	100%				
1995	54	33	35	60%	94%				
1996	41	39	43	5%	91%				
1997	36	30	33	18%	91%				
1998	38	18	27	74%	67%				
1999	39	29	33	30%	88%				
2000	40	31	34	26%	91%				
2001	34	28	33	18%	82%				
2002	39	31	33	24%	94%				
2003	31	27	27	15%	100%				
2004	35	32	32	9%	100%				
2005	26	25	25	4%	100%				
2006	23	22	26	4%	85%				
2007	27	26	27	4%	96%				
2008	23	23	27	0%	85%				
MEAN	35.5	28.1	30.1	24.7%	93.2%				
CASES	1173	927	994						
* Percentage of initial TCFAs not followed by warnings.									

Figure 1-1. Annual number of Tropical Cyclones greater than 34 Kts intensity

Figure 1-2. Annual number of Tropical Cyclones greater than 127 Kts intensity

Figure 1-3. Average number of Tropical Cyclones of all intensities by month

Figure 1-4. Western North Pacific Tropical Cyclones, January - August 2008

Figure 1-5. Western North Pacific Tropical Cyclones September - December 2008

Section 2 Cyclone Summaries

This section presents a synopsis of each cyclone that occurred during 2008 in the western North Pacific Ocean. Each cyclone is presented, with the number and basin identifier used by JTWC, along with the RSMC Tokyo assigned name. Dates are also listed when JTWC first designated the various stages of development; as an area of interest (Poor classification), increased potential for development (Fair classification) and development occurring/TC expected (Good classification). Furthermore, first Tropical Cyclone Formation Alert (TCFA), and the initial and final warnings dates are also presented with the number of warnings issued by JTWC. Landfall over major landmasses with approximate locations is presented as well.

The JTWC post-event reanalysis best track is also provided for each cyclone. Data included on the best track are position and intensity noted with cyclone symbols and color coded track. Best track positions are marked by date at 0000 UTC, as well as the beginning and end points. Best track position labels include the date-time, track speed in knots, and maximum wind speed in knots. A graph of best track intensity and fix intensity versus time is presented. The fix plots on this graph are color coded by fixing agency.

TROPICAL STORM 01W

 ISSUED POOR:
 0600Z 11 Jan 2008

 ISSUED FAIR:
 0600Z 12 Jan 2008

 FIRST TCFA:
 1730Z 12 Jan 2008

 FIRST WARNING:
 0600Z 13 Jan 2008

 LAST WARNING:
 1200Z 16 Jan 2008

LANDFALL: Near San Jose, Mindoro, Philippines

MAX INTENSITY: 40 Kts NUMBER OF WARNINGS: 13

TYPHOON 02W (Neoguri)

 ISSUED POOR:
 2000Z 11 Apr 2008

 ISSUED FAIR:
 0100Z 13 Apr 2008

 FIRST TCFA:
 1930Z 13 Apr 2008

 FIRST WARNING:
 0000Z 14 Apr 2008

 LAST WARNING:
 1200Z 20 Apr 2008

 LANDFALL:
 Near Yangjiang, China

MAX INTENSITY: 100 Kts NUMBER OF WARNINGS: 23

SUPER TYPHOON 03W (Rammasun)

ISSUED POOR: N/A

ISSUED FAIR: 0030Z 06 May 2008 FIRST TCFA: 2200Z 06 May 2008 FIRST WARNING: 0600Z 07 May 2008 LAST WARNING: 1800Z 12 May 2008

LANDFALL: None
MAX INTENSITY: 135 Kts
NUMBER OF WARNINGS: 23

TROPICAL STORM 04W (Matmo)

ISSUED POOR: N/A

ISSUED FAIR: 1730Z 13 May 2008 0200Z 14 May 2008 FIRST TCFA: FIRST WARNING: 0600Z 14 May 2008 LAST WARNING: 0600Z 16 May 2008

LANDFALL: None MAX INTENSITY: 40 Kts

NUMBER OF WARNINGS:

TYPHOON 05W (Halong)

 ISSUED POOR:
 0200Z 14 May 2008

 ISSUED FAIR:
 0600Z 14 May 2008

 FIRST TCFA:
 2000Z 14 May 2008

 FIRST WARNING:
 1200Z 15 May 2008

 LAST WARNING:
 0000Z 20 May 2008

LANDFALL: Near San Carlos, Luzon, Philippines

MAX INTENSITY: 75 Kts NUMBER OF WARNINGS: 19

TYPHOON 06W (Nakri)

 ISSUED POOR:
 1300Z 25 May 2008

 ISSUED FAIR:
 0030Z 26 May 2008

 FIRST TCFA:
 2200Z 26 May 2008

 FIRST WARNING:
 0000Z 27 May 2008

 LAST WARNING:
 0000Z 03 Jun 2008

LANDFALL: None
MAX INTENSITY: 125 Kts
NUMBER OF WARNINGS: 29

TYPHOON 07W (Fengshen)

 ISSUED POOR:
 1130Z 15 Jun 2008

 ISSUED FAIR:
 1700Z 17 Jun 2008

 FIRST TCFA:
 2300Z 17 Jun 2008

 FIRST WARNING:
 1200Z 18 Jun 2008

 LAST WARNING:
 1200Z 25 Jun 2008

LANDFALL: Near Sulat, Samar, Philippines; Lucena, Luzon, Philippines; Hong Kong, China

MAX INTENSITY: 110 Kts NUMBER OF WARNINGS: 29

TYPHOON 08W (Kalmaegi)

ISSUED POOR: N/A

ISSUED FAIR: 0600Z 11 Jul 2008 FIRST TCFA: 0930Z 13 Jul 2008 FIRST WARNING: 0600Z 14 Jul 2008 LAST WARNING: 1800Z 18 Jul 2008

LANDFALL: Near Ilan, Taiwan; Ningde, China

MAX INTENSITY: 90 Kts NUMBER OF WARNINGS: 19

TYPHOON 09W (Fung-Wong)

 ISSUED POOR:
 2000Z 20 Jul 2008

 ISSUED FAIR:
 2300Z 23 Jul 2008

 FIRST TCFA:
 0600Z 24 Jul 2008

 FIRST WARNING:
 1200Z 24 Jul 2008

 LAST WARNING:
 1800Z 28 Jul 2008

LANDFALL: Near Hualien, Taiwan; Putian, China

MAX INTENSITY: 95 Kts NUMBER OF WARNINGS: 18

TROPICAL STORM 10W (Kammuri)

ISSUED POOR: N/A

ISSUED FAIR: 2330Z 02 Aug 2008 FIRST TCFA: 1930Z 03 Aug 2008 FIRST WARNING: 0000Z 04 Aug 2008 LAST WARNING: 1800Z 06 Aug 2008 LANDFALL: Near Yangjiang, China

MAX INTENSITY: 50 Kts NUMBER OF WARNINGS: 12

TROPICAL STORM 11W

ISSUED POOR: 0600Z 11 Aug 2008

ISSUED FAIR: N/A FIRST TCFA: N/A

FIRST WARNING: 0000Z 13 Aug 2008 LAST WARNING: 1200Z 14 Aug 2008

LANDFALL: Cheju Island, South Korea

MAX INTENSITY: 35 Kts NUMBER OF WARNINGS: 7

TROPICAL STORM 12W (Vongfong)

ISSUED POOR: N/A

ISSUED FAIR: 0600Z 13 Aug 2008 FIRST TCFA: 0030Z 14 Aug 2008 FIRST WARNING: 1800Z 14 Aug 2008 LAST WARNING: 1800Z 16 Aug 2008

LANDFALL: None MAX INTENSITY: 55 Kts NUMBER OF WARNINGS: 9

TYPHOON 13W (Nuri)

 ISSUED POOR:
 0600Z 16 Aug 2008

 ISSUED FAIR:
 1730Z 16 Aug 2008

 FIRST TCFA:
 2100Z 16 Aug 2008

 FIRST WARNING:
 0000Z 17 Aug 2008

 LAST WARNING:
 1800Z 22 Aug 2008

 LANDFALL:
 Near Hong Kong, China

MAX INTENSITY: 100 Kts NUMBER OF WARNINGS: 24

TROPICAL STORM 14W

 ISSUED POOR:
 0130Z 25 Aug 2008

 ISSUED FAIR:
 0600Z 25 Aug 2008

 FIRST TCFA:
 0100Z 26 Aug 2008

 FIRST WARNING:
 1200Z 26 Aug 2008

 LAST WARNING:
 0000Z 28 Aug 2008

LANDFALL: None MAX INTENSITY: 35 Kts NUMBER OF WARNINGS: 7

TYPHOON 15W (Sinlaku)

 ISSUED POOR:
 1430Z 07 Sep 2008

 ISSUED FAIR:
 2200Z 07 Sep 2008

 FIRST TCFA:
 0600Z 08 Sep 2008

 FIRST WARNING:
 1200Z 08 Sep 2008

 LAST WARNING:
 0000Z 20 Sep 2008

 LANDFALL:
 Near Taipei, Taiwan

MAX INTENSITY: 125 Kts NUMBER OF WARNINGS: 47

TROPICAL STORM 16W

ISSUED POOR: N/A

ISSUED FAIR: 2330Z 09 Sep 2008

FIRST TCFA: N/A

FIRST WARNING: 0000Z 10 Sep 2008 LAST WARNING: 1800Z 11 Sep 2008

LANDFALL: None MAX INTENSITY: 35 Kts NUMBER OF WARNINGS: 8

TROPICAL STORM 17W

ISSUED POOR: N/A
ISSUED FAIR: N/A
FIRST TCFA: N/A

FIRST WARNING: 0000Z 14 Sep 2008 LAST WARNING: 0000Z 14 Sep 2008

LANDFALL: None MAX INTENSITY: 35 Kts

NUMBER OF WARNINGS: 1

TYPHOON 18W (Hagupit)

 ISSUED POOR:
 0600Z 15 Sep 2008

 ISSUED FAIR:
 0030Z 16 Sep 2008

 FIRST TCFA:
 2330Z 17 Sep 2008

 FIRST WARNING:
 1800Z 18 Sep 2008

 LAST WARNING:
 1200Z 24 Sep 2008

 LANDFALL:
 Near Zhanjiang, China

MAX INTENSITY: 125 Kts NUMBER OF WARNINGS: 24

SUPER TYPHOON 19W (Jangmi)

 ISSUED POOR:
 0600Z 23 Sep 2008

 ISSUED FAIR:
 1300Z 23 Sep 2008

 FIRST TCFA:
 1930Z 23 Sep 2008

 FIRST WARNING:
 1800Z 23 Sep 2008

 LAST WARNING:
 1800Z 30 Sep 2008

 LANDFALL:
 Near Suao, Taiwan

MAX INTENSITY: 140 Kts NUMBER OF WARNINGS: 29

TROPICAL STORM 20W (Mekkhala)

 ISSUED POOR:
 0600Z 26 Sep 2008

 ISSUED FAIR:
 0930Z 26 Sep 2008

 FIRST TCFA:
 0630Z 28 Sep 2008

 FIRST WARNING:
 1800Z 28 Sep 2008

 LAST WARNING:
 0600Z 30 Sep 2008

 LANDFALL:
 Near Dong Hoi, Vietnam

MAX INTENSITY: 55 Kts

TROPICAL STORM 21W (Higos)

 ISSUED POOR:
 1300Z 27 Sep 2008

 ISSUED FAIR:
 0600Z 28 Sep 2008

 FIRST TCFA:
 2300Z 28 Sep 2008

 FIRST WARNING:
 0600Z 29 Sep 2008

 LAST WARNING:
 0600Z 04 Oct 2008

LANDFALL: Near Legazpi, Luzon, Philippines; Haikou, China

MAX INTENSITY: 40 Kts NUMBER OF WARNINGS: 21

TROPICAL STORM 22W

 ISSUED POOR:
 1500Z 07 Oct 2008

 ISSUED FAIR:
 2130Z 12 Oct 2008

 FIRST TCFA:
 0600Z 14 Oct 2008

 FIRST WARNING:
 0600Z 14 Oct 2008

 LAST WARNING:
 1200Z 15 Oct 2008

LANDFALL: 35 Kts

MAX INTENSITY: Near Vinh, Vietnam

NUMBER OF WARNINGS: 6

TROPICAL STORM 23W (Bavi)

 ISSUED POOR:
 0230Z 18 Oct 2008

 ISSUED FAIR:
 0600Z 18 Oct 2008

 FIRST TCFA:
 1100Z 18 Oct 2008

 FIRST WARNING:
 1800Z 18 Oct 2008

 LAST WARNING:
 0000Z 20 Oct 2008

LANDFALL: None MAX INTENSITY: 45 Kts NUMBER OF WARNINGS: 6

TROPICAL STORM 24W (Maysak)

 ISSUED POOR:
 1800Z 05 Nov 2008

 ISSUED FAIR:
 0600Z 06 Nov 2008

 FIRST TCFA:
 1500Z 06 Nov 2008

 FIRST WARNING:
 0000Z 07 Nov 2008

 LAST WARNING:
 0000Z 10 Nov 2008

LANDFALL: Near Isabela, Negro, Philippines

MAX INTENSITY: 55 Kts NUMBER OF WARNINGS: 14

TROPICAL STORM 25W (Haishen)

ISSUED POOR: 0000Z 15 Nov 2008

ISSUED FAIR: N/A

FIRST TCFA: 1630Z 15 Nov 2008 FIRST WARNING: 1800Z 15 Nov 2008 LAST WARNING: 1200Z 16 Nov 2008

LANDFALL: None MAX INTENSITY: 40 Kts

TROPICAL STORM 26W (Noul)

 ISSUED POOR:
 0600Z 13 Nov 2008

 ISSUED FAIR:
 1400Z 13 Nov 2008

 FIRST TCFA:
 2030Z 15 Nov 2008

 FIRST WARNING:
 0000Z 16 Nov 2008

 LAST WARNING:
 1200Z 17 Nov 2008

LANDFALL: Near Puerto Princesa, Palawan; Nha Trang, Vietnam

MAX INTENSITY: 40 Kts

TYPHOON 27W (Dolphin)

ISSUED POOR: 0600Z 09 Dec 2008 ISSUED FAIR: 2100Z 09 Dec 2008

FIRST TCFA: N/A

FIRST WARNING: 1200Z 10 Dec 2008 LAST WARNING: 1200Z 18 Dec 2008

LANDFALL: None MAX INTENSITY: 85 Kts NUMBER OF WARNINGS: 33

Section 3 Detailed Cyclone Reviews

Two cyclones were deemed to be either meteorologically or operationally significant for 2008. Typhoon Fengshen experienced unusually poor model performance, resulting in large forecast errors. Typhoon Sinlaku experienced two distinct periods of rapid intensification and benefited from aerial reconnaissance as part of the T-PARC 2008 experiment.

Typhoon 07W (Fengshen)

Typhoon (TY) 07W (Fengshen) formed southeast of Yap in mid-June, tracked westward across the Philippines and made landfall north of Hong Kong around 25/00Z. TY 07W was noteworthy for persistently erroneous track forecasts from all of the numerical models used to produce the JTWC consensus (CONW) forecast aid shown in Figure 1-6. All the dynamic aids used in the CONW determination predicted northward movement within 12 to 24 hours of any given initial forecast position with several of the numerical forecast tracks predicting very sharp poleward turns and recurvature.

The erroneous poleward bias of the CONW and all of the dynamic aids that are used to compute the consensus, negatively affected the JTWC forecasts (Figure 1-7) issued for this cyclone,

Figure 1-6. JTWC Model Consensus Forecasts

Figure 1-7. JTWC Official Forecasts

While TY 07W was developing in the Philippine Sea, the mid-tropospheric Subtropical Ridge (STR) extended from southeast China to central Japan with the anticyclone center located south of Kyushu. Contrary to model predictions, the STR persisted as the dominant steering mechanism as the cyclone moved through the South China Sea.

Overall, the average forecast track errors (FTE) were large at all taus (Table 1-5). The UK Met Office model (EGRI) outperformed the other dynamic models as well as JTWC and CONW, while NOGAPS (NGPI), GFS (AVNI) and GFDN (GFNI) models were the worst performing models.

	24	36	48	72	96	120
JTWC	108	169	206	308	658	874
CONW	115	192	262	430	703	838
AVNI	124	205	276	512	780	1005
EGRI	105	141	158	228	471	589
GFNI	165	259	354	534	791	848
NGPI	125	214	319	541	770	934
#CASES	14	14	12	11	6	6

Table 1-5: Average FTE (Homogeneous Comparison) Through Tau 120

Available real time reports and JTWC post analysis indicates that there were only minor impacts to DoD assets with 10 ships advised of the high winds and seas associated with Fengshen, but none were required to be diverted around the cyclone. It is highly unusual to have all forecast guidance be incorrect, so JTWC forecasters were reluctant to go against all the models, resulting in highly inaccurate official forecasts. Immediate evaluation by the modeling community is necessary to determine the root causes of the unreliability of the dynamic models in this case.

Typhoon 15W (Sinlaku)

Typhoon (TY) 15W (Sinlaku) formed in the Philippine Sea after tracking across much of the western North Pacific as a tropical wave. TY 15W was noteworthy in that it took a number of days to form, but then exhibited two distinct periods of rapid intensification (RI). During the first RI period, designated as R1 in Figure 1-8, TY 15W intensified at a rate of 45kts/24hrs for 2 consecutive days as it tracked northeastward toward Taiwan. The cyclone intensified from 35 knots at 12Z on 8 September to 120 knots at 12Z on 10 September. This 1st event occurred in a region with high ocean heat content and relatively low vertical wind shear. The second RI event, designated as R2 in Figure 3-3, occurred when TY 15W intensified 20 knots from 50 to 70 knots within an 18 hour period from 12Z on 18 September to 06Z on 19 September. Outflow enhancement by a midlatitude jet appears to have aided this rapid intensification.

Figure 1-8. TY 15W (Sinlaku) Best Track

Figure 1-9 describes the noted RI events. During the first RI event, the subjective Dvorak intensity estimates matched the best track intensities well, but underestimated the best track intensity during the secondary RI period. Aircraft reconnaissance data was available during the secondary RI period, as part of the THORPEX Pacific Asian Regional Campaign (T-PARC), and allowed JTWC to determine that this occurred, even though meteorological satellite analysis was not as conclusive. The disparity between the aircraft and meteorological satellite data during the 2nd RI, illustrates one of the challenges faced when only satellite intensity estimates are available.

Figure 1-9. TY PGTW and KNES subjective Dvorak values versus Best Track Intensity for both R1 and R2 events

Figure 1-10 is provided to illustrate the inability of numerical and statistical forecast aids to capture the R1 rapid intensification event.

Figure 1-10. TY 15W Objective Aid Intensity Graph Showing Intensity Model Guidance (9 Sep, 00Z) versus final best track intensity for R1 event

While the RI of TY 15W in the early stages of the TC's lifecycle was noteworthy, the 2nd RI event presented challenges as well. The 2nd RI period occurred after the cyclone had weakened to 35 knots off the coast of Taiwan. This event was also not forecast well by the numerical guidance. Figure 1-11 is provided to illustrate the inability of the numerical forecast aids to capture the R2 rapid intensification event and the corresponding effect it had on the JTWC intensity forecast. Note that while cyclone intensities were increasing, the numerical guidance was showing a decrease in intensity.

Figure 1-11. TY 15W Objective Aid Intensity Graph Showing Intensity Model Guidance (17 Sep, 00Z) versus final best track intensity for R2 event

Available real time reports and JTWC post analysis indicates that there were major impacts to DoD assets with 10 ships advised of the high winds and seas and 12 ships diverted around the cyclone. The poor performance of available intensity forecast tools and the JTWC intensity forecasts, highlight the need for improvements in forecasting TC intensity, especially in the area of RI. The extent of the 2nd RI event (R2) may have been missed had the aircraft reconnaissance not been in place for T-PARC. This had the potential, had the cyclone tracked slightly poleward of the actual track, to cause significant damage to U.S. assets in Japan.

Chapter 2 North Indian Ocean Tropical Cyclones

This chapter contains information on north Indian Ocean tropical cyclone activity during 2008 and the monthly distribution of Tropical Cyclone activity summarized for 1975 - 2008. North Indian Ocean tropical cyclone best tracks appear following Table 2-2.

Section 1 Informational Tables

Table 2-1 is a summary of Tropical Cyclone activity in the north Indian Ocean during the 2008 season. Seven cyclones occurred in 2008, with only one system reaching intensity greater than 64 knots (TC 01B Nargis). Table 2-2 shows the monthly distribution of Tropical Cyclone activity for 1975 - 2008.

Table 2-1											
NO	NORTH INDIAN OCEAN SIGNIFICANT TROPICAL CYCLONES FOR 2008										
		(01 J	AN 2008 - 31 DEC	_ 2008)							
TC	NAME*	PERIOD**	WARNINGS ISSUED	EST MAX SFC WINDS KTS	MSLP (MB)***						
1B	Nargis	27 Apr - 3 May	25	115							
2B		16 Sep	2	45							
3A		20 - 23 Oct	11	30							
4B	Rashmi	26 - 27 Oct	5	45							
5B	Khai-Muk	14 - 16 Nov	9	45							
6B	Nisha	25 - 27 Nov	7	50							
7B		4 - 7 Dec	13	35							
		* As De	esignated by RSMC 1	New Delhi							
	** Dates are based on Issuance of JTWC warnings on system.										
*** MS	*** MSLP converted from estimated maximum surface winds using Knaff-Zehr wind-pressure relationship										

Table 2 - 2

DISTRIBUTION OF NORTH INDIAN OCEAN TROPICAL CYCLONES

FOR 1975 - 2008

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTALS
1975	1	0	0	0	2	0	0	0	0	1	2	0	6
2570	010	000	000	000	200	000	000	000	000	100	020	000	330
1976	0	0	0	1	0	1	0	0	1	1	0	1	5
	000	000	000	010	000	010	000	000	010	010	000	010	050
1977	0	0	0	0	1	1	0	0	0	1	0	2	5
	000	000	000	000	010	010	000	000	000	010	000	110	140
1978	0	0	0	0	1	0	0	0	0	1	2	0	4
	000	000	000	000	010	000	000	000	000	010	200	000	220
1979	0	0	0	0	1	1	0	0	2	1	2	0	7
1000	000	000	000	000	100	010	000	000	011	010	011	000	1 4 2
1980	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	010	010	020
1981	0	0	0	0	0	0	0	0	1	0	1	1	3
1701	000	000	000	000	000	000	000	000	010	000	100	100	210
1982	0	0	0	0	1	1	0	0	0	2	1	0	5
	000	000	000	000	100	010	000	000	000	020	100	000	230
1983	0	0	0	0	0	0	0	1	0	1	1	0	3
	000	000	000	000	000	000	000	010	000	010	010	000	030
1984	0	0	0	0	1	0	0	0	0	1	2	0	4
	000	000	000	000	010	000	000	000	000	010	200	000	220
1985	0	0	0	0	2	0	0	0	0	2	1	1	6
	000	000	000	000	020	000	000	000	000	020	010	010	060
1986	1	0	0	0	0	0	0	0	0	0	2	0	3
1005	010	000	000	000	000	000	000	000	000	000	020	000	030
1987	0	1	0	0	0	2	0	0	0	2	1	2	8
1988	000	010	000	0 0 0	000	020	0 0 0	0 0 0	000	020	010	020	080
1900	000	000	000	000	000	010	000	000	000	010	110	010	140
1989	0	0	0	0	1	1	0	0	0	0	1	0	3
	000	000	000	000	010	010	000	000	000	000	100	000	120
1990	0	0	0	1	1	0	0	0	0	0	1	1	4
	000	000	000	0 0 1	100	000	000	000	000	000	0 0 1	010	112
1991	1	0	0	1	0	1	0	0	0	0	1	0	4
	010	000	000	100	000	010	000	000	000	000	100	000	220
1992	0	0	0	0	1	2	1	0	1	3	3	2	13
	000	000	000	000	100	020	010	000	001	0 2 1	210	020	382
1993	0	0	0	0	0	0	0	0	0	0	2	0	2
1004	000	000	000	000	000	000	000	000	000	000	200	000	200
1994	0	0	0.1.0	1 0 0	0	0.1.0	0	0	0	0.1.0	0.1.0	0	5
1995	000	000	010	100	000	010	000	000	000	010	010	000	1 4 0
1773	000	000	000	000	000	000	000	000	010	010	200	000	220
1996	0	0	0	0	1	3	0	0	0	2	2	0	8
1770	000	000	000	000	010	1 2 0	000	000	000	110	200	000	440
1997	0	0	0	0	1	0	0	0	1	1	1	0	4

	000	000	000	000	100	000	000	000	100	010	010	000	220
1998	0	0	0	0	2	1	0	0	1	1	2	1	8
	000	000	000	000	110	100	000	000	010	010	200	100	5 3 0
1999	0	1	0	0	1	1	0	0	0	2	0	0	5
	000	010	000	000	100	010	000	000	000	200	000	000	3 2 0
2000	0	0	0	0	0	0	0	0	0	2	1	1	4
	000	000	000	000	000	000	000	000	000	020	100	010	1 3 0
2001	0	0	0	0	1	0	0	0	1	1	1	0	4
	000	000	000	000	100	000	000	000	010	010	001	000	121
2002	0	0	0	0	2	0	0	0	0	0	2	1	5
	000	000	000	000	020	000	000	000	000	000	020	010	050
2003	0	0	0	0	1	0	0	0	0	0	1	1	3
	000	000	000	000	100	000	000	000	000	000	100	010	210
2004	0	0	0	0	2	0	0	0	0	2	1	0	5
	000	000	000	000	020	000	000	000	000	020	100	000	140
2005	2	0	0	0	0	0	0	0	0	2	1	2	7
	011	000	000	000	000	000	000	000	000	020	010	020	061
2006	1	0	0	1	0	0	1	0	2	0	1	0	6
	010	000	000	100	000	000	010	000	020	000	010	000	150
2007	0	0	0	0	1	3	0	0	0	1	1	0	6
	000	000	000	000	100	120	000	000	000	010	100	000	3 3 0
2008	0	0	0	1	0	0	0	0	1	2	2	1	7
	000	000	000	100	000	000	000	000	010	011	020	010	151
						(1975	-2008)						
MEAN	0.2	0.1	0.0	0.2	0.7	0.6	0.1	0.0	0.3	1.0	1.3	0.5	5.0
CASES	6	2	1	5	24	20	2	1	11	33	43	18	166

The criteria used in TABLE 1-6 are as follows:

³⁾ If a tropical cyclone began on the last day of the month and ended on the first day of the next month, that system was attributed to the first month. However, if a tropical cyclone began on the last day of the month and continued into the next month for only two days, then it was attributed to the second month.

TABLE 2-2 Legend								
Total month/year								
GTE 64 knots	34 to 63 knots	LTE 33 knots						
(Typhoon)	(Tropical	(Tropical						
(Typhoon)	Storm)	Depression)						

¹⁾ If a tropical cyclone was first warned on during the last two days of a particular month and continued into the next month for longer than two days, then that system was attributed to the second month.

²⁾ If a tropical cyclone was warned on prior to the last two days of a month, it was attributed to the first month, regardless of how long the system lasted.

Figure 2-1. North Indian Ocean Tropical Cyclones Jan – Dec 2008.

Section 2 Cyclone Summaries

Each cyclone is presented, with the number and basin identifier assigned by JTWC, along with the RSMC assigned cyclone name. Dates are also listed when JTWC first designated various stages of development; as an area of interest (Poor classification), increased potential for development (Fair classification) and development/TC expected (Good classification). Furthermore, the first Tropical Cyclone Formation Alert (TCFA), and the first and final warnings dates are also presented with the number of warnings issued by JTWC. Maximum intensity and the number of warnings issued by JTWC are included as well. Landfall over major landmasses and approximate locations are presented as well.

The JTWC post-event reanalysis best track is also provided for each cyclone. Data included on the best track are position and intensity noted with cyclone symbols and color coded track. Best track positions are marked by date at 0000 UTC, as well as the beginning and end points. Best track position labels include the date-time, track speed in knots, and maximum wind speed in knots. A graph of best track intensity versus time is presented. Fix plots on this graph are color coded by fixing agency

Tropical Cyclone 01B (Nargis)

 ISSUED POOR:
 1800Z 25 Apr 2008

 ISSUED FAIR:
 1800Z 26 Apr 2008

 FIRST TCFA:
 0600Z 27 Apr 2008

 FIRST WARNING:
 1200Z 27 Apr 2008

 LAST WARNING:
 1200Z 03 May 2008

 LANDFALL:
 Near Labutta, Myanmar

MAX INTENSITY: 115 Kts NUMBER OF WARNINGS: 25

Tropical Cyclone 02B

 ISSUED POOR:
 1800Z 14 Sep 2008

 ISSUED FAIR:
 1730Z 15 Sep 2008

 FIRST TCFA:
 2230Z 15 Sep 2008

 FIRST WARNING:
 1200Z 16 Sep 2008

 LAST WARNING:
 1800Z 16 Sep2008

 LANDFALL:
 Near Baleshwar, India

MAX INTENSITY: 45 Kts NUMBER OF WARNINGS: 2

Tropical Cyclone 03A

 ISSUED POOR:
 0230Z 17 Oct 2008

 ISSUED FAIR:
 0630Z 20 Oct 2008

 FIRST TCFA:
 1430Z 20 Oct 2008

 FIRST WARNING:
 1800Z 20 Oct 2008

 LAST WARNING:
 0600Z 23 Oct 2008

 LANDFALL:
 Near Ash Shihr, Yemen

MAX INTENSITY: 30 Kts NUMBER OF WARNINGS: 11

Tropical Cyclone 04B (Rashmi)

ISSUED POOR: N/A

ISSUED FAIR: 1800Z 24 Oct 2008 FIRST TCFA: 1500Z 24 Oct 2008 FIRST WARNING: 0000Z 26 Oct 2008 LAST WARNING: 0000Z 27 Oct 2008

LANDFALL: Near Tetulbaria, Bangladesh

MAX INTENSITY: 45 Kts NUMBER OF WARNINGS: 5

Tropical Cyclone 05B (Khai-Muk)

 ISSUED POOR:
 1800Z 09 Nov 2008

 ISSUED FAIR:
 1800Z 12 Nov 2008

 FIRST TCFA:
 1530Z 13 Nov 2008

 FIRST WARNING:
 0000Z 14 Nov 2008

 LAST WARNING:
 0000Z 16 Nov 2008

 LANDFALL:
 Near Nellore, India

MAX INTENSITY: 45 Kts NUMBER OF WARNINGS: 9

Tropical Cyclone 06B (Nisha)

ISSUED POOR: 1230Z 24 Oct 2008

ISSUED FAIR: N/A

FIRST TCFA: 0730Z 25 Nov 2008 FIRST WARNING: 1800Z 25 Nov 2008 LAST WARNING: 0600Z 27 Nov 2008 LANDFALL: Near Puduchcheri, India

MAX INTENSITY: 50 Kts

Tropical Cyclone 07B

 ISSUED POOR:
 0300Z 01 Dec 2008

 ISSUED FAIR:
 1500Z 02 Dec 2008

 FIRST TCFA:
 2230Z 03 Dec 2008

 FIRST WARNING:
 0000Z 04 Dec 2008

 LAST WARNING:
 0000Z 07 Dec 2008

LANDFALL: Near Batticaloa, Sri Lanka

MAX INTENSITY: 35 Kts NUMBER OF WARNINGS: 13

Chapter 3 South Pacific and South Indian Ocean Tropical Cyclones

This chapter contains information on south Pacific and south Indian Ocean tropical cyclone activity that occurred during 2008 tropical cyclone season (1 July 2007 – 30 June 2008) and the monthly distribution of Tropical Cyclone activity summarized for 1975 - 2008. 2008 tropical cyclone best tracks for this region appear following Table 3-3.

Section 1 Informational Tables

Table 3-1 is a summary of Tropical Cyclone activity in the Southern Hemisphere during the 2008 season. Table 3-2 provides the monthly distribution of Tropical Cyclone activity summarized for 1975 - 2008. Table 3-3 depicts the annual variation of Tropical Cyclone activity by basin.

Table 3-1 SOUTHERN HEMISPHERE TROPICAL CYCLONES FOR 2008									
		(01 JUI	LY 2007 - 30 JU	JNE 2008)					
TC	NAME	PERIOD	WARNINGS ISSUED	EST MAX SFC WINDS KTS	MSLP (MB)**				
01S		29 JUL - 30 JUL	2	40					
02P	Guba	13 NOV - 19 NOV	12	75					
03S	Lee-Ariel	14 NOV - 18 NOV	9	60					
04S	Bongwe	18 NOV - 23 NOV	12	65					
05P	Daman	5 DEC - 9 DEC	10	110					
06S	Celina	13 DEC - 18 DEC	11	40					
07S	Dama	18 DEC - 21 DEC	7	50					
08S	Melanie	28 DEC - 1 JAN	13	60					
09S	Elnus	31 DEC - 4 JAN	8	40					
10S	Helen	3 JAN - 6 JAN	6	50					
11P	Elisa	10 JAN - 11 JAN	4	50					
12P	Funa	16 JAN - 20 JAN	9	105					
13S	Fame	25 JAN - 1 FEB	13	85	_				
14S	Gula	27 JAN - 2 FEB	13	90					
15P	Gene	27 JAN - 6 FEB	20	100					
16S	Hondo	4 FEB - 24 FEB	20	130					
17S		7 FEB - 10 FEB	7	40					
18S	Ivan	7 FEB - 18 FEB	30	125					
19S	Nicholas	12 FEB - 20 FEB	26	80					
20P		29 FEB - 1 MAR	2	35					
21S	Ophelia	1 MAR - 6 MAR	19	65					
22S	Jokwe	5 MAR - 14 MAR	21	110					
23S	Kamba	7 MAR - 12 MAR	10	115					
24P		20 MAR - 21 MAR	3	35					
25S	Lola	21 MAR - 24 MAR	6	35					
26S	Pancho	24 MAR - 28 MAR	11	100					
27P	Noname	18 APR - 19 APR	3	30					
28S	Rosie	21 APR - 24 APR	6	50					
29S	Durga	22 APR - 24 APR	5	40					

**MSLP converted from estimated maximum winds using Knaff-Zehr wind pressure relationship. Number of warnings includes

	Table 3-2 DISTRIBUTION OF SOUTH PACIFIC AND SOUTH INDIAN OCEAN TROPICAL CYCLONES												
	DI	ISTRIBU'	TION OF	SOUTH	PACIFIO		OUTH IN 158 - 2008		CEAN TR	OPICAL	CYCLO	NES	
YEAR	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTALS
ILAK	JUL	AUG	SEP	1 001)58 - 1977			WIAK	APK	IVIA I	JUN	IUIALS
_	_	_	_	0.4	1.5	3.6	6.1	5.8	4.7	2.1	0.5	_	24.7
_	1981 - 2007												
1981	0	0	0	1	3	2	6	5	3	3	1	0	24
1982	1	0	0	1	1	3	9	4	2	3	1	0	25
1983	1	0	0	1	1	3	5	6	3	5	0	0	25
1984	1	0	0	1	2	5	5	10	4	2	0	0	30
1985	0	0	0	0	1	7	9	9	6	3	0	0	35
1986	0	0	1	0	1	1	9	9	6	4	2	0	33
1987	0	1	0	0	1	3	6	8	3	4	1	1	28
1988	0	0	0	0	2	3	5	5	3	1	2	0	21
1989	0	0	0	0	2	1	5	8	6	4	2	0	28
1990	2	0	1	1	2	2	4	4	10	2	1	0	29
1991	0	0	1	1	1	3	2	5	5	2	1	1	22
1992	0	0	1	1	2	5	4	11	3	2	1	0	30
1993	0	0	1	1	0	5	7	7	2	2	2	0	27
1994	0	0	0	0	2	4	8	4	9	3	0	0	30
1995	0	0	0	0	2	2	5	4	5	4	0	0	22
1996	0	0	0	0	1	3	7	6	6	4	1	0	28
1997	1	1	1	2	2	6	9	8	3	1	3	1	38
1998	1	0	0	3	2	3	7	9	6	6	0	0	37
1999	1	0	1	1	1	6	6	8	7	2	0	0	33
2000	0	0	0	0	0	3	6	5	7	6	0	0	27
2001	0	1	0	0	1	1	4	6	2	5	0	1	21
2002	0	0	0	2	4	1	4	5	4	2	3	0	25
2003	0	0	1	0	2	5	5	7	5	2	1	1	29
2004	0	0	0	1	1	3	6	3	7	1	1	0	23
2005 2006	6	5	5	1 3	0	0	7	7	0	2	2	0	26
2006			_				_	-				1	23
	0	0	0	0	1	2	7	5	6	6	1	_	
2008	1	0	0	0	3			5	6	3	0	0	29
MEAN	0.5	0.2	0.5	0.0	1.5	`	- 2008)	(2	4.0	2.0	0.0	0.2	27.6
MEAN CASES	0.5	0.3	0.5	0.8	1.5	3.1 88	5.7 159	6.2	4.8	3.0 85	0.9	0.3	27.6 772
CASES	13	0	14		45	00	137	1/3	133	0.5	20	/	112

* (GRAY, 1978)

The criteria used in TABLE 3-2 are as follows:

- 1) If a tropical cyclone was first warned on during the last two days of a particular month and continued into the next month for longer than two days, then that system was attributed to the second month
- 2) If a tropical cyclone was warned on prior to the last two days of a month, it was attributed to the first month, regardless of how long the system lasted.
- 3) If a tropical cyclone began on the last day of the month and ended on the first day of the next month, that system was attributed to the first month. However, if a tropical cyclone began on the last day of the month and continued into the next month for only two days, then it was attributed to the second month.

Figure 3-1. Southern Indian Ocean Tropical Cyclones 26 July 2007 – 26 April 2008.

Figure 3-2. Australia Region Tropical Cyclones 26 July 2007 - 24 April 2008.

Figure 3-3. Southern Pacific Tropical Cyclones 02 December 2007 - 06 February 2008.

Section 2 Cyclone Summaries

Each cyclone is presented, with the number and basin identifier assigned by JTWC, along with the RSMC assigned cyclone name. Dates are also listed when JTWC first designated various stages of development; as an area of interest (Poor classification), increased potential for development (Fair classification) and development/TC expected (Good classification). Furthermore, the first Tropical Cyclone Formation Alert (TCFA), and the first and final warnings dates are also presented with the number of warnings issued by JTWC. Maximum intensity and the number of warnings issued by JTWC are included as well. Landfall over major landmasses and approximate locations are presented as well.

The JTWC post-event reanalysis best track is also provided for each cyclone. Data included on the best track are position and intensity noted with cyclone symbols and color coded track. Best track positions are marked by date at 0000 UTC, as well as the beginning and end points. Best track position labels include the date-time, track speed in knots, and maximum wind speed in knots. A graph of best track intensity versus time is presented. Fix plots on this graph are color coded by fixing agency

Tropical Cyclone 01S

ISSUED POOR: N/A

ISSUED FAIR: 0600Z 27 Jul 2007 FIRST TCFA: 1330Z 27 Jul 2007 FIRST WARNING: 1800Z 29 Jul 2007 LAST WARNING: 0600Z 30 Jul 2007

LANDFALL: None MAX INTENSITY: 40 Kts

Tropical Cyclone 02P (Guba)

 ISSUED POOR:
 1730Z 11 Nov 2007

 ISSUED FAIR:
 0600Z 12 Nov 2007

 FIRST TCFA:
 0200Z 13 Nov 2007

 FIRST WARNING:
 1200Z 13 Nov 2007

 LAST WARNING:
 0000Z 19 Nov 2007

LANDFALL: None MAX INTENSITY: 75 Kts NUMBER OF WARNINGS: 12

Tropical Cyclone 03S (Lee-Ariel)

ISSUED POOR: 1800Z 12 Nov 2007 ISSUED FAIR: 1330Z 14 Nov 2007 FIRST TCFA: 1630Z 14 Nov 2007 FIRST WARNING: 1800Z 14 Nov 2007 LAST WARNING: 1800Z 18 Nov 2007

LANDFALL: None MAX INTENSITY: 60 Kts NUMBER OF WARNINGS: 9

Tropical Cyclone 04S (Bongwe)

ISSUED POOR: 1000Z 17 Nov 2007 ISSUED FAIR: 1800Z 17 Nov 2007 FIRST TCFA: 2300Z 17 Nov 2007 FIRST WARNING: 0600Z 18 Nov 2007 LAST WARNING: 1800Z 23 Nov 2007

LANDFALL: None MAX INTENSITY: 65 Kts NUMBER OF WARNINGS: 12

Tropical Cyclone 05P (Daman)

ISSUED POOR: 2130Z 02 Dec 2007 **ISSUED FAIR:** 2330Z 03 Dec 2007 FIRST TCFA: 0230Z 04 Dec 2007 FIRST WARNING: 0000Z 05 Dec 2007 0600Z 09 Dec 2007 LAST WARNING:

LANDFALL: None 110 Kts MAX INTENSITY: NUMBER OF WARNINGS: 10

Fix Date (Zulu)

LEGEND

IDENTIFICATION

XX

SPD(KT) INT(KT)

XX

Tropical Cyclone 06S (Celina)

 ISSUED POOR:
 0830Z 12 Dec 2007

 ISSUED FAIR:
 1800Z 12 Dec 2007

 FIRST TCFA:
 2230Z 12 Dec 2007

 FIRST WARNING:
 0900Z 13 Dec 2007

 LAST WARNING:
 0000Z 18 Dec 2007

LANDFALL: None MAX INTENSITY: 40 Kts NUMBER OF WARNINGS: 11

Tropical Cyclone 07S (Dama)

 ISSUED POOR:
 0900Z 17 Dec 2007

 ISSUED FAIR:
 1530Z 17 Dec 2007

 FIRST TCFA:
 2230Z 17 Dec 2007

 FIRST WARNING:
 1200Z 18 Dec 2007

 LAST WARNING:
 1200Z 21 Dec 2007

LANDFALL: None MAX INTENSITY: 50 Kts

Tropical Cyclone 08S (Melanie)

 ISSUED POOR:
 0900Z 26 Dec 2007

 ISSUED FAIR:
 1800Z 26 Dec 2007

 FIRST TCFA:
 2130Z 27 Dec 2007

 FIRST WARNING:
 0600Z 28 Dec 2007

 LAST WARNING:
 0000Z 01 Jan 2008

LANDFALL: None MAX INTENSITY: 60 Kts NUMBER OF WARNINGS: 13

Tropical Cyclone 09S (Elnus)

ISSUED POOR: 1800Z 29 Dec 2007 ISSUED FAIR: 1600Z 31 Dec 2007 FIRST TCFA: 1730Z 30 Dec 2007 FIRST WARNING: 1200Z 31 Dec 2007 LAST WARNING: 0000Z 04 Jan 2008

LANDFALL: None MAX INTENSITY: 40 Kts NUMBER OF WARNINGS: 8

Tropical Cyclone 10S (Helen)

 ISSUED POOR:
 1900Z 29 Dec 2007

 ISSUED FAIR:
 1300Z 03 Jan 2008

 FIRST TCFA:
 1530Z 03 Jan 2008

 FIRST WARNING:
 1800Z 03 Jan 2008

 LAST WARNING:
 0600Z 06 Jan 2008

LANDFALL: Near Anson Bay, Australia

MAX INTENSITY: 50 Kts NUMBER OF WARNINGS: 6

Tropical Cyclone 11P (Elisa)

ISSUED POOR: N/A

ISSUED FAIR: 1430Z 08 Jan 2008 FIRST TCFA: 1330Z 09 Jan 2008 FIRST WARNING: 0000Z 10 Jan 2008 LAST WARNING: 0600Z 11 Jan 2008

LANDFALL: None MAX INTENSITY: 50 Kts

Tropical Cyclone 12P (Funa)

 ISSUED POOR:
 1330Z 15 Jan 2008

 ISSUED FAIR:
 2300Z 15 Jan 2008

 FIRST TCFA:
 0200Z 16 Jan 2008

 FIRST WARNING:
 0600Z 16 Jan 2008

 LAST WARNING:
 0600Z 20 Jan 2008

LANDFALL: Near Nokuku, Espiritu Santo, Vanuatu

MAX INTENSITY: 105 Kts

Tropical Cyclone 13S (Fame)

 ISSUED POOR:
 1800Z 23 Jan 2008

 ISSUED FAIR:
 0800Z 24 Jan 2008

 FIRST TCFA:
 1030Z 25 Jan 2008

 FIRST WARNING:
 1800Z 25 Jan 2008

 LAST WARNING:
 0600Z 01 Feb 2008

LANDFALL: Near Soalala, Madagascar

MAX INTENSITY: 85 Kts NUMBER OF WARNINGS: 13

Tropical Cyclone 14S (Gula)

 ISSUED POOR:
 0230Z 24 Jan 2008

 ISSUED FAIR:
 1400Z 25 Jan 2008

 FIRST TCFA:
 2100Z 26 Jan 2008

 FIRST WARNING:
 0000Z 27 Jan 2008

 LAST WARNING:
 0000Z 02 Feb 2008

LANDFALL: None MAX INTENSITY: 90 Kts NUMBER OF WARNINGS: 13

Tropical Cyclone 15P (Gene)

 ISSUED POOR:
 0600Z 26 Jan 2008

 ISSUED FAIR:
 1630Z 26 Jan 2008

 FIRST TCFA:
 2230Z 26 Jan 2008

 FIRST WARNING:
 1800Z 27 Jan 2008

 LAST WARNING:
 0600Z 06 Feb 2008

LANDFALL: Near Lautoka, Viti Levu, Fiji

MAX INTENSITY: 100 Kts NUMBER OF WARNINGS: 20

Tropical Cyclone 16S (Hondo)

 ISSUED POOR:
 1800Z 02 Feb 2008

 ISSUED FAIR:
 0930Z 03 Feb 2008

 FIRST TCFA:
 0300Z 04 Feb 2008

 FIRST WARNING:
 1200Z 04 Feb 2008

 LAST WARNING:
 0000Z 24 Feb 2008

 LANDFALL:
 La Reunion, France

MAX INTENSITY: 130 Kts NUMBER OF WARNINGS: 20

Tropical Cyclone 17S

 ISSUED POOR:
 0930Z 03 Feb 2008

 ISSUED FAIR:
 0200Z 04 Feb 2008

 FIRST TCFA:
 1930Z 06 Feb 2008

 FIRST WARNING:
 0300Z 07 Feb 2008

 LAST WARNING:
 0300Z 10 Feb 2008

LANDFALL: None MAX INTENSITY: 40 Kts

NUMBER OF WARNINGS: 7

Tropical Cyclone 18S (Ivan)

ISSUED POOR: N/A

ISSUED FAIR: 1800Z 05 Feb 2008 FIRST TCFA: 0130Z 07 Feb 2008 FIRST WARNING: 0600Z 07 Feb 2008 LAST WARNING: 1800Z 18 Feb 2008

LANDFALL: Near Ambodifotatra, Madagascar

MAX INTENSITY: 125 Kts NUMBER OF WARNINGS: 30

Tropical Cyclone 19S (Nicholas)

ISSUED POOR: N/A

ISSUED FAIR: 2130Z 10 Feb 2008
FIRST TCFA: 1100Z 12 Feb 2008
FIRST WARNING: 1800Z 12 Feb 2008
LAST WARNING: 1200Z 20 Feb 2008
LANDFALL: Near Cardabia, Australia

MAX INTENSITY: 80 Kts NUMBER OF WARNINGS: 26

Tropical Cyclone 20P

 ISSUED POOR:
 1930Z 26 Feb 2008

 ISSUED FAIR:
 0230Z 28 Feb 2008

 FIRST TCFA:
 0200Z 29 Feb 2008

 FIRST WARNING:
 0600Z 29 Feb 2008

 LAST WARNING:
 1800Z 01 Mar 2008

LANDFALL: None MAX INTENSITY: 35 NUMBER OF WARNINGS: 2

Tropical Cyclone 21S (Ophelia)

 ISSUED POOR:
 0200Z 27 Feb 2008

 ISSUED FAIR:
 1430Z 27 Feb 2008

 FIRST TCFA:
 2000Z 29 Feb 2008

 FIRST WARNING:
 0600Z 01 Mar 2008

 LAST WARNING:
 1800Z 06 Mar 2008

LANDFALL: None MAX INTENSITY: 65 Kts NUMBER OF WARNINGS: 19

Tropical Cyclone 22S (Jokwe)

 ISSUED POOR:
 1030Z 01 Mar 2008

 ISSUED FAIR:
 0300Z 04 Mar 2008

 FIRST TCFA:
 1630Z 04 Mar 2008

 FIRST WARNING:
 0300Z 05 Mar 2008

 LAST WARNING:
 2100Z 14 Mar 2008

LANDFALL: Near Antsiranana, Madagascar; Mocambiqe, Mozambique

MAX INTENSITY: 110 Kts NUMBER OF WARNINGS: 21

Tropical Cyclone 23S (Kamba)

ISSUED POOR: N/A

ISSUED FAIR: 1800Z 06 Mar 2008 FIRST TCFA: 0200Z 07 Mar 2008 FIRST WARNING: 1200Z 07 Mar 2008 LAST WARNING: 0000Z 12 Mar 2008

LANDFALL: None
MAX INTENSITY: 115 Kts
NUMBER OF WARNINGS: 10

Tropical Cyclone 24P

 ISSUED POOR:
 0900Z 19 Mar 2008

 ISSUED FAIR:
 2300Z 19 Mar 2008

 FIRST TCFA:
 1200Z 20 Mar 2008

 FIRST WARNING:
 2100Z 20 Mar 2008

 LAST WARNING:
 2100Z 21 Mar 2008

LANDFALL: None MAX INTENSITY: 35 Kts NUMBER OF WARNINGS: 3

Tropical Cyclone 25S (Lola)

 ISSUED POOR:
 0900Z 17 Mar 2008

 ISSUED FAIR:
 1800Z 19 Mar 2008

 FIRST TCFA:
 1400Z 21 Mar 2008

 FIRST WARNING:
 1800Z 21 Mar 2008

 LAST WARNING:
 0600Z 24 Mar 2008

LANDFALL: None MAX INTENSITY: 35 Kts NUMBER OF WARNINGS: 6

Tropical Cyclone 26S (Pancho)

 ISSUED POOR:
 1800Z 23 Mar 2008

 ISSUED FAIR:
 2300Z 23 Mar 2008

 FIRST TCFA:
 0530Z 24 Mar 2008

 FIRST WARNING:
 1200Z 24 Mar 2008

 LAST WARNING:
 1800Z 28 Mar 2008

LANDFALL: None
MAX INTENSITY: 100 Kts
NUMBER OF WARNINGS: 11

Tropical Cyclone 27P

ISSUED POOR: 1330Z 17 Apr 2008

ISSUED FAIR: N/A

FIRST TCFA: 1900Z 17 Apr 2008 FIRST WARNING: 0000Z 18 Apr 2008 LAST WARNING: 0000Z 19 Apr 2008

LANDFALL: None MAX INTENSITY: 30 Kts NUMBER OF WARNINGS: 3

Tropical Cyclone 28S (Rosie)

 ISSUED POOR:
 1430Z 19 Apr 2008

 ISSUED FAIR:
 2300Z 20 Apr 2008

 FIRST TCFA:
 0530Z 21 Apr 2008

 FIRST WARNING:
 1800Z 21 Apr 2008

 LAST WARNING:
 0600Z 24 Apr 2008

LANDFALL: None MAX INTENSITY: 50 Kts NUMBER OF WARNINGS: 6

Tropical Cyclone 29S (Durga)

 ISSUED POOR:
 1430Z 19 Apr 2008

 ISSUED FAIR:
 1800Z 21 Apr 2008

 FIRST TCFA:
 2330Z 21 Apr 2008

 FIRST WARNING:
 1800Z 22 Apr 2008

 LAST WARNING:
 1800Z 24 Apr 2008

LANDFALL: None MAX INTENSITY: 40 Kts NUMBER OF WARNINGS: 5

Section 3 Detailed Cyclone Reviews

Two cyclones were deemed to be either meteorologically or operationally significant for 2008. Tropical cyclones 13S and 14S experienced direct cyclone interaction during January – February 2008.

Tropical cyclones 13S and 14S-Direct Cyclone Interaction

Tropical Cyclones (TC) 13S and 14S were most notable for their direct cyclone interaction (also known as the Fujiwara effect.) The TCs moved within 500 nm of one another and began to rotate cyclonically around one another before TC 13S merge with TC 14S.

Tropical cyclone 13S (Fame) formed in the northern Mozambique Channel, made landfall and reintensified to a 45-kt tropical cyclone after it re-emerged southeast of Madagascar. Tropical cyclone 14S (Gula) formed northeast of La Reunion near 15 degrees south latitude, and tracked initially westward before turning poleward along 60E as it rounded the subtropical ridge axis. As TC 14S turned poleward, it began to interact with TC 13S which was then located just south of La Reunion.

A 31 January 0216Z SSMI pass (Figure 3-4) shows a connection of low level cloud bands in between the two cyclones.

Figure 3-4 Left: Best tracks of TC 13S and TC 14S. Right: 0216Z SSMI pass showing the connection of low level cloud bands between the two systems.

On 30 January at 1800Z, the separation distance between TC 13S (45-kt intensity) and TC 14S (60-kt intensity) was 443 nm. The storms were roughly the same size. At this juncture, TC 13S, which had been tracking southeastward, departed from its track and began 24 hours of a looping motion, while TC 14S began to accelerate poleward. Over the next 36 hours, TC 13S and TC 14S rotated cyclonically about each other, with the separation distance between the two decreasing. The diagram in Figure 3-5 indicates how the separation distance decreased at each synoptic time, while the axis between the two rotated cyclonically. Finally, by 1 February at 1200Z, TC 13S merged into the outer circulation of TC 14S making it difficult to distinguish between the two TCs.

Figure 3-5: The axis between TC 13S (eastern TC) and TC 14S (western TC) rotated cyclonically (clockwise in the Southern Hemisphere) as the cyclones were drawn together. The separation distance between the TCs decreased from 443 nm on 30 January at 1800Z to 234 nm on 1 February at 0000Z (approximately 30 hours.)

Both storms weakened significantly during their direct cyclone interaction. As seen in Figure 3-6, TC 13S became partly exposed by 31 January at 0630Z. The central convection of TC 13S was sheared to the southeast due to outflow from the mesoscale anticyclone over TC 14S. TC 14S was initially the more intense circulation and maintained some convection over the low level circulation center. For this reason, TC 14S was the dominant circulation into which TC 13S was ultimately absorbed. The dynamic models were unable to resolve the interaction between the two cyclones, as they could not resolve which circulation would be dominant. The largest model and JTWC forecast errors occurred when the TCs were within 250 nm of one another, and TC 13S accelerated as it was "captured" into the outer circulation of TC 14S.

Figure 3-6: Visual satellite imagery showing the direct cyclone interaction of 13S and 14S. In the top two panels, the TCs began to rotate cyclonically around one another with 13S becoming partially exposed. In the bottom left panel (31 January 1230Z) some indications exist that the two cyclones may be beginning to merge. In the bottom right panel (1 February 0330Z), only one remnant cyclone is evident.

The inability of the dynamic models to accurately resolve the interaction between TC 13S and TC 14S illustrates the need for more research into this rare, but not uncommon occurrence.

Chapter 4 Tropical Cyclone Fix Data

SOUTH	PACIFIC &		BLE 4-1 AN OCEAN FL	X SUMMARY	7 FOR 2008
Tropical Cyc	clone	Satellite	Radar	Synoptic	Total
TC 01S		100	0	0	100
TC 02P	Guba	172	0	0	172
TC 03S	Lee-Ariel	256	0	0	256
TC 04S	Bongwe	265	0	0	265
TC 05P	Daman	200	0	0	200
TC 06S	Celina	316	0	0	316
TC 07S	Dama	110	0	0	110
TC 08S	Melanie	204	0	0	204
TC 09S	Elnus	180	0	0	180
TC 10S	Helen	104	0	0	104
TC 11P	Elisa	140	0	0	140
TC 12P	Funa	216	0	0	216
TC 13S	Fame	228	0	0	228
TC 14S	Gula	225	0	0	225
TC 15P	Gene	366	0	0	366
TC 16S	Hondo	534	0	0	534
TC 17S		206	0	0	206
TC 18S	Ivan	427	0	0	427
TC 19S	Nicholas	286	0	0	286
TC 20P		96	0		96
TC 21S	Ophelia	225	0	0	225
TC 22S	Jokwe	382	0	0	382
TC 23S	Kamba	175	0	0	175
TC 24P		136	0	0	136
TC 25S	Lola	243	0	0	243
TC 26S	Pancho	196	0	0	196
TC 27P		55	0	0	55
TC 28S	Rosie	136	0	0	136
TC 29S	Durga	160	0	0	160
Totals		6339	0	0	6339
Percentage of Total		100.00%	0.00%	0.00%	100

TABLE 4-2
WESTERN NORTH PACIFIC OCEAN FIX SUMMARY FOR 2008

Tropical Cyc	lone	Satellite	Radar	Aircraft Recon	Dropsonde	Synoptic	Total
TS 01W	No Name	149	0	0	0	6	155
TY 02W	Neoguri	212	0	0	0	0	212
STY 03W	Rammasun	249	0	0	0	0	249
TS 04W	Matmo	94	0	0	0	0	94
TY 05W	Halong	183	0	0	0	0	183
TY 06W	Nakri	262	0	0	0	0	262
TY 07W	Fengshen	293	0	0	0	0	293
TY 08W	Kalmaegi	262	56	0	0	1	319
TY 09W	Fung-Wong	175	51	0	0	2	228
TS 10W	Kammuri	125	17	0	0	1	143
TS 11W		119	0	0	0	5	124
TS 12W	Vongfong	156	0	0	0	0	156
TY 13W	Nuri	228	55	3	5	0	291
TS 14W		111	0	0	0	0	111
TY 15W	Sinlaku	455	270	11	30	0	766
TS 16W		88	0	0	0	0	88
TS 17W		74	0	0	0	0	74
TY 18W	Hagupit	270	68	0	14	0	352
STY 19W	Jangmi	251	73	7	23	0	354
TS 20W	Mekkhala	111	0	0	0	0	111
TS 21W	Higos	217	0	0	0	0	217
TS 22W		85	0	0	0	0	85
TS 23W	Bavi	83	0	0	0	0	83
TS 24W	Maysak	227	0	0	0	1	228
TS 25W	Haishen	112	0	0	0	0	112
TS 26W	Noul	124	0	0	0	1	125
TY 27W	Dolphin	324	11	0	0	0	335
Total		5039	601	21	72	17	5750
Percentage of Total		87.63%	10.45%	0.37%	1.25%	0.30%	100

		TABLE	4-3		
NORTH	HERN INDIAN	NOCEAN I	FIX SUMM	IARY FOR	2008
Tropical Cycle	one	Satellite	Radar	Synoptic	Total
TC 01B	Nargis	213	0	0	213
TC 02B		71	0	0	71
TC 03A		157	0	1	158
TC 04B	Rashmi	85	0	1	86
TC 05B	Khai-Muk	123	0	0	123
TC 06B	Nisha	121	0	0	121
TC 07B		171	0	2	173

941

99.58%

4

0.42%

0

0.00%

945

100

FIXES BY OCE	ANIC BASIN FOR 2008
Oceanic Basin	Total Fixes
Northwest Pacific	5750
Southern Hemisphere	6339
Northern Indian Ocean	945
Total	13034

Totals

Percentage of Total

Chapter 5 Summary of Forecast Verification

Verification of warning position and intensities at initial, 12-, 24-, 48-, and 72-hour forecast periods are made against the final best track. The (scalar) track forecast, along-track and cross track errors (illustrated in Figure 5-1) were calculated for each verifying JTWC forecast. These data are included in this chapter. This section summarizes verification data for the 2008 season, and contrasts it with annual verification statistics from previous years.

Figure 5-1. Definition of cross-track error (XTE), along track error (ATE), and forecast track error (FTE). In this example, the forecast position is ahead of and to the right of the verifying best track position. Therefore, the XTE is positive (to the right of track) and the ATE is positive (ahead of the best track). Adapted from Tsui and Miller, 1988.

Section 1. Annual Forecat Verification

						T	ABLE	5-1							
			MEAN			RRORS (I					H PACIF	IC			
					TROPIC.	AL CYC				2008					
			24-Hot	ır				48-Ho	ur				72-Hot	ır	
				Cross	Along				Cross	Along				Cross	Along
Year	Cases	TY	TC	Track	Track	Cases	TY	TC	Track	Track	Cases	TY	TC	Track	Track
(Notes)	(1)	(2)	(4)	(3)	(3)	(1)	(2)	(4)	(3)	(3)	(1)	(2)	(4)	(3)	(3)
1959		117					267								
1960		177					354								
1961		136					274								
1962		144					287					476			
1963		127					246					374			
1964		133					284					429			
1965		151					303					418			
1966		136					280					432			
1967		125					276					414			
1968		105					229					337			
1969		111	104				237	100				349	270		
1970		98	104	61			181	190	110			272	279	177	
1971 1972		99	111 117	64 72			203	212	118			308	317	177 210	
1972		116 102	108	74			245 193	197	146 134			245	253	162	
1973		114	120	78			218	226	157			256	348	245	
1974		129	138	84			279	288	181			442	450	290	
1976		117	117	71			232	230	132			336	338	202	
1977		140	148	83			266	283	157			290	407	228	
1978		120	127	71	87		241	271	151	194		459	410	218	296
1979		113	124	76	81		219	226	138	146		319	316	182	214
1980		116	126	76	86		221	243	147	165		362	389	230	266
1981		117	124	77	80		215	221	131	146		342	334	219	206
1982		114	113	70	74		229	238	142	162		337	342	211	223
1983		110	117	73	76		247	260	164	169		384	407	263	259
1984		110	117	64	84		228	232	131	163		361	363	216	238
1985		112	117	68	80		228	231	138	153		355	367	227	230
1986		117	126	70	85		261	261	151	183		403	394	227	276
1987		101	107	64	71		211	204	127	134		318	303	186	198
1988	353	107	114	58	85	255	222	216	103	170	183	327	315	159	244
1989	585	107	120	69	83	458	214	231	127	162	343	325	350	177	265
1990	551	98	103	60	72	453	191	203	110	148	334	299	310	168	225
1991	673	93	96	53	69	570	187	185	97	137	467	298	287	146	229
1992	890	97	107	59	77	739	194	205	116	143	610	295	305	172	210
1993	744	102	112	63	79	596	205	212	117	151	469	320	321	173	226
1994	920	96	105	56	76	762	172	186	105	131	623	244	258	152	176
1995	521	105	123	67	89	409	200	215	117	159	315	311	325	167	240
1996	868	85	105	56	76	707	157	178	89	134	604	252	272	137	203
1997	905	86	93	55	76	783	159	164	87	134	665	251	245	120	202
1998	354	127	124	58	98	257	263	239	127	178	189	392	370	201	274
1999	433	88	106	59	74	300	150	176	102	119	191	225	234	139	155
2000	605	75	81	45	57	467	136	142	80	98	363	205	209	118	144
2001	627	66	73	42	49	512	114	122	75	78	395	169	180	110	120
2002	657	50	66	37	47	535	94	116	67	79	421	144	166	88	120
2003	602	59	73	41	52	495	119	128	68	94	397	186	186	89	147
2004	766	52	70	41 38	48 38	646	94	122	69 59	72	537 316	180	173	95	121
2005	507	41	61	38	40	407	85	102	61	72 73	316 327	138	156 151	76 77	120 112
2006	343	47	61	24	40	260	72	104	58	69	189	89	148	83	102
2007	343	43	UI	۷4	42	∠00	12	100	20	UY	109	09	140	0.5	102

2008	354	45	66	38	46	261	104	120	75	78	192	201	198	110	140
Averages (1978-															
2008)	608	90	101	57	70	489	255	189	107	132	387	278	283	159	199

Figure 5-2. Graph of JTWC forecast errors and five year running mean errors for the Western North Pacific at 24, 48, and 72 hours.

Figure 5-3. Graph of JTWC forecast errors and five year running mean errors for the Western North Pacific at 96 and 120 hours.

Table 5-2
MEAN FORECAST TRACK ERRORS (NM) FOR NORTH INDIAN OCEAN
(TROPICAL CYCLONES FROM 1985-2008

	24-НО	UR			48-НО	UR			72-НО	UR		
YEAR (Notes)	Cases	Track	CROSS TRACK	ALONG TRACK	Cases	Track	CROSS TRACK	ALONG TRACK	Cases	Track	CROSS TRACK	ALONG TRACK
1985	30	122	102	53	8	242	119	194	0	Hack	TRACK	TRACK
1986	16	134	118	53	7	168	131	80	5	269	189	180
1987	54	144	97	100	25	205	125	140	21	305	219	188
1988	30	120	89	63	18	219	112	176	12	409	227	303
1989	33	88	62	50	17	146	94	86	12	216	164	11
1990	36	101	85	43	24	146	117	67	17	185	130	104
1991	43	129	107	54	27	235	200	89	14	450	356	178
1992	149	128	73	86	100	244	141	166	62	398	276	218
1993	28	125	87	79	20	198	171	74	12	231	176	116
1994	44	97	80	44	28	153	124	63	13	213	177	92
1995	47	138	119	58	32	262	247	77	20	342	304	109
1996	123	134	94	80	85	238	181	127	58	311	172	237
1997	42	119	87	49	29	201	168	92	17	228	195	110
1998	55	106	84	51	34	198	135	106	17	262	188	144
1999	41	79	59	38	22	184	130	116	10	374	309	177
2000	24	61	47	26	16	85	69	37	1	401	399	38
2001	41	61	40	37	31	115	71	71	22	166	44	154
2002	30	84	41	63	18	137	92	83	10	185	92	133
2003	37	108	66	69	31	196	115	132	7	354	210	252
2004	46	81	53	52	36	140	95	85	9	173	144	86
2005	67	62	41	40	49	116	71	73	18	118	35	109
2006	19	64	37	44	13	92	58	60	0	-	-	-
2007	38	61	38	36	23	94	56	65	10	140	92	93
2008	59	70	46	44	4 38 99 71		71	55	24	127	94	127
Averages	47	101	72	55	20	171	121	06	16	266	101	144
(1985-2008)	47	101	73	55	30	171	121	96	16	266	191	144

Figure 5-2. Graph of JTWC forecast errors and five year running mean errors for the North Indian Ocean at 24, 48, and 72 hours.

TABLE 5-3 MEAN FORECAST ERRORS (NM) FOR SOUTHERN HEMISPHERE TROPICAL CYCLONES 1985 - 2008

		24-H	Iour			48	-Hour			72	-Hour	
Year (Notes)	Cases	Track	Cross	Along	Cases	Track	Cross	Along	Cases	Track	Cross	Along
1985	257	134	79	92	193	236	132	169				
1986	227	129	77	86	171	262	164	169				
1987	138	145	90	94	101	280	138	153				
1988	99	146	83	98	48	290	144	246				
1989	242	124	73	84	186	240	136	166				
1990	228	143	74	105	177	263	152	178				
1991	231	115	69	75	185	220	129	152				
1992	230	124	64	91	208	240	129	177				
1993	225	102	57	74	176	199	114	142				
1994	345	115	68	77	282	224	134	147				
1995	222	108	55	82	175	198	108	144	53	291	190	169
1996	298	125	67	90	237	240	129	174	46	277	133	221
1997	499	109	72	82	442	210	135	163	150	288	175	248
1998	305	111	52	85	245	219	108	169	81	349	171	261
1999	322	113	64	80	245	226	132	159	59	286	164	198
2000	313	72	45	47	245	135	86	84	58	180	139	94
2001	147	84	44	61	113	148	86	105	11	248	197	133
2002	200	82	43	60	146	133	75	93	5	102	41	91
2003	279	74	37	57	221	127	68	90	37	123	54	99
2004	277	77	45	52	233	142	89	92	47	210	102	162
2005	214	70	44	44	170	116	77	72	41	199	117	136
2006	191	65	37	46	140	116	69	79	32	201	101	151
2007	186	74.9	41	52	131	147.2	80	105	3	173.1	146	73
2008	269	61	38	40	211	106	64	72	27	97	53	65
Averages (1985-2008)	248	104	59	73	195	197	112	138	46	216	127	150

SHEM 24, 48, 72-Hour Mean Error (nm)

Figure 5-2. Graph of JTWC forecast errors and five year running mean errors for the Sothern Hemisphere at 24, 48, and 72 hours.

Section 2. Objective Aid Comparison

A comparison of the JTWC forecast, the multi-model consensus forecast (CONW) and the members of the CONW are provided in Table 5-4 for all western North Pacific tropical cyclones, Table 5-5 for north Indian Ocean tropical cyclones, and Table 5-6 for Southern Hemisphere tropical cyclones. For example, in Table 5-4 for the homogeneous comparison of the 12-hour mean forecast error between JTWC and CONW, 386 cases were available. The average forecast error at 12 hours was 39 nm for CONW and 40 nm for JTWC. The difference of 1 nm is shown in the lower right. Due to computational round-off, differences are not always exact.

Tourie	i on, c	птетег	ices are		TABLE	5-4 SE	LECT	ED OI	BJECTI	VE TE	CHNIQ	UES	WEST	ERN	NORT	TH P	ACIFI	C OC	EAN							
									12-HOU	JR MEA	AN FOR	ECA:	ST ERF	ROR	(NM)											
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	402	39																								
govern	39	0		20																						
CONW	398	39 -1	39	39																						
AVNI	318	37	331	36	331	39																				
	38	1	39	3	39	0						—		_						_				_		_
EGRI	177	38	179	37	147	38	179	41																		
	41	3	41	4	40	2	41	0																		
ECMI	8	34	9	47	6	24	9	36	9	112																
	30	-4	112	65	149	125	112	76	112	0																
ECM2	135	33	136	32	118	37	0	0	0	0	136	29														
ECM 42	29	-4	29	-3	28	-9 33	0	0	0	279	29	0	70	44												
ECM3	69	9	70	35 9	62	9	67	40	3 88	-191	0	0	70	0												
ECM4	65	31	65	30	60	33	0	0	0	0	58	27	0	0	65	42										
	42	11	42	12	43	10	0	0	0	0	37	10	0	0	42	0										
GFNI	307	37	310	35	275	38	138	40	7	30	116	28	60	44	59	35	310	52								
	52	15	52	17	50	12	51	11	66	36	47	19	50	6	46	11	52	0								
JGSI	282	36	283	34	240	36	144	40	8	30	110	28	62	37	58	35	244	51	283	37	_					
	37	1	37	3	34	-2	38	-2	34	4	33	5	35	-2	31	-4	36	-15	37	0						
NGPI	347	38	357	37	313	38	161	41	8	122	123	30	66	44	59	36	302	52	260	36	357	44				
TCLI	104	37	104	7 35	43 90	5 35	42 99	41	36 6	-86 29	1	38	39 39	-5 37	38	38	90	-9 47	98	37	99	39	104	58		
Telli	58	21	58	23	55	20	57	16	70	41	38	0	51	14	38	0	59	12	58	21	58	19	58	0		
WBAI	340	39	354	38	289	39	155	40	8	122	113	29	62	45	56	37	273	52	241	37	314	44	96	58	355	51
	50	11	50	12	48	9	50	10	47	-75	42	13	44	-1	40	3	48	-4	46	9	50	6	48	-10	51	0

							[İ			Ī				[İ			ſ	
				T		T			24-HOU	JR MEA	AN FOR	ECA	ST ERI	ROR	(NM)											
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	354	66																								
	66	0																								
CONW	351	66	366	64																						
ANINI	64	-2	64	0	204	(2)																				
AVNI	61	-1	62	57	62	62																				
EGRI	154	63	155	60	124	59	155	67																		
	67	4	67	7	65	6	67	0																		
ECMI	6	67	6	62	3	66	6	56	6	50																
	50	-17	50	-12	48	-18	50	-6	50	0																
ECM2	125	57	126	55	109	59	0	0	0	0	126	52														
	52	-5	52	-3	51	-8	0	0	0	0	52	0														
ECM3	63	52	63	54	56	49	60	64	1	53	0	0	63	73												
	73	21	73	19	75	26	62	-2	55	2	0	0	73	0												
ECM4	58	50	58	51	53	49	0	0	0	0	52	50	0	0	58	63										
GFNI	264	64	267	60	236	61	119	66	5	50	104	15 51	55	76	53	63	267	91								
OTNI	91	27	91	31	86	25	89	23	118	68	86	35	85	9	86	23	91	0								
JGSI	248	60	249	56	212	56	125	64	6	50	100	47	55	58	53	60	213	90	249	57						
	57	-3	57	1	53	-3	56	-8	48	-2	51	4	51	-7	48	-12	56	-34	57	0						
NGPI	302	65	307	62	266	61	139	66	5	50	114	53	59	74	53	65	254	90	228	55	307	78				
	78	13	78	16	74	13	76	10	78	28	74	21	69	-5	70	5	76	-14	75	20	78	0				
TCLI	93	58	93	57	80	55	88	63	5	49	1	58	37	48	1	73	79	79	86	55	89	68	93	103		
	103	45	103	46	91	36	104	41	145	96	62	4	91	43	62	-11	104	25	103	48	102	34	103	0		
WBAI	301	66	312	65	250	63	135	67	5	50	105	53	56	76	51	65	236	92	212	57	271	79	87	104	313	90
	90	24	89	24	84	21	88	21	88	38	79	26	76	0	75	10	87	-5	82	25	86	7	82	-22	90	0
									36-HOU	JR MEA	AN FOR	ECA	ST ERI	ROR	(NM)											
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	305	92																								
	92	0																								
CONW	302	92	315	88																						
	88	-4	88	0																						

1	l		l		l											1 1]		1		1				I I
AVNI	232	86	241	79	241	88																				
EGRI	126	89	127	9 85	108	84	127	93																		
EGKI	93	4	93	8	92	8	93	0																		
ECMI	6	114	6	100	3	106	6	96	6	70																
ECM	70	-44	70	-30	67	-39	70	-26	70	0																
ECM2	110	79	111	75	95	83	0	0	0	0	111	68														
	68	-11	68	-7	66	-17	0	0	0	0	68	0														
ECM3	55	72	55	73	48	71	54	87	1	53	0	0	55	85												
	85	13	85	12	86	15	85	-2	56	3	0	0	85	0												
ECM4	52	71	52	71	47	69	0	0	0	0	46	65	0	0	52	84										
	84	13	84	13	83	14	0	0	0	0	87	22	0	0	84	0										
GFNI	221	90	223	83	195	86	101	93	5	73	90	63	47	89	47	84	223	130								
	130	40	130	47	117	31	129	36	185	112	123	60	123	34	123	39	130	0								
JGSI	215	84	216	78	182	80	110	89	6	70	89	66	50	81	48	79	180	130	216	78						Ш
	78	-6	78	0	72	-8	77	-12	69	-1	73	7	71	-10	70	-9	77	-53	78	0						
NGPI	258	91	263	86	226	88	121	92	5	73	99	69	51	87	47	86	213	128	195	76	263	117				ш
	117	26	117	31	107	19	116	24	147	74	107	38	103	16	100	14	113	-15	111	35	117	0				
TCLI	85	82	85	81	74	80	80	84	5	62	1	106	37	71	1	112	71	119	79	73	81	102	85	159		
	159	77	159	78	135	55	160	76	227	165	62	-44	138	67	62	-50	162	43	156	83	157	55	159	0		
WBAI	257	93	267	89	211	88	119	91	5	73	90	69	49	86	45	86	196	130	182	77	231	116	79	161	268	125
	125	32	125	36	119	31	125	34	149	76	112	43	109	23	114	28	124	-6	117	40	124	8	115	-46	125	0
			_																							
									48-HOU	IR MEA	N FOR	ECA!	ST ERF	ROR (NM)											
									.0 110 0	71111111	11 (1 011	2011	J 210		(1111)											
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	261	120																								
	120	0																								
CONW	259	120	269	114																						
	115	-5	114	0																						
AVNI	194	113	199	105	199	122																				
	122	9	122	17	122	0																				
EGRI	116	114	117	111	88	120	117	112																		Ш
	112	-2	112	1	111	-9	112	0																		
ECMI	5	122	5	93	2	56	5	105	5	64																
	64	-58	64	-29	52	-4	64	-41	64	0																
ECM2	95	107	97	103	83	118	0	0	0	0	97	86														
	86	-21	86	-17	84	-34	0	0	0	0	86	0														
ECM3	49	102	49	100	41	102	48	109	1	63	0	0	49	100												

	100	-2	100	0	96	-6	100	-9	59	-4	0	0	100	0												
ECM4	47	104	47	103	43	107	0	0	0	0	42	91	0	0	47	113									<u> </u>	
	113	9	113	10	108	1	0	0	0	0	114	23	0	0	113	0										
GFNI	182	122	183	112	156	121	83	111	4	64	77	89	41	104	43	115	183	185								
	185	63	185	73	161	40	178	67	233	169	171	82	178	74	185	70	185	0								
JGSI	184	113	186	107	153	114	94	108	5	64	79	86	45	94	44	108	151	185	186	107						
	107	-6	107	0	98	-16	103	-5	74	10	99	13	94	0	94	-14	109	-76	107	0						
NGPI	219	120	225	115	189	122	102	111	4	64	86	89	45	100	43	115	176	179	166	105	225	157				
	157	37	157	42	138	16	154	43	189	125	146	57	140	40	137	22	150	-29	149	44	157	0				
TCLI	71	112	71	110	61	115	67	109	4	60	1	107	34	94	1	132	58	168	66	105	67	134	71	196		
	196	84	196	86	172	57	199	90	215	155	74	-33	184	90	74	-58	195	27	191	86	192	58	196	0		
WBAI	219	123	227	115	173	119	101	111	4	64	78	83	44	101	41	116	159	188	156	108	196	155	65	196	228	157
	158	35	157	42	150	31	152	41	205	141	147	64	152	51	155	39	158	-30	147	39	155	0	146	-50	157	0
	ı				ı				72-HOU	JR MEA	AN FOR	ECA:	ST ERI	ROR	(NM)				ı		ı					
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	192	198																								
	198	0																								
CONW	189	196	199	196																						
	199	3	196	0																						
AVNI	135	187	139	184	139	219																				
	220	33	219	35	219	0																				
EGRI	83	192	84	193	61	207	85	182																		
	181	-11	181	-12	184	-23	182	0																		
ECMI	3	266	3	175	1	124	3	193	3	172																
	172	-94	172	-3	46	-78	172	-21	172	0																
ECM2	70	178	71	176	59	206	0	0	0	0	71	139														
	140	-38	139	-37	128	-78	0	0	0	0	139	0														
ECM3	39	192	39	175	34	185	38	194	1	46	0	0	39	166												
	166	-26	166	-9	155	-30	166	-28	33	-13	0	0	166	0												
ECM4	36	181	36	165	33	197	0	0	0	0	33	137	0	0	36	173										
	173	-8	173	8	174	-23	0	0	0	0	176	39	0	0	173	0										
GFNI	122	210	123	206	101	219	55	204	2	235	52	147	32	168	32	167	123	315								
	315	105	315	109	272	53	305	101	673	438	291	144	298	130	284	117	315	0								
JGSI	132	192	134	188	105	198	66	182	3	172	56	140	36	164	33	171	101	317	134	185					<u></u>	
	185	-7	185	-3	166	-32	185	3	212	40	161	21	177	13	149	-22	193	-124	185	0						
NGPI	155	204	163	203	134	221	71	184	2	235	61	147	35	156	33	181	120	309	117	184	163	265			<u> </u>	
	268	64	265	62	234	13	251	67	564	329	239	92	209	53	206	25	262	-47	248	64	265	0				

TCLI	48	210	48	208	41	218	43	191	3	172	1	234	26	163	1	200	36	321	43	198	44	235	48	295		
	295	85	295	87	257	39	291	100	357	185	181	-53	266	103	181	-19	288	-33	283	85	280	45	295	0		
WBAI	154	201	163	198	117	212	71	185	2	235	55	130	35	171	31	176	104	318	109	195	138	258	44	303	164	273
	257	56	272	74	252	40	274	89	591	356	241	111	301	130	269	93	283	-35	281	86	268	10	282	-21	273	0
			l						96-HOU	JR MEA	AN FOR	ECA:	ST ERF	ROR	(NM)						Ī			l I		
TTIVG.	JTWC	200	CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		NGPI							
JTWC	300	300																								
CONW	135	303	139	304																						
COLVI	305	2	304	0																						
AVNI	87	297	89	278	89	343																				
	345	48	343	65	343	0																				
EGRI	54	292	52	280	34	297	54	223																		
	223	-69	224	-56	225	-72	223	0																		
ECMI	2	369	2	243	0	0	2	244	2	206																
	206	-163	206	-37	0	0	206	-38	206	0																
ECM2	49	270	50	258	39	328	0	0	0	0	50	205														
	207	-63	205	-53	180	-148	0	0	0	0	205	0														
ECM3	28	297	28	253	23	294	26	194	1	121	0	0	28	261												
2011	261	-36	261	8	262	-32	253	59	109	-12	0	0	261	0	2.5	20.5										
ECM4	25	282	25	229	24	323	0	0	0	0	24	214	0	0	25	285										
GFNI	285 75	332	285 75	56 329	61	-41 366	31	266	1	290	31	68 197	19	256	285	272	75	454								
GIM	454	122	454	125	407	41	426	160	948	658	412	215	471	215	446	174	454	0								
NGPI	102	325	105	328	82	347	40	246	1	290	40	211	23	274	22	307	72	461	105	389						
	391	66	389	61	339	-8	351	105	641	351	355	144	340	66	339	32	394	-67	389	0						
									120-HO	UR ME	AN FOR	RECA	ST ER	ROR	(NM)											
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		ECM3		ECM4		GFNI		NGPI							
JTWC	87	447																								
COMM	447	0	07	402																						
CONW	83	-42	402	0																						
AVNI	51	430	53	374	53	520																				
AVINI	524	94	520	146	520	0																				
	321	77	320	140	320																					

EGRI	30	449	28	364	19	523	30	259																
	259	-190	259	-105	240	-283	259	0																
ECMI	1	561	1	160	0	0	1	661	1	411														
	411	-150	411	251	0	0	411	-250	411	0														
ECM2	26	392	27	327	21	485	0	0	0	0	27	323												
	320	-72	323	-4	350	-135	0	0	0	0	323	0											_	
ECM3	19	394	19	282	16	438	18	209	1	411	0	0	19	403										
	403	9	403	121	413	-25	387	178	350	-61	0	0	403	0										
ECM4	17	399	17	310	17	469	0	0	0	0	17	368	0	0	17	439								
	439	40	439	129	439	-30	0	0	0	0	439	71	0	0	439	0								
GFNI	38	494	38	465	32	548	14	299	0	0	14	291	10	398	12	379	38	645						
	645	151	645	180	637	89	617	318	0	0	663	372	672	274	731	352	645	0						
NGPI	53	487	55	462	45	555	17	259	0	0	17	350	13	445	12	447	34	673	56	543				
	549	62	537	75	509	-46	508	249	0	0	527	177	478	33	550	103	567	-106	543	0				
														•			1			•				

			POSI											
			CARQ			WRNC	i							
	0 hr	- 6 hr	-12 hr	-18 hr	-24 hr	0 hr	-6 hr	-12 hr	-18 hr	-24 hr				
MEAN	17	13	12	12	11	12	9	9	10	11				
Std Dev.	24	19	16	14	11	11	7	8	10	11				
CASES	582	565	547	524	497	445	445	443	439	434				

TABLE 5-5 ERROR STATISTICS FOR SELCTED OBJECTIVE TECHNIQUES NORTHERN INDIAN OCEAN

12-HOUR MEAN FORECAST ERROR (NM)

	JTWC		CONW		AVNI		EGRI		ECM2		GFNI		NGPI		TCLI		WBAI	
JTWC	70	44																
	44	0																
CONW	68	44	83	46														
	44	0	46	0														
AVNI	61	44	73	45	73	49												
	49	5	49	4	49	0												
EGRI	18	35	18	35	17	44	19	41										
	41	6	41	6	42	-2	41	0										
ECM2	10	23	10	21	9	32	0	0	10	31								
	31	8	31	10	33	1	0	0	31	0								
GFNI	60	42	68	44	64	49	17	44	10	31	68	55						
	53	11	55	11	57	8	46	2	27	-4	55	0						
NGPI	58	44	68	44	64	48	18	41	10	31	59	52	68	48				
	47	3	48	4	47	-1	38	-3	24	-7	45	-7	48	0				
TCLI	12	27	12	25	11	29	11	28	0	0	11	34	12	27	12	36		
	36	9	36	11	38	9	33	5	0	0	35	1	36	9	36	0		
WBAI	55	46	65	47	59	50	13	42	5	29	54	59	53	51	8	42	69	62
	62	16	63	16	61	11	50	8	33	4	62	3	62	11	46	4	62	0
													•					

24-HOUR MEAN FORECAST ERROR (NM)

	JTWC		CONW		AVNI		EGRI		ECM2		GFNI		NGPI	TCLI	WBAI	
JTWC	59	70														
	70	0														
CONW	57	70	73	72												
	69	-1	72	0												
AVNI	47	68	58	70	58	77										
	77	9	77	7	77	0										
EGRI	16	54	16	51	14	50	17	70								
	72	18	72	21	78	28	70	0								
ECM2	10	41	10	35	7	56	0	0	10	56						
	56	15	56	21	70	14	0	0	56	0						
GFNI	52	68	60	70	52	79	15	74	10	56	60	91			·	

	89	21	91	21	92	13	78	4	64	8	91	0						
NGPI	47	69	57	68	48	71	15	69	10	56	50	88	57	79				
	78	9	79	11	79	8	65	-4	56	0	77	-11	79	0				
TCLI	11	40	11	40	9	34	11	61	0	0	10	61	11	54	11	65		
	65	25	65	25	69	35	65	4	0	0	64	3	65	11	65	0		
WBAI	44	78	55	79	49	81	11	79	5	65	46	98	42	85	7	80	59	118
	115	37	117	38	112	31	101	22	86	21	117	19	118	33	94	14	118	0
						3	6-HOUR	MEAN I	FORECAS	ST ERRC	OR (NM)							
	JTWC		CONW		AVNI		EGRI		ECM2		GFNI		NGPI		TCLI		WBAI	
JTWC	47	83																
CONTRA	83	0		00														
CONW	45	83	61	88														
ANINI	82	-1	88	0	40	05												
AVNI	36 97	83	48	87	48 95	95				_								
EGRI	14	14 70	95 14	8 69	12	58	15	100										
EGKI	100	30	100	31	105	47	100	0										
ECM2	9	61	9	50	6	70	0	0	9	59								
ECIVIZ	59	-2	59	9	79	9	0	0	59	0								
GFNI	40	80	50	85	43	96	13	97	9	59	50	118						
GITT	112	32	118	33	120	24	113	16	105	46	118	0						
NGPI	39	80	50	85	42	85	14	100	9	59	44	118	50	108				
1,011	107	27	108	23	111	26	97	-3	94	35	108	-10	108	0				
TCLI	10	56	10	57	8	56	10	97	0	0	9	101	10	90	10	127		
	127	71	127	70	141	85	127	30	0	0	131	30	127	37	127	0		
WBAI	33	96	44	100	39	103	9	110	4	55	36	126	35	118	6	168	48	169
	157	61	166	66	161	58	173	63	144	89	165	39	169	51	146	-22	169	0
						4	8-HOUR	MEAN I	FORECAS	ST ERRC	OR (NM)							
	JTWC		CONW		AVNI		EGRI		ECM2		GFNI		NGPI		TCLI		WBAI	
JTWC	38	99																
	99	0																
CONW	36	99	48	108														
	98	-1	108	0														
AVNI	26	99	35	114	35	110												
	102	3	110	-4	110	0												

EGRI	12	85	13	92	11	58	14	128										
	130	45	130	38	143	85	128	0										
ECM2	8	80	8	73	5	67	0	0	8	70								
	70	-10	70	-3	89	22	0	0	70	0								
GFNI	33	97	40	109	31	111	13	130	8	70	40	165						
	148	51	165	56	177	66	162	32	147	77	165	0						
NGPI	31	97	39	109	31	97	13	130	8	70	35	174	39	140				
	142	45	140	31	149	52	135	5	147	77	145	-29	140	0				
TCLI	9	71	9	81	7	69	9	124	0	0	9	140	9	134	9	198		
	198	127	198	117	221	152	198	74	0	0	198	58	198	64	198	0		
WBAI	25	116	32	129	28	121	7	167	3	41	27	178	26	159	5	268	36	215
	200	84	211	82	211	90	232	65	231	190	214	36	223	64	213	-55	215	0
						7	2-HOUR	MEAN I	FORECAS	ST ERRC	OR (NM)							
					1		1	T			T		T	T	I	T	1	
	ITTIIC		COMM		4 7 75 77		ECDI		EG) (2		CENT		NGDI		TOL I		TID AT	
ITWC	JTWC	107	CONW		AVNI		EGRI		ECM2		GFNI		NGPI		TCLI		WBAI	
JTWC	24	127																
CONW	127	125	26	138														
CONW	23 136	125 11	138	0														
AVNI	14	145	156	164	15	161												
AVNI	154	9	161	-3	161	0												
EGRI	8	116	8	140	5	106	9	170										
LORI	188	72	188	48	233	127	170	0										
ECM2	7	91	7	97	3	85	0	0	7	77								
20112	77	-14	77	-20	99	14	0	0	77	0								
GFNI	21	118	22	136	14	154	8	188	7	77	22	241						
	243	125	241	105	255	101	263	75	211	134	241	0						
NGPI	18	111	19	123	11	134	7	161	7	77	17	236	19	247				
	257	146	247	124	262	128	244	83	274	197	260	24	247	0				
TCLI	4	97	4	131	4	117	4	197	0	0	4	212	4	268	4	226		
	226	129	226	95	226	109	226	29	0	0	226	14	226	-42	226	0		
WBAI	14	147	15	165	13	173	4	273	3	120	13	249	10	266	3	258	17	293
	307	160	304	139	318	145	350	77	240	120	316	67	293	27	308	50	293	0
						9	6-HOUR	MEAN I	FORECAS	ST ERRC	R (NM)					-		
	CONW		AVNI		EGRI		ECM2		GFNI		NGPI		TCLI					
CONW	15	134																

	134	0															
AVNI	6	161	6	265													
	265	104	265	0													
EGRI	5	138	2	137	5	209											
	209	71	291	154	209	0											
ECM2	5	100	2	198	0	0	5	118									
	118	18	135	-63	0	0	118	0									
GFNI	13	125	6	265	5	209	5	118	13	306							
	306	181	348	83	300	91	273	155	306	0							
NGPI	10	126	3	122	5	209	4	108	9	296	10	322					
	322	196	400	278	341	132	349	241	344	48	322	0					
TCLI	1	234	1	72	1	441	0	0	1	357	1	389	1	502			
	502	268	502	430	502	61	0	0	502	145	502	113	502	0			
						1:	20-HOUR	R MEAN	FORECA	ST ERR	OR (NM)						
			I			ı				Ī				T		T	
	COMM		A S /NIT		ECDI		ECMO		CENT		NCDI						
CONW	CONW	111	AVNI		EGRI		ECM2		GFNI		NGPI						
CONW	8	111															
AVNI	2	133	2	187													
71 71 71	187	54	187	0													
EGRI	3	132	1	213	3	395											
2010	395	263	573	360	395	0											
ECM2	3	114	1	160	0	0	3	122									
	122	8	114	-46	0	0	122	0									
GFNI	7	120	2	187	3	395	3	122	7	330							
	330	210	366	179	357	-38	318	196	330	0							
NGPI	6	111	2	187	3	395	2	135	5	344	6	301					
	301	190	488	301	377	-18	300	165	346	2	301	0					
				POS	ITION ER	RORS (N	M)										
				CARQ					WRNG								
		0	-6	-12	-18	-24	0	-6	-12	-18	-24						
MEAN		19	13	12	13	14	17	12	10	12	13						
STD. DEV	7.	17	13	12	12	12	15	11	9	10	10						
CASES		117	113	108	103	98	72	72	72	72	71						

TABLE 5-6 ERROR STATISTICS FOR SELECTED OBJECTIVE TECHNIQUES SOUTHERN HEMISPHERE

12-HOUR MEAN FORECAST ERROR (NM)

	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	300	38																				
	38	0																				
CONW	299	38	622	42																		
	38	0	42	0																		
AVNI	251	35	488	39	488	44																i
	42	7	44	5	44	0																
EGRI	146	33	227	37	187	42	227	46														
	44	11	46	9	45	3	46	0														
ECMI	1	32	4	34	3	47	3	50	4	24												
	8	-24	24	-10	23	-24	16	-34	24	0												
ECM2	102	38	220	39	192	42	0	0	0	0	220	36										
	31	-7	36	-3	35	-7	0	0	0	0	36	0										
GFNI	256	36	508	41	438	43	191	46	3	23	191	36	508	51								
	47	11	51	10	48	5	48	2	45	22	46	10	51	0								
JGSI	37	35	40	35	37	42	37	39	0	0	0	0	36	46	40	45						L
	45	10	45	10	43	1	43	4	0	0	0	0	45	-1	45	0						
NGPI	278	37	547	41	470	44	206	46	3	23	209	36	481	50	39	45	547	47				
	43	6	47	6	43	-1	42	-4	48	25	43	7	46	-4	40	-5	47	0				
TCLI	85	35	100	36	94	45	87	42	0	0	0	0	89	48	35	48	98	40	100	48		
	49	14	48	12	47	2	45	3	0	0	0	0	48	0	42	-6	48	8	48	0		
WBAI	284	38	580	42	470	44	212	46	3	23	213	36	491	51	39	46	526	47	94	48	582	53
	51	13	53	11	51	7	49	3	49	26	51	15	52	1	51	5	53	6	51	3	53	0

								24-]	HOUR N	MEAN :	FOREC	AST ER	RROR (1	NM)								
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	269	61																				-
	61	0																				
CONW	269	61	580	67																		
	60	-1	67	0																		
AVNI	217	58	435	61	435	70																
	69	11	70	9	70	0																
EGRI	133	56	215	63	171	71	215	80														
	83	27	80	17	77	6	80	0														
ECMI	0	0	4	53	3	74	3	82	4	46												
	0	0	46	-7	42	-32	44	-38	46	0												
ECM2	93	63	205	61	171	67	0	0	0	0	205	52										
	47	-16	52	-9	50	-17	0	0	0	0	52	0										
GFNI	230	59	473	66	390	70	180	81	3	42	179	51	473	88								
	83	24	88	22	82	12	87	6	71	29	81	30	88	0								
JGSI	32	64	36	63	32	79	33	83	0	0	0	0	32	93	36	75						
	77	13	75	12	59	-20	71	-12	0	0	0	0	74	-19	75	0						
NGPI	252	61	511	66	421	70	196	81	3	42	195	52	446	86	35	75	511	82				
	77	16	82	16	75	5	78	-3	73	31	76	24	81	-5	81	6	82	0				
TCLI	77	58	92	60	85	77	80	79	0	0	0	0	82	85	31	78	91	70	92	88		
	89	31	88	28	85	8	86	7	0	0	0	0	88	3	81	3	88	18	88	0		
WBAI	256	62	542	67	417	70	200	80	3	42	198	53	457	88	35	75	490	82	86	88	545	95
	92	30	95	28	94	24	90	10	96	54	95	42	94	6	92	17	95	13	94	6	95	0
								36-]	HOUR N	MEAN :	FOREC	AST ER	RROR (N	NM)								
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	243	85	CONW		AVINI		LOKI		LCIVII		LCIVIZ		GINI		JUS1		NGFI		ICLI		WBAI	
JIWC	85	0																				
CONW	243	85	534	90																l		
CONW	83	-2	90	0																		
AVNI	197	83	401	84	401	98																
AVIVI	98	15	98	14	98	0																
EGRI	119	80	195	85	154	97	195	112														
EUKI		38																				
ECMI	118		112	62	110	13	112	0	2	60												
ECMI	0	0	3	63	2	101	2	82	3	60												
	0	0	60	-3	51	-50	59	-23	60	0												

ECM2	83	83	190	81	161	94	0	0	0	0	190	68										
	67	-16	68	-13	66	-28	0	0	0	0	68	0										
GFNI	210	84	436	90	360	100	164	113	2	51	166	67	436	119								
	116	32	119	29	114	14	116	3	101	50	112	45	119	0								
JGSI	27	98	31	93	28	113	27	104	0	0	0	0	29	142	31	116						
	121	23	116	23	97	-16	110	6	0	0	0	0	116	-26	116	0						
NGPI	228	85	471	89	388	99	178	114	2	51	181	69	411	117	31	116	471	113				
	109	24	113	24	106	7	110	-4	107	56	103	34	113	-4	124	8	113	0				
TCLI	68	82	82	83	76	108	70	110	0	0	0	0	74	116	26	119	82	98	82	128		
	128	46	128	45	126	18	125	15	0	0	0	0	130	14	113	-6	128	30	128	0		
WBAI	230	86	498	90	384	99	181	112	2	51	183	69	421	119	30	114	451	114	77	128	501	136
	131	45	136	46	137	38	129	17	113	62	136	67	136	17	136	22	136	22	139	11	136	0
								48-1	HOUR N	MEAN 1	FOREC.	AST ER	ROR (1	NM)								
		T		T										T		T			1			
	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	211	106										1										
GOVIII	106	0	105	112																		
CONW	211	106	487	112																		
ANAIT	105	-1	112	0	250	120																
AVNI	169 125	103	358 129	106	358 129	129																
EGRI	105	104	175	108	136	121	175	145														
EGKI	155	51	145	37	146	25	145	0														
ECMI	0	0	3	59	2	126	2	105	3	74												
Leivii	0	0	74	15	74	-52	76	-29	74	0												
ECM2	72	99	173	101	141	118	0	0	0	0	173	86							1	ı	ı	
20112	85	-14	86	-15	83	-35	0	0	0	0	86	0										
GFNI	180	105	388	111	316	132	145	148	2	74	151	85	388	145	'		'		'	<u> </u>	'	
	141	36	145	34	141	9	140	-8	114	40	144	59	145	0								
JGSI	23	120	25	121	22	139	21	139	0	0	0	0	24	179	25	164			'	1	'	
	164	44	164	43	136	-3	148	9	0	0	0	0	159	-20	164	0						
NGPI	198	106	426	111	346	128	159	148	2	74	163	86	365	144	25	164	426	140				
	137	31	140	29	134	6	141	-7	111	37	127	41	140	-4	158	-6	140	0				
TCLI	58	106	72	109	66	142	60	148	0	0	0	0	65	140	21	165	72	125	72	175		
	170	64	175	66	172	30	174	26	0	0	0	0	177	37	153	-12	175	50	175	0		
WBAI	200	105	453	111	342	128	162	145	2	74	167	87	374	146	24	157	407	140	67	176	456	175
	163	58	175	64	175	47	165	20	146	72	176	89	171	25	178	21	175	35	180	4	175	0
L								<u> </u>		i .		i .						i .		<u> </u>		

								72-1	HOUR N	MEAN 1	FOREC	AST ER	ROR (1	NM)								
TOTAL C	JTWC		CONW		AVNI		EGRI		ECMI		ECM2		GFNI		JGSI		NGPI		TCLI		WBAI	
JTWC	27 97	97																				
CONW	27	97	392	160	l l																	
CONW	99	2	160	0																		
AVNI	25	95	264	154	264	199					<u> </u>								·			
	187	92	199	45	199	0																
EGRI	12	112	139	164	97	198	140	217														
	143	31	217	53	223	25	217	0														
ECMI	0	0	3	138	1	92	2	225	3	106												
	0	0	106	-32	116	24	101	-124	106	0												
ECM2	13	90	136	145	107	184	0	0	0	0	136	129										
	109	19	129	-16	120	-64	0	0	0	0	129	0										
GFNI	26	96	294	159	220	206	110	225	2	120	114	131	294	201								
ICCI	206	110	201	42	199	-7	200	-25	177	57	196	65	201	0	15	207						
JGSI	9	103	15 207	159 48	12 208	213 -5	12 198	-3	0	0	0	0	14	247 -46	15 207	207						
NGPI	26	94	338	159	254	200	124	224	2	120	128	130	271	201	15	207	338	203				
NOTT	148	54	203	44	196	-4	209	-15	139	19	186	56	198	-3	211	4	203	0				
TCLI	9	89	50	167	45	243	39	237	0	0	0	0	44	202	11	187	50	186	50	267		
	202	113	267	100	252	9	260	23	0	0	0	0	272	70	257	70	267	81	267	0		
WBAI	27	97	368	157	254	196	130	213	2	120	133	130	284	200	14	177	324	199	47	264	371	262
	260	163	262	105	263	67	255	42	248	128	261	131	258	58	303	126	266	67	263	-1	262	0
								96-1	HOUR N	MEAN]	FOREC	AST ER	ROR (N	NM)								
	CONW		AVNI		EGRI		ECMI		ECM2		GFNI		NGPI		TCLI							
CONW	298	223																				
AVNI	223 175	203	175	280																		
AVINI	280	77	280	0																		
EGRI	97	233	60	273	98	286					1								'			
	284	51	271	-2	286	0																
ECMI	2	159	1	114	0	0	2	111														
	111	-48	76	-38	0	0	111	0														
ECM2	102	195	69	268	0	0	0	0	102	158												
	158	-37	151	-117	0	0	0	0	158	0												

GFNI	208	229	140	288	67	288	1	145	77	155	210	287								
	287	58	287	-1	277	-11	125	-20	288	133	287	0								
NGPI	252	220	167	280	87	284	2	111	92	157	190	283	254	280						
	280	60	267	-13	286	2	205	94	263	106	281	-2	280	0						
TCLI	3	220	3	248	2	169	0	0	0	0	3	202	3	347	3	306				
	306	86	306	58	281	112	0	0	0	0	306	104	306	-41	306	0				
								120-	-HOUR	MEAN	FOREC	AST EI	RROR (NM)						
													Ì							
	CONW		AVNI		EGRI		ECMI		ECM2		GFNI		NGPI		TCLI					
CONW	225	307																		
	307	0																		
AVNI	120	292	120	351																
	351	59	351	0																
EGRI	76	322	40	377	77	356														
	354	32	319	-58	356	0														
ECMI	2	185	1	99	0	0	2	185												
	185	0	104	5	0	0	185	0												
ECM2	75	254	47	306	0	0	0	0	75	233										
	233	-21	225	-81	0	0	0	0	233	0										
GFNI	150	317	97	377	48	324	1	266	53	217	152	415								
	415	98	448	71	397	73	210	-56	428	211	415	0								
NGPI	178	289	112	350	66	340	2	185	62	222	129	398	179	355						
	356	67	349	-1	380	40	284	99	325	103	356	-42	355	0						
TCLI	3	239	2	280	2	222	0	0	0	0	3	280	3	491	3	352				
	352	113	399	119	302	80	0	0	0	0	352	72	352	-139	352	0				
			I	PO	SITION E	ERROR (N	IM)		I	I				I		<u> </u>		I		
					21110111				WRNG											
		CARQ WRNG																		

POSITION ERROR (NM)													
			CARQ			WRNG							
	0 HR	-6 HR	-12 HR	-18 HR	-24 HR	0 HR	-6 HR	-12 HR	-18 HR	-24 HR			
MEAN	18	12	11	11	11	14	10	10	10	10			
STD. DEV.	18	11	10	11	10	13	8	8	8	9			
CASES	751	732	716	696	670	316	316	316	314	309			