MATH 595 (Group Cohomology) Notes

Jiantong Liu

August 21, 2023

1 Aug 21, 2023: Introduction

Group cohomology works over different settings of groups, like finite groups, profinite groups, and topological groups. The course will develop towards

- duality in $H^*(G, -)$, and
- focus on computations, e.g., spectral sequences.

We first establish some notations.

- Let G be a group. If G has a topology, that would also be part of the information of G.
- A (left) G-module is an abelian group M with an action map

$$G \times M \to M$$

 $(g, m) \mapsto g \cdot m = gm$

satisfying

- $-1 \cdot m = m$
- $-(gh) \cdot m = g \cdot (hm),$
- q(m+m') = qm + qm'.

Remark 1.1. If G is a finite group, then the associated (non-commutative) group ring $\mathbb{Z}[G] := \bigoplus_{g \in G} \mathbb{Z}e_g$, where the multiplication is determined by $e_g e_h = e_{gh}$. Therefore, a G-module is just a $\mathbb{Z}[G]$ -module.

Example 1.2. • Trivial module \mathbb{Z} , or any abelian group with the trivial action $g \cdot a = a$.

- C_2 , or any group with $f: G \to C_2$, then G with C_2 as a quotient gives the sign representation \mathbb{Z}_{sgn} , with $g \cdot (a) = (-1)^{\rho(g)}a$.
- $\mathbb{Z}[G]$ is a G-module via the left multiplication action, and/or the conjugation action.

Definition 1.3 (Fixed points/Invariants). The set of fixed points of M over G is $M^G = \{m \in M \mid gm = m \ \forall g \in G\}$.

Definition 1.4 (Orbits/Coinvariants). The set of orbits of M over G is $M_G = M/(gm-m)$.

Example 1.5. If $M = \mathbb{Z}_{sgn}$, then everything gets multiplied by -1, so there are no fixed points. The orbits of M over G would be $\mathbb{Z}_{sgn}/(-2) \cong \mathbb{Z}/2\mathbb{Z}$.

Example 1.6. If
$$M=\mathbb{Z}[G]$$
, then the fixed points are $\mathbb{Z}\left\{\sum_{g\in G}e_g\right\}$.

Thinking in a categorical setting, we have a trivial action function $\mathbb{Z}\text{-Mod} \to G\text{-Mod}$, sending $ga \mapsto a$ for all $g \in G$ and $a \in A$. This gives an exact functor from Ab to G-Mod. Then this functor has a right adjoint () $^G: G\text{-Mod} \to Ab$, and a left adjoint () $_G: Ab \to G\text{-Mod}$. More specifically, M^G becomes the maximal trivial action submodule of M, namely $Hom_G(\mathbb{Z}, M)$; M_G becomes the largest quotient of M with trivial action, namely $\mathbb{Z} \otimes_{\mathbb{Z}[G]} M$. This simplifies to the tensor-hom adjunction in some sense. For a more detailed derivation of this, see Chapter 6.1 of Weibel.

Remark 1.7. In general, as in the category of G-sets, we have the orbit functor $X \mapsto X/G$ and the fixed point functor $X \mapsto X^G$. The orbit functor is left adjoint to the free G-set functor, and the fixed point functor is the right adjoint of the trivial G-set functor.

Remark 1.8. Read more about the setting in profinite groups with their topologies in Neukirch-Schmidt-Wingberg.

Definition 1.9 (Profinite Group). A profinite group of a collection of groups is $G = \varprojlim_i G_i$ as an inverse limit, where each G_i is a finite group of the form G/U_i for some open U_i . This gives a topology to the profinite group.

Remark 1.10. The groups rings $\mathbb{Z}[[G]] = \varprojlim_i \mathbb{Z}[G_i]$. For instance, let $G = \mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}$, then $\mathbb{Z}_p[[G]] = \varprojlim_n \mathbb{Z}_p[\mathbb{Z}/p^n \mathbb{Z}]$, where each $\mathbb{Z}[\mathbb{Z}/p^n \mathbb{Z}] \cong \bigoplus_{i=0}^{n-1} \mathbb{Z}\{e_i\}$ where $e_i \cdot e_j = e_{ij}$. Therefore, $\mathbb{Z}_p[[G]]$ is now equivalent to $\varprojlim_n \mathbb{Z}_p[t]/(t^{p^n} - 1_e)$, and hence becomes a power series.

Remark 1.11. By a change of variables, this becomes $\varprojlim_n \mathbb{Z}_p[x]/(x^{p^n})$, but this only works in the finite group \mathbb{Z}_p case, and not in general for \mathbb{Z} .

Example 1.12. $\mathbb{Z}[C_n] \cong \mathbb{Z}\{e\} \oplus \mathbb{Z}\{g\} \oplus \mathbb{Z}\{g^2\} \oplus \cdots \oplus \mathbb{Z}\{g^{n-1}\} \cong \mathbb{Z}[g]/(g^n - 1_e)$.

2 Aug 23, 2021: Cohomology of groups

3 Aug 25, 2021: Cohomology of groups, continued