MATH 105: Homework 1

William Guss 26793499 wguss@berkeley.edu

January 20, 2016

5 Multivariable Calculus

3. Prove the following.

Theorem 1. Let $T: V \to W$ be a linear transformation between normed spaces. Then,

$$||T|| = \sup\{|Tv| : |v| < 1\}$$

$$= \sup\{|Tv| : |v| \le 1\}$$

$$= \sup\{|Tv| : |v| = 1\}$$

$$= \inf\{M : v \in V \implies |Tv| \le M|v|\}$$
(1)

Proof. Let the following defenitions stand,

$$A = \sup\{|Tv| : |v| < 1\}$$

$$B = \sup\{|Tv| : |v| \le 1\}$$

$$C = \sup\{|Tv| : |v| = 1\}$$

$$D = \inf\{M : v \in V \implies |Tv| \le M|v|\}$$
(2)

Observe that $A \leq B$ and $C \leq B$ since the family considing of the underlying sets is respectively ordered by size. By definition we have that,

$$||T|| = \sup\{|Tv|/|v|\},$$

and nameley |Tv|/|v| = |T(v/|v|)|. Therefore $||T|| \le C$. If $|v| \le 1$ then $|Tv| \le |Tv|/|v|$ and so $B \le ||T||$. We yield that ||T|| = B = C.

By the same logic $A \leq ||T||$ and therefore is equivalent. Lastly $|Tv| \leq ||T|||v|$ and so by the epsilon property D = A.

4. Consider the following theorem.

Theorem 2. If $T: V \to V$ is a linear transformation on the normed vector space V. Let $A = \sup\{r: B_r(0) \supset TU\}$ and $B = \inf\{r: B_r(0) \subset TU\}$. Then, A = ||T|| and B = m(T).

Proof. Observe $U \subset V$ is the unit ball induced by |.| and therefore U is compact. T is linear so by its continuity we have that TU is compact and thereby contains all its limit points.

Then there is a sequence in TU so that $v_n \to v \in \partial TU \cap B_r(0)$. In particular |v| = A. Likewise there is a sequence $w_n \to w$ in TU so that |w| = B.

Suppose that ||T|| < A. Then ||T|| < |v|. There exists a u so that Tu = v and $v \in \partial TU$ implies that $u \in \partial U$ by continuity and linearity. Thus ||T|| < |Tu|/|u| which is a contradiction.

Suppose that ||T|| > A or equivalently $||T|| - A = \epsilon > 0$. By the linearity of T we have that for all $z \in V$ $||T|| - |z| \le \epsilon$ since $z = \alpha q$ for $\alpha \in \mathbb{R}$ and $q \in TU$. So $||T|| = \sup\{|Tu|/|u| : u \in U\} + \epsilon$ which is a contradiction.

So ||T|| = A.

Suppose that m(T) < B. Then m(T) < |w|. There exists a u so that Tu = w and $w \in \partial TU$ implies that $u \in \partial U$ by continuity and linearity. Thus m(T) > |Tu|/|u| which is a contradiction.

Suppose that m(T) > B or equivalently $m(T) - B = \epsilon > 0$. By the linearity of T we have that for all $z \in V$ $m(T) - |z| \le \epsilon$ since $z = \alpha q$ for $\alpha \in \mathbb{R}$ and $q \in TU$. So $m(T) = \inf\{|Tu|/|u| : u \in U\} + \epsilon$ which is a contradiction.

So
$$m(T) = B$$
.

Theorem 3. If $T: V \to V$ is a linear isomorphism then, m(T) > 0.

Proof. In the contrapositive, m(T) = 0 implies that the largest ball which is contained in TU is the 0 ball and so the kernel of T is non-triial. Therefore T is note an isomorphism.

Theorem 4. If $T: V \to V$ has positive conorm and is linear, then it is an isomorphism.

Proof. Positive conorm implies that T has a trivial kernel and so by the invertible matrix theorem, $T \equiv A$ where A is invertible and so T is invertible.

Theorem 5. If $T: V \to V$ and T is linear, then T is the identity.

Proof. The conorm is equal to the norm if and only if $U \mapsto U$. Then by linearity $v/|v| \mapsto v/|v|$ implies $v \mapsto v$.

6. Consider the following theorem.

Theorem 6. \mathcal{L}_n and \mathcal{M}_n are rings where the abelian operator is pointwise and componentwise respectively, and where the monoid law of composition is multiplication and functional composition respectively.

Proof. The set of linear transformations \mathcal{L}_n is Abelian with respect to addition since it occurs over the field \mathbb{R} ; that is,

$$+_{\mathcal{L}}: \mathcal{L}_n \times \mathcal{L}_n \to \mathbb{R} \times \mathbb{R} \to \mathbb{R} \to \mathcal{L}_n.$$

As for monoid laws of composition, we show the distributive properties. First, $f, id \in \mathcal{L}_n$ implies that $f \circ id : V \to W$ with the mapping $x \mapsto x \mapsto f(x) \equiv x \mapsto f(x)$. So, $f \circ id \equiv f$. Now consider $g, h \in \mathcal{L}_n$. The composition $f \circ (g +_{\mathcal{L}} h) : V \to W$ has the mapping

$$x \mapsto h(x) + g(x) \mapsto f(h(x) + g(x)).$$

By linearity, we equivelently have $x \mapsto f(h(x)) + f(g(x))$. So in total $f \circ (g +_{\mathcal{L}} h) \equiv f \circ g +_{\mathcal{L}} f \circ h$. Lastly, $(f \circ g) \circ h \equiv f \circ (g \circ h)$ by the same logic. Therefore, \mathcal{L}_n is a ring.

Matrices have the following result. Take $M, N, L \in \mathcal{M}_n$. gain the addition operator is Abelian since it maps to \mathbb{R}^n ; that is

$$+_M: \mathcal{M}_n \times \mathcal{M}_n \to \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} \to \mathcal{M}_n.$$

Then it follows that, MI = M by the rules matrix multiplication. Furthermore matrix multiplication is associative and distributive. Therefore \mathcal{M}_n is a ring.

Theorem 7. There exists a ring isomorphism between \mathcal{M}_n and \mathcal{L}_n .

Proof. Let $\tau: \mathcal{M}_n \to \mathcal{L}_n$ be defined by the mapping $A \mapsto (x \mapsto Ax)$. Clearly this mapping is a surjection since given any $f \in \mathcal{L}_n$ there is at least a corresponding matrix in \mathcal{M}_n by the following construction. Take the standard basis of V and produce

$$A = [f(e_1) \dots f(e_n)].$$

Then $f(v) = f(e_1)v_1 + \cdots + f(e_n)v_n = Av$. Suppose there were another matrix B such that $\tau(B) = f = \tau(A)$. Then $\tau(B - A) = \tau(B) - \tau(A) = f - f = 0$ but this contradicts the fact that $B \neq A$. Therefore τ is bijective.

Finally let $C \in \mathcal{M}_n$. Then $\tau(A(B+C)) = (x \mapsto A(B+C)x)$. By linearity this is equivalent to $(x \mapsto ABx + ACx) = \tau(A) \circ \tau(B) + \tau(A) \circ (C) = \tau(A) \circ (\tau(B) + \tau(C))$. So, τ is a homomorphism.

Hence τ is an isomorphism.

12. Prove the following.

Theorem 8. If V is a normed finite dimensional vector space, then the unit ball, $B = \{v : |v| = 1\}$ is compact.

Proof. dim
$$V = n \in \mathbb{N} \implies V \cong \mathbb{R}^n \implies B \cong S^{n-1} \implies B$$
 compact.

13. Prove the following.

Theorem 9. The set of invertible $n \times n$ matrices is not dense in \mathcal{M} .

Proof. Consider the set of matrix all of whose entries are the same $((a_{ij} = r \forall i \forall j))$. They create a linear subspace which is a connected open subset of \mathcal{M} disjoint from the set of invertible matrices. Therefore the set of invertible matrices could not possibly be dense in \mathcal{M} .