Checking HANK.

Evidence from size-persistence tradeoff.

Vlasov Alexander

NES

February 9, 2024

Outcomes of Kaplan et al. (2018) model

Kaplan et al. (2018) HANK model outcomes:

- Size-Persistence trade-off: Cumulative elasticity of aggregate consumption declines with the increase in autocorrelation of monetary shock in a nonlinear manner.
- Inflation-Output Tradeoff: the same Taylor rule shocks lead to the increased effects in Inflation-Output tradeoff.

Size-Persistence in RANK

Rate path:

$$r_t = \rho + e^{-\eta t} (r_0 - \rho).$$

NK policy

$$C_0 = \bar{C} \exp \left(-rac{1}{\gamma} \int_0^\infty \left(r_s -
ho
ight) \, ds
ight).$$

Size:

$$R_0 = \int_0^\infty \left(r_s - \rho \right) \, ds,$$

$$\frac{-d\log C_0}{dR_0} = \frac{1}{\gamma},$$

Picture of Size-Persistence trade-off

FIGURE 8. CUMULATIVE ELASTICITY OF AGGREGATE CONSUMPTION BY PERSISTENCE OF THE SHOCK

Figure: The difference between the New Keynesian models from Kaplan et al. (2018)

Size-Persistent tradeoff by Kaplan et al. (2018), formally

RANK:
$$\frac{d}{d\nu} \frac{-d \log C_0}{dR_0} = 0 \qquad (1)$$

TANK with
$$B^g$$
 adjustment:
$$\frac{d}{d\nu} \frac{-d \log C_0}{dR_0} = 0 \qquad (2)$$

TANK with T adjustment:
$$\frac{d}{d\nu} \frac{-d \log C_0}{dR_0} < 0$$
 (3)

$$HANK: \qquad \frac{d^2}{d\nu^2} \frac{-d \log C_0}{dR_0} < 0 \qquad (4)$$

Empirics Related to HANK

Microdata

 Holm et al. (2021) find inconsistent Evidence of HANK – the response is larger than generated by HANK.

MPC

• Estimation of MPC's^a by Gross et al. (2020): Increase of MPC is higher in 2008 than in 2011.

Heterogenity in Portfolios

Luetticke (2021) find a heterogeneity in household portfolio responses to MP shocks.

^aActually MPB, but they argue that it doesn't affect the results

Empirical approach:

Based on method of Hack et al. (2023).

I assume that the monetary policy rule is

$$(r-r^*)_{t+h} = \tilde{\phi}_t \mathbb{E} \left[\pi_{t+1} \mid \mathcal{I}_t \right] + \varepsilon_t.$$

 $\mathbb{E}_t \pi_{t+1}$ is the expectations of monetary authority about the inflation in quarter t+1.

I estimate the following State-Dependent LP-IV.

$$\begin{split} \left(r - r^*\right)_{t+h} &= \alpha^h + \beta^h \hat{\pi}_t + \gamma^h \hat{\pi}_t \left(\textit{Hawk}_t - \overline{\textit{Hawk}}\right) \\ &+ \delta^h \left(\textit{Hawk}_t - \overline{\textit{Hawk}}\right) + \zeta^h \textit{Z} + e^h_{t+h}, \end{split}$$

Empirical approach

$$\begin{split} \tilde{\phi}_{t+h} &= \bar{\phi} + \phi_t = \hat{\beta}^h + \hat{\gamma}^h \left(\textit{Hawk}_t - \overline{\textit{Hawk}} \right). \\ R_{0t} &= \frac{1}{H} \sum_{h=1}^H \tilde{\phi}_{t+h} = \mathbb{E}_h \tilde{\phi}_{t+h}. \\ \nu_t &= \mathbb{E}_h \left[\left(\phi_{t+h} - \bar{\phi} \right) \left(\phi_{t+h-1} - \bar{\phi} \right) \right] \end{split}$$

$$\log Consumption = \alpha_0 + \alpha_1 R_0 + \alpha_2 \nu + \beta_1 R_0 \nu \tag{5}$$

$$\log Consumption = \alpha_0' + \alpha_1' R_0 + \alpha_2' \nu + \beta_1' R_0 \nu + \beta_2' R_0 \nu^2$$
 (6)

Data

- Natural rate of interest by Holston et al. (2017, 2023)
- Short-term rate (r) is by Wu and Xia (2016) and Fed Funds Rate
- Consumption is U.S. Bureau of Economic Analysis "Real personal consumption expenditures per capita" (FRED A794RX0Q048SBEA).
- FED inflation forecast is from Tealbook (average of 1 and 2 quarter ahead + average per quarter).

Results I

Policy Response to Inflation and FOMC Hawkishness

Notes: This figure reports the responses of the $r_t-\rho_t$ to an increase in the Tealbook inflation forecast of 1 p.p. The subfigure 5a reports the response for the HAWK index equal to the sample average and 5b is the addition to the response in case there are 2 (out of 12 in total) additional consistent hawks in the FOMC. The shaded areas correspond to 68%, 90% and 95% confidence bands calculated with Newey-West HAC estimator with Andrews-selected truncation parameter.

Vlasov Alexander (NES) Checking HANK. February 9, 2024 10 / 18

Figure: Predicted IRFs in each of the state

 $\it Notes:$ This figure shows the Impulse Response functions in each state calculated as in equation (3).

Figure: Estimates of Size and Persistence

Results

Size and Persistence over time

Notes: This figure presents the size and persistence, calculated as mean and the first autocorrelation of impulse-response function in each state, constructed as described in section 1 on page 3, over time.

Size-Persistence Tradeoff

	Dependent variable: $log(consumption)$ $H = 8$	
	(1)	(2)
Size (R ₀)	-0.687 (-1.149, -0.133) [0.011]{0.997}	-0.451 $(-1.495, 1.078)$ $[0.857]\{0.578\}$
Persistence (ν)	-0.100 (-0.693, 0.691) [0.746]{0.673}	1.223 (-3.598, 4.968) [0.517]{0.246}
$ u^2$		-1.042 (-4.271, 4.336) [0.517]{0.766}
$R_0 \times \nu$	0.765 (-0.177, 1.526) [0.0754]{0.0247}	-1.628 (-3.159, 2.748) [0.522]{0.759}
$R_0 \times \nu^2$		2.435 (-1.852, 3.838) [0.340]{0.145}
Constant	10.6 (10.1, 11.0) [0.0]{0.0}	10.5 (9.8, 11.0) [0.0]{0.0}
Observations	198	198

Vlasov Alexander (NES) Checking HANK. February 9, 2024 14

Conclusions

So, should we believe in HANK?

The evidence above suggests that, we should. At least we have found that consumption behaviour in size-persistent tradeoff corresponds to the TANK model.

Place for your suggestions and comments!

If you have any other suggestions/comments please write avlasov@nes.ru

References I

- Gross, Tal, Matthew J. Notowidigdo, and Jialan Wang (2020) "The Marginal Propensity to Consume over the Business Cycle," *American Economic Journal: Macroeconomics*, 12 (2), 351–84, 10.1257/mac.20160287.
- Hack, Lukas, Klodiana Istrefi, and Matthias Meier (2023) "Identification of Systematic Monetary Policy," CEPR Discussion Paper 17999.
- Holm, Martin Blomhoff, Pascal Paul, and Andreas Tischbirek (2021) "The Transmission of Monetary Policy under the Microscope," *Journal of Political Economy*, 129 (10), 2861–2904, 10.1086/715416.
- Holston, Kathryn, Thomas Laubach, and John C. Williams (2017) "Measuring the natural rate of interest: International trends and determinants," *Journal of International Economics*, 108, S59–S75, https://doi.org/10.1016/j.jinteco.2017.01.004, 39th Annual NBER International Seminar on Macroeconomics.

References II

- ——— (2023) "Measuring the Natural Rate of Interest after COVID-19," Staff Reports 1063, Federal Reserve Bank of New York.
- Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante (2018) "Monetary Policy According to HANK," *American Economic Review*, 108 (3), 697–743, 10.1257/aer.20160042.
- Luetticke, Ralph (2021) "Transmission of Monetary Policy with Heterogeneity in Household Portfolios," *American Economic Journal: Macroeconomics*, 13 (2), 1–25, 10.1257/mac.20190064.
- Wu, Jing Cynthia and Fan Dora Xia (2016) "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," *Journal of Money, Credit and Banking*, 48 (2-3), 253–291, https://doi.org/10.1111/jmcb.12300.