Menendez ID: 1438704

MATH 441

Problem Set #6

Solutions written by Alex Menendez

Problem 1. Prove the following theorem:

Theorem. A subspace $Y \subset X$ is connected (in the subspace topology) if it is not a separated subspace.

Proof. Suppose that there exists no separation of Y. Further suppose that Y is not connected. If Y is not connected, then there exist nonempty, disjoint, closed subsets U and V such that $Y = U \cup V$. Now, using basic set-theoretic operations,

$$\overline{U} \cap B = \overline{U} \cap (Y \cap V)$$

$$= (\overline{U} \cap Y) \cap V$$

$$= U \cap V$$

$$= \emptyset,$$

where the second line to the third line follows from the fact that U is closed in Y. Similarly,

$$U \cap \overline{B} = (U \cap Y) \cap \overline{V}$$
$$= U \cap (Y \cap \overline{V})$$
$$= U \cap V$$
$$= \varnothing.$$

So, we've found nonempty subsets U and V for which $Y = U \cup V$, and $\overline{U} \cap V = U \cap \overline{V} = \emptyset$, which constitutes a separation of Y. This is a contradiction, since we had assumed that Y had no separation.

Problem 2. Let $\tilde{\mathbb{R}}^n$ be the collection of sequences $\{x_i\}_{i\in\mathbb{N}}$ such that $x_i=0$ for i>n. Show that the map $f:\tilde{\mathbb{R}}^n\to\mathbb{R}^n$ given by $\{x_i\}_{i\in\mathbb{N}}\mapsto(x_1,\ldots,x_n)$ is a homeomorphism.

Proof. Before we really get into the proof, let's gain some intuition for what f does: if we set n=1, then $\mathbb{R}^n=\mathbb{R}$, which is the set of sequences which, after the first term, are zero. What f will do, then, is take such a sequence and assign it to a point in \mathbb{R} . So, $f(\{x_1,0,0,\ldots\})=x_1$. Likewise, for n=2, we have that $f(\{x_1,x_2,0,0,\ldots\})=(x_1,x_2)$. So, in general,

$$f({x_1, x_2, \dots, x_n, 0, 0, \dots}) = (x_1, x_2, \dots, x_n),$$

where f hacks off everything after the n^{th} term (all of these terms are, by assumption, zero) in the sequence and gives us a set of coordinates in \mathbb{R}^n consisting of the first n terms, some of which could be zero. Okay, now we need to show that such an f is a homeomorphism. Let's begin with bijectivity: to show that f is injective, if we take two sequences $\{x_i\}$ and $\{y_i\}$ in \mathbb{R}^n that are distinct, then we know that the two sequences differ by at least one term. Since we know they're both zero after the n^{th} term, they can't differ there, so they must differ somewhere in the first n terms. Now, $f(\{x_1,\ldots,x_n,0,0,\ldots\})=(x_1,\ldots,x_n)=\vec{x}$ and $f(\{y_1,\ldots,y_n,0,0,\ldots\})=(y_1,\ldots,y_n)=\vec{y}$. Since at least one of the first n terms for $\{x_i\}$ and $\{y_i\}$ is different, we have that $\vec{x}\neq\vec{y}$. Now, if we take any $\vec{t}=(t_1,\ldots,t_n)\in\mathbb{R}^n$, then certainly there exists a sequence $\{t_i\}=\{t_1,\ldots,t_n,0,0,\ldots\}\in\mathbb{R}^n$ so that, when we apply f to $\{t_i\}$, we get back \vec{t} . Thus, f is surjective and is hence bijective. From this, we now know, as well, that f^{-1} exists. What remains for us to do, now, is show that f and f^{-1} are continuous. Let's begin with the continuity of f: let f in f in f is a basis element, assuming the product topology on f and for any f in f

$$f^{-1}(U) = \{ \{x_i\} \in \tilde{\mathbb{R}^n} : f(\{x_i\}) \in U \}.$$

We need to show that this is open in \mathbb{R}^n , which amounts to showing that, for any sequence in $f^{-1}(U)$, there's a basis element of \mathbb{R}^n containing that sequence. What do the open sets in \mathbb{R}^n look like? Well, \mathbb{R}^n has basis elements that look like $\mathbb{R}^n \cap V$, where V is open in \mathbb{R}^∞ . So, \mathbb{R}^n is a subspace of \mathbb{R}^∞ and so has the subspace topology inherited from \mathbb{R}^∞ . So, for U as prescribed, we have that the preimage of U under f is the collection of sequences that get sent into U. Let $\{x_i\} \in \mathbb{R}^n$ be arbitrary, and since f sends $\{x_i\}$ into U, we know that, for $i \in [1, n], x_i \in U_i$, an open set. We see that $\{x_i\} \in \mathbb{R}^\infty$, since $x_i = 0$ for i > n, so certainly there exists an N for which $x_i > N$ is zero afterward – it's just N = n.

1

Menendez ID: 1438704

So $\{x_i\}$ is contained in a basis element in \mathbb{R}^{∞} , so $\{x_i\} \in \mathbb{R}^{\tilde{n}} \cap V$. Now, we need to verify the continuity of f^{-1} . Suppose that $\mathbb{R}^n \cap V$ (where V is open in \mathbb{R}^{∞}) is open in $tilde\mathbb{R}^n$, and take some $\vec{x} \in f(\mathbb{R}^{\tilde{n}} \cap V)$. For each coordinate of \vec{x} , we have that $x_i \in U_i$, for some open U_i , so $\vec{x} \in U_1 \times \ldots \times U_n$, which is a basis element of \mathbb{R}^n , so $f(\mathbb{R}^{\tilde{n}} \cap V)$ is open in \mathbb{R}^n , and so f^{-1} is continuous. From this, f is a homeomorphism.

Problem 3. Let $X = \prod_{\alpha \in J} X_{\alpha}$, where each X_{α} is connected, and fix a point $a = \{a_{\alpha}\}_{{\alpha} \in J}$.

- (i) Given a finite set $K \subset J$, let X_K denote all $\vec{x} = \{x_\alpha\}_{\alpha \in J}$ such that $x_\alpha = a_\alpha$ for all $\alpha \notin K$. Show that X_K is connected.
- (ii) Show that $Y = \bigcup_{K \subset J} X_K$ is connected (for finite K).
- (iii) Show that $X = \overline{Y}$ and deduce that X is connected.
- (i) Proof. We know that finite products of connected spaces are connected, and since K is finite, certainly $\prod_{\alpha \in K} X_{\alpha}$ is connected. Thus, if we can show that X_K is homeomorphic to $\prod_{\alpha \in K} X_{\alpha}$, then we'll be done. Let's try to identify this homeomorphism. The most natural map we can choose is

$$\varphi: X_K \to \prod_{\alpha \in K} X_\alpha.$$

To streamline things, say that $K = \{1, 2, ..., n\}$. We're allowed to say that K has countable indices since it's finite – outside of K is where that becomes a problem, but that doesn't matter. So, our map is

$$\varphi: X_K \to \prod_{i=1}^n X_i,$$

where, for $\vec{x} \in X_K$, φ removes the coordinates of \vec{x} that don't agree with those of a. So, if $a = (a_1, a_2, ...)$ and $\vec{x} = (x_1, ..., x_n, a_{n+1}, ...)$, then $\varphi(\vec{x}) = (x_1, ..., x_n)$. Likewise, φ^{-1} fills the missing coordinates back in.

Let's verify the continuity of φ : suppose that U is open in $\prod_{i=1}^n X_i$. Then $U = U_1 \times \ldots \times U_n$, where U_i is open in X_i .

Because, as said before, φ^{-1} replaces the disagreeing coordinates, we have that

$$\varphi^{-1}(U) = U_1 \times \ldots \times U_n \times \{a_{n+1}\} \times \ldots$$

so that, for any $\vec{x} \in \varphi^{-1}(U)$, we have $\vec{x} \in X_K$ trivially, but also $\vec{x} \in V = \prod_{\alpha \in I} V_\alpha$, where V is open in X. So, \vec{x} is

contained in a basis element for the subspace topology on X_K (X_K is a subspace of X), so $\varphi^{-1}(U)$ is open, and thus φ is continuous. Now, define

$$\varphi^{-1}: \prod_{i=1}^n X_i \to X_K$$

by the map $(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_n,a_{n+1},\ldots)$. We have

$$\varphi^{-1}(\varphi((x_1,\ldots,x_n,a_{n+1},\ldots))) = \varphi^{-1}((x_1,\ldots,x_n)) = (x_1,\ldots,x_n,a_{n+1},\ldots),$$

and

$$\varphi(\varphi^{-1}((x_1,\ldots,x_n))) = \varphi((x_1,\ldots,x_n,a_{n+1},\ldots)) = (x_1,\ldots,x_n).$$

Thus, φ^{-1} exists, and so φ is bijective. We now need to verify that φ^{-1} is continuous: suppose that $X_K \cap V$ is open in X_K (where V is open in X). For any $(x_1, \ldots, x_n) \in \varphi(X_K \cap V)$, we have that $x_i \in U_i$, where U_i is open in

 X_i . Thus, $(x_1, \ldots, x_n) \in U_1 \times \ldots \times U_n$, which is a basis element for the product topology on $\prod_{i=1}^n X_i$. Thus, φ^{-1} is

continuous, and so φ is a homeomorphism. Since $X_K \cong \prod_{\alpha \in K} X_\alpha$, we have that X_K is connected. \square

2

Menendez ID: 1438704

(ii) *Proof.* We must prove that, for all finite $K \subset J$, the union $\bigcup X_K$ is connected. First of all, we know that, for all K, each X_K has a in it, so

$$a \in \bigcap X_K$$
,

and so the intersection of all X_K is nonempty. Suppose that $\bigcup X_K$ is not connected; that is, let

$$\bigcup X_K = A \cup B,$$

for A and B being disjoint, nonempty, open subsets. Now, fix some $\vec{x} \in \bigcap X_K$ and, without loss of generality, suppose that $\vec{x} \in A$. By assumption, B is nonempty, so pick some $\vec{u} \in B$. We have that there is some X_K so that $\vec{u} \in X_K$, and as assumed $\vec{x} \in X_K$, as well. So, $\vec{x} \in A \cap X_K$ and $\vec{u} \in B \cap X_K$, so that $A \cap X_K$ and $B \cap X_K$ are both nonempty, a contradiction. Thus, $\bigcup X_K$ must be connected.

(iii) Proof. Take some point $\vec{x} = \{x_{\alpha}\} \in X$. Then there exists an open neighborhood containing \vec{x} , called $V = \prod_{\alpha \in J} V_{\alpha}$, where each V_{α} is open in X_{α} . We see that V further contains another neighborhood $U = \prod_{\alpha} U_{\alpha}$, where $U_{\alpha} = X_{\alpha}$ for $\alpha \notin K$. Letting

$$c_{\alpha} = \begin{cases} x_{\alpha} & \text{if } \alpha \in K \\ a_{\alpha} & \text{if } \alpha \notin K \end{cases}$$

we have that $\{c_{\alpha}\}\in (X_K\cap U)$, so $Y\cap U\neq\varnothing$, so $\{x_{\alpha}\}\in\overline{Y}$, as required.

Problem 4. Prove that a path-connected space is connected.

Proof. Let X be a space, and suppose that X is path-connected. Let x_1 and x_2 be distinct points in X and, since X is path-connected, let $\varphi:[a,b]\to X$ be the continuous path joining x_1 and x_2 . Without loss of generality, assume that $\varphi(a)=x_1$ and $\varphi(b)=x_2$. Now, suppose that $X=U\cup V$ is a separation and that $x_1\in U$ and $x_2\in V$. Since U and V are open in X, by assumption, and φ is continuous, $\varphi^{-1}(U)$ and $\varphi^{-1}(V)$ are open in [a,b]. Moreover, they're also disjoint since U and V are disjoint (preimages preserve "disjointness"). Lastly, U and V are obviously nonempty. Since $\varphi(a)=x_1$ and $x_1\in U$, we have that $\varphi(a)\in U$, so $a\in \varphi^{-1}(U)$. Likewise, $\varphi(b)=x_2$ and $x_2\in V$, we have that $\varphi(b)\in V$, so $b\in \varphi^{-1}(V)$. Thus, $\varphi^{-1}(U)$ and $\varphi^{-1}(V)$ are nonempty. Now, we note that $[a,b]=\varphi^{-1}(U)\cup \varphi^{-1}(V)$, which gives a separation of [a,b]. This, however, is a contradiction since [a,b] is a subset of \mathbb{R} , and is connected. Thus, X has to be connected, and we are done.

3

Page 3 of 3