Definition 1. Let (X, \mathcal{T}) , (Y, \mathcal{S}) be topological spaces, and let $f: X \to Y$. We say that f is continuous if and only if

$$(\forall G \in \mathcal{S})(f^{-1}(G) \in \mathcal{T}).$$

Definition 2 (Local Continuity). f is said to be continuous at $x_0 \in X$ if and only if

$$(\forall W(f(x_0))(\exists U(x_0))(f(U(x_0)) \subseteq W(f(x_0)).$$

Problem 1

Theorem 1 (Global Continuity Facts). Let X and Y be topological spaces. Let $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. $f^{-1}(F)$ is closed in X for all F closed in Y.
- 3. $f^{-1}(U)$ is open in X for all U members of a subbasis of \mathcal{T}_Y .
- 4. $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \in X$.
- 5. $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for all $B \subseteq Y$.

Proof. ((4) \Longrightarrow (5)). Suppose $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \in X$, and let $B \subseteq Y$. We have

$$p \in \overline{f^{-1}(B)} \iff (\forall U(p) \in \mathcal{T}_X)(U(p) \cap f^{-1}(B) \neq \emptyset)$$

September 10, 2021 1