Relatório da solução do problema das rainhas. Grupo:

Julian Degutis de Freitas Garcia Letícia Leite Caetano William Henrique

1. Introdução

Deverá ser criado uma solução, em que, dado um tabuleiro **nxn** deverá ser otimizado o número de rainhas posicionadas em uma casa **An**, que satisfaça as seguintes condições:

- 1. Cada rainha não deve atacar qualquer outra rainha do tabuleiro
- 2. Apenas uma rainha pode ser posicionada por casa.

2. Solução

Será utilizada uma implementação utilizando a linguagem Java, que terá como argumento o número N representando o tabuleiro NxN.

O sistema, deverá calcular todas as diagonais da matriz, utilizando a técnica de pontos candidatos para o início de cada diagonal, sendo:

- Orientação para direita
 - Todos os pontos aij começando de a0,0 até a0,n
- Orientação para baixo
 - Todos os pontos aij começando de a1,0 até an,0
- Orientação para esquerda
 - Todos os pontos aij começando de an,n até a0,n
- Orientação para cima
 - Todos os pontos aij começando de an-1,n-1 até an,0

Com posse de todas as linhas, colunas e diagonais, podemos tomar como solução que, uma rainha não ataca quaisquer outras rainhas distribuídas no tabuleiro, caso a soma de todas as rainhas de uma linha, uma coluna ou uma diagonal é menor ou igual a 1.

Criando as restrições para a maximização da soma de todas as posições do tabuleiro, podemos criar um modelo de programação linear para o algoritmo do Simplex solucionar.

Na solução, será necessário tornar a matriz representativa do tabuleiro, em um vetor, para que consigamos atribuir o valor zerado de cada variável que não será utilizada em cada uma das restrições.

Para isso, será utilizada a implementação da biblioteca SCPSolver.jar. No primeiro momento, tentamos utilizar a solução da Apache, porém sem sucesso para valores de variáveis booleanas, por isso modificamos a abordagem da solução.

A solução e modelagem é apresentada na pasta /report/* da raiz do projeto, contento a modelagem em sí, a solução ótima, os valores das variáveis, o tempo de execução e a aproximação da memória gasta pelo sistema.

3. Casos de teste

Foram realizados 11 casos de testes, para um tabuleiro normal 8x8 e todos demais tabuleiros múltiplos de 9. Toda a solução se encontra em anexo ao e-mail. Passaremos brevemente os casos de teste nesse documento. Note que a memória é apenas uma estimação realizada pelo sistema, sendo (quantidade de memória disponível antes e após a execução do processo), os valores podem não ser 100% preciso, devidos aos processos existentes rodando no computador.

Valor de n	Solução Ótima	Tempo (milisegundos)	Memória (bytes)
8	8	35	2728376
9	9	32	3409872
18	18	97	16501016
27	27	327	40419056
36	36	785	227733664
45	45	2217	311807928
54	54	3070	359156080
63	63	7174	100543504
72	72	11598	387024936
81	81	25205	104154432
90	90	39547	256061544