Teoria do Risco Aula 7

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/index.html

Modelos de risco Individual

A distribuição de ${\cal S}_{ind}$

Dentre várias técnicas de se encontrar a distribuição de S_{ind} (soma de variáveis aleatórias), destacam-se duas:

Técnica da convolução.

Técnica da função geradora do momentos.

> ...A convolução é um operador linear que, a partir de duas funções dadas, resulta numa terceira que mede a área subentendida pela superposição das mesmas em função do deslocamento existente entre elas...

Considere: S = X + Y

Sendo X e Y como duas variáveis aleatórias independentes, não negativas. A convolução da função de distribuição de $m{S}$ será dada por:

$$f_S(s) = f_X * f_Y(s) = \int_0^s f_Y(s - x) f_X(x) dx$$

$$F_S(s) = F_X * F_Y(s) = \int_0^s F_Y(s - x) f_X(x) dx$$

Para variáveis continuas.

O operador (*) tem as mesmas propriedades do operador de adição +.

Considere: S = X + Y

$$P_X * P_Y(s) = \sum_{\forall x \le s} P_Y(s - x) P_X(x)$$

$$F_X * F_Y(s) = \sum_{\forall x \le s} F_Y(s - x) P_X(x)$$

E para o caso de variáveis discretas.

O operador (*) tem as mesmas propriedades do operador de adição +.

Demonstração

Considere: S = X + Y assim:

$$F_S(s) = P(S \le s) = P(X + Y \le s)$$

Lembrando da lei da probabilidade total $P(B) = \sum_{i=1} P(B|A_i)P(A_i) = \sum_{i=1} P(B,A_i)$

No caso discreto

$$F_S(s) = P(X + Y \le s) = \sum_{j=0}^{s} P[(X + Y \le s) \cap (Y = y_j)] = \sum_{j=0}^{s} P(X + Y \le s, Y = y_j)$$

$$F_S(s) = \sum_{j=0}^{s} F_X(s - y_j) P(Y = y_j)$$

A convolução pode ser feita por um processo recursivo...

Para
$$S = X_1 + X_2 + \ldots + X_n$$
, $(X_{is} v.a_{s.} Independentes)$,

 F_i é a função de distribuição de ${
m X_i}$

 $F^{(k)}$ a função de distribuição de $X_1 + X_2 + \ldots + X_k$.

$$F^{(2)} = F_2 * F^{(1)} = F_2 * F_1$$

$$F^{(3)} = F_3 * F^{(2)} \to (X_1 + X_2)$$

$$F^{(4)} = F_4 * F^{(3)} \to (X_1 + X_2 + X_3)$$
...
$$F^{(k)} = F_k * F^{(k-1)} \to (X_1 + X_2 + \dots + X_{k-1})$$

Considerando funções de densidade, temos:

$$f^{(n)} = f_n * f^{(n-1)}$$

Exemplo 1

Sejam X , Y e Z variáveis aleatórias independentes, cada uma com a seguinte função de densidade.

$$f(t) = e^{-t}, \qquad t > 0$$

Obtenha a distribuição de S sendo que S = X + Y + Z.

Supondo $S_1 = X + Y$, temos:

$$f(s_1) = \int_0^{s_1} f_X(s_1 - y) f_Y(y) dy$$

$$f(s_1) = \int_0^{s_1} e^{-(s_1 - y)} e^{-y} dy$$

$$f(s_1) = \int_0^{s_1} e^{-s_1} dy = e^{-s_1} y \Big|_{y=0}^{y=s_1}$$

$$f(s_1) = s_1 e^{-s_1}, \qquad s > 0$$

Agora vamos calcular $S = S_1 + Z$:

$$f(s) = \int_0^s f_{S_1}(s-z) f_Z(z) dz$$

$$f(s) = \int_0^s (s - z)e^{-(s - z)}e^{-z}dz$$

$$f(s) = \int_0^s se^{-s} - ze^{-s} dz = se^{-s}z - z^2 \frac{e^{-s}}{2} \Big|_{z=0}^{z=s}$$

$$f(s) = \frac{s^2 e^{-s}}{2}, \qquad s > 0$$

$$f(x) = e^{-x}$$
, $x > 0$ $f(s_1) = s_1 e^{-s_1}$, $s_1 > 0$ $f(s) = \frac{s^2 e^{-s}}{2}$, $s > 0$

Exemplo 2

Considere três variáveis aleatórias independentes X_1, X_2, X_3 . Para i=1,2,3, X_i tem distribuição exponencial e $E(X_i)=\frac{1}{i}$. Encontre a função densidade de probabilidade de $S=X_1+X_2+X_3$ pelo processo de convolução.

Obs.:

A distribuição exponencial tem parâmetro $\alpha>0$, com f.d.p dada por $f(x)=\alpha e^{-\alpha x}$ e $E(X)=\frac{1}{\alpha}$ e $var(X)=\frac{1}{\alpha^2}$.

A distribuição exponencial tem parâmetro $\alpha>0$, com f.d.p dada por $f(x)=\alpha e^{-\alpha x}$ e $E(X)=\frac{1}{\alpha}$ e $var(X)=\frac{1}{\alpha^2}$, então:

$$f_1(x_1) = e^{-x_1}, \quad x_1 > 0$$

 $f_2(x_2) = 2e^{-2x_2}, x_2 > 0$
 $f_3(x_3) = 3e^{-3x_3}, x_3 > 0$

Queremos obter $f^{(3)} = f_S(s)$, sendo:

$$f^{(3)} = f_3 * f^{(2)}$$

 $f^{(2)} = f_2 * f^{(1)}$

Devemos obter primeiramente $f^{(2)}$, supondo $S_1 = X_1 + X_2$, temos:

$$f^{(2)}(s_1) = f_2 * f^{(1)} = f_2 * f_1$$

$$f_2 * f_1 = f^{(2)}(s_1) = \int_0^{s_1} f_{X_1}(s_1 - x_2) f_{X_2}(x_2) dx_2$$

Devemos obter primeiramente $f^{(2)}$, supondo $S_1 = X_1 + X_2$, temos: $f^{(2)}(s_1) = f_2 * f^{(1)} = f_2 * f_1$

$$f_2 * f_1 = f^{(2)}(s_1) = \int_0^{s_1} f_{X_1}(s_1 - x_2) f_{X_2}(x_2) dx_2$$

$$f^{(2)}(s_1) = \int_0^{s_1} e^{(x_2 - s_1)} 2e^{-2x_2} dx_2$$

$$f^{(2)}(s_1) = 2e^{-s_1} - 2e^{-2s_1} = f_{s_1}(s_1)$$

• Dessa maneira, temos, $S = S_1 + X_3$:

$$f^{(3)} = f_3 * f^{(2)}$$

$$f_S(s) = f^{(3)} = f_3 * f^{(2)} = \int_0^s f_{S_1}(s - x_3) f_{X_3}(x_3) dx_3$$

• Dessa maneira, temos, $S = S_1 + X_3$:

$$f^{(3)} = f_3 * f^{(2)}$$

$$f_S(s) = f^{(3)} = f_3 * f^{(2)} = \int_0^s f_{S_1}(s - x_3) f_{X_3}(x_3) dx_3$$

$$f_S(s) = \int_0^s (2e^{-(s-x_3)} - 2e^{-2(s-x_3)}) 3e^{-3x_3} dx_3$$

...

$$f_S(s) = 3e^{-3s} - 6e^{-2s} + 3e^{-s}, s > 0$$

$$f_S(s) = 3e^{-3s} - 6e^{-2s} + 3e^{-s}, s > 0$$

$$M_S(t) = \int_0^\infty 3e^{st-s} - 6e^{-2s+st} + 3e^{-3s+st} ds$$

$$M_S(t) = \int_0^\infty 3e^{-s(1-t)}ds - \int_0^\infty 6e^{-s(2-t)}ds + \int_0^\infty 3e^{-s(3-t)}ds$$

...

$$M_S(t) = \frac{6}{(1-t)(2-t)(3-t)}$$

Considere: S = X + Y

$$P_X * P_Y(s) = \sum_{\forall x \le s} P_Y(s - x) P_X(x)$$

$$F_X * F_Y(s) = \sum_{\forall x \le s} F_Y(s - x) P_X(x)$$

E para o caso de variáveis discretas.

O operador (*) tem as mesmas propriedades do operador de adição +.

Exemplo 3

Considere uma carteira com as seguintes distribuições de probabilidades:

p_{X_1}	0,5	0,3	0,1	0,1	p_{X_2}	0,7	0,2	0,05	0,05
<i>X</i> ₁	0	1	2	3	X_2	0	1	2	3

De acordo com o enunciado os "valores pagos por cada sinistro" são dados pelos valores assumidos em X_1 e X_2 .

Devemos encontrar a distribuição de $S_1 = X_1 + X_2$

Dessa forma tem-se que S pode assumir os seguintes valores $\{0,1,2,3,4,5,6\}$ correspondente a soma entre os valores de X_1 e X_2 . E utilizando a definição ,

$$P_{X_1} * P_{X_2}(s_1) = \sum_{\forall x_1 \le s} P_{X_2}(s_1 - x_1) P_{X_1}(x_1)$$

é possível calcular as probabilidade de associadas a todos esses valores assumidos por S_1 , logo:

$$X_1 \leq s_1$$
 indica que deve-se variar X_1 até s_1

$$S_1 = 0 \Leftrightarrow (X_1 = 0 \ e \ X_2 = 0)$$

$$P_{S_1}(0) = P_{X_1} * P_{X_2}(0) = \sum_{X_1=0}^{0} P_{X_2}(0 - x_1) P_{X_1}(x_1)$$

$$S_1 = 1 \Leftrightarrow (X_1 = 0 \ \textit{e} \ X_2 = 1 \ \textit{ou} \ X_1 = 1 \ \textit{e} \ X_2 = 0)$$

$$P_{S_1}(1) = P_{X_1} * P_{X_2}(1) = \sum_{X_1=0}^{1} P_{X_2}(1 - x_1) P_{X_1}(x_1)$$

$$S_1=2\Leftrightarrow$$
 ($X_1=2$ $eX_2=0$ ou $X_1=1$ $eX_2=1$ ou $X_1=0$ $eX_2=2$)

$$P_{S_1}(2) = P_{X_1} * P_{X_2}(2) = \sum_{X_1=0}^{2} P_{X_2}(2 - x_1) P_{X_1}(x_1)$$

...

E dessa forma o processo vai se repetindo até $S_1=6$, a tabela abaixo apresenta os resultados dessa convolução entre X_1 e X_2 :

$S_1 = X_1 + X_2$	p_{X_1}	p_{X_2}	P_{s_1}	(X_1, X_2)
	0,5	0,7	0,35	(0,0)
1	0,3	0,2	0,31	(0,1)(1,0)
2	0,1	0,05	0,15	(0,2)(2,0)(1,1)
3	0,1	0,05	0,13	(0,3)(3,0)(1,2)(2,1)
4			0,04	(1,3)(3,1)(2,2)
5			0,01	(2,3)(3,2)
6			0,005	(3,3)

Caso deseja acrescentar mais uma variável (X_3) a S_1 , fazendo assim $S_{ind}=X_1+X_2+X_3$, deve-se fazer a convolução de $S_1=X_1+X_2$ com X_3 , tal que $S_{ind}=S_1+X_3$.

$\overline{X_1}$	P_{X_1}	<i>X</i> ₂	P_{X_2}	<i>X</i> ₃	P_{X_3}
0	0,5	0	0,7	0	0,4
1	0,3	1	0,2	1	0,3
2	0,1	2	0,05	2	0,15
3	0,1	3	0,05	3	0,05
				4	0,04
				5	0,02
				6	0,02
				7	0,02

• A convolução de S_1 com X_3 , tal que $S=S_1+X_3$, ($S=X_1+X_2+X_3$)

$$P_S(0) = P_{S_1} * P_{X_3}(0) = \sum_{S_1=0}^{0} P_{X_3}(0 - S_1) P_{S_1}(S_1)$$

$$P_S(1) = P_{S_1} * P_{X_3}(1) = \sum_{S_1=0}^{-1} P_{X_3}(1-s_1)P_{S_1}(s_1)$$

$$P_S(4) = P_{S_1} * P_{X_3}(4) = \sum_{S_1=0}^{\infty} P_{X_3}(4 - s_1) P_{S_1}(s_1)$$

...

Dessa forma temos $S_1=X_1+X_2$, e $S_{ind}=S_1+X_3$.

S	p_{X_1}	p_{X_2}	p_{X_3}	p_{S_1}	(X_1, X_2)	$p_{S_{\mathbf{ind}}}$	(S_1, X_3)
0	0,5	0,7	0,4	0,35	(0,0)	0,14	(0,0)
1	0,3	0,2	0,3	0,31	(0,1)(1,0)	0,229	(0,1)(1,0)
2	0,1	0,05	0,15	0,15	(0,2)(2,0)(1,1)	0,2075	(0,2)(2,0)(1,1)
3	0,1	0,05	0,05	0,13	(0,3)(3,0)(1,2)(2,1)	0,1625	(0,3)(3,0)(1,2)(2,1)
4			0,04	0,04	(1,3)(3,1)(2,2)	0,1078	(4,0)(0,4)(1,3)(3,1)(2,2)
5			0,02	0,01	(2,3)(3,2)	0,0627	(5,0)(0,5)(4,1)(1,4)(3,2)(2,3)
6			0,02	0,005	(3,3)	0,0369	(6,0)(0,6)(5,1)(1,5)(4,2)(2,4)(3,3)
7			0,02			0,0265	(0,7)(6,1)(1,6)(5,2)(2,5)(4,3)(3,4)
8						0,0148	(1,7)(6,2)(2,6)(5,3)(3,5)(4,4)
9						0,0072	(2,7)(6,3)(3,6)(5,4)(4,5)
10						0,0038	(3,7)(6,4)(4,6)(5,5)
11						0,0011	(4,7)(6,5)(5,6)
12						0,0003	(5,7)(6,6)
13						0,001	(6,7)

Dessa forma temos $S_1 = X_1 + X_2$, e $S_{ind} = S_1 + X_3$.

S	p_{X_1}	p_{X_2}	p_{X_3}	p_{S_1}	(X_1, X_2)	$p_{S_{ ext{ind}}}$	(S_1, X_3)
0	0,5	0,7	0,4	0,35	(0,0)	0,14	(0,0)
1	0,3	0,2	0,3	0,31	(0,1)(1,0)	0,229	(0,1)(1,0)
2	0,1	0,05	0,15	0,15	(0,2)(2,0)(1,1)	0,2075	(0,2)(2,0)(1,1)
3	0,1	0,05	0,05	0,13	(0,3)(3,0)(1,2)(2,1)	0,1625	(0,3)(3,0)(1,2)(2,1)
4			0,04	0,04	(1,3)(3,1)(2,2)	0,1078	(4,0)(0,4)(1,3)(3,1)(2,2)
5			0,02	0,01	(2,3)(3,2)	0,0627	(5,0)(0,5)(4,1)(1,4)(3,2)(2,3)
6			0,02	0,005	(3,3)	0,0369	(6,0)(0,6)(5,1)(1,5)(4,2)(2,4)(3,3)
7			0,02			0,0265	(0,7)(6,1)(1,6)(5,2)(2,5)(4,3)(3,4)
8						0,0148	(1,7)(6,2)(2,6)(5,3)(3,5)(4,4)
9						0,0072	(2,7)(6,3)(3,6)(5,4)(4,5)
10						0,0038	(3,7)(6,4)(4,6)(5,5)
11						0,0011	(4,7)(6,5)(5,6)
12						0,0003	(5,7)(6,6)
13						0,001	(6,7)

Dessa forma temos $S_1 = X_1 + X_2$, e $S_{ind} = S_1 + X_3$.

S	p_{X_1}	p_{X_2}	p_{X_3}	p_{S_1}	(X_1, X_2)	$p_{S_{\mathbf{ind}}}$	(S_1, X_3)
0	0,5	0,7	0,4	0,35	(0,0)	0,14	(0,0)
1	0,3	0,2	0,3	0,31	(0,1) (1,0)	0,229	(0,1)(1,0)
2	0,1	0,05	0,15	0,15	(0,2)(2,0)(1,1)	0,2075	(0,2)(2,0)(1,1)
3	0,1	0,05	0,05	0,13	(0,3)(3,0)(1,2)(2,1)	0,1625	(0,3)(3,0)(1,2)(2,1)
4			0,04	0,04	(1,3)(3,1)(2,2)	0,1078	(4,0)(0,4)(1,3)(3,1)(2,2)
5			0,02	0,01	(2,3)(3,2)	0,0627	(5,0)(0,5)(4,1)(1,4)(3,2)(2,3)
6			0,02	0,005	(3,3)	0,0369	(6,0)(0,6)(5,1)(1,5)(4,2)(2,4)(3,3)
7			0,02			0,0265	(0,7)(6,1)(1,6)(5,2)(2,5)(4,3)(3,4)
8						0,0148	(1,7)(6,2)(2,6)(5,3)(3,5)(4,4)
9						0,0072	(2,7)(6,3)(3,6)(5,4)(4,5)
10						0,0038	(3,7)(6,4)(4,6)(5,5)
11						0,0011	(4,7)(6,5)(5,6)
12						0,0003	(5,7)(6,6)
13						0,001	(6,7)

Exemplo 4

Considere para o exercício anterior que, 8 seja o limite de indenização para essa carteira. Assim, seria o valor do prêmio puro de risco a ser cobrado.

S	$p_{S_{\mathbf{ind}}}$
0	0,14
1	0,229
2	0,2075
3	0,1625
4	0,10775
5	0,06265
6	0,0369
7	0,0265
8	0,01475
9	0,00715
10	0,0038
11	0,0011
12	0,0003
13	0,0001

Exemplo 4

Considere para o exercício anterior que, 8 seja o limite de indenização para essa carteira. Assim, seria o valor do prêmio puro de risco a ser cobrado.

S	$p_{\mathcal{S}_{ extbf{ind}}}$
0	0,14
1	0,229
2	0,2075
3	0,1625
4	0,10775
5	0,06265
6	0,0369
7	0,0265
8	0,01475
9	0,00715
10	0,0038
11	0,0011
12	0,0003
13	0,0001

$$E(S) = \sum_{s=0}^{13} s P(s) = 2,52$$

Solução:

Seja *Y*, tal que:

$$Y = \begin{cases} S, & S < 8 \\ 8, & S \ge 8 \end{cases}$$

$$\Pi_Y = E(Y) = E(S; 8)$$

$$\Pi_Y = \sum_{s=0}^{7} s P(s) + \sum_{s=8}^{13} 8 P(s) = 2,49945$$

$S_1 = X_1 + X_2$	p_{X_1}	p_{X_2}	P_{s_1}	(X_1, X_2)
0	0,5	0,7	0,35	(0,0)
1	0,3	0,2	0,31	(0,1) (1,0)
2	0,1	0,05	0,155	(0,2)(2,0)(1,1)
3	0,1	0,05	0,13	(0,3)(3,0)(1,2)(2,1)
4			0,04	(4,0)(3,1)(2,2)(1,3)(0,4)
5			0,01	(5,0)(4,1)(3,2)(2,3)(1,4)(0,5)
6			0,005	(6,0)(5,1)(4,2)(3,3)(2,4)(1,5)(0,6)

convolucao<-function(x,y,px,py){</pre>

```
 s \leftarrow \text{rep}(0,(\text{length}(x)^*\text{length}(y))) \quad \# \quad \text{Gerando o vetor S como multiplo de X1* X2} \\  \text{Ps}\leftarrow s^*0 \qquad \qquad \# \quad \text{Gerando o vetor P(S) como multiplo de P(X1)^*P(x2)} \\  \text{cont}\leftarrow 1 \\  \text{for}(i \text{ in 1:length}(x))\{ \qquad \qquad \# \quad \text{Percorrendo o vetor x} \\  \text{for}(j \text{ in 1:length}(y))\{ \qquad \qquad \# \quad \text{Percorrendo o vetor y} \\  \text{s[cont]}\leftarrow x[i]+y[j] \qquad \qquad \# \quad \text{S[1]}\leftarrow x[1]+y[1] \quad \text{(S}\leftarrow 0+0, \text{S}\leftarrow 0+1) \quad \text{(gerando todas as combinações)} \\  \text{Ps[cont]}\leftarrow -px[i]^*py[j] \\  \text{cont}\leftarrow -\text{cont}+1 \\  \text{} \} \\  \text{} \}
```

```
convolucao<-function(x,y,px,py){</pre>
                                                                         Ps
                                                                         0,35
 s <- rep(0,(length(x)*length(y)))
                                                                         0,1
 Ps<-s*0
                                                                         0,025
  cont<-1
                                                                         0,025
  for(i in 1:length(x)){
                                                                         0,210
        for(j in 1:length(y)){
                                                                         0,06
        s[cont] < -x[i] + y[j]
                                                                         0,015
        Ps[cont]<-px[i]*py[j]
                                                                         0,015
        cont<-cont+1
                                                                         0,07
                                                                         0,02
                                                                         0,005
                                                                         0,005
                                                                         0,070
                                                                         0,020
                                                                         0,005
                                                                          0,005
```

```
convolucao<-function(x,y,px,py){
  s \leftarrow rep(0,(length(x)*length(y)))
                                       Gerando o vetor S como múltiplo de X1* X2
 Ps<-s*0
                                       Gerando o vetor P(S) como múltiplo de P(X1)*P(x2)
  cont<-1
  for(i in 1:length(x)){
                              # Percorrendo o vetor x
       for(j in 1:length(y)){
                            # Percorrendo o vetor y
         s[cont]<-x[i]+y[j]
                             # S[1]<-x[1]+y[1] (S<-0+0, S<-0+1) (gerando todas as combinações)
      Ps[cont]<-px[i]*py[j]
      cont<-cont+1
 auxs <- unique(s)
 auxPs <- auxs*0
 cont <- 1
  for(u in auxs){
     auxPs[cont]<-sum(Ps[which(s==u)]) # Para casa valor de s está sendo somado todos os valores possíveis de
probabilidade.
     cont<-cont+1
  fdp<-cbind(auxs,auxPs)
 colnames(fdp)<-c('s','Ps')
 return(fdp)
Para chamar a função
Exemplo:
x < -c(0,1,2,3); Px < -c(0.7,0.2,0.05,0.05)
y < -c(0,1,2,3,4,5,6,7); Px<-c(0.4,0.3,0.15,0.05,0.04,0.02,0.02,0.02)
Convolucao(x,y,px,py)
```

Dessa forma temos $S_1=X_1+X_2$, e $S_{ind.}=S_1+X_3$.

S	p_{X_1}	p_{X_2}	p_{X_3}	p_{S_1}	(X_1, X_2)	$p_{S_{\mathbf{ind}}}$	(S_1, X_3)
0	0,5	0,7	0,4	0,35	(0,0)	0,14	(0,0)
1	0,3	0,2	0,3	0,31	(0,1) (1,0)	0,229	(0,1)(1,0)
2	0,1	0,05	0,15	0,155	(0,2)(2,0)(1,1)	0,2075	(0,2)(2,0)(1,1)
3	0,1	0,05	0,05	0,13	(0,3)(3,0)(1,2)(2,1)	0,1625	(0,3)(3,0)(1,2)(2,1)
4			0,04	0,04	(1,3)(3,1)(2,2)	0,10775	(4,0)(0,4)(1,3)(3,1)(2,2)
5			0,02	0,01	(2,3)(3,2)	0,06265	(5,0)(0,5)(4,1)(1,4)(3,2)(2,3)
6			0,02	0,005	(3,3)	0,0369	(6,0)(0,6)(5,1)(1,5)(4,2)(2,4)(3,3)
7			0,02			0,0265	(0,7)(6,1)(1,6)(5,2)(2,5)(4,3)(3,4)
8						0,01475	(1,7)(6,2)(2,6)(5,3)(3,5)(4,4)
9						0,00715	(2,7)(6,3)(3,6)(5,4)(4,5)
10						0,0038	(3,7)(6,4)(4,6)(5,5)
11						0,0011	(4,7)(6,5)(5,6)
12						0,0003	(5,7)(6,6)
13						0,0001	(6,7)