Phase of the Fermion Determinant at Nonzero Chemical Potential

Jacobus Verbaarschot

jacobus.verbaarschot@stonybrook.edu

Stony Brook University

XQCD 2008

Acknowledgments

Recent Collaborators: Konstantinos Anagnostopoulos (Crete University)

Gernot Akemann (Brunel University)

Jan Ambjorn (NBI)

Antonio Garcia-Garcia (Princeton University)

Bertram Klein (Munich University)

Christoph Lehner (Regensburg University)

Shinsuke Nishigaki (Shimani University)

Jun Nishimura (KEK)

Munehisa Ohtani (Regensburg University)

James Osborn (Boston University)

Lorenzo Ravagli (Texas A & M)

Leonid Shifrin (Brunel University)

Kim Splittorf (NBI)

Dominique Toublan (Wharton)

Tilo Wettig (Regensburg)

Martin Zirnbauer (Cologne University)

Financial Support: Stony Brook University

US Department of Energy

References

K. Splittorff and J. J. M. Verbaarschot, Phase of the fermion determinant at nonzero chemical potential, Phys. Rev. Lett. 98, 031601 (2007) [arXiv:hep-lat/0609076].

K. Splittorff and J.J.M. Verbaarschot, The QCD Sign Problem for Small Chemical Potential, Phys. Rev. **D75**, 116003 (2007) [arXiv:hep-ph/0702011].

K. Splittorff and J. J. M. Verbaarschot, Acta Phys. Polon. B 38, 4123 (2007) [arXiv:0710.0704 [hep-th]].

L. Ravagli and J. J. M. Verbaarschot, Phys. Rev. D **76**, 054506 (2007) [arXiv:0704.1111 [hep-th]].

Contents

- I. Extreme Domains in QCD
- II. Phase of the Fermion Determinant
- III. Phase Factor in Chiral Perturbation Theory
- IV. Phase Diagram of the Average Phase Factor
- V. Quenched Average Phase Factor and Analyticity in μ
- VI. Conclusions

I. Extreme Domains in QCD

The Chiral Domain

The Microscopic Domain

The Microscopic Domain of the Dirac Spectrum

Applications

Chiral Domain of QCD

$$m_{\pi} \ll F_{\pi}, \qquad \mu_k \ll F_{\pi}, \qquad T < T_c,$$
 $V \gg \Lambda_{QCD}^{-4}.$

- \checkmark QCD is an expansion in m_{π}/F_{π} and μ_k/F_{π} in this domain.
- The chiral Lagrangian does not depend on the baryon chemical potential but depends on the isospin and strangeness chemical potential.
- √ The temperature dependence of the QCD partition function is given by the thermodynamics of a weakly interacting pion gas.
- \checkmark Also known as the p -domain

Microscopic Domain of QCD

$$m_{\pi} \ll L^{-1}, \qquad \mu_k \ll L^{-1}$$

 $L = V^{1/4} \gg \Lambda_{QCD}^{-1}, \qquad T \leq T_c$

- √ The QCD partition function factorizes in a zero momentum mode part and a nonzero momentum mode part.
- The zero momentum mode part is the large N limit of a chiral random matrix theory of $N \times N$ matrices with the global symmetries of QCD..
- The temperature dependence is through the chiral condensate and the pion decay constant.
- √ The partition function depends on the isospin and strangeness chemical potential but not on the baryon chemical potential.
- \checkmark Also known as the ϵ -domain.

Extreme Microscopic Domain of QCD

$$m_{\pi} \ll L^{-1}, \qquad \mu_{k} \ll L^{-1}$$
 $L = V^{1/4} \gg \Lambda_{QCD}^{-1}, \qquad T \leq T_{c}$
 $m_{\pi} F_{\pi} L^{2} \gg 1, \qquad \mu F_{\pi} L^{2} \gg 1$

- This domain matches to the mean field limit of the chiral domain.
- It is the "strong coupling" limit of chiral random matrix theory which is dual to the weak coupling limit of the corresponding nonlinear σ -model.

The Microscopic Domain of the Dirac Spectrum

$$m_\pi,~\mu_k$$
 arbitrary $z \ll rac{F_\pi^2}{2\Sigma L^2}$ $\mu_z \ll L^{-1}$ $L = V^{1/4} \gg \Lambda_{QCD}^{-1},~T \leq T_c$

- \checkmark The Compton wavelength of the Goldstone particles corresponding to z is much larger than the size of the box.
- \checkmark The partition function that describes the QCD Dirac spectrum depends on μ_z .
- \checkmark This partition function is equivalent to the large N 'limit of a chiral random matrix theory.
- $\sqrt{m_{\pi}}$ and μ_k can be in the microscopic domain, in the chiral domain or outside the chiral domain.

Large N_c Limit of the Microscopic Domain

Density of Dirac eigenvalues according to Banks-Casher

$$\rho(0) = \frac{V}{\pi \Sigma} \Longrightarrow \Delta \lambda \equiv \frac{1}{\rho(0)}$$

Number of eigenvalues in the microscopic domain

$$\frac{F_{\pi}^2}{2\Sigma L^2} \frac{1}{\Delta \Lambda} = \pi F_{\pi}^2 L^2 \sim N_c$$

Estimate for
$$N_c=3$$
 : $L=3\,\mathrm{fm}$, $F_\pi\approx 0.5\,\mathrm{fm}^{-1}$ $\Longrightarrow \pi F_\pi^2 L^2\approx 7.$

Uses of the Microscopic Domain

- ✓ Distribution of the small Dirac eigenvalues is a measure for for chiral symmetry breaking. For example, this is used to determine the critical number of flavors for the conformal phase.
 Fodor-Holland-Kuti-Nogradi-Schroeder-2008
- √ Eigenvalue distributions show if quarks are massless. One possible measure is the validity flavor-topology duality.

 Fukaya-et-al-2006

 Fuk
- The chiral condensate and the pion decay constant can be determined from the distribution of the lowest Dirac eigenvalue.
 - Wettig-et al-1999, Damgaard-3t al-2005 Osborn-Wettig-2005, Akemann et al-2006
- √ Knowing the properties of the small Dirac eigenvalues can be exploited to obtain better estimators the fermion determinant.

 Luescher-Palombi-2008
- Chiral Random Matrix Theory has contributed significantly to our understanding of QCD at nonzero chemical potential: quenching, phase diagram, phase of the fermion determinant, alternative to the Banks-Casher relation.

Jackson-JV-1995, Stephanov-1996, Halasz-et al-1998, Osborn-Splittorff-JV-2005, Splittorff-JV-2006/2008

II. Phase of the Fermion Determinant

Phase and Dirac Eigenvalues

Sign Problem in QCD at $\mu \neq 0$

Phase Factor and Partition Functions

Lattice QCD in 1d

Phase Factor and Dirac Eigenvalues

Toussaint-1990

Barbour et al. 1986

 $m < m_c$ then $\langle e^{i\theta} \rangle \sim 0$

Sign Problem in QCD at $\mu \neq 0$

Order parameters: $\langle \theta^2 \rangle$, $\langle e^{i\theta} \rangle$, $\langle e^{2i\theta} \rangle$, $\langle e^{-2i\theta} \rangle$, \cdots , the statistical distribution of θ .

Averages can be taken with respect to different partition functions:

Quenched partition function, $\langle \cdots \rangle_{\mathbf{q}}$ Phase quenched partition function, $\langle \cdots \rangle_{\mathbf{pq}}$ (most relevant) Full QCD partition function, $\langle \cdots \rangle_{N_f}$

Seriousness of the sign problem: No problem if $\langle \theta^2 \rangle^{1/2} < \frac{\pi}{2}$ Mild if $\langle \theta^2 \rangle^{1/2} > \frac{\pi}{2}$ but $\langle \theta^2 \rangle \sim V^0$, Serious if $\langle \theta^2 \rangle \sim V$, $\langle e^{i\theta} \rangle \sim e^{-VF}$.

We will see next that the latter possibility arises naturally.

Phase Factor and Partition functions

$$\langle e^{2i\theta} \rangle_{\text{pq}} = \frac{\langle (\det(D+m+\mu\gamma_0))^2 \rangle}{\langle |\det(D+m+\mu\gamma_0)|^2 \rangle} \equiv \frac{Z_{N_f=2}^{\text{QCD}}}{Z_{N_f=2}^{|\text{QCD}|}} = \frac{Z_{N_f=2}^{\text{QCD}}(\mu)}{Z_{N_f=2}^{\text{QCD}}(\mu_I=\mu)}$$

$$\sim e^{-V(F_{\text{QCD}}-F_{|\text{QCD}|})}.$$

Phase quenched QCD is QCD at nonzero isospin chemical potential:

$$|\det(D + m + \mu \gamma_0)|^2 = \det(D + m + \mu \gamma_0) \det(D + m - \mu \gamma_0).$$

 \checkmark Sign problem remains for $N_c \to \infty$:

$$F_{\rm QCD}(\mu)=F_{\rm |QCD|}(\mu)[1+O(\tfrac{1}{N_c})]. \tag{Cohen-2004)},$$
 but $F_{\rm QCD}\sim O(N_c)$.

Phase Diagram of QCD and |QCD|

Schematic QCD phase diagram.

Phase diagram of phase quenched QCD (de Forcrand-Stephanov-Wenger-2007). Agrees with earlier work by Kogut and Sinclair.

 $Z_{\rm |QCD|}$ has a phase transition at $\,\mu=m_\pi/2$ so that the free energies of the two theories are completely different.

An nonzero temperature the free energies are different for any nonzero value of the chemical potential.

Remarks

- Eigenvalues are distributed more or less homogeneously inside a strip.
- The strip has a hard edge.
- ✓ Convergence of the average phase factor. What is the asymptotic p dependence of the ratio

$$\frac{\langle \prod_{k=-p}^{p} (\lambda_k^{\text{QCD}} + m) \rangle}{\langle \prod_{k=-p}^{p} (\lambda_k^{|\text{QCD}|} + m) \rangle} ?$$

- ✓ If the chemical potential is in the microscopic domain (i.e. $\mu^2 F_\pi^2 V = \text{fixed for } V \to \infty$), this ratio is determined by eigenvalues in the microscopic domain (i.e., $\lambda_k \ll 1/F_\pi \sqrt{V}$).
- \checkmark Random matrix theory suggest that for finite $\,\mu$ the convergence might be as slow as $\,O(\sqrt{N/p})$.
- √ The phase factor is essential for physical observables.

U(1) Gauge Theory in one Dimension

Dirac operator:

$$D = \begin{pmatrix} mI & e^{\mu} & \dots & e^{-\mu}U^{\dagger} \\ -e^{-\mu} & mI & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & mI & e^{\mu} \\ -e^{\mu}U/2 & \cdots & -e^{-\mu} & mI \end{pmatrix}$$

Dirac spectrum of 1d QCD

$$\Sigma(m) = \frac{\left\langle \sum_k \frac{1}{\lambda_k + m} \prod_k (\lambda_k + m) \right\rangle}{\left\langle \prod_k (\lambda_k + m) \right\rangle}$$
 determinant with a complex phase

The chiral condensate has a discontinuity in region where there are no eigenvalues

Ravagli-JV-2007

<u>Σ(</u>m)

m

Phase Factor in Extreme QCD

- √ Lattice QCD Allton-et al-2005, Ejiri-2006/2008, Fodor-Schmidt-2007
- √ Average phase factor for one-plaquette QCD.
 Aarts-2008
- Average phase factor in 1d QCD. Ravagli-JV-2007
- \checkmark Large N_c -limit of average phase factor.
- Hard thermal loop expansion of the average phase factor.

Fraga-Villavicencio-2008

Average phase factor in chiral perturbation theory.

Splittorff-JV-2007

√ Average phase factor in the microscopic domain of QCD.

Splittorff-JV-2006

Average phase factor in chiral random matrix theory. Ravagli-JV-2007, Han-Stephanov-2008

III. Phase Factor in Chiral Perturbation Theory

One Loop Result

Comparison with Lattice Results

Probability Distribution of the Phase

One Loop Chiral Perturbation Theory

The chiral Lagrangian depends on the the isospin chemical potential but not on the the quark number chemical potential.

To one loop order we find:
$$\langle \det^2(D+m+\mu\gamma_0) \rangle \sim e^{-VF_{N_f}^{(0)}=2} \prod_k \prod_p \frac{1}{\sqrt{m_k^2 + \vec{p}^2 + p_0^2}},$$

$$\langle |\det(D+m+\mu\gamma_0)|^2 \rangle \sim e^{-VF_{pq}^{(0)}} \prod_k \prod_p \frac{1}{\sqrt{m_k^2 + \vec{p}^2 + (p_0 - 2i\mu)^2}}.$$

Only charged Goldstone bosons contribute to the ratio of the two partition functions. This results in

$$\langle e^{2i\theta} \rangle_{pq} = \frac{(m_{\pi} - 2\mu)(m_{\pi} + 2\mu)}{m_{\pi}^2} e^{h(m_{\pi}^2 L^2, \mu^2 L^2)},$$

with h a finite function.

Splittorff-JV-2007

zero momentum contribution can be derived from random matrix theory

One-Loop Result

Splittorff-JV-2007

Temperature Dependence of $\langle \exp(i\theta) \rangle$

Splittorff-JV-2007

Average phase factor for $\,N_f=2$ as a function of the chemical potential and the temperature ($1/L_0$).

In the chiral domain, simulations are possible for small chemical potentials or low temperatures.

Comparison with Lattice Simulations

Ratio of quark and isospin susceptibility (χ_q/χ_I) to second order in μ (data: Allton et al. 2005)

Average phase factor in lattice QCD using the lowest order Taylor expansion (Allton-et-al.-2005) compared to one loop chiral perturbation theory in a box equal to the size of the lattice.

$$\langle e^{2i\theta} \rangle_{1+1^*} = \frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)}$$

 $\sim e^{V\mu^2(\chi_q - \chi_I)}.$

Probability Distribution of the Phase

The density of the phase angle is defined by

$$\rho(\phi) = \langle \delta(\phi - \operatorname{Im} \log \det(D + m + \mu \gamma_0)) \rangle_{N_f}$$

Notice that $\phi \in \langle -\infty, \infty \rangle$.

- \checkmark According to the Central Limit Theorem we expect that $\rho(\phi)$ is a Gaussian. Ejiri-2007.
- ✓ If the average is over dynamical quarks, the phase density is complex,
 Splittorff-JV-2007

$$\langle \delta(\phi - \theta) e^{iN_f \theta} | \det^{N_f} (D + m + \mu \gamma_0) | \rangle$$

$$= e^{iN_f \phi} \langle \delta(\phi - \theta) | \det^{N_f} (D + m + \mu \gamma_0) | \rangle.$$

Observables are determined by correlations with the phase of the fermion determinant. Knowing the Gaussian distribution is clearly not sufficient.

Derivation of the Phase Density

$$\rho_{N_f}(\phi) = \langle \delta(\phi - \operatorname{Im} \log \det(D + m + \mu \gamma_0)) \rangle_{N_f}$$
$$= \langle \sum_{n} e^{in(\phi - \operatorname{Im} \log \det(D + m + \mu \gamma_0))} \rangle_{N_f}$$

The phase density therefore follows from the moments of the phase factor.

$$\langle e^{2in\theta} \rangle_{N_f} = \frac{1}{Z_{N_f}} \left\langle \frac{\det^{n+N_f} (D+m+\mu\gamma_0)}{\det^n (D^{\dagger}+m+\mu\gamma_0)} \right\rangle$$

We have $2n(n + N_f)$ charged Goldstone particles. They are fermions. All uncharged Goldstone particles are bosons. We thus find

$$\langle e^{2in\theta} \rangle_{N_f} = e^{n(n+N_f)} \underbrace{\left[G_0(\mu=0) - G_0(\mu) \right]}_{-\Delta G}$$

Phase Density

By Poisson resummation we obtain

$$\rho(\phi) = \sum_{n} e^{in\phi} e^{-n(n+N_f)\Delta G} = \frac{e^{\frac{1}{4}N_f^2\Delta G}}{\sqrt{\pi\Delta G}} e^{iN_f\phi - \frac{\phi^2}{\Delta G}}.$$

Phase density in lattice QCD.

Ejiri-2007

- Gaussian distribution modified by a phase.
- $\checkmark \Delta G \sim VT^2\mu^2$.
- Agrees (up to the overall phase) with lattice results by Ejiri obtained by Tailor expansion of the phase angle.

IV. Phase Diagram of Average Phase Factor

T -dependence of Phase Factor

Phase Diagram

Temperature Dependence of $\langle e^{2i\theta} \rangle$

Scatter plot of Dirac eigenvalues obtained from a schematic chiral random matrix model. This random matrix model has the spectral flow of QCD and is equivalent to the zero momentum limit of a chiral Lagrangian.

The average phase factor becomes nonzero when the quark mass is outside the spectral support. The quark mass is indicated by the black dot.

Ravagli-JV-2007

Ingredients for Phase Diagram of the Average Phase Factor

Analytical random matrix result for phase diagram of average phase factor. Curves show contours of equal average phase factor. Han-Stephanov-2008

Lattice results showing contour lines with equal variance of the phase of the fermion determinant.

Allton-et al-2005, Splittorff-2006

 \checkmark Lattice simulations are feasible around T_{co} and small chemical potential. Fodor-Katz-2002, Allton-et al-2002, d'Elia-Lombardo-2002,

De Forcrand-Philipsen-2002, Gavai-Gupta-2003

Weak coupling result of QCD valid for high temperatures

$$F_{\text{QCD}}(\mu, T) - F_{|\text{QCD}|}(\mu, T) \sim \alpha_s^2 \mu^2 T^2.$$

Ipp-Rebhan-2003, Vuorinen-2003

Phase Diagram of the Average Phase Factor

Schematic "Phase diagram" of average phase factor at finite volume. Contour lines are curves with equal average phase factor.

There is a target of opportunity starting from T_{co} to the region just above the critical end point.

Interesting physics requires lattice methods that can deal with the sign problem.

Phase of the Fermion Determinant - p. 31/41

V. Quenched Average Phase Factor and Analyticity in μ

Quenched RMT result

Phase Factor at Imaginary Chemical Potential

Quenched Average Phase Factor

√ The quenched average phase factor is given by

$$\langle e^{2i\theta} \rangle_{\mathbf{q}} = \left\langle \frac{\prod_{k} (\lambda_k + m)}{\prod_{k} (\lambda_k^* + m)} \right\rangle_{\mathbf{q}}.$$

- √ This expression contains integrable poles.
- \checkmark Is the quenched average phase factor analytic in μ ?
- We can answer this question in the microscopic domain of QCD where the QCD partition function is given by chiral random matrix theory.
- Using a version of the random matrix model proposed by Osborn (2004) the model is analytically solvable in terms of complex orthogonal polynomials.

Quenched RMT Result

$$\langle e^{2i\theta} \rangle_{N_f=0} = 1 - 4\hat{\mu}^2 I_0(\hat{m}) K_0(\hat{m}) \qquad \qquad \hat{\mu} = mV\Sigma -e^{-2\hat{\mu}^2} \frac{1}{4\hat{\mu}^2} e^{-\frac{\hat{m}^2}{8\hat{\mu}^2}} \int_{\hat{m}}^{\infty} dx x \exp\left[-\frac{x^2}{4\hat{\mu}^2}\right] K_0\left(\frac{x\hat{m}}{4\hat{\mu}^2}\right) \left(I_0(x)\hat{m}I_1(\hat{m}) - xI_1(x)I_0(\hat{m})\right),$$

Splittorff-JV-2007

Splittorff-JV-2006

 \checkmark Reduces to mean field result for N_f flavors,

$$\left(1 - \frac{4\mu^2}{m_\pi^2}\right)^{N_f + 1}, \quad \mu < m_\pi/2,$$

for $\hat{\mu} \to \infty, \ \hat{m} \to \infty$: and is exponentially suppressed for $\mu > m_\pi/2$.

- \checkmark This expression has an essential singularity at $\mu=0$.
- What about analytical continuation to imaginary chemical potential?

Average Phase Factor at Imaginary Chemical Potential

Analytical continuation of phase factor

(Splittorff-Svetitsky-2007)

(
$$\det^*(D+m+mu\gamma_0)=\det(D+m-\mu\gamma_0)$$
)
$$\left\langle \frac{\det(D+m+i\mu\gamma_0)}{\det(D+m-i\mu\gamma_0)} \right\rangle$$

Has been evaluated analytically in the microscopic domain of QCD. In the quenched case we find

$$1 - 4\hat{\mu}^2 I_0(\hat{m}) K_0(\hat{m}).$$

Damgaard-Splittorff-2006 Splittorff-JV-2006

"Phase" of the fermion determinant for imaginary chemical potential.

Splittorff-Svetitsky-2007

Discussion of Quenched Phase Factor

$$\begin{split} \langle e^{2i\theta} \rangle_{N_f=0} &= 1 - 4 \hat{\mu}^2 I_0(\hat{m}) K_0(\hat{m}) & \text{Splittorff-JV-2007} \\ - e^{-2\hat{\mu}^2} \frac{1}{4\hat{\mu}^2} e^{-\frac{\hat{m}^2}{8\hat{\mu}^2}} \int_{\hat{m}}^{\infty} dx x \exp[-\frac{x^2}{4\hat{\mu}^2}] K_0\left(\frac{x\hat{m}}{4\hat{\mu}^2}\right) \left(I_0(x) \hat{m} I_1(\hat{m}) - x I_1(x) I_0(\hat{m})\right), \end{split}$$

- √ The first two terms can be obtained by analytical continuation from imaginary chemical potential.
- ✓ The second term has an essential singularity at $\mu = 0$ and cannot be obtained by analytical continuation.
- \checkmark The second term nullifies the first term for $\mu>m_\pi/2$.
- √ The quenched average phase factor is also nonanalytic for QCD in 1d.
- The question is why the average phase factor is nonanalytic, and whether this should be a warning sign for other observables.

✓ The sign problem is severe when the quark mass is inside the support of the Dirac eigenvalues (i.e. for $\mu > m_\pi/2$).

- ✓ The sign problem is severe when the quark mass is inside the support of the Dirac eigenvalues (i.e. for $\mu > m_\pi/2$).
- \checkmark For $T < F_{\pi}$, the sign problem becomes manageable in the microscopic domain of QCD ($\mu^2 F_{\pi}^2 V \sim O(1)$).

- ✓ The sign problem is severe when the quark mass is inside the support of the Dirac eigenvalues (i.e. for $\mu > m_\pi/2$).
- \checkmark For $T < F_\pi$, the sign problem becomes manageable in the microscopic domain of QCD ($\mu^2 F_\pi^2 V \sim O(1)$).
- In the domain of validity of chiral perturbation theory the distribution of the phase of the quark determinant is a Gaussian modified by a complex phase.

- ✓ The sign problem is severe when the quark mass is inside the support of the Dirac eigenvalues (i.e. for $\mu > m_\pi/2$).
- \checkmark For $T < F_\pi$, the sign problem becomes manageable in the microscopic domain of QCD ($\mu^2 F_\pi^2 V \sim O(1)$).
- In the domain of validity of chiral perturbation theory the distribution of the phase of the quark determinant is a Gaussian modified by a complex phase.
- \checkmark The width of this distribution behaves as $\sim \mu T \sqrt{V}$

- ✓ The sign problem is severe when the quark mass is inside the support of the Dirac eigenvalues (i.e. for $\mu > m_\pi/2$).
- \checkmark For $T < F_{\pi}$, the sign problem becomes manageable in the microscopic domain of QCD ($\mu^2 F_{\pi}^2 V \sim O(1)$).
- In the domain of validity of chiral perturbation theory the distribution of the phase of the quark determinant is a Gaussian modified by a complex phase.
- \checkmark The width of this distribution behaves as $\sim \mu T \sqrt{V}$
- √ The region of the phase diagram with a mild sign problem seems
 to be larger than what was believed a decade ago.

- ✓ The sign problem is severe when the quark mass is inside the support of the Dirac eigenvalues (i.e. for $\mu > m_\pi/2$).
- \checkmark For $T < F_{\pi}$, the sign problem becomes manageable in the microscopic domain of QCD ($\mu^2 F_{\pi}^2 V \sim O(1)$).
- In the domain of validity of chiral perturbation theory the distribution of the phase of the quark determinant is a Gaussian modified by a complex phase.
- \checkmark The width of this distribution behaves as $\sim \mu T \sqrt{V}$
- The region of the phase diagram with a mild sign problem seems to be larger than what was believed a decade ago.
- In the microscopic domain of QCD the quenched average phase factor is nonanalytic in μ . We expect tjat this nonanalyticity does not occur in observables that are derivatives of the free energy.

Spectral Density for $N_f = 1$

The spectral density can be decomposed as

$$\hat{\rho}_{N_f=1}(\hat{x}, \hat{y}, \hat{m}; \hat{\mu}) = \hat{\rho}_Q(\hat{x}, \hat{y}; \hat{\mu}) + \hat{\rho}_R(\hat{x}, \hat{y}, \hat{m}; \hat{\mu}),$$

with $(\hat{z} = \hat{x} + i\hat{y})$

$$\hat{\rho}_{R}(\hat{x}, \hat{y}, \hat{m}; \hat{\mu}) = \frac{|\hat{z}|^{2}}{2\pi\hat{\mu}^{2}} e^{-(\hat{z}^{2} + \hat{z}^{*2})/(8\hat{\mu}^{2})} \times K_{0}(\frac{|\hat{z}|^{2}}{4\hat{\mu}^{2}}) \frac{I_{0}(\hat{z})}{I_{0}(\hat{m})} \int_{0}^{1} dt \, t e^{-2\hat{\mu}^{2}t^{2}} I_{0}(\hat{z}^{*}t) I_{0}(\hat{m}t).$$

Quenched spectral density

$$\hat{\rho}_Q(\hat{x}, \hat{y}; \hat{\mu}) = \hat{\rho}_U(\hat{x}, \hat{y}, \hat{x} + i\hat{y}; \hat{\mu}).$$

Osborn-2004