Simulation Exercise: Potential Outcomes

Notes

- This exercise relies heavily on fake data simulation. Fake data simulation means that we generate random variables such that they resemble intuitive quantities that illustrate a point we want to make. Generation of random variables means taking draws from a given distribution, characterized by a (set of) parameter(s). For instance, the flip of a fair coin is a draw from a Bernoulli distribution with probability parameter p = 0.5. Rolling a fair dice is a draw from a categorical distribution with probability parameters $\mathbf{p}' = \left\{ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \right\}$. Randomly pointing anywhere on a 1m measurement tape is a draw from a uniform distribution with support [0,1]. You get the idea.
- Consider the following fictitious setting: We have a sample of N=1000 students. Our outcome of interest is knowledge about counterfactual causality, measured by students' test scores in a quiz on potential outcomes. The treatment of interest is taking an undergraduate class in research design.

Students' potential outcomes under the control, $Y_i(0)$, are evenly distributed between 20 and 80. The individual treatment effects, τ_i , range between 0 and 20. Thus, the potential outcomes under the treatment, $Y_i(1)$, may range between 20 and 100. In this exercise, two forms of bias will be introduced if students self-select into the class. Their probability of selecting into the class is a direct function of their prior ability, i.e., of their potential outcomes under the control, $Y_i(0)$. Similarly, prior ability affects how much they learn (i.e., the size of their idiosyncratic treatment effects, τ_i) – students with a higher prior ability tend get more out of the class. Therefore, self-selection will result in both selection bias and differential treatment effect bias.

In our first scenario, students are randomly assigned to treatment and control – pure chance determines whether they take an undergraduate class in research design or not. In the second, more realistic scenario, students self-select into the class. Here, we want to quantify the magnitude of selection bias and differential treatment effect bias under randomization and under self-selection.

Prompt:

- 1. Before you start, set a seed for reproducibility of your random variable generation (set.seed()).
- 2. Generate an integer, $\mathbb{N} \leftarrow 1000L$, to be used in determining the length of the variables we create below.
- 3. Generate a variable of potential outcomes under the control, Y_0, containing random draws from a uniform distribution with support [20, 80] (runif()).

- 4. Generate a variable of individual treatment effects, tau. As tau is a function of the potential outcomes under the control, we have differential treatment effects. We draw these from a normal distribution with some random error (tau <- 0.2 * rnorm(Y_0, 2.5)) and then truncate the distribution at 0 and 20.
- 5. Show a scatter plot with Y_0 on the x-axis and tau on the y-axis. Briefly interpret the pattern you observe.
- 6. Generate a variable of potential outcomes under the treatment, Y_1, using the two variables you previously generated.
- 7. Generate a randomly assigned binary treatment indicator, D, which takes on values of either 0 or 1 from a Bernoulli distribution, which is a special case of the binomial distribution with size = 1, meaning we take one draw for each observation i (rbinom). Suppose everyone has equal probability of being assigned to either treatment or control group.
- 8. Show that the potential outcomes are independent of treatment status. Choose an appropriate test or statistic and give a brief interpretation.
- 9. Generate a variable Y_obs that takes the values of Y_0 if D==0 and the values of Y_1 if D==1.
- 10. Run a regression of Y_obs on D to gauge the average treatment effect. Give a brief interpretation.
- 11. Next, generate a variable D_sel that indicates receipt of the treatment in a scenario of self selection. For this, generate a variable prob_sel equal to the potential outcomes under control divided by 100. This gives you each student's probability of selecting into the treatment. Use these probabilities to draw D_sel from a Bernoulli distribution.
- 12. Using the same test you chose above, test if the potential outcomes are independent of D_sel and give a brief interpretation.
- 13. Generate a variable Y_obs_sel that takes the values of Y_O if D_sel==O and the values of Y_1 if D_sel==1.
- 14. Run a regression of Y_obs_sel on D_sel to gauge the average treatment effect under selection bias.
- 15. Specify the magnitude of both selection bias and differential treatment effect bias. Explain how the two differ conceptually and interpret the estimates.