Distributed neural networks for Internet of Things: the Big-Little approach

E. De Coninck et al.,

"Distributed neural networks for Internet of Things: the Big-Little approach."

in 2nd EAI International Conference on Software Defined Wireless Networks and Cognitive Technologies for IoT, 2015

Introduction

- loT는 모든 종류의 장치들을 인터넷으로 서로 연결해 상호작용하는 인기 있는 패러다임
- IoT를 위한 어플리케이션을 만들기 위해서는
 모든 연결된 장치로부터 오는 많은 데이터들이
 의미 있는 정보로 처리되고 분석되어야 함
- 현재 막대한 연산 능력과 확장성을 가진 클라우드 컴퓨팅이 막대한 데이터 처리를 위해 이용되고 있음

Introduction

- 클라우드 컴퓨팅은 네트워크 트래픽과 레이턴시, 프라이버시 문제로 인해 무조건적인 해법이 될 수 없음
- 따라서 로컬 영역에서 데이터를 처리하는 방법이 필요

Introduction

- loT 응용에서 중요한 처리는
 시스템의 현재 상태를 판단하고 후속 동작을 추측하는 것이다.
- 이 분야에서 가장 유망한 기술은 DNN
- 논문은 IoT의 제한된 환경에서 신경망 추론을 하기 위한 Big-Little 아키텍처를 제안
- 특정 분류 문제에 대해 대규모의 신경망과 클래스의 일부만을 분류하는 작은 신경망을 함께 사용

Big-Little Neural Network Architecture

Big-Little Neural Network Architecture

- Big-Little 신경망 구조
 - 작은 신경망은 출력 클래스의 일부만을 분류
 - 작은 신경망이 입력 데이터를 분류할 수 없다면 클라우드에서 큰 신경망을 통해 분류 작업을 계속 진행함
- 출력 클래스의 수를 제한함으로써
 원하는 분류 정확도를 유지하면서 신경망의 크기를 작게 유지할 수 있음
- 작은 신경망을 가진 장치는 우선순위가 높은 클래스만을 분류하여
 중대한 상황에서 매우 빠른 속도로 응답할 수 있음

name	architecture	CPU	RAM
Raspberry Pi 2	ARM	Cortex-A7 (quad-core @ 900 MHz)	1 GB
Intel Edison	x86	Intel Atom (dual-core @ 500 MHz)	1 GB
Generic server	x86	2x Intel Xeon E5-2650v2 (8-core @ 2.60 GHz)	48 GB

가정

최대 응답시간: 40ms 단일 링크 레이턴시: 15ms

에지 장치인 RPI에 제공된 연산 시간은 **40ms**

서버에게 주어진 연산 시간은 **10ms**

name	architecture	CPU	RAM
Raspberry Pi 2	ARM	Cortex-A7 (quad-core @ 900 MHz)	1 GB
Intel Edison	x86	Intel Atom (dual-core @ 500 MHz)	1 GB
Generic server	x86	2x Intel Xeon E5-2650v2 (8-core @ 2.60 GHz)	48 GB

가정 최대 응답시간: 40ms

단일 링크 레이턴시: 15ms

RPI는 2x10⁶ 만큼의 weights를 사용할 수 있음

서버는 6x10⁶ 만큼의 weights를 사용할 수 있음

빠른 응답을 위해서는 실제 연산 시간보다 레이턴시가 더 중요하다.

■ 분류 클래스의 수가 다른 신경망 간의 정확도를 비교하기 때문에 F₁-score를 척도로 사용

작은 신경망은 레이어가 적지만
 출력 클래스 또한 적기 때문에 높은 성능을 보여줌

	architecture		process time for
ID	(number of neurons in each layer)	weights	one sample [ms]
1	784, 1000, 500, 2	1250502	0.98
2	, , ,	1254510	
3	[784, 2500, 2000, 1500, 1000, 500, 10 [5]]	11972510	16.42
,		'	서버에서 실행한 결과

	priority	test error for	priority class [%]			
ID	class	best validation [%]	recall	specificity	precision	F_1 -score
1	1	NA	98.94	99.92	99.38	99.16
	8	NA	96.41	99.76	97.71	97.05
3	1	2.11	99.12	99.90	99.21	99.16
	8	2.11	96.82	99.70	97.22	97.02

1번 모델을 RPI에서 실행시키면 한 샘플을 처리하는데 30ms가 걸림

이와 비슷한 성능의 다중 클래스 모델을 서버에서 처리할 경우 16.42 + 15 x 2 = **46.42ms**가 걸림

Conclusion

- Big-Little 신경망 구조를 이용해
 전체 네트워크의 응답시간을 줄이면서
 성능도 동시에 확보함
- 신경망을 실행하는 것은 비용이 많이 들지 않을 수 있다
- 노드간 레이턴시에 대해 더욱 고려해야 함

