实验及2一. 201718026 存泉海 一般没量到 1. Eutril: 世七ららん 使い代けるい。 取相を時点、たいたれ、いれる a Mitan - Mita - Mitan & 长七, Nth上 J(长小似的) O. DO联发等价度形态 Motor)=Motor)+hfctonulta)] FVM Marsha, 9/5 Most = Month of [to Mon] 2、太州改造水水拔泉。 对抗糖 ft. 10H ot-M(-Ent)-MEn)= ft. H. f(f. MEn) Olt () W. Unallita . Allat = unt h. fotomin). A Tal & lbr = lun th. fototi, Mari) 1/29th Muny = Mt & F (tous) + f(toth Mort)] tof (toth Mort) Plant) AA THERE # 行 张拔教正 3, 21 Adams \$ 14 12. AF # \$ (full) , Ale start frent) to 在Elin, tan]上 1年 Kx tt 体的技术, 记作 luct). 及 tanffeut) referrible 对 Aclays 引起来, 水神 Supt)对 年月等图本景的 wenter 图接公式

算法结构

考虑微分方程:
$$\begin{cases} \frac{du}{dt} = f(t, u(t)), 0 \le t \le T \\ u(0) = u_0 \end{cases}$$

1.欧拉法:

2.改进欧拉法

3. Adams 外插法

4. 四阶 R-K 方法

代码

1.欧拉法

```
function result = Euler(start, finish, stride, u0)%依次是 起点,终点,步长,初始值
n = (finish - start)/stride;%结点数
t = start; %t(0)
u=[];u(1) = u0;%初始值相同
for i = 1 : n
   u(i+1) = u(i) + stride * t * u(i)^2;
   t = t + stride:
end
result = u;
xlswrite('E:\学习\计算机\微分方程数值解\结课上机\实验项目一
\result. xlsx', u, 'Sheet1', 'B2');
end
2.改进欧拉法
function result = improved Euler(start, finish, stride, u0)%依次是 起点,终点,步
长,初始值
%预报矫正的改进的欧拉法
n = (finish - start)/stride;%结点数
u=[];u(1) = u0;%u(1)是实际上的u(0)
t = start; %t(0)
for i = 1 : n
   u(i+1) = u(i) + stride/2*(...
          t * u(i)^2 ... % f(t, u) = t(i) *u(i)^2
         (t + stride)*(u(i) + stride* t*u(i)^2)^2);
           %f(t+h,u(i+1)) = t(i+1)*(u(i) + h*f(t,u))^2, 预报矫正
    t = t + stride;
end
result = u;
xlswrite('E:\学习\计算机\微分方程数值解\结课上机\实验项目一
\result. xlsx', u, 'Sheet1', 'B3');
end
3. Adams 外插法
function result = Adams(start, finish, stride, u0)%依次是 起点,终点,步长.,u(0),
此代码为2阶的
n = (finish - start)/stride;%结点数
%题目要求采用 2 阶的 Adams 外插法, 但是只给了一个结点的初始值, 因此还需要一个初
始值
%利用改进欧拉法对 u1 进行预报, 即代码中的 u(2)
u=[];u(1) = u0;%u(1)是实际上的u(0)
t = start; %t(0)
u(2) = u(1) + stride/2*(...
          t * u(1)^2 ... \% f(t, u) = t(i) * u(i)^2
```

+...

```
(t + stride)*(u(1) + stride* t*u(1)^2)^2);
           %f(t+h,u(i+1)) = t(i+1)*(u(i) + h*f(t,u))^2, 预报矫正
t = t + stride;
% 从而得到 u0 u1 两个初始值 分别存储在 u(1) u(2) 中
for i = 2:n
   u(i+1) = u(i) + stride/2*(3*t*u(i)^2 - (t-stride)*u(i-1)^2);
   t = t + stride;
end
result = u:
xlswrite('E:\学习\计算机\微分方程数值解\结课上机\实验项目一
\result. xlsx', u, 'Sheet1', 'B4');
end
4. 四阶 R-K 方法
function result = Runge Kuuta (start, finish, stride, u0) %依次是 起点,终点,步长.
%题目要求四级四阶方法,对应 m = 4 , f = tu^2
u0 = 1; %给定初始值
t = start; %t(0)
n = (finish - start)/stride;%结点数
u=[];u(1) = u0;%u(1)实际的u(0)
for i = 1:n
   k1 = t*u(i)^2;
```

 $k2 = (t + stride/2)*(u(i) + stride/2 * k1)^2;$ $k3 = (t + stride/2)*(u(i) + stride/2 * k2)^2;$ $k4 = (t + stride) *(u(i) + stride * k3)^2;$ u(i+1) = u(i) + stride/6*(k1 + 2*k2 + 2*k3 + k4);

xlswrite('E:\学习\计算机\微分方程数值解\结课上机\实验项目一

t = t + stride;

\result. xlsx', u, 'Sheet1', 'B5');

end

end

result = u ;

结果

各种方法计算结果下表:

t	Euler	improved_Euler	Adams	Runge_Kuuta	真解
0	1	1	1	1	1
0.1	1	1.005	1.005	1.005025136	1.00502513
0.2	1.01	1.02035441	1.020150375	1.020408206	1.02040816
0.3	1.030402	1.047026381	1.046321454	1.047120522	1.04712042
0.4	1.062253848	1.086794642	1.085179872	1.086956728	1.08695652
0.5	1.107389178	1.142568237	1.139414965	1.14285752	1.14285714
0.6	1.168704718	1.218971213	1.213232642	1.219512844	1.2195122
0.7	1.250656961	1.323439592	1.31324999	1.324504352	1.32450331
0.8	1.360146959	1.46838356	1.450177669	1.470589653	1.47058824
0.9	1.508146939	1.675790842	1.642177607	1.680672908	1.68067227
1	1.712852586	1.98812569	1.922117881	1.999991198	2

作出各种方法与真解的图:

