Pizzaseminar zur Kategorientheorie

Lösung zum 4. Übungsblatt

Aufgabe 1:

a) Sei M eine Menge, $m \in M$ beliebig und $\eta : \mathrm{Id}_{\mathrm{Set}} \Rightarrow \mathrm{Id}_{\mathrm{Set}}$ eine natürliche Transformation. Wir wollen beweisen, dass $\eta_M(m) = m$ ist. Wir definieren dazu $1 := \{ \heartsuit \}$ und $f : 1 \to M, \heartsuit \mapsto m$. Die Aussage folgt nun durch eine Diagrammjagd im Natürlichkeitsdiagramm von η :

b) Sei M eine Menge, $m \in M$ beliebig und $\omega : \mathrm{Id}_{\mathrm{Set}} \Rightarrow K$ eine natürliche Transformation. Wir wollen wieder den gleichen Trick wie in Teilaufgabe a) anwenden. Dazu definieren wir wie oben $f: 1 \to M, \ \heartsuit \mapsto m$ und führen dann eine Diagrammjagd durch:

c) Angenommen, es gäbe eine natürliche Transformation $\epsilon: P \Rightarrow \mathrm{Id}_{\mathrm{Set}}$. Dann würde die Komponente ϵ_{\varnothing} von $\mathcal{P}(\varnothing) = \{\varnothing\}$ nach \varnothing verlaufen, also hätte die leere Menge ein Element $f(\varnothing)$. Widerspruch.

In die andere Richtung gibt es eine natürliche Transformation $\eta: \mathrm{Id}_{\mathrm{Set}} \Rightarrow P$ mit

$$\eta_X: X \to \mathcal{P}(X), \ x \mapsto \{x\}.$$

Wir müssen noch die Natürlichkeit überprüfen. Seien dazu X,Y Mengen und $f:X\to Y$ eine Abbildung. Wir machen eine Diagrammjagd, dieses Mal aber um die Kommutativität des Diagramms zu beweisen:

d) Betrachte die Menge $M := \{1, 2\}$. Sei $f : 1 \to M$ die Funktion, die \heartsuit auf das Element aus M schickt, das nicht das ausgewählte Element a_M ist. Wenn τ eine natürliche Transformation wäre, müsste folgendes Diagramm kommutieren:

Dieses Diagramm kommutiert aber gerade nicht, da τ_M die Funktion ist, die alles konstant auf a_M schickt und wir f geschickterweise so gewählt haben, dass der Wert von f eben nicht a_M ist.

e) In der Kategorie der reellen Vektorräume gibt es für jedes $\lambda \in \mathbb{R}$ die natürliche Transformation μ gegeben durch

$$\mu_V: V \to V, \ v \mapsto \lambda v$$

wie man leicht nachrechnet, wenn man sich an die Eigenschaften von linearen Funktionen erinnert.

Sind das schon alle natürliche Transformationen von $\mathrm{Id}_{\mathbb{R}-\mathrm{Vect}}$ nach $\mathrm{Id}_{\mathbb{R}-\mathrm{Vect}}$? Angenommen, wir haben eine solche natürliche Transformation η gegeben. Sei V ein reeller Vek-

torraum und $v \in V$ beliebig. Wir definieren die lineare Abbildung $f : \mathbb{R} \to V, \ r \mapsto rv$ und betrachten das Natürlichkeitsdiagramm von η :

Dadurch sehen wir, dass η tatsächlich die Form $\eta_V(v) = \lambda v$ für ein festes $\lambda \in \mathbb{R}$ besitzen muss.

Aufgabe 2:

a) Mit folgendem Lemma lassen sich diese und viele weitere ähnliche Aussagen elegant beweisen:

Lemma 1. Sei $F: \mathcal{C} \to \mathcal{D}$ eine Äquivalenz von Kategorien mit Quasi-Inversem $G: \mathcal{D} \to \mathcal{C}$. Dann sind F und G volltreu und wesentlich surjektiv.

Beweis. Seien $\eta: G \circ F \Rightarrow \mathrm{Id}_{\mathcal{C}}$ und $\mu: F \circ G \Rightarrow \mathrm{Id}_{\mathcal{D}}$ die natürlichen Isomorphismen der Kategorienäquivalenz. Dann ist jedes $A \in \mathrm{Ob}\,\mathcal{C}$ isomorph zu G(F(A)) mit dem Isomorphismus $\eta_A: G(F(A)) \to A$ und der Funktor G damit wesentlich surjektiv.

Es kommutiert für alle $A \xrightarrow{f} B \in C$ das erweiterte Natürlichkeitsdiagramm von η :

Hieraus kann man direkt ablesen, dass $(G \circ F) : \operatorname{Hom}(A, B) \to \operatorname{Hom}(GFA, GFB)$ eine Bijektion mit Umkehrabbildung

$$g: \operatorname{Hom}(GFA, GFB) \to \operatorname{Hom}(A, B), \ m \mapsto \eta_B \circ m \circ \eta_A^{-1}$$

ist. Insbesondere sind für alle $A, B \in \text{Ob } \mathcal{C}$ der Funktor

$$F: \operatorname{Hom}(A, B) \to \operatorname{Hom}(FA, FB)$$

injektiv und

$$G: \operatorname{Hom}(FA, FB) \to \operatorname{Hom}(GFA, GFB)$$

surjektiv auf Hom-Mengen. Wir können sogar zeigen, dass G ist surjektiv auf $\operatorname{Hom}(E,P)$ für alle $E,P\in\operatorname{Ob}\mathcal{D}$ ist. Sei dazu $f\in\operatorname{Hom}(GE,GP)$ beliebig. Dann ist

$$f = G(\mu_P) \circ \underbrace{(G(\mu_P^{-1}) \circ f \circ G(\mu_E))}_{\in \operatorname{Hom}(GFGE, GFGP)} \circ G(\mu_E^{-1})$$

$$= G(\mu_P) \circ G(h) \circ G(\mu_E^{-1})$$

$$= G(\underbrace{\mu_P \circ h \circ \mu_E^{-1}}_{\in \operatorname{Hom}(E, P)})$$

Dabei haben wir im zweiten Schritt ausgenützt, dass, wie schon bewiesen,

$$G: \operatorname{Hom}(FGE, FGP) \to \operatorname{Hom}(GFGE, GFGP)$$

surjektiv ist.

Da die Vorraussetzungen symmetrisch in F und G sind, ist F auch surjektiv und G injektiv auf Hom-Mengen und G wesentlich surjektiv. Nach Definition sind F und G damit volltreu.

Zum Beweis der eigentlichen Aufgabe: Sei 0 initiales Objekt in \mathcal{C} und $X \in \text{Ob}\,D$ beliebig. Wir wollen zeigen, dass FX initial in \mathcal{D} ist, es also genau einen Morphismus von F0 nach X gibt. Da X isomorph zu FGX und der Funktor F volltreu ist, haben wir eine Bijektion

$$\operatorname{Hom}(F0, X) \cong \operatorname{Hom}(F0, FGX) \cong \operatorname{Hom}(0, GX).$$

Weil 0 initial ist, enthält die rechte Hom-Menge und somit auch die linke Hom-Menge genau einen Morphismus.

b) Wir bezeichnen die Kategorie der Möchtegern-Produkte von X und Y mit $MP_{X,Y}$, die der Möchtegernprodukte von Y und X mit $MP_{Y,X}$. Da Möchtegern-Produkte von X und Y aus Symmetriegründen auch Möchtegernprodukte von Y und X sind, können wir den Funktor $F: MP_{X,Y} \to MP_{Y,X}$ definieren:

$$\begin{pmatrix}
X \stackrel{\pi_X}{\longleftarrow} Q \stackrel{\pi_Y}{\longrightarrow} Y
\end{pmatrix} \longmapsto \begin{pmatrix}
Y \stackrel{\pi_Y}{\longleftarrow} Q \stackrel{\pi_X}{\longrightarrow} X
\end{pmatrix}$$

$$\begin{pmatrix}
Q \\
Y & \downarrow & \downarrow \\
F & X
\end{pmatrix}$$

$$\begin{pmatrix}
Q \\
Y & \downarrow & \downarrow \\
F & X
\end{pmatrix}$$

Den zu F quasi-inversen Funktor $G: \mathrm{MP}_{Y,X} \to \mathrm{MP}_{X,Y}$ definieren wir genau spiegelverkehrt zu F. Wie man leicht nachprüft, ergeben F und G eine Äquivalenz von $\mathrm{MP}_{X,Y}$ und $\mathrm{MP}_{Y,X}$ wobei die natürlichen Transformationen zwischen F und G nur aus den Identitätsmorphismen bestehen.

Ein initiales Objekt in $MP_{X,Y}$ ist ein Produkt von X und Y, ein initiales Objekt in $MP_{Y,X}$ ein Produkt von Y und X. Mit Teilaufgabe a) folgt, dass ein Produkt von X und Y auch ein Produkt von Y und X ist und umgekehrt.

Aufgabe 3:

Wähle für jeden endlichdimensionalen Vektorraum V eine feste Basis $(b_1, \ldots, b_{\dim V})$ und definiere das Koordinatensystem η_V bezüglich dieser Basis durch die Setzung

$$\eta_V : \mathbb{R}^{\dim V} \to V, \ e_i \mapsto b_i.$$

Zwischen der Numerikerkategorie \mathcal{C} und der \mathbb{R} -Vect_{FD} verlaufen die Funktoren

Diese Funktoren bilden eine Äquivalenz zwischen den beiden Kategorien, da folgende Natürlichkeitsdiagramme für alle ($V \xrightarrow{f} W$) $\in \mathbb{R}$ -Vect_{FD} bzw. ($\mathbb{R}^n \xrightarrow{M} \mathbb{R}^m$) $\in \mathcal{C}$ offensichtlicherweise kommutieren:

$$GFV \xrightarrow{GFM = \eta_W^{-1} \circ M \circ \eta_V} GFW \qquad FGV \xrightarrow{FGf = \eta_W^{-1} \circ f \circ \eta_V} FGW$$

$$\downarrow^{\eta_V} \qquad \qquad \downarrow^{\eta_W} \qquad \downarrow^{\eta_W} \qquad \downarrow^{\eta_W}$$

$$\mathbb{R}^n \xrightarrow{M} \mathbb{R}^m \qquad V \xrightarrow{f} W$$

Projektaufgabe:

Wir haben einen Morphismus $\varphi: A \to B$ gegeben und wollen eine natürliche Transformation $\eta: \operatorname{Hom}_{\mathcal{C}}(\underline{\ }, A) \Rightarrow \operatorname{Hom}_{\mathcal{C}}(\underline{\ }, B)$ finden, d.h. es muss für alle $f: Y \to X$ aus \mathcal{C} das Natürlichkeitsdiagramm kommutieren:

$$\operatorname{Hom}_{\mathcal{C}}(X,A) \xrightarrow{g \mapsto g \circ f} \operatorname{Hom}_{\mathcal{C}}(Y,A)$$

$$\downarrow^{\eta_{X}} \qquad \qquad \downarrow^{\eta_{Y}}$$

$$\operatorname{Hom}_{\mathcal{C}}(X,B) \xrightarrow{g \mapsto g \circ f} \operatorname{Hom}_{\mathcal{C}}(Y,B)$$

Wir setzen $\eta_Z := (g \mapsto \phi \circ g)$. Wenn wir nun einen Morphismus $p : X \to A$ im Diagramm von oben links nach unten rechts verfolgen, erhalten wir einerseits $((\varphi \circ p) \circ f)$ und andererseits $(\varphi \circ (p \circ f))$. Aufgrund der Assoziativität der Verknüpfung von Morphismen sind diese Ergebnisse gleich und das Diagramm kommutiert wie gewünscht.