

Inhaltsverzeichnis

- Grundlagen Big Data und NoSQL
 - + Big Data
 - + Die 5 V´s
 - + Relationale und nicht-relationale Datenbanken
 - + Berufsfelder
- Datenmanagement SQL und NoSQL
 - + Problematik
 - + Modelle
 - + CAP Theorem
- Digitalisierung als Herausforderung für Unternehmen
- Status Quo, Chance und Herausforderungen im Umfeld BI & Big Data

Big Data Hype

Big Data

- Daten, die in ihrer Größe die klassische Datenhaltung, Verarbeitung und Analyse auf konventioneller Hardware übersteigen
- Heterogener als klassische Daten
- Unternehmensdaten werden um externe Daten erweitert
 - + Erweiterte Sicht auf das Unternehmen
- Erhöhung der Informationstransparenz und Frequenz zur Verarbeitung und Analyse von Daten

Die 5 V's

- Volume: Umfangreicher Datenbestand (Tera- bis Zettabytebereich)
- Variety: Speicherung von strukturierten, semi-strukturierten und unstrukturierten Multimedia-Daten
- Velocity: Geschwindigkeit Auswertung und Analyse der Datenströme in Echtzeit

Ergänzt durch:

- Value: Steigerung des Unternehmenswertes
- Veracity: Aufrichtigkeit Berücksichtigung der unterschiedlichen Datenqualität der Datenbestände

Relationenmodell

- Speicherungskomponenten: Ablage von Daten und Beziehungen in Tabellen
 - + Tabellen mit den eigentlichen Daten
 - + Systemtabellen
- Verwaltungskomponenten:
 Datendefinitions-, Datenselektions- und
 Datenmanipulationssprache SQL sowie
 Dienstfunktionen für die
 Wiederherstellung

Nicht-relationale Datenbanken

- Massiv verteilte und replizierte Datenhaltungsarchitektur
 - + Datenreplikation wird unterstützt
 - + Konsistenzregeln sind konfigurierbar
- Vier Datenmodelle
 - + Key/Value Store
 - + Column Store
 - + Document Store
 - + Graph Database

Nicht-relationale vs. relationale

Datenbanken

Relationale Datenbanken

- Immer konsistente Daten
- Vertikale Skalierung
- Verteilung auf mehrere Maschinen erhöht Komplexität
- Hohe Hardwareanforderungen und Hardwarekosten
- Datenvolumen größer 100 TB schwer zu verarbeiten
- Vielfalt von Strukturen erhöht Komplexität

Nicht-relationale Datenbanken

- Häufig bei webbasierten Firmen
- Verteilt und hochverfügbar aber nicht immer konsistent
- Sehr einfache horizontale Skalierung
- Verteilung auf mehrere Maschinen problemlos
- Günstige Hardware einsetzbar
- Dadurch große Datenvolumen möglich
- Verteilung ermöglicht Parallelisierung (Map/Reduce-Verfahren)

-> Relationale Datenbanken sind nicht geeignet für Big Data

Nicht-relationale vs. Relationale

Datenbanken

	NoSQL	SQL
Modell	Nicht relational	Relational (Tabellen)
Architektur	Unterstützung verteilter Webanwendungen und horizontaler Skalierung	Datenunabhängigkeit - Daten und Anwendungsprogramme bleiben getrennt voneinander
Schema	Kein festes Datenbankschema	Relationales Datenbankschema
Mehrbenutzerbetrieb	Mehrbenutzerbetrieb ist möglich	Mehrbenutzerbetrieb ist möglich
Konsistenzgewährung	CAP-Theorem - Konsistenz nachrangig nach hoher Verfügbarkeit und Ausfalltoleranz	Bereitstellung von Hilfsmittel zur Gewährleistung der Datenintegrität

Berufsfelder

- Datenarchitekt
 - + Verantwortlich für Datenarchitektur
 - + Entscheiden in welcher Form Datenbestände bereitgestellt werden
- Datenbankspezialist
 - + Beherrschen Datenbank- und Systemtechnik
 - + Verantwortlich für physische Auslegung der Datenarchitektur
 - + Entscheidung über den Einsatz der Datenbanksysteme
 - + Zuständig für Verteilungskonzept, Archivierung und Restaurierung der Datenbestände
- Data Scientist
 - + Spezialisten des Business Analytics
 - + Datenanalyse und -interpretation
 - + Wissensgenerierung
 - + Data Mining, Statistik und Visualisierung

```
rror_mod.mirror_object

peration == "MIRROR_X":
```

Datenmanagement

Irror mod ... = True

mit SQL und NoSQL

types.Operator):
 X mirror to the selected
ject.mirror_mirror_x"
 ror X"

ic not

Problematik

- Strukturierte Daten : Relationales Datenbankmodel
- Unstrukturierte Daten : ???
- Mit Entwicklung des Webs haben sich NoSQL Ansätze bewährt:
 - Strukturierte
 - Semi-strukturierte
 - Unstrukturierte
 - Echtzeitverarbeitung

Beispiel Webshop

- SQL:
 - + Relationale Datenbank
- NoSQL:
 - + Key/Value Store
 - + Document Store
 - + InMemory Datenbank
 - + Graph Datenbank

Abb. 2.1 Nutzung von SQL- und NoSQL-Datenbanken im Webshop nach Meier und Kaufmann 2016

Abb. 2.2 Entitäten-Beziehungsmodell für Filme und Filmemacher

Semantische Modelbildung

 Abstraktion der realen Welt in ein semantisches Datenmodel

Relationenmodell

- Abfragesprache SQL (Structured Query Language)
- Tabellen (Entitäten und Relationen)
 mit Spalten (Attribute)
 und Tupeln (Datensätze)

Abb. 2.3 Auszug Relationenmodell für Filme und Filmemacher

Abb. 2.4 Ausschnitt eines Graphenmodells für Filme und Filmemacher

Graphenmodel

- Analyse oder Optimierung netzwerkartiger Strukturen
- Dijkstra-Algorithmus (kürzeste Wegberechnung)

Abb. 2.6 Zur Kombination (Join) dreier Tabellen

Relationale Datenbank: SQL

```
SELECT Jahr
FROM FILM
WHERE Titel = ,The Matrix';
```


Abb. 2.7 Ausschnitt der Graphdatenbank über Keanu Reeves

Graphdatenbank (NoSQL): Cypher

```
MATCH (m: FILM {Titel: ,,The Matrix"})
RETURN m.Jahr
```

Abfragesprachen

Konsistenzgewährung

- Konsistenz beschreibt den Zustand widerspruchsfreier Daten
- Problematik: Mehrere Benutzer greifen gleichzeitig auf die Datenbank zu
- Konsistenzforderung bei umfangreichen Systemen nicht immer zu fordern

Cap Theorem

- Massiv verteilte Systeme können nur 2 der 3 Eigenschaften erfüllen:
 - + Konsistenz (C)
 - + Verfügbarkeit (A)
 - + Ausfalltoleranz (P)

Abb. 2.10 Die möglichen drei Optionen des CAP-Theorems

Status Quo, Chance und Herausforderungen im Umfeld BI & Big Data

- Informationen als strategische Ressource
- Informationen sind wettbewerbskritisch

Abb. 3.1 Implikationen zunehmender Digitalisierung für Unternehmen

Daten

- Neue Datenmengen erkennen
- z.B.: User generated Content
- Daten aus Echtzeitvernetzung

Abb. 3.2 Big Data Verständnis – Einzelkategorien

Studie zum Verständnis von Big Data

Häufige Verwendung zur Analyse / Verständnis sowie für Vorhersagen

Nutzungsbereiche

Abb. 3.5 Big Data – Analytische Potenziale in Funktionen

Abb. 3.6 Big Data – Analytische Potenziale in Prozessen

Nutzungspotential und Probleme

- z.B.: Industrie 4.0, Home Automation, Energieerzeugung, Automobilindustrie
- Hohes Potenzial durch die Erschließung neuer Datenquellen
- Zu wenig Nutzung von externen Quellen
- Ernsthaftes Problem mit der immer noch manuellen Datensammlung
- Zentrale Herausforderung ist fehlendes Know-How

Danke für die Aufmerksamkeit

