Листок 2

- 1. Вычислить пределы:
- a) $\lim_{n\to\infty} (\sqrt[3]{n+1} \sqrt[3]{n-1})$; 6) $\lim_{n\to\infty} \frac{\ln n 3n^4 n^3}{\sqrt[3]{5n^{12} + 3\frac{1}{n}}}$; B) $\lim_{n\to\infty} \frac{n^2 10}{1 + n \cdot 1, 1^n}$; Γ) $\sqrt[n]{2^n n^2 + 2n 1}$.
- **2.** Доказать сходимость последовательностей: a) $a_n = \sum_{k=1}^n \frac{1}{k\sqrt{k}}$; б) $a_n = \frac{10}{1} \cdot \frac{11}{4} \cdot \dots \cdot \frac{n+9}{3n-2}$.
- 3. Исследовать на сходимость следующие рекуррентно заданные последовательности:
- a) $a_1 = \sqrt{2}, a_{n+1} = \sqrt{2a_n}$; 6) $a_1 = \sqrt{2}, a_{n+1} = \sqrt{2+a_n}$; B) $a_1 = 2, a_{n+1} = \frac{1}{3} \left(2a_n + \frac{2}{a_n^2} \right)$;
- Γ)* $a_1 = a > 0, a_{n+1} = \frac{a}{2+a_n}$. **4.** Пусть $a_n = \left(1 + \frac{1}{n}\right)^{n+1}$, а $b_n = \left(1 + \frac{1}{n}\right)^n$. Доказать, что a_n не возрастает, а b_n не убывает
- и $a_k \leq b_m$ при всех натуральных k и m, а также доказать, что $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. **5.** Пусть $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n$, а $b_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln (n+1)$. Доказать, что a_n не возрастает, а b_n не убывает и $a_k \leq b_m$ при всех натуральных k и m, а также доказать, что
- $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n.$ **6.** Пусть $\lim_{n\to\infty}a_n=a$. а) Доказать, что $\lim_{n\to\infty}\frac{a_1+a_2+\ldots+a_n}{n}=a$; б) если $a_n>0, n\in\mathbb{N}$, то и $\sqrt[n]{a_1a_2\cdot\ldots\cdot a_n}=a$.

Домашнее задание 2.

- 1. Вычислить пределы: a) $\lim_{n\to\infty} \left(\sqrt{(n+1)(n+2)} \sqrt{n(n-1)}\right)$; б) $\lim_{n\to\infty} \sqrt[n]{\frac{7+5^n+3^n}{3+2^n}}$.
 2. Исследовать на сходимость следующие рекуррентно заданные последовательности:
- а) $a_1 = 1, a_{n+1} = 1 \frac{1}{4a_n}$; б) $a_1 = 0, a_{n+1} = \sqrt{5 + a_n}$; в) $a_1 = \frac{1}{2}, a_{n+1} = \frac{4}{3}a_n a_n^2$. 3. Доказать неравенство $\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n}{2}\right)^n$.
- **4.** Пусть $a_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} 2\sqrt{n}$, а $b_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} 2\sqrt{n+1}$. Доказать, что a_n не возрастает, а b_n не убывает и $a_k \leq b_m$ при всех натуральных k и m, а также доказать, что $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.
- $\mathbf{5}^*$. Доказать, что: a) $\lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) = e$; б) $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{\alpha_n}{n \cdot n!}$, $0 < \alpha_n < 1$; в) число e иррационально.
- **6***. а) (**Теорема Штольца.**) Пусть $y_{n+1} > y_n > 0$ при всех натуральных n и $\lim_{n \to \infty} = +\infty$,
- а также $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=l$. Доказать, что $\lim_{n\to\infty}\frac{x_n}{y_n}=l$; б) найти $\lim_{n\to\infty}\frac{1}{n\sqrt{n}}(1+\sqrt{2}+\ldots+\sqrt{n})$; в) найти $\lim_{n\to\infty}\frac{1\cdot a+2\cdot a^2+\ldots+n\cdot a^n}{n\cdot a^{n+1}},a>1$.