Scriptum Moderne Experimentalphysik II

gelesen von Martin Wegener WS2013/14

Inhaltsverzeichnis

1	Kris	talline,	quasikristalline und amorphe Festkörper	2
	1.1	Das pe	eriodische Gitter im Ortraum	2
		1.1.1	Einführung	2
			Einfache Kristallstrukturen und ihre Bindung	

22.10.2013

1 Kristalline, quasikristalline und amorphe Festkörper

1.1 Das periodische Gitter im Ortraum

1.1.1 Einführung

24.10.2013

d.h. von den Punkten \vec{r} , \vec{r}' sieht das Gitter gleich aus wenn gilt

$$\vec{r}' = \underbrace{\vec{r} + u\vec{a_1} + v\vec{a_2} + w\vec{a_3}}_{Gitter translation \ \vec{T}}; \ u, v, w \in \mathbb{Z}$$

Die Wahl von $\vec{a_1}$, $\vec{a_2}$ und $\vec{a_3}$ ist *nicht* eindeutig. Man bezeichnet die Wahl als *primitiv*, wenn durch \vec{T} alle gleichartigen Punkte dargestellt werden können. Eine *primitive Elementarzelle* hat das kleinste Volumen des aufgespannten Parallelepipels

$$V = |(\vec{a_1} \times \vec{a_2}) \cdot \vec{a_3}|$$

Die Wiegner-Seitz-Zelle ist eine spezielle primitive Elementarzelle. Sie hat folgende Konstruktionsvorschrift

Jeder Gitterpunkt kann mit einer Basis von Atomen besetzt werden.

$$Kristallstruktur = Gitter + Basis$$

1.1 Das periodische Gitter im Ortraum

Ein Kristall zeichnet sich durch seine Symmetrien aus:

- Translationen (s.o.)
- Spiegelungen
- Drehsymmetrien

Definition: Eine Drehachse, bei der der Kristall nach Drehung um den Winkel $2\pi/n$ $(n \in \mathbb{N})$ in sich selbst übergeht, heißt n-zählige Drehachse Behauptung: n=1,2,3,4,6; sonst keine Werte möglich Beweis:

$$\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 ist Translationsvektor
$$a_+ = \begin{pmatrix} \cos(2\pi/n) \\ \sin(2\pi/n) \end{pmatrix}$$
 ist ein blablabla
$$a_- = \begin{pmatrix} \cos(2\pi/n) \\ -\sin(2\pi/n) \end{pmatrix}$$
 aber auch ein blablabla

 \Rightarrow auch $\vec{a_+} + \vec{a_-}$ ist ein Gittervektor $= a \left(\frac{\cos(2\pi/n)}{0} \right)$. Wenn \vec{a} kleinster Translationsvektor ist, muss gelten

$$\vec{a_{+}} + \vec{a_{-}} = m\vec{a}; m \in \mathbb{Z}$$

$$\Rightarrow \underbrace{2\cos(2\pi/n)}_{\text{Wann ist dies eine ganze Zahl?}} = m$$

graphisch:

n	$2\cos(2\pi/n)$
1	2
2	-2
3	-1
4	0
5	0,61
6	1
7	1,25
:	:

 $\Rightarrow n \in 1, 2, 3, 4, 6$ q.e.d.

In 3D existieren 14 verschiedene Raumgitter, die man als *Bravais-Gitter* bezeichnet. Diese können in sieben verschiedene *Kristallsysteme* eingeordnet werden.

BILD POWERPOINTFOLIE

Häuufig möchte man Netzebenen bzw. Netzebenen
scharen kennen. \Rightarrow Miller'sche Indizes

Definition: Gegeben seien die Kristallachsen $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ (nicht unbedingt kartesisch, nich unbedingt primitiv). Die Ebene sei aufgespannt durch die drei Vektoren $n_1\vec{a_1}$, $n_2\vec{a_2}$, $n_3\vec{a_3}$; $n_1, n_2, n_3 \in \mathbb{N}$

BILD

29.10.2013

Die (kleinsten) ganzen Zahlen, die sich verhalten wie die Kehrwerte von n1, n2, n3 bilden die Miller'schen Indizes. Beispiel: $\left(\frac{1}{2},\frac{1}{3},\frac{1}{1}\right) \Rightarrow (3,2,6)$ FEHLT WAS Meist lässt man die Kommata weg, also "(326)". Negative Werte werden druch Balken dargestellt, also z.B (32 $\overline{6}$). Wird eine Achse nicht geschnitten (ist also der Achsenabschnitt = inf), so ist der zugehörige Miller'sche Index = 0. Beispiel:

BILD BILD

1.1.2 Einfache Kristallstrukturen und ihre Bindung

Natriumchloridstruktur:

Beispiel: NaCl, KCl, MnO, KBr, ...

Bravais-Gitter: kubisch flächenzentriert (fcc)

Basis: ein Na und ein Cl (beim NaCl) Bindung: ionisch

Na hat die e^- -Konfiguration $1s^22s^22p^63s^1$ Cl $1s^22s^22p^63s^23p^5 \Rightarrow$ gibt das Na ein Elektron an das Cl ab, so weisen beide abgeschlossene Schalen auf. Es entsteht ein Na $^+$ und Cl $^-$ Ion, die sich auf Grund der Coulombkraft anziehen

Wir betrachten ${\cal N}={\cal N}_A$ Ionenpaare. Es v
 die Coulombenergie

$$U^{c} = N \sum_{j,ji'} \frac{\pm e^{2}}{4\pi\epsilon_{0}r_{ij}}$$
 +entspricht -entspricht