Grafika komputerowa

Autor: Jacek Wieczorek (181043)

Prowadzący: Dr inż. Tomasz Kapłon

Wydział Elektroniki III rok Pn TP 08.15 - 11.00

1 Cel laboratorium

Celem laboratorium jest zaprezentowanie elementarnych możliwości biblioteki graficznej OpenGL wraz z rozszerzeniem GL Utility Toolkit (GLUT). Ćwiczenie niniejsze obejmuje inicjalizację i zamykanie trybu OpenGL oraz rysowanie tworów pierwotnych (prymitywów) w przestrzeni 2D.

2 Dywan sierpińskiego

Pierwszym zadaniem było narysowanie dywanu sierpińskeigo wykorzystując algorytm iteracyjny oraz rekurencyjny. Ponadto, użytkownik powinien zdefiniować stopień dywanu oraz poziom zniekształcenia.

2.1 Algorytm iteracyjny

Iteracyjny algorytm rysowania dywanu sierpińskeigo polega na stworzeniu najpierw pojedynczego, dużego kwadratu, a następnie zgodnie ze stopniem figury, wycinaniu mniejszych kwadratów, tworząc wzór figury. Co każdy stopień ilośc wyciannych kwadratów wzrastała 3-krotnie, a pole powierzchni malało 3-krotnie.

Procedura generująca dywan sierpińskiego iteracyjnie

```
void DrawSierpIt(float a, float ax, float ay, int st)
              //a - bok \ kwadratu,
              ^{\prime\prime}/(ax,~ay) wspolrzędne lewego, górnego wierzchołka
             DrawRect(a,ax,ay);
             for (int i=0; i < st; i++)
                       int pow = powr(i);
                       float x = a/(1.0*(pow));
                       \quad \mathbf{for} \ (\mathbf{int} \quad j = 0; \quad j < pow; \quad j + +)
11
                                for(int k=0; k<pow; k++)
                                {
                                          float na = a/(3*pow); //bok kwadratu
                                              wycinanego w danym stopniu trójkąta
                                          float nx = ax + (k * x) + (a/(3*pow)); //
                                               wspł. wyciannaego kwadratu
                                          float ny = ay - ((j * x) + (a/(3*pow)));
                                          DrawBlack (na, nx, ny); // rysowanie czarnego
                                }
                       }
21
             }
    }
```

2.2 Algorytm rekurencyjny

2.3 Przykładowy rysunek

Przykładowy obraz dywanu sierpińskiego trzeciego stopnia o perturbacjach równych 2.

Rysunek 1: Dywan sierpińskiego

3 Trójkat sierpińskiego

Drugie zadanie polegało na narysowaniu trójkąta sierpińskiego dwiema metodami : algorytmu rekurencyjnego oraz za pomocą "gry w chaos"

3.1 Algorytm rekurencyjny

Parametry początkowe funkcji : długość boku a, współrzędne górnego wierzchołka, stopień

```
void drawTriangle(float a, float ax, float ay, int st)
 3
               //perturbacje
               float h = a * sqrt(3.0) / 2.0;
               \textbf{float} \ \text{ax2} = \text{rand}() \ \% \ 1 \ ? \ \text{ax} + (\, \textbf{float} \,) \, \text{rand}() \, / (\, \textbf{float} \,) \, \text{RAND.MAX*per} \ : \ \text{ax}
                      - (float)rand()/(float)RAND_MAX*per;
               float ay2 = rand() % 1 ? ay + (float)rand()/(float)RANDMAX*per : ay
                       - (float)rand()/(float)RAND_MAX*per;
               colorTab c;
               if(st == 0)
                          glBegin (GL_TRIANGLES);
                                     randColor(c);
13
                                     glColor3fv(c);
                                     glVertex2f(ax2,ay2);
                                     randColor(c);
                                     glColor3fv(c);
                                     glVertex2f(ax2 - a/2, ay - h);
                                     randColor(c);
                                     glColor3fv(c);
23
                                     glVertex2f(ax + a/2, ay2 - h);
                          glEnd();
               } else {
                          \begin{array}{l} drawTriangle\,(\,a/2\,,\ ax\,,ay\,,\ st\,-1)\,;\\ drawTriangle\,(\,a/2\,,\ ax-a/4\,,\ ay\,-\,h/2\,,\ st\,-1)\,; \end{array}
                          drawTriangle(a/2, ax+a/4, ay - h/2, st-1);
               }
    }
```


Rysunek 2: Trójkat sierpińskiego perturbacje = 1, stopień = 4

3.2 Gra w chaos

Algorytm generowania trójkąta sierpińskejgo poprzez grę w chaos polega na zdefiniowaniu trzech niewspółliniowych punktów, które będą tworzyły trójkąt. Następnie, dla dowolnie wylosowanego punktu D, należącego do środka okręgu losujemy jeden z wierzchołków i obliczamy środek odcinka i rysujemy punkt w wyliczonych współrzędnych. Następnie dla nowo powstałego punktu, znowu losujemy któryś z wierzchołków trójkąta, obliczamy środek i rysujemy punkt. Powtarzając tę sekwencję określoną ilość razy otrzymujemy trójką sierpińskiego.

```
x_{-3} = at/2;
10
               y_3 = -at * sqrt(3.0f) / 6.0f;
                         \begin{array}{lll} x = (((float)rand()/(float)RANDMAX) * at) - at * 0.5; \\ y = (((float)rand()/(float)RANDMAX) * at*sqrt(3.0) * 0.5) - \end{array}
                              (at * sqrt (3.0) /6);
                while (! is In side (x,y));
               for (int i=0; i<100000; i++){
                         t = rand() % 3;
                         if(t==0){
                                   x = (x_1 + x) * 0.5;
                                   y = (y_1 + y) * 0.5;
20
                         else if(t==1){
                                   x = (x_2 + x) * 0.5;
                                    y = (y_2 + y) * 0.5;
                         } else {
                                   x = (x_3 + x) * 0.5;
                                   y = (y_3 + y) * 0.5;
                         _{\rm glBegin\,(GL\_POINTS)}^{.};
                                    randColor(c);
                                    glColor3fv(c);
30
                                    glVertex2f(x, y);
                         glEnd();
               }
    }
```


Rysunek 3: Trójkąt sierpińskiego "gra w chaos"

4 Fraktal plazmowy

Algorytm generujący fraktal plazmowy został dokładnie opisany w pdfie dostępnym na stronie zakładu. Jedyną własną innwencją było opracowanie wykresów funkcji W(x) i Wc(x). Zdecydowałem się na użycie następującej funkcji dla obu równań :

$$F(x) = 1000 * \frac{p * sin(x)}{10 * x} \tag{1}$$

gdzie p jest zadawanym parametrem najlepiej z przedziału (0.001 - 0.01). Program pozwala na rysowanie zarówno kolorowych fraktali, jak i monochromatycznych. Poniżej przykład algorytmu generującego fraktal monochromatyczny

```
void drawPoints (float x, float y, float a, int corner, float c1, float c2,
           float c3, float c4){
                 \textbf{float} \hspace{0.1cm} \texttt{c12} \hspace{0.1cm} = \hspace{0.1cm} \texttt{randColor()} \hspace{0.1cm}, \hspace{0.1cm} \texttt{c13} \hspace{0.1cm} = \hspace{0.1cm} \texttt{randColor()} \hspace{0.1cm}, \hspace{0.1cm} \texttt{c24} \hspace{0.1cm} = \hspace{0.1cm} \texttt{randColor()} \hspace{0.1cm}, \hspace{0.1cm} \texttt{c34} \hspace{0.1cm} = \hspace{0.1cm} \\
                        randColor(), cc = randColor();
                 float col;
 7
                 c12 = (1-2*getHalf(a/2))*c12 + getHalf(a/2) * (c1 + c2);
                 c13 = (1-2*getHalf(a/2))*c13 + getHalf(a/2) * (c1 + c3);
                 c24 = (1-2*getHalf(a/2))*c24 + getHalf(a/2) * (c4 + c2);
                 c34 = (1-2*getHalf(a/2))*c34 + getHalf(a/2) * (c3 + c4);
                 cc = (1-4*getCenter(a/2))*cc + getCenter(a/2) * (c1 + c2 + c3 + c4);
                 if(corner = 1){
                             drawPoint(x + a/2, y, c12);
                             drawPoint(x, y-a/2, c13);

drawPoint(x + a/2, y - a/2, cc);
17
                             drawPoint(x + a, y - a/2, c24);
                 } else if (corner == 2) {
                             drawPoint(x + a/2, y, c12);
                             drawPoint(x + a/2, y - a/2, cc);
                             drawPoint(x + a, y - a/2, c24);
                             drawPoint(x + a/2, y - a, c34);
                 } else if (corner = 3){
                             drawPoint(x + a/2, y, c12);
                             drawPoint(x, y-a/2, c13);
                             drawPoint(x + a/2, y - a/2, cc);

drawPoint(x + a/2, y - a, c34);
27
                 } else if (corner = 4){
                             drawPoint(x, y-a/2, c13);
                             drawPoint(x + a/2, y - a/2, cc);
drawPoint(x + a, y - a/2, c24);
drawPoint(x + a/2, y - a, c34);
                 } else {
                             drawPoint(x + a/2, y, c12);
                             drawPoint(x, y-a/2, c13);
                             drawPoint(x + a/2, y - a/2, cc);
drawPoint(x + a, y - a/2, c24);
drawPoint(x + a/2, y - a, c34);
37
                 }
```

```
\begin{array}{c} \textbf{if} (a > roz) \{ \\ & drawPoints(x,y,a/2,\ 1,\ c1,\ c12,\ c13,\ cc); \\ & drawPoints(x+a/2,y,a/2,\ 2,\ c12,\ c2,\ cc,\ c24); \\ & drawPoints(x,\ y-a/2,\ a/2,\ 3,\ c13,\ cc,\ c3,\ c34); \\ & drawPoints(x+a/2,\ y-a/2,\ a/2,4,\ cc,\ c24,\ c34,\ c4); \\ \} \end{array}
```


Rysunek 4: a = 150, n = 1500, p dla W(x) = 0.005, p dla Wc(x) = 0.003

5 Labirynt

W tym zadaniu wykorzystałem rekurencyjny algorytm generujący labirynt. Polega on na podzieleniu początkowej komory dwiema liniami : poziomą i pionową, na 4 nowe komory. Następnie losujemy 3 linie spośród nowo powstałych (punkt przecięcia rozdziela je na 2 pionowe i 2 poziome) i w losowym miejscu na nich wycinamy bramę. Algorytm powtarzamy rekurencyjnie dla każdej z komór dopóki jej długość, lub szerokość, nie osiągnie zakładanej

szerokości tunelu.

```
//x,y-wsp\'olrz\'edne lewego, g\'ornego punktu komory
    //ver, hor - opzycja wylosowanych lini poziomych i pionowych liczona od
         wierzchołka (x,y)
3 //ch, cv ilosc korytarzy mogacych zmiescic sie w danej komorze w pionie i
         poziomie
    void drawMaze(float x, float y, int ver, int hor, int ch, int cv){
              int which = rand() \% 4;
              glBegin(GL_LINES);
              glVertex2f(x , y - ver *w);
              glVertex2f(x + hor * w, y - ver *w);
              glEnd();
13
              glBegin(GL_LINES);
              glVertex2f(x + hor * w , y - ver *w);
              glVertex2f(x + ch * w, y - ver *w);
              glEnd();
              glBegin (GL_LINES);
              glVertex2f(x + hor*w, y);
              glVertex2f(x + hor*w, y- ver*w);
              glEnd();
23
              glBegin(GL_LINES);
              glVertex2f(x + hor*w, y- ver*w);
              glVertex2f(x + hor*w, y- cv*w);
              glEnd();
              if(which == 0)
                        \label{eq:convex_convex_structure} remove \mbox{Gate(x+hor*w, y, ver, $\mathbf{true}$);}
                        removeGate(x+hor*w, y-ver*w, ch - hor, false);
                        removeGate(x+hor*w, y-ver*w, cv-ver, true);
              else\ if(which == 1){
33
                        removeGate(x+hor*w, y-ver*w, ch - hor, false);
                        removeGate(x+hor*w, y-ver*w, cv-ver, true);
                        removeGate(x\,,\ y{-}ver*w,\ hor\,,\ \mathbf{false}\,)\,;
              else if(which == 2)
                        removeGate(x+hor*w, y-ver*w, cv-ver, true);
                        removeGate(\verb"x", y-ver*w", hor", false);
                        removeGate(x+hor*w, y, ver, true);
              } else {
                        removeGate(x, y-ver*w, hor, false);
                        \label{eq:continuous_continuous} \begin{split} & \operatorname{removeGate}(x + \operatorname{hor}*w, \ y, \ \operatorname{ver}, \ \mathbf{true})\,; \\ & \operatorname{removeGate}(x + \operatorname{hor}*w, \ y - \operatorname{ver}*w, \ \operatorname{ch} - \operatorname{hor}, \ \mathbf{false})\,; \end{split}
43
              }
              int nh, nv;
              if(hor > 1 \&\& ver > 1){
                        nh = randFun(hor);
                        nv = randFun(ver);
                        drawMaze(x,y,nv,nh,hor,ver);
              }
53
              if(hor > 1 \&\& (cv - ver) > 1){
                        nh = randFun(hor);
                        nv = randFun((cv - ver));
```

```
drawMaze(x,y-ver*w,nv,nh,hor,(cv - ver));
}

if((ch-hor) > 1 && ver > 1){
    nh = randFun((ch-hor));
    nv = randFun(ver);
    drawMaze(x + hor*w,y,nv,nh,(ch-hor),ver);
}

if((ch-hor) > 1 && (cv - ver) > 1){
    nh = randFun((ch-hor));
    nv = randFun((cv - ver));
    drawMaze(x + hor*w,y-ver*w,nv,nh,(ch-hor),(cv - ver));
}

}
```


Rysunek 5: Przykładowy labirynt

6 Wnioski

Laboratorium pozwoliło mi na zapoznanie się z rysowaniem obiektów 2D za pomoca biblioteki OpenGL, a także pozania algorytmów tworzących wiele podstawowych figur i fraktali.