KING SAUD UNIVERSITY					
COLLEGE OF COMPUTER AND INFORMATION SCIENCES					
COMPUTER SCIENCE DEPARTMENT					
CSC 329: Computer Network	Tutorial 7		2 nd Semester 1441		
Name:		Student II	D:		

CSC 329: Computer Network	Tutorial 7	2 nd Semester 1441
Name:	Student ID:	
Part1: Multiple-Choice Ques	stions	
1. In the 1-persistent approach, wa. Waits 0.1 s before send b. Waits 1 s before sending c. Waits a time equal to 1 d. Sends immediately	ling ng	idle line, it
 2. In the p-persistent approach, w a. Waits 1 s before sending b. Sends with probability c. Sends with probability d. Sends immediately 	ng <mark>I</mark> —p	idle line, it
3. The 1-persistent approach can with p equal to a. 0.1 b. 0.5 c. 1.0 d. 2.0	be considered a specia	al case of the p-persistent approach
4 is a random-access a. CSMA b. Polling c. FDMA d. CDMA	s protocol.	
 5. When a primary device asks a a. Polling b. Selecting c. Reserving d. Backing off 	secondary device if it	has data to send, this is called
6. If an FDMA network has eigh a. 1 b. 2 c. 8 d. 16	t stations, the medium	bandwidth has bands.

- 7. If a TDMA network has eight stations, the medium bandwidth has _____bands.
 - a.1
 - b.2
 - c. 8
 - d. 16
- 8. If a CDMA network has eight stations, the medium bandwidth has ______ bands.
 - a. 1
 - b.2
 - c. 8
 - d. 16

Part2: Exercises

1) The distance between two stations A and C is 2600 m, the data rate is 10 Mbps and the propagation speed is $2x10^8$ m/s. Station A starts sending a long frame at time $t_1 = 0$; station C starts sending a long frame at time $t_2 = 4 \mu s$. Find

When a station sends a frame it still takes time for the first bit to reach each station

a) The time when station C hears the collision

we need to compute the time needed for the first bit to reach station c Propagation time= distance/speed

$$=2600/2*10^8 = 13 \mu s$$

C will hear the collision $t_3 = t_1 + T_P = 13 \mu s$

b) The time when station A hears the collision

Propagation time= 13 µs

A will hear the collision $t_4 = t_2 + T_P = 17 \mu s$

- c) The number of bits station A has sent before detecting the collision Number of bits = $t_4 t_1$ * data rate = $17 * 10^{-6} * 10 * 10^6 = 170$ bit
- d) The number of bits station C has sent before detecting the collision Number of bits = t_3 - t_2 * data rate = $9*10^{-6}*10*10^{6} = 90$ bit

2) Four stations A,B,C and D share a link during 1-bit interval using CDMA channelization method. Assume that station B send a 0 bit ,stations A is *silent* and both of station C and D send a 1 bit. Each station is assigned a chip sequence as follow:

$$A = \begin{bmatrix} -1 & -1 & -1 & -1 \\ B = \begin{bmatrix} -1 & +1 & -1 & +1 \end{bmatrix} \\ C = \begin{bmatrix} -1 & -1 & +1 & +1 \end{bmatrix} \\ D = \begin{bmatrix} -1 & +1 & +1 & -1 \end{bmatrix}$$

a) Determine the common data on the common channel.

Encoding:

A is silent $\rightarrow 0$ B send 0 bit $\rightarrow -1$ C send 1 bit $\rightarrow 1$ D send 1 bit $\rightarrow 1$

In the multiplexer:

$$0*[-1 -1 -1 -1] +-1*[-1 +1 -1 +1] + 1*[-1 -1 +1 +1] +1*[-1 +1 +1 -1]$$

The encoded number is multiplied by <u>each chip</u> in the sequence= $[0\ 0\ 0\ 0] + [+1\ -1\ +1\ -1] + [-1\ -1\ +1\ +1] + [-1\ +1\ +1\ -1]$

All first chips are added, as are all second, third and forth= [-1 -1 +3 -1] the result is a new sequence, which is transmitted through the link.

- b) Show how does a receiver can detect the data sent by stations A,B,C, and D
 - Station A: [-1 -1 +3 -1] * [-1 -1 -1 -1] = [+1 +1 -3 +1]Then the chips in the sequence are added and divided by 4: 1+1-3+1=0/4=0 silence
 - Station B: $[-1 1 + 3 1] * [-1 + 1 1 + 1] = [+1 1 3 1] = -4/4 = -1 \rightarrow bit 0$
 - Station C: $[-1 1 + 3 1] * [-1 1 + 1 + 1] = [+1 + 1 + 3 1] = 4/4 = 1 \rightarrow bit 1$
 - Station D: $[-1 1 + 3 1] * [-1 + 1 + 1 1] = [+1 1 + 3 + 1] = 4/4 = 1 \rightarrow bit 1$