Models or Code? Evaluating the Quality of LLM-Generated Specifications: A Case Study in Optimization at Kinaxis

NEGIN AYOUGHI, DAVID DEWAR, SHIVA NEJATI AND MEHRDAD SABETZADEH

B STATISTICAL TEST RESULTS FOR RQ1–RQ4 (COMPLEMENT TO SECTION 5.7 RESULTS)

Table 1. Statistical tests for **RQ1** comparing **AMPL-based variants** and **Python-based variants** based on (a) execution success rate (Success) and zero relative error rates (#Zero/#Exec) using the Z-test; and (b) based on relative error using the Mann-Whitney test. Blue cells indicate significant improvements of AMPL-based over Python-based variants. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based ib the Success and #Zero/#Exec metrics

	Variant			NLF	4LP			Indu	stry	
LLM	Structuring	Refinement	Sı	ıccess	#Zeı	ro/#Exec	Success		#Zero/#Exec	
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	Unstructured	One-off	-5.31	1.00	3.15	0.00	-2.34	0.99	0.83	0.20
Gemini 1.5-Flash	Clistituctureu	Refinement	3.02	0.00	-1.64	0.95	-1.10	0.86	0.04	0.48
Gennin 1.5-Flash	Structured	One-off	-0.32	0.63	-0.67	0.75	-2.61	1.00	0.78	0.22
	Structured	Refinement	6.64	0.00	2.12	0.02	0.00	0.50	0.00	0.50
	Unstructured	One-off	-8.56	1.00	2.05	0.02	0.00	0.50	-0.94	0.83
GPT-40	Offstructured	Refinement	-3.72	1.00	2.30	0.01	0.27	0.40	0.47	0.32
Gr 1-40	Structured	One-off	-2.76	1.00	-3.60	1.00	-4.39	1.00	0.63	0.27
	Structured	Refinement	6.24	0.00	-2.74	1.00	-0.55	0.71	2.82	0.00
	Unstructured	One-off	-4.82	1.00	0.69	0.25	-1.39	0.92	-0.09	0.53
Gemini 2.5-Pro	Offstructured	Refinement	-1.06	0.86	-3.49	1.00	-0.47	0.68	-0.19	0.57
Gennin 2.5-F10	Structured	One-off	-2.62	1.00	0.32	0.38	-2.09	0.98	1.65	0.05
	Structureu	Refinement	2.20	0.01	2.68	0.00	0.00	0.50	-0.34	0.63
	Unstructured	One-off	-4.33	1.00	3.73	0.00	-1.13	0.87	-0.69	0.76
o4-mini	Offstructured	Refinement	0.26	0.40	1.15	0.13	0.31	0.38	-0.35	0.64
04-mm	Structured	One-off	3.71	0.00	-1.35	0.91	-0.55	0.71	0.51	0.30
	Structured	Refinement	7.77	0.00	-4.77	1.00	0.31	0.38	0.07	0.47

	Variant		NLP4LP	Dataset	Industry	Dataset
LLM	Structuring	Refinement	p-value	$\hat{\mathbf{A}}_{12}$	p-value	\hat{A}_{12}
	Unstructured One-off		0.23	0.47	0.53	0.50
Gemini 1.5-Flash	Clistituctureu	Refinement	1.00	0.58	0.93	0.57
Gennin 1.5-Plash	Structured	One-off	ne-off 0.23 0.4 inement 1.00 0.5 inement 0.99 0.5 inement 0.00 0.41 ine-off 0.13 0.4 inement 0.04 0.45 inement 0.98 0.5 inement 0.98 0.5 inement 0.00 0.41 inement 0.00 0.42 inement 0.00 0.45 inement 0.00 0.45 inement 0.00 0.42 inement 0.00 0.42 inement 0.00 0.42 ine-off 0.01 0.45 inement 0.17 0.4 inement 0.17 0.4 ine-off 0.82 0.5	0.58	0.86	0.54
	Structured	Refinement	0.00	0.41(S)	0.56	0.51
	Unstructured	One-off	0.13	0.46	0.51	
GPT-40	Clistituctureu	Refinement	0.04	0.45(N)	0.32	0.45
Gr 1-40	Structured	One-off	1.00	0.60	0.50	0.48
	Structureu	Refinement	0.98	0.56	0.01	0.32(M)
	Unstructured	One-off	0.23	0.48	0.84	0.56
Gemini 2.5-Pro	Clistituctureu	Refinement	1.00	0.57	0.51	0.50
Gennin 2.5-F10	Structured	One-off	0.11	0.47	1.00	0.50
	Structured	Refinement	0.00	0.42(S)	0.72	0.53
	Unstructured	One-off	0.01	0.45(N)	0.68	0.53
o4 mini	Clistituctureu	Refinement	0.17	0.48	0.48	0.50
o4-mini	Structured	One-off	0.82	0.52	0.17	0.47
	Structured	Refinement	1.00	0.59	0.49	0.50

2 • Negin Ayoughi, David Dewar, Shiva Nejati and Mehrdad Sabetzadeh

Table 2. Statistical tests for **RQ2** comparing **structured variants** and **unstructured variants** based on (a) execution success rate (Success) and zero relative error rates (#Zero/#Exec) using the Z-test; and (b) based on relative error using the Mann-Whitney test. Blue cells indicate significant improvements of structured over unstructured variants. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

	Variant			NLF	4LP			Indu	ıstry	
LLM	Language	Refinement	Sı	iccess	#Zer	o/#Exec	Sı	ıccess	#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	AMPL	One-off	2.63	0.00	-2.98	1.00	0.00	0.50	0.00	0.50
Gemini 1.5-Flash	AMIL	Refinement	0.96	0.17	6.06	0.00	1.69	0.04	-0.21	0.58
Gennin 1.5-Flash	Python	One-off	-2.39	0.99	0.75	0.22	0.29	0.39	0.07	0.47
	Fymon	Refinement	-2.79	1.00	1.88	0.03	0.61	0.27	0.04 -0.21 0.58 0.39 0.07 0.47 0.27 -0.18 0.57 0.92 0.21 0.41 0.50 1.91 0.03 0.21 -0.49 0.69 0.21 -0.49 0.69 0.21 -0.49 0.69 0.35 0.42 0.34 0.63 0.23 0.41	0.57
	AMPL	One-off	2.44	0.00	-2.65	1.00	-1.39	0.92	0.21	0.41
GPT-40	AMIL	Refinement	5.73	0.00	-3.58	1.00	0.00	0.50	1.91	0.03
GP1-40	Python	One-off	-3.53	1.00	3.02	0.00	3.16	0.00	-1.50	0.93
	Fymon	Refinement	-4.25	1.00	1.47	0.07	0.81	0.21	-0.49	0.69
	AMPL	One-off	0.67	0.25	-3.65	1.00	-1.06	0.85	1.83	0.03
Gemini 2.5-Pro	AMIL	Refinement	0.31	0.38	3.13	0.00	0.38	0.35	0.42	0.34
Gennin 2.5-F10	Python	One-off	-1.62	0.95	-3.54	1.00	-0.33	0.63	0.23	0.41
	Python	Refinement	-2.92	1.00	-3.04	1.00	-0.09	0.53	0.58	0.28
	AMPL	One-off	1.92	0.03	-2.15	0.98	0.00	0.50	1.44	0.07
o4-mini	AMPL	Refinement	2.15	0.02	-2.95	1.00	0.00	0.50	0.00	0.50
04-111111	Drythan	One-off	-6.07	1.00	2.89	0.00	-0.58	0.72	0.37	0.36
	Python	Refinement	-5.80	1.00	3.14	0.00	0.00	0.50	0.41	0.34

	Variant		NLP4LP	Dataset	Industry	Dataset
LLM	Language	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	AMPL	One-off	1.00	0.54	1.00	0.50
Gemini 1.5-Flash	AMFL	Refinement	0.00	0.34(M)	0.04	0.41(S)
Gennin 1.5-Masii		One-off	0.49	0.50	0.34	0.47
	Python	Refinement	0.11	0.47	0.58	0.51
		One-off	0.95	0.56	1.00	0.50
GPT-40	AMPL	Refinement	1.00	0.57	0.07	0.39
Gr 1-40		One-off	0.01	0.44(S)	0.79	0.57
	Python	Refinement	0.17	0.47	0.78	0.57
		One-off	1.00	0.58	0.18	0.46
Gemini 2.5-Pro	AMPL	Refinement	0.00	0.42(S)	0.55	0.51
Gennin 2.5-110		One-off	1.00	0.59	0.48	0.50
	Python	Refinement	1.00	0.58	0.32	0.47
		One-off	0.99	0.55	0.54	0.50
o4-mini	AMPL	Refinement	1.00	0.56	0.44	0.49
04-111111		One-off	0.07	0.46	0.85	0.53
	Python	Refinement	0.03	0.46(N)	0.52	0.50

Table 3. Statistical tests for RQ3 comparing refinement variants and one-of variants based on (a) execution success rate (Success %) and zero relative error rates (#Zero/#Exec) using the Z-test; and (b) based on relative error using the Mann-Whitney test. Blue cells indicate significant improvements of refinement over one-of variants. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based on the Success % and #Zero/#Exec metrics

	Variant			NLP	4LP			Indu	ıstry	
LLM	Language	Structuring	Suc	cess %	#Zeı	ro/#Exec	Success %		#Zero/#Exec	
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	AMPL	Unstructured	10.68	0.00	-4.91	1.00	1.55	0.06	-1.00	0.84
Gemini 1.5-Flash	AMFL	Structured	9.10	0.00	3.49	0.00	3.16	0.00	-1.19	0.88
Gennin 1.5-Flash	Python	Unstructured	2.71	0.00	-0.31	0.62	0.29	0.39	-0.30	0.62
	Fymon	Structured	2.30	0.01	0.69	0.24	0.61	0.27	6 -1.00 0.8 0 -1.19 0.8 0 -0.30 0.0 0 -0.56 0.1 1.13 0.1 0 -1.58 0.9 1 -0.72 0.7 1 -0.69 0.7 1 -2.04 0.8 6 -0.66 0.7 6 -0.66 0.7 6 -0.30 0.6 8 0.37 0.3	0.71
	AMPL	Unstructured	7.13	0.00	-0.63	0.73	1.81	0.03	-0.11	0.58
GPT-40	AWIL	Structured	10.15	0.00	-0.77	0.78	3.13	0.00	1.13	0.13
GF 1-40	Python	Unstructured	2.23	0.01	-0.60	0.73	1.50	0.06	-1.58	0.94
	Fymon	Structured	1.48	0.07	-2.13	0.98	-0.89	0.81	-0.72	0.76
	AMPL	Unstructured	5.13	0.00	-3.74	1.00	0.79	0.21	-0.69	0.75
Gemini 2.5-Pro	AWIL	Structured	4.80	0.00	3.04	0.00	2.19	0.01	-2.04	0.98
Gennin 2.5-110	Python	Unstructured	1.43	0.08	0.25	0.40	-0.15	0.56	-0.66	0.75
	1 yulon	Structured	0.08	0.47	0.75	0.22	0.09	0.46	-0.30	0.62
	AMPL	Unstructured	5.45	0.00	-0.29	0.62	1.43	0.08	0.37	0.36
o4-mini	AMEL	Structured	5.53	0.00	-0.88	0.81	1.43	0.08	-1.16	0.88
	Python	Unstructured	0.92	0.18	2.53	0.01	0.00	0.50	-0.41	0.66
	1 y iii Oii	Structured	1.15	0.12	2.43	0.01	0.58	0.28	-0.37	0.64

	Variant		NLP4LP	Dataset	Industry	Dataset
LLM	Language	Structuring	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	AMPL	Unstructured		0.64	0.86	0.58
Gemini 1.5-Flash	AWIL	Structured	0.00	0.41(S)	0.82	0.56
Gennin 1.5-1 lasii	Python	Unstructured	0.68	0.51	0.69	0.53
	1 ython	Structured	0.26	0.48	0.63	0.53
	AMPL	Unstructured	0.72	0.52	0.40	0.47
GPT-40	AWIL	Structured	0.78	0.52	0.16	0.41
GI 1-40	Python	Unstructured	0.78	0.52	0.88	0.61
	rython	Structured	0.99	0.56	0.79	0.56
	AMPL	Unstructured	1.00	0.58	0.72	0.54
Gemini 2.5-Pro	7 TWILL	Structured	0.00	0.43(S)	0.98	0.38
Gennin 2.5-110	Python	Unstructured	0.38	0.49	0.77	0.54
	rython	Structured	0.21	0.48	0.62	0.52
	AMPL	Unstructured	0.65	0.51	0.38	0.48
o4-mini	AWIL	Structured	0.78	0.52	0.88	0.56
04-111111	Python	Unstructured	0.07	0.47	0.64	0.52
	1 y 111011	Structured	0.01	0.45(N)	0.67	0.52

4 • Negin Ayoughi, David Dewar, Shiva Nejati and Mehrdad Sabetzadeh

Table 4. Statistical tests for **RQ4** compare EXEOS variants when used with **reasoning-based** LLMs, i.e., Gemini 2.5-Pro and o4-mini, versus when used with **instruction-following** LLMs, i.e., Gemini 1.5-Flash and GPT-40, based on (a) execution success rate (Success) and zero relative error rates (#Zero/#Exec) using the Z-test, and (b) relative error using the Mann-Whitney test. Blue cells indicate significant improvements in results obtained with reasoning-based LLMs over those obtained with instruction-following LLMs. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

	Variant			NLP	4LP		Industry			
Language	Structuring	Refinement	Suc	Success %		#Zero/#Exec		ccess %	#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	Unstructured	One-off	12.78	0.00	1.34	0.09	2.30	0.01	-0.02	0.51
AMPL	Offstructured	Refinement	8.02	0.00	4.07	0.00	1.99	0.02	0.65	0.26
AWIL	Structured	One-off	11.23	0.00	2.51	0.01	2.58	0.00	1.66	0.05
	Structureu	Refinement	4.10	0.00	2.38	0.01	1.07	0.14	-0.27	0.60
	Unstructured	One-off	9.79	0.00	3.09	0.00	2.59	0.00	0.18	0.43
Drython	Offstructured	Refinement	8.03	0.00	5.84	0.00	1.65	0.05	1.00	0.16
Python	Structured	One-off	8.04	0.00	-0.41	0.66	-0.42	0.66	1.92	0.03
	Structured	Refinement	11.35	0.00	-0.03	0.51	0.43	0.33	2.28	0.01

,	, 1						
	Variant		NLP4LP	Dataset	Industry Dataset		
Language	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}	
	Unstructured	One-off	0.04	0.47(N)	0.40	0.49	
AMPL	Unstructured	Refinement	0.00	0.42(S)	0.38	0.48	
AMFL	Structured	One-off	0.01	0.45(N)	0.05	0.44	
	Structureu	Refinement	0.01	0.47(N)	0.60	0.51	
	Unstructured	One-off	0.00	0.45(N)	0.41	0.49	
Python	Olistructured	Refinement	0.00	0.42(S)	0.19	0.46	
rython	Structured	One-off	0.76	0.51	0.03	0.42(S)	
	Structured	Refinement	0.62	0.51	0.01	0.39(M)	

Table 5. Comparison of our approach (EXEOS) with the baseline for RQ5, based on the number of executed models (#Exec), execution success rate (Success), relative error (RelErr: Mean, Median [Med], Std), and optimization models with correct solutions (#Zero). Blue cells indicate significant improvements of EXEOS over the baseline; none occur in the opposite direction.

(a) Average results for EXEOS and the baseline

Approach	Matuia		NLF	4LP			Indu	ıstry	
Approach	Metric	Gem.1.5F	GPT-40	Gem.2.5P	o4m	Gem.1.5F	GPT-40	Gem.2.5P	o4m
	#Exec (Succ.%)	171 (57%)	194 (65%)	268 (89%)	209 (70%)	23 (77%)	16 (53%)	24 (80%)	22 (73%)
	Mean (RelErr)	1.45	4.05	1.30	1.55	0.17	2.48	0.15	0.17
Baseline	Med (RelErr)	0	0	0	0	0	0	0	0
Daseille	Std (RelErr)	7.01	40.70	5.95	4.02	0.33	5.35	0.37	0.55
	#Zero (RelErr)	98	127	158	155	20	12	20	19
	#Exec (Succ.%)	260 (87%)	268 (89%)	284 (95%)	284 (95%)	24 (80%)	19 (63%)	24 (80%)	24 (80%)
	Mean (RelErr)	0.74	1.27	0.10	0.86	0.22	0.19	0.47	0.12
EXEOS	Med (RelErr)	0	0	0	0	0	0	0	0
EXECS	Std (RelErr)	2.97	4.33	0.25	3.76	0.41	0.82	1.13	0.27
	#Zero (RelErr)	179	127	203	166	18	17	18	20

(b) Statistical tests comparing EXEOS and the baseline

			NI	LP4LP			Industry						
LLM	Suc	cess	#Zero	#Zero/#Exec		RelErr		Success		#Exec	Re	elErr	
	p-val		X	p-val Z p				p-val Z				\hat{A}_{12}	
Gem.1.5F	0.00	4.88	0.00	3.53	0.00	0.37(M)	0.12	1.17	0.14	1.06	0.56	0.51	
GPT-40	0.00	7.27	0.98	-2.11	0.96	0.55	0.61	-0.27	0.00	3.49	0.01	0.27(L)	
Gem.2.5P	0.00	8.12	0.00	2.82	0.00	0.39(M)	0.18	0.93	0.35	0.37	0.77	0.56	
o4m	0.00	9.49	0.99	-2.27	0.94	0.54	0.04	1.69	0.50	0.00	0.46	0.49	

(c) Statistical tests comparing Python4 and the baseline

			NLP	4LP			Industry					
LLM	Success		#Zero/#Exec		RelErr		Succ	ess	#Zero/	#Exec	RelErr	
	p-val	Z	p-val	Z	p-val	\hat{A}_{12}	p-val	Z	p-val	Z	p-val	\hat{A}_{12}
Gem.1.5F	0.97	-1.84	0.11	1.25	0.17	0.48	0.12	1.17	0.15	1.06	0.53	0.50
GPT-40	0.14	1.10	0.29	0.55	0.24	0.48	0.39	0.28	0.21	0.82	0.44	0.48
Gem.2.5P	0.00	6.19	0.37	0.32	0.14	0.47	0.18	0.93	0.24	0.70	0.51	0.50
o4m	0.02	1.99	0.01	2.28	0.00	0.43	0.08	1.39	0.37	0.33	0.50	0.50