

10/563570

JAP15 Rec'd PCT/PTO 06 JAN 2006

-1-

SEQUENCE LISTING

<110> David, WAGNER H

<120> METHODS FOR PREDICTING DEVELOPMENT OF AUTO-IMMUNE DISEASES AND TREATMENT OF SAME

<130> 059742-5001-WO

<150> US 60/484,655

<151> 2003-07-07

<150> PCT/US2004/021646

<151> 2004-07-07

<160> 21

<170> PatentIn version 3.3

<210> 1

<211> 6545

<212> DNA

<213> Homo sapiens

<400> 1

gagagcagag aacacacttt gccttctctt tggtatttag taatatcaac caaattgcag 60

acatctcaac acttggcca ggcagcctgc tgagcaagg acctcagcca gcatggcagc 120

ctctttccca cccaccttgg gactcagttc tgccccagat gaaattcagc acccacat 180

taaattttca gaatggaaat ttaagctgtt ccgggtgaga tccttgaaa agacacctga 240

agaagctcaa aaggaaaaga aggattcatt tgaggggaaa ccctctctgg agcaatctcc 300

agcagtcccg gacaaggctg atggtcagaa gccagtcctt actcagccat tgttaaaagc 360

ccaccctaag ttttcaaaga aatttcacga caacgagaaa gcaaggaggca aagcgatcca 420

tcaagccaac ctgcacatc tctgccat ctgtggaaat tcttttagag ctgatgagca 480

caacaggaga tatccagtcc atggcctgt ggatggtaaa accctaggcc ttttacgaaa 540

gaaggaaaaag agagctactt cctggccgga cctcattgcc aaggtttcc ggatcgatgt 600

gaaggcagat gttgactcga tccacccac ttagttctgc cataactgct ggagcatcat 660

gcacaggaag tttagcagtg cccatgtga gtttacttc ccgaggaaacg tgaccatgga 720

gtggcacccc cacacaccat cctgtgacat ctgcaacact gcccgtcggg gactcaagag 780

gaagagtctt cagccaaact tgcagctcag caaaaaactc aaaactgtgc ttgaccaagc 840

aagacaagcc cgtcagcgcgca agagaagagc tcaggcaagg atcagcagca aggatgtcat 900

gaagaagatc gccaactgca gtaagataca tcttagtacc aagctccttg cagtggactt 960

cccagagcac tttgtgaaat ccatctcctg ccagatctgt gaacacattc tggctgaccc	1020
tgtggagacc aactgtaagc atgtctttg cgggtctgc attctcagat gcctcaaagt	1080
catgggcagc tattgtccct cttgccata tccatgcttc cctactgacc tggagagtcc	1140
agtgaagtcc tttctgagcg tcttgaattc cctgatggtg aaatgtccag caaaagagtg	1200
caatgaggag gtcagtttg aaaaatataa tcaccacatc tcaagtcaca aggaatcaa	1260
agagatttt gtgcacatta ataaaggggg cggccccgc caacatcttc tgctgctgac	1320
tcggagagct cagaagcacc ggctgagggg gctcaagctg caagtcaaag ccttgctga	1380
caaagaagaa ggtggagatg tgaagtccgt gtgcattgacc ttgttccctgc tggctctgag	1440
ggcgaggaat gagcacagggc aagctgatga gctggaggcc atcatgcagg gaaagggctc	1500
tggcctgcag ccagctgttt gcttggccat ccgtgtcaac accttcctca gctgcagtca	1560
gtaccacaag atgtacagga ctgtgaaagc catcacaggg agacagattt ttcagcctt	1620
gcatgccctt cgaaatgctg agaaggtaact tctgccaggg taccaccact ttgagtggca	1680
gccacctctg aagaatgtgt cttccagcac tgatgttggc attattgatg ggctgtctgg	1740
actatcatcc tctgtggatg attacccagt ggacaccatt gcaaagaggt tccgctatga	1800
ttcagctttg gtgtctgctt tgatggacat ggaagaagac atcttggaaag gcatgagatc	1860
ccaagacctt gatgattacc tgaatggccc cttcaactgtg gtggtaagg agtcttgtga	1920
tggaatggga gacgtgagtg agaagcatgg gagtgggcct gtatgtccag aaaaggcagt	1980
ccgttttca ttcacaatca tgaaaattac tattgccac agctctcaga atgtgaaagt	2040
atttgaagaa gccaaaccta actctgaact gtgttgcag ccattgtgcc ttatgtggc	2100
agatgagtct gaccacgaga cgctgactgc catcctgagt cctctcattg ctgagaggga	2160
ggccatgaag agcagtgaat taatgctga gctggaggc attctccgga ctttcaagtt	2220
catcttcagg ggcaccggct atgataaaaa acttgtgcgg gaagtggaaag gcctcgaggc	2280
ttctggctca gtctacattt gtactctttg tgatgccacc cgtctggaag cctctcaaaa	2340
tcttgtcttc cactctataa ccagaagcca tgctgagaac ctgaaacgtt atgaggtctg	2400
gcgttccaac ctttaccatg agtctgtgga agaactgcgg gatcgggtga aagggtctc	2460
agctaaacct ttcattgaga cagtccttc catagatgca ctccactgtg acattggcaa	2520
tgcagctgag ttctacaaga tcttccagct agagataggg gaagtgtata agaatccaa	2580
tgcttccaaa gagggaaagga aaaggtggca ggcacactg gacaagcattc tccggaagaa	2640

gatgaaccaatca aaaccaatca tgaggatgaa tggcaacttt gccaggaagc tcatgaccaa 2700
agagactgtg gatgcagttt gtgagttat tccttccgag gagagggcag aggctcttag 2760
ggagctgatg gatcttacc tgaagatgaa accagtatgg cgatcatcat gccctgctaa 2820
agagtgccta gaatccctct gccagtagac tttcaattca cagcgaaaa ctgagctcct 2880
ttctacgaag ttcaagtata ggtatgaggg aaaaatcacc aattattttc aaaaaaccct 2940
ggcccatgtt cctgaaattha ttgagaggga tggctccatt gggcatggg caagtgaggg 3000
aatgagtcg ggttaacaaac tgtttaggcg cttccggaaa atgaatgcc agcagtc当地 3060
atgctatgag atggaagatg tcctgaaaca ccactgggt tacacctcca aatacctcca 3120
gaagtttatg aatgctcata atgcattaaa aacctctggg tttaccatga accctcaggc 3180
aagcttaggg gacccattag gcatagagga ctctctggaa agccaagatt caatggatt 3240
ttaagtaggg caaccactta tgagttgggt ttgcaattt agttccctc tgggttgc当地 3300
tgagggcttc tcctagcacc cttaactgct gtgtatgggg cttcaccatc caagaggtgg 3360
taggtggag taagatgcta cagatgctc caagtcagga atagaaactg atgagctgat 3420
tgcttgaggc ttttagtgag ttccgaaaag caacaggaaa aatcagttt ctgaaagctc 3480
agtaactcag aacaggagta actgcagggg accagagatg agcaaagatc tgtgtgtt 3540
ggggagctgt catgtaaatc aaagccaagg ttgtcaaaga acagccagtg aggccagaaa 3600
ttggtcttgtt ggtttcatt ttttcccccc ttgattgatt atatttgtt ttgagatatg 3660
ataagtgcct tctatttcat ttttgaataa ttcttcattt ttataatttt acatatctt 3720
gcttgctata taagattcaa aagagcttt taaatttttcaataatatc ttacatttgt 3780
acagcatgat gaccttaca aagtgcctc aatgcattt cccattcgat atataaatat 3840
gttacatcag gacaacttt agaaaatcag tcctttta tgttaaatt atgtatctat 3900
tgtaaccctc agagtttagg aggtcatctg ctgtcatggg ttttcaata atgaatttag 3960
aatacacctg tttagctacag tttagttatta aatcttctga taatataatgt ttacttagct 4020
atcagaagcc aagtatgatt cttaattttt acttttcat ttcaagaaat tttagagttc 4080
caaattttaga gcttctgcat acagtctaa agccacagag gcttgtaaaa atataggta 4140
gcttgatgtc taaaaatata ttcatgtct tactgaaaca ttttgc当地 ctttctccaa 4200
atgaaacctg aatcaatttt tctaaatcta ggtttcatag agtcctctcc tctgcaatgt 4260
gttattcttt ctataatgtat cagtttactt tcagtgattt cagaattgtg tagcaggata 4320

accttgtatt ttccatccg ctaagtttag atggagtcca aacgcgtac agcagaagag	4380
ttaacattn cacagtgc ttaccactg tggaaatgtt tcacactcat tttccttac	4440
aacaattctg aggagtaggt gttgttatta tctccatgg atgggggtt aatgatttg	4500
tcaaagtcat ttagggtaa taaatacttg gcttggaaat ttaacacagt cttttgtct	4560
ccaaaggccct tcttcttcc accacaaatt aatcaactatg tttataaggt agtacgaaa	4620
tttttttagg attcacaact aatcaactata gcacatgacc ttgggattac attttatgg	4680
ggcagggta agcggcttt aaatcatttg tgtgctctgg ctctttgat agaagaaagc	4740
aacacaaaag ctccaaaggg cccccctaacc ctcttgcgc tccagttt tgaaactat	4800
gatctgcac cttaggaatc tgggatttgc cagttgctgg caatgttagag caggcatgga	4860
attttatatg ctagtgagtc ataatgatat gtttagtgtt attagtttt cttccttga	4920
ttttattggc cataattgct actcttcata cacagtata caaagagctt gataatttag	4980
ttgtcaaaag tgcacggcg acattatctt taattgtatg tatttggc ttcttcaggg	5040
attgaactca gtatcttca taaaaaaca cagcagttt cttgcttt tatatgcaga	5100
atatcaaagt catttctaattt ttagttgtca aaaacatata catatttaa cattagttt	5160
tttggaaact cttggtttg ttttttgaa aatgagtgccc ccactaagcc acactttccc	5220
ttcacccgc ttaatccttc cagcatgtct ctgcactaat aaacagctaa attcacataa	5280
tcatcctatt tactgaagca tggcatgct ggtttataaga tttttaccc atttctactc	5340
ttttctcta ttggggcac tgtaaatact ttccagtatt aaattatcct tttctaacac	5400
tgttaggaact atttgaatg catgtgacta agagcatgat ttatagcaca acctttccaa	5460
taatccctta atcagatcac atttgataa accctggaa catctggctg caggaatttc	5520
aatatgtaga aacgctgcct atggttttt gccctactg ttgagactgc aatatcctag	5580
accctagttt tatactagag ttttattttt agcaatgcct attgcaagtg caattatata	5640
ctccaggaa attcaccaca ctgaatcgag catttgcgtg tgtatgtgtg aagtatatct	5700
gggacttcag aagtgcattg tattttctc ctgtgaaacc tgaatctaca agtttctgc	5760
caagccactc aggtgcattg cagggaccag tgataatggc tgatgaaaat tgatgattgg	5820
tcagtgaggt caaaaggagc cttgggatta ataaacatgc actgagaagc aagaggagga	5880
aaaaaagatg tcttttctt ccaggtgaac tggaaatgg tagttgcctca gatTTTTC	5940
ccacaagata cagaagaaga taaagattt tttgggttag agtgcgttgc ttgcattaca	6000

tcaaacagag ttcaaattcc acacagataa gaggcaggat atataagcgc cagtggtagt 6060
tgggaggaat aaaccattat ttggatgcag gtggttttg attgcaaata tgtgtgtgtc 6120
ttcagtgatt gtatgacaga tgatgtattc ttttgatgtt aaaagattt aagtaagagt 6180
agatacattt tacccattt acattttctt attttaacta cagtaatcta cataaatata 6240
cctcagaaat catttttgtt gattatttt tggtttttag aattgcactt cagtttattt 6300
tcttacaat aaccttacat tttgttaat ggcttccaag agcctttttt ttttgttattt 6360
tcagagaaaa ttcaggtacc agcatgcaat ggattttttt gattcagggg acctgtattt 6420
ccatgtcaaa tgtttcaaa taaaatgaaa tatgagttc aatactttt atatttaat 6480
atttccttaa tattatggtt attgtccgcc attttgttgtt atattgtaaa taaagtttag 6540
attgt 6545

<210> 2
<211> 1043
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Ala Ser Phe Pro Pro Thr Leu Gly Leu Ser Ser Ala Pro Asp
1 5 10 15

Glu Ile Gln His Pro His Ile Lys Phe Ser Glu Trp Lys Phe Lys Leu
20 25 30

Phe Arg Val Arg Ser Phe Glu Lys Thr Pro Glu Glu Ala Gln Lys Glu
35 40 45

Lys Lys Asp Ser Phe Glu Gly Lys Pro Ser Leu Glu Gln Ser Pro Ala
50 55 60

Val Leu Asp Lys Ala Asp Gly Gln Lys Pro Val Pro Thr Gln Pro Leu
65 70 75 80

Leu Lys Ala His Pro Lys Phe Ser Lys Lys Phe His Asp Asn Glu Lys
85 90 95

Ala Arg Gly Lys Ala Ile His Gln Ala Asn Leu Arg His Leu Cys Arg
100 105 110

Ile Cys Gly Asn Ser Phe Arg Ala Asp Glu His Asn Arg Arg Tyr Pro
115 120 125

Val His Gly Pro Val Asp Gly Lys Thr Leu Gly Leu Leu Arg Lys Lys
130 135 140

Glu Lys Arg Ala Thr Ser Trp Pro Asp Leu Ile Ala Lys Val Phe Arg
145 150 155 160

Ile Asp Val Lys Ala Asp Val Asp Ser Ile His Pro Thr Glu Phe Cys
165 170 175

His Asn Cys Trp Ser Ile Met His Arg Lys Phe Ser Ser Ala Pro Cys
180 185 190

Glu Val Tyr Phe Pro Arg Asn Val Thr Met Glu Trp His Pro His Thr
195 200 205

Pro Ser Cys Asp Ile Cys Asn Thr Ala Arg Arg Gly Leu Lys Arg Lys
210 215 220

Ser Leu Gln Pro Asn Leu Gln Leu Ser Lys Lys Leu Lys Thr Val Leu
225 230 235 240

Asp Gln Ala Arg Gln Ala Arg Gln Arg Lys Arg Arg Ala Gln Ala Arg
245 250 255

Ile Ser Ser Lys Asp Val Met Lys Lys Ile Ala Asn Cys Ser Lys Ile
260 265 270

His Leu Ser Thr Lys Leu Leu Ala Val Asp Phe Pro Glu His Phe Val
275 280 285

Lys Ser Ile Ser Cys Gln Ile Cys Glu His Ile Leu Ala Asp Pro Val
290 295 300

Glu Thr Asn Cys Lys His Val Phe Cys Arg Val Cys Ile Leu Arg Cys
305 310 315 320

Leu Lys Val Met Gly Ser Tyr Cys Pro Ser Cys Arg Tyr Pro Cys Phe
325 330 335

Pro Thr Asp Leu Glu Ser Pro Val Lys Ser Phe Leu Ser Val Leu Asn
340 345 350

Ser Leu Met Val Lys Cys Pro Ala Lys Glu Cys Asn Glu Glu Val Ser
355 360 365

Leu Glu Lys Tyr Asn His His Ile Ser Ser His Lys Glu Ser Lys Glu
370 375 380

Ile Phe Val His Ile Asn Lys Gly Gly Arg Pro Arg Gln His Leu Leu
385 390 395 400

Ser Leu Thr Arg Arg Ala Gln Lys His Arg Leu Arg Glu Leu Lys Leu
405 410 415

Gln Val Lys Ala Phe Ala Asp Lys Glu Glu Gly Gly Asp Val Lys Ser
420 425 430

Val Cys Met Thr Leu Phe Leu Leu Ala Leu Arg Ala Arg Asn Glu His
435 440 445

Arg Gln Ala Asp Glu Leu Glu Ala Ile Met Gln Gly Lys Gly Ser Gly
450 455 460

Leu Gln Pro Ala Val Cys Leu Ala Ile Arg Val Asn Thr Phe Leu Ser
465 470 475 480

Cys Ser Gln Tyr His Lys Met Tyr Arg Thr Val Lys Ala Ile Thr Gly
485 490 495

Arg Gln Ile Phe Gln Pro Leu His Ala Leu Arg Asn Ala Glu Lys Val
500 505 510

Leu Leu Pro Gly Tyr His His Phe Glu Trp Gln Pro Pro Leu Lys Asn
515 520 525

Val Ser Ser Ser Thr Asp Val Gly Ile Ile Asp Gly Leu Ser Gly Leu
530 535 540

Ser Ser Ser Val Asp Asp Tyr Pro Val Asp Thr Ile Ala Lys Arg Phe
545 550 555 560

Arg Tyr Asp Ser Ala Leu Val Ser Ala Leu Met Asp Met Glu Glu Asp
565 570 575

Ile Leu Glu Gly Met Arg Ser Gln Asp Leu Asp Asp Tyr Leu Asn Gly
580 585 590

Pro Phe Thr Val Val Val Lys Glu Ser Cys Asp Gly Met Gly Asp Val
595 600 605

Ser Glu Lys His Gly Ser Gly Pro Val Val Pro Glu Lys Ala Val Arg
610 615 620

Phe Ser Phe Thr Ile Met Lys Ile Thr Ile Ala His Ser Ser Gln Asn
625 630 635 640

Val Lys Val Phe Glu Glu Ala Lys Pro Asn Ser Glu Leu Cys Cys Lys
645 650 655

Pro Leu Cys Leu Met Leu Ala Asp Glu Ser Asp His Glu Thr Leu Thr
660 665 670

Ala Ile Leu Ser Pro Leu Ile Ala Glu Arg Glu Ala Met Lys Ser Ser
675 680 685

Glu Leu Met Leu Glu Leu Gly Gly Ile Leu Arg Thr Phe Lys Phe Ile
690 695 700

Phe Arg Gly Thr Gly Tyr Asp Glu Lys Leu Val Arg Glu Val Glu Gly
705 710 715 720

Leu Glu Ala Ser Gly Ser Val Tyr Ile Cys Thr Leu Cys Asp Ala Thr
725 730 735

Arg Leu Glu Ala Ser Gln Asn Leu Val Phe His Ser Ile Thr Arg Ser
740 745 750

His Ala Glu Asn Leu Glu Arg Tyr Glu Val Trp Arg Ser Asn Pro Tyr
755 760 765

His Glu Ser Val Glu Glu Leu Arg Asp Arg Val Lys Gly Val Ser Ala
770 775 780

Lys Pro Phe Ile Glu Thr Val Pro Ser Ile Asp Ala Leu His Cys Asp
785 790 795 800

Ile Gly Asn Ala Ala Glu Phe Tyr Lys Ile Phe Gln Leu Glu Ile Gly
805 810 815

Glu Val Tyr Lys Asn Pro Asn Ala Ser Lys Glu Glu Arg Lys Arg Trp
820 825 830

Gln Ala Thr Leu Asp Lys His Leu Arg Lys Lys Met Asn Leu Lys Pro
835 840 845

Ile Met Arg Met Asn Gly Asn Phe Ala Arg Lys Leu Met Thr Lys Glu
850 855 860

Thr Val Asp Ala Val Cys Glu Leu Ile Pro Ser Glu Glu Arg His Glu
865 870 875 880

Ala Leu Arg Glu Leu Met Asp Leu Tyr Leu Lys Met Lys Pro Val Trp
885 890 895

Arg Ser Ser Cys Pro Ala Lys Glu Cys Pro Glu Ser Leu Cys Gln Tyr
900 905 910

Ser Phe Asn Ser Gln Arg Phe Ala Glu Leu Leu Ser Thr Lys Phe Lys
915 920 925

Tyr Arg Tyr Glu Gly Lys Ile Thr Asn Tyr Phe His Lys Thr Leu Ala
930 935 940

His Val Pro Glu Ile Ile Glu Arg Asp Gly Ser Ile Gly Ala Trp Ala
945 950 955 960

Ser Glu Gly Asn Glu Ser Gly Asn Lys Leu Phe Arg Arg Phe Arg Lys
965 970 975

Met Asn Ala Arg Gln Ser Lys Cys Tyr Glu Met Glu Asp Val Leu Lys
980 985 990

His His Trp Leu Tyr Thr Ser Lys Tyr Leu Gln Lys Phe Met Asn Ala
995 1000 1005

Ser Leu Gly Asp Pro Leu Gly Ile Glu Asp Ser Leu Glu Ser Gln
 1025 1030 1035

Asp Ser Met Glu Phe
1040

<210> 3
<211> 2414
<212> DNA
<213> *Homo sapiens*

<400> 3
actctcttta cagtcagcct tctgcttgcc acagtcatacg tgggcagtca gtgaatcttc 60
ccccaaagtgc gacaattaat acctggttta gcggcaaaga ttccagagagg cgtgagcagc 120
ccctctggcc ttccagacaaa aatctacgta ccatcagaaaa ctatgtctct gcagatggta 180
acagtcagta ataaacatagc cttaattcag ccaggcttct cactgatgaa ttttgatgga 240
caagttttct tctttggaca aaaaggctgg cccaaaagat cctgccccac tggagtttc 300
catctggatg taaagcataa ccatgtcaaa ctgaagccta caatttctc taaggattcc 360
tgctacacctcc ctccctttcg ctaccaggcc acttgcacat tcaaaggcag cttggagttct 420
gaaaaggcatc aatacatcat ccatggaggg aaaacaccaa acaatgaggt ttcagataag 480
atttatgtca tgtcttattgt ttgcaagaac aacaaaaagg ttacccctcg ctgcacagag 540
aaagacttgg taggagatgt tcctgaagcc agatatggtc attccattaa tgtggtgtac 600
agccgaggga aaagtatggg tgctctctt ggaggacgct catacatgcc ttctaccac 660
agaaccacag aaaaatggaa tagttagtgc gactgcctgc cctgtgttt cctgggtggat 720
tttgaatttg ggtgtgtac atcatacatt cttccagaac ttccaggatgg gctatcttt 780
catgtctcta ttgccaaaaa tgacaccatc tatatttttag gaggacattc acttgccaat 840
aatatccggc ctgccaacct gtacagaata agggttgatc ttcccctggg tagcccaagct 900
gtgaattgca cagtcttgcc aggaggaatc tctgtctcca gtgcaatcct gactcaaact 960
aacaatgatg aatttggat tttgggtggc tatcagcttg aaaatcaaaa aagaatgatc 1020
tgcaacatca tctctttaga ggacaacaag atagaaattc gtgagatgga gaccccaagat 1080
tggaccccaag acattaagca cagcaagata tggtttggaa gcaacacggg aaatggaaact 1140

gtttttcttg gcataccagg agacaataaa caagttgtt cagaaggatt ctattctat 1200
atgttgaat gtgctgaaga tgatactaata gaagagcaga caacattcac aaacagtcaa 1260
acatcaacag aagatccagg ggattccact cccttgaag actctgaaga atttgttc 1320
agtgcagaag caaatagtt tcatggat gatgaattt acacctataa tgaagatgat 1380
gaagaagatg agtctgagac aggctactgg attacatgct gccctacttg tgatgtggat 1440
atcaacactt gggtaccatt ctattcaact gagctcaaca aacccgccat gatctactgc 1500
tctcatgggg atgggcactg ggtccatgct cagtgcattt atctggcaga acgcacactc 1560
atccatctgt cagcaggaag caacaagtt tactgcaatg agcatgtgga gatagcaaga 1620
gctctacaca ctccccaaag agtcctaccc ttaaaaaaagc ctccaatgaa atccctccgt 1680
aaaaaaaggtt ctggaaaaat cttgactcct gccaagaaat cctttcttag aaggttgttt 1740
gattagttt gcaaaagcct ttcagattca ggtgtatgga attttgaat ctattttaa 1800
aatcataaca ttgattttaa aaatacattt ttgtttattt aaaatgccta tgtttcttt 1860
tagttacatg aattaaggc cagaaaaaaag tgtttataat gcaatgataa ataaagtc 1920
tctagacct atacattttg aaaatattt acccaaatac tcaatttact aatttattct 1980
tcactgagga ttctgtatct gatTTTtat tcaacaaacc ttAAACACCC agaAGCAGTA 2040
ataatcatcg aggtatgttt atatttatta tatgagtctt ggtaacaaat aacctataaa 2100
gtgttatga caaatttgc caataaagaa attaacaccc aaaagaatta aattgattat 2160
tttgtcaac ataacaattc ggcagttggc caaaaacttaa aagcaagatc tactacatcc 2220
cacattagtg ttcttatat accttcaagc aacccttgg attatgccc tgaacaagtt 2280
agtttctcat agcttacag atgttagatataa atatgtatac atatagatag 2340
ataatgtct ccactgacac aaaagaagaa ataaataatc tacatcaaaa aaaaaaaaaa 2400
aaaaaaaaaaa aaaa 2414

<210> 4
<211> 527
<212> PRT
<213> Homo sapiens

<400> 4

Met Ser Leu Gln Met Val Thr Val Ser Asn Asn Ile Ala Leu Ile Gln
1 5 10 15

Pro Gly Phe Ser Leu Met Asn Phe Asp Gly Gln Val Phe Phe Phe Gly
20 25 30

Gln Lys Gly Trp Pro Lys Arg Ser Cys Pro Thr Gly Val Phe His Leu
35 40 45

Asp Val Lys His Asn His Val Lys Leu Lys Pro Thr Ile Phe Ser Lys
50 55 60

Asp Ser Cys Tyr Leu Pro Pro Leu Arg Tyr Pro Ala Thr Cys Thr Phe
65 70 75 80

Lys Gly Ser Leu Glu Ser Glu Lys His Gln Tyr Ile Ile His Gly Gly
85 90 95

Lys Thr Pro Asn Asn Glu Val Ser Asp Lys Ile Tyr Val Met Ser Ile
100 105 110

Val Cys Lys Asn Asn Lys Lys Val Thr Phe Arg Cys Thr Glu Lys Asp
115 120 125

Leu Val Gly Asp Val Pro Glu Ala Arg Tyr Gly His Ser Ile Asn Val
130 135 140

Val Tyr Ser Arg Gly Lys Ser Met Gly Ala Leu Phe Gly Gly Arg Ser
145 150 155 160

Tyr Met Pro Ser Thr His Arg Thr Thr Glu Lys Trp Asn Ser Val Ala
165 170 175

Asp Cys Leu Pro Cys Val Phe Leu Val Asp Phe Glu Phe Gly Cys Ala
180 185 190

Thr Ser Tyr Ile Leu Pro Glu Leu Gln Asp Gly Leu Ser Phe His Val
195 200 205

Ser Ile Ala Lys Asn Asp Thr Ile Tyr Ile Leu Gly Gly His Ser Leu
210 215 220

Ala Asn Asn Ile Arg Pro Ala Asn Leu Tyr Arg Ile Arg Val Asp Leu
225 230 235 240

Pro Leu Gly Ser Pro Ala Val Asn Cys Thr Val Leu Pro Gly Gly Ile
245 250 255

Ser Val Ser Ser Ala Ile Leu Thr Gln Thr Asn Asn Asp Glu Phe Val
260 265 270

Ile Val Gly Gly Tyr Gln Leu Glu Asn Gln Lys Arg Met Ile Cys Asn
275 280 285

Ile Ile Ser Leu Glu Asp Asn Lys Ile Glu Ile Arg Glu Met Glu Thr
290 295 300

Pro Asp Trp Thr Pro Asp Ile Lys His Ser Lys Ile Trp Phe Gly Ser
305 310 315 320

Asn Thr Gly Asn Gly Thr Val Phe Leu Gly Ile Pro Gly Asp Asn Lys
325 330 335

Gln Val Val Ser Glu Gly Phe Tyr Phe Tyr Met Leu Lys Cys Ala Glu
340 345 350

Asp Asp Thr Asn Glu Glu Gln Thr Thr Phe Thr Asn Ser Gln Thr Ser
355 360 365

Thr Glu Asp Pro Gly Asp Ser Thr Pro Phe Glu Asp Ser Glu Glu Phe
370 375 380

Cys Phe Ser Ala Glu Ala Asn Ser Phe Asp Gly Asp Asp Glu Phe Asp
385 390 395 400

Thr Tyr Asn Glu Asp Asp Glu Glu Asp Glu Ser Glu Thr Gly Tyr Trp
405 410 415

Ile Thr Cys Cys Pro Thr Cys Asp Val Asp Ile Asn Thr Trp Val Pro
420 425 430

Phe Tyr Ser Thr Glu Leu Asn Lys Pro Ala Met Ile Tyr Cys Ser His
435 440 445

Gly Asp Gly His Trp Val His Ala Gln Cys Met Asp Leu Ala Glu Arg
450 455 460

Thr Leu Ile His Leu Ser Ala Gly Ser Asn Lys Tyr Tyr Cys Asn Glu
465 470 475 480

His Val Glu Ile Ala Arg Ala Leu His Thr Pro Gln Arg Val Leu Pro
485 490 495

Leu Lys Lys Pro Pro Met Lys Ser Leu Arg Lys Lys Gly Ser Gly Lys
500 505 510

Ile Leu Thr Pro Ala Lys Lys Ser Phe Leu Arg Arg Leu Phe Asp
515 520 525

<210> 5
<211> 1816
<212> DNA
<213> Homo sapiens

<400> 5
cttctctgcc agaagatacc atttcaactt taacacagca tgatcgaaac atacaaccaa 60
acttctcccc gatctgcggc cactggactg cccatcagca tgaaaatttt tatgtattta 120
cttactgttt ttcttatcac ccagatgatt gggtcagcac ttttgctgt gtatcttcat 180
agaaggttgg acaagataga agatgaaagg aatcttcatg aagattttgt attcatgaaa 240
acgatacaga gatcaacac aggagaaaga tccttattcct tactgaactg tgaggagatt 300
aaaagccagt ttgaaggctt tgtgaaggat ataatgttaa acaaagagga gacgaagaaa 360
gaaaacagct ttgaaatgca aaaaggtgat cagaatcctc aaattgcggc acatgtcata 420
agtgaggcca gcagtaaaac aacatctgtt ttacagtggg ctgaaaaagg atactacacc 480
atgagcaaca acttgtaac cctggaaaat gggaaacagc tgaccgttaa aagacaagga 540
ctctattata tctatgccca agtcaccttc tttccaatc gggagcttc gagtcaagct 600
ccatttatacg ccagcctctg cctaaagtcc cccggtagat tcgagagaat cttactcaga 660
gctgcaaata cccacagttc cgccaaacct tgccggcaac aatccattca cttgggagga 720
gtatgttgaat tgcaaccagg tgcttcggtg tttgtcaatg tgactgatcc aagccaagt 780
agccatggca ctggcttcac gtccttggc ttactcaaac tctgaacagt gtcaccttgc 840
aggctgttgt ggagctgacg ctgggagtc tcataataca gcacagcggtaaagcccacc 900
ccctgttaac tgcctattta taaccctagg atcctcctta tggagaacta tttattatac 960
actccaaggc atgtagaact gtaataagt aattacaggt cacatgaaac caaaacgggc 1020

cctgctccat aagagcttat atatctgaag cagcaacccc actgatgcag acatccagag	1080
agtccatatga aaagacaagg ccattatgca caggttgaat tctgagtaaa cagcagataa	1140
cttgccaaatg tcagtttgt ttcttcgt gcagtgtctt tccatggata atgcatttga	1200
tttatcagtg aagatgcaga agggaaatgg ggagcctcag ctcacattca gttatggttg	1260
actctgggtt cctatggcct tggtggaggg ggccaggctc tagaacgtct aacacagtgg	1320
agaaccgaaa ccccccccccc cccccccgccc accctctcg acagttattc attcttttc	1380
aatctctctc tctccatctc tctcttcag tctctctctc tcaaccttctt tcttccaatc	1440
tctctttctc aatctctctg tttcccttg tcagtctctt ccctccccca gtctctctc	1500
tcaatcccccc ttcttaacac acacacacac acacacacac acacacacac acacacacac	1560
acacacacac acacacacac agagtcaggc cggtgctagt cagttctctt cttccaccc	1620
tgtccctatc tctaccacta tagatgaggg tgaggagtag ggagtgcagc cctgagcctg	1680
cccaactcctc attacgaaat gactgtatTTT aaaggaaatc tattgtatct acctgcagtc	1740
tccattgttt ccagagtgaa ctgttaatta tcttgttatt tatttttga ataataaaaga	1800
cctcttaaca ttaaaa	1816

<210> 6
<211> 261
<212> PRT
<213> Homo sapiens

<400> 6

Met Ile Glu Thr Tyr Asn Gln Thr Ser Pro Arg Ser Ala Ala Thr Gly
1 5 10 15

Leu Pro Ile Ser Met Lys Ile Phe Met Tyr Leu Leu Thr Val Phe Leu
20 25 30

Ile Thr Gln Met Ile Gly Ser Ala Leu Phe Ala Val Tyr Leu His Arg
35 40 45

Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp Phe Val
50 55 60

Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser Leu Ser
65 70 75 80

Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe Val Lys
85 90 95

Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser Phe Glu
100 105 110

Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser
115 120 125

Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly
130 135 140

Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln
145 150 155 160

Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr
165 170 175

Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser
180 185 190

Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala
195 200 205

Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His
210 215 220

Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn
225 230 235 240

Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe
245 250 255

Gly Leu Leu Lys Leu
260

<210> 7
<211> 24
<212> PRT
<213> Artificial sequence

<220>
<223> Blocking peptide

<400> 7

Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly Tyr Tyr
1 5 10 15

Thr Met Ser Asn Asn Leu Val Thr
20

<210> 8
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> Blocking peptide

<400> 8

Gln Ile Ala Ala His Val Ile Ser Glu Ala Ser Ser Lys
1 5 10

<210> 9
<211> 22
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (21)..(21)
<223> n is dA

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is dG

<400> 9
augucucugc agaugguaac nn

22

<210> 10
<211> 22
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

```
<220>
<221> misc_feature
<222> (21)..(21)
<223> n is dA

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is dU

<400> 10
cuguuaccau cugcagagac nn
```

22

```
<210> 11
<211> 22
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule
```

```
<220>
<221> misc_feature
<222> (21)..(21)
<223> n is dC

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is dC

<400> 11
gguaggagau cuuccugaag nn
```

22

```
<210> 12
<211> 24
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule
```

```
<220>
<221> misc_feature
<222> (23)..(23)
<223> n is dC

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dU
```

<400> 12
ggggaugggc acugggucca uggn 24

<210> 13
<211> 24
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (23)..(23)
<223> n is dC

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dC

<400> 13
agcauggacc cagugcccau ccnn 24

<210> 14
<211> 22
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (21)..(21)
<223> n is dA

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is dU

<400> 14
cuguuaccau cugcagagac nn 22

<210> 15
<211> 24
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (23)..(23)
<223> n is dC

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dC

<400> 15
auggcagccu cuuuuccacc cann 24

<210> 16
<211> 24
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (23)..(23)
<223> n is dA

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dU

<400> 16
gguggguggg aaagaggcug ccnn 24

<210> 17
<211> 25
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dT

<220>

<221> misc_feature
<222> (25)..(25)
<223> n is dC

<400> 17
aaacuugcag cucagcaaaa aacnn 25

<210> 18
<211> 26
<212> RNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (25)..(25)
<223> n is dU

<220>
<221> misc_feature
<222> (26)..(26)
<223> n is dU

<400> 18
gaguuuuuuug cugagcugca aguunn 26

<210> 19
<211> 26
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (25)..(25)
<223> n is dU

<220>
<221> misc_feature
<222> (26)..(26)
<223> n is dU

<400> 19
gaguuuuuuug cugagcugca aguunn 26

<210> 20
<211> 24

<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (23)..(23)
<223> n is dC

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dC

<400> 20
ucacaaaacc cuggcccaug uunn

24

<210> 21
<211> 24
<212> RNA
<213> Artificial sequence

<220>
<223> RNA molecule

<220>
<221> misc_feature
<222> (23)..(23)
<223> n is dG

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is dA

<400> 21
ggaacauggg ccaggguuuu gunn

24