

AIME-GSWO3 Low energy semiconductor gas sensor based on WO_3 nanorods particles

Boukezzata Aymen, Berton Thomas, Lievre Agathe, Nguyen Assia, Meslouh Arselan

Overview:

AIME-GSW03 semiconductor gas sensor developed by INSA Toulouse student during their ISS (Innovative Smart System) training program in the AIME (Atelier Interuniversitaire Micronono Electronique). The gas sensor is based on Tungsten Trioxide $W0_3$ nanorods particles with 2 sensitive active sides, a wide $N-doped\ Poly-silisium$ layer used to heat the sensor up to $300^{\circ}C$, and an aluminium resistor layer to measure the temperature of the sensor.

Features:

- Detection of Ammonia gas NH₃
- Detection of Nitrogen dioxide NO₂
- Detection of Ethanol gas C_2H_6O
- Double integrated sensors
- Temperature sensor
- Thermal resistor
- Low cost
- Low energy consumption
- Easy-to-use

Figure 1: pinout gas sensor

Pin number	Usage			
1/6	Temperature sensor (Aluminium resistor)			
2/4	Gas sensor 1 resistor			
3/8	Heater resistor (Polysilicon resistor)			
7/9	Gas sensor 2 resistor			
5	Not connected			
10	Not Connected			

Type	Chemical sensor					
Materials	Silicon					
	N-doped poly-silicon (heater)					
	Aluminum (temperature measurement)					
	Nanoparticles of tungsten trioxide (WO3)					
Sensor type	Active (power supply required)					
Gas measurement	Resistive measure					
Temperature measurement	Resistive measure					
Detectable gaz	Ammonia (NH3)					
	Ethanol (C2H6O)					
Package	TO-5-10 (10 pins)					
Head Diameter	9.5mm					
Head Height	4.7mm					
Package Height	25mm					
Pin Diameter	0.6mm					
Mounting	Through hole fixed (THT)					
Detectable Gases	∘Nitrogen dioxide (NO2)					
	∘Hydrogen sulfide (SO2)					
	∘ (ethanol C2H6O)					
	∘Carbon monoxide (CO)					
	∘Dihydrogen (H2)					
	∘Methane (CH4)					
	∘Alcohols (-OH)					
Typical detection range	>1ppm					

Electrical characteristics

Figure 2: Resistivity of aluminium Val Polyakov -- 2004

Figure 4: Current/Voltage characteristic of the Heating resistor (polysilicon) at 20°C

	Unit	Value		
		Min	Typical	Max
Gas sensor resistance	GΩ	0.01	1	100
Temperature sensor	Ω	57	65	-
resistance				
Heater resistance	Ω	70	85	-
Gas sensor voltage	V	-	3.3	-
Temperature sensor	V	3.3	5	-
Heater	V	10	15	20

Fig 3 : Current/Voltage characteristic of the Heating resistor (polysilicon) at 20°C

Gas sensor characteristics

Dimensions

The package is a 10-Lead TO-5 metal:

Typical Applications

the resistance of the sensor is in the order of giga ohm a voltage divider is not efficient to measure the voltage. the above circuit uses an operational amplifier with a low offset voltage to convert the sensor current into resistance with this formula:

$$R_{sensor} = \left(1 + \frac{R_3}{R_2}\right) \cdot R_1 \cdot \frac{Vcc}{V_{adc}} - R1 - R5$$