Supplementary Information

Firczuk et al. 2012

Table of Content

Supplementary text – model equations

Supplementary Tables I – III

References for Supplementary Table III

Supplementary Tables IV – VI

[Supplementary Table Va/b also available as Excel data sheets]

Supplementary Figures 1 – 6

Supplementary Figure legends 1 – 6

Full mathematical model

$$\frac{d[elF2.GDP]}{dt} = -(kl_{11} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r1} \cdot [elF2.GDP.elF2B]) \\ + k_{r18} \cdot [60S] \cdot [48S.DedL.elF5B.GTP] \cdot mRNA.init.free \\ \frac{d[elF2B]}{dt} = -(kl_{r1} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r2} \cdot [elF2.GDP.elF2B]) \\ + (kl_{r2} \cdot [elF2.GDP.elF2B] - k2_{r2} \cdot [elF2.GDP] \cdot [elF2B]) \\ \frac{d[elF2.GDP.elF2B]}{dt} = +(kl_{r1} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r2} \cdot [elF2.GDP] \cdot [elF2B]) \\ - (kl_{r2} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r2} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r2} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r2} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r3} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r2} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r3} \cdot [elF2.GDP] \cdot [elF2B] - k2_{r2} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r3} \cdot [elF2.GTP] \cdot [elF2B] - k2_{r3} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r3} \cdot [elF2.GTP] \cdot [elF2B] - k2_{r3} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r3} \cdot [elF2.GTP] \cdot [elF2B] - k2_{r3} \cdot [elF2.GTP] \cdot [elF2B]) \\ - (kl_{r3} \cdot [elF2.GTP] \cdot [elF2B] - k2_{r3} \cdot [elF3.elF3]) \\ - (kl_{r3} \cdot [elF3.elF3.elF3.elF3.elF3] - k2_{r4} \cdot [elF3.elF3] \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3.elF3]) \\ - (kl_{r4} \cdot [elF3] \cdot [elF3] - k2_{r4} \cdot [elF3] - k2_{r4} \cdot [elF3] \\ - (kl_{r4} \cdot [elF3] - [elF3] - k2_{r4} \cdot [elF3] - k2_{r4} \cdot [elF3] - k2_{r4} \cdot [elF3] \\ - (kl_{r4} \cdot [elF3] - [elF3] - k2_{r4} \cdot [elF3]$$

```
\frac{\mathrm{d}[43\mathrm{S}]}{\mathrm{d}t} = \mathrm{k1_{r8}} \cdot [\mathrm{eIF1\_eIF3\_eIF5\_eIF2\_GTP\_Met-tRNA}] \cdot [40\mathrm{S\_eIF1A}]
                                                                               -~k1_{r14}\cdot[43S]\cdot[eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B]
                                                          \begin{split} \frac{\mathrm{d}[\mathrm{eIF4E}]}{\mathrm{d}t} &= \mathrm{k_{r18}} \cdot [60\mathrm{S}] \cdot [48\mathrm{S\_Ded1\_eIF5B\_GTP}] \cdot \mathrm{mRNA\_init\_free} \\ &- (\mathrm{k1_{r9}} \cdot [\mathrm{eIF4E}] \cdot [\mathrm{eIF4G}] - \mathrm{k2_{r9}} \cdot [\mathrm{eIF4E\_eIF4G}]) \end{split}
                                                          \frac{\mathrm{d[eIF4G]}}{\mathrm{d}t} = k_{r18} \cdot [60S] \cdot [48S\_Ded1\_eIF5B\_GTP] \cdot mRNA\_init\_free
                                                                             -(k1_{r9} \cdot [eIF4E] \cdot [eIF4G] - k2_{r9} \cdot [eIF4E\_eIF4G])
                                              \frac{d[eIF4E\_eIF4G]}{L} = k1_{r9} \cdot [eIF4E] \cdot [eIF4G] - k2_{r9} \cdot [eIF4E\_eIF4G]
                                                                               -(k1_{r11} \cdot [eIF4E\_eIF4G] \cdot [mRNA\_Pab1] - k2_{r11} \cdot [eIF4E\_eIF4G\_mRNA\_Pab1])
                                                 \frac{\text{d[mRNA\_cap]}}{\text{d}t} = \text{k}_{\text{r}18} \cdot [60\text{S}] \cdot [48\text{S\_Ded1\_eIF5B\_GTP}] \cdot \text{mRNA\_init\_free}
                                                                               -\left(k1_{r10}\cdot[mRNA\_cap]\cdot[Pab1]-k2_{r10}\cdot[mRNA\_Pab1]\right)
                                                            \frac{\text{d[Pab1]}}{\text{d}t} = \text{k}_{\text{r}18} \cdot [60\text{S}] \cdot [48\text{S\_Ded1\_eIF5B\_GTP}] \cdot \text{mRNA\_init\_free}
                                                                               -\left(k1_{r10}\cdot[mRNA\_cap]\cdot[Pab1]-k2_{r10}\cdot[mRNA\_Pab1]\right)
                                              \frac{\mathrm{d}[\mathrm{mRNA\_Pab1}]}{\mathrm{d}t} = \mathrm{k1_{r10}} \cdot [\mathrm{mRNA\_cap}] \cdot [\mathrm{Pab1}] - \mathrm{k2_{r10}} \cdot [\mathrm{mRNA\_Pab1}]
                                                                               -\left(k1_{r11}\cdot\left[eIF4E\_eIF4G\right]\cdot\left[mRNA\_Pab1\right]-k2_{r11}\cdot\left[eIF4E\_eIF4G\_mRNA\_Pab1\right]\right)
                       \frac{d[eIF4E\_eIF4G\_mRNA\_Pab1]}{d[eIF4E\_eIF4G] \cdot [mRNA\_Pab1] - k2_{r11} \cdot [eIF4E\_eIF4G\_mRNA\_Pab1]} = k1_{r11} \cdot [eIF4E\_eIF4G] \cdot [mRNA\_Pab1] - k2_{r11} \cdot [eIF4E\_eIF4G\_mRNA\_Pab1]
                                                                                -(k1_{r12} \cdot [eIF4A] \cdot [eIF4E\_eIF4G\_mRNA\_Pab1]
                                                                                    -k2_{r12} \cdot [eIF4A\_eIF4E\_eIF4G\_mRNA\_Pab1])
                                                         \frac{\text{d[eIF4A]}}{\text{d}t} = \text{k}_{\text{r}18} \cdot [60\text{S}] \cdot [48\text{S\_Ded1\_eIF5B\_GTP}] \cdot \text{mRNA\_init\_free}
                                                                              -(k1_{r12} \cdot [eIF4A] \cdot [eIF4E\_eIF4G\_mRNA\_Pab1]
           \frac{\mathrm{d}[\mathrm{eIF4A\_eIF4E\_eIF4G\_mRNA\_Pab1}]}{\mathrm{d}t} = \mathrm{k1_{r12}} \cdot [\mathrm{eIF4A}] \cdot [\mathrm{eIF4E\_eIF4G\_mRNA\_Pab1}]
                                                                                -~k2_{r12}\cdot[eIF4A\_eIF4E\_eIF4G\_mRNA\_Pab1]
                                                                                -(k1_{r13} \cdot [eIF4B] \cdot [eIF4A\_eIF4E\_eIF4G\_mRNA\_Pab1]
                                                                                    -k2_{r13} \cdot [eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B])
                                                          \frac{\text{d[eIF4B]}}{\text{d}t} = \text{k}_{\text{r}18} \cdot [60\text{S}] \cdot [48\text{S\_Ded1\_eIF5B\_GTP}] \cdot \text{mRNA\_init\_free}
                                                                               -\left(k1_{r13}\cdot\left[eIF4B\right]\cdot\left[eIF4A\_eIF4E\_eIF4G\_mRNA\_Pab1\right]
                                                                                    -k2_{r13} \cdot [eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B])
d[eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B] = k1_{r13} \cdot [eIF4B] \cdot [eIF4A\_eIF4E\_eIF4G\_mRNA\_Pab1]
                                                                                    -k2_{r13} \cdot [eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B])
                                                                               -~k1_{r14}\cdot[43S]\cdot[eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B]
                                                              \frac{\mathrm{d}[48\mathrm{S}]}{\mathrm{d}t} = \mathrm{k1_{r14}} \cdot [43\mathrm{S}] \cdot [\mathrm{eIF4E\_eIF4G\_mRNA\_Pab1\_eIF4A\_eIF4B}]
                                                                             -(k1_{r15} \cdot [48S] \cdot [Ded1] - k2_{r15} \cdot [48S\_Ded1])
                                                            \frac{\text{d[Ded1]}}{\text{d}t} = \text{k}_{\text{r}18} \cdot [60\text{S}] \cdot [48\text{S\_Ded1\_eIF5B\_GTP}] \cdot \text{mRNA\_init\_free}
                                                                             -(k1_{r15} \cdot [48S] \cdot [Ded1] - k2_{r15} \cdot [48S\_Ded1])
                                                    \frac{d[48S\_Ded1]}{dt} = k1_{r15} \cdot [48S] \cdot [Ded1] - k2_{r15} \cdot [48S\_Ded1]
                                                                                -\left(k1_{r17}\cdot[48S\_Ded1]\cdot[eIF5B\_GTP]-k2_{r17}\cdot[48S\_Ded1\_eIF5B\_GTP]\right)
```

```
\begin{split} \frac{\text{d}[\text{eIF5B\_GDP}]}{\text{d}t} &= \text{k}_{\text{r}18} \cdot [60\text{S}] \cdot [48\text{S\_Ded1\_eIF5B\_GTP}] \cdot \text{mRNA\_init\_free} \\ &- \left(\text{k}1_{\text{r}16} \cdot [\text{eIF5B\_GDP}] - \text{k}2_{\text{r}16} \cdot [\text{eIF5B\_GTP}]\right) \end{split}
                \frac{\mathrm{d}[\mathrm{eIF5B\_GTP}]}{\mathrm{d}t} = \mathrm{k1_{r16}} \cdot [\mathrm{eIF5B\_GDP}] - \mathrm{k2_{r16}} \cdot [\mathrm{eIF5B\_GTP}]
                                              -\left(k1_{r17}\cdot[48S\_Ded1]\cdot[eIF5B\_GTP]-k2_{r17}\cdot[48S\_Ded1\_eIF5B\_GTP]\right)
\frac{d[48S\_Ded1\_eIF5B\_GTP]}{d[48S\_Ded1]} = k1_{r17} \cdot [48S\_Ded1] \cdot [eIF5B\_GTP] - k2_{r17} \cdot [48S\_Ded1\_eIF5B\_GTP] - k2_{r17} \cdot [48S\_Ded1\_eIF5B\_GTP]
                                              -\;k_{r18}\cdot[60S]\cdot[48S\_Ded1\_eIF5B\_GTP]\cdot mRNA\_init\_free
                              \frac{\mathrm{d}[60\mathrm{S}]}{\mathrm{d}t} = \mathrm{k1}_{\mathrm{r}33} \cdot [80\mathrm{S\_eRF1\_eRF3\_GTP}]
                                              -k_{r18} \cdot [60S] \cdot [48S\_Ded1\_eIF5B\_GTP] \cdot mRNA\_init\_free
               \frac{\text{d[eEF1A\_GDP]}}{\text{d}t} = \text{k23f} \cdot [80\text{S\_aa\_tRNA\_eEF1A\_GTP\_1}]
                                               + k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_2]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_3]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_4]
                                               + k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_5]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_6]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_7]
                                               + k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_8]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_9]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_10]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_11]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_12]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_13]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_14]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_15]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_16]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_17]
                                               + k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_18]
                                               + k23f \cdot [80S_aa-tRNA_eEF1A_GTP_19]
                                               -\left(k1_{r19}\cdot[eEF1A\_GDP]\cdot[eEF1B]-k2_{r19}\cdot[eEF1A\_GDP\_eEF1B]\right)
                         \begin{split} \frac{\mathrm{d}[\mathrm{eEF1B}]}{\mathrm{d}t} &= \mathrm{k1_{r20}} \cdot [\mathrm{eEF1A\_GDP\_eEF1B}] - \mathrm{k2_{r20}} \cdot [\mathrm{eEF1A\_GTP}] \cdot [\mathrm{eEF1B}] \\ &- (\mathrm{k1_{r19}} \cdot [\mathrm{eEF1A\_GDP}] \cdot [\mathrm{eEF1B}] - \mathrm{k2_{r19}} \cdot [\mathrm{eEF1A\_GDP\_eEF1B}]) \end{split}
   \frac{\text{d[eEF1A\_GDP\_eEF1B]}}{\text{d}t} = \text{k1}_{\text{r19}} \cdot [\text{eEF1A\_GDP}] \cdot [\text{eEF1B}] - \text{k2}_{\text{r19}} \cdot [\text{eEF1A\_GDP\_eEF1B}]
                                              -(k1_{r20} \cdot [eEF1A\_GDP\_eEF1B] - k2_{r20} \cdot [eEF1A\_GTP] \cdot [eEF1B])
               \frac{\mathrm{d}[\mathrm{eEF1A\_GTP}]}{\mathrm{d}t} = \mathrm{k1_{r20}} \cdot [\mathrm{eEF1A\_GDP\_eEF1B}] - \mathrm{k2_{r20}} \cdot [\mathrm{eEF1A\_GTP}] \cdot [\mathrm{eEF1B}]
                                               -(k1_{r21} \cdot [eEF1A\_GTP] \cdot [aa\_tRNA] - k2_{r21} \cdot [aa\_tRNA\_eEF1A\_GTP])
```

```
d[aa-tRNA\_eEF1A\_GTP]
                              = k1_{r21} \cdot [eEF1A\_GTP] \cdot [aa-tRNA] - k2_{r21} \cdot [aa-tRNA\_eEF1A\_GTP]
             \mathrm{d}t
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_1] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_1])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_2] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_2])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_3] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_3])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_4] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_4])
                                 -\left(\text{k22f}\cdot\left[\text{aa-tRNA\_eEF1A\_GTP}\right]\cdot\left[80\text{S\_5}\right]-\text{k22b}\cdot\left[80\text{S\_aa-tRNA\_eEF1A\_GTP\_5}\right]\right)
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_6] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_6])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_7] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_7])
                                 - \text{ (k22f} \cdot [\text{aa-tRNA\_eEF1A\_GTP}] \cdot [\text{80S\_8}] - \text{k22b} \cdot [\text{80S\_aa-tRNA\_eEF1A\_GTP\_8}])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_9] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_9])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_10] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_10])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_11] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_11])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_12] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_12])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_13] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_13])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_14] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_14])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_15] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_15])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_16] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_16])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_17] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_17])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_18] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_18])
                                 -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_19] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_19])
             d[eEF2\_GDP]
                                                                          mRNA\_num1
                             = k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_1]
                                                                           mRNA\_den1
                                                                             mRNA_num2
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_2]
                                                                              mRNA_den2
                                                                              mRNA_num3
                                 + k26f \cdot [80S_aa-tRNA_eEF2_GTP_3]
                                                                              \overline{mRNA}_den3
                                                                              mRNA_num4
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_4]
                                                                              mRNA_den4
                                                                              mRNA\_num5
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_5]
                                                                              mRNA\_den5
                                 + k26f \cdot [80S_aa-tRNA_eEF2_GTP_6]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_7]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_8]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_9]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_10]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_11]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_12]
                                 +~k26f\cdot[80S\_aa\_tRNA\_eEF2\_GTP\_13]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_14]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_15]
                                 + k26f \cdot [80S_a-tRNA_eEF2_GTP_16]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_17]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_18]
                                 + k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_19]
                                 -(k1_{r24} \cdot [eEF2\_GDP] - k2_{r24} \cdot [eEF2\_GTP])
```

```
\frac{\mathrm{d}[\mathrm{eEF2\_GTP}]}{\mathrm{d}t} = \mathrm{k1_{r24}} \cdot [\mathrm{eEF2\_GDP}] - \mathrm{k2_{r24}} \cdot [\mathrm{eEF2\_GTP}]
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_14] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_14])
                    -\left(k25f\cdot\left[eEF2\_GTP\right]\cdot\left[80S\_aa-tRNA\_15\right]-k25b\cdot\left[80S\_aa-tRNA\_eEF2\_GTP\_15\right]\right)
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_16] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_16])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_17] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_17])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_18] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_18])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_19] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_19])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_1] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_1])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_2] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_2])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_3] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_3])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_4] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_4])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_5] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_5])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_6] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_6])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_7] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_7])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_8] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_8])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_9] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_9])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_10] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_10])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_11] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_11])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_12] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_12])
                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_13] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_13])
\frac{d[eEF3\_GDP]}{dEFS\_GDP} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_2]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_3}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_4}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_5}]
                     + k29f \cdot [80S_{TRNA_eEF3_GTP_6}]
                     + k29f \cdot [80S_{TRNA_eEF3_GTP_7}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_8}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_9}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_10}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_11]
                     + k29f \cdot [80S_{TRNA_eEF3_GTP_12]
                     + k29f \cdot [80S_{TRNA_eEF3_GTP_13]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_14]
                     + k29f \cdot [80S_{TRNA_eEF3_GTP_15]
                     + k29f \cdot [80S_{TRNA_eEF3_GTP_16]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_17}]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_18]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_19]
                     + k29f \cdot [80S_{tRNA_eEF3_GTP_20}]
                     -(k1_{r27} \cdot [eEF3\_GDP] - k2_{r27} \cdot [eEF3\_GTP])
```

```
\frac{\mathrm{d}[\mathrm{eEF3\_GTP}]}{\mathrm{d}t} = \mathrm{k1_{r27}} \cdot [\mathrm{eEF3\_GDP}] - \mathrm{k2_{r27}} \cdot [\mathrm{eEF3\_GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_2}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_3}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_4}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_5}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_6}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S\_tRNA\_7] \cdot [eEF3\_GTP]
                                                                                                        -k28f \cdot [80S_{tRNA_8}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_9}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_10}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_11}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_12}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S\_tRNA\_13] \cdot [eEF3\_GTP]
                                                                                                        -k28f \cdot [80S_{tRNA_14}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_15}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S\_tRNA\_16] \cdot [eEF3\_GTP]
                                                                                                        -k28f \cdot [80S_{tRNA_17}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_18}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_19}] \cdot [eEF3_{GTP}]
                                                                                                        -k28f \cdot [80S_{tRNA_20}] \cdot [eEF3_{GTP}]
                                                                    \begin{split} \frac{\mathrm{d}[80\mathrm{S\_1}]}{\mathrm{d}t} &= \mathrm{k_{r18}} \cdot [60\mathrm{S}] \cdot [48\mathrm{S\_Ded1\_eIF5B\_GTP}] \cdot \mathrm{mRNA\_init\_free} \\ &- (\mathrm{k22f} \cdot [\mathrm{aa\_tRNA\_eEF1A\_GTP}] \cdot [80\mathrm{S\_1}] - \mathrm{k22b} \cdot [80\mathrm{S\_aa\_tRNA\_eEF1A\_GTP\_1}]) \end{split}
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_1]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_1] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_1]
                                                                                                       -k23f \cdot [80S_aa-tRNA_eEF1A_GTP_1]
                                       \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_1}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_1}]
                                                                                                       -\left(\text{k25f}\cdot\left[\text{eEF2\_GTP}\right]\cdot\left[80\text{S\_aa-tRNA\_1}\right]-\text{k25b}\cdot\left[80\text{S\_aa-tRNA\_eEF2\_GTP\_1}\right]\right)
     \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_1]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_1] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_1]
                                                                                                      - k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_1] \cdot \frac{mRNA\_num1}{mRNA\_den1}
                                                                   \frac{\mathrm{d}[80\mathrm{S}\_2]}{\mathrm{d}t} = \mathrm{k}29\mathrm{f} \cdot [80\mathrm{S}\_\mathrm{tRNA\_eEF3\_GTP\_2}]
                                                                                                        -\left(\text{k22f}\cdot\left[\text{aa-tRNA\_eEF1A\_GTP}\right]\cdot\left[80\text{S\_2}\right]-\text{k22b}\cdot\left[80\text{S\_aa-tRNA\_eEF1A\_GTP\_2}\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_2]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_2] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_2] \cdot [80S\_aa\_tRNA\_eET1A\_aA_TTA\_2] \cdot [80S\_aA\_tRNA\_eET1A\_aA_TTA\_2] \cdot [80S\_aA\_tRNA\_eET1A\_aA_TTA\_2] \cdot [80S\_aA\_tRNA\_eET1A\_aA_TTA\_2] \cdot [80S\_aA\_tRNA\_eET1A\_aA_TTA_2] \cdot [80S\_aA\_tRNA\_eET1A\_aA_TTA_2] \cdot [80S\_aA\_tRNA\_eET1A\_aA_TTA_2] \cdot [80S\_aA\_tRNA\_eET1A\_AA_TTA_2] \cdot 
                                                                                                       -k23f \cdot [80S_aa-tRNA_eEF1A_GTP_2]
                                        \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_2}]}{\mathrm{d}t} = \mathrm{k}23\mathrm{f}\cdot[80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_2}]
                                                                                                      -\left(\text{k25f}\cdot\left[\text{eEF2\_GTP}\right]\cdot\left[80\text{S\_aa-tRNA\_2}\right]-\text{k25b}\cdot\left[80\text{S\_aa-tRNA\_eEF2\_GTP\_2}\right]\right)
     \frac{\text{d[80S\_aa-tRNA\_eEF2\_GTP\_2]}}{\text{d}t} = \text{k25f} \cdot [\text{eEF2\_GTP}] \cdot [\text{80S\_aa-tRNA\_2}] - \text{k25b} \cdot [\text{80S\_aa-tRNA\_eEF2\_GTP\_2}]
                                                                                                      -~k26f\cdot[80S\_aa-tRNA\_eEF2\_GTP\_2]\cdot\frac{mRNA\_num2}{mRNA\_den2}
                                                \frac{\text{d[80S\_tRNA\_2]}}{\text{d}t} = \text{k26f} \cdot [80S\_\text{aa-tRNA\_eEF2\_GTP\_1}] \cdot \frac{\text{mRNA\_num1}}{\text{mRNA\_den1}}
                                                                                                        -k28f \cdot [80S_{tRNA_2}] \cdot [eEF3_{GTP}]
```

```
\frac{\mathrm{d}[80\mathrm{S\_tRNA\_eEF3\_GTP\_2}]}{\mathrm{d}t} = \mathrm{k28f} \cdot [80\mathrm{S\_tRNA\_2}] \cdot [\mathrm{eEF3\_GTP}] - \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_2}]
                                                                                        \frac{d[80S\_3]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_3]
                                                                                                                                         -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_3] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_3])
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_3]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_3] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_3] + k22b \cdot [80S\_aa\_tRNA\_eEF1A\_aA\_tRNA\_eEF1A\_aA\_tRAA_eEF1A\_aA\_tRAA_eEF1A\_aA\_tRAA_eEF1A\_aA\_tRAA_eEF1A\_aA\_tRAA_eEF1A\_tRAA_eEF1A\_aA\_tRAA_eEF1A\_tRAA_eEF1A\_tRAA_eEF1A\_tRAA_eEF1A\_tRAA_eEF1A\_tRAA_eEF1A\_tRAA_eE
                                                                                                                                         -k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_3]
                                                    \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_3}]}{\mathrm{d}t} = \mathrm{k}23\mathrm{f}\cdot[80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_3}]
                                                                                                                                        -\left(\text{k25f}\cdot\left[\text{eEF2\_GTP}\right]\cdot\left[80\text{S\_aa-tRNA\_3}\right]-\text{k25b}\cdot\left[80\text{S\_aa-tRNA\_eEF2\_GTP\_3}\right]\right)
      \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_3]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_3] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_3]
                                                                                                                                     k26f · [80S_aa-tRNA_eEF2_GTP_3] · \frac{\text{mRNA\_num3}}{\text{RNA}}
                                                               \frac{\text{d}[80\text{S\_tRNA\_3}]}{\text{d}t} = \text{k26f} \cdot [80\text{S\_aa\_tRNA\_eEF2\_GTP\_2}] \cdot \frac{\text{mRNA\_den3}}{\text{mRNA\_den2}} - \text{k28f} \cdot [80\text{S\_tRNA\_3}] \cdot [\text{eEF3\_GTP}]
                  \frac{d[80S\_tRNA\_eEF3\_GTP\_3]}{d[80S\_tRNA\_eEF3\_GTP]} = k28f \cdot [80S\_tRNA\_3] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_3]
                                                                                         \frac{\mathrm{d}[80\mathrm{S}\_4]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_4}]
                                                                                                                                       -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_4] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_4])
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_4]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_4] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_4]
                                                                                                                                       -(k23f \cdot [80S_aa-tRNA_eEF1A_GTP_4])
                                                    \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_4}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_4}]
                                                                                                                                         -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_4] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_4])
      \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_4]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_4] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_4]
                                                                                                                                       -~k26f\cdot[80S\_aa\_tRNA\_eEF2\_GTP\_4]\cdot\frac{mRNA\_num4}{mRNA\_den4}
                                                               \frac{\text{d[80S\_tRNA\_4]}}{\text{d}t} = \text{k26f} \cdot [80S\_\text{aa-tRNA\_eEF2\_GTP\_3}] \cdot \frac{\text{mRNA\_num3}}{\text{mRNA\_den3}}
                                                                                                                                         -k28f \cdot [80S_{tRNA_4}] \cdot [eEF3_{GTP}]
                 \frac{d[80S\_tRNA\_eEF3\_GTP\_4]}{d[80S\_tRNA\_eEF3\_GTP]} = k28f \cdot [80S\_tRNA\_4] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_4] + k29f \cdot [80S\_tRNA\_eEF3\_GTP\_4]
                                                                                         \frac{d[80S\_5]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_5]
                                                                                                                                         -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_5] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_5])
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_5]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_5] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_5] \cdot [80S\_aa\_tRNA\_eET1A\_GTP\_5] \cdot [80S\_aa\_tRNA\_eET1A\_GTP\_5] \cdot [80S\_aa\_tRNA\_eET1A\_GTP\_5] \cdot [80S\_aA\_tRNA\_eET1A\_GTP\_5] \cdot [80S\_aA\_tRNA\_eET1A\_GTP\_5] \cdot [80S\_aA\_tRNA\_eET1A\_tRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_e
                                                                                                                                         -k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_5]
                                                    \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_5}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_5}]
                                                                                                                                         -\left(k25f\cdot\left[eEF2\_GTP\right]\cdot\left[80S\_aa\_tRNA\_5\right]-k25b\cdot\left[80S\_aa\_tRNA\_eEF2\_GTP\_5\right]\right)
      \frac{\mathrm{d}[80\mathrm{S\_aa-tRNA\_eEF2\_GTP\_5}]}{\mathrm{J}_{2}} = \mathrm{k}25\mathrm{f} \cdot [\mathrm{eEF2\_GTP}] \cdot [80\mathrm{S\_aa-tRNA\_5}] - \mathrm{k}25\mathrm{b} \cdot [80\mathrm{S\_aa-tRNA\_eEF2\_GTP\_5}]
                                                                                                                                         -~k26f\cdot[80S\_aa\_tRNA\_eEF2\_GTP\_5]\cdot\frac{mRNA\_num5}{mRNA\_den5}
```

```
\frac{\text{d[80S\_tRNA\_5]}}{\text{d}t} = \text{k26f} \cdot [80S\_\text{aa-tRNA\_eEF2\_GTP\_4}] \cdot \frac{\text{mRNA\_num4}}{\text{mRNA\_den4}}
                                                     -k28f \cdot [80S_{tRNA_5}] \cdot [eEF3_{GTP}]
       \frac{\mathrm{d}[80S\_tRNA\_eEF3\_GTP\_5]}{\cdot \cdot} = \mathrm{k28f} \cdot [80S\_tRNA\_5] \cdot [\mathrm{eEF3\_GTP}] - \mathrm{k29f} \cdot [80S\_tRNA\_eEF3\_GTP\_5]
                                   \frac{d[80S\_6]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_6]
                                                      -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_6] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_6])
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_6]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_6] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_6]
                                                     -k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_6]
                    \frac{\text{d[80S\_aa-tRNA\_6]}}{\text{d}t} = \text{k23f} \cdot [80S\_aa\text{-tRNA\_eEF1A\_GTP\_6}]
                                                     -\left(\text{k25f}\cdot\left[\text{eEF2\_GTP}\right]\cdot\left[80\text{S\_aa-tRNA\_6}\right]-\text{k25b}\cdot\left[80\text{S\_aa-tRNA\_eEF2\_GTP\_6}\right]\right)
  \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_6]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_6] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_6]
                                                     -k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_6]
                         \frac{\text{d[80S\_tRNA\_6]}}{\text{d}t} = \text{k26f} \cdot [80S\_\text{aa\_tRNA\_eEF2\_GTP\_5}] \cdot \frac{\text{mRNA\_num5}}{\text{mRNA\_den5}}
                                                    -~k28f\cdot[80S\_tRNA\_6]\cdot[eEF3\_GTP]
       \frac{d[80S\_tRNA\_eEF3\_GTP\_6]}{d[80S\_tRNA\_6] \cdot [eEF3\_GTP]} = k28f \cdot [80S\_tRNA\_6] \cdot [eEF3\_GTP]
                                                     -(k29f \cdot [80S_tRNA_eEF3_GTP_6])
                                   \frac{d[80S\_7]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_7]
                                                      -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_7] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_7])
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_7]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_7] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_7]
                                                     -k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_7]
                    \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_7}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_7}]
                                                     -\left(\text{k25f}\cdot\left[\text{eEF2\_GTP}\right]\cdot\left[80\text{S\_aa-tRNA\_7}\right]-\text{k25b}\cdot\left[80\text{S\_aa-tRNA\_eEF2\_GTP\_7}\right]\right)
  \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_7]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_7] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_7]
                                                     -k26f \cdot [80S_aa-tRNA_eEF2_GTP_7]
                         \frac{\mathrm{d}[80\mathrm{S\_tRNA\_7}]}{\mathrm{d}} = \mathrm{k26f} \cdot [80\mathrm{S\_aa\_tRNA\_eEF2\_GTP\_6}] - \mathrm{k28f} \cdot [80\mathrm{S\_tRNA\_7}] \cdot [\mathrm{eEF3\_GTP}]
       \frac{d[80S\_tRNA\_eEF3\_GTP\_7]}{.} = k28f \cdot [80S\_tRNA\_7] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_7]
                          \mathrm{d}t
                                   \frac{d[80S\_8]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_8]
                                                      -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_8] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_8])
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_8]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_8] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_8]
                                                     -k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_8]
                    \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_8}]}{\mathrm{d}t} = \mathrm{k}23\mathrm{f}\cdot[80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_8}]
                                                     -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_8] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_8])
  \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_8]}{.} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_8] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_8]
                                                      -k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_8]
```

```
\frac{d[80S\_tRNA\_8]}{d[80S\_tRNA\_8]} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_7] - k28f \cdot [80S\_tRNA\_8] \cdot [eEF3\_GTP]
               \frac{d[80S\_tRNA\_eEF3\_GTP\_8]}{d[80S\_tRNA\_eEF3\_GTP]} = k28f \cdot [80S\_tRNA\_8] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_8]
                                                               \frac{\mathrm{d}[80\mathrm{S\_9}]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_9}]
                                                                                                -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_9\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_9\right]\right)
  \frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_9]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_9] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_9] \cdot [80S\_aa\_tRNA\_eET1A\_GTP\_9] \cdot [80S\_aa\_tRNA\_eET1A\_GTP\_9] \cdot [80S\_aa\_tRNA\_eET1A\_GTP\_9] \cdot [80S\_aA\_tRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eET1A\_TRNA\_eE
                                                                                                - k23f \cdot [80S_aa-tRNA_eEF1A_GTP_9]
                                      \frac{\mathrm{d}[80\mathrm{S\_aa\text{-}tRNA\_9}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa\text{-}tRNA\_eEF1A\_GTP\_9}]
                                                                                                -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_9] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_9])
       \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_9]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_9] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_9]
                                                                                                -k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_9]
                                              \frac{\mathrm{d}[80\mathrm{S\_tRNA\_9}]}{\cdot\cdot} = \mathrm{k26f} \cdot [80\mathrm{S\_aa\_tRNA\_eEF2\_GTP\_8}] - \mathrm{k28f} \cdot [80\mathrm{S\_tRNA\_9}] \cdot [\mathrm{eEF3\_GTP}]
               \frac{d[80S\_tRNA\_eEF3\_GTP\_9]}{d[80S\_tRNA\_eEF3\_GTP]} = k28f \cdot [80S\_tRNA\_9] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_9]
                                                             \frac{\mathrm{d}[80\mathrm{S\_10}]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_10}]
                                                                                                -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_10\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_10\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_10]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_10] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_10] + k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_10]
                                                                                                -k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_10]
                                   \frac{d[80S\_aa\_tRNA\_10]}{d[80S\_aa\_tRNA\_eEF1A\_GTP\_10]} = k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_10]
                                                                                                -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_10] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_10])
    \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_10]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_10] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_10]
                                                                                               -k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_10]
                                           \frac{\mathrm{d}[80\mathrm{S\_tRNA\_10}]}{\mathrm{r}} = \mathrm{k26f} \cdot [80\mathrm{S\_aa\_tRNA\_eEF2\_GTP\_9}] - \mathrm{k28f} \cdot [80\mathrm{S\_tRNA\_10}] \cdot [\mathrm{eEF3\_GTP}]
            \frac{d[80S\_tRNA\_eEF3\_GTP\_10]}{d[80S\_tRNA\_eEF3\_GTP\_10]} = k28f \cdot [80S\_tRNA\_10] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_10]
                                                             \frac{\mathrm{d[80S\_11]}}{\mathrm{d}t} = \mathrm{k29f} \cdot [80S\_t\mathrm{RNA\_eEF3\_GTP\_11}]
                                                                                                -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_11\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_11\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_11]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_11] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_11]
                                                                                                - k23f \cdot [80S_aa-tRNA_eEF1A_GTP_11]
                                   \frac{\text{d[80S\_aa-tRNA\_11]}}{\text{d}t} = \text{k23f} \cdot [80S\_aa\text{-tRNA\_eEF1A\_GTP\_11]}
                                                                                                -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_11] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_11])
    \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_11]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_11] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_11]
                                                                                                -k26f \cdot [80S_a-tRNA_eEF2_GTP_11]
                                           \frac{\mathrm{d}[80\mathrm{S\_tRNA\_11}]}{\mathrm{d}t} = \mathrm{k26f} \cdot [80\mathrm{S\_aa\_tRNA\_eEF2\_GTP\_10}] - \mathrm{k28f} \cdot [80\mathrm{S\_tRNA\_11}] \cdot [\mathrm{eEF3\_GTP}]
```

```
\frac{d[80S\_tRNA\_eEF3\_GTP\_11]}{d[80S\_tRNA\_eEF3\_GTP\_11]} = k28f \cdot [80S\_tRNA\_11] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_11]
                                                                                                    \frac{d[80S\_12]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_12]
                                                                                                                                                               -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_12\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_12\right]\right)
\frac{d[80S\_aa-tRNA\_eEF1A\_GTP\_12]}{d[80S\_aa-tRNA\_eEF1A\_GTP]} = k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_12] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_12]
                                                                                                                                                               -k23f \cdot [80S_aa-tRNA_eEF1A_GTP_12]
                                                          \frac{\text{d[80S\_aa-tRNA\_12]}}{\text{d}t} = \text{k23f} \cdot [80S\_aa\text{-tRNA\_eEF1A\_GTP\_12}]
                                                                                                                                                                -\left(k25f\cdot\left[eEF2\_GTP\right]\cdot\left[80S\_aa-tRNA\_12\right]-k25b\cdot\left[80S\_aa-tRNA\_eEF2\_GTP\_12\right]\right)
      -k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_12]
                                                                        \frac{d[80S\_tRNA\_12]}{d} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_11] - k28f \cdot [80S\_tRNA\_12] \cdot [eEF3\_GTP]
                    \frac{d[80S\_tRNA\_eEF3\_GTP\_12]}{d[80S\_tRNA\_eEF3\_GTP\_12]} = k28f \cdot [80S\_tRNA\_12] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_12]
                                                                                                     \frac{\mathrm{d}[80\mathrm{S\_13}]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_13}]
                                                                                                                                                                -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_13\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_13\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_13]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_13] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_13]
                                                                                                                                                                -k23f \cdot [80S_a-tRNA_eEF1A_GTP_13]
                                                         \frac{d[80S\_aa\_tRNA\_13]}{d[80S\_aa\_tRNA\_eEF1A\_GTP\_13]} = k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_13]
                                                                                                                                                                -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_13] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_13])
      \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_13]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_13] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_13] + k25b \cdot [80S\_aa\_tRNA\_eEF2\_eTAB\_eEF2\_eTAB\_eEF2\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA\_eEFABA
                                                                                                                                                              -k26f \cdot [80S_a-tRNA_eEF2_GTP_13]
                                                                        \frac{d[80S\_tRNA\_13]}{...} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_12] - k28f \cdot [80S\_tRNA\_13] \cdot [eEF3\_GTP]
                    \frac{d[80S\_tRNA\_eEF3\_GTP\_13]}{\cdot} = k28f \cdot [80S\_tRNA\_13] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_13]
                                                                                                    \frac{\mathrm{d}[80\mathrm{S}\_14]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S}\_\mathrm{tRNA}\_\mathrm{eEF3}\_\mathrm{GTP}\_14]
                                                                                                                                                                -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_14\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_14\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_14]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_14] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_14] + k22b \cdot [80S\_aa\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA\_eEF1A\_tRNA
                                                                                                                                                                -k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_14]
                                                          \frac{\text{d[80S\_aa-tRNA\_14]}}{\text{d}t} = \text{k23f} \cdot [80S\_aa\text{-tRNA\_eEF1A\_GTP\_14}]
                                                                                                                                                                -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_14] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_14])
      \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_14]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_14] \\ - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] \\ = k25f \cdot [eEF2\_GTP] \cdot [eEF2\_GTP] \cdot [eEF2\_GTP] \\ - k25f \cdot [eEF2\_GTP\_14] \\ - k25f \cdot [eEF2\_GTP\_1
                                                                                                                                                               - k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_14]
                                                                        \frac{d[80S\_tRNA\_14]}{d[80S\_tRNA\_14]} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_13] - k28f \cdot [80S\_tRNA\_14] \cdot [eEF3\_GTP]
                    \frac{d[80S\_tRNA\_eEF3\_GTP\_14]}{d[80S\_tRNA\_eEF3\_GTP\_14]} = k28f \cdot [80S\_tRNA\_14] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_14]
```

```
\frac{\mathrm{d[80S\_15]}}{\mathrm{d}t} = \mathrm{k29f} \cdot [80S\_tRNA\_eEF3\_GTP\_15]
                                                    -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_15\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_15\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_15]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_15] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_15]
                                                    -k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_15]
                   \frac{\mathrm{d}[80\mathrm{S\_aa-tRNA\_15}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa-tRNA\_eEF1A\_GTP\_15}]
                                                     -\left(k25f\cdot\left[eEF2\_GTP\right]\cdot\left[80S\_aa-tRNA\_15\right]-k25b\cdot\left[80S\_aa-tRNA\_eEF2\_GTP\_15\right]\right)
  \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_15]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_15] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_15]
                                                     -k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_15]
                       \frac{d[80S\_tRNA\_15]}{d[80S\_tRNA\_15]} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_14] - k28f \cdot [80S\_tRNA\_15] \cdot [eEF3\_GTP]
      \frac{d[80S\_tRNA\_eEF3\_GTP\_15]}{d[80S\_tRNA\_eEF3\_GTP\_15]} = k28f \cdot [80S\_tRNA\_15] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_15]
                                 \frac{\mathrm{d}[80\mathrm{S}\_16]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S}\_\mathrm{tRNA\_eEF3\_GTP\_16}]
                                                     -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_16\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_16\right]\right)
-k23f \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_16]
                   \frac{\text{d[80S\_aa-tRNA\_16]}}{\text{d}t} = \text{k23f} \cdot [80S\_aa\text{-tRNA\_eEF1A\_GTP\_16}]
                                                    -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_16] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_16])
  \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_16]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_16] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_16]
                                                    -k26f \cdot [80S_aa-tRNA_eEF2\_GTP\_16]
                       \frac{\mathrm{d}[80\mathrm{S\_tRNA\_16}]}{\mathrm{d}t} = \mathrm{k26f} \cdot [80\mathrm{S\_aa\_tRNA\_eEF2\_GTP\_15}] - \mathrm{k28f} \cdot [80\mathrm{S\_tRNA\_16}] \cdot [\mathrm{eEF3\_GTP}]
      \frac{d[80S\_tRNA\_eEF3\_GTP\_16]}{d[80S\_tRNA\_eEF3\_GTP\_16]} = k28f \cdot [80S\_tRNA\_16] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_16]
                                 \frac{d[80S\_17]}{dt} = k29f \cdot [80S\_tRNA\_eEF3\_GTP\_17]
                                                    -(k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_17] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_17])
\frac{d[80S\_aa-tRNA\_eEF1A\_GTP\_17]}{d[80S\_aa-tRNA\_eEF1A\_GTP]} = k22f \cdot [aa-tRNA\_eEF1A\_GTP] \cdot [80S\_17] - k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_17] + k22b \cdot [80S\_aa-tRNA\_eEF1A\_GTP\_17]
                                                     -k23f \cdot [80S_aa-tRNA_eEF1A_GTP_17]
                   \frac{\mathrm{d}[80\mathrm{S\_aa-tRNA\_17}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa-tRNA\_eEF1A\_GTP\_17}]
                                                     -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_17] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_17])
  \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_17]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_17] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_17]
                                                     -k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_17]
                       \frac{d[80S\_tRNA\_17]}{.} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_16] - k28f \cdot [80S\_tRNA\_17] \cdot [eEF3\_GTP]
      \frac{d[80S\_tRNA\_eEF3\_GTP\_17]}{\cdot} = k28f \cdot [80S\_tRNA\_17] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_17]
                                 \frac{\mathrm{d}[80\mathrm{S\_18}]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_18}]
                                                     -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_18\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_18\right]\right)
```

```
\frac{\mathrm{d}[80\mathrm{S\_aa-tRNA\_eEF1A\_GTP\_18}]}{\mathrm{d}[80\mathrm{S\_aa-tRNA\_eEF1A\_GTP}]} = \mathrm{k22f} \cdot [\mathrm{aa-tRNA\_eEF1A\_GTP}] \cdot [80\mathrm{S\_18}] - \mathrm{k22b} \cdot [80\mathrm{S\_aa-tRNA\_eEF1A\_GTP\_18}]
                                                                                                  -k23f \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_18]
                                    \frac{\text{d[80S\_aa-tRNA\_18]}}{\text{d}t} = \text{k23f} \cdot [80S\_aa\text{-tRNA\_eEF1A\_GTP\_18]}
                                                                                                  -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_18] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_18])
    \frac{d[80S\_aa\_tRNA\_eEF2\_GTP\_18]}{d[80S\_aa\_tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa\_tRNA\_18] - k25b \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_18]
                                                                                                  -k26f \cdot [80S\_aa-tRNA\_eEF2\_GTP\_18]
                                            \frac{d[80S\_tRNA\_18]}{d[80S\_tRNA\_18]} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_17] - k28f \cdot [80S\_tRNA\_18] \cdot [eEF3\_GTP]
            \frac{d[80S\_tRNA\_eEF3\_GTP\_18]}{d[80S\_tRNA\_eEF3\_GTP\_18]} = k28f \cdot [80S\_tRNA\_18] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_18]
                                                              \frac{\mathrm{d}[80\mathrm{S\_19}]}{\mathrm{d}t} = \mathrm{k29f} \cdot [80\mathrm{S\_tRNA\_eEF3\_GTP\_19}]
                                                                                                  -\left(k22f\cdot\left[aa\text{-}tRNA\_eEF1A\_GTP\right]\cdot\left[80S\_19\right]-k22b\cdot\left[80S\_aa\text{-}tRNA\_eEF1A\_GTP\_19\right]\right)
\frac{d[80S\_aa\_tRNA\_eEF1A\_GTP\_19]}{d[80S\_aa\_tRNA\_eEF1A\_GTP]} = k22f \cdot [aa\_tRNA\_eEF1A\_GTP] \cdot [80S\_19] - k22b \cdot [80S\_aa\_tRNA\_eEF1A\_GTP\_19]
                                                                                                  -k23f \cdot [80S_a-tRNA_eEF1A_GTP_19]
                                    \frac{\mathrm{d}[80\mathrm{S\_aa-tRNA\_19}]}{\mathrm{d}t} = \mathrm{k23f} \cdot [80\mathrm{S\_aa-tRNA\_eEF1A\_GTP\_19}]
                                                                                                  -(k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_19] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_19])
    \frac{d[80S\_aa-tRNA\_eEF2\_GTP\_19]}{d[80S\_aa-tRNA\_eEF2\_GTP]} = k25f \cdot [eEF2\_GTP] \cdot [80S\_aa-tRNA\_19] - k25b \cdot [80S\_aa-tRNA\_eEF2\_GTP\_19] \cdot [eEF2\_GTP] \cdot [e
                                                                                                  -k26f \cdot [80S_a-tRNA_eEF2_GTP_19]
                                            \frac{d[80S\_tRNA\_19]}{...} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_18] - k28f \cdot [80S\_tRNA\_19] \cdot [eEF3\_GTP]
            \frac{d[80S\_tRNA\_eEF3\_GTP\_19]}{d[80S\_tRNA\_eEF3\_GTP\_19]} = k28f \cdot [80S\_tRNA\_19] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_19]
                                                              \frac{\text{d[80S\_20]}}{\text{d}t} = \text{k29f} \cdot [80S\_\text{tRNA\_eEF3\_GTP\_20}] - \text{k1}_{\text{r32}} \cdot [\text{eRF1\_eRF3\_GTP}] \cdot [80S\_20]
                                            \frac{d[80S\_tRNA\_20]}{\cdot} = k26f \cdot [80S\_aa\_tRNA\_eEF2\_GTP\_19] - k28f \cdot [80S\_tRNA\_20] \cdot [eEF3\_GTP]
            \frac{d[80S\_tRNA\_eEF3\_GTP\_20]}{\cdot} = k28f \cdot [80S\_tRNA\_20] \cdot [eEF3\_GTP] - k29f \cdot [80S\_tRNA\_eEF3\_GTP\_20]
                                                  \frac{d[eRF3\_GDP]}{..} = k1_{r33} \cdot [80S\_eRF1\_eRF3\_GTP] - (k1_{r30} \cdot [eRF3\_GDP] - k2_{r30} \cdot [eRF3\_GTP])
                                                  \frac{d[eRF3\_GTP]}{d} = k1_{r30} \cdot [eRF3\_GDP] - k2_{r30} \cdot [eRF3\_GTP]
                                                                                                 -(k1_{r31} \cdot [eRF1] \cdot [eRF3\_GTP] - k2_{r31} \cdot [eRF1\_eRF3\_GTP])
                                                                  \frac{d[eRF1]}{d} = k1_{r33} \cdot [80S\_eRF1\_eRF3\_GTP] - (k1_{r31} \cdot [eRF1] \cdot [eRF3\_GTP] - k2_{r31} \cdot [eRF1\_eRF3\_GTP])
                                  \frac{\mathrm{d}[\mathrm{eRF1\_eRF3\_GTP}]}{\cdot} = \mathrm{k1_{r31}} \cdot [\mathrm{eRF1}] \cdot [\mathrm{eRF3\_GTP}] - \mathrm{k2_{r31}} \cdot [\mathrm{eRF1\_eRF3\_GTP}]
                                                                                                 -k1_{r32} \cdot [eRF1\_eRF3\_GTP] \cdot [80S\_20]
                      \frac{d[80S\_eRF1\_eRF3\_GTP]}{d[80S\_eRF1\_eRF3\_GTP]} = k1_{r32} \cdot [eRF1\_eRF3\_GTP] \cdot [80S\_20] - k1_{r33} \cdot [80S\_eRF1\_eRF3\_GTP]
```

```
mRNA\_init\_free = mRNA\_tot - ([80S\_1] + [80S\_aa\_tRNA\_eEF1A\_GTP\_1]
                   +[80S\_aa-tRNA\_1] + [80S\_aa-tRNA\_eEF2\_GTP\_1] + [80S\_2] + [80S\_aa-tRNA\_eEF1A\_GTP\_2]
                   +[80S\_aa\_tRNA\_2] + [80S\_aa\_tRNA\_eEF2\_GTP\_2] + [80S\_tRNA\_2] + [80S\_tRNA\_eEF3\_GTP\_2]
                   +[80S\_3] + [80S\_aa\_tRNA\_eEF1A\_GTP\_3] + [80S\_aa\_tRNA\_3] + [80S\_aa\_tRNA\_eEF2\_GTP\_3]
                   +[80S_{tRNA_3}] + [80S_{tRNA_eEF3_GTP_3}] + [80S_4] + [80S_{aa-tRNA_eEF1A_GTP_4}]
                   +[80S\_aa\_tRNA\_4] + [80S\_aa\_tRNA\_eEF2\_GTP\_4] + [80S\_tRNA\_4] + [80S\_tRNA\_eEF3\_GTP\_4]
                   +[80S\_5] + [80S\_aa\_tRNA\_eEF1A\_GTP\_5] + [80S\_aa\_tRNA\_5] + [80S\_aa\_tRNA\_eEF2\_GTP\_5]
                   +[80S_{tRNA_{5}}] + [80S_{tRNA_{EF3_{GTP_{5}}}] + [80S_{6}] + [80S_{aa-tRNA_{EF1A_{GTP_{6}}}]
                   +[80S\_aa\_tRNA\_6] + [80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6]
                   +[80S_7] + [80S_aa-tRNA_eEF1A_GTP_7] + [80S_aa-tRNA_7] + [80S_aa-tRNA_eEF2_GTP_7]
                   +[80S\_tRNA\_7] + [80S\_tRNA\_eEF3\_GTP\_7] + [80S\_8] + [80S\_aa\_tRNA\_eEF1A\_GTP\_8]
                   +[80S\_aa\_tRNA\_8] + [80S\_aa\_tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8]
                   +[80S_{tRNA_9}] + [80S_{tRNA_eEF3_GTP_9}] + [80S_{10}] + [80S_{aa-tRNA_eEF1A_GTP_10}]
                   +[80S\_aa-tRNA\_10] + [80S\_aa-tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10]
                   +[80S\_11] + [80S\_aa-tRNA\_eEF1A\_GTP\_11] + [80S\_aa-tRNA\_11] + [80S\_aa-tRNA\_eEF2\_GTP\_11]
                   +[80S_{tRNA_{11}}] + [80S_{tRNA_{e}EF3_{GTP_{11}}}] + [80S_{12}] + [80S_{aa-tRNA_{e}EF1A_{GTP_{12}}}]
                   +[80S\_aa\_tRNA\_12] + [80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12]
                   +[80S\_13] + [80S\_aa-tRNA\_eEF1A\_GTP\_13] + [80S\_aa-tRNA\_13] + [80S\_aa-tRNA\_eEF2\_GTP\_13]
                   +[80S\_tRNA\_13] + [80S\_tRNA\_eEF3\_GTP\_13] + [80S\_14] + [80S\_aa\_tRNA\_eEF1A\_GTP\_14]
                   +[80S\_aa-tRNA\_14] + [80S\_aa-tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14]
                   +[80S\_15] + [80S\_aa-tRNA\_eEF1A\_GTP\_15] + [80S\_aa-tRNA\_15] + [80S\_aa-tRNA\_eEF2\_GTP\_15]
                   +[80S_{TRNA_{15}}] + [80S_{TRNA_{EF3_{GTP_{15}}}}]
```

```
mRNA\_num1 = mRNA\_tot - ([80S\_2] + [80S\_aa-tRNA\_eEF1A\_GTP\_2] + [80S\_aa-tRNA\_2]
                 +[80S\_aa-tRNA\_eEF2\_GTP\_2] + [80S\_tRNA\_2] + [80S\_tRNA\_eEF3\_GTP\_2] + [80S\_3]
                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_3] + [80S\_aa\_tRNA\_3] + [80S\_aa\_tRNA\_6EF2\_GTP\_3] + [80S\_tRNA\_3]
                 +[80S_{tRNA}_{eEF3}_{GTP}_{3}] + [80S_{4}] + [80S_{aa-tRNA}_{eEF1A}_{GTP}_{4}] + [80S_{aa-tRNA}_{4}]
                 +[80S_aa-tRNA_eEF2\_GTP\_4] + [80S_tRNA\_4] + [80S_tRNA_eEF3\_GTP\_4] + [80S\_5]
                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_5] + [80S\_aa\_tRNA\_5] + [80S\_aa\_tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5]
                 +[80S_{tRNA}_{eEF3}_{GTP_5}] + [80S_{6}] + [80S_{aa-tRNA}_{eEF1A}_{GTP_6}] + [80S_{aa-tRNA_6}]
                 +[80S\_aa-tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6] + [80S\_7]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_7] + [80S\_aa-tRNA\_7] + [80S\_aa-tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7]
                 +[80S_{RNA}_{EF3}_{TP_7}] + [80S_{8}] + [80S_{aa-tRNA}_{EF1A}_{TP_8}] + [80S_{aa-tRNA}_{8}]
                 +[80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8] + [80S\_9]
                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_9] + [80S\_aa\_tRNA\_9] + [80S\_aa\_tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9]
                 +[80S_{RNA}_{EF3}_{GTP}] + [80S_{10}] + [80S_{aa-tRNA}_{EF1A}_{GTP}] + [80S_{aa-tRNA}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_11] + [80S\_aa-tRNA\_11] + [80S\_aa-tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11]
                 +[80S_{RNA}_{EF3}_{GTP}_{11}] + [80S_{12}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{12}] + [80S_{aa}_{tRNA}_{12}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12] + [80S\_13]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_13] + [80S\_aa-tRNA\_13] + [80S\_aa-tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13]
                 +[80S_{RNA}_{EF1}_{AGTP_{13}}] + [80S_{14}] + [80S_{aa-tRNA}_{EF1}_{AGTP_{14}}] + [80S_{aa-tRNA_{14}}]
                 +[80S\_aa-tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_15] + [80S\_aa-tRNA\_15] + [80S\_aa-tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15]
                 +[80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16] + [80S\_aa\_tRNA\_eEF1A\_GTP\_16] + [80S\_aa\_tRNA\_16]
                 +[80S\_aa-tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_tRNA\_eEF3\_GTP\_16])
mRNA\_den1 = mRNA\_tot - ([80S\_2] + [80S\_aa-tRNA\_eEF1A\_GTP\_2] + [80S\_aa-tRNA\_2]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_2] + [80S\_tRNA\_2] + [80S\_tRNA\_eEF3\_GTP\_2] + [80S\_3]
                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_3] + [80S\_aa\_tRNA\_3] + [80S\_aa\_tRNA\_eEF2\_GTP\_3] + [80S\_tRNA\_3]
                 +[80S_{RNA}_{EF3}_{TP_3}] + [80S_{A}] + [80S_{A}_{TRNA}_{EF1A}_{TP_4}] + [80S_{A}_{TRNA}_{TRNA}_{TRNA}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_4] + [80S\_tRNA\_4] + [80S\_tRNA\_eEF3\_GTP\_4] + [80S\_5]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_5] + [80S\_aa-tRNA\_5] + [80S\_aa-tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5]
                 +[80S_{RNA}_{EF3}_{GTP_5}] + [80S_{6}] + [80S_{aa-tRNA}_{EF1A}_{GTP_6}] + [80S_{aa-tRNA_6}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6] + [80S\_7]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_7] + [80S\_aa-tRNA\_7] + [80S\_aa-tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7]
                 +[80S_{RNA}_{EF3}_{TP_7}] + [80S_{8}] + [80S_{aa-tRNA}_{EF1A}_{TP_8}] + [80S_{aa-tRNA}_{8}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8] + [80S\_9]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_9] + [80S\_aa-tRNA\_9] + [80S\_aa-tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9]
                 +[80S_{RNA}_{EF3}_{GTP}] + [80S_{10}] + [80S_{aa-tRNA}_{EF1}_{GTP}] + [80S_{aa-tRNA}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_11] + [80S\_aa-tRNA\_11] + [80S\_aa-tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11]
                 +[80S_{RNA}_{EF3}_{GTP}_{11}] + [80S_{12}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{12}] + [80S_{aa}_{tRNA}_{12}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12] + [80S\_13]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_13] + [80S\_aa-tRNA\_13] + [80S\_aa-tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13]
                 +[80S_{RNA}_{EF3}_{GTP}_{13}] + [80S_{14}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{14}] + [80S_{aa}_{tRNA}_{14}]
                 +[80S\_aa\_tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15]
                 +[80S\_aa-tRNA\_eEF1A\_GTP\_15] + [80S\_aa-tRNA\_15] + [80S\_aa-tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15]
                 +[80S_tRNA_eEF3_GTP_15])
```

```
mRNA\_num2 = mRNA\_tot - ([80S\_3] + [80S\_aa-tRNA\_eEF1A\_GTP\_3] + [80S\_aa-tRNA\_3]
                                  +[80S\_aa-tRNA\_eEF2\_GTP\_3] + [80S\_tRNA\_3] + [80S\_tRNA\_eEF3\_GTP\_3] + [80S\_4]
                                  +[80S\_aa\_tRNA\_eEF1A\_GTP\_4] + [80S\_aa\_tRNA\_4] + [80S\_aa\_tRNA\_eEF2\_GTP\_4] + [80S\_tRNA\_4]
                                  +[80S_{tRNA}_{eEF3}_{GTP_4}] + [80S_5] + [80S_{aa-tRNA}_{eEF1A}_{GTP_5}] + [80S_{aa-tRNA}_5]
                                  +[80S\_aa-tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5] + [80S\_tRNA\_eEF3\_GTP\_5] + [80S\_6]
                                  +[80S\_aa\_tRNA\_eEF1A\_GTP\_6] + [80S\_aa\_tRNA\_6] + [80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6]
                                  +[80S_{tRNA}_{eEF3}_{GTP_6}] + [80S_{aa-tRNA}_{eEF1A}_{GTP_7}] + [80S_{aa-tRNA}_{7}]
                                  +[80S\_aa-tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7] + [80S\_tRNA\_eEF3\_GTP\_7] + [80S\_8]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_8] + [80S\_aa-tRNA\_8] + [80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8]
                                  +[80S_{TRNA}_{EF3}_{TP_8}] + [80S_{9}] + [80S_{aa-tRNA}_{EF1A}_{TP_9}] + [80S_{aa-tRNA}_{9}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9] + [80S\_tRNA\_eEF3\_GTP\_9] + [80S\_10]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_10] + [80S\_aa-tRNA\_10] + [80S\_aa-tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10]
                                  +[80S_{TRNA_eEF3_GTP_10}] + [80S_{11}] + [80S_{aa-tRNA_eEF1A_GTP_11}] + [80S_{aa-tRNA_11}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11] + [80S\_tRNA\_eEF3\_GTP\_11] + [80S\_12]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_12] + [80S\_aa-tRNA\_12] + [80S\_aa-tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12]
                                  +[80S_{RNA}_{EF3}_{GTP_{12}}] + [80S_{13}] + [80S_{aa-tRNA}_{EF1A}_{GTP_{13}}] + [80S_{aa-tRNA_{13}}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13] + [80S\_tRNA\_eEF3\_GTP\_13] + [80S\_14]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_14] + [80S\_aa-tRNA\_14] + [80S\_aa-tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14]
                                  +[80S_{RNA}_{EF1}_{GTP_{1}}] + [80S_{15}] + [80S_{aa-tRNA}_{EF1}_{GTP_{1}}] + [80S_{aa-tRNA_{15}}]
                                  +[80S\_aa-tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15] + [80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_16] + [80S\_aa-tRNA\_16] + [80S\_aa-tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16]
                                  +[80S_{TNA}_{EF1A}_{TP_1}] + [80S_{TP_1}] + [80S_
                                  +[80S\_aa-tRNA\_eEF2\_GTP\_17] + [80S\_tRNA\_17] + [80S\_tRNA\_eEF3\_GTP\_17])
 mRNA\_den2 = mRNA\_tot - ([80S\_3] + [80S\_aa\_tRNA\_eEF1A\_GTP\_3] + [80S\_aa\_tRNA\_3]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_3] + [80S\_tRNA\_3] + [80S\_tRNA\_eEF3\_GTP\_3] + [80S\_4]
                                  +[80S\_aa\_tRNA\_eEF1A\_GTP\_4] + [80S\_aa\_tRNA\_4] + [80S\_aa\_tRNA\_eEF2\_GTP\_4] + [80S\_tRNA\_4]
                                  +[80S_{RNA}_{EF3}_{TP_4}] + [80S_{5}] + [80S_{aa-tRNA}_{EF1A}_{TP_5}] + [80S_{aa-tRNA_5}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5] + [80S\_tRNA\_eEF3\_GTP\_5] + [80S\_6]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_6] + [80S\_aa-tRNA\_6] + [80S\_aa-tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6]
                                  +[80S_{RNA}_{EF3}_{TP_6}] + [80S_{aa}_{tRNA}_{EF1}] + [80S_{aa}_{tRNA}_{TP_7}] + [80S_{aa}_{tRNA}_{TP_7}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7] + [80S\_tRNA\_eEF3\_GTP\_7] + [80S\_8]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_8] + [80S\_aa-tRNA\_8] + [80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8]
                                  +[80S_{RNA}_{EF3}_{TP_8}] + [80S_{9}] + [80S_{aa-tRNA}_{EF1A}_{TP_9}] + [80S_{aa-tRNA}_{9}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9] + [80S\_tRNA\_eEF3\_GTP\_9] + [80S\_10]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_10] + [80S\_aa-tRNA\_10] + [80S\_aa-tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10]
                                  +[80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11] + [80S\_aa\_tRNA\_eEF1A\_GTP\_11] + [80S\_aa\_tRNA\_11] + [8
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11] + [80S\_tRNA\_eEF3\_GTP\_11] + [80S\_12]
                                  +[80S_{RNA}_{EF3}_{GTP}_{12}] + [80S_{13}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{13}] + [80S_{aa}_{tRNA}_{13}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13] + [80S\_tRNA\_eEF3\_GTP\_13] + [80S\_14]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_14] + [80S\_aa-tRNA\_14] + [80S\_aa-tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14]
                                  +[80S_{RNA}_{EF3}_{TP_{14}}] + [80S_{15}] + [80S_{aa-tRNA}_{EF1A}_{TP_{15}}] + [80S_{aa-tRNA_{15}}]
                                  +[80S\_aa\_tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15] + [80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16]
                                  +[80S\_aa-tRNA\_eEF1A\_GTP\_16] + [80S\_aa-tRNA\_16] + [80S\_aa-tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16]
                                  +[80S_tRNA_eEF3_GTP_16])
```

```
mRNA\_num3 = mRNA\_tot - ([80S\_4] + [80S\_aa-tRNA\_eEF1A\_GTP\_4] + [80S\_aa-tRNA\_4]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_4] + [80S\_tRNA\_4] + [80S\_tRNA\_eEF3\_GTP\_4] + [80S\_5]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_5] + [80S\_aa\_tRNA\_5] + [80S\_aa\_tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5]
                         +[80S_{tRNA}_{eEF3}_{GTP_{-5}}] + [80S_{-6}] + [80S_{aa-tRNA}_{eEF1A}_{GTP_{-6}}] + [80S_{aa-tRNA}_{-6}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6] + [80S\_7]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_7] + [80S\_aa\_tRNA\_7] + [80S\_aa\_tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7]
                         +[80S_{RNA}_{EF3}_{TP_7}] + [80S_{8}] + [80S_{aa-tRNA}_{EF1A}_{TP_8}] + [80S_{aa-tRNA}_{8}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8] + [80S\_9]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_9] + [80S\_aa-tRNA\_9] + [80S\_aa-tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9]
                         +[80S_{RNA}_{EF3}_{GTP}] + [80S_{10}] + [80S_{aa-tRNA}_{EF1}_{GTP}] + [80S_{aa-tRNA}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_11] + [80S\_aa-tRNA\_11] + [80S\_aa-tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11]
                         +[80S_{RNA}_{EF3}_{GTP}_{11}] + [80S_{12}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{12}] + [80S_{aa}_{tRNA}_{12}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12] + [80S\_13]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_13] + [80S\_aa-tRNA\_13] + [80S\_aa-tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13]
                         +[80S_{RNA}_{EF3}_{GTP}_{13}] + [80S_{14}] + [80S_{aa}_{tRNA}_{EF1}_{GTP}_{14}] + [80S_{aa}_{tRNA}_{14}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_15] + [80S\_aa-tRNA\_15] + [80S\_aa-tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15]
                         +[80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16] + [80S\_aa\_tRNA\_eEF1A\_GTP\_16] + [80S\_aa\_tRNA\_16]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_tRNA\_eEF3\_GTP\_16] + [80S\_17]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_17] + [80S\_aa-tRNA\_17] + [80S\_aa-tRNA\_eEF2\_GTP\_17] + [80S\_tRNA\_17]
                         +[80S\_tRNA\_eEF3\_GTP\_17] + [80S\_18] + [80S\_aa\_tRNA\_eEF1A\_GTP\_18] + [80S\_aa\_tRNA\_18]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_18] + [80S\_tRNA\_18] + [80S\_tRNA\_eEF3\_GTP\_18])
 mRNA\_den3 = mRNA\_tot - ([80S\_4] + [80S\_aa\_tRNA\_eEF1A\_GTP\_4] + [80S\_aa\_tRNA\_4]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_4] + [80S\_tRNA\_4] + [80S\_tRNA\_eEF3\_GTP\_4] + [80S\_5]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_5] + [80S\_aa\_tRNA\_5] + [80S\_aa\_tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5]
                         +[80S_{RNA}_{EF3}_{TP_5}] + [80S_{6}] + [80S_{aa-tRNA}_{EF1A}_{TP_6}] + [80S_{aa-tRNA_6}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6] + [80S\_7]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_7] + [80S\_aa-tRNA\_7] + [80S\_aa-tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7]
                         +[80S_{RNA}_{EF3}_{TP_7}] + [80S_{8}] + [80S_{aa-tRNA}_{EF1A}_{TP_8}] + [80S_{aa-tRNA}_{8}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8] + [80S\_9]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_9] + [80S\_aa-tRNA\_9] + [80S\_aa-tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9]
                         +[80S_{RNA}_{EF3}_{GTP}] + [80S_{10}] + [80S_{aa-tRNA}_{EF1}_{GTP}] + [80S_{aa-tRNA}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11]
                         +[80S_{TRNA}_{EF3}_{TP_{11}}] + [80S_{12}] + [80S_{aa-tRNA}_{EF1A}_{TP_{12}}] + [80S_{aa-tRNA_{12}}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12] + [80S\_13]
                         +[80S_{RNA}_{EF3}_{GTP}_{13}] + [80S_{14}] + [80S_{aa}_{tRNA}_{EF1}_{GTP}_{14}] + [80S_{aa}_{tRNA}_{14}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_15] + [80S\_aa\_tRNA\_15] + [80S\_aa\_tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15] + [80S\_aa\_tRNA\_15] + [80S\_aA\_t
                         +[80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16] + [80S\_aa\_tRNA\_eEF1A\_GTP\_16] + [80S\_aa\_tRNA\_16]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_tRNA\_eEF3\_GTP\_16] + [80S\_17]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_17] + [80S\_aa-tRNA\_17] + [80S\_aa-tRNA\_eEF2\_GTP\_17] + [80S\_tRNA\_17]
                         +[80S_tRNA_eEF3_GTP_17])
```

```
mRNA\_num4 = mRNA\_tot - ([80S\_5] + [80S\_aa-tRNA\_eEF1A\_GTP\_5] + [80S\_aa-tRNA\_5]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5] + [80S\_tRNA\_eEF3\_GTP\_5] + [80S\_6]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_6] + [80S\_aa\_tRNA\_6] + [80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6]
                         +[80S_{tRNA}_{eEF3}_{GTP_6}] + [80S_{aa-tRNA}_{eEF1A}_{GTP_7}] + [80S_{aa-tRNA_7}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7] + [80S\_tRNA\_eEF3\_GTP\_7] + [80S\_8]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_8] + [80S\_aa\_tRNA\_8] + [80S\_aa\_tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8]
                         +[80S_{TRNA}_{EF3}_{TP_8}] + [80S_{9}] + [80S_{aa-tRNA}_{EF1A}_{TP_9}] + [80S_{aa-tRNA}_{9}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9] + [80S\_tRNA\_eEF3\_GTP\_9] + [80S\_10]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_10] + [80S\_aa-tRNA\_10] + [80S\_aa-tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10]
                         +[80S_{TRNA}_{EF3}_{TP_{10}}] + [80S_{11}] + [80S_{aa-tRNA}_{EF1A}_{TP_{11}}] + [80S_{aa-tRNA_{11}}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11] + [80S\_tRNA\_eEF3\_GTP\_11] + [80S\_12]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_12] + [80S\_aa-tRNA\_12] + [80S\_aa-tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12]
                         +[80S_{RNA}_{EF3}_{GTP}_{12}] + [80S_{13}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{13}] + [80S_{aa}_{tRNA}_{13}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13] + [80S\_tRNA\_eEF3\_GTP\_13] + [80S\_14]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_14] + [80S\_aa-tRNA\_14] + [80S\_aa-tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14]
                         +[80S_{RNA}_{EF1}_{GTP_{1}}] + [80S_{15}] + [80S_{aa-tRNA}_{EF1}_{GTP_{1}}] + [80S_{aa-tRNA_{15}}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15] + [80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_16] + [80S\_aa-tRNA\_16] + [80S\_aa-tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16]
                         +[80S_{TRNA}_{EF1A}_{GTP_{10}}] + [80S_{17}] + [80S_{aa-tRNA}_{EF1A}_{GTP_{17}}] + [80S_{aa-tRNA}_{17}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_17] + [80S\_tRNA\_17] + [80S\_tRNA\_eEF3\_GTP\_17] + [80S\_18]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_18] + [80S\_aa-tRNA\_18] + [80S\_aa-tRNA\_eEF2\_GTP\_18] + [80S\_tRNA\_18]
                         +[80S_{RNA}_{EF1}_{A}_{F1}] + [80S_{19}] + [80S_{aa-tRNA}_{EF1}_{A}_{F1}] + [80S_{aa-tRNA}_{19}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_19] + [80S\_tRNA\_19] + [80S\_tRNA\_eEF3\_GTP\_19])
 mRNA_den4 = mRNA_tot - ([80S_5] + [80S_aa_tRNA_eEF1A_GTP_5] + [80S_aa_tRNA_5]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_5] + [80S\_tRNA\_5] + [80S\_tRNA\_eEF3\_GTP\_5] + [80S\_6]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_6] + [80S\_aa\_tRNA\_6] + [80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6]
                         +[80S_{RNA}_{EF3}_{TP_6}] + [80S_{aa}_{tRNA}_{EF1A}_{TP_7}] + [80S_{aa}_{tRNA_7}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7] + [80S\_tRNA\_eEF3\_GTP\_7] + [80S\_8]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_8] + [80S\_aa-tRNA\_8] + [80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8]
                         +[80S_{RNA}_{EF3}_{TP_8}] + [80S_{9}] + [80S_{aa-tRNA}_{EF1A}_{TP_9}] + [80S_{aa-tRNA}_{9}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9] + [80S\_tRNA\_eEF3\_GTP\_9] + [80S\_10]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_10] + [80S\_aa-tRNA\_10] + [80S\_aa-tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10]
                         +[80S_{RNA}_{EF3}_{GTP_{10}}] + [80S_{11}] + [80S_{aa}_{tRNA}_{EF1}_{GTP_{11}}] + [80S_{aa}_{tRNA_{11}}]
                         +[80S\_aa-tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11] + [80S\_tRNA\_eEF3\_GTP\_11] + [80S\_12]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_12] + [80S\_aa\_tRNA\_12] + [80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12]
                         +[80S_{RNA}_{EF3}_{TP_{12}}] + [80S_{13}] + [80S_{aa-tRNA}_{EF1A}_{TP_{13}}] + [80S_{aa-tRNA_{13}}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13] + [80S\_tRNA\_eEF3\_GTP\_13] + [80S\_14]
                         +[80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15] + [80S\_aa\_tRNA\_eEF1A\_GTP\_15] + [80S\_aa\_tRNA\_15]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15] + [80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16]
                         +[80S\_aa\_tRNA\_eEF1A\_GTP\_16] + [80S\_aa\_tRNA\_16] + [80S\_aa\_tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_aa\_tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_aa\_tRNA\_16] + [80S\_aa
                         +[80S_{TNA}_{EF3}_{TP_16}] + [80S_{17}] + [80S_{aa-tRNA}_{EF1A}_{TP_17}] + [80S_{aa-tRNA_17}]
                         +[80S\_aa\_tRNA\_eEF2\_GTP\_17] + [80S\_tRNA\_17] + [80S\_tRNA\_eEF3\_GTP\_17] + [80S\_18]
                         +[80S\_aa-tRNA\_eEF1A\_GTP\_18] + [80S\_aa-tRNA\_18] + [80S\_aa-tRNA\_eEF2\_GTP\_18] + [80S\_tRNA\_18]
                         +[80S_tRNA_eEF3_GTP_18])
```

```
mRNA\_num5 = mRNA\_tot - ([80S\_6] + [80S\_aa-tRNA\_eEF1A\_GTP\_6] + [80S\_aa-tRNA\_6]
                                 +[80S\_aa-tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6] + [80S\_7]
                                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_7] + [80S\_aa\_tRNA\_7] + [80S\_aa\_tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7]
                                 +[80S_{RNA}_{EF3}_{TP_7}] + [80S_{8}] + [80S_{aa-tRNA}_{EF1A}_{TP_8}] + [80S_{aa-tRNA}_{8}]
                                 +[80S\_aa-tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8] + [80S\_9]
                                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_9] + [80S\_aa\_tRNA\_9] + [80S\_aa\_tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9]
                                 +[80S_{RNA}_{EF3}_{GTP}] + [80S_{10}] + [80S_{aa-tRNA}_{EF1}_{GTP}] + [80S_{aa-tRNA}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11]
                                 +[80S\_aa-tRNA\_eEF1A\_GTP\_11] + [80S\_aa-tRNA\_11] + [80S\_aa-tRNA\_eEF2\_GTP\_11] + [80S\_tRNA\_11]
                                 +[80S_{RNA}_{EF3}_{GTP}_{11}] + [80S_{12}] + [80S_{aa}_{tRNA}_{EF1A}_{GTP}_{12}] + [80S_{aa}_{tRNA}_{12}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12] + [80S\_13]
                                 +[80S\_aa-tRNA\_eEF1A\_GTP\_13] + [80S\_aa-tRNA\_13] + [80S\_aa-tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13]
                                 +[80S_{RNA}_{EF3}_{GTP}_{13}] + [80S_{14}] + [80S_{aa}_{tRNA}_{EF1}_{GTP}_{14}] + [80S_{aa}_{tRNA}_{14}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15]
                                 +[80S\_aa-tRNA\_eEF1A\_GTP\_15] + [80S\_aa-tRNA\_15] + [80S\_aa-tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15]
                                 +[80S\_tRNA\_eEF3\_GTP\_15] + [80S\_16] + [80S\_aa\_tRNA\_eEF1A\_GTP\_16] + [80S\_aa\_tRNA\_16]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_tRNA\_eEF3\_GTP\_16] + [80S\_17]
                                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_17] + [80S\_aa\_tRNA\_17] + [80S\_aa\_tRNA\_eEF2\_GTP\_17] + [80S\_tRNA\_17]
                                 +[80S_{RNA}_{EF1}] + [80S_{RNA}_{EF1}] + [80S_{RNA}_{EF1}] + [80S_{RNA}_{EF1}] + [80S_{RNA}_{EF1}] + [80S_{RNA}_{EF1}]
                                 +[80S_aa-tRNA_eEF2\_GTP_18] + [80S_tRNA_18] + [80S_tRNA_eEF3\_GTP_18] + [80S_19]
                                 +[80S\_aa-tRNA\_eEF1A\_GTP\_19] + [80S\_aa-tRNA\_19] + [80S\_aa-tRNA\_eEF2\_GTP\_19] + [80S\_tRNA\_19]
                                 +[80S\_tRNA\_eEF3\_GTP\_19] + [80S\_20] + [80S\_aa\_tRNA\_eEF1A\_GTP\_20] + [80S\_aa\_tRNA\_20]
                                 +[80S_aa-tRNA_eEF2_GTP_20] + [80S_tRNA_20] + [80S_tRNA_eEF3_GTP_20])
 mRNA\_den5 = mRNA\_tot - ([80S\_6] + [80S\_aa-tRNA\_eEF1A\_GTP\_6] + [80S\_aa-tRNA\_6]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_6] + [80S\_tRNA\_6] + [80S\_tRNA\_eEF3\_GTP\_6] + [80S\_7]
                                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_7] + [80S\_aa\_tRNA\_7] + [80S\_aa\_tRNA\_eEF2\_GTP\_7] + [80S\_tRNA\_7]
                                 +[80S_{RNA}_{EF3}_{TP_7}] + [80S_{8}] + [80S_{aa-tRNA}_{EF1A}_{TP_8}] + [80S_{aa-tRNA}_{8}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_8] + [80S\_tRNA\_8] + [80S\_tRNA\_eEF3\_GTP\_8] + [80S\_9]
                                 +[80S\_aa-tRNA\_eEF1A\_GTP\_9] + [80S\_aa-tRNA\_9] + [80S\_aa-tRNA\_eEF2\_GTP\_9] + [80S\_tRNA\_9]
                                 +[80S_{RNA}_{EF3}_{GTP}] + [80S_{10}] + [80S_{aa-tRNA}_{EF1}_{GTP}] + [80S_{aa-tRNA}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_10] + [80S\_tRNA\_10] + [80S\_tRNA\_eEF3\_GTP\_10] + [80S\_11]
                                 +[80S_{RNA}_{EF3}_{GTP}_{11}] + [80S_{12}] + [80S_{aa}_{tRNA}_{EF1}_{GTP}_{12}] + [80S_{aa}_{tRNA}_{12}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_12] + [80S\_tRNA\_12] + [80S\_tRNA\_eEF3\_GTP\_12] + [80S\_13]
                                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_13] + [80S\_aa\_tRNA\_13] + [80S\_aa\_tRNA\_eEF2\_GTP\_13] + [80S\_tRNA\_13]
                                 +[80S_{RNA}_{EF1}_{A}_{F1}] + [80S_{A}_{14}] + [80S_{A}
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_14] + [80S\_tRNA\_14] + [80S\_tRNA\_eEF3\_GTP\_14] + [80S\_15]
                                 +[80S\_aa\_tRNA\_eEF1A\_GTP\_15] + [80S\_aa\_tRNA\_15] + [80S\_aa\_tRNA\_eEF2\_GTP\_15] + [80S\_tRNA\_15] + [80S\_aa\_tRNA\_eEF2\_GTP\_15] + [80S\_aa\_tRNA\_15] + [80S\_aa\_tRNA
                                 +[80S_{RNA}_{EF3}_{GTP}_{15}] + [80S_{16}] + [80S_{aa}_{tRNA}_{EF1}_{GTP}_{16}] + [80S_{aa}_{tRNA}_{16}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_16] + [80S\_tRNA\_16] + [80S\_tRNA\_eEF3\_GTP\_16] + [80S\_17]
                                 +[80S_{RNA}_{EF3}_{TP_{17}}] + [80S_{18}] + [80S_{aa-tRNA}_{EF1A}_{TP_{18}}] + [80S_{aa-tRNA_{18}}]
                                 +[80S\_aa\_tRNA\_eEF2\_GTP\_18] + [80S\_tRNA\_18] + [80S\_tRNA\_eEF3\_GTP\_18] + [80S\_19]
                                 +[80S\_aa-tRNA\_eEF1A\_GTP\_19] + [80S\_aa-tRNA\_19] + [80S\_aa-tRNA\_eEF2\_GTP\_19] + [80S\_tRNA\_19]
                                 +[80S_tRNA_eEF3_GTP_19])
```

Supplementary Table I. Strains used in this study

Strain Name	Strain collection number	Derived from:	Genotype (difference from a parental strain)	Source
WT	PTC41	W303	MATα <i>ade2-1 ura3-1 leu2-3</i> , 112 <i>his3-</i> 11,15 <i>can1-</i> 100	M. Tuite, University of Kent
tetO7RPS5	PTC389	PTC41	RPS5-PtetO7:KanMX	This study
tetO7SUI1	PTC277	PTC41	SUI1-PtetO7:KanMX	This study
tetO7TIF11	PTC269	PTC41	TIF11-PtetO7:KanMX	This study
tetO7SUI2	PTC390	PTC41	SUI2-PtetO7:KanMX	This study
tetO7CGD11	PTC273	PTC41	GCD11-PtetO7:KanMX	This study
tetO7GCD6	PTC272	PTC41	GCD6-PtetO7:KanMX	This study
tetO7GCD1	PTC400	PTC41	GCD1-PtetO7:KanMX	This study
tetO7RPG1-60	PTC391	PTC41	RPG1-60bp-PtetO7:KanMX	This study
tetO7NIP1-60	PTC401	PTC41	NIP1-60bp-PtetO7:KanMX	This study
tetO7HCR1	PTC270	PTC41	HCR1-PtetO7:KanMX	This study
TIF1∆	PTC392	PTC41	TIF1∆	This study
TIF2∆	PTC267	PTC41	TIF2∆	This study
tetO7TIF2 TIF1∆	PTC393	PTC392	TIF2-PtetO7:KanMX	This study
tetO7TIF3	PTC394	PTC41	TIF3-PtetO7:KanMX	This study
tetO7CDC33	PTC278	PTC41	CDC33-PtetO7:KanMX	This study
TIF4632∆	PTC274	PTC41	TIF4632∆	This study
tetO7TIF4631 TIF4632∆	PTC276	PTC274	TIF4631-PtetO7:KanMX	This study
tetO7TIF5	PTC268	PTC41	TIF5-PtetO7:KanMX	This study
tetO7FUN12	PTC265	PTC41	FUN12-PtetO7:KanMX	This study
TEF1∆	PTC402	PTC41	TEF1∆	This study
TEF2∆	PTC354	PTC41	TEF2∆	This study
tetO7TEF1 TEF2∆	PTC362	PTC354	TEF1-PtetO7:KanMX	This study
tetO7TEF5	PTC363	PTC41	TEF5-PtetO7:KanMX	This study
<i>EFT1</i> ∆	PTC403	PTC41	EFT1A	This study
EFT2∆	PTC355	PTC41	EFT2∆	This study
tetO7EFT1 EFT2∆	PTC364	PTC355	EFT1-PtetO7:KanMX	This study
tetO7YEF3	PTC365	PTC41	YEF3-PtetO7:KanMX	This study
tetO7SUP35	PTC367	PTC41	SUP35-PtetO7:KanMX	This study
tetO7SUP45	PTC366	PTC41	SUP45-PtetO7:KanMX	This study
tetO7DBP5	PTC398	PTC41	DBP5-PtetO7:KanMX	This study
tetO7DED1-30	PTC397	PTC41	DED1-30bp-PtetO7:KanMX	This study
tetO7HYP2	PTC395	PTC41	HYP2-PtetO7:KanMX	This study
tetO7PAB1	PTC271	PTC41	PAB1-PtetO7:KanMX	This study
competitor	PTC404	PTC41	lys2\Delta:KanMX	This study

Supplementary Table II. Plasmids constructed in this study

Plasmid Name	Plasmid	Description:
	collection	
	number	
pTRPEX	pJM798	GPF promoter in YCp33-Supex2 substituted with TEF1 promoter
pTEFEX	pJM815	GPF promoter in YCp33-Supex2 substituted with TRP1 promoter
pTRPEX SUI1	pJM790	SUI1 gene under control of TRP1 promoter
pLEUEX SUI1	pJM860	SUI1 gene under control of truncated LEU4 promoter
pPGKEX SUI1	pJM866	SUI1 gene under control of truncated PGK1 promoter
pTEFEX SUI1	pJM832	SUI1 gene under control of TEF1 promoter
pTEFEX TIF11	pJM822	TIF11 gene under control of TEF1 promoter
pTRPEX TIF11	pJM810	TIF11 gene under control of TRP1 promoter
pTRPEX SUI2	pJM804	SUI2 gene under control of TRP1 promoter
pLEUEX SUI2	pJM862	SUI2 gene under control of truncated LEU4 promoter
pPGKEX SUI2	pJM867	SUI2 gene under control of truncated PGK1 promoter
pTEFEX GCD1	pJM901	GCD1 gene under control of TEF1 promoter
pTRPEX GCD1	pJM902	GCD1 gene under control of TRP1 promoter
pTEFEX GCD6	pJM826	GCD6 gene under control of TEF1 promoter
pTRPEX GCD6	pJM808	GCD6 gene under control of TRP1 promoter
pTEFEX RPG1	pJM827	RPG1 gene under control of TEF1 promoter
pPGKEX RPG1	pJM869	RPG1 gene under control of truncated PGK1 promoter
pTRPEX RPG1	pJM809	RPG1 gene under control of TRP1 promoter
pTEFEX NIP1	pJM880	NIP1 gene under control of TEF1 promoter
pTRPEX NIP1	pJM881	NIP1 gene under control of TRP1 promoter
pTEFEX HCR1	pJM824	HCR1 gene under control of TEF1 promoter
pTEFEX TIF1	pJM817	TIF1 gene under control of TEF1 promoter
pTRPEX TIF1	pJM813	TIF1 gene under control of TRP1 promoter
pTEFEX TIF3	pJM825	TIF3 gene under control of TEF1 promoter
pTRPEX TIF3	pJM806	TIF3 gene under control of TRP1 promoter
pTEFEX CDC33	pJM882	CDC33 gene under control of TEF1 promoter
pTRPEX CDC33	pJM883	CDC33 gene under control of TRP1 promoter
pTEFEX TIF4631	pJM884	TIF4631 gene under control of TEF1 promoter
pTRPEX TIF4631	pJM885	TIF4631 gene under control of TRP1 promoter
pTEFEX TIF5	pJM820	TIF5 gene under control of TEF1 promoter
pTRPEX TIF5	pJM807	TIF5 gene under control of TRP1 promoter
pTEFEX FUN12	pJM821	FUN12 gene under control of TEF1 promoter
pTRPEX FUN12	pJM886	FUN12 gene under control of TRP1 promoter
pTEFEX DED1	pJM816	DED1 gene under control of TEF1 promoter
pTRPEX DED1	pJM799	DED1 gene under control of TRP1 promoter
pLEUEX DED1	pJM887	DED1 gene under control of truncated LEU4 promoter
pPGKEX DED1	pJM888	DED1 gene under control of truncated PGK1 promoter
pTEFEX PAB1	pJM823	PAB1 gene under control of TEF1 promoter
pTRPEX PAB1	pJM889	PAB1 gene under control of TRP1 promoter
pTEFEX TEF1	pJM890	TEF1 gene under control of TEF1 promoter
pTEF5EX TEF1	pJM913	TEF1 gene under control of TEF5 promoter
pTEFEX TEF5	pJM891	TEF5 gene under control of TEF1 promoter
pTEFEX YEF3	pJM892	YEF3 gene under control of TEF1 promoter

pTRPEX SUP45	pJM805	SUP45 gene under control of TRP1 promoter
pTEFEX SUP35	pJM893	SUP35 gene under control of TEF1 promoter
pTEFEX HYP2	pJM894	HYP2 gene under control of TEF1 promoter
pTRPEX HYP2	pJM895	HYP2 gene under control of TRP1 promoter
pTEFEX DBP5	pJM896	DBP5 gene under control of TEF1 promoter
pTRPEX DBP5	pJM897	DBP5 gene under control of TRP1 promoter
pTRPEX RPS5	pJM802	RPS5 gene under control of TRP1 promoter
pTRPEX-HIS3L2-LucF	pJM898	Firefly luciferase gene with L2 mRNA leader sequence under control of TRP1 promoter
pDCDEX L0-LucR	pJM899	Renilla luciferase gene with L0 mRNA leader sequence under control of DCD1 promoter
pDLV L2-LucF L0-LucR	pJM900	Scanning competence assay vector containing two luciferase genes – Renilla and Firefly – proceeded by leader sequences (L0 and L2, respectively)

Supplementary Table III. Interactions of translation machinery components

Factor	Reported direct interactions	
eIF1		
	eIF2, eIF3, eIF4G, eIF5, R,	Asano et al., 2000; He et al., 2003; Singh et al., 2004; Passmore et al., 2007; Reibarkh et al., 2008;
eIF1A	eIF2, eIF3, eIF5B, R,	Fekete et al., 2007; Fringer et al., 2007; Olsen et al., 2003; Passmore et al., 2007; Zheng et al., 2011;
eIF2	eIF1, eIF1A, eIF2B, eIF3, eIF5, R, mRNA, Met-tRNA _i ^{Met}	Assano et al., 1999; Bushman et al., 1993; Kimball 1999; Laurino et al., 1999; Mohammad-Qureshi et al., 2007; Olsen et al., 2003; Singh et al., 2004; Valasek et al., 2002;
eIF2B	eIF2,	Bushman et al., 1993; Mohammad-Qureshi et al., 2007;
eirs	eIF1, eIF1A, eIF2, eIF4B, eIF5, R,	Asano et al., 2000; Valasek et al., 2002; Valasek et al., 2003; Vornloche et al., 1999; Olsen et al., 2003;
eIF4A	eIF4G, mRNA,	Dominguez et al., 1999; Marsden et al., 2006; Neff and Sachs 1999; Rogers et al., 1999; Schütz et al., 2008;
eIF4B	eIF3, mRNA,	Altmann et al., 1995; Marsden et al., 2006; Vornloche et al., 1999;
eIF4E	eIF4G, mRNA,	Altmann et al., 1997; Mader et al., 1995; Kiraga-Motoszko et al., 2011;
	eIF1, eIF4A, eIF4E, eIF5, Ded1, Pab1, mRNA,	Altmann <i>et al.</i> , 1997; Berset <i>et al.</i> , 2003; Dominguez <i>et al.</i> , 1999; Goyer <i>et al.</i> , 1993; He <i>et al.</i> , 2003; Hilliker <i>et al.</i> , 2011; Mader <i>et al.</i> , 1995; Neff and Sachs 1999; Schütz <i>et al.</i> , 2008; Tarun and Sachs 1996; Wells <i>et al.</i> , 1998;
eIF5	eIF1, eIF2, eIF3, eIF4G, R,	Assano et al., 1999; Asano et al., 2000; He et al., 2003; Phan et al., 1998; Reibarkh et al., 2008; Singh et al., 2004; Valasek et al., 2003;
eIF5B	eIF1A, R,	Fringer et al., 2007; Olsen et al., 2003; Zheng et al., 2011;
eEF1A	eEF1B, eEF3, R,	Anand et al., 2006; Chakraburtty and Triana-Alonso 1998; Kovalchuke et al., 1998; Pedersen et al., 2001; Pittman et al., 2009;
eEF1B	eEF1A,	Pedersen et al., 2001; Pittman et al., 2009;
eEF2	Hyp2, R,	Nilsson et al., 2007; Spahn et al., 2004; Zanelli et al., 2006;
eEF3	eEF1A, R,	Anand et al., 2006; Andersen et al., 2006; Chakraburtty and Triana-Alonso 1998; Dasmahapatra and Chakraburtty 1981; Kovalchuke et al., 1998; Skogerson and Wakatama 1976; Triana-Alonso et al., 1995;
eRF1	Dbp5, eRF3, R,	Eurwilaichitr et al., 1999; Frolova et al., 2000; Gross et al., 2007; Kobayashi et al., 2004;
eRF3	eRF1, Pab1,	Eurwilaichitr et al., 1999; Hosoda et al., 2003; Kobayashi et al., 2004;
Dbp5	eRF1, mRNA,	Estruch and Cole 2003; Gross et al., 2007;
Ded1	eIF4G, mRNA,	Chuang et al., 1997; Iost et al., 1999; Hilliker et al., 2011; Marsden et al., 2006;
Hyp2	eEF2, R,	Jao et al., 2006; Zanelli et al., 2006;
	eIF4G, eRF3, mRNA,	Hosoda et al., 2003; Kobayashi et al., 2004; Tarun and Sachs 1996; Wells et al., 1998;

R-ribosome

References – Supplementary Table III

Altmann, M., Schmitz, N., Berset, C., and Trachsel, H. (1997). A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J. 16, 1114–1121.

Altmann, M., Wittmer, B., Méthot, N., Sonenberg, N., and Trachsel, H. (1995). The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J. *14*, 3820–3827.

Anand, M., Balar, B., Ulloque, R., Gross, S.R., and Kinzy, T.G. (2006). Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J. Biol. Chem. 281, 32318–32326.

Andersen, C.B.F., Becker, T., Blau, M., Anand, M., Halic, M., Balar, B., Mielke, T., Boesen, T., Pedersen, J.S., Spahn, C.M.T., et al. (2006). Structure of eEF3 and the mechanism of transfer RNA release from the Esite. Nature *443*, 663–668.

Asano, K., Clayton, J., Shalev, A., and Hinnebusch, A.G. (2000). A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 14, 2534–2546.

Asano, K., Krishnamoorthy, T., Phan, L., Pavitt, G.D., and Hinnebusch, A.G. (1999). Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 18, 1673–1688.

Berset, C., Zurbriggen, A., Djafarzadeh, S., Altmann, M., and Trachsel, H. (2003). RNA-binding activity of translation initiation factor eIF4G1 from Saccharomyces cerevisiae. RNA 9, 871–880.

Bushman, J.L., Foiani, M., Cigan, A.M., Paddon, C.J., and Hinnebusch, A.G. (1993). Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3. Mol. Cell. Biol. *13*, 4618–4631.

Chakraburtty, K., and Triana-Alonso, F.J. (1998). Yeast elongation factor 3: structure and function. Biol. Chem. *379*, 831–840.

Chuang, R.Y., Weaver, P.L., Liu, Z., and Chang, T.H. (1997). Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science *275*, 1468–1471.

Dasmahapatra, B., and Chakraburtty, K. (1981). Protein synthesis in yeast. I. Purification and properties of elongation factor 3 from Saccharomyces cerevisiae. J. Biol. Chem. 256, 9999–10004.

Dominguez, D., Altmann, M., Benz, J., Baumann, U., and Trachsel, H. (1999). Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 26720–26726.

Estruch, F., and Cole, C.N. (2003). An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell *14*, 1664–1676.

Eurwilaichitr, L., Graves, F.M., Stansfield, I., and Tuite, M.F. (1999). The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol. Microbiol. *32*, 485–496.

- Fekete, C.A., Mitchell, S.F., Cherkasova, V.A., Applefield, D., Algire, M.A., Maag, D., Saini, A.K., Lorsch, J.R., and Hinnebusch, A.G. (2007). N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J. 26, 1602–1614.
- Fringer, J.M., Acker, M.G., Fekete, C.A., Lorsch, J.R., and Dever, T.E. (2007). Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol. Cell. Biol. *27*, 2384–2397.
- Frolova, L.Y., Merkulova, T.I., and Kisselev, L.L. (2000). Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains. RNA 6, 381–390.
- Goyer, C., Altmann, M., Lee, H.S., Blanc, A., Deshmukh, M., Woolford, J.L., Jr, Trachsel, H., and Sonenberg, N. (1993). TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol. Cell. Biol. *13*, 4860–4874.
- Gross, T., Siepmann, A., Sturm, D., Windgassen, M., Scarcelli, J.J., Seedorf, M., Cole, C.N., and Krebber, H. (2007). The DEAD-box RNA helicase Dbp5 functions in translation termination. Science *315*, 646–649.
- He, H., von der Haar, T., Singh, C.R., Ii, M., Li, B., Hinnebusch, A.G., McCarthy, J.E.G., and Asano, K. (2003). The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol. Cell. Biol. *23*, 5431–5445.
- Hilliker, A., Gao, Z., Jankowsky, E., and Parker, R. (2011). The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol. Cell 43, 962–972.
- Hosoda, N., Kobayashi, T., Uchida, N., Funakoshi, Y., Kikuchi, Y., Hoshino, S., and Katada, T. (2003). Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem. *278*, 38287–38291.
- Iost, I., Dreyfus, M., and Linder, P. (1999). Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274, 17677–17683.
- Jao, D.L.-E., and Chen, K.Y. (2006). Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J. Cell. Biochem. *97*, 583–598.
- Kimball, S.R. (1999). Eukaryotic initiation factor eIF2. Int. J. Biochem. Cell Biol. 31, 25–29.
- Kiraga-Motoszko, K., Niedzwiecka, A., Modrak-Wojcik, A., Stepinski, J., Darzynkiewicz, E., and Stolarski, R. (2011). Thermodynamics of molecular recognition of mRNA 5' cap by yeast eukaryotic initiation factor 4E. J Phys Chem B *115*, 8746–8754.
- Kobayashi, T., Funakoshi, Y., Hoshino, S.-I., and Katada, T. (2004). The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J. Biol. Chem. *279*, 45693–45700.
- Kovalchuke, O., Kambampati, R., Pladies, E., and Chakraburtty, K. (1998). Competition and cooperation amongst yeast elongation factors. Eur. J. Biochem. *258*, 986–993.
- Laurino, J.P., Thompson, G.M., Pacheco, E., and Castilho, B.A. (1999). The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol. Cell. Biol. *19*, 173–181.

- Mader, S., Lee, H., Pause, A., and Sonenberg, N. (1995). The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. *15*, 4990–4997.
- Marsden, S., Nardelli, M., Linder, P., and McCarthy, J.E.G. (2006). Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J. Mol. Biol. *361*, 327–335.
- Mohammad-Qureshi, S.S., Haddad, R., Hemingway, E.J., Richardson, J.P., and Pavitt, G.D. (2007). Critical contacts between the eukaryotic initiation factor 2B (eIF2B) catalytic domain and both eIF2beta and -2gamma mediate guanine nucleotide exchange. Mol. Cell. Biol. 27, 5225–5234.
- Neff, C.L., and Sachs, A.B. (1999). Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Mol. Cell. Biol. 19, 5557–5564.
- Nilsson, J., Sengupta, J., Gursky, R., Nissen, P., and Frank, J. (2007). Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. J. Mol. Biol. *369*, 429–438.
- Olsen, D.S., Savner, E.M., Mathew, A., Zhang, F., Krishnamoorthy, T., Phan, L., and Hinnebusch, A.G. (2003). Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22, 193–204.
- Passmore, L.A., Schmeing, T.M., Maag, D., Applefield, D.J., Acker, M.G., Algire, M.A., Lorsch, J.R., and Ramakrishnan, V. (2007). The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell *26*, 41–50.
- Pedersen, L., Andersen, G.R., Knudsen, C.R., Kinzy, T.G., and Nyborg, J. (2001). Crystallization of the yeast elongation factor complex eEF1A-eEF1B alpha. Acta Crystallogr. D Biol. Crystallogr. 57, 159–161.
- Phan, L., Zhang, X., Asano, K., Anderson, J., Vornlocher, H.P., Greenberg, J.R., Qin, J., and Hinnebusch, A.G. (1998). Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol. Cell. Biol. 18, 4935–4946.
- Pittman, Y.R., Kandl, K., Lewis, M., Valente, L., and Kinzy, T.G. (2009). Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha. J. Biol. Chem. 284, 4739–4747.
- Reibarkh, M., Yamamoto, Y., Singh, C.R., del Rio, F., Fahmy, A., Lee, B., Luna, R.E., Ii, M., Wagner, G., and Asano, K. (2008). Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J. Biol. Chem. 283, 1094–1103.
- Rogers, G.W., Jr, Richter, N.J., and Merrick, W.C. (1999). Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274, 12236–12244.
- Schütz, P., Bumann, M., Oberholzer, A.E., Bieniossek, C., Trachsel, H., Altmann, M., and Baumann, U. (2008). Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. Proc. Natl. Acad. Sci. U.S.A. *105*, 9564–9569.
- Singh, C.R., He, H., Ii, M., Yamamoto, Y., and Asano, K. (2004). Efficient incorporation of eukaryotic initiation factor 1 into the multifactor complex is critical for formation of functional ribosomal preinitiation complexes in vivo. J. Biol. Chem. *279*, 31910–31920.
- Skogerson, L., and Wakatama, E. (1976). A ribosome-dependent GTPase from yeast distinct from elongation

factor 2. Proc. Natl. Acad. Sci. U.S.A. 73, 73-76.

Spahn, C.M.T., Gomez-Lorenzo, M.G., Grassucci, R.A., Jørgensen, R., Andersen, G.R., Beckmann, R., Penczek, P.A., Ballesta, J.P.G., and Frank, J. (2004). Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019.

Tarun, S.Z., Jr, and Sachs, A.B. (1996). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. *15*, 7168–7177.

Triana-Alonso, F.J., Chakraburtty, K., and Nierhaus, K.H. (1995). The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J. Biol. Chem. *270*, 20473–20478.

Valásek, L., Mathew, A.A., Shin, B.-S., Nielsen, K.H., Szamecz, B., and Hinnebusch, A.G. (2003). The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev. 17, 786–799.

Valásek, L., Nielsen, K.H., and Hinnebusch, A.G. (2002). Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J. 21, 5886–5898.

Vornlocher, H.P., Hanachi, P., Ribeiro, S., and Hershey, J.W. (1999). A 110-kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J. Biol. Chem. *274*, 16802–16812.

Wells, S.E., Hillner, P.E., Vale, R.D., and Sachs, A.B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell *2*, 135–140.

Zanelli, C.F., Maragno, A.L.C., Gregio, A.P.B., Komili, S., Pandolfi, J.R., Mestriner, C.A., Lustri, W.R., and Valentini, S.R. (2006). eIF5A binds to translational machinery components and affects translation in yeast. Biochem. Biophys. Res. Commun. *348*, 1358–1366.

Zheng, A., Yamamoto, R., Sokabe, M., Tanaka, I., and Yao, M. (2011). Crystallization and preliminary X-ray crystallographic analysis of eIF5BΔN and the eIF5BΔN-eIF1AΔN complex. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 730–733.

Quantified protein	Ribo3 Q-peptides
P40512	ISHEVVQDDSFSLLR
CSN11_YEAST	YFDCCTK
P02994	IGGIGTVPVGR
EF1A_YEAST	SHINVVVIGHVDSGK
P16521	IVVEYIAAIGADLIDER
EF3A_YEAST	LVLAAGTWQRPHLIVLDEPTNYLDR
P14741	IAEIGVDFIADDDIILVHGYSR
el2BA_YEAST	NLHLYGDWENCK
P32502	LSPLYPFDVEK
el2BB_YEAST	TFTVLVTEGFPNNTK
P09032	GSNLAPFTQPDFPFQTQNK
el2BG_YEAST	LSNCYIEGHYVVEPK
P53235	TSQDIELFQSYPTFEQSNTNSK
eIF2A_YEAST	WNPLGNAILCLAITDFDSSNK
P06103	DFSFAPEGVK
eIF3B_YEAST	YLVTFSTEPIIVEEDNEFSPFTK
P32497	DQLDSADYVDNLIDGLSTILSK
elF3C_YEAST	VVEVLQSVIAELEIPAK
Q04067	GLAFVTFSSEEVAEQALR
eIF3G_YEAST	GSPAGPSAVTAR
P40217	EFIILGGGQEAK
eIF3I_YEAST	YETDCPLNTAVITPLK
P05453	FVAQIAIVELK
ERF3_YEAST	VIAVLETEAPVCVETYQDYPQLGR
Q12099	GIYSYGFEAPSSIQSR
FAL1_YEAST	HGCQAVSGTPGR
P34167	EDAPDLDWGAAR
IF4B_YEAST	GGGADVDWSSAR
P39936	AQPISDIYEFAYPENVERPDIK
IF4F2_YEAST	WEDDGETLK
P38431	GGGLSISDIAQGK
IF5_YEAST	NPETEIIITK
P25637	HINSTAR
YIH1_YEAST	WFGGAHIGPDR

Quantified protein P32324 AEQLYEGPADDANCIAIK EF2_YEAST FSVSPVVQVAVEVK P12754 DASNEEDSNSK e12BD_YEAST VITEFGALPPSSVPVILR P32501 CLLPLANVPLIEYTLEFLAK e12BE_YEAST TIEPAAFVLDK P38249 LATLPAPLDLSAWDIEK e1F3A_YEAST SGNNLVDLSDADTLQR
EF2_YEAST FSVSPVVQVAVEVK P12754 DASNEEDSNSK eI2BD_YEAST VITEFGALPPSSVPVILR P32501 CLLPLANVPLIEYTLEFLAK eI2BE_YEAST TIEPAAFVLDK P38249 LATLPAPLDLSAWDIEK eIF3A_YEAST SGNNLVDLSDADTLQR
P12754 DASNEEDSNSK eI2BD_YEAST VITEFGALPPSSVPVILR P32501 CLLPLANVPLIEYTLEFLAK eI2BE_YEAST TIEPAAFVLDK P38249 LATLPAPLDLSAWDIEK eIF3A_YEAST SGNNLVDLSDADTLQR
el2BD_YEAST VITEFGALPPSSVPVILR P32501 CLLPLANVPLIEYTLEFLAK el2BE_YEAST TIEPAAFVLDK P38249 LATLPAPLDLSAWDIEK elF3A_YEAST SGNNLVDLSDADTLQR
P32501 CLLPLANVPLIEYTLEFLAK e12BE_YEAST TIEPAAFVLDK P38249 LATLPAPLDLSAWDIEK e1F3A_YEAST SGNNLVDLSDADTLQR
el2BE_YEAST TIEPAAFVLDK P38249 LATLPAPLDLSAWDIEK elF3A_YEAST SGNNLVDLSDADTLQR
P38249 LATLPAPLDLSAWDIEK eIF3A_YEAST SGNNLVDLSDADTLQR
eIF3A_YEAST SGNNLVDLSDADTLQR
D1330FL CULACCADEV
P12385 GLILAGSADFK
ERF1_YEAST VAEVAVQNFITNDK
P38912 DFQDDQCDVVHK
IF1A_YEAST VEASCFDGNK
P20459 AVTATEDAELQALLESK
IF2A_YEAST LSIIDETVWEGIEPPSK
P09064 EGTPSANSSIQQEVGLPYSELLSR
IF2B_YEAST TIFSNIQDIAEK
P32481 FAVPGGLIGVGTK
IF2G_YEAST GTIADGAPIVPISAQLK
P39730 GVVVQASTLGSLEALLDFLK
IF2P_YEAST IQLELAEQGLNSELYFQNK
P10081 GIDVQQVSLVINYDLPANK
IF4A_YEAST GVFGYGFEEPSAIQQR
P07260 GADIDELWLR
IF4E_YEAST NDVRPEWEDEANAK
P39935 DATPIEDVFSFNYPEGIEGPDIK
IF4F1_YEAST SDEAEAEVEAEAGDAGTK
P19211 LEDLSPSTHNLEVPFVK
IF5A1_YEAST VHLVTLDIFTGK
P23301 APEGELGDSLQTAFDEGK
IF5A2_YEAST VHLVAIDIFTGK
Q12522 GLLVPTQTTDQELQHLR
IF6_YEAST TQFENSNEIGVFSK
P32911 SFDPFADTGDDETATSNYIHIR
SUI1_YEAST TLTTVQGVPEEYDLK
Q03690 GGDEAAIAASNQDLK
TIF31_YEAST SVDELLTFIEGDSSNSK

Quantified protein	Ribo1 Q-peptides
P02994	IGGIGTVPVGR
EF1A_YEAST	SHINVVVIGHVDSGK
P14741	GIPVTLIVDSAVGAVIDK
el2BA_YEAST	VFVGAEGVAESGGIINLVGTYSVGVLAHNAR
P32502	QVAIQGIK
el2BB_YEAST	TPVFAVAGLYK
P06103	NINDNNDVSASLK
eIF3B_YEAST	IFDVQPEDASDDFTTIEEIVEEVLEETK
P40217	NPGSINIYEIER
eIF3I_YEAST	VQGHFGPLNTVAISPQGTSYASGGEDGFIR
P05453	ISESTHNTNNANVTSADALIK
ERF3_YEAST	DQGTTIAIGK
Q12099	GIYSYGFEAPSSIQSR
FAL1_YEAST	DLQALILSPTR
P39936	YTYGPTFLLQFK
IF4F2_YEAST	EAPKPTGEANEVVIDGK
P38431	GGGLSISDIAQGK
IF5_YEAST	LQDVLDGFINK
P32324	TDGNSFLINLIDSPGHVDFSSEVTAALR
EF2_YEAST	AYLPVNESFGFTGELR
P32501	LQAVVLTDSYETR
el2BE_YEAST	HIYAYLTDEYAVR
P12385	LSVLSAITSTQQK
ERF1_YEAST	NFGATLEFITDK
P38912	NQGELPENAK
IF1A_YEAST	EEGQEYAQITK
P39730	VISLEINHQPVQEVK
IF2P_YEAST	IFNADVIYHLFDSFTAYQEK
P07260	GADIDELWLR
IF4E_YEAST	TVLSDSAHFDVK
P39935	DATPIEDVFSFNYPEGIEGPDIK
IF4F1_YEAST	ADAEWVQSTASK
P19211	LEDLSPSTHNLEVPFVK
IF5A1_YEAST	VHLVTLDIFTGK
P23301	APEGELGDSLQTAFDEGK
IF5A2_YEAST	VHLVAIDIFTGK

Quantified protein	Ribo2 Q-peptides
P40512	IGHLLSINYGEK
CSN11_YEAST	LQFSYLSSTLGIDLEDIK
P16521	VGNVGEDDAIPEVSHAGDVSTTLQVVNELLK
EF3A_YEAST	TVYVEHDIDGTHSDTSVLDFVFESGVGTK
P09032	GSNLAPFTQPDFPFQTQNK
el2BG_YEAST	EISVVAPVDEIELIESGLTSFLSLR
P53235	VSLTTGPVHDFTWSPTSR
eIF2A_YEAST	LSDVYDLHFSPAGNYLSTWER
P32497	DQLDSADYVDNLIDGLSTILSK
eIF3C_YEAST	ISLNSSNNASADER
Q04067	LGEEVELR
eIF3G_YEAST	GSPAGPSAVTAR
P34167	SGGFGGSFGGR
IF4B_YEAST	GAQFGKPQQTK
P25637	QEDGSIIVVK
YIH1_YEAST	QDGSAATYQDSDDDGETAAGSR
P12754	VLTELLHNAISLK
el2BD_YEAST	VITEFGALPPSSVPVILR
P38249	LATLPAPLDLSAWDIEK
eIF3A_YEAST	TAGGSSPATPATPATPATPTPSSGPK
P20459	GIEQLESAIEK
IF2A_YEAST	LVAAPLYVLTTQALDK
P09064	EGTPSANSSIQQEVGLPYSELLSR
IF2B_YEAST	TIFSNIQDIAEK
P32481	YNIDAVNEFIVK
IF2G_YEAST	EFEEGGGLPEQPLNPDFSK
P10081	TGTFSIAALQR
IF4A_YEAST	GVFGYGFEEPSAIQQR
Q12522	GLLVPTQTTDQELQHLR
IF6_YEAST	LQDAQPESISGNLR
P32911	SFDPFADTGDDETATSNYIHIR
SUI1_YEAST	TLTTVQGVPEEYDLK
Q03690	ELDSQIVHYEQNLK
TIF31_YEAST	FVEPPTTFSLSDLTIIPR

Supplementary Table IV QconCAT peptides

The proteins to be quantitated were distributed over four QconCATs (Ribo1 - Ribo4), with two peptides per protein. A stringent set of rules were followed to select the most 'quantotypic' peptides from each protein. The Ribo1/Ribo2 peptides were generated first, with the Ribo3/Ribo4 peptides synthesised later using a modified set of rules with the aim of increasing the number of successful Q-peptides per protein. Note that some of the peptide sequences did not correspond to proteins studied in this work.

Supplementary Table Va - Transition list for QconCAT 'Ribo 3'. Using data independent acquisition on a Waters Synapt G2 mass spectrometer, transition lists were created. These provide information on the precursor retention time ('prec retT') as well as the product ion fragment number ('frag str') and mass/charge ('product m_z'). Acquistions to optimise the collision energy ('ColE') and cone voltage ('ConeV') for each peptide were performed prior to quantification runs. For each peptide, in both heavy (QconCAT) and light (yeast analyte), two transitions were acquired. Peptide modification carbamidomethyl cysteine displayed as CAM+C.

			peptide seq	retT		precursor	frag	product	product	prod	KR	ColE	Cone V
	Q12099	CAM+C(3);13C+KR(12)	HGCQAVSGTPGR heavy	15.66	z 2	mz 616.798	str y3	m_z 335.213	inten 406	z	1	29	V
IVIDO2_T C		· /: · /	HGCQAVSGTPGR_heavy	15.66	2	616.798	y7	679.381	398	1	1	26	30
Ribo3_1 C	Q12099	CAM+C(3);13C+KR(12)	HGCQAVSGTPGR_light	15.66	2	613.798	у3	329.213	406	1	1	29	40
_			HGCQAVSGTPGR_light	15.66	2	613.798	у7	673.381	398	1	1	26	30
_		13C+KR(12)	GSPAGPSAVTAR_heavy	17.69	2	538.793	y10	466.766	13838	2	1	19	25
		13C+KR(12) 13C+KR(12)	GSPAGPSAVTAR_heavy GSPAGPSAVTAR_light	17.69 17.69	2	538.793 535.793	y9 y10	835.473 463.766	4419 13838	2	1	23 19	30 25
			GSPAGPSAVTAK_light	17.69	2	535.793	y10 y9	829.473	4419	1	1	23	30
			GGGADVDWSSAR_heavy	20.81	2	592.276	y7	826.417	3266	1	1	23	35
_		13C+KR(12)	GGGADVDWSSAR_heavy	20.81	2	592.276	, y5	612.321	2502	1	1	28	35
Ribo3_1 P		13C+KR(12)	GGGADVDWSSAR_light	20.81	2	589.276	у7	820.417	3266	1	1	23	35
			GGGADVDWSSAR_light	20.81	2	589.276	у5	606.321	2502	1	1	28	35
			NPETEIIITK_heavy NPETEIIITK_heavy	22.96 22.96	2	582.334	y7	823.523 952.566	2892	1	1	22	35 35
_		13C+KR(10) 13C+KR(10)	NPETEIIITK_neavy NPETEIIITK light	22.96	2	582.334 579.334	y8 y7	817.523	1858 2892	1	1	22	35
_		13C+KR(10)	NPETEIIITK_light	22.96	2	579.334	y8	946.566	1858	1	1	22	35
Ribo3_1 P	238431	13C+KR(13)	GGGLSISDIAQGK_heavy	24.96	2	604.834	y7	724.395	6565	1	1	21	35
Ribo3_1 P	238431	13C+KR(13)	GGGLSISDIAQGK_heavy	24.96	2	604.834	y8	837.479	2392	1	1	23	35
_			GGGLSISDIAQGK_light	24.96	2	601.834	у7	718.395	6565	1	1	21	35
_		13C+KR(13)	GGGLSISDIAQGK_light	24.96	2	601.834	y8	831.479	2392	1	1	23	35
		13C+KR(12) 13C+KR(12)	EDAPDLDWGAAR_heavy EDAPDLDWGAAR_heavy	25.07 25.07	2	661.310 661.310	y5 y6	566.315 681.342	5898 5301	1	1	30 25	35 35
			EDAPDLDWGAAR_light	25.07	2	658.310	y5 y5	560.315	5898	1	1	30	35
			EDAPDLDWGAAR_light	25.07	2	658.310	у6	675.342	5301	1	1	25	35
Ribo3_1 C		13C+KR(16)	GIYSYGFEAPSSIQSR_heavy	26.27	2	884.437	y7	780.432	7047	1	1	28	40
		13C+KR(16)	GIYSYGFEAPSSIQSR_heavy	26.27	2	884.437	y11	1184.607	6201	1	1	33	35
		13C+KR(16)	GIYSYGFEARSSIQSR_light	26.27	2	881.437	y7	774.432	7047	1	1	28 33	40 35
			GIYSYGFEAPSSIQSR_light EFIILGGGQEAK_heavy	26.27 26.82	2	881.437 634.353	y11 y7	1178.607 652.335	6201 8436	1	1	22	35
			EFIILGGGQEAK_neavy	26.82	2	634.353	y8	765.419	7155	1	1	22	35
_			EFIILGGGQEAK_light	26.82	2	631.353	y7	646.335	8436	1	1	22	35
			EFIILGGGQEAK_light	26.82	2	631.353	у8	759.419	7155	1	1	22	35
			YETDCPLNTAVITPLK_heavy	27.31	2	920.979	y11	1172.737	4986	1	1	34	35
			YETDCPLNTAVITPLK_heavy	27.31	2	920.979	y4	464.318	1333	1	1	29	35
_		CAM+C(5);13C+KR(16) CAM+C(5);13C+KR(16)	YETDCPLNTAVITPLK_light YETDCPLNTAVITPLK_light	27.31 27.31	2	917.979 917.979	y11 y4	1166.737 458.318	4986 1333	1	1	34 29	35 35
		13C+KR(15)	TFTVLVTEGFPNNTK_heavy	28.41	2	837.446	y 4 y9	1013.494	5685	1	1	26	35
			TFTVLVTEGFPNNTK_heavy	28.41	2	837.446	y5	579.318	4306	1	1	26	35
Ribo3_1 P	P32502		TFTVLVTEGFPNNTK_light	28.41	2	834.446	у9	1007.494	5685	1	1	26	35
_		13C+KR(15)	TFTVLVTEGFPNNTK_light	28.41	2	834.446	у5	573.318	4306	1	1	26	35
		13C+KR(11)	LSPLYPFDVEK_heavy	29.33	2	657.357	у9	557.299	33142	2	1	20	30
		13C+KR(11) 13C+KR(11)	LSPLYPFDVEK_heavy LSPLYPFDVEK_light	29.33 29.33	2	657.357 654.357	y6 y9	740.391 554.299	13123 33142	2	1	23	30 30
		13C+KR(11)	LSPLYPFDVEK_light	29.33	2	654.357	y5 y6	734.391	13123	1	1	23	30
		13C+KR(18)	GLAFVTFSSEEVAEQALR_heavy	31.83	2	980.512	y11	1224.624	1006	1	1	34	40
Ribo3_1 C		13C+KR(18)	GLAFVTFSSEEVAEQALR_heavy	31.83	2	980.512	y13	1472.729	951	1	1	34	40
			GLAFVTFSSEEVAEQALR_light	31.83	2	977.512	y11	1218.624	1006	1	1	34	40
			GLAFVTFSSEEVAEQALR_light	31.83	2	977.512	y13	1466.729	951	1	1	34	40
		13C+KR(23) 13C+KR(23)	YLVTFSTEPIIVEEDNEFSPFTK_heavy YLVTFSTEPIIVEEDNEFSPFTK heavy	33.66 33.66	2	1356.176 1356.176	y4 y5	498.305 585.329	459 436	1	1	54 54	35 35
		` '	YLVTFSTEPIIVEEDNEFSPFTK_neavy YLVTFSTEPIIVEEDNEFSPFTK_light	33.66	2	1356.176	y5 y4	492.305	436 459	1	1	54	35
			YLVTFSTEPIIVEEDNEFSPFTK_light	33.66	2	1353.176	y - y5	579.329	436	1	1	54	35
Ribo3_1 P	P16521	13C+KR(17)	IVVEYIAAIGADLIDER_heavy	36.49	3	622.684	y10	1078.589	313	1	1	22	25
			IVVEYIAAIGADLIDER_heavy	36.49	3	622.684	у2	310.181	66	1	1	29	25
			IVVEYIAAIGADLIDER_light	36.49	3	620.684	y10	1072.589	313	1	1	22	25
			IVVEYIAAIGADLIDER_light HINSTAR_1_heavy	36.49 15.42	3	620.684 402.725	y2 b5	304.181 553.273	66	1	1	29 17	25 30
			HINSTAR_1_neavy HINSTAR_1_light	15.42	2	399.725	b5	547.273		1	1	17	30
			YFDCCTK_heavy	18.69	2	500.204	y5	689.269	985	1	1	18	30
		CAM+C(4),(5);13C+KR(7)	YFDCCTK_heavy	18.69	2	500.204	y6	836.338	599	1	1	20	25
			YFDCCTK_light	18.69	2	497.204	у5	683.269	985	1	1	18	30
			YFDCCTK_light	18.69	2	497.204	y6	830.338	599	1	1	20	25
			WEDDGETLK_heavy WEDDGETLK_heavy	20.67	2	549.756 549.756	y7 y5	783.383 553.333	3365 702	1	1	19 21	35 35
		13C+KR(9)	WEDDGETLK_neavy WEDDGETLK light	20.67	2	549.756	y5 y7	777.383	3365	1	1	19	35
			WEDDGETEK_light	20.67	2	546.756	y5	547.333	702	1	1	21	35
		CAM+C(4);13C+KR(15)	LSNCYIEGHYVVEPK_heavy	22.93	3	605.302	y13	807.390	5051	2	1	18	35
Ribo3_2 P	P09032	CAM+C(4);13C+KR(15)	LSNCYIEGHYVVEPK_heavy	22.93	3	605.302	y14	850.906	4769	2	1	21	35
		CAM+C(4);13C+KR(15)	LSNCYIEGHYVVEPK_light	22.93	3	603.302	y13	804.390	5051	2	1	18	35
			LSNCYIEGHYVVEPK_light	22.93	3	603.302	y14	847.906	4769	2	1	21	35
		13C+KR(27)	WNPLGNAILCLAITDFDSSNK_heavy	23.16	3	785.730 785.730	y8 h15	919.410 818.410		2	1	24 27	35 30
		13C+KR(27) 13C+KR(27)	WNPLGNAILCLAITDFDSSNK_heavy WNPLGNAILCLAITDFDSSNK light	23.16 23.16	3	785.730 783.730	b15 y8	913.410		1	1	24	35
			WNPLGNAILCLAITDFDSSNK_light	23.16	3	783.730	b15	815.410		2	1	27	30
			WFGGAHIGPDR_heavy	24.12	2	609.800	y5	563.300		1	1	28	40

Ribo3_2	P25637	13C+KR(16)	WFGGAHIGPDR_heavy	24.12	2	609.800	y10	516.760		2	1	25	40
Ribo3_2	P25637	13C+KR(16)	WFGGAHIGPDR_light	24.12	2	606.800	y5	557.300		1	1	28	40
Ribo3_2	P25637	13C+KR(16)	WFGGAHIGPDR_light	24.12	2	606.800	y10	513.760		2	1	25	40
Ribo3_2	P14741	CAM+C(11);13C+KR(12)	NLHLYGDWENCK_heavy	24.79	3	518.909	y4	556.250	900	1	1	15	25
Ribo3_2	P14741	CAM+C(11);13C+KR(12)	NLHLYGDWENCK_heavy	24.79	3	518.909	y8	1077.442	693	1	1	18	25
Ribo3_2	P14741	CAM+C(11);13C+KR(12)	NLHLYGDWENCK_light	24.79	3	516.909	y4	550.250	900	1	1	15	25
Ribo3_2	P14741	CAM+C(11);13C+KR(12)	NLHLYGDWENCK_light	24.79	3	516.909	у8	1071.442	693	1	1	18	25
Ribo3_2	P06103	13C+KR(10)	DFSFAPEGVK_heavy	26.08	2	551.780	у8	840.454	9125	1	1	19	25
Ribo3_2	P06103	13C+KR(10)	DFSFAPEGVK_heavy	26.08	2	551.780	у7	753.427	3379	1	1	19	25
Ribo3_2	P06103	13C+KR(10)	DFSFAPEGVK_light	26.08	2	548.780	у8	834.454	9125	1	1	19	25
Ribo3_2	P06103	13C+KR(10)	DFSFAPEGVK_light	26.08	2	548.780	у7	747.427	3379	1	1	19	25
Ribo3_2	P40512	13C+KR(15)	ISHEVVQDDSFSLLR_heavy	26.33	3	584.308	у6	728.440	3832	1	1	21	25
Ribo3_2	P40512	13C+KR(15)	ISHEVVQDDSFSLLR_heavy	26.33	3	584.308	у5	641.408	2090	1	1	21	25
Ribo3_2	P40512	13C+KR(15)	ISHEVVQDDSFSLLR_light	26.33	3	582.308	у6	722.440	3832	1	1	21	25
Ribo3_2	P40512	13C+KR(15)	ISHEVVQDDSFSLLR_light	26.33	3	582.308	у5	635.408	2090	1	1	21	25
Ribo3_2	P53235	13C+KR(22)	TSQDIELFQSYPTFEQSNTNSK_heavy	28.16	2	1285.604	y11	1258.601	2309	1	1	41	35
Ribo3_2	P53235	13C+KR(22)	TSQDIELFQSYPTFEQSNTNSK_heavy	28.16	2	1285.604	y13	1508.692	193	1	1	41	35
Ribo3_2	P53235	13C+KR(22)	TSQDIELFQSYPTFEQSNTNSK_light	28.16	2	1282.604	y11	1252.601	2309	1	1	41	35
Ribo3_2	P53235	13C+KR(22)	TSQDIELFQSYPTFEQSNTNSK_light	28.16	2	1282.604	y13	1502.692	193	1	1	41	35
Ribo3_2	P39936	13C+KR(18);13C+KR(22)	AQPISDIYEFAYPENVERPDIK_heavy	28.75	3	869.444	y20	1204.114	55402	2	2	27	35
Ribo3_2	P39936	13C+KR(18);13C+KR(22)	AQPISDIYEFAYPENVERPDIK_heavy	28.75	3	869.444	y10	1208.670	4316	1	2	34	35
Ribo3_2	P39936	13C+KR(18);13C+KR(22)	AQPISDIYEFAYPENVERPDIK_light	28.75	3	865.444	y20	1198.114	55402	2	2	27	35
Ribo3_2	P39936	13C+KR(18);13C+KR(22)	AQPISDIYEFAYPENVERPDIK_light	28.75	3	865.444	y10	1196.670	4316	1	2	34	35
Ribo3_2	P09032	13C+KR(19)	GSNLAPFTQPDFPFQTQNK_heavy	29.30	2	1072.031	y14	850.918	5223	2	1	34	35
Ribo3_2	P09032	13C+KR(19)	GSNLAPFTQPDFPFQTQNK_heavy	29.30	2	1072.031	y11	1355.667	464	1	1	34	35
Ribo3_2	P09032	13C+KR(19)	GSNLAPFTQPDFPFQTQNK_light	29.30	2	1069.031	y14	847.918	5223	2	1	34	35
Ribo3_2	P09032	13C+KR(19)	GSNLAPFTQPDFPFQTQNK_light	29.30	2	1069.031	y11	1349.667	464	1	1	34	35
Ribo3_2	P05453	13C+KR(11)	FVAQIAIVELK_heavy	29.55	2	618.886	у6	678.447	1062	1	1	22	25
Ribo3_2	P05453	13C+KR(11)	FVAQIAIVELK_heavy	29.55	2	618.886	у7	791.533	964	1	1	22	35
Ribo3_2	P05453	13C+KR(11)	FVAQIAIVELK_light	29.55	2	615.886	у6	672.447	1062	1	1	22	25
Ribo3_2	P05453	13C+KR(11)	FVAQIAIVELK_light	29.55	2	615.886	у7	785.533	964	1	1	22	35
Ribo3_2	P05453	CAM+C(12);13C+KR(24)	VIAVLETEAPVCVETYQDYPQLGR_heavy	29.75	3	919.468	у5	576.355	2143	1	1	32	35
Ribo3_2	P05453	CAM+C(12);13C+KR(24)	VIAVLETEAPVCVETYQDYPQLGR_heavy	29.75	3	919.468	у6	739.420	1000	1	1	34	35
Ribo3_2	P05453	CAM+C(12);13C+KR(24)	VIAVLETEAPVCVETYQDYPQLGR_light	29.75	3	917.468	у5	570.355	2143	1	1	32	35
Ribo3_2	P05453	CAM+C(12);13C+KR(24)	VIAVLETEAPVCVETYQDYPQLGR_light	29.75	3	917.468	у6	733.420	1000	1	1	34	35
Ribo3_2	P32497	13C+KR(17)	VVEVLQSVIAELEIPAK_heavy	35.94	3	615.034	у3	321.223	1733	1	1	26	25
Ribo3_2	P32497		VVEVLQSVIAELEIPAK_heavy	35.94	3	615.034	у8	876.516	1396	1	1	19	25
Ribo3_2	P32497	13C+KR(17)	VVEVLQSVIAELEIPAK_light	35.94	3	613.034	у3	315.223	1733	1	1	26	25
Ribo3_2	P32497	13C+KR(17)	VVEVLQSVIAELEIPAK_light	35.94	3	613.034	у8	870.516	1396	1	1	19	25
Ribo3_2	P32497	13C+KR(22)	DQLDSADYVDNLIDGLSTILSK_heavy	39.15	2	1201.107	y10	1052.629	1298	1	1	41	40
Ribo3_2	P32497	13C+KR(22)	DQLDSADYVDNLIDGLSTILSK_heavy	39.15	2	1201.107	у6	654.411	942	1	1	43	35
Ribo3_2	P32497	13C+KR(22)	DQLDSADYVDNLIDGLSTILSK_light	39.15	2	1198.107	y10	1046.629	1298	1	1	41	40
Ribo3_2	P32497	13C+KR(22)	DQLDSADYVDNLIDGLSTILSK_light	39.15	2	1198.107	y6	648.411	942	1	1	43	35

Supplementary Table Vb - Transition list for QconCAT 'Ribo 4'. Using data independent acquisition on a Waters Synapt G2 mass spectrometer, transition lists were created. These provide information on the precursor retention time ('precursor retT') as well as the product ion fragment number ('fragment str') and mass/charge ('product m_'z). Acquistions to optimise the collision energy ('CoIE') and cone voltage ('ConeV') for each peptide were performed prior to quantification runs. For each peptide, in both heavy (QconCAT) and light (yeast analyte), two transitions were acquired.

List	Prot Acc	peptide modification	peptide seq	prec retT	prec z	precursor mz	frag str	product m z	product inten	prod z	num KR	ColE	Cone V
Ribo4 1	P38912	CAM+C(5);13C+KR(10)	VEASCFDGNK heavy	18.11	2	566.756	y7	833.362	1252	1	1	20	25
		, ,,	VEASCFDGNK_heavy	18.11	2	566.756	y6	746.325	397	1	1	20	25
			VEASCFDGNK_light	18.11	2	563.756	у7	827.362	1252	1	1	20	25
_			VEASCFDGNK_light	18.11	2	563.756	y6	740.325	397	1	1	20	25
			DFQDDQCDVVHK_heavy DFQDDQCDVVHK_heavy	18.93 18.93	3	504.555 504.555	y10	625.280	1456 1180	2	1	15 15	25 25
_		CAM+C(7);13C+KR(12) CAM+C(7);13C+KR(12)	DFQDDQCDVVHK_neavy DFQDDQCDVVHK light	18.93	3	504.555	y9 y10	561.254 622.280	1456	2	1	15	25
		CAM+C(7);13C+KR(12)	DFQDDQCDVVHK_light	18.93	3	502.555	y10 y9	558.254	1180	2	1	15	25
_			SGNNLVDLSDADTLQR_heavy	25.25	2	862.432	y10	1139.565	3040	1	1	30	40
	P38249	13C+KR(16)	SGNNLVDLSDADTLQR_heavy	25.25	2	862.432	y11	1238.632	2415	1	1	30	35
		13C+KR(16)	SGNNLVDLSDADTLQR_light	25.25	2	859.432	y10	1133.565	3040	1	1	30	40
_		13C+KR(16)	SGNNLVDLSDADTLQR_light	25.25	2	859.432	y11	1232.632	2415	1	1	30	35
_		13C+KR(18) 13C+KR(18)	APEGELGDSLQTAFDEGK_heavy APEGELGDSLQTAFDEGK_heavy	26.75 26.75	2	935.430 935.430	y7 y6	767.350 666.310		1	1	39 39	35 40
			APEGELGDSLQTAFDEGK_light	26.75	2	932.430	y7	761.350		1	1	39	35
		13C+KR(18)	APEGELGDSLQTAFDEGK_light	26.75	2	932.430	y6	660.310		1	1	39	40
		13C+KR(17)	LEDLSPSTHNLEVPFVK_heavy	27.08	3	644.346	y12	687.379	5627	2	1	20	30
		13C+KR(17)	LEDLSPSTHNLEVPFVK_heavy	27.08	3	644.346	y13	730.895	3919	2	1	20	30
		13C+KR(17)	LEDLSPSTHNLEVPFVK_light	27.08	3	642.346	y12	684.379	5627	2	1	20	30
		13C+KR(17) 13C+KR(17)	LEDLSPSTHNLEVPFVK_light GTIADGAPIVPISAQLK heavy	27.08 27.41	3	642.346 828.985	y13 y10	727.895 1071.688	3919 5684	2	1 1	20 29	30 35
		13C+KR(17)	GTIADGATIVI ISAQEK_HEAVY	27.41	2	828.985	y10	1314.775	422	1	1	26	40
		13C+KR(17)	GTIADGAPIVPISAQLK_light	27.41	2	825.985	y10	1065.688	5684	1	1	29	35
Ribo4_1			GTIADGAPIVPISAQLK_light	27.41	2	825.985	y13	1308.775	422	1	1	26	40
			FAVPGGLIGVGTK_heavy	28.00	2	611.369	y11	502.314	1916	2	1	18	25
_			FAVPGGLIGVGTK_heavy	28.00	2	611.369	y10	904.557	15499	1	1	21	25
		13C+KR(13) 13C+KR(13)	FAVPGGLIGVGTK_light FAVPGGLIGVGTK_light	28.00 28.00	2	608.369 608.369	y11 y10	499.314 898.557	1916 15499	2	1	18 21	25 25
		13C+KR(12)	TIFSNIQDIAEK_heavy	28.46	2	692.874	y10	1170.598	1189	1	1	24	25
		13C+KR(12)	TIFSNIQDIAEK_heavy	28.46	2	692.874	y3	353.214	183	1	1	24	30
Ribo4_1	P09064	13C+KR(12)	TIFSNIQDIAEK_light	28.46	2	689.874	y10	1164.598	1189	1	1	24	25
		13C+KR(12)	TIFSNIQDIAEK_light	28.46	2	689.874	у3	347.214	183	1	1	24	30
		13C+KR(17)	AVTATEDAELQALLESK_heavy	28.73	2	897.960	у9	1030.580		2	1	35	25
		13C+KR(17) 13C+KR(17)	AVTATEDAELQALLESK_heavy AVTATEDAELQALLESK_light	28.73 28.73	2	897.960 894.960	y6 y9	660.390 1027.580		2	1	31 35	30 25
_		13C+KR(17)	AVTATEDALLQALLESK_light	28.73	2	894.960	y5 y6	657.390		2	1	31	30
_		13C+KR(24)	EGTPSANSSIQQEVGLPYSELLSR_heavy	29.69	2	1284.649	y8	970.533	4377	1	1	48	30
			EGTPSANSSIQQEVGLPYSELLSR_heavy	29.69	2	1284.649	y10	1140.633	1764	1	1	48	30
			EGTPSANSSIQQEVGLPYSELLSR_light	29.69	2	1281.649	у8	964.533	4377	1	1	48	30
		13C+KR(24)	EGTPSANSSIQQEVGLPYSELLSR_light	29.69	2	1281.649	y10	1134.633	1764	1	1	48	30
		13C+KR(17) 13C+KR(17)	LSIIDETVWEGIEPPSK_heavy LSIIDETVWEGIEPPSK heavy	31.07 31.07	2	960.009 960.009	y9 y4	1048.536 434.271	7120 3848	1	1	33 40	35 35
		13C+KR(17)	LSIIDETVWEGIEPPSK_light	31.07	2	957.009	y9	1042.536	7120	1	1	33	35
Ribo4_1	P20459	13C+KR(17)	LSIIDETVWEGIEPPSK_light	31.07	2	957.009	y4	428.271	3848	1	1	40	35
		13C+KR(18)	VITEFGALPPSSVPVILR_heavy	31.73	2	951.066	y10	1070.670	23527	1	1	35	40
		13C+KR(18)	VITEFGALPPSSVPVILR_heavy	31.73	2	951.066	y13	1311.818	607	1	1	40	40
		13C+KR(18) 13C+KR(18)	VITEFGALPPSSVPVILR_light VITEFGALPPSSVPVILR_light	31.73 31.73	2	948.066 948.066	y10 y13	1064.670 1305.818	23527 607	1	1	35 40	40 40
		, ,	LATLPAPLDLSAWDIEK_heavy	33.57	2	930.018	y13	1460.773	13005	1	1	32	35
		13C+KR(17)	LATLPAPLDLSAWDIEK_heavy	33.57	2	930.018	y13	1292.684	3999	1	1	32	30
		13C+KR(17)	LATLPAPLDLSAWDIEK_light	33.57	2	927.018	y13	1454.773	13005	1	1	32	35
		13C+KR(17)	LATLPAPLDLSAWDIEK_light	33.57	2	927.018	y11	1286.684	3999	1	1	32	30
		13C+KR(20)	CLLPLANVPLIEYTLEFLAK_heavy	16.97	3	775.107	y9	1119.600		1	1	31	40
		13C+KR(20) 13C+KR(15)	CLLPLANVPLIEYTLEFLAK_light GGDEAAIAASNQDLK_heavy	16.97 20.05	3	773.107 733.365	y9 y8	1113.600 852.453	3876	1	1	31 23	40 35
		13C+KR(15)	GGDEAAIAASNQDLK_heavy	20.05	2	733.365	yo y7	781.414	1944	1	1	23	30
		13C+KR(15)	GGDEAAIAASNQDLK_light	20.05	2	730.365	y8	846.453	3876	1	1	23	35
		13C+KR(15)	GGDEAAIAASNQDLK_light	20.05	2	730.365	y7	775.414	1944	1	1	23	30
			SDEAEAEVEAEAGDAGTK_heavy	21.09	2	892.894	y13	1253.602	960	1	1	35	60
_		13C+KR(18)	SDEAEAEVEAEAGDAGTK_heavy	21.09	2	892.894	y11	1053.520	794	1	1	35	30
		13C+KR(18) 13C+KR(18)	SDEAEAEVEAEAGDAGTK_light SDEAEAEVEAEAGDAGTK_light	21.09 21.09	2	889.894 889.894	y13 y11	1247.602 1047.520	960 794	1	1	35 35	60 30
_		13C+KR(17)	GLLVPTQTTDQELQHLR_heavy	25.92	3	652.360	y11	786.907	28790	2	1	20	25
			GLLVPTQTTDQELQHLR_heavy	25.92	3	652.360	y14	836.442	6121	2	1	20	30
Ribo4_2	Q12522	13C+KR(17)	GLLVPTQTTDQELQHLR_light	25.92	3	650.360	y13	783.907	28790	2	1	20	25
		13C+KR(17)	GLLVPTQTTDQELQHLR_light	25.92	3	650.360	y14	833.442	6121	2	1	20	30
		13C+KR(14)	TQFENSNEIGVFSK_heavy	25.99	2	803.390	у9	980.510		1	1	30	35
		13C+KR(14) 13C+KR(14)	TQFENSNEIGVFSK_light VAEVAVQNFITNDK_heavy	25.99 26.14	2	800.390 777.418	y9 y4	974.510 483.252	632	1	1	30 27	35 30
		13C+KR(14) 13C+KR(14)	VAEVAVQNFITNDK_neavy VAEVAVQNFITNDK_heavy	26.14	2	777.418	y4 y10	483.252 1155.614	405	1	1	27	30
		13C+KR(14)	VAEVAVQNFITNDK_light	26.14	2	774.418	y4	477.252	632	1	1	27	30
_		13C+KR(14)	VAEVAVQNFITNDK_light	26.14	2	774.418	y10	1149.614	405	1	1	27	30
Ribo4_2		13C+KR(11)	GLILAGSADFK_heavy	26.55	2	549.319	у8	814.437	3478	1	1	19	25
		13C+KR(11)	GLILAGSADFK_heavy	26.55	2	549.319	у7	701.355	1929	1	1	19	25
Ribo4_2	P12385	13C+KR(11)	GLILAGSADFK_light	26.55	2	546.319	у8	808.437	3478	1	1	19	25

Ribo4_2	P12385	13C+KR(11)	GLILAGSADFK_light	26.55	2	546.319	у7	695.355	1929	1	1	19	25
Ribo4_2	P32501	13C+KR(11)	TIEPAAFVLDK_heavy	27.76	2	605.344	y8	866.509	5544	1	1	21	30
Ribo4_2	P32501	13C+KR(11)	TIEPAAFVLDK_heavy	27.76	2	605.344	у9	995.552	4501	1	1	18	30
Ribo4_2	P32501	13C+KR(11)	TIEPAAFVLDK_light	27.76	2	602.344	y8	860.509	5544	1	1	21	30
Ribo4_2	P32501	13C+KR(11)	TIEPAAFVLDK_light	27.76	2	602.344	у9	989.552	4501	1	1	18	30
Ribo4_2	P07260	13C+KR(10)	GADIDELWLR_heavy	29.58	2	597.318	у6	837.459	8700	1	1	21	25
Ribo4_2	P07260	13C+KR(10)	GADIDELWLR_heavy	29.58	2	597.318	у5	722.430	2217	1	1	25	25
Ribo4_2	P07260	13C+KR(10)	GADIDELWLR_light	29.58	2	594.318	у6	831.459	8700	1	1	21	25
Ribo4_2	P07260	13C+KR(10)	GADIDELWLR_light	29.58	2	594.318	у5	716.430	2217	1	1	25	25
Ribo4_2	P39730	13C+KR(19)	IQLELAEQGLNSELYFQNK_heavy	29.70	2	1122.085	y11	1318.670		1	1	36	35
Ribo4_2	P39730	13C+KR(19)	IQLELAEQGLNSELYFQNK_heavy	29.70	2	1122.085	y12	1446.730		1	1	39	35
Ribo4_2	P39730	13C+KR(19)	IQLELAEQGLNSELYFQNK_light	29.70	2	1119.085	y11	1312.670		1	1	36	35
Ribo4_2	P39730	13C+KR(19)	IQLELAEQGLNSELYFQNK_light	29.70	2	1119.085	y12	1440.730		1	1	39	35
Ribo4_2	P10081	13C+KR(19)	GIDVQQVSLVINYDLPANK_heavy	30.14	2	1046.574	у4	435.267	440	1	1	43	30
Ribo4_2	P10081	13C+KR(19)	GIDVQQVSLVINYDLPANK_heavy	30.14	2	1046.574	у5	548.348	61	1	1	43	40
Ribo4_2	P10081	13C+KR(19)	GIDVQQVSLVINYDLPANK_light	30.14	2	1043.574	у4	429.267	440	1	1	43	30
Ribo4_2	P10081	13C+KR(19)	GIDVQQVSLVINYDLPANK_light	30.14	2	1043.574	у5	542.348	61	1	1	43	40
Ribo4_2	Q03690	13C+KR(17)	SVDELLTFIEGDSSNSK_heavy	32.54	2	923.956	y10	1089.520	1823	1	1	32	30
Ribo4_2	Q03690	13C+KR(17)	SVDELLTFIEGDSSNSK_heavy	32.54	2	923.956	у7	700.322	1778	1	1	32	40
Ribo4_2	Q03690	13C+KR(17)	SVDELLTFIEGDSSNSK_light	32.54	2	920.956	y10	1083.520	1823	1	1	32	30
Ribo4_2	Q03690	13C+KR(17)	SVDELLTFIEGDSSNSK_light	32.54	2	920.956	у7	694.322	1778	1	1	32	40
Ribo4_2	P39935	13C+KR(23)	DATPIEDVFSFNYPEGIEGPDIK_heavy	33.35	2	1280.117	y10	1060.567	1369	1	1	44	40
Ribo4_2	P39935	13C+KR(23)	DATPIEDVFSFNYPEGIEGPDIK_heavy	33.35	2	1280.117	y12	1337.639	949	1	1	41	40
Ribo4_2	P39935	13C+KR(23)	DATPIEDVFSFNYPEGIEGPDIK_light	33.35	2	1277.117	y10	1054.567	1369	1	1	44	40
Ribo4_2	P39935	13C+KR(23)	DATPIEDVFSFNYPEGIEGPDIK_light	33.35	2	1277.117	y12	1331.639	949	1	1	41	40
Ribo4_2	P39730	13C+KR(20)	GVVVQASTLGSLEALLDFLK_heavy	39.13	2	1033.597	y13	1425.830		1	1	38	35
Ribo4_2	P39730	13C+KR(20)	GVVVQASTLGSLEALLDFLK_heavy	39.13	2	1033.597	y14	1512.860		1	1	36	35
Ribo4_2	P39730	13C+KR(20)	GVVVQASTLGSLEALLDFLK_light	39.13	2	1030.597	y13	1419.830		1	1	38	35
Ribo4_2	P39730	13C+KR(20)	GVVVQASTLGSLEALLDFLK_light	39.13	2	1030.597	y14	1506.860		1	1	36	35

Translation Factor	Entry name	Acc	Biological replicates	Average (cpc)	unique peptides	Abundance (cpc)	SEM
Initiation factor eIF1	SUI1_YEAST	P32911		22.522	2	eEF2 average: 34,000	
			Log_1	32,520	2		2,000
			Log_2	37,345	2		
			Log_3	30,792	2		
Initiation factor eIF1A	IF1A_YEAST	P38912	Log_1	48,266	1	elF1A average: 57,000	5,500
			Log_2	67,203	1		
Initiation factor eIF2α	IF2A_YEAST	P20459	Log_3	56,132	1	eIF2 complex average of β and γ: 29,000	2,100
			Log_1	6,133	1		
			Log_2	8,215	1		
Initiation factor eIF2β	IF2B_YEAST	P09064	Log_3	8,306	1		
			Log_1	20,690	1		
			Log_2	32,910	i		
Initiation factor eIF2y	IF2G_YEAST	P32481	Log_3	27,986	1		
			Log_1	32,844	3		
			Log_2	27,657	3		
Initiation factor			Log_3	31,588	3 blo for		
elF2Bα	PIZRA YFAST P14741 S PIZZA S S S S S S S S S S S S S S S S S S						
Initiation factor eIF2Bβ	el2BB_YEAST	P32502	Log_1	5,394	2	eIF2B complex average of β to ε: 5,600	150
			Log_2	6,199	2		
			Log_3	5,521	2		
Initiation factor eIF2Bδ	el2BD_YEAST	P12754	Log_1	4,079	1		
			Log_2	5,267	1		
			Log_3	5,257	1		
Initiation factor eIF2Bɛ	el2BE_YEAST	P32501	Log_1	5,057	3		
			Log_2	6,049	3		
			Log_3	6,010	3		
Initiation factor eIF2Bγ	el2BG_YEAST	P09032	Log_1	6,042	3		
			Log_2	6,533	3		
			Log_3	6,035	3		
Initiation factor eIF3a	eIF3A_YEAST	P38249	Log_1	22,254	2	eIF3 complex average of a to g: 23,000	1,200
			Log_2	31,602	2		
			Log_3	28,704	2		
Initiation factor eIF3b	eIF3B_YEAST	P06103	Log_1	22,199	2		
			Log_2	19,081	3		
			Log_3	20,626	3		
Initiation factor eIF3c	eIF3C_YEAST	P32497	Log_1	21,041	1		
			Log_2	17,807	1		
			Log_3	24,582	1		
Initiation factor eIF3g	eIF3G_YEAST	Q04067	Log_1	20,827	3		
			Log_2	26,496	3		
			Log_3	19,430	3		
Initiation factor	eIF3I_YEAST	P40217	Log_1	14,669	4		

elF3i			Log_2	17,205	4		
		, and the second	Log_3	15,814	4		
			Log_1	216,063	2		
Initiation factor eIF4A	IF4A_YEAST	P10081	Log_2	269,617	2	eIF4A average: 240,000	16,000
		, and the second	Log_3	234,767	3	1.0,000	
Initiation factor	IF4B_YEAST	P34167	Log_1	27,655	3		1,400
			Log_2	30,976	3	eIF4B average: 28,000	
CII 4B			Log_3	26,395	2	25,500	
	IF4E_YEAST	P07260	Log_1	69,749	3		5,700
Initiation factor eIF4E			Log_2	90,794	3	elF4E average: 80,000	
			Log_3	80,292	3		
	IF4F2_YEAST		Log_1	2,338	2	total eIF4G = 22,000	2,700
Initiation factor eIF4G2		P39936	Log_2	1,975	2		
			Log_3	2,092	1		
Initiation factor eIF4G1	IF4F1_YEAST		Log_1	15,095	2		
		P39935	Log_2	24,323	2		
en401		, and the second	Log_3	20,416	2		
	IF5_YEAST		Log_1	18,246	2	eIF5 average: 20,000	2,000
Initiation factor eIF5		P38431	Log_2	24,357	2		
C 5		, and the second	Log_3	18,358	2	20,000	
Нур2	IF5A2_YEAST	P23301	Log_1	454,271	1	Hyp2 average: 410,000	64,000
			Log_2	526,435	1		
			Log_3	444,213	1	410,000	
	IF2P_YEAST	P39730	Log_1	6,066	1	eIF5B average: 4,800	900
Initiation factor eIF5B			Log_2	3,119	1		
еігэр			Log_3	5,135	1	.,,555	
	EF1A_YEAST	P02994	Log_1	1,036,757	1	- FF4 A	32,000
Elongation factor eEF1A			Log_2	1,102,238	1	eEF1A average: 1,000,000	
			Log_3	991,534	1	,,,,,,,,	
Elongation factor eEF1B	EF1B_YEAST	P32471	Label free quantification (MS ^E)			79,000	1,000
Elongation factor	EF2_YEAST	P32324	Log_1	141,480	2	eEF2 average:	3,900
eEF2			Log_2	148,778	2	140,000	
			Log_3	135,308	2	ŕ	
Elongation factor eEF3	EF3A_YEAST	P16521	Label free	e quantification	on (MS ^E)	110,000	3,500
Termination	ERF1_YEAST	P12385	Log_1	23,081	2	ePE1 average:	1,700
factor			Log_2	19,244	1	eRF1 average: 22,000	
eRF1			Log_3	24,881	2		
Termination	ERF3_YEAST	P05453	Log_1	14,935	1	oPE2 overess.	400
factor			Log_2	13,893	1	eRF3 average: 14,000	
eRF3			Log_3	13,738	1	·	
Dbp5	DBP5_YEAST	P20449	Label free	e quantification	on (MS ^E)	15,000	800
Ded1	DED1_YEAST	P06634	Label free	quantification	28,000	500	

PABP_YEAST P04147 Label free quantification (MS ^E) 44,000 1,700

Supplementary Table VI

Abundance values for translation factors

Summary of the proteins quantitated and the quantitation method used. Proteins of interest in three biological replicates of exponentially growing yeast (Log_1 to _3) were quantitated using QconCAT Q-peptides, selected to represent each protein. Individual abundance values (in copies per cell, cpc) for the biological replicates contain data from multiple analyses, in some instances using two different MS platforms (Waters Xevo triple quadrupole and Thermo LTQ-Orbitrap Velos) for the number of Q-peptides stated (see Supplementary Figure VII for correlation between the two MS instruments used). Errors define biological not technical variance (see Supplementary Figure VII for technical variation). Label-free quantitation data were obtained from data-independent MSE acquisition on a Waters Synapt G2, using four biological replicates of comparable yeast (data provided by P. Brownridge).

Supplementary Figure 1

Termination

Elongation

_												
F			Relative abundance (% of WT)									
			elF2α	elF4A	elF4E	elF4G1	eEF1A	eEF1B	eEF2	eEF3	eRF1	Dbp5
	_	elF2α	54	102	98	101	104	102	103	94	105	90
under	tro	eIF4A	109	62	103	105	104	98	101	101	99	97
	under tet07	elF4E	106	101	48	94	103	107	100	100	104	92
		elF4G1	102	100	104	63	98	99	98	104	98	101
		eEF1A	110	104	102	102	71	102	106	106	103	96
		eEF1B	109	101	108	106	101	30	113	104	96	102
		eEF2	100	101	105	102	106	81	29	101	106	107
		eEF3	100	99	103	97	98	92	115	68	109	101
	Factor	eRF1	104	99	99	101	98	98	102	104	57	101
	ш	Dbp5	101	95	103	99	102	91	91	104	95	37

Supplementary Figure 3 Firczuk et al.

Supplementary Figure 4 Firczuk et al.

Supplementary Figure 5 Firczuk et al.

Supplementary Figure 1. Schematic representation of the initiation (A), elongation (B) and termination (C) phases of translation. Panel D shows the overall reaction scheme used in the computational model. In order to keep the demand for computational capacity to a reasonable level, it was assumed that elongation cycled through a twenty-codon open reading frame. The full set of model equations are given elsewhere in the Supplementary Information section.

Supplementary Figure 2. Construction and analysis of tet07 chromosomal integration strains. (A) Scheme for integration of the tet07 regulatory cassette 5' of each translation factor gene. (B) Illustration of the method for PCR validation of the chromosomal integrations. The schematic diagram indicates which PCR products are expected from a successful integration experiment, while the stained agarose gels confirm that the expected bands are indeed generated from total genomic DNA, in this case from the tet07 SUI1 strain. (C) Complementation of tet07 phenotypes was used to confirm correct integration into the chromosome. Three examples are shown: in each case the slow-growth phenotype in the tet07 strain was fully complemented by transformation using a plasmid bearing the corresponding gene transcribed from a constitutive promoter - this was one of the 'top-up' plasmids referred to in the main text and illustrated in panel D. No complementation was observed if an empty 'top-up' plasmid was used. (D) Six different promoters were used in the respective versions of the 'top-up' plasmid - these were engineered to provide a wide spread of transcription rates. (E) Examples of doxycycline titrations of the intracellular abundance of translation factors under the control of the tet07 regulatory system. The Western blots reveal how the intracellular abundance of each translation factor encoded by its corresponding tet07 regulatory system (underlined) was suppressed to varying degrees in response to the presence of different amounts of doxycycline. The vertical red arrows indicate at which point global protein synthesis was nearest to being 80% of the physiological rate. Other factor levels in each strain (i.e. those not under the control of the tet07 regulatory system) were not detectably affected by the presence of doxycycline. Quantitation was normalized against hexokinase. (F) Table showing the relative abundance of translation factors in ten different tet07 strains (those manifesting $R_1^J > 0$) as determined by calibrated Western blotting. In all cases, data are shown for experiments where the protein synthesis rate had been suppressed to below 80% of the physiological level.

Supplementary Figure 3. Rate control data for the translation factors. (A) Sucrose densitygradient analysis reveals changes in the ribosome loading distributions on yeast mRNA. These examples include a wild-type control (lacking any chromosomal tet07 construct; without doxycycline and plus 8µg ml⁻¹ doxycycline, i.e. higher than used with any of the tet07 strains), and data for the tet07CDC33 (eIF4E), tet07SUI1 (eIF1), tet07DED1 (Ded1), tet07TEF5 (eEF1B), tet07SUP45 (eRF1), and tet07PAB1 (Pab1) strains (Table S1). (B) Intracellular mRNA abundance data [ordered along the X-axis according to mRNA species (top) and strain (bottom)] as estimated using RT-gPCR and expressed as a fraction of RPS5 mRNA, averaged for at least 4 biological replicates and, for ease of comparison, normalized against the wild-type level. The error bars represent standard deviations. In the tet07SUP35 strain, transcription of SUP35 is higher than in the wild-type strain. (C) Comparison of suppression of protein synthesis in the strains tet07TIF2 (eIF4A) and tet07TIF5 (eIF5) after incubation with doxycycline for the period used in experimental work described in this paper and also after an additional 24 hours. The degree of inhibition is stably maintained and there is no sign of any compensatory mutations. This is consistent with our finding that up-regulation of the activity of individual factors does not generally lead to increases in global translation.

Supplementary Figure 4. Analysis of cell-size distributions. Histograms of cell size – each plot shows the distribution of cell diameters across a population of cells from each strain at the stated concentrations of doxycycline. Labelling of the colour-coded plots indicates to what degree the growth of each cell population was inhibited (as a percentage of the wild-type growth rate).

Supplementary Figure 5. Determination of the scanning ratio for the translation factors. (A) The scanning ratio assay plasmid. This contains two independent promoters (P_{TRP1} and P_{DCD1}) of comparable strength coupled to a short (L0; 65 nucleotides) and a long (L2; 1240 nucleotides) 5'UTR (Berthelot at al. 2004). Expression from the two promoter/5'UTR combinations was measured via the activities of the firefly and renilla luciferase reporters, respectively. (B) Plots of the L2/L0 ratio versus growth rate. The bar graph summarizes the RSc values for those factors where R^{Sc} is not zero. While most *tet07* strains showed no change in the L2/L0 ratio as a function of modulation of intracellular factor abundance, five strains manifested a positive dependence of this ratio on factor abundance. Most other strains showed a slope of zero (data not shown), and a small number manifested a small negative value for R^{Sc} (two examples are shown here: eIF4A and eIF4B). The negative slopes were small relative to the error estimates, and we therefore counted these results and the zero slope results as 'no change' (see Table 1). Since negative values for RSc would indicate a lack of enhancement of scanning by the factor under study, this mode of categorization is consistent with our procedure for identifying factors that stabilize scanning on longer 5'UTRs. The red point, set at 1.0 in each case, is the ratio observed for the wild type strain in which the addition of doxycycline does not affect the abundance of any of the translation factors. (C) Outputs from the computational model. The in silico translation machinery manifests properties that closely resemble those of the in vivo system. Here we see the relationship between global protein synthesis rate and the intracellular abundance of each factor. Each plot features the experimental data (green; rate of global protein synthesis vs molecules of translation factor per cell) compared to the predicted relationship from the model (blue). The vertical lines indicate the points on the x-axis (intracellular abundance in molecules per cell) at the 100% physiological level (dashed) and at the 80% level (dotted).

Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JEG (2004) Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. *Mol. Microbiol.* **51:** 987–1001

Supplementary Figure 6. Comparison of Accurate Mass (AM) and Selected Reaction Monitoring (SRM) quantitation. Some proteins in the study were quantified by both AM and SRM approaches (see Materials and Methods section). For these proteins, the quantitation values were compared either for all peptides (top panel) or using the same peptide for each protein (lower panel).