Logics for Artificial Intelligence:

Assignment 1

Leonard Botha

August 7, 2015

1. (a) Prove that $Z \cap (X \cup Y) = (Z \cap X) \cup (Z \cap Y)$

Take
$$\alpha \in Z \cap (X \cup Y) \Leftrightarrow \alpha \in Z$$
 and $\alpha \in X \cup Y$
 $\Leftrightarrow \alpha \in Z$ and $(\alpha \in X \text{ or } \alpha \in Y)$
 $\Leftrightarrow (\alpha \in Z \text{ and } \alpha \in X) \text{ or } (\alpha \in Z \text{ and } \alpha \in Y)$
 $\Leftrightarrow \alpha \in Z \cap X \text{ or } \alpha \in Z \cap Y$
 $\Leftrightarrow \alpha \in (Z \cap X) \cup (Z \cap Y)$

- (b)
- (c)
- (d) Prove that $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$

Take
$$(x, y) \in X \times (Y \cup Z) \Leftrightarrow x \in X$$
 and $y \in Y \cup Z$
 $\Leftrightarrow x \in X$ and $y \in Y$ or $x \in X$ and $y \in Z$
 $\Leftrightarrow (x, y) \in (X \times Y) \cup (X \times Z)$

- 2. Interpretations are represented by an ordered pair, (p,q), where the first element is the truth value of p and the second the truth value of q.
 - (a) $Mod(p \lor \neg p) = \{(T, T), (T, F), (F, T), (F, F)\}$
 - (b) $Mod(p \lor q) = \{(T, T), (T, F), (F, T)\}\$
 - (c) $Mod(p \vee \neg q) = \{(T, T), (T, F), (F, F)\}$
 - (d) $\operatorname{Mod}(\neg p \lor q) = \{(T, T), (F, T), (F, F)\}$

- (e) $Mod(\neg p \lor \neg q) = \{(T, F), (F, T), (F, F)\}$
- (f) $Mod(p) = \{(T, T), (T, F)\}$
- (g) $Mod(q) = \{(T, T), (F, T)\}$
- (h) $\operatorname{Mod}(p \leftrightarrow q) = \{(T, T), (F, F)\}$
- (i) $\operatorname{Mod}(\neg(p \leftrightarrow q)) = \{(T, F), (F, T)\}\$
- (j) $Mod(\neg q) = \{(T, F), (F, F)\}$
- (k) $Mod(\neg p) = \{(F, T), (F, F)\}$
- (1) $\operatorname{Mod}(p \wedge q) = \{(T, T)\}\$
- (m) $\operatorname{Mod}(p \wedge \neg q) = \{(T, F)\}\$
- (n) $\operatorname{Mod}(\neg p \wedge q) = \{(F, T)\}\$
- (o) $\operatorname{Mod}(\neg p \wedge \neg q) = \{(F, F)\}\$
- (p) $\operatorname{Mod}(p \wedge \neg p) = \emptyset$
- 3. There are no formulas that are not logically equivalent to one of the formulas in question 2. This is obvious as the union over the models in question 2 is exactly the power set of all possible interpretations for (p,q). Thus any formula with variables p and q will be logically equivalent to one of the formulas in question 2.
- 4. First consider:

$$\{A \land B \to C\} \Leftrightarrow \neg (A \land B) \lor C$$
$$\Leftrightarrow \neg A \lor \neg B \lor C$$

Now consider:

$$(A \to C) \lor (B \to C) \Leftrightarrow \neg A \lor C \lor \neg B \lor C$$
$$\Leftrightarrow \neg A \lor \neg B \lor C$$

So clearly:

$${A \land B \to C} \models (A \to C) \lor (B \to C)$$

However consider below where (A,B,C) is an ordered tuple representing

the respective truth values:

$$(T,F,F),(T,F,T) \in \{A \land B \to C\}$$
 But: $(T,F,F) \notin A \to C$ Therefore: $\{A \land B \to C\} \nvDash A \to C$ and
$$(F,T,F),(F,T,T) \in \{A \land B \to C\}$$
 But: $(F,T,F) \notin B \to C$ Therefore: $\{A \land B \to C\} \nvDash B \to C$

5.

6. (a) Consider $\alpha \in \mathcal{L}$. Then:

$$Mod(\alpha) = Mod(\alpha) \Rightarrow Mod(\alpha) \subseteq Mod(\alpha)$$

 $\Rightarrow \alpha \models \alpha$

- (b) Consider $Mod(K \cup \{B\})$: $Mod(K \cup \{B\}) = Mod(K) \cap Mod(\{B\}) \subseteq Mod(K) \subseteq Mod(\alpha)$ Therefore $K \cup \{B\} \models \alpha$
- (c) If $p, \neg p \in K$ then K is unsatisfiable and $Mod(K) = \emptyset$. Since \emptyset is contained in all sets $Mod(K) = \emptyset \subseteq Mod(\gamma)$ for every $\gamma \in \mathcal{L}$. Therefore $K \models \gamma$ for every $\gamma \in \mathcal{L}$.