Laboratorium	1	Spektroskopia fluoresce	ncji	Zespół w składzie:
Fizyki Ciała Stałego		rentgenowskiej (XRF)		1. Paweł Rzońca
Wydział: WFiIS	Kierunek: Fizyka Techniczna		Rok: 3	2. Paweł Kozioł
Data wykonania: 19.11.2015		Data oddania: 3.12.2015	Ocena:	3. Agata Sławska

Aparatura i metodyka

•

•

•

Opracowanie wyników

Próbka pierwsza - moneta

Na wykresie 1 zamieszczono widmo promieniowania uzyskane po wykonaniu pomiarów i oznaczeniu pasujących pików pierwiastków Cu i Ni z podziałem na linie K_{α}, K_{β} .

Rysunek 1: Widmo promieniowania fluorescencyjnego dla monety.

Następnym krokiem było przeprowadzenie analizy mającej na celu wyznaczenie udziału procentowego poszczególnych pierwiastków. Otrzymane wyniki zamieszczono w 1

Tabela 1: Skład pierwiastkowy próbki pierwszej.

Ni		0.08)(at%)	1208.481(+- 4.795)(cps)
Cu		0.12)(at%)	7426.102(+- 11.855)(cps)
Cu	11.01(1-	0.12)(at 70)	7420.102(1- 11.000)(cp3)

Na podstawie składu procentowego zauważono dominujący udział miedzi do zawartości niklu w stosunku $77 \div 23\%$.

Próbka druga - kamień

Kolejną próbką, którą poddano analizie był kamień. Na wykresie 2 przedstawiono widmo promieniowania drugiej próbki otrzymane po wykonaniu pomiarów i oznaczeniu pasujących do pików pierwiastków Fe, Ti, W, Nb i Mo z podziałem na linie K_{α}, K_{β} .

Rysunek 2: Widmo promieniowania fluorescencyjnego dla kamienia.

Po zidentyfikowaniu występujących pierwiastków przystąpiono do analizy ilościowej danej próbki. Otrzymane wyniki zamieszczono w tabeli 2.

Na podstawie składu procentowego stwierdzono, że badany kamień składa się głównie z żelaza, bo aż z 87% i tytanu 12% oraz śladowych ilości takich pierwiastków jak wolfram czy niob, oznaczony molibden i rod pochodzą od przesłony oraz anody lampy rentgenowskiej.

Tabela 2: Skład pierwiastkowy próbki drugiej.

Fe	87.15(+-	0.20)(at%)	6151.016(+- 14.177)(cps)
Ti	12.45(+-	0.05)(at%)	1700.501(+- 7.423)(cps)
W	0.23(+-	0.02)(at%)	54.447(+- 1.453)(cps)
Nb	0.07(+-	0.00)(at%)	51.728(+- 1.119)(cps)
Mo	0.10(+-	0.00)(at%)	74.842(+- 1.342)(cps)
Rh	0.00(+-	0.00)(at%)	3.872(+- 0.319)(cps)

0.1 Próbka trzecia - złoty łańcuszek

Ostatnią próbką, dla której przeprowadzono analizę był złoty łańcuszek. Na wykresie 3 przedstawiono widmo promieniowania drugiej próbki otrzymane po wykonaniu pomiarów i oznaczeniu pasujących do pików pierwiastków Au i Cu z podziałem na linie K_{α}, K_{β} .

Rysunek 3: Widmo promieniowania fluorescencyjnego dla złotego łańcuszka.

Następnie dla danej próbki przeprowadziliśmy kolejną analizę mającą na celu wyznaczenie udziału procentowego poszczególnych pierwiastków. Otrzymane wyniki zamieszczono w tabeli 3.

Tabela 3: Skład pierwiastkowy próbki trzeciej.

Au	41.99(+-	0.19)(at%)	2126.511(+-	6.353)(cps)
Cu	58.01(+-	0.09)(at%)	2175.092(+-	6.419)(cps)

Na podstawie otrzymanych wyników zauważono, że badany przez nas łańcuszek składa się z 58% miedzi i 42% złota.

Wnioski

Podczas oznaczania jakościowego największym wyzwaniem było odnalezienie odpowiednich pierwiastków oraz odrzucenie wzbudzeń dwufotonowych, wyraźnie odznaczające się w przypadku dwóch pierwszych próbek. W tabelach 1, 2 oraz 3 zebrano wyniki pomiarów ilościowych składu pierwiastków w badanych próbkach. Badaną monetą była 50-centówka brytyjska, którą wytwarza się ze stopu miedzi i niklu w proporcjach 3/1. Otrzymany wynik jest jak najbardziej sensowny. W drugiej próbce podejrzewano znaleźć wolfram jednak badanie wykazało wyłącznie jego ilości śladowe. W złotym łańcuszku, tak jak przypuszczano, oznaczono złoto oraz miedź.