1 Reeksen van getallen (oneindige sommen)

Definities

reeks van reëele getallen
$$(\{u_n\}_{n\geq l}, \{s_n\}_{n\geq l})$$

termenrij rij van partieelsommen $\{u_n\}_{n\geq l}$ korte notatie
$$s_n = \sum_{k=l}^n u_k$$

Convergentie van een reeks: convergentie van haar rij van partieelsommen.						
absoluut convergent voorwaardelijk convergent						
$\sum_{n=1}^{\infty} u_n \text{ is convergent}$	convergentie maar GEEN absolute convergentie					

Convergentietesten

algemeen: criterium Cauchy					
convergentie	$\forall \epsilon > 0, \exists N, \text{zodat } \forall m \geq n \geq m$				
	$ u_n + u_{n+1} + \ldots + u_m < \epsilon$				
NODIGE voorwaarde	$\lim_{n \to \infty} u_n = 0$				
divergentie	$\exists \epsilon > 0, \forall N, \text{zodat } \exists m \geq n \geq m$				
9					

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		reeksen met enkel positieve termen $\sum u_n$							
CONV $ \sum v_k \text{ conv} \qquad \int_1^{\infty} f(x) dx \qquad \limsup_{n \to \infty} \frac{u_{n+1}}{u_n} < 1 \qquad \lim_{n \to \infty} \frac{u_{n+1}}{u_n} < 1 \qquad \limsup_{n \to \infty} \sqrt[n]{u_n} < 1 \qquad c > 1 $ $ u_n \le v_n \qquad \text{conv} \qquad \qquad c = \lim_{n \to \infty} n \left(1 - \frac{u_{n+1}}{u_n} \right) $ $ \text{DIV} \qquad \sum v_k \text{ div} \qquad \text{anders} \qquad \liminf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1 \qquad \lim_{n \to \infty} \frac{u_{n+1}}{u_n} < 1 \qquad \limsup_{n \to \infty} \sqrt[n]{u_n} > 1 \qquad c < 1 $ $ v_n \le u_n \qquad \qquad c < 1 $		vergelijkingstest	Raabe						
					_				
	CONV	$\sum v_k \text{ conv}$	$\int_{1}^{\infty} f(x)dx$	$\limsup_{n \to \infty} \frac{u_{n+1}}{u_n} < 1$	$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} < 1$	$\limsup_{n \to \infty} \sqrt[n]{u_n} < 1$	c > 1		
$v_n \le u_n$		$u_n \le v_n$					$c = \lim_{n \to \infty} n \left(1 - \frac{u_{n+1}}{u_n} \right)$		
$v_n \le u_n$	DIV	$\sum v_k ext{ div}$	anders	$ \liminf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1 $	$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} < 1$	$\limsup_{n \to \infty} \sqrt[n]{u_n} > 1$	c < 1		
reeksen met enkel negatieve termen, idem op tegengestelde na		$v_n \le u_n$							
	reeksen met enkel negatieve termen, idem op tegengestelde na								
wisselreeksen, bv. Leibnizreeks									

Enkele memorabele reeksen

reeks van Grandi	1-1+1-1+	divergent	rij van partieelsommen $1,0,1\dots$ heeft geen limiet		
harmonische reeks	$\sum_{n=1}^{\infty} \frac{1}{n}$	divergentie	voldoet niet aan Cauchy criterium		
meetkundige reeks, $reden q$	$\sum_{n=0}^{\infty} q^k$	q < 1: convergentie	$s_n = \frac{1}{1 - q}$		
		q > 1: divergentie	niet voldaan aan $\lim_{n \to \infty} u_n = 0$		
Dirichletreeks	$\sum_{n=1}^{\infty} n^{-p}$	p > 1: convergentie	$p = 2$: $s_n = \frac{\pi^2}{6}$		
			$p = 4$: $s_n = \frac{\pi^4}{90}$		
		$p \leq 1$: divergentie			
(Riemann-zetafunctie)	$\zeta(p) = \sum_{n=1}^{\infty} \frac{1}{n^p}$	$\mathrm{met}\ p\in\mathbb{C}$	toepassing: getaltheorie		
leuke reeks (1)	$\sum_{n=2}^{\infty} \frac{1}{n^p \ln(n)}$	$p \leq 1$: divergentie			
		p > 1: convergentie			
leuke reeks (2)	$\sum_{n=2}^{\infty} \frac{1}{n \ln^p(n)}$	$p \leq 1$: divergentie			
		p > 1: convergentie			
Leibnizreeks	$\sum_{n=1}^{\infty} (-1)^{n+1} u_n$	convergent			
	$u_1 \ge \dots u_1 \ge 0$ $\lim_{n \to \infty} u_n = 0$				
harmonische wisselreeks	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$	convergentie	$s_n = \ln(2)$		

Enkele memorabele andere identiteiten, gerelateerd aan de oefeningen

Euler getal	$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$				
	$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}$	bv. neem ln van beide leden			
indien $\lim_{x \to \bar{x}} f(x) = a$	$\lim_{x \to \bar{x}} f(x)g(x) = ab$	$ \lim_{x \to \bar{x}} \frac{f(x)}{g(x)} = \frac{a}{b} $			
$ \operatorname{en} \lim_{x \to \bar{x}} g(x) = b $					
kan handig zijn	$\lim_{n \to \infty} n^{1/n} = 1$	bv. neem exp en ln			

END

Bij het opstellen van dit overzicht werd gebruik gemaakt van [1].

References

l] Stefan	Vandewalle	and L B	Beernaert.	Analyse	II:	Handboek.	SVB	Janssen,	Leuven,	2018.