Computer Graphics

Prof. Feng Liu Fall 2016

http://www.cs.pdx.edu/~fliu/courses/cs447/

10/26/2016

Last time

Clipping

Today

- Rasterization
- □ In-class Mid-term
 - November 2
 - Close-book exam
 - Notes on 1 page of A4 or Letter size paper

Where We Stand

- ☐ At this point we know how to:
 - Convert points from local to screen coordinates
 - Clip polygons and lines to the view volume
- □ Next thing:
 - Determine which pixels to fill for any given point, line or polygon

Drawing Points

- When points are mapped into window coordinates, they could land anywhere - not just at a pixel center
- □ Solution is the simple, obvious one
 - Map to window space
 - Fill the closest pixel
 - Can also specify a radius fill a square of that size, or fill a circle
 - Square is faster

Drawing Points (2)

Drawing Lines

- □ Task: Decide which pixels to fill (samples to use) to represent a line
- □ We know that all of the line lies inside the visible region (clipping gave us this!)

Line Drawing Algorithms

- □ Consider lines of the form y=mx+c, where $m=\Delta y/\Delta x$, 0<m<1, integer coordinates
 - All others follow by symmetry, modify for real numbers
- □ Variety of slow algorithms (Why slow?):
 - step x, compute new y at each step by equation, rounding:
 - step x, compute new y at each step by adding m to old y, rounding:

$$x_{i+1} = x_i + 1,$$
 $y_{i+1} = round(mx_{i+1} + b)$
 $x_{i+1} = x_i + 1,$ $y_{i+1} = round(y_i + m)$

Bresenham's Algorithm Overview

- Aim: For each x, plot the pixel whose y-value is closest to the line
- \square Given (x_i, y_i) , must choose from either (x_i+1, y_i+1) or (x_i+1, y_i)
- ☐ Idea: compute a *decision variable*
 - Value that will determine which pixel to draw
 - Easy to update from one pixel to the next
- Bresenham's algorithm is the midpoint algorithm for lines
 - Other midpoint algorithms for conic sections (circles, ellipses)

Midpoint Methods

- Consider the midpoint between (x_i+1,y_i+1) and (x_i+1,y_i)
- If it's above the line, we choose (x_i+1,y_i) , otherwise we choose (x_i+1,y_i+1)

Midpoint Decision Variable

☐ Write the line from (x_1, y_1) to (x_2, y_2) in *implicit form:*

$$F(x,y) = ax + by + c = \Delta x \cdot y - \Delta y \cdot x + (\Delta y \cdot x_1 - \Delta x \cdot y_1)$$

- Assume $x_1 \le x_2$
- The value of F(x,y) tells us where points are with respect to the line
 - F(x,y)=0: the point is on the line
 - F(x,y)>0. The point is above the line
 - F(x,y)<0. The point is below the line
- \square The decision variable is the value of $d_i = 2F(x_i+1,y_i+0.5)$
 - The factor of two makes the math easier

What Can We Decide?

$$d_i = 2\Delta x y_i - 2\Delta y (x_i + 1) + 2(\Delta y \cdot x_1 - \Delta x \cdot y_1) + \Delta x$$

- \square d_i positive=> next point at (x_i+1,y_i)
- \square d_i negative => next point at (x_i+1,y_i+1)
- □ At each point, we compute d_i and decide which pixel to draw
- \square How do we update it? What is d_{i+1} ?

Updating The Decision Variable

 \Box d_{k+1} is the old value, d_k , plus an increment:

$$d_{k+1} = d_k + (d_{k+1} - d_k)$$

- If we chose $y_{i+1} = y_i + 1$: $d_{k+1} = d_k 2\Delta y + 2\Delta x$
- □ What is d_1 (assuming integer endpoints)? $d_1 = \Delta x 2\Delta y$
- Notice that we don't need c any more

Bresenham's Algorithm

- ☐ For integers, slope between 0 and 1:
 - $x=x_1, y=y_1, d=dx -2dy, draw (x, y)$
 - until *x=x*₂
 - \square x=x+1
 - \square If d<0 then $\{y=y+1, \text{ draw } (x, y), d=d-2\Delta y + 2\Delta x\}$
 - \square If d>0 then $\{y=y, \text{ draw } (x, y), d=d-2\Delta y\}$
- □ Compute the constants $(2\Delta y-2\Delta x)$ and $2\Delta y$ once at the start
 - Inner loop does only adds and comparisons
- □ For floating point, initialization is harder, ∆x and ∆y will be floating point, but still no rounding required

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0		0
5	0	0	0	0	0		0	0
4	0	0	0	9		0	0	0
3	0	0		0	0	0	0	0
2	0		0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8

$\Delta x = 5$	$\begin{cases} \lambda y = 4 \\ y \end{cases}$	d
2	2	-3

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0		0
5	0	0	0	0	0		0	0
4	0	0	0	9		0	0	0
3	0	0	>	0	0	0	0	0
2	0		0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8

$\Delta X = 5$	$\begin{cases} Ay=4 \\ Y \end{cases}$	d
2 3	2 3	-3 -1

$\Delta X = 5$	y γ	d
2	2	-3
3	3	-1
4	4	1

$\Delta X = 5$	5, Δy=4 y	d
2	2	-3
3	3	-1
4	4	1
5	4	-7

$\Delta x = 5$	5, Δy=4 y 	d
2	2	-3
3	3	-1
4	4	1
5	4	-7
6	5	-5

$\Delta x = 5$	y Δy=4	d ,
2	2	-3
3	3	-1
4	4	1
5	4	-7
6	5	-5
7	6	-3

Filling Triangles

Filling Triangles

Algorithm

- Decide which pixels to fill (samples to use) to represent a triangle?
- Calculate the color for each pixel?

Barycentric coordinates

$$P = \alpha P_0 + \beta P_1 + \lambda P_2$$

$$\alpha + \beta + \lambda = 1$$

$$0 \le \alpha, \beta, \lambda \le 1$$

Barycentric coordinates

$$\alpha = f_{12}(x, y) / f_{12}(x_0, y_0)$$

$$\beta = f_{20}(x, y) / f_{20}(x_1, y_1)$$

$$\lambda = f_{01}(x, y) / f_{01}(x_2, y_2)$$

$$f_{12}(x,y) = (y_1 - y_2)x + (x_2 - x_1)y + x_1y_2 - x_2y_1$$

$$f_{20}(x,y) = (y_2 - y_0)x + (x_0 - x_2)y + x_2y_0 - x_0y_2$$

$$f_{01}(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0$$

Rasterizing Triangle

- $\square y_{\min} = \min(y_0, y_1, y_2), y_{\max} = \max(y_0, y_1, y_2)$
- $\square x_{\min} = \min(x_0, x_1, x_2), x_{\max} = \max(x_0, x_1, x_2)$
- \Box for y=y_{min} to y_{max}
 - for $x=x_{min}$ to x_{max}
 - \square calculate α, β , and λ

draw (x, y) with color c

Anti-Aliasing

- Recall: We can't sample and then accurately reconstruct an image that is not band-limited
 - Infinite Nyquist frequency
 - Attempting to sample sharp edges gives "jaggies", or stairstep lines
- Solution: Band-limit by filtering (pre-filtering)
 - What sort of filter will give a band-limited result?
- In practice, difficult to do for graphics rendering

Alpha-based Anti-Aliasina

- Set the α of a pixel to simulate a thick line
 - The pixel gets the line color, but with α <=1
- This supports the correct drawing of primitives one on top of the other
 - Draw back to front, and composite each primitive over the existing image
 - Only some hidden surface removal algorithms support it

Calculating α

- Consider a line as having thickness (all good drawing programs do this)
- Consider pixels as little squares
- Set α according to the proportion of the square covered by the line
- ☐ The sub-pixel coverage interpretation of α

Weighted Sampling

- Instead of using the proportion of the area covered by the line, use convolution to do the sampling
 - Equivalent to filtering the line then point sampling the result
- □ Place the "filter" at each pixel, and integrate product of pixel and line
- ☐ Common filters are cones (like Bartlett) or Gaussians

Post-Filtering (Supersampling)

- Sample at a higher resolution than required for display, and filter image down
 - Easy to implement in hardware
 - Typical is 2x2 sampling per pixel, with simple averaging to get final
 - What kind of filter?
- More advanced methods generate different samples (eg. not on regular grid) and filter properly
 - Issues of which samples to take, and how to filter them

Next Time

- ☐ Hidden Surface Removal