See back cover for an English translation of this cover

L3-CHEMMR

Te Mātauranga Matū, Kaupae 3, 2021

PUKAPUKA RAUEMI

Tirohia tēnei pukapuka hei whakatutuki i ngā tūmahi o ō Pukapuka Tūmahi, Tuhinga hoki.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2–5 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

KA TAEA TĒNEI PUKAPUKA TE PUPURI HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

Ngā tikanga tātai mō 91390M: Te whakaatu māramatanga ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū

$$n = cV$$

$$n = \frac{m}{M}$$

$$q = mc\Delta T$$

$$\Delta_r H^\circ = \frac{-q}{n}$$

$$\Delta_r H^\circ = \sum \Delta_f H^\circ (ng\bar{a} \ hua) - \sum \Delta_f H^\circ (ng\bar{a} \ p\bar{u}mat\bar{u} \ hohe)$$

Ngā tikanga tātai mō 91392M: *Te whakaatu māramatanga ki ngā mātāpono taurite i ngā pūnaha waiwai*

Ngā katote tuatini mō 91392M: Te whakaatu māramatanga ki ngā mātāpono taurite i ngā pūnaha waiwai

$$\begin{split} & [\text{Ag}(\text{CN})_2]^- & [\text{Ag}(\text{NH}_3)_2]^+ \\ & [\text{Al}(\text{OH})_4]^- & [\text{Cu}(\text{NH}_3)_4]^{2+} \\ & [\text{Pb}(\text{OH})_4]^{2-} & [\text{Zn}(\text{OH})_4]^{2-} \\ & [\text{Zn}(\text{NH}_3)_4]^{2+} & [\text{Ni}(\text{NH}_3)_6]^{2+} \\ & [\text{Ni}(\text{CN})_4]^{2-} \end{split}$$

Formulae for 91390: Demonstrate understanding of thermochemical principles and the properties of particles and substances

$$n = cV$$

$$n = \frac{m}{M}$$

$$q = mc\Delta T$$

$$\Delta_{r}H^{\circ} = \frac{-q}{n}$$

$$\Delta_{r}H^{\circ} = \sum \Delta_{f}H^{\circ}(\text{products}) - \sum \Delta_{f}H^{\circ}(\text{reactants})$$

Formulae for 91392: Demonstrate understanding of equilibrium principles in aqueous systems

pH =
$$-\log[H_3O^+]$$
 [H_3O^+] = 10^{-pH}
 $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$ at 25 °C
p $K_a = -\log K_a$ $K_a = 10^{-pK_a}$
 $K_a = \frac{[H_3O^+][A^-]}{[HA]}$
 $K_s = s^2$ $K_s = 4s^3$
 $n = cV$
 $n = \frac{m}{M}$

Complex ions for 91392: Demonstrate understanding of equilibrium principles in aqueous systems

[Ag(CN) ₂] ⁻	$[Ag(NH_3)_2]^+$
[Al(OH) ₄] ⁻	[Cu(NH ₃) ₄] ²⁺
$[Pb(OH)_4]^{2-}$	[Zn(OH) ₄] ²⁻
$[Zn(NH_3)_4]^{2+}$	$[Ni(NH_3)_6]^{2+}$
[Ni(CN) ₄] ²⁻	

TE TAKA PŪMOTU

18 2 He 4.0	10 Ne	20.2	18	Ar 40.0	36	K.	83.8	54	Xe	131	98	Rn	222	118	Og	
17	9 F	19.0	17	CI 35.5	35	Br	79.9	53	Ι	127	85	At	210	117	Ls	
16	8	16.0	16	3 2.1	34	Se	79.0	52	Te	128	84	P_0	210	116	Lv	
15	Z	14.0	15	F 31.0	33	As	74.9	51	$\mathbf{S}\mathbf{p}$	122	83	Bi	209	115	Mc	
14	9 C	12.0	14	28 .1	32	Ge	72.6	50	Sn	119	82	Pb	207	114	Ŧ	
13	5 B	10.8	13	AI 27.0	31	Ga	69.7	49	In	115	81	Π	204	113	Nh	
				12	30	Zn	65.4	48	Cd	112	80	$_{ m Hg}$	201	112	$C_{\mathbf{n}}$	277
				II	29	Cu	63.6	47	Ag	108	62	Au	197	1111	Rg	272
hāngai				10	28	Z	58.7	46	Pd	106	78	Pt	195	110	Ds	271
Papatipu ngota hāngai				6	27	C_0	58.9	45	Rh	103	LL	Ir	192	601	Mt	268
Papatij				8	26	Fe	55.9	44	Ru	101	92	Os	190	801	Hs	265
1 H 1.0				_	25	Mn	54.9	43	Тс	98.9	75	Re	186	107	Bh	264
Tau Iraoho				9	24	$C\mathbf{r}$	52.0		M_0		74	*	184	106	So	263
Та				S	23	>	50.9	41	NP	92.9	73	Га	181	105	Dp	262
				4	22	Ţ	47.9	40	\mathbf{Zr}	91.2	72	Hf	179	104	Rf	261
				3	21	Sc	45.0	39	Y	88.9	71	Lu	175	103	Lr	262
~	4 Be	9.0	12	Mg 24.3	20	Ca	40.1	38	\mathbf{Sr}	87.6	99	Ba	137	88	Ra	226
I	3 Li	6.9	11	Na 23.0	19	×	39.1		Rb	85.5	55	Cs	133	87	Fr	223

	57	58	59	09	61	62	63	64	65	99	29	89	69	70
Raupapa	La	Ce	Pr	Nd	Pm	Sm	Eu	Cd	Tb		Ho	Er	Tm	ΛP
Lanthanide	139	140	141	144	147	150	152	157	159	163	165	167	169	173
	68	06	91	92	93	94	95	96	26	86	66	100	101	102
Raupapa	Ac	$\mathbf{T}\mathbf{h}$	Pa	Ω	dN	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Actinide	227	232	231	238	237	239	241		249	251	252	257	258	259

PERIODIC TABLE OF THE ELEMENTS

18 2 He 4.0	10	Ne	20.2	18	Ar	40.0	36	Kr	83.8	54	Xe	131	98	Rn	222	118	Og	
17	6	Έ.	19.0	17	C	35.5	35	Br	79.9	53	Ι	127	85	At	210	117	Ts	
91	~	0	16.0	16	S	32.1	34	Se	79.0	52	Te	128	84	P_0	210	116	Lv	
15	7	Z	14.0	15	Ь	31.0	33	As	74.9	51	$\mathbf{S}\mathbf{p}$	122	83	Bi	209	115	Mc	
7	9	C	12.0	14	Si	28.1	32	Ge	72.6	50	Sn	119	82	Pb	207	114	F	
13	5	В	10.8	13	Al	27.0	31	Ga	69.7	49	In	115	81	I	204	113	Nh	
						12	30	Zn	65.4	48	Cd	112	80	$_{ m Hg}$	201	112	Cn	277
						II	29	Cu	63.6	47	\mathbf{Ag}	108	62	Au	197	111	$R_{\rm g}$	272
88 E						0I	28	Ż	58.7	46	Pd	106	82	Pt	195	110	Ds	271
Relative atomic mass						6	27	C_0	58.9	45	Rh	103	77	Ir	192	109	Mt	268
Relativ						8	26	Fe	55.9	44	Ru	101	9/	Os	190	108	Hs	265
1 H						7	25	Mn	54.9	43	Tc	6.86	75	Re	186	107	Bh	264
umber	_					9	24	Cr	52.0	42	Mo	95.9	74	*	184	106	Sg	263
Atomic number						5	23	>	50.9	41	NP	92.9	73	Та	181	105	Db	262
7						4	22	Τi	47.9	40	\mathbf{Zr}	91.2	72	Ht	179	104	Rf	261
						3	21	Sc	45.0	39	Y	88.9	71	Lu	175	103	Lr	262
~	4	Be	0.6	12	Mg	24.3	20	Ca	40.1	38	\mathbf{Sr}	9.78	99	Ba	137	88	Ra	226
_	3	Li	6.9	11	Na	23.0	19	X	39.1	37	Rb	85.5	55	C	133	87	Fr	223

	57	58	59	09	61	62	63	64	65	99	29	89	69	70
Lanthanide	La	Ce	Pr	Nd	Pm	Sm	Eu	РS	Tp	Dy	Ho	Er	Tm	ΛP
Series	139	140	141	144	147	150	152	157	159	163	165	167	169	173
	68	06	91	92	93	94	95	96	26	86	66	100	101	102
Actinide	Ac	Th	Pa	Ω	Np	Pu	Am	Cm	Bķ	Cf	Es	Fm	Md	No
Series	227	232	231	238	237	239	241	244	249	251	252	257	258	259

English translation of the wording on the front cover

Level 3 Chemistry, 2021

RESOURCE BOOKLET

Refer to this booklet to answer the questions in your Question and Answer Booklets.

Check that this booklet has pages 2–5 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.