1. First, we compute the derivatives of the exact solution:

$$u(t) = \eta e^{-\lambda t}$$

$$u'(t) = -\lambda \eta e^{-\lambda t}$$

$$u''(t) = \lambda^2 \eta e^{-\lambda t}$$

Then, the Taylor series method sequence is:

$$U^{0} = u(0) = \eta$$

$$U^{n+1} = U^{n} + ku'(kn) + \frac{1}{2}k^{2}u''(kn)$$

$$= U^{n} - k\lambda\eta e^{-\lambda kn} + \frac{1}{2}k^{2}\lambda^{2}\eta e^{\lambda kn}$$

$$= U^{n} + k\lambda\eta e^{-\lambda kn} \left(\frac{k\lambda}{2} - 1\right)$$

For $k\lambda > 0$, $-kn\lambda$ will approach $-\infty$ for large n and therefore $e^{-kn\lambda}$ approaches 0.

As a result the change from U^n to U^{n+1} will approach 0 and the approximation must decay.

2. (a)

$$u' = u - t^{2} + 1$$

$$u(0) = 0$$

$$u(t) = c_{1}e^{t} + t^{2} + 2t + 1$$

$$= -e^{t} + t^{2} + 2t + 1$$

(b) The derivatives for the exact solution are as follows:

$$u'(t) = -e^{t} + 2t + 2$$

$$u''(t) = -e^{t} + 2$$

$$u'''(t) = -e^{t}$$

$$u''''(t) = -e^{t}$$

Then, the Taylor series method approximation is the following:

$$\begin{split} U^0 &= u(0) = 0 \\ U^{n+1} &= U^n + ku'(t^n) + \frac{1}{2!}k^2u''(t^n) + \frac{1}{3!}k^3u'''(t^n) + \frac{1}{4!}k^4u''''(t^n) \\ &= U^n - ke^{t^n} + 2kt^n + 2k - \frac{1}{2}k^2e^{t^n} + k^2 - \frac{1}{6}k^3e^{t^n} - \frac{1}{24}k^4e^{t^n} \end{split}$$

(c) Results from the approximation:

k	error	ratio
0.25	1.9e-4	-
0.125	1.24e-5	15.32
0.0625	7.96e-7	15.66
0.03125	5.02e-8	15.83
0.015625	3.16e-9	15.91
0.0078125	1.98e-10	15.95
0.00390625	1.23e-11	15.97
0.001953125	7.73e-13	16.01

As N doubles and the timestep k halves, the error decreases by a consistent factor of 16.

It follows that the error can be modeled as $\frac{1}{16^{\log_2 n}}$ which can be simplified to $\frac{1}{n^4}$.

Therefore, the approximation converges at a rate of n^4 .

- $3. \quad (a) \ \ See the source code at \ \texttt{https://github.com/code} and \ \texttt{key/math481-iastate-sp2020}.$
 - (b) Results from the approximation:

k	θ error	θ error ratio	θ' error	θ' error ratio
0.1	0.055	-	0.926	_
0.05	0.013	4.19	0.220	4.191
0.025	0.003	3.50	0.05	4.06
0.0125	0.001	3.642	0.013	4.033
0.00625	0.0002	3.79	0.0033	4.014
0.003125	7.09e-5	3.869	0.0008	3.984
0.0015625	1.844e-5	3.845	0.0002	3.901