High-dimensional Numerical Integration: the Monte Carlo and Quasi Monte Carlo Ways

Author: Chi-Cheng Cheng Advisor: Te-Sheng Lin

Department of Applied Mathematics, National Yang Ming Chiao Tung University

Abstract

This research addresses high-dimensional numerical integration, which is complex and computationally intensive. Traditional methods are inefficient in high dimensions, so we use Monte Carlo methods with random sampling for scalability and Quasi-Monte Carlo methods with low-discrepancy sequences for better accuracy and faster convergence.

Estimation of integrals

We estimate the integral of the function

$$I(f) = \int_{[0,1]^s} f(x) dx \approx I_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f(x_k)$$

where $f:[0,1]^s \to \mathbf{R}$, x_k are samples on $[0,1]^s$, and n is the number of samples.

Rank-1 random shift lattice

Given the generating vector $z \in \mathbf{Z}^s$ and n independent random shifts $\Delta^{(i)}$ from the uniform distribution on $[0,1]^s$, then points of a rank-1 lattice with random shift are specified by

$$x_i = \frac{iz \mod n}{n} + \Delta^{(i)} \in [0, 1]^s$$

for i = 0, 1, ..., n - 1.

Halton sequence

Given a positive value a and a prime number p, a can be expressed in a base p with a sequence of digits

$$d_m(a)...d_2(a)d_1(a)$$

where $0 \le d_i(a) \le p-1 \ \forall i$.

Then the halton sequence points base on p are constructed by

$$\phi_p(a) = 0.d_1(a)d_2(a)...d_m(a).$$

Sobol sequence

Choose a primitive polynomial of some degree s_j in the field Z_2 ,

$$x^{s_j} + a_{1,j}x^{s_j-1} + a_{2,j}x^{s_j-2} + \dots + a_{s_j-1,j}x + 1$$

where the coefficients are either 0 or 1.

Define a sequence of positive integers $\{m_{1,j}, m_{2,j}, ...\}$ by the recurrence relation

$$m_{k,j} = 2a_{1,j}m_{k-1,j} \oplus 2^2a_{2,j}m_{k-2,j} \oplus ... \oplus m_{k-s_j,j}$$

where \oplus is bitwise exclusive-or operator and the initial value can be chosen freely with $m_{k,j}, 1 \leq k \leq s_j$, is odd and less than 2^k .

The direction number $\{v_{1,j}, v_{2,j}, ...\}$ are defined by

$$v_{k,j} = \frac{m_{kj}}{2^k}.$$

Then $x_{i,j}$, the j-th component of the ith point in a Sobol sequence, is given by

$$x_{i,j} = i_1 v_{1,j} \oplus i_2 v_{2,j} \oplus \dots$$

where i_k is the kth digit from the right when i is written in binary $i = (...i_3i_2i_1)_2$.

Error bound for random shift lattice rule

Assume that the integrand f belongs to a weighted Sobolev space of functions whose mixed first derivatives are square-integrable, with the norm given by

$$||f||_{\gamma}^{2} = \sum_{u \subseteq \{1, \dots, s\}} \frac{1}{\gamma_{u}} \int_{[0,1]^{|u|}} \left(\int_{[0,1]^{s-|u|}} \frac{\partial^{|u|} f}{\partial x_{u}}(x) dx_{-u} \right)^{2} dx_{u}.$$

For a randomly shifted lattice rule, we have the root-mean-square error bound

$$\sqrt{\mathbf{E}|I(f) - I_n(f)|^2} \le e_{\gamma}^{sh}(z) ||f||_{\gamma} = \sqrt{\int_{[0,1]^s} \left(\sup_{\|f\|_{\gamma} \le 1} |I(f) - I_n(f)| \right)^2 d\Delta} ||f||_{\gamma}.$$

Theorem

A lattice rule in dimension s can be constructed such that the worst case error

$$e_{\gamma}^{sh}(z) \le \left(\frac{1}{|\mathbf{U}_n|} \sum_{\emptyset \ne u \subseteq \{1,...,s\}} \gamma_u^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^2)^{\lambda}}\right)^{|u|}\right)^{1/(2\lambda)}$$

for all $\lambda \in (1/2, 1]$, where $\zeta(x) = \sum_{k=1}^{\infty} k^{-k}$ is the Riemann zeta function, $|\mathbf{U}_n| = n - 1$ when n is prime, $|\mathbf{U}_n| = n/2$ when n is a power of 2, and $|\mathbf{U}_n| \le n/2$ is a power of a prime.

Error bound analysis

Consider $f(x) = exp(c\sum_{j=1}^{s})x_jj^{-b}$, $x \in \mathbf{R}^s$, with constants $c > 0, b \ge 0$.

Let us assume that $||f||_{\infty} \leq C_{c,b,s}$, then by theorem, if n is a power of a prime ,then we obtain

$$\mathbf{E}|I(f) - I_n(f)|^2 \le \frac{C_{c,b,s}^2}{n^{1/\lambda}} \left(2 \sum_{\emptyset \neq u \subseteq \{1,...,s\}} \gamma_u^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^2)^{\lambda}} \right)^{|u|} \right)^{(1/\lambda)} \left(\sum_{u \subseteq \{1,...,s\}} \frac{1}{\gamma_u} \prod_{j \in u} (c^2 j^{-2b}) \right).$$

The upper bound is minimized by choosing

$$\gamma_u = \prod_{j \in u} \left(\frac{(2\pi^2)^{\lambda}}{2\zeta(2\lambda)} c^2 j^{-2b} \right)^{1/(1+\lambda)}.$$

We take $\lambda \to 1/2$ the more our root-mean-square error bound will tell us we have 1/n convergence. However $\zeta(2\lambda) = \infty$ and the bound blows up. In light of the above analysis, we consider product weights of the form

$$\gamma_j = \left(\frac{cj^{-b}}{\sqrt{2}}\right)^{1.25}.$$

The theory then indicates that we get around $O(n^{-0.83})$ convergence.

Results of numerical integration tests

The following graphs show the integration value and error for above function f with c = 1, b = 2.

Conclusion

Among the four types of sampling sequences, using the rank-1 random shift lattice sequence achieves the best results and converges rapidly.

References

- [1] S. Joe and F. Y. Kuo, Notes on generating Sobol' sequences (2008).
- [2] F. Y. Kuo and D. Nuyens, A Practical Guide to Quasi-Monte Carlo Methods (2016).