AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 12: Conditioning of Least Squares Problems; Stability of Householder Triangularization

Xiangmin Jiao

Stony Brook University

Outline

1 Conditioning of Least Squares Problems (NLA§18)

Stability of Householder Triangularization (NLA§16,19)

Xiangmin Jiao Numerical Analysis I 2 / 16

Four Conditioning Problems

• Least squares problem: Given $A \in \mathbb{R}^{m \times n}$ with full rank and $b \in \mathbb{R}^m$,

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|$$

• Its solution is $x = A^+b$. Another quantity is y = Ax = Pb, where $P = AA^+$

 Consider A and b as input data, and x and y as output. We then have four conditioning problems:

Input \ Output	У	X
b	$\kappa_{b o y}$	$\kappa_{b \to x}$
A	$\kappa_{A o y}$	$\kappa_{A o x}$

These conditioning problems are important and subtle.

Some Prerequisites

- We focus on the second column, namely $\kappa_{b\to x}$ and $\kappa_{A\to x}$
- However, understanding $\kappa_{b\to y}$ and $\kappa_{A\to y}$ is prerequisite
- Three quantities: (All in 2-norms)
 - ► Condition number of A: $\kappa(A) = ||A|| ||A^+|| = \sigma_1/\sigma_n$
 - Angle between b and y: $\theta = \arccos \frac{\|y\|}{\|b\|}. \ (0 \le \theta \le \pi/2)$
 - Orientation of y with range(A): $\eta = \frac{\|A\| \|x\|}{\|y\|}$. $(1 \le \eta \le \kappa(A))$

- Intuition: The larger θ is, the more sensitive y is in terms of relative error
- Analysis: y = Pb, so

$$\kappa_{b \to y} = \frac{\|P\|}{\|y\|/\|b\|} = \frac{\|b\|}{\|y\|} = \frac{1}{\cos \theta},$$

where ||P|| = 1

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	
A		

• Question: When is the maximum attained for perturbation δb ?

- Intuition: The larger θ is, the more sensitive y is in terms of relative error
- Analysis: y = Pb, so

$$\kappa_{b \to y} = \frac{\|P\|}{\|y\|/\|b\|} = \frac{\|b\|}{\|y\|} = \frac{1}{\cos \theta},$$

where ||P|| = 1

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	
Α		

- Question: When is the maximum attained for perturbation δb ?
- Answer: When is δb in range(A)

- Intuition: It depends on how sensitive y is to b, and how y lies within range(A)
- Analysis: $x = A^+b$, so

$$\kappa_{b\to x} = \frac{\|A^+\|}{\|x\|/\|b\|} = \|A^+\| \frac{\|b\|}{\|y\|} \frac{\|y\|}{\|x\|} = \|A^+\| \frac{1}{\cos\theta} \frac{\|A\|}{\eta} = \frac{\kappa(A)}{\eta\cos\theta},$$

where $\eta = ||A|| ||x|| / ||y||$

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta\cos\theta}$
Α		·

- Assume $\cos \theta = O(1)$, $\kappa_{b \to x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?

- Assume $\cos \theta = O(1)$, $\kappa_{b \to x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?
- Answer: When δb is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?

- Assume $\cos \theta = O(1)$, $\kappa_{b \to x} = \frac{\kappa(A)}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(A))!$
- Question: When is the maximum attained for perturbation δb ?
- Answer: When δb is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?
- Answer: $\kappa_{b\to x}$ can lie anywhere between 1 and $\kappa(A)!$

- The relationship are nonlinear, because range(A) changes due to δA
- Intuitions:
 - ▶ The larger θ is, the more sensitive y is in terms of relative error.
 - ▶ Tilting of range(A) depends on $\kappa(A)$.
 - For x, it depends where y lies within range(A)

Input \ Output	у	X
Ь	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta\cos heta}$
A	$\leq \frac{\kappa(A)}{\cos \theta}$	$\leq \kappa(A) + \frac{\kappa(A)^2 \tan \theta}{\eta}$

- For second row, bounds are not necessarily tight
- Assume $\cos \theta = O(1)$, $\kappa_{A \to x}$ can lie anywhere between $\kappa(A)$ and $O(\kappa(A)^2)$

Condition Numbers of Linear Systems

- Linear system Ax = b for nonsingular $A \in \mathbb{R}^{m \times m}$ is a special case of least squares problems, where y = b
- If m=n, then $\theta=0$, so $\cos\theta=1$ and $\tan\theta=0$.

Input \ Output	у	X
b	1	$\kappa(A)/\eta$
Α	$\leq \kappa(A)$	$\leq \kappa(A)$

Outline

1 Conditioning of Least Squares Problems (NLA§18)

2 Stability of Householder Triangularization (NLA§16,19)

Xiangmin Jiao Numerical Analysis I 10 / 16

Solution of Least Squares Problems

- ullet An efficient and robust approach is to use QR factorization $A=\hat{Q}\hat{R}$
 - ▶ *b* can be projected onto range(*A*) by $P = \hat{Q}\hat{Q}^T$, and therefore $\hat{Q}\hat{R}x = \hat{Q}\hat{Q}^Tb$
 - ▶ Left-multiply by \hat{Q}^T and we get $\hat{R}x = \hat{Q}^Tb$ (note $A^+ = \hat{R}^{-1}\hat{Q}^T$)

Least squares via QR Factorization

Compute reduced QR factorization $A = \hat{Q}\hat{R}$

Compute vector $c = \hat{Q}^T b$

Solve upper-triangular system $\hat{R}x = c$ for x

- Computation is dominated by QR factorization $(2mn^2 \frac{2}{3}n^3)$
- What about stability?

Backward Stability of Householder Triangularization

• For a QR factorization A=QR computed by Householder triangularization, the factors \tilde{Q} and \tilde{R} satisfy

$$\tilde{Q}\tilde{R} = A + \delta A$$
, $\|\delta A\|/\|A\| = O(\epsilon_{\text{machine}})$,

i.e., exact QR factorization of a slightly perturbed A

- ullet is R computed by algorithm using floating points
- ullet However, $ilde{Q}$ is product of exactly orthogonal reflectors

$$\tilde{Q} = \tilde{Q}_1 \, \tilde{Q}_2 \dots \tilde{Q}_n$$

where \tilde{Q}_k is given by computed \tilde{v}_k , since Q is not formed explicitly

Backward Stability of Solving Ax = b with QR

Algorithm: Solving Ax = b by QR Factorization Compute A = QR using Householder, represent Q by reflectors Compute vector $y = Q^T b$ implicitly using reflectors Solve upper-triangular system Rx = y for x

- All three steps are backward stable
- Overall, we can show that

$$(A + \Delta A)\tilde{x} = b$$
, $\|\Delta A\|/\|A\| = O(\epsilon_{\mathsf{machine}})$

as we prove next

Backward Stability of Solving Ax = b with Householder Triangularization

Proof: Step 2 gives

$$(\tilde{Q} + \delta Q)\tilde{y} = b, \quad \|\delta Q\| = O(\epsilon_{\mathsf{machine}})$$

Step 3 gives

$$(\tilde{R} + \delta R)\tilde{x} = \tilde{y}, \quad \|\delta R\|/\|\tilde{R}\| = O(\epsilon_{\mathsf{machine}})$$

Therefore,

$$b = (\tilde{Q} + \delta Q)(\tilde{R} + \delta R)\tilde{x} = \left[\tilde{Q}\tilde{R} + (\delta Q)\tilde{R} + \tilde{Q}(\delta R) + (\delta Q)(\delta R)\right]\tilde{x}$$

Step 1 gives

$$b = \left[A + \underbrace{\delta A + (\delta Q)\tilde{R} + \tilde{Q}(\delta R) + (\delta Q)(\delta R)}_{\Delta A} \right] \tilde{x}$$

where $\tilde{Q}\tilde{R} = A + \delta A$

Proof of Backward Stability Cont'd

$$ilde{Q} ilde{R} = A + \delta A$$
 where $\|\delta A\|/\|A\| = O(\epsilon_{\mathsf{machine}})$, and therefore

$$\frac{\|\tilde{R}\|}{\|A\|} \le \|\tilde{Q}^T\| \frac{\|A + \delta A\|}{\|A\|} = O(1)$$

Now show that each term in ΔA is small

$$\begin{split} &\frac{\|(\delta Q)\tilde{R}\|}{\|A\|} \leq \|(\delta Q)\|\frac{\|\tilde{R}\|}{\|A\|} = O(\epsilon_{\mathsf{machine}}) \\ &\frac{\|\tilde{Q}(\delta R)\|}{\|A\|} \leq \|\tilde{Q}\|\frac{\|\delta R\|}{\|\tilde{R}\|}\frac{\|\tilde{R}\|}{\|A\|} = O(\epsilon_{\mathsf{machine}}) \\ &\frac{\|(\delta Q)(\delta R)\|}{\|A\|} \leq \|\delta Q\|\frac{\|\delta R\|}{\|A\|} = O(\epsilon_{\mathsf{machine}}^2) \end{split}$$

Overall,

$$\frac{\|\Delta A\|}{\|A\|} \leq \frac{\|\delta A\|}{\|A\|} + \frac{\|(\delta Q)\tilde{R}\|}{\|A\|} + \frac{\|\tilde{Q}(\delta R)\|}{\|A\|} + \frac{\|(\delta Q)(\delta R)\|}{\|A\|} = O(\epsilon_{\mathsf{machine}})$$

Since the algorithm is backward stable, it is also accurate.

Xiangmin Jiao Numerical Analysis I 15 / 16

Backward Stability of Householder Triangularization

Theorem

Let the full-rank least squares problem be solved using Householder triangularization on a computer satisfying the two axioms of floating point numbers. The algorithm is backward stable in the sense that the computed solution \tilde{x} has the property

$$\|(A + \delta A)\tilde{x} - b)\| = \min, \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{machine})$$

for some $\delta A \in \mathbb{R}^{m \times n}$.

- Backward stability of the algorithm is true whether $\hat{Q}^T b$ is computed via explicit formation of \hat{Q} or computed implicitly
- Backward stability also holds for Householder triangularization with arbitrary column pivoting $AP=\hat{Q}\hat{R}$