ΕΡΓΑΣΤΗΡΙΟ ΔΙΚΤΥΩΝ

2^Η ΕΡΓΑΣΙΑ

Σιγούρου Άλκηστις Αικατερίνη ΑΜ: 1059661

Α ΜΕΡΟΣ

- 1. Για να προσδιορίσουμε την κλάση του δικτύου εξετάζουμε το πρώτο byte. Το πρώτο byte είναι το $135_{(10)}$,άρα βρίσκεται στην περιοχή από 128 έως 191. Επομένως ανήκει στην κλάση B. Οι διευθύνσεις τις class B αρχίζουν με $10xx_{(2)}$.
- 2. Custom Subnet Mask

Default Subnet Mask => 255.255.0.0

Το δίκτυο απαιτεί κατ' ελάχιστο 5 υποδίκτυα (όπως φαίνονται και στην εικόνα).

Για το +70% έχουμε : 5 + 5*0,7= 5+3,5 =8,5 ≈ 9 . Άρα απαιτούνται τουλάχιστον 4 subnet bits .

Aρα η custom subnet mask είναι : 255.255.11110000₂.0 -> 255.255.240.0

- 3. Ο ελάχιστος αριθμός υποδικτύων είναι 5.
- 4. Ο ελάχιστος αριθμός υποδικτύων προσαυξημένος με 70% είναι 9.
- 5. Χωρίς το 70% -> Έχουμε 5 υποδίκτυα ,άρα χρειαζόμαστε 3 subnet mask bits , άρα παραμένουν ελεύθερα 13 bits για host addresses. Επομένως έχουμε 2¹³ -2 =8192-2 =8190 host addresses σε κάθε υποδίκτυο.

Οι δυο διευθύνσεις που αφαιρέσαμε είναι default για το ID του υποδικτύου και για την broadcast διεύθυνση το .

Με το 70% -> Έχουμε 9 υποδίκτυα ,άρα χρειαζόμαστε 4 subnet mask bits , άρα παραμένουν ελεύθερα 12 bits για host addresses. Επομένως έχουμε 2^{12} -2 =4096=4094 host addresses σε κάθε υποδίκτυο.

6. Χωρίς το 70%

Υποδίκτυο		Host	Bits	Εύρος ΙΡ διευθύνσεων
Υπ #0	0000	0000	0000 0000	135.126.0.0
	0001	1111	1111 1111	135.126.31.255
Υπ #1	0010	0000	0000 0000	135.126.32.0
	0011	1111	1111 1111	135.126.63.255
Υπ #2	0100	0000	0000 0000	135.126.64.0
	0101	1111	1111 1111	135.126.95.255
Υπ #3	0110	0000	0000 0000	135.126.96.0
	0111	1111	1111 1111	135.126.127.255
Υπ #4	1000	0000	0000 0000	135.126.128.0
	1001	1111	1111 1111	135.126.159.255

Άρα οι διευθύνσεις που είναι ελεύθερες για κάθε υποδίκτυο είναι :

 $Y\pi \#0$: 135.126.0.1 - 135.126.31.254

 $Y\pi \#1$: 135.126.32.1 - 135.126.63.254

Υπ #2 : 135.126.64.1 - 135.126.95.254

 $Y\pi #3:$ 135.126.96.1 - 135.126.127.254

 $Y\pi \#4$: 135.126.128.1 - 135.126.159.254

Με το 70%

Υποδίκτυο		Host	Bits	Εύρος ΙΡ διευθύνσεων
Υπ #0	00000	000	0000 0000	135.126.0.0
	00001	111	1111 1111	135.126.15.255
Υπ #1	00010	000	0000 0000	135.126.16.0
	00011	111	1111 1111	135.126.31.255
Υπ #2	00100	000	0000 0000	135.126.32.0
	00101	111	1111 1111	135.126.47.255
Υπ #3	00110	000	0000 0000	135.126.48.0
	00111	111	1111 1111	135.126.63.255
Υπ #4	01000	000	0000 0000	135.126.64.0
	01001	111	1111 1111	135.126.79.255
Υπ #5	01010	000	0000 0000	135.126.80.0
	01011	111	1111 1111	135.126.95.255
Υπ #6	01100	000	0000 0000	135.126.96.0
	01101	111	1111 1111	135.126.111.255
Υπ #7	01110	000	0000 0000	135.126.112.0
	01111	111	1111 1111	135.126.127.255
Υπ #8	10000	000	0000 0000	135.126.128.0
	10001	111	1111 1111	135.126.143.255

Άρα οι διευθύνσεις που είναι ελεύθερες για κάθε υποδίκτυο είναι :

 $Y\pi \#0$: 135.126.0.1 - 135.126.15.254

 $Y\pi #1 : 135.126.16.1 - 135.126.31.254$

 $Y\pi$ #2: 135.126.32.1 - 135.126.63.254

 $Y\pi #3$: 135.126.48.1 - 135.126.61.254

 $Y\pi #4:$ 135.126.64.1 - 135.126.79.254

 $Y\pi #5$: 135.126.80.1 - 135.126.95.254

 $Y\pi \#6$: 135.126.96.1 - 135.126.111.254

 $Y\pi \#7$: 135.126.112.1 - 135.126.127.254

 $Y\pi #8 : 135.126.128.1 - 135.126.143.254$

7. Για να κάνουμε VLSM ξεκινάμε από το υποδίκτυο με τους περισσότερους hosts Για το Υπ #0 έχουμε 325 Hosts και 2 επιπλέον διευθύνσεις για το subnet id και broadcast address . Επομένως $\log_2 327 \approx 9$.

 2^9 =512. Άρα έχουμε από 135.126.0.0 έως 135.126.1.255

Για το Yπ #1 έχουμε 220 Hosts και 2 επιπλέον διευθύνσεις για το subnet id και broadcast address . Επομένως $\log_2 222 \approx 8$.

 2^8 =256. Άρα έχουμε από 135.126.2.0 έως 135.126.2.255

Για το Υπ #2 έχουμε 150 Hosts και 2 επιπλέον διευθύνσεις για το subnet id και broadcast address . Επομένως $\log_2 152~\approx 8$.

 2^8 =256. Άρα έχουμε από 135.126.3.0 έως 135.126.3.255

Β ΜΕΡΟΣ

a) Αλγόριθμος Dijkstra

α/α	Κόμβος	Προσωρινή Ετικέτα	Τελική Τιμή
1	W	0	0
2	Z	+∞, 1	1
3	V	+∞, 4	4
4	u	+∞,5	5
5	Х	+∞, 9, 7	7
6	У	+∞,9	9

b) Αλγόριθμος Bellman-Ford

1. Αρχικά Διανύσματα

Λος Από	u	V	X	W	y
u	0	3	+∞	+∞	+∞
V	3	0	4	9	+∞
X	+∞	4	0	6	7
w	+∞	9	6	0	+∞
y	+∞	+∞	7	+∞	0

2. Αφού συγκλίνει ο αλγόριθμος

Αρχικά

Έστω ότι ξεκινάμε από τον υ έχουμε :

1st Iterration

2nd Iterration

3rd Iterration

Τελικά

Tojugo, Iteration	u	V	X	W	y
0	0	+∞	+∞	+∞	+∞
1	0	3	+∞	+∞	+∞
2	0	3	7	12	+∞
3	0	3	7	12	14

Αναλόγως προκύπτει πως αν ξεκινήσουμε από τον ν :

Tojugo _l	и	V	X	W	y
0	+∞	0	+∞	+∞	+∞
1	3	0	4	9	+∞
2	3	0	4	9	22 (μέσω νωχy)
3	3	0	4	9	11 (μέσω νχγ)

Αναλόγως προκύπτει πως αν ξεκινήσουμε από τον x :

Rojugo _l Iteration	u	V	X	W	y
0	+∞	+∞	0	+∞	+∞
1	+∞	4	0	6	7
2	18 (μέσω xwvu)	4	0	6	7
3	7	4	0	6	7

Αναλόγως προκύπτει πως αν ξεκινήσουμε από τον w:

Toj _{UBO} , Iteration	u	V	X	W	у
0	+∞	+∞	+∞	0	+∞
1	+∞	9	6	0	+∞
2	13 (μέσω wxvu)	9	6	0	20 (μέσω wvxy)
3	12	9	6	0	13

Αναλόγως προκύπτει πως αν ξεκινήσουμε από τον y :

Tojugo, Iteration	u	V	X	W	y
0	+∞	+∞	+∞	+∞	0
1	+∞	+∞	7	+∞	0
2	+∞	11	7	13	0
3	14	11	7	13	0

Παίρνοντας όλες τις πιθανές επιλογές βλέπουμε ότι η βέλτιστη λύση προκύπτει αν ξεκινήσουμε από τον κόμβο χ.

Γ ΜΕΡΟΣ

• Data Size/MTU = 4000/1500

Length	Id	Fragflag	offset	
4000	Х	0	0	

Από τα 1500 bytes που μπορούμε να έχουμε σε κάθε κομμάτι τα 20 bytes είναι το header του IP, άρα η πληροφορία που μεταφέρεται είναι 1480 bytes . Την μετατόπιση (Offset) την υπολογίζουμε από την πράξη 1480/8 = 185 .Επίσης μόνο το τελευταίο πακέτο φέρει fragment flag (MF) ως 0 για να μπορεί να ξεχωρίζει ο δέκτης το τέλος του πακέτου .

	a/a	Length	d	Fragflag	Offset	
	1°	1500	Х	1	0	
	2°	1500	Х	1	185	
	3°	1040	Х	0	370	

• Data Size/MTU = 2000/500

Length	Id	Fragflag	offset	
2000	Х	0	0	

Από τα 500 bytes που μπορούμε να έχουμε σε κάθε κομμάτι τα 20 bytes είναι το header του IP, άρα η πληροφορία που μεταφέρεται είναι 480 bytes . Την μετατόπιση (Offset) την υπολογίζουμε από την πράξη 1480/8 = 60. Επίσης μόνο το τελευταίο πακέτο φέρει fragment flag (MF) ως 0 για να μπορεί να ξεχωρίζει ο δέκτης το τέλος του πακέτου .

a/a	Length	Id	Fragflag	Offset	
1°	500	Х	1	0	
2°	500	Х	1	60	
3°	500	Х	1	120	
4 °	500	Х	1	180	
5°	80	х	0	240	

• Data Size/MTU = 2000/1000

Length	Id	Fragflag	offset	
2000	Х	0	0	

Από τα 1000 bytes που μπορούμε να έχουμε σε κάθε κομμάτι τα 20 bytes είναι το header του IP, άρα η πληροφορία που μεταφέρεται είναι 980 bytes . Την μετατόπιση (Offset) την υπολογίζουμε από την πράξη 980/8 = 122,5 (στρογγυλοποιούμε προς τα πάνω και παίρνουμε το 123 για βήμα) .Επίσης μόνο το τελευταίο πακέτο φέρει fragment flag (MF) ως 0 για να μπορεί να ξεχωρίζει 0 δέκτης το τέλος του πακέτου .

a/a	Length	Id	Fragflag	Offset	
1°	1000	Х	1	0	
2°	2000	Х	1	123	
3°	40	Х	0	246	

• Data Size/MTU = 4000/6000

Length	Id	Fragflag	offset	
4000	Х	0	0	

Το Data Size < MTU ,οπότε δεν χρειάζεται περαιτέρω σπάσιμο το πακέτο . Είναι εξ' αρχής ένα κομμάτι .

Δ ΜΕΡΟΣ

- 1. Η έκδοση του πρωτοκόλλου είναι TCP Reno . Αυτό το αντιλαμβανόμαστε από το χρονικό διάστημα t_{6} - t_{10} , όπου παρατηρείται το φαινόμενο της αποστολής 3πλότυπων ACK πακέτων ,και το πρωτόκολλο μπαίνει σε κατάσταση fast recovery .
- 2. Το πρωτόκολλο βρίσκεται σε:

Slow start : Τα χρονικά διαστήματα t_1 - t_4 , t_{10} - t_{14} , t_{28} - t_{32} και t_{36} - t_{38} (θετική αύξηση του ConWin). Congestion Avoidance : Τα χρονικά διαστήματα t_4 - t_6 , t_{14} - t_{27} και t_{32} - t_{35} (γραμμική αύξηση του ConWin).

Fast Recovery: Τα χρονικά διαστήματα t_7 - t_8 και t_9 - t_{10}

3. Το πρωτόκολλο αντιλαμβάνεται απώλεια πακέτου που οφείλεται σε :

τριπλά αντίγραφα ACK : Τις χρονικές στιγμές t_6 και t_8 , αυτό το αντιλαμβανόμαστε από την διαδικασία fast recovery που ξεκινάει αμέσως μετά ,δηλαδή το ssthresh τίθεται σε τιμή ίση με το ½ του ConWin πριν την απώλεια προσαυξημένο με 3.

timeout: Τις χρονικές στιγμές t_{10} , t_{27} , t_{35} και t_{38} , αυτό φαίνεται από ότι το ConWin πέφτει κατευθείαν στην τιμή 1.

- 4. 1^{η} μετάδοση ConWin = 1 πακέτα No.1
 - 2^{η} μετάδοση ConWin = 2 πακέτα No.2,3
 - 3^{η} μετάδοση ConWin = 4 πακέτα No.4,5,6,7
 - 4^{η} μετάδοση ConWin = 8 πακέτα No.8,9,10,11,12,13,14,15
 - 5^{η} μετάδοση ConWin = 9 πακέτα No.16,17,18,19,20,21,22,23,24
 - 6^{η} μετάδοση ConWin = 10 πακέτα No.25,26,27,28,29,30,31,32,33,34
 - 7^η μετάδοση βρίσκεται σε fast recovery δεν μεταφέρονται πακέτα
 - 8η μετάδοση –λαμβάνει πάλι διπλότυπο ΑСΚ δεν μεταφέρονται πακέτα
 - 9η μετάδοση –βρίσκεται σε fast recovery δεν μεταφέρονται πακέτα
 - 10^{η} μετάδοση παθαίνει timeout δεν μεταφέρονται πακέτα

```
11<sup>η</sup> μετάδοση – ConWin = 1 πακέτα No.35
12<sup>η</sup> μετάδοση – ConWin = 2 πακέτα No.36,37
```

Άρα έχουν μεταδοθεί 37 πακέτα την 12^η στιγμή.

```
13^{\eta} μετάδοση – ConWin = 4 πακέτα No.38,39,40,41
14^{\eta} μετάδοση – ConWin = 8 πακέτα No.42,43,44,45,46,47,48,49
15^{\eta} μετάδοση – ConWin = 9 πακέτα No. 50,51,52,53,54,55,56,57,58
16^{\eta} μετάδοση – ConWin = 10 πακέτα No.59,60,61,62,63,64,65,66,67,68
17^{\eta} μετάδοση – ConWin =11 πακέτα No.69,70,71,72,73,74,75,76,77,78,79
18^{\eta} μετάδοση – ConWin = 12 πακέτα No.80,81,82,83,84,85,86,87,88,89,90,91
19<sup>η</sup> μετάδοση – ConWin = 13 πακέτα No.92,93,94,95,96,97,98,99,100,101,102,103,104
20^{9} μετάδοση – ConWin = 14 πακέτα No.105-No.118
21^{η} μετάδοση – ConWin = 15 πακέτα No.119-No.133
22^{η} μετάδοση – ConWin = 16 πακέτα No.134-No.149
23^{\eta} μετάδοση – ConWin = 17 πακέτα No.150-No.166
24^{9} μετάδοση – ConWin = 18 πακέτα No.167-No.184
25^{\eta} μετάδοση – ConWin = 19 πακέτα No.185-No.203
26^{9} μετάδοση – ConWin = 20 πακέτα No.204-No.223
27<sup>η</sup> μετάδοση – παθαίνει timeout δεν μεταφέρονται πακέτα
28^{\eta} μετάδοση – ConWin = 1 πακέτα No.224
29^{η} μετάδοση – ConWin = 2 πακέτα No.225,226
30^{9} μετάδοση – ConWin = 4 πακέτα No.227,228,229,230
31^{η} μετάδοση – ConWin = 8 πακέτα No.231-No.238
32^{η} μετάδοση – ConWin = 16 πακέτα No.239-No.254
33^{η} μετάδοση – ConWin = 17 πακέτα No.255-No.271
34^{η} μετάδοση – ConWin = 18 πακέτα No.272-No.289
35^{\eta} μετάδοση – παθαίνει timeout δεν μεταφέρονται πακέτα
36^{\eta} μετάδοση – ConWin = 1 πακέτα No.290
37^{\eta} μετάδοση – ConWin = 2 πακέτα No.291,292
38^{\eta} μετάδοση – παθαίνει timeout δεν μεταφέρονται πακέτα
39^{\eta} μετάδοση – ConWin = 1 πακέτα No.293
40^{\rm n} μετάδοση – ConWin = 2 πακέτα No.294,295
```

Άρα μέχρι την λήξη έχουν μεταδοθεί 365 πακέτα

- 5. Το ssthresh αλλάζει τις χρονικές στιγμές:
- t6, λαμβάνουμε διπλότυπο πακέτο ACK άρα το ssthresh=(1/2) conwin +3 =>ssthresh=5+3 =8
- t8, λαμβάνουμε διπλότυπο πακέτο ACK άρα το ssthresh= (1/2) conwin +3 =>ssthresh=4,5+3 =7,5
 (στρογγυλοποιούμε στο 8) άρα ssthresh = 8.
- t10, έχουμε timeout άρα το ssthresh = (1/2) conwin => ssthresh =4,5
- t27, έχουμε timeout άρα το ssthresh = (1/2) conwin => ssthresh =10,5 (στρογγυλοποιούμε στην επόμενη κοντινή δύναμη του 2) άρα ssthresh=16
- t35, έχουμε timeout άρα το ssthresh = (1/2) conwin => ssthresh =9,5 (στρογγυλοποιούμε στην επόμενη κοντινή δύναμη του 2) άρα ssthresh=16
- t38, έχουμε timeout άρα το ssthresh = (1/2) conwin => ssthresh =2

6.	 Άμα δεν υπάρχουν απώλειες ,σημαίνει ότι η πορεία συνεχίζει κανονικά και αφού το conwin έχει φτάσει ήδη στο ssthresh , από εδώ και στο εξής κινείται γραμμικά σε κατάσταση congestion avoidance, άρα : t41 ->conwin = 3 t42 ->conwin=4 t43-> conwin=5 t44->conwin=6
7.	Η τιμή του παραθύρου είναι 1 και του ssthresh είναι 2