## Implementation of an email-based alert system for large-scale system resources

Robert Poenaru

Department of Computational Physics and Information Technology, IFIN-HH

#### **Table of Contents**

- 1. Motivation
- 2. Aim
- 3. Development Stages
- 4. Conclusions

#### Motivation

#### Within a research department:

#### Scientific community

- Tackle different problems
- Construct a codebase for a particular issue
- Develop a scenario for executing simulations
- Request access to computing resources (submit jobs)

#### System administration community

- Manage allocation of the computing resources for each job
- Monitor executing simulations
- Monitor idling resources
- Keep track of incoming jobs

#### **Simulations**

Scientific community

- Unoptimized simulations lead to:
  - Long execution time (will cause delays in the pipeline)
  - Low degree of parallelism (cannot take full advantage of multiple core/threads)
  - Excessive memory consumption (limited resource)

Simulation testing + optimization is required

### Resource management + monitoring

Sysadmin community

Allocate jobs (e.g., simulations) to the computing cluster



- Manage computing nodes (updates, services)
- Observe unexpected behavior of the running simulations



Check idling resources for potential issues



 Keeping track of all these aspects 24/7 is very challenging

## **Project Goals**

- Create a service which:
  - 1. Monitor multiple computing nodes/clusters (system resources, executing services, etc.)
  - 2. ! Identify potential issues within the resources
  - 3. Inform the sysadmin in realtime on the occurring issue(s) via e-mail

Alert system

## Alert system

#### **General workflow**



## Alert system

#### **Main features**

- Developed in Python
  - Great system compatibility
  - Plenty of packages
  - Strong development community
- Works with virtual environments
- Improved package management using pipenv

### Data ingest Stage 1

- The underlying computing infrastructure must send information containing its current status
- Each node on the cluster should send system information (e.g., CPU usage, RAM usage, network activity, running services) to a centralized master node
- The alert system runs on the master node
- Information is send as log files, via a log shipper.

## Filebeat Log shipper

- Developed by Elastic™
- Part of the Elasticsearch stack (ELK)
- Lightweight shipper for logs
  - Runs as a service on the system
  - Sends logs to (not only) any other node on the network



# Log monitoring Watching log file(s) for changes

The master node runs the

