Interpretting Representations: Preview

We have described an L layer (Sequential) Neural Network as

- a sequence of tranformations of the input
 - ullet each transformation a *layer l*, producing a new *representation* $\mathbf{y}_{(l)}$
- ullet that feed the final representation $oldsymbol{y}_{(L)}$ to a *head* (classifier, regressor)

Layers

Is it possible to interpret each representation $\mathbf{y}_{(l)}$?

- What do the new "synthetic features" mean?
- Is there some structure among the new features?
 - e.g., does each feature encode a "concept"

We will briefly introduce the topic of Interpretation.

A deeper dive will be the subject of a later lecture.

Our goal, for the moment, is to motivate Autoencoders.

Interpretation 1: Clustering of examples

One way to try to interpet $\mathbf{y}_{(l)}$ is relative to a dataset $\lambda = [x^{ip}, y^{ip} | 1 \le i \le m]$

- Compute $\mathbf{y}_{(l)}^{(i)}$ by presenting $\mathbf{x}^{(i)}$ to the NN
- Create a scatter plot (of dimension $n_{(l)} = |\mathbf{y}_{(l)}|$)
 - locate $\mathbf{y}_{(l)}^{(\mathbf{i})}$ in the $n_{(l)}$ -dimensional plot
 - label it with it's label y⁽ⁱ⁾

Do examples with identical labels form recognizable clusters?

If so, perhaps we can interpret synthetic feature $\mathbf{y}_{(l),j}$

ullet according to how variation in $\mathbf{y}_{(l),j}$ affects the set of examples \mathbf{X}

MNIST clustering produced by a VAE

- Each point is an example $\mathbf{x}^{(i)}$
- $\bullet\,$ The color corresponds to the label $y^{(i)}$
- Axes are the first two synthetic features

You can see that some digits form tight clusters.

By understanding

- the clusters
- how the digit label's vary as a synthetic feature vaires

we might be able to infer meaning to the synthetic features.

The first two synthetic features may correspond to properties of those digits

- digits with "tops"
- digits with "curves"

Note This is not too different from trying to interpret Principal Components:

Interpretation 2: Examining the latent space

Another method

- ullet Create an $n_{(l)}$ dimensional grid of evenly spaced values of $\mathbf{y}_{(l)}$
- Let $\mathbf{y}_{(l)}^{(i')}$ be such a value
 - Note this is not necessarily an example produced from an $x \in X$
- Map $\mathbf{y}_{(l)}^{(i')}$ to some value in the input representation $\mathbf{x}^{(i')}$
 - Note this is not necessarily an example from X
 - But presenting $\mathbf{x}^{(i')}$ to the NN results in $\mathbf{y}_{(l)} = \mathbf{y}_{(l)}^{(i')}$

MNIST clustering produced by a VAE

- Axes are the first two synthetic features
- For $\mathbf{y}_{(l)}$ at a given grid point:
 - find a value in the input representation that maps to this grid point

Note that there is <i>no reason</i> to expect that the inversion of an arbitrary representation <i>looks like</i> a digit
it merely has the correct shapeunless we impose some constraints

This is **not** just a different view of the first plot:

- we are able to infer a pseudo-input for a grid point $\mathbf{y}_{(l)}^{(i')}$ that corresponds to \mathbf{no} actual input in \mathbf{X}
 - For example, we infer a digit from an uninhabited region of the grid of the first plot

Some observations (with possible intepretation)

- Does the first synthetic feature control slant?
 - Examine 0's along bottom row
- Does the second synthetic feature control "curviness"?
 - Examine the 2's column at the edge, from bottom to top

In order for this method to work, we must be able to invert $\mathbf{y}_{(l)}$.

We will show how to do this in a later lecture.

Deja vu: have we seen this before?

These two methods of interpretation have been encountered in an earlier lecture

- ullet mapping original features $old x^{(i)}$ to synthetic features $old x^{(i)}$
- ullet inverting synthetic feature $ilde{x}^{(i)}$ to obtain original feature $x^{(i)}$

Principal Component Analysis (PCA)!

PCA is an Unsupervised Learning task that can be used for

- dimensionality reduction
- clustering

The key to it's intepretability was the simplicity of transforming and inverting

 $\mathbf{X} = U\Sigma V^T$ SVD decomposition of \mathbf{X}

 $\tilde{\mathbf{X}} = \mathbf{X}V$ tranformation to synthetic features

 $\mathbf{X} = \tilde{\mathbf{X}}V^T$ inverse tranformation to original features


```
In [4]: print("Done")
```

Done