Metode Numerik EE221

Bab 2. Akar-akar Persamaan

Dirangkum dan diterjemahkan dari Thomson Brooks Chapra, Steven and Raymond Canale. 2009.

Numerical Methods for Engineers 6th Edition, **Chapter 5**

Nabila Husna Shabrina Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara

Sub Bahasan:

- Metode Bisection
- Metode False position

Mencari Akar-akar Persamaan

Mencari Akar-akar Persamaan

TABLE PT2.3 Comparison of the characteristics of alternative methods for finding roots of algebraic and transcendental equations. The comparisons are based on general experience and do not account for the behavior of specific functions.

Method	Туре	Guesses	Convergence	Stability	Programming	Comments
Direct	Analytical	_	_	_		
Graphical	Visual	_	_	_	_	Imprecise
Bisection	Bracketing	2	Slow	Always	Easy	'
False-position	Bracketing	2	Slow/medium	Always	Easy	
Modified FP	Bracketing	2	Medium	Always	Easy	
Fixed-point iteration	Open	1	Slow	Possibly divergent	Easy	
Newton-Raphson	Open	1	Fast	Possibly divergent	Easy	Requires evaluation of $f'(x)$
Modified Newton- Raphson	Open	1	Fast (multiple), medium (single)	Possibly divergent	Easy	Requires evaluation of f'(x) and f''(x)
Secant	Open	2	Medium/fast	Possibly divergent	Easy	Initial guesses do not have to bracket the root
Modified secant	Open	1	Medium/fast	Possibly divergent	Easy	
Brent	Hybrid	1 or 2	Medium	Always (for 2 guesses)	Moderate	Robust
Müller	Polynomials	2	Medium/fast	Possibly divergent	Moderate	
Bairstow	Polynomials	2	Fast	Possibly divergent	Moderate	

Salah satu cara untuk mencari akar-akar dari suatu persamaan adalah dengan grafik

Contoh 1. Dengan aproksimasi grafik, tentukan koefisien c yang dibutuhkan oleh parasut dengan massa $68.1~\rm kg$ dan kecepatan $40~\rm m/s$ setelah jatuh bebas selama $10~\rm detik$. Percepatan gravitasi sebesar $9.81~\rm m/s^2$

$$f(c) = \frac{9.81(68.1)}{c} (1 - e^{-(c/68.1)10}) - 40$$

Atau

$$f(c) = \frac{668.06}{c} (1 - e^{-0.146843c}) - 40$$

c	f(c)
4	34.190
8	17.712
12	6.114
16	-2.230
20	-8.368

$$f(14.75) = \frac{668.06}{14.75} (1 - e^{-0.146843(14.75)}) - 40 = 0.100$$

$$v = \frac{9.81(68.1)}{14.75} (1 - e^{-(14.75/68.1)10}) = 40.100$$

Contoh dengan MATLAB

Step

- 1. Tentukan batas bawah x_l dan batas atas x_u untuk akar persamaan yang menyebabkan fungsi tersebut berubah nilainya pada batas interval tersebut
- 2. Gunakan estimasi akar \rightarrow $x_r = \frac{x_l + x_u}{2}$
- 3. Evaluasi dengan cara sebagai berikut
 - a. Jika $f(x_l)f(x_r)<0$ maka akar nya ada di interval bawah, sehingga kita dapat mengubah $x_u=x_r$ dan kembali pada step 2
 - b. Jika $f(x_l)f(x_r)>0$ maka akar nya ada di interval atas, sehingga kita dapat mengubah $x_l=x_r$ dan kembali pada step 2
 - c. Jika $f(x_l)f(x_r) = 0$ maka akar persamaan nya adalah x_r

Contoh 2.

Selesaikan contoh 1 dengan pendekatan bisection

$$x_r = \frac{12 + 16}{2} = 14$$
 $\varepsilon_t = 5.3\%$
 $f(12) f(14) = 6.114(1.611) = 9.850$
 $x_r = \frac{14 + 16}{2} = 15$ $\varepsilon_t = 1.3\%$

Jika dilakukan iterasi

$$f(14) f(15) = 1.611(-0.384) = -0.619$$

$$x_r = \frac{14 + 15}{2} = 14.5 \quad \varepsilon_t = 2.0\%.$$

FIGURE 5.6

A graphical depiction of the bisection method. This plot conforms to the first three iterations from Example 5.3.

Estimasi error

$$\varepsilon_a = \left| \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}} \right| 100\%$$

Contoh 3

Lanjutkan iterasi untuk contoh 2 sampai didapatkan error $\varepsilon_s = 0.5\%$.

$$|\varepsilon_a| = \left| \frac{15 - 14}{15} \right| 100\%$$

$$= 6.667\%$$

Iteration	x _l	Χυ	\mathbf{x}_r	ε _α (%)	ε _t (%)
1	12	16	14		5.413
2	14	16	15	6.667	1.344
3	14	15	14.5	3.448	2.035
4	14.5	15	14.75	1.695	0.345
5	14.75	15	14.875	0.840	0.499
6	14.75	14.875	14.8125	0.422	0.077

FIGURE 5.7

Errors for the bisection method. True and estimated errors are plotted versus the number of iterations.

FIGURE 5.8

Three ways in which the interval may bracket the root. In (a) the true value lies at the center of the interval, whereas in (b) and (c) the true value lies near the extreme. Notice that the discrepancy between the true value and the midpoint of the interval never exceeds half the interval length, or $\Delta x/2$.

FIGURE 5.9

Graphical depiction of why the error estimate for bisection $(\Delta x/2)$ is equivalent to the root estimate for the present iteration (x_r^{new}) minus the root estimate for the previous iteration (x_r^{old}) .

Rumus-rumus penting

$$x_r^{\text{new}} - x_r^{\text{old}} = \frac{x_u - x_l}{2}$$

$$x_r^{\text{new}} = \frac{x_l + x_u}{2}$$

$$\varepsilon_a = \left| \frac{x_u - x_l}{x_u + x_l} \right| 100\%$$

Pseudocode untuk metode bisection

```
FUNCTION Bisect(x1. xu. es. imax. xr. iter. ea)
 iter = 0
 DΩ
   xrold = xr
   xr = (x_1 + x_1) / 2
   iter = iter + 1
   IF xr \neq 0 THEN
     ea = ABS((xr - xrold) / xr) * 100
   FND TF
   test = f(x1) * f(xr)
   IF test < 0 THEN
     xu = xr
   ELSE IF test > 0 THEN
    x1 = xr
   FLSF
    ea = 0
   END IF
    IF ea < es OR iter ≥ imax EXIT
 FND DO
 Bisect = xr
END Bisect
```

FIGURE 5.12

A graphical depiction of the method of false position. Similar triangles used to derive the formula for the method are shaded.

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Box 5.1 Derivation of the Method of False Position

Cross-multiply Eq. (5.6) to yield

$$f(x_l)(x_r - x_u) = f(x_u)(x_r - x_l)$$

Collect terms and rearrange:

$$x_r[f(x_l) - f(x_u)] = x_u f(x_l) - x_l f(x_u)$$

Divide by $f(x_l) - f(x_u)$:

$$x_r = \frac{x_u f(x_l) - x_l f(x_u)}{f(x_l) - f(x_u)}$$
(B5.1.1)

This is one form of the method of false position. Note that it allows the computation of the root x_r as a function of the lower and upper guesses x_l and x_u . It can be put in an alternative form by expanding it:

$$x_{r} = \frac{x_{u} f(x_{l})}{f(x_{l}) - f(x_{u})} - \frac{x_{l} f(x_{u})}{f(x_{l}) - f(x_{u})}$$

then adding and subtracting x_u on the right-hand side:

$$x_r = x_u + \frac{x_u f(x_l)}{f(x_l) - f(x_u)} - x_u - \frac{x_l f(x_u)}{f(x_l) - f(x_u)}$$

Collecting terms yields

$$x_r = x_u + \frac{x_u f(x_u)}{f(x_l) - f(x_u)} - \frac{x_l f(x_u)}{f(x_l) - f(x_u)}$$

or

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

which is the same as Eq. (5.7). We use this form because it involves one less function evaluation and one less multiplication than Eq. (B5.1.1). In addition, it is directly comparable with the secant method, which will be discussed in Chap. 6.

Contoh 4

Dengan metode false position, tentukan solusi untuk contoh 1

Iterasi pertama
$$x_l = 12$$
 $f(x_l) = 6.1139$ $x_u = 16$ $f(x_u) = -2.2303$ $x_r = 16 - \frac{-2.2303(12 - 16)}{6.1139 - (-2.2303)} = 14.309$

Iterasi kedua $f(x_l)f(x_r) = -1.5376$

$$x_l = 12$$
 $f(x_l) = 6.1139$
 $x_u = 14.9309$ $f(x_u) = -0.2515$
 $x_r = 14.9309 - \frac{-0.2515(12 - 14.9309)}{6.1139 - (-0.2515)} = 14.8151$

FIGURE 5.13

Comparison of the relative errors of the bisection and the false-position methods.

Contoh 5.

Tentukan solusi untuk $f(x) = x^{10} - 1$ untuk nilai x diantara 0 dan 1.3

Dengan bisection

Iteration	ΧĮ	Χu	X _r	ε _α (%)	ε _t (%)
1	0	1.3	0.65	100.0	35
2	0.65	1.3	0.975	33.3	2.5
3	0.975	1.3	1.1375	14.3	13.8
4	0.975	1.1375	1.05625	7.7	5.6
5	0.975	1.05625	1.015625	4.0	1.6

Dengan false position

x_l	X _U	\mathbf{x}_r	ε _α (%)	ε_t (%)
0	1.3	0.09430		90.6
0.09430	1.3	0.18176	48.1	81.8
0.18176	1.3	0.26287	30.9	73.7
0.26287	1.3	0.33811		66.2
0.33811	1.3	0.40788	17.1	59.2
	0 0.09430 0.18176 0.26287	0 1.3 0.09430 1.3 0.18176 1.3 0.26287 1.3	0 1.3 0.09430 0.09430 1.3 0.18176 0.18176 1.3 0.26287 0.26287 1.3 0.33811	0 1.3 0.09430 0.09430 1.3 0.18176 48.1 0.18176 1.3 0.26287 30.9 0.26287 1.3 0.33811 22.3

FIGURE 5.14

Plot of $f(x) = x^{10} - 1$, illustrating slow convergence of the false-position method.

FIGURE 5.16

Cases where roots could be missed because the increment length of the search procedure is too large. Note that the last root on the right is multiple and would be missed regardless of increment length.

Kesimpulan

TABLE PT2.4 Summary of important information presented in Part Two.

Method	Formulation	Graphical Interpretation	Errors and Stopping Criteria
		Bracketing methods:	
Bisection	$x_r = \frac{x_l + x_u}{2}$ If $f(x_l)f(x_r) < 0$, $x_u = x_r$ $f(x_l)f(x_r) > 0$, $x_l = x_r$	Root $ \begin{array}{c cccc} x_l & x_u & x \\ \hline L/2 & & \\ L/4 & & \\ \end{array} $	Stopping criterion: $\left \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}}\right 100\% \le \epsilon_s$
False position	$x_{r} = x_{u} - \frac{f(x_{u})(x_{l} - x_{u})}{f(x_{l}) - f(x_{u})}$ If $f(x_{l})f(x_{r}) < 0$, $x_{u} = x_{r}$ $f(x_{l})f(x_{r}) > 0$, $x_{l} = x_{r}$	$f(x)$ x_r x_l x_u x	Stopping criterion: $\left \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}}\right 100\% \le \epsilon_s$

Latihan

Problems Chapter 5

Nomer 5.3 b dan c

Nomer 5.6