

Probability and Stochastic Processes

Lecture 05: Construction of (Borel) σ -Algebra for $\{0,1\}^{\mathbb{N}}$ and [0,1]

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

12 August 2025

σ -Algebra

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^{\complement} \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remark: The symbol σ in σ -algebra connotes countably infinite unions.

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathscr{F}$ is also referred to as an \mathscr{F} -measurable set
- The pair (Ω, \mathscr{F}) is called a measurable space

Examples of σ -Algebra

- Given a sample space Ω , the smallest σ -algebra is $\mathscr{F}_{\mathrm{smallest}} = \{\emptyset, \Omega\}$
- Given a sample space Ω , the largest σ -algebra is $\mathscr{F}_{\mathrm{largest}} = 2^{\Omega}$
- For $\Omega = \{1, ..., 6\}$, complete the following collection to make it a σ -algebra:

$$\mathscr{F}=\left\{\emptyset,\Omega,\{1,2\},\{3,4\},
ight.$$

- Consider the experiment of tossing a coin till first head is observed
 - $-\Omega = \{H, TH, TTH, TTTH, \cdots\}$
 - Let

$$\mathscr{C} = \left\{\emptyset, \Omega, \{H\}, \{TH\}, \{TTH\}, \{TTTH\}, \cdots\right\} = \left\{\emptyset, \Omega, \text{ all singleton subsets of } \Omega\right\}.$$

- Is \mathscr{C} a σ -algebra? No!
- Can we convert \mathscr{C} to a σ -algebra by including more subsets of Ω ? Yes!
- Let $\sigma(\mathscr{C})$ denote the smallest σ -algebra constructed starting from \mathscr{C}

Algebra vs σ -Algebra

- Consider the experiment of tossing a coin till first head is observed
 - $$\begin{split} & \ \Omega = \{\textit{H}, \textit{TH}, \textit{TTH}, \textit{TTTH}, \cdots \} \\ & \ \mathscr{C} = \left\{\emptyset, \Omega, \{\textit{H}\}, \{\textit{TH}\}, \{\textit{TTH}\}, \{\textit{TTTH}\}, \cdots \right\} \\ & \ \text{Let} \ \mathscr{A} = \alpha(\mathscr{C}) \\ & \ \text{Let} \ \mathscr{F} = \sigma(\mathscr{C}) \end{split}$$

Observe the Following Properties

- $A^* = \{TH, TTTH, TTTTTH, \cdots\} \notin \mathscr{A}, \qquad A^* = \{TH, TTTH, TTTTTH, \cdots\} \in \mathscr{F}$
- $\mathscr{A} \subseteq \mathscr{F}$, i.e., a σ -algebra is a larger collection than its precursor algebra
- A σ -algebra satisfies all the properties of an algebra, but an algebra may not satisfy the properties of a σ -algebra

Construction of σ -Algebra for $\{0,1\}^{\mathbb{N}}$

- Let $\Omega = \{0, 1\}^{\mathbb{N}} = \{0, 1\} \times \{0, 1\} \times \cdots$
- Each $\omega \in \Omega$ may be expressed as

$$\omega = (\omega_1, \omega_2, \ldots), \qquad \omega_i \in \{0, 1\} \text{ for all } i \in \mathbb{N}.$$

• For each $n \in \mathbb{N}$, let \mathscr{D}_n denote the set of all binary strings of length n, i.e.,

$$\mathscr{D}_n = \{(b_1, \dots, b_n) : b_i \in \{0, 1\} \text{ for all } i \in \{1, \dots, n\}\}.$$

• Let \mathcal{D} denote the set of all finite-length binary strings, i.e.,

$$\mathscr{D} = \bigcup_{n \in \mathbb{N}} \mathscr{D}_n.$$

Cylinder Sets

Consider $\Omega = \{0,1\}^{\mathbb{N}}$

Definition (Cylinder Set)

Given a finite-length binary string $\mathbf{b} \in \mathscr{D}_m$ of length m, the cylinder set $[\mathbf{b}]$ is defined as

$$[\mathbf{b}] \coloneqq \{\omega \in \{0,1\}^{\mathbb{N}} : (\omega_1,\ldots,\omega_m) = \mathbf{b}\}$$

The set [b] may be expressed as

$$\mathbf{b} = \underbrace{\{b_1\} \times \cdots \times \{b_m\}}_{\text{base}} \times \underbrace{\{0,1\} \times \{0,1\} \times \cdots}_{\text{axis}}$$

The name "cylinder" comes from the fact that the base is fixed and axis is freely chosen.

Working with Cylinder Sets

- $[1] \cap [10] =$
- $[1] \cap [01] =$
- [10]^C =
- If $A = \{\omega \in \{0,1\}^{\mathbb{N}} : \omega_5 = 1\}$, express A in terms of cylinder sets
- If *A* is the set

 $\mathbf{A} = \{\omega \in \{0,1\}^{\mathbb{N}} : \omega \text{ contains at least 2 ones in the first 10 bits}\},$

express A in terms of cylinder sets

Construction of Algebra from Cylinder Sets

Consider the collection

$$\mathscr{C} = \Big\{ [\mathbf{b}] : \mathbf{b} \in \mathscr{D} \Big\}.$$

- Is ℰ an algebra? No!
- Can we convert \mathscr{C} to an algebra? Yes!
- Denote by $\alpha(\mathscr{C})$ the smallest algebra constructed starting from \mathscr{C}

Interpretation of Sets in $\alpha(\mathscr{C})$

The set $\alpha(\mathscr{C})$ consists of those sets whose occurrence or non-occurrence can be completely determined by looking only at the first finitely many bits.

•
$$A = \{ \omega \in \{0, 1\}^{\mathbb{N}} : \omega_{10} = 0 \} \in \alpha(\mathscr{C})$$

•
$$B = \{ \omega \in \{0, 1\}^{\mathbb{N}} : \sum_{i=1}^{25} \omega_i \ge 15 \} \in \alpha(\mathscr{C})$$

Is
$$\mathscr{A} = \alpha(\mathscr{C})$$
 a σ -Algebra?

- Consider the collection $\mathscr{C} = \Big\{ [\mathbf{b}] : \mathbf{b} \in \mathscr{D} \Big\}.$
- Let $\mathscr{A} = \alpha(\mathscr{C})$ denote the smallest algebra constructed starting from \mathscr{C}
- Let A* denote the set

$$A^* = \{\omega \in \{0,1\}^\mathbb{N}: \quad \omega_i = 1 \text{ for all } i \in \{2,4,6,8,\ldots\}\}$$

- Clearly, $A^* \notin \mathcal{A}$, as its occurrence/non-occurrence cannot be determined from only observing the first finitely many bits of any infinite binary string
- This shows that \mathscr{A} is **not** a σ -algebra
- Let $\sigma(\mathscr{A})$ denote the smallest σ -algebra constructed starting from \mathscr{A}

The Borel σ -Algebra

The σ -algebra $\sigma(\mathscr{A})$ so constructed is called the Borel σ -algebra of subsets of $\{0,1\}^{\mathbb{N}}$. Henceforth, we shall denote the same by $\mathscr{B}(\{0,1\}^{\mathbb{N}})$.

Construction of σ -Algebra for (0, 1)

Construction of σ -Algebra for (0,1)

- Consider the experiment of throwing a dart on the unit interval (0,1)
- An outcome: $\omega \in (0,1)$
- Sample space: $\Omega = (0, 1)$
- Consider the collection

$$\mathscr{P}=igg\{(a,b):\quad a,b\in\mathbb{R},\ \ 0\leq a\leq b\leq 1igg\}.$$

- Is \mathscr{P} a σ -algebra? No!
- Let $\sigma(\mathscr{P})$ denote the smallest σ -algebra constructed starting from \mathscr{P}

The Borel σ -Algebra

The σ -algebra $\sigma(\mathscr{P})$ so constructed is called the Borel σ -algebra of subsets of (0,1). Henceforth, we shall denote the same by $\mathscr{B}(0,1)$.