

Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: General Formulas

## **Inverse Laplace Transforms: General Formulas**

| No | Laplace transform, $\widetilde{f}(p)$                   | Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$ |
|----|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1  | $\widetilde{f}(p+a)$                                    | $e^{-ax}f(x)$                                                                                        |
| 2  | $\widetilde{f}(ap),  a > 0$                             | $\frac{1}{a}f\left(\frac{x}{a}\right)$                                                               |
| 3  | $\widetilde{f}(ap+b),  a>0$                             | $\frac{1}{a}\exp\left(-\frac{b}{a}x\right)f\left(\frac{x}{a}\right)$                                 |
| 4  | $\widetilde{f}(p-a) + \widetilde{f}(p+a)$               | $2f(x)\cosh(ax)$                                                                                     |
| 5  | $\widetilde{f}(p-a) - \widetilde{f}(p+a)$               | $2f(x)\sinh(ax)$                                                                                     |
| 6  | $e^{-ap}\widetilde{f}(p),  a \ge 0$                     | $\begin{cases} 0 & \text{if } 0 \le x < a, \\ f(x-a) & \text{if } a < x. \end{cases}$                |
| 7  | $p\widetilde{f}(p)$                                     | $\frac{df(x)}{dx},  \text{if } f(+0) = 0$                                                            |
| 8  | $\frac{1}{p+a}\widetilde{f}(p)$                         | $e^{-ax} \int_0^x e^{at} f(t) dt$                                                                    |
| 9  | $\frac{1}{p^2}\widetilde{f}(p)$                         | $\int_0^x (x-t)f(t)dt$                                                                               |
| 10 | $\frac{\widetilde{f}(p)}{p(p+a)}$                       | $\frac{1}{a} \int_0^x \left[ 1 - e^{a(x-t)} \right] f(t) dt$                                         |
| 11 | $\frac{\widetilde{f}(p)}{(p+a)^2}$                      | $\int_0^x (x-t)e^{-a(x-t)}f(t)dt$                                                                    |
| 12 | $\frac{\widetilde{f}(p)}{(p+a)(p+b)}$                   | $\frac{1}{b-a} \int_0^x \left[ e^{-a(x-t)} - e^{-b(x-t)} \right] f(t) dt$                            |
| 13 | $\frac{\widetilde{f}(p)}{(p+a)^2+b^2}$                  | $\frac{1}{b} \int_0^x e^{-a(x-t)} \sin[b(x-t)] f(t) dt$                                              |
| 14 | $\frac{1}{p^n}\widetilde{f}(p),  n=1, 2, \dots$         | $\frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(t)  dt$                                                     |
| 15 | $\widetilde{f}_1(p)\widetilde{f}_2(p)$                  | $\int_0^x f_1(t)f_2(x-t)dt$                                                                          |
| 16 | $\frac{1}{\sqrt{p}}\widetilde{f}\Big(\frac{1}{p}\Big)$  | $\int_0^\infty \frac{\cos(2\sqrt{xt})}{\sqrt{\pi x}} f(t) dt$                                        |
| 17 | $\frac{1}{p\sqrt{p}}\widetilde{f}\Big(\frac{1}{p}\Big)$ | $\int_0^\infty \frac{\sin(2\sqrt{xt})}{\sqrt{\pi t}} f(t) dt$                                        |

| No | Laplace transform, $\widetilde{f}(p)$                       | Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$ |
|----|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 18 | $\frac{1}{p^{2\nu+1}}\widetilde{f}\left(\frac{1}{p}\right)$ | $\int_0^\infty (x/t)^\nu J_{2\nu}(2\sqrt{xt}) f(t) dt$                                               |
| 19 | $\frac{1}{p}\widetilde{f}\left(\frac{1}{p}\right)$          | $\int_0^\infty J_0(2\sqrt{xt})f(t)dt$                                                                |
| 20 | $\widetilde{f}(\sqrt{p^2+a^2})$                             | $f(x) - a \int_0^x f\left(\sqrt{x^2 - t^2}\right) J_1(at) dt$                                        |
| 21 | $\widetilde{f}(\sqrt{p^2-a^2})$                             | $f(x) + a \int_0^x f(\sqrt{x^2 - t^2}) I_1(at) dt$                                                   |
| 22 | $\frac{\widetilde{f}(\sqrt{p^2 + a^2})}{\sqrt{p^2 + a^2}}$  | $\int_0^x J_0(a\sqrt{x^2 - t^2}) f(t) dt$                                                            |
| 23 | $\frac{\widetilde{f}(\sqrt{p^2 - a^2})}{\sqrt{p^2 - a^2}}$  | $\int_0^x I_0(a\sqrt{x^2 - t^2}) f(t) dt$                                                            |
| 24 | $\widetilde{f}(\ln p)$                                      | $\int_0^\infty \frac{x^{t-1}}{\Gamma(t)} f(t)  dt$                                                   |
| 25 | $\frac{d\widetilde{f}(p)}{dp}$                              | -xf(x)                                                                                               |
| 26 | $\frac{d^n \widetilde{f}(p)}{dp^n}$                         | $(-x)^n f(x)$                                                                                        |
| 27 | $p^n \frac{d^m \widetilde{f}(p)}{dp^m},  m \ge n$           | $(-1)^m \frac{d^n}{dx^n} \left[ x^m f(x) \right]$                                                    |
| 28 | $\int_{p}^{\infty} \widetilde{f}(q)  dq$                    | $\frac{1}{x}f(x)$                                                                                    |

Notation:  $J_{\nu}(z)$  is the Bessel function of the first kind,  $I_{\nu}(z)$  is the modified Bessel function of the first kind,  $\Gamma(z)$  is the gamma function,

## References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: General Formulas