CHAPTER 2: Boundary-Value Problems in Electrostatics: I

2.1 Method of Images

The method of images works only for a limited no of problems. Consider a point charge q in front of an infinite and grounded plane conductor (left figure). $\phi_c = 0$ image $\phi_c = 0$

The region of interest is $x \ge 0$, where $\phi(\mathbf{x})$ obeys

$$\nabla^2 \phi(\mathbf{x}) = -\frac{q}{\varepsilon_0} \, \delta(\mathbf{x} - \mathbf{y})$$

and b.c. $\phi_s = \phi(x = 0) = 0$.

To keep $\phi_s = 0$ on x = 0, σ will be induced (by q) on the conductor (left figure). We simulate the effects of σ with a *hypothetical* "image charge", -q, located symmetrically *inside* the conductor (right figure).

$$\Rightarrow \phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{|\mathbf{x} - \mathbf{y}|} - \frac{1}{|\mathbf{x} - \mathbf{y}'|} \right].$$

Question: How to determine this is a valid solution? See next page. 1

2.1 Method of Images (continued)

$$\phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{|\mathbf{x} - \mathbf{y}|} - \frac{1}{|\mathbf{x} - \mathbf{y}'|} \right]$$

1. By symmetry, $\phi(\mathbf{x})$ satisfies the b. c. $\phi_s = \phi(x = 0) = 0$.

b. c. $\phi_s = \phi(x = 0) = 0$. 2. Operate $\phi(\mathbf{x})$ with ∇^2

$$\Rightarrow \nabla^2 \phi(\mathbf{x}) = -\frac{q}{\varepsilon_0} [\delta(\mathbf{x} - \mathbf{y}) - \delta(\mathbf{x} - \mathbf{y}')]$$

$$\mathbf{y}' \text{ is outside the region of interest. Thus, in$$

 \mathbf{y}' is outside the region of interest. Thus, in the region of interest $(x \ge 0)$, we have $\delta(\mathbf{x} - \mathbf{y}') = 0$. $\Rightarrow \phi(\mathbf{x})$ obeys the original Poisson eq.

$$\nabla^2 \phi(\mathbf{x}) = -\frac{q}{\varepsilon_0} \delta(\mathbf{x} - \mathbf{y}) \tag{1}$$

Since $\phi(\mathbf{x})$ satisfies both the D.E. & b.c. in the region of interest, it is a solution. By the uniqueness theorem, it is the only solution.

Note:1. The image charge must be put outside the region of interest.

- 2. The solution $\phi(\mathbf{x})$ outside the region of interest is irrelevant.
- 3. Boundary charges are not required to solve a Poisson eq.

2.2 Point Charge in the Presence of a Grounded

Conducting Sphere

Consider the grounded conducting sphere of radius a shown in the figure. A point charge q is at r = y (> a). Find $\phi(\mathbf{x})$ in the region $r \ge a$.

Put an image charge q' at r = y' (< a). Then,

$$\phi(\mathbf{x}) = \frac{q/4\pi\varepsilon_0}{|\mathbf{x} - \mathbf{y}|} + \frac{q'/4\pi\varepsilon_0}{|\mathbf{x} - \mathbf{y}'|} = \frac{q/4\pi\varepsilon_0}{|x\mathbf{n} - y\mathbf{n}'|} + \frac{q'/4\pi\varepsilon_0}{|x\mathbf{n} - y'\mathbf{n}'|}$$

First, set
$$\frac{y}{a} = \frac{a}{y}$$
 (i.e. $y' = \frac{az}{y}$) so
$$\phi(\mathbf{r} = a) = \frac{q/4\pi\varepsilon_0}{a|\mathbf{n} - \frac{y}{a}\mathbf{n}'|} + \frac{q'/4\pi\varepsilon_0}{y'|\frac{a}{y'}\mathbf{n} - \mathbf{n}'|} = 0$$

$$\Rightarrow \phi(\mathbf{x}) = \frac{q/4\pi\varepsilon_0}{|\mathbf{x} - \mathbf{y}|} - \frac{aq/4\pi\varepsilon_0}{y|\mathbf{x} - \frac{a^2}{y^2}\mathbf{y}|}$$
Note: $y' < a$; hence, q' lies outside the region of interest.

Next, set $\frac{q}{a} = \frac{a}{y'}$ (i.e. $y' = \frac{az}{y}$) so
$$\frac{q}{y} \mathbf{n} - \mathbf{n}'$$
Note: $y' < a$; hence, q' lies outside the region of interest.

Next, set $\frac{q}{a} = -\frac{q'}{y'}$ so that RHS = 0.

Note: If
$$y \to a$$
, then $y' \to a$, This gives $q' = -\frac{y'}{a}q = -\frac{a}{y}q$.

Boundary condition requires
$$r = a) = \frac{q/4\pi\varepsilon_0}{a|\mathbf{n} - \frac{y}{a}\mathbf{n}'|} + \frac{q'/4\pi\varepsilon_0}{y'|\frac{a}{y'}\mathbf{n} - \mathbf{n}'|} = 0$$
 First, set $\frac{y}{a} = \frac{a}{y'}$ (i.e. $y' = \frac{a^2}{y}$) so that $|\mathbf{n} - \frac{y}{a}\mathbf{n}'| = \left|\frac{a}{y'}\mathbf{n} - \mathbf{n}'\right|$

Next, set
$$\frac{q}{a} = -\frac{q'}{y'}$$
 so that RHS = 0.

This gives
$$q' = -\frac{y}{a}q = -\frac{a}{y}q$$
.

i.e. q' and q are so close that their attractive force can approach ∞ .

2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

Rewrite
$$\phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{|\mathbf{x} - \mathbf{y}|} - \frac{a}{y |\mathbf{x} - \frac{a^2}{y^2} \mathbf{y}|} \right]$$
 [This is equivalent to (2.1) & (2.4).

 $\Rightarrow \phi(\mathbf{x}) \text{ satisfies} \begin{cases} \nabla^2 \phi(\mathbf{x}) = -\frac{q}{\varepsilon_0} \delta(\mathbf{x} - \mathbf{y}) & \text{in the region of interest } (r \ge a) \\ \text{b.c. } \phi(r = a) = 0 \end{cases}$

 $\Rightarrow \phi(\mathbf{x})$ is the only solution.

 \Rightarrow q' produces the same ϕ at $r \ge a$ as that produced by the actual charge (i.e. σ on the sphere).

E on the conductor surface is always \perp to the conductor to keep the charges in static equilibrium, i.e. $\phi(r = a) = 0$.

2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

 σ on the sphere:

Rewrite
$$\phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{|\mathbf{x} - \mathbf{y}|} - \frac{a}{y |\mathbf{x} - \frac{a^2}{y^2} \mathbf{y}|} \right]$$

Let γ be the angle between x and y. Then

$$\phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{(x^2 + y^2 - 2xy\cos\gamma)^{1/2}} - \frac{a}{y(x^2 + \frac{a^4}{v^2} - 2\frac{xa^2}{y}\cos\gamma)^{1/2}} \right]$$

 $\mathbf{E}(r < a) = 0. \Rightarrow \text{By Gauss's law}, \ \sigma \text{ at point B is [see (1.22)]}$

$$\sigma = \varepsilon_0 E_r(x = a) = -\varepsilon_0 \frac{\partial \phi}{\partial x}\Big|_{x=a} \left[\frac{\partial \phi}{\partial x} / \frac{\partial x}{\partial x} \text{ is a derivative normal to the surface at point B.} \right]$$

$$= \frac{q}{8\pi} \left[\frac{2a - 2y\cos\gamma}{(a^2 + y^2 - 2ay\cos\gamma)^{3/2}} - \frac{a(2a - 2\frac{a^2}{y}\cos\gamma)}{y(a^2 + \frac{a^4}{y^2} - 2\frac{a^3}{y}\cos\gamma)^{3/2}} \right]$$

$$= \frac{-q}{4\pi a^2} \left(\frac{a}{y}\right) \frac{1 - \frac{a^2}{y^2}}{\left(1 + \frac{a^2}{y^2} - 2\frac{a}{y}\cos\gamma\right)^{3/2}} \begin{bmatrix} \text{This is the actual charge producing the 2nd term of } \phi(\mathbf{x}). \end{bmatrix} (2.5)$$

5

2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

Total charge on the sphere:

The total σ can be obtained by integrating σ over the spherical surface. However, it can be deduced from a simple argument: In the region $r \ge a$, **E** due to the total σ is exactly the **E** due to the image charge q'. Hence, by Gauss's law, the total σ must be $q'(=-\frac{a}{v}q)$.

Force on q:

At the position of q, \mathbb{E} due to q' is the \mathbb{E} due to σ . Hence, the force on q is the Coulomb force between q' & q.

n, **n**' point out of the sphere enclosing $q' \Rightarrow$ convenient to apply Gauss's law and Coulomb's law to q'.

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{qq'}{(y - y')^2} \mathbf{n}' = \frac{-1}{4\pi\varepsilon_0} \frac{q(\frac{a}{y}q)}{(y - \frac{a^2}{y})^2} \mathbf{n}' = \frac{-1}{4\pi\varepsilon_0} \frac{q^2}{a^2} (\frac{a}{y})^3 \frac{1}{(1 - \frac{a^2}{y^2})^2} \frac{\mathbf{y}}{\mathbf{y}} (2.6)$$

These 2 examples make the image charge a useful concept. They also show the merits of problem solving by physical arguments (more examples are given in the following Section).

2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere (with Total Charge Q)

If the sphere is insulated with total charge Q on its surface, we may obtain $\phi(\mathbf{x})$ in two steps:

Step 1: Ground the sphere (upper fugure)

 \Rightarrow Same problem as in Sec. 2.2

$$\Rightarrow \phi(\mathbf{x}) = \frac{q/4\pi\varepsilon_0}{|\mathbf{x} - \mathbf{y}|} - \frac{aq/4\pi\varepsilon_0}{y|\mathbf{x} - a^2\mathbf{y}/y^2|}$$

with a total σ given by q' = -aq/y.

Step 2: Disconnect the ground wire.

Add Q + aq / y to the sphere (lower figure) so that the total charge on the sphere is Q.

To keep $\phi(r=a)$ at a constant value, the added charge Q + aq/y must be distributed uniformly on the surface. By the shell theorem,

$$\phi(r \ge a)$$
 due to added charge $Q + aq/y$ is $\phi(\mathbf{x}) = \frac{Q + aq/y}{4\pi\varepsilon_0 |\mathbf{x}|}$

2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere (continued)

$$\Rightarrow \text{ The the total } \phi \text{ is } \phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{|\mathbf{x} - \mathbf{y}|} - \frac{aq}{y|\mathbf{x} - a^2\mathbf{y}/y^2|} + \frac{Q + aq/y}{|\mathbf{x}|} \right] (2.8)$$

$$\Rightarrow \text{ The force on } q \text{ is } \mathbf{F} = \frac{-1}{4\pi\varepsilon_0} \frac{q^2}{a^2} \left(\frac{a}{y}\right)^3 \frac{1}{\left(1 - \frac{a^2}{y^2}\right)^2} \frac{\mathbf{y}}{\mathbf{y}} + \underbrace{\frac{q(Q + aq/y)}{4\pi\varepsilon_0} \frac{\mathbf{y}}{y^3}}_{\text{due to added charge } Q + aq/y}$$

$$\Rightarrow \mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{q}{y^2} \left[Q - \frac{qa^3(2y^2 - a^2)}{y(y^2 - a^2)^2} \right] \frac{\mathbf{y}}{y}$$
 Q \mathbf{x} \mathbf{y} \mathbf{q} (2.9)

$$\Rightarrow \begin{cases} \text{As } y \to \infty, \ F \to \frac{qQ}{4\pi\varepsilon_0 y^2} \text{ (Coulomb force between point charges)} \\ \text{As } y \to a, \ F \text{ is always } \text{attractive even if } q \text{ and } Q \text{ have the same sign.} \end{cases}$$

Question: If there is an excess of electrons on the surface, why don't they leave the surface due to mutual repulsion? (See p. 61 for a discussion on the work function of a metal.)

2.6 Green Function for the Sphere; General **Solution for the Potential**

(We will skip Sec. 2.4 and treat Sec. 2.5 in Sec. 3.3)

Consider again the general electrostatic problem with Dirichlet b.c.

(upper figure):
$$\nabla^2 \phi(\mathbf{x}) = -\frac{1}{\mathcal{E}_0} \rho(\mathbf{x})$$
 with $\phi(\mathbf{x}) = \phi_s(\mathbf{x})$ on S

In Sec. 1.10, we show it has the formal solution:

$$\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \rho(\mathbf{x}') G_D(\mathbf{x}, \mathbf{x}') d^3 x'$$

$$-\frac{1}{4\pi} \oint_{\mathcal{S}} \phi(\mathbf{x}') \frac{\partial}{\partial n'} G_D(\mathbf{x}, \mathbf{x}') da',$$

$$(1.10)$$

where the Green function $G_D(\mathbf{x}, \mathbf{x}')$ is the solution of (lower figure)

$$\nabla^2 G_D(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$
 with $G_D(\mathbf{x}, \mathbf{x}') = 0$ on the same S

Physically, if $4\pi \rightarrow q/\varepsilon_0$, $G_D(\mathbf{x}, \mathbf{x}')$ is Physically, if $4\pi \to q/\varepsilon_0$, $G_D(\mathbf{x}, \mathbf{x}')$ is the ϕ at \mathbf{x} due to a point charge q at \mathbf{x}' under the b. c. $G_D(\mathbf{x}, \mathbf{x}') = 0$ on S [i.e. for either \mathbf{x} or \mathbf{x}' on S since $G_D(\mathbf{x}, \mathbf{x}') = G_D(\mathbf{x}', \mathbf{x})$]

unit point source $G_D(\mathbf{x}, \mathbf{x}') = G_D(\mathbf{x}, \mathbf{x}')$ $G_D(\mathbf{x}, \mathbf{x}') = G_D(\mathbf{x}', \mathbf{x}')$

10

2.6 Green Function for the Sphere... (continued)

Example 1: Use (1.44) to find ϕ due to a point charge q at $\mathbf{x} = \mathbf{b}$ in infinite space.

$$\nabla^2 \phi(\mathbf{x}) = -\frac{q}{\varepsilon_0} \delta(\mathbf{x} - \mathbf{b}) \text{ with } \phi = 0 \text{ at infinity}$$

The solution is obviously given by $\phi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\mathbf{x} - \mathbf{b}|}$. We will

solve the problem here as a simple exercise of (1.44).

First, obtain the Green function from

$$\nabla^2 G_D(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}') \text{ with } G_D(\mathbf{x}, \mathbf{x}') = 0 \text{ at infinity}$$
 (2)

The solution of (2) is
$$G_D(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$
 $\mathbf{x}' \nearrow G_D(\mathbf{x}, \mathbf{x}')$

Next, sub.
$$\rho(\mathbf{x}') = q\delta(\mathbf{x}' - \mathbf{b})$$
 and $G_D(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$ into (1.44)

Next, sub.
$$\rho(\mathbf{x}') = q\delta(\mathbf{x}' - \mathbf{b})$$
 and $G_D(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$ into (1.44)
$$\Rightarrow \phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \overbrace{\rho(\mathbf{x}')}^{q\delta(\mathbf{x}' - \mathbf{b})} \overbrace{G_D(\mathbf{x}, \mathbf{x}')}^{\frac{1}{|\mathbf{x} - \mathbf{x}'|}} d^3x' - \frac{1}{4\pi} \oint_{\mathcal{S}} \overbrace{\phi(\mathbf{x}')}^{0} \frac{\partial G_D(\mathbf{x}, \mathbf{x}')}{\partial n'} da'$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{x} - \mathbf{b}|}$$

2.6 Green Function for the Sphere... (continued)

Example 2: $\nabla^2 \phi(\mathbf{x}) = 0$ with b.c. $\phi(r = a) = \phi(a, \theta, \varphi)$ Find $\phi(\mathbf{x})$ in the region $r \ge a$ (see left figure).

Note : (1.44) is derived from Green's thm., which requires \mathbf{n}' to point *outward* from the region of interest (i.e. the $r \ge a$ region).

By the method of images, we have shown (let $q \to 4\pi\varepsilon_0$, $\mathbf{y} \to \mathbf{x}'$):

$$G_{D}(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} - \frac{a}{x'|\mathbf{x} - \frac{a^{2}}{x'^{2}}\mathbf{x}'|}$$

$$= \frac{1}{(x^{2} + x'^{2} - 2xx'\cos\gamma)^{1/2}} - \frac{1}{(\frac{x^{2}x'^{2}}{a^{2}} + a^{2} - 2xx'\cos\gamma)^{1/2}}$$

$$= \frac{1}{(x^{2} + x'^{2} - 2xx'\cos\gamma)^{1/2}} - \frac{1}{(\frac{x^{2}x'^{2}}{a^{2}} + a^{2} - 2xx'\cos\gamma)^{1/2}}$$

$$Note: (2.17) \text{ shows } G_{D}(\mathbf{x}, \mathbf{x}') = G_{D}(\mathbf{x}', \mathbf{x}).$$
angle between \mathbf{x} and \mathbf{x}'

2.6 Green Function for the Sphere... (continued)

$$\mathbf{g}_{S, \mathbf{g}} = \mathbf{g}_{S, \mathbf{g}} = \mathbf{g$$

2.7 Conducting Spheres with Hemisphere...

(to be covered in Sec. 3.3 by a different method)

2.8 Orthogonal Functions and Expansions

Definition of Orthogonal Functions:

Consider a set of real or complex functions $U_n(\xi)$ $(n = 1, 2, \cdots)$

Consider a set of real or complex functions
$$U_n(\xi)$$
 $(n = 1, 2, \cdots)$ which are square integrable on the interval $a \le \xi \le b$. $U_n(\xi)$

$$\underbrace{ \begin{array}{c} \text{inner product} \\ \text{orthogonal, if } \int_a^b U_n^*(\xi) U_m(\xi) d\xi \end{array}}_{\text{orthonormal, if } \int_a^b U_n^*(\xi) U_m(\xi) d\xi = 0, \ m = n \\ \underbrace{ \begin{array}{c} \text{orthonormal, if } \int_a^b U_n^*(\xi) U_m(\xi) d\xi = \delta_{mn} = \begin{cases} 0, \ m \ne n \\ 1, \ m = n \end{cases}}_{\text{orthonormal, if } \int_a^b U_n^*(\xi) U_m(\xi) d\xi = \delta_{mn} = \begin{cases} 0, \ m \ne n \\ 1, \ m = n \end{cases}$$

Geometrical analogy: \mathbf{e}_x , \mathbf{e}_y , and \mathbf{e}_z are an orthonormal set of unit vectors, i.e. $\mathbf{e}_m \cdot \mathbf{e}_n = \delta_{mn}$. By comparison, the dot product $\mathbf{e}_m \cdot \mathbf{e}_n$ is similar to the inner product . But the algebraic set $U_n(\xi)$ can be infinite in number.

13

14

2.8 Orthogonal Functions and Expansions (continued)

Linearly Independent Functions:

The set of $U_n(\xi)$'s are said to be linearly independent if the only solution of $\sum_{n} a_{n}U_{n}(\xi) = 0$ [for all values of ξ on the interval $a \le \xi \le b$] (3a)is $a_n = 0$ for any n.

If a set of functions are orthogonal, they are also (3b)linearly independent.

Proof: Let $\sum a_n U_n(\xi) = 0$ for all ξ .

Multiply both sides by $U_m^*(\xi)$ and integrate from a to b.

$$\Rightarrow \int_{a}^{b} \sum_{n} a_{n} U_{n}(\xi) U_{m}^{*}(\xi) d\xi = \sum_{n} a_{n} \int_{a}^{b} U_{n}(\xi) U_{m}^{*}(\xi) d\xi$$

$$= a_{n} \int_{a}^{b} |U_{n}(\xi)|^{2} d\xi = 0$$

$$\Rightarrow a_{n} = 0 \text{ for any } n$$

Gram - Schmidt Orthogonalization Procedure:

Although "orthogonality" always implies "linear independence", "linear independence" does not ensure "orthogonality". However, a set of linearly independent functions, if not orthogonal, can be reconstructed into an orthogonal set by the Gram-Schmidt orthogonalization procedure. A simple example is given below.

Consider two vectors: \mathbf{e}_x and $(\mathbf{e}_x + \mathbf{e}_y)$. These two vectors are linearly independent since $a\mathbf{e}_x + b(\mathbf{e}_x + \mathbf{e}_y) = 0 \implies a = b = 0$, but they are not orthogonal, since $\mathbf{e}_x \cdot (\mathbf{e}_x + \mathbf{e}_y) \neq 0$.

We may form two new vectors $(\mathbf{e}_1, \mathbf{e}_2)$ as linear combinations of of the old vectors as follows. Let $\mathbf{e}_1 = \mathbf{e}_x$ and $\mathbf{e}_2 = \mathbf{e}_x + \mathbf{e}_y + \alpha \mathbf{e}_x$, and demand $\mathbf{e}_1 \cdot \mathbf{e}_2 = 0$. Then, $\mathbf{e}_1 \cdot \mathbf{e}_2 = 0 \Rightarrow 1 + \alpha = 0 \Rightarrow \alpha = -1 \Rightarrow \mathbf{e}_2 = \mathbf{e}_y$

The new set, $\mathbf{e}_1(=\mathbf{e}_x)$ and $\mathbf{e}_2(=\mathbf{e}_y)$, are thus orthogonal (as well as linearly independent).

The same procedure can be applied to algebraic functions.

15

2.8 Orthogonal Functions and Expansions (continued)

Completeness of a Set of Functions:

Expand an arbitrary, square-integrable function $f(\xi)$ in terms of a finite number (N) of functions in the orthonormal set $U_n(\xi)$,

$$f(\xi) \leftrightarrow \sum_{n=1}^{N} a_n U_n(\xi) \qquad f(\xi) \qquad (2.30)$$
and let $M_N \equiv \int_a^b \left| f(\xi) - \sum_{n=1}^{N} a_n U_n(\xi) \right|^2 d\xi \qquad [\text{mean square error}], (2.31)$
where
$$a_n = \int_a^b U_n^*(\xi) f(\xi) d\xi \qquad (2.32)$$

If there exists a finite number N_0 such that, for $N > N_0$, M_N can be made smaller than any arbitrarily small positive quantity, then the set $U_n(\xi)$ is said to be complete and the series representation in

$$f(\xi) = \sum_{n=1}^{\infty} a_n U_n(\xi) \quad [U_n(\xi) : \text{orthonormal set}]$$
 (2.33)

is said to converge in the mean to $f(\xi)$. Here, a limiting concept is used to define "=", i.e. the difference between the 2 sides of (2.33) is *arbitrarily* close to 0 (instead of exactly 0).

2.8 Orthogonal Functions and Expansions (continued)

Rewrite (2.33):
$$f(\xi) = \sum_{n=1}^{\infty} a_n U_n(\xi),$$
 $f(\xi)$ (2.33)

Note: $\sum_{n=1}^{\infty} \Rightarrow$ a sum over the entire set, e.g. in (4a) below, it is $\sum_{n=1}^{\infty}$.

Multiply both sides by $U_n^*(\xi)$, integrate from a to b, and apply the orthonormal property of $U_n(\xi)$, we obtain (2.32) again

$$a_n = \int_a^b U_n^*(\xi) f(\xi) d\xi \tag{2.32}$$

Change
$$\xi$$
 in (2.32) to ξ' : $a_n = \int_a^b U_n^*(\xi') f(\xi') d\xi'$ (2.32')

Sub. a_n in (2.32') into (2.33):

$$f(\xi) = \int_{a}^{b} \left[\sum_{n=1}^{\infty} U_{n}^{*}(\xi') U_{n}(\xi) \right] f(\xi') d\xi'$$
 (2.34)

$$f(\xi)$$
 in (2.34) is arbitrary $\Rightarrow \sum_{n=1}^{\infty} U_n^*(\xi')U_n(\xi) = \delta(\xi - \xi')$ (2.35) completeness or closure relation

17

2.8 Orthogonal Functions and Expansions (continued)

Fourier Series: Example of complete set of orthogonal functions Exponential representation of f(x) on the interval $-\frac{a}{2} \le x \le \frac{a}{2}$:

$$\begin{cases} f(x) = \sum_{n = -\infty}^{\infty} a_n e^{ik_n x} \left[k_n = \frac{2\pi n}{a} \right], \\ \text{where } a_n = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) e^{-ik_n x} dx \end{cases} \xrightarrow{-\frac{a}{2}} \begin{cases} f(x) \\ \frac{a}{2} \end{cases}$$
 (4a)

Question: Why " $n = -\infty$ to ∞ " instead of "n = 0 to ∞ "? *Ans*:

 e^{ik_nx} $(n = -\infty \text{ to } \infty)$ are orthogonal, hence linearly indep. [see (3b)].

In (4a), f(x) is in general a complex function and, even when f(x)is real, a_n is in general a complex constant. However, if f(x) is real, we have the realty condition: $a_n = a_{-n}^*$ [for real f(x)] (4b)

Proof:
$$f(x) = real \Rightarrow f(x) = f^*(x)$$
 $\xrightarrow{n \to -n}$ $\Rightarrow \sum_{n=-\infty}^{\infty} a_n e^{ik_n x} = \sum_{n=-\infty}^{\infty} a_n^* e^{-ik_n x} = \sum_{n=-\infty}^{\infty} a_{-n}^* e^{ik_n x}$

Each e^{ik_nx} is linearly independent $\Rightarrow a_n = a_{-n}^*$

Trignometric representation of
$$f(x)$$
 on the interval $-\frac{a}{2} \le x \le \frac{a}{2}$:

From (4a): $f(x) = \sum_{n=-\infty}^{\infty} a_n e^{ik_n x} = a_0 + \sum_{n=1}^{\infty} \left(a_n e^{ik_n x} + a_{-n} e^{-ik_n x} \right)$
 $= a_0 + \sum_{n=1}^{\infty} \left[\left(a_n \cos k_n x + a_{-n} \cos k_n x \right) + i \left(a_n \sin k_n x - a_{-n} \sin k_n x \right) \right]$
 $= a_0 + \sum_{n=1}^{\infty} \left(a_n + a_{-n} \right) \cos k_n x + \sum_{n=1}^{\infty} i \left(a_n - a_{-n} \right) \sin k_n x$
 $\Rightarrow f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos k_n x + B_n \sin k_n x \right], \quad k_n = \frac{2\pi n}{a} \qquad (5)$

where

$$\Rightarrow \text{same as (2.36) and (2.37)}$$

$$\begin{cases} A_n = a_n + a_{-n} = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \underbrace{\left(e^{-ik_n x} + e^{ik_n x} \right)}_{2\cos k_n x} dx = \frac{2}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \sin k_n x dx \\ (n = 0 \to \infty) \end{cases}$$

$$\begin{cases} B_n = i \left(a_n - a_{-n} \right) = \frac{i}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \underbrace{\left(e^{-ik_n x} - e^{ik_n x} \right)}_{-2i\sin k_n x} dx = \frac{2}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} f(x) \sin k_n x dx \end{cases}$$

2.8 Orthogonal Functions and Expansions (continued)

Discussion: It is often more convenient to represent a physical quantity (a real number) by exponential rather than trigonometric functions, because the complex coefficient (a_n) of an exponential term carries twice the information of the real coefficients $(A_n \text{ or } B_n)$ of trigonometric functions. For example, if

$$x(t) = ae^{i\omega t}$$
 [By convention, LHS = real part of RHS] is the displacement of a simple harmonic oscillator, the complex constant $a = |a|e^{i\varphi}$ contains both the magnitude (|a|) and phase (φ) of the displacement. In terms of trigonometric functions, the same information is expressed by 2 real constants in

$$x(t) = |a|\cos(\omega t + \varphi)$$
 or $x(t) = A\cos\omega t + B\sin\omega t$.

Exponential terms are also easier to manipulate (such as multiplication and differentiation). This point will be further discussed in Ch. 7.

Fourier Transform:

In (4), $k_n = \frac{2\pi n}{a}$ $(n = 1, 2, \dots)$. Thus, $a \to \infty \Rightarrow k_n \to a$ continuum.

⇒ The series becomes an integral. This leads to the Fourier transform

(see p. 69):
$$\begin{cases} f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k)e^{ikx}dk & (2.44) \\ A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx & (2.45) \end{cases}$$

Question: Does A(k) contain any more or less information than f(x)?

Change x to x' in (2.45) and sub. (2.45) into (2.44)

$$f(x) = \int_{-\infty}^{\infty} dx' f(x') \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk}_{\delta(x-x')}$$

$$\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk = \delta(x-x') \quad \text{[completeness relation]}$$
(2.47)

 $\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk = \delta(x-x') \quad \text{[completeness relation]}$ This is an extension of $\sum_{n=1}^{\infty} U_n^*(\xi') U_n(\xi) = \delta(\xi - \xi') \quad \text{[(2.35)] to}$ continuous index k.

2.8 Orthogonal Functions and Expansions (continued)

Rewrite (2.47):
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk = \delta(x-x')$$

Interchange notations *x* and *k*

$$\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(k-k')x} dx = \delta(k-k') \text{ [orthogonality condition]}$$
 (2.46)

Let y = k - k' and substitute it into (2.46)

$$\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixy} dx = \delta(y)$$

$$\delta(y) = \delta(-y) \text{ [see (5c), Ch. 1]} \Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ixy} dx = \delta(y)$$

$$\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\pm ixy} dx = \delta(y) \text{ [most general expression]}$$
(6)

A note on unit: Rewrite
$$\begin{cases} f(x) = \sum_{n = -\infty}^{\infty} a_n e^{ik_n x} & [(4)] \\ f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) e^{ikx} dk & [(2.44)] \end{cases}$$

If f(x) is dimensionless and x is in unit of "m", then (1) k and k_n are in unit of $\frac{1}{m}$; (2) a_n is dimensionless, and (3) A(k) is in unit of m.

2.8 Orthogonal Functions and Expansions (continued)

There are two useful theorems involving the Fourier transform.

(1) Parseval's theorem:

The <u>Parseval's theorem</u> states $\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |A(k)|^2 dk$

Rewrite
$$\begin{cases} f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k)e^{ikx}dk & (2.44) \\ A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx & (2.45) \end{cases}$$

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$
 (2.45)

$$\Rightarrow \int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} f(x) f^*(x) dx$$

$$= \int_{-\infty}^{\infty} dx \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) e^{ikx} dk \right] \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A^*(k') e^{-ik'x} dk' \right]$$

$$= \int_{-\infty}^{\infty} dk A(k) \int_{-\infty}^{\infty} dk' A^*(k') \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} dx e^{i(k-k')x}}_{\delta(k-k')} = \int_{-\infty}^{\infty} |A(k)|^2 dk$$

23

2.8 Orthogonal Functions and Expansions (continued)

(2) Convolution theorem: Mathews and Walker (M&W), "Math. Meth. of Phys.", 2nd ed. (our main ref. on math.), p. 113.

The <u>convolution</u> of $f_1(x)$ and $f_2(x)$ is defined as

$$g(x) \equiv \int_{-\infty}^{\infty} f_1(x - \xi) f_2(\xi) d\xi$$

The convolution theorem states that the Fourier transform of g(x)is given by $A_1(k)A_2(k) \times const.$ For the convention of the Fourier transform in (2.44) and (2.45), the *const* is $\sqrt{2\pi}$, i.e.

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(x - \xi) f_2(\xi) d\xi e^{-ikx} dx = \sqrt{2\pi} A_1(k) A_2(k)$$

$$Proof: \text{ LHS of } (8) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_2(\xi) d\xi \int_{-\infty}^{\infty} f_1(x - \xi) e^{-ikx} dx$$

$$\text{Let } \eta = x - \xi \iff dx = d\eta$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_2(\xi) d\xi \int_{-\infty}^{\infty} f_1(\eta) e^{-ik(\xi + \eta)} d\eta$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_2(\xi) e^{-ik\xi} d\xi \int_{-\infty}^{\infty} f_1(\eta) e^{-ik\eta} d\eta = \sqrt{2\pi} A_1(k) A_2(k)$$
_{2.2}

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \begin{bmatrix} \text{Laplace equation in} \\ \text{Cartesian coordinates} \end{bmatrix}$$
 (2.48)

We may use the method of <u>separation of variables</u> to solve this

partial D.E., i.e. let
$$\phi(x, y, z) = X(x)Y(y)Z(z)$$
 (2.49)

$$\Rightarrow \frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0$$
 (2.50)

Since each term is a function of only one variable, each of the 3 terms must be separately constant. We express them as follows

$$\frac{d^2X}{dx^2} = -\alpha^2X; \quad \frac{d^2Y}{dy^2} = -\beta^2Y; \quad \frac{d^2Z}{dz^2} = \gamma^2Z \text{ subject to } \gamma^2 = \alpha^2 + \beta^2$$

$$\Rightarrow X(x) = \begin{cases} e^{i\alpha x} \\ e^{-i\alpha x} \end{cases} Y(y) = \begin{cases} e^{i\beta y} \\ e^{-i\beta y} \end{cases} Z(z) = \begin{cases} e^{\gamma z} \\ e^{-\gamma z} \end{cases} \text{ with } \gamma = \sqrt{\alpha^2 + \beta^2}$$

So far we have solved a D.E. [(2.48)]. However, a physics problem contains a D.E., a region of interest, and b.c.'s, as shown below.

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

Problem 1: Find ϕ inside a charge-free rectangular box (see figure) with b.c.'s: $\phi(x, y, z = c) = V(x, y)$ and $\phi = 0$ on other 5 sides.

$$\nabla^{2}\phi(x, y, z) = 0, \ \phi(x, y, z) = X(x)Y(y)Z(z)$$

$$X(x) = Ae^{i\alpha x} + Be^{-i\alpha x}$$

$$\begin{cases} X(0) = 0 \Rightarrow B = -A \\ \Rightarrow X = A(e^{i\alpha x} - e^{-i\alpha x}) = A'\sin\alpha x \\ X(a) = 0 \Rightarrow \alpha = \alpha_{n} = \frac{\pi n}{a}, \ n = 1, 2, \dots \end{cases}$$

$$\Rightarrow X(x) = A' \sin \alpha_n x, \ \alpha_n = \frac{\pi n}{a}, \ n = 1, 2, \dots$$

Similarly, $Y(y) = Ae^{i\beta y} + Be^{-i\beta y}$.

Y(0) = 0 and Y(b) = 0 give

$$Y(y) = A'' \sin \beta_m y$$
, $\beta_m = \frac{\pi m}{b}$, $m = 1, 2, ...$

Solution for $Z: Z(z) = Ae^{\gamma z} + Be^{-\gamma z}$

$$\gamma_{nm} = \sqrt{\alpha_n^2 + \beta_m^2}$$

$$Z(0) = 0 \Rightarrow B = -A \Rightarrow Z(z) = A(e^{\gamma z} - e^{-\gamma z}) = A''' \sinh \gamma \sqrt[4]{mz}$$

Next, we use the method of expansion in orthogonal functions

coordinate system usually follow the right-hand convention.

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

Rewrite
$$\begin{cases} X(x) = A' \sin \alpha_n x, & \alpha_n = \frac{\pi n}{a}, & n = 1, 2, \dots \\ Y(y) = A'' \sin \beta_m y, & \beta_m = \frac{\pi m}{b}, & m = 1, 2, \dots \end{cases}$$

$$Z(z) = A''' \sinh \gamma_{nm} z, & \gamma_{nm} = \sqrt{\alpha_n^2 + \beta_m^2}$$

$$\Rightarrow \phi(x, y, z) = \sum_{n, m = 1}^{\infty} A_{nm} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\gamma_{nm} z)$$

$$(2.56)$$

b.c. at
$$z = c$$
: $V(x, y) = \sum_{n m=1}^{\infty} A_{nm} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\gamma_{nm} c)$ (2.57)

Operate both sides of (2.57) by $\int_0^a dx \int_0^b dy \sin(\alpha_n x) \sin(\beta_m y)$, then apply the orthogonal property of each of the $\sin(\alpha_n x)$ & $\sin(\beta_m y)$ sets.

$$\Rightarrow A_{nm} = \frac{4}{ab\sinh(\gamma_{nm}c)} \int_0^a dx \int_0^b dy V(x, y) \sin(\alpha_n x) \sin(\beta_m y) \qquad (2.58)$$

Questions: 1. $\rho = 0$ in the region of interest, what has generated ϕ ? Ans: ρ on and/or outside the boundary (their effect is implicit in b.c.)

2. Why use the method of expansion? *Ans*.: (a) The base functions satisfy the D.E. & b.c. (b) Can use their orthogonality to determine A_{nm} .

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

3. Expansion in orthogonal functions is a general method. Why?

P. 68: "All orthonormal sets of functions normally occurring in mathematical physics have been proved to be complete."

 $\sin \alpha_n x \& \sin \beta_m y$ occurring in this problem are 2 sets of such functions, so they can represent any physical function or any reasonable mathematical function of x & y (see M&W, p.173, for the meaning of "reasonable"). Thus, any b.c. V(x, y) at z = c can be written as $V(x, y) = \sum_{n=0}^{\infty} A_n \sin(\alpha_n x) \sin(\beta_n y) \sinh(\gamma_n x) [(2.57)]$

written as $V(x, y) = \sum_{n,m=1}^{\infty} A_{nm} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\gamma_{nm} c)$ [(2.57)]

Note: In (5), $k_n = \frac{2\pi n}{a}$. Here, $\alpha_n = \frac{\pi n}{a}$. \Rightarrow The $\sin \alpha_n x$ series has the same number as the $(\sin k_n x, \cos k_n x)$ series in (5) (M&W, p. 100).

4. The method of images is not a general method. Why?

$$\phi_i (= \frac{1}{4\pi\varepsilon_0} \frac{q_i}{|\mathbf{x} - \mathbf{x}_i|}, i = 1, 2, \cdots)$$
 of hypothetical image charges (q_i) do

not form a complete set (e.g. ϕ_i 's are not even orthogonal).

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

5. Can we find σ on the boundary?

In general, we cannot find σ on the boundary. To find ϕ (hence **E**) inside the box, all we need is ϕ on all 6 sides of the box (outside ϕ not needed). However, we need **E** on *both* sides of the boundary

in order to find σ by Gauss's law [see (1.22)]. Since the outside **E** is not in the region of interest, we have no way of knowing it.

For the special case that the boundary is the inner surface of a conductor, we have the extra information that $\mathbf{E} = 0$ immediately outside the boundary. σ can thus be determined by Gauss's law.

For this problem, the side on z = c can be the inner surface of a dielectric or no material at all (an imaginary boundary). In the case of an imaginary boundary, all we can tell about the outside is the continuity of **E** across z = c [: $\sigma = 0$ in (1.22)], but nothing more.

6. $\sin \alpha_n x$ and $\sin \beta_m y$ are *complete* sets, but they both vanish at the ends (i.e. x = y = 0; x = a; y = b). Can they express a b.c. [e.g. $V(x, y) = V_0$] which does not vanish at the ends? See next page.

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

$$Special \ case: \ V(x,y) = V_0. \ \ln{(2.58)}, \ \text{let} \ V(x,y) = V_0$$

$$\Rightarrow A_{nm} = \frac{4}{ab \sinh(\gamma_{nm}c)} \int_0^a dx \int_0^b dy V_0 \sin{(\alpha_n x)} \sin{(\beta_m y)} \xrightarrow{i=c} \int_{\phi=0}^{\phi=V_0} \frac{\phi^{a} - V_0}{\phi(x)} \int_{y=b}^{\phi=0} \frac{4ab}{nm\pi^2}, \ \text{odd} \ n, m \\ \Rightarrow \text{Let} \ \begin{cases} n = 2i - 1 \\ m = 2j - 1 \end{cases} \xrightarrow{i=c} \int_{y=b}^{\phi=0} \frac{\phi(x)}{y} \int_{y=b}^{\phi=$$

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

Problem 2: A hollow metal cube (see figure) has six square sides. There is no charge inside. Five sides are grounded. The 6th side, insulated from the others, is held at a constant potential ϕ_0 . Show that ϕ at the center of the cube is $\phi_0/6$.

We use the linear superposition property of the D.E. (see p. 72). Consider 6 separate solutions as in (9): ϕ_1 , ϕ_2 , \cdots , ϕ_6 , each equal to ϕ_0 on a different side and equal to 0 on the other 5 sides. Then, $\phi(\mathbf{x}) = \phi_1 + \phi_2 + \cdots + \phi_6$ satisfies the D.E. $\nabla^2 \phi(\mathbf{x}) = 0$ and b.c. $\phi = \phi_0$ on all 6 sides. The solution of $\nabla^2 \phi(\mathbf{x}) = 0$ with $\phi = \phi_0$ on all 6 sides is clearly $\phi(\mathbf{x}) = \phi_0$ everywhere. Thus, by the uniqueness theorem, $\phi(\mathbf{x}) = \phi_1 + \phi_2 + \cdots + \phi_6 = \phi_0$ everywhere. By symmetry, all ϕ_i 's have the same value at the center; hence, $\phi_i = \phi_0/6$ (for all i) at the center.

Note: The prob. is solved without obtaining the 6 solus.: $\phi_1, \dots \phi_6$. This is another example of prob. solving by math./phys. arguments.

Question: Will σ on the inner surface of the $\phi = \phi_0$ side change if the other 5 sides are brought to $\phi = \phi_0$? *Ans*.: σ changes to 0 (Why?).