

Faculdade de Ciências e Tecnologia
Universidade de Coimbra
2010/2011

Análise e Transformação de Dados Trabalho Prático 2

Igor Nelson Garrido da Cruz №2009111924

Gonçalo Silva Pereira № 2009111643

"Pretende-se analisar sistemas em tempo discreto, usando a Transformada de Z, e determinar a sua resposta a determinados sinais de entrada, utilizando o Matlab. Pretende-se também ilustrar os conceitos de frequência e de filtragem e efectuar a análise de sinais pelas Transformadas de Fourier."

Exercício 1

Depois de carcular-mos os valores de a e b para o nosso grupo obtemos a seguinte expressão:

```
y[n] = 0.3137x[n-3] -0.1537x[n-5] + 2.3y[n-1] - 1.74y[n-2] + 0.432y[n-3]

a1 = -2.3
a2 = 1.74
a3 = -0.432
b2 = 0
b3 = 0.3137
b4 = 0
b5 = -0.1537
```

Exercício 1.1

Segundo a regra:

```
 Z\{a.x[n-m]\} = a.Z\{x[n-m]\} = aZ^{-m} (X(z)+x[-1]Z + x[-2]Z^2 + ... + x[-m]Z^m)   G(Z)=y(Z)/x(Z)
```

Obtemos:

```
Y(Z)= 0.3137*Z^{(-3)}*X(Z) -0.1537*Z^{(-5)}*X(Z) + 2.3*Z^{(-1)}*Y(Z) - 1.74*Z^{(-2)}*Y(Z) + 0.432*Z^{(-3)}*Y(Z)
```

Daqui tiramos que

```
G(Z)= 0.3137*Z^{(-3)} - 0.1537*Z^{(-5)} / 1 - 2.3*Z^{(-1)} + 1.74*Z^{(-2)} - 0.432*Z^{(-3)}
```

Exercício 1.2

Se passarmos a expressao G(Z) para potências positivas temos:

```
G(Z) = 0.3137*Z^{(2)} - 0.1537 / Z^{5} - 2.3*Z^{(4)} + 1.74*Z^{(3)} - 0.432*Z^{(2)}
```

Exercício 1.2.1

Através da propriedade distributiva obtemos:

```
G(Z) = 0.3137*Z^{(2)} - 0.1537 / Z^{(2)} (Z^{(3)} - 2.3*Z^{(2)} + 1.74*Z^{(1)} - 0.432)

b = [0000.31370 - 0.1537];

a = [1 - 2.3 + 1.74 - 0.43200];
```


O sistema é estável, uma vez que os polos estão dentro do círculo imaginário de raio 1.

Exercício 1.2.3

H(z)=G(z)

 $h[n] = z^{-1} \{ G(z) \}$

 $\label{eq:hn} $$h[n]=(44573*kroneckerDelta(n-1,0))/31104 + (1537*kroneckerDelta(n-2,0))/4320 - (1274*(3/5)^n)/405 - (11767*(4/5)^n)/2560 + (100397*(9/10)^n)/21870 + (17644573*kroneckerDelta(n,0))/5598720$

Exercício 1.2.4

Ao representar-mos a resposta a impulso com stairs, o impulso z com 'o' e o impulso unitário com '+' obtivémos:

No domínio Z o produto de convolução cooresponde a multiplicação, pelo que para obtermos a resposta do sistema a um sinal, precisamos apenas de conhecer a entrada. Neste caso a entrada cooresponde ao degrau unitário.

$$Y(Z) = H(Z).X(Z)$$

Degrau unitário em Z é 1 / (1-Z^(-1))

 $\label{eq:logo:Y(Z) = 1/(1-Z^(-1)). (0.3137*Z^(-3) -0.1537*Z^(-5))/(1 - 2.3*Z^(-1) +1.74*Z^(-2) -0.432*Z^(-3));}$

Exercício 1.2.6

De seguida apresentamos a função da resposta ao sistema para o degrário unitário obtida por nós sobreposta com a função dstep.

A expressão da resposta ao sistema para qualquer valor de entrada corresponde à inversa da Trasformada Z da multiplicação da resposta ao impulso de um sistema com a entrada, neste caso obtemos a seguinte expressão:

Expressão = $(5*(3137/(10000*Z^3) - 1537/(10000*Z^5)))/((1/Z - 1)*(23/(10*Z) - 87/(50*Z^2) + 54/(125*Z^3) - 1))$

Exercício 1.2.8

A expressão da resposta ao sistema para qualquer valor de entrada corresponde à inversa da Trasformada Z da multiplicação da resposta ao impulso de um sistema com a entrada, neste caso obtemos o seguite gráfico e expressão:

Depois de procedermos a representação dos valores obtidos em amplitude e em angulo obtivemos o seguinte gráfico:

Exercício 1.2.10

O ganho do sistema em regime estacionário é 20.

Recorrendo ao teorema do valor final,

Lim
$$n$$
->inf $(y[n]) = 1-Z^-1 * Y(Z) =$
Lim z ->1 $((1-Z^-1)* H(Z)X(Z)),$

 $func = -(3137/(10000*Z^3) - 1537/(10000*Z^5))/(23/(10*Z) - 87/(50*Z^2) + 54/(125*Z^3) - 1)$

O limite desta função quando z-> 1 é também 20.

Quanto à amplitude calculada em 1.2.9 se veririficarmos a imagem em x = 0, confirmamos que o valor é também 20.

Exercício 2

Depois de implementadas as funcionalidades pedidas pelo exercício 2 procedemos à análise dos sináis pedidos:

-Onda Quadrada de período 2pi

-Onda Dente de Serra de período 2pi

-Sinal 1 + 2.sin(12.pi.t+ pi/4).cos(21.pi.t)

 $1 + 2.\sin(12.pi.t + pi/4).\cos(21.pi.t) =$

 $1.\cos(0t+0) + 3/2.\cos(9.pi.t - (pi/4)) + 3/2.\cos(33.pi.t + (pi/4))$

Como podemos verificar o mdc entre as frequencias é 3, pelo que a frequência fundamental é 3 e o período fundamental é 2*pi/3.

-Sinal -2+4.cos(4t+(pi/3)) -2.sin(10.t)

-2+4.cos.(4t+(pi/3)) -2.sin(10.t)

 $-2.\cos(0t+0) + 4.\cos(4t+(pi/3)) - 2.\cos(10.t-(pi/2))$

Como podemos verificar o mdc entre as frequencias é 2, pelo que a frequência fundamental é 3 e o período fundamental é 2pi/2 = pi.

Sinal 1+2.sin(12.pi.t+ pi/4).cos(21.pi.t)

Sinal -2+4.cos(4t+(pi/3)) -2.sin(10.t)

W0 = 3

М	0	3	11
Ст	0	3/2	3/2
tetaM	0	-pi/4	Pi/4

W0 = 2

M	0	2	5
Ст	-2	4	-2
tetaM	0	Pi/3	-pi/2

Exercício 2.4

Após aplicar o integral e multiplicar por 1/t0 verificamos que quando fazemos tender m para um multiplicador da frequência fundamental, obtemos os cm complexos coorespondentes.

Exercício 3.2.1

Aplicámos um filtro passa-banda 0 20 e verificámos que atenuamos o ruído.

Exercício 3.2.2

Aplicámos um filtro rejeita banda 4 6 e verificámos que ao eliminar-mos o ruído destruímos também a onda incial.

Verificámos que 20*pi é aproximadamente igual a 62 e 30*pi é aproximadamente igual a 94. Definimos assim ruído entre a gama 62 e 94.

Utilizámos posteriormente um filtro passa baixo 61 que nos permitiu eliminar todo o ruído.

$$Ruido = \frac{1}{2} \left(\cos(18 t) + 1 \right)$$

Verificámos que o ruído está presente na frequencia 18 e na componente contínua.

Aplicámos um filtro passa-banda 1 10 e eliminámos a componente contínua e o ruído.

Exercício 4

Como podemos verificar os valores da Transformada de Fourier coincidem com os valores da Série de Fourier.

