

Trabajo Fin de Master

METEO: Estación de Monitorización Meteorológica Remota

Realizado por: José Miguel Ríos Rubio

Dirigido por: Alfonso Ariza Quintana

Departamento de Tecnología Electrónica - UNIVERSIDAD DE MALAGA Málaga, 22 de diciembre de 2016

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Internet of Things

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Objetivo y especificaciones del TFM

Objetivo general:

Desarrollar un **sistema** de **monitorización meteorológica remota**.

Especificaciones generales:

- Determinar parámetros ambientales de temperatura, humedad relativa, presión barométrica y luminosidad.
- Representación tanto en el propio dispositivo como de forma remota.
- Comunicación por Red.
- Mostrar las medidas tanto a tiempo real como en intervalos de tiempo transcurridos.

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Elementos del sistema (Diagrama de bloques)

Sistema de Monitorización Meteorológica Remota

Elementos del sistema (Dispositivo HW)

Dispositivo de Monitorización:

Intel Edison:

- SoC:
 - CPU Intel Atom, Dual Core, 500MHz
 - uC Intel Quark, 32 bits, 100MHz
 - RAM LPDDR3, 1GB
 - Wi-Fi
- Compatibilidad Arduino (Breakout Board)

Weather Shield

- Sensor Presión Barométrica:
 - MPL3115A2
- Sensor de Humedad Relativa:
 - HTU21D
- Sensor de luminosidad y sensores externos opcionales no utilizados.

Elementos del sistema (Dispositivo HW)

Dispositivo de Monitorización:

Pantalla LCD:

- 2 líneas y 16 columnas.
- Interfaz digital paralela.
- Iluminación de fondo.
- Contraste regulable.

<u>Pulsadores</u>

- Módulo de 3 pulsadores.
- Independientes.
- Sin resistencias de externas.

Elementos del sistema (Dispositivo HW)

Elementos del sistema (Aplicación SW)

Aplicación de Monitorización:

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
 - 1. Dispositivo de Monitorización
 - 2. Aplicación de Monitorización
 - 3. Comunicación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Implementación del sistema (Dispositivo)

Características del software del dispositivo de monitorización:

- Proyecto estructurado en clases (LCD, Pulsadores, Sensores...).
- **Ventajas de la POO** (Desarrollo por partes, reutilización, simplicidad...).
- El Programa principal (Archivo) establece la inteligencia.
- 4 Hebras (Principal, Temporal, Pulsadores, Recepción de mensajes).
- Datos ambientales almacenados y enviados como strings.

Implementación del sistema (Dispositivo)

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
 - 1. Dispositivo de Monitorización
 - 2. Aplicación de Monitorización
 - 3. Comunicación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Implementación del sistema (Aplicación)

Características del software de la aplicación de monitorización:

- Programación basada en eventos.
- Proyecto estructurado en pantallas (clases y archivos independientes).
- Cada pantalla se compone del par código/modelo (cs / axml).
- Un único archivo (clase) para la gestión de la red.
- Datos ambientales almacenados en una estructura con cada parámetro (representación a tiempo real) y en listas estáticas (representación de intervalos temporales).

Implementación del sistema (Aplicación)

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
 - 1. Dispositivo de Monitorización
 - 2. Aplicación de Monitorización
 - 3. Comunicación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Implementación del sistema (Comunicación)

Formato de los mensajes de comunicación (paquetes):

Mensaje de identificación (dispositivo):

```
Dispositivo=0023; Direccion=192.168.1.131;
```

Mensaje de datos (dispositivo):

```
fecha=22/12/2016-09:55:00;temp=18.50;hum=75.25;pres=101.03;
alti=8.20;luz=50.50;
```

Mensaje de conexión (Aplicación):

```
Codigo:1;Fecha:22/12/2016-09:55:00;
```

Mensaje de desconexión (Aplicación):

```
Codigo:2;
```

Mensaje de exportar LOGs (Aplicación):

```
Minuto -> Codigo:3; Hora -> Codigo:4; Día -> Codigo:5;
```


- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Verificación y pruebas

Requisito	Prueba	Verificación
Lectura parámetros ambientales	Revisar los valores de las lecturas obtenidas	Ok
Comunicación Serie	Revisar la salida del puerto serie	Ok
Conexión/desconexión Aplicación-Dispositivo	Comprobar la correcta conexión y desconexión del dispositivo	Ok
Pantalla LCD correcta	Revisar la salida que muestra el LCD	Ok
Pulsadores funcionando	Comprobar que cada pulsador realiza su función	Ok
Almacenamiento interno de muestras	Comprobar que se almacenan los datos de forma correcta en los LOGs mediante la exportación	Ok
Comunicación por Red	Comprobar que se envían y reciben los mensajes de red entre el dispositivo y la aplicación	Ok
Aplicación de monitorización	Comprobar que la aplicación de monitorización funciona de manera adecuada	Ok

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Conclusiones y líneas futuras

Conclusiones:

- Estaciones meteorológicas remotas claro ejemplo de dispositivo IoT.
- Dispositivos IoT de Intel.
- Plataforma UWP.

<u>Trabajo futuro:</u>

- Monitorizar más parámetros ambientales.
- Sistema escalable.
- Comunicación estandarizada, más robusta y más eficiente.
- Interfaz web accesible vía navegador.
- Transformar el prototipo en un sistema final.
- ...

- 1. Introducción
- 2. Objetivo y especificaciones generales
- 3. Elementos del sistema
- 4. Implementación
- 5. Verificación y pruebas
- 6. Conclusiones y líneas futuras
- 7. Demostración

Verificación y demostración

Demostración Del Sistema

Trabajo Fin de Master

METEO: Estación de Monitorización Meteorológica Remota

Realizado por: José Miguel Ríos Rubio

Dirigido por: Alfonso Ariza Quintana

Departamento de Tecnología Electrónica - UNIVERSIDAD DE MALAGA Málaga, 22 de diciembre de 2016