Perceptron Algorithm Proof

let's show that the Perception algorithm Converges in a finite number of updates. Theorem

Let x1, .-, xn be a set of n training example with the assumptions that

1) xill = R > xi=1,..,n. that is all training examples have. their Euclidean norm bounded. (||Xi||= | \$\frac{1}{2}z_{ij}\)

There exist a linear designir that

Correctly clarrifies all the training examples. in other words there exist a margin 8>0

such that Y i'=1,...,n y: x; w* > 8

||w*||=1

Tensures that each example is dosified Correctly with a fuite morgi

then the perception afforithm makes R2 errors.

muber of updates or steps $K \leq R^2$ Proof:
We intialisée the weight vaclor with sero.

Now let's show that || W || 2 = || W + y. \(\vec{v}_i \) ||^2 \(\wanter \text{w} \) \(\omega \). = 11 W 12 + 2y; now + 114; 2112 = ||wk||² | 29; 2; wk yi ||xi||² Way missflese 7 20 | Way 2 + R2 ryfer bount for 1 by induction: | w 1 = 0 11w2112 = 0+R2 $||w^3||^2 \leq ||w^2||^2 + R^2 \leq 2R^2$ / | | | 2 \$ KR2 (II) (I) 1(II) 11WK+1/12 < KR2

