Ikatan Kimia dan Struktur Molekul

Sulistyani, M.Si. Email: sulistyani@uny.ac.id

Pendahuluan

- Adalah ikatan yang terjadi antar atom atau antar molekul dengan cara sebagai berikut :
- atom yang 1 melepaskan elektron, sedangkan atom yang lain menerima elektron (serah terima elektron)
- penggunaan bersama pasangan elektron yang berasal dari masing-masing atom yang berikatan
- penggunaan bersama pasangan elektron yang berasal dari salah 1 atom yang berikatan

- Tujuan pembentukan ikatan kimia: agar terjadi pencapaian kestabilan suatu unsur.
- Elektron yang berperan pada pembentukan ikatan kimia adalah <u>elektron valensi</u> dari suatu atom/unsur yang terlibat.
- Salah satu petunjuk dalam pembentukan ikatan kimia adalah adanya 1 golongan unsur yang stabil yaitu golongan VIIIA atau golongan 18 (gas mulia). Oleh karena itu, dalam pembentukan ikatan kimia; atom-atom akan membentuk konfigurasi elektron seperti pada unsur gas mulia.
- Unsur gas mulia mempunyai elektron valensi sebanyak 8 (oktet) atau 2 (duplet, yaitu atom Helium).
- Kecenderungan unsur-unsur untuk menjadikan konfigurasi elektronnya sama seperti gas mulia terdekat dikenal dengan istilah Aturan Oktet

Periode	Unsur	Nomor Atom	K	L	M	N	0	Р
1	He	2	2					
2	Ne	10	2	8				
3	Ar	18	2	8	80			
4	Kr	36	2	8	18	8		
5	Xe	54	2	8	18	18	8	
6	Rn	86	2	8	18	32	18	8

Lambang Lewis

- Adalah lambang atom yang dilengkapi dengan elektron valensinya.
- Lambang Lewis gas mulia menunjukkan 8 elektron valensi (4 pasang).
- Lambang Lewis unsur dari golongan lain menunjukkan adanya elektron tunggal (belum berpasangan).
- Berdasarkan perubahan konfigurasi elektron yang terjadi pada pembentukan ikatan, maka ikatan kimia dibedakan menjadi 4 yaitu: ikatan ion, ikatan kovalen, ikatan kovalen koordinat / koordinasi / dativ dan ikatan logam.

Langkah-langkah Penulisan Struktur Lewis

- Semua elektron valensi harus muncul dalam struktur Lewis
- Semua elektron dalam struktur Lewis umumnya berpasangan
- Semua atom umumnya mencapai konfigurasi oktet (khusus untuk H, duplet)
- Kadang-kadang terdapat ikatan rangkap 2 atau
 3 (umumnya ikatan rangkap 2 atau 3 hanya dibentuk oleh atom C, N, O, P dan S)

Ikatan Ion (elektrovalen)

- Terjadi jika atom unsur yang memiliki energi ionisasi kecil/rendah melepaskan elektron valensinya (membentuk kation) dan atom unsur lain yang mempunyai afinitas elektron besar/tinggi menangkap/menerima elektron tersebut (membentuk anion).
- Kedua ion tersebut kemudian saling berikatan dengan gaya elektrostatis (sesuai hukum Coulomb).
- Unsur yang <u>cenderung melepaskan elektron</u> adalah unsur logam sedangkan unsur yang <u>cenderung</u> <u>menerima elektron</u> adalah unsur non logam.

Contoh 1:

- Ikatan antara ₁₁Na dengan ₁₇Cl
- Konfigurasi elektronnya :

- Atom Na melepaskan 1 elektron valensinya sehingga konfigurasi elektronnya sama dengan gas mulia.
- Atom Cl menerima 1 elektron pada kulit terluarnya sehingga konfigurasi elektronnya sama dengan gas mulia.

 Antara ion Na⁺ dengan Cl⁻ terjadi gaya tarik-menarik elektrostatis sehingga terbentuk senyawa ion NaCl.

Contoh 2 :

Ikatan antara Na dengan O

Supaya mencapai oktet, maka Na harus melepaskan 1 elektron menjadi kation Na⁺

✓ Supaya mencapai oktet, maka Na harus melepaskan 1 elektron menjadi kation Na⁺ Na → Na⁺ + e (2,8,1) (2,8)

Supaya mencapai oktet, maka O harus menerima 2 elektron menjadi anion O^{2-} $O + 2e \rightarrow O^{2-}$ (2,6) (2,8)

✓ Reaksi yang terjadi :

Contoh lain : senyawa MgCl2, AIF3 dan MgO

Soal

Tentukan senyawa yang terbentuk dari:

- 1. Mg dengan F
- 2. Ca dengan Cl
- 3. K dengan O

- Senyawa yang mempunyai ikatan ion antara lain :
- Golongan alkali (IA) [kecuali atom H] dengan golongan halogen (VIIA)

Contoh: NaF, KI, CsF

 Golongan alkali (IA) [kecuali atom H] dengan golongan oksigen (VIA)

Contoh: Na₂S, Rb₂S,Na₂O

 Golongan alkali tanah (IIA) dengan golongan oksigen (VIA)

Contoh: CaO, BaO, MgS

Sifat-sifat Ikatan Ionik

- Keras
- Kaku
- Rapuh

Sifat umum senyawa ionik

- Titik didih dan titik lelehnya tinggi
- Keras, tetapi mudah patah
- Penghantar panas yang baik
- Lelehan maupun larutannya dapat menghantarkan listrik (elektrolit)
- Larut dalam air
- Tidak larut dalam pelarut/senyawa organik (misal : alkohol, eter, benzena)

Ikatan Kovalen

- Adalah ikatan yang terjadi karena pemakaian pasangan elektron secara bersama oleh 2 atom yang berikatan.
- Ikatan kovalen terjadi akibat <u>ketidakmampuan</u> salah 1 atom yang akan berikatan untuk *melepaskan elektron* (terjadi pada atom-atom <u>non logam</u>).
- Ikatan kovalen terbentuk dari atom-atom unsur yang memiliki afinitas elektron tinggi serta beda keelektronegatifannya lebih kecil dibandingkan ikatan ion.
- Atom non logam cenderung untuk menerima elektron sehingga jika tiap-tiap atom non logam berikatan maka ikatan yang terbentuk dapat dilakukan dengan cara mempersekutukan elektronnya dan akhirnya terbentuk pasangan elektron yang dipakai secara bersama.
- Pembentukan ikatan kovalen dengan cara pemakaian bersama pasangan elektron tersebut harus sesuai dengan konfigurasi elektron pada unsur gas mulia yaitu 8 elektron (kecuali He berjumlah 2 elektron).

Ada 3 jenis ikatan kovalen

a) Ikatan Kovalen Tunggal

Contoh 1:

- ✓ Ikatan yang terjadi antara atom H dengan atom H membentuk molekul H₂
- ✓ Konfigurasi elektronnya:

- ✓ Ke-2 atom H yang berikatan memerlukan 1 elektron tambahan agar diperoleh konfigurasi elektron yang stabil (sesuai dengan konfigurasi elektron He).
- Untuk itu, ke-2 atom H saling meminjamkan 1 elektronnya sehingga terdapat sepasang elektron yang dipakai bersama.

```
H* + \bullet H \rightarrow H + H
```

Rumus struktur = H – H Rumus kimia = H₂

Contoh 2:

- Ikatan yang terjadi antara atom H dengan atom F membentuk molekul HF
- Konfigurasi elektronnya :

- Atom H memiliki 1 elektron valensi sedangkan atom F memiliki 7 elektron valensi.
- Agar atom H dan F memiliki konfigurasi elektron yang stabil, maka atom H dan atom F masing-masing memerlukan 1 elektron tambahan (sesuai dengan konfigurasi elektron He dan Ne).
- Jadi, atom H dan F masing-masing meminjamkan 1 elektronnya untuk dipakai bersama.

Rumus struktur = H – F Rumus kimia = HF

Soal

Tuliskan pembentukan ikatan kovalen dari senyawa berikut : (lengkapi dengan rumus struktur dan rumus kimianya)

- Atom C dengan H membentuk molekul CH₄
- Atom H dengan O membentuk molekul H₂O
- Atom Br dengan Br membentuk molekul Br₂

Ikatan Kovalen Rangkap Dua

Contoh:

- Ikatan yang terjadi antara atom O dengan O membentuk molekul O₂
- Konfigurasi elektronnya :

$$80 = 2, 6$$

- Atom O memiliki 6 elektron valensi, maka agar diperoleh konfigurasi elektron yang stabil tiap-tiap atom O memerlukan tambahan elektron sebanyak 2.
- Ke-2 atom O saling meminjamkan 2 elektronnya, sehingga ke-2 atom O tersebut akan menggunakan 2 pasang elektron secara bersama.

Rumus struktur : O = O

Rumus kimia : O₂

Soal

Tuliskan pembentukan ikatan kovalen dari senyawa berikut : (lengkapi dengan rumus struktur dan rumus kimianya)

- Atom C dengan O membentuk molekul CO₂
- Atom C dengan H membentuk molekul C₂H₄ (etena)

Ikatan Kovalen Rangkap Tiga

Contoh 1:

- Ikatan yang terjadi antara atom N dengan N membentuk molekul N₂
- Konfigurasi elektronnya :

$$_{7}$$
N = 2, 5

- Atom N memiliki 5 elektron valensi, maka agar diperoleh konfigurasi elektron yang stabil tiap-tiap atom N memerlukan tambahan elektron sebanyak 3.
- Ke-2 atom N saling meminjamkan 3 elektronnya, sehingga ke-2 atom N tersebut akan menggunakan 3 pasang elektron secara bersama.

Rumus struktur : N = N

Rumus kimia : N₂

Contoh 2:

- Ikatan antara atom C dengan C dalam etuna (asetilena, C₂H₂).
- Konfigurasi elektronnya :

- Atom C mempunyai 4 elektron valensi sedangkan atom H mempunyai 1 elektron.
- Atom C memasangkan 4 elektron valensinya, masing-masing 1 pada atom H dan 3 pada atom C lainnya.

$$H * C C * H H - C \equiv C - H$$
 (Rumus Lewis) (Rumus bangun/struktur)

Ikatan Kovalen Koordinasi / Koordinat / Dativ / Semipolar

- Adalah ikatan yang terbentuk dengan cara penggunaan bersama pasangan elektron yang berasal dari salah 1 atom yang berikatan [Pasangan Elektron Bebas (PEB)], sedangkan atom yang lain hanya menerima pasangan elektron yang digunakan bersama.
- Pasangan elektron ikatan (PEI) yang menyatakan ikatan dativ digambarkan dengan tanda anak panah kecil yang arahnya dari atom donor menuju akseptor pasangan elektron.

Contoh 1:

Terbentuknya senyawa BF₃ – NH₃

Contoh 2:

- Terbentuknya molekul ozon (O₃)
- Agar semua atom O dalam molekul O₃ dapat memenuhi aturan oktet maka dalam salah 1 ikatan O O , oksigen pusat harus menyumbangkan kedua elektronnya.

Rumus struktur:

$$0 = 0 \longrightarrow 0$$

Ikatan Kovalen Polar dan Polaritas Ikatan

- Dalam ikatan kovalen dengan perbedaan elektronegatifitas besar, elektron cenderung tertarik lebih besar kearah satu atom
- Pada posisi ini ikatan bersifat polar dan digambarkan dengan dua cara:
- Dengan panah polar → atau
- Dengan pemberian tanda δ + dan δ -

Perbedaan antara Senyawa Ion dengan Senyawa Kovalen

No	Sifat	Senyawa lon	Senyawa Kovalen			
1	Titik didih	Tinggi	Rendah			
2	Titik leleh	Tinggi	Rendah			
3	Wujud	Padat pada suhu kamar	Padat,cair,gas pada suhu kamar			
4	Daya hantar listrik	Padat = isolator Lelehan = konduktor Larutan = konduktor	Padat = isolator Lelehan = isolator Larutan = ada yang konduktor			
5	Kelarutan dalam air	Umumnya larut	Umumnya tidak larut			
6	Kelarutan dalam trikloroetana (CHCl ₃)	Tidak larut	Larut			

Pengecualian Aturan Oktet

- Senyawa yang tidak mencapai aturan oktet

Meliputi senyawa kovalen biner sederhana dari Be, B dan Al yaitu atom-atom yang elektron valensinya kurang dari empat (4).

Contoh: BeCl₂, BCl₃ dan AlBr₃

- Senyawa dengan jumlah elektron valensi ganjil

Contohnya: NO₂ mempunyai jumlah elektron valensi (5 + 6 + 6) = 17

- Senyawa dengan oktet berkembang

Unsur-unsur periode 3 atau lebih dapat membentuk senyawa yang melampaui aturan oktet / lebih dari 8 elektron pada kulit terluar (karena kulit terluarnya M, N dst dapat menampung 18 elektron atau lebih).

Contohnya: PCl₅, SF₆, CIF₃, IF₇ dan SbCl₅

Kegagalan Aturan Oktet

Aturan oktet gagal meramalkan rumus kimia senyawa dari unsur transisi maupun post transisi.

Contoh:

- atom Sn mempunyai 4 elektron valensi tetapi senyawanya lebih banyak dengan tingkat oksidasi +2
- atom Bi mempunyai 5 elektron valensi tetapi senyawanya lebih banyak dengan tingkat oksidasi +1 dan +3

Penyimpangan dari Aturan Oktet dapat berupa:

- Tidak mencapai oktet
- Melampaui oktet (oktet berkembang)

Soal Latihan

- Tunjukkan polaritas ikatan berikut dengan bantuan panah polar: N – H, F – N, I – Cl
- Susun berdasarkan urutan kenaikan polaritas beberapa ikatan berikut: H – N, H – O, H – C.
- Susun berdasarkan kenaikan polaritas ikatan dan beri tanda dengan δ+ dan δ- pada atom yang sesuai: (a) Cl F,Br Cl, Cl Cl,
 (b) Si Cl, P Cl, S Cl, Si Si.

Ikatan Logam

- Adalah ikatan yang terbentuk akibat adanya gaya tarik-menarik yang terjadi antara muatan positif dari ion-ion logam dengan muatan negatif dari elektron-elektron yang bebas bergerak.
- Atom-atom logam dapat diibaratkan seperti bola pingpong yang terjejal rapat satu sama lain.
- Atom logam mempunyai sedikit elektron valensi, sehingga sangat mudah untuk dilepaskan dan membentuk ion positif.
- Maka dari itu kulit terluar atom logam relatif longgar (terdapat banyak tempat kosong) sehingga elektron dapat berpindah dari satu atom ke atom lain.
- Mobilitas elektron dalam logam sedemikian bebas, sehingga elektron valensi logam mengalami delokalisasi yaitu suatu keadaan dimana elektron valensi tersebut tidak tetap posisinya pada 1 atom, tetapi senantiasa berpindah-pindah dari 1 atom ke atom lain.

- Elektron-elektron valensi tersebut berbaur membentuk awan elektron yang menyelimuti ion-ion positif logam.
- Struktur logam seperti gambar di atas, dapat menjelaskan sifat-sifat khas logam yaitu :
- a). berupa zat padat pada suhu kamar, akibat adanya gaya tarik-menarik yang cukup kuat antara elektron valensi (dalam awan elektron) dengan ion positif logam.
 - b). dapat ditempa (tidak rapuh), dapat dibengkokkan dan dapat direntangkan menjadi kawat. Hal ini akibat kuatnya ikatan logam sehingga atom-atom logam hanya bergeser sedangkan ikatannya tidak terputus.
 - c). *penghantar / konduktor listrik yang baik*, akibat adanya elektron valensi yang dapat bergerak bebas dan berpindah-pindah. Hal ini terjadi karena sebenarnya aliran listrik merupakan aliran elektron.

Ikatan Logam

Teori Orbital Molekul Padatan

Sifat Konduktifitas Padatan

