# **Permutation Cycles**

#### **Problem Description**

There are several ways to represent a permutation consisted of the n integers from 1 to n. For example, when a permutation of 8 integers is (3,2,7,8,1,4,5,6), one way to represent it as an array is  $\begin{pmatrix} 1\,2\,3\,4\,5\,6\,7\,8\\3\,2\,7\,8\,1\,4\,5\,6 \end{pmatrix}$ . Another way to represent it in cycle-arrow form is shown in Figure 1.



Figure 1.

If we represent a permutation as an array  $\begin{pmatrix} 1 & \dots & i & \dots & n \\ \pi_1 & \dots & \pi_i & \dots & \pi_n \end{pmatrix}$  then there is a directed edge from i to  $\pi_i$  in its corresponding cycle-arrow form for each i.

As shown in Figure 1, there are 3 cycles when we represent permutation (3,2,7,8,1,4,5,6) in cycle-arrow form. We call these cycles 'permutation cycles.'

You are to write a program which counts the number of permutation cycles in a given permutation of n integers.

#### Input

The input file name is cycle.inp. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case starts with a line containing an integer  $n(2 \le n \le 1{,}000)$ . In the following line there is a permutation of the n integers from 1 to n. Each integer in a permutation is separated by a blank.

#### Output

The output file name is cycle.out. Print exactly one line for each test case. The line should contain the number of permutation cycles in the given permutation.

## Sample Input

## Output for the Sample Input

|                      | <u> </u> |
|----------------------|----------|
| 2                    | 3        |
| 8                    | 7        |
| 3 2 7 8 1 4 5 6      |          |
| 10                   |          |
| 2 1 3 4 5 6 7 9 10 8 |          |