6 Control Structures

Objectives

- At the end of the lesson, the student should be able to:
- Use decision control structures (if, else, switch) which allows selection of specific sections of code to be executed
- Use repetition control structures (while, do-while, for) which allow executing specific sections of code a number of times
- Use branching statements (break, continue, return) which allows redirection of program flow

Control Structures

- Control structures
 - allows us to change the ordering of how the statements in our programs are executed
- Two types of Control Structures
 - decision control structures
 - allows us to select specific sections of code to be executed
 - repetition control structures
 - allows us to execute specific sections of the code a number of times

Decision Control Structures

- Decision control structures
 - Java statements that allows us to select and execute specific blocks of code while skipping other sections
- Types:
 - if-statement
 - if-else-statement
 - If-else if-statement

if-statement

if-statement

 specifies that a statement (or block of code) will be executed if and only if a certain boolean statement is true.

if-statement has the form:

```
if( boolean_expression )
    statement;

or

if( boolean_expression ) {
    statement1;
    statement2;
}

- where,
```

boolean_expression is either a boolean expression or boolean variable.

if-statement Flowchart


```
•int grade = 68;
if(grade > 60)
   System.out.println("Congratulations!");
```


Coding Guidelines

- 1. The boolean_expression part of a statement should evaluate to a boolean value. That means that the execution of the condition should either result to a value of true or a false.
- 2. Indent the statements inside the if-block.
- For example,

```
- if( boolean expression ) {
    //statement1;
    //statement2;
- }
```


if-else statement

- if-else statement
 - used when we want to execute a certain statement if a condition is true, and a different statement if the condition is false.
- if-else statement has the form:

```
if( boolean_expression ) {
    statement1;
    statement2;
}
else{
    statement3;
    statement4;
}
```


Flowchart


```
•int grade = 68;

•if( grade > 60 )

• System.out.println("Congratulations!");
•else

• System.out.println("Sorry you failed");
```


Coding Guidelines

- 1. To avoid confusion, always place the statement or statements of an if or if-else block inside brackets {}.
- 2. You can have nested if-else blocks. This means that you can have other if-else blocks inside another if-else block.

For example,

```
- if( boolean_expression ) {
   if( boolean_expression ) {
      //some statements here
   }
-   }
- else{
   //some statements here
- }
```


if-else-else if statement

- The statement in the else-clause of an if-else block can be another if-else structures.
- This cascading of structures allows us to make more complex selections.
- The statement has the form:

```
if( boolean_expression1 )
    statement1;
else if( boolean_expression2 )
    statement2;
else
    statement3;
```


Flowchart


```
int grade = 68;
if( grade > 90 ) {
    System.out.println("Very good!");
} else if( grade > 60 ) {
    System.out.println("Very good!");
} else{
    System.out.println("Sorry you failed");
}
```


Common Errors

 1. The condition inside the if-statement does not evaluate to a boolean value. For example,

```
//WRONG
int number = 0;
if( number ) {
    //some statements here
}
```

The variable number does not hold a boolean value.

2. Writing elseif instead of else if.

Common Errors

• 3. Using = instead of == for comparison. For example,

```
//WRONG
int number = 0;
if( number = 0 ) {
    //some statements here
}
```

This should be written as,

```
//CORRECT
int number = 0;
if( number == 0 ) {
   //some statements here
}
```


Sample Program

- switch
 - allows branching on multiple outcomes.
- switch statement has the form:

```
switch( switch_expression ) {
   case case_selector1:
      statement1;//
      statement2;//block 1
      break;
   case case_selector2:
      statement1;//
      statement2;//block 2
      break;
      :
   default:
      statement1;//
      statement2;//block n
}
```


- where,
 - switch_expression
 - is an integer or character expression
 - case_selector1, case_selector2 and so on,
 - are unique integer or character constants.

- When a switch is encountered,
 - Java first evaluates the switch_expression, and jumps to the case whose selector matches the value of the expression.
 - The program executes the statements in order from that point on until a break statement is encountered, skipping then to the first statement after the end of the switch structure.
 - If none of the cases are satisfied, the default block is executed. Take note however, that the default part is optional.

NOTE:

- Unlike with the if statement, the multiple statements are executed in the switch statement without needing the curly braces.
- When a case in a switch statement has been matched, all the statements associated with that case are executed. Not only that, the statements associated with the succeeding cases are also executed.
- To prevent the program from executing statements in the subsequent cases, we use a break statement as our last statement.

Flowchart


```
public class Grade
1234567891011231456
             public static void main( String[] args )
                   int grade = 92;
                   switch(grade) {
                       case 100:
                          System.out.println( "Excellent!" );
                           break:
                     case 90:
                          System.out.println("Good job!" );
                          break;
                       case 80:
                          System.out.println("Study harder!");
                          break;
                       default:
                          System.out.println("Sorry, you
        failed.");
```


Coding Guidelines

- 1. Deciding whether to use an if statement or a switch statement is a judgment call. You can decide which to use, based on readability and other factors.
- 2. An if statement can be used to make decisions based on ranges of values or conditions, whereas a switch statement can make decisions based only on a single integer or character value. Also, the value provided to each case statement must be unique.

Repetition Control Structures

- Repetition control structures
 - are Java statements that allows us to execute specific blocks of code a number of times.
- Types:
 - while-loop
 - do-while loop
 - for-loop

while-loop

while loop

 is a statement or block of statements that is repeated as long as some condition is satisfied.

• while loop has the form:

```
while( boolean_expression ) {
    statement1;
    statement2;
    . . .
}
```

 The statements inside the while loop are executed as long as the boolean_expression evaluates to true.


```
int x = 0;
while (x<10) {
    System.out.println(x);
    x++;
}</pre>
```



```
//infinite loop
while(true)
    System.out.println("hello");
```



```
//no loops
// statement is not even executed
while (false)
    System.out.println("hello");
```


do-while-loop

do-while loop

- is similar to the while-loop
- statements inside a do-while loop are executed several times as long as the condition is satisfied
- The main difference between a while and do-while loop:
 - the statements inside a do-while loop are executed at least once.

do-while loop has the form:

```
do{
    statement1;
    statement2;
} while( boolean_expression );
```



```
int x = 0;
do {
    System.out.println(x);
    x++;
}while (x<10);</pre>
```



```
//infinite loop
do{
    System.out.println("hello");
} while (true);
```



```
//one loop
// statement is executed once
do
    System.out.println("hello");
while (false);
```


Coding Guidelines

 1. Common programming mistakes when using the do-while loop is forgetting to write the semi-colon after the while expression.

```
do{
    ...
}while(boolean_expression)//WRONG->forgot
semicolon;
```

 2. Just like in while loops, make sure that your do-while loops will terminate at some point

for-loop

- for loop
 - allows execution of the same code a number of times.
- for loop has the form:

```
for(InitializationExpression;LoopCondition;StepExpressio
n)
{
  statement1;
  statement2;
  ...
}
```

- where,
 - InitializationExpression -initializes the loop variable.
 - LoopCondition compares the loop variable to some limit value.
 - StepExpression updates the loop variable.


```
int i;
for( i = 0; i < 10; i++ ) {
    System.out.println(i);
}</pre>
```

The code shown above is equivalent to the following while loop.

```
int i = 0;
while( i < 10 ) {
    System.out.print(i);
    i++;
}</pre>
```


Branching Statements

- Branching statements allows us to redirect the flow of program execution.
- Java offers three branching statements:
 - break
 - continue
 - return.

Unlabeled break statement

unlabeled break

- terminates the enclosing switch statement, and flow of control transfers to the statement immediately following the switch.
- This can also be used to terminate a for, while, or do-while loop


```
Strina
names[]={"Beah", "Bianca", "Lance", "Belle", "Nico", "Yza", "Gem", "Ethan"};
String searchName = "Yza";
boolean foundName = false;
for( int i=0; i< names.length; i++ ) {</pre>
       if( names[i].equals( searchName )){
               foundName = true;
               break;
if( foundName ) System.out.println( searchName + " found!" );
else
                System.out.println( searchName + " not found." );
```


labeled break statement

labeled break statement

- terminates an outer statement, which is identified by the label specified in the break statement.
- the flow of control transfers to the statement immediately following the labeled (terminated) statement.
- The sample program in the next slide searches for a value in a two-dimensional array. Two nested for loops traverse the array. When the value is found, a labeled break terminates the statement labeled search, which is the outer for loop.


```
int[][] numbers = {{1, 2, 3}, {4, 5, 6},{7, 8, 9}};
int searchNum = 5;
boolean foundNum = false;
searchLabel:
for( int i=0; i<numbers.length; i++ ) {</pre>
       for( int j=0; j<numbers[i].length; j++ ){</pre>
              if( searchNum == numbers[i][j] ) {
                     foundNum = true;
                 - break searchLabel;
if( foundNum ) System.out.println(searchNum + " found!" );
                   System.out.println(searchNum + " not
else
found!");
```


Unlabeled continue statement

- unlabeled continue statement
 - skips to the end of the innermost loop's body and evaluates the boolean expression that controls the loop, basically skipping the remainder of this iteration of the loop.

Labeled continue statement

- labeled continue statement
 - skips the current iteration of an outer loop marked with the given label.

• In this example, message 2 never gets printed since we have the statement continue outerloop which skips the iteration.

return statement

- return statement
 - used to exit from the current method.
 - flow of control returns to the statement that follows the original method call.

return statement

- To return a value
 - simply put the value (or an expression that calculates the value) after the return keyword.
 - For example,

```
return ++count;orreturn "Hello";
```

 The data type of the value returned by return must match the type of the method's declared return value.

return statement

- When a method is declared void, use the form of return that doesn't return a value.
 - For example,
 - return;
- We will cover more about return statements later when we discuss about methods.

Summary

- Decision Control Structures
 - if
 - if-else
 - if else if
 - switch
- Repetition Control Structures
 - while
 - do-while
 - for
- Branching Statements
 - break
 - continue
 - return

