24. Hashování- základní terminologie, princip, asociativní a adresní vyhledávání, hašovací funkce + kolize

Asociativní vyhledávání

- Hledáme porovnáváním klíčů
- Asociativní pole jako BVS
- Když klíč prvku = hledaný klíč => nalezeno
- Složitost logaritmická O(log n)

Adresní vyhledávání

- Přímé:
 - o Hledaný klíč je přímo indexem, adresou v paměti
 - Počet klíčů určuje velikost indexu náročné na paměť
 - Složitost elementární O(1)
- Hašováním:
 - o Adresu v paměti vypočteme z hledaného klíče
 - o Průměrná složitost je opět O(1)

Hašování

- Je kompromis mezi rychlostí a spotřebou paměti
- Pokud máme nekonečno času sekvenční vyhledávání
- Pokud máme nekonečno paměti přímý přístup (indexování klíčem)
- Málo času i paměti:
 - o Hašování
 - Velikost hašovací tabulky reguluje čas vyhledávání

Princip hašování

- Hašování vhodné pro |K| << |U|
- K množina použitých klíčů

• U universum klíčů

- Výpočet hašovací funkce h(k)
 (h(k) vypočítá adresu z hodnoty klíče)
- 2. Vyřešení kolizí

h(31) kolize: index 1 již obsazen

- Definice: hašovací funkce h(k) je zobrazením z množiny klíčů K do množiny adres A = <Amin, Amax>
- Množiny A,K mají přibližně stejný počet prvků
- Kolizí nazýváme stav kdy pro dva různé klíče k1 != k2 platí, že h(k1) = h(k2)

Hašovací funkce h(k)

- Je silně závislá na vlastnostech klíčů a jejich reprezentaci v paměti
- Ideální funkce:
 - Výpočetně co nejjednodušší (rychlá)
 - o Aproximuje náhodnou funkci
 - Využívá rovnoměrně adresní prostor
 - Generuje minimum kolizí