

Large Tapered Crystal (LTC) Growth Method: A New Single Crystal Silicon Carbide Bulk Growth Technique

Andrew Woodworth¹, Philip Neudeck², Ali Sayir² and Andrew Trunek³

¹NASA Postdoctoral Program Fellow, NASA Glenn Research Center

²NASA Glenn Research Center

³OAI NASA Glenn Research Center

ANFF-AFOSR Review May 2, 2012

www.nasa.gov

What is Silicon Carbide (SiC)?

- •Si and C sp³ bonded (much like diamond)
- •212 polytypes (crystallographic structures)
- Chemically inert
- Wide band gap semiconductor

Applications

- Abrasives
- Structural
- •Electronics
 - Power systems
 - High temperature environments
 - Harsh environment

David Monniaux , Silicon carbide (SiC) monocrystal from the LMGP (Minatec) lab in Grenoble, France

SiC for Aerospace Applications

Applications

Aviation Industry Trends:

- Demand for higher energy efficiency, lower GHG emissions
- Replacing hydraulic and pneumatic systems with more-electric architecture
- Power conversion efficiency and size critical for more-electric architecture
- Flight profiles of new military planes limited by power electronics thermals

SiC Electronics Benefits to NASA Missions

Intelligent Propulsion Systems

More Electric + Distributed Control Aircraft

Space Exploration Vision PMAD

Venus Exploration

All combinations of high temperature and/or high power applications!

DOE Applications

- Smart Grid
 - Ability to network many sources and sinks
 - Need to minimize losses in complex system
- Electric and hybrid electric vehicles
 - Minimize weight and size of converters
 - Minimize or eliminate cooling requirements

http://www.smartgrid.epri.com/Demo.aspx

Diagram of a power electronics and electrical machines in a plug-in hybrid electric vehicle (PHEV). http://www1.eere.energy.gov/vehiclesandfuels/technologies/electronics/index.html

Unipolar Power Device Comparison

(Volume Production Commercial Devices)

SiC devices are ~2X voltage or current-density **de-rated** from theoretical material performance.

Above comparison does NOT take yield, cost, other relevant metrics into account.

SiC Wafer Material Defects

Over the past decade there have been linking <u>degraded</u> SiC power device performance, yield, and reliability to crystal.

Two-fold defect-induced SiC device over-design roughly translates into corresponding ergy loss and/or power circuit size increase trade-off.

Aeronautics and Space Administration

Description of Technology/Approach

Large Tapered Crystal (LTC) SiC Growth

Present SiC Growth Process

(Vapor transport)

Vertical (c-axis) growth proceeds from top surface of large-area seed via thousands of screw dislocations.(i.e., dislocationmediated growth!)

Crystal grown at T > 2200 ° C High thermal gradient & stress.

Limited crystal thickness.

Proposed LTC Growth Process

(US Patent 7,449,065 OAI, Sest, NASA)

Vertical Growth Process:

Elongate small-diameter fiber seed grown from single SiC dislocation.

Lateral Growth Process:

CVD grow to enlarge fiber sidewalls into large boule.

- 1600 ° C, lower stress
- Only 1 dislocation

Lateral & vertical growth are simultaneous & continuous (creates tapered shape).

Radically change the SiC growth process geometry to enable full SiC benefit to power systems.

LTC Development: Two track approach

SiC fiber growth by Solvent-Laser Heated Floating Zone (Solvent-LHFZ)

Lateral growth by Chemical Vapor Deposition (CVD)

National Aeronautics and Space Administration

Solvent-LHFZ Technique

Solvent Growth Method Laser Heated Floating Zone Si & C source material **Apply Heat** (Melt Solvent) **Contact and Wetting** stal Seed CO₂ Laser CO₂ Laser **500** μm Feed Rod (Source Material)

National Aeronautics

Seed Crystals

4H-SiC

Seed Crystals

Growth face

- 4H-SiC C-face (0-10° off axis)
- ~500 μm X ~450 μm

Mounting

- Seed ~1.5 cm long
- Ceramic pasted into an alumina tube
- After curing seed crystals cleaned
 - HCI:HNO₃ (2:1)
 - HF

2 mm dia.

Source Material / Feed Rod

Powders

- Fe(3N5), Si(2N), graphite (3N)
- -325 mesh or < 44 μ m in dia.

Feed Rod Processing

- Powders mixed by ball mill
- Formed into rods by cold isostatic press
- Sintered @ 1150°C,1 hour in hydrogen

"Fundamental study for solvent growth of silicon carbide utilizing Fe-Si melt", T Yoshikawa, S Kawanishi and T Tanaka, *International Conference on Advanced Structural and Functional Materials Design 2008*, Journal of Physics: Conference Series **165** (2009)

National Aeronautics and Space Administration

Summary of Results

- •X-ray transmission Laue diffraction patterns of the grown crystals
 - Single crystal
 - •Retains the 4H-SiC polytype of the seed crystal
- Synchrotron White Beam X-ray Topography
 - Significant inhomogeneous strain

			Growth Rates (µm/hour)/ Fe Concentration (atom/cm ³)				
Fe/Si (atomic ratio)	C (at.%)	M.P. (°C)	M.P.+90 °C	M.P.+190 °C	M.P.+325 °C		
High-Si (Fe/Si~0.35)	8	1170	4 / ~10 ¹⁷	40 / ~10 ¹⁷	135		
	16	1195	50 / ~10 ¹⁸	120 / ~10 ¹⁸	N/A		
High-Fe (Fe/Si~1.9)	8	N/A	No Growth				

- •M.P.= temperature at which the feed rod formed a melt
- •at.% =atomic
- Temperatures are not corrected for emissivity

Growth Front Evolution

Growth Front Evolution (cont.)

Void Forming

← 10 μm →

Competing Growth Fronts

Y. Picard et al., MRS Symp. Proc. Vol. 1069, p. 151 (2008)

Lateral Chemical Vapor Deposition (CVD) Epi-Growth

Growth Time [hours]	<i>In-situ</i> etch [min]	Etch Pressure [mb]	Growth Pressure [mb]	Hydrogen [sccm]	Silane ¹ [sccm]	Propane ¹ [sccm]	HCI ¹ [sccm]	Estimated Temperature ² [°C]
5	12	40	325	4260	0/4	1.5/1.5	15/20	1600
16.5 ³	6 ³	40	325	4910	0/8	1.5/2.5	15/40	1600

¹Etching conditions / growth conditions

²Direct observation of temperature by pyrometry was possible. An inferred temperature was calculated based upon melting points Si and Pd

³ Growth performed in four stages (0.5, 4, 4 and 8 hours), insitu etch performed in first stage only.

Lateral CVD Epi-Growth 5 Hour Growth

4H/6H SiC a/m-plane slivers prior to growth [0001] [0001] c-axis Basal plane $(11\overline{20})$ $(1\overline{1}00)$ m-plané a-plane sliver $[11\overline{2}0]$ [1100] m-plane a-plane

4H/6H SiC a/m-plane slivers post growth

Lateral CVD Epi-Growth 5 Hour Growth (cont.)

Epi Growth Rate: ~80 μm/hour

Max. Film Thickness: ~0.15 mm

Max Diameter: ~1 mm (mostly seed)

Rough grown surfaces/mini-facets

X-ray Topographic Image of Lateral CVD Epi Growth

Grown Crystal

Simulated* 4H-SiC (1-100)

- Courtesy of Balaji Raghothamachar and Michael Dudley
- ■Recorded at Stony Brook Synchrotron Topography Station, Beamline X19C at the National Synchrotron Light Source, Brookhaven National Laboratory
- ■*X. R. Huang, J. Appl. Cryst. (2010). 43, 926–928.

X-ray Topographic Image of Lateral CVD Epi Growth

- •X-ray transmission Laue diffraction patterns of the grown crystals
 - Single crystal
 - Retains the 4H-SiC polytype of the seed crystal
- Synchrotron White Beam X-ray Topography
 - No long grain strain
 - Some local areas of strain

Lateral CVD Epi-Growth (16.5 hour of growth)

Epi Growth Rate: ~ 120 μm/hour

Max. Film Thickness: ~2 mm

Max Diameter: ~4 mm (mostly epi)

Smooth Tapered Hexagonal Facets!

Conclusions

- Solvent-LHFZ
 - Have grown single crystal SiC
 - •Growth Rates in excess of 120 μm/hour
 - •Growth fronts are "complex" and therefore create inhomogeneous strain
- Laterial CVD Epi-Growth
 - •Growth rates in excess of 120 μm/hour
 - •Growth conditions do not seem to be creating crystal defects, but more analysis is needed.

Future Work

- Solvent-LHFZ
 - Implement new seed crystal
 - Continued refinement of source material/ feed rods
- Laterial CVD Epi-Growth
 - Extend growth of boule beyond 5mm
 - Confirm CVD growth is not inducing new defects

Areas for Collaboration

- Start a parallel effort in GaN
- Alternative uses for SiC fibers (unique structure)
- •Lateral growth on SiC fibers may be able to create other unique structures

Team Members

RHS

(SiC growth, sensors & electronics)

Phil Neudeck

Andy Trunek

David Spry

Tony Powell (retired)

Michelle Mrdonovich-Hill

Beth Osborn

Chuck Blaha

Special Thanks

Balaji Raghothamacher & Mike Dudley (SWBXT)-Stony Brook University

Funding

NASA Vehicle Systems Safety Technologies Project in the Aviation Safety Program, US DOE Vehicle Technology Program via Space Act Agreement (SAA3-1048) (DOE IA # DE-EE0001093/001) monitored by Susan Rogers and internal funding from the NASA Glenn Recearch Center

RXC

(Ceramics)

Ali Sayir

Fred Dynys

Thomas Sabo

