Ph.D. Qualifying Exam, Real Analysis Spring 2015, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- Suppose $A, B \subset \mathbb{R}/\mathbb{Z}$ are measurable of positive Lebesgue measure: m(A), m(B) > 0.
 - **a.** Show that there exists $y \in \mathbb{R}/\mathbb{Z}$ such that $m((A+y) \cap B) > 0$.
 - **b.** Show that in fact there exists $y \in \mathbb{R}/\mathbb{Z}$ such that $m((A+y) \cap B) \ge m(A)m(B)$.
- 2 Let X, Y be Banach spaces.
 - **a.** Show that if $T_n \in \mathcal{L}(X,Y)$ are compact, and $T_n \to T \in \mathcal{L}(X,Y)$ in norm, then T is compact.
 - **b.** Show that if X, Y are separable Hilbert spaces then every compact operator $T \in \mathcal{L}(X, Y)$ is the norm limit of finite rank operators.
- 3 Let $\mathcal{S}(\mathbb{R})$ be the set of Schwartz functions on \mathbb{R} , i.e. the set of C^{∞} functions ϕ on \mathbb{R} with $x^{\alpha}\partial_x^{\beta}\phi$ bounded for all $\alpha, \beta \in \mathbb{N}$.
 - **a.** With the Fourier transform given by $(\mathcal{F}\phi)(\xi) = \int e^{-ix\xi} \phi(x) dx$, show the Poisson summation formula for $\phi \in \mathcal{S}(\mathbb{R})$:

$$2\pi \sum_{n \in \mathbb{Z}} \phi(x + 2n\pi) = \sum_{n \in \mathbb{Z}} (\mathcal{F}\phi)(n)e^{inx}, \qquad x \in \mathbb{R}.$$

b. Show that for any t > 0 we have

$$\sum_{n \in \mathbb{Z}} \exp(-t(2\pi n + \pi)^2/2) = \frac{1}{\sqrt{2\pi t}} \sum_{k \in \mathbb{Z}} (-1)^k e^{-k^2/(2t)}.$$

- Let $\mathcal{S}(\mathbb{R}^n)$ denote set of Schwartz functions, and $\mathcal{S}'(\mathbb{R}^n)$ the dual space of tempered distributions. For $u \in \mathcal{S}'(\mathbb{R}^n)$ let $D_j u$ denote the distributional derivative of u in the jth coordinate. Let $\mathcal{H} = \{u \in L^2(\mathbb{R}^2) : D_2 u \in L^2(\mathbb{R}^2)\}$, equipped with the norm $\|u\|_{\mathcal{H}}^2 = \|u\|_{L^2}^2 + \|D_2 u\|_{L^2}^2$.
 - **a.** Show that \mathcal{H} is a Hilbert space (with the norm being induced by the inner product), and $\mathcal{S}(\mathbb{R}^2)$ is dense in \mathcal{H} .
 - **b.** Show that the restriction map $R: \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R}), (R\phi)(x_1) = \phi(x_1, 0)$, to $x_2 = 0$, has a unique continuous extension to a map $\mathcal{H} \to L^2(\mathbb{R})$.
- Suppose that X is a Banach space, and let $B = \{x \in X : ||x||_X \le 1\}$ be the unit ball in X.
 - **a.** Suppose Z is a finite dimensional subspace of X. Show that there exists a closed subspace W of X such that $X = Z \oplus W$ (direct sum).
 - **b.** If X is infinite dimensional, show that B is not compact in the norm topology.
 - c. Suppose that X,Y are Banach spaces, $X \subset Y$ with the inclusion map $\iota:X \to Y$ continuous and compact. Let $T \in \mathcal{L}(X,Y)$, and suppose that for all $x \in X$, $\|x\|_X \leq C(\|Tx\|_Y + \|x\|_Y)$. Show that $\operatorname{Ker} T$ is finite dimensional, $\operatorname{Ran} T$ is closed, and the induced map $X/\operatorname{Ker} T \to \operatorname{Ran} T$ is invertible as a bounded linear map.

Ph.D. Qualifying Exam, Real Analysis

Spring 2015, part II

Do all five problems. Write your solution for each problem in a separate blue book.

Suppose that $f \in L^1([0,1])$. Prove that there are nondecreasing sequences of continuous functions, $\{\varphi_k\}_{k=1}^{\infty}$ and $\{\psi_k\}_{k=1}^{\infty}$, on [0,1] such that for a.e. $x \in [0,1]$ (with respect to Lebesgue measure), both $\varphi_k(x)$ and $\psi_k(x)$ are bounded sequences, and moreover,

$$f(x) = \lim_{k \to \infty} \varphi_k(x) - \lim_{k \to \infty} \psi_k(x).$$

- Let X be a vector space over \mathbb{C} , \mathcal{F} a vector space of linear maps $X \to \mathbb{C}$, and equip X with the weakest topology in which all members of \mathcal{F} are continuous. Show that the only continuous linear maps $X \to \mathbb{C}$ are those in \mathcal{F} .
- Consider the partial sums $(S_N f)(x) = \sum_{|n| \leq N} c_n e^{inx}$ of the Fourier series of continuous functions f on $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$, where c_n are the Fourier coefficients of f, and recall that $S_N f$ is given by the convolution of the Dirichlet kernel D_N with f.
 - **a.** Show that $||D_N||_{L^1} \to \infty$ as $N \to \infty$.
 - **b.** Show that there exists a continuous function f on $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ such that the Fourier series of f does not converge uniformly to f, i.e. $S_N f$ does not converge uniformly to f as $N \to \infty$.
- 4 Suppose \mathcal{H} is a Hilbert space. Recall that $U \in \mathcal{L}(\mathcal{H})$ is unitary if $UU^* = I = U^*U$.
 - **a.** Show that if U is unitary then $\overline{\text{Ran}(I-U)} \oplus \text{Ker}(I-U) = \mathcal{H}$ (orthogonal direct sum).
 - **b.** Let P be orthogonal projection to $\operatorname{Ker}(I-U)$. Let $S_n = \frac{1}{n} \sum_{j=0}^{n-1} U^j$. Show that $S_n \to P$ in the strong operator topology (i.e. $S_n f \to P f$ in \mathcal{H} for all $f \in \mathcal{H}$). (This is the *von Neumann*, or *mean ergodic theorem*.)
 - **c.** Give an example of a unitary operator U on ℓ^2 such that S_n does not converge to P in norm.
- Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ be the unit circle, and consider the integral $I(r) = \int_{\mathbb{T}} e^{ir\cos\theta} \varphi(\theta) \, d\theta$, $\varphi \in C^{\infty}(\mathbb{T})$, where $d\theta$ is the Lebesgue measure on \mathbb{T} . Show that there exists C>0 such that $|I(r)| \leq Cr^{-1/2}, r \geq 1$. Hint: Show that if φ is supported away from $[0], [\pi] \in \mathbb{R}/(2\pi\mathbb{Z})$, then I(r) is rapidly decreasing as $r \to \infty$; then assume φ is supported near [0] or $[\pi]$, and change variables to obtain an integral of the form $\int e^{\pm irs^2} \tilde{\varphi}(s) \, ds$ (times a prefactor). (Note: I(r) is essentially the Fourier transform, evaluated at (r,0), of a delta distribution on the unit circle in \mathbb{R}^2 .)