Decision Analysis Solutions to Homework #2

Question 1

- (a) I would choose Deal A c/o Choice Rule.
- (b) The outcomes are bad, but we have made a good decision, c/o good decision vs. good outcomes.
- (c) Assuming the next roll and flip are independent of the previous rolls and flips, I would still choose Deal A.

Question 2

• Using the substitution rule to replace the \$50 and \$35 outcomes with their respective equivalent deals:

• This can be simplified (decomposition rule) to

• Hence Certainty Equivalent =\$35.

Question 3

(a)

• Given: Guitar ≻ Harmonica

From the 3 relations: Guitar ≻ Book ≻ Harmonica
 Guitar ≻ Sweater ≻ Harmonica

Guitar ≻ Ball ≻ Harmonica

• By choice rule: Ball $(p=0.85) \succ \text{Book } ((p=0.7) \succ \text{Sweater } ((p=0.2))$

• Hence required preference ordering for the 5 individual items is:

Guitar ≻ Ball ≻ Book ≻ Sweater ≻ Harmonica

(b)

• Given

• Substituting the following certainty equivalences into the above:

Sweater
$$\sim$$
 0.2 Guitar 0.8 Harmonica

Ball
$$\sim$$
 Quitar 0.85 Harmonica

• By Decomposition Rule:

• The required Preference Probability with respect to Guitar-Harmonica Deal = **0.5485**

• The Book deal is equivalent to:

• Applying the Substitution and Decomposition rules to the given Deal:

• By the Choice rule, Chris prefers Book to the given Deal since the preference probability for book = 0.7 > 0.679 = preference probability for the Deal.

Question 4

• The given preference probabilities may be interpreted as utility values where u(\$0) = 0 and u(\$100) = 1.

Value ($\$x$)	u(x)
0	0.00
10	0.17
20	0.32
40	0.57
50	0.67
80	0.89
90	0.95
100	1.00

• Rolling back the decision tree and computing the expected utilities:

- The optimal decision is to take the first alternative which has the maximum expected utility of 0.817.
- The certainty equivalent is obtained by converting the expected utility back to its equivalent dollar value.
- Hence Kim's CE for the opportunity = $u^{-1}(0.817) \approx 70 by interpolation on the table.

Question 5

Given

Value (\$)	Utility
0	0
25	0.3
40	0.5
70	0.8
100	1.0

• We want to find the value of probability q such that Connie's personal indifferent selling price or certainty equivalent for the deal is equal to \$40.

$$$40 \sim \begin{cases} q & $70 \\ \frac{1-q}{} & $25 \end{cases}$$

• At the point of indifferent between selling and not selling the deal for \$40, the utility on the left must be equal to the expected utility on the right:

$$u(\$40) = q \ u(\$70) + (1 - q) \ u(\$25)$$
$$0.5 = 0.8 \ q + 0.3 \ (1 - q)$$
$$q = 0.4$$