

1/18

F I G . 1

2/18

FIG. 2 A

FIG. 2 B

3/18

FIG. 3

example) $n=8, m=8$

4/18

FIG. 4

5/18

FIG. 5

example) $n=8, m=8$

6/18

7/18

FIG. 7

8/18

FIG. 8

example) $n=8, m=8$

9d	b4	d3	5d	84	ae	ec	b9
29	34	39	60	5c	81	25	13
67	6a	d2	e3	4b	db	9d	4
8e	d7	e6	1b	8b	9e	3a	91
d9	e5	4d	dd	c6	5	f0	ad
2a	f7	67	72	b1	7	f2	27
42	e6	a0	4	f1	4	7d	8c
55	63	fa	51	c	d9	28	d6

9/18

FIG. 9

SETUP
EXAMPLE OF
 $r=6$ AND $q=3$

10/18

F I G . 1 0

11/18

FIG. 11

CASE OF $q=6$, $n=8$, AND $m=8$

12/18

FIG. 12

CASE OF q=6, n=8, AND m=8

13/18

FIG. 13

CASE OF
 $q=6$, $n=8$, AND $m=8$

START

S301

GENERATE A 48×48 MDS MATRIX

S302

SELECT ARBITRARY EIGHT ROW VECTORS FROM THE
ABOVE-MENTIONED MATRIX, AND DESIGNEATE A MATRIX
COMPOSED OF THE VECTORS AS M'

S303

DIVIDE 48 COLUMN VECTORS OF M' INTO SIX GROUPS
EACH HAVING EIGHT COLUMN VECTORS TO CREATE
 8×8 MATRICES, AND OUTPUT THEM AS L_1, L_2, \dots, L_6

END

14/18

FIG. 14

15/18

F I G . 1 5

CASE OF
 $q=6$, $n=8$, AND $m=8$

START

S401

FIRST, GENERATE SIX 8×8 MATRICES
 M_1, M_2, \dots, M_6 AT RANDOM

$$\begin{pmatrix} 9d & b4 & d3 & 5d & 84 & ae & ec & b9 \\ 29 & 34 & 39 & 60 & 5c & 81 & 25 & 13 \\ 67 & 6a & d2 & e3 & 4b & db & 9d & 4 \\ 8e & d7 & e6 & 1b & 8b & 9e & 3a & 91 \\ d9 & e5 & 4d & dd & c6 & 5 & f0 & ad \\ 2a & f7 & 67 & 72 & b1 & 7 & f2 & 27 \\ 42 & e6 & a0 & 4 & f1 & 4 & 7d & 8c \\ 55 & 63 & fa & 51 & c & d9 & 28 & d6 \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

S402

SECOND, CALCULATE INVERSE MATRICES
 $M_1^{-1}, M_2^{-1}, \dots, M_6^{-1}$ OF THE ABOVE-MENTIONED SIX
 MATRICES, AND CHECK WHETHER EIGHT ROW
 VECTORS SELECTED ARBITRARILY FROM 16 ROW
 VECTORS INCLUDED IN TWO ADJACENT INVERSE
 MATRICES ARE LINEARLY INDEPENDENT (M_1^{-1} AND
 M_6^{-1} SHALL BE CONSIDERED AS ADJACENT MATRICES
 AND INSPECTED)

IS A SET OF VECTORS ($'R_1, 'R_2, 'R_3, 'R_4, 'R_5, 'R_6, 'R_7, 'R_8$)
 LINEARLY INDEPENDENT?

NO

YES

S403

THIRD, IF THE FLOW PASSES ALL THE CHECKS,
 OUTPUT SIX MDS MATRICES AS L_1, L_2, \dots, L_6

END

16/18

FIG. 16

CASE OF
 $q=6$, $n=8$, AND $m=8$

START

S501

FIRST, GENERATE SIX 8×8 MATRICES
 M_1, M_2, \dots, M_6 AT RANDOM

$$\begin{pmatrix} 9d & b4 & d3 & 5d & 84 & ae & ec & b9 \\ 29 & 34 & 39 & 60 & 5c & 81 & 25 & 13 \\ 67 & 6a & d2 & e3 & 4b & db & 9d & 4 \\ 8e & d7 & e6 & 1b & 8b & 9e & 3a & 91 \\ d9 & e5 & 4d & dd & c6 & 5 & f0 & ad \\ 2a & f7 & 67 & 72 & b1 & 7 & f2 & 27 \\ 42 & e6 & a0 & 4 & f1 & 4 & 7d & 8c \\ 55 & 63 & fa & 51 & c & d9 & 28 & d6 \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

S502

SECOND, CALCULATE INVERSE MATRICES
 $M_1^{-1}, M_2^{-1}, \dots, M_6^{-1}$ OF THE ABOVE-MENTIONED SIX
 MATRICES, AND CHECK WHETHER EIGHT ROW
 VECTORS SELECTED ARBITRARILY FROM 16 ROW
 VECTORS INCLUDED IN TWO ADJACENT INVERSE
 MATRICES CONSTITUTE AN MDS MATRIX (M_1^{-1} AND
 M_6^{-1} SHALL BE CONSIDERED AS ADJACENT MATRICES
 AND INSPECTED)

$$(\mathbf{R}_1 \ \mathbf{R}_2 \ \mathbf{R}_3 \ \mathbf{R}_4 \ \mathbf{R}_5 \ \mathbf{R}_6 \ \mathbf{R}_7 \ \mathbf{R}_8) = MDS ?$$

NO

YES

S503

THIRD, IF THE FLOW PASSES ALL THE CHECKS,
 OUTPUT SIX MDS MATRICES AS L_1, L_2, \dots, L_6

END

17/18

CASE OF
 $q=6$, $n=8$, AND $m=8$

START

F I G . 1 7

S601

FIRST, GENERATE SIX MDS MATRICES
 M_1, M_2, \dots, M_6 AT RANDOM

$$\begin{pmatrix} 9d & b4 & d3 & 5d & 84 & ae & ec & b9 \\ 29 & 34 & 39 & 60 & 5c & .81 & 25 & 13 \\ 67 & 6a & d2 & e3 & 4b & db & 9d & 4 \\ 8e & d7 & e6 & 1b & 8b & 9e & 3a & 91 \\ d9 & e5 & 4d & dd & c6 & 5 & f0 & ad \\ 2a & f7 & 67 & 72 & b1 & 7 & f2 & 27 \\ 42 & e6 & a0 & 4 & f1 & 4 & 7d & 8c \\ 55 & 63 & fa & 51 & c & d9 & 28 & d6 \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

$$\begin{pmatrix} ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \\ ?? & ?? & ?? & ?? & ?? & ?? & ?? & ?? \end{pmatrix}$$

S602

SECOND, CHECK WHETHER EIGHT COLUMN VECTORS
SELECTED ARBITRARILY FROM 48 COLUMN VECTORS
INCLUDED IN THE ABOVE-MENTIONED SIX MATRICES
CONSTITUTE AN MDS MATRIX

$$(C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8) = MDS ?$$

YES

S603

NO

THIRD, CALCULATE INVERSE MATRICES
 $M_1^{-1}, M_2^{-1}, \dots, M_6^{-1}$ OF THE ABOVE-MENTIONED SIX
MATRICES, AND CHECK WHETHER EIGHT ROW
VECTORS SELECTED ARBITRARILY FROM 16 ROW
VECTORS INCLUDED IN TWO ADJACENT INVERSE
MATRICES CONSTITUTE AN MDS MATRIX
(M_1^{-1} AND M_6^{-1} SHALL BE CONSIDERED AS ADJACENT
MATRICES AND INSPECTED)

$$({}^t R_1 \ {}^t R_2 \ {}^t R_3 \ {}^t R_4 \ {}^t R_5 \ {}^t R_6 \ {}^t R_7 \ {}^t R_8) = MDS ?$$

YES

S604

NO

FOURTH, IF THE FLOW PASSES ALL THE CHECKS,
OUTPUT SIX MDS MATRICES AS L_1, L_2, \dots, L_6

END

18/18

FIG. 18

