Esercizio 1:

Dimostrare la validità delle seguenti identità booleane, usando le regole dell'algebra di Boole e/o le tabelle di verità

a)
$$\neg(x \oplus y) \oplus z = \neg x \neg y \neg z + x y \neg z + \neg x y z + x \neg y z$$

b)
$$x + y \neg x = x + y$$

c)
$$x \neg y + \neg y z + z \neg x = x \neg y + z \neg x$$

$$(\overline{x} \oplus \overline{y}) \oplus z = (\overline{x} \oplus \overline{y}) \overline{z} + (x \oplus y) z =$$

$$= (\overline{x} \overline{y} + x \overline{y}) \overline{z} + (\overline{x} y + x \overline{y}) z =$$

$$= ((\overline{x} \overline{y}) (\overline{x} \overline{y})) \overline{z} + \overline{x} y z + x \overline{y} z =$$

$$= ((x + \overline{y}) (\overline{x} + y)) \overline{z} + \overline{x} y z + x \overline{y} z =$$

$$= ((x + \overline{y}) \overline{x} + (x + \overline{y}) y) \overline{z} + \overline{x} y z + x \overline{y} z =$$

$$= (x \overline{x} + \overline{x} \overline{y} + x y + y \overline{y}) \overline{z} + \overline{x} y z + x \overline{y} z =$$

$$= (\overline{x} \overline{y} + x y) \overline{z} + \overline{x} y z + x \overline{y} z =$$

$$= (\overline{x} \overline{y} + x y) \overline{z} + \overline{x} y z + x \overline{y} z =$$

$$= \overline{x} \overline{y} \overline{z} + x y \overline{z} + \overline{x} y z + x \overline{y} z$$

Esercizio 2:

Determinare le forme SOP e POS di costo minimo della funzione a) dell'esercizio 1.

$$SOP = \overline{x}_1 \overline{x}_2 \overline{x}_3 + \overline{x}_1 x_2 x_3 + x_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 x_3$$

$$POS = (x_1 + x_2 + \overline{x}_3)(x_1 + \overline{x}_2 + x_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + x_2 + x_3)$$

Esercizio 3: Determinare forme SOP di costo minimo delle 2 funzioni a tre variabili riportate in tabella. Determinare il valore opportuno delle condizioni di indifferenza.

X1	X2	X3	F1	F2
0	0	0	X	0
0	0	1	1	1
0	1	0	0	1
0	1	1	1	X
1	0	0	X	X
1	0	1	0	X
1	1	0	1	1
1	1	1	1	0

$x_1^{x_1x}$	00	0 1	11	10
0	х	0		х
1	1	1	1	0

L'espressione di costo minimo per f_3 è:

$$f_3 = x_1 x_2 + \overline{x}_1 x_3$$

Un'espressione di costo minimo per f_4 è:

$$f_4 = x_2 \, \overline{x}_3 + \overline{x}_2 \, x_3$$

Un'altra espressione che ha lo stesso costo è:

$$f_4 = x_2 \, \overline{x}_3 + \overline{x}_1 \, x_3$$

Esercizio 4:

Trovare una rete combinatoria composta da sole porte NAND della funzione a 4 variabili che vale 1 solo quando il numero binario rappresentato dai suoi ingressi è primo. Seguire i seguenti passi:

- Prima di tutto trovare la tabella di verità.
- Poi trovare la forma SOP minima
- Per ultimo trovare la rete di NAND a partire dalla forma SOP

.....

$x_3 x_4$	$x_2 = 0.0$	0 1	1-1	1-0
00	0	0	0	0
0.1	0	\bigcirc	()	0
1-1		1	0	(T)
1-0	1	0	0	0

$$\overline{x}_1\overline{x}_2x_3 + \overline{x}_2x_3x_4 + \overline{x}_1x_2x_4 + x_2\overline{x}_3x_4$$

$$(\overline{x}_1 \uparrow \overline{x}_2 \uparrow x_3) \uparrow (\overline{x}_2 \uparrow x_3 \uparrow x_4) \uparrow (\overline{x}_1 \uparrow x_2 \uparrow x_4) \uparrow (x_2 \uparrow \overline{x}_3 \uparrow x_4)$$

Esercizio 5:

Progettare una rete combinatoria usando solo porte NAND a due ingressi che realizzi la seguente funzione booleana:

$$(x_1 + x_3)(\neg x_2 + \neg x_4)$$

 $(x_{1} + x_{3})(\overline{x}_{2} + \overline{x}_{4}) = (\overline{\overline{x}_{1} + x_{3}}) \cdot (\overline{\overline{x}_{2} + \overline{x}_{4}}) = \overline{(\overline{\overline{x}_{1} + x_{3}}) \cdot (\overline{\overline{x}_{2} + \overline{x}_{4}})} = \overline{(\overline{\overline{x}_{1} \cdot \overline{x}_{3}}) \cdot (\overline{x}_{2} \cdot \overline{x}_{4})} = \overline{(\overline{x}_{1} \uparrow \overline{x}_{3}) \uparrow (x_{2} \uparrow x_{4})} = \overline{(\overline{x}_{1} \uparrow \overline{x}_{3}) \uparrow (x_{2} \uparrow x_{4})}$

