

Team Members

Name	ID
اسامه سمير عبدالمنعم	20210140
مروه عمر محمد محمود	20210900
رنا عصام الدين عيسى	20210335
احمد محمد عبدالسلام محمد	20210102
عبدالله محمد سعيد	20210566
عمر ناصر جمال	20210628
تقى محمد احمد	20210242

Car details dataset

Link in Kaggle:

Vehicle Dataset | Kaggle

Dataset Description:

it contains about 8129 car with features:

[name,year,selling_price,km_driven,fuel,seller_type, transmition,owner,mileage,engine,max_power,torque, seats]

I have found about 215 to 222 null values from 8129,
So I have filled them using enable_iterative_imputer
class that found in sklearn.experimental
also in wrangling data I have found that some features
contain symbols and measuring unit so it makes the
columns as categorical so I removed all of them like
that:

So I could use them as a numerical features.

Also in feature [name] I split it into three features
To get more features which may be used in the
models

Before:

After:

Then I detected if there outliers using boxenplots so

there the shape of some of columns before deleting outliers:

And this the shape after deleting

the outliers

After this I encoded the categorical features into numerical features and I have a multiple nonunique names so I use Target Encoding which is suitable for my data values

Data before encoding:

After encoding:

Then I have scaled the data using StandardScaler

correlations between the features

during this heatmap target variable[selling_price]

```
is correlated with [model], [variant]
and [max_power] features. So, I drop
them for model implementation.
```

Then our used features are:[brand,seller_type,fuel,transmition,owner,year,k m_driven,seats,mileage,engine,torque]

And there shape are: (8129,11)

While our target is[selling price]

And its shape is: (8129,1)

Then splitting the data level:

I have used cross validation (k folds) with k=5

The assign the variables with train_test_split

Function, I give it parameters:test_size=50%

Because I noticed that increasing the score of testing while training remains constant at increasing or decreasing the size and in target variable (y) I assigned to it [selling_price] column which my target to make the model predict these values and in in features(x) I assigned to it all remaining columns except [selling_price].

Then I scaled the data after splitting at:

X_train,x_val,x_test and Y_train,y_val,y_test

The the data is ready to be in the models.

- a) Linear Regression
- b) Goal: predict car prices
- c) Code: used linear regression from sklearn.lineae_model
- d) Cross validation: "k-fold cross-validation" with k=5
- e) Result:

Training score: 0.8248603949504367, Testing score: 0.8173415139261601

Mean Absolute Error (MAE): 196795.9227
Mean Squared Error (MSE): 124595019507.0392
Root Mean Squared Error (RMSE): 352980.1970
R-squared (R²) score: 0.8157

And this the plotting of the model:

K Nearest Neighbors (KNN)

Goal: predict car prices

Selecting the best K and parameters using gridsearch I get these results

Cross validation: "k-fold cross-validation" with k=5

Result:

Training score: 0.9995729563681929

Testing score: 0.9356555596021242

Mean Absolute Error (MAE): 79059.4671

Mean Squared Error (MSE): 21313920629.9886

Root Mean Squared Error (RMSE): 145992.8787

R-squared (R²) score: 0.9685 And this the plotting of the model:

According as using Metrics, score, plotting we get that using Knn is better than Linear Regression here.