STATS 3006 Mathematical Statistics III Assignment 2 2018

Assignment 2 is due by 23:59 Tuesday 17th April 2018.

Assignments are to be submitted online on Myuni.

- 1. Suppose X_1 and X_2 are discrete random variables such that $X_1 \sim B(n, \pi)$ and $X_2|X_1 = x_1 \sim B(x_1, \rho)$.
 - (a) Write down the joint probability function of (X_1, X_2) .
 - (b) Derive the marginal distribution of X_2
- 2. (a) Consider pairs of random variables

$$(Y_{11}, Y_{12}), (Y_{21}, Y_{22}), \dots, (Y_{n1}, Y_{n2})$$

such that $E(Y_{i1}) = \mu_1$, $E(Y_{i2}) = \mu_2$, $cov(Y_{i1}, Y_{i2}) = \sigma_{12}$ for i = 1, 2, ..., n and Y_{ij}, Y_{kl} are independent for $i \neq k$.

If $X_1 = \sum_{i=1}^n Y_{i1}$ and $X_2 = \sum_{j=1}^n Y_{i2}$, show that $cov(X_1, X_2) = n\sigma_{12}$.

- (b) Consider an experiment that results in exactly one of
 - Outcome 1, with probability π_1 ;
 - Outcome 2, with probability π_2 ;
 - Outcome 3, with probability $1 \pi_1 \pi_2$

and let Y_1 and Y_2 be indicator variables defined by

$$Y_1 = \begin{cases} 1 & \text{for Outcome 1} \\ 0 & \text{otherwise,} \end{cases}$$
 and $Y_2 = \begin{cases} 1 & \text{for Outcome 2} \\ 0 & \text{otherwise.} \end{cases}$

Show that $cov(Y_1, Y_2) = -\pi_1 \pi_2$.

- (c) Hence show that $cov(X_1, X_2) = -n\pi_1\pi_2$ if (X_1, X_2) have the trinomial distribution with parameters n and π_1, π_2 .
- 3. Suppose X_1, X_2 have joint PDF

$$f(x_1, x_2) = k(x_1 + x_2^2)$$
, for $0 \le x_1 \le 1$, $0 \le x_2 \le 1$.

- (a) Find the value of k for which $f(x_1, x_2)$ is a valid PDF.
- (b) Find $P(X_1 > X_2)$.
- (c) Find $P(X_1 + X_2 \le \frac{1}{2})$.
- (d) Find $P(X_1 \le \frac{1}{4})$.
- 4. Suppose (X_1, X_2) have the Dirichlet distribution,

$$f(x_1, x_2) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1} (1 - x_1 - x_2)^{\alpha_3 - 1}.$$

- (a) Prove that the marginal distribution of X_1 is a Beta distribution.
- (b) Find the conditional density function $f_{X_2|X_1}(x_2|x_1)$.
- 5. Suppose X_1, X_2 have the uniform distribution on the region $|x_1| + |x_2| \le 1$.
 - (a) Give an expression for the joint PDF. **Hint:** Sketch the region $|x_1| + |x_2| \le 1$.
 - (b) Find $E(X_1)$ and $E(X_2)$.
 - (c) Find $cov(X_1, X_2)$.
 - (d) Find the marginal distribution of X_1 and also of X_2 .
 - (e) Are X_1 and X_2 independent? Comment on this example.
- 6. Suppose $U \sim U(0,1)$ and $V|u \sim U(0,u)$.
 - (a) Write down the joint probability density function of (U, V) including its domain.
 - (b) Find the marginal PDF of V.

Honours Questions

The following questions are compulsory for Honours and Masters students and may be attempted for bonus marks by all students.

- 7. Suppose $U \sim U(0,1)$ and $V|u \sim U(0,u)$.
 - (a) State E(U) and var(U).
 - (b) Find E(V).
 - (c) Find var(V).
 - (d) Find cor(U, V).
 - (e) Use R to simulate 1,000,000 pairs of observations of (U, V) and use your simulations to demonstrate the marginal distribution of V from question 6 and the moment calculations in this question.

* * * * * *