自然數面等機率量子骰探討與研究

11934 Infor 33rd 蕭登鴻

壹、 研究動機

學習基本量子運算的過程中,我們學到可以利用疊加態的特性,讓單一或是複數個量子位元出現不同的可能性組合。

利用此特性,將其作為骰子來看的話,如果將所有的結果都設為等機率出現,就可做出絕對公正且公平的骰子。此骰子不同於電腦的亂數,不會存在偽亂數的可能性。

我們在做出 $2^n, n \in \mathbb{N}$ 面骰之後,又會想做出其餘的奇、偶面骰。但在持續做下去後,我們便會因為迴路複雜度漸增與數字的增大,開始思考是否有通式,或是有系統的方式做出量子骰。但在此時,我們又會反問自己 - 自然數面等機率骰是否存在?

貳、 定義

此文章中探討的量子骰為嚴謹定義的 N 面等機率量子骰,指的是利用量子位元可以處於疊加態的特性,將單一或是數個量子位元通過各種量子間後,讓單一或是數個量子位元在最終進行測量時結果可能性只有 $|0_2\rangle\sim|N-1_2\rangle$ 共 N 種結果,且每種結果測量到的機率都相同。

參、 運算與證明

經過定義,可得出將自然數個量子位元通過量子閘之後的應有量子態 為:

$$|\phi\rangle = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} |n_2\rangle$$

接下來,必須要先知道 N 種結果至少會需要多少個量子位元來表示。因 α 個量子位元至多可表示 $\mathbf{2}^{\alpha}$ 種結果,所以表達 N 種結果所需最少量子位元數為:

$$i_N = \lceil log_2 N \rceil$$

另外,運用 2 進位的想法,N 可以被拆成數個 2 的 n_k 次方。同樣的,N 面骰也可以被拆成數個 2^{n_k} 面骰來實作。而作出 2^n 面骰所施加

的 H Gate 數為 $log_2 2^n$ 。由此邏輯可得知:

$\forall N \in \mathbb{N}, \exists! N_2$

也就是,只要是屬於自然數面的等機率量子骰,都可以被拆為多個 2^n 面等機率量子骰,因此可得知自然數面等機率量子骰的存在。

肆、 實作運算方式

製作迴路時,首先要注意迴路的量子位元編號,是由上到下從0開始排序;另外,要從被分解的 2^{n_k} 中以大至小做。我們可以從以下的算法得出要對每個量子位元進行的操作。

其意義為:將 N 持續減去 2^{n_k} , n_k 由 i-1 至 0。如果大於 0 代表 N 的分解中包含 2^{n_k} ;如果小於 0 代表沒有;如果等於 0,代表 N 已被分解完,所以就此停止。

另外,如果總共有 M 種狀態要表示,k 個量子位元已表示完 2^k 個,那代表剩下的 $M-2^k$ 種狀態要在第 k+1 個量子位元為進位的狀態下表示。

因此,其中的 Ry 為儲存第 k+1 個量子位元為 $|1\rangle$ 的機率,意義 為:N 種狀態中的 N-I 種狀態是在第 k+1 個量子位元為 $|0\rangle$ (未進位)時表示;剩餘的 N-I 種狀態是在第 k+1 個量子位元為 $|1\rangle$ (已 進位)時表示;因此使用 Ry Gate 對第 k+1 個量子位元的量子態進行

改變,使其機率符合上述進位狀態,並利用量子邏輯閘判斷在第 k+1 個量子位元為 $|0\rangle$ 時將後方 k 個量子位元施加 H Gate 變為 2^k 個等機率結果。

如果使用此運算方式,便可快速地做出 N 面骰(以 23 為例):

- 1. 23 16 > 0 (= 7)
- 2. 7 8 < 0 (= -1)
- 3. 7 4 > 0 (= 3)
- 4. 3-2>0 (=1)
- 5. 1 1 = 0

$$A = [1, 0, 1, 1, 1], Ry = \left[\frac{7}{23}, 0, \frac{3}{7}, \frac{1}{3}\right]$$

$$\rightarrow$$
 23 = 16 + 4 + 2 + 1

◆ 第一藍色線段前

因 23 種狀態中有 7 種狀態需要進位,所以利用 $Ry\left(\sqrt{\frac{7}{23}}\right)$ 改變 Q_5 的機率,並利用 cH 判斷如果 Q_5 為 $|0\rangle$ (未進位),就將 $Q_{4\sim0}$ 施加 H Gate。

◆ 第二藍色線段前

剩下的 7 種狀態有 3 種需進位,所以利用 $Ry\left(\sqrt{\frac{3}{7}}\right)$ 改變 Q_2 的狀態,並且判斷如果 Q_5 為 $|1\rangle$ (已進位) 且 Q_2 為 $|0\rangle$ (未進位),就將 $Q_{1\sim 0}$ 施加 H Gate。

◆ 第三藍色線段前

剩下的 3 種狀態有 1 種需進位,所以利用 $Ry\left(\sqrt{\frac{1}{3}}\right)$ 改變 Q_1 的 狀態,並且判斷如果 Q_5 為 $|1\rangle$ (已進位) 且 Q_2 為 $|1\rangle$ (已進位) 且 Q_1 為 $|0\rangle$ (未進位),就將 Q_0 施加 H Gate;剩下的 1 種狀態不需要施加 cH 即可完成(log_2 1=0)。

伍、 程式實作序論

利用以上方法與邏輯,我們可以嘗試寫出一個可以印出嚴謹定義的 N 面等機率量子骰的迴路程式的程式,但是在此之前,我們還必須要解決量子邏輯閘的限制問題。

在接下來將使用的量子程式語言中,將不存在操控位元數大於 1 個 *cH* 與 *cRy*,因此必須要藉由 *ccX* 將先前的訊息與現在的訊息結合,儲存到另外用來儲存訊息(不在最終測量範圍中)的量子位元,同時利用 *reset* 將不需要的量子位元中的資訊重置,以達到重複利用的效果。以下為實際的的作法(以 31 面骰為例):

可從中看到,首先利用 ccX 將需判斷的資訊丟入儲存資訊的量子位元中 1 ,利用 cH 提取完資訊後再利用 reset 將已使用過且不再需要的資訊 刪除後 2 ,再將新的資訊儲存進去,作為下一階段的判斷根據 3 。

而到下一階段時,又將資訊儲存在另一個量子位元中 4 ,重複上述的操作;但是再下一個階段時,就必須要先使用 reset 清空上一個使用過的量子位元中的東西 5 ,才可再次利用其量子位元。

陸、 程式實作

在程式中,我們將會利用在第四點的演算法,先將 N 分解;並將狀態儲存在 std::vector < int > 中、將機率儲存在 <math>std::vector < std::string > 中。

拆解 N 後,要先判斷有幾個 H 將會是恆必須要施加於迴路上(代表 N 的質因數中有幾個 2),而其數量將會等於 $T-A.size(), T=i_N$,並將此數量儲存至名為 SH ($Stable_H_Count$) 的變數。

如此一來,就可以先判別所有的 cH 只要施加到 Q_{SH} ,最後再將編號 $Q_{SH\sim 0}$ 統一施加 H 即可。

接下來用變數 i(從 0 開始至 Ry.size()-1)代表層數(第 0 層為 Q_{i-1} 的迴路,第 1 層為 Q_{i-2} 的迴路),從 Q_{T-1-i} 開始至 Q_0 一層層檢視時,將利用 $AC(Active\ Count)$ 代表至此層有多少個有進位可能性的量子位元數、 $LA(Last\ Active)$ 代表上一個儲存**前方量子位元都為** $|1\rangle$ 此資訊的量子位元編號,因此可以得知在 i>0(非第一層)的狀況下,要儲存訊息的量子位元編號將會是 T+(AC%2)。

而這些都是為了要將儲存資訊的 ccX 中的量子位元編號公式化,公式為:

$$ccX(T - 1 - i, LA, T + (AC \% 2))$$

在交替使用儲存資訊的量子位元時,我們必須要注意一個量子位元在使用前是否是乾淨的,因此在 AC >= 4 的狀況下,必須要在 ccX 執行前先利用 reset 清空要寫入資訊的量子位元。

而 AC >= 4 此條件,是因為如果 AC = 1,將不會需要用到儲存資訊的量子位元;

如果 AC = 2,將會利用到一個儲存資訊的量子位元;

如果 AC = 3,將會需要用到 2 個儲存資訊的量子位元;

如果 AC = 4,將會重複用到第一個儲存資訊的量子位元,因此就需執行清理的動作。同時也會利用此邏輯,在輸出迴路之前先判斷此迴路總共會需要多少個量子位元(T+儲存資訊的量子位元數)。

以下為使用上述邏輯寫成的程式的網址:

https://slides.com/phantom0174/qd p

柒、 未來展望

因為現在的量子電腦硬體技術尚未發達,在操作量子閘、測量等操作 時都會有著錯誤的可能性,所以應該要將迴路的寬度與深度都盡量減少, 達到減少錯誤率的效果。

即使目前的方法已經是改進過的方法(使用 reset() 有效地減少了迴路的寬度),但是迴路仍然有著很可觀的深度;因此未來將考慮利用質因數分解的方式,將 N 先拆解為數個由小至大的質因數面骰相乘,再利用此方式去製作各質數面骰。

最理想的目標,就是在製作質數面骰的過程中使用迴路優化方式,也 就是使用更少的量子閘達成跟原本方式同樣的結果(同樣的量子態),以上 方式都可以有效地減少迴路的深度。

最終,也希望可以將視野放寬到其他非等機率的量子骰,去了解其功用(如 Quantum Random Walk),並抱持著與嚴謹定義等機率量子骰同樣的熱情去探討與研究。