Outline

- 1 Introduction
- 2 Policy Evaluation
- 3 Policy Iteration
- 4 Value Iteration
- **5** Extensions to Dynamic Programming
- 6 Contraction Mapping

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimising a "program", i.e. a policy

- c.f. linear programming
- By breaking them down into subproblems A method for solving complex problems
- Solve the subproblems
- Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
- Principle of optimality applies
- Optimal solution can be decomposed into subproblems
- Overlapping subproblems
- Subproblems recur many times
- Solutions can be cached and reused
- Markov decision processes satisfy both properties
- Bellman equation gives recursive decomposition
- Value function stores and reuses solutions

Planning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP

It is used for planning in an MDP

For prediction:

Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$

• Output: value function ν_{π}

Or for control:

- Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

Output: optimal value function ν_*

and: optimal policy π_*

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

—Policy Evaluation

— Iterative Policy Evaluation

Iterative Policy Evaluation

- lacktriangle Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_{\pi}$
- Using synchronous backups,
- At each iteration k + 1
- lacksquare For all states $s\in\mathcal{S}$
- Update $v_{k+1}(s)$ from $v_k(s')$
- where s' is a successor state of s
- We will discuss asynchronous backups later
- Convergence to ν_{π} will be proven at the end of the lecture

—Policy Evaluation

LIterative Policy Evaluation

Iterative Policy Evaluation (2)

$$egin{align} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

Policy Evaluation

LExample: Small Gridworld

Evaluating a Random Policy in the Small Gridworld

3	2	11	
2	6	10	14
1	5	6	13
	4	8	12

on all transitions

- lacksquare Undiscounted episodic MDP $(\gamma=1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

L Policy Evaluation

LExample: Small Gridworld

Iterative Policy Evaluation in Small Gridworld

Random Policy ${\it U}_{\it k}$ for the

Greedy Policy w.r.t. v_k

	0=
	\varkappa

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

	random	policy		
\longleftrightarrow	\longleftrightarrow	\longleftrightarrow		
\rightarrow	$\stackrel{ }{\longleftrightarrow}$	$\stackrel{\bigcirc}{\longleftrightarrow}$	→	
$\overrightarrow{\downarrow}$	$\stackrel{\bullet}{\longleftrightarrow}$	$\stackrel{\stackrel{\bullet}{\longleftrightarrow}}{\longleftrightarrow}$	†	
Ť		+	+	
	•	*	•	

0.0		-1.0	-1.0	-1.0
0:	T	-1.0	-1.0	-1.0
0.1	T	-1.0	-1.0	-1.0
0.1		-1.0	-1.0	0.0

(4
	I	ĺ
1	_	2

-2.0	-2.0	-1.7	0.0
-2.0	-2.0	-2.0	-1.7
-1.7	-2.0	-2.0	-2.0
0.0	-1.7	-2.0	-2.0

\bigoplus	→	→	
\downarrow	$\qquad \qquad $	\uparrow	1
\downarrow	₽	\longleftrightarrow	1
	↓	ļ	$\stackrel{\bigstar}{\longleftrightarrow}$

\longleftrightarrow	†	†	
	$\qquad \qquad $	1	1
\downarrow	₽	$\qquad \qquad $	↑
	↓	↓	\downarrow

—Policy Evaluation

LExample: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

				/	optimal	policy /	_
ho	→	→		Ţ	→	→	
↓	₽	1	1	\downarrow		<u></u>	\uparrow
\downarrow	\	_	1	\downarrow	ightharpoons	_	1
	-	+	_		↓	†	_

↓ ↑ ↑ ↑

		>
₹		4
	I	I
-	٨	2

0.0 | -6.1 | -8.4 | -9.0 |

-6.1 -7.7 -8.4 -8.4

-9.0 -8.4 -6.1 0.0

-8.4 -8.4 -7.7 -6.1

-20.	-14.	UU
-20.	-18.	11
-18.	-20.	UC
-14.	-20.	CC
	-20.	1820.

k = 8

-22.	-20.	-14.	0.0
-20.	-20.	-18.	-14.
-14.	-18.	-20.	-20.
0.0	-14.	-20.	-22.

┌	→	→	
↓	Ļ	\uparrow	↑
↓	\		1
	+	+	_

How to Improve a Policy

- Given a policy π
- lacktriangle Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

lacktriangle Improve the policy by acting greedily with respect to u_π

$$\pi' = \mathsf{greedy}(
u_\pi)$$

- lacksquare In Small Gridworld improved policy was optimal, $\pi'=\pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy evaluation Estimate u_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

— Example: Jack's Car Rental

Jack's Car Rental

States: Two locations, maximum of 20 cars at each

Actions: Move up to 5 cars between locations overnight

Reward: \$10 for each car rented (must be available)

Transitions: Cars returned and requested randomly

■ Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$

• 1st location: average requests = 3, average returns = 3

2nd location: average requests = 4, average returns = 2

LExample: Jack's Car Rental

Policy Iteration in Jack's Car Rental

└─ Policy Iteration

L Policy Improvement

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_\pi(s,\pi'(s)) = \max_{a \in \mathcal{A}} q_\pi(s,a) \geq q_\pi(s,\pi(s)) = v_\pi(s)$$

- It therefore improves the value function, $u_{\pi'}(s) \geq
u_{\pi}(s)$

$$egin{align*}
u_{\pi}(s) \leq q_{\pi}(s,\pi'(s)) &= \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma
u_{\pi}(S_{t+1}) \mid S_{t} = s
ight] \ \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1},\pi'(S_{t+1})) \mid S_{t} = s
ight] \ \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2},\pi'(S_{t+2})) \mid S_{t} = s
ight] \ \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s
ight] =
u_{\pi'}(s) \end{aligned}$$

—Policy Improvement

Policy Improvement (2)

If improvements stop,

$$q_{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s,a) = q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied $u_\pi(s) = \max_{a \in \mathcal{A}} q_\pi(s,a)$

- Therefore $u_{\pi}(s) =
 u_{*}(s)$ for all $s \in \mathcal{S}$
- so π is an optimal policy

Extensions to Policy Iteration

Modified Policy Iteration

- lacktriangle Does policy evaluation need to converge to v_π ?
- Or should we introduce a stopping condition
- e.g. *∈*-convergence of value function
- Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k=3 was sufficient to achieve optimal policy
- lacktriangle Why not update policy every iteration? i.e. stop after k=1
- This is equivalent to value iteration (next section)

LExtensions to Policy Iteration

Generalised Policy Iteration

Policy evaluation Estimate u_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

—Value Iteration in MDPs

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A*
- Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- lacktriangle π achieves the optimal value from state s', $v_\pi(s') = v_*(s')$

LValue Iteration in MDPs

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

Lecture 3: Planning by Dynamic Programming

—Value Iteration

LValue Iteration in MDPs

Example: Shortest Path

	-2	-2	-2	-2	
	-2	-2	-2	-2	က
	-1	-2	-2	-2	\ \
	0	-1	-2	-2	
	-1	1-	1-	-1	
	-1	-1	-1	-1	>
	-1	1-	-1	-1	>
	0	-1	-1	-1	
•					
	0	0	0	0	
	0	0	0	0	,
	0	0	0	0	>
	0	0	0	0	
					olem
					Problem
	g				

•	•	·	·	. 1
7	-5	-3	4-	V
0	7	-2	-3	
ဇှ	4-	-5	-5	
-5	6-	-4	-5	V ₆
7	-5	-3	-4	>
0	7	-5	-3	
				•
ဇှ	4-	-4	-4	
-5	ဇှ	-4	4-	5
7	-5	-3	4-	<i>></i>
0	7	-2	-3	
				•
ကု	ဇှ	-3	-3	
				1

ι'n

4

မှ

5

ကု

Ņ

Ņ

Τ

0

က

Ŋ

7

ကု

ကု

Ņ

က

ကု

က

4

က

LValue Iteration in MDPs

Value Iteration

- lacktriangle Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $1 \rightarrow V_2 \rightarrow ... \rightarrow V_*$
- Using synchronous backups
- At each iteration k+1
- For all states $s \in \mathcal{S}$
- Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

LValue Iteration in MDPs

Value Iteration (2)

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \; \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight)$$

$$\mathbf{v}_{k+1} = \max_{oldsymbol{a} \in \mathcal{A}} oldsymbol{\mathcal{R}}^{oldsymbol{a}} + \gamma oldsymbol{\mathcal{P}}^{oldsymbol{a}} \mathbf{v}_k$$

Value Iteration in MDPs

Example of Value Iteration in Practice

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

—Summary of DP Algorithms

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_\pi(s)$ or $v_*(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s,a)$ or $q_{*}(s,a)$
- Complexity $O(m^2n^2)$ per iteration

-Extensions to Dynamic Programming

— Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Extensions to Dynamic ProgrammingAsynchronous Dynamic Programming

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

- Extensions to Dynamic Programming
- Asynchronous Dynamic Programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all s in ${\cal S}$

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{old}(s')
ight)$$

 $V_{old} \leftarrow V_{new}$

In-place value iteration only stores one copy of value function

for all s in $\mathcal S$

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{j \in S} \mathcal{P}_{ss'}^a v(s') \right)$$

— Extensions to Dynamic Programming

— Asynchronous Dynamic Programming

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \nu(s') \right) - \nu(s) \bigg|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

— Extensions to Dynamic Programming

L—Asynchronous Dynamic Programming

Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent's experience to guide the selection of states

• After each time-step S_t , A_t , R_{t+1}

Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{\mathsf{S}_t}^a + \gamma \sum_{s' \in S} \mathcal{P}_{\mathsf{S}_t s'}^a v(s') \right)$$

— Extensions to Dynamic Programming

— Full-width and sample backups

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
- Every successor state and action is considered
- Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
- Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

—Extensions to Dynamic Programming

Full-width and sample backups

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions

$$\langle S, A, R, S' \rangle$$

- lacktriangle Instead of reward function ${\cal R}$ and transition dynamics ${\cal P}$
- Advantages:
- Model-free: no advance knowledge of MDP required
- Breaks the curse of dimensionality through sampling
- Cost of backup is constant, independent of $n=|\mathcal{S}|$

Extensions to Dynamic Programming

— Approximate Dynamic Programming

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- e.g. Fitted Value Iteration repeats at each iteration k,
- Sample states $\tilde{S}\subseteq \mathcal{S}$ For each state $s\in \tilde{S}$, estimate target value using Bellman optimality equation,

$$ilde{v}_{k}(s) = \max_{a \in \mathcal{A}} \; \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \, \hat{v}(s', \mathbf{w}_{k})
ight)$$

Train next value function $\hat{v}(\cdot, \mathbf{w_{k+1}})$ using targets $\{\langle s, ilde{v}_{k}(s)
angle\}$

Some Technical Questions

- How do we know that value iteration converges to v*?
- Or that iterative policy evaluation converges to ν_{π} ?
- And therefore that policy iteration converges to v*?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by contraction mapping theorem

Value Function Space

- Consider the vector space V over value functions
- lacktriangle There are $|\mathcal{S}|$ dimensions
- Each point in this space fully specifies a value function v(s)
- What does a Bellman backup do to points in this space?
- We will show that it brings value functions closer
- And therefore the backups must converge on a unique solution

—Contraction Mapping

Value Function ∞-Norm

- We will measure distance between state-value functions u and ν by the ∞ -norm
- i.e. the largest difference between state values,

$$||u-v||_{\infty}=\max_{s\in\mathcal{S}}|u(s)-v(s)|$$

Bellman Expectation Backup is a Contraction

Define the Bellman expectation backup operator T^π,

$$T^{\pi}(\mathbf{v}) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}$$

This operator is a γ -contraction, i.e. it makes value functions closer by at least γ ,

$$||T^{\pi}(u) - T^{\pi}(v)||_{\infty} = ||(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v)||_{\infty}$$

$$= ||\gamma \mathcal{P}^{\pi}(u - v)||_{\infty}$$

$$\leq ||\gamma \mathcal{P}^{\pi}||u - v||_{\infty}$$

$$\leq \gamma ||u - v||_{\infty}$$

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T(v), where T is a γ -contraction,

- T converges to a unique fixed point
- At a linear convergence rate of γ

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator T^{π} has a unique fixed point
- v_{π} is a fixed point of T^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on u_{π}
- Policy iteration converges on v_{*}

Bellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T*,

$$T^*(v) = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a v$$

This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||\mathcal{T}^*(u) - \mathcal{T}^*(v)||_{\infty} \le \gamma ||u - v||_{\infty}$$

Convergence of Value Iteration

■ The Bellman optimality operator T* has a unique fixed point

v* is a fixed point of T* (by Bellman optimality equation)

By contraction mapping theorem

Value iteration converges on v*