	TP1 Pression - Blanchon	Pt		АВС	Note
ī	Préparation du travail				
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5
4	Quelle est la grandeur réglante ?	1	Α		0,5
5	Donner une grandeur perturbatrice.	1	Α		0,5
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1
II.	Etude du procédé				
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1
_	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de				_
2	température et niveau).	1	Α	_	1
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	D	_	0,05
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α		3
III.	Etude du régulateur				
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Χ		0
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5
IV.	Performances et optimisation				
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	Х		0
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	Χ		0
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Χ		0
			Not	e sur : 20	13,6

TP1 PRESSION

I. Préparation du travail (5pt)

- 2- La grandeur réglée est la pression dans la cuve
- 3- Le principe utilisé pour mesurer la grandeur reglée est la déformation des membranes du capteur.
- 4- La grandeur réglante est le débit Qs
- 5- La grandeur perturbatrice est le débit Qe

II. Etude du procédé (7pt)

1-

RIO	Block: 01M01_06 Comment Connections								
	TagName	01M01_06		LIN Name	01M01_06				
	Туре	AI_UIO		DBase	<local></local>				
	Task	3 (110ms)		Rate	0				
_		AUT 0							
<u> </u>	MODE	AUTO		Alarms					
_	Fallback	AUTO		Node	>00				
				Sitello	1				
L	PV	0.0	%	Channel	1				
H	HR	100.0	%	InType	mA				
	LR	0.0	%	HR_in	20.00	mA			
				LR_in	4.00	mA			
	HiHi	100.0	%	AI	0.00	mA			
	Hi	100.0	%	Res	0.000	Ohms			
	Lo	0.0	%						
	LoLo	0.0	%	CJ_type	Auto				
	Hyst	0.5000	%	CJ_temp	0.000				
				LeadRes	0.000	Ohms			
	Filter	0.000	Secs	Emissiv	1.000				
	Char	Linear		Delay	0.000	Secs			

TagName	omment Connections 02P01_06		LIN Name	02P01 06	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mA
Out	0.0	%	AO	0.00	mA
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

2-

2	0	44,9									
3	20	50,5									
4	40	56,1		80							
5	60	62		70				_			
6	80	69,1		70							
7	100	76		60							
8											
9				50							
10				40						■PV	
11				40						-1 4	_
12				30 ——							
13											_
14				20							_
15				40							
16				10							_
17				0							_
18				0	20	40	60	80	100	120	
19 20				J		.0	30	30		. 20	_
21											
21			I			1					

4- Quand on augmente la commande la mesure augmente alors le regulateur est inverse.

Retard T=t1-t0=2,02s Constante de temps t=t2-t1=3,45-2,02=1,43s $K=\Delta x/\Delta y=6/10=0,6$

III. Etude du régulateur (3pt)

1- On calcule Kr Soit Kr=T/t=2,02/1,43=1,41 C'est un PID Mixte

2- A=(0,83/0,6)*((1/1,41)+0,4)=1,53

Ti = t+0,4T=1,43+0,4*2,02=2,238s

Td=(T/(kr+2.5))=(2.02/(1.41+2.5))=0.51s

IV. Performances et optimisation (5pt)

1-

2-