AC can be replaced by S in the 'S' productions for the cases S \rightarrow ACD/AAC, and AAC can be replaced by S for the production S \rightarrow AACD. Introduce three non-terminals E, F, and G for C_aA , C_aD , and C_bD , respectively. Including these changes, the modified grammar becomes

$$S \to SD/SD/CD/AS/AC/C_aC/a$$

$$A \to EC_b/C_aCb$$

$$C \to C_aC/a$$

$$D \to FC_a/GC_b/C_aC_a/C_bC_b$$

$$C_a \to a$$

$$C_b \to b$$

$$E \to C_aA$$

$$F \to C_aD$$

$$G \to C_bD$$

Now, the grammar is in CNF.

22. Convert the following grammar into GNF.

$$S \rightarrow A$$

 $A \rightarrow aBa/a$
 $B \rightarrow bAb/b$

Solution: The grammar is not in CNF. So, it has to be converted into CNF. Introduce two nonterminals C_a , C_b and two production rules $C_a \to a$, $C_b \to b$.

$$S \to A$$
 $A \to C_a B C_a / a$
 $B \to C_b A C_b / b$
 $C_a \to a$
 $C_b \to b$

Introduce two non-terminals X and Y and two production rules $X \to BC_a$ and $Y \to AC_b$. The production rule becomes

$$\begin{split} \mathbf{S} &\to \mathbf{A} \\ \mathbf{A} &\to C_a X/a \\ \mathbf{B} &\to C_b Y/b \\ C_a &\to \mathbf{a} \\ C_b &\to \mathbf{b} \\ \mathbf{X} &\to B C_a \\ \mathbf{Y} &\to A C_b \end{split}$$

Step I: In the grammar, there is no null production and no unit production. The grammar also is in CNF.

Step II: In the grammar, there are seven non-terminals S, A, B, C_a , C_b , X, and Y. Rename the non-terminals as A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , and A_7 , respectively. After renaming the non-terminals, the modified grammar will be

$$A_1 \to A_2$$

$$A_2 \to A_4 A_6$$

$$A_3 \rightarrow A_5 A_7/b$$

 $A_4 \rightarrow a$
 $A_5 \rightarrow b$
 $A_6 \rightarrow A_3 A_4$
 $A_7 \rightarrow A_2 A_5$

Step III: In the previous production, $A_6 \to A_3 A_4$ and $A_7 \to A_2 A_5$ are not in the form $A_i \to A_j V$, where $i \leq j$.

Using Lemma I, replace $A_3 \to A_5 A_7/b$ in the production $A_6 \to A_3 A_4$. The rule becomes

$$A_6 \rightarrow A_5 A_7 A_4 / b A_4$$

Still $A_6 \to A_5 A_7 A_4$ is not in the form $A_i \to A_j V$, where $i \le j$. Using Lemma I, replace $A_5 \to b$ in the production. The modified production is $A_6 \to b A_7 A_4 / b A_4$, which is in GNF.

Step IV: Using Lemma I, replace $A_2 \to A_4 A_6/a$ in the production $A_7 \to A_2 A_5$. The production rule becomes $A_7 \to A_4 A_6 A_5/a A_5$.

Still $A_7 \to A_4 A_6 A_5$ is not in the form $A_i \to A_j V$, where $i \leq j$. Using Lemma I, replace $A_4 \to a$ in the production.

The modified production is $A_7 \rightarrow aA_6A_5/aA_5$, which is in GNF.

Lemma II can be applied on the productions $A_2 \to A_4 A_6/a$ and $A_3 \to A_5 A_7/b$.

Applying Lemma II on $A_2 \to A_4 A_6/a$, we get

$$A_2 \to a/aX$$

 $X \to A_6/A_6X$

 $X \to A_6/A_6X$ are not in GNF. Replacing $A_6 \to bA_7A_4/bA_4$ in the production, the productions $X \to bA_7A_4/bA_7A_4X/bA_4/bA_4X$ are in GNF.

Applying Lemma II on $A_3 \to A_5 A_7/b$, we get

$$A_3 \to b/bY$$

 $Y \to A_7/A_7Y$

Y $\to A_7/A_7Y$ are not in GNF. Replacing $A_7 \to aA_6A_5/aA_5$ in the production, the productions Y $\to aA_6A_5/aA_6A_5Y/aA_5/aA_5Y$ are in GNF.

 $A_1 \to A_2$ is not in GNF. Replacing $A_2 \to a/aX$ in the production, we get $A_1 \to a/aX$, which is in GNF. The grammar converted into GNF is

$$A_{1} \rightarrow aX/a$$

 $A_{2} \rightarrow aX/a$
 $A_{3} \rightarrow bY/b$
 $A_{4} \rightarrow a$
 $A_{5} \rightarrow b$
 $A_{6} \rightarrow bA_{7}A_{4}/bA_{4}$
 $A_{7} \rightarrow aA_{6}A_{5}/aA_{5}$
 $X \rightarrow bA_{7}A_{4}/bA_{7}A_{4}X/bA_{4}/bA_{4}X$
 $Y \rightarrow aA_{6}A_{5}/aA_{6}A_{5}Y/aA_{5}/aA_{5}Y$

23. Convert the following grammar to GNF.

i) $S \rightarrow aSa/aSb/ \in$

ii)
$$S \rightarrow aSB/aSbS/ \in$$

[WBUT 2010]

Solution: (It can be done by Lemma I and II, but it is done here in a simpler way.)

i) $S \rightarrow aSa/aSb/ \in$

Introduce two productions $Ca \rightarrow a$ and $Cb \rightarrow b$, and the modified productions are

$$S \rightarrow aSC_a/aSC_b/ \in$$

$$C_a \to a$$

$$C_b \to b$$

ii) S $\rightarrow aSB/aSbS/ \in$ Introduce a production $C_b \rightarrow$ b, and the modified productions are

$$S \rightarrow aSB/aSCbS/ \in$$

$$C_b \to b$$

24. Convert the following grammar into GNF.

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1/b$$

$$A_3 \rightarrow A_1 A_2/a$$

[Cochin University 2009]

Solution: In the grammar, the production $A_3 \to A_1 A_2$ is not in the form $A_i \to A_j V$ where $i \leq j$. Using Lemma 1, replace $A_1 \to A_2 A_3$ in the production $A_3 \to A_1 A_2$. The rule becomes

$$A_3 \rightarrow A_2 A_3 A_2/a$$

Still it is not in the form $A_i \to A_j V$, where $i \le j$. Replacing $A_2 \to A_3 A_1/b$ in $A_3 \to A_2 A_3 A_2/a$, we get $A_3 \to A_3 A_1 A_3 A_2/b A_3 A_2/a$.

Now, the modified grammar is

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1/b$$

$$A_3 \rightarrow A_3 A_1 A_3 A_2 / b A_3 A_2 / a$$

The production $A_3 \to bA_3A_2/a$ is in the format $A \to \beta_i$, and the production $A_3 \to A_3A_1A_3A_2$ is in the format of $A \to A\alpha_j$. So, we can introduce a new non-terminal B3, and the modified A3 production is (according to Lemma II)

$$A_3 \rightarrow bA_3A_2/a$$

$$A_3 \rightarrow bA_3A_2B_3$$

$$A_3 \rightarrow aB_3$$

And the B3 productions will be

$$B_3 \to A_1 A_3 A_2$$

$$B_3 \to A_1 A_3 A_2$$

All A3 productions are in GNF. Replacing A_3 by all A_3 productions in A_2 , we get the following productions.

 $A_2 \rightarrow bA_3A_2A_1/aA_1/bA_3A_2B_3A_1/aB_3A_1/b$

Now, all A_2 productions are in GNF. Replacing A_2 by all A_2 productions in A_2 , we get the following productions.

 $A_1 \rightarrow bA_3A_2A_1A_3/aA_1A_3/bA_3A_2B_3A_1A_3/aB_3A_1A_3/bA_3$

Now, all A_1 productions are in GNF. Replacing A_1 by all A_1 productions in two B_3 productions, we get the following productions.

 $B_3 \rightarrow bA_3A_2A_1A_3A_3A_2/aA_1A_3A_3A_2/bA_3A_2B_3A_1A_3A_3A_2/aB_3A_1A_3A_3A_2/bA_3A_3A_2$

 $B_3 \rightarrow bA_3A_2A_1A_3A_3A_2B_3/aA_1A_3A_3A_2B_3/bA_3A_2B_3/aA_1A_3A_3A_2B_3/aB_3A_1A_3A_3A_2B_3/bA_3A_3A_2B_3$

Now, the grammar becomes

 $A_1 \rightarrow bA_3A_2A_1A_3/aA_1A_3/bA_3A_2B_3A_1A_3/aB_3A_1A_3/bA_3$

 $A_2 \to bA_3A_2A_1/aA_1/bA_3A_2B_3A_1/aB_3A_1/b$

 $A_3 \to bA_3A_2B_3/bA_3A_2/aB_3/a$

 $B_3 \to bA_3A_2A_1A_3A_3A_2/aA_1A_3A_3A_2/bA_3A_2B_3A_1A_3A_3A_2/aB_3A_1A_3A_3A_2/bA_3A_3A_2$

 $B_3 \rightarrow bA_3A_2A_1A_3A_3A_2B_3/aA_1A_3A_3A_2B_3/bA_3A_2B_3A_1A_3A_3A_2B_3/aB_3A_1A_3A_3A_2B_3/bA_3A_3A_2B_3$

25. Remove the left recursion from the given grammar.

$$A \rightarrow Ba/b$$

$$B \to Bc/Ad/e$$

Solution: The grammar has indirect left recursion. To remove the left recursion, rename A as A_1 and B as A_2 . The modified production rules become

$$A_1 \rightarrow A_2 a/b$$

$$A_2 \rightarrow A_2 c/A_1 d/e$$

For i = 1 and j = 1, there is no production in the form $A_1 \to A_1 \alpha$.

For i = 2 and j = 1, there is a production in the form $A_2 \to A_1 \alpha$. The production is $A_2 \to A_1 d$. According to the algorithm for removal of indirect left recursion, the production becomes

$$A_2 \rightarrow A_2 ad/bd$$

Now, the A2 production is $A_2 \rightarrow A_2 c/A_2 ad/bd/e$

 $A_2 \rightarrow A_2 c$ has immediate left recursion. After removing the left recursion, the production becomes

$$A_2 \rightarrow bdA_2'eA_2'A_2' \rightarrow cA_2/ \in$$

 $A_2 \rightarrow A_2 ad$ has immediate left recursion. After removing the left recursion, the production becomes

$$A_2 \rightarrow bdA_2''/eA_2''A_2'' \rightarrow adA$$