뉴욕 택시 수요 예측 프로젝트

코드스테이츠 AI 07 한다운

Contents

01. 프로젝트 소개	프로젝트 소개 데이터셋 소개
02. 데이터 전처리	데이터 로드 데이터 분석 데이터 전처리
03. 모델 구축	Simple Regression XGBoost Regression LightGBM Regression
04. 결과 분석	날짜/시간별 분석 요일/주말여부 분석

프로젝트 소개

뉴욕의 택시는 언제, 어디서 가장 많은 수요가 있을까?

Google BigQuery에서 제공하는 데이터셋을 활용하여 뉴욕 택시 수요 예측 모델 구현.

데이터셋소개 1 01.프로젝트소개

날짜별/지역별 수요

시간대에 따른 수요

Google BigQuery

SQL활용하여 데이터 추출

데이터로드 | 02.데이터 전처리

```
1 %%time
  2 extract_query = """
  3 SELECT
       EXTRACT(MONTH FROM pickup hour) AS month,
       EXTRACT(DAY FROM pickup_hour) AS day,
       CAST(format_datetime('%u', pickup_hour) AS INT64) -1 AS weekday,
       EXTRACT(HOUR FROM pickup hour) AS hour,
       CASE WHEN CAST(FORMAT DATETIME('%u', pickup hour) AS INT64) IN (6, 7) THEN 1 ELSE 0 END AS is weekend
  9
10 FROM (
 11
        SELECT
 12
           DATETIME_TRUNC(pickup_datetime, hour) AS pickup_hour,
 13
           count(*) AS cnt
 14
       FROM `bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2015`
 15
       WHERE EXTRACT(MONTH from pickup datetime) = 1
 16
       GROUP BY pickup hour
17)
18 ORDER BY pickup hour
 19 """
 20 PROJECT ID = 'newyorktaxi-340407'
21
22 df = pd.read_gbq(query=extract_query, dialect='standard', project_id=PROJECT_ID)
```

		pickup_hour	cnt	month	day	weekday	hour	is_weekend
	739	2015-01-31 19:00:00	32436	1	31	5	19	1
	740	2015-01-31 20:00:00	27555	1	31	5	20	1
df.tail()	741	2015-01-31 21:00:00	27477	1	31	5	21	1
	742	2015-01-31 22:00:00	29862	1	31	5	22	1
	743	2015-01-31 23:00:00	29856	1	31	5	23	1

데이터분석 | 02.데이터 전처리

2015년 1월 동안의 뉴욕 주 택시 수요 데이터입니다. 2015년 1월 27일에 수요량이 급격히 감소 하는 형태입니다. **눈보라 사태로 인한 외출 감소가 원인**으로 예상됩니다.

데이터분석 | 02.데이터 전처리

각 시간대별 지역에 따른 수요 데이터 시각화 우편번호가 10019, 10222인 지역의 택시 수요가 많은 편이며, 시간대가 17-20시 사이의 수요량이 높아집니다.

데이터분석 | 02.데이터 전처리

각 지역별로 택시 수요량을 직관적으로 시각화 하였습니다.

데이터 전처리

01

좌표를 zip_code로 변환하기

데이터셋 `bigquery-publicdata.geo_us_boundaries.zip _codes`와 Join 02

One-hot Encoding

Zip_code를 원-핫 인코딩 으로 변환 03

데이터셋분리

시계열 데이터이므로 Random Sampling이 아닌, 과거-미래 순으로 분리

Simple Regression | 03.모델구축

	MAE	MSE
Simple Regression	126.53	95916.68

단순 회귀 모델을 구현하여 수요량을 예측하는 모델을 구축하였습니다.

Feature 중에서 타겟 값에 가장 큰 영향을 끼치는 것은 hour, weekday 였으며, 가장 관련 없는 것은 주말 여부 입니다.

XGBoost / LightGBM Regression । 03. प्रधानके

	MAE	MSE
XGBoost Regression	57.67	16512.33

	MAE	MSE
LightGBM Regression	48.24	13755.68

날짜 / 시간별 분석 | 04. 결과분석

날짜별 예측 결과는 눈보라로 인한 비상 상황의 경우 정확도가 낮아집니다. 시간대별 예측 결과의 경우 실제 값과 큰 흐름이 같습니다.

요일/주말여부분석 | 04.결과분석

요일에 따른 예측 결과는 금, 토, 일의 경우 정확합니다. 주말의 경우 평일 보다 모델이 더 정확하게 예측합니다.

