Homework 7

Brady Lamson

2022-04-03

Appendix E

Problem 5

```
helprtc <-
   mosaicData::HELPrct %>%
   mutate(
        homeless01 =
        case_when(
            homeless == "housed" ~ 0,
            homeless == "homeless" ~ 1
        )
   ) %>%
   select(where(is.numeric))
```

Before we start I want to skimr::skim() the data to get a general overview of what I'm working with.

```
helprtc %>%
skimr::skim()
```

Table 1: Data summary

Name	Piped data
Number of rows	453
Number of columns	22
Column type frequency: numeric	22
Group variables	None

Variable type: numeric

skim_variable	n_missing con	sd	p0	p25	p50	p75	p100	hist		
age	0	1.00	35.65	7.71	19.00	30.00	35.00	40.00	60.00	
anysubstatus	207	0.54	0.77	0.42	0.00	1.00	1.00	1.00	1.00	
cesd	0	1.00	32.85	12.51	1.00	25.00	34.00	41.00	60.00	

skim_variable	n_missing con	nplete_rat	te mean	sd	p0	p25	p50	p75	p100	hist
d1	0	1.00	3.06	6.19	0.00	1.00	2.00	3.00	100.00	
daysanysub	209	0.54	75.31	79.24	0.00	5.00	33.00	164.25	268.00	
dayslink	22	0.95	255.61	151.02	2.00	74.00	361.00	365.00	456.00	
drugrisk	1	1.00	1.89	4.34	0.00	0.00	0.00	1.00	21.00	
e2b	239	0.47	2.50	2.52	1.00	1.00	2.00	3.00	21.00	
female	0	1.00	0.24	0.43	0.00	0.00	0.00	0.00	1.00	
i1	0	1.00	17.91	20.02	0.00	3.00	13.00	26.00	142.00	
i2	0	1.00	24.55	28.02	0.00	4.00	18.00	33.00	184.00	
id	0	1.00	233.40	134.75	1.00	119.00	233.00	348.00	470.00	
indtot	0	1.00	35.73	7.15	4.00	32.00	38.00	41.00	45.00	
linkstatus	22	0.95	0.38	0.49	0.00	0.00	0.00	1.00	1.00	
mcs	0	1.00	31.68	12.84	6.76	21.68	28.60	40.94	62.18	
pcs	0	1.00	48.05	10.78	14.07	40.38	48.88	56.95	74.81	
pss_fr	0	1.00	6.71	4.00	0.00	3.00	7.00	10.00	14.00	
sexrisk	0	1.00	4.64	2.80	0.00	3.00	4.00	6.00	14.00	
avg_drinks	0	1.00	17.91	20.02	0.00	3.00	13.00	26.00	142.00	
\max_{drinks}	0	1.00	24.55	28.02	0.00	4.00	18.00	33.00	184.00	
hospitalizations	0	1.00	3.06	6.19	0.00	1.00	2.00	3.00	100.00	
homeless01	0	1.00	0.46	0.50	0.00	0.00	0.00	1.00	1.00	

There are a few big takeaways from this skimming.

- First is a large number of NAs. I'm going to outright remove the variables with 200+ missing values as that's nearly half the data set. For the other NAs I'll do median imputation, that is replacing the NA with the median value of that variable.
- Second are many variables that do not appear to follow a normal distribution. Sadly the skim() functions console histograms don't show up on pdf, but trust me here! A few of these numeric variables seem log-linear though, I can log transform those to help the model work better.
- Finally is the scale of our numeric variables is all over the place. I'll need to normalize all of these variables if I want my model to be able to glean any important information from the data. There is also have an id column tucked away in there, I'll need to handle that.
- There's another problem, Looking at some variables there are a few that are identical. I'm not sure what the best way to handle this is outside of manually selecting out the ones I catch. Below are all the variables I caught.

```
helprtc %>%
   select(avg_drinks, i1, max_drinks, i2, hospitalizations, d1) %>%
   head()
```

```
##
     avg drinks i1 max drinks i2 hospitalizations d1
## 1
              13 13
                             26 26
                                                    3
                                                       3
## 2
              56 56
                             62 62
                                                   22 22
               0
                  0
                              0
                                 0
                                                    0 0
## 3
## 4
               5
                  5
                              5
                                 5
                                                    2
                                                       2
## 5
              10 10
                             13 13
                                                   12 12
## 6
                              4
                                                    1
```

Here we setup a recipe, this a convenient way to tackle a lot of the data pre-processing I want to do. This makes life a whole lot easier when working with a data set that's a little moody.

```
homeless_recipe <-
   recipe(homeless01 ~., data = helprtc) %>%
    # Make homeless01 a factor ----
    step_mutate(homeless01 = homeless01 %>% as.factor()) %>%
    # Remove duplicate variables and variables w/ over 200+ NAs ----
    step_select(-c(i1, i2, d1, anysubstatus, daysanysub, e2b)) %>%
    # Set id column to be an id, not a predictor ----
   update role(id, new role = "id") %>%
    # Do median imputation for variables with missing values ----
    step_impute_median(dayslink, drugrisk, linkstatus) %>%
    # Normalize numeric predictors so they're on the same scale ----
    step_normalize(all_numeric_predictors()) %>%
    # Log transform variables that appear log-normal to help it approach a normal dist ----
    step_log(avg_drinks, max_drinks, indtot, age, signed = TRUE)
homeless_recipe
## Recipe
##
## Inputs:
##
##
         role #variables
##
##
                       1
      outcome
                      20
## predictor
##
## Operations:
##
## Variable mutation for homeless01 %>% as.factor()
## Variables selected -c(i1, i2, d1, anysubstatus, daysanysub, e2b)
## Median imputation for dayslink, drugrisk, linkstatus
## Centering and scaling for all_numeric_predictors()
## Signed log transformation on avg_drinks, max_drinks, indtot, age
Next we'll create our model and pass both it and our recipe into a workflow!
homeless_model <-
    logistic_reg(mode = "classification") %>%
    set_engine("glm")
homeless_workflow <-
   workflow() %>%
   add_model(homeless_model) %>%
    add_recipe(homeless_recipe)
homeless_workflow
```

```
## Preprocessor: Recipe
## Model: logistic_reg()
##
## 5 Recipe Steps
##
## * step mutate()
## * step_select()
## * step_impute_median()
## * step_normalize()
## * step_log()
##
## -- Model -----
## Logistic Regression Model Specification (classification)
##
## Computational engine: glm
```

Workflows are fantastic, they help organize the modeling process and encourage good methodology. Essentially you can bind modeling and pre-processing objects together!

```
fit(homeless_workflow, helprtc) %>%
  broom::tidy() %>%
  arrange(p.value)
```

```
## # A tibble: 15 x 5
##
      term
                        estimate std.error statistic p.value
##
                                                <dbl>
                                                        <dbl>
      <chr>
                           <dbl>
                                     <dbl>
                         -0.292
                                               -2.83 0.00471
##
   1 pss fr
                                     0.103
##
    2 (Intercept)
                         -0.236
                                     0.107
                                               -2.22 0.0267
##
    3 avg_drinks
                          1.18
                                     0.604
                                                1.96
                                                      0.0503
   4 female
##
                         -0.211
                                     0.110
                                               -1.93
                                                      0.0537
##
   5 sexrisk
                          0.173
                                     0.103
                                                1.69
                                                      0.0912
##
    6 age
                          0.504
                                     0.399
                                                1.26
                                                      0.207
##
   7 indtot
                          0.584
                                     0.476
                                                1.23
                                                     0.220
                                                1.08 0.282
##
   8 linkstatus
                          0.329
                                     0.305
   9 pcs
                         -0.0988
                                     0.111
                                               -0.892 0.372
##
## 10 dayslink
                          0.244
                                     0.305
                                                0.801 0.423
## 11 drugrisk
                          0.0634
                                     0.104
                                                0.609 0.542
## 12 cesd
                          0.0582
                                     0.145
                                                0.400 0.689
## 13 max_drinks
                                     0.541
                                                0.304 0.761
                          0.164
## 14 hospitalizations
                          0.0167
                                     0.108
                                                0.154 0.878
## 15 mcs
                          0.0181
                                     0.142
                                                0.127 0.899
```

At the risk of interpreting these results incorrectly, it appears that, according to our p-values, that we only really have 3 predictors that we have significant evidence for. It is important to note, that with our homeless0 column, 0 is for housed individuals and 1 is for unhoused individuals. Our first predictor, pss_fr is a quantifier for an individuals perceived social support by friends with higher scores indicating more support. The negative coefficient indicates that higher support from friends is a predictor of not being homeless. We see this negative coefficient with female as well, which indicates that being female may make someone less likely to be homeless. avg_drinks is the last of the predictors with a p-value less than or close to 0.05, and it shows a pretty strong relationship between a larger number of drinks consumed per day and homelessness.