The 3x + 1 Problem

Moritz Konarski

27.02.2020

- ▶ Junior, Applied Mathematics Department, AUCA

Overview

- ▶ The 3x + 1 Problem and Collatz Conjecture
- ▶ What Makes This Problem Interesting?
- History of the Collatz Conjecture
- ▶ Interesting Attributes of the 3x + 1 Problem

Interesting Attributes

- Cycles of the Function
- Stochastic Approximations
- ► Stopping Time of the Function

What is the 3x + 1 Problem?

The Function

based on the Collatz function [3]

$$C(x) = \begin{cases} 3x + 1 & \text{if } x \equiv 1 \text{ (mod 2),} \\ x/2 & \text{if } x \equiv 0 \text{ (mod 2).} \end{cases}$$

• equivalent to the 3x + 1 function [3]

$$T(x) = \begin{cases} (3x+1)/2 & \text{if } x \equiv 1 \text{ (mod 2),} \\ x/2 & \text{if } x \equiv 0 \text{ (mod 2).} \end{cases}$$

Details

- ▶ it is conjectured that for some $x, k \in \mathbb{N} + 1$ we attain $\mathcal{T}^{(k)}(x) = 1$ [1]
- ▶ the 3x + 1 function T(x) maps $\mathbb{N} + 1 \to \mathbb{N} + 1$ [4]
- ▶ the function has a stopping time, total stopping time, and a trajectory for each m

Stopping Time for *x*

- check that every positive integer up to x-1 iterates to one $^{[1]}$
- ▶ if $T^{(k)}(x) < x$, we know it will iterate to 1
- ▶ thus the stopping time is

$$\sigma(x) = \inf\{k : T^{(k)}(x) < x\}$$

Total Stopping Time for *x*

► total stopping time is the number of steps needed to iterate to 1 [1]

$$\sigma_{\infty}(x) = \inf\{k : T^{(k)}(x) = 1\}$$

Trajectory of *x* Under *T*

- ▶ also called the *forward orbit* of x under T
- defined as the sequence of its forward iterates [3]

$$\{x, T(x), T^{(2)}(x), T^{(3)}(x), \dots\}$$

Possible behaviors of T

The function T(x) can

- 1. enter the trivial cycle $\{2, 1, 2, \dots\}$ (reach 1)
- 2. enter a non-trivial cycle
- 3. diverge to infinity, have a divergent orbit [1]

The Conjecture

- beginning at any positive integer x, iterations of T(x) will eventually reach 1 and enter the trivial cycle [3]
- equivalent to stating that the total stopping time $\sigma_{\infty}(x)$ is finite ^[1]
- every trajectory of T(x) contains 1 and is finite [2]

What Makes This Problem Interesting?

Mathematics is not ready for such problems.

— Paul Erdös ^[1]

- ▶ it is simple to state but hard to prove
- part of the difficulty comes from its pseudorandom nature
- of iterations of T(x)• the problem itself is not really important, it has no
- immediate applications
 represents a class of iterative mappings that are interesting
 [3]

History of the Collatz Conjecture

Beginnings

- named after Lothar Collatz who formulated similar problems in the 1930s
- also known as Syracuse Problem, Hasse's Algorithm, Kakutani's Problem, and Ulam's Problem after other people that studied it
- academic publishing about it began in the 1970s [3]

Recent Developments

- $ightharpoonup > 10^{20}$ numbers have been verified to fit the conjecture [4]
- ▶ a September 2019 paper by Terence Tao "Almost All Orbits of the Collatz Map Attain Almost Bounded Values" made progress
- research is still actively ongoing

Interesting Attributes of the 3x + 1 Problem

Cycles of the Function

- ▶ the 3x + 1 function has a trivial cycle $\{2, 1, 2, ...\}$ at 1 ^[1]
- ▶ if T(x) is applied to all integers, three more cycles emerge at -1, -5, and -17
- ▶ these cycles are conjectured to be the only ones [1]
- ▶ if non-trivial cycles of the 3x + 1 problem exist, they have been proven to be at least 10,439,860,591 numbers long ^[3]

Stochastic Approximations

- number of odd and even integers in an orbit is approximately equal [3]
- behavior is seen as pseudorandom, if the numbers are large enough they almost behave like random variables [2]
- ightharpoonup probabilistic models describe the behavior of the 3x + 1 problem
- models describe groups of trajectories, not individual ones
 [3]

Stopping Time of the Function

- ▶ stopping time for odd numbers is ≈ 9.477955 for C(x) [1]
- ► total stopping time for most trajectories is about 6.95212 log *n* steps
- number of even integers in an orbit equal to stopping time
- ▶ upper bound for total stopping time $41.677647 \log n$, suggests all sequences are finite [3]

The 3x + 1 Problem and Collatz Conjecture

For every $x \in \mathbb{N} + 1$ and the function

$$T(x) = \begin{cases} (3x+1)/2 & \text{if } x \equiv 1 \text{ (mod 2),} \\ x/2 & \text{if } x \equiv 0 \text{ (mod 2).} \end{cases}$$

there is some $k \in \mathbb{N} + 1$ such that $T^{(k)}(x) = 1$.

What Makes This Problem Interesting?

- simple to state but hard to prove
- represents a class of iterative mappings that are interesting [3]
- maybe mathematics right now cannot solve that problem

History of the Collatz Conjecture

- named after Lothar Collatz, from the 1930s
- ▶ academic publishing began in the 1970s [3]
- $ightharpoonup > 10^{20}$ numbers have been verified to fit the conjecture [4]
- research is still actively ongoing

Interesting Attributes of the 3x + 1 Problem

- ▶ the 3x + 1 function has a trivial cycle $\{2, 1, 2, ...\}$ at 1 ^[1]
- ▶ non-trivial cycles of the 3x + 1 problem have been proven to be at least 10,439,860,591 numbers long [3]
- behavior is seen as pseudorandom, if the numbers are large enough they almost behave like random variables [2]
- ► total stopping time for most trajectories is about 6.95212 log *n* steps

References

- 1. Marc Chamberland, An Update on the 3x + 1 Problem, http://www.math.grinnell.edu/~chamberl/papers/3x_survey_eng.pdf, 2005.
- 2. R. E. Crandall, *On the "3x + 1" Problem*, Mathematics of Computation, **32** (1978), no. 144, 1281-1292
- 3. Jeffrey C. Lagarias, The 3x+1 Problem: An Overview, https://pdfs.semanticscholar.org/1000/46dd8b4ee901bc71043da7d42f5d87ca0224.pdf, 2010
- 4. Terence Tao, Almost All Orbits of the Collatz Map Attain Almost Bounded Values, arXiv:1909.03562v2 [math.PR], 2019