线代笔记

mny

2023年9月23日

目录

1	线性空间			
	1.1	实数中	コ运算的性质	1
	1.2	$(\mathbb{R}^m, +$	+,*) 为一个线性空间	;
	1.3	矩阵		;
1	1.4	矩阵的乘法的应用		
		1.4.1	逆矩阵的一些性质	(
		1.4.2	线性组合的矩阵乘法表示	8
		1.4.3	矩阵方程	8

1 线性空间

线性空间 \mathbb{R}^m , m 是一个自然数. m=1 时, 是实数. 有两个代数运算 + 和 *, 有两个特殊元素 0 和 1.

1.1 实数中运算的性质

+ 满足的性质:

- 交换的, a + b = b + a
- 加法满足结合律 a + (b + c) = (a + b) + c

*满足的性质:

- 交换的 a * b = b * a
- 对于一个非 0 元素 a, 存在一个元素 b, 使得 a * b = 1, $b = a^{-1}$
- 结合律 a*(b*c) = (a*b)*c

+ 和 * 满足分配律: a*(b+c) = a*b + a*c

定义
$$1.1.$$
 \mathbb{R}^m 中的元素为 $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$, 其中 $a_1,\ldots a_m$ 为任意实数.
$$\mathbb{R}^m$$
 中的元素 $v = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$ 称为列向量。有时一个元素表示为 $\begin{bmatrix} a_1, a_2, \cdots, a_m \end{bmatrix}$,称作行向量。

 \mathbb{R}^m 上定义两个运算 + 和 *(用列向量来表示)

定义 1.2. +加法: 任意两个列向量 a, b 得到一个新的列向量.

$$v + w = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_m + b_m \end{bmatrix}$$
(1.1)

例 1.1. 在
$$\mathbb{R}^2$$
 中,
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

定义 1.3.* 数乘: 任意一个实数 c, 以及一个列向量 v, 得到一个新的列向量 cv

$$cv = c \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} ca_1 \\ ca_2 \\ \vdots \\ ca_m \end{bmatrix}$$

$$(1.2)$$

1.2 $(\mathbb{R}^m, +, *)$ 为一个线性空间

两种运算满足:

- 交換律 v + w = w + v
- 结合律 $c_1(c_2v) = (c_1c_2)v$
- 分配律 c(v+w) = cv + cw

• 通过加法可以定义减法运算
$$v-w=\begin{bmatrix}a_1\\a_2\\ \vdots\\ a_m\end{bmatrix}-\begin{bmatrix}b_1\\b_2\\ \vdots\\ b_m\end{bmatrix}=\begin{bmatrix}a_1-b_1\\a_2-b_2\\ \vdots\\ a_m-b_m\end{bmatrix}.$$

• 给定一组 \mathbb{R}^m 中的向量, $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$, 和一组实数 (x_1, x_2, \dots, x_n) 可以构成新的向量

$$x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_n \vec{v}_n \tag{1.3}$$

这个新的向称为 (v_1, v_2, \ldots, v_n) 的线性组合.

1.3 矩阵

定义 1.4. $m \times n$ 矩阵,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$(1.4)$$

 a_{ij} 为实数

从线性空间的角度, 矩阵可以有下列的理解:

- 从矩阵列的角度, $A = \left[\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \right]$
- 从矩阵行的角度, $A = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vdots \\ \vec{v}_m \end{bmatrix}$

固定 m 和 n, 矩阵空间上可以定义两个自然的运算

定义 1.5. 矩阵加法:

$$A = (a_{ij}), \quad B = (b_{ij}), \quad (A+B)_{ij} = (a_{ij} + b_{ij})$$
 (1.5)

定义 1.6. 数乘, 任意一个实数 c, 一个矩阵 A, 得到

$$(cA)_{ij} = (ca_{ij}) \tag{1.6}$$

定义 1.7. 矩阵乘法.

定义: 矩阵乘法是把一个 $m \times n$ 矩阵乘上一个 $n \times k$ 矩阵, 得到一个 $m \times k$ 矩阵. 运算规则:

$$(C)_{ij} = a_{i1}b_{1j} + a_{i_2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$
(1.7)

矩阵乘法的性质:

• 结合律:

$$(AB) C = A (BC) \tag{1.8}$$

证明. 设 $A: m \times n, B: n \times k, C: k \times l$, 根据定义

$$[(AB)C]_{ij} = \sum_{u=1}^{k} (AB)_{iu}C_{uj} = \sum_{u=1}^{k} \sum_{v=1}^{n} a_{iv}b_{vu}c_{vj}$$
(1.9)

同样

$$[A(BC)]_{ij} = \sum_{v=1}^{n} A_{iv}(BC)_{vj} = \sum_{u=1}^{k} \sum_{v=1}^{n} a_{iv} b_{vu} c_{vj}$$
(1.10)

• 分配律:

$$A(B+C) = AB + AC \tag{1.11}$$

$$(A+B)C = AC + AB \tag{1.12}$$

• 矩阵乘法不满足交换律

$$AB \stackrel{\pi - \text{tc}}{\neq} BA \tag{1.13}$$

不论交换有没有定义,都不一定相等.

矩阵乘法的几种理解:

- $C = AB, C_{ij}$ 为把 A 的第 i 行和 B 的第 j 列乘起来.
- 从矩阵 A 的列向量的角度看

$$A = \left[\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \right] \tag{1.14}$$

那么 C 的第 j 列为 A 的列向量的线性组合, 组合系数为 B 的第 j 列,

$$b_{1i}\vec{v}_1 + b_{2i}\vec{v}_2 + \dots + b_{ni}\vec{v}_n \tag{1.15}$$

• 从矩阵 B 的行向量来看

$$B = \begin{bmatrix} \vec{w}_1 \\ \vec{w}_2 \\ \vdots \\ \vec{w}_m \end{bmatrix}$$
 (1.16)

矩阵 C 的第 i 行为 B 的行向量的线性组合, 组合系数为矩阵 A 的第 i 行.

$$a_{i1}\vec{w}_1 + a_{i2}\vec{w}_2 + \dots + a_{in}\vec{w}_n \tag{1.17}$$

几种特殊矩阵:

- 方阵: 行和列数目一致, n×n
- 零矩阵: 元素都为 0
- n 阶单位矩阵:

$$\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}$$
(1.18)

对角线全为1

• 上三角矩阵:

$$\begin{bmatrix}
* & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & *
\end{bmatrix}$$
(1.19)

• 下三角矩阵:

$$\begin{bmatrix}
* & 0 & \cdots & 0 \\
* & * & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{bmatrix}$$
(1.20)

1.4 矩阵的乘法的应用

对于 $n \times n$ 的方阵 A, 可以利用矩阵的乘法来定义它的逆矩阵 A^{-1}

定义 1.8. A^{-1} 称为 A 的逆矩阵, 如果 A^{-1} 满足

$$A^{-1}A = I_{n \times n}, \, \mathbb{E}AA^{-1} = I_{n \times n}. \tag{1.21}$$

命题 1.1.

$$I_{n \times n} A = A I_{n \times n} = A \tag{1.22}$$

证明. 根据乘法的定义, 不难证明.

1.4.1 逆矩阵的一些性质

命题 1.2. 一个矩阵的逆矩阵不一定存在

例 1.2. 非平凡的例子 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

证明. 假设存在 $A^{-1}=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, 那么 A^{-1} 满足

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{1.23}$$

左侧

$$= \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix} \neq I_{2 \times 2} \tag{1.24}$$

命题 1.3. 如果逆矩阵存在, 它是唯一的.

证明. 假设 A 有两个逆矩阵 B, C, 则

$$AB = BA = AC = CA = I_{n \times n} \tag{1.25}$$

所以

$$B = B(AC) = (BA)C = C.$$
 (1.26)

命题 **1.4.** 若一个矩阵存在左逆 L, 满足 $LA = I_{n \times n}$, 那么矩阵 A 的逆矩阵存在, 且等于 L.¹ 命题 **1.5.** 如果 A 的逆为 A^{-1} , B 的逆为 B^{-1} , 则

$$(AB)^{-1} = B^{-1}A^{-1} (1.27)$$

证明.

$$(AB)B^{-1}A^{-1}$$

= $A(BB^{-1})A^{-1}$
= AA^{-1}
= $I_{n \times n}$. (1.28)

证明也可以推广到一般情况.

命题 1.6. 2×2 矩阵 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 的逆矩阵

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (1.29)

命题 1.7. 对角矩阵
$$D = egin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}$$
 的逆为

$$D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_n} \end{bmatrix}$$
 (1.30)

这意味着 D^{-1} 存在当且仅当对角元素都不为零!

¹将在后面证明.

1.4.2 线性组合的矩阵乘法表示

线性组合

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_n\vec{v}_n, \tag{1.31}$$

引入两个矩阵

$$A = \begin{bmatrix} \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 (1.32)

其中 A 为 $m \times n$ 矩阵, X 为 $n \times 1$ 矩阵. 线性组合的矩阵表示为 AX.

1.4.3 矩阵方程

方程为 AX=b. 这个方程的解的性质取决于 A 中的向量 $\left[\vec{v}_1,\vec{v}_2,\cdots,\vec{v}_n\right]$ 和向量 b 的关系.

我们把这个方程写成分量的形式

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$
(1.33)

采用高斯 (Gauss) 消元法.

把第 2 个方程到第 m 个方程中的 x_1 消掉. 把第 i 个方程变为

方程
$$(i) - \frac{a_{i1}}{a_{11}} \times$$
方程 (1) (1.34)

于是方程的增广矩阵变为

$$\begin{bmatrix} a_{11} & \cdots & a'_{1n} & b_1 \\ 0 & \cdots & a'_{2n} & b_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & a'_{mn} & b_m \end{bmatrix}$$

$$(1.35)$$