PRINTABLE VERSION

Quiz 5

You scored 88.89 out of 100

Question 1
Your answer is CORRECT.
An outline for a proof of an implication $P\Rightarrow Q$ is provided below: $\begin{array}{c} Proposition.\ P\Rightarrow Q\\ \hline Proof.\ Suppose \neg P.\\ \hline \textit{Missing steps involving} \neg P\ \ and\ \neg Q\ \ and\ any\ previously\ established\ facts\\ \hline Therefore \neg Q.\ \Box\\ \hline \text{What type of proof was described in the outline?} \end{array}$
 b) A proof by contrapositive is described in this outline. c) A proof by introspection is described in this outline. d) A direct proof is described in this outline. e) Wait a minute The proof described in this outline isn't a valid proof technique!
Question 2
Your answer is CORRECT.
Suppose a mathematician wants to prove a statement of the form $P \land Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?
a) \bigcirc Suppose $\neg P$.
b) \bigcirc Suppose $\neg P \land Q$.
c) OSuppose ¬Q
d) \bigcirc Suppose $\neg P \land \neg Q$.
e) \odot Suppose $\neg P \lor \neg Q$.
Question 3
Your answer is CORRECT.
Given two sets A and B one can prove $A \subseteq B$ by
a) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.
b) \odot First supposing $x \in A$, and then showing $x \in B$.
c) \bigcirc First supposing $x \in B$, and then showing $x \in A$.
d) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.

e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.	
Question 4	
Your answer is CORRECT.	
Given two sets A and B one can prove $A \subseteq B$ by	
a) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.	
b) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.	
c) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$.	
d) \bigcirc First supposing $x \notin A$, and then showing $x \notin B$.	
e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.	
Question 5	
Your answer is INCORRECT.	
A lovely little proof is presented below:	
Proposition. The empty set is a subset of every set.	
Determine the type of proof used.	
a) A proof by indoctrination was used.	
b) A proof by contradiction was used.	
c) A proof by contrapositive was used.	
d) A direct proof was used.	
e) Wait a minute This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points.	
Question 6	
Your answer is CORRECT.	
A proposition and an attempt at its proof are presented below.	
Proposition. The sum of an odd integer and an even integer is odd.	
Proof. (Direct) (1) Suppose $x, y \in \mathbb{Z}$ are integers. (2) We can assume x is odd and that y is even. (3) Since x is odd, it follows that $\exists y \in \mathbb{Z}, x = 2y + 1$. (4) Since y is even, it follows that $\exists m \in \mathbb{Z}, y = 2m$. (5) We now have $x + y = (2y + 1) + y = 3y + 1 = 3(2m) + 1 = 2(3m) + 1$. (6) Because $x + y$ has the form of an odd number it is odd. \square	

Identify the mistake, if any, in this proof.

- a) \bigcirc There is an error in Line (1) since we cannot simply assume $x, y \in Z$.
- b) There is an error in Line (4) since where the definition of "even" is misapplied.
- c) There is an error in Line (3) where the variable name "y" is used when this name already refers to a different variable.
- d) There is an error in Line (2) since we do not know which integer is odd or even.
- e) There is an algebraic mistake in Line (5).

Question 7

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. x is a multiple of $3 \iff (x+1)(x+2)-2$ is also a multiple of 3.

Proof. There are two parts or cases to prove.

- $(\Rightarrow Direct)$
- (1) Suppose x = 3m for some $m \in \mathbb{Z}$.
- (2) Since 3 is prime this means x is a multiple of a prime.
- (3) It follows that $(x+1)(x+2) 2 = (x^2 + 3x + 2) 2 = x^2 + 3x = (3m)^2 + 3 \cdot 3m = 9m^2 + 9m = 3(3m^2 + 3m)$, which is a multiple of 3.
- (⇐ By Contradiction)
- (4) For a contradiction suppose (x+1)(x+2)-2 is multiple of 3, but that x is not a multiple of 3.
- (5) Multiplying out this expression and combining like terms tells us (x+1)(x+2)-2= $x^2+3x=3b$ for some $b\in\mathbb{Z}$.
- (6) From this equation we find $x^2 = 3b 3x = 3(b x)$ and so x^2 is a multiple of 3.
- (7) Since x is not a multiple of 3, it follows that x^2 is not a multiple of 3.
- (8) Therefore x^2 is a multiple of 3 and x^2 is not a multiple of 3. $\Rightarrow \Leftarrow$

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only line (2) is not needed. All other lines are needed.
- **b)** All lines are needed.
- c) Only line (3) is not needed. All other lines are needed.
- d) Only line (4) is not needed. All other lines are needed.
- e) Only line (5) is not needed. All other lines are needed.

Question 8

Your answer is CORRECT.

Suppose we want to write a direct proof of the proposition below:

 $\forall x \in \mathbb{Z}, x^3 - x \text{ is a multiple of 3.}$

Which of the following statements or properties do we need to use when composing this proof?

- a) \bigcirc A case where $x \in R Z$.
- **b)** \odot A case where x = 2k is even, and x = 2k is plugged into $x^3 x$.
- The definition of rational number.
- d) The definition of rational number.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true.

$$\forall n \in \mathbb{N}, 1+2+\dots+n = \frac{n(n+1)}{2}$$

 $\forall \ n \in \mathbb{N}, \ 1+2+\dots+n=\frac{n(n+1)}{2}.$ Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) We need only check that the claim is true for one, single natural number.
- b) Nothing can describe an accurate proof strategy since this proposition is false.
- e) \odot We need to show the claim is true for an abitrary natural, saying something like "Let $n \in N$."