

THE CHINESE UNIVERSITY OF HONG KONG, SHENZHEN

## CSC4120

DESIGN AND ANALYSIS OF ALGORITHMS

# Party Together Problem

Author 1: Kangqi Yu
Student ID: 121090735
Author 2: Yuzhe Yang
Student ID: 121090684
Author 3: Haoqi Zhang
Student ID: 121090766

May 19, 2024

## 1 PTP Approaches

The pseudo-code of our solution will illustrated in Algorithm 1.

#### 1.1 Environment

To install these dependencies:

```
pip install ortools
pip install networkx
```

### 1.2 Implementation

#### Initialization

We start by initializing the tour with the starting point, which is our house located at node 0. The pick-up locations dictionary such that each friend's pick-up location is initially set to their home. The initial tour T includes node 0 followed by all pick-up locations and ends at node 0. Then we compute the shortest paths between all pairs of nodes using the Floyd-Warshall algorithm. This dictionary is essential for quickly evaluating potential routes and costs.

In order to find the optimal solution, we define a function compute\_cost that calculates both the driving cost and walking cost of a given tour and pick-up locations dictionary.

#### Iteration

We iteratively improve the tour and pick-up locations by exploring potential reassignments of friends to different pick-up locations. A priority queue is used to evaluate the cost of assigning each friend to each candidate pick-up location. In each iteration, the priority queue will pop the friend and candidate pick-up location with the lowest cost, and we will reassign the friend to that location if it results in a lower total cost.

Once the new pick-up locations are updated, we solve a TSP on the pick-up locations to determine the optimal tour using ortools.

#### TSP Solver

The solver begins by creating a routing index manager to map node indices to routing variable indices. Subsequently, a routing model is instantiated, and a  $distance_callback$  function is registered to compute distances between nodes. Arc costs are then defined, and a heuristic strategy is set for the optimization process. The solver returns a list containing the optimal path, representing the optimal solution to the TSP. After that, we will re-compute the cost of this tour. If it is a better solution, the tour T and pick-up location will be updated, and the algorithm proceeds to the next iteration.

#### Final Tour Adjustment

To ensure the final tour only includes existing edges in the graph, we adjust the tour by replacing any non-existent edges with the shortest path between the respective nodes. This guarantees that the tour adheres to the constraints of the problem.

## 2 Theoretical Questions

### 2.1 Question 5.1

To show that PTP is NP-hard, we can find values for  $\alpha$  for which PHP = PTP, since  $0 \le \alpha \le 1$ , we can use  $\alpha = 0$ , when  $\alpha = 0$ , that means any walking cost will result in a total cost that larger than 0. So we need to make the total cost consist of driving costs, which will finally cost 0. So when  $\alpha$  equals 0, PHP = PTP, which means the solution of PHP is obtained by solving PTP. Since PHP is known as NP-hard, then PTP is also NP-hard.

### 2.2 Question 5.2

First, we will show that the cost of PHP is at most twice that of the optimal solution. Just think of an optimal solution as  $C_{ptpopt} = \alpha \sum_{i=1}^n w_{u_{i-1}u_i} + \sum_{m=0}^{|F|-1} d_{p_mh_m}$ . We can let all our friends not walk and stay home. The cost will be  $C_0 = \alpha \sum_{i=1}^n w_{u_{i-1}u_i} + 2\alpha \sum_{m=0}^{|F|-1} d_{p_mh_m}$ , which is less or equal (equality holds when  $\alpha = 1$  and  $\sum_{i=1}^n w_{u_{i-1}u_i} = 0$ ) than 2 times of the optimal from PTP (for  $\alpha$  is in (0, 1) and all weights are positive). As the optimal of PHP is less than the above cost (for the above cost is one of the candidates in PHP),  $C_{php} \leq C_0 \leq 2C_{ptpopt}$ . So, the cost of PHP is at most twice that of the optimal solution. The equality holds when there is only one friend; it is connected with the source, and  $\alpha = 1$ , which means the bound is tight.

end while

## Appendix: PTP Solver Algorithm

### Algorithm 1 PTP Solver Algorithm Initialize tour T with starting point 0 Compute shortest paths between all nodes, store in DInitialize pick-up locations dictionary P with each friend's home as their pick-up location Create initial tour T including all pick-up locations and returning to start $improvement \leftarrow True$ while improvement == True doCompute the current best cost: c Create an empty priority queue qfor each friend f do for each candidate pick-up location $f_{\text{candidate}}$ do Compute cost $c(f \to f_{\text{candidate}})$ of assigning f to $f_{\text{candidate}}$ Push $(c(f \to f_{\text{candidate}}), f, f_{\text{candidate}})$ to q end for end for while q is not empty do Pop the assignment $(c_{\min}, f_{\min}, f_{\text{candidate}})$ from qCreate a new pick-up locations dictionary $P_{\text{new}}$ based on $f_{\text{min}}$ Create a new tour $T_{\text{new}}$ based on $P_{\text{new}}$ $T_{\text{new}} \leftarrow \text{TSP\_Solver}(T) \{ \text{Solve TSP for the new tour} \}$ Compute the new cost: $c_{\text{new}}$ if $c_{\text{new}} \leq c$ then Update best cost, tour, and pick-up locations Set $improvement \leftarrow True$ break end if end while Set $improvement \leftarrow$ False {If no improvement found in this iteration}