

# MACM 101 - Fall, 2024

|       |                         |                                      |          | View All   🛂            | 🗓   🌉 First | 1-11 of 11 🕟 Last           |
|-------|-------------------------|--------------------------------------|----------|-------------------------|-------------|-----------------------------|
|       | Class                   | Class Title                          | Enrolled | Days & Times            | Room        | Class Dates                 |
| ñ     | CMPT 276-D300<br>(7478) | Intro Software Engineering (Lecture) | 100      | Mo 12:30PM - 1:20PM     | AQ3149      | Sep 4, 2024-<br>Dec 3, 2024 |
|       |                         |                                      |          | We 12:30PM - 2:20PM     | AQ3149      | Sep 4, 2024-<br>Dec 3, 2024 |
| å     | MACM 101-D100<br>(6211) | Discrete Math I (Lecture)            | 151      | MoWeFr 9:30AM - 10:20AM | B9201       | Sep 4, 2024-<br>Dec 3, 2024 |
| ñ     | MACM 101-D101<br>(6365) | Discrete Math I (Tutorial)           | 25       | Fr 10:30AM - 11:20AM    | AQ5039      | Sep 4, 2024-<br>Dec 3, 2024 |
| ñ     | MACM 101-D102<br>(6366) | Discrete Math I (Tutorial)           | 25       | Fr 10:30AM - 11:20AM    | BLU10901    | Sep 4, 2024-<br>Dec 3, 2024 |
| ñ     | MACM 101-D103<br>(6367) | Discrete Math I (Tutorial)           | 25       | Fr 11:30AM - 12:20PM    | AQ5039      | Sep 4, 2024-<br>Dec 3, 2024 |
| n n   | MACM 101-D104<br>(6368) | Discrete Math I (Tutorial)           | 25       | Fr 11:30AM - 12:20PM    | BLU10901    | Sep 4, 2024-<br>Dec 3, 2024 |
| a fil | MACM 101-D105<br>(6369) | Discrete Math I (Tutorial)           | 22       | Fr 12:30PM - 1:20PM     | AQ5039      | Sep 4, 2024-<br>Dec 3, 2024 |
| Si    | MACM 101-D106<br>(6370) | Discrete Math I (Tutorial)           | 7        | Fr 12:30PM - 1:20PM     | BLU10901    | Sep 4, 2024-<br>Dec 3, 2024 |
| ñ     | MACM 101-D107<br>(6371) | Discrete Math I (Tutorial)           | 18       | Fr 1:30PM - 2:20PM      | AQ5039      | Sep 4, 2024-<br>Dec 3, 2024 |
| ñ     | MACM 101-D108<br>(6372) | Discrete Math I (Tutorial)           | 4        | Fr 1:30PM - 2:20PM      | BLU10901    | Sep 4, 2024-<br>Dec 3, 2024 |

# MACM 101 - Fall, 2024

|       |                         | Charles III                            | Culhina | View All                        | 7 First  | 1-11 of 11 Las              |
|-------|-------------------------|----------------------------------------|---------|---------------------------------|----------|-----------------------------|
|       | PMPT 276-0300           | Class Title Intro Software Engineering | 100     | Days & Times Mo 12:30PM -1:20PM | AQ3149   | Class Dates<br>Sep 4, 2024  |
|       | Find                    | your tut                               | oria    | al section o                    | n GoS    | FpU024-<br>Dec 3, 2024      |
| X     | MACM 101-D100<br>(6211) | Discrete Math I (Lecture)              | 151     | MoWeFr 9:30AM - 10:20AM         | B9201    | Sep 4, 2024-<br>Dec 3, 2024 |
| å     | MACM 101-D101<br>(6365) | Discrete Math I (Tutorial)             | 25      | Fr 10:30AM - 11:20AM            | AQ5039   | Sep 4, 2024-<br>Dec 3, 2024 |
| å     | MACM 101-D102<br>(6366) | Discrete Math I (Tutorial)             | 25      | Fr 10:30AM - 11:20AM            | BLU10901 | Sep 4, 2024-<br>Dec 3, 2024 |
| S.    | MACM 101-D103<br>(6367) | Discrete Math I (Tutorial)             | 25      | Fr 11:30AM - 12:20PM            | AQ5039   | Sep 4, 2024-<br>Dec 3, 2024 |
| n's   | MACM 101-D104<br>(6368) | Discrete Math I (Tutorial)             | 25      | Fr 11:30AM - 12:20PM            | BLU10901 | Sep 4, 2024-<br>Dec 3, 2024 |
| Si A  | MACM 101-D105<br>(6369) | Discrete Math I (Tutorial)             | 22      | Fr 12:30PM - 1:20PM             | AQ5039   | Sep 4, 2024-<br>Dec 3, 2024 |
| Sin.  | MACM 101-D106<br>(6370) | Discrete Math I (Tutorial)             | 7       | Fr 12:30PM - 1:20PM             | BLU10901 | Sep 4, 2024-<br>Dec 3, 2024 |
| å     | MACM 101-D107<br>(6371) | Discrete Math I (Tutorial)             | 18      | Fr 1:30PM - 2:20PM              | AQ5039   | Sep 4, 2024-<br>Dec 3, 2024 |
| a fil | MACM 101-D108<br>(6372) | Discrete Math I (Tutorial)             | 4       | Fr 1:30PM - 2:20PM              | BLU10901 | Sep 4, 2024-<br>Dec 3, 2024 |

No tutorials during the first week.

## Instructor: Dr. Steven Pearce

- Theoretical astrophysicist and applied mathematician.
- Faculty Member of the School of Computing Science at Simon Fraser University for twenty-five years.
- Graduate Advisor for Department of Mathematics, SFU (2010-2012).
- Visiting Professor of Mathematics at IIIT-Allahabad, India, 2015.
- Developing the academic program in Quantum Computing in the School of Computing Science in collaboration with the Departments of Physics, Mathematics and Engineering in an interdisciplinary initiative as part of the SFU Quantum Algorithms Institute.

SFU Receives \$17 Million To Establish Quantum Algorithms Institute

HOME » NEWS » SFU RECEIVES \$17 MILLION TO ESTABLISH QUANTUM ALGORITHMS INSTITUTE



## **Areas of Research:**

Computational-Fluid-Mechanics, -Magneto-Fluid-Mechanics, High Energy Astrophysics, Spectral Methods in PDEs, and Quantum Error Correction.



- Instructor: Dr. Steven Pearce
  - Office hours; one hour after Monday's class.
- TAs:
  - Ali Alimohammadi <aaa223@sfu.ca>,
  - Swaifa Haque <<u>sha392@sfu.ca</u>>,
  - Danush Adhitya Muthuvel <<u>dam18@sfu.ca</u>>,
  - Yarui Qiu <u>yqa39@sfu.ca</u>
  - Office hours: Your tutorial section is your office hour.

# Learning Outcomes

#### "At the end of this course, students should be able to . . . "

- Solve basic counting problems involving permutations and combinations;
- Construct and manipulate sets, both finite and infinite, and apply the Inclusion-Exclusion Principle to counting problems;
- Use logical connectives and quantifiers in mathematical arguments;
- Prove the validity of arguments employing rules of logical inference;
- Use mathematical induction in simple proofs;
- Introduce recursively defined sets and their relationship to mathematical induction;
- Define relations and functions using set theory;
- Manipulate functions and relations and determine their common properties;
- Solve problems and prove theorems related to basic number theory;
- Explain basic terminology of graphs and trees including traversals of rooted trees;
- Introduce basic graph and tree algorithms.

## **Course Description**

## Discrete Mathematics I MACM 101 (3)

Introduction to graph theory, trees, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent), or any of MATH 100, 150, 151, 154, 157. Quantitative/Breadth-Science.

| Section | Instructor   | Day/Time                                   | Location |
|---------|--------------|--------------------------------------------|----------|
| D100    | Steve Pearce | May 6 - Aug 2, 2024: Tue, 10:30-11:20 a.m. | Burnaby  |
|         |              | May 6 – Aug 2, 2024: Thu, 9:30–11:20 a.m.  | Burnaby  |

Show lab/tutorial sections

## **Required Textbook:**



#### **Table of Contents:**

- Preface
- The MathZone Companion Website
- · To the Student
- . 1. The Foundations: Logic and Proofs
- · 2. Basic Structures: Sets, Functions, Sequences and Sums
- 3. The Fundamentals: Algorithms, the Integers, and Matrices
- · 4. Induction and Recursion
- 5. Counting
- · 6. Discrete Probability
- · 7. Advanced Counting Techniques
- 8. Relations
- 9. Graphs
- 10. Trees
- 11. Boolean Algebra
- 12. Modeling Computation



Supplementary

Course Website: I no longer maintain a website, as everything is on Canvas.

Always refer to this ADMIN presentation for your tentative schedule of lectures (next slide).

## Tentative Course Outline (Rosen-based)

| Weeks     | Topic                                                   | Chapters | Assignments  |
|-----------|---------------------------------------------------------|----------|--------------|
| 1         | Introduction and background, elementary logic           | 1 and 2  |              |
| 2         | Elementary logic continued (1.1 – 1.8)                  | 2        |              |
| 3         | Set theory, inclusion/exclusion (2.1 – 2.5, 8.5)        | 2, 8.5   | Assignment 1 |
| 4         | Algorithms and functions (3.1 – 3.3)                    | 3        |              |
| 5         | Number theory (4.1, 4.3, 4.4)                           | 4        | Assignment 2 |
| 6         | MIDTERM #1; Induction and recursion (5.1 – 5.3)         | 5        |              |
| 7         | Combinatorics                                           | 6        | Assignment 3 |
| 8         | Combinatorics continued (6.1 – 6.6)                     | 6        |              |
| 9         | Relations (9.1 – 9.6)                                   | 9        | Assignment 4 |
| 10        | MIDTERM #2; Graphs and trees (10.1 – 10.2, 11.1 – 11.4) | 10       |              |
| 11 and 12 | Trees continued and review                              | 11       |              |

We cover roughly one section per lecture, so please keep up.

### FALL TERM (SEPTEMBER-DECEMBER 2024)

| September 2   | Labour Day<br>University closed                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| September 3   | Welcome Day                                                                                                                |
| September 4   | Classes start                                                                                                              |
| September 30  | National Day for Truth and Reconciliation All classes cancelled and university closed                                      |
| October 10-11 | Convocation                                                                                                                |
| October 14    | Thanksgiving Day All classes cancelled and university closed                                                               |
| October 15    | Monday, October 14 classes are rescheduled to Tuesday, October 15; Tuesday classes scheduled for October 15 are cancelled. |
| November 11   | Remembrance Day All classes cancelled and university closed                                                                |
| December 3    | Last day of classes                                                                                                        |
| December 5-17 | Exams                                                                                                                      |

# Grading

- Homework
- Two Midterms
  - Midterm #1: Sixth week (Oct. 9)
  - Midterm #2: Tenth week (Nov. 6)
- Final Examination (TBA)

- 10%
- 25% each

- 40%

# Format of Lectures

- Topics are
  - introduced with PPTs,
  - All PPTs will be posted on Canvas to the class in PDF format.
- The lectures are intended to guide you through the textbook.
- PLEASE READ THE TEXTBOOK.

 All assignments must be completed and handed in for a passing grade.

- All assignments must be completed and handed in for a passing grade.
- It is the student's responsibility to keep track of his/her performance using courses.cs.sfu.ca.

- All assignments must be completed and handed in for a passing grade.
- It is the student's responsibility to keep track of his/her performance using courses.cs.sfu.ca.
- Assignments and examinations will be open to review for one week only.

- All assignments must be completed and handed in for a passing grade.
- It is the student's responsibility to keep track of his/her performance using courses.cs.sfu.ca.
- Assignments and examinations will be open to review for one week only.
- Be aware of the fact that the first midterm date is around the last day to drop classes.

- All assignments must be completed and handed in for a passing grade.
- It is the student's responsibility to keep track of his/her performance using courses.cs.sfu.ca.
- Assignments and examinations will be open to review for one week only.
- Be aware of the fact that the first midterm date is around the last day to drop classes.
- Plagiarism will result in harsh penalties.

# Sample Midterms (based on Grimaldi)

#### SFU – School of Gadget Science Midterm #1: February 5<sup>th</sup>, 2014 AD

- State the truth value of each of the following statements to the right of each one (T, F, or N for "no truth value") [1/2 point each]:
  - a) The number of rows of a truth table scales as  $2^n$ , where n is the number of primitive variables
  - b)  $0 = 1 \rightarrow 1 = 1$ .
  - c)  $1 + 1 = \infty$  iff division by zero is undefined.
  - d) The number, x, is an integer
- 2) Prove that  $(q \to p) \Leftrightarrow (\neg p \to \neg q)$  both with and without truth tables. What are these statements called relative to the statement  $p \to q$ ? [3]
- 3) How many nonnegative integer solutions are there to the pair:

$$x_1 + x_2 + ... + x_7 = 37$$
 and  $x_1 + x_2 + x_3 = 6$ ?

How many solutions above have  $x_1, x_2, x_3 > 0$ ? [4]

- 4) Show that for all positive integers,  $n\binom{m+n}{m} = (m+1)\binom{m+n}{m+1}$ . [4]
- Prove statement 1b) above algebraically, vacuously, and trivially. [3]
- 6) a) In how many ways can the letters in DATAGRAM be arranged? [1] b) In the arrangements in a), how many have all three A's together? [2]
- 7) State Pascal's formula and prove it both combinatorially and algebraically. [6]
- 8) BONUS QUESTION [2] Recall Vandermonde's Identity,

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}.$$

Prove the corollary

If n is a nonnegative integer, then

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

#### SFU – School of Computing Science Midterm #2: July 10<sup>th</sup>, 2013

| Nan     | ne:                                                                                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------|
| ID:     |                                                                                                                         |
| Fill in | the blank [1 point each up to and including problem 8]:                                                                 |
| 1.      | A trivial proof relies upon                                                                                             |
| 2.      | allows one to prove many of both the laws of logic and the laws of set theory in <i>pairs</i> rather than individually. |
| 3.      | An argument that reasons about more general new knowledge from a small number of given facts or observations is called  |
| 4.      | What rule or rules of inference is mathematical induction based upon?                                                   |
| 5.      | A primitive valid argument form is called                                                                               |
| 6.      | State the Principle of Inclusion/Exclusion for three sets:                                                              |
|         |                                                                                                                         |
| 7.      | The basis step of the inductive proof of the statement of Fibonacci numbers,                                            |
|         | $f_1 + f_2 + \dots + f_{2n-1} = f_{2n}, \ \forall n \in \mathbb{Z}^+$                                                   |
| 8.      | What principle allows one to immediately write down the corresponding Commutative Law for $A \cup B = B \cup A$ :       |
|         |                                                                                                                         |

 [6] Prove the following theorem a) directly, b) contrapositively, and c) by contradiction:

Theorem: If m is an even integer, then m + 7 is odd.

- 10. [1+3] Let A and B be sets from some universe U. State a quantified definition of A ⊂ B and then use this to derive a quantified expression for A ⊄ B.
- 11. [5] Prove Bernoulli's Inequality; namely:

If 
$$h > -1$$
, then  $(1 + nh) \le (1 + h)^n$ ,  $\forall n \in \mathbb{N}$ 

- 12. [5] Prove the Distributive Laws for Set Theory
- 13. [2] Prove the following expression directly without mathematical induction (HINT: consider the first proof done in class)

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

TOTAL POINTS = 30

## Grades from Previous Semesters



This is what you can expect. Do not be discouraged. Hard work will and commitment is required. If you do not survive this term, keep trying and you will eventually prevail.

