Progressive Isolette AADL Models¹

Version No.	Description							
01	Empty Isolette system type with two implementations							
02	Minimally defined Thermostat subsystem added as Isolette subcomponent							
03	Minimally defined physical devices added as Isolette subcomponents							
04	System & device interfaces defined, but left untyped							
05	System & device interfaces typed with modeled data entities							
06	Intra-system connections made among subcomponents							
07	Use of enumerated & range composite data entities							
08	Abstract Air component in role as controlled block of Isolette control loop							
09	Software for Thermostat regulating & monitoring control functionality							
10	Operator Interface with temperature settings, display & alarm devices							
11	Software for regulating & monitoring interface, mode, & failure functionality							

Isolette Context Diagram

¹ Models have been added to the 890-isolette Git repository.

The AADL Models

Version 01: Empty Isolette system type with two implementations

Isolette.aadl (single sensor)	Isolette.aadl (dual sensor)					
<pre>system isolette end isolette;</pre>	<pre>system isolette end isolette;</pre>					
<pre>system implementation isolette.single_sensor end isolette.single_sensor;</pre>	<pre>system implementation isolette.dual_sensor end isolette.dual_sensor;</pre>					

Version 02: Minimally defined Thermostat subsystem added as Isolette subcomponent

```
system isolette
end isolette;

system implementation isolette.single_sensor
    subcomponents
    thermostat: system thermostat_single_sensor.impl;
end isolette.single_sensor;

system thermostat_single_sensor
end thermostat_single_sensor;

system implementation thermostat_single_sensor.impl
end thermostat_single_sensor.impl;
```


Version 03: Minimally defined physical devices added as Isolette subcomponents

Isolette.aadl	Devices.aadl					
<pre>system isolette end isolette;</pre>	<pre>device heat_source end heat_source;</pre>					
<pre>system implementation isolette.single_sensor subcomponents thermostat: system thermostat_single_sensor.impl; heat_source: device Devices::heat_source.impl;</pre>	<pre>device implementation heat_source.impl end heat_source.impl;</pre>					
<pre>temp_sensor: device Devices::temp_sensor.impl; end isolette.single_sensor;</pre>	<pre>device temp_sensor end temp_sensor;</pre>					
	<pre>device implementation temp_sensor.impl end temp_sensor.impl;</pre>					

Version 04: System & device interfaces defined, but left untyped

Isolette.aadl	Devices.aadl						
<pre>system isolette features heat_loss: out data port; end isolette;</pre>	<pre>device heat_source features on_heater: in event data port; heater_output: out data port; end heat_source;</pre>						
<pre>system thermostat_single_sensor features air_temp: in data port; on_heater: out event data port; on_alarm: out event data port; end thermostat single sensor;</pre>	<pre>device temperature_sensor features air_heat: in data port; air_temp: out data port; end temperature sensor;</pre>						

Version 05: System & device interfaces typed with modeled data entities

Devices.aadl	Iso_Types.aadl
device heat_source features	data heat properties
<pre>on_heater: in event data port Base_Types::</pre>	<pre>Data_Model::Data_Representation => Float; Data_Model::Measurement_Unit => "KJoule";</pre>
<pre>heater_output: out data port Iso_Types::</pre>	end heat;
<pre>end heat_source;</pre>	
	data temperature properties
device temperature_sensor	<pre>Data_Model::Data_Representation => Float;</pre>
features	<pre>Data_Model::Measurement_Unit =></pre>
<pre>air_heat: in data port Iso_Types::heat;</pre>	"Fahrenheit";
<pre>air_temp: out data port Iso_Types::</pre>	end temperature;
end temperature_sensor;	

Version 06: Intra-system connections made among subcomponents

```
Isolette.aadl

system implementation isolette.single_sensor
    subcomponents
    thermostat: system thermostat_single_sensor.impl;
    heat_source: device Devices::heat_source.impl;
    temp_sensor: device Devices::temperature_sensor.impl;

connections
    t1: port temp_sensor.air_temp -> thermostat.air_temp;
    t2: port thermostat.on_heater -> heat_source.on_heater;

h1: port heat_source.heater_output -> temp_sensor.air_heat;
    h2: port heat_source.heater_output -> heat_loss; -- No place to go!
end isolette.single_sensor;
```


Version 07: Use of enumerated & range composite data entities

```
Iso_Types.aadl
data sensed temperature
 properties
 Data Model::Data Representation => Struct;
 Data Model::Element Names => ("temp","valid");
 Data_Model::Base_Type => (classifier (sensed_temperature_range), classifier (valid_flag));
end sensed_temperature;
data valid_flag
 properties
   Data_Model::Data_Representation => Enum;
   Data_Model::Enumerators => ("Invalid","Valid");
end valid_flag;
data sensed_temperature_range
 properties
   Data_Model::Real_Range => 68.0 .. 105.0;
    Data_Model::Measurement_Unit => "Fahrenheit";
end sensed_temperature_range;
```


Version 08: Abstract Air component in role as controlled block of Isolette control loop

Isolette.aadl	Isolette.aadl						
<pre>system implementation isolette.single_sensor subcomponents</pre>	abstract air_to_heat features						
heated_air: abstract air_to_heat.impl;	<pre>heat_source: in data port Iso_Types::heat; heat_sink: out data port Iso_Types::heat; end air to heat;</pre>						
connections	cha all _co_heat,						
<pre>h1: port heat_source.heater_output -></pre>	<pre>abstract implementation air_to_heat.impl Model continuous behavior w/hybrid annex. connections h1: port heat_source -> heat_sink; end air_to_heat.impl;</pre>						
•••							

Version 09: Software for Thermostat regulating & monitoring control functionality

```
Regulate.aadl
process regulate_temperature
  features
    current_temp: in data port Iso_Types::sensed_temperature;
    on_heater: out event data port Iso_Types::on_off;
end regulate_temperature;
process implementation regulate_temperature.impl
  subcomponents
   manage_heat_source: thread manage_heat_source.impl;
  connections
   c1: port current_temp -> manage_heat_source.current_temp;
   c2: port manage_heat_source.on_heater -> on_heater;
end regulate_temperature.impl;
thread manage_heat_source
  features
    current_temp: in data port Iso_Types::sensed_temperature;
    on_heater: out event data port Iso_Types::on_off;
end manage_heat_source;
thread implementation manage heat source.impl
end manage heat source.impl;
```


Version 10: Operator Interface with temperature settings, display & alarm devices

```
Isolette.aadl
system implementation isolette.single_sensor
  subcomponents
    thermostat: system thermostat_single_sensor.impl;
    heat_source: device Devices::heat_source.impl;
    temp_sensor: device Devices::temperature_sensor.impl;
    heated_air: abstract air_to_heat.impl;
    fail_alarm: device Devices::failure_alarm.impl;
    op_interface: system operator_interface.impl;
  connections
    t1: port temp_sensor.air_temp -> thermostat.air_temp;
    t2: port thermostat.on_heater -> heat_source.on_heater;
    t3: port thermostat.on_alarm -> fail_alarm.on_alarm;
    h1: port heat_source.heater_output -> temp_sensor.air_heat;
    h2: port heat_source.heater_output -> heated_air.heat_source;
    h3: port heated_air.heat_sink -> heat_loss;
    o1: port op interface.lower desired temp -> thermostat.lower desired temp;
    o2: port op_interface.upper_desired_temp -> thermostat.upper_desired_temp;
    o3: port op_interface.lower_alarm_temp -> thermostat.lower_alarm_temp;
    o4: port op_interface.upper_alarm_temp -> thermostat.upper_alarm_temp;
    o5: port thermostat.display_temp -> op_interface.display_temp;
    o6: port thermostat.reg_status -> op_interface.reg_status;
    o7: port thermostat.mon_status -> op_interface.mon_status;
end isolette.single_sensor;
```


Version 10: Thermostat details

```
Isolette.aadl
system implementation thermostat_single_sensor.impl
 subcomponents
   regulate temp: process Regulate::regulate temperature.impl;
   monitor_temp: process Monitor::monitor_temperature.impl;
   r1: port air_temp -> regulate_temp.current_temp;
   r2: port regulate_temp.on_heater -> on_heater;
   m1: port air_temp -> monitor_temp.current_temp;
   m2: port monitor_temp.on_alarm -> on_alarm;
    d1: port lower_desired_temp -> regulate_temp.lower_desired_temp;
    d2: port upper_desired_temp -> regulate_temp.upper_desired_temp;
    a1: port lower_alarm_temp -> monitor_temp.lower_alarm_temp;
   a2: port upper_alarm_temp -> monitor_temp.upper_alarm_temp;
    c1: port regulate_temp.op_status -> reg_status;
    c2: port monitor_temp.op_status -> mon_status;
    c3: port regulate_temp.op_temp -> display_temp;
end thermostat_single_sensor.impl;
```


Version 10: Operator Interface devices

```
MapIsolette.aadl (implementation)
system operator_interface
  features
    display_temp: in data port Iso_Types::sensed_temperature;
    reg_status: in data port Iso_Types::op_status;
    mon_status: in data port Iso_Types::op_status;
    lower_desired_temp: out data port Iso_Types::lower_desired_temperature;
    upper_desired_temp: out data port Iso_Types::upper_desired_temperature;
    lower_alarm_temp: out data port Iso_Types::lower_alarm_temperature;
    upper alarm temp: out data port Iso Types::upper alarm temperature;
end operator_interface;
system implementation operator_interface.impl
  subcomponents
    temp display: device Devices::temperature display.impl;
    status display: device Devices::status display.impl;
    desired set: device Devices::desired setter;
    alarm_set: device Devices::alarm_setter;
  connections
    t1: port display_temp -> temp_display.air_temp;
    s1: port reg_status -> status_display.reg_status;
    s2: port mon_status -> status_display.mon_status;
    d1: port desired_set.lower_desired_temp -> lower_desired_temp;
    d2: port desired_set.upper_desired_temp -> upper_desired_temp;
    a1: port alarm_set.lower_alarm_temp -> lower_alarm_temp;
    a2: port alarm_set.upper_alarm_temp -> upper_alarm_temp;
end operator_interface.impl;
```


Version 11: Software for regulating & monitoring interface, mode, & failure functionality

```
Isolette.aadl
system implementation isolette.single_sensor
 subcomponents
    thermostat: system thermostat single sensor.impl;
    heat_source: device Devices::heat_source.impl;
   temp_sensor: device Devices::temperature_sensor.impl;
   heated_air: abstract air_to_heat.impl;
   fail alarm: device Devices::failure_alarm.impl;
    op_interface: system operator_interface.impl;
  connections
   t1: port temp sensor.air temp -> thermostat.air temp;
   t2: port thermostat.on heater -> heat source.on heater;
   t3: port thermostat.on_alarm -> fail_alarm.on_alarm;
   h1: port heat_source.heater_output -> temp_sensor.air_heat;
   h2: port heat_source.heater_output -> heated_air.heat_source;
   h3: port heated_air.heat_sink -> heat_loss;
   o1: port op_interface.lower_desired_temp -> thermostat.lower_desired_temp;
    o2: port op_interface.upper_desired_temp -> thermostat.upper_desired_temp;
    o3: port op_interface.lower_alarm_temp -> thermostat.lower_alarm_temp;
   o4: port op_interface.upper_alarm_temp -> thermostat.upper_alarm_temp;
    o5: port thermostat.display_temp -> op_interface.display_temp;
    o6: port thermostat.reg_status -> op_interface.reg_status;
    o7: port thermostat.mon_status -> op_interface.mon_status;
end isolette.single_sensor;
```


Version 11: Software for regulating & monitoring interface, mode, & failure functionality

```
Isolette.aadl
system operator interface
    display temp: in data port Iso Types::sensed temperature;
    reg_status: in data port Iso_Types::op_status;
    mon_status: in data port Iso_Types::op_status;
    lower_desired_temp: out data port Iso_Types::lower_desired_temperature;
    upper_desired_temp: out data port Iso_Types::upper_desired_temperature;
    lower_alarm_temp: out data port Iso_Types::lower_alarm_temperature;
    upper_alarm_temp: out data port Iso_Types::upper_alarm_temperature;
end operator_interface;
system implementation operator_interface.impl
  subcomponents
   temp_display: device Devices::temperature_display.impl;
    status_display: device Devices::status_display.impl;
    desired_set: device Devices::desired_setter;
    alarm_set: device Devices::alarm_setter;
  connections
   t1: port display_temp -> temp_display.air_temp;
    s1: port reg_status -> status_display.reg_status;
    s2: port mon_status -> status_display.mon_status;
    d1: port desired_set.lower_desired_temp -> lower_desired_temp;
    d2: port desired_set.upper_desired_temp -> upper_desired_temp;
    a1: port alarm_set.lower_alarm_temp -> lower_alarm_temp;
    a2: port alarm_set.upper_alarm_temp -> upper_alarm_temp;
end operator_interface.impl;
```


Version 11: Software for regulating & monitoring interface, mode, & failure functionality

```
Isolette.aadl
system implementation thermostat_single_sensor.impl
 subcomponents
   regulate_temp: process Regulate::regulate_temperature.impl;
   monitor_temp: process Monitor::monitor_temperature.impl;
 connections
   r1: port air_temp -> regulate_temp.current_temp;
   r2: port regulate_temp.on_heater -> on_heater;
   m1: port air_temp -> monitor_temp.current_temp;
   m2: port monitor_temp.on_alarm -> on_alarm;
   d1: port lower_desired_temp -> regulate_temp.lower_desired_temp;
    d2: port upper_desired_temp -> regulate_temp.upper_desired_temp;
    a1: port lower_alarm_temp -> monitor_temp.lower_alarm_temp;
    a2: port upper_alarm_temp -> monitor_temp.upper_alarm_temp;
   c1: port regulate_temp.op_status -> reg_status;
   c2: port monitor_temp.op_status -> mon_status;
   c3: port regulate_temp.op_temp -> display_temp;
end thermostat_single_sensor.impl;
```


Version 11: Software for regulating interface, mode, & failure functionality

Version 11: Software for monitoring interface, mode, & failure functionality

Isolette.aadl	

Isolette Modeling Versions, Branches & Analyses

#	System Features	AADL Concepts	prop	flow	EMv2	НуА	Late	FME A	FTA	FIA	FHA	RBD	Com	UnH	MDC F
01	skeletal Isolette type; single & dual impls.	system type & implementations													
02	skeletal Thermostat	system subcomponents													
03	skeletal physical devices	actuator (device) subcomponents													
04	untyped interfaces	port declarations													
05	types & typed interfaces	port definitions & data modeling													
06	intra-system connections	system & device port connections		х											
07	enumerated & composite types	data modeling		х											
08	Air component controlled block	abstract type & implementation		х	х	Х									
09	Thermostat control functions	processes & threads	х	х	х	х									
10	Operator Interface & physical devices	modeling tradeoffs	х	X	Х	х									
11	Thermostat interface, mode, & failure function	thread interactions	x	x	х	x									
12	Full REMH	shared data	х	х	х	Х									

EMv2 Property Set

```
EMv2::Hazards
Hazards: list of record
  CrossReference: aadlstring; -- cross reference to an external document
 HazardTitle: aadlstring; -- short descriptive phrase for hazard
Description: aadlstring; -- description of the hazard (same as hazardtitle)
Failure: aadlstring; -- system deviation resulting in failure effect
  FailureEffect : aadlstring; -- description of the effect of a failure (mode)
  Phases: list of aadlstring; -- operational phases in which the hazard is relevant
  Environment : aadlstring; -- description of operational environment
  Mishap : aadlstring;
                                        -- description of event (series) resulting in
                                         -- unintentional death, etc.(MILSTD882)
  FailureCondition: aadlstring; -- description of event (series) resulting in
                                          -- unintentional death, etc.(ARP4761)
  Risk : aadlstring;
                                          -- description of risk. Risk is characterized by
                                         -- severity, likelihood, and occurrence probability
  Severity: EMV2::SeverityRange; -- actual risk as severity
Likelihood: EMV2::LikelihoodLabels; -- actual risk as likelihood/probability
Probability: EMV2::ProbabilityRange; -- probability of a hazard
TargetSeverity: EMV2::SeverityRange; -- acceptable risk as severity
TargetLikelihood: EMV2::LikelihoodLabels; -- acceptable risk as likelihood/prob
  DevelopmentAssuranceLevel : EMV2::DALLabels; -- level of rigor in development
                                                            -- assurance (ARP4761)
  VerificationMethod: aadlstring; -- verification method to address the hazard
  SafetyReport : aadlstring; -- analysis/assessment of hazard
  Comment : aadlstring;
      applies to ({emv2}**error type, {emv2}**type set, {emv2}**error behavior state,
                     {emv2}**error propagation, {emv2}**error event, {emv2}**error flow);
```

ARP4761 Hazards Variant -- Likelihood labels: Can be used with EMV2::Hazards and Likelihood : constant EMV2::LikelihoodLabels => A; : constant EMV2::LikelihoodLabels => B; Frequent Probable ARP4761 specific Occasional : constant EMV2::LikelihoodLabels => C; constant labels used : constant EMV2::LikelihoodLabels => D; Remote in EMV2::Hazards Improbable : constant EMV2::LikelihoodLabels => E; SeverityLabels: type enumeration (Catastrophic, Critical, Marginal, Negligible); SeverityRange: type aadlinteger 1 .. 4; ARP4761 specific enumerations ProbabilityLabels: type enumeration (Frequent, Probable, Occasional, Remote, Improbable); ProbabilityLevelLabels: type enumeration (A, B, C, D, E); consistent with above labels CrossReference : aadlstring; -- cross reference to an external document HazardTitle : aadlstring: -- short descriptive phrase for hazard Description : aadlstring; -- description of the hazard (same as hazardtitle) ARP4761::Hazards Failure : aadlstring; -- system deviation resulting in failure effect Failure: addistring; -- description of the effect of a failure (mode) Phases: list of addistring; -- operational phases in which the hazard is relevant Environment: addistring; -- description of operational environment uses ARP4761 specific enums -- description of event (series) resulting in Mishap: aadlstring; -- unintentional death, etc. (MILSTD882) Risk: aadlstring; -- description of risk. Risk is characterized by -- severity, likelihood, and occurrence probability SeverityLevel: MILSTD882::SeverityLabels; -- actual risk as severity level SeverityCategory: MILSTD882::SeverityRange; -- equivalent severity category QualitativeProbability: MILSTD882::ProbabilityLabels; -- actual risk as probability ProbabilityLevel: MILSTD882::FrobabilityRange; -- probabilityRange; -- probabilityRange; -- target severity ProbabilityLevel: MILSTD882::ProbabilityLevelLabels: -- equivalent probability level -- probability of a hazard TargetProbabilityLevel: MILSTD882::ProbabilityLevelLabels; -- target probability level VerificationMethod: aadlstring: -- verification method to address the hazard SafetyReport: aadlstring: -- analysis/assessment of hazard Comment: aadlstring: -- additional information about the hazard

Create an STPA variant?

```
Devices.aadl
device heat_source
 features
   heater_output: out data port Iso_Types::heat;
 on_heater: in event data port Iso_Types::on_off;
 annex EMV2
   use types ErrorLibrary;
   use behavior System_Errors::FailStop;
    error propagations
     on_heater: in propagation {System_Errors::HeatControlError};
    end propagations;
    properties
     EMV2::OccurrenceDistribution =>
         System_Properties::HeatSourceFailure applies to fail;
      EMV2::hazards => (
        [ crossreference => "REMH A.3.2";
          failure => "heat source breaks";
          phases => ("all");
          environment => "infant intensive care";
          description => "mechanical disconnection of heat source";
          comment => "always fails open (off)";
      ) applies to fail;
      EMV2::Severity => ARP4761::Hazardous applies to fail;
      EMV2::Likelihood => ARP4761::ExtremelyRemote applies to fail;
end heat_source;
```

```
System Errors.aadl
annex EMv2
{**
 error types
   HeatControlError: type;
   AlarmError: type;
   FalseAlarm: type extends AlarmError;
   MissedAlarm: type extends AlarmError;
 end types;
  -- FSM for components that source an out of range error and fail completely ("failed").
 error behavior FailStop
   use types ErrorLibrary;
   events
     fail: error event {OutOfRange};
     fail: error event when "OutOfRange"; [scb] Are these the same?
   states
     working: initial state; -- Initial/default state of component.
     failed: state; -- State of component after out of range value error.
   transitions
     working -[ fail ]-> failed;
 end behavior;
 -- FSM for components that source an out of range error and fail completely ("failed"),
 -- or that source an undetectable error and fail intermittently ("flakey").
 error behavior FailSubtle
  use types ErrorLibrary;
   events
     hardfail: error event -- {OutOfRange}; [scb] Can be untyped, what is the meaning?
     subtlefail: error event {UndetectableValueError, ItemOmission}; [scb] AND, OR, other?
     working: initial state; -- Initial/default state of component.
     failed: state; -- State of component after out of range value error.
     flakey: state; -- State of component after undetectable value error.
   transitions
     working -[ hardfail ]-> failed;
      working -[ subtlefail ]-> flakey;
 end behavior;
  -- FSM to propagate, and possibly, transform errors routed through a composite component.
 error behavior CompositeFailure
   use types System Errors;
      Operational: initial state;
      ReportedFailure: state {DetectedFault};
     MissedFailure: state {MissedAlarm};
     FalseAlarm: state {FalseAlarm}; --[scb] What does typing a state do?
 end behavior;
**};
```

Notes

•