Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2019-20

Εικονική Μνήμη

(και ο ρόλος της στην ιεραρχία μνήμης)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

Ιεραρχία Μνήμης

• Ιεραρχία Μνήμης

"Δευτερεύουσα μνήμη":
Το τελευταίο επίπεδο στην ιεραρχία εντός του υπολογιστικού συστήματος

οι ρυθμοί μεταφοράς που δίνονται είναι οι θεωρητικά μέγιστοι!

Επεκτείνοντας την Ιεραρχία Μνήμης

• Ιεραρχία Μνήμης

Επέκταση ιεραρχίας εκτός του συστήματος: δικτυακές θέσεις αποθήκευσης Εννοιολογικά: Κάθε υψηλότερο επίπεδο δρα ως «κρυφή μνήμη» για το αμέσως χαμηλότερο Η κύρια μνήμη λειτουργεί ως «κρυφή μνήμη» των μαγνητικών δίσκων • Τα περιεχόμενα στην **κύρια μνήμη** είναι υποσύνολο εκείνων στους δίσκους του συστήματος **CPU** Κρυφή μνήμη 0,5-5ns (SRAM) 50-70ns Κύρια μνήμη (DRAM) 5.000.000-20.000.000 ns Μαγνητικοί

δίσκοι

Εικονική μνήμη (virtual memory)

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Το πρώτο σύστημα εικονικής μνήμης παρουσιάστηκε το 1962 (Atlas computer)

- Για ποιον λόγο εμφανίστηκε;
 - Στους πρώτους υπολογιστές το μέγεθος της κύριας μνήμης ήταν περιορισμένο
 - Ακόμα και στην περίπτωση του μονοπρογραμματισμού η κύρια μνήμη ήταν ανεπαρκής
 - Εμφάνιση ΛΣ με υποστήριξη πολυπρογραμματισμού:
 αδυναμία ταυτόχρονης διατήρησης πολλών
 προγραμμάτων στην κύρια μνήμη
 - Η λύση: εικονική μνήμη
 - Μέρος των δεδομένων βρίσκεται στους δίσκους του συστήματος
 - Μεταφορά στην κύρια μνήμη όταν χρειαστεί
 - Πιθανότατα αντικαθιστώντας άλλα τμήματα δεδομένων
 - Τα τελευταία μεταφέρονται πίσω στους δίσκους

Πριν την εικονική μνήμη: overlays

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η τεχνική των overlays απαιτούσε από τον προγραμματιστή να χειρίζεται τις λεπτομέρειες (π.χ διευθύνσεις!) φόρτωσης και κλήσης των υποπρογραμμάτων!

Πριν την εικονική μνήμη: overlays

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η τεχνική των overlays απαιτούσε από τον προγραμματιστή να χειρίζεται τις λεπτομέρειες (π.χ διευθύνσεις!) φόρτωσης και κλήσης των υποπρογραμμάτων!

Πριν την εικονική μνήμη: overlays

• υποπρογράμματα

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η τεχνική των overlays απαιτούσε από τον προγραμματιστή να χειρίζεται τις λεπτομέρειες (π.χ διευθύνσεις!) φόρτωσης και κλήσης των υποπρογραμμάτων!

Κύρια μνήμη δίσκος main() { swap-in(D) call D1 swap-in(B) Call B2 B2() { Καταλληλότερο για στατικά δεδομένα

Χώρος διευθύνσεων προγράμματος

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Ποιες οι διευθύνσεις που δημιουργούσε ο μεταγλωττιστής; Τι συνέβαινε αν το πρόγραμμα δεν φορτωνόταν πάντοτε στον ίδιο χώρο μνήμης;

Address Space

- Εκτελούμενο πρόγραμμα στη μνήμη:
- Διευθύνσεις κώδικα
 - Εντολές διακλάδωσης
- Διευθύνσεις δεδομένων
 - Εντολές load-store
- Πριν την εικονική μνήμη:
 - Φυσικές διευθύνσεις
 - Αμεση αντιστοιχία με διευθύνσεις κύριας μνήμης

Κύρια μνήμη

Πολυπρογραμματισμός πριν την εικονική μνήμη

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Χρήση καταχωρητών βάσης (χωρίς άλλη υποστήριξη) σε χαμηλού κόστους επεξεργαστές (π.χ. Intel 8086).
Διευκόλυνση τοποθέτησης

Διευκολυνση τοποθέτησης προγραμμάτων οπουδήποτε στη μνήμη.

Μεταβαίνοντας σε εικονικές διευθύνσεις

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Το προηγούμενο σχήμα
 - Εισήγαγε την αποσύνδεση των λογικών διευθύνσεων
 των προγραμμάτων από τις φυσικές διευθύνσεις κύριας μνήμης
 - Με απλή αντιστοιχία:
 φυσική διεύθυνση = λογική διεύθυνση + καταχωρητής βάσης
 - Απαιτείται υποστήριξη από το υλικό (ΚΜΕ)
 - Το πρόγραμμα μπορεί να φορτωθεί σε οποιαδήποτε θέση μνήμης (relocation)
 - Δεν περιέχει αναφορές σε φυσικές διευθύνσεις
 - Εισάγεται η έννοια των ξεχωριστών χώρων διευθύνσεων (κώδικα, δεδομένων...) ανά πρόγραμμα
 - χωρίς περαιτέρω υποστήριξη όμως!

Εικονικές Διευθύνσεις

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Ο κύριος ρόλος της εικονικής μνήμης στα σημερινά υπολογιστικά συστήματα, με την άφθονη κύρια μνήμη, είναι η υποστήριξη και προστασία των εικονικών χώρων διευθύνσεων ανά πρόγραμμα

- Προνόμια προσπέλασης μνήμης
- Απαιτείται συνδυασμένη υποστήριξη από ΚΜΕ, κρυφή μνήμη και λειτουργικό σύστημα

Η εικονική μνήμη (ξανά)

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η διαχείριση της εικονικής μνήμης έχει ομοιότητες με τη διαχείριση κρυφής-κύριας μνήμης. Τα δύο επίπεδα εδώ όμως (μνήμη-δίσκοι) έχουν σημαντικές διαφορές στα χαρακτηριστικά τους!

- Ποιος ο ρόλος της;
 - 1. Η χρήση εικονικής μνήμης, πέρα από όση είναι πραγματικά διαθέσιμη
 - 2. Η αντιστοίχιση εικονικών διευθύνσεων σε φυσικές και η διαχείριση των προνομίων προσπέλασης
 - Σημαντικότερο σήμερα!
- Ποιος τη διαχειρίζεται;
 - Διαχείριση από το λειτουργικό σύστημα
 - Υποστήριξη από το υλικό (ΚΜΕ/κρυφή μνήμη)
- Πώς υλοποιείται;
 - Μετακίνηση τμημάτων μνήμης από/προς τους δίσκους
 - Εκμετάλλευση αρχής τοπικότητας
 - Μερικά μέρη μόνο των προγραμμάτων είναι
 «ενεργά» κάθε στιγμή

Βασικό σχήμα Εικονικής Μνήμης

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Το μέγεθος των σελίδων καθορίζεται από τους μηχανισμούς του υλικού.

Συνήθη μεγέθη 4KB έως 2MB

Σελίδες και εικονικές διευθύνσεις

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η μετάφραση γίνεται στον επεξεργαστή, άρα εκεί (δηλ. στο υλικό) καθορίζεται το μέγεθος της σελίδας

Στη μνήμη στέλνεται φυσική διεύθυνση

- Ο επεξεργαστής μπορεί να παράγει έως και 2^N εικονικές διευθύνσεις
- Η φυσική μνήμη μπορεί να έχει έως ^{2K} διευθύνσεις
- Το μέγεθος σελίδας είναι 2^M bytes

Χαρακτηριστικά Σελίδων

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Σταθερό μέγεθος (4ΚΒ-2ΜΒ)
- Για την προσπέλαση οποιασδήποτε θέσης μνήμης της σελίδας απαιτείται μία λέξη εικονικής διεύθυνσης (page+offset)
- Ευκολία τοποθέτησης και αντικατάστασης σελίδων στην κύρια μνήμη
- Βέλτιστο μέγεθος για μεταφορά από-προς δίσκο
- Ενδεχομένως μέρος σελίδας μένει αχρησιμοποίητο

Σελιδοποίηση κατ' απαίτηση

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η μεγάλη επιβάρυνση για τη μετακίνηση των σελίδων από και προς τον δίσκο είναι καθοριστική για την απόδοση ενός συστήματος

- Οι σελίδες των προγραμμάτων (κώδικας-δεδομένα)
 βρίσκονται αρχικά μόνο στον δίσκο
- Το ΛΣ τις σημειώνει ως "απούσες" από τη μνήμη
- Όταν προσπελαστεί μια "απούσα" σελίδα,
 δημιουργείται ένα σφάλμα σελιδοποίησης (page fault)...
- ...και το $\Lambda\Sigma$ τη φορτώνει σε ένα πλαίσιο στη μνήμη
- Ενδεχομένως εκτοπίζοντας πίσω στον δίσκο μια άλλη σελίδα από τη μνήμη
 - Η τελευταία σημειώνεται ως "απούσα"
- Page faults: μεγάλο κόστος σε κύκλους αναμονής
 - 1-10Μκύκλοι

Κρίσιμα σημεία στη σχεδίαση εικονικής μνήμης

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Ακόμα και μικρή μείωση στην εμφάνιση page faults μπορεί να έχει σημαντικό όφελος για την απόδοση του συστήματος

- Οι σελίδες πρέπει να έχουν ικανό μέγεθος
 - Για εξισορρόπηση του κόστους προσπέλασης του δίσκου
- Η μείωση των page faults είναι επιβεβλημένη
 - Οι σελίδες τοποθετούνται οπουδήποτε μέσα στη μνήμη
 - Σχήμα ανάλογο των fully-associative κρυφών μνημών
- Η διαχείριση της εικονικής μνήμης γίνεται από λογισμικό (ΛΣ)
 - Μικρή επιβάρυνση συγκρινόμενη με χρόνο μετακίνησης σελίδων στους δίσκους
 - Δυνατότητα χρήσης πολυπλοκότερων αλγορίθμων για τοποθέτηση-αντικατάσταση σελίδων στη μνήμη
- Δεν είναι δυνατή η ενημέρωση στον δίσκο με κάθε εγγραφή νέων δεδομένων στη σελίδα

Μετάφραση εικονικών διευθύνσεων

Πίνακας σελίδων

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Τι συμβαίνει στην περίπτωση πολλαπλών προγραμμάτων;

- Πού βρίσκεται;
 - Στην κύρια μνήμη!
- Πόσες θέσεις διαθέτει;
 - Θεωρητικά: ίσες με τον μέγιστο αριθμό σελίδων
 - Για 2²⁰ σελίδες με 4 bytes ανά γραμμή, απαιτούνται 4MB
 - Πρακτικά: πίνακες πολλαπλών επιπέδων
 - Πιθανόν: σελιδοποίηση πινάκων (!)
 - Αρκεί να υπάρχει πάντα στη μνήμη ένα μέρος του πίνακα
- Ποια πρόσθετη πληροφορία χρειάζεται;
 - Βρίσκεται η σελίδα στη μνήμη; Έχει αλλάξει;
 - Αν όχι, σε ποιο σημείο του δίσκου είναι;
 - Συχνά η πληροφορία αυτή φυλάσσεται μέσα στον πίνακα σελίδων
 - Ποια σελίδα βρίσκεται σε κάθε πλαίσιο μνήμης;
 - Πόσο πρόσφατα χρησιμοποιήθηκε;
 - 🔹 Δομές του ΛΣ για αλγόριθμο αντικατάστασης σελίδων

Πίνακες σελίδων και πολλαπλά προγράμματα

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Κάθε διεργασία έχει τους δικούς της πίνακες σελίδων!

εναλλαγή διεργασιών αλλάζει και ο καταχωρητήςδείκτης στους πίνακες

Translation-Lookaside Buffer

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Το πρόβλημα με τους πίνακες σελίδων
 - Βρίσκονται στην κύρια μνήμη
 - Για κάθε προσπέλαση μνήμης απαιτείται μια δεύτερη(!)
 - Για τον πίνακα σελίδων
 - Μη αποδεκτή χρονική επιβάρυνση
- Translation-Lookaside Buffer (TLB)
 - Μικρή «κρυφή μνήμη» για πρόσφατες μεταφράσεις εικονικών διευθύνσεων
 - Μέσα στον επεξεργαστή
 - 16-512 θέσεις, 1-2 γραμμές του πίνακα σελίδων ανά θέση
 - Προσπέλαση < 1 κύκλο ρολογιού
 - Παρατηρούμενο Miss rate: 0.01% 1%
 - Σε περίπτωση miss: ενημέρωση από ΛΣ ή από την ίδια την ΚΜΕ (μηχανισμός page table walking)

Προσπέλαση μνήμης: η συνολική εικόνα

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Στο σχήμα η κρυφή μνήμη δέχεται φυσικές διευθύνσεις. Υπάρχουν αρχιτεκτονικές με εικονική κρυφή μνήμη ή συνδυασμό εικονικής-φυσικής κρυφής μνήμης

Εικονική Μνήμη και Προστασία Προσπέλασης

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Προστασία προσπέλασης σελίδων
 - Με διαφορετικούς πίνακες σελίδων ανά διεργασία είναι αδύνατη η προσπέλαση «ξένων» σελίδων
 - Δικαιώματα προσπέλασης ανά σελίδα
 - User mode και Supervisor Mode
 - Σε user mode δεν είναι δυνατή η προσπέλαση του TLB, του πίνακα σελίδων και των αντίστοιχων καταχωρητών συστήματος
 - Υπάρχουν αρχιτεκτονικές με περισσότερα από 2 επίπεδα προνομίων
 - Ελεγχόμενη προσπέλαση συναρτήσεων ΛΣ
 - Call gates: ελεγχόμενη εκτέλεση συναρτήσεων ΛΣ από χρήστη, στο επίπεδο όμως των προνομίων του χρήστη → δεν είναι δυνατή η προσπέλαση «ξένων» δεδομένων!