Devoir à la maison n° 18 : corrigé

Problème 1 — Puissances de matrices

Partie I -

1. Posons
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $E_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$. On a clairement $\mathcal{A} = \operatorname{vect}(E_1, E_2, E_3)$ donc

 \mathcal{A} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. De plus, la famille (E_1, E_2, E_3) est libre donc c'est une base de \mathcal{A} . Ainsi $\dim \mathcal{A} = 3$.

2. Comme \mathcal{A} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, c'est a fortiori un sous-groupe de $\mathcal{M}_3(\mathbb{R})$. De plus, $I_3 \in \mathcal{A}$ (choisir a = b = 1 et c = 0). Enfin, pour $a, b, c, a', b', c' \in \mathbb{R}$

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix} \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & -c' & b' \end{pmatrix} = \begin{pmatrix} aa' & 0 & 0 \\ 0 & bb' - cc' & bc' + cb' \\ 0 & -bc' - cb' & bb' - cc' \end{pmatrix} = \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & -c' & b' \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}$$

Ceci montre que A est stable par produit et commutatif.

- 3. On calcule $M^2 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}$. Tout d'abord, on a bien $I_3, M, M^2 \in \mathcal{A}$. Soit $\lambda, \mu, \nu \in \mathbb{R}$ tels que $\lambda I_3 + \mu M + \nu M^2 = 0$ 0. Ceci équivaut à $\begin{cases} \lambda 2\mu + 4\nu = 0 \\ \lambda + \mu = 0. \end{cases}$ On voit facilement que l'unique solution de ce système est le triplet nul. La

famille (I_3, M, M^2) est donc libre. Puisque dim A = 3, cette famille est une base de A.

4. On obtient $M^3 = 2M - 4I_3$.

Partie II -

- 1. Comme \mathcal{A} est un anneau, il est stable par produit. On peut donc montrer par récurrence que pour tout $k \in \mathbb{N}$, $M^k \in \mathcal{A}$, d'où l'existence des réels a_k , b_k et c_k .
- $\textbf{2.} \ \ \text{En \'ecrivant} \ M^{k+1} = MM^k, \ \text{on trouve} \left\{ \begin{array}{l} \alpha_{k+1} = -2\alpha_k \\ b_{k+1} = b_k c_k \, . \\ c_{k+1} = b_k + c_k \end{array} \right.$
- **3.** On a $z_{k+1} = b_{k+1} + ic_{k+1} = (b_k c_k) + i(b_k + c_k) = (1+i)z_k$ pour tout $k \in \mathbb{N}$. La suite (z_k) est donc géométrique de raison 1+i et de premier terme $z_0=b_0+ic_0=1$: on a alors $z_k=(1+i)^k$ pour tout $k\in\mathbb{N}$. Enfin $b_k = \operatorname{Re}(z_k) = \operatorname{Re}((1+i)^k)$ pour tout $k \in \mathbb{N}$.
- **4.** En utilisant la question ??, on montre que $b_{k+2} = b_{k+1} c_{k+1} = b_{k+1} b_k c_k = 2b_{k+1} 2b_k$. La suite (b_k) est donc une suite récurrente linéaire d'ordre 2 dont le polynôme caractéristique est $X^2 - 2X + 2$. Les racines de ce $\mathrm{polyn\^{o}mes\ sont\ donc\ }1\pm i.\ \mathrm{Il\ existe\ donc\ }\lambda,\mu\in\mathbb{C}\ \mathrm{tels\ que\ }b_k=\lambda(1+i)^k+\mu(1-i)^k\ \mathrm{pour\ tout\ }k\in\mathbb{N}.\ \mathrm{Or\ }b_0=b_1=1$ $\operatorname{donc} \lambda = \mu = \frac{1}{2}. \text{ Ainsi pour tout } k \in \mathbb{N}, \ b_k = \frac{(1+\mathfrak{i})^k + \overline{(1+\mathfrak{i})^k}}{2} = \operatorname{Re} \big((1+\mathfrak{i})^k \big).$
- 5. Comme u_0 , u_1 et u_2 sont entiers et que u_{n+3} s'exprime comme une combinaison linéaire à coefficients entiers de u_n et u_{n+1} , on prouve par récurrence triple ou par récurrence forte que la suite (u_n) est à valeurs entières.

- 6. Pour tout $n \in \mathbb{N}$, $\operatorname{tr}(M^{n+3}) = \operatorname{tr}(M^nM^3) = \operatorname{tr}(M^n(2M-4I_3)) = 2\operatorname{tr}(M^{n+1}) 4\operatorname{tr}(M^n)$ en utilisant la question \ref{tout} et la linéarité de la trace. De plus, $\operatorname{tr}(M^0) = \operatorname{tr}(I_3) = 3$, $\operatorname{tr}(M^1) = 0$ et $\operatorname{tr}(M^2) = 4$: les suites (\mathfrak{u}_n) et $(\operatorname{tr}(M^n))$ ont les mêmes trois premiers termes et vérifient la même relation de récurrence d'ordre 3, elles sont donc égales.
- 7. 2 divise bien $u_2=2$: on peut donc supposer p impair. Posons $n=\frac{p-1}{2}$. Puisque (a_k) est géométrique de raison -2 et de premier terme $a_0=1$, on a $a_k=(-2)^k$ pour tout $k\in\mathbb{N}$. Ainsi

$$u_p = \alpha_p + 2b_p = (-2)^p + 2\operatorname{Re}((1+\mathfrak{i})^p) = -2^p + 2\sum_{k=0}^p \binom{p}{k}\operatorname{Re}(\mathfrak{i}^k)$$

Or pour k impair, $Re(i^k) = 0$ donc

$$u_p = -2^p + \sum_{k=0}^n \binom{p}{2k} (-1)^k = -(2^p - 2) + 2\sum_{k=1}^n \binom{p}{2k} (-1)^k$$

D'après le petit théorème de Fermat, $\mathfrak p$ divise $2^{\mathfrak p}-2$ et puisque pour $1\leqslant k\leqslant \mathfrak n$, on a $2\leqslant 2k\leqslant \mathfrak p-1$, $\mathfrak p$ divise également $\binom{\mathfrak p}{2k}$ d'après le rappel de l'énoncé. Ainsi $\mathfrak p$ divise $\mathfrak u_{\mathfrak p}$.