Probabilistic Machine Learning +

Deep Learning

CATEGORICAL ANOMALY CORRECTION BASED ON INVERSE GRADIENT OF CLASSIFIER AND DIFFUSION INPAINTING

Omar Cusma Fait Luis Fernando Palacios Flores

Problem

Data

C1	C2	С3	C4	у
Α	С	В	D	0
В	С	Α	D	0
Α	Е	С	В	0
В	С	Α	Α	1

Anomaly Correction Algorithm

В	С	D	Α	0
---	---	---	---	---

Data Domain

Inpainting with Denoising Diffusion Probabilistic Models

Toy Example with DDPM: Gaussian Data

Toy Example with DDPM

concat x and t = True
hidden units = [92]

Dissimilarity: 73.34%

Anomalies Generated: 4.00%

Toy Example with DDPM

Metric	Entire Dataset	Anomalies feature mask	Anomalies all masked			
Anomalies before inpainting / Total	268 / 1500	254 / 254	905 / 905			
Remaining anomalies / Total	64 / 1500	72 / 254	124 / 905			
Correct changes	204	182	781			
Wrong changes	0	0	0			
Percentage of anomalies before inpainting	17.87%	100.00%	100.00%			
Percentage of anomalies after inpainting	4.27%	28.35%	13.70%			
Percentage change (-100% desired)	-76.12%	-71.65%	-86.30%			
Percentage of classified anomalies after inpainting	4.20%	26.77%	13.70%			
Number of rows wrongly modified	0(1500)	0(254)	N/A			
Number of known values wrongly modified	0(7232)	0 (1016)	N/A			
Dissimilarity original and the inpainted distribution	15.20%	85.04%	87.85%			
Mean values agree per instance (features)	N/A	N/A ~4	1.21 (5)			
Median values agree per instance	N/A	N/A	1.00			
Standard deviation values agree per instance	N/A	N/A	0.87			

Diffusion Inpainting Example: Bank Dataset

Dissimilarity original and sampled data: 99.95%

% anomalies generated: 7.60%

Dummy accuracy = 88.7%

Accuracy = 89.6%

Usefulness = 7.7%

	N 12 TO 100
${f Metric}$	\mathbf{Value}
Anomalies before inpainting / Total	4640 / 4640
Remaining anomalies / Total	300 / 4640
Percentage of anomalies before inpainting	100.00%
Percentage change (-100% desired)	-93.53%
Percentage of classified anomalies after inpainting	$\boldsymbol{6.47\%}$
Mean values agree per instance (columns)	2.17(10)
Median values agree per instance	2.00
Standard deviation values agree per instance	1.33
Dissimilarity original and inpainted data	$\boldsymbol{99.87\%}$

The Inverse-Gradient Method

Toy Example with Inverse Gradient: Sum of Digits

Toy Example with Inverse Gradient: No Duplicates

Anomaly Correction Pipeline

upsides and downsides...

Results: Sum Limit Problem

Anomaly:

	x_0	x_1	x_2	Χ_	_3 >	K_4							Corrected anomaly:					
4	840 1	1	3		3	3		masks						x_0	x_1	x_2	x_3	x_4
Ι	teration	116)	loss	is	0.19	% <	10.0%	[False	False	False	True	False]	0	1	1	3	0	3
Ι	teration	126)	loss	is	0.09	% <	10.0%	[False	False	True	False	False]	1	1	1	2	3	3
Ι	teration	129)	loss	is	0.09	% <	10.0%	[False	False	False	True	False]	2	1	1	3	2	3
Ι	teration	122)	loss	is	0.09	% <	10.0%	[False	False	False	True	False]	3	1	1	3	0	3
Ι	teration	119)	loss	is	0.19	% <	10.0%	[False	False	False	True	False]	4	1	1	3	3	3
I	teration	120)	loss	is	0.09	% <	10.0%	[False	False	False	True	False]	5	1	1	3	2	3
Ι	teration	126)	loss	is	0.09	% <	10.0%	[False	False	True	True	False]	6	1	1	2	2	3
Ι	teration	124)	loss	is	0.19	% <	10.0%	[False	False	False	True	False]	7	1	1	3	1	3
Ι	teration	119)	loss	is	0.09	% <	10.0%	[False	False	True	False	False]	8	1	1	1	3	3
I	teration	118)	loss	is	0.19	% <	10.0%	[False	False	True	False	False]	9	1	1	1	3	3

Results: No Duplicates Problem

Anomaly:

```
Corrected anomaly:
     x_0 x_1 x_2
                                                                     x_0 x_1 x_2
24436
                                                                                   p_anomaly
                                         masks
                                                                           A
                                                                                   0.0%
Iteration 142) loss is 0.1% < 5.0%
                                         [False
                                                 True Falsel
                                                                               В
                                                                                   0.0%
Iteration 146) loss is 0.1% < 5.0%
                                         [False
                                                True Falsel
                                                                       D
                                                                                   0.0%
Iteration 204) loss is 0.1% < 5.0%
                                         [ True False False]
                                                                       C
                                                                           Α
Iteration 119) loss is 0.4% < 5.0%
                                         [False
                                                True Falsel
                                                                                   0.0%
Iteration 166) loss is 0.1% < 5.0%
                                                                       D
                                                                                   0.0%
                                         [ True False False]
                                                                                   0.0%
Iteration 141) loss is 0.1% < 5.0%
                                         [False
                                                 True Falsel
Iteration 157) loss is 0.1% < 5.0%
                                         [False
                                                 True Falsel
                                                                           A
                                                                                   0.0%
                                                                       C
                                                                           A
                                                                                   0.0%
Iteration 129) loss is 0.2% < 5.0%
                                         [False
                                                 True Falsel
                                         [False
                                                                           A
Iteration 194) loss is 0.1% < 5.0%
                                                 True Falsel
                                                                                   0.0%
Iteration 132) loss is 0.3% < 5.0%
                                         [False
                                                 True Falsel
                                                                   9
                                                                                   0.0%
```