

利用深度学习 实现工业品组装缺陷检测 项目汇报

汇报人: 李岩霖

校内指导教师: 戴鸿君 校外指导教师: 张建宇, 郑艳飞

- 01 项目介绍 Introductions
- 02 项目演示 Presentations
- O3 开发历程 Process
- D4 思考与展望
 Considerations & Outlook

目录 CONTENTS

Part 1 项目介绍

本节对项目进行简要介绍,包括项目 要求、项目成员及分工、项目的交付 物等

1 项目介绍

项目要求

在大规模生产中,工业品组装缺陷的自动化检测能够高效发现不合格产品,提高生产质量。本项目针对工业品组装后可能出现缺陷(缺螺丝)这一问题,训练AI模型进行快速缺陷检测,检测出零件合格还是不合格。

合格零件,清 晰看到四角的 螺丝没有缺少

不合格零件,发现有角上的螺丝缺少

缺角图片,由于 拍摄角度问题, 零件的四个角没 有完整出现

1 项目介绍

项目成员分组

项目管理组

成员:刘川东、玄小龙

前端开发组 成员:王秀宇、张新钧、

王修智、方 正。

文档研读组 成员: 周星驰

① 项目介绍

成员主要工作内容

李岩霖:后端开发、数据处理、算法模型训练、推理加速、前后端对接、软件测试、编写项目文档

王秀宇、王修智、方正: Web前端开发、前后端对接、编写项目文档

张新钧:微信小程序前端开发、前后端对接、编写项目文档

周星驰: 推理加速、软件测试

刘川东、玄小龙: 软件测试、项目管理、编写项目文档

项目交付物

项目周汇报记录

📴 20230620工业品检测项目设想.pptx	2023/7/4 8:10	Microsoft Power	3,096 KB
20230627工业品检测项目进度汇报.pptx	2023/6/27 12:20	Microsoft Power	670 KB
20230704工业品检测项目进度汇报.pptx	2023/7/4 13:58	Microsoft Power	4,962 KB
20230711工业品检测项目进度汇报.pptx	2023/7/11 13:54	Microsoft Power	20,630 KB

项目演示视频

项目文档

(型 工业品缺陷检测系统测试文档.doc	2023/7/14 2:48	DOC 文档	838 KB
(☑ 工业品缺陷检测系统概要设计方案.doc	2023/7/14 0:49	DOC 文档	261 KB
-	☑ 工业品缺陷检测系统技术实现方案.doc	2023/7/14 1:33	DOC 文档	466 KB
(☑ 工业品缺陷检测系统项目计划书.doc	2023/7/13 10:20	DOC 文档	123 KB
(☑ 工业品缺陷检测系统项目结题书.doc	2023/7/14 14:22	DOC 文档	3,088 KB
(☑ 工业品缺陷检测系统需求分析说明书.doc	2023/7/12 12:35	DOC 文档	153 KB
(☑ 工业品缺陷检测系统用户使用说明书.doc	2023/7/13 9:32	DOC 文档	1,992 KB

项目源代码

defect_product_backEnd	2023/7/11 11:19	文件夹
vue-font	2023/7/11 11:18	文件夹
WechatProject	2023/7/11 11:18	文件夹

1 项目介绍

项目技术栈

后端及算法 Flask、Tensorflow、Keras

> 微信小程序前端 微信开发者工具、WXML

Part 2 项目演示

目前项目已成功在Web端和手机微信 小程序端运行。请观看项目演示视频

Web前端流程图

Web前端演示


```
File Edit View Navigate Code Refactor Run Tools VCS Window Help defect product backEnd - app.py
defect product backEnd ) 🐉 app.py
                                                                                                                                              ⊕ 👱 🛨 💠 — 🐔 app.py × 🐔 data_aug.py × 🐔 make_dataset.py × 🐔 train_VGG19.py

✓ Im defect product backEnd C:\Users\Li

    > landataset
     > model
     > model information
                                              CORS(app, supports_credentials=True)
     > quantization

✓ ■ selenium test

      > test data
         speed test.py
         %web test.py
     > train process
                                                                                                                                                                                   $ -
  Microsoft Windows [版本 10.0.19045.3086]
  (PY38) C:\Users\LiYanLin\Desktop\defect_product_backEnd>
  ≡ TODO ● Problems ► Terminal Se Python Packages → Python Console
PvCharm 2021.1.3 available // Update... (today 1:02)
                                                                                                                                            129:41 CRLF UTF-8 4 spaces Python 3.8 (PY38) (2) 🧣 🧉
```

2 项目演示

微信小程序流程图

微信小程序真机演示

Part 3 开发历程

四周的工作中,针对缺陷检测这一核心任务,项目组进行了多种尝试,提出新思路、新方案,平衡精度和推理时间。本节展示项目的开发历程

数据类别划分

七分类模型

合格、图片缺角、不合格(缺一螺丝)、 不合格(缺对角两螺丝)、不合格(缺 临边两螺丝)、不合格(缺三螺丝)、 不合格(缺四螺丝)

数据集划分

80%

20%

- 01 确保每个类别在训练集和测试集中都出现过
- 02 先随机划分原始图片,再进行数据增强

数据增强

分类		数量	
anomaly	缺角零件	14	
good	合格零件	16	
one	不合格(缺一角螺丝零件)	13	
diagonal_two	不合格(缺对角两螺丝零件)	20	
neighbor_two	不合格(缺临边两螺丝零件)	18	
three	不合格(缺三螺丝零件)	22	
four	不合格 (缺四螺丝零件)	14	
	总计	117	

□ 基于imgaug库进行数据增强

数据增强

旋转

原图

水平翻折

垂直翻折

旋转90°

旋转270°

随机旋转角度

数据增强

噪声、

亮暗对比度

散粒噪声

变暗

椒盐噪声

变亮

数据增强

分类	增强后数量
图片缺角	140
合格	160
不合格 (缺一螺丝)	130
不合格(缺临边两螺丝)	200
不合格 (缺对角两螺丝)	180
不合格(缺三螺丝)	220
不合格 (缺四螺丝)	140
总计	1170

模型选择

基于ImageNet的预训练VGG19

输入尺寸: 224*224*3

不使用全连接层,在7*7*512的feature map之后加入全连接层,调整输入类别为7类

将特征提取部分的层参数冻结,只训 练分类器参数

模型选择

模型名称 / 模型信息	精度	平均推理时间	参数量
VGG19	90. 972%	0.4s	46M
ResNet152_inception	92. 361%	3.1s	94M
ResNet152	87. 459%	2.7s	161M
ResNet101	88. 175%	1.9s	145M
ResNet50	90. 732%	1. 2s	126M

推理时间在Intel i7 CPU上测量得到

模型压缩

量化后模型平均推理时间 0.21s

基于Intel Neural Compressor库进行模型压缩

软件测试

单元测试: UnitTest

集成测试: app.test_client()

功能测试: Postman接口测试

性能测试: cProfile

自动化测试: Selenium

```
243729 function calls (228090 primitive calls) in 0.453 seconds
   Ordered by: standard name
   ncalls tottime percall cumtime percall filename:lineno(function)
                                     0.000 <__array_function__ internals>:177(expand_dims)
            0.000
                     0.000
                             0.000
            0.000
                     0.000
                             0.000
                                     0.000 <__array_function__ internals>:177(ndim)
            0.000
                     0.000
                             0.000
                                     0.000 <__array_function__ internals>:177(prod)
                                     0.000 <frozen importlib._bootstrap>:1002(_gcd_import)
            0.000
                     0.000
                             0.000
                                     0.000 <frozen importlib._bootstrap>:1017(_handle_fromlist)
            0.000
                     0.000
                             0.000
            0.000
                     0.000
                             0.000
                                     0.000 <frozen importlib._bootstrap>:103(release)
            0.000
                     0.000
                             0.000
                                     0.000 <frozen importlib._bootstrap>:143(__init__)
                                     0.000 <frozen importlib._bootstrap>:147(__enter__)
            0.000
                     0.000
                             0.000
            0.000
                                     0.000 <frozen importlib._bootstrap>:151(__exit__)
                     0.000
                             0.000
            0.000
                                     0.000 <frozen importlib._bootstrap>:157(_get_module_lock)
                     0.000
                             0.000
```

软件测试

软件项目管理

GitHub: https://github.com/liyanlin06/defect_product

Part 4 思考与展望

本节介绍项目中的一些思考和对项目落地的展望

二分类, 三分类, 七分类模型的选择与思考

模型名称 / 模型信息	精度	分类情况	存在的问题
二分类 VGG19	97. 893%	合格、不合格	无法处理缺角情况
三分类 VGG19	96. 112%	合格、不合格、缺角	不合格情况没有细化
七分类 VGG19	90. 972%	合格、缺角、缺 1、对角 缺 2、临边缺 2、缺 3、 缺 4	精度变低

4 思考与展望

如何处理与零件无关的图片?

异常情况不可控且无限,算法模型 没有办法处理所有的未知情况

考虑工业界生产场景:零件在传送带上经过摄像头拍照检测缺陷

—— 将传送带照片作为一个类别

汇报人:李岩霖 2023年7月15日

特此鸣谢校内导师戴鸿君;校外导师张建宇/郑艳飞