## Summary Midterm

February 23, 2023 21:39

#### **Equivalence Relations:**

Define  $R = \{(x, y) : x, y \in X, x \sim y\} \subseteq X \times X$ R: set of all pairs that are equivalent

- ~ is an equivalence relation if it satisfies:
  - Reflexive:  $x \sim x \ \forall x \in X$
  - Symmetric:  $x \sim y \leftrightarrow y \sim x$
  - Transitive: If  $x \sim y$  and  $y \sim z$ , then  $x \sim z$

### **Equivalence Classes:**

$$[x] = \{ y \in X : y \sim x \}$$

## **Well Defined Operations:**

An operation  $\cdot$  is well defined if  $\begin{cases} x \sim y \\ w \sim z \end{cases} \rightarrow (x \cdot w) \sim (y \cdot z)$ 

### **Theorems:**

$$[x] \cap [y] \neq \emptyset \rightarrow [x] = [y]$$

Equivalence classes are either disjoint or equal

The equivalence classes form a partition of the set *X* 

#### Number Theory:

For every set  $S \subseteq \mathbb{N}$ ,  $\exists d$  in S such that  $\forall x \in S, d \leq x$ Let  $a, b \in \mathbb{Z}$ , b > 0, then  $\exists ! q, r \in \mathbb{Z}$  s.t a = bq + r,  $0 \le r < b$ 

#### Refinements:

For two equivalence relations  $\approx$  and  $\sim$ , we say  $\approx$  is a refinement of  $\sim$  if each equivalence class of  $\approx$  is contained in an equivalence class of ~

In other words,  $a \approx b \rightarrow a \sim b$ 

#### Divisibility and Modulo:

 $m \mid n \text{ means } \exists x \in \mathbb{Z} \text{ such that } n = mx$ 

$$a \equiv b \pmod{n}$$
 means  $n \mid (a - b) \rightarrow \frac{a - b}{n} \in \mathbb{Z}$ 

#### **Theorems:**

Congruence modulo n is an equivalence relation

If  $a \equiv a' \pmod{n}$  and  $b \equiv b' \pmod{n}$ , then:

- $a + b \equiv a' + b' \pmod{n}$
- $ab \equiv a'b' \pmod{n}$

### Prime and Irreducible:

For  $p \in \mathbb{Z}$  where p > 1:

- p is irreducible if the only divisors of p are 1 and p
- p is prime if whenever  $p \mid ab$ , then  $p \mid a$  and  $p \mid b$

## Theorems:

p is prime  $\leftrightarrow p$  is irreducible

For any 
$$n>1$$
,  $\exists ! \begin{cases} p_1,\ldots,p_s \text{ primes} \\ e_1,\ldots,e_s \text{ positives} \end{cases}$  s.t  $n=p_1^{e_1}\times\cdots\times p_s^{e_s}$ 

#### GCD and LCM:

d = GCD(a, b) if and only if:

- $d \mid a$  and  $d \mid b$
- If  $c \mid a$  and  $c \mid b$ , then  $c \mid d$

m = LCM(a, b) if and only if:

- $a \mid m$  and  $b \mid m$
- If  $a \mid n$  and  $b \mid n$ , then  $m \mid n$

- $\forall a, b \in \mathbb{Z}$ ,  $\exists ! GCD d$  and  $\exists x, y \in \mathbb{Z}$  such that d = ax + by
- $\forall a, b \in \mathbb{Z}, \exists ! LCM m$
- If GCD(a, b) = 1, then  $\exists x, y$  such that ax + by = 1
- If GCD(a, b) = d, then  $\{ax + by : x, y \in \mathbb{Z}\} = d\mathbb{Z}$
- $GCD(a, b) \times LCM(a, b) = |ab|$

### **Groups:**

For some set *S* and an operation  $\cdot$ ,  $(S, \cdot)$  is a group if:

- Closure:  $ab \in S$
- Associativity: (ab)c = a(bc)
- Identity:  $\exists \epsilon \in S$  such that  $x\epsilon = \epsilon x = x$
- Inverses:  $\forall x \in S$ ,  $\exists y \in S$  such that  $xy = yx = \epsilon$

#### **Laws of Exponents:**

For a group G with some operation  $\cdot$  :

- $x^n = x \cdot x \cdot \dots \cdot x$  (*n* times)
- $-x^{-n} = (x^{-1})^n = (x^n)^{-1}$  $-x^m \cdot x^n = x^{m+n}$
- $-(x^m)^n = x^{mn}$

If  $xy = yx \ \forall x, y \in G$ , then G is abelian (commutative)

#### **Properties of Groups:**

- The identity is unique
- The inverse of each element is unique
- ax = b has a unique solution  $x \forall a, b \in G$
- $ab = ac \rightarrow bc$
- $(ab)^{-1} = b^{-1}a^{-1}$
- $-(a^{-1})^{-1}=a$
- If xy = x for some  $x, y \in G$ , then  $y = \epsilon$
- If  $xy = \epsilon$  for some  $x, y \in G$ , then  $y = x^{-1}$

### Cayley Tables:

| • | a | b           |   |
|---|---|-------------|---|
| a | a | b           |   |
| b | b | $a \cdot b$ |   |
| : | : | :           | • |

### **Properties of Cayley Tables:**

- Only one row and column matches the header completely and no other row or column matches the header in a single position
- Each row and column contains each element exactly once

## **Product of Groups:**

For two groups *G*, *H*, their product is defined as:

$$G \times H = \{(g,h): g \in H, h \in H\}$$
  
$$(x,a) \cdot_{G \times H} (y,b) = (x \cdot_G a, y \cdot_H b)$$

#### Theorems:

- The product of groups is a group
- For  $x = (a_1, ..., a_t) \in G_1 \times \cdots \times G_t$ , then  $|x| = LCM(|a_1|, \dots, |a_t|)$

- 
$$G_1 \times \cdots \times G_t$$
 is cyclic  $\leftrightarrow \begin{cases} \operatorname{Each} G_i \text{ is cyclic} \\ \operatorname{GCD}\left(\left|G_i\right|, \left|G_j\right|\right) = 1 \ \forall i \neq j \end{cases}$ 

#### **Isomorphisms:**

If  $\phi: G \to H$  is a bijection with  $\phi(x \cdot_G y) = \phi(x) \cdot_H \phi(y)$ Then  $\phi$  is an isomorphism, and G, H are isomorphic

If G, H are isomorphic, then permuting the Cayley Table of G gives the Cayley Table of H

#### Automorphism:

If  $\phi: G \to G$  is an isomorphism, then  $\phi$  is an automorphism aut(G) = The set of all automorphisms of G and it's a group

#### Symmetries:

 $S = \{\alpha, \beta, ...\}$  is the set of symmetries of some object with the operation composition

$$\frac{\text{Example of Symmetries:}}{\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}}, \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

## **Example of Composition:**

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 3 & 4 & 1 & 2 \end{pmatrix} \stackrel{\sim}{\sim} \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

## **Properties of Symmetries:**

- $\alpha \circ \beta$  is a symmetry  $\forall \alpha, \beta \in S$
- $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma) \ \forall \alpha, \beta, \gamma \in S$
- $\exists \epsilon \in S$  such that  $\epsilon \circ \alpha = \alpha \circ \epsilon = \alpha \ \forall \alpha \in S$
- $\forall \alpha \in S$ ,  $\exists \beta \in S$  such that  $\alpha \circ \beta = \epsilon$

#### **Generating Sets:**

If  $\forall g \in S$ , g can be written with  $\alpha$ ,  $\beta$ , then  $\{\alpha, \beta\}$  generates S

For a group G with operation  $\cdot$ , if  $H \subseteq G$ , and it's a group with the same operation  $\cdot$  , then H is a subgroup

If *H* is a subgroup of *G*, we write  $H \leq G$ , H < G (if  $H \neq G$ )

#### Subgroup Test:

Suppose H is a subset of G, then if:

- $H \neq \emptyset$
- $x, y \in H \rightarrow x \cdot y \in H$
- $x \in H \rightarrow x^{-1} \in H$

Then *H* is a subgroup

#### **Theorems:**

- If  $H \leq G$ , then  $\epsilon_G \in H$  and  $\epsilon_H = \epsilon_G$
- If  $H_1 \leq G$  and  $H_2 \leq G$ , then  $H_1 \cap H_2 \leq G$
- If  $K \le H_1$  and  $K \le H_2$ , then  $K \le H_1 \cap H_2$
- For  $H_1 \leq G$  and  $H_2 \leq G$ : If  $H_1 \cup H_2 \leq G$ , then  $H_1 \leq H_2$  or  $H_2 \leq H_1$

#### **Product Set:**

If  $S \subseteq G$ , then  $\langle S \rangle$  is the set of all possible products of elements in *S* and their inverses

### Theorems:

- $S \subseteq G \rightarrow \langle S \rangle \leq G$
- If  $H_1 \le K$  and  $H_2 \le K$ , then  $\langle H_1 \cup H_2 \rangle \le K$

## **Greatest Lower Bound:**

If  $\exists \alpha \in X$  such that  $\begin{cases} \alpha \leq x, \ \alpha \leq y \\ z \leq x \text{ and } z \leq y \rightarrow z \leq \alpha \end{cases} \forall x, y \in X$ , then  $\alpha$  is the greatest lower bound of x, y, denoted glb(x,y)

## Least Upper Bound:

If  $\exists \beta \in X \text{ such that } \begin{cases} x \leq \beta, \ y \leq \beta \\ x \leq z \text{ and } y \leq z \to \beta \leq z \end{cases} \forall x, y \in X,$ then  $\beta$  is the least upper bound of x, y, denoted lub(x, y)

#### Lattice:

A lattice is the set *X* with operation  $\leq$  such that glb(x, y) and lub(x, y) exists  $\forall x, y \in X$ 

It's a diagram of subgroups, where each line connecting *H* and *K* (with *K* vertically higher than *H* in the diagram) means

Note: If  $H \leq K$ , and we have some subgroup F such that  $H \leq$  $F \leq K$ , then F = H or F = K

### Symmetries of a Square Example:

To show a square has at most 8 symmetries:

Let  $\gamma$  be some symmetry, then:

- $\gamma(1)$  (1st corner) has 4 options
- $\gamma(2)$  (2nd corner) is adjacent to  $\gamma(1)$ , so 2 options
- $\gamma(4)$  (4th corner) is adjacent to  $\gamma(1)$ , so 1 option left
- $\gamma(3)$  (3rd corner) has 1 option left

So  $4 \times 2 \times 1 \times 1 = 8$  possibilities

To show a square has at least 8 symmetries, we show the above 8 symmetries are all possible, with matrices form

To find the subgroups of the symmetries of a square, we go through the product set of every subset of *G*, for instance:  $\langle \epsilon \rangle$ ,  $\langle \mu \rangle$ ,  $\langle \rho \rangle$ ,  $\langle \mu, \rho \rangle$ , ...

If the product set generates G, it's not a subgroup, otherwise, it is, and we can use the subgroups to draw the lattice:



#### Cyclic groups:

G is cyclic  $\leftrightarrow \exists$  a generator  $g \in G$  s.t  $G = \langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ The order of g is the smallest positive integer n with  $g^n = \epsilon$ 

- |g| = Order of an element,  $|g| = \infty \leftrightarrow g^k \neq \epsilon \ \forall k \in \mathbb{Z}$  |G| = Size of a group

The set  $\{k: g^k = \epsilon\} = |g|\mathbb{Z}$ , so  $g^k = \epsilon \leftrightarrow |g|$  divides k

|x| = |y| is equivalent to  $x^k = \epsilon \leftrightarrow y^k = \epsilon$ 

If *G* is a group with *n* elements and  $|g| = n < \infty$  for some  $g \in G$  then:

- $G = \langle g \rangle = \{g, g^2, ..., g^n = \epsilon\}$  |G| = |g|
- $|g^k| = \frac{n}{GCD(n,k)}$
- Generators of G are exactly  $\{g^k: GCD(n, k) = 1\}$

To check if a group is cyclic or not, check all the generators, if the order of some generator *g* is the length of the group, then the group is cyclic

#### Theorems:

- G is cyclic  $\rightarrow G$  is abelian (commutative)
- G is cylic  $\rightarrow$  All subgroups are cyclic
- G has no subgroups other than  $\{\epsilon\}$  and G
  - $\leftrightarrow$  *G* is cyclic of prime order
  - $\leftrightarrow$  |*G*| = *n* is prime
- If G, H are both cyclic, then  $G \cong H \leftrightarrow |G| = |H|$

## **Complex Numbers:**

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$ 

 $\mathbb{C} = \{ re^{i\theta} : r, \theta \in \mathbb{R} \}$  where  $r \geq 0$  and  $0 \leq \theta < 2\pi$ 

$$re^{i\theta} = r\cos\theta + ri\sin\theta \rightarrow e^{i\theta} = \cos\theta + i\sin\theta$$

For  $z \in \mathbb{C}$ :

- 
$$|z| = |a + bi| = \sqrt{a^2 + b^2} = r$$
  
-  $\frac{b}{a} = \tan \theta$ 

## **Roots of Unity:**

The *n*th root of unity is the solution to  $z^n = 1$  for  $z \in \mathbb{C}$ 

$$R_n = \left\{ e^{i2\pi \times \frac{1}{n}}, \ e^{i2\pi \times \frac{2}{n}}, \dots, e^{i2\pi \times \frac{n}{n}} \right\} = \left\langle e^{\frac{i2\pi}{n}} \right\rangle$$

## Example: R<sub>6</sub>



$$\mathbb{T} = \{ z \in \mathbb{Z} : |z| = 1 \} = \{ e^{i\theta} : \theta \in \mathbb{R} \}$$

 $\mathbb{T}$  is a subgroup of  $\mathbb{C}^{\times}$ 

 $R_n$  is a subgroup of  $\mathbb{T}$  (and of  $\mathbb{C}^{\times}$ )

Let 
$$R = \bigcup_{n=1}^{\infty} R_n = \left\{ e^{\frac{2\pi i j}{n}} : 0 \le j < n, \ n \ge 1 \right\}$$

# $\frac{\text{Subgroup Hierarchy:}}{R_n < R < \mathbb{T} < \mathbb{C}^\times}$

$$R_n < R < \mathbb{T} < \mathbb{C}^{\times}$$

#### Properties of R:

- |z| is finite  $\forall z \in R$
- |R| is infinite
- It's abelian but not cyclic
- Every finite subset is contained in a finite subgroup
- Every finite subgroup is cyclic
- Every infinite subgroup is not cyclic
- $R = \left\langle \left\{ e^{\frac{2\pi i}{n}} : n \ge 1 \right\} \right\rangle = \left\langle \left\{ e^{\frac{2\pi i}{n}} : n \ge k \right\} \right\rangle \ \forall k$

## Subgroups of T:

- $R = \left\{ e^{\frac{2\pi i j}{n}} : 0 \le j < n, n \ge 1 \right\}$  $Z = \left\{ e^{ik} : k \in \mathbb{Z} \right\}$

#### Permutations:

 $S_\Omega$  is the set of all bijections  $\Omega \to \Omega$  for some set  $\Omega$  , a symmetric group

 $S_{\Omega}$  is denoted as  $S_n$  if  $|\Omega| = n$ 

A subgroup of  $S_n$  is called a permutation group

If 
$$\sigma \in S_n$$
, then  $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$ 

#### Theorems:

 $S_{\Omega}$  with the operation composition is a group  $|S_n| = n!$ 

#### Cycles and Cycle Notation in $S_n$ :

 $\sigma \in S_n \text{ is a cycle if } \exists a_1, \dots, a_k \text{ such that } \begin{cases} \sigma(a_j) = a_{j+1} \\ \sigma(a_k) = a_1 \\ \sigma(x) = x, \ x \neq a_j \end{cases}$ 

#### Cycle Order:

- A k-cycle has  $a_1, \dots, a_k$  terms based on the above defition
- All 1-cycles can be omitted
- 2-cycles are called transpositions

Example: Two-line notation:  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix} \in S_n$ Graphical Representation:







#### **Cycle One-Line Notation:**

$$\sigma = (1 \ 3 \ 5 \ 4)(2)(6) = (1 \ 3 \ 5 \ 4)$$

$$\sigma^{-1} = (1 \ 4 \ 5 \ 3) = (4 \ 5 \ 3)$$

#### **Multiplying Cycles:**

For  $\alpha = \begin{pmatrix} 1 & 3 & 4 & 7 \end{pmatrix}$  and  $\beta = \begin{pmatrix} 2 & 3 & 5 & 7 \end{pmatrix}$ , we perform multiplication:

$$x \qquad \beta(x) \qquad \alpha(\beta(x))$$

1 
$$\beta(1) = 1$$
  $\alpha(1) = 3$ 

2 
$$\beta(2) = 3$$
  $\alpha(3) = 4$ 

3 
$$\beta(3) = 5$$
  $\alpha(5) = 5$   $1$  2 3 4 5 6 7

$$4 \quad \beta(4) = 4 \quad \alpha(4) = 7$$
  $3 \quad 4 \quad 5 \quad 7 \quad 1 \quad 6 \quad 2$ 

5 
$$\beta(5) = 7$$
  $\alpha(7) = 1$ 

6 
$$\beta(6) = 6$$
  $\alpha(6) = 6$ 

7 
$$\beta(7) = 2$$
  $\alpha(2) = 2$ 

$$= (1 \ 3 \ 5)(2 \ 4 \ 7)(6) = (1 \ 3 \ 5)(2 \ 4 \ 7)$$

#### Supports:

The support of a permutation  $\pi$  is  $\{x: \pi(x) \neq x\}$ 

Two permutations are disjoint if their supports are disjoint Example:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix}, \text{ support}(\alpha) = \{1,4,5\}$$

#### **Cycle Types:**

The cycle type of a permutation  $\pi$  is the list (with repetition) of the length of its disjoint cycles

#### Theorems:

- Disjoint permutations commute:  $\alpha(\beta(x)) = \beta(\alpha(x))$
- $x \in \text{support}(\pi) \to \pi(x)$ ,  $\pi(\pi(x))$ , ...  $\in \text{support}(\pi)$
- Order of a permutation π is the LCM of the lengths of its disjoint cycles, so the LCM of its cycle type
- Every permutation  $\pi$  can be written as a product of disjoint cycles
- $S_n$  is generated by the set of all cycles
- k-cycles can be written as product of k-1 transpositions

- 
$$(a_1 \quad a_2 \quad \dots \quad a_k) = (a_1 \quad a_k) (a_1 \quad a_{k-1}) \dots (a_1 \quad a_2)$$
  
=  $(a_1 \quad a_2) (a_2 \quad a_3) \dots (a_{k-1} \quad a_k)$ 

- The set of all transpositions generates  $S_n$ , so  $S_n = \langle \{ (a \quad b) : 1 \le a < b \le n \} \rangle$ 

- The following are minimal generating sets for  $S_n$ :

○ 
$$\{(1 \ a): 2 \le a \le n\}$$

○ 
$$\{(a \ a+1): 1 \le a \le n-1\}$$

$$\circ$$
 {(1 2), (1 2 ...  $n$ )}

#### **Dihedral Group:**

It's the symmetries of a regular n-gon with the following:

$$-\rho = \text{rotation by } \frac{1}{n} \text{ circle} = (1 \ 2 \ \dots \ n)$$

 $-\mu$  = reflection through corner 1

$$=\begin{cases} (1) (2 & 2m) (3 & 2m-1) \dots (m & m+2) (m+1), n = 2m \\ (1) (2 & 2m+1) (3 & 2m) \dots (m+1 & m+2), n = 2m+1 \end{cases}$$

#### Theorems:

 $D_n$  is a subgroup of  $S_n$