

Molecular Dating

Simon Ho

Evolutionary timescales

Evolutionary timescales

The Molecular Clock

Sources of error ACTAGTTC 3. Calibration 6.5 Myr 1. Tree **ACTAGTAC** 8 Myr ACAAGCTC 26 Myr CCAAGCTC 2. Model of rate variation

The molecular clock ACTAGTTC ACTAGTTC ACTAGTAC ACAAGCTC CCAAGCTC CCAAGCTC

A brief history

· Emile Zuckerkandl and Linus Pauling

1962 Assumed constant rate among species to estimate

timing of globin gene duplications

1965 Introduced the term 'molecular evolutionary clock'

Testing for clocklike evolution

• Relative-rates test (Fitch, 1976)

9

Departures from the clock

- Rates vary among lineages because of differences in:
 - · Exposure to mutagens
 - Metabolic rate
 - Generation time
 - Population size
 - Strength and direction of selection

The assumption of rate constancy can be relaxed

11

Testing for clocklike evolution

• Whole-tree methods (e.g., likelihood-ratio test)

- Limitations
 - Cannot identify instances in which all lineages experience simultaneous rate shift
 - Failure to reject clock can be due to lack of power or lack of information

10

Molecular-Clock Models

Molecular-clock models

Strict or 'global' molecular clock

Multi-rate clocks

1 < k < n

k = 1

Relaxed clocks

13

Multi-rate clocks

- Small number of rates
 - More than 1 rate (i.e., not a strict clock)
 - Fewer than number of branches (i.e., not a relaxed clock)
- Local clock
 - · Same rate shared by neighbouring branches
- Discrete clock
 - Small number of branch rates, distributed across tree

14

Local clocks

- User-defined local clock
 - Fixed tree topology
- · Random local clock
 - Each branch has a probability of inheriting rate from ancestor
 - Tree estimated

Random local clock

Includes possibility of zero rate changes (= strict clock)

Relaxed clocks

- We know that life-history characteristics:
 - Have effects on rates of molecular evolution
 - Are usually heritable to some degree
- Treat molecular rate as a heritable trait
- Relaxed clocks generally assume that closely related species share similar rates

18

Likelihood-based relaxed clocks

Bayesian relaxed clocks

· Allow a different rate in each branch

19

- Statistical models of rates among branches
- Rates can be autocorrelated or uncorrelated
 - Autocorrelated rates in neighbouring branches are related
 - Uncorrelated rates identically and independently distributed among branches

Bayesian relaxed clocks

Bayesian relaxed clocks

- In the uncorrelated lognormal relaxed clock, two statistics can be obtained:
 - Coefficient of variation of rates
 Measures the rate variation among branches
 A value of 0 indicates clocklike evolution
 - Covariance of rates
 Measures autocorrelation of rates between adjacent branches

Bayesian relaxed clocks

Rate autocorrelation

- · Little evidence of rate autocorrelation in real data
- Uncorrelated relaxed clock probably appropriate in most cases
- Compare estimates from auto- and uncorrelated relaxed clocks

Ho, Duchêne, & Duchêne (2015) Mol Ecol Resour 24

22

Calibrating the molecular clock

- Rates and times are non-identifiable
- · Likelihood only depends on their product
 - Branch lengths in substitutions per site
- To separate rate and time, we need (prior) information about one or the other

29

Useful references

- A practical guide to molecular dating Sauquet (2013) Comptes Rendus Palevol, 12: 355–367.
- Bayesian molecular clock dating of species divergences in the genomics era dos Reis, Donoghue, & Yang (2016) Nature Reviews Genetics, 17: 71–80.
- Molecular-clock methods for estimating evolutionary rates and timescales
 Ho & Duchêne (2014) Molecular Ecology, 23: 5947–5965.

Calibration: Fossil record 6.5 Myr 6.5 Myr 6.5 Myr 6.5 Myr 6.5 Myr 6.5 Myr