Mathematics Review Course

Summer 2023

Problem Set 09

Solutions

Ryan McWay

August 18th, 2023

First Order Conditions

1. Max. $f(x) = log(x^2 + 2x - 3)$.

Solution: While the critical points are $x = \{-1, 1, -3\}$, none of these have a defined function for these values on the domain. So there is no maximum values for this FOC.

2. Consider a firm is a monopoly. They have the following revenue function R(p,Q) = pQ with a price of p = 8 - Q subject to a cost function of $c(Q) = \frac{Q}{3}$. Write the profit function and maximize profit to determine the monopoly quantity supplied Q^* .

Solution: The profit function:

$$\pi(Q) = (8 - Q)Q - \frac{Q}{3}$$

And quantity supplied is $Q^* = \frac{23}{6}$.

Lagrangian Method

3. Max $g(a, b) = e^a b^3$ s.t. $2a + b \le 10$.

Solution:

$$a^* = 2$$

$$b^* = 6$$

4. Max $U(x_1, x_2, x_3) = e^{x_1} x_2^{\alpha} x_3^{\beta}$ s.t. $w \ge p_1 x_1 + p_2 x_2 + p_3 x_3$.

Solution:

$$x_{1}^{*} = \frac{w}{p_{1}} - (\alpha + \beta)$$

$$x_{2}^{*} = \frac{\alpha p_{1}}{p_{2}}$$

$$x_{3}^{*} = \frac{\beta p_{1}}{p_{3}}$$