%matplotlib inline

import pandas as pd

url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"
df = pd.read_csv(url)

df.head()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

df.info()
df.describe(include='all')

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Coun	t Dtype		
0	PassengerId	891 non-null	int64		
1	Survived	891 non-null	int64		
2	Pclass	891 non-null	int64		
3	Name	891 non-null	object		
4	Sex	891 non-null	object		
5	Age	714 non-null	float64		
6	SibSp	891 non-null	int64		
7	Parch	891 non-null	int64		
8	Ticket	891 non-null	object		
9	Fare	891 non-null	float64		
10	Cabin	204 non-null	object		
11	Embarked	889 non-null	object		
d+v $= c$ $+1$ $= +6$ $+(2)$ $+z$ $+(6)$ $= -6$ $+(6)$					

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Pā
count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.000
unique	NaN	NaN	NaN	891	2	NaN	NaN	
top	NaN	NaN	NaN	Dooley, Mr. Patrick	male	NaN	NaN	
freq	NaN	NaN	NaN	1	577	NaN	NaN	
mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.38
std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.800
min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000
25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000
50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000
75%	668.500000	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000
max	891.000000	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000

Most columns have ≤ 891 non-null values; Age and Cabin have missing data.

[#] Missing values per column df.isna().sum().sort_values(ascending=False)

Cabin	687
Age	177
Embarked	2
PassengerId	0
Name	0
Pclass	0
Survived	0
Sex	0
Parch	0
SibSp	0
Fare	0
Ticket	0

dtype: int64

note which columns need attention (Age, Cabin, Embarked).

```
import seaborn as sns
import matplotlib.pyplot as plt

# Age distribution
sns.histplot(df['age'].dropna(), kde=True)
plt.title('Age Distribution'); plt.show()

# Survival counts
sns.countplot(x='survived', data=df)
plt.title('Survival Count (0 = Died, 1 = Survived)'); plt.show()
```

```
KeyError
                                          Traceback (most recent call last)
/usr/local/lib/python3.11/dist-packages/pandas/core/indexes/base.py in
get loc(self, key)
   3804
                try:
-> 3805
                    return self._engine.get_loc(casted_key)
   3806
                except KeyError as err:
index.pyx in pandas._libs.index.IndexEngine.get_loc()
index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in
pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in
pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'age'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
                                2 frames
/usr/local/lib/python3.11/dist-packages/pandas/core/indexes/base.py in
get_loc(self, key)
   3810
                    ):
   3811
                        raise InvalidIndexError(key)
                    raise KeyError(key) from err
-> 3812
                except TypeError:
   3813
                    # If we have a listlike key, _check_indexing_error will
   3814
raise
KeyError: 'age'
```

```
Next steps: (
          Explain error
print(df.columns)
dtype='object')
import seaborn as sns
import matplotlib.pyplot as plt
# Change column names if needed based on Step 1
sns.histplot(df['age'].dropna(), kde=True)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
sns.countplot(x='survived', data=df)
plt.title('Survival Count (0 = Died, 1 = Survived)')
plt.xlabel('Survived')
plt.ylabel('Number of Passengers')
```

plt.show()

```
KeyError
                                          Traceback (most recent call last)
/usr/local/lib/python3.11/dist-packages/pandas/core/indexes/base.py in
get loc(self, key)
   3804
                try:
-> 3805
                    return self._engine.get_loc(casted_key)
   3806
                except KeyError as err:
index.pyx in pandas._libs.index.IndexEngine.get_loc()
index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in
pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in
pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'age'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
                                2 frames
/usr/local/lib/python3.11/dist-packages/pandas/core/indexes/base.py in
get_loc(self, key)
   3810
                    ):
   3811
                        raise InvalidIndexError(key)
                    raise KeyError(key) from err
-> 3812
                except TypeError:
   3813
                    # If we have a listlike key, _check_indexing_error will
   3814
raise
KeyError: 'age'
```

Next steps: Explain error

```
print(df['Age'].dropna().head())
                                      # Check some ages
print(df['Survived'].value_counts())
                                      # Count survived vs not
→ 0
          22.0
    1
          38.0
    2
          26.0
    3
          35.0
    4
          35.0
    Name: Age, dtype: float64
    Survived
          549
    0
          342
    Name: count, dtype: int64
import seaborn as sns
import matplotlib.pyplot as plt
# Plot 1: Age distribution
sns.histplot(df['Age'].dropna(), kde=True)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
# Plot 2: Survival count
sns.countplot(x='Survived', data=df)
plt.title('Survival Count (0 = Died, 1 = Survived)')
plt.xlabel('Survived')
plt.ylabel('Number of Passengers')
plt.show()
print("V Plots finished")
```

Age Distribution

- Most passengers are between 20 and 40 years old.
- Around 550 passengers did not survive; about 340 survived.

```
# Boxplot: Age vs Survived
sns.boxplot(x='Survived', y='Age', data=df)
plt.title('Age vs Survival')
plt.xlabel('Survived')
plt.ylabel('Age')
plt.show()
```


80

70

60

50

စ္မီ 40

Age vs Survival

```
# Select only numeric columns for correlation
numeric_cols = ['Survived', 'Age', 'Fare', 'Pclass', 'SibSp', 'Parch']
corr = df[numeric_cols].corr()

# Plot heatmap
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


- Fare is positively correlated with survival.
- Pclass has a negative correlation with survival (1st class survived more).

```
# Pairplot (may take ~20-30 s to render on mobile)
pair_cols = ['Survived', 'Age', 'Fare', 'Pclass']
sns.pairplot(df[pair_cols], hue='Survived')
plt.suptitle('Pairplot of Key Variables', y=1.02)
plt.show()
```

