МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ
по временным моделям обнаружения ошибок

Студент гр. 6304	Прозо	рова А.Д.
Преподаватель	Кирьянч	иков В.А.

Санкт-Петербург 2020

Формулировка задания.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1)–ой и i–ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{\rm эксп}=s_{\rm эксп}=1/b=10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = $-\ln(t)/b$
 - с. релеевским законом распределения: $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками $_{\text{упорядочить}}$ по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%,

80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

a. 100% n = 30.

1	2	3	4	5	6	7	8	9	10
0.058	0.64	2.278	2.94	3.409	3.863	3.894	4.698	5.286	6.37
11	12	13	14	15	16	17	18	19	20
8.187	9.811	10.115	10.538	10.589	10.719	11.468	11.719	11.929	12.912
21	22	23	24	25	26	27	28	29	30
14.327	14.562	14.976	16.483	16.914	18.183	18.351	19.285	19.378	19.817

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 20.379 > 15.5$$

Найдем m >= n+1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.825	2.582	2.377	2.203	2.052	1.921
f-g	1.170	0.446	0.181	0.053	0.017	0.057

Минимум при m=35. B=m-1=34.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.00654

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31	32	33	34
Xi	38.220	50.960	76.441	152.881

Время до полного завершения тестирования: 318.503

Полное время: 632.202

1	2	3	4	5	6	7	8	9	10	11	12
1.015	2.21	2.867	3.52	3.627	5.287	5.987	7.189	8.03	9.475	10.196	12.011
13	14	15	16	17	18	19	20	21	22	23	24

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 15.970 > 12.5$$

Найдем m >= n+1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.658	2.393	2.176	1.995	1.842	1.711
f-g	1.118	0.423	0.178	0.063	0.002	0.032

Минимум при m=29. B = m-1 = 28.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.00731

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25	26	27	28
Xi	34.187	45.583	68.375	136.749

Время до полного завершения тестирования: 284.895

Полное время: 536.878

1	2	3	4	5	6	7	8	9
0.971	2.373	3.729	4.391	7.029	7.756	8.869	10.087	11.74
10	11	12	13	14	15	16	17	18
12.804	12.876	16.098	16.793	16.846	17.37	17.659	18.356	18.953

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 12.104 > 9.5$$

Найдем m >= n+1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.611	2.280	2.024	1.819	1.652
f-g	0.885	0.268	0.074	0.007	0.045

Минимум при m=22. B=m-1=21.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.00889

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

	i	19	20	21
Ī	Xi	37.509	56.264	112.528

Время до полного завершения тестирования: 206.302

Полное время: 411.002

2. Экспоненциальный закон распределения.

a. 100% n = 30.

1	2	3	4	5	6	7	8	9	10
0.077	0.615	0.620	0.823	1.790	2.305	2.487	2.851	3.515	3.797
11	12	13	14	15	16	17	18	19	20
4.229	6.088	7.169	7.253	7.610	7.670	8.495	9.176	9.195	9.541
21	22	23	24	25	26	27	28	29	30
10.183	12.205	14.512	15.387	18.542	18.760	21.316	22.478	24.625	29.654

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 22.302 > 15.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34
f	3.995	3.027	2.558	2.255
g	3.449	3.093	2.804	2.564
f-g	0.546	0.066	0.246	0.309

Минимум при m=32. B=m-1=31.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.01093

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31
Xi	91.474

Время до полного завершения тестирования: 91.474

Полное время: 374.442

b. 80% n=24

1	2	3	4	5	6	7	8	9	10	11	12
0.220	0.241	0.395	0.996	1.756	2.845	3.056	3.567	4.129	4.236	5.587	9.836
13	14	15	16	17	18	19	20	21	22	23	24
9.998	10.452	12.085	12.489	13.692	14.230	14.755	17.340	19.294	19.850	22.116	22.840

Проверка существования максимума В^:

$$A > (n + 1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 17.755 > 12.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27
f	3.776	2.816	2.354

g	3.313	2.911	2.596
f-g	0.463	0.095	0.242

Минимум при m=26. B=m-1=25.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.01288

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25
Xi	77.638

Время до полного завершения тестирования: 77.638

Полное время: 303.643

1	2	3	4	5	6	7	8	9
1.230	1.615	3.624	4.220	4.398	4.741	7.810	8.786	9.205
10	11	12	13	14	15	16	17	18
10.545	10.962	15.831	18.459	19.443	20.862	21.011	49.459	60.261

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 13.922 > 9.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20
f	3.495	2.548
g	3.545	2.962
f-g	0.050	0.414

Минимум при m=19. B=m-1=18.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.01301

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

Время до полного завершения тестирования: 0

Полное время: 272.462

3. Релеевский закон распределения.

a.
$$100\%$$
 n = 30.

1	2	3	4	5	6	7	8	9	10
1.315	2.896	3.010	3.350	4.018	5.293	6.031	6.318	7.382	7.983
11	12	13	14	15	16	17	18	19	20
8.046	8.170	8.319	8.460	8.723	8.826	9.879	10.960	11.112	11.639
21	22	23	24	25	26	27	28	29	30
11.759	11.970	12.459	13.480	13.876	15.260	16.952	18.317	18.416	24.643

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 19.817 > 15.5$$

$f_n(m) = \sum_{i=1}^n \frac{1}{m-i};$	$g_{}(m,A)=$	$-\frac{n}{}$;
$\sum_{i=1}^{n} m - i$	$o_n(\cdots,-)$	m-A'

m	31	32	33	34	35	36	37
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725
g	2.683	2.463	2.276	2.115	1.976	1.854	1.746
f-g	1.312	0.565	0.283	0.140	0.059	0.010	0.021

Минимум при m=36. B=m-1=35.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.00620

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31	32	33	34	35	
Xi	32.242	40.303	53.737	80.606	161.211	

Время до полного завершения тестирования: 368.099

Полное время: 666.961

1	2	3	4	5	6	7	8	9	10	11	12
1.176	2.112	2.215	2.317	2.530	2.668	4.863	4.910	5.246	7.321	7.819	7.863
13	14	15	16	17	18	19	20	21	22	23	24
7.915	8.449	9.598	10.162	10.510	11.619	12.028	13.341	13.548	13.718	19.448	19.709

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 16.617 > 12.5$$

Найдем m >= n+1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.863	2.558	2.312	2.109
f-g	0.913	0.258	0.043	0.050

Минимум при m=27. B=m-1=26.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.01149

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25	26
Xi	43.493	86.987

Время до полного завершения тестирования: 130.480

Полное время: 331.565

c.
$$60\% \text{ n=}18$$

1	2	3	4	5	6	7	8	9
2.730	3.556	4.182	4.886	5.719	6.203	6.856	7.198	7.856
10	11	12	13	14	15	16	17	18
7.959	8.193	8.284	8.294	8.775	10.356	10.364	12.552	16.486

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 11.499 > 9.5$$

Найдем m >= n+1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23	24	25	26
f	3.495	2.548	2.098	1.812	1.607	1.451	1.326	1.223
g	2.400	2.118	1.895	1.714	1.565	1.440	1.333	1.241
f-g	1.095	0.430	0.203	0.098	0.042	0.011	0.007	0.018

Минимум при m=25. B=m-1=24.

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.00949

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

	i	19	20	21	22	23	24
Ī	Xi	17.557	21.068	26.335	35.113	52.670	105.340

Время до полного завершения тестирования: 258.082

Полное время: 398.531

4. Итоговые результаты.

Оценки первоначального числа ошибок.

Закон распределения \ n	30	24	18
Равномерный	34	28	21
Экспоненциальный	31	25	18
Релеевский	35	26	24

Оценки полных времен проведения тестирования.

Закон распределения \ п	30	24	18
Равномерный	632.202	536.878	411.002
Экспоненциальный	374.442	303.643	272.462
Релеевский	666.961	331.565	398.531

Равномерное распределение демонстрирует худшие результаты оценки полного времени проведения тестирования при 80% и 60% входных данных.

Экспоненциальный закон распределения показывает наилучшие результаты при любых входных данных, так как по предположению модели Джелински-Моранды время до следующего отказа программы распределено экспоненциально.

Вывод

В ходе выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок.