Mathematical Foundations of CS (CS 208)

Assignment 4

Due: October 9, 2018

Note: Each question will be graded as per the following criteria:

- (a) 5 Thorough understanding of the topic and conceptual clarity
- (b) 4 Adequate understanding of the topic and conceptual clarity
- (c) 3 Some understanding of the topic and conceptual clarity
- (d) 2 or 1 Poor understanding of the topic and messed up concepts
- 1. The reversal of a string is the string written backwards, for example, rev(abcd) = dcba.
 - (a) Give a simple recursive definition of rev(s) based on the recursive definition of $s \in A^*$ and of concatenation operation discussed in the class.
 - (b) Prove that $rev(s \cdot t) = rev(t) \cdot rev(s)$ for all strings $s, t \in A^*$. You may assume that concatenation is associative: $(r \cdot s) \cdot t = r \cdot (s \cdot t)$ for all strings $r, s, t \in A^*$. If you are not convinced of associativity of concatenation, then you may prove it by structural induction on the recursive definition of string discussed in the class.
- 2. Provide simple recursive definitions of the following sets:
 - (a) $S = \{2^k 3^m 5^n \in \mathbb{N} | k, m, n \in \mathbb{N} \}$
 - (b) $S = \{2^k 3^{2k+m} 5^{m+n} \in \mathbb{N} | k, m, n \in \mathbb{N} \}$
 - (c) $S = \{(a, b) \in \mathbb{Z}^2 | (a b) \text{ is a multiple of 3.} \}$
- 3. Define the number $\#_c(s)$ of occurrences of the character $c \in A$ in the string s recursively on the definition of $s \in A^*$:

Base case: $\#_c(\lambda) := 0$.

Constructor case:

$$\#_c(\langle a, s \rangle) = \begin{cases} \#_c(s) & a \neq c \\ 1 + \#_c(s) & a = c \end{cases}$$

Prove by structural induction that for all $s,t\in A^{\star}$ and $c\in A$

$$\#_c(s \cdot t) = \#_c(s) + \#_c(t).$$

- 4. Evaluate the sums $S_n = \sum_{k=0}^n (-1)^{n-k}$, $T_n = \sum_{k=0}^n (-1)^{n-k}k$, and $U_n = \sum_{k=0}^n (-1)^{n-k}k^2$ by the perturbation method, assuming that $n \ge 0$.
- 5. Evaluate the sum $\sum_{k=1}^{n} (-1)^k k/(4k^2-1)$.
- 6. Prove the Dirichlet box principle: if n objects are put into m boxes, some box must contain $\geq \lceil n/m \rceil$ objects, and some box must contain $\leq \lceil n/m \rceil$.
- 7. Show that the expression

$$\left\lceil \frac{2x+1}{2} \right\rceil - \left\lceil \frac{2x+1}{4} \right\rceil + \left\lfloor \frac{2x+1}{4} \right\rfloor$$

1

is always either |x| or [x]. In what circumstances does each case arise?

8. Prove or disprove: $|x| + |y| + |x + y| \le |2x| + |2y|$.