We consider a pure death process $\{X_t\}_{t\geq 0}$ with $X_0=3$, $\mu_0=0$, $\mu_1=3$, $\mu_2=2$, and $\mu_3=5$.

Let $W_i = \inf \{ \{ \} \} \geq 0 : X_i = 3 - i \}$, i.e. W_i is the first time the process reaches state 3-i.

a) Then.

 $W_3 = (\omega_3 - \omega_2) + (\omega_2 - \omega_1) + (\omega_1 - \omega_0),$

where of course $w_0 = 0$ and the increments are independent. We have that $w_i - w_{i-1}$ follows an exponential (Apy-i) distribution.

Hence.

Similarly,

b) \(\mathbb{E}[\omega_3 + \omega_2 + \omega_1] = \(\mathbb{E}[\omega_3] + \omega_1 \mathbb{E}[\omega_2] + \omega_1 \mathbb{E}[\omega_1] \)

=
$$(\mu_1' + \mu_2' + \mu_3') + (\mu_2' + \mu_3') + \mu_3'$$

= $31/36 + 21/30 + 6/30 = 58/30 = 29/15$

C) Finally,