Combinatorics: Homework 8

Peter Kagey

October 18, 2018

Problem 1: 58 (a). [2]

For $u \in \mathfrak{S}_k$, let $s_u(n) = \#S_u(n)$ the number of permutations $w \in \mathfrak{S}_n$ avoiding u. If also $v \in \mathfrak{S}_k$, then write $u \sim v$ if $s_u(n) = s_v(n)$ for all $n \geq 0$.

Let $u, v \in \mathfrak{S}_k$. Suppose that the permutation matrix P_v can be obtained from P_u by one of the eight dihedral symmetries of the square. Show that $u \sim v$.

We then say that u and v are equivalent by symmetry, denoted $u \approx v$. What are the \approx equivalence classes for \mathfrak{S}_3 ?

Solution. Suppose that σ is an element of the dihedral group of the square and P_v and P_u are permutation matrices such that $P_v = \sigma P_u$ under the group action.

Then there is an "obvious" bijection between $S_u(n)$ and $S_v(n)$, namely $f: S_u(n) \to S_v(n)$ maps $P_u \mapsto \sigma P_u$. To go back, simply do the group action of σ^{-1} .

There are only two equivalence classes for \mathfrak{S}_3 :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and }$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \approx \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Problem 2. Find the recurrence and generating function formula for the "corner colored" paths $(0,0) \rightarrow (n,n)$ with steps (1,0) or (0,1), on or above the main diagonal such that every inner corner of the path of the kind $(a,b) \rightarrow (a+1,b) \rightarrow (a+1,b+1)$ can be colored in one of two possible colors.

Solution.

We'll use the same technique that was used to compute the Catalan numbers in class; namely, we'll sum over all positions where the Dyck paths first hit the diagonal (stictly above (0,0)) and take the products of the smaller Dyck paths below and this point.

$$f(0) = 1$$

$$f(n) = f(n-1) + \sum_{k=1}^{n-1} 2f(k-1)f(n-k)$$

We also do the same sort of generating function argument.

$$F(x) = \sum_{n=0}^{\infty} f(n)x^{n}$$

$$= 1 + \sum_{n=1}^{\infty} f(n)x^{n}$$

$$= 1 + \sum_{n=1}^{\infty} \left(f(n-1) + \sum_{k=1}^{n-1} 2f(k-1)f(n-k) \right) x^{n}$$

$$= 1 + \sum_{n=1}^{\infty} f(n-1)x^{n} + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n-1} 2f(k-1)f(n-k) \right) x^{n}.$$

By reindexing the sums on the right with the standard trick, letting n = k + j where j now runs from 0 to infinity, we have

$$F(x) = 1 + xF(x) + \sum_{j=0}^{\infty} \left(\sum_{k=1}^{\infty} 2f(k-1)f(j) \right) x^{k+j}$$
$$= 1 + xF(x) + 2x \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} f(k)f(j)x^k x^j$$
$$= 1 + xF(x) + 2xF(x)^2$$

which means that solving $0 = 2xF(x)^2 + (x-1)F(x) + 1$ for F(x) by the quadratic formula yields

$$\frac{-(x-1) \pm \sqrt{(x-1)^2 - 4 \cdot 2x}}{2 \cdot 2x}.$$

When x is near zero, F(x) should be close to f(0), so the root we care about is

$$F(x) = \frac{1 - x - \sqrt{x^2 - 10x + 1}}{4x}$$

Problem 3. Find the number of 132-avoiding alternating permutations of length 2n.

Proof. I will construct a bijection $\varphi \colon \mathfrak{S}_n^{(132)} \to \mathfrak{S}_{2n,\mathrm{alt}}^{(132)}$ between 132-avoiding permutations of length n and 132-avoiding alternating permutations of length n.

The map φ is simple, but its inverse is more complicated. In particular, φ takes in a word in $\mathfrak{S}_{2n,\mathrm{alt}}^{(132)}$ and outputs the relative order of the odd letters.

$$w_1w_2w_3\dots w_{2n-1}w_{2n} \stackrel{\varphi}{\mapsto} \operatorname{order}(w_1w_3\dots w_{2n-1})$$

For example, if w = 65748231, then $\varphi(w) = \text{order}(6783) = 2341$.

Going back is a bit trickier.

- 1. Start with the permutation $w' \in \mathfrak{S}_n^{(132)}$.
- 2. For i increasing from 1 to n-1, recursively insert $a = \min(w_1, w_2, \dots w_{2i})$ into the 2ith position, then increment all letters that are greater than or equal to a, except for the newly inserted letter.
- 3. Increment everything and append 1.

For example, starting with w' = 2341 this algorithm recovers the original alternating permutation.

2		3		4		1	
	$\min(2,3)$						
\downarrow		\downarrow		\downarrow		\downarrow	
3	2	4		5		1	
			$\min(2,3,4,5)$				
\downarrow	\downarrow	\downarrow		\downarrow		\downarrow	
4	3	5	2	6		1	
					$\min(2,3,4,5,6,1)$		
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		\downarrow	
5	4	6	3	7	1	2	,
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
6	5	7	4	8	2	3	1

In practice, this is a sequence of maps

$$\mathfrak{S}_{n}^{(132)} \xrightarrow{\psi_{1}} \mathfrak{S}_{n+1}^{(132)} \xrightarrow{\psi_{2}} \mathfrak{S}_{n+3}^{(132)} \xrightarrow{\psi_{3}} \dots \xrightarrow{\psi_{n-1}} \mathfrak{S}_{2n-1} \xrightarrow{\psi_{n}} \mathfrak{S}_{2n}$$

Where each ψ_i has the property that for all $i \neq n$, if the preimage is alternating for letters $w_1 < w_2 > w_3 < \ldots > w_{2i-1}$, then the image will be alternating for letters $w_1 < w_2 > w_3 < \ldots > w_{2i+1}$. (In the case of ψ_n , there is no w_{2n+1} letter, but this holds up to w_{2n} .) Also ψ_i preserves the relative order of all of the letters away from position i.

There is only one map ψ_i that satisfies this:

- 1. If the inserted letter is greater than either of the neighboring letters, then it fails to satisfy the alternating condition.
- 2. If the inserted letter is less than its left neighbor w_{2i-1} , but greater than some letter w_j in the prefix, then the subsequence w_j, w_{2i-1}, a is not 132-avoiding.
- 3. If the inserted letter, a, is less than $\min(w_1, w_2, \dots w_{2i})$, then there exists some letter w_k with k > 2i such that the subsequence a, w_{2i}, w_k is not 132 avoiding.

Therefore the map $\phi^{-1} = \psi_n \circ \psi_{n-1} \circ \dots \circ \psi_1$ recovers the original sequence, and so $\phi \circ \phi^{-1} = \phi^{-1} \circ \phi = \mathrm{id}$, and ϕ is a bijection. Thus $\#\mathfrak{S}_n^{(132)} = \#\mathfrak{S}_{2n,\mathrm{alt}}^{(132)} = C_n$.