

HOW TO PARTICIPATE

- One discussion leader, and everyone welcome to participate
- Majority of material comes from Reinforcement Learning by Sutton and Barto
- Options to approach the content:
 - Treat this as a standalone webinar
 - Read the book first, and come with questions and discussion items
 - Use this meetup as a primer and read the chapters afterward
- Ask questions
- Give feedback. Too fast or too slow? Want to see more of something or less of something else?
- Have fun!

AGENDA

- Recap what reinforcement learning (RL) is
 - Elements and formulation as Markov decision processes (MDP)
 - Terminology and notation used in RL
 - The Bellman equations
 - Generalized policy iteration
- Planning and learning
 - Planning versus learning
 - Dyna algorithm
 - Heuristic and Monte Carlo tree search
 - Wrap up of tabular RL

REINFORCEMENT LEARNING

- Reinforcement learning (RL) is about an agent learning from interacting with its uncertain environment
 - The agent interacts by choosing from a set of allowed actions
 - It gets feedback from a numeric reward signal
 - Goal is to maximize the return, which is the total rewards received
- Reinforcement learning is about exploring the environment and recording useful information for the future
- RL is sequential decision making; time is intrinsic

MARKOV DECISION PROCESSES

- Elements of the fully observable Markov Decision Process (MDP):
 - State at each time step t, the environment is in some state S_t
 - Action at each time step t, the agent chooses an action A_t
 - Reward after taking the action, the agent is given a reward signal R_{t+1} and subsequently finds itself in a new state S_{t+1}

In a Markov Decision Process, the transition at any given time t only depends on the state S_t and action chosen A_t

MDPS AS A GRAPH

- Sometimes it is easier to visualize a MDP as a directed graph
 - The states are nodes (big white circles)
 - The actions are edges leading from nodes (here with small black circles)
 - The rewards are values along directed edges that take you to a new state
- Here is the recycling robot from the book:

REINFORCEMENT LEARNING NOTATION

Letter	Used for
S	<u>S</u> tate
a	<u>A</u> ction
r	<u>R</u> eward
γ	Discount rate
G	Return – sum of all future rewards
p	Transition p robability
V	<u>V</u> alue function for states
q	Value function for state-action pairs
π	Policy (<u>π</u> ολιτική)
*	Optimal choices, e.g. π_*

BELLMAN EQUATION

- The value function for state s under policy π is a sum of the rewards received and the value functions for each future state s' times the probability of winding up there
- Formally:

$$v_{\pi}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

Probability you take action a

Probability you and end in state s' of new state s'

Reward plus get reward r discounted value

BELLMAN EQUATION VISUALIZED

This is a *backup diagram* for $v_{\pi}(s)$. To compute it:

- We need to sum over each branch of π(), based on the probability of each action a
- And sum over of each branch of p(), based on probability we wind up in state s'
- The quantity we sum is the reward and the discounted value of possible state s'

$$v_{\pi}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

BELLMAN OPTIMALITY EQUATIONS – V()

 The Bellman optimality equation says the optimal value for a state must be the same as the return from the best action

 $= \max_{a} \sum_{s} p(s', r | s, a) [r + \gamma v_*(s')].$

We can rewrite it recursively

 (v_*)

(3.19)

BELLMAN OPTIMALITY EQUATIONS – Q()

- The Bellman optimality equation for state-action pairs is very similar.
- The optimal value for a state-action pair must be the same as the return from the reward and best next action

s, a

It also can be written recursively

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$

$$= \sum_{s',r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]. \tag{3.20}$$

POLICY ITERATION

• The book shows a sequence like this:

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_1 \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

- The arrows with E's are full cycles of iterative policy evaluation
- And the arrows with I's are policy improvement

GENERALIZED POLICY ITERATION

- The term generalized policy iteration (GPI)
 refers to the general idea of letting policy
 evaluation and policy improvement
 processes interact
 - Doesn't matter how fully each evaluation or improvement step runs, or if they exactly alternate

REINFORCEMENT LEARNING CONTROL

- With this foundation, there's a lot we can tackle
 - Algorithms for learning
 - Dealing with memory and compute limitations
 - Getting models to converge quickly
- We also still have many challenges
 - Reward design effectively communicating the real goal
 - Sparse rewards
 - Credit assignment which actions in trajectory contributed
 - Exploration vs. exploitation

MONTE CARLO EXPLORING STARTS

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize: $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all $s \in \mathcal{S}$ $Q(s,a) \in \mathbb{R}$ (arbitrarily), for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ Loop forever (for each episode): Choose $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ randomly such that all pairs have probability > 0Generate an episode from S_0, A_0 , following $\pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

Q-LEARNING

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```


MODELS

- In RL, the term model is used specifically to refer to the component that given a state and action, predicts the reward and next state
- For stochastic environments, the model can output a probability distribution (a *distribution model*), or it can simply output samples (a *sample model*)
- Distribution models are stronger, but grow complex fast, and are harder and more error-prone to build

MODELS AND PLANNING

- Techniques that don't require a model, such as TD and Monte Carlo, are called model-free, and they are said to do learning
- Algorithms that require a model, such as dynamic programming, are called model-based, and they are said to do planning
 - Planning a process that inputs a model and improves a policy
- If we have a model, then given a starting state and action, we can produce simulated experience
 - A sample model might produce an episode, and a distributional might produce all possible transitions along with their probabilities

PLANNING

- The book covers state-space planning, where value functions are computed, and we search the state space for an optimal policy
- The planning process has the following steps:

 Going back to dynamic programming, it follows this structure, using a distributional model to evaluate all possible transitions, and backing up values one step ahead

Q-PLANNING

 A simple new example of planning is we can turn Q-learning into Q-planning by replacing the actual experience with the environment with simulated experience with a model

Random-sample one-step tabular Q-planning

Loop forever:

- 1. Select a state, $S \in \mathcal{S}$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) Q(S,A)\right]$

ONLINE PLANNING

- If we do planning online, experience from interactions can:
 - Improve the model called model learning
 - Perform learning (improve the value function and policy) – direct RL
- And planning itself can improve the value function and policy
 - Sometimes called indirect RL
- Planning tends to be more sample efficient

DYNA-Q

- Dyna-Q interacts and then does both direct RL, and model learning & planning
 - Direct RL is Q-learning
 - Planning is Q-planning
 - Model learning is simplistic.
 Assumes deterministic, and each transition from a state and action is assumed to always be the next state and reward (any previous info recorded is overwritten)
 - Search control is how state action pairs are chosen for planning

DYNA-Q ALGORITHM

• Here is the pseudocode for basic tabular Dyna-Q:

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) Q(S,A)]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment) Here, search control
- (f) Loop repeat n times:

 $S \leftarrow$ random previously observed state is random

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

DYNA-Q PERFORMANCE

- In the Dyna-Q algorithm shown, we perform n planning steps for each interaction with the environment
 - When running online, it's realistic that we have time to repeat planning
- The more planning we do, the fewer interactions we need

IMPROVING PLANNING

- Dyna-Q works well with missing values, but doesn't explore well
- Dyna-Q+ keeps track of how long since each state-action pair was visited, and a bonus reward which increases with time is added to simulation
- Prioritized sweeping tracks which values have changed the most and prioritizes states the lead to those changed states
- For large state spaces, trajectory sampling picks states and actions by following the current policy
 - Following the on-policy distribution accelerates learning early by focusing on useful states. Might not explore enough in the long term.

PLANNING AT DECISION TIME

- We've been talking about general planning to improve the overall value function an policy, called background planning
- Planning at decision time can look a little different
- At decision time, rather than trying to improve our policy, we are trying select the best action
- We can do planning in a similar fashion to everything previously discussed, but now we root all activity in the current state

HEURISTIC SEARCH

- In heuristic search, for each state encountered, a large tree of possible continuations is considered, and values of leaves are backed up
- Somewhat surprisingly, backed up values historically were discarded instead of updating the value function (which may have been hand-crafted, not learned)
- Rollout algorithms simulate trajectories starting from the current state, following a rollout policy
 - Similar to Monte Carlo methods, but starting at current state
 - Not run to find optimal policy, but will improve rollout policy as more trajectories sampled

MONTE CARLO TREE SEARCH

- Monte Carlo Tree Search (MCTS) takes the rollout algorithm and adds a number of optimizations
- As value estimates are forming, MCTS directs simulations toward more promising trajectories, using four steps:
 - **Selection**. Starting at the root node, a tree policy tree traverses the tree to select a leaf node.
 - Expansion. On some iterations, the tree is expanded from the selected leaf node by adding unexplored actions.
 - **Simulation**. From the selected node, or from one of its newly-added child nodes (if any), simulation of a complete episode is run with actions selected by the rollout policy
 - Backup. The return generated by the simulated episode is backed up to update the action values attached to the edges of the tree

MCTS VISUALIZATION

WRAP UP OF TABULAR RL

- Rather than separate methods, everything discussed so far can be considered coherent ideas varying on certain dimensions
- All of these:
 - Estimate value functions
 - Back up values along trajectories
 - Follow the general strategy of Generalized Policy Improvement
- Two key dimensions along with the algorithms we've discussed differ are the width and depth of updates.
 - Visualizing the space of these two dimensions unifies many RL methods

DEPTH AND WIDTH OF UPDATES

RECAP

- Review what reinforcement learning (RL) is
 - Elements and formulation as Markov decision processes (MDP)
 - Terminology and notation used in RL
 - The Bellman equations
 - Generalized policy iteration
- Planning and learning
 - Planning versus learning
 - Dyna algorithm
 - Heuristic and Monte Carlo tree search
 - Wrap up of tabular RL

QUESTIONS

8

DISCUSSION

NEXT SESSION

- Next week, Sat. July 17, there will be a guest speaker talking about PySpark, MLlib, and MLFlow
- The following week, on Sat. July 24, the RL topic is still TBD. It
 will either be about RL using function approximation, or it will be
 about policy gradient algorithms