ФГБОУ ВО

Национальный исследовательский университет «МЭИ»

Институт Направление Радиоэлектроники Радиоэлектронные системы и комплексы

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ курса «Аппаратура потребителей СРНС»

Выполнил: Студент 5-го курса группы ЭР-15-17 Капитонов А.И. Принял: Корогодин Илья Владимирович

Оглавление

ІАБОРАТОРНАЯ РАБОТА 1				
1.1 Ці	ЕЛЬ РАБОТЫ	2		
1.2 3A	ДАНИЕ	2		
	ЫПОЛНЕНИЕ РАБОТЫ			
	Теоретическая часть			
	Процесс сбора данных			
	Процесс обработки данных			
	ыводы			

Лабораторная работа 1

Ошибки позиционирования в городских условиях

1.1 Цель работы

Цель данной лабораторной работы — оценка качества радионавигационных систем на основе точности их работы, характеризуемой погрешностью определения местоположения в разных рабочих условиях.

1.2 Задание

Студентам предлагается выбрать три места:

- с отличными условиями приема (открытый небосвод, ничто не мешает приему сигналов спутников);
- со средними условиями (те или иные сектора неба закрыты, среднеэтажная застройка);
- сложными условиями приема (небо не видно или почти не видно).

В каждом месте:

- достать телефон, запустить NMEA Tools;
- дождаться запуска приемника, начала выдачи координат;
- сделать скриншот экрана с полученными координатами;
- сделать селфи себя и товарищей в выбранном окружении (так, чтобы было видно условия приема).

Оформить отчет, выгрузить на гитхаб, завести Pull request.

1.3 Выполнение работы

1.3.1 Теоретическая часть

Для определения расстояния воспользуемся формулой Хаверсайна. Формула Хаверсайна вычисляет кратчайшее расстояние между двумя точками на сфере, используя их широты и долготы. Гаверсин в тригонометрии обозначается как:

$$haversin(\theta) = sin^2(\frac{\theta}{2}).$$
 (1.1)

Хаверсайн угла (который равен d/r) рассчитывается по следующей формуле:

$$haversin(\frac{d}{r}) = haversin(\phi_2 - \phi_1) + cos(\phi_1)cos(\phi_2)haversin(\lambda_2 - \lambda_1)$$
 (1.2)

где r — радиус Земли (6371 км), d — расстояние между двумя точками, ϕ 1, ϕ 2 широта двух точек и λ 1, λ 2 это долгота двух точек соответственно.

Решим относительно d:

$$d = 2r \cdot \arcsin\left[\sqrt{\sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right]$$
(1.3)

Соответственно d равно расстоянию между точками M1 и M2 на Рис. 1.3.1

Рисунок 1.3.1 – Сферические координаты двух точек

1.3.2 Процесс сбора данных

Были выбраны данные три точки на карте:

Место с отличными условиями приема было пересечением трамвайных путей улиц Авиамоторная и Красноказарменная. Ближайшее здание высотой 5 этажей. Также на расстоянии 100 м стоит 16 этажное здание, закрывающее не более 5 процентов обзора. Карта местности представлена на Рис. 1.3.2

Рисунок 1.3.2 — Карта места №1

Рисунок 1.3.3 – Фото бригады на точке №1

Местом со средними условиями приема была лавка у входа Е-корпуса МЭИ. Ближайшее здание высотой 8 этажей на расстоянии 10 м. Также на расстоянии 40 м стоит 7 этажное здание "ВЭИ". Карта местности представлена на Рис. 1.3.4

Рисунок 1.3.4 — Карта места №2

Рисунок 1.3.5 — Фото бригады на точке №2

Местом со сложными условиями приема было крыльцо главного корпуса МЭИ. Весь обзор неба загорожен козырьком крыльца и пятиэтажным корпусом Ж. Карта местности представлена на Рис. 1.3.6

Рисунок 1.3.6 — Карта места №3

Рисунок 2.3.7 – Фото бригады на точке №3

Сгруппируем в таблицу (см. табл. 1.1) координаты, которые будем считать искомыми для каждой точки.

Таблица 1.1 – Искомые координаты

Номер	ϕ_1	λ_1
1	55.754785	37.708002
2	55.756380	37.703362
3	55.753967	37.715783

Далее наступил этап получения реальных координат, соответствующих приемнику телефона, в заданных точках пространства.

На месте с отличными условиями приема были получены следующие данные:

$$\phi_{2,2} = 55.754494, \lambda_{2,2} = 37.707691$$

На месте со средними условиями приема были получены следующие данные:

$$\phi_{2,1} = 55.756241, \lambda_{2,1} = 37.703495$$

На месте со сложными условиями приема были получены следующие данные:

$$\phi_{2,3} = 55.753906, \lambda_{2,3} = 37.715866$$

1.3.2 Процесс обработки данных

Была написана микропрограмма на языке Python для расчета расстояний между искомыми координатами и их навигационной оценкой по формуле Хависайна. Ниже представлен листинг 1.1.

Листинг 1.1 – Программа расчета ошибки определения местоположения

```
from math import radians, cos, sin, asin, sqrt
def haversine(phi1, phi2, lam1, lam2):
     # Перевод в радианы
      phi1, lam1, phi2, lam2 = map(radians, [phi1, lam1, phi2, lam2])
     # Формула Хаверсайна
      delta phi = phi2 - phi1
      delta lam = lam2 - lam1
10
      a = \sin(delta_phi/2)**2 + \cos(phi1) * \cos(phi2) * \sin(delta_lam)
11
     /2)**2
      c = 2 * asin(sqrt(a))
12
      r = 6371 \ \# \ Radius \ of \ earth \ in \ kilometers. Use 3956 for \ miles
13
      return c * r
14
print (haversine (55.753906,55.753967 , 37.715866, 37.715783))
print (haversine (55.756241, 55.756380, 37.703495,37.703362))
18 print (haversine (55.754494, 55.754785, 37.707691, 37.708002))
19
20
21
22 # Результат:
24 0.03775882893871361
25 0.017554072033429968
26 0.008542959503705894
```

Программа возвращает расстояния в километрах, занесем результат в таблицу 1.1

Таблица 1.1 — Результаты

Номер	d
1	8.5 м37.8 м
2	17.6 м
3	37.8 м

1.4 Выводы

В процессе лабораторной работы были получены данные о местоположении навигационного приемника в трех точках с разными условиями приема. Было рассчитано отклонение полученных на месте координат от истинных. Получено экспериментальное подтверждение того, что ошибка увеличивается с ухудшением приема. Это связано с задержкой прохождения сигнала через среды с отличными от воздуха свойствами.