连续与间断

Didnelpsun

目录

1	连续		
	1.1	求连续区间	1
	1.2	已知连续区间求参数	1
2	间断		
	2.1	求间断点	2
	2.2	已知间断点求参数	3

1 连续

连续则极限值等于函数值。

1.1 求连续区间

若要考察一个函数的连续区间,必须要了解函数的所有部分,一般会给出分 段函数,所以要了解分段函数的每段函数的性质。

对于函数 f(x) 是个极限表达形式,我们要简化这个极限,最好得到一个 x 的表达式,从而才能判断其连续区间。

例题:
$$f(x) = \lim_{n \to \infty} \frac{x + x^2 e^{nx}}{1 + e^{nx}}$$
, 求函数连续区间。

解:注意到函数的形式为一个极限值,其极限趋向的变量为 n ($n \to \infty$ 指 $n \to +\infty$)。所以在该极限式子中将 x 当作类似 t 的常数。

需要先求出极限形式的 f(x), 而 x 变量的取值会影响到极限,且求的就是 x 的取值范围。所以将其分为三段:

当
$$x < 0$$
 时, $nx \to -\infty$,∴ $e^{nx} \to 0$, x^2 在这个极限式子为一个常数, ∴ $x^2e^{nx} \to 0$, $f(x) = \lim_{n \to \infty} \frac{x + x^2e^{nx}}{1 + e^{nx}} = \frac{x + 0}{1 + 0} = x$ 。

$$\underline{\exists} x = 0$$
 时, $f(x) = \lim_{n \to \infty} \frac{x + x^2 e^{nx}}{1 + e^{nx}} = \frac{0}{2} = 0$ 。

当 x>0 时, e^{nx} 在 $n\to\infty$ 时为 ∞ ,上下都有这个无穷大的因子,所以上下都除以 e^{nx} , $f(x)=\lim_{n\to\infty}\frac{x+x^2e^{nx}}{1+e^{nx}}=f(x)=\lim_{n\to\infty}\frac{xe^{-nx}+x^2}{1+e^{-nx}}=\frac{0+x^2}{1}=x^2$ 。

从而得到了 f(x) 关于 x 的表达式:

$$f(x) = \begin{cases} x, & x < 0 \\ 0, & x = 0 \\ x^2, & x > 0 \end{cases}$$

又
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} x = \lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} x^2 = f(0) = 0$$
。 $f(x)$ 在 R 上连续。

1.2 已知连续区间求参数

一般会给出带有参数的分段函数,要计算参数就必须了解连续区间与函数之间的关系。

例题:
$$f(x) = \begin{cases} 6, & x \leq 0 \\ \frac{e^{ax^3} - 1}{x - \arcsin x}, & x > 0 \end{cases}$$
 , $g(x) = \begin{cases} \frac{3\sin(x-1)}{x-1}, & x < 1 \\ e^{bx} + 1, & x \geqslant 1 \end{cases}$,

若 f(x) + g(x) 在 R 上连续,则求 a,b。

解: 已知 f(x) + g(x) 在 R 上连续,但是不能判断 f(x) 与 g(x) 的连续性。 所以分开讨论。

对于 f(x) 因为左侧为常数函数, 所以若是 f(x) 连续, 则必然:

$$\lim_{x \to 0^+} \frac{e^{ax^3} - 1}{x - \arcsin x} = 6$$

$$\therefore \lim_{x \to 0^+} \frac{e^{ax^3} - 1}{x - \arcsin x} = \lim_{x \to 0^+} \frac{ax^3}{x - \arcsin x}$$

 $\therefore a = -1$ 时 f(x) 在 R 上连续。

对于
$$g(x)$$
, 当 $x < 1$ 时, $\lim_{x \to 1^-} \frac{3\sin(x-1)}{x-1} = \lim_{t \to 0^-} \frac{3\sin t}{t} = 3$ 。

$$\therefore \lim_{x \to 1^+} e^{bx} + 1 = e^b + 1 = 3.$$

 $\therefore b = \ln 2$ 时 g(x) 在 R 上连续。

 $\therefore a = -1, b = \ln 2$ 时 f(x) + g(x) 在 R 上连续。而 $a \neq -1$ 时 f(x) + g(x) 在 x = 0 时不连续, $b \neq \ln 2$ 时 f(x) + g(x) 在 x = 1 时不连续。

2 间断

2.1 求间断点

求间断点需要首先分析函数的表达形式。

例题: 设 $f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$,求其间断点并分析其类型。

解:根据函数形式,我们需要首先回顾一下幂函数的性质,幂函数的变化趋势取决于底数。

当 x=1 时, $x^n\equiv 1$, 当 $x\in (-\infty,-1)\cup (1,+\infty)$ 时, 当 $n\to\infty$ 时, $x^n\to\infty$, 而 $x\in (-1,1)$ 时, 当 $n\to\infty$ 时, $x^n\to 0$ 。

$$\therefore \lim_{n \to \infty} \frac{1+x}{1+x^{2n}} = \begin{cases} 0, & x \in (-\infty, -1] \cup (1, +\infty) \\ 1, & x = 1 \\ x+1, & x \in (-1, 1) \end{cases}$$

所以分段点为 $x = \pm 1$ 。

当 x = -1 时, $f(-1^+) = f(-1^-) = f(-1) = 0$, 所以在此处连续。

当 x=1 时, $f(1^+)=0 \neq f(1^-)=2$, 所以在此处简短, 为跳跃间断点。

2.2 已知间断点求参数

这种题目已知间断点,而未知式子中的参数,只用将间断点代入式子并利用极限计算间断点的类型就可以了。

例题: $f(x) = \frac{e^x - b}{(x - a)(x - b)}$ 有无穷间断点 x = e,可去间断点 x = 1,求 ab 的值。

解:已知有两个间断点 x = a, x = b,其中无穷间断点指极限值为无穷的点,可去间断点表示极限值存在且两侧相等,但是与函数值不相等的点。

已经给出两个间断点的值为 x = 1 和 x = e,所以 ab 必然对应其中一个,但是不清楚到底谁是谁。

当
$$a = 1, b = e$$
 时, $f(x) = \frac{e^x - e}{(x - 1)(x - e)}$ 。

$$\stackrel{\text{def}}{=} x \to 1 \text{ pr}, \lim_{x \to 1} \frac{e^x - e}{(x - 1)(x - e)} = \frac{1}{1 - e} \lim_{x \to 1} \frac{e^x - e}{x - 1} = \frac{e}{1 - e} \lim_{x \to 1} \frac{e^{x - 1} - 1}{x - 1} = \frac{e}{1 - e} \cdot \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e} \cdot \frac{e^x - e}{1 - e} = \frac{e^x - e}{1 - e}$$

 $\therefore x = 1$ 为可去间断点。

$$\stackrel{\text{def}}{=} x \to e \text{ iff}, \lim_{x \to e} \frac{e^x - e}{(x - 1)(x - e)} = \frac{1}{e - 1} \lim_{x \to e} \frac{e^x - e}{x - e} = \frac{e}{e - 1} \lim_{x \to e} \frac{e^{x - 1} - 1}{x - e} = \frac{e}{e - 1} \lim_{x \to e} \frac{x - 1}{x - e} = \frac{e(e - 1)}{e - 1} \lim_{x \to e} \frac{1}{x - e} = \infty.$$

 $\therefore x = e$ 为无穷间断点。

当
$$a = e, b = 1$$
 时, $f(x) = \frac{e^x - 1}{(x - e)(x - 1)}$ 。

而作为分子的 e^x-1 必然为一个常数,当式子趋向 1 或 e 的时候分母两个不等式中的一个不等式必然为一个常数,从而另一个不等式则变为了无穷小,所以 $\lim_{x\to 1}f(x)=\lim_{x\to e}f(x)=\infty$ 。

$$\therefore a = 1, b = e_{\circ}$$