стью абсолютная погрешность |f(x+h)-f(x)| в значении функции при достаточно малых h может быть заменена модулем значения дифференциала |df(x)h| = |f'(x)h| на смещении h.

Тогда относительная погрешность может быть вычислена как отношение $\frac{|f'(x)h|}{|f(x)|} = \frac{|df(x)h|}{|f(x)|}$ или как модуль произведения $\left|\frac{f'(x)}{f(x)}\right| |h|$ логарифмической производной функции на величину абсолютной погрешности аргумента.

Заметим, кстати, что если $f(x) = \ln x$, то $d \ln x = \frac{dx}{x}$ и абсолютная погрешность в определении значения логарифма равна относительной погрешности в определении аргумента. Это обстоятельство прекрасно используется, например, в логарифмической линейке (и многих других приборах с неравномерным масштабом шкал). А именно, представим себе, что с каждой точкой числовой оси, лежащей правее нуля, мы связали ее координату у и записали ее над точкой, а под этой точкой записали число $x = e^y$. Тогда y == ln x. Одна и та же числовая полуось оказалась наделенной одной равномерной шкалой у и одной неравномерной (ее называют логарифмической) шкалой x. Чтобы найти $\ln x$, надо установить визир на числе x и прочитать наверху соответствующее число у. Поскольку точность установки визира на какую-то точку не зависит от числа х или у, ей отвечающего, и измеряется некоторой величиной Δy (длиной отрезка возможного уклонения) в равномерной шкале, то при определении по числу х его логарифма у мы будем иметь примерно одну и ту же абсолютную погрешность, а при определении числа по его логарифму будем иметь примерно одинаковую относительную погрешность во всех частях шкалы.

Пример 8. Продифференцируем функцию $u(x)^{v(x)}$, где u(x) и v(x) — дифференцируемые функции и u(x) > 0. Запишем $u(x)^{v(x)} = e^{v(x) \ln u(x)}$ и воспользуемся следствием 2

$$\frac{de^{v(x)\ln u(x)}}{dx} = e^{v(x)\ln u(x)} \Big(v'(x) \ln u(x) + v(x) \frac{u'(x)}{u(x)} \Big) =$$

$$= u(x)^{v(x)} \cdot v'(x) \ln u(x) + v(x)u(x)^{v(x)-1} \cdot u'(x).$$

3. Дифференцирование обратной функции

ТЕОРЕМА 3 (теорема о производной обратной функции). Пусть функции $f: X \to Y$, $f^{-1}: Y \to X$ взаимно обратны и непрерывны в точках $x_0 \in X$ и $f(x_0) = y_0 \in Y$ соответственно. Если функция f дифференцируема в точке x_0 и $f'(x_0) \neq 0$, то функция f^{-1} также дифференцируема в точке y_0 , причем

$$(f^{-1})'(y_0) = (f'(x_0))^{-1}$$
.

Поскольку функции f: X → Y, f⁻¹: Y → X взаимно обратны, то величины f(x) − f(x₀), f⁻¹(y) − f⁻¹(y₀) при y = f(x) не обращаются в нуль, если x ≠ ≠ x₀. Из непрерывности f в x₀ и f⁻¹ в y₀ можно, кроме того, заключить, что (X ⇒ x → x₀) ⇔ (Y ⇒ y → y₀). Используя теперь теорему о пределе композиции

функций и арифметические свойства предела, находим

$$\lim_{Y\ni y\to y_0} \frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0} = \lim_{X\ni x\to x_0} \frac{x-x_0}{f(x)-f(x_0)} = \lim_{X\ni x\to x_0} \frac{1}{\left(\frac{f(x)-f(x_0)}{x-x_0}\right)} = \frac{1}{f'(x_0)}.$$

Таким образом, показано, что в точке y_0 функция $f^{-1}: Y \to X$ имеет производную и

$$(f^{-1})'(y_0) = (f'(x_0))^{-1}$$
.

Замечание 1. Если бы нам заранее было известно, что функция f^{-1} дифференцируема в точке y_0 , то из тождества $(f^{-1} \circ f)(x) = x$ по теореме о дифференцировании композиции функций мы сразу же нашли бы, что $(f^{-1})'(y_0) \cdot f'(x_0) = 1$.

Замечание 2. Условие $f'(x_0) \neq 0$, очевидно, равносильно тому, что отображение $h \mapsto f'(x_0)h$, осуществляемое дифференциалом $df(x_0) \colon T\mathbb{R}(x_0) \to T\mathbb{R}(y_0)$, имеет обратное отображение $[df(x_0)]^{-1} \colon T\mathbb{R}(y_0) \to T\mathbb{R}(x_0)$, задаваемое формулой $\tau \mapsto (f'(x_0))^{-1}\tau$.

Значит, в терминах дифференциалов вторую фразу формулировки теоремы 3 можно было бы записать следующим образом:

$$df^{-1}(y_0) = [df(x_0)]^{-1} : T\mathbb{R}(y_0) \to T\mathbb{R}(x_0),$$

обратным к отображению $df(x_0)$: $T\mathbb{R}(x_0) \to T\mathbb{R}(y_0)$.

Пример 9. Покажем, что
$$\arcsin' y = \frac{1}{\sqrt{1-y^2}}$$
 при $|y| < 1$.

Функции sin: $[-\pi/2, \pi/2] \rightarrow [-1, 1]$ и arcsin: $[-1, 1] \rightarrow [-\pi/2, \pi/2]$ взаимно обратны и непрерывны (см. гл. IV, § 2, пример 8), причем sin' $x = \cos x \neq 0$, если $|x| < \pi/2$. При $|x| < \pi/2$ для значений $y = \sin x$ имеем |y| < 1.

Таким образом, по теореме 3

$$\arcsin' y = \frac{1}{\sin' x} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}.$$

Знак перед радикалом выбран с учетом того, что $\cos x > 0$ при $|x| < \pi/2$.

Пример 10. Рассуждая, как и в предыдущем примере, можно показать (с учетом примера 9 из § 2 гл. IV), что

$$\arccos' y = -\frac{1}{\sqrt{1-y^2}}$$
 при $|y| < 1$.

Действительно,

$$\arccos' y = \frac{1}{\cos' x} = -\frac{1}{\sin x} = -\frac{1}{\sqrt{1 - \cos^2 x}} = -\frac{1}{\sqrt{1 - y^2}}.$$

Знак перед радикалом выбран с учетом того, что $\sin x > 0$, если $0 < x < \pi$.

что представляется вполне естественным, если символ $\frac{dz}{dy}$ или $\frac{dy}{dx}$ рассматривать не как единый, а как отношение dz к dy или, соответственно, dy к dx.

Возникающая в связи с этим идея доказательства состоит в том, чтобы рассмотреть разностное отношение

$$\frac{\Delta z}{\Delta x} = \frac{\Delta z}{\Delta y} \cdot \frac{\Delta y}{\Delta x}$$

и затем перейти к пределу при $\Delta x \rightarrow 0$. Трудность, которая тут появляется (и с которой нам тоже отчасти пришлось считаться!), состоит в том, что Δy может быть нулем, даже если $\Delta x \neq 0$.

Следствие 2. Если имеется композиция $(f_n \circ ... \circ f_1)(x)$ дифференцируемых функций $y_1 = f_1(x), ..., y_n = f_n(y_{n-1})$, то

$$(f_n \circ ... \circ f_1)'(x) = f'_n(y_{n-1})f'_{n-1}(y_{n-2})...f'_1(x).$$

■ При n = 1 утверждение очевидно.

Если оно справедливо для некоторого $n \in \mathbb{N}$, то из теоремы 2 следует, что оно справедливо также для n+1, т. е. по принципу индукции установлено, что оно справедливо для любого $n \in \mathbb{N}$.

Пример 5. Покажем, что при $\alpha \in \mathbb{R}$ в области x>0 имеем $\frac{dx^a}{dx}=ax^{a-1}$, т. е. $dx^\alpha=\alpha x^{a-1}dx$, и

$$(x+h)^{\alpha}-x^{\alpha}=\alpha x^{\alpha-1}h+o(h)$$
 при $h\to 0$.

■ Запишем $x^{\alpha} = e^{\alpha \ln x}$ и применим доказанную теорему с учетом результатов примеров 9 и 11 из § 1 и пункта b) теоремы 1.

Пусть
$$g(y) = e^y$$
 и $y = f(x) = a \ln x$. Тогда $x^a = (g \circ f)(x)$ и

$$(g \circ f)'(x) = g'(y) \cdot f'(x) = e^y \cdot \frac{\alpha}{y} = e^{\alpha \ln x} \cdot \frac{\alpha}{y} = x^{\alpha} \cdot \frac{\alpha}{y} = \alpha x^{\alpha-1}.$$

Пример 6. Производная от логарифма модуля дифференцируемой функции часто называется логарифмической производной.

Поскольку $F(x) = \ln |f(x)| = (\ln \circ | | \circ f)(x)$, то в силу результата примера 11 из § 1 $F'(x) = (\ln |f|)'(x) = \frac{f'(x)}{f(x)}$.

Таким образом,

$$d(\ln |f|)(x) = \frac{f'(x)}{f(x)}dx = \frac{df(x)}{f(x)}.$$

Пример 7. Абсолютная и относительная погрешности значения дифференцируемой функции, вызванные погрешностями в задании аргумента. Если функция f дифференцируема в точке x, то

$$f(x+h) - f(x) = f'(x)h + \alpha(x;h),$$

где $\alpha(x; h) = o(h)$ при $h \to 0$.

Таким образом, если при вычислении значения f(x) функции аргумент x определен с абсолютной погрешностью h, то вызванная этой погрешно-