MAKE UP CLASS

Tomorrow @ 10am ER3123

LEC05 & LAB05

Lec03 & Lab03 Marks Lec02 Keys

Pearson

BINARY COMPUTER

More Reliability in Engineering Deep Logic Foundation

DESIGN COMPUTER

Positive Logic Button-Up Approach

DESIGN COMPUTER

Positive Logic Button-Up Approach

Finding simpler, but equivalent, computers reduces the overall cost! Rely primarily on mathematical methods in Boolean algebra!

BUILD COMPUTER

Electrical and Computer Engineering

Y	X	Y OR X	Y+X
0	0		0
0	1		1
1	0		1
1	1		1

X	Y	X OR Y	X+Y
0	0	\mathcal{L}	
0	1	1	
1	0	1	
1	1	1	

Υ	Χ	Y+X	
1	0	1	
1	1	1	

$$F = X + 1 = 1$$

Υ	Χ	Y+X		
0	0	0		
0	1	1		

$$F = X + 0 = X$$

X X X+X

0 0 0 0
1 1 1

$$F = X + X = X$$

<u>X'</u>	X	X'+X
1	0	1
0	1	1

$$F = X + X' = 1$$

DESIGN

given the functionality, design the structure of a system

3-INPUT OR

DESIGN PATTERNS

Using Same or Similar Previous Designs for New Designs

7	Y	X	Z+(X+Y)
0	0	0	0
0	0	1]
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Y = Z + (Y+X) = Z + (X+Y) = (Z+X) + Y$$

$$= Z + Y + X$$
Associative

Z	Υ	X	Z+(Y+X)	Z+(X+Y)	(Z+X)+Y	ZXY
0	0	0		C)	
0	0	1		1		
0	1	0		1		
0	1	1		1		
1	0	0		1		
1	0	1		1		
1	1	0		1		
1	1	1		1		

Z	Υ	X	Z+(Y+X)	Z+(X+Y)	(Z+X)+Y	ZXY
0	0	0				
0	0	1				
0	1	0		1		
0	1	1		1		
1	0	0		1		
1	0	1		1		
1	1	0		1		
1	1	1				

4-INPUT OR

$$F_1 = W + (Z + (Y + X))$$

$$F_2 = (W + Z) + (Y + X)$$

F = W+Z+Y+X	F ₁	F_2
Effective (True)	Yes	Yes
Efficient (Fast)	Hmm, 3 levels, No!	Yes! 2 levels
Min. Cost	3 gates, Yes	3 gates, Yes

DESIGN vs. ANALYSIS

Y	X	$F_1 = YX$
0	0	
0	1	_0
1	0	-0
1	1	1

Y	X	$F_1 \neq YX$	F = (YX)'
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

NAND (Not – AND)

Y	X	F = (YX)'	F=Y ↑X
0	0		
0	1		
1	0	1	
1	1		

F=
$$(YX)' = (XY)' = Y \uparrow X = X \uparrow Y$$

Commutative

ANALYSIS

given the structure of a system, find its functionality.

determine the functionality exhibited by a structure.

1 ->

X	$F_1 = XX$	F = ?
0	0	
1	1	

X	$F_1 = XX$	F = (XX)'
0	0	1
1	1	0

X	$F = (XX)' = X^{\uparrow}X = X'$
0	1
1	0

DESIGN

given the functionality, design the structure of a system

3-INPUT NAND

DESIGN PATTERNS

Using Same or Similar Previous Designs for New Designs

 $\overline{}$

Z	Υ	X	├ = <i>?</i>
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Z	Υ	X	$F_1 = (YX)'$	F = ?
0	0	0) 1	
0	0	1) 1	
0	1	0		
0	1	1	О	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	0	

Z	Υ	Χ	$F_1 = (YX)'$	$F = (ZF_1)' = (Z(YX)')'$
0	0	0		
0	0	1	1	
0	1	0		
0	1	1	0	1
1	0	0	1	0
1	0	1	1) 0
1	1	0	1	0
1	1	1	0	1

Z	Υ	Χ	$F_1 = (YX)'$	$F = (ZF_1)' = (Z(YX)')'$	F=(ZYX)'
0	0	0	1	1	1
0	0	1	1	1	77 1
0	1	0	1	1	1
0	1	1	0	1	1
$\left(1\right)$	0	0	1		\sim 1
(1)	0	1	1	0	
1	1	0	1	0	1
1	1	1	0	1	0

DESIGN PATTERNS

Using Same or Similar Previous Designs for New Designs

DESIGN → ANALYSIS → EVALUATION Always Check

NOT (3-INPUT AND)

Z	Υ	X	F=(ZYX)'	F=(ZYX)'
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Z	Υ	Χ	F=(ZYX)'	F=(ZYX)'
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

F = (ZYX)'	F ₁	F_2
Effective (True)	No!	Yes
Efficient (Fast)		
Min. Cost		

Z	Υ	X	$F = (Z(YX)')' = Z \uparrow (Y \uparrow X)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

ANALYSIS

Y	X	F = ?
0	0	?
0	1	?
1	0	?
1	1	?

Y	X	$F_1 = Y + X$
0	0	0
0	1	1
1	0	1
1	1	1

Y	X	$F_1 = Y + X$	F = (Y+X)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

NOR (Not - OR)

Y	X	F = (Y + X)'	$F=Y \downarrow X$
0	0	1	
0	1	C	
1	0	C	
1	1	C	

$$F = (Y + X)' = (X + Y)' = Y \downarrow X = X \downarrow Y$$

Commutative

F=?

X	F = ?
0	
1	

X	$F_1 = X + X$	F = ?
0	0	
1	1	

X	$F_1 = X + X$	F = (X+X)'
0	0	1
1	1	0

X	$F = (X+X)' = X^{\downarrow}X = X'$
0	1
1	0

3-INPUT NOR

Z	Υ	X	F=(Z+Y+X)'
0	0	0	
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Z	Υ	X	F = ?
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Z	Y	X	$F_1 = (Y + X)'$	$F = (Z+F_1)' = (Z+(Y+X)')'$
0	0	0	1	
0	0	1	0	1
0	1	0	0	1
0	1	1	0	
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

Z	Y	X	$F = (Z+F_1)' = (Z+(Y+X)')'$	F=(Z+Y+X)'
0	0	0	0	1
0	0	1	1	0
0	1	0	1	O
0	1	1	1	O
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

NOT (3-INPUT OR)

Z	Y	X	F=(Z+Y+X)'	F=(X+Y+Z)'
0	0	0	1	1
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

F = (Z+Y+X)'	F_1	F_2
Effective (True)	No!	-> Yes
Efficient (Fast)		
Min. Cost		

Z	Υ	X	$F = (Z(YX)')' = Z \downarrow (Y \downarrow X)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

RECAP

GATE

WHEN F=1

NOT

AND

OR

NAND

WHEN F=1 GATE NOT The input is 0 All the inputs are 1 AND

At least one input is 1 OR

At least one input is 0 NAND

All the inputs are 0 NOR

DESIGN

a design <mark>algorithm</mark> for <mark>any</mark> digital units (logic circuits), given truth table

1. minterm aka. Standard Product

- 1 binary variable appear either:
- in its normal form X, or
- in its complement form X'

YX vs. YX' vs. Y'X vs. Y'X'

2 binary variables appear either in one of these forms:

ZYX vs. ZYX' vs. ...

3 binary variables appear either in one of these forms: how many?

ZYX vs. ZYX' vs. ...

3 binary variables appear either in one of these forms: how many? Each variable can take 2 forms (normal and complement) We have 3 variables, $2 \times 2 \times 2 = 2^3 = 8$

$$A_{n-1} - A_2 A_1 A_0$$
 vs. $A_{n-1} - A_2 A_1 A_0$...

n binary variables appear either in one of these forms: how many? Each variable can take 2 forms (normal and complement) We have n variables, $2 \times 2 \times 2 \times \cdots \times 2 = 2^n$

2. TRUTH TABLE

en.wikipedia.org/wiki/Truth_table

$$\begin{array}{cccc}
X & F = F(X) = ? \\
 & \nearrow & ? \\
 & \nearrow & 1
\end{array}$$

X	$F = F(X) = X' = m_0$
0	1
1	0

X	F = F(X) = X
0	0
1	1

X	$F = F(X) = X = m_1$
0	0
	1

Digital Buffer

X	F = F(X)
0	1
1	1

$$F = F(X) = X' = m_0$$

$$1$$

$$1$$

$$X \qquad F = F(X) = X' + X = m_{0} + m_{1}$$

$$0 \qquad 1$$

$$1 \qquad 1$$

X′	Χ	X'+X
1	0	1
0	1	1

$$F = X + X' = 1$$

TRUTH TABLE ←→ minterm