Laboratorium programowania Rok II astronomii Lista nr 0 (Analiza ciągów czasowych)

- 1. Syntetyczna krzywa blasku (*.per \to *.dat). Wygenerować i zapisać do pliku dane w postaci $\{t_i, m_i\}$, gdzie t to czas w dobach (zero oznacza południe), a m jasność. Zależność m(t) ma być złożeniem $N_{\rm per}$ sinusoid o okresach P_i , amplitudach A_i i epokach początkowych E_i , tzn. $m(t) = \sum_{i=1}^{N_{\rm per}} A_i \sin[2\pi(t-E_i)/P_i]$. Niech dane będą pogrupowane w 'noce', tzn. obejmują tylko zadany przedział czasu w ramach doby, od T_1 do T_2 (oczywiście $0 \le T_1 < T_2 \le 1$). Takich nocy ma być N. Ponadto w ramach jednej nocy odstęp pomiędzy punktami ma wynosić Δt .
- 2. Wykres fazowy (*.dat \rightarrow *.phs). Dla zadanej epoki początkowej E i okresu P wyznaczyć tzw. wykres fazowy obserwacji $\{t_i, m_i\}$, tzn. dla każdego t policzyć fazę φ , czyli część ułamkową liczby (t-E)/P. Wyniki zapisać do pliku w postaci $\{\varphi_i, m_i\}$. Daje nam to jeden tzw. cykl. Wprowadzić parametr n, ilość cykli (n > 0), tak aby dla każdego t wyznaczanych było n punktów fazowych, $p = \varphi + i$, $i = 0, \ldots, n-1$.
- 3. Fourierogram (*.dat \rightarrow *.trf). Dla zadanego przedziału częstotliwości f, od f_1 do f_2 , policzyć z krokiem $\Delta f = 1/(10\Delta T)$ tzw. transformatę Fouriera danych obserwacyjnych $\{t_i, m_i\}$, tzn. dla każdego f wyliczyć P zgodnie ze wzorem

$$P(f)^{2} = \left[\sum_{i} (m_{i} - \langle m \rangle) \sin(2\pi f t_{i})\right]^{2} + \left[\sum_{i} (m_{i} - \langle m \rangle) \cos(2\pi f t_{i})\right]^{2}.$$

 ΔT to przedział czasu obejmujący obserwacje, a $\langle m \rangle$ to wartość średnia $\{m_i\}$. Dane obserwacyjne $\{t_i, m_i\}$ pobrać z jednego pliku, a wyniki $\{f_i, P_i\}$ zapisać do innego.

- 4. Maksima fourierogramu (*.trf \rightarrow *.max). Dla danej transformaty Fouriera $\{f_i, P_i\}$, pobranej z pliku wejściowego, znaleźć n największych lokalnych maksimów mocy P (tzw. pików). Wyniki w postaci numer piku, częstotliwość f, okres 1/f i moc P zapisać do pliku wyjściowego.
- 5. "Czyszczenie" krzywej blasku (*.dat \rightarrow *.dat). Z krzywej blasku $\{t_i, m_i, e_i\}$ usunąć obserwacje odstające od średniej jasności $\langle m \rangle$ o więcej niż $\kappa \sigma$, gdzie sigma to odchylenie standardowe obserwacji od średniej oraz obserwacje, ktorych błąd pomiaru e jest wiekszy od $e_{\rm max}$.
- **6.** Przerobić powyższe programy tak, aby pobierały jedynie nazwę pliku wejściowego (z danymi), sprawdzały czy nazwa ta kończy się odpowiednim przyrostkiem (np. .dat) i jeśli tak, to za nazwę pliku wyjściowego (z wynikami) przyjmowały nazwę pobraną z przyrostkiem dat zamienionym na np. trf.

Grzegorz Kopacki