FYS2140 Kvantefysikk - Vår 2021 Oblig 7

(Versjon 18. februar 2021)

Dokumentet inneholder følgende tre deler:

- A Diskusjonsoppgaver
- B Regneoppgaver
- C Tilleggsoppgaver (ikke obligatorisk)

Du finner frister for innlevering av obliger på Canvas. For å få obligen godkjent, må du vise at du har gjort et ordentlig forsøk på alle oppgavene. 6/11 obliger må være godkjent for å gå opp til eksamen.

A Diskusjonsoppgaver

Oppgave 1 Fri partikkel

- a) Skriv opp den generelle løsningen til romdelen av den stasjonære løsningen av Schrödinger-likningen $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}=E\psi$ for en fri partikkel med masse m og energiE (i én dimensjon).
- b) Hvordan kan du utvide løsningen til en tidsavhengig $\Psi(x,t)$?
- c) Hva kan du si om $\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx$?
- d) Hvorfor kan ikke denne bølgefunksjonen representere en virkelig, fysisk partikkel?
- e) Hvordan løser kvantefysikken problemet i d) for å finne en bølgefunksjon som kan representere en fysisk fri partikkel?

Oppgave 2 Fourier-transform

For en gaussisk funksjon $f(x) = \sqrt{\frac{\lambda}{\pi}} \exp(-\lambda x^2)$ er fourier-transformen $g(k) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{k^2}{4\lambda})$. (Her er λ ikke bølgelengde.)

- a) Hvis λ endres slik at bredden av f(x) øker, hvordan endrer bredden av g(k) seg?
 - A) Den øker også
 - B) Den avtar

- C) Uendret i dette tilfellet
- D) Kommer an på mye forskjellig
- b) Sett at $\Psi(x,0) = \sqrt{\frac{\lambda}{\pi}} \exp(-\lambda x^2)$ er den initielle bølgefunksjonen til en partikkel. Hva forteller $\Psi(x,0)$ oss? Hvilken fysisk størrelse sier den noe om?
- c) Hvilken fysisk størrelse representerer da k i Fourier-transformen $\phi(k) = g(k)$?
- d) Hva kan du konkludere om forholdet mellom spredningen til de fysiske størrelsene i b) og c)?

B Regneoppgaver

Oppgave 3 Fri partikkel og Fouriers triks

En fri partikkel har som initialbetingelse bølgefunksjonen

$$\Psi(x,0) = Ae^{-a|x|},\tag{1}$$

hvor A og a er positive reelle konstanter.

- a) Normer $\Psi(x,0)$.
- b) Finn $\phi(k)$. Hint: Her er du nesten nødt til å bruke Rottmann. Se etter Fourier transformasjoner bakerst og regn med at du må skifte navn på flere variabler.
- c) Konstruer $\Psi(x,t)$ i form av et integral.
- d) Diskuter hva som skjer med partikkelen i grensene hvor a er veldig stor og a er veldig liten.

Oppgave 4 Degenererte bundne tilstander

Hvis to (eller flere) distinkte¹ løsninger av den tids-uavhengige Schrödingerligningen har samme energi E, så sier vi at tilstandene er **degenererte**. For eksempel er fri-partikkel løsningene dobbelt degenererte — en løsning representerer bevegelse mot høyre, og den andre mot venstre. Men, vi har aldri

 $^{^1}$ Hvis to løsninger bare skiller seg ad ved en multiplikativ konstant (slik at de, når de er normert, bare skiller seg ved en fasefaktor $e^{i\phi}$), så representerer de den samme fysiske tilstanden, og i denne betydningen er de ikke distinkte løsninger. Teknisk så mener vi med distinkte løsninger: lineært uavhengige.

møtt normerbare degenererte løsninger, og dette er ingen tilfeldighet. Bevis det følgende teoremet: i en dimensjon² finnes det ingen degenererte bundne tilstander. Hint: anta at det finnes to løsninger, ψ_1 og ψ_2 , med samme energi E. Multipliser hele Schrödingerligningen for ψ_1 , med ψ_2 , og multipliser hele Schrödingerligningen for ψ_1 , og finn differansen, for å vise at $(\psi_2 d\psi_1/dx - \psi_1 d\psi_2/dx)$ er en konstant. Bruk at for normerbare løsninger så må vi ha at $\psi \to 0$ ved $\pm \infty$, for å demonstrere at denne konstanten er null. Vis fra dette at ψ_2 må være et tall multiplisert med ψ_1 , og at de to løsningene derfor ikke er distinkte.

Oppgave 5 Fri partikkel i sirkelbane

Tenk deg en liten ring/sylinder med masse m som sklir friksjonsløst på en vaier formet som en sirkel med omkrets L. (Dette tilsvarer en fri partikkel, bortsett fra at $\psi(x+L)=\psi(x)$.) Finn de stasjonære tilstandene (med passende normering) og de tilhørende energiene. Merk at det er to uavhengige løsninger for hver energi E_n —som korresponderer til bevegelse med eller mot klokka; kall disse $\psi_n^+(x)$ og $\psi_n^-(x)$. Hvordan vil du forklare denne degenerasjonen i forhold til teoremet i oppgaven over om degenererte bundnde tilstander? (Hva er det som gjør at teoremet ikke kan brukes i dette tilfellet?)

C Tilleggsoppgave (ikke obligatorisk)

Oppgave 6 Tidsavhengig uskarphetsrelasjon (fra Griffiths Kap.2)

En fri partikkel begynner med bølgefunksjonen

$$\Psi(x,0) = Ae^{-ax^2},\tag{2}$$

hvor A og a er reelle konstanter, og a > 0.

- a) Normer $\Psi(x,0)$.
- **b)** Finn $\Psi(x,t)$. Hint: Integral på formen

$$\int_{-\infty}^{\infty} e^{-(ax^2 + bx)} dx, \tag{3}$$

kan gjøres ved å lage et fullstendig kvadrat: La $y \equiv \sqrt{a}[x+(b/2a)]$, og bruk at $(ax^2+bx)=y^2-(b^2/4a)$. Svar:

$$\Psi(x,t) = \left(\frac{2a}{\pi}\right)^{1/4} \frac{e^{-ax^2/[1+2i\hbar at/m]}}{\sqrt{1+2i\hbar at/m}}.$$
 (4)

 $^{^2}$ I høyere dimensjoner er slik degenerasjon veldig vanlig, som vi skal se i kapittel 4 i Griffiths. Anta også at vi ikke har det veldig spesielle tilfellet hvor potensialet består av isolerte deler adskilt av områder hvor $V=\infty$ — for eksempel vil to isolerte uendelige kvadratiske brønner gi degenererte bundne tilstander, hvor partikkelen er enten i den ene eller andre brønnen.

c) Finn $|\Psi(x,t)|^2.$ Uttrykk svaret ved hjelp av størrelsen

$$w = \sqrt{\frac{a}{1 + (2\hbar at/m)^2}}. (5)$$

Skisser $|\Psi|^2$ (som funksjon av x) ved t=0, og for en stor verdi av t. Kvalitativt, hva skjer med $|\Psi|^2$ når tiden går?

- d) Finn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, σ_x og σ_p . Delvis svar: $\langle p^2 \rangle = a\hbar^2$, men det kan ta litt algebra for å redusere svaret til denne enkle formen.
- e) Holder uskarphetsprinsippet? Ved hvilken tid t kommer partikkelen nærest uskarphetsgrensen?