

STATG019 – Selected Topics in Statistics 2018

Lecture 2

Theory and Methodology for Estimating the Generalization Error

The statistical supervised learning setting

Given data from generative, unknown RV (X,Y) t.v.in $\mathcal{X} \times \mathcal{Y}$ of each other features labels domains where we observe

$$(X_1,Y_1),\ldots,(X_N,Y_N) \sim_{\text{i.i.d.}} (X,Y)$$

Estimate/learn

a prediction functional f t.v.in $[\mathcal{X} \to \mathcal{Y}]$ (via an estimator using only the data (X_i, Y_i))

Such that the expected generalization error

$$\varepsilon(\mathbf{f}) := \mathbb{E}\left[L\left(\mathbf{f}(X),Y\right)\right]$$
 is small

where $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is a chosen convex loss i.e., $[\widehat{y} \mapsto L(\widehat{y}, y)]$ is convex for all $y \in \mathcal{Y}$ e.g., $L: (\widehat{y}, y) \mapsto (\widehat{y} - y)^2$

Validity: (i) under assumptions, prove that f has low error (model specific) (ii) external estimate of f's error with guarantees (model agnostic)

(i) model-specific validity arguments

Classical statistics and statistical learning theory

Guarantees implied by assumptions on data/ and model properties in the form of mathematical/statistical theorems

Validity argument incomplete unless these are checked!

(ii) model-agnostic validity arguments

"model validation", "model checking", "model testing"

Guarantees implied by *empirical results and properties of the task* in the form results plus theorems about the validation algorithm

Guarantees always hold and allow comparison

but may be weaker than model-specific ones if theory available

Table of contents for lecture 2

Mathematical guarantees for model-agnostic validation

Generic guarantees for generalization & external validity

Finite sample properties of mean and variance

Central limit theorems for mean and variance

Estimating the generalization loss of a prediction strategy

Supervised learning as function estimation

Bias-variance trade-off for supervised learning

Estimators of the generalization loss and the loss's variance

Variance reduction through re-sampling

Comparison of models and pairwise testing

Prediction functionals versus prediction strategies

Re-sampling estimates of black-box variance

Hypothesis testing for pairwise and portmanteau model comparison

Interactions of testing and re-sampling

Very briefly: overview of generic model-specific guarantees

Generalization guarantees

Reminder: Parametric Estimation

The parametric estimation setting

Data is generated as:

true parameter
$$\theta \in \mathbb{R}^m$$
 (e.g. $\theta = (\mu, \Sigma)$ for Gaussians) $X_1, \dots, X_N \underset{\text{i.i.d.}}{\sim} X \sim p(.|\theta)$

(parametric) estimator
$$\widehat{\theta} = \widehat{\theta}(X_1, \dots, X_N)$$

e.g. mean estimator
$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

covariance estimator
$$\widehat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \widehat{\mu})(X_i - \widehat{\mu})^{\top}$$

Accurate terminology:
$$\widehat{\theta}(X_1,\ldots,X_N)$$
 is "the estimate" (a RV t.v.in \mathbb{R}^m)

$$\widehat{\theta}:(x_1,\ldots,x_N)\mapsto \widehat{\theta}(x_1,\ldots,x_N)$$
 is "the estimator" (an algorithm)

function in $[\mathcal{X}^n \to \mathbb{R}^m]$

often confounded, but distinction will become important in later section

Guarantees: LLN, CLT and CI

hold in general, nonparametric setting $X_1,\dots,X_N \sim X$ t.v.in $\mathbb R$ (assume finite moments)

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^N X_i \text{ estimates } \mathbb{E}[X] \qquad \widehat{\Sigma} = \frac{1}{N-1} \sum_{i=1}^N (X_i - \widehat{\mu})^2 \text{ estimates } \mathbf{Var}[X]$$

$$\frac{\widehat{\Sigma}}{N} \text{ estimates } \mathbf{Var}[\widehat{\mu}] \qquad \text{"variance of the sample mean"}$$

Theorems: (i)
$$\mathbb{E}[\widehat{\mu}] = \mathbb{E}[X]$$
 $\operatorname{Var}[\widehat{\mu}] = \frac{1}{N} \operatorname{Var}[X]$ (weak LLN implied by this & Chebyshev)

$$\begin{array}{c|c} \text{(statements you should have seen!)} & \textbf{(ii)} & \sqrt{N} \left(\widehat{\mu} - \mathbb{E}[X] \right) \overset{d}{\to} \mathcal{N} \left(0, \text{Var}(X) \right) \text{ as } N \to \infty \\ & \mathbb{E}[\widehat{\Sigma}] = \text{Var}[X] \\ & \mathbb{E}[\widehat{\Sigma}/N] = \text{Var}[\widehat{\mu}] \\ & \text{(unbiasedness of estimates)} \\ \end{array}$$

haven't seen but are simple computations)
$$(V) \sqrt{N} \left(\widehat{\Sigma} - \mathsf{Var}[X] \right) \overset{d}{\to} \mathcal{N} \left(0, M_4 - \mathsf{Var}(X)^2 \right) \text{ as } \underset{(\mathsf{CLT} \text{ for sample variance})}{N \to \infty}$$

(stylized) Consequence:
$$\left[\widehat{\mu} + \Phi^{-1}(\alpha/2) \cdot \sqrt{\widehat{\Sigma}/N}, \widehat{\mu} - \Phi^{-1}(\alpha/2) \cdot \sqrt{\widehat{\Sigma}/N}\right]$$
 is "good" Claim in a Consequence of the consequence

i.e., α -CI for μ with good coverage probability as N>50 Important continuous imbalance imbalance.

Important exception: imbalanced & binary X

Estimation of the generalization error

Setting: i.i.d. test data $(X_1,Y_1),\ldots,(X_M,Y_M) \underset{\text{i.i.d.}}{\sim} (X,Y)$ t.v.in $\mathcal{X} \times \mathcal{Y}$ prediction functional $f:\mathcal{X} \to \mathcal{Y}$ e.g., $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{Y} = \mathbb{R}$ loss function $L:\mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ e.g., $L:(\widehat{y},y) \mapsto (\widehat{y}-y)^2$

To estimate: $\varepsilon(f) = \mathbb{E}\left[L(f(X), Y)\right]$ expected generalization loss

Theorems suggest following estimators:

$$\widehat{\varepsilon}(f) := \frac{1}{M} \sum_{i=1}^{M} L(f(X_i), Y_i) \qquad \text{Observation: } L_i := L(f(X_i), Y_i) \text{ are i.i.d.}$$

$$\text{since pairs } (X_i, Y_i) \text{ are i.i.d.}$$

$$\widehat{v}(f) := rac{1}{M-1} \sum_{i=1}^M \left(L_i - \widehat{arepsilon}
ight)^2$$
 "sample variance of the empirical losses"

Confidence interval:
$$\left[\widehat{\varepsilon}(f) + \Phi^{-1}(\alpha/2) \cdot \sqrt{\widehat{v}(f)/M} \;, \widehat{\varepsilon}(f) - \Phi^{-1}(\alpha/2) \cdot \sqrt{\widehat{v}(f)/M} \;\right]$$
 The end ... ?

Big problem: this is only valid if f is fixed (non-random), e.g., already trained/fitted! Otherwise L_i are dependent through a random f. (no guarantees for strategies!) But statements & guarantees about the trained prediction functionals are correct!

Bias and Variance in Parametric Estimation and Supervised Learning

Supervised learning as function estimation

(more restrictive formulation of the task due to stronger structural assumptions)

Given data from generative, unknown RV (X,Y) t.v.in $\mathcal{X} \times \mathcal{Y}$ features labels domains

where we observe

$$(X_1, Y_1), \ldots, (X_N, Y_N) \sim_{i.i.d.} (X, Y)$$

Parametric supervised assumption:

There is a "true" labelling process $f=f_{\theta}$ (usually, one assumes an "additive error model", that is:)

$$Y_i = f(X_i) + \varepsilon_i \qquad \qquad \varepsilon_i \text{ is error with } \mathbb{E}[\varepsilon_i] = 0$$
 (errors assumed independent)

Example (Linear Regression):

$$f(x) = \beta^{\top} x + \alpha, \qquad \theta = (\alpha, \beta)$$

Supervised estimation task:

Learn a good approximation $f = f_{\widehat{\theta}}$ (using the training data)

such that
$$\varepsilon\left(\widehat{f}\right)=\mathbb{E}\left[L\left(\widehat{f}(X),Y\right)\right]$$
 is small

(not independent of each other in general)

How good is an estimator? Bias and variance

parametric estimation:

true parameter $\theta \in \mathbb{R}^m$ (e.g. $\theta = (\mu, \Sigma)$ for Gaussians) estimator $\widehat{\theta} = \widehat{\theta}(X_1, \dots, X_N)$

bias of
$$\widehat{\theta}$$
:

$$\mathsf{Bias}(\widehat{\theta}) = \mathbb{E}[\widehat{\theta} - \theta]$$

measures expected deviation of the mean

variance of
$$\widehat{\theta}$$
:

$$\operatorname{Var}(\widehat{\theta}) = \mathbb{E}\left[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2\right]$$

measures scatter around estimator mean

MSE of
$$\widehat{\theta}$$
:

$$\mathsf{MSE}(\widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^2\right]$$

measures total estimation error

Convention: for
$$x \in \mathbb{R}^m$$
, denote $x^2 = x^\top x$

Cave: all these quantities may depend on θ

(yes, this includes the variance. Think why.)

Bias and variance

 $\operatorname{Var}(\widehat{\theta}) = \mathbb{E}\left[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2
ight]$ measures scatter around estimator mean

low bias

high bias

Bias-variance trade-off for estimators

$$\operatorname{Bias}(\widehat{\theta}) = \mathbb{E}[\widehat{\theta} - \theta]$$
 onmeasures expected deviation

$$\operatorname{Var}(\widehat{\theta}) = \mathbb{E}\left[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2\right]$$

measures scatter around estimator mean

$$\mathsf{MSE}(\widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^2\right]$$

measures total estimation error

Proposition:
$$MSE(\widehat{\theta}) = Bias(\widehat{\theta})^2 + Var(\widehat{\theta})$$

$$\begin{aligned} \textbf{proof: MSE}(\widehat{\theta}) &= \mathbb{E}\left[(\widehat{\theta} - \theta)^2\right] = \mathbb{E}[\widehat{\theta}^2] - 2\theta \mathbb{E}[\widehat{\theta}] + \theta^2 \\ &= \mathbb{E}[\widehat{\theta}^2] - 2\left(\mathbb{E}[\widehat{\theta}]\right)^2 + \left(\mathbb{E}[\widehat{\theta}]\right)^2 + \left(\mathbb{E}[\widehat{\theta}]\right)^2 - 2\theta \mathbb{E}[\widehat{\theta}] + \theta^2 \\ &= \mathbb{E}[\widehat{\theta}^2] - 2\mathbb{E}\left[\widehat{\theta}\left(\mathbb{E}[\widehat{\theta}]\right)\right] + \mathbb{E}\left(\mathbb{E}[\widehat{\theta}]\right)^2 + \left(\mathbb{E}[\widehat{\theta}] - \theta\right)^2 \\ &= \mathbb{E}\left[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2\right] + \left(\mathbb{E}[\widehat{\theta}] - \theta\right)^2 \\ &= \mathbf{Var}(\widehat{\theta}) + \mathsf{Bias}(\widehat{\theta})^2 \end{aligned}$$

stays also valid for taking xx^{\top} instead of $x^{\top}x$

Example: mean of Gaussian

$$\begin{aligned} \operatorname{Bias}(\widehat{\theta}) &= \mathbb{E}[\widehat{\theta} - \theta] \quad \operatorname{Var}(\widehat{\theta}) &= \mathbb{E}\left[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2\right] \quad \operatorname{MSE}(\widehat{\theta}) &= \mathbb{E}\left[(\widehat{\theta} - \theta)^2\right] \\ \operatorname{MSE}(\widehat{\theta}) &= \operatorname{Bias}(\widehat{\theta})^2 + \operatorname{Var}(\widehat{\theta}) \end{aligned}$$

Example: estimation of mean

$$X_1,\ldots,X_N$$
 i.i.d Gaussian $\sim \mathcal{N}(\mu,\sigma^2)$

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

"natural" estimator

"universal" estimator

$$\operatorname{Bias}(\widehat{\mu}) = 0 \qquad \qquad \operatorname{MSE}(\widehat{\mu}) = \operatorname{Var}(\widehat{\mu}) = \frac{\sigma^2}{N}$$

$$\operatorname{Bias}(\widehat{\mu}_s) = 42 - \theta \quad \operatorname{Var}(\widehat{\mu}_s) = 0 \quad \operatorname{MSE}(\widehat{\mu}_s) = (42 - \theta)^2$$

Supervised learning as function estimation

Given data from generative, unknown RV (X,Y) t.v.in $\mathcal{X} \times \mathcal{Y}$ domains

features labels

(not independent of each other in general)

where we observe

$$(X_1, Y_1), \ldots, (X_N, Y_N) \sim_{\text{i.i.d.}} (X, Y)$$

Parametric supervised assumption:

There is a "true" labelling process $f=f_{ heta}$ (usually, one assumes an "additive error model", that is:)

$$Y_i = f(X_i) + \epsilon_i$$
 ϵ_i is error with $\mathbb{E}[\epsilon_i] = 0$ (errors assumed independent)

Example (Linear Regression):

$$f(x) = \beta^{\top} x + \alpha, \qquad \theta = (\alpha, \beta)$$

Supervised estimation task:

Learn a good approximation $\widehat{f} = f_{\widehat{\theta}}$ (using the training data)

such that
$$\varepsilon\left(\widehat{f}\right)=\mathbb{E}\left[L\left(\widehat{f}(X),Y\right)\right]$$
 is small

Bias and variance in supervised regression

assume $\mathcal{Y} = \mathbb{R}$

test point X_* , test label Y_* where $(X_*,Y_*) \sim (X,Y)$

parameter θ "is" a generative function $f = f_{\theta}$:

$$Y_* = f(X_*) + \epsilon_*$$

 $\widehat{f}=f_{\widehat{ heta}}$ learnt prediction rule (possibly depending on seen training data)

bias of
$$\widehat{f}$$
 at X_* : Bias $(\widehat{f}|X_*) = \mathbb{E}_{Y|X_*}[\widehat{f}(X_*) - f(X_*)|X_*] = \mathbb{E}_{Y|X_*}[\widehat{f}(X_*) - Y_*|X_*]$

 $\text{variance of } \widehat{f} \text{ at } X_* \text{:} \qquad \text{Var}(\widehat{f}|X_*) = \text{Var}_{Y|X_*} \left[\widehat{f}(X_*) |X_* \right]^{=\mathbb{E}_{Y|X_*} \left[(\widehat{f}(X_*)^2 |X_*] - \mathbb{E}_{Y|X_*} \left[\widehat{f}(X_*) |X_* \right]^2 \right] }$

 $\mathsf{MSE} \ \mathsf{of} \ \widehat{f} \ \mathsf{at} \ X_* \colon \quad \mathsf{MSE}(\widehat{f}|X_*) = \mathbb{E}_{Y|X_*} \left[(\widehat{f}(X_*) - Y_*)^2 | X_* \right] \\ = \mathbb{E}_{Y|X_*} \left[L(\widehat{f}(X_*), Y_*) | X_* \right] \mathsf{for} \ L : (\widehat{y}, y) \mapsto (\widehat{y} - y)^2$

Proposition: $MSE(\widehat{f}|X_*) = Var(\epsilon_*) + Bias(\widehat{f}|X_*)^2 + Var(\widehat{f}|X_*)$

expected out-of-sample- MSE "irreducible error" Bias and variance of prediction from measurement noise

(proof in analogy to earlier bias-variance)

The Bias-variance-trade-off in prediction

 $\operatorname{EPE}(\lambda)$ and $\operatorname{CV}(\lambda)$

Bias-variance-trade-off

An experiment from The Elements of Statistical Learning (Section 5.5)

Interpolation using regularized splines

Strength of regularization set by parameter df_{λ}

Prediction variance grows with decreasing df_{λ} Prediction bias decreases with increasing df_{λ}

Over-optimism of the training error

bias of
$$\widehat{f}$$
 at X_* : Bias $(\widehat{f}|X_*) = \mathbb{E}_{Y|X_*}[\widehat{f}(X_*) - f(X_*)|X_*]$

variance of
$$\widehat{f}$$
 at X_* : $\operatorname{Var}(\widehat{f}|X_*) = \operatorname{Var}_{Y|X_*}\left[\widehat{f}(X_*)|X_*\right]$

$$\mathsf{MSE} \ \mathsf{of} \ \widehat{f} \ \mathsf{at} \ X_* \colon \quad \mathsf{MSE}(\widehat{f}|X_*) = \mathbb{E}_{Y|X_*} \left[(\widehat{f}(X_*) - Y_*)^2 |X_* \right]$$

$$\textbf{Proposition:} \ \ \mathsf{MSE}(\widehat{f}|X_*) = \mathsf{Var}(\epsilon_*) + \mathsf{Bias}(\widehat{f}|X_*)^2 + \mathsf{Var}(\widehat{f}|X_*)$$

is true only if ϵ_* is independent of \widehat{f}

i.e., if (X_*,Y_*) has not already been seen in the training set (this was assumed on the earlier slide)

If it has been seen, i.e., we test on the training set, then:

Sensible learning machines prediction usually co-varies with observations hence expected training MSE < expected test MSE

similar statements hold in more general settings in terms of noise and error statistic

Explicit form for Ordinary Least Squares

bias of
$$\widehat{f}$$
 at X_* : Bias $(\widehat{f}|X_*) = \mathbb{E}_{Y|X_*}[\widehat{f}(X_*) - f(X_*)|X_*]$

variance of
$$\widehat{f}$$
 at X_* : $\operatorname{Var}(\widehat{f}|X_*) = \operatorname{Var}_{Y|X_*}\left[\widehat{f}(X_*)|X_*\right]$

$$\mathsf{MSE} \ \mathsf{of} \ \widehat{f} \ \mathsf{at} \ X_* \colon \quad \mathsf{MSE}(\widehat{f}|X_*) = \mathbb{E}_{Y|X_*} \left[(\widehat{f}(X_*) - Y_*)^2 | X_* \right]$$

Linear Regression:
$$f(x) = \beta^{T}x + \alpha$$
, $Y_i = f(X_i) + \varepsilon_i$, $\widehat{f}(x) = \widehat{\beta}^{T}x + \widehat{\alpha}$ where objects with hats may (but don't need to) depend on training data

OLS:
$$\mathbb{E}[\widehat{\beta}] = \beta$$
, $\mathbb{E}[\widehat{\alpha}] = \alpha$ hence $\operatorname{Bias}(\widehat{f}|X_*) = \langle \mathbb{E}[\widehat{\beta}] - \beta, X_* \rangle + \mathbb{E}[\widehat{\alpha}] - \alpha = 0$

for variance, use decomposition $\widehat{f}(x) = \overline{Y} + \widehat{\beta}^{\top}(x - \overline{X})$

$$\begin{aligned} & \text{so } \operatorname{Var}(\widehat{f}|X_*) = \operatorname{Var}(\overline{Y}|X_*) + \operatorname{Var}(\widehat{\beta}^\top (X_* - \overline{X})|X_*) \\ & = \sigma^2 \left(\frac{1}{N} + (X_* - \overline{X})^\top C_{xx}^{-1}\right) (X_* - \overline{X}) = \frac{\sigma^2}{N} \left(1 + (X_* - \overline{X})^\top \Sigma^{-1} (X_* - \overline{X})\right) \end{aligned}$$

Full MSE decomposition:
$$\mathrm{MSE}(\widehat{f}|X_*) = \sigma^2 + 0 + \frac{\sigma^2}{N} \left(1 + (X_* - \overline{X})^\top \Sigma^{-1} (X_* - \overline{X})\right)$$

Overfitting optimism for already seen test point X_{st} :

rfitting optimism for already seen test point
$$X_*$$
: $(= \operatorname{coefficient} \operatorname{of} \varepsilon_* \operatorname{in} \widehat{f}(X_*))$ $\operatorname{Cov}(\widehat{f}(X_*)|X_*,Y_*|X_*) = \operatorname{Cov}(\widehat{f}(X_*)|X_*,\varepsilon_*|X_*) = \frac{\sigma^2}{N} \left(1 + (X_* - \overline{X}) \cdot \Sigma^{-1} \cdot (e_i - \frac{1}{N})\right)$

Unconditional bias-variance trade-off

test point X_* , test label Y_* where $(X_*, Y_*) \sim (X, Y)$

unconditional quantities: taking expectations

$$\text{total bias of } \widehat{f} \text{:} \qquad \text{Bias}^2(\widehat{f}) := \mathbb{E}\left[\text{Bias}^2(\widehat{f}|X_*)\right] \neq \mathbb{E}\left[\text{Bias}(\widehat{f})|X_*\right]^2$$

total variance of
$$\widehat{f}$$
: $\operatorname{Var}(\widehat{f}|X_*) := \mathbb{E}\left[(\widehat{f}(X_*) - \mathbb{E}[\widehat{f}(X_*)])^2\right]$

$$\text{total MSE of } \widehat{f} \colon \quad \mathsf{MSE}(\widehat{f}) := \mathbb{E}\left[(\widehat{f}(X_*) - Y_*)^2\right] = \varepsilon(\widehat{f})$$

Proposition:
$$MSE(\widehat{f}) = Var(\epsilon_*) + Bias^2(\widehat{f}) + Var(\widehat{f})$$

Proof: take expectations in conditional trade-off

Note: the "obvious" unconditional generalization

$$\begin{aligned} \mathsf{MSE}(\widehat{f}) &= \mathsf{Var}(\epsilon_*) + \mathsf{Bias}(\widehat{f})^2 + \mathsf{Var}(\widehat{f}) \\ \text{where } \mathsf{Bias}(\widehat{f}) &:= \mathbb{E} \left[\mathsf{Bias}(\widehat{f}|X_*) \right] \text{ is wrong in general!} \end{aligned}$$

Prediction functionals vs prediction strategies

test point X_* , test label Y_* where $(X_*, Y_*) \sim (X, Y)$

unconditional quantities: taking expectations

Re-sampling strategies

Re-sampling

Given data vector $\mathcal{D}=(X_1,\ldots,X_N)$ $X_1,\ldots,X_N\sim X$ t.v.in \mathcal{X} estimator $\widehat{\theta}:\mathcal{X}^*\to\mathbb{R}$ $\mathcal{X}^*=$ vectors in \mathcal{X} of arbitrary length estimate $\widehat{\theta}(\mathcal{D})$

"Re-sampling estimator" is constructed from re-samples

$$\widehat{\theta}(\mathcal{D}[\pi_1]), \dots, \widehat{\theta}(\mathcal{D}[\pi_k])$$
 (random!) where π_i t.v.in $\{1, \dots, N\}^*$ are re-sampling index vectors

Important cases:

 π_i are i.i.d. random with/without replacement of fixed size m π_i invariant under permutation e.g., missing block of size k non-overlapping

Important applications:

obtaining an improved version of $\widehat{\theta},$ e.g., variance-reduced obtaining non-parametric estimates of expectation and variance

Estimation of the generalization error

Setting: i.i.d. test data $(X_1,Y_1),\ldots,(X_M,Y_M) \underset{\text{i.i.d.}}{\sim} (X,Y)$ t.v.in $\mathcal{X} \times \mathcal{Y}$ prediction functional $f:\mathcal{X} \to \mathcal{Y}$ e.g., $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{Y} = \mathbb{R}$ loss function $L:\mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ e.g., $L:(\widehat{y},y) \mapsto (\widehat{y}-y)^2$

To estimate: $\varepsilon(f) = \mathbb{E}\left[L(\widehat{f}(X),Y)\right]$ expected generalization loss

Theorems suggest following estimators:

$$\widehat{\varepsilon}(f) := \frac{1}{M} \sum_{i=1}^{M} L(f(X_i), Y_i) \qquad \text{Observation: } L_i := L(f(X_i), Y_i) \text{ are i.i.d.}$$

$$\text{since pairs } (X_i, Y_i) \text{ are i.i.d.}$$

$$\widehat{v}(f):=rac{1}{M(M-1)}\sum_{i=1}^{M}\left(L_i-\widehat{arepsilon}
ight)^2$$
 "standard error of the empirical loss"

Confidence interval:
$$\left[\widehat{\varepsilon}(f) + \Phi^{-1}(\alpha/2) \cdot \sqrt{\widehat{v}(f)} \;, \widehat{\varepsilon}(f) - \Phi^{-1}(\alpha/2) \cdot \sqrt{\widehat{v}(f)} \;\right]$$
 The end ... ?

Big problem: this is only valid if f is constant, e.g., already trained/fitted! Otherwise L_i are dependent through a random f. (no guarantees for strategies!) But statements & guarantees about the trained prediction functionals are correct!

Estimation of the generalization error

Setting: i.i.d. data
$$(X_1,Y_1),\ldots,(X_M,Y_M) \underset{\text{i.i.d.}}{\sim} (X,Y)$$
 t.v.in $\mathcal{X} \times \mathcal{Y}$ prediction strategy $f_{\mathcal{T}}$ t.v.in $[\mathcal{X} \to \mathcal{Y}]$ "trained" on subset $(X_i,Y_i), i \in \mathcal{T}$ loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ e.g., $L: (\widehat{y},y) \mapsto (\widehat{y}-y)^2$

To estimate: $\varepsilon(f) = \mathbb{E}\left[L(f_{\mathcal{T}}(X), Y)\right]$ expected generalization loss

One-split estimation: training indices
$$\mathcal{T} \subseteq \{1,\ldots,N\}$$
 with $\#\mathcal{T}=M$ test indices $\mathcal{V}=\{1,\ldots,N\}\setminus\mathcal{T}$

$$\widehat{\varepsilon}(f|\mathcal{T}) := \frac{1}{\#\mathcal{V}} \sum_{j \in \mathcal{V}} L(f_{\mathcal{T}}(X_j), Y_j) \quad \text{``out-of-sample estimated''} \quad \text{since } f_{\mathcal{T}} \text{ indep. of } \{(X_i, Y_i) \ : \ i \in \mathcal{T}\}$$

Corollary of CLT:
$$\mathbb{E}\left[\widehat{\varepsilon}(f|\mathcal{T})\right] = \varepsilon(f)$$
 i.e., $\widehat{\varepsilon}(f|\mathcal{T})$ unbiasedly estimates $\varepsilon(f)$ $\widehat{\varepsilon}(f|\mathcal{T}) \stackrel{p}{\to} \varepsilon(f|\mathcal{T}) = \mathbb{E}[L(f_{\mathcal{T}}(X),Y)|f]$ when $N \to \infty$ (with \mathcal{T} fixed) i.e., $\widehat{\varepsilon}(f|\mathcal{T})$ consistently estimates $\varepsilon(f|\mathcal{T})$

Problem: one-split estimation depends on single training set and single run so variance of the one-split estimator may be high if algorithm is unstable

Solution: Re-sample averaging,
$$\widehat{\varepsilon}_{CV} = \frac{1}{K} \sum_{\kappa=1}^K \widehat{\varepsilon}(f|\mathcal{T}_{\kappa})$$
 Potential issue: $\widehat{\varepsilon}(f|\mathcal{T}_{\kappa})$ are correlated

Variance reduction by averaging

Variance reduction lemma: for any number of correlated random variables

$$Z_1,\dots,Z_M \quad \text{with} \quad \mathsf{Var}(Z_i) = \sigma^2 \quad \text{and} \quad \mathsf{Corr}(Z_i,Z_j) = \rho \quad \text{for } i \neq j$$
 one has
$$\mathsf{Var}\left(\frac{1}{M}\sum_{i=1}^M Z_i\right) = \rho \cdot \sigma^2 + \frac{1-\rho}{M} \cdot \sigma^2 \qquad \lneq \sigma^2 \quad \text{if } \rho > 0 \quad \text{(unless } Z_i \text{ are equal)}$$

So if Z_i are correlated re-samples with the same bias averaging reduces the variance while not changing the bias

Hence by bias-variance trade-off, expected mean-squared-error is reduced

For cross-validation estimator $\widehat{\varepsilon}_{CV} = \frac{1}{K} \sum_{\kappa=1}^{K} \widehat{\varepsilon}(f|\mathcal{T}_{\kappa})$ (any type of CV or re-sampling where folds are exchangeably sampled!)

$$\operatorname{Var}(\widehat{\varepsilon}_{CV}) = \begin{pmatrix} \rho + \frac{1-\rho}{K} \end{pmatrix} \cdot \operatorname{Var}\left(\widehat{\varepsilon}[\mathcal{T}]\right) \quad \text{where} \quad \rho = \operatorname{Corr}\left(\widehat{\varepsilon}(f|\mathcal{T}_i), \widehat{\varepsilon}(f|\mathcal{T}_j)\right)$$
 "variance of CV" "ariance of one-split" "correlation of fold-wise "for $i \neq j$ estimates"

Since one-split estimates are unbiased, CV-estimator also is.

Hence by bias-variance trade-off, resample averaging reduces expected error.

Estimating the CV performance estimates' variance

Why? $\widehat{\varepsilon}_{CV}$ is an estimate for the expected prediction error of algorithm f Variance is needed for *confidence intervals*; also useful in *comparing* strategies

Naive approach:
$$\widehat{v}[\mathcal{T}] := \frac{1}{\#\mathcal{V} \cdot (\#\mathcal{V} - 1)} \sum_{j \in \mathcal{V}} \left(L(f_{\mathcal{T}}(x_j), Y_j) - \widehat{\varepsilon}(f|\mathcal{T}) \right)^2$$
 is an (unbiased, consistent) estimator for $v[\mathcal{T}] = \text{Var}\left[L(f(X|\mathcal{T}), Y) | \mathcal{T} \right]$

Problem (?): conditional on training set, so variance from that is not included may be fine if algorithm is "stable" w.r.t. training set choice and repetitions

Bad but frequently seen approach: sample variance of $\widehat{\varepsilon}(f|\mathcal{T}_i)$, i=1...K *LLN/CLT does not apply: K is usually too small, and sample is correlated!*

Averaging approach: $\widehat{v}_{CV} := \frac{1}{K} \sum_{\kappa=1}^{K} \widehat{v}[\mathcal{T}_i]$ reduces variance from training set (by variance reduction lemma)

Problem: this is not the variance of $\widehat{\varepsilon}_{CV}$ which it usually overestimates! (but being conservative is fine for avoiding type I errors)

Theorem: There is no unbiased estimator for the variance of $\widehat{\varepsilon}_{CV}$ (of certain form) (Bengio, Grandvalet 2004) Key realization: non-identifiability of inter-fold co-variance

There could be biased estimators with low MSE... but no substantial (?) progress since.

Black-box estimates of mean and variance

Given data vector $\mathcal{D} = (X_1, \dots, X_N)$ $X_1, \dots, X_N \sim_{\text{\tiny i.i.d.}} X$ t.v.in \mathcal{X} estimator $\widehat{\theta}: \mathcal{X}^* \to \mathbb{R}$ estimate $\widehat{\theta}(\mathcal{D})$

Bootstrap estimation of $\operatorname{Var}\left[\widehat{\theta}(\mathcal{D})\right]$

 $B_i:=\mathcal{D}[\pi_i]$ where π_1,\ldots,π_B are i.i.d. t.v.in \mathbb{N}^N $\pi_i=(n_1,\ldots,n_N),\;n_i\underset{\scriptscriptstyle \mathsf{i.i.d.}}{\sim}\mathsf{Unif}\{1,\ldots,N\}$

Sample mean and variance are "good" estimates of $\mathbb{E}\left[\widehat{\theta}(\mathcal{D})\right]$ and $\operatorname{Var}\left[\widehat{\theta}(\mathcal{D})\right]$ under certain regularity assumptions on $\widehat{\theta}$ (these are often unclear in literature!)

Applicability: Re-sample estimates of full training/test variance Confidence intervals for loss statistics which are not means

Cave: Regularity conditions may be strong! Inappropriate for medians/quantiles

Testing & Comparison

Principles of model comparison testing

First interesting and simpler case: prediction functionals

Setting: i.i.d. test data
$$(X_1,Y_1),\ldots,(X_M,Y_M) \underset{\text{i.i.d.}}{\sim} (X,Y)$$
 t.v.in $\mathcal{X} \times \mathcal{Y}$ prediction functionals $f_1,\ldots,f_S:\mathcal{X} \to \mathcal{Y}$ e.g., $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{Y} = \mathbb{R}$ loss function $L:\mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ e.g., $L:(\widehat{y},y) \mapsto (\widehat{y}-y)^2$

Testing approach: obtain loss residuals

$$L_{ij} := L(f_j(X_i), Y_i), \ i = 1 \dots M, \ j = 1 \dots S$$

the S samples $S_j := (L_{1j}, \dots, L_{Mj})$ are tupled/paired

any paired and tupled portmanteau test for location comparison is applicable

Recommendation: non-parametric Wilcoxon (rank-sign) test

"comparing confidence intervals" is also fine (unpaired z-test or t-test, conservative)

Prediction strategies? Unclear what to do.

Nadeau, Bengio (2004) discuss a few options based on the t-test

Re-sampling compatibility? 2x median p-value is conservative aggregation.

Generally for exchangeable re-samples: $\gamma^{-1}p_{(\gamma k)}$ is conservative aggregation of (p_1,\ldots,p_k)

WORQ - widely open research questions!

(aka MSc/PhD topics for the ambitious and theoretically inclined)

Theory of variance estimators for black-box functionals

Bootstrap & re-sampling seem to be the only semi-solid strategies Also, just semi-solid, without source that has exact assumptions (?) How best to separate test set variance and training set variance?

Theory of variance estimators for re-sampled statistics

Bengio/Grandvalet: no unbiased estimator of a special form
This does not preclude a good estimate of another, simple form
... such as re-sampling the re-sample statistic (??)

Do all this for the "complicated tasks"

Time series, on-line learning, anomaly detection, reinforcement learning Structured and heterogeneous prediction tasks
Probabilistic and Bayesian modelling (credibility intervals?)

Hypothesis testing & portmanteau comparison

Best way for strategies unclear – how to incorporate training set variance?

Misunderstandings and Statistical Learning Theory

Frequently mis-interpreted results

The No Free Lunch Theorems (Wolpert and Macready, 1997 onwards)

... for all data there is a model, for all models there is data...

Frequent mis-interpretation:

All of statistics and machine learning is arbitrary anyway.

More correct interpretation:

No meaningful definition of "learning" is possible without assumptions on how training and test data relate. For example, they should be similar (e.g. distributionally).

Shao – Linear Model Selection by Cross-Validation (1993)

... some types of CV fail to identify the "correct" model...

Frequent mis-interpretation:

Cross-validation should not be done. Or: Bayesian statistics is the only way.

More correct interpretation:

Model identification is more difficult than accurate prediction, sometimes considerably so.

Bengio, Grandvalet – No Unbiased Estimator for the Variance of K-Fold Cross-Validation (2004)

Frequent mis-interpretation:

Confidence intervals for error metrics cannot be computed, quantitative comparisons between different methods are futile.

More correct interpretation:

Predictions on different folds are correlated, one needs to be careful in aggregating them.

Recall: all models are wrong (George Box), but some are useful.

This is similarly true for meta-methods and model checking.

Overview: Model-specific Learning Theory

multiple "flavours" of model-specific guarantees based on "model class complexity" bound generalization loss $R(f) = \varepsilon(f)$ by empirical *training* loss R(f) plus "complexity term"

approach/field	Scope and assumptions	some notable statements
Statistical Learning Theory Vapnik, Chervonenkis	Training and test data follow the same distribution Learning machine is in a fixed set of functions ${\mathcal F}$ Questions: asymptotic behaviour of machine Relation between training and test error	$R(f) \leq R_N(f) + \frac{3}{\sqrt{N}} \cdot \sqrt{\log S_{\mathcal{F}}(2n) + \log \frac{2}{\varepsilon}}$ for any learner f with probability $\geq 1 - \varepsilon$ $R(f), R_N(f) \text{expected and empirical loss/risk}$ $S_{\mathcal{F}}(n) \text{number of classification rules on } n \text{ points}$ general extensions via Rademacher/covering theory
Bayesian/ Parametric	Training and test data follow the <i>same</i> distribution Learning machine in parametric function class ${\cal F}$ Predictions are distributional "posterior"	$\begin{aligned} AIC &= -2\mathcal{L}(f) + 2d & BIC &= -2\mathcal{L}(f) + d\log N \\ \text{"Akaike information criterion"} & \text{"Bayesian IC"} \\ \text{for many simple model classes:} \\ \text{Selection by AIC is asymptotically equivalent to LOOCV} \\ \text{Selection by BIC is as. eq. to certain leave-out-CV} \end{aligned}$
PAC- Bayesian	Training and test data follow the <i>same</i> distribution Learning machine in stochastic function class ${\cal F}$ Inspired by SLT and Bayesian paradigm	$R(f) \leq R_N(f) + \frac{3}{\sqrt{N}} \cdot \sqrt{KL(f \pi) + \log\frac{2}{\varepsilon}}$ for any learner f with probability $\geq 1 - \varepsilon$ $KL(f \pi) Kullback-Leibler\ divergence$ π prior belief π in reference class \mathcal{F}
Minimum Description Length	Training and test data follow the <i>same</i> distribution Parametric function class $\mathcal F$ similar to Bayesian Based on information theoretical argumentation maximizing Bayes posterior is posited best	similar to PAC-Bayesian (quantities are interpreted information theoretically)