

DEEP LEARNING WITH ARTISTIC STYLE

LUKE GODFREY & STEPHEN ASHMORE

Software Engineers @ Supplypike

Github:

github.com/casestack/nwd-neural-style

Machine Learning Fireside Chat

2:15 - 3:15pm

Record Patio

EXAMPLES #nwd2018

#nwd2018

#nwd2018

An Image as Input

- Roughly mimics the human brain
- Composed of **many** neurons arranged in a series of layers
- Using weighted sums a neural network with the right parameters
 can "approximate/model" anything
- The parameters of the neural network start as random numbers,
 but are learned by mathematical wizardry
- Research is concerned with creating new types, new applications,
 and new combinations of neural networks
- Practical use is concerned with using a pre-existing model, or constructing a neural network from known layers

WHAT IS A NEURAL NETWORK?

WORKING WITH IMAGES

#nwd2018

- Images present their own problems:
 - Very large dimensions (a 256x256 picture becomes 256*256*3 = 196,608 inputs)
 - Similarity between local pixels
- Convolutional neural networks are well-suited for images
- Convolution reduces the number of parameters needed to process large images
- Learns spatial relationships between local pixels

WORKING WITH IMAGES: CONVOLUTION

DIGGING INTO THE CODE

DIGGING INTO THE CODE

Machine Learning Fireside Chat

2:15 - 3:15pm

Record Patio

Github:

github.com/casestack/nwd-neural-style