Physics 5a: Homework 1

Abhijay Bhatnagar

September 4, 2018

ewtons Laws	. 1
Known properties	. 1
First Law	. 1
Second Law	. 2
Third Law	. 2
Fourth Law	. 2

Newtons Laws

K.K. Ch. 2

Known properties

We know:

Objects have mass

Four fundamental forces: Gravity, Electromagnetic Force, Strong Force, Weak Force

First Law

In English: An object at rest stays at rest, an object in motion stays in motion.

More mathematical rigorous: If $\overrightarrow{F}_i=0$, then \overrightarrow{v}_i is constant $(\overrightarrow{a}_i=0)$. (True only in an "inertial frame")

Inertial Frames

Graph outlining R(t) to a point that extends another vector r-prime, which has the combined vector of r.

R is location of plane.

$$\overrightarrow{r}(t) = \overrightarrow{R}(t) + \overrightarrow{r'}(t)$$

$$\overrightarrow{v}(t) = d/dt \overrightarrow{R}(t) + d/dt \overrightarrow{r'}(t) = V(t) + v'(t)$$

$$\overrightarrow{a}(t) = d/dt \overrightarrow{V}(t) + \overrightarrow{a'}(t)$$

Case 1)
$$R(t) = R_0 + tV => a(t) = a'(t)$$

Case 2)
$$R(t) = R_0 + 1/2t^2 \overrightarrow{A} => a(t) \neq a'(t)$$

In english: People can disagree whether or not things are moving, i.e. frames of reference, and a frame of reference is inertial if it doesn't start accelerating in the frame without forces from the frame.

Second Law

$$\overrightarrow{F}_i = m_i \overrightarrow{a}_i$$

$$\overrightarrow{F}_i = F_{2->1}(r_1, r_2, v_1, v_2) + F_{3->1}(r_1, r_3, v_1, v_3) = \sum_i F_{i->1}$$

Example based elaborations

Gravity:

$$F_{E->1} = -m_i g \hat{j}$$

Diagram of tree and earth. Force $a=F_{earth->apple}$ pulling down on the apple, a little algebra later you have $a=-g\hat{j}$.

Contact force:

Ball on slope diagram. Force is pushing on ball, then another diagram showing a ball on a vertical wall showing how the contact isn't pushing in that case. The contact force of $\overrightarrow{F}_{1->2} = \hat{n} \cdot f$.

More examples of normal force.

Tension

You can only ever pull with a rope. Tension can be worked out with normal forces and seeing what things aren't falling, i.e. if gravity is pulling down on a hanging block, the rope must be pulling up.

$$F_{s->1} = T\hat{t}.$$