MAC0329 – Álgebra booleana e circuitos digitais

DCC / IME-USP - 2018

Projeto de circuito 2 – entrega no PACA, até 11/05

A **ULA** (unidade lógico-aritmética) é a parte do processador responsável pelas operações lógicas e pelas operações aritméticas. O objetivo deste projeto é criar parte do circuito de uma ULA, conforme detalhado mais adiante. Note que a ULA que especificamos aqui é apenas um modelo simples.

Para o desenvolvimento do projeto deve ser usado o software Logisim (http://www.cburch.com/logisim/).

O projeto pode ser desenvolvido em grupos com até 3 membros. O desenvolvimento deste e demais projetos em grupo é fortemente recomendado (se possível, mantendo os grupos). Todos os membros devem participar ativamente das discussões e do planejamento e ter ciência sobre os detalhes do projeto desenvolvido pelo grupo.

A entrega do projeto será via PACA. Devem ser entregues o arquivo .circ, criado com o Logisim, e contendo o circuito da ULA, mais um documento (pode ser txt simples) contendo o nome dos membros do grupo e uma explicação sucinta e clara de como está organizado o circuito. Os dois arquivos devem ser empacotados em um único arquivo (.zip ou .tar.gz ou tgz).

Postem suas dúvidas ou descobertas no Fórum da disciplina.

Detalhamento

Deste projeto em diante iremos considerar palavras de 8 bits. Vamos também supor que todos os números estão na notação complemento de dois. Assim, os números que podem ser representados em uma palavra variam de -128 a 127. O esquema da ULA a ser implementada é mostrado na figura a seguir.

As entradas A e B na parte superior $(A = a_7 a_6 \dots a_1 a_0 e B = b_7 b_6 \dots b_1 b_0)$ correspondem aos dois números a serem operados, enquanto a saída R na parte inferior $(R = r_7 r_6 \dots r_1 r_0)$ corresponde ao resultado da operação (quando for o caso). Na lateral esquerda temos um pino seletor s que serve para indicar a operação aritmética a ser executada, e na lateral direita temos alguns flags de saída.

O seletor deve funcionar da seguinte forma:

$$s$$
Operação a ser executada 0 Adição $(A+B)$ 1 Subtração $(A-B)$

Já as flags de saída consistem de 4 bits, $o_3 o_2 o_1 o_0$, sendo o_o a primeira e o_3 a última de cima para baixo. As flags indicam os seguintes estados:

 $o_0 = 1 \iff overflow$ na operação aritmética $o_1 = 1 \iff A > B$ $o_2 = 1 \iff A = B$ $o_3 = 1 \iff A < B$

A ULA deverá funcionar de tal forma que sempre que ocorre alguma alteração em alguma de suas entradas (no caso, em A, B ou s) as saídas (R e as quatro flags) sejam alteradas imediatamente em seguida, de acordo com as novas entradas.

Observações e dicas:

- O Logisim possui alguns módulos prontos. Neste projeto, porém, é esperado que todo o circuito seja implementado sem o uso de módulos prontos do Logisim, com exceção do multiplexador (seletor de dados).
- Planeje a organização do circuito antes de começar a desenhá-lo no Logisim. Uma boa prática é organizar o circuito em módulos (subcircuitos). Assim, à medida que o circuito é incrementado, tornando-se cada vez mais complexo, os subcircuitos podem ficar "encapsulados" em uma caixinha, permitimdo uma organização hierárquica, mais fácil de ser entendido. O circuito principal deve ser nomeado main.
 - Além da organização hierárquica, pense também o leiaute do desenho em si.
- Em certas partes do circuito pode ser conveniente utilizar bits de dados "largos", assim como os splitters. A figura a seguir ilustra um pino de entrada com 8 bits e o uso de splitters para separar (sub)grupos de bits.

• Verifique se a sua ULA calcula corretamente -128 - (-128)

