1. For the following dataset:

apple	ibm	lemon	sun	CLASS				
TRAINING INSTANCES								
4	0	1	1	FRUIT				
5	0	5	2	FRUIT				
2	5	0	0	COMPUTER				
1	2	1	7	COMPUTER				
TEST INSTANCES								
2	0	3	1	?				
1	2	1	0	?				

(i). Using the Euclidean distance measure, classify the test instances using the 1-NN method.

K-NN

$$A_{\epsilon}(T, A) = \int (4-2)^{2} + (0-0)^{2} + (1-3)^{2} + (1-1)^{2}$$

$$= \int 4 + 0 + 4 + 0$$

= 514

$$C(E(T_1, B) = \sqrt{(5-2)^2 + (0-0)^2 + (5-3)^2 + (2-1)^2}$$

= $\sqrt{9+0+4+1}$

For T2:

(ii). Using the **Manhattan distance** measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: *majority class*, *inverse distance*, *inverse linear distance*.

$$= 4$$
 $d_{M}(T, B) = 6$
 $3-NN: A.B.C$
 $d_{M}(T, C) = 9$

Classification: (3 weightings)

- 1) Majority Class (equal weights)
 - 2 Fruit, 1 Computer
 - a Classify as Fruit
- 2 Inverse distance (w = \frac{1}{04\xi})

 avoid \frac{1}{0}

for A (fruit):
$$\frac{1}{4+1} = 0.2$$
for B (fruit): $\frac{1}{6+1} = 0.14$

Score for fruit = 0.2+0.14 = 0.34

3 Inverse linear distance $(w_j = \frac{d_3 - d_j}{d_3 - d_i})$ (rescaling dist) $\Rightarrow w_i = \frac{d_3 - d_i}{d_3 - d_i} = 1$ Furthest $w_3 = \frac{d_1 - d_1}{d_3 - d_i} = 0$ $w_j \in [0, 1]$

$$d_{M}(T_{1},A) = 4$$
For A (fruit): $\frac{q-4}{q-4} = 1$

$$d_{M}(T_{1},B) = 6$$

$$d_{M}(T_{1},C) = 9$$
For C (comp): $\frac{q-9}{q-4} = 0$

$$d_{M}(T_{1},D) = 11$$

1.6 (fruit) > 0 (comp) => Classify as fruit.

(iii). Can we do weighted k-NN using cosine similarity?

Yes, easier than distance, use cos similarity as weights directly.

(score)

Weight: Cosine similarities.

	Inst	Measure	k	Weight	Prediction			
	T_1	d_E	1	-	FRUIT			
			3	Maj	FRUIT			
			3	ID	FRUIT			
			3	ILD	FRUIT			
		d_M	1	-	FRUIT			
			3	Maj	FRUIT			
			3	ID	FRUIT			
ΔΠ			3	ILD	FRUIT			
All predictions:		cos	1	-	FRUIT			
predictions:			3	Maj	FRUIT			
			3	Sum	FRUIT			
	T_2	d_E	1	-	COMPUTER			
			d_{r}	dr	3	Maj	FRUIT	
			3	ID	FRUIT			
			3	ILD	COMPUTER			
		d_M	1	-	COMPUTER			
			3	Maj	COMPUTER			
			3	ID	COMPUTER			
			3	ILD	COMPUTER			
		cos	1	-	COMPUTER			
			3	Maj	FRUIT			
			3	Sum	FRUIT			

2. Approximately 1% of women aged between 40 and 50 have breast cancer. 80% of mammogram screening tests detect breast cancer when it is there. 90% of mammograms DO NOT show breast cancer when it is **NOT** there¹. Based on this information, complete the following table.

Cancer	Probability				
No	99%				
Yes	1%				

Cancer Test		Probability			
Yes	Positive	80%			
Yes	Negative	?			
No	Positive	?			
No	Negative	90%			

3. Based on the results in question 2, calculate the **marginal probability** of 'positive' results in a Mammogram Screening Test.

$$P(p) = \sum_{i \in \{c, NC\}} P(p|i) P(i) = \sum_{i \in \{c, NC\}} P(p,i)$$

$$= P(p|c) P(c) + P(p|NC) P(NC)$$

$$= 0.8 \times 0.01 + 0.1 \times 0.99$$

4. Based on the results in question 2, calculate $P(Cancer = 'Yes' \mid Test = 'Positive')$, using the Bayes Rule.

$$\frac{P(p|c)P(c)}{P(c|p)} = \frac{P(p|c)P(c)}{P(p)}$$