# **Application Note AN0030**

## **Binary Messages**

Raw Measurement Data Extension

Of

SkyTraq Venus 8 GNSS Receiver

Ver 1.4.37

June 14, 2019

## **Binary Message Protocol**

The SkyTraq binary message protocol manual provides the detailed descriptions on the SkyTraq binary protocol serving as a communicating interface between SkyTraq GNSS receivers and an external host such as PC, Notebook and mobile personal device. It is a standard protocol used by all SkyTraq devices and provides users a satisfactory control over the GNSS receivers.

The SkyTraq GNSS receiver outputs standard NMEA messages during normal operation. This NMEA messages may be a scheduled output at a specified rate subject to user's requests. The SkyTraq binary message protocol is designed with cares on reliable transmissions of data, ease & efficiency of implement, and payload independence mechanism which ensure users to retrieve data in a most effective & flexible way. The overall binary protocol messages can be categorized as input and output messages. Input messages provide the functionality to users to control the behavior of the GNSS receiver and to retrieve the detailed information of the GNSS status in real-time. Output messages, on the other hand, are information strings that GNSS receiver responses to requests from hosts and can optionally periodically reports the Position, Velocity and Time (PVT) via NMEA or binary messages.

#### **BINARY MESSAGE STRUCTURE**

### Message Format

The following picture shows the structure of a binary message.



The syntax of the message is shown below.

<0xA0,0xA1><PL><Message ID><Message Body><CS><0x0D,0x0A>

## Start of Sequence

This field contains two bytes of values 0xA0, 0xA1 which indicate start of Messages.

## Payload Length

The payload length (PL) field contains 16 bits of value which indicates the length of payload.

## Payload

The payload field consists of 2 sub-fields, Message ID and Message Body. Message ID field defines the message ID.

| Sub-Field       | Values     |
|-----------------|------------|
| Message ID (ID) | 0x01~0xFF  |
| Message Body    | Data Bytes |

### Message Body

The Message Body may further consist of 2 sub-fields, Sub-Message ID (Sub-ID) and Sub-Message Body.

| Sub-Field | Values |
|-----------|--------|
|-----------|--------|

| Sub-Message ID(SID) | 0x01~0xFF  |
|---------------------|------------|
| Sub-Message Body    | Data Bytes |

#### Checksum

Checksum (CS) field is transmitted in all messages. The checksum field is the last field in a message before the end of sequence field. The checksum is the 8-bit exclusive OR of only the payload bytes which start from Message ID until the last byte prior to the checksum byte. A reference to the calculation of CS is provided below,

$$CS = 0$$
,  $N=PL$ ;  
For  $n = 0$  to  $N$   
 $CS = CS ^ < Payload Byte #  $n > 0$$ 

## End of Sequence

This field contains two bytes of values 0x0D, 0x0A which indicate end of Messages.

## **Data Byte Ordering**

All payloads in binary protocol are transferred in big-endian format. The high order byte is transmitted first followed by the low order byte for data size larger than a byte (e.g. UINT32, DPFP).

## **Data Type Definition**

| UINT8  | 8 bit unsigned integer                        |
|--------|-----------------------------------------------|
| UINT16 | 16 bit unsigned integer                       |
| UINT32 | 32 bit unsigned integer                       |
| SINT8  | 8 bit signed integer                          |
| SINT16 | 16 bit signed integer                         |
| SINT32 | 32 bit signed integer                         |
| SPFP   | 32 bit single precision floating point number |
| DPFP   | 64 bit double precision floating point number |

#### **MESSAGE FLOW**

Host can perform actions to GNSS receiver by issuing a request or a set message. The message flow between Host and GNSS receiver is designed under the considerations of certain reliable transmission. SkyTraq binary message protocol requires an ACK response from the GNSS receiver upon receiving a successful input message and on the other hand, requires a NACK response from the receiver to a failed input message. Figure 1 shows a message flow that a host requests information from GNSS receiver and the GNSS receiver responses with an ACK and information respectively. Figure 2 shows a message flow with un-successful input message. Therefore, all requests (input messages) will have a corresponding ACK or NACK to be related with. However, output messages will not require the host to confirm by an ACK or NACK back in current design.



Figure 1



Figure 2

## **MESSAGE LIST**

This section provides brief information about available SkyTraq binary input, output and sub-id messages shown in a tabular list. All the messages are listed by Message ID. Full descriptions of input and output messages will be described in later Sections.

| Input Syste | em Messages |           |                       |                                          |
|-------------|-------------|-----------|-----------------------|------------------------------------------|
| ID .        | ID          | Attribute | Name                  | Descriptions                             |
| (Hex)       | (Decimal)   |           |                       |                                          |
| 0x9         | 9           | Input     | Configure Message     | Configure and select the output message  |
|             |             |           | Туре                  | type                                     |
| 0xE         | 14          | Input     | Configure Position    | Configure the position update rate of    |
|             |             |           | Update Rate           | GNSS system                              |
| 0x10        | 16          | Input     | Query Position Update | Query the position update rate of GNSS   |
|             |             |           | Rate                  | system                                   |
| 0x1E        | 30          | Input     | Configure Binary      | Configure the binary measurement data    |
|             |             |           | Measurement Data      | output of GNSS receiver                  |
|             |             |           | Output                |                                          |
| 0x1F        | 31          | Input     | Query Binary          | Query the status of the binary           |
|             |             |           | Measurement Data      | measurement data output of GNSS          |
|             |             |           | Output Status         | receiver                                 |
| 0x20        | 32          | Input     | Configure Binary RTCM | Configure the binary RTCM data output    |
|             |             |           | Data Output           | of GNSS receiver                         |
| 0x21        | 33          | Input     | Query Binary RTCM     | Query the status of the binary RTCM data |
|             |             |           | Data Output Status    | output of GNSS receiver                  |
| 0x22        | 34          | Input     | Configure Base        | Configure the base position of GNSS      |
|             |             |           | Position              | receiver                                 |
| 0x23        | 35          | Input     | Query Base Position   | Query the base position of GNSS          |
|             |             |           |                       | receiver                                 |
| Input GNS   | S Messages  | •         |                       |                                          |
| ID          | ID          | Attribute | Name                  | Descriptions                             |
| (Hex)       | (Decimal)   |           |                       |                                          |
| 0x30        | 48          | Input     | Get GPS Ephemeris     | Retrieve GPS ephemeris data of the       |
|             |             |           |                       | GNSS receiver                            |
| 0x41        | 65          | Input     | Set GPS Ephemeris     | Set GPS ephemeris data to the GNSS       |
|             |             |           |                       | receiver                                 |
| 0x5B        | 91          | Input     | Get GLONASS           | Retrieve GLONASS ephemeris data in       |
|             |             |           | ephemeris             | the receiver                             |
| 0x5C        | 92          | Input     | Set GLONASS           | Set GLONASS ephemeris data to the        |
|             | 1           | 1         | i                     |                                          |

|                        |                        |           | ephemeris              | receiver                                 |
|------------------------|------------------------|-----------|------------------------|------------------------------------------|
| Messages w             | ith Sub-ID             |           |                        |                                          |
| ID/Sub <sub>-</sub> ID | ID/Sub <sub>-</sub> ID | Attribute | Name                   | Descriptions                             |
| (Hex)                  | (Decimal)              |           |                        |                                          |
| 0x6A/0x4               | 106/4                  | Input     | Reset and Re-calculate | Reset and Re-calculate GLONASS           |
|                        |                        |           | GLONASS                | Inter-Frequency Bias of Glonass receiver |
|                        |                        |           | Inter-Frequency Bias   |                                          |
|                        |                        |           | (IFB)                  |                                          |
| Output Syste           | em/GNSS Mes            | sages     |                        |                                          |
| ID                     | ID                     | Attribute | Name                   | Descriptions                             |
| (Hex)                  | (Decimal)              |           |                        |                                          |
| 0x80                   | 128                    | Output    | Software Version       | Software revision of the receiver        |
| 0x81                   | 129                    | Output    | Software CRC           | Software CRC of the receiver             |
| 0x82                   | 130                    | Output    | Reserved               | Reserved                                 |
| 0x83                   | 131                    | Output    | ACK                    | ACK to a successful input message        |
| 0x84                   | 132                    | Output    | NACK                   | Response to an unsuccessful input        |
|                        |                        |           |                        | message                                  |
| 0x86                   | 134                    | Output    | Position Update Rate   | Position update rate of GNSS system      |
| 0x89                   | 137                    | Output    | Binary Measurement     | Status of binary measurement data        |
|                        |                        |           | Data Output Status     | output                                   |
| 0x8A                   | 138                    | Output    | Binary RTCM Data       | Status of binary RTCM data output        |
|                        |                        |           | Output Status          |                                          |
| 0x8B                   | 139                    | Output    | Base Position          | Base position information of GNSS        |
|                        |                        |           |                        | receiver                                 |
| 0x90                   | 144                    | Output    | GLONASS ephemeris      | GLONASS ephemeris data                   |
| Output GNS             | S Messages             |           |                        |                                          |
| ID                     | ID                     | Attribute | Name                   | Descriptions                             |
| (Hex)                  | (Decimal)              |           |                        |                                          |
| 0xB1                   | 177                    | Output    | GPS Ephemeris Data     | GPS Ephemeris Data of the GNSS           |
|                        |                        |           |                        | receiver                                 |
| 0xDC                   | 220                    | Output    | Measurement Epoch      | Epoch of raw measurement                 |
| 0xDD                   | 221                    | Output    | Raw Measurement        | Satellite's raw measurements             |
| 0xDE                   | 222                    | Output    | SV and channel status  | SV and Channel status information        |
| 0xDF                   | 223                    | Output    | Navigation state       | Receiver's navigation state              |
| 0xE0                   | 224                    | Output    | GPS Subframe Data      | GPS subframe buffer data                 |
| 0xE1                   | 225                    | Output    | GLONASS String         | Glonass string data bits                 |
| 0xE2                   | 226                    | Output    | Beidou2 D1 Subframe    | Beidou2 D1 subframe buffer data          |
|                        |                        |           | Data                   |                                          |
| 0xE3                   | 227                    | Output    | Beidou2 D2 Subframe    | Beidou2 D2 subframe buffer data          |

|      |     |        | Data                 |                                       |
|------|-----|--------|----------------------|---------------------------------------|
| 0xE5 | 229 | Output | Extended Raw         | Satellite's extended raw measurements |
|      |     |        | Measurement Data v.1 |                                       |

## **INPUT MESSAGES**

## CONFIGURE MESSAGE TYPE – Configure and select output message type (0x9)

This is a request message which will change the GNSS receiver output message type. This command is issued from the host to GNSS receiver and GNSS receiver should respond with an ACK or NACK. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><09>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 09 00 00 09 0D 0A

1 2 3

| Field  | Name                     | Example(hex) | Description                    | Туре    | Unit |  |  |
|--------|--------------------------|--------------|--------------------------------|---------|------|--|--|
| 1      | Message ID               | 09           |                                | UINT8   |      |  |  |
|        |                          |              | 00 : No output                 |         |      |  |  |
| 2      | Туре                     | 00           | 01 : NMEA message              | UINT8   |      |  |  |
|        |                          |              | 02 : Binary Message            |         |      |  |  |
| 2      | Attributos               | 00           | 0: update to SRAM              | LIINITO |      |  |  |
| 3      | Attributes               | 00           | 1: update to both SRAM & FLASH | UINT8   |      |  |  |
| Payloa | Payload Length : 3 bytes |              |                                |         |      |  |  |

## CONFIGURE SYSTEM POSITION RATE – Configure the position update rate of GNSS system (0xE)

This is a request message which is issued from the host to GNSS receiver to configure the system position update rate. Receivers with position rate 4 or higher needs to configure baud rate to 38400 or higher value. The GNSS receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><0E>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 0E 01 00 0F 0D 0A

1 2 3

| Field   | Name            | Example(hex) | Description                                  | Туре   | Unit |
|---------|-----------------|--------------|----------------------------------------------|--------|------|
| 1       | Message ID      | 0E           |                                              | UINT8  |      |
|         |                 |              | Value with 1, 2, 4, 5, 8, 10, 20, 25, 40, 50 |        |      |
|         |                 |              | 01: 1Hz update rate                          | UINT8  |      |
|         | Rate            | 01           | Note: value with 4 ~10 should work with      |        |      |
| 2       |                 |              | baud rate 38400 or higher, value with 20     |        |      |
|         |                 |              | should work with baud rate 115200 or         |        |      |
|         |                 |              | higher, value with 40, 50 should work        |        |      |
|         |                 |              | with 230400                                  |        |      |
| 3       | Attributoo      | 00           | 0: update to SRAM                            | LUNITO |      |
| 3       | Attributes      |              | 1: update to both SRAM & FLASH               | UINT8  |      |
| Payload | Length: 3 bytes |              |                                              |        |      |

## QUERY POSITION UPDATE RATE – Query the position update rate of GNSS system (0x10)

This is a request message which is issued from the host to GNSS receiver to query position update rate. The GNSS receiver should respond with an ACK along with information of position update rate, "POSITION UPDATE RATE, ID: 0x86", when succeeded and should respond with an NACK when failed. The payload length is 1 byte.

Structure:

<0xA0,0xA1>< PL><10>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 01 10 10 0D 0A

1

| Field   | Name                    | Example(hex) | Description | Туре  | Unit |  |
|---------|-------------------------|--------------|-------------|-------|------|--|
| 1       | Message ID              | 10           |             | UINT8 |      |  |
| Payload | Payload Length : 1 byte |              |             |       |      |  |

## CONFIGURE BINARY MEASUREMENT DATA OUTPUT - Configure binary measurement data output (0x1E)

This is a request message which will set binary output message rate configuration. This command is issued from the host to the receiver and the receiver should respond with an ACK or NACK. The payload length is 9 bytes. Currently the output rate configuration supports 1Hz / 2Hz / 4Hz / 5Hz / 8Hz / 10Hz / 20Hz.

#### Structure:

<0xA0,0xA1>< PL><1E>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 09 1E 00 00 00 01 01 03 01 01 1D 0D 0A

1 2 3 4 5 6 7 8 9

| Field        | Name                      | Example(hex) | Description                           | Туре   | Unit |
|--------------|---------------------------|--------------|---------------------------------------|--------|------|
| 1            | Message ID                | 1E           |                                       | UINT8  |      |
|              |                           |              | 00: 1Hz                               |        |      |
|              | Dinary magaziramant       |              | 01: 2Hz                               |        |      |
|              | Binary measurement        |              | 02: 4Hz                               |        |      |
| 2            | output rate for Meas_time | 00           | 03: 5Hz                               | UINT8  |      |
|              | / Raw_meas /              |              | 04: 10Hz                              |        |      |
| SV_CH_Status | SV_CH_Status              |              | 05: 20Hz                              |        |      |
|              |                           |              | 06: 8Hz                               |        |      |
| 3            | Mass time Enghling        | 00           | 00: Disable                           | UINT8  |      |
| 3            | Meas_time Enabling        | 00           | 01: Enable                            | UINTO  |      |
| 4            | Dow moss Enghling         | 00           | 00: Disable                           | UINT8  |      |
| 4            | Raw_meas Enabling         |              | 01: Enable                            |        |      |
| _            | 0)/ 011 012 2 5 2 1 1 2 2 | 00           | 00: Disable                           | UINT8  |      |
| 5            | SV_CH_Staus Enabling      |              | 01: Enable                            |        |      |
|              |                           | 01           | 00: Disable                           |        |      |
| 6            | RCV_State Enabling        |              | 01: Enable                            | UINT8  |      |
|              |                           |              | This message supports only 1Hz.       |        |      |
|              |                           |              | Bit 0: GPS, 0: Disable; 1: Enable     |        |      |
| 7            | Subframe Enabling of      | 03           | Bit 1: Glonass, 0: Disable; 1: Enable | UINT8  |      |
| 1            | different constellation   | 03           | Bit 2: Galileo, 0: Disable; 1: Enable | UINTO  |      |
|              |                           |              | Bit 3: Beidou, 0: Disable; 1: Enable  |        |      |
| 8            | Extended_ Raw_Meas        | 01           | 00: Disable                           | UINT8  |      |
| 0            | Enabling*1                | UI           | 01: Enable                            | UINTO  | _    |
| 9            | Attributos                | 01           | 0: update to SRAM                     | UINT8  |      |
| ສ<br>        | Attributes                | 01           | 1: update to both SRAM & FLASH        | UIINTO |      |
| Payload      | d Length : 9 bytes        |              |                                       |        |      |

\*1: supported only after version 1.4.32

# QUERY BINARY MEASUREMENT DATA OUTPUT STATUS – Query the status of binary measurement data output (0x1F)

This is a request message which is issued from the host to the receiver to retrieve the status of the binary measurement data output. The receiver should respond with an ACK along with status of binary measurement output rate, "BINARY MEASUREMENT DATA OUTPUT STATUS, ID: 0x89", when succeeded and should respond with an NACK when failed. The payload length is 1 byte.

Structure:

<0xA0,0xA1>< PL><1F><CS><0x0D,0x0A>

Example:

A0 A1 00 01 1F 1F 0D 0A

1

| Field   | Name                    | Example(hex) | Description | Туре  | Unit |  |  |  |
|---------|-------------------------|--------------|-------------|-------|------|--|--|--|
| 1       | Message ID              | 1F           |             | UINT8 |      |  |  |  |
| Payload | Payload Length : 1 byte |              |             |       |      |  |  |  |

## CONFIGURE BINARY RTCM DATA OUTPUT – Configure binary measurement data output (0x20)

This is a request message which will set binary RTCM output message rate configuration. This command is issued from the host to the receiver and the receiver should respond with an ACK or NACK. The payload length is 17 bytes. Currently the output rate configuration supports 1Hz / 2Hz / 4Hz / 5Hz / 8Hz / 10Hz / 20Hz.

#### Structure:

<0xA0,0xA1>< PL><20>< message body><CS><0x0D,0x0A>

#### Example:

| Field | Name                                | Example(hex) | Description | Туре   | Unit |
|-------|-------------------------------------|--------------|-------------|--------|------|
| 1     | Message ID                          | 20           |             | UINT8  |      |
| 0     | DTOM O                              | 04           | 00: Disable | LUNITO |      |
| 2     | RTCM Output Enabling                | 01           | 01: Enable  | UINT8  | Hz   |
|       |                                     |              | 00: 1Hz     |        |      |
|       |                                     |              | 01: 2Hz     |        |      |
|       | Output Data for MCM                 |              | 02: 4Hz     |        |      |
| 3     | Output Rate for MSM (Field 5 to 10) | 00           | 03: 5Hz     | UINT8  |      |
|       | (Fleid 5 to 10)                     |              | 04: 10Hz    |        |      |
|       |                                     |              | 05: 20Hz    |        |      |
|       |                                     |              | 06: 8Hz     |        |      |
|       | Stationary RTK                      |              | 00: Disable |        |      |
| 4     | Reference Station ARP               | 01           | 01: Enable  | UINT8  |      |
|       | (Message Type 1005)                 |              | OT. ETIABLE |        |      |
| _     | GPS MSM7 (Message                   | 01           | 00: Disable | UINT8  |      |
| 5     | Type 1077)                          |              | 01: Enable  |        |      |
| 6     | GLONASS MSM7                        | 01           | 00: Disable | UINT8  |      |
| O     | (Message Type 1087)                 | O1           | 01: Enable  | Olivio |      |
| 7     | Reserved                            | 00           |             | UINT8  |      |
| 8     | SBAS MSM7 (Message                  | 01           | 00: Disable | UINT8  |      |
| 0     | Type 1107)                          | 01           | 01: Enable  | UINTO  |      |
| 9     | QZSS MSM7 (Message                  | 01           | 00: Disable | UINT8  |      |
| 9     | Type 1117)                          | O1           | 01: Enable  | UINTO  |      |
| 10    | BDS MSM7 (Message                   | 00           | 00: Disable | UINT8  |      |
| 10    | Type 1127)                          |              | 01: Enable  | UINTO  |      |
| 11    | Reserved                            | 00           |             | UINT8  |      |
| 12    | Reserved                            | 00           |             | UINT8  |      |
| 13    | Reserved                            | 00           |             | UINT8  |      |

| 14      | Reserved                  | 00 |                                                  | UINT8 |  |  |  |
|---------|---------------------------|----|--------------------------------------------------|-------|--|--|--|
| 15      | Reserved                  | 00 |                                                  | UINT8 |  |  |  |
| 16      | Reserved                  | 00 |                                                  | UINT8 |  |  |  |
| 17      | Attributes                | 01 | 0: update to SRAM 1: update to both SRAM & FLASH | UINT8 |  |  |  |
| Payload | Payload Length : 17 bytes |    |                                                  |       |  |  |  |

## QUERY BINARY RTCM DATA OUTPUT STATUS – Query the status of binary RTCM data output (0x21)

This is a request message which is issued from the host to the receiver to retrieve the status of the binary RTCM data output. The receiver should respond with an ACK along with status of binary measurement output rate, "BINARY RTCM DATA OUTPUT STATUS, ID: 0x8A", when succeeded and should respond with an NACK when failed. The payload length is 1 byte.

Structure:

<0xA0,0xA1>< PL><21><CS><0x0D,0x0A>

Example:

A0 A1 00 01 21 21 0D 0A

1

| Field   | Name                    | Example(hex) | Description | Туре  | Unit |  |  |  |
|---------|-------------------------|--------------|-------------|-------|------|--|--|--|
| 1       | Message ID              | 21           |             | UINT8 |      |  |  |  |
| Payload | Payload Length : 1 byte |              |             |       |      |  |  |  |

## CONFIGURE BASE POSITION – Configure base position of the GNSS receiver (0x22)

This is a request message which will set base position of GNSS receiver. This command is issued from the host to the receiver and the receiver should respond with an ACK or NACK. The payload length is 31 bytes.

#### Structure:

<0xA0,0xA1>< PL><22>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 1F 22 02 00 00 07 D0 00 00 1E 40 38 C7 AE 14 7A E1 48 40 5E 40 00 00 00 00 00 42 DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

00 00 01 FE 0D 0A

29 30 31

| Field   | Name                  | Example(hex)     | Description                                                                                                  | Туре   | Unit   |
|---------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------|--------|--------|
| 1       | Message ID            | 22               |                                                                                                              | UINT8  | -      |
| 2       | Base Position<br>Mode | 02               | 00 = Base Position Kinematic Mode<br>01 = Base Position Survey Mode<br>02 = Base Position Static Mode        | UINT8  | -      |
| 3-6     | Survey Length         | 000007D0         | Survey length when in Base Position Survey Mode not used when in other mode. Valid values between 60~1209600 | UINT32 | second |
| 7-10    | Standard Deviation    | 0000001E         | Standard Deviation when in Base Position Survey Mode not used when in other mode. Valid values between 3~100 | UINT32 | meter  |
| 11-18   | Latitude              | 4038C7AE147AE148 | Latitude in double in Base Position Static Mode not used when in other mode. Ex. 24.780000                   | DPFP   | degree |
| 19-26-  | Longitude             | 405E400000000000 | Longitude in double in Base Position Static Mode not used when in other mode. Ex. 121.000000                 | DPFP   | degree |
| 27-30   | Ellipsoidal Height    | 42DC0000         | Ellipsoidal height in float in Base Position Static Mode not used when in other mode. Ex. 110.000000         | SPFP   | meter  |
| 31      | Attributes            | 01               | 0: update to SRAM 1: update to both SRAM & FLASH                                                             | UINT8  | -      |
| Payload | Length: 31 bytes      |                  |                                                                                                              |        |        |

## QUERY BASE POSITION – Query the base position of GNSS receiver (0x23)

This is a request message which is issued from the host to the receiver to query the base position data. The receiver should respond with an ACK along with base position, "BASE POSITION, ID: 0x8B", when succeeded and should respond with an NACK when failed. The payload length is 1 byte.

Structure:

<0xA0,0xA1>< PL><23><CS><0x0D,0x0A>

Example:

A0 A1 00 01 23 23 0D 0A

1

| Field                   | Name       | Example(hex) | Description | Туре  | Unit |  |  |  |
|-------------------------|------------|--------------|-------------|-------|------|--|--|--|
| 1                       | Message ID | 23           |             | UINT8 |      |  |  |  |
| Payload Length : 1 byte |            |              |             |       |      |  |  |  |

## GET GPS EPHEMERIS – Get GPS ephemeris used of GNSS receiver (0x30)

This is a request message which is issued from the host to GNSS receiver to retrieve GPS ephemeris data. The GNSS receiver should respond with an ACK along with information of ephemeris, "GPS EPHEMERIS DATA, ID: 0xB1", when succeeded and should respond with an NACK when failed. The payload length is 2 bytes.

#### Structure:

<0xA0,0xA1>< PL><30>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 02 30 00 30 0D 0A

1 2

| Field                   | Name       | Example(hex) | Description                                           | Туре  | Unit |
|-------------------------|------------|--------------|-------------------------------------------------------|-------|------|
| 1                       | Message ID | 30           |                                                       | UINT8 |      |
| 2                       | SV#        | 00           | 0: means all SVs<br>1~32 : mean for the particular SV | UINT8 |      |
| Payload Length: 2 bytes |            |              |                                                       |       |      |

#### SET GPS EPHEMERIS – Set GPS ephemeris to GNSS receiver (0x41)

This is a request message which is issued from the host to GNSS receiver to set GPS ephemeris data (open an ephemeris file) to GNSS receiver. The GNSS receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The payload length is 87 bytes.

#### Structure:

<0xA0,0xA1>< PL><41>< message body><CS><0x0D,0x0A>

#### Example:

0A 47 7C 00 77 88 88 DF FD 2E 35 A9 CD B0 F0 9F FD A7 04 8E CC A8 10 2C A1 0E 22 31 59 A6 74 00 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

77 89 0C FF A3 59 86 C7 77 FF F8 26 97 E3 B9 1C 60 59 C3 07 44 FF A6 37 DF F0 B0 2E 0D 0A 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

| Field | Name                | Example(hex) | Description         | Туре   | Unit |
|-------|---------------------|--------------|---------------------|--------|------|
| 1     | Message ID          | 41           |                     | UINT8  |      |
| 2-3   | SV id               | 0x1          | Satellite id        | UINT16 |      |
| 4     | SubFrameData[0][0]  | 00           | Eph data subframe 1 | UINT8  |      |
| 5     | SubFrameData[0][1]  | 00           | Eph data subframe 1 | UINT8  |      |
| 6     | SubFrameData[0][2]  | 00           | Eph data subframe 1 | UINT8  |      |
| 7     | SubFrameData[0][3]  | 00           | Eph data subframe 1 | UINT8  |      |
| 8     | SubFrameData[0][4]  | 00           | Eph data subframe 1 | UINT8  |      |
| 9     | SubFrameData[0][5]  | 00           | Eph data subframe 1 | UINT8  |      |
| 10    | SubFrameData[0][6]  | 00           | Eph data subframe 1 | UINT8  |      |
| 11    | SubFrameData[0][7]  | 00           | Eph data subframe 1 | UINT8  |      |
| 12    | SubFrameData[0][8]  | 00           | Eph data subframe 1 | UINT8  |      |
| 13    | SubFrameData[0][9]  | 00           | Eph data subframe 1 | UINT8  |      |
| 14    | SubFrameData[0][10] | 00           | Eph data subframe 1 | UINT8  |      |
| 15    | SubFrameData[0][11] | 00           | Eph data subframe 1 | UINT8  |      |
| 16    | SubFrameData[0][12] | 00           | Eph data subframe 1 | UINT8  |      |
| 17    | SubFrameData[0][13] | 00           | Eph data subframe 1 | UINT8  |      |
| 18    | SubFrameData[0][14] | 00           | Eph data subframe 1 | UINT8  |      |
| 19    | SubFrameData[0][15] | 00           | Eph data subframe 1 | UINT8  |      |
| 20    | SubFrameData[0][16] | 00           | Eph data subframe 1 | UINT8  |      |
| 21    | SubFrameData[0][17] | 00           | Eph data subframe 1 | UINT8  |      |

|         | 1                          |    |                                    |       |  |  |  |
|---------|----------------------------|----|------------------------------------|-------|--|--|--|
| 22      | SubFrameData[0][18]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 23      | SubFrameData[0][19]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 24      | SubFrameData[0][20]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 25      | SubFrameData[0][21]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 26      | SubFrameData[0][22]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 27      | SubFrameData[0][23]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 28      | SubFrameData[0][24]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 29      | SubFrameData[0][25]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 30      | SubFrameData[0][26]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 31      | SubFrameData[0][27]        | 00 | Eph data subframe 1                | UINT8 |  |  |  |
| 22 50   | Cub Fram a Data (4)[0, 27] | 00 | Eph data subframe 2, same as field | UINT8 |  |  |  |
| 32~59   | SubFrameData[1][0~27]      | 00 | 4-31                               | UINTO |  |  |  |
| 60-87   | SubFramaData[2][0, 27]     | 00 | Eph data subframe 3, same as field | UINT8 |  |  |  |
| 00-07   | SubFrameData[2][0~27]      | 00 | 4-31                               | UINTO |  |  |  |
| Payload | Payload Length: 87 bytes   |    |                                    |       |  |  |  |

## GET GLONASS EPHEMERIS – Get GLONASS ephemeris used in the GNSS receiver (0x5B)

This is a request message which is issued from the host to GNSS receiver to retrieve Glonass is data. The GNSS receiver should respond with an ACK along with information of ephemeris, "GLONASS EPHEMERIS DATA, ID: 0x90" when succeeded and should respond with an NACK when failed. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><5B>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 01 5B 00 5B 0D 0A

1 2

| Field                    | Name            | Example(hex) | Description                       | Туре  | Unit |
|--------------------------|-----------------|--------------|-----------------------------------|-------|------|
| 1                        | Message ID      | 5B           |                                   | UINT8 |      |
| 2                        | GLONASS SV slot | 01           | 0: means all SVs                  | UINT8 |      |
| 2                        | number          | 01           | 1~32 : mean for the particular SV |       |      |
| Payload Length : 2 bytes |                 |              |                                   |       |      |

#### SET GLONASS EPHEMERIS – Set GLONASS ephemeris to the GNSS receiver (0x5C)

This is a request message which is issued from the host to the receiver to set GLONASS ephemeris data (open an ephemeris file) to the receiver. The receiver should respond with an ACK when succeeded and should respond with a NACK when failed. The payload length is 43 bytes.

#### Structure:

<0xA0,0xA1>< PL><5C>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 2B 5C 02 FC 01 02 57 07 56 1C 9D 2F E6 84 02 12 60 99 5C B8 0A 7A 7D 33 03 80 26 30 C3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

9B A1 78 6A 18 04 83 4C 84 C0 00 02 A1 6D 89 F6 0D 0A 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

| Field | Name                 | Example(hex) | Description                              | Туре  | Unit |
|-------|----------------------|--------------|------------------------------------------|-------|------|
| 1     | Message ID           | 5C           |                                          | UINT8 |      |
| 2     | Slot number          | 02           | GLONASS SV slot number                   | UINT8 |      |
| 2     | I/ no come la con    | FC           | GLONASS SV frequency number (-7          | CINTO |      |
| 3     | K number             | FC           | ~ +6)                                    | SINT8 |      |
| 4     | alo onh data0 hyto0  | 01           | Stuffing zeros and bit 85 - bit 81 (LSB) | UINT8 |      |
| 4     | glo_eph_data0_byte0  | 01           | of string 1                              | UINTO |      |
| 5     | glo_eph_data0_byte1  | 02           | bit 80 (MSB)- bit 73 (LSB) of string 1   | UINT8 |      |
| 6     | glo_eph_data0_byte2  | 57           | bit 72 (MSB)- bit 65 (LSB) of string 1   | UINT8 |      |
| 7     | glo_eph_data0_byte3  | 07           | bit 64 (MSB)- bit 57 (LSB) of string 1   | UINT8 |      |
| 8     | glo_eph_data0_byte4  | 56           | bit 56 (MSB)- bit 49 (LSB) of string 1   | UINT8 |      |
| 9     | glo_eph_data0_byte5  | 1C           | bit 48 (MSB)- bit 41 (LSB) of string 1   | UINT8 |      |
| 10    | glo_eph_data0_byte6  | 9D           | bit 40 (MSB)- bit 33 (LSB) of string 1   | UINT8 |      |
| 11    | glo_eph_data0_byte7  | 2F           | bit 32 (MSB)- bit 25 (LSB) of string 1   | UINT8 |      |
| 12    | glo_eph_data0_byte8  | E6           | bit 24 (MSB)- bit 17 (LSB) of string 1   | UINT8 |      |
| 13    | glo_eph_data0_byte9  | 84           | bit 16 (MSB)- bit 09 (LSB) of string 1   | UINT8 |      |
| 14    | glo_eph_data1_byte0  | 02           | Stuffing zeros and bit 85 - bit 81 (LSB) | UINT8 |      |
| 14    | gio_epri_data1_byte0 | 02           | of string 2                              | UINTO |      |
| 15    | glo_eph_data1_byte1  | 12           | bit 80 (MSB)- bit 73 (LSB) of string 2   | UINT8 |      |
| 16    | glo_eph_data1_byte2  | 60           | bit 72 (MSB)- bit 65 (LSB) of string 2   | UINT8 |      |
| 17    | glo_eph_data1_byte3  | 99           | bit 64 (MSB)- bit 57 (LSB) of string 2   | UINT8 |      |
| 18    | glo_eph_data1_byte4  | 5C           | bit 56 (MSB)- bit 49 (LSB) of string 2   | UINT8 |      |
| 19    | glo_eph_data1_byte5  | B8           | bit 48 (MSB)- bit 41 (LSB) of string 2   | UINT8 |      |
| 20    | glo_eph_data1_byte6  | 0A           | bit 40 (MSB)- bit 33 (LSB) of string 2   | UINT8 |      |

| 21                       | glo_eph_data1_byte7   | 7A | bit 32 (MSB)- bit 25 (LSB) of string 2 | UINT8 |  |  |
|--------------------------|-----------------------|----|----------------------------------------|-------|--|--|
| 22                       | glo_eph_data1_byte8   | 7D | bit 24 (MSB)- bit 17 (LSB) of string 2 | UINT8 |  |  |
| 23                       | glo_eph_data1_byte9   | 33 | bit 16 (MSB)- bit 09 (LSB) of string 2 | UINT8 |  |  |
| 24-33                    | glo_eph_data2_byte0 - |    | Stuffing-zeros and bit 85 - bit 09 of  |       |  |  |
| 24-33                    | glo_eph_data2_byte9   |    | string 3                               |       |  |  |
| 24.42                    | glo_eph_data3_byte0 - |    | Stuffing-zeros and bit 85 - bit 09 of  |       |  |  |
| 34-43                    | glo_eph_data3_byte9   |    | string 4                               |       |  |  |
| Payload Length: 43 bytes |                       |    |                                        |       |  |  |

## **OUTPUT MESSAGES**

#### SOFTWARE VERSION – Software version of the GNSS receiver (0x80)

This is a response message to "QUERY SOFTWARE VERSION, ID: 0x2" which provides the software version of the GNSS receiver. This message is sent from the GNSS receiver to host. The example below output the SkyTraq software version as 01.01.01-01.03.14-07.01.18 on System image. The payload length is 14 bytes.

#### Structure:

<0xA0,0xA1>< PL><80>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 0E 80 01 00 01 01 01 00 01 03 0E 00 07 01 12 98 0D 0A

1 2 3 4 5 6 7 8 9 10 11 12 13 14

| Field      | Name                      | Example(hex)                      | Description                      | Туре     | Unit |  |  |
|------------|---------------------------|-----------------------------------|----------------------------------|----------|------|--|--|
| 1          | Message ID                | 80                                |                                  | UINT8    |      |  |  |
|            | Software Type             | 00                                | 0: Reserved                      | UINT8    |      |  |  |
| 2 Software | Software Type             | е туре 00                         | 1: System code                   | UINTO    |      |  |  |
| 3-6        | Kernel Version   00010101 | X1.Y1.Z1 = SkyTraq Kernel Version | UINT32                           |          |      |  |  |
| 3-6        |                           | 00010101                          | Ex. X1=01, Y1=00, Z1=01 (1.0.1)  | UINTSZ   |      |  |  |
| 7-10       | ODM version               | 0001030E                          | X1.Y1.Z1 = SkyTraq Version       | UINT32   |      |  |  |
| 7-10       |                           |                                   | Ex. X1=01, Y1=03, Z1=01 (1.3.1)  |          |      |  |  |
| 11-14      | Davision                  | 00070112                          | YYMMDD = SkyTraq Revision        | LIINITOO |      |  |  |
| 11-14      | Revision                  | 00070112                          | Ex. YY=06, MM=01, DD=10 (060110) | UINT32   |      |  |  |
| Payload    | Payload Length : 14 bytes |                                   |                                  |          |      |  |  |

## SOFTWARE CRC - Software CRC of the GNSS receiver (0x81)

This is a response message to "QUERY SOFTWARE CRC, ID: 0x3" which provides the software CRC of the GNSS receiver. This message is sent from the GNSS receiver to host. The payload length is 4 bytes.

#### Structure:

<0xA0,0xA1>< PL><81>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 04 81 01 98 76 6E 0D 0A

1 2 3 4

| Field                    | Name          | Example(hex) | Description    | Туре   | Unit |  |
|--------------------------|---------------|--------------|----------------|--------|------|--|
| 1                        | Message ID    | 81           |                | UINT8  |      |  |
| 2                        | Software Type | 00           | 0: Reserved    | UINT8  |      |  |
| 2                        |               |              | 1: System code |        |      |  |
| 3-4                      | CRC           | 9876         | CRC value      | UINT16 |      |  |
| Payload Length : 4 bytes |               |              |                |        |      |  |

## ACK – Acknowledgement to a Request Message (0x83)

This is a response message which is an acknowledgement to a request message. The payload length is 2 bytes

## Structure:

<0xA0,0xA1>< PL><83>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 02 83 02 81 0D 0A

1 2

| Field                    | Name       | Example(hex) | Description                       | Туре  | Unit |  |
|--------------------------|------------|--------------|-----------------------------------|-------|------|--|
| 1                        | Message ID | 83           |                                   | UINT8 |      |  |
| 2                        | ACK ID*1   | 02           | Message ID of the request message | UINT8 |      |  |
| Payload Length : 2 bytes |            |              |                                   |       |      |  |

<sup>\*1:</sup> ACK ID may further consist of message ID and message sub-ID which will become 3 bytes of ACK message.

## NACK - Response to an unsuccessful request message (0x84)

This is a response message which is a response to an unsuccessful request message. This is used to notify the Host that the request message has been rejected. The payload length is 2 bytes

#### Structure:

<0xA0,0xA1>< PL><84>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 02 84 01 82 0D 0A

12

| Field                   | Name       | Example(hex) | Description                       | Туре  | Unit |
|-------------------------|------------|--------------|-----------------------------------|-------|------|
| 1                       | Message ID | 84           |                                   | UINT8 |      |
| 2                       | NACK ID*1  | 01           | Message ID of the request message | UINT8 |      |
| Payload Length: 2 bytes |            |              |                                   |       |      |

<sup>\*1:</sup> NACK ID may further consist of message ID and message sub-ID which will become 3 bytes of NACK message.

## POSITON UPDATE RATE – Position Update rate of the GNSS system (0x86)

This is a response message to "QUERY POSITION UPDATE RATE, ID: 0x10" which provides the position update rate of the GNSS receiver. This message is sent from the GNSS receiver to host. The payload length is 2 bytes.

#### Structure:

<0xA0,0xA1>< PL><86>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 02 86 01 87 0D 0A

12

| Field                    | Name        | Example(hex) | Description | Туре  | Unit |  |
|--------------------------|-------------|--------------|-------------|-------|------|--|
| 1                        | Message ID  | 86           |             | UINT8 |      |  |
| 2                        | Update Rate | 01           | 01: 1Hz     | UINT8 |      |  |
| Payload Length : 2 bytes |             |              |             |       |      |  |

## BINARY MEASUREMENT DATA OUTPUT STATUS- Status of Binary Measurement Data output (0x89)

This is a response message to "QUERY BINARY MEASUREMENT DATA OUTPUT STATUS, ID: 0x1F" which provides the binary measurement data output rate of the GNSS receiver. This message is sent from the GNSS receiver to host. The payload length is 8 bytes.

#### Structure:

<0xA0,0xA1>< PL><89>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 07 89 00 00 00 01 01 03 01 8B 0D 0A

1 2 3 4 5 6 7 8

| Field  | Name                                         | Example(hex) | Description                                                                                                                                        | Туре  | Unit |
|--------|----------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 1      | Message ID                                   | 89           |                                                                                                                                                    | UINT8 |      |
|        | Binary                                       |              | Output rate of binary measurement data 00: 1Hz 01: 2Hz 02: 4Hz                                                                                     |       |      |
| 2      | measurement output rate                      | 00           | 03: 5Hz<br>04: 10Hz<br>05: 20Hz<br>Others: 20Hz                                                                                                    | UINT8 | Hz   |
| 3      | Meas_time Enabling                           | 00           | 00: Disable<br>01: Enable                                                                                                                          | UINT8 |      |
| 4      | Raw_meas Enabling                            | 00           | 00: Disable<br>01: Enable                                                                                                                          | UINT8 |      |
| 5      | SV_CH_Staus<br>Enabling                      | 01           | 00: Disable<br>01: Enable                                                                                                                          | UINT8 |      |
| 6      | RCV_State<br>Enabling                        | 01           | 00: Disable 01: Enable This message supports only 1Hz.                                                                                             | UINT8 |      |
| 7      | Subframe Enabling of different constellation | 03           | Bit 0: GPS, 0: Disable; 1: Enable Bit 1: Glonass, 0: Disable; 1: Enable Bit 2: Galileo, 0: Disable; 1: Enable Bit 3: Beidou, 0: Disable; 1: Enable | UINT8 |      |
| 8      | Extended_<br>Raw_Meas<br>Enabling*1          | 01           | 00: Disable<br>01: Enable                                                                                                                          | UINT8 |      |
| Payloa | d Length : 8 bytes                           |              |                                                                                                                                                    |       |      |

| 1: supported only after version 1.4.32 |                    |
|----------------------------------------|--------------------|
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
|                                        |                    |
| kvTrag Technology Inc                  | www.skytrag.com.tw |
| KVITALI PERINDONOV INC                 | www.skviiaa.com.tw |

## BINARY RTCM DATA OUTPUT STATUS—Status of Binary RTCM Data output (0x8A)

This is a response message to "QUERY BINARY RTCM DATA OUTPUT STATUS, ID: 0x21" which provides the binary RTCM data output rate of the GNSS receiver. This message is sent from the GNSS receiver to host. The payload length is 16 bytes.

#### Structure:

<0xA0,0xA1>< PL><8A>< message body><CS><0x0D,0x0A>

#### Example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

| Field | Name                  | Example(hex) | Description | Туре   | Unit |
|-------|-----------------------|--------------|-------------|--------|------|
| 1     | Message ID            | 8A           |             | UINT8  |      |
| 2     | RTCM Output Enabling  | 01           | 00: Disable | UINT8  | Hz   |
|       |                       |              | 01: Enable  | UINTO  | ΠZ   |
|       |                       |              | 00: 1Hz     |        |      |
|       |                       |              | 01: 2Hz     |        |      |
|       | Output Rate for MSM   |              | 02: 4Hz     |        |      |
| 3     | (Field 5 to 10)       | 00           | 03: 5Hz     | UINT8  |      |
|       |                       |              | 04: 10Hz    |        |      |
|       |                       |              | 05: 20Hz    |        |      |
|       |                       |              | 06: 8Hz     |        |      |
|       | Stationary RTK        | 01           | 00: Disable | UINT8  |      |
| 4     | Reference Station ARP |              | 01: Enable  |        |      |
|       | (Message Type 1005)   |              | OT. LITABLE |        |      |
| 5     | GPS MSM7 (Message     | 01           | 00: Disable | UINT8  |      |
| 3     | Type 1077)            |              | 01: Enable  |        |      |
| 6     | GLONASS MSM7          | 01           | 00: Disable | UINT8  |      |
| 0     | (Message Type 1087)   | 01           | 01: Enable  | Olivio |      |
| 7     | Reserved              | 00           |             | UINT8  |      |
| 8     | SBAS MSM7 (Message    | 01           | 00: Disable | UINT8  |      |
| 0     | Type 1107)            | 01           | 01: Enable  | UINTO  |      |
| 9     | QZSS MSM7 (Message    | 01           | 00: Disable | UINT8  |      |
| 9     | Type 1117)            | 01           | 01: Enable  | Olivio |      |
| 10    | BDS MSM7 (Message     | 00           | 00: Disable | UINT8  |      |
| 10    | Type 1127)            |              | 01: Enable  | UIIVIO |      |
| 11    | Reserved              | 00           |             | UINT8  |      |
| 12    | Reserved              | 00           |             | UINT8  |      |
| 13    | Reserved              | 00           |             | UINT8  |      |

| 14                        | Reserved | 00 |  | UINT8 |  |
|---------------------------|----------|----|--|-------|--|
| 15                        | Reserved | 00 |  | UINT8 |  |
| 16                        | Reserved | 00 |  | UINT8 |  |
| Payload Length : 16 bytes |          |    |  |       |  |

#### BASE POSITION - Base position information of the GNSS receiver (0x8B)

This is a response message to "QUERY BASE POSITION, ID: 0x23" which provides the base position information of GNSS receiver. This message is sent from the GNSS receiver to host. The payload length is 35 bytes.

#### Structure:

<0xA0,0xA1>< PL><8B>< message body><CS><0x0D,0x0A>

#### Example:

A0 A1 00 23 8B 02 00 00 00 00 20 00 B3 00 40 38 C7 AE 14 7A E1 48 40 5E 40 00 00 00 00 01 42 DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

00 00 02 00 00 07 D0 D8 0D 0A

29 30 31 32 33 34 35

| Field  | Name                   | Example(hex)     | Description                           | Туре   | Unit   |
|--------|------------------------|------------------|---------------------------------------|--------|--------|
| 1      | Message ID             | 8B               |                                       | UINT8  | -      |
|        |                        |                  | 00 = Base Position Kinematic Mode     |        |        |
|        |                        |                  | 01 = Base Position Survey Mode        |        |        |
|        | Saved Base             |                  | 02 = Base Position Static Mode        | UINT8  |        |
| 2      | Position Mode          | 02               | Value saved in SRAM/Flash by          |        | -      |
|        | 1 osition wode         |                  | request command, QUERY BASE           |        |        |
|        |                        |                  | POSITION, id 0x23 with attribute 1 or |        |        |
|        |                        |                  | 2                                     |        |        |
|        | Saved Survey<br>Length | 00000000         | Survey length used when in "Saved     |        |        |
|        |                        |                  | Base Position Survey Mode".           | UINT32 | second |
| 0.0    |                        |                  | Value saved in SRAM/Flash by          |        |        |
| 3-6    |                        |                  | request command, QUERY BASE           |        |        |
|        |                        |                  | POSITION, id 0x23 with attribute 1 or |        |        |
|        |                        |                  | 2                                     |        |        |
|        | Standard deviation     | 000000400        | Standard Deviation when in Base       | UINT32 |        |
| 7.40   |                        |                  | Position Survey Mode not used when    |        |        |
| 7-10   |                        | 2000B3400        | in other mode.                        |        | meter  |
|        |                        |                  | Valid values between 3~100            |        |        |
| 44.40  | Covered Latitude       | 4020074544745440 | Latitude in double in Base Position   | DDED   | doore  |
| 11-18  | Saved Latitude         | 4038C7AE147AE148 | Static Mode                           | DPFP   | degree |
| 40.00  | Coved Langitude        | 405540000000000  | Longitude in double in Base Position  | DDED   | dograe |
| 19-26- | Saved Longitude        | 405E400000000001 | Static Mode                           | DPFP   | degree |
| 27-30  | Saved Ellipsoidal      | 42DC0000         | Ellipsoidal height in float in Base   | SDED   | motor  |
| 21-30  | Height                 | 4200000          | Position Static Mode                  | SPFP   | meter  |

|         |                           |          | 00 = Base Position Normal Mode        |        |        |  |  |
|---------|---------------------------|----------|---------------------------------------|--------|--------|--|--|
|         |                           |          | 01 = Base Position Survey Mode        |        |        |  |  |
| 24      | Run-time Base             | 02       | 02 = Base Position Static Mode        | LUNITO |        |  |  |
| 31      | Position Mode             | 02       | Value currently used and not saved in | UINT8  | -      |  |  |
|         |                           |          | SRAM/Flash by QUERY BASE              |        |        |  |  |
|         |                           |          | POSITION, id 0x23 with attribute 0    |        |        |  |  |
|         |                           |          | Survey length used when in "Run-time  |        |        |  |  |
|         | Dun time Curvey           |          | Base Position Survey Mode".           |        |        |  |  |
| 32-35   | Run-time Survey           | 000007D0 | Value currently used and not saved in | UINT32 | second |  |  |
|         | Length                    |          | SRAM/Flash by QUERY BASE              |        |        |  |  |
|         |                           |          | POSITION, id 0x23 with attribute 0    |        |        |  |  |
| Payload | Payload Length : 35 bytes |          |                                       |        |        |  |  |

## GLONASS EPHEMERIS DATA – GLONASS ephemeris data of the GNSS receiver (0x90)

This is a response message to "GET GLONASS EPHEMERIS, id 0x5B", which provides the GLONASS Ephemeris Data of the receiver to the host. The Host may save the ephemeris data as an ephemeris file. This message is sent from the receiver to host. The payload length is 43 bytes.

### Structure:

<0xA0,0xA1>< PL><90>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 2B 90 02 FC 01 02 D2 81 F4 75 05 16 51 9A 02 12 E0 AD 0F 37 01 7A D2 06 03 80 26 19 A1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

22 A2 84 EB D6 04 83 4C A8 C0 00 02 A1 6D 89 6D 0D 0A 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

| Field | Name                | Example(hex) | Description                                          | Туре  | Unit |
|-------|---------------------|--------------|------------------------------------------------------|-------|------|
| 1     | Message ID          | 90           |                                                      | UINT8 |      |
| 2     | Slot number         | 02           | GLONASS SV slot number                               | UINT8 |      |
| 3     | K number            | FC           | GLONASS SV frequency number (-7 ~ +6)                | SINT8 |      |
| 4     | glo_eph_data0_byte0 | 01           | Stuffing zeros and bit 85 - bit 81 (LSB) of string 1 | UINT8 |      |
| 5     | glo_eph_data0_byte1 | 02           | bit 80 (MSB)- bit 73 (LSB) of string 1               | UINT8 |      |
| 6     | glo_eph_data0_byte2 | D2           | bit 72 (MSB)- bit 65 (LSB) of string 1               | UINT8 |      |
| 7     | glo_eph_data0_byte3 | 81           | bit 64 (MSB)- bit 57 (LSB) of string 1               | UINT8 |      |
| 8     | glo_eph_data0_byte4 | F4           | bit 56 (MSB)- bit 49 (LSB) of string 1               | UINT8 |      |
| 9     | glo_eph_data0_byte5 | 75           | bit 48 (MSB)- bit 41 (LSB) of string 1               | UINT8 |      |
| 10    | glo_eph_data0_byte6 | 05           | bit 40 (MSB)- bit 33 (LSB) of string 1               | UINT8 |      |
| 11    | glo_eph_data0_byte7 | 16           | bit 32 (MSB)- bit 25 (LSB) of string 1               | UINT8 |      |
| 12    | glo_eph_data0_byte8 | 51           | bit 24 (MSB)- bit 17 (LSB) of string 1               | UINT8 |      |
| 13    | glo_eph_data0_byte9 | 9A           | bit 16 (MSB)- bit 09 (LSB) of string 1               | UINT8 |      |
| 14    | glo_eph_data1_byte0 | 02           | Stuffing zeros and bit 85 - bit 81 (LSB) of string 2 | UINT8 |      |
| 15    | glo_eph_data1_byte1 | 12           | bit 80 (MSB)- bit 73 (LSB) of string 2               | UINT8 |      |
| 16    | glo_eph_data1_byte2 | E0           | bit 72 (MSB)- bit 65 (LSB) of string 2               | UINT8 |      |
| 17    | glo_eph_data1_byte3 | AD           | bit 64 (MSB)- bit 57 (LSB) of string 2               | UINT8 |      |
| 18    | glo_eph_data1_byte4 | 0F           | bit 56 (MSB)- bit 49 (LSB) of string 2               | UINT8 |      |
| 19    | glo_eph_data1_byte5 | 37           | bit 48 (MSB)- bit 41 (LSB) of string 2               | UINT8 |      |

| 20      | glo_eph_data1_byte6      | 01 | bit 40 (MSB)- bit 33 (LSB) of string 2 | UINT8 |  |
|---------|--------------------------|----|----------------------------------------|-------|--|
| 21      | glo_eph_data1_byte7      | 7A | bit 32 (MSB)- bit 25 (LSB) of string 2 | UINT8 |  |
| 22      | glo_eph_data1_byte8      | D2 | bit 24 (MSB)- bit 17 (LSB) of string 2 | UINT8 |  |
| 23      | glo_eph_data1_byte9      | 06 | bit 16 (MSB)- bit 09 (LSB) of string 2 | UINT8 |  |
| 24-33   | glo_eph_data2_byte0 -    |    | Stuffing-zeros and bit 85 - bit 09 of  |       |  |
| 24-33   | glo_eph_data2_byte9      |    | string 3                               |       |  |
| 34-43   | glo_eph_data3_byte0 -    |    | Stuffing-zeros and bit 85 - bit 09 of  |       |  |
| 34-43   | glo_eph_data3_byte9      |    | string 4                               |       |  |
| Payload | Payload Length: 43 bytes |    |                                        |       |  |

## GPS EPHEMERIS DATA – GPS ephemeris data of the GPS receiver (0xB1)

This is a response message to "GET GPS EPHEMERIS, ID: 0x30" which provides the GPS Ephemeris Data of the GNSS receiver to Host. The Host will save the ephemeris data as an ephemeris file. This message is sent from the GNSS receiver to host. The payload length is 87 bytes.

### Structure:

<0xA0,0xA1>< PL><B1>< message body><CS><0x0D,0x0A>

### Example:

0A 47 7C 00 77 88 88 DF FD 2E 35 A9 CD B0 F0 9F FD A7 04 8E CC A8 10 2C A1 0E 22 31 59 A6 74 00 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

77 89 0C FF A3 59 86 C7 77 FF F8 26 97 E3 B9 1C 60 59 C3 07 44 FF A6 37 DF F0 B0 5E 0D 0A 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

| Field | Name                | Example(hex) | Description         | Туре   | Unit |
|-------|---------------------|--------------|---------------------|--------|------|
| 1     | Message ID          | B1           |                     | UINT8  |      |
| 2-3   | SV id               | 0x1          | Satellite id        | UINT16 |      |
| 4     | SubFrameData[0][0]  | 00           | Eph data subframe 1 | UINT8  |      |
| 5     | SubFrameData[0][1]  | 00           | Eph data subframe 1 | UINT8  |      |
| 6     | SubFrameData[0][2]  | 00           | Eph data subframe 1 | UINT8  |      |
| 7     | SubFrameData[0][3]  | 00           | Eph data subframe 1 | UINT8  |      |
| 8     | SubFrameData[0][4]  | 00           | Eph data subframe 1 | UINT8  |      |
| 9     | SubFrameData[0][5]  | 00           | Eph data subframe 1 | UINT8  |      |
| 10    | SubFrameData[0][6]  | 00           | Eph data subframe 1 | UINT8  |      |
| 11    | SubFrameData[0][7]  | 00           | Eph data subframe 1 | UINT8  |      |
| 12    | SubFrameData[0][8]  | 00           | Eph data subframe 1 | UINT8  |      |
| 13    | SubFrameData[0][9]  | 00           | Eph data subframe 1 | UINT8  |      |
| 14    | SubFrameData[0][10] | 00           | Eph data subframe 1 | UINT8  |      |
| 15    | SubFrameData[0][11] | 00           | Eph data subframe 1 | UINT8  |      |
| 16    | SubFrameData[0][12] | 00           | Eph data subframe 1 | UINT8  |      |
| 17    | SubFrameData[0][13] | 00           | Eph data subframe 1 | UINT8  |      |
| 18    | SubFrameData[0][14] | 00           | Eph data subframe 1 | UINT8  |      |
| 19    | SubFrameData[0][15] | 00           | Eph data subframe 1 | UINT8  |      |
| 20    | SubFrameData[0][16] | 00           | Eph data subframe 1 | UINT8  |      |
| 21    | SubFrameData[0][17] | 00           | Eph data subframe 1 | UINT8  |      |

| 22      | SubFrameData[0][18]       | 00 | Eph data subframe 1                | UINT8  |  |  |
|---------|---------------------------|----|------------------------------------|--------|--|--|
| 23      | SubFrameData[0][19]       | 00 | DO Eph data subframe 1             |        |  |  |
| 24      | SubFrameData[0][20]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 25      | SubFrameData[0][21]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 26      | SubFrameData[0][22]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 27      | SubFrameData[0][23]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 28      | SubFrameData[0][24]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 29      | SubFrameData[0][25]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 30      | SubFrameData[0][26]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 31      | SubFrameData[0][27]       | 00 | Eph data subframe 1                | UINT8  |  |  |
| 32~59   | SubFramoData[1][0_27]     | 00 | Eph data subframe 2, same as field | UINT8  |  |  |
| 32~39   | SubFrameData[1][0~27]     | 00 | 4-31                               | UINTO  |  |  |
| 60-87   | SubFrameData[2][0~27]     | 00 | Eph data subframe 3, same as field | UINT8  |  |  |
| 00-07   |                           |    | 4-31                               | UIIVIO |  |  |
| Payload | Payload Length : 87 bytes |    |                                    |        |  |  |

# MEAS\_TIME- Measurement time information (0xDC) (Periodic)

This is the receiver time when the raw measurements are taken. This message is sent from the receiver to host. The payload length is 10 bytes

### Structure:

<0xA0,0xA1>< PL><DC>< message body><CS><0x0D,0x0A>

# Example:

A0 A1 00 0A DC 3D 06 ED 0B 0C BC 40 03 E8 1A 0D 0A

1 2 3 4 5 6 7 8 9 10

| Field      | Name                      | Example(hex) | Description                    | Туре   | Unit  |  |  |
|------------|---------------------------|--------------|--------------------------------|--------|-------|--|--|
| 1          | Message ID                | DC           |                                | UINT8  |       |  |  |
| 2          | IOD                       | 3D           | Issue of Data from (0-255)     | UINT8  |       |  |  |
| 3-4        | Receiver WN               | 06ED         | Receiver Week number (0-65535) | UINT16 | weeks |  |  |
| 4-8        | Receiver TOW              | 0B0CBC40     | Receiver TOW (0-604799999)     | UINT32 | ms    |  |  |
| 9-10       | Measurement period        | 03E8         | Measurement period (1-1000)    | UINT16 | ms    |  |  |
| Payload Le | Payload Length : 10 bytes |              |                                |        |       |  |  |

### RAW MEAS- Raw measurements from each channel (0xDD) (Periodic)

The raw measurements of satellites are taken at the same epoch from the receiver. This message is sent from the receiver to host. The measurement data of a channel is provided only when the corresponding satellite signal is under lock status. The payload length is (3+Number\_of\_measurement\*23) bytes.

#### Structure:

<0xA0,0xA1>< PL><DD>< message body><CS><0x0D,0x0A>

### Example:

A0 A1 01 5C DD 3D 0F 02 2B 41 74 42 DB 76 55 FA 29 C0 E2 E4 02 21 5A 00 00 44 20 80 00 07 09 29 41 77 8C F0

1 2 3

A9 E7 0C 43 C0 F9 72 54 2E EB 80 00 44 E3 A0 00 07 0A 28 41 75 CA 96 91 A9 E9 23 41 04 7D B1 E9 A9 80 00 C5 31 20 00 07 05 2B 41 74 9E BE EE 17 8C 6A 40 D3 71 D4 80 CF 00 00 C3 AE 00 00 07 1A 2E 41 75 02 83 E5 EC D7 65 C1 04 6D 73 BD E6 20 00 45 33 30 00 07 0C 28 41 77 C1 E0 1D A7 2E C1 40 FF 79 4C C9 14 80 00 C5 0D 80 00 07 11 28 41 77 E7 B0 E8 15 9A A8 41 0C 87 99 0C FA A0 00 C5 80 D8 00 07 0F 27 41 77 93 96 77 03 2B 0A C1 06 BF 2C 49 05 60 00 45 4F B0 00 07 04 2C 41 75 BA 4E B0 68 2B 43 40 FB 25 C7 A3 B6 C0 00 C4 FE 60 00 07 07 26 41 78 48 7F 72 DF C5 81 C0 D0 89 C8 BF 96 00 00 43 A7 80 00 07 0D 1D 00 00 00 00 00 00 00 41 05 F9 A2 D6 0D 40 00 C5 66 00 00 16 08 27 41 78 6A D7 A4 71 2A 50 C0 EF 02 44 2E 09 80 00 44 A2 80 00 07 19 23 41 78 7E E4 8B 0C 9E 26 40 E6 AD 04 2B 85 80 00 C4 98 20 00 07 42 1F 41 75 27 EA E2 16 7D 10 41 06 D6 0A 57 6B 00 00 C5 53 10 00 07 52 1E 00 00 00 00 00 00 00 C0 FE 83 49 5D A7 00 00 45 16 C0 00 6 AA 0D 0A

382

| Field | Name                  |                           | Example(hex)     | Description                                                                                                                             | Туре  | Unit        |
|-------|-----------------------|---------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| 1     | Message ID            |                           | DD               |                                                                                                                                         | UINT8 |             |
| 2     | IOD                   |                           | 3D               | Issue of Data from 0-255                                                                                                                | UINT8 |             |
| 3     | NMEAS                 |                           | 0F               | Number of measurement                                                                                                                   | UINT8 |             |
| 4     | Channel 1 Measurement | SVID                      | 02               | PRN for GPS satellites;<br>(Slot_number+64) for<br>Glonass satellites;<br>(SVID+200) for Beidou2<br>satellites; (SVID+240)<br>for IRNSS | UINT8 |             |
| 5     | Measurement           | CN0                       | 2B               | Satellite CNR                                                                                                                           | UINT8 | dBHz        |
| 6-13  |                       | Pseudo-range              | 417442DB7655FA29 | Satellite pseudo-range                                                                                                                  | DPFP  | meter       |
| 14-21 |                       | Accumulated carrier cycle | C0E2E402215A0000 | Accumulated carrier phase measurement, The carrier phase                                                                                | DPFP  | Cycles (L1) |

|       |                   |          | measurement is            |       |    |
|-------|-------------------|----------|---------------------------|-------|----|
|       |                   |          | accumulated after         |       |    |
|       |                   |          | carrier lock is achieved. |       |    |
|       |                   |          | Discontinuity in the      |       |    |
|       |                   |          | carrier phase will be     |       |    |
|       |                   |          | indicated by the cycle    |       |    |
|       |                   |          | slip flag. We also adjust |       |    |
|       |                   |          | the polarity of the       |       |    |
|       |                   |          | carrier phase             |       |    |
|       |                   |          | measurement before        |       |    |
|       |                   |          | output. The polarity of   |       |    |
|       |                   |          | accumulated carrier       |       |    |
|       |                   |          | cycle is defined such     |       |    |
|       |                   |          | that an approaching       |       |    |
|       |                   |          | satellite has decreasing  |       |    |
|       |                   |          | accumulated carrier       |       |    |
|       |                   |          | cycle measurement, the    |       |    |
|       |                   |          | same as RINEX             |       |    |
|       |                   |          | convention.               |       |    |
|       |                   |          | The sign of doppler       |       |    |
|       |                   |          | frequency is defined      |       |    |
|       |                   |          | such that the             | 0050  |    |
| 22-25 | Doppler frequency | 44208000 | approaching satellite     | SPFP  | Hz |
|       |                   |          | has positive doppler      |       |    |
|       |                   |          | frequency.                |       |    |
|       |                   |          | Bit 0 ON: pseudo-range    |       |    |
|       |                   |          | is available in the       |       |    |
|       |                   |          | channel.                  |       |    |
|       |                   |          | Bit 1 ON: Doppler         |       |    |
|       |                   |          | frequency is available in |       |    |
|       |                   |          | the channel.              |       |    |
|       |                   |          | Bit 2 ON: carrier phase   |       |    |
| 26    | Measurement       | 07       | is available in the       | UINT8 |    |
|       | Indicator         |          | channel.                  | -     |    |
|       |                   |          | Bit 3 ON: cycle slip is   |       |    |
|       |                   |          | possible in the channel.  |       |    |
|       |                   |          | Bit 4 ON: coherent        |       |    |
|       |                   |          | integration time of the   |       |    |
|       |                   |          | channel is equal to or    |       |    |
|       |                   |          | more than 10ms.           |       |    |
|       |                   |          | more than rollis.         |       |    |

|         |                                   |          |  | (* Bit 0 is LSB) |  |   |  |
|---------|-----------------------------------|----------|--|------------------|--|---|--|
| 27-49   | Channel 2 mea                     | surement |  |                  |  |   |  |
| 50-72   | Channel 3 measurement             |          |  |                  |  |   |  |
| :       | : : : :                           |          |  |                  |  | : |  |
| Payload | Payload Length : 3+NMEAS*23 bytes |          |  |                  |  |   |  |

## SV\_CH\_STATUS- SV and channel status (0xDE) (Periodic)

This is the information about channel and satellite status. This message is sent from the receiver to host. The payload length is (3+Num\_of\_satellite\*10) bytes.

#### Structure:

<0xA0,0xA1>< PL><DE>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 A3 DE 3D 10 00 02 07 01 2B 00 3E 00 10 1F 01 09 07 01 29 00 10 00 72 1F 02 0A 07 01 28 00 22 00 27 1 2 3

1F 03 05 07 00 2B 00 38 01 38 1F 04 1A 07 00 2E 00 2E 00 BA 1F 05 0C 07 00 28 00 0E 00 F8 1F 06 11 07 01 28 00 0A 00 9A 1F 07 0F 07 00 27 00 0E 00 D1 1F 08 21 07 00 29 00 42 00 2E 1F 09 04 07 00 2C 00 26 00 5B 1F 0C 07 07 00 26 00 09 00 4D 1F 0D 0D 07 00 1D 00 06 00 24 1F 0E 08 07 00 27 00 0A 00 6B 1F 0F 19 07 00 23 00 06 01 1B 1F 10 42 06 05 1F 00 20 00 15 1F 11 52 07 05 1E 00 31 01 4E 1F C7 0D 0A

163

| Field | Name       |                          | Example(hex) | Description                                 | Туре  | Unit |
|-------|------------|--------------------------|--------------|---------------------------------------------|-------|------|
| 1     | Message ID |                          | DE           |                                             | UINT8 |      |
| 2     | IOD        | IOD                      |              | Issue of Data from 0-255                    | UINT8 |      |
| 3     | NSVS       |                          | 10           | Number of SVs                               | UINT8 |      |
| 4     |            | Channel ID               | 00           | Channel ID 0-43                             | UINT8 |      |
|       |            |                          |              | PRN for GPS satellites;                     |       |      |
|       |            |                          |              | (Slot_number+64) for                        |       |      |
| 5     |            | SVID                     | 02           | GLONASS satellites;                         | UINT8 |      |
| 5     |            | 3010                     | 02           | (SVID+200) for Beidou2                      | UINTO |      |
|       |            |                          |              | satellites; (SVID+240) for                  |       |      |
|       |            |                          |              | IRNSS                                       |       |      |
|       |            |                          |              | Bit 0 ON: Almanac is                        |       |      |
|       |            |                          |              | received for this satellite                 |       |      |
|       | SV-CH 1    |                          |              | Bit 1 ON: Ephemeris is                      |       |      |
| 6     | Status     | SV Status indicator      | 07           | received for this satellite                 | UINT8 |      |
|       |            |                          |              | Bit 2 ON: This satellite is                 |       |      |
|       |            |                          |              | healthy                                     |       |      |
|       |            |                          |              | (*Bit 0 is LSB)                             |       |      |
|       |            |                          |              | The URA index for GPS                       |       |      |
|       |            |                          |              | satellites; $F_T$ parameter                 |       |      |
| 7     |            | $\operatorname{URA} F_T$ | 01           | for GLONASS satellites.                     | UINT8 |      |
|       |            |                          |              | 255 indicates that URA/                     |       |      |
|       |            |                          |              | $F_{\scriptscriptstyle T}$ is not available |       |      |
| 8     |            | CN0                      | 2B           | CNR                                         | SINT8 | dBHz |

| 9-10  |                | Elevation                | 003E | SV Elevation               | SINT16 | deg |
|-------|----------------|--------------------------|------|----------------------------|--------|-----|
| 11-12 |                | Azimuth                  | 0010 | SV Azimuth                 | SINT16 | deg |
|       |                |                          |      | Bit 0 ON: Pull-in stage is |        |     |
|       |                |                          |      | done for this channel      |        |     |
|       |                |                          |      | Bit 1 ON: Bit              |        |     |
|       |                |                          |      | synchronization is done    |        |     |
|       |                |                          |      | for this channel           |        |     |
|       |                |                          |      | Bit 2 ON: Frame            |        |     |
|       |                | Channel Status indicator |      | synchronization is done    | UINT8  |     |
| 13    |                |                          | 1F   | for this channel           |        |     |
|       |                | indicator                |      | Bit 3 ON: Ephemeris is     |        |     |
|       |                |                          |      | received for this channel  |        |     |
|       |                |                          |      | Bit 4 ON: Used in normal   |        |     |
|       |                |                          |      | fix mode                   |        |     |
|       |                |                          |      | Bit 5 ON: Used in          |        |     |
|       |                |                          |      | differential fix mode      |        |     |
|       |                |                          |      | (*Bit 0 is LSB)            |        |     |
| 14-23 | SV-CH 2 status | <u></u>                  |      |                            |        |     |
| 24-33 | SV-CH 3 status | <u></u>                  |      |                            |        |     |
| :     |                | :                        | :    | :                          | :      | :   |

### RCV\_STATE- Receiver navigation status (0xDF) (Periodic)

This is the PVT results calculated by the receiver. This message is sent from the receiver to host. The payload length is 81 bytes.

### Structure:

<0xA0,0xA1>< PL><DF>< message body><CS><0x0D,0x0A>

## Example:

A0 A1 00 51 DF 92 03 06 ED 41 07 DB E7 FD 76 3B 21 C1 46 C6 04 2F 62 BF D8 41 52 F1 B6 4B 17 F7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

CC 41 44 46 79 B8 7A DB 12 3C 8A AA D4 BC 1A 6E F0 BB C5 67 D2 41 16 AD 5E 6D 3F 7C 78 42 8F D9 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1E 40 5D 7C 6B 40 4B 07 FB 3F 7C 51 AD 40 40 FB C2 3F B1 06 30 33 0D 0A 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

| Field | Name             | Example(hex)     | Description              | Туре   | Unit  |
|-------|------------------|------------------|--------------------------|--------|-------|
| 1     | Message ID       | DF               |                          | UINT8  |       |
| 2     | IOD              | 92               | Issue of Data from 0-255 | UINT8  |       |
|       |                  |                  | 00: NO_FIX,              |        |       |
|       |                  |                  | 01: FIX_PREDICTION       |        |       |
| 3     | Navigation State | 03               | 02: FIX_2D               | UINT8  |       |
|       |                  |                  | 03: FIX_3D               |        |       |
|       |                  |                  | 04: FIX_DIFFERENTIAL     |        |       |
| 4-5   | WN               | 06ED             | GPS week number          | UINT16 | weeks |
| 6-13  | TOW              | 4107DBE7FD763B21 | GPS TOW                  | DPFP   | sec   |
| 14-21 | ECEF POS_X       | C146C6042F62BFD8 | ECEF POS_X               | DPFP   | meter |
| 22-29 | ECEF POS_Y       | 4152F1B64B17F7CC | ECEF POS_Y               | DPFP   | meter |
| 30-37 | ECEF POS _Z      | 41444679B87ADB12 | ECEF POS _Z              | DPFP   | meter |
| 38-41 | ECEF VEL_X       | 3C8AAAD4         | ECEF VEL_X               | SPFP   | m/s   |
| 42-45 | ECEF VEL_Y       | BC1A6EF0         | ECEF VEL_Y               | SPFP   | m/s   |
| 46-49 | ECEF VEL_Z       | BBC567D2         | ECEF VEL_Z               | SPFP   | m/s   |
| 50-57 | Clock Bias       | 4116AD5E6D3F7C68 | Clock Bias of receiver   | DPFP   | meter |
| 58-61 | Clock Drift      | 428FD91E         | Clock Drift of receiver  | SPFP   | m/s   |
| 62-65 | GDOP             | 405D7C6B         | GDOP                     | SPFP   |       |
| 66-69 | PDOP             | 404B07FB         | PDOP                     | SPFP   |       |

| 70-73   | HDOP                      | 3F7C51AD | HDOP | SPFP |  |  |  |
|---------|---------------------------|----------|------|------|--|--|--|
| 74-77   | VDOP                      | 4040FBC2 | VDOP | SPFP |  |  |  |
| 78-81   | TDOP                      | 3FB10630 | TDOP | SPFP |  |  |  |
| Payload | Payload Length : 81 bytes |          |      |      |  |  |  |

## GPS SUBFRAME- GPS Subframe buffer data (0xE0) (Periodic)

This is the information about the GPS subframe data bits currently collected in the receiver. The data bits are composed from the 24 higher bits of each of the navigation words and the parity bits are not included in the output. Only when all 10 navigation words have been verified by parity checking, the data bits in the subframe are output. Before being sent out to the host, the data bits are also polarity-adjusted. The 8 preamble bits of a subframe, for example, can be obtained from the first byte of the 3-byte field of navigation word 1. This message is sent from the receiver to host. The payload length is 33 bytes.

### Structure:

<0xA0,0xA1>< PL><E0>< message body><CS><0x0D,0x0A>

### Example:

A0 A1 00 21 E0 02 05 8B 0B B4 3F 22 B5 4F 31 CF 4E FD 81 FD 4D 00 A1 0C 98 79 E7 09 08 D5 C5 F8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ED 03 EB FF F4 04 0D 0A 29 30 31 32 33

| Field | Name                   | Example(hex) | Description                                                     | Туре    | Unit |
|-------|------------------------|--------------|-----------------------------------------------------------------|---------|------|
| 1     | Message ID             | E0           |                                                                 | UINT8   |      |
| 2     | SVID                   | 02           | GPS Satellite PRN                                               | UINT8   |      |
| 3     | SFID                   | 05           | Sub-frame ID (1-5)                                              | UINT8   |      |
| 4     | WORD 1 bit01~<br>bit24 | 8B0BB4       | 24 parity-checked and polarity-adjusted bits of subframe word 1 | 3-bytes |      |
| 5     | WORD 2 bit01~<br>bit24 | 3F22B5       | 24 parity-checked and polarity-adjusted bits of subframe word 2 | 3-bytes |      |
| 6     | WORD 3 bit01~<br>bit24 | 4F31CF       | 24 parity-checked and polarity-adjusted bits of subframe word 3 | 3-bytes |      |
| 7     | WORD 4 bit01~<br>bit24 | 4EFD81       | 24 parity-checked and polarity-adjusted bits of subframe word 4 | 3-bytes |      |
| 8     | WORD 5 bit01~<br>bit24 | FD4D00       | 24 parity-checked and polarity-adjusted bits of subframe word 5 | 3-bytes |      |
| 9     | WORD 6 bit01~<br>bit24 | A10C98       | 24 parity-checked and polarity-adjusted bits of subframe word 6 | 3-bytes |      |
| 10    | WORD 7 bit01~<br>bit24 | 79E709       | 24 parity-checked and polarity-adjusted bits of subframe word 7 | 3-bytes |      |
| 11    | WORD 8 bit01~<br>bit24 | 08D5C5       | 24 parity-checked and polarity-adjusted bits of subframe word 8 | 3-bytes |      |
| 12    | WORD 9 bit01~          | F8ED03       | 24 parity-checked and polarity-adjusted                         | 3-bytes |      |

|         | bit24            |         | bits of subframe word 9                 |         |  |
|---------|------------------|---------|-----------------------------------------|---------|--|
| 13      | WORD 10 bit01~   | EBFFF4  | 24 parity-checked and polarity-adjusted | 3-bytes |  |
| 13      | bit24            | LDITT 4 | bits of subframe word 10                | 3-bytes |  |
| Payload | Length: 33 bytes |         |                                         |         |  |

## GLONASS STRING- Glonass String buffer data (0xE1) (Periodic)

This is the information about the string data bits currently collected by the receiver. This message is composed of GLONASS satellite slot number, string number and bit 80 to bit 09 in relative bi-binary code of the string. The output data bits (bit 80 to bit 09) of each string were already checked as correct by the Hamming code data verification algorithm before output by the receiver. The 8 Hamming code check bits (bit 08 to bit 01) are not included in the message. The data bits (bit 80 to bit 09) have been polarity-adjusted. This message is sent from the receiver to host. The payload length is 12 bytes.

### Structure:

<0xA0,0xA1>< PL><E1>< message body><CS><0x0D,0x0A>

### Example:

A0 A1 00 0C E1 52 0E B4 05 A9 C3 94 17 50 04 82 33 0D 0A

1 2 3 4 5 6 7 8 9 10 11 12

| Field       | Name             | Example(hex)                    | Description                         | Туре    | Unit |
|-------------|------------------|---------------------------------|-------------------------------------|---------|------|
| 1           | Message ID       | E1                              |                                     | UINT8   |      |
| 2           | SVID             | 52                              | GLONASS satellite slot number +64   | UINT8   |      |
| 3           | Ctring Number    | 0E                              | String number of navigation message | UINT8   |      |
| 3           | String Number    | UE                              | (1-4)                               | UINTO   |      |
| 4 Bit 80-73 | Bit 80-73        | B4                              | Data bit number 80-73 (relative     | UINT8   |      |
| 4           | ы 80-73          | D4                              | bi-binary)                          | UIIVIO  |      |
| 5 Bit 72-65 | 05               | Data bit number 72-65 (relative | UINT8                               |         |      |
| 3           | 5 Bit 72-05      | 05                              | bi-binary)                          | UIIVIO  |      |
| 6           | Bit 64-57        | A9                              | Data bit number 64-57 (relative     | UINT8   |      |
| 0 Dit 04-37 | A9               | bi-binary)                      | Olivio                              |         |      |
| 7           | Bit 56-49        | C3                              | Data bit number 56-49 (relative     | UINT8   |      |
| ,           | Dit 30 43        |                                 | bi-binary)                          | Olivio  |      |
| 8           | Bit 48-41        | 94                              | Data bit number 48-41 (relative     | UINT8   |      |
| 0           | DIC 40 41        | 34                              | bi-binary)                          | Olivio  |      |
| 9           | Bit 40-33        | 17                              | Data bit number 40-33 (relative     | UINT8   |      |
| Ů           | BR 10 00         | .,                              | bi-binary)                          | O.I.V.O |      |
| 10          | Bit 32-25        | 50                              | Data bit number 32-25 (relative     | UINT8   |      |
| 10          | DR 02 20         | 00                              | bi-binary)                          | O.I.V.O |      |
| 11          | Bit 24-17        | 04                              | Data bit number 24-17 (relative     | UINT8   |      |
|             | 5.(211)          | •                               | bi-binary)                          | 0       |      |
| 12          | Bit 16-09        | 82                              | Data bit number 16-09 (relative     | UINT8   |      |
| 12          | Dit 10 00        | 02                              | bi-binary)                          | 311110  |      |
| Payload     | Length: 12 bytes |                                 |                                     |         |      |

## BEIDOU2 D1 SUBFRAME-BEIDOU2 D1 Subframe buffer data (0xE2) (Periodic)

This is the information about the BEIDOU2 D1 subframe data bits currently collected in the receiver. The data bits are composed from the 26 higher bits of the word1 and the 22 higher bits of the word2 to word9. And the parity bits are not included in the output. Only when all 10 navigation words have been verified by parity checking, the data bits in the subframe are output. Before being sent out to the host, the data bits are also polarity-adjusted. The 11 preamble bits of a subframe, for example, can be obtained from the first byte of navigation word 1. This message is sent from the receiver to host. The payload length is 31 bytes.

Structure:

<0xA0,0xA1>< PL><E2>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 1F E2 CF 01 E2 40 47 37 58 00 0D A0 E1 00 AC 03 87 8E 31 5B 53 B4 12 B2 C0 02 5B 04 60
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

07 AB 81 B1 0D 0A

29 30 31

| Field | Name                                      | Example(hex) | Description                                                     | Туре  | Unit |
|-------|-------------------------------------------|--------------|-----------------------------------------------------------------|-------|------|
| 1     | Message ID                                | E2           |                                                                 | UINT8 |      |
| 2     | SVID                                      | CF           | BEIDOU2 D1 Satellite SVID+200 (206~214)                         | UINT8 |      |
| 3     | SFID                                      | 01           | Sub-frame ID (1-5)                                              | UINT8 |      |
| 4     | WORD 1 bit01~ bit08                       | E2           |                                                                 | UINT8 |      |
| 5     | WORD 1 bit09~ bit16                       | 40           | 26 parity-checked and polarity-adjusted                         | UINT8 |      |
| 6     | WORD 1 bit17~ bit24                       | 47           | bits of subframe word 1                                         | UINT8 |      |
| 7     | WORD 1 bit25~ bit26 + WORD 2 bit01~ bit06 | 37           |                                                                 | UINT8 |      |
| 8     | WORD 2 bit07~ bit14                       | 58           | 22 parity-checked and polarity-adjusted                         | UINT8 |      |
| 9     | WORD 2 bit15~ bit22                       | 00           | bits of subframe word 2                                         | UINT8 |      |
| 10    | WORD 3 bit01~ bit08                       | 0D           | 20 marity absolved and nelegity adjusted                        | UINT8 |      |
| 11    | WORD 3 bit09~ bit16                       | A0           | 22 parity-checked and polarity-adjusted bits of subframe word 3 | UINT8 |      |
| 12    | WORD 3 bit17~ bit22 + WORD 4 bit01~ bit02 | E1           | bits of subframe word 5                                         | UINT8 |      |
| 13    | WORD 4 bit03~ bit10                       | 00           | 22 parity-checked and polarity-adjusted                         | UINT8 |      |
| 14    | WORD 4 bit11~ bit18                       | AC           | bits of subframe word 4                                         | UINT8 |      |
| 15    | WORD 4 bit19~ bit22 + WORD 5 bit01~ bit04 | 03           |                                                                 | UINT8 |      |
| 16    | WORD 5 bit05~ bit12                       | 87           | 22 parity-checked and polarity-adjusted                         | UINT8 |      |
| 17    | WORD 5 bit13~ bit20                       | 8E           | bits of subframe word 5                                         | UINT8 |      |

|        | T.                                         | ı  |                                                                  | 1       |  |  |  |  |
|--------|--------------------------------------------|----|------------------------------------------------------------------|---------|--|--|--|--|
| 18     | WORD 5 bit21~ bit22 + WORD 6 bit01~ bit06  | 31 |                                                                  | · UINT8 |  |  |  |  |
| 19     | WORD 6 bit07~ bit14                        | 5B | 22 parity-checked and polarity-adjusted                          | UINT8   |  |  |  |  |
| 20     | WORD 6 bit15~ bit22                        | 53 | bits of subframe word 6                                          | UINT8   |  |  |  |  |
| 21     | WORD 7 bit01~ bit08                        | B4 | 20 marity absolved and relative adjusted                         | UINT8   |  |  |  |  |
| 22     | WORD 7 bit09~ bit16                        | 12 | 22 parity-checked and polarity-adjusted bits of subframe word 7  | UINT8   |  |  |  |  |
| 23     | WORD 7 bit17~ bit22 + WORD 8 bit01~ bit02  | B2 | bits of subframe word 7                                          | · UINT8 |  |  |  |  |
| 24     | WORD 8 bit03~ bit10                        | C0 | 22 parity-checked and polarity-adjusted                          | UINT8   |  |  |  |  |
| 25     | WORD 8 bit11~ bit18                        | 02 | bits of subframe word 8                                          | UINT8   |  |  |  |  |
| 26     | WORD 8 bit19~ bit22 + WORD 9 bit01~ bit04  | 5B |                                                                  | · UINT8 |  |  |  |  |
| 27     | WORD 9 bit05~ bit12                        | 04 | 22 parity-checked and polarity-adjusted                          | UINT8   |  |  |  |  |
| 28     | WORD 9 bit13~ bit20                        | 60 | bits of subframe word 9                                          | UINT8   |  |  |  |  |
| 29     | WORD 9 bit21~ bit22 + WORD 10 bit01~ bit06 | 07 | 22 parity shocked and polarity adjusted                          | · UINT8 |  |  |  |  |
| 30     | WORD 10 bit07~ bit14                       | AB | 22 parity-checked and polarity-adjusted bits of subframe word 10 | UINT8   |  |  |  |  |
| 31     | WORD 10 bit15~ bit22                       | 81 | bits of subframe word to                                         | UINT8   |  |  |  |  |
| Payloa | Payload Length : 31 bytes                  |    |                                                                  |         |  |  |  |  |

## BEIDOU2 D2 SUBFRAME-BEIDOU2 D2 Subframe buffer data (0xE3) (Periodic)

This is the information about the BEIDOU2 D2 subframe data bits currently collected in the receiver. The data bits are composed from the 26 higher bits of the word1 and the 22 higher bits of the word2 to word9. And the parity bits are not included in the output. Only when all 10 navigation words have been verified by parity checking, the data bits in the subframe are output. Before being sent out to the host, the data bits are also polarity-adjusted. The 11 preamble bits of a subframe, for example, can be obtained from the first byte of navigation word 1. This message is sent from the receiver to host. The payload length is 31 bytes.

### Structure:

<0xA0,0xA1>< PL><E3>< message body><CS><0x0D,0x0A>

### Example:

55 55 55 48 0D 0A

29 30 31

| Field | Name                  | Example(hex) | Description                                                     | Туре   | Unit |
|-------|-----------------------|--------------|-----------------------------------------------------------------|--------|------|
| 1     | Message ID            | E3           |                                                                 | UINT8  |      |
| 2     | SVID                  | СВ           | BEIDOU2 D2 Satellite SVID+200                                   | UINT8  |      |
|       | 300                   | СВ           | (201~205)                                                       | UINTO  |      |
| 3     | SFID                  | 01           | Sub-frame ID (1-5)                                              | UINT8  |      |
| 4     | WORD 1 bit01~ bit08   | E2           |                                                                 | UINT8  |      |
| 5     | WORD 1 bit09~ bit16   | 40           | 26 parity-checked and polarity-adjusted                         | UINT8  |      |
| 6     | WORD 1 bit17~ bit24   | 47           | bits of subframe word 1                                         | UINT8  |      |
| 7     | WORD 1 bit25~ bit26 + | 37           |                                                                 | UINT8  |      |
| 7     | WORD 2 bit01~ bit06   | 37           |                                                                 |        |      |
| 8     | WORD 2 bit07~ bit14   | 95           | 22 parity-checked and polarity-adjusted bits of subframe word 2 | UINT8  |      |
| 9     | WORD 2 bit15~ bit22   | A5           | bits of subframe word 2                                         | UINT8  |      |
| 10    | WORD 3 bit01~ bit08   | 14           | 22 parity shocked and polarity adjusted                         | UINT8  |      |
| 11    | WORD 3 bit09~ bit16   | C8           | 22 parity-checked and polarity-adjusted bits of subframe word 3 | UINT8  |      |
| 12    | WORD 3 bit17~ bit22 + | CA           | bits of subfraffic word 5                                       | UINT8  |      |
| 12    | WORD 4 bit01~ bit02   | CA           |                                                                 | UIINTO |      |
| 13    | WORD 4 bit03~ bit10   | EA           | 22 parity-checked and polarity-adjusted                         | UINT8  |      |
| 14    | WORD 4 bit11~ bit18   | CF           | bits of subframe word 4                                         | UINT8  |      |
| 15    | WORD 4 bit19~ bit22 + | A5           |                                                                 | UINT8  |      |
| 10    | WORD 5 bit01~ bit04   | AU           | 22 parity-checked and polarity-adjusted                         | UINTO  |      |

| 16    | WORD 5 bit05~ bit12       | 00 | bits of subframe word 5                                         | UINT8  |  |  |  |
|-------|---------------------------|----|-----------------------------------------------------------------|--------|--|--|--|
| 17    | WORD 5 bit13~ bit20       | 15 |                                                                 | UINT8  |  |  |  |
| 40    | WORD 5 bit21~ bit22 +     |    |                                                                 | LUNITO |  |  |  |
| 18    | WORD 6 bit01~ bit06       | 55 | On a with the actual and a classic adjusted                     | UINT8  |  |  |  |
| 19    | WORD 6 bit07~ bit14       | 55 | 22 parity-checked and polarity-adjusted bits of subframe word 6 | UINT8  |  |  |  |
| 20    | WORD 6 bit15~ bit22       | 55 | bits of subframe word 6                                         | UINT8  |  |  |  |
| 21    | WORD 7 bit01~ bit08       | 55 | 22 parity shocked and polarity adjusted                         | UINT8  |  |  |  |
| 22    | WORD 7 bit09~ bit16       | 55 | 22 parity-checked and polarity-adjusted bits of subframe word 7 | UINT8  |  |  |  |
| 23    | WORD 7 bit17~ bit22 +     | 55 | bits of subframe word 7                                         | UINT8  |  |  |  |
| 23    | WORD 8 bit01~ bit02       | 55 |                                                                 | Olivio |  |  |  |
| 24    | WORD 8 bit03~ bit10       | 55 | 22 parity-checked and polarity-adjusted                         | UINT8  |  |  |  |
| 25    | WORD 8 bit11~ bit18       | 55 | bits of subframe word 8                                         | UINT8  |  |  |  |
| 26    | WORD 8 bit19~ bit22 +     | 55 |                                                                 | UINT8  |  |  |  |
| 20    | WORD 9 bit01~ bit04       | 33 |                                                                 | Olivio |  |  |  |
| 27    | WORD 9 bit05~ bit12       | 55 | 22 parity-checked and polarity-adjusted                         | UINT8  |  |  |  |
| 28    | WORD 9 bit13~ bit20       | 55 | bits of subframe word 9                                         | UINT8  |  |  |  |
| 29    | WORD 9 bit21~ bit22 +     | 55 |                                                                 | UINT8  |  |  |  |
| 23    | WORD 10 bit01~ bit06      | 33 | 22 parity-checked and polarity-adjusted                         | Olivio |  |  |  |
| 30    | WORD 10 bit07~ bit14      | 55 | bits of subframe word 10                                        | UINT8  |  |  |  |
| 31    | WORD 10 bit15~ bit22      | 55 | bits of Subframe word To                                        | UINT8  |  |  |  |
| Paylo | Payload Length : 31 bytes |    |                                                                 |        |  |  |  |

### EXT\_RAW\_MEAS - Extended Raw Measurement Data v.1 (0xE5) (Periodic)

The extended raw measurements of satellites are taken at the same epoch from the receiver. This message is sent from the receiver to host. The extended measurement data of a channel is provided only when the corresponding satellite signal is under lock status. The payload length is (14+Number\_of\_measurement\*31) bytes.

A0 A1 02 1D E5 01 0D 07 7C 06 AC 40 80 03 E8 00 00 11 00 0D E0 32 41 B3 33 99 89 62 C9 BA 41 B3 7F 98 FD 1 2 3

AD E0 00 45 79 40 00 00 00 00 40 07 00 00 00 2E 0 31 41 B3 22 3E ED EA FB D6 41 B3 B3 B8 3A EB A0 00 44 F1 40 00 00 00 00 40 07 00 00 00 6E 0 30 41 B3 31 EE 4F 2D 2C D9 41 B3 E3 77 47 15 20 00 C3 39 00 00 00 00 40 07 00 00 00 40 07 00 00 04 E0 33 41 B3 21 A6 72 9C 9E 8D 41 B3 97 3F 77 2B 60 00 45 2E F0 00 00 00 00 00 00 00 05 E0 31 41 B3 24 52 84 6C 89 0E 41 B3 C4 EF 07 A8 E0 00 44 7C C0 00 00 00 00 40 07 00 00 00 CE 029 41 B3 55 D6 AE 07 64 C5 41 B3 F5 9A F1 B5 E0 00 C4 7C 00 00 00 00 00 C0 07 00 00 01 4E 029 41 B3 53 25 16 98 94 03 41 B3 99 D7 19 9B 60 00 45 40 60 00 00 00 00 00 00 00 13 E0 2C 41 B3 48 02 4B 63 BF D0 41 B4 15 80 1A C7 60 00 C5 16 D0 00 00 00 00 40 07 00 00 04 C1 E0 30 41 B4 2D 68 15 86 5B 87 41 B3 D2 37 DB 1A 20 00 44 3D 00 00 00 00 00 40 07 00 00 18 C0 2D 41 B4 26 6A 74 EB C0 97 41 B3 CC 0C 45 53 A0 00 44 71 00 00 00 00 00 40 07 00 00 01 81 C0 2B 41 B4 19 E0 D3 AB 6B BA 41 B3 CC AC C2 C4 20 00 44 6F C0 00 00 00 00 40 07 00 00 20 6E 3 31 41 B3 15 16 02 23 16 1C 41 B4 0A 57 97 61 20 00 44 BA A0 00 00 00 04 07 00 00 02 14 E9 2D 41 B3 0B 52 79 C4 94 08 41 B4 0F E8 10 A1 60 00 44 9E 40 00 00 00 00 40 07 00 00 21 3 EA 2C 41 B3 30 72 52 8C 68 0F 41 B4 68 6E 04 CF E0 00 C5 0F 90 00 00 00 00 00 00 00 02 15 EB 2F 41 B3 2A 46 FD 31 68 39 41 B3 D0 8E E5 12 E0 00 45 8D A8 00 00 00 00 A0 07 00 00 CA 0D 0A

541

| Field | Name                  | Example(hex) | Description                              | Туре   | Unit  |
|-------|-----------------------|--------------|------------------------------------------|--------|-------|
| 1     | Message ID            | E5           |                                          | UINT8  | -     |
| 2     | Version               | 01           | Version of Extended Raw                  | UINT8  | -     |
| 3     | IOD                   | 0D           | Measurement (0xE5) Issue of Data (0-255) | UINT8  | _     |
|       | 100                   |              | Receiver Week number                     | O.I.C. |       |
| 4-5   | Receiver WN           | 077C         | (0-65535)                                | UINT16 | weeks |
| 6-9   | Receiver TOW          | 06AC4080     | Receiver TOW                             | UINT32 | ms    |
|       |                       | 00/10/1000   | (0-604799999)                            | 0      |       |
| 10-11 | Measurement period    | 03E8         | Measurement period                       | UINT16 | ms    |
| 10-11 | ivieasurement period  | 0320         | (1-1000)                                 | CINTIO | 1115  |
|       |                       |              | Bit 0 ON: Measurement is                 |        |       |
| 12    | Measurement indicator | 00           | triggered by geotagging.                 | -      | -     |
|       |                       |              | Bit 1 ON: Receiver clock is              |        |       |

|    |             |             |    | adjusted in increment of 1      |       |   |
|----|-------------|-------------|----|---------------------------------|-------|---|
|    |             |             |    | ms. A negative                  |       |   |
|    |             |             |    | 1ms*speed_of_light              |       |   |
|    |             |             |    | discontinuity appears in        |       |   |
|    |             |             |    | range.                          |       |   |
|    |             |             |    | Bit 2 ON: Receiver clock is     |       |   |
|    |             |             |    | adjusted in decrement of 1      |       |   |
|    |             |             |    | ms. A positive                  |       |   |
|    |             |             |    | 1ms*speed_of_light              |       |   |
|    |             |             |    | discontinuity appears in        |       |   |
|    |             |             |    | range.                          |       |   |
|    |             |             |    | (* Both bit 1 and bit 2 ON:     |       |   |
|    |             |             |    | receiver clock is adjusted for  |       |   |
|    |             |             |    | several integer milliseconds)   |       |   |
|    |             |             |    | (* Bit 0 is LSB)                |       |   |
| 13 | Reserved 1  |             | 00 | Reserved                        | -     | - |
| 14 | NMEAS       |             | 11 | Number of measurement           | UINT8 | - |
|    |             | GNSS type   |    | 0 – GPS                         |       |   |
|    |             |             |    | 1 – SBAS                        |       |   |
|    |             |             |    | 2 – GLONASS                     |       |   |
|    |             |             | 0  | 3 – Galileo                     |       |   |
|    |             |             |    | 4 – QZSS                        |       |   |
|    |             |             |    | 5 – BeiDou                      |       |   |
|    |             |             |    | 6 - IRNSS                       |       |   |
|    |             |             |    | (* Use bit 0 to bit 3, bit 0 is |       |   |
|    |             |             |    | LSB)                            |       |   |
|    |             |             |    | 0-1 for L1 frequency (around    |       |   |
|    |             |             |    | 1575.42 MHz), 2-3 for L2        |       |   |
| 15 | Channel 1   |             |    | frequency (around 1227.60       | _     | - |
|    | Measurement |             |    | MHz), 4-5 for L3 frequency      |       |   |
|    |             |             |    | (around 1176.45 MHz), 6-7       |       |   |
|    |             |             |    | for other frequency.            |       |   |
|    |             |             |    | GPS:                            |       |   |
|    |             | Signal type | 0  | 0 – L1 C/A                      |       |   |
|    |             |             |    | 1 – L1C                         |       |   |
|    |             |             |    | 2 – L2C                         |       |   |
|    |             |             |    | 4 – L5                          |       |   |
|    |             |             |    | SBAS:                           |       |   |
|    |             |             |    | 0 – L1                          |       |   |
|    |             |             |    |                                 |       |   |
|    |             |             |    | GLONASS:                        |       |   |

|    |  |              |    | 0 – L1                          |       |   |
|----|--|--------------|----|---------------------------------|-------|---|
|    |  |              |    | 2 – L2                          |       |   |
|    |  |              |    | 4 – L3                          |       |   |
|    |  |              |    | Galileo:                        |       |   |
|    |  |              |    | 0 – E1                          |       |   |
|    |  |              |    | 4 – E5a                         |       |   |
|    |  |              |    | 5 – E5b                         |       |   |
|    |  |              |    | 6 – E6                          |       |   |
|    |  |              |    | QZSS:                           |       |   |
|    |  |              |    | 0 – L1 C/A                      |       |   |
|    |  |              |    | 1 – L1C                         |       |   |
|    |  |              |    | 2 – L2C                         |       |   |
|    |  |              |    | 4 – L5                          |       |   |
|    |  |              |    | 6 – LEX                         |       |   |
|    |  |              |    | BeiDou:                         |       |   |
|    |  |              |    | 0 – B1I                         |       |   |
|    |  |              |    | 1 – B1C                         |       |   |
|    |  |              |    |                                 |       |   |
|    |  |              |    | 4 – B2A                         |       |   |
|    |  |              |    | 5 – B2l                         |       |   |
|    |  |              |    | 7 – B3I                         |       |   |
|    |  |              |    | IRNSS:                          |       |   |
|    |  |              |    | 4 – L5                          |       |   |
|    |  |              |    | (* Use bit 4 to bit 7, bit 0 is |       |   |
|    |  |              |    | LSB)                            |       |   |
|    |  |              |    | GPS satellite PRN: 1 – 37;      |       |   |
|    |  |              |    | SBAS satellite PRN: 120 –       |       |   |
|    |  |              |    | 158;                            |       |   |
| 10 |  | CVID         | 00 | Glonass satellite slot          | LUNTO |   |
| 16 |  | SVID         | 0D | number: 1 – 24;                 | UINT8 | - |
|    |  |              |    | Galileo satellite PRN: 1 – 50;  |       |   |
|    |  |              |    | QZSS satellite PRN: 193 –       |       |   |
|    |  |              |    | 202;                            |       |   |
|    |  |              |    | Beidou satellite PRN: 1 – 37    |       |   |
|    |  |              |    | Frequency ID (0-13), only       |       |   |
|    |  |              |    | used for GLONASS.               |       |   |
| 47 |  | Frequency ID | 0  | Frequency ID = frequency        |       |   |
| 17 |  |              |    | channel number + 7              | -     | - |
|    |  |              |    | (* Use bit 0 to bit 3, bit 0 is |       |   |
|    |  |              | _  | LSB)                            |       |   |
|    |  | Lock time    | E  | Lock time indicator (0-15),     |       |   |

|       |       | indicator     |                  | used to monitor the time of                    |          |          |
|-------|-------|---------------|------------------|------------------------------------------------|----------|----------|
|       |       | indicator     |                  | continuous lock on signal.                     |          |          |
|       |       |               |                  | Reset to 0 when a cycle slip                   |          |          |
|       |       |               |                  | occurs.                                        |          |          |
|       |       |               |                  |                                                |          |          |
|       |       |               |                  | Relationship between                           |          |          |
|       |       |               |                  | indicator and lock time                        |          |          |
|       |       |               |                  | (second):                                      |          |          |
|       |       |               |                  | 0 - 0 ≤ t < (2^1) /                            |          |          |
|       |       |               |                  | 20                                             |          |          |
|       |       |               |                  | 1 - (2^1) / 20 ≤ t < (2^2) /                   |          |          |
|       |       |               |                  | 20                                             |          |          |
|       |       |               |                  | 2 - (2^2) / 20 ≤ t < (2^3) /                   |          |          |
|       |       |               |                  | 20                                             |          |          |
|       |       |               |                  | 3 - (2^3) / 20 ≤ t < (2^4) /                   |          |          |
|       |       |               |                  | 20                                             |          |          |
|       |       |               |                  |                                                |          |          |
|       |       |               |                  |                                                |          |          |
|       |       |               |                  | I                                              |          |          |
|       |       |               |                  | 13 – (2^13)/20 ≤ t <                           |          |          |
|       |       |               |                  | (2^14)/20                                      |          |          |
|       |       |               |                  | 14 − (2^14)/20 ≤ t <                           |          |          |
|       |       |               |                  | (2^15)/20                                      |          |          |
|       |       |               |                  | 15 – (2^15)/20 ≤ t                             |          |          |
|       |       |               |                  | (* Use bit 4 to bit 7, bit 0 is                |          |          |
|       |       |               |                  | LSB)                                           |          |          |
| 18    |       | CN0           | 32               | Satellite CNR                                  | UINT8    | dB-Hz    |
| 19-26 |       | Pseudorange   | 41B333998962C9BA | Satellite pseudorange                          | DPFP     | meter    |
|       |       |               |                  | Accumulated carrier phase                      |          |          |
|       |       |               |                  | measurement, the carrier                       |          |          |
|       |       |               |                  | phase measurement is                           |          |          |
|       |       |               |                  | accumulated after carrier                      |          |          |
|       |       |               |                  | lock is achieved. The polarity                 |          |          |
|       | 27-34 | Accumulated   |                  | of accumulated carrier cycle                   |          |          |
| 27-34 |       |               | 41B37F98FDADE000 | is defined such that an                        | DPFP     | Cycles   |
|       |       | carrier cycle |                  | approaching satellite has                      |          |          |
|       |       |               |                  | decreasing accumulated                         |          |          |
|       |       |               |                  | carrier cycle measurement,                     |          |          |
|       |       |               |                  | the same as RINEX                              |          |          |
|       |       |               |                  | convention.                                    |          |          |
|       |       |               |                  | (* Discontinuity in the carrier                |          |          |
| L     |       | <u> </u>      | <u> </u>         | <u>,                                      </u> | <u> </u> | <u> </u> |

|       |  |                                      |          | phase is indicated by the bit  |      |        |
|-------|--|--------------------------------------|----------|--------------------------------|------|--------|
|       |  |                                      |          | 3 of channel indicator.)       |      |        |
|       |  |                                      |          |                                |      |        |
|       |  |                                      |          | (** Unknown half-cycle         |      |        |
|       |  |                                      |          | ambiguity is indicated by the  |      |        |
|       |  |                                      |          | bit 5 of channel indicator)    |      |        |
|       |  |                                      |          | The sign of doppler            |      |        |
|       |  | Doppler                              |          | frequency is defined such      |      |        |
| 35-38 |  | frequency                            | 45794000 | that the approaching satellite | SPFP | Hz     |
|       |  |                                      |          | has positive doppler           |      |        |
|       |  |                                      |          | frequency.                     |      |        |
|       |  | Pseudorange                          |          | Estimated standard             |      |        |
| 20    |  | J                                    | 00       | deviation of pseudorange       |      |        |
| 39    |  | standard                             | 00       | (* Not supported in version    | -    | meter  |
|       |  | deviation                            |          | 1)                             |      |        |
|       |  |                                      |          | Estimated standard             |      |        |
|       |  | Accumulated                          | 00       | deviation of accumulated       |      |        |
| 40    |  | carrier cycle                        |          | carrier cycle                  | _    | Cycles |
|       |  | standard<br>deviation                |          | (* Not supported in version    |      | ,,,,,, |
|       |  |                                      |          | 1)                             |      |        |
|       |  |                                      |          | Estimated standard             |      |        |
|       |  | Doppler frequency standard deviation | 00       | deviation of Doppler           |      |        |
| 41    |  |                                      |          | frequency                      | _    | Hz     |
| 41    |  |                                      |          | (* Not supported in version    | -    | 112    |
|       |  |                                      |          |                                |      |        |
|       |  |                                      |          | 1)                             |      |        |
|       |  |                                      |          | Bit 0 ON: pseudorange is       |      |        |
|       |  |                                      |          | available in the channel.      |      |        |
|       |  |                                      |          | Bit 1 ON: Doppler frequency    |      |        |
|       |  |                                      |          | is available in the channel.   |      |        |
|       |  |                                      |          | Bit 2 ON: carrier phase is     |      |        |
|       |  |                                      |          | available in the channel.      |      |        |
|       |  | Channel                              |          | Bit 3 ON: cycle slip is        |      |        |
| 42-43 |  | Indicator                            | 4007     | possible in the channel.       | -    | -      |
|       |  | indicator                            |          | Bit 4 ON: coherent             |      |        |
|       |  |                                      |          | integration time of the        |      |        |
|       |  |                                      |          | channel is equal to or more    |      |        |
|       |  |                                      |          | than 10ms.                     |      |        |
|       |  |                                      |          | Bit 5 ON: unknown half-cycle   |      |        |
|       |  |                                      |          | ambiguity in the channel       |      |        |
|       |  |                                      |          | (* Bit 0 is LSB)               |      |        |
| 44-45 |  | Reserved 2                           |          | Reserved                       | -    | -      |
| 44-45 |  | Reserved 2                           |          | Reserved                       | -    | -      |

| 46-76                                 | Channel 2 measurement |   |   |   |   |
|---------------------------------------|-----------------------|---|---|---|---|
| 77-107                                | Channel 3 measurement |   |   |   |   |
| :                                     | :                     | : | : | : | : |
| Payload Length: 14 + NMEAS * 31 bytes |                       |   |   |   |   |

### **Change Log**

Ver 1.4.37 June 14 2019

1. Modify 0xE5 message, add B1C to "Signal type" field of Beidou frequency.

Ver 1.4.36 Apr. 10 2018

1. Modify 0xE5 message on "Signal type" field of Beidou frequency.

Ver 1.4.35 Mar. 28 2018

Add 3 messages "CONFIGURE BASE POSITION, ID 0x22", "QUERY BASE POSITION, ID 0x23" and "BASE POSITION, ID 0x88".

Ver 1.4.34 Dec. 22 2017

1. Modify message ID 0xDD, 0xDE and 0xE5 to add IRNSS SVID and signal type.

Ver 1.4.33 June 08 2017

1. Add message "CONFIGURE BINARY RTCM DATA OUTPUT, ID 0x20", "Query Binary rtcm DATA Output STATUS, ID 0x21" and "BINARY RTCM DATA OUTPUT STATUS, ID: 0x89" 3 messages.

Ver 1.4.32 Sep 26 2016

- 1. Modify message ID 0x1E and 0x89 to add "Extended\_ Raw\_Meas Enabling" field.
- 2. Add "EXT\_RAW\_MEAS, ID: 0xE5" Extended Raw Measurement Data v.1 message.

Ver 1.4.31 Aug 12 2014

1. Updated 0xDE channel ID to go up to 43

Ver 1.4.30 May 12 2014

Update 0xE2, 0xE3 message description: Describe each byte clearly.

Ver 1.4.29 Apr. 3 2014

- 1. Update 0xDD, 0xDE message description: Add BD2 SVID.
- 2. Add 0xE2, 0xE3 for BD2 D1&D2 subframe output data messages.

Ver 1.4.28 Dec. 30 2013

- 1. Created this document based on AN00028.to add binary measurement data related commands.
- 2. Add 0x1E, 0x1F, 0x89 binary commands for binary measurement data output
- 3. Add 0x5B, 0x5C, 0x90 for Glonass ephemeris binary commands
- 4. Add 0xDC, 0xDE, 0xDF, 0xE0, 0xE1 for binary periodic output data messages.

Ver 1.4.27 Dec. 4 2013

- 1. Update "CONFIGURE SBAS, ID: 0x62, SID: 0x1" message field 4, Ranging by adding auto mode.
- 2. Update "SBAS STATUS, ID: 0x62, SID: 0x80" message field 4, Ranging by adding auto mode.

Ver 1.4.26, Sep. 17, 2013

- 1. Update 0x63/0x1, 0x63/0x2, 0x63/0x80 to use name "SAEE" instead of "SAGPS".
- 2. Add NMEA talker ID related commands, ID: 0x4B, 0x4F, 0x93.

Ver 1.4.25, July 10, 2013

1. Initial release based on AN0003 1.4.24.

 ${\bf SkyTraq\ Technology,\ Inc.}$ 

5F, No.26, Minsiang Street, Hsinchu, Taiwan, 300

Phone: +886 3 5678650 Fax: +886 3 5678680 Email: info@skytrag.com.tw

#### © 2006 SkyTrag Technology Inc. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of SkyTraq Technology Inc ("SkyTraq"). Information provided by SkyTraq is believed to be accurate and reliable. These materials are provided by SkyTraq as a service to its customers and may be used for informational purposes only. SkyTraq assumes no responsibility for errors or omissions in these materials, nor for its use. SkyTraq reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of SkyTraq products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. SkyTraq further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. SkyTraq shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

SkyTraq products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.