Лекции по дисциплине "Методы оптимизации"

Лекция #1

1 Методы одномерного поиска нулевого порядка

1.1 Методы одномерного поиска нулевого порядка

Рассмотрим задачу одномерной оптимизации

$$\min_{x \in [a,b]} \{z = f(x)\}\tag{1}$$

Решить задачу - это значит найти точку $x* \in [a,b]$, в которой достигается оптимальное значение. Делается предположение, что такая точка существует. Однако, часто бывает, что мы не можем решить задачу точно, и приходится использовать приближенное решение, которое близко к оптимальному.

Введем необходимое определение.

Функцию f(x) называют унимодальной функцией на отрезке [a,b], если существует такая точка $x_* \in [a,b]$, что функция f(x) в полуинтервале $[a,x_*)$ убывает, а в полуинтервале $(x_*,b]$ возрастает.

Пусть функция f(x) унимодальна на отрезке [a,b]. Необходимо найти точку минимума функции на этом отрезке с заданной точностью ε . Однако довольно Все методы одномерного поиска базируются на последовательном уменьшении интервала, содержащего точку минимума.

Возьмем внутри отрезка $[a_0, b_0]$ две точки x_1 и x_2 : $a_0 < x_1 < x_2 < b_0$,и вычислим значения функции в этих точках. Из свойства унимодальности функции можно сделать вывод о том, что минимум расположен либо на отрезке $[a_0, x_2]$, либо на отрезке $[x_1, b_0]$. Действительно, если $f(x_1) < f(x_2)$, то минимум не может находиться на отрезке $[x_2, b_0]$, а если $f(x_1) > f(x_2)$, то минимум не может находиться на отрезке $[a_0, x_2]$. Если же $f(x_1) = f(x_2)$, то минимум находится на интервале $[x_1, x_2]$.

Алгоритм заканчивается, когда длина интервала, содержащего минимум, становится меньше ε . Различные методы одномерного поиска отличаются выбором точек $x_1, \quad x_2$. Об эффективности алгоритмов можно судить по числу вычислений функции, необходимому для достижения заданной точности.

1.2 Метод дихотомии

Точки x_1, x_2 выбираются на расстоянии $\delta < \varepsilon/2$ от середины отрезка:

$$x_1 = (a_i + b_i)/2 - \delta, \tag{2}$$

$$x_2 = (a_i + b_i)/2 + \delta \tag{3}$$

За одну интерацию интервал неопределенности уменьшается примерно в 2 раза. Значит, за n итераций длина интервала будт примерно равна $(b_0 - a_0)/2^n$. Для достижения точности ε потребуется приблизительно $ln((b_0 - a_0)/\varepsilon)/ln2$ итераций. На каждой итерации функция вычисляется два раза.

1.3 Метод золотого сечения

Точки x_1, x_2 находятся симметрично относительно середины отрезка $[a_0, b_0]$ и делят его в пропорции золотого сечения, когда длина всего отрезка относится к длине большей его части также, как длина большей части относится к длине меньшей части:

$$\frac{b_0 - a_0}{b_0 - x_1} = \frac{b_0 - x_1}{x_1 - a_0} \tag{4}$$

Отсюда

$$x_1 = a_i + \frac{\sqrt{5} - 1}{2}(b_i - a_i) = a_i + 0.381966011 \cdot (b_i - a_i)$$
 (5)

Аналогично для второй точки.

За одну итерацию интервал неопределенности уменьшается в $\frac{\sqrt{5}+1}{2}=1.618...$ раз, однако на следующей итерации мы будем вычислять функцию только один раз, так как по свойству золотого сечения $\frac{x_2-x_1}{b-x_1}=0.381...$ и $\frac{b-x_2}{b-x_1}=0.618...$ Для достижения точности ε потребуется $n\geq \frac{\ln((b_0-a_0)/\varepsilon)}{\ln(\frac{\sqrt{5}-1}{2})}.$

1.4 Метод Фибоначчи

Это улучшение реализации поиска с помощью золотого сечения, служащего для нахождения минимума/максимума функции. Подобно методу золотого сечения, он требует двух вычислений функции на первой итерации, а на каждой последующей только по одному. Однако этот метод отличается от метода золотого сечения тем, что коэффициент сокращения интервала неопределенности меняется от итерации к итерации.

Предположим, нам нужно определить минимум как можно точнее, т.е. с наименьшим интервалом неопределенности, но при этом можно произвести только n вычислений функции.

Пусть у нас есть интервал неопределенности (x_1, x_3) , и нам известно значение функции $f(x_2), x_2 \in (x_1, x_3)$.

Если можно вычислить функцию всего один раз в точке x_4 , то где следует ее поместить, чтобы получить минимально возможный интервал неопределенности? Заранее нам не известно, как ведет себя функция, и реализуется одна из двух ситуаций:

- 1. $x_4 \in (x_1, x_2)$
- $2. x_4 \in (x_2, x_3)$

Т.е. неизвестно, какая из ситуаций будет иметь место, выберем x_4 таким образом, чтобы минимизировать максимальную из длин

$$min\{max\{(x_3-x_4),(x_2-x_1)\}\}.$$

Достигнуть этого можно, сделав эти длины равными, т.е.

$$(x_3 - x_4) = (x_2 - x_1).$$

Для этого нужно поместить x_4 внутрь интервала (x_1, x_2) симметрично относительно точки x_2 .

Если окажется, что можно выполнить еще одно вычисление функции, то следует применить описанную процедуру к новому интервалу непопределенности.

Стратегия ясна: нужно поместить следующую точку внутрь интервала, симметрично относительно уже находящейся там точки.

Остался один вопрос: как начать вычисления? Для ответа на этот вопрос, начнем с конца.

На n-ом вычислении n-ю точку стоит поместить симметрично по отношению к (n-1)-й точке. Чтобы получить наибольшее уменьшение интервала на данном этапе, следует разделить пополам предыдущий интервал.

Обозначим за ε минимальную длину интервала неопределенности. Тогда

$$L_{n-1} = 2L_n - \varepsilon$$

$$L_{n-2} = L_{n-1} + L_n$$

Числа Фибоначчи определяются соотношениеми:

$$F_{n+1} = F_{n+1} + F_n$$
, $n = 1, 2, ..., F_1 = F_2$

п-е число Фибоначчи представимо в виде:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right], n = 1, 2, \dots$$
 (6)

На начальном интервале вычисляются точки

$$x_1 = a_0 + \frac{F_n}{F_{n+2}}(b_0 - a_0), \tag{7}$$

$$x_2 = a_0 + \frac{F_{n+1}}{F_{n+2}}(b_0 - a_0) \tag{8}$$

где n выбирается исходя из точности и начальной длины интервала.

На k-м шаге метода будет получена тройка чисел a_k, b_k, x_k , локализирущая минимум f(x), такая что

$$\Delta_k = b_k - a_k = (b_0 - a_0) \frac{F_{n-k+3}}{F_{n+2}}, \quad 1 \le k \le n, \quad a_1 = a_0, b_1 = b_0,$$

а точка $x_k, a_k < x_k < b_k$, с вычисленным значением

$$f(x_k) = \min_{1 \ge i \ge k} f(x_i)$$

совпадает с одной из точек

$$x_1 = a_k + \frac{F_{n-k+1}}{F_{n-k+3}}(b_k - a_k) = a_k + \frac{F_{n-k+1}}{F_{n+2}}(b_0 - a_0),$$

$$x_2 = a_k + \frac{F_{n-k+2}}{F_{n-k+3}}(b_k - a_k) = a_k + \frac{F_{n-k+2}}{F_{n+2}}(b_0 - a_0)$$

расположенных на отрезке $[a_k, b_k]$ симметрично относительно его середины. При k=n процесс заканчивается. В этом случае длина отрезка

$$\Delta_n = b_n - a_n = (b_0 - a_0)/F_{n+2},$$

а точки

$$x_1 = a_n + \frac{F_1}{F_{n+2}}(b_0 - a_0),$$

$$x_2 = a_n + \frac{F_2}{F_{n+2}}(b_0 - a_0)$$

совпадат и делят отрезок пополам.

Следовательно

$$\frac{b_n - a_n}{2} = \frac{b_0 - a_0}{F_{n+2}} < \varepsilon.$$

Отсюда можно выбрать n из условия

$$\frac{b_0 - a_0}{\varepsilon} < F_{n+2}.$$

Отметим, что в методах золотого сечения и Фиббоначи нет необходимости вычислять значение функции f в крайних точках начального интервала. Это удобно, если оптимизируемая функция, например, имеет вертикальную асимптоту.

1.5 Метод парабол

В методе парабол предлагается аппроксимировать оптимизируемую функцию f(x) с помощью кадратичной функции

$$p(x) = ax^2 + bx + c.$$

Для того, чтобы найти коэффициенты аппроксимируемой параболы a,b,c необходимо решить систему линейных уравнений

$$ax_i^2 + bx_i + c_i = f_i = f(x_i), \quad i = 1, 2, 3.$$

Для того, чтобы получить систему, используем три точки: $x_1 < x_2 < x_3$, $x_{min} \in [x_1, x_3]$. Решив эту систему, получим, что минимум такой параболы равен

$$u = -\frac{b}{2a} = x_2 - \frac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{2[(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1)]}$$

Если $f_2 < f_1$ и $f_2 < f_3$, то точка m гарантированно попадает в интервал $[x_1, x_3]$. Таким образом, внутри интервала у нас определены две точки x_2 и u, с помощью сравнения значений функции f в которых можно сокращать интервалы поиска.

В отличие от перечисленных выше методов, метод парабол обладает суперлинейной скоростью сходимости. Однако, такая высокая скорость сходимости гарантируется только в малой окрестности точки минимума x_{min} . Однако, если начальное приближение не попадает в окрестность точки минимума, то сходимость никто не обещает. Также следует отметить, что на первой итерации метод парабол требует измерения значений функции f в крайних точках интервала оптимизации.

1.6 Комбинированный метод Брента

Метод золотого сечения представляет собой надежный способ оптимизации, который сходится за гарантированное число итераций, но обладает лишь линейной скоростью сходимости. Метод парабол работает быстрее в малой окрестности оптимального решения, но может работать долго и неустойчиво на начальных стадиях итерационного процесса. Поэтому на практике для решения задачи одномерной оптимизации используется метод Брента, который эффективно комбинирует эти две стратегии. В данном методе на каждой итерации отслеживаются значения в шести точках (не обязательно различных): a, c, x, w, v, u. Точки a, c задают текущий интервал поиска решения, x — точка, соответствующая наименьшему значению функции, w — точка, соответветствующая второму снизу значению функции, v — предыдущее значение w. В отличие от метода парабол, в методе Брента аппроксимирующая парабола строится с помощью трех наилучших точек x, w, v (в случае, если эти три точки различны и значения в них также различны). При этом минимум аппроксимирующей параболы u принимается в качестве следующей точки оптимизационного процесса, если:

- u попадает внутрь интервала [a,c] и отстоит от границ интервала не менее, чем на ε ;
- ullet u отстоит от точки x не более, чем на половину от длины предпредыдущего

Если точка u отвергается, то следующая точка находится с помощью золотого сечения большего из интервалов [a, x] и [x, c].

Приведем некоторые аргументы в пользу обозначенных условий приема минимума параболы и. Так как парабола на текущей итерации проводится через точки x, w, v, для которых не гарантируются соотношения v < x < w или w < x < v, то минимум параболы может оказаться вне интервала [a, c]. Условие удаленности точки uот a и c не менее, чем на некоторый порог ε , позволяет избежать слишком маленьких шагов в оптимизации, которые могут свидетельствовать о локальном застопоривании метода парабол. Аналогично, ограничение на максимальную удаленность u от x позволяет избежать слишком больших шагов в оптимизации, которые могут соответствовать биениям в методе парабол. Использование в данном ограничении длины предпредыдущего шага, а не предыдущего, является эвристикой, эффективность которой подтверждается в экспериментах на больших базах задач оптимизации. Эта эвристика предлагает не штрафовать метод за текущий не слишком удачный маленький шаг в надежде на успешные шаги метода на следующих итерациях.

Алгоритм

иначе

```
Вход: Интервал оптимизации (a, c), точность \varepsilon;
Выход: Точка и значение минимума x_{min}, f_{min};
    Инициализация K = \frac{3-\sqrt{5}}{2}, x = w = v = (a+c)/2, f_x = f_w = f_v = f(x);
    Инициализация длины текущего и предыдущего шага d = e = c - a;
    пока Итерации до сходимости
         q = e, e = d;
         если Точки x, w, v и значения f_x, f_w, f_v – разные то
              Параболическая аппроксимация, находим u;
         если u \in [a + \varepsilon, c - \varepsilon] и |u - x| < q/2 то
              Принимаем u;
              d = |u - x|;
         иначе
              если x < (c-a)/2 то
                   u = x + K(c - x); // Золотое сечение [x, c];
                   d = c - x;
              иначе
                   u = x - K(x - a); // Золотое сечение [a, x];
                   d = x - a;
              если |u-x|<\varepsilon то
                   u = x + sign(u - x)\varepsilon; // Задаем минимальную близость между u и
\boldsymbol{x}
              Вычисляем f_u = f(u);
              если f_u \leq f_x то
                   если u \ge x то
                        a = x;
                   иначе
                   v = w, w = x, x = u, f_v = f_w, f_w = f_x, f_x = f_u;
```

если
$$u \geq x$$
 то $c = u;$ иначе $a = u;$ если $f_u \leq f_w$ или $w = x$ то $v = w, w = u, f_v = f_w, f_w = fu;$ иначе если $f_u \leq f_v$ или $v = x$ или $v = w$ то $v = u, f_v = f_u;$

Рекомендуемые источники

- 1. Васильев, Ф. П. Методы оптимизации : учебное пособие / Ф. П. Васильев. Москва : МЦНМО, [б. г.]. Книга 1 2011. 624 с. ISBN 978-5-94057-707-2. URL: https://e.lanbook.com/book/9304
- 2. Аттетков, А. В. Численные методы решения задач многомерной безусловной минимизации. : методические указания / А. В. Аттетков, А. Н. Канатников, Е. С. Тверская ; под редакцией С. Б. Ткачева. Москва : МГТУ им. Н.Э. Баумана, [б. г.]. Часть 1 : Методы первого и второго порядков: Методические указанияпо курсу «Методы оптимизации» 2009. 47 с. URL: https://e.lanbook.com/book/58470
- 3. A. Ben-Tal, A. Nemirovski. Optimization III. Lecture Notes, 2013.