Correction : Détermination de la couleur d'un photon

N. Bancel

Octobre 2024

12

Une transition entre deux états provoque l'émission d'un photon d'énergie $\mathscr{E}=2.12$ eV. À l'aide du spectre ci-dessous, déterminer la couleur du rayonnement émis.

Activité 2 page 85

Correction de l'exercice N°12

1. Formule de base

L'énergie d'un photon est reliée à sa longueur d'onde par la relation :

$$E = \frac{hc}{\lambda} \tag{1}$$

avec:

- 1. E = 2.12 eV (énergie du photon),
- 2. $h = 6.626 \times 10^{-34}$ J.s (constante de Planck),

3. $c = 3.00 \times 10^8$ m/s (vitesse de la lumière),

4. $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J (conversion eV} \rightarrow \text{J)}.$

2. Conversion de l'énergie en joules

On convertit E en joules :

$$E = 2.12 \times 1.602 \times 10^{-19} \tag{2}$$

$$E \approx 3.39 \times 10^{-19} \text{ J}$$
 (3)

3. Calcul de la longueur d'onde

On isole λ dans la formule :

$$\lambda = \frac{hc}{E} \tag{4}$$

En remplaçant les valeurs :

$$\lambda = \frac{(6.626 \times 10^{-34}) \times (3.00 \times 10^8)}{3.39 \times 10^{-19}} \tag{5}$$

$$\lambda \approx 5.86 \times 10^{-7} \text{ m} = 586 \text{ nm} \tag{6}$$

4. Détermination de la couleur

D'après le spectre visible, une longueur d'onde de **586 nm** correspond à une lumière de couleur **jaune-orange**.

5. Conclusion

Le photon émis possède une longueur d'onde de **586 nm**, ce qui correspond à une émission lumineuse de couleur **jaune-orange**, comme on peut l'observer dans le spectre visible.

Correction de l'exercice 14

1. Représentation du phénomène de transition

L'électron effectue une transition de l'état $E_1=-3.03$ eV vers l'état fondamental $E_0=-5.14$ eV. Cette transition entraı̂ne l'émission d'un photon dont l'énergie est donnée par :

$$E = E_1 - E_0 \tag{7}$$

Schématiquement, on représente cette transition par un diagramme d'énergie où un électron passe d'un niveau supérieur à un niveau inférieur en libérant un photon.

2. Calcul de la longueur d'onde du photon émis

1. Calcul de l'énergie du photon :

$$E = (-3.03) - (-5.14) \tag{8}$$

$$E = 2.11 \text{ eV} \tag{9}$$

2. Conversion en joules :

$$E = 2.11 \times 1.602 \times 10^{-19} \tag{10}$$

$$E \approx 3.38 \times 10^{-19} \,\mathrm{J} \tag{11}$$

3. Calcul de la longueur d'onde :

$$\lambda = \frac{hc}{E} \tag{12}$$

$$\lambda = \frac{(6.626 \times 10^{-34}) \times (3.00 \times 10^8)}{3.38 \times 10^{-19}} \tag{13}$$

$$\lambda \approx 5.88 \times 10^{-7} \text{ m} = 588 \text{ nm}$$
 (14)

3. Justification que le rayonnement est visible

Le spectre visible s'étend de **400 nm (violet) à 700 nm (rouge)**. La longueur d'onde obtenue (588 nm) est bien dans cet intervalle, donc le rayonnement émis est visible.

4. Détermination de la couleur de la lumière émise

D'après le spectre fourni, une longueur d'onde de **588 nm** correspond à une lumière **jaune-orange**.

5. Représentation du spectre de la lampe

La lampe à vapeur de sodium émet principalement dans la bande du **jaune-orange** avec un pic autour de **589 nm**. Son spectre est discontinu et dominé par cette teinte caractéristique.

6. Conclusion

La transition électronique étudiée conduit à l'émission d'un photon de **588 nm**, correspondant à une lumière **jaune-orange**, ce qui est typique des lampes à vapeur de sodium utilisées dans l'éclairage public.