Unsupervised Learning: Model Selection and Evaluation

CS-534

Selecting k: A Model Selection Problem

- Each choice of k corresponds to a different statistical model for the data
- Model selection searches for a model (a choice of k) that gives us the best fit of the training data
 - Penalty method
 - Cross-validation method
 - Model selection methods can also be used to make other model decisions such as choosing among different ways of constraining $\boldsymbol{\Sigma}$

Selecting k: heuristic approaches

- For kmeans, plot the sum of squared error for different k values
 - SSE will monotonically decrease as we increase k
 - Knee points on the curve suggest possible candidates for k

Penalty Method: Bayesian Information Criterion

- Based on Bayesian Model Selection
 - Determine the range of k values to consider $1 \le k \le K_{max}$
 - Apply EM to learn a maximum likelihood fitting of the Gaussian mixture model for each possible value of k
 - Choose k that maximizes BIC # of data points $2l_{\mathcal{M}}(x,\hat{\theta}) m_{\mathcal{M}}\log(n) \equiv \text{BIC}$ Loglikelihood of the resulting Gaussian Mixture Model # of parameters to be estimated in M
 - Given two estimated models, the model with higher BIC is preferred
 - Larger k increases the likelihood, but will also cause the second term to increase
 - Often observed to be biased toward less complex model
 - Similar method: AIC = $2l_m 2m_M$, which penalize complex model less severely

Cross-validation Likelihood

(Smyth 1998)

- The likelihood of the training data will always increase as we increase k
 - more clusters, more flexibility leads to better fitting of the data
- Use cross-validation
 - For each fold, learn the GMM model using the training data
 - Compute the log-likelihood of the learned model on the remaining fold as test data

How to Evaluate Clustering?

- By user interpretation
 - does a document cluster seem to correspond to a specific topic?
- Internal criterion a good clustering will produce high quality clusters:
 - high intra-cluster similarity
 - low inter-cluster similarity

 The measured quality of a clustering depends on both the object representation and the similarity measure used

External indexes

If true class labels (*ground truth*) are known, the validity of a clustering can be verified by comparing the class labels and clustering labels.

 n_{ij} = number of objects in class i and cluster j

Rand Index and Normalized Rand Index

- Given partition (*P*) and ground truth (*G*), measure the number of vector pairs that are:
 - a: in the same class both in P and G.
 - b: in the same class in P, but different classes in G.
 - c: in different classes in P, but in the same class in G.
 - d: in different classes both in P and G.

$$R = \frac{a+d}{a+b+c+d}$$

- Adjusted rand index: corrected-for-chance version of rand index
 - Compare to the expectation of the index assuming a random partition of the same cluster sizes

$$ARI = \frac{Index - ExpectedR}{MaxIndex - ExpectedR} = \frac{\sum_{i,j} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{n_{i.}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{n_{i.}}{2} + \sum_{j} \binom{n_{j}}{2}\right] - \left[\sum_{i} \binom{n_{i.}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}$$

Purity and Normalized Mutual Information

Purity

▶ Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority class and number of members of the majority class for the three clusters are: x, 5 (cluster 1); o, 4 (cluster 2); and \diamond , 3 (cluster 3). Purity is $(1/17) \times (5+4+3) \approx 0.71$.

Normalized Mutual Information

