QoS Exercises. Scheduling

Exercise 1

We have an IP network with a nominal throughput C=10 units that is implementing a resource allocation following the max-min fair share algorithm. Four users request simultaneously the use of 2, 2.6, 4 and 5 throughput units respectively.

What amount of resources will be assigned by the Network to each user?

Exercise 2

We have a GPS system to distribute the traffic among the different established connections. These systems receive packets from two connections following the pattern shown in the next figures.

- a) Plot how each packet would be transmitted if the weight assigned to each connection is the same.
- b) Repeat the previous plot but now considering that the weight for the second connection is double than the weight for the first connection.

Exercise 3

Repeat the previous exercise in case the implemented system is WFQ.

Exercise 4

We have a system with 11 connections so that the first connection has a weight of 0.5, and the rest (10 connections) have a weight of 0.05. For each connection a new packet is received each time unit. All receive packet have a length equal to 1.

- a) Show the departure of the packets (until t=20) in case the system uses GPS.
- b) Show the departure of the packets (until t=20) in case the system uses WFQ.

Exercise 5

We have a system with 4 different queues (A, B, C, D) that are served following the WFQ scheduling algorithm with an overall service rate of 10 Mbps. The weights assigned to each input queues are $W_A=4$, $W_B=1$, $W_C=3$, $W_D=2$.

a) The five tables below show different traffic patterns for each queue (being the units Mbps). For each pattern fill the tables with the output rates obtained.

Nota: For this problem you could consider WFQ as it was equivalent to *Generalized Processor Sharing* (GPS).

	A	В	С	D		A	В	С	D
Tasa Entrada:	1	1	1	1	Tasa Entrada:	10	10	10	10
Tasa Salida:					Tasa Salida:				
	A	В	С	D		A	В	С	D
Tasa Entrada:	6	6	2	2	Tasa Entrada:	8	0	0	8
Tasa Salida:					Tasa Salida:				
	Α	В	С	D					
Tasa Entrada:	1	5	3	5					
Tasa Salida:									

Exercise 6

Let us assume a system that uses WFQ to among different flows over a link of 1Mbps. These system receives packets from 4 flows following the distribution indicated in the table below. Plot how each packet will be sent.

Queue 1 ($W_1=2$):

Num. Packet	Arrival time	Packet Size
1	0 ms.	1,5 Kbytes
2	1 ms.	0,375 Kbytes

Queue 2 ($W_2=1$):

Num. Packet	Arrival time	Packet Size
1	0 ms.	0,5 Kbytes
2	24 ms.	1 Kbytes

Queue 3 ($W_3=1$):

Num. Packet	Arrival time	Packet Size
1	0 ms.	0,5 Kbytes
2	24 ms.	0,5 Kbytes

Queue 4 (W₄=4):

Num. Packet	Arrival time	Packet Size
1	0 ms.	0,5 Kbytes
2	21 ms.	0,5 Kbytes
3	23 ms	1 Kbytes
4	47 ms	0,5 Kbytes

Exercise 7

Repeat the previous exercise, but now assume that the scheduler uses DRR to serve the traffic. The quantum assinged to each queue is

Q[1]=300B

Q[2]=150B

Q[3]=150B

Q[4]=600B