Automation final exam practice sheet

Dr. Szymon Krupiński and Prof. Dr. Francesco Maurelli Jacobs University Bremen

May 2019

General remarks

- The final exam is a closed book exam, but you are allowed a A4 double-sided hand-written cheat sheet with your notes and a digital calculator (with no pre-programmed instructions).
- This practice sheet contains more problems than a real exam.
- You have 2 hours to write your exam.
- Remember to show your work and reasoning, as it might save you some points even if your end result is not correct.

1 True or False?

[X Points]

Mark the following statements as True (T) or False (F)

	Т	F		
Universal Motors can work both with AC and DC				
A coriolis vibratory gyroscope attached to a steadily rotating object will not switch the				
indicated rotation sign if the object crosses the equator				
At a unstable equilibrium point x_e of a system defined by $\dot{x} = g(x)$, we know that	\mathbf{T}	\mathbf{F}		
$g(x_e) = 0$				
Automation communication protocols can specify the physical layer of communication in				
the OSI model				
A Hall effect sensor can measure static magnetic field				
Complementary filtering requires two dissimilar sensors measuring the same quantity				
Gaussian noise with mean $\mu = 0$ present in the sensor measurement is a systematic error				
An arch among two circles in a state machine represents a transition state among two				
actions at times t and $t-1$				
A strain rosette measuring strain in 2 dimensions often has three components for redun-				
dancy purposes				
A failure of the controllers or computers at the top of a SCADA system hierarchy is more				
likely to result in an injury than at the bottom				

2 General sensor properties

[X Points]

Give example of three real life situations where you would expect to find...

- 1. a sensor which is accurate but not precise
- 2. a sensor which is precise but not accurate
- 3. a sensor which has resolution higher than its precision

Give an example and a short explanation for each of the points.

3 State machines

[X Points

Build a finite state machine that will ring only when the user inputs the following sequence: x = 1, 0, 1, 0, 1 using two buttons labeled "1" and "0". Formally identify all the components of this state machine, and write both the state transition table and the graph.

4 Discretisation and filtering

[X Points]

Imagine the situation discussed in the class where we wanted to obtain an estimation of orientation $\hat{\theta}$ using a noisy values coming from an accelerometer (θ_a) and much less noisy but biased angular velocity data from a gyroscope (ω_a) .

Consider a sensor fusion scheme with the following state-space representation:

$$\hat{\theta}(t) = \omega_g(t) + k_p(\theta_a(t) - \hat{\theta}(t))$$

Write down the simplest possible discretisation over a fixed time step Δt which will allow the state estimation $\hat{\theta}$ to be computed in a loop. Using the coefficient $k_p=0.2$ and $\Delta t=0.1s$ and the values already present in the table, complete the two time step iterations. Fill in the calculated output estimation $\hat{\theta}_{t_0+\Delta t}$ and $\hat{\theta}_{t_0+\Delta t}$. Hint: use this common definition of the derivative ("forward Laplace scheme"): $\dot{y}(t_0+\Delta t)=\lim_{\Delta t\to 0}\frac{y(t_0+\Delta t)-y(t_0)}{\Delta t}$

Step	$\theta_a \ [rad]$	$\omega\left[\frac{rad}{s}\right]$	$\hat{ heta} \; [rad]$
t_0	0.996	0.021	0.996
$t_0 + \Delta t$	1.010	0.021	
$t_0 + 2\Delta t$	0.980	0.021	

5 Strain gauge

[X Points]

A simple thin-film 1-dimensional strain gauge of initial resistance R_G of gauge factor 2 is attached to a metal beam. The gauge is incorporated into a Wheatstone bridge circuit as illustrated in Fig. 1. The fixed values of the resistors R_1 and R_2 are 2Ω and 5Ω respectively. A 9 Volts battery (V_S) powers the circuit. The adjustable resistance R_P is set to 3Ω and the bridge is balanced (i.e. the voltage meter between V_L and V_P shows zero).

- 1. Look at the upper part of Fig. 1. In which position, (A), (B) or (C) should the gauge be fixed to the beam?
- 2. What is the initial resistance of the strain gauge? What is the ratio η of the bridge?
- 3. The beam is stretched along the gauge's sensing direction by 20% of its length. Calculate what voltage that will be measured by the voltage meter between V_L and V_R .

Figure 1: Strain gauge and Wheatstone bridge

4. To what new resistance value will the adjustable resistance R_P have to be set in order to re-balance the bridge?

6 Motors

[X Points]

Describe a three phase AC induction motor:

- 1. What components does it have?
- 2. What is the method of functioning?
- 3. Give a couple of examples where such motors can be found.
- 4. What is the reason for using a delta-star configuration change during the start-up?

7 Probability

[X Points]

Show that for some continuous random variables $x \in X$ and $y \in Y$

$$\rho(x|y) = \frac{\rho(y|x)\rho(x)}{\int_x \rho(y|x)\rho(x)dx}$$

Label each identity and rule that you apply in demonstrating this relationship step-by-step.

8 Industrial problem

[X Points]

A scrap laddle for loading scrap metal into an electric arc furnace is suspended on a travelling lift with two chains. The chains can be lowered or hoisted up in order to tilt the laddle (=individual chain vertical position is how the system is controlled). You can assume that you know what each chain's current height is. For moving the scrap metal, it stays horizontal ($\alpha = 0^{\circ}$). For loading the furnace, it must be tipped by $\alpha = 45^{\circ}$ around the y axis (=the tilt of the laddle is the state of the system). It should not be tipped in the other direction (negative alpha values). Propose a sensor to instrument the laddle so that the tipping and righting operation can be automatised.

- 1. Identify the right sensor technology to use in this case
- 2. Sketch where and how the sensor should be mounted (position, orientation)
- 3. Describe the operating principle of this technology, name the physical quantities involved and the basic hypotheses (if any)
- 4. Write the mathematical formula corelating the identified measurable quantity with the tipping angle of the laddle.

Figure 2: Scrap laddle schema for problem 2 $\,$