APUNTES DE ECUACIONES DIFERENCIALES

Una ecuación diferencial es una ecuación donde la incógnita es una función, más detalladamente una ecuación dif. es una ecuación que contiene las derivadas de una o más variables dependientes con respecto a una o más variables independientes.

Si una ecuación contiene solamente derivadas respecto de una sola variable independiente, entonces se dice que es una ecuación diferencial ordinaria (EDO).

$$\frac{dy}{dx} = x^3 - 6$$
 ; $y'' + y' + 5y = e^x$

Si una ecuación contiene derivadas parciales de una o más variables dependientes respecto de dos o más variables independientes entonces se dice *ecuación en derivadas parciales* (EDP).

$$\frac{\partial z}{\partial x} + y \frac{\partial y}{\partial x} = z$$
 ; $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} - 2 \frac{\partial u}{\partial t}$

El orden de una ecuación diferencial (ordinaria o en derivadas parciales) se refiere a la derivada de mayor orden que interviene en ella.

$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + 5y = 0$$
 es una EDO de segundo orden

El grado de una ecuación es el grado de la derivada de mayor orden que interviene en ella:

$$(y'')^3 + (y')^4 + 5y = e^x$$
 es una EDO de segundo orden y tercer grado.

Observaciones y notaciones:

1. Para $F: \mathbb{R}^{n+2} \longrightarrow \mathbb{R}$, una EDO de orden n es de la forma: $F(x,y,y',...,y^n)=0$, donde y=y(x) es una función solunción de la EDO

Ejemplo : $y = y(x) = \frac{1}{x}$ es una solución de la EDO $y' + y^2 = 0$ debido a que: $\left(\frac{1}{x}\right)' + \left(\frac{1}{x}\right)^2 = 0$

con mayor formalidad, la función $\phi:\mathbb{R}-\{0\}\longrightarrow\mathbb{R}$ es solución de la EDO $x\mapsto\phi(x)=\frac{1}{x}$

- 2. y'' + yy' = 2x; y = y(x)y'' + yy' = 2t ; y = y(t) $\ddot{x} + x\dot{x} = 2t$; x = x(t) notación habitual en Mecánica
- 3. Se dice que una EDO de la forma:

$$y^{(n)}=f\big(x,y,y',...,y^{(n-1)}\big)$$
 es $lineal$ cuando f es una función lineal de $y,y',...,y^{(n-1)}$

Lo que implica que la ecuación se puede escribir de la forma:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

así:

y'' + 3y' + y = 3x se dice una ecuación lineal a coeficientes constantes y'' + 3y' + y = 0 se dice una ecuación lineal, homogénea a coeficientes constantes $xy'' + 3x^2y' + e^xy = \frac{1}{x}$ se dice una ecuación lineal a coeficientes variables $\frac{1}{x}y'' + 3x^2y' + e^xy = 0$ se dice una ec. lineal, homogénea a coeficientes variables $y'' + 3(y')^2 + y = 3x$ no es una EDO lineal y'' + 3y' + ln(y) = 3x no es una EDO lineal

4. Para una edo de primer orden y primer grado:

$$y' = f(x, y)$$

se puede anotar usando diferenciales:

$$\frac{dy}{dx} = f(x,y)$$

de donde $dy=f(x,y)dx\,$ y multiplicando por alguna función g(x,y)q(x,y)dy = f(x,y)q(x,y)dx

o de forma más general:

$$M(x,y)dx + N(x,y)dy = 0$$

Teorema (Teorema de existencia y unicidad para edo de primer orden)

Sean f(x,y) y $\frac{\partial f(x,y)}{\partial y}$ funciones continuas en un rectángulo $R=[a,b]\times [c,d]$ y $(x_{\scriptscriptstyle 0},y_{\scriptscriptstyle 0})\in R$, entonces existe un intervalo I centrado en $x_{\scriptscriptstyle 0}$ y una única función $y = \phi(x)$ que satisface el problema de valor inicial (PVI):

$$y' = f(x, y); y(x_0) = y_0$$

es decir: $(\forall x \in I)(\phi'(x) = f(x, \phi(x)))$ y $\phi(x_0) = y_0$

Ejemplo

La edo y'=2x tiene la solución general: $y=x^2+c$, $c\in\mathbb{R}$

El PVI, y' = 2x; y(1) = 3 tiene la solución particular: $y' = x^2 + 3$

Observación

Si $y = \phi(x)$ es la solución de una edo y' = f(x, y) entonces $\phi'(x) = f(x, \phi(x))$ se interpreta geométricamente como la pendiente de la recta tangente a la gráfica de $y = \phi(x)$, de esta forma, f(x, y) permite conocer las pendientes de $y = \phi(x)$ para cada (x, y). Si se traza un segmento de recta de pendiente m = f(x, y) en cada punto (x, y), se obtiene el *campo de dirección* de la edo y' = f(x, y).

Ejemplo

Trazar el campo de dirección de la edo : $y' = -\frac{x}{y}$

Un recurso útil para trazar el campo de dirección es hallar todos los puntos (x, y)donde se tienen la misma pendiente c (isoclinas).

$$y' = c$$

$$-\frac{x}{y} = c$$

$$y = -\frac{1}{c}x$$

Se puede conjeturar que las soluciones de la edo son circunferencias concéntricas,

$$x^2 + y^2 = r^2$$

si derivamos implicitamente respecto de x se tiene:

$$2x + 2yy' = 0$$

$$y' = -\frac{x}{y}$$

Por tanto la solución general es $x^2+y^2=c$, donde las soluciones particulares de la edo son funciones definidas implícitamente por la ecuación algebraica.

VARIABLES SEPARABLES

Si en una EDO de primer orden y primer grado

$$y' = F(x, y)$$

F(x,y) se factoriza como el producto de una función de x por una función de y.

$$F(x,y) = f(x)g(y)$$

se dirá que es de variables separables y se tiene que:

$$\frac{dy}{dx} = f(x)g(y)$$

$$\frac{1}{g(y)}dy = f(x)dx \text{, e integrando se obtione :}$$

$$\int \frac{1}{g(y)}dy = \int f(x)dx + c$$

Ejemplo

$$y' = -\frac{x}{y}$$

$$ydy = -xdx$$

$$\int ydy = -\int xdx$$

$$\frac{y^2}{2} = -\frac{x^2}{2} + c$$

Ejercicio

$$y' = xe^{2y - x^2}$$

Ecuaciones Reducibles a separables

Una ecuación de la forma: y' = f(ax + by + c); $b \neq 0$ es posible de reducirla a variables separables, usando la sustitución

$$u = ax + by + c$$

$$\Rightarrow$$
 $u' = a + by'$ $\Rightarrow y' = \frac{u' - a}{b}$

reemplazando en la ecuación, se tiene:

$$\frac{u'-a}{b} = f(u) \quad \Rightarrow u' = bf(u) + a$$

$$\Rightarrow \int \frac{du}{bf(u)+a} = \int dx$$

y la solución general es:

$$\int \frac{du}{bf(u)+a} = x + c$$

Ejemplo Resolver
$$y' = 3 + \sqrt{y - 2x + 3}$$

hacemos:
$$u = y - 2x + 3$$
 $\Rightarrow u' = y' - 2 \Rightarrow y' = u' + 2$

entonces,
$$u' + 2 = 3 + \sqrt{u} \Rightarrow u' = 1 + \sqrt{u}$$

$$\Rightarrow \frac{u'}{1+\sqrt{u}} = 1 \Rightarrow \int \frac{du}{1+\sqrt{u}} = \int dx$$

sea
$$w=1+\sqrt{u} \quad \Rightarrow dw=\frac{1}{2\sqrt{u}}du \Rightarrow 2\sqrt{u}dw=du \Rightarrow 2(w-1)dw=du$$

$$\int \frac{du}{1+\sqrt{u}} = \int dx \quad \Leftrightarrow \int \frac{2(w-1)dw}{w} = \int dx$$

$$\Rightarrow 2\int \left(1 - \frac{1}{w}\right)dw = \int dx \Rightarrow 2(w - \ln(w)) = x + c$$

$$\Rightarrow 2(1+\sqrt{y-2x+3}-ln(1+\sqrt{y-2x+3}))=x+c$$

ECUACIONES HOMOGÉNEAS

Una función F(x, y) se dice homogénea de grado n si : $(\forall k \in \mathbb{R} - \{0\})(F(kx, ky) = k^n F(x, y))$

Proposición

Una función F(x,y) es homogénea de grado 0 si $F(x,y) = g\left(\frac{y}{x}\right)$ para alguna función de una variable g.

Demostración

Si F(kx, ky) = F(x, y) para todo $k \neq 0$ entonces para $k = \frac{1}{x}$ se tiene que: $F(x,y) = F\left(\frac{1}{x}x, \frac{1}{x}y\right) = F\left(1, \frac{y}{x}\right) = g\left(\frac{y}{x}\right).$

Recíprocamente.

Si
$$F(x,y) = g\left(\frac{y}{x}\right)$$
 entonces, $F(kx,ky) = g\left(\frac{ky}{kx}\right) = g\left(\frac{y}{x}\right) = F(x,y)$.

La ecuación y' = F(x, y) se dice homogénea si F(x, y) es homogénea de grado 0

Ejemplo

$$y' = \frac{x^2 + y^2}{2x^2} = \frac{1}{2} + \frac{1}{2} \left(\frac{y}{x}\right)^2$$

Ejemplo

Para
$$F(x,y)=rac{x^2+y^2}{2x^2}$$
 , se tiene: $F(kx,ky)=rac{k^2x^2+k^2y^2}{2k^2x^2}=rac{x^2+y^2}{2x^2}=F(x,y)$

Reducción de una ecuación homogénea a variables separables.

Si
$$y' = g\left(\frac{y}{x}\right)$$
 sea $y = vx$ entonces,
$$y' = v + x\frac{dv}{dx} \qquad y \quad v = \frac{y}{x}$$
 luego,
$$v + x\frac{dv}{dx} = y' = g\left(\frac{y}{x}\right) = g(v)$$

$$\frac{dv}{g(v) - v} = \frac{dx}{x}$$

que es una ecuación de variables separables.

Ejemplo

Resolver:
$$y' = \frac{x^2 + y^2}{2x^2} = \frac{1}{2} + \frac{1}{2} \left(\frac{y}{x}\right)^2$$
 entonces, hacemos $y = vx$, $y' = v + x \frac{dv}{dx}$

$$v + x \frac{dv}{dx} = \frac{1}{2} + \frac{1}{2}v^{2}$$

$$x \frac{dv}{dx} = \frac{1}{2} - v + \frac{1}{2}v^{2}$$

$$2xdv = (v^{2} - 2v + 1)dx$$

$$\frac{dv}{(v-1)^{2}} = \frac{dx}{2x} / \int$$

$$\int \frac{dv}{(v-1)^{2}} = \int \frac{dx}{2x}$$

$$-\frac{1}{v-1} = \frac{1}{2}ln|x| + c$$

$$\frac{2x}{x-y} = ln|x| + c.$$

Reducible a homogénea.

Una ecuación de la forma $y' = \frac{ax+by+c}{dx+ey+f}$ no es homogénea pero se puede reducir a homogénea mediante un cambio de variables.

Sean x_0 , y_0 la solución del sistema:

$$ax + by + c = 0$$
$$dx + ey + f = 0$$

resolviendo para $x e y : x = x_0$; $y = y_0$

entonces definimos: $\overline{x} = x - x_0$; $\overline{y} = y - y_0$

se tiene: $d\overline{x} = dx$, $d\overline{y} = dy$ y la ecuación queda:

$$y' = \frac{ax + by + c}{dx + ey + f} = \frac{a(\overline{x} + x_0) + b(\overline{y} + y_0) + c}{d(\overline{x} + x_0) + e(\overline{y} + y_0) + f} = \frac{a\overline{x} + b\overline{y}}{d\overline{x} + e\overline{y}}$$

que es una edo homogénea.

Si el sistema de ecuaciones no tiene única solución, esto es, si $\triangle \equiv ae-bd=0$ entonces la ecuación es de la forma:

$$y' = \frac{ax + by + c}{k(ax + by) + f}$$

ecuación que se reduce a variables separables haciendo el cambio de variable: u = ax + by.

Ejemplo

Resolver: $y' = \frac{2x+3y-5}{5x+4y-23}$ y la solución es : x = 7 y = -3, definimos:

$$\overline{x} = x - 7$$
; $\overline{y} = y + 3$ reemplazando: $y' = \frac{2\overline{x} + 3\overline{y}}{5\overline{x} + 4\overline{y}} = \frac{2 + 3\frac{\overline{y}}{\overline{x}}}{5 + 4\frac{\overline{y}}{\overline{x}}}$

sea $v=\frac{\overline{y}}{\overline{x}}$ entonces $\overline{y}=v\overline{x} \Rightarrow \overline{y}'=v'\overline{x}+v \,$ y la edo queda:

$$v'\overline{x} + v = \frac{2+3v}{5+4v}$$

$$\frac{v'}{\frac{2+3v}{5+4v}-v} = \frac{1}{\overline{x}}$$

$$-\frac{(5+4v)dv}{4v^2+2v-2} = \frac{d\overline{x}}{\overline{x}} \qquad /\int$$

$$-\int \frac{(5+4v)dv}{4v^2+2v-2} = \int \frac{d\overline{x}}{\overline{x}}$$

$$\frac{1}{6} \int \frac{1}{v+1} dv - \frac{7}{3} \int \frac{1}{2v-1} dv = \ln(\overline{x}) + c$$

$$\frac{1}{6}ln(v+1) - \frac{7}{6}ln(2v-1) = ln(\overline{x}) + c$$

$$ln\left(\frac{v+1}{(2v-1)^7}\right) = 6ln(\overline{x}c)$$

$$\frac{\frac{y+3}{x-7}+1}{\left(2\frac{y+3}{x-7}-1\right)^7} = c(x-7)^6$$

ECUACIONES DIFERENCIALES EXACTAS

Una forma diferencial M(x,y)dx + N(x,y)dy se dice exacta si es la diferencial de una función real de dos variables F(x, y), es decir si:

$$\frac{\partial F(x,y)}{\partial x} = M(x,y)$$
 ; $\frac{\partial F(x,y)}{\partial y} = N(x,y)$

Una ecuación diferencial M(x,y)dx + N(x,y)dy = 0 se dice exacta si la forma diferencial es exacta. En este caso, si dF(x,y) = M(x,y)dx + N(x,y)dy

dF(x,y) = 0entonces:

F(x,y) = c es la solución general de la edo. por tanto,

Teorema (Criterio de exactitud)

Si M(x,y) y N(x,y) tienen derivadas parciales continuas, entonces: M(x,y)dx + N(x,y)dy es exacta si y sólo si $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$

Ejemplo

Resolver: $3x^2ydx + (x^3 - y^2)dy = 0$

En este caso: $M(x, y) = 3x^2y$ y $N(x, y) = x^3 - y^2$

 $\frac{\partial M}{\partial y} = 3x^2 = \frac{\partial N}{\partial x}$ luego la ecuación es exacta:

podemos recuperar la función de la cual la forma es su diferencial del siguiente modo:

como $\frac{\partial F(x,y)}{\partial x} = 3x^2y$ integramos respecto de x

y tenemos:(*) $F(x,y) = x^3y + g(y)$, donde g(y) es la constante de integración (respecto de x)

 $\frac{\partial F(x,y)}{\partial y} = N(x,y) = x^3 - y^2$ ahora, como:

 $x^3 + g'(y) = x^3 - y^2$ reduciendo e integrando respecto de yse tiene:

 $g(y) = -\frac{1}{3}y^3$ obtenemos:

y reeplazando en (*) se tiene que $F(x,y) = x^3y - \frac{1}{3}y^3$

de donde la solución general de la ecuación es : $x^3y - \frac{1}{3}y^3 = c$

Factores Integrantes

Una funcón $\mu(x,y)$ se dice un factor integrante de la edo: M(x,y)dx + N(x,y)dy = 0si:

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

es una edo exacta.

 $3xydx+x^2dy=0$ no es exacta, pero multiplicando por: $\mu(x,y)=x$, se $3x^2ydx+x^3dy=0$ ecuación que si es exacta, dado que: **Ejemplo** obtiene $d(x^3y) = 3x^2ydx + x^3dy$

otro factor integrante es: $\mu(x,y) = \frac{1}{x^2y}$ puesto que:

$$\frac{1}{x^2y} (3xydx + x^2dy) = \frac{3}{x}dx + \frac{1}{y}dy = d(3ln(x) + ln(y)) = ln(x^3y)$$

y la solución general es : $x^3y = c$

Factores Integrantes por Inspección

La presencia de expresiones como d(xy) = ydx + xdy sugiere una función h(xy)como factor integrante.

Ejemplo

$$ydx + (x + x^2y)dy = 0 \qquad / \frac{1}{(xy)^2}$$
$$\frac{ydx + xdy}{(xy)^2} + \frac{1}{y}dy = 0$$
$$\frac{d(xy)}{(xy)^2} + d(\ln(y)) = 0$$
$$d\left(\frac{-1}{xy} + \ln(y)\right) = 0$$
$$\frac{-1}{xy} + \ln(y) = c$$

De la misma forma, los diferenciales:

$$d\left(\frac{x}{y}\right) = \frac{ydx - xdy}{y^2}$$

$$d\left(\frac{y}{x}\right) = \frac{xdy - ydx}{x^2}$$

$$d(\ln(x^2 + y^2)) = 2\frac{xdx + ydy}{x^2 + y^2}$$

$$d\left(\arctan\left(\frac{x}{y}\right)\right) = \frac{ydx - xdy}{x^2 + y^2}$$

sugieren la tabla siguiente para ensayar factores integrantes:

expresión presente en la edo	tipo de factor integrante
ydx - xdy	$\frac{1}{y^2}h\left(\frac{x}{y}\right)$
xdy - ydx	$\frac{1}{x^2}h\left(\frac{y}{x}\right)$
xdx + ydy	$\frac{2}{x^2+y^2}h(ln(x^2+y^2))$
ydx - xdy	$\frac{1}{x^2+y^2}h\left(\arctan\left(\frac{x}{y}\right)\right)$

Ejemplo
$$(xy^4 + y)dx - xdy = 0 / \frac{1}{y^2} \left(\frac{x}{y}\right)^2$$

$$x^3 dx + \left(\frac{x}{y}\right)^2 \frac{ydx - xdy}{y^2} = 0$$

$$x^3 dx + \left(\frac{x}{y}\right)^2 d\left(\frac{x}{y}\right) = 0 / \int$$

$$\frac{x^4}{4} + \frac{1}{3} \left(\frac{x}{y}\right)^3 = c$$

Si el factor integrante μ sólo depende de x o sólo de y, entonces éste puede ser hallado de manera sistemática.

Proposición

Sea la edo M(x,y)dx + N(x,y)dy = 0 se tiene que:

A) Si
$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = f(x)$$
 entonces $\mu = e^{\int f(x)dx}$ es un factor integrante.

B) Si
$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{M} = g(y)$$
 entonces $\mu = e^{-\int g(y)dy}$ es un factor integrante.

Demostración

Caso A,
$$\frac{\partial (\mu N)}{\partial x} = \mu \frac{M_y - N_x}{N} N + \mu N_x$$

$$= \mu M_y - \mu N_x + \mu M_x$$

$$= \mu M_y$$

$$= \frac{\partial (\mu M)}{\partial y}$$

 $\mu M(x,y)dx + \mu N(x,y)dy = 0$ es exacta. entonces,

Caso B,

$$\frac{\partial(\mu M)}{\partial y} = -\mu \frac{M_y - N_x}{M} M + \mu N_y$$

$$= -\mu M_y + \mu N_x + \mu M_y$$

$$= \mu N_x$$

$$= \frac{\partial(\mu N)}{\partial x}$$

 $\mu M(x,y)dx + \mu N(x,y)dy = 0$ es exacta. entonces,

 $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y - x^2y^2 - 3x)dy = 0$ **Ejemplo** Resolver:

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 8xy^3 e^y + 2xy^4 e^y + 6xy^2 + 1 - (2xy^4 e^y - 2xy^2 - 3)$$

$$= 8xy^3 e^y + 8xy^2 + 4$$

$$= 4(2xy^3 e^y + 2xy^2 + 1)$$

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{4(2xy^3 e^y + 2xy^2 + 1)}{2xy^4 e^y + 2xy^3 + y}$$

$$= \frac{4(2xy^3 e^y + xy^2 + 1)}{y(2xy^3 e^y + 2xy^2 + 1)}$$

$$= \frac{4}{y} = g(y)$$

entonces,
$$\mu = e^{-\int \frac{4}{y} dy} = e^{-4ln(y)} = \frac{1}{y^4}$$

multiplicando la ecuación por μ se obtiene,

$$\left(2xe^{y} + \frac{2x}{y} + \frac{1}{y^{3}}\right)dx + \left(x^{2}e^{y} - \frac{x^{2}}{y^{2}} - \frac{3x}{y^{4}}\right)dy = 0$$

$$\left(2xe^{y}dx + x^{2}e^{y}dy\right) + \left(\frac{2x}{y}dx - \frac{x^{2}}{y^{2}}dy\right) + \left(\frac{1}{y^{3}}dx - \frac{3x}{y^{4}}dy\right) = 0$$

$$d(x^{2}e^{y}) + d\left(\frac{x^{2}}{y}\right) + d\left(\frac{x}{y^{3}}\right) = 0 \qquad / \int$$

$$x^{2}e^{y} + \frac{x^{2}}{y} + \frac{x}{y^{3}} = c$$

ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

Consideramos la edo lineal de primer orden:

$$y' + p(x)y = q(x)$$

buscamos un factor integrante $\mu(x)$, tal que:

$$\mu(x)y' + \mu(x)p(x)y = \mu(x)q(x)$$

el miembro de la izquierda sea la derivada de un produncto,

$$(\mu(x)y)' = \mu(x)q(x)$$

para esto, se debe cumplir : $(\mu(x))' = \mu(x)p(x)$ lo cual es una edo de variables separables, resolviendo se tiene

$$\frac{(\mu(x))'}{\mu(x)} = p(x) \qquad / \int$$

$$ln(\mu(x)) = \int p(x)dx$$

luego,

$$\mu(x) = e^{\int p(x)dx}$$

de esta forma podemos integrar, obteniendo:

$$\mu(x)y = \int \mu(x)q(x)dx$$

$$y = \frac{1}{\mu(x)} \int \mu(x) q(x) dx$$

Ejemplo

Resolver
$$xy' + y = 2x\operatorname{sen}(x)$$

$$y' + \frac{1}{x}y = 2\operatorname{sen}(x)$$

$$\mu(x) = e^{\int \frac{1}{x} dx} = x$$

multiplicando por el factor de integración, se tiene:

$$xy' + y = 2x\operatorname{sen}(x)$$

$$(xy)' = 2x\operatorname{sen}(x)$$

$$xy = \int 2x\operatorname{sen}(x)dx$$

$$y = \frac{1}{x}\int 2x\operatorname{sen}(x)dx = \frac{1}{x}(-x\operatorname{cos}(x) + \operatorname{sen}(x) + c)$$

$$y = -\operatorname{cos}(x) + \frac{1}{x}\operatorname{sen}(x) + \frac{1}{x}c$$

Ejemplo

Resolver
$$(1+x^2)y' + y = 3$$
 ; $y(0) = 3$
 $y' + \frac{1}{1+x^2}y = \frac{3}{1+x^2}$
 $u(x) = e^{\int \frac{1}{1+x^2}dx} = e^{\arctan(x)}$

multiplicando por el factor de integración, se tiene:

$$e^{\operatorname{arctg}(x)}y' + \frac{e^{\operatorname{arctg}(x)}}{1+x^2}y = 3\frac{e^{\operatorname{arctg}(x)}}{1+x^2}$$

$$\left(e^{\operatorname{arctg}(x)}y\right)' = 3\frac{e^{\operatorname{arctg}(x)}}{1+x^2}$$

$$e^{\operatorname{arctg}(x)}y = 3\int \frac{e^{\operatorname{arctg}(x)}}{1+x^2}dx$$

$$y = \frac{3}{e^{\operatorname{arctg}(x)}}\int \frac{e^{\operatorname{arctg}(x)}}{1+x^2}dx = \frac{3}{e^{\operatorname{arctg}(x)}}\left(e^{\operatorname{arctg}(x)} + c\right)$$

$$y = 3 + ce^{-\operatorname{arctg}(x)}$$

como la solución pasa por (0, 2), se tiene:

$$2 = 3 + ce^{-\arctan(0)} \Rightarrow c = -1$$

por tanto la solución al PVI, es:

$$y = 3 - e^{-\arctan(x)}$$

Ecuación de Bernoulli

Una ecuación de la forma:

$$y' + p(x)y = y^n q(x)$$

se conoce como ecuación de Bernoulli.

Mediante un cambio de variables se puede reducir a edo lineal de primer grado,

Sea
$$v = y^{1-n}$$
 entonces $v' = (1-n)y^{-n}y'$

multiplicando la ecuación por : $(1-n)y^{-n}$ se tiene:

$$(1-n)y^{-n}y' + (1-n)y^{-n}p(x)y = (1-n)q(x)$$

que en términos de v resulta una edo lineal de primer orden:

$$v' + (1 - n)vp(x) = (1 - n)q(x)$$

Ejemplo
$$y' - \frac{y}{x} = -\frac{5}{2}x^2y^3$$

dividiendo por y^3 ,

$$y^{-3}y' - y^{-2}\frac{1}{x} = -\frac{5}{2}x^2$$

Hacemos:
$$v = y^{-2} \implies v' = -2y^{-3}y' \implies -\frac{1}{2}v' = y^{-3}y'$$

realizando el cambio de variable:

$$-\frac{1}{2}v' - v\frac{1}{x} = -\frac{5}{2}x^{2} \quad /(-2)$$

$$v' + 2v\frac{1}{x} = 5x^{2}$$

$$\mu(x) = e^{\int \frac{2}{x}dx} = x^{2}$$

$$x^{2}v' + 2vx = 5x^{4}$$

$$(x^{2}v)' = 5x^{4}$$

$$x^{2}v = \int 5x^{4}dx = x^{5} + c$$

$$v = x^{3} + \frac{c}{x^{2}} = \frac{x^{5} + c}{x^{2}}$$

$$y^{-2} = \frac{x^{5} + c}{x^{2}}$$

$$y = \sqrt{\frac{x^{2}}{x^{5} + c}}$$

Ejercicios

a)
$$x \frac{dy}{dx} + y = x^4 y; \quad y(1) = 1$$

$$b) tx^2 \frac{dx}{dt} + x^3 = t\cos(t)$$

Ecuación de Riccati

La ecuación de Riccati es de la forma:

$$y' + p(x)y^2 + q(x)y + r(x) = 0$$

con p(x), q(x), r(x) son continuas en algun intervalo I y $p(x) \neq 0$.

Si $y_p(x)$ es una solución particular de la ec. de Riccati, entonces la sustitución

 $y = y_p + \frac{1}{z}$ reduce la ecuación a una edo lineal de primer orden.

 $y = y_p + \frac{1}{z} \Rightarrow y' = y'_p - \frac{1}{z^2}z'$ reeplazando en la ecuación:

$$y_p' - \frac{1}{z^2}z' + p(x)\left(y_p + \frac{1}{z}\right)^2 + q(x)\left(y_p + \frac{1}{z}\right) + r(x) = 0$$

$$y_p' + p(x)y_p^2 + q(x)y_p + r(x) - \frac{1}{z^2}z' + 2p(x)y_p\frac{1}{z} + p(x)\frac{1}{z^2} + q(x)\frac{1}{z} = 0$$

$$-\frac{1}{z^2}z' + 2p(x)y_p\frac{1}{z} + p(x)\frac{1}{z^2} + q(x)\frac{1}{z} = 0 \qquad / (-z^2)$$

$$z' - 2zp(x)y_p - p(x) - q(x)z = 0$$

y se obtiene la ecuación lineal:

$$z' + (-2p(x)y_p - q(x))z = p(x)$$

Ejemplo

$$y' - xy^2 + (2x - 1)y = x - 1$$

Consideremos, $y_p = c$ reemplazando:

$$-xc^{2} + (2x - 1)c = x - 1$$

$$(-c^{2} + 2c)x - c = x - 1$$

$$-c^{2} + 2c = 1; -c = -1$$

$$(c - 1)^{2} = 0; c = 1 \Rightarrow c = 1$$

y se comprueba que $y_p=1$, es una solución particular de la ec.

Ahora, sea
$$y = 1 + \frac{1}{z} \Rightarrow y' = \frac{-1}{z^2}z'$$

$$\frac{-1}{z^2}z' - x\left(1 + \frac{1}{z}\right)^2 + (2x - 1)\left(1 + \frac{1}{z}\right) = x - 1$$

$$\frac{-1}{z^2}z' - x\left(1 + \frac{2}{z} + \frac{1}{z^2}\right) + (2x - 1)\left(1 + \frac{1}{z}\right) = x - 1$$

$$\frac{-1}{z^2}z' - x - x\frac{2}{z} - x\frac{1}{z^2} + 2x - 1 + 2x\frac{1}{z} - \frac{1}{z} = x - 1$$

$$\frac{-1}{z^2}z' - x\frac{1}{z^2} - \frac{1}{z} = 0$$

$$z' + z = x \quad /e^{\int dx} = e^x$$

$$z'e^x + ze^x = xe^x$$

$$(ze^x)' = xe^x$$

$$ze^x = \int xe^x dx$$

$$ze^x = xe^x - e^x + c$$

$$z = x - 1 + ce^{-x}$$

$$\frac{1}{1-y} = x - 1 + ce^{-x}$$

Ejemplo Un tanque de 120 litros de capacidad contiene 90 gramos de sal disueltas en 90 litros de agua. Hacia el tanque fluye salmuera con una concentración de $2\frac{\text{gramos}}{\text{litro}}$ a razón de $4\frac{\text{litros}}{\text{hora}}$. La mezcla sale a razón de $3\frac{\text{litros}}{\text{hora}}$. ¿Cuánta sal contiene el estanque cuando éste se llena?

Si, r_i es la razón a la cual ingresa flujo al tanque r_e es la razón a la cual sale flujo del tanque c_i es la concentración del flujo que ingresa al tanque c_e es la concentración del flujo que sale del tanque x = x(t) es la cantidad de soluto en el tanque en el instante t $x_0 = x(0)$ es la cantidad inicial del soluto V = V(t) es el volumen de la solución en el tiempo t $V_0 = V(0)$ es el volumen inicial de la solución. $\Delta t = variación$ de tiempo. $\Delta x = variación$ de la cantidad de soluto en el tanque en Δt .

entonces,
$$V = V_0 + (r_i - r_e)t$$

 $\Delta x = x(t + \Delta t) - x(t)$
 $c_e = \frac{x(t)}{V(t)}$

luego,

$$\Delta x = (r_i \times c_i)\Delta t - (r_e \times c_e)\Delta t$$

$$x(t + \Delta t) - x(t) = (r_i \times c_i)\Delta t - \left(r_e \times \frac{x(t)}{V(t)}\right)\Delta t$$

$$\frac{x(t + \Delta t) - x(t)}{\Delta t} = (r_i \times c_i) - r_e \times \frac{x(t)}{V(t)} / \Delta t \xrightarrow{\Delta t \to 0} 0$$

$$x'(t) = (r_i \times c_i) - r_e \times \frac{x(t)}{V(t)}$$

usando los datos del ejercicio:

$$x' = 4 \times 2 - 3 \times \frac{x}{90 + (3 - 2)t}$$

$$x' + \frac{3}{90 + t}x = 8 \quad /e^{\int \frac{3}{90 + t}dt} = e^{3ln(90 + t)} = (90 + t)^3$$

$$(90 + t)^3 x' + \frac{3}{90 + t}(90 + t)^3 x = 8(90 + t)^3$$

$$(90 + t)^3 x' + 3(90 + t)^2 x = 8(90 + t)^3$$

$$((90 + t)^3 x)' = 8(90 + t)^3 \quad /\int dt$$

$$(90 + t)^3 x = 8 \int (90 + t)^3 dt$$

$$(90 + t)^3 x = 2(90 + t)^4 + c$$

$$x = 2(90 + t) + \frac{c}{(90 + t)^3}$$

considerando la condición inicial,

$$x_{0} = 90 \implies 90 = 2(90+0) + \frac{c}{(90+0)^{3}}$$

$$\Rightarrow -90 = \frac{c}{90^{3}}$$

$$\Rightarrow c = -90^{4}$$

$$x(t) = 2(90+t) - \frac{90^{4}}{(90+t)^{3}}$$

por otro lado el tanque se llenará cuando:

$$V = 120 \Rightarrow 90 + (3-2)t = 120$$
$$\Rightarrow t = 30$$

Por tanto, la cantidad de sal cuando se llena el tanque viene de:

$$x(30) = 2(90 + 30) - \frac{90^4}{(90 + 30)^3} = \frac{6465}{32} = 202,03125$$

Respuesta: 202, 03125 gramos de sal.