Chemie k maturitě

Stanislava Pojerová* 2020-2023

Abstrakt

Pouhý přepis zpracovaného materiálu paní učitelky RNDR
r. Stanislavy Pojerové. Původní materiál je souborem pro kvintu a sextu víceletého gymnázia a byl zpracován během pandemie Covidu 19 v letech 2020 a 2021.

Skripta v této podobě mají sloužit především studentům plánujícím maturitu z chemie.

^{*}Sazba: Matyáš Levíček

Obsah podle tématu

1	Úvo	od		4
2	Ato	m		5
	2.1	Erwin	Schrödinger	5
	2.2	Kvanto	ová čísla –	5
		2.2.1	Slupky, energetické hladiny (dráhy)	5
		2.2.2	Podslupky	5
		2.2.3	Tvary orbitů	5
	2.3	Výstax	bový princip	5
		2.3.1	Znázornění orbitů a elektronů	5
		Příklac		6
		2.3.2	Pravidla zaplňování orbitů	6
		2.3.2	Elektronové konfigurace podle výstavbového principu	6
		2.3.4	Zápis se vzácným plynem	6
		2.3.4 $2.3.5$	Elektronové konfigurace podle valenčních elektronů	6
	2.4		atomu	7
	2.4	Jadro	atomu	1
3	\mathbf{Prv}	kv		8
	3.1		vní podskupina - Alkalické kovy (tvoří hydroxidy)	8
		3.1.1	Vlastnosti	8
		3.1.2	Výroba	8
		3.1.3	Analytické důkazu - zbarvení plamene	8
		3.1.4	Reakce	8
		3.1.5	Hydroxidy (Louhy, "žíravé alkálie")	9
		3.1.6	Význam	9
		3.1.7	Poznámka	9
	3.2			10
	5.2	3.2.1		$10 \\ 10$
		3.2.1 $3.2.2$		$10 \\ 10$
		3.2.3	· · · · · · · · · · · · · · · · · · ·	$10 \\ 10$
		3.2.3 $3.2.4$	·	$10 \\ 10$
		3.2.4 $3.2.5$		11
		3.2.6	·	11 11
		3.2.0	FOZIIAIIIKA	ΙI
4	Rad	lioaktiv	vita	12
	4.1	Termír	ny	12
	4.2	Druhy	záření	12
	4.3	Poloča	s rozpadu T	12
		4.3.1	Úloha o poločasu rozpadu	13
	4.4	Rozpa	dové řady	13
		4.4.1	Příkad	13
	4.5	Umělá	radioaktivita	14
	4.6	Posuvo	ové zákoky	14
	4.7		· ·	14
		4.7.1	Transmutace	14
		4.7.2	Stěpení jader	15
		4.7.3	1	15
		4.7.4		15
		4.7.5	v	15
5	Che	mická		17
	5.1		V	17
	5.2	Kovale		17
		5.2.1	1	17
		5.2.2	Polárně kovalentní	17
		5.2.3	Iontová vazba	17
		5.2.4	Koordinačně kovalentní	17

	Dělení kovalentních vazeb podle počtu	
5.4	Štěpení vazeb	7
5.5	Kovová vazba	8
5.6	Charakteristika vazeb	18
5.7	Slavá vazebné interakce	18
	5.7.1 Van der Waalsovy síly	18
	5.7.2 Vodíkové můstky	18
	hledy	
6.1	Vitaminy	20

1 Úvod

Skripta pokrývají učivo nutné pro obstání u profilové zkoušky z chemie. Odvíjejí se od otázek k tomuto předmětu z kánonu Gymnázia Joachyma Barranda v Berouně.

Učivo je systematizováno v pořadí, které odpovídá výkladu na semináři Systematizace poznatků z chemie v oktávě na GJB.

Výše je však kromě obsahu také obsah seřazený podle maturitních otázek - doporučuji proto elekronickou podobu, která umožňuje mezi tématy skákat přes hyperlinky a výrazně tak zjednodušuje orientaci v materiálu.

2 Atom

2.1 Erwin Schrödinger

Rakouský fyzik (1889 - 1961)

Definoval <u>ORBIT = ORBITAL</u> jako místo s 96% pravděpodobností výskytu e⁻

Matematicky vyjádřil vlnovou funkci Ψ (psí)

Nositel Nobelovy ceny za fyziku 1933

2.2 Kvantová čísla

hlavní n $1-\infty$ (zatím 7) udává energii orbitu

 $\mathbf{vedlejší}$ l 0-(n-1) udává $\underline{\mathbf{tvar}}$ orbitu

magnetické m -l...0...+l udává počet orbitalů a jejich orientaci

spinové s $-\frac{1}{2} - \frac{1}{2}$ udává spin e⁻

2.2.1 Slupky, energetické hladiny (dráhy)

$$\begin{array}{ll} n=1\rightarrow K & n=3\rightarrow M \\ n=2\rightarrow L & n=4\rightarrow N \\ \vdots & \vdots & \vdots \end{array}$$

2.2.2 Podslupky

$$\begin{array}{l} l=0\rightarrow s \\ l=1\rightarrow p \end{array} \qquad \begin{array}{l} l=2\rightarrow d \\ l=3\rightarrow f \end{array}$$

2.2.3 Tvary orbitů

 $l=0 \rightarrow tvar orbitu s: kulově symetrický$

 $l=1 \rightarrow tvar orbitu p: "ležatá osmička"$

 ∞

 $l=2 \rightarrow tvar orbitu \ \mathbf{d}$: "čtyřlístek"

 $l=3 \rightarrow$ tvar orbitu $\mathbf{f} \colon$ "velmi složitý tvar"

2.3 Výstavbový princip

a) prostorovým tvarem: s, p, d, f

Příklad: Urči maximální počet e ve slupce N

$$\begin{array}{ll} N \Rightarrow n{=}4 \Rightarrow & 0(s) \Rightarrow m{=}0 \ (1 \ orbit) \\ & 1(p) \Rightarrow m{=}{-}1,\!0,\!1 \ (3 \ orbity) \\ & 2(d) \Rightarrow m{=}{-}2,\!-1,\!0,\!1,\!2 \ (5 \ orbity) \\ & 3(f) \Rightarrow m{=}{-}3,\!-2,\!-1,\!0,\!1,\!2,\!3 \ (7 \ orbity) \end{array}$$

Dohromady 16 orbitů * $2e^- = 32e^-$

...jelikož v každém orbitu mohou být 2 elektrony s opačným spinem (tzv. Pauliho vylučovací princip)

prázdný orbit = vakantní

2.3.2 Pravidla zaplňování orbitů

- 1. Pauliho vylučovací princip
- 2. Hundovo pravidlo: Nejprve se zaplňují orbity jedním e⁻ ⇒ nespárované e⁻ mají stejný spin Příklad: $3d^7$: $3 \mid \downarrow \uparrow \mid \downarrow \uparrow \mid \downarrow . \mid \downarrow . \mid \downarrow .$

Jedná se o tzv. DEGENEROVANÉ orbity (mají stejné n a l, liší se v m) ⇒ ⇒ orbity s nesjou degenerované, orbity p jsou 3x degenerované, orbity d 5x, f 7x

3. Výstavbový princip: nejprve se zaplňují orbity s nízkou energií \doteq v tomto pořadí: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 5d, 4f, 6p, 7s, 6d ...

4. Pravidlo n+l: Když je součet n+l stejný, zaplňují se provně orbity s nižší hodnotou n.

2.3.3 Elektronové konfigurace podle výstavbového principu

$$\underline{\underline{13}} \text{Al: } 1\text{s}^2, \, 2\text{s}^2, \, 2\text{p}^6, \, 3\text{s}^2, \, 3\text{p}^1 \text{ (součet } \text{e}^- = \underline{\underline{13}}\text{)} \\ \underline{\underline{26}} \text{Fe}^- \colon 1\text{s}^2, \, 2\text{s}^2, \, 2\text{p}^6, \, 3\text{s}^2, \, 3\text{p}^6, \, 4\text{s}^2, \, 3\text{d}^{\underline{7}} \text{ (součet } \text{e}^- = \underline{\underline{27}} \text{ - protože se jedná o záporný iont, má e}^- \text{ navíc!)}$$

2.3.4 Elektronové konfigurace podle předcházejícího vzácného(inertního) plynu - 8.hlps

2.3.4 Elektronové konfigurace podle předcházejícího vzácného(inertního) plynu - 8.
$$\underbrace{_{16}\text{S}\left[_{10}\text{Ne}\right]}_{16-10=6\text{e}^-}: 3\text{s}^2, 3\text{p}^4 \longrightarrow \mathbf{n} = \text{zároveň} \; \underline{\# \; \text{periody}} \; \text{ve které se prvek nachází (S je ve 3. řádku PSP.)}$$

Vždy se začíná orbitem s a pak další v pořadí výstavbového principu

$$\underbrace{_{35}Br\left[_{18}Ar\right]}_{35-18=17e^{-}}:4s^{2},3d^{10},4p^{5}$$

$$\underbrace{_{53}\mathrm{I}\left[_{36}\mathrm{Kr}\right]}_{57-36=17\mathrm{e}^{-}}:5\mathrm{s}^{2},4\mathrm{d}^{10},5\mathrm{p}^{5}$$

2.3.5 Elektronové konfigurace podle valenčních elektronů

Valenční vrstva(svéra, též hladina) je poslední od jádra pro daný atom

a) Konfigurace základních (hlavních) prvků (I.A - VIII.A):

Valenční e⁻ zaplňují ns a np. (Kontrola hlavního kvantového # = # periody)

Počet valenčních e = číslo skupiny ve které se prvek nachází. Například:

$$_{13}\mathrm{Al}:3\mathrm{s}^2,3\mathrm{p}^1:$$
 3 $\downarrow\uparrow$, 3 $\downarrow\downarrow$ \longleftarrow celkem 3 $\mathrm{e}^-\Rightarrow 3.\mathrm{hlavn\'i}$ podskupina $_{10}\mathrm{Ne}:2\mathrm{s}^2,2\mathrm{p}^6:$ 2 $\downarrow\uparrow$, 2 $\downarrow\uparrow$ $\downarrow\uparrow$ $\downarrow\uparrow$ \longleftarrow plné orbity = inertn\'i plyn

 $_{6}\mathrm{C}:2\mathrm{s}^{2},2\mathrm{p}^{2}:\quad 2\downarrow\uparrow,\ 2\downarrow\downarrow\downarrow\qquad\longrightarrow {}_{6}\mathrm{C}^{*}:2\mathrm{s}^{2},2\mathrm{p}^{2}:\quad 2\downarrow\downarrow,\ 2\downarrow\downarrow\downarrow\downarrow$

Uhlík se vyskytuje jako 2-vazný jen v CO (C=O), jinak je vždy 4-vazný

*= excitovaný stav \rightarrow e $^-$ přecházejí na vyšší energetické hladiny do nejbližšího vakantního(prázdného orbitu) v pořadí s \rightarrow p \rightarrow d \rightarrow f

b) Konfigurace přechodných prvků (skupiny B)

Valenční elektrony lezí v ns $^{0-2}, (n-1)d^{1-10} \ \longrightarrow tzv. \ \underline{d} \ prvky$

Jejich konfigurace není zcela pravidelná a často se od systému liší. Například:

 $_{29}\mathrm{Cu}:4\mathrm{s}^{1},3\mathrm{d}^{10}$ $_{24}\mathrm{Cr}:4\mathrm{s}^{1},3\mathrm{d}^{5}$

 $_{46}\text{Pd}:5\text{s}^{0},4\text{d}^{10}$ $_{23}\text{V}:4\text{s}^{2},3\text{d}^{3}$

c) Konfigurace vnitřně přechodných prvků (lanthanoidy, aktinoidy)

Prvky $\underline{f},$ kde valenční elektrony leží v ns $^2, (n-1)d^{0-2}, (n-2)f^{0-14}$

Tyto vrstvy jsou poznaménány značnýmy nepravidelnostmi v obsazování orbitů...

2.4 Jádro atomu

objev jádra: RUTHERFORD (1911-1920), planetární model apod. + objev protonu v jádře. Po něm provek $_{104}$ Rf(Rutherfordium) v PSP.

objev <u>neutronu</u> v jádře: THOMSON (1932)

$${}_{4}^{9}\text{Be} + {}_{2}^{4}\alpha \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}\text{n}$$

+ objevy dalších částic, které se dělí do skupin apod.: bosony, fermiony, hadrony, kvarky, piony

Jádro se skládá z protonů a neutronů - počet **protonů se uvání jako levý spodní index**, zatímco celkový počet částic v jádře(nukleonové číslo, **protony+neutrony**) **se uvádí v levém horním indexu**

3 Prvky

3.1 1. Hlavní podskupina - Alkalické kovy (tvoří hydroxidy)

H, Li, Na, K, Rb, Cs, Fr (radioaktivní, 1940)

"Helenu Líbal Na Kolena Robot Cecil Franc"

- $s \uparrow Z(protonové \#): \uparrow \underline{m}, \uparrow r, \downarrow elektronegativita, \downarrow t_t, \downarrow t_v$
- $ns^1 \downarrow \rightarrow "s^1 prvky"$
- vystupují jako elektropozitivní malá IE, malá elektronegativita, vlevo v Behetovově řadě.
- \bullet ox. č. ve sloučeninách I. \rightarrow jsou redukčními činidly

3.1.1 Vlastnosti

• stříbrolesklé měkké kovy s malou hustotou (Li, Na, K jsou lehčí než voda)

3.1.2 Výroba

elektrolýza tavenin halogenidů:

• $Na^+Cl^- \rightarrow na katodě^-$

3.1.3 Analytické důkazu - zbarvení plamene

Plamenové zkoušky

- Li karmínově
- Na žlutá
- K fialová

Jsou **VELMI reaktivní** \rightarrow výskyt <u>jen ve sloučeninách</u> Musí se uchovávat v inertním prostředí N_2 , petroleji... Sloučeniny:

- NaCl halit sůl kamenná
- KCl sylvín
- Na₂CO₃ soda
- \bullet NaHCO $_3$ jedlá soda
- K₂CO₃ potaš
- sloučeniny s NO₃ ledky (výbuch v Bejrůtu 2020)
- $\bullet\,$ Na
NO $_3$ ledek chilský

Výskyt v Zemské kůře Na: 2,4%, K: 2,6%

3.1.4 Reakce

1. s $H_2 \rightarrow HYDRIDY$: $2Na + H_2 \rightarrow 2NaH$

 $\begin{array}{lll} \text{2. s } \mathrm{O}_2 \rightarrow \mathrm{OXIDY:} & 4\mathrm{Li} + \mathrm{O}_2 \rightarrow 2\mathrm{Li}_2\mathrm{O} \\ \text{s } \mathrm{O}_2 \rightarrow \mathrm{PEROXIDY:} & 2\mathrm{Na} + \mathrm{O}_2 \rightarrow \mathrm{Na}_2\mathrm{O}_2 \\ \text{s } \mathrm{O}_2 \rightarrow \mathrm{HYPEROXIDY:} & \mathrm{K} + \mathrm{O}_2 \rightarrow \mathrm{KO}_2 \end{array}$

3. s $N_2 \rightarrow NITRIDY$: $6Li + N_2 \rightarrow 2Li_3N$ (jen Li)

4. s halogeny \rightarrow HALOGENIDY: $2Rb + Cl_2 \rightarrow 2RbCl$

5. s $H_2O \rightarrow HYDROXIDY$ (bouřlivě): $2K + 2H_2O \rightarrow 2KOH + H_2$

Jejich sloučeniny jsou často iontové, bazbarvé, rozpustné v H_2O

3.1.5 Hydroxidy (Louhy, "žíravé alkálie")

Leptají sklo, porcelán Výroba mýdel - zmýdelnění Jsou hydroskopické (přímají vzdušnou vlhkost):

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

Výroba: elektrolýza vodných ⊙ halogenidů: (H⁺ redukce na katodě⁻, Cl⁻ oxidace na anodě⁺)

$$H_2O \rightarrow H^+ + OH^-$$

$$NaCl \rightarrow Na^{+} + Cl^{-}$$

 $v\odot$ zůstává Na^+OH^- (Na se na katodě neredukuje \Longleftarrow postavení v Beketovově řadě) Síla hydroxidů roste s jejich Z (protonové #)

3.1.6 Význam

Li - výroba baterií (LiPo, LiFePo, LiIon), slouží při výrobě některých slitin

 \mathbf{Na} - redukční činidlo: $\mathrm{AlCl_3} + 3\mathrm{Na} \rightarrow \mathrm{Al} + 3\mathrm{NaCl}$

K, Na - biogenní prvky

- sodíková "pumpa"
- membránové potenciály šíření signálu v nervech

3.1.7 Poznámka

 \odot NaCl = solanka

Další dloučeniny:

- Na₂B₄O₇ · 10H₂O (**Borax**)
- NaCN
- Na_2SiO_3
- $K_2Cr_2O_7$
- KO₂ (hyperoxid draselný)
- K₃PO₄
- $Na_2SO_4 \cdot 10H_2O$ (Glauberova sůl)

3.2 2. Hlavní podskupina - Kovy alkalických zemin

Be, Mg, Ca, Sr, Ba, Ra (radioaktivní 1898 - manželé Marie a Peter Curie, smolinec) "Běžela Magda Canyonem, Srážela Banány Ramenem"

- s \(\tau \) Z(protonov\(\epsilon\) #): \(\tau \) m, \(\tau \), \(\psi \) elektronegativita
- $ns^2 \uparrow \downarrow \rightarrow "s^2 prvky"$
- elektropozitivní X+ \downarrow IE \rightarrow X II + 2e^-
- vystupují jako elektropozitivní (+II) malá IE, malá elektronegativita, vlevo v Beketovově řadě

3.2.1 Vlastnosti

- stříbrolesklé měkké kovy, kromě Be
- Be se nejvíce podobá Al, má amfotermní charakter!

3.2.2 Analytické důkazu - zbarvení plamene

Plamenové zkoušky

- Ca cihlová
- Sr karmínová
- Ba žlutozelená
- Mg silná záře (jako při řezání autogenem): $2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}$

Jsou reaktivní méně než prvky 1.hlps ⇒ výskyt ve sloučeninách:

- CaCO₃ vápenec (aragonit, sintr, mramor, travertin. kalcit...)
- \bullet CaF₂ fluorit = kazivec
- $BaSO_4$ barit
- MgCO₃ magnezit
- $CaCO_3 \cdot MgCO_3$ dolomit
- $CaSO_4 \cdot 2H_2O$ sádrovec (sádra: $CaSO_4 \cdot \frac{1}{2}H_2O$)

3.2.3 Výroba

- a) elektrolýza tavenin jejich halogenidů: Ca²⁺Cl₂ (Ca²⁺ redukce na katodě⁻)
- b) aluminotermie (Al je redukční činidlo): 3BeO + Al \rightarrow 3Be + Al₂O₃

3.2.4 Reakce

1. s
$$H_2 \rightarrow HYDRIDY$$
: $Ca + H_2 \rightarrow CaH_2$
2. s $O_2 \rightarrow OXIDY$: $2Ba + O_2 \rightarrow 2BaO$
s $O_2 \rightarrow PEROXIDY$: $Ba + O_2 \rightarrow BaO_2$ (peroxid barnatý!)
3. s $N_2 \rightarrow NITRIDY$: $3Sr + N_2 \rightarrow Sr_3N_2$
4. s $H_2O \rightarrow HYDROXIDY$: $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ (exotermická reakce) $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ (exotermická reakce) $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$

Sloučeniny Ca (stavebnictví)

$$\underbrace{\mathrm{CaCO_3}}_{\text{vápenec}} \xrightarrow[\text{pálené vápno}]{} \underbrace{\mathrm{CaO}}_{\text{pálené vápno}} + \mathrm{CO_2}$$

$$CaO + 2H_2O \rightarrow \underbrace{Ca(OH)_2}_{ha\S{e}n\acute{e}}$$
 vápno

$$\mathrm{Ca}\left(\mathrm{OH}\right)_{2} + \underbrace{\mathrm{CO}_{2} \downarrow}_{\mathrm{ze}\ \mathrm{vzduchu}} \ \rightarrow \ \mathrm{CaCO}_{3} + \mathrm{H}_{2}\mathrm{O}$$

...princip tvrdnutí malty

Podstata krasových jevů: Uhličitany jsou ve vodě nerozpustné, ale v přítomnosti ${\rm CO}_2$ (vzduch) se rozpouštějí:

$$CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Zpětná rekristalizace na ${\rm CaCO_3} = {\rm miner\'al} \; \underline{\rm sintr}$ - krápníky

- a) stalagnit ∧
- b) stalagtit V
- c) stalagnát spojený (..nenašel jsem vhodný znak x, btw proč všichni Češi znají krápníky, ale když se jich zeptáš na prvního prezidenta tak budou tupě čumět.)

3.2.5 Význam

Ca, Mg - biogenní prvky

Ca - kosti, zuby

Mg - součást molekuly chlorofilu

 $\bf Be$ - lehký tvrdý kov (o 30% lehční než Al), slitiny se používají pro výrobu nástrojů i raket, sloučeniny jsou toxické

3.2.6 Poznámka

Minerál beryl $[3BeO \cdot Al_2O_3 \cdot 6SiO_2]$

- oxidy smaragd(zelený) a akvamarín(modrý)

4 Radioaktivita

Uranové paprsky - objev Becquerel (1896) → ozáření fotografické desky (kámen **smolinec** z Jáchymova)

<u>Marie Curie Sklodowská</u> + manžel <u>Pierre Curie</u> - objev $_{84}$ Po (polonia) a $_{88}$ Ra(radia) \rightarrow paprsek = <u>radioaktivita</u> - V roce 1903 udělení Nobelovy ceny pro Marii, Piera a Becquerela K maturitě je třeba znát stručný životopis rodiny Curie a Sklodowských.

4.1 Terminy

- <u>IZOTOPY</u>: Stejné Z(protonové #), liší se počtem neutronů
 - př. ¹₁H (vodík, protium), ²₁H (deuterium), ³₁H (tritium)
 - -př. $^{12}_6\mathrm{C},\,^{13}_6\mathrm{C},\,^{14}_6\mathrm{C}$ (radioaktivní) \Rightarrow radiouklíkové datování (stanovení stáří organických materiálů)
 - př. $^{235}_{92}$ U, $^{237}_{92}$ U, $^{238}_{92}$ U atd.
- IZOBARY: Jiné Z, stejná A(nukleonové #) př. $^{40}_{20}$ Ca a $^{40}_{19}$ K
- <u>IZOTONY</u>: Stejný počet neutronů př. $^{12}_5\mathrm{B}$ a $^{13}_6\mathrm{C}$ (oba mají $7^1_0\mathrm{n})$

4.2 Druhy záření

 $\frac{4}{2}\alpha=\frac{4}{2}{\rm He}$ - alfa záření se šíří cca $\frac{1}{10}{\rm c}$ (rychlosti světla), zachytí se i listem papíru

β:

- \bullet $\beta^-=\frac{0}{-1}$ e (elektron) šíří se cca $\frac{9}{10}$ c, záchyt kovovými fóliemi (alobal)
- $\beta^+ = {0 \atop +1} e \text{ (pozitron)}$

 γ (gama) = elektromagnetické záření - proud fotonů, rychlost světla, záchyt olověnými deskami, betonem, zhoubné

4.3 Poločas rozpadu T

Lepší název je Poločas přeměny, jelikož né každá přeměna jádra musí být rozpadem (může se jednat třeba o emisy γ záření)

 $T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$, konstanta určující dobu, za kterou se rozpadne $\frac{1}{2}$ jader daného prvku \Rightarrow exponenciální graf. $T_{\frac{1}{2}}$ jednodlivých prvků zle najít v tabulkách:

- př. $^{14}_{6}\mathrm{C} \rightarrow \mathrm{T} \doteq 5.7$ tisíce let
- $\bullet\,$ př. $^{208}_{84}\mathrm{Po}\rightarrow\mathrm{T}\doteq2.9\mathrm{roku}$
- př. $^{209}_{84}$ Po \rightarrow T \doteq 103let
- $\bullet\,$ př. $^{210}_{84}\mathrm{Po}\rightarrow\mathrm{T}\doteq138.4\mathrm{dn}\acute{\mathrm{n}}$

4.3.1 Úloha o poločasu rozpadu

Víme, že při vzniku vzorku obsahoval 1 atom $^{14}_6\mathrm{C}$ na 10^{12} atomů uhlíku $^{12}_6\mathrm{C}$ (jelikož tento poměr je v organickém materiálu v atmosféře dlouhodobě stálý)

Při posledním měření bylo ve vzorku nameřen poměř 1 : 1.414 * $10^{12} = {}^{14}\text{C}$: 1.2 °C.

Poločas rozpadu uhlíku ¹⁴C je 5730let. Jak starý je vzorek?

- Původní koncentrace $^{14}C \dots c_p = (10^{12})^{-1} = 10^{-12}$
- Naměřená koncentrace $^{14}\mathrm{C}$... $c_{\mathrm{m}}=(1.414\times10^{12})^{-1}\doteq7.07\times10^{-13}$
- Poločas rozpadu T $_{\frac{1}{2}}=5730 \mathrm{let}$
- $\bullet\,$ Uplynulá doba od smrti vzorku ... t =?

$$\begin{split} c_m &= c_p \times \left(\frac{1}{2}\right)^{t \ \div \ T_{\frac{1}{2}}} \\ &7.07 \times 10^{-13} = 10^{-12} \times \left(\frac{1}{2}\right)^{t \ \div \ 5730} \\ &\frac{7.07 \times 10^{-13}}{10^{-12}} = \left(\frac{1}{2}\right)^{t \ \div \ 5730} \\ &\log_{\frac{1}{2}} \left(\frac{7.07 \times 10^{-13}}{10^{-12}}\right) = t \ \div \ 5730 \\ &t = \log_{\frac{1}{2}} \left(\frac{7.07 \times 10^{-13}}{10^{-12}}\right) \times 5730 \\ &t \doteq 2866 let. \end{split}$$

4.4 Rozpadové řady

Přirozené:

Umělá:

4.4.1 Příkad

Do které řady patří $^{234}_{92}$ U?

$$234 \div 4 = 58$$

$$34$$

$$\underline{2} \longleftarrow 4n + \underline{2} \, \Rightarrow \text{Uranová řada}$$

Uran234 patří do uranové řady, protože zbytek po dělení jeho A (nukleonového #) čtyřmi je 2.

4.5 Umělá radioaktivita

dcera <u>Irene Curie</u> + manžel <u>F.J.Curie</u> Vznik umělých radioizotopů (medicína, konzervace potravin, sterilizace materiálů...)

$$^{27}_{13}$$
Al + $^{4}_{2}$ $\alpha \longrightarrow ^{30}_{15}$ P + $^{1}_{0}$ n

$$^{238}_{92} + ^{1}_{0}n \longrightarrow ^{237}_{92}U + ^{1}_{0}n$$

Součet čísel na obou stranách se MUSÍ rovnat

proton: ${}^{1}_{1}p$

neutron: 1_0 n

elektron: $_{-1}^{0}$ e

pozitron: $_{1}^{0}$ e

deuterium: ${}_{1}^{2}D = {}_{1}^{2}H$

tritium: ${}_1^3T = {}_1^3H$

 $_{2}^{4}\alpha = _{2}^{4}$ He

 $\beta^{-} = _{-1}^{0} e$

 $\beta^+ = _1^0 e = pozitron$

4.6 Posuvové zákoky

Vytváří-li prvek:

- ${}^4_2\alpha \implies A 4, Z 2$
- $\beta^- \implies A, Z + 1$
- $\beta^+ \implies A, Z-1$

Příklad: Napiš produkty přeměn:

1. rozpadem α:

 $^{226}_{88}{\rm Ra} \ \to \ ^{4}_{2}\alpha \ + \ ^{222}_{86}{\rm Rn}$

2. rozpadem β^- :

 $^{32}_{15}{
m P} \, o \, ^{0}_{-1}{
m e} + ^{32}_{16}{
m X}$

3. rozpadem β^+ :

 ${}^{11}_{6}{}^{C} \rightarrow {}^{0}_{1}{}^{e} + {}^{11}_{5}{}^{X}$

4.7 Jaderné reakce

Musí být dodržen:

- Zákon zachování energie
- zákon zachování hybnosti
- zachování elektrického náboje
- zachování počtu nukleonů

Dělení: transmutace, štepení, fůze

4.7.1 Transmutace

Reakce při nichž se mění jádro prvku na jiné, které se liší maximálně o ${\bf 2}$ v ${\bf Z}$ a o ${\bf 4}$ v ${\bf A}$ Příklady:

$$^{209}_{83}\mathrm{Bi} \ + \ ^{4}_{2}\alpha \ \longrightarrow \ ^{211}_{85}\mathrm{Az} \ + \ 2^{1}_{0}\mathrm{n}$$

$$^{41}_{19}\mathrm{K} \; + \; ^2_{1}\mathrm{D} \; \longrightarrow \; ^{42}_{19}\mathrm{K} \; + \; ^1_{1}\mathrm{p}$$

$$^{10}_{5}$$
B + $^{1}_{0}$ n $\longrightarrow ^{7}_{3}$ Li + $^{4}_{2}$ α

14

4.7.2 Stěpení jader

Reakce při nichž se štěpí těžká jádra na (obvykle) 2 středně těžká jádra + neutron(y) + velké množství energie (v MeV - megaelektronvolt) Příklady:

$$^{235}_{92}\mathrm{U} \,+\, ^1_0\mathrm{n} \,\longrightarrow\, _{56}\mathrm{Ba} \,+\, _{36}\mathrm{Kr} \,+\, 3^1_0\mathrm{n}$$

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\longrightarrow {}_{54}$ Xe + $_{38}$ Sr + $^{1}_{0}$ n

Jádra se štěpí s určitou pravděpodobností

4.7.3 Řetězová reakce

Potvrzeno na jaře 1939

Ze štěpení jádra atomem se uvolňují další neutrony, které štěpí další atomy atd.

Jako palivo se běžně používá izotop $^{235}_{92}\mathrm{U},$ občas také $^{239}_{94}\mathrm{Pu}$ (plutonium)

Řetězová štěpná reakce je kromě atomových elektráren také podstatou jaderné bomby.

ENRICO FERMI 2.12.1942 poprvé uskutečnil <u>řízenou řetězovou reakci</u> (v jaderném reaktoru na hřišti univezity v Chicagu). Fermi je nositelem Nobelovy ceny za z roku 1938 za přípravu 1. transuranu p Prvku s vyšší protonovým číslem než uran) $\mathbf{Z} = \mathbf{93} \to \mathbf{Np}$

4.7.4 Projekt Manhattan

"Otec" atomové bomby: Robert Oppenheimer

Dále na ní pracovali například: Fermi, Bohr, Einstein, Feinman, Meitner (žena), Heisenberg, Landau,

Kurčatov, Gamow

První užití jaderné zbraně: červenec 1945 Hirošima, poté Nagasaki

Termíny:

- \bullet obohacování uranu izotopem $^{235}_{92}\mathrm{U}$ (mezinárodní dohody zakazují nad 5%)
- kritické množství (critical mass) $^{235}_{92}$ U je zhruba 44.5kg (koule o průměru 16.8cm)
- atomový reaktor
- úložiště jaderného odpadu
- $\underline{\text{moderátor}}$ v jaderné elektrárně: snižuje rychlost volných neutronů: grafit, parafin, D_2O , sloučeny boru
- Těžká voda = D_2O voda obsahující izotop vodíku Deuterium $\binom{2}{1}D$) má jiné fyzikální i chemické vlastnosti. M = 20, jiné body tání a mrznutí... Organizmy v ní nepřežívají

Jaderné elektrárny:

- Jaderná elektrárna Dukovany (ČR, v provozu od 1985)
- Jaderná elektrárna Temelín (ČR, v provozu od 2002)
- Jaderná elektrárna Chornobyl (Černobyl) na Ukrajině, velká havárie 26.dubna 1986 výbuch 4.
 jaderného bloku během experimentů s jeho odstavováním. Poblíž (3km) leží město Pripjať

4.7.5 Jaderná fůze

Též jaderná syntéza, termonukleární reakce

Skládání jader na jádra těžší.

Samovolně probíhá ve hvězdách, například ve Slunci (zatím na He).

Uvolňuje se obrovské množství energie. Spývají jádra bez elektronového obalu

Příklady:

$$^2_1\mathrm{D} \,+\,^2_1\mathrm{D}\,\longrightarrow\,^3_2\mathrm{He}\,+\,^1_0\mathrm{n}$$

$$\begin{array}{c} {7 \atop 3} \mathrm{Li} \ + \ {1 \atop 1} \mathrm{H} \ \longrightarrow \ 2_{2}^{4} \mathrm{He} \\ \\ {7 \atop 3} \mathrm{Li} \ + \ {1 \atop 1} \mathrm{D} \ \longrightarrow \ 2_{2}^{4} \mathrm{He} \ + \ {1 \atop 0} \mathrm{n} \\ \\ {1 \atop 1} \mathrm{D} \ + \ {1 \atop 1} \mathrm{T} \ \longrightarrow \ {2 \atop 1} \mathrm{He} \ + \ {1 \atop 0} \mathrm{n} \end{array}$$

Reaktory jsou v US a na jihu Francie. Zatím neumíme fůzy řídit.

Výhody: dostatek surovin (D,T), není odpad - jen netečné He, není radioaktivní (jen 3_1 Y), bezpečnost - zdá se, že se jedná o ideální zdroj energie.

5 Chemická vazba

Atomy se k sobě přibližují na optimální vzdálenost až se překryjí jejich valenční orbity a vznikne vazebný elektronový pár.

 $\underline{P\check{r}i~vzniku}$ chemické vazby se energie uvolňuje \to Stabilita

5.1 Znázornění chemických vazeb

- 1. prostorovým tvarem orbitů
- 2. valenční čárkou
- $H + H \longrightarrow H_2$
- Н—Н

3. rámečky

- $H + H \longrightarrow H_2$
- \rightarrow \leftarrow

5.2 Kovalentní vazba

- společně sdílejí e

ELEKTRONEGATIVITA je schopnost atomu přitahovat vazebné e-.

V periodách roste, ve sloupcích klesá

Jedná se o bezrozměrné číslo (nemá jednotku)

5.2.1 Nepolárně kovalentní

Rozdíl elektronegativit mezi vázanými atomy od 0 - 0,4

5.2.2 Polárně kovalentní

Rozdíl elektronegativit mezi vázanými atomy od 0,4 - 1,7 Například $H^{\delta+}$ — $Cl^{\delta-}$ \longleftrightarrow $\delta=$ delta, částečný, parciální náboj

5.2.3 Iontová vazba

Rozdíl elektronegativit mezi vázanými atomy 1,7

Příklad: KBr \longrightarrow K⁺ + Br⁻ nebo NaCl \longrightarrow Na⁺ + Cl⁻

5.2.4 Koordinačně kovalentní

Vazba <u>DONOR-AKCEPTOR</u> - vazba mezi donorem (dárcem) a akceptorem (příjemcem) elektronového páru

Například: NH₄⁺, H₃O⁺

5.3 Dělení kovalentních vazeb podle počtu

Vazba jednoduchá

Vazba σ (sigma), leží na spojnici středů vázaných atomů: $\odot -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!-$

Násobné vazby

- a) v. dvojná: jedna vazba σ a jedna vazba π (pí), ležící mimo spojnici středů jader
- b) v. trojná: jedna vazba σ a DVĚ vazby π
- c) Teoreticky existují i více násobné vazby, v běžné chemii se však nevyskytují

5.4 Štěpení vazeb

1. <u>Homolitické</u> \longrightarrow RADIKÁLY (částice s volným e⁻)

Například: CH_3 — CH_3 \longrightarrow H_3C \cdot \cdot CH_3

2. Heterolitické — IONTY (jedna částice přebere celý elektronový pár)

Například: Na—Cl → Na⁺ + Cl⁻

5.5 Kovová vazba

Tzn. že jedna vazba Li—Li je tvořena $\frac{1}{4}\mathrm{e}^{-}$

5.6 Charakteristika vazeb

Vazba má svojí:

- <u>DÉLKU</u> (v nm), nejdelší je vazba jednoduchá, nejkratší pak trojná.
- <u>VAZEBNOU ENERIGII</u> (v kJ/mol), je to stejná energie, která se uvolní při vziku vazby. Největší má vazba trojná, nejmenší jednoduchá.

5.7 Slavá vazebné interakce

 $\doteq 10 x$ slabší než kovalentní vazba. Stojí na interakci DIPÓL—DIPÓL

5.7.1 Van der Waalsovy síly

Například v grafitu, v nukleových kyselinách a bílkovinách.

5.7.2 Vodíkové můstky

H—m

Vazba mezi vodíkem a elektronegativním prvkem (například N, O, F...) Stabilizují molekuly, ovlivňují jejich chemické vlastnosti. Vyskytují se v H₂O, HF, bazích nukleových kyselin, bílkovinách, NH₃ atd.

Ovlivňování ostatních molekul

Molekuly vody se navzájem ovlivňují

6 Přehledy

6.1 Vitaminy

Název	Skupina	Denní dávka	Zdroj	Význam	Projevy nedostatku	Poznámka
A (retinol)	tetraterpen	1.8-2mg	mléčný tuk, vaječný žloutek, játra, rybí tuk i maso, barevná ze- lenina	zajišťuje vidění, tvoří oční purpur, podílí se na tvoření bílkovin v kůži a ve sliznicích	šeroslepost, rohovatění kůže a sliznic, ucpávání vývodů žláz, postižení skloviny i zuboviny	nebezpečí hypervita- minózy z předávkování - bolest hlavy, koliky, průjmy
B (thiamin)	heterocykl	1.5mg	obiloviny(zejména klíčky), kvasnice, játra, vepřové maso	zasahuje především do metabolismu cukrů, zejména v centrálním nervstvu a ve svalech; podporuje činnost trávicího ústrojí	zvýšená únavnost, sklony ke křečím svalstva, srdeční poru- chy, trávicí poruchy, dispozice k zánětům nervů až onemocnění beri-beri	
B ₁ (riboflavin)		1.8mg	mléko, maso, kvasnice	jako účinná složka tzv. žlutého dýchacího fermentu je v každé buňce, kde se účastní oxidace živin	zardělost a palčivost jazyka, zduření rtů, bolavé koutky, po- ruchy sliznice hltanu a hrtanu	v 1 litry mléka je okolo 1mg
B ₃ (kys. pantotenová)	deriv. kys. máselné	7-10mg	játra, kvasnice, hrách, maso, mléko, vejce	účast v oxidoreduktázách a umožňuje syntézu bílkovin+ jako koenzym A má centrální postavení v metabolizmu	různé degenerace; u člověka pálení chodidel	je ve všech tkáních
B ₆ (pyridoxin)		2mg	kvasnice, obilné klíčky, mléko, luštěniny	podporuje účinek vitaminů B_1 a B_3	pomalé hojení zánětů, zhoršení regenerace sliznic	
B ₁₂ (kobala- min)		0.001mg	játra, maso, činností bakterií vznik ve střevech	nutný pro udržení normální krvetvorby	"zhoubná" chudokrevnost	ke vstřebávání vita- minu B ₁₂ je nutná přítomnost tzv. vnitřního faktoru
Kys. nikotinová	heterocykl	15-20mg	játra, ledviny, maso, kvasnice, houby	klíčová pro syntézu ribonuk- leových kyselin a bílkovin	záněty kůže, celková sešlost, poškození mozku	
Kys. listová	heterocykl	0.5-1mg	listová zelenina	zasahuje do metabolismu ami- nokyselin, je nutná pro tvorbu červených krvinek	chudokrevnost	

Název	Skupina	Denní dávka	Zdroj	Význam	Projevy nedostatku	Poznámka
C (kys. askorbová)	Sacharid deriv.	50-70mg	syrové ovoce a zelenina	katalyzuje oxidaci živin, udržuje dobrý stav vaziva a chrupavek, podporuje tvorbu protilátek	únava, snížená odolnost proti nakažlivým nemocem, krvácení, vypadávání zubů; při avitaminóze vzniká smrtelné onemocnění kurděje	předávkování C vitaminu může být i zdravý škodlivé
D (vit. antira- chitický)	steroid	400m.j.	rybí tuk, vzinká po ozáření UV v malém množství i v kůži	podílí se na řízení metabolismu Ca a P v těle	ztrácí-li organismus Ca a P, snaží se jej nahradit z kostí, za vývoje vzniká křivice, v dospělosti měknutí kostí, rachitis	hypervitaminóza D vede k ukládání Ca v ledvinách, srdci, stěnách cév a může ohrozit život
E (tokoferol)	deriv. to- kolu	5-20mg	obilné klíčky	podporuje činnost pohlavních žláz a správný průběh těhotenství	některé gestační poruchy	
H (Biotin)	heterocykl	0.15-0.3mg	kvasnice, játra, ledviny, bi- osyntéza ve střevech	je ve všech živočišných buňkách, podporuje jejich růst a dělení	záněty kůže, atrofie papil jazyka, unavenost, deprese, svalové bo- lesti, nechutenství	
K (vit. antihe- moragický)	deriv. naf- tochinonu	1mg	listové zele- niny, kvasnice, v tlustém střevě je tvořen činností mikroorganismů	oxidoreduktáza, tvorba pro- tisrážlivé látky protrombinu	krvácení do tkání a tělesných dutin, krvácení do mozku může zapříčinit smrt	