7.2-1.

Use the substitution method to prove that the recurrence $T(n) = T(n-1) + \Theta(n)$ has the solution $T(n) = \Theta(n^2)$, as claimed at the beginning of Section 7.2.

Proof.

The substitution method requires us to show that $T(n) \le c n^2$ for an appropriate choice of the constant c > 0. We start by assuming that this bound holds for all positive m < n, in particular for m = n - 1, yielding $T(n - 1) \le c (n - 1)^2$. Substituting into the recurrence yields

$$T(n) \leq c(n-1)^{2} + \Theta(n)$$

$$\leq c(n-1)^{2} + dn$$

$$= cn^{2} - 2cn + c + dn$$

$$\leq cn^{2}$$

where the last step holds as long as $0 \le d \le c$ and $n \ge 1$. Therefore the recurrence $T\left(n\right) = T\left(n-1\right) + \Theta\left(n\right)$ has the solution $T\left(n\right) = \Theta\left(n^2\right)$.

^{*.} Creative Commons ② 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com