Problem 8

${\bf Problem}$

In equilateral $\triangle ABC$, points D, E, F are the midpoints of AB, AC, BC, respectively. G is a point of FC. Show that FG = EH if $\triangle DGH$ is an equilateral triangle as well.

Solution

Connect DE, DF. Since $\triangle ABC$ is an equilateral triangle, $DE=\frac{1}{2}BC=\frac{1}{2}AC=DF$. DE//BC, DF//AC. $\angle EDF = \angle ACB = 60^{\circ}.$

Since $\triangle DGH$ is an equilateral triangle, $DH = DG, \angle HDG = 60^{\circ}$. Thus $\angle FDG = 60^{\circ} - \angle GDE = \angle EDH$. So $\triangle FDG \cong \triangle EDH$. FG = EH.