课题组组会-练习11

楼嘉霖

苏州大学数学科学学院

2024年1月3日

在不考虑源项的情况下,Navier-Stokes 方程可写作

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial F_j}{\partial x_j} = \frac{\partial G_j}{\partial x_j}$$

其中

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho v_i \\ \rho E \end{pmatrix}, \quad F_j = \begin{pmatrix} \rho v_j \\ \rho v_i v_j + p \delta_{ij} \\ v_j (\rho E + p) \end{pmatrix}, \quad G_j = \begin{pmatrix} 0 \\ \tau_{ij} \\ v_l \tau_{lj} + q_j \end{pmatrix}.$$

请利用以下参考量,推导无量纲形式下的 Navier-Stokes 方程组。

长度	$l_{ m ref}$	L	$x_i^* = \frac{x_i}{l_{\text{ref}}}$
温度	$T_{ m ref}$	T_{∞}	$T^* = \frac{T}{T_{\infty}}$
压强	$p_{ m ref}$	p_{∞}	$p^* = \frac{p}{p_{\infty}}$
密度	$ ho_{ m ref}$	$ ho_{\infty}$	$\rho^* = \frac{\rho}{\rho_{\infty}}$
速度	$V_{ m ref}$	$\sqrt{rac{p_{ m ref}}{ ho_{ m ref}}}$	$v_i^* = \frac{v_i}{V_{\text{ref}}}$
能量	E_{ref}	V_{∞}^2	$E^* = \frac{E}{E_{\text{ref}}}$
时间	$t_{ m ref}$	$rac{l_{ m ref}}{V_{ m ref}}$	$t^* = rac{t}{t_{ m ref}}$
黏性系数	$\mu_{ m ref}$	μ_{∞}	$\mu^* = \frac{\mu}{\mu_{\infty}}$
导热系数	$k_{ m ref}$	k_{∞}	$k^* = \frac{k}{k_{\infty}}$
雷诺数	Re	$rac{ ho_{ m ref}V_{ m ref}l_{ m ref}}{\mu_{ m ref}}$	
普朗特数	Pr	$\frac{\mu_{\rm ref}\gamma R}{k_{\rm ref}(\gamma-1)}$	