<u>use</u> 20		F105 VOV F1
first part of LE	eccupes: finish 1	EC 1B,
SAUENT POUTS		
· INVARIANCE	+ CONTRIANCE	
4D FOURITER	TRANSFORM : K	Insingumei X:
Eikox 4-vectors (actually du	e e i Et e i K. x s al vec plane	a basis of
1 vector		from 33-35-55
	PLES @ E= #	
PESTORING	a c: E: =	ck (¿)2
e spect	AND AS PLANE WAVE	s travecing
WE COULD WEIRD, C	a encharaci exhanaed in	J C. K.X) 1 SOWECHING
pry monty	muss manifest Lorentz	, MV. EF4K-X
→ ALTHIS TO DER	PUE [A(x,x)] SCA	portues my 95
Anco = 1	9x1 9(xx) 9L(x)	
Ed NADAML EN PAR	the index	
IMACI ANT		
	G(x,x1) = (3(x-x1)

 $\frac{(v_1)}{g(x^{1})} = \frac{(v_1)}{g(x^{1})}$ $= \frac{(v_1)}{(v_1)} = \frac{(v_1)}{(v_1)}$

" ACTUALLY, TO BE COMPLETE,

Am(x) = 19,x, 0 (x,x,) fu(x) + 128 - (x) + cC - (x)

8 ancion 20

(HowbeenEars)

BUT: FINDING FRED SOLUTIONS CAN BE DIFFICULT

FLATLAND: what if we had EMM ZII DIM?

MHUL CHANGES; 3: (35)3-(37)3-(37)5

10 (3F1)D: 4=-41.8(C)

(2)2 (SPATERAL)

IN (24) D & lay /1 = 2128(4)

(COULOMS POT)

ALSO: BINDX AND DX BR RD
TURNS OUT B IS A SCALAR.

why: Fund (OFEE) VS. FUE (OFEE)

(DIFFERENTIAL 2-FORM)

FOUNDING SAME STEPS TO FIND GREATS PUNCTION IN (341)D,

mony ways to do dk do dE. order doesn't change result, but can simplify work.

14B/E-E

(,

given PLOSN of light @ (0,0),
persistence of PLOSN continues
But Ou ick t!

A CLEUSE / INSIGHTFUL TRICK

DIMENCIONAL REDUCTION

CLAIM: Gray (x,y,t) = 1.0 Gray (x,y,z,t) dz

PERCUY AX, MY DE, EX X': 0 MACGINE!

A STERON (E, E) GIFT OF GIVES 27 8 (Kg)

INTEGRAL

GIVES 27 8 (Kg)

INTEGRAL

GAN (E, Kx, ky, 0)

PAUGISEU IN (241) DIN PAUGISE

DIMENCISEU IN (241) DIN PAUGISE

TURTIFE?: D311 G1311 = 124K e7kt (62-Kx2-Ky2-K2) G1311 (5 15)

SIMILKELY: G2H = E2-Kx2-Ky2 BUT: G341 (E, Kx, Ky, D) is precised this! 1 de G1341 = Q 241 MREANE IN GISTI THEN: G21 (x,y t) = 47 J. 00 , [72+22 - 6) d8 X2+45 Jan 230135 LEWINDER: S(E(S)) = = 1/1(5-)/8(5-5-) f1(5) = 155155 for 5 = 7 1 F3 - 53 Gan (x,y,t) = 47 /122 (121 + 12-1)

277 JE2- Ville S

Coll 65/F

MOMINIM!

Gan (x,y,t)= (Gan (x,y,z,t) de

RECORL: $(1 = \int 9/4^2)$, (2(x-x)) (2x) (2x-x) (3x) (3x)

THE THIRD DIMENSION? LEAGUE MED

Mo: 20 MAR CHARRE ON ELLIPET RUND

contributions in 312 dimension concel each ofher.

DIMENSION, THE LIE LEVEN MOD UN EXCENTED IN EXCENT.