CPE201 HW 2 (100 points)

Answer all questions completely. Put a box around the final solution. Put your name on it. Show your work.

By hand:

1. Convert the following numbers to floating point representation (represented as 4 hex bytes).

a. 123.9876

Sign is positive = 0

Convert whole number to binary

123 – 64	=	59	26
59 – 32	=	27	25
27 – 16	=	11	24
11-8	=	3	2 ³
3 – 2	=	1	2 ¹
1-1	=	0	2 ⁰

Then the whole number can be represented as:

0111 10112

This is 7 bits (subtract 1 for the leading 1), so the max amount of bits for the fractional part is 23 - 6 = 17

Convert fractional number to binary

0.9876 – 0.5	=	0.4876	2-1
0.4876 – 0.25	=	0.2376	2 ⁻²
0.2376 – 0.125	=	0.1126	2 ⁻³
0.1126 - 0.0625	=	0.0501	2 ⁻⁴
0.0501 - 0.03125	=	0.01885	2 ⁻⁵
0.01885 - 0.015625	=	0.003225	2 ⁻⁶
.003225001953125	=	0.001271875	2 -9
0.001271875 - 0.0009765625	=	0.0002953125	2 ⁻¹⁰
0.0002953125 - 0.000244140625	=	0.000051171875	2 ⁻¹²
0.000051171875 - 0.00030517578125	=	0.000020654296875	2 ⁻¹⁵
0. 000020654296875- 0.0000152587890625	=	0.0000053955078125	2 ⁻¹⁶
0. 0000053955078125- 0.00000381469726562	25=	0.000001580810546875	2 ⁻¹⁸

Then the fractional number can be represented as: $0.1111\ 1100\ 1101\ 0011\ 0_2$

Then the entire number can be represented as 111 1011.1111 1100 1101 0011 0

Convert this to an exponent representation

1.1110 1111 1111 0011 0100 110 x 2⁶

$$E - 127 = 6$$

 $E = 133_{10} = 2^7 + 2^2 + 2^0 = 1000 0101$

Create the entire floating-point representation 0 1000 0101 1110 1111 1111 0011 0100 110

Regroup to 4 bit groups to convert to hex 0100 0010 1111 0111 1111 1001 1010 0110 0x4 0x2 0xF 0x7 0xF 0x9 0xA 0x6

Then the floating-point number is 0x42 F7 F9 A6

b. 3.141

Sign is positive = 0

Convert whole number to binary

$$3-2$$
 = 1 2^1
1-1 = 0 2^0

Then the whole number can be represented as:

0000 00112

This is 2 bits (subtract 1 for the leading 1), so the max amount of bits for the fractional part is 23 - 1 = 22

Convert fractional number to binary

0.141 – 0.125	=	0.016	2 ⁻³
0.016 - 0.015625	=	0.000375	2-6
0. 000375 - 0.000244140625	=	0.000130859375	2 ⁻¹²
0. 000130859375- 0.0001220703125	=	0.0000087890625	2 ⁻¹³
0. 0000087890625- 0.00000762939453125	=	0.00000115966796875	2 ⁻¹⁷
0. 00000115966796875- 0.00000095367431640625	=	0.00000020599365234375	2 ⁻²⁰
0.00000020599365234375-0.000000119209289550	78125=	0.00000008678436279296875	2 ⁻²³

Then the fractional number can be represented as: $0.0010\ 0100\ 0001\ 1000\ 1001\ 00_2$

Then the entire number can be represented as 11. 0010 0100 0001 1000 1001 00

Convert this to an exponent representation

1. 1001 0010 0000 1100 0100 100x 2¹

E - 127 = 1

$$E = 128_{10} = 2^7 = 1000\ 0000$$

Create the entire floating-point representation 0 1000 0000 1001 0010 0000 1100 0100 100

Regroup to 4 bit groups to convert to hex 0100 0000 0100 1001 0000 0110 0010 0100 0x4 0x0 0x4 0x9 0x0 0x6 0x2 0x4

Then the floating-point number is 0x40 49 06 24

- 2. Convert the following English statements to Boolean statements after picking variables.
 - a. I'll go to dinner with Terry as long as Terry brings his wife, otherwise George has to come too.

F = I go to dinner

T = Terry goes to dinner

W = Terry's wife goes to dinner

G = George goes to dinner

F = TW + TG

OR

F = T(W + G)

b. I'll go to the store if I need to buy milk and eggs, or tp, or ice (as long as I have soda).

M = I need to buy milk

E = I need to buy eggs

T = I need to buy tp

I = I need to buy ice

S = I have soda

F = ME + T + IS

3. Evaluate the following Boolean statement with the given inputs

$$F = AB' + A'C + BD$$

a.
$$A = 0$$
, $B = 0$, $C = 1$, $D = 0$

Substituting the values into the equation

00' + 0'1 + 00

Simplifying

01 + 11 + 00

0 + 1 + 0

1

b.
$$A = 1$$
, $B = 1$, $C = 0$, $D = 0$

Substituting the values into the equation 11' + 1'0 + 10 Simplifying 10 + 00 + 10 0 + 0 + 0 0

c.
$$A = 1$$
, $B = 0$, $C = 0$, $D = 1$

Substituting the values into the equation 10' + 1'0 + 01Simplifying 11 + 00 + 011 + 0 + 0

4. What inputs are needed in order to get the following Boolean statement to evaluate to TRUE? F = B'C + AD + CD' + B

Α	В	С	D	В'С	AD	CD'	F
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	1	0	1	1
0	0	1	1	1	0	0	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	1
0	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	1
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	1
1	1	0	0	0	0	0	1
1	1	0	1	0	1	0	1
1	1	1	0	0	0	1	1
1	1	1	1	0	1	0	1

There are 13 out of 16 possible input combinations that will make the output TRUE.

With a calculator:

5. Convert the following message to ASCII encoding (using an ASCII table), then calculate the 8-bit checksum for the message: "It's under the sauce".

I t ' s _ u n d e r _ t h e _ s a u c e 0x49 0x74 0x27 0x73 0x20 0x75 0x6E 0x64 0x65 0x72 0x20 0x74 0x68 0x65 0x20 0x73 0x61 0x75 0x63 0x65

Use a hex calculator to get the sum of all 20 numbers Sum = 0x727

Calculate the checksum by taking the 2's complement of 0x2C 0010 1100 \Rightarrow 1101 0011 \Rightarrow 1101 0100 \Rightarrow 0xD9

6. Show that the checksum from problem 5 is correct.

Take the sum (truncate it to 8-bits) and add the checksum and the result should be zero $0x727 + 0xD9 \rightarrow 0x27 + D9$

 $0010\ 0111 \\ + 1101\ 1001 \\ 1\ 0000\ 0000$

Throw away the carry bit that is in the position for the 9th bit to get an 8-bit results, which is zero.