



# **Enhancing Code Generation in Interactive Systems through Additional User Information**

## Yifan Liu <sup>1</sup> and Eldan Cohen <sup>2</sup>

<sup>1</sup> Department of Computer Science, <sup>2</sup> Department of Mechanical & Industrial Engineering, University of Toronto

## **BACKGROUND**

- LLMs have demonstrated strong performance in generating Python code from natural language instructions [1]
- Previous research focused on enhancing accuracy in single-turn systems: multi-agent [2] or prompt engineering [3]
- A lack of research on how additional information provided by software engineers after initial failure can improve generation in an interactive, multi-turn system

#### **Research Question**

How do different types of additional user information impact the correction of generated code with various causes?

We categorize the causes of incorrect code generation into two types:

- prompting issues: initial user instructions are unclear (see Figure 1)
- generation issues: LLMs produce errors despite clear instructions (see Figure 2)



#### Figure 1: Prompting Issue



Figure 2: Generation Issue

## **METHODOLOGIES**

The system operates as follows (see Figure 3):

- The LLM generates the initial code solution based on a user input
- The user provides feedback on the solution's correctness and additional information for regeneration (simulated in our experiment as illustrated below)

The additional user information is defined as follows:

- · Self-reflection [a]: LLM analyzes the reasons for incorrectness independently
- Usage Examples [b]: Correct input output pairs
- Failure Examples [c]: Failed input output (expected / actual) pairs
- Incorrect lines [d]: Incorrect lines identified by the user
- Incorrect reasons [e]: Reasons for the incorrectness provided by the user
- · Hints [f]: Implementation hints from the user
- Prompt Clarifications [g]: Clarifications on unclear prompt parts provided by the user

Note: [a], [b], [c] apply to all issue types. [d], [e], [f] are specific to generation issues, and [g] is specific to prompting issues. [b], [c] involve selecting a fixed number of examples from the dataset, while [d], [e], [f], [g] are curated manually by human labelers.

## **EXPERIMENTS & RESULTS**

#### **Experiment Setups:**

- · Conducted experiments on the HumanEval dataset [1], with 164 Python coding questions
- Generated two paraphrases to enrich the dataset and ran each three times for robustness Reported average percentage of successful correction of three runs across different information types / causes of incorrect generations
- Tested different number of usage / failure examples and different combination of [d], [e], [f]
  (for generation issue only)

#### Results:

|                                          | [1]   | [2]   | [3]   | [4]   | [5]   | [6]   | [7]   |
|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Prompting Issues<br>(sample size = 45)   | 26.7% | 46.7% | 60.0% | 1     | 1     | 1     | 73.3% |
| Generation Issues<br>( sample size = 59) | 35.6% | 47.5% | 62.7% | 52.5% | 62.7% | 66.1% | /     |

Table 1: Average percentage of successful corrections across three runs. The best results are highlighted. "/" indicates the information type is not applicable







Figure 3: Diagram of the interactive system for code generation and correction

## DISCUSSIONS

- **Prompting issues**: clarifications on prompt are most effective. Further work could investigate different forms of clarifications & how to prompt user for these
- Generation Issues: implementation hints are most effective. Adding incorrect lines / reasons may help.
   Need to test different level of code understanding
- Usage / Failure examples are simple yet effective, failure examples are slightly better. Providing ~5 usage examples or ~2 failure examples are the optimal.
- Future work could develop an automated system to guide users on the additional information needed based on the conclusions drawn
- Need a simple way of interaction to gather desired information that align with ideal simulated ones

### REFERENCES

[1] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

[2] Huang, D., Bu, Q., Zhang, J. M., Luck, M., & Cui, H. (2023). Agentcoder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010.

[3] Denny, P., Kumar, V., & Giacaman, N. (2023, March). Conversing with copilot: Exploring prompt engineering for solving cs1 problems using natural language. In *Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. J* (pp. 1136-1142).