

Deep Learning in Medical Image Analysis: Techniques for Classification and Segmentation

Tutorial of EE4211

Department of Electrical Engineering
City University of Hong Kong
06/11/2020

Outline

WCE Image Classification

- Densely Connected Convolutional Networks (CVPR 2017)
- Triple ANet: Adaptive abnormal-aware attention network for WCE image classification (MICCAI 2019)

COVID-19 CT Image Segmentation

- U-Net: Convolutional Networks for Biomedical Image Segmentation (MICCAI 2015)
- Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images (IEEE TMI 2020)

- Densely Connected Convolutional Networks (CVPR 2017)
- Triple ANet: Adaptive abnormal-aware attention network for WCE image classification (MICCAI 2019)
- WCE denotes `` Wireless Capsule Endoscopy"

CONVOLUTIONAL NETWORKS

Standard Connectivity

ResNet Connectivity

Identity mappings promote gradient propagation.

Element-wise addition

Dense Connectivity

Channel-wise concatenation

Dense and Slim

Channel-wise concatenation

Dense and Slim

k : Growth Rate

Forward Propagation of Dense Block

Composite Layer in DenseNet

 $x_5 = h_5([x_0, ..., x_4])$

- Only valid part of convolution is used.
- For 3x3 convolutions a 1-pixel border is lost

output feature map b (only 1 channel shown)

$$b_{x,y,l} = \text{ReLU}\left(\sum_{\substack{i \in \{-1,0,1\}\\j \in \{-1,0,1\}\\k \in \{1,...,K\}}} w_{i,j,k,l} \cdot a_{x+i,y+j,k} + c_l\right)$$

DenseNet

Main Difficulties

Normal

Inflammatory

Vascular lesion

Polyp

Diverse characteristics

- 1, huge intra-class variances
- 2, high degree of inter-class visual similarities

Department of Electrical Engineering 香港城市大學 City University of Hong Kong

Framework

ADB: Adaptive Dense Block

- AAM: Abnormal-aware Attention Module
- AC Loss:
 Angular Contrastive Loss

ADB: Adaptive Dense Block

Let x_l denote output of l^{th} layer and γ_l is its corresponding weight scalar, adaptive dense connectivity is formulated as $x_l = H_l([\gamma_0 x_0, \gamma_1 x_1, \cdots, \gamma_{l-1} x_{l-1}]) \dots H_l(\cdot)$ is a composite function with BN, ReLU and Conv, and each $H_l(\cdot)$ produces k = 12 feature maps.

AAM: Abnormal-aware Attention Module

AC Loss: Angular Contrastive Loss

Results

Table 1: Comparison results for WCE image classification. w/ ADB, w/ AAM and w/ AC Loss denote DenseNet with ADB (instead of original dense block), DenseNet with AAM and DenseNet minimized by AC Loss (instead of original softmax cross entropy loss), respectively.

Methods	$egin{array}{l} \operatorname{Normal} \\ \operatorname{ACC}(\%) \end{array}$	Inflammatory ACC(%)	Vascular lesion ACC(%)	$rac{ ext{Polyp}}{ ext{ACC}(\%)}$	OA	Cohen's Kappa
DenseNet [4]	92.69 ± 0.49	90.12 ± 0.54	93.71 ± 0.52	97.59 ± 0.39	87.05±0.45	82.66 ± 0.60
w/ ADB	93.03 ± 0.40	89.94 ± 0.18	93.61 ± 0.15	97.71 ± 0.27	87.14 ± 0.21	82.78 ± 0.28
w/ AAM	$94.06{\pm}0.17$	91.49 ± 0.81	94.47 ± 0.77	97.78 ± 0.42	88.89 ± 0.52	85.13 ± 0.69
w/ AC Loss	93.59 ± 0.30	91.20 ± 0.33	94.94 ± 0.34	97.69 ± 0.46	88.70 ± 0.20	84.87 ± 0.27
Triple ANet	94.03 ± 0.09	$91.73{\pm}0.29$	$95.26{\pm}0.33$	$97.81 {\pm} 0.20$	$89.41 {\pm} 0.23$	$85.82{\pm}0.31$
Fan et al. [3]	85.44 ± 1.43	83.09 ± 0.79	90.19 ± 0.96	95.47 ± 0.89	77.10 ± 1.14	69.30 ± 1.58
Jia et al. $[5]$	86.16 ± 1.07	83.37 ± 0.71	90.32 ± 0.88	95.81 ± 0.59	77.83 ± 1.28	70.31 ± 1.74
Seguí et al. [7]	92.11 ± 0.60	89.71 ± 0.48	94.21 ± 0.57	97.31 ± 0.12	86.67 ± 0.84	82.15 ± 1.12
Yuan et al. [9]	93.44 ± 0.30	90.79 ± 0.26	93.91 ± 0.17	97.73 ± 0.35	87.93 ± 0.07	83.84 ± 0.08

Guo, Xiaoqing, and Yixuan Yuan. "Triple ANet: Adaptive abnormal-aware attention network for WCE image classification." MICCAI, 2019.

- COVID-19 CT Image Segmentation
 - U-Net: Convolutional Networks for Biomedical Image Segmentation (MICCAI 2015)
 - Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images (IEEE TMI 2020)
 - Automated detection of lung infections from computed tomography (CT) images offers a
 great potential for the diagnosis of COVID-19

Object Detection

Semantic Segmentation

Instance Segmentation

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." MICCAI, 2015.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." MICCAI, 2015.

Fig. 1. Example of COVID-19 infected regions (B) in CT axial slice (A), where the red and green masks denote the GGO and consolidation, respectively. The images are collected from [9].

Segmenting infected regions from CT slices faces several challenges:

- High variation in infection characteristics
- Low intensity contrast between infections and normal tissues

Fig. 2. The architecture of our proposed *Inf-Net* model, which consists of three reverse attention (RA) modules connected to the paralleled partial decoder (PPD). See § III-A for details.

Edge Attention Module (EAM)

$$\mathcal{L}_{edge} = -\sum_{x=1}^{w} \sum_{y=1}^{h} [G_e log(S_e) + (1 - G_e) log(1 - S_e)],$$

Paralleled partial decoder (PPD)

Reverse attention module (RAM)

Results

TABLE IV

ABLATION STUDIES OF OUR Semi-Inf-Net. THE BEST TWO RESULTS

ARE SHOWN IN RED AND BLUE FONTS

Methods	Dice	Sen.	Spec.	S_{lpha}	E_{ϕ}^{mean}	MAE
(No.1) Backbone	0.442	0.570	0.825	0.651	0.569	0.207
(No.2) Backbone+EA	0.541	0.665	0.807	0.673	0.659	0.205
(No.3) Backbone+PPD	0.669	0.744	0.880	0.720	0.810	0.125
(No.4) Backbone+RA	0.625	0.826	0.809	0.668	0.736	0.177
(No.5) Backbone+RA+EA	0.672	0.754	0.882	0.738	0.804	0.122
(No.6) Backbone+PPD+RA	0.655	0.690	0.927	0.761	0.812	0.098
(No.7) Backbone+PPD+RA+EA	0.739	0.725	0.960	0.800	0.894	0.064

https://www.anaconda.com/

https://pytorch.org/