

Área de Ingeniería Telemática Departamento de Comunicaciones Universitat Politècnica de València

Máster Universitario en Ingeniería de Telecomunicación

E.T.S.I. de Telecomunicación

Interconexión de Redes de Telecomunicación

Práctica: MPLS

IRT. Práctica MPL. Resultados a entregar

Fecha:	01/06/2022
Nombre:	Gerardo Arias Martínez
Nombre:	Andrés Ruz Nieto

Ejercicio 1.

Configuración de los enlaces:

Transmisor y Receptor

Nodo	Tasa tráfico (Mb/s)	Carga útil (Bytes)
Rx	***	***
Tx	5000	10000

Configuración de los routers:

Nodo	Tasa Binaria (Mb/s)	Memoria (MB)
LER_1	5120	512
LER_2	5120	512
LSR_1	5120	512
LSR_2	5120	512
LSR_3	5120	512
LSR_4	5120	512
LSR_5	5120	512

Retardo **Enlace** (ns) Ea_1 125000 Ea_2 125000 E_2 125000 E_3 125000 E_4 125000 E_5 125000 E_6 125000 E_7 125000 E_8 125000 E_9 125000 E_10 125000

Ejercicio 2.

A partir de los datos obtenidos, escribe aproximadamente:

Evento	
Número de Paquetes IP Enviados por Tx	196
Número de Paquetes IP Recibidos por LER_1	187
Número de Paquetes IP Recibidos por Rx	204 / 102
Tasa binaria (Mbit/s) del flujo de paquetes IP recibidos por Rx (para los cálculos, utiliza el intervalo de tiempo que transcurre desde el 1er paquete recibido hasta el último, y el tamaño de los paquetes)	10307,53 Mbits/s 5153,765 Mbits/s

Se ponen dos valores ya que obtenemos resultados distintos en el Excel y en la gráfica mostrada en el cuadro inferior.

Comenta los resultados obtenidos

Tiempo (ns) = 2988000 - 1472000 = 1516000

10040 Bytes * 204 paquetes recibidos = 2048160 Bytes

2048160 B * 8 bits/B = 16385280 bits

Tasa binaria = 16385280 bits / 1516000 ns = 10307,53 Mbits/s

En caso de 102 paquetes, la tasa binaria resulta 5153,765 Mbits/s

Ejercicio 3.

Rellena la siguiente tabla con el número de eventos que ocurren en cada elemento³:

<u> </u>			-				
	E_2	E_4	E_9	LER_1	LER_2	LSR_1	LSR_3
ha descartado un paquete LDP							3
ha enviado un paquete LDP				4	4	5	5
ha establecido un tramo de LSP	1	1	1				
ha generado un paquete LDP de tamaño 49 octetos				4	4	5	5
ha recibido un paquete LDP de tamaño 49 octetos.				1	4	5	8

Las casillas en blanco equivalen a un 0.

_

³ Se puede realizar de manera casi automática mediante la función "tabla dinámica" de Excel. Se sugiere al alumno que explore esta opción.

Dibuja el cronograma del tráfico LDP hasta que se constituye el LSP y calcula el tiempo total consumido en construir el LSP

sn	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
LER_1				+	+	+	+												*		
E_2																			Х		
LSR_1						+ *	+ *	+ *	+ *							* +					
E_4																Х					
LSR_3									+ *	+*	+*	+ *		+ *	*	*	*				
E_9														Х							
LER_2											+*	+ *	+ *	+ *							

MARCA

ha descartado un paquete LDP ---

ha enviado un paquete LDP +

ha establecido **un tramo** de LSP X

ha recibido un paquete LDP de tamaño 49 octetos. $\ ^*$

		Con al Cirantina de marrantina in
Cuánto tiampo so ha taudado an constituir al I CD2		En el Excel no se muestran
¿Cuánto tiempo se ha tardado en constituir el LSP?	Entre 700 y 800 us	múltiplos de 50 únicamente.
	211110 100 y 000 do	munipios de 30 dinicamente.

Ejercicio 4.	
Define el <i>jitter</i> de paquete e indica cómo se calcula.	
El jitter es la fluctuación medida en milisegundos, que mide la variación del ret los paquetes que recibimos.	ardo entre
Se calcula como la suma de las diferencias de tiempo entre muestras consecupor el número de muestras menos 1.	tivas, divido
El jitter máximo se obtiene haciendo la diferencia del retardo máximo con el re mínimo.	tardo
Justifica con suficiente rigor científico el resultado obtenido para el <i>jitter</i> de los diferentes escenarios.	paquete e
Como se puede ver tanto en las gráficas de las 3 redes como en la tabla, en la los paquetes llegan aproximadamente al mismo ritmo, dicho de otra forma, el paquetes es más constante.	

Ejercicio 5.

Retardos calculados:

Evento	Tiempo (ns)
Rx no recibe paquetes	358000
Re-establecimiento LSP en E_2	520000
Re-establecimiento LSP en E_5	491000
Re-establecimiento LSP en E_7	471000
Re-establecimiento LSP en E_9	450000

Configuración de los enlaces:

Enlace	Retardo (ns)
E_2	35001
E_3	25000
E_4	35000
E_5	20000
E_6	25000
E_7	20000
E_8	25000
E_9	20000
E_10	25000

Retardo de las rutas:

Ruta	Enlaces atravesados	Retardo total (ns)
1	E2-E4-E9	110001
2	E2-E5-E7-E9	115001
3	E2-E5-E8-E10	125001
4	E3-E6-E7-E9	110000
5	E3-E6-E8-E10	120000

Los tiempos se han ajustado al mínimo para que en caso de la caída de un enlace, la diferencia entre el retardo anterior y el actual se el menor posible.