Questão 1. Um estudante costuma dizer que "cada xícara de café são duas horas extras de estudo". O resultado de seu experimento ao longo de uma semana está registrado na tabela abaixo:

Café (xícaras)	Estudo (horas)
7	12
3	6
10	15
5	9
5	8

[2,0 pt] (a) Ajuste uma reta aos dados usando o método dos mínimos quadrados.

[1,0 pt] (b) De acordo com o modelo linear encontrado, quantas xícaras de café um estudante precisaria consumir para estudar 0 horas num dia?

Solução:

(a) Começamos estendo a tabela de modo a obter os coeficientes do sistema que define a reta de mínimos quadrados. Para simplificar, sejam x e y o número de xícaras consumidas e o número de horas de estudo, respectivamente. Então

	x_i	y_i	x_i^2	$x_i y_i$
	7	12	49	84
	3	6	9	18
	10	15	100	150
	5	9	25	45
	5	8	25	40
\sum_{i}	30	50	208	337

Observe que o número de dados é 5. Portanto, se $\hat{p}(x) = a_0 + a_1 x$ é o polinômio ajustado, os seus coeficientes devem satisfazer as equações normais:

$$\begin{cases} 5a_0 + 30a_1 = 50 \\ 30a_0 + 208a_1 = 337 \end{cases}$$

Fazendo a operação elementar $L_2 \leftarrow L_2 - 6L_1$, transformamos este sistema no equivalente: $\begin{cases} 5a_0 + 30a_1 = 50 \\ 28a_1 = 37 \end{cases}$

$$\begin{cases} 5a_0 + 30a_1 = 50 \\ 28a_1 = 37 \end{cases}$$

Daí deduzimos que

$$a_1 = \frac{37}{28}$$
 e $a_0 = 10 - 6 \cdot \frac{37}{28} = \frac{140 - 3 \cdot 37}{14} = \frac{29}{14}$.

Concluímos que a equação da reta procurada é

$$y = \frac{1}{28} (37x + 58) = \frac{37}{28} x + \frac{29}{14}$$

(b) Mantendo a notação acima, basta resolver a equação

$$y = \frac{1}{28} (37x + 58) = 0.$$

Assim, de acordo com o modelo, o número x de xícaras consumidas num dia necessárias para suportar 0 horas de estudo seria

$$x = -\frac{58}{37}$$

Questão 2. [2,0 pt] Um projétil tem sua altura acima do solo (em metros) dada por uma função quadrática do tempo. Considerando as medições abaixo, estime sua altura em t=2 segundos:

posição	$_{ m tempo}$
$78\mathrm{m}$	$1\mathrm{s}$
$58\mathrm{m}$	$3\mathrm{s}$
$18\mathrm{m}$	$4\mathrm{s}$

Solução: Podemos estimar esta posição através do polinômio p de grau ≤ 2 que interpola os dados. Denotemos o tempo por t. Pela fórmula de Lagrange,

$$p(t) = 78 \frac{(t-3)(t-4)}{(1-3)(1-4)} + 58 \frac{(t-1)(t-4)}{(3-1)(3-4)} + 18 \frac{(t-1)(t-3)}{(4-1)(4-3)}$$

= 13(t-3)(t-4) - 29(t-1)(t-4) + 6(t-1)(t-3).

Substituindo t=2 nesta fórmula, encontramos que a altura do projétil no instante t=2s é aproximadamente

$$p(2) = 26 + 58 - 6 = \boxed{78 \,\text{metros}}$$

Observação: Para encontrar p também poderia ter sido empregado o método de Newton ou o método direto (resolvendo-se o sistema consistindo das três condições p(1) = 78, p(3) = 58 e p(4) = 18), porém por esta última opção as contas seriam mais extensas.

Alternativamente, como o grau do polinômio mais 1 coincide com o número de dados, o polinômio \hat{p} ajustado aos dados pelo método dos mínimos quadrados coincide com o polinômio interpolador p. Portanto este método também leva à solução. Mas novamente as contas seriam bem mais trabalhosas.

Questão 3. [2,0 pt] Encontre a fatoração LU da matriz abaixo:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix} .$$

Solução: Para encontrar \mathbf{U} (a parte triangular superior), basta escalonar \mathbf{A} utilizando-se somente de operações do tipo

$$L_i \leftarrow L_i - \lambda_{ij} L_j \quad \text{com } i > j$$

(ou seja, subtração de um múltiplo de uma linha (L_j) de outra linha abaixo dela (L_i)):

$$\begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix} \quad \xrightarrow{L_2 \leftarrow L_2 - \frac{1}{3}L_1} \quad \begin{bmatrix} 3 & 2 & 4 \\ 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{1}{3} & \frac{-22}{3} \end{bmatrix} \quad \xrightarrow{L_3 \leftarrow L_3 - L_2} \quad \begin{bmatrix} 3 & 2 & 4 \\ 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & -8 \end{bmatrix} = \mathbf{U} \,.$$

A matriz **L** é triangular inferior com entradas diagonais todas iguais a 1. Suas demais entradas (com i > j) são os coeficientes λ_{ij} das operações realizadas. Portanto

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{4}{3} & 1 & 1 \end{bmatrix} .$$

De fato, verifica-se diretamente que

$$\mathbf{LU} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{4}{3} & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 4 \\ 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & -8 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix} = \mathbf{A}$$

Questão 4. Considere a integral

$$I = \int_0^{\frac{\pi}{2}} x \sin x \, dx \,.$$

[1,5 pt] (a) Aproxime I usando a regra do trapézio com 3 subdivisões.

[1,5 pt] (b) Encontre o menor número N de subdivisões que garante que o módulo do erro E cometido ao se aproximar I pela regra do trapézio não excede 10^{-4} . Dica: Recorde que

$$E = \int_a^b f(x) \, dx - \langle \text{regra do trap\'ezio} \rangle = -\frac{(b-a)^3}{12N^2} f''(c) \quad \text{para algum } c \in [a,b] \, .$$

Solução:

(a) Foram dados $N=3,\,a=0$ e $b=\frac{\pi}{2}.$ Logo o tamanho do passo h será

$$h = \frac{b - a}{N} = \frac{\pi}{6}$$

e os nodos serão

$$x_i = a + ih = i\frac{\pi}{6}$$
 para cada $i = 0, 1, 2, 3$.

Pela regra do trapézio para $f(x) = x \sin x$

$$I \approx h \left[\frac{f(a) + f(b)}{2} + \sum_{i=1}^{N-1} f(x_i) \right]$$

$$= \frac{\pi}{6} \left[\frac{\pi}{4} + \frac{\pi}{6} \sin\left(\frac{\pi}{6}\right) + \frac{\pi}{3} \sin\left(\frac{\pi}{3}\right) \right]$$

$$= \frac{\pi^2}{6} \left(\frac{1}{4} + \frac{1}{12} + \frac{\sqrt{3}}{6} \right)$$

$$= \left[\frac{\pi^2}{36} (2 + \sqrt{3}) \right] \approx 1.0232.$$

O valor exato da integral, que pode facilmente ser obtido por integração por partes, é I=1.

(b) Tomando valores absolutos na fórmula para o erro, concluímos que

$$|E| \le \frac{|b-a|^3}{12N^2} \max_{[a,b]} |f''|.$$

No nosso caso $f(x) = x \sin x$, portanto

$$f'(x) = \sin x + x \cos x \quad e$$

$$f''(x) = 2 \cos x - x \sin x.$$

Observe que em $[a, b] = [0, \frac{\pi}{2}]$, esta segunda derivada é decrescente (pois tanto $\cos x$ quanto $-x \sin x$ são decrescentes). Logo o maior valor do módulo de f''(x) deve ser assumido em uma das extremidades deste intervalo. Como

$$|f''(0)| = 2$$
 e $|f''(\frac{\pi}{2})| = \frac{\pi}{2}$,

vale

$$\max_{[a,b]} |f''(x)| = 2.$$

Deduzimos que, para que |E|não exceda $10^{-4},$ basta que

$$\frac{|b-a|^3}{12N^2} \max_{[a,b]} |f''| = \frac{\pi^3}{8 \cdot 12 \cdot N^2} \cdot 2$$
$$= \frac{\pi^3}{2^4 \cdot 3 \cdot N^2}$$
$$\le 10^{-4}.$$

Equivalentemente,

$$N \ge \frac{100\pi\sqrt{\pi}}{4\sqrt{3}} = \frac{25\pi\sqrt{\pi}}{\sqrt{3}} \,.$$

Como N deve ser inteiro, o menor número de subdivisões que garante que o erro seja menor que ou igual a 10^{-4} é o teto da última expressão:

$$N = \left\lceil \frac{25\pi\sqrt{\pi}}{\sqrt{3}} \right\rceil$$