

线性代数

林胤榜

主要内容

- 1 向量的线性组合
- 2 向量组的线性相关性
- 3 线性子空间

线性组合

假设 $(V, +, \cdot)$ 是 (x) 线性空间.

- 1 对于两个向量 a_1, a_2 , 可以作它们的相加: $a_1 + a_2$.
- 2 可以作数 k 和向量 a 的数乘: $ka = k \cdot a$.

定义

假设 $a_1, a_2, \cdots, a_m \in V$ 是 m 个向量, $k_1, \cdots, k_m \in \mathbb{R}$ 是 m 个数.

$$k_1a_1+\cdots+k_ma_m$$

称为 a_1, a_2, \cdots, a_m 的线性组合, k_1, \cdots, k_m 称为线性组合的系数.

评述

以上表达式只涉及向量的线性运算,因此称为它们的线性组合.

线性表示

定义

假设 $b \in V$, 如果存在数 $\lambda_1, \dots, \lambda_m (\in \mathbb{R})$ 使得

$$b=\lambda_1a_1+\cdots+\lambda_ma_m,$$

则称 b 能由向量组 $\{a_1, a_2, \cdots, a_m\}$ 线性表示.

№ 和 № 中向量的线性组合

向量空间 ℝ"中的向量

以 $V = \mathbb{R}^n$ 这个具体例子讨论线性组合.

以列向量 a_1, \dots, a_m 等来表示 \mathbb{R}^n 中的向量. 令

$$A=(a_1,a_2,\cdots,a_m)\in M_{n\times m}$$

(按列分块). 则

命题

方程 Ax = b 有解当且仅当 b 可由 $\{a_1, a_2, \dots, a_m\}$ 线性表示.

由线性方程组的理论可知

定理

b 可由 $\{a_1, a_2, \cdots, a_m\}$ 线性表示当且仅当

$$R(a_1, a_2, \cdots, a_m) = R(a_1, a_2, \cdots, a_m, b).$$

向量组的线性表示

定义

向量的线性组合 0000●000000

设有两组向量 $A = \{a_1, \dots, a_m\}, B = \{b_1, \dots, b_\ell\}.$

- 若 *B* 中每个向量均可由 *A* 的线性组合表示, 称 *B* 可由 *A* 线性表示.
- 若 A 和 B 可互相线性表示,则称向量组 A 和 B 等价.

向量的线性组合 00000000000

例子

若 B 能由 A 线性表示,则存在实数 k_{ij} 使得

$$b_1 = a_1 k_{11} + a_2 k_{21} + \dots + a_m k_{m1},$$

$$b_2 = a_1 k_{12} + a_2 k_{22} + \dots + a_m k_{m2},$$

$$\vdots$$

$$b_\ell = a_1 k_{1\ell} + a_2 k_{2\ell} + \dots + a_m k_{m\ell}.$$

也就是

$$B = (b_1, b_2, \cdots, b_\ell) = (a_1, a_2, \cdots, a_m)K = AK,$$

其中 $K = (k_{ij})$. 方程 AX = B 有解当且仅当 R(A) = R(A, B). 所以, 有

定理

以 A 表示矩阵 (a_1, \dots, a_m) , B 表示矩阵 (b_1, \dots, b_ℓ) . 向量组 $\{b_1, \dots, b_\ell\}$ 能由向量组 $\{a_1, \dots, a_m\}$ 线性表示当且仅当 R(A) = R(A, B).

推论

向量组 $\{a_1, \cdots, a_m\}$ 和向量组 $\{b_1, \cdots, b_\ell\}$ 等价当且仅当

$$R(A) = R(B) = R(A, B).$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, a_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 3 \end{pmatrix}, b_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}, b_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}.$$

证明向量组 $\{a_1, a_2\}$ 与向量组 $\{b_1, b_2, b_3\}$ 等价.

证明.

令 $A = (a_1, a_2), B = (b_1, b_2, b_3)$. 只需证 R(A) = R(B) = R(A, B). 通过初等行变换将 (A, B) 化成行阶梯形

可看到 R(A) = R(A, B) = 2, $R(B) \le 2$. 另外,可看到左侧矩阵包含 2 阶非零子式. $R(B) \ge 2$. 所以 R(B) = 2.

线性表示与秩

定理

向量组 $\{b_1,\cdots,b_\ell\}$ 能由向量组 $\{a_1,\cdots,a_m\}$ 线性表示,则 $R(b_1,\cdots,b_\ell)\leq R(a_1,\cdots,a_m).$

证明.

线性表示 \Rightarrow $(a_1, \dots, a_m)X = (b_1, \dots, b_\ell)$ 有解 $\Leftrightarrow R(a_1, \dots, a_m) = R(a_1, \dots, a_m, b_1, \dots, b_\ell).$ 所以 $R(a_1, \dots, a_m) \ge R(b_1, \dots, b_\ell).$

向量组的线性相关性

V 向量空间 (不一定是 \mathbb{R}^n), $A = \{a_1, \dots, a_m\} \in V$.

定义

若存在不全为 0 的常数 $k_1, \dots, k_m \in \mathbb{R}$ 使得

$$k_1 a_1 + \cdots + k_m a_m = 0,$$

则向量组 $A = \{a_1, \dots, a_m\}$ 是线性相关的. 否则 $A = \{a_1, \dots, a_m\}$ 线性无关.

若有
$$k_1 a_1 + \cdots + k_m a_m = 0$$
 且有 $k_1 \neq 0$,则
$$a_1 = -\frac{1}{k_1} (k_2 a_2 + \cdots + k_m a_m),$$

即 a_1 可由其它向量线性表示.

若有
$$k_1 a_1 + \cdots + k_m a_m = 0$$
 且有 $k_1 \neq 0$, 则
$$a_1 = -\frac{1}{k_1} (k_2 a_2 + \cdots + k_m a_m),$$

即 a1 可由其它向量线性表示.

例子

令 $V = \mathbb{R}^2$. 两向量 $v_1, v_2 \in \mathbb{R}^2$ 线性相关当且仅当它们共线.

解释.

假设 $k_1v_1 + k_2v_2 = 0$, k_1 或 $k_2 \neq 0$. 假设 $k_1 \neq 0$, 则 $v_1 = -\frac{k_2}{k_1}v_2$.

令 $V = \mathbb{R}^3$, 两向量 $v_1, v_2 \in \mathbb{R}^2$ 线性相关当且仅当它们共线. 三向量 $v_1, v_2, v_3 \in \mathbb{R}^3$ 线性相关当且仅当它们共面.

令 $V = \mathbb{R}^3$, 两向量 $v_1, v_2 \in \mathbb{R}^2$ 线性相关当且仅当它们共线. 三向量 $v_1, v_2, v_3 \in \mathbb{R}^3$ 线性相关当且仅当它们共面.

解释. 假设 $k_1v_1 + k_2v_2 + k_3v_3 = 0$, 且 $k_1 \neq 0$, 则

$$v_1 = -\frac{1}{k_1}(k_2v_2 + k_3v_3).$$

即 v_1 能被 v_2 和 v_3 线性表示, 落在它们张成的平面上.

有以下容易的结论.

定理

- **I** \overline{A} a_1, a_2, \dots, a_m 线性相关,则 $a_1, a_2, \dots, a_m, a_{m+1}$ 也线性相关.
- **ii** 若 $a_1, a_2, \dots, a_m, a_{m+1}$ 线性无关,则 a_1, a_2, \dots, a_m 也线性 无关.
- **Ⅲ** 若 a_1, a_2, \dots, a_m 线性无关,而 a_1, a_2, \dots, a_m, b 线性相关,则 b 可由 a_1, a_2, \dots, a_m 线性表示,且表达式唯一.

证明.

- **i** ⇒ 存在不全为 0 的实数 k_1, \dots, k_m 使得 $k_1 a_1 + \dots + k_m a_m = 0$ ⇒ $k_1 a_1 + \dots + k_m a_m + 0 \cdot a_{m+1} = 0$ ⇒ $a_1, a_2, \dots, a_m, a_{m+1}$ 线性相关.
- ii (i) 的逆否命题.

证明.

(iii) 由于 a_1, a_2, \dots, a_m, b 线性相关,存在不全为 0 的 k_1, \dots, k_{m+1} 使得

$$k_1 a_1 + \cdots + k_m a_m + k_{m+1} b = 0.$$

又 a_1, a_2, \cdots, a_m 线性无关, 则 $k_{m+1} \neq 0$, 即

$$b = -\frac{1}{k_{m+1}}(k_1a_1 + \cdots + k_ma_m).$$

若 $b = k'_1 a_1 + \cdots + k'_m a_m$ 为另一表达式,则

$$(k'_1 + \frac{k_1}{k_{m+1}})a_1 + \dots + (k'_m + \frac{k_m}{k_{m+1}})a_m = 0$$

得
$$k_i' = -\frac{k_i}{k_{m+1}}$$
.

 a_1, a_2, a_3 线性相关, a_2, a_3, a_4 线性无关, 证明:

- 1 a₁ 能由 a₂, a₃ 线性表示.
- 2 a₄ 不能由 a₁, a₂, a₃ 线性表示.

证明.

1 a_2 , a_3 , a_4 线性无关,则 a_2 , a_3 线性无关.又 a_1 , a_2 , a_3 线性相关,即存在不全为零的实数 k_1 , k_2 , k_3 使得

$$k_1 a_1 + k_2 a_2 + k_3 a_3 = 0.$$

 $k_1 \neq 0$, 否则推出 a_2 和 a_3 线性相关. 所以 $a_1 = -\frac{k_2}{k_1} a_2 - \frac{k_3}{k_1} a_3$, 能由 a_2 , a_3 线性表示.

证明.

2 由于 a_1 能由 a_2 , a_3 线性表示, 假设 $a_1 = k_2 a_2 + k_3 a_3$. 若 $a_4 = \alpha_1 a_1 + \alpha_2 a_2 + \alpha_3 a_3$, 则

$$a_4 = (\alpha_1 k_2 + \alpha_2) a_2 + (\alpha_1 k_3 + \alpha_3) a_3,$$

即 a_4 和 a_2 , a_3 线性相关,矛盾.

R"中向量的线性相关性

假设 $a_1, \dots, a_m \in \mathbb{R}^n$. 若它们线性相关, 则方程

$$(a_1, \cdots, a_m)_{n \times m} X_{m \times 1} = 0 \tag{1}$$

有非零解. 方程有非零解当且仅当 $R(a_1, \cdots, a_m) < m(m$ 是未知元个数).

R"中向量的线性相关性

假设 $a_1, \dots, a_m \in \mathbb{R}^n$. 若它们线性相关, 则方程

$$(\mathbf{a}_1, \cdots, \mathbf{a}_m)_{n \times m} X_{m \times 1} = 0 \tag{1}$$

有非零解. 方程有非零解当且仅当 $R(a_1, \cdots, a_m) < m(m$ 是未知元个数).

它们线性无关当且仅当方程 (1) 无非零解, 当且仅当 $R(a_1, \dots, a_m) = m$ (取到最大可能值). 总结如下:

定理

- \mathbf{I} a_1, a_2, \cdots, a_m 线性相关当且仅当 $R(a_1, \cdots, a_m) < m$.
- 2 a_1, a_2, \cdots, a_m 线性无关当且仅当 $R(a_1, \cdots, a_m) = m$.

 a_1, \dots, a_m 是 \mathbb{R}^n 中一组线性无关的向量,则 $m \leq n$. 这是由于 $m = R(a_1, \dots, a_m) \leq \min\{m, n\}$.

例子 (以上例子确能取到等号)

 $E_n = (e_1, \cdots, e_n)$, 秩为 n,

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

是 \mathbb{R}^n 的一组线性无关向量, 共 n 个. 称为单位坐标向量.

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}, a_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$$

讨论向量组 a_1, a_2, a_3 及向量组 a_1, a_2 的线性相关性.

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}, a_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$$

讨论向量组 a_1, a_2, a_3 及向量组 a_1, a_2 的线性相关性.

$$|(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)| = \begin{vmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 1 & 5 & 7 \end{vmatrix} = 14 + 10 + 0 - 4 - 0 - 20 = 0$$

 $\Rightarrow R(a_1, a_2, a_3) < 3 \Rightarrow a_1, a_2, a_3$ 线性相关.

$$R\begin{pmatrix}1&0\\1&2\\1&5\end{pmatrix}=2\Rightarrow a_1 \text{ 和 } a_2 \text{ 线性无关.}$$

(或 a_1, a_2 在 \mathbb{R}^3 中不共线推出 a_1, a_2 线性无关)

线性子空间

假设 $a_1, \dots, a_m \in V$.

定义

 $L(a_1, \dots, a_m) = \{k_1 a_1 + \dots + k_m a_m \mid k_1, \dots, k_m \in \mathbb{R}\} \subset V$, 即 a_1, \dots, a_m 的线性组合的集合.

注意到, $L(a_1, \dots, a_m)$ 在 V 中的加法和数乘下封闭:

$$(k_1 a_1 + \dots + k_m a_m) + (\ell_1 a_1 + \dots + \ell_m a_m) = (k_1 + \ell_1) a_1 + \dots + (k_m + \ell_m) a_m \in L$$

間 $\ell(k_1a_1 + \cdots + k_ma_m) = (\ell k_1)a_1 + \cdots + (\ell k_m)a_m \in L$ 容易看出来 $(L, +, \cdot)$ 构成一个线性空间.

有以下一般的定义:

定义 (P145 定义 2)

假设 $(V, +, \cdot)$ 是一线性空间, $\emptyset \neq L \subset V$, 若 $(L, +, \cdot)$ 构成线性空间, 则 $L \in V$ 的一个线性子空间, 记作 $L \leq V$.

定理

上述 $L(a_1, \dots, a_m)$ 是 V 的线性子空间.

有以下一般的定义:

定义 (P145 定义 2)

假设 $(V, +, \cdot)$ 是一线性空间, $\emptyset \neq L \subset V$, 若 $(L, +, \cdot)$ 构成线性空间, 则 $L \in V$ 的一个线性子空间, 记作 $L \leq V$.

定理

上述 $L(a_1, \cdots, a_m)$ 是 V 的线性子空间.

命题

子空间必包含 0 向量.

证明.

 $L \leq V$. 若 $v \in L$, 则 $0 = 0 \cdot v \in L$ (数乘下封闭).

