```
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
void gaussElimination(double *matrix, double *b, int n, int rank, int
size) {
    for (int k = 0; k < n; ++k) {
        if (rank == k % size) {
            // Normalizar linha pivô
            double pivot = matrix[k * n + k];
            for (int j = k; j < n; ++j) {
                matrix[k * n + j] /= pivot;
            }
            b[k] /= pivot;
        }
        // Broadcast da linha pivô
        MPI_Bcast(&matrix[k * n], n, MPI_DOUBLE, k % size,
MPI_COMM_WORLD);
        MPI_Bcast(&b[k], 1, MPI_DOUBLE, k % size, MPI_COMM_WORLD);
        // Eliminação das linhas subsequentes
        for (int i = k + 1; i < n; ++i) {
            if (i % size == rank) {
                double factor = matrix[i * n + k];
                for (int j = k; j < n; ++j) {
                    matrix[i * n + j] = factor * matrix[k * n + j];
                }
                b[i] = factor * b[k];
            }
       }
    }
}
void backSubstitution(double *matrix, double *b, double *x, int n, int
rank, int size) {
    for (int i = n - 1; i \ge 0; --i) {
        if (rank == i % size) {
            x[i] = b[i];
            for (int j = i + 1; j < n; ++j) {
                x[i] = matrix[i * n + j] * x[j];
            }
        }
        MPI_Bcast(&x[i], 1, MPI_DOUBLE, i % size, MPI_COMM_WORLD);
    }
}
int main(int argc, char *argv[]) {
    int n = 3; // Dimensão do sistema (modifique conforme necessário)
```

```
double matrix[] = {
        2.0, 1.0, -1.0,
        -3.0, -1.0, 2.0,
        -2.0, 1.0, 2.0
    };
    double b[] = \{8.0, -11.0, -3.0\};
    double x[3];
   int rank, size;
   MPI_Init(&argc, &argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
   MPI_Comm_size(MPI_COMM_WORLD, &size);
    gaussElimination(matrix, b, n, rank, size);
    backSubstitution(matrix, b, x, n, rank, size);
   if (rank == 0) {
        printf("Solução do sistema:\n");
        for (int i = 0; i < n; ++i) {
            printf("x[%d] = %f\n", i, x[i]);
        }
    }
   MPI_Finalize();
    return 0;
}
```

A primeira coisa que fizemos foi adicionar a função MPI\_Wtime() para marcar o tempo de execução.

```
tempo_inicial = MPI_Wtime();
gaussElimination(matrix, b, n, rank, size);
backSubstitution(matrix, b, x, n, rank, size);
tempo_final = MPI_Wtime();
```

Os tempos iniciais foram muito pequenos, porém os tempos para mais processos estava dando maior. Isso se dá pelo overhead de comunicação, a própria divisão de processos acabou usando mais tempo:

```
$ mpirun -np 2 ./gauss_mpi_melhorado
Solução do sistema:
x[0] = 2.000000
x[1] = 3.000000
x[2] = -1.000000
Foram gastos 0.0000430000 segundos

$ mpirun -np 4 ./gauss_mpi_melhorado
Solução do sistema:
x[0] = 2.0000000
```

```
x[1] = 3.000000
x[2] = -1.000000
Foram gastos 0.0000680000 segundos

$ mpirun -np 8 ./gauss_mpi_melhorado
Solução do sistema:
x[0] = 2.000000
x[1] = 3.000000
x[2] = -1.000000
Foram gastos 0.0001970000 segundos
```

Então, ao invés de criar uma pequena matriz estática, criamos dinamicamente uma matriz de 1000 valores. Para isso, usamos malloc para armazenar essa matriz.