Recall:

Suppose $A^{n\times n}$ is a real matrix and λ_1 , $\lambda_2 \dots \lambda_n$ are n-distinct eigenvalues of $A^{n\times n}$ and ev_1 , ev_2 . ev_n be the eigenvectors associated with the eigen values λ_1 . λ_n respectively

$$P = [ev, ev_2 \dots ev_n]$$

$$D = \begin{bmatrix} \lambda_1 & \lambda_2 & 0 \\ 0 & \lambda_n \end{bmatrix}$$

then we have the following. The algebraic multiplicity of $\lambda_1 = \lambda_2 = \dots = \lambda_n = 1$

Geometric Multiplicity = 1 corresp to

One l.i. vector each associated with each eigen value.

Ex:
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix}$$

> We can express

Characteristic eqn is $\det(A - \lambda I) = 0$.

$$\Rightarrow (\lambda - 1)^2 = 0 \Rightarrow \lambda = 1$$
, twice.

 \Rightarrow AM of $\lambda = 1$ is 2. (Algebraic Multiplicity)

(A -
$$\lambda I$$
) $u = 0$

The eigenvector associated with $\lambda_1 = 1$ if $k = k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = k = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector $k = 1 = 1$

The eigenvector associated with $k = 1 = 1$

The eigenvector $k = 1 =$

The eigenvector associated with
$$\lambda_1 = 1$$
 is $\begin{bmatrix} k \\ 0 \end{bmatrix} = k \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Geometric Multiplicity:

Dimension of the invariant

Subspace associated with a specific eigenvalue λ_1^2 .

For
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\lambda_1 = 1$ has $AM = 1$ $GM = 1$.

Ex:2: 1 0	D	AM of $\lambda_i = 1$ is 1
0 2	D	AM of $\lambda_2 = 2$ is 2
0 0	2	
		$\lambda_1 = 1$
$A - \lambda I = 1 - \lambda$	0 0	[1-1 0 0 [X,7 [0]
0	2-2 0	0 2-1 0 X ₂ = 0
0	ο 2-λ	0 0 2-1 X3 LO
_		
:. Char eqn: $(1-\lambda)(2-\lambda)^2=0$		3 22=0; 23=0.021=0 ≥ 21=k
		ka real.
$3\lambda_{=1}$, $\lambda_{2}=2$, twice.		Scalar.

The eigenspace associated with $\lambda_1 = 1$ is the subspace $\{x(1)\}$

$$\lambda_{2} = \lambda$$

$$A - 2I = \begin{bmatrix} 1-2 & 0 & D \\ 0 & 2-2 & D \\ 0 & 0 & 2-2 \end{bmatrix}$$

$$\left(A - 2I\right)\begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_1 = 0$$
.
 $\chi_2 = 8$, 8 real
 $\chi_3 = t$, t real.

$$\Rightarrow$$
 eigenvector: $\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \\ t \end{pmatrix}$

Dimension of the eigenbace Geometric Multiplicity \leq Algebraic Multiplici

A matrix A^{nxn} is called and therefore cannot be diagonalized. defective if at least one of the eigenvalues has $G_{IM} < AM$.

For ex: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has $\lambda_1 = 1$ twice AM = 2; $G_{IM} = 1$ $\Rightarrow \lambda_1 = 1$ is defective. $\Rightarrow A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is defective.