Improving Frame Rates with ML-based Frame Interpolation

Aditya Hota, Richard Chen, Kaan Erdogmus CIS 565 Fall 2021

Why use ML to improve frame rates?

- Achieving high frame rates requires powerful hardware
 - Harder to attain on high settings
- Computing photorealistic effects with path tracing is very taxing
 - Difficult to perform high quality rendering in real-time
- ML models can take in video streams and increase frame rate
 - No need to render as many frames
 - Inference is less taxing, so less time needed to make a video
- We want to implement fast and functional NN directly in CUDA

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation

Tarun Kalluri *
UCSD

Deepak Pathak CMU Manmohan Chandraker UCSD Du Tran Facebook AI

https://tarun005.github.io/FLAVR/

(a) Overview of the proposed architecture

(b) Sampling procedure

Goals & Technologies

- Implement FLAVR architecture in CUDA
 - Use work presented in the paper
 - Tune parameters for best performance with path tracer outputs
- Develop video processing pipeline
 - Automated process from input to output video
- Time permitting, add motion to CUDA Path Tracer
 - Camera movements or physics engine with objects

- CUDA code: based off <u>CUDA Neural Network Implementation</u>
- Image processing: OpenCV CUDA library

Milestones

- Milestone 1 (11/17)
 - Setup CUDA neural network code
 - Determine feasibility of implementing special layers in CUDA
 - Become familiar with CUDA NN code and train simple CNN for classification
- Milestone 2 (11/29)
 - Implement architecture for FLAVR
 - Training and classification should be working
- Milestone 3 (12/06)
 - Tune all hyperparameters for best results
 - Incorporate camera or object movement into Path Tracer
- Final Deliverable (12/12)
 - Automated pathway for generating interpolated videos
 - Performance analysis (and potential comparison to PyTorch)

References

Paper:

Kalluri, T., Pathak, D., Chandraker, M., & Tran, D. (2020). Flavr: Flow-agnostic video representations for fast frame interpolation. *arXiv preprint arXiv:2012.08512*.

3rd Party Code:

CUDA Neural Network Implementation