МЕТОДЫ И АЛГОРИТМЫ ТЕОРИ<u>И ГРАФОВ</u>

Деревья

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

Деревья

- Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

Дерево – связный граф без циклов, а **лес** – несвязный граф, каждая компонента связности которого является деревом.

На n вершинах можно построить n^{n-2} деревьев.

Деревья

- ✓ Понятие дерева, леса
- Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

Свойство №1.

Если n, m — граф — дерево, то m = n - 1.

Если n, m- граф – лес, то m=n-k (k- количество компонент связности в графе).

Пусть $n_1, n_2, ..., n_k$ — количество вершин, а $m_1, m_2, ..., m_k$ — количество ребер в компонентах связности графа.

Очевидно, что $n=n_1+n_2+...+n_k$, $m=m_1+m_2+...+m_k$.

Т.к. каждая компонента связности в графе - дерево, то $m_1 = n_1 - 1$, $\underline{m_2 = n_2 - 1}$, ..., $m_k = n_k - 1$. Общее количество ребер в графе:

$$m = (n_1 - 1) + (n_2 - 1) + \dots + (n_k - 1) = (n_1 + n_2 + \dots + n_k) - k = n - k.$$

Свойство №2. Если граф — дерево, то каждое его ребро (дуга) — мост, т.е. дерево — минимально связный граф.

Свойство №2. Если граф – дерево, то каждое его ребро (дуга) – мост, т.е. дерево – минимально связный граф.

<u>Свойство №3.</u> Любые две вершины дерева соединены единственной простой цепью (единственным простым полупутем).

Свойство №4. Если граф – дерево, то в нем есть хотя бы пара вершин с ho(x)=1 (для неографа), $ho^+(x)=1$ и $ho^-(x)=1$ (для орграфа).

Свойство №5. Если граф — дерево, то добавление в него нового ребра, инцидентного двум различным вершинам этого дерева приведет к образованию цикла; этот цикл единственный в графе и проходит по вновь добавленному ребру. При этом граф перестает быть деревом.

Свойство №6. Если граф — дерево, то добавление в него новой вершины вместе с инцидентным ей ребром с сохранением связности этого графа приводит к построению нового графа, который также является деревом.

Свойство №7. Если связный граф не является деревом (в нем есть циклы), то удаляя из циклов ребра, не нарушая связности этого графа, мы получим дерево. Если задан n, m- граф, то дерево будет содержать (n-1) ребро. Поэтому количество ребер для удаления из циклов определяется как m-n+1.

Свойство №7. Если связный граф не является деревом (в нем есть циклы), то удаляя из циклов ребра, не нарушая связности этого графа, мы получим дерево. Если задан n, m- граф, то дерево будет содержать (n-1) ребро. Поэтому количество ребер для удаления из циклов определяется как m-n+1.

Деревья

- ✓ Понятие дерева, леса
- Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

Остовное дерево связного графа — суграф этого графа со свойствами дерева.

Суграфом графа G(X,U) называется новый граф $G_1(X,U_1)$, в котором $U_1\subseteq U$ порождает этот суграф (если $|U_1|<|U|$, то суграф $G_1(X,U_1)$ называется собственным).

$$U_1 = \{(x_1, x_6), (x_2, x_6), (x_3, x_6), (x_4, x_6), (x_5, x_6)\}\$$

Деревья

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
<i>X</i> ₄	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

<u>x</u> 2	x_6
	x_5
x_4	3

\mathcal{X}	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
x_4	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$x_1 \rightarrow x_2$$

\mathcal{X}	$\Gamma(x)$ – образы вершины ${\mathcal X}$
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$x_1 \rightarrow x_2$$

х	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$x_1 \rightarrow x_2 \rightarrow x_3$$

\mathcal{X}	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$x_1 \rightarrow x_2 \rightarrow x_3$$

\mathcal{X}	$\Gamma(x)$ – образы вершины ${\mathcal X}$
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4$$

\mathcal{X}	$\Gamma(x)$ – образы вершины ${\mathcal X}$
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4$$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

Mozor of vors popular provide the postpoolars

$$\begin{array}{c}
x_1 \to x_2 \to x_3 \to x_4 \\
 & \xrightarrow{} x_5
\end{array}$$

$\boldsymbol{\mathcal{X}}$	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>X</i> 7	$\{x_5,x_6\}$

$$\begin{array}{c}
x_1 \to x_2 \to x_3 \to x_4 \\
 & \xrightarrow{} x_5
\end{array}$$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
x_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$\begin{array}{c}
x_1 \to x_2 \to x_3 \to x_4 \\
 & \xrightarrow{} x_5 \to x_6
\end{array}$$

$\boldsymbol{\mathcal{X}}$	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1, x_3, x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$\begin{array}{c}
x_1 \to x_2 \to x_3 \to x_4 \\
 & \xrightarrow{} x_5 \to x_6
\end{array}$$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1, x_3, x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

$$\begin{array}{c}
x_1 \to x_2 \to x_3 \to x_4 \\
 & \xrightarrow{} x_5 \to x_6 \to x_7
\end{array}$$

$\boldsymbol{\mathcal{X}}$	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\{x_2, x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>X</i> 7	$\{x_5,x_6\}$

 x_1

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
<i>X</i> ₄	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
<i>X</i> ₄	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
<i>X</i> 4	$\{x_2,x_3\}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

X	$\Gamma(x)$ – образы вершины ${\mathcal X}$
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
x_4	$\overline{\{x_2,x_3\}}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>X</i> 7	$\{x_5,x_6\}$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2, x_3, x_5\}$
x_2	$\{x_1,x_3,x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
<i>x</i> ₄	$\overline{\{x_2,x_3\}}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>x</i> ₇	$\{x_5,x_6\}$

X	$\Gamma(x)$ – образы вершины χ
x_1	$\{x_2,x_3,x_5\}$
x_2	$\{x_1, x_3, x_4\}$
<i>x</i> ₃	$\{x_1, x_2, x_4, x_5\}$
χ_4	$\overline{\{x_2,x_3\}}$
<i>x</i> ₅	$\{x_1, x_3, x_6, x_7\}$
x_6	$\{x_5,x_7\}$
<i>X</i> 7	$\{x_5,x_6\}$

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

Пусть G(X,U) — связный взвешенный обыкновенный неограф, а $T=\{T_1(X,U_1),T_2(X,U_2),...\}$ — множество его различных остовных деревьев.

Минимальное остовное дерево (МОД) или дерево Прима – это остовное дерево графа $T^* \in T$ с минимальным суммарным весом его ребер.

Если исходный граф — связный взвешенный псевдограф, то для поиска его МОД необходимо построить граф G(X,U) следующим образом:

- удалить все петли,
- заменить все дуги на ребра,
- из кратных ребер оставить в графе только одно ребро с минимальным весом.

Доказательство:

1. Пусть имеется поддерево МОД графа G(X,U) - T'(X',U') , где $X'=\{x_1,x_2,x_3\}.$

Доказательство:

2. Определим множество ребер, претендующих на включение в МОД.

Доказательство:

3. Построим граф T''(X'',U'') путем добавления в граф T'(X',U') новой вершины x_4 вместе с инцидентным ей ребром (x_3,x_4) , т.к. данное ребро имеет минимальный вес среди всех ребер, претендующих на включение в МОД.

Доказательство:

4. Граф T'' – дерево (свойство №5). Граф T''– поддерево T^* , т.к. приращение суммарного веса его ребер минимально.

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- Корневые деревья
- ✓ Двоичные деревья

Корневое дерево — это связный орграф G(X,U) со следующими свойствами:

- 1. $\exists ! x_0 \in X : \rho^+(x_0) = 0$ (вершина x_0 корень дерева);
- 2. $\exists x \in X : \rho^-(x) = 0$ (вершины x листья дерева);
- 3. $\forall x \in X \setminus \{x_0\} : \exists ! \mu = (x_0, ..., x).$

Глубина вершины x в корневом дереве v(x) определяется длиной пути $\mu = (x_0,...,x)$.

Высота вершины x в корневом дереве h(x) определяется длиной максимального пути от x до одного из листьев дерева. Высота корневого дерева $H = h(x_0)$.

Уровень вершины x в корневом дереве y(x) = H - v(x).

\mathcal{X}	x_0	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8
v(x)	0	1	1	1	2	2	2	2	3
h(x)	3	1	(2)	0	0	0	0	1	0
y(x)	3	2	2	2	1	1	1	1	0

$$H=3$$

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- Двоичные деревья

Упорядоченное дерево – корневое дерево, в котором у каждого отца множество его сыновей упорядочено в некотором отношении порядка. Сыновья в таком дерево изображаются по порядку слева направо.

Двоичным (бинарным) деревом называется такое упорядоченное дерево, в котором:

- каждый сын отца либо левый, либо правый;
- каждый отец имеет не более одного левого и не более одного правого сына.

									9
L_i	2	3	(0)	0	$\left(0\right)$	7	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
R_i	6	4	0	5	0	8	0	9	0

Двоичное дерево высоты Н называется полным, если:

- ullet вершина x с глубиной v(x) < H имеет и левого, и правого сына;
- вершина x с глубиной v(x) = H является листом дерева.

Полное двоичное дерево высоты H содержит $n=2^{H+1}-1$.

$$H = 3 \Rightarrow n = 15$$

1		(i)		(2i)	(2i+1)	
x_0	•••	\mathcal{X}	•••	L(x)	R(x)	•••
				, ,		

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- Двоичные деревья

МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие дерева, леса
- ✓ Свойства деревьев
- ✓ Остовное дерево связного графа, понятие суграфа
- ✓ Алгоритмы построения остовного дерева графа
- ✓ Теорема Прима о минимальном остовном дереве графа
- ✓ Алгоритмы поиска минимального остовного дерева графа
- ✓ Корневые деревья
- ✓ Двоичные деревья

