A foray into knot theory: the Alexander polynomial

Iva Halacheva

March 27, 2014

Table of Contents

- Background
 - Knots
- 2 The Alexander polynomial
 - Origin
 - Three definitions
- Nice properties
- 4 Limitations
- 6 Generalizations

What is a knot?

Knots

Intuitively. A closed string in \mathbb{R}^3 .

Definition

A **knot** is an embedding $S^1 \hookrightarrow \mathbb{R}^3$ which can be represented as a finite closed polygonal chain.

What is a knot?

Intuitively. A closed string in \mathbb{R}^3 .

Definition

A **knot** is an embedding $S^1 \hookrightarrow \mathbb{R}^3$ which can be represented as a finite closed polygonal chain.

Figure: No wild knots!

What is a knot?

Knots

Intuitively. A closed string in \mathbb{R}^3 .

Definition

A **knot** is an embedding $S^1 \hookrightarrow \mathbb{R}^3$ which can be represented as a finite closed polygonal chain.

Figure: No wild knots!

Links: Embedding several circles. Higher dimensional knots: $S^n \hookrightarrow \mathbb{R}^{n+2}$. Intuitively. Two knots are the same if:

- stretching, bending, moving around
- no cutting and gluing

Intuitively. Two knots are the same if:

- stretching, bending, moving around
- no cutting and gluing

Definition

Two knots K_1 and K_2 are **equivalent**, $K_1 \sim K_2$, if they are ambient isotopic:

- a homotopy of orientation-preserving homeomorphisms $H_t: \mathbb{R}^3 \to \mathbb{R}^3$
- $H_0 = id$, $H_1(K_1) = K_2$.

Note: Isotopy doesn't work

Knots

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$.

Knots

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular** (**double**) point if $|\pi^{-1}(p)| > 1$ (= 2).

Knots

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular (double)** point if $|\pi^{-1}(p)| > 1$ (= 2). We want *regular projections*: Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Knots

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular** (**double**) point if $|\pi^{-1}(p)| > 1$ (= 2). We want *regular projections*: Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Definition

A projection is **regular** if it has:

- finitely many singular points
- all are transpose double points

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular (double)** point if $|\pi^{-1}(p)| > 1$ (= 2). We want *regular projections*: Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Definition

A projection is regular if it has:

- finitely many singular points
- all are transpose double points

Definition

A **knot diagram** of K is a regular projection of K together with height information at each double point.

Knots

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Reidemeister's moves on diagrams:

Knots

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Reidemeister's moves on diagrams:

Theorem (Reidemeister)

 $\{knots\}/a.i.$ in $\mathbb{R}^3=\{knot\ diagrams\}/R_1,R_2,R_3,a.i.$ in \mathbb{R}^2

Background

000

Knots

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Reidemeister's moves on diagrams:

Theorem (Reidemeister)

 $\{knots\}/a.i.$ in $\mathbb{R}^3 = \{knot \ diagrams\}/R_1, R_2, R_3, a.i.$ in \mathbb{R}^2

Definition

A **knot invariant** is a function $F : \{knots\} \rightarrow A$ (some nice space) which has the same value on equivalent knots.

Basic Facts

The Alexander polynomial is

- discovered by James Alexander (1928)
- a knot invariant of oriented knots
- $lacktriangledown_{\mathcal{K}}(t) \in \mathbb{Z}[t, t^{-1}]$

I. The original construction

• Take an oriented diagram D for a knot K and number the crossings 1, ..., n, the regions 1, ..., n + 2. (Euler's formula: V + F - E = 2)

I. The original construction

- **1** Take an oriented diagram D for a knot K and number the crossings 1, ..., n, the regions 1, ..., n + 2. (Euler's formula: V + F E = 2)
- ② Create an $n \times (n+2)$ matrix M with $M_{i,j} = 0$ if region j doesn't touch crossing i, otherwise:

I. The original construction

- Take an oriented diagram D for a knot K and number the crossings 1, ..., n, the regions 1, ..., n + 2. (Euler's formula: V + F − E = 2)
- ② Create an $n \times (n+2)$ matrix M with $M_{i,j} = 0$ if region j doesn't touch crossing i, otherwise:

- New matrix: M = M with any two columns of adjacent regions deleted.

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

$$\Delta_K(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

$$\Delta_K(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

$$\Delta_K(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

Background

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

$$\Delta_{\mathcal{K}}(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

Background

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

$$\Delta_K(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

II. Skein relation

The Alexander polynomial for an oriented link L is $\Delta_L(t) \in \mathbb{Z}[t^{-1/2},t^{1/2}]$ given by:

- $\Delta_{\mathsf{unknot}}(t) = 1$
- ullet $\Delta_{L_{+}}(t) \Delta_{L_{-}}(t) (t^{1/2} t^{-1/2})\Delta_{L_{0}}(t) = 0$

where:

Remarks:

- If L is a knot, $\Delta_L(t) \in \mathbb{Z}[t, t^{-1}]$
- No ambiguity of sign and factors of t^k
- This relation allows us to compute it for all knots since:

Proposition

A knot diagram can always be transformed into the unknot by changing a finite number of crossings.

Example 1. $\Delta_{\bigcirc\bigcirc}(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

Three definitions

II. Examples

Example 1. $\Delta_{\bigcirc\bigcirc}(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$
$$= \Delta_{\bigcirc}(t) - \Delta_{\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

Example 1. $\Delta_{\bigcirc\bigcirc}(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

$$= \Delta_{\bigcirc}(t) - \Delta_{\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

$$= (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$.

Example 1. $\Delta_{\bigcirc\bigcirc}(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

$$= \Delta_{\bigcirc}(t) - \Delta_{\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

$$= (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$.

Example 2. Let H denote the Hopf link. $\Delta_H(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

Background

II. Examples

Example 1. $\Delta_{\bigcirc\bigcirc}(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

$$= \Delta_{\bigcirc}(t) - \Delta_{\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

$$= (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$.

Example 2. Let H denote the Hopf link. $\Delta_H(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

= $\Delta_{H}(t) - \Delta_{\bigcirc\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc}(t)$

Background

II. Examples

Example 1. $\Delta_{\bigcirc\bigcirc}(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

$$= \Delta_{\bigcirc}(t) - \Delta_{\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

$$= (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$.

Example 2. Let H denote the Hopf link. $\Delta_H(t) = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

= $\Delta_{H}(t) - \Delta_{\bigcirc\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc}(t)$
= $\Delta_{H}(t) + (t^{1/2} - t^{-1/2})$

Hence, $\Delta_H(t) = t^{-1/2} - t^{1/2}$.

Example 3. Let K denote the left-hand trefoil knot. $\Delta_K = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

Example 3. Let K denote the left-hand trefoil knot. $\Delta_K = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$
$$= \Delta_{\bigcirc}(t) - \Delta_{K}(t) + (t^{1/2} - t^{-1/2})\Delta_{H}(t)$$

Example 3. Let K denote the left-hand trefoil knot. $\Delta_K = ?$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

$$= \Delta_{\bigcirc}(t) - \Delta_{K}(t) + (t^{1/2} - t^{-1/2})\Delta_{H}(t)$$

$$= 1 - \Delta_{K}(t) + (t^{1/2} - t^{-1/2})(t^{-1/2} - t^{1/2})$$

Hence, $\Delta_K(t) = t - 1 + t^{-1}$.

Background

III. Seifert surfaces

Definition

A **Seifert surface** of a knot is an oriented surface whose boundary is the knot.

$\mathsf{Theorem}$

Every knot has a Seifert surface (not unique!).

Definition

If L is an oriented link, its **linking number** lk(M) is obtained by:

$$\frac{1}{2} \sum_{x \in X} (-1)^x$$

where X is the set of crossings between different components of the link in any diagram.

Setup:

- L- oriented link with n components, Σ a Seifert surface for it with genus g
- with genus g $\{[f_i]\}_{i=1}^{2g+n-1}$ a basis for $H_1(\Sigma, \mathbb{Z})$.
- f_i^+ the positive pushoff of f_i (parallel, just above).

Figure: A standard basis for a genus g surface with n boundary components.

Definition

The **Seifert matrix** M of L is given by $M_{i,j} = lk(f_i, f_i^+)$.

Note: This depends on the surface and the basis.

Definition

The Alexander polynomial of a link L with Seifert matrix M is

$$\Delta_L(t) = \det(M - tM^T)$$

Remarks:

- This is defined up to $\pm t^k$.
- ② Originates from Deck transformations of an infinite cyclic cover of $\mathbb{R}^3 \setminus L$.

The figure eight knot $K_{4,1}$ has the following diagram with a corresponding Seifert surface:

The Seifert matrix is:

$$M = \begin{pmatrix} lk(a^+, a) & lk(a^+, b) \\ lk(b^+, a) & lk(b^+, b) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

Then

$$\Delta_{K_{4,1}}(t) = \det(M - tM^T) = \det\begin{pmatrix} 1 - t & 1 \\ -t & t - 1 \end{pmatrix} = t(-t + 3 - t^{-1}).$$

Does it behave nicely?

- 1 Distinguishes all knots with eight or fewer crossings.
- $\Delta_K(1) = \pm 1$ for any knot K.
- **3** Palindromic in t and t^{-1} : $\Delta_L(t) = \Delta_L(t^{-1})$ for any link L (up to a $\pm t^k$ factor).
- One normalization: Require $\Delta_K(1) = 1$ and $\Delta_K(t) = \Delta_K(t^{-1})$.
- Given such a polynomial, there is a knot whose Alexander polynomial is the same.
- Multiplicative under connected sum: $\Delta_{K_1 \# K_2}(t) = \Delta_{K_1}(t)\Delta_{K_2}(t)$.

How useful is it?

Doesn't distinguish:

- Mirror images and reverses of knots.
- The unknot.
- Mutant knots:

Definition

To obtain a **mutant** of a knot, we rotate or reflect a disc intersecting its diagram in four points.

Figure: The Kinoshita-Terasaka and Conway knots.

The multivariable Alexander polynomial

What about links?

- Label all the arcs of an oriented link L. Label each crossing by the outgoing lower arc. Assign a variable to each link component.
- Create a matrix with rows indexed by the crossings, columns by the arcs, using the rule:

3 Compute the ingredients: $\mu(k)$ =the number of times the k-th link component is the over strand in a crossing rot(k) =the rotation number of the k-th link component

The escape path $w_i = a$ path starting to the right of both outgoing strands at crossing i to the unbounded region. Multiply by x_j^{-1} is arc of j-th component crosses path left to right, x_i otherwise.

Definition (Torres '53)

The multivariable Alexander polynomial of is a link L:

$$\Delta(L) = \frac{(-1)^{i+j} \det(M_i^j)}{w_i(x_j - 1)} \prod_k x_k^{\frac{rot(k) - \mu(k)}{2}}$$

Example:

$$a_1$$
 a_2
 a_3
 a_4
 a_5
 a_5
 a_5

For the link L above, $\Delta(L) = y^{-1}(1 - y + y^2)$

Tangles and homology

Definition

A **tangle** is an embedding of *n* arcs and *m* circles into $\mathbb{R}^2 \times [0,1]$.

Theorem (Archibald '06)

There is an oriented tangle invariant generalizing the Alexander polynomial, with values in $\Lambda^{top}(X^{out}) \otimes \Lambda^{1/2}(X^{in} \cup X^{out})$ for a tangle with incoming and outgoing strands X^{in} and X^{out} respectively.

Heegaard Floer homology

Theorem (Ozsvath-Szabo '03)

Heegaard Floer Homology is an invariant of closed 3-manifolds which also gives homological invariants of knots in the manifolds. It categorifies the Alexander polynomial which is equal to its Poincare polynomial $\sum_{n} dim(H_n)p^n$.

The End

Thank you!