Modele systemów dynamicznych

Ćwiczenia – lista zadań nr 1

Zad. 1.

Wyznacz transformaty Laplace'a poniższych funkcji, korzystając z definicji:

a)
$$f(t) = 1(t)$$

b)
$$f(t) = e^{at}$$

c)

$$f(t) = \begin{cases} 0, & t < 0 \\ A, & 0 \le t < b \\ -A, & b \le t < 2b \\ 0, & t \ge b \end{cases}$$

Zad. 2.

Wyznacz transformaty Laplace'a poniższych funkcji, korzystając z tabeli transformat:

a)
$$8 - 3e^{3t}$$

b)
$$4\sin 5t - 2e^{5t} + 5$$

Zad. 3.

Rozwiąż równania różniczkowe:

a)
$$y^{(3)} + 3\ddot{y} + 3\dot{y} + y = 6e^{-t}$$
, $y(0) = \dot{y}(0) = \ddot{y}(0) = 0$

b)
$$\ddot{y} + 4y = \sin t$$
, $y(0) = \dot{y}(0) = 0$

c)
$$\ddot{y} + 3\dot{y} + 2y = 5 \cdot 1(t)$$
, $y(0) = -1$, $\dot{y}(0) = 2$

Zadanie domowe

Zad. 1.

Wyznacz transformaty Laplace'a poniższych funkcji, korzystając z definicji:

- a) $\cos at$
- **b)** $\sin at$

Zad. 2.

Wyznacz transformaty Laplace'a poniższych funkcji, korzystając z tabeli transformat:

- a) $\cos 5t e^{-3t}$
- **b)** $\frac{1}{2} (\sin 3t t \cos t)$

Zad. 3.

Rozwiąż równania różniczkowe:

a)
$$2\dot{y} + y = t^2 + 2$$
, $y(0) = 4$

b)
$$\ddot{y} + 4y = 3\sin t + 10\cos 3t$$
, $y(0) = 2$, $\dot{y}(0) = 3$

c)
$$\ddot{y} - 3\dot{y} + 2y = 4e^{3t}$$
, $y(0) = 2$, $\dot{y}(0) = 6$

d)
$$y^{(4)} + y^{(3)} = \cos t$$
, $y(0) = \dot{y}(0) = \ddot{y}(0) = y^{(3)}(0) = 0$

Dodatek

Transformatą Laplace'a nazywamy następujące przekształcenie:

$$\mathscr{L}[f(t)] \equiv \int_{0}^{\infty} f(t) e^{-st} dt$$
, gdzie s jest zmienną zespoloną.

Transformata Laplace'a posiada następujące własności:

1.
$$\mathscr{L}[a_1f_1(t) + a_2f_2(t)] = a_1\mathscr{L}[f_1(t)] + a_2\mathscr{L}[f_2(t)], \text{ gdzie } a_1, a_2 \in \mathscr{R}.$$

2.
$$\mathscr{L}\left[f^{(n)}(t)\right] = s^{n}\mathscr{L}\left[f(t)\right] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

3.
$$\mathscr{L}\left[\int_{0}^{t} f\left(u\right) du\right] = \frac{1}{s} \mathscr{L}\left[f\left(t\right)\right].$$

4. Jeśli
$$\mathcal{L}\left[f\left(t\right)\right]=F\left(s\right)$$
 to $\mathcal{L}\left[\left(-1\right)^{n}t^{n}f\left(t\right)\right]=F^{(n)}\left(s\right).$

5.
$$\mathscr{L}\left[\frac{f\left(t\right)}{t}\right] = \int_{s}^{\infty} F\left(s\right) ds$$
.

6.
$$\mathscr{L}[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$$
, gdzie $a > 0$.

7.
$$\mathscr{L}[f(t-a)] = e^{-as}F(s)$$
, gdzie $a > 0$.

8.
$$\mathscr{L}\left[e^{p_{0}t}f\left(t\right)\right]=F\left(s-p_{0}\right)$$
, gdzie p_{o} jest dowolną liczbą zespoloną.

$f\left(t\right)$	$\mathscr{L}\left[f\left(t\right)\right]$		
	1	$f\left(t ight)$	$\mathscr{L}\left[f\left(t\right)\right]$
1(t)	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$
$\delta(t)$	1		s-a
$\sin at$	$\frac{a}{s^2 + a^2}$	$e^{at}\sin bt$	$\frac{(s-a)^2+b^2}{(s-a)^2+b^2}$
$\cos at$	$\frac{s}{s^2 + a^2}$	$e^{at}\cos bt$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
$t\sin at$		$\frac{t^n}{n!}, n \in \mathscr{N}$	$\frac{1}{s^{n+1}}$
$t\cos at$	$\frac{2as}{(s^2 + a^2)^2}$ $\frac{s^2 - a^2}{(s^2 + a^2)^2}$	$e^{at} \cdot \frac{t^n}{n!}, n \in \mathcal{N}$	$\frac{1}{(s-a)^{n+1}}$

Tablica 1: Tabela często używanych transformat Laplace'a