

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

யாழ். வலயக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, மார்ச்

- 2016

Term Examination, March

- 2016

தரம் :- 13 (2016)

இணைந்த கணிதம் - I

மூன்று மணித்தியாலங்கள்

சுட்டெண்						
----------	--	--	--	--	--	--

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்தகணி	தம் I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	6
	2	STATE
	3	14 (0)
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத்தா	ர் I இன் மொத்தம்	

இணைந்தகணிதம்I	
இணைந்தகணிதம்II	
இறுதிப் புள்ளி	

	பகுதி - A
01)	கணிதத் தொகுத்தறிவுக் கோட்பாட்டைப் பயன்படுத்தி எல்லா $n \in Z^+$ இற்கும் 7^n , 6 இனால்
	வகுக்க வரும் மீதி 1 எனக் காட்டுக.
02)	
02)	y= x-1 , $y= 3x-1 $ எனும் சமனிலிகளை ஒரே வரிப்படத்தில் வரைக. இவ்வரைபினை
	உபயோகித்து $ 3x-1 < x-1 $ இணைத் திருப்தி செய்யும் x இன் பெறுமானத் தொடையினைக்
	காண்க.

z		വയയ	லண்கள	யகும்.									
•	3 - 2i	≤ 2 ,	w - 7	′ – 5 <i>i</i> <u>s</u>	≤ 1 สฐ	றும் சா	மனிலிக	ണെ ഉ	э Сர	ஆகன்	வரிப்பட	_த்தில்	காட்டி
z	· w ⊚a	ர் இழிவு	ப் பெறுเ	மதியை ச்	க் காண்	ъ.							
											•••••		
•••••	•••••	••••••	•••••	•••••	•••••		•••••	•••••		•••••		•••••	•••••
							•••••						
•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••		•••••
•••••		•••••	•••••						•••••		•••••	•••••	••••••
											•••••		
)							
•••••													
•••••													
•••••		•••••		/	//////			•••••				•••••	•••••
$k \in$	R Q j												
எனு இதி	ℝ இற்கு ம் வடிவி லிருந்து	த	= kx² ந்துரைக்க x ∈ ℝ	— 4k²x க. இங் கு இந்கும்	$+4k^{3}$ 5 a,b,c $f(x) >$	+ K ² - ச என்ப 2 ஆகு	2 என் ன <i>k</i> இ மாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (2 துணிய ரானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — k ய மாற் ாண்க.	o) ² + c ிலிகள்.
எனு இதி 	ம் வடிவி லிருந்து	த f(x) வில் எடுத் எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங் கு இந்கும்	$+4k^{3}$ $5 a,b,c$ $f(x) >$	+ K ² - 2 என்ப 2 ஆகு	2 என் ன <i>k</i> இ மொறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். ƒ(; துணிய பானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c லிலிகள்.
எனு! இதி 	ம் வடிவி லிருந்து	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ன <i>k</i> இ 5மாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ன <i>k</i> இ 5மாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ன <i>k</i> இ 5மாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.	o) ² + c
எனு இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.)) ² + <i>c</i> ிலிகள்.
எனு! இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.)) ² + <i>c</i> ிலிகள்.
எனு இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ரானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.)) ² + <i>c</i> ிலிகள்.
எனு இதி 	ம் வடிவ் லிருந்து 	த <i>f</i> (<i>x</i>) எல்லா	= kx ² ந்துரைக்8 x ∈ ℝ	— 4k ² x க. இங்கு இற்கும்	$+4k^{3}$ $f(x) >$	+ K ² – 2 என்ப 2 ஆகு	2 எனச ஏ <i>k</i> இ நமாறு <i>k</i>	க் கொ ன் சார் இன்	ள்வே பில் பெறுப	ாம். <i>f</i> (<i>:</i> துணிய ரானங்க	x) ஐ ம வேண்டி ளைக் க	a(x — Ł ய மாற் ாண்க.)) ² + <i>c</i> ிலிகள்.

$\lim_{x \to 0} \frac{\sqrt{1+\sin 4}}{x}$	$\frac{x-\sin^2 x-\cos^2 x}{x}$	s x = 2 என	க் காட்டுக.					
							ல் வரைக.	9 (
							ல் வரைக. எனக் காட்டுக.	
ഖണെധിക്കണ	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்		
வளையிகளா	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்	எனக் காட்டுக.	
வளையிகளா	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்	எனக் காட்டுக.	
வளையிகளா	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்	எனக் காட்டுக.	
வளையிகளா	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்	எனக் காட்டுக.	
வளையிகளா	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்	எனக் காட்டுக.	
வளையிகளா	ாலும் உள்ள	ாடைக்கப்பட்	ட பிரதேச	த்தின் பரப்ப	ளவு $\frac{8}{3}$ சது	அலகுகள்	எனக் காட்டுக.	

09)	மையம் $\mathcal{C}_{1}\left(a,b ight)$ ஐ உடைய வட்டம் \mathcal{S}_{1} ஆனது மையம் $\mathcal{C}_{2}\left(c,d ight)$ ஐ உடைய வட்டம் \mathcal{S}_{2} ஐ
(09)	
	வெளிப்புறமாகத் தொடுகிறது. தொடுப்புள்ளியில் உள்ள தொடலியானது உந்பத்தியினூடு செல்கிறது.
	உற்பத்தியில் இருந்து வரையப்படும் மற்றைய இரு தொடலிகளும் செங்குத்தாயின்
	bc-ad = ac+bd எனக் காட்டுக.
10)	$\frac{\pi}{2} < A < \pi$ எனவும் $3 \tan A + 4 = 0$ எனவும் கொள்வோம்.
	$2\cot A - 5\cos A + SinA$ இன் பெறுமானத்தைக் காண்க.

aho;. tyaf; fy;tpj; jpizf;fsj;jpd; mDruizAld; njhz;ilkhdhW ntspf;fs epiyak; elhj;Jk;

Field Work Centre

jtizg; guPl;ir> khu;r; - 2010

Term Examination, March - 2016

juk; :- 13 (2016) ,ize;j fzpjk; - I

பகுதி - B

- 11) (a) $p(x) = ax^3 + bx^2 16x 12$ எனக் கொள்வோம். p(x)இன் ஒரு காரணி x+2 எனவும் p(x) ஐ x-2 இனால் வகுக்க வரும் மீதி -48 எனவும் தரப்பட்டுள்ளன.
 - (i) *a, b* இன் பெறுமானங்களைக் காண்க.
 - (ii) p(x)ஐ ஏகபரிமானக் காரணிகளின் பெருக்கமாக எழுதுக.
 - (b) $\frac{x^2+34x-71}{x^2+2x-7}$ என்ற கோவையானது 5 இற்கும் 9 இற்கும் இடையே இருக்காது எனக் காட்டுக.
 - (c) $x^2 bx + c = 0$ என்ற இருபடிச் சமன்பாட்டின் மூலங்கள் α, β ஆகும்.
 - (i) $\frac{\alpha^2}{\beta}, \frac{\beta^2}{\alpha}$ என்பவந்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாட்டை b, c இன் உறுப்புகளில் காண்க.
 - (ii) $\alpha^2 = \beta$ எனின் $b^3 = c(3b+c+1)$ எனக் காட்டுக.
- 12) (a) ஒரு பரீட்சைக்குத் தோற்றும் பரீட்சார்த்தி ஒருவர் A, B, C என்னும் மூன்று பகுதிகளிக் கீழ் ஒவ்வொரு பகுதியிலும் முறையே 5, 4, 3 வினாக்கள் வீதம் தரப்பட்டுள்ள இப் பன்னிரண்டு வினாக்களில் ஆறு வினாக்களிற்கு விடை எழுத வேண்டும்.
 - (i) ஒவ்வொரு பகுதியிலும் முதலாம் வினா கட்டாயமானது.
 - (ii) அவர் எந்த ஒரு பகுதியிலும் மூன்று வினாக்களிற்கு மேற்பட விடை எழுதவியலாது. எனின் மேலே தரப்பட்ட ஒவ்வொரு வகையிலும் அப்பரீட்சார்த்தி ஆறு வினாக்களைத் தெரிந்தெடுக்கத்தக்க வெவ்வேறு வழிகளின் எண்ணிக்கைளைக் காண்க.
 - (b) n ஒரு இரட்டை எண் ஆகும் போது $1^3+3.2^2+3^3+3.4^2+5^3+3.6^2+\dots$ எனக் காட்டுக்கெரின் முதல் n உறுப்புக்களின் கூட்டுத்தொகை $\frac{n}{8}\left[n^3+4n^2+10n+8\right]$ எனக் காட்டுக. இதிலிருந்து n ஒற்றையாகும் போது n உறுப்புக்களின் கூட்டுத்தொகை

$$\frac{1}{8}(n+1)[n^3+7n^2-3n-1]$$
 என்பதை உய்த்தறிக.

- 13) (i) $\mathbf{z}_1 = 5 + i$ எனவும் $\mathbf{z}_2 = -2 + 3i$ எனவும் தரப்பட்டுள்ளது.
 - (a) $|z_1|^2 = 2|z_2|^2$ எனக் காட்டுக.
 - (b) $arg(z_1, z_2)$ இனைக் காண்க.
 - (ii) 16-30i இன் வர்க்க மூலத்தை a+ib வடிவில் தருக. இங்கு a,b மெய்யெண்கள்.
 - (iii) P,Q,R ஆகியன ஆகன் வரிப்படத்தில் முறையே \mathbf{z}_{o} , \mathbf{z}_{1} , \mathbf{z}_{2} எனும் சிக்கலெண்களை வகை குறிக்கும் மூன்று வேறு வேறான பள்ளிகளாகும். PQ, = PR ஆகவும் θ ஆனது PQ இலிருந்து PR இந்கு இடஞ்சுழிப் போக்கில் அளக்கப்பட்ட கோணமாகவும் இருப்பின் $(\mathbf{z}_{1}-\mathbf{z}_{o})=(\mathbf{z}_{2}-\mathbf{z}_{o})$ $(\cos\theta+\hat{\tau}\sin\theta)$ எனக் காட்டுக. ஆகன் வரிப்படத்தில் $|\mathbf{z}-1|=\sqrt{2}$ எனும் வட்டத்தைச் சுற்றி வரையப்படும் சதுரத்தின் ஒரு உச்சி $(2+\sqrt{3}\ i)$ எனின் சதுரத்தின் மற்றைய உச்சிகளைக் காண்க.

- 14) (a) $y = e^{\tan^{-1}x} + e^{-\tan^{-1}}$ எனின் $(1+x^2)^2 \frac{d^2y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} = y$ எனக் காட்டுக.
 - (b) $x \neq 1,4$ இந்கு $f(x) = \frac{x}{(x-1)(x-4)}$ எனக் கொள்வோம். $f^1(x) = \frac{4-x^2}{(x-1)^2 (x-4)^2}$ எனக் காட்டுக. திரும்பற் புள்ளிகளையும் அணுகுகோடுகளையும் காட்டி y = f(x) இன் வரைபை வரைக. $-1 < k < -\frac{1}{9}$ இற்கு k(x-1)(x-4) x = 0 எனும் சமன்பாடு மெய்த்தீர்வுகளை கொண்டிராது என்பதை உய்த்தறிக.
 - (c) சதுர அடியைக் கொண்டதும் மூடி இல்லாததும் மொத்த வெளிமேற்பரப்பு a^2 ஆகவும் அமையுமாறு பெட்டி ஒன்றை அமைக்க வேண்டியுள்ளது. பெட்டியின் உயர்கொள்ளளவு $\frac{a^3}{6\sqrt{3}}$ எனக் காட்டுக.
- 15) (a) $\int_{o}^{a} f_{(x)} dx = \int_{o}^{a} f_{(a-x)} dx$ எனக் காட்டுக. இதனைப் பயன்படுத்தி $\int_{o}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \ dx = \frac{\pi}{32}$ எனக் காட்டுக.
 - (b) ஓர் உந்த பிரதியீட்டையும் பகுதிகளாகத் தொகையிடும் முறையையும் பயன்படுத்தி $\int x^5 \cos x^2 \ dx$ ஐக் காண்க.
 - (c) பகுதிப் பின்னங்களைப் பயன்படுத்தி $\int \frac{(x^2+2)}{(x^2+1)(x^2+4)}$ ஐக் காண்க.
- 16) (a) $\ell_1 = a_1 \ x + b_1 y + c_1 = 0$, $\ell_2 = a_2 \ x + b_2 y + c_2 = 0$ என்னும் சமாந்தரமல்லாத நேர்கோடு களுக்கிடையே உள்ள கோணங்களின் இருகூறாக்கிகளின் சமன்பாடுகளைக் காண்க. முக்கோணி ABC இன் பக்கங்கள் AB, BC, CA இன் சமன்பாடுகள் முறையே 4x 3y + 2k = 0, 3x + 4y + k = 0, 7x + y + k = 0 ஆகும்; இங்கு $k \in \mathbb{R}$.
 - (i) AB ஆனது BC இற்குச் செங்குத்து எனக் காட்டுக.
 - (ii) $A\widehat{\mathrm{B}}\mathcal{C}$ இன் இருகூறாக்கியின் சமன்பாட்டை k இன் சார்பில் காண்க.
 - (iii) $A\widehat{B}\mathcal{C}$ இன் இருகூறாக்கியானது $A\mathcal{C}$ ஐ E(-4,3) இல் சந்திப்பின் k=25 எனக் காட்டுக.
 - (iv) k=25 எனின் ABCD ஒரு சதுரம் ஆகுமாறு D இன் ஆள்கூறுகளைக் காண்க.
 - (b) $(x-1)^2 + (y-3)^2 = 4$, $(x+3)^2 + (y-1)^2 = 9$ ஆகிய வட்டங்கள் இரு புள்ளிகளில் இடைவெட்டும் எனக் காட்டி இருவட்டங்களுக்குமான பொதுத் தொடலியின் சமன்பாடுகளைக் காண்க.
- 17) (a) an 3A இனை an A சார்பில் தருக. $\frac{\tan 3A}{\tan A} = k \quad \text{எனின்} \quad \frac{\sin 3A}{\sin A} \quad \text{இனை} \quad k \quad \text{சார்பில்} \quad \text{காண்க}.$
 - (b) $\sin^{-1} x + \tan^{-1} x = \frac{\pi}{2}$ எனின் $2x^2 + 1 = \sqrt{5}$ எனக் காட்டுக.
 - (c) கோசைன் நெறியைக் கூறுக் வழக்கமான குறியீட்டில் யாதுமொரு முக்கோணியின் பரப்பு $\frac{1}{2}\ bc\ \sin A$ என நிறுவுக.

ஒரு வட்ட நாற்பக்கலின் அடுத்துள்ள இரு பக்கங்களின் நீளங்கள் முறையே 5cm, 2cm ஆகும். அவற்றிற்கு இடைப்பட்ட கோணம் 60^o ஆகும். அத்துடன் வட்ட நாற்பக்கலின் பரப்பு $4\sqrt{3}\ cm^2$ எனின் எஞ்சிய பக்கங்களின் நீளங்களைக் காண்க.

aho;. tyaf; fy;tpj; jpizf;fsj;jpd; mDruizAld; njhz;ilkhdhW ntspf;fs epiyak; elhj;Jk;

Field Work Centre

jtizg; guPl;ir> khu;r;

- 2016

Torm Examination Margh -

- 2016

juk; :- 13 (2016)

,ize;j fzpjk; - п

மூன்று மணித்தியாலங்கள்

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் <mark>பகுதி A ஆ</mark>னது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்தகணி	தம் I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	4 001
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத்தா	ir I இன் மொத்தம்	

இணைந்தகணிதம்I	
இணைந்தகணிதம்II	
இறுதிப் புள்ளி	

								4						
01)	இரண்டு து	ணிக்கை	கள் ஒ	ரே ட	ள்ளியி	ல் இ	ருந்து	ஒரே	வேகத்	துடன்	வேறு	வேறா	ன தி	சைகளில்
	எறியப்படுகி	ன்றன.	ஒவ்வொ	ரரு ச	വകെഥി	லும்	வீச்சு	R	எனவும்	பறப்பு	நேரா	ங்கள்	t_1 , t_2	எனவும்
	இருப்பின், <i>I</i>	$R = \frac{1}{2}g$	t ₁ t ₂ ๓	ானக்	காட்டுக									
	•••••												•••••	
02)	100 kmh ⁻¹ ஒரு நேரான செல்வதாகத்	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				
02)	ஒரு நேரான	ா வீதியி	ில் செ	ல்வത	த பார்க	க்கின்	றார். ≀	கார் 2	125 km	h^{-1} @				

03)	ஒவ்வொன்றும் m திணிவுள்ள A,B என்னும் இரண்டு துணிக்கைகள் முறையே $3u,u$ கதிகளுடன்
	ஒரு நேர்கோட்டின் வழியே ஒரே திசையில் இயங்கி மோதுகின்றன. மோதுகையின் பின்னர் அவை
	அதே திசையில் முறையே u, ku கதிகளுடன் இயங்குகின்றன. மீளமைவுக் குணகம் e ஆகும்.
	e = 1 எனக் காட்டுக.
04)	நிலையான கப்பியின் மேலாகச் செல்லும் நீளா இழையின் நுனிகளில் $m,3m$ திணிவுள்ள
	துணிக்கைகள் இணைக்கப்பட்டு கப்பியில் இருந்து முறையே a,b என்னும் தூரங்களில் இழை
	இறுக்கமாக இருக்குமாறு பிடிக்கப்பட்டு சுயாதீனமாக விடப்படுகின்றது. சக்திக் காப்பு விதியை
	மாத்திரம் பயன்படுத்தி, தொகுதியின் ஆர்முடுகல் $rac{g}{2}$ எனக் காட்டுக.
	இழையில் உள்ள இழுவையைக் காண்க.

05)	இயற்கை நீளம் ℓ உம் மீள் தன்மை மட்டு $2mg$ உம் உடைய ஓர் இழை அதன் ஒரு நுனி புள்ளி
	A இல் நிலைப்படுத்தப்பட்டு மறு நுனி B இல் m திணிவுள்ள ஒரு துணிக்கை
	இணைக்கப்பட்டுள்ளது. துணிக்கை w என்னும் கோணக் கதியுடன் ஒரு கிடை வட்டத்தில்
	இயங்குகின்றது. இழுவை 3 mg ஆகும் போது இழை அதன் மீள் தன்மை எல்லையை அடைகிறது.
	இந்நிலை அடையப்படும்போதுள்ள கோணக் கதியைக் காண்க.
06)	$6\ m$ நீளமும் $20\ kg$ திணிவும் உடைய ஒரு சீரான ஏணி AB அதன் அடி A ஒரு கரடான
	கிடைத்தரை மீது ஓய்வில் இருக்கின்றது. ஏணி புள்ளி ${\mathcal C}$ இல் ஒரு ஒப்பமான நிலைக்குத்து சுவரின்
	உச்சிக்கு எதிராக ஓய்வில் இருக்கி <mark>ன்</mark> நது; இங்கு AC இன் நீளம் $5m$. ஏணியைக் கொண்ட
	நிலைக்குத்துத் தளம் சுவருக்குச் செங்குத்தானது. அத்துடன் ஏணிக்கும் தரைக்கும் இடையேயான
	கோணம் 60^o ஆகும். $80\ kg$ திணிவுடைய ஒரு மனிதன் ஏணியின் மீது புள்ளி D இல் நிற்கின்றான்;
	இங்கு AD ஆனது $4m$ ஆகும். ஏணி வழுக்கும் தறுவாயில் இருக்கின்றது. ஏணிக்கும் தரைக்கும்
	இடையிலான உராய்வுக் குணகத்தைக் காண்க.

$\underline{a} \cdot \underline{b} + \underline{b} \cdot \underline{c} + \underline{c} \cdot \underline{a}$	•					
		•••••				
					•••••	•••••••
		11/				••••••
•••••						
A,B என்பன ஒரு		உள்ள இரு				
A,B என்பன ஒரு $ ext{(i)} Pig(A/Big) \geq rac{Pig(A/Big)}{2}$	மாதிரிவெளியில் <u>(A)+ P(B) — 1</u> எனச்	உள்ள இரு காட்டுக.	நிகழ்ச்சிகள்	, P(B) > 0	எனின்	
A,B என்பன ஒரு $ ext{(i)} Pig(A/Big) \geq rac{Pig(A/Big)}{2}$	மாதிரிவெளியில் <u>(A)+ P(B) — 1</u> எனச்	உள்ள இரு காட்டுக.	நிகழ்ச்சிகள்	, P(B) > 0	எனின்	
A,B என்பன ஒரு $ ext{(i)} Pig(A/Big) \geq rac{Pig(A/Big)}{2}$	மாதிரிவெளியில் <u>(A)+ P(B) — 1</u> எனச்	உள்ள இரு காட்டுக.	நிகழ்ச்சிகள்	, P(B) > 0	எனின்	
A,B என்பன ஒரு $ ext{(i)} Pig(A/Big) \geq rac{Pig(A/Big)}{2}$	மாதிரிவெளியில் <u>(A)+ P(B) — 1</u> எனச்	உள்ள இரு க காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள்	, P(B) > 0	எனின்	
A,B என்பன ஒரு $(i) P(A/B) \geq rac{P(A}{B})$ $(ii) A,B $ சாராதன	மாதிரிவெளியில் <u>(A)+P(B)−1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் (<u>A</u>)P (<u>B</u>)	, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A,B என்பன ஒரு $(i) P(A/B) \geq rac{P(A}{B})$ $(ii) A,B $ சாராதன	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) \ \ P(^A/_B) \ge rac{P(}{}^{}$ $(ii) \ \ A, B$ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	
A, B என்பன ஒரு $(i) P(A/B) \ge \frac{P(A/B)}{2}$ $(ii) A, B $ சாராதன.	மாதிரிவெளியில் (<u>A)+ P(B) — 1</u> எனச் <u>P(B)</u> வ எனின் <i>P(A</i> ∪	உள்ள இரு காட்டுக. ப B) = 1 – P	நிகழ்ச்சிகள் $\left(\overline{A} ight)P\left(\overline{B} ight)$, <i>P(B)</i> > 0 என நிறுவுக	எனின்	

09)	ஒரு கோட	-		உள்ள நாணயம்		நாணய க்கப்பட்டு				இருபக்கமு தோன்றும்			மிகுதி
10)	 (மக்	காணி .	ABC	 இல் <i>P</i> ,	0.R	எ ன்ന്ദ	விசைக	ள் <i>B</i>		 4 <i>B</i> ഖழിuേ	ப தாக்குகி	 ത്ന്ദ്രன. ഖിദ	തബധങ്
	முக்	கோணி 🛚	ABC							நால் <i>P</i> cos			
	எனக்	காட்டுக	Б.										
							160		5	8)			
	•••••				••••••			••••••					•••••
													••••••

aho;. tyaf; fy;tpj; jpizf;fsj;jpd; mDruizAld; njhz;ilkhdhW ntspf;fs epiyak; elhj;Jk;

Field Work Centre

jtizg; guPl;ir> khu;r;

- 2016

Term Examination, March - 2016

juk; :- 13 (2016)

பகுதி - B

11) (a) கிடைத்தரை மீது உள்ள புள்ளி O இல் இருந்து கதி $2\;u$ உடன் நிலைக்குத்தாக மேல் நோக்கி துணிக்கை P எறியப்படுகின்றது. துணிக்கை P எறியப்பட்டு $\frac{u}{a}$ நேரத்தில் துணிக்கை Qஆனது அதே புள்ளி 0 இல் இருந்து நிலைக்குத்தாக மேல் நோக்கி u வேகத்துடன் எநியப்படுகின்றது. (v>u). இரு துணிக்கைகளுக்குமான வேக - நேர வரைபுகளை ஒரே வரிப்படத்தில் வரைக.

வேக - நேர வரைபை மாத்திரம் பயன்படுத்தி

- (i) துணிக்கை P அதியுயர் உயரத்தை அடைய எடுக்கும் நேரம் $\frac{2u}{a}$ எனக் காட்டுக.
- (ii) துணிக்கை P அடையும் அதியுயர் உயரம் $\frac{2u^2}{a}$ எனக் காட்டுக.
- (iii) துணிக்கை Q ஆனது P ஐ அத<mark>ன் அதியுயர் புள்</mark>ளியில் கடந்து செல்லுமெனின்,
 - $v=rac{5u}{2}$ எனக் காட்டுக
 - (eta) P ஆனது தரையை அடைந்து $rac{2u}{a}$ நேரத்தின் பின் Q தரையை அடையும் எனக் காட்டுக.
- $({
 m iv})$ துணிக்கை Q அதியுயர் புள்ளியை அடைந்த பின்பு P ஆனது எறியற் புள்ளியை அடையும் என்பதை உய்த்தநிக.
- (b) இரண்டு படகுகள் A,B மாறாக் கதிகளுடன் நேர்வழியே செல்கின்றன. நண்பகல் A,Bஎன்பவற்றின் தானக்காவிகள் வெளிச்ச வீடு தொடர்பாக முறையே $\underline{i} + 2j$, $-\underline{i} + j$ ஆகும். முப்பது நிமிடங்களின் பின்னர் A,B இன் தானக்காவிகள் முறையே $\left(-\underline{i}+3j\right)$, $(2\underline{i}-j)$ ஆகும்.
 - (i) A,B ஆகியவந்நின் வேகங்களை காவி வடிவில் காண்க.
 - $({
 m ii})$ நண்பகலின் பின்னர் t மணித்தியால நேரத்தில் A,B ஆகியவற்றின் தானக் காவிகளைக்
 - (iii) t நேரத்தின் பின் B தொடர்பாக A இன் தானக்காவி $\underline{r}=(2-10t)\underline{i}+(1+6t)j$ எனக் காட்டுக.
 - (iv) A யும் B யும் மிக நெருக்கமாக உள்ள போது நேரம் t யைக் காண்க.
- 12) (a) m திணிவை உடைய ஓர் ஒப்பமான ஆப்பு ஒரு கிடையான மேசை மீது உள்ளது. ஆப்பின் குறுக்குவெட்டு ஒரு சமபக்க முக்கோணி ஆகும். உச்சியினூடாகச் செலலும் இழையொன்றின் நுனிகளில் m_1, m_2 திணிவுள்ள துணிக்கைகள் இணைக்கப்பட்டு ஒப்பமான அவை சாய்முகங்களின் மீது வைக்கப்பட்டுள்ளன. ஆப்பின் பொது குறுக்கு வெட்டுத் தளத்தில், இழை இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படுகின்றது.

- $({
 m i})$ $m_1>m_2$ எனின், ஆப்பின் ஆர்முடுகல் $rac{\sqrt{3}(m_1-m_2)g}{3\,m_1+3m_2+4M}$ எனக் காட்டுக.
- $({
 m ii})$ $M=3m, m_1=2m$, $m_2=m$ எனின் இழையில் உள்ள இழுவையைக் காண்க.
- (b) உள்ளாரை a உடைய ஓர் ஒப்பமான நிலைப்படுத்தப்பட்ட ஒன்றின் உட்புறமாக சுயாதீனமாக இயங்கத்தக்க ஒரு துணிக்கை பாத்திரத்தின் அதிதாழ் புள்ளியில் A இல் இருந்து கிடையாக கதி $2\sqrt{ag}$ உடன் எறியப்படுகிறது.
 - (i) A இந்கு மேலே ஓர் உயரம் $\frac{5a}{3}$ இல் துணிக்கை பாத்திரத்தின் மேற்பரப்பை விட்டு வெளியேறுமெனக் காட்டுக.
 - (ii) துணிக்கை அடையும் அதியுயர் உயரம் $\frac{50a}{27}$ என மேலும் காட்டுக.
- 13) m திணிவுள்ள ஒரு துணிக்கை P ஆனது மீள்தன்மை மட்டு 2 mg ஆக உள்ள ஓர் இழையின் ஒரு நுனியுடன் இணைக்கப்பட்டு இழையின் மற்றைய நுனி ஒரு சீலிங்கின் ஒரு நிலைத்த புள்ளி O இற்கு இணைக்கப்பட்டு நீட்சி ℓ ஆக இருக்க நாப்பத்தில் தொங்குகின்றது. இழையின் இயற்கை நீளம் 2ℓ எனக் காட்டுக.

OP நிலைக்குத்தாக இருக்க இழையின் நீளம் 5ℓ இற்கு சமமாக இருக்கத்தக்கதாக இழை ஈர்க்கப்பட்டு துணிக்கை P ஓய்வில் இருந்<mark>து விடு</mark>விக்கப்படுகின்றது. இழையின் நீட்சி $\ell+x$ ஆக இருக்கும் போது $(-\ell < x < 2\ell)$ துணிக்கை P இன் இயக்கச் சமன்பாட்டை எழுதி, வழமையான குறிப்பீட்டில் $\ddot{x} = \frac{-g}{\ell}x$ எனக் காட்டுக.

மேற்குறித்த சமன்பாட்டின் தீர்வு $x = A\cos wt + B\sin wt$ எனக் கொண்டு A,B,w ஐக் காண்க. இதிலிருந்து துணிக்கை மீண்டும் இயற்கை நீளத்தை அடைய எடுக்கும் நேரத்தைக் காண்க.

- 14) (a) முக்கோணி ABC இல் AD என்பது $B\widehat{A}C$ இன் இருகூறாக்கி ஆகுமாறு D என்பது BC மீதுள்ள புளளி $BD=\lambda\,DC$ எனக் கொள்க. $\overrightarrow{AB}=\underline{a},\overrightarrow{AC}=\underline{b}$ ஆகும்.
 - (i) \overrightarrow{BD} , \overrightarrow{DC} என்பவற்றை \underline{a} , \underline{b} சார்பாகக் காண்க.
 - (ii) \overrightarrow{AD} ஐ \underline{a} , \underline{b} சார்பாகக் காண்க.
 - (iii) எண்ணிப் பெருக்கத்தை கருதுவதன் மூலம் $\frac{AB}{AC} = \frac{BD}{DC}$ எனக் காட்டுக.
 - (b) xy தளத்தில் உள்ள நான்கு விசைகளைக் கொண்ட ஒரு தொகுதி கீழே தரப்பட்டுள்ளது.

ഖിതச	புள்ளிகள்
-2 <u>i</u>	(3,3)
-5 <u>j</u>	(4,0)
p <u>i</u> + <u>j</u>	(-8, -2)
-3 <u>j</u> - 4 <u>j</u>	(0,q)

- (i) இவ்விசைகளின் விளையுளை p இன் சார்பாக எழுதுக.
- (ii) விசைத்தொகுதி y அச்சுக்குச் சமாந்தரமாகத் தொழிற்படும் ஒரு தனி விசை F இற்குச் சமவலுவானது எனத் தரப்பட்டிருக்க p இன் பெறுமானத்தைக் காண்க.

- (iii) F இன் தாக்கக்கோடு x=3 என மேலும் தரப்பட்டிருக்க, q இன் பெறுமானத்தைக் காண்க.
- (iv) விசைத்தொகுதி உற்பத்திக்கூடாகத் தொழிற்படும் ஒரு தனி விசையுடன் ஓர் இணை G ஆல் பிரதியீடு செய்யப்பட முடியும் எனின் G இன் பருமனை எழுதி அதன் போக்கைக் குறிப்பிடுக.
- 15) (a) ஒவ்வொன்றும் நிறை w வை உடைய AB,BC,CD,DA என்னும் நான்கு சீரான கோல்கள் ஒரு சட்டப்படல் ABCD யை ஆக்கமாறு அவற்றின் முனைகளில் உப்பமாக மூடப்பட்டுள்ளன. கோல் AB யின் நடுப்புள்ளியும் மூட்டு C யும் ஓர் இலேசான மீள்தன்மையின்றிய இழையினால் தொடுக்கப்பட்டிருக்கும் அதேவேளை கோல் AD யின் நடுப்புள்ளியும் மூட்டு C யும் இன்னோர் இலேசான மீள்தன்மையின்றிய சம இழையினால் தொடுக்கப்பட்டுள்ளன. சட்டப்படல் மூட்டு A யிலிருந்து தொங்கவிடப்பட்டு, $B\widehat{A}D=120^o$ ஆகவும் இருக்குமாறு நாப்பத்தில் பேணப்படுகின்றது. ஒவ்வொரு இழையிலும் உள்ள இழுவை $\sqrt{3}\ w$ எனக் காட்டுக.

வரிப்படத்தில் காணப்படும் இலேசான சட்டப்படல் ஒரு நிலைக்கத்துத் தளத்தில் இருக்கும் அதேவேளை கிடைத்தூரம் 4a யில் இருக்கும் A,C ஆகியவற்றில் உள்ள ஆதூரங்களின் மீது நாப்பத்தில் இருக்கின்றது. $C\widehat{B}D=120^o$, $A\widehat{B}D$ 90^o , BC=2a, BD=a ஆகும். BC கிடையானது. புள்ளி B யிலிருந்து $12\ N$ என்னும் சுமை தொங்கவிடப்படின், போவின் குறிப்பீட்ப் பயன்படுத்தி ஒரு தகைப்பு வரிப்படத்தை வரைந்து, இதிலிருந்து, கோல் AB யானது பருமன் $9\ N$ உள்ள இழுவையை உடையதெனக் காட்டுக.

ஏனைய ஒவ்வொன்றிலும் உள்ள தகைப்பை அது இழுவையா, உதைப்பா எனக் காட்டித் துணிக.

16) (i) படத்திலுள்ள திண்ம கூம்பின் அடித்துண்டின் புவியீர்ப்பு மையத்தை தொகையிடலால் காண்க.

(ii) விசை P பிரயோகிக்கப்படும் போது துண்டம் வழுக்காது கவிழும் நிலையில் இருப்பின் துண்டத்தின் நிறை W ஆக $P = \frac{3w}{2(\cos\theta + \sin\theta)} \;\; \text{எனக் காட்டுக}.$

- (iii) P இன் இழிவுப் பெறுமானத்தையும் அப்போது heta இன் பெறுமானத்தையும் காண்க.
- 17) (a) ஒரு மாதிரிவெளி S இல் உள்ள A,B என்ற நிகழ்ச்சிகள் சாராதவை எனின் A,B சாராதவை எனக் காட்டுக.
 - (b) 'ASSISTANT' என்ற சொல்லில் இருந்து ஓர் எழுத்தும் 'STATISTICS' என்ற சொல்லில் இருந்து ஓர் எழுத்தும் எடுக்கப்படுகின்றது. அவ் எழுத்துக்கள் இரண்டும்
 - (i) ஒரே எழுத்தாக இருப்பதற்கான
 - (ii) இரு எழுத்துக்களும் வெவ்வேறான உயிரெழுத்தாக இருப்பதற்கான
 - (iii) இரு எழுத்துக்களும் உயிரெழு<mark>த்துக்களாக</mark> இருப்<mark>பதற்க</mark>ான
 - (iv) இரு எழுத்துக்களும் ஒரே மெய்ய<mark>ெழு</mark>த்தாக இருப்பதற்கான நிகழ்தகவுகளைக் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

- C.Maths
- Physics
- Chemistry
 - + more