MATH 2850 Mid2 RC PART I

Mo Yang

2023.7

Content

- Norm, Open Sets and Close Sets
- Continuous Functions
- First Derivatives
- Curves

Norm, Open Sets, and Close Sets

Norms

The most common norm that we're familiar with is on \mathbb{R}^n

$$||(x_i)||_2=\sqrt{\sum_i x_i^2}$$

$$||(x_i)||_{\infty}=max\{|x_i|:1\leq i\leq n\}$$

Suppose $||\cdot||$ is a norm on V, then for any element x,y belongs to vector space V, it follows:

- $||x|| \geq 0$
- $k \cdot ||x|| = ||k \cdot x||$
- $||x+y|| \le ||x|| + ||y||$

8.5. Definition. Let V be a vector space on which we may define two norms $\|\cdot\|_1$ and $\|\cdot\|_2$. Then the two norms are called *equivalent* if there exists two constants C_1 , $C_2 > 0$ such that

$$C_1 ||x||_1 \le ||x||_2 \le C_2 ||x||_1$$
 for all $x \in V$. (8.3)

Therefore, the following theorem is of fundamental importance:

8.11. Theorem. In a finite-dimensional vector space, all norms are equivalent.

Open and Close Sets

2.1.2. Definition. Let $(V, \|\cdot\|)$ be a normed vector space. A set $U \subset V$ is called *open* if for every $a \in U$ there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(a) \subset U$.

2.1.18. Definition. Let $(V, \|\cdot\|)$ be a normed vector space and $M \subset V$. Then M is said to be *closed* if its complement $V \setminus M$ is open.

- Open set (e.g. open ball, empty set, entire set, M=int M)
- Close set: complement of open set (e.g. single point, $\partial M \subset M$)

Suppose X is a complete normed space and S_1 , S_2 , ..., S_n is a finite collection of subsets of X. Judge T or F:

- If S_i 's are open, then $\cup_i S_i$ is open.
- If S_i 's are open, then $\cap_i S_i$ is open.
- If S_i 's are closed, then $\cup_i S_i$ is closed.
- If S_i 's are closed, then $\cap_i S_i$ is closed.

The set $\Omega = \{A \in \operatorname{Mat}(2 \times 2) : \det A = 1\}$ is \square bounded. \square open. \boxtimes closed.

 \square compact.

For example, $A = \begin{pmatrix} n & 0 \\ 0 & \frac{1}{n} \end{pmatrix} \in \Omega$. Take the max norm for determinant $\|\cdot\| = \max_{i,j} |a_{ij}|$ and let $n \to \infty$, we can see that Ω is not bounded.

Since Ω is not bounded, then Ω is not compact.

We argue that
$$\Omega$$
 is not open. Take $A=\begin{pmatrix}n&0\\0&\frac{1}{n}\end{pmatrix}$ $(n>1)\in\Omega$ and the max norm, we find $B_{\varepsilon}(A)$ for $\varepsilon>0$, $B=\begin{pmatrix}n+\frac{\varepsilon}{2}&0\\0&\frac{1}{n}\end{pmatrix}$ $\in B_{\varepsilon}(A)$, but $B\notin\Omega$.

Continuous Functions

Continuous Functions

Theorem

Let $(U, ||\cdot||_1)$ and $(V, ||\cdot||_2)$ be normed vector spaces and $f: U \to V$ a function. Then f is continuous at $a \in U$ if and only if

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in U} \|x-a\|_1 < \delta \qquad \Rightarrow \qquad \|f(x)-f(a)\|_2 < \varepsilon.$$

Question.

Continuous or not: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} (1 - \cos \frac{x^2}{y}) \sqrt{x^2 + y^2} & y \neq 0 \\ 0 & y = 0 \end{cases}$$

Comment.

- y = 0, f(x, y) is continuous.
- $y \neq 0$, we want to show $\lim_{\sqrt{x^2+y^2}\to 0} f(x,y) = 0$. Let $\sqrt{x^2+y^2}\to 0$, then

$$|f(x,y)| \le |1 - \cos \frac{x^2}{y}|\sqrt{x^2 + y^2} \le 2\sqrt{x^2 + y^2} \to 0$$

First Derivatives

First Derivatives

Definition

There is a linear map $L_x \in \mathcal{L}(X,V)$ (called derivative) such that

$$f(x+h) = f(x) + L_x h + o(h) \qquad \text{as } h \to 0.$$

Comment.

We may thus regard the derivative as a linear map

$$D: C^1(\Omega, V) \to C(\Omega, \mathcal{L}(X, V)), \qquad f \mapsto Df.$$

Exercise 2. Calculate the first derivative of the function

$$f : \operatorname{Mat}(n \times n; \mathbb{R}) \to \operatorname{Mat}(n \times n; \mathbb{R}),$$
 $f(A) = A^3$

Find the second derivative, i.e., the derivative of $Df|_x$ as a function of x. (6 Marks)

We have

$$f(A+H) = (A+H)^3 = (A+H)(A+H)(A+H) = (A+H)(A^2+HA+AH+H^2)$$

= $A^3 + AHA + A^2H + HA^2 + o(H)$

(1 Mark) so

$$Df|_A H = AHA + A^2H + HA^2$$

(1 Mark) Then

$$Df|_{A+J}H = (A+J)H(A+J) + (A+J)^2H + H(A+J)^2$$

= $AHA + A^2H + HA^2 + JHA + AHJ + AJH + JAH + AHJ + AJH + o(J)$

(1 Mark) so

$$D^{2}f|_{A}(H,J) = JHA + AHJ + AJH + JAH + AHJ + AJH$$

(1 Mark) and the second derivative is interpreted as a bilinear map.

Curves

Curves

Definition

Let $(V; \|\cdot\|)$ be a normed vector space and $I \subset R$ an interval.

A set $C \subset V$ for which there exists a continuous, surjective and locally injective map $\gamma: I \to C$ is called a curve.

The map γ , is called a parametrization of C.

A curve C together with a parametrization γ , i.e., the pair $(C; \gamma)$, is called a parametrized curve.

(From Horst's Slides, Page 352)

Simple, Open and Closed Curves

(From Horst's Slides, Page 358)

- 2.3.9. Definition. Let $\mathcal{C} \subset V$ be a curve with parametrization $\gamma \colon I \to \mathcal{C}$.
 - (i) Let $J \subset \mathbb{R}$ be an interval. A continuous, bijective map $r: J \to I$ is called a *reparametrization*.of the parametrized curve (\mathcal{C}, γ) .

Comment.

Given any two parametrizations $\gamma, \widetilde{\gamma}$ of an open curve, one can always find a reparametrization by setting $r = \gamma^{-1} \circ \widetilde{\gamma}$ (the continuity and local injectivity is enough for this definition to make sense).

Tangent Vector: $T \circ \gamma(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|}$

Normal Vector: $N \circ \gamma(t) = \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|}$

Binormal vector: $B \circ \gamma(t) = T \circ \gamma(t) \times N \circ \gamma(t)$ (Only in \mathbb{R}^3)

Curve length: $I(C) = \int_a^b \|\gamma'(t)\| dt$

Curve function: $I \circ \gamma(t) = \int_a^t \|\gamma'(t)\| dt$

Curvature: $\kappa \circ I^{-1}(s) = \left\| \frac{d}{ds} T \circ I^{-1}(s) \right\| = \frac{\left\| (T \circ \gamma)'(t) \right\|}{\|\gamma'(t)\|}$

Curvature in \mathbb{R}^3 : $\kappa \circ I^{-1}(s) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3}$

Torsion: $\frac{d(B \circ I^{-1}(s))}{ds} = -\tau(s)(N \circ I^{-1}(s)), \text{ then}$

$$\tau(s) = -\frac{d(B \circ I^{-1}(s))}{ds} \cdot (N \circ I^{-1}(s))$$

Question.

Find the tangent vector, normal vector, curve length function, curvature of cycloid $\gamma(t),\ t\in(0,2\pi)$

$$\gamma(t) = \begin{pmatrix} t - \sin t \\ 1 - \cos t \end{pmatrix}$$

$$\gamma'(t) = \begin{pmatrix} 1 - \cos t \\ \sin t \end{pmatrix}$$

$$T \circ \gamma(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|} = \frac{1}{2\sin(t/2)} \begin{pmatrix} 1 - \cos t \\ \sin t \end{pmatrix} = \begin{pmatrix} \sin(t/2) \\ \cos(t/2) \end{pmatrix}$$

$$(T \circ \gamma)'(t) = \frac{1}{2} \begin{pmatrix} \cos(t/2) \\ -\sin(t/2) \end{pmatrix}$$

$$N \circ \gamma(t) = \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|} = \begin{pmatrix} \cos(t/2) \\ -\sin(t/2) \end{pmatrix}$$

$$\|\gamma'(t)\| = 2\sin(t/2)$$

$$I \circ \gamma(t) = \int_0^t \|\gamma'(t)\| dt = 4(1 - \cos t/2), \quad t \in (0, 2\pi)$$

$$I \circ \gamma(2\pi) = 8$$

$$\kappa \circ I^{-1}(s) = \frac{\|(T \circ \gamma)'(t)\|}{\|\gamma'(t)\|} = \frac{1}{4\sin(t/2)}$$

Curve Length

Suppose $\mathcal C$ is a curve in V and $\gamma\colon [b,s]\to \mathcal C$ the parameterization. The curve length formula:

$$I = \int_b^s \left\| \gamma'(t) \right\| dt$$

Calculate the length of the curve length of the cardioid, i.e, $r = 1 - \sin(\theta)$, using a suitable parameterization

We let $x = r\cos(\theta)$ and $y = r\sin(\theta)$

So for
$$\gamma(\theta) = ((1-\sin(\theta))\cos(\theta)), (1-\sin(\theta))\sin(\theta))$$

$$\gamma'(\theta) = (-\sin(\theta) + \sin^2(\theta) - \cos^2(\theta), \cos(\theta) - 2\sin(\theta)\cos(\theta))$$

The length should be

$$\int_0^{2\pi} \sqrt{(-\sin(heta)+\sin^2(heta)-\cos^2(heta))^2+(\cos(heta)-2\sin(heta)\cos(heta))^2}d heta=8$$

Thank You!

Reference

- VV285, slide. Horst Hohberger
- Sample Exam. Horst Hohberger
- RC, slides. TA-Pingbang Hu
- RC, slides. TA-Chen Yuxiang
- RC, slides. Yahoo