STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Apr 5

Lecturer: Xianyang Zhang

This note provides some additional materials on the Vapnik-Chervonenkis (VC) dimension. To learn more, please refer to Chapter 2.6 of van der Vaart and Wellner (1996).¹

1 Definition

Let \mathcal{C} be a collection of subsets of \mathcal{X} . An arbitrary set of n points $x_1^n = \{x_1, \ldots, x_n\}$ contains 2^n subsets. We say that \mathcal{C} picks out a certain subset of x_1^n if the subset is the form $C \cap x_1^n$ for some $C \in \mathcal{C}$. Let $\Delta(\mathcal{C}, x_1^n)$ be the cardinality of the collection of sets $\{C \cap x_1^n : C \in \mathcal{C}\}$, i.e., the number of subsets of x_1^n that can be picked out by \mathcal{C} . If $\Delta(\mathcal{C}, x_1^n) = 2^n$, we say that x_1^n is shattered by \mathcal{C} . The VC-dimension of \mathcal{C} , denoted by $VC(\mathcal{C})$, is the largest integer n such that there exists a set of n points $x_1^n \subseteq \mathcal{X}$ with $\Delta(\mathcal{C}, x_1^n) = 2^n$. Equivalently,

$$VC(\mathcal{C}) = \sup_{n} \left\{ n \in \mathbb{N} : \sup_{x_1^n \subseteq \mathcal{X}} \Delta(\mathcal{C}, x_1^n) = 2^n \right\}.$$

Put another way, if there is no set of points $x_1, \ldots, x_{n+1} \in \mathcal{X}$ that \mathcal{C} shatters, then $VC(\mathcal{C}) < n+1$. The VC-dimension quantifies the complexity of the collection of sets \mathcal{C} .

Remark. Sometimes VC-dimension is defined as the smallest integer n for which no x_1^n is shattered by C. This is the definition used in van der Vaart and Wellner (1996).

Example. We have the following results:

- 1. If $C = \{(-\infty, x] : x \in \mathbb{R}\}$, then VC(C) = 1. This is because for two points $x_1 < x_2$, C can never pick out the set $\{x_2\}$.
- 2. If $C = \{(-\infty, x_1] \times \cdots (-\infty, x_d] : x_1, \dots, x_d \in \mathbb{R}\}$, then VC(C) = d.
- 3. If $\mathcal{C} = \{\text{all rectangles in } \mathbb{R}^d\}, VC(\mathcal{C}) = 2d.$

Let $S_n(\mathcal{C}) = \sup_{x_1^n \subseteq \mathcal{X}} \Delta(\mathcal{C}, x_1^n)$, which is called the shattered coefficient. We have the following properties regarding the shattered coefficient:

- 1. Let $\mathcal{C}^c = \{C^c : C \in \mathcal{C}\}$. Then $S_n(\mathcal{C}) = S_n(\mathcal{C}^c)$.
- 2. Let $C_{+} = \{C_{1} \cup C_{2} : C_{1} \in C_{1}, C_{2} \in C_{2}\}$ and $C_{-} = \{C_{1} \cap C_{2} : C_{1} \in C_{1}, C_{2} \in C_{2}\}$. Then $S_{n}(C_{+}) \leq S_{n}(C_{1}) \times S_{n}(C_{2})$ and $S_{n}(C_{-}) \leq S_{n}(C_{1}) \times S_{n}(C_{2})$.
- 3. $S_{n+m}(\mathcal{C}) \leq S_n(\mathcal{C})S_m(\mathcal{C})$ for $n, m \in \mathbb{N}$.
- 4. $S_n(\mathcal{C}_1 \cup \mathcal{C}_2) \leq S_n(\mathcal{C}_1) + S_n(\mathcal{C}_2)$.

The verification of these results is left as exercises.

 $^{^{1}}$ van der vaart, A., and Wellner, J. (2000). Weak convergence and empirical processes: with applications to statistics. Springer Series in Statistics, New York.

2 Sauer's lemma and covering numbers

We introduce the Sauer's lemma and its proof. It states that as long as $VC(\mathcal{C}) < \infty$, the number of subsets that \mathcal{C} can pick out from x_1^n grows at most polynomially in n.

Lemma. Suppose $VC(\mathcal{C}) < \infty$. Then

$$\sup_{x_1^n \subseteq \mathcal{X}} \Delta(\mathcal{C}, x_1^n) \le \sum_{k=0}^{VC(\mathcal{C})} \binom{n}{k} \le (n+1)^{VC(\mathcal{C})}.$$

Proof. To see the second inequality, we note that

$$\sum_{k=0}^{VC(\mathcal{C})} \binom{n}{k} = \sum_{k=0}^{VC(\mathcal{C})} \frac{n!}{(n-k)!k!} \le \sum_{k=0}^{VC(\mathcal{C})} \frac{n^k}{k!} \le \sum_{k=0}^{VC(\mathcal{C})} n^k \binom{VC(\mathcal{C})}{k} = (n+1)^{VC(\mathcal{C})},$$

where we have used the fact that $1/k! \leq \binom{VC(\mathcal{C})}{k}$ and the binomial expansion formula.

We shall use the induction argument to prove the first inequality. Let $\Psi_k(n) = \sum_{i=0}^k \binom{n}{i}$ and

$$\Phi_k(n) = \sup_{VC(\mathcal{C}) < k} \sup_{x_1^n \subseteq \mathcal{X}} \Delta(\mathcal{C}, x_1^n)$$

The assertion is equivalent to

$$\Phi_k(n) \le \Psi_k(n)$$

for all k, n, which we will prove using induction arguments on the sum n+k. When n=0 or k=0, $\Phi_k(n)=\Psi_k(n)=0$. Taking n=k=1, it is not hard to verify that $\Psi_1(1)=2$ and $\Phi_1(1)=2$. Now assume that the results hold for all pairs (n',k') for n'+k' < m with $m \in \mathbb{N}$. Let n+k=m and $VC(\mathcal{C})=k$ for some collection of sets \mathcal{C} . For $i \in \{1,\ldots,n\}$ and a set $x_1^n=\{x_1,\ldots,x_n\}$, define $x_2^n=x_1^n\setminus\{x_1\}=\{x_2,\ldots,x_n\}$.

Let $\mathcal{C}' \subset \mathcal{C}$ be a sub-collection of \mathcal{C} such that it picks out as many subsets of x_2^n as possible. If there exist C_1 and C_2 such that $C_1 \cap x_2^n = C_2 \cap x_2^n$, we keep the one that does not contain x_1 in \mathcal{C}' . If all such C_i 's contain x_1 , we keep all of them in \mathcal{C}' . By construction, \mathcal{C}' includes all the sets of \mathcal{C} that do not contain x_1 .

We claim that

$$\Delta(\mathcal{C}, x_1^n) = \Delta(\mathcal{C}', x_2^n) + \Delta(\mathcal{C} \setminus \mathcal{C}', x_2^n). \tag{1}$$

Suppose $A \subset x_1^n$ is picked out by \mathcal{C} , i.e., $A = x_1^n \cap C$ for some $C \in \mathcal{C}$. There are three cases:

- 1. The sets that can pick out $A \setminus \{x_1\}$ all contain x_1 . Then they are all in \mathcal{C}' .
- 2. None of the set that can pick out $A \setminus \{x_1\}$ contains x_1 . Then they are all in \mathcal{C}' as well.
- 3. The sets that can pick out $A \setminus \{x_1\}$ may or may not contain x_1 . Then the ones that contain x_1 are in $\mathcal{C} \setminus \mathcal{C}'$ and the rest are in \mathcal{C}' .

It is not hard to verify (1) by analyzing each case (think about why?).

If we have $VC(\mathcal{C}') \leq k$, then by the induction hypothesis, $\Delta(\mathcal{C}', x_2^n) \leq \Phi_k(n-1) \leq \Psi_k(n-1)$. We claim that $VC(\mathcal{C} \setminus \mathcal{C}') \leq k-1$. To see this, we note that if $\mathcal{C} \setminus \mathcal{C}'$ shatters a set $B \subset x_2^n$, then \mathcal{C} must shatter $B \cup \{x_1\}$ (this is because there exists a set $C \in \mathcal{C}'$ that does not contain x_1 and can pick out the same subset of B). So that the cardinality of B is less than k as $VC(\mathcal{C}) = k$. Therefore, we have $\Delta(\mathcal{C} \setminus \mathcal{C}', x_2^n) \leq \Phi_{k-1}(n-1) \leq \Psi_{k-1}(n-1)$.

We obtain

$$\begin{split} \Delta(\mathcal{C}, x_1^n) &= \Delta(\mathcal{C}', x_2^n) + \Delta(\mathcal{C} \setminus \mathcal{C}', x_2^n) \\ &\leq \Psi_k(n-1) + \Psi_{k-1}(n-1) \\ &= \sum_{i=0}^k \binom{n-1}{i} + \sum_{i=0}^{k-1} \binom{n-1}{i} \\ &= \sum_{i=0}^k \binom{n}{i} + \sum_{i=1}^k \binom{n-1}{i-1} = \sum_{i=0}^k \binom{n}{i}. \end{split}$$

To get the last equality, we have used the fact that

$$\binom{n}{i} = \binom{n-1}{i} + \binom{n-1}{i-1}.$$

This equation can be proved by considering the problem of selecting i balls out of a box of n balls conditioning on whether the first ball is being selected or not.

Remark. A different proof is given in van der Vaart and Wellner (1996). The basic idea is to first prove the result for a collection of sets \mathcal{C} that is hereditary, i.e., $B \in \mathcal{C}$ whenever $B \subset C$ for $C \in \mathcal{C}$. Then it is argued that a general \mathcal{C} can be transformed into a hereditary collection without changing its cardinality and without increasing the number of sets it shatters.

For a collection of sets C and a probability distribution P on X, we define the $L_r(P)$ metric (with r > 0) between sets $A, B \subset X$ by the distance between their indicator functions, i.e.,

$$\|\mathbf{1}_A - \mathbf{1}_B\|_{L_r(P)} = \left(\int_{\mathcal{X}} |\mathbf{1}_A - \mathbf{1}_B|^r dP(x)\right)^{1/r}.$$

We define the covering numbers of a collection C with respect to this metric on sets, denoting it by $N(C, L_r(P), \epsilon)$. A classical result is the following uniform control on covering numbers. See Theorem 2.6.4 of van der Vaart and Wellner (1996).

Theorem. Let \mathcal{C} be a class of sets with $VC(\mathcal{C}) < \infty$. Then there exists a universal constant $K < \infty$ such that for any probability measure P, any $r \geq 1$ and all $0 < \epsilon < 1$,

$$N(\mathcal{C}, L_r(P), \epsilon) \le K \cdot VC(\mathcal{C}) \cdot (4e)^{VC(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{rVC(\mathcal{C})}.$$

Example. We show that

$$E\left[\sup_{t\in\mathbb{R}^d}|P_n(X\leq t)-P(X\leq t)|\right]\to 0,$$

where $t = (t_1, ..., t_d) \in \mathbb{R}^d$ and $[X \leq t] = [X_1 \leq t_1, ..., X_d \leq t_d]$. Set $\mathcal{F} = \{1_{\{X_1 \leq t_1, ..., X_f \leq t_d\}} : t = t_1, ..., t_d \leq t_d\}$

 $(t_1,\ldots,t_d)\in\mathbb{R}^d$. Then $VC(\mathcal{F})=O(d)$. We thus get

$$E\left[\sup_{t \in \mathbb{R}^d} |P_n(X \le t) - P(X \le t)|\right]$$

$$\le \frac{2}{\sqrt{n}} E\left[E\left[\sup_{f \in \mathcal{F}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(X_i) \right| \left| X_1, \dots, X_n \right| \right]\right]$$

$$\le \frac{2c}{\sqrt{n}} E\left[\int_0^\infty \sqrt{\log N(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon\right] + \frac{c}{\sqrt{n}}$$

$$\le \frac{2c\sqrt{d}}{\sqrt{n}} \int_0^1 \sqrt{\log \frac{1}{\epsilon}} d\epsilon + \frac{c}{\sqrt{n}}$$

Definition. The subgraph of a function: $\mathcal{X} \to \mathbb{R}$ is defined as

$$sub f := \{(x, t) : t < f(x)\} = (epi f)^c.$$

Note: $\operatorname{sub} f \subseteq \mathcal{X} \times \mathbb{R}$.

Definition. \mathcal{F} is a VC-class (VC-subgraph-class) if $\{\text{sub} f : f \in \mathcal{F}\}$ is a VC-class.

Theorem. For a VC-subgraph-class of functions \mathcal{F} with envelope function F and $r \geq 1$, one has for any probability measure Q with $0 < ||F||_{Q,r} = (\int F^r dQ)^{1/r} < \infty$,

$$N(\mathcal{F}, L_r(Q), \epsilon ||F||_{Q,r}) \le K \cdot VC(\mathcal{F}) \cdot 16e^{VC(\mathcal{F})} \left(\frac{1}{\epsilon}\right)^{rVC(\mathcal{F})}.$$