CSC 139: Operating Systems Principles Second Quiz, Fall 2020 Friday, April 17th, 2020 Section 4

Instructor: Dr. Ghassan Shobaki

1011

Student Name:		KCY	Student Number:				
	If in the avoic	RUE or FALS lance version of nave a deadloc	of the Banker's algorith	m , we fail to find a	safe sequence		oints] will FALSE
2.		ultiple processe ave a deadlock	es that are holding some	resources and wai	ting for other re	sources, we TRUE	FALSE
3.	A deadlock cannot happen unless mutual exclusion is required				resources.	TRUE	FALSE
4.		possible to red inating any prod	cover from a deadlock by cess.	preempting some	processes from	some resour	ces FALSE
	The worst-cas	se running time	ere is only <u>one</u> correct for finding a safe seque nd <i>q</i> resource types is: (C.)O(p ² q)		s algorithm for e. O(pq)	[60 poi deadlock det f. O(p²c	tection on
V	 Which of the following statements is (are) true about cycles in the Resource Allocation Graph (RAG)? a. Having a cycle in the RAG is always a necessary condition for deadlocks. b. Having a cycle in the RAG is always a sufficient condition for deadlocks. c. Having a cycle in the RAG necessarily implies a deadlock if all resource types have multiple instances d. Having a cycle in the RAG necessarily implies a deadlock if all resource types have single instances. e. Both a and c are true. g. a, b and d are true. 						
3.	Which of the following is a necessary condition for a. Some resources are preemptive C. Some resources are non-preemptive e. Both a and b are true.			deadlocks: b. All resources are preemptive d. All resources are non-preemptive f. Both c and d are true.			
4.	Po Po Po Po Po Po Po What's the m	rent Allocation 2 3 1	a system that has one re Current Request 4 8 2 6 or the <u>total</u> number of ins 9 d. 10	stances that will ma	Avail 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		?
5.	R ₂ and there an instance of and P ₃ is hold a. P ₂ and P ₃ b P ₁ and P ₂ c. P ₁ and P ₃	are <u>two</u> instand of R ₂ and an ins ding an instance are in a deadle are in a deadle	esses P_1 , P_2 and P_3 and es of each of R_1 and R_3 , tance of R_3 , P_2 is holding of R_3 and requesting alock but P_1 is not in a dealock but P_3 is not in a dealock but P_2 is not in a dealock and deadlock.	resource types R ₁ , P ₁ is currently hold go an instance of R ₂ in instance of R ₁ . Wadlock. adlock.	R₂ and R₃. The ding an instance and requesting	ere is <u>one</u> ins e of R₁ and re two instance: it state of the	questing s of R ₁ , system?
6.	Consider a sy	stem with proc	esses P ₁ , P ₂ and P ₃ and	resource types R ₁	and R ₂ . There a	are <u>two</u> instar	nces of

each resource type. If P_1 is currently holding an instance of R_1 , P_2 is holding an instance of R_2 , and P_3 is holding an instance of R_2 , which of the following sequences of requests will **necessarily** cause a deadlock?

- a. P₁ requests one instance of R₂, P₂ requests one instance of R₁ and P₃ requests one instance of R₁
 b. P₁ requests one instance of R₂, P₂ requests one instance of R₁ and P₃ requests two instances of R₁
 c. P₁ requests one instance of R₂, P₃ requests one instance of R₁ and P₂ requests two instances of R₁
 d. P₁ requests one instance of R₂, P₂ requests two instances of R₁ and P₃ requests two instances of R₁
- f. c and d are correct e. b and d are correct

g. b, c and d are correct

