Formulas

Unit 1

Opportunity Cost

Output Problem

Opportunity Cost of Good $A=\dfrac{B}{\dfrac{A}{A}}$ Opportunity Cost of Good $B=\dfrac{B}{B}$

Input Problem

Opportunity Cost of Good $A=\dfrac{A}{\dfrac{B}{B}}$ Opportunity Cost of Good $B=\dfrac{A}{A}$

Price Floor and Ceiling

Price Ceiling

Qd - Qs = Size of shortage

Price Floor

Qs - Qd = Size of surplus

Unit 2

GDP

$$\begin{split} \text{GDP} &= \frac{\text{Real GDP} \times \text{GDP Deflator}}{100} \\ \text{Real GDP} &= \text{Current year production} \times \text{base year prices} \\ \text{GDP deflator} &= \frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100 \\ \text{Growth rate} &= \frac{\text{Year 2 Real GDP} - \text{Year 1 Real GDP}}{\text{Year 1 Real GDP}} \times 100 \end{split}$$

Unemployment Rate

$$\begin{aligned} & \text{Unemployment Rate} = \frac{\text{Number of unemployed people}}{\text{Number of people in the labor force}} \times 100 \\ & \text{Labor force participation rate} = \frac{\text{Number of people in the labor force}}{\text{Population}} \times 100 \\ & \text{Cyclical Unemployment Rate} = \text{Actual Unemployment Rate} - \text{Natrual Unemployment Rate} \end{aligned}$$

Consumer Price Index

$$\text{CPI} = \frac{\text{Given Year Market Basket Cost}}{\text{Base Year Market Basket Cost}} \times 100$$

You must use base year quantities.

Inflation Rate

$$Inflation \: Rate = \frac{Year \: 2 \: CPI - Year \: 1 \: CPI}{Year \: 1 \: CPI} \times 100$$

Nominal vs. Real

$$ext{Real} = rac{ ext{Nominal}}{ ext{Defaltor}} imes 100$$

Unit 3

Propensity

Average

Letter	Meaning
С	Consumption
S	Saving

Letter	Meaning
Υ	Income

Consume

$$APC = \frac{C}{Y}$$

Save

$$APS = \frac{S}{Y}$$
$$APC + APS = 1$$

Marginal

MPC = Marginal Propensity to Consume = $\frac{\Delta C}{\Delta Y}$ MPS = Marginal Propensity to Save = $\frac{\Delta S}{\Delta Y}$ MPC + MPS = 1

Expenditure Multiplier

Multiplier =
$$\frac{1}{1-MPC} = \frac{1}{MPS}$$

Tax Multiplier

Tax multiplier = $-\frac{mpc}{1-mpc}$

Unit 4

Rate of Return -- $\frac{\mathrm{Change\ in\ value\ of\ an\ asset}}{\mathrm{initial\ value}} \times 100 = \mathrm{R.O.R}$

$$(M)(V) = (P)(Y)$$

 $M = \mathsf{Money} \; \mathsf{Supply} \; (M_1)$

V = Velocity (# of times changes hand/year)

 $P = \mathsf{Price} \; \mathsf{Level}$

 $Y = \mathsf{Real} \; \mathsf{GDP}$

$$\mbox{Money Multiplier} = \frac{1}{\mbox{Reserve Requirement}}$$

 $Nominal\ Interest\ Rate = Real\ Interest\ Rate + Inflation$