

Introduction to Machine Learning and Deep Learning

Plan

- 25/04 Introduction
- 02/05 Calculus, Linear Algebra, Linear Models, Logistic Regression NumPy
- 09/05 SVM; k-fold Cross-Validation, Boosting
 Scikit-learn
- 16/05 CNNs; Backprop; Representation Learning; Regularisation; SGD Keras
- 23/05 Image classification using Deep Learning models Tensorflow and TF-tensorboard

https://github.com/ink1/dl-training

Supervised learning in general

- Input data $X = \{X_1, \dots, X_N\}, X_i \in \mathbb{R}^n$
- Output data $Y = \{Y_1, ..., Y_N\}, Y_i \in \mathbb{R}^m$
- Find mapping $\mathcal{F}(X_i; \omega) = Y_i'$
- such that the loss function $G(\omega) = \Sigma_i G(Y_i, Y_i'; \omega)$
- is minimal over the parameter space $\omega \in \mathbb{R}^k$

Self-Supervised learning Auto-encoder

- Input data $X = \{X_1, ..., X_N\}, X_i \in \mathbb{R}^n$
- Output data $X = \{X_1, ..., X_N\}, X_i \in \mathbb{R}^n$
- Find mapping $\mathcal{F}(X_i; \omega) = X_i'$
- such that the loss function $G(\omega) = \Sigma_i G(X_i, X_i'; \omega)$
- is minimal over the parameter space $\omega \in \mathbb{R}^k$

Learning process

Install Keras

```
# we assume you have conda installed - see lecture 1
# create a new environment.
~$ conda create -n keras python=3.6
~$ conda activate keras
(keras) ~$ conda install keras
(keras) ~$
# if you have access to GPU you can install tensorflow with GPU support prior
# to installing Keras because otherwise you'll get TF with CPU support only
(keras) ~$ conda install tensorflow-gpu keras
~$
# pydot graphviz may be needed
```

Keras – a high level library for Deep Learning

- Works atop of Tensorflow, Theano, CNTK
- Allows to easily build a model containing layers, loss function and optimiser
- Supports GPUs and CPUs through the underlying libs

Dense layer

- Matrix dot product
- Linear operation
- Stacking dense layers without non-linearity has the same effect as having a single dense layer

Input:
$$X = [x_1, ... x_N]$$

Matrix:
$$W = [[w_{11}, ... w_{1N}], ... [w_{M1}, ... w_{MN}]]$$

Output:
$$Y = [y_1, ... y_M]$$
 where $y_i = \Sigma_i w_{ij} x_i + b_i$ or $Y = WX + B$

ReLU - Restricted Linear Unit

Nonlinearity is essential in Neural Networks.

ReLU is f(x) = max(0, x)

ReLU is probably the most popular nonlinear unit now.

Sigmoid activation

$$S(x) = \frac{1}{1 + e^{-x}}$$

Stochastic Gradient Descent (SGD)

- Assumes the model is differentiable
- Differentiability allows to back-propagate the loss error and to find an improved set of parameters (weights)
- This can be done for all inputs (batch), one input (true SGD) or a randomly selected set of inputs (mini-batch SGD)
- SGD is usually mini-batch SGD
- SGD gives a gradient for improvement but the actual step is determined by learning rate (LR) which is a hyper-parameter
- Batch size is another hyper-parameter
- Small batch sizes help with regularisation but may lead to slower training
- Popular modification is SGD with momentum
- Other variations: RMSprop, Adagrad, Adadelta, Adam see https://keras.io/optimizers/

SGD with momentum

https://distill.pub/2017/momentum/

Basic autoencoder model in Keras

```
autoencoder = models.Sequential()
autoencoder.add(layers.Dense(32, activation='relu', input_shape=(784,)))
autoencoder.add(layers.Dense(784, activation='sigmoid'))
autoencoder.compile(optimizer='sgd', loss='mean_squared_error')
autoencoder.fit(x, x, epochs=50, batch_size=128)
autoencoder.predict(y)
```

Convolutional Networks

 Features are discovered automatically; layer 1 features resemble Gabor filters; layers represent hierarchy of features

- Training is done iteratively (forward pass is followed by backprop) and may take a long time
- Once the training is done the inference (the forward pass) is usually quick making real time tagging (identification of live stream) possible.

Cat's visual cortex Hubel and Wiesel

- discovery of neurons responsible for detecting basic image features
- these features can be modelled by Gabor filters in Machine Learning

Input vector: x = [1, 2, 1, 3, 2, 0, 2, 1]

Conv kernel: k = [1, 0, 1, -1]

Elementwise product

$$y_0 = [0, 0, 1, 2] \times [1, 0, 1, -1] = 0+0+1-2 = -1$$

 $y_1 = [1, 2, 1, 3] \times [1, 0, 1, -1] = 1+0+1-3 = -1$
 $y_2 = [1, 3, 2, 0] \times [1, 0, 1, -1] = 1+0+2+0 = 3$
 $y_3 = [2, 0, 2, 1] \times [1, 0, 1, -1] = 2+0+2-1 = 3$
 $y_4 = [2, 1, 0, 0] \times [1, 0, 1, -1] = 2+0+0+0 = 2$

y 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4

х

Output vector: y = [-1, -1, 3, 3, 2]

2D convolution kernel:

[[1, 0, 1],

[0, 1, 0],

[1, 0, 1]]

1,	1,0	1,	0	0
0×0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

No padding, no stride (stride 1)

Blue maps are inputs, and cyan maps are outputs.

Padding 1, stride 1

Blue maps are inputs, and cyan maps are outputs.

Padding 1, stride 2

Blue maps are inputs, and cyan maps are outputs.

Convolution in action: 3x 2D conv kernels 3x3, no padding, stride 1

Transposed 1D convolution

(Deconvolution)

Sub-pixel convolution with stride 1/2 Stride 2 convolution Х Х 3 3 2 2 У 3 2 4 3 3 2

The transpose of convolving a 3x3 kernel over a 5x5 input padded with a 1x1 border of zeros using 1x1 stride

Blue maps are inputs, and cyan maps are outputs.

The transpose of convolving a 3x3 kernel over a 5x5 input padded with a 1x1 border of zeros using 2x2 stride

Blue maps are inputs, and cyan maps are outputs.

2D subpixel convolution using just convolution

Pooling layer

A sliding window like convolution but with a purpose of shrinking the output size. It usually applies a specific function like maximum or average to the elements in the window.

Regularisation

is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting (happens when your training loss is much better than validation loss).

- SGD has regularising effect
- drop out
- L2 norm regularisation

$$L' = L + \lambda \Sigma_i w_i^2$$

L1 norm regularisation

$$L' = L + \lambda \Sigma_i |w_i|$$

Regularisation in Keras

https://keras.io/regularizers/

```
from keras.layers import Dense, Dropout
from keras import regularizers, models
model = models.Sequential()
model.add(Dense(32, activation='relu', input_shape=(784,),
                  kernel_regularizer=regularizers.l2(0.01),
                  bias_regularizer=regularizers.l2(0.01)))
model.add(Dropout(0.5))
model.add(Dense(784, activation='sigmoid'))
```

Variational Auto-Encoder (VAE)

generation_loss = mean(square(generated_image - real_image))
latent_loss = KL-Divergence(latent_variable, unit_gaussian)
loss = generation_loss + latent_loss

Ha & Schmidhuber, "World Models", 2018 30

References and homework

- François Chollet, Deep Learning with Python, Manning 2017; Chapter 2: Before we begin: the mathematical building blocks of neural networks and Chapter 3: Getting started with neural networks https://www.manning.com/books/deep-learning-with-python
- François Chollet, 2016
 Building Autoencoders in Keras, tutorial
 https://blog.keras.io/building-autoencoders-in-keras.html
- Keras documentation
 https://keras.io/layers/convolutional/
- Wenzhe Shi et al, 2016
 Is the deconvolution layer the same as a convolutional layer?
 https://arxiv.org/abs/1609.07009
- Vincent Dumoulin, Francesco Visin, 2016
 A guide to convolution arithmetic for deep learning https://arxiv.org/abs/1603.07285
- Homework: four notebooks on auto-encoders and optionally one more on variational auto-encoder (VAE) https://github.com/ink1/dl-training/

#