Markov Decision Process I

CSE 4617: Artificial Intelligence

Isham Tashdeed Lecturer, CSE

Non-deterministic Search Problems: Grid World

- The agent lives in a grid based world where walls may block the agent's path
- Actions do not always go as planned
 - o 80% of the time the intended action is taken, unless a wall is blocking the path

• Remaining 20% of the time, the agent will do something different than the

intended action

- The agent receives rewards each time step
 - A big reward/punishment at the end
 - o Small reward/punishment at each time step
- The goal is to maximize the sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

CSE 4617: Artificial Intelligence

Formalizing MDPs

An MDP is defined by:

- Set of states $s \in S$
- Set of actions $a \in A$
- Transition function T(s, a, s')
 - Probability that taking action *a* from state *s* will take the agent to *s*'
 - \circ P(s' | s, a)
- Reward function R(s, a, s'), or R(s), or R(s')
- Start state
- Terminal State \rightarrow Sometimes not present

Markov Processes

Policies

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- We want an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy π^* is one that maximizes expected utility
- What is the difference between a policy and a plan?
 - What does expectimax calculate?

Optimal Policies

R(s) = -0.01

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0

Racing

• There are three states: Cool, Warm, and Overheated

• There are two actions: Slow, Fast

Racing Search Tree

CSE 4617: Artificial Intelligence

Utilities of Sequence

Utilities of Sequence

What preferences should an agent have when:

- Given the choice of more rewards or less rewards?
- Given the choice of getting the rewards early of getting them later?

For an agent:

- It is reasonable to maximize the sum of rewards
- It is also reasonable to prefer instant rewards rather than delayed rewards

Discounting

- At each time step, we multiply the rewards with a certain value γ
- Sooner rewards probably do have higher utility than later rewards
- Helps the algorithm converge

If $\gamma = 0.5$, which order is better?

- U([1, 2, 3])
- U([3, 2, 1])

For how long can we delay the rewards?

Stationary Preferences

- If we assume stationary preferences:
 - \circ $[a_1, a_2, a_3, ...] > [b_1, b_2, b_3, ...]$
 - \circ $[r, a_1, a_2, a_3, ...] > [r, b_1, b_2, b_3, ...]$
- There are only two ways to define utilities
 - Additive \rightarrow U ([r_0 , r_1 , r_2 , ...]) = $r_0 + r_1 + r_2$, ...
 - Discounted → $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2, ...$

For the deterministic grid world:

- What is the optimal policy for $\gamma = 1$?
- What is the optimal policy for $\gamma = 0.1$?
- For what value of γ , West and East are equally good when in state d?

Infinite Utilities

- What if the game lasts forever?
- Keep a finite horizon → Similar to depth-limited search
 - \circ Terminate after T steps \rightarrow "Life" of the agent
 - Can give rise to non-stationary policies $\rightarrow \pi$ depends on the steps left
 - Similar to how drastic things can happen in sports when the game is near termination!
- Discounting $\rightarrow 0 < \gamma < 1$
 - Sum of a decreasing infinite series is finite
 - \circ Smaller γ means smaller horizon
- Absorbing state
 - For every policy, a terminal state will eventually be reached
 - Similar to overheating or finding the terminal state

Optimal Quantities

- The value/utility of a state *s*
 - $V^*(s)$ → Expected utility of starting from s and acting optimally
- The value/utility of a *q-state*(*s*, *a*)
 - $Q^*(s,a)$ → Expected utility of starting from s, having taken action a and acting optimally
- The optimal policy
 - $\pi^*(s) \to \text{Optimal action from state } s$

Gridworld Values

Gridworld Values

Values of States

To solve an MDP \rightarrow We need to compute the value (expectimax) of a state (for all states to get an optimal policy)

 $V^*(s) = \max_{a} Q^*(s, a)$ $Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$ $V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \rightarrow \text{Bellman Equation}$

s is a state

(s, a) is a q-state

(s,a,s') is a transition

Racing Search Tree

CSE 4617: Artificial Intelligence

Racing Search Tree

- Problem \rightarrow Repeating states
- Solution \rightarrow Caching
- Problem \rightarrow Tree is infinite
- Solution \rightarrow Depth-limited, Also because of γ , deeper states don't matter that much

We design Value Iteration Algorithm to address these issues from a new angle

Value Iteration Algorithm

- Main idea \rightarrow Time limited values
 - Start from the bottom
- $V_k(s) \rightarrow$ The optimal value/utility of the state *s* if the game ends in *k* time steps
- It is similar to a *k*-depth expectimax search starting from state *s*

Computing Time Limited Values

CSE 4617: Artificial Intelligence

Value Iteration

- Start with $V_0(s) = 0$; no time steps left means an expected reward sum of zero
- Given a vector/array of $V_{k}(s)$ values, look for one level higher

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]^*$$

- Repeat until convergence
- Complexity \rightarrow O(S^2A)

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value Iteration

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value Iteration

Assume no discount!

$$V_0$$
 0 0

Thank you