VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

ARTIFICIAL INTELLIGENCE

Submitted by

JITHENTAR A (1BM21CS082)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING (Autonomous Institution under VTU) BENGALURU-560019 Oct 2023-Feb 2024

B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019 (Affiliated To Visvesvaraya Technological University, Belgaum) Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "ARTIFICIAL INTELLIGENCE" carried out by JITHENTAR A(1BM21CS082), who is bonafide student of B. M. S. College of Engineering. It is in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belgaum during the year 2022-23. The Lab report has been approved as it satisfies the academic requirements in respect of Artificial Intelligence Lab - (22CS5PCAIN)work prescribed for the said degree.

Dr. Asha G R

Assistant Professor Department of CSE BMSCE, Bengaluru **Dr. Jyothi S Nayak**Professor and Head
Department of CSE
BMSCE, Bengaluru

Table of Contents

SL No	Name of Experiment	Page No
1	Implement Tic –Tac –Toe Game	1-6
2	Implement 8 puzzle problem	7-9
3	Implement Iterative deepening search algorithm.	9-12
4	Implement A* search algorithm.	12-16
5	Implement vaccum cleaner agent.	17-20
6	Create a knowledge base using prepositional logic and show that the given query entails the knowledge base or not .	20-22
7	Create a knowledge base using prepositional logic and prove the given query using resolution	22-28
8	Implement unification in first order logic	28-30
9	Convert a given first order logic statement into Conjunctive Normal Form (CNF).	30-34
10	Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning.	34-38

1.Implement Tic -Tac -Toe Game.

100	
	TAGE NO:
	DATE:
11-10-2	Artificial Intelligence Lab-1
	Jic Jac Jo
1.	La La Line And La Line L.
11/2	board: [1
	for xin
	range (10)]
	de finsertletter (letter, pos):
	board [pas] = letter
	del spacetifice (pos):
	def spaceTiffree (pos): return board [pos] == ''
	de 6 print Board (board):
	priva ('I')
	print (" + board LI] + 1 + board [2] + 1 +
	board (33)
	porint ('11')
	print ('')
	print (' ' + board [4] +' 1' + board[5]
	+ 1' + board [6])
	print ('')
	print (" + board [7]+ 1' + board [8]+'1'+
	board [97)
	but (11')
	Must do better
	MW 2 17/11/23

```
tic=[]
import random
def board(tic):
  for i in range(0,9,3):
    print("+"+"-"*29+"+")
    print("|"+" "*9+"|"+" "*9+"|"+" "*9+"|")
    print("|"+" "*3,tic[0+i]," "*3+"|"+" "*3,tic[1+i]," "*3+"|"+" "*3,tic[2+i]," "*3+"|")
    print("|"+" "*9+"|"+" "*9+"|"+" "*9+"|")
  print("+"+"-"*29+"+")
def update_comp():
  global tic,num
  for i in range(9):
    if tic[i]==i+1:
       num=i+1
       tic[num-1]='X'
       if winner(num-1)==False:
          #reverse the change
          tic[num-1]=num
       else:
         return
  for i in range(9):
    if tic[i]==i+1:
       num=i+1
       tic[num-1]='O'
       if winner(num-1)==True:
          tic[num-1]='X'
          return
       else:
```

```
tic[num-1]=num
       num=random.randint(1,9)
  while num not in tic:
     num=random.randint(1,9)
  else:
    tic[num-1]='X'
def update_user():
  global tic,num
  num=int(input("enter a number on the board :"))
  while num not in tic:
    num=int(input("enter a number on the board :"))
  else:
    tic[num-1]='O'
def winner(num):
  if tic[0]==tic[4] and tic[4]==tic[8] or tic[2]==tic[4] and tic[4]==tic[6]:
     return True
  if tic[num]==tic[num-3] and tic[num-3]==tic[num-6]:
    return True
  if tic[num//3*3] = tic[num//3*3+1] and tic[num//3*3+1] = tic[num//3*3+2]:
    return True
  return False
try:
  for i in range(1,10):
     tic.append(i)
  count=0
```

```
#print(tic)
  board(tic)
  while count!=9:
    if count%2==0:
       print("computer's turn :")
       update_comp()
       board(tic)
       count+=1
    else:
       print("Your turn :")
       update_user()
       board(tic)
       count+=1
    if count>=5:
       if winner(num-1):
         print("winner is ",tic[num-1])
         break
       else:
         continue
except:
  print("\nerror\n")
```

OUTPUT

_	[1, 2, 3, 4	, 5, 6, 7,	8, 9] +
∃	1 1	2	3
		5 	6
		8	9
	computer's	turn :	+
	1 1	x	3
	 4 1	 5 	6
	 7 1	8	9
	Your turn : enter a numl	per on the	board :4

O	Your turn :		board :4
كا	1 1	x	3
	 0 	5 	6
	7 7	8	9
	computer's	turn :	
	x	x	3
	0	5 	6
	 7	8	9
	Your turn : enter a num		board :5

2 .Solve 8 puzzle problems.


```
def bfs(src,target):
  queue=[]
  queue.append(src)
  exp=[]
  while len(queue)>0:
    source=queue.pop(0)
    #print("queue",queue)
    exp.append(source)
    print(source[0],'|',source[1],'|',source[2])
    print(source[3],'|',source[4],'|',source[5])
    print(source[6],'|',source[7],'|',source[8])
    print("----")
    if source==target:
       print("Success")
       return
    poss_moves_to_do=[]
    poss_moves_to_do=possible_moves(source,exp)
    #print("possible moves",poss moves to do)
    for move in poss_moves_to_do:
       if move not in exp and move not in queue:
        #print("move",move)
        queue.append(move)
def possible moves(state, visited states):
  b = state.index(0)
  #direction array
  d=[]
  if b not in [0,1,2]:
```

```
d.append('u')
  if b not in [6,7,8]:
       d.append('d')
  if b not in [0,3,6]:
    d.append('l')
  if b not in [2,5,8]:
    d.append('r')
  pos_moves_it_can=[]
  for i in d:
     pos_moves_it_can.append(gen(state,i,b))
  return [move_it_can for move_it_can in pos_moves_it_can if move_it_can not in
visited_states]
def gen(state,m,b):
  temp=state.copy()
  if m=='d':
    temp[b+3],temp[b]=temp[b],temp[b+3]
  if m=='u':
    temp[b-3],temp[b]=temp[b],temp[b-3]
  if m=='l':
    temp[b-1],temp[b]=temp[b],temp[b-1]
  if m=='r':
     temp[b+1],temp[b]=temp[b],temp[b+1]
  return temp
src=[1,2,3,4,5,6,0,7,8]
target=[1,2,3,4,5,6,7,8,0]
bfs(src,target)
OUTPUT
```

ئا	1	2	3
	4 0	7	
	1	2	3
	0	5	6
	4	7	8
	1	2	3
	4	5	6
	7	0	8
	==;		
	0	2	3
	1	5	6
	4	5 7	8
	1	2	3
	5	0	6
	4	7	8
	1	2	
	4	0	6
	7 j	5	
	222		
	1	2	3
	4		6
	7	8	0
	Suc	cess	5

3. Implement Iterative deepening search algorithm.

	PAGE NO : DATE :
Jed Del	Algorithmings of soil of the malgar.
	Start with a depth of 0.5 700
	Perform depth-limited search (DFS limited by depth) starting from the root node:
	If the goal is found at the current depth limit, return succees.
1	If the goal is not found at the current depth limit, increase the depth limit by I and repeat the search.
•	or the mascimum depth ilimit is reached.
•	It enative Deepening Search quarantees to find the Doln. with the least depth (Similar to Breadth - First Search) while only wing linear space. However it water explore
	linear space. However, it may explore the same node multiple times due to repeated searches at increasing depth levely.
	Remember to adapt the code oft your specific problem by implementing the get-children () function according to your problem's statement space and transition rules.
(den dest	problem's statement space and transition rules.

11

```
def id_dfs(puzzle, goal, get_moves):
  import itertools
#get_moves -> possible_moves
  def dfs(route, depth):
     if depth == 0:
       return
     if route[-1] == goal:
       return route
     for move in get_moves(route[-1]):
       if move not in route:
          next_route = dfs(route + [move], depth - 1)
          if next_route:
             return next_route
  for depth in itertools.count():
     route = dfs([puzzle], depth)
     if route:
       return route
def possible_moves(state):
  b = state.index(0) \# ) indicates White space -> so b has index of it.
  d = [] # direction
  if b not in [0, 1, 2]:
     d.append('u')
  if b not in [6, 7, 8]:
     d.append('d')
  if b not in [0, 3, 6]:
     d.append('l')
  if b not in [2, 5, 8]:
```

```
d.append('r')
  pos_moves = []
  for i in d:
     pos_moves.append(generate(state, i, b))
  return pos moves
def generate(state, m, b):
  temp = state.copy()
  if m == 'd':
     temp[b + 3], temp[b] = temp[b], temp[b + 3]
  if m == 'u':
     temp[b - 3], temp[b] = temp[b], temp[b - 3]
  if m == 'l':
     temp[b - 1], temp[b] = temp[b], temp[b - 1]
  if m == 'r':
     temp[b + 1], temp[b] = temp[b], temp[b + 1]
  return temp
# calling ID-DFS
initial = [1, 2, 3, 0, 4, 6, 7, 5, 8]
goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]
route = id dfs(initial, goal, possible moves)
if route:
```

```
print("Success!! It is possible to solve 8 Puzzle problem")
print("Path:", route)
else:
    print("Failed to find a solution")
```

OUTPUT

Success! It is possible to solve 8 Puzzle problem
Path: [[1, 2, 3, 0, 4, 6, 7, 5, 8], [1, 2, 3, 4, 0, 6, 7, 5, 8], [1, 2, 3, 4, 5, 6, 7, 0, 8], [1, 2, 3, 4, 5, 6, 7, 8, 0]]

5. Implement A* search algorithm.


```
This algorithm uses a priority gruene to

to explore nodes in order of their estimated

total cost C'f! It combines the actual cost

to exeach a node ('g') and the estimated

cost from the node to the goal Ch') will

a heuristic function to guide to be search

officiently towards the goal State

class Node:

def_init_(self,data,level,fval):

""" Initialize the node with the data, level of the node and the calculated fvalue """

self.data = data

self.level = level

self.fval = fval
```

def generate_child(self):

```
""" Generate child nodes from the given node by moving the blank space
either in the four directions {up,down,left,right} """
x,y = self.find(self.data,'_')
""" val_list contains position values for moving the blank space in either of
the 4 directions [up,down,left,right] respectively. """
val_list = [[x,y-1],[x,y+1],[x-1,y],[x+1,y]]
children = []
for i in val_list:
    child = self.shuffle(self.data,x,y,i[0],i[1])
```

child_node = Node(child,self.level+1,0)
children.append(child_node)

return children

def shuffle(self,puz,x1,y1,x2,y2):

if child is not None:

```
""" Move the blank space in the given direction and if the position value are out
       of limits the return None """
     if x2 \ge 0 and x2 \le len(self.data) and y2 \ge 0 and y2 \le len(self.data):
       temp puz = []
       temp puz = self.copy(puz)
       temp = temp puz[x2][y2]
       temp_puz[x2][y2] = temp_puz[x1][y1]
       temp puz[x1][y1] = temp
       return temp puz
     else:
       return None
def copy(self,root):
    """ Copy function to create a similar matrix of the given node"""
     temp = []
     for i in root:
       t = []
       for j in i:
          t.append(j)
       temp.append(t)
     return temp
  def find(self,puz,x):
    """ Specifically used to find the position of the blank space """
     for i in range(0,len(self.data)):
       for j in range(0,len(self.data)):
          if puz[i][j] == x:
            return i,j
```

```
class Puzzle:
  def init (self,size):
     """ Initialize the puzzle size by the specified size, open and closed lists to empty """
     self.n = size
     self.open = []
     self.closed = []
  def accept(self):
     """ Accepts the puzzle from the user """
     puz = []
     for i in range(0,self.n):
       temp = input().split(" ")
       puz.append(temp)
     return puz
def f(self,start,goal):
     """ Heuristic Function to calculate hueristic value f(x) = h(x) + g(x) """
     return self.h(start.data,goal)+start.level
  def h(self,start,goal):
     """ Calculates the different between the given puzzles """
     temp = 0
     for i in range(0,self.n):
       for j in range(0,self.n):
          if start[i][j] != goal[i][j] and start[i][j] != '_':
             temp += 1
     return temp
  def process(self):
```

```
""" Accept Start and Goal Puzzle state"""
     print("Enter the start state matrix \n")
     start = self.accept()
     print("Enter the goal state matrix \n")
     goal = self.accept()
     start = Node(start, 0, 0)
     start.fval = self.f(start,goal)
     """ Put the start node in the open list"""
     self.open.append(start)
     print("\n\n")
     while True:
       cur = self.open[0]
       print("")
       print(" | ")
       print(" | ")
       print(" \\'/ \n")
       for i in cur.data:
          for j in i:
               print(j,end=" ")
          print("")
       """ If the difference between current and goal node is 0 we have reached the goal
node"""
       if(self.h(cur.data,goal) == 0):
          break
       for i in cur.generate child():
          i.fval = self.f(i,goal)
          self.open.append(i)
       self.closed.append(cur)
       del self.open[0]
```

```
""" sort the opne list based on f value """
       self.open.sort(key = lambda x:x.fval,reverse=False)
puz = Puzzle(3)
puz.processs
OUTPUT
         Enter the start state matrix
    \square
         1 2 3
         4 5 6
         _ 7 8 Enter the goal state matrix
         1 2 3
         4 5 6
         78_
         1 2 3
         4 5 6
         _ 7 8
         1 2 3
         4 5 6
         7 _ 8
      1 2 3
      4 5 6
      78_
```

5. Implement vaccum cleaner agent.

22-12-2213 egg	PAGE NO . DATE:
Vaccum Cleaner Agent	Algorithm:
Initialize Environment:	to sail
Greate a grid representing the where the vaccum cleaner of	environment
cell in The grid can be col	ean (0) of
random position within this	
Sense Environment:	T A
At it's coment position, the ac	gent senses'
At its correct position, the achetter the current cellis dis	ty or clean
class Vacacin Cleanor Agent:	institute C
defint(self, size)	
V	-
Seff. size = size	ile ? cili
Self-environment = [[random. (for _in range C size)] for	in range (size)
Selfposition = (random. radian random, radiant (o, size - i))	
initralizes the agent with a sp	ecified environm-
· Coeates a 2D glid of Land · Randowly places the vaccom ide	on Os and Is.
envino nment.	NI THE PARTY OF TH

	PAGE NO: DATÉ:
1.	Contract in the second in the
in the same	Sonse Environment:
->	Sonse the current cell where it
	The agent observes the sense whether the cell
	The agent observes the current cell where it is logicated. It senses' whether the cell
The server	tis dirty or clean by checking The value of that cell in the dirty or clean by checking the value of that cell in the environment quil
1 17.5	tis dinty of weath of cheeking
16	That cell in the conviconment of
1 11	The value of the cold to
Y	(coll):
	de fisense (seff):
	return self environment [self pasition [0]] [self position [1]]
	return self. environment (sex passions)
1/4/10	[self.position LI]
16.69	the accit
	-> checks if the current position to
	is dirty or clean.
	Action: 1: schoons Donnes Dr. V Marie
	71Clf 81C.
	-> if the current cell is dirty:
	The agent 'Cleans' the dist in that cell. Mark the cell as Colean ('O') in the environment
	# 200 a Clean ('O') in the environment
	We cell as carrier e e , , , ,
	glid
N/ - N/ 1	is al strained tollis chean
	+> if the current collise chean
11-3	SM. + tr Nast Coll:
	-> Move to the Next Cell;
The same	
- 120 1304	The agent decides that's next more based
	on a sot of rules like moverleft, to cell
1011	up or down. It moves to the nexu
	on a set of rules like moverleft, right, up or down. It moves to the next cell based on this decision - making process.

```
def vacuum_world():
  # 0 indicates Clean and 1 indicates Dirty
  goal state = {'A': '0', 'B': '0'}
  cost = 0
  location input = input("Enter Location of Vacuum")
  status input = input("Enter status of " + location input)
  status input complement = input("Enter status of other room")
  if location input == 'A':
     # Location A is Dirty.
     print("Vacuum is placed in Location A")
     if status input == '1':
       print("Location A is Dirty.")
       # suck the dirt and mark it as clean
       cost += 1
                              #cost for suck
       print("Cost for CLEANING A " + str(cost))
       print("Location A has been Cleaned.")
       if status input complement == '1':
          # if B is Dirty
          print("Location B is Dirty.")
          print("Moving right to the Location B. ")
          cost += 1
                                 #cost for moving right
          print("COST for moving RIGHT" + str(cost))
          # suck the dirt and mark it as clean
          cost += 1
                                 #cost for suck
          print("COST for SUCK " + str(cost))
          print("Location B has been Cleaned. ")
       else:
```

```
print("No action" + str(cost))
       # suck and mark clean
       print("Location B is already clean.")
     if status input == '0':
     print("Location A is already clean ")
     if status_input_complement == '1':# if B is Dirty
       print("Location B is Dirty.")
       print("Moving RIGHT to the Location B. ")
       cost += 1
                               #cost for moving right
       print("COST for moving RIGHT" + str(cost))
       # suck the dirt and mark it as clean
       cost += 1
                               #cost for suck
       print("Cost for SUCK" + str(cost))
       print("Location B has been Cleaned. ")
     else:
       print("No action " + str(cost))
       print(cost)
       # suck and mark clean
       print("Location B is already clean.")
else:
  print("Vacuum is placed in location B")
  # Location B is Dirty.
  if status_input == '1':
     print("Location B is Dirty.")
     # suck the dirt and mark it as clean
     cost += 1 \# cost for suck
     print("COST for CLEANING " + str(cost))
     print("Location B has been Cleaned.")
```

```
if status input complement == '1':
     # if A is Dirty
     print("Location A is Dirty.")
     print("Moving LEFT to the Location A. ")
     cost += 1 # cost for moving right
     print("COST for moving LEFT" + str(cost))
     # suck the dirt and mark it as clean
     cost += 1 \# cost for suck
     print("COST for SUCK " + str(cost))
     print("Location A has been Cleaned.")
else:
  print(cost)
  # suck and mark clean
  print("Location B is already clean.")
  if status input complement == '1': # if A is Dirty
     print("Location A is Dirty.")
     print("Moving LEFT to the Location A. ")
     cost += 1 # cost for moving right
     print("COST for moving LEFT " + str(cost))
     # suck the dirt and mark it as clean
     cost += 1 \# cost for suck
     print("Cost for SUCK " + str(cost))
     print("Location A has been Cleaned. ")
  else:
     print("No action " + str(cost))
     # suck and mark clean
     print("Location A is already clean.")
```

```
# done cleaning
print("GOAL STATE: ")
print(goal_state)
print("Performance Measurement: " + str(cost))

print("0 indicates clean and 1 indicates dirty")
vacuum_world()

OUTPUT:
```

0 indicates clean and 1 indicates dirty Enter Location of Vacuumb Enter status of b1 Enter status of other room1 Vacuum is placed in location B Location B is Dirty. COST for CLEANING 1 Location B has been Cleaned. Location A is Dirty. Moving LEFT to the Location A. COST for moving LEFT2 COST for SUCK 3 Location A has been Cleaned. GOAL STATE: {'A': '0', 'B': '0'} Performance Measurement: 3

7. Create a knowledge base using prepositional logic and show that the given query entails the knowledge base or not .from sympy import symbols, And, Not, Implies, satisfiable

KA29-12-23 98	PAGE NO : DATE :
· most sta	en de d'A
a KB and its grony.	ical relationshipptu
that whenever the statement.	ement, it means
the true, the given query	must also be true.
KB resolution:	Source Tiet
The resolution rule inve	Iner taking two
causes had contain co	Visa to Constales
Kilerals and resolving th	rem To produce
a new clause.	WINUZ-
KB entailment:	St 9 21 2
If it's raining (P) then of	- 1 - d A
It's gound is wet (a)	then the plants
If it's ground is wet (a) will grow (R)	trans (by)
II .	
gris not the case that the	plants will grow
(-R)	-d., U A
O C C C C C C C C C C C C C C C C C C C	Sirety C. A.
Query: Welter it is rain	ing.
NOT R and R are com	parties of cars
The ground is wet.	(6.176.)
which means that if it's a	ain no because
the grows is wet i 'P'	entails guery.
.	

def create_knowledge_base():

Define propositional symbols

```
p = symbols('p')
  q = symbols('q')
  r = symbols('r')
  # Define knowledge base using logical statements
  knowledge base = And(
    Implies(p, q),
                      # If p then q
                      # If q then r
    Implies(q, r),
                    # Not r
    Not(r)
  )
  return knowledge_base
def query entails(knowledge base, query):
  # Check if the knowledge base entails the query
  entailment = satisfiable(And(knowledge base, Not(query)))
  # If there is no satisfying assignment, then the query is entailed
  return not entailment
if __name__ == "__main__":
  # Create the knowledge base
  kb = create_knowledge_base()
  # Define a query
  query = symbols('p')
  # Check if the query entails the knowledge base
  result = query_entails(kb, query)
```

```
# Display the results

print("Knowledge Base:", kb)

print("Query:", query)

print("Query entails Knowledge Base:", result)
```

OUTPUT:

```
Knowledge Base: ~r & (Implies(p, q)) & (Implies(q, r))
Query: p
Query entails Knowledge Base: False
```

7. Create a knowledge base using prepositional logic and prove the given query using resolution

Ct \ C
Step-1 Create a list of SKDLEM Constants
Step-2 Find
If the all ributes are clower case, deplace
If the attributes are clower case, replace them with a skolen constant.
remove used exam sout T. In f.
from le leix
Vif the attributes are both lower case and
upper case replace the appereane attribute
remove used skolom constant or function from Its leise Vif the attributes are both lower case and upper case replace the appersone attributes a skelom function.
Step3: ruplace (=) with ()
Step3: replace <=> with (_) transform - as Q = (P=>Q)x(0=>p)
0
Ctemi, Applica - State
Step4: replace => with '-)
Step 5: Apply de morganis laur
Step 5: Apply de morganis laur
step 5: Apply de morgan's law replace ~ [as ~ P k ~ Q if (1 was present)
step 5: Apply de morgan's law replace ~ [as ~ P k ~ Q if (1 was present)
Step 5: Apply de morganis laur
step 5: Apply de morgan's law replace ~ [as ~ P & ~ Q if (was present) replace ~ [as ~ P ~ Q if (k was present) replace r ~ with ""
step 5: Apply de morgan's law replace ~ [as ~ P k ~ Q if (1 was present)
Step 5: Apply de morgan's law replace ~ [as ~ P k ~ Q if (1 was present) replace ~ [as ~ P ~ Q if (k was present) replace r ~ with ""
Step 5: Apply de morgan's law replace ~ [as ~ P k ~ Q if (1 was present) replace ~ [as ~ P ~ Q if (k was present) replace r ~ with "" a) Apply Sto the remainder of both Liker b) SUBST APPEND (5, SUBST)
step 5: Apply de morgan's law replace ~ [as ~ P & ~ Q if (was present) replace ~ [as ~ P ~ Q if (k was present) replace r ~ with ""

```
import re
def main(rules, goal):
  rules = rules.split(' ')
  steps = resolve(rules, goal)
  print('\nStep\t|Clause\t|Derivation\t')
  print('-' * 30)
  i = 1
  for step in steps:
     i += 1
def negate(term):
  return f \sim \{term\}' if term[0] != '\sim' else term[1]
def reverse(clause):
  if len(clause) > 2:
     t = split_terms(clause)
     return f'\{t[1]\}v\{t[0]\}'
  return "
def split_terms(rule):
  \exp = '(\sim *[PQRS])'
  terms = re.findall(exp, rule)
  return terms
split_terms('~PvR')
```

```
OUTPUT:
```

```
['~P', 'R']
```

```
def contradiction(goal, clause):
  contradictions = [ f'{goal}v{negate(goal)}', f'{negate(goal)}v{goal}']
  return clause in contradictions or reverse(clause) in contradictions
def resolve(rules, goal):
  temp = rules.copy()
  temp += [negate(goal)]
  steps = dict()
  for rule in temp:
     steps[rule] = 'Given.'
  steps[negate(goal)] = 'Negated conclusion.'
  i = 0
  while i < len(temp):
     n = len(temp)
     j = (i + 1) \% n
     clauses = []
     while i != i:
        terms1 = split_terms(temp[i])
        terms2 = split_terms(temp[j])
        for c in terms1:
           if negate(c) in terms2:
             t1 = [t \text{ for } t \text{ in terms } 1 \text{ if } t != c]
             t2 = [t \text{ for } t \text{ in terms 2 if } t != negate(c)]
             gen = t1 + t2
             if len(gen) == 2:
                if gen[0] != negate(gen[1]):
```

```
clauses += [f'\{gen[0]\}v\{gen[1]\}']
                else:
                  if contradiction(goal,f'{gen[0]}v{gen[1]}'):
                     temp.append(f'\{gen[0]\}v\{gen[1]\}')
                     steps["] = f"Resolved \{temp[i]\} and \{temp[j]\} to \{temp[-1]\}, which is in
turn null. \
                     \nA contradiction is found when {negate(goal)} is assumed as true.
Hence, {goal} is true."
                     return steps
        elif len(gen) == 1:
                clauses += [f'\{gen[0]\}']
             else:
                if contradiction(goal,f'{terms1[0]}v{terms2[0]}'):
                  temp.append(f'\{terms1[0]\}v\{terms2[0]\}')
                  steps["] = f"Resolved \{temp[i]\} and \{temp[j]\} to \{temp[-1]\}, which is in
turn null. \
                  \nA contradiction is found when {negate(goal)} is assumed as true. Hence,
{goal} is true."
                  return steps
        for clause in clauses:
          if clause not in temp and clause != reverse(clause) and reverse(clause) not in temp:
             temp.append(clause)
             steps[clause] = f'Resolved from {temp[i]} and {temp[j]}.'
       j = (j + 1) \% n
     i += 1
  return steps
rules = 'Rv \sim P Rv \sim Q \sim RvP \sim RvQ' \#(P \cap Q) \leq >R : (Rv \sim P)v(Rv \sim Q) \cap (\sim RvP) \cap (\sim RvQ)
goal = 'R'
main(rules, goal)
```

Step	Clause	Derivation
1.	Rv~P	Given.
2.	R∨~Q	Given.
3.	~RvP	Given.
4.	~RvQ	Given.
5.	~R	Negated conclusion.
6.	1	Resolved Rv~P and ~RvP to Rv~R, which is in turn null.
A cont	radiction	is found when ∼R is assumed as true. Hence, R is true.

```
rules = 'PvQ \sim PvR \sim QvR' \#P = vQ, P = >Q : \sim PvQ, Q = >R, \sim QvR goal = 'R' main(rules, goal)
```

Step	Clause	Derivation
1.	PvQ	Given.
2.	~PvR	Given.
3.	∼Q∨R	Given.
4.	~R	Negated conclusion.
5.	QVR	Resolved from PvQ and ~PvR.
6.	PVR	Resolved from PvQ and ~QvR.
7.	į ~P	Resolved from ~PvR and ~R.
8.	i ~Q	Resolved from ~QvR and ~R.
9.	į Q	Resolved from ~R and QvR.
10.	l P	Resolved from ~R and PvR.
11.	į R	Resolved from QvR and ~Q.
12.	Ì	Resolved R and ~R to Rv~R, which is in turn null.

9. Implement unification in first order logic

F	Unification + (18402)102 myste
	Eg! Knows (John, R) Knows (John, Jane & X VJane }
()	Step 1:19 if term 1 A term 2 is a variable/co
-	then: 3111725 (d
	a) term l'oriterm 2 on are identical ret un NILLE ;
	b) else if term 1 is available if term 1 orcus in term 2
2	het cun FAIC.
	else
	else retuin f. (terin 2/terin 1)}
	C) else if term 2 if available if term 2 occurs isn'term 1 return & FAIC
	return & FAIC
	else (1)
-	return { (term 1/term 2)}
	d) else return FAIL
	Step 5: 3f Predicate (term) & fredice (terms) return FAIL
	Step 3: no. of arguments not equal

35

```
import re
def getAttributes(expression):
  expression = expression.split("(")[1:]
  expression = "(".join(expression)
  expression = expression[:-1]
  expression = re.split("(?
def getInitialPredicate(expression):
  return expression.split("(")[0]
def isConstant(char):
  return char.isupper() and len(char) == 1
def isVariable(char):
  return char.islower() and len(char) == 1
def replaceAttributes(exp, old, new):
  attributes = getAttributes(exp)
  for index, val in enumerate(attributes):
     if val == old:
       attributes[index] = new
  predicate = getInitialPredicate(exp)
  return predicate + "(" + ",".join(attributes) + ")"
def apply(exp, substitutions):
  for substitution in substitutions:
     new, old = substitution
     exp = replaceAttributes(exp, old, new)
  return exp
```

```
def checkOccurs(var, exp):
  if exp.find(var) == -1:
     return False
  return True
def getFirstPart(expression):
  attributes = getAttributes(expression)
  return attributes[0]
def getRemainingPart(expression):
  predicate = getInitialPredicate(expression)
  attributes = getAttributes(expression)
  newExpression = predicate + "(" + ",".join(attributes[1:]) + ")"
  return newExpression
def unify(exp1, exp2):
  if exp1 = exp2:
     return []
  if isConstant(exp1) and isConstant(exp2):
     if exp1 != exp2:
       return False
  if isConstant(exp1):
     return [(exp1, exp2)]
```

```
if isConstant(exp2):
  return [(exp2, exp1)]
if is Variable(exp1):
  if checkOccurs(exp1, exp2):
     return False
   else:
     return [(exp2, exp1)]
if is Variable(exp2):
  if checkOccurs(exp2, exp1):
     return False
  else:
     return [(exp1, exp2)]
if getInitialPredicate(exp1) != getInitialPredicate(exp2):
  print("Predicates do not match. Cannot be unified")
  return False
attributeCount1 = len(getAttributes(exp1))
attributeCount2 = len(getAttributes(exp2))
if attributeCount1 != attributeCount2:
  return False
head1 = getFirstPart(exp1)
head2 = getFirstPart(exp2)
initialSubstitution = unify(head1, head2)
if not initial Substitution:
  return False
if attributeCount1 == 1:
```

```
return initialSubstitution
```

```
tail1 = getRemainingPart(exp1)
  tail2 = getRemainingPart(exp2)
  if initialSubstitution != []:
     tail1 = apply(tail1, initialSubstitution)
     tail2 = apply(tail2, initialSubstitution)
remainingSubstitution = unify(tail1, tail2)
  if not remainingSubstitution:
     return False
  initialSubstitution.extend(remainingSubstitution)
  return initialSubstitution
exp1 = "knows(X)"
exp2 = "knows(Richard)"
substitutions = unify(exp1, exp2)
print("Substitutions:")
print(substitutions)
      OUTPUT
Substitutions:
[('X', 'Richard')]
exp1 = "knows(A,x)"
exp2 = "knows(y,mother(y))"
substitutions = unify(exp1, exp2)
print("Substitutions:")
print(substitutions)
```

Substitutions:				
[('A', 'y'), ('mother	r(y)', 'x')]			
		40		

9. Convert a given first order logic statement into Conjunctive Normal Form (CNF).

```
Algorithm:

Step 1: Fliminate biconditionals (+>)

Step 2: Fliminate conditionals (->)

Step 3: Move regation inwand

Step 4: Standardize variables

Step 5: Skalemization

Step 6: 1918 tribute 1 Over V

Step 7: Move universal equantifiers outward

Step 7: Move universal equantifiers outward

Step 8: convert to CNF
```

```
def getAttributes(string):
  expr = '
  matches = re.findall(expr, string)
  return [m for m in str(matches) if m.isalpha()]
def getPredicates(string):
  expr = '[a-z\sim]+
  return re.findall(expr, string)
def DeMorgan(sentence):
  string = ".join(list(sentence).copy())
  string = string.replace('~~',")
  flag = '[' in string
  string = string.replace('~[',")
  string = string.strip(']')
  for predicate in getPredicates(string):
     string = string.replace(predicate, f'~{predicate}')
  s = list(string)
  for i, c in enumerate(string):
     if c == '|':
```

```
s[i] = '\&'
     elif c == '&':
       s[i] = '|'
  string = ".join(s)
  string = string.replace('~~',")
  return f'[{string}]' if flag else string
def Skolemization(sentence):
  SKOLEM CONSTANTS = [f(chr(c))'] for c in range(ord('A'), ord('Z')+1)]
  statement = ".join(list(sentence).copy())
  matches = re.findall(\lceil \forall \exists \rceil., statement)
  for match in matches[::-1]:
     statement = statement.replace(match, ")
     statements = re.findall('
]', statement)
     for s in statements:
       statement = statement.replace(s, s[1:-1])
     for predicate in getPredicates(statement):
       attributes = getAttributes(predicate)
       if ".join(attributes).islower():
          statement = statement.replace(match[1],SKOLEM CONSTANTS.pop(0))
       else:
          aL = [a for a in attributes if a.islower()]
          aU = [a \text{ for a in attributes if not a.islower}()][0]
          statement = statement.replace(aU, f'{SKOLEM CONSTANTS.pop(0)}({aL[0] if}
len(aL) else match[1]})')
  return statement
```

```
def fol_to_cnf(fol):
        statement = fol.replace("<=>", " ")
        while '_' in statement:
               i = statement.index(' ')
               new\_statement = '[' + statement[:i] + '=>' + statement[i+1:] + ']\&[' + statement[i+1:] + ']\&['
'=>' + statement[:i] + ']'
                statement = new statement
        statement = statement.replace("=>", "-")
        expr = '
        statements = re.findall(expr, statement)
        for i, s in enumerate(statements):
               if '[' in s and ']' not in s:
                        statements[i] += ']'
        for s in statements:
                statement = statement.replace(s, fol to cnf(s))
        while '-' in statement:
               i = statement.index('-')
                br = statement.index('[') if '[' in statement else 0
                new statement = '\sim' + statement [br:i] + '|' + statement [i+1:]
                statement = statement[:br] + new statement if br > 0 else new statement
        while '\sim \forall' in statement:
                i = statement.index('\sim \forall')
                statement = list(statement)
                statement[i], statement[i+1], statement[i+2] = '\exists', statement[i+2], '~'
                statement = ".join(statement)
        while '~∃' in statement:
               i = statement.index('\sim \exists')
                s = list(statement)
```

```
s[i], s[i+1], s[i+2] = '\forall', s[i+2], '\sim'
     statement = ".join(s)
  statement = statement.replace('\sim [\forall','] \sim \forall')
  statement = statement.replace('\sim[∃','[\sim∃')
  expr = '(\sim [\forall |\exists].)'
  statements = re.findall(expr, statement)
  for s in statements:
     statement = statement.replace(s, fol to cnf(s))
  expr = '\sim
  statements = re.findall(expr, statement)
  for s in statements:
     statement = statement.replace(s, DeMorgan(s))
  return statement
print(Skolemization(fol to cnf("animal(y)<=>loves(x,y)")))
print(Skolemization(fol to cnf("\forall x[\forall y[animal(y)=>loves(x,y)]]=>[\exists z[loves(z,x)]]")))
print(fol to cnf("[american(x)&weapon(y)&sells(x,y,z)&hostile(z)]=>criminal(x)"))
OUTPUT
[\neg animal(y) | loves(x,y)] & [\neg loves(x,y) | animal(y)]
[animal(G(x))\&\sim loves(x,G(x))] [loves(F(x),x)]
[\neg american(x) | \neg weapon(y) | \neg sells(x,y,z) | \neg hostile(z)] | criminal(x)
```

10. Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning

```
Algorithm:
 Step 1: Initialize the knowledge base (KB):
       - start with an empty KB
        - Add known FOL statements to the KB
 stop 2: Initialize Agenda:
       - create an agenda to store statements to be processed
       - Adol known facts & onles with satisfied antecedents
 Sep 3: Repeat until convergence or query is answerd:
       - while the agenda is non empty;
            · Pop or statement from the agenda
   . If the statement is the query, return 'Query is true
        If the statement is a fact on a known truth:
                - skip to the next iteration
            · If the statement is a rule with satisfied antecedents:
                 · Apply the such to generate a new consequent
                 · Hold the new consequent to the agenda
 stip 4: Termination
   - It the agenda is empty & the openy is not answered,
  ruturn 'Query is false'
```

```
import re
```

```
def isVariable(x):
  return len(x) == 1 and x.islower() and x.isalpha()

def getAttributes(string):
  expr = '
```

```
matches = re.findall(expr, string)
  return matches
def getPredicates(string):
  expr = '([a-z\sim]+)[^{\&}]+
  return re.findall(expr, string)
class Fact:
  def __init__(self, expression):
     self.expression = expression
     predicate, params = self.splitExpression(expression)
     self.predicate = predicate
     self.params = params
     self.result = any(self.getConstants())
  def splitExpression(self, expression):
     predicate = getPredicates(expression)[0]
     params = getAttributes(expression)[0].strip('()').split(',')
     return [predicate, params]
  def getResult(self):
     return self.result
  def getConstants(self):
     return [None if isVariable(c) else c for c in self.params]
  def getVariables(self):
```

```
return [v if isVariable(v) else None for v in self.params]
  def substitute(self, constants):
     c = constants.copy()
     f = f''\{self.predicate\}\{\{','.join([constants.pop(0) if isVariable(p) else p for p in \}\}\}
self.params])})"
     return Fact(f)
class Implication:
  def __init__(self, expression):
     self.expression = expression
     l = expression.split('=>')
     self.lhs = [Fact(f) for f in 1[0].split('&')]
     self.rhs = Fact(1[1])
  def evaluate(self, facts):
     constants = \{\}
     new lhs = []
     for fact in facts:
        for val in self.lhs:
          if val.predicate == fact.predicate:
             for i, v in enumerate(val.getVariables()):
               if v:
                  constants[v] = fact.getConstants()[i]
             new lhs.append(fact)
     predicate, attributes = getPredicates(self.rhs.expression)[0],
str(getAttributes(self.rhs.expression)[0])
     for key in constants:
        if constants[key]:
          attributes = attributes.replace(key, constants[key])
     expr = f'{predicate} {attributes}'
```

return Fact(expr) if len(new_lhs) and all([f.getResult() for f in new_lhs]) else None

```
class KB:
  def init (self):
     self.facts = set()
     self.implications = set()
  def tell(self, e):
     if '=>' in e:
        self.implications.add(Implication(e))
     else:
        self.facts.add(Fact(e))
     for i in self.implications:
        res = i.evaluate(self.facts)
        if res:
           self.facts.add(res)
  def query(self, e):
     facts = set([f.expression for f in self.facts])
     i = 1
     print(f'Querying {e}:')
     for f in facts:
        if Fact(f).predicate == Fact(e).predicate:
           print(f'\setminus t\{i\}, \{f\}')
           i += 1
  def display(self):
     print("All facts: ")
     for i, f in enumerate(set([f.expression for f in self.facts])):
        print(f \setminus \{i+1\}, \{f\}')
```

```
kb = KB()
kb.tell('missile(x)=>weapon(x)')
kb.tell('missile(M1)')
kb.tell('enemy(x,America)=>hostile(x)')
kb.tell('american(West)')
kb.tell('enemy(Nono,America)')
kb.tell('owns(Nono,M1)')
kb.tell('missile(x)&owns(Nono,x)=>sells(West,x,Nono)')
kb.tell('american(x)&weapon(y)&sells(x,y,z)&hostile(z)=>criminal(x)')
kb.query('criminal(x)')
kb.display()
OUTPUT
Querying criminal(x):

    criminal(West)

All facts:
        1. enemy(Nono, America)
        2. hostile(Nono)
        sells(West,M1,Nono)
        4. criminal(West)
        5. owns(Nono, M1)
        6. weapon(M1)
        american(West)
        8. missile(M1)
```