Package 'Uniquorn'

May 12, 2017

Title Identification of cancer cell lines based on their weighted
mutational or variational fingerprint
Version 1.4.1
Description Identifies cancer cell lines with their small variant fingerprint. Cancer cell line misidentification and cross-
contamination reprents a significant challenge for cancer researchers. The identification is vital and in the frame of this package based on the locations or loci of so-
matic and germline mutations or variations.
The input format is vcf and the files have to contain a single cancer cell line sample. The implemented method is optimized for the Next-
generation whole exome and whole genome DNA-sequencing technology. RNA-
seq data is very likely to work as well but hasn't been rigiously tested yet.
Panel-seq will require manual adjustment of thresholds.
Imports DBI, stringr, RSQLite, R.utils, WriteXLS, stats, BiocParallel
Depends R (>= 3.4)
License Artistic-2.0
LazyData TRUE
Type Package
Maintainer 'Raik Otto' <raik.otto@hu-berlin.de></raik.otto@hu-berlin.de>
Date 2017-05-12
Author Raik Otto
RoxygenNote 6.0.1
NeedsCompilation no
Suggests testthat, knitr, rmarkdown, BiocGenerics, RUnit
biocViews Software, StatisticalMethod, WholeGenome, ExomeSeq
VignetteBuilder knitr

R topics documented:

```
8
q
 9
10
15
 15
18
```

add_custom_vcf_to_database

Adds a custom vcf file to the three existing cancer cell line panels

Description

Adds a custom vcf file to the three existing cancer cell line panels

Usage

Index

```
add_custom_vcf_to_database(
  vcf_input_files,
  ref_gen = "GRCH37",
  library = "",
  test_mode = FALSE,
  n_threads = 1)
```

Arguments

```
vcf_input_files

Input vcf file.s This may be one or many vcf files

ref_gen

Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37

library

The name of the library to add the CCLs to. Standard is '_CUSTOM' will automatically be added as suffix.

test_mode

Is this a test? Just for internal use

n_threads

Specifies number of threads to be used
```

Value

Message if the adding has succeeded

add_missing_cls 3

Examples

```
HT29_vcf_file = system.file("extdata/HT29.vcf.gz", package="Uniquorn");
add_custom_vcf_to_database(
vcf_input_files = HT29_vcf_file,
library = "",
ref_gen = "GRCH37",
test_mode = TRUE,
n_threads = 1)
```

 ${\tt add_missing_cls}$

 $add_missing_cls$

Description

```
add_missing_cls
```

Usage

```
add_missing_cls(res_table, dif_cls)
```

Arguments

res_table Table that contains the identification results

dif_cls Missing CLs

Value

Results table with added missing cls

Description

```
calculate\_p\_and\_q\_values
```

Usage

```
calculate_p_and_q_values(candidate_hits_abs_all, cl_absolute_mutation_hits,
    sim_list, sim_list_stats, minimum_matching_mutations, list_of_cls, p_value,
    q_value, vcf_fingerprint, panels)
```

Arguments

candidate_hits_abs_all

Maximally possible found variants

cl_absolute_mutation_hits

Matching variants

sim_list Contains reference mutation data

sim_list_stats Contains global reference mutation stats

minimum_matching_mutations

Minimal amount of required matching mutations

list_of_cls List of CLs

p_value Required maximal p-value q_value Required maximal q-value

vcf_fingerprint

The start and end positions of variants in the query

panels The reference libraries

Value

Results table

```
calculate_similarity_results
```

calculate_similarity_results

Description

calculate_similarity_results

Usage

```
calculate_similarity_results(sim_list, sim_list_stats, found_mut_mapping,
  minimum_matching_mutations, p_value, q_value, confidence_score,
  vcf_fingerprint, panels, list_of_cls)
```

Arguments

sim_list Contains reference mutation data

sim_list_stats Contains global reference mutation stats

found_mut_mapping

Mapping to mutations from query to reference mutation set

minimum_matching_mutations

Minimal amount of required matching mutations

p_value Required maximal p-value q_value Required maximal q-value

confidence_score

Threshold above which a positive prediction occurs default 3.0

vcf_fingerprint

The start and end positions of variants in the query

panels The reference libraries list_of_cls List of cancer cell lines

create_bed_file 5

Value

Results table

create_bed_file

create_bed_file

Description

Creates BED files from the found and not found annotated mutations

Usage

```
create_bed_file(
sim_list,
vcf_fingerprint,
res_table,
output_file,
ref_gen,
manual_identifier
)
```

Arguments

sim_list R table which contains the mutations from the training database for the cancer cell lines

vcf_fingerprint

contains the mutations that are present in the query cancer cell line's vcf file

res_table Table containing the identification results

output_file Path to output file

ref_gen Reference genome version

manual_identifier

Manually enter a vector of CL name(s) whose bed files should be created, independently from them passing the detection threshold

Value

Returns a message which indicates if the BED file creation has succeeded

identify_vcf_file

```
{\tt filter\_for\_weights} \qquad {\tt filter\_for\_weights}
```

Description

Filter the reference set

Usage

```
filter_for_weights(
mutational_weight_inclusion_threshold,
ref_gen,
verbose,
sim_list,
sim_list_stats)
```

Arguments

mutational_weight_inclusion_threshold

Lower bound for mutational weight to be included

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

verbose Print additional information

sim_list Contains the mutations

sim_list_stats Contains the overal mutation statistics

Details

filter_for_weights parses vcf file and output basic information

Value

Filtered reference sets

Description

Identifies a cancer cell lines contained in a vcf file based on the pattern (start & length) of all contained mutations/ variations.

identify_vcf_file 7

Usage

```
identify_vcf_file(
vcf_file,
output_file = "",
ref_gen = "GRCH37",
minimum_matching_mutations = 0,
mutational_weight_inclusion_threshold = 0.5,
only_first_candidate = FALSE,
write_xls = FALSE,
output_bed_file = FALSE,
manual_identifier_bed_file = "",
verbose = FALSE,
p_value = .05,
q_value = .05,
confidence_score = 10.0,
n_threads = 1)
```

Arguments

vcf_file Input vcf file. Only one sample column allowed.

output_file Path of the output file. If blank, autogenerated as name of input file plus '_uniquorn_ident.tab'

suffix.

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

minimum_matching_mutations

The minimum amount of mutations that has to match between query and training

sample for a positive prediction

 $\verb|mutational_weight_inclusion_threshold|\\$

Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique

to CL. ~ 0 = found in many CL samples.

only_first_candidate

Only the CL identifier with highest score is predicted to be present in the sample

write_xls Create identification results additionally as xls file for easier reading

output_bed_file

If BED files for IGV visualization should be created for the Cancer Cell lines

that pass the threshold

manual_identifier_bed_file

Manually enter a vector of CL name(s) whose bed files should be created, inde-

pendently from them passing the detection threshold

verbose Print additional information

p_value Required p-value for identification

confidence_score

Threshold above which a positive prediction occurs default 10.0

n_threads Number of threads to be used

Details

q_value

identify_vcf_file parses the vcf file and predicts the identity of the sample

Required q-value for identification

Value

R table with a statistic of the identification result

Examples

```
HT29_vcf_file = system.file("extdata/HT29.vcf.gz", package="Uniquorn");
identification = identify_vcf_file( HT29_vcf_file )
```

```
initiate_canonical_databases
```

initiate_canonical_databases

Description

Parses data into r list variable

Usage

```
initiate_canonical_databases(
cosmic_file = "CosmicCLP_MutantExport.tsv",
ccle_file = "CCLE_hybrid_capture1650_hg19_NoCommonSNPs_CDS_2012.05.07.maf",
ref_gen = "GRCH37")
```

Arguments

cosmic_file	The path to the cosmic DNA genotype data file. Ensure that the right reference genome is used
ccle_file	The path to the ccle DNA genotype data file. Ensure that the right reference genome is used
ref_gen	Reference genome version

Value

Returns message if parsing process has succeeded

Examples

```
initiate_canonical_databases(
cosmic_file = "CosmicCLP_MutantExport.tsv",
ccle_file = "CCLE_hybrid_capture1650_hg19_NoCommonSNPs_CDS_2012.05.07.maf",
ref_gen = "GRCH37")
```

Description

Intern utility function, loads database and return the sim_list and sim_list_stats variables.

Usage

```
initiate_db_and_load_data(
ref_gen,
request_table,
load_default_db )
```

Arguments

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

request_table Names of the tables to be extracted from the database

load_default_db

Indicate whether the default db should be used as source for the data

Value

Returns the sim_list and sim_list_stats variable

```
init\_and\_load\_identification \\ init\_and\_load\_identification
```

Description

Initiate the analysis Output basic information

Usage

```
init_and_load_identification(
verbose,
ref_gen,
vcf_file,
output_file,
n_threads)
```

Arguments

verbose Print additional information

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

vcf_file Path to vcf_file

output_file Path to output report file

n_threads Specifies number of threads to be used

Details

 $\verb"init_and_load_identification" parses vcf file and output basic information$

Value

Three file path instances and the fingerprint

```
parse_ccle_genotype_data
```

parse_ccle_genotype_data

Description

Parses ccle genotype data

Usage

```
parse_ccle_genotype_data(ccle_file, sim_list)
```

Arguments

ccle_file Path to CCLE file on hard disk

sim_list Variable containing mutations and cell line

Value

The R Table sim_list which contains the CCLE fingerprints

Description

Parses cosmic genotype data

Usage

```
parse_cosmic_genotype_data(cosmic_file, sim_list)
```

Arguments

cosmic_file Path to cosmic clp file in hard disk
sim_list Variable containing mutations & cell line

Value

The R Table sim_list which contains the CoSMIC CLP fingerprints

```
parse_vcf_file parse_vcf_file
```

Description

Parses the vcf file and filters all information except for the start and length of variations/ mutations.

Usage

```
parse_vcf_file( vcf_file_path, n_threads)
```

Arguments

vcf_file_path Path to the vcf file on the operating system
n_threads Specifies number of threads to be used

Value

Loci-based DNA-mutational fingerprint of the cancer cell line as found in the input VCF file

```
{\tt remove\_custom\_vcf\_from\_database}
```

Removes a cancer cell line training fingerprint (vcf file) from the database. The names of all training sets can be seen by using the function show_contained_cls.

Description

Removes a cancer cell line training fingerprint (vcf file) from the database. The names of all training sets can be seen by using the function show_contained_cls.

Usage

```
remove_custom_vcf_from_database(
name_cl,
ref_gen = "GRCH37",
test_mode = FALSE)
```

Arguments

name_cl name of the cancer cell line training fingerprintt

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

test_mode Is this a test? Just for internal use

Value

Message that indicates if the removal was succesful

Examples

```
remove_custom_vcf_from_database(
name_cl = "HT29_CELLMINER",
ref_gen = "GRCH37",
test_mode = TRUE )
```

```
re_calculate_cl_weights
```

Re-calculate sim_list_weights

Description

This function re-calculates the weights of mutation after a change of the training set

Usage

```
re_calculate_cl_weights(sim_list, ref_gen)
```

show_contained_cls 13

Arguments

sim_list R Table which contains a mapping from mutations/ variations to their containing

CLs

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

Value

A list containing both the sim_list at pos 1 and sim_list_stats at pos 2 data frames.

show_contained_cls

show_contained_cls

Description

Show all cancer cell line identifier present in the database for a selected reference genome: This function shows the names, amount of mutations/ variations, overall weight of the mutations of all contained training CLs for a chosen reference genome.

Usage

```
show_contained_cls(
ref_gen)
```

Arguments

ref_gen

Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37

Value

R table which contains the identifier of all cancer cell line samples with the specific reference genome and the weight of all mutations

Examples

```
contained_cls = show_contained_cls(
ref_gen = "GRCH37")
```

```
show_contained_mutations
```

show_contained_mutations

Description

Show all mutations present in the database for a selected reference Genome: This function shows all training-set mutations for a selected reference genome, i.e. the mutations that are being used for identification of query cancer cell lines.

Usage

```
show_contained_mutations(
ref_gen )
```

Arguments

ref_gen

Reference genome version

Value

R Table which contains all mutations associated with a particular cancer cell line for a specified reference genome

Examples

```
{\tt contained\_cls = show\_contained\_mutations( ref\_gen = "GRCH37")}
```

```
show\_contained\_mutations\_for\_cl\\ show\_contained\_mutations\_for\_cl
```

Description

Show all mutations present in the database for a selected cancer cell line and reference Genome

Usage

```
show_contained_mutations_for_cl(
name_cl,
ref_gen)
```

Arguments

name_cl Name of the cancer cell line sample stored in the database

ref_gen Reference genome version

Value

R table which contains all mutations associated with the defined cancer cell line and reference genome

Examples

```
SK_OV_3_CELLMINER_mutations = show_contained_mutations_for_cl(
name_cl = "SK_OV_3_CELLMINER_mutations",
ref_gen = "GRCH37")
```

```
show_which_cls_contain_mutation

show_which_cls_contain_mutation
```

Description

Show all cancer cell lines in the database which contained the specified mutation and reference Genome. Closed interval coordinates. Format mutation: CHR_START_STOP, e.g. 1_123_123

Usage

```
show_which_cls_contain_mutation(
mutation_name,
ref_gen)
```

Arguments

```
mutation_name Name of the mutation in the format CHROMOSOME_START_STOP, e.g. '11_244501_244510' ref_gen Reference genome version
```

Value

R table which contains all cancer cell line samples which contain the specified mutation with respect to the specified reference genome version

Examples

```
Cls_containing_mutations = show_which_cls_contain_mutation(
mutation_name = "10_103354427_103354427",
ref_gen = "GRCH37")
```

split_add

split_add

Description

```
split_add
```

Usage

```
split_add(vcf_matrix_row)
```

Arguments

```
vcf_matrix_row row of the vcf file
```

16 write_data_to_db

Value

Transformed entry of vcf file, reduced to start and length

```
split_add_parallel split_add_parallel
```

Description

```
split_add_parallel
```

Usage

```
split_add_parallel(para_index, vcf_matrix_row, vcf_handle, MARGIN, n_threads)
```

Arguments

para_index row of the vcf file

vcf_matrix_row A row of the parsed vcf file vcf_handle Handle to the parsed VCF file MARGIN Margin of the parse operation

n_threads Specifies number of threads to be used

Value

Transformed entry of vcf file, reduced to start and length

```
write_data_to_db
```

Description

Intern utility function, writes to database the sim_list and sim_list_stats variables

Usage

```
write_data_to_db(
content_table,
table_name,
ref_gen,
overwrite,
test_mode )
```

Arguments

content_table Tables to be written in db

table_name Name of the table to be written into the DB

ref_gen Reference genome version. All training sets are associated with a reference

genome version. Default: GRCH37

overwrite Overwrite the potentially existing table test_mode Is this a test? Just for internal use

write_data_to_db

Value

the sim_list and sim_list_stats variable

Index

```
\verb|add_custom_vcf_to_database|, 2|
add_missing_cls, 3
{\tt calculate\_p\_and\_q\_values, 3}
calculate_similarity_results, 4
create_bed_file, 5
filter_for_weights, 6
identify_vcf_file, 6
init\_and\_load\_identification, 9
initiate_canonical_databases, 8
initiate\_db\_and\_load\_data, 9
parse_ccle_genotype_data, 10
parse_cosmic_genotype_data, 11
parse_vcf_file, 11
re_calculate_cl_weights, 12
remove_custom_vcf_from_database, 12
show_contained_cls, 13
\verb|show_contained_mutations|, 14|
show_contained_mutations_for_cl, 14
show_which_cls_contain_mutation, 15
split_add, 15
split_add_parallel, 16
write_data_to_db, 16
```