$\begin{array}{c} \text{PRACTICE FINAL} \\ \text{MATH 18.022, MIT, AUTUMN 10} \end{array}$

You have three hours. This test is closed book, closed notes, no calculators.

	Name: MODEL ANSWER
	Signature:
	Recitation Time:
There are 10	problems and the total number of points is 200. Cha

There are 10 problems, and the total number of points is 200. Show all your work. Please make your work as clear and easy to follow as possible.

Problem	Points	Score
1	20	
2	20	-
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	. 100000
Total	200	

1. (20pts) Find the shortest distance between the line l given parametrically by

$$(x, y, z) = (1 + 2t, -3 + t, 2 - t),$$

and the intersection of the two planes Π_1 and Π_2 given by the equations

$$x + y + z = 3$$
 and $x - 2y + 3z = 2$.

· Line where TI, and TIZ intersect is

$$(n, y, z) = (1, 1, 1) + t (5, -2, -3) = (1+st, 1-2t, 1-3t)$$

point satisfying both vector perpendicular to
$$(3,1,1)$$
 and $(1,-2,3)$ plane equations, $(1,1,1) \times (1,-2,3) = \begin{vmatrix} i & j & k \\ 1 & 1 & 1 \\ 1 & -2 & 3 \end{vmatrix} = (s,-2,-3)$

Shortest distance between two skew lines is

$$d = \| proj_{\vec{n}} \vec{B}_{1}\vec{B}_{2} \| = \| \left(\frac{\vec{n} \cdot \vec{B}_{1}\vec{B}_{2}}{\vec{n}' \cdot \vec{n}'} \right) \vec{n} \| = \| \frac{13}{107} \left(-51, -9 \right) \| = \frac{13}{\sqrt{107}}$$

vector perpendicular

$$(2,1,-1) \times (5,-2,-3) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 5 & -2 & -3 \end{vmatrix}$$

- 2. (20pts) Let W be the solid inside the sphere $x^2 + y^2 + z^2 = 9$ and above the top sheet of the hyperboloid $x^2 + y^2 z^2 = -1$.
- (a) Set up an integral in cylindrical coordinates for evaluating the volume of W.

(b) Evaluate this integral.

When
$$W = 2\pi \int_{0}^{2} (\sqrt{9-n^{2}} - \sqrt{n^{2}+1}) n dn$$

$$= -\frac{2\pi}{3} \left((9-n^{2})^{3/2} + (n^{2}+1)^{3/2} \right)_{n=0}^{2}$$

$$= -\frac{2\pi}{3} \left(5^{3/2} + 5^{3/2} - 9^{3/2} - 1^{3/2} \right)$$

$$= -\frac{2\pi}{3} \left(2\sqrt{5}^{3} - 28 \right)$$

$$= \frac{4\pi}{3} \left(14 - \sqrt{5}^{3} \right)$$

3. (20pts) Evaluate

$$\int_{0}^{\pi/2} \left(\int_{y}^{2y} \frac{\sin x}{x} \, dx \right) \, dy + \int_{\pi/2}^{\pi} \left(\int_{y}^{\pi} \frac{\sin x}{x} \, dx \right) \, dy.$$

cannot integrate directly

Change order of integration:

$$\int_{0}^{\pi} \int_{n_{2}}^{n} \frac{M n n}{n} dy dn = \int_{0}^{\pi} \frac{M n n}{n} \left(n - \frac{n}{2}\right) dn$$

$$= \int_{0}^{\pi} \frac{M n n}{2} dn$$

$$= \frac{1}{2} \left(-\cos n\right) \Big|_{n=0}^{\pi}$$

$$= \frac{1}{2} \left(1 + 1\right)$$

4. (20pts) Let $\vec{r}: I \longrightarrow \mathbb{R}^3$ be a regular smooth curve parametrised by arclength. Let $a \in I$ and suppose that

$$\vec{T}(a) = \frac{4}{9}\hat{\imath} - \frac{7}{9}\hat{\imath} - \frac{4}{9}\hat{k}, \quad \vec{N}(a) = \frac{1}{9}\hat{\imath} - \frac{4}{9}\hat{\imath} + \frac{8}{9}\hat{k}, \quad \frac{d\vec{N}}{ds}(a) = -\frac{4}{3}\hat{\imath} + \frac{1}{3}\hat{\jmath} + \frac{1}{3}\hat{k}.$$

Find:

(i) the unit binormal vector $\vec{B}(a)$.

$$\vec{B}(a) = \vec{T}(a) \times \vec{N}(a) = \begin{vmatrix} i & j & k \\ 4q & -\frac{1}{4}q & -\frac{1}{4}q \end{vmatrix} = \frac{1}{81} \left(-56-16, -4-32, -16+7\right) = \left(-\frac{8}{9}, -\frac{1}{9}, -\frac{1}{9}\right)$$

(ii) the curvature $\kappa(a)$.

$$\vec{N}(a) = -\kappa(a) \vec{T}(a) + \delta(a) \vec{B}(a)$$
, so $\vec{N}(a) \cdot \vec{T}(a) = -\kappa(a)$

$$K(c) = -\left(-\frac{4}{3}, \frac{1}{3}, \frac{1}{3}\right) \cdot \left(\frac{4}{9}, -\frac{7}{9}, -\frac{4}{9}\right) = \frac{16}{27} + \frac{7}{27} + \frac{7}{27} = \frac{27}{27} = \boxed{1}$$

(iii) the torsion $\tau(a)$.

$$C(a) = \left(-\frac{4}{3}, \frac{1}{3}, \frac{1}{3}\right) \cdot \left(-\frac{8}{9}, \frac{4}{9}, \frac{1}{9}\right) = \frac{32}{27} - \frac{4}{27} - \frac{1}{27} = \frac{27}{27} = \boxed{1}$$

$$S = \{ (x, y, z) \in \mathbb{R}^3 \mid xy^2z^3 - x^2y^2z^2 + x^3y^3 = 1 \}.$$

(a) Show that in a neighbourhood of the point P = (1, 1, 1), the subset S is the graph of a smooth function z = f(x, y).

|
$$\frac{\partial F}{\partial z}(1,1,1)$$
| = 3-2=1 \$0 so by the implicit function theorem, on a neighborhood of (1,1,1), S is the

(b) Find the derivative Df(1,1). graph of - function z = f(n,y)

On a neighborhood of (my)=(1,1), we have F(my, f(my))=1.

Applying an on both rides,

$$\frac{\partial F}{\partial n} + \frac{\partial F}{\partial z} \frac{\partial f}{\partial n} = 0$$
, at (1,1) is $2+1 \frac{\partial f}{\partial n} (n) = 0 \Rightarrow \frac{\partial f}{\partial n} (n) = -2$

Applying by on both sides,

$$\frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial f}{\partial y} = 0$$
, $\frac{\partial f}{\partial y}(y_1) = 0 \rightarrow \frac{\partial f}{\partial y}(y_1) = 3$

Auxiliary computations.

$$\frac{\partial F_{(n,y,z)}}{\partial x} = y^2 z^3 - 2\pi y^2 z^2 + 3\pi^2 y^3$$

$$\frac{\partial F_{(n,y,z)}}{\partial y} = 2\pi y z^3 - 2\pi^2 y z^2 + 3\pi^3 y^2$$

6. (20pts) Let K be the solid bounded by the four planes x = 0, y = 0, z = 0 and x + 2y + 3z = 12 and let $f: K \longrightarrow \mathbb{R}$ be the function f(x, y, z) = xyz.

(a) Show that f has a global maximum on K.

K is a compact set (it is closed and sounded), and f is a continuous function, so f must have a global maximum (and minimum) on K.

(b) Find this global maximum value of f on K.

Df = (yz, zz, zy) does not vanish on the interior of k, so make must occur on the walls. On n=0, y=0, 2=0 walls, f(m,y,2) =0, which is not the move (f attains positive values), so we use Lagrange multipliers to find maximum of on 2+2y+32=12.

$$\frac{\partial F}{\partial \lambda} = y^{2} + \lambda = 0$$

$$\frac{\partial F}{\partial \lambda} = \lambda + 2\lambda = 0$$

$$\frac{\partial F}{\partial \lambda} = \lambda + 2\lambda + 3\lambda = 0$$

$$\frac{\partial F}{\partial \lambda} = \lambda + 2y + 3\lambda = 0$$

$$F(x,y,\frac{1}{2}) = \pi y^{2} + \lambda (\pi + 2y + 3z - 12)$$

$$\int \frac{\partial f}{\partial n} = y^{2} + \lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} = x^{2} + 2\lambda = 0$$

$$\int \frac{\partial f}{\partial n} =$$

because it would

give f =0, which

is not a max

€) n=4, y=2, == 4

- 7. (20pts) Let D be the region bounded by the four curves xy=1, xy=3, $2y=x^2$ and $y=x^2$.
- (a) Compute dx dy in terms of du dv, where u = xy and $v = x^2/y$.

$$\frac{\partial(uv)}{\partial(n,y)} = \begin{vmatrix} \frac{\partial u}{\partial n} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial n} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} y & n \\ \frac{2n}{y} & \frac{n^2}{y^2} \end{vmatrix} = \frac{3n^2}{y} = 3v$$

(b) Find the area of D.

area
$$D = \int dn dy$$

$$= \int_{1}^{2} \int_{1}^{3} \frac{1}{3v} du dv$$

$$= \frac{1}{3} 2 \left(\log v \right) v^{2}$$

$$= \left(\frac{2}{3} \log 2 \right)$$

8. (20pts) Find the line integral of the vector field

$$\vec{F}(x,y) = \frac{-y}{x^2 + y^2} \hat{\imath} + \frac{x}{x^2 + y^2} \hat{\jmath}, = M \hat{\lambda} + N \hat{j}$$

along the following oriented curves:

(i) The circle C_1 with equation $x^2 + y^2 = 1$, oriented counter-clockwise.

$$\oint \vec{F} \cdot d\vec{\lambda} = \int_{0}^{2\pi} \vec{F}(\vec{x}(t)) \cdot \vec{x}(t) dt = \int_{0}^{2\pi} (-\min t, \cot t) \cdot (-\min t, \cot t) dt = \boxed{2\pi}$$
C.

Cyparametrized by
$$\vec{\pi}(t) = (\cos t, mint)$$
; $t \in [0, 2\pi r]$
 $\vec{\pi}'(t) = (-mint, \cos t)$
 $\vec{F}(\vec{\pi}(t)) = (\frac{-mnt}{1}, \frac{\cos t}{1}) = (-mint, \cos t)$

(ii) The ellipse C_2 with equation $x^2 + 2y^2 = 4$, oriented counterclockwise.

$$\frac{\partial N}{\partial n} = \frac{\partial}{\partial n} \left(\frac{n}{n^2 + y^2} \right) = \frac{y^2 - n^2}{(n^2 + y^2)^2} \quad 9 \quad \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(\frac{-y}{n^2 + y^2} \right) = \frac{y^2 - n^2}{(n^2 + y^2)^2}$$

$$0 = \iint_{D} \left(\frac{\partial N}{\partial n} - \frac{\partial M}{\partial y} \right) dA = \oint_{C_1} \vec{F} \cdot d\vec{n} - \oint_{C_2} \vec{F} \cdot d\vec{n}$$

$$\Rightarrow \begin{cases} \oint \vec{F} \cdot d\vec{n} = 2\pi \\ c_2 \end{cases}$$

9. (20pts) Find the surface scalar integral

$$\iint_{S} (x^2 + y^2) \, \mathrm{d}S,$$

where S is the sphere of radius a centred at the origin.

$$\iint (x^2+y^2) dS = \iint_0^{2\pi} \frac{a^2 \sin^2 \theta}{a^2 \sin^2 \theta} \frac{a^2 \sin \theta}{a^4 \sin \theta} d\theta d\theta$$

$$= 2\pi a^4 \int_0^{\pi} \sin^3 \theta d\theta$$

$$= 2\pi a^4 \int_0^{\pi} (1-\cos^2 \theta) \sin \theta d\theta$$

$$= 2\pi a^4 \left((-\cos \theta)_{\varphi=0}^{\pi} + (\frac{\cos^2 \theta}{3})_{\varphi=0}^{\pi} \right)$$

$$= 2\pi a^4 \left((o+1) + \frac{1}{3}(o-1) \right)$$

$$= \frac{4}{3} \pi a^4$$

10. (20pts) A smooth vector field is defined on the whole of \mathbb{R}^3 , except two lines L and M, which intersect at the point P. Suppose that $\operatorname{curl} \vec{F} = 0$, and that

$$\int_{C_1} \vec{F} \cdot d\vec{s} = -2, \qquad \int_{C_2} \vec{F} \cdot d\vec{s} = 3 \qquad \text{and} \qquad \int_{C_3} \vec{F} \cdot d\vec{s} = 1.$$

Find the following integrals. Give your reasons.

(a)
$$\int_{C_4} \vec{F} \cdot d\vec{s}.$$

$$0 = \iint_{S_{top}} \nabla_x \vec{F} \cdot d\vec{s} = -\oint_{C_1} \vec{F} \cdot d\vec{s} - \oint_{C_2} \vec{F} \cdot d\vec{s} + \oint_{C_4} \vec{F} \cdot d\vec{s} = 2 - 3 + \oint_{C_4} \vec{F} \cdot d\vec{s}.$$
(b)
$$\int_{C_4} \vec{F} \cdot d\vec{s}.$$

$$0 = \iint \nabla \times \vec{F} \cdot d\vec{S} = -\oint \vec{F} \cdot d\vec{S} + \oint \vec{F} \cdot d\vec{S} + \oint \vec{F} \cdot d\vec{S} = -1 + 1 + \oint \vec{F} \cdot d\vec{S}$$

$$c_4 \qquad c_5 \qquad c_5 \qquad c_5 \qquad c_5$$

$$\Rightarrow \begin{cases} \oint \vec{f} \cdot d\vec{s} = 0 \\ c_s \end{cases}$$

MIT OpenCourseWare http://ocw.mit.edu

18.022 Calculus of Several Variables Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.