Claims

1. A method of determining a rubbing friction torque for a motor vehicle powertrain including an internal combustion engine, the method comprising the steps of:

determining a base rubbing friction torque RFT_{base} at a base temperature T_{base} of said powertrain;

measuring and recording fuel cutoff deceleration values (DECEL) of said engine at a plurality of test temperatures of said engine including said base temperature T_{base} ; and

calculating a test rubbing friction torque RFT_{test} at a given test temperature T_{test} according to:

$$RFT_{test} = (RFT_{base} * DECEL_{test})/DECEL_{base}$$

- where DECEL_{test} is the fuel cutoff deceleration at test temperature T_{test} and DECEL_{base} is the fuel cutoff deceleration at base temperature T_{base} .
 - The method of Claim 1, including the steps of: obtaining a base pumping loss PFT_{base} of said engine at said base temperature T_{base};

obtaining a test pumping loss PFT_{test} of said engine at said test temperature T_{test}; and

calculating said test rubbing friction torque RFT_{test} according to:

$$RFT_{test} = \left(RFT_{base} + PFT_{base}\right) \times \frac{DECEL_{test}}{DECEL_{base}} - PFT_{test}.$$

3. The method of Claim 1, including the step of:

recording said fuel cutoff deceleration values (DECEL) of said engine as a function of both test temperature T_{test} and engine speed.

- 4. The method of Claim 1, including the steps of: measuring said fuel cutoff deceleration values (DECEL) at a plurality of engine speeds for each of said test temperatures T_{test}; and recording the measured fuel cutoff deceleration values (DECEL) as a function of both test temperature T_{test} and engine speed.
- 5. The method of Claim 1, wherein the step of determining said base rubbing friction torque RFT_{base} includes the steps of:

5

5

5

determining rubbing friction torque test data during engine operation at a substantially constant speed and different engine fuel flow values; and

extrapolating said rubbing friction torque test data to a zero engine fuel flow to obtain said base rubbing friction torque RFT_{base} .

6. The method of Claim 1, including the steps of:

alternately enabling and cutting off fuel flow to said engine to cycle a speed of said engine between first and second setpoints to define recurring intervals of fuel cutoff deceleration; and

measuring said fuel cutoff deceleration values during said recurring intervals of fuel cutoff deceleration.