Supplementary Information: Global patterns of forest autotrophic carbon fluxes

Rebecca Banbury Morgan Valentine Herrmann Norbert Kunert Ben Bond-Lamberty Helene C. Muller-Landau Kristina J. Anderson-Teixeira

Contents

Table S1. Climate variable definitions, sources, and abbreviations	2
Table S2. Model summaries for each climate variable as a single fixed effect in models for each C flux	3
Table S3. Summary of models relating forest C fluxes to MAT alone and in combination with MAP.	4
Table S4. Comparison of growing season length and MAT as predictors of forest C fluxes	5
Table S5. Best (lowest AIC) single-climate variable models by C flux	6
Table S6. Pairwise comparisons of correlations with climate variables between C fluxes, with all analyses conducted on a set of sites common to each pair	7
Figure S1. Sample distribution maps for the nine forest C fluxes analyzed	8
Figure S2. Correlations among climate variables and latitude	10
Figure S3. Ratios among forest C fluxes as a function of latitude and climate variables	11
Figure S4. Individual plots of forest C fluxes in relation to mean annual climate, part 1	12
Figure S5. Individual plots of forest C fluxes in relation to mean annual climate, part $2 \ldots \ldots$	13
Figure S6. Individual plots of forest C fluxes in relation to mean climate seasonality, part $1 \dots 1$	14
Figure S7. Individual plots of forest C fluxes in relation to mean climate seasonality, part $2 \ldots 1$	15
Figure S8. Growing season length-standardized forest C fluxes in relation to mean growing season climate, part 1	16
Figure S9. Growing season length-standardized forest C fluxes in relation to mean growing season climate, part 2	17
References	18

Table S1. Climate variable definitions, sources, and abbreviations

Abbreviation	Climate variable	Units	Definition	Time span	Source
MAT	Mean annual temperature	°C	Annual mean temperature, from primary literature or WorldClim if not reported	1970 - 2000	Primary literature; WorldClim ¹
MAP	Mean annual precipitation	${ m mm~yr^{-1}}$	Annual mean precipitation, from primary literature or WorldClim if not reported	1970 - 2000	Primary literature; WorldClim ¹
T Seas	Temperature seasonality	$^{\circ}\mathrm{C}$	Standard deviation (variation) of monthly temperature averages	1970 - 2000	$WorldClim^1$
P Seas	Precipitation seasonality	%	Coefficient of variation of mean monthly precipitation x 100	1970 - 2000	$WorldClim^1$
ATR	Annual temperature range	$^{\circ}\mathrm{C}$	Maximum temperature of warmest month - minimum temperature of coldest month	1970 - 2000	$WorldClim^1$
Solar R	Solar radiation	${ m kJ} { m m}^{-2} { m yr}^{-1}$	Solar radiation	1970 - 2000	$WorldClim2^2$
Cloud	Cloud cover	%	Cloud percentage cover	1901 - 2014	CRU time-series dataset v 4.03^3
AFD	Annual frost days	$days yr^{-1}$	Number of freeze days annually	1901 - 2014	CRU time-series dataset v 4.03^3
AWD	Annual wet days	days yr^{-1}	Number of days with precipitation >0.1 mm annually	1901 - 2014	CRU time-series dataset v 4.03^3
PET	Potential evapotranspiration	mm yr ⁻¹	Mean annual potential evapotranspiration	1950 - 2000	Global Aridity Index and Potential Evapotranspiration Climate Database ⁴
AI	Aridity		MAP/mean annual PET	1950 - 2000	Global Aridity Index and Potential Evapotranspiration Climate Database ⁴
VPD	Vapour pressure deficit	kPa	Mean monthly vapour pressure deficit	1958 - 2015	$TerraClimate^5$
Max VPD	Maximum vapour pressure deficit	kPa	Maximum monthly vapour pressure deficit	1958 - 2017	Derived from TerraClimate data
WSM	Water stress months	months yr^{-1}	Number of months annually with MAP $<$ PET	1970 - 2000	Derived from WorldClim data
LGS	Length of growing season	months yr^{-1}	Number of months annually with mean minimum temperature $> 0.5^{\circ}\mathrm{C}$	1901 - 2014	Derived from CRU data
gsT	Growing season temperature	$^{\circ}\mathrm{C}$	Mean growing season temperature	1901 - 2014	Derived from CRU data
gsP	Growing season precipitation	$^{ m mm}$ $^{-1}$	Mean monthly precipitation during growing season months	1901 - 2014	Derived from CRU data
gsPET	Growing season PET	$ m mm$ $ m month^{-1}$	Mean monthly potential evapotranspiration during growing season months	1901 - 2014	Derived from CRU data
gsR	Growing season solar radiation	$_{\rm month^{-1}}^{\rm mm}$	Mean monthly solar radiation during growing season	1901 - 2014	Derived from WorldClim2 data

^{*} The WorldClim version used was the most recent available at the time of analysis

1 Hijmans et al. (2005) ² Fick and Hijmans. (2017) ³ Harris et al. (2017) ⁴ Trabucco and Zomer (2019) ⁵ Abatzoglou et al. (2018)

ಬ

Table S2. Model summaries for each climate variable as a single fixed effect in models for each C flux

]	Latitud	le		MAT			MAP			T Seas			P Seas	3		ATR			Solar I	3		AI	
Carbon Flux	Model	\mathbb{R}^2	Δ AIC	Model	R-sq	dAIC																		
GPP	Lin	0.64	54.9	Lin	0.61	52.5	Lin	0.18	33.3	Poly	0.71	69.5	-	-	-	Poly	0.69	63.0	Log	0.16	8.9	-	-	-
NPP	Log	0.50	44.3	Lin	0.42	41.5	Poly	0.21	16.7	Log	0.52	44.3	-	-	-	Log	0.49	42.3	Poly	0.16	12.5	Lin	0.04	2.8
ANPP	Lin	0.44	63.4	Lin	0.44	80.5	Poly	0.16	19.7	Log	0.41	58.7	-	-	-	Log	0.37	51.9	Lin	0.11	12.3	Lin	0.05	2.1
ANPP stem	Lin	0.18	22.2	Lin	0.24	38.5	Log	0.05	7.3	Lin	0.14	17.6	Poly	0.05	5	Lin	0.12	13.6	Log	0.06	6.8	Lin	0.07	4
ANPP foliage	Lin	0.50	37.7	Lin	0.58	52.9	Poly	0.25	13.3	Lin	0.48	34.1	-	-	-	Lin	0.50	36.1	Log	0.17	10.1	Lin	0.11	6.8
BNPP root	Lin	0.34	22.9	Log	0.31	21.0	Poly	0.15	6.2	Log	0.36	26.6	-	-	-	Log	0.33	23.6	Poly	0.29	18.8	-	-	-
BNPP fine root	Lin	0.17	8.0	Lin	0.15	7.2	Log	0.11	5.4	Lin	0.17	8.4	-	-	-	Log	0.19	10.9	Log	0.14	7.2	Log	0.06	2.4
R auto	Lin	0.65	13.1	Lin	0.59	10.9	Poly	0.60	8.6	Log	0.65	13.1	-	-	-	Log	0.60	11.5	Log	0.27	2.4	Poly	0.48	3.7
R root	Log	0.22	8.8	Lin	0.24	8.3	Lin	0.15	6.8	Log	0.24	9.5	-	-	-	Log	0.22	8.8	-	-	-	Lin	0.16	7.3

		Cloud			AFD			AWD			PET			VPD		N	Iax VI	PD		WSM			LGS	
Carbon Flux	Model	\mathbb{R}^2	Δ AIC																					
GPP	-	-	-	Log	0.54	50.0	Lin	0.11	5.7	Poly	0.36	19.7	Poly	0.31	15.9	-	-	-	-	-	-	Lin	0.53	38.2
NPP	Lin	0.06	3.6	Lin	0.40	38.5	Lin	0.11	7.3	Poly	0.32	24.3	Poly	0.18	15.3	-	-	-	Lin	0.04	4	Lin	0.38	28.4
ANPP	Poly	0.09	7.1	Log	0.41	61.6	Lin	0.17	18.7	Poly	0.27	24.5	Poly	0.23	21.4	Poly	0.06	2.2	Poly	0.06	3	Lin	0.34	44.0
ANPP stem	Poly	0.09	5.4	Log	0.17	22.3	-	-	-	Poly	0.20	14.0	Poly	0.21	17.7	Log	0.14	7.5	-	-	-	Log	0.11	12.6
ANPP foliage	-	-	-	Lin	0.53	43.4	Lin	0.15	7	Log	0.32	24.2	Log	0.35	30.0	Poly	0.07	4.9	Poly	0.17	7.8	Log	0.46	32.9
BNPP root	-	-	-	Lin	0.28	19.1	Poly	0.11	3.4	Poly	0.36	23.2	Poly	0.26	13.9	-	-	-	-	-	-	Lin	0.26	14.7
BNPP fine root	-	-	-	Lin	0.16	9.2	Lin	0.08	2.7	Log	0.14	7.1	Log	0.06	1.9	-	-	-	-	-	-	Lin	0.13	5.8
R auto	-	-	-	Log	0.57	9.4	Null	0.26	0.6	Log	0.36	4.8	Log	0.35	4.3	-	-	-	Null	0.3	1.5	Lin	0.47	5.8
R root	Log	0.16	1.9	Log	0.19	7.3	Lin	0.17	3.5	Poly	0.19	1.7	Poly	0.27	6.7	-	-	-	Lin	0.14	6.1	Lin	0.19	5.9

Model forms tested include first-order linear (Lin), second-order polynomial (Poly), and logarithmic (Log). Shown are models with lowest AIC value. Δ AIC value is calculated with respect to the null.

Table S3. Summary of models relating forest C fluxes to MAT alone and in combination with MAP.

		p-value by mode	l term	best (lowest AIC) model			
C flux	MAT	MAT + MAP	MAT x MAP	form	R^2		
GPP NPP ANPP Stem ANPP foliage	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001	<0.0001 NS 0.035 NS NS	NS 0.018 NS 0.021 NS	MAT + MAP MAT x MAP MAT + MAP MAT x MAP MAT	0.66 0.48 0.45 0.26 0.59		
BNPP root BNPP fine root R auto R root	<0.0001 0.0021 0.00016 0.0011	NS NS 0.041 NS	NS NS NS	$\begin{array}{l} \text{MAT} \\ \text{MAT} \\ \text{MAT} + \text{MAP} \\ \text{MAT} \end{array}$	0.29 0.15 0.71 0.25		

Table S4. Comparison of growing season length and MAT as predictors of forest C fluxes $\,$

Fixed effect	AIC value	$\Delta { m AIC}$ relative to best model	Marginal R ²
GPP			
MAT	126.43	0.00	0.62
Growing season length	140.81	14.38	0.54
None	178.96	52.54	0.00
NPP			
MAT	174.88	0.00	0.52
Growing season length	191.54	16.65	0.40
None	216.17	41.29	0.00
ANPP			
MAT	249.51	0.00	0.29
Growing season length	254.21	4.70	0.26
None	268.94	19.43	0.00
ANPP stem			
MAT	235.96	0.00	0.15
Growing season length	237.29	1.33	0.14
None	243.14	7.18	0.00
ANPP foliage			
MAT	484.88	0.00	0.45
Growing season length	520.96	36.09	0.35
None	560.35	75.47	0.00
BNPP root			
MAT	184.54	0.00	0.59
Growing season length	204.93	20.38	0.46
None	237.47	52.92	0.00
BNPP fine root			
MAT	540.19	0.00	0.24
Growing season length	566.37	26.18	0.11
None	578.66	38.46	0.00
R auto			
MAT	45.26	0.00	0.63
Growing season length	50.36	5.10	0.50
None	56.17	10.91	0.00
R root			
MAT	133.54	0.00	0.25
Growing season length	135.93	2.39	0.20
None	141.79	8.25	0.00

Table S5. Best (lowest AIC) single-climate variable models by C flux.

Carbon flux	Climate variable	Model type	Δ AIC relative to null model	Δ AIC relative to next best model	\mathbb{R}^2
GPP	T Seas	Poly	69.5	6.55	0.71
NPP	MAT T Seas	Lin Log	41.5 44.3	0.21	$0.42 \\ 0.52$
ANPP	MAT	Lin	80.5	21.4	0.44
ANPP stem	MAT	Lin	38.5	15.87	0.24
ANPP foliage	MAT	Lin	52.9	11.05	0.58
BNPP root	T Seas	Log	26.6	3.01	0.36
BNPP fine root	ATR	Log	10.9	2.11	0.19
R auto	T Seas ATR	Log Log	13.1 11.5	1.62	$0.65 \\ 0.60$
R root	T Seas ATR MAT	Log Log Lin	9.5 8.8 8.3	0.76 - -	0.24 0.22 0.24

Table includes all models within $\Delta {\rm AIC} \leq 2.0$ of the best model

Table S6. Pairwise comparisons of correlations with climate variables between C fluxes, with all analyses conducted on a set of sites common to each pair.

C flux variable 1	C flux variable 2	Climate variable	\mathbb{R}^2 variable 1	\mathbb{R}^2 variable 2	Model type variable 1	Model type variable 2	Number of plots	Variable with higher R ²
		Latitude	0.62	0.66	Lin	Lin	37	NPP
GPP	NPP	MAT	0.62	0.70	Log	Lin	37	NPP
		T Seas	0.65	0.70	Log	Log	37	NPP
NPP		Latitude	0.52	0.48	Log	Log	158	NPP
	ANPP	MAT	0.30	0.44	Log	Lin	158	ANPP
		T Seas	0.47	0.43	Lin	Lin	158	NPP
		Latitude	0.49	0.34	Log	Lin	116	NPP
	BNPP	MAT	0.41	0.22	Log	Log	116	NPP
		T Seas	0.49	0.41	Log	Log	116	NPP
	ANPP stem	Latitude	0.35	0.13	Lin	Lin	176	ANPP
		MAT	0.42	0.17	Lin	Lin	176	ANPP
ANDD		T Seas	0.29	0.09	Lin	Lin	176	ANPP
ANPP		Latitude	0.32	0.45	Log	Log	96	ANPP foliage
	ANPP foliage	MAT	0.36	0.50	Lin	Lin	96	ANPP foliage
		T Seas	0.27	0.42	Lin	Lin	96	ANPP foliage
		Latitude	0.64	0.34	Null	Null	11	GPP
GPP	R auto	MAT	0.69	0.34	Null	Null	11	GPP
		T Seas	0.64	0.32	Null	Null	11	GPP
		Latitude	0.01	0.39	Null	Null	9	R root
BNPP	R root	MAT	0.08	0.35	Null	Null	9	R root
		T Seas	0.01	0.63	Null	Null	9	R root

Figure S1. Sample distribution maps for the nine forest C fluxes analyzed

Figure S1: Maps showing distribution of samples for the nine forest C fluxes analyzed. Variables are defined in Table 2.

Figure S2. Correlations among climate variables and latitude

Figure S2: Scatterplots and Pearson's R values for relationships among climate variables and latitude. Climate variables are as defined in Table S1.

Figure S3. Ratios among forest C fluxes as a function of latitude and climate variables

Figure S3: Ratios among forest C fluxes as a function of latitude and climate variables. Regressions test variation in allocation to component fluxes for three relationships: (1) $GPP = NPP + R_{auto}$, (2) NPP = ANPP + BNPP, and (3) $ANPP = ANPP_{foliage} + ANPP_{stem}$. We interpret analysis of variation in $NPP : R_{auto}$ in the context of CUE $(CUE = NPP/GPP = NPP/(NPP + R_{auto}))$, as variation in CUE will be directly related to variation in $NPP : R_{auto}$. All relationships are non-significant (p>0.05).

Figure S4. Individual plots of forest C fluxes in relation to mean annual climate, part 1

Figure S4: Individual plots of forest C fluxes in relation to mean annual climate, part 1. Statistical signficance is indicated by solid ($p \le 0.05$) and dashed (p > 0.05) regression lines. Fits shown are of the form with the lowest AIC for each C variable- climate variable combination (Table S2).

Figure S5. Individual plots of forest C fluxes in relation to mean annual climate, part 2

Figure S5: Individual plots of forest C fluxes in relation to mean annual climate, part 2. Statistical signficance is indicated by solid ($p \le 0.05$) and dashed (p > 0.05) regression lines. Fits shown are of the form with the lowest AIC for each C variable-climate variable combination (Table S2).

Figure S6. Individual plots of forest C fluxes in relation to mean climate seasonality, part 1

Figure S6: Individual plots of forest C fluxes in relation to mean climate seasonality, part 1. Statistical signficance is indicated by solid ($p \le 0.05$) and dashed (p > 0.05) regression lines. Fits shown are of the form with the lowest AIC for each C variable-climate variable combination (Table S2).

Figure S7. Individual plots of forest C fluxes in relation to mean climate seasonality, part 2

Figure S7: Individual plots of forest C fluxes in relation to mean climate seasonality, part 2. Statistical signficance is indicated by solid ($p \le 0.05$) and dashed (p > 0.05) regression lines. Fits shown are of the form with the lowest AIC for each C variable-climate variable combination (Table S2).

Figure S8. Growing season length-standardized forest C fluxes in relation to mean growing season climate, part 1

Figure S8: Growing season length-standardized forest C fluxes in relation to mean growing season climate, part 1. Statistical signficance is indicated by solid (p \leq 0.05) and dashed (p > 0.05) regression lines.

Figure S9. Growing season length-standardized forest C fluxes in relation to mean growing season climate, part 2

Figure S9: Growing season length-standardized forest C fluxes in relation to mean growing season climate, part 2. Statistical signficance is indicated by solid (p \leq 0.05) and dashed (p > 0.05) regression lines.

References

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. *Scientific Data*, 5(1), 170191. https://doi.org/10.1038/sdata.2017.191

fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas: New climate surfaces for global land areas. *International Journal of Climatology*, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: Updated high-resolution grids of monthly climatic observations. *International Journal of Climatology*, 34(3), 623–642. https://doi.org/10.1002/joc.3711

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

Trabucco, A., & Zomer, R. J. (2019). Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. 10. https://doi.org/10.6084/m9.figshare.7504448.v3