MODELACIÓN DEL PRECIO PARA LA COMPRA Y VENTA DE ACEITE DE SOYA

Nidia Munevar - Leonardo Palacios

2023-08-21

Contents

1	Resumen	5
2	Introduccion	7
3	Justificacion	9
4	Serie de Tiempo	11
5	Analisis Exploratorio	13
6	Promedio Movil- Rezago y Estacionalidad	15
7	Final Words	19

4 CONTENTS

Resumen

El proyecto aplicado a realizar es la modelación del precio para la compra y venta de aceite de soya.

Introduccion

En el mercado de venta y compra de materias primas agrícolas intervienen diferentes actores, los precios son públicos y son afectados por diferentes variables tales como el precio del petróleo, la tasa de cambio, el clima entre otros elementos. La necesidad de los actores es mejorar sus decisiones y de esta forma su rentabilidad, los precios de las materias primas afectan directamente al mercado y a los precios de los bienes producidos a partir de estas, es decir estos valores terminan impactando al comprador final.

Justificacion

El proyecto está planteado ante una necesidad de los actores que requieren mejorar sus decisiones y de esta forma su rentabilidad. Los precios de las materias primas afectan directamente al mercado y a los precios de los bienes producidos a partir de estas materias, es decir estos valores terminan impactando al comprador final.

Serie de Tiempo

```
# Instalar y cargar las librerías necesarias
#install.packages("quantmod")
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
    method
     as.zoo.data.frame zoo
# Simbolo del aceite de soya en Yahoo Finance
company <- 'ZS=F'</pre>
{\it \# Definir fecha de inicio y del d\'ia de hoy}
start <- as.Date("2010-01-01")
```

```
today <- Sys.Date()

# Conexión a Yahoo Finance para descargar la información
df <- getSymbols(company, src = "yahoo", from = start, to = today, auto.assign = FALSE

# Visualizar información de las últimas filas
tail(df, 10)</pre>
```

##		ZS=F.Open	ZS=F.High	ZS=F.Low	ZS=F.Close	ZS=F.Volume	ZS=F.Adjusted
##	2023-08-07	1430.00	1430.00	1405.00	1414.50	212	1414.50
##	2023-08-08	1400.25	1431.25	1395.00	1430.00	382	1430.00
##	2023-08-09	1436.00	1438.00	1430.75	1431.50	104	1431.50
##	2023-08-10	1431.75	1438.50	1410.00	1412.00	82	1412.00
##	2023-08-11	1353.25	1409.00	1353.25	1401.25	25	1401.25
##	2023-08-14	1422.00	1422.00	1391.00	1391.00	7906	1391.00
##	2023-08-15	1344.25	1348.75	1319.50	1323.25	15884	1323.25
##	2023-08-16	1323.75	1344.25	1321.25	1334.75	9256	1334.75
##	2023-08-17	1337.00	1347.75	1332.50	1336.75	12549	1336.75
##	2023-08-18	1338.00	1365.50	1337.75	1362.75	12549	1362.75

Analisis Exploratorio

```
# Cargar las librerías necesarias
library(quantmod)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
# Símbolo del aceite de soya en Yahoo Finance
company <- 'ZS=F'</pre>
# Definir fecha de inicio y del día de hoy
start <- as.Date("2010-01-01")
today <- Sys.Date()</pre>
# Conexión a Yahoo Finance para descargar la información
df <- getSymbols(company, src = "yahoo", from = start, to = today, auto.assign = FALSE)</pre>
## Warning: ZS=F contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
{\it \# Convertir \ el \ objeto \ xts \ a \ un \ dataframe \ para \ poder \ usarlo \ con \ ggplot 2}
df <- data.frame(Date=index(df), coredata(df))</pre>
# Graficar la serie de tiempo usando ggplot2
ggplot(df, aes(x=Date, y=ZS.F.Close)) +
 geom line() +
 ggtitle("Serie de Tiempo del Aceite de Soya") +
```

```
xlab("Fecha") +
ylab("Precio de Cierre")
```

Serie de Tiempo del Aceite de Soya

Promedio Movil- Rezago y Estacionalidad

Calculamos el promedio móvil simple usando una ventana de 30 días.Introducimos un rezago (lag) a la serie de tiempo.Obtenemos un promedio móvil centrado de 12 meses, suponiendo que la serie tiene estacionalidad anual (común con datos mensuales).

```
# Cargar las librerías necesarias
library(quantmod)
library(dplyr)
```

Warning: package 'dplyr' was built under R version 4.2.3

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
##
       first, last
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
library(ggplot2)
library(zoo)
# Simbolo del aceite de soya en Yahoo Finance
company <- 'ZS=F'
# Definir fecha de inicio y del día de hoy
start <- as.Date("2010-01-01")
today <- Sys.Date()</pre>
# Conexión a Yahoo Finance para descargar la información
df <- getSymbols(company, src = "yahoo", from = start, to = today, auto.assign = FALSE
## Warning: ZS=F contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
# Convertir el objeto xts a un dataframe para usarlo con dplyr y ggplot2
df <- data.frame(Date = index(df), coredata(df))</pre>
# Calcular el promedio móvil de 30 días usando el nombre correcto de la columna
df <- df %>%
  mutate(MA 30 = rollmean(`ZS.F.Close`, k = 30, fill = NA, align = "right"))
# Introducir un rezago (por ejemplo, un lag de 1 día)
df <- df %>%
 mutate(Lag_1 = lag(`ZS.F.Close`, n = 1))
# Calcular un promedio móvil centrado de 12 meses (útil para datos mensuales)
```

```
df <- df %>%
  mutate(MA_12 = rollmean(`ZS.F.Close`, k = 12, fill = NA, align = "center"))

# Gráfica del precio de cierre, promedio móvil de 30 días y promedio móvil centrado de 12 meses
ggplot(df, aes(x = Date)) +
  geom_line(aes(y = `ZS.F.Close`, color = "Precio de Cierre")) +
  geom_line(aes(y = MA_30, color = "Promedio Móvil 30 días"), na.rm = TRUE) +
  geom_line(aes(y = MA_12, color = "Promedio Móvil 12 meses"), na.rm = TRUE) +
  ggtitle("Serie de Tiempo y Promedios Móviles") +
  ylab("Precio") +
  labs(color = "Leyenda") +
  theme_minimal()
```

Serie de Tiempo y Promedios Móviles

Final Words

We have finished a nice book.