UniDyn--Demo-04.nb

John A. Marohn jam99@cornell.edu Cornell University

Abstract: Use the **UniDyn** Evolver function to calculate the evolution of the magnetization of a two coupled spin = 1/2 particles.

Set the path to the package

Tell Mathematica the path to the directory containing the package.

EDIT THE FOLLOWING PATH STRING:

```
"/Users/jam99/Dropbox/MarohnGroup__Software_Library/UniDyn/
unidyn";
```

YOU SHOULD NOT NEED TO EDIT ANYTHING FROM HERE ONWARDS.

Load the package

Append the package path to the system path. Before trying to load the package, ask *Mathematica* to find it. This is a test that we directed *Mathematica* to the correct directory. The output of this command should be the full system path to the Uni-Dyn.m file.

```
FindFile["UniDyn`"]
```

 ${\tt Out[3]=} \ / Users/jam99/Dropbox/MarohnGroup_Software_Library/UniDyn/unidyn/UniDyn.m$

Now that we are confident that the path is set correctly, load the package. Setting the global \$VerboseLoad variable to True will print out the help strings for key commands in the package.

In[4]:= \$VerboseLoad = True; Needs["UniDyn`"]

- ••• CreateOperator : CreateOperator [] is used to batch —define a bunch of operators. Example: CreateOperator [{{|x, ly, Iz }, {Sx,Sy,Sz }}] will create six operators, where each of the operators in the first list will commute with each of the operators of the second list.
- scalar or a list of scalars. Example: CreateScalar
- ... NCSort : NCSort [list] sorts the operators in list into canonical order.
- ··· SortedMult : SortedMult [list] returns Mult [list\$ordered], where list\$ordered are the elements of list sorted into canonical order.
- ... MultSort : MultSort [NonCommutativeMultiplyt [list]] returns returns NonCommutativeMultiply [list\$ordered], where list\$ordered are the elements of list sorted into canonical order.
- ··· Comm: Comm [a,b] calculates the commutator of two operators.
- ••• SpinSingle\$CreateOperators : SpinSingle\$CreateOperators [lx,ly,lz,L] creates lx, ly, and lz angular momentum operators and defines their commutation relations. When the total angular momentum L = 1/2, additional rules are defined to simplify products of the angular momentum operators. When the total angular momentum L is unspecified, no such simplification rules are defined.
- OscSingle\$CreateOperators : OscSingle\$CreateOperators [aL,aR] creates a raising operator aR and a lowering operator aL for single harmonic oscillator and defines the operator commutation relations.
- ••• Evolve : Evolve [H, t, ρ] represents unitary evolution of the density operator ρ for a time t under the Hamiltonian H. This function expands according to simplification rules but leaves the evolution unevaluated.
- ••• Evolver: Evolver [H, t, $\rho(0)$] calculates $\rho(t) = \exp[-|H|t] \rho(0)$ Exp[+|H|t], assuming that H is time independent, according to the commutation rules followed by $\rho(0)$ and H.

Evolver with simplification

```
ln[6]:= SimplifyingEvolver[H , t , \rho$0 ] :=
         Evolver[H, t, \rho$0] // Simplify // ExpToTrig // FullSimplify
```

Unitary evolution of a single spin 1/2

Create a single spin

The assumptions define below are required for *Mathematica* to recognize $\sqrt{-\Delta^2 - \omega^2} = I \sqrt{\Delta^2 + \omega^2}$ inside an exponential. One of the variables has to be defined to be > 0 and not just ≥ 0 .

```
In[7]:= Clear[
     Δω,
                    (* resonance offset frequency *)
     ω$1,
                (* Rabi frequency of the applied irradiation *)
                     (* time *)
     t,
     Ix, Iy, Iz, (* spin angular momentum operators *)
                    (* initial spin density operator *)
     \rho$0,
     Н
                     (* spin Hamiltonian *)]
    CreateScalar[\Delta\omega, \omega$1, t];
    SpinSingle$CreateOperators[Ix, Iy, Iz, L = 1/2];
    $Assumptions = {Element[\Delta\omega, Reals], \Delta\omega > 0,
        Element[\omega$1, Reals], \omega$1 > 0, Element[t, Reals], t > 0};
    ••• SpinSingle$CreateOperators : Creating spin operators.
    ••• SpinSingle$CreateOperators : Adding spin commutations relations.
    ••• SpinSingle$CreateOperators : Angular momentum L = 1/2. Adding operator simplification rules.
```

On-resonance nutation

On-resonance irradiation Hamiltonian written in the interaction representation. The initial density operator is parallel to I_x .

```
\ln[11] = H = \omega \$1 Ix \$
      \rho$0 = Iz;
```

Calculate the time-dependent density operator.

```
simplifyingEvolver[H, t, \rho$0] /. {ω$1 → Subscript[ω, 1]}
Out[13]= Iz Cos [t \omega_1] - Iy Sin [t \omega_1]
```

Free evolution

Zeeman-interaction Hamiltonian written in the interaction representation. The initial density operator is parallel to I_x .

```
ln[14]:= \mathbf{H} = \Delta \omega \mathbf{I} \mathbf{Z};
          \rho$0 = Ix;
```

Calculate the time-dependent density operator.

In[16]:= SimplifyingEvolver[H, t, ρ \$0]

Out[16]= $Ix Cos[t \Delta \omega] + Iy Sin[t \Delta \omega]$

Unitary evolution of two coupled spins

Create a two spins

The assumptions define below are required for *Mathematica* to recognize $\sqrt{-\Delta^2 - \omega^2} = I \sqrt{\Delta^2 + \omega^2}$ inside an exponential. One of the variables has to be defined to be > 0 and not just ≥ 0 .

```
In[17]:= Clear[
```

```
\Delta$I, (* resonance offset frequency *)
 Δ$S.
              (* resonance offset frequency *)
 J,
                (* spin-spin coupling *)
 Ix, Iy, Iz, (* spin angular momentum operators *)
 Sx, Sy, Sz, (* spin angular momentum operators *)
                 (* spin density operator *)
 ρ,
                 (* time *)
 t,
                 (* initial spin density operator *)
 ρ$0,
 н
                 (* spin Hamiltonian *)]
CreateScalar[∆$I, ∆$S, J, t];
CreateOperator[{{Ix, Iy, Iz}, {Sx, Sy, Sz}}];
SpinSingle$CreateOperators[Ix, Iy, Iz, L = 1/2];
SpinSingle$CreateOperators[Sx, Sy, Sz, L = 1/2];
$Assumptions = {Element[\Delta$I, Reals], \Delta$I \geq 0,
    Element[\Delta$S, Reals], \Delta$S \geqslant 0, Element[J, Reals], J > 0};
••• SpinSingle$CreateOperators : Spin operators already exist.
••• SpinSingle$CreateOperators : Adding spin commutations relations.
••• SpinSingle$CreateOperators : Angular momentum L = 1/2. Adding operator simplification rules.
••• SpinSingle$CreateOperators : Spin operators already exist.
••• SpinSingle$CreateOperators : Adding spin commutations relations.
••• SpinSingle$CreateOperators : Angular momentum L = 1/2. Adding operator simplification rules.
```

Evolution under J coupling

On-resonance irradiation Hamiltonian written in the interaction representation. The initial density operator is parallel to I_x .

```
ln[23]:= H\$0 = \Delta\$I Iz + \Delta\$S Sz;
    H$J = JMult[Iz, Sz];
    \rho$0 = Ix;
```

Try to calculate the density operator in a single step.

In[26]: SimplifyingEvolver[H\$0 + H\$J, t, ρ \$0]

••• Evolver : Unrecognized evolution

This single-step evolution fails. Instead, let us calculate the density operator in two steps. We can do this because the H\$J and H\$0 Hamiltonians commute. Evolve under the J-coupling first and under the chemical shift second.

$$\rho = \rho$$
 // SimplifyingEvolver[H\$J, t, #] & // SimplifyingEvolver[H\$0, t, #] &

Try another way -- evolve under the chemical shift first and under the J-coupling second.

$$\rho = \rho$$
 // SimplifyingEvolver[H\$0, t, #] & // SimplifyingEvolver[H\$J, t, #] &

$$\begin{aligned} &\text{Out}[28] = & & \text{Cos}\left[\frac{\text{J}\,\text{t}}{2}\right] \; (\text{Ix}\,\text{Cos}[\text{t}\,\triangle\$\text{I}] + \text{Iy}\,\text{Sin}[\text{t}\,\triangle\$\text{I}]) \; + \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & &$$

We see by inspection that we get the same answer either way.

Load spin 1/2 operator matrices

Load matrices representing two J=1/2 spins and give them a test drive.

Loaded spin one-half matrices for mIx, mIy, mIz, mSx, mSy, mSz

Let's look at one of the matrices, the matrix for Iz.

$$\begin{pmatrix}
-\frac{1}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

For a single spin 1/2 particle, Iz is a 2 x 2 matrix. In the product space of two spin 1/2 particles, however, the Iz is now a 4 x 4 matrix. All the operators are 4 x 4 matrices.

Check that the [Ix, Iy]/I = Iz and [Sx, Sy]/I = Sz commutation relations hold with the matrices.

$$m\$1 = \frac{mIx \cdot mIy - mIy \cdot mIx}{I};$$

$$m\$2 = \frac{mSx \cdot mSy - mSy \cdot mSx}{I};$$

$$\begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

Make the (matrix) operator I\$total = Iz + Sz. We can see by inspection that this matrix looks correct. The I\$total operator should have eigenvalues {-1,0,0,+1}. The matrix I\$total is diagonal and we can read the eigenvalues off diagonal elements.

Calculate the analytical signal using the matrices

Write the matrix representation of ly Sz using the matrices loaded above.

```
In[37]:= mIy . mSz // MatrixForm
Out[37]//MatrixForm=
```

Show that we can obtain the same matrix from the symbolic product ly**Sz by (1) substituting the spin operators with matrices and (2) replacing the NonCommutative-Multiply operator with the Dot (i.e., matrix multiplication) operator.

In[38]:= Mult[Iy, Sz] //. Mult
$$\rightarrow$$
 Dot /.
{Ix \rightarrow mIx, Iy \rightarrow mIy, Iz \rightarrow mIz, Sx \rightarrow mSx, Sy \rightarrow mSy, Sz \rightarrow mSz} // MatrixForm Out[38]/MatrixForm=
$$\begin{pmatrix} 0 & 0 & -\frac{i}{4} & 0 \\ 0 & 0 & 0 & \frac{i}{4} \\ \frac{i}{4} & 0 & 0 & 0 \\ 0 & -\frac{i}{4} & 0 & 0 \end{pmatrix}$$

 $ln[39] = \rho // Expand$

Out[39]=
$$Ix Cos \left[\frac{Jt}{2} \right] Cos[t \triangle \$I] + 2 Cos[t \triangle \$I] Mult[Iy, Sz] Sin \left[\frac{Jt}{2} \right] + Iy Cos \left[\frac{Jt}{2} \right] Sin[t \triangle \$I] - 2 Mult[Ix, Sz] Sin \left[\frac{Jt}{2} \right] Sin[t \triangle \$I]$$

Calculate the density operator matrix.

Check that the resulting object is a 4 x 4 matrix as expected.

```
In[43]:= Dimensions[ρ$matrix[t]]
```

Out[43]=
$$\{4, 4\}$$

From this matrix we can calculate the I-spin signals as Trace[ρ Ix] and Trace[ρ Iy]

Out[45]=
$$Cos\left[\frac{Jt}{2}\right] Sin[t \triangle \$I]$$

We can mimic the complex signal collected by the NMR spectrometer by calculating the expectation value of the Ix + IIy operator: $Trace[\rho (Ix + IIy)]$.

Plot the signal as a function of time

Create a more realistic experimental signal by multiplying the above-calculated signal by a decaying exponential.

```
In[48]:= Clear[S$expt];
    S$expt[t] := S[t] Exp[-t/T2]
```

To plot, set the total number of points (NN) and the total time (T). We set NN equal to a power of 2 in anticipation of taking a digital Fourier transform.

From NN and T\$final we derive the time step (dt) and the frequency step (df). Now generate a list of data points based on the above function. At the same time, generate a list of time points (t) and frequency points (f) for plotting.

```
ln[52]:= dt = T$final/(NN - 1);
    df = 1/dt;
    f$table = Table[jj/T$final, {jj, -NN/2, NN/2-1}];
    t$table = Table[ii * dt, {ii, 0, NN - 1}];
    Print["The time step is ", dt, " s"]
    Print["The Nyquist frequency is ", 1 / (2 * dt), " Hz"]
    The time step is 0.00977517 s
    The Nyquist frequency is 51.15 Hz
    Give numbers for the chemical shift and the J-coupling.
ln[58] = \Delta$I$value = 2\pi \times 10.0; (* chemical shift [rad/s] *)
    J$value = 2\pi \times 8.0;
    (* heteronuclear scalar coupling constant [rad/s] *)
                                 (* spin dephasing time [s] *)
    T2$value = 1.0;
    Create an array of complex signal.
In[61]:= S$table = S$expt[t] /.
        \{t \rightarrow t \text{ table, } \Delta \text{ is value, } J \rightarrow J \text{ value, } T2 \rightarrow T2 \text{ value}\};
    Plot the real and imaginary part of the signal
```

```
In[62]:= ListLinePlot[
     {
      {t$table, Re[S$table]} // Transpose,
      {t$table, Im[S$table]} // Transpose},
     Joined → True,
     PlotRange → All,
     PlotLabel → "Free induction decay of 1H coupled to 13C\n",
    AxesLabel → {"time [s]", "Signal(t)"}]
```

Free induction decay of 1H coupled to 13C

A function to calculate the digital Fourier transform of signal.

```
In[63]:= DFFT[signal$table_, time$table_, query_: True] :=
     (* True to plot both real and imaginary FT parts *)
     Module [{NN, T$final},
      NN = Dimensions[signal$table][1];
      FFTS$table = RotateRight[Fourier[signal$table], NN / 2];
      T$final = time$table[-1];
      f$table = Table[jj / T$final, {jj, -NN / 2, NN / 2 - 1}];
      p1 = ListLinePlot[
        {Transpose[{time$table, Re[signal$table]}],
         Transpose[{time$table, Im[signal$table]}]},
        PlotRange \rightarrow \{-1, 1\},
        AxesLabel → {"time [s]", "signal"}];
      If[query == True,
       p2 = ListLinePlot[
         {Transpose[{f$table, Re[FFTS$table]}],
          Transpose[{f$table, Im[FFTS$table]}] },
         PlotRange → All,
         AxesLabel → {"freq [Hz]", "DFT{signal}"}],
       p2 = ListLinePlot[
         Transpose[{f$table, Re[FFTS$table]}],
         PlotRange → All,
         AxesLabel → {"freq [Hz]", "DFT{signal}"}]
      ];
      Show[GraphicsGrid[{{p1, p2}}]]
```

Fourier transform the signal to obtain the spectrum.

In[64]:= DFFT[S\$table, t\$table, False]

Find peaks in the FT spectrum. Require the peaks to be larger than 1.0. See the Find-Peaks function documentation here.

```
In[65]:= peaks = FindPeaks[Re[FFTS$table], 0, 0, 1.]
Out[65]= \{ \{573, 1.61249\}, \{653, 1.60297\} \}
```

Read out the frequencies at which the peaks are located. We see peaks at the expected frequencies of 10-8/2 = 6 Hz and 10+8/2 = 14 Hz.

```
In[66]:= Part[f$table, Transpose[peaks][[1]]]
Out[66]= \{6., 14.\}
```

Clean up