

Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

Phan Trung Hai Nguyen

June 26, 2017

School of Computer Science University of Birmingham Birmingham B15 2TT United Kingdom

Outlines

Background

- Estimation of Distribution Algorithms (EDAs)
- · Univariate Marginal Distribution Algorithm (UMDA)
- Ones-counting problem (ONEMAX)

Useful tools

- · Level-based theorem
- · Anti-concentration bound
- · Feige's inequality

Our result

Improved upper bound on runtime of UMDA on ONEMAX

Conclusion

ı

Evolutionary Algorithms (EAS)

Figure 1: Black-box optimisation

Figure 2: Flowchart of EAs

- Black-box optimisation: optimise an objective function $f: \mathcal{X} \to \mathbb{R}$.
- Inspiration from natural evolution and molecular genetics.
- · Bio-inspired mechanisms: mutation, crossover.
- Runtime analysis of EAS
 - · Generally provide insights into its behaviour,
 - · Number of fitness evaluations,
 - Interest in the expected runtime.

Estimation of Distribution Algorithms (EDAS)

Belonging to class of Evolutionary Algorithms.

Do not use mutation or crossover.

Building and sampling using a probabilistic model.

Many practical applications:

- Bio-informatics: Gene structure/expression analysis, protein structure prediction, protein design (Armañanzas et al. 2008).
- Engineering: military antenna design (Yu et al. 2006), forest management (Ducheyne et al. 2004), analog circuit design (Zinchenko et al. 2002), environment monitoring network design (Kollat et al. 2008).

Estimation of Distribution Algorithms (EDAS)

Algorithm 1: EDA pseudo-code

begin

Initialise the probabilistic model.

repeat

Sample λ individuals using the current model.

Select $\mu \leq \lambda$ individuals using some selection mechanism.

Update the model using selected individuals.

until termination condition fulfilled

Figure 3: Sample runs of a simple EDA (Hauschild & Pelikan 2011)

Estimation of Distribution Algorithms (EDAS)

EDAs can be categorised into

- Univariate: Decision variables are treated independently.
 E.g. UMDA (Mühlenbein & Paaß 1996), cGA (Harik et al. 1997), PBIL (Baluja 1994).
- Bivariate: Pairwise interactions between variables can be captured The model structure is often a chain/tree.
 - E.g. BMDA (Pelikan & Muehlenbein 1999), MIMIC (Bonet et al. 1996).
- Multivariate: More complex interactions can be captured using Markov network or Bayesian network.
 - E.g. BOA (Pelikan et al. 2000), EBNA (Etxeberria & Larrañaga 1999), LTGA (Thierens 2010), ECGA (Harik et al. 1999).

Figure 4: Independence

Figure 5: Tree-based model

Figure 6: Bayesian Network

Univariate Marginal Distribution Algorithm (UMDA)

Solution representation: $(X_1, ..., X_n) \in \{0, 1\}^n$.

Probabilistic model at generation t: $\mathcal{M}_t := (p_t^1, p_t^2, \dots, p_t^n)$.

Marginal probabilities: $p_t^i := \Pr(X_i = 1)$.

Algorithm 2: UMDA

begin

initial model $\mathcal{M}_0 = (1/2, 1/2, \dots, 1/2)$

repeat

Sample P_t of λ individuals using joint probability

$$\Pr(X_1, X_2, ..., X_n) = \prod_{i=1}^n \Pr(X_i).$$

Select the μ best individuals according to fitness. Update the probabilistic model

$$p_{t+1}^i := \frac{1}{\mu} \sum_{i=1}^{\mu} X_i^{[i]} \in \left[\frac{1}{n}, 1 - \frac{1}{n}\right]$$

where $X_i^{[j]}$ is the *i*-th bit of the *j*-th individual. **until** termination condition fulfilled

Figure 7: UMDA illustration

Previous Work

	(1+1) EA	cGA ¹		
OneMax	$\Theta(n \log n)$	$\Theta(K\sqrt{n})$	(Droste 2006)	EDA worse
Linear	$\Theta(n \log n)$	$\Omega(Kn)$	(Droste 2006)	EDA worse

(1+1) EA	UMDA	
$\Theta(n^2)$	$\mathcal{O}(n\lambda \log \lambda + n^2)$	(Dang & Lehre 2015) ²
$\Theta(n \log n)$	∞ w.o.p.	(Chen et al. 2010)
	$\mathcal{O}(n\lambda)$	(Chen et al. 2010) ³
$2^{\Omega(n)}$ w.o.p.	$\mathcal{O}(n\lambda)$	(Chen et al. 2009) ⁴
$\Theta(n \log n)$	$\mathcal{O}(n\lambda \log \lambda)$	(Dang & Lehre 2015) ³
	$\Omega(\mu\sqrt{n} + n\log n)$	(Krejca & Witt 2017) ⁴
	$\Theta(n^2)$ $\Theta(n \log n)$ $2^{\Omega(n)} \text{ w.o.p.}$	$\begin{array}{ll} \Theta(n^2) & \mathcal{O}(n\lambda \log \lambda + n^2) \\ \Theta(n \log n) & \infty \text{ w.o.p.} \\ & \mathcal{O}(n\lambda) \\ 2^{\Omega(n)} \text{ w.o.p.} & \mathcal{O}(n\lambda) \\ \Theta(n \log n) & \mathcal{O}(n\lambda \log \lambda) \end{array}$

 $^{^{1}}K = n^{1/2+\epsilon}$

 $[\]lambda = n$ $\lambda^{2} \lambda = \Omega(\log n)$ $\lambda^{3} \lambda = \omega(n^{2})$ $\lambda^{4} \lambda = (1 + \Theta(1))\mu$

Ones-counting problem (ONEMAX)

Figure 8: Mastermind game

- Play as sub-problems for many real-world separable problems. The optimum is to optimise each individuals.
- Mastermind game with two colours and only black answer-pegs used.
- · Formally defined as

ONEMAX
$$(x_1,\ldots,x_n):=\sum_{i=1}^n x_i.$$

- **Objective**: counting the number of ones in the bitstring.
- · Optimal solution: all-ones bitstring.

8

Open Question

Runtime analysis of UMDA on ONEMAX (latest results):

- Upper bound: $\mathcal{O}(n \log n \log \log n)$ by Dang & Lehre (Dang & Lehre 2015).
- Lower bound: $\Omega(\mu\sqrt{n} + n\log n)$ by Krejca & Witt (Krejca & Witt 2017).

The upper and lower bounds are still different by $\Theta(\log \log n)$.

Open question: Could this gap be closed?

Why Is Closing The Gap Important?

- · Understanding how parameter settings could affect its performance.
- · Aid in the selection of EDAs for a particular project.
- · Also Relevant to Population Genetics (i.e. linkage equilibrium).
- · Compare performance with other EAs like (1+1) EA.

9

Theorem

The expected optimisation time of UMDA with

- $c \log n \le \mu \le c' \sqrt{n}$ for some constants c, c' > 0,
- $\lambda \geq a\mu$ for some constant $a \geq 13e$

on ONEMAX is

 $\mathcal{O}(n\lambda)$.

Intuition: UMDA can optimise ONEMAX within $\mathcal{O}(n)$ generations.

UMDA on ONEMAX (n = 1000)

Figure 9: Marginal probabilities of UMDA on ONEMAX for n=1000

Level-Based Theorem⁵

Provide **upper bounds** on the expected runtime of some population-based algorithms on a wide range of optimisation problems.

• (G1)
$$j \in [m-1]$$
, if $|P_t \cap A_{\geq j}| \geq \gamma_0 \lambda$ then

$$\Pr\left(\mathbf{y}\in A_{\geq j+1}\right)\geq z_{j}.$$

• (G2) similar to (G1) and $|P_t \cap A_{\geq j+1}| \geq \gamma \lambda$ then

$$\Pr\left(\mathbf{y} \in A_{\geq j+1}\right) \geq (1+\delta)\,\gamma.$$

• (G3) and the population size $\lambda \in \mathbb{N}$ satisfies

$$\lambda \ge \left(\frac{4}{\gamma_0 \delta^2}\right) \ln \left(\frac{128m}{z_* \delta^2}\right)$$

where $z_* := \min_{j \in [m-1]} \{z_j\}$, then expected runtime

$$\mathbb{E}\left[7\right] \leq \left(\frac{8}{\delta^2}\right) \sum_{j=1}^{m-1} \left[\lambda \ln \left(\frac{6\delta\lambda}{4 + \mathsf{Z}_j\delta\lambda}\right) + \frac{1}{\mathsf{Z}_j}\right].$$

⁵See Corus et al. (2016) for more details on the theorem.

Proof idea (UMDA with margins)

- Level definition: $A_j := \{x \in \{0,1\}^n \mid \text{ONEMAX}(x) = j-1\}.$
- · Let A_i denote the current level.
- We choose $\gamma_0 := \mu/\lambda \Rightarrow \text{all } \mu$ best individuals have $\geq j-1$ ones.
- Upgrade \Rightarrow Sample an offspring with $\geq j$ ones, i.e. Pr $(Y \geq j)$.
- Verify condition (G1): $Pr(Y \ge j) \ge z_j$.
- Verify condition (G2): $Pr(Y \ge j) \ge (1 + \delta)\gamma$.

Verify condition (G2)

The probability of sampling *j* one-bits:

$$\begin{split} \Pr\left(Y \geq j\right) &\geq \Pr\left(Y_k + Y_m \geq j - \ell\right) \cdot \Pr\left(Y_\ell = \ell\right) \\ &\geq \Pr\left(Z > j - \ell - 1\right) \cdot \left(1 - \frac{1}{n}\right)^{\ell} \qquad (Z := Y_k + Y_m) \\ &\geq \Pr\left(Z > \mathbb{E}\left[Z\right] - \frac{\gamma}{\gamma_0}\right) \cdot \frac{1}{e} \qquad \left(\mathbb{E}\left[Z\right] \geq j - \ell - 1 + \frac{\gamma}{\gamma_0}\right) \\ &\geq \qquad \dots \\ &\geq \qquad \dots \\ &\geq \qquad (1 + \delta)\gamma. \end{split}$$

14

Feige's Inequality

Theorem (Feige (2004))

Given n independent r.v. $Y_1, \ldots, Y_n \in [0, 1]$, then for all $\Delta > 0$

$$\Pr\left(\sum_{i=1}^{n} Y_{i} > \sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right] - \Delta\right) \geq \min\left\{\frac{1}{13}, \frac{\Delta}{1 + \Delta}\right\}.$$

The probability of sampling *j* one-bits now becomes

$$\Pr(Y \ge j) \ge \Pr\left(Z > \mathbb{E}[Z] - \frac{\gamma}{\gamma_0}\right) \cdot \frac{1}{e}$$

$$\ge \min\left\{\frac{1}{13}, \frac{\gamma/\gamma_0}{1 + \gamma/\gamma_0}\right\} \cdot \frac{1}{e}$$

$$\ge \frac{\gamma}{13\gamma_0} \cdot \frac{1}{e}$$

$$\ge (1 + \delta)\gamma.$$

15

Verify (G1): k is sufficiently large

The upgrade probability in this case:

$$\begin{aligned} \Pr(Y_k \geq j - \ell) &= \Pr(Y_k \geq j - \ell - 1) - \Pr(Y_k = j - \ell - 1) \\ &= \Pr(Y_k \geq \mathbb{E}[Y_k]) - \Pr(Y_k = j - \ell - 1) \\ &\geq & \dots \\ &\geq & \dots \end{aligned}$$

Figure 10: Probability distribution of Y_k

Anti-Concentration Bound

Theorem (Baillon et al. (2016))

Given n independent Bernoulli r.v. Y_1, \ldots, Y_n with success probabilities p_1, \ldots, p_n . For all n, y and p_i .

$$\Pr\left(\sum_{i=1}^{n} Y_i = y\right) \le \frac{\eta}{\sigma_n}$$

where $\sigma_n^2 := \sum_{i=1}^n p_i (1-p_i)$ and $\eta \sim 0.4688$ is an absolute constant.

17

Verify (G1): k is sufficiently large

Theorem (Theorem 3.2, Jogdeo & Samuels (1968))

Let Y_1, Y_2, \ldots, Y_n be n independent Bernoulli random variables. Let $Y := \sum_{i=1}^{n} Y_i$ be the sum of these random variables. If the expectation of Y is an integer, then

$$\Pr\left(Y \geq \mathbb{E}\left[Y\right]\right) \geq \frac{1}{2}.$$

Now the upgrade probability now becomes

$$\begin{split} \Pr\left(Y_k \geq j - \ell\right) &= \Pr\left(Y_k \geq j - \ell - 1\right) - \Pr\left(Y_k = j - \ell - 1\right) \\ &= \Pr\left(Y_k \geq \mathbb{E}\left[Y_k\right]\right) - \Pr\left(Y_k = j - \ell - 1\right) \\ &\geq \frac{1}{2} - \frac{\eta}{\sqrt{\text{Var}\left[Y_k\right]}} \\ &\geq \Omega(1). \end{split}$$

Remaining cases

CASE 2: small k and large ℓ (so is j)

- · Being very close to optimal level.
- If $j \ge n + 1 \frac{n}{\mu}$, then according to Dang & Lehre (2015)

$$\Pr\left(Y \geq j\right) = \Omega\left(\frac{1}{\mu}\right) = \Omega\left(\frac{n-j+1}{n}\right).$$

CASE 3: Small *k* and not close to optimal level (i.e. not too large *j*).

$$\Pr(Y \ge j) \ge \Pr(Y_k \ge j - \ell - 1) \cdot \Pr(Y_\ell = \ell) \cdot \Pr(Y_m \ge 1)$$

$$\ge \frac{1}{2} \cdot \frac{1}{e} \cdot \frac{n - k - \ell}{n}$$

$$\ge \Omega\left(\frac{n - j + 1}{n}\right).$$

Condition (G3) and Expected runtime

Combining all three cases

$$z_j := \min \left\{ \Omega(1), \Omega\left(\frac{n-j+1}{n}\right) \right\} = \Omega\left(\frac{n-j+1}{n}\right).$$

(G3) satisfied iff

$$\lambda \ge \left(\frac{4}{\gamma_0 \delta^2}\right) \ln \left(\frac{128m}{Z_* \delta^2}\right) = \Omega(\log n).$$

The expected optimisation time is

$$\mathcal{O}\left(\lambda\sum_{j=1}^{n}\ln\left(\frac{1}{z_{j}}\right)+\sum_{j=1}^{n}\frac{1}{z_{j}}\right)=\mathcal{O}\left(\lambda\sum_{j=1}^{n}\ln\left(\frac{n}{n-j+1}\right)+\sum_{j=1}^{n}\frac{n}{n-j+1}\right)$$

$$=\mathcal{O}\left(\lambda\ln\prod_{j=1}^{n}\frac{n}{n-j+1}+n\sum_{k=1}^{n}\frac{1}{k}\right)$$

$$=\mathcal{O}\left(\lambda\ln\frac{n^{n}}{n!}+n\sum_{k=1}^{n}\frac{1}{k}\right) \qquad \text{(Stirling's approximation'5)}$$

$$=\mathcal{O}(n\lambda)+\mathcal{O}(n\log n)$$

$$=\mathcal{O}(n\lambda).$$

⁵Stirling's approximation: $n! \propto n^{n+0.5}e^{-n}$

Summary

- The upper bound $\mathcal{O}(n\lambda)$ holds for $a\log(n) \le \mu \le a'\sqrt{n}$ where a,a' are some positive constants.
- The bound is **tight** when $\lambda \le c \log(n)$, yielding a tight bound $\Theta(n \log n)$ matching the bound of (1+1)EA on ONEMAX.
- The result finally closes the gap $\Theta(\log \log n)$ between the first upper bound $\mathcal{O}(n \log n \log \log n)$ (Dang & Lehre 2015) and recently discovered lower bound $\Omega(\mu \sqrt{n} + n \log n)$ (Krejca & Witt 2017).
- · Anti-concentration may be applied to analyse runtime of other algorithms.

Future Work

Possible future work:

- Runtime of UMDA on ONEMAX for larger offspring population size, i.e. $\mu = \omega(\sqrt{n})^6$.
- · Runtime of UMDA on more complex fitness landscapes.
- Generalise the result to linear functions

$$LINEAR(x_1,\ldots,x_n) := \sum_{i=1}^n \omega_i x_i.$$

For ONEMAX, all weights $\omega_i = 1$.

 $^{^{6}}g(n) = \omega (f(n)) \text{ means } \lim_{n \to \infty} g(n)/f(n) \to \infty$

Thank you

Any question?

Phan Trung Hai Nguyen pxn683@cs.bham.ac.uk

References

- Armañanzas, R., Inza, I., Santana, R., Saeys, Y., Flores, J. L., Lozano, J. A., Peer, Y. V. d., Blanco, R., Robles, V., Bielza, C. & Larrañaga, P. (2008), 'A review of estimation of distribution algorithms in bioinformatics', *BioData Mining* 1, 6.
- Baillon, J.-B., Cominetti, R. & Vaisman, J. (2016), 'A sharp uniform bound for the distribution of sums of bernoulli trials', Combinatorics, Probability and Computing 25(3), 352–361.
- Baluja, S. (1994), 'Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning', Technical report, Carnegie Mellon University, Pittsburgh, PA.
- Bonet, J. S. D., Isbell, C. L. & Viola, P. (1996), Mimic: finding optima by estimating probability densities, *in* 'Proceedings of the 9th International Conference on Neural Information Processing Systems', pp. 424–430.
- Chen, T., Lehre, P. K., Tang, K. & Yao, X. (2009), When is an estimation of distribution algorithm better than an evolutionary algorithm?, *in* 'Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009', pp. 1470–1477.

- Chen, T., Tang, K., Chen, G. & Yao, X. (2010), 'Analysis of computational time of simple estimation of distribution algorithms', *IEEE Transactions on Evolutionary Computation* 14(1), 1–22.
- Corus, D., Dang, D., Eremeev, A. V. & Lehre, P. K. (2016), 'Level-based analysis of genetic algorithms and other search processes', *CoRR* abs/1407.7663.

 URL: http://arxiv.org/abs/1407.7663
- Dang, D. & Lehre, P. K. (2015), Simplified runtime analysis of estimation of distribution algorithms, in 'Proceedings of Genetic and Evolutionary Computation Conference, GECCO'15'.
- Droste, S. (2006), 'A rigorous analysis of the compact genetic algorithm for linear functions', *Natural Computing* **5**(3), 257–283.
- Ducheyne, E., De Baets, B. & De Wulf, R. (2004), Probabilistic models for linkage learning in forest management, *in* Y. Jin, ed., 'Knowledge Incorporation in Evolutionary Computation', Vol. 167 of *Studies in Fuzziness and Soft Computing*, Springer, pp. 177–214.
- Etxeberria, R. & Larrañaga, P. (1999), Global optimization using bayesian networks, *in* 'Second Symposium on Artificial Intelligence, CIMAF-99', pp. 332–339.

References III

- Feige, U. (2004), On sums of independent random variables with unbounded variance, and estimating the average degree in a graph, *in* 'Proceedings of the 36th STOC', pp. 594–603.
- Harik, G. R., Lobo, F. G. & Goldberg, D. E. (1997), 'The compact genetic algorithm', *IlliGAL* report No. 97006, University of Illinois at Urbana-Champaign, Urbana.
- Harik, G. R., Lobo, F. G. & Goldberg, D. E. (1999), 'The compact genetic algorithm', *IEEE Transactions on Evolutionary Computation* 3(4), 287–297.
- Hauschild, M. & Pelikan, M. (2011), 'An introduction and survey of estimation of distribution algorithms', Swarm and Evolutionary Computation 1(3), 111–128.
- Jogdeo, K. & Samuels, S. M. (1968), 'Monotone convergence of binomial probabilities and a generalization of ramanujan's equation', *The Annals of Mathematical Statistics* **39**(4), 1191–1195.
- Kollat, J., Reed, P. & Kasprzyk, J. (2008), 'A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems', Advances in Water Resources 31(5), 828 845.
 - URL: http://www.sciencedirect.com/science/article /pii/S0309170808000298

References IV

- Krejca, M. S. & Witt, C. (2017), Lower bounds on the run time of the univariate marginal distribution algorithm on onemax, in 'Proceedings of Foundation of Genetic Algorithms, FOGA'17'.
- Mühlenbein, H. & Paaß, G. (1996), From recombination of genes to the estimation of distributions i. binary parameters, *in* H.-M. Voigt, W. Ebeling, I. Rechenberg & H.-P. Schwefel, eds, 'Parallel Problem Solving from Nature PPSN IV', Vol. 1141 of *Lecture Notes in Computer Science*, Springer Berlin Heidelberg, pp. 178–187.
- Pelikan, M., Goldberg, D. E. & Cantú-Paz, E. (2000), 'Linkage problem, distribution estimation, and bayesian networks', *Evolutionary Computation* **8**, 311–340.
- Pelikan, M. & Muehlenbein, H. (1999), 'The bivariate marginal distribution algorithm', *Advances in Soft Computing* pp. 521–535.
- Thierens, D. (2010), The linkage tree genetic algorithm, in 'Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I', PPSN'10, Springer-Verlag, Berlin, Heidelberg, pp. 264–273.
 - URL: http://dl.acm.org/citation.cfm?id=1885031.1885060
- Yu, T.-L., Santarelli, S. & Goldberg, D. E. (2006), *Military Antenna Design Using a Simple Genetic Algorithm and hBOA*, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 275–289.
 - URL: http://dx.doi.org/10.1007/978-3-540-34954-9_12

References V

Zinchenko, L., Mühlenbein, H., Kureichik, V. & Mahnig, T. (2002), Application of the univariate marginal distribution algorithm to analog circuit design, *in* 'Proceedings of the 2002 NASA/DOD Conference on Evolvable hardware'.