

Question 5: Answer question 2.1
Prove that B given (2.7): $B = (X'QX)^{-1}X'QY$ can be obtained from OLS on (2.5): $Y = XUNT + XB + Z_NU + V = ZS + Z_NU + V$, using results on partitioned inverse. This can easily be obtained using the Frisch - Waugh - Lovell theorem of Davidson and Mackimon.
Hint: This theorem states that the OLS estimate of β from (2.5) will be identical to the OLS estimate of β from (2.6): $Qy = QX\beta + QV$, Also, the least squares residuals will be the same.
• Define $Q = I - P$
$Oy = y$, $Qx = x$, the transformed error component model $Qy = Qx\beta + Qv$ con be written as: $Y_{\bar{i}} = X_{\bar{i}}\beta + y_{\bar{i}}$
The FE estimator is therefore an OLS estimator of $\hat{Y} = \hat{X}\beta + \hat{\eta}$ $\hat{\beta}_{FE} = (\hat{X}'\hat{X})^{-1}\hat{X}\hat{Y} = (\hat{X}'Q\hat{X})^{-1}\hat{X}'Q\hat{y} = \hat{\beta}$
LSDV, within estimator
$Y_i = X_i'\beta + \alpha_i I_T + \eta_i$, stack $\Rightarrow Y = X\beta + D\alpha + \eta = X\beta + (I_n \otimes I_T)\alpha + \eta$
B=(X'QoX)-1X'Qoy where Qo=I-Pp, Pp=D(D'D)-1D', D=In&1T
To obtain Qo; Qo = I-Po
$= I - D(D'D)^{-1}D'$
$= I - (I_{I} \otimes I_{T}) ((I_{I} \otimes I_{T})' (I_{I} \otimes I_{T})' (I_{I} \otimes I_{T})'$
= <u>1</u> - In®PT
$=I_n\otimes Q_T$
BLSDV = (X'QOX) - X'QDY = [X'(In&QT)X] - X'(In&QT)Y
$= (X'QX)^{-1} X'QY$