Math40003 Linear Algebra and Groups

Problem Sheet 6

- 1.* (a) Which of the following functions $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ are linear transformations?
 - i. $T(x_1, x_2, x_3) = (x_1 + x_2 x_3, 2x_1 + x_2)$
 - ii. $T(x_1, x_2, x_3) = (0, \sqrt{2}x_3)$
 - iii. $T(x_1, x_2, x_3) = (x_1x_2, x_3)$
 - (b) Let V be the vector space of all 2×2 matrices over \mathbb{R} . Which of the following functions $T: V \longrightarrow V$ are linear transformations?
 - i. $T(A) = A^2$ for all $A \in V$
 - ii. $T(A) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} A$ for all $A \in V$
 - (c) i. Find a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ which sends (1,0) to (1,1,0) and (1,1) to (1,0,-1).
 - ii. Find two different linear transformations $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ which send (1,1,0) to (1,1) and (0,1,1) to (0,1).
 - (d) Let V be the vector space (over \mathbb{R}) of all functions $f : \mathbb{R} \to \mathbb{R}$. Which of the following are linear transformations (thinking of \mathbb{R} as \mathbb{R}^1 in parts (i) and (iii))?
 - i. $T_1: V \to \mathbb{R}$ where $T_1(f) = f(1)$ (for $f \in V$).
 - ii. $T_2: V \to V$ where $T_2(f) = f \circ f$ (for $f \in V$).
 - iii. $T_3: \mathbb{R} \to V$ where $T_3(\mu)$ is the function $f_{\mu} \in V$ given by $f_{\mu}(x) = \mu x$ (for $\mu, x \in \mathbb{R}$).
- 2. (a) Give an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for exactly one vector $v \in \mathbb{R}^2$.
 - (b) Give an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for no vector $v \in \mathbb{R}^2$.
 - (c) Give an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for infinitely many vectors $v \in \mathbb{R}^2$.
 - (d) Show that there is no linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for exactly two vectors $v \in \mathbb{R}^2$.
- 3. (Harder) (i) Suppose V, W are vector spaces (over a field F) and $S, T : V \to W$ are linear transformations. Prove that $S + T : V \to W$ defined by (S + T)(v) = S(v) + T(v) (for $v \in V$) is a linear transformation. If $\lambda \in F$, show that $\lambda S : V \to W$ defined by $(\lambda S)(v) = \lambda S(v)$ (for $v \in V$) is a linear transformation. Explain why the set U of all linear transformations from V to W is a vector space with these operations.
 - (ii) In the case where $V = F^2$ and $W = F^3$, what is the dimension of the vector space U? What is the dimension of U for arbitrary finite dimensional vector spaces V and W?

The following need material from the last week of term:

- 4. (a) Define $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (x_1 x_2, x_2 x_3, x_3 x_1)$. Find bases of Ker T and Im T. For which values of k is the vector (1, 3, k) in Ker T or Im T?
 - (b) Let V be the vector space of polynomials of degree at most 2 over \mathbb{R} . Define $T:V\longrightarrow V$ by

$$T(ax^{2} + bx + c) = (a + b + c)x^{2} + (c - a)x + (a + 3b + 5c).$$

Find bases of Ker T and Im T.

(c) Let V be as in part (b), and define $S: V \longrightarrow V$ by

$$S(p(x)) = p(1+x) - p(x) \text{ for } p(x) \in V.$$

(So for example, $S(x^2) = (x+1)^2 - x^2 = 2x+1$.) Show that S is a linear transformation, and find bases of Ker S and Im S.

- 5. (a) Let V be a finite-dimensional vector space, and $T:V\longrightarrow V$ a linear transformation.
 - i. Prove that T is injective if and only if $Ker T = \{0\}$.
 - ii. Prove that T is surjective if and only if $Ker T = \{0\}$.
 - (b) Find an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that Ker T = Im T.
 - (c) Prove that there does not exist a linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that Ker T = Im T.