RETI DI CALCOLATORI E APPLICAZIONI TELEMATICHE

Prof. PIER LUCA MONTESSORO

Facoltà di Ingegneria Università degli Studi di Udine

Nota di Copyright

Questo insieme di trasparenze (detto nel seguito slide) è protetto dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo ed i copyright relativi alle slides (ivi inclusi, ma non limitatamente, ogni immagine, fotografia, animazione, video, audio, musica e testo) sono di proprietà dell'autore prof. Pier Luca Montessoro, Università degli Studi di Udine.

Le slide possono essere riprodotte ed utilizzate liberamente dagli istituti di ricerca, scolastici ed universitari afferenti al Ministero della Pubblica Istruzione e al Ministero dell'Università e Ricerca Scientifica e Tecnologica, per scopi istituzionali, non a fine di lucro. In tal caso non è richiesta alcuna autorizzazione.

Ogni altro utilizzo o riproduzione (ivi incluse, ma non limitatamente, le riproduzioni su supporti magnetici, su reti di calcolatori e stampe) in toto o in parte è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori.

L'informazione contenuta in queste slide è ritenuta essere accurata alla data della pubblicazione. Essa è fornita per scopi meramente didattici e non per essere utilizzata in progetti di impianti, prodotti, reti, ecc. In ogni caso essa è soggetta a cambiamenti senza preavviso. L'autore non assume alcuna responsabilità per il contenuto di queste slide (ivi incluse, ma non limitatamente, la correttezza, completezza, applicabilità, aggiornamento dell'informazione).

In ogni caso non può essere dichiarata conformità all'informazione contenuta in queste slide.

In ogni caso questa nota di copyright e il suo richiamo in calce ad ogni slide non devono mai essere rimossi e devono essere riportati anche in utilizzi parziali.

Lezione 22

Il livello network e gli algoritmi di routing

Lezione 22: indice degli argomenti

- Servizi offerti al livello di trasporto
- Algoritmi di routing
 - statici
 - dinamici
- Routing gerarchico
- I router all'interno delle LAN

Il livello network

Servizi offerti al livello di trasporto

Servizi offerti al livello di trasporto

- Confine tra fornitore della connettività e utente
- Servizi orientati alla connessione e non
- Circuiti virtuali e datagram

Circuiti virtuali e datagram

datagram

circuiti virtuali

creazione circuito	non richiesto	richiesto
indirizzi	ogni pacchetto contiene gli indirizzi del mittente e del destinatario	ogni pacchetto contiene l'identificatore di VC
routing	ogni pacchetto è instradato indipendentemente	il percorso è scelto all'inizializzazione
effetti dei guasti	solo sui pacchetti persi durante il guasto	tutti i VC interessati dal guasto terminano
controllo della congestione	complesso	semplice (gestione preventiva durante il setup)

Possibili combinazioni di servizi e strutture di rete

tipo di sottorete datagram circuiti virtuali

servizio offerto al livello superiore non connesso

connesso

	UDP
UDP	sopra
sopra	IP
IP	sopra
	ATM
TCP	ATM AAL1
sopra	sopra
IP	ATM

Quality Of Service (QOS)

- Insieme di parametri associati a ciascuna primitiva di richiesta del servizio
- Tali parametri specificano le prestazioni attese
- Esempi di parametri:
 - tempo di transito (massimo e varianza)
 - probabilità di errore
 - priorità
 - sicurezza

Algoritmi di routing

Proprietà degli algoritmi di routing

- Correttezza
- Semplicità
 - i router hanno memoria e capacità di calcolo finite e limitate

Proprietà degli algoritmi di routing

Robustezza

 poiché nel tempo i nodi e i collegamenti si guastano, vengono riparati e riprendono ad operare, gli algoritmi devono continuare a funzionare affrontando i cambiamenti nella rete

Stabilità

 devono convergere (arrivare ad uno stato di equilibrio)

Proprietà degli algoritmi di routing

- Imparzialità
- Ottimalità

SONO SPESSO OBIETTIVI CONTRADDITTORI

Cosa ottimizzare?

- Ritardo medio dei pacchetti
- Volume di traffico nell'intera rete

VE L'AVEVO DETTO:
QUESTI OBIETTIVI
SONO IN CONFLITTO!

Cosa ottimizzare?

- Occorre definire una metrica
- Due parametri molto utilizzati:
 - HOPS: numero di salti effettuati, cioè il numero di nodi intermedi attraversati lungo il cammino
 - COSTO: somma dei "costi" di tutte le linee attraversate (il costo di una linea è in genere inversamente proporzionale alla sua velocità)

Tipi di algoritmo

- Non adattativi (routing statico)
 - criteri fissi di instradamento
- Adattativi (routing dinamico)
 - le tabelle di instradamento vengono continuamente aggiornate in funzione di informazioni sullo stato della rete (topologia e traffico)

Tabelle di instradamento

Algoritmi statici

- Fixed directory routing
 - tabelle scritte a mano
 - tabelle fisse ottenute tramite algoritmi, per esempio quello di Dijkstra per calcolare il cammino minimo
- Flooding (inondazione)
 - i pacchetti vengono ripetuti su tutte le porte ad eccezione di quella di arrivo

Algoritmi dinamici

- Routing centralizzato
- Routing isolato
- Routing distribuito
 - distance vector
 - link state routing

Routing statico e dinamico

Routing statico e dinamico

Algoritmi statici

Fixed Directory Routing

- Ogni nodo ha una tabella di instradamento scritta manualmente, con informazioni del tipo:
 - indirizzo di destinazione → linea
- Il gestore della rete ha il totale controllo dei flussi di traffico
 - sono necessari interventi manuali per ridirigere il traffico in presenza di guasti
- Usato con successo in reti TCP/IP e SNA

Fixed Directory Routing

nodo	linea	linea alternativa
hydrus.cc.uniud.it	1	3
allegro.diegm.uniud.it	2	3

Flooding

- Algoritmo non adattativo
- Ciascun pacchetto in arrivo viene ritrasmesso su tutte le linee eccetto quella da cui è stato ricevuto
- Utilizzabile solo in presenza di traffico molto limitato

Ottimizzazioni del flooding

- Age-counter
 - ogni pacchetto contiene un contatore di salti, inizializzato al massimo numero di salti previsto per arrivare a destinazione, che viene via via decrementato
 - si scartano i pacchetti con il contatore a zero
- Memoria dei pacchetti transitati
 - si scartano i pacchetti le successive volte che passano in un nodo

Selective Flooding

- I pacchetti vengono ritrasmessi solo su linee selezionate.
- Random walk
 - il pacchetto in arrivo su un nodo viene trasmesso in modo casuale su una delle linee disponibili
- Hot Potato
 - ogni nodo ritrasmette il pacchetto sulla linea con la coda di trasmissione più breve

Algoritmi dinamici

Routing centralizzato

- Esiste un Routing Control Center (RCC) che calcola e distribuisce le tabelle
- II RCC riceve informazioni sullo stato della rete da tutti i nodi e le usa per calcolare le nuove tabelle
- Poco robusto (le tabelle non arrivano a tutti i router contemporaneamente)
- Genera elevato carico sulla rete in prossimità del RCC

Routing isolato

- Opposto al routing centralizzato: ogni nodo decide l'instradamento senza scambiare informazioni con gli altri nodi
- Esempio:
 - backward learning dei bridge

Routing distribuito

- Ogni router calcola le sue tabelle dialogando con gli altri router e con gli end-node
- Tale dialogo avviene tramite protocolli ausiliari di livello 3
- Due approcci principali:
 - algoritmi "distance vector"
 - algoritmi "link state"

Distance Vector

- Noto anche come algoritmo di "Bellman-Ford" o "Ford-Fulkerson"
- Ogni nodo, quando modifica le proprie tabelle di instradamento, invia ai nodi adiacenti un "distance vector" (insieme di coppie [indirizzo - distanza])
- La distanza è espressa tramite metriche classiche quali numero di hops e costo
- Ogni nodo memorizza per ogni linea l'ultimo distance vector ricevuto

Distance Vector

- Un router ricalcola le sue tabelle se:
 - cade una linea attiva
 - riceve un distance vector da un nodo adiacente diverso da quello memorizzato
- Il calcolo consiste nella fusione di tutti i distance vector delle linee attive
- Se le tabelle risultano diverse da quelle precedenti, invia ai nodi adiacenti un nuovo distance vector

Distance Vector

Distance Vector: caratteristiche

- Vantaggi:
 - molto semplice da implementare
- Svantaggi
 - possono innescarsi dei loop a causa di particolari variazioni della topologia
 - la convergenza può essere molto lenta

Link State

- Ogni router:
 - scopre i vicini e i loro indirizzi (pacchetto di "hello")
 - misura il ritardo o il costo per raggiungerli
 - costruisce un pacchetto (LSP: Link State Paket) con tali informazioni che invia in flooding a tutti i router
 - calcola il cammino minimo per raggiungere ogni altro router

Link State

 Per i dettagli sul funzionamento di veda il libro di testo "Reti di Computer", Tanenbaum, paragrafo 5.2.6

Link State: caratteristiche

- Vantaggi:
 - può gestire reti di grandi dimensioni
 - ha una convergenza rapida (complessità E log N, con E link e N nodi)
 - è robusto
 - ogni nodo ha la mappa dell'intera rete
- Svantaggi:
 - molto complesso da realizzare
 - necessita di meccanismi speciali per le LAN (un router diventa "pseudo-nodo")

Traffic shaping, policy routing

- Tecniche di controllo dell'instradamento molto flessibili e sofisticate disponibii in molti router moderni
- Utilizzate soprattutto in reti in cui devono convivere flussi diversi con diverse caratteristiche di banda, sicurezza, connettività, ecc.
- È il problema tipico degli Internet Service Provider

Routing gerarchico

Routing gerarchico

- Necessario per reti di grandi dimensioni
- Si basa su criteri gerarchici di assegnazione degli indirizzi di rete
- La rete viene suddivisa in regioni
- Ogni router conosce:
 - l'instradamento nella propria regione
 - l'instradamento verso almeno un altro router di ogni altra regione
- Per reti enormi può essere necessaria una gerarchia su più livelli

Routing gerarchico

I router all'interno delle LAN

I router all'interno delle LAN

- Partizionamento della LAN con router al posto dei bridge o switch di livello 2
 - i router non propagano il traffico broadcast
- Interconnessione di LAN distanti
 - al posto dei bridge remoti
- Interconnessione di VLAN
- Politiche di gestione del traffico
 - traffic shaping, policy routing
- Prestazioni? Switch di livello 3!

Router convenzionale

Lezione 22: riepilogo

- Servizi offerti al livello di trasporto
- Algoritmi di routing
 - statici
 - dinamici
- Routing gerarchico
- I router all'interno delle LAN

Bibliografia

- "Reti di Computer"
 - Capitolo 5

- Libro "Reti locali: dal cablaggio all'internetworking"
 contenuto nel CD-ROM omonimo
 - Capitolo 14

Come contattare il prof. Montessoro

E-mail: montessoro@uniud.it

Telefono: 0432 558286

Fax: 0432 558251

URL: www.uniud.it/~montessoro