

«What is SULTAN project, actually?» An environmental assessment perspective

Lugas Raka Adrianto ESR 15 SULTAN

How much should we remove to get the product?

Framework SULTAN

European Training Network for the Remediation and Reprocessing of Sulfidic Mining Waste Sites

Mine wastes → resource recovery – opportunity

Universities and research institutes

Partners

What mine wastes are we talking about?

Raw Ore

COMMINUTION

FLOTATION

Concentrate

REFINING

Environmental Burden

Fine ore

Waste rock (overburden)

Dust, noise

Tailings

Slag, Waste water

The input material (tailings) streams: 3 case studies

41.2 Mt + 3.1 Mt/ year

How to deal with those tailings? Sultan Workflow

Our question: how sustainable are they?

Sulfidic Tailings

Storage

STATUS QUO

RESOURCE

RECOVERY

Dispose as usual

As secondary resources

Which products? What processes?

Simplified conceptual flowsheet

Reducing wastes **volume** and replacing **materials** (Park et al, 2019)

System 1: managing tailings in the storage

Status quo: common operation nowadays

Model of the tailings storage (time & site specific)

- Objective: To include spatial & temporal conditions
 - Climate information (precipitation, evaporation, etc.)

Non – linear behavior (Hellweg, 2001; Muniruzzaman, 2017)

Predictive modelling of tailings emission – Acid mine drainage

Intention:Capturing important processes in AMD

Adapted from European Commission, 2010

Reactive transport modelling (RTM) approach

Coupling of flow, solute transport, and geochemical reactions

Goal: tailings operation environmental impact

Expected results:

- Emission inventory
- LCIA of tailings operation and expanded boundary

System 2: recovery and valorization route

Resource-recovery: sustainability of metallurgical processes

Sulfidic Tailings

As secondary resources

Metals and valorized products

Application of upcycled minerals

- 1. Inorganic polymer
- 2. Ceramic
- 3. Cement

Metallurgical processes involved in SULTAN project

Example of route: geopolymer manufacturing

Possible scenarios:

- 1. Tailings to building construction material (cement replacement)
- 2. Tailings to insulation material (brick)

Upscaling – Prospective LCA

Goal: inventory of each metallurgical process (input – output)

Expected results:

Detection of hotspots to direct improvements in process design

Summary and outlook

- Constructing tailings emission model
 - Site and tailings characteristics

- Fate transport model of tailings emission
- Selection of LCIA methods
- How to include uncertainty in LCA

Your inputs are welcome

Raka, ESR 15 SULTAN

Thank you, ESD ****

