

Advanced Algorithms

Lecture 4
Greedy Algorithms

Bin Yang

byang@cs.aau.dk

Center for Data-intensive Systems

ILO of Lecture 4

- Greedy algorithms
 - to understand the principles of the greedy algorithm design technique;
 - to understand two example greedy algorithms, for activity selection and Huffman coding, and to be able to prove that these algorithms find optimal solutions (correctness proof);
 - to be able to apply the greedy algorithm design technique.

Agenda

- Activity selection
- Huffman coding
- Principles of greedy algorithms
- Revisit some graph algorithms that use the greedy strategy

Activity Selection

Input:

• A set of n activities, each with start and end times: s_i and f_i . The i-th activity lasts during the period $[s_i, f_i)$.

Output:

- The largest subset of mutually compatible activities.
- Activities are compatible if their intervals do not intersect.

- Activities 1 and 2 are not compatible.
- Activities 2 and 4 are compatible.

Activity Selection – Some Definitions

- Sort activities in A on the end time
 - We also assume "sentinel" activities a_0 and a_{n+1} .

0	i	1	2	3	4	5	6	7	8	9	10	11	12
-100	s_i	1	3	0	5	3	5	6	8	8	2	12	100
-100	f_i	4	5	6	7	9	9	10	11	12	14	16	100

- S_{i,j}: a set of activities that start after activity a_i finishes and that finish before activity a_i starts.
 - $S_{2,11} = \{a_4, a_6, a_7, a_8, a_9\}$
 - Start after a₂.f=5 and finish before a₁₁.s=12. Interval [5, 12).
 - $S_{0,12} = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}\}$
 - Start after a_0 .f=-100 and finish before a_{12} .s=100. Interval [-100, 100).
- M_{i,j}: a maximum set of mutually compatible activities in S_{i,j}.
- C_{i,j}: the cardinality of M_{i,j}
- Activity Selection: identify C_{0,n+1} (and M_{0,n+1})

Activity selection – DP solution

Choose an activity a_k in S_{i,j}, which splits S_{i,j} into S_{i,k} and S_{k,j}

i	1	2	3	4	5	6	7	8	9	10 2 14	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- $S_{2,11} = \{a_4, a_6, a_7, a_8, a_9\}$
- $\bullet \quad a_8, \ S_{2,8} = \{a_4\} \ S_{8,11} = \{\}$
- The maximum number of compatible activities in $S_{i,j}$ is the maximum of the sum of the following, over all possible a_k
 - maximum number of compatible activities in S_{i,k}, i.e., C_{i,k}
 - maximum number of compatible activities in S_{k,j}, i.e., C_{k,j}
 - 1, i.e., a_k itself
- Trivial sub-problems: 0 if S_{i,k} is empty.
- 1. Overlapping sub-problems.
- 2. Optimal sub-structures.

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

Algorithm, bottom-up

	0	1	2	3	4
0	0	0	c[0,2]	c[0,3]	c[<mark>0,4</mark>]
1	X	0	0	c <mark>[1,</mark> 3]	c[1,4]
2	X	X	0	0	c[<mark>2,4</mark>]
3	X	X	X	0	0
4	X	X	X	X	0

How many sub-problems are there and how many choices do you need to consider for solving each sub-problem?

Greedy strategy

Given S_{i,j}, DP needs to consider every activity a_k in S_{i,j} in order to identify the optimal solution.

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

- For different S_{i,j}, there are different numbers of a_k in S_{i,j}
- Greedy strategy: what if we only considers "the best" (as
 of now) activity and be sure that it belongs to an optimal
 solution.
- Choose the activity that finishes first in S_{i,j}
 - Intuition: leave as much time as possible for other activities.
 - Then, solve only one sub-problem for the remaining compatible activities.

Greedy algorithm

- MaxN(A, i)
 - Assume that we have n activities in total.
 - Return the maximum-size set of mutually compatible activities in $S_{i,n+1}$
 - In the beginning, we call MaxN(A, 0) that returns the maximumsize set of mutually compatible activities in S_{0.n+1}

```
A[m] is the activity in S_{i,n+1} that finishes first.
\mathbf{MaxN}(A, i)
01 \text{ m} \leftarrow \text{i} + 1
02 while m \le n and A[m].s < A[i].f do
03
         m \leftarrow m + 1
04 if m \le n then return \{A[m]\} \cup MaxN(A, m)
                  else return \varnothing
05
```

The found activity a_m that finishes first must belong to the maximum-size set of mutually compatible activities. Then, we only need to consider activities in $S_{m,n+1}$.

Example

A[0]	A[1]	A[2]	A[3]	A[4]
0	1	2	5	10
0	3	4	6	10

- MaxN(A, 0), A[1] is chosen, so {a₁}.
 - A[1] is the activity finishes the first from S_{0, 4}
- MaxN(A, 1), A[3] is chosen, so {a₁, a₃}.
 - A[3] is the activity finishes the first from S_{1, 4}
- MaxN(A, 3), nothing is chosen, so still {a₁, a₃}.
- {a1, a3} is the maximum-size set of mutually compatible activities.

Correctness?

- Why the activity that finishes first must be in the maximumsize set of mutually compatible activities?
 - Consider any nonempty sub-problem S_{ij} , and let a_x be an activity in S_{ii} with the earliest finish time.
 - Let M_{ij} be a maximum-size set of mutually compatible activities in S_{ij} . Let a_y be the activity in M_{ij} with the earliest finish time.
 - Lucky: if $a_x = a_y$, we have proved that a_x belongs to a maximum-size set of mutually compatible activities.
 - Unlucky: If not, by replacing a_y by a_x , M_{ij} is still a maximum-size set of mutually compatible activities.
 - a_x.f <=a_y.f

A[0]	A[1]	A[2]	A[3]	A[4]
0	1	2	5	10
0	3	4	6	10

M_{0,4}={a2, a3}, replacing a2 by a1, all activities in {a1, a3} are still compatible, and thus it is still a maximum-size set.

Greedy exchange

- It is a different proof technique compared to contradiction or induction.
- Greedy exchange is often used in proving the correctness of greedy algorithms.
- Assume that we already have an optimal solution that is produced by any other optimal algorithm.
 - M_{ii} in our previous proof.
- We show that it is possible to incrementally modify the optimal solution into the solution produced by our greedy algorithm in such a way that does not worsen the solution's quality.
 - Replace a_v by a_x, still compatible and with the same cardinality.
- Thus, the quality of our greedy solution is at least as small as that of any other optimal solution.

- We can assemble a globally optimal solution by making locally optimal (greedy) choices.
 - We need to prove that there is always an optimal solution to the original problem that includes the greedy choice, so that the greedy choice is always safe.
- The challenge is to choose the right interpretation of "the best choice":
 - Mini quiz: counter-example or proof
 - How about the activity that starts first?
 - The shortest activity?
 - The activity that overlaps the smallest number of the remaining activities?

How about the activity that starts first?

a1	a2	a3
1	2	4
10	3	6

- {a2, a3}, but not a1 that starts first.
- The shortest activity?

a1	a2	a3	a4
1	11	21	9
10	20	30	12

• {a1, a2, a3}, but not a4 that is the shortest activity.

 The activity that overlaps the smallest number of the remaining activities?

 The second row gives the maximum-size set of mutually compatible activities, but it does not include the activity with the smallest overlaps, i.e., the one with 2.

Run time of the greedy algorithm

Assume that the activities in A have been ordered according to the finishing time already.

Intuition: each activity is examined once, and thus $\theta(n)$.

Still remember the run time of DP? $\theta(n^3)$.

First self-study exercises

- A self-study exercise session = 4 hours of exercises
 - You need to do it in groups.
 - Each group can submit to Sean/Tung one written solution no later than a week of the session.
 - Sean/Tung will give written feedback for each of the submitted solutions.
 - 12 groups in total
 - Groups 1 to 6 send to Sean. Groups 7 to 12 send to Tung.
 - I recommend that each of you solves the problems individually first, and then you discuss, summarize, and hand in solutions per group.
 - In case you cannot agree with each other, you can hand in multiple solutions for one problem.

Agenda

- Activity selection
- Huffman coding
- Principles of greedy algorithms
- Revisit some graph algorithms that use the greedy strategy

Data coding and compression

- Suppose we have 100,000-character data file that we wish to store compactly, i.e., using the least space.
- The file only has 6 distinct characters.
- Each character has different frequencies.

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Fixed-length codeword
 - (45K+13K+12K+16K+9K+5K)*3=300K bits
- Variable-length codeword
 - 45K*1+(13K+12K+16K)*3+(9K+5K)*4=224K bits
- 224/300≈75%, we can save 25% of space by using variable-length codeword.

Prefix codes

- What is a prefix code?
 - No codeword is also a prefix of some other codeword.

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Prefix codes can always achieve the optimal data compression among any character code.
- Prefix codes are desired because they simplify decoding.
- From now on, we only consider prefix codes.
- Encoding: concatenate the codewords representing the characters in the file.
 - abc: 000001010 or 0101100
- Decoding:
 - 000000001100 = aabe
 - 001011101 = aabe

Decoding using a binary tree

Leaves represent characters.

Codeword for a character is the simple path from the root to that character.

0: left 1:right

Decode: 001011101

aabe

Mini quiz: can you think about some non-prefix codes?

Decoding using a binary tree

Can you think about some non-prefix codes?

Can you decode: 010?

Should it be aba or ac?

Optimal code

The number of bits required to encode a file is

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

Frequency of character c

Depth of character c's corresponding leaf node in the binary tree.

- Optimal code achieves minimal B(T).
- Optimal code is always represented by a full binary tree.
 - Every non-leaf node must have two children.

If a non-leaf node has only one child, we can replace the non-leaf node with its unique child. This would decrease the total bits of the encoding.

Depths of the two characters in this sub-tree decrease.

Huffman code

- Huffman code is an optimal prefix code.
- Basic idea
 - Initially, one separate node for each character.
 - In each step, join two nodes with the least frequencies, and merge into a new node whose frequency is the sum of the corresponding two nodes.
 - Repeat until all nodes are joined into one tree.

return EXTRACT-MIN(Q)

```
HUFFMAN (C) Input C is a set of characters, each character c \in C is with an attribute c.freq that shows the frequency of c. 1 n = |C| Insert all characters into a priority queue w.r.t. frequency 3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = x.freq + y.freq

8 INSERT (Q, z)
```

// return the root of the tree

Example

Mini quiz (also on Moodle)

 Identify the Huffman code for the following table using the algorithm we just saw.

	а	b	С	d	r
Frequency	8	3	1	1	4

- Then, write done the code for
 - ab
 - rc

Run time

Assuming that we use a binary heap to implement the priority queue Q here.

```
HUFFMAN(C)
               Initialize a priority queue with n elements: O(n)
   for i = 1 to n-1
       allocate a new node z.
                                            All operations here in a priority
5
       z.left = x = Extract-Min(Q)
                                            queue is O(lgn)
       z.right = y = EXTRACT-MIN(Q)
6
       z.freq = x.freq + y.freq
       INSERT(Q,z)
   return EXTRACT-MIN(Q) // return the root of the tree
                               In total, n-1 iterations.
                               O(nlgn)
```

What if we use an ordered/unordered linked list to implement the priority Q? What is the run time then?

Correctness of Huffman code

- Greedy choice property and optimal substructure
- Greedy choice property
 - Let x and y be the two characters with lowest frequencies.
 - We need to prove that there exists an optimal prefix code where the codewords for x and y have the same length and differ only in the last bit.
 - We need to prove this greedy choice property.
 - Still use the "greedy exchange" proof technique.
 - Assume that we already have an optimal solution, tree T, that is produced by any other optimal algorithm.
 - We show that it is possible to incrementally modify the optimal solution
 T into the solution produced by our greedy algorithm, tree T", in such
 a way that does not worsen the solution's quality.

- Let x and y be the two characters with lowest frequencies.
- Let's assume that we have an optimal code tree T, where leaves a and b are two siblings of the maximum depth.

Swap a and x, we get tree T'.

Since x and y are the two characters with lowest frequencies, we have x.freq ≤ a.freq

In tree T, a and b are two siblings of maximum depth. Thus, we have

- Similarly, we can show B(T')≥ B(T'').
- Then, $B(T) \ge B(T') \ge B(T'')$.
- Recall our assumption that T is an optimal code tree, i.e., B(T)≤B(T").
- Then, B(T)=B(T")
- Thus, T" is also an optimal code tree.

Correctness of Huffman code (2)

- Optimal-substructure property
 - What is the sub-problem?

- Proof: Lemma 16.3 CLRS Also slides on Moodle.
- Every time, we have one less character/node.
- Formally, we have
 - Let x, y characters with minimum frequency
 - $C' = C \{x,y\} \cup \{z\}$, such that z.freq = x.freq + y.freq
 - Let T' be an optimal tree for C'
 - Replace leaf z in T' with internal node with two children x and y
 - The resulting tree T is an optimal tree for C

T: optimal tree for C.

a
b
Z

Solution to a sub-problem with character set C'.

T': Optimal tree for C'= $C - \{x,y\} \cup \{z\}$

Optimal-substructure property

- Let T' be an optimal tree for C'
- Replace leaf z in T' with internal node with two children x and y to get T.
- For each $c \in C \{x, y\}$, we have $d_T(c) = d_{T'}(c)$, and thus
 - $c.freq * d_T(c) = c.freq * d_{T'}(c)$

//e.g., a, b

Let's call this conclusion 1.

Optimal-substructure property

- For x, y, and z, we have d_T(x)=d_T(y)= d_T(z)+1 and z.freq=x.freq+y.freq

 ◆ x.freq³d_T(x)+y.freq³d_T(y)=(x.freq+y.freq)³d_T(x)=(x.freq+y.freq)*(d_T(z)+1)
 - =z.freq*d_{T'}(z)+(x.freq+y.freq) //We call this conclusion 2
- B(T)= $\sum_{c \in C}$ c.freq * $d_T(c)$

// using the definition of B(T)

- = $\sum_{c \in C \{x,y\}} \text{c.freq} * d_T(c) + \text{x.freq*d}_T(x) + \text{y.freq*d}_T(y)$
- = $\sum_{c \in C \{x,y\}} \text{c.freq} * d_T(c)$ +z.freq*d_{T'}(z)+(x.freq+y.freq) // using conclusion 2
- = $\sum_{c \in C \{x,y\}} c.\text{freq} * d_{T'}(c)$ +z.freq*d_{T'}(z)+(x.freq+y.freq) // using conclusion 1
- = B(T')+(x.freq+y.freq)

// using the definition of B(T')

B(T')=B(T)-x.freq-y.freq // We call this conclusion 3

T': Optimal tree for $C - \{x,y\} \cup \{z\}$

Optimal-substructure property

- Proof by contradiction:
 - Assume that T is not an optimal tree, we must have another tree T" that B(T")<B(T).
 - Previously, we have shown that an optimal tree T" has x and y as siblings.
 - Let T" be the tree T" with the common parent of x and y replaced by a leaf z with z.freq=x.freq+y.freq, then
 - B(T''')=B(T''')-x.freq-y.freq
- // using conclusion 3

<B(T) -x.freq-y.freq</p>

//due to the assumption B(T'') < B(T)

• =B(T')

- // using conclusion 3 again.
- ▶ B(T''')< B(T') conflicts that T' is an optimal tree for $C' = C \{x,y\} \cup \{z\}$.
- Thus, T must be an optimal tree.

Agenda

- Activity selection
- Huffman coding
- Principles of greedy algorithms
- Revisit some graph algorithms that use the greedy strategy

Principles of Greedy Algorithms

- Greedy algorithms are used for solving optimization problem
 - A number of choices have to be made to arrive at an optimal solution.
 - At each step, make the greedy "locally best" choice, without considering all possible choices and solutions to subproblems induced by these choices (compare to dynamic programming).
 - After the choice, only one sub-problem remains (smaller than the original).
- Greedy algorithms usually sort or use priority queues.

Principles of Greedy Algorithms

- First, we need to show the optimal sub-structure property
 - The same with DP.
- The main challenge is to decide the interpretation of "the best" so that it leads to a global optimal solution, i.e., proving the greedy choice property
 - Or you find counter-examples demonstrating that your greedy choice does not lead to a global optimal solution.
- Greedy exchange is a useful proof technique for proving the greedy choice property.

Agenda

- Activity selection
- Huffman coding
- Principles of greedy algorithms
- Revisit some graph algorithms that use the greedy strategy

Minimum spanning tree

- A spanning tree of a connected, undirected graph G is a sub-graph of G, which is
 - A tree (connected, undirected graph without cycles)
 - Contains all vertices of G.
- MST of graph G is a spanning tree T that minimizes $w(T)=\sum_{(u,v)\in T}w(u,v)$ for all possible spanning trees.
- It is an optimization problem:
 - There are many spanning trees
 - We want to find the MST that is a spanning tree with the least sum of weights of the edges in the spanning tree.
- Prim's algorithm and Kruskal's algorithm
- A generic algorithm

Prim's algorithm


```
MST-Prim(G,r)
```

```
01 for each vertex u ∈ G.V()
02 u.setkey(∞)
03 u.setparent(NIL)
04 r.setkey(0)
```

Initialize all vertices

```
05 Q.init(G.V()) // Q is a priority queue ADT

06 while not Q.isEmpty()

07  u ← Q.extractMin() // making u part of T

08  for each v ∈ u.adjacent() do

09   if v ∈ Q and G.w(u,v) < v.key() then

10   v.setkey(G.w(u,v))

11  Q.modifyKey(v)

12  v.setparent(u)
```

Update the keys and also maintain the priority queue according to the updated keys.

Greedy strategy for Prim's alg

- A weighted graph G = (V, E) and a starting vertex s. Find a minimum spanning tree of G with root s.
- Greedy choice: Among all incident edges of s, choose an edge (s, u) with a minimum weight.
- Remaining sub-problem:
 - Consider a new graph G'=(V', E')
 - V'=V-{s, u}+{s'}
 - E'=E-{(s, u)}, but with all the edges incident on s or u made incident on s' (supervertex).
 - If there are both edges (s, v) and (u, v) in E, the weight of the corresponding new edge (s', v) in E' is w(s', v) = min(w(s, v), w(u, v)).
 - Find minimum spanning tree of G' from s'.

ILO of Lecture 4

- Greedy algorithms
 - to understand the principles of the greedy algorithm design technique;
 - to understand the example greedy algorithms for activity selection and Huffman coding, to be able to prove that these algorithms find optimal solutions;
 - to be able to apply the greedy algorithm design technique.

Intended Learning Outcomes (ILO)

- After taking this course, you should acquire the following knowledge
 - Algorithm design techniques such as divide-and-conquer, greedy algorithms, dynamic programming, back-tracking, branch-andbound algorithms, and plane-sweep algorithms;
 - Algorithm analysis techniques such as recursion, amortized analysis;
 - A collection of core algorithms and data structures to solve a number problems from various computer science areas: algorithms for external memory, multiple-threaded algorithms, advanced graph algorithms, heuristic search and geometric calculations;
 - There will also enter into one or more optional subjects in advanced algorithms, including, but not limited to: approximate algorithms, randomized algorithms, search for text, linear programming and number theoretic algorithms such as cryptosystems.

Lecture 5

- Amortized analysis
 - to understand what is amortized analysis, when is it used, and how it differs from the average-case analysis;
 - to be able to apply the techniques of the aggregate analysis, the accounting method, and the potential method to analyze operations on simple data structures.