Il Teorema di Bonnet

CANDIDATO:

Relatore:

Simone Carta

Prof. Andrea Loi

Università degli Studi di Cagliari

25 Luglio 2017

Il Teorema di Bonnet

II Teorema

Sia M una superficie connessa, geodeticamente completa e con curvatura di Gauss $K \geq k > 0$ per una certa costante k, allora M è compatta, inoltre il suo diametro è $\leq \pi/\sqrt{k}$ e la sua area $\leq 4\pi/k$.

Applicazione esponenziale

Definizione

Dato $\mathbf{p} \in M$, denotiamo con $\gamma_{\mathbf{v}}$ la geodetica di M uscente da \mathbf{p} con velocità iniziale \mathbf{v} . Definiamo l'applicazione esponenziale

$$exp_p: T_pM \longrightarrow M, \quad v \longmapsto \gamma_v(1)$$

per ogni $\mathbf{v} \in T_p M$ tale che γ_v sia definita sull'intervallo [0,1].

Applicazione esponenziale

Definizione

Dato $\mathbf{p} \in M$, denotiamo con $\gamma_{\mathbf{v}}$ la geodetica di M uscente da \mathbf{p} con velocità iniziale \mathbf{v} . Definiamo l'applicazione esponenziale

$$exp_p: T_pM \longrightarrow M, \quad v \longmapsto \gamma_v(1)$$

per ogni $\mathbf{v} \in T_p M$ tale che γ_v sia definita sull'intervallo [0,1].

Proprietà

exp_p gode delle seguenti proprietà:

- È un diffeomorfismo locale;
- $exp_p(t\mathbf{v}) = \gamma_v(t)$.

Coordinate polari generalizzate

Scelto un riferimento e_1, e_2 in TpM, definiamo

$$\mathbf{x}(u, v) = exp_p(u \cos v \mathbf{e}_1 + u \sin v \mathbf{e}_2) \quad 0 \le u \le b, \ 0 \le v < 2\pi$$

Queste si dicono **coordinate polari generalizzate** su M. Sono definite in un intorno del punto \mathbf{p} , detto polo.

Per $\mathbf{x}(u, v)$ si dimostra che E = 1, F = 0, G(u, v) > 0 se u > 0.

Superfici complete

Definizione

Una superficie M si dice **geodeticamente completa**, o semplicemente **completa**, se ogni sua geodetica può essere parametrizzata su tutto l'insieme $\mathbb R$ dei numeri reali.

Superfici complete

Definizione

Una superficie M si dice **geodeticamente completa**, o semplicemente **completa**, se ogni sua geodetica può essere parametrizzata su tutto l'insieme \mathbb{R} dei numeri reali.

Teorema (di Hopf-Rinow)

Per ogni coppia di punti \mathbf{p} , \mathbf{q} di una superficie M completa e connessa esiste un segmento di geodetica σ che li congiunge avente lunghezza minima, cioè $L(\sigma) = \rho(\mathbf{p}, \mathbf{q})$, dove ρ è la distanza sulla superficie.

Superfici complete

Definizione

Una superficie M si dice **geodeticamente completa**, o semplicemente **completa**, se ogni sua geodetica può essere parametrizzata su tutto l'insieme \mathbb{R} dei numeri reali.

Teorema (di Hopf-Rinow)

Per ogni coppia di punti \mathbf{p} , \mathbf{q} di una superficie M completa e connessa esiste un segmento di geodetica σ che li congiunge avente lunghezza minima, cioè $L(\sigma) = \rho(\mathbf{p}, \mathbf{q})$, dove ρ è la distanza sulla superficie.

Corollario

Per ogni punto \mathbf{p} di una superficie M completa e connessa exp_p è definita su tutto T_pM ed è suriettiva.

Geodetiche di lunghezza minima e punti coniugati

Definizione

Un segmento di geodetica γ da ${\bf p}$ a ${\bf q}$ in M minimizza localmente la lunghezza d'arco se $L(\gamma) \leq L(\alpha)$ per ogni segmento di curva α che congiunge ${\bf p}$ e ${\bf q}$, sufficientemente vicina a γ .

Diciamo che γ è unica se vale il minore stretto, eccetto quando α è una riparametrizzazione di γ .

Geodetiche di lunghezza minima e punti coniugati

Definizione

Un segmento di geodetica γ da ${\bf p}$ a ${\bf q}$ in M minimizza localmente la lunghezza d'arco se $L(\gamma) \leq L(\alpha)$ per ogni segmento di curva α che congiunge ${\bf p}$ e ${\bf q}$, sufficientemente vicina a γ .

Diciamo che γ è unica se vale il minore stretto, eccetto quando α è una riparametrizzazione di γ .

Definizione

Un punto $\mathbf{q} = \gamma(s) = \mathbf{x}(s, v_0), s > 0$ è detto **punto coniugato** di $\mathbf{p} = \gamma(0)$ lungo γ se $G(s, v_0) = 0$.

Simone Carta

Teorema (di Jacobi)

Un segmento di geodetica γ da ${\bf p}$ a ${\bf q}$ rende minima (strettamente) la lunghezza d'arco se e solo se non vi sono punti coniugati di ${\bf p}=\gamma(0)$ lungo $\gamma.$

Teorema (di Jacobi)

Un segmento di geodetica γ da ${\bf p}$ a ${\bf q}$ rende minima (strettamente) la lunghezza d'arco se e solo se non vi sono punti coniugati di ${\bf p}=\gamma(0)$ lungo γ .

Criterio

Data su M una geodetica unitaria γ con $\gamma(0)=\mathbf{p}$, sia g(s) l'unica soluzione dell'equazione di Jacobi

$$g'' + K(\gamma)g = 0$$
, $g(0) = 0$, $g'(0) = 1$

I punti coniugati di **p** lungo γ sono i punti $\gamma(s), s > 0$ per cui g(s) = 0.

Esempio

Sia Σ la sfera di raggio r>0, la sua curvatura è $K=1/r^2$. Se $\gamma(s)$ è una geodetica su Σ , con $\gamma(0)=\mathbf{p}$, l'equazione di Jacobi per γ è $g''+g/r^2=0$. La sua soluzione generale è

$$g(s) = A \sin\left(\frac{s}{r}\right) + B \cos\left(\frac{s}{r}\right)$$

Le condizioni iniziali g(0) = 0, g'(0) = 1 danno

$$g(s) = r \sin\left(\frac{s}{r}\right)$$

Il primo zero $s_1 > 0$ si ha per $s_1 = \pi r$, cioè in corrisponenza del punto antipodale $-\mathbf{p}$.

Esempio

Per $-\mathbf{p}$ infatti la geodetica che minimizza la lunghezza d'arco non è unica.

Per ogni altro $\mathbf{q} \neq \mathbf{p}, -\mathbf{p}$ invece, si ha l'unicità.

Il Teorema di Bonnet

Sia M una superficie connessa, geodeticamente completa e con curvatura di Gauss $K \ge k > 0$ per una certa costante k, allora M è compatta, inoltre il suo diametro è $\le \pi/\sqrt{k}$ e la sua area $\le 4\pi/k$.

Dimostrazione del Teorema

La dimostrazione si compone di tre parti:

- $diam(M) \leq \pi/\sqrt{k}$;
- M è compatta;
- $area(M) \leq 4\pi/k$.

Alcuni Lemmi

Lemma 1

Siano M una superficie con curvatura $K \ge k > 0$ per una certa costante k, $\gamma(s) = \mathbf{x}(s, v_0)$ una geodetica uscente da $\mathbf{p} = \gamma(0)$ e $s_1(v_0)$ il primo punto coniugato di \mathbf{p} lungo γ , allora

$$\sqrt{G}(s, v_0) \leq rac{sin(\sqrt{k}s)}{\sqrt{k}} \quad ext{in } (0, s_1(v_0)).$$

Lemma 2

Siano M una superficie con curvatura $K \geq k > 0$ e σ un segmento di geodetica avente origine in $\mathbf{p} \in M$. Se $L(\sigma) \geq \pi/\sqrt{k}$, allora \mathbf{p} ha un punto coniugato lungo σ .

Dimostrazione (prima parte)

$$\rho(\mathbf{p}, \mathbf{q}) \le \pi/\sqrt{k} \quad \forall \, \mathbf{p}, \mathbf{q} \in M.$$

Siano $\mathbf{p}, \mathbf{q} \in M$, per il Teorema di Hopf-Rinow esiste un segmento di geodetica σ avente lunghezza minima che li congiunge, ossia

$$L(\sigma) = \rho(\mathbf{p}, \mathbf{q})$$

Dimostrazione (prima parte)

$$\rho(\mathbf{p}, \mathbf{q}) \le \pi/\sqrt{k} \quad \forall \, \mathbf{p}, \mathbf{q} \in M.$$

Siano $\mathbf{p}, \mathbf{q} \in M$, per il Teorema di Hopf-Rinow esiste un segmento di geodetica σ avente lunghezza minima che li congiunge, ossia

$$L(\sigma) = \rho(\mathbf{p}, \mathbf{q})$$

Dal Teorema di Jacobi e dal Lemma 2 segue che

$$\rho(\mathbf{p},\mathbf{q}) = L(\sigma) \le \frac{\pi}{\sqrt{k}}$$

Dimostrazione (seconda parte)

M è compatta.

Sia $\mathbf{p} \in M$; l'applicazione exp_p è definita su tutto T_pM . Il disco chiuso $D = \{\mathbf{v} \in T_pM \mid ||\mathbf{v}|| \le \pi/\sqrt{k}\}$ è tale che:

$$exp_p(D) = M$$

$$area(M) \leq 4\pi/k$$
.

Supposta M parametrizzata in coordinate polari $\mathbf{x}(s, v)$, la sua area è data da

$$\iint_{M} \sqrt{EG - F^2} \, ds \, dv = \iint_{M} \sqrt{G} \, ds \, dv$$

Simone Carta

$$area(M) \le \int_0^{2\pi} dv \int_0^{s_1(v)} \sqrt{G} \, ds$$

$$area(M) \leq \int_0^{2\pi} dv \int_0^{s_1(v)} \sqrt{G} \ ds \leq \int_0^{2\pi} dv \int_0^{s_1(v)} \frac{\sin(\sqrt{k}s)}{\sqrt{k}} \ ds$$

$$area(M) \le \int_0^{2\pi} dv \int_0^{s_1(v)} \sqrt{G} \, ds \le \int_0^{2\pi} dv \int_0^{s_1(v)} \frac{\sin(\sqrt{k}s)}{\sqrt{k}} \, ds$$
$$\le \int_0^{2\pi} dv \int_0^{\pi/\sqrt{k}} \frac{\sin(\sqrt{k}s)}{\sqrt{k}} \, ds$$

$$area(M) \le \int_0^{2\pi} dv \int_0^{s_1(v)} \sqrt{G} \, ds \le \int_0^{2\pi} dv \int_0^{s_1(v)} \frac{\sin(\sqrt{k}s)}{\sqrt{k}} \, ds$$

$$\le \int_0^{2\pi} dv \int_0^{\pi/\sqrt{k}} \frac{\sin(\sqrt{k}s)}{\sqrt{k}} \, ds = \frac{2\pi}{\sqrt{k}} \int_0^{\pi/\sqrt{k}} \sin(\sqrt{k}s) \, ds$$

$$= \frac{2\pi}{k} \left[-\cos(\sqrt{k}s) \right]_0^{\pi/\sqrt{k}}$$

$$= \frac{4\pi}{k}$$

Simone Carta