BAMS1623 DISCRETE MATHEMATICS

Tutorial 7

- Let $A = \{a, b, c\}$. Determine whether the relation R whose matrix \mathbf{M}_R given is an 1. equivalence relation. If yes, find A/R.
 - i) 0 1 1

- Determine whether the relation R whose digraph is given as below is an equivalence 2. relation. If yes, find A/R.

ii)

- 3. Determine whether the following relation R on the set A is an equivalence relation. If yes, find A/R.
 - $A = \{a, b, c, d\}, R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}$ i)
 - $A = \{1, 2, 3, 4\}, R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 3), (1, 3), (4, 1), (4, 4)\}$ ii)
 - $A = \{2, 3, 5, 6, 8\}, x R y \text{ if and only if } 3|(x y).$ iii)
 - $A = \{1, 2, 3, 4, 5\}, x R y \Leftrightarrow x \equiv y \pmod{2}.$ iv)
- If $\{\{a, c, e\}, \{b, d, f\}\}\$ is a partition of the set $A = \{a, b, c, d, e, f\}$, determine the 4. corresponding equivalence relation R.

BAMS1623 DISCRETE MATHEMATICS

5. The following arrays describe a relation R on a set $A = \{1, 2, 3, 4\}$:

$$VERT = [1, 2, 6, 4]$$

$$TAIL = [1, 2, 2, 4, 4, 3, 4, 1]$$

$$HEAD = [2, 2, 3, 3, 4, 4, 1, 3]$$

$$NEXT = [8, 3, 0, 5, 7, 0, 0, 0]$$

Compute both the digraph of R and the matrix \mathbf{M}_R .

- 6. Let $A = B = \{1, 2, 3\}$ and let $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$ and let $S = \{(2, 1), (3, 1),$ (3, 2), (3, 3). Let R and S be the relations from A to B. Compute
 - i) \overline{R}

iii) $R \cup S$

- iv)
- Let $A = \{2, 4, 5, 7\}$ and let R and S be the relations on A described by x R y if and only if 7.

$$x + y$$
 is even and $\mathbf{M}_S = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. List the ordered pairs belonging to the following

relations.

i) S^{-1}

- ii) $S^{-1} \cap R$ iii) $(S^{-1} \circ R)^{-1}$
- 8. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3\}$. The matrices \mathbf{M}_R and \mathbf{M}_S of the relation R and S be

the relations from
$$A$$
 to B are given by $\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $\mathbf{M}_S = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Compute

i) $\mathbf{M}_R \cup S$ ii) $\mathbf{M}_{R} \cap S$

 $\mathbf{M}_{R^{-1}}$ iii)

- iv)
- Let $A = \{a, b, c, d, e\}$ and let the equivalence relations R and S on A be given by 9.

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- i) Compute
 - $\mathbf{M}_R \circ R$ a)

b) $M_{S \circ R}$

c) $\mathbf{M}_{R \circ S}$

d) $\mathbf{M}_{S \circ S}$

BAMS1623 DISCRETE MATHEMATICS

- ii) Compute the partition of *A* corresponding to $R \cap S$.
- 10. Given $A = \{w, x, y, z\}$, $B = \{1, 2, 3, 4\}$ and $C = \{a, b, c, d\}$. Let R be a relation from A to B and S be a relation from B to C defined as follow:

$$R = \{(w, 2), (x, 3), (y, 4), (z, 1), (z, 2), (y, 3)\}$$

- $S = \{(1, a), (1, c), (2, c), (2, d), (3, a), (4, b), (4, d)\}$
- i) Find $\mathbf{M}_{S \circ R}$.

ii) Verify that $\mathbf{M}_{R^{-1}} = (\mathbf{M}_R)^{\mathrm{T}}$.