Data Visualization and Pre-processing Assignment -2

Question-1. Download dataset

Solution:

			CreditSco			Age	Tenure		NumOfPrc Hase				
1	15634602	Hargrave	619	France	Female	42	2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502	France	Female	42	8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645	Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	50	7	0	2	1	1	10062.8	0
8	15656148	Obinna	376	Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	44	4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684	France	Male	27	2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528	France	Male	31	6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497	Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264	Kay	476	France	Female	34	10	0	2	1	0	26260.98	0
14	15691483	Chin	549	France	Female	25	5	0	2	0	0	190857.8	0
15	15600882	Scott	635	Spain	Female	35	7	0	2	1	1	65951.65	0
16	15643966	Goforth	616	Germany	Male	45	3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653	Germany	Male	58	1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549	Spain	Female	24	9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587	Spain	Male	45	6	0	1	0	0	158684.8	0
20	15568982	Hao	726	France	Female	24	6	0	2	1	1	54724.03	0
21	15577657	McDonald	732	France	Male	41	8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636	Spain	Female	32	8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510	Spain	Female	38	4	0	1	1	0	118913.5	1
24	15725737	Mosman	669	France	Male	46	3	0	2	0	1	8487.75	0
25	15625047	Yen	846	France	Female	38	5	0	1	1	1	187616.2	0
26	15738191	Maclean	577	France	Male	25	3	0	2	0	1	124508.3	0
27	15736816	Young	756	Germany	Male	36	2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571	France	Male	44	9	0	2	0	0	38433.35	0
29	15728693	McWillian	574	Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411	France	Male	29	0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591	Spain	Female	39	3	0	3	1	0	140469.4	1
32	15706552	Odinakacl	533	France	Male	36	7	85311.7	1	0	1	156731.9	0
33	15750181	Sanderso	553	Germany	Male	41	9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520	Spain	Female	42	6	0	2	1	1	34410.55	0
35	15732963	Clements	722	Spain	Female	29	9	0	2	1	1	142033.1	0
36	15794171	Lombardo	475	France	Female	45	0	134264	1	1	0	27822.99	1
37	15788448	Watson	490	Spain	Male	31	3	145260.2	1	0	1	114066.8	0
38	15729599	Lorenzo	804	Spain	Male	33	7	76548.6	1	0	1	98453.45	0
39	15717426	Armstron	850	France	Male	36	7	0	1	1	1	40812.9	0
40	15585768	Cameron	582	Germany	Male	41	6	70349.48	2	0	1	178074	0

Question-2.Load the dataset

Solution:

import numpy as np import pandas as pd import seaborn as sns importmatplotlib.pyplot as plt import

sklearn data = pd.read_csv(r'Churn_Modelling.csv') df.head

<bound< th=""><th>method</th><th>NDFrame.h</th><th>ead of</th><th>Row</th><th>Number</th><th>Custo</th><th>merId</th><th>Surname</th><th>CreditScore</th><th>Geography</th><th>Gender</th><th>Ag</th></bound<>	method	NDFrame.h	ead of	Row	Number	Custo	merId	Surname	CreditScore	Geography	Gender	Ag
0		1 1563	4602	Hargrave		619	France	Female	42			
1		2 1564	7311	Hill		608	Spain	Female	41			
2		3 1561	9304	Onio		502	France	Female	42			
3		4 1570	1354	Boni		699	France	Female	39			
4		5 1573	7888	Mitchell		850	Spain	Female	43			
	27.2	1.00	20.00			11.5.5.5.0	***		***			
9995	999			Obijiaku		771	France	Male	39			
9996	999	7 1556	9892 J	ohnstone		516	France	Male	35			
9997	999	8 1558	4532	Liu		709	France	Female	36			
9998	999	9 1568	2355 S	abbatini		772	Germany	Male	42			
9999	1000	1562	8319	Walker		792	France	Female	28			
	Tenure	Balance	NumOf	Products	HasCrCa	rd I	sActiveMe	mber \				
0	2	0.00	i i	1		1		1				
1	1	83807.86		1		0		1				
2	8	159660.80	Ř	3		1		0				
3	1	0.00	E .	2		0		0				
4	2	125510.82		1		1		1				
	***					• •						
9995	5	0.00		2		1		0				
9996		57369.61		1		1		1				
9997	7			1		0		1				
		75075.31		2		1		0				
9999	4	130142.79	E X	1		1		0				
	Estimate	dSalary	Exited									
0	16	1348.88	1									
1	11	2542.58	0									
2	11	3931.57	1									
3	9	3826.63	0									
4	7	9084.10	0									
9995	9	6270.64	0									
9996	16	1699.77	0									
9997	4	2085.58	1									
9998	9	2888.52	1									
9999	9	8190.78	0									

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```


plt.figure(figsize=(10,10))

sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))

sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10)) sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['glance'], hue = data['Gender'])

sns.pairplot(data)

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

ř.	RowNumber	5.000500e+03
	CustomerId	1.569094e+07
	CreditScore	6.505288e+02
	Age	3.892180e+01
	Tenure	5.012800e+00
	Balance	7.648589e+04
	NumOfProducts	1.530200e+00
	HasCrCard	7.055000e-01
	IsActiveMember	5.151000e-01
	EstimatedSalary	1.000902e+05
	Exited	2.037000e-01
	dtype: float64	

data.median(numeric_only = True)

RowNumber 5.000500e+03 1.569074e+07 6.520000e+02 3.700000e+01 5.00000e+00 CustomerId CreditScore Age Tenure Balance 9.719854e+04 1.000000e+00 1.000000e+00 NumOfProducts HasCrCard IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00 dtype: float64

data['CreditScore'].mode()

0 850 dtype: int64

data['EstimatedSalary'].mode()

0 24924.92 dtype: float64

data['HasCrCard'].unique()

array([1, 0])

data['Tenure'].unique()

array([2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

data.std(numeric_only=True)

2886.895680 RowNumber 71936.186123 CustomerId 96.653299 CreditScore Age 10.487806 Tenure 2.892174 Balance 62397.405202 0.581654 0.455840 0.499797 NumOfProducts HasCrCard IsActiveMember EstimatedSalary 57510.492818 Exited 0.402769 dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

- 2 1048
 - 1 1035
 - 7 1028
 - 8 1025
 - 5 1012
 - 3 1009
 - 4 989
 - 9 984
 - 6 967
 - 10 490
 - 0 413

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution: data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

sns.boxplot(data['CreditScore'])#Outlier detection - box plot

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label ax.set_xlabel('Balance')

y-axis label
ax.set_ylabel('Exited') plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore zscore = np.abs(stats.zscore(data['CreditScore'])) print(zscore)

print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0.332952
1
       0.447540
2
      1.551761
3
       0.500422
4
      2.073415
9995 1.250458
9996 1.405920
9997
       0.604594
9998
     1.260876
9999 1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25]) q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0,0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iqr

RowNumber	4999.5000					
CustomerId	124705.5000					
Surname	1464.5000					
CreditScore	134.0000					
Geography	1.0000					
Gender	1.0000					
Age	12.0000					
Tenure	4.0000					
Balance	127644.2400					
NumOfProducts	1.0000					
HasCrCard	1.0000					
IsActiveMember	1.0000					
EstimatedSalary	98386.1375					
Exited	0.0000					
dtype: float64						

u = q.iloc[0] + (1.5*iqr) u

```
4.435000e+03
9.190000e+02
CreditScore
Geography
               2.500000e+00
2.500000e+00
Gender
                6.200000e+01
Age
 Tenure
                1.300000e+01
               3.191106e+05
Balance
NumOfProducts 3.500000e+00
 HasCrCard
                2.500000e+00
IsActiveMember 2.500000e+00
EstimatedSalary 2.969675e+05
 Exited
                 0.000000e+00
dtype: float64
I = q.iloc[1] - (1.5*iqr)
 CustomerId 1 FACC
 Surname
CreditScore
               -1.423000e+03
                 3.830000e+02
 Geography
                 -1.500000e+00
                 -1.500000e+00
 Gender
                 1.400000e+01
 Age
             -3.00000e+00
 Tenure
 Balance
                 -1.914664e+05
 NumOfProducts -5.000000e-01
 HasCrCard
                 -1.500000e+00
 IsActiveMember -1.500000e+00
 EstimatedSalary -9.657710e+04
                   0.000000e+00
 Exited
 dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
upper=Q3 + 1.5 * iqr lower=Q1 - 1.5 * iqr
```

Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75) iqr = Q3 - Q1 print(iqr)
upper=Q3 + 1.5 * iqr lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] > upper)) count =
count + np.size(np.where(data['EstimatedSalary'] < lower)) print('No.
of outliers: ', count)
98386.1375
No. of outliers: 0

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65 0, data['CreditScore']) sns.boxplot(data['CreditScore'])


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std()) columns = data[ ( data['Age'] >
upper ) | ( data['Age'] < lower ) ] print('Upper range : ', upper) print('Lower
range : ', lower) print('No. of Outliers : ', len(columns))</pre>
```

Upper range : 70.38521935511383 Lower range : 7.458380644886169 No. of Outliers : 133

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outl ier removal

for i in columns:

```
Q1 = data[i].quantile(0.25) Q3 = data[i].quantile(0.75) iqr = Q3 - Q1 upper=Q3 + 1.5

* iqr lower=Q1 - 1.5 * iqr count = np.size(np.where(data[i] >upper)) count = count + np.size(np.where(data[i] <lower)) print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0

No. of outliers in Age : 0

No. of outliers in NumOfProducts : 0

No. of outliers in Tenure : 0

No. of outliers in Tenure : 0

No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder() oneh = OneHotEncoder() data['Surname'] = le.fit_transform(data['Surname']) data['Gender'] = le.fit_transform(data['Gender']) data['Geography'] = le.fit_transform(data['Geography']) data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs) x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	550	15**	****	200	9333	m	0.00	98	875	277	22.5	800	
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78
10000 r	rows × 13 col	umns											

y # dependent values (output) y = data['Exited']

```
0
       1
1
       0
2
       1
3
       0
4
       0
9995
       0
9996
       0
9997
       1
9998
       1
9999
       0
Name: Exited, Length: 10000, dtype: int64
```

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler() x_scaled = sc.fit_transform(x) x_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

```
from sklearn.model_selection import train_test_split 
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0) x_train
```

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
        [ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
        [ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
        ...,
        [ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
        [ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
        [ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
      1
 9031 0
 3691 0
 202
      1
 5625 0
 9225 0
 4859
      0
 3264
      0
 9845
      0
 2732
      1
 Name: Exited, Length: 7000, dtype: int64
y_test
 9394
        0
 898
        1
 2398
       0
 5906
        0
 2343
       0
 4004
       0
  7375
        0
 9307
        0
 8394
       0
```

Name: Exited, Length: 3000, dtype: int64