XI. SUPPLEMENTARY MATERIAL

TABLE SI: Comparison with Major Related Works - I

Ref.	Year	Main Objective	GAN Variant	Architecture (Gen Discr.)	Dataset
[11]	2019	Generating Realistic Synthetic ECG Signal	Regular	LSTM-4CNN, BiLSTM-4CNN	MIT-BIH (Lead II)
[10]	2019	Dataset Augmentation/Balancing	ACGAN	14CNN-16CNN	MIT-BIH (Lead II)
[14]	2019	Generating Realistic Synthetic ECG Signal	Regular	BiLSTM-(2CNN+FC)	MIT-BIH (one lead)
[13]	2021	Fully Automated Synthetic ECG Generation	Regular	2D BiLSTM 5CNN-2D 4CNN FC	12 lead, PTB-XL, CCDD, CSE, Chapman, Private Domain
[12]	2020	Generating Realistic Synthetic ECG Signal	DCGAN (SpectroGAN) Regular (WaveletGAN)	2D 4TrCNN-2D 4CNN (SpectroGAN) 2D 3FC-2D 3FC (WaveletGAN)	MIT-BIH (Lead I ¹)
ThS ¹	2021	Generating Realistic Synthetic ECG Signal	Regular, WGAN)	FC-FC, DC-DC, BiLSTM-DC, AE/VAE-FC, DC-DC (WGAN)	MIT-BIH (Lead I)

TABLE SII: Comparison with Major Related Works - II

Ref.	Multiclass (study/model)	Mode Collapse Prevention	Metrics	Preprocessing	No. of Epochs
[11]	No/No (only Normal)	MBD ¹ (didn't work)	MMD ² , DTW	Concatenation of beats	60
[10]	Yes/Yes	BN ³ , DO ⁴ (in Discriminator)	ED, PCC ⁵ , KL Div. (used templates)	NM	150
[14]	NM ⁶	DO	PRD ⁷ , RMS, FD ⁸	NM	NM
[13]	Yes/No	NM	MMD (IQR ⁹ SK ¹⁰ KU ¹¹ (between train, test and synthetic sets)	makecellFWS 12	up to 1000 (10 min.)
[12]	Yes/Yes	IN 13	SVM ¹⁴ , GTrTs ¹⁵	4 second segmentation	NM
ThS	No/No	BN, Visual Inspection	Original Methods	Pan-Tompkins	30

TABLE SIII: Comparison with Major Related Works - III

Ref.	Batch Size	Optimization	Learning Rate	Hyper-Parameter Fine-Tuning
[11]	NM	Adam	NM	NM
[10]	NM	Adam	0.0001 (G) 0.0002 (D)	NM
[14]	NM	NM	NM	NM
[13]	32	NM	NM	NM
[12]	NM	RMSProp	0.0001 (SectroGAN) 0.00015 (WaveletGAN)	NM
ThS	9	Adam	0.0002	Used Recommended Suggestions

XII. GRAPHS

A. Graphical Representation of Architectures

Fig. Sl. Graphical Representation of Model 01

Model 01

Fig. SII. Graphical Representation of Model 02

Fig. SIII. Graphical Representation of Model 3 Model 03

Fig. SIV. Graphical Representation of Model 4

Model 04

model: 04

Discriminator

Fig. SV. Graphical Representation of Model 5

