Predicting Survival Status of Patients with Liver Cirrhosis

Matt Wang, Lena Wang, Yiyu Yao, Chuan Lin

Outline

- 1. Cirrhosis Overview
- 2. Dataset and Challenges
- 3. Data Preprocessing
- 4. Feature Engineering
- Model Selection and Results
- 6. Feature Importance
- 7. Conclusion and Future Work

Cirrhosis Overview

- Cirrhosis: A chronic liver disease with high mortality.
- Traditional diagnostics are invasive and costly.
- Aim: Use machine learning to determine the effectiveness of D-penicillamine and to predict the survival status of patients.

Dataset Description

Cirrhosis Dataset Overview

- 424 patient records from Mayo Clinic (1974–1984).
 - 312 patients in clinical trial (112 did not join but agreed to record basic metrics)
 - 6 patients dropped out
- Features: Demographics, clinical metrics, and survival data.

Dataset Challenges

Limitations in Data

- Small dataset: 418 usable records (424 6 that dropped out).
- Missing data: ~ 33% of values missing (mainly due to 106 patients not participating in the trial).

Missing Data Handling

Analysis and Solution

Method Evolution

- Simple deletion → Data loss
- Median/Mode → Bias
- EM only → Limited
- Combined approach √
 - EM
 - Proportional & Statistical Imputation

ID	0	
N_Days	0	
Status	0	
Drug	106	
Age	0	
Sex	0	
Ascites	106	
Hepatomegaly	106	
Spiders	106	
Edema	0	
Bilirubin	0	
Cholesterol	134	
Albumin	0	
Copper	108	
Alk_Phos	106	
SG0T	106	
Tryglicerides	136	
Platelets	11	
Prothrombin	2	
Stage	6	

Categorical Encoding

Transforming Features

- One-hot encoding applied to categorical variables.
- Survival status simplified to binary: 0 (Alive), 1 (Deceased).

Feature Engineering

New Features Introduced

- DiagnosedDay
- Age Group
- BA Ratio
- CA Ratio
- RiskScore
- Liver Complication Index

Models Evaluated

Machine Learning Techniques

- Random Forest (RF)
- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)
- Multilayer Perceptron (MLP)

Random Forest Results

Optimized Tree Numbers

- Best performance: 21 trees (Accuracy: 87%).
- Higher trees led to overfitting.

SVM Results

with Bagging and Kernel

- Best accuracy: 79.8% with linear kernel.
- Non-linear kernels reached an even lower accuracy (rbf = 61.9%).

KNN Results

with/withoPCA

• PCA improved accuracy to 92.8% with k=11.

MLP Results

Neural Network Findings

- Optimal learning rate: 0.001.
- Simple architectures performed better: Single layer (128 units).

hidden_units	learning_rate	test_accuracy
[64]	0.001	0.761905
[64]	0.010	0.730159
[64]	0.100	0.746032
[128]	0.001	0.809524
[128]	0.010	0.777778
[128]	0.100	0.746032
[64, 64]	0.001	0.809524
[64, 64]	0.010	0.761905
[64, 64]	0.100	0.682540
[128, 64]	0.001	0.761905
[128, 64]	0.010	0.730159
[128, 64]	0.100	0.761905

Feature Importance Analysis

Key Insights

- Drug feature (D-penicillamine) has a minimal correlation with the survival status.
- Top three informative features: BA Ratio (Bilirubin/Albumin),
 Prothrombin, Bilirubin.

Conclusion

Key Takeaways

- KNN achieved highest accuracy (92.8%).
- D-penicillamine had limited effect on cirrhosis treatment.
- BA Ratio as a cost-effective and non-invasive predictor.

Limitations and Future Work

Next Steps

- Expand dataset to improve robustness.
- Validate BA Ratio in real-world clinical settings.
- Using prediction results to generate the probability of death