Exploring the Fitness Landscapeusing Spatial Analysis

Matthew Patrick and Yue Jia

7 September 2015

Outline

- Fitness landscape analysis
- Spatial metrics
- Case study
- Specific examples
- Conclusions

Fitness Landscape Analysis

Understanding the relationships between the **problem space**, the suitability of each potential **solution** and the performance of the optimisation **algorithm**

Why should we care?

1) How hard is the problem?

2) How good is my technique?

3) Which technique is best?

4) Can we tune it further?

Spatial Metrics

Composition

Connectivity

Complexity

Autocorrelation

Spatial Metrics

Composition

Connectivity

Complexity

Autocorrelation

Cases Study: Token Passing

Millard et al. "Searching for Pareto-optimal Randomised Algorithms"

Autocorrelation

$$G_i^* = \frac{\sum_j w_{ij} z_j}{\sum_j z_j}$$

$$I_i = \frac{nz_i \sum_j w_{ij} z_j}{z_i^2}$$

Moran

Getis & Ord

Autocorrelation for Spatial Landscapes

Moran's I for Fitness Landscapes

Red indicates strong autocorrelation, blue indicates weak autocorrelation

Getis' G_i* for Fitness Landscapes

Red indicates less fit solutions, blue indicates more fit solutions

Connectivity

 The cost of a graph cut can be calculated from the sum of weights between segments

$$w(p,q)$$

$$cut(A,B) = \sum_{p \in A, q \in B} w(p,q)$$

Graph Cuts for Spatial Landscapes

Graph Cuts for Fitness Landscapes

Conclusions

 Fitness landscape analysis helps us understand the problem and optimisation technique

 Spatial analysis techniques can be used to analyse fitness as well as spatial landscapes

There are many more techniques to explore!

ANY QUESTIONS?