¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 2005Am02,2003Am01,2008Gu02

Compiled (unevaluated) dataset from 2005Am02: Phys Rev C 71, 011302 (2005), and 2003Am01: Phys Lett B553, 197 (2003) and 2008Gu02: Phys Rev C 77, 024314 (2008). Includes 2007Be33: Acta Phys Pol B 38, 1535 (2007) and 2005Gu28: Jour Phys g 31, s1873 (2005).

Compiled by B. Singh (McMaster) March 31, 2003; updated by B. Singh, July 27, 2005.

Updated by S. Geraedts and B. Singh (McMaster) Mar 6, 2008, to include data from 2008Gu02 and numerical conversion coefficients received as email reply on Feb 28, 2008 from one of the authors (C.W. Beausang). Includes 2007Be33: Acta Phys Pol B 38, 1535 (2007) where measured K-conversion coefficients were given for triaxial SD-1 band.

2005Am02 (also 2003Am01): E=203 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ (DCO) using GAMMASPHERE array consisting of 100 Compton-suppressed Ge detectors. Four triaxial superdeformed structures were found, while data were reported for two such bands in addition to extending normal-deformed structures based on 1/2[411] and 5/2[402] Nilsson orbitals.

2008Gu02: E=203 MeV. Measured E γ , I γ , $\gamma\gamma$, γ (ce) coin using Gammasphere array of 101 Compton-suppressed Ge detectors for γ rays and ICE Ball consisting of six mini-orange electron spectrometers for conversion electrons.

Detailed publications for the normal deformed bands and lifetime measurements in SD bands are in progress (as per references 11 and 12 in 2005Am02).

All data are from 2005Am02 unless otherwise stated.

167Lu Levels

E(level) [†]	${ m J}^{\pi}$	Comments
0.0‡@	7/2+	
0+x ^a	$(1/2^+)$	E(level), J^{π} : from ENSDF for 167 Lu.
19.6+x	3/2+	E(level): from ENSDF for ¹⁶⁷ Lu. Additional information 1.
38.6+x ^c 11	5/2+	E(level): from ENSDF for ¹⁶⁷ Lu. Additional information 2.
122.6+x ^b 10	5/2-	
140.0 ^{‡#}	$(9/2^+)$	
149.7+x ^a 8	5/2+	
155.6+x ^d 7	7/2+	
189.7+x <mark>&</mark> 8	7/2+	
234.6+x ^b 11	9/2-	
300.4+x ^c 7	9/2+	
305.3 ^{‡@}	$(11/2^+)$	
403.7+x ^a 8	9/2+	
447.6+x ^b 11	$13/2^{-}$	
469.9+x ^d 8	$11/2^{+}$	
478.9+x & 8	$11/2^{+}$	
494.2 ^{‡#}	$(13/2^+)$	
664.8+x ^c 8	$13/2^{+}$	
704.3 ^{‡@}	$(15/2^+)$	
754.8+x ^a 9	$13/2^{+}$	
761.6+x ^b 12	$17/2^{-}$	
858.3+x & 9	$15/2^{+}$	
887.1+x ^d 9	$15/2^{+}$	
934.1‡#	$(17/2^+)$	
1112.5+x ^C 9	17/2+	
1172.6+x ^b 12	$21/2^{-}$	
1181.2‡@	$(19/2^+)$	
1187.9+x ^a 9	17/2+	
1318.0+x & 10	19/2+	
1377.6+x ^d 10	19/2+	

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 2005Am02,2003Am01,2008Gu02 (continued)

¹⁶⁷Lu Levels (continued)

E(level) [†]	J^{π}	E(level) [†]	${f J}^\pi$	E(level) [†]	J^{π}
1444.3‡#	$(21/2^+)$	3945.6+x ^f 16	35/2+	8115.6+x ^c 21	61/2 ⁺
1621.4+x ^c 11	21/2+	4096.4 ^{‡#}	$(41/2^+)$	8155.0+x ^e 21	61/2+
1670.6+x b 13	25/2-	4161.6+x ⁸ 21	39/2-	8199.9+x? 22	$(61/2^+)$
1687.8+x ^a 10	21/2+	4177.0+x ^c 18	41/2+	8616+x ^g 3	63/2-
1720.2 ^{‡@}	$(23/2^+)$	4273.6+x ^b 17	$41/2^{-}$	8917.8+x ^f 24	$63/2^{+}$
1828.1+x& <i>13</i>	$23/2^{+}$	4393.3+x ^e 17	$41/2^{+}$	8983.6+x b 22	$65/2^{-}$
1926.0+x ^d 11	$23/2^{+}$	4417.5 ^{‡@}	$(43/2^+)$	9009.8+x ^c 22	$65/2^{+}$
2008.0‡#	$(25/2^+)$	4492.6+x ^f 16	39/2+	9081.0+x ^e 23	$65/2^{+}$
2158.3+x ^c 11	$25/2^{+}$	4735.5 ^{‡#}	$(45/2^+)$	9541+x ⁸ 3	$67/2^{-}$
2231.8+x ^a 11	$25/2^{+}$	4784.6+x <mark>8</mark> 23	$43/2^{-}$	9841+x ^f 3	67/2+
2245.6+x ^b 13	$29/2^{-}$	4832.2+x ^c 19	45/2+	9941.8+x ^c 24	69/2+
2249.6+x ^e 13	$25/2^{+}$	4909.6+x ^b 18	$45/2^{-}$	9963.6+x ^b 25	$69/2^{-}$
2299.4 ^{‡@}	$(27/2^+)$	5048.0+x ^e 18	45/2 ⁺	10040.0+x ^e 25	69/2 ⁺
2369.3+x ^{&} 13	$27/2^{+}$	5093.5 ^{‡@}	$(47/2^+)$	10521+x ⁸ 4	$71/2^{-}$
2477.9+x ^d 12	$27/2^{+}$	5097.6+x ^f 17	43/2+	10817+x ^f 3	$71/2^{+}$
2580.6 ^{‡#}	$(29/2^+)$	5443.1 ^{‡#}	$(49/2^+)$	10930+x ^c 3	$73/2^{+}$
2631.6+x ^g 16	$27/2^{-}$	5455.6+x ⁸ 25	$47/2^{-}$	10997+x ^b 3	$73/2^{-}$
2664.6+x 16	$27/2^{-}$	5557.3+x ^c 20	49/2+	11056+x ^e 3	$73/2^{+}$
2666.0+x ^c 12	$29/2^{+}$	5605.6+x ^b 19	$49/2^{-}$	11558+x ⁸ 4	$75/2^{-}$
2720.4+x ^e 11	29/2+	5749.8+x ^e 19	49/2+	11849+x ^f 3	75/2+
2823.2 ^{‡@}	$(31/2^+)$	$5755.7 + x^f$ 18	47/2+	11984+x ^c 3	77/2+
2886.6+x ^b 15	$33/2^{-}$	5833.8 ^{‡@}	$(51/2^+)$	12132+x ^e 3	77/2+
2910.3+x ^{&} 17	$31/2^{+}$	6171.6+x ⁸ 27	$51/2^{-}$	12657+x ⁸ 4	$79/2^{-}$
2930.1+x ^d 13	$31/2^{+}$	6213.3 ^{‡#}	$(53/2^+)$	12933+x ^f 4	79/2 ⁺
3044.1 ^{‡#}	$(33/2^+)$	6359.5+x ^c 21	53/2+	13104+x ^c 3	81/2+
3088.6+x ⁸ 15	$31/2^{-}$	6365.6+x ^b 21	53/2-	13267+x ^e 3	81/2+
3104.9+x ^c 14	$33/2^{+}$	6466.7+x ^f 19	51/2+	13821+x ⁸ 4	83/2-
3225.6+x ^e 13	$33/2^{+}$	6501.5+x ^e 19	53/2+	14082+x ^f 4	83/2+
3285.5 ^{‡@}	$(35/2^+)$	6934.6+x <mark>8</mark> 29	55/2-	14287+x ^c 3	85/2+
3408.6+x ^d 15	$35/2^{+}$	7183.6+x ^b 21	$57/2^{-}$	14459+x ^e 4	85/2+
3532.4‡#	$(37/2^+)$	7213.7+x ^c 21	57/2+	15282+x ^f 4	87/2+
3582.6+x ^b 15	$37/2^{-}$	7231.8+x f 20	55/2 ⁺	15530+x ^c 4	89/2+
3593.6+x ⁸ 18	35/2-	7300.4+x ^e 20	57/2 ⁺	15706+x ^e 4	89/2+
3599.8+x ^c 15	37/2+	$7745 + x^{g} 3$	59/2 ⁻	16821+x ^C 4	93/2+
3786.5+x ^e 16	37/2+	$8047.8 + x^f$ 22	59/2+		
3813.0 ^{‡@}	(39/2+)	8056.6+x ^b 22	61/2-		

[†] From least-squares fit to Ey's, assuming $\Delta E_{\gamma}=1$ keV for each γ ray in bands other than the ground-state band.

[‡] From 'Adopted Levels, gammas' dataset in ENSDF database for 167 Lu. # Band(A): 7/2[404], α =+1/2.

[@] Band(a): 7/2[404], $\alpha = -1/2$.

[&]amp; Band(B): 1/2[411], $\alpha = -1/2$.

^a Band(b): 1/2[411], $\alpha = +1/2$.

^b Band(C): 1/2[541], $\alpha = +1/2$.

^c Band(D): 5/2[402], $\alpha = +1/2$.

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 **2005Am02,2003Am01,2008Gu02** (continued)

¹⁶⁷Lu Levels (continued)

$\gamma(^{167} Lu)$

All measured conversion coefficients ($\alpha(K)$ exp values) are from 2008Gu02. The numerical values corresponding to figures 6, 7, 9 and 12 in 2008Gu02 were received as email reply on Feb 28, 2008 from one of the authors (C.W. Beausang) of 2008Gu02.

$E_i(level)$	J_i^π	E_{γ}	E_f	\mathbf{J}^{π}_f	Mult.@	Comments	
122.6+x	5/2-	103 ^c	19.6+x	3/2+			
140.0	$(9/2^+)$	139.9 [‡]	0.0	7/2+			
149.7 + x	5/2+	130	19.6 + x	3/2+			
155.6+x	7/2+	117	38.6+x				
189.7+x	7/2+	170	19.6+x				
234.6+x	9/2-	112	122.6+x				
300.4+x	9/2+	145 262	155.6+x 38.6+x				
205.2	(11/2±)	165.3 [‡]					
305.3	$(11/2^+)$	305.3 [‡]	140.0	$(9/2^+)$			
403.7+x	9/2+	305.3* 214	0.0 189.7+x	7/2 ⁺			
403.7+X	9/2	248	169.7 + x 155.6 + x				
		254	149.7 + x				
447.6+x	$13/2^{-}$	213	234.6+x				
469.9 + x	$11/2^{+}$	170	300.4+x				
		314	155.6+x				
478.9 + x	$11/2^{+}$	178	300.4+x				
		289	189.7+x				
494.2	$(13/2^+)$	188.9‡	305.3	$(11/2^+)$			
	40/01	354.1 ^{&}	140.0	$(9/2^+)$			$\alpha(K)$ exp=0.024 3 for a contaminated 356.6 γ (2008Gu02), mult=E2.
664.8+x	13/2+	185	478.9+x				
		196 365	469.9+x 300.4+x				
704.3	$(15/2^+)$	210.3 [‡]	494.2				
704.3	$(13/2^{+})$			$(13/2^+)$			(II) 0.000 (f
754.8+x	13/2+	399.0 <mark>&</mark> 276	305.3 478.9+x	$(11/2^+)$			α (K)exp=0.023 6 for a contaminated 405.1 γ (2008Gu02), mult=E2.
/34.0±X	13/2	285	478.9+x 469.9+x				
		351	403.7+x				
761.6+x	$17/2^{-}$	314	447.6+x		E2		$\alpha(K)$ exp=0.035 4
858.3+x	15/2+	194	664.8 + x	$13/2^{+}$			
		380	478.9+x				
007.1	1.5 (0.1	388	469.9+x				
887.1+x	$15/2^{+}$	222	664.8+x				
		408 417	478.9+x 469.9+x				
024.1	(17/2+)						
934.1	$(17/2^+)$	230.0 [‡] 439.7	704.3 494.2	$(15/2^+)$ $(13/2^+)$	E2		$\alpha(K)$ exp=0.022 3
1112.5+x	17/2+	225	887.1+x		114		u(12)enp=0.022 3
-112.0 . A	- · / -	254	858.3+x				
		448	664.8+x				

^d Band(d): 5/2[402], $\alpha = -1/2$.

^e Band(E): Triaxial SD-1 band (2003Am01,2005Am02). Population≈8% relative to yrast band. Measured Q(transition)=6.9 *3* (preliminary value,2005Gu28).

f Band(F): Wobbling-mode, Triaxial SD-2 band (2003Am01,2005Am02). Population≈2% relative to yrast band.

^g Band(G): Triaxial SD-3 band (2005Am02). Population≈4% relative to yrast band. Multi-quasiparticle excitation.

$^{123}Sb(^{48}Ca,\!4n\gamma): XUNDL-1 \qquad \textbf{2005Am02,2003Am01,2008Gu02} \ (continued)$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. @	Comments
1172.6+x	21/2-	411	761.6+x 17/2	E2	$\alpha(K)\exp=0.024 \ 3$
1181.2	$(19/2^+)$	247.0 [‡]	934.1 (17/2		•
1187.9+x	17/2+	477.0 [‡] 301 330	704.3 (15/2 887.1+x 15/2 858.3+x 15/2	+ '	
1318.0+x	19/2+	433 205 460	754.8+x 13/2 1112.5+x 17/2 858.3+x 15/2	+	
1377.6+x	19/2+	190 265 490	1187.9+x 17/2 1112.5+x 17/2 887.1+x 15/2	+ +	
1444.3	$(21/2^+)$	263.6 [‡]	1181.2 (19/2	2+)	
1621.4+x	21/2+	510.2 [‡] 243.6 509	934.1 (17/2 1377.6+x 19/2 1112.5+x 17/2	+ ^	
1670.6+x 1687.8+x	25/2 ⁻ 21/2 ⁺	498 310 370 500	1172.6+x 21/2 ⁻ 1377.6+x 19/2 ⁻ 1318.0+x 19/2 ⁻ 1187.9+x 17/2 ⁻	E2 +	$\alpha(K) \exp = 0.0124 \ I5$
1720.2	(23/2+)	276.0 [‡] 539.0	1444.3 (21/2 1181.2 (19/2		$\alpha(K)$ exp=0.019 3
1828.1+x 1926.0+x	23/2 ⁺ 23/2 ⁺	510 238 305 548	1318.0+x 19/2 1687.8+x 21/2 1621.4+x 21/2 1377.6+x 19/2	+ +	
2008.0	$(25/2^+)$	288.3 [‡] 563.6 [‡]	1720.2 (23/2 1444.3 (21/2		
2158.3+x	25/2+	232 537	1926.0+x 23/2 1621.4+x 21/2	+	
2231.8+x	25/2+	306 544	1926.0+x 23/2 1687.8+x 21/2	+	
2245.6+x 2249.6+x	29/2 ⁻ 25/2 ⁺	575 562	1670.6+x 25/2 1687.8+x 21/2	- E2	$\alpha(K) \exp = 0.0118 \ 15$
2299.4	$(27/2^+)$	291.2 [‡]	2008.0 (25/2	2+)	
		579.2 [‡]	1720.2 (23/2	2 ⁺) (E2)	α (K)exp=0.0113 <i>18</i> Additional information 3.
2369.3+x 2477.9+x	27/2 ⁺ 27/2 ⁺	541 246 319 ^c 552	1828.1+x 23/2 ⁻ 2231.8+x 25/2 ⁻ 2158.3+x 25/2 ⁻ 1926.0+x 23/2 ⁻	+	
2580.6	(29/2+)	281.0 [‡] 572.6	2299.4 (27/2 2008.0 (25/2		$\alpha(K)$ exp=0.0113 18 Additional information 4.
2631.6+x	27/2-	961.0	1670.6+x 25/2	(M1+E2)	Additional information 4. I _γ : %BRANCHING≈60 5. Mult.,δ: ΔJ=1 transition; δ =−1.9 +11−200 or −0.5 +5−8.
2664.6+x 2666.0+x	27/2 ⁻ 29/2 ⁺	994 188 508	1670.6+x 25/2 2477.9+x 27/2 2158.3+x 25/2	+	1200,0. Do 1 danistion, 0 117 111 200 01 0.0 10 0.
2720.4+x	29/2+	242 351 471 489 562	2477.9+x 27/2' 2369.3+x 27/2' 2249.6+x 25/2' 2231.8+x 25/2' 2158.3+x 25/2'	+ + + +	

$\frac{123}{\text{Sb}}(^{48}\text{Ca,4n}\gamma)\text{:XUNDL-1} \qquad \textbf{2005Am02,2003Am01,2008Gu02} \text{ (continued)}$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	δ	Comments
2823.2 2886.6+x 2910.3+x 2930.1+x	33/2 ⁻ 31/2 ⁺ 31/2 ⁺	242.1 [‡] 523.8 [‡] 641 541 264 452		2580.6 2299.4 2245.6+x 2369.3+x 2666.0+x 2477.9+x	27/2 ⁺ 29/2 ⁺			
3044.1	(33/2+)	221.1‡		2823.2 2580.6	$(31/2^+)$	EO		o/W\que_0.0162.22
3088.6+x	31/2-	462.9 424 457 843.1		264.6+x 2631.6+x 2245.6+x	$27/2^{-}$	E2		α (K)exp=0.0162 23 I_{γ} : %BRANCHING=27 5. Mult., δ : expected to be the same as for 961.0 γ from 2631.6+x, (27/2 ⁻) level.
3104.9+x	33/2+	175 439		2930.1+x 2666.0+x				you of none 200110111, (21/2) 101011
3225.6+x	33/2+	506 560		2720.4+x 2666.0+x	29/2+	E2		α (K)exp=0.0165 23
3285.5	(35/2+)	241.2 [‡] 462.3 [‡]		3044.1 2823.2	$(33/2^+)$ $(31/2^+)$			
3408.6+x	35/2+	304 478		2623.2 3104.9+x 2930.1+x	33/2 ⁺ 31/2 ⁺			
3532.4	(37/2+)	246.6 [‡] 488.4 ^{&}		3285.5 3044.1	$(35/2^+)$ $(33/2^+)$	E2	#	α (K)exp=0.0107 26 Additional information 5.
3582.6+x 3593.6+x 3599.8+x	37/2 ⁻ 35/2 ⁻ 37/2 ⁺	696 ^b 505 191 495		2886.6+x 3088.6+x 3408.6+x 3104.9+x	31/2 ⁻ 35/2 ⁺	E2		α(K)exp=0.0076 9
3786.5+x	37/2 ⁺	561		3225.6+x	33/2+	E2		α (K)exp=0.0141 21
3813.0 3945.6+x 4096.4	(39/2 ⁺) 35/2 ⁺ (41/2 ⁺)	280.7 [‡] 527.5 [‡] 720 283.6 [‡]		3532.4 3285.5 3225.6+x 3813.0	$(37/2^+)$ $(35/2^+)$ $33/2^+$ $(39/2^+)$			
		563.9		3532.4	$(37/2^+)$	E2		$\alpha(K) \exp = 0.0125 \ 15$
4161.6+x 4177.0+x 4273.6+x	39/2 ⁻ 41/2 ⁺ 41/2 ⁻	568 577 691		3593.6+x 3599.8+x 3582.6+x	37/2+	E2		$\alpha(K) \exp = 0.012 \ 6$
4393.3+x	$41/2^{+}$	607		3786.5+x	$37/2^{+}$	E2		$\alpha(K) \exp = 0.0077 \ 28$
4417.5 4492.6+x	$(43/2^+)$ $39/2^+$	604.5 [‡] 547	100	3813.0 3945.6+x	(39/2 ⁺) 35/2 ⁺			
4735.5 4784.6+x 4832.2+x 4909.6+x 5048.0+x	(45/2 ⁺) 43/2 ⁻ 45/2 ⁺ 45/2 ⁻ 45/2 ⁺	706.1 & 639.1 623 655 636 654	91 4	3786.5+x 4096.4 4161.6+x 4177.0+x 4273.6+x 4393.3+x	(41/2 ⁺) 39/2 ⁻ 41/2 ⁺ 41/2 ⁻	(E2+M1) E2 E2 E2 E2	-3.1 [#] +11-34	$\alpha(K)\exp=0.0070\ 15$ $\alpha(K)\exp=0.0094\ 23$ $\alpha(K)\exp=0.0094\ 13$ $\alpha(K)\exp=0.0084\ 29$
5093.5 5097.6+x 5443.1 5455.6+x	(47/2 ⁺) 43/2 ⁺ (49/2 ⁺) 47/2 ⁻	676.0 [‡] 605 704.2 707.6 671	100 41 <i>6</i>	4417.5 4492.6+x 4393.3+x 4735.5 4784.6+x	(43/2 ⁺) 39/2 ⁺ 41/2 ⁺ (45/2 ⁺)	E2 E2		$\alpha(K) \exp = 0.0042 \ 8$ $\alpha(K) \exp = 0.0073 \ 26$

$^{123}Sb(^{48}Ca,\!4n\gamma): XUNDL-1 \qquad \textbf{2005Am02,2003Am01,2008Gu02} \ (continued)$

\$\frac{5573}{5605.6+x} = \frac{49/2}{917} = \frac{725}{696} \text{ 490 6+x} \{45/2}{497} = \frac{60}{696} \{45/2}{6906} \{45/2}{6906} \{45/2}{6907.6+x} = \{45/2}{679.7+x} = \{77.7+x}{678} \{77.7+x}{688} \{50.907.6+x}{697.7+x} \{45/2}{678} = \{77.7+x}{688} \{50.907.6+x}{697.7+x} \{45/2}{678} = \{77.7+x}{688} \{50.907.6+x}{677.7+x} \{45/2}{678} = \{77.7+x}{688} \{50.907.6+x}{677.7+x} \{45/2}{678.0+x} = \{45/2}{677.7+x} \{50.907.6+x}{677.7+x} \{50.907.6+x}{677.7+x} \{50.907.6+x}{677.7+x} \{50.907.6+x}{677.7+x} \{50.907.6+x}{677.7+x} \{50.907.6+x}{677.7+x} \{50.907.6+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{687.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.90.9-x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7+x}{677.7+x} \{77.7-x}{677.7+x} \{	$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.@	δ	Comments
5605 6+x 49/2 696	5557.3+x	49/2+	725		4832.2+x	45/2 ⁺			
5749.8+x 49/2 * 702			696 <mark>b</mark>				E2		$\alpha(K) \exp = 0.0076 \ 9$
S755-7+x 47 2* 658 100 5097-6+x 43 2*									
S833.8 S1/2" 740.3 5093.5 c47/2" E2 a (K)exp=0.0064 16	5755.7+x	47/2+		100	5097.6+x	43/2+			•
6171.6+x 51/2 716 5455.6+x 47/2 6213.3 (53/2+) 770.2 5443.1 (49/2+) E2 a(K)exp=0.0045 6 6213.5 (53/2+) 770.2 5557.3+x 49/2+ E2 a(K)exp=0.0062 7 6466.7+x 51/2+ 711 100 5755.7+x 47/2+ E2 a(K)exp=0.0062 7 6615.6+x 53/2+ 751 575.3 85 749.8+x 49/2+ E2 a(K)exp=0.0062 7 6934.6+x 55/2- 763 6171.6+x 51/2- 118.6+x 55/2- 763 6171.6+x 51/2- 118.6+x 57/2- 818 635.5+x 53/2+ 719.0 6466.7+x 51/2+ 818 635.5+x 53/2+ 710.0 6466.7+x 51/2+ 710.0	5833 8	(51/2 ⁺)		39 4				$-5.1^{#} + 16 - 25$	$\alpha(K) \exp = 0.0064 16$
6213.3 (\$3/2') 770.2 \$443.1 (49/2') \$\frac{1}{6256.54\times \$3/2'}\$ 802 \$5573.34\times \$49/2'\$ \$\frac{1}{6365.64\times \$63/2'}\$ 711 1 100 \$7555.74\times \$49/2'\$ \$\frac{1}{6256.54\times \$61/2'}\$ 730.3 \$\frac{1}{6256.54\times \$61/2'}\$ 763 \$\frac{1}{6171.64\times \$61/2'}\$ \$\frac{1}{6256.54\times \$71/2'}\$ 818 \$\frac{6365.64\times \$53/2'}{6305.64\times \$71/2'}\$ 854 \$\frac{6365.64\times \$53/2'}{6305.64\times \$71/2'}\$ 730.3 \$\frac{3}{627}\$ 730.3 \$\frac{3}{627}\$ 730.4\times \$71/2'\$ 799 \$\frac{6501.54\times \$53/2'}{6501.54\times \$51/2'}\$ 810 \$\frac{6607.4\times \$51/2'}{6501.64\times \$71/2'}\$ 810 \$\frac{6607.4\times \$51/2'}{6501.64\times \$71/2'}\$ 810 \$\frac{6607.4\times \$51/2'}{6501.64\times \$71/2'}\$ 815 \$\frac{7300.44\times \$71/2'}{7300.44\times \$71/2'}\$ 816 \$\frac{7231.84\times \$52/2'}{7300.44\times \$71/2'}\$ 815 \$\frac{7300.44\times \$71/2'}{815.64\times \$61/2'}\$ 815 \$\frac{7300.44\times \$71/2'}{815.64\times \$61/2'}\$ 815 \$\frac{7300.44\times \$71/2'}{815.64\times \$61/2'}\$ 816 \$\frac{7231.84\times \$52/2'}{8166\times \$73}\$ 811\times \$71/2''\$ 815 \$\frac{7300.44\times \$71/2''}{815.64\times \$61/2''}\$ 815 \$\frac{7300.44\times \$71/2''}{815.64\times \$61/2''}\$ 817 \$\frac{7300.44\times \$71/2''}{815.64\times \$61/2''}\$ 819 \$\frac{94\times \$1/2''}{815.64\times \$61/2''}\$ 819 \$\frac{94\times \$1/2''}{815.64\times \$61/2''}\$ 819 \$\frac{94\times \$1/2'''}{815.64\times \$61/2'''}\$ 819 \$\frac{94\times \$1/2''''}{815.64\times \$61/2''''}\$ 819 \$\frac{94\times \$1/2'''''}{815.64\times \$61/2''''''}\$ 815 \$63\times \$61/2''''''''''''''''''''''''''''''''''''							22		u(N)exp=0.000110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							E2		$\alpha(K) \exp = 0.0045 \ 6$
6466.7+x 51/2+ 711 100 5755.7+x 47/2+ 716.9\tilde{\mathbb{\mathbb{R}} 30 8 5749.8+x 49/2+ 6501.5+x 53/2+ 751									
Sol.5x Sol.2x Fol.							E2		$\alpha(K) \exp = 0.0062 \ 7$
6501.5+x 53/2+ 751	6466.7+x	51/2+						щ	
6934.6+x 55/2 763				30 8			` '	$-3.9^{#} + 27 - 84$	
7183.6+x 57/2^+ 884 639-5+x 53/2^+ E2 $\alpha(K)\exp=0.0045.9$ 7213.7+x 57/2+ 730.3 32 7 6501.5+x 53/2+ 730.0.4+x 57/2+ 799 6501.5+x 53/2+ 52/2+ 810 6934.6+x 55/2- 810 6934.6+x 57/2- 815.6+x 61/2- 815 7300.4+x 57/2- 815.6+x 61/2- 815 7300.4+x 57/2- 815.6+x 61/2- 815 7300.4+x 57/2- 815.6+x 61/2- 855 7300.4+x 57/2- 815.6+x 63/2- 871 7745+x 59/2- 891.8+x 59/2- 891.8+x 59/2- 891.8+x 59/2- 891.8+x 63/2- 870 8047.8+x 59/2- 891.8+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2- 927 8056.6+x 61/2- 894 8115.6+x 61/2+ 894 8115.6+x 61/2- 926 8155.0+x 69/2- 927 909.8+x 65/2- 927 909.8+x 65/2- 927 909.8+x 65/2- 927 909.8+x 65/2- 927 8056.6+x 61/2- 926 8155.0+x 61/2- 926 810.0+x 65/2- 926 926.3-6+x 69/2- 930 938.0-4+x 67/2-							E2		$\alpha(K) \exp = 0.0068 \ 16$
7213.7+x 57/2+ 854 6359.5+x 53/2+ 7231.8+x 55/2+ 730.3 32 7 6501.5+x 53/2+ 7300.4+x 57/2+ 799 6501.5+x 53/2+ 7300.4+x 57/2+ 799 6501.5+x 53/2+ 8047.8+x 59/2+ 810 6934.6+x 55/2+ 8047.8+x 59/2+ 816 7231.8+x 55/2+ 8056.6+x 61/2- 873 7183.6+x 57/2- 8115.6+x 61/2+ 815 7300.4+x 57/2+ 8155.0+x 61/2+ 815 7300.4+x 57/2+ 8155.0+x 61/2+ 855 7300.4+x 57/2+ 81616+x 63/2- 871 774.5+x 59/2+ 8816.5+x 63/2+ 870 8047.8+x 59/2+ 8983.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810^c 8199.9+x? (61/2+) 855 8155.0+x 61/2+ 855 8155.0+x 61/2+ 856 814 8115.6+x 61/2+ 9081.0+x 65/2+ 881^c 8199.9+x? (61/2+) 9981.0+x 67/2+ 925 8616+x 63/2- 9941.8+x 67/2+ 925 8616+x 63/2- 9941.8+x 67/2+ 925 8616+x 63/2- 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9963.6+x 69/2- 980 8983.6+x 65/2- 1004.00+x 69/2+ 959 9081.0+x 65/2+ 10321+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 71/2+ 980 9541+x 67/2- 10817+x 71/2+ 1054 10930+x 73/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11849+x 75/2+ 1034 10830+x 73/2+ 12132+x 77/2+ 1054 10930+x 73/2+ 12132+x 77/2+ 1054 10830+x 73/2+ 12132+x 77/2+ 1054 10830+x 73/2+ 12132+x 77/2+ 1054 10830+x							EO		· (V) 0.0045 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							E2		$\alpha(K)\exp=0.0045$ 9
765 100 6466.7+x 51/2+ 7300.4+x 57/2+ 799 6501.5+x 53/2+ 7745+x 59/2- 810 6934.6+x 55/2- 8047.8+x 59/2+ 816 7231.8+x 55/2- 8047.8+x 59/2+ 815 7231.8+x 55/2- 8115.6+x 61/2+ 815 7300.4+x 57/2- 8115.6+x 61/2+ 815 7300.4+x 57/2+ 8155.0+x 61/2+ 855 7300.4+x 57/2+ 81616+x 63/2- 871 7745+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2- 8983.6+x 65/2- 927 8056.6+x 61/2- 8909.8+x 65/2+ 810 8199.9+x? (61/2+) 855 8155.0+x 61/2+ 894 8115.6+x 61/2+ 894 8115.6+x 61/2+ 9081.0+x 65/2+ 881c 8199.9+x? (61/2+) 926 8155.0+x 61/2+ 9941.4x 67/2- 925 8616+x 63/2- 9841+x 67/2+ 923 8917.8+x 63/2+ 9941.8+x 69/2+ 932 9009.8+x 65/2- 9943.6+x 69/2- 980 8983.6+x 65/2- 9009.8+x 65/2+ 980 9941.8+x 69/2+ 10040.0+x 69/2+ 980 99541+x 67/2- 100307+x 71/2- 980 99541+x 67/2- 100307+x 73/2+ 1033 9963.6+x 69/2- 110551+x 71/2- 980 99541+x 67/2- 11056+x 73/2+ 1016 10040.0+x 69/2+ 11058+x 75/2+ 1016 10040.0+x 69/2+ 11984+x 77/2+ 1054 10930+x 73/2+ 12322+x 77/2+ 1076 11056+x 73/2+ 12321+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1149 12933+x 79/2+				22.7					
7300.4+x 57/2+ 799 6501.5+x 53/2+ E2 a(K)exp=0.0057 11 7745+x 59/2+ 810 6934.6+x 55/2+ 8047.8+x 59/2+ 816 7231.8+x 55/2+ 8056.6+x 61/2+ 873 7183.6+x 57/2+ 8115.6+x 61/2+ 815 7300.4+x 57/2+ 902 7213.7+x 57/2+ 902 7213.7+x 57/2+ 8155.0+x 61/2+ 855 7300.4+x 57/2+ 8616+x 63/2- 871 7745+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2- 8983.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810^c 8199.9+x? (61/2+) 855 8155.0+x 61/2+ 894 8115.6+x 61/2+ 9081.0+x 65/2+ 881^c 8199.9+x? (61/2+) 9541+x 67/2- 925 8616+x 63/2- 9941.8+x 69/2- 930 893.6+x 65/2- 10040.0+x 69/2- 980 893.6+x 65/2- 10321+x 71/2- 980 9541+x 67/2- 10317+x 71/2- 980 9541+x 67/2- 10321+x 71/2- 980 9541+x 67/2- 10321+x 71/2- 1033 9963.6+x 69/2- 11558+x 75/2- 1037 10521+x 71/2- 11349+x 75/2+ 1034 11849+x 75/2- 1232+x 77/2+ 1054 10930+x 73/2+ 1232+x 77/2+ 1054 1198+x 75/2- 12321+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 1321+x 83/2+ 1149 12933+x 79/2+	7231.6±X	33/2							
7745+x 59/2- 810 6934.6+x 55/2- 8047.8+x 59/2+ 816 7231.8+x 55/2+ 8056.6+x 61/2- 873 7183.6+x 57/2- 8115.6+x 61/2+ 815 7300.4+x 57/2- 8155.0+x 61/2+ 855 7300.4+x 57/2+ 816.6+x 63/2- 871 7745+x 59/2- 817.8+x 63/2+ 870 8047.8+x 59/2- 8983.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810° 8199.9+x? (61/2+) 855 8155.0+x 61/2+ 855 8155.0+x 61/2+ 894 8115.6+x 61/2- 909.8+x 65/2- 881 (61/2+) 855 8155.0+x 61/2+ 856 819.9+x? (61/2+) 857 8155.0+x 61/2+ 894 8115.6+x 61/2- 9981.0+x 65/2+ 881° 8199.9+x? (61/2+) 9981.0+x 65/2+ 881° 8199.9+x? (61/2+) 9941.8+x 67/2- 925 8616+x 63/2- 9841+x 67/2- 925 8616+x 63/2- 9941.8+x 69/2- 932 9009.8+x 65/2- 9941.8+x 69/2- 980 8983.6+x 65/2- 9963.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 100301+x 71/2- 980 9541+x 67/2- 10031+x 71/2- 980 9541+x 67/2- 10031+x 73/2+ 988 9941.8+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2- 11058+x 75/2- 1037 10521+x 71/2- 11849+x 75/2- 1039 10521+x 71/2- 11849+x 77/2+ 1054 10930+x 73/2+ 11984+x 77/2+ 1054 10930+x 73/2+ 11984+x 77/2+ 1054 10930+x 73/2+ 112657+x 79/2- 1099 11558+x 75/2- 12933+x 79/2+ 1084 11849+x 75/2- 12933+x 79/2+ 1135 12132+x 77/2+ 13261+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2-	7300.4±v	57/2+		100			F2		o(K)evn=0.0057_11
8047.8+x 59/2+ 816 7231.8+x 55/2+ 8056.6+x 61/2- 873 7183.6+x 57/2- 8155.0+x 61/2+ 855 7300.4+x 57/2+ 816-x 63/2- 871 7745+x 57/2+ 816-x 63/2- 871 7745+x 59/2- 8983.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810° 8199.9+x? (61/2+) 855 8155.0+x 61/2+ 894 8115.6+x 61/2+ 9081.0+x 65/2+ 881° 8199.9+x? (61/2+) 9081.0+x 67/2- 925 8616+x 63/2- 9341+x 67/2- 925 8616+x 63/2- 9341-x 67/2- 923 8917.8+x 63/2+ 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9941.8+x 69/2- 980 8983.6+x 65/2- 9963.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 100521+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 73/2+ 1016 10040.0+x 69/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11849+x 75/2+ 1034 1084 11849+x 75/2+ 12657+x 79/2- 1099 11558+x 75/2- 12333+x 79/2+ 1084 11849+x 75/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2-							E2		a(K)exp=0.0037 11
8056.6+x 61/2- 873 7183.6+x 57/2- 8115.6+x 61/2+ 815 7300.4+x 57/2+ 902 7213.7+x 57/2+ 8155.0+x 61/2+ 855 7300.4+x 57/2+ 8616+x 63/2- 871 7745+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2- 9009.8+x 65/2- 927 805.6+x 61/2- 9009.8+x 65/2+ 810c 8199.9+x? (61/2+) 855 8155.0+x 61/2+ 894 8115.6+x 61/2+ 981.0+x 65/2+ 881c 8199.9+x? (61/2+) 981.0+x 65/2+ 926 8155.0+x 61/2+ 994.1-x 67/2- 925 8616+x 63/2- 984.1+x 67/2- 925 8616+x 63/2- 984.1+x 69/2+ 932 9009.8+x 65/2+ 9963.6+x 69/2- 980 8983.6+x 65/2- 9963.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10040.0+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10817+x 73/2+ 1033 9963.6+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11849+x 75/2- 1037 10521+x 71/2- 11849+x 77/2+ 1054 10930+x 73/2+ 11984+x 77/2+ 1054 10930+x 73/2+ 12657+x 79/2- 1099 11558+x 75/2- 12933+x 79/2+ 1084 11849+x 75/2- 12033+x 79/2+ 1135 12132+x 77/2+ 13261+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2-									
8115.6+x 61/2+ 815 7300.4+x 57/2+ 8155.0+x 61/2+ 855 7300.4+x 57/2+ 81616+x 63/2- 871 7745+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2+ 8983.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810 ^c 8199.9+x? (61/2+) 855 815.0+x 61/2+ 894 8115.6+x 61/2+ 9081.0+x 65/2+ 881 ^c 8199.9+x? (61/2+) 9081.0+x 67/2- 925 8616+x 63/2- 9941.8+x 67/2- 925 8616+x 63/2- 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9941.8+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10817+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 988 9941.8+x 67/2+ 10817+x 73/2+ 1016 10040.0+x 69/2+ 10997+x 73/2- 1033 9963.6+x 69/2- 10818+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11849+x 77/2+ 1054 10930+x 73/2+ 11056+x 73/2+ 1016 10040.0+x 69/2+ 11058+x 77/2+ 1032 10817+x 71/2+ 11849+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11849+x 77/2+ 1054 10930+x 73/2+ 12657+x 79/2- 1099 11558+x 75/2- 12933+x 79/2+ 1084 1185 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+									
8155.0+x 61/2+ 855 7300.4+x 57/2+ 8616+x 63/2- 871 7745+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2- 8936.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810 ^c 8199.9+x? (61/2+) 855 815.0+x 61/2+ 9081.0+x 65/2+ 881 ^c 8199.9+x? (61/2+) 9081.0+x 67/2- 925 8616+x 61/2- 926 8155.0+x 61/2+ 926 8155.0+x 61/2+ 926 8155.0+x 61/2+ 9941+x 67/2+ 923 8917.8+x 63/2+ 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9943.6+x 69/2- 980 983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10521+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 69/2+ 10930+x 73/2+ 988 9941.8+x 69/2+ 10930+x 73/2+ 1033 9963.6+x 69/2- 11056+x 73/2+ 1033 9963.6+x 69/2- 111558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2- 11894+x 77/2+ 1054 10930+x 73/2+ 11894+x 77/2+ 1054 10930+x 73/2+ 12132+x 77/2+ 1076 11056+x 73/2+ 12233+x 79/2+ 1084 11849+x 75/2+ 13104+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+									
8155.0+x 61/2+ 855 7300.4+x 57/2+ 8616+x 63/2- 871 7745+x 59/2- 8917.8+x 63/2+ 870 8047.8+x 59/2+ 8983.6+x 65/2- 927 8056.6+x 61/2- 9009.8+x 65/2+ 810° 8199.9+x' (61/2+) 855 8155.0+x 61/2+ 9081.0+x 65/2+ 881° 8155.0+x 61/2+ 9981.0+x 67/2- 925 8616+x 63/2- 9941+x 67/2- 925 8616+x 63/2- 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9943.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10521+x 71/2- 980 9541+x 67/2- 10317+x 71/2+ 976 9841+x 67/2- 10317+x 73/2+ 988 9941.8+x 69/2+ 10997+x 73/2- 1033 9963.6+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11984+x 77/2+ 1054 10930+x 73/2+ 11232+x 77/2+ 1076 11056+x 73/2+ 11232+x 77/2+ 1076 11056+x 73/2+ 11232+x 77/2+ 1084 11849+x 75/2- 12333+x 79/2+ 1084 11849+x 75/2+ 13104+x 81/2+ 1135 12132+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2- 1164 12657+x 79/2-		~ -/ -							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8155.0+x	$61/2^{+}$							
8616+x 63/2 ⁻ 871 7745+x 59/2 ⁻ 8917.8+x 63/2 ⁺ 870 8047.8+x 59/2 ⁺ 8983.6+x 65/2 ⁻ 927 805.6+x 61/2 ⁻ 9009.8+x 65/2 ⁺ 810 ^c 8199.9+x? (61/2 ⁺) 855 8155.0+x 61/2 ⁺ 9081.0+x 65/2 ⁺ 881 ^c 8199.9+x? (61/2 ⁺) 926 8155.0+x 61/2 ⁺ 9341+x 67/2 ⁻ 925 8616+x 63/2 ⁻ 9841+x 67/2 ⁻ 922 8917.8+x 63/2 ⁺ 9941.8+x 69/2 ⁺ 932 9009.8+x 65/2 ⁺ 9963.6+x 69/2 ⁻ 980 8983.6+x 65/2 ⁻ 10040.0+x 69/2 ⁺ 959 9081.0+x 65/2 ⁺ 10521+x 71/2 ⁻ 980 9541+x 67/2 ⁻ 10817+x 71/2 ⁺ 976 9841+x 67/2 ⁺ 10930+x 73/2 ⁺ 988 9941.8+x 69/2 ⁺ 10997+x 73/2 ⁻ 1033 9963.6+x 69/2 ⁻ 11056+x 73/2 ⁺ 1016 10040.0+x 69/2 ⁺ 11558+x 75/2 ⁻ 1037 10521+x 71/2 ⁻ 11849+x 75/2 ⁺ 1032 10817+x 71/2 ⁻ 11984+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1076 11056+x 73/2 ⁺ 12132+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1054 1135 12132+x 77/2 ⁺ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13104+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁻ 1149 12933+x 79/2 ⁺		,							
8983.6+x 65/2 ⁺ 927 8056.6+x 61/2 ⁻ 9009.8+x 65/2 ⁺ 810 ^c 8199.9+x? (61/2 ⁺) 894 8115.6+x 61/2 ⁺ 9081.0+x 65/2 ⁺ 881 ^c 8199.9+x? (61/2 ⁺) 9541+x 67/2 ⁻ 925 8616+x 63/2 ⁻ 9941.8+x 69/2 ⁺ 932 9009.8+x 65/2 ⁺ 9963.6+x 69/2 ⁻ 980 8983.6+x 65/2 ⁻ 10040.0+x 69/2 ⁺ 959 9081.0+x 65/2 ⁻ 10817+x 71/2 ⁻ 980 9541+x 67/2 ⁻ 10817+x 71/2 ⁻ 980 9541+x 67/2 ⁻ 10930+x 73/2 ⁺ 1033 9963.6+x 69/2 ⁻ 10930+x 73/2 ⁺ 1033 9963.6+x 69/2 ⁻ 11558+x 75/2 ⁻ 1037 10521+x 71/2 ⁻ 11849+x 75/2 ⁻ 1037 10521+x 71/2 ⁻ 11849+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1054 11930+x 75/2 ⁻ 121325+x 79/2 ⁻ 1099 11558+x 75/2 ⁻ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13104+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺	8616+x	$63/2^{-}$	871		7745 + x	59/2-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8917.8+x	$63/2^{+}$	870		8047.8 + x	59/2+			
855 8155.0+x 61/2+ 894 8115.6+x 61/2+ 9081.0+x 65/2+ 881 ^c 8199.9+x? (61/2+) 926 8155.0+x 61/2+ 9541+x 67/2- 925 8616+x 63/2- 9841+x 67/2+ 923 8917.8+x 63/2+ 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9963.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10521+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 67/2+ 10930+x 73/2+ 988 9941.8+x 69/2+ 10997+x 73/2- 1033 9963.6+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11849+x 75/2+ 1054 10930+x 73/2+ 12132+x 77/2+ 1054 10930+x 73/2+ 12132+x 77/2+ 1054 11056+x 73/2+ 12132+x 77/2+ 1084 11849+x 75/2- 13104+x 81/2+ 1120 11984+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+	8983.6+x	$65/2^{-}$	927		8056.6+x	$61/2^{-}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9009.8 + x	$65/2^{+}$			8199.9+x?				
9081.0+x 65/2+ 881° 8199.9+x? (61/2+) 926 8155.0+x 61/2+ 9541+x 67/2- 925 8616+x 63/2- 9841+x 67/2+ 923 8917.8+x 63/2+ 9941.8+x 69/2+ 932 9009.8+x 65/2+ 9963.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10521+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 67/2- 10930+x 73/2+ 988 9941.8+x 69/2+ 10997+x 73/2- 1033 9963.6+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11944+x 77/2+ 1054 10930+x 73/2+ 12132+x 77/2+ 1076 11056+x 73/2+ 12132+x 77/2+ 1076 11056+x 73/2+ 12132+x 77/2+ 1076 11056+x 73/2+ 12132+x 77/2+ 1084 11849+x 75/2- 12933+x 79/2+ 1084 11849+x 75/2+ 13104+x 81/2+ 1120 11984+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+									
9541+x 67/2 ⁻ 925 8616+x 63/2 ⁻ 9841+x 67/2 ⁺ 923 8917.8+x 63/2 ⁺ 9941.8+x 69/2 ⁺ 932 9009.8+x 65/2 ⁺ 9963.6+x 69/2 ⁻ 980 8983.6+x 65/2 ⁻ 10040.0+x 69/2 ⁺ 959 9081.0+x 65/2 ⁺ 10521+x 71/2 ⁻ 980 9541+x 67/2 ⁻ 10817+x 71/2 ⁺ 976 9841+x 67/2 ⁻ 10930+x 73/2 ⁺ 988 9941.8+x 69/2 ⁺ 10997+x 73/2 ⁻ 1033 9963.6+x 69/2 ⁻ 11056+x 73/2 ⁺ 1016 10040.0+x 69/2 ⁺ 11558+x 75/2 ⁻ 1037 10521+x 71/2 ⁻ 11849+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 11984+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1054 11056+x 73/2 ⁺ 12132+x 77/2 ⁺ 1076 11056+x 73/2 ⁺ 12157+x 79/2 ⁻ 1099 11558+x 75/2 ⁻ 12933+x 79/2 ⁺ 1084 11849+x 75/2 ⁺ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13267+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺									
9541+x 67/2 ⁻ 925 8616+x 63/2 ⁻ 9841+x 67/2 ⁺ 923 8917.8+x 63/2 ⁺ 9941.8+x 69/2 ⁺ 932 9009.8+x 65/2 ⁺ 9963.6+x 69/2 ⁻ 980 8983.6+x 65/2 ⁻ 10040.0+x 69/2 ⁺ 959 9081.0+x 65/2 ⁺ 10521+x 71/2 ⁻ 980 9541+x 67/2 ⁻ 10817+x 71/2 ⁺ 976 9841+x 67/2 ⁻ 10930+x 73/2 ⁺ 988 9941.8+x 69/2 ⁺ 10997+x 73/2 ⁻ 1033 9963.6+x 69/2 ⁻ 11056+x 73/2 ⁺ 1016 10040.0+x 69/2 ⁺ 11558+x 75/2 ⁻ 1037 10521+x 71/2 ⁻ 11849+x 75/2 ⁺ 1032 10817+x 71/2 ⁺ 11984+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1076 11056+x 73/2 ⁺ 12132+x 77/2 ⁺ 1084 11849+x 75/2 ⁻ 12933+x 79/2 ⁻ 1084 11849+x 75/2 ⁺ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13267+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺	9081.0+x	$65/2^{+}$							
9841+x 67/2 ⁺ 923 8917.8+x 63/2 ⁺ 9941.8+x 69/2 ⁺ 932 9009.8+x 65/2 ⁺ 9963.6+x 69/2 ⁻ 980 8983.6+x 65/2 ⁻ 10040.0+x 69/2 ⁺ 959 9081.0+x 65/2 ⁺ 10521+x 71/2 ⁻ 980 9541+x 67/2 ⁻ 10817+x 71/2 ⁺ 976 9841+x 67/2 ⁺ 10930+x 73/2 ⁺ 988 9941.8+x 69/2 ⁺ 10997+x 73/2 ⁻ 1033 9963.6+x 69/2 ⁻ 11056+x 73/2 ⁺ 1016 10040.0+x 69/2 ⁺ 11558+x 75/2 ⁻ 1037 10521+x 71/2 ⁻ 11849+x 75/2 ⁺ 1032 10817+x 71/2 ⁻ 11984+x 77/2 ⁺ 1054 10930+x 73/2 ⁺ 12132+x 77/2 ⁺ 1076 11056+x 73/2 ⁺ 12132+x 77/2 ⁺ 1084 11849+x 75/2 ⁻ 12933+x 79/2 ⁻ 1084 11849+x 75/2 ⁺ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13267+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺	0541	67.10-							
9941.8+x 69/2+ 932 9009.8+x 65/2+ 9963.6+x 69/2- 980 8983.6+x 65/2- 10040.0+x 69/2+ 959 9081.0+x 65/2+ 10521+x 71/2- 980 9541+x 67/2- 10817+x 71/2+ 976 9841+x 67/2+ 10930+x 73/2+ 988 9941.8+x 69/2+ 10997+x 73/2- 1033 9963.6+x 69/2- 11056+x 73/2+ 1016 10040.0+x 69/2+ 11558+x 75/2- 1037 10521+x 71/2- 11849+x 75/2+ 1032 10817+x 71/2+ 11984+x 77/2+ 1054 10930+x 73/2+ 12132+x 77/2+ 1076 11056+x 73/2+ 121657+x 79/2- 1099 11558+x 75/2- 12933+x 79/2+ 1084 11849+x 75/2+ 13104+x 81/2+ 1120 11984+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
12132+x 77/2+ 1076 11056+x 73/2+ 12657+x 79/2- 1099 11558+x 75/2- 12933+x 79/2+ 1084 11849+x 75/2+ 13104+x 81/2+ 1120 11984+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+	11849+x				10817 + x				
12657+x 79/2 ⁻ 1099 11558+x 75/2 ⁻ 12933+x 79/2 ⁺ 1084 11849+x 75/2 ⁺ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13267+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺	11984+x		1054		10930+x	73/2+			
12933+x 79/2 ⁺ 1084 11849+x 75/2 ⁺ 13104+x 81/2 ⁺ 1120 11984+x 77/2 ⁺ 13267+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺									
13104+x 81/2+ 1120 11984+x 77/2+ 13267+x 81/2+ 1135 12132+x 77/2+ 13821+x 83/2- 1164 12657+x 79/2- 14082+x 83/2+ 1149 12933+x 79/2+									
13267+x 81/2 ⁺ 1135 12132+x 77/2 ⁺ 13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺									
13821+x 83/2 ⁻ 1164 12657+x 79/2 ⁻ 14082+x 83/2 ⁺ 1149 12933+x 79/2 ⁺									
$14082+x$ $83/2^+$ 1149 $12933+x$ $79/2^+$									
1428/+X $85/2$ 1185 $15104+X$ $81/2$									
	1428/+X	83/2	1183		13104+X	61/2			

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 **2005Am02,2003Am01,2008Gu02** (continued)

$\gamma(^{167}\text{Lu})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	E_f	\mathbf{J}_f^{π}
14459+x	85/2+	1192	13267+x	81/2+
15282+x	$87/2^{+}$	1200	14082 + x	$83/2^{+}$
15530+x	$89/2^{+}$	1243	14287 + x	$85/2^{+}$
15706+x	$89/2^{+}$	1247	14459 + x	$85/2^{+}$
16821 + x	$93/2^{+}$	1291	15530 + x	$89/2^{+}$

[†] From 2003Am01.

[‡] From 'Adopted Levels, gammas' dataset in ENSDF database for ¹⁶⁷Lu.

[#] Lower values of $-0.26\ 16$ for 706.1γ , $-0.07\ 7$ for 707.7γ , and $-0.35\ 65$ for 716.9γ are possible but not likely in comparison to similar transitions (of known mixing ratios) in 163 Lu SD bands.

[@] From ce data of 2008Gu02.

[&]amp; Contaminated transition in ce spectrum (2008Gu02).

^a The γ ray listed with ground-state band by 2008Gu02, but the compilers cannot find any such transition in the ENSDF database for ¹⁶⁷Lu or in the paper 1990Yu01: Nucl Phys A 511, 157 (1990), where g.s. band is studied in detail.

^b Multiply placed.

^c Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 2005Am02,2003Am01,2008Gu02

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

$^{123}Sb(^{48}Ca,4n\gamma): XUNDL-1 \\ 2005Am02,2003Am01,2008Gu02$

Level Scheme (continued)

Intensities: Relative photon branching from each level

$^{123}Sb(^{48}Ca,4n\gamma): XUNDL-1 \\ 2005Am02,2003Am01,2008Gu02$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 2005Am02,2003Am01,2008Gu02

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 2005Am02,2003Am01,2008Gu02

Level Scheme (continued)

Intensities: Relative photon branching from each level

$^{123}Sb(^{48}Ca,4n\gamma): XUNDL-1 \\ 2005Am02,2003Am01,2008Gu02$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{167}_{71} Lu_{96}$

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-1 2005Am02,2003Am01,2008Gu02

$$^{167}_{\ 71}Lu_{96}$$

¹²³Sb(⁴⁸Ca,4ηγ):XUNDL-1 2005Am02,2003Am01,2008Gu02 (continued)

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-2 **2015Ro27**

Compiled (unevaluated) dataset from 2015Ro27: Phys Rev C 92, 064313 (2015).

See also previous papers 2005Am02 (Phys. Rev. C 71, 011302); and 2003Am01 (Phys. Lett. B553, 197) with partial analysis of the data from apparently the same experiment as described in 2015Ro27, mainly focusing on triaxial strongly-deformed (TSD) bands. The 2015Ro27 paper provides a more complete analysis of many normal-deformed structures, together with two TSD bands. A third TSD band reported in 2005Am02 has been reassigned to a normal-deformed structure (Band #4) in 2015Ro27.

Compiled by B. Singh (McMaster), February 10, 2016.

 $E(^{48}Ca)=203$ MeV. Target=520 $\mu g/cm^2$ thick 97.7% enriched self-supporting ¹²³Sb foil. The isotopes ¹⁶⁶Lu, ¹⁶⁷Lu and ¹⁶⁸Lu were populated in the ratio 1:5:2. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) at LBNL cyclotron facility using Gammasphere with 100 Compton-suppressed Ge detectors. Deduced high-spin levels, J^{π} , multipolarities, bands, triaxial strongly-deformed (TSD) bands, multiquasiparticle configurations, alignments, and band interactions. Comparison with cranked shell-model calculations.

¹⁶⁷Lu Levels

Nomenclature for quasiparticle orbitals:

```
a: \pi g_{7/2}, 7/2[404], \alpha = +1/2.
```

b: $\pi g_{7/2}$, 7/2[404], $\alpha = -1/2$.

c: $\pi d_{3/2}$, 1/2[411], $\alpha = +1/2$.

d: $\pi d_{3/2}$, $1/2[411], \alpha = -1/2$.

e: $\pi h_{11/2}$, 9/2[514], $\alpha = +1/2$.

f: $\pi h_{11/2}$, 9/2[514], $\alpha = -1/2$.

g: $\pi h_{9/2}$, 1/2[541], $\alpha = +1/2$.

h: $\pi h_{9/2}$, 1/2[541], $\alpha = -1/2$.

i: $\pi d_{5/2}$, 5/2[402], $\alpha = +1/2$.

j: $\pi d_{5/2}$, 5/2[402], $\alpha = -1/2$.

m: $\pi i_{13/2}$, 1/2[660], $\alpha = +1/2$.

A: $vi_{13/2}$, 5/2[642], $\alpha = +1/2$.

B: $vi_{13/2}$, 5/2[642], $\alpha = -1/2$.

C: $vi_{13/2}$, 3/2[651], $\alpha = +1/2$.

D: $vi_{13/2}$, 3/2[651], $\alpha = -1/2$.

E: $vf_{7/2}$, 5/2[523], $\alpha = +1/2$.

F: $vf_{7/2}$, 5/2[523], $\alpha = -1/2$.

G: $\nu h_{9/2}$, 3/2[521], $\alpha = +1/2$.

H: $\nu h_{9/2}$, 3/2[521], $\alpha = -1/2$.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
$48.6^{g} 4 3/2^{+}$ $67.1^{j} 4 5/2^{+}$ $136.3^{s} 4 1/2^{-}$ $140.04^{\&} 14 9/2^{+}$ $155.9^{s} 4 5/2^{-}$ $178.3^{f} 4 5/2^{+}$ $184.5^{k} 4 7/2^{+}$ $218.4^{g} 4 7/2^{+}$ $258.7^{f} 4 3/2^{-}$ $267.6^{s} 4 9/2^{-}$ $305.29^{a} 15 11/2^{+}$	0.0^{a}	7/2+	51.5 min <i>10</i>	$\%\varepsilon + \%\beta^{+} = 100$
$67.1^{j} 4$ $5/2^{+}$ $136.3^{s} 4$ $1/2^{-}$ $140.04^{\&} 14$ $9/2^{+}$ $155.9^{s} 4$ $5/2^{-}$ $178.3^{f} 4$ $5/2^{+}$ $184.5^{k} 4$ $7/2^{+}$ $218.4^{g} 4$ $7/2^{+}$ $258.7^{f} 4$ $3/2^{-}$ $267.6^{s} 4$ $9/2^{-}$ $305.29^{a} 15$ $11/2^{+}$	$33.7^{f} 4$	1/2+	≥1 min	$\%IT=?; \%\varepsilon+\%\beta^{+}=?$
$136.3^{8} 4$ $1/2^{-}$ $140.04^{\&} 14$ $9/2^{+}$ $155.9^{8} 4$ $5/2^{-}$ $178.3^{f} 4$ $5/2^{+}$ $184.5^{k} 4$ $7/2^{+}$ $218.4^{g} 4$ $7/2^{+}$ $258.7^{f} 4$ $3/2^{-}$ $267.6^{g} 4$ $9/2^{-}$ $305.29^{a} 15$ $11/2^{+}$				
$140.04^{\&}\ 14 \ 9/2^{+}$ $155.9^{S}\ 4 \ 5/2^{-}$ $178.3^{f}\ 4 \ 5/2^{+}$ $184.5^{k}\ 4 \ 7/2^{+}$ $218.4^{g}\ 4 \ 7/2^{+}$ $258.7^{t}\ 4 \ 3/2^{-}$ $267.6^{S}\ 4 \ 9/2^{-}$ $305.29^{a}\ 15 \ 11/2^{+}$				
$155.9^{8} \ 4 \qquad 5/2^{-}$ $178.3^{f} \ 4 \qquad 5/2^{+}$ $184.5^{k} \ 4 \qquad 7/2^{+}$ $218.4^{g} \ 4 \qquad 7/2^{+}$ $258.7^{t} \ 4 \qquad 3/2^{-}$ $267.6^{s} \ 4 \qquad 9/2^{-}$ $305.29^{a} \ 15 \qquad 11/2^{+}$	136.3 ^s 4			
$178.3^{f} 4$ $5/2^{+}$ $184.5^{k} 4$ $7/2^{+}$ $218.4^{g} 4$ $7/2^{+}$ $258.7^{t} 4$ $3/2^{-}$ $267.6^{s} 4$ $9/2^{-}$ $305.29^{a} 15$ $11/2^{+}$				
$ \begin{array}{rrrrr} 184.5^{k} & 4 & 7/2^{+} \\ 218.4^{g} & 4 & 7/2^{+} \\ 258.7^{t} & 4 & 3/2^{-} \\ 267.6^{s} & 4 & 9/2^{-} \\ 305.29^{a} & 15 & 11/2^{+} \end{array} $				
$218.4^{g} 4$ $7/2^{+}$ $258.7^{t} 4$ $3/2^{-}$ $267.6^{s} 4$ $9/2^{-}$ $305.29^{a} 15$ $11/2^{+}$	178.3 ^f 4			
$258.7^{t} \ 4 \ 3/2^{-} \ 267.6^{s} \ 4 \ 9/2^{-} \ 305.29^{a} \ 15 \ 11/2^{+}$	184.5 ^k 4	$7/2^{+}$		
$267.6^{\circ} 4$ $9/2^{-}$ $305.29^{a} 15$ $11/2^{+}$				
$305.29^a \ 15 11/2^+$				
	329.5^{j} 4	9/2+		
331.87^{n} 15 9/2				
$432.8^{f} 4 9/2^{+}$	432.8 ^J 4			
433.55^{o} 18 11/2 ⁻	433.35° 18	11/2		

${}^{123}\mathbf{Sb}({}^{48}\mathbf{Ca,4n}\gamma)\mathbf{:}\mathbf{XUNDL-2} \qquad \textbf{2015Ro27} \ (\mathbf{continued})$

167 Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
435.4 ^t 4	7/2-	
479.9 ^{\$} 4	13/2-	
494.18 <mark>&</mark> <i>18</i>	13/2+	
499.0 ^k 4	$11/2^{+}$	
507.8 <mark>8</mark> 4	11/2+	
576.90 ⁿ 19	$13/2^{-}$	
692.8 ^t 4	$11/2^{-}$	
693.9 ^j 4	13/2+	
704.23 ^a 19	15/2+	
744.09° 20	15/2-	
783.7 ^f 4	13/2+	
794.5 <i>s</i> 4 887.3 <i>g</i> 4	17/2 ⁻ 15/2 ⁺	
916.2 k 4	15/2 ⁺	
910.2 4 934.17 20	13/2 17/2 ⁺	
934.17 ² 20 947.69 ⁿ 21	17/2	
1034.4 ^t 4	15/2	
1141.4 ^j 4	17/2 ⁺	
1159.41° 21	19/2-	
1180.99 ^a 21	19/2+	
1205.3 ^s 4	$21/2^{-}$	
1217.1 ^f 4	$17/2^{+}$	
1346.5 <i>g</i> 4	19/2+	
1406.6 ^k 4	19/2+	
1411.47 ⁿ 23	21/2-	
1444.42 22	21/2+	
1458.9 ^t 4	19/2-	
1649.9 ^j 4	21/2+	
1655.83° 24 1677.0° 3	23/2 ⁻ (17/2 ⁻)	$J^{\pi}=17/2^{-}$ in Figure 2 of 2015Ro27. No deexciting transitions given.
1703.3 <i>s</i> 4	25/2	J = 17/2 III Figure 2 of 2015Ro27. No deexciting transitions given.
1716.7 ^f 4	21/2+	
1720.06 ^a 23	23/2+	
1789.12 ^w 25	$19/2^{-}$	
1856.7 ⁸ 4	$23/2^{+}$	
1940.48^{V} 22	21/2-	
1947.3 ⁿ 3 1954.7 ^k 4	25/2 ⁻	
1954.7" 4 1959.7 ^t 4	23/2 ⁺ 23/2 ⁻	
1964.0 8	$(21/2^+)$	Level from Figure 1 in 2015Ro27.
2008.11 & 24	25/2+	Level from Figure 1 in 2015Ro21.
2100.28^{W} 23	23/2	
2165.0 ^u 4	21/2-	
2187.1 ^j 4	$25/2^{+}$	
2214.9° 3	27/2-	
2260.7^{f} 4	25/2+	
2278.0° 4	29/2-	
2278.5 ^l 5	$25/2^{+}$	
2285.55 ^v 23	25/2-	

$^{123}Sb(^{48}Ca,4n\gamma): XUNDL-2 \qquad \textbf{2015Ro27} \ (continued)$

167Lu Levels (continued)

E(level) [†]	$\mathbf{J}^{\pi \ddagger}$	Comments
2299.3 ^a 3	27/2+	
2350.0 4	$(25/2^+)$	Level from Figure 1 in 2015Ro27.
2378.8^{x} 3	25/2-	
2398.1 ^g 4 2483.5 ^u 4	27/2 ⁺	
2483.5 ^w 4 2491.01 ^w 24	25/2 ⁻ 27/2 ⁻	
2506.5^{k} 4	27/2 ⁺	
2508.8 ^c 3	25/2 ⁺	
2526.6 ^t 4	27/2-	
2531.7 ⁿ 3	29/2-	
2580.6 ^{&} 3	29/2+	
2665.3 4	27/2+	
2694.6 ^j 4	$29/2^{+}$	
2697.0 <mark>d</mark> 4	$27/2^{+}$	
2715.7^{v} 3	$29/2^{-}$	
2728.4 [@] 3	29/2+	
2749.3 ^l 4	29/2+	
2776.7 ^f 4	29/2+	
2800.4° 3 2822.8° 3	31/2 ⁻ 31/2 ⁺	
2883.7 ^x 4	29/2-	
2893.0° 4	29/2 ⁺	
2894.4 ^u 4	$29/2^{-}$	
2918.5 ^s 4	33/2-	
2938.9 <i>g</i> 4	31/2+	
2958.8^{W} 3	31/2-	
2958.8 ^k 4 3014.6 ^b 4	31/2+	
3014.6° 4 3043.7 ^{&} 3	31/2+	
3043.7^{23} 3069.9^{n} 3	33/2 ⁺ 33/2 ⁻	
3121.2^{d} 4	31/2+	
3133.7 ^j 4	33/2+	
3138.4 ^t 4	31/2	
3210.8 ^f 4	33/2+	
3217.3 ^v 3	33/2-	
3254.3 ^l 4	$33/2^{+}$	
3285.1 ^a 3	35/2+	
3288.7° 4 3293.9 ^u 4	35/2-	
3322.3 [@] 3	33/2 ⁻ 33/2 ⁺	
3356.9 ^c 4	33/2 ⁺	
3413.9 <i>8 4</i>	35/2+	
3417.8 <i>4</i>	35/2+	
3418.1 ^x 4	33/2-	
3437.3 ^k 4	35/2 ⁺	
3477.5 <i>5</i> 3491.7 ^w <i>3</i>	35/2 ⁻ 35/2 ⁻	
3523.1 ⁿ 4	37/2-	
3531.9 ^{&} 3	37/2 ⁺	
· · · -	, -	

167Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
3589.4 ^b 4	35/2+	4941.9 ^u 4	45/2-	6529.6 ^l 5	53/2+	8255.7 <i>§</i> 11	61/2-
3613.7 ^s 4	37/2-	4954.7 ^h 4	45/2 ⁺	6592.6 ^x 5	53/2-	8299.2 ^c 9	$(61/2^+)$
3625.8 ^d 4	35/2+	4985.9° 4	47/2-	6599.8 [@] 7	53/2 ⁺	8320.4 ^P 10	(J1+10)
3628.5 ^j 4	37/2+	5030.7 ^v 4	45/2-	6628.3° 7	53/2+	8342.4 ^a 5	63/2+
3678.3 ^y 4	35/2-	5076.2 ^l 5	45/2+	6631.2 ^a 4	55/2+	8455.8 ⁱ 5	63/2+
3721.3^{f} 4	37/2+	5093.0 ^a 4	47/2 ⁺	6634.0 ^s 8	53/2-	8549.5 ^w 5	63/2-
3729.7 ^t 4	35/2-	5125.6 ^m 5	43/2+	6659.3 ^p 7	(J1+6)	8600.0 ^g 6	63/2 ⁺
3770.0 ^u 4	37/2-	5142.3 ^s 4	45/2-	6661.9 <mark>e</mark> 7	53/2+	8644.5 ^t 6	63/2-
3774.0° 4	39/2-	5160.4 ^c 6	45/2+	6726.6 ⁱ 4	55/2 ⁺	8646.7 ^d 8	63/2+
3778.6 ^v 4	$37/2^{-}$	5184.7 ^x 5	45/2-	6820.1 ⁸ 5	55/2+	8711.3 ^y 6	63/2-
3812.6 ^a 3	39/2+	5230.4 ^P 6	(J1+2)	6839.2 ^w 4	55/2-	8749.0 <mark>&</mark> 5	65/2+
3814.8 ¹ 4	37/2+	5230.8 [@] 5	45/2 ⁺	6953.1 ⁿ 5	57/2-	8824.2 ⁿ 5	65/2-
3892.5 ^c 5	37/2+	5265.1 ⁸ 4	47/2 ⁺	6965.7 ^d 6	55/2+	8924.8 <mark>h</mark> 5	65/2+
3948.7 ^x 4	37/2-	5279.4 ⁱ 4	47/2 ⁺	6969.2 ^t 5	55/2-	8946.0 <mark>m</mark> 9	63/2+
3957.9 <mark>8</mark> 4	39/2+	5349.0 ⁿ 4	49/2-	7001.3 ^y 5	55/2-	9003.6 ^b 6	$(63/2^+)$
3972.4 [@] 4	37/2+	5369.5 ^w 4	47/2-	7036.1 ^{&} 4	57/2 ⁺	9014.0 ^u 5	65/2-
3974.1 ^m 4	35/2+	5442.6 ^{&} 4	49/2+	7100.9 ^h 4	57/2 ⁺	9016.0 ^v 6	65/2-
3978.9 ^k 4	39/2 ⁺	5486.4 ^d 5	47/2 ⁺	7215.0 ^u 5	57/2 ⁻	9037.8 ^j 5	65/2 ⁺
4045.5 ⁿ 4	$41/2^{-}$	5491.2 ^t 5	47/2	7235.0^{b} 5	55/2 ⁺	9109.0 ^l 6	65/2 ⁺
$4078.1^{W} 4$	39/2-	5540.1 ^y 5	47/2	7239.8 ^v 4	57/2 ⁻	9120.5 ^x 6	$(65/2^{-})$
4096.0 ^{&} 4	41/2+	5586.5 ^j 4	49/2+	7241.7 ^j 4	57/2+	9173.2 ^s 12	$(65/2^{-})$
4193.1 ^d 4	39/2+	5625.1 ^b 5	47/2+	7259.8 ^m 6	55/2 ⁺	9192.6° 5	67/2-
4205.9 ^j 4	41/2+	5630.7 ^h 4	49/2 ⁺	7328.3^{l} 5	57/2 ⁺	9210.5 ^c 10	$(65/2^+)$
4222.8 ^b 4	39/2 ⁺	5638.0 ^u 4	49/2-	7334.8° 5	59/2 ⁻	9232.4 ^p 11	(J1+12)
4224.9 <i>4</i>	39/2	5705.4° 4	51/2	7374.9 [@] 8	57/2 ⁺	9269.9 ^a 5	67/2 ⁺
4244.6 ^y 4	39/2	5714.6 ^v 4	49/2-	$7383.6^{x} 5$	57/2 ⁻	9442.9 ⁱ 7	67/2 ⁺
4266.1 ^t 4	39/2	5778.0 ^l 5	49/2 ⁺	7403.0 ^e 7	57/2 ⁺	9498.2 ^w 7	67/2 ⁻
4306.1 ^u 4	$41/2^{-}$	5783.7 ^m 5	47/2 ⁺	7410.6 ^s 9	57/2 ⁻	9542.1 ⁸ 8	67/2 ⁺
4307.7^{f} 4	41/2+	5833.2 ^a 4	51/2+	7449.8 ^c 8	57/2 ⁺	9568.2 ^t 6	67/2-
4339.2° 4	43/2-	5859.6 ^x 5	49/2-	7461.2 ^p 8	(J1+8)	9571.4 ^d 9	67/2 ⁺
4373.5 ^s 4	41/2	5873.9 ^c 6	49/2+	7471.1 ^a 4	59/2 ⁺	9657.3 ^y 6	$(67/2^{-})$
4385.9 ^v 4	41/2-	5894.8 [@] 6	49/2+	7543.2 ⁱ 4	59/2+	9674.1 <mark>&</mark> 5	69/2+
4417.0 ^a 4	43/2+	5907.4 ^s 6	49/2-	7662.6 ^w 5	59/2-	9858.3 ⁿ 6	69/2-
4421.6 ^l 4	$41/2^{+}$	5912.9 ^p 6	(J1+4)	7684.8 <mark>8</mark> 5	59/2+	9869.0 <mark>m</mark> 11	67/2+
4496.0 ^c 5	$41/2^{+}$	5982.1 ⁱ 4	$51/2^{+}$	7775.7 <mark>d</mark> 6	59/2 ⁺	9946.8 ^h 5	69/2+
4521.2 ^m 4	39/2+	6015.4 <mark>8</mark> 4	51/2+	7779.5 ^t 6	59/2-	9969.6 ^j 5	69/2+
4544.8 ^x 4	$41/2^{-}$	6077.5 ^w 4	$51/2^{-}$	7824.3 ^y 6	59/2-	9993.8 ^u 6	69/2-
4554.1 ^p 5	(J1)	6116.9 ⁿ 5	53/2-	7855.3 ⁿ 5	$61/2^{-}$	9997.0 ^v 6	69/2-
4578.1 ⁸ 4	$43/2^{+}$	6202.5 ^d 5	$51/2^{+}$	7877.1 ^{&} 4	$61/2^{+}$	10068.0 ^l 8	69/2+
4594.8 [@] 4	$41/2^{+}$	6206.0 ^t 5	$51/2^{-}$	7967.8 <mark>h</mark> 4	$61/2^{+}$	10070.9 ^x 7	$(69/2^{-})$
4597.4 ^k 4	43/2+	6212.7 ^{&} 4	53/2+	8075.8 ^m 8	59/2 ⁺	10144.7 ^s 13	$(69/2^{-})$
4655.9 ⁿ 4	45/2-	6242.3 ^y 5	51/2	8087.5 ^u 5	$61/2^{-}$	10185.0 ^p 12	(J1+14)
4704.8^{W} 4	43/2-	6332.7 ^h 4	53/2+	8095.9 ^v 5	61/2-	10193.0 ^c 12	$(69/2^+)$
4734.9 & 4	45/2+	6388.3 ^j 4	53/2+	8099.4 <mark>b</mark> 6	$(59/2^+)$	10202.9° 6	$71/2^{-}$
4815.5 ^d 4	$43/2^{+}$	6397.5 ^u 5	53/2-	8143.6 ^{<i>j</i>} 5	$61/2^{+}$	10263.6 ^a 6	$71/2^{+}$
4838.6 ^t .4	$43/2^{-}$	6405.7 ^b 5	51/2+	8182.9 ^l 5	$61/2^{+}$	10489.1 ⁱ 9	71/2+
4861.3 ^j 4	45/2+	6447.7 ^v 4	53/2-	8227.4 ^x 6	61/2-	10504.1 ^w 9	71/2-
4880.8 ^y 4	43/2-	6490.5° 5	55/2-	8228.9 ^e 7	61/2+	10531.48 9	71/2+
4898.4 ^b 4	43/2+	6494.8 ^m 5	51/2+	8236.2° 5	63/2-	10551.3 ^d 11	71/2+
				Continued of	on next pag	ge (footnotes at e	end of table)

¹⁶⁷Lu Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
10553.1 ^t 8	$(71/2^{-})$	12049.5 ⁿ 6	77/2-	13851.1 ^d 14	$(83/2^+)$	x ^r	(J2)
10654.4 & 5	73/2+	12127.2 ^u 7	$(77/2^{-})$	13921.7 <mark>&</mark> 9	85/2 ⁺	768.0+x ^r 5	
10655.3 ^y 7	$(71/2^{-})$	12139.2 ^v 7	77/2-	14111.9 ^m 15	$(83/2^+)$	1582.8+x ^r 7	(J2+2)
10846.4 ^m 12	$(71/2^+)$	12154.7 ^x 7	$(77/2^{-})$	14299.7 ⁿ 10	$(85/2^{-})$	2459.0+x ^r 9	(J2+4)
10947.3 ⁿ 6	$73/2^{-}$	12160.3 ^l 11	$77/2^{+}$	14315.0 ^{<i>j</i>} 11	$85/2^{+}$	3389.0+x ^r 10	(J2+6)
10957.6 ^j 6	73/2+	12168.0 ^h 8	$(77/2^+)$	14466.4 ^u 9	$(85/2^{-})$	4373.7+x ^r 12	(J2+8)
11027.2 ^u 7	73/2-	12209.6 ^s 15	$(77/2^{-})$	14487.8 ^l 13	$(85/2^+)$	5413.2+x ^r 13	(J2+10)
11030.9 ^h 5	$(73/2^+)$	12377.2° 6	$79/2^{-}$	14737.5° 10	$87/2^{-}$	6509.4+x ^r 14	(J2+12)
11037.0° 7	$73/2^{-}$	12440.4 ^a 9	$79/2^{+}$	14823.3 ^a 12	$87/2^{+}$	7662.5+x ^r 15	(J2+14)
11084.1 ^x 7	$(73/2^{-})$	12657.0 ^w 12	$79/2^{-}$	14965.0 ^w 14	$(87/2^{-})$	8872.9+x ^r 15	(J2+16)
11084.4 ^l 10	$73/2^{+}$	12686.9 ^d 13	$(79/2^+)$	15108.1 ^{&} 11	89/2+	10136.9+x ^r 16	(J2+18)
11151.7 ^{\$} 14	$(73/2^{-})$	12697.3 ^t 11	$(79/2^{-})$	15312.0 ^m 16	$(87/2^+)$	11446.2+x ^r 17	(J2+20)
11194.1 <i>P 13</i>	(J1+16)	12780.9 ^{&} 8	81/2+	15472.8 ⁿ 11	$(89/2^{-})$	12802.3+x ^r 18	(J2+22)
11219.4 ^c 13	$(73/2^+)$	12962.7 ^m 14	$(79/2^+)$	15558.2 ^j 12	$(89/2^+)$	$y^{m{q}}$	(J3)
11265.3° 6	$75/2^{-}$	13131.7 ^j 9	$81/2^{+}$	15735.0 ^l 14	$(89/2^+)$	807.0+y ^q 5	(J3+2)
11321.9 ^a 8	75/2+	13157.8 ⁿ 8	$81/2^{-}$	15968.5° 11	$(91/2^{-})$	1670.1+y ^q 7	(J3+4)
11558.9 ^w 10	$75/2^{-}$	13278.2 ^u 8	$(81/2^{-})$	16067.3 ^a 13	$(91/2^+)$	2588.4+y ^q 9	(J3+6)
11571.4 ⁸ 11	$(75/2^+)$	13290.8 ^x 9	$(81/2^{-})$	16339.3 ^{&} 12	93/2+	3562.9+y ^q 10	(J3+8)
11587.9 ^d 12	75/2+	13291.0 ^v 9	$(81/2^{-})$	16681.2 ⁿ 12	$(93/2^{-})$	4593.0+y ^q 12	(J3+10)
11594.4 ⁱ 10	$75/2^{+}$	13295.4 ^l 12	$(81/2^+)$	17048.1 ¹ 15	$(93/2^+)$	5682.3+y ^q 13	(J3+12)
11601.2 ^t 10	$(75/2^{-})$	13537.3° 8	$83/2^{-}$	17229.8° 12	$(95/2^{-})$	6830.5+y ^q 14	(J3+14)
11690.5 <mark>&</mark> 6	77/2+	13611.0 ^a 10	83/2+	17323.4 ^a 14	$(95/2^+)$	8040.5+y ^q 15	(J3+16)
11878.7 ^m 13	$(75/2^+)$	13795.4 ^w 13	$(83/2^{-})$	17617.9 <mark>&</mark> <i>13</i>	$(97/2^+)$	9310.7+y ^q 15	(J3+18)
12011.6 ^j 8	77/2+	13813.3 ^t 12	$(83/2^{-})$	17943.3 ⁿ 13	$(97/2^{-})$		

[†] From least-squares fit (by compiler) to E γ values. Normalized χ^2 =0.61, with about 40 γ ray energies out of 630 γ rays falling within 2 σ of the corresponding level-energy differences, which implies 94% of the E γ values are fitted within 1 σ .

[‡] As assigned by 2015Ro27 based on multipolarities deduced from $\gamma\gamma(\theta)$ (DCO) values, band structures, decay modes and theoretical model calculations.

[#] From ¹⁶⁷Lu Adopted Levels in the ENSDF database.

[@] Band(A): Band #7 built on π 5/2[402], α =+1/2. Configuration=iBC -> iBCAD; BC crossing at $\hbar\omega$ =0.32 MeV, followed by AD crossing. This band appears to be a continuation of α =+1/2 signature of band #9 in 2015Ro27. Band #7 interacts with band #4 at 49/2+; energy separation=21.0 keV.

[&]amp; Band(B): Band #1 built on π 7/2[404], α =+1/2. Configuration=a -> aAB -> aABCD; AB crossing at $\hbar\omega$ =0.26 MeV, and CD crossing at $\hbar\omega$ =0.42 MeV. Band #1 interacts with band #10 at 57/2+; energy separation=65.8 keV.

^a Band(b): Band #1 built on π 7/2[404], α =-1/2. Configuration=b -> bAB -> bABCD -> bABCD(ef or fg); AB crossing at $\hbar\omega$ =0.26 MeV, CD crossing at $\hbar\omega$ =0.42 MeV and ef or fg proton crossing at $\hbar\omega$ =0.62 MeV.

^b Band(C): Band #6, γ -vibrational band. Possible γ -vibrational band built on π 1/2[411] orbital. Band #6 interacts with band #4 at 39/2+; energy separation=29.6 keV.

^c Band(D): 3-qp, eAF band #4,α=+1/2. Configuration=eAF ->eAFBC; BC crossing at $\hbar\omega$ ≈0.32 MeV. Band #4 interacts with band #5 at 53/2⁺; energy separation=33.9 keV. Band #4 interacts with band #7 at 49/2⁺; energy separation=21.0 keV.

^d Band(d): 3-qp, fAF band #4,α=−1/2. Configuration=fAF ->fAFBC; BC crossing at $\hbar\omega\approx0.32$ MeV. This positive-parity band was previously assigned in 2005Am02, incorrectly, as a triaxial strongly deformed (tsd-3) band with a negative parity. Band #4 interacts with band #6 at 39/2+; energy separation=29.6 keV.

^e Band(E): Possible 5-qp band #5, cBCAD, α =+1/2. Band #5 interacts with band #11 at 61/2⁺; energy separation=45.9 keV. Band #5 interacts with band #4 at 53/2⁺; energy separation=33.9 keV.

^f Band(F): Band #8 built on $\pi 1/2[411], \alpha = +1/2$. Configuration=c -> cAB; AB crossing at $\hbar \omega = 0.27$ MeV.

¹⁶⁷Lu Levels (continued)

- ^g Band(f): Band #8 built on $\pi 1/2$ [411], $\alpha = -1/2$. Configuration=d -> dAB -> dABCD; AB crossing at $\hbar \omega = 0.27$ MeV, and CD crossing at $\hbar \omega = 0.46$ MeV. Band #8 interacts with band #9 at $31/2^+$; energy separation=20.0 keV. Band #8 interacts with band #10 at $47/2^+$; energy separation=14.2 keV.
- ^h Band(G): 5-qp band #10, aABCD,α=+1/2. Configuration=aABCD -> aAB, Landau-Zener crossing with band #1 at J=57/2. Band #10 interacts with band #1 at 57/2⁺; energy separation=65.8 keV. Band #10 interacts with band #9 at 49/2⁺; energy separation=45.2 keV.
- ⁱ Band(g): 5-qp band #10, bABCD, α =-1/2. Configuration=bABCD -> bAB, Landau-Zener crossing with band #1 at J=57/2. Band #10 interacts with band #8 at $47/2^+$; energy separation=14.2 keV.
- j Band(H): Band #9 built on π 5/2[402], α =+1/2. Configuration=i -> iAB -> iABCD; AB crossing at $\hbar\omega$ =0.25 MeV, and CD crossing at $\hbar\omega$ =0.46 MeV. Band #9 interacts with band #10 at 49/2⁺; energy separation=45.2 keV. Band #9 interacts with band #11 at 61/2⁺; energy separation=39.3 keV.
- ^k Band(h): Band #9 built on π 5/2[402], α =-1/2. Configuration=j -> jAB; AB crossing at $\hbar\omega$ =0.25 MeV. Band #9 interacts with band #8 at 31/2⁺; energy separation=20.0 keV.
- ¹ Band(I): TSD-1, 0-phonon band #11, α =+1/2. Triaxial strongly-deformed band (TSD) associated with π 1/2[660] orbital. Band #11 interacts with band #5 at 61/2⁺; energy separation=45.9 keV. Band #11 interacts with band #9 at 61/2⁺; energy separation=39.3 keV.
- ^m Band(J): TSD-2, 1-phonon band #12, α =-1/2. Triaxial strongly-deformed (TSD) band associated with π 1/2[660] orbital.
- ⁿ Band(K): Band #15 built on π 9/2[514], α =+1/2. Configuration=e -> eAB -> eABfg; AB crossing at $\hbar\omega$ =0.26 MeV, and fg crossing at $\hbar\omega$ =0.55 MeV.
- ^o Band(k): Band #15 built on π 9/2[514], α =-1/2. Configuration=f -> fAB -> fABCD -> fABCDEF; AB crossing at $\hbar\omega$ =0.26 MeV, Cd crossing at $\hbar\omega$ =0.35-0.55 MeV, and ef crossing at $\hbar\omega$ =0.6 MeV.
- ^p Band(L): 3-qp, eBC band #16. Configuration=eBC -> eBCAD; AD crossing at $\hbar\omega$ =0.35-0.50 MeV.
- ^q Band(M): Possible triaxial strongly-deformed band #18.
- ^r Band(N): Possible triaxial strongly-deformed band #17.
- ^s Band(O): Band #13 built on $\pi 1/2[541]$, $\alpha = +1/2$. Configuration=g -> gBCAD; BCAD crossing at $\hbar \omega = 0.38$ MeV. Band #13 interacts with band #2 at $41/2^-$; energy separation=12.4 keV.
- ^t Band(o): Band #13 built on $\pi 1/2[541]$, $\alpha = -1/2$. Configuration=h -> hAB -> hABCD ->hABCD(proton orbital); AB crossing at $\hbar\omega = 0.29$ MeV, CD crossing at $\hbar\omega = 0.4$ -0.5 MeV and possible crossing at $\hbar\omega = 0.55$ MeV due to proton orbitals. Band #13 interacts with band #3 at 39/2⁻; energy separation=21.5 keV.
- ^u Band(P): 3-qp, gAB band #14, α =+1/2. Configuration=gAB -> gAB(CD/EF) -> gAB(CD/EF)ef; CD/EF crossing at $\hbar\omega$ =0.4-0.5 MeV and ef crossing at $\hbar\omega$ ≈0.57 MeV. Band #14 interacts with band #2 at 65/2⁻; energy separation=1.3 keV.
- $^{\nu}$ Band(Q): 3-qp, aAE band #2,α=+1/2. Configuration=aAE -> aAEBC -> aAEBC(ef); BC crossing at $\hbar\omega$ =0.32 MeV and possible ef crossing at $\hbar\omega$ ≈0.5 MeV. Band #2 interacts with band #13 at 41/2⁻; energy separation=12.4 keV. Band #2 interacts with band #14 at 65/2⁻; energy separation=1.3 keV.
- ^w Band(q): 3-qp, bAE band #2, α =-1/2. Configuration=bAE -> bAEBC; BC crossing at $\hbar\omega$ =0.32 MeV.
- ^x Band(R): 3-qp, aAF band #3, α =+1/2. Configuration=aAF -> aAFBC; BC crossing at $\hbar\omega\approx0.32$ MeV.
- y Band(r): 3-qp, bAF band #3,α=−1/2. Configuration=bAF -> bAFBC; BC crossing at $\hbar\omega$ ≈0.32 MeV. Band #3 interacts with band #13 at 39/2⁻; energy separation=21.5 keV.

γ (167Lu)

DCO values correspond to gates on $\Delta J=2$, quadrupole (E2) transitions, and angles of 32°, 37°, 143°, 148° and 163° along the x-axis and 58° to 122° along the y-axis. Expected DCO values are 1.0 for $\Delta J=2$, quadrupole and 0.6 for $\Delta J=1$, dipole transitions. Mixed M1+E2 transitions in coupled bands have DCO values between 0.6 and 1.0.

Multipolarities deduced from DCO ratios and decay patterns are not listed explicitly by 2015Ro27 but these can be implied from the assigned J^{π} values and band structures.

${}^{123}Sb({}^{48}Ca,4n\gamma):XUNDL-2 \qquad \textbf{2015Ro27} (continued)$

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
87.7 [@] 2	@	136.3	1/2-	48.6 3/2+	
101.5 2	10.1 20	433.55	11/2	331.87 9/2	
102.6 2	11.2 22	136.3	$1/2^{-}$	33.7 1/2+	DCO=0.92 4
107.3 2	26.3 53	155.9	5/2-	$48.6 3/2^+$	DCO=0.84 3
111.7 2	29.1 58	267.6	9/2-	155.9 5/2-	
117.4 [@] 2	@	184.5	$7/2^{+}$	$67.1 5/2^+$	DCO=0.85 4
129.7 [@] 2	@	178.3	$5/2^{+}$	$48.6 3/2^{+}$	
140.0 2	14.7 29	140.04	$9/2^{+}$	$0.0 7/2^+$	
143.4 2	44.8 28	576.90	$13/2^{-}$	433.55 11/2	
144.6 [@] 2	@	178.3	5/2+	33.7 1/2+	
145.0 2	19.5 33	329.5	9/2+	184.5 7/2+	DCO=0.80 8
159.7 2	1.5 1	2100.28	23/2-	1940.48 21/2	
162.2 <i>5</i> 165.3 2	≤0.3	2938.9	31/2+	2776.7 29/2+	
167.3 2	37.5 <i>36</i> 62.9 <i>55</i>	305.29 744.09	11/2 ⁺ 15/2 ⁻	140.04 9/2 ⁺ 576.90 13/2 ⁻	
167.7 2	2.5 7	435.4	$\frac{13/2}{7/2^{-}}$	267.6 9/2	
169.4 2	14.1 11	499.0	11/2+	329.5 9/2+	DCO=0.74 7
169.8 [@] 2	<u>@</u>	218.4	7/2+	48.6 3/2+	DCO=1.00 4
174.9 2	2.1 2	3133.7	33/2+	2958.8 31/2	DCO=0.66 11
176.7 2	1.0 2	435.4	7/2-	258.7 3/2	DCO=1.07 5
178.2 2	9.5 10	507.8	$11/2^{+}$	329.5 9/2+	DCO=0.82 4
185.3 2	4.2 4	2285.55	$25/2^{-}$	2100.28 23/2	DCO=0.91 13
186.0 2	7.9 8	693.9	13/2+	507.8 11/2+	DCO=0.68 7
188.2 2	5.1 4	2694.6	29/2+	2506.5 27/2+	DCO=0.83 8
188.9 2	25.3 28	494.18	13/2+	305.29 11/2 ⁺	DCO_0.70_16
189.5 2 191.2 2	1.5 <i>I</i> 1.1 2	1406.6 3628.5	19/2 ⁺ 37/2 ⁺	1217.1 17/2 ⁺ 3437.3 35/2 ⁺	DCO=0.78 <i>16</i> DCO=0.74 <i>15</i>
191.2 2	32.1 64	331.87	9/2-	140.04 9/2+	DCO=0.74 13
193.5 5	0.9 1	887.3	15/2+	693.9 13/2+	DCO=0.69 14
194.8 2	5.8 5	693.9	13/2+	499.0 11/2+	DCO=0.82 9
203.1 2	1.9 2	3413.9	35/2+	3210.8 33/2+	
203.6 2	49.4 29	947.69	$17/2^{-}$	744.09 15/2-	
205.3 5	0.5 1	1346.5	$19/2^{+}$	$1141.4 17/2^+$	DCO=0.77 15
205.4 2	3.8 3	2491.01	27/2-	2285.55 25/2-	DCO=0.86 12
210.3 2	24.0 22	704.23	15/2+	494.18 13/2+	
211.7 2 212.3 2	46.3 <i>34</i> 66.3 <i>61</i>	1159.41 479.9	19/2 ⁻ 13/2 ⁻	947.69 17/2 ⁻ 267.6 9/2 ⁻	DCO=1.10 4
212.3 2	0.7 2	692.8	11/2	479.9 13/2	DCO=1.10 4
214.5 2	5.7 6	432.8	9/2+	218.4 7/2+	DCO=0.81 8
214.6 2	1.2 2	3628.5	37/2+	3413.9 35/2+	
218.8 2	24.4 15	3288.7	35/2-	3069.9 33/2-	
221.1 2	11.0 9	3043.7	$33/2^{+}$	$2822.8 31/2^+$	
222.4 2	8.9 7	916.2	$15/2^{+}$	693.9 13/2+	DCO=0.81 5
224.7 2	1.3 2	2715.7	29/2-	2491.01 27/2	DCO=0.99 20
225.0 2	1.7 3	258.7	3/2-	33.7 1/2+	DCO 0.60 16
225.3 2 226.6 5	6.8 <i>3</i> 0.6 <i>1</i>	1141.4 3437.3	17/2 ⁺ 35/2 ⁺	916.2 15/2 ⁺ 3210.8 33/2 ⁺	DCO=0.68 16
226.9 5	0.6 1	4205.9	33/2 41/2 ⁺	3978.9 39/2 ⁺	
230.0 2	21.6 31	934.17	17/2+	704.23 15/2+	
232.3 2	2.4 3	2187.1	25/2+	1954.7 23/2+	DCO=0.82 12
234.4 2	24.9 15	3523.1	$37/2^{-}$	3288.7 35/2-	
235.4 5	≤0.3	3356.9	33/2+	3121.2 31/2+	
238.0 5	0.8 1	1954.7	23/2+	1716.7 21/2+	DCO=0.80 16
241.2 2	10.9 12	3285.1	35/2 ⁺	3043.7 33/2+	
242.1 2	8.1 8	2822.8	31/2+	2580.6 29/2+	

$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
242.9 5	0.9 3	2749.3	29/2+	2506.5 27/2+	DCO=0.82 12
243.1 2	1.1 2	2958.8	$31/2^{-}$	2715.7 29/2	DCO=1.07 21
243.4 2	3.9 3	1649.9	21/2+	1406.6 19/2+	DCO=0.75 11
244.4 2	32.0 30	1655.83	23/2-	1411.47 21/2	Dec 0.73 11
245.1 2	14.4 24	576.90	$13/2^{-}$	331.87 9/2	
245.8 2	2.9 3	2506.5	27/2+	2260.7 25/2+	DCO=0.63 16
246.6 2	≤21.6	1180.99	19/2 ⁺	934.17 17/2+	Dec 0.03 10
246.6 2	≤13.8	3531.9	37/2+	3285.1 35/2+	
248.3 2	2.0 3	432.8	9/2+	184.5 7/2+	DCO=0.84 13
251.0 2	17.2 17	3774.0	39/2-	3523.1 37/2	200 (10) 12
252.1 2	39.6 32	1411.47	21/2-	1159.41 19/2	
254.0 2	1.4 <i>I</i>	1141.4	17/2+	887.3 15/2 ⁺	DCO=0.81 16
254.5 2	5.6 6	432.8	9/2+	$178.3 5/2^+$	DCO=0.99 10
257.4 2	6.4 13	692.8	11/2-	435.4 7/2-	DCO=1.04 5
258.5 5	0.7 2	3217.3	33/2-	2958.8 31/2-	DCO=1.21 24
260.0 5	0.5 2	3678.3	35/2-	3418.1 33/2-	
262.4 2	2.7 5	329.5	9/2+	$67.1 5/2^+$	DCO=0.90 14
263.5 2	9.5 11	1940.48	$21/2^{-}$	1677.0 (17/2 ⁻)	
263.6 2	12.8 10	1444.42	$21/2^{+}$	1180.99 19/2+	
264.0 2	1.0 2	4861.3	$45/2^{+}$	4597.4 43/2+	
264.1 2	6.6 7	2958.8	$31/2^{+}$	2694.6 29/2+	DCO=0.83 8
265.2 2	3.7 2	1406.6	$19/2^{+}$	1141.4 17/2+	DCO=0.77 12
266.6 5	≤0.3	3892.5	$37/2^{+}$	3625.8 35/2 ⁺	
267.6 2	14.2 25	2214.9	$27/2^{-}$	1947.3 25/2-	
268.4 2	34.8 60	2800.4	$31/2^{-}$	2531.7 29/2-	
269.1 5	0.4 1	3625.8	$35/2^{+}$	3356.9 33/2+	
269.6 2	37.8 <i>60</i>	3069.9	$33/2^{-}$	2800.4 31/2-	
270.2 2	2.8 3	2776.7	$29/2^{+}$	2506.5 27/2+	
270.4 2	2.2 6	3948.7	$37/2^{-}$	3678.3 35/2-	DCO=0.61 6
271.7 2	20.9 14	4045.5	$41/2^{-}$	3774.0 39/2-	
272.0 5	0.6 <i>I</i>	3210.8	$33/2^{+}$	2938.9 31/2+	
274.3 <i>5</i>	0.8 4	3491.7	$35/2^{-}$	3217.3 33/2-	DCO=0.99 20
275.8 2	10.0 9	1720.06	$23/2^{+}$	1444.42 21/2+	
276.0 2	1.4 2	783.7	$13/2^{+}$	$507.8 11/2^+$	DCO=0.67 13
279.4 <i>2</i>	11.0 22	435.4	7/2-	155.9 5/2	
280.7 2	4.8 9	3812.6	39/2+	3531.9 37/2+	
281.0 2	7.6 12	2580.6	29/2+	2299.3 27/2+	
283.6 2	5.2 6	4096.0	41/2+	3812.6 39/2+	
284.5 2	4.0 5	783.7	13/2+	499.0 11/2+	DCO=0.65 10
287.0 5	0.6 2	3778.6	37/2	3491.7 35/2	DCO=1.00 20
288.3 2	11.0 9	2008.11	25/2+	1720.06 23/2+	D GO . 0.0
289.4 2	17.5 17	507.8	11/2+	218.4 7/2+	DCO=0.97 4
291.2 2	6.8 7	2299.3	27/2+	2008.11 25/2+	
291.6 2	25.2 16	1947.3	25/2-	1655.83 23/2	
293.6 2	33.0 66	433.55	11/2-	140.04 9/2+	
293.9 2	14.5 16	4339.2	43/2-	4045.5 41/2	
295.7 5	0.4 1	4244.6	39/2-	3948.7 37/2-	DGO 102.20
299.4 5	0.9 2	4078.1	39/2 ⁻	3778.6 37/2 ⁻	DCO=1.02 20
300.0 5	0.5 1	4193.1	39/2 ⁺	3892.5 37/2 ⁺	
300.3 5	0.4 1	4544.8	41/2-	4244.6 39/2	DCO-0 60 14
301.0 2	1.1 2	1217.1	17/2 ⁺	916.2 15/2 ⁺	DCO=0.69 14 DCO=0.67 13
303.6 2	1.9 2	3437.3	35/2 ⁺	3133.7 33/2+	DCO=0.67 13
304.1 <i>5</i> 304.9 <i>2</i>	0.5 2	5184.7	45/2 ⁻ 23/2 ⁺	4880.8 43/2 ⁻	DCO-0.73.11
304.9 <i>2</i> 305.3 <i>2</i>	2.8 <i>1</i> 44.3 <i>33</i>	1954.7 305.29	11/2 ⁺	1649.9 21/2 ⁺ 0.0 7/2 ⁺	DCO=0.73 11
306.0 2	6.0 7	2260.7	25/2 ⁺	1954.7 23/2+	DCO=0.79 8
300.0 2	0.0 /	2200.7	43/4	1754.1 45/4	DCO-0.17 0

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Comments
307.2 5	0.7 1	5586.5	49/2+	5279.4	47/2+	
307.4 2	1.9 2	3721.3	37/2 ⁺	3413.9	35/2 ⁺	
307.9 5	0.7 2	4385.9	41/2-	4078.1	39/2-	DCO=0.91 18
310.0 2	9.0 9	1716.7	21/2+	1406.6	19/2 ⁺	DCO=0.84 4
310.4 2	32.8 24	744.09	15/2	433.55		DCO=0.04 4
311.2 2	3.8 2	2100.28	23/2-	1789.12		
314.5 2	7.3 7	499.0	$11/2^+$	184.5	7/2+	DCO=0.93 18
314.5 2	87.5 <i>81</i>	794.5	17/2	479.9	13/2-	DCO=1.02 4
316.4 2	20.0 29	2531.7	29/2-	2214.9	$\frac{13/2}{27/2^{-}}$	DCO=1.02 1
316.9 2	13.4 21	4655.9	45/2-	4339.2	43/2-	
317.7 2	≤4.8	4734.9	45/2 ⁺	4417.0	43/2+	DCO=0.68 4
318.4 2	1.6 2	2483.5	25/2	2165.0	$21/2^{-}$	DCO=1.10 20
318.8 5	0.5 1	4704.8	43/2	4385.9	$41/2^{-}$	DCO=1.09 22
319.4 2	1.2 2	2506.5	27/2+	2187.1	25/2 ⁺	DCO=0.52 10
319.4 5	≤0.3	5859.6	49/2-	5540.1	$47/2^{-}$	DCO=0.32 10
319.7 5	≤0.3	4815.5	43/2+	4496.0	41/2+	
321.0 2	≤3.0	4417.0	43/2+	4096.0	41/2+	DCO=0.73 4
326.2 5	≤0.3	5030.7	45/2	4704.8	43/2	DCO=0.81 16
329.2 2	2.0 4	4554.1	(J1)	4224.9	39/2-	200 0.01 10
329.8 2	4.4 5	1217.1	17/2+	887.3	15/2 ⁺	DCO=0.56 8
330.0 2	13.8 12	4985.9	47/2	4655.9	45/2	0.50 0
331.9 2	40.4 60	331.87	9/2-	0.0	7/2+	
335.9 5	0.9 3	4880.8	43/2-	4544.8	41/2-	
338.4 5	0.7 6	5369.5	47/2-	5030.7	45/2-	DCO=0.86 17
341.6 2	6.8 6	1034.4	15/2	692.8	$11/2^{-}$	DCO=1.08 11
345.0 2	7.7 7	2285.55	25/2	1940.48		200 1.00 11
345.0 2	1.0 9	5714.6	49/2-	5369.5	47/2-	
349.6 2	4.7 5	5442.6	49/2+	5093.0	47/2 ⁺	DCO=0.72 11
350.1 5	≤0.3	6592.6	53/2-	6242.3	51/2-	0.72 11
350.4 2	1.6 3	3978.9	39/2 ⁺	3628.5	37/2 ⁺	
350.6 5	0.9 2	6332.7	53/2+	5982.1	51/2+	
351.0 2	12.6 13	783.7	13/2+	432.8	9/2+	DCO=0.94 4
351.0 2	1.0 3	2749.3	29/2+	2398.1	27/2 ⁺	DCO=0.85 13
351.4 2	3.2 7	5982.1	51/2+	5630.7	49/2+	200 000 10
354.1 2	66.0 60	494.18	13/2+	140.04		
355.5 5	0.7 2	5540.1	47/2-	5184.7	45/2-	
356.4 2	8.7 7	5705.4	51/2-	5349.0	49/2-	
358.1 2	≤2.4	5093.0	47/2+	4734.9	45/2+	DCO=0.85 6
362.8 5	0.9 4	6077.5	51/2-	5714.6	49/2-	
363.0 2	9.0 18	5349.0	49/2-	4985.9	47/2-	
364.6 2	12.9 <i>13</i>	693.9	13/2+	329.5	$9/2^{+}$	DCO=1.01 4
368.4 2	1.3 2	9192.6	$67/2^{-}$	8824.2	65/2-	DCO=0.75 6
370.0 5	0.4 2	6447.7	53/2-	6077.5	51/2-	
370.1 2	2.1 2	1716.7	21/2+	1346.5	19/2+	DCO=0.83 12
370.8 2	33.6 29	947.69	$17/2^{-}$	576.90		
373.8 2	3.3 4	6490.5	55/2-	6116.9	53/2-	
374.2 5	0.7 2	7100.9	57/2+	6726.6	55/2+	
379.2 2	17.3 17	887.3	$15/2^{+}$	507.8	$11/2^{+}$	DCO=0.96 4
379.5 2	1.9 5	6212.7	53/2+	5833.2	$51/2^{+}$	DCO=0.76 15
381.0 2	1.6 2	8236.2	$63/2^{-}$	7855.3	$61/2^{-}$	DCO=0.61 12
381.7 2	2.2 2	7334.8	59/2-	6953.1	57/2-	
382.5 5	≤0.3	6242.3	51/2-	5859.6	49/2-	
384.3 2	1.1 <i>1</i>	2893.0	$29/2^{+}$	2508.8	$25/2^{+}$	DCO=0.91 18
386 <i>1</i>		2350.0	$(25/2^+)$	1964.0	$(21/2^+)$	E_{γ} : from Figure 1 in 2015Ro27, not listed in authors' Table IV.
388.3 2	16.4 40	887.3	$15/2^{+}$	499.0	$11/2^{+}$	DCO=0.96 4
390.7 2	10.5 8	2491.01	$27/2^{-}$	2100.28	$23/2^{-}$	DCO=0.97 4

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
390.7 2	2.8 4	5833.2	51/2+	5442.6 49/2	DCO=0.71 11
391.3 5	0.7 2	4597.4	43/2+	4205.9 41/2	
392.0 5	0.7 3	6839.2	55/2-	6447.7 53/2	
393.9 5	0.6 2	6726.6	55/2 ⁺	6332.7 53/2	
395.6 5	0.4 1	5982.1	51/2 ⁺	5586.5 49/2	
399.0 2	82.8 66	704.23	15/2+	305.29 11/2	
399.3 2	1.7 3	2749.3	29/2+	2350.0 (25/2	
399.4 2	7.6 16	3293.9	33/2-	2894.4 29/2	
400.7 5	0.5 2	7239.8	57/2 ⁻	6839.2 55/2	
404.8 2	3.4 13	7036.1		6631.2 55/2	
			57/2 ⁺		
406.5 5	≤0.3	887.3	15/2+	479.9 13/2	
408.4 2	7.1 7	916.2	15/2+	507.8 11/2	
408.7 5	≤0.3	7001.3	55/2-	6592.6 53/2	
410.8 2	100.0 14	1205.3	21/2-	794.5 17/2	
410.8 2	≈8.0	2894.4	29/2-	2483.5 25/2	
411.8 2	3.8 5	6116.9	53/2-	5705.4 51/2	
415.3 2	48.1 29	1159.41	19/2-	744.09 15/2	
417.4 2	6.0 5	916.2	$15/2^{+}$	499.0 11/2	
418.0 5	≤0.3	5279.4	47/2+	4861.3 45/2	
418.2 2	1.7 2	6631.2	55/2+	6212.7 53/2	
423.0 5	≤0.3	7662.6	59/2-	7239.8 57/2	
424.0 5	0.5 1	3121.2	$31/2^{+}$	2697.0 27/2	-
424.6 2	6.9 8	1458.9	$19/2^{-}$	1034.4 15/2	DCO=1.05 11
425.2 2	8.8 18	692.8	$11/2^{-}$	267.6 9/2-	
430.1 2	5.6 6	2715.7	$29/2^{-}$	2285.55 25/2	DCO=0.94 9
433.3 [#] 5	16.9 <mark>#</mark> 20	1217.1	$17/2^{+}$	783.7 13/2	
434.0 [#] 5	5.4 [#] <i>13</i>	3210.8	$33/2^{+}$	2776.7 29/2	
434.7 5	0.9 2	7471.1	$59/2^{+}$	7036.1 57/2	DCO=0.66 13
439.0 2	11.5 <i>13</i>	3133.7	$33/2^{+}$	2694.6 29/2	DCO=1.03 4
439.7 2	96 12	934.17	$17/2^{+}$	494.18 13/2	+
447.5 2	10.9 7	1141.4	$17/2^{+}$	693.9 13/2	DCO=0.91 4
452.3 2	5.7 <i>4</i>	2958.8	$31/2^{+}$	2506.5 27/2	+ DCO=0.97 <i>10</i>
453.1 2	17.4 <i>11</i>	3523.1	$37/2^{-}$	3069.9 33/2	-
455.8 2	2.8 8	3121.2	$31/2^{+}$	2665.3 27/2	
459.0 2	22.8 57	1346.5	19/2+	887.3 15/2	
462.3 2	18.5 <i>38</i>	3285.1	35/2+	2822.8 31/2	
462.7 2	8.7 10	6953.1	57/2-	6490.5 55/2	
463.0 2	35.6 <i>50</i>	3043.7	33/2+	2580.6 29/2	
463.8 2	42.6 26	1411.47	21/2	947.69 17/2	
464.1 5	0.8 1	3356.9	33/2+	2893.0 29/2	
467.8 2	7.0 11	2958.8	31/2-	2491.01 27/2	
471.0 5	≤0.3	2749.3	29/2 ⁺	2278.5 25/2	
475.0 2	6.8 7	3413.9	35/2 ⁺	2938.9 31/2	
476.0 2	6.4 13	3770.0	37/2	3293.9 33/2	
477.0 2	70.1 52	1180.99	19/2 ⁺	704.23 15/2	
477.0 2	5.8 5		35/2 ⁺	2958.8 31/2	
478.9 2		3437.3 3417.8			
478.9 2	2.3 5	3417.6	35/2+	2938.9 31/2	2015Ro27 is incorrect. The placement here follows from Figure 1 of 2015Ro27.
483.0 2	2.2 2	2491.01	$27/2^{-}$	2008.11 25/2	
485.3 2	16.1 12	3774.0	39/2-	3288.7 35/2	
488.3 2	22.1 14	3288.7	35/2-	2800.4 31/2	
488.4 2	23.1 18	3531.9	37/2 ⁺	3043.7 33/2	
488.6 2	2.2 4	2749.3	29/2+	2260.7 25/2	
490.4 2	12.7 5	1406.6	19/2 ⁺	916.2 15/2	
170.7 2	12.7 3	1 100.0	1//2	710.2 13/2	200 1.01 1

1948 2	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
498.2 48.2 9 1655.83 23/2" 119.41 19/2" 498.2 15.6 6 1710.3 25/2" 1205.3 21/2" 1	494.8 2	10.3 10	3628.5	37/2+	3133.7	33/2+	DCO=1.02 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							DCO=1.03 4
Solication Sol	499.8 2						DCO=1.11 3
Solicide Solide							DCO=1.03 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	501.6 2	5.5 11	3217.3		2715.7	29/2-	DCO=1.02 10
504.9 2	504.6 2	3.5 4		$35/2^{+}$	3121.2		DCO=1.08 16
505 / Sor. 0.5 ft 10.5 ft 21 / 2694.6 29/2	504.7 2		3254.3				DCO=0.90 5
508.0# 5 10.5# 21 2694.6 29/2* 2187.1 25/2* DCO=0.93 4 DCO for 508.7+508.0. 508.7# 5 11.0# 22 1649.9 21/2* 1141.4 17/2* DCO=0.93 4 DCO for 508.7+508.0. 510.0 2 21.0 40 1856.7 23/2* 1346.5 19/2* DCO=0.93 4 DCO for 508.7+508.0. 510.0 2 89.4 66 1444.42 21/2* P. 34.17 17/2* 174.7 174.7 510.0 2 6.4 13 2776.7 29/2* P. 2260.7 25/2* P. DCO=0.95 19 520.4 2 1.0 3 7855.3 61/2* 7334.8 59/2* 527.5 DCO=0.95 19 523.8 2 26.8 21 2822.8 31/2* 2329.3 27/2* 5253.1 27/2* 5253.1 27/2* 5253.1 DCO=0.95 19 533.8 2 5.1 10 3948.7 337.2* 3418.1 33/2* 2385.1 33/2* 53/2*		5.2 9					
DCO for 508.7+508.0.			1964.0	$(21/2^+)$	1458.9	$19/2^{-}$	E_{γ} : from Figure 1 in 2015Ro27, not listed in authors' Table IV.
Sin	508.0 [#] 5	10.5 [#] 21	2694.6	29/2+	2187.1	25/2+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	508.7 [#] 5	11.0 [#] 22	1649.9	21/2+	1141.4	17/2+	
Silo 2	510.0.2	21.0.40	1856.7	23/2+	1346.5	10/2+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							DCO-1.07 7
516.0 2 6.4 /13 2776.7 29/2+ 2260.7 25/2+ 520.4 2 1.0 3 7855.3 61/2− 7334.8 59/2− 522.4 2 20.9 14 4045.5 41/2− 3523.1 37/2− 523.8 2 26.8 21 2822.8 31/2+ 2299.3 27/2+ 527.5 2 21.1 17 3812.6 39/2+ 3285.1 35/2+ 530.6 2 5.1 10 3948.7 37/2− 3418.1 33/2− 532.8 2 5.8 17 3491.7 3491.7 35/2− 2988.3 11/2− DCO=1.00 10 532.8 2 5.8 17 3491.7 35/2− 2988.3 11/2− DCO=1.00 10 534.4 2 5.7 10 3418.1 33/2− 2883.7 29/2− 535.9 2 42.5 27 1947.3 25/2− 1411.47 21/2− 536.0 2 6.5 9 4306.1 41/2− 3770.0 37/2− 536.0 2 6.5 9 4306.1 41/2− 3770.0 37/2− 536.2 2 5.7 18 3069.9 33/2− 2531.7 29/2− 539.0 2 63.7 47 1720.06 23/2+ 1180.99 19/2+ 541.2 2 5 10.4 26 2260.7 25/2+ 1716.7 21/2+ 541.2 3 8 4 3957.9 39/2+ 3437.3 35/2+ 544.0 2 10.4 26 2260.7 25/2+ 1716.7 21/2+ 541.0 2							
520.4 2 1.0 3 7855.3 61/2⁻ 7334.8 59/2⁻ 522.4 2 20.9 1/4 4045.5 4/2⁻ 3523.1 37/2⁻ 523.8 2 26.8 21 2822.8 31/2⁺ 2299.3 27/2⁺ 524.9 5 0.8 2 4898.4 43/2⁺ 4373.5 41/2⁻ DCO=0.69 6 527.5 2 21.1 17 3812.6 39/2⁺ 3828.1 35/2⁺ 530.6 2 5.1 10 3948.7 37/2⁻ 2958.8 31/2⁻ DCO=0.98 10 534.4 2 5.7 10 3418.1 33/2⁻ 2883.7 29/2⁻ DCO=1.00 10 535.9 2 42.5 27 1947.3 25/2⁻ 1411.47 21/2⁻ 360.2 6.5 9 4306.1 41/2⁻ 3770.0 37/2⁻ 352/2⁻ DCO=0.98 20 537.3 2 10.0 20 2187.1 25/2⁻ 1649.9 21/2⁻ DCO=0.93 14 539.0 2 63.7 47 1720.06 23/2⁺ 1180.99 19/2⁻ 541.2 2** 24.9 3978.9 39/2⁻							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							DCO=0.95.19
523.8 2							DCO 0.75 17
524, 9 5 0, 8 2 4898.4 43/2+ 4373.5 41/2− 527.5 2 21.1 17 3812.6 39/2+ 3285.1 35/2+ 3285.1 35/2+ 3285.2 5.8 1/7 3491.7 35/2− 2958.8 31/2− DCO=0.98 10 532.8 2 5.8 1/7 3491.7 35/2− 2958.8 31/2− DCO=1.00 10 534.4 2 5.7 10 3418.1 33/2− 2958.8 31/2− DCO=1.18 15 535.3 5 0.8 1 3892.5 37/2+ 3356.9 33/2+ DCO=0.98 20 535.9 2 42.5 27 1947.3 25/2− 1411.47 21/2− 536.0 2 6.5 9 4306.1 41/2− 3770.0 37/2− 3729.7 35/2− DCO=0.98 10 536.4 2 4.7 11 4266.1 39/2− 3729.7 35/2− DCO=0.98 14 537.3 2 10.0 20 2187.1 25/2+ 1649.9 21/2+ DCO=0.98 4 538.2 2 25.7 18 3069.9 33/2− 2531.7 29/2− 539.0 2 63.7 47 1720.06 23/2+ 1180.99 19/2+ 541.2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx						,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							DCO=0.69 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							DCO=0.98 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							DCO=1.00 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							DCO=1.18 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	535.3 5	0.8 1	3892.5	$37/2^{+}$	3356.9	$33/2^{+}$	DCO=0.98 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	535.9 2		1947.3	$25/2^{-}$	1411.47	$21/2^{-}$	
537.3 2 10.0 20 2187.1 25/2+ 1649.9 21/2+ 538.2 2 25.7 18 3069.9 33/2- 2531.7 29/2- 539.0 2 63.7 47 1720.06 23/2+ 1180.99 19/2+ 541.2&# 5 14.0&# 27 2398.1 27/2+ 1856.7 23/2+ DCO=1.10 DCO for 541.2 doublet. 541.2&# 5 9.0&# 18 2938.9 31/2+ 2398.1 27/2+ DCO=1.10 DCO for 541.2 doublet. 541.6 2 4.4 9 3978.9 39/2+ 3437.3 35/2+ DCO=0.92 4 DCO for 541.2 doublet. 544.0 2 10.4 26 2260.7 25/2+ 1716.7 21/2+ DCO=0.92 4 DCO=0.92 4 DCO=0.92 4 DCO=0.92 18 S48.0 2 10.2 7 1954.7 23/2+ 1406.6 19/2+ DCO=0.00 5 DCO=0.0</td><td>536.0 2</td><td>6.5 9</td><td>4306.1</td><td></td><td>3770.0</td><td>$37/2^{-}$</td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>536.4 2</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DCO=0.98 4</td></tr><tr><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td>$23/2^{+}$</td><td>1180.99</td><td>$19/2^{+}$</td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td>14.0^{&#} 27</td><td>2398.1</td><td>27/2+</td><td>1856.7</td><td>23/2+</td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>541.2<mark>&#</mark> 5</td><td>9.0<mark>&#</mark> <i>18</i></td><td>2938.9</td><td>$31/2^{+}$</td><td>2398.1</td><td>$27/2^{+}$</td><td>DCO=1.10 4</td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DCO=0.92.4</td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>560.6 2</td><td>9.0 9</td><td>3814.8</td><td>37/2+</td><td>3254.3</td><td>33/2+</td><td>DCO=1.02 4</td></tr><tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>561.1 2</td><td>2.0 4</td><td>3978.9</td><td>39/2+</td><td>3417.8</td><td>$35/2^{+}$</td><td></td></tr><tr><td>562.0 5 ≤0.3 2278.5 25/2⁺ 1716.7 21/2⁺ DCO=1.02 4 DCO for 562.0+562.3. 562.3 2 2.0 3 2749.3 29/2⁺ 2187.1 25/2⁺ DCO=1.02 4</td><td></td><td></td><td></td><td>,</td><td></td><td></td><td>DCO=0.91 14</td></tr><tr><td>562.3 2 2.0 3 2749.3 29/2⁺ 2187.1 25/2⁺ DCO=1.02 4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DCO=1.02 4</td></tr><tr><td></td><td>562.3 2</td><td>2.0 3</td><td>2749.3</td><td>29/2+</td><td>2187.1</td><td>25/2+</td><td>DCO=1.02 4</td></tr></tbody></table>							

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
563.6 2	64.8 60	2008.11	25/2+	1444.42	21/2+	
563.9 2	22.1 36	4096.0	41/2+	3531.9	37/2 ⁺	
565.2 2	16.6 12	4339.2	43/2-	3774.0	39/2-	
565.4 2	6.6 6	2285.55	25/2-	1720.06		DCO=0.68 7
566.3 2	2.3 6	4244.6	39/2-	3678.3	35/2-	
566.8 2	8.6 17	2526.6	$27/2^{-}$	1959.7	$23/2^{-}$	DCO=1.04 4
567.4 2	2.8 2	4193.1	39/2+	3625.8	$35/2^{+}$	DCO=0.99 15
568.4 2	1.4 3	4941.9	$45/2^{-}$	4373.5	$41/2^{-}$	
572.6 2	40.1 <i>31</i>	2580.6	$29/2^{+}$	2008.11	$25/2^{+}$	
572.6 2	5.1 5	4838.6	$43/2^{-}$	4266.1	$39/2^{-}$	DCO=1.04 10
574.7 2	71.6 13	2278.0	29/2-	1703.3	25/2-	DCO=1.03 4
574.8 2	1.5 2	3589.4	35/2+	3014.6	$31/2^{+}$	
577.3 2	9.5 10	4205.9	41/2+	3628.5	37/2+	DCO=0.97 5
579.2 2	52.5 40	2299.3	27/2+	1720.06		
584.4 2	30.1 38	2531.7	29/2-	1947.3	25/2-	
585.8 2	47.8 51	2800.4	31/2-	2214.9	27/2-	P.GO. 0.00 10
586.4 2	5.7 21	4078.1	39/2-	3491.7	35/2-	DCO=0.99 10
586.4 2	5.5 6	4307.7	41/2+	3721.3	37/2+	
588.0 2	1.3 2	8824.2	65/2-	8236.2	63/2-	DOO 107.11
591.3 2	5.7 6	3729.7	35/2 ⁻	3138.4	31/2	DCO=1.07 11
593.9 2	2.3 <i>5</i> 2.1 2	3322.3 4838.6	33/2+	2728.4	29/2 ⁺ 39/2 ⁻	DCO=0.99 11 DCO=0.91 15
594.0 2 596.0 2	3.2 8	4544.8	43/2 ⁻ 41/2 ⁻	4244.6 3948.7	37/2	DCO=0.81 15
597.0 2	1.1 3	4222.8	39/2 ⁺	3625.8	35/2 ⁺	
603.3 2	1.5 3	4373.5	$\frac{39/2}{41/2^{-}}$	3770.0	37/2	DCO=0.93 19
603.5 2	1.0 2	4496.0	41/2+	3892.5	37/2 ⁺	DCO=0.99 19 DCO=0.99 20
603.6 5	0.6 1	4193.1	39/2+	3589.4	35/2 ⁺	DCO=0.97 20
604.3 2	1.4 3	5125.6	43/2+	4521.2	39/2 ⁺	
604.4 2	22.4 20	4417.0	43/2+	3812.6	39/2+	DCO=0.99 2
606.8 2	7.8 7	4421.6	41/2+	3814.8	37/2+	DCO=1.07 11
607.3 2	5.3 21	4385.9	41/2-	3778.6	37/2-	DCO=0.95 10
609.4 2	1.0 3	4222.8	39/2+	3613.7	37/2-	DCO=0.64 5
610.2 2	20.2 14	4655.9	$45/2^{-}$	4045.5	$41/2^{-}$	
612.0 2	5.4 5	3138.4	$31/2^{-}$	2526.6	$27/2^{-}$	DCO=1.05 11
613.7 2	1.5 2	4838.6	$43/2^{-}$	4224.9	$39/2^{-}$	
616.6 2	3.2 8	3014.6	$31/2^{+}$	2398.1	$27/2^{+}$	
618.6 2	2.1 8	4597.4	$43/2^{+}$	3978.9	$39/2^{+}$	DCO=1.02 15
620.2 2	3.0 10	4578.1	$43/2^{+}$	3957.9	$39/2^{+}$	DCO=1.05 16
622.4 2	1.6 3	4594.8	$41/2^{+}$	3972.4	$37/2^{+}$	DCO=1.02 10
622.4 2	2.6 2	4815.5	$43/2^{+}$	4193.1	$39/2^{+}$	DCO=0.94 14
						Initial level: negative parity in Table IV of 2015Ro27 is a misprint, it
(2) (2)	4 4 15	4504.0	10/0-	4070.1	20./2-	should be positive as in level-scheme Figure 1.
626.6 2	4.4 17	4704.8	43/2-	4078.1	39/2-	DCO=1.02 15
632.2 5	0.4 1	2893.0	29/2+	2260.7	25/2 ⁺	DOO 0.07.4
633.2 2	6.4 16	4222.8	39/2 ⁺	3589.4	35/2+	DCO=0.97 4
635.9 2	10.9 <i>10</i> 1.2 <i>2</i>	4941.9	45/2 ⁻	4306.1	41/2-	DCO=1.05 4
636.0 2	2.9 8	5230.8	45/2+	4594.8	41/2+	DCO=1.07 6
636.2 2		4880.8	43/2 ⁻ 45/2 ⁺	4244.6	39/2 ⁻	DCO_0.09.2
639.1 2 640.0 2	26.1 <i>22</i> 3.3 <i>9</i>	4734.9 5184.7	45/2 ⁻	4096.0 4544.8	41/2 ⁺ 41/2 ⁻	DCO=0.98 2 DCO=1.13 <i>17</i>
640.9 2	50.8 12	2918.5	33/2	2278.0	29/2	DCO=1.05 4
644.7 2	3.8 15	5030.7	45/2 ⁻	4385.9	$\frac{29/2}{41/2^{-}}$	DCO=1.03 4 DCO=0.98 15
646.7 2	18.1 15	4985.9	47/2	4339.2	43/2	200 0.70 10
647.0 2	4.7 6	4954.7	45/2 ⁺	4307.7	41/2+	DCO=1.02 <i>15</i>
650.1 2	3.1 6	3972.4	37/2+	3322.3	33/2+	DCO=0.94 7
650.4 2	2.3 6	3589.4	35/2+	2938.9	$31/2^{+}$	
					•	

123 Sb(48 Ca,4n γ):XUNDL-2 2015Ro27 (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
651.5 2	1.7 4	1856.7	23/2+	1205.3	21/2-	
652.6 2	6.9 7	5491.2	$47/2^{-}$	4838.6	43/2	DCO=1.02 10
654.6 2	6.4 6	5076.2	45/2+	4421.6	41/2+	DCO=0.91 4
655.3 2	9.0 9	4861.3	45/2 ⁺	4205.9	41/2+	DCO=0.94 5
655.9 2	14.4 7	2100.28	$\frac{43}{2}$	1444.42		DCO=0.65 3
657.0 5	0.9 4	5030.7	$45/2^{-}$	4373.5	41/2-	DCO=0.03 3
658.1 2	1.0 2	5783.7	47/2 ⁺	5125.6	43/2+	DCO=0.87 13
658.7 2	5.0 5	2378.8	$\frac{47/2}{25/2^{-}}$	1720.06		DCO=0.69 7
659.3 2	2.8 7	5540.1	$47/2^{-}$	4880.8	43/2	DCO=0.09 /
660.9 5	0.9 3	2938.9	31/2+	2278.0	29/2-	
664.1 5	0.9 3	5894.8	49/2 ⁺	5230.8	45/2 ⁺	DCO=0.98 5
						DCO=0.98 3 DCO=1.04 21
664.4 <i>5</i> 664.5 <i>2</i>	0.6 1	5160.4 1458.9	45/2 ⁺	4496.0	41/2+	
	2.3 1		19/2-	794.5	17/2	DCO=0.55 8
664.6 2	4.1 17	5369.5	47/2 ⁻	4704.8	43/2-	DCO=1.00 15
670.8 2	5.2 12	3589.4	35/2 ⁺	2918.5	33/2 ⁻	DCO=0.64 6
670.9 2	2.4 2	5486.4	47/2 ⁺	4815.5	43/2+	DCO=0.94 14
674.9 2	3.8 10	5859.6	49/2 ⁻	5184.7	45/2-	DCO=0.97 4
675.5 2	7.4 19	4898.4	43/2+	4222.8	39/2 ⁺	DCO=1.10 7
676.0 2	17.1 15	5093.0	47/2 ⁺	4417.0	43/2+	DCO=1.00 4
676.0 2 676.2 [#] 5	4.7 6 1.5 [#] 3	5630.7 5230.4	49/2+	4954.7	45/2 ⁺	DCO=1.03 15
677.0 [#] 5	2.5 [#] 5	3477.5	(J1+2) 35/2 ⁻	4554.1 2800.4	(J1) 31/2 ⁻	
682.0 2	2.9 3	5279.4	47/2 ⁺	4597.4	43/2+	DCO=1.01 15
682.5 2	1.4 3	5912.9	(J1+4)	5230.4	(J1+2)	DCO=1.01 13
684.0 2	3.2 16	5714.6	$49/2^{-}$	5030.7	$45/2^{-}$	DCO=1.05 16
687.0 2	2.9 3	5265.1	49/2 47/2 ⁺	4578.1	43/2+	DCO=1.03 16 DCO=1.07 16
692.6 2	11.5 20				37/2 ⁻	
		4306.1	41/2-	3613.7		DCO=1.04 4
693.0 2	17.4 24	5349.0	49/2 ⁻	4655.9	45/2-	
694.7 2	1.2 3	2398.1	27/2 ⁺	1703.3	25/2-	DCO_1 01 4
695.8 2	32.4 69	3613.7	37/2-	2918.5	33/2-	DCO=1.01 4 E_{γ} : somewhat poor fit, level-energy difference=695.2.
696.2 2	10.0 20	5638.0	49/2-	4941.9	45/2-	DCO=1.00 4
701.8 2	4.9 5	5778.0	49/2 ⁺	5076.2	45/2 ⁺	DCO=1.00 4 DCO=1.00 10
702.0 2	4.7 6	6332.7	53/2 ⁺	5630.7	49/2+	DCO=1.01 15
702.0 2	3.0 8	6242.3	51/2	5540.1	$47/2^{-}$	DCO=1.01 13
702.1 2	2.0 2	5982.1	51/2 ⁺	5279.4	47/2+	DCO=0.99 15
704.2 5	0.5 2	5125.6	43/2 ⁺	4421.6	41/2+	DCO=0.99 13
705.0 5	≤0.3 ²	6599.8	53/2 ⁺	5894.8	49/2+	DCO=0.97 5
705.8 <i>5</i>	0.4 I	2893.0	29/2 ⁺	2187.1	25/2 ⁺	DCO=0.77 3
706.1 5	0.8 2	4521.2	39/2 ⁺	3814.8	37/2 ⁺	DCO=0.66 13
707.6 2	21.4 19	5442.6	49/2+	4734.9	45/2 ⁺	DCO=1.01 4
707.7 5	0.4 1	5783.7	47/2 ⁺	5076.2	45/2 ⁺	DCO=1.01 4
707.9 2	3.2 14	6077.5	51/2	5369.5	47/2 ⁻	DCO=0.96 14
710.8 5	0.7 1	6494.8	51/2 ⁺	5783.7	47/2 ⁺	DCO=1.00 20
713.6 5	0.7 1	5873.9	49/2 ⁺	5160.4	47/2 45/2 ⁺	DCO=1.00 20 DCO=1.02 20
713.0 3	6.9 7	6206.0	$51/2^{-}$	5491.2	47/2 ⁻	DCO=1.02 20 DCO=1.05 11
			51/2 51/2 ⁺		47/2 ⁺	DCO=1.03 11 DCO=0.99 15
716.1 2 717.0 2	2.2 2 2.0 2	6202.5 5982.1	51/2 51/2 ⁺	5486.4 5265.1	47/2 ⁺	DCO-0.77 IJ
717.0 2	0.4 <i>I</i>	5982.1 6494.8	51/2 ⁺	5778.0	49/2+	
	18.7 25					
719.6 2	16.7 23 @	5705.4	51/2-	4985.9	47/2-	P.GO. 0.// 10
719.8 [@] 2		3974.1	35/2 ⁺	3254.3	33/2+	DCO=0.66 10
720.2 2	6.3 13	2728.4	29/2+	2008.11		DCO=0.94 9
723.1 5	≤0.3	3121.2	31/2+	2398.1	27/2+	P.GO. 1.04.10
725.2 2	5.9 6	5586.5	49/2 ⁺	4861.3	45/2 ⁺	DCO=1.04 10
725.8 <i>5</i>	≤0.3	6599.8	53/2+	5873.9	49/2+	

123 Sb(48 Ca,4n γ):XUNDL-2 2015Ro27 (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	$\mathbf{J}_f^{m{\pi}}$	Comments
726.6 5	0.8 2	6634.0	53/2-	5907.4	49/2-	DCO=1.06 21
726.7 2	7.0 18	5625.1	47/2 ⁺	4898.4	43/2+	DCO=0.95 10
730.3 5	≤0.3	7259.8	55/2 ⁺	6529.6	53/2+	DCG=0.73 10
733.0 2	3.7 9	6592.6	53/2	5859.6	49/2-	DCO=0.97 4
733.1 2	2.3 9	6447.7	53/2	5714.6	49/2-	DCO=1.08 16
735.6 5	0.7 1	6015.4	51/2 ⁺	5279.4	47/2+	DCO=1.00 10
736.4 2	1.0 2	3014.6	31/2+	2278.0	29/2-	DCO=0.67 13
740.3 2	14.7 17	5833.2	51/2 ⁺	5093.0	47/2+	DCO=0.97 4
740.3^{2} 5	≤0.3	7403.0	57/2 ⁺	6661.9	53/2+	DCO=0.71 +
741.8 2	2.9 6	3322.3	33/2 ⁺	2580.6	29/2 ⁺	DCO=0.96 5
744.4 2	1.5 2	6726.6	55/2 ⁺	5982.1	51/2 ⁺	DCO=0.95 19
744.4 <i>2</i> 744.6 <i>5</i>	0.5 1	7471.1	59/2 ⁺	6726.6	55/2 ⁺	DCO=0.53 19
746.4 5	≤0.3 <i>1</i>	6332.7	53/2 ⁺	5586.5	49/2 ⁺	
	≤0.3 1.3 [#] 3				-	
746.4 [#] 5 747.3 [#] 5	1.3" 3 2.3 [#] 5	6659.3	(J1+6)	5912.9	(J1+4)	
		4224.9	39/2 ⁻	3477.5	35/2-	DOO 1.07.21
750.4 2	1.8 2	6015.4	51/2 ⁺	5265.1	47/2+	DCO=1.07 21
751.6 2	3.8 5	6529.6	53/2 ⁺	5778.0	49/2+	DCO=0.91 9
752.0 5	≤0.3	6659.3	(J1+6)	5907.4	49/2-	
754.1 2	2.7 1	1959.7	23/2-	1205.3	21/2	7.00 4.00 4.0
754.4 5	0.3 1	6628.3	53/2+	5873.9	49/2+	DCO=1.00 20
757.6 2	1.1 <i>I</i>	6388.3	53/2+	5630.7	49/2+	7.00 A 0.7 A
759.0 2	3.2 8	7001.3	55/2-	6242.3	51/2-	DCO=0.97 4
759.4 2	3.8 3	1940.48	21/2	1180.99		D. G. G. C. T. C.
759.6 2	7.7 19	6397.5	53/2-	5638.0	49/2-	DCO=0.97 10
760.0 2	13.0 14	4373.5	41/2-	3613.7	37/2-	DCO=0.95 4
761.6 2	2.5 11	6839.2	55/2-	6077.5	51/2-	DCO=0.94 14
763.2 2	1.4 2	6965.7	55/2+	6202.5	$51/2^{+}$	DCO=0.94 19
763.2 2	5.6 7	6969.2	55/2-	6206.0	51/2-	DCO=1.08 11
765.0 <i>5</i>	0.6 2	7259.8	55/2+	6494.8	$51/2^{+}$	DCO=1.06 21
765.1 <i>5</i>	0.8 2	5907.4	49/2-	5142.3	$45/2^{-}$	DCO=1.04 8
						DCO for 768.8+765.1.
767.9 2	11.7 10	6116.9	53/2-	5349.0	49/2-	
768.0 5	≤0.3	768.0+x	1	X	(J2)	DCO=0.84 31
768.1 2	4.8 6	7100.9	57/2+	6332.7	53/2+	DCO=1.03 15
768.8 <i>5</i>	0.8 2	5142.3	$45/2^{-}$	4373.5	$41/2^{-}$	DCO=1.04 21
						DCO for 768.8+765.1.
770.0 2	16.1 <i>15</i>	6212.7	53/2+	5442.6	49/2+	DCO=0.99 4
772.0 5	≤0.3	4385.9	41/2-	3613.7	37/2-	
774.9 5	≤0.3	7403.0	57/2 ⁺	6628.3	53/2+	DCO=0.99 20
775.1 5	≤0.3	7374.9	57/2+	6599.8	53/2+	DCO=0.96 10
776.2 2	2.6 10	7877.1	61/2+	7100.9	57/2+	
776.6 5	0.4 2	7410.6	57/2-	6634.0	53/2-	DCO=1.02 20
780.6 2	6.7 17		$51/2^{+}$	5625.1	47/2+	DCO=0.86 13
781.0 2	4.0 4	1940.48	$21/2^{-}$	1159.41		
784.8 2	10.2 9	6490.5	55/2-		51/2	
788.0 <i>5</i>	≤0.3	6661.9	53/2+	5873.9	49/2+	
788.0 <i>5</i>	≤0.3	7449.8	57/2+	6661.9	53/2+	7.00
791.0 2	3.6 9	7383.6	57/2-	6592.6	53/2	DCO=1.02 4
792.1 2	1.7 7	7239.8	57/2-	6447.7	53/2-	DCO=0.93 19
798.3 2	10.1 11	6631.2	55/2+	5833.2	51/2+	DCO=0.99 4
798.7 2	2.7 4	7328.3	57/2+	6529.6	53/2+	DCO=0.96 10
801.8 2	3.4 3	6388.3	53/2+	5586.5	49/2+	DCO=0.95 4
801.9 5	0.6 2	7461.2	(J1+8)	6659.3	(J1+6)	D G 0 0 0 0 10
804.7 2	2.0 2	6820.1	55/2+	6015.4	51/2+	DCO=0.97 19
807.0 5	≤0.3	807.0+y	(J3+2)	У	(J3)	

${}^{123}Sb({}^{48}Ca,4n\gamma): XUNDL-2 \qquad \textbf{2015Ro27} \ (continued)$

E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
808.5 2	1.0 2	2665.3	27/2+	1856.7	23/2+	
810.0 2	1.2 2	7775.7	59/2 ⁺	6965.7	55/2 ⁺	DCO=1.01 19
810.3 2	3.0 3	7779.5	59/2 ⁻	6969.2	55/2 ⁻	DCO=1.09 16
814.8 5	≤0.3	1582.8+x	(J2+2)	768.0+x	33/2	DCO=0.96 18
815.2 5	≤0.3 ≤0.3	8143.6	61/2+	7328.3	57/2 ⁺	DCO=0.99 20
816.0 5	0.6 2	8075.8	59/2 ⁺	7259.8	55/2 ⁺	DCO=1.03 20
816.6 2	1.2 2	7543.2	59/2 ⁺	6726.6	55/2 ⁺	DCO=1.09 22
817.6 2	6.8 17	7215.0	57/2 ⁻	6397.5	53/2	DCO=1.00 10
821.4 5	0.4 1	7449.8	57/2 ⁺	6628.3	53/2 ⁺	DCO=1.00 20
823.0 2	3.2 8	7824.3	59/2 ⁻	7001.3	55/2-	DCO=1.02 4
823.3 2	1.7 8	7662.6	59/2-	6839.2	55/2-	DCO=0.93 19
823.4 2	2.5 1	2526.6	27/2-	1703.3	$25/2^{-}$	
823.4 2	11.2 40	7036.1	57/2 ⁺	6212.7	53/2+	DCO=0.94 4
826.0 5	≤0.3	8228.9	61/2+	7403.0	57/2 ⁺	
829.3 2	4.6 12	7235.0	55/2+	6405.7	51/2+	DCO=0.90 14
836.2 2	2.4 2	5142.3	45/2-	4306.1	$41/2^{-}$	DCO=1.03 16
836.2 2	10.1 10	6953.1	57/2-	6116.9	53/2-	
840.0 2	6.1 8	7471.1	59/2+	6631.2	55/2+	DCO=0.98 10
841.0 2	8.5 30	7877.1	61/2+	7036.1	57/2+	DCO=0.97 5
843.1 5	0.7 1	3121.2	31/2+	2278.0	29/2-	DCO=0.50 10
843.8 2	3.7 9	8227.4	$61/2^{-}$	7383.6	57/2-	DCO=0.93 6
844.4 2	7.4 8	7334.8	59/2-	6490.5	55/2-	
845.1 5	≤0.3	8255.7	$61/2^{-}$	7410.6	57/2-	DCO=1.02 20
849.4 5	≤0.3	8299.2	$(61/2^+)$	7449.8	57/2+	
851.3 2	1.9 2	3770.0	37/2-	2918.5	$33/2^{-}$	DCO=0.95 19
853.0 2	1.3 <i>I</i>	2508.8	$25/2^{+}$	1655.83	$23/2^{-}$	DCO=0.63 13
853.5 2	2.3 2	7241.7	57/2+	6388.3	53/2+	DCO=1.02 15
854.5 2	1.3 3	8182.9	$61/2^{+}$	7328.3	57/2+	DCO=1.10 17
						DCO for 854.9+854.5.
854.9 5	0.6 2	9037.8	$65/2^{+}$	8182.9	$61/2^{+}$	DCO=1.10 22
						DCO for 854.9+854.5.
855.0 2	2.1 5	1789.12	19/2-	934.17	$17/2^{+}$	
855.9 2	1.3 5	8095.9	$61/2^{-}$	7239.8	$57/2^{-}$	DCO=0.96 19
859.2 <i>5</i>	≤0.3	8320.4	(J1+10)	7461.2	(J1+8)	
860.4 2	1.5 <i>1</i>	3138.4	$31/2^{-}$	2278.0	$29/2^{-}$	
863.1 5	≤0.3	1670.1+y	(J3+4)	807.0+y		
864.4 2	4.2 11	8099.4	$(59/2^+)$	7235.0	55/2+	
864.7 2	1.4 2	7684.8	59/2+	6820.1	55/2+	DCO=0.97 19
865.0 2	1.9 2	8644.5	63/2	7779.5	59/2-	DCO=1.05 21
866.9 2	3.9 5	7967.8	61/2+	7100.9	57/2+	DCO=0.99 15
870.1 5	0.5 1	8946.0	63/2+	8075.8	59/2 ⁺	DCO=0.94 19
871.0 <i>5</i>	0.6 2	8646.7	63/2+	7775.7	59/2 ⁺	DCO=0.99 20
871.3 2	3.7 4	8342.4	63/2+	7471.1	59/2+	DCO=1.08 16
871.9 2	6.4 23	8749.0	65/2+	7877.1	61/2+	DCO=0.96 10
872.6 2	5.4 13	8087.5	61/2-	7215.0	57/2-	DCO=0.96 9
876.2 5	≤0.3	2459.0+x	(J2+4)	1582.8+x		DCO=0.95 19
880.1 5	0.4 2	9109.0	65/2+	8228.9	61/2+	DOO 000 10
886.9 2	1.3 5	8549.5	63/2	7662.6	59/2 ⁻	DCO=0.96 19
887.0 2	3.3 8	8711.3	63/2 ⁻	7824.3	59/2 ⁻	DCO=0.93 6
888.4 2	1.8 7	7100.9	57/2 ⁺	6212.7	53/2 ⁺	
890.0 2	1.5 2	6332.7	53/2 ⁺	5442.6	49/2 ⁺	
893.1 2	2.6 7	9120.5	$(65/2^{-})$ $65/2^{+}$	8227.4	61/2+	DCO=1.09 22
894.2 2 901.4 2	1.0 <i>I</i> 6.0 <i>7</i>	9037.8 8236.2	63/2	8143.6 7334.8	61/2 ⁺ 59/2 ⁻	DCO=1.09 22 DCO=0.94 9
901.4 2	1.2 <i>I</i>	8143.6	61/2 ⁺	7334.8	59/2 57/2 ⁺	DCO=0.94 9 DCO=1.05 21
901.9 2	8.9 9	7855.3	61/2	6953.1	57/2 ⁻	DCO=1.03 21 DCO=1.08 5
702.1 2	0.2 2	1033.3	01/2	0/33.1	51/2	DCO=1.00 J

${}^{123}Sb({}^{48}Ca,4n\gamma):XUNDL-2 \qquad \textbf{2015Ro27} \ (continued)$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	$_J_f^\pi$	Comments
904.2 2	1.9 5	9003.6	$(63/2^+)$	8099.4	$(59/2^+)$	
911.3 5	≤0.3	9210.5	$(65/2^+)$	8299.2	$(61/2^+)$	
912.0 5	0.9 2	7543.2	59/2+	6631.2	55/2+	
912.0 5	≤0.3	9232.4	(J1+12)	8320.4	(J1+10)	
912.6 2	1.0 1	8455.8	63/2+	7543.2	59/2+	DCO=0.98 5
915.2 2	1.2 2	8600.0	63/2+	7684.8	59/2+	DCO=0.92 18
917.5 5	≤0.3	9173.2	$(65/2^{-})$	8255.7	61/2-	
918.3 5	≤0.3	2588.4+y	(J3+6)	1670.1+y		
919.5 5	0.8 4	9016.0	65/2-	8095.9	61/2	DCO=1.03 21
923.0 5	0.5 1	9869.0	67/2 ⁺	8946.0	63/2+	DCO=1.05 21
923.7 2	1.2 2	9568.2	67/2-	8644.5	63/2-	DCO=1.10 22
924.7 5	0.4 2	9571.4	67/2 ⁺	8646.7	63/2+	DCO=1.04 21
925.1 2	5.5 20	9674.1	69/2 ⁺	8749.0	65/2+	DCO=1.01 10
926.0 5	0.9 2	9109.0	65/2 ⁺	8182.9	61/2+	DCO=0.98 15
926.6 2	3.8 10	9014.0	65/2-	8087.5	61/2-	DCO=0.98 15
927.5 2	2.8 3	9269.9	67/2 ⁺	8342.4	63/2+	DCO=0.96 14
930.0 5	≤0.3	3389.0+x	(J2+6)	2459.0+x		DCO=0.99 20
931.7 2	1.7 4	7967.8	61/2+	7036.1	57/2+	DCO=0.93 14
931.8 2	1.5 2	9969.6	69/2+	9037.8	65/2+	DCO=1.01 20
941.2 5	≤0.3	8182.9	$61/2^{+}$	7241.7	57/2+	DCO=1.05 21
942.1 5	≤0.3	9542.1	67/2+	8600.0	63/2+	DCO=0.96 19
946.0 2	2.9 7	9657.3	$(67/2^{-})$	8711.3	63/2-	
948.7 <i>5</i>	0.8 4	9498.2	$67/2^{-}$	8549.5	63/2-	DCO=1.02 20
950.4 2	2.8 8	10070.9	$(69/2^{-})$	9120.5	$(65/2^{-})$	
952.6 <i>5</i>	≤0.3	10185.0	(J1+14)	9232.4	(J1+12)	
956.4 2	4.8 5	9192.6	67/2-	8236.2	63/2-	DCO=1.01 15
957.0 2	2.8 8	8924.8	65/2+	7967.8	61/2+	DCO=0.95 14
959.0 <i>5</i>	0.7 2	10068.0	69/2+	9109.0	$65/2^{+}$	DCO=0.96 19
962.0 2	1.3 4	2665.3	27/2+	1703.3	25/2-	DCO=0.53 11
968.9 2	4.8 5	8824.2	$65/2^{-}$	7855.3	$61/2^{-}$	DCO=1.00 15
971.5 <i>5</i>	≤0.3	10144.7	$(69/2^{-})$	9173.2	$(65/2^{-})$	
974.5 <i>5</i>	≤0.3	3562.9+y	(J3+8)	2588.4+y	(J3+6)	
976.9 <i>5</i>	≤0.3	9993.8	69/2-	9016.0	$65/2^{-}$	
977.4 5	≤0.3	10846.4	(71/2+)	9869.0	67/2+	I_{γ} : listed as 3 in table IV of 2015Ro27 (or 0.3 for revised normalization here). Compiler assumes that it is meant to be ≤ 3 .
979.9 <i>5</i>	≤0.3	10551.3	$71/2^{+}$	9571.4	$67/2^{+}$	DCO=0.98 20
980.0 <i>2</i>	2.4 6	9993.8	69/2-	9014.0	65/2-	DCO=1.02 15
980.3 2	3.0 11	10654.4	$73/2^{+}$	9674.1	69/2+	DCO=1.02 15
981.1 <i>5</i>	≤0.3	9997.0	69/2-	9016.0	$65/2^{-}$	DCO=0.95 19
982.5 5	≤0.3	9997.0	69/2-	9014.0	$65/2^{-}$	
982.5 <i>5</i>	≤0.3	10193.0	$(69/2^+)$	9210.5	$(65/2^+)$	
984.7 <i>5</i>	≤0.3	4373.7+x	(J2+8)	3389.0+x	. ,	DCO=0.98 20
984.9 <i>5</i>	≤0.3	10553.1	$(71/2^{-})$	9568.2	$67/2^{-}$	
987.1 <i>5</i>	0.9 1	9442.9	$67/2^{+}$	8455.8	$63/2^{+}$	DCO=1.22 24
988.0 2	1.0 <i>I</i>	10957.6	$73/2^{+}$	9969.6	$69/2^{+}$	DCO=1.03 21
989.3 <i>5</i>	≤0.3	10531.4	$71/2^{+}$	9542.1	$67/2^{+}$	DCO=0.90 18
993.7 2	1.2 2	2697.0	$27/2^{+}$	1703.3	$25/2^{-}$	
993.7 2	1.0 2	10263.6	$71/2^{+}$	9269.9	$67/2^{+}$	DCO=0.91 18
998.0 2	2.0 5	10655.3	$(71/2^{-})$	9657.3	$(67/2^{-})$	
1005.9 5	0.5 2	10504.1	71/2-	9498.2	67/2-	DCO=0.94 19
1007.0 5	≤0.3	11151.7	$(73/2^{-})$	10144.7	$(69/2^{-})$	
1009.1 5	≤0.3	11194.1	(J1+16)	10185.0	(J1+14)	7.00
1010.3 2	3.4 4	10202.9	71/2-	9192.6	67/2-	DCO=0.99 15
1013.2 2	2.2 6	11084.1	$(73/2^{-})$	10070.9	$(69/2^{-})$	
1016.0 2	1.2 3	3293.9	33/2-	2278.0	29/2-	

${}^{123}Sb({}^{48}Ca,4n\gamma): XUNDL-2 \qquad \textbf{2015Ro27} \ (continued)$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathtt{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
1016.4 5	0.6 2	11084.4	73/2+	10068.0	69/2+	DCO=1.17 23
1022.0 2	2.7 8	9946.8	69/2+	8924.8	65/2+	DCO=0.91 18
1026.4 5	≤0.3	11219.4	$(73/2^+)$	10193.0	$(69/2^+)$	200 0.51 10
1030.1 5	≤0.3	4593.0+y	(J3+10)	3562.9+y		
1032.3 5	≤0.3	11878.7	$(75/2^+)$	10846.4	$(71/2^+)$	
1033.9 5	0.8 3	11027.2	$73/2^{-}$	9993.8	69/2-	DCO=0.95 19
1034.1 2	3.0 4	9858.3	69/2-	8824.2	65/2-	DCO=1.04 16
1036.1 2	1.9 7	11690.5	77/2+	10654.4	73/2+	DCO=1.01 20
1036.6 5	≤0.3	11587.9	75/2 ⁺	10551.3	71/2+	DCO=1.11 22
1039.5 5	≤0.3	5413.2+x	(J2+10)	4373.7+x		DCO=0.98 20
1039.5 5	≤0.3	11037.0	73/2	9997.0	69/2	DCO=0.90 18
1040.0 5	≤0.3	11571.4	$(75/2^+)$	10531.4	71/2+	200 0.50 10
1046.2 5	0.8 1	10489.1	71/2+	9442.9	67/2+	DCO=0.87 17
1048.1 5	≤0.3	11601.2	$(75/2^{-})$	10553.1	$(71/2^{-})$	200 (10) 17
1054.0 5	0.8 1	12011.6	77/2+	10957.6	73/2+	DCO=1.11 22
1054.8 5	0.4 2	11558.9	75/2-	10504.1	71/2-	DCO=0.97 19
1057.9 ^a 5	≤0.3	12209.6	$(77/2^{-})$	11151.7	$(73/2^{-})$	200 (1)/ 1)
1058.3 5	0.8 2	11321.9	75/2+	10263.6	71/2+	DCO=1.13 23
1062.4 2	1.6 2	11265.3	75/2-	10202.9	71/2-	DCO=0.97 19
1070.6 2	1.1 3	12154.7	$(77/2^{-})$	11084.1	$(73/2^{-})$	200 (1)/ 1)
1075.9 5	0.5 1	12160.3	77/2+	11084.4	73/2+	DCO=1.13 23
1084.0 5	≤0.3	12962.7	$(79/2^+)$	11878.7	$(75/2^+)$	200 1110 20
1084.1 2	1.4 3	11030.9	$(73/2^+)$	9946.8	69/2+	
1089.0 2	2.0 3	10947.3	73/2-	9858.3	69/2-	DCO=1.00 15
1089.3 5	≤0.3	5682.3+y	(J3+12)	4593.0+y		
1090.1 5	≤0.3	12127.2	$(77/2^{-})$	11037.0	73/2-	
1090.4 5	0.7 3	12780.9	81/2+	11690.5	77/2+	DCO=0.92 18
1096.1 5	≤0.3	12697.3	$(79/2^{-})$	11601.2	$(75/2^{-})$	
1096.2 5	_ ≤0.3	6509.4+x	(J2+12)	5413.2+x		DCO=0.94 19
1098.1 5	0.4 2	12657.0	79/2-	11558.9	75/2-	DCO=0.98 20
1099.0 5	≤0.3	12686.9	$(79/2^+)$	11587.9	$75/2^{+}$	
1100.1 5	≤0.3	12127.2	$(77/2^{-1})$	11027.2	$73/2^{-}$	
1102.0 5	<u>≤</u> 0.3	12139.2	77/2-	11037.0	$73/2^{-}$	DCO=0.98 20
1102.2 2	1.1 3	12049.5	77/2-	10947.3	73/2-	DCO=0.98 20
1105.3 5	0.6 1	11594.4	75/2+	10489.1	$71/2^{+}$	DCO=1.08 22
1108.3 5	0.8 <i>3</i>	13157.8	$81/2^{-}$	12049.5	$77/2^{-}$	DCO=1.01 22
1111.9 2	1.1 4	12377.2	$79/2^{-}$	11265.3	$75/2^{-}$	DCO=1.03 21
1112.3 5	≤0.3	12139.2	$77/2^{-}$	11027.2	$73/2^{-}$	
1115.9 5	≤0.3	13813.3	$(83/2^{-})$	12697.3	$(79/2^{-})$	
1118.4 5	0.4 1	12440.4	79/2+	11321.9	$75/2^{+}$	DCO=0.90 18
1120.1 5	0.6 1	13131.7	$81/2^{+}$	12011.6	$77/2^{+}$	DCO=1.02 20
1135.1 5	0.4 1	13295.4	$(81/2^+)$	12160.3	77/2+	
1136.1 5	0.7 2	13290.8	$(81/2^{-})$	12154.7	$(77/2^{-})$	
1137.1 5	0.9 2	12168.0	$(77/2^+)$	11030.9	$(73/2^+)$	
1138.4 5	≤0.3	13795.4	$(83/2^{-})$	12657.0	$79/2^{-}$	
1139.1 <mark>a</mark> 5	≤0.3	13278.2	$(81/2^{-})$	12139.2	$77/2^{-}$	
1140.8 5	≤0.3	13921.7	$85/2^{+}$	12780.9	$81/2^{+}$	DCO=0.98 20
1141.9 5	≤0.3	14299.7	$(85/2^{-})$	13157.8	81/2-	
1148.2 5	≤0.3	6830.5+y	(J3+14)	5682.3+y		
1149.2 5	≤0.3	14111.9	$(83/2^+)$	12962.7	$(79/2^+)$	
1150.9 5	≤0.3	13278.2	$(81/2^{-})$	12127.2	$(77/2^{-})$	
1151.8 ^a 5	≤0.3	13291.0	$(81/2^{-})$	12139.2	77/2-	
1153.1 5	≤0.3	7662.5+x	(J2+14)	6509.4+x		DCO=0.97 18
1160.1 5	0.5 2	13537.3	83/2-	12377.2	79/2-	DCO=0.97 19
1164.1 5	≤0.3	13851.1	$(83/2^+)$	12686.9	$(79/2^+)$	

$\gamma(^{167}\text{Lu})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^π	Comments
1169.6 5	≤0.3	14965.0	$(87/2^{-})$	13795.4	$(83/2^{-})$	
1170.6 5	≤0.3	13611.0	83/2+	12440.4	79/2 ⁺	DCO=1.07 21
1173.1 5	≤0.3	15472.8	$(89/2^{-})$	14299.7	$(85/2^{-})$	
1183.3 5	0.4 1	14315.0	85/2+	13131.7	81/2+	DCO=0.97 19
1186.4 5	≤0.3	15108.1	89/2+	13921.7	85/2+	DCO=0.98 20
1188.2 5	<u>≤</u> 0.3	14466.4	$(85/2^{-})$	13278.2	$(81/2^{-})$	
1191.1 2	1.5 2	2894.4	29/2-	1703.3	$25/2^{-}$	DCO=1.03 21
1192.4 5	≤0.3	14487.8	$(85/2^+)$	13295.4	$(81/2^+)$	
1200.1 5	≤0.3	15312.0	$(87/2^+)$	14111.9	$(83/2^+)$	Final level: J^{π} =(81/2 ⁺) in Table IV of 2015Ro27 is a misprint, it should be (83/2 ⁺) as in level-scheme Figure 1.
1200.2 5	≤0.3	14737.5	$87/2^{-}$	13537.3	$83/2^{-}$	DCO=0.91 18
1208.4 5	≤0.3	16681.2	$(93/2^{-})$	15472.8	$(89/2^{-})$	
1210.0 5	≤0.3	8040.5+y	(J3+16)	6830.5+y	(J3+14)	
1210.4 5	≤0.3	8872.9+x	(J2+16)	7662.5 + x	(J2+14)	DCO=1.00 20
1212.3 5	≤0.3	14823.3	87/2+	13611.0	83/2+	DCO=1.04 21
1231.0 5	≤0.3	15968.5	$(91/2^{-})$	14737.5	$87/2^{-}$	
1231.2 5	≤0.3	16339.3	93/2+	15108.1	$89/2^{+}$	DCO=1.00 20
1243.2 5	≤0.3	15558.2	$(89/2^+)$	14315.0	$85/2^{+}$	
1244.0 5	≤0.3	16067.3	$(91/2^+)$	14823.3	87/2+	
1247.2 5	≤0.3	15735.0	$(89/2^+)$	14487.8	$(85/2^+)$	
1256.1 5	≤0.3	17323.4	$(95/2^+)$	16067.3	$(91/2^+)$	
1261.3 5	≤0.3	17229.8	$(95/2^{-})$	15968.5	$(91/2^{-})$	
1262.1 ^a 5	≤0.3	17943.3	$(97/2^{-})$	16681.2	$(93/2^{-})$	
1264.0 5	≤0.3	10136.9+x	(J2+18)	8872.9+x	(J2+16)	DCO=0.97 19
1270.2 5	≤0.3	9310.7+y	(J3+18)	8040.5+y	(J3+16)	
1278.1 2	1.5 2	2483.5	$25/2^{-}$	1205.3	$21/2^{-}$	DCO=1.11 22
1278.6 5	≤0.3	17617.9	$(97/2^+)$	16339.3	$93/2^{+}$	
1309.3 5	≤0.3	11446.2+x	(J2+20)	10136.9+x	(J2+18)	DCO=1.11 29
1313.1 ^a 5	≤0.3	17048.1	$(93/2^+)$	15735.0	$(89/2^+)$	
1356.1 5	≤0.3	12802.3+x	(J2+22)	11446.2+x	(J2+20)	
1370.0 5	0.6 1	2165.0	$21/2^{-}$	794.5	$17/2^{-}$	

[†] According to footnote 'a' in Table IV of 2015Ro27, uncertainty is 0.2 keV for most transitions, except 0.5 keV for γ rays with I γ <10 units relative to 1000 for 410.8-keV γ ray from 1205.3, 21/2⁻ level, or <1.0 unit relative to 100.0 for 410.8-keV γ ray listed here. Compiler also assigns 0.5 keV uncertainty for all the unresolved multiplets as marked by footnote 'e' in table IV of 2015Ro27. For E γ values stated to nearest keV, Δ (E γ)=1 keV is assigned.

 $^{^{\}ddagger}$ Values listed in Table IV are divided by a factor of 10 by compiler thus these are given here relative to 100.0 for 410.8-keV γ ray.

[#] Unresolved multiplet. Energy uncertainty is assigned by the compiler as 0.5 keV, and the intensity is listed as approximate by 2015Ro27.

[@] Intensity is not given in Table IV of 2015Ro27, however it is expected to be strong as the transition lies near the bottom of the band, thus compiler assigns $\Delta(E\gamma)=0.2$ keV.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

¹⁶⁷₇₁Lu₉₆

 $^{167}_{\ 71}Lu_{96}$

¹²³Sb(⁴⁸Ca,4nγ):XUNDL-2 2015Ro27 Legend Level Scheme (continued) $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} 77/2⁺ (77/2⁻ 12160.3 12154.7 77/2⁻ (77/2⁻) 12139.2 1 1 2017 12127.2 77/2 12049.5 77/2+ 1 10323 12011.6 $(75/2^+)$ 11878.7 77/2⁺ (75/2⁻) 11690.5 11601.2 75/2+ 11594.4 $\frac{75/2^{+}}{(75/2^{+})}$ 11587.9 11571.4 75/2 11558.9 75/2+ 11321.9 75/2-11265.3 $(73/2^+)$ 11219.4 (J1+16) 11194.1 73/2+ (73/2-) 11084.4 11084.1 73/2 11037.0 11027.2 73/2+ 10957.6 73/2 10947.3

 $(71/2^{-})$ 10553.1 71/2+ 10551.3 10531.4 71/2 10504.1 71/2+ 10489.1 71/2+ 10263.6 10202.9 $\frac{71/2^-}{(69/2^+)}$ 10193.0 (J1+14) 10185.0 7/2+

10846.4

10654.4

0.0 51.5 min 10

 $(71/2^+)$

 $73/2^{+}$

¹²³Sb(⁴⁸Ca,4nγ):<u>XUNDL-2</u> 2015Ro27 Legend Level Scheme (continued) $\begin{array}{ll} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} $(73/2^{-})$ 11151.7 11084.4 73/2⁺ (73/2⁻ 11084.1 73/2⁻ (73/2⁺ 11037.0 1.088.1 11030.9 73/2 11027.2 73/2+ 10957.6 1974 + 1984 | 10947.3 73/2- $(71/2^+)$ 10846.4 $(71/2^{-})$ 10655.3 73/2+ -8--8--8--8-10654.4 $(71/2^{-})$ 10553.1 71/2⁺ 71/2⁺ 10551.3 10531.4 71/2⁻ 71/2⁺ 10504.1 10489.1 $(69/2^{-})$ 10144.7 $(69/2^{-})$ 10070.9 69/2+ 10068.0 9997.0 69/2-69/2 9993.8 69/2+ 9969.6 69/2+ 9946.8 67/2+ 9869.0 9858.3 69/2 69/2⁺ (67/2⁻ 9674.1 9657.3 67/2+ 9571.4 67/2 9568.2 67/2+ 9542.1 9498.2 67/2-9442.9 $67/2^{+}$ 7/2+ 0.0 51.5 min 10

 $^{167}_{\ 71}Lu_{96}$

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

 $^{167}_{\ 71}Lu_{96}$

 $^{167}_{71} Lu_{96}$

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

$\frac{123}{\text{Sb}}(^{48}\text{Ca,4n}\gamma)\text{:XUNDL-2} \qquad \textbf{2015Ro27}$

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

 $^{167}_{71} Lu_{96}$

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

 $^{167}_{\ 71}Lu_{96}$

 $^{167}_{\ 71}Lu_{96}$

Level Scheme (continued)

Legend

 $\label{eq:continuous} \mbox{Intensities: Relative } I_{\gamma} \\ \mbox{@ Multiply placed: intensity suitably divided}$

 $^{167}_{\,71}Lu_{96}$

¹⁶⁷₇₁Lu₉₆

$$^{167}_{71}Lu_{96}$$

Band(M): Possible triaxial strongly-deformed band #18

Band(N): Possible triaxial strongly-deformed band #17

Band(L): 3-qp, eBC band #16

(J1+16)	11194.1
(J1+14) ¹⁰	09 10185.0
(J1+12) 9	⁵³ 9232.4
(J1+10) ⁹	12 8320.4
(J1+8) 8	⁵⁹ 7461.2
(J1+6) 8	02 6659.3
(J1+4) 7	46 5912.9
(J1+2) 6	82 5230.4
(J1) 6	⁷⁶ 4554.1

 $^{167}_{71} Lu_{96}$

123 Sb(⁴⁸Ca,4nγ):XUNDL-2 2015Ro27 (continued)

Band(r): 3-qp, bAF band #3,α=-1/2

