

TD n°1: Calcul Stochastique

Master MMA - 1ère année - 2022/2023

Pr. Hamza El Mahjour

Vecteurs gaussiens, Espérances conditionnelles et Martingales

Exercice 1 Moments et Exponentielles

Soit $X \sim \mathcal{N}(0, \sigma^2)$. Calculer $\mathbb{E}[X^3]$, $\mathbb{E}[X^4]$, $\mathbb{E}[|X|]$ et $\mathbb{E}[|X^3|]$.

[01]

Exercice 2 Somme de variables gaussiennes

Soit X et Y deux v.a gaussiennes indépendantes. Montrer que X+Y est une variable gaussienne. Précisez sa loi.

[02]

Exercice 3 Convergence de L^2

Soit $\{X_n\}_{n\geqslant 1}$ une suite de v.a gaussiennes convergeant vers X en L^2 . Quelle est la loi de X?

[03]

Exercice 4 Linéarité

Soit $Z = \alpha X + \beta$ avec $\alpha \neq 0$. Montrer que $\mathbb{E}[aX + b|Z] = a\mathbb{E}[X|Y] + b$.

[04]

Exercice 5

Montrer que si $X \in L^2$ et $\mathbb{E}[X|\mathcal{G}] = Y$ et $\mathbb{E}[X^2|\mathcal{G}] = Y^2$ alors X = Y.

[05]

Exercice 6

Soit X,Y deux v.a. telles que la v.a. X-Y est indépendante de \mathcal{G} , d'espérance m et de variance σ^2 . On suppose que Y est $\mathcal{G}-$ mesurable.

- 1. Calculer $\mathbb{E}[X Y | \mathcal{G}]$. En déduire $\mathbb{E}[X | \mathcal{G}]$.
- 2. Calculer $\mathbb{E}\left[(X-Y)^2|\mathcal{G}\right]$. En déduire $E(X^2|\mathcal{G})$.

[06]

Exercice 7 Marche aléatoire simple

Soit (S_n) une marche aléatoire simple symétrique sur \mathbb{Z} , et $\mathscr{F}_n = \sigma(S_1, \dots, S_n)$.

- 1. Montrer que (S_n) est une martingale pour la filtration (\mathscr{F}_n) .
- 2. Montrer que $(S_n^2 n)$ est une martingale pour la filtration (\mathscr{F}_n) .
- 3. Montrer que $(S_n^3 3nS_n)$ est une martingale pour la filtration (\mathscr{F}_n) .
- 4. Soit P(X,Y) un polynôme à deux variables. Montrer que $(P(S_n,n))$ est une martingale pour la filtration (\mathscr{F}_n) si pour tout $s,n\in\mathbb{Z}$, on a

$$P(s+1,n+1) - 2P(s,n) + P(s-1,n+1) = 0.$$

[07]

Exercice 8 Marche aléatoire biaisée

Soit $p \neq 1/2$ et $(S_n)_{n \geqslant 0}$ une marche aléatoire biaisée sur \mathbb{Z} , i.e $S_n = X_1 + \ldots + X_n$ avec X_i i.i.d mais $\mathbb{P}(X_i = 1) = p$ et $\mathbb{P}(X_i = 1 - p)$. Trouver α tel que α^{S_n} soit une martingale

[]