UNIVERSITETET I OSLO

Det matematisk-naturvitenskaplige fakultet

Eksamen i: UNIK4540 - Matematisk modellering av dynamiske systemer

Eksamensdag: Mandag 6. juni 2011

Tid for eksamen: 09:15 - 13:15

Vedlegg: Ingen

Tillatte hjelpemidler: Kalkulator (men ikke nødvendig)

Oppgavesettet er på: 2 sider (ett ark)

Kontaktperson: Oddvar Hallingstad, tlf: 784 eller 95991445

Eksamenslokalet besøkes kl 10.15

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Hvor mye (ca) hver oppgave og hvert spørsmål veier ved bedømning er vist i % (totalt deles det ut 100% poeng).

Oppgave 1 (40%) Matematisk grunnlag

- a) (3%) Hva er referanse- og treghetsrom? Og hva bruker vi som modell for disse?
- b) (3%) Lag en skisse av et 3-dimensjonalt affint rom som viser punktet P, nødvendige rammer og vektorene \vec{r}_{ab} , \vec{r}_{bc} , \vec{r}_{aP} , \vec{r}_{bP} , \vec{r}_{cP}
- \mathbf{c})(3%) Lag en tilsvarende skisse som i b), men for \mathbb{R}^3 .
- d) (10%) Gitt den ortonormale basis $\{\vec{p}_i\}$ i vektorrommet \mathcal{V}^3 . Dersom **A** er en lineær operator vil representasjonen av operatoren **A** i $\{\vec{p}_i\}$ være gitt av

$$A^p = [\mathbf{A}]^p = [\langle \mathbf{A}\vec{p_i}, \vec{p_i} \rangle]$$

Finn matriserepresentasjonen av " $\vec{a} \times$ "-operatoren i den gitte basis.

- e) (10%) Dersom $\{\vec{q_i}\}$ og $\{\vec{p_i}\}$ er to ortonormale basiser i vektorrommet \mathcal{V}^3 vil $(R_p^q)^{-1} = (R_p^q)^T$. Vis at $\dot{R}_p^q = S\left(\underline{\omega}_p^{qq}\right)R_p^q = R_p^qS\left(\underline{\omega}_p^{qp}\right)$
- f) (11%) Koordinatene for punktet P i koordinatsystemene $\{q\}$ og $\{p\}$ er hhv \underline{r}^q og $\underline{\rho}^p$ (radiusvektorene). Dersom

$$\underline{r}^q = \underline{r}_{qp}^q + R_p^q \underline{\rho}^p$$

og vinkelhastigheten $\underline{\omega}_p^{qp}$ er gitt finn sammenhengene mellom $\underline{v}^q = \dot{\underline{r}}^{qq}$ og $\underline{v}^p = \underline{\dot{p}}^{pp}$, $\underline{a}^q = \underline{\ddot{r}}^{qqq}$ og $\underline{a}^p = \underline{\ddot{p}}^{ppp}$ (i notasjonen kan dere slå sammen superskript dersom de er like).

Oppgave 2 (30%) Dynamikk

- a) (2%) Hva betyr kinetimatikk og kinetikk?
- b) (6%) Chasleys teorem sier at en vilkårlig bevegelse kan settes sammen av en translasjon og en rotasjon. Bevis dette.
- c) (12%) Anta vi har et system av N partikler. Partikkel nummer i har masse m_i og blir utsatt for en ytre kraft \vec{f}_i og en kraft \vec{f}_{ij} fra partikkel nummer j. Vis at bevegelsen av partiklenes massesenter er gitt av

$$\vec{f} = m\vec{a}_c^q$$

hvor \vec{f} er total ytre kraft, m er total masse og \vec{a}_c^q er akselerasjonen av massesenteret c sett fra treghetsrommet q.

d) (10%) Spinnsatsen for et stivt legeme om massesenteret kan skrives

$$\vec{n} = \vec{h}^{qq}$$

hvor \vec{n} er ytre moment, \vec{h}^q er spinnet og $\{q\}$ er et treghetsrom. Hvorfor ønsker vi å skrive om denne likningen slik at \vec{h}^{qb} inngår? Utled den nye formen på spinnsatsen ($\{b\}$ ligger fast i legemet). Koordinatiser deretter denne likningen i b-systemet. Tilslutt skrives spinnsatsen opp når $\underline{h}^{qb} = T_b^b \underline{\omega}_b^{qb}$. Hva kalles T_b^b ?

Oppgave 3 (30%) Matematiske modeller for roboter

a) (10%) Tegn en figur med to linker (nr i-1 og i) med et revolut ledd imellom. Vis følgende parametre i figuren og forklar hvordan de defineres:

 a_{i-1} : linklengde for link i-1.

 α_{i-1} : linkvridning for link i-1

 d_i : linkforskyvning mellom linkene i-1 og i

 θ_i : leddvinkel mellom linkene i-1 og i

Hvordan plasseres koordinatsystem $\{i-1\}$?

- b) (2%) Hva er strukturen på transformasjonsmatrisa T_i^{i-1} og hva bruker vi den til? Dersom vi har alle T_i^{i-1} for $i=1,2,\ldots N$ hvordan kan vi da beregne T_N^0 ?
- c) (10%) Dersom vi har revolute ledd forplanter vinkelhastigheten seg etter likningen

$$\underline{\omega}_{i+1}^{0,i+1} = R_i^{i+1}\underline{\omega}_i^{0i} + \dot{\theta}_{i+1}\underline{\hat{z}}_{i+1}^{i+1}$$

Dersom vi har tre linker hva blir da vinkelhastigheten for link tre $(\underline{\omega}_3^{0,3})$ uttrykt vha leddvinkelhastighetene $\dot{\theta}_1, \dot{\theta}_2$ og $\dot{\theta}_3$? Skriv svaret på formen

$$\underline{\omega}_{3}^{0,3} = W \left[\begin{array}{c} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \end{array} \right]$$

dvs finn W-matrisa.

d) (8%) Beskriv med ord hvordan en går fram for å sette opp simuleringslikningene for en robotarm.