Lab 1

StudentID: 2030026107

Use two images for each operation to do the following operations and write down their advantages and disadvantages and explain your results:

2. Test the given pgmreader program use 3x3 average filter and median filter to process images and "lena.pgm" and "noise.pgm" and output the processed image (using pure c++).

Algorithm:

Use pseudo code or figure to display the algorithm.

1) Average Filter

```
AverageFilter(Image *inimage) begin
```

```
tempData= the copy of original 2D matrix of the picture outImage= the copy of inimage

for i=1 to Height-1 do //Except the margin

for j=1 to Width-1 do
```

tempArr= values of 8 surrounding pixel in 3×3 matrix of tempData[i][j] average= the average of numbers in the tempArr tempData[i][j]=average

OneDimData=change the tempData to 1 dimensional array by adding the data one by one

outlmage->data= OneDimData return outlmage

2) Median Filter

MedianFilter(Image *inimage)

begin

```
tempData= the copy of original 2D matrix of the picture
outImage= the copy of inimage

for i=1 to Height-1 do //Except the margin

for j=1 to Width-1 do

tempArr= values of 8 surrounding pixel in 3×3 matrix of tempData[i][j]

median= the median of numbers in the tempArr

tempData[i][j]=average
```

OneDimData=change the tempData to 1 dimensional array by adding the data one by one

outImage->data= OneDimData return outImage

Results (compare the results with the original image):

Paste the result images and the original ones.

1) Lena.png

Before

After Average Filter

After Median Filter

Before

After Average Filter

After Median Filter

Discussion:

Write down your discovery about the test.

- 1) After calling ReadPNMImage() function, the data of the image is stored in a 1D array, we then change it to a 2D array is easier to conduct the following algorithm of 2 filters.
- 2) If we strictly follow the 3×3 form, the data in the margin cannot have 8 neighbors.
- 3) The result of the average filter seems dimmer than the result of the median filter.

Codes

You don't need to paste all the codes. Just show the pieces of code that present the algorithm displayed above.

1) Average Filter

```
Elmage* AverageFilter(Image* image) {
    Image* outImage;
    int i, j, k, average;
    int count = 0;
    outImage = SwapImage(image);
    int tempArr[9];
    int tempData[300][300];

    GetArray(image);
    for (i = 1; i < image~\Height - 1; i++) {
        for (j = 1; j < image~\Width - 1; j++) {
            tempArr[0] = imaArr[i - 1][j];
            tempArr[1] = imaArr[i - 1][j];
            tempArr[2] = imaArr[i][j + 1];
            tempArr[3] = imaArr[i][j + 1];
            tempArr[4] = imaArr[i][j + 1];
            tempArr[6] = imaArr[i + 1][j];
            tempArr[6] = imaArr[i + 1][j];
            tempArr[7] = imaArr[i + 1][j];
            tempArr[7] = imaArr[i + 1][j];
            tempData[i][j] = average;
}

for (i = 0; i < image~\Height; i++) {
            tempData[i][0] = imaArr[i][0];
            tempData[i][i] = imaArr[0][i];
            tempData[0][i] = imaArr[0][i];
            tempData[0][i];
            tempData[0][i] = imaArr[0][i];
            tempData[0][i];
            tempData[0][i] = imaArr[0][i];
            tempData[0][i];
            tempData[0]
```

2) Median Filter

StudentID: 2030026107