S.Y.B.Sc.(Computer Science) Sem-IV

USCSMT-242: Operations Research

Time: 2 Hours]

Instructions for candidates:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Non-programmable, single-memory scientific calculator is allowed.

Q.1) Attempt any five questions of the following

$$[5x2=10]$$

Max marks: 35

a) Write the standard form of the following Linear Programming Problem:

Minimize
$$Z = 2x_1 + 4x_2 + x_3$$

Subject to $x_1 + 2x_2 - x_3 \le 5$
 $2x_1 - x_2 + 2x_3 = 2$
 $-x_1 + 2x_2 + 2x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

b) Use north-west corner rule to obtain Initial Basic Feasible solution of the following transportation problem:

Origin\Destination	D_1	D ₂	D ₃	Supply
O ₁	13	15	16	17
O ₂	7.	11	2	12
O ₃	19	20	9	16
Demand	14	8	23	45

- c) Define Slack Variable and Surplus Variable.
- d) Write dual form of the following Linear Programming Problem:

Maximize:
$$Z = 3x_1 + x_2 + x_3$$

Subject to: $x_1 - 2x_2 + x_3 \le 11$
 $-4x_1 + x_2 + 2x_3 \ge 3$
 $2x_1 - x_3 = -1$,
 $x_1, x_2, x_3 \ge 0$

e) Draw a feasible region for the following constraints.

$$x_1 + 2x_2 \le 20$$

$$x_1 + x_2 \le 12$$

$$x_1 \ge 0, x_2 \ge 0$$

f) Find an Initial Basic Feasible solution to the following Transportation Problem

Origin\Destination	D_1	D_2	D_3	Supply
O ₁	5	1	8	12
O ₂	2	4	0	14
O ₃	3	6	7	4
Demand	9	10	11	30

g) Solve the following Assignment Problem.

Person\Task	P	Q	R
A	120	100	80
В	80	90	110
С	110	140	120

Q.2) Attempt any three questions of the following.

[3x5=15]

a) Solve the following linear programming problem by Simplex Method.

Maximum
$$Z = 40x_1 + 35x_2$$

Subject to $2x_1 + 3x_2 \le 60$
 $4x_1 + 3x_2 \le 96$
 $x_1, x_2 \ge 0$

b) Find an Initial Basic Feasible solution to the following Transportation Problem using Vogel's Approximation method.

Factory\Warehouse	W_1	\overline{W}_2	W_3	W ₄	Capacity
F ₁	19	30	50	10	7
F ₂	70	30	40	60	9
F ₃	40	8	70	20	18
Requirement	5	8	7	14	34

c) Solve the following assignment problem.

Person\Job	I	II	III	IV	V
A	8	4	2	6	1
В	0	9	.5	5	4
C	3	8	9	2	6
D	4	3	1	0	3
Е	9	5	8	9	5

d) Solve the following Degeneracy example of LLP by simplex method.

Maximize Z = 30x + 20ySubject to $6x + 8y \le 480$

$$3x + 3y \le 240$$
$$x \ge 0, y \ge 0$$

e) Solve the following Assignment Problem.

Machines Operators	I	II	III	IV
A	5	5	-	2
В	7	4	2	3
С	9	3	5	-
D	7	2	6	7

Q.3) Attempt any one question of the following

[1x10=10]

1) a) Obtain optimal solution of following Transportation Problem by modified distribution method.

Warehouse Factory	W ₁	W ₂	W ₃	W ₄
Fı	19 (5)	30	50	10 (2)
F ₂	70	30	40 (7)	(2)
F ₃	40	8 (8)	70	20 (10)

b) Solve the assignment problem for maximum cost.

Zone Salesmen	Z1	Z2	Z3	Z4
Salesinen S1	4	5	6	7
S2	5	5	7	7
S3	7	6	7	9
S4	8	9	10	10

2) Solve the following linear programming problem by Big-M Method.

Maximize
$$Z = 4x_1 + x_2$$

Subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$