Orthogonal Rojection

Given two vectors it and \vec{y} in \vec{R} , how do we find the vector parallel to \vec{u} , let's call it $\vec{x}\vec{u}$, so that $\vec{u} \perp (\vec{y} - \vec{x}\vec{u})$?

This vector is called the orthogonal projection of \vec{y} onto \vec{u} .

To solve for \vec{x} , we can write \vec{v} \vec{u} \vec{u} \vec{v} \vec{u} down the perpendicularity

requirement in equation form:

$$(y - \alpha \vec{u}) \cdot \vec{u} = 0 \iff \vec{y} \cdot \vec{u} - \alpha \vec{u} \cdot \vec{u} = 0 \iff \vec{u} = 0$$

Example Find projuty where $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$, $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

Solution We calculate $proj_{th}\vec{y} = \frac{\begin{bmatrix} 7 \\ 6 \end{bmatrix} \begin{bmatrix} 4 \\ z \end{bmatrix}}{\begin{bmatrix} 4 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$

Orthonormal lists

Anorthogonal list for which each vector has unit length is called orthonormal.

Foot: A matrix has orthonormal columns iff U"U=I

Proof the $(i,j)^{\frac{1}{L}}$ entry of U^TU is equal to the ite vow of U^T (i.e., the $i^{\frac{1}{L}}$ column of U) dotted with the $j^{\frac{1}{L}}$ column of U. The $(i,j)^{\frac{1}{L}}$ entry of I is $\{i^{\frac{1}{L}}\}$ is $\{i^{\frac{1}{L}}\}$

Orthogonal Projection, higher dimension

How to project of onto a plane or higher dimensional subspace of R"?

Geometrically, we might be tempted to project y onto two vectors that span Wand add the results, since frat makes sense in the picture (the green vectors add to give the red one). This is indeed the case:

Theorem If $\{u_1,...,u_p\}$ is on basis for W, then $\hat{y} = \frac{\hat{y}\cdot\hat{u}_1}{\hat{u}_1}\hat{u}_1 + ... + \frac{\hat{y}\cdot\hat{u}_p}{\hat{u}_p}\hat{u}_p$

is in Wand y-y is orthogonal to W.

Sue calculate rest of terms are zero ($\vec{y} - \hat{y}$) $\cdot \vec{u}_1 = \vec{y} \cdot \vec{u}_1 - \vec{u}_1 \cdot \vec{u}_1 \cdot \vec{u}_1 \cdot \vec{u}_1 - 0 \cdots = 0$ orthogonality) $=\overrightarrow{y}.\overrightarrow{u}_{1}-\overrightarrow{y}.\overrightarrow{u}_{1}=0.$ Similarly (y-9). 12 = ... = (y-9). 1 = 0. So y-y is orthogonal to each vector in a besis of W, & therefore to every vector in W. If $W \subset \mathbb{R}^n$ is a subspace and $\hat{g} = proj_w \hat{y}$, then Theorem (Best Approximation) 13-91 < 13-71 for any i EW other than i. $|y-\hat{y}|^2 + |\hat{y}-\hat{v}|^2 = |y-\hat{v}|^2 + |\hat{y}-\hat{v}|^2 = |y-\hat{v}|^2$ viougle ⇒ 1g-9/2 1g-v/.