Relación de problemas 1

Demostrar que la inversa de la capacidad equivalente de la asociación de condensadores en serie es igual a a la suma de las capacidades recíprocas.

Calcula el equivalente Thevening entre los puntos A y B del circuito siguiente:

Determinar el punto de operación (bias point), del siguiente circuito de forma manual y después verificarlo con la ayuda del simulador.

Con la ayuda del simulador calcular la curva de transferencia: "Tensión de salida en función de la tensión de entrada" para el circuito de la figura considerando que su entrada cambia entre 0 y 5 votios. ¿Qué función hace el condensador?. ¿Qué tensión hay a la salida en ausencia de tensión de entrada?

Con la ayuda del simulador, estudiar y explicar el comportamiento Transitorio del Circuito de la figura durante 40 milisegundos cuando se excita con un pulso de 5 voltios durante un tiempo de 10 milisegundos. ¿Cuál es la carga almacenada en el condensador a los 5 milisegundos?.¿Y a los 30 milisegundos?.

Relación de problemas 2

Sea el circuito RC de la figura al que se le aplica un señal senoidal de 5 voltios de amplitud y una frecuencia de 1000 Hz: $V_i(t) = 5\cos(2\pi\cdot 1000t + 0)$. Calcular la caída de tensión en el condensador V_c y la corriente I_c que circula por el condensador. Verificar los resultados mediante simulación.

Sea el circuito RL de la figura al que se le aplica un señal senoidal de 5 voltios de amplitud y una frecuencia de 1000 Hz: $V_i(t) = 5\cos{(2\pi\cdot 1000t+0)}$. Calcular la caída de tensión en el inductor V_L y la corriente I_L que circula por el inductor. Verificar los resultados mediante simulación.

Estudiar y caracterizar una impedancia RL paralelo

Estudiar y caracterizar una impedancia RC paralelo

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Baja de primer orden".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Alta de primer orden".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Baja con Polo y cero".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Banda (RC_Serie-RC_Paralelo)".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Todo". Explicar su funcionamiento inútil.

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito.

Relación de problemas 3

Sea el circuito RC de la figura al que se le aplica un señal senoidal de 5 voltios de amplitud y una frecuencia de 1000 Hz: $V_i(t) = 5\cos(2\pi\cdot 1000t + 0)$. Calcular la caída de tensión en el condensador V_c y la corriente I_c que circula por el condensador. Verificar los resultados mediante simulación.

Sea el circuito RL de la figura al que se le aplica un señal senoidal de 5 voltios de amplitud y una frecuencia de 1000 Hz: $V_i(t) = 5\cos(2\pi\cdot 1000t + 0)$. Calcular la caída de tensión en el inductor V_L y la corriente I_L que circula por el inductor. Verificar los resultados mediante simulación.

Estudiar y caracterizar una impedancia *RL* paralelo

Estudiar y caracterizar una impedancia RC paralelo

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Baja de primer orden".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Alta de primer orden".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Baja con Polo y cero".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Banda (RC_Serie-RC_Paralelo)".

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito denominado "Filtro pasivo Pasa-Todo". Explicar su funcionamiento inútil.

Analíticamente y mediante simulación, calcular la respuesta en frecuencia del siguiente circuito.