NMB - Oefenzitting 5: Kleinste-kwadratenbenadering (deel 1)

Hendrik Speleers

	vei	771	\sim	ht	-
v	ve	121	u	ш	_

Algemeen

Ruimte

Metrische ruimte Genormeerde ruimte Unitaire ruimte

Kleinste-kwadratenbenadering

lota's			
lota's			
Nota's			
lota's			
Nota's			

Algemeen

- ► Benaderingsprobleem :
 - ► Te benaderen functie
 - ► Klasse van benaderingsfuncties
 - ► Benaderingscriterium
 - Benaderingsalgoritme
- ► Ruimtes :
 - ► Metrische ruimte
 - ► Genormeerde ruimte
 - ► Unitaire ruimte
 - ► Euclidische ruimte

Metrische ruimte

- ightharpoonup
 ho is een afstand of metriek als
 - 1. $\rho(x, y) \ge 0$
 - 2. $\rho(x,y) = 0 \Leftrightarrow x = y$
 - 3. $\rho(x, y) = \rho(y, x)$
 - 4. $\rho(x,y) \leq \rho(z,x) + \rho(z,y)$
- ► Metrische ruimte : verzameling voorzien van een metriek

Nota's			
Nota's			

Genormeerde ruimte

- ▶ || · || is een norm op een vectorruimte als
 - 1. $||x|| \ge 0$

 - 2. $||x|| = 0 \Leftrightarrow x = 0$ 3. ||ax|| = |a||x||4. $||x + y|| \le ||x|| + ||y||$
- ► Genormeerde ruimte : vectorruimte met een norm
- Geïnduceerde afstand : $\rho(x, y) = ||x y||$

Unitaire ruimte

- \blacktriangleright (\cdot, \cdot) is een scalair product als
 - 1. (ax, y) = a(x, y)
 - 2. (x + y, z) = (x, z) + (y, z)3. (x, y) = (y, x)

 - 4. $x \neq 0 \Rightarrow (x, x) > 0$
- ▶ Unitaire ruimte : vectorruimte met scalair product
- ► Euclidische ruimte : eindigdimensionale unitaire ruimte
- Geïnduceerde norm : $||x|| = \sqrt{(x,x)}$
- ▶ Elementen x en y zijn orthogonaal $(x \perp y)$ als (x, y) = 0

Nota's				
Nota's				

Kleinste-kwadratenbenadering

- ► Zoek benadering $y_n(x) = \sum_{k=0}^n a_k \phi_k(x)$ voor
 - ► continue KKB : f(x), $x \in [a, b]$ ► discrete KKB : $\{(x_i, f_i)\}_{i=1}^N$
- zodanig dat gewogen residu
 - ▶ continue KKB : $r(x) = f(x) y_n(x)$
 - discrete KKB : $r_i = f_i y_n(x_i)$

minimaal is

$$\min_{a_k} \int_a^b w(x) r^2(x) dx, \qquad \min_{a_k} \sum_{i=1}^N w_i r_i^2$$

$$\implies \min_{a_k} \langle wr^2 \rangle$$

Kleinste-kwadratenbenadering

► ⟨wr²⟩ minimaal

$$\Rightarrow \frac{\partial}{\partial a_s} \langle wr^2 \rangle = 0 , s = 0, \dots, n$$

$$\Leftrightarrow \langle wr\phi_s \rangle = 0$$

$$\Leftrightarrow \sum_{k=0}^n a_k \langle w\phi_s\phi_k \rangle = \langle w\phi_s f \rangle$$

- Normaalstelsel
- ► Meetkundige interpretatie
- ▶ Bijvoorbeeld: orthogonale veeltermen

Nota's			
Nota's			