







## **Software-Defined Networking**

Prof. Ai-Chun Pang
Graduate Institute of Networking and Multimedia,
Dept. of Comp. Sci. and Info. Engr.,
National Taiwan University

Email: acpang@csie.ntu.edu.tw

http://www.csie.ntu.edu.tw/~acpang











## **Agenda**

- What is Software-Defined Networking (SDN)?
- How does SDN work?
  - Infrastructure layer
  - Control layer
  - Application layer
- Research Issues
  - Scalability
  - Consistent network update
  - Flow scheduling
  - Security









#### What is SDN?









## **Current Status & Motivation (1/2)**

Source: Nick Mckeown, Stanford



- Specialized software
- Specialized firmware
- Specialized hardware
- Specialized interface













**Vertical-integrated** 

**Horizontal-integrated** 











## **Current Status & Motivation (2/2)**

- Traditional network is manually configured
  - Operating error may cause network tear down
  - High CAPEX and OPEX
  - Network equipment is vulnerable to software bugs













#### What is SDN?

Source: Shmuel (Mooly) Sagiv, Tel Aviv Univ.

- SDN is an emerging network architecture
  - Decoupling of control and data planes

















#### Goal

- Simplified and efficient network management
  - Programmable networks
    - Flexible and dynamically customizable networks
  - Network Operating System (NOS)
    - Provide global view
    - Ensure consistent network
  - Standard open interface (Northbound/southbound API)
    - Backward compatibility











#### **How does SDN work?**











## **SDN Paradigm**

Reference model<sub>[1]</sub>











### **Operation**











## Infrastructure Layer<sub>[1]</sub>

- Network equipment: router, switch, and middlebox
  - Control plane: flow table and secure channel
  - Data plane: packet switching/forwarding











# Flow Table in Switch<sub>[2-3]</sub>

- SDN commonly uses TCAM to store rules in flow tables
  - Match fields: Match packets based on packet's header
  - Action set: Forward, drop, and modify
  - Statistics: Bytes, packets, duration











## SDN Switching Devices<sub>[1]</sub>

| OpenFlow<br>Switch | Wireless AP | Network<br>Hardware | Vendor |  |
|--------------------|-------------|---------------------|--------|--|
| Representative     | OpenWRT     | NetFPGA             | Pica8  |  |
| Processing Speed   | Low         | Middle              | High   |  |
| Flexibility        | High        | Middle              | Low    |  |





















## **Control Layer**

- Software-based SDN controller
  - Provide consolidated control functionality by open interface<sub>[1]</sub>











## **OpenFlow Controllers**

|   | Controller        | Open Source | Language       | Multi-threaded | GUI | Origin                                  |
|---|-------------------|-------------|----------------|----------------|-----|-----------------------------------------|
| Q | NOX [32]          | yes         | C++/Python     | no             | yes | Nicira Networks                         |
| Ī | NOX-MT [46]       | yes         | C++            | yes            | no  | Nicira Networks and Big Switch Networks |
|   | POX [47]          | yes         | Python         | -              | yes | Nicira Networks                         |
| [ | Maestro [48]      | yes         | Java           | yes            | no  | Rice University                         |
| [ | Beacon [49]       | yes         | Java           | yes            | yes | Stanford University                     |
|   | SNAC [50]         | no          | C++/Python     | no             | yes | Nicira Networks                         |
| [ | RISE [51]         | yes         | C and Ruby     | non-guaranteed | no  | NEC                                     |
|   | Floodlight [52]   | yes         | Java           | -              | yes | Big Switch Networks                     |
| [ | McNettle [53]     | yes         | Nettle/Haskell | no             | no  | Yale University                         |
|   | MUL [54]          | yes         | C              | yes            | yes | KulCloud                                |
|   | RYU [55]          | yes         | Python         | -              | -   | NTT OSRG and VA Linux                   |
|   | OpenDaylight [56] | yes         | Java           | yes            | yes | Multiple contributors                   |









## **Application Layer**

- Develop SDN applications/policies to manage the network
  - Using high-level API provided by controller
- SDN applications
  - Access control
  - Load balancing
  - Network virtualization
  - Energy efficiency





# 意学 National Taiwan University

#### **SDN Research Issues**













#### **SDN Research Issues**

- Controller scalability
- Consistent network update
- Flow scheduling
- Security











## **Controller Scalability**

- Massive flow setups sent to controller
  - High flow arrival rate
  - Fine-grained flow control
  - Limited TCAM capacity

Why?











#### Solutions for Scalability (1/2)

- Capability enhancement for the centralized controller<sub>[8]</sub>
  - Parallelism mechanisms (Multi-threading and multi-core CPU)
  - I/O batching
- Cooperation among multiple distributed controllers<sub>[9-10]</sub>
  - Leverage multiple controllers to share the handling of flow setup requests
  - Horizontal/vertical control models











# 李学 National Taiwan University

### Solutions for Scalability (2/2)

- Switch-assisted<sub>[1]</sub>
  - Keep flow setups in data plane
    - Redirect flow setup sent to an authority switch













## **Consistent Network Update (1/2)**

- What is network update?
  - Change network state to achieve some goal, e.g.,
    - Goal: VM migration
    - State: Forwarding entries and traffic distribution



- 20% of failures come from careless planned maintenance
  - Forwarding black-hole/forwarding loop
  - Link congestion and policy violation
- Consistent network update
  - Prevent specific problems during network update











## **Consistent Network Update (2/2)**

- Forwarding loop
  - Reason: Asynchronous switch update







**Loop State 2** 



**Final State** 









#### **Solutions for Consistent Network Update**

- Goal: Ensure common consistent properties
  - Blackhole/loop free, congestion free, and waypoint enforcement
- A simple solution: Two-phase update<sub>[13]</sub>
  - Add new rules into internal switches and ingress switch
  - Stamp packets with new version tag (VLAN or MPSL labeling)













## Flow Scheduling

- Traditional routing protocol may cause substantial bandwidth loss due to long-term collisions
  - Example: ECMP<sub>[14]</sub>











## Solution for Flow Scheduling

- Observation
  - Network congestions are mainly caused by elephant/large flows
- Hedera<sub>[14]</sub>: A well-known solution in data center











## **Security Issues**

 SDN enables new opportunities to solve some legacy network security issues, and also faces several new challenges

- Existing issues
  - DDoS attack
  - Network scanning attack
- New SDN issues
  - Link fabrication attack<sub>[15]</sub>
  - Policy enforcement attack











## **Link Fabrication Attack (1/2)**

- SDN application requires topology to control the network behavior
- Topology discovery service<sub>[15]</sub>









## **Link Fabrication Attack (2/2)**

- However, topology discovery services provided by controllers can be tricked by adversaries
  - Link fabrication attack<sub>[15]</sub>











#### **Solution for Link Fabrication Attack**

- Each port of switch has a flag to represent whether the port is connecting to a host/switch
- Controller uses the transition graph to update the flag value and detect the attack

 For example: An alert is raised if a port connecting to a host receives an LLDP packet













#### Reference

- [1] W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, "A Survey on Software-Defined Networking," in *IEEE* Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27-51, 2015.
- [2] Y. Jarraya, T. Madi, and M. Debbabi, "A Survey and a Layered Taxonomy of Software-Defined Networking, "IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp.1955-1980, 2014.
- [3] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, "A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks, " IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp.1617-1634, 2014.
- [4] F. Hu, Q. Hao, and K. Bao, "A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation, "IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206, 2014.
- [5] A. Tavakoli, M. Casado, and S. Shenker. Applying nox to the datacenter. HotSDN, pages 1–6, 2009.
- [6] M. Moshref, M. Yu, A. Sharma, and R. Govindan. Scalable rule management for data centers. USENIX Conference, pages 157–170, 2013.
- [7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. Devoflow: Scaling flow management for high performance networks. ACM SIGCOMM Comput. Commun. Rev., pages 254-265, 2011.
- [8] David Erickson. The beacon openflow controller. ACM SIGCOMM Workshop on HotSDN, pages 13–18, 2013.









#### Reference

- [9] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T. Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman, D. Underhill, T. Yabe, K. K. Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller, R. Johari, N. McKeown, and G. Parulkar. Carving research slices out of your production networks with openflow. SIGCOMM Comput. Commun. Rev., 40(1):129–130, 2010.
- [10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A distributed control platform for large-scale production networks. USENIX Conference, pages 1-6, 2010.
- [11] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flowbased networking with difane. ACM SIGCOMM, pages 351-362, 2010.
- [12] A. Markopoulo, G. Iannaccone, S. Bhattacharyya, C.N. Chuah, Y. Ganjali, and C. Diot, "Characterization of Failures in an Operational IP Backbone Network," IEEE/ACM Transactions on Networking, 2008.
- [13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D. Walker, "Abstractions for network update," ACMSIGCOMM, 2012.
- [14] M. A. Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera: dynamic flow scheduling for data center networks," In Proceedings of the 7th USENIX conference on Networked systems design and implementation (NSDI), pp. 1-12, 2010.
- [15] S. Hong, et al. "Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures." in NDSS, 2015.