

Outline

- 1. Data Validation
- 2. Exploratory Analysis
- 3. Model Development
- 4. Model Evaluation
- 5. Business Metrics
- 6. Final summary statement

Data Validation & Exploratory Data Analysis (EDA)

Validation

- Datatype, shape
- null values
- Consistency in categorical variables

Data cleaning

- Feature and target variables are cleaned as necessary. For instance, category column contains 'Chicken' & 'Chiken Breast', both should belong to same category 'Chicken'.
- Rows with null values are dropped from the dataset

Table 1. Sample dataset

recipe	calories	carbohydrate	sugar	protein	category	servings	High traffic
2	35.48	38.56	0.66	0.92	Potato	4	High
3	914.28	42.68	3.09	2.88	Breakfast	1	null
4	97.03	30.56	38.63	0.02	Beverages	4	High
5	27.05	1.85	0.8	0.53	Beverages	4	null

Fig1. Unique values in target variable

EDA continued...

Fig2. Frequency of recipe category

Fig3. Pair-plot of feature variables

Model Development

- Logistic Regression (base model)
 - Map the probability of a binary outcome (0 or 1) as a function of predictor variables.
 - The relationship is expressed using the logistic (sigmoid) function, which outputs probabilities between 0 and 1.
 - $z = \beta_0 + \beta_1 x_1 + \cdots + \beta_n x_n$ where β is coefficient, and x is features
 - Logistic function, $f = \frac{1}{1 + e^{-z}}$

- Random Forest (2nd model)
 - Bootstrap Sampling
 - Tree Construction
 - Feature Selection
 - Node Splitting
 - Tree Growing
 - Aggregation: Once all trees are constructed, combine their predictions:
 - For classification tasks, use majority voting where each tree casts a vote for the predicted class, and the class with the most votes is chosen.

Model Evaluation

Accuracy

Number of correct prediction

Total number of prediction

Confusion Matrix

 For a binary classification, confusion matrix is a 2x2 table

	Actual Positive	Actual Negative
Predicted Positive	TP	FP
Predicted Negative	FN	TN

Table 2. Model performance on test dataset

Model	Accuracy	Confusion Matrix	
LR	0.75	[51 22] 19 87]	
RF	0.69	$\begin{bmatrix} 42 & 31 \\ 23 & 83 \end{bmatrix}$	

Business Metrics

- Classifying a high-traffic event as a low traffic can be damaging for our business.
 Hence we should be careful about false positives
- End-to-end development of a ML project is demonstrated
- Since category is most significant variable, lets take more caution while collecting data regarding this

Fig4. Variable importance in Logistic Regression

Final Remark

- Logistic Regression performs better for our given test dataset (75% accurate compared to 69% by RF).
- Hence, logistic regression can be deployed in Azure for future recommendation of recipe with high traffic.