

Unpacking the Black Box: Spatial Data Science Methods Explained

Lauren Bennett Alberto Nieto

Density-based Clustering

finds clusters based on feature locations

- Cluster 1
- Cluster 2
- Cluster 3
- Cluster 4
- Oluster 5
- Noise

HDBSCAN – self adjusting

OPTICS – multi-scale

HDBSCAN – self adjusting

OPTICS – multi-scale

DBSCAN

- Uses fixed search distance
- Clusters of similar densities
- Fast

HDBSCAN

- Uses range of search distances to find clusters of varying densities
- Data driven, requires least user input

OPTICS

- Uses neighbor distances to create reachability plot
- Most flexibility for fine tuning
- Can be computationally intensive

Demo

Cluster 1

Cluster 2Cluster 3Cluster 4Cluster 5Noise

Forest-based

Classification &

Regression

Predicting using machine learning

Training

variable to predict

Breed

Size Color Fur

Ears

Tail

Age

Weight

explanatory variables

Decision Tree Size Color Ears

Random subset of data and variables used in each tree

Majority vote wins

Classification

Predict categorical variable

Regression

Predict continuous variable

Explanatory Variables

Attributes

Distance features

Rasters

Explanatory Training Variables

Other attributes in the layer containing the Variable to Predict

Explanatory TrainingDistance Features

Features from which distances will be calculated

Explanatory Training Rasters

Rasters from which values will be extracted

Prediction Type

Train only 🕸 🛅

Predict to features

Predict to rasters

Train only

Assess model performance

How accurate is the model?

Which variables were most important for prediction?

Predict to features

Create a prediction feature class

Predict missing values in study area

Predict values in a different study area

Predict values in a different time period

Predict to raster

Create a prediction surface

All explanatory variables must be rasters

Predict values in a different study area

Predict values in a different time period

Evaluate model performance

Variable importance

How well does each variable do in splitting the trees?

Out Of Bag errors

How well can each tree predict the excluded features?

2/3 included (randomly)

1/3 excluded

Model Validation

Training features

Model Validation

Model Validation

How well can the forest predict the features not used in training?

R-squared

How well can the forest predict (regression) the features not used in training?

Confusion matrix

How well can the forest predict (classification) the features not used in training?

Confusion matrix

How well can the forest predict (classification) the features not used in training?

Accuracy for 15/20

Modeling workflow

- Step 0. Prepare your data
- Step 1. Train a model
- Step 2. Evaluate model performance
- Step 3. Train again with different parameters
- Step 4. Compare models
- Step 5. Repeat... OC
- Step 6. Use best model to predict unknown values

Demo

"Essentially, all models are wrong, but some are useful."

- George E. P. Box