Text Retrieval and Web Search http://informationretrieval.org

IIR 5: Index Compression

Steven Bethard

(Based on slides by Hinrich Schütze at informationretrieval.org)

Spring 2017

1 / 39 Index compression

Overview

- Compression
- 2 Term statistics
- 3 Dictionary compression
- 4 Postings compression

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?

rm statistics Dictionary compression Postings compression

Outline

Compression

- Compression
- 2 Term statistics
- 3 Dictionary compression
- 4 Postings compression

Index compression $5 \ / \ 39$

Why compression? (in general)

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)
 - reading compressed data and decompressing in memory is faster than reading uncompressed data
- Premise: Decompression algorithms are fast.
- This is true of the decompression algorithms we will use.

Why compression in information retrieval?

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file
 - Motivation: reduce disk space needed, decrease time needed to read from disk
 - Note: Large search engines keep significant part of postings in memory
- We will devise various compression schemes for dictionary and postings.

Lossy vs. lossless compression

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:

Lossy vs. lossless compression

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:
 - downcasing, stop words, porter, number elimination
- Lossless compression: All information is preserved.
 - What we mostly do in index compression

Outline

- Compression
- 2 Term statistics
- 3 Dictionary compression
- 4 Postings compression

Model collection: The Reuters collection

symbol	statistic	value
N	documents	800,000
L	avg. # word tokens per document	200
Μ	word types	400,000
	avg. # bytes per word token (incl. spaces/punct.)	6
	avg. # bytes per word token (without spaces/punct.)	4.5
	avg. # bytes per word type	7.5
T	non-positional postings	100,000,000

Effect of preprocessing for Reuters

	word types	non-positional	positional postings			
	(terms)	postings	(word tokens)			
size of	dictionary	non-positional index	positional index			
	size ∆cml	size Δ cml	size Δ cml			
unfiltered	484,494	109,971,179	197,879,290			
no numbers	473,723 -2 -2	100,680,242 -8 -8	179,158,204 -9 -9			
case folding	391,523-17 -19	96,969,056 -3 -12	179,158,204 -0 -9			
30 stopw's	391,493 -0 -19	83,390,443-14 -24	121,857,825 -31 -38			
150 stopw's	391,373 -0 -19	67,001,847-30 -39	94,516,599 -47 -52			
stemming	322,383-17 -33	63,812,300 -4 -42	94,516,599 -0-52			

Explain differences between numbers non-positional vs positional: -3 vs -0, -14 vs -31, -30 vs -47, -4 vs -0

10 / 39 Index compression

- That is, how many distinct words are there?
- Can we assume there is an upper bound?

How big is the term vocabulary?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: the vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \le k \le 100$ and $b \approx 0.5$.
- Heaps' law is linear in log-log space.
 - It is the simplest possible relationship between collection size and vocabulary size in log-log space.
 - Empirical law

Heaps' law for Reuters

Vocabulary size M as a function of collection size T (number of tokens) for Reuters-RCV1. For these data, the dashed line $\log_{10} M =$ $0.49 * log_{10} T + 1.64$ is the best least squares fit. Thus, $M = 10^{1.64} T^{0.49}$ and $k=10^{1.64}\approx 44$ and b = 0.49.

Empirical fit for Reuters

- Good, as we just saw in the graph.
- Example: for the first 1,000,020 tokens Heaps' law predicts 38.323 terms:

$$44 \times 1,000,020^{0.49} \approx 38,323$$

- The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.

Exercise

- What is the effect of including spelling errors vs. automatically correcting spelling errors on Heaps' law?
- Compute vocabulary size M
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10.000 tokens and 30.000 different terms in the first 1.000.000 tokens.
 - Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

 Now we have characterized the growth of the vocabulary in collections.

Postings compression

- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The i^{th} most frequent term has frequency cf_i proportional to 1/i.
- $cf_i \propto \frac{1}{i}$
- \bullet cf; is collection frequency: the number of occurrences of the term t_i in the collection.

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.

. . .

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $\mathrm{cf}_2 = \frac{1}{2}\mathrm{cf}_1 \ldots$

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for k = -1)

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for k = -1)
- Example of a power law

Zipf's law for Reuters

Fit is not great. What is important is the key insight: Few frequent terms, many rare terms.

17 / 39 Index compression

Outline

- 3 Dictionary compression

Dictionary compression

- Not covered in this class!
- Summary: you can get a compression of approximately 50%, but with complicated data structures for string representation. Not that useful. Why?

- Postings compression

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 19.6 < 20$ bits per docID.
- Our goal: use a lot less than 20 bits per doclD.

Key idea: Store gaps instead of docIDs

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202, . . .
- It suffices to store gaps: 283159-283154=5, 283202-283154=43
- Example postings list using gaps: COMPUTER: 283154, 5, 43. . . .
- Gaps for frequent terms are small.
- Thus: We can encode small gaps with fewer than 20 bits.

Gap encoding

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

23 / 39 Index compression

Variable length encoding

- Aim:
 - For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).
 - For THE and other very frequent terms, we will use only a few bits per gap (= posting).
- In order to implement this, we need to devise some form of variable length encoding.
- Variable length encoding uses few bits for small gaps and many bits for large gaps.

Variable byte (VB) code

- Used by many commercial/research systems
- Dedicate 1 bit (high bit) to be a continuation bit c.
- If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c=1.
- Else: encode lower-order 7 bits and then use one or more additional bytes to encode the higher order bits using the same algorithm.
- At the end set the continuation bit of the last byte to 1 (c=1) and of the other bytes to 0 (c=0).

VB code examples

 docIDs
 824
 829
 215406

 gaps
 5
 214577

 VB code
 00000110 10111000
 10000101
 00001101 00001100 10110001

VB code encoding algorithm

```
VBENCODENUMBER(n)
    bytes \leftarrow \langle \rangle
    while true
    do Prepend(bytes, n mod 128)
        if n < 128
4
5
           then Break
6
        n \leftarrow n \text{ div } 128
    bytes[Length(bytes)] += 128
```

return bytes

```
VBENCODE(numbers)
```

- bytestream $\leftarrow \langle \rangle$
- **for each** $n \in numbers$ **do** bytes \leftarrow VBENCODENUMBER(n)
- $bytestream \leftarrow Extend(bytestream, bytes)$ 4
- return bytestream

VB code decoding algorithm

```
VBDecode(bytestream)
     numbers \leftarrow \langle \rangle
   n \leftarrow 0
     for i \leftarrow 1 to Length(bytestream)
     do if bytestream[i] < 128
5
            then n \leftarrow 128 \times n + bytestream[i]
            else n \leftarrow 128 \times n + (bytestream[i] - 128)
6
                   APPEND(numbers, n)
8
                   n \leftarrow 0
9
     return numbers
```

Other variable codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles) etc
- Variable byte alignment wastes space if you have many small gaps – nibbles do better on those.
- There is work on word-aligned codes that efficiently "pack" a variable number of gaps into one word – see resources at the end

Gamma codes for gap encoding

- VB encoding uses byte as the encoding unit.
- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent n as n 1s with a final 0.
 - Unary code for 3 is 1110
 - Unary code for 40 is 1111111111111111111111111111111111111
 - Unary code for 70 is:

Index compression 30 / 39

Gamma codes for gap encoding

- VB encoding uses byte as the encoding unit.
- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent n as n 1s with a final 0.
 - Unary code for 3 is 1110
 - Unary code for 40 is 11111111111111111111111111111111111
 - Unary code for 70 is:

Index compression 30 / 39

Gamma code

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- ullet For example $13 o 1101 o 101 = \mathsf{offset}$
- Length is the length of offset.
- For 13 (offset 101), this is 3.
- Encode length in unary code: 1110.
- Gamma code of 13 is the concatenation of length and offset: 1110101.

Index compression 31 / 39

Gamma code examples

number	unary code	length	offset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110,00000000001

Index compression 32 / 39

- Compute the variable byte code of 130
- Compute the gamma code of 130

33 / 39 Index compression

Length of gamma code

- The length of offset is |log₂ G| bits.
- The length of *length* is $\lfloor \log_2 G \rfloor + 1$ bits,
- So the length of the entire code is $2 \times \lfloor \log_2 G \rfloor + 1$ bits.
- \bullet γ codes are always of odd length.
- Gamma codes are within a factor of 2 of the optimal encoding length $\log_2 G$.
 - (assuming the gaps are equiprobable only approximately true)

Index compression 34 / 39

Gamma code: Properties

- Gamma code is prefix-free: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).
- This result is independent of the distribution of gaps!
- We can use gamma codes for any distribution. Gamma code is universal.
- Gamma code is parameter-free.

Index compression 35 / 39

Gamma codes: Alignment

- Machines have word boundaries 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.
- Variable byte encoding is aligned and thus potentially more efficient.
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost.

Index compression 36 / 39

Compression of Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

37 / 39 Index compression

Summary

Index compression 38 / 39

Summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.
- However, we've ignored positional and frequency information.
- For this reason, space savings are less in reality.

Index compression 38 / 39

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?

Index compression 39 / 39