DETECCIÓN DE NOTICIAS FALSAS MEDIANTE TÉCNICAS DE DEP LEARNING

Trabajo de Fin de Grado Álvaro Esteban Muñoz

Índice

INTRODUCCIÓN

- Definición de "Fake New"
- Planteamiento del problema

EXPERIMENTACIÓN

- Preprocesamiento básico
- Ranking básico
- Preprocesamientos alternativos
- Ranking múltiple

MEJORAS

- Sintetización de texto
- Head & Tail embeddings
- Ensembles

CONCLUSIONES

- Conclusión
- Trabajo futuro

Introducción

¿Qué es una noticia falsa?

- Información parcial/totalmente falsa
- Posee apariencia de noticia
- Objetivo: Provocar miedo, agitación, difamación o fraude.

¿Cómo sabemos si la noticia que tenemos delante es falsa o no?

- Aunque hay ciertas características que nos dan pistas, no <u>siempre es tan sencillo</u>.

NECESIDAD: Automatizar la detección de noticias falsas.

Descripción de la tarea

- Nos enfrentamos a FakeDeS, una tarea propuesta por lberLEF en su edición de 2021.
- "Decidir si una noticia es real o falsa analizando su representación textual."

Datos

Train & Validation sets

	TRAIN	VALIDATION	TOTAL
VERDADERAS	338	153	491
FALSAS	338	142	480
TOTAL	676 (70%)	295 (30%)	971 (100%)

Datos

Test set

TEST

VERDADERAS 286

FALSAS 286

TOTAL 572

Periodo de extracción:

- Train & Validation:
 Enero (2018) Julio (2018)
- Test:
 Noviembre (2021) Marzo (2022)

Nuevos temas:

- COVID-19
- INTERNACIONAL
- AMBIENTE

Retos: Variabilidad en el lenguaje y los temas.

ID 1, 2, 3, 4, ... True/Fake Category Topic Science, Sports, Economy, Education, Entertainment, Politics, Health, Security, Society Source "Nombre del periódico" RAE INCLUIRÁ LA PALABRA "LADY" EN EL DICCIONARIO DEL IDIOMA ESPAÑOL... Headline Text España.- El presidente de la Real Academia Española (RAE), Darío Villanueva,... Link http://www.elruinaversal.com/2017/06/10/rae-incluira-la-palabra-lady-en-el-dicc...

F1-Score

$$f1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Precisión

$$precision = \frac{TP}{TP + FP}$$

Recall

$$recall = \frac{TP}{TP + FN}$$

Accuracy

$$acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Confusion Matrix

Predictions

Positive

Negative

Positive

True positive (TP)

False negative (FN)

Negative

False positive (FP)

True negative (TN)

Técnicas más utilizadas actualmente para NLP → Transformers

- Modelos de Deep learning que hacen uso de mecanismos de atención.
- El más famoso es el conocido BERT, desarrollado por Google

¿Cómo sabemos que nuestros experimentos proporcionan un avance?

Tomaremos como línea base los resultados de los ganadores de IberLeF de 2021

- Establecemos una línea base

	Validation set	Test set	
bert-base-spanish-wwm-cased	Accuracy: 0,8644 F1: 0,8507	F1: 0,7666	

EXPERIMENTACIÓN 02

Pipeline de experimentación

Preprocesado básico

- Objetivo: Construir una representación textual lo más informativa posible
 - Modificar el texto lo menos posible. Prescindimos de métodos de limpiado de texto como lowercasing, stopword o punctuation removal.
 - Elegir los campos cuidadosamente.

Primera aproximación: Campos fundamentales.

Ranking básico

Ranking	Model	Accuracy	F1-Score
1º	BERTIN	0,85139	0,84403
22	RoBERTa	0,84650	0,84403
32	BETO-uncased	0,83391	0,82632
4 <u>°</u>	BASELINE	-	0,76660
52	BETO-cased	0,74475	0,74475
62	RuPERTa	0,60489	0,64687

Preprocesamientos alternativos

Preprocesamientos alternativos

I-S	$\boldsymbol{\sim}$	\sim	$\Gamma \Delta$
J	u	U	ᆫ

Ranking	Model	Preprocess 1	Preprocess 2	Preprocess 3	Preprocess 4
1º	BERTIN	0,84403	0,86260	0,81081	0,85714
2º	RoBERTa	0,84403	0,85620	0,86330	0,77755
3º	ВЕТО	0,82632	0,81935	0,81717	0,82389

03 **MEJORAS**

Mejoras

Sintetización de texto

Head & Tail embeddings

Ensembles

Sintetización de texto

 Objetivo: Evitar la redundancia en el cuerpo de la noticia.

Narrativa/RoBERTa2RoBERTa

Sintetización de texto

F1-Score

0,86330

Ranking	Model	Preprocessing	F1-Score
1º	BERTIN	2	0,84467
2º	RoBERTa	3	0,81849
3º	ВЕТО	1	0,81684

Head & Tail embeddings

<u>26</u>

Head & Tail embeddings

F1-Score

0,86330

Ranking	Model	Preprocessing	F1-Score
19	BERTIN	2	0,86260
22	RoBERTa	3	0,83968
3º	ВЕТО	1	0,77544

Ensembles

Decidir la etiqueta mediante votación de varios modelos

- Aproximación 1: Mejores modelos
- Aproximación 2: Matrices de confusión complementarias

Ensembles

+ Modelo de apoyo RoBERTa (3)

Ensembles

F1-Score

0,86330

Ranking	Model	F1-Score
1º	Ensemble 1	0,87931
2º	Ensemble 2	0,87762

Ensembles (Ponderado)

- Normalizar la puntuación obtenida por cada modelo
- Suma ponderada de las puntuaciones
- Calcular la puntuación final
- Obtener la etiqueta asociada a dicha puntuación

Ensembles (Ponderado)

F1-Score 0,87931

Ranking	Model	Pesos (W_1, W_2, W_3)	F1-Score
1º	Ensemble 1	(0.5, 0.3, 0.2)	0,88421
2º	Ensemble 2	(0.5, 0.35, 0.15)	0,88421
3º	Ensemble 2	(0.5, 0.25, 0.25)	0,87830

04 Conclusiones

Trabajo futuro

Técnicas de data augmentation (GANs)

Experimentos con datasets desbalanceados

Exploración de otras arquitecturas (GPT)

Dudas y preguntas

Álvaro Esteban Muñoz alvaro.esteban775@alu.uhu.es

Gracias

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution