ID:	Name:

- (10) Based on the following table representing an unknown function f(x), do the following:
 - a. (4) Compute f'(2.4) using central-difference with h=0.1.

0	fix) & f(x+h)-f(x-h)		Table 5.5		
f'(x) 2	+(X+11)-4(X-10	1	x,	f_i	
	2h	0	2.0	0.123060	
f(2,5) = f(2,5)-f(C12 =1 (12.3)	2	2.1	0.105706 0.089584	
	+(2,5)+(2,0)	3	2.3	0.074764	
		4	2.4	0.061277	
		6	2.5	0.049126 0.038288	
	0.049126-0.074764	6 7	2.7	0.028722	
= -	= -0.1281	9 8	2.8	0.020371	
	0,2	9	2.9	0.013164	
		10	3.0	0.007026	

b. (6) Get an improved estimate of f'(2.4) using Richardson extrapolation.

Z Repeat the calculation using h=0.2
$$f'(2.4) \approx \frac{f(2.6) - f(2.2)}{2 \times 0.2} = \frac{0.038288 - 0.089584}{0.4} = -0.12824$$
4 Better - estimate
$$f'(2.4) = -0.12819 + \frac{1}{(0.2)/0.1)^2 - 1} = -0.12819 - (0.12824)$$

2. (10) = -0.1281

a. (4) Use the data in the table to find the integral between x=1.0 and 1.8, using the trapezoidal rule with h=0.1

$$S_{1,0}^{1,8}f(x) \approx \frac{\partial(1)}{2}(1.543 + 2 \times 1.669 + 2 \times 1.811 + 2 \times 1.91) \times f(x)$$

$$+ 2 \times 2.151 + 2 \times 2.352 + 2 \times 2.51) \quad 1.0 \quad 1.543$$

$$+ 2 \times 2.828 + 3.101) \quad 1.3 \quad 1.971$$

$$+ 2 \times 2.828 + 3.101) \quad 1.4 \quad 2.151$$

$$= 1.7684 \quad 1.6 \quad 2.577$$

$$1.7 \quad 2.828$$

$$1.8 \quad 3.107$$

 (6) Extrapolate from the results of 2a. to get an improved value for the integral using Romberg integration.

Using h= 0.2

$$S_{1.0}^{1.8} f(x) \approx \frac{0.2}{2} (1.543 + 2 \times 1.811 + 2 \times 2.151 + 2 \times 2.577 + 3.107)$$
= 1.7728

4 using this with the estimate when h= 0.1

Better - estimate = 1.7684 + $\frac{1}{2^2-1}$ (1.7684 - 1.7728)

46* For n an even integer, let T_h , T_{2h} , be trapezoidal rule integrals with step sizes h and 2h. It is easy to show that

$$T_h - T_{2h} = (h/2) \left(-f_0 + 2f_1 - 2f_2 + \ldots - f_n \right)$$
, from which $T_h + (1/3) \left(T_h - T_{2h} \right) = (h/3) \left(f_0 + 4f_1 + 2f_3 + 4f_3 + \ldots + f_n \right)$,

which is Simpson's 1/3 rule. An equivalent relation is to subtract $T_{2h}/3 \ \text{from} \ 4/3 {}^{\star}T_h\text{.}$