KAIYUE SHEN

 \diamond Phone: (+41) 768172997 \diamond Email: kashen@student.ethz.ch

EDUCATION

Master in Electrical Engineering & Information Technology, ETH Zürich

2019 - present

Relevant Coursework: Computer Vision, Deep Learning, 3D Vision, Probabilistic Artificial Intelligence, Advanced Machine Learning, Large-Scale Convex Optimization, Computational Models of Motion.

Bachelor in Electronic Information Engineering, University of Electronic Science and Technology of China GPA: 91.5 / 100, Rank: 1 / 285 2015 - 2019

SKILLS

C/C++, Python (including deep learning frameworks such as PyTorch, Tensorflow), MATLAB

PROJECTS

Continual learning for autonomous mobile robots (Semester Project)

October 2020 - February 2021

- Built a network that continually learns the foreground and background segmentation task using Tensorflow.
- Implemented several methods for continual learning: fine-tuning (baseline), feature distillation, output distillation, elastic weight consolidation, progress and compress.
- Conducted two experiments on NYU & CLA datasets to test the performance of all methods.

Gradual Transition From Model-Based to Model-Free Actor-Critic Reinforcement Learning (Deep Learning, project paper, link)

October 2020 - January 2021

- Proposed a method that gradually transform a model-based RL framework to a model-free actor-critic architecture to combine their advantages using PyTorch.
- Developed a general RL training pipeline that goes through 3 stages: model-free pre-training, model-based imitation and model-free fine-tuning where the second stage is the most creative part of our work.
- Evaluated our algorithm on benchmark tasks in the OpenAI Gym and showed its faster convergence and higher final performance compared with other baselines: MVE, DDPG and modified Mb-Mf.

Simple Hexapod Robot Control (Computational Models of Motion, vedio, pptx)

May - June 2020

- Developed a locomotion control framework for Hexapod in simulation using C++.
- Implemented an inverse kinematics solver, and a gait controller that outputs target offsets for the IK solver.
- Achieved multiple gaits and transitions, basic navigation and obstacle avoidance, and complicated terrain test.

Object Reconstruction with Depth Error Compensation Using Azure Kinect (3D Vision, project paper)

March - July 2020

- Presented a method for creating object meshes based on existing SLAM frameworks, and a learning-based depth error compensation mechanism for Time-of-Flight cameras using Python and C++.
- Implemented an object reconstruction pipeline composed of five processes: point cloud generation, background removal, geometric registration, surface reconstruction and bias correction (in charge of last two parts).
- Demonstrated the effectiveness of our method using the Azure Kinect RGBD camera, and showed better performance compared with the depth correction method adopted by BADSLAM.

Intern in Institute of Image Processing, UESTC (link)

July 2018 - June 2019

- Researched Virtual Try-on (fashion image synthesis) based on Generative Adversarial Networks using PyTorch.
- Reproduced and examined different ideas: FiNet, VITON, fashionGAN, CP-VTON, etc.
- Refined the performance of FiNet model by modifying the model framework and adding training techniques.

 \bullet Crawled 18,000+ pairs of images from the fashion website Zalando to make our own dataset.

\mathbf{AWARDS}

• 2017-2018 National Scholarship	Ministry of Education of P.R.C, 2018.
• 2016-2017 National Scholarship	Ministry of Education of P.R.C, 2017.
• 2015-2016 National Scholarship	Ministry of Education of P.R.C, 2016.
• The Meritorious Winner in MCM (Top 1%)	COMAP, 2018.

HOBBIES

 $\bullet\,$ Hiking, skating, skiing, badminton, cooking.