Project (3)

Automotive door control system design

Name Abdurrahman Mohame Elhefnawy

Email Abdurrahman.elhefnwy@gmail.com

ECU₁

State machine Diagram

Door Sensor

Speed Sensor

Moving (Send 1)

Light Switch

Pressed(Send 1)

Sequence Diagram

System HyperPeriod

Task	Periodicity
Door state	10 ms
Light switch state	20 ms
Speed state	5 ms

CPU load

Assume Execution time: task1= task2= task3=1ms

Task	Execution Time (during 1 hyperperiod)
Door state	1 * 2 ms
Light switch state	1*1 ms
Speed state	1* 4 ms

$$CPU Load = \frac{Total \ Execution \ Time}{Total \ System \ Time}$$

CPU Load =
$$\frac{7}{20}$$
 * 100 = 35%

ECU 2

State machine Diagram

Right Light

Left Light

Buzzer

Sequence Diagram

CPU load

Assume Execution time: task1= task2= task3=1ms

Task	Execution Time (during 1 hyperperiod)
Buzzer Controller	1 * 1 ms
Left Light Controller	1 * 1 ms
Right Light Controller	1 * 1 ms

$$CPU Load = \frac{Total \ Execution \ Time}{Total \ System \ Time}$$

CPU Load =
$$\frac{3}{20}$$
 * 100 = 15%