3 Hilberträume

3.1 Orthogonalprojektionen

37. Fingerübungen zum orthogonalen Komplement.

Beweise Beobachtung 3.10 (iv), (v) und (ii). Genauer, zeige, dass für Teilmengen A und B des Prähilbertraumes H, gilt:

- (i) $A \subseteq B \Rightarrow A^{\perp} \supseteq B^{\perp}$,
- (ii) $A \subseteq A^{\perp \perp}$.
- (iii) $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$.

Gilt auch die zu (iii) "duale" Gleichung $(A \cap B)^{\perp} = A^{\perp} \cup B^{\perp}$? Warum, warum nicht?

38. Fingerübungen zur orthogonalen Projektion.

Sei M abgeschlossener Teilraum des Hilbertraums H mit orthogonaler Projektion P_M .

(i) Für $x, y \in H$ gilt

$$x \in M, x - y \perp M \Leftrightarrow x = P_M y.$$

Diese Behauptung ist natürlich in Lemma 3.14 enthalten. Zeige sie hier direkt aus dem Projektionssatz (Thm. 3.16).

(ii) Zeige die folgende praktische und sehr einfach nachzurechnende Formel $(x, y \in H)$

$$\langle P_M x | y \rangle = \langle P_M x | P_M y \rangle = \langle x | P_M y \rangle.$$

39. Charakterisierung des Proximums.

Sie H ein Hilbertraum, $A \subseteq H$ abgeschlossen und konvex und $x_0 \in H$ fix gewählt. Beweise, dass für alle $x \in A$ die folgenden beiden Aussagen äquivalent sind.

- (i) $||x_0 x|| = \inf_{y \in A} ||x_0 y||$
- (ii) Re $\langle x_0 x | y x \rangle \le 0 \ \forall y \in A$

Was ist die geometrische Bedeutung von (ii)? Fertige eine Skizze im \mathbb{R}^2 an.

40. Gerade Funktionen im L^2 .

Dies Aufgabe spielt im $L^2[-a,a]$ oder auch $L^2(\mathbb{R}).$ Zeige der Reihe nach:

- (i) Ist g(x) := f(-x), dann gilt $||g||_2 = ||f||_2$.
- (ii) Gilt $||f_n f||_2 \to 0$, dann gilt mit g wie oben und $g_n(x) := f_n(-x)$ auch $||g_n g||_2 \to 0$.
- (iii) Sind alle f_n gerade (d.h. f(x) = f(-x)) und gilt $f = \lim_{n \to \infty} f_n$, dann ist auch f gerade.

(Anmerkung: Diese Aufgabe bereitet auf Aufgabe Nr. ?? vor, die die Deatils zu Bsp. 3.16A aus der Vorlesung nachliefert.)

41. Konkrete Orthogonalprojektionen im L^2 .

In $L^2[-\pi,\pi]$ betrachte die Teilräume M_0 bzw. N_0 , die von den Orthonormalsystemen (siehe Def. 3.22)

$$\{\frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\cos kx\ (k\geq 1)\}\qquad \text{bzw.}\qquad \{\frac{1}{\sqrt{\pi}}\sin kx\ (k\geq 1)\}$$

aufgespannt werden. Mit den Bezeichnungen $M:=\overline{M_0}$ und $N:=\overline{N_0}$ stelle dich den folgenden Aufgaben:

- (i) Beschreibe M und N möglichst einfach.
- (ii) In welcher Beziehung stehen M und N zueinander?
- (iii) Gib möglichst einfache Formeln für die Orthogonalprojektionen auf M bzw. N an.

9

42. Gerade und ungerade Funktionen im L^2 .

Beweise die Behauptungen in Bsp. 2.16A aus der Vorlesung. Genauer, zeige, dass für den Hilbertraum $H=L^2[-a,a]$ die Zerlegung

$$L^{2}[-a,a] = L_{a}^{2}[-a,a] \oplus L_{u}^{2}[-a,a]$$

gilt, wobei L_g^2 resp. L_u^2 die Teilräume der geraden bzw. ungeraden Funktionen in H sind, also $L_g^2[-a,a]:=\{f\in H:\ f(x)=f(-x)\ \text{f.\"u.}\ \}$ resp. $L_u^2[-a,a]:=\{f\in H:\ f(x)=-f(-x)\ \text{f.\"u.}\ \}$. Weiters zeige, dass die entsprechenden orthogonalen Projektionen durch

$$P_g f(x) := \frac{1}{2} (f(x) + f(-x))$$
 bzw. $P_u f(x) := \frac{1}{2} (f(x) - f(-x))$

gegeben sind.

43. Komplement vs. Abschluss.

Beweise Korollar 3.18 aus der Vorlesung, d.h. zeige für Teilmengen A und Teilräume N eines Hilbertraumes H die folgenden :

(i)
$$A^{\perp\perp} = \overline{\operatorname{span} A}$$

(ii)
$$N^{\perp\perp} = N$$

(iii) $A^{\perp} = \{0\}$ genau dann, wenn A total ist.