

256K x 32 Static RAM Module

Features

- High-density 8-megabit SRAM module
- **High-speed CMOS SRAMs**
 - Access time of 20 ns
- Independent byte and word controls
- Low active power
 - -6.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
 - Max. height of .350 in.
- **Small PCB footprint**
 - 1.8 sq. in.

Functional Description

The CYM1840 is a high-performance 8-megabit static RAM module organized as 256K words by 32 bits. This module is $constructed \, from \, eight \, 256Kx \, 4\, SRAMs \, in \,$ SOJ packages mounted on an epoxy laminate substrate with pins. Four chip selects $(\overline{CS_0}, \overline{CS_1}, \overline{CS_2}, \text{ and } \overline{CS_3})$ are used to independently enable the four bytes. Two write enables (\overline{WE}_0 and \overline{WE}_1) are used to independently write to either the upper or lower 16-bit word of RAM. Reading or writing can be executed on individual bytes or on any combination of multiple bytes through the proper use of selects and write enables.

Writing to each byte is accomplished when the appropriate chip select (\overline{CS}) and write enable (WE) inputs are both LOW. Data on the input/output pins $(\overline{I/O_X})$ is written into the memory location specified on the address pins (A_0 through A_{17}).

Reading the device is accomplished by taking the chip selects (\overline{CS}) LOW, while write enables (WE) remain HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins $(\overline{I/O}).$

The data input/output pins stay in the highimpedance state when write enables (WE) are LOW or the appropriate chip selects are HIGH.

Selection Guide

Detection duide									
	1840-20	1840-25	1840-30	1840-35	1840-45	1840-55			
Maximum Access Time (ns)	20	25	30	35	45	55			
Maximum Operating Current (mA)	1120	1120	1120	1120	1120	1120			
Maximum Standby Current (mA)	320	320	320	320	320	320			

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$ Ambient Temperature with Power Applied (PD) -10°C to $+85^{\circ}\text{C}$ DC Voltage Applied to Outputs

DC Input Voltage $\dots -3.0V$ to +7.0V

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0° C to $+70^{\circ}$ C	$5V \pm 10\%$

Electrical Characteristics Over the Operating Range

			CYM1840		
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		V
V_{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-20	+20	μΑ
I_{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-50	+50	μΑ
I_{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS}_X \le V_{IL}$		1120	mA
I_{SB1}	Automatic CS Power-Down Current ^[1]	Max. V_{CC} , $\overline{CS}_X \ge V_{IH}$, Min. Duty Cycle = 100%		320	mA
I_{SB2}	Automatic CS Power-Down Current ^[1]	$\begin{array}{c} \text{Max. } V_{CC}, \overline{\text{CS}}_{\text{X}} \geq V_{CC} - 0.3\text{V}, \\ V_{\text{IN}} \geq V_{CC} - 0.3\text{V or } V_{\text{IN}} \leq 0.3\text{V} \end{array}$		160	mA

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C_{INA}	Input Capacitance, Address Pins	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 5.0$ V	100	pF
C_{INB}	Input Capacitance, I/O Pins	*CC = 3.0 *	30	pF
C_{OUT}	Output Capacitance		30	pF

Notes:

^{1.} A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O 1.90V 1.90V

Switching Characteristics Over the Operating Range^[3]

		1840	0-20	1840-25		1840-30		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE		•	•				•	
t _{RC}	Read Cycle Time	20		25		30		ns
t_{AA}	Address to Data Valid		20		25		30	ns
t _{OHA}	Output Hold from Address Change	5		5		5		ns
t _{ACS}	CS LOW to Data Valid		20		25		30	ns
t _{LZCS}	CS LOW to Low Z ^[4]	5		5		5		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		20		20		20	ns
t _{PU}	CS LOW to Power-Up	0		0		0		ns
t _{PD}	CS HIGH to Power-Down		20		25		30	ns
WRITE CYCL	E [6]	•						
t _{WC}	Write Cycle Time	20		25		30		ns
t _{SCS}	CS LOW to Write End	18		20		25		ns
t_{AW}	Address Set-Up to Write End	18		20		25		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	2		2		2		ns
t _{PWE}	WE Pulse Width	15		20		25		ns
t_{SD}	Data Set-Up to Write End	13		15		15		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	15	0	15	0	15	ns

Notes:

- 3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device.
- t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steadystate voltage.
- 6. The internal write time of the memory is defined by the overlap of \overline{CS} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range $^{[3]}$ (continued)

		184	0-35	1840-45		1840)-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	•	•	-		•			
t _{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
t _{OHA}	Output Hold from Address Change	5		5		5		ns
t _{ACS}	CS LOW to Data Valid		35		45		55	ns
t _{LZCS}	CS LOW to Low Z ^[4]	5		5		5		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		25		25		25	ns
t _{PU}	CS LOW to Power-Up	0		0		0		ns
t _{PD}	CS HIGH to Power-Down		35		45		55	ns
WRITE CYCLE	<u>[</u> [6]	•			•			
t _{WC}	Write Cycle Time	35		45		55		ns
t _{SCS}	CS LOW to Write End	30		40		50		ns
t_{AW}	Address Set-Up to Write End	30		40		50		ns
t _{HA}	Address Hold from Write End	6		6		6		ns
t_{SA}	Address Set-Up to Write Start	6		6		6		ns
t _{PWE}	WE Pulse Width	25		30		40		ns
t_{SD}	Data Set-Up to Write End	25		30		35		ns
t _{HD}	Data Hold from Write End	6		6		6		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		ns
t _{HZWE}	$\overline{ m WE}$ LOW to High ${ m Z}^{[5]}$	0	25	0	25	0	25	ns

Switching Waveforms

Read Cycle No. 1^[7, 8]

Read Cycle No. $2^{[7, 8]}$

Write Cycle No. 1 (WE Controlled)[6]

8. $\overline{\text{WE}}$ is HIGH for read cycle.

Notes: 7. Device is continuously selected, $\overline{CS} = V_{IL}$.

Switching Waveforms (continued)

Write Cycle No. 2 (CS Controlled)[6, 9]

Truth Table

CS	WE	Input/Output	Mode
Н	X	High Z	Deselect/Power-Down
L	Н	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1840PD-20C	PD06	60-Pin DIP Module	Commercial
25	CYM1840PD-25C	PD06	60-Pin DIP Module	Commercial
30	CYM1840PD-30C	PD06	60-Pin DIP Module	Commercial
35	CYM1840PD-35C	PD06	60-Pin DIP Module	Commercial
45	CYM1840PD-45C	PD06	60-Pin DIP Module	Commercial
55	CYM1840PD-55C	PD06	60-Pin DIP Module	Commercial

Document #: 38-M-00040-B

Note: 9. If If \overline{CS} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Package Diagram

60-Pin DIP Module PD06

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.