Symbolic Weighted Language Models andQuantitative Parsing over Infinite Alphabets

- ³ Florent Jacquemard ☑��
- 4 Inria & CNAM, Paris, France

— Abstract

We propose a framework for weighted parsing over infinite alphabets. It is based on language models called Symbolic Weighted Automata (swA) at the joint between Symbolic Automata (sA) and Weighted Automata (wA), as well as Transducers (swT) and Visibly Pushdown (sw-VPA) variants. Like sA, swA deal with large or infinite input alphabets, and like wA, they output a weight value in a semiring domain. The transitions of swA are labeled by functions from an infinite alphabet into the weight domain. This is unlike sA whose transitions are guarded by boolean predicates overs symbols in an infinite alphabet and also unlike wA whose transitions are labeled by constant weight values, and who deal only with finite automata. We present some properties of swA, swT and sw-VPA models, that we use to define and solve a variant of parsing over infinite alphabets. We also briefly describe the application that motivated the introduction of these models: a parse-based approach to automated music transcription.

- 2012 ACM Subject Classification Theory of computation \rightarrow Quantitative automata
- 18 Keywords and phrases Weighted Automata, Symbolic Automata, Visibly Pushdown, Parsing
- 19 Digital Object Identifier 10.4230/LIPIcs...
- ²⁰ Funding Florent Jacquemard: Inria AEx Codex, ANR Collabscore, EU H2020 Polifonia
- 22 Acknowledgements I want to thank ...

indep. counters Def. Prop. Ex...

1 Introduction

34

37

42

Parsing is the problem of structuring a linear representation on input (a finite word), according to a language model. Most of the context-free parsing approaches [15] assume a finite and reasonably small input alphabet. Such a restriction makes perfect sense in the context of NLP tasks such as constituency parsing, or of programming languages compilers or interpreters. Considering large or infinite alphabets can however be of practical interest, for instance, when dealing with large characters encodings such as UTF-16, e.g. for vulnerability detection in Web-applications [8], for the analysis (e.g. validation or filtering) of data streams or serialization of structured documents (with textual or numerical attributes) [26], or for processing timed execution traces [3].

The latter case is related to a study that motivated the present work: automated music transcription. Most representations of music are essentially linear. This is true for audio files, but also for widely used symbolic representations like MIDI. Such representations ignore the hierarchical structures that frame the conception of music, at least in the western area. These structures, on the other hand, are present, either explicitly or implicitly, in music notation [14]: music scores are partitioned in measures, measures in beats, and beats can be further recursively divided. It follows that music events do not occur at arbitrary timestamps, but respect a discrete partitioning of the timeline incurred by these recursive divisions. The transcription problem takes as input a linear representation (audio or MIDI) and aims at re-constructing these structures by mapping input events to this hierarchical rhythmic space. It can therefore be stated as a parsing problem [12], over an infinite alphabet of timed events. Various extensions of language models for handling infinite alphabets have been studied.

© Florent Jacquemard; licensed under Creative Commons License CC-BY 4.0 Leibniz International Proceedings in Informatics Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

Figure 1 Classes of Symbolic/Weighted Automata. Σ_{fin} is a finite alphabet, Σ_{inf} is a countable alphabet, \mathbb{B} is the Boolean algebra, \mathbb{S} is a commutative semiring, $q \xrightarrow{\cdots} q'$ is a transition between states q and q'.

register: skip refs and details, add Mikolaj recent

49

50

51

52

54

55 56

57

58

63

65

66

68

69

70

71

72

73

For instance, some automata with memory extensions allow restricted storage and comparison of input symbols, (see [26] for a survey), with pebbles for marking positions [25], registers [18], or the possibility to compute on subsequences with the same attribute values [2]. The automata at the core of model checkers compute on input symbols represented by large bitvectors [27] (sets of assignments of Boolean variables) and in practice, each transition accepts a set of such symbols (instead of an individual symbol), represented by Boolean formula or Binary Decision Diagrams. Following a similar idea, in symbolic automata (sA) [7, 8], the transitions are guarded by predicates over infinite alphabet domains. With appropriate closure conditions on the sets of such predicates, all the good properties enjoyed by automata over finite alphabets are preserved.

Other extensions of language models help in dealing with non-determinism, by the computation of weight values. With an ambiguous grammar, there may exist several derivations (abstract syntax trees – AST) yielding one input word. The association of one weight value to each AST permits to select a best one (or n bests). This is roughly the principle of weighted parsing approaches [13, 24, 23]. In weighted language models, like e.g. probabilistic context-free grammars and weighted automata (wA) [11], a weight value is associated to each transition rule, and the rule's weights can be combined with an associative product operator \otimes into the weight of an AST. A second operator \oplus , associative and commutative, is moreover used to resolve the ambiguity raised by the existence of several (in general exponentially many) AST associated to a given input word. Typically, \oplus will select the best of two weight values. The weight domain, equipped with these two operators shall be, at minima, a semiring where \oplus can be extended to infinite sums, such as the Viterbi semiring and the tropical min-plus algebra

In this paper, we present a uniform framework for weighted parsing over infinite input alphabets. It is based on *symbolic weighted* finite states language models (swM), generalizing the Boolean guards of sA into functions into an arbitrary semiring, and generalizing also wA, by handling infinite alphabets, see Figure 1.

In short, a transition rule $q \xrightarrow{\phi} q'$ from state q to q' of a swA, is labeled by a function ϕ associating to every input symbol a a weight value $\phi(a)$ in a semiring domain. The framework relies on several language models: finite automata called symbolic-weighted (swA), transducers (swT), and pushdown automata with a visibly restriction [1] (sw-VPA). The latter model of automata operates sequentially on nested words [1], structured with markup

WARNING: [23] much is more general that weighted

symbols (parentheses) and able to describe linearizations of trees. In the context of parsing, they can represent (weighted) AST of CF grammars. More precisely, a sw-VPA A associates 78 a weight value A(t) to a given nested word t, which is the linearization of an AST. On the other hand, a swT can define a distance T(s,t) between finite words s and t over infinite alphabets. Then, the SW-parsing problem aims at finding t minimizing $T(s,t) \otimes A(t)$ (wrt 81 the ranking defined by \oplus), given an input word s. The latter product is called the distance 82 between s and A in [21]. Like weighted-parsing methods [13, 24, 23], our approach proceeds 83 in two steps, based on properties of the swM. The first step is an intersection (Bar-Hillel 84 construction [15]) where, given a swT T, a sw-VPA A, and an input word s, a sw-VPA B is built, such that for all t, $B(t) = T(s,t) \otimes A(t)$. In the second step, a best AST t is found by applying to B a best search algorithm similar to the shortest distance in graphs [20, 17]. 88

The main contributions of the paper are: (i) the introduction of automata, swA, transducers, swT (Section 3), and visibly pushdown automata sw-VPA (Section 4), generalizing the corresponding classes of symbolic and weighted models, (ii) a polynomial best-search algorithm for sw-VPA, and (iii) a uniform framework (Section 5) for parsing over infinite alphabets, the keys to which are (iii.a) the swT-based definition of generic edit distances between input and output (yield) words, and (iii.b) the use, convenient in this context, of nested words, and sw-VPA, instead of syntax trees and grammars.

▶ Example 1 (Running example). Throughout the paper we illustrate our framework with music transcription examples: Given a timeline of musical events with arbitrary timestamps 97 as input, parse it into a structured music score. In our example, input events are pairs $\langle \eta, \tau \rangle$ 98 made of a symbol $\eta \in \Sigma$, where Σ stands for the set of MIDI message symbols [?] and $\tau \in \mathbb{Q}$ is a timestamp. The output of parsing is a representation of the sequence in Common Western 100 Music Notation (CWMN) [14] where event symbols belong to the domain Δ of pitches (e.g., 101 A4, G5, etc.), temporal information is encoded as durations (whole \circ , quarter \downarrow , eight \rightarrow , etc.), 102 and notes are grouped in high-level structures (beams, measures, tuplets). The following 103 inputs will be used: 104

```
1. I_1 = [\langle e_1, 0.07 \rangle, \langle e_2, 0.72 \rangle, \langle e_3, 0.91 \rangle], over interval [0, 1]

2. I_2 = [\langle e_3, 1.05 \rangle, \langle e_4, 1.36 \rangle, \langle e_5, 1.71 \rangle], over interval [1, 2]
```

There exists many possible parsings of $I_1 \cup I_2$ in music notation, among which $I_1 \cap I_2 \cap I_3 \cap I_4 \cap I_4 \cap I_5 \cap$

weight value

2 Preliminary Notions

1 Semirings

89

90

91

92

93

107

108

110

We shall consider semirings for the weight values of our language models. A *semiring* $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ is a structure with a domain \mathbb{S} , equipped with two associative binary operators \oplus and \otimes , with respective neutral elements \mathbb{O} and $\mathbb{1}$, and such that:

```
\blacksquare \oplus is commutative: (\mathbb{S}, \oplus, \mathbb{O}) is a commutative monoid and (\mathbb{S}, \otimes, \mathbb{1}) a monoid,
```

 $\quad \blacksquare \quad \mathbb{0} \text{ is absorbing for } \otimes : \, \forall x \in \mathbb{S}, \, \mathbb{0} \otimes x = x \otimes \mathbb{0} = \mathbb{0}.$

Intuitively, in the models presented in this paper, \oplus selects an optimal value from two given values, in order to handle non-determinism, and \otimes combines two values into a single value.

A semiring $\mathbb S$ is *commutative* if \otimes is commutative. It is *idempotent* if for all $x \in \mathbb S$, $x \oplus x = x$. Every idempotent semiring $\mathbb S$ induces a partial ordering \leq_{\oplus} called the *natural*

WARNING: [23] much is more general that weighted parsing

chap. intersection in [15]

expressiveness: VPA have restricted equality test. comparable to pebble automata? → conclusion

XX:4 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

ordering of \mathbb{S} [20] defined, by: for all $x, y \in \mathbb{S}$, $x \leq_{\oplus} y$ iff $x \oplus y = x$. The natural ordering is sometimes defined in the opposite direction [10]; We follow here the direction that coincides with the usual ordering on the Tropical semiring min-plus (Figure 2). An idempotent semiring $\mathbb S$ is called total if it \leq_{\oplus} is total i.e. when for all $x,y\in\mathbb S$, either $x\oplus y=x$ or $x\oplus y=y.$

125

▶ **Lemma 2** (Monotony, [20]). Let $(S, \oplus, \emptyset, \otimes, \mathbb{1})$ be an idempotent semiring. For all $x, y, z \in$ $\mathbb{S}, \ if \ x \leq_{\oplus} y \ then \ x \oplus z \leq_{\oplus} y \oplus z, \ x \otimes z \leq_{\oplus} y \otimes z \ and \ z \otimes x \leq_{\oplus} z \otimes y.$

To express the property of Lemma 2, we call $\mathbb S$ monotonic $wrt \leq_{\oplus}$. Another important semiring property in the context of optimization is superiority [16], which corresponds to the non-negative weights condition in shortest-path algorithms [9]. Intuitively, it means that combining elements with \otimes always increase their weight. Formally, it is defined as the property (i) below. 133

▶ Lemma 3 (Superiority, Boundedness). Let $(S, \oplus, 0, \otimes, 1)$ be an idempotent semiring. The two following statements are equivalent:

i. for all $x, y \in \mathbb{S}$, $x \leq_{\oplus} x \otimes y$ and $y \leq_{\oplus} x \otimes y$ ii. for all $x \in \mathbb{S}$, $\mathbb{1} \oplus x = \mathbb{1}$.

Proof. $(ii) \Rightarrow (i) : x \oplus (x \otimes y) = x \otimes (\mathbb{1} \oplus y) = x$, by distributivity of \otimes over \oplus . Hence $x \leq_{\oplus} x \otimes y$. Similarly, $y \oplus (x \otimes y) = (\mathbb{1} \oplus x) \otimes y = y$, hence $y \leq_{\oplus} x \otimes y$. $(i) \Rightarrow (ii)$: by the second inequality of (i), with $y=\mathbb{1},\,\mathbb{1}\leq_{\oplus}x\otimes\mathbb{1}=x,\,i.e.$, by definition of $\leq_{\oplus},\,\mathbb{1}\oplus x=\mathbb{1}.$ 140

In [16], when the property (i) holds, S is called superior wrt the ordering \leq_{\oplus} . We have seen in the proof of Lemma 3 that it implies that $\mathbb{1} \leq_{\oplus} x$ for all $x \in \mathbb{S}$. Similarly, by the first inequality of (i) with y = 0, $x \leq_{\oplus} x \otimes 0 = 0$. Hence, in a superior semiring, it holds that for all $x \in \mathbb{S}$, $\mathbb{1} \leq_{\oplus} x \leq_{\oplus} \mathbb{0}$. Intuitively, from an optimization point of view, it means that $\mathbb{1}$ is the best value, and $\mathbb{0}$ the worst. In [20], \mathbb{S} with the property (ii) of Lemma 3 is called bounded – we shall use this term in the rest of the paper. It implies that, when looking for a best path in a graph whose edges are weighted by values of S, the loops can be safely avoided, because, for all $x \in \mathbb{S}$ and $n \geq 1$, $x \oplus x^n = x \otimes (\mathbb{1} \oplus x^{n-1}) = x$.

Ca j'ai pas compris 14

141

142

149

150

151

158

160

▶ **Lemma 4.** Every bounded semiring is idempotent.

Proof. By boundedness, $\mathbb{1} \oplus \mathbb{1} = \mathbb{1}$, and idempotency follows by multiplying both sides by x and distributing.

We shall need below infinite sums with \oplus . A semiring $\mathbb S$ is called *complete* [11] if it has an

operation $\bigoplus_{i\in I} x_i$ for every family $(x_i)_{i\in I}$ of elements of $dom(\mathbb{S})$ over an index set $I\subset\mathbb{N}$,

Here the difference 152 between S as a struc-ture and as a do- 153 main is blurred

such that:

i. infinite sums extend finite sums: $\bigoplus_{i \in \emptyset} x_i = 0, \quad \forall j \in \mathbb{N}, \bigoplus_{i \in \{j\}} x_i = x_j, \, \forall j, k \in \mathbb{N}, j \neq k, \bigoplus_{i \in \{j,k\}} x_i = x_j \oplus x_k,$

157

 $ii. \ associativity \ and \ commutativity:$ for all $I \subseteq \mathbb{N}$ and all partition $(I_j)_{j \in J}$ of I, $\bigoplus_{j \in J} \bigoplus_{i \in I_j} x_i = \bigoplus_{i \in I} x_i$,

159

iii. distributivity of product over infinite sum: for all
$$I \subseteq \mathbb{N}$$
, $\bigoplus_{i \in I} (x \otimes y_i) = x \otimes \bigoplus_{i \in I} y_i$, and $\bigoplus_{i \in I} (x_i \otimes y) = (\bigoplus_{i \in I} x_i) \otimes y$.

results of this paper 16 for semirings com-mutative, bounded, total and complete

Example 5. The recursive subdivision of time that leads to hierarchichal structures of music notation can be modeled as production rules. Since there exists several possible division, rules can be weighted in the tropical semiring whose domain $\mathbb{R}_+ \cup \{+\infty\}$, \oplus is

	domain	\oplus	\otimes	0	1
Boolean	$\{\bot, \top\}$	V	٨	Τ	Т
Counting	N	+	×	0	1
Viterbi	$[0,1] \subset \mathbb{R}$	max	×	0	1
Tropical min-plus	$\mathbb{R}_+ \cup \{\infty\}$	min	+	∞	0

Figure 2 Some commutative, bounded, total and complete semirings.

min, $0 = +\infty$, \otimes is sum, and 1 = 0. For instance, the following production rules define two possible divisions of a bounded time interval into respectively a duplet and a triplet.

$$\rho_1: q_0 \xrightarrow{0.06} \langle q_1, q_2 \rangle, \ \rho_2: q_0 \xrightarrow{0.12} \langle q_1, q_2, q_2 \rangle.$$

Further binary divisions of time sub-intervals are possible with:

$$\rho_3: q_2 \xrightarrow{0.1} \langle q_3, q_3 \rangle, \ \rho_4: q_3 \xrightarrow{0.11} \langle q_4, q_4 \rangle.$$

Label Theory

170

192

We shall now define the functions labeling the transitions of SW automata and transducers, generalizing the Boolean algebras of [7] from Boolean to other semiring domains. We consider alphabets, which are countable sets of symbols denoted Σ , Δ ,... Given a semiring $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{I} \rangle$, a label theory over \mathbb{S} is a set $\bar{\Phi}$ of recursively enumerable sets denoted Φ_{Σ} , containing unary functions of type $\Sigma \to \mathbb{S}$, or $\Phi_{\Sigma,\Delta}$, containing binary functions $\Sigma \times \Delta \to \mathbb{S}$, and such that:

- for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$, we have $\Phi_{\Sigma} \in \bar{\Phi}$ and $\Phi_{\Delta} \in \bar{\Phi}$

- every $\Phi_{\Sigma} \in \bar{\Phi}$ contains all the constant functions from Σ into S,

- for all $\alpha \in \mathbb{S}$ and $\phi \in \Phi_{\Sigma}$, $\alpha \otimes \phi : x \mapsto \alpha \otimes \phi(x)$, and $\phi \otimes \alpha : x \mapsto \phi(x) \otimes \alpha$

belong to Φ_{Σ} , and similarly for \oplus and for $\Phi_{\Sigma,\Delta}$

- for all $\phi, \phi' \in \Phi_{\Sigma}, \phi \otimes \phi' : x \mapsto \phi(x) \otimes \phi'(x)$ belongs to Φ_{Σ}

- for all $\eta, \eta' \in \Phi_{\Sigma, \Delta}$ $\eta \otimes \eta' : x, y \mapsto \eta(x, y) \otimes \eta'(x, y)$ belongs to $\Phi_{\Sigma, \Delta}$

for all $\phi \in \Phi_{\Sigma}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\phi \otimes_1 \eta : x, y \mapsto \phi(x) \otimes \eta(x,y)$ and

 $\eta \otimes_1 \phi : x, y \mapsto \eta(x, y) \otimes \phi(x)$ belong to $\Phi_{\Sigma, \Delta}$

186 – for all $\psi \in \Phi_{\Delta}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\psi \otimes_2 \eta : x, y \mapsto \psi(y) \otimes \eta(x,y)$ and

 $\eta \otimes_2 \psi : x, y \mapsto \eta(x, y) \otimes \psi(y)$ belong to $\Phi_{\Sigma, \Delta}$

- similar closures hold for \oplus .

Intuitively, the operators \bigoplus_{Σ} return global minimum, $wrt \leq_{\oplus}$, of functions of Φ_{Σ} . When the semiring \mathbb{S} is complete, we consider the following operators on the functions of $\bar{\Phi}$.

$$\bigoplus_{\Sigma} : \Phi_{\Sigma} \to \mathbb{S}, \ \phi \mapsto \bigoplus_{a \in \Sigma} \phi(a)$$

$$\bigoplus_{\Sigma}^{1} : \Phi_{\Sigma,\Delta} \to \Phi_{\Delta}, \ \eta \mapsto \left(y \mapsto \bigoplus_{a \in \Sigma} \eta(a,y) \right) \quad \bigoplus_{\Delta}^{2} : \Phi_{\Sigma,\Delta} \to \Phi_{\Sigma}, \ \eta \mapsto \left(x \mapsto \bigoplus_{b \in \Delta} \eta(x,b) \right)$$

In what follows, we might omit the sub- and superscripts in \otimes_1 , \bigoplus_{Σ}^1 ..., when there is no ambiguity. We shall keep them only for the special case $\Sigma = \Delta$, *i.e.* $\eta \in \Phi_{\Sigma,\Sigma}$, in order to be able to distinguish between the first and the second argument.

ADD: notations Σ^* , ε ...

 \Diamond

unary for swA (weight depends on input symbol) and binary for transducers and VPA (weight depends on input symbol AND output or stack symbol)

partial application is needed?

XX:6 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

notion of diagram of 198 functions akin BDD for transitions in 199 practice

mv appendix?

203 204 205 206 re qu'il y a 207

Je trouve qu'il y a 20 beaucoup de notions à retenir (complete, 20 effective) et ça devient difficile pour un 20 lecteur non spécialiste. Est-ce que tout est nécessaire (je ne sais plus qui m'avait dit: un concept en plus, un point en moins.

 \exists oracle returning . in worst time complexity T.

219

220

221

222

223

224

226

227

▶ **Definition 6.** A label theory $\bar{\Phi}$ is complete when the underlying semiring \mathbb{S} is complete, and for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$ and all $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma}^1 \eta \in \Phi_{\Delta}$ and $\bigoplus_{\Delta}^2 \eta \in \Phi_{\Sigma}$.

The following facts are immediate.

```
▶ Lemma 7. For \bar{\Phi} complete \alpha \in \mathbb{S}, \phi, \phi' \in \Phi_{\Sigma}, \psi \in \Phi_{\Delta}, and \eta \in \Phi_{\Sigma,\Delta}:

i. \bigoplus_{\Sigma} \bigoplus_{\Delta}^{2} \eta = \bigoplus_{\Delta} \bigoplus_{\Sigma}^{1} \eta

ii. \alpha \otimes \bigoplus_{\Sigma} \phi = \bigoplus_{\Sigma} (\alpha \otimes \phi) and (\bigoplus_{\Sigma} \phi) \otimes \alpha = \bigoplus_{\Sigma} (\phi \otimes \alpha), and similarly for \oplus

iii. (\bigoplus_{\Sigma} \phi) \oplus (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \oplus \phi') and (\bigoplus_{\Sigma} \phi) \otimes (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \otimes \phi')

iv. (\bigoplus_{\Delta}^{2} \eta) \oplus (\bigoplus_{\Delta}^{2} \eta') = \bigoplus_{\Delta}^{2} (\eta \oplus \eta'), and (\bigoplus_{\Delta}^{2} \eta) \otimes (\bigoplus_{\Delta}^{2} \eta') = \bigoplus_{\Delta}^{2} (\eta \otimes \eta')

v. \phi \otimes (\bigoplus_{\Delta}^{2} \eta) = \bigoplus_{\Delta} (\phi \otimes_{1} \eta), and (\bigoplus_{\Delta}^{2} \eta) \otimes \phi = \bigoplus_{\Delta} (\eta \otimes_{1} \phi), and similarly for \oplus

vi. \psi \otimes (\bigoplus_{\Sigma}^{1} \eta) = \bigoplus_{\Sigma} (\psi \otimes_{2} \eta), and (\bigoplus_{\Sigma}^{1} \eta) \otimes \psi = \bigoplus_{\Sigma} (\eta \otimes_{2} \psi), and similarly for \oplus
```

A label theory is called *effective* when for all $\phi \in \Phi_{\Sigma}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma} \phi$, $\bigoplus_{\Delta} \bigoplus_{\Sigma} \eta$, and $\bigoplus_{\Sigma} \bigoplus_{\Delta} \eta$ can be effectively computed from ϕ and η .

▶ Example 8. Consider the music transcription problem, with an input representing a music performance. In order to align the input with a music score, we must take into consideration the expressive timing of human performance that results in small time shifts between an input event and the corresponding notation event. These shifts can be weighted as the time distance between both, computed in the tropical semiring with a base function based on a given $\delta \in \Phi_{\Sigma,\Delta}$.

$$\delta(\langle e_1, t1_{>}, \langle e_2, t_2 \rangle) = \begin{cases} |t_1 - t_2| & if e_1 = e_2 \\ 0 & otherwise \end{cases}$$

For the sake of concreteness, consider our running example 1 with $s = I_1 \cup I_2 = [< e_1, 0.07 > ... < e_2, 0.72 >, < e_3, 0.91 >] \cup [< e_3, 1.05 >, < e_4, 1.36 >, < e_5, 1.71 >]$ and the music notation t = 1 . The latter shows a subdivision of the temporal interval [1, 2[based on the rules from Example 5. The first measure (I_1) results from the successive applications of rules ρ_1 (division in two) and rules ρ_3 (division of the second half) in two. The second measure is a division in three obtained by rule ρ_3 . It follows that the notation defines the sequence of timestamps $0, \frac{3}{4}, \frac{7}{8}, 1, \frac{4}{3}, \frac{5}{3}$. The distance between s and t is the pairwise difference between the timestamps from s and t, 0.255.

3 SW Automata and Transducers

We follow the approach of [21] for the computation of distances, between words and languages, using weighted transducers, and extend it to infinite alphabets. The models introduced in this section generalize weighted automata and transducers [11] by labeling each transition with a weight function (instead of a simple weight value), that takes the input and output symbols as parameters. These functions are similar to the guards of symbolic automata [7, 8], but they can return values in a generic semiring, whereas the latter guards are restricted to the Boolean semiring.

Let $\mathbb S$ be a commutative semiring, Σ and Δ be alphabets called respectively *input* and *output*, and $\bar{\Phi}$ be a label theory over $\mathbb S$ containing Φ_{Σ} , Φ_{Δ} , $\Phi_{\Sigma,\Delta}$.

Definition 9. A symbolic-weighted transducer (swT) over Σ , Δ , \mathbb{S} and $\bar{\Phi}$ is a tuple $T = \langle Q, \text{in}, \bar{w}, \text{out} \rangle$, where Q is a finite set of states, in : $Q \to \mathbb{S}$ (respectively out : $Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and \bar{w} is a triplet of transition functions $w_{10}: Q \times Q \to \Phi_{\Sigma}$, $w_{01}: Q \times Q \to \Phi_{\Delta}$, and $w_{11}: Q \times Q \to \Phi_{\Sigma,\Delta}$.

We call number of transitions of T the number of pairs of states $q, q' \in Q$ such that w_{10} or w_{11} is not the constant \mathbb{O} . For convenience, we shall sometimes present transitions as functions of $Q \times (\Sigma \cup \{\varepsilon\}) \times (\Delta \cup \{\varepsilon\}) \times Q \to \mathbb{S}$, overloading the function names, such that, for all $q, q' \in Q$, $a \in \Sigma$, $b \in \Delta$:

$$\begin{array}{lll} \mathsf{w}_{10}(q,a,\varepsilon,q') &=& \phi(a) & \text{where } \phi = \mathsf{w}_{10}(q,q') \in \Phi_{\Sigma}, \\ \mathsf{w}_{01}(q,\varepsilon,b,q') &=& \psi(b) & \text{where } \psi = \mathsf{w}_{01}(q,q') \in \Phi_{\Delta}, \\ \mathsf{w}_{11}(q,a,b,q') &=& \eta(a,b) & \text{where } \eta = \mathsf{w}_{11}(q,q') \in \Phi_{\Sigma,\Delta}. \end{array}$$

The swT T computes on pairs of words $\langle s,t \rangle \in \Sigma^* \times \Delta^*$, s and t, being respectively called input and output word. More precisely, T defines a mapping from $\Sigma^* \times \Delta^*$ into $\mathbb S$, based on an intermediate function weight defined recursively, for every states $q,q' \in Q$, and every pairs of strings $\langle s,t \rangle \in \Sigma^* \times \Delta^*$, where au, and bv, denote the concatenation of the symbol $a \in \Sigma$ (resp. $b \in \Delta$) with a word $u \in \Sigma^*$ (resp. $v \in \Delta^*$).

It compute asynchronously: advance in s and not in t (w_{10}), or the opposite (w_{01}), or advance in both s and t (w_{11}).

added u and v def

$$\begin{split} \operatorname{weight}_T(q,\varepsilon,\varepsilon,q') &= \mathbb{1} \quad \text{if } q = q' \text{ and } \mathbb{0} \text{ otherwise} \\ \operatorname{weight}_T(q,s,t,q') &= \bigoplus_{\substack{q'' \in Q \\ s = au, \, a \in \Sigma}} \mathsf{w}_{10}(q,a,\varepsilon,q'') \otimes \operatorname{weight}_T(q'',u,t,q') \\ &\oplus \bigoplus_{\substack{q'' \in Q \\ t = bv, \, b \in \Delta}} \mathsf{w}_{01}(q,\varepsilon,b,q'') \otimes \operatorname{weight}_T(q'',s,v,q') \\ &\oplus \bigoplus_{\substack{q'' \in Q \\ s = au, \, t = bv}} \mathsf{w}_{11}(q,a,b,q'') \otimes \operatorname{weight}_T(q'',u,v,q') \end{split}$$

We recall that, by convention (Section 2), an empty sum with \bigoplus is equal to \mathbb{O} . Intuitively, using a transition $\mathsf{w}_{ij}(q,a,b,q')$ means for T: when reading respectively a and b at the current positions in the input and output words, increment the current position in the input word if and only if i=1, and in the output word iff j=1, and change state from q to q'. When $a=\varepsilon$ (resp. $b=\varepsilon$), the current symbol in the input (resp. output) is not read. Since \mathbb{O} is absorbing for \otimes in \mathbb{S} , one term $\mathsf{w}_{ij}(q,a,b,q'')$ equal to \mathbb{O} in the above expression will be ignored in the sum, meaning that there is no possible transition from state q into state q' while reading a and b. This is analogous to the case of a transition's guard not satisfied by $\langle a,b \rangle$ for symbolic transducers.

The expression (1) can be seen as a stateful definition of an edit-distance between a word $s \in \Sigma^*$ and a word $t \in \Delta^*$, see also [22]. Intuitively, $\mathsf{w}_{10}(q,a,\varepsilon,r)$ is the cost of the deletion of the symbol $a \in \Sigma$ in s, $\mathsf{w}_{01}(q,\varepsilon,b,r)$ is the cost of the insertion of $b \in \Delta$ in t, and $\mathsf{w}_{11}(q,a,b,r)$ is the cost of the substitution of $a \in \Sigma$ by $b \in \Delta$. The cost of a sequence of such operations transforming s into t, is the product, with \otimes , of the individual costs of the operations involved; and the distance between s and t is the sum, with \oplus , of all possible products. Formally, the weight associated by T to $\langle s,t \rangle \in \Sigma^* \times \Delta^*$ is:

$$T(s,t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_T(q,s,t,q') \otimes \operatorname{out}(q') \tag{2}$$

▶ **Example 10.** Let us develop the example of comparison between music played by a performer, represented as a sequence $s \in \Sigma^*$ of events in the MIDI alphabet Σ , and a music

score represented as a sequence $t \in \Delta^*$ in the CWMN alphabet Δ . We build a small weighted transducer model with two states q_0 and q_1 that calculates the distance between s and t.

If one performed event s_i corresponds to one notated event t_1 (for instance MIDI code 61 and pitch A4), the weight value computed by the swT is the time distance between both, as in Example 8, and is modeled by transitions w_{11} below. If we meet the music notation symbol '-' that represents continuation (such as instance in $ties \buildrel \bu$

$$\begin{array}{lcl} \mathsf{w}_{11}(q_0,d,\langle\mathsf{e},d'\rangle,q_0) &=& |d'-d| & \mathsf{w}_{11}(q_1,d,\langle\mathsf{e},d'\rangle,q_0) &=& |d'-d| \\ \mathsf{w}_{01}(q_0,\varepsilon,\langle-,d'\rangle,q_0) &=& \mathbb{1} & \mathsf{w}_{01}(q_1,\varepsilon,\langle-,d'\rangle,q_0) &=& \mathbb{1} \\ \mathsf{w}_{10}(q_0,d,\varepsilon,q_1) &=& \alpha & \end{array}$$

reformulated this sentence

268

269

271

272

274

282

283

293

294

295 296

297

298

Comprends pas cett@7 phrase

ccl to the ex

We also must be able to take performing errors into account, while still being able to compare with the score, since a performer could, for example, play an unwritten extra note. This is modelled by the transition w_{10} with an arbitrary weight value $\alpha \in \mathbb{S}$, switching from state q_0 (normal) to q_1 (error). The transitions in the second column below switch back to the normal state q_0 . At last, we let q_0 be the only initial and final state, with $\operatorname{in}(q_0) = \operatorname{out}(q_0) = \mathbb{1}$, and $\operatorname{in}(q_1) = \operatorname{out}(q_1) = \mathbb{0}$.

That way, an swT is capable of evaluating the differences between a score and a performance, all the while ensuring that performance errors are plausible. \diamondsuit

The Symbolic Weighted Automata are defined similarly as the transducers of Definition 9, by simply omitting the output symbols.

Definition 11. A symbolic-weighted automaton (swA) over Σ , \mathbb{S} and $\overline{\Phi}$ is a tuple $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in} : Q \to \mathbb{S}$ (respectively $\mathsf{out} : Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and w_1 is a transition function from $Q \times Q$ into Φ_{Σ} .

As above in the case of swT, when $w_1(q,q') = \phi \in \Phi_{\Sigma}$, we may write $w_1(q,a,q')$ for $\phi(a)$.

The computation of A on words $s \in \Sigma^*$ is defined with an intermediate function weight_A,

defined as follows for $q, q' \in Q$, $a \in \Sigma$, $u \in \Sigma^*$,

$$\begin{split} \operatorname{weight}_A(q,\varepsilon,q) &= \mathbb{1} \\ \operatorname{weight}_A(q,\varepsilon,q') &= \mathbb{0} \quad \text{if } q \neq q' \\ \operatorname{weight}_A(q,au,q') &= \bigoplus_{q'' \in Q} \operatorname{w}_1(q,a,q'') \otimes \operatorname{weight}_A(q'',u,q') \end{split} \tag{3}$$

and the weight value associated by A to $s \in \Sigma^*$ is defined as follows:

$$A(s) = \bigoplus_{q,q' \in Q} \mathsf{in}(q) \otimes \mathsf{weight}_A(q,s,q') \otimes \mathsf{out}(q') \tag{4}$$

Il me manque une 29 explication: on construit un automate 30 qui, étant donnée une partition t, renvoie la distance minimale avec n'importe quelle performance (distance donnée 30 par un transducer)? Quel est le rôle de 30 A(s)?

The following property will be useful to the approach on symbolic weighted parsing presented in Section 5.

▶ Proposition 12. Given a swT T over Σ , Δ , $\mathbb S$ commutative, bounded and complete, and $\bar{\Phi}$ effective, and a swA A over Σ , $\mathbb S$ and $\bar{\Phi}$, there exists an effectively constructible swA $B_{A,T}$ over Δ , $\mathbb S$ and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{A,T}(t) = \bigoplus_{s \in \Sigma^*} A(s) \otimes T(s,t)$.

Proof. Let $T = \langle Q, \mathsf{in}_T, \bar{\mathsf{w}}, \mathsf{out}_T \rangle$, where $\bar{\mathsf{w}}$ contains w_{10} , w_{01} , and w_{11} , from $Q \times Q$ into respectively Φ_{Σ} , Φ_{Δ} , and $\Phi_{\Sigma,\Delta}$, and let $A = \langle P, \mathsf{in}_A, \mathsf{w}_1, \mathsf{out}_A \rangle$ with $\mathsf{w}_1 : Q \times Q \to \Phi_{\Sigma}$. The

state set of $B_{A,T}$ will be $Q' = P \times Q$. The entering, leaving and transition functions of $B_{A,T}$ will simulate synchronized computations of A and T, while reading an output word of Δ^* . 307 Its state entering functions is defined for all $p \in P$, $q \in Q$ by $\operatorname{in}'(p,q) = \operatorname{in}_A(p) \otimes \operatorname{in}_T(q)$. The 308 transition function w'_1 will roughly perform a synchronized product of transitions defined by w_1 , w_{01} (T reading in output word and not an input word) and w_{11} (T reading both an input 310 word and an output word). Moreover, w'_1 also needs to simulate transitions defined by w_{10} : 311 T reading in input word and not an output word. Since $B_{A,T}$ will read only in the output 312 word, such a transition corresponds to an ε -transition of swA, but swA have been defined 313 without ε -transitions. Therefore, in order to take care of this case, we perform an on-the-fly suppression of ε -transition in the swA in construction, following the algorithm of [19]. 315 Initially, for all $p_1, p_2 \in P$, and $q_1, q_2 \in Q$, let 316

$$\mathsf{w}_1'\big(\langle p_1,q_1\rangle,\langle p_2,q_2\rangle\big)=\mathsf{w}_1(p_1,p_2)\otimes\big[\mathsf{w}_{01}(q_1,q_2)\oplus\bigoplus_{\Sigma}\mathsf{w}_{11}(q_1,q_2)\big].$$

Iterate the following for all $p_1 \in P$ and $q_1, q_2 \in Q$: for all $p_2 \in P$ and $q_3 \in Q$,

$$\mathsf{w}_1'\big(\langle p_1,q_1\rangle,\langle p_2,q_3\rangle\big) \oplus = \bigoplus_{\Sigma} \mathsf{w}_{10}(q_1,q_2) \otimes \mathsf{w}_1'\big(\langle p_1,q_2\rangle,\langle p_2,q_3\rangle\big)$$

and
$$\operatorname{\mathsf{out}}'(p_1,q_1) \oplus = \bigoplus_{\Sigma} \mathsf{w}_{10}(q_1,q_2) \otimes \operatorname{\mathsf{out}}'(p_1,q_2)$$

proof correctness

The construction time and size for $B_{A,T}$ are $O(||T||^3.||A||^2)$, where the sizes ||T|| and ||A||are their number of states. 322

revise with nb of tr and states

▶ Corollary 13. Given a swT T over Σ , Δ , S commutative, bounded and complete, and $\bar{\Phi}$ 323 effective, and $s \in \Sigma^+$, there exists an effectively constructible swA $B_{s,T}$ over Δ , \mathbb{S} and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{s,T}(t) = T(s,t)$.

SW Visibly Pushdown Automata

The model presented in this section generalizes symbolic VPA (sVPA [6], generalizing themselves VPA [1] to infinite alphabets) from Boolean semirings to arbitrary semiring weight domains. It will compute on nested words over infinite alphabets, associating to every such 329 word a weight value. Nested words are able to describe structures of labeled trees, and in the context of parsing, they will be useful to represent AST.

Let Δ be a countable alphabet that we assume partitioned into three subsets Δ_i , Δ_c , Δ_r , whose elements are respectively called *internal*, call and return symbols. Let $(S, \oplus, 0, \otimes, 1)$ be a commutative and complete semiring and let $\bar{\Phi} = \langle \Phi_i, \Phi_c, \Phi_r, \Phi_{ci}, \Phi_{cc}, \Phi_{cr} \rangle$ be a label theory over $\mathbb S$ where $\Phi_i,\,\Phi_c,\,\Phi_r$ and Φ_{cx} (with $x\in\{i,c,r\})$ stand respectively for $\Phi_{\Delta_i},\,\Phi_{\Delta_c},\,\Phi_{\Delta_c}$

 Φ_{Δ_r} and Φ_{Δ_c,Δ_x} . 336

326

327

328

330

331

332

333

335

▶ Definition 14. A Symbolic Weighted Visibly Pushdown Automata (sw-VPA) over $\Delta =$ 337 $\Delta_{\mathsf{i}} \uplus \Delta_{\mathsf{c}} \uplus \Delta_{\mathsf{r}}$, \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, P, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$, where Q is a finite set of states, Pis a finite set of stack symbols, in $: Q \to \mathbb{S}$ (respectively out $: Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) a state, and $\bar{\mathbf{w}}$ is a sextuplet composed of the $\textit{transition functions}: w_{\text{i}}: Q \times P \times Q \rightarrow \Phi_{\text{ci}}, \ w_{\text{i}}^{\text{e}}: Q \times Q \rightarrow \Phi_{\text{i}}, \ w_{\text{c}}: Q \times P \times Q \times P \rightarrow \Phi_{\text{cc}}, \\$ $\mathbf{w_c^e}: Q \times P \times Q \rightarrow \Phi_{\mathbf{c}}, \ \mathbf{w_r}: Q \times P \times Q \rightarrow \Phi_{\mathbf{cr}}, \ \mathbf{w_r^e}: Q \times Q \rightarrow \Phi_{\mathbf{r}}.$

see §5 and App.A

XX:10 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

Similarly as in Section 3, we extend the above transition functions as follows for all $q, q' \in Q$, $p \in P$, $a \in \Delta_i$, $c \in \Delta_c$, $r \in \Delta_r$, overloading their names:

moved this to the beginning

349

350

352

353

354

355

356

357

358

The intuition is the following for the above transitions. w_i^e , w_c^e , and w_r^e describe the cases where the stack is empty. w_i and w_i^e both read an input internal symbol a and change state from q to q', without changing the stack. Moreover, w_i reads a pair made of $c \in \Delta_c$ and $p \in P$ on the top of the stack (c is compared to a by the weight function $\eta_{ci} \in \Phi_{ci}$). w_c and w_c^e read the input call symbol c', push it to the stack along with p', and change state from q to to q'. Moreover, w_c reads c and p at the top of the stack (c is compared to c'). w_r and w_r^e read the input return symbol r, and change state from q to to q'. Moreover, w_r reads and pop from stack a pair made of c and c and c is compared to c').

Formally, the transitions of the automaton A are defined in term of an intermediate function weight_A , like in Section 3. A configuration, denoted by $q[\gamma]$, is here composed of a state $q \in Q$ and a stack content $\gamma \in \Gamma^*$, where $\Gamma = \Delta_{\mathsf{c}} \times P$. Hence, weight_A is a function from $[Q \times \Gamma^*] \times \Delta^* \times [Q \times \Gamma^*]$ into S. The empty stack is denoted by \bot , and the upmost symbol is the last pushed content. The following functions illustrate each of the possible cases, being : reading $a \in \Delta_{\mathsf{i}}$, or $c \in \Delta_{\mathsf{c}}$, or $r \in \Delta_{\mathsf{r}}$ for each possible state of the stack (empty or not), to add to $u \in \Delta^*$.

intro to func 359
introduced the 6 360

notation cp for $\langle c, p \rangle$?

$$\begin{aligned} & \operatorname{weight}_A \left(q[\bot], \varepsilon, q'[\bot] \right) = \mathbb{1} \ \operatorname{if} \ q = q' \ \operatorname{and} \ \mathbb{0} \ \operatorname{otherwise} \end{aligned} \tag{5} \\ & \operatorname{weight}_A \left(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], a \, u, q'[\gamma'] \right) = \bigoplus_{q'' \in Q} \mathsf{w_i}(q, c, p, a, q'') \otimes \operatorname{weight}_A \left(q''\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], u, q'[\gamma'] \right) \\ & \operatorname{weight}_A \left(q[\bot], a \, u, q'[\gamma'] \right) = \bigoplus_{q'' \in Q} \mathsf{w_i}^{\mathsf{e}}(q, a, q'') \otimes \operatorname{weight}_A \left(q''[\bot], u, q'[\gamma'] \right) \\ & \operatorname{weight}_A \left(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], c' \, u, q'[\gamma'] \right) = \bigoplus_{q'' \in Q} \mathsf{w_c} \left(q, c, p, c', p', q'' \right) \otimes \operatorname{weight}_A \left(q''\left[\begin{array}{c} \langle c', p' \rangle \\ \langle c, p \rangle \\ \gamma \end{array} \right], u, q'[\gamma'] \right) \end{aligned}$$

$$\mathsf{weight}_A\big(q[\bot], c\,u, q'[\gamma']\big) = \bigoplus_{q'' \in Q} \; \mathsf{w}^{\mathsf{e}}_{\mathsf{c}}(q, c, p, q'') \otimes \mathsf{weight}_A\big(q''[\langle c, p \rangle], u, q'[\gamma']\big)$$

$$\begin{split} \operatorname{weight}_A\!\left(q\left[\begin{array}{c} \langle c,p\rangle \\ \gamma \end{array}\right], r\,u, q'[\gamma']\right) &= \bigoplus_{q'' \in Q} \operatorname{w_r}\!\left(q,c,p,r,q''\right) \otimes \operatorname{weight}_A\!\left(q''[\gamma],u,q'[\gamma']\right) \\ \operatorname{weight}_A\!\left(q[\bot],r\,u,q'[\gamma']\right) &= \bigoplus_{q'' \in Q} \operatorname{w_r}\!\left(q,r,q''\right) \otimes \operatorname{weight}_A\!\left(q''[\bot],u,q'[\gamma']\right) \end{split}$$

367 368

371

c p to <c, p>

365

The weight associated by A to $t \in \Delta^*$ is defined according to empty stack semantics:

$$A(t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_{A} \left(q[\bot], t, q'[\bot] \right) \otimes \operatorname{out}(q'). \tag{6}$$

Example 15. structured words with timed symbols... intro language of music notation? (markup = time division, leaves = events etc)

todo example VPA

Every swA $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, over Σ , $\mathbb S$ and $\bar{\Phi}$ is a particular case of sw-VPA $\langle Q, \emptyset, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$ over Δ , $\mathbb S$ and $\bar{\Phi}$ with $\Delta_{\mathsf{i}} = \Sigma$ and $\Delta_{\mathsf{c}} = \Delta_{\mathsf{r}} = \emptyset$, and computing with an always empty stack:

we will all the other functions of $\bar{\mathsf{w}}$ are the constant $\mathbb O$.

Similarly to VPA [1] and sVPA [6], the class of sw-VPA is closed under the binary operators of the underlying semiring.

Proposition 16. Let A_1 and A_2 be two sw-VPA over the same Δ , $\mathbb S$ and $\bar{\Phi}$. There exists two effectively constructible sw-VPA $A_1 \oplus A_2$ and $A_1 \otimes A_2$, such that for all $s \in \Delta^*$, $(A_1 \oplus A_2)(s) = A_1(s) \oplus A_2(s)$ and $(A_1 \otimes A_2)(s) = A_1(s) \otimes A_2(s)$.

Proof. The construction is essentially the same as in the case of the Boolean semiring [6].

complete proof

We shall now present a procedure for searching, for a sw-VPA A, a word of minimal weight for A, as stated in the following proposition.

Proposition 17. For a sw-VPA A over Δ , $\mathbb S$ commutative, bounded, total and complete, and $\bar{\Phi}$ effective, one can construct in PTIME a word $t \in \Delta^*$ such that A(t) is minimal wrt the natural ordering for $\mathbb S$.

Let $A = \langle Q, P, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$. We propose a Dijkstra algorithm computing, for every $q, q' \in Q$, the minimum, $wrt \leq_{\oplus}$, of the function $\beta_{q,q'}: t \mapsto \mathsf{weight}_A(q[\bot], t, q'[\bot])$. Let us denote by $b_\bot(q,q')$ this minimum. By definition of \leq_{\oplus} , and since $\mathbb S$ is total, it holds that:

392

397

398

399

400

402

403

405

406

$$b_{\perp}(q,q') = \bigoplus_{t \in \Delta^*} \mathsf{weight}_A \big(q[\perp], t, q'[\perp] \big). \tag{7}$$

Since S is complete, the infinite sum in (7) is well defined. Following (6), and the associativity and commutativity and distributivity for S and S, the minimum of S is:

$$\bigoplus_{t \in \Delta^*} A(t) = \bigoplus_{t \in \Delta^*} \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \beta_{q,q'}(t) \otimes \operatorname{out}(q') = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes b_{\perp}(q,q') \otimes \operatorname{out}(q') \tag{8}$$

In order to compute the above function $b_{\perp}: Q \times Q \to \mathbb{S}$, we shall consider an auxiliary function $b_{\top}: Q \times P \times Q \to \Phi_c$. Intuitively, when $b_{\top}(q, p, q') = \phi \in \Phi_c$, for all $c \in \Delta_c$, $\phi(c)$ is the minimum weight of a computation of A starting in state q with a non-empty stack $\gamma' = \langle c, p \rangle \gamma \in \Gamma^+$ and ending in state q' with the same stack γ' , such that moreover, the computation does not pop the pair $\langle c, p \rangle$ at the top of γ' (i.e. γ' is left untouched during the computation). However, the computation can read $\langle c, p \rangle$ at the top of γ' , and can also push another pair $\langle c', p' \rangle \in \Gamma$ on γ' , following the third case of in the definition (5) of weight A (call symbol). The pair $\langle c', p' \rangle$ can be pop later, during the computation from q to q', following the fifth case of (5) (return symbol). Formally, in order to define b_{\top} , we consider a fresh stack symbol $\top \notin \Gamma$, representing the above untouched stack, and let:

$$b_{\top}(q, p, q') : c \mapsto \bigoplus_{s \in \Delta^*} \mathsf{weight}_A \left(q \begin{bmatrix} \langle c, p \rangle \\ \top \end{bmatrix}, s, q' \begin{bmatrix} \langle c, p \rangle \\ \top \end{bmatrix} \right) \quad \text{for all } c \in \Delta_{\mathsf{c}}$$
 (9)

By definition of weight_A in (5), using the symbol \top for the part of the stack below $\langle c, p \rangle$ (*i.e.* the substack γ in the above $\gamma' = \langle c, p \rangle \gamma$) ensures that this part γ' is not touched during the

XX:12 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

Algorithm 1 Best search for sw-VPA

```
initially let Q = (Q \times Q) \cup (Q \times P \times Q), and let d_{\perp}(q_1, q_2) = d_{\top}(q_1, p, q_2) = \mathbb{1} if q_1 = q_2 and d_{\perp}(q_1, q_2) = d_{\top}(q_1, p, q_2) = \mathbb{0} otherwise

while Q \neq \emptyset do

extract \langle q_1, q_2 \rangle or \langle q_1, p, q_2 \rangle from Q such that d_{\perp}(q_1, q_2), resp.

\bigoplus_{c \in \Delta_c} d_{\top}(q_1, p, q_2)(c), is minimal in S wrt \leq_{\oplus}

update d_{\perp} with \langle q_1, q_2 \rangle or d_{\top} with \langle q_1, p, q_2 \rangle (Figure 3).
```

For all $q_0, q_3 \in Q$,

$$\begin{array}{lll} d_{\top}(q_{1},p,q_{3}) & \oplus = & d_{\top}(q_{1},p,q_{2}) \otimes \bigoplus_{\Delta_{\mathbf{i}}} \mathsf{w}_{\mathbf{i}}(q_{2},p,q_{3}) \\ d_{\bot}(q_{1},p,q_{3}) & \oplus = & d_{\bot}(q_{1},q_{2}) \otimes \bigoplus_{\Delta_{\mathbf{i}}} \mathsf{w}_{\mathbf{i}}^{\mathsf{e}}(q_{2},q_{3}) \\ d_{\top}(q_{0},p,q_{3}) & \oplus = & \bigoplus_{\Delta_{\mathbf{c}}}^{2} \left[\left(\mathsf{w}_{\mathbf{c}}(q_{0},p,p',q_{1}) \otimes_{2} d_{\top}(q_{1},p',q_{2}) \right) \otimes_{2} \bigoplus_{\Delta_{\mathbf{r}}} \mathsf{w}_{\mathbf{r}}(q_{2},p',q_{3}) \right] \\ d_{\bot}(q_{0},q_{3}) & \oplus = & \bigoplus_{\Delta_{\mathbf{c}}} \left(\mathsf{w}_{\mathbf{c}}^{\mathsf{e}}(q_{0},p,q_{1}) \otimes d_{\top}(q_{1},p,q_{2}) \otimes \bigoplus_{\Delta_{\mathbf{r}}} \mathsf{w}_{\mathbf{r}}(q_{2},p,q_{3}) \right) \\ d_{\bot}(q_{1},q_{3}) & \oplus = & d_{\bot}(q_{1},q_{2}) \otimes \bigoplus_{\Delta_{\mathbf{r}}} \mathsf{w}_{\mathbf{r}}^{\mathsf{e}}(q_{2},q_{3}) \\ d_{\top}(q_{1},p,q_{3}) & \oplus = & d_{\top}(q_{1},p,q_{2}) \otimes d_{\top}(q_{2},p,q_{3}), \text{if } \langle q_{2}, \top,q_{3} \rangle \notin P \\ d_{\bot}(q_{1},q_{3}) & \oplus = & d_{\bot}(q_{1},q_{2}) \otimes d_{\bot}(q_{2},q_{3}), \text{if } \langle q_{2}, \bot,q_{3} \rangle \notin P \end{array}$$

Figure 3 Update d_{\perp} with $\langle q_1, q_2 \rangle$ or d_{\perp} with $\langle q_1, p, q_2 \rangle$.

computation. This ensures in particular that the subword read during the computation is well parenthesized (every symbol in Δ_c has a matching symbol in Δ_r).

Algorithm 1 constructs iteratively two markings $d_{\perp}: Q \times Q \to \mathbb{S}$ and $d_{\top}: Q \times P \times Q \to \Phi_{\mathsf{c}}$, that converges eventually to b_{\top} and b_{\perp} . The infinite sums in the updates of d in Algorithm 1, Figure 3 are well defined since \mathbb{S} is complete.

explication Fig. 3 suivant cas de (5)

detail with nb tr. 417 and states

complete **

418 419

423

425

426

410

411

412

41

415

completer 42

** effectively computable by hypothesis that the label theory is effective** termination: The algorithm performs $2.|Q|^2$ iterations until P is empty, and each iteration has a time complexity $O(|Q|^2.|P|)$. That gives a time complexity $O(|Q|^4.|P|)$. It can be reduced by implementing P as a priority queue, prioritized by the value returned by d. At termination, $d_{\perp} = b_{\perp}$ and $d_{\perp} = b_{\perp}$ (see Appendix B). With (8), this ensures the correctness of Algorithm 1. In order to obtain effectively a witness (word of Δ^* with a computation of A of minimal weight), we require the additional property of convexity of weight functions.***

▶ Proposition 18. For a sw-VPA A over Δ , $\mathbb S$ commutative, bounded, total and complete, and $\bar{\Phi}$ effective, one can construct in PTIME a word $t \in \Delta^*$ such that A(t) is minimal wrt the natural ordering for $\mathbb S$.

5 Symbolic Weighted Parsing

Let us now apply the models and results of the previous sections to the problem of parsing over an infinite alphabet. Let Σ and $\Delta = \Delta_i \uplus \Delta_c \uplus \Delta_r$ be countable input and output alphabets, let $(S, \oplus, \emptyset, \otimes, \mathbb{1})$ be a commutative, bounded, and complete semiring and let $\bar{\Phi}$

total? 428

be an effective label theory over \mathbb{S} , containing Φ_{Σ} , $\Phi_{\Sigma,\Delta_{i}}$, as well as Φ_{i} , Φ_{c} , Φ_{r} , Φ_{cr} (following the notations of Section 4). We assume given the following input:

- a swT T over Σ , Δ_{i} , \mathbb{S} , and $\bar{\Phi}$, defining a measure $T: \Sigma^{*} \times \Delta_{i}^{*} \to \mathbb{S}$,

- a sw-VPA A over Δ , \mathbb{S} , and $\bar{\Phi}$, defining a measure $A: \Delta^{*} \to \mathbb{S}$,

- an input word $s \in \Sigma^{*}$.

For all $u \in \Sigma^{*}$ and $t \in \Delta^{*}$, let $d(u,t) = T(u,t|_{\Delta_{i}})$, where $t|_{\Delta_{i}} \in \Delta_{i}^{*}$ is the projection of t onto Δ_{i} , obtained from t by removing all symbols in $\Delta \setminus \Delta_{i}$. Symbolic weighted parsing is the problem, given the above input, to find $t \in \Delta^{*}$ minimizing $d(s,t) \otimes A(t)$ wrt \leq_{\oplus} , i.e. s.t.

$$d(s,t) \otimes A(t) = \bigoplus_{t' \in \Delta^*} d(s,t') \otimes A(t')$$
(10)

Following the terminology of [21], sw-parsing is the problem of computing the distance (10) between the input s and the output weighted language of A, and returning a witness t.

▶ Proposition 19. The problem of Symbolic Weighted parsing can be solved in PTIME in the size of the input swT T, sw-VPA A and input word s, and the computation time of the functions and operators of the label theory.

Proof. (sketch) We follow a Bar-Hillel construction, for parsing by intersection. Let us first extend the swT T over Σ , $\Delta_{\rm i}$ into a swT T' over Σ and Δ (and the same semiring and label theory $\mathbb S$ and $\bar \Phi$), such that for all $u \in \Sigma^*$, and $t \in \Delta^*$, $T'(u,t) = T(u,t|_{\Delta_{\rm i}})$. The transducer T' simply skips every symbol $b \in \Delta \setminus \Delta_{\rm i}$, by the addition to T, of new transitions of the form $\mathsf{w}_{01}(q,\varepsilon,b,q')$. Then, using Corolary 13, we construct from the input word $s \in \Sigma^*$ and T' a swA $B_{s,T'}$, such that for all $t \in \Delta^*$, $B_{s,T'}(t) = d(s,t)$. Next, we compute the sw-VPA $B_{s,T'} \otimes A$, using Proposition 16. It remains to compute a best nested-word $t \in \Delta^*$ using the best-search procedure of Proposition 18.

The sw-parsing generalizes the problem of searching the best derivation (AST) of a weighted 451 CF-grammar G that yields a given input word w. The latter problem, sometimes called weighted 452 parsing, (see e.g. [13] and [23] for general weighted parsing frameworks) corresponds to sw-453 parsing in the case of finite alphabets, a transducer T computing the identity and some 454 sw-VPA A obtained from G. Indeed, the depth-first traversal of an AST τ yields a wellparenthesised word $\operatorname{lin}(\tau)$ over an alphabet $\Delta = \Delta_i \uplus \Delta_c \uplus \Delta_r$, assuming e.g. that Δ_i contains 457 the symbols labelling the leaves of τ (symbols of rank 0), and Δ_c and Δ_r contain respectively one left and right parenthesis $\langle b \rangle$ for each symbol b labelling inner nodes of τ (symbols of rank > 0). We show in Appendix A how to construct a sw-VPA A such that $A(\operatorname{lin}(\tau))$ is 459 the weight the AST τ of G. 460

Conclusion

463

We have introduced weighted language models (SW transducers and visibly pushdown automata) computing over infinite alphabets, and applied them to the problem of parsing with infinitely many possible input symbols (typically timed events). This approach extends conventional parsing and weighted parsing by computing a derivation tree modulo a generic distance between words, defined by a SW transducer given in input. This enables to consider finer word relationships than strict equality, opening possibilities of quantitative analysis via this method.

Ongoing and future work include

In practice, the functions in transition might be represented by diagram such as Algebraic Decision Diagrams [?].

2 lines Application to Automated Music Transcription: implementation ≠ but same principle, on-the-fly automata construction during best search, for efficiency.

TODO future work

XX:14 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

- $_{472}$ The study of other theoretical properties of SW models, such as the extension of the best
- search algorithm from 1-best to n-best [17], and to k-closed semirings [20] (instead of bounded,
- which corresponds to 0-closed).
- 475 ...there is room to improve the complexity bounds for the algorithms ... modular approach 476 with oracles ...
- present here an offline algorithm for best search, semi-online implementation for AMT (bar-by-bar approach) with an on-the-fly automata construction.

References

507

- R. Alur and P. Madhusudan. Adding nesting structure to words. *Journal of the ACM (JACM)*, 56(3):1–43, 2009.
- M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words. *ACM Transactions on Computational Logic (TOCL)*, 12(4):1–26, 2011.
- P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and timed languages. *Information and Computation*, 182(2):137–162, 2003.
- M. Caralp, P.-A. Reynier, and J.-M. Talbot. Visibly pushdown automata with multiplicities:
 finiteness and k-boundedness. In *International Conference on Developments in Language Theory*, pages 226–238. Springer, 2012.
- H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison, and
 M. Tommasi. Tree Automata Techniques and Applications. http://tata.gforge.inria.fr,
 2007.
- L. D'Antoni and R. Alur. Symbolic visibly pushdown automata. In *International Conference* on Computer Aided Verification, pages 209–225. Springer, 2014.
- L. D'Antoni and M. Veanes. The power of symbolic automata and transducers. In *International Conference on Computer Aided Verification*, pages 47–67. Springer, 2017.
- 8 L. D'Antoni and M. Veanes. Automata modulo theories. Communications of the ACM, 64(5):86–95, 2021.
- 9 E. W. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1(1):269–271, 1959.
- M. Droste and W. Kuich. Semirings and formal power series. In Handbook of Weighted
 Automata, pages 3–28. Springer, 2009.
- M. Droste, W. Kuich, and H. Vogler. *Handbook of weighted automata*. Springer Science & Business Media, 2009.
- F. Foscarin, F. Jacquemard, P. Rigaux, and M. Sakai. A Parse-based Framework for Coupled Rhythm Quantization and Score Structuring. In *Mathematics and Computation in Music* (MCM), volume 11502 of Lecture Notes in Artificial Intelligence, Madrid, Spain, 2019. Springer.
 - 13 J. Goodman. Semiring parsing. Computational Linguistics, 25(4):573–606, 1999.
- 508 14 E. Gould. Behind Bars: The Definitive Guide to Music Notation. Faber Music, 2011.
- D. Grune and C. J. Jacobs. *Parsing Techniques*. Number 2nd edition in Monographs in Computer Science. Springer, 2008.
- L. Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In *In COLING*, 2008.
- L. Huang and D. Chiang. Better k-best parsing. In *Proceedings of the Ninth International Workshop on Parsing Technology*, Parsing '05, pages 53–64, Stroudsburg, PA, USA, 2005.

 Association for Computational Linguistics.
- M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134:329–363,
 November 1994.
- S. Lombardy and J. Sakarovitch. The removal of weighted ε-transitions. In International
 Conference on Implementation and Application of Automata, pages 345–352. Springer, 2012.
- M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. *Journal of Automata, Languages and Combinatorics*, 7(3):321–350, 2002.

M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.

- M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.
- R. Mörbitz and H. Vogler. Weighted parsing for grammar-based language models. In *Proceedings*of the 14th International Conference on Finite-State Methods and Natural Language Processing,
 pages 46–55, Dresden, Germany, Sept. 2019. Association for Computational Linguistics.
- M.-J. Nederhof. Weighted deductive parsing and Knuth's algorithm. Computational Linguistics,
 29(1):135–143, 2003.
- 531 **25** F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.
 532 ACM Trans. Comput. Logic, 5(3):403–435, July 2004.
- L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In *Computer Science Logic*, volume 4207 of *LNCS*. Springer, 2006.
- M. Y. Vardi. Linear-time model checking: automata theory in practice. In *International Conference on Implementation and Application of Automata*, pages 5–10. Springer, 2007.

A Nested-Words and Parse-Trees

537

538

539

541

543

544

549

560

563

565

566

568

570

571

573

574

The hierarchical structure of nested-words, defined with the *call* and *return* markup symbols suggest a correspondence with trees. The lifting of this correspondence to languages, of tree automata and VPA, has been discussed in [1], and [4] for the weighted case. In this section, we describe a correspondence between the symbolic-weighted extensions of tree automata and VPA.

Let Ω be a countable ranked alphabet, such that every symbol $a \in \Omega$ has a rank $\mathsf{rk}(a) \in [0..M]$ where M is a fixed natural number. We denote by Ω_k the subset of all symbols a of Ω with $\mathsf{rk}(a) = k$, where $0 \le k \le M$, and $\Omega_{>0} = \Omega \setminus \Omega_0$. The free Ω -algebra of finite, ordered, Ω -labeled trees is denoted by \mathcal{T}_{Ω} . It is the smallest set such that $\Omega_0 \subset \mathcal{T}_{\Omega}$ and for all $1 \le k \le M$, all $a \in \Omega_k$, and all $t_1, \ldots, t_k \in \mathcal{T}_{\Omega}$, $a(t_1, \ldots, t_k) \in \mathcal{T}_{\Omega}$. Let us assume a commutative semiring $\mathbb S$ and a label theory $\overline{\Phi}$ over $\mathbb S$ containing one set Φ_{Ω_k} for each $k \in [0..M]$.

▶ **Definition 20.** A symbolic-weighted tree automaton (swTA) over Ω , S, and $\bar{\Phi}$ is a triplet $A = \langle Q, \mathsf{in}, \bar{\mathsf{w}} \rangle$ where Q is a finite set of states, $\mathsf{in} : Q \to \Phi_{\Omega}$ is the starting weight function, and $\bar{\mathsf{w}}$ is a tuplet of transition functions containing, for each $k \in [0..M]$, the functions $\mathsf{w}_k : Q \times Q^k \to \Phi_{\Omega_{>0},\Omega_k}$ and $\mathsf{w}_k^e : Q \times Q^k \to \Phi_{\Omega_k}$.

We define a transition function $w: Q \times (\Omega_{>0} \cup \{\varepsilon\}) \times \Omega \times \bigcup_{k=0}^{M} Q^k \to \mathbb{S}$ by:

$$\begin{array}{lcl} \mathsf{w}(q_0,a,b,q_1\ldots q_k) & = & \eta(a,b) & \text{where } \eta = \mathsf{w}_k(q_0,q_1\ldots q_k) \\ \mathsf{w}(q_0,\varepsilon,b,q_1\ldots q_k) & = & \phi(b) & \text{where } \phi = \mathsf{w}_k^{\mathsf{e}}(q_0,q_1\ldots q_k). \end{array}$$

where $q_1 \dots q_k$ is ε if k = 0. The first case deals with a strict subtree, with a parent node labeled by a, and the second case is for a root tree.

Every swTA defines a mapping from trees of \mathcal{T}_{Ω} into \mathbb{S} , based on the following intermediate function weight_A: $Q \times (\Omega \cup \{\varepsilon\}) \times \mathcal{T}_{\Omega} \to \mathbb{S}$

$$\mathsf{weight}_A(q_0, a, t) = \bigoplus_{q_1 \dots q_k \in Q^k} \mathsf{w}(q_0, a, b, q_1 \dots q_k) \otimes \bigotimes_{i=1}^k \mathsf{weight}_A(q_i, b, t_i) \tag{11}$$

where $q_0 \in Q$, $a \in \Omega_{>0} \cup \{\varepsilon\}$ and $t = b(t_1, \dots, t_k) \in \mathcal{T}_{\Omega}$, $0 \le k \le M$.

Finally, the weight associated by A to $t \in \mathcal{T}_{\Omega}$ is

$$A(t) = \bigoplus_{q \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_A(q, \varepsilon, t) \tag{12}$$

Intuitively, $w(q_0, a, b, q_1 \dots q_k)$ can be seen as the weight of a production rule $q_0 \to b(q_1, \dots, q_k)$ of a regular tree grammar [5], that replaces the non-terminal symbol q_0 by $b(q_1, \dots, q_k)$, provided that the parent of q_0 is labeled by a (or q_0 is the root node if $a = \varepsilon$). The above production rule can also be seen as a rule of a weighted CF grammar, of the form $[a, b] q_0 := q_1 \dots q_k$ if k > 0, and $[a] q_0 := b$ if k = 0. In the first case, b is a label of the rule, and in the second case, it is a terminal symbol. And in both cases, a is a constraint on the label of rule applied on the parent node in the derivation tree. This features of observing the parent's label are useful in the case of infinite alphabet, where it is not possible to memorize a label with the states. The weight of a labeled derivation tree t of the weighted CF grammar associated to A as above, is weight a0, when a1 is the start non-terminal. We shall now establish a correspondence between such a derivation tree a2 and some word describing a linearization of a2, in a way that weight a3, can be computed by a sw-VPA.

```
Let \hat{\Omega} be the countable (unranked) alphabet obtained from \Omega by: \hat{\Omega} = \Delta_i \uplus \Delta_c \uplus \Delta_r, with
       \Delta_{\mathsf{i}} = \Omega_0, \ \Delta_{\mathsf{c}} = \{ \langle_a | \ a \in \Omega_{>0} \}, \ \Delta_{\mathsf{r}} = \{ \langle_a | \ a \in \Omega_{>0} \}.
577
        We associate to \hat{\Omega} a label theory \hat{\Phi} like in Section 4, and we define a linearization of trees of
578
        \mathcal{T}_{\Omega} into words of \hat{\Omega}^* as follows:
          lin(a) = a for all a \in \Omega_0,
580
          \lim(b(t_1,\ldots,t_k)) = \langle b | \lim(t_1) \ldots | \lim(t_k) \rangle \text{ when } b \in \Omega_k \text{ for } 1 \leq k \leq M.
581
        ▶ Proposition 21. For all swTA A over \Omega, \mathbb S commutative, and \bar{\Phi}, there exists an effectively
582
        constructible sw-VPA A' over \hat{\Omega}, \mathbb{S} and \hat{\Phi} such that for all t \in \mathcal{T}_{\Omega}, A'(\text{lin}(t)) = A(t).
583
       Proof. Let A=\langle Q,\mathsf{in},\bar{\mathsf{w}}\rangle where \bar{\mathsf{w}} is presented as above by a function We build A'=\langle Q',P',\mathsf{in'},\bar{\mathsf{w}'},\mathsf{out'}\rangle, where Q'=\bigcup_{k=0}^M Q^k is the set of sequences of state symbols of A, of
584
```

length at most M, including the empty sequence denoted by ε , and where P'=Q' and $\bar{\mathbf{w}}$ is

```
= \mathsf{w}(q_0, c, a, \varepsilon) \text{ for all } c \in \Omega_{>0}, a \in \Omega_0
\mathsf{w}_{\mathsf{i}}(q_0\,\bar{u},\langle_c,\bar{p},a,\bar{u})
\mathsf{w}^\mathsf{e}_\mathsf{i}(q_0\,\bar{u},a,\bar{u})
                                                                 = \mathsf{w}(q_0, \varepsilon, a, \varepsilon)
                                                                                                                     for all a \in \Omega_0
\mathsf{w}_{\mathsf{c}}(q_0 \, \bar{u}, \langle_c, \bar{p}, \langle_d, \bar{u}, \bar{q}) = \mathsf{w}(q_0, c, d, \bar{q})
                                                                                                                   for all c, d \in \Omega_{>0}
\mathsf{w}_{\mathsf{c}}^{\mathsf{e}}(q_0\,\bar{u},\langle_c,\bar{u},\bar{q})
                                                                 = \mathsf{w}(q_0, \varepsilon, c, \bar{q})
                                                                                                                    for all c \in \Omega_{>0}
                                                                                                                      for all c \in \Omega_{>0}
\mathsf{w}_{\mathsf{r}}(\varepsilon,\langle_c,\bar{p},{}_c\rangle,\bar{p})
                                                                             1
\mathsf{w}^{\mathsf{e}}_{\mathsf{r}}(\bar{u},{}_{c}\rangle,\bar{q})
                                                                                                                      for all c \in \Omega_{>0}
```

All cases not matched by one of the above equations have a weight \mathbb{O} , for instance $\mathsf{w}_\mathsf{r}(\bar{u},\langle_c,\bar{p},_d\rangle,\bar{q}) =$ 0 if $c \neq d$ or $\bar{u} \neq \varepsilon$ or $\bar{q} \neq \bar{p}$.

Correctness of the Best-Search Algorithm В 591

585

587

600

defined by:

- The correctness of Algorithm 1 is stated by the following lemma. 592
- ▶ **Lemma 22.** At the termination of Algorithm 1, for all $\langle q_1, q_2 \rangle \notin \mathcal{Q}$, $d_{\perp}(q_1, q_2) = b_{\perp}(q_1, q_2)$. 593
- The proof is by contradiction, assuming a counter-example minimal in the length of the 594 witness word.
- is ensured by the invariant... expressed in the following lemma. 596
- ▶ **Lemma 23.** At every step of Algorithm 1, for all $\langle q_1, p, q_2 \rangle \notin \mathcal{Q}$, $d_{\top}(q_1, p, q_2) = b_{\top}(q_1, p, q_2)$.
- For computing the minimal weight of a computation of A, we use the equality (8), which, with Lemma 22 implies that at the termination of Algorithm 1, $\bigoplus_{s \in \Delta^*} A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes d_{\perp}(q,q') \otimes \operatorname{out}(q')$. 599

XX:18 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

601 Todo list

602	indep. counters Def. Prop. Ex	1
603	register: skip refs and details, add Mikolaj recent	2
604	WARNING: [23] much is more general that weighted parsing	2
605	WARNING: [23] much is more general that weighted parsing	3
606	chap. intersection in [15]	3
607	expressiveness: VPA have restricted equality test. comparable to pebble automata?	
608	ightarrow conclusion	3
609	weight value	3
610	is total necessary?	4
611	Ca j'ai pas compris	4
612	Here the difference between $\mathbb S$ as a structure and as a domain is blurred	4
613	$j \in \mathbb{N}$: j is en element of \mathbb{N} , not the same s $j \subset \mathbb{N}$	4
614	results of this paper: for semirings commutative, bounded, total and complete	4
615	ADD: notations Σ^* , ε	5
616	unary for swA (weight depends on input symbol) and binary for transducers and	
617	VPA (weight depends on input symbol AND output or stack symbol)	5
618	partial application is needed?	5
619	notion of diagram of functions akin BDD for transitions in practice	6
620	mv appendix?	6
621	Je trouve qu'il y a beaucoup de notions à retenir (complete, effective) et ça devient	
622	difficile pour un lecteur non spécialiste. Est-ce que tout est nécessaire (je ne sais	
623	plus qui m'avait dit: un concept en plus, un point en moins	6
624	\exists oracle returning in worst time complexity T	6
625	compute asynchronously: advance in s and not in t (w_{10}), or the opposite (w_{01}), or	
626	advance in both s and t (w_{11})	7
627	added u and v def	7
628	reformulated this sentence	8
629	Comprends pas cette phrase	8
630	ccl to the ex	8
631	Il me manque une explication: on construit un automate qui, étant donnée une	
632	partition t , renvoie la distance minimale avec n'importe quelle performance	
633	 (distance donnée par un transducer)? Quel est le rôle de $A(s)$?	8
634	proof correctness	9
635	revise with nb of tr. and states	9
636	see §5 and App.A	9
637	moved this to the beginning	10
638	intro to func	10
639	introduced the 6 cases	10
640	notation cp for $\langle c, p \rangle$?	10
641	c p to <c, p=""></c,>	10
642	todo example VPA	11
643	complete proof	11
644	explication Fig. 3 suivant cas de (5)	12
645	complete **	12
646	detail with nb tr. and states	12
647		12
648	total?	12

649	In practice, the functions in transition might be represented by diagram such as	
650	Algebraic Decision Diagrams [?]	13
651	2 lines Application to Automated Music Transcription: implementation \neq but same	
652	principle, on-the-fly automata construction during best search, for efficiency	13
653	TODO future work	13