Kapitel 1

Kolimes

1.1 Einführung in den Kolimes

Definition des Kolimes [vgl. Anhang A6 David Eisenbud 1994]

Definition 1. [vgl. Anhang A6 David Eisenbud 1994] Sei A eine Kategorie.

- Ein <u>Diagramm</u> über A ist eine Kategorie B zusammen mit einem Funktor $\mathcal{F}: \mathcal{B} \longrightarrow A$.
- Sei $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Diagramm und $A \in \mathcal{A}$ ein Objekt. Dann definieren wir einen Morphismus $\psi: \mathcal{F} \longrightarrow A$ als eine Menge von Funktionen $\{\psi_B \in Hom(F(B), A) | B \in \mathcal{B}\}$, wobei für alle $B_1, B_2 \in \mathcal{B}$ und $\varphi \in Hom(B_1, B_2)$ folgendes Diagramm kommutiert:

• Der Kolimes $\varinjlim \mathcal{F}$ eines Diagramms $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ist ein Objekt $A \in \mathcal{A}$ zusammen mit einem Morphismus $\psi: \mathcal{F} \longrightarrow A$, welche folgende universelle Eingenschaft erfüllen:

Für Objekte $A' \in \mathcal{A}$ und alle Morphismen $\psi' : \mathcal{F} \longrightarrow A'$ existiert genau eine Funktion $\varphi \in Hom(A, A')$, sodass folgendes Diagramm kommutiert:

Eindeutigkeit des Kolimes [vgl. A6 David Eisenbud 1994]

Lemma 2. Seien \mathcal{B}, \mathcal{A} zwei Kategorien und $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Funktor. Dann sind im Falle der Existenz $\lim_{\longrightarrow} \mathcal{F}$ und der dazugehörige Morphismus $\psi: \mathcal{F} \longrightarrow A$ bis auf eine eindeutige Isomorphie eindeutig bestimmt.

Beweis. Seien $A_1 \in \mathcal{A}, (\psi_1 : \mathcal{F} \longrightarrow A_1)$ und $A_2 \in \mathcal{A}, (\psi_2 : \mathcal{F} \longrightarrow A_2)$ beide gleich $\lim \mathcal{F}$.

Erhalte durch die universelle Eigenschaft des Kolimes die eindeutig bestimmten Funktionen $\varphi_1 \in Hom_{\mathcal{A}}(A_1, A_2)$ und $\varphi_2 \in Hom_{\mathcal{A}}(A_2, A_1)$, für welche die folgende Diagramme kommutieren:

Wende nun die Universelle Eigenschaft von ψ_1 auf ψ_1 selbst an und erhalte $id_{A_1} = \varphi_2 \circ \varphi_1$. Analog erhalte auch $id_{A_2} = \varphi_1 \circ \varphi_2$.

Somit existiert genau eine Isomorphie $\varphi_1: A_1 \longrightarrow A_2$.

Im folgenden beschäftigen wir uns mit dem Fall des $\varinjlim \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$, bei welchem \mathcal{B} eine Unterkategorie von \mathcal{A} ist. Zur Vereinfachung unterschlagen dabei die triviale Existenz des Funktors $\varinjlim \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$. Wir werden also im folgenden von dem Diagramm \mathcal{B} und dem entsprechenden Kolimes $\varinjlim \mathcal{B}$, sowie dem Morphismus $\phi: \mathcal{B} \longrightarrow A$ sprechen.

Vereinfachung des Kolimes [Eigene Überlegung (Beweis fehlt noch)]

Bemerkung 3. Seien $\mathcal{B} \nsubseteq \mathcal{A}$ zwei Kategorien und $\mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A}$ ein Diagramm. Dann gilt im Falle der Existenz $\varinjlim \mathcal{F} = \varinjlim \mathcal{F}(\mathcal{B})$

DifferenzkokernUndKoproduktDef [vlg. A6 David Eisenbud 1994]

Definition 4. Sei A eine Kategorie.

- Das Koprodukt von {B_i} ⊆ A wird durch ∏_i{B_i} := lim B definiert, wobei B {B_i} als Objekte und die Identitätsabbildungen id_{B_i} : B_i → B_i als Morphismen enthält.
- Der Differenzkokern (oder auch Coequilizer) von $f,g \in Hom_{\mathcal{A}}(C_1,C_2)$ wird durch \varinjlim_{C} definiert, wobei \mathcal{C} $\{C_1,C_2\}$ als Objekte und $\{f,g\}:=Hom_{\mathcal{C}}(C_1,C_2)$ als Morphismen enthält.

NeuDifferenzenkokerndef [vlg. Wikipedia aber eigener Beweis]

Lemma 5. Sei A eine Kategorie mit $C_1, C_2 \in Hom_A(C_1, C_2)$, so sind folgende Formulierungen äquivalent zur Definition des Differenzkokern's $T := \lim_{n \to \infty} C$

- 1. Es existiert ein Morphismus $\psi: \mathcal{C} \longrightarrow T$, mit der Eigenschaft, dass für alle Morphismen $\psi': \mathcal{C} \longrightarrow T'$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ \psi = \psi'$ existiert.
- 2. Es existiert ein $q \in Hom_{\mathcal{A}}(C_2, T)$ mit $q \circ f = q \circ g$ und der Eigenschaft, dass für alle Morphismen $q' \in Hom_{\mathcal{A}}(C_2, Z)$ mit $q' \circ f = q' \circ g$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ q = q'$ existiert.

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} T$$

$$\downarrow q' \qquad \downarrow \exists ! \varphi$$

$$T'$$

Beweis. 1. ist offensichtlich eine Ausformulierung der Einführung des Kolimes aus ??, zeige also im folgenden noch die Äquivalenz von 1. und 2.

• $1 \Rightarrow 2$:

Da $\psi: \mathcal{C} \longrightarrow T$ ein Morphismus ist, gilt für $\{f, g\} = Hom_{\mathcal{C}}(C_1, C_2)$: $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_1} \circ \psi_{C_2}$, setze also $q := \psi_{C_2}$.

Sei nun $q' \in Hom_{\mathcal{A}}(C_2, T)$ mit der Eigenschaft $q' \circ f = q' \circ g$ gegeben: Definiere den Morphismus $\psi' : \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q' \circ f, \psi_2 = q'\}$, somit folgt direkt aus der Universellen Eigenschaft von ψ , dass genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ existiert, mit $\varphi \circ q = q'$.

• $2 \Rightarrow 1$:

Definiere $\psi: \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q \circ f, \psi_2 = q\}$. Durch die Eigenschaft von q gilt $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_2} \circ g$.

Sei nun $\psi': \mathcal{C} \longrightarrow \mathcal{A}$ ein beliebiger Morphismus.

Definiere $d' := \psi'$, somit existiert durch die Eigenschaft von d genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ mit $\varphi \circ q = q'$.

$$\Rightarrow \varphi \circ \psi_2 = \psi_2'$$
 und $\varphi \circ \psi_1 = \varphi \circ \psi_2 \circ f = \varphi \circ \psi_2' \circ f = \varphi \circ \psi_1'$

Wenn im weiteren Verlauf von dem Differenzkokern zweier Homomorphismen $f,g:C_1\longrightarrow C_2$ gesprochen wird, meinen wir damit den Homomorphismus $q:C_2\longrightarrow T$ aus lemma 5.

Tensorprodukt des Differenzenkokerns [Eigene Bemerkung]

Bemerkung 6. Seien $f, g \in Hom_{\mathcal{A}}(S_1, S_2)$ R-Algebra-Homomorphismen, so können wir für den Differenzenkokern $q: S_2 \longrightarrow T$ für ein beliebiges S_1 -Modul das Tensorprodukt $T \otimes_{C_1} M$ definieren.

$$f\ddot{u}r \ s_1 \in S_1 \ und \ t \otimes m) \in T \otimes_{C_1} M \ gilt:$$
$$s_1 \cdot (t \otimes m) = ((q \circ f)(s_1)) \cdot t \otimes m = ((q \circ g)) \cdot (s_1)t \otimes m$$

R-Algebra-Kolimiten [vlg. Proposition A6.7 David Eisenbud 1994]

Proposition 7. in der Kategorie der R-Algebren existieren Koprodukte und Differenzkokerne, wobei:

- 1. Das Koprodukt einer endlichen Familie von R Algebren $\{S_i\}_{i\in\Lambda}$ entspricht deren Tesorprodukt $\bigotimes_{i\in\Lambda} S_i$.
- 2. Der Differenzkokern zweier R-Algebra-Homomorphismen $f, g: S_1 \longrightarrow S_2$ einspricht dem Homomorphismus $q: S_2 \longrightarrow S_2/Q$, $y \longmapsto [y]$, wobei $Q:=\{f(x)-g(x)\mid x\in S_2\}$ das Bild der Differenz von f und g ist.

Beweis. Zu 1.:

Sei \mathcal{B} die Unterkategorie der R-Algebren, welche $\{S_i\}_{i\in\Lambda}$ zusammen mit den Identitätsabbildungen enthält. Wir wollen die universellen Eigenschaften des Tensorproduktes und des Kähler-Differenzials nutzen, um einen Isomorphismus zwischen $\lim \mathcal{F}$ und $\bigotimes_{i\in\Lambda} B_i$ zu finden.

Es sind der Morphismus $\psi: \mathcal{B} \longrightarrow \varinjlim \mathcal{B}$ und die bilineare Abbildung $g: \oplus_i S_i \longrightarrow \otimes_i S_i$ gegeben.

Konstruiere den Morphismus $\psi': \mathcal{B} \longrightarrow \bigotimes_i S_i$ durch $\psi'_i: S_i \longrightarrow \bigotimes_i S_i$, $s_i \longmapsto g(1, ..., 1, s_i, 1, ..., 1)$ für $i \in \lambda$ und die bilineare Abbildung $f: \bigoplus_i S_i \longrightarrow \varinjlim_i \mathcal{B}$, $s \longmapsto \prod_i \psi_i(s_i)$.

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:

$$\varphi: \lim_{\longrightarrow} \mathcal{B} \longrightarrow \bigotimes_{i} S_{i}$$
$$\phi: \bigotimes_{i} S_{i} \longrightarrow \lim_{\longrightarrow} \mathcal{B}.$$

Die Eindeutigkeit der universellen Eigenschaften liefert uns, das φ und ϕ zueinander Inverse sind und somit haben wir unsere gesuchten Isomorphismen zwischen $\lim \mathcal{B}$ und $\bigotimes_i S_i$ gefunden.

Zu 2.

Zeige, dass $q:S_2\longrightarrow S_2/Q$ die in lemma 5 eingeführten Eigenschaften des Differenzkokern's besitzt.

$$g \circ f = g \circ g$$
 gilt, da $kern(g) = Q = \{f(x) - g(x) \mid x \in C_2\}.$

Sei nun eine Funktion $q' \in Hom_{\mathcal{A}}(S_2, T')$ mit $q' \circ f = q' \circ$ gegeben. Somit gilt $q' \circ (f - g) = 0$, wodurch Q ein Untermodul von Q' := kern(q') ist. Mit dem Isomorphiesatz für R-Algebren erhalten wir:

$$S_2/Q' \simeq (S_2/Q)/(Q'/Q).$$

Somit ist $q': S_2 \longrightarrow (S_2/Q)/(Q'/Q)$, $y \longmapsto [y]'$ eine isomorphe Darstellung von $q': S_2 \longrightarrow T'$.

$$\Rightarrow \exists ! \varphi : S_2/Q \longrightarrow (S_2/Q)/(Q'/Q), [y] \longmapsto [y]' \ mit \ (\varphi \circ q) = q'.$$

Also ist $q: S_2 \longrightarrow S_2/Q$ der bis auf Isomorphie eindeutig bestimmte Differenzkokern von f und g.

Darstellung der Polynomalgebra als Tensorprodukt [Eigene Überlegung]

Bemerkung 8. Die Polynomalgebra $R[x_1,...,x_d]$ über R lässt sich wie folgt als Tensorprodukt darstellen:

$$R[x_1,...,x_n] = \bigotimes_{i \in \{1,...,n\}} R[x_i]$$

Genauer gilt für zwei Polynomalgebren $A = R[x_1,...,x_{n_A}], B = R[y_1,...,y_{n_B}]$ über R:

$$A \otimes_R B = R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}]$$

Skizziere den Beweis.

Beweis. Zeige, dass für $g:A\oplus B\longrightarrow R[x_1,...,x_{n_A},y_1,...,y_{n_B}]$, $(a,b)\longmapsto a\cdot b$ die Universelle Eigenschaft des Tensorproduktes gilt:

Es ist leicht nachzurechnen, dass es sich bei φ um folgende Funktion handeln muss:

$$\varphi: R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}] \longrightarrow M, (x_i \cdot y_j) \longmapsto f(x_i, 1) \cdot f(1, y_i)$$

R-Modul-Kolimiten [Proposition A6.2 David Eisenbud 1994]

Proposition 9. In Der Kategorie der R-Module existieren Koprodukte und Differenzkokerne, wobei:

- 1. das Koprodukt $\varinjlim \mathcal{B}$ von R-Modulen $M_i \in (R-Module)$ entspricht der direkten Summe $\sum_i M_i$.
- **2.** der Differenzenkokern zweier Homomorphismen $f, g: M_1 \longrightarrow M_2$ entspricht dem Kokern $M_2/im(f-g)$ der Differenzenabbildung.

Beweis. für ${\bf 1.}$ Sei $\phi:\{M_i\}\longrightarrow {\cal B}$ ein beliebiger Morphismus. Zeige:

Für ein beliebiges i existiert genau ein $\varphi_i:M_i\oplus 0\longrightarrow M'$, $(0,...,0,m_i,0,...,0\longmapsto \psi_i'(m_i)$ mit $\psi_i'=\psi_i\circ\varphi_i$

$$\Rightarrow \exists! \varphi : \bigoplus_i M_i \longrightarrow M', (m_1, ..., m_n) \longmapsto \sum_i \psi_i(m_i)$$

2. ist Analog zu proposition 7

Die in proposition 9 gezeigten Darstellungen gelten mit kurzen Überlegungen auch für S-Module, wobei S eine R-Algebra ist.

1.2 Darstellung von Lokalisierung als Kolimes

Lokalisierung von Algebren als Kolimes [vlg. Aufgabe A6.7 David Eisenbud 1994]

Lemma 10. Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$S[U^{-1}] = \lim_{\longrightarrow} \mathcal{B}$$

Wobei \mathcal{B} aus den Objekten $\{S[t^{-1}]|t \in U\}$ und den Morphismen $S[t^{-1}] \longrightarrow S[tt'^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{st'^n}{(tt')^n})_{(tt')} \ \forall t, t' \in U$ besteht.

Beweis. Sei $\psi: \mathcal{B} \longrightarrow A$ der Kolimes von \mathcal{B} . Zeige $S[U^{-1}] \simeq A$, definiere dazu:

$$\psi': \mathcal{B} \longrightarrow S[U^{-1}]$$

$$\psi'_{S[t^{-1}]}: S[t^{-1}] \longrightarrow S[t^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{s}{t^n})_U$$

 ψ' ist ein Morphismus, da für beliebige $t,t'\in U$ und $s\in S$ gilt:

$$\left(\frac{s}{t^n}\right)_U = \left(\frac{st'^n}{(tt')^n}\right)_U$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir den eindeutigen Homomorphismus $\varphi: A \longrightarrow S[U^{-1}]$.

Für $\phi: S[U^{-1}] \longrightarrow A$ benötigen wir kleinere Vorüberlegungen. Zunächst können wir jedes Element $(\frac{s}{u})_U \in S[U^{-1}]$ als $\psi_{S[t^{-1}]}((\frac{s}{t})_t)$ schreiben. Weiter gilt für alle $s_1, s_2 \in S, t_1, t_2 \in U$:

$$\begin{split} Sei \; \psi_{S[t^{-1}]}'((\frac{s_1}{t_1})_t) &= \psi_{S[t^{-1}]}'((\frac{s_2}{t_2})_t) \\ \Rightarrow \exists u \in U : (s_1t_1 - s_2t_2) \cdot u &= 0 \\ \Rightarrow (\frac{s_1u}{t_1u})_{tu} &= (\frac{s_2u}{t_2u})_{tu} \\ \Rightarrow \psi_{S[t^{-1}]}((\frac{s_1}{t_1})_t) &= \psi_{S[t^{-1}]}((\frac{s_2}{t_2})_t) \end{split}$$

Mit diesem Wissen können wir den R-Algebra-Homomorphismus $\phi:S[U^{-1}]\longrightarrow A$ definieren:

$$\phi: S[U^{-1}] \longrightarrow A\,,\, \psi_{S[t^{-1}]}'((\frac{s}{t})_t) \longmapsto \psi_{S[t^{-1}]}((\frac{s}{t})_t)$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes:

$$\begin{array}{c|c}
\mathcal{B} \\
\psi \\
A & \exists ! id_A = \phi \circ \varphi \\
A & \longleftarrow A
\end{array}$$

Für $\varphi \circ \phi \stackrel{!}{=} id_{S[U^{-1}]}$ wähle beliebige $s \in S, t \in U,$ für diese gilt:

$$(\varphi\circ\phi)(\psi'((\frac{s}{t})_{\iota}))=\varphi(\psi((\frac{s}{t})_{\iota})=\psi'((\frac{s}{t})_{\iota})$$

Damit haben wir gezeigt, dass φ, ϕ Isomorphismen sind und somit $A \simeq S[U^{-1}]$ gilt.

Da der Kolimes bis auf Isomorphie eindeutig ist, definiere ab sofort $S[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{B} .

Lokalisierung von Moduln als Kolimes [Beweis von Proposition 16.9 David Eisenbud 1994]

Korrolar 11. Sei M ein S-Modul, wobei S eine R-Algebra ist. Sei weiter $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$M[U^{-1}] = \lim_{\longrightarrow} \mathcal{C}$$

Wobei C aus den Objekten $\{S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] | t \in U\}$ und folgenden Morphismen besteht:

$$S[U^{-1}] \otimes M[t^{-1}] \longrightarrow S[U^{-1}] \otimes M[(tt')^{-1}],$$
$$(\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{t^n})_{\scriptscriptstyle t} \longmapsto (\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{t'^n m}{(tt')^n})_{\scriptscriptstyle t}$$

Auch wenn sich lemma 10 hier nicht direkt anwenden lässt, so können wir doch im Beweis gleich vorgehen.

Beweis. Schließe zunächst den trivialen Fall $0 \in U$ aus.

Sei $\psi:\mathcal{C}\longrightarrow A$ der Colimes von $\mathcal{C}.$ Zeige $S[U^{-1}]\simeq A,$ definiere dazu folgenden Morphismus :

$$\psi: \mathcal{C} \longrightarrow M[U^{-1}]$$

$$\psi_t: S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow M[U^{-1}], \left(\frac{s}{u}\right)_U \otimes \left(\frac{m}{t^n}\right)_t \longmapsto \left(\frac{sm}{ut^n}\right)_U$$

Die Wohldefiniertheit von ψ'_t für ein beliebiges $t \in U$ folgt direkt aus der Universellen Eigenschaft des Tensorprodukt's. Denn für die bilineare Abbildung $f: S[U^{-1}] \oplus M[t^{-1}] \longrightarrow M[t^{-1}]$, $((\frac{s}{u})_U, (\frac{m}{t^n})_t) \longmapsto (\frac{sm}{ut^n})_U$ gilt:

$$S[U^{-1}] \oplus M[t^{-1}] \xrightarrow{g} S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}]$$

$$\downarrow \exists ! \psi_t'$$

$$M[U^{-1}]$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir nun den eindeutigen Homomorphismus $\varphi: A \longrightarrow M[U^{-1}]$.

Für $\phi: M[U^{-1}] \longrightarrow A$ benötigen wir kleinere Vorüberlegungen. Zunächst können wir jedes Element $(\frac{m}{u})_U \in M[U^{-1}]$ als $\psi((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$ schreiben. Wobei mit ψ gemeint ist, dass wir ein beliebiges $t \in U$ wählen und dann ψ_t betrachten. Diese Verallgemeinerung ist möglich, da für beliebige $t_1, t_2, u \in U$ und $m \in M$ gilt:

$$\psi_{t_1}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_1}) = (\frac{m}{u})_{U} = \psi_{t_2}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_2})$$

Definiere nun mit diesem Wissen folgenden Homomorphismus:

$$\phi: M[U^{-1}] \longrightarrow A, \ \psi((\frac{1}{u})_U \otimes t) \longmapsto \psi'((\frac{1}{u})_U \otimes t)$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes. Für $\varphi\circ\phi\stackrel{!}{=}id_{M[U^{-1}]}$ wähle $(\frac{m}{u})_U\in M[U^{-1}]$ beliebig, für dieses gilt:

$$(\varphi \circ \phi)(\psi'((\frac{1}{u})_{u} \otimes (\frac{m}{1})_{t}))$$

$$= \varphi(\psi((\frac{1}{u})_{u} \otimes (\frac{m}{1})_{t}))$$

$$= \psi'((\frac{1}{u})_{u} \otimes (\frac{m}{1})_{t})$$

Damit haben wir $A \simeq M[U^{-1}]$ gezeigt, definiere also ab sofort $M[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{C} .