44. Термодинамические свойства простых веществ, соединений и ионов в водных растворах и в жидком аммиаке

 $\Delta H_{f,\,298}^{\circ}$ и $\Delta G_{f,\,298}^{\circ}$ — изменения стандартных энтальпии (теплоты образования) и энергии Гиббса при образовании (индекс f — formation) данного вещества из простых веществ. термодинамически устойчивых при 101,325 кПа (1 атм) и при выбранной температуре 298 К. S_{298}° и $C_{p,\ 298}^{\circ}$ — стандартные значения энтропии и изобарной теплоемкости вещества при 298 К.

Теплоемкость [в Дж/(моль К)] при температуре T в указанном в таблице интервале температур выражается уравнениями: $C_p^\circ = a + bT + c'/T^2 \text{ или } C_p^\circ \stackrel{\bullet}{=} bT + cT^2$

$$C_p^{\circ} = a + bT + c'/T^2$$
 или $C_p^{\circ} \stackrel{\mathbf{a}^+}{=} bT + cT^2$

Свойства ионов в растворах даны при a = 1 по отношению к H^+ , соответствующие характеристики которого приняты равными нулю.

Вещество	ΔH _{f, 298} ,	S° ₂₉₈ , Дж	ΔG _{f. 298} , кДж/моль	С° _{p, 298} . Дж	Коэффициенты уравнения $C_p^{\circ} = f(T)$			Температурный
·	кДж/моль	моль · К		моль К	а	b · 103	c' · 10-5	интервал, К
	1	Прос	тые вещест	sa .				
Ад (кр.)	0	42,55	0	25,44	23,97	5,27	- 0,25	273-1234
Al (κρ.)	0	28,33	0	24,35	20,67	12,38	_	273-932
As (серый)	0	35,61	0	24,74	23,28	5,74	_	298-800
Αυ (кр.)	0	47,40	0	25,36	23,68	5,19		298-1336
В (кр.)	0	5,86	0	11,09	16,78	9,04	- 7,49	298-1700
Ba-α	0	60,67	0	28,28	22,26	13,81	_	298-643
Ва-β	$\Delta H_{643}^{\alpha \to \beta} = 0.63$	_	· -	_	10,46	29,29	-	643-983
Ве (кр.)	0	9,54	0	16,44	19,16	8,87	- 4,77	298-1556
Bi (kp.)	0	56,90	0 -	26,02	18,79	22,59		298-544,5
Br (r.)	111,88	174,90	82,44	20,79	19,98	1,34	0,36	298-1000
. ,				İ	18,33	3,88	- 0,84	1000-2500
			1				(c · 10°)	
Br ⁻ (r.)	- 218,87	163,39	- 238,67	20,79	20,79	-	` — ´	До 20 000 К
Br ₂ (ж.)	0	* 152,21	0	75,69	75,69	_	_	298-332
$Br_2(\Gamma)$	30,91	245,37	3,14	36,07	37,32	0,50	- 1,26	298-1600
С (алмаз)	1,83	2,37	2,83	6,11	9,12	13,22	- 6,19	298-1200
С (графи́т)	0	5,74	0	8,54	16,86	4,77	- 8,54	298-2500
С (г.)	716,67	157,99	671,28	20,84	20,84	_		298-1600
$C_2(\hat{\Gamma})$	830,86	199,31	774,86	43,21	30,67	3,97	10,19	298-2000
. Ca-α	0	41.63	0	26,36	22,22	13,93	_	273-713
Cd-α	0	51.76	0 '	25,94	22,22	12,30	_	273-594
Cl (r.)	121,34	165,08	105,35	21,84	23,14	- 0,67	- 0,96	298-2000

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c} \text{Cl}_{2}(r) \\ \text{Co}^{-\alpha} \\ \text{CO}^{-\alpha} \\ \text{C} \\ \text{Co}^{-\alpha} \\ \text{C} \\ \text{C} \\ \text{Cr} \\ \text{(pp.)} \\ \text{C} \\ \text{C} \\ \text{(pp.)} \\ \text{C} \\ \text{C} \\ \text{(pp.)} \\ \text{C} \\ \text{C} \\ \text{(pp.)} \\ \text{C} \\ \text{O} \\ \text{C} \\ \text{S} \\ \text{(pp.)} \\ \text{C} \\ \text{O} \\ \text{C} \\ \text{S} \\ \text{(pp.)} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{A} \\ \text{3} \\ \text{A} \\ \text{S} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{A} \\ \text{S} \\ \text{A} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{23}, 35 \\ \text{O} \\ \text{S} \\ \text{24}, 43 \\ \text{S} \\ \text{22}, 443 \\ \text{S} \\ \text{24}, 43 \\ \text{S} \\ \text{22}, 443 \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{D} \\ \text{I} \\ \text{C} \\ \text{O} \\ \text{C} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{D} \\ \text{I} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{D} \\ \text{I} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{O} \\ \text{D} \\ \text{J} \\ \text{I} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{I} \\ \text{I} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{I} \\ \text{D} \\ \text{O} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{O} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{C} \\ \text{C} \\ \text{D} \\ \text$		Cl ⁻ (r.)	- 233 63	153 25	- 239.86	20.79	20.79	_	_	Ho 20 000 K
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								0.67	- 2.85	
$ \begin{array}{c} Cr \left(\kappa p\right) \\ Cs \left(\kappa p\right)$		Co-α							1	
$ \begin{array}{c} C_{S}\left(\kappa p\right) \\ C_{D}\left(\kappa p\right) \\ D_{C}\left(\kappa p\right$									- 3.68	
$ \begin{array}{c} CU(\kappa p) \\ D(r) \\ D(r) \\ D_{2}(r) \\ \end{array} \begin{array}{c} 0 \\ D_{2}(r) \\ \end{array} \begin{array}{c} 33,14 \\ 221.67 \\ D_{2}(r) \\ \end{array} \begin{array}{c} 123,24 \\ 206.52 \\ \end{array} \begin{array}{c} 20.79 \\ 20.79 \\ 20.79 \\ \end{array} \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} \begin{array}{c} - \\ - \\ D_{2}(000000000000000000000000000000000000$		Cs (Kp.)							i e	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cu (kp.)	0	33,14	0			6,28		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D (r.)	221,67	123,24	206,52	20,79			l –	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				144,86	0	29,20	28,58	0,88		298-1500
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									(c · 10°)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F (r.)	79,38	158,64	62,30	22,75			_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								- 0,10	2,67	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F (Γ.)	- 259,68		_			1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\underline{\mathbf{F}}_{2}\left(\mathbf{r}_{\cdot}\right)$							- 3,51	
Ga (κρ.) Ge (Fe-α	0	27,15	U	24,98			I .	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 ()		41.00		06.07		181,00	P.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ga (кр.)						-	,	298-302,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ge (кр.)						3,43	I.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H (r.)						_	\$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H (f.)	1335,41			20,79		_	į.	
Hg (π.) 0 75.90 0 27.99 26.94 0.00 0.79 $298-629.9$ Hg (r.) 106.76 180.67 70.21 20.79 20.79 $ -$		П (ғ.)						2 26	j	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\Pi_2(\Gamma_i)$		75 00		20,03				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ng (m.)						0,00	0,79	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ing (I.)						0.68	0.46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I (1.) I (r)								
		I _a (kn)							1	
In (κρ.) K (κρ.) La (κρ.) La (κρ.) Li (κρ.) Mg (κρ.) Mo (κρ.) Ni α $AH_{3711}^{\Pi \Lambda BB \pi} = 2,60$ Na (κρ.) O		$I_{\rm a} \left(\frac{12}{\Gamma_{\rm b}} \right)$							1	
K (κp.) 0 $64,18$ 0 $29,58$ $5,61$ $81,17$ $ 298-335$ $25,80$ $6,70$ $ 298-1153$ $25,80$		In (xn)							t	
La κρ.) 0 56,90 0 27,82 25,8 6,70 — 298-1153 Li (κρ.) 0 28,24 0 24,73 6,86 46,44 3,51 298-450 Mg (κρ.) 0 32,68 0 24,89 22,30 10,63 -0,42 298-920 Mn-α 0 32,01 0 26,28 23,85 14,14 -1,59 298-980 Mo (κρ.) 0 28,62 0 24,06 21,67 6,95 — 298-2890 Na (κρ.) 0 191,50 0 29,12 27,88 4,27 — 298-2500 Na (κρ.) 0 51,21 0 28,24 16,82 37,82 — 298-371 Na (ж.) $\Delta H_{371}^{371} = 2,60$ — — — — — — — — — 298-623		К (кр.)							(
Li (κp.) 0 $28,24$ 0 $24,73$ $6,86$ $46,44$ $3,51$ $298-450$ $24,89$ $22,30$ $10,63$ $-0,42$ $298-920$ $24,89$ $22,30$ $10,63$			0			27,82	25,8	6,70	-	
Mg (κρ.) Mn-α Mo (κρ.) Mo (κρ.) Na (κρ.) Na (κρ.) Na (ж.) $\Delta H_{371}^{\Pi \Lambda a B \Lambda} = 2,60$ 0 $32,01$ 0 $24,89$ $22,30$ $24,89$ $22,30$ $24,06$ $21,67$ $24,06$ $21,67$ $298-2890$ $298-2890$ $298-2890$ $298-2500$ $298-2500$ $298-2500$ $28,24$ $16,82$ $37,82$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$		Li (kp.)	0						3.51	298-450
Mn-α Mn-α Mn-α Mn (κp.) Mn (Mg (kp.)	0	32,68	0	24,89	22,30	10,63		298-920
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		Mn-α							-1,59	298-980
$egin{array}{cccccccccccccccccccccccccccccccccccc$		Мо (кр.)								298-2890
Na (kp.) Na (ж.) $\Delta H_{371}^{\Pi \Lambda \text{BB} \Pi} = 2,60$ $- $		$N_2(\hat{r}.)$							_	
Na (ж.) $ \Delta H_{371}^{\text{IDIABM}} = 2,60 $		Na (кр.)	0	51,21	0	28,24	16,82	37,82	_	298-371
Ni- α Ni- β Ni- β $\Delta H_{633}^{\alpha \to \beta} = 0.38$ 29.87 0 26.07 16.99 29.46 $ 298-633$ $ 25.10$ 7.53 $ 633-1725$		Na (ж.)	$\Delta H_{371}^{\text{плавл}} = 2,60$	-	_	_	-	_	_	-
Ni- β $\Delta H_{633}^{\alpha \to \beta} = 0.38$ $ 25.10$ 7.53 $ 633-1725$		Ni-α	. 0	29,87	0	26,07	16,99	29,46	_	298-633
	•		$\Delta H_{633}^{\alpha \to \beta} = 0.38$	_	_					
		•	ردن		l l		, ,	ĺ		I

Вещество	ΔH _{f. 298} ,	S° ₂₉₈ , Дж	ΔG° _{f, 298} ,	С _{р. 298} , Дж	Коэффициенты уравнения $C_p^{\circ}=f\left(T ight)$		Температурный интервал, К	
	кДж/моль	моль К	кДж/моль	моль · К	а	b · 103	c' · 10-5	интервал, к
Ο (г.)	249,17	160,95	231,75	21,91	20,80	0,01	0,98	298-3000
$O^{+}(r.)$	1568,78	154,85	1546,96	20,79	20,79	_	-	298-2500
O (r.)	101,43	157,69	91,20	21,67	20,84	- 0,02	0,75	298-3000
O_2 (r.)) 0	205,04) 0	29,37	31,46	3,39	- 3,77	298-3000
$O_3(r.)$	142,26	238,82	162,76	39,25	47,02	8,04	- 9,04	298-1500
Р (бел.)	0	41,09	0	23,82	23,82	_	_	273-317
Р (ж.)	$\Delta H_{317,3}^{\Pi \Lambda \text{AB} \Lambda} = 0,66$	_	_	_	26,33	_	_	317-550
Р (красн.)	- 17,45	22,80	-12,00	21,39	16,95	14,89	_	298-870
$P_2(r.)$	143,85	217,94	103,37	32,05	36,16	0,85	- 4,31	298-2000
Pb (кр.)	0	64,81) 0	26,82	24,23	8,71	-	298-601
Рb (ж.)	$\Delta H_{601}^{\Pi \pi a B \pi} = 4,77$		_		32,49	- 3,09	_	601-1200
Pt (kp.)	0	41,55	0	25,86	24,02	5,61	ļ —	298-2000
Ra (кр.)	0	(71,2)	0	(27,2)	(27,2)	_	-	_
Rb (кр.)	0	76,23	0	30,88	30.88	_	_	298-310
S (монокл.)	0,38	32,55	0,19	23,64	23,64	_	_	368-392
S (ромб)	0	31,92	0	22.68	22.68	_	_	273-368
S (r.)	278,81	167,75	238,31	23,67	23,67	_	 	<u> </u>
$S_2(\Gamma.)$	128,37	228,03	79,42	32,51	36,11	1,09	- 3,51	298-2000
Sb (κp.)	0	45,69	0	25,23	23,10	7,28	_	273-900
Se (кр.)	0	42,44	0	25,36	18,95	23,01	_	273-490
Si (ĸp.)	0	18,83	0	19,99	22,82	3,86	- 3,54	298-1685
Sn (бел.)	0	51,55	0	26,99	21.59	18,10	–	298-505
Sn (ж.)	$\Delta H_{505}^{\Pi \Pi AB \Pi} = 7.03$		<u> </u>		21,54	6,15	12,88	505-800
Sr (кр.)	0	55,69	0	26,36	22,22	13,89	_	298-830
Те (кр.)	0	49,50	0	25,71	19,12	22,09	-	298-720
Th-α	0	53,39	0	27,32	23,56	12,72	_	298-1600
$\underline{\mathbf{T}}\mathbf{i}$ - α	0	30,63	0	25,02	21,10	10,54	_	298-1155
Tl-α	0	64,18	0	26.32	22,01	14,48		273-500
U-a	Į v	50,29	0	27,66	16,19	30,63	2,05	298-940
W (кр.)	0	32,64	0	24,27	22,91	4,69	_	298-2500
Zn (κp.)	0	41,63	0	25,44	22,38	10,04	_	273-690
Zr-α	0	38,99	0	25,44	21,97	11,63	-	298-1135

		Неоргани	ческие соед	инения ,	,		1	1
AgBr (кр.)	- 100,42	107,11	- 97,02	52,30	33,18	64,43	_	298-700
AgCl (кр.)	- 126.78	96,23	- 109,54	50,79	62,26	4,18	- 11,30	298-725
AgI-α	61,92	115,48	- 66,35	54,43	24,35	100,83		298-420
AgNO ₃ -α	- 124,52	140,92	- 33,60	93,05	36,65	189,12	_	298-433
Ag ₂ O (κρ.)	-30,54	121,75	-10,90	65,86	55,48	29,46	_	298-500
Ag ₂ S-α	- 31,80	143,51	- 39,70	76,53	64,60	39,96		298-449
Ag ₂ SO ₄ (кр.)	- 715,88	200.00	- 618,36	131,38	96,65	116,73		298-597
AlBr ₃ (kp.)	- 513.38	180.25	- 490,60	100,50	49,95	169,58	_	298-370
AlCl ₃ (kp.)	- 704,17	109,29	- 628,58	91,00	77,12	47,83		273-453
AlF_3 - α	- 1510,42	66,48	- 1431,15	75,10	72,26	45,86	- 9,62	298-727
$Al_2 \tilde{O}_3$ (корунд)	- 1675,69	50,92	- 1582,27	79,04	114,55	12,89	- 34,31	298-1800
$Al_2(SO_4)_3$ (Kp.)	<i>–</i> 3441,80	239,20	- 3100,87	259,41	366,31	62,59	- 112,47	298-1100
$AsCl_3(\tilde{x}.)$	- 305,01	216,31	- 259,16	133,47	133,47	_	_	_
AsCl ₃ (r.)	- 270,34	328,82	- 258,04	75.48	82,09	1,00	5,94	298-2000
As_2O_3 (клаудетит)	- 653,37	122,72	- 577,03	112,21	59,83	175,73	_	298-582
As_2O_3 (арсенолит)	- 656,89	108,32	- 576,16	95,65	35,02	203,34	_	298-548
As ₂ O ₅ (κp.)	- 921,32	105,44	- 478,69	116,52	116,52	-	_	_
$BCl_3(r.)$	- 402,96	290,08	- 387,98	62,63	70,54	11,97	- 10,21	298-1000
$BF_3(r.)$	- 1136,58	254,01	- 1119,93	50,46	52,05	28,03	- 8,87	298-1000
B_2O_3 (кр.)	- 1270,43	53,84	- 1191,29	62,76	36,53	106,32	- 5,48	298-723
$BaCO_3$ (kp.)	- 1210,85	112.13	- 1132,77	85,35	86,90	48,95	- 11,97	298-1040
$BaCl_2(\hat{\kappa}p.)$	- 859,39	123,64	- 811,71	75,31	71,13	13,97	_	298-1195
$Ba(NO_3)_2$ (кр.)	- 992,07	213,80	- 797,23	151,63	125,73	149,37	- 16,78	298-868
ВаО (кр.)	- 553,54	70,29	- 525,84	46,99	53,30	4,35	- 8,28	298-1270
$Ba(OH)_2$ (кр.)	- 943,49	100,83	- 855,42	97,91	70,71	91,63		298-681
BaSO ₄ (кр.)	- 1458,88	132,21	- 1348,43	102,09	141,42	0,0	- 35,27	298-1300
ВеО (кр.)	- 598,73	14,14	- 569,54	25,56	35.35	16,74	-13,26	298-1175
BeSO ₄ (Kp.)	- 1200,81	77,97	- 1089,45	85,69	71,78	99,69	- 13,78	298-863
Bi_2O_3 (Kp.)	- 570,70	151,46	- 490,23	113,8	103,51	33,47	_	298-978
CO (r.)	- 110,53	197,55	- 137,15	29,14	28,41	4.10	- 0,46	298-2500
$CO_2(r.)$	- 393,51	213,66	- 394,37	37,11	44,14	9,04	- 8,54	298-2500
$COCl_2$ (r.)	-219.50	283,64	- 205,31	57,76	67,15	12,03	- 9,04	298-1000
COS (r.)	- 141,70	231,53	- 168,94	41.55	48.12	8,45	- 8,20	298-1800
$CS_2(\tilde{\mathbf{x}}.)$	88,70	151,04	64,41	75,65	75,65			
$CS_2(r.)$	116,70	237,77	66,55	45,48	52,09	6,69	- 7,53	298-1800
CaC₂-α	- 59,83	69,96	- 64,85	62,72	68,62	11,88	- 8,66	298-720
СаСО₃ (кальцит)	- 1206,83	91,71	- 1128,35	83,47	104,52	21,92	- 25,94	298-1200
CaCl ₂ (кр.)	– 795,92	108,37	749,34	72,59	71,88	12,72	- 2.51	298-1055

Вещество	ΔH° _{f, 296} ,	S° ₂₉₈ , Дж	ΔG° _{f, 298} ,	С° _{р. 298} , Дж	Коэффі	ициенты ура $C_p^\circ = f(T)$	внения	Температурный
	кДж/моль	моль К	кДж/моль	моль К	а	$b \cdot 10^3$	c' · 10-5	– интервал, К
CaF ₂ -α	- 1220,89	68,45	- 1168.46	67,03	59,83	30,46	1,97	298-1000
CaHPO₄ (кр.)	- 1808,56	111,38	– 1675,38	110,04	138,41	55,10	- 40,38	298-1000
CaHPO₄ `2H́ ₂ O (кр.)	- 2397,46	189,45	- 2148,60	197,07	197,07	_	_	-
$Ca(H_2PO_4)_2$ (кр.)	- 3114,57	189,54	- 2811,81	_	-	_	<u> </u>	-
$Ca(H_2PO_4)_2 \cdot H_2O(\kappa p.)$	- 3408,29	259,83	- 3057,00	258,82	258,82	_	-	_
$Ca(NO_3)_2(\kappa p.)$	- 938,76	193,30	- 743,49	149,33	122,88	153,97	- 17,28	298-800
CaÒ (κp̃.)	- 635,09	38,07	- 603,46	42,05	49,62	4,52	- 6,95	298-1800
$Ca(OH)_2(\kappa p.)$	- 985,12	83,39	897,52	87,49	105,19	12,01	- 19,00	298-600
CaŠ (ĸp.)	- 476,98	56.61	- 471,93	47.49	42,68	15,90	_	298-1000
CaSO ₄ (ангидрит)	- 1436.28	106,69	- 1323.90	99,66	70,21	98,74	l –	298-1400
$Ca_3(PO_4)_2-\alpha$	- 4120.82	235,98	- 3884,9	227,82	201,84	166,02	- 20,92	298-1373
CdCl ₂ (κp.)	- 390,79	115,27	- 343,24	73,22	61,25	40.17		298-841
CdO (kp.)	- 258,99	54,81	- 229,33	43,64	48,24	6,38	- 4,90	298-1500
CdS (kp.)	- 156,90	71,13	- 153,16	47,32	53,97	3,77	-	298-1273
CdSÒ₄ (́κ́p.)	- 934,41	123,05	- 823,88	99,62	77,32	77,40	_	298-1273
$ClO_2(r.)$	104,60	257,02	122,34	41,84	48,28	7,53	- 7,74	298-1500
Cl ₂ O (r.)	75,73	266,23	93,40	45,44	53,18	3,35	- 7,78	298-2000
CoCl ₂ (kp.)	- 312,54	109,29	- 269,69	78,49	60,29	61.09	<u> </u>	298-1000
CoSO ₄ (kp.)	- 867,76	113,39	- 760,83	103,22	103,22		_	_
CrCl ₃ (kp.)	- 556,47	123,01	- 486,37	91,80	79,50	41,21	-	298-1218
CrO ₃ (kp.)	- 590,36	73,22	- 513,44	69,33	82,55	21,67	- 17,49	298-470
Cr_2O_3 (кр.)	- 1140,56	81,17	- 1058,97	104,52	119,37	9,20	- 15,65	298-1800
CsCl (kp.)	- 442,83	101,18	- 414,61	52,63	49,79	9,54		298-918
Csl (kp.)	- 336,81	125,52	- 331,77	51,88	48,53	11,21	i –	298-894
CsOH (ĸp.)	- 406,68	77,82	- 354,71	`			_	_
CuCl (kp.)	- 137,24	87,02	- 120,06	48,53	38,27	34,38	_	298-703
CuCl ₂ (κp.)	- 205,85	108,07	- 161,71	71,88	67,44	17,56	_	298-766
CuO (кр.)	- 162,00	42,63	- 134,26	42,30	43,83	16,77	- 5,88	298-1359
CuS (kp.)	- 53,14	66.53	- 53,58	47.82	44.35	11.05		298-1273
CuSO ₄ (κp.)	- 770,90	109,20	- 661,79	98.87	78,53	71,96	<u> </u>	298-900
Cu ₂ O (κp.)	- 173,18	92,93	- 150,56	63.64	56,57	29,29	1 -	298-1500
Cu ₂ S (κp.)	- 79.50	120,92	- 86,27	76,32	39,25	130,54	_	298-376

D ₂ O (ж.)	- 294,60	75,90	- 243,47	84,31	84,31	_	_	-
$D_2O(r.)$	- 249,20	198,23	- 234,55	34.27	34,27	_	_	<u> </u>
FeCO ₃ (кр.)	- 738,15	95,40	- 665,09	83,26	48,66	112,13	! -	298-855
FeO (ĸp.)	- 264.85	60,75	- 244.30	49,92	50,80	8,61	- 3.31	298-1650
FeS-à	$\frac{100.42}{100.42}$	60,29	- 100.78	50,54	0,502	167,36	<u> </u>	298-411
FeS-β	$\Delta H_{411}^{\alpha \to \beta} = 4.39$			_	50.42	11,42	<u> </u>	411-1468
FeSO₄ (κp.)	- 927.59	107,53	- 819,77	100,58	100,58	-	_	i -
FeS ₂ (kp.)	- 177,40	52,93	- 166,05	62,17	74,81	5,52	- 12,76	298-1000
Fe ₂ O ₃ (кр.)	- 822,16	87,45	- 740,34	103,76	97,74	72,13	- 12,89	298-1000
Fe ₃ O ₄ (кр.)	- 1117,13	146,19	- 1014,17	150,79	86,27	208,92	_	298-866
Ga_2O_3 ($\kappa p.$)	- 1089,10	84,98	- 998,24	92,05	112,88	15,44	- 21,00	298-2068
GeO₂ (rekcar.)	- 554,71	55,27	- 500,79	52,09	68,91	9,83	- 17,70	298-1390
GeO_2 (тетраг.)	~ 580,15	39,71	- 521,59	50,17	66,61	11,59	- 17,74	298-1300
HBr (r.)	- 36,38	198,58	- 53,43	29,14	26,15	5,86	1,09	298-1600
HCN (r.)	132.00	201,71	121.58	35,90	39.37	11,30	- 6,02	298-2500
HCl (r.)	- 92,31	186,79	- 95,30	29,14	26,53	4,60	1,09	298-2000
HD (r.)	0.32	143,70	- 1,47	29,20	29,25	-1,15	2,50	298-1500
							$(c \cdot 10^6)$	•
HF (r.)	- 273,30	173,67	- 275,41	29,14	26,90	3,43	1,09	298-2500
HI (r.)	26,36	206,48	1,58	29,16	26,32	5,94	0,92	298-2000
HNČŚ (r.)	127,61	248,03	112,89	46,40	26,48	76,99	- 34,18	298-1000
,		1					$(c \cdot 10^6)$	Ì
HNO ₃ (ж.)	- 173,00	156,16	- 79,90	109,87	109,87	_	l` —′	-
HNO ₃ (r.)	- 133,91	266,78	- 73,78	54,12	54,12	_	<u> </u>	_
H ₂ O (κρ.)	- 291,85	(39,33)	_		4,41	109,50	46,47	100-273
2 (1)							$(c \cdot 10^6)$	[
H ₂ O (ж.)	- 285,83	69,95	- 237,23	75,30	39,02	76,64	11,96	273-380
H ₂ O (r.)	- 241,81	188,72	- 228,61	33,61	30,00	10,71	0,33	298-2500
$H_2^{-}O_2(\dot{x}.)$	-187,86	109,60	- 120,52	89.33	53,60	117,15	_	298-450
$H_2^2O_2$ (r.)	- 135,88	234,41	- 105,74	42,39	52,30	11,88	-11,88	298-1500
$H_2S(\hat{r})$	- 20,60	205,70	- 33,50	33,44	29,37	15,40	<u> </u>	298-1800
H ₂ SO ₄ (ж.)	- 813,99	156,90	- 690,14	138,91	156,90	28,30	- 23,46	298-553
H₃PO₄ (кр.)	- 1279,05	110,50	- 1119,20	106,06	49,83	189,24		298-316
$H_3PO_4(x.)$	- 1266,90	200,83	-1134.00	106,10	106,10		_	_
HgBr ₂ (kp.)	- 169,45	170,31	- 152,22	75,32	66,58	29,29	_	298-514
HgCl ₂ (кр.)	- 228,24	140,02	- 180,90	73,91	69,99	20,28	- 1.89	298-550
HgI ₂ -a	- 105,44	184,05	- 103.05	78,24	72,84	16,74	_	273-403
HgO (красн.)	- 90,88	70,29	- 58,66	44,88	36,04	29,64		298-800
HgS (красн.)	- 58,99	82,42	- 51,42	48,41	43,84	15,27	_	298-800
V 11 /	*	-		-	*	•		

Вещество	$\Delta H_{f.298}^{\circ}$	S° ₂₉₈ . Дж	ΔG° _{f, 298} ,	С° _{p. 298} , Дж	Коэффициенты уравнения $C_{p}^{\circ}=f\left(T ight)$			Температурный интервал, К
	кДж/моль	моль · К	кДж/моль	моль К	а	$b \cdot 10^3$	c' · 10-5	интервал, К
Hg_2Br_2 (кр.)	- 207,07	217,70	- 181,35	88,70	88,70	_	_	_
$Hg_2Cl_2(\kappa p.)$	- 265,06	192,76	- 210,81	101,70	92,47	30,96	-	273-798
Hg_2SO_4 (красн.)	- 744,65	200,71	- 627,51	131,96	131,96	_	_	<u> </u>
In_2O_3 (кр.)	- 925,92	107,95	- 831,98	92,05	92,05	_	_	_
$\operatorname{In}_{2}(SO_{4})_{3}$ (кр.)	- 2725,50	302,08	- 2385,87	275,00	200,20	251,04		298-943
$KAI(SO_4)_2$ ($\kappa p.$)	- 2465,00	204,50	- 2235	193,00	234,10	82,34	- 58,41	298-1000
KBr (кр.)	- 393,80	95,94	- 380,60	52,30	48,37	13,89	_	298-543
KCl (κp.)	- 436,68	82,55	- 408.93	51.49	41,38	21,76	3,22	298-1000
KClO ₃ (кр.)	- 391,20	142,97	- 289,80	100,25	100,25	_		_
KClO₄ (кр.)	- 430.12	151,04	- 300,58	112,40	112,40	-	–	_
KI (кр.)	- 327,90	106,40	- 323,18	53,00	38,84	28,92	4,93	298-955
KMnO ₄ (κρ.)	~ 828,89	171,54	729,14	117,57	117,57		_	
KNO ₃ -α	- 492,46	132,88	- 392,75	96.29	60.88	118,83	_	273-401
КОН (кр.)	- 424,72	79,28	- 379,22	65,60	42,66	76,96	_	298-522
$K_2CO_3(\kappa p.)$	- 1150,18	155,52	- 1064,87	114,44	80,29	109,04	_	630-1171
K ₂ CrO ₄ (κp.)	1385,74	200,00	- 1277,84	146,00	123,72	74,89	_	298-939
$K_2Cr_2O_7$ ($\kappa p.$)	- 2067,27	291,21	– 1887,85	219,70	153,38	229,29	_	298-671
K ₂ SO ₄ (кр.)	- 1433,69	175,56	- 1316,04	130,01	120,37	99,58	- 17,82	298-856
LaCl ₃ (kp.)	- 1070,68	144,35	- 997,07	103,60	97,19	21,46		298-1128
LiCl (кр.)	- 408,27	59,30	- 384,30	48,39	41,42	23,40	_	298-883
LiNO ₃ (кр.)	- 482,33	71,13	- 374,92	83,26	38,37	150,62	j –	273-523
LiOH (kp.)	- 484,67	42,78	- 439,00	49,58	50,17	34,48	9,50	298-744
Li_2CO_3 (kp.)	- 1216,00	90,16	- 1132,67	96,20	42,53	177,34	_	298-623
Li ₂ SO ₄ (κp.)	- 1435,86	114,00	- 1321.28	117,60	118,95	93,34	- 27,20	298-505
MgCO ₃ (κp.)	- 1095,85	65,10	- 1012,15	76,11	77,91	57,74	- 17,41	298-750
$MgCl_2$ ($\kappa p.$)	- 644,80	89,54	- 595,30	71,25	79,08	5,94	- 8,62	298-900
MgO (кр.)	- 601,49	27,07	- 569,27	37,20	48,98	3,14	- 11,44	298-3000
$Mg(OH)_2(\kappa p.)$	- 924,66	63,18	- 833,75	76,99	46,99	102,85		298-541
MgSO ₄ (κp.)	- 1287,42	91.55	- 1173,25	95.60	106,44	46,28	- 21,90	298-1400
$MgSO_4 \cdot 6H_2O$ (kp.)	- 3089,50	348,10	- 2635,10	348,10	348,10	_		-
MnCO ₃ (кр.)	- 881.66	109,54	- 811,40	81,50	92,01	38,91	- 19,62	298-700
MnCl ₂ (κρ.)	- 481,16	118,24	- 440,41	72.97	75,48	13,22	- 5,73	298-923
MnO (κp.)	- 385,10	61,50	- 363,34	44,10	46,48	8,12	- 3,68	298-1800

	ı		1					
MnO_2 (kp.)	- 521,49	53,14	- 466,68	54,02	69,45	10,21	- 16,23	298-523
MnS (kp.)	- 214,35	80,75	- 219,36	49,92	47,70	7,53		298-1800
Мп ₂ O ₃ (кр.)	- 957,72	110.46	- 879,91	107.50	107.50	_	_	
Mn_3O_4 (κp.)	- 1387,60	154,81	- 1282,91	148,08	144,93	45,27	- 9,20	298-1445
$NH_3(x)$	- 69,87	_	_	80,75	80,75		_	
NH_3 (r.)	- 45,94	192,66	-16,48	35.16	29,80	25,48	- 1,67	298-1800
$NH_4A^{1}(SO_4)_2$ (кр.)	- 2353,50	216,31	- 2039,80	226,40	226,40		_	-
NH ₄ Cl-β	-314,22	95,81	- 203.22	84,10	84,10	_		_
NH₄NO΄₃ (κp.)	- 365.43	151,04	- 183,93	139,33	139,33		_	_
$(NH_4)_2SO_4$ ($\kappa p.$)	- 1180,31	220,08	- 901,53	187,30	103,60	280,80		298-600
NO (r.)	91,26	210,64	87,58	29,86	29.58	3,85	- 0.59	298-2500
NOČl (r.)	52,59	263,50	66,37	39.37	44,89	7,70	- 6,95	298-2000
$NO_2(r.)$	34.19	240.06	52,29	36.66	41,16	11,33	-7,02	298-1500
$N_2\tilde{O}(r.)$	82,01	219,83	104,12	38.62	45,69	8,62	- 8,53	298-2000
$N_2O_4(r.)$	11,11	304,35	99,68	79,16	83,89	39,75	- 14,90	298-1000
$N_2O_5(r)$	13,30	355,65	117.14	95,28	127,45	16,54	- 32,85	298-2000
NaAlO₂ (κρ.)	- 1133,03	70,29	~ 1069,20	73,30	87,95	17,70	- 17,74	298-1900
NaBr (kp.)	- 361,41	86,82	- 349,34	51,90	47,92	13,31		_
$NaC_2H_3O_2$ (кр.)	- 710,40	123,10	- 608,96	80,33	80.33	_	_	_
NaCl (ĸp.)	- 411,12	72,13	- 384.13	50,81	45,94	16,32	_	298-1070
NaF (kp.)	- 573,63	51,30	- 543,46	46,86	43,51	16,23	-1,38	298-1265
NaHČŌ₃´(кр.)	- 947,30	102,10	849,65	87,70	44,89	143,89	_	298-500
NaI (кр.)	- 287,86	98,32	- 284,59	52,50	48,88	12,05	_	298-933
$NaNO_3-\alpha$	- 466,70	116,50	- 365,97	93,05	25,69	225,94	_	298-550
NaOH-α	- 426,35	64,43	- 380,29	59,66	7,34	125,00	13,38	298-566
NaOH (ж.)	$\Delta H_{595}^{\Pi \Pi AB \Pi} = 6.36$	_		_	89,58	- 5,86		595-1000
$Na_2B_4O_7$ (kp.)	3276,70	189,50	-3081,80	186,80	206,10	77.09	- 37,49 [°]	298-1000
$Na_2CO_3-\alpha$	- 1130,80	138,80	~ 1048,20	111,30	70,63	135,6	_	298-723
$Na_2CO_3(\kappa)$	$\Delta H_{1127}^{n_{\pi a B \pi}} = 33,00$	j –		- 1	-	- ,	_	_
$Na_2CO_3 \cdot 10H_2O$ (кр.)	– 4077	2172	- 3906	536	536	. —	_	_
NaH_2PO_4 (кр.)	- 1544,90	127,57	- 1394,24	116,94	116,94	-	_	_
Na₂HPO₄ (кр.)	<i>–</i> 1754,86	150,60	~ 1615,25	135,28	135,28	-		–
Na ₂ O (κp.)	- 417,98	75,06	- 379,26	68,89	77,11	19,33	- 12,59	298-1000
$Na_2O_2-\alpha$	- 513,21	94,81	- 449,81	90,89	74,00	56,66	-	298-78 <i>5</i>
Na ₂ S (κp.)	- 374,47	79,50	- 358,13	84,93	82,89	6,86		298-1250
Na_2SO_3 (kp.)	- 1089,43	146,02	- 1001.21	120.08	107,11	43,51	_	298-1000
Na₂ŞO₄-α	$\frac{-1387.21}{100000000000000000000000000000000000$	149,62	- 1269,50	128,35	82,32	154,36	-	298-522
Na ₂ SO ₄ -β	$\Delta H_{522}^{\alpha \to \beta} = 10.81$	_	_	_	145,05	54,60		522-980
	1	1			j			

Вещество	ΔH° _{f, 298} .	S° ₂₉₈ , Дж	ΔG° _{f. 298} ,	С _{р. 298} . Дж	Коэфф	Температурный		
	кДж/моль	моль · К	кДж/моль	моль К	а	$b \cdot 10^3$	c' · 10-5	интервал, К
Na ₂ SO ₄ -γ	$\Delta H_{980}^{\beta \to \gamma} = 0.33$	_	_	_	142,68	59,31	_	980-1157
$Na_2SO_4 \cdot 10H_2O(\kappa p.)$	- 4324,75	591,87	- 3644,09	5 <u>4</u> 7.46	547.46		_	_
Na₂SO₄ (ж.)	$\Delta H_{1157}^{\text{плавл}} = 23.01$	• –	-	`-	197,40	_	-	1157-2000
$Na_2S_2O_3$ (kp.)	- 1117,13	(225)	(- 1043)	145,98	145,98	_		_
Na ₂ SiF ₆ (kp.)	- 2849,72	214,64	- 2696,29	_		_	_	_
Na ₂ SiO ₃ (κp.)	- 1561,43	113,76	- 1467,50	111,81	130,29	40,17	- 27,07	298-1361
Na ₂ SiO ₃ (ж.)	$\Delta H_{1361}^{\Pi,\text{плавл}} = 51.80$	_		_	177,32	_	_	1361-2000
Na _z SiO ₃ (стекл.)	- 1541,64	–	_	179,20	179,20	_	_	298-2000
Na ₂ Si ₂ O ₅ -α	- 2470,07	164,05	- 2324,39	156,50	185,69	70,54	- 44,64	298-951
Na ₂ Si ₂ O ₅ -β	$\Delta H_{951}^{\alpha \to \beta} = 0.42$	_		_ `	292,88	_		951-1147
Na ₂ Si ₂ O ₅ (ж.)	$\Delta H_{1147}^{\text{плавл}} = 35,56$	-	_	_	261,21	_	_	1147-2000
Na ₂ Si ₂ O ₅ (стекл.)	- 2443,04	<u> </u>	_	_ ,		_	–	
$Na_3AlF_6-\alpha$	- 3309,54	283,49	- 3158,53	219,51	172,27	158,45	l –	298-834
Na ₃ AlF ₆ -β	$\Delta H_{834}^{\alpha \to \beta} = 9.29$	_	-	_	151,49	144,29		834-1279
Na₃AlF₄ (ж.)	$\Delta H_{1279}^{\text{nnasn}} = 107.28$	1 -	_	_	396,22	_	_	1279-2500
Na ₃ PO ₄ (κp.)	- 1924,64	224,68	- 1811,31	153,57	136,10	67,00	l _	298-1600
Na ₄ SiO ₄ (кр.)	- 2106,64	195,81	- 1976,07	184,72	162,59	74,22	l _	298-1393
NiCl ₂ (κp.)	- 304,18	98,07	- 258.03	71,67	73,27	13,23	- 4,98	298-1300
NiO-α	- 239,74	37,99	- 211,60	44,31	- 20,88	157,23	16,28	298-525
NiS (κp.)	- 79,50	52,97	- 76,87	47,11	38,70	26,78	_	273-597
NiSO₄ (кр.)	- 873,49	103.85	- 763,76	97,70	125.94	41,51	_	298-1200
PCl ₃ (ж.)	- 320,91	218,49	- 274,08	131,38	131,38	_	_	298-340
PCl ₃ (r.)	- 287,02	311.71	- 267.98	71,84	80,11	3,10	7,99	298-1000
PCl ₅ (kp.)	- 445,89	170.80	- 318,36	(138)	(138)			298-432
PCl _s (r.)	- 374,89	364,47	- 305.10	112,97	129,49	2,93	- 16,40	298-1500
P ₂ O ₃ (ж.)	(-1097)	(142)	(-1023)	144,4	144,4	_	_	_
P ₂ O ₅ (κp.)	- 1507,2	140,3	- 1371,7	(41,8)	35.06	22,61	_	(298-500)
P ₄ O ₁₀ (κp.)	- 2984,03	228,86	- 2697.60	211,71	93,30	407,19	_	298-630
$P_4O_{10}(r.)$	- 2894,49	394,55	- 2657,46	190,79	190,79	_	_	_
PbBr ₂ (κp.)	- 282,42	161,75	- 265,94	80,54	77.78	9,20	l –	298-640
PbCO ₃ (kp.)	- 699,56	130,96	- 625,87	87,45	51,84	119.66	_	298-800

	1		1		,			
PbCl ₂ (кр.)	- 359.82	135,98	- 314,56	76,99	66,78	33,47		298-768
PbCl ₂ (x.)	$\Delta H_{768}^{\Pi \Pi AB \Pi} = 23.85$	_		-	104,18	_	_	768-1226
$PbCl_{2}(r)$	- 173,64	315,89	- 182,02	55,23	56,62	0,96	_	298-2000
PbI ₂ (кр.)	- 175,23	175,35	- 173,56	81,17	75,31	19,66		298-680
PbO (желт.)	- 217,61	68,70	- 188,20	45,77	37,87	26,78	_	298-1000
PbO (красн.)	- 219,28	66,11	- 189,10	45,81	36,15	32,47	_	298-760
PbO_2 ($\kappa p.$)	- 276,56	71,92	- 217,55	64,77	53,14	32,64	_	298-1000
Pb ₃ O ₄ (кр.)	- 723,41	211,29	- 606,17	146,86	177,49	34,39	- 29,29	298-1500
PbS (кр.)	- 100,42	91,21	- 98,77	49,48	46,74	9,20	<u> </u>	298-1392
PbS (r.)	122,34	251,33	76,25	35,10	37,32	- 2,05	-	1609-2400
PbSO₄ (кр.)	- 920,48	148,57	- 813,67	103,22	45,86	129,70	17,57	298-1100
PtCl ₂ (кр.)	- 106,69	219,79	- 93,35	(75,52)	67,78	25,98	i –	298-854
PtCl ₄ (kp.)	- 229,28	267,88	- 163,80	(150,86)	112,21	129,70	_	298-600
$RaCl_2$ (кр.)	- 887,6	144,4	(842,9)	(80,25)	77,04	10,9	j —	298-1000
$Ra(NO_3)_2$ (кр.)	- 992,27	217,71	(-795,5)	· -	_	_	-	-
RaO (кр.)	- 544	(71)	(- 513)	(46,5)	44,0	8,4	_	298-1000
RaSO ₄ (κp.)	- 1473,75	142,35	(-1363,2)	`-	_		<u> </u>	_
$SO_2(r.)$	- 296,90	248,07	- 300,21	39,87	46,19	7,87	- 7,70	298-2000
$SO_2Cl_2(x.)$	- 394;13	216,31	- 321,49	133,89	133,89	_	_	219-342
SO_2Cl_2 (r.)	- 363,17	311,29	- 318,85	77,40	87.91	16,15	- 14,23	298-1000
$SO_3(r.)$	- 395,85	256,69	- 371,17	50,09	64,98	11,75	- 16,37	298-1300
					91,28	- 3,84	- 119,61	1000 -2000
SbCl ₃ (κp.)	- 381,16	183,26	- 322,45	110,46	43,10	213,80		273-346
$SbCl_3(r.)$	- 311,96	338,49	- 299,54	77,40	83,05	0,00	- 4,98	298-1000
Sb_2O_3 ($\kappa p.$)	- 715,46	132,63	- 636,06	111,76	92,05	66,11	_	298-930
Sb ₂ O ₅ (κρ.)	- 1007,51	125,10	- 864,74	117,61	45,86	241,04	<u> </u>	298-500
Sb ₄ O ₆ (κp.)	- 1417,12	282,00	- 1263,10	223,80	223,80	_	_	_
Sb ₂ S ₃ (черн.)	- 157,74	181,59	- 156,08	123,22	101,29	55,23	_	273-820
SiCl₄ (ж.)	- 687,85	239,74	- 620,75	145,27	145,27	-	<u> </u>	298-330
SiCl ₄ (r.)	- 657,52	330,95	- 617,62	90,37	101,46	6,86	- 11,51	298-1000
$SiF_4(\Gamma)$	- 1614,94	282,38	- 1572,66	73,64	91,46	13,26	- 19,66	298-1000
SiH_4 (r.)	34,73	204,56	57,18	42,89	46,26	36,76	-12,77	298-1500
SiO_2 (кварц- α)	- 910,94	41,84	- 856,67	44,43	46,99	34,31	- 11,30	298-846
SiO ₂ (кварц-β)	$\Delta H_{846}^{\alpha \to \beta} = 0.63$	-	_	_	60,29	8,12		846-2000
SiO ₂ (тридимит-α)	- 909 06	43,51	- 855,29	44,60	13,68	103,76	-	298-390
SiO_2 (тридимит- β)	$\Delta H_{390}^{\alpha \to \beta} = 0.29$	_	_	_ !	57,07	11,05	! –	390-2000
SiO_2 (кристобалит- α)	- 909.48	42,68	- 855,46	44,18	17.91	88,12	<u> </u>	298-515
SiO_2 (кристобалит- β)	$\Delta H_{515}^{\alpha \to \beta} = 1.30$	_	_	_	60,25	8,54	<u> </u>	515-2000
		-		. '			•	•

Вещество	$\Delta H_{f.~298}^{\circ},$	S° ₂₉₈ . Дж	$\Delta G_{f,298}^{\circ}$	С° _{р, 298} . Дж	Коэфф	ициенты ура $C_p^{\circ} = f(T)$	внения	Температурный интервал, К
	кДж/моль	моль ·К	кДж/моль	моль · К	а	$b \cdot 10^3$	c' · 10-5	- интервал, к
SiO ₂ (стекл.)	- 903,49	46,86	- 850,71	44,35	56,02	15,41	- 14,44	298-2000
SnCl ₂ (κp.)	- 330,95	131.80	- 288,40	75,58	50.63	83,68	_	298-520
SnCl ₂ (ж.)	$\Delta H_{520}^{\Pi\Pi ABH} = 14.52$	_	_	-	96,23	_	_	520-925
SnCl ₄ (ж.)	- 528,86	258,99	- 457,74	165,27	165,27	_	_	298-388
SnCl ₄ (r.)	- 489,11	364,84	- 449,55	98,32	106,98	0,84	- 7,82	298-1000
SnO (kp.)	- 285,98	56,48	- 256,88	44,35	39,96	14,64	_	298-1200
SnO (r.)	20,85	232,01	- 2,89	31,76	35,23	1,34	- 3,51	298-2000
SnO₂ (κp.)	- 580,74	52,30	- 519,83	52,59	73,85	10,04	- 21,59	298-1500
SnS-α	- 110,17	76,99	- 108,24	49,25	35,69	31,30	3,77	298-875
SnS-β	$\Delta H_{875}^{\alpha \to \beta} = 0.67$	1 -	_	_	40,96	15,65	–	875-1150
SrO (κp.)	- 592,04	54,39	- 562,10	45,03	50,75	5,27	-6,49	298-1800
SrSO ₄ (κp.)	- 1444,74	117.57	- 1332,42	107,79	91,20	55,65	_	298-1600
TeCl₄ (κp.)	- 323,84	200,83	- 236,00	138,49	138,49	_	_	298-500
TeF ₆ (r.)	- 1369,00	335,89	- 1273,11	117,32	152,08	3,10	- 31,71	298-2000
TeO₂(kp̂.)	- 323,42	74,06	- 269,61	63,88	65,19	14,56	- 5,02	298-1000
Th(OH)́ ₄ (кр.)	- 1764,7	134	- 1588,6	_	-	-	-	_
$ThO_2(\kappa p.)$	- 1226,75	65,23	- 1169,15	61,76	66,27	12,05	- 6,69	298-2000
ThS ₂ (kp.)	- 627,60	96,23	- 621,34	74,67	71,80	9,62	_	298-2180
$Th(SO_4)_2$ (кр.)	- 2541,36	148,11	- 2306,04	173,46	104,60	230,96	_	298-900
TiCl₄ (ж.)	- 804,16	252,40	- 737,32	145,20	142,79	8,71	- 0,16	298-410
TiCl ₄ (r.)	- 763,16	354,80	- 726,85	95,45	107,18	0,47	- 10,55	298-2000
TiO ₂ (рутил)	- 944,75	50,33	- 889,49	55,04	62,86	11,36	- 9,96	298-2140
TiO ₂ (анатаз)	- 933,03	49,92	- 877,65	55,21	75,04	0,00	- 17,63	298-2000
TlCl (kp.)	- 204,18	111,29	- 184,98	52,70	50,21	8,37	_	298-700
TlCl (r.)	- 68,41	256,06	- 92,38	36,23	37,40	0,00	- 1,05	298-2000
Tl_2O (кр.)	- 167,36	134,31	- 138,57	68,54	56,07	41,84	_	298-850
UF₄ (kp.)	- 1910,37	151,67	- 1819,74	115,98	107,53	29,29	- 0,25	298-1309
UF ₄ (ж.)	$\Delta H_{1309}^{\Pi \Pi \text{ABB} \Pi} = 58.6$	_	_	_	133,98	37.68	_	1309-1500
$UF_4(r.)$	- 1591,55	349,36	- 1559.87	90,79	90,79	_	_	-
UF ₆ (κρ.)	- 2188,23	227,61	- 2059,82	167,49	52,72	384,93	_	273-337

UE (m)	$\Delta H_{337}^{\Pi \Pi ABH} = 19.22$		Í		198,32			1 227 450
$UF_6(x.)$		~	2055.00	100.54			-	337-450
$UF_6(r.)$	- 2138.61	377,98	- 2055,03	129,74	151,04	5,44	- 20,38	298-1000
UO ₂ (κρ.)	- 1084,91	77,82	- 1031,98	63.71	80,33	6,78	- 16,57	298-1500
UO_2F_2 (кр.)	- 1637,20	135,56	- 1541,06	103,05	222,88	8,62	- 19,92	298-1500
$UO_2(NO_3)_2$ (кр.)	- 1348,99	276,33	- 1114,76		-	_	_	-
U ₃ O ₈ (кр.)	- 3574,81	282,42	- 3369,50	237.24	282,42	36.94	- 49,96	298-900
WO ₃ (кр.)	- 842,91	75,90	- 764,11	72,79	87,65	16,17	- 17,50	298-1050
$WS_2(\tilde{k}p.)$	- 259,41	64,85	- 249,98	63,55	68,63	15,61	- 8,66	298-1500
$ZnCO_3$ (кр.)	- 812.53	80,33	- 730,66	80,08	38,91	138,07	_	298-500
ZnCl ₂ (кр.)	- 415,05	111,46	- 369,39	67,53	60,67	23,01	_	298-590
$ZnCl_2(r.)$	- 265,68	276,56	- 269,24	56,90	60,25	0,84	_	1005-2000
ZnO (kp.)	- 348,11	43.51	- 318,10	40,25	48,99	5,10	- 9,12	298-1600
ZnS (kp.)	- 205,18	57,66	- 200,44	45,36	49,25	5,27	~ 4,85	298-1290
ZnSO ₄ (κp.)	- 981,36	110,54	- 870,12	99,06	76,36	76,15	-	298-1020
$Zn(OH)_2$ ($\kappa p.$)	- 645,43	76,99	~ 555,92	74,27	74,27	_	_	<u> </u>
ZrČl ₄ (κp.)	- 979.77	181,42	- 889,27	119,77	124,97	14,14	- 8,37	298-607
$ZrCl_4(\Gamma.)$	- 869,31	368,19	- 834,50	98.32	107,46	0,29	- 8,26	607-2000
ZrO_2 - α	- 1097,46	50,36	– 1039,72	56,05	69,62	7,53	- 14,06	298-1480

Органические соединения

Вещество	$\Delta H_{f,298}^{\circ}.$	S [°] ₂₉₈ , Дж	$\Delta G_{f.298}^{\circ}$,	С _{р, 298} , Дж	Коэфф	Температурный интервал, К		
	кДж/моль	моль · К	кДж/моль	моль К	а	b · 103	c · 106	интервал, К
		Угл	еводороді	oI.				
СН4 (г.) метан	- 74,85	186,27	- 50,85	35,71	14,32	74,66	- 17,43	298-1500
C_2H_2 (г.) ацетилен	226,75	200,82	209,21	43,93	20,44	66,65	- 26,48	298-1000
C_2H_4 (г.) этилен	52,30	219,45	68,14	43.56	11.32	122,01	- 37,90	298-1500
C_2H_6 (г.) этан	-84,67	229,49	- 32,93	52.64	5,75	175,11	- 57,85	298-1500
С ₃ Н ₄ (г.) пропадиен (аллен)	192,13	243,93	202,36	58,99	13,05	175,31	- 71,17	298-1000
С ₃ Н ₆ (г.) пропен	20,41	266,94	62,70	63,89	12,44	188,38	- 47,60	298-1000
C_3H_6 (г.) циклопропан	53,30	237,44	104,38	55,94	- 14,94	268,91	- 105,90	298-1000
С ₃ Н ₈ (г.) пропан	- 103,85	269,91	- 23,53	73,51	1,72	270,75	- 94,48	298-1500
С ₄ Н ₆ (г.) 1,2-бутадиен	162,21	293,01	198,44	80,12	17,74	234,43	- 84,73	298-1000
С₄Н ₆ 1,3-бутадиен (дивинил)	110.16	278,74	150,64	79,54	8,08	273,22	- 111.75	298-1000

Вещество	ΔH _{f. 298} ,	S° ₂₉₈ , Дж	ΔG° _{f, 298} ,	С _{р. 298} , Дж	Коэффі	ициенты ура $C_p^{\circ} = f(T)$	внения	Температурный интервал, К
	кДж/моль	моль К	кДж/моль	моль · К	а	$b \cdot 10^3$	c · 106	интервал, к
С ₄ Н ₈ (г.) 1-бутен	- 0.13	305,60	71.26	85,65	21,47	258,40	- 80,84	298-1500
С₄Н ₈ (г.) 2-бутен, цис-	- 6,99	300,83	65,82	78,91	- 2,72	307,11	- 111,29	298-1000
C_4H_8 (г.) 2-бутен, транс-	- 11,17	296,48	62,94	87,82	20,78	250,88	- 75,93	298-1000
С4Н8 (г.) 2-метилпропен	- 16,90	293,59	58,07	89,12	22,30	252,07	- 75,90	298-1000
C_4H_8 (г.) циклобутан	26,65	265,39	110,03	72,22	- 24,43	365,97	- 140,88	298-1000
C_4H_{10} (г.) бутан	- 126,15	310,12	- 17,19	97,45	18,23	303,56	- 92,65	298-1500
С ₄ H ₁₀ (г.) 2-метилпропан (изобутан)	- 134,52	294,64	- 20,95	96,82	9,61	344,79	-128,83	298-1000
С்₅Н ₈ (ж.) 2́-метил-1,3-бута-	49,40	229,40	145,22	153,20	153,20	-	_	_
диен (изопрен) С₅Н ₆ (г.) 2-метил-1,3-бута-	75,73	315,64	145,84	104,60	14,23	345,60	- 138,49	298-1000
диен (изопрен)	. 75,75	315,04	145,64	104,00	14,23	J45,00	- 130,49	270-1000
С₅Н ₁₀ (ж.) циклопентан	- 105,97	204,40	36,22	126,82	126,82	_	_	_
С ₅ H ₁₀ (г.) циклопентан	- 77,24	292,88	38,57	83,01	- 42,43	475,30	- 182,51	298-1000
С ₅ H ₁₂ (ж.) пентан	- 173,33	262,85	~ 9,66	172,90	172,90	_		_
С ₅ H ₁₂ (г.) пентан	- 146,44	348,95	- 8,44	120,21	6,90	425,93	- 154,39	298-1000
С ₅ Н ₁₂ (ж.) 2-метилбутан (изопентан)	. – 179,28	260,37	- 14,86	164,85	164,85			_
(изопентан) С₅Н ₁₂ (г.) 2-метилбутан	- 154,47	343,59	- 14,87	118,78	2,05	439,32	- 160,54	298-1000
(изопентан)			•					
С ₅ H ₁₂ (г.) 2,2-диметилпро-	- 165,98	306,39	- 15,29	121,63	- 0,75	463,59	- 179,16	298-1000
пан (неопентан)		1						
C ₆ H ₆ (ж.) бензол	49,03	173,26	124,38	135,14	59,50	255,01	_	281-353
С ₆ Н ₆ (г.) бензол	82,93	269,20	129,68	81,67	- 21,09	400,12	- 169,87	298-1000
C_6H_{12} (ж.) циклогексан	- 156,23	204,35	26,60	156,48	156,48	_	-	_
C_6H_{12} (г.) циклогексан	- 123,14	298.24	31,70	106.27	- 51,71	598,77	- 230,00	298-1000
C_6H_{14} (ж.) гексан	- 198,82	296,02	- 4,41	194,93	194,93	-	<u> </u>	-
С ₆ Н ₁₄ (г.) гексан	- 167,19	388,40	- 0.32	143,09	8,66	505,85	- 184,43	298-1000
С ₇ Н ₈ (ж.) толуол	12,01	220,96	113,77	156,06	59,62	326,98	_	281-382
C ₇ H ₈ (r.) толуол	50,00	320,66	122,03	103,64	- 21,59	476,85	- 190,33	298-1000
С ₇ Н ₁₆ (ж.) гептан	- 224,54	328,79	0,73	138,91	138,91	<u> </u>	_	_
С ₇ Н ₁₆ (г.) гептан	- 187,78	427,90	7,94	165,98	10,00	587,14	- 215,56	298-1000

	1		1					
С ₈ Н ₆ (г.) этинилбензол	327,27	321,67	361,80	114,89	- 1,97	449.49	- 191.59	298-1000
(фенилацетилен)		į			 			
С ₈ Н ₈ (ж.) фенилэ́тилен	103,89	237,57	202,41	182,59	182,59	_	_	_
(стирол)			ļ					
$\dot{C}_8 H_8$ (г.) фенилэтилен	147,36	345.10	213.82	122,09	- 7,32	494,42	- 202,92	298-1000
(стирол)								
С̀ ₈ Н ₁₀ (ж́.) этилбензол	- 12,48	255,35	119,65	186,56	186,58	_	_	_
C_8H_{10} (г.) этилбензол	29,79	360.45	130,59	128,41	- 15,61	548,82	-220,37	298-1000
$o\text{-}C_8\check{H}_{10}$ (ж.) $o\text{-}$ ксилол	- 24,43	246,02	110,48	187,86	187,86	_		
<i>o</i> -C ₈ H ₁₀ (г.) <i>o</i> -ксилол	19,00	352,75	122,09	133,26	0,04	504,59	- 193,55	298-1000
м-C ₈ H ₁₀ (ж.) м-ксилол	- 25,42	252,17	107,66	183,26	183,26	_	-	
$u-C_8H_{10}$ (г.) u -ксилол	17,24	357,69	118,86	127,57	- 11,30	526,64	- 204,76	298-1000
n - $C_8H_{10}^{\bullet}$ (ж.) n -ксилол	- 24,43	247.69	109,98	183.68	183,68	_	l –	_
n - C_8H_{10} (г.) n -ксилол	17,95	352,42	121,14	126,86	- 10,67	521,03	- 200,66	298-1000
С ₈ Н ₁₈ (ж.) октан	- 249,95	360,79	6,40	254,14	254,14			_
C_8H_{18} (г.) октан	-208,45	466,73	16,32	188.87	11,84	666,51	- 244,93	298-1000
$C_{10}H_8$ (кр.) нафталин	78,07	166,90	201,08	165,27	165,27			
$C_{10}H_8$ (ж.) нафталин	(97)	251,63	(195)	<u>-</u>	(180)	_	_	352-490
С ₁₀ Н ₈ (г.) нафталин	150,96	335,64	223,66	132,55	- 26,48	609,48	- 255,01	298-1000
С ₁₀ Н ₈ (г.) азулен	279,91	337,86	351.95	128,41	- 34,85	627,06	- 264,85	298-1000
С ₁₂ Н ₁₀ (кр.) дифенил	100,50	205,85	254.24	197,07	197.07			
$C_{12}H_{10}$ (ж.) дифенил	(119,32)	259,87	(256,95)	_	140.00	393,30	_	350-528
С ₁₂ H ₁₀ (г.) дифенил	182,09	392,67	280,12	162,34	- 36,36	763,58	- 325,56	298-1000
$C_{14}H_{10}$ (кр.) антрацен	129,16	207,44	285,84	207,94	207,94	_	_	_
$C_{14}H_{10}$ (кр.) фенантрен	116,15	211,84	271,52	234,30	234,30	_	l –	_
-1410 (F-) 4			ержащие с				1	ı
CU O () les este	1	Į.	,			50.00	1	1000 1500
СН₂О (г.) формальдегид	- 115,90	218,78	- 109,94	35,39	18,82	58,38	- 15,61	298-1500
$CH_2O_2(\dot{x}.)$ муравьиная	- 424,76	128,95	- 361,74	99,04	99,04	_	_	_
кислота	270.00	0.40.77	251.51	45.00	10.40	110.00	45.50	000 1000
$\mathrm{CH_2O_2}$ (г.) муравьиная	- 378,80	248,77	- 351,51	45,80	19,40	112,80	- 47,50	298-1000
кислота	000.55	10/50	7.4.07	0.40	01.60			
СН₄О (ж.) метанол	- 238,57	126,78	- 166,27	81,60	81,60			_
CH_4O (г.) метанол	- 201,00	239,76	- 162,38	44,13	15,28	105,20	- 31,04	298-1000
$C_2H_2O_4$ (кр.) щавелевая	- 829,94	120,08	- 701,73	109,00	109,00	_	-	-
кислота	144.00	06400	100.05		10.00	7.50.50		
С₂Н₄О (г.) ацетальдегид	- 166,00	264.20	- 132,95	54,64	13,00	153,50	- 53,70	298-1000
С₂Н₄О (г.) этиленоксид	- 52,63	242,42	-13,09	48,50	- 2,02	190,60	- 73,60	298-1000
С₂Н₄О₂ (ж.) уксусная кислота	- 484,09	159.83	- 389,36	123,43	123,43	_	_	_
кислота	1	ł	1 !				1	•

Вещество	ΔH° _{f, 298} ,	S° ₂₉₈ , Дж	ΔG ^o _{f, 298} .	С _{р. 298} , Дж	Коэффі	ициенты ураг $C_p^{\circ} = f(T)$	внения	Температурный интервал, К
_	кДж/моль	моль К	кДж/моль	моль · К	а	$b \cdot 10^3$	c · 106	интервая, к
$C_2H_4O_2$ (г.) уксусная кислота	- 434,84	282,50	- 376,68	66,50	14,82	196,70	- 77,70	298-1000
$C_2H_6O(x.)$ этанол	- 276,98	160,67	- 174,15	111,96	111,96	_	_	-
$C_2^2H_6O$ (г.) этанол	- 234,80	281,38	- 167,96	65,75	10,99	204,70	- 74,20	298-1000
C_2H_6O (г.) диметиловый эфир	- 184,05	267,06	- 112,94	65,81	16,18	183,90	- 58,70	298-1000
$C_2^2H_6O_2$ (ж.) этиленгликоль	- 454,90	167.32	- 323,49	151,0	151,0	_	<u> </u>	_
$C_2^2H_6^2O_2^2$ (г.) этиленгликоль	- 389,32	323,55	- 304,49	93,30	44,26	200,50	- 77,90	298-1000
$C_3H_6O(x)$ ацетон	- 248,11	200,41	- 155.42	125,00	125,00		–	_
C_3H_6O (г.) ацетон	- 217,57	294,93	- 153,05	74,90	22,47	201,80	-63,50	298-1500
C_3H_8O (ж.) 1-пропанол	- 304,55	192,88	- 170.70	148,60	148,60	_		
C_3H_8O (г.) 1-пропанол	- 257,53	324,80	- 163,01	87,11	13,10	277,50	- 98,44	298-1000
$u\ddot{s}o$ - $C_3\dot{H}_8\dot{O}$ (ж.) 2-пропанол	- 318,70	180,00	- 181,01	153.40	153,40	_	-	_
изо-С ₃ Н ₈ О (г.) 2-пропанол	- 272,59	309,91	- 173,63	88,74	8,67	303,10	- 115,80	298-1000
$C_3H_8O_3$ (ж.) глицерин	- 668,60	204,47	- 477,07	223,01	223,01	-	-	_
$C_4^{\circ}H_4O_4$ (кр.) малеиновая	- 790.61	159,41	- 631,20	136,82	136,82	_	j –	
кислота			1				}	
С₄Н₄О₄ (кр.) фумаровая	- 811,07	166.10	- 653,65	141,84	141.84	_	<u> </u>	_
кислота								
$C_4H_8O_2$ (ж.) масляная кислота	- 524,30	255,00	- 376,69 ·	177,82	177,82	-	-	-
$C_4H_8O_2$ (ж.) этилацетат	- 479,03	259,41	- 332,74	169,87	169.87	_	-	_
С₄Н ₈ О₂ (ж.) 1,4-диоксан	- 400.80	196.60	- 235,78	152,90	152,90	_	-	-
$C_4H_{10}O$ (ж.) бутанол	- 325,56	225,73	- 160,88	183,26	183.26	_	_	_
$C_4H_{10}O$ (г.) бутанол	- 274,43	363,17	_ 150.73	110,00	14,68	358,10	- 129,00	298-1000
$C_4H_{10}O$ (ж.) диэтиловый эфир	- 279,49	253,13	- 123.05	173.30	173,30		-	
$C_4H_{10}O$ (г.) диэтиловый эфир	- 252,21	342,67	- 122,39	112,51	21,09	341,70	- 117,90	298-1000
$C_5H_{10}O$ (ж.) циклопентанон	- 300,16	205,85	-127.84	184,00	184,00			_
${\sf C_5H_{12}O}$ (ж.) амиловый спирт	- 357.94	254,80	- 161,30	209,20	209,20			
$C_5H_{12}O$ (г.) амиловый спирт	- 302,38	402,54	- 149,79	132,88	6,29	474,90	- 182,45	298-1000
$C_6H_4O_2$ (кр.) хинон	- 186.82	161,08	- 85,62	132,00	132,00	_	_	_
С ₆ Н ₆ О (кр.) фенол	- 164,85	144,01	- 50,21	134,70	134,70	_	-	_
$C_6H_6O_2$ (кр.) гидрохинон	- 362,96	140,16	- 216,68	139,74	139,74	_	-	<u> </u>
С7Н6О2 (кр.) бензойная	- 385,14	167,57	- 245,24	145,18	145,18	_	-	_
кислота	ļ	1	I	ŀ	I		1	!

С,Н,О (ж.) бензиловый спирт	- 161,00	216.70	- 27,40	217.80	217.80	_	_	-
С ₈ Н ₄ О ₃ (кр.) ангидрид фтале- вой кислоты	- 460,66	179,49	- 330,96	161,80	161,80	_	- `	
$C_8H_6O_4$ (кр.) фталевая кислота	- 782,24	207,94	- 591,54	188,20	188,20	_	_	_
$C_{12}H_{10}O_4$ (кр.) хингидрон	- 563,6	<u> </u>	_	-		_	_	<u> </u>
$C_{12}H_{22}O_{11}$ (кр.) сахароза	- 2222,12	360,24	- 1544.70	425,00	425,00	_	<u> </u>	_
· ·	Гал	огенсоде	ржащие с	рединени	я			
CCl₂F₂ (г.) дихлордифторме- тан (фреон-12)	- 477,44	300,79	- 438,50	72,40	72,40		_	_
CCl₃F̂ (г.) трихлорфторметан (фреон-11)	- 285,15	309,74	- 245,85	77,99	77,99	_	_	_
ČCl₄ (ж.) тетрахлорметан	- 132,84	216,19	- 62,66	131,70	131,70	_	_	_
CCl₄ (r.) тетрахлорметан	- 100,42	310,12	- 58,23	83,76	59,36	97,00	- 49.57	298-1000
СҒ4 (г.) тетрафторметан	- 933,03	261,50	- 888,46	61,46	24,10	146,20	- 70,26	298-1000
$CHClF_2$ (г.) хлордифторметан (фреон-22)	- 479,12	280,84	- 448,02	55,85	55,85	_	_	_
СHCl₂F (г.)́ дихлорфторметан (фреон-21)	- 282,19	293,05	- 251,70	60,98	60,98	_	_	_
СНСl ₃ (ж.) трихлорметан	- 132,21	202,92	71,85	116,30	116,30	_	_	_
(хлороформ)								
CHCl ₃ (г.) трихлорметан	- 101,25	295,64	68,52	65,73	29,50	148,90	- 90,70	298-773
(хлороформ)	(05.51	05050	((0.77	~ ~ ~ .		100 10	-	
СНГ ₃ (г.) трифторметан	- 697,51	259,58	- 663,11	51,04	16,51	133,40	- 58,96	298-1000
CH_2Cl_2 (ж.) дихлорметан	- 124,26	178,66	- 70,45	100.00	100,00	_ ;		
CH_2Cl_2 (г.) дихлорметан	- 95,39	270.24	- 68,87	51.13	22,09	111,30	- 46,36	298-1000
CH_2F_2 (г.) дифторметан	- 452,88	246,60	- 425,36	42,88	11,39	118,20	- 46,00	298-1000
СН₃Вг (г.) бромметан	- 37,66	245,81	- 28,18	42,43	18,53	89,40	- 27,28	298-1500
CH₃Cl (г.) хлорметан	- 86,31	234,47	- 62,90	40,75	15,57	92,74	- 28,31	298-1500
СН₃Ғ (г.) фторметан	- 246,90	222,80	- 223,04	37,48	11,87	94,58	- 29,30	298-1500
СН₃І (ж.) иодметан	- 13,76	162,76	15,10	127,2	127,2		_	–
СН₃I (г.) иодметан	13,97	254,01	15,63	44,14	19,67	92,67	- 32,28	298-1000
C ₂ H ₅ Cl (г.) хлорэтан	- 111,72	275,85	- 60,04	62,72	11,63	193,00	- 72,92	298-1000
C_2H_5F (г.) фторэтан	- 261,50	264,93	- 209,60	59,04	8.27	190,90	- 69,55	298-1000
С ₆ Н₅Сl (ж.) хлорбензол	10,79	209,20	89,17	145,60	145,60		_	_
С ₆ H₅Cl (г.) хлорбензол	51,84	313,46	99,15	98,03	- 3,09	388,92	- 166,25	298-1000
С₀Н₅F (ж.) фторбензол	- 151,17	205,94	- 74,84	146,40	146,40	_	_	_
С ₆ Н₅F (г.) фторбензол	– 116,57	302,63	- 69,06	94,43	- 9,91	401,30	– 171,40	298-1000

Вещество	$\Delta H_{f, 298}^{\circ}$.	S° ₂₉₈ , Дж	$\Delta G_{f, 298}^{\circ}$,	С _{р. 298} , Дж	Коэффі	ициенты ура $C_p^{\circ} = f(T)$	внения	Температурный интервал, К
	кДж/моль	моль К	кДж/моль	моль К	а	$b \cdot 10^3$	c · 106	интервал, к
С ₇ H ₅ F ₃ (ж.) фенилтрифторметан	- 637,64	271,50	- 518,74	188,40	188,40	-	_	_
$\hat{C}_7H_5F_3$ (г.) фенилтрифторметан	- 600,07	372,58	- 511,29	116,10	7,36	472,10	- 193,40	298-1000
	A	зотсодера	кащие сое	динения				
CH_2N_2 (г.) диазометан	192,46	242,80	217,78	48,85	54,02	31,50	$-13,16$ $(c' \cdot 10^{\circ})$	298-1000
CH_3NO_2 (г.) нитрометан	- 74,73	275,01	- 7,00	57,32	11,76	172,60	- 66,49	298-1000
СН ₄ N ₂ O (кр.) карбамид (мочевина)	- 333,17	104,60	- 197,15	93,14	93,14	_	_	_
ČH₅N (г.) метиламин	-23.01	242,59	32,18	50,08	14,70	132,60	- 41,08	298-1000
CH_6N_2 (ж.) метилгидразин	53,14	165,94	179,15	134,72	134,72	_	_	_
CH_6N_2 (г.) метилгидразин	85,35	278,70	177,76	71.13	25,31	178,99	- 56,40	298-1500
C ₂ H ₅ NO ₂ (кр.) аминоуксусная кислота (гликоколь)	- 524,67	109,20	- 366,84	100,42	100,42		_	_
С ₂ Н ₇ N (г.) диметиламин	-18,83	272,96	67,91	69,04	4,54	242,10	- 86,84	298-1000
С ₃ Н ₃ N (г.) акрилонитрил	184,93	273,93	195,31	63,76	20,46	164,50	- 64,14	298-1000
С ₃ Н ₉ N (г.) триметиламин	- 23,85	288,78	98,79	91,76	1,60	341,00	-129,30	298-1000
C ₅ H ₅ N (ж.) пиридин	99,96	177,90	181,31	132,72	132,72	_	_	_
C ₅ H ₅ N (г.) пиридин	140,16	282,80	190,23	78.12	- 18,45	370,10	- 154,30	298-1000
$C_6H_5NO_2$ (ж.) нитробензол	15,90	224,26	146,20	(186)	(186)	-	_	_
C ₆ H ₇ N (ж.) анилин	31,09	191,29	149,08	190,79	190,79] —	_
C_6H_7N (г.) анилин	86,86	319,20	166,67	108,40	- 6,00	439,40	- 185,30	298-1000
	C	ерусодера	кащие сое	динения				
СН ₄ S (г.) метантиол	- 22,97	255,06	- 9,96	50,25	21,00	108,66	- 35,56	298-1000
С₂Н₄Ѕ (ж.) тиациклопропан	51,92	162,51	94,24	_	_	-	-	-
С ₂ Н ₄ S (г.) тиациклопропан	82,22	255,27	96,88	53,68	2,38	196,23	- 80,58	298-1000
C_2H_6S (ж.) диметилсульфид	- 65,40 —	196,40	5,73	117,24 (290 K)	89,33	96,23	_	270-290

C_2H_6S (г.) диметилсульфид	- 37,53	285,85	6,93	74,10	24,98	182,30	- 60,21	298-1000
C_2H_6S (г.) этантиол	- 46,11	296,10	- 4,71	72,68	20,00	197,36	- 69,33.	298-1000
$C_2H_6S_2(\hat{\mathbf{x}}.)$	- 62,59	235,39	6,43	146,00	112,13	112,97		300-350
диметилдисульфид	,	,	·	,	,_	,		
$C_2H_6S_2$ (r.)	- 24,14	336,64	14,69	94,31	38,91	207,65	- 73,72	298-1000
диметилдисульфид		[,		, ,,,,,,,,	00,72	201,05	, , , , , ,	270 1000
C_3H_6S (ж.) тиациклобутан	25,27	187.11	100,88	113,46	62,34	171,54	_	270-330
C_3H_6S (г.) тиациклобутан	61,13	285,22	107,49	69,33	- 8.03	293,59	- 115,39	298-1000
С ₄ Н ₄ S (ж.) тиофен	81,04	181,17	121,22	123,93	74.06	167,36	115,57	270-340
C ₄ H ₄ S (г.) тиофен	115,73	278,86	126,78	72,89	- 4,27	296,52	- 126,82	298-1000
С₄Н ₈ S (ж.) тиациклопентан	- 72,43	207,82	37,63	140,32	70,50	234,30	120,02	270-340
С₄Н ₈ S (г.) тиациклопентан	- 33,81	309,36	45,98	90,88	- 11.46	389,66	- 155,85	298-1000
$C_4H_{10}S$ (ж.) диэтисульфид	- 119,33	269,28	11,32	171,86	111,71	200,83	155,05	270-320
С ₄ H ₁₀ S (г.) диэтисульфид	- 83,47	368,02	17,74	111,03	20,84	358,44	- 120,75	298-1000
$C_4H_{10}S_2$ (ж.)	- 120,04	305,01	9,47	203,96	152,59	172,38	- 120,73	270-300
диэтилдисульфид	120,0.	303,01	,,,,	203,70	152,57	172,30		270 300
$C_4H_{10}S_2$ (r.)	- 74,64	414,51	22,23	141,34	39,04	380,28	- 151,34	298-1000
диэтилдисульфид	7 1,01	717,51	22,23	דכוגדג	37,04	300,20	- 131,34	270-1000
$C_5H_{10}S$ (ж.) тиациклогексан	105,94	218,24	41,64	163,23	64,73	330,54		292-340
$C_5H_{10}S$ (г.) тиациклогексан	63,26	323,26	53,01	103,23	- 39,12	558,56	- 216.77	
C_6H_6S (ж.) бензолтиол	63,89	222,80	133,99	173,22	115,69		- 210,//	298-1000
(тиофенол)	05,87	222,00	133,77	173,22	113,09	192,46	_	300-370
C_6H_6S (г.) бензолтиол	111,55	336,85	147,65	104,89	2.01	412.00	172 20	200 1000
	111,55	220,02	147,63	104,69	~ 3,01	413,92	- 173,30	298-1000
(тиофенол)	210.20							
C_2H_4OS (ж.) тиоуксусная	- 219,20	_	_	_	_	_	_	_
кислота	101.07	212.01	15401	00.00	20.50	157.00	60.04	
C_2H_4OS (г.) тиоуксусная	- 181,96	313,21	- 154,01	80,88	39,50	157,03	- 60,04	298-1000
кислота		i				•		1

Ионы в водных растворах

Ион	ΔH ^o _{f. 298} ,	S° ₂₉₈ ,	ΔG° _{f. 298} ,	Ион	ΔH ^o _{f, 298} ,	S°298,	$\Delta G_{f, 298}^{\circ}$,
	кДж/моль	Дж/(моль К)	кДж/моль		кДж/моль	Дж/(моль · К)	кДж/моль
Ag^{+}	105,75	73,39	77,10	CH₃COO ⁻	- 485,64	87,58	- 369,37
Ag ⁺ Al ³⁺	- 529,69	- 301,25	- 489.80	CN ²	150,62	96,45	171,58
AsO ³ Ba ²⁺	- 890,06	-167,28	- 648,93	CNO⁻	- 145,90	101,13	- 96,07
Ba ²⁺	- 524,05	8,79	- 547,50	CNS ⁻	74,27	146,05	89,96
Br ⁻	- 121,50	82,84	- 104,04	CO ²	- 676.64	- 56,04	- 527,60
BrO ₃	- 83,68	163,18	1.53	$C_2O_4^{2}$	- 824.25	51.04	- 674.86

Ион	$\Delta H_{f.298}^{\circ},$ кДж/моль	S° ₂₉₈ , Дж/(моль · К)	$\Delta G_{f,\ 298}^{\circ}.$ кДж/моль	Ион .	ΔΗ _{f. 298} , кДж/моль	S° ₂₉₈ , Дж/(моль · К)	ΔG [°] _{f. 298} , кДж/моль
Ca ²⁺	- 542,66	- 55,23	- 552,70	H ₂ PO ₄	- 1296,29	90,37	- 1130,34
Cd ²⁺	- 75,31	- 70,92	- 77,65	Hg ²⁺	173,47	- 25,15	164,68
\mathbf{Cl}^-	- 167,07	56,74	- 131,29	Hg ₂ ² +	171,75	82,17	153,60
ClO*	- 110,04	32,97	- 36,61	I-	- 56,90	106,69	- 51,94
ClO 2	- 66,53	101,25	17,12	I_3	- 51,46	239,32	- 51,42
ClO;	- 95,56	164,43	- 0,19	IO ₃	- 220,52	117,78	- 127,16
ClO ₄	- 123,60	183,68	- 3,40	K ⁺	- 252,17	101,04	- 282,62
Co ²⁺	- 56,61	- 110,46	- 53,64	Li⁺	- 278.45	11,30	- 292,86
Co ³⁺	94,14	- 285,01	-129,70	Mg ²⁺	- 461,75	- 119,66	- 455,24
Cr ²	- 138,91	41,87	- 183,26	Mn ²⁺	- 220,50	- 66,94	- 229,91
Cr ³⁺	- 235,98	- 215,48	- 223,06	MnO₄	- 533,04	196,23	- 440,28
CrO ₄ ²	- 875,42	46,02	- 720,91	NH↓	- 132,80	112,84	- 79.52
$Cr_2O_7^2$	- 1490,93	270,39	- 1295,62	NO ₂	- 104,60	139,85	- 37,16
Cs ⁺	- 258,04	132,84	- 291,96	NO ₃	- 207,38	146,94	- 111,49
$\mathbf{Cu}^{^{+}}$	72,80	44,35	50,00	Na⁺	- 240,30	58,41	- 261,90
Cu ²⁺	66,94	- 92,72	65, 5 6	Ni ²⁺	- 53,14	126,05	- 45,56
CuNH ₃ ²⁺	- 36,86	17,90	15,76	OH	- 230,02	- 10,71	- 157,35
$Cu(NH_3)^+_2$	- 151,04	263,59	- 65,37	PO_4^3	- 1277,38	- 220,29	- 1018,81
$Cu(NH_3)_2^{2+}$	- 140,21	117,74	- 30,50	Pb ²⁺	(-1,18)	- 24,32	(11.82)
$Cu(NH_3)_3^{2+}$	- 244,01	204,24	- 73,18	PtCl ²	- 500,82	125,64	- 354,01
$Cu(NH_3)_4^{2+}$	- 346,52	280,50	- 111,51	PtCl ²	- 669,44	223,43	- 485,31
$Cu(NH_3)_5^{2+}$	- 448,23	309,47	- 134,64	Ra ²⁺	- 529,69	28,87	(- 555,99)
F ⁻	- 333,84	- 14,02	– 279,99	Rb⁺	- 251,12	120,46	- 283,76

Fe ²⁺	- 87,86	- 113,39	- 84,88	S-	32,64	- 14.52	გ5.+0
Fe³+	- 47,70	- 293,30	- 10.53	SO ² ,	- 638,27	- 38,28	- 486,73
H ⁺	0	0	0	50 ² 4	- 909,26	18,20	- 743,99
HCOO ⁻	- 426,22	90,81	- 351,54	SiF ²	- 2396,51	125,94	- 2208,25
HCO,	- 691.28	92,57	- 586,56	Sn²⁺	- 10,23	- 25,26	- 26,24
HC_2O_4	-818,18	117,03	- 688,47	Sr ²⁺	- 545,51	- 26,36	- 560,97
HF_2	- 660,65	67,78	- 581,52	Tl⁻	5,52	126,20	- 32,43
HPO ² ₃	- 969,01	(16,81)	811,70	Tl ³	201,25	- 176,92	214,76
HPO ²	- 1292,14	- 33,47	- 1089,28	U³-	- 514,63	- 125.52	- 520,59
HS ⁻	- 17,57	62,76	12,15	U ⁴⁻	- 590,15	- 382,62	- 538.91
HSO_3	- 627,98	132,38	- 527.32	UO 2+	- 1018,66	- 89,68	- 954.71
HSO₄	- 887,77	127,97	- 755,23	Zn ²⁺	- 153,64	~ 110,62	- 147,16
H_2PO_3	- 969,43	79,50	- 830,81			\	

Ионы в жидком аммиаке

Ион	$\Delta H_{f,298}^{\circ},$ кДж/моль	S° ₂₉₈ , Дж∕(моль · К)	ΔG° _{f. 298} . кДж/моль	Ион	$\Delta H_{f.~298}^{\circ},$ кДж/моль	S° ₂₉₈ , Дж/(моль · К)	Δ $G^{\circ}_{f,298},$ кДж/моль
Ag⁺	108,8	96,2	73,6	K ⁺	- 169,4	89,5	- 196,6
Br ⁻	- 246,9	- 126.8	- 167,4	Li	- 205,0	33,5	- 225,9
Ca ²⁺	- 418,4	- 87,9	- 418,0	NC,	- 49,4	_	_
Cl⁻	- 274,9	- 126,8	- 184,5	NH ₂	42,3	- 41,8	141,8
ClO_3	- 199,6	62,8	- 74,1	NH ¦	- 67,4	103,3	- 11,3
Cs ⁺	-163,2	121,3	- 193,7	NO ₃	- 324,7	- 20,9	- 178,6
H⁺	0,0	0.0	0,0	Na⁺	- 159,4	63,2	- 182,4
Hg²⁺	189,1	146,4	129,3	Pb ²⁺	87,9	46,0	54,4
I -	- 189,5	- 104,6	- 121,3	Rb*	- 163,2	121,3	- 196,2