

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Localization

Relative Localization

Bastian Lampe

Institute for Automotive Engineering

Overview

Relative localization aims to estimate the vehicle pose relative to an initial or previous pose of the vehicle

It is crucial for automated and connected vehicles to ...

• ... be able to localize themselves when global localization is (temporarily) not available

increase robustness and update rate of other localization estimates

RWTHAACHEN UNIVERSITY

Overview

Relative localization aims to estimate the vehicle pose relative to an initial or previous pose of the vehicle

It is crucial for automated and connected vehicles to ...

... be able to localize themselves when global localization is (temporarily) not available

... increase robustness and update rate of other localization estimates

Common Approaches

- Dead Reckoning
 - Odometry, Inertial Navigation, Visual Odometry

Strengths and Weaknesses of Relative Localization Approaches

- + Robustness to challenging environments
- + High precision for close-proximity maneuvering

- Error accumulation / drift
- Lack of global context

RWTHAACHEN UNIVERSITY

Overview

Relative localization aims to estimate the vehicle pose relative to an initial or previous pose of the vehicle

It is crucial for automated and connected vehicles to ...

... be able to localize themselves when global localization is (temporarily) not available

... increase robustness and update rate of other localization estimates

Common Approaches

- Dead Reckoning
 - Odometry, Inertial Navigation, Visual Odometry

Strengths and Weaknesses of Relative Localization Approaches

- + Robustness to challenging environments
- + High precision for close-proximity maneuvering

- Error accumulation / drift
- Lack of global context

Example: 1D Dead Reckoning from a standstill

RWTHAACHEN UNIVERSITY

Odometry

Goal
 Motion estimation based on motion sensors

Sensors
Wheel encoders, steering encoder, magnetometer

• **Velocity estimate** $v(t) = \omega(t) \cdot r_{tire}$ with $\omega(t)$: wheel speed in rad/s

Example use case Dead Reckoning in tunnel

RWTHAACHEN UNIVERSITY

Odometry

Goal
 Motion estimation based on motion sensors

Sensors
Wheel encoders, steering encoder, magnetometer

• **Velocity estimate** $v(t) = \omega(t) \cdot r_{tire}$ with $\omega(t)$: wheel speed in rad/s

Example use case Dead Reckoning in tunnel

Inertial Navigation

Goal
 Motion estimation based on inertial sensors

Sensors Accelerometers, gyroscopes

• Velocity estimate $v(t) = \int a(t)dt$

Example use case Improvement of Dead Reckoning in tunnel

Image: Bosch

Sensors	Accelerometers, gyroscopes	
Velocityestimate	$v(t) = \int a(t)dt$	
Example use case	Improvement of Dead Reckoning in tunnel	

Visual Odometry with Cameras

Goal
 Motion estimation based on a sequence of camera images

Sensors
Mono-, Stereo or Omnidirectional Camera

Image: Geiger2011

RWTHAACHEN UNIVERSITY

Visual Odometry with Cameras

Goal
 Motion estimation based on a sequence of camera images

Sensors
 Mono-, Stereo or Omnidirectional Camera

Common approaches

Feature-based approach:

Extraction of image features (i.e. corner, edge or curve) in sequential frames, tracking of associated features and estimation of the relative vehicle movement.

Appearance-based approach:

Based on an observation of changes in the image appearance and intensity on a pixel level instead of extracting features.

mage: Geiger201

Hybrid approach:

Combination of the feature- and appearance-based approach. → In particular useful in environments with few features where a merely feature-based approach might fail.

Source: Agel2016

RWTHAACHEN UNIVERSITY

Visual Odometry with Lidar sensors

Goal
 Motion estimation based on a sequence of lidar point clouds

Sensors
 Lidar sensors or pseudo lidar (computed from depth estimates)

Common approaches

Find a transformation between two point clouds that best aligns them, e.g., using the *Iterative Closest Point* (ICP) method.

Feature Tracking

Find a transformation between features found in two different point clouds, e.g., detected landmarks.

Video: Vizzo2023