Continuidade de uma função

Professor Santos Alberto Enriquez-Remigio

20 de outubro de 2022

Figura 1: Função contínua em x = a.

Função não contínua em xFigura 2:

salto nesse 🕔 ^ \(\bar{\chi}\) não Contínua em um ponto do domínio:

Função não contínua em xFigura 3:

Definição 1 (Continuidade em um ponto).

Dizemos que uma função f é contínua no ponto a se as seguintes condições forem satisfeitas:

- (i) f(x) é definida em a;
- (ii) $\lim_{x\to a} f(x)$ existe;
- (iii) $\lim_{x\to a} f(x) = f(a)$.

A seguir, mostra-se a definição equivalente de continuidade usando a definição formal de limite.

Definição 2 (Usando δ e ϵ).

somente se, para todo $\epsilon>0$ existe $\delta>0$ (δ depende de ϵ), tal que: $\forall \ x\in Domf$ com $|x-a|<\delta$ tem-se, $|f(x)-f(a)|<\epsilon$. . Dizemos que f é contínua no ponto a de seu domínio se, e

Observações

- estuda-se o que acontece com a função quando imes se aproxima A definição de função contínua em x=a é pontual, pois de $a \in Dom f$;
- A função pode ser descontínua em *a*, mas contínua em outro elemento de seu domínio. Ċi
- O uso da primeira definição é mais prático.

Exemplo 3.

B Prove que f(x) = (3x + 1) é contínua em Solução:

- $a=1\in\! Dom\ f\!=\!\mathbb{R}.$ Logo, f está definida em a
- =4 . Portanto, o $\lim_{ imes o 1}\,f(x)$ (ii) $\lim_{x\to 1} f(x) = \lim_{x\to 1} (3x+1)$ existe
- (iii) $\lim_{x\to 1} f(x) = 4 = f(1)$.

Portanto, f é contínua em a=1.

Exemplo 4.

A função f(x)=K (função constante) é contínua em todo a

Solução: Temos que $Domf=\mathbb{R}$, e:

- (i) f está definida em $a \in \mathbb{R}$.
- (ii) Existe $\lim_{x\to a} f(x) = \lim_{x\to a} k = k$.
- (iii) $\lim_{x\to a} f(x) = K = f(a)$

Portanto, f é contínua em todo $a \in Dom f$.

Exemplo 5.

A função f(x) = ax + b, a e b constantes, é contínua para todo × () Solução: Dom $f=\mathbb{R}$. Seja $p\in\mathbb{R}$, então temos que f(p)=ap+b

$$\lim_{x\to p} f(x) = ap + b = f(p)$$

Logo, f é contínua para todo $p \in \mathbb{R}.$

Na figura abaixo aparece a função f(x)=2x-1, veja que ela é contínua em qualquer valor imes

000

gliji

Exemplo 6.

A função $f(x)=x^n,\ n\in\mathbb{N}$ e $n\geq 2$ é contínua em \mathbb{R} .

ω... e $orall \; p \in \mathsf{Dom} f = \mathbb{R}$, temos que $f(p) = p^n$ Solução: Dom $f=\mathbb{R}$

$$\lim_{x\to p} f(x) = \lim_{x\to p} x^n = p^n = f(p).$$

Logo, f é contínua para todo $p \in \mathbb{R}$.

Exemplo 7.

÷ 0. Prove que $f(x) = \frac{1}{x}$ é contínua em todo x = a

Solução:

Seja $a \neq 0$, então existe $f(a) = \frac{1}{a}$. Também:

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{1}{x} = \frac{1}{a} = f(a)$$

Logo, f é contínua em todo $a \neq 0$.

Exemplo 8.

 $-\left\{ 1
ight\}$) é contínua para todo Prove que $f(x) = \sqrt[n]{x}$ (com $n \in \mathbb{N}$ $x \in \mathsf{Dom} f$.

Prova:

Se n é par, então ${\sf Dom} f = [0, +\infty[$. Seja, $a\in {\sf Dom} f$, então:

$$\lim_{x \to a} f(x) = \lim_{x \to a} \sqrt[n]{x} == \sqrt[n]{a} = f(a)$$

Logo, f é contínua em a.

Se n é ímpar, então $\mathsf{Dom} f = \mathbb{R}$. Seja $a \in \mathsf{Dom} f$, então:

$$\lim_{x \to a} f(x) = \sqrt[n]{a} = f(a)$$

B Logo, f é contínua em a. Portanto, f é contínua em

Exemplo 9.

Seja
$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0. \\ 1, & x > 0 \end{cases}$$

Mostre que f não é contínua em a=0.

Solução:

- 1. f(a) = f(0) = 0, f está definida em a = 0;
- 2. $\lim_{x\to 0} f(x)$ existe? Resposta: não!!! Pois:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-1) = -1$$

 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} (1) = 1$

Como $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$, então não existe $\lim_{x\to 0} f(x)$.

Portanto, f não é contínua em a=0.

- contínua em um ponto dado x=a. Nesse caso, a nossa função alguns parâmetros que definem a função para que esta seja Em alguns problemas pedem-se para encontrar valores de deve satisfazer as três condições nesse ponto, estas são:
- f(x) deve estar definida em a;

 - (ii) $\lim_{x\to a} f(x)$ existe; (iii) $\lim_{x\to a} f(x) = f(a)$.

Aplicando-se as três condições encontramos os valores dos parâmetros.

outra função e propriedades adicionais para provar que a nossa contínua, sabendo que ela está relacionada com outra. Neste Em outros problemas pedem-se para provar que a função é caso, devemos de alguma forma usar as características da primeira função é contínua. α

Exemplo 10.

Determine L para que a função dada seja contínua no ponto dado. Justifique:

(a)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ L, & x = 2 \end{cases}$$
 em $a = 2$.

(b)
$$f(x) = \begin{cases} \frac{x^2 - x}{x}, & x \neq 0 \\ L, & x = 0 \end{cases}$$
 em $a = 0$.

Solução:

- (a)
- (i) f(2) = L
- (ii) $\lim_{x\to 2} f(x) = \lim_{x\to 2} \left(\frac{x^2-4}{x-2}\right) = \lim_{x\to 2} (x+2) = 4$

Como desejamos que f seja contínua em a=2, então deve acontecer que:

$$\lim_{x \to 2} f(x) = f(2)$$

$$4 = L$$

Logo, L=4.

- (a)
- (i) f(0) = L
- (ii) $\lim_{x\to 0} f(x) = \lim_{x\to 2} \left(\frac{x^2-x}{x}\right) = \lim_{x\to 2} \left(\frac{x(x-1)}{x}\right) = \lim_{x\to 2} \frac{x(x-1)}{x} = -1$ $\lim_{x\to 2}$

Como desejamos que f seja contínua em a=0, então deve acontecer que:

$$\lim_{x \to 0} f(x) = f(0)$$

Logo, L=-1

Definição 11 (Continuidade no domínio de uma função

é contínua \acute{e} contínua no seu domínio, Domf, se fpara todo $a \in \mathsf{Dom} f$. Dizemos que f

Duas funções contínuas em seus respectivos domínios. Figura 4:

php

plipl

•

(0) \cong Função contínua em seu domínio Dom f Figura 5:

 $\mathbf{R}^{\mathbf{i}}$ Função contínua em seu domínio Dom f Figura 6:

Resumindo: Exemplos de funções elementares contí **(J. UFU**

▲ □ ▼

As seguintes funções elementares são contínuas em seus respectivos domínios:

- 1. f(x) = ax + b, onde $a \in b$ são constantes;
- 2. $f(x) = x^n$, onde $n \in \mathbb{N}$;
 - $f(x) = \sqrt{x};$ $f(x) = \sqrt[3]{x};$ 3.
- $f(x) = \sqrt[n]{x}$, onde $n \in \mathbb{N}$ com n > 3;
- $f(x) = \frac{1}{x}.$

Algumas perguntas:

Como saber se uma função é contínua em seu domínio? \dashv

- Resposta: Verificando-se a continuidade dela em cada ponto de seu domínio.
- para provar que é contínua em um ponto do domínio, sempre devo aplicar a Definição 1? Mas d
- Resposta: Algumas vezes sim, mas em outras podem-se aplicar propriedades de funções contínuas?
- 3. Como assim?
- de operações entre outras funções contínuas simples e aplicar Resposta: Você pode observar que a função dada é produto as seguintes propriedades:

Teorema 12 (Operações com funções contínuas

Se as funções f e g são contínuas em um ponto a, então:

- i) f+g é contínua em a;
- (ii) f g é contínua em a;
- (iii) fg é contínua em a;
- (iv) $\frac{f}{g}$ é contínua em a, desde que $g(a) \neq 0$;

<u>(</u> M Função h(x) = f(x) + g(x) contínua em Dom h =7: Figura

 $\frac{f(x)}{g(x)}$, contínua em: Função contínua h(x) =Figura 8:

Dom $h = \mathbb{R} - \{\sqrt{2}, -\sqrt{2}\}.$

Teorema 13.

a, então: Sejam f₁, f₂,..., f_n funções contínuas em x

- 1. $(f_1 + f_2 + \cdots + f_n)$ é contínua em a;
- 2. $(f_1 * f_2 * \cdots * f_n)$ é contínua em a;

Lembrando: Uma função racional é da forma:

$$f(x) = \frac{P(x)}{Q(x)},$$

 $Q(x) \neq 0$. × Dom f onde P e Q são dois polinômios.

Teorema 14.

Temos que:

- (i) Uma função polinomial é contínua para todo número real;
- (ii) Uma função racional é contínua em todos os pontos de seu domínio.

Teorema 15.

Sejam f e g funções tais que $\lim_{x \to p} f(x) = a$ e g contínua em a, então:

$$\lim_{x\to p}(g\circ f)(x) = \lim_{u\to a}g(u) = g(a)$$

$$ou$$

$$\lim_{x\to p}(g\circ f)(x) = g(\lim_{x\to p}f(x))$$

$$\lim_{x\to p}(g\circ f)(x) = \lim_{u\to a}g(u) = g(u)$$

$$\lim_{x\to p}(g\circ f)(x) = \lim_{u\to a}g(u) = g(u)$$

$$\lim_{x\to p}(g\circ f)(x) = g(\lim_{x\to p}f(x))$$

Teorema 16.

000

php

©

Se f é contínua em p e g é contínua em f(p), então a função é contínua no ponto p. composta $g\circ f$

