אינפי 2מ' | תרגול 10 - עם ניקה

שם: איל שטיין

June 6, 2023

נושא השיעור: סדרות של פונקציות

תרגיל 1:

 $.[0,\infty)$ ב ב"ט ל- $f\left(x\right)$ מתכנסת במ"ש ל- $f_{n}:[0,\infty)\to\mathbb{R}$ שליליות אי שליליות פונקציות סדרת לה מתכנסת ליש ל- $f_{n}(x)$ מתון שלכל האינטגרל

$$\int_{0}^{\infty} f_{n}(x) dx$$

קיים וגם

$$\lim_{n \to \infty} \int_{0}^{\infty} f_n(x) = 0$$

 $\int_{0}^{b}f\left(x\right) dx>0$ מתקיים b>0 לכל פתרון:

- .b>0 יהי $\,$
- לפי אדטיביות האינטגרל מתקיים:

$$\int_{0}^{\infty} f_{n}(x) dx = \int_{0}^{b} f_{n}(x) + \int_{b}^{\infty} f_{n}(x)$$

: אי שלילית ולכן f_n אי שלילית ולכן

$$0 \le \int_{h}^{\infty} f_n(x) dx \le \int_{0}^{\infty} f_n(x) dx \xrightarrow[n \to \infty]{} 0$$

- ולכן לפי סנדוויץ' מתקיים:

$$\lim_{n \to \infty} \int_{b}^{\infty} f_n(x) dx = 0$$

 $f_{n}\left(x
ight)$ מתכנסת במ"ש ל מתכנסת מתקיים ש $f_{n}\left(x
ight)$ מתקיים ל •

$$f_n(x) \underbrace{\longrightarrow}_{consinously} f(x)$$

- ולכן לפי המשפט על החלפת סדר בין גבול לאינטגרל מתקיים:

$$\lim_{n \to \infty} \int_{0}^{b} f_n(x) dx = \int_{0}^{b} f(x) dx$$

: מתקיים שלכל שלכל מתקיים גבולות מתקיים b>0 מתקיים *

$$\int_{0}^{b} f_n(x) \, dx = 0$$

לית.) שווה זהותית לאפס (רציפה כי $f_n\left(x
ight)$ סדרה של פונקציות רציפות, מתכנסת במ"ש ואי שלילית.)

$$\int_0^\infty (x) \, dx = 0$$
ולכן –

נושא שני - טורי פונקציות:

:2 תרגיל

 $x\geq 1$ עבור $\sum_{n=1}^{\infty} \frac{x^{\frac{2}{n}}}{(1+x)^{\frac{n}{2}}}$ עבור במ"ש של הטור עבור בדקו התכנסות במ

• נסתכל על סדרת פונקציות שכל פונקציות שהיא סדרה של סכומים חלקיים.

- M של וויירשטראס, אם נצליח לחסום את טור הפונקציות בטור מספרי שמתכנס אז טור הפונקציות מתכנס במ"ש.
 - z ונשווה לאפס כדי לדעת איפה מתקבל המקסימום לכן נגזור לפי x ונשווה לאפס בדי לדעת איפה מתקבל המקסימום –

$$f'_n(x) = \frac{\left((1+x) \cdot \frac{2}{n} - \frac{x \cdot n}{2}\right) x^{\frac{2}{n} - 1}}{(1+x)^{\frac{n}{2} + 1}} = 0$$

* כלומר:

$$(1+x)\cdot\frac{2}{n} - \frac{x\cdot n}{2} = 0$$

ולכן:

$$x = \frac{4}{n^2 - 4}$$

. אם נבדוק ערכי x שגדולים או קטנים מהנקודה הזו נקבל שזו נקודת מקסימום.

x=1 יתקבל בנקודה $f:[1,\infty)$ יתקבימום אל לקטע ולכן המקסימום היא מחוץ המקסימום היא הנקבל שנקודת המקסימום היא חולכן לכל $n\geq 3$ מתקיים:

$$f_n(x) \le f_n(1)$$

: עבור נקודת המקסימום הזו כדי לחסום בעזרתו את עבור נקודת המקסימום הזו כדי לחסום עבור נקודת הפונקציות –

$$f_n(1) = \frac{1^{\frac{2}{n}}}{(1+1)^{\frac{n}{2}}} = \left(\frac{1}{\sqrt{2}}\right)^n$$

: ולכן

$$f_n(x) \le \left(\frac{1}{\sqrt{2}}\right)^n$$

. מתכנס מתכנס מתכנס מבחן הא לפי מבחן מתכנס מתכנס מתכנס מתכנס מתכנס הא במ"ש. $\sum \left(\frac{1}{\sqrt{2}}\right)^n$ אומכיוון שהטור \star

:3 תרגיל

:כך: $f\left(x
ight):\mathbb{R}
ightarrow\mathbb{R}$ כך:

$$f(x) = \sum_{n=1}^{\infty} \frac{n}{3^n} \sin\left(\frac{x}{n}\right)$$

. א. הראו ש $f\left(x\right)$ מוגדרת היטב

 $\lim_{x o 0}rac{f(3x)}{x}$ ב. חשבו

פתרון:

: x נראה שהטור מתכנס לכל •

- נסתכל על הערך המוחלט של האיבר הכללי:

$$\left| \frac{n}{3^n} \sin\left(\frac{x}{n}\right) \right| \le \frac{n}{3^n}$$

- כלומר האיבר הכללי חסום.
- \pm מתכנס לפי מבחן השורש: $\sum rac{n}{3^n}$ הטור –

$$\sqrt[n]{\frac{n}{3^n}} \xrightarrow[n \to \infty]{} \frac{1}{3} < 1$$

- x ולכן לפי מבחן ה-M לפי וויירשטראס מתקיים שהטור הנתון מתכנס לכל \star
 - . ולכן f(x) מוגדרת היטב
- יב. מכיוון ש $f\left(0
 ight)=0$, נסתכל על הגבול הדרוש ונשים לב כי הוא דומה להגדרת הנגזרת:

$$\lim_{x\to 0}\frac{f\left(3x\right)}{x}=\lim_{x\to 0}\frac{3}{3}\cdot\frac{f\left(3x\right)-f\left(0\right)}{x-0}=3\cdot f'\left(0\right)$$

- $3 \cdot f'\left(0\right)$ כלומר אם הגבול הדרוש קיים אז הוא הגבול –
- בשביל להשתמש במשפט "גזירה איבר איבר" נצטרך להראות
 - סדרת פונקציות גזירות $f_{n}\left(x\right)$.1
 - מתכנס בנקודה כלשהי. $\sum_{n=1}^{\infty}f_{n}\left(x
 ight)$.2 $\sum_{n=1}^{\infty}f_{n}'\left(x
 ight)$.3
 - :את 3 נצטרך לבדוק את 1-2 את *

$$\sum_{n=1}^{\infty} f'_n(x) = \sum_{n=1}^{\infty} \left(\frac{n}{3^n} \sin\left(\frac{x}{n}\right)\right)'$$

$$= \sum_{n=1}^{\infty} \frac{n}{3^n} \cos\left(\frac{x}{n}\right) \cdot \frac{1}{n}$$

$$= \sum_{n=1}^{\infty} \frac{1}{3^n} \cos\left(\frac{x}{n}\right)$$

ומכיוון שמתקיים:

$$\frac{1}{3^n}\cos\left(\frac{x}{n}\right) \le \frac{1}{3^n}$$

- . הטור הנדסי מתכנס הוא הוא $\sum_{n=1}^{\infty} rac{1}{3^n}$ הטור -
- . במ"ש. מתכנס ה $\sum_{n=1}^\infty f_n'\left(x\right)$ הטור כי מתקיים מתקיים של וויירשטראס של לפי לפי לכן לפי לפי

ולכן: x=0 אנחנו מחפשים את הנגזרת של

$$f'(0) = \sum_{n=1}^{\infty} f'_n(0)$$
$$= \sum_{n=1}^{\infty} \frac{1}{3^n}$$
$$= \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{1}{2}$$

- ולכן מתקיים שהגבול הנדרש הוא:

$$\lim_{x\to 0} \frac{f\left(3x\right)}{x} = 3 \cdot f'\left(0\right) = \frac{3}{2}$$

:4 תרגיל

 $x \in \mathbb{R}$ עבור $\sum_{n=1}^{\infty} rac{(-1)^n}{|x|+4n}$ עבור של התכנסות התכנסות

פתרון:

- נשים לב שזהו טור לייבניץ כי האיברים הם סדרה מתחלפת כאשר האיבר הכללי שואף מונוטונית לאפס.
 - $x \in \mathbb{R}$ לכן הטור מתכנס לכל
 - נבדוק התכנסות במ"ש:
 - לפי תכונה של טורי לייבניץ, השארית של הטור חסומה על ידי האיבר הבא בטור:

$$\left| \sum_{n=1}^{\infty} f_n(x) \right| = |f(x) - S_n(x)| \le |f_{n+1}(x)|$$

 $:f\left(x
ight)$ מתכנס במ"ש ל $S_{n}\left(x
ight)$ א נרצה לבדוק האם *

$$= |f_{n+1}(x)| = \frac{1}{|x| + 4(n+1)}$$

$$\leq \frac{1}{4(n+1)} \xrightarrow[n \to \infty]{} 0$$

 $.f\left(x\right)$ הגבולית לפונקציה מתכנס מתכנס מתכנס $\sum_{n=1}^{\infty}f_{n}\left(x\right)$ לכן הטור לכן ה

מסקנה 1. קיבלנו שעברו טור לייבניץ, התנאי שהאיבר הכללי ישאף לאפס, שהוא תנאי הכרחי של התכנסות רגילה של טור, נהפך להיות תנאי מספיק להתכנסות במ"ש.

:5 תרגיל

הראו שהביטוי

$$\int_{1}^{2} \left(\sum_{n=1}^{\infty} \frac{n}{2^{nx}} \right) dx$$

מוגדר היטב ומצאו את ערכו.

פתרון:

- ראשית נראה שיש לנו פונקציה גבולית אינטגרבילית:
 - [1,2] בקטע $f_{n}\left(x
 ight)=rac{n}{2^{nx}}$ בקטע –
- $x\in\left[1,2
 ight]$ לכל $f_{n}\left(x
 ight)$ של האיבר הכללי א נסתכל על האיבר הכללי \star

$$\frac{n}{2^{nx}} \le \frac{n}{2^n}$$

- . השורש. $\sum_{n=1}^{\infty} \frac{n}{2^n}$ המספרי המספרי \star
- . וויירשטראס של וויירשטראס. מתכנס ממ"ט ממחן הפונקציות המקורי מתכנס במ"ש לפי הפונקציות המקורי מתכנס במ"ש לפי
- ולכן הפונקציה הגבול רציפה (ומכיוון שהיא רציפה אז היא אינטגרבילית).
 - לכן הביטוי מוגדר היטב.
 - : נמצא את ערך הביטוי לפי משפט אינטגרציה איבר איבר
 - מכיוון שהטור מתכנס במ"ש, ניתן לבצע אינטגרציה איבר איבר

$$\int_{1}^{2} \left(\sum_{n=1}^{\infty} \frac{n}{2^{nx}} \right) dx = \sum_{n=1}^{\infty} \int_{1}^{2} \frac{n}{2^{nx}} dx$$

$$\int_{1}^{2} n \cdot 2^{-nx} dx = -\frac{2^{-nx}}{\ln(2)} \Big|_{1}^{2}$$

$$= \frac{1}{\ln(2)} \left(\frac{1}{2^{n}} - \frac{1}{2^{2n}} \right)$$

: ואז הטור הוא

$$\frac{1}{\ln(2)} \sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{1}{2^{2n}} \right)$$
$$\frac{1}{\ln(2)} \left(\frac{1}{2} \frac{1}{1 - \frac{1}{2}} - \frac{1}{4} \cdot \frac{1}{1 - \frac{1}{4}} \right) = \frac{2}{3 \cdot \ln(2)}$$

נושא שלישי: טורי חזקות

יש שתי דרכים למצוא רדיוס התכנסות:

$$\frac{1}{R} = \lim \sup \sqrt[n]{|a_n|}$$
 .1

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 .2

:אז מתקיים: אז $\sum_{n=0}^{\infty}a_{n}x^{n}=f\left(x\right)$ אם •

$$f'(x) = \sum_{n=1}^{\infty} n \cdot a_n \cdot x^{n-1} .1$$

$$\int_{0}^{x} f(t) dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} .2$$

:6 תרגיל

מצאו את תחומי ההתכנסות של טור החזקות:

$$\sum_{n=1}^{\infty} \frac{\ln^2(n)}{n} x^n$$

פתרון:

• לפי מבחן השורש מתקיים:

$$\frac{1}{R} = \limsup \sqrt[n]{a_n}$$
$$= \limsup \sqrt[n]{\frac{\ln^2(n)}{n}}$$

:מכיוון ש

$$1 \underset{n \to \infty}{\leftarrow} \sqrt[n]{1} \le \sqrt[n]{ln^2(n)} \le \sqrt[n]{n^2} \underset{n \to \infty}{\rightarrow} 1$$

 $\sqrt[n]{\ln^2\left(n\right)} \xrightarrow[n \to \infty]{} 1$ מתקיים הסנדוויץ' מתקיים * \star

$$R=1$$
 רלכן , $\sqrt[n]{a_n}=1$ רלכן –

: נבדוק בקצוות

$$x = 1$$
 עבור –

$$\sum_{n=1}^{\infty} \frac{\ln^2(n)}{n} \left(-1\right)^n$$

* זהו טור לייבניץ ולכן מתכנס.

x = 1 עבור –

$$\sum_{n=1}^{\infty} \frac{\ln^2(n)}{n}$$

- $\sum_{n=1}^{\infty} rac{1}{n}$ אז לפי מבחן ההשוואה הטור מתבדר יחד עם ומכיוון א לפי א לפי א לפי א ומכיוון א או לפי
 - [-1,1) אום ההתכנסות הוא •

:7 תרגיל

מצאו את תחומי ההתכנסות של טור החזקות:

$$\sum_{n=1}^{\infty} \left(x^{3n} \cdot \sqrt[n^2]{7^{3n} + 5^{3n}} \right)$$

פתרון:

 b_n בשביל להשתמש במבחנים ולכן סמון סדרה בשביל בשביל בשביל החיות מהצורה הצורה המור שלנו חייב להיות בהצורה ב

$$b_n = \begin{cases} \sqrt[n^2]{7^{3n} + 5^{3n}} & , R = 3n \\ 0 & , otherwise \end{cases}$$

- ואז מתקיים:

$$\sum_{n=1}^{\infty} \left(x^{3n} \cdot \sqrt[n^2]{7^{3n} + 5^{3n}} \right) = \sum_{n=1}^{\infty} b_n x^n$$

– כעת מתקיים

$$\frac{1}{R} = \lim \sup \sqrt[k]{b_k}$$

: יהיה: יש או אפסים או האבול אז , $\sqrt[n^2]{7^{3n}+5^{3n}}$ או אפסים או יש או אבסדרה אז מכיוון אז אניים או אפסים או אפסים או יש או אפסים או אפסים או איי ש

$$= \lim_{n \to \infty} \left(\sqrt[n^2]{7^{3n} + 5^{3n}} \right)^{\frac{1}{3n}}$$
$$= \lim_{n \to \infty} \left(7^{3n} + 5^{3n} \right)^{\frac{1}{3n^3}}$$

: מכיוון ש

$$7^{3n} < 7^{3n} + 5^{3n} \le 2 \cdot 7^{3n}$$

$$1 \underset{n \to \infty}{\leftarrow} 7^{\frac{1}{n^2}} = 7^{\frac{3n}{3n^3}} < \left(7^{3n} + 5^{3n}\right)^{\frac{1}{3n^3}} \le 2^{\frac{1}{3n^3}} \cdot 7^{\frac{1}{n^2}} \xrightarrow[n \to \infty]{} 1$$

R=1 ולכן י

- : נבדוק את הקצוות
- x = 1 עבור –

$$\sum_{n=1}^{\infty} \sqrt[n^2]{7^{3n} + 5^{3n}}$$

x=-1 ועבור –

$$\sum_{n=1}^{\infty} \sqrt[n^2]{7^{3n} + 5^{3n}} \cdot (-1)^{3n}$$

- . בשניהם האיבר הכללי לא שואף לאפס ולכן הטורים מתבדרים. \star
 - (-1,1) לכן תחום ההתכנסות הוא •

תרגיל 8:

מצאו את תחומי ההתכנסות של טור החזקות:

$$\sum_{n=1}^{\infty} \frac{4^n \cdot n!}{n^n} x^{2n+1}$$

פתרון:

• נרצה להשתמש במבחן המנה, אך לשם כך יש לפשט את הביטוי:

$$\sum_{n=1}^{\infty} \frac{4^n \cdot n!}{n^n} x^{2n+1} = x \cdot \sum_{n=1}^{\infty} \frac{4^n \cdot n!}{n^n} x^{2n}$$

- תחומי ההתכנסות של הטורים בשני צידי המשוואה הם אותו תחום.
- * כלומר הטורים הללו מתכנסים בדיוק באותם התחומים ולכן נבחן את הצד הימני של המשוואה:

: נגדיר $t=x^2$ נגדיר .

$$\sum_{n=1}^{\infty} \widetilde{a}_n t^n = \sum_{n=1}^{\infty} \frac{4^n \cdot n!}{n^n} t^n$$

ואז לפי מבחן המנה מתקיים:

$$\begin{split} \frac{\widetilde{a}_n}{\widetilde{a}_{n+1}} &= \frac{4^n \cdot n!}{n^n} \cdot \frac{(n+1)^{n+1}}{4^{n+1} \cdot (n+1)!} \\ &= \frac{1}{4} \cdot \left(1 + \frac{1}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{e}{4} \end{split}$$

: קיבלנו שתחום ההתכנסות הוא

$$\widetilde{R} = \frac{e}{4}$$

- $R=rac{\sqrt{e}}{2}$ נציב חזרה $x^2=t$ ונקבל י
 - . נשאר לבדוק התכנסות בקצוות.