Respostas e comentários das atividades "Agora é a sua vez" e das Atividades de auto-avaliação

Unidade 1

Agora é a sua vez da seção 1 (Conjuntos numéricos)

1

- a) $\frac{2}{3}$ é racional
- b) 0,35 é racional
- c) $\sqrt{5}$ é irracional
- d) 0,03030303.... é racional
- d) $-\sqrt{25}$ é inteiro e racional
- e) 5,0000000 é inteiro e racional
- 2) Como dados dos problemas, temos que que $T_c=36^{\circ}$. Assim, é possível utilizar a fórmula de conversão de temperaturas:

$$T_C = \frac{5}{9}(T_F - 32)$$

$$36 = \frac{5}{9}(T_F - 32)$$

$$\frac{9}{5} \cdot 36 = T_F - 32$$

$$T_F = \frac{324}{5} + 32$$

$$T_F = \frac{484}{5} = 96,8F$$

Agora é a sua vez da seção 2 (Intervalos)

1) Como o lucro mínimo é de R\$1.000.000,00 e o máximo é sem limitação segue que $x \in [1.000.000, +\infty)$.

2)

3)

a)
$$-1 < x \le 7$$
 então $x \in (-1, 7]$

b)
$$x > 5$$
 então $x \in (5, +\infty)$

c)
$$x \le \pi$$
 então $x \in (-\infty, \pi]$

Agora é a sua vez da seção 2 (Equações e inequações)

a)
$$5x - 27 = 2x + 48$$

$$5x - 2x = 48 + 27$$

$$3x = 75$$

$$x = \frac{75}{3} = 25$$

b)
$$\frac{2x-8}{3} = \frac{5-2x}{1}$$

$$2x-8=3(5-2x)$$

$$2x - 8 = 15 - 6x$$

$$2x + 6x = 15 + 8$$

$$8x = 23$$

$$x = \frac{23}{8}$$

c)
$$2x^2 - 5x - 12 = 0$$

$$x = \frac{-(-5) \pm \sqrt{25 - 4 \cdot 2 \cdot (-12)}}{4} = \frac{5 \pm \sqrt{121}}{4} = \frac{5 \pm 11}{4}$$

$$x_1 = \frac{5 + 11}{4} = 4$$

$$x_2 = \frac{5 - 11}{4} = \frac{-3}{2}.$$

d)
$$\frac{3x+4}{x-1} = \frac{1}{3x}$$

$$3x(3x+4) = x-1$$

$$9x^2 + 12x - x + 1 = 0$$

$$9x^2 + 11x + 1 = 0$$

$$x = \frac{-11 \pm \sqrt{121 - 36}}{18} = \frac{-11 \pm \sqrt{85}}{18}$$

$$x_1 = \frac{-11 + \sqrt{85}}{18}$$

$$x_1 = \frac{-11 - \sqrt{85}}{18}$$

2)
$$3-6x \le 2x+8$$

 $-6x-2x \le 8-3$
 $-8x \le 5 \text{ (multiplique por } -1)$
 $8x \ge -5$
 $x \ge -\frac{5}{8} \text{ ou } x \in \left[-\frac{5}{8}, +\infty\right]$

3)
$$\frac{3x+1}{x-3} < 1$$

$$\frac{3x+1}{x-3} - 1 < 0$$

$$\frac{3x+1-(x+3)}{x-3} < 0$$

$$\frac{2x-2}{x-3} < 0$$

A divisão de dois números é negativa, quando o numerador é positivo e o denominador é negativo ou vice-versa.

1° Caso: 2x-2>0 e x-3<0

Ou seja x>1 e x<3, graficamente temos:

A intersecção destes dois intervalos, nos dá a seguinte solução $x\in(1,3)$ e portanto tem-se que $S_1=(1,3)$.

2° Caso: 2x-2<0 e x-3>0

Ou seja x<1 e x>3

A intersecção destes dois intervalos nos dá uma solução vazia, ou seja, $S_2 = \varnothing$

A solução final é a união dos dois casos, isto é,

$$S = (1,3) \cup \emptyset = (1,3)$$

4) Os valores de x nos quais a inequação se anula são x=-2 e x=1, logo podemos reescrever a inequação como uma fatoração de suas raízes, ou seja, resolver $x^2+x-2\geqslant 0$, é o mesmo que $(x+2)\cdot(x-1)\geqslant 0$ Devemos dividir a resolução em dois casos, já que o produto de dois números é positivo, quando ambos são positivos ou ambos são negativos:

1° Caso: $x + 2 \ge 0$ e $x - 1 \ge 0$

Neste caso temos $x \geqslant -2$ e $x \geqslant 1$, que graficamente são representadas por:

2° Caso:
$$x + 2 \le 0$$
 e $x - 1 \le 0$

Neste caso temos $x \leqslant -2$ e $x \leqslant 1$. Graficamente temos

Logo
$$S_2 = (-\infty, -2]$$

A solução final é dada pela união dos dois caso, portanto:

$$S = (-\infty, -2] \cup [1, +\infty)$$

Agora é a sua vez da seção 2 (Valor absoluto)

1) Dois números de mesmo valor absoluto ou são iguais x-3=3x+4 ou diferem pelo sinal x-3=-(3x+4)

1° Caso:
$$x-3=3x+4$$

$$x-3x=4+3$$

$$-2x = 7$$

$$x = -\frac{7}{2}$$

2° Caso:
$$x - 3 = -(3x + 4)$$

$$x + 3x = -4 + 3$$

$$4x = -1$$

$$x = -\frac{1}{4}$$

Assim a equação dada tem soluções $x = -\frac{7}{2}$ e $x = -\frac{1}{4}$.

- 2) Usando a propriedade 2a) de módulos, temos que
 - -3<3x-4<3 (Somando 4)

1<3x<7 (Multiplica-se por
$$\frac{1}{3}$$
)

$$\frac{1}{3} < x < \frac{7}{3}$$
 ou seja $S = \left(\frac{1}{3}, \frac{7}{3}\right)$

Agora é a sua vez da seção 3 (Funções)

1)

- a) O domínio são todos os reais. E qualquer valor de x, sempre retorna um valor para y possível, logo a imagem e o contra-domínio também são todos os reais.
- b) $f(3) = 2 \cdot 3 + 3 = 9$

c)
$$f(-1) = 2 \cdot (-1) + 3 = 1$$

Agora é a sua vez da seção 4 (Função polinomial do primeiro grau)

1) Como trata-se de uma função do primeiro grau, o gráfico desta função é uma reta, portanto basta dois pontos para determinar esta reta, por exemplo, quando x=0 temos que y=3 e quando x=2 tem-se que y=2, basta desenhar a reta que passa pelos pontos (0,3) e (2,2). Veja:

2) Uma reta é dada por y=ax+b

Esta reta passa pelo ponto
$$\left(\frac{1}{2},1\right)$$
, e portanto
$$1 = \frac{1}{2}a + b$$

e passa também por (-1,3) e então

$$3 = -a + b$$

Assim devemos resolver o sistema:

$$\begin{cases} \frac{1}{2}a+b=1\\ -a+b=3 \end{cases}$$

Resolvendo o sistema tem-se que $a=-\frac{4}{3}$ e $b=\frac{5}{3}$, logo a reta procurada é dada por:

$$y = -\frac{4}{3}x + \frac{5}{3}$$

Agora é a sua vez da seção 4 (Função polinomial do primeiro grau)

a) Como temos uma função do primeiro grau, necessitamos de apenas dois pontos, por exemplo, quando t=0, então v=-5 e quando t=1, v=5. Então esboçamos a reta que passa por (0,-5) e (1,5).

b) Como temos uma função do primeiro grau, segue que tanto o domínio quanto a imagem são todos os reais.

$$D(f)=R$$
 $Im(f)=R$

c) Como o coeficiente angular é 10 e portanto um número positivo, segue que a função v(t) é uma função crescente.

■ v(t)>0, então -5+10t>0, ou seja,
$$t > \frac{1}{2}$$

■ v(t)<0, então -5+10t<0, ou seja,
$$t < \frac{1}{2}$$

Agora é a sua vez da seção 4 (Função polinomial do segndo grau)

1)

a) Como a=-1, ou seja é negativo, segue que a concavidade é voltada para baixo.

Agora
$$\Delta = b^2 - 4ac = (-1)^2 - 4(-1)(-1) = 1 - 4 = -3$$

Assim, como a<0 e $\Delta<$ 0, então não temos raízes reais e portanto f não possui valores positivos, logo a função é negativa para todo x real.

b) a=2>0, concavidade para cima.

 Δ = 9-8=1, então as raízes podem ser calculadas como:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-3 \pm \sqrt{1}}{2 \cdot 2} = \frac{-3 \pm 1}{4}$$
$$x_1 = \frac{-3 + 1}{4} = \frac{-3 + 1}{4} = \frac{-2}{4} = \frac{-1}{2}$$
$$x_2 = \frac{-3 - 1}{4} = \frac{-4}{4} = -1$$

Temos duas raízes reais, $x_1 = -1$ e $x_2 = -\frac{1}{2}$.

Como $\Delta > 0$ e a>0, segue que f é positiva em $(-\infty, -1) \cup \left(-\frac{1}{2}, +\infty\right)$ e f é negativa em $\left(-1, -\frac{1}{2}\right)$.

2)
$$y-(2-x)(x+3)=-x^2-x+6$$

- a raízes são x=2 e x=-3
- a=-1<0, logo a concavidade é voltada para baixo.
- $\Delta = 25 > 0$ e a < 0, segue então que fé positiva quando $x \in (-3,2)$ e fé negativa quando $x \in (-\infty, -3) \cup (2, +\infty)$.

- O vértice é dado por $V = \left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right) = \left(-\frac{1}{2}, \frac{25}{4}\right)$.
- Como a < 0 e $x_v = -\frac{1}{2}$, segue que fé crescente quando $x \in \left(-\infty, -\frac{1}{2}\right)$ e decrescente quando $x \in \left(-\frac{1}{2}, +\infty\right)$.
- A visualização do gráfico é dada abaixo:

Agora é a sua vez da seção 4 (Função racional)

1)

a) Utilizando um recurso computacional para desenhar o gráfico, temos:

Analisando o gráfico da função notamos que a função f não está definida para x=2 , logo D(f)=R-{2}. O conjunto imagem é dada por ${\rm Im}(f)=R-\{0\}$. As duas partes da função são decrescentes.

b) O gráfico desta função é dado por:

Analisando detalhadamente o gráfico percebe-se que esta função não está definida para x=-1 e x=1e portanto $D(f)=R-\{-1,1\}$

Agora é a sua vez da seção 5 (Funções exponenciais e logarítmicas)

a)
$$\log_3 27 = x \Leftrightarrow 3^x = 27$$
 . Então,

$$3^x = 3^3$$

$$x = 3$$

b)
$$\log_3\left(\frac{1}{243}\right) = x \Leftrightarrow 3^x = \frac{1}{243}$$
. Então,

$$3^x = \frac{1}{3^5}$$

$$3^x = 3^{-5}$$

$$x = -5$$

c)
$$\log_{10} 100 = x \Leftrightarrow 10^x = 100$$
 . Então,

$$10^x = 10^2$$

$$x = 2$$

d)
$$\log_{81} \sqrt[4]{3} = x \Leftrightarrow 81^x = \sqrt[4]{3}$$
 . Então,

$$(3^4)^x = 3^{\frac{1}{4}}$$

$$4x = \frac{1}{4}$$

$$x = \frac{1}{16}$$

Atividade de auto-avaliação

1)

a)
$$(1-x)(3-x)=0$$

O produto de dois números é zero se um número ou outro for zero, logo 1-x=0 ou 3-x=0, ou seja, x=1 ou x=3.

b)
$$x^3 - \frac{3}{2}x^2 + \frac{1}{2} = 0$$

Percebe-se facilmente que x=1 é uma raiz. A outras duas utilizamos o método de Briot-Rufinni.

Assim a equação $x^3 - \frac{3}{2}x^2 + \frac{1}{2} = 0$, pode ser reescrita como $(x-1)\cdot\left(x^2 - \frac{1}{2}x - \frac{1}{2}\right) = 0$, portanto temos que x-1=0 ou $x^2 - \frac{1}{2}x - \frac{1}{2} = 0$, ou seja, x=1 ou x=1 ou $x = -\frac{1}{2}$.

Observe que podemos aplicar a fórmula de Bháskara para achar as duas últimas raízes.

c)
$$|2x+3| = \frac{4}{3}$$

Pela definição de módulo tem-se que $2x + 3 = \frac{4}{3}$ ou $2x + 3 = -\frac{4}{3}$

Resolvendo ambas a equações, obtém-se $x = -\frac{5}{6}$ e $x = -\frac{13}{6}$.

a)
$$4-x \geqslant 6-2x$$

 $x \geqslant 2$

b)
$$\frac{x+2}{x-3} > 4$$
 então $\frac{x+2}{x-3} - 4 > 0$ e tirando o mínimo, tem-se $\frac{-3x+14}{x-3} > 0$

1° Caso: -3x+14>0 e x-3>0

Logo $x < \frac{14}{3}$ e x > 3. Graficamente temos

A intersecção dos intervalos nos dá a solução $S_1 = \left(3, \frac{14}{3}\right)$

2° Caso: -3x+14<0 e x-3<0

Logo
$$x > \frac{14}{3} e x < 3$$

A intersecção dos intervalos nos dá a solução vazia, ou seja, $\,S_2=\varnothing\,.\,$

A união dos dois casos nos dá a solução final

$$S = \left(3, \frac{14}{3}\right) \cup \varnothing = \left(3, \frac{14}{3}\right)$$

c)
$$(x^2-4)(x+3) \le 0$$

1° Caso:
$$-x^2 - 4 \ge 0$$
 e $x + 3 \le 0$

Para resolver $x^2-4\geq 0$, devemos dividir em dois casos, pois $x^2-4\geqslant 0$ é o mesmo que $(x-2)(x+2)\geqslant 0$, ou seja

Caso 1:
$$x-2 \ge 0$$
 e $x+2 \ge 0$

Resolvendo ambas temos que $x\geqslant 2$ e $x\geqslant -2$, que graficamente são representadas por

A solução é dada pela intersecção dos intervalos, ou seja, $S_1 = [2, +\infty)$

Caso 2:
$$x \le 2 \text{ e } x \le -2$$

Que tem como solução $x\leqslant 2$ e $x\leqslant -2$. Graficamente os intervalos são representados por

A intersecção dos intervalos tem como solução $S_2=(-\infty,-2]$

A união do caso 1 como o caso 2 nos dá $S = (-\infty, -2] \cup [2, +\infty)$

Mas o primeiro caso é a intersecção da solução $S = (-\infty, -2] \cup [2, +\infty)$, com $x + 3 \le 0$, que em termos de representação gráfica de intervalos é dada por:

Assim temos que a solução é dada por $S_3 = (-\infty, -3]$.

2° Caso:
$$x^2 - 4 \le 0$$
 e $x + 3 \ge 0$

Novamente para resolver a primeira desigualdade devemos dividir em dois casos, que de maneira análoga nos leva a solução $S_4=[-2,2]$ e juntamente com o fato de $x\geqslant -3$, nos dá a solução $S_5=[-2,2]$.

A união dos dois casos nos dá a solução final

$$S_F = S_3 \cup S_5 = (-\infty, -3] \cup [-2, 2]$$

d) $|\,3x-4\,|\,\leqslant 1\,$, usando a propriedade 2a) de valor absoluto, temos que

Solução

$$-1 \le 3x - 4 \le 1$$
 (Somando 4)

$$3 \leqslant 3x \leqslant 5$$
 (Multiplicando por $\frac{1}{3}$)

$$1 \leqslant x \leqslant \frac{5}{3}$$
, ou seja, $x \in \left[1, \frac{5}{3}\right]$

a)
$$y=x^2+3x+2$$

- a=1>0, concavidade para cima.
- Δ =1>0, duas raízes reais e diferentes, x=-1 e x=-2.
- Vértice $V = \left(-\frac{3}{2}, -\frac{1}{4}\right)$
- a>0 e $\Delta>0$, então f é positiva em $(-\infty,-2)\cup(-1,+\infty)$ e f é negativa em (-2,-1).
- Como a>0 e $x_v = -\frac{3}{2}$, segue que f é decrescente quando $x \in \left(-\infty, -\frac{3}{2}\right)$ e f é crescente quando $x \in \left(-\frac{3}{2}, +\infty\right)$

b)
$$y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x - \frac{16}{3}$$

Observa-se que a função tem uma raiz real igual a 4 (ponto que toca o eixo dos x) e possui intervalos de crescimento e decrescimento.

c) $h(x)=1+\log x$

- O domínio são os valores de x tal que $x \in (0, +\infty)$.
- A imagem são todos os reais.
- A função é crescente pois a base é maior que 1.
- Corta o eixo x, no ponto onde 1+log x=0, ou seja, log x=-1 e portanto x = 10^{-1} = $\frac{1}{10}$.

$$d) g(x) = \left(\frac{3}{2}\right)^x$$

- Domínio é todos os reais.
- A imagem é dada por $Im(f)=(0,+\infty)$.
- A função é crescente pois a base é um número maior que 1, neste caso $\frac{3}{2} = 1,5$.

4) Verifique que a expressão $\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$ pode ser usada para encontrar a equação de uma reta que passa por dois pontos.

Solução

A equação de uma reta é dada por y=ax+b. Suponha que esta reta passa por dois pontos (x_1,y_1) e (x_2,y_2) , portanto,

$$\begin{cases} ax_1 + b = y_1 \\ ax_2 + b = y_2 \end{cases}$$

Subtraindo as duas equações obtém-se que a(x_1 - x_2)= y_1 - y_2 , ou seja, $a = \frac{y_1 - y_2}{x_1 - x_2}$. Substituindo este valor em uma das equações, obtemos o valor de b, ou seja,

$$b = y_1 - ax_1 = y_1 - \left(\frac{y_1 - y_2}{x_1 - x_2}\right) x_1$$

Então a equação da reta que passa por (x_1,y_1) e (x_2,y_3) , pode ser escrita como

$$y = \left(\frac{y_1 - y_2}{x_1 - x_2}\right) x + y_1 - \left(\frac{y_1 - y_2}{x_1 - x_2}\right) x_1$$

$$y - y_1 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right) (x - x_1)$$

$$\frac{y - y_1}{x - x_1} = \frac{y_1 - y_2}{x_1 - x_2} \text{ ou}$$

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

5) Para resolver este problema, vamos fazer o gráfico da função custo. Perceba que você pode utilizar um software matemático para lhe ajudar a traçar este gráfico.

De imediato podemos desconsiderar o lado esquerdo do gráfico, pois trata-se de valores negativos para o custo C(x), o que não faz sentido.

Perceba que até o valor de x aproximadamente igual a 100, a medida em que o número de unidades de matéria prima transportada aumenta, menor é o custo de obtenção e depósito.

A partir disto, o custo novamente cresce conforme mostra o gráfico da função. Assim, podemos dizer que o custo ótimo está, aproximadamente, entre os valores de x=50 e x=85. Na unidade 4 você estudará como determinar valores de máximos e mínimos de funções e, portanto, poderá resolver este exercícios algebricamente, determinando o valor exato de x.

6) Temos duas situações a serem analisadas, se considerarmos o período de 1 dia:

Situação 1: A função é dada por f(x)=70.

Situação 2:
$$g(x) = 50 \cdot \frac{x}{200} = \frac{1}{4}x$$
, sendo x a quilometragem percorrida em 1 dia.

Para auxiliar a análise das situações apresentadas, veja o gráfico das funções f(x) e g(x):

Perceba que quando a quilometragem percorrida em um dia for igual a 280, temos o ponto em que as duas situações se igualam. Assim, se a quilometragem percorrida em um dia for exatamente igual a 280Km, as duas opções oferecidas pela agência locadora terão o mesmo custo.

Por outro lado, se em um dia a quilometragem for menor que 280Km a situação 2 é mais vantajosa, oferecendo um custo menor; se for maior que 280Km a situação 1 oferecerá um custo menor.

Assim, podemos modelar esta situação, escrevendo uma função da seguinte forma:

$$h(x) = \begin{cases} \frac{1}{4}x & , & x \le 280\\ 70 & , & x > 280 \end{cases}$$

Vale destacar que se considerarmos mais de um dia de aluguel, outras análises devem ser efetuadas.