

COMP 225 Network and System Administration

Notes #8: Linux Commands on Network Cards

K. L. Eddie Law, PhD

Macao Polytechnic Institute
School of Applied Sciences
Academic Year 2020-2021, 2nd Semester

Network Interface Cards

- Computers nowadays are set with at least one network card
- Easily to add a few more if deemed needed
- Run ping to test if network card working and connecting to the network
 - \$ ping www.google.com
- ping belongs to ICMP messages

IP Commands

- Evolving commands to set IP addresses for network interfaces
- The old time favorites were
 - ifconfig
 - netstat
 - route
- These commands can still be re-installed on Ubuntu again using \$ sudo apt install net-tools

Eddie Law

3

IP Assignment Tools

 The new "ip" tool is adopted by Ubuntu and Red Hat (in fact, Red Hat supports both tools)

Legacy Tools	New Tools
ifconfig	ip addr
netstat	ss, ip route, ip -s link, ip maddr
route	ip route
arp	ip neighbor
iptunnel	ip tunnel

To Check Network Interfaces

- For the Link layer hardware interfaces, usually
 - Wired Ethernet card, its name usually starts with an "e..."
 - Wireless wifi card, its name usually starts with an "w..."
 - These address are the MAC (Medium Access Control) addresses
- To check the names of all hardware interfaces, we can use either
 - \$ ip link [show | list]
 - \$ ip addr [show | list]
- Both commands show all found network interfaces, the word "show" and "list" are interchangeable; but in these cases, in fact, both are redundant

Eddie Law

MAC Addresses

- Hardware interfaces have names, and MAC addresses
 - 6-byte in size, similar to IPv6, uses colon-hexadecimal notation
 - One byte then a colon, and so on
 - No shorten notations, as those available for IPv6
- Device name and the associated MAC address can be found with
 - \$ ip link
- For example

Name of the interface

- 1: lo: <LOOPBACK,UP,LOWER)UP> mtu 65535 qdisc noqueue state... link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00:00
- 2: enp0s3: <BROADCAST, MULTICAST, UP, LOWER, UP> mtu 1500 qdisc... link/ether 08:00:27:a7:6e:d2 brd ff:ff:ff:ff:

MAC address

The IP Address

```
    Through the command

     $ ip addr
     • We may get
     1: lo: <LOOPBACK, UP, LOWER) UP> mtu 65535 gdisc noqueue state...
        link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00:00
        inet 127.0.0.1/8 scope host lo
           valid lft forever preferred lft forever
        inet6 ::1/128 scope host
           valid lft forever preferred lft forever
     2: enp0s3: <BROADCAST, MULTICAST, UP, LOWER, UP> mtu 1500 qdisc...
        link/ether 08:00:27:a7:6e:d2 brd ff:ff:ff:ff:ff
        inet_10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
          valid_lft 76196sec preferred_lft 76196sec
        inet6 fe80::a00:27ff:fea7:6ed2/64 scope link
           valid_lft forever<sup>1</sup>preferred_lft forever
address
```

IPv6 address

Eddie Law

Find "up" Devices or Find One Device

- Sometimes, only listing those some interfaces that are up
 - \$ ip link list up
 - \$ ip addr show up
- Like to get information about one interface only, e.g.,
 - \$ ip link list enp0s3 ← My interface card only
 - \$ ip -4 addr show enp0s3 ← IPv4 address only
 - \$ ip -6 addr show enp0s3 ← IPv6 address only
- For hostname, can use
 - \$ hostname
 - \$ hostnamectl

To Change the State of an Interface

- Change the setting of an interface
 - \$ sudo ip link set dev {device name} {up | down}
- E.g., turn off the enp0s3 interface
 - \$ sudo ip link set dev enp0s3 down
 - \$ ip link list
 - \$ ip link show up
- Ok, enough fun, put it back up
 - \$ sudo ip link set dev enp0s3 up

Eddie Law

The Command "ip addr"

- \$ sudo ip addr {add|change|replace|del} IPADDR dev {device name}
 - Where IPADDR is typical IP address with netmask, support CIDR notation
 - Broadcast address not set in this command! (different from the old "ifconfig")
- E.g., add an IPv4 and associated broadcast address to enp0s3
 \$ sudo ip addr add 10.0.0.2/24 broadcast 10.0.0.255 dev enp0s3

```
elaw@s1:~$ sudo ip addr add 10.0.0.2/24 broadcast 10.0.0.255 dev enp0s3
elaw@s1:~$ ip addr list enp0s3
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 100
0
link/ether 08:00:27:a7:6e:d2 brd ff:ff:ff:ff:
inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
valid_lft 85381sec preferred_lft 85381sec
inet 10.0.0.2/24 brd 10.0.0.255 scope global enp0s3
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fea7:6ed2/64 scope link
valid_lft forever preferred_lft forever
```

Other Settings

- Remove the added-on IPv4 address
 - \$ sudo ip addr del 10.0.0.2/24 broadcast 10.0.0.255 dev enp0s3
- The interface gets IPv4 dynamically; if not, can set it using dhcp
 - \$ sudo dhclient -4 enp0s3
 - Use "-6" for IPv6
- However, all we have done on screen are only working for the current active session
- All added/changed/modified/ settings do NOT survive a system reboot!

Eddie Law 11

Netplan and Renderers

- Netplan has been used since 2019 in Ubuntu 19.04
- The old "ifupdown" scripting system was removed
- It indicates rendering software for setting up network addresses
 - \leftarrow Ubuntu server systemd-networkd
 - ← Ubuntu desktop NetworkManager
- Check if one of them is running
 - \$ systemctl status { systemd-networkd | NetworkManager }

Netplan: Setting Network Interfaces on **Booting**

- Go check the file \$ 1s /etc/netplan
 - Suppose it shows a file named 00-installer-config.yaml
 - If the filename is different, it is ok if it is a "yaml" file
 - on screen could be:

```
network:
  ethernets:
    enp0s3:
      dhcp4: true
  version: 2
```

Quite easy to read, if modifying it, run command \$ sudo netplan apply to facilitate the changes

Eddie Law

Static IP with Netplan: Example

• Configure with the .yaml file

```
network:
  version: 2
                             Or, NetworkManager
  renderer: networkd
  ethernets:
    enp0s3:
      dhcp4: false
      addresses: [10.0.2.4/24]
      gateway4: 10.0.2.1
      nameservers:
        search: [example.com, otherdomain]
        addresses: [10.0.2.1, 8.8.8.8]
```

Then run \$ sudo netplan apply

Gateway and Friends

- To get to the Internet, we need a gateway or router
- To find the default gateway
 - \$ ip route
 - And it shows for a host using DHCP service, for example, default via 10.0.2.1 dev enp0s3 proto dhcp src 10.0.2.6 metric 100 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.6 10.0.2.1 dev enp0s3 proto dhcp scope link src 10.0.2.6 metric 100
- Any neighboring computers around??
 - \$ ip neigh show
 - If any shown, the last field can be STALE, DELAY, or REACHABLE

Eddie Law

Routing Table (Not in Exam)

- Following commands are for adding new routes or deleting routes
- For adding: "default" is optio

"default" is optional, add it to change the default route

- \$ sudo ip route add {default} [network/netmask] via [gatewayIP]
- \$ sudo ip route add {default} [network/netmask] dev [deviceName]
- For deleting:
 - \$ sudo ip route del default Delete the default route
 - \$ sudo ip route del [network/netmask] dev [deviceName]

