विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।। रचितः मानव धर्म प्रणेता

सद्गुरु श्री रणछोड़दासजी महाराज

STUDY PACKAGE

Subject: Mathematics Topic: The Point & Straight Lines

Index

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 1 to 5)
- 4. Assertion & Reason
- 5. Que. from Compt. Exams
- 6. 34 Yrs. Que. from IIT-JEE
- 7. 10 Yrs. Que. from AIEEE

Student's Name	!
Class	:
Roll No.	!

ADDRESS: R-1, Opp. Raiway Track, New Corner Glass Building, Zone-2, M.P. NAGAR, Bhopal **雷**: (0755) 32 00 000, 98930 58881, www.tekoclasses.com

(M.P.)

98930

000

Sir) PH: (0755)- 32 00

Ŧ. ď છં

MATHS: SUHAAG

1. **Distance Formula:**

The distance between the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Find the value of x, if the distance between the points (x, -1) and (3, 2) is 5 Solved Example # 1

Solution. Let P(x,-1) and Q(3, 2) be the given points. Then PQ = 5 (given)

Let
$$P(x,-1)$$
 and $Q(s, 2)$ be the given points. Then $PQ = 5$ (given $\sqrt{(x-3)^2 + (-1-2)^2} = 5$ \Rightarrow $(x-3)^2 + 9 = 25$

$$\Rightarrow$$
 x = 7 or x = -1 Ans.

Self practice problems :

- Show that four points (0, -1), (6, 7) (-2, 3) and (8, 3) are the vertices of a rectangle. Find the coordinates of the circumcenter of the triangle whose vertices are (8, 6), (8, -2) and (2, -2). Also find its circumradius.

 Ans. (5, 2), 5 2.
- 2. Section Formula: If P(x, y) divides the line joining A(x, y) & B(x, y) in the ratio m: n, then;

$$x = \frac{mx_2 + nx_1}{m + n}$$
; $y = \frac{my_2 + ny_1}{m + n}$

If $\frac{m}{}$ is positive, the division is internal, but if $\frac{m}{}$ is negative, the division is external.

If P divides AB internally in the ratio m : n & Q divides AB externally in the ratio m : n then P & Q are said to be harmonic conjugate of each other w.r.t. AB. natically, Mathematically,

$$\frac{2}{AB} = \frac{1}{AP} + \frac{1}{AQ}$$
 i.e. AP, AB & AQ are in H.P.
$$\frac{m}{AP} = \frac{1}{AP} + \frac{1}{AQ}$$
 Find the coordinates of the point which divides by

Mathematically, $\frac{2}{AB} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ} = \frac{1}{AQ}$ i.e. AP, AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ} = \frac{1}{AQ}$ i.e. AP, AP, AB & AQ are in H.P. $\frac{m}{A} = \frac{m}{AP} = \frac{1}{AQ} =$

So the coordinates of P are
$$\left(0, \frac{21}{3}\right)$$
 Ans.

ternal division
$$X = \frac{3 \times -4 - 2 \times 6}{3 - 2} \text{ and } y = \frac{3 \times 5 - 2 \times 3}{3 - 2}$$

Let A
$$(1, -2)$$
 and B $(-3, 4)$ be the given points. Let the points of trisection be P and Q. Then $AP = PQ = QB = \lambda$ (say)

$$PB = PQ + QB = 2\lambda \text{ and } AQ = AP + PQ = 2\lambda$$

$$AP : PB = \lambda : 2\lambda = 1 : 2 \text{ and } AQ : QB = 2\lambda : \lambda = 2 : 1$$

$$AP = PQ = QB = \lambda \text{ (say)}$$

$$A P Q QB = \lambda \text{ (say)}$$

the coordinates of P are
$$\left(\frac{1 \times -3 + 2 \times 1}{1 + 2}, \frac{1 \times 4 + 2 \times -2}{1 + 2}\right)$$
 or $\left(-\frac{1}{3}, 0\right)$

Hence, the points of trisection are
$$\left(-\frac{1}{3},0\right)$$
 and $\left(-\frac{5}{3},2\right)$

Self practice problems:

- In what ratio does the point (-1, -1) divide the line segment joining the points (4, 4) (7, 7)?

 Ans. 5:8 externally
- (7, 7)?

 Ans. 5:8 externally

 The three vertices of a parallelogram taken in order are (-1, 0), (3, 1) and (2, 2) respectively. Find the coordinates of the 4.

3. Centroid, Incentre & Excentre:

If A (x_1, y_1) , B (x_2, y_2) , C (x_3, y_3) are the vertices of triangle ABC, whose sides BC, CA, AB are of lengths a, b, c respectively, then the co-ordinates of the special points of triangle ABC are as follows:

Centroid G
$$\equiv$$
 $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

Incentre I
$$\equiv$$
 $\left(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right)$, and Excentre (to A) I₁ \equiv $\left(\frac{-ax_1+bx_2+cx_3}{-a+b+c}, \frac{-ay_1+by_2+cy_3}{-a+b+c}\right)$ and so on.

NOTE:

- Incentre divides the angle bisectors in the ratio, (b+c):a;(c+a):b & (a+b):c. Incentre and excentre are harmonic conjugate of each other w.r.t. the angle bisector on which they lie.
- Orthocenter, Centroid & Circumcenter are always collinear & centroid divides the line joining orthocentre & circumcenter in the ratio 2 : 1.
- In an isosceles triangle G, O, I & C lie on the same line and in an equilateral triangle, all these four points coincide.

Sol. Ex. 4 Find the coordinates of (i) centroid (ii) in-centre of the triangle whose vertices are (0, 6), (8, 12) and (8, 0). We know that the coordinates of the centroid of a triangle whose angular points are (x_1, y_1) , (x_2, y_2)

$$(x_3, y_3)$$
 are $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

$$\left(\frac{16}{3}, 6\right)$$
 Ans.

Let A (0, 6), B (8, 12) and C(8,) be the vertices of triangle ABC.

Then c = AB =
$$\sqrt{(0-8)^2 + (6-12)^2}$$
 = 10, b = CA = $\sqrt{(0-8)^2 + (6-0)^2}$ = 10

and
$$a = BC = \sqrt{(8-8)^2 + (12-0)^2} = 12.$$

The coordinates of the in-centre are $\left(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right)$

or
$$\left(\frac{12\times0+10\times8+10\times8}{12+10+10}, \frac{12\times6+10\times12+10\times0}{12+10+10}\right)$$

or
$$\left(\frac{160}{32}, \frac{192}{32}\right)$$
 or (5, 6) Ans.

Self practice problems:

5. Two vertices of a triangle are (3, -5) and (-7, 4). If the centroid is (2, -1), find the third vertex. **Ans.** (10, -2)6. Find the coordinates of the centre of the circle inscribed in a triangle whose vertices (-36, 7), (20, 7) and (0, -8)Ans. (-1, 0)are**HOPAL**

4 Area of a Triangle:

If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of triangle ABC, then its area is equal to

$$\Delta ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}, \text{ provided the vertices are considered in the counter clockwise sense. The above formula will give }$$

$$a (-) \text{ ve area if the vertices } (x_1, y_1), \text{ } i = 1, 2, 3 \text{ are placed in the clockwise sense.}$$

$$NOTE : \text{ Area of n-sided polygon formed by points } (x_1, y_1); (x_2, y_2); \dots (x_n, y_n) \text{ is given by}$$

$$\frac{1}{2} \left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \dots \begin{vmatrix} x_{n-1} & x_n \\ y_{n-1} & y_n \end{vmatrix} + \begin{vmatrix} x_n & x_1 \\ y_n & y_1 \end{vmatrix} \right)$$

$$\frac{1}{2} \left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \dots \begin{vmatrix} x_{n-1} & x_n \\ y_{n-1} & y_n \end{vmatrix} + \begin{vmatrix} x_n & x_1 \\ y_n & y_1 \end{vmatrix} \right)$$
Solved Example # 5: If the coordinates of two points A and B are (3, 4) and (5, -2) respectively. Find the coordinates of any point P if PA = PB and Area of $\Delta PAB = 10$.

(M.P.)

Sir) PH: (0755)-

Ŧ.

CLASSES,

$$\frac{1}{2} \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \dots + \begin{vmatrix} x_{n-1} & x_n \\ y_{n-1} & y_n \end{vmatrix} + \begin{vmatrix} x_n & x_1 \\ y_n & y_1 \end{vmatrix}$$

32

Solved Example # 5: If the coordinates of two points A and B are (3, 4) and (5, -2) respectively. To fany point P if PA = PB and Area of
$$\triangle PAB = 10$$
.

Solution

Let the coordinates of P be (x, y). Then
$$PA = PB \Rightarrow PA^2 = PB^2 \Rightarrow x - 3y - 1 = 0$$

Now, Area of $\triangle PAB = 10 \Rightarrow \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 5 & -2 & 1 \end{vmatrix} = \pm 10 \Rightarrow 6x + 2y - 26 = \pm 20$

$$\Rightarrow 6x + 2y - 46 = 0 \text{ or } 6x + 2y - 6 = 0$$

$$\Rightarrow 3x + y - 23 = 0 \text{ or } 3x + y - 3 = 0$$
Solving $x - 3y + 1 = 0$ and $3x + y - 23 = 0$ we get $x = 7$, $y = 2$. Solving $x - 3y + 1 = 0$ and $3x + y - 23 = 0$ or $3x + y - 3 = 0$. Thus, the coordinates of P are (7, 2) or (1, 0) Ans.

28 Self practice problems:

7. The area of a triangle is 5. Two of its vertices are (2, 1) and (3, -2). The tilded area of a quadrilateral are (6, 3), (-3, 5), (4, -2) and (x, 3x) and are denoted D, respectively. Find the values of x so that the area of triangle ABC is double the area of triangle Ans. $x = \frac{11}{8}$ or $-\frac{3}{8}$

Slope Formula:

If θ is the angle at which a straight line is inclined to the positive direction of the line is parallel to the $y - 2x$ or $y - 2x$. If $y - 2x$ is an expectively in the line is parallel to the $y - 2x$ or $y - 2x$. Then $y - 2x$ is a constant the area of triangle ABC is double the area of triangle ABC. If $y - 2x$ is a constant the line is parallel to the $y - 2x$ or $y - 2x$ is a constant of $y - 2x$ is a constant of $y - 2x$ and $y - 2x$ and

Now, Area of
$$\triangle PAB = 10 \Rightarrow \frac{1}{2} \begin{vmatrix} 3 & 4 & 1 \\ 5 & -2 & 1 \end{vmatrix} = \pm 10 \Rightarrow 6x + 2y - 26 = \pm 20$$

$$\Rightarrow$$
 6x + 2y - 46 = 0 or 6x + 2y - 6 = 0
 \Rightarrow 3x + y - 23 = 0 or 3x + y - 3 = 0

The area of a triangle is 5. Two of its vertices are
$$(2, 1)$$
 and $(3, -2)$. The third vertex lies on $y = x + 3$. Find the third vertex.

Ans. $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(-\frac{3}{2}, \frac{3}{2}\right)$

The vertices of a quadrilateral are (6, 3), (-3, 5), (4, -2) and (x, 3x) and are denoted by A, B, C and D, respectively. Find the values of x so that the area of triangle ABC is double the area of triangle DBC.

Ans. $x = \frac{11}{8}$ or $-\frac{3}{8}$

Ans.
$$x = \frac{11}{8} \text{ or } -\frac{3}{8}$$

Slope Formula:

Slope Formula:

If θ is the angle at which a straight line is inclined to the positive direction of x-axis, & θ is the angle at which a straight line is inclined to the positive direction of x-axis, & θ is θ is θ , then the slope of the line, denoted by m, is defined by m = θ in θ is θ , m does not exist, but the line is parallel to the y-axis. If θ = 0, then m = 0 & the line is parallel to the H.O.D.

If A (x_1, y_1) & B (x_2, y_2) , $x_1 \neq x_2$, are points on a straight line, then the slope m of the line is given by

$$\mathbf{m} = \left(\frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}\right).$$

Solved Example # 6: What is the slope of a line whose inclination is : (ii) 90º (iii) 120º (iv) 150º

Solution

(i) Here
$$\theta = 0^{\circ}$$

Slope = $\tan \theta = \tan 0^{\circ} = \mathbf{0}$ Ans.

- Here $\theta = 90^{\circ}$ (ii)
- The slope of line is **not defined** Ans.
- (iii)

:. Slope =
$$\tan \theta = \tan 120^\circ = \tan (180^\circ - 60^\circ) = -\tan 30^\circ = -\sqrt{3}$$
 Ans.

(iv)

.: Slope = tan θ = tan 150° = tan (180° – 30°) = – tan 30° =
$$-\frac{1}{\sqrt{3}}$$
 Ans.

Solved Example # 7: Find the slope of the line passing through the points: (i) (1, 6) and (-4, 2)

Solution

(i) Let
$$A = (1, 6)$$
 and $B = (-4, -2)$

.. Slope of AB =
$$\frac{2-6}{-4-1} = \frac{-4}{-5} = \frac{4}{5}$$
 Ans. (Using slope = $\frac{y_2 - y_1}{x_2 - x_1}$)

(ii) Let

.. Slope of AB =
$$\frac{9-9}{2-5} = \frac{0}{-3} = \mathbf{0}$$
 Ans.

Self p 9. 10.	practice problems: Find the value of x, if the slope of the line joining (1, 5) and (x, −7) is 4. Ans. −2 What is the inclination of a line whose slope is	of 24				
6.	(i) 0 (ii) 1 (iii) -1 (iv) $-1/\sqrt{3}$ Ans. (i) 0° , (ii) 45° , (iii) 135° , (iv) 150° (iv) $-1/\sqrt{3}$ Condition of collinearity of three points: Points A (x_1, y_1) , B (x_2, y_2) , C (x_3, y_3) are collinear if	4				
	(i) $m_{AB} = m_{BC} = m_{CA}$ i.e. $\left(\frac{y_1 - y_2}{x_1 - x_2}\right) = \left(\frac{y_2 - y_3}{x_2 - x_3}\right)$ (ii) $\Delta ABC = 0$ i.e. $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$ (iv) A divides the line segment BC in some ratio.	Straight line				
Solve Soluti	Example # 0 Show that the points (1, 1), (2, 3) and (3, 3) are confident.	•				
Self p	∴ Slope of AB = slope of AC ∴ AB & BC are parallel ∴ A, B, C are collinear because B is on both lines AB and BC. practice problem:	BHOPAL, (M.P.)				
11.	Prove that the points (a, 0), (0, b) and (1, 1) are collinear if $\frac{1}{a} + \frac{1}{b} = 1$	OPA				
7. -	Equation of a Straight Line in various forms: (i) Point-Slope form: $y - y_1 = m(x - x_1)$ is the equation of a straight line whose slope is m & which passes through	_ gh ►				
Solve	the Example # 9: First (And the equation of a line passing through (2, -3) and inclined at an angle of 135° with the passing discrete of views.	heထ္ထ				
lasses.c	positive direction of x-axis. ion. Here, m = slope of the line = $\tan 135^\circ = \tan (90^\circ + 45^\circ) = -\cot 45^\circ = -1$, $x_1 = 2$, $y_2 = -3$ So, the equation of the line is $y - y_1 = m(x - x_1)$	8930 5				
Self p	the point (\dot{x}_1, y_1) . In the point (\dot{x}_1, y_1) . In the equation of a line passing through $(2, -3)$ and inclined at an angle of 135° with the positive direction of x-axis. In the positive direction of x-axis. In the equation of the line = tan 135° = tan $(90^\circ + 45^\circ) = -\cot 45^\circ = -1$, $x_1 = 2$, $y_2 = -3$. So, the equation of the line is $y - y_1 = m(x - x_1)$. I.e. $y - (-3) = -1(x - 2)$ or $y + 3 = -x + 2$ or $x + y + 1 = 0$. Ans. $y - (-3) = -1$ and $y - (-3) = -1$ and $y - (-3) = -1$. Find the equation of the perpendicular bisector of the line segment joining the points A(2, 3) and B(6, -5). Ans. $x - 2y - 6 = 0$. (ii) Slope — intercept form: $y = mx + c$ is the equation of a straight line whose slope is m & which makes intercept c on the y-axis.	nd 00				
Solve	ed Example # 10: Find the equation of a line with slope –1 and cutting off an intercept of 4 units on negati	veછે				
n website Self p 13.	direction of y-axis. ion. Here $m=-1$ and $c=-4$. So, the equation of the line is $y=mx+c$ i.e. $y=-x-4$ or $x+y+4=0$ Ans. practice problem: Find the equation of a straight line which cuts off an intercept of length 3 on y-axis and is parallel to the line joining t points $(3,-2)$ and $(1,4)$. Ans. $3x+y-3=0$	PH: (0755				
Find the equation of the line joining the points (-1, 3) and (4, -2) Solved Example # 11 Find the equation of the line joining the points (-1, 3) and (4, -2)						
udy Pa	Here the two points are $(x_1, y_1) = (-1, 3)$ and $(x_2, y_2) = (4, -2)$. So, the equation of the line in two-point form is $y - 3 = \frac{3 - (-2)}{-1 - 4} (x + 1) \Rightarrow y - 3 = -x - 1 \Rightarrow x + y - 2 = 0$ Ans.	KARIYA (S. R.				
Self p Self p	Find the equations of the sides of the triangle whose vertices are $(-1, 8)$, $(4, -2)$ and $(-5, -3)$. Also find the equation of the equatio					
EE Do	(iv) Determinant form : Equation of line passing through (x_1, y_1) and (x_2, y_2) is $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$	HS : SU				
Solve Soluti	Find the equation of line passing through (2, 4) & (-1, 3). ion.	. MAT				
Self p	Find the equations of the sides of the triangle whose vertices are $(-1, 8)$, $(4, -2)$ and $(-5, -3)$. Also find the equation of the median through $(-1, 8)$. Ans. $2x + y - 6 = 0$, $x - 9y - 22 = 0$, $11x - 4y + 43 = 0$, $21x + y + 13 = 0$ (iv) Determinant form: Equation of line passing through (x_1, y_1) and (x_2, y_2) is $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ and Example # 12 Find the equation of line passing through $(2, 4)$ & $(-1, 3)$. ion. $\begin{vmatrix} x & y & 1 \\ 2 & 4 & 1 \\ -1 & 3 & 1 \end{vmatrix} = 0 \Rightarrow x - 3y + 10 = 0$ Ans. $4x + y + 5 = 0$ (v) Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of a straight line which makes intercepts a & b on OX & Contraction of the equation of the line which passes through the point $(3, 4)$ and the sum of its intercept on the axes is 14.	SSES, H.O.I				
	Ans. $4x + y + 5 = 0$ (v) Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of a straight line which makes intercepts a & b on OX & C	OYO CFP				
Solve	respectively. d Example # 13: Find the equation of the line which passes through the point (3, 4) and the sum of its intercept on the axes is 14.	iù ets				
Sol.	Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$ (i)					
	This passes through (3, 4), therefore $\frac{3}{a} + \frac{4}{b} = 1$ (ii)					
	It is given that $a + b = 14 \Rightarrow b = 14 - a$. Putting $b = 14 - a$ in (ii), we get $\frac{3}{a} + \frac{4}{14 - a} = 1$ $\Rightarrow a^2 - 13a + 42 = 0$ $\Rightarrow (a - 7) (a - 6) = 0 \Rightarrow a = 7, 6$ For $a = 7$, $b = 14 - 7 = 7$ and for $a = 6$, $b = 14 - 6 = 8$.					
	Putting the values of a and b in (i), we get the equations of the lines $\frac{x}{7} + \frac{y}{7} = 1 \text{ and } \frac{y}{6} + \frac{y}{8} = 1 \text{or} x + y = 7 \text{ and } 4x + 3y = 24 \text{Ans.}$					

Find the equation point. Ans. 3x + 2y = 12.
 (vi) Perpendicular/Normal form: xcos α + ysin α = p (where y = 1) line where the length of the perpendicular from the origin O on the line is p and this perpendicular from α with positive x-axis.
 Solved Example # 14: Find the equation of the line which is at a distance 3 from the origin and the perpendicular from the origin to the line makes an angle of 30° with the positive direction of the x-axis.

$$x \cos 30^{\circ} + y \sin 30^{\circ} = 3 \text{ or } x \frac{\sqrt{3}}{2} + \frac{y}{2} = 3 \text{ or } \sqrt{3} x + y = 6$$
 Ans.

Self practice problem:

The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of y-axis. Find the equation of the line.

Parametric form : P (r) = (x, y) = (x₁ + r cos θ , y₁ + r sin θ) or $\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta}$ = r is the equation of the line in $\frac{x - x_1}{\sin \theta} = \frac{y - y_1}{\sin \theta}$ parametric form, where 'r' is the parameter whose absolute value is the distance of any point (x, y) on the line from the fixed point (x_1, y_1) on the line.

Solved Example # 15: Find the equation of the line through the point A(2, 3) and making an angle of 45° with the x-axis. Also determine the length of intercept on it between A and the line x + y + 1 = 0The equation of a line through A and making an angle of 45° with the x-axis is $\frac{x-2}{\cos 45^{\circ}} = \frac{y-3}{\sin 45^{\circ}} \text{ or } \frac{x-2}{\frac{1}{\sqrt{2}}} = \frac{y-3}{\frac{1}{\sqrt{2}}}$ Suppose this line meets the line x + y + 1 = 0 at P such that AP = r. Then the coordinates of P are given by $\frac{x-2}{\cos 45^{\circ}} = \frac{y-3}{\sin 45^{\circ}} = r \Rightarrow \qquad x = 2 + r \cos 45^{\circ}, y = 3 + r \sin 45^{\circ}$ $x = 2 + \frac{r}{\sqrt{2}}, y = 3 + \frac{r}{\sqrt{2}}$

$$\frac{x-2}{\cos 45^{\circ}} = \frac{y-3}{\sin 45^{\circ}} \text{ or } \frac{x-2}{\frac{1}{\sqrt{2}}} = \frac{y-3}{\frac{1}{\sqrt{2}}}$$
 or $x-y$

$$\frac{x-2}{\cos 45^{\circ}} = \frac{y-3}{\sin 45^{\circ}} = r \Rightarrow \qquad x = 2 + r \cos 45^{\circ}, \ y = 3 + r \sin 45^{\circ}$$

$$\Rightarrow \qquad x = 2 + \frac{1}{\sqrt{2}}, \ y = 3 + \frac{1}{\sqrt{2}}$$

Since P lies on x + y + 1 = 0, so 2 +
$$\frac{r}{\sqrt{2}}$$
 + 3 + $\frac{r}{\sqrt{2}}$ + 1 = 0

$$\Rightarrow \sqrt{2} r = -6 \Rightarrow r = -3\sqrt{2} \Rightarrow \text{ length AP} = |r| = 3\sqrt{2}$$

Thus, the length of the intercept = $3\sqrt{2}$ Ans.

Self practice problem:

A straight line is drawn through the point $A(\sqrt{3}, 2)$ making an angle of $\pi/6$ with positive the straight line $\sqrt{3x} - 4y + 8 = 0$ in B, find the distance between A and B. Ans. 6 (viii)

General Form: ax + by + c = 0 is the equation of a straight line in the general form: ax + by + c = 0 is the equation.

Here, ax = 2, bx = 3, cx = 5Ans. $x = 2 + \frac{r}{\sqrt{2}}$, $x = 3 + \frac{r}{\sqrt{2}}$ Thus, the coordinates of P are $ax = 3\sqrt{2}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Thus, the length of the intercept $ax = 3\sqrt{2}$. Ans.

Self practice problem: $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. $ax = 2 + \frac{r}{\sqrt{2}}$, $ax = 2 + \frac{r}{\sqrt{2}}$. Ans. A straight line is drawn through the point $A(\sqrt{3}, 2)$ making an angle of $\pi/6$ with positive direction of the x-axis. If it meets

PH: (0755)- 32 00 000,

Ŧ. ď

છં

MATHS: SUHAAG R. KARIYA

General Form: ax + by + c = 0 is the equation of a straight line in the general form

x - intercept =
$$-\frac{c}{a}$$

y - intercept =
$$-\frac{c}{b}$$

$$\therefore \quad \text{slope} = -\frac{1}{b} = \frac{3}{3} \qquad \text{Ans}$$

x-intercept
$$= -\frac{c}{a} = -\frac{5}{2}$$
 Ans

y-intercept =
$$\frac{5}{3}$$
 Ans

Self practice problem :

19.

8.

y-intercept = $\frac{5}{3}$ Ans. actice problem:

Find the slope, x-intercept & y-intercept of the line 3x - 5y - 8 = 0. Ans $\frac{3}{5}$, $\frac{8}{3}$, $-\frac{8}{5}$ Angle between two straight lines in terms of their slopes:

If m_1 & m_2 are the slopes of two intersecting straight lines (m_1 $m_2 \neq -1$) & θ is the acute angle between them, then $\tan \theta$ TEKO

$$= \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.$$

Let m_1 , m_2 , m_3 are the slopes of three lines $L_1 = 0$; $L_2 = 0$; $L_3 = 0$ where $m_1 > m_2 > m_3$ then the interior angles of the Δ ABC found by these lines are given by, (i)

$$\tan A = \frac{m_1 - m_2}{1 + m_1 m_2}$$
; $\tan B = \frac{m_2 - m_3}{1 + m_2 m_3}$ & $\tan C = \frac{m_3 - m_1}{1 + m_3 m_1}$

The equation of lines passing through point (x_1, y_1) and making angle α with the line (ii) $y = m\dot{x} + c$ are given by :

$$(y - y_1) = \tan (\theta - \alpha) (x - x_1)$$
 &

$$(y - y_1) = \tan (\theta + \alpha) (x - x1)$$
, where $\tan \theta = m$.

 $(y-y, \dot{y}) = \tan (\theta + \alpha) (x-x1)$, where $\tan \theta = m$. Solved Example # 17: The acute angle between two lines is $\pi/4$ and slope of one of them is 1/2. Find the slope of the Solution.

If θ be the acute angle between the lines with slopes m_1 and m_2 , then $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

$$1 = \left| \frac{1 - 2m_2}{2 + m_2} \right|$$

$$\frac{1 - 2m_2}{2 + m_2} = + 1 \text{ or } -1$$

$$\Rightarrow$$
 m₂ = $-\frac{1}{3}$

$$\frac{1-2m_2}{2+m_2} = 1 \qquad \Rightarrow m_2 = -\frac{1}{3} \quad \text{and} \quad \frac{1-2m_2}{2+m_2} = -1 \qquad \Rightarrow \qquad m_2 = 3.$$

$$m_2 = 3$$

Straight line

98930 58881, BHOPAL, (M.P.)

 \therefore The slope of the other line is either – 1/3 or 3 Ans. Solved Example # 18: Find the equation of the straight line which passes through the origin and making angle 60° with the line $x + \sqrt{3} y + 3\sqrt{3} = 0$.

Solution.

Given line is $x + \sqrt{3} y + 3\sqrt{3} = 0$.

$$\Rightarrow \qquad y = \left(-\frac{1}{\sqrt{3}}\right) x - 3$$

Slope of (1) =
$$-\frac{1}{\sqrt{3}}$$
.

$$\Rightarrow y = \left(-\frac{1}{\sqrt{3}}\right) \times -3 \qquad \therefore \qquad \text{Slope of (1)} = -\frac{1}{\sqrt{3}}.$$
Let slope of the required line be m. Also between these lines is given to be 60° .
$$\Rightarrow \tan 60^\circ = \left|\frac{m - \left(-\frac{1}{\sqrt{3}}\right)}{1 + m \left(-\frac{1}{\sqrt{3}}\right)}\right| \Rightarrow \sqrt{3} = \left|\frac{\sqrt{3}m + 1}{\sqrt{3} - m}\right| \Rightarrow \frac{\sqrt{3}m + 1}{\sqrt{3} - m} = \pm \sqrt{3}$$

$$\sqrt{3} = \left| \frac{\sqrt{3}m + 1}{\sqrt{3} - m} \right| =$$

$$\frac{\sqrt{3}m+1}{\sqrt{3}-m}=\pm\sqrt{3}$$

$$\frac{\sqrt{3}m+1}{\sqrt{3}-m} = -\sqrt{3} \implies \sqrt{3} \ m+1 = 3 - \sqrt{3} \ m \Rightarrow \quad m = \frac{1}{\sqrt{3}}$$
 Using y = mx + c, the equation of the required line is

$$y = \frac{1}{\sqrt{3}} x + 0$$
 i.e. $x - \sqrt{3} y = 0$

$$\frac{\sqrt{3}m+1}{\sqrt{3}-m} = -\sqrt{3}$$

$$\Rightarrow \qquad \sqrt{3} \text{ m} + 1 = -3 + 4$$

$$ax + by + c_2 = 0$$
 is $\frac{c_1 - c_2}{\sqrt{a^2 + b^2}}$

Using y = mx + c, the equation of the required ... $y = \frac{\sqrt{3}m + 1}{\sqrt{3} - m} = -\sqrt{3} \qquad \Rightarrow \qquad \sqrt{3}m + 1 = -3 + \sqrt{3}m$ $y = \frac{\sqrt{3}m + 1}{\sqrt{3} - m} = -\sqrt{3} \qquad \Rightarrow \qquad \sqrt{3}m + 1 = -3 + \sqrt{3}m$ $y = \frac{\sqrt{3}m + 1}{\sqrt{3} - m} = -\sqrt{3} \qquad \Rightarrow \qquad \sqrt{3}m + 1 = -3 + \sqrt{3}m$ $y = \frac{\sqrt{3}m + 1}{\sqrt{3} - m} = -\sqrt{3} \qquad \Rightarrow \qquad \sqrt{3}m + 1 = -3 + \sqrt{3}m$ y = m is not defined y = m the origin.The equation of the required line is not defined. Thus, the required line is a vertical line. This line is to pass throughout the origin.

The equation of the required line is x = 0 Ans. y = m the origin.Solft practice problem culateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Find the equation of the other sides of the triangle.

Ans. $(2 + \sqrt{3})x - y + 2\sqrt{3} - 1 = 0$ and $(2 + \sqrt{3})x - y + 2\sqrt{3} - 1 = 0$.

Parallel Lines:

(i) When two straight lines are parallel their slopes are equal. Thus any line parallel to y = mx + c. Where x = a parameters.

(ii) Two lines x + y + c = 0 and x + b + c = 0 are an equations must be same.

(iv) The area of the parallelogram $= \frac{p + p^2}{\sin \theta}$, where p, x + c, y + c = c and y + c = c, y + c = c.

23. Solution:

Solution:

39. Ex. 19: Find the equation of the straight line that has $y + \text{the equation of the equation of the required line is <math>y + c = 0$. Solution is y + c = 0 and y + c = 0 and

$$y = \frac{2}{3} x + 4 \text{ or } 2x - 3y + 12 = 0 \text{ Ans.}$$

= length of the
$$\perp$$
 from (0, 1) to x + y + 2 = 0 = $\frac{|0+1+2|}{\sqrt{1^2+1^2}} = \frac{3}{\sqrt{2}}$

Thus, the length of the side of the square is $\frac{3}{\sqrt{2}}$ and hence its area = $\left(\frac{3}{\sqrt{2}}\right)^2 = \frac{9}{2}$

Solved Example # 21: Find the area of the parallelogram whose sides are x + 2y + 3 = 0, 3x + 4y - 5 = 0, 2x + 4y + 5 = 0 and 3x + 4y - 10 = 0

Solution.

10.

Packag

Solution.

Find all points on x + y = 4 that lie at a unit distance from the line 4x + 3y - 10 = 0. **Solution.** Note that the coordinates of an arbitrary point on x + y = 4 can be obtained by putting x = t (or y = t) and then obtaining

y (or x) from the equation of the line, where t is a parameter. Putting x = t in the equation x + y = 4 of the given line, we obtain y = 4 - t. So, coordinates of an arbitrary point on the given line are P(t, 4 - t). Let P(t, 4 - t) be the required point. Then, distance of P(t, 4 - t) from the line P(t, 4 - t) be the required point.

$$\Rightarrow \left| \frac{4t + 3(4-t) - 10}{\sqrt{4^2 + 3^2}} \right| = 1 \Rightarrow |t + 2| = 5 \Rightarrow t + 2 = \pm 5$$

$$\Rightarrow t = -7 \text{ or } t = 3$$
Hence, required points are (-7, 11) and (3, 1)

Self practice problem :

Find the length of the altitudes from the vertices of the triangle with vertices :(-1, 1), (5, 2) and (3, -1).

Ans.
$$\frac{16}{\sqrt{13}}$$
, $\frac{8}{\sqrt{5}}$, $\frac{16}{\sqrt{37}}$

Reflection of a point about a line:

(i) Foot of the perpendicular from a point on the line is

(ii) The image of a point (x_1, y_1) about the line ax + by + c = 0 is

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = -2 \frac{ax_1 + by_1 + c}{a^2 + b^2}$$

Solved Example # 27 Find the foot of perpendicular of the line drawn from P(-3, 5) on the line x - y + 2 = 0. Solution. Slope of PM = -1

 \therefore Equation of PM is x + y - 2 = 0(i) solving equation (i) with x - y + 2 = 0, we get coordinates of **M (0, 2)**

Find the image of the point P(-1, 2) in the line mirror 2x - 3y + 4 = 0. Let image of P is Q.

$$\therefore PM = MQ & PQ \perp AB$$

M is
$$\left(\frac{h-1}{2}, \frac{k+2}{2}\right)$$

$$\therefore \qquad 2 \ \left(\frac{h-1}{2}\right) - 3 \left(\frac{k+2}{2}\right) + 4 = 0.$$

or
$$2h - 3k = 0$$
(i)

slope of PQ =
$$\frac{k-2}{h+1}$$

PQ \perp AB

$$\begin{array}{ll} \therefore & \frac{k-2}{h+1} \times \frac{2}{3} = -1. \\ \Rightarrow & 3h+2k-1=0......(ii) \\ \text{soving (i) & (ii), we get} \end{array}$$

$$h = \frac{3}{13}, k = \frac{2}{13}$$

.. Image of P(-1, 2) is Q
$$\left(\frac{3}{13}, \frac{2}{13}\right)$$
 Ans.

Aliter The image of P (-1, 2) about the line 2x - 3y + 4 = 0 is
$$\frac{x+1}{2} = \frac{y-2}{-3} = -2 \frac{[2(-1)-3(2)+4]}{2^2+(-3)^2}$$

$$\frac{x+1}{2} = \frac{y-2}{-3} = -2 \frac{[2(-1)-3(2)+4]}{2^2+(-3)^2}$$

$$\frac{x+1}{2} = \frac{y-2}{-3} = \frac{8}{13}$$

$$\Rightarrow 13x + 13 = 16 \qquad \Rightarrow \qquad x = \frac{3}{1}$$

&
$$13y - 26 = -24$$
 \Rightarrow $y = \frac{2}{13}$ \therefore image is $\left(\frac{3}{13}, \frac{2}{13}\right)$

Self practice problems :

- Find the foot of perpendicular of the line drawn from (-2, -3) on the line 3x 2y 1 = 0. **Ans.** $\left(\frac{-23}{13}, \frac{-41}{13}\right)$ 27.
- Find the image of the point (1, 2) in y-axis. **Ans.** (-1, 2) 28.

Straight line

Equation of straight lines passing through $P(x_1, y_1)$ & equally inclined with the lines $a_1x + b_2y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ are those which are parallel to the bisectors between these two lines & passing through the point P. Straight Solved Example # 29

Find the equations of the bisectors of the angle between the straight lines 3x - 4y + 7 = 0 and 12x - 5y - 8 = 0.

Solution.

The equations of the bisectors of the angles between 3x - 4y + 7 = 0 and 12x - 5y - 8 = 0 are

9 of 24

(<u>M</u>.P.

32

Sir) PH: (0755)-

Ŧ. ď છં

MATHS: SUHAAG R. KARIYA

CLASSES, H.O.D.

$$\frac{12x - 5y - 8}{\sqrt{12^2 + (-5)^2}}$$

or
$$\frac{3x - 4y + 7}{5} = \pm \frac{12x - 5y - 8}{13}$$

or $\frac{3x-4y+7}{5} = \pm \frac{12x-5y-8}{13}$ or $39x-52y+91 = \pm (60 x-25 y-8)$ Taking the positive sign, we get **21** x+27 y-131=0 as one bisector Taking the negative sign, we get **99** x-77 y+51=0 as the other bisector. Ans. Ans.

Self practice problem:

29. Find the equations of the bisectors of the angles between the following pairs of straight lines 3x + 4y + 13 = 0 and 12x - 5y + 32 = 0Ans. 21x - 77y - 9 = 0 and 99x + 27y + 329 = 0Ans. 21x - 77y - 9 = 0 and 99x + 27y + 329 = 0

Methods to discriminate between the acute angle bisector & the obtuse angle $\frac{80}{10}$ 98930

If θ be the angle between one of the lines & one of the bisectors, find tan $\theta.$ If $\tan\theta < 1$, then $2\theta < 90^\circ$ so that this bisector is the acute angle bisector. If $\tan\theta > 1$, then we get the bisector to be the obtuse angle bisector.

Let L = 0 & L₂ = 0 are the given lines & u₁ = 0 and u_2 = 0 are the bisectors between L₁ = 0 & u_2 = 0. Take a point P on any one of the lines L₁ = 0 or L₂ = 0 and drop perpendicular on u_1 = 0 & u_2 = 0 as shown. 8

$$\begin{vmatrix} 1 & p \\ p & d \end{vmatrix} \Rightarrow u_1$$
 is the acute angle bisector.
 $\begin{vmatrix} p & p \\ p & d \end{vmatrix} \Rightarrow u_2$ is the obtuse angle bisector.
 $\begin{vmatrix} p & d \\ p & d \end{vmatrix} \Rightarrow u_2$ the lines L, & L₂ are perpendicular.

If aa' + bb' < 0, then the equation of the bisector of this acute angle is

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$

If, however, aa' + bb' > 0, the equation of the bisector of the obtuse angle is :

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$

For the straight lines 4x + 3y - 6 = 0 and 5x + 12y + 9 = 0, find the equation of the (i) bisector of the obtuse angle between them; (ii) bisector of the acute angle between them;

The equations of the given straight lines are

$$4x + 3y - 6 = 0$$
(1)
 $5x + 12y + 9 = 0$ (2)
The equation of the bisectors of the angles between lines (1) and (2) are

$$\frac{4x+3y-6}{\sqrt{4^2+3^2}} = \pm \frac{5x+12y+9}{\sqrt{5^2+12^2}} \text{ or } \frac{4x+3y-6}{5} = \pm \frac{5x+12y+9}{13}$$

Taking the positive sign, we have

Self practice problem:

29. Find the equations of the bisectors of the angles by
$$3x + 4y + 13 = 0$$
 and $12x - 5y + 32 = 0$
Ans. $21x - 77y - 9 = 0$ and $99x + 27y + 329 = 0$

Ans. $21x - 77y - 9 = 0$ and $99x + 27y + 329 = 0$

40. Methods to discriminate between the acute bisector:

(i) If θ be the angle between one of the lines θ one of the bise if θ and θ and θ and θ are the given lines θ and θ are perpendicular.

(ii) Let θ and θ are θ and θ are the given lines θ and θ are perpendicular.

(iii) Let θ and θ are perpendicular.

(iii) If θ and θ are perpendicular.

(iii) An angle θ and θ are perpendicular.

(iii) θ and θ are perpendicular.

(iii) θ and θ are θ and θ and θ are perpendicular.

(iii) θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendicular.

(iii) θ and θ are θ and θ are perpendi

Taking the negative sign, we have

$$\frac{4x+3y-6}{5} = -\frac{5x+12y+9}{13}$$

$$52x+39y-78 = -25x-60y-45 \text{ or } 77x+99y-33=0$$

$$7x+9y-3=0$$

or
$$52x + 39y - 78 = -25x - 60y - 45$$
 or $77x + 99y - 33 = 0$

Hence the equation of the bisectors are
$$9x - 7y - 41 = 0$$
 and
$$7x + 9y - 3 = 0$$
(4

Now slope of line (1) = $-\frac{4}{3}$ and slope of the bisector (3) = $\frac{9}{7}$

If θ be the acute angle between the line (1) and the bisector (3), then

$$\tan \theta = \left| \frac{\frac{9}{7} + \frac{4}{3}}{1 + \frac{9}{7} \left(-\frac{4}{3} \right)} \right| = \left| \frac{27 + 28}{21 - 36} \right| = \left| \frac{55}{-15} \right| = \frac{11}{3} > 1$$

Hence 9x - 7y - 41 = 0 is the bisector of the obtuse angle between the given lines (1) and (2)

Since 9x - 7y - 41 is the bisector of the obtuse angle between the given lines, therefore the other bisector 7x + 9y - 3 =(ii) 0 will be the bisector of the acute angle between the given lines.

2nd Method:

 $a_1 = -4$, $a_2 = 5$, $b_1 = -3$, $b_2 = 12$ $a_2 + b_1b_2 = -20 - 36 = -56^2 < 0$

Here $a_1 = -4$, $a_2 = 5$, $b_1 = -3$, $b_2 = 12$ Now $a_1a_2 + b_2b_3 = -20 - 36 = -56 < 0$ origin does not lie in the obtuse angle between lines (1) and (2) and hence equation of the bisector of the obtuse of the obtuse $a_1a_2 + b_2a_3 + b_3a_3 + b$ angle between lines (1) and (2) will be

$$\frac{-4x-3y+6}{\sqrt{(-4)^2+(-3)^2}} = -\frac{5x+12y+9}{\sqrt{5^2+12^2}}$$
 or
$$13(-4x-3y+6) = -5(5x+12y+9)$$
 or
$$27x-21y-123 = 0 \text{ or } 9x-7y-41=0 \text{ Ans.}$$

and the equation of the bisector of the acute angle will be (origin lies in the acute angle)

the equation of the bisector of the acute
$$\frac{-4x - 3y + 6}{\sqrt{(-4)^2 + (-3)^2}} = \frac{5x + 12y + 9}{\sqrt{5^2 + 12^2}}$$
77x + 99y - 33 = 0 or 7x

7x + 9y - 3 = 0Ans.

Self practice problem :

or

Find the equations of the bisectors of the angles between the lines x + y - 3 = 0 and 7x - y + 5 = 0 and state which of them bisects the acute angle between the lines. **Ans.** x - 3y + 10 = 0 (bisector of the obtuse angle); 4x + 1 = 0 (bisector of the acute angle) Ξ

17.

To discriminate between the bisector of the angle containing a point: To discriminate between the bisector of the angle containing the origin & that of the angle not containing the origin. Rewrite the equations, ax + by + c = 0 & a'x + b'y + c' = 0 such that the constant terms c, c' are positive. Then;

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$
 gives the equation of the bisector of the angle containing the origin & $\frac{ax + by + c}{\sqrt{a^2 + b^2}}$

a'x + b'y + c'gives the equation of the bisector of the angle not containing the origin. In general equation of the section of the section (α, β) is

000

8

Sir

Ŧ.

ď

છું

KARIYA

ď

CLASSES, H.O.D.

bisector which contains the point $(\alpha \beta)$ is

$$\frac{a\,x + b\,y + c}{\sqrt{a^2 + b^2}} = \frac{a'\,x + b'\,y + c'}{\sqrt{a'^2 + b'^2}} \text{ or } \frac{a\,x + b\,y + c}{\sqrt{a^2 + b^2}} = -\frac{a'\,x + b'\,y + c'}{\sqrt{a'^2 + b'^2}} \text{ according as }$$

 $a\alpha + b\beta + c$ and $a'\alpha + b'\beta + c'$ having same sign or otherwise.

Solved Example # 31

Example # 31

For the straight lines 4x + 3y - 6 = 0 and 5x + 12y + 9 = 0, find the equation of the bisector of the angle which $\frac{3x}{2}$. 품

For point O(0, 0), 4x + 3y - 6 = -6 < 0 and 5x + 12y + 9 = 9 > 0Hence for point O(0, 0) 4x + 3y - 6 and 5x + 12y + 9 are of opposite signs.

Hence equation of the bisector of the angle between the given lines containing the origin will be

$$\frac{4x+3y-6}{\sqrt{(4)^2+(3)^2}} = -\frac{5x+12y+9}{\sqrt{5^2+12^2}}$$
or
$$\frac{4x+3y-6}{5} = -\frac{5x+12y+9}{13}$$
or
$$\frac{52x+39y-78=-25x-60y-45}{77x+99y-33=0}$$
or
$$\frac{7x+9y-3=0}{7x+9y-3=0}$$
Ans.

Three lines $a_1x + b_2$ Three lines $a_1x + b_2$ Three lines $a_1x + b_2$ MATHS: SUHAGE Find the equation of the bisector of the angle between the lines x + 3x - 6y - 5 = 0 which contains the point (1, -3). Ans. 3x - 19 = 0

Condition of Concurrency:

Three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ & $a_3x + b_3y + c_3 = 0$ are concurrent if

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$$

Alternatively: If three constants A, B & C (not all zero) can be found such that

 $A(a_1x+b_1y+c_1)+B(a_2x+b_2y+c_2)+C(a_3x+b_3y+c_3)\equiv 0$, then the three straight lines are concurrent. Solved Example # 32

Prove that the straight lines 4x + 7y = 9, 5x - 8y + 15 = 0 and 9x - y + 6 = 0 are concurrent.

Solution.

Given lines are
$$4x + 7y - 9 = 0$$

$$5x - 8y + 15 = 0$$
and
$$9x - y + 6 = 0$$

$$\Delta = \begin{vmatrix} 4 & 7 & -9 \\ 5 & -8 & 15 \\ 9 & -1 & 6 \end{vmatrix} = 4(-48 + 15) - 7(30 - 135) - 9(-5 + 72) = -132 + 735 - 603 = 0$$

Hence lines (1), (2) and (3) are concurrent.

Self practice problem:

Find the value of m so that the lines 3x + y + 2 = 0, 2x - y + 3 = 0 and x + my - 3 = 0 may be concurrent.

Ans.

Family Of Straight Lines:

The equation of a family of straight lines passing through the point of intersection of the lines, $L_1 \equiv a_1 x + b_1 y + c_1 = 0 \& L_2 \equiv a_2 x + b_2 y + c_2 = 0$ is given by $L_1 + k L_2 = 0$ i.e. $(a_1 x + b_1 y + c_1) + k (a_2 x + b_2 y + c_2) = 0$, where k is an arbitrary real number.

www.tekoclasses.com website:

So the given equation represents the straight lines y - 3x = 0 and y - 2x = 0 Ans.

We have
$$2x^2 - 7xy + 2y^2 = 0$$
.

$$y^2 = 0 \Rightarrow 2x(x - 3y) - y(x - 3y) = 0$$

Example # 30 r most represented by $2x^2 - 7xy + 2y^2 = u$.

n.

We have $2x^2 - 7xy + 2y^2 = 0$. $\Rightarrow 2x^2 - 6xy - xy + 3y^2 = 0 \Rightarrow 2x(x - 3y) - y (x - 3y) = 0$ $\Rightarrow (x - 3y) (2x - y) = 0 \Rightarrow x - 3y = 0 \text{ or } 2x - y = 0$ Thus the given equation represents the lines x - 3y = 0 and 2x - y = 0. The equations of the lines passing through the origin and perpendicular to the given lines are y - 0 = -3(x - 0)

and
$$y - 0 = -\frac{1}{2}(x - 0)$$
 [:: (Slope of $x - 3$ y = 0) is 1/3 and (Slope of $2x - y = 0$) is 2

Solved Example # 37

Find the angle between the pair of straight lines $4x^2 + 24xy + 11y^2 = 0$

Solution. Given equation is $4x^2 + 24xy + 11y^2 = 0$ Here a = coeff. of $x^2 = 4$, b = coeff. of $y^2 = 11$ and 2h = coeff. of xy = 24 \therefore h =

Here a = coeff. of
$$x^2 = 4$$
, b = coeff. of $y^2 = 11$
and $2h = coeff$. of $xy = 24$ \therefore $h = 11$

Now
$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \left| \frac{2\sqrt{144 - 44}}{4 + 11} \right| = \frac{4}{3}$$

Where θ is the acute angle between the lines

 \therefore acute angle between the lines is $\tan^{-1}\left(\frac{4}{3}\right)$ and obtuse angle between them is

$$\pi - \tan^{-1}\left(\frac{4}{3}\right)$$
 Ans.

Given equation is
$$3x^2 - 5xy + y^2 = 0$$
(1) comparing it with the equation $ax^2 + 2hxy + by^2 = 0$ (2) we have $a = 3$. $2h = -5$: and $b = 4$

Solved Example # 38 Find the equation of the bisectors of the angle between the lines represented by $3x^2 - 5xy + y^2 = 0$ Solution.

Given equation is $3x^2 - 5xy + y^2 = 0$ (1) comparing it with the equation $ax^2 + 2hxy + by^2 = 0$ (2) we have a = 3, 2h = -5; and b = 4Now the equation of the bisectors of the angle between the pair of lines (1) is $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$ or $\frac{x^2 - y^2}{3 - 4} = \frac{xy}{-\frac{5}{2}}$; or $\frac{x^2 - y^2}{-1} = \frac{2xy}{-5}$ or $5x^2 - 2xy - 5y^2 = 0$ Ans.

End the area of the triangle formed by the lines $y^2 - 9xy + 18x^2 = 0$ and y = 9 Ans $\frac{27}{-1}$ sq. units

or
$$\frac{x^2 - y^2}{3 - 4} = \frac{xy}{-\frac{5}{2}}$$
; or $\frac{x^2 - y^2}{-1} = \frac{2xy}{-5}$

or
$$5x^2 - 2xy - 5y^2 = 0$$
 Ans

Self practice problems:

34. Find the area of the triangle formed by the lines $y^2 - 9xy + 18x^2 = 0$ and y = 9.

Ans. $\frac{27}{4}$ sq. units

35. If the pairs of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle between the other pair, prove that pq = -1.

General equation of second degree representing a pair of Straight lines:

(i) $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines if: $abc + 2fgh - af^2 - bg^2 - ch^2 = 0, i.e. if \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0.$ (ii) The angle θ between the two lines representing by a general equation is the same as that between the two lines represented by its homogeneous part only.

Solved Example # 39 Prove that the equation $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ represents a pair of straight lines. Find the co-ordinates of their point of intersection and also the angle between them.

Solution. Given equation is $2x^2 + 5xy + 2y^2 + 6x + 7y + 4 = 0$ Writing the equation (1) as a quadratic equation in x we have $2x^2 + (5y + 6) \times 4y^2 + 7y + 4 = 0$ Writing the equation (1) as a quadratic equation in x we have $2x^2 + (5y + 6) \times 4y^2 + 7y + 4 = 0$ $-(5y + 6) \pm \sqrt{(5y + 6)^2 - 4 \cdot 2(3y^2 + 7y + 4)}$

$$abc + 2fgh - af^2 - bg^2 - ch^2 = 0$$
, i.e. if
$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

$$2x^2 + 5xy + 2y^2 + 6x + 7y + 4 = 0$$
ng the equation (1) as a quadratic equation in x we have

$$X = \frac{-(5y+6) \pm \sqrt{(5y+6)^2 - 4 \cdot 2(3y^2 + 7y + 4)}}{4}$$

$$= \frac{-(5y+6) \pm \sqrt{25y^2 + 60y + 36 - 24y^2 - 56y - 32}}{4}$$

$$= \frac{-(5y+6) \pm \sqrt{y^2 + 4y + 4}}{4} = \frac{-(5y+6) \pm (y+2)}{4}$$

$$= \frac{-5y-6+y+2}{4} = \frac{-5y-6-y-2}{4}$$

$$\therefore$$
 $x = \frac{-5y - 6 + y + 2}{4}, \frac{-5y - 6 - y - 2}{4}$

or
$$4x + 4y + 4 = 0$$
 and $4x + 6y + 8 = 0$

or 4x + 4y + 4 = 0 and 4x + 6y + 8 = 0or x + y + 1 = 0 and 2x + 3y + 4 = 0Hence equation (1) represents a pair of straight lines whose equation are x + y + 1 = 0and 2x + 3y + 4 = 0(2) Ans.

Solving these two equations, the required point of intersection is (1, -2) Ans.

Find the combined equation of the straight lines passing through the point (1, 1) and parallel to the lines represented by the equation $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$ and find the angle between them.

Ans.
$$x^2 - 5xy + 4y^2 + 3x - 3y = 0$$
, $tan^{-1} \left(\frac{3}{5}\right)^{-1}$

22. **Homogenization:**

The equation of a pair of straight lines joining origin to the points of intersection of the line $L \equiv \ell x + my + n = 0$ and a second degree curve,

$$S \equiv ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

CLASSES, H.O.D.

TEKO

....(1)

The equation is obtained by homogenizing the equation of curve with the help of equation of line.

NOTE: Equation of any curve passing through the points of intersection of two curves C, = 0 and

Solved Example # 40

NOTE: Equation of any curve passing through the points of intersection of two curves $C_1 = 0$ and $C_2 = 0$ is given by $\lambda C_1 + \mu C_2 = 0$ where $\lambda \& \mu$ are parameters.

Example # 40

Prove that the angle between the lines joining the origin to the points of intersection of the straight line $y = 3x \frac{2\sqrt{2}}{3x}$

+ 2 with the curve
$$x^2$$
 + 2xy + 3y² + 4x + 8y - 11 = 0 is $tan^{-1} \frac{2\sqrt{2}}{3}$

Solution.

Equation of the given curve is $x^2 + 2xy + 3y^2 + 4x + 8y - 11 = 0$

and equation of the given straight line is y - 3x = 2; 2

Making equation (1) homogeneous equation of the second degree in \dot{x} any y with the help of (1), we have

$$x^{2} + 2xy + 3y^{2} + 4x\left(\frac{y - 3x}{2}\right) + 8y\left(\frac{y - 3x}{2}\right) - 11\left(\frac{y - 3x}{2}\right)^{2} = 0$$

or
$$x^2 + 2xy + 3y^2 + \frac{1}{2}(4xy + 8y^2 - 12x^2 - 24xy) - \frac{11}{4}(y^2 - 6xy + 9x^2) = 0$$
 or $4x^2 + 8xy + 12y^2 + 2(8y^2 - 12x^2 - 20xy) - 11(y^2 - 6xy + 9x^2) = 0$ or $-119x^2 + 34xy + 17y^2 = 0$ or $119x^2 - 34xy - 17y^2 = 0$ or $7x^2 - 2xy - y^2 = 0$ This is the equation of the lines joining the origin to the points of intersection of (1) and (2). Comparing equation (3) with the equation $ax^2 + 2hxy + by^2 = 0$ we have $a = 7$, $b = -1$ and $2h = -2$ i.e. $h = -1$ If θ be the acute angle between pair of lines (3), then

or
$$-119x^2 + 34xy + 17y^2 = 0$$
 or $119x^2 - 34xy - 17y^2 = 0$

This is the equation of the straight lines joining the origin to the points of intersection of (1) and (2). Comparing equation (3) with the equation
$$ax^2 + 2hxy + by^2 = 0$$
 we have $a = 7$, $b = -1$ and $2h = -2$ i.e. $h = -1$ If θ be the acute angle between pair of lines (3), then
$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \left| \frac{2\sqrt{1+7}}{7-1} \right| = \frac{2\sqrt{8}}{6} = \frac{2\sqrt{2}}{3}$$
 \therefore $\theta = \tan^{-1} \frac{2\sqrt{2}}{3}$ Proved Self practice problems:

37. Find the equation of the straight lines joining the origin to the points of intersection of the lines and $a = 0$ and the curve $a = 0$ and the curve $a = 0$ and a

Find the equation of the straight lines joining the origin to the points of intersection of the line 3x + 4y - 5 = 0 and the curve $2x^2 + 3y^2 = 5$. **Ans.** $x^2 - y^2 - 24xy = 0$

Find the equation of the straight lines joining the origin to the points of intersection of the line lx + my + n = 0 and the curve $y^2 = 4ax$. Also, find the condition of their perpendicularity. **Ans.** $4alx^2 + 4amxy + ny^2 = 0$; 4al + n = 0

$$x = \frac{mx_2 + nx_1}{m + n}$$
 ; $y = \frac{my_2 + ny_1}{m + n}$

is positive, the division is internal, but if $\frac{m}{}$ is negative, the division is external.

Note: If Pdivides AB internally in the ratio m: n & Qdivides AB externally in the ratio m: n then P&Q are said to be harmonic conjugate of each other w.r.t. AB.

 $\frac{2}{1} = \frac{1}{1} + \frac{1}{1}$ i.e. AP, AB & AQ are in H.P. Mathematically: $AB^{-}AP^{'}AQ$

CENTROID AND INCENTRE: If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of triangle ABC, whose 3.

sides BC, CA, AB are of lengths a, b, c respectively, then the coordinates of the centroid are:

Note that incentre divides the angle bisectors in the ratio (b+c):a; (c+a):b & (a+b):c.

Orthocentre, Centroid & circumcentre are always collinear & centroid divides the line joining orthocentre cercumcentre in the ratio 2:1.

In an isosceles triangle G, O, I & C lie on the same line .

SLOPE FORMULA: If θ is the angle at which a straight line is inclined to the positive direction of x-axis, & $0^{\circ} \le \theta < 180^{\circ}$, $\theta \ne 90^{\circ}$, then the slope of the line, denoted by m, is defined by m = tan θ . If θ is 90° , m does not exist but the line is possible to the x-axis. , 8 m does not exist, but the line is parallel to the y-axis.

Sir) PH: (0755)- 32

If $\theta = 0$, then m = 0 & the line is parallel to the x-axis.

If A (x_1, y_1) & B (x_2, y_2) , $x_1 \neq x_2$, are points on a straight line, then the slope m of the line is given by:

$$\mathbf{m} = \left(\frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}\right)$$

CONDITION OF COLLINEARITY OF THREE POINTS - (SLOPE FORM):

EQUATION OF A STRAIGHT LINE IN VARIOUS FORMS:

Slope – intercept form: y = mx + c is the equation of a straight line whose slope is m & which makes an intercept \bullet

Slope one point form: $y - y_1 = m(x - x_1)$ is the equation of a straight line whose slope m & which passes through the point (x_1, y_1) .

Parametric form: The equation of the line in parametric form is given by

 $\frac{x-x_1}{x_1} = \frac{y-y_1}{x_1-y_2} = r$ (say). Where 'r' is the distance of any point (x_1, y_1) on the line from the fixed point (x_1, y_1) on the $\frac{1}{\cos \theta} = \frac{1}{\sin \theta} = \frac{1}$ (x, y) lies on the left of (x_1, y_1) .

Two point form: $y - y_1 = \frac{y_2 - y_1}{y_1}$ $(x - x_1)$ is the equation of a straight line which passes through the points:

Intercept form: $\frac{x}{y} = 1$ is the equation of a straight line which makes intercepts a & on OX & OY respectively.

(vi) **Perpendicular form:** $\cos \alpha + \sin \alpha = p$ is the equation of the straight line where the length of the perpendicular from the origin O on the line is $\,p\,$ and this perpendicular makes angle $\,\alpha\,$ with positive side of $\,x$ -axis .

(vii) **General Form:** ax + by + c = 0 is the equation of a straight line in the general form

7.

POSITION OF THE POINT (x_1, y_1) **RELATIVE TO THE LINE ax+by+c=0:** If $ax_1 + by_1 + c$ is of the same sign as c, then the point (x_1, y_1) lie on the origin side of ax + by + c = 0. But if the sign of $ax_1 + by_1 + c$ is opposite to that of c, the point (x_1, y_1) will lie on the non-origin side of ax + by + c = 0.

THE RATIO IN WHICH A GIVEN LINE DIVIDES THE LINE SEGMENT JOINING TWO 8. POINTS:

Let the given line ax + by + c = 0 divide the line segment joining $A(x_1, y_1)$ & $B(x_2, y_2)$ in the ratio m:n, then $\frac{m}{n} = -\frac{a x_1 + b y_1 + c}{n}$. If A & B are on the same side of the given line then $\frac{m}{n}$ is negative but if A & B $ax_2 + by_2 + c$

are on opposite sides of the given line, then $\frac{m}{n}$ is positive

9. LENGTH OF PERPENDICULAR FROM A POINT ON A LINE:

The length of perpendicular from $P(x_1, y_1)$ on ax + by + c = 0 is $\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$

10. ANGLE BETWEEN TWO STRAIGHT LINES IN TERMS OF THEIR SLOPES:

If $m_1 & m_2$ are the slopes of two intersecting straight lines $(m_1 m_2 \neq -1) & \theta$ is the acute angle between them, then

Note: Let m_1, m_2, m_3 are the slopes of three lines $L_1 = 0$; $L_2 = 0$; $L_3 = 0$ where $m_1 > m_2 > m_3$ then the interior. angles of the \triangle ABC found by these lines are given by,

 $\frac{m_1 - m_2}{m_1 - m_2}$; $\tan B = \frac{m_2 - m_3}{m_2 - m_3}$ & $\tan C = \frac{m_2 - m_3}{m_2 - m_3}$ $1 + m_1 m_2$ $1 + m_2 m_3$

11. PARALLEL LINES:

- When two straight lines are parallel their slopes are equal. Thus any line parallel to ax + by + c = 0 is of the type ax = 0(i) + by + k = 0. Where k is a parameter.
- (ii) The distance between two parallel lines with equations $ax + by + c_1 = 0$ & $ax + by + c_2 = 0$ is

Note that the coefficients of x & y in both the equations must be same.

The area of the parallelogram = $\frac{p_1 p_2}{100}$, where $p_1 & p_2$ are distances between two pairs of opposite sides & θ is the (iii) angle between any two adjacent sides. Note that area of the parallelogram bounded by the lines $y = m_1x + c_1$

 $y = m_1 x + c_2$ and $y = m_2 x + d_1$, $y = m_2 x + d_2$ is given by

12. PERPENDICULAR LINES:

- When two lines of slopes $m_1 \& m_2$ are at right angles, the product of their slopes is -1, i.e. $m_1 m_2 = -1$. Thus any line perpendicular to ax + by + c = 0 is of the form bx ay + k = 0, where k is any parameter. **(i)**

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$
. Alternatively: If three constants A, B & C can be found such that

12. PERFENDICULAR LINES:

(i) When two lines of slopes m_i^2 m, are at right angles, the product of their slopes is -1, i.e. $m_1m_2=-1$. Thus any line perpendicular to ax + by + c = 0 is of the form bx = ay + k = 0, where k is any parameter.

Straight lines ax + by + c = 0 & a'x + b'y + c' = 0 are at right angles if & only if a' + bb' = 0.

Straight lines ax + by + c = 0 & a'x + b'y + c' = 0 are at right angles if & only if a' + bb' = 0.

Square $(y - y_1) = \tan (\theta - \alpha) (x - x_1) & (y - y_1) = \tan (\theta + \alpha) (x - x_1)$, where $\tan \theta = m$.

13. Equations of straight lines through (x_1, y_1) making angle α with y = mx + c are: $(y - y_1) = \tan (\theta - \alpha) (x - x_1) & (y - y_1) = \tan (\theta + \alpha) (x - x_1)$, where $\tan \theta = m$.

14. CONDITION OF CONCURRENCY:

Three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ & $a_3x + b_3y + c_3 = 0$ are concurrent if

15. AREA OFA TRIANGLE:

16. If (x_1, y_1) , i = 1, 2, 3 are the vertices of a triangle, then its area is equal to $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$, provided the vertices are $\frac{\pi}{1}$ are placed in the counter clockwise sense. The above formula will give a(-) ve area if the vertices (x_1, y_1) , i = 1, 2, 3 are placed in the clockwise sense.

17. The points (x_1, y_1) , i = 1, 2, 3 are collinear if $x_2 = y_2 = 1$, $x_3 = y_3 = 1$.

18. The equation of a family of lines passing through the point of intersection of $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ is given by $(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0$, where k is an arbitrary real number.

19. Proof: Since it is the first degree equation in $x \in y$ it is a straight line. Secondly point B satisfies the equation because the co-ordinates of B satisfy $u_1 = 0$ and $u_1 = 0$. Similarly for the point D. Hence the result.

19. On the similar bines $u_1 = u_1 = 0$ represents the diagonal AC.

Similarly for the point D. Hence the result.

On the similar lines $u_1u_2 - u_3u_4 = 0$ represents the diagonal AC. **Note:** The diagonal AC is also given by $u_1 + \lambda u_4 = 0$ and $u_2 + \mu u_3 = 0$, if the two equations are identical for some λ and CLASSES,

For getting the values of $\lambda \& \mu$ compare the coefficients of x, y & the constant terms].

BISECTORS OF THE ANGLES BETWEEN TWO LINES: 18.

(i) Equations of the bisectors of angles between the lines ax + by + c = 0 & $= \pm \frac{a'x + b'y + c'}{a'x + b'y + c'}$ ax + by + c

a'x + b'y + c' = 0 ($ab' \neq a'b$) are: $\sqrt{a^2+b^2}$

To discriminate between the acute angle bisector & the obtuse angle bisector (ii)

If θ be the angle between one of the lines & one of the bisectors, find $\tan \theta$. If $|\tan \theta| < 1$, then $2 \theta < 90^\circ$ so that this bisector is the acute angle bisector.

If $|\tan \theta| > 1$, then we get the bisector to be the obtuse angle bisector. (iii) To discriminate between the bisector of the angle containing the origin & that of the angle not containing the origin. Rewrite the equations, ax + by + c = 0 &

a'x + b'y + c' = 0 such that the constant terms c, c' are positive. Then;

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$
 gives the equation of the bisector of the angle containing the origin &
$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = -\frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$
 gives the equation of the bisector of the angle not containing the origin.

To discriminate between acute angle bisector & obtuse angle bisector proceed as follows Write (iv) ax + by + c = 0 & a'x + b'y + c' = 0 such that constant terms are positive.

	If $aa' + bb' < 0$, then the angle between the lines that contains the origin is acute and the equation of the bisector					
	this acute angle is $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$	5				
	this acute angle is $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$ therefore $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = - \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$ is the equation of other bisector.	3				
	therefore $\frac{3}{\sqrt{a^2+b^2}} = -\frac{3}{\sqrt{a'^2+b'^2}}$ is the equation of other bisector.	1				
	If, however, $aa' + bb' > 0$, then the angle between the lines that contains the origin is obtuse & the equation of					
	If, however, $aa' + bb' > 0$, then the angle between the lines that contains the origin is obtuse & the equation of the bisector of this obtuse angle is: $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}; \text{ therefore } \frac{ax + by + c}{\sqrt{a^2 + b^2}} = - \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$	aiyii				
	$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}; \text{ therefore } \frac{ax + by + c}{\sqrt{a^2 + b^2}} = - \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$	õ				
()	is the equation of other bisector.					
(v)	Another way of identifying an acute and obtuse angle bisector is as follows: Let $L_1 = 0$ & $L_2 = 0$ are the given lines & $u_1 = 0$ and $u_2 = 0$ are the bisectors					
	between $L_1 = 0 \& L_2 = 0$. Take a point P on any one of the lines $L_1 = 0$ or $L_2 = 0$ and					
	drop perpendicular on $u_1 = 0 \& u_2 = 0$ as shown. If, $ p < q \Rightarrow u_1$ is the acute angle bisector.	?				
	$ p > q \Rightarrow u_1$ is the obtuse angle bisector.	Ė				
	$ p = q \Rightarrow \text{the lines } L_1 \& L_2 \text{ are perpendicular}.$	į				
	$ p < q \Rightarrow u_1$ is the acute angle bisector. $ p > q \Rightarrow u_1$ is the obtuse angle bisector. $ p = q \Rightarrow$ the lines $L_1 \& L_2$ are perpendicular. Note: Equation of straight lines passing through $P(x_1, y_1) \&$ equally inclined with the lines $a_1x + b_1y + c_1 = 0 \& a_2x + b_2y + c_2 = 0$ are those which are parallel to the bisectors between these two lines & passing through the point $P(x_1, y_1) \& P(x_2, y_1) \& P(x_2, y_2) \& P(x_2, y$	į				
10	passing unough the point 1.	,				
E (i)	A PAIR OF STRAIGHT LINES THROUGH ORIGIN: A homogeneous equation of degree two of the type $ax^2 + 2hxy + by^2 = 0$ always represents a pair of straight lines	5				
S.C.	passing through the origin & if:	5				
asse	A homogeneous equation of degree two of the type $ax^2 + 2hxy + by^2 = 0$ always represents a pair of straight lines passing through the origin & if: (a) $h^2 > ab \Rightarrow$ lines are real & distinct. (b) $h^2 = ab \Rightarrow$ lines are coincident. (c) $h^2 < ab \Rightarrow$ lines are imaginary with real point of intersection i.e. $(0,0)$	5				
00 E	(c) $h^2 < ab \implies lines are imaginary with real point of intersection i.e. (0,0)$	9				
www.tekoclasses.com (ii) (iii) (ii)	If $y = m_1 x & y = m_2 x$ be the two equations represented by $ax^2 + 2hxy + by^2 = 0$, then;					
M M	$m_1 + m_2 = -\frac{2h}{b} \& m_1 m_2 = \frac{a}{b}.$	3				
≽ (iii)	If θ is the acute angle between the pair of straight lines represented by,	4				
ite:	$ax^2 + 2hxy + by^2 = 0$, then; $\tan \theta = \left \frac{2\sqrt{h^2 - ab}}{a + b} \right $.	700				
eps	The condition that these lines are	3				
N W	The condition that these lines are: (a) At right angles to each other is $a + b = 0$. i.e. co-efficient of x^2 + coefficient of $y^2 = 0$.	Ē				
Ö Note:	(b) Coincident is $h^2 = ab$. (c) Equally inclined to the axis of x is $h = 0$. i.e. coeff. of $xy = 0$. A homogeneous equation of degree n represents n straight lines passing through origin.	<u> </u>				
<u>20.</u>	General Equation Of Second Degree Representing A Pair Of Straight Lines:	Ė				
cka (1)	$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines if:	į				
Pa	$abc + 2fgh - af^2 - bg^2 - ch^2 = 0$, i.e. if $\begin{vmatrix} a & h & g \\ h & b & f \end{vmatrix} = 0$.	<u>ن</u> و				
tudy Package from website: (i) 700.	g f c	į				
(11)	The angle θ between the two lines representing by a general equation is the same as that between the two lines	2				
pe 21.	represented by its homogeneous part only. The joint equation of a pair of straight lines joining origin to the points of intersection of the line given by $lx + my + y$	ב פ				
wn	n = 0	Š				
FREE Download Si 17 (ii)		,				
E	is $ax^2 + 2hxy + by^2 + 2gx \left(\frac{tx + my}{-n} \right) + 2fy \left(\frac{tx + my}{-n} \right) + c \left(\frac{tx + my}{-n} \right) = 0$ (iii)	2				
FR	(lx+my)	Ĭ				
22	represented by its homogeneous part only. The joint equation of a pair of straight lines joining origin to the points of intersection of the line given by $lx + my + n = 0$	į				
22.	The equation to the straight lines bisecting the angle between the straight lines, $v^2 - v^2$	<u>:</u>				
	$ax^2 + 2hxy + by^2 = 0$ is $\frac{x - y}{a - b} = \frac{xy}{b}$.	j.				

$$ax^2 + 2hxy + by^2 = 0$$
 is $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$.

23. The product of the perpendiculars, dropped from (x_1, y_1) to the pair of lines represented by the equation, ax^2 $2hxy + by^2 = 0$ is $\frac{ax_1^2 + 2hx_1y_1 + by_1^2}{2hx_1y_1 + by_1^2}$

Any second degree curve through the four point of intersection of f(x y) = 0 & xy = 0 is given by $f(xy) + \lambda xy = 0$ where f(xy) = 0 is also a second degree curve. **EXERCISE-1** 24.

- The sides AB, BC, CD, DA of a quadrilateral have the equations x + 2y = 3, x = 1, x 3y = 4, 5x + y + 12 = 0 respectively. Find the angle between the diagonals AC & BD. Q.1
- Q.2 Find the co-ordinates of the orthocentre of the triangle, the equations of whose sides are x + y = 1, 2x + 3y = 6, 4x - y + 4 = 0, without finding the co-ordinates of its vertices. Two vertices of a triangle are (4, -3) & (-2, 5). If the orthocentre of the triangle is at (1, 2), find the coordinates of
- Q.3 the third vertex.
- The point A divides the join of P(-5,1) & Q(3,5) in the ratio K:1. Find the two values of K for which the area of triangle ABC, where B is (1,5) & C is (7,-2), is equal to 2 units in magnitude. Determine the ratio in which the point P(3,5) divides the join of A(1,3) & B(7,9). Find the harmonic conjugate of Q.4
- Q.5 P w.r.t. A & B.

- Q.6 A line is such that its segment between the straight lines 5x-y-4=0 and 3x+4y-4=0 is bisected at the point (1,5). Obtain the equation.
- A line through the point P(2, -3) meets the lines x 2y + 7 = 0 and x + 3y 3 = 0 at the points A and B respectively. If P divides AB externally in the ratio 3: 2 then find the equation of the line AB.
- The area of a triangle is 5. Two of its vertices are (2, 1) & (3, -2). The third vertex lies on y = x + 3. Find the third vertex.
- A variable line, drawn through the point of intersection of the straight lines $\frac{x}{1} + \frac{y}{1} = 1$ & $\frac{x}{1} + \frac{y}{2} = 1$, meets the Q.9 coordinate axes in A & B. Show that the locus of the mid point of 2xy(a+b) = ab(x+y).
- Two consecutive sides of a parallelogram are 4x + 5y = 0 & 7x + 2y = 0. If the equation to one diagonal is $11x + 7y^{6}$ = 9, find the equation to the other diagonal.
- The line 3x + 2y = 24 meets the y-axis at A & the x-axis at B. The perpendicular bisector of AB meets the line through (0, -1) parallel to x-axis at C. Find the area of the triangle ABC.
- If the straight line drawn through the point $P(\sqrt{3}, 2)$ & making an angle $\frac{\pi}{6}$ with the x-axis, meets the line $\sqrt{3}$ x -Q.12 4y + 8 = 0 at Q. Find the length PQ.
- Q.13 Find the condition that the diagonals of the parallelogram formed by the lines ax + by + c = 0; ax + by + c' = 0; a'x + b'y + c = 0 & a'x + b'y + c' = 0 are at right angles. Also find the equation to the diagonals of the parallelogram.
- If lines be drawn parallel to the axes of co-ordinates from the points where $x \cos \alpha + y \sin \alpha = p$ meets them so as to meet the perpendicular on this line from the origin in the points P and Q then prove that $|PQ| = 4p |\cos 2\alpha| |\csc^2 2\alpha|$. Q.14
- The points (1,3) & (5,1) are two opposite vertices of a rectangle. The other two vertices lie on the line y = 2xFind c & the remaining vertices. A straight line L is perpendicular to the line 5x - y = 1. The area of the triangle formed by the line L & the coordinate
- vw.tekoclasses.com Q.16 Q.17 Q.18 Q.19 axes is 5. Find the equation of the line.
- Two equal sides of an isosceles triangle are given by the equations 7x y + 3 = 0 and x + y 3 = 0 & its third side
- passes through the point (1, -10). Determine the equation of the third side. The vertices of a triangle OBC are O(0, 0), B(-3, -1), C(-1, -3). Find the equation of the line parallel to BC & intersecting the sides \overrightarrow{OB} & \overrightarrow{OC} , whose perpendicular distance from the point $(\overrightarrow{0}, 0)$ is half.
- Find the direction in which a straight line may be drawn through the point (2, 1) so that its point of intersection with the line $4y - 4x + 4 + 3\sqrt{2} + 3\sqrt{10} = 0$ is at a distance of 3 units from (2, 1).
- Consider the family of lines, $5x + 3y 2 + K_1(3x y 4) = 0$ and $x y + 1 + K_2(2x y 2) = 0$. Find the equation
- of the line belonging to both the families without determining their vertices. Given vertices A(1, 1), B(4, -2) & C(5, 5) of a triangle, find the equation of the perpendicular dropped from C to the interior bisector of the angle A.
- **Mebsite** Q.22 If through the angular points of a triangle straight lines be drawn parallel to the opposite sides, and if the intersections of these lines be joined to the opposite angular points of the traingle then using co-ordinate geometry, show that the lines so obtained are concurrent.
- **E**Q.23
- Determine all values of α for which the point (α, α^2) lies inside the triangle formed by the lines α for which the point (α, α^2) lies inside the triangle formed by the lines α 2x + 3y 1 = 0; x + 2y 3 = 0; 5x 6y 1 = 0. If the equation, $3x^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a pair of straight lines, prove that the equation to the third pair of straight lines passing through the points where these meet the axes is, Package 1 $ax^2 - 2hxy + by^2 + 2gx + 2fy + c +$
- Q.25 Q.26 A straight line is drawn from the point (1, 0) to the curve $x^2 + y^2 + 6x - 10y + 1 = 0$, such that the intercept made on it by the curve subtends a right angle at the origin. Find the equations of the line.
- Determine the range of values of $\theta \in [0, 2\pi]$ for which the point $(\cos \theta, \sin \theta)$ lies inside the triangle formed by the lines x + y = 2; $x - y = 1 & 6x + 2y - \sqrt{10} = 0$.
- Find the co-ordinates of the incentre of the triangle formed by the line x + y + 1 = 0; x y + 3 = 0 & 7x y= 0. Also find the centre of the circle escribed to 7x - y + 3 = 0.
- $=\frac{AB}{}$ BD. The equation of the line AD is **Ğ**Q.28 In a triangle ABC, D is a point on BC such that 2x + 3y + 4 = 0 & the equation of the line AB is 3x + 2y + 1 = 0. Find the equation of the line AC.
- Show that all the chords of the curve $3x^2 y^2 2x + 4y = 0$ which subtend a right angle at the origin are concurrent. Does this result also hold for the curve, $3x^2 + 3y^2 2x + 4y = 0$? If yes, what is the point of concurrency & if not, give reasons.
 - Without finding the vertices or angles of the triangle, show that the three straight lines au + bv = Q.30 au - bv = 2ab and u + b = 0 from an isosceles triangle where $u \equiv x + y - b & v \equiv x - y - a & a, b \neq 0$.

- Q.1 The equations of perpendiculars of the sides AB & AC of triangle ABC are x - y - 4 = 0 and 2x - y - 5 = 0 respectively. If the vertex A is (-2, 3) and point of intersection of perpendiculars bisectors is find the equation of medians to the sides AB & AC respectively.
- Q.2 A line 4x + y = 1 through the point A(2, -7) meets the line BC whose equation is 3x - 4y + 1 = 0 at a point B. Find the equation of the line AC, so that AB = AC.
- If $x \cos \alpha + y \sin \alpha = p$, where $p = -\frac{\sin^2 \alpha}{2}$ be a straight line, prove that the perpendiculars on this straight line from Q.3 the points $(m^2, 2m)$, (mm', m+m'), $(m^2, 2m')$ form a G.P.
- A(3, 0) and B(6, 0) are two fixed points and $P(x_1, y_1)$ is a variable point. AP and BP meet the y-axis at C & D respectively and AD meets OP at Q where 'O' is the origin. Prove that CQ passes through a fixed point and find its
- Find the equation of the straight lines passing through (-2, -7) & having an intercept of length 3 between the straight lines 4x + 3y = 12, 4x + 3y = 3. Let ABC be a triangle with AB = AC. If D is the mid point of BC, E the foot of the perpendicular from D to AC and 0.5
- Q.6 F the midpoint of DE, prove analytically that AF is perpendicular to BE.
- Q.7 Two sides of a rhombous ABCD are parallel to the lines y = x + 2 & y = 7x + 3. If the diagonals of the rhombous intersect at the point (1, 2) & the vertex A is on the y-axis, find the possible coordinates of A.

	Q.8	The equations of the perpendicular bisectors of the sides AB & AC of a triangle ABC are $x-y+5=0$ & $x+2y=0$, respectively. If the point A is $(1,-2)$, find the equation of the line BC.						
	Q.9	A pair of straight lines are drawn through the origin form with the line $2x + 3y = 6$ an isosceles triangle right angled $\frac{1}{8}$						
	Q.10	CA: 7x + y + 14 = 0. Find the bisector of the interior angle at B and the exterior angle at C. Determine the nature						
	the interior angle at A and find the equaion of the bisector. Q.11 A point P is such that its perpendicular distance from the line $y-2x+1=0$ is equal to its distance from the Find the equation of the locus of the point P. Prove that the line $y=2x$ meets the locus in two points Q & R,							
	Q.12	the origin is the mid point of QR. A triangle has two sides $y = m_1 x$ and $y = m_2 x$ where m_1 and m_2 are the roots of the equation $b\alpha^2 + 2h\alpha + a = 0$. If (a, b) be the orthocentre of the triangle, then find the equation of the third side in terms of a, b						
	Q.13	and h. Find the area of the triangle formed by the straight lines whose equations are $x + 2y - 5 = 0$; $2x + y - 7 = 0$ and $x - y + 1 = 0$ without determining the coordinates of the vertices of the triangle. Also compute the triangle of the triangle and hence correct types the nature of triangle.						
	Q.14	tangent of the interior angles of the triangle and hence comment upon the nature of triangle. Find the equation of the two straight lines which together with those given by the equation $6x^2 - xy - y^2 + x + 12y - 35 = 0$ will make a parallelogram whose diagonals intersect in the origin.						
	Q.15	Find the equations of the sides of a triangle having $(4, -1)$ as a vertex, if the lines $x - 1 = 0$ and $x - y - 1 = 0$ are the equations of two internal bisectors of its angles.						
	Q.16	Equation of a line is given by $y + 2at = t(x - at^2)$, t being the parameter. Find the locus of the point of intersection of the lines which are at right angles.						
	Q.17	respectively. If the rectangle OAPR be completed then show that the locus of the foot of the perpendicular drawn from						
ses.co	Q.18 Q.19 Q.20 Q.21	A point moves so that the distance between the feet of the perpendiculars from it on the lines $bx^2 + 2hxy + ay^2 = 0$ is a constant 2d. Show that the equation to its locus is,						
clas	Q.19	The sides of a triangle are $U_{-} \equiv x \cos \alpha_{+} + y \sin \alpha_{-} - p_{-} = 0$, $(r = 1, 2, 3)$. Show that the orthocentre is given by						
7.tek	Q.20	$U_1\cos(\alpha_2 - \alpha_3) = U_2\cos(\alpha_3 - \alpha_1) = U_3\cos(\alpha_1 - \alpha_2)$. P is the point (-1, 2), a variable line through P cuts the x & y axes at A & B respectively Q is the point on AB such that PA, PQ, PB are H.P. Show that the locus of Q is the line y = 2x.						
WWW	Q.21	The equations of the altitudes AD, BE, CF of a triangle \overrightarrow{ABC} are $x + y = 0$, $x - 4y = 0$ and $2x - y = 0$ respectively. The coordinates of A are $(t, -t)$. Find coordinates of B & C. Prove that if t varies the locus of the centroid of the triangle ABC is $x + 5y = 0$.						
site:	Q.22	Variable line is drawn through O to cut two fixed straight lines $L_1 \& L_2$ in R & S. A point P is chosen on the variable line such that; $\frac{m+n}{OP} = \frac{m}{OR} + \frac{n}{OS}$. Show that the locus of P is a straight line passing the point of intersection $\frac{m+n}{OS} = \frac{m}{OS} + \frac{n}{OS} = \frac{m}{OS} = \frac{m}{OS} + \frac{n}{OS} = \frac{m}{OS} = \frac{m}{OS$						
web	O 23	of $L_1 \& L_2$. If the lines $ax^2 + 2hxy + by^2 = 0$ from two sides of a parallelogram and the line $lx + my = 1$ is one diagonal, prove that						
from	Q.24	the equation of the other diagonal is, $y(bl-hm) = x (am-hl)$ The distance of a point (x_1, y_1) from each of two straight lines which passes through the origin of co-ordinates is δ ; find						
ckage	Q.22 Q.23 Q.24 Q.25	the combined equation of these straight lines. The base of a triangle passes through a fixed point (f, g) & its sides are respectively bisected at right angles by the lines $v^2 - 8xy - 9x^2 = 0$. Determine the locus of its vertex.						
y Pa	EXERCISE-3							
_	(C) a parabala with vartey (1 sin21)							
ownk	Q.2 Q.3	(D) a straight line passing through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ & parallel to the x-axis. [JEE '97, 2] One diagonal of a square is the portion of the line $7x + 5y = 35$ intercepted by the axes, obtain the extremities of the axis.						
EE D	Q.2	One diagonal of a square is the portion of the line $7x + 5y = 35$ intercepted by the axes, obtain the extremities of the other diagonal. [REE '97,6]						
	Q.3	other diagonal . [REE '97,6] A variable line L passing through the point B (2,5) intersects the line $2x^2 - 5xy + 2y^2 = 0$ at P & Q. Find the locus of the point R on L such that distances BP, BR & BQ are in harmonic progression. [REE '98, 6]						
	Q.4(i) (a)	Select the correct alternative(s): [JEE '98, 2 x 3 = 6] If $P(1, 2)$, $Q(4, 6)$, $R(5, 7)$ & $S(a, b)$ are the vertices of a parallelogram PQRS, then: (A) $a = 2$, $b = 4$ (B) $a = 3$, $b = 4$ (C) $a = 2$, $b = 3$ (D) $a = 3$, $b = 5$						
	(b)	The diagonals of a parallelogram PQRS are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then PQRS must be $\frac{y}{2}$ a:						
	(c)	Select the correct alternative(s): [REE '98, 6] Select the correct alternative(s): [REE '98, 6] [REE '98, 6] If P(1, 2), Q(4, 6), R(5, 7) & S(a, b) are the vertices of a parallelogram PQRS, then: (A) a = 2, b = 4 (B) a = 3, b = 4 (C) a = 2, b = 3 (D) a = 3, b = 5 The diagonals of a parallelogram PQRS are along the lines x + 3y = 4 and 6x - 2y = 7. Then PQRS must be a: (A) rectangle (B) square (C) cyclic quadrilateral (D) rhombus If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is/are always rational point(s)? (A) centrod (B) incentre (C) circumcentre (D) orthocentre						
	(II)	(A) centriod (B) incentre (C) circumcentre (D) orthocentre Using coordinate geometry, prove that the three altitudes of any triangle are concurrent. [JEE '98, 8]						
	Q.5	The equation of two equal sides AB and AC of an isosceles triangle ABC are $x + y = 5 & 7x - y = 3$ respectively. Find the equations of the side BC if the area of the triangle of ABC is 5 units. [REE '99, 6]						
	Q.6	Let PQR be a right angled isosceles triangle, right angled at P (2, 1). If the equation of the line QR is $2x + y = 3$, then the equation representing the pair of lines PQ and PR is (A) $3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$ (B) $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$ (C) $3x^2 - 3y^2 + 8xy + 10x + 15y + 20 = 0$ (D) $3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$ [JEE'99, (2 out of 200)]						
	0.7	(
	Q.7	(a) The incentre of the triangle with vertices $(1, \sqrt{3})$, $(0, 0)$ and $(2, 0)$ is.						

(b) Let PS be the median of the triangle with vertices, P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is:

	(A) $\frac{a^2}{2}$	(B) $\frac{a^2}{3}$	(C) $\frac{a^2}{5}$	(D) none \(\frac{\frac{7}{2}}{2}	
13.	The line joining two points A (2, 0);B (3, 1) is rotated about A in the anticlock wise direction through an angle of 15°. The equation of the line in the new position is:				
	(A) $x - \sqrt{3} y - 2 = 0$		(B) $x - 2y - 2 = 0$	9	
	(C) $\sqrt{3} x - y - 2\sqrt{3}$	= 0	(D) none	straight lines of which one has equation a	
14.	The line $x + 3y - 2x - 7y + 5 = 0$. The e (A) $3x + 3y - 1 = 0$	2 = 0 bisects the angular equation of the other line (B) $x - 3y + 2 = 0$	gle between a pair of e is: (C) $5x + 5y - 3 = 0$	straight lines of which one has equation $\hat{\boldsymbol{g}}_{\boldsymbol{g}}$	
15.	• ,	• ,	. ,	e axes, a square is constructed on the side of	
	the line away f co-ordinates:	rom the origin. T	Then the point of (C) (3, 3)	intersection of its diagonals has (D) none	
16.	(A) (2, 3) A light beam emanating	` , ` . ,	() () /	ht line $2x + y - 6 = 0$ and then passes through	
	the point B(4, 3). The (A) $3x - y + 1 = 0$	equation of the reflecte (B) $x + 3y - 13 = 0$	d beam is: (C) $3x + y - 15 = 0$	(D) $x - 3y + 5 = 0$	
17.		isector of the angle betwich contains the points (ween two lines $3x - 4y$	+ 12 = 0 and = 0	
	(A) $21x + 27y - 121 =$		(B) $21x - 27y + 121 =$	= 0	
	(C) 21x + 27y + 191 =	= 0	(D) $\frac{-3x+4y-12}{5} = \frac{1}{2}$	$\frac{2x - 5y + 7}{13}$	
E 0.18.	The equation of bisec	tors of two lines L. & L.	are 2 x - 16 y - 5 = 0 a	and $64 \times + 8 \text{ y} + 35 = 0$. If the line L ₁ passes	
es.c	through (-11, 4), the	equation of acute angle	bisector of L ₁ & L ₂ is:		
www.tekoclasses.com .0 .0 .8		(B) $64 x + 8 y + 35 = 0$		(D) none of these ilines is, $12x^2 - 7xy - 12y^2 = 0$. If the equation	
koc Fe	of one line is $2y - x =$	= 0 then the equation of	the other line is:	_	
*.te	(A) 41x - 38y = 0	(B) $38x - 41y = 0$	(C) $38x + 41y = 0$	(D) $41x + 38y = 0$ pints of intersection of the curve	
\$ 20. \$	$5x^2 + 12xy - 6y^2 + 4x$	-2y + 3 = 0 and $x + ky$	y - 1 = 0 are equally incl	ined to the x-axis then the value of k is equal	
	to : (A) 1	(B) −1	(C) 2	(D) 3	
vebsite 121.	If the points of interse $C_2 = 2 x^2 + 3 y^2 - 4 x^2$	(B) -1 ection of curves $C_1 = \lambda x$ $y + 3x - 1$ subtends a rig (B) 9 han one options corre isectors of the angle bel $\frac{-3}{\cos \phi} = \frac{y + 5}{\sin \phi}$ are $\frac{x - 3}{\cos \alpha}$ (B) $\beta = -\sin \alpha$ It line passing through of them is (B) $x + y - 3 = 0$	$x^2 + 4y^2 - 2xy - 9x + 3$ ght angle at origin, then (C) - 19	the value of λ is : (D) -9 (1952) Ha (D) -9 (1952) -9 (1953) -9 (1954) -9 (19	
Part:	(B) May have more t	han one options corre	ect	1 H	
<u>일</u> 22.	The equation of the b	isectors of the angle bet	tween the two intersecting		
age	$\frac{x-3}{\cos \theta} = \frac{y+5}{\sin \theta}$ and $\frac{x}{\cos \theta}$	$\frac{-3}{\cos \phi} = \frac{y+5}{\sin \phi}$ are $\frac{x-3}{\cos \phi}$	$\frac{y+5}{\sin \alpha}$ and $\frac{x-3}{\beta} = \frac{y+5}{\sin \alpha}$	$\frac{\gamma+5}{\gamma}$ then	
ack	$\theta + \phi$	(D) β sin α	(C) $\gamma = \cos \alpha$	(D) 8 sin si	
y P	(A) $\alpha = \frac{1}{2}$	(b) $p = -\sin \alpha$	(C) $\gamma = \cos \alpha$	(D) $\beta = \sin \alpha$	
Star 23.	Equation of a straight perpendicular to one $(A) x + y + 3 = 0$	It line passing through of them is (B) $x + y - 3 = 0$	the point of intersection (C) $x - 3y - 5 = 0$	n of $x - y + 1 = 0$ and $3x + y - 5 = 0$ are $\frac{7}{4}$ (D) $x - 3y + 5 = 0$	
ра 24.	Three lines px + qy +	r = 0, $qx + ry + p = 0$ a	and $rx + py + q = 0$ are c	oncurrent if	
FREE Download .92 .52 .75	(A) $p + q + r = 0$ (C) $p^3 + p^3 + r^3 = 3 pq$	r	nd rx + py + q = 0 are c (B) $p^2 + q^2 + r^2 = pq +$ (D) none of these	oncurrent if qr + rp 5) and equally inclined to the lines,	
^{25.}	Equation of a stra $3x = 4y + 7$ and $5y =$	aight line passing th 12x + 6 is	hrough the point (4,	5) and equally inclined to the lines,	
EE	(A) $9x - 7y = 1$	(B) $9x + 7y = 71$	(C) $7x + 9y = 73$	(D) $7x - 9y + 17 = 0$	
2 26.	If the equation, $2x^2 + (A) 1$	k $xy - 3y^2 - x - 4y - 1$ (B) 5	= 0 represents a pair of (C) -1	lines then the value of k can be: $(D) -5$	
27.	If $a^2 + 9b^2 - 4c^2 = 6a$ (A) $(1/2, 3/2)$	to then the family of line (B) $(-1/2, -3/2)$	es ax + by + c = 0 are co (C) $(-1/2, 3/2)$ (D) (1	(D) $7x - 9y + 17 = 0$ If lines then the value of k can be: (D) -5 Incurrent at: (Z) $-3/2$ Say	
		EXE	RCISE-	5	
			V -1	Y V -V V -V	
1.	If the points (x_1, y_1) , (x_2 , y_2) and $(x_3$, y_3) be co	Illinear, show that $\frac{y_2 - y_3}{x_2 x_3}$	$\frac{y_3}{x_1} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0.$	
2.	Find the length of t coordinates are (a co	the perpendicular from os α , a sin α) and (a cos	the origin upon the (β, α, β) .	straight line joining the two points whose	
3.	Show that the product	t of the perpendiculars d	rawn from the two points	$(\pm \sqrt{a^2-b^2}, 0)$ upon the straight line $\frac{x}{a}\cos$	
	$\theta + \frac{y}{b} \sin \theta = 1 \text{ is } b^2.$			a 300	
4.	D		the acute angle bet	ween the lines $3x - 4y + 7 = 0$ and	

Find the equation to the pair of straight lines joining the origin to the intersections of the straight line y = mx + c and the curve $x^2 + y^2 = a^2$. Prove that they are at right angles if $2c^2 = a^2 (1 + m^2)$. 6.

The variable line $x\cos\theta + y\sin\theta = 2$ cuts the x and y axes at A and B respectively. Find the locus of the vertex P of the rectangle OAPB, O being the origin.

7. If A(x, y,), B(x, y,), C(x, y,) are the vertices of the triangle then show that :

5.

- 8. Is there a real value of λ for which the image of the point $(\lambda, \lambda - 1)$ by the line mirror $3x + y = 6\lambda$ is the point $(\lambda^2 + 1)$ + 1, λ) ? If so find λ .
- If the straight lines, ax + by + p = 0 & x cos α + y sin α p = 0 enclose an angle $\pi/4$ between them, and meet the 9. straight line $x \sin \alpha - y \cos \alpha = 0$ in the same point, then find the value of $a^2 + b^2$
- Drive the conditions to be imposed on β so that $(0, \beta)$ should lie on or inside the triangle having sides 10. y + 3x + 2 = 0, 3y - 2x - 5 = 0 & 4y + x - 14 = 0.
- 11. A straight line L is perpendicular to the line 5x - y = 1. The area of the triangle formed by the line L & the coordinate axes is 5. Find the equation of the line.
- Two equal sides of an isosceles triangle are given by the equations 7x y + 3 = 0 and x + y 3 = 0 and its third side passes through the point (1, -10). Determine the equation of the third side.
- 98930 58 Find the equations of the straight lines passing through the point (1, 1) and parallel to the lines represented by th equation, $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$.
- Find the coordinates of the vertices of a square inscribed in the triangle with vertices A (0, 0), B (2, 1), C (3, 0); given that two of its vertices are on the side AC.
- The equations of perpendiculars of the sides AB & AC of Δ ABC are x - y 2x - y - 5 = 0 respectively. If the vertex A is (-2, 3) and point of intersection of perpendiculars bisectors find the equation of medians to the sides AB and AC respectively.
- The sides of a triangle are 4x + 3y + 7 = 0, 5x + 12y = 27 and 3x + 4y + 8 = 0. Find the equations of the internal size to see that they are concurrent.
- A ray of light is sent along the line x 2y 3 = 0. Upon reaching the line 3x 2y 5 = 0, the ray is reflected from: it. Find the equation of the line containing the reflected ray.
 - A triangle is formed by the lines whose equations are AB: x + y 5 = 0, BC: x + 7y 7 = 0 and CA: 7x + y + 14 = 0. Find the bisector of the interior angle at B and the exterior angle at C. Determine the nature of the interior angle at A and find the equation of the bisector.
- Find the equations of the sides of a triangle having (4, -1) as a vertex, if the lines x 1 = 0 and \mathbf{z} x - y - 1 = 0 are the equations of two internal bisectors of its angles.
 - The equations of the altitudes AD, BE, CF of a triangle ABC are x + y = 0, x 4y = 0 and 2x y = 0 respectively. Three coordinates of A are (t, -t). Find coordinates of B and C. Prove that it t varies the locus of the centroid of the triangle ABC is x + 5y = 0.
 - For points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ of the co-ordinate plane, a new distance d(P, Q) is defined by $d(P, Q) = |x_1 x_2| + |y_1 y_2|$. Let O = (0, 0) and and an infinite ray. Sketch this set in a labelled diagram. [IIT -2000, 10]
 - Let ABC and PQR be any two triangles in the same plane. Assume that the prependiculars from the points A, B, C to the sides QR, RP, PQ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from P, Q, R to BC, CA, AB respectively are also concurrent.

 [IIT 2000, 10]
 - A straight line L through the origin meets the lines x + y = 1 and x + y = 3 at P and Q respectively. Through P and Q two straight lines L, and L₂ are drawn parallel to 2x y = 5 and 3x + y = 5 respectively. Lines L₁ and L₂ intersect at R. Show that the locus of R, as L varies, is a straight line. [IIT - 2002, 5]
- A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q. Find the absolute minimum value of OP + OQ, as L varies, where O is the origin.

 [IIT 2002, 5] 24.
- The area of the triangle formed by the intersection of a line parallel to x-axis and passing through P(h, k) with the lines y = x and x + y = 2 is $4h^2$. Find the locus of the point P(h, k) with the lines y = x and y = x and y = x and y = x and y = x. [IIT 2005, 2] 25.

ANSWER

Q 1. 90° **Q 2.**
$$\left(\frac{3}{7}, \frac{22}{7}\right)$$
 Q 3. (33, 26) **Q 4.** K = 7 or $\frac{31}{9}$

Q 5. 1:2; Q(-5, -3) **Q 6.**
$$83x - 35y + 92 = 0$$
 Q 7. $2x + y - 1 = 0$ **Q 8.** $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(-\frac{3}{2}, \frac{3}{2}\right)$ **Q 10.** $x - y = 0$ **Q 11.** 91 sq.units

Q 12. 6 units **Q 13.**
$$a^2 + b^2 = a'^2 + b'^2$$
; $(a + a')x + (b + b')y + (c + c') = 0$; $(a - a')x + (b - b')y = 0$

Q 15.
$$c = -4$$
; B(2,0); D(4,4) **Q 16.** $x + 5y + 5\sqrt{2} = 0$ or $x + 5y - 5\sqrt{2} = 0$

Q 17.
$$x - 3y - 31 = 0$$
 or $3x + y + 7 = 0$ **Q 18.** $2x + 2y + \sqrt{2} = 0$ **Q 19.** $-9^{\circ}, -81$ **Q 20.** $5x - 2y - 7 = 0$ **Q.21** $x - 5 = 0$

Q23.
$$-\frac{3}{2} < \alpha < -1 \cup \frac{1}{2} < \alpha < 1$$
 Q25. $x + y = 1$; $x + 9y = 1$ **Q26.** $0 < \theta < \frac{5\pi}{6} - \tan^{-1} 3$

98930 58881, BHOPAL, (M.P.)

K. Sir) PH: (0755)- 32 00 000,

ď ŝ.

EKO CLASSES, H.O.D. MATHS: SUHAAG R. KARIYA

Q.1 x + 4y = 4; 5x + 2y = 8

$$\mathbf{Q}$$
 2. $52x + 89y + 519 = 0$

Q.5
$$7x + 24y + 182 = 0$$
 or $x = -2$ **Q.7** $(0, 0)$ or $\left(0, \frac{5}{2}\right)$

Q.8
$$14x + 23y = 40$$

$$\mathbf{Q.10}$$
 3x + 6y - 16 = 0; 8x + 8y + 7 = 0; 12x + 6y - 11 = 0

Q.9
$$x-5y=0$$
 or $5x+y=0$, Area = 2.77 sq.units
Q.10 $3x+6y-16=0$; $8x+8y+7=0$; $12x+6y-11=0$
Q.11 $x^2+4y^2+4xy+4x-2y-1=0$ **Q.12** $(a+b)$ ($ax+by$) = ab ($a+b-2h$)

Q.13
$$\frac{3}{2}$$
 sq. units, $\left(3, 3, \frac{3}{4}\right)$, isosceles

Q.14
$$6x^2 - xy - y^2 - x - 12y - 35 = 0$$

Q.15
$$2x - y + 3 = 0$$
, $2x + y - 7 = 0$, $x - 2y - 6 = 0$

Q.16
$$y^2 = a(x - 3a)$$

Q.21 B
$$\left(-\frac{2t}{3}, -\frac{t}{6}\right)$$
, $C\left(\frac{t}{2}, t\right)$

Q.24
$$(y_1^2 - \delta^2) x^2 - 2 x_1 y_1 xy + (x_1^2 - \delta^2) y^2 = 0$$

Q.25
$$4(x^2+y^2) + (4g+5f)x + (4f-5g)y = 0$$

Q.3
$$17x - 10y = 0$$
 Q.4 (i) (a) C (b) D (c) A, C, D Q.5 $x - 3y + 21 = 0$, $x - 3y + 1 = 0$, $3x + y = 12$, $3x + y = 2$ Q.6 B Q.7 (a) D (b) D Q.8 (4, 1) \rightarrow (2, 3) \rightarrow (3, 3) \rightarrow (0, 3 Q.9 D Q.10 (a) C; (b) B; (c) B; (d) $x - 3y + 5 = 0$ EXERCISE—2

1. C 2. D 3. C 4. A 5. A 6. D 7. B

8. A 9. A 10. B 11. B 12. C 13. C 14. C

Q.8
$$(4, 1) \rightarrow (2, 3) \rightarrow (3, 3) \rightarrow (0, 3\sqrt{2})$$

Q.10 (a) C; (b) B; (c) B; (d)
$$x - 3y + 5 = 0$$

Q.12 $y = 2x + 1, y = -2x + 1$

EXERCISE-4

9. A 10. B 11. B 12. C 13. C 14. C

15. C 16. B 17. A 18. A 19. A 20. B 21. C 22. ABC 23. BD 24. ABC 25. AC 26. AD

EXERCISE-

4.
$$11x - 3y + 9 = 0$$

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{4}$$

12.
$$x - 3y - 31 = 0$$
 or $3x + y + 7 = 0$

13.
$$(x - 4y + 3) (x - y) = 0$$

or $x^2 - 5xy + 4y^2 + 3x - 3y = 0$

14.
$$\left(\frac{3}{2},0\right)\left(\frac{9}{4},0\right), \left(\frac{3}{2},\frac{3}{4}\right), \left(\frac{9}{4},\frac{3}{4}\right)$$

15.
$$x + 4y = 4$$
; $5x + 2y = 8$

17.
$$29x - 2y = 31$$

18.
$$3x + 6y - 16 = 0$$
; $8x + 8y + 7 = 0$; $12x + 6y - 11 = 0$

19.
$$2x - y + 3 = 0$$
, $2x + y - 7 = 0$; $x - 2y - 6 = 0$

20. B
$$\left(-\frac{2t}{3}, -\frac{t}{6}\right)$$
, C $\left(\frac{t}{2}, t\right)$

24. 18 **25.**
$$y = 2x + 1$$
 or $y = -2x + 1$

for 34 Yrs. Que. of IIT-JEE 10 Yrs. Que. of **AIEEE** we have distributed

already a book