Exact methods for tardiness objectives in production scheduling: Appendix

Ioannis Avgerinos * Ioannis Mourtos * Stavros Vatikiotis * Georgios Zois *

* ELTRUN Research Lab, Department of Management Science and Technology, Athens University of Economics and Business, Athens 104 34, Greece

PROOF OF ALGORITHM 1 VALIDITY

Our notation and proofs follow the style of Hooker (2007). Let $\mathcal{P} = min\{f(\mathbf{x}) + g(\mathbf{y}) | \mathbf{x} \in D_{\mathbf{x}}, \mathbf{y} \in D_{\mathbf{y}}\}$ be the formulation of the combinatorial optimization problem, as described in Section 2. \mathbf{x} and \mathbf{y} are groups of variables and $D_{\mathbf{x}}$, $D_{\mathbf{y}}$ the respective domains. The objective function of \mathcal{P} is the sum of the linear cost functions $f(\mathbf{x})$ and $g(\mathbf{y})$.

Now, let $\mathcal{M} = \{z | z \geq f(\mathbf{x}), \mathbf{x} \in D_{\mathbf{x}}\}$ be the formulation of the master problem and $\mathcal{S} = \{\zeta | \zeta \geq g(\mathbf{y}) + f(\hat{\mathbf{x}}), \mathbf{y} \in D_{\mathbf{y}}\}$, in which $\hat{\mathbf{x}}$ is a feasible solution of \mathcal{M} . We notice that ζ is an upper bound of \mathcal{P} for all feasible solutions \mathbf{x} and \mathbf{y} , as $f(\mathbf{x}) + g(\mathbf{y}) \leq f(\hat{\mathbf{x}}) + g(\mathbf{y}) \leq \zeta$. The validity of the decomposition will be ensured if z is a valid lower bound of \mathcal{P} for all feasible solutions \mathbf{x} .

Let $\mathbf{X} = \{Y_{im}, X_{ijm}, C_{jm}, t_{jm}^d, T_{jm}\}$ and $\mathbf{Y} = \{\sigma_{mj}, C_{jm}^*, T_i^*\}$. As $\zeta \geq f(\mathbf{X}) + g(\mathbf{Y})$ and $z \geq f(\mathbf{X})$ for all feasible solution \mathbf{X} and \mathbf{Y} , the cost functions are defined as $f(\mathbf{X}) = \sum_{j \in J} \sum_{m \in M} T_{jm}$ and $g(\mathbf{Y}) = \sum_{m \in \bar{M}} \sum_{j \in m} (T_{m_j}^* - T_{jm})$. The aggregation of the functions returns a lower bound of ζ : $f(\mathbf{X}) + g(\mathbf{Y}) = \sum_{j \in J} \sum_{m \in M} T_{jm} + \sum_{m \in \bar{M}} \sum_{j \in m} (T_{m_j}^* - T_{jm}) \rightarrow f(\mathbf{X}) + g(\mathbf{Y}) = \sum_{m \in \bar{M}} \sum_{j \in m} T_{m_j}^* = \sum_{i \in J} T_i^* \leq \zeta$.

Now that cost functions and groups of variables are defined and the validity of ζ as an upper bound is proved, we must prove that the generated optimality cuts (16) will always imply a lower bound of \mathcal{P} . We must construct a bounding function $B(\mathbf{x}_k)$ which adheres to the following properties:

 P_1 : If $\mathbf{x}_k = \hat{\mathbf{x}}_{k-1}$, then $B(\mathbf{x}_k) = \zeta^k$, in which \mathbf{x}_k is a feasible solution in iteration k, $\hat{\mathbf{x}}_{k-1}$ is the solution of iteration k-1 and ζ^k is the objective value of \mathcal{S} in iteration k.

 P_2 : $f(\mathbf{x}_{k-1}) + g(\mathbf{y}_k) \ge B(\mathbf{x}_k)$ for all solutions \mathbf{x}_{k-1} , \mathbf{y}_k and \mathbf{x}_k .

Lemma 1. If properties P_1 and P_2 hold for the bounding function $B(\mathbf{x}_k)$ and the domain of variables Y is finite, then Algorithm 1 converges to the optimal solution of \mathcal{P} after finitely many iterations.

Let $U_k = \zeta^k$ be the objective value of \mathcal{S} in iteration k and $\hat{\mathbf{x}}_{k-1} = \{\hat{X}_{ijm}^{k-1}\}$ be the solution of \mathcal{M} in iteration k-1, that implied U_k . We also recall that set A_{k-1} includes all assignments of iteration k-1 for which $\hat{X}_{a_0a_1a_2}^{k-1} = 1, a \in A_{k-1}$. Let $B(\mathbf{x}_k)$ be a bounding function, defined as follows:

$$B(X_{ijm}^k) = \begin{cases} U_k & \text{if } \{a \in A_{k-1} | X_{a_0 a_1 a_2}^k = 0\} = \emptyset \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Lemma 2. Function (1) adheres to properties P_1 and P_2 for all feasible solutions X_k .

Proof. Let X_k be the solution of \mathcal{M} in iteration k.

If $\mathbf{X}_k = \hat{\mathbf{X}}_{k-1}$, then all variables X_{ijm}^k are equal with \hat{X}_{ijm}^{k-1} . As all assignments $a \in A_{k-1}$ for which $\hat{X}_{a_0a_1a_2}^{k-1} = 1$ are included in the solution k, then, by (1), set $\{a \in A_{k-1} | X_{a_0a_1a_2}^k = 0\} = \emptyset$ and $B_1(X_{ijm}^k) = U_k = \zeta^k \to B_1(\mathbf{X}_k) = \zeta^k$, as P_1 proposes.

On the contrary, if $\mathbf{X}_k \neq \hat{\mathbf{X}}_{k-1}$, there is at least one assignment $a \in A_{k-1}$ for which $X_{a_0a_1a_2}^k = 0 \neq \hat{X}_{a_0a_1a_2}^{k-1}$. By (1), as $\{a \in A_{k-1} | X_{a_0a_1a_2}^k = 0\} \neq \emptyset$, $B_1(X_{ijm}^k) = 0$, which is an obvious lower bound of $f(\mathbf{X}_{k-1}) + g(\mathbf{Y}_k)$ for all solutions \mathbf{X}_{k-1} and \mathbf{Y}_k , satisfying property P_2 .

By Lemma 1, function (1) generates cuts that ensure a convergence to optimality.

The linear expression of function (1) is inequality (16) for all iterations k. Indeed, if all assignments $a \in A_{k-1}$ are repeated in k, then $|A_{k-1}| - \sum_{a \in A_{k-1}} X_{a_0 a_1 a_2} = 0 \rightarrow z \geq U_k$. If any assignment is neglected, though, $|A_{k-1}| > \sum_{a \in A_{k-1}} X_{a_0 a_1 a_2} \rightarrow U_k - U_k \cdot (|A_{k-1}| - \sum_{a \in A_{k-1}} X_{a_0 a_1 a_2}) \leq 0 \rightarrow z \geq 0$.

COMPUTATIONAL RESULTS

D:L for Loose and T for Tight deadlines

LB: Best Lower Bound UB: Best Upper Bound

Time (s) : Duration of the algorithm in seconds

 $\operatorname{Gap}\left(\%\right):100\cdot\frac{UB-LB}{UB}$

J	M	R	D	LB	UB	Time(s)	Gap(%)
10	2	2	L	504	519	2	2.89
			T	341	357	2	4.48
		0	L	229	229	0	0.00
	_	2	T	132	132	1	0.00
	5	_	L	227	227	0	0.00
		5	T	130	130	0	0.00
			L	2148	2203	4	2.50
	2	2	T	1762	1818	4	3.08
20			L	738	770	8	4.16
	5	2	T	520	552	9	
							5.80
		5	L	738	760	8	2.89
			T	520	542	8	4.06
	10	2	L	326	354	34	7.91
			T	192	221	34	13.12
		5	L	326	339	19	3.83
			T	192	206	20	6.80
		10	L	326	336	11	2.98
			T	192	203	11	5.42
			L	10380	10826	13	4.12
	2	2	T	9544	9982	13	4.39
50			L	3528	3722	77	5.21
	5	2	T	3039	3230	70	5.21
			L	3528	3656	32	3.50
		5					
			T	3039	3172	30	4.19
	10	2	L	1590	1751	2468	9.19
			T	1216	1381	2459	11.95
		5	L	1590	1659	89	4.16
			T	1216	1287	81	5.52
		10	L	1590	1643	68	3.23
			T	1216	1269	59	4.18
	20	2	L	817	1162	2539	29.69
			T	495	817	2545	39.41
		5	L	817	883	2538	7.47
			T	495	559	2542	11.45
		10	L	817	855	877	4.44
			T	495	532	899	6.95
			L				
		20	T	817	843	139	3.08
				495	523	143	5.35
100	2	2	L	48093	49813	55	3.45
			T	46376	48012	55	3.41
	5	2	L	14210	14748	171	3.65
			T	13150	13692	179	3.96
		5	L	14210	14676	147	3.18
			T	13150	13593	139	3.26
	20	2	L	5564	6120	2721	9.08
			T	4770	5292	2709	9.86
		5	L	5564	5836	502	4.66
			T	4770	5033	517	5.23
		10	L	5564	5794	320	3.97
			T	4770	4991	302	4.43
			L	2392	3845	3221	37.79
			T	1814	3264	3143	44.42
		5	L	2392	2581	3213	7.32
			T	1814	2004	3131	9.48
		10	L	2392	2505	3208	4.51
			T	1814	1931	3134	6.06
		20	L	2392	2472	810	3.24
			T	1814	1892	735	4.12

2 2 L	110060	114262	68	3.68
	107521	111757	69	3.79
2 L	29935	31163	338	3.94
5 T	28324	29620	310	4.38
	29935	30981	188	3.38
	28324	29433	184	3.77
2 L	11528	12423	1629	7.20
	10448	11366	1574	8.08
10 5 L	11528	12003	646	3.96
150 T	10448	10912	587	4.25
	11528	11938	430	3.43
	10448	10847	376	3.68
2 L	5479	9409	2346	41.77
	4563	8579	2059	46.81
5 <u>L</u>	5479	5879	2336	6.80
20 T	4563	4994	2058	8.63
	5479	5776	2339	5.14
	4563	4862	2057	6.15
20 L	5479	5714	1134	4.11
	4563	4806	857	5.06
2 2 L	188948	196610	137	3.90
	185590	193114	125	3.90
2 L	52528	54850	759	4.23
	50577	52860	729	4.32
	52528	54581	395	3.76
	50577	52573	380	3.80
$\frac{1}{2}$	21696	23566	2115	7.94
	20193	22016	1989	8.28
10 5 <u>L</u>	21696	22726	1207	4.53
200 T	20193	21150	1011	4.52
	21696	22635	915	4.15
	20193	21063	790	4.13
2 L	9302	16463	3675	43.50
	8100	15141	3121	46.50
5 <u>L</u>	9302	9942	3675	6.44
	8100	8722	3109	7.13
20 L	0000	9761	3662	4.70
	9302	3701		
10 $\frac{L}{T}$	8100	8545	3104	5.21