

Data Mining in Action

Лекция 3. Линейные модели

На предыдущей лекции

Мы изучили простые методы машинного обучения:

- Оптимальный порог и решающий пень
- Переход от решающего пня к дереву решений
- Метод ближайших соседей
- Наивный Байесовский классификатор

• Как искать оптимальный порог для разбиения по одному признаку?

- Как искать оптимальный порог для разбиения по одному признаку?
- Как выбрать оптимальный признак для построения новой вершины в дереве решений?

- Как искать оптимальный порог для разбиения по одному признаку?
- Как выбрать оптимальный признак для построения новой вершины в дереве решений?
- Какие параметры нужно настроить для применения метода ближайших соседей?

- Как искать оптимальный порог для разбиения по одному признаку?
- Как выбрать оптимальный признак для построения новой вершины в дереве решений?
- Какие параметры нужно настроить для применения метода ближайших соседей?
- В чем состоит "наивное" предположение Байесовского классификатора?

Напоминание: часто используемые методы

Градиентный бустинг

Случайный лес

Линейные модели

1. Линейная классификация

2. Обучение линейной модели

3. Борьба с переобучением

4. Линейная регрессия

План лекции

1. Линейная классификация

Пример: выходить из дома или нет

Признаки (1/0):

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Пример: выходить из дома или нет

Признаки (1/0):

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Пример: выходить из дома или нет

Признаки (1/0):

Вы свободны в данный момент

Вам хочется где-то поесть

Вам хочется спать

Вам хочется увидеться с друзьями

Порог для решающего правила: +1 Если сумма больше – выходим :)

Более серьезный пример: дать ли кредит

Признаки (1/0):

Имеет счет в вашем банке

Много просрочек по другим кредитам

Просрочек нет, а кредиты есть

Скоринговые карты

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ	
Возраст заемщика	До 35 лет	
	От 35 до 45 лет	
	От 45 и старше	
Образова- ние	Высшее	
	Среднее специальное	
	Среднее	
Состоит ли в браке	Да	
	Нет	
Наличие кредита в прошлом	Да	
	Нет	
Стаж работы	До 1 года	
	От 1 до 3 лет	
	От 3 до 6 лет	
	Свыше 6 лет	
Наличие автомобиля	Да	
	Нет	

Скоринговые карты

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ	СКОРИНГ- БАЛЛ
Возраст заемщика	До 35 лет	7,60
	От 35 до 45 лет	29,68
	От 45 и старше	35,87
Образова- ние	Высшее	29,82
	Среднее специальное	20,85
	Среднее	22,71
Состоит ли в браке	Да	29,46
	Нет	9,38
Наличие кредита в прошлом	Да	40,55
	Нет	13,91
Стаж работы	До 1 года	15,00
	От 1 до 3 лет	18,14
	От 3 до 6 лет	19.85
	Свыше 6 лет	23,74
Наличие автомобиля	Да	51,69
	Нет	15,93

Подбор весов признаков и порога

Почему нельзя продолжать также:

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Подбор весов признаков и порога

Почему нельзя продолжать также:

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Решение – автоматизируем подбор параметров: придумаем функцию от параметров, которую надо минимизировать, и используем методы численной оптимизации

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_d x_d$$

Скалярное произведение векторов

$$\langle a, b \rangle = a_1 \cdot b_1 + \dots + a_d \cdot b_d$$

Скалярное произведение векторов

$$\langle a, b \rangle = a_1 \cdot b_1 + \dots + a_d \cdot b_d$$

 $\langle a, b \rangle = ||a|| ||b|| \cos \alpha$

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_d x_d = w_0 + \langle w, x \rangle$$

Как выглядит код: применение модели

Найдите «ошибку»:

```
import numpy as np

def f(x):
    return np.dot(w, x) + w0

def a(x):
    return 1 if f(x) > 0 else 0
```

Как выглядит код: применение модели

Найдите «ошибку»:

```
import numpy as np

def f(x):
    return np.dot(w, x) + w0

def a(x):
    return 1 if f(x) > 0 else 0
```

Как выглядит код: применение модели

```
import numpy as np

def f(x):
    return np.dot(w, x) + w0

def a(x):
    return 1 if f(x) > 0 else -1
```

Будьте внимательны с метками класса!

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_d x_d = w_0 + \langle w, x \rangle$$

Геометрическая интерпретация: разделяем классы плоскостью

Пусть вектор w задан, какие x удовлетворяют уравнению $\langle w, x \rangle = 0$?

Пусть вектор w задан, какие x удовлетворяют уравнению $\langle w, x \rangle = 0$?

$$\langle w, x \rangle = ||w|| \, ||x|| \cos \alpha = 0$$
,

Значит, если оба вектора не нулевые:

$$\cos \alpha = 0$$
 $\alpha = 90^{\circ}$

А w_0 - сдвиг плоскости от начала координат

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

Если добавляем $x_{(0)} = 1$, то:

$$\frac{f(x) = w_0 + \langle w, x \rangle}{f(x) = \langle w, x \rangle}$$

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

Если добавляем $x_{(0)} = 1$, то:

$$f(x) = w_0 + \langle w, x \rangle$$

$$f(x) = \langle w, x \rangle = w^T x$$

Строки и столбцы

$$\langle a, b \rangle = (a_1, \dots, a_d) \begin{pmatrix} b_1 \\ \vdots \\ b_d \end{pmatrix}$$

Строки и столбцы

$$\langle a, b \rangle = (a_1, \dots, a_d) \begin{pmatrix} b_1 \\ \vdots \\ b_d \end{pmatrix} = \mathbf{a}^T b$$

Отступ (margin)

Отступом алгоритма $a(x) = sign\{f(x)\}$ на объекте x_i называется величина

$$M_i = y_i f(x_i)$$

 $(y_i$ - класс, к которому относится $x_i)$

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) \leq 0 \right]$$

Функция потерь

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) \leq 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

$$Q(M) = (1 - M)^2$$
 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

2. Обучение модели

$$(3 + 0.01)^2 = 9 + 2 \cdot 3 \cdot 0.01 + 0.0001$$

$$(3 + 0.01)^2 = 9 + 2 \cdot 3 \cdot 0.01 + 0.0001$$

$$(x + \varepsilon)^2 \approx x^2 + 2x\varepsilon$$

$$(3 + 0.01)^2 = 9 + 2 \cdot 3 \cdot 0.01 + 0.0001$$

$$(x + \varepsilon)^2 \approx x^2 + 2x\varepsilon$$

$$f'(x) = 2x$$

Производные простых функций

$$(x^n)' = nx^{n-1}$$

$$(\ln x)' = \frac{1}{x}$$

$$(e^x)' = e^x$$

Сложная функция и chain rule

$$\ln((x+\varepsilon)^n) \approx \ln(x^n + nx^{n-1}\varepsilon) \approx$$

Сложная функция и chain rule

$$\ln((x+\varepsilon)^n) \approx \ln(x^n + nx^{n-1}\varepsilon) \approx$$
$$\approx \ln(x^n) + \frac{1}{x^n} nx^{n-1}\varepsilon$$

Сложная функция и chain rule

$$\ln((x+\varepsilon)^n) \approx \ln(x^n + nx^{n-1}\varepsilon) \approx$$
$$\approx \ln(x^n) + \frac{1}{x^n} nx^{n-1}\varepsilon$$

Вывод:
$$(g(f(x)))' = g'(f(x))f'(x)$$

Когда переменных много

$$f(x,y) = 2x + y^2$$

$$\frac{\partial f}{\partial x} \equiv f'_{x} = 2$$

$$\frac{\partial f}{\partial y} \equiv f'_{y} = 2y$$

Градиент функции

$$f(x,y) = 2x + y^2$$

$$\nabla f = \begin{pmatrix} f'_{x} \\ f'_{y} \end{pmatrix} = \begin{pmatrix} 2 \\ 2y \end{pmatrix}$$

Градиент функции

$$f(x,y) = 2x + y^2$$

$$\nabla f = \begin{pmatrix} f'_{x} \\ f'_{y} \end{pmatrix} = \begin{pmatrix} 2 \\ 2y \end{pmatrix}$$

Утверждение: ∇f – направление наискорейшего роста функции, $-\nabla f$ –направление наискорейшего убывания

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \Longrightarrow \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \Longrightarrow \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X train, y train):
    w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
                                     L(M) = \max\{0, 1 - M\} = (1 - M)_{+}
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X train, y train):
    w = np.random.randn(X_train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 = step * y * der loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
    w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
    w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 = step * y * der loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
    w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X_train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 = step * y * der loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X train, y train):
    w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
    w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
    w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X train, y train):
    w = np.random.randn(X_train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der_loss(x, y)
        w0 -= step * y * der_loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 = step * y * der loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X train) - 1)
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der loss(x, y)
        w0 = step * y * der loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
   return max([0, 1 - y * f(x)])
def der_loss(x, y):
   return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
   w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
      for k in range(10000):
      x = X train[rand index]
      y = y train[rand index]
      step = 0.01
      w = step * y * x * der_loss(x, y)
      w0 = step * y * der loss(x, y)
```

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der_loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
                                                           \gamma_k = \frac{1}{\sqrt{\alpha + k}}
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
    w0 = np.random.randn()
                                                           \gamma_k = (\alpha + k)^{-\beta}
    for k in range(10000):
         rand index = randint(0, len(X train) - 1)
                                                           \gamma_k = \tau \beta_k
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = step * y * x * der_loss(x, y)
        w0 = step * y * der loss(x, y)
```

Как выглядит код: обучение модели

```
from random import randint
import numpy as np
def loss(x, y):
    return max([0, 1 - y * f(x)])
def der loss(x, y):
    return -1.0 if 1 - y * f(x) > 0 else 0.0
def fit(X_train, y_train):
    w = np.random.randn(X train.shape[1])
   w0 = np.random.randn()
    for k in range(10000):
        rand index = randint(0, len(X_train) - 1)
        x = X train[rand index]
        y = y_{train[rand_index]} w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)
        step = 0.01
        w -= step * y * x * der_loss(x, y)
        w0 = step * y * der loss(x, y)
```

3. Борьба с переобучением: регуляризация

Переобучение в задаче обучения с учителем:

Переобучение в задаче обучения с учителем связано с большими

коэффициентами:

Переобучение в задаче обучения с учителем связано с большими коэффициентами:

Идея: добавить ограничение на коэффициенты

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{n=1}^{d} |w_n| \le \tau \\ \sum_{n=1}^{d} |w_n|^2 \le \tau \end{cases}$$

$$\begin{cases} \tilde{Q} = \sum_{i=1}^l L(M_i) \to min \\ \sum_{n=1}^d |w_n| \leq \tau \\ & \sum_{n=1}^m w_n^2 \leq \tau \end{cases}$$
 ℓ 1-регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

Вопрос:

вы заметили, что в регуляризатор не включается вес w_o ?

*ℓ*2-регуляризация

Различия между ℓ 1 и ℓ 2

- Разреженность *ℓ*1-регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Различия между ℓ 1 и ℓ 2

- Разреженность $\ell 1$ -регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Различия между ℓ 1 и ℓ 2

- Разреженность *ℓ*1-регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Стандартные линейные классификаторы

Классификатор	Функция потерь	Регуляризатор
SVM (Support vector machine, метод опорных векторов)	$L(M) = \max\{0, 1 - M\} = $ $= (1 - M)_{+}$	$\sum_{k=1}^{m} w_k^2$
Логистическая регрессия	$L(M) = \log(1 + e^{-M})$	Обычно $\sum_{k=1}^{m} w_k^2$ или $\sum_{k=1}^{m} w_k $

Обязательно ли L – функция от отступа?

Пример:

$$y_i \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \to \min_{w}$$

$$p_i = \sigma(\langle w, x_i \rangle) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}$$

Обязательно ли L - функция от отступа?

Пример:

$$y_i \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \to \min_{w}$$
$$p_i = \sigma(\langle w, x_i \rangle) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}$$

Упражнение:

Показать, что это та же оптимизационная задача, что и в логистической регрессии

Общий случай

Упражнение

Выпишите, как поменяется правило обновления весов признаков в линейном классификаторе с помощью SGD при добавлении регуляризатора

5. Линейные модели в задаче регрессии

$$a(x) = \langle w, x \rangle + w_0$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

$$V(w) = \|w\|_{l2}^2 = \sum_{n=1}^a w_n^2$$

$$V(w) = \|w\|_{l1} = \sum_{n=1}^a |w_n|$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

Гребневая регрессия (Ridge regression):

$$V(w) = ||w||_{l2}^2 = \sum_{n=1}^d w_n^2$$

LASSO (least absolute shrinkage and selection operator):

$$V(w) = ||w||_{l1} = \sum_{n=1}^{d} |w_n|$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

А без регуляризатора и с квадратичными потерями получаем привычную нам линейную регрессию

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Если добавить $x_{i0} = 1$:

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Если добавить
$$x_{i0} = 1$$
: $y_i \approx \hat{y}_i = \langle w, x_i \rangle$

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Если добавить
$$x_{i0} = 1$$
: $y_i \approx \hat{y}_i = \langle w, x_i \rangle$

$$y_1 \approx \hat{y}_1 = x_1^T w$$

$$\vdots$$

$$y_i \approx \hat{y}_i = x_i^T w$$

$$\vdots$$

$$y_l \approx \hat{y}_l = x_l^T w$$

Матричная запись

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \vdots \\ \widehat{y_l} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_l^T \end{pmatrix} w$$

$$y \approx \widehat{y} = Fw$$

$$w = \underset{w}{\operatorname{argmin}} \|y - \widehat{y}\|^2$$

Веса признаков

$$\frac{\partial (Fw - y)^2}{\partial w} = 2F^T(Fw - y) = 0$$
$$F^T F w = F^T y$$

$$w = (F^T F)^{-1} F^T y$$

Если добавить ℓ_2 регуляризацию

$$\frac{\partial (Fw - y)^2 + \gamma w^2}{\partial w} = 2F^T(Fw - y) + 2\gamma w = 0$$
$$(F^T F + \gamma I)w = F^T y$$
$$w = (F^T F + \gamma I)^{-1} F^T y$$

1. Линейная классификация

2. Обучение линейной модели

3. Борьба с переобучением

4. Линейная регрессия

План лекции

Pros & cons

Преимущества:

- легко реализовывать уже обученную модель
- не многим сложнее реализовывать и ее обучение
- быстро работают
- хорошо работают, когда много признаков
- нормально работают, когда мало данных

Недостатки:

- может быть слишком простым для вашей зависимости у(х)
- будет плохо работать, если забыть/не суметь отмасштабировать признаки

Библиотеки

- libSVM
- liblinear
- sklearn.linear_models
- Vowpal Wabbit (SGD для онлайн-обучения + Hashing Trick)

Дополнительные темы для изучения

Дополнительные темы: линейные модели

- 1. Почему l1 регуляризатор разреживает вектор весов
- 2. SVM и его вывод из максимизации ширины разделяющей полосы
- 3. Kernel Trick в SVM и двойственная задача
- 4. Стратегии построения многоклассовых линейных классификаторов
- 5. Кросс-энтропия и многоклассовая логистическая регрессия
- 6. Semi-supervised версии SVM и логистической регрессии

Дополнительные темы: оптимизация

- 1. Mini-batch SGD
- 2. Метод Ньютона-Рафсона
- 3. **Квазиньютоновские методы и** BFGS
- 4. Теорема Куна-Таккера и ее геометрическое объяснение, объяснение связи ограничений на веса и добавления штрафа в оптимизационную задачу, двойственная задача в SVM

Дополнительные темы: анализ

- 1. Запись chain rule в виде $\frac{du}{dx} = \frac{du}{dv} \frac{dv}{dx}$ (связано с понятием дифференциала)
- 2. Уточнение смысла записи $f(x + \varepsilon) \approx f(x) + f'(x)\varepsilon$:

$$f(x + \varepsilon) = f(x) + f'(x)\varepsilon + o(\varepsilon)$$

(разложение в ряд Тейлора до первого члена)

Дополнительные темы: линейная алгебра

- 1. Геометрический смысл линейной регрессии (связано с линейной оболочкой, ортогональностью и проекцией на линейное подпространство)
- 2. Матричная запись линейного классификатора в случае многоклассовой классификации
- 3. Собственные значения и число обусловленности матрицы, его связь с вычислением обратной матрицы
- 4. Проблема мультиколлинеарности и связь с регуляризацией

Data Mining in Action

Лекция 2

Группа курса в Telegram:

https://t.me/joinchat/B1OlTk74nRV56Dp1TDJGNA