

PROFESSOR(S): Samaneh Gholami

SENECA COLLEGE OF APPLIED ARTS AND TECHNOLOGY SENECA BUSINESS

BAN100 - Statistics for Analytics Other Version NA

DATE: 6/15/2023 TIME ALLOWED: 14 days

Allowable Eveni	antian Aida, Jahaal	k annii adda da ayaa)	
☐ Calculators (non-pi ☐ Formula Sheets (a	rogrammable only)	 ★ applicable boxes) ☒ Math Tables (normal distribution table) ☒ Textbooks ☒ Notes 	☑ Periodic Tables☑ Probability Tables☐ Other
Answers to be com	npleted on:		
☐ Exam Booklet		☐ GradeMaster Card	☐ Exam Paper
TOTAL MARKS:	25	WEIGHTED VALUE: 25	
INSTRUCTIONS:			
responsibility and coura excellence, while suppor "2.3 Should there be a sanctions will be applied Should a suspected viola	ge. These values enhance ting a positive learning envasues extended violation of this placed according to the severity of this policy be a resurted seneca policy.	learning community that values academic integrity, he seneca's commitment to students by delivering high- prironment. The Al policy is always in effect. Note Section policy (e.gcheating, falsification, impersonation or plans of the offence committed. Refer to <u>Appendix B</u> for the coll to f, or in combination with, a suspected violation of Secty, the matter will be investigated and adjudicated the	-quality education and teaching ns 2.3 and 2.4: agiarism), the academic integrity academic integrity sanctions. 2.4 eneca's Student Code of Conduct
Student code of conduct	•		
	TO E	BE COMPLETED BY STUDENT	
SUBJECT SECTIO	N NUMBER (e.g. QNM22	3 AA):	
STUDENT NAME:	Ugonna Okengwu		
STUDENT NUMBE	R: 114939192		
STUDENT SIGNAT	TURE:		
	stina Italia, Interim Chai hool of Management an		

Problem 1

The code below was used for the analysis.

```
6/30/23, 5:46 PM
                                                          Code: ASSIGNMENT2.sas
 /*Ugonna Okengwu*/
 proc import Datafile = '/home/u63417899/BAN100ZBB/File Proportion of Total Assets Invested in Stocks (1).xlsx'
     OUT= work.stock asset
     DBMS=XLSX
     replace;
     GETNAMES=Yes;
 proc print data = Stock_Asset;
 Title 'Anova analysis';
 proc anova data = Stock Asset;
 class Age_range;
 model scale = Age_range;
 Title 'Q Box Plot';
 proc sgplot data = stock_asset;
 vbox scale / category = Age_range;
 Title 'Q-Q plot';
 proc univariate data = stock_asset;
 ppplot scale;
 run;
```

The numerical variable is the only continuous variable that is the proportion of financial assets invested in the stock market. The age of head of the household has 4 groups which are young, middle age, late middle age and senior. We will be using one-way Anova. Having at least 3 different levels of categorical variable is a requirement for running a one-way anova as it is used to compare the means of more than 3 groups.

The assumptions for the one-way are:

- The populations are normally distributed.
- The population have equal variance.

The date set was converted to a long data structure by grouping their ages into a range before performing the analysis. Two variables were used for the analysis, Age range (categorical data) and Scale (Numerical data). The investigation was carried out in 3 steps:

Obs	Young	Early_Middle_Age	Late_Middle_Age	Senior	Scale	Age_range	G	Н
1	24.8	28.9	81.5	66.8	24.8	Young		
2	35.5	7.3	0.0	77.4	35.5	Young		Г
3	68.7	61.8	61.3	32.9	68.7	Young		
4	42.2	53.6	0.0	74.0	42.2	Young		
5	49.5	0.0	45.4	0.0	49.5	Young		Г
6	64.6	49.4	42.3	35.2	64.6	Young		
7	58.3	71.4	75.3	21.4	58.3	Young		
8	72.0	53.7	54.7	0.0	72.0	Young		
9	25.6	46.9	0.0	61.4	25.6	Young		
10	39.8	91.6	20.5	61.8	39.8	Young		
11	39.3	46.0	76.4	35.6	39.3	Young		
12	55.6	41.8	38.0	53.0	55.6	Young		
13	0.0	53.2	39.8	38.5	0.0	Young		
14	56.5	0.0	78.4	53.7	56.5	Young		
15	37.3	43.7	0.0	69.1	37.3	Young		
16	50.3	78.1	76.7	55.5	50.3	Young		Г
17	38.0	54.7	72.7	31.6	38.0	Young		Г
18	42.7	45.7	0.0	0.0	42.7	Young		
19	48.4	63.1	33.0	57.3	48.4	Young		
20	18.3	50.4	11.0	42.7	18.3	Young		Г
21	50.1	38.6	0.0	37.9	50.1	Young		
22	77.2	59.8	60.3	60.9	77.2	Young		Г
23	42.7	67.8	89.3	72.3	42.7	Young		
24	0.0	48.4	56.0	45.8	0.0	Young		
25	0.0	0.0	47.9	69.0	0.0	Young		
26	46.3	60.6	36.0	41.6	46.3	Young		
27	26.8	66.4	60.0	2.3	26.8	Young		
28	15.3	52.2	47.8	49.7	15.3	Young		Г
29	36.6	56.1	67.2	43.3	36.6	Young		
30	35.5	45.0	61.8	68.8	35.5	Young		Г
31	70.0	80.7	61.4	100.0	70.0	Young		Г
32	35.8	37.4	68.7	46.3	35.8	Young		Г
33	0.0	94.9	30.8	45.7	0.0	Young		Г
34	45.0	58.1	84.9	17.5	45.0	Young		Г
35	66.9	51.8	77.4	62.2	66.9	Young		Г
36	52.1	43.5	34.6	69.4	52.1	Young		
37	64.6	50.9	40.5	48.6	64.6	Young		Г

Results: ASSIGNMENT2.sas

			Results	: ASSIGN	MENT2	sas		
Obs	Young	Early_Middle_Age	Late_Middle_Age	Senior	Scale	Age_range	G	H
99		43.8			43.7	Early_Middle_Age		
100		50.8		-	78.1	Early_Middle_Age		
101	10	59.6			54.7	Early_Middle_Age		
102		48.2			45.7	Early_Middle_Age		
103	4	80.1	0.	- 1	63.1	Early_Middle_Age		
104		44.5	-	-	50.4	Early_Middle_Age		
105		57.9			38.6	Early_Middle_Age		
106		55.2		-	59.8	Early_Middle_Age		
107		53.8			67.8	Early_Middle_Age		
108		60.3	0	- 1	48.4	Early_Middle_Age		Г
109		64.7			0.0	Early_Middle_Age		Г
110		44.9			60.6	Early_Middle_Age		r
111		66.0			66.4	Early_Middle_Age		r
112		67.9			52.2	Early_Middle_Age		r
113		30.4			56.1	Early_Middle_Age		Г
114		0.0		-	45.0	Early_Middle_Age		t
115		52.5	0	- 1	80.7	Early_Middle_Age		t
116		56.2			37.4	Early_Middle_Age		Г
117		20.6			94.9	Early_Middle_Age		t
118		70.2			58.1	Early_Middle_Age		r
119		9.5			51.8	Early_Middle_Age		r
120		37.3	0		43.5	Early_Middle_Age		t
121	- 1	71.1			50.9	Early_Middle_Age		r
122		45.0			39.8	Early_Middle_Age		t
123		73.2	-		41.6	Early_Middle_Age		r
124		47.1			68.0	Early_Middle_Age		r
125	- 1	6.7		-	58.7	Early_Middle_Age		r
126		56.5			84.8	Early_Middle_Age		r
127		41.2			50.1	Early_Middle_Age		r
128		63.5			55.4	Early_Middle_Age		t
129		71.1			47.3	Early_Middle_Age		r
130		45.6			87.2	Early_Middle_Age		t
131		84.0			0.0	Early_Middle_Age		t
132	- 1				50.6	Early_Middle_Age		t
133					44.2	Early_Middle_Age		Ė
134				_	54.8	Early_Middle_Age		t

1. Hypothesis.

Ho: $\mu 1 = \mu^2 = \mu^3 = \mu^4$: There is no difference in the mean stock assets across the 4 age groups for American households. This is the Null hypothesis.

Ho: $\mu 1 \neq \mu^2$ for one pair: At least one of the age groups has a different stock asset. This is the alternative hypothesis.

2. Sampling the distribution.

The F statistics distribution was sampled for the one-way Anova. The F value is 2.79. The P value is 0.0405 making it less than 0.05, we reject the null hypothesis and go for the alternative hypothesis.

The third table shows both the P value and the F value, it also shows the Model source and Error source within the group's variation.

The distribution of scale produced from the proc anova module is the same as the Q box plot obtained below using the proc spplot module.

The Q box plot shows the data points are distributed for each group. The mean and median both have good spreads. From the plot, the mean for each group is almost the same. The early middle age and senior group mean stock asset are about 51 while the late middle age group is slightly lower. The outliers of each group are beyond the minimum cutoff point.

The skewness and kurtosis values are 0 which indicates a normal distribution. The standard deviation for all groups is within the range of 19.6 to 21.6 which is close. The breakdown of the mean also proves that the mean stock assets for all the age groups though close are not the same.

3. Conclusion

After much analysis it is inferred that the stock ownership varies with the age. These servers as evidence to backup the alternative hypothesis that states; the mean stock ownership of at least one of the age groups differs concluding that the age group influences the ownership of stocks.

Results: ASSIGNMENT2.sas Variable: Scale (Scale)

Moments					
N	366	Sum Weights	366		
Mean	50.1800273	Sum Observations	18365.89		
Std Deviation	21.3009965	Variance	453.732453		
Skewness	-0.6627725	Kurtosis	0.35760488		
Uncorrected SS	1087213.21	Corrected SS	165612.345		
Coeff Variation	42.4491529	Std Error Mean	1.11342092		

	Basic	Statistical Measures	
Loc	ation	Variability	/
Mean	50.18003	Std Deviation	21.30100
Median	52.04000	Variance	453.73245
Mode	0.00000	Range	99.97000
		Interquartile Range	26.12000

Tests for Location: Mu0=0						
Test	Statistic p Value					
Student's t	t	45.06834	Pr > t	<.0001		
Sign	М	170.5	Pr >= M	<.000		
Signed Rank	S	29155.5	Pr >= S	<.000		

Quantiles (Definition 5)			
Level	Quantile		
100% Max	99.97		
99%	91.57		
95%	80.73		
90%	74.01		
75% Q3	65.39		
50% Median	52.04		
25% Q1	39.27		
10%	20.62		
5%	0.00		
1%	0.00		
0% Min	0.00		

Extreme Observations						
Lowest Highest						
Value	Obs	Value	Obs			
0	326	91.19	145			
0	316	91.57	94			
0	313	92.37	290			
0	293	94.87	117			
0	236	99.97	339			

Problem 2

Same with the first problem, One- way avon was used for conducting the analysis. I manipulated the data set on SA to achieve the long format. The data set was grouped into scale and gender to conduct the analysis effectively. See code below.

```
Title 'Q-Q plot';
proc univariate data = stock_asset;
   ppplot scale;
  /*Problem 2*/
proc import Datafile = '/home/u63417899/BAN100ZBB/File_Comparing_the_Lifetime_of_Jobs_by_Educational_Level.xlsx'
        OUT=Job_tenure
DBMS=XLSX
         replace;
  proc print data =Job_tenure;
run;
  /*Creating dataset for Male range of E1, E2, E3 and E4*/
Data Male E1 (Drop= Male_E2 Male_E3 Male_E4 Female_E1 Female_E2 Female_E3 Female_E4);
  set Job_tenure;
if Male_E1 = . then delete;
  Rename Male_E1 = Scale;
Gender_range = 'Male_E1';
  Data Male_E2 (Drop= Male_E1 Male_E3 Male_E4 Female_E1 Female_E2 Female_E3 Female_E4);
set Job_tenure;
if Male_E2 = . then delete;
Rename Male_E2 = Scale;
Gender_range = 'Male_E2';
run:
  run;
  Data Male_E3 (Drop= Male_E2 Male_E1 Male_E4 Female_E1 Female_E2 Female_E3 Female_E4);
  set Job_tenure;

if Male_E3 = . then delete;

Rename Male_E3 = Scale;

Gender_range = 'Male_E3';
  Data Male_E4 (Drop= Male_E2 Male_E3 Male_E1 Female_E1 Female_E2 Female_E3 Female_E4);
  set Job_tenure;
if Male E4 = . then delete;
  Rename Male_E4 = Scale;
Gender_range = 'Male_E4';
about:blank
                                                                                                                                                                             1/3
7/1/23, 5:39 PM
                                                                                       Code: ASSIGNMENT2.sas
  /*Creating dataset for Female range of E1, E2, E3 and E48*/
Data Female_E1 (Drop= Male_E1 Male_E2 Male_E3 Male_E4 Female_E2 Female_E3 Female_E4);
set Job_tenure;
  if Female_E1 = . then delete;
Rename Female_E1 = Scale;
Gender_range = 'Female_E1';
   Data Female F2 (Dron= Male F1 Male F2 Male F3 Male F4 Female F1 Female F3 Female
```

7/1/23, 5:39 PM Code: ASSIGNMENT2.sas

```
*Creating dataset for Female range of E1, E2, E3 and E48*
Data Female_E1 (Drop= Male_E1 Male_E2 Male_E3 Male_E4 Female_E2 Female_E3 Female_E4);
set Job_tenure;
if Female E1 = . then delete;
Rename Female_E1 = Scale;
Gender_range = 'Female_E1';
Data Female_E2 (Drop= Male_E1 Male_E2 Male_E3 Male_E4 Female_E1 Female_E3 Female_E4);
set Job_tenure;
if Female_E2 = . then delete;
Rename Female_E2 = Scale;
Gender_range = 'Female_E2';
Data Female_E3 (Drop= Male_E1 Male_E2 Male_E3 Male_E4 Female_E2 Female_E1 Female_E4);
set Job_tenure;
if Female_E3 = . then delete;
Rename Female_E3 = Scale;
Gender_range = 'Female_E3';
run;
Data Female_E4 (Drop= Male_E1 Male_E2 Male_E3 Male_E4 Female_E2 Female_E3 Female_E1);
set Job_tenure;
if Female E4 = . then delete;
Rename Female_E4 = Scale;
Gender_range = 'Female_E4';
Data Job_tenure2;
Length Scale 8 Gender_range $ 90;
set male_e1 male_e2 male_e3 male_e4 Female_E1 Female_E2 Female_E3 Female_E4 ;
proc print data = Job_tenure2;
/* A. Test for interaction between gender and education */
proc glm data=Job_tenure2;
class gender_range;
model scale = Gender_range;
means Gender_range;
title 'Test for interaction between Gender and Education';
Title 'Q box plot';
proc sgplot data = Job_tenure2;
vbox scale/ category = Gender_range;
run;
Title 'Q-Q plot';
proc univariate data = job_tenure2;
ppplot scale;
run;
```

1. Hypothesis

Null hypothesis (Ho): There is no interaction between gender and education in holding jobs.

Ho: $\mu 1 = \mu 2$.

Alternative hypothesis (H1): There is an interaction between gender and education in holding jobs.

Ha: $\mu 1 \neq \mu 2$

2. Sampling the distribution.

The F statistics distribution was sampled for the one-way Anova. The F value is 2.17. The P value is 0.0487 making it less than 0.05, we reject the null hypothesis and go for the alternative hypothesis.

The third table shows both the P value and the F value, it also shows the Model source and Error source within the group's variation.

Level of		Scale		
Gender_range	N	Mean	Std Dev	
Female_E1	10	11.5000000	2.87711275	
Female_E2	10	11.2000000	3.11982906	
Female_E3	10	9.4000000	4.06065129	
Female_E4	10	8.1000000	3.51030230	
Male_E1	10	12.6000000	2.87518115	
Male_E2	10	11.0000000	2.94392029	
Male_E3	10	10.6000000	3.40587727	
Male_E4	10	9.0000000	2.30940108	

The distribution of scale produced from the proc anova module is the same as the Q box plot obtained below using the proc sgplot module.

The Q box plot shows the data points are distributed for each group. The mean and median are not spread evenly. From the plot, there is a slight difference amongst the mean for each group and a significant difference amongst their median. The group mean of Female_E1 and Male are the same, but their median is different. The outliers of each group are beyond the minimum cutoff point.

834

Q-Q plot
The UNIVARIATE Procedure
Variable: Scale (Male_E1)

Momenta

80 Sum Weights
10.425 Sum Observations

3.33669662

Std Deviation

The skewness and kurtosis values are o which indicates a normal distribution. The standard deviation for all groups is 3.34.

3. Conclusion

After much analysis it is inferred that the educational level varies with the gender. These servers as evidence to backup the alternative hypothesis that states; There is an interaction between gender and education in holding jobs.

Results: ASSIGNMENT2.sas

			Gender_range	
	1		Male_E1	
	2		Male_E1	
	3		Male_E1	
	4		Male_E1	
	5	14	Male_E1	
https://odamid-usw2.oda.sas.com/SASS	hulin/saseven/submissions/96	4hedD6	4217-405h-h026-nefin3ah29h36/resulfs	
7/1/23, 5:38 PM		F	lesults: ASSIGNMENT2 sas	
	Obs	Scale	Gender_range	
	6		Male_E1	
	7		Male_E1	
	8		Male_E1	
	9		Male E1	
	10		Male_E1	
	11		Male E2	
	12		Male E2	
	13		Male_E2	
	14		Male_E2	
	15		Male_E2	
	16		Male_E2	
	17		Male_E2	
	18		Male_E2	
	19		Male_E2	
	20	11	Male_E2	
	21	15	Male_E3	
	22	8	Male_E3	
	23	7	Male_E3	
	24	7	Male_E3	
	25	7	Male_E3	
	26	9	Male_E3	
	27	14	Male_E3	
	28	15	Male_E3	
	29		Male_E3	
	30		Male_E3	
	31		Male_E4	
	32		Male_E4	
	33		Male_E4	
	34		Male_E4	
	35		Male_E4	
	36		Male_E4	
	37		Male_E4	
	38		Male_E4	
	39		Male_E4	
	40		Male_E4	
	41		Female_E1	
	42		Female_E1	
	43		Female_E1	
	44		Female_E1	
	45		Female_E1	
	46		Female E1	