

APRENDIZAGEM E DECISÃO INTELIGENTES

LEI/MiEI @ 2022/2023, 2º sem [ADI^3]

Agenda

- Porquê Preparação de Dados?
- Tarefas
 - o Discretização
 - o Limpeza
 - Integração
 - Transformação
 - o Redução
- Tipos de dados
 - Qualitativos
 - Quantitativos

Porque SIM!

Porque SIM!

- O principal objetivo da preparação dos dados consiste em transformar os data sets por forma a que a informação neles contida esteja adequadamente exposta à ferramenta de análise de dados (AD);
- A preparação dos dados "também prepara o preparador" por forma selecionar os modelos de AD mais adequados;
- Os dados têm de ser formatados para se adequarem a uma determinada ferramenta de AD;
- Os dados recolhidos do "mundo real":
 - o são incompletos;
 - o contêm lixo;
 - o podem conter inconsistências.

Preparação de dados

- Preparação dos Dados (Pré-processamento). Como?
 - Discretização;
 (classes etárias)
 - Limpeza;(n° BI)
 - Integração;(fontes)
 - Transformação;(diários/mensais)
 - Redução de dados. (moradas/regiões)

Data Mining – Descoberta de Conhecimento em Bases de Dados Manuel Filipe Santos, Carla Azevedo

- Os dados recolhidos do "mundo real":
 - o são incompletos:
 - falta de valores em alguns atributos;
 - falta de alguns atributos;
 - dados agregados ou generalizados;
 - Código postal: 4710-... Braga;
 - N° de filhos: "";
 - o contêm lixo;
 - o podem conter inconsistências.

- Os dados recolhidos do "mundo real":
 - são incompletos;
 - o contêm lixo:
 - · identificam valores impossíveis;
 - Salário: -1.000EUR;
 - Idade: 321;
 - Data: 31/novembro/2017;
 - · País: Catalunha;
 - o podem conter inconsistências.

- Os dados recolhidos do "mundo real":
 - o são incompletos;
 - o contêm lixo;
 - o podem conter inconsistências:
 - encontram-se discrepâncias entre valores ou nomes;
 - Idade = 35; Data de nascimento = 31/maio/1969;
 - Sexo: "M/F"; "0/1"; "Masculino/Feminino/Descont
 - diferenças entre valores de registos duplicados.

https://www.metropoles.com/brasil/rape-sinalizacao-errada-em-rua-no-interior-de-sp-vira-piada

- Discretização/Enumeração;
- Limpeza;
- Integração;
- Transformação;
- Redução.

- Discretização/Enumeração:
 - o Redução de dados com importante aplicação a dados numéricos;
- Limpeza;
- Integração;
- Transformação;
- Redução.

- Discretização/Enumeração;
- Limpeza:
 - Preenchimento de valores de atributos;
 - Remoção de lixo dos dados;
 - Remoção de valores impossíveis;
 - Resolução de inconsistências;
- Integração;
- Transformação;
- Redução.

- Discretização/Enumeração;
- Limpeza;
- Integração:
 - Múltiplas fontes de dados (BD's, ficheiros, papel, web, etc.);
- Transformação;
- Redução.

Discretização/Enumeração;

- Limpeza;
- Integração;
- Transformação:
 - Normalização e agregação de dados;
- Redução.

- Discretização/Enumeração;
- Limpeza;
- Integração;
- Transformação;
- Redução:
 - Obtenção de representações de dados menos volumosas, mas com capacidade para produzir idênticos resultados analíticos;
 - Redução de dimensões;
 - o Compressão de dados.

- Os tipos dos dados diferem na sua natureza e na quantidade de informação que proporcionam:
- Qualitativos ou Quantitativos.

- Nominais:
 - Atribui nomes únicos a objetos:
 - Não existe outra informação que se possa deduzir;
 - · Nomes de pessoas;
 - Códigos de identificação;
- Categorias;
- Ordinais;
- Intervalos;
- Rácios.

- Nominais;
- Categorias:
 - Atribui categorias a objetos:
 - Podem ser valores numéricos, mas são não ordenados;
 - Código postal;
 - Sexo;
 - Cor dos olhos;
- Ordinais;
- Intervalos;
- Rácios.

- Nominais;
- Categorias;
- Ordinais:
 - Os valores podem ser ordenados naturalmente;
 - Classificação: excelente, bom, suficiente, etc.;
 - Temperatura: frio, morno, quente;
- Intervalos;
- Rácios.

- Nominais;
- Categorias;
- Ordinais;
- Intervalos:
 - o É possível calcular a distância entre dois valores;
 - Temperatura;
 - Humidade;
- Rácios.

IN	om	ına	ııc.
	OI II	11110	112,

- Categorias;
- Ordinais;
- Intervalos;
- Rácios:
 - o Os valores podem ser utilizados para determinar um ra
 - Salário;
 - Balanço bancário.

Country	Converted values			National rates and developments			
	2020 (€)	2021 (€)	Change (%)	2020 (€ unless otherwise stated)	2021 (€ unless otherwise stated)	Change (%	
Luxembourg	2,142	2,202	2.8	2,142/month	2,202/month	2.8	
UK*†	1,790	1,903	6.3	GBP 8.72/hour	GBP 8.91/hour	2,2	
Ireland*	1,707	1,724	1.0	10.1/hour	10.2/hour	1.0	
Netherlands	1,654	1,685	1.9	1,654/month	1,685/month	1.9	
Belgium*	1,626	1,626	0.0	1,626/month	1,626/month	0.0	
Germany	1,584	1,610	1.6	9.35/hour	9.5/hour	1.6	
France	1,539	1,555	1.0	1,539/month	1,555/month	1.0	
Slovenia	1,019	1,110	8.9	1,019/month	1,110/month	8.9	
Spain	1,108	1,108	0.0	1,108/month	1,108/month	0.0	
Malta	777	785	1.0	179/week	181/week	1.0	
Portugal	741	776	4.7	741/month	776/month	4.7	
Greece	758	758	0.0	758/month	758/month	0.0	
Lithuania	607	642	5.8	607/month	642/month	5.8	
Slovakia	580	623	7.4	580/month	623/month	7.4	
clo signif	icatillo er	ntro ⁶¹⁴ los	0.5	PLN 2,600/month	PLN 2,800/month	7.7	
Estonia	584	584	0.0	584/month	584/month	0.0	
Czechia	575	579	0.8	CZK 14,600/month	CZK 15,200/month	4.1	
Croatia	546	563	3.1	HRK 4,063/month	HRK 4,250/month	4.6	
Latvia	430	500	16.3	430/month	500/month	16.3	
Romania	466	472	1.3	RON 2,230/month	RON 2,300/month	3.1	
Hungary†	487	467	-4.1	HUF 161,000/month	HUF 167,400/month	4.0	
Bulgaria	312	332	6.6	BGN 610/month	BGN 650/month	6.8 ()	

- Discretização/Enumeração;
- Limpeza;
- Integração;
- Transformação;
- Redução.

Discretização/Enumeração

- Utiliza-se a discretização (ou enumeração) para reduzir o número de valores de um atributo contínuo, dividindo-o em intervalos;
 - o Os métodos mais utilizados (Naïve Bayes, CHAID, etc.), requerem valores discretos;
 - Redução do tamanho dos dados;
 - o Método utilizado para produzir sumariação dos dados;
 - o (Sinónimo de *binning*.)

Discretização de igual largura

- Equal-width binning.
- Divide a gama de valores em N intervalos de igual largura, resultando numa grelha uniforme;
- Sendo A e B os limites da gama de valores, a largura dos intervalos será L = (B A) / N:

Discretização de igual largura

- Vantagens:
 - Simples e fácil de implementar;
 - Produz abstrações de dados razoáveis;

- Não supervisionado;
- Quem determina N?;
- Sensível a valores fronteira.

Desvantagens:

Discretização de igual altura

- Equal-height binning.
- Divide a gama de valores em N intervalos, contendo, cada um, **aproximadamente** a mesma quantidade de valores:

Discretização de igual altura

- Normalmente preferida à discretização de igual largura, uma vez que permite evitar o "amontoar" de valores;
- Na prática, utiliza-se uma discretização de "quase-igual" altura, garantindo intervalos mais intuitivos;
- Deverá impedir a dispersão de valores frequentes por diferentes intervalos;
- Deverá criar intervalos separados para valores especiais ("0").

Discretização: outros métodos

- Método 1R:
 - o Método supervisionado, baseado na divisão por binning,
- Discretização baseada em Entropia;
- Discretização baseada em Impurezas;

- Deteção de limites;
- etc.

- Discretização/Enumeração;
- Limpeza;
- Integração;
- Transformação;
- Redução.

Limpeza de dados

- Ausência de valores em determinados atributos devido a:
 - o inconsistência;
 - dados não registados;
 - o análise incorreta;
 - o dados registados de forma errada;

Limpeza de dados: como tratar a ausência de dados?

- Ignorar os registos onde faltam os dados e lidar, apenas com os dados conhecidos;
 - o não aconselhável se a quantidade de dados em falta em cada atributo for elevada;
- Ignorar os atributos onde faltam os dados;
 - o não aconselhável se os atributos onde acontece revelarem informação importante;
- Preencher (manualmente) os dados em falta:
 - o é mais trabalhoso preencher ou é mais difícil adivinhar?
- Preencher os dados em falta com um mesmo valor ("talvez"):
 - o pode criar tendências nos dados ou novas classes;
- Preencher com o valor médio do atributo:
 - o pouco impacto negativo, desde que o desvio padrão não seja grande;
- Preencher com o valor mais frequente do atributo;
- Quantos mais valores "inventados", maior o desvio dos dados que caracterizam o problema face à realidade que o problema ilustra!

Limpeza de dados: como tratar a ausência de dados?

- Ignorar os registos onde faltam os dados e lidar, apenas com os dados conhecidos;
 - o não aconselhável se a quantidade de dados em falta em cada atributo for elevada;
- Ignorar os atributos onde faltam os dados;
 - o não aconselhável se os atributos onde acontece revelarem informação importante;
- Preencher (manualmente) os dados em falta:
 - o é mais trabalhoso preencher ou é mais difícil adivinhar?
- r adicionar Preencher os dados em falta com um mesmo valor ("talvez"):
 - o pode criar tendências nos dados ou novas classes;
- Preencher com o valor médio do atributo:
 - o pouco impacto negativo, desde que o desvidendo
- Preencher com o valor mais frequente do atributo;
- torção aos dados Quantos mais valores "inventados" Maior o desvio dos dados que caracterizam o problema face à realidade que o problema ilustra!

- Discretização/Enumeração;
- Limpeza;
- Integração;
- Transformação;
- Redução.

Integração de dados

Os dados que caracterizam o problema podem ter proveniências diversas;

O objetivo da integração é o de compor um conjunto de peças de informação numa coleção coerente e integrada de

dados.

Detetar e resolver conflitos entre os dados:

o qual a fonte de dados mas fiável, quando os valores que transportam são inconsistentes?

Integração exige "conhecimento do negócio".

Discretização/Enumeração;

- Limpeza;
- Integração;
- Transformação;
- Redução.

Transformação de dados

- Alisamento (smoothing):
 - o Remover lixo/ruído dos dados (binning, regressão, clustering);
- Agregação;
- Generalização;
- Construção de Atributos;
- Uniformização;
- Deteção de valores atípicos.

- Alisamento (smoothing);
- Agregação:
 - Pressupõe que o resultado sumaria os dados iniciais;
 (resumo de vendas trimestrais, durante 5 anos, em valores anuais)
- Generalização;
- Construção de Atributos;
- Uniformização;
- Deteção de valores atípicos.

- Alisamento (smoothing);
- Agregação;
- Generalização:
 - Hierarquização de conceitos:
 - distrito → cidade → rua;
 - Valores diferentes: 18 → centenas → (largos) milhares
- Construção de Atributos;
- Uniformização;
- Deteção de valores atípicos.

- Alisamento (smoothing);
- Agregação;
- Generalização;
- Construção de atributos:
 - Construção de novos atributos a partir de outros (cálculo do preço líquido baseado no preço ilíquido e no IVA);
- Uniformização;
- Deteção de valores atípicos.

- Alisamento (smoothing);
- Agregação;
- Generalização;
- Construção de atributos;
- Uniformização:
 - Pretende evitar que atributos com uma gama alargada de valores sobressaiam em relação a outros atributos com menor quantidade de valores:
 - Normalização (normalization: [0;1]);
 - Padronização (*standardization/Z-score normalization*: \bar{x} =0; ∂ =1);
- Deteção de valores atípicos.

- Alisamento (smoothing);
- Agregação;
- Generalização;
- Construção de atributos;
- Uniformização;
- Deteção de valores atípicos:
 - o Por visualização:
 - Box plots

- Alisamento (smoothing);
- Agregação;
- Generalização;
- Construção de atributos;
- Uniformização;
- Deteção de valores atípicos:
 - o Por visualização:
 - Box plots
 - Z-Score (desvio padrão)

Tarefas na preparação de dados

- Discretização/Enumeração;
- Limpeza;
- Integração;
- Transformação;
- Redução.

Redução de dados

- Um Data Warehouse pode armazenar largos terabytes de dados;
- Realizar tarefas de EC em tais quantidades de dados pode tornar-se impraticável!
- A Redução de dados pretende obter uma representação reduzida do volume de dados, mas produzindo os mesmos (ou quase os mesmos) resultados analíticos.

Redução de dados: estratégias

- Construção de cubos de dados:
 - o as operações de agregação são aplicadas de modo a construir cubos de dados;
- Redução de dimensões:
 - o remoção de atributos que se mostrem irrelevantes, redundantes ou pouco interessantes para a análise;
 - Principle Component Analysis (PCA);
- Compressão de dados:
 - aplicação de técnicas de compressão ou de transformação para comprimir a representação dos dados originais;
- Redução de quantidade:
 - o redução do volume de dados (técnicas paramétricas ou não paramétricas);
- Discretização e generalização de conceitos:
 - o redução da quantidade de valores por atributo.

Conclusões

- Adequar os dados às técnicas de análise
- Adaptar os dados às ferramentas
- Selecionar os dados que representam conhecimento
- Sintetizar dados que tornem a realidade mais inteligível
- "Preparação do preparador"

Referências bibliográficas

- Data Preparation for Data Mining Dorian Pyle
- Data Mining: Concepts and Techniques
 Jiawei Han, Micheline Kamber
- Data Mining: Practical Machine Learning Tools and Techniques with JAVA Implementations lan Witten, Eibe Frank
- Data Mining: Descoberta de Conhecimento em BDs Manuel Filipe Santos, Carla Azevedo

APRENDIZAGEM E DECISÃO INTELIGENTES

LEI/MiEI @ 2022/2023, 2º sem [ADI^3]