

Inverse eigenvalue problem

Computing (the recurrence relation coefficients of) the OPs $a_j(z)$ can be done by solving the following IEP.

Definition (IEP)

Given: $Z = \operatorname{diag}(z_i)$ – points, $\mathbf{w} = (w_i)$ – weights Find: Unitary Q and upper Hessenberg H such that

$$Q^H \mathbf{w} = \|\mathbf{w}\| \mathbf{e}_1, \quad Q^H Z Q = H.$$

Connection between Q, H and the OPs

Consider the following recurrence relation for b_i :

$$b_0 = \frac{1}{\|\mathbf{w}\|}, \quad z[b_0, b_1, \dots, b_{N-1}] = [b_0, b_1, \dots, b_{N-1}]H.$$
 (2)

H Hessenberg \Rightarrow derive b_1 from 1st col, b_2 from 2nd, ...

$$egin{align} Q^H \mathbf{w} &= \|\mathbf{w}\| \mathbf{e}_1 \quad \Rightarrow \quad Q \mathbf{e}_1 = rac{\mathbf{w}}{\|\mathbf{w}\|} = \mathrm{diag}(\mathbf{w})[b_0(z_i)] \ ZQ &= QH \quad \Rightarrow \quad Q \mathbf{e}_k = \mathrm{diag}(\mathbf{w})[b_{k-1}(z_i)], \ k = 1, 2, \dots, N. \end{split}$$

Since $Q^HQ = I$, we have that:

(1) b_i are OPs wrt (1), (2) $a_i = b_i$ and thus (3) WA = Q.

Algorithm for solving IEP

ightarrow sequence of unitary similarity transformations using Givens rotations ightarrow

2 points

 $\xrightarrow{G_w(1,2)}$

3 points (1)

 $\xrightarrow{G_w(1,3)}$

3 points (2)

 $\xrightarrow{G(2,3)}$

... skip some steps and jump to 6 points ...

5 points (4)

 $\xrightarrow{G(4,5)}$

6 points **(1)**

 $\xrightarrow{G_W(1,6)}$

6 points (2)

 $\xrightarrow{G(2,6)}$

6 points (3)

 $\xrightarrow{G(3,6)}$

6 points (4)

 $\xrightarrow{G(4,6)}$

6 points (5)

 $\xrightarrow{G(5,6)}$

Algorithm 1: Transformation of the initial matrix $D = [\mathbf{w}|Z]$ into a matrix $[Q^H\mathbf{w}|Q^HZQ]$ having zeros below the pivot elements

begin

```
for i=2:N do

for j=1:i-1 do

make element d_{i,j} zero
by Givens rot. G^H with the pivot element (j,j):
D=G^HD
D=D\begin{pmatrix}1\\G\end{pmatrix} \text{ (similarity transformation)}
end
end
end
```


Computational complexity to solve the IEP

- in general: $\mathcal{O}(N^3)$ FLOPS
- w_i real, z_i real: $\mathcal{O}(N^2)$ FLOPS
- z_i on the complex unit circle: $\mathcal{O}(N^2)$ FLOPS using Schur parametrization, H is a unitary Hessenberg matrix