# TQFT in dimensione bassa

Fosco Loregian

18 maggio 2011

 $\{\mathsf{oggetti}\ \mathsf{geometrici}\} \longleftrightarrow \{\mathsf{oggetti}\ \mathsf{algebrici}\}$ 

in modo funtoriale.



 $\{\mathsf{oggetti}\;\mathsf{geometrici}\} \longleftrightarrow \{\mathsf{oggetti}\;\mathsf{algebrici}\}$ 

in modo funtoriale.

L'idea non è affatto nuova:

$$X \rightsquigarrow H_n(X,\mathbb{R}), H^n(X,\mathbb{R}), \ldots$$

$$\{\mathsf{oggetti}\;\mathsf{geometrici}\} \longleftrightarrow \{\mathsf{oggetti}\;\mathsf{algebrici}\}$$

in modo funtoriale.

L'idea non è affatto nuova:

$$X \rightsquigarrow H_n(X,\mathbb{R}), H^n(X,\mathbb{R}), \ldots$$

#### Vorremmo trovare:

- Una categoria C di varietà (essenzialmente una sottocategoria di Mfd) con buone proprietà;
- Un funtore  $Z: \mathbf{C} \to \mathbf{Vect}_k$  con buone proprietà:

$$\{ \mathsf{oggetti} \ \mathsf{geometrici} \} \longleftrightarrow \{ \mathsf{oggetti} \ \mathsf{algebrici} \}$$

in modo funtoriale.

L'idea non è affatto nuova:

$$X \rightsquigarrow H_n(X,\mathbb{R}), H^n(X,\mathbb{R}), \ldots$$

#### Vorremmo trovare:

- Una categoria C di varietà (essenzialmente una sottocategoria di Mfd) con buone proprietà;
- Un funtore  $Z : \mathbf{C} \to \mathbf{Vect}_k$  con buone proprietà:

$$\begin{split} Z(\Sigma \times [0,1]) &\cong \mathsf{id}_{\Sigma} \quad \forall \Sigma \in \textbf{C} \\ Z(\Sigma_1 \amalg \Sigma_2) &\cong Z(\Sigma_1) \otimes Z(\Sigma_2) \quad \forall \Sigma_1, \Sigma_2 \in \textbf{C} \end{split}$$

Buone proprietà sono proprietà categoriali di docilità: la presenza di coprodotti, di un oggetto iniziale, di una struttura monoidale da comparare con quella su **Vect**...

### Definizione (Categoria Monoidale)

Una categoria monoidale è una terna  $(C, \otimes, I)$ , in cui C è una categoria,  $\otimes : C \times C \to C$  un (bi)funtore e  $I \in Ob_C$ , tali che i diagrammi





siano commutativi.

# Alcuni esempi:

- Ogni categoria con prodotti finiti e un oggetto finale;
- Ogni monoide pensato come categoria discreta;
- End(C), con il bifuntore dato dalla composizione e il funtore identico;
- La categoria dei k-spazi vettoriali, con l'operazione  $\otimes_k$  e l=k.

# Alcuni esempi:

- Ogni categoria con prodotti finiti e un oggetto finale;
- Ogni monoide pensato come categoria discreta;
- End(C), con il bifuntore dato dalla composizione e il funtore identico;
- La categoria dei k-spazi vettoriali, con l'operazione  $\otimes_k$  e l=k.

Una categoria monoidale  $(\mathbf{C}, \otimes, I)$  si dice *simmetrica* se esiste un morfismo

$$s: A \otimes B \mapsto B \otimes A$$

tale che  $s \circ s = id_{A \otimes B}$ .



## Definizione (Funtore Monoidale)

Date due categorie monoidali  $(C, \otimes, I)$ ,  $(D, \boxtimes, J)$  un funtore  $\mathfrak{F} \colon C \to D$  si dice monoidale se esistono famiglie di isomorfismi

$$\varphi_{AB} \colon \mathcal{F}(A) \boxtimes \mathcal{F}(B) \cong \mathcal{F}(A \otimes B)$$
  
 $i \colon J \cong \mathcal{F}(I)$ 

uno per ogni coppia di oggetti  $A,B\in \mathbf{C}$  tali che i diagrammi seguenti siano commutativi.

$$(\mathfrak{F}(A) \boxtimes \mathfrak{F}(B)) \boxtimes \mathfrak{F}(C) \longrightarrow \mathfrak{F}(A) \boxtimes (\mathfrak{F}(B) \boxtimes \mathfrak{F}(C))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathfrak{F}(A \otimes B) \boxtimes \mathfrak{F}(C) \qquad \qquad \mathfrak{F}(A) \boxtimes \mathfrak{F}(B \otimes C)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathfrak{F}((A \otimes B) \otimes C) \longrightarrow \mathfrak{F}(A \otimes (B \otimes C))$$

$$J \boxtimes \mathcal{F}(A) \longrightarrow \mathcal{F}(I) \boxtimes \mathcal{F}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}(A) \longleftarrow \mathcal{F}(I \otimes A)$$



## Definizione (Categoria degli *n*-cobordismi)

Sia  $n \ge 1$  fissato.  $\operatorname{Cob}(n)$  è la categoria che ha per oggetti le varietà  $M, N, \ldots$  chiuse (=senza bordo) orientate e compatte di dimensione n-1, e per morfismi (= "cobordismi")  $B: M \leadsto N$  le varietà lisce, compatte e orientate, che hanno per bordo  $\overline{M} \coprod N$ .

### Definizione (Categoria degli *n*-cobordismi)

Sia  $n \ge 1$  fissato.  $\operatorname{Cob}(n)$  è la categoria che ha per oggetti le varietà  $M, N, \ldots$  chiuse (=senza bordo) orientate e compatte di dimensione n-1, e per morfismi (= "cobordismi")  $B: M \leadsto N$  le varietà lisce, compatte e orientate, che hanno per bordo  $\overline{M} \coprod N$ .

$$\bullet$$
 id<sub>M</sub> =  $M \times [0,1]$ ;





## Definizione (Categoria degli *n*-cobordismi)

Sia  $n \ge 1$  fissato.  $\operatorname{Cob}(n)$  è la categoria che ha per oggetti le varietà  $M, N, \ldots$  chiuse (=senza bordo) orientate e compatte di dimensione n-1, e per morfismi (= "cobordismi")  $B: M \leadsto N$  le varietà lisce, compatte e orientate, che hanno per bordo  $\overline{M} \coprod N$ .

$$ullet$$
 id $_{M}=M imes[0,1];$ 

• Composizione = incollamento: se  $B: M \rightsquigarrow M', B': M' \rightsquigarrow M''$ , allora " $B' \circ B$ " =  $B \coprod_{M'} B': M \rightsquigarrow M''$ .

### **Teorema**

Sia  $n \ge 1$  un intero. Allora  $(\operatorname{Cob}(n), \coprod, \varnothing)$  è una categoria monoidale simmetrica. (Il vuoto è considerato una varietà di ogni dimensione.)

### **Teorema**

Sia  $n \ge 1$  un intero. Allora  $(\operatorname{Cob}(n), \coprod, \varnothing)$  è una categoria monoidale simmetrica. (Il vuoto è considerato una varietà di ogni dimensione.)

#### **Definizione**

Sia k un campo (possiamo pensare  $k=\mathbb{C}$ ). Una Topological Quantum Field Theory di dimensione n è un funtore monoidale

$$Z \colon \operatorname{Cob}(n) \longrightarrow \mathbf{Vec}_k$$
 $M \longmapsto Z(M) = V$ 
 $(B \colon M \leadsto M') \longmapsto V \to V'$ 

In modo che  $Z(M \coprod N) \cong Z(M) \otimes_k Z(N)$ .



8 / 22

$$Z(\Theta): Z(\varnothing) \to Z(\varnothing): 1 \mapsto Z(1)$$

$$Z(\Theta): Z(\varnothing) \to Z(\varnothing): 1 \mapsto Z(1)$$

• I cobordismi in  $\operatorname{Cob}(n)$  si possono riguardare in più modi: una varietà  $M^n$ , orientata, con un bordo  $\partial B$  è un cobordismo in tanti modi quante (=tra tante varietà quante) sono le decomposizioni di  $\partial B$  in unione disgiunta di varietà (n-1)-dimensionali. . .

$$Z(\Theta): Z(\varnothing) \to Z(\varnothing): 1 \mapsto Z(1)$$

• I cobordismi in  $\operatorname{Cob}(n)$  si possono riguardare in più modi: una varietà  $M^n$ , orientata, con un bordo  $\partial B$  è un cobordismo in tanti modi quante (=tra tante varietà quante) sono le decomposizioni di  $\partial B$  in unione disgiunta di varietà (n-1)-dimensionali...

•  $M \times [0,1]$  è un cob.  $\overline{M} \leadsto \overline{M}$  in sè:  $\mathrm{id}_{\overline{M}}$ ;

•  $M \times [0,1]$  è un cob.  $\overline{M} \coprod M \leadsto \emptyset$  (valutazione);

•  $M \times [0,1]$  è un cob.  $\varnothing \leadsto \overline{M} \coprod M$  (covalutazione);

Valutando  $Z : \operatorname{Cob}(n) \to \mathbf{Vec}_k$  sulle varietà ottenute in questi modi accadono cose interessanti:

 $\bullet \ M \times [0,1] \ \text{\`e} \ \text{un cob.} \ \overline{M} \leadsto \overline{M} \ \text{in s\'e} : \ \text{id}_{\overline{M}};$ 

Valutando  $Z : \operatorname{Cob}(n) \to \mathbf{Vec}_k$  sulle varietà ottenute in questi modi accadono cose interessanti:

•  $Z(\overline{M}) \to Z(\overline{M})$  corrisponde a  $\mathrm{id}_{Z\overline{M}}$ ;



- $\bullet \ M \times [0,1] \ \text{\`e} \ \text{un cob.} \ \overline{M} \leadsto \overline{M} \ \text{in s\'e} : \ \text{id}_{\overline{M}};$
- $M \times [0,1]$  è un cob.  $\overline{M} \coprod M \leadsto \varnothing$  (valutazione);

Valutando  $Z : \operatorname{Cob}(n) \to \mathbf{Vec}_k$  sulle varietà ottenute in questi modi accadono cose interessanti:

- $Z(\overline{M}) \to Z(\overline{M})$  corrisponde a  $id_{Z\overline{M}}$ ;
- $Z(\overline{M}) \otimes_k Z(M) \to k$  (valutazione);

- $M \times [0,1]$  è un cob.  $\overline{M} \leadsto \overline{M}$  in sè:  $\mathrm{id}_{\overline{M}}$ ;
- $M \times [0,1]$  è un cob.  $\overline{M} \coprod M \leadsto \emptyset$  (valutazione);
- $M \times [0,1]$  è un cob.  $\varnothing \leadsto \overline{M} \coprod M$  (covalutazione);

Valutando  $Z \colon \operatorname{Cob}(n) \to \mathbf{Vec}_k$  sulle varietà ottenute in questi modi accadono cose interessanti:

- $Z(\overline{M}) \to Z(\overline{M})$  corrisponde a  $id_{Z\overline{M}}$ ;
- $Z(\overline{M}) \otimes_k Z(M) \to k$  (valutazione);
- $k \to Z(\overline{M}) \otimes_k Z(M)$  (covalutazione);

- $M \times [0,1]$  è un cob.  $\overline{M} \leadsto \overline{M}$  in sè:  $\mathrm{id}_{\overline{M}}$ ;
- $M \times [0,1]$  è un cob.  $\overline{M} \coprod M \rightsquigarrow \emptyset$  (valutazione);
- $M \times [0,1]$  è un cob.  $\varnothing \leadsto \overline{M} \coprod M$  (covalutazione);

Valutando  $Z \colon \operatorname{Cob}(n) \to \mathbf{Vec}_k$  sulle varietà ottenute in questi modi accadono cose interessanti:

- $Z(\overline{M}) \to Z(\overline{M})$  corrisponde a  $\mathrm{id}_{Z\overline{M}}$ ;
- $Z(\overline{M}) \otimes_k Z(M) \to k$  (valutazione);
- $k \to Z(\overline{M}) \otimes_k Z(M)$  (covalutazione);

In un mondo perfetto, dovrebbe esistere un corrispettivo in  $\mathbf{Vec}_k$  della operazione "cambio orientazione a M". In effetti...

... Esiste!

#### **Teorema**

Sia  $Z : \operatorname{Cob}(n) \to \mathbf{Vec}_k$  una  $\operatorname{TQFT}$  di dimensione n. Per ogni  $M \in \operatorname{Cob}(n)$ , Z(M) è uno spazio vettoriale di dimensione finita e l'applicazione lineare

$$Z(\overline{M}) \otimes_k Z(M) \to k$$

definisce un isomorfismo tra  $Z(\overline{M})$  e  $Z(M)^*$  (il duale).

... Esiste!

#### **Teorema**

Sia  $Z : \operatorname{Cob}(n) \to \mathbf{Vec}_k$  una  $\operatorname{TQFT}$  di dimensione n. Per ogni  $M \in \operatorname{Cob}(n)$ , Z(M) è uno spazio vettoriale di dimensione finita e l'applicazione lineare

$$Z(\overline{M}) \otimes_k Z(M) \to k$$

definisce un isomorfismo tra  $Z(\overline{M})$  e  $Z(M)^*$  (il duale).

```
"Dimostrazione": Si applichi Z(M)^* \otimes_k - al morfismo di covalutazione k \to Z(\overline{M}) \otimes_k Z(M), per ottenere \beta \colon Z(M)^* \otimes_k k \cong Z(M)^* \to Z(M)^* \otimes_k Z(M) \otimes_k Z(\overline{M}) \to k \otimes Z(\overline{M}) \cong Z(\overline{M}). Analogamente per \alpha \colon Z(\overline{M}) \to Z(M)^*. Ora \beta \circ \alpha = \operatorname{id}, \alpha \circ \beta = \operatorname{id}.
```

$$( ullet_+ ullet_- ullet_+ ullet_+ )$$

$$( ullet_+ ullet_- ullet_+ ullet_+ )$$

Esistono *due* varietà orientate e connesse di dimensione zero:  $\bullet_+$  e  $\bullet_-$ ; esse determinano univocamente l'azione di Z su  $M \in Cob(1)$ :

$$( ullet_+ ullet_- ullet_+ ullet_+ )$$

Esistono *due* varietà orientate e connesse di dimensione zero:  $\bullet_+$  e  $\bullet_-$ ; esse determinano univocamente l'azione di Z su  $M \in Cob(1)$ :

$$Z(M) = Z\big(\coprod_{i=1}^m \bullet_+ \coprod \coprod_{i=1}^n \bullet_-\big) = Z(\bullet_+)^{\otimes m} \otimes_k Z(\bullet_-)^{\otimes n}$$

$$( ullet_+ ullet_- ullet_+ ullet_+ )$$

Esistono *due* varietà orientate e connesse di dimensione zero:  $\bullet_+$  e  $\bullet_-$ ; esse determinano univocamente l'azione di Z su  $M \in Cob(1)$ :

$$Z(M) = Z\big(\coprod_{i=1}^m \bullet_+ \coprod \coprod_{i=1}^n \bullet_-\big) = Z(\bullet_+)^{\otimes m} \otimes_k Z(\bullet_-)^{\otimes n}$$

 $\clubsuit$  Per il Teorema precedente,  $Z(\bullet_+)\cong Z(\bullet_-)^*$ ;

$$( ullet_+ ullet_- ullet_+ ullet_+ )$$

Esistono *due* varietà orientate e connesse di dimensione zero:  $\bullet_+$  e  $\bullet_-$ ; esse determinano univocamente l'azione di Z su  $M \in Cob(1)$ :

$$Z(M) = Z\big(\coprod_{i=1}^m \bullet_+ \coprod \coprod_{i=1}^n \bullet_-\big) = Z(\bullet_+)^{\otimes m} \otimes_k Z(\bullet_-)^{\otimes n}$$

- **\$** Per il Teorema precedente,  $Z(\bullet_+) \cong Z(\bullet_-)^*$ ;
- $\spadesuit$  Un cobordismo in  $\mathrm{Cob}(1)$  è una varietà  $B: M \rightsquigarrow M'$  di dimensione 1 risultante da unione disgiunta di alcune copie di  $\mathbb{S}^1$  ( $\varnothing \rightsquigarrow \varnothing$ ) e alcune copie di [0,1] ( $\bullet \rightsquigarrow \bullet$ ).

Si possono enumerare 5 casi distinti per un cobordismo *B* connesso:

**1** Se B = [0,1] si guarda come  $\bullet_+ \leadsto \bullet_+$ , esso corrisponde a  $\mathrm{id}_{\bullet_+}$ ;

Si possono enumerare 5 casi distinti per un cobordismo *B* connesso:

- **①** Se B = [0,1] si guarda come  $\bullet_+ \leadsto \bullet_+$ , esso corrisponde a id $_{\bullet_+}$ ;
- 2 Se B = [0,1] si guarda come  $\bullet_- \leadsto \bullet_-$ , esso corrisponde a id $\bullet_-$

Si possono enumerare 5 casi distinti per un cobordismo *B* connesso:

- **1** Se B = [0,1] si guarda come  $\bullet_+ \leadsto \bullet_+$ , esso corrisponde a id $_{\bullet_+}$ ;
- ② Se B = [0,1] si guarda come  $\bullet_- \leadsto \bullet_-$ , esso corrisponde a id $\bullet_-$
- ③ Se B = [0,1] si guarda come cobordismo da  $\bullet_+$  II  $\bullet_-$  a  $\emptyset$ , otteniamo una mappa  $V^* \otimes V \to k$ , riconoscibile come la dualità canonica;

Si possono enumerare 5 casi distinti per un cobordismo  ${\it B}$  connesso:

- ① Se B = [0,1] si guarda come  $\bullet_+ \leadsto \bullet_+$ , esso corrisponde a id $_{\bullet_+}$ ;
- ② Se B = [0,1] si guarda come  $\bullet_- \leadsto \bullet_-$ , esso corrisponde a id $\bullet_-$
- ③ Se B = [0,1] si guarda come cobordismo da  $\bullet_+$  II  $\bullet_-$  a  $\emptyset$ , otteniamo una mappa  $V^* \otimes V \to k$ , riconoscibile come la dualità canonica;
- ③ Se B = [0,1] si guarda come cobordismo da  $\emptyset$  a  $\bullet_+$   $\coprod$   $\bullet_-$ , otteniamo una mappa  $k \to V \otimes V^* \cong \operatorname{End}(V)$ , che manda  $c \in k$  in  $f_c : v \mapsto c \cdot v$ .

Si possono enumerare 5 casi distinti per un cobordismo  ${\it B}$  connesso:

- **1** Se B = [0,1] si guarda come  $\bullet_+ \leadsto \bullet_+$ , esso corrisponde a id $_{\bullet_+}$ ;
- ② Se B = [0,1] si guarda come  $\bullet_- \leadsto \bullet_-$ , esso corrisponde a id $\bullet_-$
- ③ Se B = [0,1] si guarda come cobordismo da  $\bullet_+$  II  $\bullet_-$  a  $\varnothing$ , otteniamo una mappa  $V^* \otimes V \to k$ , riconoscibile come la dualità canonica;
- ③ Se B = [0,1] si guarda come cobordismo da  $\emptyset$  a  $\bullet_+$   $\coprod$   $\bullet_-$ , otteniamo una mappa  $k \to V \otimes V^* \cong \operatorname{End}(V)$ , che manda  $c \in k$  in  $f_c : v \mapsto c \cdot v$ .
- **5** Se  $B = \mathbb{S}^1$  viene riguardato come cobordismo da  $\emptyset$  in sè, otteniamo il cobordismo scrivibile come

$$Z(\bigcirc) \cong Z(\bigcirc \circ \bigcirc) \cong Z(\bigcirc) \circ Z(\bigcirc)$$
  
 $k \to V^* \otimes V \to k$   
 $1 \to \mathrm{id}_V \to \mathrm{tr}(\mathrm{id}_V) = \dim V$ 

- n=2. Ogni componente connessa di una varietà chiusa è (a meno di diffeo)  $\mathbb{S}^1$ , quindi
  - $\mathbb{S}^1$  ha in  $\mathrm{Cob}(2)$  il ruolo che ullet aveva in  $\mathrm{Cob}(1)$ .

 $\mathbb{S}^1$  ha in  $\mathrm{Cob}(2)$  il ruolo che • aveva in  $\mathrm{Cob}(1)$ .

$$Z(M) = Z(\coprod_{i=1}^m \mathbb{S}^1) \cong Z(\mathbb{S}^1)^{\otimes m} = W^{\otimes m}$$

 $\mathbb{S}^1$  ha in  $\mathrm{Cob}(2)$  il ruolo che • aveva in  $\mathrm{Cob}(1)$ .

$$Z(M) = Z(\coprod_{i=1}^m \mathbb{S}^1) \cong Z(\mathbb{S}^1)^{\otimes m} = W^{\otimes m}$$

C'è una geometria molto più ricca:

 $\mathbb{S}^1$  ha in  $\mathrm{Cob}(2)$  il ruolo che • aveva in  $\mathrm{Cob}(1)$ .

$$Z(M) = Z(\coprod_{i=1}^m \mathbb{S}^1) \cong Z(\mathbb{S}^1)^{\otimes m} = W^{\otimes m}$$

C'è una geometria molto più ricca: il cobordismo "prototipo" di Cob(2) è  $\bigvee$ , che definisce una applicazione lineare

$$Z(\nabla) = \mu \colon W \otimes W \longrightarrow W$$

(moltiplicazione)

 $\mathbb{S}^1$  ha in  $\mathrm{Cob}(2)$  il ruolo che • aveva in  $\mathrm{Cob}(1)$ .

$$Z(M) = Z(\coprod_{i=1}^m \mathbb{S}^1) \cong Z(\mathbb{S}^1)^{\otimes m} = W^{\otimes m}$$

C'è una geometria molto più ricca: il cobordismo "prototipo" di Cob(2) è  $\bigvee$ , che definisce una applicazione lineare

$$Z(\nabla) = \mu \colon W \otimes W \longrightarrow W$$

(moltiplicazione)

$$V \otimes W \xrightarrow{\operatorname{id}_W \otimes \mu} V$$

$$\begin{array}{c|c} W \otimes W \otimes W & \xrightarrow{\operatorname{id}_W \otimes \mu} & W \otimes W \\ \downarrow^{\mu \otimes \operatorname{id}_W} & & \downarrow^{\mu} \\ W \otimes W & \xrightarrow{\vdots} & W \end{array}$$

▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \epsilon : k \to W$  (unità);

- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \epsilon : k \to W$  (unità);
- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \eta \colon W \to k$  (counità);

- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \epsilon : k \to W$  (unità);
- ► Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \eta \colon W \to k$  (counità);
- ▶ Esiste  $\longleftrightarrow$ ,  $Z(\longleftrightarrow)$ :  $W \to W \otimes_k W$  (comoltiplicazione).

Allora commutano...

- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \epsilon$ :  $k \to W$  (unità);
- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \eta$ :  $W \rightarrow k$  (counità);
- ▶ Esiste  $\longleftrightarrow$ ,  $Z(\longleftrightarrow)$ :  $W \to W \otimes_k W$  (comoltiplicazione). Allora commutano...

- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \epsilon : k \to W$  (unità);
- ▶ Esiste  $\bigcirc$ ,  $Z(\bigcirc) = \eta$ :  $W \rightarrow k$  (counità);
- ▶ Esiste  $\longleftrightarrow$ ,  $Z(\longleftrightarrow)$ :  $W \to W \otimes_k W$  (comoltiplicazione). Allora commutano...

$$\cong \qquad \cong \qquad \cong \qquad \qquad W \otimes k \xrightarrow{\mathrm{id}_{W} \otimes \epsilon} W \otimes W \xleftarrow{\epsilon \otimes \mathrm{id}_{W}} k \otimes W$$

$$\downarrow \mu \qquad \qquad \downarrow \mu \qquad \qquad$$

. . . e opportuni diagrammi duali.

#### Teorema

Ogni TQFT  $Z : \operatorname{Cob}(2) \to \operatorname{Vec}_k$  induce su  $Z(\mathbb{S}^1)$  una struttura di Algebra di Frobenius.

### Dimostrazione.

Vedi [TFA, Prop. 13].



#### Teorema

Ogni TQFT  $Z : \operatorname{Cob}(2) \to \operatorname{Vec}_k$  induce su  $Z(\mathbb{S}^1)$  una struttura di Algebra di Frobenius.

#### Dimostrazione.

Vedi [TFA, Prop. 13].

In effetti si ha una equivalenza

$$\{TQFT_2\} \leftrightarrows Frb_k$$

#### Teorema

Ogni TQFT  $Z : \operatorname{Cob}(2) \to \operatorname{Vec}_k$  induce su  $Z(\mathbb{S}^1)$  una struttura di Algebra di Frobenius.

### Dimostrazione.

Vedi [TFA, Prop. 13].

In effetti si ha una equivalenza

$$\{TQFT_2\} \leftrightarrows Frb_k$$

 Data una varietà, la si scompone in cobordismi e si associano loro degli invarianti algebrici;

#### Teorema

Ogni TQFT  $Z: Cob(2) \rightarrow \mathbf{Vec}_k$  induce su  $Z(\mathbb{S}^1)$  una struttura di Algebra di Frobenius.

### Dimostrazione.

Vedi [TFA, Prop. 13].

In effetti si ha una equivalenza

$$\{TQFT_2\} \leftrightarrows Frb_k$$

- Data una varietà, la si scompone in cobordismi e si associano loro degli invarianti algebrici;
- Data un'algebra in  $\mathbf{Frb}_k$ , la si disegna in Cob(2) (dove gli isomorfismi "si vedono").

### Si è già visto che



### Si è già visto che



Si può operare "al contrario" tagliando una varietà nota: per esempio il toro  $\bigcirc$ : ad esso si associa uno scalare  $c: k \to k$ , calcolabile dalla composizione  $(Z(\mathbb{S}^1) = W)$ 

$$k \to W \to W \otimes W \to W \to k$$

(tutte le mappe sono esattamente quelle trovate prima).



### Si è già visto che



Si può operare "al contrario" tagliando una varietà nota: per esempio il toro  $\stackrel{\smile}{\smile}$ : ad esso si associa uno scalare  $c: k \to k$ , calcolabile dalla composizione  $(Z(\mathbb{S}^1) = W)$ 

$$k \to W \to W \otimes W \to W \to k$$

(tutte le mappe sono esattamente quelle trovate prima). O in generale,  $Z(\mathfrak{S}^{\cdots}\mathfrak{S})$  si ottiene come composizione  $k \to W \to W \otimes W \to \cdots \to W \to k$ ; la filosofia che vorremmo adottare ora è

Tagliare M<sup>n</sup> lungo sottovarietà di codimensione 1, suddividendola in sottovarietà amichevoli di dimensione 2.

...e calcolare agilmente tutto quanto concerne  $M_{\square}^n$ ,  $M_{\square}^n$ 

La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).

- La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).
- Non c'è motivo apparente per fermarsi alla codimensione 1: data M<sup>n</sup> la vorremmo scrivere come somma di sottovarietà di dimensione n, cucite lungo sottovarietà di codimensione 1;

- La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).
- Non c'è motivo apparente per fermarsi alla codimensione 1: data M<sup>n</sup> la vorremmo scrivere come somma di sottovarietà di dimensione n, cucite lungo sottovarietà di codimensione 1; le quali dovrebbero potersi cucire lungo s.v. di codimensione 2;

- La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).
- Non c'è motivo apparente per fermarsi alla codimensione 1: data M<sup>n</sup> la vorremmo scrivere come somma di sottovarietà di dimensione n, cucite lungo sottovarietà di codimensione 1; le quali dovrebbero potersi cucire lungo s.v. di codimensione 2; le quali dovrebbero potersi cucire lungo s.v. di codimensione 3;

. .

- La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).
- Non c'è motivo apparente per fermarsi alla codimensione 1: data M<sup>n</sup> la vorremmo scrivere come somma di sottovarietà di dimensione n, cucite lungo sottovarietà di codimensione 1; le quali dovrebbero potersi cucire lungo s.v. di codimensione 2; le quali dovrebbero potersi cucire lungo s.v. di codimensione 3;

. . .

Arrivati alla dimensione 0, risalire ad M applicando Z.

- La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).
- Non c'è motivo apparente per fermarsi alla codimensione 1: data M<sup>n</sup> la vorremmo scrivere come somma di sottovarietà di dimensione n, cucite lungo sottovarietà di codimensione 1; le quali dovrebbero potersi cucire lungo s.v. di codimensione 2; le quali dovrebbero potersi cucire lungo s.v. di codimensione 3;

. . .

Arrivati alla dimensione 0, risalire ad M applicando Z.

 $(Vari problemi)^n$ : Cos'è un cobordismo tra cobordismi?



- La geometria è "facile" solo in dimensione bassa; se la n in Cob(n) è troppo grande, perdiamo dei potenti teoremi di classificazione (ogni 2-varietà compatta -orientabile e- orientata è somma connessa di tori o è una sfera).
- Non c'è motivo apparente per fermarsi alla codimensione 1: data M<sup>n</sup> la vorremmo scrivere come somma di sottovarietà di dimensione n, cucite lungo sottovarietà di codimensione 1; le quali dovrebbero potersi cucire lungo s.v. di codimensione 2; le quali dovrebbero potersi cucire lungo s.v. di codimensione 3;

. . .

Arrivati alla dimensione 0, risalire ad M applicando Z.

(Vari problemi)<sup>n</sup>: Nulla di simile esiste in Cob(n).



• Varietà chiusa n-dim.  $\Rightarrow$  numero complesso;

- Varietà chiusa n-dim. ⇒ numero complesso;
- Varietà chiusa (n-1)-dim.  $\Rightarrow$  spazio vettoriale;

- Varietà chiusa n-dim. ⇒ numero complesso;
- Varietà chiusa (n-1)-dim.  $\Rightarrow$  spazio vettoriale;
- Cobordismo  $B \colon M \leadsto M'$  tra varietà di dimensione  $n-1 \Rightarrow$  applicazione lineare  $Z(M) \to Z(M')$  (se  $M = M' = \emptyset$ , B è la moltiplicazione per il n.ro complesso trovato in 1);

- Varietà chiusa n-dim. ⇒ numero complesso;
- Varietà chiusa (n-1)-dim.  $\Rightarrow$  spazio vettoriale;
- Cobordismo  $B \colon M \leadsto M'$  tra varietà di dimensione  $n-1 \Rightarrow$  applicazione lineare  $Z(M) \to Z(M')$  (se  $M = M' = \emptyset$ , B è la moltiplicazione per il n.ro complesso trovato in 1);

una TQFT "estesa" consisterà degli stessi dati, e in più assegna

• Varietà chiusa (n-2)-dim.  $\Rightarrow$  categoria k-lineare (p. es.:  $\mathbf{Vec}_k$ );

- Varietà chiusa n-dim. ⇒ numero complesso;
- Varietà chiusa (n-1)-dim.  $\Rightarrow$  spazio vettoriale;
- Cobordismo  $B \colon M \leadsto M'$  tra varietà di dimensione  $n-1 \Rightarrow$  applicazione lineare  $Z(M) \to Z(M')$  (se  $M = M' = \emptyset$ , B è la moltiplicazione per il n.ro complesso trovato in 1);

una TQFT "estesa" consisterà degli stessi dati, e in più assegna

- Varietà chiusa (n-2)-dim.  $\Rightarrow$  categoria k-lineare (p. es.:  $\mathbf{Vec}_k$ );
- cobordismi tra varietà (n-2)-dim.  $\Rightarrow$  funtore monoidale k-lineare...

Un approccio è quello *n*-categoriale: (Baez–Dolan $\rightarrow \cdots \rightarrow$  Lurie.) L'idea è che laddove una TQFT "ordinaria" è determinata dalle corrispondenze

- Varietà chiusa n-dim. ⇒ numero complesso;
- Varietà chiusa (n-1)-dim.  $\Rightarrow$  spazio vettoriale;
- Cobordismo  $B \colon M \leadsto M'$  tra varietà di dimensione  $n-1 \Rightarrow$  applicazione lineare  $Z(M) \to Z(M')$  (se  $M=M'=\varnothing$ , B è la moltiplicazione per il n.ro complesso trovato in 1);

una TQFT "estesa" consisterà degli stessi dati, e in più assegna

- Varietà chiusa (n-2)-dim.  $\Rightarrow$  categoria k-lineare (p. es.:  $\mathbf{Vec}_k$ );
- cobordismi tra varietà (n-2)-dim.  $\Rightarrow$  funtore monoidale k-lineare. . .
- . . .

Un approccio è quello *n*-categoriale: (Baez–Dolan $\rightarrow \cdots \rightarrow$  Lurie.) L'idea è che laddove una TQFT "ordinaria" è determinata dalle corrispondenze

- Varietà chiusa n-dim. ⇒ numero complesso;
- Varietà chiusa (n-1)-dim.  $\Rightarrow$  spazio vettoriale;
- Cobordismo  $B \colon M \leadsto M'$  tra varietà di dimensione  $n-1 \Rrightarrow$  applicazione lineare  $Z(M) \to Z(M')$  (se  $M=M'=\varnothing$ , B è la moltiplicazione per il n.ro complesso trovato in 1);

una TQFT "estesa" consisterà degli stessi dati, e in più assegna

- Varietà chiusa (n-2)-dim.  $\Rightarrow$  categoria k-lineare (p. es.:  $\mathbf{Vec}_k$ );
- cobordismi tra varietà (n-2)-dim.  $\Rightarrow$  funtore monoidale k-lineare...
- . . .

Data a  $\operatorname{Cob}(n)$  una struttura di n-categoria, una eTQFT (TQFT estesa) consiste di un funtore monoidale  $Z: (\operatorname{Cob}(n), []) \to (\mathbf{C}, \otimes)$ .

Teorema (Ipotesi/Teorema di Cobordismo, Lurie 2008)

Se C è una n-categoria monoidale, sono equivalenti

• Il dato di un funtore n-monoidale  $Z : eCob(n)_{fr} \to \mathbf{C}$ ;

Teorema (Ipotesi/Teorema di Cobordismo, Lurie 2008)

Se C è una n-categoria monoidale, sono equivalenti

- Il dato di un funtore n-monoidale  $Z : eCob(n)_{fr} \to \mathbf{C}$ ;
- Il dato di "un" oggetto X di **C**;

Teorema (Ipotesi/Teorema di Cobordismo, Lurie 2008)

Se C è una n-categoria monoidale, sono equivalenti

- Il dato di un funtore n-monoidale  $Z : eCob(n)_{fr} \to \mathbf{C}$ ;
- Il dato di "un" oggetto X di **C**;

Secondo la corrispondenza  $X \rightleftharpoons Z(\bullet)$ .

Teorema (Ipotesi/Teorema di Cobordismo, Lurie 2008)

Se C è una n-categoria monoidale, sono equivalenti

- Il dato di un funtore n-monoidale  $Z : eCob(n)_{fr} \to \mathbf{C}$ ;
- Il dato di "un" oggetto X di **C**;

Secondo la corrispondenza  $X \rightleftharpoons Z(\bullet)$ .

▶▶ In un altro approccio (cfr. [DWi]) si propone una differente definizione di TQFT, che associa ad M un opportuno numero razionale, ottenuto a partire da una "G-colorazione" di una sua fissata triangolazione  $\tau$ .

## Teorema (Ipotesi/Teorema di Cobordismo, Lurie 2008)

Se C è una n-categoria monoidale, sono equivalenti

- Il dato di un funtore n-monoidale  $Z : eCob(n)_{fr} \to \mathbf{C}$ ;
- Il dato di "un" oggetto X di **C**;

Secondo la corrispondenza  $X \rightleftharpoons Z(\bullet)$ .

▶▶ In un altro approccio (cfr. [DWi]) si propone una differente definizione di TQFT, che associa ad M un opportuno numero razionale, ottenuto a partire da una "G-colorazione" di una sua fissata triangolazione  $\tau$ .

$$Z(M) = \sum_{G \text{-colorazioni}} \frac{1}{|G|^{|V|}}$$

## Teorema (Ipotesi/Teorema di Cobordismo, Lurie 2008)

Se C è una n-categoria monoidale, sono equivalenti

- Il dato di un funtore n-monoidale  $Z : eCob(n)_{fr} \to \mathbf{C}$ ;
- Il dato di "un" oggetto X di **C**;

Secondo la corrispondenza  $X \rightleftharpoons Z(\bullet)$ .

▶▶ In un altro approccio (cfr. [DWi]) si propone una differente definizione di TQFT, che associa ad M un opportuno numero razionale, ottenuto a partire da una "G-colorazione" di una sua fissata triangolazione  $\tau$ .

$$Z(M) = \sum_{G \text{-colorazioni}} \frac{1}{|G|^{|V|}}$$

*G* gruppo finito, |V| = #vertici di  $\tau$  (ben def  $\Leftarrow$  mosse di Pachner.)

| $H_n(-)$ (Eilenberg)                | Z(-) (Atiyah)                                     |
|-------------------------------------|---------------------------------------------------|
| $(X,Y)\in Top^2\colon Y\subseteq X$ | $(M,\Sigma)\in Top^2\colon \Sigma\cong\partial M$ |

| $H_n(-)$ (Eilenberg)                                              | Z(-) (Atiyah)                                                                       |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $(X,Y)\in Top^2\colon Y\subseteq X \ H_ullet(-)\colon Top^2	o Ab$ | $(M,\Sigma)\in Top^2\colon \Sigma\cong\partial M$ $Z\colon \mathrm{Cob}(n)	o Vec_k$ |

| $H_n(-)$ (Eilenberg)                              | Z(-) (Atiyah)                                       |
|---------------------------------------------------|-----------------------------------------------------|
| $(X,Y)\in Top^2\colon Y\subseteq X$               | $(M,\Sigma)\in Top^2\colon \Sigma\cong \partial M$  |
| $H_ullet(-)\colon Top^2	o Ab$                     | $Z \colon \operatorname{Cob}(n) \to \mathbf{Vec}_k$ |
| $X \coprod X' \rightsquigarrow H(X) \oplus H(X')$ | $Z(M \coprod M') \cong Z(M) \otimes Z(M')$          |

| $H_n(-)$ (Eilenberg)                                                                                    | Z(-) (Atiyah)                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(X,Y)\in Top^2\colon Y\subseteq X$ $H_ullet(-)\colon Top^2	o Ab$ $X\amalg X'\leadsto H(X)\oplus H(X')$ | $(M, \Sigma) \in \mathbf{Top}^2 \colon \Sigma \cong \partial M$ $Z \colon \operatorname{Cob}(n) \to \mathbf{Vec}_k$ $Z(M \coprod M') \cong Z(M) \otimes Z(M')$ |
| Escissione:                                                                                             | Incollamento:                                                                                                                                                  |

| $H_n(-)$ (Eilenberg)                                                                                      | Z(-) (Atiyah)                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(X,Y)\in Top^2\colon Y\subseteq X$ $H_{ullet}(-)\colon Top^2	o Ab$ $X\amalg X'\leadsto H(X)\oplus H(X')$ | $(M,\Sigma) \in \mathbf{Top}^2 \colon \Sigma \cong \partial M$ $Z \colon \operatorname{Cob}(n) \to \mathbf{Vec}_k$ $Z(M \coprod M') \cong Z(M) \otimes Z(M')$ |
| Escissione: $\bullet \mapsto \mathbb{Z}$                                                                  | Incollamento: $\varnothing \mapsto k$                                                                                                                         |

| $H_n(-)$ (Eilenberg)                                                                                                                                         | Z(-) (Atiyah)                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(X,Y) \in Top^2 \colon Y \subseteq X$ $H_{ullet}(-) \colon Top^2 \to Ab$ $X \coprod X' \leadsto H(X) \oplus H(X')$ Escissione: $\bullet \mapsto \mathbb{Z}$ | $(M, \Sigma) \in \mathbf{Top}^2 \colon \Sigma \cong \partial M$ $Z \colon \operatorname{Cob}(n) \to \mathbf{Vec}_k$ $Z(M \coprod M') \cong Z(M) \otimes Z(M')$ Incollamento: $\varnothing \mapsto k$ |
|                                                                                                                                                              |                                                                                                                                                                                                      |

Esiste una "connessione"  $H_n \to H_{n-1}$ Si applica a varie sottocategorie di **Top**   $\leftarrow$  Nulla del genere Si applica *solo* a  $\mathrm{Cob}(n)$ ...











## Bibliografia.

- M. Atiyah (1988), *Topological quantum field theories*, Publications Mathématiques de l'IHÉS 68.
- R. Dijkgraaf, E. Witten *Topological gauge theories and group cohomology*, Commun. Math. Phys 129 (1990) 393-429.
- Lowell Abrams, Two-dimensional topological quantum field theories and Frobenius Algebras, J. Knot Theory Ramifications, 5 (1996).
- J. Lurie, On the Classification of Topological Field Theories.
- S. MacLane, *Categories for the Working Mathematician*, Graduate Texts in Mathematics 5, Springer—Verlag 1971.