Principal Component Analysis

Name: Rajarshi Chattopadhyay | Net Id: RXC170010

Import necessary libraries

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    from numpy import mean
    from numpy import cov
    from numpy.linalg import eig
    import warnings
    warnings.filterwarnings('ignore')
```

Create the training, validation, and test feature(X) and label(y) matrices from the corresponding datasets

```
In [2]: X_trn = np.loadtxt('data/usps.train', delimiter=',', usecols=(np.arange(1,257)))
        y trn = np.loadtxt('data/usps.train', delimiter=',', usecols=(0))
        print("X_trn = " + str(X_trn.shape))
        print("Y_trn = " + str(y_trn.shape))
        X_val = np.loadtxt('data/usps.valid', delimiter=',', usecols=(np.arange(1,257)))
        y_val = np.loadtxt('data/usps.valid', delimiter=',', usecols=(0))
        print("X val = " + str(X val.shape))
        print("Y_val = " + str(y_val.shape))
        X_tst = np.loadtxt('data/usps.test', delimiter=',', usecols=(np.arange(1,257)))
        y_tst = np.loadtxt('data/usps.test', delimiter=',', usecols=(0))
        print("X_tst = " + str(X_tst.shape))
        print("Y_tst = " + str(y_tst.shape))
        X_{trn} = (1000, 256)
        Y_{trn} = (1000,)
        X \text{ val} = (300, 256)
        Y_val = (300,)
        X_{tst} = (300, 256)
        Y \text{ tst} = (300,)
```

Center the features data

Obtain the features covariance matrix of the centered features

```
In [4]: # Find the feature covariance matrix on the training set
Cov = cov(C_trn.T)
print("Cov = " + str(Cov.shape))
Cov = (256, 256)
```

Find the Eigen vectors for the features from the covariance matrix

Find the top 16 Eigen vectors from the training set with the highest Eigen values

```
In [6]: # Make a list of (eigenvalue, eigenvector) tuples
    eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))]

# Sort the (value, vector) tuples from high to low value
    eigen_pairs.sort(key=lambda x: x[0], reverse=True)

# Find the top 16 eigenvectors
    vec_dict = {}
    i = 0
    for p in eigen_pairs[:16]:
        vec_dict[i] = p[1]
        i = i+1
    digits = vec_dict.values()
```

Compute the projections (Eigen digits) of the top 16 Eigen vectors, and vizualize

```
In [7]: # Visualize the top 16 eigendigits
    fig = plt.figure(figsize=(8,8))
    i=1
    for d in digits:
        ax = fig.add_subplot(4,4,i)
        ax.matshow(d.reshape((16,16)).astype(float))
        i=i+1
    plt.show()
```


Plot the cumulative explained variance ratio vs. number of components from the training set eigens

```
In [8]: # Find cumulative explained variance in training set
        total = np.sum(eigen_vals)
        cum_exp_var_dict = {}
        i = 1
        sum = 0
        for p in eigen_pairs:
            sum = sum + (p[0]*100/total)
            cum_exp_var_dict[i] = sum
            i = i+1
        cv_dict = dict(zip(cum_exp_var_dict.values(),cum_exp_var_dict.keys()))
        # Plot cumulative explained variance vs number of components plot of the traning set
        plt.figure()
        plt.grid(axis='x', color='r')
        plt.grid(axis='y', color='g')
        plt.plot(cv_dict.keys(), cv_dict.values())
        plt.ylabel('Number of Components')
        plt.xlabel('Variance (%)')
        plt.yticks([0, 10, 20, 30, 40, 50, 60, 256])
        plt.xticks([0, 70, 80, 90, 100])
        plt.show()
```


To achieve 70%, 80% and 90% of the total variance in the training set, the respective approximate dimensionality required are as follows:

- $k_{70} = \sim 18$ components
- $k_{80} = \sim 29$ components
- $k_{90} = \sim 54$ components

For k_{100} all 256 components are required

To obtain X_{70} with 70% variance, we project 18 components To obtain X_{80} with 80% variance, we project 29 components To obtain X_{90} with 90% variance, we project 54 components To obtain X_{100} with 100% variance, we project 256 components

Reduce the 256-dimensional feature space to a k-dimensional feature subspace, by choosing the "top k" eigenvectors with the highest eigenvalues to construct our 256 x k-dimensional eigenvector matrix W

```
In [9]: # Find projection matrix with top 18, 29, and 54 components
W_18 = np.hstack([eigen_vecs[i].reshape(256,1) for i in range(0,18)])
print("W_18 = " + str(W_18.shape))

W_29 = np.hstack([eigen_vecs[i].reshape(256,1) for i in range(0,29)])
print("W_29 = " + str(W_29.shape))

W_54 = np.hstack([eigen_vecs[i].reshape(256,1) for i in range(0,54)])
print("W_54 = " + str(W_54.shape))

W_18 = (256, 18)
W_29 = (256, 29)
W_54 = (256, 54)
```

Use the projection matrix to transform our datasets onto the new subspace

```
In [10]: # Find the projection of the training, validation, and test sets with the projection matrices
          X_70_{trn} = C_{trn.dot(W_18)}
          print("X_70_trn = " + str(X_70_trn.shape))
          X 80 \text{ trn} = C \text{ trn.dot}(W 29)
          print("X_80_trn = " + str(X_80_trn.shape))
          X 90 \text{ trn} = C \text{ trn.dot}(W 54)
          print("X_90_trn = " + str(X_90_trn.shape))
          X_100_{trn} = C_{trn}
          print("X_100_trn = " + str(X_100_trn.shape))
          X_70_val = C_val.dot(W_18)
          print("X_70_val = " + str(X_70_val.shape))
          X_80_val = C_val.dot(W_29)
          print("X_80_val = " + str(X_80_val.shape))
          X_90_val = C_val.dot(W_54)
          print("X 90 val = " + str(X 90 val.shape))
          X_100_val = C_val
          print("X 100 val = " + str(X 100 val.shape))
          X_70_{tst} = C_{tst.dot(W_18)}
          print("X_70_tst = " + str(X_70_tst.shape))
          X_80_{tst} = C_{tst.dot(W_29)}
          print("X_80_tst = " + str(X_80_tst.shape))
          X 90 \text{ tst} = C \text{ tst.dot}(W 54)
          print("X_90_tst = " + str(X_90_tst.shape))
          X_100_{tst} = C_{tst}
          print("X_100_tst = " + str(X_100_tst.shape))
         X 70 trn = (1000, 18)
          X_80_{trn} = (1000, 29)
         X_{90}trn = (1000, 54)
         X 100 trn = (1000, 256)
         X_70_{val} = (300, 18)
         X_{80}val = (300, 29)
         X_90_val = (300, 54)
         X_100_val = (300, 256)
         X_70_{tst} = (300, 18)
         X_80_{tst} = (300, 29)
         X_{90}tst = (300, 54)
          X 100 tst = (300, 256)
```

Learn different multi-class SVM classifiers for different regularization terms, and evaluate over validation set

```
In [11]: | alpha_range = np.arange(-4.0, 0, 1.0)
        alpha_values = np.power(10.0, alpha_range)
        from sklearn.linear model import SGDClassifier
        print("{:9s}\t{:9s}\t{:9s}\t{:9s}\. format('k', 'alpha', 'Validation Error', 'Test Error'))
        # Learn model with training set and evaluate on validation set for different alfa and projections
        for a in alpha_values:
            clf = SGDClassifier(alpha=a, loss="hinge", penalty="12")
            clf_70_dict = clf.fit(X_70_trn, y_trn)
            valErr_X_70 = 1 - clf_70_dict.score(X_70_val, y_val)
            tstErr_X_70 = 1 - clf_70_dict.score(X_70_tst, y_tst)
            clf_80_dict = clf.fit(X_80_trn, y_trn)
            valErr_X_80 = 1 - clf_80_dict.score(X_80_val, y_val)
            tstErr_X_80 = 1 - clf_80_dict.score(X_80_tst, y_tst)
            clf_90_dict = clf.fit(X_90_trn, y_trn)
            valErr_X_90 = 1 - clf_90_dict.score(X_90_val, y_val)
            tstErr_X_90 = 1 - clf_90_dict.score(X_90_tst, y_tst)
            clf_100_dict = clf.fit(X_100_trn, y_trn)
            valErr_X_100 = 1 - clf_100_dict.score(X_100_val, y_val)
            tstErr_X_100 = 1 - clf_100_dict.score(X_100_tst, y_tst)
            print("{:1d}\t\t{:0.4f}\t\t{:0.2f} %\t\t\t{:0.2f} %\".format(70, a, valErr_X_70*100, tstErr_X_70*100)
            print("{:1d}\t\t{:0.4f}\t\t{:0.2f} %\t\t\t{:0.2f} %\".format(80, a, valErr_X_80*100, tstErr_X_80*100)
            print("{:1d}\t\t{:0.4f}\t\t{:0.2f} %\t\t\t{:0.2f} %\".format(90, a, valErr_X_90*100, tstErr_X_90*100)
            print("{:1d}\t\t{:0.4f}\t\t{:0.2f} %\t\t\t{:0.2f} %".format(100, a, valErr_X_100*100, tstErr_X_100*1
                      alpha Validation Error Test Error 0.0001 36.33 % 38.33 % 0.0001 19.67 % 0.0001
        k
        70
        80
        90
                      0.0001
                                    10.67 %
        100
                                                           8.00 %
        70
              0.0010 30.00 % 35.00 %
        80
                0.0010 19.67 %
0.0010 14.00 %
                                                           19.67 %
10.00 %
        90
                     0.0010 9.00 %
                                                           8.33 %
                      0.0100 31.67 %
0.0100 20.33 %
0.0100 14.00 %
                                                           34.33 %
        70
                                                            18.00 %
                                                           12.33 %
        90
        100 0.0100 7.33 %
                                                           7.33 %
        _____
        70
                      0.1000 34.33 %
                                                            35.67 %
                                     25.33 %
        80
                      0.1000
                                                            22.33 %
                     0.1000
                                    18.33 %
                                                           16.67 %
        90
        100
                 0.1000
                                10.00 %
                                                           9.00 %
```

It is identified that the best model based on validation set with feature selection is for (k, α) pair (90, 0.001), and that without feature selection is for (k, α) (100, 0.01)

The best models on test data produce the following amount of error

- 54 features (cumulative variance 90%), alpha 0.001 => 14.00% validation error, 10.00% test error
- all 256 features (cumulative variance 100%), alpha 0.01 => 7.33% validation error, 7.33% test error