TX802 MIDI SYSTEM EXCLUSIVE MESSAGES

1. PARAMETER CHANGE

The TX802 receives seven types of System Exclusive Parameter Change. (These messages are not transmitted!) When a Parameter Change message is received, the LCD will show the current value of the affected value. (In the case of 7. Remote Switch, the LCD will show the effect of pressing the specified switch.)

- 1. VCED (voice edit buffer)
- 2. ACED (additional voice edit buffer)
- 3. PCED (performance edit buffer)
- 4. SYCED (system setup)
- 5. Micro tuning
- 6. Fractional scaling
- 7. Remote switch

Parameter change messages 1-4 and 7 have the following format:

```
11110000
                 F0H
01000011
                  43H
0001nnnn
                 nnnn
                                 = device #
                                                                          gg/hh param is 0x1B for switch
                                 = group number, hh = subgroup number
0gggggghh
                  ggggg
                                 = parameter number
Opppppp
                 ppppppp
Oddddddd
                 ddddddd
                                 = data
11110111
```

Details of "gggg/hh/ppppppp/ddddddd" are given in the respective sections.

The format for parameter change message 5 (micro tuning) is given in section 1.5

The format for parameter change message 6 (fractional scaling) is given in section 1.6

1.1 VCED Parameter Change

```
ggggg = 00110 (6)
hh = 00 (0)
```

These messages affect the VCED (voice edit buffer) data one parameter at a time. ppppppp (parameter number) and ddddddd (data) are explained in Table 1

1.2 ACED Parameter Change

```
ggggg = 00110 (6)
hh = 00 (0)
```

These messages affect the ACED (additional voice edit buffer) data one parameter at a time. ppppppp (parameter number) and ddddddd (data) are explained in Table 2

1.3 PCED Parameter Change

```
ggggg = 00110 (6)
hh = 00 (2)
```

These messages affect the PCED (performance edit buffer) data one parameter at a time. ppppppp (parameter number) and ddddddd (data) are explained in Table 3

1.4 SYCED Parameter Change

The only system setup data that can be accessed via Parameter Change is the Voice Data Receive Block and Master Tuning.

Voice data receive block:

```
ggggg = 00110 (6)

hh = 01 (1)

ppppppp = 1001101 (77)

ddddddd = 0 (voice data 1-32) or 1 (voice data 33-64)
```

Master tuning:

```
ggggg = 00001 (1)
hh = 00 (0)
ppppppp = 1000000 (64)
ddddddd = 0 - 127
```

1.5 Micro Tuning Parameter Change

```
11110000
                  F0H
01000011
                  43H
0001nnnn
                                  = device #
                  nnnn
                                  = 00110 (6), hh = 00 (0)
0gggggghh
                  ggggg
                                  = 1111110 (126)
Opppppp
                  ppppppp
0kkkkkkk
                  kkkkkkk
                                  = key number
0hhhhhhh
                  hhhhhhh
                                  = data (upper)
OIIIIIII
                  IIIIIII
                                  = data (lower)
11110111
                  F7H
```

These messages affect the data in the micro tuning edit buffer one note at a time!

1.6 Fractional Scaling Parameter Change

```
11110000
                  F0H
01000011
                  43H
0001nnnn
                                  = device #
                  nnnn
0gggggghh
                                  = 00110 (6), hh = 00 (0)
                  ggggg
Opppppp
                                  = 1111111 (127)
                  ppppppp
00000000
                  000
                                  = operator number
00kkkkkk
                  kkkkkkk
                                  = key group number
Ohhhhhhh
                  hhhhhhh
                                  = data (upper)
OIIIIIII
                  IIIIIII
                                  = data (lower)
11110111
                  F7H
```

These messages affect the data in the fractional scaling edit buffer one operator, one key group at a time!

1.7 Remote Switch Parameter Change

```
ggggg = 00110 (6)
hh = 11 (3)
ddddddd = don't care
```

Remote control is possible for all panel switches, and will have the same effect as actually pressing the switch. For "ppppppp" (switch number) see Table 4.

2.0 VOICE DATA BULK DUMP

There are two types of bulk dump for voice data

- 1. Voice edit buffer bulk dump
- 2. Voice memory bulk dump

For details of the format of each bulk dump, see Fig. 1

When "device # = all", data will be transmitted as if "device # = 1"

2.1 Voice Edit Buffer Bulk Dump

These messages transmit or receive the data in the voice edit buffer.

Transmission is in the following order:

- 1. Fractional scaling edit buffer bulk data
- 2. ACED (additional voice edit buffer) bulk data
- 3. VCED (voice edit buffer) bulk data

Reception is in the order of 1, 2, 3. However, if VCED is received immediately after receiving ACED, the additional voice edit buffer is initialized.

2.2 Voice Memory Bulk Dump

These messages transmit or receive voice data, either 1 – 32 or 33 - 64:

- 1. Voice data receive block parameter change
- 2. Fractional scaling cartridge bulk data
- 3. AMEM (additional voice memory) bulk data
- 4. VMEM (voice memory) bulk data

However, "2" is transmitted only when a cartridge is inserted!

Reception is in the order of 1, 2, 3, 4. However, if VMEM is received immediately after receiving AMEM, the additional voice memory is initialized.

3.0 PERFORMANCE DATA BULK DUMP

There are two types of bulk dump for performance data

- 1. Performance edit buffer bulk dump
- 2. Performance memory bulk dump

3.1 Performance Edit Buffer Bulk Dump

These messages transmit or receive the data in the performance edit buffer. For details of the format, see Fig. 1

3.2 Performance Memory Bulk Dump

These messages transmit or receive the 64 performances in memory. For details of the format, see Fig. 1

4.0 SYSTEM SETUP DATA BULK DUMP

These messages transmit or receive system setup data; i.e. settings made in System Setup Mode except for Micro Tuning data. For details of the format, see Fig. 1

5.0 MICRO TUNING DATA BULK DUMP

There are three types of bulk dump for micro tuning data. For details of the format, see Fig. 1

- 1. Micro tuning edit buffer bulk dump Transmits or receives the micro tuning data in the edit buffer.
- 2. Micro tuning memory with memory # bulk dump Transmits or receives the micro tuning data 1-2 in internal micro tuning memory together with the memory number.
- 3. Micro tuning cartridge bulk dump Transmits or receives the data for 64 micro tunings in a cartridge

6.0 FRACTIONAL SCALING DATA BULK DUMP

There are two types of bulk dump for fractional scaling data. For details of the format, see Fig. 1

- 1. Fractional scaling edit buffer bulk dump Transmits or receives the fractional scaling data in the edit buffer.
- 2. Fractional scaling cartridge bulk dump Transmits or receives the data for 64 fractional scalings in a cartridge

7.0 DUMP REQUEST

The following data dumps can be requested:

VECD	F0H, 43H, 2nH, 00H, F7H
VMEM	F0H, 43H, 2nH, 09H, F7H
ACED	F0H, 43H, 2nH, 05H, F7H
PCED	F0H, 43H, 2nH, 7EH, LM8952PE, F7H
PMEM	F0H, 43H, 2nH, 7EH, LM8952PM, F7H
System setup	F0H, 43H, 2nH, 7EH, LM8952S-, F7H
Micro tuning edit buffer	F0H, 43H, 2nH, 7EH, LMMCRYE-, F7H
Micro tuning internal memory	F0H, 43H, 2nH, 7EH, LMMCRYMx, F7H
Micro tuning cartridge data	F0H, 43H, 2nH, 7EH, LMMCRYC-, F7H
Fractional scaling edit buffer	F0H, 43H, 2nH, 7EH, LMFKSYE-, F7H
Fractional scaling cartridge data	FOH, 43H, 2nH, 7EH, LMFKSYC-, F7H

Figure 1 - Details of Bulk Dump Format

Data format

= ASCII hexadecimal Total bulk size = 4 + (178 + 3) x 64 + 1 = 11589

The contents of VCED, VMEM, ACED, AMEM, Micro Tuning Edit Buffer, Micro Tuning Internal Memory, Micro Tuning Cartridge Data, Fractional Scaling Edit Buffer and Fractional Scaling Cartridge Data are the same format as the DX7II.

```
VCED (voice edit buffer)
  FOH, 43H, 0nH, 00H, 01H, 1BH, <VCED data>, sum, F7H
               = 155 (009BH)
  Data size
  Data format = 7-bit binary
  Total bulk size = 155 + 8 = 163
VMEM (voice memory)
  F0H, 43H, 0nH, 09H, 20H, 00H, <VMEM data>, sum, F7H
  Data size
              = 128 x 32 = 4096 (1000H)
  Data format = 7-bit binary
  Total bulk size = 4096 + 8 = 4104
ACED (additional voice edit buffer)
  FOH, 43H, 0nH, 05H, 00H, 31H, <ACED data>, sum, F7H
  Data size
               = 49 (0031H)
  Data format = 7-bit binary
  Total bulk size = 49 + 8 = 57
AMEM (additional voice memory)
  FOH, 43H, 0nH, 06H, 08H, 60H, <AMEM data>, sum, F7H
  Data size = 35 x 32 = 1120 (460H)
  Data format = 7-bit binary
  Total bulk size = 1120 + 8 = 1128
PCED (performance edit buffer)
  FOH, 43H, 0nH, 7EH, 01H, 68H, LM--8952PE < PCED data >, sum, F7H
  Data size = 116 x 2 + 10 = 242 (00F2H)
  Data format = ASCII hexadecimal
  Total bulk size = 242 + 8 = 250
  Data as shown in Table 3 PCED format is split into upper and lower 4 bits, and converted into ASCII codes 0 - F
PMEM (performance memory)
  FOH, 43H, 0nH, 7EH,
  01H, 28H, LM--8952PM, <PMEM data 1>, sum,
  01H, 28H, LM--8952PM, <PMEM data 2>, sum,
  ....., ....., ....., ....., .....
  01H, 28H, LM--B952PM, <PCED data 64>, sum, F7H
  Block division = 64
  Data size
                  = 10 + 84 x 2 + 10 = 178 (00B2H)/block
```

Data as shown in Table 5 PMEM format is split into upper and lower 4 bits, and converted into ASCII codes 0 - F

Figure 1 - Details of Bulk Dump Format (Continued)

```
System setup
  F0H, 43H, 0nH, 7EH, 02H, 11H, LM--8952S-, <system data>, sum, F7H
  Data size
                = 10 + 263 = 273 (0111H)
  Data format = 7-bit binary
  Total data size = 273 + 8 = 281
  The data format is explained in Table 3. However, PROTCT and MCTMEM are not transmitted.
Micro tuning edit buffer
  FOH, 43H, OnH, 7EH, 02H, 0AH, LM-MYCRE-, <MCR edit buffer>, sum, F7H
  Data size = 256 + 10 = 266 (010AH)
Data format = 7-bit binary
  Total data size = 266 + 8 = 274
Micro tuning internal memory
  F0H, 43H, 0nH, 7EH, 02H, 0AH, LM--MCRYMx, <MCR Int1 data>, sum, F7H
  F0H, 43H, 0nH, 7EH, 02H, 0AH, LM--MCRYMx, <MCR Int2 data>, sum, F7H
  Data size = 256 + 10 = 266 (010AH)
  Data format = 7-bit binary
  Total data size = 266 + 8 = 274
Micro tuning cartridge data
  FOH, 43H, 0nH, 7EH,
  02H, 0AH, LM-MCRYC-, <MCR CRT1 data>, sum,
  02H, 0AH, LM-MCRYC-, <MCR CRT2 data>, sum,
  ....., ....., ....., ....., .....
  02H, 0AH, LM-MCRYC-, <MCR CRT63 data>, sum, F7H
Fractional scaling edit buffer
  FOH, 43H, OnH, 7EH, 03H, 76H, LM--FKSYE, <FKS edit buffer>, sum, F7H
                = 264 x 2 + 10 = 502 (01F6H)
  Data format = ASCII hexadecimal
  Total bulk size = 502 + 8 = 510
```

```
FOH, 43H, OnH, 7EH,
02H, 76H, LM—FKSYC-, <FSK CRT1/32 data>, sum,
02H, 76H, LM—FKSYC-, <FSK CRT2/33 data>, sum,
.....,
02H, 76H, LM—FKSYC-, <FSK CRT32/64 data>, sum, F7H
```

Table 1 - VCED Parameter Change

g	h	р	Parameter	Description	Data Value
0	0	0	R1	EG-Rate 1	0 - 99
		1	R2	EG-Rate 2	0 - 99
		2	R3	EG-Rate 3	0 - 99
		3	R4	EG-Rate 4	0 - 99
		4	L1	EG-Level 1	0 - 99
		5	L2	EG-Level 2	0 - 99
		6	L3	EG-Level 3	0 - 99
		7	L4	EG-Level 4	0 - 99
		8	ВР	Break Point	0 - 99
		9	LD	Left depth	0 - 99
		10	RD	Right depth	0 - 99
		11	LC	Left curve	0 - 3
		12	RC	Right curve	0 - 3
		13	RS	Rate scaling	0 - 7
		14	AMS	Modulation sensivity	0 - 3
		15	TS	Touch sensivity	0 - 7
		16	TL	Level	0 - 99
		17	PM	Oscillator mode	0 - 1
		18	PC	Oscillator coarse	0 - 31
		19	PF	Oscillator fine	0 - 99
		20	PD	Detune	0 - 14
		126	PR 1	PEG rate 1	0 - 99
		127	PR 2	PEG rate 2	0 - 99
0	1	0	PR 3	PEG rate 3	0 - 99
		1	PR 4	PEG rate 4	0 - 99
		2	PL 1	PEG level 1	0 - 99
		3	PL 2	PEG level 2	0 - 99
		4	PL 3	PEG level 3	0 - 99
		5	PL 4	PEG level 4	0 - 99
		6	ALS	Algorithm selector	0 - 31
		7	FBL	Feedback level	0 - 7
		8	OPI	Oscillator phase initialize	0 - 1
		9	LFS	LFO speed	0 - 99
		10	LFD	LFO delay time	0 - 99
		11	LPMD	LFO pitch modulation depth	0 - 99
		12	LAMD	LFO amplitude modulation depth	0 - 99
		13	LFKS	LFO key sync	0 - 1
		14	LFW	LFO wave	0 - 5
		15	LPMS	LFO pitch modulation sensivity	0 - 7
		16	TRNP	Transpose	0 - 48
		17	VNAM 1	Voice name	ASCII
		18	VNAM 2	Voice name	ASCII
		19	VNAM 3	Voice name	ASCII
		V	↓	.	V
		26	VNAM 10	Voice name	ASCII
		27	OPE	Operator enable (bit 5: OP1, bit 0: OP6)	
		28	OPSEL	Operator select (0: OP6, bit 5: OP1)	

Table 2 - ACED Parameter Change

g	h	р	Parameter	Description	Data Value
6	0	0	SCM	OP 6 scaling mode	0 - 1
		1	SCM	OP 5 scaling mode	0 - 1
		2	SCM	OP 4 scaling mode	0 - 1
		3	SCM	OP 3 scaling mode	0 - 1
		4	SCM	OP 2 scaling mode	0 - 1
		5	SCM	OP 1 scaling mode	0 - 1
		6	AMSN	OP 6 amplitude modulation sensivity	0 - 7
		7	AMSN	OP 5 amplitude modulation sensivity	0 - 7
		8	AMSN	OP 4 amplitude modulation sensivity	0 - 7
		9	AMSN	OP 3 amplitude modulation sensivity	0 - 7
		10	AMSN	OP 2 amplitude modulation sensivity	0 - 7
		11	AMSN	OP 1 amplitude modulation sensivity	0 - 7
		12	PEGR	Pitch EG range	0 - 3
		13	LTRG	LFO key trigger mode	0 - 1
		14	VPSW	Velocity pitch sensivity	0 - 1
		15	PMOD	mono/poly	0 - 3
		16	PBR	Pitch bend range	0 - 12
		17	PBS	Pitch bend step	0 - 12
		_	_	_	
		19	RNDP	Random pitch depth	0 - 7
		20	PORM	Portamento mode	0 - 1
		21	PONT	Portamento step	0 - 12
		22	POS	Portamento time	0 - 99
		23	MWPM	Mod. Wheel - Pitch modulation	0 - 99
		24	MWAM	Mod. Wheel - Amplitude modulation	0 - 99
		25	MWEB	Mod. Wheel - EG bias	0 - 99
		26	FCPM	Foot controller - Pitch modulation	0 - 99
		27	FCAM	Foot controller - Amplitude modulation	0 - 99
		28	FCEB	Foot controller - EG bias	0 - 99
		29	FCVL	Foot controller - Volume	0 - 99
		30	ВСРМ	Breath controller - Pitch modulation	0 - 99
		31	BCAM	Breath controller - Amplitude modulation	0 - 99
		32	BCEB	Breath controller - EG bias	0 - 99
		33	ВСРВ	Breath controller - Pitch bias	0 - 100
		34	ATPM	After touch - Pitch modulation	0 - 99
		35	ATAM	After touch - Amplitude modulation	0 - 99
		36	ATEB	After touch - EG bias	0 - 99
		37	АТРВ	After touch - Pitch bias	0 - 100
		38	PEGS	Pitch EG rate scaling	0 - 7

Table 3 - PCED Parameter Change

g	h	р	Parameter	Description	Data Value
6	2	0 - 7	VCHOFS	Voice channel offset	0 - 7
		8 - 15	RXCH	MIDI receive channel (16: OMNI on)	0 - 16
		16 - 23	VNUM	Voice number (2 bytes, 0-63: Internal, 64-127: Cartridge,	
				128-191: Preset A, 192-255: Preset B	
		24 - 31	DETUNE	Detune (7: Center)	0 - 14
		32 - 39	OUTVOL	Output volume	0 - 99
		40 - 47	оитсн	Output assign (0: off 1: I, 2: II, 3: I + II)	0 - 3
		48 - 55	NTMTL	Note limit low (C-2 - C-8)	0 - 127
		56 - 63	NTMTH	Note limit high (C-2 - C-8)	0 - 127
		64 - 71	NSHFT	Note shift (24: Center, +/- 2 octaves)	0 - 48
		72 - 79	FDAMP	EG forced damp (0: off, 1: on)	0 - 1
		80 - 87	KASG	Key assign group	0 - 1
		88 - 95	MTTNUM	Micro tuning table # (2 bytes)	0 - 254
		96 - 115	PNAM	Performance name	ASCII

Table 4 - Remote Switch Parameter Change

g	h	р	Parameter	Description	Data Value
6	3	64		Power on	
		65		0	
		66		1	
		\downarrow		↓	
		74		9	
		75		Cursor left	
		76		Cursor right	
		77		Enter	
		78		-1	
		79		+1	
		80		-	
		81		Performance select	
		82		Voice select	
		83		System setup	
		84		Utility	
		85		Performance edit	
		86		Voice edit (I)	
		87		Voice edit (II)	
		88		Store	
		89		Tone generator on/off −1	
		\downarrow		↓ ↓ ↓ ↓	
		96		Tone generator on/off -8	

Table 5 - PMEM Data Format

Na	No. Parameter					В	it			
NO.	Paramete	er	7	6	5	4	3	2	1	0
0 - 7	VCHOFS/RXCH	(TG1 - 8)		VCHOF	5			RXCH		
8 - 15	VNUM	(TG1 - 8)				VN	UM			
16 - 23	MTTNUM	(TG1 - 8)				MTT	NUM			
24 - 31	OUTVOL	(TG1 - 8)	_	1		OUT	VOL			
32 - 39	DETUNE/KASG/OUTCH	(TG1 - 8)	_	1	DETUNE		KASG	1	OUTCH	
40 - 47	NLMTL	(TG1 - 8)	-	1		NLI	MTL			
48 - 55	NLMTH	(TG1 - 8)	_	1		NLN	ИTH			
56 - 63	FDAMP/NSHFT	(TG1 - 8)	-	FDMP	1					
64 - 83	PNAM	(20 characters)				PNAM	(ASCII)			

Table 6 - SYCED Data Format

No.	Parameter	Description	Data Value
0	PROTCT	Internal memory protect	0 - 1
1	PRXCH	MIDI receive channel for performance select	0 - 17
2	DEVNO	System exclusive device #	0 - 15
3	VBLOK	Voice bulk receive block	0 - 1
4	PGMSW	Program change receive switch	0 - 17
5	AFTSW	After touch receive switch	0 - 17
6	PBSW	Pitch bend receive switch	0 - 17
7	NOTESW	Note on/off receive switch	0 - 2
8	PRTSW	Program change assign table enable switch	0 - 1
9	BNK802	Bank selekt for TX802 format	0 - 15
10	BNKFRAC	Bank selekt for fractional scaling	0 - 15
11	BNKMCT	Bank selekt for micro tuning	0 - 15
12	MTUNING	Master tuning	0 - 127
13	CONTSW	Control change receive switch	0 - 17
14 - 135	CTABLE	Control # assign table	*
136 - 263	PTABLE	Program # table for performance select	0 - 127
264 - 755	MCTMEM	Micro tuning internal user's memory	**

NOTE: * 0, 1, 2, 4, 5, 7, 64, 65 (0: off, Others: standard control #) ** $0-10,794 \times 4 (0-43,176)$, 2 bytes for 1 key

The lowest 2 bit are always zero

TX802 MIDI SYSTEM EXCLUSIVE MESSAGES

Addendum

I've already corrected that PCED total bulk size in this document according to Tim's remark...

Table 5 - PMEM Data Format

No.	Parameter	Bit 7 6 5 4 3 2 1								
0 - 7	VCHOFS/RXCH	(TG1-8)	·	CHOFS				RXCH		0
8 - 15	VNUM	(TG1-8)		CHOIS	'	VN	UM	IIXCII		
16 - 23	MTTNUM	(TG1-8)				MTT	NUM			
24 - 31	OUTVOL	(TG1-8)	- 1				OUTVO	L /		
32 - 39	DETUNE/KASG/OUTCH	(TG1-8)	- 1	DE	ETUNE		KASG		OUTCH	4
10 - 47	NLMTL	(TG108)	1				NLMTI	-		
48 - 55	NLMTH	(TG1-8)	1				NLMT	4		
56 - 63	FDAMP/NSHFT	(TH1-8)	- 11	FDMP			NS	HFT		
64 - 83	PNAM	(20 chara.)			P	NAM	(ASCII	}		

Tim's remark for Table 5 – PMEM Data Format... (I don't know the exact use of it!)

Miks, 05/2022