Microscopic behavior of eigenvalues and charged particles

Thomas Leblé

CIMS

Courant Instructor Day

Random Matrix Theory - I

 $(M_{i,j})_{1 < i,j < N}$ random variables $\longrightarrow M$, a $N \times N$ random matrix

Quantum physics

- $\bullet \ \ Interactions \leftrightarrow Hermitian \ operator.$
- Energy levels ↔ eigenvalues.
- Complicated system ↔ "Random interaction".

Random Matrix Theory - II

Dyson, 1962

(...) a mathematical idealization of the notion of "all physical systems with equal probability"

Universality?

Some properties may be **universal** i.e. fairly independent of the law of the matrix.

Statistical physics

(Classical, at equilibrium, in Euclidean space, . . .)

N particles x_1, \ldots, x_N in \mathbb{R}^d .

- State of the system: $\vec{X}_N = (x_1, \dots, x_N)$.
- Energy in the state \vec{X}_N given by $\mathcal{H}_N(\vec{X}_N)$.

Complicated system, $N \approx 10^{23}$ (Avogadro) very large \longrightarrow "random state"

- Microcanonical: the energy E is fixed and $\{\vec{X}_N, \mathcal{H}_N(\vec{X}_N) = E\}$ are equiprobable
- Canonical: the temperature $T = \frac{1}{\beta}$ is fixed and density

$$dP(\vec{X}_N) = \frac{1}{Z_{N,\beta}} \exp\left(-\beta \mathcal{H}_N(\vec{X}_N)\right) d\vec{X}_N$$

 $Z_{N,\beta} = \text{normalizing constant}$

Connection - I

 $N \times N$ coefficients for the random matrix = independent Gaussian random variables.

- + symmetry condition (Hermitian matrix, real eigenvalues)
- ono symmetry condition (non-Hermitian matrix, complex eigenvalues)

 $\vec{X}_N = (x_1, \dots, x_N)$ the eigenvalues. Explicit computation:

$$dP(\vec{X}_{N}) = \frac{1}{Z_{N}} \exp \left(-\left(c_{1} \sum_{i \neq j} -\log|x_{i} - x_{j}| + c_{2} \sum_{i=1}^{N} N|x_{i}|^{2} \right) \right) d\vec{X}_{N}$$

 $d\vec{X}_N$ = Lebesgue measure on \mathbb{R} or \mathcal{C} .

Connection - II

Morality

Eigenvalues ⊂ (charged) particles with

- **1** Logarithmic repulsion $\leftrightarrow \sum_{i \neq j} -\log |x_i x_j|$ (singular + long-range)
- 2 External potential $\leftrightarrow N|x|^2$ (confining)
- **3** Some values of the (inverse) temperature β

Conversely?

"True" in the Hermitian case (β -ensembles).

Macroscopic behavior - I

$$\vec{X}_N = (x_1, \dots, x_N) \longrightarrow \text{Density/Empirical measure } \mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$$

$$\int f(x)d\mu_N(x) := \frac{1}{N} \sum_{i=1}^N f(x_i) \quad \text{(definition)}$$

Fact: Equilibrium measure $\mu_{\rm eq}$ such that $\lim_{N \to \infty} \mu_N = \mu_{\rm eq}$ almost surely.

$$\int f(x)d\mu_N(x) \approx \int f(x)d\mu_{\rm eq}(x)$$

except for very small probability (order $exp(-N^2)$)

Macroscopic behavior - II

$$d\mathbb{P}_{N,\beta}(\vec{X}_N) = \frac{1}{Z_{N,\beta}} \exp\left(-\beta \left(\sum_{i \neq j} -\log|x_i - x_j| + \sum_{i=1}^N NV(x)\right)\right) d\vec{X}_N$$

- Macroscopic behavior does not depend on β, depends on V (non-universal).
- Obtained by minimizing an energy functional from classical potential theory.
- Examples: semi-circle law $\frac{1}{2\pi}\sqrt{4-x^2}\mathbf{1}_{[-2,2]}$, circular law $\frac{1}{\pi}\mathbf{1}_{|x|<1}$.

β large

Figure: $\beta = 400$

β small

Figure: $\beta = 5$

Microscopic behavior

Observable "empirical field" P_N (law of a random point configuration).

- "Typically a square lattice"
- "1/2 triangular lattice, 1/2 square lattice"
- "1/3 lattice, 2/3 disorder"

Theorem

The empirical field behaves like minimizers of a certain "free energy" functional

$$\beta$$
 Energy + Entropy.

In particular, point processes arising in RMT must minimize the functional.

Competition: Energy favors "order" (crystal?) and entropy favors disorder (Poisson).

Microscopic behavior depends on β , not on V ('universal').

Perspectives

- Other models (random polynomials, unitary matrices..).
- Understand minimizers (phase transition?).

Thank you for your attention!