COMP 408/508

Computer Vision Fall 2017

RANSAC for Homography Estimation

Mosaics: Stitching images together

Mosaics: Stitching images together

Algorithm:

- Detect key points on images
- Build SIFT-like descriptors at key points
- Match SIFT-like descriptors
- Estimate homography transformation between images
 - Use RANSAC
- Warp images using homography transformation and stitch them together to create a mosaic

Detect key points

Build SIFT descriptors

 (v_1,v_2,\ldots,v_{128})

Match SIFT descriptors

Find homography transformation H

H is a 3x3 transformation matrix that maps a pixel on one image to the corresponding pixel on the other

Warp images with H and stitch with blending

What is homography H exactly?

- Projective mapping between any two projection planes with the same center of projection
- called Homography
- represented as 3x3 matrix in homogenous coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$p' \qquad H \qquad p$$

To apply a homography H

- Compute p' = Hp (regular matrix product)
- Convert p' from homogeneous to image coordinates (divide by w)

Homography between images

Homography \boldsymbol{H} remains the same for all corresponding pixel pairs in either of the following cases:

- planar (or far away) scenes
- rotating cameras

How to estimate H?

- Estimate homography H from a set of given corresponding key points p_i and p_i '
- Solve equations of the form: $wp_i' = Hp_i$
- Linear in unknowns: w and entries of H
- H is defined up to an arbitrary scale factor
- At least 4 point matches are necessary
- Turns out to be a least squares estimation problem!

$$\begin{bmatrix} w x_i' \\ w y_i' \\ w \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

RANSAC for estimating homography

RANSAC loop:

Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where $||p_i' - Hp_i|| < \varepsilon$ Keep largest set of inliers

Re-compute least-squares H estimate using all inliers

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.

 Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC [Fischler & Bolles 1981]

RANSAC loop:

- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- Find inliers to this transformation
- If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Determine:
    n — the smallest number of points required
    k — the number of iterations required
    t — the threshold used to identify a point that fits well
    d — the number of nearby points required
      to assert a model fits well
Until k iterations have occurred
    Draw a sample of n points from the data
       uniformly and at random
    Fit to that set of n points
    For each data point outside the sample
       Test the distance from the point to the line
         against t; if the distance from the point to the line
         is less than t, the point is close
    end
    If there are d or more points close to the line
       then there is a good fit. Refit the line using all
      these points.
end
Use the best fit from this collection, using the
  fitting error as a criterion
```

RANSAC: How many samples?

- How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of n points is correct: w^n
- Prob. that all k samples fail is: $(1-w^n)^k$
- \Rightarrow Choose k high enough to keep this below desired failure rate.

Slide credit: David Lowe

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Slide credit: David Lowe

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

