Part III Algebraic Geometry

Based on lectures by Dr C. Birkar

Michaelmas 2016 University of Cambridge

Contents

1	Sheaves	1
2	Sheaves II	2
3	Basics of Commutative Algebra	3

1 Sheaves

Definition (Presheaf). Let X be a topological space. A **presheaf** \mathcal{F} consists of a collection of abelian groups, $\mathcal{F}(U)$, where $U \subseteq X$ are the open subsets of X s.t. $\mathcal{F}(\emptyset) = 0$.

 \exists a homomorphism $\mathcal{F}(U) \to \mathcal{F}(V)$, $s \mapsto s|_V$ for each inclusion $V \subseteq U$ of open sets. $\mathcal{F}(U) \to \mathcal{F}(U)$ is the identity map. If $W \subseteq V \subseteq U$ are open sets then $\forall s \in \mathcal{F}(U)$, $(s|_V)|_W = s|_W$.

Definition (Sheaf). A sheaf \mathcal{F} is a presheaf s.t. if $U = \bigcup U_i$, U, U_i open and if $s_i \in \mathcal{F}(U_i)$ s.t. $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \ \forall i, j \ then \ \exists ! s \in \mathcal{F}(U) \ s.t. \ s|_{U_i} = s_i \ \forall i.$

Definition (Stalk). Let X be a topological space, \mathcal{F} a presheaf, $x \in X$. Define the **stalk** of \mathcal{F} at x by $\mathcal{F}_x = \lim_{U \ni x} \mathcal{F}(U)$.

More explicitly, each element of \mathcal{F}_x is given by a pair (U, s) where $x \in U$ open, $s \in \mathcal{F}(U)$ subject to the condition

$$(U,s)=(V,t)$$
 if $\exists x\in W\subseteq U\cap V$ s.t. $s|_W=t|_W$

Definition (Morphism). Let X be a topological space, \mathcal{F} , \mathcal{G} presheaves. A **morphism** $\varphi: \mathcal{F} \to \mathcal{G}$ is given by a collection of homomorphisms $\mathcal{F}(U) \stackrel{\varphi(U)}{\to} \mathcal{G}(U)$ s.t. if $V \subseteq U$, the diagram

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}(V) \xrightarrow{\varphi_V} \mathcal{G}(V)$$

commutes. We say φ is an **isomorphism** if it has an inverse.

Remark. $\forall x \in X$, any morphism $\varphi : \mathcal{F} \to \mathcal{G}$, we get a homomorphism

$$\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$$

$$(U, s) \mapsto (U, \varphi_U(s))$$

Definition. Let X be a topological space, \mathcal{F} a presheaf. Then \exists a sheaf \mathcal{F}^+ and a morphism $\alpha: \mathcal{F} \to \mathcal{F}^+$ s.t. if $\varphi: \mathcal{F} \to \mathcal{G}$ is a morphism into a sheaf \mathcal{G} , then φ factors uniquely

$$\mathcal{F} \stackrel{\alpha}{\underset{\varphi}{\longrightarrow}} \mathcal{F}^{+}$$

for some morphism $\mathcal{F}^+ \to \mathcal{G}$. We call \mathcal{F}^+ the sheaf **associated** to \mathcal{F} . \mathcal{F}^+ is constructed as follows:

$$\mathcal{F}^{+}(U) := \left\{ functions \ s : U \to \bigsqcup_{x \in U} \mathcal{F}_{x} \ \middle| \ \begin{array}{c} \forall x \in U, \ s(x) \in \mathcal{F}_{x}, \ \exists x \in W \subseteq V \ and \\ t \in \mathcal{F}(W) \ s.t. \ s(y) = (V, t) \in \mathcal{F}_{y} \ \forall y \in W \end{array} \right\}$$

Definition (Kernel and Image). Let X be a topological space, $\mathcal{F} \stackrel{\varphi}{\to} \mathcal{G}$ a morphism of presheaves. The **kernel** of φ , denoted Ker φ , is defined by

$$(\operatorname{Ker}\varphi)(U) = \operatorname{Ker}(\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U))$$

The **presheaf image** of φ , denoted $\text{Im}(\varphi^{pre})$ is defined by

$$(\operatorname{Im} \varphi^{pre})(U) = \operatorname{Im}(\varphi_U)$$

Now assume \mathcal{F} and \mathcal{G} are sheaves. Define the kernel of $\varphi = \operatorname{Ker} \varphi$ as above, which is a sheaf. Define the image of φ by $\operatorname{Im}(\varphi^{pre})^+$, denoted $\operatorname{Im} \varphi$.

2 Sheaves II

Theorem 1. Suppose $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves on a topological space X. Then

i. φ is injective $\iff \varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is injective $\forall x \in X$

ii. φ is surjective $\iff \varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is surjective $\forall x \in X$

iii. φ is an isomorphism $\iff \varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is an isomorphism $\forall x \in X$

Definition. Let X be a topological space. A **complex of sheaves** is a sequence

$$\cdots \to \mathcal{F}_{-2} \overset{\varphi_{-2}}{\to} \mathcal{F}_{-1} \overset{\varphi_{-1}}{\to} \mathcal{F}_{0} \overset{\varphi_{0}}{\to} \mathcal{F}_{1} \overset{\varphi_{1}}{\to} \mathcal{F}_{2} \overset{\varphi_{2}}{\to} \ldots$$

of sheaves s.t. Im $\varphi_i \subseteq \operatorname{Ker} \varphi_{i+1} \ \forall i$. We say it is an **exact sequence** if $\operatorname{Im} \varphi_i = \operatorname{Ker} \varphi_{i+1} \ \forall i$. An exact sequence

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

is called a short exact sequence.

Definition (Constant sheaf). Let X be a topological space and A an abelian group. Define a presheaf \mathcal{F} by $\mathcal{F}(U) = A \ \forall \ open \ U \neq \emptyset$. We call \mathcal{F}^+ the constant sheaf associated to A.

Definition (Direct image). Let $f: X \to Y$ be a continuous map of topological spaces, and let \mathcal{F} be a presheaf on X. The **direct image** $f_*\mathcal{F}$ is defined by

$$(f_*\mathcal{F})(V) = \mathcal{F}(f^{-1}V)$$

Definition (Skyscraper sheaf). Let X be a topological space, $x \in X$, A an abelian group. Define \mathcal{F} by

$$\mathcal{F} = \begin{cases} A & \text{if } x \in U \\ 0 & \text{if } x \notin U \end{cases}$$

We call \mathcal{F} the **skyscraper sheaf** associated to A at x.

3 Basics of Commutative Algebra

Ref: Atiyah and Macdonald, Introduction to Commutative Algebra.

Convention: all rings in this course are commutative with 1 (unless ring = 0).

Definition. Let A be a ring. A **prime ideal** is an ideal $P \subseteq A$ s.t. $ab \in P \implies a \in P$ or $b \in P$. **maximal ideal** is an ideal $M \subseteq A$ s.t. if $M \subseteq I \subseteq A$, then M = I. (Maximal ideals are prime).

A is an integral domain if 0 is a prime ideal.

A is a local ring if it has a unique maximal ideal.

A local homomorphism is a homomorphism of local rings $\alpha : A \to B$ s.t. $\alpha(maximal\ ideal\ of\ A) \subseteq maximal\ ideal\ of\ B$.

Definition (Radical). Let A, be a ring, $I \subseteq A$. The **radical** of I is defined as

$$\sqrt{I} = \{ a \in A \mid a^n \in I, some \ n \in N \}$$

 \sqrt{I} is an ideal. Fact: $\sqrt{I} = \bigcap_{I \subset \text{prime } P \triangleleft A} P$

Fact. Let K be an algebraically closed field. Then $I \subseteq K[t_1, \ldots, t_n]$ is maximal $\iff I = \langle t_1 - a_1, \ldots, t_n - a_n \rangle$ for some $a_1, \ldots, a_n \in K$.

Definition (Ring of fractions). Let A be a ring. $S \subseteq A$ is a multiplicatively closed set if $1 \in S$ and $s, t \in S \implies st \in S$.

Pick such a set. Let $S^{-1}A = \{\frac{a}{s} \mid a \in A, s \in S\}$ subject to $\frac{a}{s} = \frac{b}{t} \iff \exists u \in S \text{ s.t. } u(at - bs) = 0.$

$$S^{-1}A$$
 is a ring: $\frac{a}{s} + \frac{b}{t} = \frac{at+bs}{st}$, $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$.

We call $S^{-1}A$ the **ring of fractions** of A w.r.t S.

We have a homomorphism $\alpha: A \to S^{-1}A$, $a \mapsto \frac{a}{1}$. If $s \in S$, then $\alpha(s) = \frac{s}{1}$ is a unit in $S^{-1}A$. Also, $\alpha a = 0 \iff \exists u \in S \text{ s.t. } ua = 0$.

If
$$I \subseteq A$$
, then $S^{-1}I = \{\frac{a}{s} \in S^{-1}A \mid a \in I\}$ is an ideal of $S^{-1}A$.

Fact. Every ideal of $S^{-1}A$ is of the form $S^{-1}I$ for some $I \leq A$.

$$\{P \leq A \mid P \text{ prime, } P \cap S = \emptyset\} \stackrel{1-1}{\longleftrightarrow} \{\text{prime ideals of } S^{-1}A\}$$

Definition. Let A be a ring, S a multiplicatively closed set, M an A-module. Let $S^{-1}M = \{\frac{m}{s} \mid m \in M, s \in S\}$ subject to: $\frac{m}{s} = \frac{n}{t} \iff \exists u \in S \text{ s.t.}$ u(tm-sn) = 0. Thus $\frac{m}{s} + \frac{n}{t} = \frac{tm+sn}{st}$, $\frac{a}{s} \cdot \frac{m}{t} = \frac{am}{st}$, $\forall a \in A, m, n \in M, s, t \in S$. So $S^{-1}M$ is an $S^{-1}A$ -module.

If $M \to N$ is an A-homomorphism, then we get an $S^{-1}A$ -homomorphism $S^{-1}M \to S^{-1}N$.

Fact. $S^{-1}(M/K) = (S^{-1}M)/(S^{-1}K)$, $K \subseteq M$ a submodule.

Definition (Direct product and direct sum). Let A be a ring, $\{M_i\}_{i\in I}$ a family of A-modules. Define the **direct product**

$$\prod_{i \in I} M_i = \{ (m_i)_{i \in I} \mid m_i \in M_i \}$$

This is an A-module: $(m_i) + (n_i) = (m_i + n_i), \ a \cdot (m_i) = (am_i) \ \forall m_i, n_i \in M_i, \ a \in A.$

Also define the $direct\ sum$

$$\bigoplus_{i \in I} M_i = \left\{ (m_i) \in \prod_{i \in I} M_i \mid m_i = 0 \text{ for all but finitely many } i \right\}$$