实验三 利用 scikit-learn 实现神经网络分类

准备工作(具体步骤参见实验一):

- 1. 在计算机上安装好 python (推荐 3.x 版本)
- 2. 安装编译器和编译环境
- 3. 安装 scikit-learn 工具包

利用 scikit-learn 实现神经网络分类:

1. 了解 scikit-learn 工具包

英文主页: https://scikit-learn.org/stable/ 中文社区: https://scikit-learn.org.cn/

2. 了解 scikit-learn 中的神经网络分类方法 https://scikit-learn.org.cn/view/105.html

 \mathbf{X}_2

Features

1.17.2 分类

MLPClassifier 类通过使用 Backpropagation进行训练实现了多层感知机(MLP)算法。

MLP 在两个数组上进行训练:大小为 $(n_samples, n_seatures)$ 的数组 X,用来储存表示训练样本的浮点型特征向里:大小为 $(n_samples,)$ 的数组 y,用来储存训练样本的目标值(类别标签):

经过拟合(训练),该模型可以预测新样品的标签:

```
>>> clf.predict([[2., 2.], [-1., -2.]])
array([1, 0])
```

MLP可以拟合训练数据的非线性模型。 $clf.coefs_$ 包含构成模型参数的权重矩阵:

```
>>> [coef.shape for coef in clf.coefs_]
[(2, 5), (5, 2), (2, 1)]
```

3. 学习其中的 sklearn.neural_network.MLPClassifier 方法(输入输出参数的含义、如何使用)

https://scikit-learn.org.cn/view/713.html

$sklearn.neural_network.MLPC lassifier$

```
class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activation='relu', *, solver='adam', alpha=0.0001, batch_size='au
```

[源码]

多层感知器分类器。

这个模型使用LBFGS或随机梯度下降来优化对数损失函数。

版本0.18中的新功能。

参数	说明
hidden_laye r_sizes	tuple, length = n_layers - 2, default=(100,) 第:个元素代表第:个隐藏层中的神经元数里。
activation	{identity, logistic, 'tanh', 'relu'}, default='relu' 隐藏层的激活函数。 - 'identity', 无操作激活,用于实现线性瓶颈,返回f(x)= x - 'logistic',logistic Sigmoid函数,返回f(x)= 1 / (1 + exp(x))。 - 'tanh',双曲tan函数,返回f(x)= tanh(x)。 - 'relu',整流线性单位函数,返回f(x)= max(0, x)
solver	{lbfgs; 'sgd', 'adam'}, default='adam' 权重优化的求解器。 -"lbfgs"是quasi-Newton方法族的优化程序。 -"sgd"是指随机梯度下降。 -"adam'是指Kingma,Diederik和Jimmy Ba提出的基于随机梯度的优化器

- 4. 利用 MLPClassifier 方法实现用神经网络对手写数字图像进行分类
 - a) 了解手写数字图像数据集

一共包含 1797 个样本,每个样本包括 8*8 像素的图像和一个[0,9]整数的标签,因此是一个 10 类的分类问题。

- b) 在 scikit-learn 中载入此数据集(了解 data 的数据类型、存储方式等) from sklearn import datasets digits = datasets.load_digits()
- c) 参考一个例子(使用的是 SVM 分类器)学习如何在此数据集上进行分类 任务

https://scikit-learn.org.cn/view/45.html

手写数字识别

用一个例子,说明如何使用scikit-learn来识别手写数字的图像。

此示例实在<u>用户手册的教程部分</u>。

d) 使用 MLPClassifier 方法实现神经网络分类器在此数据集上的分类(参考上例输出分类结果报告 Classification report,并画出混淆矩阵 Confusion matrix)

Classification	on report for	classifi	er SVC(gam	ma=0.001):
	precision	recall	f1-score	support
0	1.00	0.99	0.99	88
1		0.97	0.98	91
		0.99	0.99	86
	0.98	0.87	0.92	
	0.99	0.96	0.97	
	0.95	0.97	0.96	
	0.99	0.99	0.99	
	0.96	0.99	0.97	
	0.94	1.00	0.97	
9	0.93	0.98	0.95	
accuracy			0.97	899
macro avg	0.97	0.97	0.97	899
weighted avg	0.97	0.97	0.97	

Confusion Matrix

e) 改变 MLPClassifier 方法中的重要参数(如隐层中的神经元数量、激活函数类型、权重优化的求解器、L2 惩罚(正则项)参数、权重更新的学习速率等),看看对分类结果有何影响?