Ciencias de la Computación I

Autómatas Finitos No Determinísticos Minimización de Autómatas Finitos Determinísticos

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas Finitos: Determinismo – No determinismo

Determinísticos: Para cada estado y cada símbolo se puede

pasar a un único estado:

Un único camino Ejemplo: aab

a. b. c

 $e_0 \underline{\quad a\quad} e_0 \underline{\quad a\quad} e_0 \underline{\quad b\quad} e_1 \qquad \qquad \text{Llega a } e_f \Rightarrow \text{aab} \in L$

Ejemplo: aba

 $e_0 \underline{a} e_0 \underline{b} e_1 \underline{a} e_0$

No llega a e_f => aba ∉ L

No Determinísticos: Para algunos estados, dado un símbolo, se puede pasar a más de un estado: Varios caminos

Ejemplo: aab

$$e_0 \stackrel{a}{=} e_0 \stackrel{a}{=} e_0 \stackrel{b}{=} e_0$$

Al menos un camino llega a e₁=> aab ∈ L llega a e_f => aab ∈ L

Ejemplo: aba

$$e_0 = e_0 = e_0$$

Ningún camino llega a e,=> aba ∉ L

Autómatas Finitos No Determinísticos

Formalmente, un AF reconocedor no determinístico (AFND) se define como una quintupla

$$M = \langle E, A, \delta, e_i, F \rangle$$

- ✓ E es un conjunto finito de estados; E ≠ Ø
- ✓ A es el alfabeto de entrada
- \checkmark δ es la función de transición de estados;

$$\delta(e_i,\,a)=\{e_k,\,e_s,\,e_t,\,\dots\} \qquad \qquad e_i,\,e_k,e_s,\,e_t,\,\in\,E;\,a\in\,A$$

- \checkmark e_i es el estado inicial; e_i \in E
- √ F es el conjunto de estados finales; F ⊆ E

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas Finitos No Determinísticos

Ejemplo:

¿Qué lenguaje reconoce M_{ND} ?

 $M_{ND} = \langle \{e_0, e_1, e_2\}, \{a, b\}, \delta, e_0, \{e_2\} \rangle$ a, b

Las cadenas aaba y aa, ¿pertenecen o no a $L(M_{ND})$?

Caminos para cadena aaba

Caminos para la cadena aa

$$e_0$$
 a e_0 a e_0 a e_1

 $L = \{ x / x \in \{a, b\}^* \ y \ x \ contiene \ la subcadena \ ab \}$

Aceptación de cadena por AFND

Un AFND acepta una cadena si existe alguna secuencia de transiciones que a partir del primer símbolo de la cadena y empezando en el estado inicial, permite alcanzar un estado final luego de leer todos los símbolos de la cadena.

Determinismo y No determinismo

Determinismo \rightarrow existe una alternativa válida, o no hay alternativa.

No Determinismo → puede haber varias alternativas válidas.

Importante distinguir si el no determinismo agrega o no poder computacional

En los Autómatas Finitos, todo se puede resolver con un Autómata Finito Determinístico

EL NO DETERMINISMO NO AGREGA PODER COMPUTACIONAL

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Equivalencia entre AFND y AFD

<u>Teorema</u>: Sea L un lenguaje aceptado por un AFND. Entonces existe un AFD que acepta el mismo lenguaje L.

Algoritmo para obtener AFD a partir de AFND:

$$\begin{split} \text{Dado M}_{\text{ND}} = & <\text{E}_{\text{ND}}, \ A_{\text{ND}}, \ \delta_{\text{ND}}, \ e_{\text{0ND}}, \ F_{\text{ND}} > \quad \text{AFND} \quad \text{se define} \\ & M_{\text{D}} = & <\text{E}_{\text{D}}, \ A_{\text{D}}, \ \delta_{\text{D}}, \ e_{\text{0D}}, \ F_{\text{D}} > \quad \quad \text{AFD} \quad \text{tal que} \quad L(M_{\text{ND}}) = L(M_{\text{D}}) \\ -\text{E}_{\text{D}} = & P(\text{E}_{\text{ND}}) \quad \text{(conjunto potencia de E}_{\text{ND}}). \end{split}$$

Cada elemento de
$$E_D$$
 se representa como $[e_1, e_2, ..., e_i]$ donde $e_1, e_2, ..., e_i \in E_{ND}$ $[e_1, e_2, ..., e_i]$ es un único estado de M_D

$$\begin{array}{ccc} P(E_{ND}) & E_D \\ \varnothing & \longrightarrow & [\varnothing] \\ \{e_1\} & \longrightarrow & [e_1] \\ \{e_2\} & \longrightarrow & [e_2] \\ \{e_1, e_2\} \longrightarrow & [e_1, e_2] \end{array}$$

$$-A_D = A_{ND}$$

- $e_{0D} = [e_{0ND}]$
- $\mbox{-} F_{\mbox{\tiny D}} \mbox{: subconjuntos de } P(E_{\mbox{\tiny ND}}) \mbox{ que contienen al menos un estado } e_i \in \mbox{ } F_{\mbox{\tiny ND}}.$

Equivalencia entre AFND y AFD

Algoritmo para obtener AFD a partir de AFND:

 $-\delta_D$: $E_D \times A \rightarrow E_D$, se define como

$$\delta_{D}([e_1,...,e_i], a) = [e_1,...,e_k]$$
 sii

$$\delta_{ND}(\{e_1,..., e_i\}, a) = \delta^G(\{e_1,..., e_i\}, a) = \{e_i,..., e_k\},$$

donde

$$\delta^{G}\left(C,\,a\right)=\underset{\tiny e\,\in\,C}{\cup}\,\delta\left(e,\,a\right) \tag{C:conj. de estados}$$

$$\delta^{G}(\emptyset, a) = \emptyset$$

 δ_D aplicada a un elemento $[e_1,\,e_2,\,...,\,e_i]$ de E_D se obtiene calculando δ_{ND} para cada estado de E_{ND} que está en $[e_1,\,e_2,\,...,\,e_i].$

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Equivalencia entre AFND y AFD

Sea $M_{ND} = \langle \{e_0, e_1\}, \{a, b, c\}, \delta_{ND}, e_0, \{e_1\} \rangle$ $L(M_{ND}) = \{ x \mid x \in \{a, b, c\}^* \text{ y x termina en b} \}$

δ_{ND}	а	b	С
e ₀	{e ₀ }	$\{e_0, e_1\}$	{e ₀ }
e ₁	Ø	Ø	Ø

Función de transición no determinística

δ_{D}	а	b	С
[Ø]	[Ø]	[Ø]	[Ø]
[e ₀]	[e ₀]	[e ₀ , e ₁]	[e ₀]
[e ₁]	[Ø]	[Ø]	[Ø]
$[e_0, e_1]$	[e ₀]	[e ₀ , e ₁]	[e ₀]
			1

 $\delta_{ND}(e_0,\,a)\,\,U\,\, \overbrace{\delta_{ND}(e_1,\,a)}^{\bullet}\,\,\,\delta_{ND}(e_0,\,b)\,\,U\,\, \overbrace{\delta_{ND}(e_1,\,b)}^{\bullet}\,\, \underbrace{\delta_{ND}(e_0,\,c)}^{\bullet}\,\,U\,\,\delta_{ND}(e_1,\,c)$

Función de transición determinística

Equivalencia entre AFND y AFD

Sea $M_{ND} = \langle \{e_0, e_1\}, \{a, b, c\}, \delta, e_0, \{e_1\} \rangle$ $L(M_{ND}) = \{x \mid x \in \{a, b, c\}^* \text{ y x termina en b}\}$

δ_{ND}	а	b	С
e ₀	{e ₀ }	$\{e_0, e_1\}$	{e ₀ }
e ₁	Ø	Ø	Ø

Función de transición no determinística

En la práctica no se trabaja con todo el conjunto potencia $P(E_{ND})$

δ_{D}	а	b	С	
[e ₀]	[e ₀]	[e ₀ , e ₁]	[e ₀]	
[e ₀ , e ₁]	[e ₀]	[e ₀ , e ₁]	[e ₀]	

Función de transición determinística

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Minimización de AFD

Teorema

Para cada AFD existe un AFD_{min} con cantidad mínima de estados que acepta el mismo lenguaje, es decir $L(AFD)=L(AFD_{min})$

Algoritmo para minimizar un AFD

(divide al conjunto de estados del AFD en clases de estados equivalentes)

Dado un AFD = $\langle E, A, \delta, e_0, F \rangle$,

dos **estados** p, q \in E son **equivalentes** \Leftrightarrow para toda cadena $x \in A^*$,

ó

$$\delta^* (p,x) \notin F \Leftrightarrow \delta^* (q,x) \notin F$$

Minimización de AFD

Algoritmo para minimizar un AFD

- 1) Eliminar estados no alcanzables desde el estado inicial (estados inalcanzables)
- 2) Eliminar estados desde los que no se alcanza un estado final (estados muertos)
- 3) Construir una partición Π_0 del conjunto de estados, que consiste en dos grupos: estados finales y estados no finales.
- 4) Sea K = 0.
- 5) Definir Π_{K+1} de la siguiente manera: para cada grupo G de una partición Π_{K} , dividir a G en subgrupos tales que dos estados s y t están en el mismo grupo sí y sólo sí para todo símbolo a del alfabeto de entrada, los estados s y t van al mismo grupo de Π_{K}
- 6) K = K + 1.
- 7) Si $\Pi_{K} \neq \Pi_{K-1}$ volver al paso 5. En caso contrario, terminar.

Minimización					
				<u>Ejem</u>	nplo 3 (continuación)
δ		1		2	Π_1 $G11 G12 G13 G2$ G_2 G_3 G_4 G_5 G_6 G_7
\mathbf{e}_{0}	e ₁	G11	e ₅	G12	$\overline{\mathbf{e}_1}$ $\overline{\mathbf{e}_2}$ $\overline{\mathbf{e}_3}$ $\overline{\mathbf{e}_4}$
e ₁	e ₂	G12	e ₃	G13	
6 ₂	e ₃	G13	e ₆	G 2	Π_2 $\frac{\text{G11}}{\text{e}_1}$ $\frac{\text{G12}}{\text{e}_2\text{e}_5}$ $\frac{\text{G13}}{\text{e}_3}$ $\frac{\text{G2}}{\text{e}_0\text{e}_4\text{e}_6}$
e ₃	e ₄	G2	e ₁	G11	$\Pi_1 = \Pi_2$ terminar
(e ₄)	e ₁	G11	e ₅	G12	12
e ₅	e ₃	G13	e ₆	G2	
e ₆	e ₁	G11	e ₅	G12	
Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012					

Ejemplo: Pasaje AFND-AFD y Minimización

Para el siguiente AFND:

- Hacer pasaje AFND-AFD
- Minimizar AFD

 $L = \{ x / x \in \{a, b\}^* \ y \ x \text{ contiene la subcadena ab } \}$

AFND= $\langle e_0, e_1, e_2 \rangle$, $\{a, b\}$, δ_{ND} , e_0 , $\{e_2\} >$

δ_{ND}	а	b
e_0	$\{e_0, e_1\}$	{e ₀ }
e ₁	Ø	{e ₂ }
e ₂	{e ₂ }	{e ₂ }

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

δ_{ND}	а	b
\mathbf{e}_0	$\{e_0, e_1\}$	{e ₀ }
e ₁	Ø	{e ₂ }
e ₂	{e ₂ }	{e ₂ }

δ_{D}	а	b
[e ₀]	[e ₀ , e ₁]	[e ₀]
[e ₀ , e ₁]	$[e_0, e_1]$	$[e_0, e_2]$
$[e_0, e_2]$	[e ₀ , e _{1,} e ₂]	[e ₀ , e ₂]
[e ₀ , e ₁ , e ₂]	[e ₀ , e _{1,} e ₂]	$[e_0, e_2]$

 $\mathsf{AFD} = <\!\!\{[e_0],\,[e_0e_1],\,[e_0e_2],\,[e_0e_1e_2]\!\},\,\{a,\,b\},\,\delta_\mathsf{D},\,[e_0],\,\{[e_0e_2],\,[e_0e_1e_2]\!\}\!>$

Ejemplo: Minimización

 $L = \{ x / x \in \{a, b\}^* \ y \ x \ \text{contiene la subcadena ab } \}$

δ_{D}	а	b
p_0	p ₁	p_0
p ₁	p ₁	p_2
p ₂	p_3	p_2
p ₃	p ₃	p ₂

- No hay estados inalcanzablesNo hay estados muertos

	G1	G2
\prod_0	p_0p_1	p_2p_3
	G11 G12	G2
Π_1	p_0 p_1	p_2p_3
	G11 G12	G2

 $\mathsf{AFD}_{\mathsf{Min}} = <\!\! \{[p_0],\,[p_1],\,[p_2p_3]\},\,\{a,\,b\},\,\delta_{\mathsf{Min}},\,[p_0],\,\{[p_2p_3]\}\!\!>$