

E	10	15011	1 17
Ex:	6.0	(Table	-9.1)

Data Hining	Book (P-250) [1st Sean] [
4 61	(C1)	-	2	L1) Sup. count
Iteam Set	Sup.	count	Iteam net	1 1
\$ T13	6	Candidate	\$11}	
\$ 1 ₂ }	7	The delas	\$12}	7
\$ 13}	6	compase	\$13}	6
\$ 1 i4}	2	candidate	\$143	2.
\$ T 5}	2	Support	£15}	2
		count with min	0	\$1.01.8

2nd Scan

(C2) (Generate "	ca" candidate	(Lz)	110
Iteam Set Sup. count	Fnom Li)	1team Set	Sup- count
\$11,12}	Į.	\$11,72}	4 1
\$11,13} 9 \$11,14} 1 W		\$1,13}	4 4
\[\frac{1}{12,13} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	compane candidate	\$ 11,15}	2
{12,14}	support	\$12,73}	4 ~
\$12,15} \$13.147 0 W	with min	\$12,143	3
313. 153 {14, 153 0 W		{ 12,15}	2
(34)			

Generate "Cz" candidate
from "Lz"

(C3)

Iteam Set	Sup. count
W I1, I2, I3	2
11.12.14	1
W I2. 72. 75	2
71,73,14	0
11, 13, 15	1
2 12, 13, 14	0
× 12,13.15	1
\$ I2, I4, Is	0
Iz, Iy, Is	0

FI	-d-slext Plan	3)
P-250)	Iteam set	Sup. count
	I_{1}, I_{2}, I_{3}	2
compane Candidate	I ₁ , I ₂ , I ₅	2-
Support count with m	เท	\$ 1.2

(C	
Iteam set	Sup. count
I1: 72.13,74	
I1. 12. 13, Is	
I 1, I2, I8, Is	0
	THE RESIDENCE OF THE PARTY OF T

Hene, we can nee the fon

the cy iteam net support

count in below the Required

Aup. count doesn't

satisfy the minimum support.

So, we can't take it as an

iteam set.

Now. we need to go back to C3.

Ileam net	Sup. count
11,12,13	2
11.12,15	2

So. fnequent-3 (C3)-Heam net, I = 511, t2, I33 and \$ 11, I2, Is?

Minimum Suppont = 219 = 22,227.

A 102 \$152, 133 +> I2 \$ 12,133 > 11 11 11d con 12,133 12 -> \$ I 1, T 3 3 13 → 5 I 1, I 23 \$11.12,153 L 5 11, 123 -> 15 \$ 12,153 -> 12 \$ I2, I5} -> 11

Soln: Let,
$$9(1,1) = 1$$

 $\pi(e^{1},0) = 1$
 $5(0,1) = 1$
 $t(0,0) = 1$

Dinnimilarity between i and j:

$$d(i,j) = \frac{n+\lambda}{q+n+\lambda}$$
(8 Asymmetric binary similarity)

+0+00

4 now il

Symmetric

If both of its a status a conse equally important.

/(We can loop information if we exclude value).

Ex: Genden: Male female

Assymmetric

If both of the status on values are not equally important.

Ex: positive and negative outcome of a dinease.

We may not loon information if we exclude any value).

Table - 2.4 W

Soln: From the given table we found that -

- O Genden in Lymmetnie attnibute.
- The nemaining attributes are asymmetrie binary.

Q(1,1)=1, R(1,0)=1, S(0,1)=1, t(0,0)=1

d Chairmany 18

Now. finding dinnimilerity using asymmetric attributes.

$$d(jack, many) = \frac{0+1}{20+0+1} = \frac{1}{3} = 0.33$$

$$d(jack, jm jim) = \frac{1+1}{1+1+1} = \frac{2}{3} = 0.75$$

$$d(jack, jm jim) = \frac{1+2}{1+1+1} = \frac{3}{4} = 0.75$$

$$d(jim, many) = \frac{1+2}{1+1+2} = \frac{3}{4} = 0.75$$
Am:

Fre Grenden; Male

we exclude any volue Cosine Similarity Wp. Sasidal

conine measure: If di and di are two vectors

(e.g., term-frequency vectors), then

recharmonice and son part out

(on (d1,d2) = (d1 · d2) / | | | d2 | | ,

Where ": Indicates vector dot product, 11411: Length of Vector d.

Similarity between documents 1 and 2.

d1 = (5,0,3,0,2,0,0,2,0,0)

d2 = (3,0,2,0,1,1,0,1,0,1)

d1 · d2 = 5 * 3 + 0 * 0 + 3 * 2 + 0 * 0 + 2 * 1 + 0 * 1 +

0 * 0 + 2 * 1 + 0 * 0 + 0 * 1 = 25

11d111 = 5x5+0x0+3x3+0x0+2x2+0x0+0x0+2x2+0x0+0x0 = (42)0.5 = 6.48

11d211= 3x3+0x0+2x2+0x0+1x1+1x1+0x0+1x1+0x0+1x1 = (17)0.5 = 4-12

Cas (1, d2) = 25/(6.48 × 4.12) = 0.94