LAGDEM Mohamed

Continuité d'une fonction numérique

2BACS-2020/2021

Continuité en un point:

- f est continue en $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$
- f est continue à droite en $a \Leftrightarrow \lim_{x\to a^+} f(x) = f(a)$
- f est continue à gauche en $a \Leftrightarrow \lim_{x \to a^-} f(x) = f(a)$

Propriété

f est continue en $a \Leftrightarrow f$ est continue à droite et à gauche en a

Continuité sur un intervalle :

- \checkmark f est continue sur]a, b[s'elle est continue en tout point de]a, b[
- \checkmark f est continue sur [a, b] s'elle est continue sur]a, b[et continue à droite en a et continue à gauche en b

Continuité des fonctions usuelles:

- Tout fonction polynôme est continue sur $\mathbb R$
- Toute fonction rationnelle est continue sur chaque intervalle de son domaine de définition
- $x \to \sqrt{x}$ est continue sur $[0, +\infty[$
- $x \rightarrow \sin x$ et $x \rightarrow \cos x$ sont continues sur \mathbb{R}
- $x \rightarrow \tan x$ est continue sur chaque intervalle de son domaine de définition.

Opération sur les fonctions continues :

Si f et g sont continues sur I

- ightarrow alors les fonctions f+g et f-g et f imes g et af sont continues sur I , $(lpha\in\mathbb{R})$
- ightharpoonup si de plus g ne s'annule pas sur I alors $\frac{1}{g}$ et $\frac{f}{g}$ sont continues sur I

L'image d'un intervalle par une fonction continue

	L'intervalle $f(I)$	
L'intervalle I	f strictement croissante sur I	f strictement décroissante sur I
[a,b]	[f(a),f(b)]	[f(b),f(a)]
]a,b[$\lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)$	$\lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)$
[a,b[$\left[f(a), \lim_{x \to b^{-}} f(x)\right]$	$\lim_{x \to b^{-}} f(x), f(a)$
] <i>a</i> , <i>b</i>]	$\lim_{x \to a^+} f(x), f(b)$	$\left[f(b), \lim_{x \to a^+} f(x)\right]$
[<i>a</i> , +∞[$\left[f(a), \lim_{x \to +\infty} f(x)\right]$	$\lim_{x\to+\infty}f(x),f(a)$
] <i>a</i> , +∞[$\lim_{x \to a^+} f(x), \lim_{x \to +\infty} f(x)$	$\lim_{x \to +\infty} f(x), \lim_{x \to a^+} f(x)$
]−∞, <i>b</i>]	$\lim_{x\to-\infty}f(x),f(b)$	$\left[f(b), \lim_{x \to -\infty} f(x)\right]$
]-∞, <i>b</i> [$\lim_{x \to -\infty} f(x), \lim_{x \to b^{-}} f(x)$	$\lim_{x \to b^{-}} f(x), \lim_{x \to -\infty} f(x)$
]−∞,+∞[$\lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	$\lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$

Continuité de la composée de deux fonction :

Si f est continue sur I et g continue sur J tel que $f(I) \subset J$ alors $g \circ f$ est continue sur I

Résultats -si f est <u>continue et positive</u> sur I alors \sqrt{f} est continue sur I .

-si f est continue sur I alors f^n est continue sur I . $(n \in IN^*)$

Théorème des valeurs intermédiaires:

 $\begin{cases} f \text{ est continue sur } [a, b] \\ \beta \text{ entre } f(a) \text{ et } f(b) \end{cases}$

 $\exists \alpha \in [a,b] ; f(\alpha) = \beta$

Résultats:

f continue sur [a, b]
f(a). f(b) < 0

L'équation f(x) = 0 admet au moins une solution α dans [a, b]

- \rightarrow f continue et strictement monotone sur[a, b]
- > f(a).f(b) < 0

L'équation f(x) = 0 admet une unique solution α dans [a, b]

La méthode de dichotomie

Est une méthode pour trouver une solution approchée à une équation f(x)=0. Précisément, supposons que la fonction f est continue sur l'intervalle [a,b], avec f(a)<0 et f(b)>0. On sait donc qu'il existe au moins un réel c dans l'intervalle [a,b] tel que f(c)=0.

L'idée est alors d'évaluer ce que vaut f au milieu de [a,b], et de distinguer les deux cas suivants :

- ightharpoonup si $f\left(\frac{a+b}{2}\right) > 0$, alors on sait qu'on a une racine dans l'intervalle $\left[a; \frac{a+b}{2}\right]$
- ightharpoonup sinon, $f\left(\frac{a+b}{2}\right) < 0$ et on sait qu'on a une racine dans l'intervalle $\left[\frac{a+b}{2};b\right]$.

Ainsi, dans les deux cas, on a trouvé un intervalle de longueur moitié dans lequel est située une racine de l'équation f(x)=0. On recommence alors avec cet intervalle, et ainsi de suite jusqu'à ce qu'on trouve une approximation qui nous convienne

 $f(\alpha) = 0$

 (C_f) coupe l'axe des abscisses au point $A(\alpha, 0)$

Fonction réciproque

Propriétés:

- > Si f continue et strictement monotone sur I
- \triangleright Et $y \in f(I)$

L'équation f(x) = y admet une seule solution dans I

Si f est continue et strictement monotone sur I alors f admet une fonction réciproque f^{-1} définie sur J = f(I).

$$f: I \to J$$
 et $f^{-1}: J \to I$

$$\begin{cases} f^{-1}(x) = y \\ x \in I \end{cases} \iff \begin{cases} f(y) = x \\ y \in I \end{cases}$$

$$(\forall x \in I), f^{-1}of(x) = x$$
$$(\forall y \in J), fof^{-1}(y) = y$$

- ✓ La fonction f^{-1} est continue sur I et a le même sens de variation de f sur I
- \checkmark Les courbes (C_f) et $(C_{f^{-1}})$ sont symétrique par rapport la droite (D) : y=x

La fonction racine $\mathbf{n^{ieme}:}(\sqrt[n]{})$, $\mathbf{n}\in \mathbf{IN^*}$

$$x \in \mathbb{R}_+$$
 , $y \in \mathbb{R}_+$

$$y \in \mathbb{R}_+$$

$$x^n = v$$

$$x^n = y \iff \sqrt[n]{y} = x$$

- ✓ La fonction $x \to \sqrt[n]{x}$ est continue et strictement croissante sur $[0, +\infty[$

$$\sqrt[1]{x} = x$$

$$\checkmark$$
 Cas particuliers : $\sqrt[1]{x} = x$, $\sqrt[2]{x} = \sqrt{x}$ pour tout $x \in IR^+$

Propriétés:
$$x, y \in IR^+$$
; $n, m \in IN^*$

$$\sqrt[n]{x^n} = x$$

$$(\sqrt[n]{x})^n = x$$

$$\sqrt[n]{x^n}=x$$
 ; $\left(\sqrt[n]{x}\right)^n=x$; $\left(\sqrt[n]{x}\right)^m=\sqrt[n]{x^m}$; $\sqrt[nm]{x^m}=\sqrt[n]{x}$

$$\sqrt[nm]{x^m} = \sqrt[n]{x}$$

$$\sqrt[n]{x}\sqrt[n]{y} = \sqrt[n]{xy}$$

$$\sqrt[n]{x}\sqrt[n]{y} = \sqrt[n]{xy}$$
 ; $\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}$ $(y \neq 0)$; $\sqrt[n]{\sqrt[n]{x}} = \sqrt[nm]{x}$; $\sqrt[n]{x^{np}} = x^n$

$$\sqrt[n]{\sqrt[m]{x}} = \sqrt[nm]{x}$$

$$\sqrt[p]{x^{np}} = x^n$$

Limites:

$$\lim f(x) = +\infty \Rightarrow \lim \sqrt[n]{f(x)} = +\infty; \quad \lim f(x) = \ell \geq 0 \Rightarrow \lim \sqrt[n]{f(x)} = \sqrt[n]{\ell}$$

$$a - b = \frac{a^3 - b^3}{a^2 + ab + b^2}$$
 \rightarrow $\sqrt[3]{a} - \sqrt[3]{b} = \frac{a - b}{\sqrt[3]{a^2 + \sqrt[3]{a} \cdot \sqrt[3]{b} + \sqrt[3]{b^2}}}$

Continuité:

si f est une fonction continue et positive sur I alors $\sqrt[n]{f}$ est continue sur I

Puissance rationnelle d'un nombre réel strictement positif :

$$n\in\mathbb{N}^*$$
, $m\in\mathbb{Z}$ Pour tout x de $]0$, $+\infty[$ on a : $x^{rac{m}{n}}=\sqrt[n]{x^m}$

$$x^{\frac{1}{n}}=\sqrt[n]{x}$$
 ; $x^{\frac{1}{2}}=\sqrt{x}$

Propriété:
$$r, r' \in Q$$
; $x, y \in IR^*_+$

$$x^r \times x^{r\prime} = x^{r+r\prime}$$
 , $(x^r)^{r\prime} = x^{r \times r\prime}$

$$(xy)^r = x^r \times y^{r'}$$
 , $\left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}$

$$\frac{x^r}{x^{r'}} = x^{r-r'} \qquad , \qquad x^{-r} = \frac{1}{x^r}$$

« Tout le monde est **un génie**.

Mais si vous jugez un poisson sur sa capacité à grimper dans un arbre, il passera sa vie entière à croire qu'il est **stupide**. »

- Albert Einstein