Digital Image Processing (CSE/ECE 478)

Lecture # 18: Filter Banks and Wavelets II

Avinash Sharma

Center for Visual Information Technology (CVIT),
IIIT Hyderabad

Today's Lecture

- 2D DWT
- Multi scale DWT

- Assignment 4 delayed due to project submission! Now coming on 26th Oct.
- Next class (23rd October) ? Yes

Multi resolution processing

Wavelet is an approach for Multi Resolution Processing

General one-stage two-channel filter bank transform

- Analysis filters l_a , h_a need not be the 2-point averaging/difference filters
- Any pair of low/high pass finite impulse response filters will do

Analysis filter bank:

- $x \to X = (X_l, X_h)$
- Where, $X_l = D(x * l_a)$; $X_h = D(x * h_a)$

Synthesis filter bank:

• $x' = l_s * U(\mathbf{X_l}) + h_s * U(\mathbf{X_h})$

Any analysis/synthesis filters could be used as long as x' is perfect reconstruction of x

Discrete Wavelet Transform (DWT)

Example:
$$\mathbf{x} = (a, b, c, d)$$
; $l_a = \left(\frac{1}{2}, \frac{1}{2}, 0, 0\right)$ and $h_a = \left(\frac{1}{2}, -\frac{1}{2}, 0, 0\right)$
$$\mathbf{x} * l_a = \frac{1}{2}(a + d, b + a, c + b, d + c), \text{ ext. periodically}$$

$$\mathbf{x} * \mathbf{h}_a = \frac{1}{2}(a - d, b - a, c - b, d - c), \text{ ext. periodically}$$

Truncating and Downsampling

$$X_{\ell} = \frac{1}{2}(a+d,c+b) \quad X_{h} = \frac{1}{2}(a-d,c-b)$$

The DWT of x is

$$X = \frac{1}{2}(a+d, c+b, a-d, c-b)$$

Discrete Wavelet Transform (DWT)

Matrix view of DWT

$$\mathbf{X} = W_4^a \mathbf{x},$$

$$\mathbf{X} = \frac{1}{2}(a+d,c+b,a-d,c-b)$$

$$W_4^a = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

Inverse Discrete Wavelet Transform (IDWT)

Example: $\mathbf{X} = (A, B, C, D); l_S = (1,0,0,1) \text{ and } h_S = (1,0,0,-1)$

- Up-sampling: $U(\mathbf{X}_{\ell}) = (A, 0, B, 0), \ U(\mathbf{X}_{h}) = (C, 0, D, 0)$
- Convolving with synthesis filters

$$U(\mathbf{X}_{\ell}) * \ell_{s} = (A, B, B, A)$$

$$U(\mathbf{X}_{h}) * \mathbf{h}_{s} = (C, -D, D, -C)$$

IDFT of X is

$$x = (A + C, B - D, B + D, A - C)$$

Inverse Discrete Wavelet Transform (IDWT)

Matrix view of IDWT

$$\mathbf{x} = W_4^s \mathbf{X},$$

$$\mathbf{x} = (A + C, B - D, B + D, A - C)$$

$$W_4^s = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

Verify
$$W_4^s \cdot W_4^a = I$$

- Let A be a M×N grayscale image
- The one stage, 2D-DWT is the linear mapping given by:

$$\mathcal{W}_a^1(A) = W_M^a A (W_N^a)^T$$

• W_M and W_N are M×M and N×N analysis matrices determined by (l_a, h_a)

Transform each column of A and then transform each row of resulting matrix Or vice-versa

• The inverse one stage transform is given by:

$$\mathcal{W}_s^1(\hat{A}) = W_M^s \hat{A}(W_N^s)^T$$

• W_M and W_N are M×M and N×N synthesis matrices determined by (l_S, h_S)

 Transform each column of A and then transform each row of resulting matrix

$$\mathcal{W}_a^1(A) = W_M^a A (W_N^a)^T$$

Convention here is first column-wise 1D transform followed by row-wise 1D transform

```
im=rgb2gray(imread('color_pencil.jpg'));
[LL,LH,HL,HH]=dwt2(im,'haar');
figure, subplot(2,2,1);imshow(LL,[]);title('LL band of image');
subplot(2,2,2);imshow(LH,[]);title('LH band of image');
subplot(2,2,3);imshow(HL,[]);title('HL band of image');
subplot(2,2,4);imshow(HH,[]);title('HH band of image');
```


LL band of image

HL band of image

LH band of image

HH band of image

DWT applications: edge detection

DWT applications: edge detection

DWT applications: edge detection

DWT applications: compression

JPEG 2000 Compression Pipeline

DWT applications: watermarking

Figure 2: (a) Host Image (left), (b) Watermarked Image (right).

Figure 3: The 256 bit embedded watermark.

Courtesy: Kudur et al. ICIP 97

DWT applications: analysis

Courtesy: art spy

Hard Thresholding: Remove all coefficients below threshold

Soft Thresholding: Remove all coefficients below threshold and scale the other coefficients by threshold value

Re look: Multi scale-DWT

Multi scale-DWT

• Suppose we reconstruct the signal from X_l only

$$\mathsf{IDWT}(\mathbf{X}_{\ell}||\mathbf{0}) = \alpha_1(\mathbf{x}) \in \mathbb{C}^N$$

- $\alpha_1(x)$ is the stage one approximation of x
- Signal reconstruction from detail coefficients:

$$\mathsf{IDWT}(\mathbf{0}||\mathbf{X}_h) = \delta_1(\mathbf{x}) \in \mathbb{C}^N$$

- $\delta_1(x)$ is the stage one approximation of x
- Stage 1 representation of signal:

$$x = \alpha_1(x) + \delta_1(x)$$

Multi scale-DWT

• At each stage, the sequence of detail representations $\delta_1(\mathbf{x}), \delta_2(\mathbf{x}), \dots, \delta_{m-1}(\mathbf{x})$ is extended by one term, $\delta_m(\mathbf{x})$

stage 1:
$$\mathbf{x} = \alpha_1(\mathbf{x}) + \delta_1(\mathbf{x})$$

stage 2:
$$\mathbf{x} = \alpha_2(\mathbf{x}) + \delta_2(\mathbf{x}) + \delta_1(\mathbf{x})$$

stage 3:
$$\mathbf{x} = \alpha_3(\mathbf{x}) + \delta_3(\mathbf{x}) + \delta_2(\mathbf{x}) + \delta_1(\mathbf{x})$$

:

stage m:
$$\mathbf{x} = \alpha_m(\mathbf{x}) + \delta_m(\mathbf{x}) + \delta_{m-1}(\mathbf{x}) + \cdots + \delta_1(\mathbf{x})$$

Let me invert the notations!

Multiscale representation of a signal

α	6										9
δ_0	0										7
	2										3
δ_1	2	_									5
	1	_	1	-1	0	0	0	0	0	0	6
δ_2	-1	1	0	0	1	-1	0	0	0	0	10
2	-2	$\frac{1}{2}$	0	0	0	0	1	-1	0	0	2
	-2		0	0	0	0	0	0	1	-1	6

9	7	3 5		6	10	2	6
8	4	8	4	1	-1	-2	-2

$lpha_0$	6									
δ_0	0									
	2	1	1	-1	0	0	0	0	0	0
δ_1	2	2	0	0	1	-1	0	0	0	0
	1		0	0	0	0	1	0	0	0
δ_2	-1		0	0	0	0	0	1	0	0
- 2	-2		0	0	0	0	0	0	1	0
	-2		0	0	0	0	0	0	0	1

	1	1	0	0	0	0	0	0	9
	0	0	1	1	0	0	0	0	7
	0	0	0	0	1	1	0	0	3
1	0	0	0	0	0	0	1	1	5
2	1	1	0	0	0	0	0	0	6
	0	0	1	-1	0	0	0	0	10
	0	0	0	0	1	-1	0	0	2
	0	0	0	0	0	0	1	-1	6

x_0	6									
D_0	0									
<u> </u>	2	1	1	1	-1	-1	0	0	0	0
D_1	2	4	0	0	0	0	1	1	-1	-1
	1	_	1	-1	0	0	0	0	0	0
D_2	-1	1	0	0	1	-1	0	0	0	0
	-2	<u>-</u> 2	0	0	0	0	1	-1	0	0
	-2		0	0	0	0	0	0	1	-1

9
7
3
5
6
10
2
6

$lpha_0$	6	1	1	1	1	1	1	1	1	1
δ_0	0	8	1	1	1	1	-1	-1	-1	-1
C	2	1	1	1	-1	-1	0	0	0	0
δ_1	2	4	0	0	0	0	1	1	-1	-1
	1	_	1	-1	0	0	0	0	0	0
δ_2	-1	1	0	0	1	-1	0	0	0	0
	-2	2	0	0	0	0	1	-1	0	0
	-2		0	0	0	0	0	0	1	-1

9
7
3
5
6
10
2
6

Multi scale- Haar Basis

$$\psi(x) \equiv \begin{cases} 1 & 0 \le x < \frac{1}{2} \\ -1 & \frac{1}{2} < x \le 1 \\ 0 & \text{otherwise} \end{cases} \qquad \psi_{jk}(x) \equiv \psi(2^{j} x - k)$$

$$j \text{ is non negative integer and } 0$$

$$\psi_{j\,k}(x) \equiv \psi\left(2^j\,x - k\right)$$

j is non negative integer and $0 \le k \le 2^j - 1$

Scaling and Shifting of Wavelets

Shifting a wavelet

Shifted wavelet function $\psi(t-k)$

Scaling a wavelet

$$f(t) = \psi(t)$$
 ; $\alpha = 1$

$$f(t) = \psi(2t) \; ; \quad \alpha = \frac{1}{2}$$

$$f(t) = \psi(4t) \; ; \quad a = \frac{1}{4}$$

Two stage transform

$$\mathcal{W}_2^a = \begin{pmatrix} W_{N/2}^a & 0 \\ 0 & \mathbf{I}_{N/2} \end{pmatrix} W_N^a$$

An r stage DWT is obtained by iteration:

$$\mathcal{W}_r^a = \begin{pmatrix} W_{N/2^{r-1}}^a & 0 \\ 0 & \mathbf{I}_{N(1-1/2^{r-1})} \end{pmatrix} \dots \begin{pmatrix} W_{N/2}^a & 0 \\ 0 & \mathbf{I}_{N/2} \end{pmatrix} W_N^a$$

The inverse DWT is governed by the matrix

$$\mathcal{W}_r^s = W_N^s \begin{pmatrix} W_{N/2}^s & 0 \\ 0 & \mathbf{I}_{N/2} \end{pmatrix} \dots \begin{pmatrix} W_{N/2^{r-1}}^s & 0 \\ 0 & \mathbf{I}_{N(1-1/2^{r-1})} \end{pmatrix}$$