EE2302 Foundations of Information and Data Engineering

Assignment 4 (Solution)

- 1. Any integer n can be written as n = 3q + r using the quotient-remainder theorem, where $0 \le r < 3$. There are three possible cases:
 - For r = 0, $n^2 = (3q)^2 = 3(3q^2) = 3k$ for $k = 3q^2$.
 - For r = 1, $n^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1 = 3k + 1$ for $k = (3q^2 + 2q)$.
 - For r = 2, $n^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1 = 3k + 1$ for $k = (3q^2 + 4q + 1)$.

Therefore, the square of any integer has the form 3k or 3k+1 for some integer k.

2.
$$\emptyset(9100) = \emptyset(2^2 * 5^2 * 7 * 13)$$

 $= \emptyset(2^2)\emptyset(5^2)\emptyset(7)\emptyset(13)$
 $= (2^2 - 2^1)(5^2 - 5)(7^1 - 7^0)(13^1 - 13^0)$
 $= 2880.$

3. gcd(67890,12000) = 30.

-			
5	67890	12000	1
	60000	7890	
1	7890	4110	1
	4110	3780	
11	3780	330	2
	3630	300	
5	150	30	
	150		
	0		

4.

54321	6789		
1	0	54321	a
0	1	6789	b
1	-8	9	c = a - 8b
-754	6033	3	d = b - 754c $(= b - 754 * (a - 8b) =$
			-754a + 6033b)

gcd(54321,6789) = 3, x = -754 and y = 6033.

Remark: In the last column of the above table, the expressions within the parenthesis are not needed, but can show that for each row, the entries in the first two columns represent the coefficients of *a* and *b*, respectively.