

⊠ ming.du101@gmail.com | dattp://mdw771.github.io/ | in https://www.linkedin.com/in/ming-du-a0b51b6b

EXPERIENCE

10/2023 - now

Assistant Computational Scientist

Argonne National Laboratory, Lemont, IL, USA

• Developed AI algorithms for x-ray science.

03/2023 - 09/202304/2021 - 03/2023

Senior Algorithm Engineer

Algorithm Engineer

KLA Corporation, Ann Arbor, MI, USA

- Developed image processing algorithms for modeling the image formation process in KLA's high-precision photomask inspection systems used for sub-3-nm processes. Implemented algorithm solutions in the C++ codebase.
- Led the development and productization a deep learning algorithm for defect detection, achieving a 10% improvement in precision and a 60% reduction of false positives. Optimized inference throughput using techniques and tools including OpenVINO.
- Using computer vision and data science techniques, developed image correction and artifact removal algorithms that reduced the false positive rate of the photomask inspection system by over 70%.
- Directed an internship project on modeling the artifacts generated in the image formation process using model-augmented deep learning method.

08/2019 - 03/2021

Postdoctoral Scholar

Argonne National Laboratory, Lemont, IL, USA

- Developed *Adorym*, a reconstruction framework capable of performing large-scale 2D/3D phase retrieval, image reconstruction, and parameter refinement for multiple x-ray imaging techniques, built on automatic differentiation of *PvTorch*.
- Developed a generative neural network-based method using "deep image prior" to reconstruct clean images from artifact-corrupted images in x-ray multislice ptychography.
- Developed a distributed algorithm for large 2D wavefield propagation on high performance computers (HPCs).
- Led the proposal and research of an ASCR Leadership Computing Challenge (ALCC) project, which is a highly selective HPC resource award, on large-scale 3D reconstruction.

09/2015 - 06/2019

Ph.D. Candidate

Northwestern University, Evanston, IL, USA

- Developed *Tomosaic*, a Python software package for beyond-field-of-view x-ray micro-CT. Achieved 3D reconstruction of a whole mouse brain with 10¹³ voxels from 5.8 TB of raw data, using supercomputers at Argonne Leadership Computing Facility.
- Developed an innovative algorithm for 3D phase retrieval under complicated imaging scenarios, utilizing the automatic differentiation capability of deep learning tools.
- Conducted x-ray tomography and ptychography experiments at the Advanced Photon Source.
- Involved in the commissioning of an automated tomography processing pipeline *Automo/Ripple* at beamline 32-ID of the Advanced Photon Source.
- Built an improved theoretical model for dose estimation in the x-ray imaging of thick hydrated specimens.

01/2014 - 06/2014

Research Intern

Singapore Institute of Manufacturing Technology, Singapore

- Experimentally studied the pore size dependence of anodic aluminum oxide on voltage and electrolyte temperature.
- Developed a tool for unsupervised data analysis.

EDUCATION

2015 - 2019

Doctor of Philosophy, Northwestern University, Evanston, USA

Department of Materials Science and Engineering

Advised by Prof. Chris Jacobsen

Thesis title: To the Breadth, and to the Depth: Scalable 3D Imaging of Extended Objects with High Resolution Using X-ray Microscopy

Department of Materials Science and Engineering

TEACHING

2018 Winter **Teaching assistant**, Northwestern University

MSE 395-4: Computational Thermodynamics and Kinetics

2018 Fall **Teaching assistant**, *Northwestern University*

MSE 401: Chemical and Statistical Thermodynamics of Materials

2018 Winter **Teaching assistant**, *Northwestern University*

MSE 361: Crystallography and Diffraction

CERTIFICATES

2023 AWS Certified Machine Learning – Specialty

Amazon Web Services Training and Certification

2022 Completed class **EECS 598-008 Deep Learning for Computer Vision** with grade **A**

As part-time student at University of Michigan, Ann Arbor

2022 Certificates of courses in the **Bayesian Statistics** specialization

Coursera

2020 Course certificates: **Statistical Thinking in Python**, **Unsupervised Learning in Python**

Datacamp

PUBLICATIONS

- [1] X. Liu, G. Xu, ..., M. Du, et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. *Nature Energy*. 1–10 (2022).
- [2] M. Du, X. Huang, C. Jacobsen, Using a modified double deep image prior for crosstalk mitigation in multislice ptychography. *Journal of Synchrotron Radiation*. **8** (2021).
- [3] M. Du, S. Kandel, J. Deng, X. Huang, A. Demortiere, T. T. Nguyen, R. Tucoulou, V. D. Andrade, Q. Jin, C. Jacobsen, Adorym: a multi-platform generic X-ray image reconstruction framework based on automatic differentiation. *Opt Express.* 29, 10000 (2021).
- [4] M. Du, Z. (Wendy) Di, D. Gürsoy, R. P. Xian, Y. Kozorovitskiy, C. Jacobsen, Upscaling X-ray nanoimaging to macroscopic specimens. *J Appl Crystallogr.* **54**, 386–401 (2021).
- [5] P. Huang, M. Du, M., Hammer, A., Miceli, C. Jacobsen, Fast digital lossy compression for X-ray ptychographic data. *Journal of Synchrotron Radiation*. **28**, 292–300 (2021).
- [6] S. Ali, M. Du, M. F. Adams, B. Smith, C. Jacobsen, Comparison of distributed memory algorithms for X-ray wave propagation in inhomogeneous media. *Opt Express.* **28**, 29590 (2020).
- [7] M. Du, D. Gürsoy, C. Jacobsen, Near, far, wherever you are: simulations on the dose efficiency of holographic and ptychographic coherent imaging 1. *J Appl Crystallogr.* **53**, 748–759 (2020).
- [8] M. Du, Y. S. G. Nashed, S. Kandel, D. Gürsoy, C. Jacobsen, Three dimensions, two microscopes, one code: Automatic differentiation for x-ray nanotomography beyond the depth of focus limit. *Sci Adv.* **6**, eaay3700 (2020).
- [9] J. Prasad, A. Balwani, E. Johnson, J. Miano, V., Sampathkumar, V. De Andrade, K. Fezzaa, M. Du, et al. Scientific Data. 358 (2020)
- [10] R. Vescovi¹, M. Du¹, *et al.*, Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron X-ray beams. *Journal of Synchrotron Radiation*. **25** 1478–1489 (2018). ²
- [11] M. Du, R. Vescovi, K. Fezzaa, C. Jacobsen, D. Gürsoy, X-ray tomography of extended objects: a comparison of data acquisition approaches. *J Opt Soc Am.* **35**, 1871 (2018).
- [12] M. A. Gilles, Y. S. G. Nashed, M. Du, C. Jacobsen, S. M. Wild, 3D x-ray imaging of continuous objects beyond the depth of focus limit. *Optica*. **5**, 1078–1086 (2018).
- [13] Shahbazi, J. Kinnison, R. Vescovi, M. Du, R. Hill, M. Joesch, M. Takeno, H. Zeng, N. M. da Costa, J. Grutzendler, N. Kasthuri, W. J. Scheirer, Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes. *Scientific reports*. **8**, 1448 (2018).
- [14] R. Chard, R. Vescovi, M. Du, H. Li, K. Chard, S. Tuecke, N. Kasthuri, I. Foster, (2018), *AI-Science'18: Autonomous Infrastructure for Science*, pp. 1–7.
- [15] M. Du, R. Vescovi, R. Chard, N. Kasthuri, C. Jacobsen, E. Dyer, D. Gursoy, *Biophotonics Congress: Biomedical Optics Congress* 2018 (2018), paper BF4C.2.
- [16] M. Tondravi, W. Scullin, M. Du, R. Vescovi, V. D. Andrade, C. Jacobsen, K. P. Kording, D. Gursoy, E. Dyer, A Pipeline for Distributed Segmentation of Teravoxel Tomography Datasets. *Microscopy and Microanalysis*. **24**, 166–167 (2018).
- [17] M. Du, C. Jacobsen, Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials. *Ultramicroscopy.* **184**, 293–309 (2018).

- [18] C. J. Jacobsen, V. D. Andrade, J. Deng, M. Du, D. Gursoy, Y. S. Nashed, T. Peterka, (2016), *Digital Holography and Three-Dimensional Imaging*, p. W2A.12.
- [19] M. Du, X. Yin, C. Tang, T. J. Huang, H. Gong, Takovite-derived 2-D Ni/Al double hydroxide monolayer and graphene hybrid electrodes for electrochemical energy storage applications with high volumetric capacitance. *Electrochimica Acta*. **190**, 521–530 (2016).
- [20] X. Yin, T. J. Huang, C. Tang, M. Du, L. Sun, Z. Shen, H. Gong, Significantly different mechanical properties and interfacial structures of Cu2ZnSn(S,Se)4 films prepared from metallic and sulfur-contained precursors. *Solar Energy Materials and Solar Cells.* **134**, 389–394 (2015).
- [21] M. Du, X. Yin, H. Gong, Effects of triethanolamine on the morphology and phase of chemically deposited tin sulfide. *Materials Letters*. **152**, 40–44 (2015).
- ¹ Co-first authors with equal contributions.

CONFERENCE SPEECHES & TALKS

- [1] "Applications of automatic differentiation in image reconstruction and experimental parameter refinement for 3D microscopy, " 23rd Euro AD Workshop, Virtual. (2020).
- [2] "Three dimensions, two microscopes, one code: Automatic differentiation for x-ray nanotomography beyond the depth of focus limit, " *ALCF Simulation, Data, and Learning Workshop*, Lemont, U.S.A. (2019).
- [3] "A Multifunctional Tool for X-Ray Ptychographic and Holographic 3D Imaging Beyond the Depth-of-Focus Limit, " *Gordon Research Seminar X-ray Science*, Easton, U.S.A. (2019).
- [4] "Using Automatic Differentiation for Coherent Diffraction Imaging and Reconstructing Beyond Depth of Focus (co-presented with Saugat Kandel), " *Ptycho Developer 2019*, Berkeley, U.S.A. (2019).
- [5] "3D object reconstruction beyond the depth-of- focus limit using automatic differentiation, "Coherence 2018, Port Jefferson, U.S.A. (2018).
- [6] "An automated pipeline for the collection, transfer, and processing of large-scale tomography data, "Biophotonics Congress: Biomedical Optics Congress 2018, Hollywood, U.S.A. (2018).

MEDIA COVERAGE

- [1] Andre Salles, Filling in the blanks: How supercomputing can aid high-resolution X-ray imaging. ALCF News Center (2020). [Link]
- [2] ALCF, ALCF supercomputers power scientific breakthroughs in 2020. ALCF News Center (2020). [Link]
- [3] Sally Johnson, Extreme 3-D. DEIXIS Magazine. (2021). [Link]

AWARDS AND ACCOMPLISHMENTS

2020	Most active reviewers of 2019 awarded by the Optical Society of America.
2020	Team leader of an ASCR Leadership Computing Challenge (ALCC) proposal granted by Advanced
	Scientific Computing Research of the U.S. Department of Energy (24 projects awarded in total).
2019	Contributed to an LDRD-funded proposal (2019-0441, \$80K/year over 2 years).
2019	Contributed to a proposal of the ALCF Data Science Program (awarded 0.25 M nodes hours over 2
	years).
2015	Materials Research Society (Singapore) Medal.

PROFESSIONAL ACTIVITIES

2020 – 2021 Principal Investigator of an ASCR Leadership Computing Challenge (ALCC) project titl	ed
"Distributed large wavefield propagation and 3D reconstruction beyond the depth of focus	limit".
2020 Selected attendee of the Argonne Training Program on Extreme-Scale Computing (ATPE	SC) (~76
candidates selected internationally).	
2020 Co-organizer of workshop titled "Advances in Phase Retrieval Methods for High-resolution	on X-ray
Imaging" in 2020 APS/CNM User Meeting.	
2018 – present Reviewer of more than 17 manuscripts submitted to <i>Optics Express</i> , <i>Applied Optics</i> , <i>Optic</i>	s Letters,
Biomedical Optics Express, and IUCrJ.	
(Verified peer review records available on Publons with WoS ResearcherID V-4905-2019))
2018 – present Member, The Optical Society of America.	

EXTRACURRICULAR ACTIVITIES

2018 – 2019	Member, Northwestern University Society of Physics Students
2017	Volunteer, Baxter Symposium at Northwestern University
2013 - 2015	Co-chair. Movement for Intellectually Disabled of Singapore (Fernyale branch)

² The outcome of this work is used in production at the AdvancedPhoton Source.

SKILLS

Experimental: X-ray microtomography and ptychography at synchrotron beamlines; scanning electron microscopy **Programming:** Python, MATLAB, Mathematica, C, C++, R, SQL, Linux, LaTeX, Git

Technical skills: Deep learning, image processing, computer vision, inverse problem solving, non-linear optimization, computational imaging, parallel computing, cloud computing (AWS)

Other skills: 3D computer graphics (Adobe After Effects, Blender; made a 3D animation showcasing the research outcome of our group, which was displayed at the Department of Energy's Booth during the SC'19 conference); computer aided design (Autodesk Fusion 360)

LANGUAGES

English: Fluent Chinese: Native Japanese: Beginner German: Beginner