ZÁKLADY UNIVERZÁLNÍ ALGEBRY

1. Operace a Ω -algebry

Úvod. V průběhu přednášky z algebry jsme studovali řadu algebraických struktur: grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry. Při zkoumání těchto struktur se často některé pojmy a úvahy opakovaly, například ve všech případech jsme hovořili o homomorfismech a vždy platilo, že složením homomorfismů opět dostaneme homomorfismus. Definovali jsme podobjekty (věnovali jsme se hlavně podgrupám, podokruhům, podtělesům a podsvazům) a vždy platilo, že průnikem libovolného neprázdného systému podobjektů je opět podobjekt. To nám umožnilo definovat podobjekt generovaný podmnožinou, ve všech případech byly definice v podstatě stejné. V případě grupoidů, grup, okruhů a svazů jsme si definovali součin dvou takových struktur, kterým byla stejná struktura na kartézském součinu. Cílem univerzální algebry je právě tyto společné rysy postihnout a popsat z jednotícího hlediska.

Budeme tedy popisovat množiny spolu s několika operacemi na nich. Až dosud jsme operací na množině G měli na mysli zobrazení $G \times G \to G$, avšak budeme potřebovat tuto definici pozměnit. Vždyť kromě těchto operací, kterým v následujícím textu budeme říkat binární operace, jsme se setkali i se zobrazeními $G \to G$, kdy byl každému prvku množiny G pevně přiřazen další prvek: například přiřazení inverzního prvku v grupě, opačného prvku v okruhu, či komplementu v Booleově algebře. Toto zobrazení $G \to G$ budeme nazývat unární operace na množině G. Někdy naše struktura obsahovala nějaké význačné prvky, setkali jsme se například s neutrálním prvkem v grupě, s nulou a jedničkou v okruhu, s nejmenším a největším prvkem Booleovy algebry. Tomuto výběru jednoho prvku z množiny G budeme říkat nulární operace na G. Má to určitou logiku: jde totiž vždy o zobrazení z jisté kartézské mocniny množiny G do množiny G. Označíme pro přirozené číslo n symbolem G^n kartézský součin n kopií množiny G, tedy G^n je množina všech uspořádaných n-tic prvků množiny G. Jistě lze pak ztotožnit $G ext{ s } G^1$ (množinou všech uspořádaných 1-tic prvků množiny G). Co by však mělo být G^0 ? Jak si představit množinu všech 0-tic prvků množiny G? Podobně jako nultou mocninou nenulového čísla rozumíme číslo 1, které je neutrální vzhledem k násobení, nultou kartézskou mocninou nějaké množiny je třeba rozumět množinu, která kartézským vynásobením příliš nezmění násobenou množinu. Vhodnou množinou bude nějaká jednoprvková: ta totiž kartézským součinem nezmění počet prvků násobené množiny (přesněji: je-li A jednoprvková množina, existuje přirozeně definovaná bijekce $A \times G \to G$ pro každou množinu G). Uvědomte si, že to odpovídá i obvyklé definici: pro přirozené číslo n je G^n množina všech uspořádaných n-tic prvků množiny G. Uspořádanou n-tici prvků množiny G lze definovat například jako zobrazení množiny $\{1,\ldots,n\}$ do množiny G. Analogií této konstrukce pro n=0 je tedy chápat G^0 jako množinu všech uspořádaných 0-tic prvků množiny G, přičemž uspořádaná 0-tice prvků množiny G je zobrazení prázdné množiny do množiny G. Takové zobrazení je vždy jedno (ať už je množina G prázdná nebo ne), totiž prázdné zobrazení. Pro libovolnou množinu G budeme proto symbolem G^0 rozumět jednoprvkovou množinu; je vhodné si představovat, že tímto jediným prvkem naší jednoprvkové množiny je prázdná množina, tedy že $G^0 = \{\emptyset\}$. Pak tedy výběr prvku je zobrazení $G^0 \to G$.

Definice. Nechť G je množina, n nezáporné celé číslo. Pak n-ární operací na množině G rozumíme zobrazení $G^n \to G$.

Poznámka. Místo 2-ární operace budeme tedy říkat binární operace, místo 1-ární budeme říkat unární. Číslu n z definice říkáme arita dotyčné operace. Při popisu konkrétní operace jsme vždy operaci označovali nějakým symbolem, užívali jsme $+, \cdot, \vee, \wedge$ pro binární operace, $-, ^{-1}, '$ pro unární operace, 0, 1 pro nulární operace. Těmto symbolům budeme říkat operační symboly; je podstatné, že u každého symbolu je dána arita operace, kterou symbolizuje.

Definice. Množina Ω spolu se zobrazením $a:\Omega\to \mathbf{N}\cup\{0\}$ se nazývá typ. Prvky množiny Ω se nazývají operační symboly. Pro $f\in\Omega$ se a(f) nazývá arita symbolu f. Operační symbol, jehož arita je n, se nazývá n-ární.

Definice. Univerzální algebra typu Ω (neboli stručně Ω -algebra) je množina A, na níž je pro každý n-ární operační symbol $z f \in \Omega$ definována n-ární operace $f_A : A^n \to A$. Pro libovolné $a_1, \ldots, a_n \in A$ značíme $f_A(a_1, \ldots, a_n)$ hodnotu operace f_A na uspořádané n-tici (a_1, \ldots, a_n) .

Poznámka. V případě nulárního operačního symbolu $f \in \Omega$ je n = 0, tedy $A^0 = \{\emptyset\}$ a nulární operací je tedy zobrazení $f_A : \{\emptyset\} \to A$. Zadat takovéto zobrazení je totéž jako vybrat pevně jeden prvek $f_A(\emptyset) \in A$. Pro zjednodušení označení budeme v dalším textu tento pevně vybraný prvek značit jednoduše f_A místo $f_A(\emptyset)$.

Poznámka. Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je každá $\Omega\text{-algebra neprázdná.}$

Příklady.

- 1. Pro prázdný typ, tj. $\Omega = \emptyset$, je univerzální algebrou typu Ω libovolná množina.
- 2. Grupoid je množina s jednou binární operací, je to tedy univerzální algebra typu, který má jeden binární operační symbol ·.
- 3. Grupa je univerzální algebra typu $\{\cdot, ^{-1}, 1\}$.
- 4. Okruh je univerzální algebra typu $\{+,\cdot,-,0,1\}$.
- 5. Svaz je univerzální algebra typu $\{\vee, \wedge\}$.
- 6. Booleova algebra je univerzální algebra typu $\{\vee, \wedge, ', 0, 1\}$.
- 7. Vektorový prostor nad tělesem T je univerzální algebra typu $\{+, -, 0\} \cup T$ (pro každý prvek tělesa $t \in T$ máme unární operační symbol pro skalární násobek, což je unární operace na množině vektorů: t(v) = t.v).

Poznámka. V předchozích definicích je určitá nepřesnost, správně bychom měli místo o univerzální algebře A mluvit o univerzální algebře A s nosnou množinou A. Vždyť kupříkladu na jedné a téže nosné množině můžeme mít definovány různé grupoidy, tedy to, o který jde grupoid, není určeno pouze nosnou množinou, ale i operací na ní. Protože to však vždy z kontextu bude patrné, můžeme si snad touto nepřesností usnadnit vyjadřování: budeme hovořit o Ω -algebře A nebo o nosné množině A.

Příklad. Nechť Ω je libovolný typ, $A=\{a\}$ jednoprvková množina. Pak existuje jediný způsob, jak na nosné množině A definovat Ω -algebru. Pro libovolný n-ární operační symbol $f \in \Omega$ je hodnota operace f_A na (jediné existující) n-tici (a, \ldots, a) rovna (jediné možné) hodnotě a.

2. Podalgebry a homomorfismy

Definice. Nechť A je univerzální algebra typu Ω , $H \subseteq A$ podmnožina. Řekneme, že H je podalgebra Ω -algebry A, jestliže pro každý n-ární operační symbol $f \in \Omega$ a pro každé $a_1, \ldots, a_n \in H$ platí $f_A(a_1, \ldots, a_n) \in H$.

Poznámka. V případě nulárního operačního symbolu $f \in \Omega$ je n = 0, tedy $A^0 = \{\emptyset\}$. Obraz tohoto jediného prvku jsme se dohodli značit stručně f_A místo (možná přesnějšího) označení $f_A(\emptyset)$. Podmínku z definice je tedy třeba chápat ve smyslu $f_A \in H$.

Poznámka. Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je každá podalgebra libovolné Ω -algebry neprázdná.

Příklady. V jednotlivých případech příkladu univerzálních algeber z předchozí kapitoly dostáváme tyto podalgebry: 1. Podmnožina množiny. 2. Podgrupoid grupoidu. 3. Podgrupa grupy. 4. Podokruh okruhu. 5. Podsvaz svazu. 6. Booleova podalgebra Booleovy algebry. 7. Vektorový podprostor vektorového prostoru.

Poznámka. Následující větu jsme v jednotlivých kontextech dokazovali několikrát.

Věta 2.1. Nechť A je univerzální algebra typu Ω , I neprázdná množina. Pro každé $i \in I$ nechť je dána podalgebra $H_i \subseteq A$ algebry A. Pak jejich průnik $\bigcap_{i \in I} H_i$ je podalgebra Ω -algebry A.

Důkaz. Zvolme libovolně n-ární operační symbol $f \in \Omega$ a prvky $a_1, \ldots, a_n \in \bigcap_{i \in I} H_i$. Pak pro každé $i \in I$ platí $a_1, \ldots, a_n \in H_i$. Protože H_i je podalgebra Ω -algebry A, platí $f_A(a_1, \ldots, a_n) \in H_i$. To ovšem znamená, že $f_A(a_1, \ldots, a_n) \in \bigcap_{i \in I} H_i$, což se mělo dokázat.

Důsledek. Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je průnik libovolného neprázdného systému podalgeber dané algebry neprázdný.

Důkaz. V tomto případě není prázdná množina podalgebrou.

Důsledek. Nechť P je množina všech podalgeber dané univerzální algebry A typu Ω . Pak platí: (P, \subseteq) je úplný svaz.

Důkaz. Protože uspořádaná množina (P, \subseteq) má největší prvek (je jím celá algebra A jako svá podalgebra), dle příslušné věty o úplných svazech stačí ověřit, že též libovolná neprázdná podmnožina $M \subseteq P$ má v uspořádané množině (P, \subseteq) infimum. Tímto infimem je množinový průnik $\bigcap_{H \in M} H$, který dle předchozí věty je skutečně prvkem množiny P.

Poznámka. Předchozí věta 2.1 nám umožňuje definovat podalgebru generovanou množinou.

Definice. Nechť A je univerzální algebra typu Ω , $M \subseteq A$ podmnožina nosné množiny. Průnik všech podalgeber Ω -algebry A, které obsahují M jako svou podmnožinu, značíme $\langle M \rangle$ a nazýváme podalgebrou Ω -algebry A generovanou množinou M.

Poznámka. Díky tomu, že alespoň jedna podalgebra Ω -algebry A obsahující množinu M existuje (je jí jistě celá Ω -algebra A), podle věty 2.1 je zmíněným průnikem $\langle M \rangle$ skutečně podalgebra Ω -algebry A. Zřejmě je to ze všech podalgeber Ω -algebry A obsahujících množinu M ta nejmenší (vzhledem k množinové inkluzi).

Příklady. V jednotlivých případech příkladu univerzálních algeber z předchozí kapitoly dostáváme tyto podalgebry generované množinou:

- 1. V případě Ω -algebry A prázdného typu $\Omega = \emptyset$ je každá podmnožina množiny A podalgebrou, proto v tomto případě pro libovolné $M \subseteq A$ je podalgebrou Ω -algebry A generovanou množinou M sama množina M.
- 2. Podgrupoid grupoidu generovaný množinou. Tento pojem jsme v přednášce nezaváděli.
- 3. Podgrupa $\langle M \rangle$ grupy generovaná množinou M.
- 4. Podokruh $\langle M \rangle$ okruhu generovaný množinou M.
- 5. Podsvaz svazu generováný množinou (nezaváděli jsme).
- 6. Booleova podalgebra Booleovy algebry generovaná množinou (též jsme nezaváděli).
- 7. Vektorový podprostor vektorového prostoru generovaný množinou vektorů, což je jeden z nejdůležitějších pojmů lineární algebry.

Poznámka. Díky tomu, že podalgebra Ω -algebry je podmnožina uzavřená na všechny operace příslušné operačním symbolům typu Ω , lze tyto operace zúžit na podalgebru. Proto každá podalgebra je sama Ω -algebrou. Uvědomte si, že tuto úvahu jsme prováděli v průběhu přednášky několikrát v různých kontextech.

Poznámka. Nyní budeme definovat homomorfismus Ω -algeber. Dá se asi čekat, že to bude takové zobrazení nosných množin, které pro každou operaci splní následující podmínku: jestliže zobrazíme výsledek operace, musíme dostat totéž, jako když zobrazíme každý operand zvlášť a operaci provedeme až ve druhé algebře.

Definice. Nechť A, B jsou univerzální algebry téhož typu $\Omega, \varphi : A \to B$ zobrazení. Řekneme, že φ je homomorfismus Ω -algeber, jestliže pro každý operační symbol $f \in \Omega$ arity n a každé prvky $a_1, \ldots, a_n \in A$ platí

$$f_B(\varphi(a_1),\ldots,\varphi(a_n)) = \varphi(f_A(a_1,\ldots,a_n)).$$

Poznámka. Pro nulární operační symbol předchozí podmínka samozřejmě znamená $\varphi(f_A) = f_B$.

Poznámka. Jestliže je Ω -algebra A prázdná (v tomto případě tedy typ Ω nemůže obsahovat žádný nulární operační symbol), pak pro libovolnou Ω -algebru B existuje jediný homomorfismus Ω -algebra $A \to B$, totiž prázdné zobrazení. Jestliže naopak Ω -algebra B je prázdná, pak homomorfismus Ω -algebra $A \to B$ existuje pouze v případě, kdy i Ω -algebra A je prázdná.

Příklady. Porovnejme v jednotlivých případech předchozích příkladů tuto definici s definicemi uváděnými dříve pro jednotlivé speciální případy univerzálních algeber:

1. V případě Ω -algeber prázdného typu $\Omega=\emptyset$ je každé zobrazení homomorfismem.

- 2. Pro grupoidy je tato definice totožná s obvyklou definicí homomorfismu grupoidů.
- 3. Pro grupy byl homomorfismus definován stejně jako pro grupoidy, tedy v definici bylo vyžadováno, aby zachovával součin. Právě uvedená definice pro případ grup vyžaduje, aby homomorfismus zachovával též inverzní prvky a zobrazil neutrální prvek grupy A na neutrální prvek grupy B. Je asi jasné, proč tyto požadavky nebyly obsaženy v definici homomorfismu grup: jak jsme si dokazovali, to jsou pouhé důsledky toho, že homomorfismus grup zachovává součin.
- 4. Pro okruhy jsme v definici homomorfismu vyžadovali, aby zachovával sčítání, násobení a převáděl na sebe jedničky okruhů. Jako důsledek jsme dostali další podmínky z právě provedené obecné definice, týkající se opačných prvků a nul okruhů.
- 5. V případě svazů obě definice splývají: vyžaduje se, aby homomorfismus zachovával \vee a \wedge .
- 6. V případě Booleových algeber jsme požadovali, aby homomorfismus zachovával \lor , \land , 0 a 1. Jako důsledek jsme pak obdrželi, že už nutně musí zachovávat též komplementy, proto nebylo nutné komplementy zahrnout do definice homomorfismu Booleových algeber.
- 7. V případě vektorových prostorů odpovídá homomorfismu lineární zobrazení.

Poznámka. Následující dvě věty pro jednotlivé speciální případy univerzálních algeber známe z přednášky: složením dvou homomorfismů opět dostaneme homomorfismus, homomorfním obrazem grupy (grupoidu, okruhu, atd.) je podgrupa (podgrupoid, podokruh, atd.).

Věta 2.2. Nechť A, B, C jsou univerzální algebry téhož typu $\Omega, \varphi : A \to B$ a $\psi : B \to C$ homomorfismy Ω -algeber. Pak je též složení $\psi \circ \varphi$ homomorfismus Ω -algeber.

Důkaz. Protože je φ homomorfismus Ω -algeber, pro každý operační symbol $f \in \Omega$ arity n a každé prvky $a_1, \ldots, a_n \in A$ platí

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)).$$

Protože je též ψ homomorfismus Ω -algeber, platí

$$\psi(f_B(\varphi(a_1),\ldots,\varphi(a_n))) = f_C(\psi(\varphi(a_1)),\ldots,\psi(\varphi(a_n))).$$

Dohromady tedy

$$(\psi \circ \varphi)(f_A(a_1, \dots, a_n)) = \psi(\varphi(f_A(a_1, \dots, a_n))) =$$

$$= \psi(f_B(\varphi(a_1), \dots, \varphi(a_n))) =$$

$$= f_C(\psi(\varphi(a_1), \dots, \psi(\varphi(a_n))) =$$

$$= f_C((\psi \circ \varphi)(a_1), \dots, (\psi \circ \varphi)(a_n)),$$

což jsme měli dokázat.

Věta 2.3. Nechť A, B jsou univerzální algebry téhož typu Ω , $\varphi:A\to B$ homomorfismus Ω -algeber. Pak obraz Ω -algebry A v homomorfismu φ

$$\varphi(A) = \{ \varphi(a); \, a \in A \}$$

je podalgebra Ω -algebry B.

Důkaz. Zvolme libovolně operační symbol $f \in \Omega$ arity n. Pak pro každé prvky $b_1, \ldots, b_n \in \varphi(A)$ existují $a_1, \ldots, a_n \in A$ tak, že $\varphi(a_1) = b_1, \ldots, \varphi(a_n) = b_n$. Z definice homomorfismu plyne

$$f_B(b_1,\ldots,b_n)=f_B(\varphi(a_1),\ldots,\varphi(a_n))=\varphi(f_A(a_1,\ldots,a_n))\in\varphi(A).$$

Definice. Nechť A, B jsou univerzální algebry téhož typu $\Omega, \varphi: A \to B$ zobrazení. Řekneme, že φ je izomorfismus Ω -algeber, jestliže je φ bijektivní homomorfismus Ω -algeber. Řekneme, že Ω -algebry A a B jsou izomorfní, jestliže existuje nějaký izomorfismus Ω -algeber $A \to B$.

Poznámka. Následující věta formuluje očekávanou vlastnost vztahu být izomorfní: je reflexivní, symetrický a tranzitivní.

Věta 2.4. Nechť A, B, C jsou univerzální algebry téhož typu Ω . Pak platí:

- A je izomorfní s A;
- je-li A izomorfní s B, pak je též B izomorfní s A;
- jestliže A je izomorfní s B a B je izomorfní s C, pak je též A izomorfní s C.
 Důkaz. To je snadné, dokažte si sami jako cvičení.

Poznámka. Je jasné, že dvě Ω -algebry jsou izomorfní, právě když lze jednu dostat ze druhé přejmenováním prvků. Proto izomorfní Ω -algebry mají všechny algebraické vlastnosti stejné.

3. Součiny

Poznámka. Podobně jako jsme definovali součin grup nebo svazů, lze definovat součin libovolných dvou Ω -algeber. Pro každý operační symbol budeme definovat operaci na množině všech uspořádaných dvojic po složkách.

Definice. Nechť A, B jsou univerzální algebry téhož typu Ω . Na kartézském součinu $A \times B$ definujeme novou univerzální algebru typu Ω , kterou nazveme součinem Ω -algeber A a B. Pro každý operační symbol $f \in \Omega$ arity n a každé prvky $a_1, \ldots, a_n \in A, b_1, \ldots, b_n \in B$ klademe

$$f_{A\times B}((a_1,b_1),\ldots,(a_n,b_n))=(f_A(a_1,\ldots,a_n),f_B(b_1,\ldots,b_n)).$$

Poznámka. Předchozí podmínka v případě nulárního operačního symbolu f pochopitelně znamená $f_{A\times B}=(f_A,f_B)$.

Poznámka. Vzpomeňte si, že u součinu grup jsme pracovali s projekcemi ze součinu do původních grup, což byly surjektivní homomorfismy. Stejnou situaci máme i nyní obecně pro Ω -algebry. Protože však Ω -algebry mohou být i prázdné, nemusí být obecně projekce ze součinu surjektivní.

Definice. Nechť A, B jsou univerzální algebry téhož typu Ω , $A \times B$ součin těchto Ω -algeber. Definujme projekce $\pi_1: A \times B \to A$, $\pi_2: A \times B \to B$ ze součinu $A \times B$ předpisem: pro každé $a \in A$, $b \in B$ klademe $\pi_1((a,b)) = a$, $\pi_2((a,b)) = b$.

Věta 3.1. Nechť A, B jsou univerzální algebry téhož typu Ω , $A \times B$ součin těchto Ω -algeber. Pak obě projekce π_1 , π_2 jsou homomorfismy Ω -algeber.

Důkaz. Ukažme, že projekce π_1 je homomorfismus Ω -algeber. Za tím účelem zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$. Platí

$$\pi_1(f_{A\times B}((a_1,b_1),\ldots,(a_n,b_n))) = \pi_1((f_A(a_1,\ldots,a_n),f_B(b_1,\ldots,b_n))) =$$

$$= f_A(a_1,\ldots,a_n) =$$

$$= f_A(\pi_1((a_1,b_1)),\ldots,\pi_1((a_n,b_n))).$$

Zcela analogicky se dokáže, že projekce π_2 je homomorfismus Ω -algeber.

Věta 3.2. Nechť A, B, C jsou univerzální algebry téhož typu $\Omega, \varphi: C \to A, \psi: C \to B$ homomorfismy Ω -algeber. Pak existuje jediný homomorfismus Ω -algeber $\rho: C \to A \times B$ s vlastností $\pi_1 \circ \rho = \varphi, \, \pi_2 \circ \rho = \psi, \, kde \, \pi_1: A \times B \to A, \pi_2: A \times B \to B$ jsou projekce ze součinu $A \times B$.

Důkaz. Je zřejmé, že podmínky $\pi_1 \circ \rho = \varphi$, $\pi_2 \circ \rho = \psi$ platí právě tehdy, když definujeme $\rho: C \to A \times B$ následujícím předpisem: pro každé $c \in C$ klademe $\rho(c) = (\varphi(c), \psi(c))$. Ověřme, že je to homomorfismus Ω -algeber. Zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $c_1, \ldots, c_n \in C$, pak platí

$$f_{A \times B}(\rho(c_1), \dots, \rho(c_n)) = f_{A \times B}((\varphi(c_1), \psi(c_1)), \dots, (\varphi(c_n), \psi(c_n))) =$$

$$= (f_A(\varphi(c_1), \dots, \varphi(c_n)), f_B(\psi(c_1), \dots, \psi(c_n))).$$

Nyní využijeme toho, že $\varphi: C \to A, \, \psi: C \to B$ jsou homomorfismy Ω -algeber:

$$(f_A(\varphi(c_1), \dots, \varphi(c_n)), f_B(\psi(c_1), \dots, \psi(c_n))) =$$

$$= (\varphi(f_C(c_1, \dots, c_n)), \psi(f_C(c_1, \dots, c_n))) =$$

$$= \rho(f_C(c_1, \dots, c_n)),$$

což se mělo dokázat.

Poznámka. Nyní můžeme zobecnit součin Ω -algeber takto: místo součinu dvou Ω -algeber budeme definovat součin libovolného počtu Ω -algeber. Nejprve potřebujeme zobecnit definici kartézského součinu množin.

Definice. Jestliže pro libovolný prvek i množiny I je dána množina A_i , pak kartézským součinem množin A_i rozumíme množinu všech zobrazení χ z množiny I takových, že $\chi(i) \in A_i$ pro každé $i \in I$:

$$\prod_{i \in I} A_i = \Big\{ \chi : I \to \bigcup_{i \in I} A_i; \, \forall i \in I : \, \chi(i) \in A_i \Big\}.$$

Pro libovolné $j \in I$ definujeme j-tou projekci π_j z kartézského součinu $A = \prod_{i \in I} A_i$ takto: $\pi_j : A \to A_j$ je určeno předpisem $\pi_j(\chi) = \chi(j)$ pro každé $\chi \in A$.

Poznámka. Promysleme si, co znamená předchozí definice ve speciálním případě, kdy indexová množina I je prázdná. Pak přestože vlastně žádnou množinu A_i nemáme, jsme oprávnění mluvit o součinu: dle definice je součinem $\prod_{i \in \emptyset} A_i$

množina všech zobrazení $\chi: \emptyset \to \bigcup_{i \in \emptyset} A_i$. Protože $\bigcup_{i \in I} A_i$ je množina všech prvků x, pro které existuje $i \in I$ tak, že $x \in A_i$, je zřejmě $\bigcup_{i \in \emptyset} A_i = \emptyset$. Ovšem zobrazení $\chi: \emptyset \to \emptyset$ je jediné, totiž prázdné zobrazení. Proto množina $\prod_{i \in \emptyset} A_i$ je jednoprvková; jejím jediným prvkem je prázdné zobrazení.

Poznámka. Uvědomte si, že pro $I=\{1,2\}$ předchozí definice splývá s obvyklou: pod kartézským součinem množin $A_1,\ A_2$ rozumíme množinu uspořádaných dvojic

$$A_1 \times A_2 = \{(a, b); a \in A_1, b \in A_2\}.$$

Ovšem zadat uspořádanou dvojici (a,b) není nic jiného než pevně zvolit $a \in A_1$, $b \in A_2$, což znamená právě tolik jako definovat zobrazení $\chi: \{1,2\} \to A_1 \cup A_2$ s vlastností $\chi(1) \in A_1$, $\chi(2) \in A_2$: položíme $\chi(1) = a$, $\chi(2) = b$. Proto následující definice součinu libovolného počtu Ω -algeber zobecňuje předchozí definici součinu dvou Ω -algeber.

Definice. Nechť Ω je typ. Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i typu Ω . Součinem těchto Ω -algebra rozumíme novou Ω -algebra definovanou na kartézském součinu $A = \prod_{i \in I} A_i$ takto: pro každý operační symbol $f \in \Omega$ arity n a každé prvky $\chi_1, \ldots, \chi_n \in A$, klademe $f_A(\chi_1, \ldots, \chi_n) = \chi$, kde $\chi \in A$ je určeno podmínkou $\chi(i) = f_{A_i}(\chi_1(i), \ldots, \chi_n(i))$ pro každé $i \in I$.

Poznámka. Ve speciálním případě, kdy indexová množina I je prázdná, je součinem Ω -algebra na jednoprvkové množině, jejímž jediným prvkem je prázdné zobrazení. Tato Ω -algebra je jediná, neboť na jednoprvkové množině pro libovolné nezáporné celé číslo n existuje jen jedna n-ární operace (viz poznámku na konci první kapitoly). Dochází tedy k situaci, která se může zdát na první pohled paradoxní: ačkoli nemáme žádnou Ω -algebru, jako součin dostáváme jednoprvkovou Ω -algebru. Tedy naprosto z ničeho jsme najednou dostali informaci o tom, jak vypadá Ω . Ale to se dá snadno vysvětlit: součin Π je součin Ω -algeber, lze jej aplikovat pouze na Ω -algebry pro určité Ω . Informace o tom, jak toto Ω vypadá, je tedy uložena v tom, o jaký součin Π se jedná. Pokud bychom chtěli být naprosto přesní, měli bychom toto Ω nějak v symbolu Π vyznačit, abychom jednotlivé součiny od sebe odlišili. Jenže nějaký index Π^{Ω} by jen zbytečně komplikoval zápis, stačí, že víme, že součin Π je pro dané Ω . Vyplývá odtud i to, co snad bylo jasné už od začátku: součin jsme definovali jen pro univerzální algebry téhož typu.

Poznámka. Pro nulární operační symbol $f \in \Omega$ podmínka v předchozí definici samozřejmě znamená $f_A = \chi$, kde $\chi \in A$ je určeno podmínkou $\chi(i) = f_{A_i}$.

Věta 3.3. Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i daného typu Ω , nechť $A = \prod_{i \in I} A_i$ je jejich součin. Pak platí

- Pro každé $j \in I$ je j-tá projekce $\pi_j: A \to A_j$ homomorfismus Ω -algeber.
- Nechť C je univerzální algebra téhož typu Ω , a pro každé $j \in I$ nechť je dán homomorfismus Ω -algeber $\varphi_j : C \to A_j$. Pak existuje jediný homomorfismus Ω -algeber $\varphi : C \to A$ takový, že $\pi_j \circ \varphi = \varphi_j$ pro každé $j \in I$.

Důkaz. Postupujeme naprosto stejně jako při důkazech vět 3.1 a 3.2 pro součin dvou Ω -algeber, odlišnost je pouze formální. Dokažme nejdříve první tvrzení. Zvolme libovolně $j \in I$ a ukažme, že projekce π_j je homomorfismus Ω -algeber. Za tím účelem zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky

 $\chi_1, \ldots, \chi_n \in A$. Označme $\chi = f_A(\chi_1, \ldots, \chi_n)$. Přímo z definice plyne

$$\pi_{j}(f_{A}(\chi_{1},...,\chi_{n})) = \pi_{j}(\chi) = \chi(j) = f_{A_{j}}(\chi_{1}(j),...,\chi_{n}(j)) =$$

$$= f_{A_{j}}(\pi_{j}(\chi_{1}),...,\pi_{j}(\chi_{n})),$$

což se mělo dokázat.

Dokažme nyní druhé tvrzení. Je zřejmé, že podmínka $\pi_j \circ \varphi = \varphi_j$ pro každé $j \in I$ platí právě tehdy, když definujeme $\varphi: C \to A$ následujícím předpisem. Pro každé $c \in C$ klademe $\varphi(c) = \chi$, kde $\chi \in A$ je určeno podmínkou: pro libovolné $j \in I$ platí

$$\chi(j) = \pi_j(\chi) = \pi_j(\varphi(c)) = (\pi_j \circ \varphi)(c) = \varphi_j(c).$$

Pro $\varphi(c) \in A$ tedy platí: pro každé $j \in I$ je $(\varphi(c))(j) = \varphi_j(c)$. Ověřme, že takto definované zobrazení $\varphi: C \to A$ je homomorfismus Ω-algeber. Zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $c_1, \ldots, c_n \in C$. Označme $\chi = f_A(\varphi(c_1), \ldots, \varphi(c_n))$, podle definice součinu Ω-algeber pak pro každé $i \in I$ platí

$$\chi(i) = f_{A_i}((\varphi(c_1))(i), \dots, (\varphi(c_n))(i)) = f_{A_i}(\varphi_i(c_1), \dots, \varphi_i(c_n)) =$$
$$= \varphi_i(f_C(c_1, \dots, c_n)),$$

neboť $\varphi_i: C \to A_i$ je homomorfismus Ω -algeber. Ovšem

$$\varphi_i(f_C(c_1,\ldots,c_n)) = \pi_i(\varphi(f_C(c_1,\ldots,c_n))) = (\varphi(f_C(c_1,\ldots,c_n)))(i).$$

To znamená, že χ a $\varphi(f_C(c_1,\ldots,c_n))$ jsou (jakožto prvky kartézského součinu) zobrazení se stejným definičním oborem, oborem hodnot i předpisem, proto platí $\chi = \varphi(f_C(c_1,\ldots,c_n))$, tj. $f_A(\varphi(c_1),\ldots,\varphi(c_n)) = \varphi(f_C(c_1,\ldots,c_n))$, což se mělo dokázat.

4. Kongruence a faktorové algebry

Poznámka. V této kapitole zobecníme pojmy faktorgrupa a faktorokruh na případ libovolné Ω -algebry. Nepodaří se nám však nalézt pojem odpovídající pojmům normální podgrupa grupy a ideál okruhu. Uvědomme si, jak jsme pojem normální podgrupa dostali: při faktorizaci grupy nebylo nutné si pamatovat celý rozklad nosné množiny užívaný k faktorizaci, stačilo si pamatovat tu třídu, která obsahovala neutrální prvek grupy. Celý rozklad jsme totiž byli schopni ze znalosti této jediné třídy jednoznačně určit, neboť tato třída byla normální podgrupa celé grupy a zmíněný rozklad byl rozkladem příslušným této podgrupě. Tato situace se pak opakovala i v případě okruhů, vždyť každý okruh (zapomeneme-li na operaci násobení) je komutativní grupa. To ale samozřejmě neplatí pro libovolné Ω -algebry. Proto při faktorizaci Ω -algeber nevystačíme jen se zadáním nějaké vhodné podmnožiny nosné množiny (jakožto jedné třídy rozkladu), ale bude vždy třeba zadat rozklad celý. Rozklad samozřejmě lze zadat pomocí jemu odpovídající ekvivalence.

Definice. Nechť A je univerzální algebra typu Ω , nechť \sim je relace ekvivalence na nosné množině A. Řekneme, že \sim je kongruence na Ω -algebře A, jestliže pro každý n-ární operační symbol $f \in \Omega$ a pro každé $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ platí

$$a_1 \sim b_1, \ldots, a_n \sim b_n \Longrightarrow f_A(a_1, \ldots, a_n) \sim f_A(b_1, \ldots, b_n).$$

Poznámka. Následující věta popisuje vztah mezi homomorfismy Ω -algeber a kongruencemi na Ω -algebrách: každý homomorfismus zadává kongruenci. Později dokážeme, že i naopak každá kongruence vzniká tímto způsobem z vhodného homomorfismu.

Věta 4.1. Nechť A, B jsou univerzální algebry téhož typu Ω , $\varphi: A \to B$ homomorfismus Ω -algeber. Pak relace \sim na nosné množině A definovaná předpisem: pro každé $a,b \in A$ platí

(*)
$$a \sim b \iff \varphi(a) = \varphi(b)$$

je kongruence na Ω -algebře A.

Důkaz. Zřejmě je \sim ekvivalencí příslušnou zobrazení φ . Stačí tedy ukázat, že splňuje implikaci v definici kongruence. Zvolme libovolně n-ární operační symbol $f \in \Omega$ a prvky $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ tak, že $a_1 \sim b_1, \ldots, a_n \sim b_n$. Odtud plyne $\varphi(a_1) = \varphi(b_1), \ldots, \varphi(a_n) = \varphi(b_n)$. Pak ovšem z definice homomorfismu

$$\varphi(f_A(a_1,\ldots,a_n)) = f_B(\varphi(a_1),\ldots,\varphi(a_n)) = f_B(\varphi(b_1),\ldots,\varphi(b_n)) =$$
$$= \varphi(f_A(b_1,\ldots,b_n)),$$

což znamená dokazované $f_A(a_1,\ldots,a_n) \sim f_A(b_1,\ldots,b_n)$.

Definice. Nechť A, B jsou univerzální algebry téhož typu $\Omega, \varphi : A \to B$ homomorfismus Ω -algeber. Kongruence \sim na Ω -algebře A definovaná předpisem (*) předchozí věty se nazývá jádro homomorfismu φ .

Poznámka. Na rozdíl od jádra homomorfismu grup, což byla normální podgrupa grupy A, a jádra homomorfismu okruhů, což byl ideál okruhu A, není tedy jádro homomorfismu Ω -algeber podmnožina nosné množiny A, ale ekvivalence na nosné množině A. Je to dáno tím, že (jak jsme již zmiňovali v úvodní poznámce této kapitoly) v obecném případě Ω -algeber není možné charakterizovat celý rozklad (a tedy celou ekvivalenci) pouze jedinou jeho třídou.

Poznámka. V následující definici k dané Ω -algebře A a dané kongruenci na ní sestrojíme faktorovou Ω -algebru způsobem známým z faktorizace grup a okruhů: na rozkladu příslušném \sim (vždyť \sim je ekvivalence na nosné množině A) zavedeme operace pomocí reprezentantů. Jako obvykle pak bude potřeba ověřit korektnost této definice, tj. dokázat, že provedená konstrukce nezáleží na naší libovůli při volbě reprezentantů.

Definice. Nechť A je univerzální algebra typu Ω , nechť \sim je kongruence na Ω -algebře A. Označme $R = A/\sim$ rozklad příslušný \sim . Pro každý n-ární operační symbol $f \in \Omega$ definujme n-ární operaci na R takto: pro každé $X_1, \ldots, X_n \in R$ zvolme $a_1 \in X_1, \ldots, a_n \in X_n$ a definujme $f_R(X_1, \ldots, X_n)$ tím, že je to třída

obsahující prvek $f_A(a_1, \ldots, a_n)$. Množina R spolu s právě zavedenými operacemi se nazývá faktorová algebra Ω -algebry A podle kongruence \sim , značí se A/\sim .

Věta 4.2. Předchozí definice je korektní.

Důkaz. Je třeba ověřit nezávislost na volbě reprezentantů. Zachovejme veškeré označení z definice a zvolme ještě další reprezentanty: nechť též $b_1 \in X_1, \ldots, b_n \in X_n$. Ovšem patřit do stejné třídy rozkladu znamená být ekvivalentní, tedy platí $a_1 \sim b_1, \ldots, a_n \sim b_n$. Z definice kongruence pak dostáváme $f_A(a_1, \ldots, a_n) \sim f_A(b_1, \ldots, b_n)$, což znamená, že $f_A(a_1, \ldots, a_n)$ a $f_A(b_1, \ldots, b_n)$ patří do stejné třídy rozkladu, totiž do třídy $f_R(X_1, \ldots, X_n)$.

Příklad. Příklad faktorgrupy a faktorokruhu je známý. Ukažme si proto něco, co jsme v přednášce z algebry nedělali. Univerzální algebra nám dává návod, jak faktorizovat svazy. Nechť (S,\vee,\wedge) je svaz. Kongruence na něm je ekvivalence \sim na množině S splňující: pro každé $a,b,c,d\in S$ takové, že $a\sim b$ a $c\sim d$, platí $a\vee c\sim b\vee d$ a $a\wedge c\sim b\wedge d$. Je-li \sim kongruence na svazu (S,\vee,\wedge) , pak faktorsvaz je svaz, jehož nosná množina je rozklad S/\sim a operace na ní jsou definovány pomocí reprezentantů: pro $T,R\in S/\sim$ zvolíme $a\in T,b\in R$ a definujeme $T\vee R$ jako třídu obsahující $a\vee b$ a $T\wedge R$ jako třídu obsahující $a\wedge b$.

Věta 4.3. Nechť A je univerzální algebra typu Ω , \sim kongruence na Ω -algebře A. Pak zobrazení $\pi: A \to A/\sim$ určené předpisem $a \in \pi(a)$ pro libovolné $a \in A$ (tedy $\pi(a)$ je třída obsahující prvek a) je surjektivní homomorfismus Ω -algeber.

Důkaz. Zobrazení π je surjekce, neboť každá třída rozkladu $X \in A/\sim$ je neprázdná, existuje tedy $a \in X$, pro které samozřejmě platí $\pi(a) = X$. Ukažme, že π je homomorfismus Ω -algeber. Zvolme libovolně n-ární operační symbol $f \in \Omega$ a prvky $a_1, \ldots, a_n \in A$. Označme $X_1 = \pi(a_1), \ldots, X_n = \pi(a_n)$. Pak tedy $a_1 \in X_1, \ldots, a_n \in X_n$ a $f_{A/\sim}(X_1, \ldots, X_n)$ je určeno tím, že obsahuje prvek $f_A(a_1, \ldots, a_n)$, tj.

$$\pi(f_A(a_1,\ldots,a_n)) = f_{A/\sim}(X_1,\ldots,X_n) = f_{A/\sim}(\pi(a_1),\ldots,\pi(a_n)),$$

což se mělo dokázat.

Definice. Surjektivní homomorfismus Ω -algeber $\pi: A \to A/\sim$ konstruovaný v předchozí větě se nazývá projekce Ω -algebry A na faktorovou algebru A/\sim .

Důsledek. Nechť A je univerzální algebra typu Ω . Platí, že každá kongruence na Ω -algebře A je jádrem vhodného homomorfismu Ω -algebra vycházejícího z Ω -algebry A.

Důkaz. Nechť ~ je libovolná kongruence na Ω -algebře A. Nechť $\pi:A\to A/\sim$ je projekce Ω -algebry A na faktorovou algebru A/\sim . Tvrzení bude dokázáno, ověříme-li, že jádrem π je ~. Označme \approx jádro π . Podle definice jádra homomorfismu pro libovolné $a,b\in A$ platí $a\approx b$ právě tehdy, když $\pi(a)=\pi(b)$, což podle definice projekce znamená, že a a b patří do téže třídy rozkladu A/\sim , neboli $a\sim b$.

Definice. Nechť A je množina, \sim a \approx ekvivalence na množině A. Řekneme, že ekvivalence \approx je menší nebo rovna ekvivalenci \sim , jestliže pro každé $a,b\in A$ platí implikace

$$a \approx b \Longrightarrow a \sim b$$
.

Poznámka. Protože dle definice je ekvivalence na množině A relací na množině A, tedy podmnožinou kartézského součinu $A \times A$, přičemž například $a \sim b$

je stručnější a přehlednější zápis faktu $(a,b) \in \sim$, znamená implikace z předchozí definice vlastně množinovou inkluzi $\approx \subset \sim$. Nemuseli jsme tedy pro ekvivalence pojem menší vůbec zavádět, důvodem byla jen snaha o snadnější porozumění textu. Plyne odtud, že tato relace je uspořádáním na množině všech ekvivalencí na množině A. Nejmenší prvek této uspořádané množiny je ekvivalence = (dva prvky jsou ekvivalentní, právě když jsou stejné), největším prvkem je ekvivalence $A \times A$, v níž každé dva prvky množiny A jsou ekvivalentní (tedy jí odpovídající rozklad má - v případě $A \neq \emptyset$ – jedinou třídu rozkladu, totiž celou množinu A). Uvažme libovolnou neprázdnou množinu E ekvivalencí na množině A. Průnikem všech ekvivalencí $\sim \in E$ je tedy relace \approx na množině A, pro kterou platí: pro libovolné $a, b \in A$ je $a \approx b$ právě tehdy, když pro každé $\sim E$ platí $a \sim b$. Snadno se ověří, že relace \approx je též ekvivalencí na množině A (promyslete si důkaz sami, je opravdu snadný). Odvodili jsme, že množina všech ekvivalencí na množině A uspořádaná inkluzí je úplný svaz. Rovněž množina všech kongruencí na dané Ω -algebřě A uspořádaná inkluzí tvoří úplný svaz, jak plyne z následující věty, uvědomíte-li si, že relace $A \times A$ je vždy kongruencí na Ω -algebřě A.

Věta 4.4. Nechť A je univerzální algebra typu Ω , K neprázdná množina kongruencí na Ω -algebře A. Nechť relace \approx na množině A je průnikem všech kongruencí z množiny K, tj. pro libovolné $a,b\in A$ klademe $a\approx b$ právě tehdy, když pro každé $\sim \in K$ je $a\sim b$.

- Pak relace \approx je kongruencí na Ω -algebře A.
- Uvažme součin Ω-algeber B = ∏_{~∈K} A/~. Pro každé ~ ∈ K označme π_~ : B → A/~ projekci ze součinu a μ_~ : A → A/~ projekci Ω-algebry A na faktorovou algebru A/~. Podle věty 3.3 existuje jediný homomorfismus Ω-algeber φ : A → B takový, že π_~ ∘ φ = μ_~. Pak platí: jádrem homomorfismu φ je kongruence ≈.

Důkaz. První tvrzení je důsledkem druhého, neboť podle věty 4.1 je jádro libovolného homomorfismu kongruencí. Označme \simeq jádro homomorfismu φ . Pro libovolné $a,b \in A$ platí $a \simeq b$ právě tehdy, když $\varphi(a) = \varphi(b)$, což podle definice součinu Ω -algeber nastane právě tehdy, když pro každé $\sim \in K$ platí $\pi_{\sim}(\varphi(a)) = \pi_{\sim}(\varphi(b))$, což vzhledem k $\pi_{\sim} \circ \varphi = \mu_{\sim}$ znamená právě $\mu_{\sim}(a) = \mu_{\sim}(b)$, neboli $a \sim b$. Dokázali jsme, že pro libovolné $a,b \in A$ platí $a \simeq b$ právě tehdy, když pro každé $\sim \in K$ je $a \sim b$, což však podle definice relace \approx nastane, právě když $a \approx b$. Věta je dokázána.

Poznámka. Následující věta je zobecněním vět, které jsme si uváděli pro faktorgrupy a faktorokruhy.

Věta 4.5. Nechť A, B jsou univerzální algebry téhož typu $\Omega, \varphi: A \to B$ homomorfismus Ω -algeber s jádrem \sim . Nechť \approx je libovolná kongruence na Ω -algebře A menší nebo rovna kongruenci \sim . Označme $\pi: A \to A/\approx$ projekci Ω -algebry A na faktorovou algebru A/\approx . Pak platí

- Existuje jediné zobrazení $\tilde{\varphi}: A/\approx \to B \ takové, \ \check{z}e \ \tilde{\varphi} \circ \pi = \varphi.$
- Toto zobrazení $\tilde{\varphi}$ je homomorfismus Ω -algeber.
- Homomorfismus φ̃ je surjektivní, právě když homomorfismus φ je surjektivní.
- Homomorfismus $\tilde{\varphi}$ je injektivní, právě když jsou obě kongruence $\sim a \approx stejné$ $(tj. \sim = \approx)$.

Důkaz. Konstruujme zobrazení $\tilde{\varphi}: A/\approx \to B$ tak, aby $\tilde{\varphi} \circ \pi = \varphi$. Zvolme

libovolně $X \in A/\approx$. Protože X je třída rozkladu, je neprázdná, a tedy existuje $a \in X$. Podle definice π pak $\pi(a) = X$. Pak z podmínky $\tilde{\varphi} \circ \pi = \varphi$ plyne $\tilde{\varphi}(X) = \tilde{\varphi}(\pi(a)) = (\tilde{\varphi} \circ \pi)(a) = \varphi(a)$. To ovšem znamená, že pokud nějaké zobrazení $\tilde{\varphi} : A/\approx \to B$ splňující $\tilde{\varphi} \circ \pi = \varphi$ existuje, je jediné. Definujme tedy $\tilde{\varphi} : A/\approx \to B$ tímto jediným způsobem: pro libovolné $X \in A/\approx$ tedy zvolíme $a \in X$ a klademe $\tilde{\varphi}(X) = \varphi(a)$. Je ale třeba ověřit korektnost této definice, neboli nezávislost na volbě $a \in X$. Mějme další $b \in X$, pak oba prvky a, b leží v téže třídě X rozkladu A/\approx , odkud $a \approx b$. Protože kongruence \approx je menší nebo rovna kongruenci \sim , plyne odtud $a \sim b$. Ovšem \sim je jádrem homomorfismu φ , proto poslední znamená $\varphi(a) = \varphi(b)$. Je tedy skutečně definice zobrazení $\tilde{\varphi}$ korektní.

Dokažme nyní, že zobrazení $\tilde{\varphi}$ je homomorfismus Ω -algeber. Za tím účelem zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $X_1, \ldots, X_n \in A/\approx$. Zvolme libovolně $a_1, \ldots, a_n \in A$ tak, že $\pi(a_1) = X_1, \ldots, \pi(a_n) = X_n$. Protože π a φ jsou homomorfismy Ω -algeber, platí

$$\tilde{\varphi}(f_{A/\approx}(X_1,\ldots,X_n)) = \tilde{\varphi}(f_{A/\approx}(\pi(a_1),\ldots,\pi(a_n))) =
= \tilde{\varphi}(\pi(f_A(a_1,\ldots,a_n))) =
= (\tilde{\varphi}\circ\pi)(f_A(a_1,\ldots,a_n)) =
= \varphi(f_A(a_1,\ldots,a_n)) =
= f_B(\varphi(a_1),\ldots,\varphi(a_n)) =
= f_B((\tilde{\varphi}\circ\pi)(a_1),\ldots,(\tilde{\varphi}\circ\pi)(a_n)) =
= f_B(\tilde{\varphi}(\pi(a_1)),\ldots,\tilde{\varphi}(\pi(a_n))) =
= f_B(\tilde{\varphi}(X_1),\ldots,\tilde{\varphi}(X_n)),$$

což jsme měli dokázat.

Jestliže je homomorfismus φ surjektivní, pak pro každé $b \in B$ existuje $a \in A$ tak, že $b = \varphi(a) = (\tilde{\varphi} \circ \pi)(a) = \tilde{\varphi}(\pi(a))$, což znamená, že homomorfismus $\tilde{\varphi}$ je surjektivní. Je-li naopak homomorfismus $\tilde{\varphi}$ surjektivní, pak též φ jakožto složení dvou surjekcí je surjektivní (dokažte si sami).

Předpokládejme, že $\sim = \approx$, a ukažme, že homomorfismus $\tilde{\varphi}$ je injektivní. Nechť $X_1, X_2 \in A/\approx$ jsou libovolné prvky splňující $\tilde{\varphi}(X_1) = \tilde{\varphi}(X_2)$. Zvolme libovolně $a_1, a_2 \in A$ tak, že $\pi(a_1) = X_1$, $\pi(a_2) = X_2$. Pak platí

$$\varphi(a_1) = (\tilde{\varphi} \circ \pi)(a_1) = \tilde{\varphi}(\pi(a_1)) = \tilde{\varphi}(X_1) =$$

$$= \tilde{\varphi}(X_2) = \tilde{\varphi}(\pi(a_2)) = (\tilde{\varphi} \circ \pi)(a_2) = \varphi(a_2),$$

odkud z definice jádra homomorfismu plyne $a_1 \sim a_2$, a proto $a_1 \approx a_2$, což znamená, že prvky a_1 a a_2 leží v téže třídě rozkladu, kterou je $X_1 = X_2$.

Předpokládejme naopak, že homomorfismus $\tilde{\varphi}$ je injektivní. Stačí ověřit, že kongruence \sim je menší nebo rovna kongruenci \approx , neboť opačnou nerovnost máme v předpokladech věty. Nechť tedy jsou $a,b\in A$ takové, že $a\sim b$. Pak z definice jádra homomorfismu plyne $\varphi(a)=\varphi(b)$, tedy $\tilde{\varphi}(\pi(a))=\tilde{\varphi}(\pi(b))$. Protože předpokládáme, že $\tilde{\varphi}$ je injektivní homomorfismus, plyne odtud $\pi(a)=\pi(b)$. Podle definice projekce na faktorovou algebru to znamená, že a a b leží v téže třídě rozkladu A/\approx , tedy $a\approx b$. Důkaz věty je skončen.

Důsledek. Nechť A, B jsou univerzální algebry téhož typu Ω , $\varphi: A \to B$ homomorfismus Ω -algeber s jádrem \sim . Pak obraz Ω -algebry A v homomorfismu φ

$$\varphi(A) = \{ \varphi(a); \, a \in A \}$$

je Ω -algebra izomorfní s faktorovou algebrou A/\sim .

Důkaz. Stačí užít předchozí větu pro $\approx -\infty$ a uvědomit si, že $\varphi(A) = (\tilde{\varphi} \circ \pi)(A) = \tilde{\varphi}(A/\sim)$, neboť projekce π je surjektivní.

5. Termy

Poznámka. V následující kapitole budeme chtít definovat rovnosti. Příkladem těchto rovností jsou komutativní, asociativní, distributivní, absorpční a další identity, se kterými jsme se setkali. Jde vždy o rovnost mezi dvěma výrazy, které obsahují nějaké proměnné spolu svázané operacemi. Tyto výrazy nazýváme termy. Potřebujeme nyní přesně tyto termy definovat. Jediná cesta je definovat je induktivně, tedy říci, že term je něco, co lze určitými pravidly získat z nejjednodušších termů. Představme si pro určitost nějaké konkrétní rovnosti, například následující rovnosti platné v Booleových algebrách $x \vee x' = 1$, $x \wedge x = x$. Vidíme, že zde nejjednoduššími termy jsou nulární operace 1 a proměnná x. Z nich se pak konstruují složitější termy x', $x \wedge x$, $x \vee x'$. Obecně nevystačíme s jedinou proměnnou (vzpomeňte si na rovnosti popisující komutativní nebo asociativní zákon). Na druhou stranu je jasné, že vždy máme v rovnosti jen konečně mnoho proměnných. Proto bude stačit pracovat s následujícími proměnnými x_1, x_2, x_3, \ldots

Definice. Nechť Ω je typ. Termem typu Ω nazveme právě takový výraz, který lze zkonstruovat konečně mnoha aplikacemi následujících pravidel:

- Pro libovolné přirozené číslo n je proměnná x_n term typu Ω .
- Pro libovolný nulární operační symbol $f \in \Omega$ je f term typu Ω .
- Pro libovolné přirozené číslo n, libovolný n-ární operační symbol $f \in \Omega$ a libovolné termy t_1, \ldots, t_n typu Ω je výraz $f(t_1, \ldots, t_n)$ term typu Ω .

Poznámka. Pokud by měl někdo pocit, že přes veškerou snahu o přesnost je předchozí definice stejně nepřesná, neboť užívá nedefinovaný pojem výraz, může si předchozí definici opravit tím, že místo o výrazech bude mluvit o konečných posloupnostech symbolů z abecedy, která se skládá z množiny proměnných, množiny Ω , kulatých závorek a čárky, tedy o slovech nad touto abecedou. Poznamenejme též, že striktně podle definice například $x \vee x'$ term není, správně bychom jej totiž měli psát ve tvaru $\vee (x_1, '(x_1))$. Je jasné, že poslední zápis na přehlednosti nepřidal, proto nebudeme užívat dogmaticky jen zápisy termů povolené předchozí definicí. Na druhou stranu je nezbytné, abychom vždy věděli, jak term, který užíváme, má dle této definice vypadat.

Definice. Řekneme, že term t typu Ω je n-ární, jestliže se při jeho konstrukci nevyužilo žádné proměnné x_m pro m > n.

Příklad. Term x_2 je binární, ovšem je též 3-ární a také 4-ární atd. Není však unární, přestože v něm vystupuje jen jedna proměnná.

Příklad. Nulární term typu Ω je term, při jehož konstrukci se nepoužila žádná proměnná, byl tedy vytvořen jen pomocí druhého a třetího pravidla z definice

termu. Je jasné, že takové termy existují jen pro typy obsahující alespoň jeden nulární operační symbol.

Poznámka. Je vcelku patrné, že každý n-ární term t typu Ω nám v libovolné Ω -algebře A zadává n-ární operaci. Chceme-li tento jasný fakt definovat přesně, je nutné užít opět induktivní definici.

Definice. Nechť t je n-ární term typu Ω . Nechť A je univerzální algebra typu Ω . Definujeme n-ární operaci t_A určenou termem t na Ω -algebře A následujícím způsobem. Nechť $a_1, \ldots, a_n \in A$ jsou libovolné prvky.

- Je-li termem t proměnná x_k , pak operací určenou termem t je k-tá projekce z kartézského součinu, tj. pro $t = x_k$ klademe $t_A(a_1, \ldots, a_n) = a_k$.
- Je-li termem t nulární operační symbol $f \in \Omega$, pak operací určenou termem t je operace na Ω -algebře A příslušná symbolu f, tj. pro t = f klademe $t_A(a_1, \ldots, a_n) = f_A$.
- Je-li term t složen pomocí k-árního operačního symbolu $f \in \Omega$, $kde \ k \geq 1$, z termů t_1, \ldots, t_k typu Ω , pak operaci t_A určenou termem t definujeme takto: její hodnota v n-tici (a_1, \ldots, a_n) je hodnota operace f_A na Ω -algebře A příslušné symbolu f v k-tici $((t_1)_A(a_1, \ldots, a_n), \ldots, (t_k)_A(a_1, \ldots, a_n))$ hodnot operací příslušných termům t_1, \ldots, t_k v n-tici (a_1, \ldots, a_n) , t_j . pro $t = f(t_1, \ldots, t_n)$ klademe

$$t_A(a_1,\ldots,a_n) = f_A((t_1)_A(a_1,\ldots,a_n),\ldots,(t_k)_A(a_1,\ldots,a_n)).$$

Poznámka. Protože libovolný n-ární term typu Ω lze považovat též za m-ární term typu Ω pro libovolné $m \geq n$, dopustili jsme se v předchozí definici jisté nepřesnosti: stejným symbolem t_A označujeme různé operace! Je-li k nejmenší takové, že term t je k-ární, pak t_A značí n-ární operaci na Ω -algebře A pro každé nezáporné celé číslo $n \geq k$. Ukažme to na následujícím příkladu.

Příklad. Předpokládejme, že Ω obsahuje binární operační symbol +. Jestliže například považujeme term $x_1 + x_2$ za binární, pak podle předchozí definice platí $(x_1 + x_2)_A(a_1, a_2) = a_1 + a_2$, pokud tento term však považujeme za 3-ární, pak $(x_1 + x_2)_A(a_1, a_2, a_3) = a_1 + a_2$. Obecně, pro libovolné $n \geq 2$, je-li term $x_1 + x_2$ považován za n-ární, pak $(x_1 + x_2)_A(a_1, \ldots, a_n) = a_1 + a_2$.

Poznámka. V předchozím příkladě jsme viděli, že nepřesnost, které se dopouštíme, není nijak fatální. Dokážeme to v následující větě.

Věta 5.1. Nechť t je n-ární term typu Ω , nechť přirozené číslo m > n. Pak pro libovolnou univerzální algebru A typu Ω a libovolné $a_1, \ldots, a_m \in A$ platí

$$t_A(a_1,\ldots,a_n)=t_A(a_1,\ldots,a_m),$$

kde symbolem t_A rozumíme vlevo n-ární operaci určenou termem t na A, kdežto vpravo m-ární operaci určenou termem t na A.

Důkaz. Důkaz povedeme indukcí vzhledem k termu t podle definice termu. První krok této indukce spočívá v tom, že tvrzení dokážeme pro termy, které jsou proměnnou nebo nulárním operačním symbolem. Ve druhém kroku předpokládáme, že term t je pomocí nějakého operačního symbolu složen z jiných termů a že pro tyto termy bylo tvrzení již dokázáno, a dokážeme tvrzení pro term t.

• Je-li termem t proměnná x_k , pak $k \leq n$, neboť t je n-ární term. Platí

$$(x_k)_A(a_1,\ldots,a_n) = a_k = (x_k)_A(a_1,\ldots,a_m).$$

• Je-li termem t nulární operační symbol $f \in \Omega$, pak

$$f_A(a_1,\ldots,a_n) = f_A = f_A(a_1,\ldots,a_m).$$

• Předpokládejme, že je term t složen pomocí k-árního operačního symbolu $f \in \Omega$, kde $k \geq 1$, z termů t_1, \ldots, t_k typu Ω , pro které již bylo tvrzení dokázáno, tedy pro každé $j = 1, \ldots, k$ platí

$$(t_j)_A(a_1,\ldots,a_n)=(t_j)_A(a_1,\ldots,a_m).$$

Pak platí

$$t_A(a_1, \dots, a_n) = f_A((t_1)_A(a_1, \dots, a_n), \dots, (t_k)_A(a_1, \dots, a_n)) =$$

$$= f_A((t_1)_A(a_1, \dots, a_m), \dots, (t_k)_A(a_1, \dots, a_m)) =$$

$$= t_A(a_1, \dots, a_m).$$

Věta je dokázána.

Příklad. Nechť $\Omega = \{\cdot\}$, kde · je binární operační symbol, nechť A je univerzální algebra typu Ω (tedy grupoid). Uvažme term $x_1 \cdot x_2$. Pak dle předchozí definice tento term určuje binární operaci

$$(x_1 \cdot x_2)_A(a_1, a_2) = (x_1)_A(a_1, a_2) \cdot (x_2)_A(a_1, a_2) = a_1 \cdot a_2.$$

Podobně

$$(x_2 \cdot x_1)_A(a_1, a_2) = (x_2)_A(a_1, a_2) \cdot (x_1)_A(a_1, a_2) = a_2 \cdot a_1.$$

Naivně lze tedy operaci příslušnou termu t popsat takto: za proměnnou x_k dosadíme prvek a_k a provedeme všechny operace termu t.

Příklad. Uvažme typ $\Omega = \{ \lor, \land, ', 0, 1 \}$, kde operační symboly \lor a \land jsou binární, symbol ' je unární a symboly 0, 1 jsou nulární. Nechť A je univerzální algebra typu Ω (příkladem takové Ω -algebry je libovolná Booleova algebra, ovšem ne každá Ω -algebra je Booleova algebra, je jí jen ta, v níž platí podmínky kladené na Booleovy algebry, tj. asociativita, komutativita, idempotentnost obou operací, absorpční a distributivní zákony, identity spojené s nejmenším a největším prvkem, identity pro komplement – viz následující kapitolu). Uvažme term $(x_1 \land x_2') \lor (x_1' \land x_2)$, pak hodnota operace na A určené tímto termem v uspořádané dvojici prvků $a_1, a_2 \in A$ je

$$((x_1 \wedge x_2') \vee (x_1' \wedge x_2))_A(a_1, a_2) = (x_1 \wedge x_2')_A(a_1, a_2) \vee (x_1' \wedge x_2)_A(a_1, a_2) =$$

$$= ((x_1)_A(a_1, a_2) \wedge (x_2')_A(a_1, a_2)) \vee ((x_1')_A(a_1, a_2) \wedge (x_2)_A(a_1, a_2)) =$$

$$= (a_1 \wedge ((x_2)_A(a_1, a_2))') \vee (((x_1)_A(a_1, a_2))' \wedge a_2) =$$

$$= (a_1 \wedge a_2') \vee (a_1' \wedge a_2),$$

což je v případě Booleovy algebry hodnota operace sčítání na odpovídajícím Booleově okruhu.

Příklad. Uvažme libovolný typ Ω obsahující n-ární operační symbol f, a term $f(x_1, \ldots, x_n)$. Pak pro libovolnou Ω -algebru A a libovolné $a_1, \ldots, a_n \in A$ platí

$$(f(x_1,\ldots,x_n))_A(a_1,\ldots,a_n) = f_A((x_1)_A(a_1,\ldots,a_n),\ldots,(x_n)_A(a_1,\ldots,a_n)) =$$

= $f_A(a_1,\ldots,a_n),$

a tedy
$$(f(x_1, ..., x_n))_A = f_A$$
.

Poznámka. Právě definované operace určené termy umožňují zformulovat následující obecnou větu o tom, jak vypadá podalgebra Ω -algebry generovaná podmnožinou. Se speciálními případy této věty jsme se již několikrát setkali, například pro podgrupu grupy generovanou množinou, nebo pro vektorový podprostor vektorového prostoru generovaný danou množinou vektorů.

Věta 5.2. Nechť A je univerzální algebra typu Ω , M podmnožina nosné množiny A. Pak podalgebra $\langle M \rangle$ Ω -algebry A generovaná množinou M je tvaru

$$\langle M \rangle = \{ t_A(a_1, \dots, a_n); n \in \mathbf{Z}, n \geq 0, t \text{ je } n\text{-}\text{ární term typu } \Omega, a_1, \dots, a_n \in M \}.$$

Důkaz. Označme N množinu na pravé straně uvedené rovnosti. Nejprve dokážeme $\langle M \rangle \subseteq N$, a to tak, že ukážeme, že N je podalgebra Ω -algebry A obsahující množinu M. Pro inkluzi $M \subseteq N$ stačí vzít n=1 a unární term x_1 , neboť pro libovolné $a \in M$ je $(x_1)_A(a)=a$. Dokažme tedy, že N je podalgebra Ω -algebry A. Zvolme libovolně k-ární operační symbol $f \in \Omega$ a k libovolných prvků $b_1, \ldots, b_k \in N$ a ukažme, že $f_A(b_1, \ldots, b_k) \in N$. Ovšem pro každé $j=1,\ldots,k$ existuje n_j -ární term t_j typu Ω a n_j prvků $a_{j,1},\ldots,a_{j,n_j} \in M$ tak, že $b_j=(t_j)_A(a_{j,1},\ldots,a_{j,n_j})$. Potřebujeme prvky b_1,\ldots,b_k získat jako hodnoty operací příslušných nějakým termům typu Ω na stejné n-tici prvků množiny M. Proto položme $n=n_1+\cdots+n_k$ a uvažme n-tici $(a_{1,1},\ldots,a_{1,n_1},\ldots,a_{k,1},\ldots,a_{k,n_k})$ vzniklou poskládáním zmíněných n_j -tic za sebe. Označme t'_j term, který vznikne z termu t_j tím, že se indexy všech proměnných v něm použitých zvětší o číslo $n_1+\cdots+n_{j-1}$ (tedy speciálně $t'_1=t_1$). Platí tedy pro každé $j=1,\ldots,k$

$$b_j = (t_j)_A(a_{j,1}, \dots, a_{j,n_j}) = (t'_j)_A(a_{1,1}, \dots, a_{1,n_1}, \dots, a_{k,1}, \dots, a_{k,n_k}),$$

a proto

$$f_A(b_1,\ldots,b_k)=(f(t_1',\ldots,t_k'))_A(a_{1,1},\ldots,a_{1,n_1},\ldots,a_{k,1},\ldots,a_{k,n_k}).$$

To je ale dle definice množiny N prvek N, což se mělo dokázat.

Dokažme nyní inkluzi $\langle M \rangle \supseteq N$, a to tak, že ukážeme, že prvky množiny N leží v každé podalgebře Ω -algebry A obsahující množinu M. Dle definice množiny N je její libovolný prvek tvaru $t_A(a_1,\ldots,a_n)$, kde t je n-ární term typu Ω a $a_1,\ldots,a_n\in M$. Nechť H je libovolná podalgebra Ω -algebry A obsahující množinu M a ukažme indukcí podle definice termu, že $t_A(a_1,\ldots,a_n)\in H$.

- Je-li termem t proměnná x_k , pak $t_A(a_1, \ldots, a_n) = a_k \in M \subseteq H$.
- Je-li termem t nulární operační symbol $f \in \Omega$, pak podle definice podalgebry $t_A(a_1, \ldots, a_n) = f_A \in H$.
- Předpokládejme, že je term t složen pomocí k-árního operačního symbolu $f \in \Omega$, kde $k \geq 1$, z termů t_1, \ldots, t_k typu Ω , pro které již bylo tvrzení dokázáno, tedy pro každé $j = 1, \ldots, k$ platí $b_j = (t_j)_A(a_1, \ldots, a_n) \in H$. Pak platí

$$t_A(a_1, \dots, a_n) = f_A((t_1)_A(a_1, \dots, a_n), \dots, (t_k)_A(a_1, \dots, a_n)) =$$

= $f_A(b_1, \dots, b_k) \in H$

dle definice podalgebry. Věta je dokázána.

6. Variety

Definice. Nechť t_1 , t_2 jsou termy typu Ω . Výraz $t_1 = t_2$ nazýváme rovností typu Ω .

Příklad. Nechť $\Omega = \{\cdot\}$, kde · je binární operační symbol, pak rovností typu Ω je například rovnost $x_1 \cdot x_2 = x_2 \cdot x_1$. Tato rovnost psána naprosto formálně je tvaru · $(x_1, x_2) = \cdot (x_2, x_1)$, ale je jasné, že není třeba si zbytečně komplikovat život přehnanou snahou po formálnosti, podstatné je to, že víme, jak formálně rovnost vypadá, a jsme schopni v případě potřeby ji správně formálně přepsat.

Příklad. Uvažme typ $\Omega = \{\cdot, ^{-1}, 1\}$, kde operační symbol · je binární, symbol ⁻¹ je unární a symbol 1 je nulární. Příklady rovností jsou $(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$, $x_1 \cdot x_1^{-1} = 1$, atd.

Definice. Nechť t_1 a t_2 jsou termy typu Ω , nechť A je univerzální algebra typu Ω . Nechť n a m jsou nejmenší přirozená čísla taková, že t_1 je n-ární a t_2 je m-ární term. Označme $k = \max\{n, m\}$. Řekneme, že rovnost $t_1 = t_2$ platí v Ω -algebře A, jestliže termy t_1 , t_2 určují stejnou k-ární operaci na Ω -algebře A, tj. pro každé prvky $a_1, \ldots, a_k \in A$ platí $(t_1)_A(a_1, \ldots, a_k) = (t_2)_A(a_1, \ldots, a_k)$.

Poznámka. Podle věty 5.1 platí, že pokud termy t_1 a t_2 z předchozí definice určují stejnou k-ární operaci na A, tak pro libovolné přirozené číslo $l \geq k$ tyto termy určují stejnou l-ární operaci na A. Proto v předchozí definici jsme místo $k = \max\{n, m\}$ mohli vzít libovolné přirozené číslo $k \geq \max\{n, m\}$.

Příklad. Nechť $t_1=t_2$ je libovolná rovnost typu Ω . Pak v libovolné jednoprvkové univerzální algebře A typu Ω platí rovnost $t_1=t_2$. Jestliže existuje prázdná Ω -algebra (tj. jestliže typ Ω nemá žádný nulární operační symbol), pak v této prázdné algebře rovnost $t_1=t_2$ také platí.

Příklad. Nechť $\Omega = \{\cdot\}$, kde · je binární operační symbol, pak rovnost $x_1 \cdot x_2 = x_2 \cdot x_1$ platí v Ω -algebře A, právě když je A komutativní grupoid.

Definice. Libovolnou množinu rovností typu Ω nazýváme teorií typu Ω .

Definice. Nechť T je teorie typu Ω . Třídu všech Ω -algeber, v nichž platí všechny rovnosti teorie T, nazýváme varietou Ω -algeber určenou teorií T.

Příklad. Nechť T je libovolná teorie typu Ω . Pak platí, že ve varietě určené teorií T leží všechny jednoprvkové Ω -algebry. Jestliže typ Ω nemá žádný nulární operační symbol, pak ve varietě určené teorií T leží také prázdná Ω -algebra.

Poznámka. Všimněte si, že v předchozí definici hovoříme o třídě všech Ω -algeber, nikoli o množině všech Ω -algeber. Nelze totiž hovořit o množině všech Ω -algeber stejně jako nelze hovořit o množině všech množin. Důvodem jsou paradoxy naivní teorie množin (pokud by existovala množina všech množin, existovala by i množina M všech těch množin, které nejsou svým prvkem; pak oba případy $M \in M$ i $M \notin M$ vedou ke sporu).

Poznámka pro ty, kteří znají predikátovou logiku. Uvažíme predikátovou logiku v jazyce s operačními symboly z Ω . Pak pro libovolné n-ární termy je rovnost $t_1 = t_2$ atomickou formulí predikátové logiky, z níž přidáním kvantifikátorů utvoříme uzavřenou formuli (tj. sentenci) $(\forall x_1) \dots (\forall x_n)(t_1 = t_2)$. Provedeme-li to

se všemi rovnostmi nějaké teorie T typu Ω , získáme tak množinu uzavřených formulí, tedy teorii predikátové logiky. Varieta určená teorií T je pak právě třída všech modelů takto vzniklé teorie predikátové logiky.

Příklad. Nechť $\Omega = \{\cdot\}$, kde · je binární operační symbol. Teorie $\{x_1 \cdot x_2 = x_2 \cdot x_1\}$ určuje varietu všech komutativních grupoidů, teorie $\{(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)\}$ určuje varietu všech pologrup, teorie

$$\{x_1 \cdot x_2 = x_2 \cdot x_1, (x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), x_1 \cdot x_1 = x_1\}$$

určuje varietu všech polosvazů. Naproti tomu třídu všech grup nedostaneme jako varietu {·}-algeber určenou nějakou teorií typu {·}: nevíme totiž, jak zapsat podmínku pro existenci neutrálního prvku nějakými rovnostmi (tato podmínka obsahuje existenční kvantifikátor, kdežto my můžeme zapsat jen podmínky se všeobecnými kvantifikátory).

Příklad. Uvažme typ $\Omega = \{\cdot, ^{-1}, 1\}$, kde operační symbol · je binární, symbol ⁻¹ je unární a symbol 1 je nulární. Teorie

$$\{(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), x_1 \cdot 1 = x_1, 1 \cdot x_1 = x_1, x_1 \cdot (x_1)^{-1} = 1, (x_1)^{-1} \cdot x_1 = 1\}$$

určuje varietu všech grup, přidáním další rovnosti $x_1\cdot x_2=x_2\cdot x_1$ získáme teorii určující varietu všech komutativních grup. Tato varieta je samozřejmě též varietou určenou teorií

$$\{(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), x_1 \cdot x_2 = x_2 \cdot x_1, x_1 \cdot 1 = x_1, x_1 \cdot (x_1)^{-1} = 1\}.$$

Příklad. Uvažme typ $\Omega = \{+, \cdot, -, 0, 1\}$, kde operační symboly + a \cdot jsou binární, symbol - je unární a symboly 0, 1 jsou nulární. Varieta všech okruhů je varieta Ω -algeber určená následující teorií typu Ω :

$$\{(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3), x_1 + x_2 = x_2 + x_1, x_1 + 0 = x_1, x_1 + (-x_1) = 0, (x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), x_1 \cdot 1 = x_1, 1 \cdot x_1 = x_1, x_1 \cdot (x_2 + x_3) = (x_1 \cdot x_2) + (x_1 \cdot x_3), (x_1 + x_2) \cdot x_3 = (x_1 \cdot x_3) + (x_2 \cdot x_3)\}.$$

Není jasné, jak zachytit podmínky oboru integrity a tělesa. Později uvidíme, že ani třídu všech oborů integrity ani třídu všech těles nemůžeme dostat jako varietu univerzálních algeber.

Příklad. Uvažme typ $\Omega = \{ \lor, \land \}$, kde oba operační symboly jsou binární. Pak varieta všech svazů je určená následující teorií T typu Ω :

$$T = \{ x_1 \lor x_2 = x_2 \lor x_1, \ (x_1 \lor x_2) \lor x_3 = x_1 \lor (x_2 \lor x_3), \ x_1 \lor x_1 = x_1,$$
$$x_1 \land x_2 = x_2 \land x_1, \ (x_1 \land x_2) \land x_3 = x_1 \land (x_2 \land x_3), \ x_1 \land x_1 = x_1,$$
$$(x_1 \lor x_2) \land x_1 = x_1, \ (x_1 \land x_2) \lor x_1 = x_1 \}.$$

Teorie

$$T_1 = T \cup \{x_1 \lor (x_2 \land x_3) = (x_1 \lor x_2) \land (x_1 \lor x_3)\}$$

určuje varietu všech distributivních svazů, teorie

$$T_2 = T \cup \{(x_1 \land x_2) \lor (x_1 \land x_3) = x_1 \land (x_2 \lor (x_1 \land x_3))\}$$

určuje varietu všech modulárních svazů.

Příklad. Uvažme typ $\Omega = \{ \vee, \wedge, ', 0, 1 \}$, kde operační symboly \vee a \wedge jsou binární, symbol ' je unární a symboly 0, 1 jsou nulární. Nechť T_1 je teorie z předchozího příkladu. Pak teorie

$$T_1 \cup \{x_1 \land 0 = 0, x_1 \lor 1 = 1, x_1 \lor (x_1)' = 1, x_1 \land (x_1)' = 0\}$$

určuje varietu všech Booleových algeber.

Příklad. Připomeňme definici vektorového prostoru nad tělesem $(R,+,\cdot)$. Pro větší srozumitelnost odlišíme operaci sčítání vektorů od sčítání v tělese a budeme ji značit \oplus . Podobně $\ominus u$ bude opačný vektor k vektoru u. Odlišíme také násobení vektorů skaláry od násobení v tělese a budeme jej značit \odot . Vektorový prostor nad tělesem $(R,+,\cdot)$ je komutativní grupa (V,\oplus) a zobrazení $\odot: R\times V \to V$ splňující pro každé $u,v\in V$ a každé $r,s\in R$

$$r \odot (u \oplus v) = (r \odot u) \oplus (r \odot v)$$
$$(r+s) \odot u = (r \odot u) \oplus (s \odot u)$$
$$(r \cdot s) \odot u = r \odot (s \odot u)$$
$$1 \odot u = u.$$

Popišme nyní třídu všech vektorových prostorů jako varietu určenou vhodnou teorií. Uvažme typ $\Omega = \{\oplus, \ominus, o\} \cup R$, kde operační symbol \oplus je binární, symbol o je nulární a pro každé $r \in R$ je r unární operační symbol. Uvažme následující teorii T typu Ω :

$$T = \{(x_1 \oplus x_2) \oplus x_3 = x_1 \oplus (x_2 \oplus x_3), \ x_1 \oplus x_2 = x_2 \oplus x_1, \ x_1 \oplus o = x_1, \ x_1 \oplus (\ominus x_1) = o\}.$$

Tato teorie (uvažovaná jako teorie typu $\{\oplus, \ominus, o\}$) určuje varietu všech komutativních grup. Přidáme k ní zbylé čtyři axiomy vektorových prostorů. Čtvrtý axiom $1 \odot u = u$ je nejsnadnější: $1 \in R$ je unární operační symbol, tedy odpovídající rovností je rovnost $1(x_1) = x_1$. Pro druhý a třetí axiom uvážíme libovolné $r, s \in R$. To jsou unární operační symboly. Ale pak též r + s a $r \cdot s$ jsou prvky R, a tedy unární operační symboly. Dostáváme následující rovnosti typu Ω :

$$(r+s)(x_1) = r(x_1) \oplus s(x_1), \quad (r \cdot s)(x_1) = r(s(x_1)).$$

První axiom pro libovolné $r \in R$ dává rovnost $r(x_1 \oplus x_2) = r(x_1) \oplus r(x_2)$. Celkem tedy dostáváme teorii

$$T \cup \{1(x_1) = x_1\} \cup \left(\bigcup_{r \in R} \{r(x_1 \oplus x_2) = r(x_1) \oplus r(x_2)\}\right) \cup \left(\bigcup_{r \in R} \bigcup_{s \in R} \{(r+s)(x_1) = r(x_1) \oplus s(x_1), (r \cdot s)(x_1) = r(s(x_1))\}\right).$$

Tato teorie určuje varietu všech vektorových prostorů.

Poznámka. Následující větu lze stručně zformulovat takto: variety jsou uzavřené na podalgebry algeber.

Věta 6.1. Nechť T je teorie typu Ω , V varieta Ω -algeber určená teorií T. Pak pro každou Ω -algebru $A \in V$ a každou podalgebru B Ω -algebry A platí $B \in V$.

Důkaz. Uvažme libovolnou rovnost $t_1 = t_2$ z teorie T. Protože $A \in V$, platí tato rovnost v Ω -algebře A. Ovšem zřejmě pro každý n-ární term t typu Ω a libovolné $a_1, \ldots, a_n \in B$ platí $t_B(a_1, \ldots, a_n) = t_A(a_1, \ldots, a_n)$. Proto rovnost $t_1 = t_2$ platí i v Ω -algebře B. Dokázali jsme, že každá rovnost teorie T platí v Ω -algebře B a tedy $B \in V$.

Poznámka. Následující věta ukazuje, že definiční vlastnost homomorfismu platí nejen pro všechny operační symboly typu Ω , ale dokonce pro libovolné termy typu Ω .

Věta 6.2. Nechť A, B jsou univerzální algebry typu Ω , $\varphi : A \to B$ homomorfismus Ω -algeber. Pak pro libovolný n-ární term t typu Ω a libovolné $a_1, \ldots, a_n \in A$ platí

$$t_B(\varphi(a_1),\ldots,\varphi(a_n))=\varphi(t_A(a_1,\ldots,a_n)).$$

 \mathbf{D} ůkaz. Větu dokážeme indukcí vzhledem k termu t.

• Je-li termem t proměnná x_k , pak t_A i t_B jsou k-té projekce, a tedy

$$\varphi(t_A(a_1,\ldots,a_n))=\varphi(a_k)=t_B(\varphi(a_1),\ldots,\varphi(a_n)).$$

- Je-li termem t nulární operační symbol $f \in \Omega$, pak $t_A(a_1, \ldots, a_n) = f_A$, $t_B(\varphi(a_1), \ldots, \varphi(a_n)) = f_B$. Ovšem $\varphi(f_A) = f_B$ podle definice homomorfismu.
- Předpokládejme, že je term t složen pomocí k-árního operačního symbolu $f \in \Omega$, kde $k \geq 1$, z termů t_1, \ldots, t_k typu Ω , pro které již bylo tvrzení dokázáno, tedy pro každé $j = 1, \ldots, k$ platí $(t_j)_B(\varphi(a_1), \ldots, \varphi(a_n)) = \varphi((t_j)_A(a_1, \ldots, a_n))$. Podle definice operace určené termem platí

$$t_A(a_1,\ldots,a_n) = f_A((t_1)_A(a_1,\ldots,a_n),\ldots,(t_k)_A(a_1,\ldots,a_n)),$$

podobně

$$t_B(\varphi(a_1), \dots, \varphi(a_n)) =$$

$$= f_B((t_1)_B(\varphi(a_1), \dots, \varphi(a_n)), \dots, (t_k)_B(\varphi(a_1), \dots, \varphi(a_n))).$$

Podle definice homomorfismu a indukčního předpokladu platí

$$\varphi(t_{A}(a_{1},\ldots,a_{n})) = \varphi(f_{A}((t_{1})_{A}(a_{1},\ldots,a_{n}),\ldots,(t_{k})_{A}(a_{1},\ldots,a_{n}))) =
= f_{B}(\varphi((t_{1})_{A}(a_{1},\ldots,a_{n})),\ldots,\varphi((t_{k})_{A}(a_{1},\ldots,a_{n}))) =
= f_{B}((t_{1})_{B}(\varphi(a_{1}),\ldots,\varphi(a_{n})),\ldots,(t_{k})_{B}(\varphi(a_{1}),\ldots,\varphi(a_{n}))) =
= t_{B}(\varphi(a_{1}),\ldots,\varphi(a_{n})),$$

což se mělo dokázat.

Věta je dokázána.

Poznámka. Následující větu lze stručně zformulovat takto: variety jsou uzavřené na obrazy algeber v homomorfismech. Podle důsledku věty 4.5 to znamená, že variety jsou uzavřené na faktoralgebry. S konkrétními případy tohoto tvrzení jsme se tedy setkali již dříve: faktorizací (komutativní) grupy jsme dostali (komutativní) grupu, faktorizací (komutativního) okruhu jsme dostali (komutativní) okruh.

Věta 6.3. Nechť T je teorie typu Ω , V varieta Ω -algeber určená teorií T. Nechť A, B jsou Ω -algebry, $\varphi: A \to B$ surjektivní homomorfismus Ω -algeber. Pak platí: je-li $A \in V$, pak též $B \in V$.

Důkaz. Uvažme libovolnou rovnost $t_1 = t_2$ z teorie T. Protože $A \in V$, platí tato rovnost v Ω -algebře A. Nechť n je takové, že oba termy t_1, t_2 jsou n-ární. Je třeba ověřit, že pro libovolné $b_1, \ldots, b_n \in B$ platí

$$(t_1)_B(b_1,\ldots,b_n)=(t_2)_B(b_1,\ldots,b_n).$$

Protože je φ surjekce, existují $a_1, \ldots, a_n \in A$ tak, že $b_1 = \varphi(a_1), \ldots, b_n = \varphi(a_n)$. Pak z předchozí věty a toho, že rovnost $t_1 = t_2$ platí v Ω-algebře A, dostáváme

$$(t_1)_B(b_1,\ldots,b_n) = (t_1)_B(\varphi(a_1),\ldots,\varphi(a_n)) = \varphi((t_1)_A(a_1,\ldots,a_n)) =$$

= $\varphi((t_2)_A(a_1,\ldots,a_n)) = (t_2)_B(\varphi(a_1),\ldots,\varphi(a_n)) = (t_2)_B(b_1,\ldots,b_n).$

Dokázali jsme, že každá rovnost teorie T platí v Ω -algebře B a tedy $B \in V$.

Poznámka. Následující věta ukazuje, že podmínka, kterou byly definovány operace na součinu Ω -algeber, platí nejen pro všechny operační symboly typu Ω , ale dokonce pro libovolné termy typu Ω .

Věta 6.4. Nechť Ω je typ. Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i typu Ω . Označme A součin těchto Ω -algeber, tj. $A = \prod_{i \in I} A_i$. Uvažme libovolný n-ární term t typu Ω a libovolné $\chi_1, \ldots, \chi_n \in A$. Označme $\chi = t_A(\chi_1, \ldots, \chi_n)$. Pak pro každé $i \in I$ platí $\chi(i) = t_{A_i}(\chi_1(i), \ldots, \chi_n(i))$.

 \mathbf{D} ůkaz. Větu dokážeme indukcí vzhledem k termu t.

- Je-li termem t proměnná x_k , pak t_A i t_{A_i} jsou k-té projekce, a tedy $\chi = t_A(\chi_1, \ldots, \chi_n) = \chi_k$ a $t_{A_i}(\chi_1(i), \ldots, \chi_n(i)) = \chi_k(i) = \chi(i)$.
- Je-li termem t nulární operační symbol $f \in \Omega$, pak dle definice součinu Ω algeber platí $f_A = \xi$, kde $\xi \in A$ je určeno podmínkou $\xi(i) = f_{A_i}$, což je
 dokazované tvrzení.
- Předpokládejme, že je term t složen pomocí k-árního operačního symbolu $f \in \Omega$, kde $k \geq 1$, z termů t_1, \ldots, t_k typu Ω , pro které již bylo tvrzení dokázáno. Nejprve zformulujme tento indukční předpoklad. Pro každé $j = 1, \ldots, k$ označme $\psi_j = (t_j)_A(\chi_1, \ldots, \chi_n)$. Předpokládáme tedy, že $t = f(t_1, \ldots, t_k)$ a že pro každé $i \in I$ a pro každé $j = 1, \ldots, k$ platí $\psi_j(i) = (t_j)_{A_i}(\chi_1(i), \ldots, \chi_n(i))$. Podle definice operace určené termem platí

$$t_{A_i}(\chi_1(i), \dots, \chi_n(i)) =$$

$$= f_{A_i}((t_1)_{A_i}(\chi_1(i), \dots, \chi_n(i)), \dots, (t_k)_{A_i}(\chi_1(i), \dots, \chi_n(i))) =$$

$$= f_{A_i}(\psi_1(i), \dots, \psi_n(i))$$

a také

$$\chi = t_A(\chi_1, \dots, \chi_n) =$$

$$= f_A((t_1)_A(\chi_1, \dots, \chi_n), \dots, (t_k)_A(\chi_1, \dots, \chi_n)) =$$

$$= f_A(\psi_1, \dots, \psi_n),$$

a tedy podle definice operací na součinu Ω -algeber pro každé $i \in I$ platí $\chi(i) = f_{A_i}(\psi_1(i), \dots, \psi_n(i))$. Ovšem výše jsme odvodili, že $f_{A_i}(\psi_1(i), \dots, \psi_n(i)) = t_{A_i}(\chi_1(i), \dots, \chi_n(i))$.

Věta je dokázána.

Poznámka. Následující větu lze stručně zformulovat takto: variety jsou uzavřené na libovolné součiny algeber.

Věta 6.5. Nechť T je teorie typu Ω , V varieta Ω -algeber určená teorií T. Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i typu Ω . Označme A součin těchto Ω -algeber, tj. $A = \prod_{i \in I} A_i$. Pak platí: jestliže pro každé $i \in I$ je $A_i \in V$, pak též $A \in V$.

Důkaz. Uvažme libovolnou rovnost $t_1 = t_2$ z teorie T. Protože pro každé $i \in I$ je $A_i \in V$, platí tato rovnost v Ω -algebře A_i . Nechť n je takové, že oba termy t_1, t_2 jsou n-ární. Je třeba ověřit, že pro libovolné $\chi_1, \ldots, \chi_n \in A$ platí

$$(t_1)_A(\chi_1,\ldots,\chi_n)=(t_2)_A(\chi_1,\ldots,\chi_n).$$

Označme $\psi_1 = (t_1)_A(\chi_1, \ldots, \chi_n)$ a $\psi_2 = (t_2)_A(\chi_1, \ldots, \chi_n)$. Naším cílem je dokázat, že $\psi_1 = \psi_2$. Podle definice součinu množin jsou ψ_1 a ψ_2 zobrazení se stejným definičním oborem i oborem hodnot. Je třeba ověřit, že mají též stejný předpis, tj. že pro každé $i \in I$ platí $\psi_1(i) = \psi_2(i)$. Z předchozí věty plyne, že pro každé $i \in I$ platí $\psi_1(i) = (t_1)_{A_i}(\chi_1(i), \ldots, \chi_n(i))$ a $\psi_2(i) = (t_2)_{A_i}(\chi_1(i), \ldots, \chi_n(i))$. Protože rovnost $t_1 = t_2$ platí v Ω-algebře A_i , je

$$(t_1)_{A_i}(\chi_1(i),\ldots,\chi_n(i))=(t_2)_{A_i}(\chi_1(i),\ldots,\chi_n(i)),$$

a tedy též $\psi_1(i) = \psi_2(i)$, což jsme chtěli dokázat. Dokázali jsme, že každá rovnost teorie T platí v Ω -algebře A a tedy $A \in V$.

Příklad. Nyní jsme schopni dokázat slíbené tvrzení, že ani třídu všech oborů integrity ani třídu všech těles nemůžeme dostat jako varietu univerzálních algeber typu $\{+,\cdot,-,0,1\}$. Podle předchozí věty k tomu stačí najít dvě tělesa, jejichž součinem není těleso, a dva obory integrity, jejichž součinem není obor integrity. Hledání takových těles je snadné: platí dokonce, že součin libovolných dvou těles (která jsou samozřejmě i obory integrity) není oborem integrity (a tedy ani tělesem). V každém takovém součinu totiž máme dělitele nuly, neboť platí $(0,1) \cdot (1,0) = (0,0)$. (Pokud Vám není tento obecný příklad jasný, uvažte dvě kopie tělesa o dvou prvcích – okruhu zbytkových tříd modulo 2 – a vypište si všechny čtyři prvky a sestavte tabulku pro operaci násobení.)

Příklad. Třída všech svazů, které jsou řetězci (tj. lineárně uspořádanými množinami) netvoří varietu univerzálních algeber typu $\{\lor,\land\}$, neboť součinem dvou dvouprvkových svazů, které jsou řetězci, je čtyřprvkový svaz, který není řetězec.

Příklad. Třída všech grup netvoří varietu univerzálních algeber typu $\{\cdot\}$, neboť tato třída není uzavřena na podalgebry (existují podgrupoidy grup, které nejsou grupami). Přesto jsme dostali třídu všech grup jako varietu univerzálních algeber typu $\{\cdot, ^{-1}, 1\}$. Rozšířením typu jsme totiž dosáhli toho, že zmíněné podgrupoidy už nebyly podalgebrami $\{\cdot, ^{-1}, 1\}$ -algeber. Nabízí se tedy otázka, zda i v případě třídy všech těles nebo třídy všech oborů integrity přidáním dalších operačních symbolů k typu $\{+, \cdot, -, 0, 1\}$ nedostaneme varietu Ω-algeber. Zde je však situace odlišná: tyto třídy nejsou uzavřené na součin a součin se přidáním dalších operačních symbolů nezmění (přibudou pouze další operace na téže nosné množině součinu). Dostali jsme tedy, že ani třída všech těles ani třída všech oborů integrity netvoří varietu Ω-algeber pro žádné $\Omega \supseteq \{+, \cdot, -, 0, 1\}$. Podobně třída všech řetězců netvoří varietu Ω -algeber pro žádné $\Omega \supseteq \{+, \cdot, -, 0, 1\}$.

Poznámka. Následující věta završí popis variet Ω -algeber. Charakterizuje, které třídy Ω -algeber jsou varietami, tj. které třídy je možné charakterizovat nějakou množinou rovností. V tuto chvíli jsme však schopni důkaz jednoho směru pouze naznačit. Kompletní důkaz čtenář nalezne až v osmé kapitole.

Věta 6.6. (Birkhoff) Nechť Ω je typ. Třída Ω -algeber je varieta, právě když splňuje všechny tři následující podmínky:

- je uzavřená na podalgebry algeber;
- je uzavřená na obrazy algeber v homomorfismech;
- je uzavřená na libovolné součiny algeber.

Důkaz. Již jsme dokázali ve větách 6.1, 6.3 a 6.5, že libovolná varieta Ω -algeber všechny tři uvedené podmínky splňuje. Důkaz opačné implikace přesahuje možnosti této kapitoly, proto jen naznačíme, jak bude veden v kapitole 8. Nechť V je třída Ω -algeber splňující všechny tři uvedené podmínky. Označme T množinu všech rovností typu Ω , které platí ve všech Ω -algebrách z třídy V (uvědomte si, že T je vždy nekonečná množina). Označme W varietu Ω -algeber určenou teorií T. Je třeba dokázat, že V = W. Z definice T je jasné, že platí inkluze $V \subseteq W$. Celá obtížnost důkazu věty spočívá v důkazu inkluze $W \subseteq V$. Je totiž nutné ukázat, že libovolnou Ω -algebru $A \in W$ lze vytvořit pomocí tvoření podalgeber, součinů a obrazů v homomorfismech z Ω -algeber z třídy V. To však ukážeme až na konci kapitoly 8.

7. Volné algebry s nejvýše spočetnou množinou generátorů

Definice. Nechť Ω je typ. Označme $F(\Omega)$ množinu všech termů typu Ω . Na této množině definujeme Ω -algebru následujícím způsobem. Pro libovolný nární operační symbol $f \in \Omega$ definujeme n-ární operaci $f_{F(\Omega)}$ na Ω -algebře $F(\Omega)$ příslušnou operačnímu symbolu f takto: pro libovolné termy $t_1, \ldots, t_n \in F(\Omega)$ je $f_{F(\Omega)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Poznámka. Všimněte si, jak se počítají hodnoty operací v právě popsané Ω -algebře. S trochou nadsázky se dá říci, že se vlastně nepočítají. Termy se do operačního symbolu pouze dosadí, čímž vznikne nový term (viz třetí bod definice termu), a to je výsledek. Znamená to, že každý prvek množiny $F(\Omega)$, který není proměnnou, je hodnotou právě jedné operace na jednoznačně určených operandech,

je jej totiž možné získat jedině tak, jak byl sestrojen dle definice termu. Proto v této Ω -algebře platí jen triviální rovnosti (tj. takové, kde na obou stranách stojí stejný term). Protože tato Ω -algebra není svázána žádnými netriviálními rovnostmi, nazývá se volná (viz definici následující po větě 7.1).

Věta 7.1. Označme P množinu všech proměnných: $P = \{x_1, x_2, \ldots\}$ a uvažme podalgebru $\langle P \rangle$ generovanou v algebře $F(\Omega)$ množinou P. Pak platí $\langle P \rangle = F(\Omega)$.

Důkaz. Stačí ukázat inkluzi $F(\Omega) \subseteq \langle P \rangle$, tedy dokázat, že každý term t typu Ω patří do $\langle P \rangle$. To je ale snadné indukcí vzhledem k definici termu: proměnné leží v P, pro nulární symbol f typu Ω platí $f = f_{F(\Omega)}$, což je prvek libovolné podalgebry. Konečně pro term $f(t_1, \ldots, t_n)$ vzniklý z n-árního symbolu $f \in \Omega$ a termů t_1, \ldots, t_n patřících dle indukčního předpokladu do $\langle P \rangle$ je $f(t_1, \ldots, t_n) = f_{F(\Omega)}(t_1, \ldots, t_n) \in \langle P \rangle$ dle definice podalgebry.

Definice. Ω -algebra $F(\Omega)$ z předchozí definice se nazývá volná algebra typu Ω generovaná množinou $\{x_1, x_2, \dots\}$.

Definice. Nechť Ω je typ, r nezáporné celé číslo. Označme $F_r(\Omega)$ množinu všech r-árních termů typu Ω .

Příklad. Jestliže typ Ω neobsahuje žádný nulární operační symbol, pak platí $F_0(\Omega)=\emptyset.$

Příklad. Uvažme typ $\Omega = \{'\}$, kde ' je unární symbol. Pak Ω -algebrami jsou množiny A spolu se zobrazením ' : $A \to A$. Pak platí

$$F_1(\Omega) = \{x_1, x_1', x_1'', x_1''', \dots\},$$

$$F_2(\Omega) = \{x_1, x_1', x_1'', x_1''', \dots, x_2, x_2', x_2'', x_2'', \dots\}.$$

Příklad. Uvažme typ $\Omega = \{',1\}$, kde ' je unární symbol a 1 nulární symbol. Volná algebra typu Ω generovaná prázdnou množinou je pak Ω -algebra $F_0(\Omega) = \{1,1',1'',1''',\dots\}$. To jsou vlastně přirozená čísla. Při konstrukci přirozených čísel nemůžeme definovat přirozená čísla jako tuto volnou Ω -algebru, neboť jsme v tomto textu mnohokrát existenci přirozených čísel využili. Je ale možné tuto strukturu popsat následující vlastností: je to množina N spolu se zobrazením ': $N \to N$, které je injektivní a není surjektivní, a splňuje následující podmínku: neexistuje žádná vlastní podmnožina $M \subset N$, která by pro každé $m \in M$ obsahovala též m' a která by také obsahovala nějaký prvek n, který nelze vyjádřit ve tvaru n = r' pro žádné $r \in N$. Množinu N a zobrazení ': $N \to N$, které splňují právě popsanou podmínku, lze vzít v axiomatické konstrukci přirozených čísel za jejich definici.

Věta 7.2. Pro libovolné nezáporné celé číslo r je množina $F_r(\Omega)$ podalgebra Ω -algebry $F(\Omega)$ generovaná množinou r proměnných $\{x_1, \ldots, x_r\}$, tj. $F_r(\Omega) = \langle \{x_1, \ldots, x_r\} \rangle$.

Důkaz. Inkluzi $F_r(\Omega) \subseteq \langle \{x_1, \ldots, x_r\} \rangle$ dokážeme stejně jako předchozí větu. Opačná plyne z toho, že $F_r(\Omega)$ je podalgebra Ω -algebry $F(\Omega)$ obsahující množinu proměnných $\{x_1, \ldots, x_r\}$: dosazením r-árních termů do libovolného operačního symbolu totiž zřejmě dostaneme opět r-ární term, a tedy $F_r(\Omega)$ je skutečně podalgebra.

Definice. Ω -algebra $F_r(\Omega)$ se nazývá volná algebra typu Ω generovaná množinou $\{x_1, \ldots, x_r\}$.

Poznámka. Následující věta popisuje podmínku, kterou lze volné algebry charakterizovat. Ať si v jakékoli Ω -algebře zvolíme jakkoli obraz pro každý generátor, vždy je možné doplnit toto přiřazení do homomorfismu, a to jediným způsobem. (Avšak to, že tato podmínka je skutečně charakterizační, tj. určuje volnou algebru jednoznačně až na izomorfismus, dokážeme až ve větě 8.5.)

Věta 7.3. Nechť A je Ω -algebra, a_1, a_2, a_3, \ldots libovolná pevně zvolená posloupnost prvků z A. Pak existuje jediný homomorfismus Ω -algeber $\varphi: F(\Omega) \to A$ splňující podmínku $\varphi(x_m) = a_m$ pro všechna přirozená čísla m. Přitom pro tento homomorfismus platí: pro libovolný k-ární term $t \in F(\Omega)$ je $\varphi(t) = t_A(a_1, \ldots, a_k)$, $kde\ t_A$ je operace určená termem $t\ v\ \Omega$ -algebře A.

Důkaz. Ukažme nejprve, že takto definované zobrazení je homomorfismus. Nechť $f \in \Omega$ je libovolný n-ární operační symbol, $t_1, \ldots, t_n \in F(\Omega)$ libovolné k-ární termy. Platí tedy

$$\varphi(f_{F(\Omega)}(t_1,\ldots,t_n)) = \varphi(f(t_1,\ldots,t_n)) = (f(t_1,\ldots,t_n))_A(a_1,\ldots,a_k).$$

Dle definice operace určené termem je

$$(f(t_1, \dots, t_n))_A(a_1, \dots, a_k) = f_A((t_1)_A(a_1, \dots, a_k), \dots, (t_n)_A(a_1, \dots, a_k)) =$$

= $f_A(\varphi(t_1), \dots, \varphi(t_n)),$

a tedy φ je homomorfismus. Ukažme indukcí vzhledem k definici termu, že tento homomorfismus je jediný:

- je-li $t = x_m$, pak $\varphi(x_m) = a_m = (x_m)_A(a_1, ..., a_k)$;
- je-li t nulární operační symbol, pak z definice homomorfismu $\varphi(t)=t_A;$
- nechť tedy k-ární term $t = f(t_1, \ldots, t_n)$ je složen pomocí n-árního operačního symbolu f, kde $n \geq 1$, z termů $t_1, \ldots, t_n \in F(\Omega)$, pro které platí indukční předpoklad, tj. pro každé $j = 1, \ldots, n$ je $\varphi(t_j) = (t_j)_A(a_1, \ldots, a_k)$. Pak z definice homomorfismu

$$\varphi(t) = \varphi(f(t_1, \dots, t_n)) = \varphi(f_{F(\Omega)}(t_1, \dots, t_n)) =$$

$$= f_A(\varphi(t_1), \dots, \varphi(t_n)) = f_A((t_1)_A(a_1, \dots, a_k), \dots, (t_n)_A(a_1, \dots, a_k)) =$$

$$= (f(t_1, \dots, t_n))_A(a_1, \dots, a_k).$$

Věta je dokázána.

Věta 7.4. Nechť Ω je typ, r nezáporné celé číslo. Nechť A je Ω -algebra, a_1, \ldots, a_r libovolné pevně zvolené prvky z A. Pak existuje jediný homomorfismus Ω -algeber $\varphi: F_r(\Omega) \to A$ splňující podmínku $\varphi(x_m) = a_m$ pro všechna $m = 1, \ldots, r$. Přitom pro tento homomorfismus platí: pro libovolný term $t \in F_r(\Omega)$ je $\varphi(t) = t_A(a_1, \ldots, a_r)$, kde t_A je operace určená termem t v Ω -algebře A.

Důkaz. Tuto větu lze dokázat stejně jako předchozí větu 7.3.

Poznámka. Předchozí věta tedy pro r=0 tvrdí, že Ω -algebra $F_0(\Omega)$ má následující vlastnost: pro každou Ω -algebru A existuje právě jeden homomorfismus Ω -algeber $\varphi: F_0(\Omega) \to A$.

Poznámka. Naším dalším cílem je nalézt volné Ω -algebry v každé varietě Ω -algebre. Volné Ω -algebry $F(\Omega)$ a $F_r(\Omega)$ totiž splňují pouze triviální rovnosti,

leží proto jen ve varietě všech Ω -algeber. Budeme tedy pro danou teorii T typu Ω konstruovat Ω -algebru, v níž platí všechny rovnosti teorie T a všechny důsledky těchto rovností, ale žádná rovnost, která není důsledkem rovností teorie T, už v konstruované algebře platit nebude. Otázka je, jak takové důsledky popsat. Asi první cesta, která člověka napadne, je pokusit se popisovat nějaká odvozovací pravidla, jak z rovností teorie T odvodit další rovnosti. My ale použijeme jinou cestu: důsledkem rovností teorie T jsou právě ty rovnosti, které platí v každé Ω -algebře z variety určené teorií T.

Definice. Nechť V je varieta Ω -algeber. Na množině $F(\Omega)$ všech termů typu Ω definujeme relaci \sim_V takto: pro libovolné termy $t_1, t_2 \in F(\Omega)$ klademe $t_1 \sim_V t_2$ právě tehdy, když libovolná Ω -algebra z variety V splňuje rovnost $t_1 = t_2$.

Poznámka. Nechť t_1 , t_2 jsou n-ární termy typu Ω . Pak je tedy $t_1 \sim_V t_2$ právě tehdy, když na libovolné Ω -algebře A z variety V oba termy t_1 , t_2 určují stejnou n-ární operaci, tj. pro libovolné $a_1, \ldots, a_n \in A$ platí $(t_1)_A(a_1, \ldots, a_n) = (t_2)_A(a_1, \ldots, a_n)$.

Věta 7.5. Pro libovolnou varietu Ω -algeber V je relace \sim_V kongruencí na Ω -algebře $F(\Omega)$.

Důkaz. Z předchozí poznámky se snadno vidí, že \sim_V je ekvivalence na množině $F(\Omega)$. Dokažme, že jde o kongruenci. Za tím účelem zvolme libovolně n-ární operační symbol $f \in \Omega$ a termy $t_1, \ldots, t_n, s_1, \ldots, s_n \in F(\Omega)$ takové, že $t_1 \sim_V s_1, \ldots, t_n \sim_V s_n$. Dokážeme, že potom také $f(t_1, \ldots, t_n) \sim_V f(s_1, \ldots, s_n)$. Zvolme libovolně Ω -algebru A z variety V. Platí tedy $(t_1)_A = (s_1)_A, \ldots, (t_n)_A = (s_n)_A$. Nechť přirozené číslo k je takové, že všechny zde vystupující termy jsou k-ární. Pak pro libovolné $a_1, \ldots, a_k \in A$ platí

$$(f(t_1, \dots, t_n))_A(a_1, \dots, a_k) = f_A((t_1)_A(a_1, \dots, a_k), \dots, (t_n)_A(a_1, \dots, a_k)) =$$

$$= f_A((s_1)_A(a_1, \dots, a_k), \dots, (s_n)_A(a_1, \dots, a_k)) =$$

$$= (f(s_1, \dots, s_n))_A(a_1, \dots, a_k),$$

což se mělo dokázat.

Poznámka. Můžeme tedy hovořit o faktorové algebře Ω -algebry $F(\Omega)$ podle kongruence \sim_V . Tuto faktorovou Ω -algebru budeme značit $F(V) = F(\Omega)/\sim_V$.

Poznámka. Uvědomte si, že nehrozí nebezpečí záměny $F(\Omega)$ a F(V) i kdybychom označili typ jiným písmenem než Ω a varietu jiným písmenem než V. Libovolný typ je přece množina, kdežto libovolná varieta je vlastní třída.

Věta 7.6. Pro libovolnou varietu Ω -algebra V je Ω -algebra F(V) prvkem variety V.

Důkaz. Nechť T je teorie určující varietu V, nechť $t_1 = t_2$ je libovolná rovnost této teorie. Nechť k je přirozené číslo takové, že oba termy t_1 a t_2 jsou k-ární. Je tedy třeba ověřit, že pro libovolné $v_1, \ldots, v_k \in F(V)$ platí $(t_1)_{F(V)}(v_1, \ldots, v_k) = (t_2)_{F(V)}(v_1, \ldots, v_k)$. Označme $\pi: F(\Omega) \to F(V)$ projekci na faktorovou algebru. Podle věty 4.3 je π surjektivní homomorfismus. Pro každé $i = 1, \ldots, k$ zvolme term $s_i \in F(\Omega)$ tak, že $\pi(s_i) = v_i$. Podle věty 6.2 pro j = 1, 2 platí

$$(t_j)_{F(V)}(v_1,\ldots,v_k)=(t_j)_{F(V)}(\pi(s_1),\ldots,\pi(s_k))=\pi((t_j)_{F(\Omega)}(s_1,\ldots,s_k)).$$

Máme tedy dokázat, že $\pi((t_1)_{F(\Omega)}(s_1,\ldots,s_k)) = \pi((t_2)_{F(\Omega)}(s_1,\ldots,s_k))$, což je ekvivalentní s tvrzením $(t_1)_{F(\Omega)}(s_1,\ldots,s_k) \sim_V (t_2)_{F(\Omega)}(s_1,\ldots,s_k)$. To bude dokázáno, pokud libovolná Ω-algebra A z variety V splňuje rovnost

$$(t_1)_{F(\Omega)}(s_1,\ldots,s_k) = (t_2)_{F(\Omega)}(s_1,\ldots,s_k).$$

Nechť m je přirozené číslo takové, že všechny termy s_1, \ldots, s_k jsou m-ární. Máme tedy ukázat, že pro libovolnou Ω -algebru A z variety V a pro libovolné její prvky $a_1, \ldots, a_m \in A$ platí

$$((t_1)_{F(\Omega)}(s_1,\ldots,s_k))_A(a_1,\ldots,a_m) = ((t_2)_{F(\Omega)}(s_1,\ldots,s_k))_A(a_1,\ldots,a_m).$$

Doplňme nějak a_1, \ldots, a_m do nekonečné posloupnosti prvků z Ω -algebry A, například takto: pro každé n > m klademe $a_n = a_1$. Podle věty 7.3 existuje homomorfismus Ω -algeber $\varphi: F(\Omega) \to A$ takový, že pro libovolný l-ární term $t \in F(\Omega)$ je $\varphi(t) = t_A(a_1, \ldots, a_l)$. Pro j = 1, 2 tedy platí

$$((t_j)_{F(\Omega)}(s_1,\ldots,s_k))_A(a_1,\ldots,a_m) = \varphi((t_j)_{F(\Omega)}(s_1,\ldots,s_k)).$$

Ovšem podle věty 6.2 je

$$\varphi((t_j)_{F(\Omega)}(s_1,\ldots,s_k)) = (t_j)_A(\varphi(s_1),\ldots,\varphi(s_k)).$$

Máme tedy ukázat, že

$$(t_1)_A(\varphi(s_1),\ldots,\varphi(s_k))=(t_2)_A(\varphi(s_1),\ldots,\varphi(s_k)),$$

to ale plyne z toho, že $t_1=t_2$ je rovnost z teorie určující varietu V, do které patří Ω -algebra A.

Poznámka. Ukážeme, že faktorová algebra $F(V) = F(\Omega)/\sim_V$ z předchozí věty splňuje charakterizační podmínku volné algebry.

Věta 7.7. Nechť V je libovolná varieta Ω -algeber, $F(V) = F(\Omega)/\sim_V faktorová <math>\Omega$ -algebra z věty 7.6, $\pi: F(\Omega) \to F(V)$ projekce na faktorovou algebru. Nechť A je libovolná Ω -algebra z variety V, a_1, a_2, a_3, \ldots libovolná pevně zvolená posloupnost prvků z A. Pak existuje jediný homomorfismus Ω -algeber $\psi: F(V) \to A$ splňující podmínku $\psi(\pi(x_m)) = a_m$ pro všechna přirozená čísla m. Přitom pro tento homomorfismus platí: pro libovolný k-ární term $t \in F(\Omega)$ je $\psi(\pi(t)) = t_A(a_1, \ldots, a_k)$, kde t_A je operace určená termem t v Ω -algebře A.

Důkaz. Podle věty 7.3 existuje jediný homomorfismus Ω -algeber $\varphi: F(\Omega) \to A$ splňující podmínku $\varphi(x_m) = a_m$ pro všechna přirozená čísla m. Přitom pro libovolný k-ární term $t \in F(\Omega)$ je $\varphi(t) = t_A(a_1, \ldots, a_k)$. Označme \sim jádro homomorfismu φ . Uvažme libovolné n-ární termy t_1, t_2 takové, že $t_1 \sim_V t_2$. Podle definice kongruence \sim_V je rovnost $t_1 = t_2$ splněna v Ω -algebře A, a proto platí

$$\varphi(t_1) = (t_1)_A(a_1, \dots, a_n) = (t_2)_A(a_1, \dots, a_n) = \varphi(t_2),$$

a tedy $t_1 \sim t_2$. Ukázali jsme, že kongruence \sim_V je menší nebo rovna kongruenci \sim . Proto podle věty 4.5 existuje jediný homomorfismus $\psi: F(V) \to A$ splňující

 $\psi \circ \pi = \varphi$. Pro tento homomorfismus tedy pro všechna přirozená čísla m platí $a_m = \varphi(x_m) = (\psi \circ \pi)(x_m) = \psi(\pi(x_m))$. Podobně pro libovolný k-ární term $t \in F(\Omega)$ je $t_A(a_1, \ldots, a_k) = \varphi(t) = (\psi \circ \pi)(t) = \psi(\pi(t))$. Zbývá dokázat jednoznačnost homomorfismu ψ splňujícího podmínku $\psi(\pi(x_m)) = a_m$. Předpokládejme, že též pro homomorfismus Ω -algeber $\tau : F(V) \to A$ je splněna podmínka $\tau(\pi(x_m)) = a_m$ pro všechna přirozená čísla m. Pak pro homomorfismus $\tau \circ \pi : F(\Omega) \to A$ platí $(\tau \circ \pi)(x_m) = a_m$, a tedy podle věty 7.3 je $\tau \circ \pi = \varphi$. Podle věty 4.5 odtud plyne $\tau = \psi$.

Definice. Faktorová algebra $F(V) = F(\Omega)/\sim_V z$ vět 7.6 a 7.7 se nazývá volná algebra variety V typu Ω generovaná množinou $\{x_1, x_2, \ldots\}$.

Definice. Nechť $F(V) = F(\Omega)/\sim_V$ je volná algebra variety V typu Ω generovaná množinou $\{x_1, x_2, \ldots\}$, $\pi : F(\Omega) \to F(V)$ projekce na faktorovou algebru. Pro libovolné nezáporné celé číslo r označme $F_r(V)$ obraz podalgebry $F_r(\Omega)$ v homomorfismu π , tj. $F_r(V) = \pi(F_r(\Omega))$. Tuto Ω -algebru $F_r(V)$ nazýváme volnou algebrou variety V typu Ω generovanou množinou $\{x_1, \ldots, x_r\}$.

Poznámka. Podle věty 2.3 je $F_r(V)$ podalgebrou Ω -algebry F(V), podle vět 6.1 a 7.6 patří algebra $F_r(V)$ do variety V. V následující větě ukážeme, že také splňuje charakterizační podmínku volné algebry (a tedy název, který dostala v předchozí definici, je oprávněný). Zúžením projekce $\pi: F(\Omega) \to F(V)$ dostáváme dle definice $F_r(V)$ surjektivní homomorfismus $F_r(\Omega) \to F_r(V)$, který budeme projednoduchost označovat opět π a nazývat projekcí.

Věta 7.8. Nechť V je libovolná varieta Ω -algeber, r nezáporné celé číslo, $F_r(V)$ volná algebra variety V typu Ω generovaná množinou $\{x_1,\ldots,x_r\}$, π : $F_r(\Omega) \to F_r(V)$ projekce. Nechť A je libovolná Ω -algebra z variety V, $a_1,\ldots,a_r \in A$ libovolné pevně zvolené prvky. Pak existuje jediný homomorfismus Ω -algeber $\psi: F_r(V) \to A$ splňující podmínku $\psi(\pi(x_m)) = a_m$ pro všechna $m = 1,\ldots,r$. Přitom pro tento homomorfismus platí: pro libovolný term $t \in F_r(\Omega)$ je $\psi(\pi(t)) = t_A(a_1,\ldots,a_r)$, kde t_A je operace určená termem t v Ω -algebře A.

Důkaz. Tuto větu lze dokázat stejně jako větu 7.7 (jen místo kongruence \sim_V na $F(\Omega)$ užíváme zúžení kongruence \sim_V na podalgebru $F_r(\Omega)$, tj. průnik relací \sim_V a $F_r(\Omega) \times F_r(\Omega)$, neboli jádro projekce $\pi: F_r(\Omega) \to F_r(V)$).

Příklad. Uvažme opět typ $\Omega = \{'\}$, kde ' je unární symbol. Připomeňme, že

$$F_0(\Omega) = \emptyset,$$

$$F_1(\Omega) = \{x_1, x_1', x_1'', x_1''', \dots\},$$

$$F_2(\Omega) = \{x_1, x_1', x_1'', x_1''', \dots, x_2, x_2', x_2'', x_2''', \dots\}.$$

Nechť V je varieta určená teorií $T = \{x_1 = x_1''\}$. Pak platí

$$x_1 \sim_V x_1'' \sim_V x_1'''' \sim_V \dots$$

a

$$x_1' \sim_V x_1''' \sim_V x_1''''' \sim_V \dots$$

Je tedy

$$F_1(V) = \{\{x_1, x_1'', x_1'''', \dots\}, \{x_1', x_1''', x_1'''', \dots\}\}.$$

V této Ω -algebře se počítá takto:

$$\{x_1, x_1'', x_1'''', \dots\}' = \{x_1', x_1''', x_1''''', \dots\},\$$
$$\{x_1', x_1''', x_1''''', \dots\}' = \{x_1, x_1'', x_1'''', \dots\}.$$

Podobně

$$F_2(V) = \{ \{x_1, x_1'', x_1'''', \dots\}, \{x_1', x_1''', x_1'''', \dots\}, \{x_2, x_2'', x_2''', \dots\}, \{x_2', x_2''', \dots\}, \{x_2', x_2''', \dots\} \}.$$

Uvažme nyní varietu W určenou teorií $\{x'_1 = x''_1\}$. Platí

$$F_1(W) = \{\{x_1\}, \{x_1', x_1'', x_1''', \dots\}\},\$$

přičemž v této Ω -algebře se počítá takto:

$$\{x_1\}' = \{x_1', x_1'', x_1''', \dots\}' = \{x_1', x_1'', x_1''', \dots\}.$$

Promyslete si sami, že pro varietu U určenou teorií $\{x'_1 = x'''_1\}$ platí

$$F_1(U) = \{\{x_1\}, \{x_1', x_1''', x_1''''', \dots\}, \{x_1'', x_1'''', \dots\}\},\$$

a určete, jak se v této Ω -algebře počítá.

8. Volné algebry s libovolnou množinou generátorů

Poznámka. Jak už napovídá název, tato kapitola pojednává o obecnější situaci než kapitola předchozí. Je tedy otázka, proč jsem vlastně předchozí kapitolu do textu zařadil. Mohl jsem ihned začít s touto kapitolou a výsledky předchozí kapitoly získat jako důsledky výsledků kapitoly této. Opravdu by to tak bylo možné udělat. Důvodem pro tento postup byla však snaha o co největší možnou srozumitelnost. Protože budeme nyní pracovat s libovolnou (tedy i nespočetnou) množinou generátorů X, budeme potřebovat zobecnit definici termu: budeme nyní definovat termy typu Ω nad množinou X, přičemž připustíme, že termem je libovolný prvek množiny X.

Definice. Nechť Ω je typ, X množina. Termem typu Ω nad množinou X nazveme právě takový výraz, který lze zkonstruovat konečně mnoha aplikacemi následujících pravidel:

- Pro libovolný prvek $x \in X$ je x term typu Ω nad množinou X.
- Pro libovolný nulární operační symbol $f \in \Omega$ je f term typu Ω nad množinou X.
- Pro libovolné přirozené číslo n, libovolný n-ární operační symbol $f \in \Omega$ a libovolné termy t_1, \ldots, t_n typu Ω nad množinou X je výraz $f(t_1, \ldots, t_n)$ term typu Ω nad množinou X.

Množinu všech termů typu Ω nad množinou X budeme značit $F_X(\Omega)$.

Poznámka. Termy typu Ω , které jsme užívali dosud, jsou tedy termy typu Ω nad množinou $\{x_1, x_2, \dots\}$.

Definice. Nechť Ω je typ, X množina. Na množině $F_X(\Omega)$ definujeme volnou algebru typu Ω generovanou množinou X následujícím způsobem. Pro libovolný nární operační symbol $f \in \Omega$ definujeme n-ární operaci $f_{F_X(\Omega)}$ na Ω -algebře $F_X(\Omega)$ příslušnou operačnímu symbolu f takto: pro libovolné termy $t_1, \ldots, t_n \in F_X(\Omega)$ je $f_{F_X(\Omega)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Poznámka. Oprávněnost názvu Ω-algebry $F_X(\Omega)$ prokáží věty 8.1 a 8.2.

Příklady. Ω -algebru $F(\Omega)$ z kapitoly 7 dostaneme v předchozí definici pro množinu $X = \{x_1, x_2, \ldots\}$, pro libovolné nezáporné celé číslo r dostaneme Ω -algebru $F_r(\Omega)$ z kapitoly 7 v předchozí definici pro množinu $X = \{x_1, \ldots, x_r\}$.

Věta 8.1. Nechť Ω je typ, X množina. Uvažme podalgebru $\langle X \rangle$ generovanou v algebře $F_X(\Omega)$ množinou X. Pak platí $\langle X \rangle = F_X(\Omega)$.

Důkaz. Tato věta se dokáže stejně jako věta 7.1.

Věta 8.2. Nechť Ω je typ, X množina. Nechť A je Ω -algebra, $\phi: X \to A$ libovolné zobrazení. Pak existuje jediný homomorfismus Ω -algeber $\varphi: F_X(\Omega) \to A$ splňující podmínku $\varphi(x) = \varphi(x)$ pro všechny prvky $x \in X$.

Důkaz. Definujme zobrazení $\varphi: F_X(\Omega) \to A$ indukcí vzhledem k definici termu nad množinou X.

- Pro libovolný prvek $x \in X$ klademe $\varphi(x) = \phi(x)$.
- Aby zobrazení $\varphi: F_X(\Omega) \to A$ mohlo být homomorfismus Ω -algeber, je třeba pro libovolný nulární operační symbol $f \in \Omega$ položit $\varphi(f) = f_A$.
- Pro libovolné přirozené číslo n uvažme nyní term $t = f(t_1, \ldots, t_n)$ typu Ω nad množinou X, který vznikl z n-árního operačního symbolu $f \in \Omega$ a termů t_1, \ldots, t_n typu Ω nad množinou X. Aby zobrazení $\varphi : F_X(\Omega) \to A$ mohlo být homomorfismus Ω -algeber, je třeba, aby

$$\varphi(t) = \varphi(f(t_1, \dots, t_n)) = \varphi(f_{F_X(\Omega)}(t_1, \dots, t_n)) =$$

= $f_A(\varphi(t_1), \dots, \varphi(t_n)).$

Klademe proto $\varphi(t) = f_A(\varphi(t_1), \dots, \varphi(t_n)).$

Je zřejmé, že pro právě zkonstruované zobrazení φ platí $\varphi(x) = \varphi(x)$ pro všechny prvky $x \in X$, a že je to jediné zobrazení s touto vlastností, které by mohlo být homomorfismus Ω -algeber. Na druhou stranu lze snadno dokázat, že φ skutečně homomorfismem Ω -algeber je. Uvědomte si, že to jsme zajistili právě definicemi ve druhém a třetím bodu indukce.

Poznámka. Protože naším cílem je důkaz Birkhoffovy věty, nebudeme kongruenci \sim_V na Ω -algebře $F_X(\Omega)$ definovat pouze pro varietu V typu Ω , ale zdánlivě obecněji: pro libovolnou tzv. uzavřenou třídu Ω -algeber dle následující definice. Slovo zdánlivě je v předchozí větě uvedeno proto, že dle Birkhoffovy věty stejně nic obecnějšího nakonec nedostaneme, ukáže se totiž, že každá uzavřená třída Ω -algeber je varietou Ω -algeber.

Definice. Nechť V je třída Ω -algeber. O třídě V řekneme, že je uzavřená, právě když splňuje následující tři podmínky z Birkhoffovy věty:

• V je uzavřená na podalgebry algeber;

- V je uzavřená na obrazy algeber v homomorfismech;
- V je uzavřená na libovolné součiny algeber.

Poznámka. Snadno je vidět, že ze druhé podmínky plyne, že uzavřená třída Ω -algeber s každou Ω -algebrou A obsahuje i všechny Ω -algebry izomorfní s A.

Definice. Nechť Ω je typ, X množina. Pro libovolnou uzavřenou třídu Ω algeber V definujeme relaci \sim_V na Ω -algebře $F_X(\Omega)$ takto: pro libovolné $t_1, t_2 \in$ $F_X(\Omega)$ klademe $t_1 \sim_V t_2$ právě tehdy, když pro každou kongruenci \sim na Ω -algebře $F_X(\Omega)$ takovou, že $F_X(\Omega)/\sim$ patří do třídy V, platí $t_1 \sim t_2$.

Poznámka. Ekvivalentně lze říci, že \sim_V je průnikem všech kongruencí \sim na Ω -algebře $F_X(\Omega)$ takových, že $F_X(\Omega)/\sim$ patří do třídy V. Uvědomte si, že skutečně můžeme o tomto průniku mluvit: všechny relace na dané množině tvoří množinu (tedy ne vlastní třídu), proto tvoří množinu i všechny kongruence na dané Ω -algebře. Označme K množinu všech těch kongruencí na Ω -algebře $F_X(\Omega)$, pro které faktoralgebra $F_X(\Omega)/\sim$ patří do třídy V. Libovolná uzavřená třída Ω -algeber musí obsahovat kartézský součin prázdné množiny Ω -algeber, což je jednoprvková algebra (viz poznámku za definicí součinu libovolného počtu Ω -algeber). Proto z uzavřenosti na homomorfní obrazy dostáváme, že libovolná uzavřená třída Ω -algeber obsahuje všechny jednoprvkové Ω -algebry. Odtud plyne, že množina K je neprázdná, neboť obsahuje kongruenci $F_X(\Omega) \times F_X(\Omega)$, v níž jsou libovolné dva prvky ekvivalentní, a tedy příslušná faktoralgebra je jednoprvková.

Poznámka. Ukážeme, že právě provedená definice relace \sim_V je v případě $X = \{x_1, x_2, \dots\}$ ekvivalentní (i když to tak možná na první pohled nevypadá) s definicí kongruence \sim_V na Ω -algebře $F(\Omega)$ uvedenou v kapitole 7. Tam jsme kongruenci \sim_V definovali podmínkou: pro libovolné termy $t_1, t_2 \in F(\Omega)$ je $t_1 \sim_V t_2$ právě tehdy, když libovolná Ω -algebra z třídy V (v sedmé kapitole jí byla varieta V) splňuje rovnost $t_1 = t_2$. Tato podmínka dle definice znamená (jestliže termy t_1 , t_2 jsou k-ární), že pro libovolnou Ω -algebru A z variety V a libovolné prvky $a_1,\ldots,a_k\in A$ platí $(t_1)_A(a_1,\ldots,a_k)=(t_2)_A(a_1,\ldots,a_k)$. Podle věty 7.3 je poslední podmínka ekvivalentní s následující podmínkou: pro libovolnou Ω algebru A z variety V a libovolný homomorfismus Ω -algebru $\varphi: F(\Omega) \to A$ platí $\varphi(t_1) = \varphi(t_2)$. Protože pro každý homomorfismus Ω -algeber φ je $\varphi(F(\Omega))$ podalgebrou Ω -algebry A a protože třída V je uzavřená na podalgebry, stačí se v poslední podmínce omezit jen na surjektivní homomorfismy. Navíc, označíme-li \sim jádro homomorfismu φ , platí $\varphi(t_1) = \varphi(t_2)$ právě tehdy, když $t_1 \sim t_2$. V případě, kdy je homomorfismus φ surjektivní, je podle důsledku věty 4.5 Ω -algebra A izomorfní s faktoralgebrou $F(\Omega)/\sim$, a z toho, že A patří do třídy V, plyne, že též $F(\Omega)/\sim$ patří do třídy V. Dostali jsme tedy: pro libovolné termy $t_1, t_2 \in F(\Omega)$ je $t_1 \sim_V t_2$ právě tehdy, když pro libovolnou kongruenci \sim na Ω -algebře $F(\Omega)$ takovou, že faktoralgebra $F(\Omega)/\sim$ patří do třídy V, platí $t_1 \sim t_2$. To je ale právě předchozí definice.

Věta 8.3. Nechť Ω je typ, X množina. Nechť V je uzavřená třída Ω -algeber. Pak platí:

- Relace \sim_V je kongruencí na Ω -algebře $F_X(\Omega)$.
- Faktorová algebra $F_X(V) = F_X(\Omega)/\sim_V \Omega$ -algebry $F_X(\Omega)$ podle kongruence \sim_V patří do třídy V.

Důkaz. Víme, že \sim_V je průnikem neprázdné množiny K všech kongruencí \sim

na Ω -algebře $F_X(\Omega)$ takových, že $F_X(\Omega)/\sim$ patří do V. První tvrzení tedy plyne z prvního tvrzení věty 4.4. Podle druhého tvrzení věty 4.4 existuje homomorfismus Ω -algeber $\varphi: F_X(\Omega) \to \prod_{\sim \in K} F_X(\Omega)/\sim$, jehož jádrem je průnik všech kongruencí $\sim \in K$, tedy kongruence \sim_V . Podle důsledku věty 4.5 je $F_X(V) = F_X(\Omega)/\sim_V$ izomorfní s podalgebrou $\varphi(F_X(\Omega))$ Ω -algebry $\prod_{\sim \in K} F_X(\Omega)/\sim$. Tento součin Ω -algebre z uzavřené třídy V patří do V a opět z uzavřenosti V plyne, že také jeho podalgebra $\varphi(F_X(\Omega))$ patří do V, a tedy do V patří i s touto Ω -algebrou izomorfní Ω -algebra $F_X(V)$, což se mělo dokázat.

Definice. Nechť Ω je typ, X množina, V je uzavřená třída Ω -algeber. Faktorová algebra $F_X(V) = F_X(\Omega)/\sim_V z$ věty 8.3 se nazývá volná algebra třídy V generovaná množinou X. Nechť $\mu: X \to F_X(V)$ je zobrazení určené podmínkou $\mu(x) = \pi(x)$ pro všechny prvky $x \in X$, kde $\pi: F_X(\Omega) \to F_X(V)$ je projekce na faktorovou algebru. Pak zobrazení μ se nazývá vnoření generátorů do volné algebry $F_X(V)$.

Poznámka. Pokud třída V obsahuje nějakou Ω -algebru, která není jednoprvková nebo prázdná, lze snadno odvodit z následující věty 8.4, že zobrazení μ je injektivní.

Poznámka. Nyní ukážeme, že Ω -algebra $F_X(V)$ z předchozí definice skutečně splňuje charakterizační podmínku volné algebry.

Věta 8.4. Nechť Ω je typ, X množina. Nechť V je uzavřená třída Ω -algeber, $F_X(V) = F_X(\Omega)/\sim_V$ volná algebra třídy V generovaná množinou X, $\mu: X \to F_X(V)$ vnoření generátorů do volné algebry $F_X(V)$. Nechť A je libovolná Ω -algebra Z třídy V a $\varphi: X \to A$ libovolné zobrazení. Pak existuje jediný homomorfismus Ω -algeber $\psi: F_X(V) \to A$ splňující podmínku $\psi \circ \mu = \varphi$.

Důkaz. Dokažme nejprve existenci homomorfismu ψ . Nechť $\pi: F_X(\Omega) \to$ $F_X(V)$ je projekce na faktorovou algebru. Podle věty 8.2 existuje jediný homomorfismus Ω -algeber $\varphi: F_X(\Omega) \to A$ splňující podmínku $\varphi(x) = \phi(x)$ pro všechny prvky $x \in X$. Protože $\varphi(F_X(\Omega))$ je podalgebra Ω -algebry A patřící do V, z uzavřenosti V plyne, že do V patří $\varphi(F_X(\Omega))$. Označme \sim jádro homomorfismu φ . Podle důsledku věty 4.5 je $\varphi(F_X(\Omega))$ izomorfní s $F_X(\Omega)/\sim$. Proto $F_X(\Omega)/\sim$ patří do V, a tedy \sim je jedna z těch kongruencí, jejichž průnikem je \sim_V . Je proto kongruence \sim_V menší nebo rovna kongruenci \sim . Protože \sim je jádro homomorfismu $\varphi: F_X(\Omega) \to A, F_X(V) = F_X(\Omega)/\sim_V \text{ a } \pi: F_X(\Omega) \to F_X(V) \text{ je projekce na}$ faktorovou algebru, podle věty 4.5 existuje jediný homomorfismus Ω -algeber $\tilde{\varphi}$: $F_X(V) \to A$ s vlastností $\tilde{\varphi} \circ \pi = \varphi$. Protože pak $\tilde{\varphi}(\mu(x)) = \tilde{\varphi}(\pi(x)) = \varphi(x) = \varphi(x)$ pro všechny prvky $x \in X$, platí $\tilde{\varphi} \circ \mu = \phi$, a tedy je $\psi = \tilde{\varphi}$ hledaný homomorfismus. Dokažme nyní, že homomorfismus ψ je podmínkou věty určen jednoznačně. Nechť tedy homomorfismus Ω -algeber $\psi': F_X(V) \to A$ také splňuje podmínku $\psi' \circ \mu = \phi$. Pak $\psi'(\pi(x)) = \phi(x)$ pro všechny prvky $x \in X$ a $\varphi' = \psi' \circ \pi$ splňuje podmínku věty 8.2. Protože homomorfismus splňující tuto podmínku je jediný, dostáváme $\varphi' = \varphi$. Tedy $\psi' \circ \pi = \tilde{\varphi} \circ \pi$, z jednoznačnosti z věty 4.5 plyne $\psi' = \tilde{\varphi} = \psi$. Věta je dokázána.

Poznámka. V následující větě ukážeme, že podmínka z předchozí věty skutečně charakterizuje Ω -algebru $F_X(V)$, určuje ji totiž jednoznačně až na izomorfismus.

Věta 8.5. Nechť Ω je typ, X množina. Nechť V je uzavřená třída Ω -algeber, $F_X(V) = F_X(\Omega)/\sim_V$ volná algebra třídy V generovaná množinou X, $\mu: X \to F_X(V)$ vnoření generátorů do volné algebry $F_X(V)$. Nechť algebra U z třídy V a zobrazení $\nu: X \to U$ splňují následující podmínku: pro libovolnou Ω -algebru A z třídy V a libovolné zobrazení $\phi: X \to A$ existuje jediný homomorfismus Ω -algeber $\psi: U \to A$ splňující podmínku $\psi \circ \nu = \phi$. Pak platí: existuje izomorfismus Ω -algeber $\rho: U \to F_X(V)$ takový, že $\rho \circ \nu = \mu$.

Důkaz. Protože Ω -algebra U splňuje podmínku věty, pro Ω -algebru $F_X(V)$ a zobrazení $\mu: X \to F_X(V)$ existuje homomorfismus Ω -algeber $\rho: U \to F_X(V)$ splňující $\rho \circ \nu = \mu$. Jen je třeba ukázat, že ρ je izomorfismus. Naopak, podle věty 8.4 pro Ω -algebru U a zobrazení $\nu: X \to U$ existuje homomorfismus Ω -algeber $\psi: F_X(V) \to U$ splňující podmínku $\psi \circ \mu = \nu$. Pak homomorfismus $\rho \circ \psi: F_X(V) \to F_X(V)$ splňuje $\rho \circ \psi \circ \mu = \rho \circ \nu = \mu$. Rovněž identita na $F_X(V)$, tj. zobrazení $\iota_{F_X(V)}: F_X(V) \to F_X(V)$ splňující $\iota_{F_X(V)}(a) = a$ pro každé $a \in F_X(V)$, je homomorfismem, pro který platí $\iota_{F_X(V)} \circ \mu = \mu$. Protože dle věty 8.4 (pro Ω -algebru $F_X(V)$ a zobrazení $\mu: X \to F_X(V)$) je takový homomorfismus určen jednoznačně, platí $\rho \circ \psi = \iota_{F_X(V)}$. Zcela analogicky se dokáže, že $\psi \circ \rho$ je identita na U. To ale znamená, že ψ je inverzní zobrazení k ρ , a tedy ρ je bijekce, což jsme chtěli dokázat.

Poznámka. Nyní jsme již schopni dokázat Birkhoffovu větu, kterou jsme uvedli již jednou jako větu 6.6, ale nedokončili jsme důkaz jedné implikace.

Věta 8.6. (Birkhoff) Nechť Ω je typ. Třída Ω -algeber je varieta, právě když splňuje všechny tři následující podmínky:

- je uzavřená na podalgebry algeber;
- je uzavřená na obrazy algeber v homomorfismech;
- je uzavřená na libovolné součiny algeber.

Důkaz. Jedna implikace byla již dokázána v kapitole 6. Nechť V je libovolná uzavřená třída Ω -algeber. Ukážeme, že V je varieta. Označme T množinu všech rovností typu Ω , které platí ve všech Ω -algebrách z třídy V. Označme W varietu Ω -algeber určenou teorií T. Je třeba dokázat, že V=W. Z definice T je jasné, že platí inkluze $V\subseteq W$. Ukážeme nyní, že také $W\subseteq V$. Zvolme libovolně Ω -algebru $A\in W$. Věta bude dokázána, ukážeme-li, že $A\in V$.

Uvažme volnou algebru $F_X(W) = F_X(\Omega)/\sim_W$ třídy W generovanou množinou X, přičemž za X volíme nosnou množinu Ω -algebry A. Podle věty 8.4, v níž za zobrazení $\phi: X \to A$ volíme identitu, existuje homomorfismus Ω -algeber $\varphi: F_X(W) \to A$ splňující podmínku $\varphi(x) = \phi(x) = x$ pro všechny prvky $x \in X$. Protože X = A, je zjevně φ surjektivní. Máme též volnou algebru $F_X(V) = F_X(\Omega)/\sim_V$ třídy V generovanou stejnou množinou X. Označme K_V (resp. K_W) množinu všech kongruencí \sim na Ω -algebře $F_X(\Omega)$ takových, že $F_X(\Omega)/\sim$ patří do třídy V (resp. W). Z inkluze $V \subseteq W$ plyne inkluze $K_V \subseteq K_W$. Protože \sim_V je průnikem všech kongruencí z množiny K_V a \sim_W je průnikem všech kongruencí z množiny K_W , plyne odtud, že $\sim_W \subseteq \sim_V$. Budeme hotovi, ukážeme-li také opačnou inkluzi $\sim_V \subseteq \sim_W$. Pak totiž budou obě kongruence \sim_W a \sim_V stejné, a proto $F_X(W) = F_X(\Omega)/\sim_W = F_X(\Omega)/\sim_V = F_X(V)$ bude patřit do třídy V. Z uzavřenosti třídy V pak do V bude patřit i homomorfní obraz $\varphi(F_X(W)) = A$, což právě potřebujeme dokázat.

Zaměřme se tedy na důkaz inkluze $\sim_V \subseteq \sim_W$. Nechť $t_1, t_2 \in F_X(\Omega)$ jsou libovolné termy takové, že $t_1 \sim_V t_2$. Pro projekci na faktoralgebru $\pi : F_X(\Omega) \to F_X(V)$ tedy platí $\pi(t_1) = \pi(t_2)$. Podle definice termu nad množinou X je při tvorbě každého termu použito jen konečně mnoho prvků množiny X. Označme si x_1, \ldots, x_n ty prvky množiny X, které byly použity při tvorbě termů t_1 a t_2 ; jsou tedy t_1 a t_2 při tomto označení n-árními termy typu Ω , tj. $t_1, t_2 \in F_n(\Omega)$.

Dokažme nejprve, že rovnost $t_1 = t_2$ patří do teorie T, tj. že platí ve všech Ω -algebrách z třídy V. Zvolme libovolně Ω -algebru B z třídy V a její prvky $b_1,\ldots,b_n\in B$ a ukažme, že $(t_1)_B(b_1,\ldots,b_n)=(t_2)_B(b_1,\ldots,b_n)$. Uvažme zobrazení $\phi: X \to B$ takové, že pro každé $m = 1, \ldots, n$ platí $\phi(x_m) = b_m$ a pro všechny ostatní prvky $x \in X$ různé od x_1, \ldots, x_n dodefinujme $\phi(x) = b_1$ (ve speciálním případě n=0 všechny prvky množiny X zobrazíme na nějaký libovolně zvolený prvek z Ω -algebry B). Označme $\mu: X \to F_X(V)$ vnoření generátorů do volné algebry $F_X(V)$ třídy V. Podle definice je tedy $\mu(x) = \pi(x)$ pro všechny prvky $x \in X$. Podle věty 8.4 existuje homomorfismus Ω-algeber $\varphi : F_X(V) \to B$ splňující podmínku $\varphi \circ \mu = \phi$. Označme $\psi = \varphi \circ \pi$, je tedy $\psi : F_X(\Omega) \to B$ homomorfismus, přičemž pro všechny prvky $x \in X$ platí $\psi(x) = \varphi(\pi(x)) = \varphi(\mu(x)) = \varphi(x)$ $\phi(x)$. Ovšem $F_n(\Omega)$ je podalgebra Ω -algebry $F_X(\Omega)$, proto můžeme uvážit homomorfismus $\psi': F_n(\Omega) \to B$, který je zúžením homomorfismu ψ . Pro každé $m=1,\ldots,n$ platí $\psi'(x_m)=\psi(x_m)=\phi(x_m)=b_m$. Z věty 7.4 plyne, že homomorfizmus vycházející z volné algebry $F_n(\Omega)$ je jednoznačně určen svými obrazy na generátorech x_1, \ldots, x_n , podle věty 7.4 tedy pro libovolný term $t \in F_n(\Omega)$ je $\psi'(t) = t_B(b_1, \ldots, b_n)$. Připomeňme, že $\pi(t_1) = \pi(t_2)$; celkem tedy platí

$$(t_1)_B(b_1,\ldots,b_n) = \psi'(t_1) = \psi(t_1) = \varphi(\pi(t_1)) = \varphi(\pi(t_2)) = \psi(t_2) = \psi'(t_2) = (t_2)_B(b_1,\ldots,b_n),$$

a tedy rovnost $t_1 = t_2$ patří do teorie T.

Nechť $\nu: F_X(\Omega) \to F_X(W)$ je projekce na faktoralgebru a $\nu': F_n(\Omega) \to F_X(W)$ její zúžení na podalgebru $F_n(\Omega)$. Podle věty 7.4 je homomorfismus ν' jednoznačně určen svými obrazy na generátorech a pro každý term $t \in F_n(\Omega)$ tedy platí $\nu'(t) = t_{F_X(W)}(\nu'(x_1), \ldots, \nu'(x_n))$. Ovšem $F_X(W)$ je Ω -algebra z variety W určené teorií T, rovnost $t_1 = t_2$, o které jsme dokázali, že do teorie T patří, tedy platí i v $F_X(W)$, odkud plyne

$$\nu(t_1) = \nu'(t_1) = (t_1)_{F_X(W)}(\nu'(x_1), \dots, \nu'(x_n)) =$$

$$= (t_2)_{F_X(W)}(\nu'(x_1), \dots, \nu'(x_n)) = \nu'(t_2) = \nu(t_2).$$

To znamená, že $t_1 \sim_W t_2$, což jsme právě potřebovali dokázat.

Poznámka. V průběhu důkazu věty 8.6 jsme odvodili další vlastnost volné algebry, která stojí za zmínku. Všimněte si, že pro každou varietu V typu Ω platí: libovolná rovnost typu Ω platí ve volné algebře F(V) variety V právě tehdy, když tato rovnost platí v každé Ω -algebře variety V.