

Predicting Housing Prices in King County, WA

NOVEMBER 2020 MARK, MATT, MEL

Context

"Helping good people find affordable homes."

M3 Consulting

Working with several non-profit groups in King County, WA:

- What features help predict home price (under \$500K)?
- 2) What features can be minimized to bring down home price?
- 3) Where in King County should new buyers look for affordable homes?

Understanding the Context

King County, WA:

- Population (2010): 1.9 million
- HH Income (2014): \$75K
- Median home value (2014-2018): \$494K
- Tech boom of the 2000 has created one of the most expensive housing markets in the country
- In a recent survey, the top feature buyers said they want most:
 - "a home that is within my initial budget" (89%)

Meet the Salazar family

Currently renting an apartment

Looking to buy their first home

HH Income of \$75K

Assuming a \$10K down payment, they can afford a \$316K home*

"We want a home we can afford, and that will be a safe place for our kids to grow."

^{*}based on an affordability calculator

Data

Exploring the Data

Housing Sales Data:

- Data provided by King County Assessors Office
- Home sales: May 2014 to May 2015
- ~ 21,000 records
- 21 variables

Our Process*:

Our Data Journey

Researched features

Visualized and looked at descriptive statistics

Examined distributions

Looked for linear relationships

Formated features as numbers; null values turned into 0's

Removed un-used features (zip code, date, longitude)

Checked for duplicates

BUILDING GRADE

Represents the construction quality of improvements. Grades run from grade 1 to 13. Generally defined as:

- 1-3 Falls short of minimum building standards. Normally cabin or inferior structure.
- 4 Generally older, low quality construction. Does not meet code.
- 5 Low construction costs and workmanship. Small, simple design
- ${\small 6}\ Lowest\ grade\ currently\ meeting\ building\ code.\ Low\ quality\ materials\ and\ simple\ designed \\$
- 7 Average grade of construction and design. Commonly seen in plats and older sub-di-
- 8 Just above average in construction and design. Usually better materials in both the e
- 9 Better architectural design with extra interior and exterior design and quality.
- 10 Homes of this quality generally have high quality features. Finish work is better and footage.
- 11 Custom design and higher quality finish work with added amenities of solid woods,
- 12 Custom design and excellent builders. All materials are of the highest quality and all
- 13 Generally custom designed and built. Mansion level. Large amount of highest quali

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqt
count	2.045200e+04	20452.000000	20452.000000	20452.000000	2.045200e+04	20452.000000	20452.000000	20452.000000	20452.000000	20452.000000	2045
mean	4.824466e+05	3.318942	2.034581	1971.131527	1.442586e+04	1.473988	0.002934	0.180227	3.409544	7.537209	170
std	2.198012e+05	0.867106	0.674796	763.014605	3.907029e+04	0.536213	0.054085	0.658488	0.648611	1.041994	71
min	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.000000	0.000000	0.000000	1.000000	3.000000	37
25%	3.150000e+05	3.000000	1.500000	1400.000000	5.000000e+03	1.000000	0.000000	0.000000	3.000000	7.000000	117
50%	4.380000e+05	3.000000	2.000000	1860.000000	7.500000e+03	1.000000	0.000000	0.000000	3.000000	7.000000	152
75%	6.050000e+05	4.000000	2.500000	2430.000000	1.034450e+04	2.000000	0.000000	0.000000	4.000000	8.000000	210
max	1.270000e+06	11.000000	3.500000	7350.000000	1.651359e+06	3.500000	1.000000	4.000000	5.000000	12.000000	545
+2_std	9.220490e+05	5.053153	3.384173	3497.160738	9.256644e+04	2.546414	0.111105	1.497203	4.706766	9.621196	313
-2_std	4.284423e+04	1.584730	0.684989	445.102317	-6.371472e+04	0.401562	-0.105237	-1.136749	2.112322	5.453222	27

Modeling

Our Modeling Journey

A) Mid-priced

Limited price: \$315K to \$605K (7 models; r2~0.10)

B) Low-priced

Limited price: \$154K to \$315K (8 models; r2~0.19)

C) Adjust features

Tried adjusting scales of most features (min-max) and logged grade.
(3 models; r2~0.20)

D) Add latitude

Added in latitude (bands) and this helped.
Broadened price to \$453K.
(4 models; r2~0.492)

Low-priced shows clearer linear relationship

Re-examining scatter plots led us to shift from mid-priced homes to low-priced homes

Location, location, location...

Plotting home sales on a map revealed an important pattern in our data (latitude more pronounced differences than longitude)

Created 6 bands for latitude

From the bands, created separate "dummy" features (lat_1 to lat_6)*.

Model Adjustments

Removed outliers

Created banding and "dummy" variables (latitude; year built)

Created new variables (bed and bath combined)

Didn't include highly related features

Removed insignificant features

Our Final Model

Top features contributing to the model (t-scores*):

Latitude

4 of the 6 latitude bands (3, 4, 5, 6)

Year built

3 of 6 bands (1940 to 2000)

Other

Condition (5 levels) and View (4 levels of quality)

Model Details:

- Price is target feature (\$154K to \$438K)
- 11 predictor features
- n = 7,212 (train set)

Success Criteria:

- \circ r2 = **0.52**
- RMSE = 50,137 (test)
- Cross Validation (8-folds)RMSE = 49,932 (mean)

^{*} Higher t-scores mean the feature contributes more to the model.

Predicting with the Model (The Salazar's \$316K target price)

- A) Size: Each additional sq. ft of living area will add \$52 to the home price.*
- B) Location: A home in latitude 5 (Seattle) will add ~\$135K to the home price versus a home in latitude 1 (south).*

^{*} Based on coefficient values for the feature, when all other features are held constant.

Conclusions

Insights

Key Learnings

- Location is a key factor
- Living space, quality also important
- Iterating is vital to modelling

Limitations of our Model / Approach

- Relatively low predictive power; high margin of error
- Limiting price range may have hurt model
- Data not fulfill all of model assumptions
- Over-reliance on categorical data?
- Linear regression may not be the best modeling approach for the data

Next Steps

More exploration of **location**:

- transit routes
- walkability
- proximity to grocery stores

Examine various **home types**:

- duplex
- town-homes
- condos

Investigate other dwelling / property **features**:

- \circ floor plans
- private yard
- Parking

Explore impact of **Covid-19** on prices and market

Thanks

Many thanks to:

- Flatiron School
- Our fearless instructor: Yish Lim
- Fill-in instructors: Amber Y., Lindesy B., and Abhineet K.
- Our helpful classmates in cohort (onl-ft-092820)

Learn more at: https://github.com/melfriedman/KingHousing

Contact us:

Matthew: mattzhang989@gmail.com

Mark: <u>markpatterson8@hotmail.com</u>

Mel: melfriedman27@gmail.com

