Brute Force

- . Sorting
- . Brute-Force string matching
- . Polynomial Evaluation
 - Closest pair problem by brute force

Brute Force

A straightforward approach, usually based directly on the problem's statement and definitions of the concepts involved

Outline (Sorting)

- Several sorting algorithms:
 - Bubble Sort
 - Selection Sort
 - Insertion Sort
- For each algorithm:
 - Basic Idea
 - Example
 - Implementation
 - Algorithm Analysis

Sorting

- ❖ Sorting = ordering.
- ❖ Sorted = ordered based on a particular way.
- Generally, collections of data are presented in a sorted manner.
- Examples of Sorting:
 - Words in a dictionary are sorted (and case distinctions are ignored).
 - Files in a directory are often listed in sorted order.
 - The index of a book is sorted (and case distinctions are ignored).
 - Many banks provide statements that list checks in increasing order (by check number).
 - In a newspaper, the calendar of events in a schedule is generally sorted by date.
 - Musical compact disks in a record store are generally sorted by recording artist.

❖ Why?

• Imagine finding the phone number of your friend in your mobile phone, but the phone book is not sorted.

Bubble Sort: Idea

- ❖Idea: bubble in water.
 - Bubble in water moves upward. Why?
- ❖How?
 - When a bubble moves upward, the water from above will move downward to fill in the space left by the bubble.

Bubble Sort: Example

Notice that at least one element will be in the correct position each iteration.

Bubble Sort: Example

Bubble Sort: Implementation

```
void sort(int a[]) {
    for (int i = a.length; i>=0; i--) {
        boolean swapped = false;
        for (int j = 0; j < i; j ++) {
            if (a[j] > a[j+1]) {
                 int T = a[j];
                 a[j] = a[j+1];
                 a[j+1] = T;
                 swapped = true;
        if (!swapped)
            return;
```


Bubble Sort: Analysis

- ❖Running time:
 - Worst case: O(N²)

Selection Sort: Idea

- 1. We have two group of items:
 - sorted group, and
 - unsorted group
- 2. Initially, all items are in the unsorted group. The sorted group is empty.
 - We assume that items in the unsorted group unsorted.
 - We have to keep items in the sorted group sorted.
- 3. Select the "best" (eg. smallest) item from the unsorted group, then put the "best" item at the end of the sorted group.
- 4. Repeat the process until the unsorted group becomes empty.

Selection Sort: Example

Selection Sort: Example

Selection Sort: Example

Selection Sort: Implementation

```
void sort(int a[]) throws Exception
    for (int i = 0; i < a.length; i++) {
        int min = i;
        int j;
        /*
          Find the smallest element in
         the unsorted list
        * /
        for (j = i + 1; j < a.length; j++)
            if (a[j] < a[min]) {
                min = j;
```


Selection Sort: Implementation

```
/*
    Swap the smallest unsorted element
    into the end of the
    sorted list.
    */
    int T = a[min];
    a[min] = a[i];
    a[i] = T;
    ...
}
```


Selection Sort: Analysis

- ❖Running time:
 - Worst case: O(N²)
- Based on big-oh analysis, is selection sort better than bubble sort?

Insertion Sort: Idea

❖Idea: sorting cards.

```
08 | 5 9 2 6 3
```

Insertion Sort: Idea

- 1. We have two group of items:
 - sorted group, and
 - unsorted group
- 2. Initially, all items in the unsorted group and the sorted group is empty.
 - We assume that items in the unsorted group unsorted.
 - We have to keep items in the sorted group sorted.
- 3. Pick any item from, then insert the item at the right position in the sorted group to maintain sorted property.
- 4. Repeat the process until the unsorted group becomes empty.

Insertion Sort: Example

Insertion Sort: Example

Insertion Sort: Example

Sorting: Insertion Sort

```
InsertionSort(A, n) {
 for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
```



```
i = \emptyset j = \emptyset key = \emptyset

A[j] = \emptyset A[j+1] = \emptyset
```

```
InsertionSort(A, n) {
  for i = 2 to n \{
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      A[j+1] = key
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 1 key = 10
A[j] = 30 A[j+1] = 30
```



```
i = 2 j = 1 key = 10
A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 10

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

Insertion Sort

```
InsertionSort(A, n)

for i=2 to n do

key = A[i] \qquad \qquad C_1
j=i-1

while j>0 and A[j]>key do
A[j+1]=A[j] \qquad \qquad C_2
A[j+1]=key
```

$$T(n) \leq \sum_{i=2}^{n} (c_1 + c_2 i) = c_3 n^2 + c_4 n + c_5$$

Analysis

Simplifications

- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
 - Highest-order term is what counts
 - Remember, we are doing asymptotic analysis
 - As the input size grows larger it is the high order term that dominates

Insertion Sort: Analysis

- Running time analysis:
 - Worst case: O(N²)

- ❖ Is insertion sort faster than selection sort?
- Notice the similarity and the difference between insertion sort and selection sort.

A Lower Bound

- ❖Bubble Sort, Selection Sort, Insertion Sort all have worst case of O(N²).
- *Turns out, for any algorithm that exchanges adjacent items, this is the best worst case: $\Omega(N^2)$
- ❖In other words, this is a lower bound!

Brute-Force String Matching

- pattern: a string of m characters to search for
- text: a (longer) string of n characters to search in
- problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

- Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until
 - all characters are found to match (successful search); or
 - a mismatch is detected
- Step 3 While pattern is not found and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2


```
O D Y _ N O T I C E D _ H I M
    В
  0 T
Ν
  N
    0
      Τ
    N
      0 T
       N
         0 T
         Ν
           0 T
           N
              0 T
              Ν
                0 T
                 N
                  0 T
```

Pseudocode and Efficiency

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])
    //Implements brute-force string matching
    //Input: An array T[0..n-1] of n characters representing a text and
            an array P[0..m-1] of m characters representing a pattern
    //Output: The index of the first character in the text that starts a
              matching substring or -1 if the search is unsuccessful
    for i \leftarrow 0 to n - m do
        i \leftarrow 0
        while j < m and P[j] = T[i + j] do
            j \leftarrow j + 1
        if j = m return i
    return -1
```


0-1 Knapsack problem

∂Given a knapsack with maximum capacity W, and a set S consisting of n items

 \mathcal{Q} Each item *i* has some weight w_i and benefit value v_i

0-1 Knapsack problem: a picture

0-1 Knapsack problem

A Problem, in other words, is to find

$$\max \sum_{i \in T} v_i \text{ subject to } \sum_{i \in T} w_i \leq W$$

- **N** The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.
- **Q** In the "Fractional Knapsack Problem," we can take fractions of items.

0-1 Knapsack problem: brute-force approach

Let's first solve this problem with a straightforward algorithm

 Ω We go through all combinations (subsets) and find the one with maximum value and with total weight less or equal to W

Example 2: Knapsack Problem

Given *n* items:

- weights: w_1 w_2 ... w_n
- values: $v_1 \ v_2 \dots v_n$
- a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16

<u>item</u>	weight	value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Knapsack Problem by Exhaustive Search

Subset	Total	weight	Total value
{1}	2	\$20	
{2}	5	\$30	
{3}	10	\$50	
{4}	5	\$10	
{1,2}	7	\$50	
{1,3}	12	\$70	
{1,4}	7	\$30	
{2,3}	15	\$80	
{2,4}	10	\$40	
{3,4}	15	\$60	
{1,2,3}	17	not feas	sible
{1,2,4}	12	\$60	
{1,3,4}	17	not feas	sible
{2,3,4}	20	not feas	sible
{1,2,3,4}	22	not feas	sible

0-1 Knapsack problem: brute-force approach

NAlgorithm:

 We go through all combinations and find the one with maximum value and with total weight less or equal to W

ล Efficiency:

- Since there are n items, there are 2ⁿ possible combinations of items.
- Thus, the running time will be O(2ⁿ)

Matrix-chain multiplication (мсм) -

- ❖ Problem: given <A₁, A₂, ...,A_n>, compute the product: A₁ \times A₂ \times ... \times A_n, find the fastest way (i.e., minimum number of multiplications) to compute it.
- Suppose two matrices A(p,q) and B(q,r), compute their product C(p,r) in $p \times q \times r$ multiplications

```
for i=1 to p for j=1 to r C[i,j]=0
for i=1 to p
for j=1 to r
for k=1 to q
C[i,j] = C[i,j] + A[i,k]B[k,j]
```


Matrix-chain multiplication -DP

- Different parenthesizations will have different number of multiplications for product of multiple matrices
- ***** Example: A(10,100), B(100,5), C(5,50)
 - If $((A \times B) \times C)$, $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
 - If $(A \times (B \times C))$, $10 \times 100 \times 50 + 100 \times 5 \times 50 = 75000$
- ❖ The first way is ten times faster than the second !!!
- ❖ Denote $<A_1, A_2, ..., A_n>$ by $< p_0, p_1, p_2, ..., p_n>$
 - i.e, $A_1(p_0, p_1)$, $A_2(p_1, p_2)$, ..., $A_i(p_{i-1}, p_i)$, ... $A_n(p_{n-1}, p_n)$

Matrix-chain multiplication –MCM DP

- Intuitive brute-force solution: Counting the number of parenthesizations by exhaustively checking all possible parenthesizations.
- \clubsuit Let P(n) denote the number of alternative parenthesizations of a sequence of n matrices:

•
$$P(n) = \begin{cases} 1 \text{ if } n=1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) \text{ if } n \ge 2 \end{cases}$$

- **The solution to the recursion is** $\Omega(2^n)$.
- So brute-force will not work.

Convex hull problem

Convex hull

• Problem:

Find <u>smallest convex polygon</u> enclosing *n* points on the plane

Convex:

- A <u>geometric figure</u> with no indentations.
- Formally, a geometric figure is convex if every <u>line segment</u> connecting <u>interior points</u> is entirely contained within the figure's interior.

Example: Convex Hull

Input: $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}, p_{11}$

Output: $p_2, p_9, p_{11}, p_4, p_5, p_6, p_8, p_2$

- - Consider all the points in the polygon as a set. An extreme point is a point of the set that is not a middle point of any line segment with end points in the set.

• Consider all the points in the polygon as a set. An extreme point is a point of the set that is not a middle point of any line segment with end points in the set.

Which pairs of extreme points need to be connected to form the boundary of the convex hull?

 Ω A line segment connecting two points P_i and P_j of a set of n points is a part of its convex hull's boundary if and only if all the other points of the set lies on the same side of the straight line through these two points.

- - ax + by = cwhere a = y2 - y1, b = x1 - x2, c = x1y2 - y1x2
- Ω Such a line divides the plane into two half-planes: for all the points in one of them: ax + by > c, while for all the points in the other, ax + by < c.

Algorithm: For each pair of points p_1 and p_2 determine whether all other points lie to the same side of the straight line through p_1 and $p_{2,}$ i.e. whether ax+by-c all have the same sign

Algorithm: For each pair of points p_1 and p_2 determine whether all other points lie to the same side of the straight line through p_1 and p_2 , i.e. whether ax+by-c all have the same sign

❖ Efficiency: $\Theta(n^3)$

Brute force strengths and weaknesses

∂Strengths:

- wide applicability
- simplicity
- yields reasonable algorithms for some important problems
 - sorting; matrix multiplication; closest-pair; convex-hull
- yields standard algorithms for simple computational tasks and graph traversal problems

Brute force strengths and weaknesses

∂Weaknesses:

- rarely yields efficient algorithms
- some brute force algorithms unacceptably slow
 - e.g., the recursive algorithm for computing Fibonacci numbers
- not as constructive/creative as some other design techniques