Estimation with Partial Linear Model: Asymptotics

川田恵介

Table of contents

1		大標本性質: without nuisance	2
	1.1	イメージ: 近似に基づく議論	3
	1.2	例: 平均値の推定	3
	1.3	例: 平均値の推定	3
	1.4	大標本性質: ざっくり	4
	1.5	応用上の含意....................................	4
	1.6	平均值: $N=2000$	5
	1.7	平均值: $N=200$	5
	1.8	大標本性質	6
	1.9	収束速度	6
	1.10	例: $\theta-\theta_0$	6
	1.11	例: $\sqrt{N}(\theta-\theta_0)$	7
	1.12	拡張: 合成指標	7
	1.13	拡張: Implicit function	7
	1.14	例	8
	1.15	注意点	8
	1.16	補論: 正規分布への収束	8
2		大標本性質: with nuisance function	8
_	2.1	R-leaner	8
	2.1	Single-leaner	9
	2.3	Estimator	9
	2.3	分解	9
	2.4	分解	9
		イメージ	
	2.6 2.7		
		イメージ	
	2.8	仮定	
	2.9	イメージ: R learner	
	2.10	イメージ: Normalized	12

	2.11	AI のミスの影響への保障: Recap	12
	2.12	仮定: 収束速度	12
	2.13	補論: 収束速度	13
	2.14	前提: サンプル分割	13
	2.15	数值例	13
	2.16	数值例: Add outliear	13
	2.17	補論: 収束速度	14
	2.18	Single learner	
	2.19	イメージ: Single Model	15
3		Neyman's ohtogonal condition	15
	3.1	Estimand	15
	3.2	Neyman's ohth gonal condition	16
	3.3	実装	16
	3.4	仮定の検討	16
	Refer	ence	17

1 大標本性質: without nuisance

- 事例数が無限大に大きい時に成り立つ性質を、事例数が十分に大きことを前提に近似的に用いる
 - サンプリング方法に"強い"仮定 = "ランダムサンプリング"
 - 教科書的な最尤法やベイズ法に比べて、母集団への parametric assumption が少ない

1.1 イメージ: 近似に基づく議論

- 十分大きい N を前提に、近似的に"0" として議論
 - B_N の方が近似精度が良い

1.2 例: 平均値の推定

- ・ Estimand: Yの母平均 $\theta_0=E[Y]=\int Y f(Y) dY$
 - Estimator: サンプル平均 $\theta = \sum_i Y_i/N$
 - * Moment 法 ("置き換え法")
- Estimator は、データ上のYの分布に依存するので、研究者によって異なる
 - 一般に $\theta_0 \neq \theta$
 - -多くの実証研究では、点推定量だけでなく信頼区間 (ないし代替指標 (Imbens 2021)) を報告し、対処する

1.3 例: 平均値の推定

• 平均値の推定

```
readr::read_csv("Public/Data.csv") |>
estimatr::lm_robust(
  Price ~ 1,
  data = _)
```

Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF (Intercept) 39.00496 0.2015849 193.4915 0 38.60984 39.40008 22138

• 何を根拠に、どのような解釈ができるのか?

1.4 大標本性質: ざっくり

- 事例数が無限大になると、Estimator の分布について、以下の性質が成り立つ
 - サンプル平均は、母平均 θ_0 に収束する

$$\theta_0 - \theta \rightarrow, N \rightarrow \infty$$

- θ の分布は、正規分布 $N(\theta_0,\sigma^2/N)$ に収束する (中心極限定理) $*\ \sigma^2 = Y \ \text{の母分散}$

1.5 応用上の含意

- 事例数が十分に大きいと
 - 点推定量は、ほぼほぼ母平均と一致する
 - 信頼区間は、ほぼほぼ 95% の"確率"で母平均を含む
- ただし、十分に大きい、の水準は違う

1.6 平均値: N=2000

1.7 平均値: N = 200

1.8 大標本性質

$$\bullet \ N^{a(<0.5)}(\theta_0-\theta) \to 0, N \to \infty$$

$$\bullet \ N^{a(>0.5)}(\theta_0-\theta) \to ?, N \to \infty$$

•

$$N^{0.5}(\theta_0-\theta) \to Normal(0,\sigma^2), N \to \infty$$

- よって
$$\theta_0 - \theta \sim N(0, \sigma^2/N)$$

* σ を推定し、信頼区間を計算できる

1.9 収束速度

• $\{a,b\} \to 0, N \to \infty$ である時に、

$$\frac{a}{b} \to 0, N \to \infty$$

であれば、"a は b よりも早く (確率) 収束する"と呼ぶ

- -N が十分に大きくなれば、a < b が (高い確率) で成り立つ
- 平均値は、 $N^{-a(<0.5)}$ よりも早く収束する

1.10 例: $\theta - \theta_0$

1.11 例: $\sqrt{N}(\theta-\theta_0)$

1.12 拡張: 合成指標

- Estimand: 複数の変数 $O = \{X_1,..,X_L\}$ によって、定義される指標 m(O) の平均値 $\theta_0 = E[m(O)]$
 - サンプル平均値 $\theta = \sum m(O)/N$ で置き換える
 - ただし関数 m(O) は既知であり、全ての研究者が同じ式を用いる必要がある
- 例: 国語 X と算数 Y の合計点の平均値

$$m(O = \{X, Y\}) = X + Y$$

1.13 拡張: Implicit function

- 隠関数の平均値として、Estimand は定義できるのであれば、以上の議論を適用できる
- Estimand: 以下の関数を満たす θ_0

$$E[m(\theta_0,O)]=0$$

- 一意に θ は定まり、微分可能性
- Estimator = サンプル平均 0 = $\sum m(\theta,O)$ を満たす θ

1.14 例

- サンプル平均: $m(\theta_0, O) = \theta_0 Y$
- OLS: $m(O,\theta_0) = X(Y - \theta_0 X)$
 - Estimand = $\min E[(Y \theta_0 X)^2]$ を達成する θ_0

1.15 注意点

- 以上の議論は同じ関数 m を Estimand の定義と推定に用いているが、分離できることに注意
- 同じ θ を定義する関数は、一般に"無数"に存在する
 - 例: $m = \theta E[Y]$ と $m = (\theta E[Y])^2$ は同じ θ
 - 推定上、"便利"な定義を使えば良い

1.16 補論: 正規分布への収束

- Berry-Esseen's Centraol Limit Theorem
 - (see Chap 1 in CausalML)
- 任意の 標準化された X (平均 0, 分散 1) について

$$\sup_{\substack{x \in R \\ \oplus_T \text{ tide"}}} |\Pr[X \le x] - \Pr[N(0,1) \le x]| \le KE[|X|^3]/\sqrt{N}$$

• K = 何らかのパラメタ (< 0.5)

2 大標本性質: with nuisance function

2.1 R-leaner

• Estimand = 以下を満たす θ_0

$$0 = E[m_R(O, \theta_0)]$$

where

$$O = \{X, D, Y\}$$

$$\mu(X) = \{\mu_D(X), \mu_Y(X)\}$$

$$m_R = (D - \mu_D(X)) \times [Y - \mu_Y(X) - \theta_0(D - \mu_D(X))]$$

2.2 Single-leaner

- 一般に複数の m 関数が、同じ estimand の一致推定量を提供する。
- 例えば、

$$m_S = (D - \mu_D(X)) \times [Y - \theta_0(D - \mu_D(X))]$$

- どれを使えばいいのか?
 - 一つの指針は、大標本性質

2.3 Estimator

- データ上で置き換えると、 $\sum m(O_i,g(X),\theta)=0$ 、ただし $g(X)=\{g_D(X),g_Y(X)\}$ は Auxiliary data を用いて推定された関数
- 一見すると Moment 法がそのまま適用できそうだが、g(X) に依存していることに注意 $-\mu(X) \neq g(X) \; ({\rm AI} \; \mathfrak{O} \, \mathbb{Z} \, \mathbb{Z})$

2.4 分解

- 肝は、 $\sqrt{N}(\theta_0-\theta), N\to\infty$ の保証
- 仮想的な Estimator θ^* を考える

$$\sum m(O_i,\mu(X),\theta^*)=0$$

• AI がミスを犯さないケースの推定値

2.5 分解

•
$$\sqrt{N}(\theta_0-\theta) = \underbrace{\sqrt{N}(\theta_0-\theta^*)}_{O$$
に依存 $\underbrace{\sqrt{N}(\theta^*-\theta)}_{\rightarrow N(0,\sigma^2),N\rightarrow\infty} + \underbrace{\sqrt{N}(\theta^*-\theta)}_{\rightarrow ?,N\rightarrow\infty}$

- 一項目に対しては、中心極限定理を適用できる
- 二項目は、
 - Single learer であれば発散する恐れがある
 - R learner であれば、AI のミスの影響が削減できる

$$* \to 0, N \to \infty$$

2.6 イメージ

- Auxiliary data
- # A tibble: 4 x 3

X D Y

<int> <dbl> <dbl>

- 1 -1 2.27 3.25
- 2 1 1.41 1.82
- 3 -1 -0.540 0.325
- 4 0 -0.929 -1.09
 - Main data with prediction (by random forest)
- # A tibble: 4 x 11

D Y PredictY PredictD TrueY TrueD ResY ResD ResTrueY <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 0.401 -0.562 1.06 0.538 1 -1.63 -0.137 -1.56-1 1.29 -0.0376 1.06 0.538 1 -1.10 0.757 -1.04 0 0.390 0.523 0.538 0 -0.540 -0.148 1.06 0.523 1 -0.208 -0.314 1.06 1 -1.38 -0.746 0.538 -1.31

i 1 more variable: ResTrueD <dbl>

2.7 イメージ

- $\vec{\mathcal{T}} \mathcal{F}$ it, $X = U(-1,1), D = X^2 + N(0,1), Y = 2D X^2 + N(0,1)$
- $\theta_0 = 2$
- $\theta = (Y g_Y(X)) \sim (D g_D(X))$
- $\bullet \ \theta^* = (Y \mu_Y\!(X)) \sim (D \mu_D\!(X))$

$$-\sqrt{4}*(\theta_0 - \theta^*) = 1.5741579$$

$$-\sqrt{4}*(\theta^*-\theta) = -0.751546$$

2.8 仮定

•
$$\sqrt{N}(\theta_0-\theta)=\underbrace{\sqrt{N}(\theta_0-\theta^*)}_{\rightarrow N(0,\sigma^2),N\rightarrow\infty}+\underbrace{\sqrt{N}(\theta^*-\theta)}_{\rightarrow 0,N,N\rightarrow\infty}$$
を保証したい

- 第 2 項 (AI のミス) の影響は、(信頼区間を計算できる程度に) 事例数が十分に大きければ、無視できる
- R-learner を前提とした場合、主要な十分条件は
 - サンプル分割
 - -gが十分な速度で収束する

2.9 イメージ: R learner

2.10 イメージ: Normalized

2.11 Al **のミスの影響への保障**: Recap

- AI のミスの影響が $N^{1/4}$ 以上の速度で減少
- 例: $g_D(X = I)$ のミスの影響

$$\Big(\sum_{i|X_i=I} Y_i/N_M(I) - g_Y(I)\Big) \times \underbrace{e_D(I)}_{\mu_D(I)-g_D(I)}$$

- g_Y,g_D が十分な速度で μ_Y,μ_D に収束
- g_D と $\sum_{i|X_i=I} Y_i/N_M(I)$ が無相間

2.12 仮定: 収束速度

• 十分条件の一つは、

$$\begin{cases} N^{1/4}\sqrt{E[(\mu_Y(X)-g_Y(X))^2]},\\ \\ N^{1/4}\sqrt{E[(\mu_D(X)-g_D(X))^2]} \end{cases} \to 0, N \to \infty$$

 $-N^{1/4}$ よりも収束速度が速い

2.13 補論: 収束速度

• g を正しいモデルで OLS 推定できれば、

$$N^{a(<0.5)}\sqrt{E[(\mu(X)-g(X))^2]} \to 0, N \to \infty$$

- $-N^{1/4}$ よりも 確実に収束速度が速い
- 誤定式化を犯している OLS では、そもそも収束しない
- 多くの機械学習は、 $N^{1/2}$ よりも収束速度が**遅い**
 - R learner は、機械学習 (含む Nonparametric estimation) の収束の遅さを補完

2.14 前提: サンプル分割

- サンプル分割しないと予測モデルと Main data の平均値との間に相関が生じ、収束速度が低下する
 - 相関の影響は (個人的に) わかりにくい
 - * 個人的おすすめは、外れ値がデータに紛れ込んだ時の影響を想像する

2.15 数值例

- 同じデータで g を (random forest で) 推定する
- # A tibble: 8 x 6

	Х	D	Y	${\tt PredictY}$	${\tt PredictD}$	MeanY
	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	-1	-0.540	-2.37	0.674	1.02	0.849
2	1	0.0714	-1.16	-0.135	0.480	-0.00968
3	-1	0.705	-0.000952	0.674	1.02	0.849
4	0	-0.00577	0.241	-0.725	-0.0520	-1.14
5	-1	3.40	4.92	0.674	1.02	0.849
6	1	1.76	2.96	-0.135	0.480	-0.00968
7	1	0.201	-1.84	-0.135	0.480	-0.00968
8	0	-1.15	-2.52	-0.725	-0.0520	-1.14

2.16 数值例: Add outliear

- D (例: 部屋の広さ) が非常に大きな事例が混入
 - Y(例:取引価格)も同時に大きい

A tibble: 9 x 6

	Х	D	Y	${\tt PredictY}$	${\tt PredictD}$	MeanY
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	-1	-0.540	-2.37	5.56	3.30	0.849
2	1	0.0714	-1.16	4.53	2.75	-0.00968
3	-1	0.705	-0.000952	5.56	3.30	0.849
4	0	-0.00577	0.241	18.4	9.31	25.9
5	-1	3.40	4.92	5.56	3.30	0.849
6	1	1.76	2.96	4.53	2.75	-0.00968
7	1	0.201	-1.84	4.53	2.75	-0.00968
8	0	-1.15	-2.52	18.4	9.31	25.9
9	0	40	80	18.4	9.31	25.9

• $\sum Y/N - g_Y$ も $g_Y - \mu_Y$ も同時増加

2.17 補論: 収束速度

• g を正しいモデルで OLS 推定できれば、

$$N^{a(<0.5)}\sqrt{E[(\mu(X)-g(X))^2]}\rightarrow 0, N\rightarrow \infty$$

- $-N^{1/4}$ よりも 確実に収束速度が速い
- 誤定式化を犯している OLS では、そもそも収束しない
- 多くの機械学習は、 $N^{1/2}$ よりも収束速度が**遅い**
 - R learner は、機械学習 (含む Nonparametric estimation) の収束の遅さを補完

2.18 Single learner

- $g_D(X)$ が、 $N^{1/2}$ よりも速い速度で収束する必要がある
 - 正しいモデルを OLS 推定する必要がある
 - * 実質"不可能"

2.19 イメージ: Single Model

3 Neyman's ohtogonal condition

• R learner への議論は、より一般的な状況に適用可能

3.1 Estimand

•

 $E[m(\theta_0,O,\mu)]$

として、Estimand θ_0 を定義

- m については、
 - $-\theta$ について一意に定まり、かつ微分可能
 - Neyman の直行条件を満たす
 - サンプル分割、 $N^{-1/4}$ よりも収束速度が速いのであれば、 μ は機械学習の推定結果で置き換えられる
 - *機械学習で推定できる必要はある

3.2 Neyman's ohthgonal condition

- AIの微妙なミスに対して、estimator が影響を受けない
 - $-\partial m/\partial \mu = 0$
 - * 関数で微分するとは???

•

$$\left.\frac{\partial E[m(\theta_0,X,g(t))]}{\partial t}\right|_{t=0}=0$$

- $-\ g_Z(t) = tg_Z(X) + (1-t)\mu_Z(X), t \in [0,1]$
 - * 母平均を、何らかの関数に少し移動させる
 - * ガトー微分

3.3 実装

- Neyman の直行条件を満たす m 関数は、以下の方法で導出できる
 - テイラー近似 (手計算) (Hines et al. 2022 がわかりやすい入門)
 - データから" 自動計算" する (Chernozhukov, Newey, and Singh 2022)
 - * 現状、大衆的な実装方法はない

3.4 仮定の検討

- $n^-1/4$ よりも速い収束の保証は、現状強い仮定
 - X の数が多い場合に特に怪しい
 - * 現状は、「正しいモデルを仮定」するよりもマシなので、とりあえず目をつぶって応用している印象
 - * Best practice として、Stacking を利用
 - 本質的な代替案としては、高次近似の利用 (Bonvini et al. 2024 とその引用文献) だが、まだ基礎 的理論研究が続いている印象

Reference

- Bonvini, Matteo, Edward H Kennedy, Oliver Dukes, and Sivaraman Balakrishnan. 2024. "Doubly-Robust Inference and Optimality in Structure-Agnostic Models with Smoothness." arXiv Preprint arXiv:2405.08525.
- Chernozhukov, Victor, Whitney K Newey, and Rahul Singh. 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects." *Econometrica* 90 (3): 967–1027.
- Hines, Oliver, Oliver Dukes, Karla Diaz-Ordaz, and Stijn Vansteelandt. 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions." *The American Statistician* 76 (3): 292–304.
- Imbens, Guido W. 2021. "Statistical Significance, p-Values, and the Reporting of Uncertainty." *Journal of Economic Perspectives* 35 (3): 157–74.