

Kiểm tra 15'

Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

☐ Yêu cầu: *a* và *b* là các ngõ vào điều khiển của MUX 4-to-1

NHẬP MÔN MẠCH SỐ

CHƯƠNG 5: MẠCH TỔ HỢP – CÁC MẠCH KHÁC

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer) Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

- Cách hiện thực LUT (Look-up table)
 - Sử dụng MUX để chọn một giá trị (hằng số) từ 1 LUT

Ví dụ: Thiết kế mạch XOR sử dụng MUX

a	b	f	a
0	0	0	ь —
0	1	1	0 — 00
1	0	1	1 — 01
1	1	o JTER ENGI	1 — 10
			0 11

- Giải pháp ở slide trước không hiệu quả vì phải sử dụng MUX 4-to-1
- Nhân xét:

a	b	f	
0	0	$\begin{bmatrix} 0 \\ \end{bmatrix}$ when $a = 0$ fight	f
0	1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ when a=0, f=b $\longrightarrow \frac{a}{0}$ k	b
1	0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ when a=1, f=b' \longrightarrow 1	b′
1	1		

Ví dụ: Hiện thực mạch với bảng sự thật sau bằng một MUX và các cổng khác

A	В	X
0	0	1
0	1	1
1	0	0
1	1	1

XOR 3 ngõ vào có thể hiện thực bằng 2 MUX 2-to-1

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Ví dụ: Hiện thực mạch với bảng sự thật sau bằng một MUX và các cổng logic khác

В	C	X
0	0	1
0	1	1
1	0	0
1	1	1
0	0	1
0	OM	DUT
1	0	0
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 1 0

NGINFFRING

■ Bất kì hàm Boolean f(w₁,w₂, ..., w_n) có thể được viết dưới dạng:

$$f(w_1, w_2, ..., w_n) = \overline{w_1} * f(0, w_2, ..., w_n) + w_1 * f(1, w_2, ..., w_n)$$

■ Ví dụ 1:

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$$

Phân tích hàm này theo biến w₁:

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + w_1(w_2w_3)$$

■ Ví du 2:

X	y	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

Chọn x làm biến mở rộng

$$f=x'(y'z'+y'z+yz)+x(y'z'+y'z)$$

$$f=x'(y'+z)+x(y')$$

■ Ví du 3:

X	y	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

Chọn z làm biến mở rộng

JTER ENGINEERING

■ Bài tập 1:

□Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

☐ Yêu cầu: c và d là các ngõ vào điều khiển của MUX 4-ra-1

■ Bài tập 1:

□Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

- ☐ Yêu cầu: c và d là các ngõ vào điều khiển của MUX 4-ra-1
- ☐ Yêu cầu: b và c là các ngõ vào điều khiển của MUX 4-ra-1

■ Bài tập 2:

□Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

☐ Yêu cầu: b và c là các ngõ vào điều khiển của MUX 4-to-1

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer)/ Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

Mạch tạo/kiểm tra Parity bit

- Chức năng: Kiểm tra chuỗi bit dữ liệu truyền đúng hay sai tại đầu thu
- Phương pháp:
 - ☐ Tại đầu phát: một Parity bit được tạo ra từ chuỗi dữ liệu muốn truyền đi, sau đó Parity bit này được chèn vào cuối chuỗi bit dữ liệu này.
 - ☐ Tại đầu thu: Kiểm tra Parity bit để xác nhận choỗi dữ liệu nhận được có bị sai hay không

Mạch tạo/kiểm tra Parity bit

■ Hai loại Parity bit:

- □Bit chẵn (Even parity bit Be): Be = 1 khi tổng số bit 1 trong chuỗi bit (kể cả Be) là số chẵn.
- □Bit lẻ (Odd parity bit Bo): Bo = 1 khi tổng số bit 1 trong chuỗi bit (kể cả Bo) là số lẻ

Nhắc lại: Cổng logic XOR, XNOR

\blacksquare XOR = Exclusive OR

- □Ngõ ra bằng 1 khi số ngõ vào bằng 1 là lẻ
- $\square X = A \oplus B$

1			$\overline{}$	$\overline{}$
	Α	В	A⊕B	A⊕B
	0	0	0	1
	0	1	1	0
	1	0	1	0
	1	1	0	1

XOR

XNOR

\blacksquare XNOR = Exclusive NOR

- □Ngõ ra bằng 1 khi số ngõ vào bằng 1 là chẵn
- $\square X = A \oplus B$

Mạch tạo Parity bit

Tao Even Parity bit

- 1 40 L von 1 antly on							
A2	A1	A0	Be				
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	0				
1	0	0	1				
1	0	1	0				
1	1	0	0				
1	1	1	1				

Tạo Odd Parity bit

	A2	A1	A0	Во
	0	0	0	1
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
J	1	1	1	0

Mạch kiểm tra Even Parity bit

■ Bảng sự thật:

- Dang bạ thật.									
A2	A1	A0	Be	fe	A2	A1	A0	Be	fe
0	0	0	0	0	1	0	0	0	1
0	0	0	1	1	1	0	0	1	0
0	0	1	0	1	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	1	1	1	0	0	0
0	1	0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0

$$\Box$$
 fe = 1 \rightarrow

Transmission failed

fe = f(A2,A1,A0,Be)?

Mạch kiểm tra Odd Parity bit

■ Bảng sự thật:

A2	A1	A0	Bo	fo	A2	A1	A0	Во	fo
0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	0	1	0	1
0	0	1	1	1	1	0	1	1	0
0	1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	0	1	0
0	1	1	0	1	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

$$\Box$$
 fo = 1 \rightarrow

Transmission failed

fo = f(A2,A1,A0,B0)?

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer) Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

Mạch so sánh (Comperator)

- Mạch so sánh 2 số
 - Xuất ra 1 nếu chúng bằng nhau
 - Xuất ra 0 nếu chúng khác nhau
- Dựa trên cổng XOR, trả về 0 nếu ngõ vào giống nhau và 1 nếu chúng khác nhau

• Dựa trên cổng **XNOR**, trả về 1 nếu ngõ vào giống nhau và 0 nếu chúng khác nhau

Mạch so sánh 1 bit

a	b	gt	eq	lt
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Mạch so sánh 4 bit

Mạch so sánh 4 bit

Mạch so sánh 4 bit

Mạch so sánh 4-bit

■ 74x85 là mạch so sánh tiêu chuẩn với những đặc tính sau:

if (A=B) lt=1, eq=e, gt=g

Chý ý: 3 ngõ vào l, e và g được sử dụng khi ghép nối để tạo mạch so

sánh với số bit nhiều hơn

Ví dụ

■ Thiết kế mạch tìm số lớn nhất, số nhỏ nhất trong 4 số 4-bit sử dụng mạch so sánh và MUXs

Tóm tắt nội dung chương học

- Qua Phần 3 Chương 5, sinh viên cần nắm những nội dung chính sau:
 - ■Một số giải pháp thiết kế mạch số sử dụng mạch chọn kênh, mạch giải mã
 - ☐ Chức năng, ứng dụng và thiết kế của mạch có độ ưu tiên
 - ☐ Chức năng, ứng dụng và thiết kế của mạch tạo và kiểm tra Parity chẵn, lẻ.
 - ☐ Chức năng, ứng dụng và thiết kế của mạch tạo và kiểm tra Parity chẵn, lẻ.
 - Chức năng, ứng dụng và thiết kế của mạch so sánh

Any question?

