Recursion Trees

Adapted from the CLRS book slides

RECURSION TREES

Use to generate a guess. Then verify by substitution method.

Example:

$$T(n) = 3T(n/4) + \Theta(n^2).$$

Draw out a recursion tree for $T(n) = 3T(n/4) + cn^2$:

For simplicity, assume that n is a power of 4 and the base case is $T(1) = \Theta(1)$.

Total: $O(n^2)$

Subproblem size for nodes at depth i is $n/4^i$. Get to base case when $n/4^i = 1 \Rightarrow n = 4^i \Rightarrow i = \log_4 n$.

Each level has 3 times as many nodes as the level above, so that depth i has 3^i nodes. Each internal node at depth i has cost $c(n/4^i)^2 \Rightarrow$ total cost at depth i (except for leaves) is $3^i c(n/4^i)^2 = (3/16)^i cn^2$. Bottom level has depth $\log_4 n \Rightarrow$ number of leaves is $3^{\log_4 n} = n^{\log_4 3}$. Since each leaf contributes $\Theta(1)$, total cost of leaves is $\Theta(n^{\log_4 3})$.

Add up costs over all levels to determine cost for the entire tree:

$$T(n) = \sum_{i=0}^{\log_4 n} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2).$$

Idea: Coefficients of cn^2 form a decreasing geometric series. Bound it by an infinite series, and get a bound of 16/13 on the coefficients.

Use substitution method to verify $O(n^2)$ upper bound. Show that $T(n) \le dn^2$ for constant d > 0:

$$T(n) \leq 3T(n/4) + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\leq dn^{2},$$

by choosing $d \ge (16/13)c$. [Again, we get to name but not choose c, and we get to name and choose d.]

That gives an upper bound of $O(n^2)$. The lower bound of $\Omega(n^2)$ is obvious because the recurrence contains a $\Theta(n^2)$ term. Hence, $T(n) = \Theta(n^2)$.

Irregular Example:

$$T(n) = T(n/3) + T(2n/3) + \Theta(n)$$
.
For upper bound, rewrite as $T(n) \le T(n/3) + T(2n/3) + cn$; for lower bound, as $T(n) \ge T(n/3) + T(2n/3) + cn$.

By summing across each level, the recursion tree shows the cost at each level of recursion (minus the costs of recursive calls, which appear in subtrees):

Irregular Example:

leftmost branch reaches n = 1 after $\log_3 n$ levels

rightmost branch reaches n = 1 after $\log_3 n$ levels

Irregular Example:

- There are $\log_3 n$ full levels (going down the left side), and after $\log_{\frac{3}{2}} n$ levels, the problem size is down to 1 (going down the right side).
- Each full level contributes at least/most *cn*.
- Lower bound guess: $\geq d n \log_3 n = \Omega(n \lg n)$ for some positive constant d.
- Upper bound guess: $\leq d n \log_{3/2} n = O(n \lg n)$ for some positive constant d.
- Then *prove* by substitution.