0-1 Knapsack Problem: BFS and DFS

Nemanja Antonic

January 2022

1 The problem

1.1 Representation of a solution

1.1.1 Variables

The set of variables $X=\{X_1,...,X_i,...X_n\}$ where n is the number of total items and each variable represents an item to be put in the knapsack.

1.1.2 Domain

The domain of the i-th variable $D_i = \{true, false\}$ as an item can either be in the knapsack or not.

1.2 Objective function

To define the objective function, the parameter b_i needs to be defined as the benefit of the variable X_i . Hence: max $\sum_{i=1}^{n} X_i * b[i]$

1.3 Constraint

The total capacity of the knapsack K shall never be exceeded by the items selected as a solution. Each item has a weight w_i . $\sum_{i=1}^n X_i * w_i \le K$

2 Comparison of the algorithms

2.1 Time complexity

The theoretical time complexity of BFS is $O(b^d)$ where b is the maximum branching factor and d is the depth of the shallowest solution, while for DFS it's $O(b^m)$ where m is the maximum depth. In my case b = n = 11 (since on the first expansion of the tree n children are generated) and d = 8 (practical result from running the algorithm), while m = 11 (the maximum depth is equal to n as the left-most node will be expandend from 1 to n). The corresponding time

usages of the algorithms are, respectively: $0.06\mathrm{s}$ and $0.09\mathrm{s}$ which is in line with the theoretical outcome.

2.2 Space complexity

The theoretical space complexity of BFS is $O(b^d)$ while for DFS it's $O(b^*m)$. It's difficult to assess the actual space usage but theoretically it is lower for the latter: $11^8 = 214358881$ for BFS and 11*11 = 121 for DFS.