

Actividad 8

Aplicación de redes neuronales completamente conectadas en problemas de clasificación utilizando Keras

Aplicación de redes neuronales completamente conectadas en problemas de clasificación utilizando Keras

En esta actividad, los innovadores explorarán el uso de redes neuronales completamente conectadas para abordar problemas de clasificación. Utilizarán una base de datos relacionada con la tarea de clasificación, que podrán encontrar en plataformas como Kaggle, UCI Machine Learning Repository, GitHub o Google Dataset Search. El objetivo es aplicar los conceptos aprendidos sobre redes neuronales para desarrollar un modelo de clasificación utilizando la biblioteca Keras.

Pasos a seguir:

Los innovadores cargarán el conjunto de datos seleccionado para su proyecto de clasificación. Utilizarán funciones de bibliotecas como Pandas para importar los datos en un formato adecuado para su procesamiento.

Paso 2 - Visualización de una Muestra:

Se les pedirá a los innovadores que visualicen una muestra de los datos cargados para comprender mejor la naturaleza del conjunto de datos y las características que están tratando de clasificar.

Paso 3 - Normalización de los Datos:

Los innovadores normalizarán los datos para asegurarse de que todas las características tengan la misma escala y no dominen injustamente el proceso de entrenamiento.

Paso 4 - Construcción del Modelo:

Los innovadores construirán un modelo de red neuronal completamente conectada utilizando la API secuencial de Keras. Podrán experimentar con diferentes arquitecturas de red, incluyendo el número de capas y neuronas en cada capa, así como las funciones de activación.

COLOMBIA
POTENCIA DE LA
VIDA
AIDU

Paso 5 - Compilación del Modelo:

Se les pedirá a los innovadores que configuren el proceso de entrenamiento del modelo especificando el optimizador y la función de pérdida adecuada para problemas de clasificación.

Paso 6 - Entrenamiento del Modelo:

Los innovadores entrenarán el modelo utilizando los datos de entrenamiento (♣√❖) normalizados. Deberán especificar el número de épocas y el tamaño del lote para el proceso de entrenamiento.

Después del entrenamiento, los innovadores graficarán el historial de entrenamiento para visualizar cómo evolucionó la pérdida durante el proceso de entrenamiento y cómo se comportaron las métricas de evaluación.

Se les pedirá a los innovadores que evalúen el rendimiento del modelo utilizando métricas adecuadas para problemas de clasificación, como la precisión, la recall, la precisión, el F1-score, entre otras.

Paso 9 - Predicción de una Muestra:

Por último, los innovadores realizarán predicciones utilizando el modelo entrenado en una muestra de datos de prueba. Analizarán las predicciones y discutirán la efectividad del modelo en la tarea de clasificación.

Esta actividad proporcionará a los innovadores una comprensión práctica de cómo aplicar redes neuronales completamente conectadas en problemas de clasificación y les permitirá experimentar con diferentes aspectos del diseño y entrenamiento del modelo.

TALENTO AZI PROYECTOS EDUCATIVOS

