MO Index

<u>Course</u>

<u>Help</u>

sandipan_dey >

Dates

Progress

☆ Course / 15 Fundamentals of Probability and Statistics / 15.1 Terminology

Discussion

< Previous

Next >

Discussions

All posts sorted by recent activity

15.1.2 A New Model Problem: Projectile Motion with Uncertainty

□ Bookmark this page

MO2.13

As we explore the fundamentals of probability and statistics, we will use a simpler example than the Martian lander to reduce the computational expense required to demonstrate these concepts. Specifically, as shown in Figure 15.1, consider a projectile launched from the ground with an initial speed V_0 at an angle θ_0 . g is the gravitational acceleration. The projectile impacts the ground at the location x_f .

Figure 15.1: Projectile motion problem definition. When only gravitational force is included (i.e. neglected aerodynamic drag), then the impact location can be found to be:

$$x_f = \frac{V_0^2}{g} \sin 2\theta_0 \tag{15.1}$$

We will consider the nominal case for the projectile motion to be $V_{0\,\mathrm{nom}}=30\,\mathrm{m/s}$ and $\theta_{0\,\mathrm{nom}}=30^\circ$. Assuming gravity is $g=9.81\,\mathrm{m/s^2}$, then the impact location for these nominal conditions is $x_{f\,\mathrm{nom}}=79.45\,\mathrm{m}$.

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Idea Hub

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>