

Benchmarking VLMs' Reasoning About Persuasive Atypical Images

Sina Malakouti^{1*}, Aysan Aghazadeh^{1*}, Ashmit Khandelwal², Adriana Kovashka¹

¹University of Pittsburgh

²BITS Pilani

Motivation

- MLLMs and VLMs have shown promising reasoning capabilities and performance in different domain
- Existing benchmarks focus on common visual scenes and simple reasoning
 - Failing to challenge MLLM's visual reasoning capabilities
- We benchmark MLLMs/VLMs on **Atypicality Understanding** and **Advertisement Understanding**
 - Persuasive visual media (e.g., advertisement) uses creative visual rhetoric to capture attention and convey powerful messages

Overview

PersuasiveAdsVLM Benchmark

- Atypicality Understanding
 - Requires strong visual reasoning
 - Propose 3 novel tasks (classification, retrieval, and generative)
- Advertisement Understanding
 - Requires strong multi-step reasoning
 - Action-Reason Retrieval (Hussain, CVPR, 2017)
 - We generate semantically hard negatives to challenge model's reasoning capabilities

Multi-label Atypicality Classification

Atypicality Definitions {atypicality definitions}

Choose the correct atypicality among

- 1. Texture Replacement 1 (TR1)
- 2. Texture Replacement 2 (TR2)
- 3. Object Inside Object (OIO)
- 4. Object Replacement (OR)

Answer

TR1

Atypicality Statement Retrieval

Choose the correct statement among the options

- The surface of the bottle mimics the texture of feather while retaining its original structure.
- 2. The surface of the tiger mimics the texture of megaphone while retaining its original structure. (Wrong Objects)
- The surface of the feather mimics the texture of bottle, while retaining its original structure. (Swapped Primary/Secondary Objects)
- 4. Bottle completely replaces Feather in its usual context, assuming its function or position. (Wrong Atypicality Relation)

Atypical Object Recognition

The surface of {primary} mimics the texture of {secondary}, while retaining its original structure.

Answer

Primary Object: Beer Secondary Object: Feather

Action Reason Retrieval

Choose the best interpretation for the image among the options

- 1. I should drink Carlings because it's light.
- 2. I should drink water because it's light. (Object swap)
- 3. I should drink beer more often because it would make me feel good.
- 4. I should avoid beer more often because it would make me feel good. (Action alter)
- 5. I should drink beer more often because it would make me feel bad. (Reason alter)
- 6. I should drink Carling's black-label beer because it is as light as a Carling.
- 7. I should drink Carling's black ink because it is as dark as a Carling. (Statement alter)
- 8. I should drink Carling's black-label beer because it is as heavy as a Carling. (Adjective alter)

Overview

PersuasiveAdsVLM Benchmark

- Atypicality Understanding
 - Propose 3 novel tasks (Classification, retrieval, and generative)
- Advertisement Understanding
 - Action-Reason Retrieval following (Hussain, CVPR, 2017)
 - We generate semantically hard negatives to challenge model's reasoning capabilities

Hypothesize

- Understanding Atypicality helps to understand underlying message of an advertisement
- Propose a novel atypicality-aware verbalization

Atypicality Understanding and ARR Tasks

- Atypicality is an unusual portrayal of objects
 - Often involves multiple objects engaged in an unusual relation
- We focus on 4 types of atypicality relations (Hussain, CVPR 2017)
 - Texture Replacement 1
 - Texture Replacement 2
 - Object Inside Object
 - Object Replacement

- Atypicality is an unusual portrayal of objects
 - Often involves multiple objects engaged in an unusual relation
- We focus on 4 types of atypicality relations (Hussain, CVPR 2017)
 - Texture Replacement 1: Object's texture is borrowed from another object
 - Texture Replacement 2
 - Object Inside Object
 - Object Replacement

- Atypicality is an unusual portrayal of objects
 - Often involves multiple objects engaged in an unusual relation
- We focus on 4 types of atypicality relations (Hussain, CVPR 2017)
 - Texture Replacement 1
 - Texture Replacement 2: Texture created combining several small objects
 - Object Inside Object
 - Object Replacement

- Atypicality is an unusual portrayal of objects
 - Often involves multiple objects engaged in an unusual relation
- We focus on 4 types of atypicality relations (Hussain, CVPR 2017)
 - Texture Replacement 1
 - Texture Replacement 2
 - Object Inside Object: One object is inside another object in unexpected form
 - Object Replacement

- Atypicality is an unusual portrayal of objects
 - Often involves multiple objects engaged in an unusual relation
- We focus on 4 types of atypicality relations (Hussain, CVPR 2017)
 - Texture Replacement 1
 - Texture Replacement 2
 - Object Inside Object
 - Object Replacement: One object replaces another object in unexpected context

- Atypicality is an unusual portrayal of objects
 - Often involves multiple objects engaged in an unusual relation
- We focus on 4 types of atypicality relations (Hussain, CVPR 2017)
 - Texture Replacement 1
 - Texture Replacement 2
 - Object Inside Object
 - Object Replacement
- 3 Novel Atypicality Understanding tasks
 - Multi-label Atypicality Classification (MAC)
 - Atypicality Statement Retrieval (ASR)
 - Atypical Object Recognition (AOR)

Multi-label Atypicality Classification (MAC)

- Choosing the correct atypicality category for image
 - Texture Replacement 1, Texture Replacement 2, Object Inside Object, and Object Replacement
 - Not Atypicality (NA) to capture typical ads

Multi-label Atypicality Classification

Atypicality Definitions {atypicality definitions}

Choose the correct atypicality among

- 1. Texture Replacement 1 (TR1)
- 2. Texture Replacement 2 (TR2)
- 3. Object Inside Object (OIO)
- 4. Object Replacement (OR)

Answer

TR1

Atypicality Statement Retrieval

Choose the correct statement among the options

- 1. The surface of the bottle mimics the texture of feather while retaining its original structure.
- 2. The surface of the tiger mimics the texture of megaphone while retaining its original structure. (Wrong Objects)
- 3. The surface of the **feather** mimics the texture of **bottle**, while retaining its original structure. (Swapped Primary/Secondary Objects)
- 4. Bottle completely replaces Feather in its usual context, assuming its function or position. (Wrong Atypicality Relation)

Atypical Object Recognition

The surface of {primary} mimics the texture of {secondary}, while retaining its original structure.

Answer

Primary Object: Beer Secondary Object: Feather

Action Reason Retrieval

Choose the best interpretation for the image among the options

- 1. I should drink Carlings because it's light.
- 2. I should drink water because it's light. (Object swap
- 3. I should drink beer more often because it would make me feel good
- 4. I should avoid beer more often because it would make me feel good. (Action alter
- 5. I should drink beer more often because it would make me feel bad. (Reason alter
- 6. I should drink Carling's black-label beer because it is as light as a Carling
- 7. I should drink Carling's black ink because it is as dark as a Carling. (Statement alter)
- 8. I should drink Carling's black-label beer because it is as heavy as a Carling. (Adjective alter)

Atypicality Statement Retrieval (ASR)

- Choosing the correct Atypicality statement
 - Each statement includes
 - Atypical relation between the objects
 - Objects involved in atypicality

Multi-label Atypicality Classification

Atypicality Definitions {atypicality definitions}

Choose the correct atypicality among

- 1. Texture Replacement 1 (TR1)
- 2. Texture Replacement 2 (TR2)
- 3. Object Inside Object (OIO)
- 4. Object Replacement (OR)

Answer

TR1

Atypicality Statement Retrieval

Choose the correct statement among the options

- 1. The surface of the bottle mimics the texture of feather while retaining its original structure.
- 2. The surface of the tiger mimics the texture of megaphone while retaining its original structure. (Wrong Objects)
- 3. The surface of the feather mimics the texture of bottle, while retaining its original structure. (Swapped Primary/Secondary Objects)
- 4. Bottle completely replaces Feather in its usual context, assuming its function or position. (Wrong Atypicality Relation)

Atypical Object Recognition

The surface of {primary} mimics the texture of {secondary}, while retaining its original structure.

Answer

Primary Object: Beer Secondary Object: Feather

Action Reason Retrieval

Choose the best interpretation for the image among the options

- 1. I should drink Carlings because it's light.
- 2. I should drink water because it's light. (Object swap)
- 3. I should drink beer more often because it would make me feel good
- 4. I should avoid beer more often because it would make me feel good. (Action alter
- 5. I should drink beer more often because it would make me feel bad. (Reason alter)
- 6. I should drink Carling's black-label beer because it is as light as a Carling
- 7. I should drink Carling's black ink because it is as dark as a Carling. (Statement alter)
- 8. I should drink Carling's black-label beer because it is as heavy as a Carling. (Adjective alter)

Atypicality Statement Retrieval (ASR)

- Choosing the correct Atypicality statement
 - Each statement includes
 - Atypical relation between the objects
 - Objects involved in atypicality
 - We generate statements for each atypicality using pre-defined templates

	\mathcal{A}_{-}	Definition $\mathcal{D}_{\mathcal{A}}$	Statement templates $\mathcal{S}_{\mathcal{A}}$				
Г	TR1	When the skin/texture of an object is replaced with another object to inherit an attribute of that.	The surface of {primary object} mimics the texture of {secondary object}, while retaining its original structure.				
Γ	\mathbb{R}^2	When something is made from lots of small things that are not usually part of it to inherit an attribute of the small objects.	{primary object} appears to be composed of numerous, smaller instances of {secondary object}, altering its texture.				
C	OIO	When one thing is completely inside another thing where it is not common or natural.	{primary object} is visibly located within {secondary object}, in an unconventional manner.				
(OR	When one thing is used in a place or way where you usually find another thing to act as the original object.	{primary object} completely replaces {secondary object} in its usual context, assuming its function or position.				

Atypicality Statement Retrieval (ASR)

- Choosing the correct Atypicality statement
 - Each statement includes
 - Atypical relation between the objects
 - Objects involved in atypicality
 - We generate statements for each atypicality using pre-defined templates
- Evaluation Setup
 - Replacing the objects with objects from other images
 - Replacing the atypicality with other categories
 - Swapping the objects in the statement

Atypicality Statement Retrieval

Choose the correct statement among the options

- 1. The surface of the bottle mimics the texture of feather while retaining its original structure.
- 2. The surface of the tiger mimics the texture of megaphone while retaining its original structure. (Wrong Objects)
- 3. The surface of the feather mimics the texture of bottle, while retaining its original structure. (Swapped Primary/Secondary Objects)
- 4. Bottle completely replaces Feather in its usual context, assuming its function or position. (Wrong Atypicality Relation)

Atypical Object Recognition (AOR)

- Complete the atypical statement by generating the missing objects
- Evaluation:
 - We use sentence similarity between the correct complete statement with the completed statement by model

Multi-label Atypicality Classification

Atypicality Definitions {atypicality definitions}

Choose the correct atypicality among

- 1. Texture Replacement 1 (TR1)
- 2. Texture Replacement 2 (TR2)
- 3. Object Inside Object (OIO)
- 4. Object Replacement (OR)

Answer

TR1

Atypicality Statement Retrieval

Choose the correct statement among the options

- 1. The surface of the bottle mimics the texture of feather while retaining its original structure.
- 2. The surface of the tiger mimics the texture of megaphone while retaining its original structure. (Wrong Objects)
- 3. The surface of the feather mimics the texture of bottle, while retaining its original structure. (Swapped Primary/Secondary Objects)
- 4. Bottle completely replaces Feather in its usual context, assuming its function or position. (Wrong Atypicality Relation)

Atypical Object Recognition

The surface of {primary} mimics the texture of {secondary}, while retaining its original structure.

Answer

Primary Object: Beer Secondary Object: Feather

Action Reason Retrieval

Choose the best interpretation for the image among the options

- 1. I should drink Carlings because it's light.
- 2. I should drink water because it's light. (Object swap)
- 3. I should drink beer more often because it would make me feel good
- 4. I should avoid beer more often because it would make me feel good. (Action alter
- 5. I should drink beer more often because it would make me feel bad. (Reason alter)
- 6. I should drink Carling's black-label beer because it is as light as a Carling
- 7. I should drink Carling's black ink because it is as dark as a Carling. (Statement alter)
- 8. I should drink Carling's black-label beer because it is as heavy as a Carling. (Adjective alter)

Action-Reason Retrieval (ARR)

- Choosing the correct statement to interpret an advertisement message
 - Action-Reason statement : *I should* {action} because {reason}
 - Action: What should I do?
 - Reason: Why should I do it?

Multi-label Atypicality Classification

Atypicality Definitions {atypicality definitions}

Choose the correct atypicality among

- 1. Texture Replacement 1 (TR1)
- 2. Texture Replacement 2 (TR2)
- 3. Object Inside Object (OIO)
- 4. Object Replacement (OR)

Answer

TR1

Atypicality Statement Retrieval

Choose the correct statement among the options

- 1. The surface of the bottle mimics the texture of feather while retaining its original structure.
- 2. The surface of the tiger mimics the texture of megaphone while retaining its original structure. (Wrong Objects)
- 3. The surface of the feather mimics the texture of bottle, while retaining its original structure. (Swapped Primary/Secondary Objects)
- 4. Bottle completely replaces Feather in its usual context, assuming its function or position. (Wrong Atypicality Relation)

Atypical Object Recognition

The surface of {primary} mimics the texture of {secondary}, while retaining its original structure.

Answer

Primary Object: Beer Secondary Object: Feather

Action Reason Retrieval

Choose the best interpretation for the image among the options

- 1. I should drink Carlings because it's light.
- 2. I should drink water because it's light. (Object swap)
- 3. I should drink beer more often because it would make me feel good.
- 4. I should avoid beer more often because it would make me feel good. (Action alter)
- 5. I should drink beer more often because it would make me feel bad. (Reason alter)
- 6. I should drink Carling's black-label beer because it is as light as a Carling.
- 7. I should drink Carling's black ink because it is as dark as a Carling. (Statement alter)
- 3. I should drink Carling's black-label beer because it is as heavy as a Carling. (Adjective alter)

Action-Reason Retrieval (ARR)

- Choosing the correct statement to interpret an advertisement message
 - Action-Reason statement : *I should {action} because {reason}*
 - Action: What should I do?
 - Reason: Why should I do it?
 - Evaluation Setup
 - Prior works mine negatives from other ads randomly or from similar topics, object detection is enough
 - we use LLM to generate statements that are **semantically** different from correct statement

Correct Option	I should drink beer more often Because it would make me feel good
Action Alter	I should abstain from beer because it would make me feel good.
Reason Alter	I should drink beer more often because it would make me feel bad.
Object Swap	I shouldn't drink water more often Because it would make me feel good
Statement Alter	I should drink beer more often because it enhances my physical fitness.
Adjective Alter	I should avoid beer more often because it would make me feel terrible.

Methodology (Action-Reason Retreival)

Proposed Approach

- Goal: retrieve all correct action-reason statements
- 3 Steps:
 - Image Verbalization (Atypicality-aware Verbalization)
 - Atypicality Statement Detection
 - Action-Reason Retrieval

Step 1: Image Verbalization

- Verbalize image in atypicality-aware manner
 - 1. Basic information
 - Objects (V) and Textual elements (T)
 - 2. Atypicality-aware verbalization ($\mathcal{T}_{\mathcal{V}}$)
 - ImageNarrator (IN): Detail description of the image
 - UnusualHighlighter (UH): Extract unusualness
 - 3. Generating a coherent verbalization by combining all 4 components using an LLM

Step 2: Atypicality Detection

- Goal: Detect Atypicality Statement
- Steps
 - 1. Generate all possible atypicality statements given extracted objects and pre-defined templates $(\mathcal{S}_{\mathcal{A}})$
 - 2. Detect the correct statement based on Image description (*IN*)

Step 3: Action-Reason Retrieval

- Goal: Given a set of action-reason statements, identify the correct options
 - Atypicality-aware Verbalization ($\mathcal{T}_{\mathcal{V}}$) and Predicted atypicality statement (\hat{s})

Results

Atypicality Understanding tasks

- MAC and ASR
 - VLMs lack reasoning capability on atypicality understanding
 - V+T is not informative enough:
 - V+T only lists the visual and textual elements
 - VLMs are effective for verbalization of the image.
- MAC
 - UH verbalization is better for classifying the atypicality
 - Directly describes the unusualness in the image
- ASR
 - IN verbalization is better for ASR task
 - It includes both information about atypicality and objects

	MAC						ASR	
Classifier	Method	Precision		Recall		F1-score		Acc
		✓	×	✓	X	✓	×	
	I	27.75	27.75	42.38	52.71	21.24	26.03	18.83
LLaVA	IN	25.12	31.40	42.44	53.04	25.06	31.32	20.90
	UH	44.35	30.44	42.04	52.44	24.16	29.98	17.90
InstructBLIP	I	34.81	27.60	41.43	50.73	17.72	20.18	19.76
	V+T	36.70	30.64	41.73	45.78	32.52	31.66	14.30
Vicuna	IN	37.71	32.04	43.70	45.91	34.51	32.09	23.29
	UH	39.41	33.33	36.05	42.88	27.35	30.36	14.74
	V+T	41.46	35.36	23.21	21.54	28.18	24.95	50.00
GPT 3.5	IN	46.28	42.50	25.13	14.75	28.49	19.64	50.55
	UH	49.10	43.34	27.38	30.92	27.06	28.24	50.05
GPT 4	V+T	40.38	35.95	22.56	6.69	22.66	10.99	52.44
GPT 4	IN	54.78	53.40	27.19	13.64	30.58	20.91	57.70
	UH	53.49	51.01	29.15	28.89	34.62	33.05	56.89

Atypicality Understanding Tasks

- AOR
 - Scores
 - >0.7 strong semantic overlap
 - (0.5, 0.7) moderate semantic overlap
 - <0.5 weak semantic overlap
 - MLLMs and VLMs struggle finding the objects
 - 65% of responses have weak semantic overlap
 - Maximum average similarity: 0.59

Model	$ $ Avg. similarity $(\hat{s} \text{ to } s^+) $	% of scores			
Model	score	> 0.7	> 0.6	> 0.5	
BLIP2	0.45	8.77	19.78	35.43	
InstructBLIP	0.46	9.54	21.24	40.76	
MiniGPT4	0.51	15.24	32.28	51.71	
LLaVA	0.59	31.41	51.35	65.16	
GPT-4V	0.67	46.94	61.63	77.14	

Action-Reason Retrieval

- MLLMs/VLMs underperform LLMs
 - LLMs outperforms MLLMs/VLMs
- Atypicality-aware verbalization improves the performance
- Atypicality-aware verbalization outperforms basic verbalization (V+T)
 - Atypicality statement in prompt improves the VLMs' performance

			$I+\hat{s}I+ar{s}$
LLaVA	26.00	35.18	54.28 28.16
InstructBLIP	20.44	23.25	23.40 19.69
GPT-4V	86.87	89.35	87.24 86.96
$\overline{\text{GPT-4}\left(\mathcal{T}_{\mathcal{V}} ight)}$	96.77	91.42	54.28 28.16 23.40 19.69 87.24 86.96 96.76 90.20

Clarate and	Y/1	Pre	cision	@k	Top-k Acc		Avg
Classifier	Verb.	k=1	k=2	k=3	k=1	k=2	
CL ID	I	61.04	33.86	22.66	23.72	44.61	37.18
CLIP	I + T	46.15	24.36	16.24	15.15	31.25	26.63
LLaVA	I	59.67	38.27	26.06	32.92	48.14	41.01
LLavA	$I + \mathcal{T}_{\mathcal{V}}$	59.45	37.37	25.14	27.49	47.07	39.30
InstructBLIP	I	15.05	10.03	7.80	13.04	13.04	11.79
InternVL-V1	I	52.22	32.79	22.17	22.51	40.66	30.07
	V+T	64.13	40.71	27.57	21.49	43.41	39.46
	$\mathcal{T}_{\mathcal{V}}$ (Ours)	67.38	44.01	29.94	23.20	41.95	41.30
Vicuna	$\mathcal{T}_{\mathcal{V}} + \hat{s}_{IN}$ (Ours)	68.32	44.52	30.25	22.95	43.24	41.86
	$\mathcal{T}_{\mathcal{V}}$ (GPT-4 Verb.) (Ours)	68.49	44.52	30.37	24.06	43.24	42.14
	V+T	93.73	84.42	70.50	71.50	89.87	82.00
CDT 4	$\mathcal{T}_{\mathcal{V}}$ (Ours)	93.99	86.35	72.96	74.94	91.16	83.88
GPT-4	$\mathcal{T}_{\mathcal{V}} + \hat{s}_{IN}$ (Ours)	95.54	87.55	74.62	88.42	93.40	87.91

Semantically Hard Negatives

- Comparison of easy and hard negatives
 - Performance drops by 75.8 for CLIP from easy negatives to semantically hard negative
 - Robustness of LLMs on hard negatives
 - MLLMs/VLMs reliance on visual differences
- Least challenging type of negatives for all the models is
 Object swap
- Most challenging types of negative for CLIP is Action Alter
- Most challenging types of negative for LLAVA and GPT4 is Statement Alter

Neg. Strategy	Model	Pr	Single		
		k=1	k=2	k=3	Acc
	$\operatorname{CLIP}\left(I\right)$	98.79	97.58	92.20	96.77
12 Noa	CLIP(I+T)	97.58	97.58	87.10	90.32
12 Neg.	LLaVA (I)	93.47	74.08	56.33	94.31
	GPT4 $(\mathcal{T}_{\mathcal{V}})$	99.60	96.98	91.13	93.52
	$\operatorname{CLIP}\left(I\right)$	64.52	34.48	22.98	20.97
	CLIP (I+T)	47.18	25.40	16.94	15.73
18 Hard Neg.	LLaVA(I)	59.67	38.27	26.06	26.80
	GPT4 $(\mathcal{T}_{\mathcal{V}})$	96.77	87.30	74.60	96.77

Findings

- Current MLLMs can't detect atypical objects directly
 - Due to unconventional structure
 - Unseen during training
- MLLMs show some promise extract valuable information about atypical aspects
- MLLMs lack strong reasoning capabilities even compared to LLM counter part
- Atypicality is essential in understanding and designing effective ads

Conclusion

- We introduce 3 novel task
 - Multi-label Atypicality Classification (MAC)
 - Atypicality Statement Retrieval (ASR)
 - Atypical Object Recognition (AOR)
- We show that current MLLMs and VLMs lack reasoning capabilities on these tasks
- We propose an atypicality-aware verbalization method
 - Results show that LLMs with informative verbalization have higher performance than MLLMs/VLMs
 - Results show that atypicality improves the performance of the models
- We expand the PittAds dataset introducing semantically challenging negative options resulted in drop of the performance of VLMs by 75.8

