EE24BTECH11022 - Eshan Sharma

Question:

Find the area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$. **Solution:**

Symbol	Value	Description
С	$x^2 + y^2 = 16$	Circle
P	$y^2 = 6x$	Parabola
I ₁	$(2 2\sqrt{3})$	Intersection point
I ₂	$\begin{pmatrix} 4 & 0 \end{pmatrix}$	diametric end of the circle
A_c	16π	Area of circle
A_i	$\frac{4}{3}\left(4\pi+\sqrt{3}\right)$	Area interior to the parabola
A	$\frac{4}{3}\left(8\pi+\sqrt{3}\right)$	Area exterior to the parabola

TABLE 0: Variables Used

The given circle C can be expressed as

$$v = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, u = 0, f = -16 \tag{0.1}$$

The given parabola P can be expressed as

$$v = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, u = \begin{pmatrix} -3 \\ 0 \end{pmatrix}, f = 0 \tag{0.2}$$

The area exterior to the parabola, A is given by

$$\mathbf{A} = A_c - A_i, \text{ where} \tag{0.3}$$

$$A_c = \pi \text{ (radius of } \mathbf{C})^2 \tag{0.4}$$

$$A_i = 2\left(\int_0^{x(\mathbf{I}_1)} \sqrt{6x} \, dx + \int_{x(\mathbf{I}_1)}^{x(\mathbf{I}_2)} \sqrt{16 - x^2} \, dx\right) \tag{0.5}$$

$$\mathbf{A} = 16\pi - \frac{4}{3} \left(4\pi + \sqrt{3} \right) \text{ units} \tag{0.6}$$

$$\mathbf{A} = \frac{4}{3} \left(8\pi + \sqrt{3} \right) \text{ units} \tag{0.7}$$

1

Fig. 0.1: Area enclosed in the first quadrant