МИНИСТЕРСТВО НАУКИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра ЭВМ

Исследование многослойного персептрона с обучением по методу с обратным распространением ошибки

Отчёт Лабораторная работа № 1-2 по дисциплине «Системы обработки знаний»

Выполнил студент группы ИВТб-41_	/Крючков И.С./
Проверил доцент кафедры ЭВМ	/Ростовцев В.С./

Цель

Изучить алгоритм обратного распространения ошибки (OPO) в процессе обучения нейронной сети при вариативных параметрах обучения. Работа выполняется с помощью программы BackPropagate 3.0.0.exe.

1 Задание

Обучающая выборка представлена в приложении А. Используется выходная функция $Y = X_1 + X_2^2 + X_3$. Переменная x_1 изменяются в промежутке [-5;4], переменная x_2 изменяется в промежутке [-5;4], переменная x_3 изменяется в промежутке [-6;4].

2 Протокол выполнения

Во всех таблицах ниже цветом выделен наилучший результат. Значение минимальной ошибки не учитывалось при выборе.

2.1 Влияние нормализации на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000

В таблице 1 показаны результаты исследования.

Таблица 1 – Влияние нормализации на эффективность алгоритма ОРО

Тип нормализации	Результат		
Без нормализации	Максимальная ошибка: 62,00		
вез пормализации	Минимальная ошибка: 0,00		
	Средняя ошибка: 31,94		
	Среднеквадратичная ошибка: 629418		
[0;1]	Максимальная ошибка: 2,28		
[0,1]	Минимальная ошибка: 0,000305		
	Средняя ошибка: 0,28		
	Среднеквадратичная ошибка: 85,01		
[-0.5;0.5]	Максимальная ошибка: 22,00		
	Минимальная ошибка: 9,30		
	Средняя ошибка: 8,31		
	Среднеквадратичная ошибка: 52270,43		
[-1;1]	Максимальная ошибка: 44,00		
[[-,-]	Минимальная ошибка: 0,00		
	Средняя ошибка: 18,01		
	Среднеквадратичная ошибка: 221427,99		

Применение нормализации [0;1] значительно сокращает величину ошибок. Результат лучше примерно в 8 раз для средних и, приблизительно в 6 раз для среднеквадратичных ошибок при нормализации [-0,5;0,5] (наиболее близкой к лучшей).

2.2 Влияние выбора примеров на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000. Нормализация: [0;1].

В таблице 2 показаны результаты исследования.

Таблица 2 – Влияние выбора примеров на эффективность алгоритма ОРО

Выбор примеров	Результат			
Последовательный	Максимальная ошибка: 2,41 Минимальная ошибка: 0,00051			
	Средняя ошибка: 0,32			
	Среднеквадратичная ошибка: 109,12			
Случайный	Максимальная ошибка: 2,34			
	Минимальная ошибка: 0,0000037			
	Средняя ошибка: 0,25			
	Среднеквадратичная ошибка: 74,88			

Случайный выбор примеров показывает лучший результат по сравнению с последовательным выбором примеров обучения.

2.3 Влияние крутизны функции на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000. Нормализация: [0;1].

Выбор примеров: случайный.

В таблице 3 показаны результаты исследования.

Таблица 3 – Влияние крутизны функции на эффективность алгоритма ОРО

Крутизна функции	Результат		
0,1	Максимальная ошибка: 4,68		
0,1	Минимальная ошибка: 0,00016		
	Средняя ошибка: 0,76		
	Среднеквадратичная ошибка: 603,19		
0,5	Максимальная ошибка: 2,57		
0,5	Минимальная ошибка: 0,00029		
	Средняя ошибка: 0,32		
	Среднеквадратичная ошибка: 104,45		
1,0	Максимальная ошибка: 1,86		
1,0	Минимальная ошибка: 0,00011		
	Средняя ошибка: 0,26		
	Среднеквадратичная ошибка: 68,89		
3,0	Максимальная ошибка: 1,4		
3,0	Минимальная ошибка: 0,0032		
	Средняя ошибка: 0,25		
	Среднеквадратичная ошибка: 41,13		

Наилучшие результаты – при крутизне функции 3,0. Остальные параметры также лучше при [3;0].

2.4 Влияние смещения на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000. Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 1,0.

В таблице 4 показаны результаты исследования.

Таблица 4 – Влияние смещения на эффективность алгоритма ОРО

Смещение	Результат
0,1	Максимальная ошибка: 2,37
0,1	Минимальная ошибка: 0,00016
	Средняя ошибка: 0,26
	Среднеквадратичная ошибка: 79,99
0,5	Максимальная ошибка: 2,33
0,5	Минимальная ошибка: 0,00092
	Средняя ошибка: 0,32
	Среднеквадратичная ошибка: 102,02
1,0	Максимальная ошибка: 2,30
1,0	Минимальная ошибка: 0,00019
	Средняя ошибка: 0,21
	Среднеквадратичная ошибка: 62,01
2,0	Максимальная ошибка: 1,57
	Минимальная ошибка: 0,00046
	Средняя ошибка: 0,26
	Среднеквадратичная ошибка: 61,41

Наилучшие результаты наблюдаются при смещениях 1,0 и 2,0. Наименьшие минимальная ошибка наблюдается при смещении 1,0, а наименьшие максимальная, среднеквадратическая и средняя ошибки — при смещении 2,0.

2.5 Влияние скорости обучения на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000. Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 1,0.

Смещение: 1,0.

В таблице 5 показаны результаты исследования.

Таблица 5 – Влияние скорости обучения на эффективность алгоритма ОРО

Скорость обучения	Результат
0,01	Максимальная ошибка: 4,27
0,01	Минимальная ошибка: 0,0000095
	Средняя ошибка: 0,68
	Среднеквадратичная ошибка: 480,39
0,1	Максимальная ошибка: 4,48
	Минимальная ошибка: 0,00031
	Средняя ошибка: 0,047
	Среднеквадратичная ошибка: 283,80
0,5	Максимальная ошибка: 1,76
· · ·	Минимальная ошибка: 1,09
	Средняя ошибка: 0,13
	Среднеквадратичная ошибка: 27,47
1,0	Максимальная ошибка: 1,60
1,0	Минимальная ошибка: 0,00057
	Средняя ошибка: 0,19
	Среднеквадратичная ошибка: 37,51

Увеличение скорости обучения с 0,01 до 0,5 ведет к снижению средней и среднеквадратичной ошибки. При увеличении с 0,5 до 1,0 — средняя и среднеквадратичная ошибка возрастает. Наилучшие результаты наблюдаются при скорости 0,5.

2.6 Влияние количества нейронов в скрытом слое на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000. Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 1,0.

Смещение: 1,0.

Скорость обучения: 0.5.

В таблице 6 показаны результаты исследования.

Таблица 6 – Влияние количества нейронов в скрытом слое на эффективность алгоритма OPO

Количество нейронов в скрытом слое	Результат
1	Максимальная ошибка: 19,08
	Минимальная ошибка: 0,04
	Средняя ошибка: 4,40
	Среднеквадратичная ошибка: 18978,54
5	Максимальная ошибка: 1,74
	Минимальная ошибка: 0,00021
	Средняя ошибка: 0,15
	Среднеквадратичная ошибка: 29,36
10	Максимальная ошибка: 1,47
10	Минимальная ошибка: 0,00028
	Средняя ошибка: 0,085
	Среднеквадратичная ошибка: 10,94

Приоритет был отдан количеству нейронов в скрытом слое, равному 10.

2.7 Влияние момента на эффективность алгоритма ОРО

Число входов: 3. Число выходов: 1.

Циклов обучения: 10000. Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 1,0.

Смещение: 1,0.

Скорость обучения: 0,5.

Количество нейронов в скрытом слое: 10.

В таблице 7 показаны результаты исследования.

Таблица 7 – Влияние момента на эффективность алгоритма ОРО

Момент	Результат		
Без момента	Максимальная ошибка: 1,57		
Bes momenta	Минимальная ошибка: 0,00042		
	Средняя ошибка: 0,15		
	Среднеквадратичная ошибка: 25,63		
0,1	Максимальная ошибка: 1,60		
0,1	Минимальная ошибка: 0,00023		
	Средняя ошибка: 0,095		
	Среднеквадратичная ошибка: 14,82		
0,5	Максимальная ошибка: 43,9		
0,5	Минимальная ошибка: 0,00022		
	Средняя ошибка: 25,99		
	Среднеквадратичная ошибка: 414053,47		
1,0	Максимальная ошибка: 43,99		
1,0	Минимальная ошибка: 2,00		
	Средняя ошибка: 25,99		
	Среднеквадратичная ошибка: 414059,94		

Наилучшие результаты наблюдаются при обучении без момента и обучении с моментом 0,1. Наименьшие максимальная, средняя и среднеквадратичная ошибки наблюдаются при обучении без момента, а наименьшая минимальная ошибка — при обучении с моментом 0,1.

3 Ручной расчет

Для более подробного изучения алгоритма OPO в режиме трассировки был сделан один проход (включающий прямое и обратное распространение), а затем те же самые действия были произведены вручную.

На рисунке 1 показана трассировка первого прохода при обучении сети.

На рисунке 2 показана структура сети.

```
Инициализация весов синапсов случайным образом...
                                                                           Обратная волна - подсчет локальной ошибки нейронов...
Нейрон[1][1]
                                                                           Подсчет локальной ошибки нейронов на выходе нейронной
w[1, 1, 1] = -0.246

w[1, 1, 2] = 0.158

w[1, 1, 3] = -0.11
                                                                           сети...
                                                                           Желаемый сигнал на выходе:
                                                                           0,340909
Вес смещения:
                                                                           Прогнозируемый сигнал на выходе нейронной сети:
w[1, 1, 4] = 1
                                                                           0,4747516288
Нейрон[1][2]
                                                                           Нейрон[2][1]
w[1, 2, 1] = 0,942

w[1, 2, 2] = -0,676
                                                                           Локальная ошибка = 0,03337533518
w[1, 2, 3] = 0,246
                                                                           Подсчет локальной ошибки нейронов в скрытых слоях нейронной
Вес смещения:
w[1, 2, 4] = 1
                                                                           Нейрон[1][1]
                                                                           Локальная ошибка = -0,0009672148606
Нейрон[1][3]
w[1, 3, 1] = -0,226

w[1, 3, 2] = -0,194

w[1, 3, 3] = -0,41
                                                                           Нейрон[1][2]
                                                                           Локальная ошибка = -0,0006357329363
Вес смещения:
w[1, 3, 4] = 1
                                                                           Нейрон[1][3]
                                                                           Локальная ошибка = -0,004103828684
Нейрон[1][4]
w[1, 4, 1] = 0,814
                                                                           Нейрон[1][4]
w[1, 4, 2] = 0,968

w[1, 4, 3] = -0,202
                                                                           Локальная ошибка = -0,001317145153
Вес смещения:
                                                                           Нейрон[1][5]
w[1, 4, 4] = 1
                                                                          Локальная ошибка = -0,00264350404
Нейрон[1][5]
                                                                           Коррекция весов синапсов...
w[1, 5, 1] = 0.18

w[1, 5, 2] = 0.168
                                                                           w[1, 1, 1] = -0,2456922496
                                                                           w[1, 1, 2] = 0,1582857685
w[1, 1, 3] = -0,1098241429
w[1, 5, 3] = -0.326
Вес смещения:
w[1, 5, 4] = 1
                                                                           Вес смещения:
                                                                           w[1, 1, 4] = 1,000967215
Нейрон[2][1]
w[2, 1, 1] = -0,144

w[2, 1, 2] = -0,104
                                                                          w[1, 2, 1] = 0,9422022788
w[1, 2, 2] = -0,6758121695
w[2, 1, 3] = -0,104
w[2, 1, 3] = -0,574
w[2, 1, 4] = -0,266
w[2, 1, 5] = -0,412
Вес смещения:
                                                                           w[1, 2, 3] = 0,2461155877
                                                                           Вес смешения:
                                                                           w[1, 2, 4] = 1,000635733
w[2, 1, 6] = 1
                                                                           w[1, 3, 1] = -0,2246942356
                                                                           w[1, 3, 2] = -0,1927875033
w[1, 3, 3] = -0,4092538501
Выбираем допустимый образ из обучающего множества...
0,318182
                                                                           Вес смещения:
0,295455
                                                                           w[1, 3, 4] = 1,004103829
0,181818
0.340909
                                                                           w[1, 4, 1] = 0,8144190919
                                                                          w[1, 4, 2] = 0,9683891571

w[1, 4, 3] = -0,2017605193
Подаем сигнал на вход нейронной сети...
Нейрон[0][1]
A\kappa coh = 0,318182
                                                                           Вес смешения:
                                                                           w[1, 4, 4] = 1,001317145
Нейрон[0][2]
A\kappa coh = 0,295455
                                                                           w[1, 5, 1] = 0,1808411154
                                                                          w[1, 5, 2] = 0,1687810365
                                                                           w[1, 5, 3] = -0,3255193634
Нейрон[0][3]
AKCOH = 0,181818
                                                                           Вес смещения:
                                                                           w[1, 5, 4] = 1,002643504
Прямая волна...
                                                                          w[2, 1, 1] = -0,1680567791

w[2, 1, 2] = -0,1293167431

w[2, 1, 3] = -0,5970011752
Нейрон[1][1]
Взвешенная сумма = 0,948409138
Аксон = 0,7207951303
                                                                          w[2, 1, 4] = -0,2933278972
                                                                          w[2, 1, 5] = -0,4367084545
Вес смещения:
Нейрон[1][2]
Взвешенная сумма = 1,144727092
                                                                           w[2, 1, 6] = 0,9666246648
A\kappa coh = 0,7585464813
Нейрон[1][3]
Взвешенная сумма = 0,796227218
Аксон = 0,6891668686
Нейрон[1][4]
Взвешенная сумма = 1,508273352
Аксон = 0,8188051767
Нейрон[1][5]
Взвешенная сумма = 1,047636532
Akcoh = 0,7403207902
Нейрон[2][1]
Взвешенная сумма = -0,101079458
A\kappa coh = 0,4747516288
```

Рисунок 1 – Трассировка первого прохода

Рисунок 2 – Структура сети

В качестве активационной функции взята

$$F(S_i) = \frac{1}{1 + \exp[-s]} \tag{1}$$

где S_i — взвешенная сумма входов і-го нейрона (с учетом смещения);

В таблице показан расчет прямой волны.

№ слоя	№ нейрона	№ выхода	Входной сигнал хј	Весовой коэффициент wij	Смещение wi0	Вес смещения	wij*xj	Взвешенная сумма Si	Выход нейрона yi = F(Si)
	1	1	0,318182	-	-	-	-	-	0,318182
Вход	2	1	0,295455	-	-	-	-	-	0,340909
	3	1	0,181818	-	-	-	-	-	0,340909
		1	0,318182	-0,246			-0,078272772		
	1	2	0,295455	0,158	1	1	0,04668189	0,948409138	0,72079513
		3	0,181818	-0,11			-0,01999998		
		1	0,318182	0,942			0,299727444		
	2	2	0,295455	-0,676	1	1	-0,19972758	1,144727092	0.758546481
		3	0,181818	0,246			0,044727228		
		1	0,318182	-0,226			-0,071909132		
1	3	2	0,295455	-0,194	1	1	-0,05731827	0,796227218	0.689166869
		3	0,181818	-0,41			-0,07454538		
		1	0,318182	0,814			0,259000148		
	4	2	0,295455	0,968	1	1	0,28600044	1,508273352	0,818805177
		3	0,181818	-0,202			-0,036727236		
		1	0,318182	0,18			0,05727276		
	5	2	0,295455	0,168	1	1	0,04963644	1,047636532	0,74032079
		3	0,181818	-0,326			-0,059272668		
		1	0,72079513	-0,144			-0,103794499		
		2	0,75854648	-0,104			-0,078888834		
Выход	1	3	0,68916687	-0,574	1	1	-0,395581783	-0,101079458	0,474751629
		4	0,81880518	-0,266			-0,217802177		
		5	0,74032079	-0,412			-0,305012166		

Для расчета ошибок необходимо найти производную функции (1) по S_i :

$$F'(S_i) = \frac{e^{S_i}}{e^{2*S_i} + 2*e^{S_i} + 1}.$$
 (2)

Тогда ошибка единственного нейрона выходного слоя буден найдена как

$$\gamma = (y - t) * F'(S),$$

где y — фактическое значение его выхода; t — желаемый сигнал на выходе.

Ошибка і-го нейрона скрытого слоя будет найдена как

$$\gamma_i = \gamma_j * F'(S_i) * \omega_{ij}.$$

где γ_i – ошибка выходного слоя;

 ω_{ij} — синаптическая связь между і-м нейроном скрытого слоя и ј-м нейроном выходного слоя.

В таблице 9 показан расчет ошибок.

Таблина 9 – Расчет ошибок

Тиолици	1 de lei omnooi	·c		
№ слоя	№ нейрона	Si	F'(Si)	Ошибка
Выход	1	-0,10107946	0,24936252	0,033375335
	1	0,94840914	0,20124951	-0,000967215
	2	1,14472709	0,18315372	-0,000635733
1	3	0,79622722	0,2142159	-0,004103829
	4	1,50827335	0,14836326	-0,001317145
	5	1,04763653	0,19224592	-0,002643504

Коррекция веса синапса производится по следующей формуле:

$$\omega_{ij}(t+1) = \omega_{ij}(t) - \gamma_j F'(S_j) y_j.$$

Коррекция веса смещения производится по следующей формуле:

$$T_j(t+1) = T_j(t) - \gamma_j F'(S_j).$$

В таблице 10 показан расчет новых весов.

Значения в таблицах 8,9 полностью совпадают со значениями на рис. 1.

Скорректированные веса в таблице 10 совпадают с искомыми с точностью не менее трех знаков после запятой; погрешность можно объяснить ошибками округления и расчетов с плавающей запятой в разных средах.

Таким образом, ручной расчет выполнен верно.

Таблица 10 – Расчет новых весов.

№ слоя	№ нейрона	№ выхода	Предыдущий весовой коэффициент wij(t)	Предыдущий вес смещения Тj(t)	Новый весовой коэффициент wij(t+1)	Новый вес смещения Тj(t+1)	
		1	-0,246		-0,245805348		
	1	2	0,158	1	0,158194652	1,000194652	
		3	-0,11		-0,109805348		
		1	0,942		0,942116437		
	2	2	-0,676	1	-0,675883563	1,000116437	
		3	0,246		0,246116437		
		1	-0,226		-0,225120895	1,000879105	
1	3	2	-0,194	1	-0,193120895		
		3	-0,41		-0,409120895		
	4	1	0,814	1	0,814195416	1,000195416	
		2	0,968		0,968195416		
		3	-0,202		-0,201804584		
		1	0,18		0,180508203		
	5	2	0,168	1	0,168508203	1,000508203	
		3	-0,326		-0,325491797		
		1	-0,144		-0,152322558		
Выход		2	-0,104		-0,112322558		
	1	3	-0,574	1	-0,582322558	0,991677442	
		4	-0,266		-0,274322558		
		5	-0,412		-0,420322558		

4 Выводы

В ходе выполнения лабораторной работы был исследован алгоритм ОРО при обучении многослойной НС, а также влияние различных параметров на качество обучения.

Наибольшее влияние на качество обучения показали нормализация, крутизна функции и величина момента. Влияние других параметров, таких как смещение, скорость обучения и количество нейронов в скрытом слое были значительно меньше. При этом, случайный выбор примеров улучшил результаты работы, его использование предпочтительно для избегания привыкания сети.

Оптимальные параметры, выбранные для решения данной задачи:

Число входов: 3; Число выходов: 1; Циклов обучения: 10000; Нормализация: [0;1]; Выбор примеров: случайный; Крутизна функции: 3,0; Смещение: 0,5; Скорость обучения: 1; Количество нейронов в скрытом слое: 5.

Работе алгоритма ОРО была проверена ручным расчетом одного прохода. Вычисленные вручную значения совпали практически точно, разница с рассчитанными автоматически возникла из-за округлений и погрешностей в вычислениях.

Приложение А (обязательное) Обучающая выборка

X1	X2	X3	OUT
2.00000	-1.00000	-6.00000	-3.00000
2.00000	4.00000	2.00000	20.00000
-4.00000	-1.00000	-6.00000	-9.00000
-4.00000	-4.00000	0.00000	12.00000
-2.00000	3.00000	4.00000	11.00000
4.00000	-1.00000	4.00000	9.00000
-1.00000	-3.00000	-2.00000	6.00000
-4.00000	-4.00000	-6.00000	6.00000
-3.00000	-4.00000	0.00000	13.00000
-4.00000	2.00000	0.00000	0.00000
3.00000	3.00000	-1.00000	11.00000
-3.00000	0.00000	1.00000	-2.00000
4.00000	-2.00000	0.00000	8.00000
2.00000	-1.00000	-3.00000	0.00000
3.00000	-5.00000	-5.00000	23.00000
-3.00000	-1.00000	2.00000	0.00000
-1.00000	-2.00000	2.00000	5.00000
2.00000	4.00000	1.00000	19.00000
1.00000	4.00000	-2.00000	15.00000
2.00000	-4.00000	-2.00000	16.00000
3.00000	-4.00000	0.00000	19.00000
-3.00000	1.00000	3.00000	1.00000
-1.00000	2.00000	-4.00000	-1.00000
-4.00000	0.00000	4.00000	0.00000
4.00000	3.00000	-4.00000	9.00000
2.00000	4.00000	3.00000	21.00000
2.00000	0.00000	1.00000	3.00000
3.00000	4.00000	4.00000	23.00000
2.00000	-2.00000	-3.00000	3.00000
0.00000	2.00000	4.00000	8.00000
4.00000	-1.00000	-1.00000	4.00000
-5.00000	-4.00000	4.00000	15.00000
-5.00000	-3.00000	-6.00000	-2.00000
2.00000	-1.00000	-6.00000	-3.00000
2.00000	4.00000	2.00000	20.00000
-4.00000	-1.00000	-6.00000	-9.00000
-4.00000	-4.00000	0.00000	12.00000
-2.00000	3.00000	4.00000	11.00000
4.00000	-1.00000	4.00000	9.00000
-1.00000	-3.00000	-2.00000	6.00000
-4.00000	-4.00000	-6.00000	6.00000
-3.00000	-4.00000	0.00000	13.00000
-4.00000	2.00000	0.00000	0.00000
3.00000	3.00000	-1.00000	11.00000
-3.00000	0.00000	1.00000	-2.00000
4.00000	-2.00000	0.00000	8.00000
2.00000	-1.00000	-3.00000	0.00000
3.00000	-5.00000	-5.00000	23.00000
-3.00000	-1.00000	2.00000	0.00000
-1.00000	-2.00000	2.00000	5.00000