ЛАБОРАТОРНАЯ РАБОТА №4-NI

ИССЛЕДОВАНИЕ ПРОСТЫХ ЦЕПЕЙ ЭЛЕКТРИЧЕСКОГО ТОКА С ПОМОЩЬЮ УСТРОЙСТВА СБОРА ДАННЫХ NI myDAQ

Поляков Даниил, 19.Б23-фз

Цель работы: ознакомиться с расчётом параметров простых цепей синусоидального переменного тока, измерить характеристики этих цепей с помощью виртуальных приборов на основе устройства сбора данных NI myDAQ.

Оборудование

- Персональный компьютер с ПО NI ELVISmx;
- Наборная панель для сбора цепей и подключения к компьютеру;
- Генератор переменного напряжения S12;
- Программный генератор переменного напряжения FGEN;
- Набор резисторов, конденсаторов, катушек, проводов.

Расчётные формулы

• Параметры цепи из двух последовательных сопротивлений:

$$I = \frac{U_{pp}}{2\sqrt{2}(R_1 + R_2)}$$

$$U_1 = \frac{U_{pp}R_1}{R_1 + R_2}$$

$$U_{pp}R_2$$

$$U_2 = \frac{U_{pp}R_2}{R_1 + R_2}$$

I — действующее значение переменного тока в цепи;

 U_1 , U_2 — размах напряжения на резисторе; U_{pp} — размах входного напряжения; R_1 , R_2 — сопротивление резистора.

• Параметры цепи из сопротивления R_1 , последовательно соединённого с параллельно соединёнными R_2 и R_3 :

$$\begin{split} R_0 &= R_1 + \frac{R_2 R_3}{R_2 + R_3} \\ U_1 &= \frac{U_{pp} R_1}{R_0} \\ U_{2,3} &= \frac{U_{pp} (R_0 - R_1)}{R_0} \\ I_1 &= \frac{U_{pp}}{2\sqrt{2} R_0} \\ I_2 &= \frac{U_{pp} (R_0 - R_1)}{2\sqrt{2} R_0 R_2} \\ I_3 &= \frac{U_{pp} (R_0 - R_1)}{2\sqrt{2} R_0 R_2} \end{split}$$

 R_0 — полное сопротивление цепи; U_1 , $U_{2,3}$ — размах напряжения на резисторе; I_1 , I_2 , I_3 — действующее значение переменного тока через резистор; U_{pp} — размах входного напряжения; R_1 , R_2 , R_3 — сопротивление резистора.

• Экспериментальный и теоретический модуль импеданса конденсатора:

$$\begin{split} Z_{C \text{ эксn}} &= \frac{U_C}{2\sqrt{2}I_C} \\ Z_{C \text{ meop}} &= \frac{1}{2\pi f C} \end{split}$$

 U_C — размах напряжения на конденсаторе; I_C — действующее значение переменного тока через конденсатор; f — частота переменного тока через конденсатор; C — ёмкость конденсатора.

• Параметры цепи из двух последовательных конденсаторов:

$$Z_{C_1} = \frac{1}{2\pi f C_1}$$

$$Z_{C_2} = \frac{1}{2\pi f C_2}$$

$$I = \frac{U_{pp}}{2\sqrt{2}(Z_{C_1} + Z_{C_2})}$$

$$U_1 = \frac{U_{pp} Z_{C_1}}{Z_{C_1} + Z_{C_2}}$$

$$U_2 = \frac{U_{pp} Z_{C_2}}{Z_{C_1} + Z_{C_2}}$$

I — действующее значение переменного тока в цепи; $U_1,\ U_2$ — размах напряжения на конденсаторе; U_{pp} — размах входного напряжения; f — частота переменного тока в цепи; $C_1,\ C_2$ — ёмкость конденсатора.

 $Z_{C_{1}}$, $Z_{C_{2}}$ – модуль импеданса конденсатора;

• Параметры цепи из двух параллельных конденсаторов:

$$Y_{C_{1}} = 2\pi f C_{1}$$

$$Y_{C_{2}} = 2\pi f C_{2}$$

$$I = \frac{U_{pp}(Y_{C_{1}} + Y_{C_{2}})}{2\sqrt{2}}$$

$$I_{1} = \frac{U_{pp}Y_{C_{1}}}{2\sqrt{2}}$$

$$I_{2} = \frac{U_{pp}Y_{C_{2}}}{2\sqrt{2}}$$

 Y_{C_1} , Y_{C_2} – модуль адмиттанса конденсатора; I – действующее значение переменного тока в цепи;

 I_1 , I_2 — действующее значение переменного тока через конденсатор;

 U_{pp} — размах входного напряжения; f — частота переменного тока в цепи; C_1 , C_2 — ёмкость конденсатора.

• Приблизительная индуктивность катушки:

$$L = \frac{D^2 N^2}{45 D + 100 I}$$

N — число витков катушки;

D – диаметр катушки;

l — длина катушки.

• Параметры цепи из последовательно соединённых катушки и сопротивления:

$$U_{6x} = 2\sqrt{2}\sqrt{(U_R + U_r)^2 + U_{X_L}^2}$$

$$U_L = \sqrt{U_r^2 + U_{X_L}^2}$$

$$U_r = Ir$$

$$U_{X_L} = IX_L$$

$$I = \frac{U_R}{R}$$

$$X_L = 2\pi f L$$

$$Z = \frac{U_{6x}}{2\sqrt{2}I} = \sqrt{(R+r)^2 + (2\pi f L)^2}$$

$$Z_L = \frac{U_L}{I} = \sqrt{r^2 + (2\pi f L)^2}$$

 U_{ex} – размах входного напряжения;

 $U_{\rm L}$ – действующее значение напряжения на катушке;

 U_r – действующее значение напряжения на активном сопротивлении катушки;

 U_{X_L} – действующее значение напряжения на реактивном сопротивлении катушки;

 U_{R} – действующее значение напряжения на резисторе;

I – действующее значение переменного тока в цепи;

R – сопротивление резистора;

 X_L – реактивное сопротивление катушки;

r — активное сопротивление катушки;

f – частота переменного тока в цепи;

L – индуктивность катушки;

Z – полное сопротивление цепи;

 $Z_{\!\scriptscriptstyle L}$ – модуль импеданса катушки.

1. Исследование цепи с последовательно соединёнными сопротивлениями

В этой части работы в качестве источника переменного тока использовался генератор FGEN при постоянной частоте $f=100~\Gamma y$. Размах напряжения на резисторах U_1 и U_2 измерялся с помощью осциллографа, действующее значение переменного тока в цепи I-с помощью DMM.

Так как в цепи отсутствуют реактивные элементы, сила тока и напряжения в цепи не должны изменяться при изменении частоты источника. При использовании FGEN в качестве источника тока с размахом входного напряжения $U_{pp}=5.0\ B$ показания приборов сохраняются постоянными в диапазоне частот от 10 до 1000 Гц. При выходе за этот диапазон возникают искажения, которые связаны с недостатками прибора FGEN.

1.1. Исследование электрической цепи, собранной из первой пары сопротивлений

Таблица 1.1. Последовательно соединённые сопротивления R_1 и R_2 (первая пара)

Пар	аметры ц	епи	Расчё	тные знач	чения	Измеренные значения			
U_{pp} , B	R ₁ , Ом	R ₂ , Ом	І, мА	U_1 , B	U_2 , B	І, мА	U_1 , B	U_2 , B	
1.000			0.27	0.769	0.231	0.26	0.753	0.251	
2.000			0.54	1.538	0.462	0.52	1.505	0.500	
3.000	1000	300	0.82	2.308	0.692	0.79	2.255	0.749	
4.000			1.09	3.077	0.923	1.06	3.007	0.998	
5.000			1.36	3.846	1.154	1.32	3.759	1.247	

Получаем, что измеренный размах напряжения U_1 на первом резисторе при всех входных напряжениях U_{pp} немного меньше расчётного значения, в то время как измеренное напряжение на втором резисторе U_2 всегда чуть больше расчётного. Измеренные значения силы тока в цепи I всегда чуть меньше расчётных. Все эти отклонения, вероятнее всего, вызваны неточностью указанных сопротивлений резисторов.

Комплексные амплитуды тока и напряжений на сопротивлениях:

$$\boldsymbol{I_0} = \frac{U_{pp}}{2(R_1 + R_2)} e^{i\phi_0} \qquad \boldsymbol{U_1} = \frac{U_{pp}R_1}{2(R_1 + R_2)} e^{i\phi_0} \qquad \boldsymbol{U_2} = \frac{U_{pp}R_2}{2(R_1 + R_2)} e^{i\phi_0}$$

Мгновенные значения тока и напряжений на сопротивлениях:

$$I_0 = \frac{U_{pp}}{2\left(R_1 + R_2\right)} \cos\left(\omega \, t + \phi_0\right) \quad U_1 = \frac{U_{pp} R_1}{2\left(R_1 + R_2\right)} \cos\left(\omega \, t + \phi_0\right) \quad U_2 = \frac{U_{pp} R_2}{2\left(R_1 + R_2\right)} \cos\left(\omega \, t + \phi_0\right)$$

Если амплитудное значение тока соответствует начальной фазе ϕ_0 , промежуток времени Δt , спустя который мгновенное значение тока становится равно половине амплитудного значения, находится из условия $\cos(\omega \Delta t) = 1/2$:

$$\cos(\omega \Delta t) = 1/2 \Rightarrow \omega \Delta t = \frac{\pi}{3} \Rightarrow \Delta t = \frac{\pi}{3\omega} = \frac{1}{6f} = 1.7 \text{ MC}$$

Расчёт мгновенного значения напряжения через $\Delta t=1~Mc$ при $U_0=0.75~B$ и $f=100~\Gamma u$:

$$U = \Re \left(U_0 e^{i\omega \Delta t} \right) = U_0 \cos(\omega \Delta t) = U_0 \cos(2\pi f \Delta t) = 0.61 B$$

1.2. Исследование электрической цепи, собранной из второй пары сопротивлений

Таблица 1.2. Последовательно соединённые сопротивления R_1 и R_2 (вторая пара)

Пар	аметры ц	епи	Расчё	тные знач	чения	Измеренные значения			
U_{pp} , B	R_1 , Ом	R ₂ , Ом	І, мА	U_1 , B	U_2 , B	І, мА	U_1 , B	U_2 , B	
1.000			0.15	0.957	0.0435	0.14	0.960	0.0446	
2.000			0.31	1.913	0.0870	0.29	1.918	0.0869	
3.000	2200	100	0.46	2.870	0.130	0.45	2.876	0.130	
4.000			0.61	3.826	0.174	0.60	3.832	0.172	
5.000			0.77	4.783	0.217	0.75	4.789	0.215	

Отклонение измеренных значений от расчётных для этой пары сопротивлений совсем мало и сопоставимо с колебаниями показаний осциллографа. В данном случае реальное сопротивление резисторов очень близко к заявленному.

2. Исследование цепи с параллельно соединёнными сопротивлениями

В этой части работы в качестве источника переменного тока использовался генератор FGEN при постоянной частоте $f=100~\Gamma q$. Размах напряжения на резисторах U_1 и $U_{2,3}$ измерялся с помощью осциллографа, действующее значение переменного тока через резисторы I_1 , I_2 , I_3 — с помощью DMM.

Так как в цепи отсутствуют реактивные элементы, сила тока и напряжения в цепи не должны изменяться при изменении частоты источника, что подтверждается на опыте (за исключением искажений, вызванных работой прибора FGEN).

2.1. Исследование электрической цепи, собранной из первого набора сопротивлений

Для этой цепи диапазон ЭДС источника U_{pp} выбран 0 — 4 В, т.к. при бо́льших значениях возникают искажения сигнала.

Таблица 2.1. Последовательное соединение сопротивления R_1 с параллельно соединёнными R_2 и R_3

Па	Параметры цепи			Расчётные значения				Измеренные значения					
U_{pp} , B	R_1 , Ом	R_2 , Ом	R_3 , Ом	U_1 , B	$U_{2,3}, B$	I_1 , м A	<i>I</i> ₂ , мА	<i>I</i> ₃ , м <i>A</i>	U_1 , B	$U_{2,3}, B$	I_1 , м A	<i>I</i> ₂ , мА	<i>I</i> ₃ , м <i>A</i>
1.000				0.324	0.676	0.35	0.24	0.11	0.331	0.673	0.33	0.23	0.10
2.000	330	1000	1000 2200	0.649	1.351	0.69	0.48	0.22	0.659	1.345	0.69	0.47	0.21
3.000	330	1000		0.973	2.027	1.04	0.72	0.33	0.988	2.017	1.03	0.71	0.32
4.000				1.297	2.703	1.39	0.96	0.43	1.317	2.690	1.38	0.95	0.42

Отклонение измеренных значений от расчётных для этих сопротивлений очень мало и сопоставимо с колебаниями показаний осциллографа. Тем не менее, можно наблюдать, что измеренное напряжение на первом резисторе всегда немного больше расчётного, а в случае с двумя остальными — наоборот, что является индикацией небольшого отклонения заявленных сопротивлений от действительных.

Мгновенные значения токов и напряжений на сопротивлениях:

$$\begin{split} I_1 &= \frac{U_{pp}}{2\,R_0} \cos(\omega\,t + \phi_0) \\ I_2 &= \frac{U_{pp}(R_0 - R_1)}{2\,R_0R_2} \cos(\omega\,t + \phi_0) \\ U_1 &= \frac{U_{pp}(R_0 - R_1)}{2\,R_0} \cos(\omega\,t + \phi_0) \\ U_2 &= \frac{U_{pp}(R_0 - R_1)}{2\,R_0} \cos(\omega\,t + \phi_0) \end{split}$$

2.2. Исследование электрической цепи, собранной из второго набора сопротивлений

Для этой цепи диапазон ЭДС источника U_{pp} выбран 0 — 2 В, т.к. при бо́льших значениях возникают искажения сигнала.

Таблица 2.2. Последовательное соединение сопротивления R_1 с параллельно соединёнными R_2 и R_3 (все сопротивления одинаковые)

Па	Параметры цепи			Расчётные значения				Измеренные значения					
U_{pp} , B	R_1 , Ом	R_2 , Ом	R_3 , Ом	U_1 , B	$U_{2,3}, B$	I_1 , м A	<i>I</i> ₂ , мА	<i>I</i> ₃ , м <i>A</i>	U_1 , B	$U_{2,3}$, B	<i>I</i> ₁ , мА	<i>I</i> ₂ , мА	<i>I</i> ₃ , м <i>A</i>
0.500				0.333	0.167	0.36	0.18	0.18	0.340	0.164	0.35	0.17	0.17
1.000		220	330 330	0.667	0.333	0.71	0.36	0.36	0.678	0.327	0.69	0.35	0.35
1.500	330	330		1.000	0.500	1.07	0.54	0.54	1.016	0.489	1.04	0.51	0.51
2.000					1.333	0.667	1.43	0.71	0.71	1.353	0.651	1.40	0.69

Отклонение измеренных значений от расчётных для этих сопротивлений очень мало и сопоставимо с колебаниями показаний осциллографа. Тем не менее, можно наблюдать, что измеренное напряжение на первом резисторе всегда немного больше расчётного, а в случае с двумя остальными — наоборот, что является индикацией небольшого отклонения заявленных сопротивлений от действительных.

3. Исследование цепи с последовательно соединёнными конденсаторами

Размах напряжения на конденсаторах $U_{\it C}$, $U_{\it I}$, $U_{\it I}$ измерялся с помощью осциллографа, действующее значение переменного тока в цепи $I_{\it C}$, I – с помощью DMM.

3.1. Исследование электрической цепи из одного конденсатора

Таблица 3.1.1. Модуль импеданса конденсатора ёмкостью $C=0.47~{\rm MK}\Phi$ при разных частотах

f, Гц	U_C , B	I_{C} , м A	$Z_{C \text{ эксп}}$, Ом	$Z_{C meop}$, Ом	$Z_{C _{9 \kappa cn}}^{-1}, \times 10^{-3} Om^{-1}$
99.966	5.012	0.52	3408	3387	0.2935
202.940	5.016	1.07	1657	1669	0.6034
400.889	5.006	2.11	838.8	844.7	1.192
801.778	5.007	4.21	420.5	422.3	2.378
1510	5.016	7.95	223.1	224.3	4.483
3009	5.016	15.76	112.5	112.5	8.887
4999	5.005	25.5	69.39	67.74	14.41

Измерения проводились при использовании генератора S12 в качестве источника тока с установленным значением размаха входного напряжения: $U_{pp}=5.0\ B$. При использовании FGEN в качестве источника тока с размахом входного напряжения $U_{pp}=5.0\ B$ искажение возникает при частоте 400 Гц и выше.

Экспериментально полученные значения модуля импеданса очень близки к теоретическим, их отклонение имеет случайный характер.

График 3.1.1. Экспериментальная зависимость модуля импеданса конденсатора ёмкостью $C=0.47~{\rm Mk}\Phi$ от частоты

Экспериментально определим значение ёмкости конденсатора. Построим график зависимости $Z_{C\, {}^{9}\!\kappa\!c\!n}^{-1}(f)$ и аппроксимируем его прямой. Коэффициент наклона аппроксимирующей прямой и его погрешность найдём по методу наименьших квадратов с помощью ПО MATLAB.

График 3.1.2. Экспериментальная зависимость величины, обратной модулю импеданса конденсатора ёмкостью $C=0.47~{\rm Mk\Phi}$, от частоты и аппроксимирующая прямая

Коэффициент наклона аппроксимирующей кривой:

$$a = (2.91 \pm 0.04) \cdot 10^{-6} \, \text{Om}^{-1} \cdot \Gamma \text{U}^{-1}$$

$$Z_{Cmeop}^{-1} = 2 \, \pi \, f \, C = a \cdot f \quad \Rightarrow \quad a = 2 \, \pi \, C \quad \Rightarrow \quad C = \frac{a}{2 \, \pi}$$

Находим ёмкость конденсатора:

$$C = 0.463 \pm 0.006 \,\text{MK}\Phi$$

Полученное значение ёмкости совпадает с заявленным.

Таблица 3.1.2. Модуль импеданса разных конденсаторов для одной частоты

		S12, f = 99	99.725 Гц		FGEN, $f = 1000 \Gamma y$				
С, мкФ	U_C , B	I_{C} , м A	Z _{С эксп} , Ом	$Z_{\textit{C meop}}, \ O$ м	U_C , B	$I_{\it C}$, м A	Z _{С эксп} , Ом	$Z_{C\ meop}$, O м	
0.22	5.019	2.16	821.5	723.6	5.692	2.49	808.2	723.4	
0.47	5.020	5.27	336.8	338.7	2.460	2.49	349.3	338.6	
0.68	5.023	7.79	228.0	234.1	1.692	2.49	240.2	234.1	
4.7	5.020	51.0	34.80	33.87	0.3063	2.49	43.49	33.86	

Измерения проводились с установленным значением размаха входного напряжения: $U_{pp} = 5.0 \ B$.

При использовании генератора S12 были получены более близкие к теоретическим экспериментальные значения модуля импеданса. В случае с конденсатором ёмкостью $C=0.22~m\kappa\Phi$ получено значительное отклонение экспериментального значения от теоретического для обоих генераторов, что связано либо с неточностью заявленной ёмкости, либо с утечкой ёмкости конденсатора. Кроме того, в случае с генератором S12 напряжение на конденсаторе оставалось постоянным для любого конденсатора, в то время как в случае с генератором FGEN почему-то сохранялось постоянным значение тока, а напряжение на конденсаторах различалось, несмотря на то, что входная амплитуда генератора не изменялась.

График 3.1.3. Экспериментальная зависимость модуля импеданса конденсатора от ёмкости

Расчёт комплексного сопротивления конденсатора ёмкостью C = $10~\mu\Phi$ на частоте f = $1000~\Gamma \mu$:

$$Z_C = \frac{1}{2\pi f C} = 15915 \, O_M$$

3.2. Исследование электрической цепи, собранной из двух последовательно соединённых конденсаторов

В этой части работы в качестве источника переменного тока использовался генератор S12 с размахом входного напряжения $U_{pp} = 5.000~B$.

Таблица 3.2. Последовательно соединённые конденсаторы $C_1 = 1 \ \text{мк} \Phi \ \text{u} \ C_2 = 4.7 \ \text{мк} \Phi$

f Fu	Pacy	етные значе	ения	Изме	ренные знач	чения
f, Гц	І, мА	U_1 , B	U_2 , B	І, мА	U_1 , B	U_2 , B
99.970	0.92	4.123	0.877	0.89	3.993	1.003
203.958	1.87	4.123	0.877	1.84	3.990	1.007
400.888	3.67	4.123	0.877	3.63	3.987	1.010
800.778	7.33	4.123	0.877	7.25	3.983	1.012
1500	13.74	4.123	0.877	13.58	3.980	1.014
3009	27.56	4.123	0.877	26.9	3.984	1.017
4999	45.78	4.123	0.877	44.5	3.987	1.019

Расчётные значения напряжений на конденсаторах не зависят от частоты в такой цепи, что подтверждается на опыте в пределах случайных флуктуаций. Измеренные значения немного отличаются от расчётных, что связано либо с неточностью заявленных ёмкостей, либо с утечкой ёмкостей конденсаторов.

График 3.2. Зависимость силы тока от частоты в цепи из последовательно соединённых конденсаторов (экспериментальные точки и теоретическая прямая)

Экспериментальные точки хорошо совпали с теоретической прямой.

Расчёт комплексного сопротивления двух соединённых последовательно конденсаторов с ёмкостями $C_1 = 1$ $m\kappa\Phi$ и $C_2 = 4.7$ $m\kappa\Phi$ на частоте f = 500 Γu :

$$\mathbf{Z} = \mathbf{Z}_{C_1} + \mathbf{Z}_{C_2} = \frac{1}{i \, 2 \, \pi \, f \, C_1} + \frac{1}{i \, 2 \, \pi \, f \, C_2} = \frac{-i}{2 \, \pi \, f} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) = -386 \, i \, \text{ Om}$$

4. Исследование цепи с параллельно соединёнными конденсаторами

В этой части работы в качестве источника переменного тока использовался генератор S12. Размах входного напряжения U_{pp} измерялся с помощью осциллографа, действующее значение переменного тока в цепи I, и через конденсаторы I_1 , I_2 — с помощью DMM.

4.1. Исследование электрической цепи, собранной из первой пары параллельно соединённых конденсаторов

Таблица 4.1. Параллельно соединённые конденсаторы $C_1 = 1$ мк Φ и $C_2 = 0.1$ мк Φ

f T.	U_{pp}, B	Расче	ётные знач	ения	Измеренные значения			
f, Гц	U_{pp} , B	І, мА	<i>I</i> ₁ , мА	<i>I</i> 2, мА	І, мА	<i>I</i> ₁ , мА	<i>I</i> ₂ , мА	
99.97	4.997	1.22	1.11	0.11	1.22	1.12	0.10	
201.94	5.000	2.47	2.24	0.22	2.50	2.30	0.21	
401.87	4.995	4.91	4.46	0.45	5.00	4.55	0.41	
801.78	5.004	9.80	8.91	0.89	9.98	9.12	0.84	
1520	4.989	18.53	16.85	1.68	18.89	17.26	1.61	
3009	5.001	36.77	33.43	3.34	37.0	33.8	3.18	
4959	5.007	60.67	55.16	5.52	61.0	55.6	5.24	

Отклонение измеренных значений от расчётных мало. Тем не менее, можно наблюдать, что измеренная сила тока через первый конденсатор всегда немного больше расчётной, а в случае второго конденсатора — наоборот, что является индикацией небольшого отклонения заявленных ёмкостей от действительных.

Расчёт комплексной проводимости двух параллельно соединённых конденсаторов с ёмкостями $C_1 = 1 \ m\kappa \Phi$ и $C_2 = 0.1 \ m\kappa \Phi$ на частоте $f = 500 \ \Gamma \mu$:

$$Y = Y_{C_1} + Y_{C_2} = i 2\pi f C_1 + i 2\pi f C_2 = i 2\pi f (C_1 + C_2) = 3.46 \cdot 10^{-3} O M^{-1}$$

4.2. Исследование электрической цепи, собранной из второй пары параллельно соединённых конденсаторов

Таблица 4.2. Параллельно соединённые конденсаторы $C_1 = C_2 = 1$ мк Φ

f Du	II D	Расчё	ётные знач	ения	Измеренные значения			
f, Гц	U_{pp} , B	І, мА	<i>I</i> ₁ , мА	<i>I</i> ₂ , мА	І, мА	<i>I</i> ₁ , мА	<i>I</i> 2, мА	
99.965	4.984	2.21	1.11	1.11	2.26	1.13	1.13	
200.944	4.987	4.45	2.23	2.23	4.57	2.27	2.27	
400.889	4.985	8.88	4.44	4.44	9.10	4.55	4.55	
801.778	4.991	17.78	8.89	8.89	18.19	9.10	9.09	
1520	4.992	33.71	16.86	16.86	34.4	17.23	17.22	
3009	4.997	66.80	33.40	33.40	67.9	33.8	33.7	
4979	5.004	110.69	55.35	55.35	112.4	55.9	55.8	

Отклонение измеренных значений от расчётных невелико. Ёмкости конденсаторов одинаковые, поэтому измеренная сила тока получилась равной для обоих конденсаторов.

4.3. Исследование электрической цепи из трёх конденсаторов

Таблица 4.3. Различные цепи из конденсаторов $C_1 = C_2 = 1$ мк Φ , $C_3 = 0.1$ мк Φ

Цепь	f, Гц	U_{pp} , B	І, мА
C_1 C_2 C_3	201.942	4.994	0.18
C_1 C_2 C_3	201.942	4.995	4.81
C_1 C_2 C_3	201.942	4.995	1.19
C_3 C_2	201.942	4.995	0.19

Максимальный ток через цепь был получен при параллельном соединении всех конденсаторов. В таком случае происходит сложение их ёмкостей, что, в свою очередь, уменьшает их суммарное реактивное сопротивление.

5. Определение неизвестной индуктивности катушки

В этой части работы в качестве источника переменного тока использовался генератор S12. Размах входного напряжения $U_{\rm ex}$ измерялся с помощью осциллографа, действующее напряжение на резисторе $U_{\rm R}$ и катушке $U_{\rm L}$ – с помощью DMM.

5.1. Определение индуктивности катушки с числом витков N = 1000

Измеренные линейкой диаметр и длина катушки:

$$D \approx 3.0 \text{ cm}$$
 $l \approx 3.4 \text{ cm}$

Приблизительная индуктивность катушки исходя из её геометрических параметров:

$$L \approx 18.9 \, \text{м}\Gamma \text{н}$$

Таблица 5.1. Последовательное соединение катушки N=1000 и сопротивления

R, Ом	f, Гц	U_{ex} , B	U_R , B	U_L , B	Z, Ом	Z_L , Ом	U_{X_L} , B
	201.942	4.994	1.174	0.744	70.69	29.79	0.541
	401.887	4.994	1.038	1.053	79.95	47.68	0.952
47	801.777	4.994	0.760	1.426	109.2	88.19	1.390
47	1520	4.995	0.764	1.626	108.6	100.0	2.650
	3009	4.994	0.237	1.641	350.1	325.4	1.627
	5988	4.993	0.099	1.455	838.1	690.8	1.353
	200.943	4.994	1.440	0.438	122.6	30.42	0.324
	401.887	4.995	1.375	0.671	128.4	48.80	0.619
100	801.777	4.995	1.179	1.065	149.8	90.33	1.059
100	1530	4.995	0.843	1.425	209.5	169.0	1.445
	3009	4.994	0.472	1.584	374.1	335.6	1.592
	5958	4.993	0.214	1.429	824.9	667.8	1.429

Из собранных данных найдём индуктивность катушки L и её активное сопротивление r. Их можно получить либо из зависимости Z(f), либо из $Z_L(f)$. Остановимся на зависимости Z(f). Приведём её к линейному виду:

$$Z = \sqrt{(R+r)^2 + (2\pi f L)^2} \Rightarrow Z^2 = (R+r)^2 + (2\pi f L)^2 \Leftrightarrow y = ax + b$$
 где: $y \equiv Z^2$; $x \equiv f^2$; $a \equiv (2\pi L)^2$; $b \equiv (R+r)^2 \Rightarrow L = \frac{\sqrt{a}}{2\pi}$; $r = \sqrt{b} - R$

Аппроксимируем зависимость $Z^2(f^2)$ для схемы с резистором $R = 47 \ Om$.

График 5.1.1. Зависимость квадрата полного сопротивления цепи с катушкой N=1000 и резистором R=47 Ом от квадрата частоты (аппроксимация по всем точкам)

Получаем:

$$a = 0.020 \pm 0.002 \ Om^2 \cdot \Gamma y^2$$
 $b = -10000 \pm 40000 \ Om^2$ $L = 22.3 \pm 1.4 \ m\Gamma H$

Эти коэффициенты явно неправильные. Полученное значение индуктивности значительно отличается от действительного значения, а коэффициент отклонения B вообще получился отрицательным. Экспериментальные точки не лежат на одной прямой. Если обратить внимание на снятые значения U_L , можно заметить, что, начиная с 4-ой точки, напряжение на катушке почему-то перестаёт расти, хотя в соответствии с теорией напряжение должно продолжать увеличиваться с ростом частоты. Ещё раз проведём аппроксимацию зависимости $Z^2(f^2)$, но на этот раз оставим только первые три точки, для которых наблюдается соответствие теории.

График 5.1.2. Зависимость квадрата полного сопротивления цепи с катушкой N=1000 и резистором R=47~Om от квадрата частоты (аппроксимация по трём точкам)

Получаем:

$$a = 0.01150 \pm 0.00013 \ Om^2 \cdot \Gamma u^2$$
 $b = 4530 \pm 50 \ Om^2$
 $L = 17.07 \pm 0.10 \ m\Gamma H$ $r = 20.3 \pm 0.4 \ Om$

Выбранные три точки действительно образуют одну прямую. Полученные параметры катушки будем считать окончательными.

Проделаем такую же аппроксимацию для схемы с резистором R=100~Om. В её случае тоже наблюдается аномальное поведение напряжения на катушке начиная с 5-ой точки, поэтому аппроксимацию будем проводить по четырём точкам.

График 5.1.3. Зависимость квадрата полного сопротивления цепи с катушкой N=1000 и резистором R=100 Ом от квадрата частоты (аппроксимация по четырём точкам)

Получаем:

$$a = 0.0126 \pm 0.0002 \ Om^2 \cdot \Gamma u^2$$
 $b = 14500 \pm 200 \ Om^2$
 $L = 17.84 \pm 0.14 \ m\Gamma H$ $r = 20.3 \pm 1.0 \ Om$

По полученными параметрам были рассчитаны значения действующего напряжения на реактивном сопротивлении катушки $U_{\scriptscriptstyle X_{\scriptscriptstyle A}}$, представленные в таблице.

5.2. Определение индуктивности катушки с числом витков N = 500

Измеренные линейкой диаметр и длина катушки:

$$D \approx 3.0 \text{ cm}$$
 $l \approx 3.4 \text{ cm}$

Приблизительная индуктивность катушки исходя из её геометрических параметров:

$$L \approx 4.7 \,$$
м Γ н

Таблица 5.2. Последовательное соединение катушки N = 500 и сопротивления

R, Ом	f, Гц	U_{ex} , B	U_R , B	U_L , B	Z, Ом	Z_L , Ом	U_{X_L} , B
	200.944	4.992	1.631	0.230	50.86	6.628	0.198
	400.888	4.991	1.603	0.395	51.74	11.58	0.389
47	801.777	4.992	1.498	0.710	55.38	22.28	0.727
47	1520	4.993	1.248	1.109	66.48	41.77	1.148
	3009	4.992	0.809	1.422	102.5	82.61	1.473
	5968	4.992	0.389	1.392	213.2	168.2	1.405
	200.944	4.993	1.703	0.116	103.7	6.812	0.106
	400.888	4.993	1.694	0.201	104.2	11.87	0.211
100	800.778	4.993	1.660	0.378	106.3	22.77	0.413
100	1510	4.993	1.554	0.660	113.6	42.47	0.729
	3009	4.993	1.247	1.051	141.6	84.28	1.166
	5998	4.991	0.724	1.245	243.7	172.0	1.349

Из собранных данных найдём индуктивность катушки L и её активное сопротивление r.

График 5.2.1. Зависимость квадрата полного сопротивления цепи с катушкой N=500 и резистором R=47 Ом от квадрата частоты (аппроксимация по четырём точкам)

$$a = (8.09 \pm 0.10) \cdot 10^{-4} \ Om^2 \cdot \Gamma u^2$$
 $b = 2549 \pm 13 \ Om^2$ $L = 4.53 \pm 0.03 \ m\Gamma H$ $r = 3.49 \pm 0.12 \ Om$

График 5.2.2. Зависимость квадрата полного сопротивления цепи с катушкой N=500 и резистором R=100 Ом от квадрата частоты (аппроксимация по четырём точкам)

$$A = (9.7 \pm 0.2) \cdot 10^{-4} \ Om^2 \cdot \Gamma u^2$$
 $B = 10700 \pm 30 \ Om^2$ $L = 4.94 \pm 0.06 \ m\Gamma H$ $r = 3.45 \pm 0.13 \ Om$

В случае с катушкой с числом витком N=500 наличие активного сопротивления должно сильнее влиять на точность определения индуктивности, т.к. индуктивность такой катушки меньше, а, следовательно, меньше и вклад её реактивного сопротивления в общее сопротивление катушки.

Выводы

В ходе работы были приобретены навыки измерения и расчёта цепей переменного тока. Произошло ознакомление с понятием активного и реактивного сопротивления элементов цепи.