Tutorial 2

COMP 355: Introduction to Theoretical Computer Science

Mohammad Reza Davari

Concordia University

Mohammad Reza Davari 1 / 11

Outline

1 Languages

2 DFA

Contents of the section

Languages

2 DFA

Operations

Let
$$\Sigma = \{0,1\}$$

Example 1: Σ^1

Operations

Let
$$\Sigma = \{0,1\}$$

Example 1:
$$\Sigma^1 = \{0,1\}$$

Operations

Let $\Sigma = \{0, 1\}$

Example 1: $\Sigma^1 = \{0,1\}$

Example 2: Σ^2

Operations

Let
$$\Sigma = \{0,1\}$$

Example 1:
$$\Sigma^1 = \{0, 1\}$$

Example 2:
$$\Sigma^2 = \{00, 01, 10, 11\}$$

Operations

```
Let \Sigma = \{0, 1\}
```

Example 1: $\Sigma^1 = \{0, 1\}$

Example 2: $\Sigma^2 = \{00, 01, 10, 11\}$

Example 3: |01|

Operations

```
Let \Sigma = \{0, 1\}
```

Example 1: $\Sigma^1 = \{0, 1\}$

Example 2: $\Sigma^2 = \{00, 01, 10, 11\}$

Example 3: |01| = 2

Operations

```
Let \Sigma = \{0, 1\}
```

Example 1: $\Sigma^1 = \{0, 1\}$

Example 2: $\Sigma^2 = \{00, 01, 10, 11\}$

Example 3: |01| = 2

Example 4: $|\epsilon|$

Operations

```
Let \Sigma = \{0,1\}
```

Example 1:
$$\Sigma^1 = \{0, 1\}$$

Example 2:
$$\Sigma^2 = \{00, 01, 10, 11\}$$

Example 3:
$$|01| = 2$$

Example 4:
$$|\epsilon| = 0$$

Concatenation

Let x = 01101 and y = 110, then:

1 xy

Concatenation

Let x = 01101 and y = 110, then:

$$y = 01101110$$

Concatenation

Let x = 01101 and y = 110, then:

- y = 01101110
- 2 yx

Concatenation

Let x = 01101 and y = 110, then:

- y = 01101110
- yx = 11001101

Language

Example 1: The language of all words consisting of n 0's followed by n 1's, for some n > 0:

Language

Example 1: The language of all words consisting of n 0's followed by n 1's, for some $n \ge 0$: $\{\epsilon, 01, 0011, 000111, \dots\}$

Language

Example 1: The language of all words consisting of n 0's followed by n 1's, for some $n \ge 0$: $\{\epsilon, 01, 0011, 000111, \dots\}$

Example 2: The empty language:

Language

Example 1: The language of all words consisting of n 0's followed by n 1's, for some $n \ge 0$: $\{\epsilon, 01, 0011, 000111, \dots\}$

Example 2: The empty language: \emptyset

Language

- Example 1: The language of all words consisting of n 0's followed by n 1's, for some $n \ge 0$: $\{\epsilon, 01, 0011, 000111, \dots\}$
- Example 2: The empty language: \emptyset
- Example 3: The language consisting of only the empty string:

Mohammad Reza Davari 6 / 11

Language

- Example 1: The language of all words consisting of n 0's followed by n 1's, for some $n \ge 0$: $\{\epsilon, 01, 0011, 000111, \dots\}$
- Example 2: The empty language: \emptyset
- Example 3: The language consisting of only the empty string: $\{\epsilon\}$

Mohammad Reza Davari 6 / 11

Contents of the section

1 Languages

2 DFA

Example 1

For the following DFA determine:

• The alphabet set.

Example 1

For the following DFA determine:

- The alphabet set.
- Its transition table.

Example 1

For the following DFA determine:

- The alphabet set.
- Its transition table.
- Its Language.

Example 1

For the following DFA determine:

- The alphabet set.
- Its transition table.
- Its Language.

Figure: Example 1 DFA

Example 2

Build a DFA that identifies the non-negative multiples of 3.

• What is the set of alphabet?

Example 2

Build a DFA that identifies the non-negative multiples of 3.

- What is the set of alphabet?
- What is the transition diagram?

Example 2

Build a DFA that identifies the non-negative multiples of 3.

- What is the set of alphabet?
- What is the transition diagram?
- What is the transition table?

Example 3

Build a DFA that identifies the non-negative multiples of 5.

• What is the set of alphabet?

Example 3

Build a DFA that identifies the non-negative multiples of 5.

- What is the set of alphabet?
- What is the transition diagram?

Example 3

Build a DFA that identifies the non-negative multiples of 5.

- What is the set of alphabet?
- What is the transition diagram?
- What is the transition table?

Example 4

Build a DFA that identifies the non-negative powers of 2.

• What is the set of alphabet?

Example 4

Build a DFA that identifies the non-negative powers of 2.

- What is the set of alphabet?
- What is the transition diagram?

Example 4

Build a DFA that identifies the non-negative powers of 2.

- What is the set of alphabet?
- What is the transition diagram?
- What is the transition table?

Mohammad Reza Davari 11 / 11