

Sumário

- 1. Definição
- 2. Classificação
- 3. Congruência de Triângulos
- 4. Verificação de Aprendizagem

Definição

Definição

Definição 1

Sejam A, B e C três pontos não colineares.

Denominamos de **triângulo** ABC a união dos segmentos \overline{AB} , \overline{AC} e \overline{BC} e o denotaremos por $\triangle ABC$.

Definição

- ► Os pontos *A*, *B* e *C* são os **vértices** e os segmentos \overline{AB} , \overline{AC} e \overline{BC} são os **lados** do triângulo.
- ▶ Os ângulos $B\hat{A}C = \alpha$, $A\hat{B}C = \gamma$ e $A\hat{C}B = \beta$ são os **ângulos internos** do triângulo. Seus suplementos α' , γ' e β' são os **ângulos externos** do triângulo.

Classificação

Isósceles

Definição 2

Um triângulo que tem dois lados congruentes é denominado isósceles.

O outro lado é chamado base e o ângulo oposto à base é o **ângulo do vértice**.

Equilátero

Definição 3

Um triângulo cujos lados são congruentes chama-se equilátero.

Obs: Todo triângulo equilátero possui dois lados congruentes, logo ele também será isósceles.

Escaleno

Definição 4

Um triângulo no qual dois lados quaisquer não são congruentes, chama-se **escaleno**.

Usando o Geogebra, construa:

- 1. Um triângulo equilátero.
- 2. Um triângulo isósceles, não equilátero.
- 3. Um triângulos escaleno.

Usaremos as seguintes ferramentas:

- Segmento com comprimento fixo;
- Polígono Regular.

Classificação: Ângulos

Quanto aos ângulos, os triângulos se classificam em:

- retângulos se, e somente se, têm um ângulo reto;
- acutângulos se, e somente se, têm os três ângulos agudos;
- b obtusângulos se, e somente se, têm um ângulo obtuso.

 \triangle ABC é retângulo em A. \triangle DEF é acutângulo.

 \triangle RST é obtusângulo em S.

Exercício 2

Usando o Geogebra, e os triângulos obtidos no exercício 1, classifique-os com relação aos seus ângulos.

Usaremos a seguintes ferramenta:

Angulo.

Congruência de Triângulos

Definição de Congruência

Definição 5

Um triângulo é congruente (símbolo \equiv) a outro se, e somente se, é possível estabelecer uma correspondência entre seus vértices de modo que:

- seus lados s\(\tilde{a}\) ordenadamente congruentes aos lados do outro;
- seus ângulos são ordenadamente congruentes aos ângulos do outro.

Em linguagem popular, dizemos que duas figuras planas são congruentes se elas coincidem por superposição.

Definição de Congruência

- ► $\overline{AB} \equiv \overline{DE}$, $\overline{AC} \equiv \overline{DF}$ e $\overline{BC} \equiv \overline{EF}$;
- $ightharpoonup \hat{A} \equiv \hat{D}, \hat{B} \equiv \hat{E} \ e \ \hat{C} \equiv \hat{F}.$

Exemplo

Exemplo 1

Suponhamos que os triângulos abaixo coincidem por superposição. Quais os pares de vértices que devem ser sobrepostos?

Figura 1: $\triangle ABC \equiv \triangle DEF$

Nomenclatura

- Os vértices que coincidem na superposição são denominados correspondentes.
- Os lados que unem vértices correspondentes são também chamados correspondentes.
- Analogamente, os ângulos cujos vértices estão em correspondência, são correspondentes.

Observação

Observe que em triângulos correspondentes, a ângulos congruentes opõem-se lados congruentes e vice-versa.

Notação: Para indicar que dois triângulos são congruentes, escrevemos:

$$\triangle ABC \equiv \triangle DEF$$
.

A ordem em que as letras aparecem, indicam as correspondências entre os vértices.

Baixe o arquivo LAL_1.ggb e abra no Geogebra.

- 1. Construa outro triângulo com dois lados congruentes aos lados $\overline{A'B}$ e \overline{BC} , com o ângulo formado por estes lados congruente ao ângulo \hat{B} .
- 2. Compare o comprimento do terceiro lado obtido e a medida dos outros dois ângulos com os correspondentes do triângulo original.

Baixe o arquivo LAL_2.ggb e abra no Geogebra.

- 1. Construa outro triângulo com dois lados congruentes aos lados $\overline{A'B}$ e \overline{BC} , com o ângulo formado por estes lados congruente ao ângulo \hat{B} .
- 2. Compare o comprimento do terceiro lado obtido e a medida dos outros dois ângulos com os correspondentes do triângulo original.

1° caso: LAL

Postulado: Caso LAL

Se dois triângulos têm dois lados congruentes e os ângulos compreendidos entre eles são respectivamente congruentes, então os triângulos são congruentes.

Teorema do Triângulo Isósceles

Teorema 1

Em todo triângulo isósceles, os ângulos da base são congruentes.

Demonstração: Teorema do Triângulo Isósceles

- A partir do triângulo ABC, obtemos os triângulo CBA ao espelharmos o triângulo inicial.
- Pelo caso LAL, os triângulos ABC e CBA são congruentes.

Demonstração: Teorema do Triângulo Isósceles

Como ângulos opostos a lados congruentes são congruentes, $e\overline{AB} \equiv \overline{BC}$, concluímos que $\hat{A} \equiv \hat{C}$.

Baixe o arquivo ALA_1.ggb e abra no Geogebra.

- 1. Construa outro triângulo com lado congruente ao lado $\overline{A'B}$, com os ângulos adjacentes a este lado congruentes aos ângulos \hat{A} e \hat{B} .
- 2. Compare o comprimento dos outros dois lados obtidos e a medida do outro ângulo com os correspondentes do triângulo original.

Baixe o arquivo ALA_2.ggb e abra no Geogebra.

- 1. Construa outro triângulo com lado congruente ao lado $\overline{A'B}$, com os ângulos adjacentes a este lado congruentes aos ângulos \hat{A} e \hat{B} .
- 2. Compare o comprimento dos outros dois lados obtidos e a medida do outro ângulo com os correspondentes do triângulo original.

2° caso: ALA

Teorema 2

Se dois triângulos têm um lado congruente, compreendido entre dois ângulos respectivamente congruentes, então os triângulos são congruentes.

Figura 2: $\triangle ABC \equiv \triangle FDE$

Demonstração do Caso ALA

Exercício 3

Estude a demonstração dada no livro texto.

Verificação de Aprendizagem

Formulário

Responda ao formulário Aula 03: Triângulos.

Exercício 4

Mostre que vale a recíproca do Teorema do Triângulo Isósceles: se dois ângulos de um triângulo são congruentes, então o triângulo é isósceles.

Ponto Médio

Definição 6

Um ponto C chama-se **ponto médio** do segmento AB, se:

- 1. C pertence ao segmento \overline{AB} ($C \in \overline{AB}$);
- 2. O comprimento do segmento \overline{AC} é igual ao do segmento \overline{CB} (AC = CB).

Ponto Médio (segmento)

Na figura abaixo, $\overline{DC} \perp \overline{AB}$ e C é o ponto médio de \overline{AB} . Demonstre que os suplementos dos ângulos DÂB e DÂA são congruentes.

Mediana

Definição 7

Chama-se **mediana** de um triângulo ao segmento que une um vértice ao ponto médio do lado oposto a ele.

Figura 3: Na figura acima, \overline{GI} é a mediana relativa ao lado EF

Bissetriz

Definição 8

Sejam EFG um triângulo e H um ponto da reta que contém o lado FG.

se a semirreta \overrightarrow{EH} é bissetriz do ângulo Ê, o segmento \overline{EH} chama-se a **bissetriz interna** do triângulo, relativa ao lado \overline{FG} .

Algumas Definições

▶ se \overrightarrow{EH} for perpendicular à reta que contém o lado \overline{FG} , o segmento \overline{EH} chama-se **altura** do triângulo, relativa ao lado \overline{FG} .

Exercício 6

Mostre que, num triângulo isósceles, a bissetriz do ângulo do vértice é também mediana e altura.

