

Medidas de associação Felipe

Figueiredo

riegiessau

interpretação

16501110

Medidas de associação Regressão Linear Simples

Felipe Figueiredo

UNIAN - Centro Universitário Anhanguera de Niterói

Sumário

Medidas de associação

Felipe Figueiredo

Regressao

interpretação

Causalidade

- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- 2 Interpretação
- Causalidade
- Resumo

Sumário

- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- Resumo

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

R²

Interpretação

Coupolidada

Pocumo

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

acumo

Modelos servem para:

- representar de forma simplificada fenômenos, experimentos, dados, etc;
- possibilitar análise em cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Modelos servem para:

Medidas de associação

> Felipe Figueiredo

Modelos estatísticos

complexos que a realidade; extrapolar resultados e conclusões.

experimentos, dados, etc;

representar de forma simplificada fenômenos,

possibilitar análise em cenários controlados, menos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

.

Modelos servem para:

- representar de forma simplificada fenômenos, experimentos, dados, etc;
- possibilitar análise em cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

nterpretação

ausalidade

.

Resumo

Ao ajustar um modelo aos dados, podemos:

- fazer predições dentro do intervalo observado para dados que não foram obtidos (interpolação)
- fazer predições fora do intervalo observado (extrapolação)

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

Causalidade

Resum

Ao ajustar um modelo aos dados, podemos:

- fazer predições dentro do intervalo observado para dados que não foram obtidos (interpolação)
- fazer predições fora do intervalo observado (extrapolação)

Reta de regressão

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

Posumo

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Reta de regressão

Medidas de associação

> Felipe Figueiredo

Modelos estatísticos

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Reta de regressão

Medidas de associação

> Felipe Figueiredo

Modelos estatísticos

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Resíduos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

Causalidade

esumo

Definition

Resíduos são a distância entre o dado observado e a reta estimada (modelo).

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - v é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Modelos estatísticos

Interpretação

. . . .

Pocumo

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação
Felipe

Figueiredo

Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Modelos estatísticos

Interpretação

ausalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Modelos estatísticos

Interpretação

ausalidade

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalluaut

Documo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

- as médias de X e Y
- as variâncias de X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

Recumo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

. ...

esumo

 A qualidade do ajuste do modelo de regressão é determinado pelo coeficiente de determinação r²

Sumário

Medidas de associação

> Felipe Figueiredo

Modelos estatísticos

- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²

Medidas de associação
Felipe

Figueiredo

Modelos estatísticos

Interpretação

*r*ausanuaue

Resumo

Definition

O coeficiente de determinação r^2 é a relação da variação explicada com a variação total.

$$r^2 = rac{ ext{variação explicada}}{ ext{variação total}}$$

• Lembrando: r^2 é o quadrado de r!

Medidas de associação

Felipe Figueiredo

Modelos estatísticos *R*²

Interpretação

ausalidade

Raciima

Definition

O coeficiente de determinação r^2 é a relação da variação explicada com a variação total.

$$r^2 = rac{ ext{variação explicada}}{ ext{variação total}}$$

Lembrando: r² é o quadrado de r!

Coeficiente de Determinação r²

Medidas de associação Felipe

Figueiredo

 Qual é a porcentagem da variação dos dados pode ser explicada pela reta regressora?

- O coeficiente r² é a fração da variância que é
- Como r está sempre entre -1 e 1, r² está sempre entre

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

 Qual é a porcentagem da variação dos dados pode ser explicada pela reta regressora?

- O coeficiente r² é a fração da variância que é compartilhada entre X e Y.
- Como r está sempre entre -1 e 1, r² está sempre entre 0 e 1.

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

Causalidade

.

 Qual é a porcentagem da variação dos dados pode ser explicada pela reta regressora?

- O coeficiente r² é a fração da variância que é compartilhada entre X e Y.
- Como r está sempre entre -1 e 1, r² está sempre entre 0 e 1.

- Além disso, $r^2 \le |r|$
- Por que?

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \le \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \le \frac{1}{3}$$

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

R²

interpretação

Causalidade

lesumo

- Além disso, $r^2 \le |r|$
- Por que?

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \le \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \le \frac{1}{3}$$

Medidas de associação

Felipe Figueiredo

Modelos estatísticos

Interpretação

ausalidade

- Além disso, $r^2 \le |r|$
- Por que?

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \leq \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \leq \frac{1}{3}$$

Medidas de associação

Felipe Figueiredo

Regressao

Modelos estatísticos

R²

Interpretação

ausalidade

Interpretação

 Se a correlação é 0, então X e Y não variam juntos (independentes)

 Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear

 Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear Medidas de associação Felipe

Figueiredo

negressau

Interpretação

Posumo

Interpretação

 Se a correlação é 0, então X e Y não variam juntos (independentes)

 Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear)

 Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear Medidas de associação Felipe

Figueiredo

Regressao

Interpretação

Causalluaue

Interpretação

 Se a correlação é 0, então X e Y não variam juntos (independentes)

 Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear)

 Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear) Medidas de associação Felipe

Figueiredo

negressau

Interpretação

D - -----

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

 Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação Felipe

Figueiredo

negressau

Interpretação

Causalidade

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

 Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação Felipe

Figueiredo

Regressão

Interpretação

Causalidade

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

 Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

- Mas comprar mais telefones n\u00e3o vai salvar crian\u00e7as!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação Felipe

Figueiredo

riegressau

Interpretação

Causalidade

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

 Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

- Mas comprar mais telefones n\u00e3o vai salvar crian\u00e7as!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação Felipe

Figueiredo

negressau

Interpretação

Causalidade

 Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)

 Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.

 Se as variáveis não são relacionadas, a correlação será nula. Medidas de associação Felipe

Figueiredo

. log. codac

Causalidade

 Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)

- Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.
- Se as variáveis não são relacionadas, a correlação será nula.

Medidas de associação Felipe

Figueiredo

riegressao

Causalidade

 Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)

- Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.
- Se as variáveis não são relacionadas, a correlação será nula.

Medidas de associação Felipe

Figueiredo

Regressao

Interpretação

Causalidade

 Mas não podemos inverter a afirmativa lógica do slide anterior!

- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

Medidas de associação Felipe

Figueiredo

negressau

Causalidade

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente Correlação não implica em causalidade. Medidas de associação
Felipe

Figueiredo

riegressao

Causalidade

Resumo

◆ロト 4 両 ト 4 三 ト 4 三 ・ 夕 Q ○

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente Correlação não implica em causalidade. Medidas de associação Felipe

Figueiredo

riegressau

Causalidade

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente Correlação não implica em causalidade. Medidas de associação Felipe

Figueiredo

Regressao

Interpretação

Causalidade

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

Medidas de associação Felipe

Figueiredo

negressau

Causalidade

) Ooumo

Exemplo

Gasto com C&T (EUA) x Suicídios por enforcamento

Correlação: 0.992082

(Fonte: Spurious correlations)

Medidas de associação

Felipe Figueiredo

Regressão

Causalidade

Rosumo

Exemplo

Produção de mel x Prisões por posse de maconha

Correlação: -0.933389

(Fonte: Spurious correlations)

Medidas de associação

Felipe Figueiredo

legressão

Causalidade

Exemplo

Afogamentos em piscina x Filmes com Nicholas Cage

Correlação: 0.666004

(Fonte: Spurious correlations)

Medidas de associação

Felipe Figueiredo

Regressão

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- 2 Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- ⑤ É possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- é possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação
Felipe

Figueiredo

riogrossao

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- e Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- É possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- É possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação
Felipe

Figueiredo

. logi occao

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- A uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- Sé possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- É possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação Felipe

Figueiredo

negressau

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- A Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- Sé possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- é possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação Felipe

Figueiredo

riogrossao

Causalidade

Medidas de associação

Felipe Figueiredo

Regressão

Interpretação

Causalidade

Resumo

É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?

Medidas de associação

Felipe Figueiredo

Regressão

' '

Causalidade

Resumo

• É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?

Medidas de associação

Felipe Figueiredo

negressau

...torprotagao

Causalidade

Resumo

É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?

Medidas de associação

Felipe Figueiredo

negressau

_

Causalidade

Resumo

É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?