영상처리 과제1

세종대학교 ITRI 연구실 정보통신공학과 하재민

목차

- 1. 실습 공지
- 2. 성적 공지
- 3. 과제 공지
- 4. 디지털 영상 구조
- 5. Arithmetic operation
- 6. Histogram
- 7. Contrast stretch

1. 실습 공지

- 실습 조교
 - 하재민
 - 번호: 010 2819 8029 (카톡!!)
 - 메일: hajama0123@sju.ac.kr
 - 연구실: 충무관 502A
 - 영상처리 관련 질문은 언제든지 환영 ^^

1. 실습 공지

■ 실습 내용

실습	주제	내용
1	화소 처리	 Arithmetic Operation Histogram, Equalization, Specification(Matching) Contrast stretch
2	기하학 처리	 이미지 스케일링(보간법) 이미지 이동 이미지 회전
3	영역 처리	 이미지 필터링 (엠보싱, 샤프닝, 블러링, 미디언 필터링) 이미지 엣지 검출 (유사 연산자, 차 연산자, 1,2차 미분 연산자)
4	변환 처리	・ 주파수 변환(DFT & IDFT, DCT & IDCT)
5	압축 처리	• 블록 기반 이미지 압축(예측, 변환, 양자화, 엔트로피코딩) I

2. 성적 공지

- 실습 점수
 - 영상 처리 실습 배점: 100점
 - 총 5회 실습(과제): 코드 + 보고서 제출

	과제1	과제2	과제3	과제4	과제5
배점	15점	15점	20점	20점	30점

• 부정 행위!!: 해당 실습 점수 0점

• 실습 검증: 온라인 수업에서는 미실시

3. 과제 공지(추후 재공지)

- 과제 포맷 다운 및 과제 제출 방법
- 블랙보드 이용
 - 과제 소스 코드 제공
 - 과제 완성 후, 프로젝트 폴더 및 보고서를 전체 압축
 - 업로드시 압축 파일명: 과제번호_학번_이름
 - 1_18150074_하재민.zip
 - 1_18150074_하재민_r1.zip
 - 1_18150074_하재민_r2.zip
- Visual Studio
 - Visual Studio 2019
 - sln 확장자 파일을 열면 프로젝트가 한번에 열림

4. 디지털 영상 구조

- 영상의 구조
- 영상의 기본 단위: 화소(pixel)

• 칼라 포맷: XYZ, RGB, YUV 등 → 영상처리에서는 Y(gray scale)만 이용함

• 영상의 구조: 영상의 깊이 정보(8 ~ 16 bit) → 영상처리에서는 8bit 영상만 이용함

4. 디지털 영상 구조

- 흑백 영상
- Y 성분
 - 1 byte(8 bits)로 표현: 0 (검은색) ~ 255 (흰색)
 - 자료형: unsigned char
- 기본적인 영상 출력
 - 가로/세로 방향으로 밝아지는 영상 출력 (전체 영상 크기: 256x256)

4. 디지털 영상 구조

- 흑백 영상
- 영상의 깊이 정보에 따른 변화

8bit 영상 (0 ~ 255)

2bit 영상 (0, 85, 170,255)

1bit 영상 (0, 255)

- 산술 연산
 - 원 화소의 값이나 위치를 바탕으로 단일 화소 값을 변경하는 기술

- 주의 사항: 결과 화소의 최대/최소값 범위 문제
 - 클리핑(Cliping): 연산의 결과 값이 최소값보다 작으면 그 결과 값을 최소값으로, 최대값보다 크면 결과값을 최대값으로 하는 방법
 - 흑백 영상의 화소값 범위: 0 ~ 255

- 룩업 테이블
 - 배열의 인덱스를 화소값으로 이용
 Ex) +50의 경우

- 각 화소의 수 카운트
 - 화소값: 0 → 7개, 화소값: 1 → 2개, 화소값: 3 → 10개

산술 연산 출력 (과제 영상 출력)

원본(Lena)

원본 + alpha

원본 x gamma

원본 - beta

원본 / delta

- 산술 연산 출력 (과제 영상 출력)
- 원본 영상의 + alpha, beta, * gamma, / delta 영상의 히스토그램
 - alpha, beta: 30
 - gamma, delta: 1.2
- 주의 사항: 결과 화소의 최대/최소값 범위 문제
 - 클리핑(Cliping): 연산의 결과 값이 최소값보다 작으면 그 결과 값을 최소값으로, 최대값보다 크면 결과값을 최대값으로 하는 방법
 - 흑백 영상의 화소값 범위: 0 ~ 255
 - 반올림: 곱하기 연산이나 나누기 연산의 경우, 소수점이 생김 (+ 0.5)
 - Ex) 화소값이 7인 경우
 7 x 1.3 = 9.1 → 9.1 + 0.5 = 9.6 → 최종 저장되는 화소값: 9
 7 x 1.4 = 9.8 → 9.8 + 0.5 = 10.3 → 최종 저장되는 화소값: 10

- 히스토그램
 - 관찰한 데이터의 특징을 한 눈에 알아볼 수 있도록 데이터를 막대그래프 모양으로 나타낸 것

• 디지털 영상에 대한 많은 정보를 제공

(a) 입력 영상

(b) 히스토그램

▪ 히스토그램 출력

원본(Lena)

원본(Lena) 히스토그램

• 원본 영상의 + alpha, - beta, * gamma, / delta 영상의 히스토그램

• 주의! 256 x 256 크기로 정규화 해야함

Histogram equalization

원본(Lena)

원본(Lena) 평활화 영상

Equalization

어둡게 촬영된 영상의 히스토그램을 조절하여 명암 분포가 빈약한 영상을 균일하게
 만들어 줌

• 영상의 밝기 분포를 재분배하여 명암 대비를 최대화

■ Histogram equalization (1단계)

[그림 5-11] 히스토그램의 생성

• 각 화소의 개수를 카운트한 히스토그램 생성

■ Histogram equalization (2단계)

[그림 5-12] 히스토그램에서 누적합 계산

• 누적합 계산 (누적합의 최대값은 총 화소의 개수와 동일함)

■ Histogram equalization (3단계)

명도	누적합	정규화된누적합	
(i)	(sum[i])	(n [i])	
0	2	0.875	
1	7	3.0625	
2	11	4.8125	
3	14	6.125	
4	16	7	
5	16	7	
6	16	7	
7	16	7	

(b) 정규화된 히스토그램

[그림 5-13] 누적합에서 정규화

• 히스토그램 최대 높이에 맞게 정규화 수행

Histogram specification

원본(Lena)

원본(Lena) 명세화 영상

Specification

- 입력 영상의 히스토그램을 원하는 히스토그램으로 변환한다고 해서 히스토그램 정합(Histogram Matching) 기법
- 명암 대비를 개선하는 것은 히스토그램 평활화와 같지만 특정 부분을 향상시키려고 원하는 히스토그램을 이용한 정합으로 일부 영역에서만 명암 대비를 개선한다는 점이 다름

■ Histogram specification (1단계)

4	4	3	3
4	4	3	3
4	1	2	3
0	1	2	3

명도	빈도 수	
0	1	
1	2	
2	2	
3	6	
4	5	
5	0	
6	0	
7	0	

[그림 5-18] 입력 영상에서 화소의 명도 값, 빈도 수, 히스토그램

• 히스토그램 생성

■ Histogram specification (2단계)

7	7	5	5
7	7	5	5
7	1	2	5
0	1	2	5

명도	누적합	정규화된 누적합
0	1	0.43
1	3	1.31
2	5	2.18
3	11	4.81
4	16	7
5	16	7
6	16	7
7	16	7

[그림 5-19] 입력 영상의 평활화

명도	빈도 수	
0	0	
1	0	
<u></u> [2	0	
3	0	
4	0	
5	6	
6	5	
7	5	

■ Histogram specification (3단계)

명도	누적합	정규화된 누적합
0	0	0
. 1	0	0
2	0	0
3	0	0
4	0	0
5	6	2.6
6	11	4.8
7	16	7.0

[그림 5-21] 원하는 히스토그램의 평활화

• 원하는 모양의 히스토그램을 분포가 균일한 히스토그램으로 평활화 함

■ Histogram specification (4단계)

명도	누적합	평활화	역평활화
0	0	0	0
1	0	0	0
2	0	0	5
3	0	0	5
4	0	0	6
5	6	2.6	6
6	11	4.8	7
7	16	7.0	7

[그림 5-22] 원하는 히스토그램의 역평활화

- 3단계에서 나온 정규화된 누적값은 밝기 값이 됨
- 밝기 값은 역평활화 값으로 사용됨

■ Histogram specification (5단계)

[그림 5-23] 룩업테이블을 이용한 명세화된 영상 생성

• 원본 영상의 평활화 값을 명세화 값으로 바꿈

7. Contrast stretch

- 스트레칭: End-in search
 - 일정한 양의 화소를 흰색이나 검정색으로 지정하여 히스토그램의 분포를 좀 더 균일하게 만듦

• 앤드-인 탐색 수행 공식 : 두 개의 임계값 사용(low, high)

$$new \ pixel = \begin{cases} 0 & old \ pixel \leq low \\ \frac{old \ pixel - low}{bigb - low} \times 255 & low \leq old \ pixel \leq bigb \\ bigb \leq old \ pixel \end{cases}$$

7. Contrast stretch

■ 스트레칭: End-in search

원본(Lena, 자기영상)

Low_th = 30, High_th = 30

• 원본 영상의 Low_th = 30, High_th = 30 일 때 영상과 히스토그램

• 원본 영상의 Low_th = 30, High_th = 10 일 때 영상과 히스토그램

• 원본 영상의 Low_th = 10, High_th = 30 일 때 영상과 히스토그램

마무리 and 질문

