

No. LD-2023X11A

DATE 24-Oct-23 REV. 27-Feb-25

DEVICE SPECIFICATION

FOR

LCD Module

CF Glass Thickness: 0.5 mm
TFT Glass Thickness: 0.5 mm
Display mode: Normally White
Display colors: white and black

$\underline{\mathsf{MODEL}\ \mathsf{No.}}\ \underline{LS027B7DH01}$

These parts are complied with the RoHS directive.

- This document is a reference specification.
- •SHARP and SHARP DISPLAY TECHNOLOGY CORPORATION reserves the right to make changes in the contents described herein at any time without notice in order to improve design or reliability.
- *Regarding final design, please order delivery specification from SHARP and SHARP DISPLAY TECHNOLOGY CORPORATION.

DEVELOPMENT DIVISION MOBILE , IA BUSINESS UNIT SHARP DISPLAY TECHNOLOGY CORPORATION

改訂履歴 RECORDS OF REVISION

Model No: LS027B7DH01

SPEC No.	Date	REV No	PAGE	SUMMARY	NOTE
LD-2023X11	2023/10/24	_	_	表偏光板変更により新規発行 Specification's New edition due to change of front polarizer.	
			_	Overall specification format update and correction of typo.	
			13, 60	Revised due to change of front polarizer. Surface treatment AG $ ightarrow$ HC Module thickness 1.645 mm $ ightarrow$ 1.625 mm	
LD-2023X11A	2025/2/27	A	47	Corrected the model number of the measuring device. Incorrect UL1R, Correct SR-UL1R.	
			51	Corrected typos. LS027B7DH1 → LS027B7DH01	
			58	Modify Table 13-1-1	
			13 52 59	Glass thickness change. This time, thinner by 0.3mm against Current model due to glass change.	
				The weight of the module and the weight of the carton changed.	
				Updated Table 3-1 and Figer 3-1 Updated Table 3-1 and Figer 14-1	
			2	Removed Section 13-2 "Panel surface stress specification". (Items were unified with multiple models.)	

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

1

《 本仕様書のお取り扱い及び本製品の御使用に当たっての注意 》 [NOTICE]

<< 使用上の注意 Precautions >>

a) 本仕様書は弊社の著作権にかかわる内容も含まれていますので、取り扱いには十分にご注意頂くと共に、本仕様 書の内容を弊社に無断で複製しないよう、お願い申し上げます。また、第三者に対して本仕様書を無断で開示しな いよう、お願い申し上げます。

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved.

Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

b) 本仕様書に掲載されている応用例は、弊社製品を使った代表的な応用例を説明するためのものであり、本仕様書によって工業所有権、その他権利の実施に対する保証または実施権の許諾を行うものではありません。 また、弊社製品を使用したことにより、第三者と工業所有権等にかかわる問題が発生した場合、弊社製品の構造、製法に直接かかわるもの以外につきましては一切その責任を負いません。

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

c) 本仕様書に記載される本製品の使用条件や使用上の注意事項等を逸脱して使用されること等に起因する損害に 関して弊社は一切その責任を負いません。

SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in this publication.

d) 弊社は不適切な使用によって生じた損害については一切の責任を負いません。 本製品は下記のような一般的な電子機器に使用されるために設計されています。

Observe the following points when in using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

・パーソナルコンピューター

Personal computers

•事務機器

Office automation

▪通信機器

Telecommunication equipment

•計測機器

Test and measurement equipment

•産業機器

Industrial control

·AV機器

Audio visual and multimedia equipment

•家庭用電化製品

Consumer electronics

e) 本製品を以下のような機器に使用する場合は、適切な設計および充分な検証を実施し、信頼性・安全性をお客様 にて確保するようにお願い致します。

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

運送機器や安全装置(飛行機、電車、自動車など)

Transportation control and safety equipment (i.e. aircraft, trains, automobiles, etc.)

•信号機 Traffic signals

・ガス漏れの検知遮断機 Gas leakage sensor breakers

・アラーム装置 Alarm equipment

・各種安全機器など Various safety devices etc.

f) 本製品は以下のような極めて高い信頼性・安全性が必要とされる用途への使用を意図しておりませんので、本製品をこれらの用途には使用にならないで下さい。

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

・軍事及び宇宙関連機器 Military and space applications

·原子力制御機器 Nuclear power control equipment

•生命維持にかかわる医療機器 Medical equipment for life support

•航空宇宙機器 Aerospace equipment

•幹線通信機器 Trunk line communication equipment

g) 本製品につきご不明な点がありましたら、事前に弊社販売窓口までご連絡頂きますようお願い致します。

Contact and consult with a SHARP sales representative for any questions about this device.

h) 本製品を弊社が推奨する用途以外でご使用される場合は、事前に弊社販売窓口までご連絡頂きますようお願い 致します。

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

i) 本仕様書に疑義が生じた場合は、双方の打合せにより解決するものとします。

If any problem occurs in relation to the description of this publication, it shall be resolved through discussion with spirit of cooperation each corporation between each corporation.

j) オゾン層破壊物質の使用はありません。

The ozone-depleting substances are not used.

k) 本製品は 2011 / 65 / EU 及び EU / 2015 / 863 に基づいております。

RoHS指令の物質につき意図的な含有はありません。

The device in the production is based on RoHS instructions 2011 / 65 / EU and EU / 2015 / 863.

And materials of RoHS directive are not included intentionally.

1) 弊社はデザインもしくは信頼性改善のため、仕様値、特性、材料、構成、その他の内容について通知なしで変更 する場合があります。本製品の使用前には最新の仕様書を弊社にご確認いただきますようお願い致します。

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest publication before using any SHARP's device. Manufacturing locations are also subject to change without notice.

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

3

《 取り扱い注意事項 》 [Precautions for handling]

(1) モジュールの取り扱いはできる限り塵埃の少ない環境にて行って下さい。

Treat LCD module in dustless surroundings.

- (2) FPCを入力コネクタに挿抜する時は、必ずモジュールに入力する電源や信号をOFFにしてから行って下さい。 Be sure to turn off the power supply when remove the plugged FPC.
- (3) FPCの抜き挿し時にはモジュール側の回路部やFPCに強い外力が加わらないように注意して下さい。 破損や接触不良となる可能性があります。

Be careful not to give any physical stress onto the circuit of LCD module when you plug a FPC. Physical stress will cause a break or worse connection.

(4) パネル表面の偏光板は傷つき易いので、硬いものや鋭利なもので擦ったりしないよう取り扱いには十分注意して下さい

Do not touch or scratch the polarizer with items harder than the surface rating or permanent damage can result.

(5) LCDパネルはガラスが含まれているため、落下や衝突で壊<mark>れてしまう</mark>場合があります。 常に取扱いには注意して下さい。

Since the LCD panel is made of glass, it may break or crack if dropped or bumped on hard surface. Always handle with care.

- (6) 怪我を防ぐため、LCDパネルのエッジ部分には注意してください。もし割れてしまっても、素手では触れないで下さい。 Be careful to handle this LCD panel in order to avoid injury yourself as this panel is made of glass and have sharp edge. When the panel is broken, do not touch the glass. Although the panel is difficult to be scattered, touching the broken part may hurt your hands.
- (7)水滴等が長時間付着すると変色やシミの原因になりますので、すぐに脱脂綿あるいは柔らかい布等で拭き取って下さい。

Since a long contact with water may cause discoloration or spots, wipe it with absorbent cotton or other soft cloth immediately.

(8) 本製品はCGSを含んでおります。適切な静電気対策をお願い致します。

This module contains CGS. Please use appropriate anti-static protection methods for all contact with the LCD panel and its electrical circuits.

(9) 太陽光や紫外線光の直射光を長期間当て続けないように御使用下さい。

Do not expose to strong ultraviolet rays such as direct sunlight for a long time.

(10) LCDが破損した場合、液晶が漏れる可能性があります。液晶が誤って口や目に接触した場合、出来るだけ速やかに水で洗い流してください。

Liquid crystal contained in the panel may leak if the LCD is broken. If LC material should accidently come in contact with the mouth or eyes rinse with water as soon as possible, following the instructions of the appropriate MSDS.

(11) 偏光板上のゴミは、静電対策が施されたイオン化エアガン等のN2ブローで吹き飛ばして下さい。 パネル表面が汚れた場合は、脱脂綿あるいは柔らかい布等で拭き取って下さい。 汚れが残る場合は IPA (イソプロピルアルコール) を使って表面を軽く拭き取って下さい。 また、LCDパネル端子部は有機材を使用しています。この部分に有機溶剤がかかりますと故障の原因となります ので、取り扱いには十分注意してください。また、直接指で触れないでください。 端子部の清掃を行う際は、脱脂綿あるいは柔らかい布でふき取って下さい。

Use N2-blower such as ionized nitrogen has anti-electrostatic when you blow dusts on Polarizer.

To clean LCD panel surface, wipe clean with absorbent cotton or soft cloth.

If further cleaning is needed, use IPA (isopropyl alcohol) and wipe clean lightly on surface only.

Do not use organic solvents as it may damage the LCD panel terminal area which uses organic material.

Also, do not directly touch with finger. When the terminals cleaning are needed, those should be wiped by a soft cloth or a cotton swab without directly touching by hand.

(12) 偏光板へのシールや粘着剤の貼り付けはムラ、表示不具合の恐れがあります。

To avoid picture uniformity failure, do not put a seal or an adhesive material on the LCD panel surface.

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

5

《 設計時の注意事項 》 [Precautions for Set-design]

(1) 故障の原因となりますので、決してモジュールを分解しないで下さい。

Disassembly of the LCD module in any way voids the warranty and may permanently damage the LCD module.

(2) パネル上に形成されたゲートドライバ等 (パネル表示領域以外に配置されている回路部)を強い光にさらすと、正常に動作しない可能性がありますので、LCDモジュールを搭載する際、ゲートドライバを遮光する設計が必要です。またLCDパネル側面に太陽光等の強い光が照射されるとパネル特性の劣化につながり、表示品位が低下する事があります。LCDパネル側面を遮光するよう設計に御配慮ください。

Do not expose the side of LCD panel and gate driver, etc. on the panel (circuit area outside panel display area) to light as it may not operate properly. Design that shields the side of LCD panel and gate driver, etc. from light is required when mounting the LCD module.

(3) ガラス面に応力が加わらない様LCDパネル支持は十分配慮して下さい。 キャビネットの設計において、ねじれ等のストレスが加わらない様配慮して下さい。

Careful consideration should be given to the LCD panel support to avoid stress on the glass surface.

Be sure to design the cabinet so that the module can be assembled without any extra stress such as warp or twist..

- (4) FPCの外形端面にはメッキリードがある場合がありますので、導電部材と接触しないようご注意下さい。
 There are metal patterns on the outer edge of FPC. Please design your housing not to contact the conductive part.
- (5) モジュール裏面に常時一定の圧力がかかると表示ムラ、表示不良などの原因となりますのでモジュール裏面を 圧迫するような構造にはしないで下さい。

It causes an irregular display and the defective indication, etc., when always put constant pressure on the back of the module. Please do not make the structure to press the back of the module.

(6) パネル表面に保護板等をつける場合は画質を劣化させる事の無いよう注意して下さい。

In case of attaching a cover glass or touch panel to the front surface, use appropriate measures to avoid degrading optical performance.

(7) 本仕様書に規定されている絶対最大定格は、必ず守ってください。これを超えて使用した場合、部品の焼損・破壊 や特性の劣化の恐れがあります。周囲温度や入力信号変動、電気部品のバラツキ等も考慮の上、絶対最大定格を 超えないように設計して下さい。

Be sure to follow the absolute maximum rating in the specification.

The design should consider the surrounding temperature, the fluctuating input signal, and tolerance of the electronic parts. Exceeding values is possible to cause worse characteristic such as burn and/or broken of the parts on LCD module.

(8) 推奨動作条件範囲内にて使用して下さい。

この範囲を超えた場合、絶対最大定格内であっても動作は保証されません。

Be sure to use LCD module within the recommended Electrical Characteristics and Timing Characteristics of Input signals conditions. Operating module out of the recommended range is not guaranteed even if it is in the absolute maximum rating.

(9) モジュールへ電源投入後の入力信号の印加、切断については、本仕様書の電源・信号電圧のシーケンスに 従って下さい。

Follow the power, signal, and supply voltage sequence which the specification indicates, regarding on-off input signal after power on of LCD module.

(10) セットの使用条件に合わせて、モジュール故障時の電源回路保護装置をご検討下さい。

According to the using application, power circuit protection is recommended at module failure.

(11) モジュールの取り扱い及び組み込みに際して酸化性または還元性ガス中での長期保管並びに、これらのガスを発生する試薬、溶剤、接着剤、樹脂等の材料の使用は腐食や変色の原因になる事がありますので、このような環境下では使用しないで下さい。

When handling LCD modules and assembling them into the cabinet, please avoid long-term storage in the environment of oxidization or deoxidization gas. The use of materials such as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the modules.

Do not use the LCD module under such environment.

(12) モジュール表面に傷防止として保護ラミネートを貼っておりますので、保護ラミネートを剥がしてご使用ください。 また一度剥がした保護ラミネートは再貼り付けしないでください。 保護ラミネートを再び貼り付けて長時間保存すると、偏光板表面が変質し、表示不良を生じる可能性があります。

Protection film is attached to the module surface to prevent it from being scratched. Peel the film off slowly, just before the use, with strict attention to electrostatic charges. Blow off 'dust' on the polarizer by using an ionized nitrogen. After peeling the protection film off, please do not reattach to the front polarizer. If you reattach and store it long time, surface of the front polarizer changes in quality and it may cause display non-uniformity issue.

(13) LCDパネルは、機械的ストレスにより表示に影響が出る事があります。ねじれ、曲がり押し圧などのストレスが 加わらない様に平面上に設置して下さい。

Panel is susceptible to mechanical stress and such stress may affect the display. Place the LCD panel on flat surface to avoid stress caused by twist, bend, etc.

(14) 光学品位低下及び表示不良を防止、且つ包装材料に使用されるエポキシ樹脂・シリコン接着剤のLCDパネルへの汚染防止のため、液晶パネルの生産・出荷プロセスで用いられる材料の互換性を確認してください。

To prevent reduction in optical quality and abnormal display, avoid exposure and contamination of the LCD panel from epoxy resin (mine system curing agent) that comes out from the material and the packaging material used for the set side, the silicon adhesive (dealcoholization system and oxime system), and the tray blowing agents (azo-compound), etc. Please confirm LCD panel compatibility with materials employed in your manufacturing and shipping processes.

- (15) モジュールに局所的な温度変化が生じないように、放熱性を考慮した部品配置・設計をお願いします。
 Please design part arrangement to consider the heat dissipation not to change the local temperature for module.
- (16) 本製品は、防水・防塵仕様ではありません。

This product is not water-proof and dust-proof structure.

(17) 高湿度環境、結露の可能性がある環境下や水中でのご使用を想定される場合は、防水性 (防湿)を考慮した 設計をお願いします。

If the product is to be used in a high-humidity environment, in an environment where condensation may occur, or underwater, please design the product in consideration of waterproof properties (moisture-proof).

(18) 本製品には電気回路を使用していますので、パネルの取扱い時における静電気 (200V以上)には注意の上、下記の内容を御配慮下さい。

As this LCD module is composed electronic circuits, it is sensitive to electrostatic discharge of 200V or more. Handle with care using cautions for the followings.

● 作業者 Operators

作業者が身につける衣服、履物、手袋等が絶縁物(ナイロン、ポリエチレン、ゴム等の絶縁物)の場合、人体に静電気が帯電する恐れがありますので、静電気対策品(静電気防止加工品)を着用して下さい。

Operators must wear anti-static wears to prevent electrostatic charge up to and discharge from human body.

● 器材・設備 Equipment and containers

摩擦や剥離の機構、機能を持つ器材、機具等 (例えば自動機、コンベア、検査機、半田ごて、マット、作業台、容器等) は静電気が発生する恐れがありますので、静電気対策 (静電気的接地 : 100MΩ) を行って下さい。

Equipment and tools with friction or peeling mechanisms or functions (e.g., automatic machines, conveyors, inspection machines, soldering irons, mats, work tables, containers, etc.) may generate static electricity, so take measures against static electricity (static grounding: $100 \text{ M}\Omega$).

● 床 Floor

床は人体や器材・設備から発生した静電気を漏洩する上で大きな役割を持ちます。床材が絶縁物 (高分子材、ゴム等)の場合、上にのる人体や機械の静電気が漏洩せずに帯電する恐れがありますので静電気対策 (静電気的接地 : 100MΩ) を行って下さい。

Floor plays an important role in leaking static electricity generated in human body or equipment. If the floor is made of insulated material (such as polymer or rubber material), such static electricity may charge. Proper measure should be taken to avoid static electricity charge (electrostatic earth: 100Mohms). There is a possibility that the static electricity is charged to them without leakage in case of insulating floor, so the electrostatic earth: 100Mohms should be made.

● 湿度 Humidity

各作業場の湿度は、静電気発生物体の表面抵抗に関係しており帯電防止に大きな関わりを持ちます。 湿度が 40%未満になると物体全体の静電気的接地抵抗を増大し帯電を促進する為、湿度を 40%以上に保つ 様にして下さい。特にラミネータ剥離工程や人の手が介在する工程等は、湿度を 50%以上に保ち、且つ除電 ブロアーを使用下さい

Humidity in work area relates to surface resistance of the persons or objects that generate electrostatics, and it can be manipulated to prevent electrostatic charge. Humidity of 40% or lower increases electrostatic earth resistance and promotes electrostatic charging. Therefore, the humidity in the work area should be kept above 40%. Specifically for film peeling process or processes that require human hands, humidity should be kept above 50% and use electricity removal blower.

● 物流 Transportation

運搬・保管はその行為 (摩擦や剥離) により容器や発泡スチロール等の保管材料が帯電したり、また 人体等に帯電した静電気等により誘導帯電等を起こす恐れがありますので保管材料等にも静電気対策を 行って下さい。

Containers and styroform used in transporation and storage may charge electrostatic (from friction and peeling) or electrostatic charge from human body, etc. may cause containers and styroform to have induced charge. Proper electrostatic measure should be taken for containers and storage material.

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

8

《動作時の注意事項》 [Precautions for operating LCD module]

- (1) ポリクロロフェンのご使用はお控えください。LCDパネルのコネクタ部品に影響を与える塩素ガスが発生します。 Do not use polychloroprene (CR) with LCD module. It will generate chlorine gas, which will damage the reliability of the connection part on LCD panel.
- (2) 推奨動作条件範囲内にて使用して下さい。

この範囲を超えた場合、絶対最大定格内であっても動作は保証されません。

Be sure to use LCD module within the recommended operating conditions. Operating module out of the recommended range is not guaranteed even if it is in the absolute maximum rating.

(3) LCDパネルは仕様書の規定外で動作させないで下さい。故障の原因となります。

Do not operate the LCD module under outside of electrical specification. Otherwise LCD module may be damaged.

(4) 本仕様書記載のACタイミングに従わずに使用されると表示不良の原因となります。

Do not use the LCD module under outside of specified driving timing chart. Otherwise LCD module may not have proper picture quality.

(5) 静止画表示は、2時間以内(常温、常湿)とし、それ以上の場合はリフレッシュ機能を入れて残像が残らない様に 配慮してください。

A still image should be displayed less than two days, if it is necessary to display still image longer than two hour, display image data must be refreshed in order to avoid sticking image on LCD module.

(6) LCDモジュールへ静電気が流れた場合、表示用メモリが保持できず、表示に影響が出ます。その場合はデータの 再書き込みを行って下さい。

If LCD module takes a static electricity, as the display image which is written into pixel memory might not be displayed, Data update should be executed frequently.

(7) 黒表示や黒部分がある表示の際、外部光により黒レベルが僅かに変わる事がありますが、それは故障でも不良品でもありません。

It is neither a breakdown nor a defective indication though very slight change in black level might be periodically seen in a black part on the black display image according to the source of light (angle of the luminance and the source of light).

(8) 本仕様書に規定されている絶対最大定格は、必ず守ってください。これを超えて使用した場合、部品の焼損・破壊 や特性の劣化の恐れがあります。周囲温度や入力信号変動、電気部品のバラツキ等も考慮の上、絶対最大定格を 超えないように設計して下さい。

Be sure to follow the absolute maximum rating in the specification. The design should consider the surrounding temperature, the fluctuating input signal, and tolerance of the electronic parts. Exceeding values is possible to cause worse characteristic such as burn and/or broken of the parts on LCD module.

(9) モジュールへ電源投入後の入力信号の印加、切断については、本仕様書の電源・信号電圧のシーケンスに従って下さい。

Follow the power, signal, and supply voltage sequence which the specification indicates, regarding on-off input signal after power on of LCD module.

(10) 高温高湿下での長時間使用される場合は、結露対策が必要になります。

The prevention of dew condition is necessary when LCD is used for long time under high-temperature and high-humidity

《 保管時の注意事項 》 [Precautions for Storage]

(1) 包装開封後は、直射日光や強い紫外線下に放置しないで下さい。暗い場所に保管して下さい。 After opening the package, do not leave the LCD panel in direct sun or under strong ultraviolet ray. Store in the dark place.

(2) 定格保存温度以下では液晶材料が凝固し、定格保存温度以上では等方向性の液体となり、元の状態に戻らなくなる場合があります。できるだけ室温付近での保存をお願いします。また湿度の高い場所に保管しますと、偏光板がダメージを受けます。できるだけ常湿付近での保存をお願いします。

In temperature lower than specified rating, liquid crystal material will coagulate. In temperature higher than specified rating, it will liquefies. In either condition, the liquid crystal may not recover its original condition. Store the LCD module in at or around room temperature as much as possible. Also, storing the LCD module in high humidity will damage the polarizer. Store in normal room temperature as much as possible.

(3) 保管方法

Keeping Method

- a. 直射日光には当てないで下さい。
- a. Don't keeping under the direct sunlight.
- b. トレイに納めて暗所に保管下さい。
- b. Keeping in the tray under the dark place.

《他の注意事項》

[Other Notice]

(1) 仕様書規定範囲外でのご使用は、保証いたしかねますのでご了承願います。

Operation outside specified environmental conditions cannot be guaranteed.

(2) 電源(VDD-GND、VDDA-GND)のインピーダンスを下げて使用する為、LCDモジュールのなるべく近くに パスコンを挿入して下さい。

As power supply (VDD-GND, VDDA-GND) impedance is lowered during use, bus controller should be inserted near LCD module as much as possible.

(3) パネル表面には偏光板が張り付けられていますが、内部の液晶は紫外線に対して劣化しますので、 直射日光や強い紫外線のもとで長時間放置しないようにしてください。

Polarizer is applied over LCD panel surface. Liquid crystal inside LCD panel deteriorates with ultraviolet ray. The panel should not be left in direct sun or under strong ultraviolet ray for prolonged period of time even with the polarizer.

(4) 故障の原因となりますので、決してモジュールを分解しないで下さい。

Disassembling the LCD module will cause permanent damage to the module. Do not disassemble the module.

(5) LCDパネルが破損した場合、中の液晶を口の中に入れないでください。液晶が手足、衣服等に付いた場合は、 直ちに石鹸で洗い落としてください。

If LCD panel is broken, do not ingest the liquid crystal from the broken panel. If hand, leg or clothes come in contact with liquid crystal, wash off immediately with soap. If mouth or eyes come in contact with liquid crystal, rinse with water as soon as possible, following the instructions of the appropriate MSDS.

(6) 本製品は、原材料から製品完成までの全生産工程に於いて ODS (特定フロン、特定ハロン、1-1-1トリクロロエタン、四塩化炭素)を一切使用していません。また、含んでおりません。

ODS (specific chlorofuorocarbon, specific halon, 1-1-1 trichloroethane, carbon tetrachloride) are not used or contained in material or all production processes of this product.

(7) モジュールの廃棄については、地方自治体により規制を受ける場合があります。 それぞれの自治体規制に従って廃棄して下さい。

Follow the regulations when LCD module is scrapped. The government you stay may have some regulations about it.

(8) その他、通常電子部品に対する注意事項は遵守してください。

Observe all other precautionary requirements in handling general electronic components.

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

11

《 LCDモジュールの廃棄注意事項 》

[Discarding liquid crystal modules]

LCDモジュールを破棄する場合は以下の事に注意して下さい。

Follow the regulations when LCD module is scrapped.

The government you stay may have some regulations about it.

LCDパネル:

- ガラス屑として処理をしてください。
- ・本LCDモジュールの含有有害物質はありません。
- ・LCDパネルには、危険・有害物質は含まれておりません。
- ・LCDパネルに含まれる液晶材料は、ごく微量(約 $100 \,\mathrm{mg}$)で、パネルが割れても漏れ出てくる事は無く、安全性も半数致死量($\mathrm{LD50}$) $\geq 2000 \,\mathrm{mg}\,/\,\mathrm{kg}$ 。
- ・変異原性(Aims test): 陰性(Negative)の材料を選んで使用しております。

LCD Panel:

- •Dispose of as glass waste.
- •This LCD module contains no harmful substances.
- •The liquid crystal panel contains no dangerous or harmful substances.
- •This liquid crystal panel contains only an extremely small amount of liquid crystal (approximately 100mg) and therefore it will not leak even if the panel should break.
- •Its median lethal dose (LD50) is greater than 2,000 mg/kg and a mutagenetic (Aims test: negative) material is used.

SHARP

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

12

目次 Contents

1.	適用範囲 /	Applicable Memory liquid crystal display	13
2.	概要	Overview	13
3.	機械的仕様	Mechanical Specification	13
4.	入力端子名称及	及び機能 Input terminal names and functions	14
5.	絶対最大定格	Absolute Maximum Rating	17
6.	電気的特性	Electrical characteristics	18
7.	光学的特性	Optical specification	44
8.	端子割り当て	Pin Assignment	48
9.	表示品位	Display Qualities	49
10	. 推奨例	Recommended example	50
11	. 印刷形態	Marking	51
12	. 梱包形態	Packaging form	52
13	. 信頼性試験条	件 Reliability Test Conditions	58
1/	エジュニルがエ	KIN Outling dimensions	50

1. 適用範囲 Applicable Memory liquid crystal display

CGシリコン薄膜トランジスタを用いた微透過型のメモリ液晶ディスプレイです。 外形図は図14-1に示しています。

This TFT-LCD module is a reflective active-matrix with slightly transmissive memory liquid crystal display module with CG silicone thin film transistor. Module outline is indicated in Figure 14-1

2. 概要 Overview

- ・ 微透過型モノクロパネル
- ・ 画面サイズ 2.70型 WQVGA 解像度 400 x 240画素
- ・ シリアルデータ信号による表示制御
- ・ 任意のラインを更新可能
- ・ パネル内部にデータ記憶用の1ビットメモリーを内蔵
- モノリシック技術を用いた薄型・軽量・コンパクトなモジュール形態
- · 超低消費電力TFTパネル
- · 表偏光板はHC仕様
- · FPCによる接続
- · Reflective active-matrix with slightly transmissive panel of white and black.
- · 2.70 " WQVGA screen has 400 x 240 resolusion.
- 1 pixel has each 1bit, the pixel can display 2 colors.
- Display control by serial data signal communication.
- · Arbitrary line data renewable.
- 1bit internal memory for data storage within the panel.
- · Thin, light-weight and compact module with monolithic technology.
- · Super low power consumption TFT panel.
- · Front polarizer surface is HardCoat.
- · With FPC (Applicable connector: Ref to recommended connector on Table 8-2-1)

3. 機械的仕様 Mechanical Specification

Table 3-1 機械的仕様表 Module mechanical specification ΔA

	Item	Specification	unit
画面サイズ	Screen size	2.70 "	inch
有効表示エリア	Active Area	58.8 (Horizontal) × 35.28 (Vertical)	mm
ドット構成	Dot configuration	400 (Horizontal) × 240 (Vertical)	Dot
ドットピッチ	Dot pitch	0.147 (Horizontal) × 0.147 (Vertical)	mm
画素配列	Pixel Array	Square	_
表示モード	Display mode	Normally White	_
外形寸法	Outline Dimension	62.8 (W) × 42.82 (H) × 1.325 (D)	mm
質量 Mass		9.0 (max)	g
表面処理	Surface treatment	Front Polarizer : HC (HardCoat)	_

Note: 詳細な外形寸法や公差は図14-1を参照

Detail dimension and tolerance are shown in Figure. 14-1

SHARP

SPEC No. LD-2023X11A $\begin{array}{ll} \text{MODEL} & \text{No.} \\ LS027B7DH01 \end{array}$

PAGE

14

4. 入力端子名称及び機能 Input terminal names and functions

Table 4-1 端子詳細 Pin description

Terminal	Symbol	I/O	Configurations	Function	Remark
1	1 SCLK INPUT NoPull		NoPull	クロック信号 Serial clock signal	
2	SI	INPUT	NoPull	シリアルデータ入力信号 Serial data input signal	
3	SCS	INPUT	NoPull	チップセレクト信号 Chip select signal (Active of Hi)	
4	EXTCOMIN	INPUT	NoPull	外部COM反転信号(矩形波) External COM inversion signal input (Square wave)	Note 4-2
5	DISP	INPUT	NoPull	表示 ON / OFF信号 Display ON / OFF signal	Note 4-1
6	VDDA	POWER	_	アナログ電源 Power supply (Analog)	Note 4-4
7	VDD	POWER	_	デジタル電源 Power supply (Digital)	Note 4-4
8	EXTMODE	INPUT	NoPull	COM制御選択の端子 Control mode of COM inversion is select terminal	Note 4-2
9	VSS	GND	_	GND (Digital)	Note 4-3
10	VSSA	GND	-	GND (Analog)	Note 4-3

Genaral Note: NoPull: プルアップ、プルダウンどちらでもない。

入力端子は不定状態 (HiZ) にはしてはいけません。

Neither Pulled up nor Pulled down.

The input terminals must not be in an indeterminate state (HiZ).

Note 4-1: 液晶表示のみのON/OFFを行います。この時、メモリ内のデータは保持されます。

"Hi"の時メモリ内データの表示を行い、"Lo"の時メモリ内データを保持したまま全画面白表示となります。

The display ON / OFF signal is only for display.

Data in the memory will be saved at the time of ON / OFF.

When it's "Hi", data in the memory will display, when it's "Lo", white color will diaplay and

data in the memory will be saved.

Note 4-2 : 外部より EXTCOMIN信号を入力する場合、EXTMODE を "Hi" にして下さい。

EXTMODE ="Hi" の時、EXTCOMIN が有効になります。(EXTMODE を VDD へ接続)

EXTMODE ="Lo" の時、シリアル入力のフラグが有効になります。(EXTMODE を VSS と接続)

When EXTMODE is "Hi", EXTCOMIN signal is enable.

When EXTMODE is "Lo", serial input flag is enable.

"Hi"mode ; connect the EXTMODE to VDD.

"Lo" mode ; connect the EXTMODE and EXTCOMIN to VSS.

Note 4-3: VSS, VSSAはコネクタ付近で必ず接続を行ってください。

VSS = VSSA = GND

Be sure to connect VSS and VSSA on the board. (Connection near the connector is recommended.)

Note 4-4 : $VDD \ge VDDA$

共通条件 Common condition

1) 電圧値は各項目の typ値の記載

Each Voltage values show typical voltage.

2) 起動時

Booting

- 電源投入時及び電源投入後、信号入力前
- •When just input Power supplay Between PowerON and Input Signal.

3) データ更新

Data Update & Hold mode

- ・表示データの書き換えを実施(1行及び複数行更新)
- Updates data in pixcel memory. (1Line and Multiple Lines update)

4) スタンバイ状態

Standby

- ・ データ更新無しで表示維持
- Maintains memory internal data and maintain current display
- 5) データを送信しない場合は、シリアル信号(SCS/SI/SCLK)は "Lo" とする。

Keep "Lo" Serial Signal (SCS / SI / SCLK) without communicating...

- ・ データを送信しないときに、SCS端子を "Hi"状態にしないで下さい。
- Not to make a SCS terminal "Hi" when it does not communicate.
- 6) $VDD \ge VDDA$, VSS = VSSA = GND = 0V

Note 4-1-1 :

VCOM制御をシリアル通信にて行う為、周期的な信号の送信が必要です。

To do VCOM control in a serial communication, a periodic signal transmission is necessary and is here.

Note 4-1-2:

表示している期間は、常時入力 (Clock pulse)が必要です。

Input (Clock pulse) is always needed during displaying.

Note 4-1-3:

表示時は "Hi" 固定とする。

When displaying it, it's drived "Hi" fixing.

Note 4-1-4:

Hi か Lo に固定。

回路的に VDD / GND (VSS) のどちらかに接続しての使用を推奨します。電源投入後の変更は禁止する。

Fixed to Hi or Lo. Recommend to connect VDD or GND (VSS)

Not change after starting power supply and during ON.

| SPEC No. | MODEL No. | PAGE | LD-2023X11A | LS027B7DH01 | 16

4-2) 推奨回路 Recommended Circuit

Figure 4-2-1 Recommended circuit

5. 絶対最大定格 Absolute Maximum Rating

Table 5-1 絶対最大定格 Absolute Maximum Rating

GND = 0V

Item		Symbol	Terminal	MIN.	MAX.	Unit	Remark
			VDDA	- 0.3	+ 5.8	V	Note 5-1
電源電圧 Power supply v		V_VDD	VDD	- 0.3	+ 5.8	V	Note 5-1
_ constant	Tomor suppry voltage		VSS , VSSA	0	0	V	_
入力信号電圧	High Level	V_IH	SCLK , SI , SCS	-	VDD	V	_
Input signal voltage	Low Level	V_IL	DISP , EXTCOMIN EXTMODE	- 0.3	_	V	
	保存温度 Strage Temperature		-	- 30	+ 80	ightharpoons	Note 5-2 Note 5-3
Operation Temp	動作温度 (パネル表面温度) Operation Temperature (at panel surface)		KI/OP	- 20	+ 70	$^{\circ}$	Note 5-3 Note 5-4

The absolute maximum rating is the limit value.

Genaral Note: Above Voltage value is a value based on VSS / VSSA (GND = 0V)

VSS = VSSA = GND

Note 5-1 : $VDD \ge VDDA$

Note 5-2 : モジュールのいかなる部分に関しても本定格を超えないようにして下さい。

Do not exceed this temperature in any parts of module.

Note 5-3: 湿度は 95% (温度 40度)までとして下さい。また静電気には注意して下さい。

最大湿球温度 39℃以下にし、結露させないで下さい。

結露した場合、電気的リークが発生し本仕様を満足しない場合があります。

Humidity 95%RH Max.($Ta~\leq~40^\circ\!C~$) Attention should be paid to static electricity Maximum

wet bulb temperature is 39°C or lower. No condensation is allowed.

Condensation will cause electerical leak and may cause the module to not meet this specification.

Note 5-4 : 動作温度は動作のみを保証する温度であり、コントラスト・応答速度・その他の表示品位に関しては

Ta = +25℃にて判定を行います。

Operating temperature is the temperature that guarantees only for the operation.

For contrast, response time, and other display quality determination, use $Ta = +25^{\circ}C$.

6. **電気的特性** Electrical characteristics

6-1) TFT液晶パネル駆動部 TFT LCD panel drive

Table 6-1-1 推奨駆動条件 Recommended operating Condition

GND = 0V, $Ta = +25^{\circ}C$

Item	1	Symbol	Terminal	Min.	Тур.	Max.	Unit	Remark
	電源電圧 Power supply Voltage		VVDDA VDDA		+ 5.0	+ 5.5	V	Note 6-1-1
			VDD	+ 4.8	+ 5.0	+ 5.5	V	Note 6-1-1
1 ower suppr	y voltage	VVSS	VVSS VSS, VSSA		0	0	V	_
	High Level	VIH	SCLK , SI SCS , DISP EXTCOMIN	+ 2.7	+ 3.0	VDD	V	Note 6-1-2
入力信号電圧			EXTMODE	VDD	VDD	VDD	V	_
Input signal voltage	Low Level	VIL	SCLK, SI SCS, DISP EXTCOMIN EXTMODE	VSS	vss	VSS + 0.15	V	ı

Genaral Note: Above Voltage value is a value based on VSS / VSSA (GND = 0V)

VSS = VSSA = GND

Note 6-1-1 : $VDD \ge VDDA$

Note 6-1-2: VDD以下の電圧で動作しますが、3V 付近での動作を推奨します。

It can be operated below VDD voltage, however, operation around 3V is revommended.

SHARP

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 19

6-2) 電源シーケンス Power supply sequence

Figure 6-2-1 Power supply sequence

詳細は、タイミングチャート、ACタイミング特性参照

Refer to timing chart and AC timing characteristics for detail

Note: 電源 ON / OFF時の注意事項 Precaustions at the time of power on and power off

- 1) 電源ON時は、VDDとVDDAが同時、またはVDDを先に立ち上げて下さい。 When power on, VDDand VDDA are same time or VDD should be faster than the VDDA.
- 2) 電源OFF時は、VDDとVDDAが同時、またはVDDを先に立ち下げて下さい。 When power off, VDD and VDDA are same time or VDDA should be faster than the VDD.

EXTMODE端子は、Hi/Loどちらかに固定してください。

EXTCOMIN terminal

Not change (Hi to Lo or Lo to Hi) after starting power supply and during ON

Figure 6-2-2 Power supply sequence

T1: 電源が安定してから、Signal送信を開始してください。

Please start the Signal transmission after a power supply was stable.

TA: イニシャライズ完了後にDISPをHiにしてください。

Please set DISP to Hight Level after the completion of initialization.

TB1: TAとT3は逆でも可(但し、DISP = "Lo" の間に EXTCOMIN を入れても TCOMの極性反転は起きません。 また、DISP とEXTCOMIN を同時に立ち上げた場合、SCS の立ち上げまで 30us以上の時間を空けて下さい。 (60usでなくても可)

TA and T3 may be opposite

(however, TCOM polarity inversion will not occur even with EXTCOMIN between DISP = "Lo".) Also, when DISP and EXTCOMIN are simultaneously started up, allow 30us or more before SCS starts up. (It may be less than 60us).

TB2: 画素メモリ内を初期化する際の設定値

SCS = 画素内メモリをクリアにする方法に応じた駆動をする事(全クリアフラグ使用 or 画面全体に白書込み) SI = M2(全クリアフラグ) = "Hi" 又は 白書込み

SCLK: 通常動作

Setting value for pixel memory initialization

SCS=Driving accordingly to clear pixel internal memory method

(use all clear flag or write all screen white)

S1=M2 (all clear flag) = "Hi" or write white

SCLK: Normal Driving

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

21

TB3:SCSLK, SCS, SI端子はデータ送信を行わない時は、必ず "Lo" に設定してください。

- ・DISP端子は電源ON状態時は "Hi" を保持してください。
- ・EXTCOMIN端子は

EXTMODE = Lo 設定の場合は必ず "Lo" 設定にしてください。

EXTMODE = Hi 設定の場合は、一定の周期の信号を入力してください。

Make SCLK,SI and SCS terminals "Lo" while it does not communicate.

- •Keep "Hi" DISP terminal ,when power supply on (VDD).
- •EXTCOMIN terminal

This is valid the case of EXTMODE = "Lo" as EXTCOMIN = "Lo".

This is valid the case of EXTMODE = "Hi" a periodic signal input is necessary.

[ON Sequence]

1) VDD, VDDA立上げ時間(ICによる) VDD and VDDA rise time (depends on IC).

2) 画素メモリ内を初期化します。

T2:1回以上M2 (全クリアフラグ)を使って初期化するか、画面全体白書込みをして下さい。

Pixel memory initialization

T2: 1 time or more Initialize with M2 (all clear flag) or write all screen white.

3) TCOM用ラッチ初期化解除時間 T3:30us以上

DISP信号を使って初期化している COM 関係のラッチ回路の初期化を解除するための期間

Release time for initialization of TCOM latch.

T3: 30us or more

Time required to release COM related latch circuit initialization which is initializing using DISP.

Signals.

4) TCOM極性初期化時間 T4:30us以上

EXTCOMIN の入力に応じて TCOMの極性を初期化する期間

TCOM polarity initialization time. T4: 30us or more

Time required initializing TCOM polarity accordingly to EXTCOMIN input.

[Normal Operation]

通常駆動の期間

Duration of normal driving.

SHARP

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 22

Figure 6-2-3 Power supply sequence

TS: Off control

全ての制御信号を "Lo" にした後、T6 の時間を経過後に電源を OFF してください。

Please turn off a power supply after making all the control signals into "Low Level", and passing the time of T6.

[Off Sequence]

5) 画素メモリ内を初期化します。 T5:(2)と同様 Pixel memory initialization. T5: Same(2)

6) VA, VB, VCOMの初期化時間 T6: 30us以上 VA, VB, VCOM initialization time. T6: 30us or more

7) VDD, VDDA立下げ時間 (ICによる) VDD and VDDA falling time (Depends on IC).

SHARP

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 23

6-3) AC特性 Input Signal timing Parameters

Table 6-3-1 AC特性 Input Signal timing Parameters

VDDA = +5.0V , VDD = +5.0V , GND = 0V , $Ta = +25^{\circ}C$

Signal	Signal Item		Min	Тур	Max	Unit	Remark
	Rise time	tr SCS	1	_	50	ns	
	Fall Time	tf SCS	ı	_	50	ns	
	SCS frequency	f SCS	I	ı	20	Hz	Full screen update Note 6-3-1 Note 6-3-2
SCS	High duration	twh SCS	220	_	-	us	Data update mode Note 6-3-1
	High duration	twn SCS	12		<u>O-, </u>	us	Hold mode Note 6-3-1
	Low duration	twl SCS	1	—	_	us	
	Set up time	ts SCS	3	-	_	us	•
	Hold time	th SCS	1) -	0	us	
	Rise time	tr SI		_	50	ns	
SI	Fall time	tf SI	-	_	50	ns	
51	Set up time	ts SI	120	0	-	ns	
	Hold time	th SI	190	<u> </u>	_	ns	
	Clock frequency	f SCLK	-	1.0	2.0	MHz	
	Rise time	tr SCLK	-	_	50	ns	
SCLK	Fall time	tf SCLK		_	50	ns	
	High duration	twh SCLK	200	450	-	ns	
	Low duration	twl SCLK	200	450	_	ns	
	Frequency	f EXTCOMIN	1	1	20	Hz	Note 6-5-1 Note 6-5-2
EXTCOMIN	Rise time	tr EXTCOMIN	_	_	50	ns	
	Fall time	tf EXTCOMIN	_	_	50	ns	
	High duration	twh EXTCOMIN	1	_	_	us	
DIGD	Rise time	tr DISP	_	_	50	ns	
DISP	Fall time	tf DISP	-	_	50	ns	

Note 6-3-1:表示データを書き込んだ後は、SCSを "Lo" の状態にしてください。

Please keep SCS in the state of "Lo" when you maintain current display after writing of the display data.

Note 6-3-2: 全画面更新時のみに適応されます。

任意の行のみの更新時においては適応されませんので、その他タイミング仕様に基づき設計願います。

This spec applies only to full screen updates.

In updating only specific lines, this spec does not apply Therefore, please design based on other timing specifications.

SCS , SI , SCLK , DISP , EXTCOMIN : VIH = 3.0 V

Figure 6-3-1 ACタイミング特性図 AC timing characteristics diagram

6-4) 消費電力 Power consumption

Table 6-4-1 消費電力 Current Consumption

Input signal voltage (high) = +3.0 V, VDD= +5.0 V, VDDA= +5.0 V, Ta = $+25 ^{\circ}\text{C}$

Condition		Power consumption	Min	Тур	Max	Unit	Remark
測定条件1	Operating Mode	ホールドモード(データ更新無し) HOLD (no display data update)		50	250	μW	Note 6-4-1
Condition 1	Display pattern	Vertical stripe display				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
測定条件2 Condition 2	Operating Mode	データ更新モード(1Hz更新) Data update modewith display update (1fram / sec)	×	175	350	μW	Note 6-4-2
	Display pattern	Vertical stripe display					

共通条件 Common condition

VDD = 5.0V, VDDA = 5.0V, fCLK = 1.0MHz, EXTMODE = VDD, EXTCOMIN = 1.0Hz

Formula for computation

 $(Ivdd + Ivdda)[\mu A] \times 5.0[V]$

(Common Note)

この値は定常状態の値であり、COM動作時の Peak電流ではありませんので、電源に余裕を持たせて下さい。 VDD + VDDA用にコンデンサの搭載を推奨致します。

(VDD, VDDA別系統の場合、それぞれにコンデンサの搭載を推奨致します。)

This is value in steady condition, not the falue of peak power at the time of COM operation.

Some marging for power supply is recommended.

We recommend capacitor for VDD and VDDA.

(If VDD and VDDA are on separate systems, we recommend capacitor for each.)

Note 6-4-1 : Condition 1 : 電源の電流測定期間

Condition 1: Current measurement period of power supply.

tI_condition 1 : 測定時間はEXTCOMIN周期で、2周期以上とする。

Measurement time shall be EXTCOMIN cycles, at least 2 cycles..

Figure 6-4-1 Current measurement 1

Note 6-4-2 : Condition 2 : 電源の電流測定期間

Condition 2: Current measurement period of power supply.

tI_condition 2 : 測定時間は 1secです。

Measurement time is 1 sec.

Figure 6-4-2 Current measurement 2

6-5) 入力信号の基本特性 Input signal characteristics

6-5-1) COM 制御には、シリアルデータ (M1 bit) にて行う方法と EXTCOMIN 信号にて行う方法があります。

COM control can be done by serial data or by EXTCOMIN signal.

Genaral Note 6-5-1

フレーム周波数は表示品位に問題のない範囲で御使用下さい。

Please use a frame frequency in the range where there are no problems with the display quality.

Genaral Note 6-5-2

LC 反転(COM 反転):液晶は一定周期での極性反転が必要です。

LC inversion (COM inversion):

LC material is needed alternative polarity driving as changing timing which should be constant period.

・参考条件として(EXTCOMIN=1Hz の場合)

The conditions as an example (For EXTCOMIN = 1Hz)

EXTMODE = Hi, SCS = Lo, EXTCOMIN = 1Hz

fEXTCOMINが 1Hzの場合、COM周波数 (fCOM) は 0.5Hz。 fEXTCOMIN frequency 1Hz is COM frequency (fCOM) 0.5Hz.

as shown Figure 6-5-1 (fCOM= 0.5Hz)

Figure 6-5-1 COM inversion frequency

6-5-2) <u>COM制御をシリアルデータ(M1 bit)にて行う場合(COM driving by the serial comman)</u> (When EXTMODE = Lo)

本COM制御の場合、データ更新行数及び更新周期に関係なく、COM周期(fCOM) を一定になるように、M1 bit を 更新する必要があります。

For this COM control, the M1 bit must be updated so that the COM cycle (fCOM) is constant regardless of the number of data update lines and update cycle.

詳細については、6-6-5 項を参照ください。

For more information, see section 6-6-5).

Table6-5-1 基本特性 Recommend Operating Conditions and DC Characteristics

VDDA = +3.0V, VDD = +3.0V GND = 0V, Ta = +25°C

_			1001	1 10.01	TEE O.	OV CITIES	01 (1 0 1200
	Item Symbol		Min	Тур	Max	Unit	Remark
	COM Inversion	fV	1	1	20	$_{ m Hz}$	Figure 6-5-1 , Figure 6-6-3 Figure 6-6-5
	COM frequency	fCOM	0.5	CTC	10	Hz	Figure 6-5-1 , Figure 6-6-3 Figure 6-6-5

6-5-3) COM制御をEXTCOMIN信号にて行う場合 (COM driving by the serial command)

(When EXTMODE = Hi)

本COM制御の場合、"SCS Signal" の状態(Hi / Lo)によって、COM制御タイミングが異なります。 In the case of this COM control, the COM control timing varies depending on the "SCS Signal" status (Hi / Lo).

詳細については、6-6-5 項を参照ください。

For more information, see section 6-6-5).

Table6-5-2 基本特性 Recommend Operating Conditions and DC Characteristics

VDDA = +3.0V, VDD = +3.0V, GND=0V, Ta = +25°C

				, , ,	J.J.,	122 5:57, 6112 57, 14 25	
Item	Symbol	Min	Тур	Max	Unit	Remark	
COM frequency	fCOM	0.5	_	10	Hz	Figure 6-6-6 , Figure 6-6-7	

Note 6-5-1 : EXTCOMINの周波数はフレーム周波数以下にして下さい。

Please make the EXTCOMIN frequency less than the frame rate frequency.

Figure 6-5-2 EXTCOMIN Signal 1

Note 6-5-2: 表示データを保持する場合には下記は適用されません。

(データを保持する場合は SCS を "Lo" にして下さい)

When the display is maintained after writing of the displayed data, is not applied.

(Please keep SCS to "Lo" when you maintain current display after writing of the display data.)

Figure 6-5-3 EXTCOMIN Signal 2

SHARP

| SPEC No. | MODEL No. | PAGE | LD-2023X11A | LS027B7DH01 | 30

6-6) 入力信号のタイミングチャート Input Signal Timing Chart

6-6-1 データ更新モード (任意の1行) Data update mode (1 line)

```
任意の1行のデータを更新します。(M0 = "Hi"、M2 = "Lo")
```

Updates data of only one specified line. (M0 = "Hi", M2 = "Lo")

Figure 6-6-1 Data update mode by 1line

```
MO: Mode flag.

データ更新モード (メモリ内データ更新) : MO = "Hi"
ホールドモード (メモリ内データ保持) : MO = "Lo"

Set for "Hi" : Data update mode (Memory internal data update)
Set for "Lo" : Hold mode (maintain memory internal data)
```

M1: Frame inversion flag.

M1 = "Hi" の時、VCOM = "Hi" を出力 M1 = "Lo" の時、VCOM = "Lo" を出力 EXTMODE = "Hi" の時は、"Hi" or "Lo" どちらでも可 When "Hi", outputs VCOM = "Hi", and when "Lo", outputs VCOM = "Lo". When EXTMODE = "Hi", it can be "Hi" or "Lo".

M2 : All clear flag.

6-6-4) 全クリアモードを参照してください。

Refer to 6-6-4) All Clear Mode to execute clear.

DUMMY DATA:

ジミーデータ : "Hi" or "Lo" どちらでも可 ("Lo"を推奨)
Dummy data : It can be "Hi" or "Lo" ("Lo" is recommended)

D0-D399:

書き込む画像データ (Horizontal Line data) Writing Image data (Horizontal Line data)

Hi:白表示(White) Lo:黒表示(Black)

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

31

Data write period

この期間ではデータをパネル内 (バイナリドライバ) の1stラッチに書き込んでいます。 Data is being stored in 1st latch block of binary driver on panel.

Data transfer period

1stラッチに書き込んだデータを画素内メモリ回路に転送 (書込み)しています。

Data written in 1st latch is being transferred (written) to pixel internal memory circuit.

ゲートラインアドレス設定は、6-7) 入力信号と画面表示を参照ください。

For gate line address setting, refer to 6-7) Input Signal and Display.

連続してデータを入力します。

Input data continuously

M1: フレーム反転フラグは EXTMODE = "Lo" の時に有効になります。

M1: Frame inversion flag is enabled when EXTMODE = "Lo".

SCS が "Lo" になった時点で M0, M2 はクリアされます

When SCS becomes "Lo", M0 and M2 are cleared.

SHARP

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 32

6-6-2 データ更新モード (任意の複数行) Data Update Mode (Multiple Lines)

任意の複数行のデータを更新します。(M0 = "Hi"、M2 = "Lo")

Updates arbitrary multiple lines data. (M0 = "Hi", M2 = "Lo")

Figure 6-6-2 Data update mode by Multiple Lines

M0: Mode flag.

データ更新モード (メモリ内データ更新) : M0 = ``Hi'' ホールドモード (メモリ内データ保持) : M0 = ``Lo''

Set for "Hi" : Data update mode (Memory internal data update)
Set for "Lo" : Hold mode (maintain memory internal data)

M1: Frame inversion flag.

M1 = "Hi" の時、VCOM = "Hi" を出力

M1 = "Lo" の時、VCOM = "Lo" を出力

EXTMODE = "Hi" の時は、"Hi" or "Lo" どちらでも可

When "Hi", outputs VCOM= "Hi", and when "Lo", outputs VCOM = "Lo".

When EXTMODE = "Hi", it can be "Hi" or "Lo".

SPEC No. MODEL No. PAGE

LD-2023X11A

 $\rm LS027B7DH01$

33

M2: All clear flag.

6-6-4) 全クリアモードを参照してください。

Refer to 6-6-4) All Clear Mode to execute clear.

DUMMY DATA:

ダミーデータ : "Hi" or "Lo" どちらでも可 ("Lo"を推奨)

Dummy data : It can be "Hi" or "Lo" ("Lo" is recommended)

D0 - D399 :

書き込む画像データ (Horizontal Line data) Writing Image data (Horizontal Line data)

> Hi:白表示(White) Lo:黒表示(Black)

Data write period

この期間ではデータをパネル内(バイナリドライバ) の 1stラッチに書き込んでいます。

Data is being stored in 1st latch block of binary driver on panel.

Data transfer period

例えば、GL2ライン目のデータ転送期間でGL2ライン目のアドレスをラッチすると共に GL1ライン目のデータを1stラッチから画素内メモリ回路に転送(書込み)しています。 For example, during GL2nd line data transfer period, GL2nd line address is latched and

GL1st line data is transferred from 1st latch to pixel internal memory circuit at the same time.

ゲートラインアドレス設定は、6-7)入力信号と画面表示を参照ください。

For gate line address setting, refer to 6-7) Input Signal and Display.

データは連続して入れて下さい。

Input data continuously.

M1: フレーム反転フラグは EXTMODE = "Lo" の時に有効になります。

M1: Frame inversion flag is enabled when EXTMODE = "Lo".

SCS が "Lo" になった時点で MO, M2はクリアされます。

When SCS becomes "Lo", M0 and M2 are cleared.

6-6-3 ホールドモード Hold Mode

内部データを保持 (現在の表示を維持)します。(M0 = "Lo"、M2 = "Lo")

Maintains memory internal data (maintains current display). (M0 = "Lo", M2 = "Lo")

Figure 6-6-3 HOLD mode

M0: Mode flag.

データ更新モード (メモリ内データ更新) : M0 = "Hi" 表示モード (メモリ内データ保持) : M0 = "Lo"

Set for "Hi" : Data update mode (Memory internal data update)
Set for "Lo" : Hold mode (maintain memory internal data).

M1: Frame inversion flag.

M1 = "Hi" の時、VCOM = "Hi" を出力

M1 = "Lo" の時、VCOM = "Lo" を出力

EXTMODE = "Hi" の時は、"Hi" or "Lo" どちらでも可

When "Hi", outputs VCOM = "Hi", and when "Lo", outputs VCOM = "Lo".

When EXTMODE = "Hi", it can be "Hi" or "Lo".

M2 : All clear flag.

6-6-4) 全クリアモードを参照してください。

Refer to 6-6-4) All Clear Mode to execute clear.

DUMMY DATA:

ダミーデータ : "Hi" or "Lo" どちらでも可("Lo"を推奨)

Dummy data : It can be "Hi" or "Lo" ("Lo" is recommended)

•M1: フレーム反転フラグは EXTMODE = "Lo" の時に有効になります。 M1: Frame inversion flag is enabled when EXTMODE = "Lo".

・SCS が "Lo" になった時点で M0, M2 はクリアされます。

When SCS becomes "Lo", M0 and M2 are cleared.

6-6-4 全クリアモード All Clear Mode

内部データをクリアし白書込みします。 (M0 = "Lo"、M2 = "Hi")

Clears memory internal data and writes white. (M0 = "Lo", M2 = "Hi")

Figure 6-6-4 All Clear mode

M0: Mode flag.

M0 = "Lo" に設定して下さい。

Set it "Lo".

M1: Frame inversion flag.

M1 = "Hi" の時、VCOM = "Hi" を出力

M1 = "Lo" の時、VCOM = "Lo"を出力

EXTMODE="Hi" の時は、"Hi" or "Lo "どちらでも可

When "Hi", outputs VCOM = "Hi", and when "Lo", outputs VCOM = "Lo".

When EXTMODE = "Hi", it can be "Hi" or "Lo".

M2: All clear flag.

M2 = "Hi" に設定して下さい。

Set it "Hi"

DUMMY DATA:

ダミーデータ : "Hi" or "Lo" どちらでも可 ("Lo"を推奨)

Dummy data : It can be "Hi" or "Lo" ("Lo" is recommended)

・M1: フレーム反転フラグは EXTMODE = "Lo" の時に有効になります。

M1: Frame inversion flag is enabled when EXTMODE = "Lo".

·SCS が "Lo" になった時点で M0, M2はクリアされます。

When SCS becomes "Lo", M0 and M2 are cleared.

| SPEC No. | MODEL No. | PAGE | LD-2023X11A | LS027B7DH01 | 36

6-6-5 COM反転 COM Inversion

COM信号シリアル入力(EXTMODE = "Lo")と外部信号入力(EXTMODE = "Hi")の2種類あります。 There are two types of inputs,COM signal serial input (EXTMODE = "Lo") and external COM signal input (EXTMODE = "Hi").

EXTMODE = "Lo"

Figure 6-6-5 COM Inversion (EXTMODE = Lo)

M1: COM polarity inversion flag:

M1 = "Hi"の時、VCOM = "Hi"を出力

M1 = "Lo"の時、VCOM = "Lo"を出力

If M1 is "Hi" then VCOM = "Hi" is output.

If M1 is "Lo" then VCOM = "Lo" is output.

※1: COM 反転は M1 フラグに対応した極性に切り替わります。

COM inversion has been changed by M1 flag statement.

※2: プラス極性の期間とマイナス極性の期間は可能な限り同等として下さい。

The periods of plus polarity and minus polarity should be same length as much as possible.

%3 : If M1 is 0 (Lo) , COM is 0 (Lo)

If M1 is 1 (Hi), COM is 1 (Hi)

※4: このタイミングで COM flag bitにしたがって反映する

It is reflected according to the COM flag bit at this timing.

Table 6-6-1 COM state 1

1 able 0 0 1	CON	a state 1
		COM state (COM flag bit)
M1 (bit)	1	1
MII (bit)	0	0

変化前の状態にかかわらず、M1の bit に従って変化する。

It changes according to the M1 bit regardless of the state before the change.

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 37

EXTMODE = "Hi" (COM inversion timing has two conditions)

① EXTCOMIN input during high period of the SCS signal

Figure 6-6-6 COM Inversion (EXTMODE = Hi) 1

※1: SCS立ち下がりエッジのタイミングでCOM反転を行います。

(SCSがHight期間中に EXTCOMINを2回以上入力しないで下さい。)

SCS と EXTCOMIN信号のタイミングでCOM周期が決まりますので、fCOM周期が一定になるようにしてください。 COM inversion has been set by the falling edge of SCS signal.

(*not* toggle EXTCOMIN more than once while SCS is hight)

The COM cycle is determined by the timing of the SCS and EXTCOMIN signals, so the fCOM cycle should be constant.

※2: EXTCOMINの周期は一定にしてください。

EXTCOMINに合わせてデータ送信を行うか、SCS = "Lo"期間を設けて COM反転周期が一定になるようにして下さい。

The period of EXTCOMIN should be constant.

Send data in accordance with EXTCOMIN or set SCS = "Lo" period so that the COM inversion cycle is constant.

※3: SCS立下りエッジのタイミングで、COM Flag-bit にしたがってCOM反転を行います。

At the timing of the falling edge of SCS, COM inversion is performed according to COM Flag-bit.

Table 6-6-2 COM flag state (EXTMODE = Hi and SCS = Hi)

		CON	I flag state
	EXTCOMIN	反転前の状態 State before inversion	反転後の状態 Status after inversion
add II.	11.	1	0
SCS = Hi		0	1

② EXTCOMIN input during low period of the SCS signal

Figure 6-6-7 COM Inversion (EXTMODE = Hi) 2

※1: EXTCOMIN立ち上がりエッジのタイミングでCOM反転を行います。COM inversion polarity has been set by rising edge of EXTCOMIN.

※2: EXTCOMINの周期は一定にしてください。 The period of EXTCOMIN should be constant.

※3: EXTCOMINの立ち上がりエッジで、COM Flag-bit、COM反転を行います。 COM Flag-bit and COM inversion on the rising edge of EXTCOMIN.

Table 6-6-3 COM state 2 (EXTMODE = Hi and SCS = Lo)

		COM state (COM flag bit state)				
	EXTCOMIN	反転前の状態 State before inversion	反転後の状態 Status after inversion			
aga I	TT.	1	0			
SCS = Lo	Hi	0	1			

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 39

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01 PAGE

40

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01 PAGE 41

6-8) 入力信号と画面表示、ゲートアドレス設定 Input Signal and Display, Gate address (Line) Setting

Table 6-8-1 ゲートラインアドレス設定1 Gate line address setting 1

GL: Gate address line

	A.C.O	AC 1	ACO	100	AC 4	ACE	ACC	A C 7	CI	A C O	AC1	ACO	100	AC 4	ACE	ACC	A C 7	CI	1	10140	1 4 0 9	ACS	AC 4	ACE	ACC	107
GL						AG5			GL								AG7	GI		O AG						
1	0	0	0	0	0	0	0	0	61	0	0	1	1	1	1	0	0	123	_	_	0	1	1	1	1	0
3	1	1	0	0	0	0	0	0	62	1	1	1	1	1	1	0	0	123	_	_	0	1	1	1	1	0
4	0	0	1	0	0	0	0	0	64	0	0	0	0	0	0	1	0	124	_	_	1	1	1	1	1	0
5	1	0	1	0	0	0	0	0	65	1	0	0	0	0	0	1	0	128			1	1	1	1	1	0
6	0	1	1	0	0	0	0	0	66	0	1	0	0	0	0	1	0	120	; (1	1	1	1	1	1	0
7	1	1	1	0	0	0	0	0	67	1	1	0	0	0	0	1	0	12'	1	. 1	1	1	1	1	1	0
8	0	0	0	1	0	0	0	0	68	0	0	1	0	0	0	1	0	128	_	_	0	0	0	0	0	1
9	1	0	0	1	0	0	0	0	69	1	0	1	0	0	0	1	0	129	_		0	0	0	0	0	1
10	0	1	0	1	0	0	0	0	70	0	1	1	0	0	0	1	0	130	_	_	0	0	0	0	0	1
11 12	0	0	1	1	0	0	0	0	$\frac{71}{72}$	0	0	0	1	0	0	1	0	13:		_	1	0	0	0	0	1
13	1	0	1	1	0	0	0	0	73	1	0	0	1	0	0	1	0	133	-	_	1	0	0	0	0	1
14	0	1	1	1	0	0	0	0	74	0	1	0	1	0	0	1	0	134	_	1	1	0	0	0	0	1
15	1	1	1	1	0	0	0	0	75	1	1	0	1	0	0	1	0	13	5 1	1	1	0	0	0	0	1
16	0	0	0	0	1	0	0	0	76	0	0	1	1	0	0	1	0	130	_		0	1	0	0	0	1
17	1	0	0	0	1	0	0	0	77	1	0	1	1	0	0	1	0	13'			0	1	0	0	0	1
18	0	1	0	0	1	0	0	0	78	0	1	1	1	0	0	1	0	138			0	1	0	0	0	1
19	0	0	0	0	1	0	0	0	79 80	0	0	0	1	$0 \\ 1$	0	1	0	139			0	1	0	0	0	1
21	1	0	1	0	1	0	0	0	81	1	0	0	0	1	0	1	0	14		_	1	1	0	0	0	1
22	0	1	1	0	1	0	0	0	82	0	1	0	0	1	0	1	0	142			1	1	0	0	0	1
23	1	1	1	0	1	0	0	0	83	1	1	0	0	1	0	1	0	143	3 1	1	1	1	0	0	0	1
24	0	0	0	1	1	0	0	0	84	0	0	1	0	1	0	1	0	14	_	_	0	0	1	0	0	1
25	1	0	0	1	1	0	0	0	85	1	0	1	0	1	0	1	0	148	_		0	0	1	0	0	1
26	0	1	0	1	1	0	0	0	86	0	1	1	0	1	0	1	0	140	_	_	0	0	1	0	0	1
27 28	0	0	0	1	1	0	0	0	87 88	0	0	0	0	1	0	1	0	14'	_		0	0	1	0	0	1
29	1	0	1	1	1	0	0	0	89	1	0	0	.1	1	0	1	0	149	_	_	1	0	1	0	0	1
30	0	1	1	1	1	0	0	0	90	0	1	0	1	1	0	1	0	150	_	_	1	0	1	0	0	1
31	1	1	1	1	1	0	0	0	91	1	1	0	1	1	0	1	0	15	. 1	1	1	0	1	0	0	1
32	0	0	0	0	0	1	0	0	92	0	0	1	_1	1	0	1	0	152	2 (0	0	1	1	0	0	1
33	1	0	0	0	0	1	0	0	93	1	0	1	1	1	0	1	0	153	_		0	1	1	0	0	1
34	0	1	0	0	0	1	0	0	94	0	1	1 1	1	1	0	1	0	154	_	_	0	1	1	0	0	1
35 36	0	0	1	0	0	1	0	0	95 96	0	0	0	0	0	1	1	0	150		_	1	1	1	0	0	1
37	1	0	1	0	0	1	0	0	97	1	0	0	0	0	1	1	0	15'	_	_	1	1	1	0	0	1
38	0	1	1	0	0	1	0	0	98	0	1	0	0	0	1	1	0	158	_	_	1	1	1	0	0	1
39	1	1	1	0	0	1	0	0	99	1	1	0	0	0	1	1	0	159) 1	1	1	1	1	0	0	1
40	0	0	0	1	0	1	0	0	100	0	0	1	0	0	1	1	0	160) (0	0	0	0	1	0	1
41	1	0	0	1	0	1	0	0	101	1	0	1	0	0	1	1	0	16	_		0	0	0	1	0	1
42	0	1	0	1	0	1	0	0	102	0	1	1	0	0	1	1	0	165	_	_	0	0	0	1	0	1
43	0	0	0	1	0	1	0	0	103	0	0	0	0	0	1	1	0	$\frac{168}{164}$	_	_	1	0	0	1	0	1
45	1	0	1	1	0	1	0	0	104	1	0	0	1	0	1	1	0	16	-	_	1	0	0	1	0	1
46	0	1	1	1	0	1	0	0	106	0	1	0	1	0	1	1	0	160	_	_	1	0	0	1	0	1
47	1	1	1	1	0	1	0	0	107	1	1	0	1	0	1	1	0	16'	_	1	1	0	0	1	0	1
48	0	0	0	0	1	1	0	0	108	0	0	1	1	0	1	1	0	168	_		0	1	0	1	0	1
49	1	0	0	0	1	1	0	0	109	1	0	1	1	0	1	1	0	169	_	-	0	1	0	1	0	1
50	0	1	0	0	1	1	0	0	110	0	1	1	1	0	1	1	0	170	_	_	0	1	0	1	0	1
51 52	0	0	0	0	1	1	0	0	111	0	0	0	0	0	1	1	0	175	_	_	1	1	0	1	0	1
53	1	0	1	0	1	1	0	0	112	1	0	0	0	1	1	1	0	173			1	1	0	1	0	1
54	0	1	1	0	1	1	0	0	114	0	1	0	0	1	1	1	0	174	_		1	1	0	1	0	1
55	1	1	1	0	1	1	0	0	115	1	1	0	0	1	1	1	0	178	_	-	1	1	0	1	0	1
56	0	0	0	1	1	1	0	0	116	0	0	1	0	1	1	1	0	170	; (0	0	0	1	1	0	1
57	1	0	0	1	1	1	0	0	117	1	0	1	0	1	1	1	0	17'			0	0	1	1	0	1
58	0	1	0	1	1	1	0	0	118	0	1	1	0	1	1	1	0	178	_		0	0	1	1	0	1
59	0	0	0	1	1	1	0	0	119	0	0	0	0	1	1	1	0	179	_	_	1	0	1	1	0	1
60	U	U					U	U	120	U	U	Ü		L +			U	180	, (10	1	L			U	1

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

42

Table 6-8-2	ゲートラインアドレス設定 2	Gate line address setting 2
-------------	----------------	-----------------------------

GL: Gate address line

able (1		
GL							AG6	
181	1	0	1	0	1	1	0	1
182	0	1	1	0	1	1	0	1
183	1	1	1	0	1	1	0	1
184	0	0	0	1	1	1	0	1
185	1	0	0	1	1	1	0	1
186	0	1	0	1	1	1	0	1
187	1	1	0	1	1	1	0	1
188	0	0	1	1	1	1	0	1
189	1	0	1	1	1	1	0	1
190	0	1	1	1	1	1	0	1
191	1	1	1	1	1	1	0	1
192	0	0	0	0	0	0	1	1
193	1	0	0	0	0	0	1	1
194	0	1	0	0	0	0	1	1
195	1	1	0	0	0	0	1	1
196	0	0	1	0	0	0	1	1
197	1	0	1	0	0	0	1	1
198							_	
	0	1	1	0	0	0	1	1
199	1	1	1	0	0	0	1	1
200	0	0	0	1	0	0	1	1
201	1	0	0	1	0	0	1	1
202	0	1	0	1	0	0	1	1
203	1	1	0	1	0	0	1	1
204	0	0	1	1	0	0	1	1
205	1	0	1	1	0	0	1	1
206	0	1	1	1	0	0	1	1
207	1	1	1	1	0	0	1	1
208	0	0	0	0	1	0	1	1
209	1	0	0	0	1	0	1	1
210	0	1	0	0	1	0	1	1
211	1	1	0	0	1	0	1	1
212	0	0	1	0	1	0	1	1
213	1	0	1	0	1	0	1	1
214	0	1	1	0	1	0	1	1
215	1	1	1	0	1	0	1	1
216	0	0	0	1	1	0	1	1
217		0		1	_	0	1	1
	1	1	0	1	1	-		
218	0		0		1	0	1	1
219	1	1	0	1	1	0	1	1
220	0	0	1	1	1	0	1	1
221	1	0	1	1	1	0	1	1
222	0	1	1	1	1	0	1	1
223	1	1	1	1	1	0	1	1
224	0	0	0	0	0	1	1	1
225	1	0	0	0	0	1	1	1
226	0	1	0	0	0	1	1	1
227	1	1	0	0	0	1	1	1
228	0	0	1	0	0	1	1	1
229	1	0	1	0	0	1	1	1
230	0	1	1	0	0	1	1	1
231	1	1	1	0	0	1	1	1
232	0	0	0	1	0	1	1	1
233	1	0	0	1	0	1	1	1
234	0	1	0	1	0	1	1	1
						-	_	
235	1	1	0	1	0	1	1	1
236	0	0	1	1	0	1	1	1
237	1	0	1	1	0	1	1	1
	0	1	1	1	0	1	1	1
238								
238 239 240	1 0	1	1	1 0	0	1	1	1

| SPEC No. | MODEL No. | PAGE | LD-2023X11A | LS027B7DH01 | 43

Data position in display [H , V] \rightarrow 〈データの画面表示位置 P400,L1 P1,L1 P2,L1 P1,L2 Display surface 表示面 P400,L240 P1,L240 P*: Pixels position L*:Gate address line

Figure 6-8-1 Data position

7. <u>光学的特性 Optical specification</u>

Table 7-1 光学的特性 (反射特性) Optical specification (Reflective Mode)

VDD = VDDA = +5.0V, $Ta = +25^{\circ}C$

				1	100 - 10	DA - +5.0 v	, 1a - 120 C	
Item		Symbol	Min.	Тур.	Max.	unit	Remark	
	Horizontal	θ 21	40	55	-			
視角特性 Viewing angle Pange	Horizontai	θ 22	40	55	-	°(degree)		
Viewing angle Range $CR \ge 2$	77 4: 1	θ 11	40	60	-	(degree)	Note 7-1	
	Vertical	θ 12	40	60				
コントラスト比	コントラスト比 Contrast ratio 反射率 Reflectivity ratio			4.			Note 7-2	
Contrast rati				14		_	Note 7-3	
				17.5	-	%	Note 7-3	
応答速度	Rise	τr	- 2	10	(ms	Note 7-3	
Response Time	Fall	τd		20	O '	ms	Note 7-4	
パネル面色度	White	X	-	0.305) -	_	Note 7-3	
Panel Chromaticity	White	у		0.330	-	_		

Table 7-2 光学的特性 (透過特性) Optical specification (Transmissive Mode)

VDD = VDDA = +5.0 V , $\text{Ta} = +25 ^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	unit	Remark
透過率 Transmissivity ratio	Т	-	0.25	_	%	Note 7-5

Note 7-1 : 視野角の定義 Defintion of Viewing Angle

Figure 7-1 Defintion of Viewing Angle

Note 7-2 : コントラスト比の定義

Defintion of Contrast Ratio

- ・コントラスト比を以下のように定義する。
- •The contrast ratio is defined as the following.

Contrast ratio (CR) = Reflection intensity in white display

Reflection intensity in black display

Note 7-3: 光学特性の測定機器 Optical characteristics measurement equipment.
コントラスト比、反射率、パネル表面色度の測定は図7-2,応答速度の測定は図7-3の測定方法を用いて、暗室あるいはこれと同等な状態にて測定します。

Figure 7-2 is for contrast ratio, reflectivity ratio, and panel chromaticity measurement, and Figure 7-3 is for response time measurement. Both are to be conducted in a dark or room equipment to a dark room

測定器 Measurement equipment (CM2002 / CM700d)

測定器 Measurement equipment (LCD-5200/DMS803)

Figure 7-2 Contrast ratio, Reflection ratio,
Panel chromaticity

Figure 7-3 Response time

Note 7-4: 応答速度(反射率の変化)

Respons time (Change in reflection ratio)

- •白及び黒状態となる信号を入力し、その時の受光器出力の時間変化にて定義します。
- It's difined by the time change of optical receiver output when signal is input to display white or black

Figure 7-4 Respons time

Note 7-5: 測定装置 (透過特性) △A

Measurement equipment (Transmissive mode)

- ・光学特性 (透過特性)の測定方法を下図に示します。測定装置はTOPCON社の輝度計 SR-3, SR-UL1Rです。
- •The measuring method of the optical characteristics (Transmissive mode) is shown by the following figure.A measurement device is TOPCON luminance meter SR-3, SR-UL1R.

Figure 7-5 Measuring setup for Luminance

8. 端子割り当て Pin Assignment

8-1) 端子割り当て Pin Assignment

外形寸法の詳細は図14-1に示します。

The outline dimensions are shown in Figure 14-1

Figure 8-1-1 Pin Assignment 1

Table 8-1-1 TFT LCD panel terminal

No.	Symbol
1	SCLK
2	SI
3	SCS
4	EXTCOMIN
5	DISP
6	VDDA
7	VDD
8	EXTMODE
9	VSS
10	VSSA

Figure 8-1-2 Pin Assignment 2 (Area A)

8-2) FPC 折り曲げ特性 FPC Bend Specification

Table 8-2-1 推奨コネクタ Recommended Connector

Product manufacturer	Series	Part number	Contact			
Panasonic	Y5B	AYF531035	上下接点	Bottom and Upper		
HRS	FH34SRJ	FH34SRJ-10S-0.5SH	上下接点	接点 Bottom and Upper		
	FH28	FH28-10S-0.5SH	下接点	Bottom		
Molex	503480	503480-1000	上下接点	Bottom and Upper		

FPCを折り曲げる際は、条件 (1)で推奨する箇所を条件 (2)で規定したR以上で曲げて下さい。 FPCはガラスに接触しない様お願い致します。また、FPCとパネルの接合部にはストレスを与えない様お願い致します。 When bending FPC, bend where specified in Condition (1) and the bend R should be more than R specified in Condition (2). FPC is not to contact glass edge, and there should be no stress to connective area between panel and FPC.

条件(1) FPC推奨曲げ領域 : ガラスエッジから 0.8 mm – 6.0 mm

条件(2)最小曲げR : 内径 R 0.45 mm

Condition (1) FPC bend recommended area : 0.8 mm - 6.0 mm from glass edge.

Condition (2) Minimum bend R : Inner diameter R 0.45 mm

Figure 8-2-1 FPC Bend Specification

Note 8-2-1 : 表偏光板側へ折り曲げないで下さい。

Do not bend to the front polarizer film side.

Note 8-2-2: 折り曲げる回数は 3 回までとして下さい。

Bend frequency ≤ 3 times or less (Repeat bend condition : 180° ~ 0°)

Note 8-2-3 : FPCを持って LCDモジュールをぶら下げたり、FPCに無理な力を加えたりしないでください。

Do not hang LCD module by FPC or apply force to FPC.

9. 表示品位 及び 保証期間 Display Qualities and Warranty Period

液晶ディスプレイモジュール表示品位に関する基準は、出荷検査基準書に基づく。 Please refer to the Incoming Inspection Standard (IIS).

保証期間は出荷月より 12か月とする。

尚、個別に取り交わし契約が有る場合には別途協議とする。

The warranty period is 12 months from the month of shipment.

If there is an individual contract, it will be discussed separately.

10. 推奨例 Recommended example

10-1) 外付け回路例 External Capacitors

Figure 10-1-1 External capacitor recommendation capacity value

< 推奨コンデンサ容量値 Recommended capacity value >

C1: DISP-VSS: rank B 560pF Ceramic capacitor
DISP の推奨最低限のコンデンサ容量は 560pF としますが、DISP 立ち上がり時間の制限は超えない様に調整願います。

The recommended minimum capacitance value on DISP is 560pF,

However, it should be adjusted to ensure that the DISP rise time limit is not exceeded.

C2: VDDA- VSSA: rank B 1.0uF Ceramic capacitor

C3: VDD – VSS Frank B 1.0uF Ceramic capacitor

上記回路及び部品については推奨例です。

ご使用の際は貴社システムと整合性を評価頂いた上で設計してください。

(コンデンサ容量は記載値よりも大きなものを使用する事は可能)

Above circuit and parts are only recommendation.

For actual use, please evaluate their conformity with your system and design.

(Capacitor value can be larger than value indicated above.)

SPEC No. PAGE MODEL No. LD-2023X11A LS027B7DH01 51

11. 印刷形態 **Marking**

11-1)インクジェット印刷 Displayed by printing. (Ink-jet print)

- ・図11-1-1に印刷位置を示します。
- •The display position is shown in Figure.11-1-1.

Figure. 11-1-1 Lot number printing position (not to scale)

 ΔA

Marking line definition Table 11-1-1 印字内容詳細

Marking

Line

Description								
	LS027B7DH01							
	0,1,2,3,4,5,6,7,8,9							
	1,2,3,4,5,6,7,8,9,X,Y,Z							
	01,02,,30,31							

1	LS027B7DH01	機種品	番 Model name	LS027B7DH01
2	YMDDP01234A	Y	製造年1桁 (西暦末尾) Single-digit year (Last digit of the year)	0,1,2,3,4,5,6,7,8,9
	9	M	製造月1桁 Single-digit Months	1,2,3,4,5,6,7,8,9,X,Y,Z
		DD	製造日2桁 Digit of the day	01,02,,30,31
		P	製造工場コード Code of manufacture	
		01234	シリアルNo(5桁) Consecutive number (Traceabillity number)	Numbers 00001 to 99999
		A	改訂コード Product revision	

12. 梱包形態 Packaging form

12-1) カートン保管条件 Carton storage condition

1) カートン積み上げ段数 : 12 (max)

Piling number of cartons.

2) 1カートン収納個数 : 400 pcs

Pakage quantity in one carton

3) カートンサイズ : 578 mm x 382 mm x 153 mm

Carton size (Typ.)

4) 合計重量 : 7.0 kg (One carton filled with 400 modules) ΔA

Total mass

5) カートン保管環境 Carton store environment

·温度 Temperature

0 ~ 40℃

·湿度 Humidity

60% RH以下

低温度高湿度下においても結露のない事

60% RH or lower (at 40°C)

There should be no condensation at low temperature and high humidity.

·雰囲気 Atmosphere

酸、アルカリ等電子部品及び配線材を著しく腐食させる有害ガスが検出されない事

No harmful gas, such as acid or alkali, which causes severe corrosion on electronic parts and wiring, are to be detected.

·開梱 Opening the package

静電気による開梱時のTFTモジュールの破損を防止する目的で、

50% RH以上に調湿後、静電アース等の有効な対策を施して開梱下さい。

In order to prevent electrostatic damage to TFT modules, room humidity should be made over 50% RH and take effective measure such as use of earth when opening the package.

·直射日光 Direct sunlight

太陽光による劣化を防ぐために、暗室での保管かカバー掛けて保管願います。

Please keep the product in a dark room or cover the product to protect from direct sunlight.

·大気条件 Atmospheric condition

腐食性のガスや揮発性のものと一緒に保管する事はご遠慮ください。

Please refrain from keeping the product with possible corrosive gas or volatile flux.

·結露防止 Prevention of dew

結露を防ぐため、直接床に置かず木板やスタンドの上にカートンを置いて下さい。 パレット底部分の適度な換気を行うため、正しく設置してください。 倉庫内は良く換気し、壁から離して保管下さい。倉庫には換気扇の設置を推奨します。 急激な温度変化にも注意して下さい。

Do not place directly on the floor, and please store the product carton either on a wooden pallet or a stand to avoid dew condensation. In order to obtain moderate ventilation in the pallet's bottom surfaces, arrange correctly in the fixed direction. Please place the product cartons away from the storage wall. Be careful of the inside of a warehouse to ventilate well and please consider installation of a ventilator. Manage to rapid temperature change under

natural environment.

•振動 Vibration

常に振動している場所には保管しないでください。

Please refrain from keeping the product in the place which always has vibration.

·保存期間 Storage Period

上記条件下で、最大 3カ月程度

Within above mentioned conditions, maximum storage period should be 3 months

12-2) 製品型名表示 Marking of product name

12-2-1) 包装箱表示 Packing box Label

包装箱に、(1) 型名(LS027B7DH01) (2) 出荷日付 (3) モジュール数量 を表示したラベルを貼付します。また、バーコード表示もこれに準じます。

The label that displays (1) Model number (LS027B7DH01) (2) Lot number (3) Quantity of module is stuck on the packing box. Moreover, the display of bar code also applies to this.

12-2-2) RoHS規制対応 RoHS restriction.

RoHS規制対応済に対しては、梱包箱に表記を行います。

R.C. (RoHS Compliance)とは RoHS指令に適合していることを意味します。 当モジュールは、1台目よりRoHS指令に対応しております。

RoHS compliant products will be marked on the packing box.

R.C. (RoHS Compliance) means these parts have corresponded with the RoHS directive.

This module corresponds from the first sample to RoHS Directive.

Figure 12-2-1 RoHS Compliance

SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

55

12-2-3) 生産国 The production country

生産国については包装箱のSHARPロゴ下に表記を行います。

The figure below is written under the SHARP logo of the packing box about the production country.

MADE IN JAPAN

OR

MADE IN CHINA

Figure 12-2-2 Production country

12-2-4) ESD敏感性シンボルマーク The ESD Sensitivity Symbol.

・カートンにESD敏感性シンボルマークの表記があります。

The carton is marked with the ESD Sensitivity Symbol.

Figure 12-2-3 The ESD Sensitivity Symbol. (carton)

```
40 modules / tray (40 pcs LCD modules per tray : (5 x 4) x 2 = 40 pcs)
400 modules / inside sleeve (10 trays with products + empty tray as cover = 11 trays)
400 modules / carton (Maximum quantity per a master carton : 40 × 10 × 1 = 400 pcs)
Insert two (2) inside sleeve within a outside sleeve.
Insert two (2) outside sleeve within a master carton.
```


SPEC No. LD-2023X11A

MODEL No. LS027B7DH01

PAGE

56

12-3) 梱包形態図 Packaging form figure

梱包形態を図12-3-1、図12-3-2に示します。

モジュールが運送時に壊れない様設計しています。

The packing condition is shown in Figure. 12-3-1 and Figure. 12-3-2.

The packaging is designed such that the module does not break during transit.

Figure. 12-3-1 Packaging Form 1 (Tray)

 SPEC No.
 MODEL No.
 PAGE

 LD-2023X11A
 LS027B7DH01
 57

Figure. 12-3-2 Packaging Form 2 (carton)

13. 信頼性試験条件 Reliability Test Conditions

13-1) 信頼性試験項目 Reliability Test Items

Table13-1-1 Reliability Test Items

No.	Test Item		Condition		Remark
1	非動作 Non operating test	高温保存 High temperature storage test	$T_a = + 80^{\circ}C$	240h	Note 13-1-1
2		低温保存 Low temperature storage test	Ta = −30°C (結露禁止 No condensation)	240h	Note 13-1-1
3		熱衝撃 Thermal Shock test	$Ta = -30^{\circ}C (1h) \sim +80^{\circ}C (1h)$	5 cycle	Note 13-1-1
4		静電耐圧 Electro static discharge test	± 200V、200pF (0Ω) 各端子: 1回 each terminai : 1 time		Note 13-1-1
5	高温高湿動作 High temperature and high humidity operating test		Tp = + 40°C / 95%RH (結露禁止 No condensation)	240h	Note 13-1-1
6	高温動作 High temperature operating test		Tp = + 70 ℃	240h	Note 13-1-1
7	低温動作 Low tempe	erature operating test	Tp = −20℃ (結露禁止 No condensation)	240h	Note 13-1-1

Note 13-1-1:

Ta = 周囲温度 Ambient temperature
Tp = パネル温度 Panel surface temperature

評価基準

Result Evaluation Criteria

標準状態において、表示品検査条件のもと実使用上支障となる変化が無い事

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

標準動作環境:

温度 = +15 ~ +35 ℃ 湿度 = 45 ~ 75 % 周辺気圧 = 86 ~ 106 kPa

Normal operation state:

Temperature : $+15 \sim +35$ °C Humidity : $45 \sim 75$ %, Atmospheric pressure : $86 \sim 106$ kpa

SPEC No. MODEL No. PAGE
LD-2023X11A LS027B7DH01 59

