Statistics and graphs

CSW

Susan Stepney

Department of Computer Science
University of York

recap

- Null hypothesis H_0 is assumed true, unless *rejected* by the experimental data
- H_0 = "all swans are white"
 - rejected by a counter-example
 - I see a black swan, and reject H_0
- H_0 = "no effect on readability"
 - rejected by statistically significant evidence against
 - I see a certain degree of improvement, and reject H_0
 - reject only at a given confidence level
 - how *much* improvement do I need?
 - how much confidence can I have?

What do these tell you?

Department of Computer Science

CSW: statistics and graphs: 3

it depends...

- everything varies with the data sample somehow
- is the difference statistically significant?

some definitions

- population size N of items $\{x_i\}_{i=1..N}$
- population mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
- population standard deviation (RMS) $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mu x_i)^2}$
- sample size n usually << N of items $\{x_j\}_{j=1..n}$
- sample mean $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (m-x_i)^2}$
 - note the n-1
 - because derived from estimated sample mean
 - · one fewer "degrees of freedom"

Normal (Gaussian) probability distribution

- 68.3% lies within \pm 1 standard deviation of the mean
- 95.5% lies within ± 2 s.d.
- 99.7% (essentially "all") lies within \pm 3 s.d.
 - it is (often incorrectly!) assumed that the underlying distribution is normal
 - there are certain tricks if it isn't

normal distributions; $\mu = \pm 10$; n = 5

[inspired by Wineberg & Christensen, tutorial, CEC 2004]

normal distributions ; μ = \pm 10 ; n = 100

estimating the true mean from a sample

- started with a normal population, mean μ and s.d. σ
- generated samples drawn from this, n = 5, n = 100
- calculated the sample mean m and s.d. s
 - the sample mean is different from the true mean
 - can we use it to estimate the true mean?
 - · because, in real cases, we don't know the true mean!
- intuitively:
 - the smaller the standard deviation, the closer to the true mean
 - the bigger the sample, the closer to the true mean

t distribution

• we have a sample with mean m, from a population with mean μ

 $t = \frac{m - \mu}{s / \sqrt{n}}$

- statistics: take samples from a standard normal distribution, then the sample means m_i have a "t distribution"
 - family of distributions, depending (weakly) on n
- area under a region of the curve is the probability that m lies in that region
- also called the "Student t distribution", after the pen-name of statistician W. S. Gossett

CSW: statistics and graphs: 10

confidence levels

CSW: statistics and graphs: 11

- "95% confidence": only α = 5% of the area under the curve lies in the tail(s)
 - only 5% chance that the mean lies outside the bounds
 - "99% confidence" : α = 1% lies in the tail(s)
- books of tables of the value of t_0 for different confidence levels α and different sample sizes n
 - one tailed test: $t_{\alpha}(n-1)$
 - two tailed test: $t_{\alpha/2}(n-1)$
- or MS-Excel function
 - one tailed test: $TINV(2*\alpha, n-1)$
 - two tailed test: $TINV(\alpha, n-1)$

confidence levels (two tailed) $\mu = 10$, $\sigma = 10$

n = 5

measured mean m = 17.0, standard deviation s = 5.4

95% confidence (1 in 20 chance of being wrong):

TINV(0.05,4) = 2.78;
$$\mu = m \pm 2.78 * s / \text{root } n$$

 $\mu = 17.0 \pm 6.7$; $10.3 \le \mu \le 23.7$

99% confidence: $\mu = 17.0 \pm 11.2$; $5.8 \le \mu \le 28.2$

99.9% confidence: $\mu = 17.0 \pm 20.9$; $-3.9 \le \mu \le 37.9$

•
$$n = 100$$

measured mean m = 9.0, standard deviation s = 10.3

95% confidence: $\mu = 9.0 \pm 2.1$; $6.9 \le \mu \le 11.1$

99% confidence: $\mu = 9.0 \pm 2.7$; $6.3 \le \mu \le 11.7$

99.9% confidence: $\mu = 9.0 \pm 3.5$; $5.5 \le \mu \le 12.5$

$$t_0 = \frac{m - \mu_0}{s / \sqrt{n}}$$

$$\mu_0 = m \pm t_0 \frac{s}{\sqrt{n}}$$

are two means different?

- use the (Student) t test, to calculate the probability pthat two sample means m_1 and m_2 are the same

• calculate the
$$t$$
 statistic
$$t_0 = \frac{m_1 - m_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- calculate the probability that the means are same, which is the area under the t distribution between $[-t_0, t_0]$
 - calculate in MS-Excel: $p = \text{TDIST}(t_0, n_1 + n_2 2, 2)$

confidence levels (two tailed) μ = ±10, σ = 50

- *n* = 5
 - measured: m_1 = -11.5, m_2 = -28.9, s_1 = 28.7, s_2 = 55.5 t_0 = 0.624; p = TDIST(0.624, 8, 2) = 0.55
 - probability the two means are same = 55%
 - would you bet money on it?

- *n* = 100
 - measured: $m_1 = 16.3$, $m_2 = -12.6$, $s_1 = 44.9$, $s_2 = 51.5$ $t_0 = 4.23$; $p = TDIST(4.23, 198, 2) = 3.5 \times 10^{-5}$
 - probability the two means are same = 0.0035%
 - · I'd put money on them being different!

reminder: $\mu = \pm 10$; $\sigma = 50$; n = 5, 100

p(means different) = 45%

CSW: statistics and graphs: 15

THE UNIVERSITY of York

"significant" does not mean "important"

- the bigger the samples, the better the statistical significance - that must be good?
 - can nearly always get a statistically significant result just by having a big enough sample size!
 - with enough samples, can distinguish between two means ...
 - but it might not be an important difference
 - · ... but the two means might be very very close ...
 - the old algorithm has a mean success rate of 52.38%
 - whereas my algorithm's success rate is 52.41%
 - improvement significant at the 99.9% confidence level
 - so why aren't you impressed by my result?
 - · ... because it's a very small effect
 - happens easily when experimental runs are "cheap"

effect size: Cohen's d

- measure of *importance*
 - here assume $n_1 = n_2 = n$
 - 0.2: a small effect
 - · the data's dispersion is bigger than the difference in the means

CSW: statistics and graphs: 17

- 0.5: a medium effect
- 0.8: a big effect
 - · may be worth getting excited about
- example: $\sigma = 50$, n = 100, $t_0 = 4.23$
 - probability that means are the same = 0.0035%
 - but has d = 0.6: so don't get too excited by it
- example: $\sigma = 10$, n = 100, $t_0 = 14.2$
 - probability that means are the same = 0.0%
 - and has d = 2.0
 - so it's a big effect, too

[J. Cohen. Statistical power analysis for the behavioral sciences, 2nd edn. 1988. http://web.uccs.edu/lbecker/Psy590/es.htm]

non-parametric tests

- · all this so far assumes a normal probability distribution
 - some distributions are very affected by far "outliers"
 - long "tails" can dominate the mean, and make the standard deviation meaningless
 - there are tricks you can play if your distribution isn't normal
 - Central Limit Theorem, ...
- can use non-parametric tests
 - "no parameters" no assumption about the *shape* of the probability distribution function
 - uses *rank ordering* instead of values
 - intuition: a lowest ranked outlier sample is just "the worst"; is doesn't matter how much worse than the rest it is

CSW: statistics and graphs: 18

median: the "non-parametric mean"

- mean: item with average value
 - mean $\{-20, 1, 2, 3, 4\} = -2$
 - mean $\{-20, 1, 2, 3\} = -3.5$
- median: item with average rank
 - rank the items in order, and pick the middle one
 - median $\{-20, 1, 2, 3, 4\} = 2$
 - · if there is an even number of data items, average the two values
 - median $\{-20, 1, 2, 3\} = 1.5$
- median = 50th percentile
 - quartiles (25th and 75th percentiles) are a non-parametric measure of spread

are two medians different?

- there are non-parametric versions of the t test to check if two ranked samples are significantly different
- · also analogues of confidence tests, etc
- if you need to use these check with an expert!

is your picture worth a kilo-word?

CS	37
Electronics	44
Maths	10
English	9

best!
for this data
(get more data?)

Fkalunxan

50 45 40 35 30 25 20 15 10 5 0 CS Electronics Maths English

ypologiwa/wicyren/xilog

<u>Pruh Fkoluwaxogn</u>

Cluttered

better

[Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983]

Department of Computer Science

Electronics

CSW: statistics and graphs: 21

plot your data to expose its structure

0.00	0.20	0.40	0.60	0.80	1.00
62.86	65.61	63.06	64.70	63.85	67.54
59.58	65.74	66.51	65.48	66.32	64.31
60.59	63.06	68.55	67.86	68.05	66.96
60.26	65.35	67.73	64.77	66.96	67.60
62.13	65.93	67.03	68.05	64.31	64.05
61.20	66.51	65.55	67.35	64.38	63.65
61.00	66.77	65.22	67.41	64.05	67.79
62.46	66.71	65.87	69.50	68.11	64.38
64.05	67.79	64.83	65.22	68.36	63.72
63.19	64.57	67.22	67.54	64.38	67.92
60.53	65.74	63.79	66.13	67.22	64.64
60.19	67.60	68.17	65.29	64.70	67.98
62.53	68.30	66.13	67.28	66.64	65.03
63.79	67.16	65.09	64.70	64.77	65.03
61.47	66.39	66.64	66.64	63.32	63.79
62.60	67.03	65.09	63.19	65.09	68.24
61.26	65.81	66.39	64.51	64.51	64.64
60.93	68.30	64.77	66.45	64.44	64.51
62.27	63.98	65.22	67.73	67.92	67.92
60.86	64.18	64.64	67.98	67.22	63.92
60.59	66.51	65.61	66.96	67.92	63.98
61.00	63.19	66.71	67.86	66.58	67.41
62.33	67.16	68.30	65.03	68.17	64.51
63.26	63.85	64.90	64.38	65.16	67.79
63.72	65.81	66.77	65.22	67.54	63.92
62.13	64.11	66.96	66.51	68.30	64.11
60.05	65.81	63.26	66.32	64.44	67.98
63.39	65.35	64.44	67.98	67.54	64.70
61.06	65.22	68.17	64.77	64.38	67.60
64.24	68.74	64.64	68.36	67.92	67.92

[Clark, Jacob, Stepney. Secret Agents Leave Big Footprints. GECCO 2003]

CSW: statistics and graphs: 22 THE UNIVERSITY of Vork

plot all your data, to see outliers

you have some "anomalous" data

- don't just discard it as an "outlier" understand it!
 - is it just a statistical fluctuation?
 - a once-in-a-blue-moon "six sigma" outlier?
 - is it an error in the experimental design or implementation?
 - fix the problem, and rerun all the experiments
 - is it in interesting unexpected effect?
 - · investigate it further!
 - it might be the basis of a new discovery

3-sigma error bars

- can use a scatterplot to show all the data
- · can also summarise the data with a statistic
 - show spread as well as average, with error bars
 - normal "3-sigma" error bars: encompass ~ 99.7% of the data

CSW: statistics and graphs: 24

THE UNIVERSITY of York

"box-and-whisker" error bars

CSW: statistics and graphs: 25

median, quartiles

- John W. Tukey. Exploratory data analysis. Addison Wesley, 1977

"deluxe" box-and-whisker bars

use a "cutoff" to highlight outliers

plot mean, to highlight skew

"notches" at median \pm 1.58(IQR / \sqrt{n})

- if notches on separate bars do not overlap, ~ 95% confidence the medians are different
- small samples may have "folded back" notches outside the IQR:

summary: statistics

- don't present single data points, or even just the mean
 - show the data spread
- do use t distribution to calculate confidence levels
 - try to use at least the 99% level, preferably 99.9%
- do calculate importance as well as statistical significance
- do plot your data
 - with error bars; without chartjunk
- · lots more to experimental design, statistics and graphs
 - other measures of fit
 - "factorial" designs for controlling multiple variables
 - "small multiples", "stem-and-leaf" plots, ...