Maths Assignment - Applied Mathematics Flavour

z5417727

October 10, 2022

Contents

1	Que	Question 1															2										
	1.1	a)																									2
	1.2	b)	•			•	•		•	•				•	•	•	•	•	•	•	•	•	•	•	•	•	3
2	Question 2															4											
	2.1	a)																									4
	2.2	b)																									5
	2.3																										
	2.4	,																									
	2.5	,																									
3	Que	Question 3															9										
	3.1	a)																									9
	3.2	,																									
	3 3	(

1 Question 1

1.1 a)

Prove that in modulo 9, it is not possible for a perfect square to be congruent to 2, 3, 4, 6 or 8.

1.2 b)

Hence (and not otherwise) prove that there do not exist three consecutive integer values of n for which 41n + 39 is a perfect square.

2 Question 2

A certain relation \star is defined on the set \mathbb{Z}^+ by:

 $x \star y$ if and only if every factor of x is a factor of y.

For each of the questions below, be sure to provide a proof supporting your answer.

2.1 a)

Is ★ reflexive?

2.2 b)

Is \star symmetric?

2.3 c)

Is \star anti-symmetric?

2.4 d)

Is \star transitive?

2.5 e)

Is \star an equivalence relation, a partial order, both or neither?

3 Question 3

Consider the two functions $f: X \to Y$ and $g: Y \to Z$ for non-empty sets X, Y, Z. Decide whether each of the following statements is true or false, and prove each claim.

3.1 a)

If $g \circ f$ is injective, then g is injective.

3.2 b)

If $g \circ f$ is injective, then f is injective.

3.3 c)

If $g \circ f$ is injective and f is surjective, then g is injective