Iteration 1

The Design Process:

Iteration 1: Establishing an Overall System Structure

This section presents the results of the activities that are performed in each of the steps of ADD in the first iteration of the design process.

ADD Step 1: Review Inputs

The first step of the ADD method involves reviewing the inputs and identifying which requirements will be considered as drivers.

Category	Details		
Design Purpose	This is a greenfield system from a		
	mature domain. This is a new system		
	based on existing patterns and styles		
Primary Functional Requirements	From the use cases presented earlier,		
	the primary ones were determined to		
	be:		
	UC-1: Because for a Course		
	management system, these are the		
	core components		
	UC-2: Because for a Course		
	management system, these are the		
	core components		
	UC-7: Because for a Course		
	management system, this case collects		
	all the course related contents		
	associated with it		
Quality Attribute Scenarios	ID Importance Difficulty of		
	to the implementation		
	Customer according to		
	the architect		
	QA-1 High Low		
	QA-2 High High		
	QA-3 High Low		
	QA-4 High High		

			_
	QA-5	Low	Low
	QA-6	High	Medium
	QA-7	High	Low
	QA-8	Medium	Medium
	QA-9	Low	Low
	QA-	Low	High
	10		
	QA-	Medium	Low
	11		
	QA-	Medium	Low
	12		
	From this list only QA-1, QA-2, QA-3,		
	QA-4, QA-10 and QA-11 are selected as drivers		-11 are selected
Constraints	All the constraints are discussed earlier		
Concerns	All the concerns are discussed earlier		

ADD Step 2: Establish Iteration Goal by Selecting Drivers

Selected Drivers for QA:

• QA-2: Availability

• QA-4: Usability

• QA-10: Scalability

Selected Drivers for CON:

- CON-1: The system must be accessed through a web browser (Chrome, Firefox, IE, etc.) in different platforms: Windows, IOS, Linux, Tablets and phones
- CON-5: A large relational database is needed to maintain the progress and registration requirements of students
- CON-3: The network connection to user workstations must have a high bandwidth

Selected Drivers for CRN:

• CRN-1: Architecture planning of a large relational database with many complexities.

ADD Step 3: Choose One or More Elements of the System to Refine

This is a Greenfield development effort, so in this case the element to refine is the entire CMS (Course Management System), which is shown in the diagram below.

ADD Step 4: Choose One or More Design Concepts That Satisfy the Selected Drivers

Design Decisions and Location	Rationale
Web Applications reference	The bulk of the application resides on
architecture to structure the client	the server, and its architecture is
part of the system	typically composed of three layers: the
	presentation, business, and data
	layers. But in this case we have
	presentation and data layers. The
	presentation layer contains modules
	that are responsible for managing user
	interaction (CON-5). The data layer
	contains modules that manage data
	that is stored either locally or remotely
	(CON-3).
Three-tier deployment pattern	Since the system must be accessed
	from a web browser (CON-1) and an
	existing database server must also be

used (CON-5), a three-tier deployment
is appropriate. The three-tier
deployment:
 Allows flexibility in connection
with components in different
levels.
 Allows scalability as additional
levels can be added.
Adds firewall security between
layers and security policy to the
layers.
The database can be stored
separately from the application
in a layer.

ADD Step 5: Instantiate Architectural Elements, Allocate Responsibilities, and Define Interfaces

Design Decision and Location	Rationale	
UI	The User Interface will control the flow	
	of the pages and make it clean and	
	easy to understand as possible	

ADD Step 6: Sketch Views and Record Design Decisions

Client Side:

Element	Responsibility	
UI Module	These modules render the user	
	interface and receive user inputs	
UI Process Module	These modules are responsible for	
	control flow of all the system use cases	
Login Security	It handles security and user	
	identification so that the web client	
	can identify privileges.	
User Information Page	Personal information of the user	
Views and Pages	The user can access multiple views to	
	get the right information	
Communication Module	Communication between databases	

Server Side:

Element	Responsibility	
Connection service interface	Receives the connection from the	
	server side	
Permissions	Asks the user for information stored in	
	the database	
DB Access Module	This is the location of which the	
	information is stored into the	
	relational database	

Deployment diagram of the CMS:

Element	Responsibility	
User Workstation	The user's workstation, which hosts	
	the client side logic of the application	
Application Server	The server that hosts server side logic	
	of the application and also serves web	
	pages	
Database Server	The server that hosts the legacy	
	relational database	

Relationship	Description
Between application server and	Communication with database can be
database server	done using PostgreSQL

ADD Step 7: Perform Analysis of Current Design and Review Iteration Goal and Achievement of Design Purpose

Not Addressed	Partially	Completely	Design Decisions
	Addressed	Addressed	Made During the
			Iteration
	UC-1		Selected
			reference
			architecture
			establishes the
			module that will
			support this
			functionality.
	UC-2		Selected
			reference
			architecture
			establishes the
			module that will
			support this
			functionality.
	UC-3		The layered
			pattern and web
			application

		a mala ta a mining t
		architecture have
		modules that will
		support this
		functionality
UC-14		No relevant
		decisions made,
		as it is necessary
		to identify the
		elements that
		participate in the
		use case that is
		associated with
		the scenario
	QA-2	The web server
		architecture have
		modules that will
		support this
		functionality
	QA-4	A simple UI
		architecture will
		have modules that
		will support this
		functionality
	QA-10	The web server
		architecture have
		modules that will
		support this
		functionality.
CON-1		No relevant
		decisions made,
		as it is necessary
		to identify the
		elements that
		participate in the
		use case that is
		associated with
		the scenario
		the section to

	CON-2	Cloud
		Architecture
		Patterns have
		modules that will
		support this
		functionality
CON-3		No relevant
		decisions made,
		as it is necessary
		to identify the
		elements that
		participate in the
		use case that is
		associated with
		the scenario
	CON-4	Physically
		structure the
		application using
		the 3 tier
		deployment
		pattern and
		isolate the data
		base by providing
		components in
		the data layer of
		the application
		server.
	CON-5	Physically
		structure the
		application using
		the 3 tier
		deployment
		pattern and
		isolate the data
		base by providing
		components in
		the data layer of

			the application server.
	CRN-1		By correctly identifying primary and foreign keys, any conflicts within the tables in the database can be
		CRN-2	eliminated Selection of reference architectures and deployment pattern
	CRN-3		Languages were considered and taken into account in terms of the developer's knowledge
CRN-4			No relevant decisions made