This document contains explanations of notation and definitions that we may go over quickly in lecture. If you werke confised about notation or think you missed a definition, 100k here!

1/20

Def An integer n is <u>divisible</u> by integer m if there exists an integer k such mat $n = m \, k$.

the same tring as "od is divisible by m" We use the shorthand m n to say m dividesn.

Another equivalent definition of divisibility is mat m/n if and only if m is an integer.

O is divisible by 2 because we can choose k=0 and write $0=2\cdot0$. ex

5 is not divisible by 4 because there is no integer K so that 5=4K.

-33 is divisible b 11 because _33 = 11.(-3).

· Tue ellipsis (...) notation in matn: ... means "continuing onward in the same manner: So 1,2,...,99,100 means "cell of the integers between 1 and 100." By convention, we put the start (here, I and 2) and two at the end to be very explicit about the pattern. But in general, look at examples and use your own judgment about how to use ex - 100, -98, ..., -4, -2 even negative integers between -100 and -2 ... -2, -1, 0, 1, 2, ... all integers polynomials up to degree 2 Coxot C1x1+ C2x2 (o Xo + (1x, + ... + Cx - 1 + Cx x x polynomials of degree x

exponent math rules.

We can simplify expressions with exponents as long as they shave the same base:

ex 5 divided by 5² is 5 = 5⁶.

hase

| X · X - X² |
| 100 | 10² | 10^{K-2}

Def A rational number is a real number that can be expressed as a ratio 1/m of integers n and m where m 70.

1/23

ex 1.2 is rational because we can choose N = 6 and M = 5 so that $1.2 = \frac{9}{m} = \frac{6}{5}$.

-5 is rational because $-5 = \frac{5}{1}$.

To is not rational.

0.33... is rational because it equals 1/3.

Def The absolute value of a number x, written 1x1, is the distance from x to 0, disregarding the sign of x. ex 151=5 1-51=5 1-1.2 = 1.2