Report No. CG-D-13-94

AD-A282 650

The Effects Of Aspect Ratio, Section Shape, And Reynolds Number On The Lift And Drag Of A Series Of Model Control Surfaces

Edward M. Lewandowski

Davidson Laboratory
Stevens Institute of Technology
Castle Point Station
Hoboken, NJ 07030

FINAL REPORT JUNE 1994

DISTRIBUTION STATISMENT

Approved for public release Distribution Unlimited

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Coast Guard Research and Development Center 1082 Shennecossett Road Groton, CT 06340-6096 94-23939

and

DTIC QUALITY INSPECTED 5

U.S. Department of Transportation United States Coast Guard Office of Engineering, Logistics, and Development Washington, DC 20593-0001

94 7 27 098

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research & Development Center. This report does not constitute a standard, specification, or regulation.

D. L. Motherway

Technical Director, Acting United States Coast Guard

Research & Development Center

1082 Shennecossett Road

Groton, CT 06340-6096

1. Report No.	2. Government Acce	nent Accession No. 3. Recipient's Catalog No.					
CG-D-13-94							
4. Title and Subtitle			5. Report Date June 1994				
The Effects of Aspect Ratio, Section on the Lift and Drag of a Series of I			6. Performing Organiz	zation Code			
P Androdo		<u> </u>	8. Performing Organia	zation Report No.			
7. Author(s) Edward M. Lewandows	iki		R&DC 06/91				
9. Performing Organization Name and Ad	dress	- · · · · · · · · · · · · · · · · · · ·	10. Work Unit No. (TF	RAIS)			
Davidson Laboratory			11. Contract or Grant	No			
Stevens Institute Castle Point Station			N00014-84-C-064				
Hoboken, NJ 07030			13. Type of Report an	<u> </u>			
12. Sponsoring Agency Name and Address	Transportation	Final Report					
U.S. Coast Guard Research and Development Center 1082 Shennecossett Road Groton, Connecticut 06340-6096	U.S. Coast Gua Office of Engine and Developm	ard eering, Logistics,	14. Sponsoring Agend	cy Code			
15. Supplementary Notes							
The report presents the results of canards on a SWATH vessel or whether or not the fins and rudde. Fins with aspect ratios of 1.0, 1.5 towed at a series of speeds results 42,000 and 150,000. The fins havith and without turbulence trips which were varied from 0 to 35 cowell with predictive equations demeans that dynamic stability and making full scale predictions.	the rudders on a placers on a small mode of and 2.0 were mountained in five Reynold ad both flat plate and . Lift and drag force legrees in five degree veloped at DTNSRE	ining hull. The wor of suffered from ser inted vertically under is numbers, based id NACA 0015 cros is were measured be increments. The OC for fins at high i	k was done to determious scale effects. er a horizontal flat plate on chord length, between the sections, and were at a series of angles of measured lift slopes Reynolds numbers.	te and veen tested of attack s agreed This			
17. Key Words control surfaces Reynologies turbulent SWATH control rudders aspect ratio effects	•	18. Distribution Statement Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161					
19. Security Classif. (of this report)	20. SECURITY CLAS	SIF. (of this page)	21. No. of Pages	22. Price			
LINCLASSIFIED	LINCL ASSIEIE	n		1			

Technical Report Documentation Page

METRIC CONVERSION FACTORS

to Metric Measures VBy To Find Symbol TH Centimeters cm Centimeters cm meters m welgare meters m² square meters m² hactares n ME militiers n Welght) A kitors n Welger n Welge		Approximate Conversions from Metric Measures	Symbol When You Know Multiply By To Find Symbol	LENGTH	E .		Seteman All All All All All All All All All Al	ars 0.6	AREA	square centimeters 0.16 square inches	m ² square meters 1.2 square yards	square kilometers 0.4 square miles		MASS (WEIGHT)	grams 0.035	2.2 pounds	t tonnes (1000 kg) 1.1 short tons		ord mad ounces	0.125 cups	2.1 pints	1.06 quarts	liters 0.26 gallons	35 cubic feet	Cubic meters 1,3 cubic yards yd		TEMPERATURE (EXACT)	Oc Calsius 9/5 (then Fabrenhelt °F	temperature add 32)	00000
	When You Know Multip! when You Know Multip! inches	မ တ	a loq	1	7 E3	E	_	ا ا	6	cm ²	35 E	2 E	km²	 	ı	a	4	ı	3	Ē	7	Ì	i	2		E"	5 _	,	Ü	inci

TABLE OF CONTENTS

ABSTRACTvi
LIST OF TABLESvii
LIST OF FIGURESviii
NOMENCLATURE
INTRODUCTION
DESCRIPTION OF MODELS
APPARATUS2
TEST PROGRAM
TEST PROCEDURE
RESULTS
DISCUSSION
CONCLUSIONS10
RECOMMENDATIONS10
REFERENCES11
TABLES 1-712
FIGURES 1-3338
APPENDIX A LIFT AND DRAG BALANCE CALIBRATIONS
APPENDIX B TABULATION OF WATER TEMPERATURES

ABSTRACT

A series of fins, representing the canards of a SWATH vessel, were tested on a groundboard in a towing tank. Fins having three aspect ratios, with flat plate and NACA 0015 sections, were tested with and without turbulence trips. Lift and drag of the fins were measured at angles of attack from 0° to 35° over a range of Reynolds numbers from 42,000 to 150,000. Measured lift curve slopes agree well with predictions and the results of previous high Reynolds number tests.

KEYWORDS

Control surfaces
Fins
SWATH control
Aspect ratio
Reynolds number
Turbulence trips
Rudders

LIST OF TABLES

TABLE	A	TEST 1	MATRIX
TABLE	В	STATIS	STICS OF REPEAT RUNS6
TABLE	С	LIFT (CURVE SLOPE7
TABLE	1	DIRECT	TORY OF DATA TABLES12
TABLE	2a	TEST I	DATA, FLAT PLATE SECTION, ASPECT RATIO 113
TABLE	2b	TEST I	DATA, FLAT PLATE SECTION, ASPECT RATIO 1, WITH STRIPS15
TABLE	3a	TEST I	DATA, FLAT PLATE SECTION, ASPECT RATIO 1.517
TABLE	3B		DATA, FLAT PLATE SECTION, ASPECT RATIO 1.5, WITH STRIPS19
TABLE	3с		DATA, FLAT PLATE SECTION, ASPECT RATIO 1.5, WITH WIRE21
TABLE	4a	TEST I	DATA, FLAT PLATE SECTION, ASPECT RATIO 222
TABLE	4b	TEST I	DATA, FLAT PLATE SECTION, ASPECT RATIO 2, WITH STRIPS24
TABLE	5a	TEST I	DATA, NACA 0015 SECTION, ASPECT RATIO 126
TABLE	5b		DATA, NACA 0015 SECTION, ASPECT RATIO 1, WITH STRIPS28
TABLE	6a	TEST I	DATA, NACA 0015 SECTION, ASPECT RATIO 1.530
TABLE	6b		DATA, NACA 0015 SECTION, ASPECT RATIO 1.5, WITH STRIPS32
TABLE	7a	TEST I	DATA, NACA 0015 SECTION, ASPECT RATIO 234
TABLE	7b		DATA, NACA 0015 SECTION, ASPECT RATIO 2, WITH

LIST OF FIGURES

SKETCH	A	HAMA STRIPS2
SKETCH	В	THIN RUBBER SEAL
FIGURE	1	PLAN AND SECTION VIEWS OF FINS38
FIGURE	2	APPARATUS WITH ASPECT RATIO 2 NACA 0015 FIN39
FIGURE	3	APPARATUS FOR MEASURING LIFT AND DRAG OF FINS AGAINST A GROUND BOARD40
FIGURE	4	RUNNING UNDERWATER PHOTOGRAPH, ASPECT RATIO 1, NACA 0015 SECTION, $\alpha = 25^{\circ}$, V=7.34fps41
FIGURE	5	RUNNING PHOTOGRAPH OF APPARATUS, V=7.41fps42
FIGURE	6	LIFT COEFFICIENT OF ASPECT RATIO 1 FLAT PLATE WITHOUT TRIPS43
FIGURE	7	LIFT COEFFICIENT OF ASPECT RATIO 1 FLAT PLATE WITH TRIPS
FIGURE	8	LIFT COEFFICIENT OF ASPECT RATIO 1.5 FLAT PLATE WITHOUT TRIPS
FIGURE	9	LIFT COEFFICIENT OF ASPECT RATIO 1.5 FLAT PLATE WITH TRIPS
FIGURE	10	LIFT COEFFICIENT OF ASPECT RATIO 2 FLAT PLATE WITHOUT TRIPS47
FIGURE	11	LIFT COEFFICIENT OF ASPECT RATIO 2 FLAT PLATE WITH TRIPS
FIGURE	12	LIFT COEFFICIENT OF ASPECT RATIO 1 FIN WITHOUT TRIPS, NACA 001549
FIGURE	13	LIFT COEFFICIENT OF ASPECT RATIO 1 FIN WITH TRIPS, NACA 001550
FIGURE	14	LIFT COEFFICIENT OF ASPECT RATIO 1.5 FIN WITHOUT TRIPS, NACA 0015
FIGURE	15	LIFT COEFFICIENT OF ASPECT RATIO 1.5 FIN WITH TRIPS, NACA 0015
FIGURE		LIFT COEFFICIENT OF ASPECT RATIO 2 FIN WITHOUT TRIPS, NACA 0015

LIST OF FIGURES (Concluded)

FIGURE	17	LIFT COEFFICIENT OF ASPECT RATIO 2 FIN WITH TRIPS, NACA 001554
FIGURE	18	DRAG COEFFICIENT OF ASPECT RATIO 2 FIN WITHOUT TRIPS, NACA 001555
FIGURE	19	DRAG COEFFICIENT OF ASPECT RATIO 2 FIN WITH TRIPS, NACA 0015
FIGURE	20	EFFECT OF ASPECT RATIO ON LIFT CURVE FOR FLAT PLATE SECTION, WITH TRIPS
FIGURE	21	EFFECT OF ASPECT RATIO ON LIFT CURVE FOR NACA 0015 SECTION, WITH TRIPS57
FIGURE	22	EFFECT OF SECTION SHAPE ON LIFT CURVE FOR ASPECT RATIO 1 FINS WITHOUT TRIPS
FIGURE	23	EFFECT OF SECTION SHAPE ON LIFT CURVE FOR ASPECT RATIO 1 FINS WITH TRIPS
FIGURE	24	EFFECT OF TURBULENCE TRIPS ON LIFT CURVE OF FLAT PLATE FIN
FIGURE	25	EFFECT OF TURBULENCE TRIPS ON LIFT CURVE OF NACA 0015 FIN
FIGURE	26	EFFECT OF SECTION SHAPE ON DRAG COEFFICIENT60
FIGURE	27	DRAG COEFFICIENT OF ASPECT RATIO 2 FIN (NACA 0015) AT $\alpha = 0^{\circ}$
FIGURE	28	DRAG POLARS FOR NACA 0015 FIN AT Re=150,00062
FIGURE	29	EFFECT OF SECTION SHAPE ON DRAG POLAR63
FIGURE	30	EFFECT OF TURBULENCE STIMULATORS AND REYNOLDS NUMBER ON LIFT COEFFICIENT OF FLAT PLATE FIN64
FIGURE	31	COMPARISON OF MEASURED LIFT COEFFICIENTS WITH DATA OF WHICKER AND FEHLNER65
FIGURE	32	PLOT FOR DETERMINATION OF INDUCED DRAG FACTOR66
FIGURE	33	EFFECT OF TRIP THICKNESS ON DRAG COEFFICIENT66

NOMENCLATURE

- A Geometric aspect ratio, b²/S
- A Effective aspect ratio, 2A
- a Section lift curve slope, per radian
- b Fin span, ft
- C A calibration matrix (See Appendix A)
- C_D Drag coefficient, $D/(1/2 \rho V^2 S)$
- CDo Profile drag coefficient
- CD. Drag coefficient based on frontal area
- C_{L} Lift coefficient, $L/(1/2 \rho V^2 S)$
- c Fin mean chord, S/b, ft
- D Drag, 1b
- L Lift, lb
- R A calibration matrix (See Appendix A)
- $\mathbf{R}_{\mbox{ii}}$ Element of calibration matrix
- Re Reynolds number, Vc/ν
- S Planform area, ft²
- s Standard deviation
- V Velocity, ft/sec
- V₁ Digitized voltage due to lift
- V₂ Digitized voltage due to drag
- α Angle of attack, degrees
- ρ Density of water, slug/ft³
- Kinematic viscosity, ft²/sec

INTRODUCTION

The Davidson Laboratory is supporting the U.S. Coast Guard in a research program directed at improving our understanding of SWATH pitch control, by conducting a series of model tests. control surfaces on models operate at substantially lower Reynolds numbers than those on a prototype vessel: surfaces on a SWATH may be operating at Reynolds numbers of about 6 million, while those on a model may operate at only 200,000 at the corresponding Froude number. In order for the control system to be properly modeled, it is therefore essential that Reynolds number effects be considered. The phase of the described in this report was directed toward determination of the effects of Reynolds number, section shape, aspect ratio and turbulence stimulation on the behavior of the control surfaces.

To determine whether scale hydrofoil sections or flat plate sections provide a better simulation of full-scale hydrofoil sections at low Reynolds numbers, tests were conducted on a series of fins mounted on a groundboard and towed over a range of Reynolds numbers likely to be experienced during typical The fins had geometric aspect ratios of 1.0, 1.5, model tests. and 2.0 with both flat plate and NACA 0015 sections. All fins had a planform area of 0.04396 square feet and a taper of 0.454, with zero sweep at the 30% chord line. The fins are representative of the U.S. Coast Guard SWATH 10 [superscripts refer to references on page 11]; the area (for a scale of 1/24) and taper are those of the original design, and the original aspect ratio of 1.1945 is bracketed by the series.

Lift and drag of the fins were measured, for angles of attack of 0° to 35°, over a speed range chosen to include the "critical Reynolds numbers" at which Schmitz² found a jump in the lift coefficient in wind tunnel tests of airfoil sections.

Again with the aim of providing the best simulation of full-scale hydrofoil sections, the effect of turbulence trips on lift and drag was also investigated: Each fin was tested with and without Hama strips3.

Tests were conducted in the Davidson Laboratory Tank 3 facility in March, 1987.

DESCRIPTION OF MODELS

Plan and section views of the three fins are shown on Figure 1, which gives all important dimensions. The fins all have a planform area, S, of 0.04396 square feet, a taper ratio of 0.454, and 0 degrees sweep at the 30% chord line. The section shape of the flat plate was chosen to be similar to the flat plate section tested by Schmitz (reference 2 plate II).

The flat plate fins were made from 1/8 inch aluminum plate. The NACA 0015 section fins were constructed from plexiglass, with 1/4 inch stainless steel shafts.

Turbulence stimulation was provided by Hama strips. The strips were made from a double thickness of electrical tape 0.25 inch wide, cut with pinking shears to form a serrated leading edge, and attached to the fins as shown on Sketch A below:

SKETCH A. HAMA STRIPS.

This configuration was found by Hama et al³ to be "better than any known way of turbulence stimulation", effectively creating the three-dimensional vortex loops within the boundary layer which apparently lead to laminar-to-turbulent breakdown, with minimal parasitic drag.

The critical Reynolds number based on trip thickness and flow velocity at the top of the trip was estimated by Hama et al to be about 45. For these tests the Reynolds number based on trip thickness and model velocity at the lowest test speed was 233. Thus the trips were expected to be fully effective at all test speeds.

The effect of trip thickness was briefly investigated, at zero angle of attack, on the aspect ratio 1 fins. Runs were made with a double and a triple layer Hama strip at the highest Reynolds number, with the aim of evaluating the parasitic drag of the trips.

In addition, some runs were made using a trip wire as the transition device. The diameter (1/32 inch) was selected to satisfy the criterion given by Preston⁴ for a fully effective trip.

APPARATUS

The apparatus is shown on Figures 2 (photograph) and 3 (drawing). It consisted of a horizontal plate (the ground board), 10 inches wide, 16 inches long, and 3/16 inch thick, which was towed 1 inch below the water surface. At the center of the plate was a hole through which the shafts of the fins passed to connect to the bottom of the lift and drag balances. The upper end of the shaft was equipped with a pointer for use in setting angles of attack. The pointer was adjusted for each

fin so that zero angle of attack corresponded to zero lift. The gap between the plate and the fin was approximately 0.04 inch.

Because some underwater photographs showed that air was being drawn down through the hole in the flat plate on the suction side of the fins in some cases, a seal was constructed using a thin rubber sheet, as shown schematically on Sketch B below:

SKETCH B. THIN RUBBER SEAL.

Subsequent underwater photographs, such as Figure 4 (α =25°, V=7.34 fps) showed that the seal was effective. Because the edges of the seal were not fastened down, no effect on the calibration rates was expected.

Figure 5 is a running photograph of the apparatus, showing the method of attachment to the towing carriage (the heave masts visible in the photograph were clamped; the apparatus was not free to heave). The photograph shows the inclinometer (attached to the uppermost plate, aft of the vertical posts). The running trim of the apparatus was monitored during the tests, to ensure that the horizontal plate maintained a very slight bow up attitude (typically 0.2 degree) so that the flow over the bottom of the plate would not separate at the leading edge.

TEST PROGRAM

The six fins were tested over a range of Reynolds numbers and angles of attack, with and without turbulence stimulation, as summarized in Table A below. Reynolds numbers are based on mean chord length.

TABLE A. TEST MATRIX.

Geometric aspect ratio Section shape Turbulence stimulation Reynolds number

Angle of attack, degrees

1, 1.5, 2 Flat plate, NACA 0015 With and without 42,000, 75,000, 100,000, 125,000, 150,000

0, 5, 10, 15, 20, 25, 30, 35

In addition to this basic matrix, additional runs were made at intermediate angles of attack in the vicinity of the stall angle.

TEST PROCEDURE

Calibration

The balance was calibrated by applying known weights in the directions of lift, drag, and combinations of the two, taking voltage readings on both channels, and using a multivariate least squares fit to express the digitized voltage readings as linear functions of both lift and drag. The resulting matrix of coefficients was next inverted to obtain the calibration rates. The procedure is explained in detail in Appendix A, which includes calibration results, plots, and a photograph of the calibration setup. The calibration was checked daily.

The balance was found to undergo small angular deflections under load. To evaluate the resulting change in angle of attack, deflection was calibrated against lift. Details are given in Appendix A.

Procedure

After setting the fin to the desired angle of attack, zero readings were taken on the lift and drag channels. Running readings were taken in a 50 foot run length after steady speed had been achieved. The averaged running readings, minus the zero readings, were then multiplied by the calibration rates to obtain measured lift and drag. After covering the speed range at a set angle of attack, the next angle was set and new zero readings were taken.

To help quantify the precision of the measurements, repeat runs (including angle resets) were made at several conditions.

Early in the test program, it was suspected that under some conditions, air was being drawn down through the hole in the ground board on the suction side of the fins, reducing the lift. Underwater cameras were set up to check this; the photographs showed that ventilation was indeed taking place. The thin rubber seal described in the Apparatus section was then installed. Underwater photographs were then taken during 15 subsequent runs at conditions under which ventilation had either been observed or suspected. No ventilation was observed in these photographs. Polaroid shots were taken periodically throughout the remainder of the test program to ensure that no ventilation was taking place.

The running trim of the apparatus was monitored as discussed in the Apparatus section, and all signals were monitored on a tankside oscillograph chart recorder. The tank water temperature was recorded daily. A tabulation of temperature readings appears in Appendix B.

RESULTS

Test data are tabulated in Tables 2-7, which list run number, towing speed in fps, the set and corrected angle of attack (see Apparatus and Appendix A), measured lift and drag in pounds, and lift and drag coefficients. Table 1 is a brief directory of the data tables.

The data are presented in the form of carpet plots on Such a presentation shows the behavior of the Figures 6-19. dependent variable (C_L or C_D) with the two independent variables (angle of attack and Reynolds number), and permits fairing of curves through the data simultaneously in three dimensions. departure of the curves of constant α from the horizontal in these figures is an indication of the degree of the dependence of the coefficients on Reynolds number. It should be noted that the lift curves (Figures 6-17) show the behavior only up to the apparent stall angle; the curves at higher angles of attack bend over and thus would fall "behind" the carpet.

As an example of the interpretation of the carpet plots, it is supposed that the lift coefficient of the aspect ratio 1 NACA 0015 fin without turbulence trips is required, at $\alpha=10^{\circ}$ and Re=100,000. Referring to Figure 12, the point of intersection of the α =100 contour (horizontal) with the Re=100,000 contour (diagonal) is first located. Then, the value of C_{I} at this point is read from the vertical scale (draw a line perpendicular to the axis through the point of interest): $C_T=0.39$.

The curves on Figures 20-25 have been taken directly from the carpet plots and are superimposed to facilitate comparison. These figures illustrate the effects of aspect ratio, section shape, and turbulence trips on the lift curves. Figure 26 shows the effect of section shape on drag coefficient.

The behavior of drag coefficient with Reynolds number at $\alpha=0^{\circ}$ is shown on Figure 27. The effect of turbulence trips is also shown.

The results for the NACA 0015 fins are presented in the form of drag polars on Figure 28; Figure 29 shows the effect of section shape on the drag polar.

The effect of Hama strips and trip wires on the behavior of lift coefficient with Reynolds number is illustrated on Figure 30.

Precision

At least five repeat runs were made at the following conditions:

- a) Flat plate section, A=1, $\alpha=10^{\circ}$, Re=150,000, n=5b) Flat plate section, A=1.5, $\alpha=20^{\circ}$, Re=150,000, n=7
- c) NACA 0015 section, A=1, $\alpha=10^{\circ}$, Re=150,000, n=9

(13 runs were actually performed at the second condition, but only 7 of these involved resetting the angle). The statistics for these repeat runs are presented in Table B below. Based on these repeat runs, using the method of Reference 5, the precision of the data may be quantified as follows: The probability is 0.95 that at least 80% of the lift measurements will be within ± 0.14 lb. The probability is 0.95 that at least 80% of the drag measurements will be within ± 0.03 lb.

TABLE B. STATISTICS OF REPEAT RUNS.

Group	Mean Lift lb	s lb	s/Mean
a) b)	1.026 2.559	0.028 0.116	0.027 0.045
c)	0.927	0.014	0.015
Group	Mean Drag lb	s lb	s/Mean
a) b)	0.198 1.051	0.019 0.015	0.097 0.014
c)	0.140	0.000	0.000

The lift data in the second group of repeats $(\alpha=20^{\circ})$ has more scatter than the other two groups. Figure 6 shows that $\alpha=20^{\circ}$ is very near stall for this fin so that unsteadiness associated with separation may account for some of this scatter. If the second group is not considered in the analysis, the precision statement becomes: The probability is 0.95 that at least 70% of the lift measurements are within %0.03 lb, for angles of attack below stalling. The probability is 0.95 that at least 70% of the lift measurements will be within ± 0.03 lb, for angles of attack below stalling.

DISCUSSION

Reynolds Number Effects

Reference to Figures 6-17 shows that the effect of Reynolds number on the lift coefficient is small for all of the fins tested. This is evidenced by the fact that the lines of constant angle of attack in the figures are nearly horizontal. In particular, no jump in the lift coefficient in the range of Reynolds numbers of 60,000-80,000, where Schmitz² found a discontinuity, was observed. However it should be noted that with the exception of the flat plate, all of the sections tested by Schmitz had camber; examination of his data shows that the jump seems to be due to a shift in the angle of zero lift with Reynolds number. For his N60 section, which most closely resembles the NACA 0015 section tested here, the lift curves are

essentially parallel in the range of Reynolds numbers between 21,000 and 8 million.

Whicker and Fehlner6 tested a series of control surfaces in a wind tunnel, two of which had the same aspect ratio, taper, and section shape (NACA 0015) as two of the fins tested in the present study. The Reynolds number range of the Whicker-Fehlner tests was approximately 1 to 3 million. A comparison of their results with those of the present study is given on Figure 31. Aside from the expected effect of Reynolds number on maximum lift coefficient, the agreement is quite good. Thus it may be expected that, below the stall angle, small scale appendages will correctly model the full scale lift.

Comparison of the flat plate data with the NACA section data shows that the lift of the flat plate sections is generally more sensitive to Reynolds number than that of the NACA sections.

Reynolds number effects on drag are illustrated on Figures 18 and 19 for the aspect ratio 2 NACA fin with and without strips, respectively. In Figure 18 the constant angle of a k contours have a steeper slope than the Schoenherr line (see also Figure 27). This is due to the characteristic behavior of airfoils at low Reynolds numbers when the form drag is relatively large. With turbulence trips, the lines of constant a become more parallel to the Schoenherr line and are shifted upwards. The jump in the curves near $\alpha=10^{\circ}$ is associated with stall.

Aspect Ratio

The effect of aspect ratio on lift coefficient for the flat plates and NACA 0015 fins is shown on Figures 20 and 21. As expected, the lift curves become steeper with increasing aspect ratio. For the NACA section, C_{Lmax} is unaffected by aspect ratio; C_{Lmax} decreases with increasing aspect ratio for the flat plate fins.

The lift curve slope at the origin was obtained by using the slope of the faired carpet plot curves between $\alpha=0^{\circ}$ and $\alpha=5^{\circ}$. Results for the NACA 0015 fins without trips at Re=150,000 are summarized in Table C below.

TABLE C. LIFT CURVE SLOPE.

A	<u>Slope (per degree)</u>	<u>Theory</u>
1.0	0.040	0.041
1.5	0.048	0.051
2.0	0.060	0.058

Theoretical results were obtained by use of the formula

$$dC_{I}/d\alpha = a_{O}/(1 + 1/A_{e} + a_{O}/\pi A_{e})$$
 (1)

which is the result of finite aspect ratio wing theory including the Jones edge correction factor⁸. The effective aspect ratio A_e was taken to be 2A, as is generally done for fins on a groundboard. The section lift curve slope, a_o , is given by Whicker and Fehlner⁶ "corrected from experimental observations":

$$a_0 = (0.9)2\pi$$

Hence the lift coefficient may be expressed as

$$C_{L} = 1.8\pi\alpha/(1 + 2.8/A_{e})$$
 (2)

Agreement with this semi-empirical relationship is quite good.

The effect of aspect ratio on drag is illustrated by the drag polars on Figure 28. Induced drag apparently decreases with increasing aspect ratio, as expected. The drag of a finite wing (without camber or twist) can in theory be expressed as

$$c_D = c_{Do} + Kc_L^2/\pi A_e$$
 (3)

where C_{DO} is the profile drag coefficient and K is the induced drag factor. Figure 32 was prepared to determine the factor K, for NACA sections without Hama strips. This figure shows the apparent induced drag coefficient, $C_D - C_{DO}$, against the ratio C_L^2/A_e where as before $A_e = 2A$ to account for the groundboard (the profile drag was assumed to correspond to the drag at zero lift). The least-squares linear fit shown on the figure, together with Equation (3), indicate that $K/\pi = 0.7321$, or K = 2.30.

Section Shape

The effect of section shape on the lift curve slope is shown on Figures 22 and 23. The flat plate lift is generally higher than the NACA section lift, and the behavior without trips is less linear (also compare Figures 6, 8, 10 to 12, 14, 16). In general $C_{\rm Lmax}$ is larger for the flat plate fins in the range of Reynolds numbers examined.

Figure 26 shows the effect of section shape on drag. For angles of attack above 0° and below 25°, the drag of the flat plate is larger; this is probably due to the presence of the sharp angle at the end of the tapered nose of the section (Figure 1).

The effect of the section shape on the apparent induced drag is shown on Figure 29. The drag polars are virtually coincident up to stall.

Turbulence Trips

The results of $Schmitz^2$ and several studies cited by Goldstein indicate that in most cases turbulent flow is beneficial to the lift of airfoils. In his section on "notes

for teaching the physics of flight", Schmitz describes an experiment in which placing a turbulence grid in front of a round nosed, thick profile resulted in "two to three times the lift value, according to the angle of incidence". Goldstein shows that $C_{\rm Lmax}$ increases in general with turbulence of the stream. However, surface roughness is known to degrade the performance of full scale airfoils, an attempt was made in the present study to determine which of these effects is dominant for model appendages.

The effect of the trips (Hama strips) on lift is highlighted in Figures 24 and 25 for the flat plate and NACA sections, respectively. The trips generally decrease the lift coefficient but for the NACA section increase $C_{\rm Lmax}$. The trips also tend to make the lift curves more linear.

Figure 24 indicates that the detrimental effect of the Hama strips on the flat plate lift is substantial. To determine whether another tripping device would produce better results, a series of tests was made with the aspect ratio 1.5 flat plate using trip wires (as described above under Model). The results are presented on Figure 30 as curves of $C_{\rm L}$ at constant angle of attack against Reynolds number. The curves show a very slight increase in lift with Reynolds number for the untripped fin, but a noticeable drop when the Hama strip is used; the reduction of lift due to the trip wire was greater still. It would appear that on the flat plate the trips promote separation.

Comparison of Figures 18 and 19 shows that the trips have two salient effects on drag coefficient: a shift of the curves of C_D at constant α upwards, and an upward shift of the jump in the curves of constant Re (occurring near α =150). The former shift is presumably due to a combination of turbulent flow and parasitic drag of the trip. The jump is associated with stall, and since the tripped foil stalls at a higher angle of attack (17.5° vs 13.5°) the drag jump would be expected to occur at a higher angle also.

Figure 27 shows the behavior of the drag coefficient of an NACA section fin at zero angle of attack with Reynolds number. The data for the untripped fin show a definite downward trend relative to the Schoenherr line whereas the data for the tripped fin lie practically parallel to the Schoenherr line. This would support the hypothesis that the trips are effective in producing a turbulent boundary layer.

In an attempt to evaluate the parasitic drag of the Hama strips, runs were made with a double and a triple thickness (four and six layers of electrical tape) on the aspect ratio 1 fins at zero angle of attack. Results are shown on Figure 33. CD is linear with trip thickness, and corresponds to a drag coefficient based on the frontal area of the trips of

$$C_{D_{i}} = 1.25$$
 (4)

CONCLUSIONS

Based on the results of this experimental study and the discussion above, the following conclusions may be drawn:

- 1. Lift coefficients of the fins are not strongly affected by variations of the Reynolds number in the range covered by the tests (42,000 150,000). The NACA 0015 fins are less sensitive to Reynolds number than the flat plate sections; $C_{\rm L}$ results of this study for NACA 0015 fins are in agreement with previous experimental data obtained at Reynolds numbers of 1 million and higher.
- 2. Lift coefficients of the flat plate sections are generally higher at the same angle of attack than NACA 0015 fins of the same planform. The lift curves of the untripped flat plates are more nonlinear than those of the NACA sections.
- 3. When placed on the flat plate fins, turbulence trips reduce the lift coefficient by an amount which increases with Reynolds number. The trips cause a small reduction of the lift curve slope of the NACA section fins but cause an increase in the maximum lift coefficient.
- 4. Hama strips seem to be effective in inducing a turbulent boundary layer on the NACA 0015 fins in the Reynolds number range of the tests.
- 5. Drag coefficients of the flat plate fins are generally higher than those of the NACA 0015 fins, possibly due to separation at the end of the nose taper (see Figure 1).

RECOMMENDATIONS

The aim of this study was to determine whether hydrofoil sections or flat plate sections provide a better simulation of full-scale hydrofoil sections at low Reynolds numbers. The results have shown that the scale hydrofoil sections are best, as indicated by conclusions 1 and 2. The data of Reference 6, taken at Reynolds numbers of 1 to 3 million, can be taken to be indicative of full-scale conditions (the Reynolds number of the aspect ratio 1 fin on a SWATH vessel at 10 knots would be about 6.6 million); the lift data of the present study for NACA 0015 fins are in agreement with Reference 6 (apart from the expected reduction in maximum lift coefficient) whereas the flat plate data are generally higher and less linear with angle of attack. Thus it is recommended that scale hydrofoil sections be used for model control surfaces.

The use of Hama strips on the NACA 0015 fins is recommended for the upcoming tests of the SWATH model with pitch control, because of their effect on $C_{I,max}$. The effect of a slight

reduction of the lift curve slope due to the trips can be compensated for by making the model fins slightly larger than scale area, or by adjustment of control system gains. The larger C_{Lmax} results in a larger available pitch moment for the control of pitching motion.

REFERENCES

- 1. Klosinski, W.E., and Numata, E., "Powering and Seakeeping Tests of a U.S. Coast Guard SWATH Cutter Design", Davidson Laboratory Report No. 2515, October 1984.
- 2. Schmitz, F.W., Aerodynamics of Model Aircraft (Aerodynamik des Flugmodells), Carol Lange Verlag, Duisburg, Germany, 1952 (Ministry of Aircraft Production Translation No. 2460).
- 3. Hama, F.R., Long, J.D., and Hegarty, J.C., "On Transition from Laminar to Turbulent Flow", University of Maryland Technical Note BN-81, August 1956.
- 4. Preston, J.H., "The Minimum Reynolds Number for a Turbulent Boundary Layer and the Selection of a Transition Device", Journal of Fluid Mechanics, Volume 3, Part 4, January 1958.
- 5. Brown, P.W., "Assessment of Experimental Precision",
 Davidson Laboratory Note 563, October 1959.
- 6. Whicker, L.F., and Fehlner, L.F., "Free-Stream Characteristics of a Family of Low Aspect Ratio, All-Moveable Control Surfaces fpor Application to Ship Design", DTNSRDC Research and Development Report 933, December 1958.
- 7. Goldstein, S., Modern Developments in Fluid Dynamics, Volume II, The Clarendon Press, Oxford, 1950, Chapter 10.
- 8. Abbott, I.H., and von Doenhoff, A.E., Theory of Wing Sections, Dover Publications, New York, 1959.
- 9. Glauert, H., The Elements of Airfoil and Airscrew Theory, 2nd Ed., University Press, Cambridge, 1959.

TABLE 1
Directory of Data Tables

Table	Section	Aspect	Hama	Figure
no.	shape	ratio	strip	no.
2a	flat	1.0	no	6
2b	flat	1.0	yes	7
3 a	flat	1.5	no	8
3b	flat	1.5	yes	9
3C	flat	1.5	trip wire	30
4a	flat	2.0	no	10
4b	flat	2.0	yes	11
5 a	NACA 0015	1.0	no	12,28
5b	NACA 0015	1.0	yes	13
6a	NACA 0015	1.5	no	14,28
6b	NACA 0015	1.5	yes	15
7a	NACA 0015	2.0	no	16,18,28
7b	NACA 0015	2.0	ves	17.19

Table 2a

Flat plate section, aspect ratio 1.

Run no.	Speed fps	a set	œ corr.	Lift lb	Drag lb	$c_{\mathtt{L}}$	c _D					
			Re = 4	12,000								
333 334 335 361	2.05 2.05 2.05 2.05	0.0 5.0 10.0 10.0	0.0 5.0 10.0 10.0	0.01 0.05 0.10 0.09	0.00 0.01 0.02 0.02	0.051 0.259 0.538 0.484	0.016 0.039 0.131 0.093					
360 363 368 373	2.05 2.04 2.05 2.04	15.0 20.0 22.0 25.0	15.0 20.0 22.0 25.0	0.11 0.14 0.15 0.15	0.03 0.05 0.06 0.07	0.616 0.795 0.820 0.839	0.192 0.300 0.342 0.402					
374 375	2.04 2.04	30.0 35.0	30.0 35.0	0.12 0.12	0.08 0.09	0.698 0.680	0.435 0.519					
Re = 75,000												
84 81 49 57 67 62 68 364 369 387 89 93	3.65 3.62 3.62 3.62 3.62 3.62 3.67 3.67 3.67 3.65 3.65	-10.0 0.0 5.0 10.0 15.0 20.0 22.0 22.0 25.0 30.0 35.0	-10.0 0.0 5.0 10.0 14.9 19.9 19.9 21.9 21.9 24.9 29.9 34.9	-0.25 -0.01 0.13 0.26 0.26 0.37 0.49 0.45 0.47 0.47 0.41 0.40 0.41	0.05 0.01 0.02 0.05 0.11 0.23 0.18 0.20 0.20 0.20	-0.442 -0.019 0.228 0.463 0.460 0.657 0.877 0.792 0.827 0.814 0.725 0.711	0.096 0.024 0.038 0.082 0.092 0.190 0.403 0.309 0.353 0.347 0.359 0.422 0.516					
82 50 59 63 69 70 365 382 370 388 90 384 94	4.82 4.82 4.82 4.82 4.82 4.87 4.89 4.89 4.85 4.90 4.85 4.85	0.0 5.0 10.0 15.0 20.0 20.0 20.0 22.0 25.0 25.0 30.0 35.0	0.0 5.0 9.9 14.9 19.9 19.9 21.9 21.9 24.9 24.9 24.9	0.00 0.23 0.45 0.66 0.81 0.80 0.78 0.77 0.82 0.81 0.69 0.73 0.66	0.02 0.04 0.09 0.18 0.38 0.30 0.30 0.35 0.34 0.34 0.38	0.001 0.230 0.458 0.664 0.820 0.807 0.772 0.758 0.809 0.791 0.687 0.713 0.660 0.667	0.022 0.039 0.086 0.186 0.387 0.386 0.300 0.293 0.343 0.347 0.370 0.396 0.487					

R-2598

Table 2a (Concluded)

Flat plate section, aspect ratio 1.

Run no.	Sp ee d fps	a set	a corr.	Lift lb	Drag lb	$\mathtt{c}_{\mathbf{L}}$	c_{D}				
110.	The	BEL	COII.	10	10						
			Re = 1	25,000							
83	6.04	0.0	0.0	-0.01	0.03	-0.009	0.021				
51	6.04	5.0	4.9	0.35	0.06	0.228	0.038				
60	6.03	10.0	9.9	0.72	0.13	0.463	0.087				
64	6.04	15.0	14.8	1.01	0.29	0.649	0.185				
71	6.03	20.0	19.8	1.24	0.59	0.801	0.382				
366	6.12	20.0	19.8	1.22	0.47	0.763	0.297				
371	6.12	22.0	21.8	1.27	0.54	0.795	0.338				
389	6.12	22.0	21.8	1.24	0.53	0.776	0.333				
91	6.05	25.0	24.8	1.00	0.51	0.644	0.324				
95	6.05	30.0	29.8	1.02	0.61	0.653	0.391				
99	6.07	35.0	34.8	1.03	0.75	0.654	0.477				
Re = 150,000											
85	7.26	-10.0	-9.8	-1.01	0.22	-0.451	0.097				
48	7.23	0.0	0.0	0.02	0.05	0.009	0.022				
80	7.24	0.0	0.0	-0.01	0.05	-0.006	0.022				
332	7.28	0.0	0.0	0.02	0.04	0.010	0.018				
52	7.24	5.0	4.9	0.51	0.08	0.227	0.036				
61	7.23	10.0	9.8	1.03	0.19	0.464	0.087				
86	7.28	10.0	9.8	0.98	0.17	0.434	0.076				
336	7.28	10.0	9.8	1.02	0.20	0.454	0.088				
359	7.28	10.0	9.8	1.04	0.21	0.462	0.094				
362	7.31	10.0	9.8	1.06	0.22	0.468	0.095				
65	7.23	15.0	14.8	1.45	0.41	0.651	0.185				
88	7.28	15.0	14.8	1.40	0.39	0.621	0.172				
72	7.23	20.0	19.7	1.76	0.82	0.792	0.369				
87	7.27	20.0	19.7	1.71	0.62	0.761	0.275				
367	7.33	20.0	19.7	1.74	0.68	0.763	0.298				
372	7.31	22.0	21.7	1.81	0.76	0.796	0.335				
390	7.33	22.0	21.7	1.74	0.74	0.761	0.326				
385	7.39	25.0	24.7	1.56	0.82	0.673	0.351				
92	7.27	25.0	24.8	1.49	0.72	0.661	0.322				
96	7.27	30.0	29.8	1.46	0.87	0.649	0.386				
100	7.28	35.0	34.8	1.45	1.07	0.641	0.472				

R-2598

Table 2b

Flat plate section, aspect ratio 1, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$\mathtt{c}_{\mathtt{L}}$	c _D						
	Re = 42,000												
377	2.04	0.0	0.0	0.01	0.01	0.041	0.036						
378	2.04	5.0	5.0	0.04	0.01	0.217	0.050						
379	2.04	10.0	10.0	0.07	0.02	0.415	0.090						
380	2.04	15.0	15.0	0.11	0.03	0.613	0.182						
381	2.04	20.0	20.0	0.13	0.05	0.760	0.287						
386	2.05	22.0	22.0	0.14	0.06	0.809	0.337						
383	2.04	25.0	25.0	0.12	0.06	0.690	0.364						
391	2.05	25.0	25.0	0.13	0.07	0.728	0.371						
392	2.05	30.0	30.0	0.11	0.08	0.632	0.422						
393	2.05	35.0	35.0	0.11	0.09	0.638	0.514						
Re = 75,000													
107	3.65	0.0	0.0	-0.01	0.02	-0.018	0.037						
110	3.65	5.0	5.0	0.11	0.02	0.190	0.038						
114	3.65	10.0	10.0	0.24	0.04	0.424	0.075						
118	3.65	15.0	14.9	0.36	0.10	0.636	0.172						
122	3.65	20.0	19.9	0.45	0.16	0.798	0.280						
387	3.67	22.0	21.9	0.47	0.20	0.814	0.347						
126	3.65	25.0	24.9	0.49	0.22	0.865	0.384						
130	3.65	30.0	29.9	0.43	0.25	0.758	0.432						
134	3.65	35.0	34.9	0.42	0.29	0.732	0.514						
			Re = 1	100,000									
108	4.85	0.0	0.0	-0.01	0.03	-0.008	0.032						
111	4.85	5.0	5.0	0.20	0.04	0.199	0.039						
115	4.85	10.0	9.9	0.41	0.07	0.405	0.072						
119	4.85	15.0	14.9	0.64	0.17	0.635	0.171						
123	4.85	20.0	19.9	0.78	0.28	0.776	0.276						
382	4.89	20.0	19.9	0.77	0.30	0.758	0.293						
388	4.89	22.0	21.9	0.81	0.34	0.791	0.337						
127	4.85	25.0	24.9	0.84	0.37	0.839	0.370						
384	4.90	25.0	24.9	0.73	0.38	0.713	0.370						
131	4.85	30.0	29.9	0.69	0.41	0.688	0.404						
135	4.85	35.0	34.9	0.68	0.49	0.677	0.486						

Table 2b (Concluded) Flat plate section, aspect ratio 1, with Hama strips.

Run no.	Speed fps	α set	corr.	Lift lb	Drag lb	$c_{\mathbf{L}}$	c _D	
			Re = 1	25,000				
109 112 116 120 124 389 128 132	6.07 6.08 6.07 6.07 6.12 6.07 6.07	0.0 5.0 10.0 15.0 20.0 22.0 25.0 30.0 35.0	0.0 5.0 9.9 14.8 19.8 21.8 24.8 29.8	-0.01 0.29 0.62 0.97 1.20 1.24 1.25 1.04	0.05 0.06 0.11 0.26 0.42 0.53 0.56 0.61	-0.005 0.185 0.396 0.616 0.764 0.776 0.795 0.663 0.660	0.029 0.036 0.071 0.168 0.270 0.333 0.359 0.392	
Re = 150,000								
105 103 104 101 102 106 113 117 121 125 390 129 385 133 137	7.28 7.27 7.26 7.27 7.28 7.27 7.28 7.28 7.27 7.33 7.28 7.39 7.28 7.27	0.0 0.0 0.0 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0	0.0 0.0 0.0 0.0 0.0 4.9 9.9 14.8 19.7 21.7 24.7 24.7 29.8 34.8	0.00 -0.02 0.01 0.02 0.02 -0.01 0.39 0.85 1.33 1.71 1.74 1.73 1.56 1.49	0.06 0.10 0.12 0.12 0.06 0.08 0.15 0.36 0.61 0.74 0.79 0.82 0.88 1.06	0.001 -0.007 0.004 0.010 0.011 -0.003 0.172 0.377 0.591 0.759 0.761 0.767 0.673 0.660 0.642	0.027 0.044 0.043 0.053 0.053 0.027 0.034 0.066 0.162 0.270 0.326 0.352 0.351 0.389 0.470	* * **

^{*} Double thickness Hama strip (0.028 in)
** Triple thickness Hama strip (0.042 in)

Table 3a

Flat plate section, aspect ratio 1.5.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_\mathtt{L}$	c_{D}					
	Re = 42,000											
257	2.49	0.0	0.0	0.02	0.01	0.061	0.034					
250	2.49	5.0	5.0	0.08	0.02	0.306	0.066					
248	2.49	10.0	10.0	0.14	0.03	0.529	0.119					
247	2.49	15.0	15.0	0.20	0.06	0.755	0.230					
244	2.49	20.0	20.0	0.22	0.09	0.832	0.356					
266	2.50	25.0	25.0	0.20	0.11	0.746	0.398					
268	2.50	30.0	30.0	0.19	0.12	0.715	0.460					
269	2.50	35.0	35.0	0.19	0.15	0.698	0.549					
Re = 75,000												
144	4.45	0.0	0.0	0.02	0.02	0.019	0.021					
186	4.45	5.0	5.0	0.22	0.04	0.266	0.048					
190	4.45	5.0	5.0	0.22	0.04	0.262	0.049					
252	4.45	5.0	5.0	0.26	0.05	0.307	0.054					
179	4.45	10.0	9.9	0.44	0.09	0.526	0.104					
191	4.46	10.0	9.9	0.44	0.08	0.523	0.099					
174	4.46	15.0	14.9	0.60	0.18	0.715	0.211					
173	4.45	20.0	19.9	0.69	0.27	0.819	0.322					
161	4.45	25.0	24.9	0.64	0.34	0.763	0.399					
156	4.45	30.0	29.9	0.55	0.35	0.650	0.418					
147	4.45	35.0	34.9	0.58	0.42	0.681	0.492					
			Re = 1	00,000								
145	5.93	0.0	0.0	0.02	0.03	0.015	0.021					
187	5.93	5.0	4.9	0.43	0.07	^.287	0.048					
253	5.93	5.0	4.9	0.47	0.08	0.317	0.051					
180	5.93	10.0	9.9	0.79	0.15	0.528	0.103					
175	5.93	15.0	14.8	1.07	0.31	0.712	0.208					
1008	6.23	18.0	17.8	1.26	0.45	0.764	0.274					
172	5.93	20.0	19.8	1.21	0.47	0.808	0.316					
160	5.93	25.0	24.8	1.14	0.58	0.760	0.390					
155	5.93	30.0	29.8	0.94	0.60	0.629	0.402					
148	5.93	35.0	34.8	0.97	0.72	0.647	0.480					

R-2598

Table 3a (Concluded)

Flat plate section, aspect ratio 1.5.

7.42 7.42 7.41 7.41	0.0	0.0	25,000 0.03													
7.42 7.41 7.41	5.0		0 03		Re = 125,000											
7.42 7.41 7.42 7.41	5.0 10.0 15.0 20.0 25.0 30.0	4.9 4.9 9.8 14.7 19.7 24.7	0.71 0.77 1.25 1.69 1.88 1.78	0.05 0.11 0.12 0.24 0.50 0.74 0.90	0.014 0.304 0.330 0.535 0.723 0.806 0.759 0.630	0.020 0.046 0.050 0.103 0.215 0.316 0.385 0.402										
7.42	35.0	34.8	1.46	1.11	0.623	0.475										
Re = 150,000																
8.91 9.30 8.91 8.91 8.90 8.90 9.30 8.90 8.90 8.90	0.0 0.0 5.0 5.0 10.0 15.0 15.0 20.0 20.0 20.0	0.0 0.0 4.8 4.8 9.7 9.7 14.6 14.6 17.5 19.6 19.6	0.01 0.00 1.07 1.13 1.81 1.86 2.43 2.41 2.82 2.70 2.70 2.66 2.62	0.07 0.08 0.15 0.16 0.35 0.72 0.74 1.01 1.06 1.06 1.05	0.002 0.001 0.318 0.335 0.537 0.553 0.722 0.716 0.767 0.801 0.799 0.789	0.020 0.022 0.045 0.048 0.103 0.114 0.214 0.219 0.273 0.313 0.314 0.309										
8.92 8.91 8.91 8.88 8.90 8.90 8.90 8.90 8.90 8.91	20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.0 30.0	19.6 19.6 19.6 19.6 19.6 19.6 24.6 29.7	2.67 2.67 2.70 2.66 2.45 2.43 2.45 2.56 2.48 2.06 2.07	1.06 1.05 1.06 1.05 1.04 1.04 1.08 1.27 1.33	0.791 0.791 0.799 0.727 0.727 0.720 0.725 0.758 0.737 0.610 0.614	0.311 0.312 0.311 0.314 0.309 0.307 0.308 0.319 0.378 0.393 0.396 0.455										
	7.42 7.41 7.42 7.41 7.42 8.91 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90	7.42 15.0 7.41 20.0 7.42 25.0 7.41 30.0 7.42 35.0 8.91 0.0 9.30 0.0 8.91 5.0 8.91 10.0 8.90 15.0 8.90 15.0 8.90 20.0 8.90 20.0 8.90 20.0 8.90 20.0 8.90 20.0 8.91 20.0 8.92 20.0 8.90 20.0 8.91 20.0 8.92 20.0 8.91 20.0	7.42 15.0 14.7 7.41 20.0 19.7 7.42 25.0 24.7 7.41 30.0 29.8 7.42 35.0 34.8 Re = 1 8.91 0.0 0.0 9.30 0.0 0.0 8.91 5.0 4.8 8.91 5.0 4.8 8.91 10.0 9.7 8.90 10.0 9.7 8.90 15.0 14.6 9.30 18.0 17.5 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.91 20.0 19.6 8.92 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6 8.90 20.0 19.6	7.42 15.0 14.7 1.69 7.41 20.0 19.7 1.88 7.42 25.0 24.7 1.78 7.41 30.0 29.8 1.47 7.42 35.0 34.8 1.46 Re = 150,000 8.91 0.0 0.0 0.0 0.0 9.30 0.0 0.0 0.0 0.0 8.91 5.0 4.8 1.07 8.91 5.0 4.8 1.13 8.91 10.0 9.7 1.81 8.90 10.0 9.7 1.86 8.90 15.0 14.6 2.43 8.90 15.0 14.6 2.41 9.30 18.0 17.5 2.82 8.90 20.0 19.6 2.70 8.92 20.0 19.6 2.70 8.92 20.0 19.6 2.66 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.67 8.91 20.0 19.6 2.67 8.91 20.0 19.6 2.67 8.91 20.0 19.6 2.67 8.91 20.0 19.6 2.67 8.91 20.0 19.6 2.67 8.91 20.0 19.6 2.67 8.91 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.67 8.91 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.65 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45 8.90 20.0 19.6 2.45	7.42	7.42 15.0 14.7 1.69 0.50 0.723 7.41 20.0 19.7 1.88 0.74 0.806 7.42 25.0 24.7 1.78 0.90 0.759 7.41 30.0 29.8 1.47 0.94 0.630 7.42 35.0 34.8 1.46 1.11 0.623 Re = 150,000 8.91 0.0 0.0 0.01 0.07 0.002 9.30 0.0 0.0 0.00 0.08 0.001 8.91 5.0 4.8 1.07 0.15 0.318 8.91 5.0 4.8 1.13 0.16 0.335 8.91 10.0 9.7 1.81 0.35 0.537 8.90 10.0 9.7 1.86 0.38 0.553 8.90 15.0 14.6 2.43 0.72 0.722 8.90 15.0 14.6 2.41 0.74 0.716 9.30 18.0 17.5 2.82 1.01 0.767 8.90 20.0 19.6 2.70 1.06 0.801 8.92 20.0 19.6 2.70 1.06 0.801 8.92 20.0 19.6 2.66 1.05 0.789 8.90 20.0 19.6 2.65 1.05 0.786 8.90 20.0 19.6 2.67 1.06 0.791 8.91 20.0 19.6 2.67 1.06 0.791 8.91 20.0 19.6 2.67 1.06 0.791 8.91 20.0 19.6 2.66 1.05 0.786 8.92 20.0 19.6 2.67 1.06 0.791 8.91 20.0 19.6 2.66 1.05 0.794 8.90 20.0 19.6 2.67 1.06 0.791 8.91 20.0 19.6 2.67 1.06 0.792 8.88 20.0 19.6 2.66 1.05 0.794 8.90 20.0 19.6 2.67 1.06 0.792 8.89 20.0 19.6 2.45 1.04 0.727 8.90 20.0 19.6 2.45 1.04 0.727 8.90 20.0 19.6 2.45 1.04 0.725										

Table 3b

Flat plate section, aspect ratio 1.5, with Hama strips.

Run no.	Sp ee d fps	α set	œ corr.	Lift lb	Drag lb	$\mathtt{c}_{\mathtt{L}}$	c_{D}			
			Re =	42,000						
207	2.49	0.0	0.0	0.01	0.01	0.039	0.041			
196	2.49	5.0	5.0	0.07	0.02	0.271	0.068			
208	2.49	10.0	10.0	0.14	0.02	0.540	0.092			
215	2.49	15.0	15.0	0.19	0.06	0.734	0.213			
221	2.49	20.0	20.0	0.23	0.09	0.862	0.335			
226	2.49	25.0	25.0	0.21	0.10	0.809	0.398			
233	2.49	30.0	30.0	0.17	0.12	0.660	0.466			
236	2.49	35.0	35.0	0.18	0.15	0.672	0.562			
Re = 75,000										
193	4.45	0.0	0.0	0.00	0.03	0.002	0.036			
197	4.45	5.0	5.0	0.22	0.04	0.259	0.053			
209	4.45	10.0	9.9	0.44	0.08	0.522	0.091			
216	4.45	15.0	14.9	0.59	0.18	0.705	0.214			
222	4.45	20.0	19.9	0.66	0.27	0.788	0.323			
227	4.45	25.0	24.9	0.62	0.32	0.735	0.384			
231	4.45	30.0	29.9	0.55	0.37	0.647	0.436			
237	4.45	35.0	34.9	0.55	0.45	0.649	0.528			
			Re =	100,000						
194	5.93	0.0	0.0	0.00	0.05	0.000	0.034			
198	5.93	5.0	4.9	0.35	0.07	0.237	0.047			
210	5.93	10.0	9.9	0.75	0.13	0.504	0.090			
217	5.93	15.0	14.8	1.07	0.32	0.711	0.216			
223	5.92	20.0	19.8	1.14	0.48	0.765	0.321			
228	5.93	25.0	24.8	1.08	0.57	0.719	0.378			
232	5.93	30.0	29.9	0.93	0.63	0.623	0.423			
238	5.93	35.0	34.9	0.93	0.76	0.620	0.508			
			Re =	125,000						
195	7.42	0.0	0.0	-0.01	0.08	-0.002	0.034			
199	7.41	5.0	4.9	0.55	0.10	0.235	0.044			
212	7.41	10.0	9.8	1.13	0.21	0.485	0.091			
218	7.41	15.0	14.7	1.59	0.49	0.681	0.211			
224	7.41	20.0	19.7	1.71	0.73	0.734	0.311			
229	7.41	25.0	24.7	1.64	0.87	0.701	0.374			
234	7.41	30.0	29.8	1.43	0.98	0.612	0.420			
239	7.41	35.0	34.8	1.42	1.18	0.611	0.506			

R-2598

Table 3b (Concluded)

Flat plate section, aspect ratio 1.5, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift lb	Drag 1b	c^{Γ}	c _D
			Re = 1	150,000			
192	8.90	0.0	0.0	-0.01	0.11	-0.002	0.032
202	8.92	5.0	4.9	0.75	0.14	0.223	0.041
213	8.90	10.0	9.8	1.49	0.28	0.442	0.084
214	8.92	10.0	9.8	1.49	0.28	0.441	0.082
219	8.91	15.0	14.7	2.11	0.67	0.624	0.200
220	8.88	15.0	14.7	2.11	0.67	0.627	0.199
1009	9.31	18.0	17.6	2.50	0.94	0.677	0.256
225	8.92	20.0	19.6	2.25	0.99	0.666	0.292
241	8.90	20.0	19.6	2.24	0.98	0.667	0.292
1010	9.30	22.0	21.6	2.57	1.19	0.697	0.322
230	8.91	25.0	24.7	2.10	1.18	0.622	0.350
235	8.89	30.0	29.7	1.96	1.37	0.584	0.407
240	8.89	35.0	34.7	2.01	1.68	0.597	0.501

Table 3c

Flat plate section, aspect ratio 1.5, with trip wire.

Run no.	Speed fps	Re x10	α set	corr.	Lift lb	Drag 1b	$c_{\mathtt{L}}$	c ^D
400	2.52	42	5.0	5.0	0.08	0.02	0.284	0.081
395	2.49	42	10.0	10.0	0.14	0.03	0.511	0.124
404	4.48	75	5.0	5.0	0.22	0.06	0.256	0.073
396	4.45	75	10.0	9.9	0.42	0.10	0.499	0.123
403	5.96	100	5.0	4.9	0.33	0.10	0.221	0.069
397	5.92	100	10.0	9.9	0.70	0.18	0.468	0.119
402	7.45	125	5.0	4.9	0.44	0.16	0.186	0.066
398	7.44	125	10.0	9.8	1.01	0.27	0.429	0.114
394	8.90	150	0.0	0.0	0.00	0.18	0.001	0.054
401	8.95	150	5.0	4.9	0.55	U.22	0.162	0.064
399	8.95	150	10.0	9.8	1.39	0.38	0.406	0.110

^{0.03} in diameter, 5% local chord aft of leading edge.

Table 4a

Flat plate section, aspect ratio 2.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$\mathbf{c}_{\mathbf{L}}$	cD
1101	-5-						
			Re = 4	2,000			
275	2.89	0.0	0.0	0.01	0.01	0.022	0.038
283	2.89	5.0	5.0	0.12	0.02	0.336	0.050
288	2.89	10.0	10.0	0.21	0.04	0.595	0.106
1019	3.03	15.0	15.0	0.30	0.09	0.769	0.223
300	2.89	20.0	20.0	0.27	0.12	0.764	0.328
314	2.89	22.0	22.0	0.27	0.12	0.748	0.331
309	2.89	25.0	25.0	0.26	0.13	0.718	0.375
315	2.89	30.0	30.0	0.25	0.17	0.689	0.471
322	2.89	35.0	35.0	0.25	0.19	0.707	0.528
			Re = 7	5,000			
276	5.15	0.0	0.0	0.01	0.03	0.008	0.026
284	5.18	5.0	4.9	0.38	0.05	0.336	0.048
289	5.18	10.0	9.9	0.66	0.11	0.579	0.098
1018	5.40	15.0	14.9	0.91	0.28	0.734	0.225
301	5.18	20.0	19.9	0.82	0.35	0.720	0.307
328	5.18	22.0	21.9	0.80	0.38	0.702	0.334
310	5.17	25.0	24.9	0.72	0.39	0.630	0.347
316	5.18	30.0	29.9	0.70	0.49	0.617	0.428
323	5.18	35.0	34.9	0.72	0.57	0.632	0.498
			Re = 1	.00,000			
277	6.88	0.0	0.0	0.03	0.05	0.014	0.026
285	6.91	5.0	4.9	0.71	0.10	0.352	0.049
290	6.90	10.0	9.8	1.21	0.20	0.597	0.100
1017	7.18	15.0	14.7	1.67	0.50	0.760	0.277
308	6.90	18.0	17.7	1.56	0.56	0.769	0.276
302	6.90	20.0	19.8	1.44	0.61	0.711	0.301
329	6.90	22.0	21.8	1.38	0.66	0.682	0.325
311	6.90	25.0	24.8	1.23	0.69	0.608	0.339
317	6.90	30.0	29.8	1.22	0.84	0.602	0.414
324	6.91	35.0	34.8	1.25	1.00	0.615	0.492

R-2598

Table 4a (Concluded)

Flat plate section, aspect ratio 2.

Run	Speed	α	œ	Lift	Drag	$c_\mathtt{L}$	c^{D}
no.	fps	set	corr.	1b	lb	-	
			Re = 1	25,000			
282	8.62	0.0	0.0	0.02	0.07	0.006	0.023
286	8.63	5.0	4.8	1.17	0.15	0.370	0.046
291	8.62	10.0	9.7	1.92	0.31	0.607	0.099
1016	8.97	15.0	14.6	2.55	0.76	0.743	0.221
303	8.63	20.0	19.6	2.26	0.94	0.713	0.298
330	8.62	22.0	21.7	2.12	1.01	0.671	0.320
312	8.62	25.0	24.7	1.89	1.06	0.598	0.334
318	8.63	30.0	29.7	1.89	1.30	0.598	0.409
325	8.60	35.0	34.7	1.90	1.53	0.603	0.485
			Re = 1	50,000			
274	10.31	0.0	0.0	0.02	0.11	0.005	0.023
1011	10.76	0.0	0.0	0.02	0.09	0.005	0.018
287	10.32	5.0	4.7	1.68	0.21	0.371	0.046
292	10.35	10.0	9.5	2.80	0.46	0.614	0.101
1012	10.77	12.0	11.5	3.29	0.72	0.667	0.146
1013	10.77	14.0	13.4	3.58	0.88	0.725	0.179
1015	10.76	15.0	14.4	3.65	1.06	0.742	0.216
1014	10.78	16.0	15.4	3.68	1.17	0.745	0.236
307	10.35	18.0	17.5	3.39	1.23	0.745	0.269
304	10.35	20.0	19.5	2.89	1.25	0.634	0.275
305	10.34	20.0	19.5	2.96	1.28	0.650	0.282
306	10.36	20.0	19.5	2.95	1.29	0.647	0.282
313	10.34	25.0	24.6	2.67	1.48	0.588	0.326
321	10.34	30.0	29.6	2.72	1.84	0.599	0.405
327	10.36	35.0	34.6	2.74	2.25	0.601	0.492

Table 4b

Flat plate section, aspect ratio 2, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_\mathtt{L}$	c_D					
	Re = 42,000											
416	2.92	0.0	0.0	0.01	0.02	0.016	0.046					
417	2.92	5.0	5.0	0.12	0.02	0.338	0.064					
422	2.92	10.0	10.0	0.23	0.04	0.621	0.106					
427	2.92	15.0	15.0	0.29	0.08	0.789	0.212					
455	2.92	18.0	18.0	0.30	0.10	0.835	0.283					
432	2.92	20.0	20.0	0.30	0.12	0.837	0.325					
445	2.92	30.0	30.0	0.26	0.17	0.731	0.471					
450	2.92	35.0	35.0	0.27	0.21	0.744	0.566					
Re = 75,000												
415	5.24	0.0	0.0	0.01	0.04	0.008	0.037					
418	5.24	5.0	4.9	0.36	0.07	0.310	0.056					
423	5.23	10.0	9.9	0.69	0.12	0.589	0.099					
428	5.23	15.0	14.9	0.86	0.25	0.737	0.213					
433	5.23	20.0	19.9	0.88	0.36	0.758	0.313					
440	5.23	25.0	24.9	0.78	0.42	0.669	0.365					
446	5.23	30.0	29.9	0.75	0.51	0.645	0.436					
451	5.23	35.0	34.9	0.76	0.61	0.649	0.524					
			Re = 1	00,000								
414	6.95	0.0	0.0	0.00	0.07	0.001	0.035					
419	6.96	5.0	4.9	0.57	0.10	0.275	0.051					
424	6.95	10.0	9.8	1.12	0.19	0.543	0.090					
429	6.96	15.0	14.8	1.48	0.43	0.719	0.210					
434	6.96	20.0	19.8	1.49	0.63	0.725	0.306					
441	6.95	25.0	24.8	1.32	0.74	0.640	0.358					
447	6.95	30.0	29.8	1.26	0.87	0.615	0.423					
452	6.95	35.0	34.8	1.26	1.04	0.611	0.505					
			Re = 1	25,000								
413	8.66	0.0	0.0	0.00	0.11	0.000	0.034					
420	8.66	5.0	4.9	0.73	0.15	0.229	0.046					
425	8.67	10.0	9.8	1.54	0.26	0.482	0.040					
430	8.68	15.0	14.7	2.08	0.63	0.648	0.195					
435	8.66	20.0	19.7	2.06	0.90	0.646	0.282					
442	8.66	25.0	24.7	1.86	1.08	0.583	0.339					
448	8.66	30.0	29.7	1.85	1.30	0.579	0.408					
453	8.66	35.0	34.7	1.86	1.57	0.581	0.493					
						0.301	V. 733					

R-2598

Table 4b (Concluded)

Flat plate section, aspect ratio 2, with Hama strips.

Run no.	Sp ee d fps	a set	corr.	Lift lb	Drag lb	$c_{\mathbf{L}}$	cD
			Re = 1	50,000			
412	10.37	0.0	0.0	0.03	0.15	0.007	0.032
421	10.40	5.0	4.8	1.00	0.20	0.218	0.044
426	10.40	10.0	9.7	2.12	0.35	0.461	0.076
431	10.36	15.0	14.5	2.88	0.87	0.630	0.190
456	10.40	18.0	17.5	2.92	1.12	0.635	0.244
438	10.42	20.0	19.6	2.78	1.26	0.602	0.273
444	10.40	25.0	24.6	2.46	1.48	0.534	0.322
449	10.42	30.0	29.6	2.54	1.84	0.549	0.398
454	10.41	35.0	34.6	2.56	2.22	0.556	0.482

Table 5a

NACA 0015 section, aspect ratio 1.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_\mathtt{L}$	c_{D}
	-•		Re = 4	2 000			
			16 - 4.	2,000			
594	2.07	0.0	0.0	0.00	0.01	0.000	0.028
590	2.07	5.0	5.0	0.04	0.01	0.234	0.042
585	2.07	10.0	10.0	0.07	0.01	0.410	0.076
599	2.07	15.0	15.0	0.10	0.02	0.556	0.133
605	2.07	20.0	20.0	0.13	0.04	0.717	0.241
611	2.07	25.0	25.0	0.15	0.07	0.821	0.366
631	2.07	27.0	27.0	0.12	0.07	0.675	0.373
618	2.07	30.0	30.0	0.11	0.08	0.623	0.427
624	2.07	35.0	35.0	0.11	0.09	0.607	0.495
			Re = 7	5,000			
595	3.68	0.0	0.0	0.00	0.01	0.003	0.022
591	3.68	5.0	5.0	0.13	0.02	0.230	0.038
586	3.68	10.0	10.0	0.23	0.04	0.399	0.074
601	3.68	15.0	14.9	0.34	0.07	0.583	0.129
606	3.68	20.0	19.9	0.41	0.15	0.714	0.252
612	3.68	25.0	24.9	0.46	0.22	0.795	0.374
632	3.68	27.0	26.9	0.34	0.21	0.594	0.372
633	3.68	27.0	26.9	0.35	0.21	0.614	0.371
634	3.68	27.0	26.9	0.34	0.21	0.586	0.367
619	3.68	30.0	29.9	0.35	0.24	0.610	0.424
625	3.68	35.0	34.9	0.37	0.30	0.639	0.517
			Re = 1	00,000			
596	4.90	0.0	0.0	0.00	0.02	0.001	0.017
592	4.90	5.0	5.0	0.22	0.03	0.215	0.034
587	4.90	10.0	9.9	0.40	0.07	0.392	0.067
602	4.90	15.0	14.9	0.58	0.12	0.571	0.121
607	4.90	20.0	19.9	0.72	0.25	0.707	0.243
613	4.91	25.0	24.9	0.78	0.37	0.764	0.365
637	4.91	27.0	26.9	0.58	0.36	0.565	0.351
620	4.90	30.0	29.9	0.57	0.41	0.562	0.400
626	4.91	35.0	34.9	0.60	0.50	0.586	0.486
636	4.90	35.0	34.9	0.61	0.49	0.592	0.482

R-2598

Table 5a (Concluded)

NACA 0015 section, aspect ratio 1.

Run	Speed	α	a	Lift	Drag	$\mathbf{c}_{\mathbf{L}}$	c_{D}
no.	fps	set	corr.	1b	lb	L	U
			Re = 1	.25,000			
597	6.15	0.0	0.0	-0.01	0.03	-0.005	0.017
593	6.14	5.0	4.9	0.32	0.05	0.200	0.030
588	6.14	10.0	9.9	0.65	0.10	0.406	0.064
603	6.15	15.0	14.9	0.93	0.18	0.577	0.114
608	6.14	20.0	19.8	1.09	0.41	0.682	0.255
614	6.14	25.0	24.8	1.10	0.56	0.687	0.347
638	6.14	27.0	26.9	0.87	0.56	0.544	0.351
621	6.14	30.0	29.9	0.88	0.62	0.547	0.387
627	6.15	35.0	34.9	0.92	0.77	0.571	0.480
			Re =	150,000			
582	7.35	0.0	0.0	-0.02	0.05	-0.007	0.020
583	7.35	0.0	0.0	0.01	0.05	0.005	0.021
589	7.35	5.0	4.9	0.45	0.07	0.194	0.029
584	7.36	10.0	9.8	0.94	0.14	0.407	0.063
598	7.36	10.0	9.9	0.90	0.14	0.392	0.061
604	7.36	TO.0	9.8	0.94	0.14	0.410	0.060
610	7.35	10.0	9.9	0.93	0.14	0.403	0.060
617	7.36	10.0	9.9	0.93	0.14	0.404	0.060
623	7.35	10.0	9.9	0.92	0.14	0.399	0.060
629	7.35	10.0	9.9	0.93	0.14	0.404	0.062
635	7.36	10.0	9.8	0.94	0.14	0.406	0.063
639	7.36	10.0	9.9	0.91	0.14	0.395	0.062
600	7.35	15.0	14.8	1.32	0.27	0.573	0.119
609	7.36	20.0	19.7	1.56	0.56	0.678	0.245
615	7.34	25.0	24.7	1.65	0.79	0.721	0.345
616	7.35	25.0	24.7	1.60	0.79	0.697	0.344
630	7.35	27.0	26.8	1.21	0.79	0.525	0.345
622	7.35	30.0	29.8	1.19	0.87	0.518	0.379
628	7.35	35.0	34.8	1.30	1.08	0.567	0.471

R-2598

Table 5b

NACA 0015 section, aspect ratio 1, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	c _L	c _D
			Re = 4	2,000			
641	2.07	0.0	0.0	0.00	0.01	0.019	0.036
645	2.07	5.0	5.0	0.03	0.01	0.182	0.043
650	2.07	10.0	10.0	0.07	0.01	0.389	0.078
655	2.07	15.0	15.0	0.09	0.03	0.511	0.139
660	2.07	20.0	20.0	0.12	0.04	0.683	0.227
666	2.07	25.0	25.0	0.15	0.06	0.803	0.354
685	2.07	27.0	27.0	0.12	0.07	0.640	0.387
675	2.07	30.0	30.0	0.11	0.08	0.613	0.425
680	2.07	35.0	35.0	0.11	0.09	0.615	0.509
			Re = 7	5,000			
642	3.68	0.0	0.0	-0.01	0.02	-0.012	0.034
646	3.68	5.0	5.0	0.10	0.03	0.176	0.045
651	3.68	10.0	10.0	0.22	0.04	0.376	0.075
656	3.68	15.0	15.0	0.31	0.08	0.539	0.139
661	3.68	20.0	19.9	0.41	0.13	0.704	0.218
662	3.68	20.0	19.9	0.41	0.13	0.715	0.220
667	3.68	25.0	24.9	0.47	0.22	0.810	0.374
671	3.68	25.0	24.9	0.47	0.22	0.821	0.379
686	3.68	27.0	26.9	0.36	0.22	0.628	0.387
676	3.68	30.0	29.9	0.35	0.25	0.608	0.427
681	3.68	35.0	34.9	0.36	0.30	0.631	0.515
			Re = :	100,000			
643	4.90	0.0	0.0	-0.01	0.03	-0.011	0.032
647	4.90	5.0	5.0	0.18	0.04	0.171	0.040
652	4.90	10.0	9.9	0.38	0.07	0.368	0.072
657	4.90	15.0	14.9	0.56	0.13	0.550	0.126
663	4.90	20.0	19.9	0.73	0.21	0.714	0.204
672	4.90	25.0	24.9	0.80	0.37	0.780	0.364
687	4.90	27.0	26.9	0.58	0.36	0.563	0.357
677	4.90	30.0	29.9	0.58	0.41	0.568	0.401
682	4.90	35.0	34.9	0.59	0.49	0.580	0.477

R-2598

Table 5b (Concluded) NACA 0015 section, aspect ratio 1, with Hama strips.

Run no.	Speed fps	α set	corr.	Lift lb	Drag lb	$c_\mathtt{L}$	c_{D}
			Re = 12	5,000			
644 648 653 658 664 673 688 678 683	6.15 6.14 6.14 6.14 6.14 6.15 6.13	0.0 5.0 10.0 15.0 20.0 25.0 27.0 30.0 35.0	0.0 5.0 9.9 14.9 19.8 24.8 26.9 29.9 34.9	-0.01 0.27 0.59 0.90 1.16 1.22 0.87 0.88 0.91	0.05 0.06 0.11 0.19 0.31 0.59 0.56 0.63	-0.005 0.168 0.366 0.563 0.723 0.762 0.540 0.547	0.028 0.040 0.069 0.120 0.193 0.369 0.347 0.395 0.476
			Re = 1	.50,000			
640 690 691 649 654 659 665 674 689 679	7.36 7.35 7.35 7.35 7.36 7.36 7.37 7.35 7.35	0.0 0.0 5.0 10.0 15.0 20.0 25.0 27.0 30.0	0.0 0.0 4.9 9.9 14.8 19.7 24.7 26.8 29.8 34.8	0.01 -0.01 0.01 0.44 0.87 1.28 1.60 1.71 1.22 1.22	0.06 0.10 0.13 0.09 0.15 0.28 0.41 0.88 0.81 0.90	0.003 -0.003 0.004 0.191 0.377 0.558 0.695 0.740 0.531 0.531	0.028 0.042 * 0.058 ** 0.039 0.067 0.122 0.179 0.380 0.351 0.392 0.471

^{*} Double thickness Hama strip (0.028 in)
** Triple thickness Hama strip (0.042 in)

R-2598

Table 6a
NACA 0015 section, aspect ratio 1.5.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_{ extbf{L}}$	cD
	-		Re = 4	2,000			
							0.041
762	2.58	0.0	0.0	0.00	0.01	0.006	0.041
766	2.58	5.0	5.0	0.07	0.02	0.257	0.057
771	2.58	10.0	10.0	0.14	0.03	0.490	0.089
776	2.58	15.0	15.0	0.19	0.04	0.680	0.156
865	2.60	17.0	17.0	0.19	0.07	0.648 0.736	0.240 0.295
781	2.58	20.0	20.0	0.21	0.08	0.736	0.295
786	2.58	25.0	25.0	0.22 0.22	0.11 0.13	0.780	0.397
791	2.58	30.0	30.0 35.0	0.20	0.15	0.705	0.536
796	2.58	35.0	33.0	0.20	0.15	0.705	0.550
			Re = 7	5,000			
763	4.66	0.0	0.0	0.00	0.02	0.000	0.027
767	4.63	5.0	5.0	0.25	0.04	0.269	0.043
772	4.63	10.0	9.9	0.43	0.07	0.474	0.076
777	4.63	15.0	14.9	0.58	0.14	0.635	0.150
861	4.65	15.0	14.9	0.58	0.14	0.631	0.154
864	4.65	17.0	16.9	0.57	0.21	0.615	0.228
782	4.63	20.0	19.9	0.62	0.25	0.678	0.278
787	4.63	25.0	24.9	0.65	0.33	0.708	0.363
792	4.63	30.0	29.9	0.58	0.39	0.633	0.430
797	4.63	35.0	34.9	0.57	0.45	0.624	0.490
			Re = 1	00,000			
764	6.18	0.0	0.0	0.00	0.04	0.002	0.023
768	6.18	5.0	4.9	0.40	0.06	0.248	0.036
773	6.17	10.0	9.9	0.75	0.12	0.462	0.072
778	6.18	15.0	14.8	1.03	0.23	0.633	0.142
863	6.21	17.0	16.8	1.01	0.36	0.614	0.221
783	6.17	20.0	19.8	1.10	0.45	0.677	0.276
788	6.18	25.0	24.8	1.09	0.57	0.674	0.349
793	6.17	30.0	29.8	0.98	0.67	0.604	0.410
798	6.17	35.0	34.8	0.95	0.76	0.584	0.470

R-2598

Table 6a (Concluded)
NACA 0015 section, aspect ratio 1.5.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_{\mathtt{L}}$	cD
			Re =	125,000			
765 760	7.67	0.0	0.0	0.00	0.05	0.000	0.021
769	7.69	5.0	4.9	0.60	0.09	0.237	0.035
774	7.67	10.0	9.8	1.16	0.17	0.461	0.070
779 862	7.68 7.72	15.0 17.0	14.7 16.8	1.58 1.52	0.33 0.55	0.631 0.600	0.130 0.218
784	7.72	20.0	19.7	1.66	0.68	0.658	0.218
789	7.68	25.0	24.7	1.64	0.86	0.654	0.342
794	7.68	30.0	29.8	1.51	1.02	0.600	0.404
79 9	7.68	35.0	34.8	1.42	1.17	0.568	0.465
733	7.00	33.0	34.0	1.42	*• * /	0.508	0.405
			Re = 1	50,000			
761	9.20	0.0	0.0	0.00	0.07	0.000	0.019
770	9.21	5.0	4.9	0.86	0.12	0.239	0.033
775	9.18	10.0	9.7	1.64	0.24	0.457	0.067
78C	9.20	15.0	14.6	2.37	0.44	0.656	0.122
860	9.29	15.0	14.6	2.38	0.45	0.649	0.123
859	9.27	16.0	15.6	2.26	0.69	0.619	0.188
858	9.25	18.0	17.6	2.31	0.86	0.634	0.237
785	9.20	20.0	19.6	2.34	0.96	0.649	0.266
790	9.19	25.0	24.6	2.29	1.21	0.637	0.337
795	9.18	30.0	29.7	2.00	1.38	0.557	0.386
801	9.19	35.0	34.7	1.99	1.66	0.553	0.461

Table 6b

NACA 0015 section, aspect ratio 1.5, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$\mathtt{c}_{\mathtt{L}}$	cD
	-P-	555					
			Re = 43	2,000			
802	2.58	0.0	0.0	0.00	0.01	0.016	0.052
807	2.58	5.0	5.0	0.07	0.02	0.251	0.067
812	2.58	10.0	10.0	0.13	0.03	0.463	0.113
817	2.58	15.0	15.0	0.18	0.04	0.652	0.157
839	2.58	18.0	18.0	0.20	0.07	0.707	0.250
822	2.58	20.0	20.0	0.21	0.09	0.736	0.304
827	2.58	25.0	25.0	0.23	0.11	0.796	0.390
832	2.58	30.0	30.0	0.22	0.14	0.774	0.478
843	2.58	35.0	35.0	0.20	0.15	0.701	0.544
			Re = 7!	5,000			
803	4.63	0.0	0.0	0.01	0.03	0.011	0.036
808	4.63	5.0	5.0	0.21	0.05	0.231	0.051
813	4.63	10.0	9.9	0.41	0.08	0.447	0.087
818	4.63	15.0	14.9	0.60	0.12	0.656	0.137
840	4.63	18.0	17.9	0.61	0.22	0.663	0.239
823	4.63	20.0	19.9	0.61	0.25	0.675	0.278
828	4.63	25.0	24.9	0.63	0.32	0.695	0.356
833	4.63	30.0	29.9	0.61	0.39	0.665	0.423
844	4.63	35.0	34.9	0.57	0.45	0.623	0.495
			Re = 1	00,000			
804	6.17	0.0	0.0	0.02	0.05	0.014	0.034
809	6.17	5.0	4.9	0.38	0.08	0.233	0.048
814	6.17	10.0	9.9	0.70	0.13	0.430	0.081
819	6.17	15.0	14.8	1.04	0.21	0.644	0.130
841	6.18	18.0	17.8	1.19	0.32	0.733	0.198
824	6.18	20.0	19.8	1.09	0.44	0.672	0.270
829	6.17	25.0	24.8	1.09	0.56	0.673	0.345
834	6.17	30.0	29.8	1.00	0.66	0.618	0.408
845	6.17	35.0	34.8	0.97	0.78	0.598	0.478

R-2598

Table 6b (Concluded)

NACA 0015 section, aspect ratio 1.5, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_{\mathtt{L}}$	c _D
			Re = 1	25,000			
805 810 815 820 842 825 830 835	7.68 7.69 7.68 7.69 7.68 7.68 7.68	0.0 5.0 10.0 15.0 18.0 20.0 25.0	0.0 4.9 9.8 14.7 17.7 19.7 24.7 29.8	0.03 0.58 1.07 1.59 1.93 1.68 1.64	0.08 0.11 0.20 0.32 0.41 0.67 0.86 0.98	0.012 0.231 0.427 0.634 0.766 0.670 0.652 0.573	0.033 0.045 0.079 0.127 0.162 0.267 0.342 0.392
846	7.69	35.0	34.8 Re = 1	1.46 50,000	1.18	0.580	0.470
806 811 816 821 838 826 837 831 836 847	9.23 9.22 9.19 9.22 9.23 9.23 9.22 9.23	0.0 5.0 10.0 15.0 18.0 20.0 20.0 25.0 30.0	0.0 4.9 9.8 14.6 17.5 19.6 24.6 29.7	0.05 0.83 1.55 2.36 2.82 2.32 2.38 2.33 2.06 2.07	0.11 0.16 0.27 0.44 0.57 0.95 0.95 1.24 1.42	0.013 0.230 0.430 0.651 0.778 0.641 0.658 0.644 0.569	0.031 0.043 0.076 0.123 0.157 0.263 0.261 0.342 0.392 0.468

Table 7a

NACA 0015 section, aspect ratio 2.

Run no.	Speed fps	α set	corr.	Lift lb	Drag lb	$c_{\mathbf{L}}$	cD			
Re = 42,000										
877	3.00	0.0	0.0	0.02	0.02	0.056	0.042			
878	3.00	5.0	5.0	0.12	0.02	0.321	0.055			
883	3.00	10.0	10.0	0.20	0.04	0.533	0.098			
888	3.00	15.0	15.0	0.26	0.07	0.688	0.187			
897	3.00	20.0	20.0	0.28	0.12	0.721	0.302			
901	3.00	25.0	25.0	0.30	0.15	0.781	0.395			
910	3.00	30.0	30.0	0.30	0.18	0.784	0.473			
917	3.00	35.0	35.0	0.28	0.21	0.722	0.556			
			Re = 7	5,000						
875	5.36	0.0	0.0	0.01	0.03	0.008	0.026			
879	5.36	5.0	4.9	0.38	0.05	0.312	0.042			
884	5.36	10.0	9.9	0.62	0.10	0.505	0.078			
889	5.36	15.0	14.9	0.77	0.22	0.633	0.177			
898	5.36	20.0	19.9	0.80	0.35	0.658	0.283			
902	5.36	25.0	24.9	0.83	0.43	0.676	0.355			
911	5.36	30.0	29.9	0.77	0.51	0.629	0.416			
918	5.36	35.0	34.9	0.78	0.61	0.636	0.500			
			Re = 1	00,000			•			
873	7.14	0.0	0.0	0.01	0.05	0.006	0.022			
880	7.14	5.0	4.9	0.65	0.08	0.299	0.039			
885	7.13	10.0	9.8	1.12	0.16	0.518	0.075			
923	7.14	12.0	11.8	1.33	0.20	0.611	0.093			
925	7.14	13.0	12.8	1.41	0.22	0.651	0.103			
926	7.14	14.0	13.8	1.45	0.28	0.668	0.128			
890	7.14	15.0	14.8	1.33	0.38	0.613	0.177			
899	7.15	20.0	19.8	1.38	0.59	0.637	0.273			
903	7.14	25.0	24.8	1.40	0.75	0.645	0.344			
912	7.14	30.0	29.8	1.30	0.87	0.600	0.400			
919	7.14	35.0	34.8	1.31	1.04	0.602	0.478			

R-2598

Table 7a (Concluded)

NACA 0015 section, aspect ratio 2.

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$c_{\mathtt{L}}$	cD				
Re = 125,000											
872	8.92	0.0	0.0	0.01	0.06	0.003	0.019				
881	8.93	5.0	4.8	0.99	0.12	0.290	0.036				
886	8.90	10.0	9.7	1.76	0.24	0.522	0.072				
891	8.93	15.0	14.7	2.11	0.59	0.622	0.175				
900	8.93	20.0	19.7	2.15	0.93	0.633	0.274				
904	8.93	25.0	24.7	2.09	1.14	0.615	0.336				
913	8.93	30.0	29.7	1.89	1.31	0.557	0.387				
920	8.94	35.0	34.7	1.97	1.61	0.579	0.474				
			Re = 1	50,000							
869	10.71	0.0	0.0	0.00	0.08	0.001	0.017				
876	10.70	0.0	0.0	0.00	0.08	0.000	0.017				
882	10.71	5.0	4.8	1.39	0.16	0.284	0.032				
887	10.70	10.0	9.6	2.49	0.32	0.510	0.066				
922	10.71	12.0	11.5	2.94	0.39	0.603	0.079				
924	10.71	13.0	12.5	3.13	0.45	0.641	0.092				
927	10.71	14.0	13.5	3.23	0.52	0.661	0.107				
892	10.51	15.0	14.5	2.84	0.80	0.604	0.169				
894	10.71	15.0	14.5	2.99	0.79	0.612	0.162				
928	10.70	17.0	16.5	2.88	1.02	0.592	0.210				
896	10.71	20.0	19.5	3.01	1.29	0.616	0.264				
909	10.70	25.0	24.6	2.70	1.52	0.555	0.313				
915	10.71	30.0	29.6	2.65	1.88	0.543	0.384				
916	10.71	35.0	34.6	2.78	2.31	0.570	0.473				
			Re = 1	82,000							
907	13.01	25.0	24.4	3.81	2.23	0.529	0.310				

Table 7b

NACA 0015 section, aspect ratio 2, with Hama strips.

Run no.	Speed fps	a set	corr.	Lift 1b	Drag lb	$\mathtt{c}_{\mathtt{L}}$	c _D
			Re = 4	2,000			
930	3.00	0.0	0.0	0.01	0.01	0.037	0.038
934	3.00	5.0	5.0	0.10	0.02	0.258	0.062
939	3.00	10.0	10.0	0.19	0.04	0.504	0.095
944	3.00	15.0	15.0	0.27	0.06	0.693	0.164
951	3.00	20.0	20.0	0.28	0.11	0.726	0.279
957	3.00	25.0	25.0	0.29	0.15	0.768	0.383
981	3.03	30.0	30.0	0.28	0.18	0.708	0.472
987	3.03	35.0	35.0	0.29	0.21	0.735	0.549
			Re = 7	5,000			
931	5.36	0.0	0.0	0.02	0.04	0.012	0.036
935	5.36	5.0	5.0	0.31	0.06	0.250	0.049
940	5.36	10.0	9.9	0.60	0.11	0.489	0.087
945	5.36	15.0	14.9	0.86	0.16	0.703	0.133
952	5.35	20.0	19.9	0.87	0.31	0.714	0.254
958	5.36	25.0	24.9	0.84	0.43	0.690	0.355
982	5.40	30.0	29.9	0.79	0.53	0.632	0.428
988	5.40	35.0	34.9	0.79	0.62	0.639	0.499
			Re = 1	00,000			-
932	7.14	0.0	0.0	0.02	0.07	0.009	0.034
936	7.14	5.0	4.9	0.53	0.10	0.245	0.047
941	7.14	10.0	9.8	1.05	0.18	0.486	0.083
946	7.15	15.0	14.8	1.50	0.28	0.688	0.128
996	7.18	17.0	16.7	1.73	0.37	0.787	0.167
998	7.19	18.0	17.7	1.79	0.41	0.814	0.188
953	7.14	20.0	19.7	1.57	0.54	0.723	0.248
959	7.13	25.0	24.8	1.39	0.74	0.642	0.342
983	7.18	30.0	29.8	1.32	0.91	0.601	0.414
989	7.18	35.0	34.8	1.34	1.07	0.609	0.486

Table 7b (Concluded)

NACA 0015 section, aspect ratio 2, with Hama strips.

R-2598

Run no.	Speed fps	a set	corr.	Lift lb	Drag lb	$\mathtt{c}_{\mathtt{L}}$	c _D			
		I	Re = 125	,000						
933	8.94	0.0	0.0	0.01	0.11	0.002	0.032			
937	8.92	5.0	4.9	0.82	0.15	0.243	0.045			
942	8.93	10.0	9.7	1.62	0.27	0.476	0.079			
947	8.92	15.0	14.6	2.33	0.43	0.688	0.128			
954	8.92	20.0	19.6	2.44	0.82	0.721	0.243			
960	8.92	25.0	24.7	2.04	1.12	0.603	0.331			
984	8.92	30.0	29.7	1.97	1.38	0.582	0.408			
991	8.97	35.0	34.7	2.00	1.63	0.584	0.477			
	Re = 150,000									
929	10.71	0.0	0.0	0.01	0.13	0.002	0.027			
938	10.70	5.0	4.8	1.17	0.20	0.240	0.040			
943	10.68	10.0	9.6	2.33	0.37	0.481	0.077			
948	10.70	15.0	14.5	3.19	0.57	0.655	0.117			
950	10.70	15.0	14.5	3.09	0.57	0.634	0.118			
978	10.77	15.0	14.5	3.40	0.61	0.689	0.124			
964	10.69	16.0	15.5	3.41	0.69	0.700	0.141			
967	10.71	16.0	15.4	3.52	0.69	0.722	0.142			
968	10.67	16.0	15.5	3.23	0.64	0.667	0.131			
995	10.77	17.0	16.4	3.70	0.77	0.750	0.156			
997	10.77	18.0	17.4	3.84	0.86	0.777	0.173			
999	10.77	19.0	18.4	3.79	1.05	0.769	0.213			
955	10.71	20.0	19.5	3.40	1.14	0.696	0.233			
979	10.75	20.0	19.5	3.40	1.25	0.691	0.254			
963	10.71	25.0	24.6	2.68	1.52	0.549	0.312			
980	10.76	25.0	24.6	2.72	1.60	0.553	0.325			
986	10.78	30.0	29.5	2.81	1.95	0.568	0.394			
993	10.77	35.0	34.5	2.84	2.35	0.576	0.476			
			Re = 1	75,000						
965	12.49	16.0	15.3	4.30	1.08	0.648	0.163			
956	12.50	20.0	19.3	4.47	1.64	0.672	0.247			
			Re = 1	96,000						
966	14.00	16.0	15.2	4.88	1.43	0.585	0.171			

FIGURE 1 PLAN AND SECTION VIEWS OF FINS. ALL DIMENSIONS IN INCHES.

FIGURE 3 APPARATUS FOR MEASURING LIFT AND DRAG OF FINS AGAINST A GROUND BOARD

LIFT COEFFICIENT OF ASPECT RATIO 1 FLAT PLATE WITHOUT TRIPS. FIGURE 6

FIGURE 7 LIFT COEFFICIENT OF ASPECT RATIO 1 FLAT PLATE WITH TRIPS.

LIFT COEFFICIENT OF ASPECT RATIO 1.5 FLAT PLATE WITHOUT TRIPS. FIGURE 8

LIFT COEFFICIENT OF ASPECT RATIO 1.5 FLAT PLATE WITH TRIPS. FIGURE 9

LIFT COEFFICIENT OF ASPECT RATIO 2 FLAT PLATE WITHOUT TRIPS. FIGURE 10

LIFT COEFFICIENT OF ASPECT RATIO 2 FLAT PLATE WITH TRIPS. FIGURE 11

LIFT COEFFICIENT OF ASPECT RATIO 1 FIN WITHOUT TRIPS, NACA 0015. FIGURE 12

LIFT COEFFICIENT OF ASPECT RATIO 1 FIN WITH TRIPS, NACA 0015. FIGURE 13

LIFT COEFFICIENT FOR ASPECT RATIO 1.5 FIN WITHOUT TRIPS, NACA 0015. FIGURE 14

LIFT COEFFICIENT FOR ASPECT RATIO 1.5 FIN WITH TRIPS, NACA 0015. FIGURE 15

LIFT COEFFICIENT FOR ASPECT RATIO 2 FIN WITHOUT TRIPS, NACA 0015. FIGURE 16

LIFT COEFFICIENT FOR ASPECT RATIO 2 FIN WITH TRIPS, NACA 0015. FIGURE 17

DRAG COEFFICIENT OF ASPECT RATIO 2 FIN WITHOUT TRIPS, NACA 0015. FIGURE 18

DRAG COEFFICIENT OF ASPECT RATIO 2 FIN WITH TRIPS, NACA 0015. FIGURE 19

FIGURE 20 EFFECT OF ASPECT RATIO ON LIFT CURVE FOR FLAT PLATE SECTION, WITH TRIPS.

FIGURE 21 EFFECT OF ASPECT RATIO ON LIFT CURVE FOR NACA SECTION, WITH TRIPS.

FIGURE 22 EFFECT OF SECTION SHAPE ON LIFT CURVE FOR ASPECT RATIO 1 FINS WITHOUT TRIPS.

FIGURE 23 EFFECT OF SECTION SHAPE ON LIFT CURVE FOR ASPECT RATIO 1 FINS WITH TRIPS.

FIGURE 24 EFFECT OF TURBULENCE TRIPS ON LIFT CURVE OF FLAT PLATE FIN.

FIGURE 25 EFFECT OF TURBULENCE TRIPS ON LIFT CURVE OF NACA 0015 FIN.

FIGURE 26 EFFECT OF SECTION SHAPE ON DRAG COEFFICIENT

FIGURE 27 DRAG COEFFICIENT OF ASPECT RATIO 2 FIN (NACA 0015) AT $\alpha = 0^{\circ}$

FIGURE 28 DRAG POLARS FOR NACA 0015 FIN AT Re = 150,000

FIGURE 30 EFFECT OF TURBULENCE STIMULATORS AND REYNOLDS NUMBER ON LIFT COEFFICIENT OF FLAT PLATE FIN.

FIGURE 31 COMPARISON OF MEASURED LIFT COEFFICIENTS WITH DATA OF WHICKER AND FEHLNER⁶

FIGURE 32 PLOT FOR DETERMINATION OF INDUCED DRAG FACTOR

FIGURE 33 EFFECT OF TRIP THICKNESS ON DRAG COEFFICIENT

APPENDIX A LIFT AND DRAG BALANCE CALIBRATION

The balance was calibrated on a tankside calibration stand, shown in the photograph (Figure A1), by application of known weights at the approximate center of pressure location of the fins to be tested. The apparatus was rotated so that lift, drag, and combinations thereof could be applied. The digitized voltage readings were expressed as linear functions of both lift and drag:

The coefficients in the matrix [C] were determined by means of a multivariate least squares fit. Inversion of this matrix gives the calibration rates R_{ij} :

$$\left\{ \begin{matrix} L \\ D \end{matrix} \right\} - \left[\begin{matrix} R \end{matrix} \right] \left\{ \begin{matrix} V \\ I \end{matrix} \right\} \quad ; \qquad \qquad \left[\begin{matrix} R \end{matrix} \right] - \left[\begin{matrix} C \end{matrix} \right]^{-1} \quad ,$$

where the off-diagonal elements R_{12} , R_{21} represent cross-coupling.

R-2598

Results of the calibration are summarized below.

Lift	Lift	Difference	Drag	Drag	Difference
Applied	Calculated		Applied	Calculated	
0.000	0.000	0	0.100	0.100	0
0.000	0.001	0.001	0.200	0.199	-0.001
0.000	0.000	0	0.500	0.501	0.001
0.000	0.000	0	0.700	0.700	0
0.000	0.000	0	1.000	1.001	0.001
0.000	-0.003	-0.003	1.200	1.201	0.001
1.000	1.003	0.003	0.000	0.001	0.001
2.000	2.002	0.002	0.000	0.002	0.002
3.000	2.993	-0.007	0.000	0.002	0.002
0.490	0.490	0.000	0.090	0.087	-0.003
0.980	0.982	0.002	0.170	0.175	0.005
1.970	1.975	0.005	0.350	0.348	-0.002
2.990	2.993	0.003	0.260	0.262	0.002
4.980	4.981	0.001	0.440	0.434	-0.006

The calibration rates are:

Lift =
$$-0.0066923 \text{ V}_{1} + 0.0000220 \text{ V}_{2}$$

Drag = $-0.0000303 \text{ V}_{1} + 0.0008012 \text{ V}_{2}$

where V_1 and V_2 are the digitized voltage readings from the lift and drag channels, respectively. The calibration is plotted on Figure A2.

The small deflections in the balance springs under load produced on a small angular deflection of the fins, tending to reduce the angle of attack. A calibration was carried out for angular deflection against lift force, with the following result:

R-2598

Lift	Angle	Angle	Difference
Applied	Measured	Calculated	
0	0	0.00	0
0.50	~0.09	-0.08	0.01
1.00	-0.16	-0.16	0
2.00	-0.30	-0.32	-0.02
3.00	-0.47	-0.48	-0.01
4.00	-0.66	-0.64	0.02

The angular deflection is related to the lift as follows:

 $\Delta \alpha = -0.161L$

A5/A6

APPENDIX B
TABULATION OF WATER TEMPERATURES

Date		
(1987)	Runs	Temperature (°F)
3/11	43-72	72.4
3/12	80-161	72.4
3/13	167-257	72.7
3/16	265-336	71.9
3/17	359-404	71.8
3/18	408~514	71.7
3/19	520-574	71.8
3/20	582-667	71.7
3/23	671-743	70.4
3/24	746-853	69.9
3/25	856-967	69.5
3/26	974-1019	69.2