Introduction

The goal of Transfer Learning is to adapt a Pre-Trained model for a Source task (the "base" model) to solve a new Target task.

Adapting a base model is typically performed by Fine-Tuning

- allowing the weights of the base model (and any additional "head") layers to adapt
- by training with a relatively small number of examples from the Target task.

Although Fine-Tuning is effective, there is a problem, especially with LLM base models

- ullet LLM models can have a very large number N of parameters
- ullet They are increasingly deep: number of stacked Transformer blocks $n_{
 m layers}$ is growing
 - latency in training

Even training on a small number of Target task examples is expensive in time and memory.

The question we address in this module

• Can we adapt a base model *without* modifying *all* of the parameters of the base model?

We will refer to this problem as Parameter Efficient Transfer Learning

• or *Parameter Efficient Fine-Tuning* when Fine-Tuning is used as the method for adaptation

We want the number of *adapted* parameters to be small relative to the total number of base model parameters.

We will use this fraction as a metric in comparing adaptation methods.

We note that the number of parameters in a Transformer is $N=\mathcal{O}\left(n_{ ext{layers}}*d^2
ight)$

- \bullet where d is the internal dimension of the Transformer
- calculations may be found in <u>our notebook (Transformer.ipynb#Number-of-parameters)</u> and <u>here (https://arxiv.org/pdf/2001.08361.pdf#page=6)</u>

Motivation for Parameter Efficient Transfer Learning

A base model may have a large number of parameters (e.g., an LLM)

- Adapting all the parameters may require large quantities of time and space
- Reducing the number of adapted parameters may have efficiency advantages

Beyond the obvious efficiency advantage

- there is a space advantage
- the specialization of the Base Model to a Target Task can be represented by the small number of adapted parameters

This means that the parameters of the same base model can be shared

- across models for different Target tasks
- with one set of separate (but small) adapted parameters for each Target

This is also potentially a way to enable per-user instances of a Target task

with user-specific training examples kept private to each user's instance

Adapters

References

- Parameter Efficient Transfer Learning for NLP (https://arxiv.org/pdf/1902.00751.pdf)
- LLM Adapters (https://arxiv.org/pdf/2304.01933.pdf)

Adapters are modules (implemented as Neural Networks)
• that are inserted into the existing modules (layers) of the base model.
In the general case:

model.

• we can insert one or more adapters *anywhere* within the NN comprising the base

Within a single Transformer block, typical arrangements are

- Series
 - Adapter inserted between modules
- Parallel
 - Adapter inserted parallel to a module
 - provided an alternate path by-passing the module
 Various Adapter designs

Figure 1: A detailed illustration of the model architectures of three different adapters: (a) Series Adapter (Houlsby et al., 2019), (b) Parallel Adapter (He et al., 2021), and (c) LoRA (Hu et al., 2021).

Attribution: https://arxiv.org/pdf/2304.01933.pdf#page=2

Here is a diagram of a common adapter

Adapter

The dimensions of the input and output of the adapter

- ullet are the same d (common vector dimension) used for all layers in a Transformer
- facilitates inserting adapters anywhere in the Transformer

The usual architecture

- ullet usually two modules, with a bottleneck of dimension a < d
 - Project down to reduced dimension; Project up to original dimension
- skip connection around the two projection modules

We are already familiar with adaptation via Adapter-like modules

- adding a new "head" layer to a head-less base model
 - often a Classifier to adapt the base model to the particular Target classes
- <u>Feature based transfer learning (NLP_Language_Models.ipynb#Other-uses-of-a-Language-Model:-Feature-based-Transfer-Learning)</u>
 - feeding the representation created by the base model to another module.
- these are not technically adapters
 - input and output dimensions don't match
 - architecture may differ

Regardless of where Adapters are placed

ullet they derive a new function g from the function f computed by the base model

Formally:

- f_{Θ} denotes the function computed by the base model which is parameterized by Θ
- $g_{\Theta,\Phi}(\mathbf{x})$ denotes the function computed by the adapted model
 - $lack \Phi$ are the Adapter parameters
 - lacksquare Θ are the base model parameters

Adapter Tuning occurs when we train only the parameters Φ of the Adapter modules

- on a small number of examples from the Target task
- freezing the parameters of the base model

During epoch t of Adapter Tuning, we learn $\Phi_{(t)}$

ullet initialing $\Phi_{(0)}$ such that

$$g_{\Theta,\Phi_{(0)}}(\mathbf{x})pprox f_{\Theta}(\mathbf{x})$$

- ullet can be achieved by setting $\Phi=0$
 - lacksquare because of the skip connection, the adapter output becomes $f_{\Theta}(\mathbf{x})$

Bottleneck size

Since Adapter Tuning does not change base model parameters Θ ,

- ullet the space used depends on the size of Φ
- this is the key to adapting the base model using a small number of parameters

The number of parameters of the projection components of the Adapter are $\mathcal{O}\left(d*a\right)$, multiplied by the number k of Adapters.

Recall that a number of parameters in a Transformer are $\mathcal{O}\left(n_{\mathrm{layers}}*d^2\right)$.

Expressing the size of Φ as a fraction of the size of Θ :

$$egin{array}{ll} r &=& rac{|\Phi|}{|\Theta|} \ &pprox &rac{d*a*n_{\mathrm{layers}}}{n_{\mathrm{layers}}*d^2} & \mathrm{since} \ &|\Phi| = \mathcal{O}\left(d*a*n_{\mathrm{layers}}
ight) & \mathrm{assuming} \ k = n_{\mathrm{layers}} \ &|\Theta| = \mathcal{O}\left(n_{\mathrm{layers}}*d^2
ight) & \mathrm{for} \ \mathrm{a} \ \mathrm{Transformer} \ &pprox &rac{a}{d} \end{array}$$

For reference, d=12,288 for GPT-3; a is chosen to satisfy a target for r

ullet e.g., r=0.1%, results in bottleneck size a=12

In <u>experiments (https://arxiv.org/pdf/1902.00751.pdf#page=4)</u>, the the botttleck was varied

$$a \in \{2,4,8,16,32,64\}$$

so typical a is a fraction of 1%.

<u>The effect of varying a (https://arxiv.org/pdf/1902.00751.pdf#page=7)</u> are shown in the orange line in the diagram below

- the horizontal axis is the total number of trainable parameters, which is linear in a
- it seems to show that increasing the size of the bottleneck does not impact performance greatly

The table also compares adaptation via Adapters to adaptation by Fine-Tuning only the top layers of the base model

- the total number of trainable parameters increases with the number of top layers fine-tuned
- the results show that adaptation via Adapters is better than Fine Tuning top layers
 - unless we Fine-Tune many top layers

Adapter vs Fine Tuning

Adapter placement

Recall that Transformer blocks are usually stacked into $n_{
m layers}$ in a Transformer for an LLM.

Initially, Adapters were placed at each level of the stack.

However, <u>experiments (https://arxiv.org/pdf/1902.00751.pdf#page=8)</u> show that the most impactful adapters are located at the *top* of the stack.

In the study, adapters are *removed* within a span of levels of the stacked blocks.

• the models are **not re-trained** after removing the adapters

The horizontal/vertical axes indexes the end/start of the span.

Columns 7 and beyond indicates the removing adapters does not decrease performance

• until the adapter at level 7 is removed

The last column indicates that the largest performance decrease occurs

when removing the single adapater at the top level
 Adapter placement

This is interesting

- Recall, our hypothesis of Deep learning is that increasing levels of abstraction of the inputs are created as layers become deeper
- The early layers create representations that transfer across most tasks
- The deepest layer representations are most task-specific

The decrease in performance corresponding to deeper layers

- may indicate that the Target task specific adaptation
- occurs in the region which we associate most with the Source task

LoRA

References

 LoRA:Low Rank Adaptation of Large Language Models (https://arxiv.org/pdf/2106.09685.pdf)

Additional reading

- <u>Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning (https://arxiv.org/abs/2012.13255)</u>
- LoRA Learns Less and Forgets Less (https://arxiv.org/pdf/2405.09673)

The Adapter method of Fine Tuning uses a module involving

- Down projecting to a lower dimension
- Up projecting back to the original dimension
- with an intervening non-linearity
- where the projections are achieved via Dense layers

We now show the Low Rank Adaptation (LoRA) method that is similar

- Down and Up Projections
- without an intervening non-linearity
- where the projections are achieved via matrix multiplication

Let \mathbf{W} denote the parameters of the Pre-Trained Model.

Fine-Tuning updates the parameters to

$$\mathbf{W}' = \mathbf{W} + \Delta \mathbf{W}$$

The usual method is to use Gradient Descent to create a sequence of parameter updates

- one per mini-batch
- equal to negative one times the learning-rate scaled gradient of the Loss

$$\Delta \mathbf{W} = \sum_t ext{update}_t$$

LoRA uses a different method

ullet using Gradient Descent to approximate the *cumulative* change $\Delta {f W}.$

Computing $\Delta \mathbf{W}$

LoRA does not learn $\Delta \mathbf{W}$ directly.

• It factors $\Delta \mathbf{W}$ as the product of two *smaller* lower rank matrices A,B:

$$\Delta \mathbf{W} = A * B$$

out		down project		up project		
$\Delta \mathbf{W}$	=	A	*	B		
$(d \times d)$		$(d\times r)$		(r imes d)		

where $r \leq \mathrm{rank}(\Delta \mathbf{W})$

Here is the architecture

LoRA adapting Pre-Trained matrix W

Attribution: https://arxiv.org/pdf/2106.09685.pdf#page=1

Given input \mathbf{x} , this arrangement results in output h

$$h = \mathbf{W}_0 * \mathbf{x}$$
 the left branch $+ \mathbf{x} * A * B$ the sum operator on top $= \mathbf{W}_0 * \mathbf{x} + \Delta \mathbf{W} * \mathbf{x}$ $\Delta \mathbf{W} = A * B$ $= (\mathbf{W}_0 + \Delta \mathbf{W}) * \mathbf{x}$ distributive property $= \mathbf{W}' * \mathbf{x}$ $\mathbf{W}' = \mathbf{W}_0 + \Delta \mathbf{W}$

Thus, the output is $\mathbf{W}' * \mathbf{x}$, satisfying the goal of adapting \mathbf{W} to \mathbf{W}' .

Note the computational advantage of computing

$$(\mathbf{x} * A) * B$$

over

$$\mathbf{x} * (A * B)$$

- ullet We avoid constructing the (d imes d) matrix (A st B)
- in favor of constructing *short* vectors

	down project	up project		
,	$(\mathbf{x}*A)$	*	B	
•	d*(d imes r)	*	(r imes d)	dimensions
,	r	*	(r imes d)	left product: dimensions r
	d			final dimensions: d

The two dimensions of A and B are d and r.

Thus, the resulting number of parameters

- is 2 * d * r parameters
- rather than d^2

So, not only is the representation of $\Delta \mathbf{W}$ smaller, there are fewer parameters to Fine-Tune.

Matrix B is initialized to 0 so that

$$egin{array}{lll} ullet & ext{when Fine-Tuning begins} & egin{array}{lll} old W' & = & old W_0 & + & (A*B) \ & = & old W_0 & + & (A*0) \ & = & old W_0 \end{array}$$

• the initial output is the *same* as the unmodified weights

A,B get updated during Fine-Tuning

by gradient descent on the elements of the matrices

The original weights \mathbf{W}_0 are frozen and not updated by Gradient Descent.

Note the similarity to the Adapter used in a Parallel arrangement.

The advantage of the Parallel arrangement compared to a Series arrangement

- the Series introduces an added layer
- each time it appears
- which slows inference

The Parallel arrangement used in LoRA does not introduce latency at inference time.

How big does **r** have to be ?

Not much! Values of $r \leq 2$ seem to do very well in an experiment

The accuracy reported when r=2 is almost the same as when r=64

LoRA: accuracy versus rank \boldsymbol{r}

7.2 WHAT IS THE OPTIMAL RANK r FOR LORA?

We turn our attention to the effect of rank r on model performance. We adapt $\{W_q, W_v\}$, $\{W_q, W_k, W_v, W_c\}$, and just W_q for a comparison.

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$ \begin{vmatrix} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{vmatrix} $	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$\begin{bmatrix} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{bmatrix}$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank r. To our surprise, a rank as small as one suffices for adapting both W_q and W_v on these datasets while training W_q alone needs a larger r. We conduct a similar experiment on GPT-2 in Section H.2.

Attribution: https://arxiv.org/pdf/2106.09685.pdf#page=10

Results

How do the various adaptation methods compare according to the authors?

LoRa with 37.7MM parameters (.02% of GPT-3) outperforms full Fine-Tuning.

LoRA: Performance, by method of adaptation

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results on WikiSQL have a fluctuation around $\pm 0.5\%$, MNLI-m around $\pm 0.1\%$, and SAMSum around $\pm 0.2/\pm 0.2/\pm 0.1$ for the three metrics.

Attribution: https://arxiv.org/pdf/2106.09685.pdf#page=8

is LoRA as good as full Fine-Tuning?

Compare the $\Delta \mathbf{W}$ of LoRA to that of full Fine-Tuning

- $\Delta \mathbf{W}_{LoRA}$ is low rank
- ullet $\Delta W_{\mathrm{Fine\ tuning}}$ is of unconstrained rank

It has been <u>shown (https://arxiv.org/pdf/2405.09673</u>) that for some Target tasks

- $\Delta \mathbf{W}$ is of high rank
- so LoRA will under-perform Fine Tuning for these Target tasks

On the other hand:

$$egin{aligned} ullet & \mathbf{W}_{ ext{LoRA}}' = \mathbf{W}_0 \ & + \Delta \mathbf{W}_{ ext{LoRA}} \ & & \end{aligned}$$

- is more similar to \mathbf{W}_0
- ullet than $\mathbf{W}'_{ ext{Fine tuning}} = \mathbf{W}_0$
 - $+\,\Delta \mathbf{W}_{ ext{Fine tuning}}$

so it has been found that LoRA is less likely forget the Source Task than full Fine-Tuning.

Summary

LoRA

- learns less (Target task)
- forgets less (Source task)

Technical aside: what does "similar" mean above?

Note

"Similar" is used in a very loose manner above.

The relation between modified \mathbf{W}' , base \mathbf{W}_0 , and "perturbbation" $\Delta \mathbf{W}$ was evaluated

- Using SVD (recall: used in PCA)
- To determine the number of singular vectors required to capture 90% of the variance of each

For Fine-tuning

- $\begin{array}{l} \bullet \ \ \text{The number of singular vectors required} \\ \bullet \ \ \text{was similar for } \mathbf{W}'_{Fine\ tuning}, \mathbf{W}_0 \ \text{and} \ \Delta \mathbf{W}_{Fine\ tuning} \end{array}$

For LoRA

- ullet the number of singular vectors for $\Delta \mathbf{W}_{\mathrm{LoRA}}$ is much smaller, for low rank r
- the rank r required
 - lacktriangledown in order for the number of singular vectors of ΔW_{LoRA}
 - lacktriangle to approach the number of singular vectors of \mathbf{W}_0
 - ullet is 10 to 100 times greater than the typical (small) r used in LoRA

So the low rank r typically used for $\Delta \mathbf{W}_{\mathrm{LoRA}}$

ullet is unable to capture the true (i.e., Fine-tuned) rank of $\mathbf{W}'_{\mathrm{Fine\ tuning}}$

This is dependent on the Source Task (i.e., \mathbf{W}_0) and the Target Task (i.e., \mathbf{W}')

BitFit

References

• <u>BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models (https://arxiv.org/pdf/2106.10199.pdf)</u>

Our goal remains

- to fine-tune a base model
- without having to adapt many parameters

LoRA achieves this goal

- by leaving base model parameters unchanged
- adding Adapters
 - training only Adapter weights

This paper takes a different approach

• adapt a *small number* of base model parameters

Recall 1

From the <u>Attention Lookup module (Attention_Lookup.ipynb#Projecting-queries,-keys-and-values)</u>

- Attention creates queries, keys, and values
 - based on the sequences (states) produced by earlier layers of the Transformer
- Rather than using the raw states of the Transformer as queries (resp., keys/values)
- ullet we can map them through projection/embedding matrices $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$
 - each mapping matrix shape is $(d \times d)$
 - lacktriangle thus, the mapping preserves the shapes of Q,K,V
- Mapping through these matrices:

$$K \mid$$
 = $\mid K \mid \mid \boldsymbol{W}_{K} \mid V \mid$ = $\mid V \mid \mid \boldsymbol{W}_{V} \mid (\bar{T} \times d) \mid \mid (\bar{T} \times d) \mid \mid (d \times d) \mid$

Recall 2

Our notational practice in dealing with the "bias" term

- when computing a dot product $\mathbf{w} \cdot \mathbf{x}$ we add
 - \blacksquare a constant "1" as first element of \mathbf{x} (let's call the augmented vector \mathbf{x}')
 - the bias parameter b as the first element of \mathbf{w} (let's call this \mathbf{w}')

So

$$\mathbf{w} \cdot \mathbf{x} + b = \mathbf{w}' \cdot \mathbf{x}'$$

This paper

- keeps w frozen
- \bullet modifies b

where these terms are parts of $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$.

On small to medium fine-tuning datasets

• performance comparable to fine-tuning *all* parameters

on large fine-tuning datasets

• performance comparable to other sparse methods

Conclusion: Fine-Tuning is easy for everyone!

Fine-Tuning a huge model like GPT-3 seemed out of the realm of possibility for individuals or small organizations.

- huge memory requirements
- time intensive
 - even with the much smaller number of examples in the Fine-Tuning dataset compared to the Pre-Training datasets

Parameter Efficient Transfer learning shows

- Fine-Tuning is now accessible on consumer grade hardware
- Without negligible loss of performance (maybe even better) than full Fine-Tuning

Our module on <u>Transformer Scaling (Transformers_Scaling.ipynb)</u>

- highlighted a trend
- to smaller Large Language Models
- with performance matching very large models (like GPT-3).

Combined with Parameter Efficient Fine-Tuning

- it is <u>now possible to Fine-Tune a model (LLaMA 7B)</u> (<u>https://arxiv.org/pdf/2303.16199.pdf)</u>
- with performance equivalent to GPT-3 (175B parameters)
- using 8 A100 GPU's
- in one hour!

```
In [2]: print("Done")
```

Done