MATH592 Introduction to Algebraic Topology

Pingbang Hu

January 31, 2022

Abstract

This course will use [HPM02] as the main text, but the order may differ here and there. Enjoy this fun course!

Contents

0.0.1 Constructing the Free Groups F_S	1	
1 The Fundamental Group 1.1 Group Presentation		
Lecture 8: The Fundamental Group π_1		24 Jan. 10:00
Example. In category $\underline{\mathbf{Ab}}$ free Abelian group on a set S is		
△ 7		

 $\bigoplus_{S} \mathbb{Z}$.

In category of fields, no such thing as ${\it free}$ field on ${\it S}$.

0.0.1 Constructing the Free Groups F_S

Proposition 0.1. The free group defined by the universal property exists.

Proof. We'll just give a construction below. First, we see the definition.

Definition 0.1. Fix a set S, and we define a <u>word</u> as a finite sequence (possibly \emptyset) in the formal symbols

$$\left\{s, s^{-1} \mid s \in S\right\}.$$

Then we see that elements in F_S are equivalence classes of words with the equivalence relation being

• delete ss^{-1} or $s^{-1}s$. i.e.,

$$vs^{-1}sw \sim vw$$

 $vss^{-1}w \sim vw$

for every word $v, w, s \in S$,

with the group operation being concatenation.

Example. Given words ab^{-1} , bba, their product is

$$ab^{-1} \cdot bba = ab^{-1}bba = aba.$$

Exercise. There are something we can check.

- 1. This product is well-defined on equivalence classes.
- 2. Every equivalence class of words has a unique reduced form, namely the representation.
- 3. Check that F_S satisfies the universal property with respect to the map

$$S \to F_S$$
, $s \mapsto s$.

1 The Fundamental Group

We start with the definition.

Definition 1.1 (Path). A path in a space X is a continuous map

$$\gamma\colon I\to X$$

where I = [0, 1].

Definition 1.2 (Homotopy path). A homotopy of paths γ_0 , γ_1 is a homotopy from γ_0 to γ_1 rel $\{0,1\}$.

Example. Fix $x_1, x_0 \in X$, then \exists homotopy of paths is an equivalence relation on paths from x_0 to x_1 (i.e., γ with $\gamma(0) = x_0, \gamma(1) = x_1$).

Definition 1.3 (Path composition). For paths α, β in X with $\alpha(1) = \beta(0)$, the *composition*^a $\alpha \cdot \beta$ is

$$(\alpha \cdot \beta)(t) := \begin{cases} \alpha(2t), & \text{if } t \in \left[0, \frac{1}{2}\right] \\ \beta(2t - 1), & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

 $[^]a$ Also named product, concatenation.

Remark. By the pasting lemma, this is continuous, hence $\alpha \cdot \beta$ is actually a path from $\alpha(0)$ to $\beta(1)$.

Definition 1.4 (Reparameterization). Let $\gamma: I \to X$ be a path, then a reparameterization of γ is a path

$$\gamma' \colon I \xrightarrow{\varphi} I \xrightarrow{\gamma} X$$

where φ is continuous and

$$\varphi(0)=0, \quad \varphi(1)=1.$$

Exercise. A path γ is homotopic rel $\{0,1\}$ to all of its reparameterizations.

Proof. We show that γ and $\gamma \circ \phi$ are homotopic rel $\{0,1\}$ by showing that there exists a continuous F_t such that

$$F_0 = \gamma$$
, $F_1 = \gamma \circ \phi$.

Notice that since ϕ is continuous, so we define

$$F_t(x) = (1 - t)\gamma(x) + t \cdot \gamma \circ \phi(x).$$

We see that

$$F_0(x) = \gamma(x), \quad F_1(x) = \gamma \circ \phi(x),$$

and also, we have

$$F_t(x) \in X$$

for all $x, t \in I$.

Now, we check that F_t really gives us a homotopic rel $\{0,1\}$. We have

$$F_t(0) = (1 - t)\gamma(0) + t \cdot \gamma \circ \phi(0) = (1 - t)\gamma(0) + t \cdot \gamma(\underbrace{\phi(0)}_{0}) = \gamma(0),$$

$$F_t(1) = (1 - t)\gamma(1) + t \cdot \gamma \circ \phi(1) = (1 - t)\gamma(1) + t \cdot \gamma(\underbrace{\phi(1)}_{1}) = \gamma(1),$$

which shows that 0 and 1 are independent of t, hence γ and $\gamma \circ \phi$ are homotopic rel $\{0,1\}$.

Exercise. Fix $x_1, x_1 \in X$. Then <u>Homotopy of paths</u> (relative $\{0,1\}$) is an equivalence relation on paths from x_0 to x_1 .

Definition 1.5 (Fundamental Group). Let X denotes the space and let $x_0 \in X$ be the base point. The fundamental group of X based at x_0 , denoted by $\pi_1(X, x_0)$, is a group such that

• Elements: Homotopy classes rel $\{0,1\}$ of paths $[\gamma]$ where γ is a **loop** with $\gamma(0) = \gamma(1) = x_0^a$

- Operation: Composition of paths.
- Identity: Constant loop γ based at x_0 such that

$$\gamma: I \to X, \quad t \mapsto x_0$$

• Inverses: The inverse $[\gamma]^{-1}$ of $[\gamma]$ is represented by the loop $\overline{\gamma}$ such that

$$\overline{\gamma}(t) = \gamma(1-t).$$

^aWe say γ is **based** at x_0 .

Proof. We prove that

• Associativity: $[\gamma_1\cdot(\gamma_2\cdot\gamma_3)]=[(\gamma_1\cdot\gamma_2)\cdot\gamma_3].$ We break this down into

$$\gamma_{1} \cdot (\gamma_{2} \cdot \gamma_{3})(t) = \begin{cases} \gamma_{1}(2t), & \text{if } t \in \left[0, \frac{1}{2}\right]; \\ (\gamma_{2} \cdot \gamma_{3})(2t - 1), & \text{if } t \in \left[\frac{1}{2}, 1\right] \end{cases} = \begin{cases} \gamma_{1}(2t), & \text{if } t \in \left[0, \frac{1}{2}\right]; \\ \gamma_{2}(4t - 2), & \text{if } t \in \left[\frac{1}{2}, \frac{3}{4}\right]; \\ \gamma_{3}(4t - 3), & \text{if } t \in \left[\frac{3}{4}, 1\right], \end{cases}$$

and

$$(\gamma_{1} \cdot \gamma_{2}) \cdot \gamma_{3}(t) = \begin{cases} (\gamma_{1} \cdot \gamma_{2})(2t), & \text{if } t \in \left[0, \frac{1}{2}\right]; \\ \gamma_{3}(2t-1), & \text{if } t \in \left[\frac{1}{2}, 1\right] \end{cases} = \begin{cases} \gamma_{1}(4t), & \text{if } t \in \left[0, \frac{1}{4}\right]; \\ \gamma_{2}(4t-1), & \text{if } t \in \left[\frac{1}{4}, \frac{1}{2}\right]; \\ \gamma_{3}(2t-1), & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Then, we define $\phi: I \to I$ such that

$$\phi(t) = \begin{cases} 2t \in \left[0, \frac{1}{2}\right], & \text{if } t \in \left[0, \frac{1}{4}\right]; \\ t + \frac{1}{4} \in \left[\frac{1}{2}, \frac{3}{4}\right], & \text{if } t \in \left[\frac{1}{4}, \frac{1}{2}\right]; \\ \frac{t+1}{2} \in \left[\frac{3}{4}, 1\right], & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

We easily see that

$$\gamma_1 \cdot (\gamma_2 \cdot \gamma_3)(t) = (\gamma_1 \cdot \gamma_2) \cdot \gamma_3 \circ \phi(t)$$

and $\phi(t)$ is continuous and satisfied $\phi(0) = 0$ and $\phi(1) = 1$, which implies that the associativity holds.

• Identity: We want to show that $[\gamma \cdot c] = [\gamma]$. Again, we consider

$$(\gamma \cdot c)(t) = \begin{cases} \gamma(2t), & \text{if } t \in \left[0, \frac{1}{2}\right]; \\ c(2t - 1) = c = x_0 = \gamma(0), & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Now, consider $\phi \colon I \to I$ such that

$$\phi(t) = \begin{cases} 2t, & \text{if } t \in \left[0, \frac{1}{2}\right]; \\ 1, & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

We easily see that

$$(\gamma \cdot c)(t) = (\gamma \circ \phi)(t)$$

and $\phi(t)$ is continuous and satisfied $\phi(0) = 0$ and $\phi(1) = 1$.

• Inverses: We want to show that $\gamma \cdot \overline{\gamma} \simeq c$, where $\overline{\gamma}(t) = \gamma(1-t)$. Firstly, we have

$$(\gamma \cdot \overline{\gamma})(t) = \begin{cases} \gamma(2t), & \text{if } t \in \left[0, \frac{1}{2}\right]; \\ \overline{\gamma}(1 - 2t), & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

We consider F_t given by

$$F_t(x) = \begin{cases} \gamma(2xt), & \text{if } x \in \left[0, \frac{1}{2}\right]; \\ \overline{\gamma}(1 - 2xt), & \text{if } x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

If t = 0, we have

$$F_0(x) = \begin{cases} \gamma(0), & \text{if } x \in \left[0, \frac{1}{2}\right]; \\ \overline{\gamma}(1), & \text{if } x \in \left[\frac{1}{2}, 1\right] \end{cases} = x_0$$

for all $x \in I$, namely $F_0 = c$, while when t = 1, we have

$$F_1(x) = \begin{cases} \gamma(2x), & \text{if } x \in \left[0, \frac{1}{2}\right]; \\ \overline{\gamma}(1 - 2x), & \text{if } x \in \left[\frac{1}{2}, 1\right] \end{cases} = (\gamma \cdot \overline{\gamma})(x),$$

and we see that F_t is continuous since at $x = \frac{1}{2}$, we have

$$\gamma(2x) = \gamma(1) = \overline{\gamma}(0) = \overline{\gamma}(1 - 2x),$$

hence we see that F_t is the homotopy between $\gamma \cdot \overline{\gamma}$ and c.

Figure 1: Illustration of F_t . Intuitively, the path $\gamma \cdot \overline{\gamma}$ is $x_0 \xrightarrow{\gamma} x_0 \xrightarrow{\overline{\gamma}} x_0$. But now, F_t is $x_0 \xrightarrow{\gamma} t \xrightarrow{\overline{\gamma}} x_0$. We can think of this homotopy is *pulling back* the turning point along the original path.

Theorem 1.1. If X is path-connected, then

$$\forall x_0, x_1 \in X \quad \pi_1(X, x_0) \cong \pi_1(X, x_1).$$

Remark. We often write $\pi_1(X)$ up to isomorphism.

Proof. To show that the *change-of-basepoint map* is isomorphism, we show that it's one-to-one and onto.

• one-to-one. Consider that if $[h \cdot \gamma \cdot \overline{h}] = [h \cdot \gamma' \cdot \overline{h}]$, then since we know that $h^{-1} = \overline{h}$, hence in the fundamental group $\pi_1(X, x_0)$, we see that

$$\overline{h} \cdot h \cdot \gamma \cdot \overline{h} \cdot h = \overline{h} \cdot h \cdot \gamma' \cdot \overline{h} \cdot h. \implies \gamma = \gamma'$$

as we desired.

• onto. We see that for every $\alpha \in \pi_1(X, x_0)$, there exists a $\gamma \in \pi_1(X, x_0)$ such that

$$\gamma = \overline{h} \cdot \alpha \cdot h \in \pi_1(X, x_1)^1$$

since $h \cdot \gamma \cdot \overline{h} = \alpha$.

We then see that the fundamental group of X does not depend on the choice of basepoint, only on the choice of the path component of the basepoint. If X is path-connected, it now makes sense to refer to the fundamental group of X and write $\pi_1(X)$ for the abstract group (up to isomorphism).

Exercise. Composition of paths is well-defined on homotopy classes $rel\{0,1\}$.

Exercise. If X is a contractible space, then X is path connected and $\pi_1(X)$ is trivial.

Lecture 9: Calculate Fundamental Group

26 Jan. 10:00

Figure 2: Fundamental Group is basically a hole detector!

¹Notice that this is indeed the case, one can verify this by the fact that $h: x_0 \to x_1$ and $\overline{h}: x_1 \to x_0$.

Theorem 1.2. Given (X, x_0) and (Y, y_9) , then

$$\pi(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

such that

$$\begin{bmatrix} r \colon I \to X \times Y \\ r(t) = (r_X(t), r_Y(t)) \end{bmatrix} \mapsto (r_X, r_Y),$$

where γ is continuous $\iff f_X, f_Y$ are continuous.

Proof. Let $Z \to X \times Y$ with $z \mapsto (f_X(z), f_Y(z))$. Then we have

continuous $\iff f_X, f_Y$ are continuous.

Now, apply to

- $\bullet \ \ I \to X \times Y.$
- $I \times I \to X \times Y$.

Corollary 1.1. Torus $T \cong S^1 \times S^1$. Additionally,

$$\pi_1\left((S^1)^k\right) \cong \mathbb{Z}^k.$$

Proof. Since

$$\pi_1 \cong \mathbb{Z}^2 \cong \mathbb{Z}_a \oplus \mathbb{Z}_b.$$

Example. We now see some examples.

- 1. $\pi_1(S^{\infty} \times S^1) \cong \mathbb{Z}$
- 2. $\pi_1(\mathbb{R}^2 \setminus \{0\}) \cong \mathbb{Z}$ since

$$\mathbb{R}^2 \setminus \{0\} \cong S^1 \times \mathbb{R}.$$

Theorem 1.3. Let π_1 is a functor

$$\pi_1 : \underline{\operatorname{Top}}_* \to \underline{\operatorname{Gp}}$$
 $(X, x_0) \mapsto \pi_1(X, x_0).$

A map $f: X \to Y$ taking base point x_0 to y_0 induces a map

$$f_* \colon \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

 $[\gamma] \mapsto [f \circ \gamma]$

i.e.,

$$[f: X \to Y] \mapsto [f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))].$$

Notation. We usually write f_* if it's a covarant functor, while writing f^* if it's an contravariant functor.

Proof. We need to check

- well-defined on path homotopy classes.
- f_* is a group homomorphism.

$$f_*(\alpha \cdot \beta) = f_*(\alpha) \cdot f_*(\beta) = \begin{cases} f(\alpha(2s)), & \text{if } s \in \left[0, \frac{1}{2}\right] \\ f(\beta(1-2s)), & \text{if } s \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

- $(id_{(X,x_0)})_* = id_{\pi_1(X,x_0)}$
- $\bullet \ (f_* \circ g_*) = (f \circ g)_*$

$$(f \circ g)_*[\gamma] = [f \circ g \circ \gamma] = [f \circ (g \circ \gamma)] \implies f_*(\gamma_*(\gamma)).$$

DIY

Lecture 10: Seifert-Van Kampen Theorem

26 Jan. 10:00

The goal is to compute $\pi_1(X)$ where $X = A \cup B$ using the data

$$\pi_1(A), \pi_1(B), \pi_1(A \cap B).$$

We first introduce a definition.

Definition 1.6 (Free product with amalgamation). Given some collections of groups $\{G_{\alpha}\}_{\alpha}$, the *free product*, denoted by ${}_{\alpha}^{*}G_{\alpha}$ is a group such that

• Elements: Words in $\{g\colon g\in G_\alpha \text{ for any } \alpha\}$ modulo by the equivalence relation generated by

$$wg_ig_jv \sim w(g_ig_j)v$$

when both $g_i, g_j \in G_{\alpha}$. Also, for the identity element id $= e_{\alpha} \in G_{\alpha}$ for any α such that

$$we_{\alpha}v \sim wv$$
.

• Operation: Concatenation of words.

Furthermore, if two groups G_{α} and G_{β} have a common subgroup $S_{\{\alpha,\beta\}}{}^a$, given two inclusion maps^b $i_{\alpha\beta} \colon S_{\{\alpha,\beta\}} \to G_{\alpha}$ and $i_{\beta\alpha} \colon S_{\{\alpha,\beta\}} \to G_{\beta}$, the free product with amalgamation ${}_{\alpha} \!\!\!\!/ \!\!\!\!/ \!\!\!\!/ \!\!\!\!/ \!\!\!\!/ S_{\alpha}$ is defined as ${}_{\alpha} \!\!\!\!\!/ \!\!\!\!/ \!\!\!\!/ \!\!\!\!/ G_{\alpha}$ modulo the normal subgroup generated by

$$\left\{i_{\alpha\beta}(s_{\{\alpha,\beta\}})i_{\beta\alpha}(s_{\{\alpha,\beta\}})^{-1} \mid s_{\alpha\beta} \in S_{\{\alpha,\beta\}}\right\},\,$$

Namely c ,

$${}_{\alpha}*_{S}G_{\alpha} = {}_{\alpha}^{*G_{\alpha}} / \langle i_{\alpha\beta}(s_{\{\alpha,\beta\}})i_{\beta\alpha}(s_{\{\alpha,\beta\}})^{-1} \rangle$$

and satisfies the universal property

^aIn general, we don't need $S_{\{\alpha,\beta\}}$ to be a subgroup.

Remark. We see that

• We can then write out words such as $g_1g_2sg_3$ for $s \in S$, and view s as an element of G_{α} or G_{β} . In fact, we can do this construction even when i_{α} and i_{β} are not injective, though this means we are not working with a subgroup.

^bWe don't actually need $i_{\alpha\beta}$, $i_{\beta\alpha}$ to be inclusive as well.

^cNamely, $i_{\alpha}(s)$ and $i_{\beta}(s)$ will be identified in the quotient.

• Aside, in Top, the same universal property defines union

for A, B are open subsets and the inclusion of intersection.

Theorem 1.4 (Seifert-Van Kampen Theorem). Given (X, x_0) such that $X = \bigcup_{\alpha} A_{\alpha}$ with

- A_{α} are open and path-connected and $\forall \alpha \ x_0 \in A_{\alpha}$
- $A_{\alpha} \cap A_{\beta}$ is path-connected for all α, β .

Then there exists a surjective group homomorphism

$$\underset{\alpha}{*} : \pi_1(A_\alpha, x_0) \to \pi_1(X, x_0).$$

If we additionally have $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ where they are all path-connected for every α, β, γ , then

$$\pi_1(X, x_0) \cong_{\alpha} *_{\pi_1(A_{\alpha} \cap A_{\beta}, x_0)} \pi_1(A_{\alpha}, x_0)$$

associated to all maps $\pi_a(A_\alpha \cap A_\beta) \to \pi_1(A_\alpha)$, $\pi_1(A_\beta)$ induced by inclusions of spaces. i.e., $\pi_1(X, x_0)$ is a quotient of the free product $*_\alpha \pi_1(A_\alpha)$ where we have

$$(i_{\alpha\beta})_*: \pi_1(A_{\alpha} \cap A_{\beta}) \to \pi_1(A + \alpha)$$

which is induced by the inclusion $i_{\alpha\beta} \colon A_{\alpha} \cap A_{\beta} \to A_{\alpha}$. We then take the quotient by the normal subgroup generated by

$$\{(i_{\alpha\beta})_*(\gamma)(i_{\beta\alpha})_* \mid \gamma \in \pi_1(A_\alpha \cap A_\beta)\}.$$

Lecture 11 31 Jan. 10:00

Example. We now see some applications. Given spaces $\{X_{\alpha}\}$ \overline{w} basepoints x_{α} . Now, consider the wedge sum $\bigvee_{\alpha} X_{\alpha}$. Suppose $\forall \alpha, x_{\alpha}$ is a deformation retract of some neighborhood u_{α} of x_{α} . Then,

$$\pi_1\left(\bigvee_{\alpha} X_{\alpha}, x_{\alpha}\right) \cong \underset{\alpha}{*}\pi_1\left(X_{\alpha}, x_{\alpha}\right).$$

In particular, if we denote

as C_n , then $\pi_1(C_n) \cong F_n$. Then we apply Theorem 1.4 to $A_\alpha = X_\alpha \cup_\beta u_\beta$

1.1 Group Presentation

In order to go further, we introduce the concept of group presentation.

Definition 1.7 (Group presentation). A presentation $\langle S \mid R \rangle$ of a group G is

- S: set of generators
- R: set of relaters (words in a generator and inverses)

such that

$$G \cong {}^{F_S} / \langle R \rangle,$$

where $\langle R \rangle$ is a subgroup normally generated.

Notice that $\langle S \mid R \rangle$ is finite if S,R are, and G is finitely presented if there exists a finite presentation.

Example. We see that

1.
$$F_2 = \langle a, b \mid \rangle$$

- 2. $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$
- 3. $\mathbb{Z}/3\mathbb{Z} = \langle a \mid a^3 \rangle$
- 4. $S_3 = \langle a, b \mid a^2, b^2, (ab)^3 \rangle$

Theorem 1.5. Any group G has a presentation.

Proof. We first choose a generating set S for G. From the universal property of free group, we see that there exists a surjective map $\varphi \colon F_S \to G, s \mapsto s$. Now, let R be the generating set for $\ker(\varphi)$, $G = \langle S \mid R \rangle$.

Remark. The advantages are that given $\langle S \mid R \rangle$, it's now easy to define a homomorphism $\psi \colon G \to H$ given a map $\psi \colon S \to H$, ψ extends to a group homomorphism $G \to H$ if and only if ψ vanishes on R.

Example. Given $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$, let

$$\psi \colon \{a,b\} \to H$$

extends to a homomorphism if and only if

$$\psi(a)\psi(b)\psi(a)^{-1}\psi(b)^{-1} = 1 \in H.$$

It's sometimes easy to calculate G^{Ab}

$$G^{Ab} = \langle S \mid R, \text{commutators in } S \rangle$$
.

The disadvantages are that, the computationally very difficult.

1.2 Presentations for π_1

Appendix

References

[HPM02] A. Hatcher, Cambridge University Press, and Cornell University. Department of Mathematics. *Algebraic Topology*. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401. URL: https://books.google.com/books?id=BjKs86kosqgC.