

**Ano Letivo: 2022/2023** 

# Atividade 03-Métodos Numéricos para EDO/PVI

# Relatório

Análise Matemática II

**Docente:** Arménio Correia

# Trabalho realizado por:

Martim Alexandre Vieira Antunes

nº: 2022141890 Curso: LEI

Pedro Lino Neves Faneca

# Índice

| 1.Introdução                                                   | 3  |
|----------------------------------------------------------------|----|
| 1.1-Equação diferencial e propriedades                         | 3  |
| 1.2-Definição de PVI                                           | 4  |
| 2.Métodos numéricos para a resolução de PVI                    | 5  |
| 2.1-Método de Euler                                            | 6  |
| 2.1.1-Fórmulas                                                 | 6  |
| 2.1.2-Algoritmo/Função                                         | 6  |
| 2.2-Método de Euler Melhorado ou Modificado                    | 7  |
| 2.2.1-Fórmulas                                                 | 7  |
| 2.2.2-Algoritmo/Função                                         | 8  |
| 2.3-Método de RK2                                              | 9  |
| 2.3.1-Fórmulas                                                 | 9  |
| 2.3.2-Algoritmo/Função                                         | 10 |
| 2.4-Método de RK4                                              | 11 |
| 2.4.1-Fórmulas                                                 | 11 |
| 2.4.2-Algoritmo/Função                                         | 12 |
| 2.5-Função ODE45 do Matlab                                     | 13 |
| 2.5.1-Fórmulas                                                 | 13 |
| 2.5.2-Algoritmo/Função                                         | 13 |
| 2.6-Método do Ponto Médio                                      | 14 |
| 2.6.1-Fórmulas                                                 | 14 |
| 2.6.2-Algoritmo/Função                                         | 15 |
| 3.Exemplos de aplicação e teste dos métodos                    | 16 |
| 3.1-Exercício 3 do Teste Farol                                 | 16 |
| 3.1.1-PVI-Equação Diferencial de 1º ordem e Condições Iniciais | 16 |

| 3.1.2-Exemplos de output-App com gráfico e tabela       | 17 |
|---------------------------------------------------------|----|
| 3.2-Problemas de aplicação do livro                     | 21 |
| 3.2.1-Modelação matemática do problema                  | 21 |
| 3.2.2-Resolução através da App desenvolvida             | 22 |
| 3.3-Problemas de aplicação da alínea 2.b do teste Farol | 25 |
| 3.3.1- Modelação matemática do problema                 | 25 |
| 3.3.2- Resolução através da App desenvolvida            | 26 |
| 4.Conclusão                                             | 27 |
| 5.Bibliografia                                          | 28 |
| 6.Autoavaliação e heteroavaliação                       | 29 |

#### 1.Introdução

Este trabalho surge do âmbito da unidade curricular de Análise Matemática 2, do curso de Engenharia Informática do Instituto Superior de Engenharia de Coimbra.

O seu foco consiste no estudo de Métodos Numéricos para a resolução de Equações Diferenciais Ordinárias (EDOs) e de Problemas de Valor inicial (PVIs), e na implementação desses métodos através do desenvolvimento de uma app em linguagem de programação MATLAB.

Para uma melhor familiarização com estes conteúdos, incluímos exemplos de aplicação e testes dos métodos numéricos analisados.

#### 1.1-Equação diferencial: definição e propriedades

As equações diferenciais são aquelas que contêm as derivadas de uma ou mais variáveis dependentes em relação a uma ou mais variáveis independentes.

As equações diferenciais são classificadas quanto ao tipo, ordem e linearidade.

- Quanto ao tipo as equações diferenciais são classificadas em: ordinárias e parciais. Equações diferenciais ordinárias (EDO) são aquelas que contêm uma ou mais derivadas de variáveis dependentes em relação a uma variável independente. As equações diferenciais parciais (EDP) são aquelas que envolve as derivadas parciais de uma ou mais variáveis dependentes em relação a uma ou mais variáveis independentes.
- Quanto a ordem uma equação diferencial pode ser de 1ª, 2ª,...,n-ésima ordem dependendo da derivada de maior ordem presente na equação. Uma equação ordinária de ordem n pode ser escrita na forma:

$$F(t, y, y', y''...y^{(n)}) = 0$$

 Quanto a linearidade de uma equação diferencial ela pode ser linear e não linear. Ela é linear se as incógnitas e suas derivadas aparecem de forma linear. Por exemplo uma equação diferencial ordinária de ordem n é uma equação que pode ser escrita como:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \ldots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

As equações diferenciais ordinárias que não podem ser escritas nessa forma são não lineares.

#### 1.2-Definição de PVI

Um PVI significa Problema de Valor Inicial e é um conceito da matemática aplicada e da análise numérica. Em termos simples, um PVI é uma equação diferencial que descreve o comportamento de uma função desconhecida, juntamente com uma condição inicial que específica o valor da função em um ponto específico. O objetivo do problema é encontrar uma solução que satisfaça a equação diferencial e a condição inicial. Os PVIs podem ser resolvidos de forma exata ou aproximada.

Um problema de valor inicial (PVI) é uma equação diferencial da forma:

$$\begin{cases} y' = f(t, y) \\ t \in [a, b] \\ y(a) = y_0 \end{cases}$$

#### 2. Métodos Numéricos para a resolução de PVI

Existem vários métodos numéricos para a resolução de PVI entre eles:

- Método de Euler: Este é o método mais simples e direto para resolver um PVI.
   Ele usa uma aproximação linear para a solução e é fácil de implementar. No entanto, a precisão deste método é limitada e pode gerar erros significativos em soluções complexas.
- Método de Runge-Kutta: Este é um método iterativo que usa várias estimativas de ordem superior para melhorar a precisão da solução. O método de Runge-Kutta é mais preciso do que o método de Euler, mas é mais complexo de implementar.
- Método de Adams-Bashforth: Este método é uma abordagem de múltiplas etapas que usa as soluções anteriores para estimar a solução atual. Ele tem uma precisão moderada e é fácil de implementar.
- O método de Heun, também conhecido como método de Euler moderado, é um método numérico para resolver problemas de valor inicial (PVI) de equações diferenciais ordinárias (EDOs). Ele é uma melhoria do método de Euler, que consiste em aproximar a solução da EDO por meio de uma reta tangente ao ponto inicial.

Esses são apenas alguns dos métodos disponíveis para resolver PVI. A escolha do método a ser usado depende da complexidade da equação diferencial e das condições iniciais, bem como dos requisitos de precisão e eficiência computacional.

Neste trabalho iremos abordar os métodos de Euler, Euler Moderado, Runge-Kutta de ordem 2 e 4, a função ODE45 e ainda o Ponto Médio.

#### 2.1-Método de Euler

O método de Euler é um dos métodos numéricos mais simples e amplamente utilizados para resolver problemas de valor inicial (PVI) de equações diferenciais ordinárias (EDOs). Ele consiste em aproximar a solução da EDO por meio de uma reta tangente ao ponto inicial, no entanto, é importante lembrar que ele tem limitações em relação à precisão e pode não ser a melhor escolha em todos os casos.

#### 2.1.1-Fórmulas

A fórmula do Método de Euler para resolver um PVI é:

$$y_{i+1} = y_i + h * f(t_i, y_i), i=0,1,...,n-1$$

#### Legenda:

- y<sub>i+1</sub> = Próximo valor aproximado da solução do problema original (na abcissa ti+1);
- y<sub>i</sub> = Valor aproximado da solução do problema original na abcissa atual;
- h = Valor de cada subintervalo (passo);
- $f(t_i, y_i) = \text{Valor da equação em } t_i = y_i$ ;

#### 2.1.2-Algoritmo/Função

#### Algoritmo:

- Ler f, a, b, y0, n;
- Calcular h (h =(b-a)/n);
- t = a:h:b;
- y = y0;
- Para i de 1 até n fazer y=y+h\*f(t,y);
- Escrever y;

#### Função (MATLAB):

#### 2.2 Método de Euler Moderado

O método de Euler moderado, ou método de Heun, é um método numérico para resolver equações diferenciais ordinárias (EDOs) de primeira ordem. Ele é uma melhoria do método de Euler simples, que é mais simples de implementar, mas pode produzir soluções menos precisas.

#### 2.2.1-Fórmulas

#### Fórmula Geral

$$y_{i+1} = y_i + h/2*(k1+k2), i=0,1,...,n-1$$

#### Legenda:

- y<sub>i+1</sub> = Próximo valor de y(valor aproximado da solução ao problema) na abcissa ti+1;
- y<sub>i</sub> = Valor aproximado da solução do problema na abcissa atual(abcissa ti);
- h = Valor de cada subintervalo (passo);
- $k_1$  = Inclinação no início do intervalo;
- $k_2$  = Inclinação no fim do intervalo;

#### Fórmula para calcular k1

- $k_1$  = Inclinação no início do intervalo
- $f(t_i, y_i)$  = Valor da equação em  $t_i$  e  $y_i$ ;

# Fórmula para calcular k2

$$k2 = f(t_{t+1}, y_i + k1*h)$$

#### Legenda:

- $k_2$  = Inclinação no fim do intervalo;
- $t_{i+1}$  = Valor da abcissa seguinte;
- y<sub>i</sub> = Valor aproximado da solução do problema original na abcissa atual;
- $k_1$  = Inclinação no início do intervalo;
- h = Valor de cada subintervalo (passo);

#### 2.2.2-Algoritmo/Função

#### Algoritmo:

```
Ler f, a, b, n, y0;
Calcular h (h = (b-a)/n);
t = a:h:b;
y = y0;
Para i de 1 até n fazer:
k1 = f(t<sub>i</sub>,y<sub>i</sub>);
k2 = f(t<sub>t+1</sub>, y<sub>i</sub> + k1*h);
y<sub>i+1</sub>= y<sub>i</sub> + h/2*(k1+k2);
```

• Escrever y<sub>i+1</sub>

# Função (MATLAB):

```
function yEulerM=EulerM(f,a,b,n,y0)
                           % Tamanho de cada subintervalo (passo)
h = (b-a)/n;
yEulerM=zeros(1,n+1);
                          % Alocação de memória - vetor das ordenadas
t=a:h:b;
                           % Alocação de memória - vetor das abcissas
yEulerM(1) = y0;
                           % O primeiro valor de y é sempre y0
   for i=1:n
                                    % O número de iterações vai ser igual a n
                                          % Inclinação no início do intervalo
       k1 = f(t(i), yEulerM(i));
       k2 = f(t(i+1), yEulerM(i) + k1*h); % Inclinação no fim do intervalo
       yEulerM(i+1)=yEulerM(i)+h/2*(k1+k2); % Próximo valor aproximado da
                                             % solução do problema original
    end
end
```

#### 2.3 Método de Runge-Kutta de 2ª Ordem

O método de Runge-Kutta de 2ª ordem é um algoritmo numérico utilizado para aproximar soluções de equações diferenciais ordinárias de primeira ordem. Ele utiliza duas estimativas para calcular a solução em cada passo de tempo, resultando numa precisão maior do que a do método de Euler.

#### 2.3.1-Fórmulas

#### Fórmula Geral

$$y_{i+1} = y_i + \frac{1}{2}*(k1+k2), i=0,1,...,n-1$$

#### Legenda:

- y<sub>i+1</sub> = Próximo valor de y(valor aproximado da solução ao problema) na abcissa ti+1;
- y<sub>i</sub> = Valor aproximado da solução do problema na abcissa atual(abcissa ti);
- $k_1$  = Inclinação no início do intervalo;
- $k_2$  = Inclinação no fim do intervalo;

#### Fórmula para calcular k1

$$k1 = h^* f(t_i, y_i)$$
  
Legenda:

- $k_1$  = Inclinação no início do intervalo
- $f(t_i, y_i) = \text{Valor da equação em } t_i = y_i$ ;
- h = Valor de cada subintervalo (passo);

#### Fórmula para calcular k2

$$k2 = h*f(t_{t+1}, y_i + k1)$$

#### Legenda:

- k<sub>2</sub> = Inclinação no fim do intervalo;
- t<sub>i+1</sub> = Valor da abcissa seguinte;
- y<sub>i</sub> = Valor aproximado da solução do problema original na abcissa atual;
- k<sub>1</sub> = Inclinação no início do intervalo;
- h = Valor de cada subintervalo (passo);

#### 2.3.2-Algoritmo/Função

#### Algoritmo:

- Ler f, a, b, n, y0;
- Calcular h (h =(b-a)/n);
- t= a:h:b;
- y = y0;
- Para i de 1 até n fazer:

```
k1 = h*f(t_{i},y_{i});
k2 = h*f(t_{t+1}, y_{i} + k1);
y_{i+1} = y_{i} + \frac{1}{2}*(k1+k2);
```

• Escrever y<sub>i+1</sub>

# Função (MATLAB):

```
function yRK2=RK2(f,a,b,n,y0)
h = (b-a)/n;
                           % Tamanho de cada subintervalo (passo)
yRK2=zeros(1,n+1);
                          % Alocação de memória - vetor das ordenadas
                           % Alocação de memória - vetor das abcissas
t=a:h:b;
yRK2(1) = y0;
                           % O primeiro valor de y é sempre y0
   for i = 1:n
                      % O número de iterações vai ser igual a n
   k1 = h*f(t(i), yRK2(i));
                                     % Inclinação no início do intervalo
   k2 = h*f(t(i+1), yRK2(i) + k1); % Inclinação no fim do intervalo
   yRK2(i+1) = yRK2(i) + 1/2*(k1 + k2);
                                        % Próximo valor aproximado da
                                         % solução do problema original
   end
end
```

#### 2.4-Método de Runge-Kutta de 4ª Ordem

O método de Runge-Kutta de 4ª ordem é um algoritmo numérico utilizado para aproximar soluções de equações diferenciais ordinárias, que utiliza quatro estimativas intercaladas para calcular a solução em cada passo de tempo. O método de Runge-Kutta de 4ª ordem é mais preciso do que o método de Runge-Kutta de 2ª ordem para a aproximação da solução numérica de equações diferenciais ordinárias.

#### 2.4.1-Fórmulas

#### Fórmula Geral

$$y_{i+1} = y_i + \frac{1}{6}*(k1+2*k2+2*k3+k4), i=0,1,...,n-1$$

#### Legenda:

- y<sub>i+1</sub> = Próximo valor de y(valor aproximado da solução ao problema) na abcissa ti+1;
- $y_i$  = Valor aproximado da solução do problema na abcissa atual(abcissa ti);
- k<sub>1</sub> = Inclinação no início do intervalo;
- k<sub>2</sub> = Inclinação no ponto médio do intervalo;
- k3 = Inclinação no ponto médio do intervalo;
- k4 = Inclinação no final do intervalo

#### Fórmulas para calcular k1,k2,k3,k4

$$k1 = h^* f(t_i, y_i)$$

$$k2 = h^* f(t_i + \frac{h}{2}, y_i + \frac{k1}{2})$$

$$k3 = h^* f(t_i + \frac{h}{2}, y_i + \frac{k2}{2})$$

$$k4 = h^* f(t_i + h, y_i + k3)$$

#### 2.4.2-Algoritmo/Função

#### Algoritmo:

- Ler f, a, b, n, y0;
- Calcular h (h =(b-a)/n);
- t=a:h:b;
- y= y0;
- Para i de 1 até n fazer:

$$k1 = h^*f(t_i, y_i);$$

$$k2 = h^* f(t_i + \frac{h}{2}, y_i + \frac{k1}{2});$$

$$k3 = h^*f(t_i + \frac{h}{2}, y_i + \frac{k2}{2});$$

$$k4 = h^*f(t_i + h, y_i + k3);$$

$$y_{i+1} = y_i + \frac{1}{6}*(k1 + 2*k2 + 2*k3 + k4);$$

• Escrever y<sub>i+1</sub>

# Função (MATLAB):

```
function yRK4 = RK4(f,a,b,n,y0)
h = (b-a)/n;
                              % Tamanho de cada subintervalo (passo)
yRK4=zeros(1,n+1);
                              % Alocação de memória - vetor das ordenadas
t=a:h:b;
                              % Alocação de memória - vetor das abcissas
yRK4(1) = y0;
                              % O primeiro valor de y é sempre y0
    for i=1:n
                              % O número de iterações vai ser igual a n
       k1 = h*f(t(i), yRK4(i));
                                % Inclinação no início do intervalo
       k2 = h*f(t(i)+h/2, yRK4(i)+k1/2); % Inclinação no ponto médio do
                                           % intervalo
       k3 = h*f(t(i)+h/2, yRK4(i)+k2/2); % Inclinação (novamente) no
                                           % ponto médio do intervalo
       k4 = h*f(t(i)+h, yRK4(i)+k3);
                                         % Inclinação no final do intervalo
       yRK4(i+1) = yRK4(i) + 1/6*(k1 + 2*k2 + 2*k3 + k4);
       % Próximo valor aproximado da solução do problema original
end
```

#### 2.5-Função ODE45 do Matlab

A função ode45 nativa do Matlab é um método numérico utilizado para resolver equações diferenciais ordinárias de primeira ordem e segunda ordem, que é um método de passo variável baseado num método de Runge-Kutta.

#### 2.5.1-Fórmulas

$$[t, y] = ode45(f, t, y0)$$

#### Legenda:

- *t* → Vetor das abcissas;
- $f \rightarrow$  Equação diferencial de t e y;
- $y_0 \rightarrow$  Condição inicial do PVI (valor inicial de y);

#### 2.5.2-Algoritmo/Função

#### Algoritmo:

- Ler f, a, b, n, y0;
- Calcular h (h=(b-a)/n);
- t= a:h:b
- y= y0;
- Aproximar as soluções através da função ODE45;

# Função (MATLAB):

#### 2.6-Método do Ponto Médio

O método do Ponto Médio é um método numérico para resolver Equações Diferenciais Ordinárias (ODE).

#### 2.6.1-Fórmulas

#### **Formula Geral**

$$y_{i+1}=y_i+h^* f(t_i+h/2,y_i+h^*k1), i=0,1,...,n-$$

# Fórmula para calcular k1

$$k1 = \frac{1}{2} * f(t_i, y_i)$$

#### 2.6.2-Algoritmo/Função

#### Algoritmo:

- Ler f, a, b, n, y0;
- Calcular h (h =(b-a)/n);
- t= a:h:b;
- y= y0;
- Para i de 1 até n fazer:

$$k1 = \frac{1}{2} * f(t_i, y_i);$$
  

$$y_{i+1} = y_i + h * f(t_i + h/2, y_i + h * k1);$$

• Escrever y<sub>i+1</sub>

# Função:

```
function yPM = PM(f,a,b,n,y0)
                             % Tamanho de cada subintervalo (passo)
h = (b-a)/n;
yPM=zeros(1,n+1);
                            % Alocação de memória - vetor das ordenadas
                             % Alocação de memória - vetor das abcissas
t=a:h:b;
yPM(1) = y0;
                             % O primeiro valor de y é sempre y0
    for i=1:n
                                      % variável auxiliar
     k1 = 0.5 * f(t(i), yPM(i));
    yPM(i+1) = yPM(i) + h*f(t(i) + h/2, yPM(i) + h*k1);
    % Próximo valor aproximado da solução do problema original
    end
end
```

#### 3. Exemplos de aplicação e teste dos métodos

#### 3.1-Exercício 3 do Teste Farol

#### 3.1.1-PVI - Equação Diferencial de 1ª ordem e Condições Iniciais

- 3. Considere o problema de valor inicial  $y'=-2ty, y(0)=2, t\in [0,1.5]$
- (a) Verifique que  $y(t) = 2\exp(-t^2)$  é a solução exata do problema.



# 3.1.2-Exemplos de output - App com gráfico e tabela

(b) Complete a tabela seguinte e interprete os resultados obtidos. Para o preenchimento da coluna das aproximações de Euler, deve apresentar os cálculos das iterações da aplicação da fórmula do método de Euler.

|   |         |          | Aproxi  | mações | H              | lrros          |
|---|---------|----------|---------|--------|----------------|----------------|
|   |         | $y(t_i)$ | $y_{i}$ | $y_i$  | $ y(t_i)-y_i $ | $ y(t_i)-y_i $ |
| i | $t_{i}$ | Exata    | Euler   | RK2    | Euler          | RK2            |
| 0 | 0       | 2        |         |        | 0              | 0              |
| 1 |         | 1.5576   |         | 1.5000 |                | 0.0576         |
| 2 | 1       |          |         |        |                | 0.0142         |
| 3 | 1.5     | 0.2108   |         | 0.3750 |                |                |

Pela tabela verificamos que h = 0.5, a = 0 e b = 1.5.

Como h = (b-a)/n, logo n = 3

#### **Euler**



#### RK2



# Tabela preenchida

|          |            |          | Aproxi     | mações | E                                      | Erros                                  |
|----------|------------|----------|------------|--------|----------------------------------------|----------------------------------------|
| 4        |            | $y(t_i)$ | <u>V</u> i | $y_i$  | $ \underline{y}(t_i)-\underline{y_i} $ | $ \underline{y}(t_i)-\underline{y_i} $ |
| <u>Õ</u> | <u>t</u> i | Exata    | Euler      | RK2    | Euler                                  | RK2                                    |
|          | 0          | 2        | 2          | 2      | 0                                      | 0                                      |
| 1        | 0.5        | 1.5576   | 2          | 1.5000 | 0.4424                                 | 0.0576                                 |
| 2        | 1          | 0.7358   | 1          | 0.7500 | 0.2642                                 | 0.0142                                 |
| 3        | 1.5        | 0.2108   | 0          | 0.3750 | 0.2108                                 | 0.1642                                 |

(c) Qual das figuras seguintes representa graficamente uma solução do PVI dado? Justifique a sua resposta.



Como podemos ver pelos gráficos obtidos na nossa aplicação na alínea anterior, a figura 4 é a que representa corretamente uma solução do PVI dado.

(d) Estabeleça um PVI cuja solução em modo gráfico coincide com a figura que excluiu na alínea anterior.

PVI
$$\begin{cases}
y' = -2*t*y \\
t \in [-1.5, 1.5] \\
y(0) = 0.2108
\end{cases}$$

(e) Quais dos comandos seguintes em GeoGebra lhe permitiriam determinar a solução exata do PVI e a solução aproximada do mesmo.

(A) SolveODE [-2xy, (0,2)]

(B) SolveODE[-2xy, (-1.5,0.2108)]

(C) NSolveODE[{-2xy}, 0, {2}, 1.5]

(D) NSolveODE[{-2xy}, -1.5, {0.2108}, 1.5]

# (A) - Solução exata



# (B) - Solução aproximada



# 3.2-Problemas de aplicação do livro "Differential Equations with Modeling Applications"

1. If air resistance is proportional to the square of the instantaneous velocity, then the velocity v of a mass m dropped from a height h is determined from

 $m\frac{dv}{dt} = mg - kv^2, \ k > 0$ 

Let v(0) = 0, k = 0.125, m = 5 slugs, and  $g = 32 ft/s^2$ .

- (a) Use the Runge-Kutta method with h=1 to find an approximation to the velocity of the falling mass at  $t=5\,s$ .
- (b) Use a numerical solver to graph the solution of the initial-value problem.
- (c) Use separation of variables to solve the initial-value problem and find the true value v(5).

# 3.2.1-Modelação Matemática do problema



# 3.2.2-Resolução através da App Desenvolvida

Usámos o método de Runge-Kutta de ordem 4 (RK4) em vez do Rk2 pois é mais preciso, o que conduzes a um erro menor.



2. A mathematical model for the area A (in  $cm^2$ ) that a colony of bacteria (B. forbiddenkeyworddendroides) occupies is given by

$$\frac{dA}{dt} = A(2.128 - 0.0432A).$$

Suppose that the initial area is  $0.24 \, cm^2$ .

(a) Use the Runge-Kutta method with h=0.5 to complete the following table.

| t(days)         | 1    | 2     | 3     | 4     | 5     |
|-----------------|------|-------|-------|-------|-------|
| A(observed)     | 2.78 | 13.53 | 36.30 | 47.50 | 49.40 |
| A(approximated) |      |       |       |       |       |

- (b) Use a numerical solver to graph the solution of the initial-value problem. Estimate the values A(1), A(2), A(3), A(4), and A(5) from the graph.
- (c) Use separation of variables to solve the initial-value problem and compute the values A(1), A(2), A(3), A(4), and A(5).



Como h=0.5, a=0, b=5, pela formula h = (b-a)/n, o valor de n = 10



# Pela app podemos retirar os valores que precisamos para preencher a tabela

| t      | Exata   | RK4     | erroRK4 |
|--------|---------|---------|---------|
| 0      | 0.2400  | 0.2400  | 0       |
| 0.5000 | 0.6891  | 0.6860  | 0.0031  |
| 1.0000 | 1.9454  | 1.9288  | 0.0166  |
| 1.5000 | 5.2446  | 5.1856  | 0.0590  |
| 2.0000 | 12.6436 | 12.5007 | 0.1429  |
| 2.5000 | 24.6379 | 24.4334 | 0.2044  |
| 3.0000 | 36.6283 | 36.4618 | 0.1665  |
| 3.5000 | 44.0210 | 43.9020 | 0.1189  |
| 4.0000 | 47.3164 | 47.2349 | 0.0814  |
| 4.5000 | 48.5710 | 48.5245 | 0.0465  |
| 5.0000 | 49.0196 | 48.9965 | 0.0231  |

| t(days)         | 1    | 2     | 3     | 4     | 5     |
|-----------------|------|-------|-------|-------|-------|
| A(observed)     | 2.78 | 13.53 | 36.30 | 47.50 | 49.40 |
| A(approximated) | 1.93 | 12.50 | 36.46 | 47.23 | 49.00 |
| A (exact)       | 1.95 | 12.64 | 36.63 | 47.32 | 49.02 |

#### 3.3 Problemas de aplicação da alínea 2.b do teste Farol

(b) A força eletromotriz e de um circuito RL com intensidade i, resistência  $R=10~\Omega({\rm ohms})$  e indutância L=0.5~h (henry), é igual à queda de tensão Ri mais a força eletromotriz de autoindução  $L\frac{di}{dt}$ . Assim, a intensidade de corrente i, no instante t, se  $e=3\sin(2t)$  (em volts) e i=6 quando t=0 é dada pela solução particular  $i(t)=\frac{600}{101}e^{-20t}-\frac{30}{101}\sin 2t+\frac{3}{101}\cos 2t$ . À medida que o tempo aumenta, o termo que envolve  $e^{-20t}$  perde influência no valor da intensidade da corrente. Diz-se que este termo é o termo do estado~transitório~e~o~outro~é~o~termo~do~estado~permanente.

# 3.3.1-Modelação matemática do problema



# 3.3.2-Resolução através da app desenvolvida

Com a informação retirada e explicada anteriormente, utilizámos a nossa app com todos os métodos implementados.



#### 4.Conclusão

Em suma, os métodos numéricos são uma ferramenta poderosa e indispensável para a solução de problemas matemáticos e científicos na atualidade. Porém, é importante ressaltar que a utilização dos métodos numéricos requer um conhecimento sólido de matemática e programação, além de cuidados na escolha do método e dos parâmetros a serem utilizados para evitar erros e imprecisões nos resultados obtidos.

Comparando os diferentes métodos, observamos que os que verificam menor erro e, consequentemente, melhor aproximação ao valor exato, são o método de Runge-Kutta de ordem 4 e o método usando a função ODE45 do MATLAB, que muitas vezes apresentaram erros muito pequenos (milésimas). Em contrapartida, temos o método de Euler, cujo erro é especialmente grande comparado com todos os outros métodos implementados.

Com este trabalho, adquirimos várias técnicas, não só de programação de Matlab como também ficamos a entender melhor ainda, a matéria dos métodos numéricos lecionada nas aulas.

### **5.Bibliografia**

- Ficheiros de suporte disponibilizados pelo professor
- Formulário da cadeira
- Métodos Numéricos (Visualizado a 17 de abril de 2023)
   Disponível em: https://paginas.fe.up.pt/~faf/mnum/mnum-faf-handout.pdf
- Midpoint method-Wikipedia (Visualizado a 17 de abril de 2023)
   Disponível em: <a href="https://en.wikipedia.org/wiki/Midpoint">https://en.wikipedia.org/wiki/Midpoint</a> method
- Equações Diferencias-Método de Heun (Visualizado a 15 de abril de 2023
   Disponível em: https://cn.ect.ufrn.br/index.php?r=conteudo%2Fedo-heun
- Problema de valor inicial-Wikipedia (Visualizado a 23 de abril de 2023)
   Disponivel em: https://pt.wikipedia.org/wiki/Problema de valor inicial
- Introdução as equações diferenciais-Luso Academia (Visualizado a 20 de abril de 2023)

Disponível em: <a href="https://lusoacademia.org/2015/11/19/1-introducao-as-equacoes-diferenciais/">https://lusoacademia.org/2015/11/19/1-introducao-as-equacoes-diferenciais/</a>

# 6. Autoavalição e heteroavaliação

Chegando ao fim do trabalho, estamos contentes pelo resultado final, tanto a nível da app quanto ao nível da LiveScript implementada.

Pelo esforço e trabalho aplicados a esta atividade, achamos que merecemos numa escala de 0 a 5 valores, um 4.5.

A nível de grupo, não houve quaisquer problemas e ambos trabalhámos bem. O aluno Martim Antunes foi quem distribui as tarefas, explicou como secalhar ficava melhor e quem preocupava-se de sempre colocar um "dedinho" dele no final, mesmo não lhe tivesse sido atribuído aquela tarefa, aperfeiçoar ainda mais.

Por isso achamos que o aluno Martim Antunes mereça um 5 e o aluno Pedro Faneca um 4.