Chapter 1	$y = Ax^M$, where M is known
Horner's method (Evaluate $P(x)$ at $x = c$)	$A = \left(\sum_{k=1}^{N} x_k^M y_k\right) / \left(\sum_{k=1}^{N} x_k^{2M}\right)$
Set $b_n = a_n$ and compute $b_k = a_k + cb_{k+1}$ for $k = n - 1,, 1, 0$,	Least-Squares Parabola $y = Ax^2 + Bx + C$
then $b_0 = P(c)$	$\left(\sum_{k=1}^{N} x_k^4\right) A + \left(\sum_{k=1}^{N} x_k^3\right) B + \left(\sum_{k=1}^{N} x_k^2\right) C = \sum_{k=1}^{N} y_k x_k^2$
If $Q_0(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_3 x^2 + b_2 x + b_1$ then $P(x) = (x - c)Q_0(x) + R_0$ where $R_0 = b_0 = P(c)$	(
	$\left(\sum_{k=1}^{N} x_k^3\right) A + \left(\sum_{k=1}^{N} x_k^2\right) B + \left(\sum_{k=1}^{N} x_k\right) C = \sum_{k=1}^{N} y_k x_k$
Absolute Error $E_p = p - \hat{p} $ and Relative Error $E_r = \left \frac{p - \hat{p}}{p}\right $	$\left(\sum_{k=1}^{N} x_k^2\right) A + \left(\sum_{k=1}^{N} x_k\right) B + NC = \sum_{k=1}^{N} y_k$
Significant Digits: $\left rac{p - \hat{p}}{p} ight < rac{10^{1-d}}{2}$	Cubic Splines $(2^{k-1})^n$
$O(h^n)$ Order: If $\frac{ f(h)-p(h) }{ h^n } \leq M$, then $f(h)=p(h)+O(h^n)$	$h_k = x_{k+1} - x_k$ for $k = 0, 1,, N - 1$
Chapter 2	$d_k = \frac{y_{k+1} - y_k}{h_k}$ for $k = 0, 1,, N - 1$
False Position Method: $c = b - \frac{f(b)(b-a)}{f(b)-f(a)}$	$m_k = S''(x_k)$ for $k = 0, 1,, N$
Newton-Raphson Theorem: $p_k = g(p_{k-1}) = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})}$	$u_k = 6(d_k - d_{k-1})$ for $k = 1, 2,, N-1$
Eg. Finding Square Roots: $p_k = \frac{P_{k-1} + A/p_{k-1}}{2}$	$h_{k-1}m_{k-1} + 2(h_{k-1} + h_k)m_k + h_k m_{k+1} = u_k$
Secant Method: $p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{f(p_k)(p_k - p_{k-1})}{f(p_k) - f(p_{k-1})}$	$s_{k,0} = y_k, s_{k,1} = d_k - \frac{h_k(2m_k + m_{k+1})}{6}, s_{k,2} = \frac{m_k}{2}, s_{k,3} = \frac{m_{k+1} - m_k}{6h_k}$
	$S_k(x) = ((s_{k,3}w + s_{k,2})w + s_{k,1})w + y_k$, where $w = x - x_k$
Accerleration of Newton Iteration: $p_k = p_{k-1} - \frac{Mf(p_{k-1})}{f'(p_{k-1})}$	Natural cubic spline: $m_0 = 0, m_N = 0$ Extrapolate $S''(x)$:
Chapter 3	$m_0 = m_1 - \frac{h_0(m_2 - m_1)}{h_1}, m_N = m_{N-1} + \frac{h_{N-1}(m_{N-1} - m_{N-2})}{h_{N-2}}$
LU Fact. $\begin{vmatrix} 1 & 2 & 4 \\ 2 & 8 & 6 \\ 3 & 10 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{vmatrix} \begin{vmatrix} 1 & 2 & 4 \\ 0 & 4 & -2 \\ 0 & 0 & -2 \end{vmatrix}$	$S''(x)$ is constant near endpoints: $m_0 = m_1, m_N = m_{N-1}$
$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	Chapter 6
	Central-Difference Formulas of Order $O(h^2)$
Back Subst.: $x_k = \frac{b_k - \sum_{j=k+1}^{N} a_{kj} x_j}{a_{kk}}, k = N-1, N-2,, 1$	$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$
$b = \sum_{i=1}^{i-1} a \cdot x^{(k)} = \sum_{i=1}^{n} a \cdot x^{(k)}$	$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{1 + 2}$
Jacobi Iteration $x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ij}}$	$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3}$ $f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$
Gauss-Seidel $x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{-\sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}$	$f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$
Gauss-Seidel $x_i^{(k+1)} = \frac{\sigma_i - \sum_{j=1}^{n} \omega_{ij} \omega_{j}}{\sigma_{ij}} = \frac{\sum_{j=i+1}^{n} \omega_{ij} \omega_{j}}{\sigma_{ij}}$	Central-Difference Formulas of Order $O(h^4)$
Chapter 4	$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$ $f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$ $f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3}$
Taylor Series Expansions for some Common Functions	$f''(x_i) = \frac{-f(x_{i+2}) + 10f(x_{i+1}) - 30f(x_i) + 10f(x_{i-1}) - f(x_{i-2})}{12h^2}$
$sin(x) = x - x^3/3! + x^5/5! - x^7/7! + \cdots$	$f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3}$
$cos(x) = 1 - x^{2}/2! + x^{4}/4! - x^{6}/6! + \cdots$ $e^{x} = 1 + x + x^{2}/2! + x^{3}/3! + x^{4}/4! + \cdots$	$f^{(i)}(x_i) = (-f(x_{i+3}) + 12f(x_{i+2}) - 39f(x_{i+1}) + 50f(x_i) -$
$ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + \cdots$	$39f(x_{i-1}) + 12f(x_{i-2}) - f(x_{i-3}))/6h^4$ Error term for central-diff. of order $O(h^2)$ for $f'(x_i)$
$arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + \cdots$	$E(f,h) = Eround(f,h) + Etrunc(f,h) = \frac{e_1 - e_{-1}}{2h} - \frac{h^2 f^{(3)}(c)}{6}$
$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots$	$ E(f,h) \le \frac{\epsilon}{h} + \frac{Mh^2}{6}$
Taylor Polynomial Approximation	The value of h that minimizes the right-hand side is $h = (\frac{3\epsilon}{M})^{1/3}$
$f(x) \approx P_N(x) = \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$	Error term for central-diff. of order $O(h^4)$ for $f'(x_i)$
$E_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!}(x-x_0)^{N+1}$	E(f,h) = Eround(f,h) + Etrunc(f,h)
for some value $c = c(x)$ that lies in x and x0	$=\frac{-e_2+8e_1-8e_{-1}+e_{-2}}{12h}+\frac{h^4f^{(5)}(c)}{30}$
Lagrange Polynomial	$ E(f,h) \leq \frac{3\epsilon}{2h} + \frac{Mh^4}{30}$
$P_N(x) = \sum_{k=0}^{\infty} y_k L_{N,k}(x)$	The value of h that minimizes the right-hand side is $h = (\frac{45\epsilon}{4M})^{1/5}$
Eagrange Toynomia $P_N(x) = \sum_{k=0}^{N} y_k L_{N,k}(x)$ $L_{N,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_N)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_N)}$	Error term for central-diff. of order $O(h^2)$ for $f''(x_i)$
The Divided Differences	$E(f,h) = Eround(f,h) + Etrunc(f,h) = \frac{e_1 - 2e_0 + e_{-1}}{h^2} - \frac{h^2 f^{(4)}(c)}{12}$
$f[x_{k-j}, x_{k-j+1}, \dots, x_k] = \frac{f[x_{k-j+1}, \dots, x_k] - f[x_{k-j}, \dots, x_{k-1}]}{x_k - x_{k-j}}$ Newton Polynomial	$ E(f,h) \le \frac{4\epsilon}{h^2} + \frac{Mh^2}{12}$
Newton Polynomial $P_N(x) = a_0 + a_1(x - x_0) + \dots + a_N(x - x_0)(x - x_1) \dots (x - x_0)$	And the value of h that minimizes the right-hand side is
$(x_{N-1}), where \ a_k = f[x_0, x_1, \dots, x_k], for \ k = 0, 1, \dots, N$	$h = \left(\frac{48\epsilon}{M}\right)^{1/4}$
Lagrange / Newton Polynomial Approximation	Forward-Difference Formulas of Order $O(h^2)$
$E_N(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_N)f^{(N+1)}(c)}{(N+1)!}$	$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$
for some value $c = c(x)$ that lies in the interval [a,b]	$f''(x_i) = \frac{f(x_{i+2}) - f(x_{i+2})}{h^2}$
Error Bounds for Lagrange Interpolation, Equally	$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$ $f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3}$ $f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4}$
Spaced Nodes $(B, C) = b^2 M_2 C$	$f^{m}(x_i) = \frac{f^{m}(x_i) - f^{m}(x_i) - f^{m}(x_i) - f^{m}(x_i)}{h^4}$ Forward-Difference Formulas of Order $O(h^4)$
$ E_1(x) \le \frac{h^2 M_2}{8}$ for $x \in [x_0, x_1]$	$f'(x_i) = rac{-f(x_{i+1}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$
$ E_2(x) \le \frac{h^3 M_3}{9\sqrt{3}} \text{ for } x \in [x_0, x_2]$	$f(w_i) = 2h$ $f''(w_i) = -f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)$
$ E_3(x) \le \frac{h^4 M_4}{24}$ for $x \in [x_0, x_4]$	$f'''(x_i) = \frac{1}{h^2} \frac{h^2}{h^2}$ $f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{h^2}$
Chapter 5	$f'''(x_i) = \frac{-\frac{1}{12} + \frac{1}{12} + \frac{1}{12}}{\frac{1}{12} + \frac{1}{12} + \frac{1}{1$
Chapter 5 Root-mean-square Error $E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} \left f(x_k) - y_k \right ^2 \right)^{\frac{1}{2}}$	$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$ $f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3}$ $f''''(x_i) = \frac{-2f(x_{i+5}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4}$ Backward-Difference Formulas of Order $O(h^2)$
Chapter 5 Root-mean-square Error $E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} f(x_k) - y_k ^2\right)^{\frac{1}{2}}$ Least-Squares Line $y = Ax + B$	Backward-Difference Formulas of Order $O(h^2)$ $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{f'(x_i)}$
Chapter 5 Root-mean-square Error $E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} \left f(x_k) - y_k \right ^2 \right)^{\frac{1}{2}}$	Backward-Difference Formulas of Order $O(h^2)$ $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$ $f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h}$
Chapter 5 Root-mean-square Error $E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} f(x_k) - y_k ^2\right)^{\frac{1}{2}}$ Least-Squares Line $y = Ax + B$ $\left(\sum_{k=1}^{N} x_k^2\right) A + \left(\sum_{k=1}^{N} x_k\right) B = \sum_{k=1}^{N} x_k y_k$	Backward-Difference Formulas of Order $O(h^2)$ $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$ $f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2}$
Chapter 5 Root-mean-square Error $E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} f(x_k) - y_k ^2\right)^{\frac{1}{2}}$ Least-Squares Line $y = Ax + B$	Backward-Difference Formulas of Order $O(h^2)$ $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{f'(x_i)}$

Backward-Difference Formulas of Order $O(h^4)$

$$\begin{split} f'(x_i) &= \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} \\ f''(x_i) &= \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2} \\ f'''(x_i) &= \frac{5f(x_i) - 18f(x_{i-1}) + 24f(x_{i-2}) - 14f(x_{i-3}) + 3f(x_{i-4})}{2h^3} \\ f''''(x_i) &= \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4} \end{split}$$

Chapter 7

Newton-Cotes Precision

The trapezoidal rule has degree of precision n = 1.

$$\int_{x_0}^{x_1} f(x)dx = \frac{h}{2}(f_0 + f_1) - \frac{h^3}{12}f^{(2)}(c)$$

Simpson's rule has degree of precision n = 3.

$$\int_{x_0}^{x_2} f(x)dx = \frac{h}{3}(f_0 + 4f_1 + f_2) - \frac{h^5}{90}f^{(4)}(c)$$

Simpson's $\frac{3}{8}$ rule has degree of precision n=3.

$$\int_{x_0}^{x_3} f(x) dx = \frac{3h}{8} (f_0 + 3f_1 + 3f_2 + f_3) - \frac{3h^5}{80} f^{(4)}(c)$$
 Boole's rule has degree of precision $n = 5$.

$$\int_{x_0}^{x_4} f(x)dx = \frac{2h}{45} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4) - \frac{8h^7}{945} f^{(6)}(c)$$

Composite Trapezoidal Rule

Suppose that the interval [a, b] is subdivided into M subintervals $[x_k, x_{k+1}]$ of width h = (b-a)/M, $x_k = a + kh$.

$$T(f,h) = \frac{h}{2} \sum_{k=1}^{M} (f(x_{k-1}) + f(x_k)) = \frac{h}{2} (f_0 + 2f_1 + 2f_2 + 2f_3 + \dots + 2f_{M-2} + 2f_{M-1} + f_M)$$

$$E_T(f,h) = \frac{-(b-a)f^{(2)}(c)h^2}{12}$$

Composite Simpson Rule

Suppose that the interval [a, b] is subdivided into 2M subintervals $[x_k, x_{k+1}]$ of width h = (b-a)/(2M), $x_k = a + kh$.

$$S(f,h) = \frac{h}{3} \sum_{k=1}^{M} (f(x_{2k-2}) + 4f(x_{2k-1}) + f(x_{2k})) = \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 2f_{2M-2} + 4f_{2M-1} + f_{2M})$$

Error: $E_S(f,h) = \frac{-(b-a)f^{(4)}(c)h^4}{180}$

Sequence of Trapezoidal Rules

Define T(0) = (h/2)(f(a) + f(b)), which is the trapezoidal rule with step size h = b - a. For each $J \ge 1$ define T(J) = T(f, h), where T(f,h) is trapezoidal rule with step size $h=(b-a)/2^J$.

Romberg Integration

R(J,0) = T(J) for $J \ge 0$, is the sequential trapezoidal rule.

R(J,1)=S(J) for $J\geq 0$, is the sequential Simpson rule. R(J,2)=B(J) for $J\geq 0$, is the sequential Boole's rule.

 $R(J,K) = \frac{4^{K}R(J,K-1) - R(J-1,K-1)}{4^{K}-1}$

Precision of Romberg Integration

 $\int_{a}^{b} f(x)dx = R(J,K) + b_{K}h^{2K+2}f^{(2K+2)}(c_{J,K}) \text{ (i.e. } O(h^{2K+2}) \text{)}$

Chapter 9

Euler's Method

$$\frac{dy}{dt} \approx \frac{y_{i+1} - y_i}{t_{i+1} - t_i} = f(t_i, y_i) \Rightarrow y_{i+1} = y_i + h f(t_i, y_i)$$

$$E_a = \frac{f'(t_i, y_i)}{2!} h^2 = O(h^2)$$

Precision of Euler's Method:

Assume that y(t) is the solution to the I.V.P. If $y(t) \in C^2[t_0, b]$ and $\{(t_k, y_k)\}_{k=0}^{M}$ is the sequence of approximations generated by Euler's method, then $|e_k| = |y(t_k) - y_k| = O(h)$

 $|\epsilon_{k+1}| = |y(t_{k+1}) - yk - hf(t_k, y_k)| = O(h^2)$

The error at the end of the interval is called the *final global error* $(F.G.E.) : E(y(b), h) = |y(b) - y_M| = O(h)$

Heun's Method: $y_{i+1}^0 = y_i + f(t_i, y_i)h$

Corrector (may be applied iteratively)

 $y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2} h$

Precision of Heun's Method

Assume that y(t) is the solution to the I.V.P. (1). If $y(t) \in$ $C^{3}[t_{0}, b]$ and $\{(t_{k}, y_{k})\}_{k=0}^{M}$ is the sequence of approximations generated by Heun's method, then

$$|e_k| = |y(t_k) - y_k| = O(h^2)$$

$$|\epsilon_{k+1}| = |y(t_{k+1}) - y_k - h\Phi(t_{k,y_k})| = O(h^3)$$

where $\Phi(t_k, y_k) = y_k + (h/2)(f(t_k, y_k) + f(t_{k+1}, y_k + hf(t_k, y_k)))$

Midpoint Method

$$y_{i+1/2} = y_i + f(t_i, y_i) \frac{h}{2} ; \ y'_{i+1/2} = f(t_{i+1/2}, y_{i+1/2})$$
$$y_{i+1} = y_i + f(t_{i+1/2}, y_{i+1/2}) h$$

Classical Third-order Runge-Kutta Method

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f(t_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h)$$

$$k_{3} = f(t_{i} + h, y_{i} - k_{1}h + 2k_{2}h)$$

$$y_{i+1} = y_{i} + \frac{1}{6}(k_{1} + 4k_{2} + k_{3})h$$
3rd-Order Heun Method
$$\begin{cases} k_{1} = f(t_{i}, y_{i}) \\ k_{2} = f(t_{i} + \frac{1}{3}h, y_{i} + \frac{1}{3}k_{1}h) \\ k_{3} = f(t_{i} + \frac{2}{3}h, y_{i} + \frac{2}{3}k_{2}h) \end{cases}$$

$$y_{i+1} = y_{i} + \frac{1}{4}(k_{1} + 3k_{3})h$$
Classical 4th order Burger Hermiter

Classical 4th-order Runge-Kutta Method

One-step method

$$\begin{cases} k_1 = f(t_i, y_i) \\ k_2 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h) \\ k_3 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h) \\ k_4 = f(t_i + h, y_i + k_3h) \end{cases}$$

 $y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$

Precision of the Runge-Kutta Method

Assume that y(t) is the solution to the I.V.P. If $y(t) \in C^{5}[t_{0}, b]$ and $\{(t_k, y_k)\}_{k=0}^{M}$ is the sequence of approximations generated by the Runge-Kutta method of order 4, then

$$|e_k| = |y(t_k) - y_k| = O(h^4)$$

$$|\epsilon_{k+1}| = |y(t_{k+1}) - y_k - hT_N(t_k, y_k)| = O(h^5)$$
.

In particular, the F.G.E. at the end of the interval will satisfy $E(y(b), h) = |y(b) - y_M| = O(h^4).$

Second-Order ODE

$$\begin{cases} \frac{d^2y}{dt^2} = g(t, y, \frac{dy}{dt}) \\ y(t_0) = \alpha_0, \frac{dy}{dt}(t_0) = \alpha_1 \end{cases}$$
Convert to two first-order (

Convert to two first-order ODEs

$$\begin{cases} y_1 = y \\ y_2 = \frac{dy}{dt} \end{cases} \Rightarrow \begin{cases} \frac{dy_1}{dt} = \frac{dy}{dt} = y_2 \\ \frac{dy_2}{dt} = \frac{d^2y}{dt^2} = g(t, y_1, y_2) \end{cases} I.C.s \begin{cases} y_1(t_0) = \alpha_0 \\ y_2(t_0) = \alpha_1 \end{cases}$$

Euler Method for Two ODE-IVPs

$$\begin{cases} y_{1,i+1} = y_{1,i} + h f_1(t_i, y_{1,i}, y_{2,i}) \\ y_{2,i+1} = y_{2,i} + h f_2(t_i, y_{1,i}, y_{2,i}) \end{cases}$$

In general, nth-order ODE

$$\begin{cases} y^{(n)} = f(t, y, y', y'', \dots, y^{(n-1)}) \\ y(t_0) = \alpha_0, y'(t_0) = \alpha_1, \dots, y^{(n-1)}(t_0) = \alpha_{n-1} \end{cases}$$

$$\begin{cases} y_1 = y \\ y_2 = y' \\ y_2 = y'' \end{cases} \begin{cases} y'_1 = y_2, & y_1(t_0) = \alpha_0 \\ y'_2 = y_3, & y_2(t_0) = \alpha_1 \\ y'_3 = y_4, & y_3(t_0) = \alpha_2 \end{cases}$$

System of Three first-order ODEs Euler's Method

$$\begin{cases} y_1(i+1) = y_1(i) + f_1(t(i), y_1(i), y_2(i), y_3(i))h \\ y_2(i+1) = y_2(i) + f_2(t(i), y_1(i), y_2(i), y_3(i))h \\ y_3(i+1) = y_3(i) + f_3(t(i), y_1(i), y_2(i), y_3(i))h \end{cases}$$

Classical 4th-order RK Method for ODE-IVPs Systems

$$\begin{cases} k_{1,1} = f_1(t(i), y_1(i), y_2(i)) \\ k_{1,2} = f_2(t(i), y_1(i), y_2(i)) \end{cases}$$

$$k_{2,1} = f_1(t(i) + h/2, y_1(i) + k_{1,1}h/2, y_2(i) + k_{1,2}h/2)$$

$$k_{2,2} = f_2(t(i) + h/2, y_1(i) + k_{1,1}h/2, y_2(i) + k_{1,2}h/2)$$

 $k_{2,1} = f_1(t(i) + h/2, y_1(i) + k_{2,1}h/2, y_2(i) + k_{2,2}h/2)$

$$k_{3,1} = f_1(t(i) + h/2,y_1(i) + k_{2,1}h/2,y_2(i) + k_{2,2}h/2)$$

$$k_{3,2} = f_2(t(i) + h/2,y_1(i) + k_{2,1}h/2,y_2(i) + k_{2,2}h/2)$$

$$k_{4,1} = f_1(t(i) + h, y_1(i) + k_{3,1}h, y_2(i) + k_{3,2}h)$$

$$k_{4,2} = f_2(t(i) + h, y_1(i) + k_{3,1}h, y_2(i) + k_{3,2}h)$$

$$\begin{cases} y_1(i+1) = y_1(i) + \frac{1}{6}(k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1})h \\ y_2(i+1) = y_2(i) + \frac{1}{6}(k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2})h \end{cases}$$

Linear Shooting Method

Solve: x'' = p(t)x'(t) + q(t)x(t) + r(t) with $x(a) = \alpha, x(b) = \beta$ u'' = p(t)u'(t) + q(t)u(t) + r(t) with $u(a) = \alpha$ and u'(a) = 0v'' = p(t)v'(t) + q(t)v(t) with v(a) = 0 and v'(a) = 1

Unique solution $x(t) = u(t) + \frac{\beta - u(b)}{v(b)}v(t)$ Finite-Difference Method

 $\left(\frac{-h}{2}p_j - 1\right)x_{j-1} + \left(2 + h^2q_j\right)x_j + \left(\frac{h}{2}p_j - 1\right)x_{j+1} = -h^2r_j$ for j = 1, 2, ..., N - 1, where $x_0 = \alpha, x_N = \beta$