Amendments to the claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (ORIGINAL) A compound represented by the following Formula (I):

wherein:

R, R^1 , R^2 and R^3 are each independently selected from hydrogen, C_{1-6} alkyl, $-(CH_2)_p OR^4$, $-C(O)OR^4$, formyl, nitro, cyano, halogen, aryl, substituted aryl, substituted alkyl, $-S(O)_n R^4$, cycloalkyl, $-NR^5 R^6$, protected -OH, $-CONR^5 R^6$, phosphonic acid, sulfonic acid, phosphinic acid, $-SO_2NR^5 R^6$, a heterocyclic methylene substituent as represented by Formula (III),

and

a substituent as represented by Formula (VII),

where,

p is 0-6,

n is 0-2.

W and Z are each independently selected from C, O, S and NR^{16} , where R^{16} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

V and X are each independently selected from O, S and NR¹⁶, where R¹⁶ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl.

 R^4 is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

 R^5 and R^6 are each independently selected from hydrogen, alkyl, substituted alkyl, C_3 .

or R^5 and R^6 taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen,

T is absent or selected from O, S and NR 16 , where R 16 is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl, P is selected from OR 4 , SR 4 , NR 5 R 6 , and R 4 , where R 4 is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl, R 25 is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl, and

 R^{30} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl;

R¹⁵ is selected from the group consisting of alkyl, C₁-C₁₂aryl, hydroxy, alkoxy, substituted alkyl, substituted C₁-C₁₂aryl and halogen;

m is 0-6: and

Y is a cyclic or polycyclic, unsaturated or saturated, non-aromatic ring containing from 3 to 16 carbon atoms and optionally substituted with one or more substituents selected from the group consisting of: alkyl, substituted alkyl, aryl, substituted cycloalkyl, substituted aryl, aryloxy, oxo, hydroxy, alkoxy, cycloalkyl, acyloxy, amino, N-acylamino, nitro, cyano, halogen, -C(O)OR⁴, -C(O)NR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹, -S(O)_nR⁴ and protected -OH, where n is 0-2.

 R^4 is hydrogen, alkyl, cycloalkyl, C_1 - C_1 2aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_1 2aryl, and

R¹⁰ and R¹¹ are independently hydrogen, cycloalkyl, C₁-C₁₂aryl, substituted cycloalkyl, substituted C₁-C₁₂aryl, alkyl or alkyl substituted with one or more substituents selected from the group consisting of: alkoxy, acyloxy, aryloxy, amino, N-acylamino, oxo, hydroxy, -C(O)OR⁴, -S(O)₀R⁴, -C(O)NR⁴R⁴, -S(O)₂NR⁴R⁴, nitro, cyano, cycloalkyl, substituted cycloalkyl, halogen, aryl, substituted aryl and protected –OH,

or R^{10} and R^{11} taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen,

where R4 is as described above and n is 0-2;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof;

provided that at least one of R, R^1 , R^2 and R^3 is a substituted aryl group or a heterocyclic methylene substituent as represented in Formula (III) or a substituent as represented in Formula (VII).

2. (ORIGINAL) A compound of claim 1 represented by the following Formula (II):

$$R^{3}$$
 R^{3}
 $N_{2}N$
 R^{15}
 $N_{2}N$
 $N_{3}N$
 $N_{4}N$
 $N_{5}N$
 $N_{$

wherein:

R, R¹, R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, $-(CH_2)_pOR^4, -C(O)OR^4, \text{ formyl, nitro, cyano, halogen, aryl, substituted aryl, substituted alkyl, <math display="block"> -S(O)_nR^4, \text{ cycloalkyl, } -NR^5R^6, \text{ protected } -OH, -CONR^5R^6, \text{ phosphonic acid, sulfonic acid, phosphinic acid, } -SO_2NR^5R^6, \text{ a heterocyclic methylene substituent as represented by Formula (III), }$

and

a substituent as represented by Formula (VII),

where,

p is 0-6,

n is 0-2.

W and Z are each independently selected from C, O, S and NR¹⁶, where R¹⁶ is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

V and X are each independently selected from O, S and NR^{16} , where R^{16} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

 R^4 is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

 R^5 and R^6 are each independently selected from hydrogen, alkyl, substituted alkyl, C_3 -6cycloalkyl, and aryl,

or R⁵ and R⁶ taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen.

T is absent or selected from O,S and $NR^{16},$ where R^{16} is selected from: hydrogen, alkyl, cycloalkyl, $C_1\text{-}C_12$ aryl, substituted alkyl, substituted cycloalkyl and substituted $C_1\text{-}C_12$ aryl, P is selected from $OR^4,SR^4,NR^5R^6,$ and $R^4,$ where R^4 is selected from: hydrogen, alkyl, cycloalkyl, $C_1\text{-}C_12$ aryl, substituted alkyl, substituted cycloalkyl and substituted $C_1\text{-}C_12$ aryl, R^{25} is selected from: hydrogen, alkyl, cycloalkyl, $C_1\text{-}C_12$ aryl, substituted alkyl, substituted cycloalkyl and substituted $C_1\text{-}C_12$ aryl, and

 R^{30} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl;

R¹⁵ is selected from the group consisting of alkyl, C₁-C₁₂aryl, hydroxy, alkoxy, substituted alkyl, substituted C₁-C₁₂aryl and halogen;

m is 0-6; and

Y is a cyclic or polycyclic, unsaturated or saturated, non-aromatic ring containing from 5 to 14 carbon atoms and optionally substituted with one or more substituents selected from the group

consisting of: alkyl, substituted alkyl, aryl, substituted cycloalkyl, substituted aryl, aryloxy, oxo, hydroxy, alkoxy, cycloalkyl, acyloxy, amino, N-acylamino, nitro, cyano, halogen, - C(O)OR⁴, -C(O)NR¹⁰R¹¹, -S(O)₇NR¹⁰R¹¹, -S(O)₇R⁴ and protected -OH,

where n is 0-2,

 R^4 is hydrogen, alkyl, cycloalkyl, C_1 - C_1 2aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_1 2aryl, and

 R^{10} and R^{11} are independently hydrogen, cycloalkyl, C_1 - C_1 2aryl, substituted cycloalkyl, substituted C_1 - C_1 2aryl, alkyl or alkyl substituted with one or more substituents selected from the group consisting of: alkoxy, acyloxy, aryloxy, amino, N-acylamino, oxo, hydroxy, - $C(O)OR^4$, - $S(O)_RR^4$, - $C(O)NR^4R^4$, - $S(O)_2NR^4R^4$, nitro, cyano, cycloalkyl, substituted cycloalkyl, halogen, aryl, substituted aryl and protected –OH,

or R¹⁰ and R¹¹ taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen.

where R⁴ is as described above and n is 0-2;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof;

provided that at least one of R, R^1 , R^2 and R^3 is a substituted aryl group or a heterocyclic methylene substituent as represented in Formula (III) or a substituent as represented in Formula (VII).

3. (ORIGINAL) A compound represented by Formula (II), as defined in claim 2, wherein:

R is a substituted aryl; and R1 is hydrogen;

R is hydrogen; and R1 is a substituted aryl;

R is a hydrogen; and R¹ is a substituent as represented in Formula (III); or

R is a hydrogen; and R1 is a substituent as represented in Formula (VII);

and in each of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, nitro, cyano, halogen, aryl, substituted aryl, substituted alkyl, cycloalkyl, phosphonic acid, phosphinic acid and sulfonic acid:

 R^{15} is selected from the group consisting of alkyl, substituted alkyl, C_1 - C_{12} aryl, alkoxy and halogen:

m is 0-4; and

Y is selected from.

cyclohexyl, cyclopentyl and cycloheptyl, where the cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C_1 - C_{12} aryl, substituted C_1 - C_{12} aryl, alkoxy and halogen;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

4. (ORIGINAL) A compound represented by Formula (II), as defined in claim 2, wherein:

R is a substituted C1-C12arvl; and R1 is hydrogen;

R is a hydrogen; and R1 is a substituent as represented in Formula (III); or

R is a hydrogen; and R¹ is a substituent as represented in Formula (VII);

and in each of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, nitro, cyano, halogen, substituted alkyl and cycloalkyl;

R¹⁵ is selected from the group consisting of alkyl, substituted alkyl, C₁-C₁₂aryl, alkoxy and halogen;

m is 0-2; and

Y is selected from,

cyclohexyl, cyclopentyl and cycloheptyl, where the cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C₁-C₁2aryl, substituted C₁-C₁2aryl, alkoxy and halogen;

and additionally, when R is a hydrogen; and R^1 is a substituent as represented in Formula (VII); $R^{25} \text{ and } R^{30} \text{ are each selected from: hydrogen, C}_{1-6} \text{alkyl, C}_{1-6} \text{alkoxy, substituted C}_{1-6} \text{alkyl}$ and cycloalkyl;

and additionally, when R is a hydrogen; and R^1 is a substituent as represented in Formula (VII); and when R is a hydrogen; and R^1 is a substituent as represented in Formula (III);

R⁴ is selected from: hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, substituted C₁₋₆alkyl and cycloalkyl; and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

5. (ORIGINAL) A compound represented by Formula (II), as defined in claim 2, wherein:

R is a substituted phenyl ring and R¹ is hydrogen; or

R is a hydrogen; and R¹ is a substituent as represented in Formula (III);

and in either of the above cases:

 R^2 and R^3 are each independently selected from hydrogen, C_{1-6} alkyl, substituted alkyl and halogen:

 R^{15} is selected from the group consisting of $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy, C_{1} - C_{12} aryl and halogen; m is 0: and

Y is selected from,

cyclohexyl, cyclopentyl and cycloheptyl, where cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C₁-C₁2aryl, substituted C₁-C₁2aryl, alkoxy and halogen;

and additionally, when R is a hydrogen; and R^1 is a substituent as represented in Formula (III); $R^4 \text{ is selected from: hydrogen, } C_{1-6}\text{alkyl, } C_{1-6}\text{alkoxy, substituted } C_{1-6}\text{alkyl and cycloalkyl;}$ and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

- (ORIGINAL) A compound of claim 1 selected from:
- $3'-(1-Cyclohexyl-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo)-2'-hydroxy-biphenyl-3-carboxylic\ acid;$
- 3'-[1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-2'-hydroxy-biphenyl-3-carboxylic acid;
- 3-[1-(3,4-Dimethyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-2'-hydroxy-biphenyl-3-carboxylic acid;
- 3'-[1-(3,4-Dichloro-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-2'-hydroxy-biphenyl-3-carboxylic acid;
- $\label{eq:continuous} S-[4-(1-Cyclohexyl-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo)-3-hydroxy-benzylidene]-thiazolidine-2, 4-dione:$
- 5-{4-[1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-thiazolidine-2.4-dione:
- $\label{lem:condition} S-\{4-[1-(3,4-Dimethyl-cyclohexyl)-S-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene} thiazolidine-2,4-dione;$
- 5-{4-[1-(3,4-Dichloro-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-thiazolidine-2.4-dione;
- (E)-3-{4-{1-(4-tert-butylcyclohexyl)-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-ylazo]-3-hydroxyphenyl}2-methylacrylic acid;
- (E)-3-(4-{N'-3-Ethylcyclopentyl)-3-methyl-5-oxo-1,5-dihydropyrazol-4-ylidene]-hydrazino}-3-hydrophenyl-2-methylacrylic acid; and

 $(E) - 3 - [4 - (N' - \{1 - [3 - (1, 1 - Dimethylpropyl) - cyclopentyl] - 3 - methyl - 5 - oxo - 1, 5 - dihydropyrazol - 4 - ylidene \} - hydrazino) - 3 - hydroxyphenyl] - 2 - methylacrylic acid;$

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

- 7. (ORIGINAL) A compound of claim 1 which is
 - 3-[N'-(1-cyclohexyl-3-methyl-5-oxo-1,5-dihydro-pyrazol-4-ylidene)-hydrazino]-2-hydroxy-biphenyl-3-carboxylic acid;

or pharmaceutically acceptable salt, hydrate, solvate and ester thereof.

- (ORIGINAL) A method of treating of thrombocytopenia in a mammal, including a human, in need thereof which comprises administering to such mammal a therapeutically effective amount of a compound of Formula (I), as described in claim 1.
- 9. (ORIGINAL) A method as claimed in claim 8, wherein the mammal is a human.
- (ORIGINAL) The method of claim 9 wherein the compound is selected from the compounds listed in claim 6.

Claims 11 to 13 (CANCELLED).

14. (ORIGINAL) A pharmaceutical composition for use in enhancing platelet production which comprises a compound of claim 1 and a pharmaceutically acceptable carrier.

Claims 15 to 18 (CANCELLED).

19. (ORIGINAL) A process for preparing a pharmaceutical composition containing a pharmaceutically acceptable carrier or diluent and an effective amount of a compound of the Formula (I) as described in claim 1 and pharmaceutically acceptable salts, hydrates, solvates and esters thereof which process comprises bringing the compound of the Formula (I) into association with the pharmaceutically acceptable carrier or diluent.

 (ORIGINAL) A process for preparing a compound of Formula (II) by reaction of a compound of Formula (XX)

or a protected form thereof with a compound of Formula (XXI) or tautomeric equivalent (XXII)

wherein

R is a substituted aryl; and R1 is hydrogen;

R is hydrogen; and R1 is a substituted aryl;

R is a hydrogen; and R¹ is a substituent as represented in Formula (III); or

R is a hydrogen; and R1 is a substituent as represented in Formula (VII);

and in each of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, nitro, cyano, halogen, aryl, substituted aryl, substituted alkyl, cycloalkyl, phosphonic acid, phosphinic acid and sulfonic acid:

R¹⁵ is selected from the group consisting of alkyl, substituted alkyl, C₁-C₁₂aryl, alkoxy and halogen;

m is 0-4; and

Y is selected from.

cyclohexyl, cyclopentyl and cycloheptyl, where the cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C1-C12aryl, substituted C1-C12aryl, alkoxy and halogen;

followed if necessary or desired by salt formation.

Claims 21 to 37 (CANCELLED).

- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to myelosuppression caused by chemotherapy or radiation therapy.
- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to an organ transplant.
- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to bone marrow, stem cell, or liver transplant.
- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to idiopathic thrombocytopenia purpura (ITP).
- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to myelodysplastic syndromes (MDS), aplastic anemia or leukemia.
- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to viral, fungal, microbial or parasitic infection.
- 44. (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to liver dysfunction.

- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to surgical procedures.
- (ORIGINAL) A method of claim 8 wherein said thrombocytopenia is due to treatment with antiviral or antibiotic agents.

Claims 47 and 48 (CANCELLED).

- (ORIGINAL) A compound of Claim 6 selected from:
 3'-[N'-(1-cyclohexyl-3-methyl-5-oxo-1,5-dihydro-pyrazol-4-ylidene)-hydrazino]-2'-hydroxy-biphenyl-3-carboxylic acid;
 - or pharmaceutically acceptable salt, hydrate, solvate and ester thereof.
- 50. (CANCELLED)
- 51. (ORIGINAL) A compound of claim 1 selected from:
- 3'-(1-Cyclohexyl-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo)-2'-hydroxy-biphenyl-3-carboxylic acid;
- $5-\{4-[1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene\}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-5-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-5-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-benzylidene}-1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-5-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-1-(4-tert-Butyl-cyclohexyl)-3-hydroxy-3-methyl-cyclohexyl-cyclo$
- thiazolidine-2,4-dione;
- (E)-3-{4-[1-(4-tert-butylcyclohexyl)-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-ylazo]-3-hydroxyphenyl}-2-methylacrylic acid;
- (E)-3-(4-{N'-3-Ethylcyclopentyl)-3-methyl-5-oxo-1,5-dihydropyrazol-4-ylidene]-hydrazino}-3-
- hydrophenyl-2-methylacrylic acid; and
- $(E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) 3 [4 (N' \{1 [3 (1, 1 Dimethyl propyl) cyclopentyl] 3 methyl 5 oxo 1, 5 dihydropyrazol 4 ylidene \} (E) (E)$

hydrazino)-3-hydroxyphenyl]-2-methylacrylic acid;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.