初始化 TWAR 和 TWCR 之后, TWI 接口开始等待, 直到自己的从机地址(或广播地址)被寻址。当紧跟着从机地址的数据方向位为"0"(表示写操作)时, TWI 进入从机接收模式。当数据方向位为"1"(表示读操作)时, TWI 进入从机发送模式。接收到自己的从机地址和写操作标志位后, TWINT 标志位被置位, 有效的状态码也更新到 TWSR 中。各个状态码下合适的响应会在状态码表格中详细描述。需要注意的是, 当主机模式下的 TWI 仲裁失败后也可以进入从机接收模式(见状态码 0x68 和 0x78)。

如果在传输过程中 TWEA 位被复位, TWI 将在接收到一个字节后返回 NACK (高电平) 到 SDA 线上。这可用来表示从机不能接收更多的数据。当 TWEA 位为"0"时, TWI 也不会响应自己的从机地址。不过 TWI 仍会监听总线,一旦 TWEA 被置位,就可以恢复地址识别并响应。也就是说,可以利用 TWEA 暂时将 TWI 接口从总线中隔离出来。

在除空闲模式外的其它休眠模式时,TWI接口的时钟可以被关闭。若是能了从机接收模式,接口将利用总线时钟继续响应从机地址或广播地址。地址匹配将唤醒MCU。在唤醒期间,TWI接口将保持SCL为低电平,直到TWINT标志被清零。当TWI接口时钟恢复正常后可以接收更多的数据。

从机接收模式的状态码如下表所示:

从机接收模式的状态码表

次们的女伙侠人们的女伙							
		应用软件的响应 ————————————————————————————————————					
状态码	总线和硬件状态	读/写		₹ TV	VCR 的操作	硬件的下一步动作	
		TWDR	STA	ST0	TWINT	TWEA	
0x60	SLA+W 已接收;	无 操	Х	0	1	0	将接收数据;
	ACK 已发送	作					将发送 NACK
		无 操	Х	0	1	1	将接收数据;
		作					将发送 ACK
0x68	发送 SLA+R/W 时	无 操	Х	0	1	0	将接收数据;
	仲裁失败;	作					将发送 NACK
	SLA+W 已接收;	无 操	Х	0	1	1	将接收数据;
	ACK 已发送	作					将发送 ACK
0x70	广播地址已接收;	无 操	Х	0	1	0	将接收数据;
	ACK 已发送	作					将发送 NACK
		无 操	Х	0	1	1	将接收数据;
		作					将发送 ACK
0x78	发送 SLA+R/W 时	无 操	Х	0	1	0	将接收数据;
	仲裁失败;	作					将发送 NACK
	SLA+W 己接收;	无 操	Х	0	1	1	将接收数据;
	ACK 已发送	作					将发送 ACK
0x80	自身数据已接收;	读取	Х	0	1	0	将接收数据;
	ACK 已发送	数据					将发送 NACK
		读取	Х	0	1	1	将接收数据;
		数据					将发送 ACK
0x88	自身数据已接收;	读取	0	0	1	0	将切换到未寻址