

Victorian Certificate of Education 2014

CHEMISTRYWritten examination

Tuesday 11 November 2014

Reading time: 9.00 am to 9.15 am (15 minutes)

Writing time: 9.15 am to 11.45 am (2 hours 30 minutes)

DATA BOOK

Directions to students

• A question and answer book is provided with this data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Table of contents

		page
1.	Periodic table of the elements	3
2.	The electrochemical series	4
3.	Physical constants	5
4.	SI prefixes, their symbols and values	5
5.	¹ H NMR data	5–6
6.	¹³ C NMR data	7
7.	Infrared absorption data	7
8.	2-amino acids (α-amino acids)	8–9
9.	Formulas of some fatty acids	10
10.	Structural formulas of some important biomolecules	10
11.	Acid-base indicators	11
12.	Acidity constants, K_a , of some weak acids at 25 °C	11
13.	Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa	11

1. Periodic table of the elements

2 He 4.0 Helium	10 Ne 20.2 Neon	18 Ar 39.9 Argon	36 Kr 83.8 Krypton	54 Xe 131.3 Xenon	86 Rn (222) Radon	118 Uuo (294)
	9 F 19.0 Fluorine	17 Cl 35.5 Chlorine	35 Br 79.9 Bromine	53 I 126.9 Iodine	85 At (210) Astatine	117 Uus (294)
	8 O 16.0 Oxygen	16 S 32.1 Sulfur	34 Se 79.0 Selenium	52 Te 127.6 Tellurium	84 Po (210) Polonium	116 Uuh (293)
	7 N 14.0 Nitrogen	15 P 31.0 Phosphorus	33 As 74.9 Arsenic	51 Sb 121.8 Antimony	83 Bi 209.0 Bismuth	115 Uup (288)
	6 C 12.0 Carbon	14 Si 28.1 Silicon	32 Ge 72.6 Germanium	50 Sn 118.7 Tin	82 Pb 207.2 Lead	114 Uuq (289)
	5 B 10.8 Boron	13 Al 27.0 Aluminium	31 Ga 69.7 Gallium	49 In Indium	81 T1 204.4 Thallium	113 Uut (284)
			30 Zn 65.4 Zinc	48 Cd 112.4 Cadmium	80 Hg 200.6 Mercury	112 Cn (285) Copernicium
	symbol of element name of element		29 Cu 63.5 Copper	47 Ag 107.9 Silver	79 Au 197.0 Gold	Mt Ds Rg Cn (268) (271) (272) (285) Meitnerium Darmstadtium Roentgenium Copernicium
	79 Au symbo 197.0 Gold name		28 Ni 58.7 Nickel	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds (271) Darmstadtium
			27 Co 58.9 Cobalt	45 Rh 102.9 Rhodium	77 Ir 192.2 Iridium	109 Mt (268) Meitnerium
	atomic number relative atomic mass		26 Fe 55.8 Iron	44 Ru 101.1 Ruthenium		108 Hs (267) Hassium
	91		25 Mn 54.9 Manganese			107 Bh (264) Bohrium
			24 Cr 52.0 Chromium	42 Mo 96.0 Molybdenum	74 W W 183.8 Tungsten	106 Sg (266) Seaborgium
			23 V 50.9 Vanadium	41 Nb 92.9 Niobium	73 Ta 180.9 Tantalum	105 Db (262) Dubnium
			22 Ti 47.9 Titanium	40 Zr 91.2 Zirconium	72 Hf 178.5 Hafnium	104 Rf (261) Rutherfordium
			21 Sc 45.0 Scandium	39 Y 88.9 Yttrium	57 La 138.9 Lanthanum	89 Ac (227) Actinium
	4 Be 9.0 Beryllium	12 Mg 24.3 Magnesium	20 Ca 40.1 Calcium	38 Sr 87.6 Strontium	56 Ba 137.3 Barium	88 Ra (226) Radium
1 H 1.0 Hydrogen	3 Li 6.9 Lithium	11 Na 23.0 Sodium	19 K 39.1 Potassium	37 Rb 85.5 Rubidium	55 Cs 132.9 Caesium	87 Fr (223) Francium
L	L	L	L	L	L	L

71	Lu	175.0	utetium
70	Λp	173.1	Ytterbium
69	Tm	168.9	Thulium
89	Er	167.3	Erbium
29	Ho	164.9	Holmium
99	Dy	162.5	Dysprosium
9	$^{\mathrm{Tb}}$	158.9	Terbium
49	Сd	157.3	Gadolinium
63	Eu	152.0	Europium
62	Sm	150.4	Samarium
61	Pm	(145)	Promethium
09	Nd	144.2	Neodymium
59	Pr	140.9	Praseodymium
28	Ce	140.1	Cerium

103	Lr	(262)	rencium
_	_		ım Lawı
102	No	(259)	n Nobelii
101	Md	(258)	Mendeleviun
100	Fm	(257)	Fermium
66	Es	(252)	Einsteinium
86	Ç	(251)	Californium
76	Bk	(247)	Berkelium
96	Cm	(247)	Curium
95	Am	(243)	Americium
94	Pu	(244)	Plutonium
93	ď	(237)	Neptunium
92	D	238.0	Uranium
91	Pa	231.0	Protactinium
90	Th	232.0	horium

The value in brackets indicates the mass number of the longest-lived isotope.

TURN OVER

2. The electrochemical series

	E° in volt
$F_2(g) + 2e^- \implies 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \implies 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \implies Au(s)$	+1.68
$Cl_2(g) + 2e^- \implies 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \implies 2H_2O(1)$	+1.23
$Br_2(l) + 2e^- \implies 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \implies Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \implies Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \implies H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \implies 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \implies 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \implies \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \implies H_2S(g)$	+0.14
$2H^+(aq) + 2e^- \implies H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^- \implies Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \implies \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \implies Ni(s)$	-0.23
$Co^{2+}(aq) + 2e^- \implies Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \implies Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^- \implies Zn(s)$	-0.76
$2H_2O(l) + 2e^- \implies H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^{-} \implies Mn(s)$	-1.03
$Al^{3+}(aq) + 3e^{-} \implies Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^- \implies Mg(s)$	-2.34
$Na^+(aq) + e^- \implies Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^- \implies Ca(s)$	-2.87
$K^+(aq) + e^- \implies K(s)$	-2.93
$Li^{+}(aq) + e^{-} \implies Li(s)$	-3.02

3. Physical constants

Avogadro's constant (N_A) = $6.02 \times 10^{23} \text{ mol}^{-1}$

charge on one electron $= -1.60 \times 10^{-19} \text{ C}$

Faraday constant (F) = 96 500 C mol⁻¹

gas constant (R) = 8.31 J K⁻¹mol⁻¹

ionic product for water $(K_{\rm w}) = 1.00 \times 10^{-14} \, \rm mol^2 \, L^{-2}$ at 298 K (self-ionisation constant)

molar volume (V_m) of an ideal gas at 273 K, 101.3 kPa (STP) = 22.4 L mol⁻¹ molar volume (V_m) of an ideal gas at 298 K, 101.3 kPa (SLC) = 24.5 L mol⁻¹

specific heat capacity (c) of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$ density (d) of water at 25 °C = 1.00 g mL^{-1}

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	10 ⁹
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

5. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton	Chemical shift (ppm)
R-CH ₃	0.8–1.0
R-CH ₂ -R	1.2–1.4
$RCH = CH - CH_3$	1.6–1.9
R ₃ -CH	1.4–1.7
CH_3 — C O OR OR OR OR OR OR OR OR OR	2.0

Type of proton	Chemical shift (ppm)
R CH_3	
C	2.1–2.7
$R-CH_2-X$ (X = F, Cl, Br or I)	3.0–4.5
R– C H ₂ – O H, R ₂ – C H – O H	3.3–4.5
∠O.	
R— C	3.2
NHCH ₂ R	
R—O—CH ₃ or R—O—CH ₂ R	3.3
0	
$\langle () \rangle$ O—C—CH ₃	2.3
∠,O	
R— C	4.1
OCH ₂ R	
R-O-H	1–6 (varies considerably under different conditions)
R-NH ₂	1–5
$RHC = CH_2$	4.6–6.0
ОН	7.0
Н	7.3
$R - C$ $NHCH_2R$	8.1
R - C H	9–10
R—С О—Н	9–13

6. ¹³C NMR data

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ -CH	40–60
R ₄ –C	36–45
R-CH ₂ -X	15–80
R ₃ C-NH ₂	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
R ₂ C=CR ₂	110–150
RCOOH	160–185

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number (cm ⁻¹)
C-Cl	700–800
C–C	750–1100
C-O	1000-1300
C=C	1610–1680
C=O	1670–1750
O–H (acids)	2500–3300
С–Н	2850-3300
O–H (alcohols)	3200–3550
N–H (primary amines)	3350–3500

8. 2-amino acids (α-amino acids)

Name	Symbol	Structure
alanine	Ala	CH ₃
		Н ₂ N—СН—СООН
arginine	Arg	NH
		$\begin{array}{c} \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{NH} \longrightarrow \operatorname{C} \longrightarrow \operatorname{NH}_2 \\ \\ \operatorname{H}_2 \operatorname{N} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{COOH} \end{array}$
		H ₂ N—CH—COOH
asparagine	Asn	O
		$\begin{array}{c} O \\ \parallel \\ CH_2 \longrightarrow C \longrightarrow NH_2 \\ \parallel \\ H_2N \longrightarrow CH \longrightarrow COOH \end{array}$
		H ₂ N—CH—COOH
aspartic acid	Asp	СН ₂ —СООН
		CH_2 — $COOH$ H_2N — CH — $COOH$
cysteine	Cys	CH ₂ —SH
		H ₂ N—CH—COOH
glutamine	Gln	O
		$ \begin{array}{c} \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{CH}_2 \\ \mid \\ \end{array} $
		H ₂ N—CH—COOH
glutamic acid	Glu	СН ₂ —— СООН
		H ₂ N—CH—COOH
glycine	Gly	H ₂ N—CH ₂ —COOH
histidine	His	N
		CH ₂ —N
		H_2N —CH—COOH
isoleucine	Ile	CH_3 CH CH_2 CH_3
		H ₂ N—CH—COOH

Symbol	Structure
Leu	CH ₃ ——CH——CH ₃
	$_{\rm CH_2}^{\mid}$
	H ₂ N—CH—COOH
Lys	CH_2 CH_2 CH_2 CH_2 NH_2
	H ₂ N—CH—COOH
Met	CH ₂ — CH ₂ — S— CH ₃
	$\begin{array}{c} \operatorname{CH}_2 \hspace{-0.5cm} - \operatorname{CH}_2 \hspace{-0.5cm} - \operatorname{S} \hspace{-0.5cm} - \operatorname{CH}_3 \\ \\ \hspace{-0.5cm} \\ \hspace{-0.5cm} \operatorname{H}_2 \hspace{-0.5cm} - \hspace{-0.5cm} \operatorname{CH} \hspace{-0.5cm} - \hspace{-0.5cm} \operatorname{COOH} \end{array}$
Phe	CH ₂ ——
	H_2N — CH — $COOH$
Pro	н СООН
	N N
Ser	ÇH ₂ ——OH
	СН ₂ — ОН Н ₂ N—СН—СООН
Thr	СНОН
	H ₂ N—CH—COOH
Trp	H
	CH2
	H_2N —CH—COOH
Tvr	
1,1	CH ₂ ——OH
	H ₂ N—ĊH——COOH
Val	CH_3 CH CH_3
	H ₂ N—CH—COOH
	Leu Lys Met Phe Pro Ser Thr Trp

9. Formulas of some fatty acids

Name	Formula
lauric	$C_{11}H_{23}COOH$
myristic	$C_{13}H_{27}COOH$
palmitic	$C_{15}H_{31}COOH$
palmitoleic	$C_{15}H_{29}COOH$
stearic	$C_{17}H_{35}COOH$
oleic	$C_{17}H_{33}COOH$
linoleic	$C_{17}H_{31}COOH$
linolenic	$C_{17}H_{29}COOH$
arachidic	$C_{19}H_{39}COOH$
arachidonic	$C_{19}H_{31}COOH$

10. Structural formulas of some important biomolecules

11. Acid-base indicators

Name	pH range	Colour change		K _a
		Acid	Base	
thymol blue	1.2–2.8	red	yellow	2×10^{-2}
methyl orange	3.1–4.4	red	yellow	2×10^{-4}
bromophenol blue	3.0-4.6	yellow	blue	6×10^{-5}
methyl red	4.2-6.3	red	yellow	8 × 10 ⁻⁶
bromothymol blue	6.0–7.6	yellow	blue	1×10^{-7}
phenol red	6.8–8.4	yellow	red	1×10^{-8}
phenolphthalein	8.3–10.0	colourless	red	5×10^{-10}

12. Acidity constants, $K_{\rm a}$, of some weak acids at 25 °C

Name	Formula	K _a
ammonium ion	NH ₄ ⁺	5.6×10^{-10}
benzoic	C ₆ H ₅ COOH	6.4×10^{-5}
boric	H_3BO_3	5.8×10^{-10}
ethanoic	CH ₃ COOH	1.7×10^{-5}
hydrocyanic	HCN	6.3×10^{-10}
hydrofluoric	HF	7.6×10^{-4}
hypobromous	HOBr	2.4×10^{-9}
hypochlorous	HOCl	2.9×10^{-8}
lactic	HC ₃ H ₅ O ₃	1.4×10^{-4}
methanoic	НСООН	1.8×10^{-4}
nitrous	HNO ₂	7.2×10^{-4}
propanoic	C ₂ H ₅ COOH	1.3×10^{-5}

13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa $\,$

Substance	Formula	State	$\Delta H_{\rm c}$ (kJ mol ⁻¹)
hydrogen	H_2	g	-286
carbon (graphite)	С	S	-394
methane	CH ₄	g	-889
ethane	C_2H_6	g	-1557
propane	C ₃ H ₈	g	-2217
butane	C_4H_{10}	g	-2874
pentane	C_5H_{12}	1	-3509
hexane	C_6H_{14}	1	-4158
octane	C_8H_{18}	1	-5464
ethene	C_2H_4	g	-1409
methanol	CH ₃ OH	1	-725
ethanol	C ₂ H ₅ OH	1	-1364
1-propanol	CH ₃ CH ₂ CH ₂ OH	1	-2016
2-propanol	CH ₃ CHOHCH ₃	1	-2003
glucose	$C_6H_{12}O_6$	S	-2816