CPE348: Introduction to Computer Networks

Lecture #7: Chapter 2.5

Jianqing Liu Assistant Professor of Electrical and Computer Engineering, University of Alabama in Huntsville

jianqing.liu@uah.edu http://jianqingliu.net

Wireless Links

 Wireless data transmission is based on EM wave propagation in the free space.

Wireless Links

- A Specific frequency band is allocated to a specific entity.
- These allocations are determined by FCC (Federal Communications Commission) in USA.

Wireless Networks

- Several wireless networks
 - Bluetooth (802.15)
 - Wi-Fi (more formally known as 802.11)
 - 2G, 3G, 4G/LTE cellular systems and beyond

Wireless Networks

- Considerations upon designing or updating a wireless system:
 - Connectivity
 - data rate (uplink & downlink)
 - Latency
 - Energy efficiency

Capability	5G target
Peak data rate	20 Gbit/s
User experienced data rate	1 Gbit/s
Latency	1 ms
Mobility	500 km/h
Connection density	10 ⁶ /km ²
Energy efficiency	Equal to 4G
Spectrum efficiency	3–4x 4G
Area traffic capacity	1000 (Mbit/s)/m ²

- How to achieve these specs:
 - Architecture design
 - Resource allocation (bandwidth, power, time, device)
 - Scheduling and control design

Computer Engineer!

Wireless Networks – centralized

A wireless network using a base station, e.g. cellular

Wireless Networks – distributed

- Mesh or Ad-hoc network
 - Nodes are peers
 - Messages may be forwarded via a chain of peer nodes
 - Multiple paths are available

A wireless mesh network, e.g. wireless sensor network

Wireless Networks

Too many wireless networks!

Let's just study WiFi as an example!

IEEE 802.11 – overview

- Also known as Wi-Fi
- 802.11 defines a suite of protocols to build a wireless local area network (WLAN)
- Its version evolves to support different applications.

IEEE 802.11 – history

- Original 802.11 standard defined two radio-based physical layer standard
 - One using the frequency hopping
 - Over 79 1-MHz-wide frequency bandwidths
 - Second using direct sequence
 - Using 11-bit chipping sequence
 - Both standards run in the 2.4-GHz and provide up to 2 Mbps

IEEE 802.11 – history

- Then physical layer standard 802.11b was added
 - Using a variant of direct sequence 802.11b provides up to 11 Mbps
 - Uses license-exempt 2.4-GHz band
- Then came 802.11a which delivers up to 54 Mbps using OFDM (Orthogonal FDM)
 - Runs on license-exempt 5-GHz band less interference
- Then came 802.11g which is backward compatible with 802.11b
 - Uses 2.4 GHz band, OFDM and delivers up to 54 Mbps
- Then came 802.11n which delivers up to 600 Mbps
 - Uses multiple antennas MIMO (multiple input multiple output)
- Story continues...

Let's look into an important issue in WiFi networks!

- Suppose both A and C want to communicate with B
 - A and C are unaware of each other
 - These two frames collide with each other at B
 - But unlike an Ethernet, neither A nor C is aware of this collision
 - A and C are said to <u>hidden nodes</u> with respect to each other –
 see next slide

- Another problem called exposed node problem occurs
 - Suppose B is sending to A. Node C is aware of this communication
 - Suppose C wants to transmit to node D.
 - It would be a mistake for C to conclude that it cannot transmit.
 - Waste of resources!

- 802.11 addresses these two problems with an algorithm called <u>Multiple Access with Collision Avoidance</u> (MACA).
 - Sender and receiver exchange control frames with each other before data communications;
 - This exchange informs all nearby nodes that a transmission is about to begin;
 - Sender transmits a Request to Send (RTS) frame to the receiver.
 - Includes a field that indicates how long the sender wants to hold the medium
 - Includes length of the data frame to be transmitted
 - Receiver replies with a Clear to Send (CTS) frame
 - This frame echoes the length field back to the sender

- Any node that sees the CTS frame knows that
 - it is close to the receiver, therefore
 - cannot transmit for the period of time it takes to send a frame of the specified length
- Any node that sees the RTS frame but not the CTS frame
 - is not close enough to the receiver to interfere with it, and
 - so is free to transmit to a node other than the node originating the RTS

- If two or more nodes detect an idle link and try to transmit an RTS frame at the same time
 - Their RTS frame will collide with each other
 - So the senders realize the collision when they do not receive the CTS frame after a period of time
 - In this case, they each wait a random amount of time before trying again.
 - The amount of time a given node delays is defined by the same exponential backoff algorithm used on the Ethernet.

802.11 does not support collision detection! Why?

- WiFi devices are free to move around
- To deal with this mobility and partial connectivity,
 - Some nodes are stable, like an anchor, which are connected to a wired network infrastructure
 - they are called *Access Points* (AP) and they are connected to each other by a so-called *distribution system*

- Three local area networks (LANs) severed by three Aps;
- APs are connected to the distribution system (in most cases Ethernet).

Access points connected to a distribution network

For example, if A tries to talk with E,

A first sends a frame to its AP-1 which forwards the frame across the distribution system to AP-3, which finally transmits the frame to E

A -> AP-1 -> AP-3 -> E

When a node is moving, how to associate with an appropriate AP? This is called, handover!

- Active scanning
 - The node initiates a Probe frame
 - All APs within reach reply with a Probe Response frame
 - The node selects one of the APs, <u>based on signal strength</u>, and sends that AP an Association Request frame
 - The AP replies with an Association Response frame

Active scanning – node is actively searching for an access point

- Passive scanning
 - performed by access points
 - AP's periodically send Beacon Frames
 - AP's advertise their capabilities in Beacon Frames
 - Nodes can decide to change AP's based on Beacon Frames

For example

Node Mobility

IEEE 802.11 – Frame Format

- Source and Destination addresses: each 48 bits
- Data: up to 2312 bytes
- CRC: 32 bit
- Control field: 16 bits
 - Contains three subfields (of interest)
 - 6 bit Type field: indicates whether the frame is an RTS or CTS frame or being used by the scanning algorithm
 - A pair of 1 bit fields : called ToDS and FromDS

Frame Format

Chapter Summary

- Physical layer (L1) and Link layer (L2) techniques.
- We looked into five key issues in L1&L2
 - Encoding
 - Framing
 - Error Detecting
 - Reliability
 - Multiple Access Links
 - Ethernet
 - Wireless 802.11

