화려한 **태양**이 **전기차**를 감싸네

Pikachu 피카츄

팀 소개

이영주

팀장 / 컴퓨터통계학과

전력데이터 분석 및 결론 도출

박소연

팀원 / 컴퓨터통계학괴

전력데이터 전처리 및 시각화

박현호

팀원 / 전기공학과

아이디어 발전 및 주요 기술 개발

이승희

팀원 / 컴퓨터통계학교

아이디어 제안 및 소프트웨어 구현

목차

론 SW구현 개 연구설계 연구내용 결 요 연구 배경 데이터 소개 회귀분석 프로그램 개요 사업화 방안 및 기대효과 연구 주제 분석도구 프로그램 구조도 클러스터링 한계점 최적입지선정 기능 소개 구현 및 시연영상

개요 연구 배경

전기차 보급 급증 자동차 배출가스에 대한 국제적인 환경 규제 강화 에너지 공급 방식의 다양화 필요 충전소 위치에 대한 사용자의 정보 부족

개요 연구 주제

연구 설계 데이터 소개

출처	데이터명	단위
원기전대	충전량	Kwh
	충전빈도	회
한국전력	충전시간	분
	충전소 위치	-
	풍속	m/s
기상자료개방포털	기온	°C
	강수량	mm
통계지리정보서비스	집계구 경계 shp	-
	도시화 지역 shp	-
	인구밀도	명/㎢
	종사자 수	명
	사업체 수	개
ViewT 2.0	교통량	대
오픈메이트 지오코딩	좌표	도
포트메이는 시포포·O	제곱미터당단가	원

연구 설계 분석 도구

연구 내용 충전 빈도 버블맵

충전빈도 상위 3

운남동 주민센터 양산동 주민센터 광주시립미술관

충전빈도 하위 3

서창 한옥 문화관 사직주민센터 광주망월 주유소

연구 내용 회귀 결과

	비표준화계수	유의확률 p-value
(상수)	-2.294	0.002
충전량	0.348	0.023**
충전시간	0.593	0.000**
인구밀도	0.062	0.054*
종사자수	0.348	0.002**
사업체수	-0.487	0.001*
교통량	-0.050	0.317
제곱미터당 단가	-0.014	0.714

 $p \le 0.05, p \le 0.01$

R제 곱	수정된 R제곱
0.983	0.980

	제곱합	자유도	평균제곱	유의확률
회귀	190.972	7	27.282	0.000
잔차	3.351	43	0.078	
전체	194.323	50		

회귀스

충전빈도 = -2.294 + 0.348*충전량 + 0.593*충전시간 + 0.062*인구밀도 + 0.348*종사자수 - 0.487*사업체수

연구 내용 회귀분석 결과 기반 맵

연구 내용 클러스터링 분석 결과

군집 분류

 군집1	군집2	군집3
37개 구역	47개 구역	11개 구역

군집 별 평균

	군집1	군집2	군집3
강수량	1143.305	1083.917	1282.718
기온	14.336	14.129	13.720
풍속	1.342	1.459	1.795

연구 내용 클러스터링 결과 기반 맵

연구 내용 입지선정 결과

SW 구현 SW 프로그램 개요

전기차 사용자의 충전소 접근 및 사용 편리함 제공

SW 구현 프로그램 구조도

SW 구현 SW 프로그램 구현 및 기능 소개

T Map API를 사용하여 기존 한전 전기차 어플과 기능이 유사하게 구현

SW 구현

SW 프로그램 구현 및 기능 소개

충전소의 좌표 데이터 구현

남은 배터리 양 및 충전소 정보를 확인할 수 있는 UI/UX 구현

SW 구현 SW 프로그램 구현 및 기능 소개

66

BEST 충전소 기능

전기차 사용자가 주택, 직장의 대한 주소를 설정 후 주택, 직장, 현재 위치의 반경 1km 내 충전소를 추천 및 충전소 정보 제공

SW 구현 시연 영상

결론 사업화 방안 및 기대 효과

결론 한계점

01

편향된 데이터로 인한 분석 결과의 왜곡 우려

"

02

광주광역시로 지역 한정

"

03

"

자료와 정보의 부족으로 충전요금 산정 불가

"

04

태양광에너지 발전량 미달 시 일반 전기차 충전소와 동일

〈참고 문헌〉

- 1. 정택원, '에너지저장장치(ESS) 산업의 경쟁력 제고 방안', 한양대학교 기업경영대학원 학위 논문, 2016.
- 2. 이승문, 김기환, '전기자동차 충전 시스템에서의 신재생에너지 활용 방안 연구', 에너지경제연구원 기본연구, 2018.
- 3. 김경헌, '교통량 데이터를 활용한 전기차 충전소 위치 최적화 방안 연구', 서울대학교 공학전문대학원 학위 논문, 2020.
- 4. 장홍석, '빅데이터 분석을 통한 전기차 충전소 최적입지 선정 방안', 대한산업공학회 춘계공동학술대회 논문집, 2019.
- 5. 한국전기공사협회, '초보자도 할 수 있다 태양광 발전설비 설치 가이드북', 2017.
- 6. 양일승, 안형순, '효율성 측면에서 태양광 에너지 시설 최적입지에 관한 연구', 한국콘텐츠학회논문지, 2018.

경청해주셔서 **감사합니다**

Pikachu 피카츄

QnA

Pikachu 피카츄