Fisica CdL in Viticoltura ed Enologia

Problema 1: Un punto materiale P di massa $m=896\,\mathrm{g}$ si trova ai piedi di un piano inclinato di altezza $h=29\,\mathrm{cm}$ e angolo $\alpha=64\,^{\circ}$.

- i) In assenza di attrito calcolare la forza minima (in N) da applicare su P lungo il piano inclinato per farlo salire sullo stesso. (1 pt)
- ii) Se il piano inclinato è ruvido con coefficiente di attrito pari a μ =0.502, calcolare la forza minima (in N) richiesta in (i). (1.5 pt)
- iii) Nelle stesse condizioni del punto (ii), calcolare il lavoro (con segno e in Joule) dissipato dalla forza di attrito se P arriva in cima al piano partendo dai suoi piedi. (1 pt)
- iv) Nelle condizioni del punto (i) ma in assenza della forza aggiuntiva, se P ha una velocità iniziale $v=8.75 \,\mathrm{m/s}$ diretta lungo il piano inclinato, calcolare in quanto tempo (in s) arriva alla sua sommità. (1.5 pt)
- v) Nelle condizioni del (iv) ma in presenza di attrito con coefficiente pari a μ =0.582, calcolare la velocità di P sulla sommità del piano inclinato (in m/s). (2 pt)

Problema 2: Una vasca a forma di parallelepipedo è utilizzata per contenere del vino. La vasca, che è aperta superiormente, ha le seguenti dimensioni: altezza $h=2\,\mathrm{m}$, lati di base $\ell_1=5\,\mathrm{m}$ e $\ell_2=4\,\mathrm{m}$. (Nello svolgimento dell'esercizio si assuma che la densità del vino sia pari a quella dell'acqua.)

- i) Se la vasca è completamente piena, quale è la pressione assoluta sul fondo? (Tenere conto della pressione atmosferica) (0.5 pt)
- ii) Al livello del fondo della vasca è posto un rubinetto. Se questo viene aperto, supponendo che la vasca sia completamente piena, quale è la velocità di fuoriuscita del vino? Se il rubinetto ha una sezione di $A = 3 \,\mathrm{cm}^2$ ed è completamente aperto, quanto tempo occorre perché il livello del vino nella vasca diminuisca di $\Delta h = 10 \,\mathrm{cm}$? (Trascurate il fatto che il livello del vino cala leggermente mentre la vasca si svuota.) (2.5 pt)
- iii) Dal fondo della vasca parte un tubo che scende per $H=5\,\mathrm{m}$. Alla fine del tubo è posto un rubinetto. Se questo viene aperto, supponendo che la vasca sia completamente piena, quale è la velocità di fuoriuscita del vino? (0.5 pt)
- iv) Come cambiano le risposte alle domande i), ii) e iii) se la vasca è riempita di olio invece che di vino? (La densità dell'olio è data nella tabella delle costanti.) (1 pt)
- v) Per riempire la vasca si utilizza una pompa, che esercita una pressione di $P = 2 \times 10^6$ Pa, collegata ad un tubo. Se la portata del flusso di vino è Q = 100 l/min, quanto tempo occorre per riempire completamente la vasca inizialmente vuota? Qual è la potenza sviluppata dalla pompa e qual è il lavoro totale compiuto? (2.5 pt)

Domande a risposta multipla (risposta corretta 1.5 pt, nessuna risposta 0 pt, risposta errata -0.25 pt)

- 1. Un oggetto di massa $m = 1604 \,\mathrm{kg}$ si muove di moto uniformemente accelerato con accelerazione $a = 6.31 \, m/s^2$. In quanto tempo (in secondi) percorre una distanza $s = 72 \,\mathrm{km}$, partendo da ferma?
 - a) 22820 s
- b) 106.8 s
- c) $4.777 \, s$
- d) 151.1 s
- 2. Quale delle seguenti affermazioni sulla dinamica di un punto materiale non è corretta?
 - a) La forza di attrito ha la direzione del vettore velocità ma verso opposto.
 - b) In presenza di attrito l'energia meccanica totale non si conserva.
 - c) Il modulo della forza di attrito radente presenta un valore massimo.
 - d) La forza di attrito è sempre diversa da zero su un piano scabro.

3. 1	Un motore di un ti	cattore eroga una	potenza massim	a pari a $P=125\mathrm{kW}$. Quanta energia può generare in		
1	un tempo pari a $t=$	=24 s?				
	a) $3. \times 10^6 \text{J}$	b) 5208 J	c) $3000\mathrm{J}$	d) $5.208 \mathrm{J}$		
	l. Una ruota gira di moto uniforme con velocità angolare ω =86.2 rad/s, in quanto tempo (in secondi) compie 922 giri?					
	a) 10.7 s	b) 21.39 s	c) 33.59 s	d) 67.17 s		

5. Un punto materiale P di massa $m=2629\,\mathrm{g}$ è attaccato ad una molla ideale sospesa verticalmente, con costante elastica $k=1.49\,\mathrm{N/m}$. Qual è l'allungamento (in cm) della molla se P è in equilibro?

a) $1729 \,\mathrm{cm}$ b) $1.729 \times 10^6 \,\mathrm{cm}$ c) $17.29 \,\mathrm{cm}$ d) $176.4 \,\mathrm{cm}$

7. Un gas ideale (n=2 moli) è contenuto in un cilindro con pistone ed è mantenuto a pressione costante pari a $P=2\times 10^5$ Pa. Se la sua temperatura passa da $T_1=350\,\mathrm{K}$ a $T_2=844\,\mathrm{K},$ quale è il lavoro compiuto dal gas?

a) $8214 \,\mathrm{J}$ b) $-2910 \,\mathrm{J}$ c) $7017 \,\mathrm{J}$ d) $4107 \,\mathrm{J}$

8. Una nave è realizzata utilizzando $V=125\,\mathrm{m}^3$ di acciaio (la cui densità è riportata in tabella). Qual è la minima quantità di acqua che deve spostare per poter rimanere a galla? (Trascurare gli effetti dell'aria e di eventuali carichi.)

a) $98250 \,\mathrm{m}^3$ b) $1965 \,\mathrm{m}^3$ c) $0.125 \,\mathrm{m}^3$ d) $982.5 \,\mathrm{m}^3$

9. Un recipiente contiene $m=448\,\mathrm{g}$ di acqua alla temperatura di $T=23\,^{\circ}\mathrm{C}$. Quanto calore deve essere sottratto al sistema per trasformare tutta l'acqua in ghiaccio alla temperatura di $0\,^{\circ}\mathrm{C}$?

a) $1.492 \times 10^5 \,\mathrm{J}$ b) $4.313 \times 10^4 \,\mathrm{J}$ c) $1.923 \times 10^5 \,\mathrm{J}$ d) $1.708 \times 10^5 \,\mathrm{J}$

- 10. Quale delle seguenti affermazioni riferite al *primo* principio della termodinamica <u>non</u> è corretta?
 - a) Regola la conversione di energia meccanica in energia interna.
 - b) Non permette la conversione totale di calore in energia meccanica.
 - c) Estende il principio di conservazione dell'energia ai fenomeni termodinamici.
 - d) Implica che in un ciclo termodinamico il lavoro compiuto dal sistema è uguale alla differenza tra il calore assorbito e quello ceduto.
- 11. Un gas perfetto alla temperatura $T_0 = 251^{\circ}\text{C}$ è contenuto in un recipiente di volume $V = 2.5\,\text{m}^3$ ad una pressione $P = 20000\,\text{Pa}$. Con una trasformazione termodinamica si porta il gas alla temperatura $T_1 = 112^{\circ}\text{C}$ mantenendone costante la pressione. Quale è il volume finale del gas?

a) $0.5342\,\mathrm{m}^3$ b) $2.5\,\mathrm{m}^3$ c) $1.837\,\mathrm{m}^3$ d) $1.116\,\mathrm{m}^3$

12. Tre resistori con resistenza $R_1 = 13.9 \,\Omega$, $R_2 = 5.56 \,\Omega$ e $R_3 = 19.1 \,\Omega$ sono collegati come mostrato in figura. Quanto vale la resistenza equivalente tra i punti a e b?

a) $14.13\,\Omega$ b) $3.288\,\Omega$ c) $38.56\,\Omega$ d) $18.21\,\Omega$

Costanti fisiche

gravità				
acc. gravità Terra	$g = 9.81 \mathrm{m/s^2}$			
acc. gravità Luna	$g_L = 1.62\mathrm{m/s^2}$			
densità				
acqua	$\rho = 1000 \mathrm{kg/m^3}$			
olio	$\rho = 920\mathrm{kg/m^3}$			
aria	$\rho = 1.20\mathrm{kg/m^3}$			
acciaio	$\rho = 7860 \mathrm{kg/m^3}$			
elio	$\rho = 0.179 \mathrm{kg/m^3}$			
pressioni				
pressione atmosferica	$1.013 \times 10^{5} \mathrm{Pa}$			
calori specifici				
acqua	4186 J/kg·°C			
ghiaccio	$2090\mathrm{J/kg}^{\circ}\mathrm{C}$			
vapore	$2010\mathrm{J/kg}\cdot^{\circ}\mathrm{C}$			
calori latenti				
fusione ghiaccio	$3.33 \times 10^5 \mathrm{J/kg}$			
vaporizzazione acqua	$2.26 \times 10^6 \mathrm{J/kg}$			
costanti termodinamiche				
costante universale dei gas	$R = 8.314 \mathrm{J/mol \cdot K}$			
costante di Boltzmann	$k_B = 1.38 \times 10^{-23} \mathrm{J/K}$			
numero di Avogadro	$N_A = 6.022 \times 10^{23} / \text{mol}$			
equiv. meccanico del calore	$1\mathrm{cal} = 4.186\mathrm{J}$			
zero assoluto	$-273.15^{\circ}{\rm C}$			
costanti elettromagnetiche				
costante di Coulomb	$k_e = 8.988 \times 10^9 \mathrm{N \cdot m^2/C^2}$			
carica del protone	$e = 1.602 \times 10^{-19} \mathrm{C}$			
resistività del rame	$\rho = 1.7 \times 10^{-8} \Omega \cdot \mathrm{m}$			