

Suez Canal University Faculty of Computer and Information Computer Science Dept.

Sheet-2 Neural Networks

- 1- A two-layer neural network is to have four inputs and six outputs. The range of the outputs is to be continuous between 0 and 1. What can you tell about the network architecture? Specifically:
 - i. How many neurons are required in each layer?
 - ii. What are the dimensions of the first-layer and second-layer weight matrices?
 - iii. What kinds of transfer functions can be used in each layer?
 - iv. Are biases required in either layer?
- 2- We have a classification problem with four classes of input vector. The four classes are

class 1:
$$\left\{\mathbf{p}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{p}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}\right\}$$
, class 2: $\left\{\mathbf{p}_3 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \mathbf{p}_4 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}\right\}$,

class 3:
$$\left\{\mathbf{p}_{5} = \begin{bmatrix} -1\\2 \end{bmatrix}, \mathbf{p}_{6} = \begin{bmatrix} -2\\1 \end{bmatrix}\right\}$$
, class 4: $\left\{\mathbf{p}_{7} = \begin{bmatrix} -1\\-1 \end{bmatrix}, \mathbf{p}_{8} = \begin{bmatrix} -2\\-2 \end{bmatrix}\right\}$.

Design a perceptron network to solve this problem.

3- Solve the following classification problem with the perceptron rule. Apply each input vector in order, for as many repetitions as it takes to ensure that the problem is solved. Draw a graph of the problem only after you have found a solution.

$$\left\{\mathbf{p}_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \, t_1 = 0\right\} \left\{\mathbf{p}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \, t_2 = 1\right\} \left\{\mathbf{p}_3 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \, t_3 = 0\right\} \left\{\mathbf{p}_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \, t_4 = 1\right\}$$

Use the initial weights and bias:

$$\mathbf{W}(0) = \begin{bmatrix} 0 & 0 \end{bmatrix} \qquad b(0) = 0.$$

4- We want to train a perceptron network with the following training set:

$$\left\{\mathbf{p}_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \, t_1 = 0\right\} \left\{\mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \, t_2 = 0\right\} \left\{\mathbf{p}_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \, t_3 = 1\right\}.$$

The initial weight matrix and bias are

$$W(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}, b(0) = 0.5.$$

Suez Canal University Faculty of Computer and Information Computer Science Dept.

- **i.** Plot the initial decision boundary, weight vector and input patterns. Which patterns are correctly classified using the initial weight and bias?
- **ii.** Train the network with the perceptron rule. Present each input vector once, in the order shown.

iii. Plot the final decision boundary and demonstrate graphically which patterns
are correctly classified.
iv. Will the perceptron rule (given enough iterations) always learn to correctly
classify the patterns in this training set, no matter what initial weights we use?
Explain
Answer the following MCQs questions
5-What is the main function of a neural network's output layer?
a. To perform feature extraction
b. To make predictions or classifications
c. To introduce non-linearity
d. None of the above
6-In a feedforward neural network, information flows
a. Only in the forward direction
b. Only in the backward direction
c. In both forward and backward directions
d. In random directions
7- For what purpose, hamming network is suitable?
a) classification b) association c) pattern storage d) none of them
8-A perceptron is a
a) Feed-forward neural network b) Back-propagation algorithm
c) Back-tracking algorithm d) Feed Forward-backward algorithm
9-The network that involves backward links from output to the input and hidden layers is called
a) Multi layered perceptron b) Perceptron c) Recurrent neural network
10-Output of Recurrent Network layer is
a) $a(t+1)=Satlin(W a(t)+b)$ b) $a(t)=Satlin(W a(t)+b)$ c)None
11-Given a two-input neuron with the following parameters: b=1.2, w= [3 2] and
$p = [-5 \ 6]^T$, calculate the neuron output for the Hard-limit transfer function:
1 [] /