

Общероссийский математический портал

А. А. Абрамов, А. Л. Дышко, Н. Б. Конюхова, Т. В. Левитина, Вычисление угловых волновых функций Ламе решением вспомогательных дифференциальных уравнений, K. вычисл. матем. и матем. физ., 1989, том 29, номер 6, 813–830

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 77.34.135.213

19 мая 2022 г., 15:53:11

Том 29, 1989

№ 6

УДК 519.6:517.589

ВЫЧИСЛЕНИЕ УГЛОВЫХ ВОЛНОВЫХ ФУНКЦИИ ЛАМЕ РЕШЕНИЕМ ВСПОМОГАТЕЛЬНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИИ

АБРАМОВ А.А., ДЫШКО А.Л., КОНЮХОВА Н.Б., ЛЕВИТИНА Т.В.

(Москва)

Предлагается новый метод расчета угловых волновых функций трехосного эллипсоида, возникающих при разделении переменных в трехмерном уравнении Гельмгольца в эллипсоидальной системе координат и являющихся собственными функциями дискретного спектра двухпараметрических сингулярных самосопряженных краевых задач. Метод достаточно универсален и позволяет вычислять угловые волновые функции Ламе в широком диапазоне изменения параметров задачи; обсуждаются возможности применения аналогичного подхода к решению более общих многопараметрических краевых задач для систем обыкновенных дифференциальных уравнений.

§ 1. Введение

Волновые функции Ламе, или волновые эллипсоидальные функции, возникают при разделении переменных в трехмерном уравнении Гельмгольца

$$(1.1) \qquad \Delta W + \hat{k}^2 W = 0$$

в эллипсоидальной системе координат; здесь $\Delta \equiv \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2 -$ оператор Лапласа, \hat{k} — волновое число.

Пусть (1.1) описывает волновое поле внутри или вне эллипсоида:

(1.2)
$$x^2/a^2+y^2/b^2+z^2/c^2=1$$
,

где a, b, c — длины главных полуосей эллипсоида, удовлетворяющие неравенствам a>b>c>0. Эллипсоидальная система координат, соответствующая взятому эллипсоиду (1.2), определяется уравнением

(1.3)
$$\frac{x^2}{a^2 + \kappa} + \frac{y^2}{b^2 + \kappa} + \frac{z^2}{c^2 + \kappa} = 1,$$

где \varkappa — переменный параметр; (1.3) — уравнение поверхности второго порядка, софокусной с эллипсоидом (1.2); \varkappa называется параметром поверхности. Это уравнение при $\varkappa=\lambda$, $-c^2<\lambda<+\infty$ определяет эллипсоиды (при $\lambda>0$ эти эллипсоиды лежат вне эллипсоида (1.2), а при $\lambda<0$ — внутри него), при $\varkappa=\mu$, $-b^2<\mu<-c^2$ оно определяет однополостные гиперболоиды, а при $\varkappa=\nu$, $-a^2<\nu<-b^2$ — двухполостные гиперболоиды. Для каждой точки (x,y,z), не лежащей на координатных плоскостях, соотношение (1.3), рассматриваемое как уравнение относительно \varkappa , имеет три вещественных корня: первый λ — в интервале $(-c^2,\infty)$, второй μ — в $(-b^2,-c^2)$, третий ν — в $(-a^2,-b^2)$. Эти три числа λ , μ , ν называются эллипсоидальными координатами рассматриваемой точки и связаны с декартовыми ко-

ординатами x, y, z соотношениями

$$x^{2} = (a^{2} + \lambda) (a^{2} + \mu) (a^{2} + \nu) [(a^{2} - b^{2}) (a^{2} - c^{2})]^{-1},$$

$$y^{2} = (b^{2} + \lambda) (b^{2} + \mu) (b^{2} + \nu) [(b^{2} - a^{2}) (b^{2} - c^{2})]^{-1},$$

$$z^{2} = (c^{2} + \lambda) (c^{2} + \mu) (c^{2} + \nu) [(c^{2} - a^{2}) (c^{2} - b^{2})]^{-1}.$$

Координаты λ , μ , ν образуют ортогональную криволинейную систему координат в каждом из координатных октантов пространства (x, y, z). В этой системе координат уравнение (1.1) допускает разделение переменных, т. е. имеет частные решения вида

$$W=L(\lambda)M(\mu)N(\nu)$$
.

Функции L, M, N — решения уравнений

$$\begin{split} & \Delta^{1/2}(\lambda) \frac{d}{d\lambda} \Delta^{1/2}(\lambda) \frac{dL}{d\lambda} + \frac{1}{4} p(\lambda) L = 0, \qquad -c^2 < \lambda < +\infty, \\ & \left[-\Delta(\mu) \right]^{1/2} \frac{d}{d\mu} \left[-\Delta(\mu) \right]^{1/2} \frac{dM}{d\mu} - \frac{1}{4} p(\mu) M = 0, \qquad -b^2 < \mu < -c^2, \\ & \Delta^{1/2}(\nu) \frac{d}{d\nu} \Delta^{1/2}(\nu) \frac{dN}{d\nu} + \frac{1}{4} p(\nu) N = 0, \qquad -a^2 < \nu < -b^2, \end{split}$$

где $\Delta(\eta) = (a^2 + \eta)(b^2 + \eta)(c^2 + \eta), \ p(\eta) = \hat{h} - \hat{l}\eta + k^2 \hat{\eta}^2, \ \hat{h}, \ \hat{l}$ — константы разделения.

Обозначим $k^2 = (a^2 - b^2)/(a^2 - c^2)$, 0 < k < 1, $\omega^2 = \hat{k}^2 (a^2 - b^2)$ и положим $\xi = (\eta + a^2)/(a^2 - b^2)$, $\eta = \lambda$, μ , ν . Тогда в новых безразмерных переменных получим для L, M, N волновое уравнение Ламе в виде, известном как одна из его алгебраических форм:

(1.4a)
$$f^{1/2}(\xi) \frac{d}{d\xi} f^{1/2}(\xi) \frac{d\Lambda}{d\xi} + \frac{1}{4} q(\xi, h, l) \Lambda = 0, \quad 0 < \xi < 1, \quad k^{-2} < \xi < +\infty,$$

(1.46)
$$[-f(\xi)]^{1/2} \frac{d}{d\xi} [-f(\xi)]^{1/2} \frac{d\Lambda}{d\xi} - \frac{1}{4} q(\xi, h, l) \Lambda = 0, \quad 1 < \xi < k^{-2}.$$

Здесь введены обозначения

(1.5a)
$$f(\xi) = \xi(\xi - 1)(\xi - k^{-2}),$$

(1.5_B)
$$q(\xi) = hk^{-2} - lk^{-2}\xi + \omega^{2}\xi^{2}, \quad h = \frac{\hat{k}^{2}a^{4} + \hat{h} + \hat{l}a^{2}}{a^{2} - c^{2}}, \quad l = (2\hat{k}^{2}a^{2} + \hat{l})k^{2}.$$

Подробнее о разделении переменных в уравнении (1.1) в эллипсоидальной системе координат и о различных формах волнового уравнения Ламесм., например, в [1], [2].

Волновыми функциями Ламе называются решения уравнений (1.4), удовлетворяющие определенным граничным условиям; при этом в (1.4) параметры ω^2 , k^2 фиксированы, $\omega^2 > 0$, $0 < k^2 < 1$, а h, l—спектральные параметры, подлежащие определению. Если $k^2 = 0$, то соответствующие функции, отвечающие уравнению Лапласа, называются просто функциями Ламе; они являются собственными функциями (с. ф.) дискретного спектра однопараметрических краевых задач для уравнений (1.4) при $\omega^2 = 0$ и известных значениях параметра l. Функции Ламе достаточно хорошо изучены (см. [1], [2]), в отличие от волновых функций Ламе, о которых до настоящего времени было известно очень мало (см. [1]—[4]) и более ин-

тенсивное изучение которых началось только в последнее время (см. [5] - [8]).

Различают угловые и радиальные волновые функции Ламе (аналогы, соответственно, полиномов Лежандра и функций Бесселя и Ханкеля для сферы). Радиальные эллипсоидальные волновые функции являются с. ф. непрерывного спектра уравнения (1.4a), рассматриваемого на интервале $k^{-2} < \xi < +\infty$ при определенных граничных условиях; эти функции во многом аналогичны радиальным сфероидальным функциям (см. [9], [10]), и способы их вычисления в данной работе не рассматриваются.

Настоящая статья посвящена вычислению угловых волновых эллипсоидальных функций (у. в. э. ф.) как с. ф. дискретного спектра двухпараметрических краевых задач для уравнений (1.4), рассматриваемых на интервалах $0 < \xi < 1$ и $1 < \xi < k^{-2}$ соответственно. Предлагаемый в [5] метод расчета у. в. э. ф. разложениями решений в степенные ряды приводит к четырехчленным рекуррентным формулам, причем поиск спектральных параметров осуществляется малоэффективными локально сходящимися методами. Возникающие здесь вычислительные трудности и весьма ограниченные возможности такого подхода отмечены в [5] самими авторами; эти трудности, хотя и в меньшей степени, появляются уже при вычислении полиномов Ламе, отвечающих уравнению Лапласа, и нарастают с увеличением числа нулей этих полиномов и ростом параметров задачи (см. [11]). За исключением небольшого числа простейших случаев, приведенных в [5], расчеты для у. в. э. ф. практически отсутствуют.

Данная работа примыкает к работам [9], [10], [12], посвященным новым методам расчета угловых и радиальных сфероидальных функций и их применению. Для расчета у. в. э. ф., как и в [9], [10] для расчета угловых сфероидальных функций, применяется метод фазовых функций (здесь — в модификации, изложенной в [13]). Основное отличие от [9], [10] — необходимость поиска значений двух спектральных параметров, что в настоящей статье осуществляется с помощью нового, высокоэффективного, глобально сходящегося метода. Обсуждаются возможности применения аналогичного подхода к решению более общих многопараметрических краевых задач. На настоящую статью существенное влияние оказали работы [6]—[8].

Алгоритм, использующий излагаемый метод, реализован в виде стандартной программы на языке АЛГОЛ для ЭВМ БЭСМ-6; он может быть использован при решении ряда задач электродинамики и акустики для трехосных эллипсоидов (примеры таких задач см. в [3], [7]).

В заключение этого параграфа осуществим замену независимой переменной в уравнениях (1.4), позволяющую избавиться от особенностей в точках ξ =0, 1, k^{-2} ; вид этих уравнений в новых переменных понадобится в дальнейших рассуждениях. Полагая в (1.4)

(1.6)
$$x = \begin{cases} 2 \arcsin \xi^{1/2}, & 0 \le \xi \le 1, \\ 2 \arcsin \left[(\xi - 1)^{1/2} (k^{-2} - 1)^{-1/2} \right] + \pi, & 1 \le \xi \le k^{-2}, \end{cases}$$

и вводя обозначения

(1.7)
$$\sigma = h - l, \quad \tau = l,$$

получаем уравнения

(1.8a)
$$f_{1}^{\prime\prime}(x) \frac{d}{dx} f_{1}^{\prime\prime}(x) \frac{d\tilde{\Lambda}}{dx} + \frac{1}{4} q_{1}(x,\sigma,\tau) \tilde{\Lambda} = 0, \quad 0 \leqslant x \leqslant \pi,$$

(1.86)
$$f_{2}^{h}(x) \frac{d}{dx} f_{2}^{h}(x) \frac{d\tilde{\Lambda}}{dx} - \frac{1}{4} q_{2}(x,\sigma,\tau) \tilde{\Lambda} = 0, \quad \pi \leq x \leq 2\pi,$$

где
$$\widetilde{\Lambda}(x) = \Lambda(\xi(x)), f_1(x) = 1 - k^2 \sin^2(x/2), f_2(x) = 1 - (1 - k^2) \sin^2(x/2),$$

(1.9a)
$$q_1(x, \sigma, \tau) = \sigma + \tau \cos^2(x/2) + k^2 \omega^2 \sin^4(x/2),$$

(1.96)
$$q_2(x, \sigma, \tau) = \sigma - \tau (1 - k^2) \cos^2(x/2) + \omega^2 k^{-2} [1 - (1 - k^2) \sin^2(x/2)]^2$$
.

§ 2. Постановка краевых задач для у.в.э.ф.

У. в. э. ф. удовлетворяют уравнениям

(2.1a)
$$f^{1/2}(\xi) \frac{d}{d\xi} f^{1/2}(\xi) \frac{d\Lambda}{d\xi} + \frac{1}{4} q(\xi, h, l) \Lambda = 0, \quad 0 < \xi < 1,$$

(2.2a)
$$[-f(\xi)]^{1/2} \frac{d}{d\xi} [-f(\xi)]^{1/2} \frac{d\Lambda}{d\xi} - \frac{1}{4} q(\xi, h, l) \Lambda = 0, \quad 1 < \xi < k^{-2},$$

и граничным условиям

(2.16)
$$\lim_{\xi \to +0} \Lambda(\xi) = 0 \text{ млм } \lim_{\xi \to +0} [f'^{h}(\xi)\Lambda'(\xi)] = 0,$$

(2.1в)
$$\lim_{\xi \to 1^{-0}} \Lambda(\xi) = 0$$
 или $\lim_{\xi \to 1^{-0}} [f'^{2}(\xi) \Lambda'(\xi)] = 0;$

(2.26)
$$\lim_{\xi \to 1+0} \Lambda(\xi) = 0 \text{ или } \lim_{\xi \to 1+0} \{ [-f(\xi)]^{\frac{1}{2}} \Lambda'(\xi) \} = 0,$$

(2.2в)
$$\lim_{\xi \to k^{-2} - 0} \Lambda(\xi) = 0 \text{ или } \lim_{\xi \to k^{-2} - 0} \{ [-f(\xi)]^{1/2} \Lambda'(\xi) \} = 0.$$

При этом граничные условия для $\xi \to 1-0$ и $\xi \to 1+0$ должны быть согласованы. Здесь $f(\xi)$, $q(\xi, h, l)$ даются формулами (1.5), где ω^2 , k^2 — фиксированные параметры, $\omega^2 \ge 0$, 0 < k < 1.

Требуется найти значения параметров h, l, при которых задачи (2.1), (2.2) имеют нетривиальные решения, и вычислить с. ф., соответствующие этим собственным значениям (с. з.) и нормированные требованием

(2.3)
$$\int_{0}^{1} \int_{1}^{h-2} \frac{(\xi_{2}-\xi_{1})\Lambda^{2}(\xi_{1})\Lambda^{2}(\xi_{2})}{f^{1/2}(\xi_{1})[-f(\xi_{2})]^{1/2}} d\xi_{2} d\xi_{4} = 1.$$

В соответствии с уравнениями и граничными условиями, с. ф. $\Lambda(\xi)$ можно представить в виде

$$\Lambda(\xi) = \xi^{i_1/2} |1 - \xi|^{i_2/2} (k^{-2} - \xi)^{i_3/2} F(\xi),$$

где i_1 , i_2 , i_3 принимают значения 0 или 1, $F(\xi)$ — целая функция. Таким образом, существует 8 типов у. в. э. ф., которые удобно характеризовать набором (i_1, i_2, i_3) , т. е. у. в. э. ф. принадлежит: типу (1, 1, 1), если она удовлетворяет всем первым условиям из (2.16), (2.18) и (2.26), (2.28); типу (1, 1, 0), если она удовлетворяет первым условиям из (2.16), (2.18) и (2.26) и второму условию из (2.28); . . .; типу (0, 0, 0), если она удовлетворяет всем вторым условиям из (2.16), (2.18) и (2.26), (2.28).

С. з. h, l естественно нумеровать двумя индексами: h_n^m , l_n^m ; здесь m — число нулей с. ф. $\Lambda(\xi)$ на интервале $0 < \xi < 1$, (n-m) — число нулей с. ф. $\Lambda(\xi)$ на интервале $1 < \xi < k^{-2}$, так что n — общее число нулей у.в.э.ф. на $(0, 1) \cup (1, k^{-2})$. Вещественность спектра задач (2.1), (2.2) известна (см. [6]). Существование счетной последовательности некратных точек ди-

скретного спектра $\{h_n^m, l_n^m\}$ для каждой из восьми задач (2.1), (2.2) можно получить из следующих рассуждений.

Рассмотрим уравнения (1.8) без особенностей в граничных точках. Соответствующие граничные условия для $\widetilde{\Lambda}(x)$ имеют вид

$$\widetilde{\Lambda}(0) = 0$$
 или $\widetilde{\Lambda'}(0) = 0$, $\widetilde{\Lambda}(\pi) = 0$ или $\widetilde{\Lambda'}(\pi) = 0$, $\widetilde{\Lambda}(2\pi) = 0$ или $\widetilde{\Lambda'}(2\pi) = 0$.

Для каждого из уравнений (1.8) при фиксированном значении одного из параметров о или т получаем стандартные самосопряженные задачи Штурма — Лиувилля относительно второго параметра. Например, для определенности зафиксируем в уравнении (1.8а) параметр т, а в уравнении (1.8б) — параметр о. Из общей теории несингулярных самосопряженных задач Штурма — Лиувилля получим, что в каждой из задач для уравнения (1.8a) существует бесконечный дискретный спектр $\sigma_0 < \sigma_1 < \dots$ (аналогично, в каждой из задач для уравнения (1.86) существует бесконечный дискретный спектр $\tau_0 < \tau_1 < \ldots$), где k-му с.з. σ_k (соответственно, τ_k) отвечает с.ф. $\Lambda_k(x, \sigma_k)$ (соответственно, с.ф. $\Lambda_k(x, \tau_k)$), имеющая ровно kнулей на интервале $(0, \pi)$ (соответственно, на интервале $(\pi, 2\pi)$) (см. [14, с. 229]). Учитывая теперь формулы (1.9), замечаем, что $q_1(x, \sigma, \tau)$ монотонно возрастает по σ (монотонно возрастает по τ) при фиксированных τ , x (при фиксированных σ , x), а $q_2(x, \sigma, \tau)$ монотонно возрастает по σ (монотонно убывает по τ) при фиксированных τ , x (при фиксированных σ, x).

Тогда для спектральных значений каждого из параметров σ или τ как функций другого параметра имеют место монотонные зависимости, схематично представленные на фиг. 1, a, b, где график a относится к задачам на $[0, \pi]$ для уравнения (1.8a), а график b — к задачам на $[\pi, 2\pi]$ для уравнения (1.8b). При этом каждый из них дает отображение ($-\infty$, $+\infty$) на ($-\infty$, $+\infty$). Искомые пары (σ , τ), при которых каждое из уравнений (1.8) при фиксированных граничных условиях имеет нетривиальные ре-

ппения, суть точки пересечения кривых фиг. 1, a и b (см. фиг. 1, b). В силу указанных выше свойств графиков a и b на фиг. 1, каждая из кривых графика a пересекается с каждой кривой на графике b, и притом в одной точке. Каждая из таких точек может быть тем самым занумерована двумя индексами: m и n, где m — число нулей с.ф. на $(0, \pi)$, (n-m) — число нулей с.ф. на $(\pi, 2\pi)$; соответственно обозначаем σ_n^m , τ_n^m , $m=0, 1, \ldots, n=1$, $m=1, \ldots$

В заключение этого параграфа укажем обозначения Арскотта для у.в.э.ф., отвечающих с.э. h_n^m , l_n^m , для различных типов этих функций:

$$(1, 1, 1) \leftrightarrow \operatorname{scdel}_{2n+3}^{m}, \quad (1, 1, 0) \leftrightarrow \operatorname{scel}_{2n+2}^{m}, \quad (1, 0, 1) \leftrightarrow \operatorname{sdel}_{2n+2}^{m},$$

$$(1, 0, 0) \leftrightarrow \operatorname{sel}_{2n+1}^{m}, \quad (0, 1, 1) \leftrightarrow \operatorname{cdel}_{2n+2}^{m}, \quad (0, 1, 0) \leftrightarrow \operatorname{cel}_{2n+1}^{m},$$

$$(0, 0, 1) \leftrightarrow \operatorname{del}_{2n+1}^{m}, \quad (0, 0, 0) \leftrightarrow \operatorname{uel}_{2n}^{m};$$

если ω^2 =0, то для соответствующих функций Ламе используются те же обозначения с заменой в них букв el буквой E (см. [2], где смысл этих обозначений связан с формой Якоби для волнового уравнения Ламе, с появлением в нем эллиптических функций).

§ 3. Отыскание с.з. двухпараметрических краевых задач для у.в.э.ф.

1. Вспомогательная фазовая функция и ее свойства. Введем вспомогательную фазовую функцию $\theta(\xi)$ такую, что для решений (2.1a), (2.2a) справедливы соотношения

$$(3.1a) \qquad v^{-1}(\xi)f^{1/2}(\xi)\Lambda'(\xi)\sin\theta(\xi)-v(\xi)\Lambda(\xi)\cos\theta(\xi)=0, \quad 0 \le \xi \le 1,$$

(3.16)
$$v^{-1}(\xi) \left[-f(\xi) \right]^{\frac{1}{2}} \Lambda'(\xi) \sin \theta(\xi) - v(\xi) \Lambda(\xi) \cos \theta(\xi) = 0, \quad 1 \le \xi \le k^{-2}.$$

Здесь $v(\xi)$ — положительная на $[0, k^{-2}]$ «масштабирующая» функция, выбор которой находится в нашем распоряжении в дальнейшем. Для $\theta(\xi)$ из (2.1), (2.2), (3.1) получим уравнения

(3.2a)
$$\theta' = \frac{v^2(\xi)}{f^{1/2}(\xi)} \cos^2 \theta + \frac{q(\xi) \sin^2 \theta}{4v^2(\xi) f^{1/2}(\xi)} + \frac{v'(\xi)}{v(\xi)} \sin(2\theta), \quad 0 < \xi < 1,$$

(3.3a)
$$\theta' = \frac{v^2(\xi)}{[f(\xi)]^{1/2}} \cos^2 \theta - \frac{q(\xi) \sin^2 \theta}{4v^2(\xi) [-f(\xi)]^{1/2}} + \frac{v'(\xi)}{v(\xi)} \sin(2\theta), \quad 1 < \xi < k^{-2},$$

и граничные условия

(3.26)
$$\lim_{\xi \to +0} \theta(\xi) = 0 \text{ или } \lim_{\xi \to +0} \theta(\xi) = \frac{\pi}{2},$$

(3.2a)
$$\lim_{\xi \to 1^{-0}} \theta(\xi) = \pi + m\pi \text{ или } \lim_{\xi \to 1^{-0}} \theta(\xi) = \frac{\pi}{2} + m\pi,$$

(3.36)
$$\lim_{\xi \to 1+0} \theta(\xi) = 0 \text{ мли } \lim_{\xi \to 1+0} \theta(\xi) = \frac{\pi}{2},$$

(3.3_в)
$$\lim_{\xi \to h^{-2} = 0} \theta(\xi) = \pi + (n-m)\pi \text{ или } \lim_{\xi \to h^{-2} = 0} \theta(\xi) = \pi/2 + (n-m)\pi;$$

здесь m — число нулей с.ф. на (0, 1), (n-m) — число нулей с.ф. на $(1, k^{-2})$, $m=0, 1, \ldots, n=m, m+1, \ldots$

Чтобы избавиться от особенностей в коэффициентах уравнений (3.2a), (3.3a), можно воспользоваться заменой (1.6) независимой переменной. Для сокращения числа действий на шаге интегрирования фазового уравнения

выгоднее ввести другую замену независимой переменной:

(3.4)
$$x = \begin{cases} (\xi/2)^{\frac{1}{2}}, & 0 \leqslant \xi \leqslant \frac{1}{2}, \\ 1 - [(1-\xi)/2]^{\frac{1}{2}}, & \frac{1}{2} \leqslant \xi \leqslant 1, \\ 1 + [(\xi-1)(k^{-2}-1)/2]^{\frac{1}{2}}, & 1 \leqslant \xi \leqslant (1+k^{-2})/2, \\ k^{-2} - [(k^{-2}-\xi)(k^{-2}-1)/2]^{\frac{1}{2}}, & (1+k^{-2})/2 \leqslant \xi \leqslant k^{-2}. \end{cases}$$

Используя снова обозначения (1.7), получаем окончательно из (3.2)—(3.4) следующие задачи Коши для фазовой функции $\bar{\theta}(x) = \theta(\xi(x))$:

(3.5a)
$$\widetilde{\theta}' = \frac{\widetilde{v}^{2}(x)}{\widetilde{f}_{1}^{1/2}(x)} \cos^{2} \widetilde{\theta} + \frac{\widetilde{q}_{1}(x,\sigma,\tau)}{4\widetilde{v}^{2}(x)\widetilde{f}_{1}^{1/2}(x)} \sin^{2} \widetilde{\theta} + \frac{\mathbf{v}'(x)}{\widetilde{v}(x)} \sin(2\widetilde{\theta}), \quad 0 \leq x \leq 1/2,$$

$$(3.56)$$
 $\bar{\theta}(0) = 0$ или $\bar{\theta}(0) = \pi/2$,

(3.6a)
$$\tilde{\theta}' = \frac{\tilde{v}^{2}(x)}{\tilde{f}_{2}^{1/2}(x)} \cos^{2}\tilde{\theta} + \frac{\tilde{q}_{2}(x,\sigma,\tau)}{4\tilde{v}^{2}(x)\tilde{f}_{2}^{1/2}(x)} \sin^{2}\tilde{\theta} + \frac{\boldsymbol{v}'(x)}{\tilde{v}(x)} \sin(2\tilde{\theta}), \qquad \frac{1}{2} \leq x \leq 1,$$

(3.66)
$$\tilde{\theta}(1-0) = \pi + m\pi$$
 или $\tilde{\theta}(1-0) = \pi/2 + m\pi$,

(3.7a)
$$\tilde{\theta}' = \frac{\tilde{v}^{2}(x)}{\left[-\tilde{f}_{3}(x)\right]^{1/2}}\cos^{2}\tilde{\theta} - \frac{\tilde{q}_{3}(x,\sigma,\tau)}{4\tilde{v}^{2}(x)\left[-\tilde{f}_{3}(x)\right]^{1/2}}\sin^{2}\tilde{\theta} + \frac{\tilde{v}'(x)}{\tilde{v}(x)}\sin(2\tilde{\theta}), \qquad 1 \leq x \leq (1+k^{-2})/2,$$

(3.7б)
$$\tilde{\theta}(1+0) = 0$$
 или $\tilde{\theta}(1+0) = \pi/2$,

(3.8a)
$$\tilde{\theta}' = \frac{\tilde{\mathbf{v}}^{2}(x)}{\left[-\tilde{f}_{4}(x)\right]^{1/2}}\cos^{2}\tilde{\theta} - \frac{\tilde{q}_{4}(x,\sigma,\tau)}{4\tilde{\mathbf{v}}^{2}(x)\left[-\tilde{f}_{4}(x)\right]^{1/2}}\sin^{2}\tilde{\theta} + \frac{\tilde{\mathbf{v}}'(x)}{\tilde{\mathbf{v}}(x)}\sin(2\tilde{\theta}), \qquad (1+k^{-2})/2 \leq x \leq k^{-2},$$

(3.86)
$$\bar{\theta}(k^{-2}-0) = \pi + (n-m)\pi$$
 или $\bar{\theta}(k^{-2}-0) = \pi/2 + (n-m)\pi$.

Здесь $\tilde{v}(x) = v(\xi(x))$, $\tilde{f}_1(x) = (2x^2-1)(2x^2-k^{-2})/8$, $\tilde{f}_2(x) = [1-2(1-x)^2] \times [k^{-2}-1+2(1-x)^2]/8$, $\tilde{f}_3(x) = [k^{-2}-1+2(x-1)^2][1-k^{-2}+2(x-1)^2 \times (k^{-2}-1)]^{-1}/8$, $\tilde{f}_4(x) = [k^{-2}(k^{-2}-1)-2(k^{-2}-x)^2][k^{-2}-1-2(x-k^{-2})^2 \times (k^{-2}-1)]^{-1}/8$, $\tilde{q}_1(x,\sigma,\tau) = \sigma k^{-2}+(1-2x^2)\tau k^{-2}+4\omega^2 x^4$, $\tilde{q}_2(x,\sigma,\tau) = \sigma k^{-2}-2(x-1)^2(k^2-1)^{-1}\tau k^{-2}+4\omega^2 x^2$, $\tilde{q}_2(x,\sigma,\tau) = \sigma k^{-2}-2(x-1)^2(x-1)^2$, $\tilde{q}_2(x,\sigma,\tau) = \sigma k^{-2}-2(x-1)^2(x-1)^2$, $\tilde{q}_2(x,\sigma,\tau) = \sigma k^{-2}-2(x-1)^2(x-1)^2$, $\tilde{q}_2(x,\sigma,\tau) = \sigma k^2$, $\tilde{q}_2(x,\sigma,\tau)$

Обозначим решения задач (3.5), (3.6), (3.7), (3.8), соответственно, через $\vec{\theta}_{\pi}^{\ \ I}(x, \sigma, \tau)$, $\vec{\theta}_{\pi}^{\ \ I}(x, \sigma, \tau)$, $\vec{\theta}_{\pi}^{\ \ I}(x, \sigma, \tau)$, $\vec{\theta}_{\pi}^{\ \ I}(x, \sigma, \tau)$; здесь и далее индекс I относится к величинам на отрезке [0, 1], индекс II — к величинам на отрезке [1, k^{-2}], индекс л — к величинам на левых полуотрезках [0, $\frac{1}{2}$] и [1, $(1+k^{-2})/2$], индекс п — к величинам на правых полуотрезках [$\frac{1}{2}$, 1] и [$(1+k^{-2})/2$, k^{-2}].

Учитывая, что на интервале [0, 1) функция $\tilde{q}(x, \sigma, \tau)$ монотонно возрастает по σ при фиксированных x, τ и монотонно возрастает по τ при

фиксированных x, σ , а на интервале (1, k^{-2}] она монотонно возрастает по σ при фиксированных x, τ и монотонно убывает по τ при фиксированных x, σ , получаем для фазовых функций справедливость следующих соотношений (см. подробнее [13]):

(3.9a)
$$\operatorname{sign}[\tilde{\sigma} - \sigma_{r}^{I}(\tilde{\tau})] = \operatorname{sign}[\tilde{\theta}_{\pi}^{I}(c^{I}, \tilde{\sigma}, \tilde{\tau}) - \tilde{\theta}_{\pi}^{I}(c^{I}, \tilde{\sigma}, \tilde{\tau})],$$

(3.96)
$$\operatorname{sign}[\tilde{\tau} - \tau_{r}^{I}(\tilde{\sigma})] = \operatorname{sign}[\tilde{\theta}_{\pi}^{I}(c^{I}, \tilde{\sigma}, \tilde{\tau}) - \tilde{\theta}_{\pi}^{I}(c^{I}, \tilde{\sigma}, \tilde{\tau})],$$

(3.9B)
$$\operatorname{sign}[\tilde{\sigma} - \sigma_{\mathbf{r}}^{\mathrm{II}}(\tilde{\tau})] = \operatorname{sign}[\tilde{\theta}_{\mathbf{n}}^{\mathrm{II}}(c^{\mathrm{II}}, \tilde{\sigma}, \tilde{\tau}) - \tilde{\theta}_{\mathbf{n}}^{\mathrm{II}}(c^{\mathrm{II}}, \tilde{\sigma}, \tilde{\tau})],$$

$$(3.9r) \qquad \operatorname{sign}\left[\tilde{\tau} - \tau_{\scriptscriptstyle T}^{\scriptscriptstyle \rm II}(\tilde{\sigma})\right] \! = \! \operatorname{sign}\left[\tilde{\theta}_{\scriptscriptstyle \pi}^{\scriptscriptstyle \rm II}(c^{\scriptscriptstyle \rm II},\,\tilde{\sigma},\,\tilde{\tau}) \! - \! \tilde{\theta}_{\scriptscriptstyle \pi}^{\scriptscriptstyle \rm II}(c^{\scriptscriptstyle \rm II},\,\tilde{\sigma},\,\tilde{\tau})\right].$$

Здесь $c^{\text{I}}={}^{\text{I}}/{}_{2}$, $c^{\text{II}}=(1+k^{-2})/2$; $\{\tilde{\sigma}, \tilde{\tau}\}$ — приближение к точному с.з. $\{\sigma_{\text{r}}, \tau_{\text{r}}\}$; $\sigma_{\text{r}}{}^{\text{I}}(\tilde{\tau})$ — точное с.з. однопараметрической задачи Штурма — Лиувилля на

отрезке [0, 1] при фиксированном значении $\tau = \tilde{\tau}$; $\sigma_{\tau}^{II}(\tilde{\tau})$ — то же для задачи на $[1, k^{-2}]$, и т. д.; $\{\sigma_{\tau}, \tau_{\tau}\}$ — точка пересечения в плоскости (σ, τ) кривой, проходящей через точки $\{\sigma_{\tau}^{I}(\tilde{\tau}), \tilde{\tau}\}$ и $\{\tilde{\sigma}, \tau_{\tau}^{I}(\tilde{\sigma})\}$, с кривой, проходящей через точки $\{\sigma_{\tau}^{II}(\tilde{\tau}), \tilde{\tau}\}$ и $\{\tilde{\sigma}, \tau_{\tau}^{II}(\tilde{\sigma})\}$ (см. фиг. 2).

Соотношения (3.9) позволяют заключить искомое с.з. $\{\sigma_{\tau}, \tau_{\tau}\}$ в прямоугольник и искать все более точные приближения к с.з. методом разрезания получаемых прямоугольников и отсечения тех из них, в которых заведомо не лежит искомое с.з. (аналогично методу «вилки» в однопараметрических задачах); этот алгоритм подробнее описан ниже в ц. 2.

Остановимся еще на вопросе о выборе масштабирующей функции $v(\xi)$ в соотношениях (3.1). «Сглаживающую» функцию $v(\xi)$ выбираем так, чтобы вспомогательная фазовая функция менялась как можно более плавно; удобный выбор $v(\xi)$ приводит к ускорению в счете во много раз (общие соображения по поводу выбора масштабирующих функций для «выглаживания» решений уравнений прогонки и примеры построения таких функций в некоторых задачах см. в [15], [9], [10], [13]). В данной работе $\tilde{v}(x)$ в задачах (3.5)—(3.8) выбиралась в виде

$$\tilde{v}^{2}(x) = \begin{cases} \{ [|\tilde{q}(x,\sigma,\tau)|/4]^{1/2} - 1 \} \exp(-4/|\tilde{q}(x,\sigma,\tau)|) + 1, \\ |\tilde{q}(x,\sigma,\tau)| \geq \delta, \\ 1, |\tilde{q}(x,\sigma,\tau)| < \delta, \end{cases}$$

где $\delta \approx 10^{-5}$. Такой выбор $\tilde{v}(x)$ объясняется тем, что в области $|\tilde{q}(x,\sigma,\tau)| \gg 1$ правые части уравнений для фазовых функций содержат величины порядка $|\tilde{q}(x)|^{\eta_s}$ (а не порядка $|\tilde{q}|$, если взять $\tilde{v}(x) \equiv 1$), что приводит к более плавному поведению $\tilde{\theta}(x)$ и при больших значениях $|\sigma|$, $|\tau|$, ω^2 . В то

же время $\tilde{v}(x)$ является гладкой функцией в окрестности точки поворота, т. е. при $\tilde{q}(x, \sigma, \tau) \sim 0$.

«двумерной 2. Метод вилки» отыскания $\{h_n^m, l_n^m\}$. Напомним, что имеют место монотонные зависимости, схематично изображенные на фиг. 1, a, b; искомые пары $\{\sigma_{r}, \tau_{r}\}$ — точки пересечения кривых графиков a и b (см. фиг. b1, b1).

Алгоритм отыскания точек спектра $\{\sigma_{\scriptscriptstyle T},\ \tau_{\scriptscriptstyle T}\}$ состоит в следующем. Зафиксируем числа m и n. Возьмем любую пару $\{\tilde{\sigma}, \tilde{\tau}\}$. Вычислим значения фазовых функций $\tilde{\theta}_{\pi}^{\ \ I}(c^{\mathrm{I}},\ \tilde{\sigma},\ \tilde{\tau}),\ \tilde{\theta}_{\pi}^{\ \ I}(c^{\mathrm{I}},\ \tilde{\sigma},\ \tilde{\tau}),\ \tilde{\theta}_{\pi}^{\ \ II}(c^{\mathrm{II}},\ \tilde{\sigma},\ \tilde{\tau}),\ \tilde{\theta}_{\pi}^{\ \ II}(c^{\mathrm{II}},\ \tilde{\sigma},\ \tilde{\tau}).$ Используя (3.9), получаем, что возможны четыре случая (см. фиг. 2):

- $\tilde{\theta}_{\pi}^{I} \tilde{\theta}_{\pi}^{I} \geqslant 0 \leftrightarrow \tilde{\sigma} \geqslant \sigma_{\tau}^{I}(\tilde{\tau}),$ $\geqslant \tau_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{I}}(\tilde{\sigma}), \; \tilde{\theta}_{\scriptscriptstyle \mathrm{I}}^{\scriptscriptstyle \mathrm{II}} - \tilde{\theta}_{\scriptscriptstyle \mathrm{I}}^{\scriptscriptstyle \mathrm{II}} \geqslant 0 \leftrightarrow \tilde{\sigma} \leqslant \sigma_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{II}}(\tilde{\tau}), \; \tilde{\tau} \geqslant$ $\geqslant \tau_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{II}}(\tilde{\sigma})$, т. е. приближение к с. з. лежит в области 1;
- 3) $\tilde{\theta}_{\pi}^{\text{I}} \tilde{\theta}_{\pi}^{\text{I}} \leq 0$, $\tilde{\theta}_{\pi}^{\text{II}} \tilde{\theta}_{\pi}^{\text{II}} \leq 0 \leftrightarrow$ приближение к с. з. находится в области 3;

2) $\tilde{\theta}_{\pi}^{I} - \tilde{\theta}_{\pi}^{I} \leq 0$, $\tilde{\theta}_{\pi}^{II} - \tilde{\theta}_{\pi}^{II} \geqslant 0 \leftrightarrow$ приближение к с. з. находится в области 2; 4) $\tilde{\theta}_{\pi}^{I} - \tilde{\theta}_{\pi}^{I} \geqslant 0$, $\tilde{\theta}_{\pi}^{II} - \tilde{\theta}_{\pi}^{II} \leqslant 0 \leftrightarrow прибли$ жение к с. з. находится в области 4. Найдя четыре точки $(\sigma_j, \tau_j), j=1, 2,$ Фиг. 4 3, 4, такие, что (σ_i, τ_i) принадлежит

области с номером j (фиг. 2), «зажимаем» искомое с. з. ($\sigma_{\rm r}$, $\tau_{\rm r}$) в прямоугольник (см. фиг. 3). Взяв центр этого прямоугольника, получим следующее приближение к с.з.: $\hat{\sigma} = (\sigma_2 + \sigma_4)/2$, $\tau = (\tau_1 + \tau_3)/2$. Проверив, куда попало это приближение, отсекаем ненужный прямоугольник и в оставпемся прямоугольнике снова берем центр, и т.д. (см. фиг. 4). Отсечения производим, проводя прямые, параллельные соответствующим сторонам прямоугольника: если попадаем в области 1 и 3 (см. фиг. 2), то проводим горизонтальные прямые, если в области 2 и 4 — вертикальные прямые.

При реализации этого алгоритма затраты машинного времени на поиск пары $\{\sigma_{\scriptscriptstyle T},\ \tau_{\scriptscriptstyle T}\}$ только примерно в четыре раза превосходят затраты на вычисление с. з. стандартной однопараметрической задачи Штурма — Лиувилля с использованием метода фазовых функций и метода половинного деления. Это существенно меньше, чем в итеративном методе, который был ранее предложен в [16], [17] для решения другой двухпараметрической задачи и в котором на каждом шаге итерации для построения очередного приближения к с. з. требовалось решить полностью две однопараметрические задачи Штурма — Лиувилля.

- формулы для h_n^m , l_n^m и выбор 3. Асимптотические начального приближения к с.з. Остановимся на алгоритме построения «вилки» на плоскости — прямоугольника фиг. 3. Для выбора начальных значений $\{\widetilde{h},\ \widetilde{l}\}$ использовались известные асимптотические формулы.
- 3.1. Случай $\omega^2 = 0$. Здесь нам понадобится следующее преобразование уравнений (1.4). Введем новую независимую переменную ξ по формуле $ilde{\xi} = (1 - \xi k^2)/(1 - k^2)$. Получим из (1.4) уравнения

(3.10a)
$$F^{\prime h}(\tilde{\xi}) \frac{d}{d\tilde{\xi}} F^{\prime h}(\tilde{\xi}) \frac{d\Xi}{d\tilde{\xi}} + \frac{1}{4} Q(\tilde{\xi}, H, L)\Xi = 0, \quad 0 < \tilde{\xi} < 1,$$

 $(1-k^2)^{-1} < \tilde{\xi} < +\infty,$

$$(3.106) \qquad [-F(\tilde{\xi})]^{\frac{1}{2}} \frac{d}{d\tilde{\xi}} [-F(\tilde{\xi})]^{\frac{1}{2}} \frac{d\Xi}{d\tilde{\xi}} - \frac{1}{4} Q(\tilde{\xi}, H, L) \Xi = 0, \quad 1 < \tilde{\xi} < (1 - k^2)^{-1},$$

где
$$\Xi(\xi) = \Lambda(\xi(\xi)), F(\xi) = \overline{\xi}(\xi-1)[\xi-(1-k^2)^{-1}], Q(\xi) = H(1-k^2)^{-1} - L(1-k^2)^{-1} \xi - \Omega^2 \xi^2, H = (l-\omega^2)k^{-2} - h, L = (l-2\omega^2)(1-k^2)k^{-2}, \Omega^2 = \omega^2(1-k^2)k^{-2}.$$

Если в (1.1) положить \hat{k}^2 =0, то в (1.5б) получим ω^2 =0 и придем к функциям Ламе для уравнения Лапласа. Для этого случая известны значения l, и задачи становятся однопараметрическими, а именно: если n общее число нулей с. ф. на $(0, 1) \cup (1, k^{-2})$, то

(3.11)
$$l = l_n = \begin{cases} k^2 \cdot 2n(2n+1) & \text{для } (0,0,0), \\ k^2(2n+1)(2n+2) & \text{для } (1,0,0), (0,1,0), (0,0,1), \\ k^2(2n+2)(2n+3) & \text{для } (1,1,0), (1,0,1), (0,1,1), \\ k^2(2n+3)(2n+4) & \text{для } (1,1,1). \end{cases}$$

Для каждого варианта соответствующему значению l_n отвечает n+1 значение h_n^m , $m=0, 1, \ldots, n$, где m — число нулей с. ф. на (0, 1). (Всего с. ф., отвечающих одному и тому же l_n , больше: наборам типа 2n(2n+1) отвечает 4n+1 значение h, так как вариант (0, 0, 0) пересекается с вариантами (1, 1, 0), (1,0, 1), (0, 1, 1) начиная с n=1; наборам типа (2n+1)(2n+1) отвечает (2n+1)(2n+1)

(3.12a)
$$h_n^m \sim (2p+1) \varkappa_n - \frac{1}{4} (2p^2 + 2p+1) (1+k^2) + \frac{1}{46} (2p+1) \left[2(2p^2 + 2p+3) k^2 - (p^2 + p+1) (1+k^2)^2 \right] \varkappa_n^{-1} + \dots;$$

вдесь
$$\varkappa_n = l_n^{1/2}$$
,
$$p = \begin{cases} 2m & \text{для вариантов, где } i_1 = 0, \\ 2m+1 & \text{для вариантов, где } i_1 = 1. \end{cases}$$

Применяя формулу Айнса к с. з. уравнений (3.10) при $\omega^2 = 0$, получаем для h_n^m асимптотические формулы, справедливые при $n \gg 1$, $m \gg n - m$:

(3.126)
$$h_n^m \sim \kappa_n^2/k^2 - (2q+1) (1-k^2)^{\frac{1}{2}} k^{-1} \kappa_n + \frac{1}{4} (2q^2+2q+1) (2-k^2) - \frac{-\frac{1}{16} (2q+1) \left[2(2q^2+2q+3) (1-k^2) - (q^2+q+1) (2-k^2)^2 \right] k \kappa_n^{-1} (1-k^2)^{-\frac{1}{2}} + \dots;}$$

здесь

$$q = \left\{ egin{array}{ll} 2\,(n-m) & ext{для вариантов, где } i_3 = 0, \\ 2\,(n-m) + 1 & ext{для вариантов, где } i_3 = 1. \end{array}
ight.$$

3.2. Случай $\omega^2 \gg 1$. В [4] получены асимптотические формулы для h_n^m , l_n^m , справедливые при больших значениях ω^2 . В частности, для больших положительных ω они имеют вид

(3.13a)
$$h_n^m = 4k\omega\tilde{\beta} - [2k^2\tilde{\beta}^2 - 8(1-k^2)^{1/2}\tilde{\alpha}\tilde{\beta} + 1/2 + k^2/8] + O(\omega^{-1}), \quad \omega \to +\infty,$$

(3.136)
$$l_n^m = k^2 \omega^2 + 4k\omega \left[\tilde{\beta} + \tilde{\alpha} (1 - k^2)^{1/2} \right] - k^2 (2\tilde{\alpha} + 2\tilde{\beta}^2 + 3/4) + O(\omega^{-1}), \quad \omega \to +\infty,$$

где
$$\tilde{\alpha} = n - m + [2 - (-1)^{i_2}]/4$$
, $\tilde{\beta} = m + [2 - (-1)^{i_1}]/4$.

3.3. При расчетах для выбора начального приближения $\{\tilde{n}, \tilde{l}\}$ использовались формулы (3.11), (3.12) при $\omega \leq n$, $\kappa_n \neq 0$, причем (3.12a) использовалась при $m \leq n-m$, а (3.12б) — при m > n-m; при $\kappa_n = 0$ полагали $\tilde{n} = 0$. При $\omega > n$ использовались формулы (3.13). Для построения прямоугольника фиг. 3 шаги по h, l выбирались пропорциональными ω/n при $\omega < n$ и

	ω^2	Число нулей		h_n^m				l_n^m		
h²					по формулам				по формулам	
-		m	nm	точное	(3.12a)	(3.126)	(3.13a)	точное	(3.11)	(3.136)
0.9	100	9	1	513.826	470.56	463.72	329.09	596.863	455.40	300.39
0.9	2000	9	1	1497.663	470.56	463.72	1613.74	3325.236	455.40	3347.11
0.5	1	9	1	404.574	320.51	104.10	100.90	254.150	253.00	-66.42
0.5	2 5	9	1	415.437	320.51	404.10	211.20	281.727	253.00	65.89
0.5	25	1	9	105.656	101.90	185.49	212.69	274.258	253.00	40.75
0.5	1	1	9	102.028	104.90	185.49	192.90	253.849	253.00	-65.05
0.9	25	1	9	141.090	137.54		168.03	482.513	455.40	-49.00
0.9	1	1	9	137.683		543.53	141.47	456.487	455.40	-141.559
0.9	1	9	1	465.062	470.56		-3.89	456.820	455.40	-135.20
0.9	25	9	1	476.765	470.56	463.72	144.10	490.671	455.40	40.39

 n/ω при $\omega \gg n$. Последующие шаги удваивались, если приближение к с. з. оставалось в той же области фиг. 2, что и предыдущее приближение. В таблице проведено сравнение найденных с. з. с расчетами по приближенным формулам (3.11) — (3.13); все данные — для варианта (1, 0, 1).

Отметим, что, как следует из результатов [6], при $\hat{k} \ge 0$ спектр волнового уравнения Ламе лежит в области $h \ge 0$, $l \ge k^2 \omega^2$ (допущенная в [6] неточность здесь исправлена).

4. Замечание о более общих многопараметрических задачах. Итерационный способ отыскания спектральных параметров, изложенный в пп. 1, 2 для рассматриваемых там уравнений, может быть применен и в более общей ситуации при решении задач на с. з. методом разделения переменных. При использовании этого метода возникает система

(3.14)
$$L_i u_i = \beta p_i u_i + \alpha_i u_i, i=1, 2, ..., N,$$

где u_i зависит только от i-й координаты, L_i и p_i — соответствующие этой координате операторы, β — искомое с. з., $\alpha_1, \ldots, \alpha_N$ — числа, $\alpha_1 + \ldots + \alpha_N = 0$. Если нумеровать с. з. исходной задачи набором (k_1, \ldots, k_N) , где k_i — номер u_i , рассматриваемой как с. ф. i-го уравнения задачи (3.14), соответствующей с. з. α_i при фиксированном β (в типичном случае — число нулей функции u_i), то при фиксированном номере для каждого i значения β и α_i связываются, в силу (3.14), соотношением

(3.15)
$$f_i(\beta, \alpha_i) = 0, i=1, 2, ..., N.$$

Если каждая из задач (3.14) самосопряженная и p_i положительно определены, то каждое из равенств (3.15) эквивалентно соотношению вида $\alpha_i = \varphi_i(\beta)$, где $\sup \varphi_i'(\beta) < 0$. Отсюда следует, что уравнение $\varphi(\beta) = \varphi_i(\beta) + \ldots + \varphi_N(\beta) = 0$ имеет, и притом единственное, вещественное решение, тем самым и $\alpha_1, \ldots, \alpha_N$ определяются однозначно.

При практическом решении задачи (3.14), используя методы переноса граничных условий, изложенные выше, получаем функции f_i , монотонно возрастающие по каждому из двух своих аргументов. Выбирая какой-либо набор ($\hat{\beta}$, $\hat{\alpha}_1, \ldots, \hat{\alpha}_N$), можно вычислить знаки $f_i(\hat{\beta}, \hat{\alpha}_i)$, $i=1, 2, \ldots, N$. Необходимо выяснить, какую информацию дают эти знаки для определения взаимного расположения набора ($\hat{\beta}$, $\hat{\alpha}_1, \ldots, \hat{\alpha}_N$) и набора (β^* , $\alpha_1^*, \ldots, \alpha_N^*$), являющегося точным решением системы

(3.16)
$$f_1(\beta, \alpha_1) = 0, \ldots, f_N(\beta, \alpha_N) = 0, \alpha_1 + \ldots + \alpha_N = 0,$$

в рассматриваемом сейчас общем случае. Использованный в п. 2 итерационный метод переносится на рассматриваемый здесь случай при $N \leq 3$.

Как легко проверить, при N=3 имеет место следующее: если все $f_i=0$, то получаем точное решение; если все f_i неотрицательны (неположительны) и хотя бы одно из них положительно (отрицательно), то $\tilde{\beta} > \beta^*$ ($\tilde{\beta} < \beta^*$); если, например, $f_i > 0$ (или $f_i < 0$), а остальные f_i неположительны (или неотрицательны), то $\tilde{\alpha}_1 > \alpha_1^*$ (или $\tilde{\alpha}_1 < \alpha_1^*$).

Нетрудно видеть, что перечисленные случаи (поскольку в последнем случае вместо индекса 1 можно взять индекс 2 или 3) исчерпывают все возможности.

Поэтому, беря какой-либо начальный набор (β^0 , α_1^0 , α_2^0 , α_3^0), $\alpha_1^0 + \alpha_2^0 + \alpha_3^0 = 0$, и изменяя в нужном направлении по очереди каждый из параметров (при изменении, например, α_1 нужно, разумеется, менять в противоположном направлении хотя бы одно из α_2 и α_3 так, чтобы имело место $\alpha_1 + \alpha_2 + \alpha_3 = 0$), выходим на каждый из случаев, перечисленных выше, т. е. получаем в пространстве β , α_1 , α_2 , α_3 параллелепипед, содержащий точное решение системы (3.16). Беря центр такого параллелепипеда и вычисляя в этом центре знаки f_1 , f_2 , f_3 , разрезаем данный параллелепипед по соответствующему этим знакам направлению на две части, зная, в какой из них лежит нужное нам решение.

К сожалению, при $N \! \geqslant \! 4$ указанный алгоритм требует усложнения, на котором мы здесь не останавливаемся.

§ 4. Вычисление у.в.э.ф. как нормированных с.ф. дискретного спектра

Вычисление с. ф. задач (2.1), (2.2) осуществляется в основном по схеме, изложенной в [13]. Вводятся вспомогательные функции $\theta(\xi)$, $\varphi(\xi)$, $\gamma(\xi)$. Фазовая функция $\theta(\xi)$ уже определена в § 3 соотношениями (3.1); она является решением соответствующих задач Коши на полуотрезках: задач (3.2a), (3.2б) — при $0 < \xi \le \frac{1}{2}$, задач (3.2a), (3.2b) — при $\frac{1}{2} \le \xi < 1$, задач (3.3a), (3.3б) — при $1 < \xi \le (1+k^{-2})/2$ и задач (3.3a), (3.3в) — при $(1+k^{-2})/2 \le \xi < k^{-2}$.

Функции $\varphi(\xi)$, $\gamma(\xi)$ вводятся так, чтобы для решений уравнений (2.1а), (2.2а) выполнялись соотношения

$$(4.1a) \qquad v^{-1}(\xi)f^{\prime\prime}(\xi)\Lambda'(\xi)\sin\varphi(\xi)-v(\xi)\Lambda(\xi)\cos\varphi(\xi)=\gamma(\xi), \qquad 0 \leqslant \xi \leqslant 1,$$

(4.16)
$$v^{-1}(\xi) [-f(\xi)]^{1/2} \Lambda'(\xi) \sin \varphi(\xi) - v(\xi) \Lambda(\xi) \cos \varphi(\xi) = \gamma(\xi),$$
$$1 \le \xi \le k^{-2}.$$

Аналогично [13] потребуем, чтобы $\phi(\xi)$ являлась решением задач Коши

(4.2a)
$$\varphi' = \frac{v^2(\xi)}{f^{\prime l_2}(\xi)} \cos^2 \varphi + \frac{q(\xi) \sin^2 \varphi}{4v^2(\xi) f^{\prime l_2}(\xi)} + \frac{v'(\xi)}{v(\xi)} \sin(2\varphi), \quad 0 < \xi < 1.$$

(4.26)
$$\varphi(^{1}/_{2}) = \theta(^{1}/_{2}) + \pi/2;$$

(4.3a)
$$\varphi' = \frac{v^{2}(\xi)}{[-f(\xi)]^{\frac{1}{2}}} \cos^{2} \varphi - \frac{q(\xi) \sin^{2} \varphi}{4v^{2}(\xi) [-f(\xi)]^{\frac{1}{2}}} + \frac{v'(\xi)}{v(\xi)} \sin(2\varphi),$$

$$1 < \xi < k^{-2},$$

(4.36)
$$\varphi((1+k^{-2})/2) = \theta((1+k^{-2})/2) + \pi/2.$$

Нетрудно проверить, что γ(ξ) удовлетворяет уравнениям

(4.4a)
$$\gamma' = \left\{ \left(\frac{q(\xi)}{4v^{2}(\xi)f^{h}(\xi)} - \frac{v^{2}(\xi)}{f^{h}(\xi)} \right) \frac{\sin[2\varphi(\xi)]}{2} + \frac{v'(\xi)}{v(\xi)} \cos[2\varphi(\xi)] \right\} \gamma, \quad 0 < \xi < 1,$$
(4.5a)
$$\gamma' = \left\{ \left(\frac{-q(\xi)}{4v^{2}(\xi)[-f(\xi)]^{h}} - \frac{v^{2}(\xi)}{[-f(\xi)]^{h}} \right) \frac{\sin[2\varphi(\xi)]}{2} + \frac{v'(\xi)}{v(\xi)} \cos[2\varphi(\xi)] \right\} \gamma, \quad 1 < \xi < k^{-2}.$$

Если задать значения

(4.46)
$$\gamma(^{1}/_{2}) = \gamma_{0}^{I} \neq 0,$$

(4.56)
$$\gamma((1+k^{-2})/2) = \gamma_0^{\text{II}} \neq 0$$
,

то, решив соответствующие задачи Коши для всех вспомогательных функций, найдем с. ф. задач (2.1), (2.2) из систем линейных алгебраических уравнений (3.1), (4.1), т. е по формулам

(4.6a)
$$\Lambda(\xi) = -\frac{\gamma(\xi)\sin\theta(\xi)}{\gamma(\xi)\sin[\theta(\xi)-\varphi(\xi)]}, \quad 0 \leq \xi \leq k^{-2},$$

(4.66)
$$f^{h}(\xi) \Lambda'(\xi) = -\nu(\xi) \gamma(\xi) \cos \theta(\xi) \sin^{-1} [\theta(\xi) - \varphi(\xi)],$$
$$0 \le \xi \le 1,$$

(4.6a)
$$[-f(\xi)]^{\prime i} \Lambda^{\prime}(\xi) = -\nu(\xi) \gamma(\xi) \cos \theta(\xi) \sin^{-1} [\theta(\xi) - \varphi(\xi)],$$

$$1 \leq \xi \leq k^{-2}.$$

При этом нетрудно показать, что $\sin \left[\theta(\xi) - \varphi(\xi)\right] \neq 0$ для всех $\xi \in [0, k^{-2}]$ (см. [13]); заметим, что $\sin \left[\theta(\frac{1}{2}) - \varphi(\frac{1}{2})\right] = \sin \left[\theta((1+k^{-2})/2) - \varphi((1+k^{-2})/2)\right] = 1$.

Надлежащим выбором γ_0^{I} , γ_0^{II} можно добиться выполнения условия нормировки (2.3). Предварительно заметим, что двукратный интеграл в условии (2.3) можно свести к вычислению четырех однократных интегралов, так как

(4.7)
$$\int_{0}^{1} \int_{1}^{1} \frac{(\xi_{2} - \xi_{1}) \Lambda^{2}(\xi_{1}) \Lambda^{2}(\xi_{2})}{f^{l/2}(\xi_{1}) [-f(\xi_{2})]^{l/2}} d\xi_{2} d\xi_{1} = I_{1}(\Lambda) J_{2}(\Lambda) - I_{2}(\Lambda) J_{1}(\Lambda),$$

где

$$I_{\scriptscriptstyle 1}(\Lambda) = \int_{0}^{1} \frac{\Lambda^{2}(\xi)}{f^{\prime \prime_{2}}(\xi)} d\xi, \qquad J_{\scriptscriptstyle 1}(\Lambda) = \int_{0}^{1} \frac{\Lambda^{2}(\xi)}{[-f(\xi)]^{1/2}} d\xi,$$

$$I_2(\Lambda) = \int_0^1 \frac{\xi \Lambda^2(\xi)}{f^{l_2}(\xi)} d\xi, \qquad J_2(\Lambda) = \int_0^{h-2} \frac{\xi \Lambda^2(\xi)}{[-f(\xi)]^{l_2}} d\xi.$$

Предлагаемый метод не позволяет сразу вычислить с. ф., нормированные требованием (2.3). Предварительно вычисляются с. ф. $\Lambda^{I}(\xi)$, $\Lambda^{II}(\xi)$, нормированные требованиями

$$(4.8) I_1(\Lambda^{\mathrm{I}}) = 1, J_1(\Lambda^{\mathrm{II}}) = 1.$$

Одновременно вычисляются значения интегралов $I_2(\Lambda^{\text{I}}),\ J_2(\Lambda^{\text{II}}).$ Затем

определяются нормирующие множители α^{I} , α^{II} так, чтобы функция

$$\Lambda(\xi) = \begin{cases} \alpha^{\mathrm{I}} \Lambda^{\mathrm{I}}(\xi), & 0 \leqslant \xi \leqslant 1, \\ \alpha^{\mathrm{II}} \Lambda^{\mathrm{II}}(\xi), & 1 \leqslant \xi \leqslant k^{-2}, \end{cases}$$

удовлетворяла условию (2.3) и условию непрерывной дифференцируемости в точке ξ =1.

Для вычисления интегралов $I_j(\Lambda^{\rm I})$, $J_j(\Lambda^{\rm II})$, j=1, 2, введем вспомогательные функции $H_i^{\rm I}(\xi, \eta^{\rm I})$, $H_i^{\rm II}(\xi, \eta^{\rm II})$, i=0, 1, такие, что

(4.9a)
$$\int_{-1}^{\xi} \frac{\xi^{i} [\Lambda^{I}(\xi)]^{2} d\xi}{f^{1/2}(\xi)} = \frac{H_{i}^{I}(\xi, \eta^{I}) \gamma^{2}(\xi)}{\sin^{2}[\theta(\xi) - \varphi(\xi)]}, \qquad 0 \leqslant \xi \leqslant 1,$$

$$(4.96) \qquad \int_{\eta \text{II}}^{\xi} \frac{\xi^{i} \left[\Lambda^{\text{II}}(\xi)\right]^{2} d\xi}{\left[-f(\xi)\right]^{1/2}} = \frac{H_{i}^{\text{II}}(\xi, \eta^{\text{II}}) \gamma^{2}(\xi)}{\sin^{2}\left[\theta(\xi) - \varphi(\xi)\right]}, \qquad 1 \leqslant \xi \leqslant k^{-2},$$

где $i=0, 1, \eta^{I}=0, 1, \eta^{II}=1, k^{-2}$.

Дифференцируя (4.9) и учитывая формулу (4.6а) и уравнения для $\theta(\xi)$, $\varphi(\xi)$, $\varphi(\xi)$, получаем для $H_i^{II}(\xi)$, $H_i^{II}(\xi)$ уравнения

(4.10a)
$$(H_{i}^{\mathrm{I}})' = 2 \left[\left(\frac{q(\xi)}{4v^{2}(\xi)f^{\prime b}(\xi)} - \frac{v^{2}(\xi)}{f^{\prime b}(\xi)} \right) \frac{\sin[2\theta(\xi)]}{2} \right] H_{i}^{\mathrm{I}} + \frac{\xi^{i}\sin^{2}\theta(\xi)}{v^{2}(\xi)f^{\prime b}(\xi)}, \quad 0 < \xi < 1, \quad i = 0, 1,$$

(4.11a)
$$(H_{i}^{II})' = 2 \left[\left(\frac{-q(\xi)}{4v^{2}(\xi) \left[-f(\xi) \right]^{\frac{1}{2}}} - \frac{v^{2}(\xi)}{\left[-f(\xi) \right]^{\frac{1}{2}}} \right) \times \frac{\sin[2\theta(\xi)]}{2} H_{i}^{II} + \frac{\xi^{i} \sin^{2}\theta(\xi)}{v^{2}(\xi) \left[-f(\xi) \right]}, \quad 1 < \xi < k^{-2}, \quad i = 0, 1,$$

и граничные условия

(4.106)
$$\lim_{\xi \to +0} H_i^{\mathbf{I}}(\xi, 0) = 0,$$

(4.10_B)
$$\lim_{\xi \to 1-0} H_i^{\mathrm{I}}(\xi, 1) = 0;$$

(4.116)
$$\lim_{\xi \to 1+0} H_{i}^{II}(\xi, 1) = 0,$$

(4.11_B)
$$\lim_{\xi \to k^{-2} = 0} H_i^{\text{II}}(\xi, k^{-2}) = 0.$$

Из (4.8), (4.9) получим значения $\gamma(\xi)$ в точках $\xi=^{1}/_{2}$ и $\xi=(1+k^{-2})/2$, отвечающие предварительной нормировке с. ф.:

(4.12a)
$$\gamma_0^{\mathrm{I}} = \gamma(^{1}/_2) = [H_0^{\mathrm{I}}(^{1}/_2, 0) - H_0^{\mathrm{I}}(^{1}/_2, 1)]^{-1/_2},$$

(4.126)
$$\gamma_0^{\text{II}} = \gamma((1+k^{-2})/2) = [H_0^{\text{II}}((1+k^{-2})/2, 1) - H_0^{\text{II}}((1+k^{-2})/2, k^{-2})]^{-1/2}.$$

При практической реализации алгоритма во всех уравнениях для вспомогательных функций осуществляем замену (3.4) независимой переменной, чтобы избавиться от особенностей в граничных точках. Не будем останавливаться на этом детальнее, чтобы не увеличивать громоздкость изложения, а все описания алгоритмов дадим для исходных уравнений.

 Φ_{MF} . 5. $(i_1, i_2, i_3) = (0, 1, 0), \ \omega^2 = 100, \ k^2 = 0.5, \ h_{105}^{50} = 21897.99, \ l_{105}^{50} = 22465.38$

Фиг. 6. $(i_1, i_2, i_3) = (0, 1, 0), \omega^2 = 500, k^2 = 0.5, h_{45}^{25} = 4651.123, l_{45}^{25} = 4694.018$

Итак, алгоритм вычисления с. ф., нормированных требованием (4.8), с одновременным вычислением интегралов $I_2(\Lambda^1)$, $J_2(\Lambda^{11})$ состоит в следующем. На каждом из четырех отрезков [0, 1/2], [1/2, 1], $[1, (1+k^{-2})/2]$, $[(1+k^{-2})/2, k^{-2}]$ совместно решаем соответствующие задачи Коши для $\theta(\xi)$, $H_0(\xi)$, $H_1(\xi)$; например, на отрезке [0, 1/2] решаем задачи (3.2a), (3.26) и (4.10a), (4.106) при i=0, 1, и т. п. При этом в точках $\xi_i \in [0, k^{-2}]$, тде нас будут интересовать значения у. в. э. ф. и ее производной, храним величины $\theta(\xi_i)$. От точек $\xi=1/2$ и $\xi=(1+k^{-2})/2$ в обратных направлениях решаем задачи Коши (4.2)—(4.5) для функций $\varphi(\xi)$, $\varphi(\xi)$, где φ_0^{-1} , φ_0^{-1} вычисляются по формулам (4.12). Значения $\Lambda^1(\xi_i)$, $\Lambda^{11}(\xi_i)$ и их производных

Фиг. 7. $(i_1, i_2, i_3) = (1, 0, 0), \ \omega^2 = 1000, \ k^2 = 0.5, \ h_{200}^{100} = 81 \ 113.20, \ l_{200}^{100} = 81 \ 601.27$

Dur. 8. $(i_1, i_2, i_3) = (1, 1, 0), \quad \omega^2 = 100, \quad k^2 = 0.5, \quad h_{15}{}^8 = 599.462, \quad l_{15}{}^8 = 629.555$

находим по формулам (4.6). Одновременно при прямой прогонке вычисляем интегралы $I_2(\Lambda^{\text{I}}), J_2(\Lambda^{\text{II}})$ по формулам

$$\begin{split} I_{2}(\Lambda^{\mathrm{I}}) &= \frac{H_{1}^{\mathrm{I}}(^{4}/_{2},0) - H_{1}^{\mathrm{I}}(^{4}/_{2},1)}{H_{0}^{\mathrm{I}}(^{4}/_{2},0) - H_{0}^{\mathrm{I}}(^{4}/_{2},1)}, \\ J_{2}(\Lambda^{\mathrm{II}}) &= \frac{H_{1}^{\mathrm{II}}((1+k^{-2})/2,1) - H_{1}^{\mathrm{II}}((1+k^{-2})/2,k^{-2})}{H_{0}^{\mathrm{II}}((1+k^{-2})/2,1) - H_{0}^{\mathrm{II}}((1+k^{-2})/2,k^{-2})}. \end{split}$$

Осталось определить нормирующие множители $\alpha^{\scriptscriptstyle \rm I},\,\alpha^{\scriptscriptstyle \rm II}$: для всех вариантов,

Φπr. 9. $(i_1, i_2, i_3) = (1, 0, 1), ω^2 = 1, k^2 = 0.9, h_{10}^9 = 465.062, l_{10}^9 = 456.820$

Фиг. 10. $(i_1, i_2, i_3) = (1, 0, 1), \quad \omega^2 = 2000, \quad k^2 = 0.9, \quad h_{10}{}^9 = 1497.663, \quad l_{10}{}^9 = 3325.237$

для которых $i_2=1$, имеем

$$\begin{split} &\alpha^{\mathrm{I}} = \left| \left\{ \left[-f(\xi) \right]^{\eta_2} \frac{d}{d\xi} \Lambda^{\mathrm{II}}(\xi) \right. \right\}_{\xi=1+0} \left[\left. f^{\eta_2}(\xi) \frac{d}{d\xi} \Lambda^{\mathrm{I}}(\xi) \right. \right]_{\xi=1-0}^{-1} \left| \left. f^{\eta_2}(\xi) \frac{d}{d\xi} \Lambda^{\mathrm{II}}(\xi) \right. \right]_{\xi=1+0}^{-1} \mathcal{C}^2 \\ &\alpha^{\mathrm{II}} = (\alpha^{\mathrm{I}})^{-1} \mathcal{C}^2 \operatorname{sign} \left\{ \left[\left[-f(\xi) \right]^{\eta_2} \frac{d}{d\xi} \Lambda^{\mathrm{II}}(\xi) \right. \right]_{\xi=1+0} \right. \\ &\times \left[f^{\eta_2}(\xi) \frac{d}{d\xi} \Lambda^{\mathrm{I}}(\xi) \right. \right]_{\xi=1+0}^{-1} \right\} , \end{split}$$

а для всех вариантов, для которых $i_2 = 0$, имеем

$$egin{aligned} lpha^{\mathrm{I}} &= \left| rac{\Lambda^{\mathrm{II}}(1+0)}{\Lambda^{\mathrm{I}}(1-0)}
ight|^{\gamma_2} C, \ &lpha^{\mathrm{II}} &= (lpha^{\mathrm{I}})^{-1} C^2 \operatorname{sign} \left[\Lambda^{\mathrm{II}}(1+0) \Lambda^{\mathrm{I}}(1-0)
ight], \end{aligned}$$

где коэффициент C вычисляется по формуле $C = [J_2(\Lambda^{\text{II}}) - I_2(\Lambda^{\text{I}})]^{-1}$. Некоторые примеры расчетов у. в. э. ф. приведены на фиг. 5-10.

Литература

- 1. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1967.
- 2. Arscott F. M. Periodic differential equations. N. Y.: Pergamon Press, 1964.
- Вайнштейн Л. А. Открытые резонаторы и открытые волноводы. М.: Сов. радио, 1966.
- 4. Arscott F. M., Sleeman B. D. High-frequency approximations to ellipsoidal wave functions // Mathematica. 1970. V. 17. P. 39-46.
- 5. Arscott F. M., Taylor P. J., Zahar R. V. M. On the numerical construction of ellipsoidal wave functions // Math. Comput. 1983. V. 40. № 161. P. 367-380.
- 6. Федорюк М. В. Волновые функции Ламе в форме Якоби. I // Дифференц. ур-ния. 1987. Т. 23. № 10. С. 1715—1724; II // № 11. С. 1913—1922.
- 7. Федорюк М. В. Дифракция звуковых волн на трехосном эллипсоиде // Акуст. ж. 1988. Т. 34. № 1. С. 160—164.
- 8. Федорюк М. В. Асимптотика радиальных волновых функций Ламе // Ж. вычисл. матем. и матем. физ. 1988. Т. 28. № 5. С. 635-646.
- 9. Абрамов А. А., Дышко А. Л., Конюхова Н. Б. и др. Вычисление вытянутых сфероидальных функций решением соответствующих дифференциальных уравнений // Ж. вычисл. матем. и матем. физ. 1984. Т. 24. № 1. С. 3–18.
- 10. Пак Т. В. Исследование некоторых сингулярных задач с параметрами для систем обыкновенных дифференциальных уравнений и вычисление волновых сфероидальных функций: Дис. ... канд. физ.-матем. наук. М.: ВЦ АН СССР, 1986.
- 11. Arscott F. M., Khabaza I. M. Tables of Lamé polynomials. N. Y.: Pergamon Press, 1962.
- 12. Конюхова Н. Б., Пак Т. В. Дифракция плоской звуковой волны на жестком вытянутом сфероиде // Сообщ. по прикл. матем. М.: ВЦ АН СССР, 1985.
- 13. Китороагэ Д. И., Конюхова Н. Б., Парийский Б. С. Модифицированный метод фазовых функций в сингулярных задачах квантовой физики на связанные состояния частиц// Сообщ. по прикл. матем. М.: ВЦ АН СССР, 1987.
- Коддингтон Э. А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: Изд-во иностр. лит., 1958.
- 15. Абрамов А. А. Методы решения некоторых линейных задач: Дис. . . . докт. физ.матем. наук. М.: ВЦ АН СССР, 1974.
- 16. Абрамов А. А., Ульянова В. И. О решении уравнений для определения уровней энергии ионизированной молекулы водорода // Ж. вычисл. матем. и матем. физ. 1961. Т. 1. № 2. С. 351—354.
- 17. Абрамов А. А., Ульянова В. И. О вычислении уровней энергии системы: два ядра один электрон // Теор. и эксперим. химия. 1970. Т. 6. № 3. С. 384—386.

Поступила в редакцию 4.ХІ.1988