Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2006-2007. Esame del 27-06-2008

Nome	Cognome
Matricola/	

- 1. Considerare il seguente problema di programmazione lineare.
 - a. (5 punti)Verificare se al punto x^{T} corrisponde una soluzione di base ammissibile. In caso positivo, verificare se è anche un punto di ottimo.
 - b. (3 punti) Scrivere la formulazione matematica del duale corrispondente.
 - c. (3 punti) Scrivere le condizioni di scarto complementare che legano i due problemi primaleduale

Min
$$z = 6x_1 - 7x_2 + 9x_3$$

$$2x_1 - x_2 + x_3 \le 8$$

$$x_1 + 2x_2 - 5x_3 \le 4$$

$$x_1 + 2x_3 \le 5$$

$$x_1 \ge 0; x_2 \ge 0; x_3 \ge 0$$

$$x^T = [0 \ 2 \ 0]$$

2. Sia dato un grafo orientato G(V;E) caratterizzato da 8 nodi $V = \{s; 1; 2; 3; 4; 5; 6; 7\}$ e 13 archi. A ciascun arco è associato un costo secondo le seguenti tabelle:

Arco	(s,1)	(s,2)	(1,2)	(1,3)	(1,4)	(2,4)	(3,5)
Costo	1	4	2	4	1	4	6

Arco	(3,6)	(4,3)	(6,4)	(6,5)	(6,7)	(7,5)
Costo	1	1	5	9	1	2

- a. (4 punti) Determinare il cammino minimo dal nodo s al nodo 4, applicando l'algoritmo di Dijkstra.
- b. (4 punti) Formulare il problema come problema di programmazione lineare e verificare che la soluzione trovata al punto precedente soddisfi il modello matematico.
- 3. Si consideri il seguente problema di programmazione lineare:

$$\max z = -x_1 + x_2$$
$$x_1 - x_2 \le 0$$
$$2x_2 \le 2$$

- a. (3 punti) Risolvere il problema graficamente e determinare il valore ottimo della funzione obiettivo ed il punto di ottimo se esiste finito.
- b. (2 punti) Aggiungere un vincolo ridondante, con almeno due variabili, al sistema.
- c. (2 punti) Modificare la formulazione per rendere il problema inammissibile.
- 4. (5 punti) Si descriva il problema dell'albero di copertura di peso minimo e si descrivano gli algoritmi risolutivi conosciuti.