Basic Local Alignment Search Tool (BLAST)

Actualizado en: 27/02/2023

Objetivos

- · Comprender el funcionamiento de BLAST.
- · Conocer los diferentes tipos de búsquedas posibles.
- · Capacidad de utilizar la interfaz web de NCBI BLAST.

BLAST, el algoritmo

Contexto histórico

· Lipman & Pearson. 1985. Rapid and sensitive protein similarity searches. *Science* 227(4693):1435-1441.

"One of the most rigorous programs for comparing amino acid sequences, SEQHP (5), requires more than 8 hours to compare a 200-residue protein to the 500,000-residue NBRF (National Biomedical Research Foundation) protein library on the VAX 11/750 computer."

· Altschul et al. 1990. Basic Local Alignment Search Tool. *J. Mol. Biol.* 215:403-410.

Para qué sirve

- · Comparar dos secuencias y encontrar similitudes locales (como Smith-Waterman).
- · Buscar secuencias parecidas a una *query* en una base de datos (*target*).
- Múltiples aplicaciones:
 - Identificación de bacterias usando 16S rRNA.
 - Diseño de cebadores para amplificar un gen.
 - Anotación de regiones codificantes o proteínas.
 - Identificación de dominios en una proteína.
 - Recopilar secuencias homólogas para crear una filogenia.

Para qué sirve

Partiendo de una secuencia nucleotídica o de proteína:

- · ¿Con qué otras está relacionada?¿Cuál es su función? (Homología, dominios conservados).
- · ¿Está ya presente en la base de datos? (Identificación).
- · ¿Dónde se encuentra o cómo está organizada? (Anotación, ensamblaje).

Qué meritos tiene

- · Rapidez.
- · Sensibilidad.
- · Estadística.

Cómo funciona

- 1. Detecta e ignora regiones repetitivas o de *baja complejidad* de la *query*.
- 2. Hace una lista de palabras de k letras de la *query* (k = 11 para DNA):

```
PQGEFG
PQG
QGE
GEF
EFG
```

3. Añade a la lista palabras *vecinas* que alinearan con puntuación de al menos *T*.

Cómo funciona

- 4. Busca las palabras de la lista entre las secuencias de la base de datos (indexadas).
- 5. Alarga la *semilla* de los alineamientos encontrados (*High-scoring Segment Pair*, HSP).

Cómo funciona

- 6. Enumera HSPs con puntuación mayor de la que se produciría por azar.
- 7. Evalúa la significación de los HSPs.
- 8. Combina dos o más HSP en uno.
- 9. Muestra el alineamiento local Smith-Waterman de cada resultado.
- 10. Enumera los resultados con valor *E* menor o igual a un cierto umbral.

Evaluación estadística de los resultados

La distribución de puntuaciones de HSPs entre dos secuencias de longitudes m y n está descrita por los parámetros K y λ . El número esperado de HSPs con una puntuación de al menos S (valor E) es:

$$E = Kmne^{-\lambda S}$$

En una búsqueda en una base de datos, n es la longitud total de la base de datos entera. Los parámetros K y λ deben ser estimados mediante permutaciones. La probabilidad de observar al menos un HSP con una puntuación de al menos S por casualidad, es (distribución de Poisson):

$$P = 1 - e^{-E}$$

Este sería el valor p.

Test

- El mismo HSP, en bases de datos de tamaños diferentes, ¿dónde tendrá un valor *E* mayor?
- · ¿Qué es mejor, una base de datos grande o una pequeña?
- · ¿Cómo afectará el tamaño de palabra, k, a la sensibilidad?¿Y al tiempo de ejecución?
- · ¿Para qué sirve conocer la distribución teórica de puntuaciones de HSPs?

Ejemplos

NCBI BLAST

NCBI BLAST

Identificación de especies

Secuencias parciales de genes 16S rRNA de bacterias no cultivadas:

- AM179943.1
- AM179942.1
- AM179941.1
- AM179940.1
- AM179939.1
- AM179938.1
- AM179937.1
- AM179936.1
- AM179935.1
- AM179934.1
- AM179933.1
- AM179932.1
- AM179931.1

Identificación de especies

Diseño de cebadores para el gen MPO

Diseño de cebadores para el gen MPO

Diseño de cebadores para el gen MPO

Filogenia mitocondrial de hominidos

Usamos el mtDNA de *Lemur catta* como outgroup

Filogenia mitocondrial de hominidos

Anotación de un contig de DNA

Anotación de un contig de DNA

Los resultados del BLASTX sugieren que hay cuatro o cinco genes codificantes de proteínas en el contig.