

Training Binary Neural Networks

11月8日 周争光

二值化

- □ 二值化
 - 浮点数→{-1,1}
- □ 权值二值化
 - 卷积乘法→加法与减法
 - 减少~32倍参数量
 - ~2倍理论加速
- □ 权值二值化+激活值二值化
 - 卷积乘法→位运算(XNOR,bitcount)
 - 减少~32倍参数量
 - ~58倍理论加速

BinaryConnect

□ 权值二值化

- 确定方式
- 随机方式

$$w_b = \begin{cases} +1 & \text{if } w \ge 0, \\ -1 & \text{otherwise.} \end{cases}$$

$$w_b = \begin{cases} +1 & \text{with probability } p = \sigma(w), \\ -1 & \text{with probability } 1 - p. \end{cases}$$

$$\sigma(x) = \text{clip}(\frac{x+1}{2}, 0, 1) = \max(0, \min(1, \frac{x+1}{2}))$$

- □ 反向传播与梯度计算
 - 保留w浮点数值
 - 梯度累加,将超出[-1,1]的部分裁剪

$$w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$$

[1] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary weights during propagations. In NIPS, 2015.

BinaryConnect

□ 训练算法

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the functions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w_{t-1} (weights) and b_{t-1} (biases), and learning rate η .

Ensure: updated parameters w_t and b_t .

1. Forward propagation:

$$w_b \leftarrow \text{binarize}(w_{t-1})$$

For k = 1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$

For k = L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b

3. Parameter update:

Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{db_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1}

$$w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$$

$$b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$$

BinaryConnect

□ 实验结果

□ 二值化相当于给权值添加了噪声,具有正则化作用,可 以防止模型过拟合

Binarized Neural Networks (BNN)

□ 量化函数(权值+激活值)

$$x^b = \operatorname{Sign}(x) = \begin{cases} +1 & \text{if } x \ge 0, \\ -1 & \text{otherwise,} \end{cases}$$

- 有确定和随机方式两种
- 但随机形式需要生成随机数耗时,一般都采用确定形式的
- □ 对sign求导 ("straight through estimator")

$$q = \operatorname{Sign}(r),$$

$$g_r = g_q \mathbf{1}_{|r| \le 1}$$
. Htanh $(x) = \text{Clip}(x, -1, 1)$

[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

```
{1. Computing the parameters gradients:}
{1.1. Forward propagation:}
for k = 1 to L do
   W_k^b \leftarrow \text{Binarize}(W_k)
   s_k \leftarrow a_{k-1}^b W_k^b
   a_k \leftarrow \text{BatchNorm}(s_k, \theta_k)
   if k < L then
       a_k^b \leftarrow \text{Binarize}(a_k)
   end if
end for
{1.2. Backward propagation:}
{Please note that the gradients are not binary.}
Compute g_{a_L} = \frac{\partial C}{\partial a_L} knowing a_L and a^*
for k = L to 1 do
   if k < L then
       g_{a_k} \leftarrow g_{a_k^b} \circ 1_{|a_k| \leq 1}
   end if
   (g_{s_k}, g_{\theta_k}) \leftarrow \text{BackBatchNorm}(g_{a_k}, s_k, \theta_k)
   g_{a_{k-1}^b} \leftarrow g_{s_k} W_k^b
   g_{W_k^b} \leftarrow g_{s_k}^{\top} a_{k-1}^b
end for
{2. Accumulating the parameters gradients:}
for k=1 to L do
   \theta_k^{t+1} \leftarrow \text{Update}(\theta_k, \eta, g_{\theta_k})
   W_k^{t+1} \leftarrow \text{Clip}(\text{Update}(W_k, \gamma_k \eta, g_{W_k^b}), -1, 1)
   n^{t+1} \leftarrow \lambda n
end for
```

BNN

- □ 训练
- □ 运行

```
Algorithm 5 Running a BNN. L is the number of layers.
```

Require: a vector of 8-bit inputs a_0 , the binary weights W^b , and the BatchNorm parameters θ .

```
Ensure: the MLP output a_L.
```

{1. First layer:}

```
a_1 \leftarrow 0

for n = 1 to 8 do
a_1 \leftarrow a_1 + 2^{n-1} \times \text{XnorDotProduct}(\mathbf{a}_0^n, \mathbf{W}_1^b)
end for
a_1^b \leftarrow \text{Sign}(\text{BatchNorm}(a_1, \theta_1))
{2. Remaining hidden layers:}
for k = 2 to L - 1 do
a_k \leftarrow \text{XnorDotProduct}(a_{k-1}^b, W_k^b)
a_k^b \leftarrow \text{Sign}(\text{BatchNorm}(a_k, \theta_k))
end for
{3. Output layer:}
a_L \leftarrow \text{XnorDotProduct}(a_{L-1}^b, W_L^b)
a_L \leftarrow \text{BatchNorm}(a_L, \theta_L)
```

BNN

□ 实验结果

BNN

□ 实现优化

$$a_1 + = \text{popcount}(\text{xnor}(a_0^{32b}, w_1^{32b})),$$

■ 位操作使用SIMD指令加速,将32二值数合并在一个32位寄存器中,从而32个时钟现在可用1+4+1=6个时钟完成

GPU KERNELS' EXECUTION TIMES

□ 提出了两种二值网络

- Binary-Weight-Networks (BWN): 只二值化权值
- XNOR-Networks (XNOR-Net): 二值化权值和激活值
- 由于引入缩放因子,BWN和XNOR-Net不是纯粹的二值网络

	Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Standard Convolution	Real-Value Inputs 0.11 -0.210.340.25 0.61 0.52 0.68	+,-,×	1x	1x	%56.7
Binary Weight	Real-Value Inputs 0.11 -0.210.34 -0.25 0.61 0.52	+,-	~32x	~2x	%56.8
BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -111 1 11 1 1	XNOR , bitcount	~32x	~58x	%44.2

[3] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. In ECCV, 2016.

BWN

□ 近似

$$\mathbf{W} \approx \alpha \mathbf{B}. \quad \mathbf{I} * \mathbf{W} \approx (\mathbf{I} \oplus \mathbf{B}) \alpha \quad \mathbf{B} \in \{+1, -1\}^{c \times w \times h}$$

□ 优化

$$J(\mathbf{B}, \alpha) = \|\mathbf{W} - \alpha \mathbf{B}\|^{2}$$
$$\alpha^{*}, \mathbf{B}^{*} = \operatorname*{argmin}_{\alpha, \mathbf{B}} J(\mathbf{B}, \alpha)$$

$$J(\mathbf{B}, \alpha) = \alpha^2 \mathbf{B}^\mathsf{T} \mathbf{B} - 2\alpha \mathbf{W}^\mathsf{T} \mathbf{B} + \mathbf{W}^\mathsf{T} \mathbf{W}$$

□ 求解

$$\mathbf{B}^* = \underset{\mathbf{B}}{\operatorname{argmax}} \{ \mathbf{W}^\mathsf{T} \mathbf{B} \} \quad s.t. \quad \mathbf{B} \in \{+1, -1\}^n$$
$$\mathbf{B}^* = \operatorname{sign}(\mathbf{W}).$$

$$\alpha^* = \frac{\mathbf{W}^\mathsf{T} \mathbf{B}^*}{n} = \frac{\mathbf{W}^\mathsf{T} \mathrm{sign}(\mathbf{W})}{n} = \frac{\sum |\mathbf{W}_i|}{n} = \frac{1}{n} \|\mathbf{W}\|_{\ell 1}$$

BWN

□ 训练

$$\frac{\partial \text{sign}}{\partial r} = r \mathbf{1}_{|r| \le 1}$$

Algorithm 1. Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (\mathbf{I}, \mathbf{Y}) , cost function $C(\mathbf{Y}, \hat{\mathbf{Y}})$, current weight \mathcal{W}^t and current learning rate η^t .

Output: updated weight W^{t+1} and updated learning rate η^{t+1} .

- 1: Binarizing weight filters:
- 2: for l = 1 to L do
- 3: **for** k^{th} filter in l^{th} layer **do**
- 4: $\mathcal{A}_{lk} = \frac{1}{n} \| \mathcal{W}_{lk}^t \|_{\ell 1}$
- 5: $\mathcal{B}_{lk} = \operatorname{sign}(\mathcal{W}_{lk}^{t})$
- 6: $\widetilde{\mathcal{W}}_{lk} = \mathcal{A}_{lk}\mathcal{B}_{lk}$
- 7: $\hat{\mathbf{Y}} = \mathbf{BinaryForward}(\mathbf{I}, \mathcal{B}, \mathcal{A})$ // standard forward propagation except that convolutions are computed using Eq. 1 or 11
- 8: $\frac{\partial C}{\partial \widetilde{\mathcal{W}}} = \mathbf{BinaryBackward}(\frac{\partial C}{\partial \hat{\mathbf{Y}}}, \widetilde{\mathcal{W}})$ // standard backward propagation except that gradients are computed using $\widetilde{\mathcal{W}}$ instead of \mathcal{W}^t
- 9: $W^{t+1} = \mathbf{UpdateParameters}(W^t, \frac{\partial C}{\partial \widetilde{W}}, \eta_t)$ // Any update rules (e.g., SGD or ADAM)
- 10: $\eta^{t+1} = \mathbf{UpdateLearningrate}(\eta^t, t)$ // Any learning rate scheduling function

□ 优化

$$\alpha^*, \mathbf{B}^*, \beta^*, \mathbf{H}^* = \underset{\alpha, \mathbf{B}, \beta, \mathbf{H}}{\operatorname{argmin}} \| \mathbf{X} \odot \mathbf{W} - \beta \alpha \mathbf{H} \odot \mathbf{B} \|$$

$$\gamma^*, \mathbf{C}^* = \underset{\gamma, \mathbf{C}}{\operatorname{argmin}} \|\mathbf{Y} - \gamma \mathbf{C}\|$$

□ 求解同BWN

$$\mathbf{C}^* = \operatorname{sign}(\mathbf{Y}) = \operatorname{sign}(\mathbf{X}) \odot \operatorname{sign}(\mathbf{W}) = \mathbf{H}^* \odot \mathbf{B}^*$$

$$\gamma^* = \frac{\sum |\mathbf{Y}_i|}{n} = \frac{\sum |\mathbf{X}_i||\mathbf{W}_i|}{n} \approx \left(\frac{1}{n} \|\mathbf{X}\|_{\ell_1}\right) \left(\frac{1}{n} \|\mathbf{W}\|_{\ell_1}\right) = \beta^* \alpha^*$$

□ 卷积实现

$$\mathbf{I} * \mathbf{W} \approx (\operatorname{sign}(\mathbf{I}) \circledast \operatorname{sign}(\mathbf{W})) \odot \mathbf{K} \alpha$$

$$\mathbf{I} * \mathbf{W} \approx (\operatorname{sign}(\mathbf{I}) \circledast \operatorname{sign}(\mathbf{W})) \odot \mathbf{K} \alpha$$

$$\mathbf{A} = rac{\sum |\mathbf{I}_{:,:,i}|}{c}$$

$$\mathbf{K} = \mathbf{A} * \mathbf{k},$$

$$\forall ij \ \mathbf{k}_{ij} = \frac{1}{w \times h}.$$

sign(I)

□ 网络结构

□ 性能分析

- $lacksymbol{-}$ 一个卷积含有 $cN_{\mathbf{W}}N_{\mathbf{I}}$ 个二值运算和 $N_{\mathbf{I}}$ 个非二值运算
- 一个CPU时钟可运行64个二值运算,因此计算加速为:

$$S = \frac{cN_{\mathbf{W}}N_{\mathbf{I}}}{\frac{1}{64}cN_{\mathbf{W}}N_{\mathbf{I}} + N_{\mathbf{I}}} = \frac{64cN_{\mathbf{W}}}{cN_{\mathbf{W}} + 64}.$$

■ 获得62.27倍理论加速但实际只有58倍加速

$$c = 256, n_{\rm I} = 14^2 \text{ and } n_{\rm W} = 3^2$$

实验结果

□ 与BC和BNN方法对比

Ternary weight networks

- 三值网络(-1,0,1)
- □ 优化

$$\begin{cases} \alpha^*, \mathbf{W}^{t*} = & \underset{\alpha, \mathbf{W}^t}{\arg\min} J(\alpha, \mathbf{W}^t) = ||\mathbf{W} - \alpha \mathbf{W}^t||_2^2 \\ \text{s.t.} & \alpha \geq 0, \, \mathbf{W}_i^t \in \{-1, 0, 1\}, \, i = 1, 2, \dots, n. \end{cases}$$

□ 不好求解,近似

$$\mathbf{W}_{i}^{t} = f_{t}(\mathbf{W}_{i}|\Delta) = \begin{cases} +1, & \text{if } \mathbf{W}_{i} > \Delta \\ 0, & \text{if } |\mathbf{W}_{i}| \leq \Delta \\ -1, & \text{if } \mathbf{W}_{i} < -\Delta \end{cases}$$

$$\alpha^*, \Delta^* = \underset{\alpha \geq 0, \Delta > 0}{\arg\min} \left(|\mathbf{I}_{\Delta}| \alpha^2 - 2(\sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i|) \alpha + c_{\Delta} \right) \qquad \alpha^*_{\Delta} = \frac{1}{|\mathbf{I}_{\Delta}|} \sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i|.$$

$$\alpha_{\Delta}^* = \frac{1}{|\mathbf{I}_{\Delta}|} \sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i|.$$

$$\Delta^* = \operatorname*{max}_{\Delta > 0} \frac{1}{|I_{\Delta}|} \left(\sum_{i \in I_{\Delta}} |W_i| \right)^2$$

$$\Delta^* \approx 0.7 \cdot \mathrm{E}(|\mathbf{W}|) \approx \frac{0.7}{n} \sum_{i=1}^{n} |\mathbf{W}_i|$$

TWN

□ 实验结果

	MNIST	CIFAR-10	ImageNet (top-1)	ImageNet (top-5)
TWNs	99.35	92.56	61.8 / 65.3	84.2 / 86.2
BPWNs	99.05	90.18	57.5 / 61.6	81.2 / 83.9
FPWNs	99.41	92.88	65.4 / 67.6	86.76 / 88.0
BinaryConnect	98.82	91.73	-	-
Binarized Neural Networks	88.6	89.85	-	-
Binary Weight Networks	-	-	60.8	83.0
XNOR-Net	-	-	51.2	73.2

- Learn the ternary assignments and ternary values.

三值量化
$$w_l^t = \begin{cases} W_l^p : \tilde{w}_l > \Delta_l \\ 0 : |\tilde{w}_l| \le \Delta_l \\ -W_l^n : \tilde{w}_l < -\Delta_l \end{cases}$$

$$\frac{\partial L}{\partial W_l^p} = \sum_{i \in I_l^p} \frac{\partial L}{\partial w_l^t(i)}, \frac{\partial L}{\partial W_l^n} = \sum_{i \in I_l^n} \frac{\partial L}{\partial w_l^t(i)}$$

求导:权值和缩放因子
$$\frac{\partial L}{\partial W_l^p} = \sum_{i \in I_l^p} \frac{\partial L}{\partial w_l^t(i)}, \frac{\partial L}{\partial W_l^n} = \sum_{i \in I_l^n} \frac{\partial L}{\partial w_l^t(i)}$$

$$\frac{\partial L}{\partial w_l^t} = \sum_{i \in I_l^p} \frac{\partial L}{\partial w_l^t(i)}, \frac{\partial L}{\partial W_l^t(i)} = \sum_{i \in I_l^n} \frac{\partial L}{\partial w_l^t(i)}$$

- 阈值选择
 - 依据该层最大权值 $\Delta_l = t \times \max(|\tilde{w}|)$
 - 保持一个固定的稀疏度r

TTQ

TTQ

Error	Full precision	1-bit (DoReFa)	2-bit (TWN)	2-bit (Ours)
Top1	42.8%	46.1%	45.5%	42.5%
Top5	19.7%	23.7%	23.2%	20.3%

Table 2: Top1 and Top5 error rate of AlexNet on ImageNet

- 在BNN和XNOR-Net中,梯度保持浮点型
- DoReFa-Net
 - 对权值、激活值、梯度均做量化
 - 量化到任意比特,

Forward:
$$r_o = \frac{1}{2^k - 1} \text{ round}((2^k - 1)r_i)$$

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$$
.

STE直通估计: BNN, XNOR-Net

Forward:
$$r_o = \operatorname{sign}(r_i)$$

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o} \mathbb{I}_{|r_i| \leq 1}$$
. Backward: $\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$.

Forward:
$$r_o = \operatorname{sign}(r_i) \times \mathbf{E}_F(|r_i|)$$

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$$

[6] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

□ 二值化:一层只分配一个缩放因子

Forward: $r_o = \operatorname{sign}(r_i) \times \mathbf{E}(|r_i|)$

Backward: $\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$.

□ k比特量化

Forward: $r_o = f_\omega^k(r_i) = 2 \operatorname{quantize}_k(\frac{\tanh(r_i)}{2 \max(|\tanh(r_i)|)} + \frac{1}{2}) - 1.$

Backward: $\frac{\partial c}{\partial r_i} = \frac{\partial r_o}{\partial r_i} \frac{\partial c}{\partial r_o} \Big|_{4}$

□ 激活值量化

1.
$$h(x) = \frac{\tanh(x)+1}{2}$$

2.
$$h(x) = \text{clip}(x, 0, 1)$$

3.
$$h(x) = \min(1, |x|)$$

$$f_{\alpha}^{k}(r) = \text{quantize}_{k}(r).$$

□ 量化梯度(随机方式)

$$f_{\gamma}^{k}(\mathrm{d}r) = 2\max_{0}(|\mathrm{d}r|) \left[\operatorname{quantize}_{k} \left[\frac{\mathrm{d}r}{2\max_{0}(|\mathrm{d}r|)} + \frac{1}{2} + N(k) \right] - \frac{1}{2} \right].$$

$$N(k) = \frac{\sigma}{2k-1} \text{ where } \sigma \sim Uniform(-0.5, 0.5).$$

□ 合并非线性函数和量化函数

```
1: for k = 1 to L do

2: W_k^b \leftarrow f_\omega^W(W_k)

3: \tilde{a}_k \leftarrow \text{forward}(a_{k-1}^b, W_k^b)

4: a_k \leftarrow h(\tilde{a}_k)

5: if k < L then

6: a_k^b \leftarrow f_\alpha^A(a_k)

7: end if

a_k^b = f_\alpha(h(a_k))
```


Algorithm 1 Training a L-layer DoReFa-Net with W-bit weights and A-bit activations using G-bit gradients. Weights, activations and gradients are quantized according to Eqn. 9 Eqn. 11, Eqn. 12, respectively.

```
Require: a minibatch of inputs and targets (a_0, a^*), previous weights W, learning rate \eta
Ensure: updated weights W^{t+1}
     Computing the parameter gradients: 
     {1.1 Forward propagation:}
 1: for k = 1 to L do
 2: W_k^b \leftarrow f_\omega^W(W_k)
 3: \tilde{a}_k \leftarrow \text{forward}(a_{k-1}^b, W_k^b)
 4: a_k \leftarrow h(\bar{a}_k)
 5: if k < L then
 6: a_k^b \leftarrow f_\alpha^A(a_k)
        Optionally apply pooling
 9: end for
     {1.2 Backward propagation:}
     Compute g_{a_L} = \frac{\partial C}{\partial a_L} knowing a_L and a^*.
10: for k = L to 1 do
        Back-propagate g_{a_k} through activation function h
       g_{a_k}^b \leftarrow f_{\gamma}^G(g_{a_k})
       g_{a_{k-1}} \leftarrow \texttt{backward\_input}(g_{a_k}^b, W_k^b)
       g_{W_{c}^{b}} \leftarrow \text{backward\_weight}(g_{a_{k}}^{b}, a_{k-1}^{b})
14:
        Back-propagate gradients through pooling layer if there is one
16: end for
     {2. Accumulating the parameters gradients:}
17: for k = 1 to L do
     g_{W_k} = g_{W_k^b} \frac{\partial W_k^b}{\partial W_k}
       W_k^{t+1} \leftarrow Update(W_k, g_{W_k}, \eta)
20: end for
```


W	A	G	Training Complexity	Inference Complexity	Storage Relative Size	AlexNet Accuracy
1	1	6	7	1	1	0.395
1	1	8	9	1	1	0.395
1	1	32	-	1	1	0.279 (BNN)
1	1	32	-	1	1	0.442 (XNOR-Net)
1	1	32	-	1	1	0.401
1	1	32	-	1	1	0.436 (initialized)
1	2	6	8	2	1	0.461
1	2	8	10	2	1	0.463
1	2	32	-	2	1	0.477
1	2	32	-	2	1	0.498 (initialized)
1	3	6	9	3	1	0.471
1	3	32	-	3	1	0.484
1	4	6	-	4	1	0.482
1	4	32	-	4	1	0.503
1	4	32	-	4	1	0.530 (initialized)
8	8	8	-	-	8	0.530
32	32	32	-	-	32	0.559

SYQ

[7] J. Faraone, N. Fraser, M. Blott, and P. H. Leong. Syq: Learning symmetric quantization for efficient deep neural networks. In CVPR, 2018.

SYQ

□ 权值量化

$$\hat{w} = sign(w)$$

$$\begin{aligned} & \boldsymbol{Q}_l = sign(\boldsymbol{W}_l) \odot \boldsymbol{M}_l \\ & \boldsymbol{M}_{l_{i,j}} = \left\{ \begin{array}{ccc} 1 & \text{if} & \left| \boldsymbol{W}_{l_{i,j}} \right| \geq \eta_l \\ & 0 & \text{if} & -\eta_l < \boldsymbol{W}_{l_{i,j}} < \eta_l \end{array} \right. \end{aligned}$$

$$w_q = diag(\alpha)\hat{w}^T, diag(\alpha) \in \mathbb{R}^{d^2 \times d^2}$$

□ 激活值量化同DoReFa-Net

$$\hat{a} = clip(a, 0, 1)$$

$$a_q = \frac{1}{2^k - 1} round((2^k - 1)\hat{a})$$

□ BP阶段

$$\frac{\partial E}{\partial w^{i}} = \frac{\partial E}{\partial w_{q}^{i}} \frac{\partial w_{q}^{i}}{\partial w^{i}} = \alpha^{i} \frac{\partial E}{\partial w_{q}^{i}}$$
$$\frac{\partial E}{\partial a} = \frac{\partial E}{\partial a_{q}} \frac{\partial \hat{a}}{\partial a} \quad \frac{\partial E}{\partial \alpha^{i}} = \sum_{j \in S^{i}} \frac{\partial E}{\partial w^{j}}$$

初始化

$$\alpha_{l_0}^i = \frac{\sum_{j \in S_l^i} |\dot{W}_{l_{i,j}}|}{I \times N}$$

SYQ

Table 3. Comparison to previously published AlexNet results

Model	Weights	Act.	Top-1	Top-5
DoReFa-Net [33]	1	2	49.8	-
QNN [15]	1	2	51.0	73.7
HWGQ [2]	1	2	52.7	76.3
SYQ	1	2	55.4	78.6
DoReFa-Net [33]	1	4	53.0	-
SYQ	1	4	56.2	79.4
BWN [24]	1	32	56.8	79.4
SYQ	1	8	56.6	79.4
SYQ	2	2	55.8	79.2
FGQ [21]	2	8	49.04	-
TTQ [34]	2	32	57.5	79.7
SYQ	2	8	58.1	80.8

☐ Ternary-Binary Network

	Methods	Inputs	Weights	MACs	Binary operations	Speedup	Operations
	Full-precision	\mathbb{R}	\mathbb{R}	$n \times m \times q$	0	1×	+, x
tize hts	TTQ [60] TWN [33]	R R	$\{-\alpha^n, 0 + \alpha^p\}$ $\{-\alpha, 0, -\alpha\}$	$ \begin{array}{c} n \times m \times q \\ n \times m \times q \end{array} $	0	$\sim 2 \times$ $\sim 2 \times$	+,- +,-
Quantize Weights	BWN [42] BC [6]	\mathbb{R}	$\{-\alpha, +\alpha\}$ $\{-1, +1\}$	$n \times m \times q$ $n \times m \times q$	0 0	$\begin{array}{l} \sim 2 \times \\ \sim 2 \times \end{array}$	+,- +,-
Quantize Inputs and Weights	TNN [1] GXNOR [9] BNN [7] XNOR [42]	$ \begin{cases} -1, 0, 1 \\ -1, 0, 1 \\ -1, +1 \\ -\beta, +\beta \\ -\beta, +\beta \\ \times 2 \\ (0, 1) \times 2 \\ \hline (-1, 0, +1) $	$ \begin{cases} -1, 0, 1 \\ -1, 0, 1 \\ -1, +1 \\ -\alpha, +\alpha \end{cases} $	$0\\0\\0\\2\times n\times m\\4\times n\times m\\0\\n\times m$	$8 \times n \times m \times q$ $5 \times n \times m \times q$ $2 \times n \times m \times q$ $2 \times n \times m \times q$ $4 \times n \times m \times q$ $4 \times n \times m \times q$ $4 \times n \times m \times q$ $3 \times n \times m \times q$	$15 \times \\ 15 \times \\ 64 \times \\ 58 \times \\ 29 \times \\ 30 \times \\ 40 \times$	AND, bitcount AND, bitcount XOR, bitcount XOR, bitcount XOR, bitcount AND, bitcount AND, bitcount

^{*}We adopt DoReFa Network with 1-bit weight, 2-bit activation.

[8] Wan D, Shen F, Liu L, et al. TBN: Convolutional Neural Network with Ternary Inputs and Binary Weights, In ECCV, 2018.

- 权值量化同XNOR-Net:
- 激活值量化像TWN:
- 求导同上:

$$\mathbf{B} = sign(\mathbf{W}), \ \alpha = \frac{1}{c \times h \times w} \|\mathbf{W}\|_{1}.$$

$$\mathbf{T}_{i} = f_{ternary}(\mathbf{I}_{i}, \Delta) = \begin{cases} +1, \, \mathbf{I}_{i} > \Delta; \\ 0, \, |\mathbf{I}_{i}| \leq \Delta; \\ -1, \, \mathbf{I}_{i} < -\Delta; \end{cases}$$

$$\frac{\partial sign}{\partial r} = \frac{\partial f_{ternary}}{\partial r} = \mathbf{1}_{|r|<1} = \begin{cases} 1, |r|<1\\ 0, \text{ otherwise} \end{cases} \Delta = \delta \times \mathrm{E}(|\mathbf{I}|) \approx \frac{\delta}{c \times h_{in} \times w_{in}} ||\mathbf{I}||_{1}$$

$$\Delta = \delta \times \mathrm{E}(|\mathbf{I}|) \approx \frac{\delta}{c \times h_{in} \times w_{in}} ||\mathbf{I}||_1$$

巻积为矩阵乘 $\mathbf{C} = mat2ten(\widetilde{\mathbf{W}}\widetilde{\mathbf{I}}), \widetilde{\mathbf{W}} = ten2mat(\mathbf{W}), \widetilde{\mathbf{I}} = ten2mat(\mathbf{I})$ $(q = c \times h \times w), \ \widetilde{\mathbf{W}} \in \mathbb{R}^{n \times q}. \ \widetilde{\mathbf{I}} \in \mathbb{R}^{q \times m} (m = h_{out} \times w_{out})$

$$\widetilde{\mathbf{W}_i} \approx \alpha \mathbf{b}, \mathbf{b} = ten2mat(\mathbf{B}) \in \{-1, 1\}^q \quad \mathbf{t} \in \{-1, 0, +1\}^q$$

□ 三值-二值向量点乘加速:

$$C_{ij} = \alpha(c_t - 2 \times \text{bitcount}((b \text{ XOR } t') \text{ AND } t'')),$$

□ 其中

$$t'_{i} = \begin{cases} 1, & t_{i} = 1 \\ -1, & \text{otherwise} \end{cases}, t''_{i} = \begin{cases} 0, & t_{i} = 0 \\ 1, & \text{otherwise} \end{cases}, i = 1, \dots, q$$

$$t_i = t_i' \times t_i''$$
. $c_t = \mathbf{bitcount}(t'') = ||t||_1$

- XOR、AND均为逻辑运算
- \mathbf{I} 1在 $\mathbf{b}, \mathbf{t}', \mathbf{t}''$ 中视为逻辑真, $\mathbf{0}$ 和-1则为逻辑假

□ 效率分析

- 原浮点运算 $\widetilde{\mathbf{C}} = \widetilde{\mathbf{W}}\widetilde{\mathbf{I}}, \quad n \times m \times q$
- TBN运算: $n \times m$ 次浮点+ $n \times m \times q$ AND, XOR and bitcount
- 一个时钟执行L=64位二值运算,设

$$\gamma = \frac{\text{average time required by MAC}}{\text{average time required by } L\text{-bits binary operation}}$$

■ 加速比为

$$S = \frac{\gamma nmq}{\gamma nm + 3nm \lceil \frac{q}{L} \rceil} = \frac{\gamma q}{\gamma + 3 \lceil \frac{q}{L} \rceil}$$

	城等技术	
*	1958	in the
University of		of China
	Str. Technolog	

	Dataset Models				$\begin{array}{c} {\rm ImageNet} \\ {\rm AlexNet} \end{array}$		ImageNet ResNet-34
	Full-precision	99.48	92.88	97.68	57.2/80.2	69.3/89.2	73.3/91.4
- m	BC [6]	98.82	91.73	97.85	35.5/61.0	-	-
Quantize Weights	BWN [42]	99.38	92.58	97.46	56.8/79.4	60.8/83.0	-
ıan /eig	TWN [33]	99.38	92.56	-	54.5/76.8	65.3/86.2	-
Ō⊳	TTQ [60]	-	-	-	57.5/79.7	66.6/87.2	-
ιχ	FFN [53]	-	-	-	55.5/79.0	-	-
Other Methods	LCNN-fast [3]	-	-	-	,	51.8/76.8	-
Oth eth	LCNN-accurate [3]	-	-	-	55.1/78.1	62.2/84.6	-
$\sim \Xi$	LBCNN [24]	99.51	92.66	94.50	54.9/-	-	-
	TNN [1]	98.33	87.89	97.27	-	-	-
uts s	GXNOR [9]	99.32	92.50	97.37	-	-	-
Quantize Inputs and Weights	BNN [7]	98.60	89.85	97.47	27.9/50.42	-	-
e Ib	DoReFa-Net* [59]	-	-	97.6	47.7/-	-	-
tiz	BinaryNet [51]	-	-	-	46.6/71.1	-	-
uant and	HORQ [34]	99.38	91.18	97.41	-	55.9/78.9	-
Qu a	XNOR-Network [42]	99.21	90.02	96.96	44.2/69.2	51.2/73.2	55.9/79.1
	TBN	99.38	90.85	97.27	49.7/74.2	55.6/79.0	58.2/81.0

^{*}We adopt DoReFa-Net with 1-bit weight, 2-bit activation and 32-bit gradient for fair comparison.

$lacksymbol{\square}$ 稀疏度 $\delta=0.4$

□ 检测

	_	full-precision ResNet-34	XNOR-Networks ResNet-34	
Faster R-CNN SSD 300	73.2 74.3	75.6 75.5	54.7 55.1	59.0 59.5

#