1) Recurrenta Horge Sort.

$$T(m) = \frac{1}{2}(1) + T(m|2) + O(m) = \frac{1}{2} \text{ altfel}$$

Considera m or m este putere a lui 2 . (si poate arata ca rotungitiste mu conteaga atumci comod m mu e putere a lui 2).

Putem de aremonea ecapa de Θ si alege 2 function $1 \in O(1)$ si $m \in O(m)$ in locul motatiolor cut Θ .

Toxom acest lucrus pontrus a evita exemtiale gravele de calcul care or putea opaksa din lucrul cut Θ .

Asacher putem resorie:

 $T(m) = \frac{1}{2} \cdot \frac{1}{2} + m$, althel

Casa gasim o forma generala pontrus $T(m)$ despositions recurrenta:

 $T(m) = 2\sqrt{(\frac{m}{2})} + m = 2\left[2T(\frac{m}{2^2}) + \frac{m}{2}\right] + m$
 $= 2^2\left[2T(\frac{m}{2^3}) + \frac{m}{2^2}\right] + 2m$
 $= 2^3 \cdot T(\frac{m}{2^3}) + 3m$

Observam un sablon si ghicim: $T(m) = 2 T\left(\frac{m}{3k}\right) + km SH KENT$ Domonstram prin inductie ca este coract: $T(m) = 2T(\frac{m}{2}) + m = 2^{1}T(\frac{m}{3}) + 1.m$ [A/k=1] case de baso] Demonstram ocum $f(k-1) \rightarrow f(k)$ ip. inductival cevram sa aratam $T(m) = 2^{k-1} T\left(\frac{m}{2^{k-1}}\right) + (k-1)m$ substituim $= \frac{k-1}{2} \left[2 \cdot T \left(\frac{m}{n} \right) + \frac{m}{2k-1} \right] + (k-1)m =$ = 2 · T/ m/ + k.m V => Am ghiait forma generala pt T(n) \Rightarrow pentru $\frac{m}{k} = 1$, adica $k = log_2 m$ overn $T(m) = 2^{\log_2 m} T(n) + \log_2 m - m = m + m \cdot \log_2 m \Rightarrow$ $T(m) \cdot e \Theta(m \cdot \log_2 m)$

-3-

2) Algoritmul lui karatsuba di immultire a 2 m².

(varianta simpla di simmultire a 2 mumere cu m

cifre ficiale are complexitatea
$$(m^2)$$
)

 $T(m) = 3T(\frac{m}{2}) + m$; $T(1) = 1$
 $T(\frac{m}{2}) = 3T(\frac{m}{2}) + \frac{m}{2} / 3T(\frac{m}{2}) = 3^2T(\frac{m}{2}) + \frac{3}{2} . m$
 \vdots
 $T(\frac{m}{2}) = 3T(\frac{m}{2}) + \frac{m}{2} / 3^{K}T(\frac{m}{2}) = 3^{K+1}T(\frac{m}{2}) + \frac{3}{2} . m$
 \vdots
 $T(m) = 3T(\frac{m}{2}) + \frac{m}{2} / 3^{K}T(\frac{m}{2}) = 3^{K+1}T(\frac{m}{2}) + \frac{3}{2} . m$

Cand $m = 2^{K+1}$ mi optim cu substituirile si avom:

 $T(m) = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$ sunde $m = 2^{K+1} = 3^{K+1} + \frac{K}{2} (\frac{3}{2})^m$
 $= 3^{K+1} + \frac{K}{2} (\frac$

3)
$$T(m) = 2T(\sqrt{m}) + \log_2 m$$

Not $m = 2^k$ (m este putore a lu^2)

 $\Rightarrow T(2^k) = 2T(2^{\frac{k}{2}}) + k$

The $S(k)$ o alta recurrenta cu propretatea ea

 $S(k) = T(2^k)$ (Y) $k \in \mathbb{N}^* =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k = 2S(\frac{k}{2}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k =$
 $S(k) = 2T(2^{\frac{k}{2}}) + k =$

-5-

$$S = \left(\left[\frac{m}{2} \right] + \left[\frac{m}{3} \right] + \left[\frac{m}{5} \right] + \dots + \left[\frac{m}{p} \right] \right) \leq$$

$$\leq \frac{M}{2} + \frac{M}{3} + \frac{M}{5} + \dots + \frac{M}{p} = M \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{p} \right)$$

Unde p este cel mai make me prim moi mic decat m.

Dan sikul \(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dangle + \frac{1}{7} - \ln \text{lm m este} \\

convergent de unde deducem ca complexitatea \\

cuivalent lui \(\text{tratostme} \) \(\in \) (m \(\log \log m \) \)

5) T(n) - Vm . T(Vm) + M; T(1) = 1: T(2) = 1 Chicim O(n log 2 logon) 27/m) P(M): JOISCZER, MEN, (Cim. log2 log2n = T/n) = Cin log2 logn (A) M=Mo 1) Caz de baza mo=? 64.1 \(2.7/2) +4 \(\ell_2.4.1 \) => 401 = 6 = 402 (1) - Retimem constrangerile /2) Som P(M) -> P(n) $e_{1}Nn \log_{2}\log_{2}Vm \leq T(Vn) \leq e_{2}Vm \log_{2}\log_{2}Vm / Tn + m$ $e_{1}M \log_{2}\log_{2}Vm + m \leq T(m) \leq e_{2}M \cdot \log_{2}\log_{2}Vm + m$ $\log_{2}\log_{2}Vm = \log_{2}\log_{2}m^{\frac{1}{2}} = \log_{2}\frac{1}{2}\log_{2}m = \log_{2}\log_{2}m - \log_{2}2$ =) e, M log log m - e, m + m = T(m) = e2 m · log · log m - e2 m + m I $e_1 m \log_2 \log_2 n + m(1-e_1) \ge e_1 m \log_2 \log_2 n$ pentru $e_1 \le 1/2$ I $e_2 m \cdot \log_2 \cdot \log_2 n + m(1-e_2) \le e_2 m \cdot \log_2 \cdot \log_2 n$ pentru $e_2 \ge 1/3$ ⇒ Saca (2), γ (3) adevasate

⇒ $C_1 m \cdot \log_2 \log_2 m \perp T(m) \perp C_2 m \log_2 \log_2 m$ adica P(m)How tribuse Sa vector daca exista constante earle

Sa respecte (1) . (2) γ (3)

(1) $4C_1 \leq 6 \leq 4C_2$ [2) $C_1 \leq 1$ ⇒ Observa m $C_1 \in [C_1 \cap C_2] = cxicta$ (3) $C_2 \geq 1$ ⇒ $T(n) \in \Theta$ $(m \cdot \log \log m)$

=> T(n) e \(\theta\) (m. log log m)

Aceasta recurenta nu poate fi rezo loata en Th. Master o