一、选择题 (本题共8小题,每小题3分,共24分)

1. 函数 y = f(x) 在 x_0 点的一阶导数 $f'(x_0) = 0$ 是函数 y = f(x) 在 $x = x_0$ 取得极 值的(

(A)充分条件 (B) 必要条件 (C)充要条件 (D) 既非充分也非必要条件

1)若
$$\int f(x)dx = g(x)$$
, 则 $f(x) = g'(x)$ 2)($\int f(x)dx$)' = $f(x)$

$$3) \int (f(x))' dx = f(x)$$

3)
$$\int (f(x))'dx = f(x)$$
 4)
$$f(x)dx = d[\int f(x)dx]$$

(D)3个

(A) $0 \uparrow$ (B) $1 \uparrow$ (C) $2 \uparrow$ 3. 已知 $f'(\cos^2 x) = \sin^2 x$, 则 f(x) = ().

(A)
$$x - \frac{1}{2}x^2 + C$$
 (B) $x + \frac{1}{2}x^2 + C$ (C) $x^2 + \frac{1}{2}x + C$ (D) $x^2 - \frac{1}{2}x + C$

4. 设 $f(x) = \int_0^x \sin^2 t dt$, $g(x) = x^3$, 则当 $x \to 0$, f(x) 是 g(x) 的

(A) 等价无穷小 (B) 高阶无穷小 (C) 同阶, 但非等价无穷小 (D) 低阶无穷小

5. $y = \frac{1}{x}$, y = x B x = 2 所围的平面图形面积为

(A)
$$\int_0^1 x dx + \int_1^2 \frac{1}{x} dx$$
 (B) $\int_1^2 \left(\frac{1}{x} - x\right) dx$ (C) $\int_{\frac{1}{2}}^1 \left(y - \frac{1}{y}\right) dy$ (D) $\int_1^2 \left(x - \frac{1}{x}\right) dx$

6. 曲线 $y = \frac{2}{3}x^{\frac{1}{2}}$ 上相应于 x 从 0 到 1 的一段弧长是

(A)
$$\frac{3}{2}(2^{\frac{3}{2}}-1)$$
 (B) $\frac{2}{3}(2^{\frac{3}{2}}+1)$ (C) $\frac{2}{3}(2^{\frac{3}{2}}-1)$ (D) $\frac{3}{2}(2^{\frac{3}{2}}+1)$

7. 定积分 $\int_0^\pi \sin \frac{x}{2} dx = ($

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{3}$ (C) 1 (D) 2

(B)
$$\frac{\pi}{2}$$

8. 关于反常积分 $\int_{1}^{+\infty} \frac{dx}{x^p}$ 敛散性下列结论正确的是:

二、填空題 (本題共4小題,每小題3分,共12分)

得分

9.
$$\int_{-2021}^{2021} \frac{1}{1+x^2} \sqrt{1+\sin^2 x} \arctan x dx =$$

10. 微分方程
$$\frac{dy}{dx} = x(y-1)$$
 的通解为:

11. 设 $y = \sin[f(x^2)]$, 其中f是可导函数,则微分dy:

12. 设函数
$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x < 0 \\ a \cos x, & x \ge 0 \end{cases}$$
, 且 $f(x)$ 在 $x = 0$ 处连续,则 $a = 2$

=	
人孩生生的	由分程 23-18etdt-9+1=0所确, 花袋
2. 求 」一次	$\frac{2\chi-3}{2-2\chi+3}d\chi$
ろ、己和「五年	$\frac{\int_{\infty}^{\infty} dx = \chi + C, \neq \int_{\infty}^{\infty} \frac{dx}{dx}.$
4. * lim	$\frac{\int_{asx}^{b} e^{-t} dt}{x^2}$
四、大京于18)= 10 (至-至) dt的凹凸区的和抗点.
2. 72 lim	$\infty \left(\frac{\pi t}{2}\right)^{\alpha x} = \int_{-\infty}^{\alpha} t e^{t} dt, \vec{x} \hat{x} \hat{x} \hat{x} \hat{a}.$
3、末了。	$f(x-1)dx, \sharp + f(x) = \begin{cases} \frac{1}{\sqrt{1+x^2}}, \chi < 0 \\ \frac{1}{2} sec^{\frac{2}{3}}, \chi \ge 0 \end{cases}$
	$\frac{1}{2}$ se $^{\frac{1}{2}}$, χ 20
4. 基格特	多3緒 4"-54"+64=202"的通斜.
五、过多标	短海男生的人的物线,该切线与曲线生的及为新国成了
平面图形	D. 讨求: (1) 由民生机过生标系点的切成为粉.
	(2) D后面积,
	(3) D线 Y轴旋转一用所名的旋转体的体积.
六. 设于的	在[a,b]上是连续且通畅面函数,证明: (a+b)[standx < 2]axf(s)ch