Honours Algebra Quick Notes

Ian S.W. Ma Spring 2020

Contents

1	Statistics Basics	1
2	Bayes Throrem	2

Honours Algebra Quick Notes

1 Statistics Basics

General Structure: Probability Space/Triple

Probability Space/Triple $(\Omega, \mathcal{F}, \mathbb{P})$

- Ω : Sample Space, set of all posible outcomes.
- \mathcal{F} : Set of events σ , each event is a subset of Ω
- \mathbb{P} Probability of event $\sigma \in \mathcal{F}$

Conditional Probability

Conditional probability of A given $B \colon \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \Leftrightarrow \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(A \cap B)$

General properties

- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ Events are mutually exclusive $\Rightarrow \mathbb{P}(A \cap B) = 0$
- $\mathbb{P}(A\cap B)=\mathbb{P}(A|B)\mathbb{P}(B)$ Events are independent $\Rightarrow \mathbb{P}(A|B)=\mathbb{P}(A)$
- Law of Total Probability

If events A_1, A_2, A_N are mutually exclusive and exhaustive $(\bigcup_{i=1}^N A_i = \Omega)$ then:

$$\mathbb{P}(B) = \sum_{i=1}^{N} \mathbb{P}(A_i \cap B) = \sum_{i=1}^{N} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Random Variables

$X \sim \text{Distribution}$	$\mathbb{E}(X)$	Var(X)
$Normal(\mu, \sigma^2)$	μ	σ^2
Bernoulli(θ)	θ	$\theta(1-\theta)$
$Binomial(\theta)$	$n\theta$	$n\theta(1-\theta)$
$Poisson(\mu)$	μ	μ
Uniform (α, β)	$\frac{\alpha+\beta}{2}$	$\frac{(\alpha+\beta)^2}{12}$
Beta (α, β)	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
$Gamma(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Inv. Gamma (α, β)	$\frac{\beta}{\alpha-1}$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$
Exponential (λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Random Vectors

$\mathbf{X} = X_1,, X_k \sim \text{Distribution}$	$\mathbb{E}(X_i)$	$Var(X_i)$	$Cov(X_i, X_j)$
Multivariative Normal(μ, Σ)	μ_i	$\sum_{i,i}$	$\Sigma_{i,j}$
$Multinomial(n, \theta_1,, \theta_k)$	$n\theta_i$	$n(1-\theta_i)$	$-n\theta_i\theta_j$

Honours Algebra Quick Notes

2 Bayes Throrem

Discrete Case

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_j)}$$

$$= \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\mathbb{P}(Y = y_j)}$$

$$= \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal}}$$

$$= \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\sum_{k=1}^{n} \mathbb{P}(X = x_k, Y = y_j)}$$

$$= \frac{\mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)}{\sum_{k=1}^{n} \mathbb{P}(Y = y_j | X = x_k) P(X = x_k)}$$

$$\Rightarrow \mathbb{P}((X|Y)) = \frac{\mathbb{P}(Y|X)\mathbb{P}(X)}{\sum_{x} \mathbb{P}(X = x, Y)} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal}}$$

Continuus Case

$$f(X|Y) = \frac{f(X,Y)}{g(Y)} = \frac{g(Y|X)f(X)}{\int g(Y|X)f(X)dX}$$

Bayesian Statistical Inference

• $L(\theta|y) = f(y|\theta)$: Likelihood

• $\pi(\theta)$: Prior

• m(y) = p(y): Marginal distribution/Normalizing constant

Posterior Distribution:
$$p(\theta|y) = \frac{f(y|\theta)\pi(\theta)}{\int p(\theta,y)d\theta} = \frac{f(y|\theta)\pi(\theta)}{\int f(y|\theta)\pi(\theta)d\theta} \propto f(y|\theta)\pi(\theta)$$

Predictive Distrubutions

Prior Predictive Distribution: $p(y^{new}) = \int_0^\infty f(y^{new}|\theta)\pi(\theta)d\theta$

Posterior Predictive Distribution: $p(y^{new}|y^{old}) = \int_{\theta} f(y^{new}|\theta, y^{old}) p(\theta|y^{old}) d\theta$