Project Report: Finite Element Analysis of a Cantilever Beam-Column

Name: Shubham Kumar Roll No.: B22CI038

Course Name: Finite Element Method

Course Code: CIL7630

1 Problem Statement

To analyze a steel cantilever beam-column of length 10 m, rectangular cross-section $125 \text{ mm} \times 250 \text{ mm}$, subjected to:

- A uniformly distributed load (UDL) of 10 kN/m downward
- An axial tensile point load of 20 kN at the free end

Using 2 to 3 fourth-order finite elements, determine:

- Nodal displacements
- Strain and stress at Gauss points
- Reaction forces

Compare analytical and FEM results for axial and transverse displacements. Plot the deformed shape and internal force distributions.

2 Inputs

- **Young's Modulus, E**: $200 \text{ GPa} = 2 \times 10^{11} \text{ Pa}$
- Cross-section:
 - Width, b = 0.125 m
 - Height, h = 0.25 m

- Length, L = 10 m
- **UDL**, $\mathbf{w} = 10 \text{ kN/m} = 10,000 \text{ N/m}$
- **Axial load, P** = 20 kN = 20,000 N
- Area, $A = b \times h = 0.03125 \text{ m}^2$
- Moment of Inertia, $I = (b \times h^3)/12 = 1.6276 \times 10 \text{ m}$

3 Assumptions

- Linear elasticity
- Plane sections remain plane before and after bending
- Small deformations

4 Analytical Solutions

4.1 Figures: Analytical Solution

Figure 1: Analytical Calculation – Axial Displacement

Figure 3: Analytical Calculation – Vertical Displacement due to UDL

5 FEM Results Summary

5.1 Reaction Forces (Match Analytical)

DOF Type	FEM Value (N/Nm)	Analytical
Axial Force	-20,000 N	20,000 N
Vertical Force	100,000 N	100,000 N
Moment	500,000 Nm	500,000 Nm

5.2 Maximum Displacements

Quantity	FEM (2 elements)	FEM (3 elements)
Axial displacement (u)	3.2e-5 m	3.2e-5 m
Vertical displacement (v)	0.3840 m	0.3840 m
Axial Stress	640,000 Pa	640,000 Pa
Max Bending Moment	453,129.73 Nm	471,454.12 Nm

6 FEM vs Analytical Comparison

Parameter	Analytical	FEM (3 elem)	% Error
Vertical disp @ free end	0.384 m	0.384 m	0%
Axial disp @ free end	3.2e-5 m	3.2e-5 m	0%
Bending Moment (fixed)	500,000 Nm	471,454 Nm	5.7%

7 Visualizations

Figure 4: Deformed Shape of the Beam

Figure 5: Bending Moment Distribution

Figure 6: Axial Stress Distribution

Axial Stress at Gauss Points

Figure 7: Axial Stress at Gauss Points

Figure 8: Shear Force at Gauss Points

8 Explanation of Python Functions

- get_user_inputs(): Collects material and geometry inputs.
- generate_mesh(): Creates node and element connectivity.
- quartic_lagrange_shape_functions(xi): 4th-order shape functions for axial behavior.
- cubic_hermite_shape_functions(xi, L): Shape functions for bending behavior.
- compute_element_matrices(): Local stiffness and force vector via numerical integration.

- assemble_global_system(): Global stiffness matrix and force vector.
- apply_boundary_conditions(): Applies constraints and loads.
- solve_and_reconstruct(): Solves and rebuilds full displacement vector.
- compute_results(): Computes stress, strain, and forces at Gauss points.
- compute_reactions(): Calculates reactions at fixed nodes.
- print_summary() and print_detailed_results(): Show outputs.
- plot_results() and plot_stress_distribution(): Visual representations.

9 Conclusion

The finite element model using fourth-order Lagrangian and cubic Hermitian elements produces results that closely align with analytical solutions. Axial and vertical displacements are accurately predicted. Stress and moment distributions match theoretical expectations. Increasing element numbers improves bending precision, affirming FEM's reliability in beam-column analysis.