Gamma and Beta Distribution

Chao Cheng

September 7, 2022

Contents

1	Introduction	T
2	Gamma distribution	1
3	Beta distribution	2
4	Relationship with other distribution	2

1 Introduction

The Gamma function is defined as

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt.$$
 (1)

And it's easy to verify that

$$\Gamma\left(\alpha+1\right)=\alpha\Gamma\left(\alpha\right),\quad\Gamma\left(n\right)=(n-1)!,\quad\Gamma\left(0.5\right)=\sqrt{\pi}.$$

Let $B(\alpha, \beta)$ denote the Beta function

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$
 (2)

Here we point out that $B(\alpha, \beta)$ is related to Gamma function via

$$B(\alpha, \beta) = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

2 Gamma distribution

The pdf for a Gamma distribution is

$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp(-x/\beta), \quad 0 \le x < \infty, \quad \alpha,\beta > 0.$$
 (3)

3 Beta distribution

The pdf for a Beta distribution is

$$f(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1, \quad \alpha,\beta > 0.$$
 (4)

4 Relationship with other distribution

• If

$$X \sim gamma(\alpha_1, \beta), \quad Y \sim gamma(\alpha_2, \beta), \quad X \perp Y.$$

Then

$$X + Y \sim gamma\left(\alpha_1 + \alpha_2, \beta\right), \quad \frac{X}{X + Y} \sim beta\left(\alpha_1, \alpha_2\right), \quad (X + Y) \perp \frac{X}{X + Y}.$$

beta (1,1) = Unif (0,1).

References