

OpenShift on Red Hat Virtualization: Red Hat OpenShift with NetApp

NetApp Solutions

Alan V Cowles, Dorian Henderson May 28, 2021

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-n_openshift_RHV.html on August 18, 2021. Always check docs.netapp.com for the latest.

Table of Contents

OpenShift on Red Hat Virtualization: Red Hat OpenShift with Ne	etApp
Network design	
Best practices for production deployments	

OpenShift on Red Hat Virtualization: Red Hat OpenShift with NetApp

RHV is an enterprise virtual data center platform that runs on Red Hat Enterprise Linux (RHEL) and uses the KVM hypervisor.

For more information about RHV, see the Red Hat Virtualization website.

RHV provides the following features:

- Centralized management of VMs and hosts. The RHV manager runs as a physical or virtual machine (VM) in the deployment and provides a web-based GUI for the management of the solution from a central interface.
- **Self-hosted engine.** To minimize the hardware requirements, RHV allows RHV Manager (RHV-M) to be deployed as a VM on the same hosts that run guest VMs.
- **High availability.** In event of host failures, to avoid disruption, RHV allows VMs to be configured for high availability. The highly available VMs are controlled at the cluster level using resiliency policies.
- **High scalability.** A single RHV cluster can have up to 200 hypervisor hosts enabling it to support requirements of massive VMs to hold resource-greedy, enterprise-class workloads.
- Enhanced security. Inherited from RHV, Secure Virtualization (sVirt) and Security Enhanced Linux (SELinux) technologies are employed by RHV for the purposes of elevated security and hardening for the hosts and VMs. The key advantage from these features is logical isolation of a VM and its associated resources.

Network design

The Red Hat OpenShift on NetApp solution uses two data switches to provide primary data connectivity at 25Gbps. It also uses two additional management switches that provide connectivity at 1Gbps for in-band management for the storage nodes and out-of-band management for IPMI functionality. OCP uses the Virtual Machine logical network on RHV for it's cluster management. This section describes the arrangement and purpose of each virtual network segment used in the solution and outlines the pre-requisites for deployment of the solution.

VLAN requirements

Red Hat OpenShift on RHV is designed to logically separate network traffic for different purposes by using virtual local area networks (VLANs). This configuration can be scaled to meet customer demands or to provide further isolation for specific network services. The following table lists the VLANs that are required to implement the solution while validating the solution at NetApp.

VLANs	Purpose	VLAN ID
Out-of-band Management Network	Management for physical nodes and IPMI	16
VM Network	Virtual Guest Network Access	1172
In-band Management Network	Management for RHV-H Nodes, RHV-Manager, ovirtmgmt network	3343
Storage Network	Storage network for NetApp Element iSCSI	3344
Migration Network	Network for virtual guest migration	3345

Network infrastructure support resources

The following infrastructure should be in place prior to the deployment of the OpenShift Container Platform:

- At least one DNS server which provides a full host-name resolution that is accessible from the in-band management network and the VM network.
- At least one NTP server that is accessible from the in-band management network and the VM network.
- (Optional) Outbound internet connectivity for both the in-band management network and the VM network.

Best practices for production deployments

This section lists several best practices that an organization should take into consideration before deploying this solution into production.

Deploy OpenShift to an RHV cluster of at least three nodes

The verified architecture described in this document presents the minimum hardware deployment suitable for HA operations by deploying two RHV-H hypervisor nodes and ensuring a fault tolerant configuration where both hosts can manage the hosted-engine and deployed VMs can migrate between the two hypervisors.

Because Red Hat OpenShift initially deploys with three master nodes, it is ensured in a two-node configuration that at least two masters will occupy the same node, which can lead to a possible outage for OpenShift if that specific node becomes unavailable. Therefore, it is a Red Hat best practice that at least three RHV-H hypervisor nodes be deployed as part of the solution so that the OpenShift masters can be distributed evenly, and the solution receives an added degree of fault tolerance.

Configure virtual machine/host affinity

You can distribute the OpenShift masters across multiple hypervisor nodes by enabling VM/host affinity.

Affinity is a way to define rules for a set of VMs and/or hosts that determine whether the VMs run together on the same host or hosts in the group or on different hosts. It is applied to VMs by creating affinity groups that

consist of VMs and/or hosts with a set of identical parameters and conditions. Depending on whether the VMs in an affinity group run on the same host or hosts in the group or separately on different hosts, the parameters of the affinity group can define either positive affinity or negative affinity.

The conditions defined for the parameters can be either hard enforcement or soft enforcement. Hard enforcement ensures that the VMs in an affinity group always follows the positive/negative affinity strictly without any regards to external conditions. Soft enforcement, on the other hand, ensures that a higher preference is set out for the VMs in an affinity group to follow the positive/negative affinity whenever feasible. In a two or three hypervisor configuration as described in this document soft affinity is the recommended setting, in larger clusters hard affinity can be relied on to ensure OpenShift nodes are distributed.

To configure affinity groups, see the Red Hat 6.11. Affinity Groups documentation.

Use a custom install file for OpenShift deployment

IPI makes the deployment of OpenShift clusters extremely easy through the interactive wizard discussed earlier in this document. However, it is possible that there are some default values that might need to be changed as a part of a cluster deployment.

In these instances, the wizard can be run and tasked without immediately deploying a cluster, but instead outputting a configuration file from which the cluster can be deployed later. This is very useful if any IPI defaults need to be changed, or if a user wants to deploy multiple identical clusters in their environment for other uses such as multitenancy. For more information about creating a customized install configuration for OpenShift, see Red Hat OpenShift Installing a Cluster on RHV with Customizations.

Next: NetApp Storage Overview.

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.