Multi-Class Classification

Dan Sheldon

February 19, 2019

A Real Classification Problem

Classify handwritten digits.

 $y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

We don't know how to solve this yet

Hand-written digit classification

Input: 20×20 grayscale image

Unroll the image into a vector

$$\begin{bmatrix} x_1 & x_{21} & \dots & x_{381} \\ x_2 & x_{22} & \dots & x_{382} \\ & & \vdots & & \vdots \\ x_{20} & x_{40} & \dots & x_{400} \end{bmatrix}$$

Feature vector $\mathbf{x} \in \mathbb{R}^{400}$

$$\mathbf{x} = (x_1, \dots, x_{400})^T$$

Multi-class Classification

Input: $\mathbf{x} \in \mathbb{R}^m$ (continuous or discrete)

Labels: $y \in \{1, \dots, K\}$

Multi-class Classification

Input: $\mathbf{x} \in \mathbb{R}^m$ (continuous or discrete) Labels: $y \in \{1, \dots, K\}$

Exercise: solve using logistic regression

- \blacktriangleright Use one or more binary $(y\in\{0,1\})$ classifiers
- ▶ Hint: think about prediction first, then training.

One vs. All Classification

Learn a separate classifier for each class $c=1,\dots,K$

4□ > 4∰ > 4 ½ > 4½ > ½ 9Q

One vs. All Classification

Learn a separate classifier for each class $c = 1, \dots, K$ Labels for learning class c?

One vs. All Classification

Learn a separate classifier for each class $c=1,\ldots,K$ Labels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

4 D > 4 B > 4 E > 4 E > E + 4 Q (4)

+□ > +□ > +□ > +□ > +□ > +□

One vs. All Classification

Learn a separate classifier for each class $c = 1, \dots, K$ Labels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Let } y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{c|cccc} \mathbf{x}^T & y & y_1 & y_2 & y_3 \\ \hline \cdots & 1 & 1 & 0 & 0 \\ \cdots & 2 & 0 & 1 & 0 \\ \cdots & 3 & 0 & 0 & 1 \\ \end{array}$$

4 D > 4 B > 4 B > 4 B > B 990

One vs. All Classification

Learn a separate classifier for each class $c = 1, \dots, K$ Labels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Let } y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{c|ccccc} \mathbf{x}^T & y & y_1 & y_2 & y_3 \\ \hline \cdots & 1 & 1 & 0 & 0 \\ \cdots & 2 & 0 & 1 & 0 \\ \cdots & 3 & 0 & 0 & 1 \\ \end{array}$$

Training?

One vs. All Classification

Learn a separate classifier for each class $c = 1, \dots, K$ Labels for learning class c?

$$\text{Let } y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{c|ccccc} \mathbf{x}^T & y & y_1 & y_2 & y_3 \\ \hline & \ddots & 1 & 1 & 0 & 0 \\ & \ddots & 2 & 0 & 1 & 0 \\ \end{array}$$

Training? for each class c, fit a binary classifier using training labels $y_c^{(i)}$ to get parameter vector $\pmb{\theta}_c$

One vs. All Classification

Learn a separate classifier for each class $c = 1, \dots, K$ Labels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Let } y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{c|cccccc} \mathbf{x}^T & y & y_1 & y_2 & y_3 \\ & \ddots & 1 & 1 & 0 & 0 \\ & \ddots & 2 & 0 & 1 & 0 \\ & \ddots & 3 & 0 & 0 & 1 \end{cases}$$

Training? for each class c, fit a binary classifier using training labels $y_c^{(i)}$ to get parameter vector $oldsymbol{ heta}_c$

Prediction?

One vs. All Classification

Learn a separate classifier for each class $c=1,\dots,K$ Labels for learning class c?

$$\text{Let } y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{c|ccccc} \mathbf{x}^T & y & y_1 & y_2 & y_3 \\ \hline \cdots & 1 & 1 & 0 & 0 \\ \cdots & 2 & 0 & 1 & 0 \\ \cdots & 3 & 0 & 0 & 1 \\ \end{array}$$

Training? for each class c, fit a binary classifier using training labels $y_c^{(i)}$ to get parameter vector $\pmb{\theta}_c$

Prediction? make a prediction for each class and choose the one with highest probability

predict
$$y = \operatorname{argmax}_c h_{\boldsymbol{\theta}_c}(\mathbf{x})$$

Visualization

Format weight vector as an image:

Recall that

$$\mathsf{Prediction} \; = \begin{cases} 1 & \boldsymbol{\theta}^T \mathbf{x} \geq 0 \\ 0 & \boldsymbol{\theta}^T \mathbf{x} < 0 \end{cases}$$

 $Dot\ product = multiply\ together\ corresponding\ pixels\ and\ add$

Visualization: One vs. All

4□ > 4∰ > 4 분 > 4분 > 분 90

One vs. One

Fit a classifier for each pair of classes

One vs. One

Fit a classifier for each pair of classes Labels for discriminating c from d?

Fit a classifier for each pair of classes Labels for discriminating c from d?

$$\text{Let } y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

One vs. One

One vs. One

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Let
$$y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

$$\text{Let } y_{cd}^{(i)} = \begin{cases} 1 & \text{ if } y^{(i)} = c \\ 0 & \text{ if } y^{(i)} = d \end{cases} \qquad \frac{\mathbf{x}^T \quad | \ y \quad | \ y_{12} \quad y_{13} \quad y_{23}}{\cdots \quad 1 \quad 1 \quad 1 \quad 1 \quad - \quad \cdots \quad 2 \quad 0 \quad - \quad 1 \quad 1 \quad \cdots \quad 2 \quad 0 \quad - \quad 1 \quad \cdots \quad 2 \quad 0 \quad - \quad 1 \quad \cdots \quad 0 \quad 0$$

One vs. One

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Let
$$y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = c \end{cases}$$

Training? for each pair $c \neq d$, fit a binary classifier with labels $y_{cd}^{(i)}$ using only examples from class \boldsymbol{c} or \boldsymbol{d}

4 m > 4 m >

One vs. One

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Let
$$y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

$$\text{Let } y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases} \qquad \frac{\mathbf{x}^T \quad | \quad y \quad | \quad y_{12} \quad y_{13} \quad y_{23}}{\cdots \quad 1 \quad 1 \quad 1 \quad 1 \quad - \quad \cdots \quad 2 \quad 0 \quad - \quad 1 \quad \cdots \quad 2 \quad 0 \quad - \quad 1 \quad \cdots \quad 3 \quad - \quad 0 \quad 0 }$$

Training? for each pair $c \neq d$, fit a binary classifier with labels $y_{cd}^{(i)}$ using only examples from class \boldsymbol{c} or \boldsymbol{d}

lacktriangle Result: parameter vector $oldsymbol{ heta}_{cd}$

Prediction?

One vs. One

Fit a classifier for each pair of classes

Labels for discriminating c from d?

$$\text{Let } y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

\mathbf{x}^T	y	y_{12}	y_{13}	y_{23}
	1	1	1	-
	2	0	-	1
	3	-	0	0

Training? for each pair $c \neq d$, fit a binary classifier with labels $y_{cd}^{(i)}$ using only examples from class \boldsymbol{c} or \boldsymbol{d}

lacktriangle Result: parameter vector $oldsymbol{ heta}_{cd}$

Prediction? voting scheme. Explain on board.

Visualization: One vs. One

Advanced Topic: Error-Correcting Output Codes

Learn a separate classifier for each bit of codeword

	Code Word														
Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1
1	0	0	1	1	1	1	0	1	0	1	1	0	0	1	0
2	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
4	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	0	0	1
6	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
8	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1
9	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1

Dietterich and Bakiri 1995 (Possible project idea)