专题 07 基本不等式及其应用

<u>>>> 夬</u>	点剖析	Ť	2
	(-)	平均值不等式及其应用	3
		三角不等式	
<mark>》》</mark> 这			
	A 组	双基过关	<mark> 4</mark>
		巩固提高	
	C 组	综合训练	<mark> 5</mark>
	D 组	拓展延伸	<mark> 6</mark>

(一) 知识回顾

- 1. 分式不等式的解法;
- 2. 一元二次不等式的解法;
- 3. 绝对值不等式的解法.

(二) 引入

- 1. 给一根长度给定的铁丝,围成的各种封闭图形中,何时面积最大?
- 2. 如果长度为16, 围成的的矩形中, 何时面积最大?

二、知识梳理

【难度系数: ★★★ 参考时间: 15 min】

(一) 平均值不等式及其应用

1. 常用不等式 对任意实数 a 和 b ,有 $a^2 + b^2 \ge 2ab$,当且仅当 a = b 时等号成立.

2. 平均值不等式 对任意正数 a 和 b ,有 $\frac{a+b}{2} \ge \sqrt{ab}$,当且仅当 a=b 时等号成立.

$$\therefore \frac{a+b}{2} \ge \sqrt{ab}$$

当且仅当
$$a=b$$
时, $\frac{a+b}{2}=\sqrt{ab}$

综上,对任意正数 a 和 b ,有 $\frac{a+b}{2} \ge \sqrt{ab}$.

- 【注】①我们称 $\frac{a+b}{2}$ 为正数a 和b 的算术平均值,称 \sqrt{ab} 为正数a 和b 的几何平均值,因而,此不等式 又可叙述为:两个正数的算术平均值大于等于它们的几何平均值.
- ② $a^2 + b^2 \ge 2ab$ 和 $\frac{a+b}{2} \ge \sqrt{ab}$ 成立的条件是不同的: 前者只要求 a 和 b 都是实数, 而后者要求 a和b都是正数.
- ③"当且仅当"的含义是充要条件.
- ④ 平均值不等式的几何意义是"半径不小干半弦"。以长为 a+b 的线段 为直径作圆O,在直径AB上取点C,使AC=a,CB=b,过点C作垂 直于直径 AB 的弦 DE ,那么 $CD^2 = CA \cdot CB$,即 $CD = \sqrt{ab}$,这个圆的半 径为 $OD = \frac{a+b}{2}$,显然 $OD \ge CD$,即 $\frac{a+b}{2} \ge \sqrt{ab}$,当且仅当点C与圆心 O重合,即a=b时取等.

(二) 三角不等式

根据三角形中两边之和大于第三边的事实,我们可以类比得到下面的不等式:

定理 两个实数的绝对值的和大于等于他们和的绝对值,即对任意的实数 $a \setminus b$,有 $|a|+|b|\geq |a+b|$,

2

当且仅当ab≥0时等号成立.

证明: 因为 $|a|+|b| \ge |a+b|$ 等价于 $(|a|+|b|)^2 \ge (|a+b|)^2$, 即 $a^2 + 2 |ab| + b^2 \ge a^2 + 2ab + b^2$, 也即 $2 |ab| \ge 2ab$, 所以三角不等式成立, 当且仅当 $ab \ge 0$ 时等号成立.

(一) 平均值不等式及其应用

例 1. 已知 x > 0 , 求证: $x + \frac{1}{x} \ge 2$, 并指出等号成立的条件.

例 2. 已知 ab > 0 ,求证: $\frac{b}{a} + \frac{a}{b} \ge 2$,并指出等号成立的条件.

例 3. 设 $x \in R$, 求二次函数 y = x(4-x) 的最大值.

例 4. 设a、b为正数,且a+2b=1,比较ab的值与 $\frac{1}{8}$ 的大小.

例 5. 证明:

- (1) 在周长为常数的所有矩形中,正方形的面积最大;
- (2) 在面积相同的所有矩形中,正方形的周长最小.

例 6. 某新建居民小区欲建一面积为 $700\,m^2$ 的矩形绿地,并在绿地四周铺设人行道,设计要求绿地长边外人行道宽 $3\,m$,短边外人行道宽 $4\,m$. 如图所示,问如何设计绿地的长与宽,才能使人行道的占地面积最小.

例 7. 已知 a 、b 为实数,求证: $|a+b|+|a-b| \ge 2|a|$.

例 8. 已知 a,b 为实数,求证: $|a|-|b| \le |a-b|$,并指出等号成立的条件.

例 9. 证明: $|x-3|+|x-5| \ge 2$ 对所有实数 x 恒成立, 并求等号成立时 x 的取值范围.

<u>>>过关检测</u>

A组 双基过关

【难度系数: ★ 时间: 8分钟 分值: 20分】

1. (23-24 高一上·上海普陀·期中)设 $x \in \mathbb{R}$,对于使 $-x^2 + 2x \le M$ 恒成立的所有常数 M 中,我们把 M 的最小值 1 叫做 $-x^2 + 2x$ 的上确界.若 $a,b \in (0,+\infty)$,且 a+b=1 ,则 $-\frac{1}{2a} - \frac{2}{b}$ 的上确界为()

A. -2 B. $-\frac{9}{2}$ C. $-\frac{5}{2}$ D. $-\frac{1}{2}$

- 2. (23-24 高一上·上海静安·期中) $|x-3|+|x-7| \ge a$ 对所有实数 x 恒成立,则 a 的取值范围是______.
- 3. (22-23 高一上·上海闵行·期末)已知 $b \in \mathbb{R}$,且 $b \neq 0$,若不等式 $|x+b|+|x-b| \ge k|b|$ 对任意 $x \in \mathbb{R}$ 恒成立,则实数 k 的最大值是
- 4. (22-23 高一上·上海黄浦·期中)若 $|x-1|+|x-2|\ge m$ 对一切 $x \in \mathbb{R}$ 恒成立,则实数m 的取值范围为______.
- 5. (21-22 高一上·上海浦东新·期末)已知问题:" $|x+3|+|x-a| \ge 5$ 恒成立,求实数 a 的取值范围".两位同学对此问题展开讨论:小明说可以分类讨论,将不等式左边的两个绝对值打开;小新说可以利用三角不等式解决问题.请你选择一个适合自己的方法求解此题,并写出实数 a 的取值范围
- 6. (23-24 高一上·上海·阶段练习)已知 a, b 都是正数,则 $\frac{b}{a} + \frac{a+b}{b}$ 的最小值为_____.
- 7. (2023 高一·上海·专题练习) 已知0 < a < 1, 0 < b < 1, 则a + b, $2\sqrt{ab}$, $a^2 + b^2$, 2ab中哪一个最大?

B组 巩固提高

【难度系数: ★★ 时间: 10 分钟 分值: 20 分】

8. (23-24 高一上·上海·期末)为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润s (单位:万元)与生产线运转时间t (单位:年)满足二次函数关系:

1	A. 7	B. 8	C. 9	D. 10	
9.	(23-24 彦	5一上·上海浦东新·期末)	已知 $a > 0$,关于 x	的不等式 $(ax-a^2-6)(x-a^2-6)$	2)<0的解集为 <i>M</i> ,设
N =	$=M$ I ${f Z}$,	当 a 变化时,集合 N 中的	力元素个数最少时的	集合 N 为	
10.	(23-24 ਜੋ	高一上·上海·期末)设α、	<i>b</i> 为正数,且 <i>a</i> + 2 <i>b</i> :	=1,则 <i>ab</i>	$-\frac{1}{8}$ (
11.	(23-24)	高一上·上海奉贤·期末)	と <i>a</i> 、 <i>b</i> 为正数,且の	7与2b的算术平均值为1,	则 a 与 2b 的几何平均值
最大	に值为	<u></u> .			
12.	(23-24)	高一上·上海嘉定·期末)i	$∃$ 知 $x \in \mathbf{R}$,则函数	y=x(4-x)的最大值为	·
13.	(23-24)	高一上·上海·期末)已知等	实数 <i>x,y</i> 满足 3 <i>x</i> −2 y	$y + y - x = 2x - y \perp y \neq 0$,则
14.	(23-24)	高一上·上海虹口·期末)	吉存在实数 x 使得不	等式 x+1 + x-a ≤2成立	L,则实数 a 的取值范围
是_		_•			
15.	(23-24	高一上·上海闵行·期末)i	已知关于x的不等式	$ x+1 + x-a \le 5$ 有解,则	实数 a 的取值范围
为_		_•			
16.	(23-24	高一上·上海浦东新·期中)	若关于 x 的不等式	$ x-2 + x+1 \ge a$ 对任意实	数 x 恒成立,则实数 a
的最	是大值是_	·			
			C 组 综合	训练	
		【难度系	数: ★★★ 时间: 15	分钟 分值:30分】	
	(23-24	高一上·上海嘉定·期中)ヌ	付任意给定的实数 a	, b , 有 $ a - b \le a-b $, 且	.等号当且仅当()成
立.	A. <i>ab</i> ≤	B. $a(a-b) \ge 0$	C. $ab \ge 0$	$D. b(a-b) \ge 0$	
18.	(23-24)	高一上·上海·阶段练习)i	己知 a > 0 , b > 0 ,	若 $2a+b=1$,则 $\frac{2}{a}+\frac{1}{b}$ 的最	小值为()
	A. 7	B. 9	C. 11	D. 13	
19.	(23-24	高一下·上海·阶段练习)	音关于 x 的不等式 x	-1 $ - x+2 \le a$ 在 R 上有解	,则实数 a 的取值范围
是_	;				
20.	(23-24 雨	高一上·上海·期末)已知函	数 $f(x) = x-3 , g(x)$	f(x) = - x+4 + m, 若函数 $f(x)$	(x) 的图像恒在函数 g(x)
图像	象的上方,	则 m 的取值范围为	·		
21.	(22-23 高	一上·上海·期末)已知1≤a	$a \le b \le 2$, $i \frac{3}{a} + b$ in:	最大值为 M ,最小值为 m ,	则 $M^2 - m^2 = $
22	(22.24)	喜一上.上海素竖.粗末\ <i>+</i>	m 図 左 古	$EARC = ARC = 00^{\circ}$	4D 垂直干斜边 <i>RC</i> 日

 $s = -2t^2 + 40t - 98$,现在要使年平均利润最大,则每条生产线运行的时间 t 为()年.

垂足为D,设BD及CD的长度分别为a和 $b(a \neq b)$,E是BC的中点,点B绕点E顺时针旋转 90° 后得到点F,过D点作DH垂直于AE,且垂足为H.有以下三个命题:

- ①由图知 AD < AE,即可以得到不等式 $\sqrt{ab} < \frac{a+b}{2}$;
- ②由图知 AH < AD , 即可以得到不等式 $\frac{2ab}{a+b} < \sqrt{ab}$;
- ③由图知FE < FD,即可以得到不等式 $\frac{a+b}{2} < \sqrt{\frac{a^2+b^2}{2}}$;

以上三个命题中真命题的是_____.(写出所有正确命题的序号)

- 23. (23-24 高一上·上海·期末)已知 x>0, y>2,且 $\frac{1}{x}+\frac{1}{y-2}=a$,若 x+y 的最小值为 4,则实数 a 的值为 .
- 24. (23-24 高一上·上海·阶段练习)对于直角坐标平面上的两个点 $P(x_1,y_1),Q(x_2,y_2)$,记 $d(P,Q)=|x_1-x_2|+|y_1-y_2|$.
- (1)若点 A(x,y) 在函数 y = 2x 1 图像上,点 B 的坐标为(0,1),求满足 $d(A,B) \ge 3$ 的 x 的集合;
- (2)若 A(1,3), B(2,5), 点 C(x,y) 是直角坐标平面上的任意一点,求 d(A,C)+d(B,C) 的最小值,并指出取得最小值时的点 C(x,y) 的集合.
- 25. (23-24 高一上·上海·期末) (1) 解不等式 $|x-2|+|2x+1| \le 4$;
- (2) 证明: $|2x-4|+|2x+1| \ge 5$ 对所有实数 x 恒成立,并指出等号成立时 x 的取值范围.
- 26. (23-24 高一上·上海·期中) 已知a > 0, b > 0.
- (1)比较 $a^3 + b^3 与 a^2b + b^2a$ 的大小;
- (2)若a+b=1,求 $\frac{a^2}{b}+\frac{b^2}{a}$ 的最小值.

D 组 拓展延伸

【难度系数: ★★★ 时间: 20 分钟 分值: 30 分】27. (23-24 高一上·上海浦东新·期中)已知实数 k>0 ,则 $\begin{pmatrix} 2^n & 1 & 1 \\ & & 2 \end{pmatrix}$ 的最大值为_____.
28. (21-22 高一上·上海浦东新·期中)设 $x,y \in \mathbb{R}$,若 $|x|+|x-4|+|y|+|y-1| \le 5$,则 2x-3y+xy 的取值

28. (21-22 高一上·上海浦东新·期中)设 $x,y \in \mathbb{R}$,若 $|x|+|x-4|+|y|+|y-1| \le 5$,则2x-3y+xy的取值范围为_____.

- 29. (23-24 高一上·上海浦东新·期中)问题: 正实数 a, b 满足 a+b=1, 求 $\frac{1}{a}+\frac{2}{b}$ 的最小值.其中一种解法 是: $\frac{1}{a}+\frac{2}{b}=\left(\frac{1}{a}+\frac{2}{b}\right)(a+b)=1+\frac{b}{a}+\frac{2a}{b}+2\geqslant 3+2\sqrt{2}$,当且仅当 $\frac{b}{a}=\frac{2a}{b}$ 且a+b=1时,即 $a=\sqrt{2}-1$ 且 $b=2-\sqrt{2}$ 时取等号.学习上述解法并解决下列问题:
- (1)若正实数 x, y 满足 x+y=1, 求 $\frac{2}{x}+\frac{3}{y}$ 的最小值;
- (2)若实数 a, b, x, y 满足 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, 求证: $a^2 b^2 \le (x y)^2$;
- (3)求代数式 $M = \sqrt{3m-5} \sqrt{m-2}$ 的最小值,并求出使得 M 最小的 m 的值.
- 30. (23-24 高一上·上海·期中)设在二维平面上有两个点 $A(x_1,y_1)$, $B(x_2,y_2)$,它们之间的距离有一个新的定义为 $D(A,B)=|x_1-x_2|+|y_1-y_2|$,这样的距离在数学上称为曼哈顿距离或绝对值距离。在初中时我们学过的两点之间的距离公式是 $|AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$,这样的距离称为欧几里得距离(简称欧氏距离)或直线距离。
- (1)已知 A,B 两个点的坐标为 A(2x,1), B(3,2),如果它们之间的曼哈顿距离不大于 3,那么 x 的取值范围是 多少?
- (2)已知 A, B 两个点的坐标为 A(x,a), B(3,x), 如果它们之间的曼哈顿距离要恒大于 2,那么 a 的取值范围是多少?
- (3)若点 A(x,y) 在函数 $y = \log_3 x$ 图象上且 $x \in \mathbb{Z}$,点 B 的坐标为(9,1),求 D(A,B) 的最小值并说明理由.