Blind Optimization for Exploiting Hardware Features

Dan Knights, Todd Mytkowicz, Peter F. Sweeney*, Michael C. Mozer, and Amer Diwan

University of Colorado at Boulder *IBM Research, Hawthorne

Motivation: Microprocessors are complex

Hard to optimize for all hardware features simultaneously

Motivation: Some features hidden

Not all hardware details are published (e.g. trace cache)

Motivation: Compilers use simplified models

- Predictive heuristics optimize features independently
- Models may fail to capture interactions

The variant space

Our variant space: Function alignments

Challenge: which variant is fastest?

Challenge: which variant is fastest?

Results: distribution of run-times

GCC on all inputs, all benchmarks: 57th percentile

The problem: a huge variant space

The good news: There is room for improvement

Blind Optimization: Oblivious to hardware details

variant

variant α

variant β quantum toffoli() Computer quantum_sigma_x() quantum cnot() Input

Approach: Setting up the problem

		XO X O	in signa,	CIOX CIOX	~°°
	o'naux	July Objective	Jin 51	Cyc?	es
	Alignr	ment mo	d 64		
GCC -03:	0,	0,	0,	3	
variant α :	2,	31,	40,	?	
variant β:	57,	8,	15,	3	

Approach: Supervised Learning

Given: d function alignments runtime = $f(\vec{x})$

observed

Find approximation of $\hat{f}(\vec{x})$, predict $y' = \hat{f}(\vec{x}')$ for a new \vec{x}'

Approach: Direct optimization

- Instead of finding $\hat{f}(\vec{x})$
- Find $\min_{\vec{x} \in X} f(\vec{x})$
 - random search
 - hill-climbing
 - genetic algorithms
 - simulated annealing
 - beam search
 - etc.

$$\begin{vmatrix} \vec{x}_0 \\ \vec{x}_1 \\ \vec{x}_1 \end{vmatrix} f(\vec{x}_0) = 2.3 \times 10^9$$

$$f(\vec{x}_1) = 2.6 \times 10^9$$

$$f(\vec{x}_2) = 2.4 \times 10^9$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$f(\vec{x}_n) = 1.9 \times 10^9$$

Methodology

- For each benchmark:
 - 1) Hold out one "test" input
 - 2) Time 100 random variants on the other inputs
 - 3) "Vote" for the best variant
 - 4) Time the winner on the "test" input
 - 5) Repeat for each input
- Report the average score (cross-validation)

Results

SPEC CPU2006 Benchmark**	Linear model (% speedup*)	Direct optimization (% speedup*)
libquantum	13.2%	13.4%
lbm	1.6	1.7
hmmer	1.5	1.4
bzip2	0.8	0.9
sjeng	-0.7	0.6
gobmk	-1.6	0.6
h264ref	0.3	0.4
mcf	-0.8	0.4
perlbench	0.0	0.3
milc	-1.6	0.1
gcc	-0.6	0.1
Average	1.1%	1.8%

Results

SPEC CPU2006 Benchmark**	Linear model (% speedup*)	Direct optimization (% speedup*)	
libquantum	13.2%	13.4%	◄ 4.6% ICC
lbm	1.6	1.7	
hmmer	1.5	1.4	
bzip2	0.8	0.9	
sjeng	-0.7	0.6	
gobmk	-1.6	0.6	
h264ref	0.3	0.4	
mcf	-0.8	0.4	
perlbench	0.0	0.3	
milc	-1.6	0.1	
gcc	-0.6	0.1	
Average	1.1%	1.8%	

More good news: We can run more experiments offline

11 PM: Go to bed.

2 AM: Defrag hard-drive.

3 AM: Reoptimize software.

Checkpoint

- Blind optimizations can work
 - even a simple optimization, minimal search
 - up to 13% speedup
- Bad news: big program variant space
- Good news: potential for improvement
- What about other dimensions?
 - function alignments vs. inverting branch directions

Going further: Possible objective functions

Combining optimizations: Sorted by NMDS and Manhattan distance

Combining optimizations: Sorted by "default" speedup

^{*} Uses heuristics

* Uses heuristics

* Uses heuristics

^{*} Uses heuristics

* Uses heuristics

Summary

- Blind optimization optimizes directly, without heuristics or static models
 - The search space is huge, but there is potential for improvement
 - There are highly complex interactions between optimizations
- Ongoing work:
 - Exploring other dimensions
 - Improving search