ANÁLISE DE REDES Redes Aleatórias

Licenciatura em Ciência de Dados

1

Redes Aleatórias

- * Muitas redes reais partilham um conjunto de propriedades:
 - * os caminhos mais curtos entre dois nodos têm poucas ligações;
 - * têm muitos triângulos, tendo por isso coeficientes de *clustering* elevados;
 - * apresentam heterogeneidade quando se consideram os graus dos nodos e os pesos associados às ligações.

- * Paul Erdös e Alfréd Rényi iniciaram o estudo da Teoria de Grafos Aleatórios, para estudar como surgem estas propriedades.
- * Este estudo é baseado nas <u>redes aleatórias</u>, também conhecidas como <u>redes de Erdös-Rényi</u>.

3

2

Redes Aleatórias

- * Uma rede de Erdös-Rényi é obtida escolhendo o número de nodos (N) e o número de ligações (L).
- * Para escolher as ligações, geram-se aleatoriamente L pares de nodos.

* Outras redes aleatórias, propostas por E. N. Gilbert, podem ser obtidas escolhendo o número de nodos e uma probabilidade de inclusão de cada ligação (p).

5

5

Redes Aleatórias

- Neste caso, as redes serão obtidas aplicando o seguinte procedimento:
 - * 1 seleccione-se um par de nodos (i, j);
 - * 2 gere-se um número aleatório r, entre 0 e 1. Se r < p então inclui-se a ligação (i,j);
 - * 3 repetem-se os passos 1 e 2 para todos os pares de nodos.

- * A aplicação deste procedimento, diversas vezes, para valores fixos de N e p pode gerar redes com diferentes números de ligações.
- * Contudo, para valores de N suficientemente grandes, espera-se que o número de ligações seja aproximado.

7

7

Redes Aleatórias

- * Suponha agora que se está a gerar uma rede aleatória.
- * Inicialmente a rede é constituída apenas por nodos.
- * À medida que se adicionam ligações, pares de nodos são ligados.
- * Após a introdução das primeiras ligações, a rede é composta por subredes de pequena dimensão.

В

- * Quando se forma a componente gigante?
- * Erdös e Rényi descobriram que a componente gigante forma-se quando $\langle k \rangle = 1$.
- * A configuração da rede muda repentinamente quando $\langle k \rangle$ passa de um valor inferior a 1 para igual a 1.
- * Por outro lado, a dimensão desta componente gigante cresce rapidamente com o aumento do grau médio (para valores superiores a 1).
- * Ver NetLogo Giant Component

9

q

Redes Aleatórias

- * Densidade das Redes Aleatórias
- * Considere-se o método de geração de uma rede aleatória baseado na escolha do número de nodos e da probabilidade de inclusão de cada ligação (Modelo de Gilbert).
- * Este processo de geração de uma rede aleatória é semelhante à experiência de lançar repetidas vezes uma moeda.

- * Densidade das Redes Aleatórias
- st Suponha-se que p representa a probabilidade de obter uma cara.
- st O número esperado de caras obtidas será dado por pn , em que n representa o número de lançamentos.

11

11

Redes Aleatórias

- * Densidade das Redes Aleatórias
- No caso da rede aleatória, o número de lançamentos corresponde a

$$\binom{N}{2} = \frac{N(N-1)}{2}$$

que representa o número máximo de ligações de uma rede não orientada com N nodos.

- * Densidade das Redes Aleatórias
- * Então:

$$\langle L \rangle = \frac{pN(N-1)}{2}.$$

* Atendendo à expressão para o grau médio, temse:

$$\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1).$$

13

13

Redes Aleatórias

- * Densidade das Redes Aleatórias
- * Além disso, a densidade será dada por:

$$d = \frac{\langle L \rangle}{L_{max}} = \frac{pN(N-1)/2}{N(N-1)/2} = p.$$

* Como as redes reais são esparsas, uma rede aleatória adequada para o estudo de redes reais terá associada uma probabilidade pequena.

- * Distribuição de Grau das Redes Aleatórias
- * A distribuição de grau de uma rede aleatória será determinada pelo cálculo das probabilidades de um qualquer nodo da rede ter k adjacentes.
- * Seja i um nodo qualquer de uma rede com N nodos. Qualquer um dos restantes N-1 nodos pode ser adjacente de i.

15

15

Redes Aleatórias

- * Distribuição de Grau das Redes Aleatórias
- * Para que cada um dos restantes nodos seja adjacente de *i*, é necessário que exista uma ligação entre *i* e o nodo.
- * No processo de geração da rede aleatória, a decisão de incluir uma ligação é independente da decisão de incluir ou não incluir cada uma das restantes.

- * Distribuição de Grau das Redes Aleatórias
- * Se a probabilidade de dois nodos serem adjacentes for p então a probabilidade de um nodo ter grau igual a k é dada por:

$$P(k) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k}$$

17

17

Redes Aleatórias

- * Distribuição de Grau das Redes Aleatórias
- * Trata-se da distribuição Binomial, de parâmetros (N-1) e p, que tem valor esperado dado por (N-1)p.
- * Assim, para valores elevados de N e com Np constante (e não muito pequeno) pode considerar-se que $Np \approx \langle k \rangle$.

- * Distribuição de Grau das Redes Aleatórias
- Na distribuição Binomial os valores que acumulam maior probabilidade estão concentrados à volta do valor esperado.
- * Além disso, o gráfico que representa as probabilidades não apresenta uma cauda longa.
- * Podemos então concluir que nas redes aleatórias não se verifica a presença de hubs.

19

19

Redes Aleatórias

- * Caminhos mais curtos
- * Já se viu que os graus dos nodos de uma rede aleatória não diferem muito.
- * Para estudar a existência de caminhos mais curtos com poucas ligações, considere-se uma rede conexa em que todos os nodos têm grau k.

- * Caminhos mais curtos
- * Considere-se ainda um nodo qualquer da rede.
- * Este nodo está:
 - * a uma distância igual a 1 de k nodos;
 - * a uma distância igual a 2 de k(k-1) nodos;
 - * a uma distância igual a 3 de $k(k-1)^2$ nodos.

21

21

Redes Aleatórias

- * Caminhos mais curtos
- * Assim, o nodo está a uma distância igual a l de $k(k-1)^{l-1}$ nodos.
- * O valor real de nodos pode ser inferior a $k(k-1)^{l-1}$ porque alguns dos nodos a uma distância não superior a l podem estar repetidos.

- * Caminhos mais curtos
- * Se o valor de k não for muito pequeno então pode considerar-se $k\approx k-1$ e a estimativa para o número de nodos a uma distância igual a l será aproximada por k^l .
- * Seja l_{max} a maior das distâncias o diâmetro da rede –, então esta distância permite alcançar todos os nodos da rede e

$$k^{l_{max}} = N.$$

23

Redes Aleatórias

- * Caminhos mais curtos
- * Tem-se então $l_{max} = log_k N = \frac{\log N}{\log k}$.
- * Dado que os graus dos nodos de uma rede aleatória não diferem muito, a expressão anterior constitui uma boa aproximação quando se tomam valores de k em torno de $\langle k \rangle$.

- * Caminhos mais curtos
- * Como a função logarítmica cresce lentamente, o valor de l_{max} cresce lentamente quando N aumenta.
- * Conclui-se então que nas redes aleatórias existem caminhos mais curtos com poucas ligações.

25

25

Redes Aleatórias

- * Caminhos mais curtos
- * Considere-se uma rede aleatória para representar a rede mundial de contactos sociais.
- * Com base no número de Dunbar, considere-se ainda que o grau médio é 150.
- * Tem-se que $150^5 = 75937,5$ milhões, que é nove vezes superior à população mundial.
- * Este resultado é compatível com a experiência de Stanley Milgram.

- * Coeficiente de Clustering
- * O coeficiente de *clustering* de um nodo mede a fracção de nodos adjacentes unidos por uma ligação.
- * Uma ligação entre dois nodos adjacentes forma um triângulo.

27

27

Redes Aleatórias

- * Coeficiente de Clustering
- * Numa rede aleatória, gerada considerando o número de nodos e uma probabilidade p de inclusão de cada ligação, a probabilidade de dois nodos adjacentes estarem unidos é igual a p.
- * O coeficiente de clustering de cada nodo pode não ser exatamente igual a p.
- st Contudo, espera-se que a média dos coeficientes de clustering dos nodos seja bem aproximada por p.

- * Coeficiente de Clustering
- * Se a rede aleatória for esparsa então o valor de p será pequeno e a rede terá poucos triângulos.
- * Se se aumentar o valor da probabilidade então o número de triângulos aumenta, assim como a densidade da rede (o que não será realista para simular redes sociais reais).

29

29

Redes Aleatórias

- * Mundos Pequenos (Small Worlds)
- * Com vista a obter redes aleatórias com coeficientes de clustering mais elevados, Duncan J. Watts e Steven H. Strogatz desenvolveram o Modelo de Mundos Pequenos (small-world model), também conhecido como modelo Watts-Strogatz.

- * Mundos Pequenos (Small Worlds)
- * Começaram por gerar uma rede em que cada nodo está ligado aos 4 nodos mais próximos. Esta rede apresenta um coeficiente de *clustering* de 0,5.
- * Contudo, a distância média não é pequena, devido às distâncias entre os nodos mais afastados entre si.

31

31

Redes Aleatórias

- * Mundos Pequenos (Small Worlds)
- * Para reduzir a distância média, algumas ligações da rede serão substituídas. Esta substituição consiste em manter um dos nodos (um dos extremos da ligação) e modificar o outro nodo.
- * A probabilidade de substituir cada ligação será representada por p.

- * Mundos Pequenos (Small Worlds)
- * A substituição das ligações irá reduzir o número de triângulos, mas reduzirá algumas distâncias e a distância média.
- * Quais os valores de p que permitem reduzir a distância média sem diminuir drasticamente o coeficiente de *clustering*?

33

33

Redes Aleatórias

- * Mundos Pequenos (Small Worlds)
- * A probabilidade deve ser pequena para manter muitos triângulos.
- * Por exemplo, alguns testes sugerem que valores entre 0,01 e 0,1 permitem reduzir a distância média e manter um número significativo de triângulos.
- * Ver NetLogo Small Worlds

- * Mundos Pequenos (Small Worlds)
- * Outra possibilidade para a substituição de cada ligação consiste em escolher aleatoriamente os dois nodos unidos pela ligação, não mantendo nenhum dos nodos iniciais.
- * Em vez de substituir ligações, podem ser adicionadas ligações escolhidas ao acaso.

35

35

Redes Aleatórias

- * Mundos Pequenos (Small Worlds)
- * Também podem ser consideradas outras configurações iniciais. Por exemplo, uma grelha em que os nodos internos têm grau igual a 6 e os nodos na fronteira têm grau igual a 2,3 ou 4.
- * O modelo Watts-Strogatz não gera redes com hubs.

- * Modelo de Configuração (Configuration Model)
- * Dada uma sequência, será possível gerar uma rede em que os graus dos nodos são os elementos da sequência?
- * Para que exista uma rede nestas condições, a soma dos elementos da sequência terá que ser um número par.

37

37

Redes Aleatórias

- * Modelo de Configuração (Configuration Model)
- * Uma solução simples é dada pelo Modelo de Configuração (Configuration Model).
- * Suponha que se tem um conjunto de nodos e uma sequência que representa os graus dos nodos.

- * Modelo de Configuração (Configuration Model)
- * Em cada nodo, desenha-se um número de linhas incidentes (stubs) igual ao grau do nodo.
- * Estas linhas não representam ligações porque incidem apenas num nodo.

39

39

Redes Aleatórias

- * Modelo de Configuração (Configuration Model)
- * O modelo consiste em:
 - * 1 escolher aleatoriamente um par de linhas;
 - * 2 ligar as duas linhas escolhidas, obtendo-se uma ligação.
- * Este procedimento é repetido até todas as linhas ficarem unidas.

- * Modelo de Configuração (Configuration Model)
- * O modelo pode originar soluções que apresentem algumas desvantagens: mais do que uma ligação entre o mesmo par de nodos e existência de lacetes (loops).

41

41

Redes Aleatórias

- * Modelo de Configuração (Configuration Model)
- Este modelo pode ser utilizado para verificar se uma propriedade de uma rede é consequência da distribuição de grau.
- * Se a propriedade da rede em estudo também estiver presente em todas as redes geradas pelo modelo então a propriedade resulta da distribuição de grau.

- * Modelo de Configuração (Configuration Model)
- * Para assegurar a validade desta conclusão, o modelo terá que gerar todas as redes com a distribuição de grau pretendida.
- * Por exemplo, pretende-se averiguar se o coeficiente de *clustering* da rede resulta da distribuição de grau.

43

43

Redes Aleatórias

- * Modelo de Configuração (Configuration Model)
- * Utilizando o Modelo de Configuração (Configuration Model) obtêm-se todas as redes com a distribuição de grau pretendida.
- * Determina-se o coeficiente de *clustering* de cada uma das redes obtidas e verifica-se se é igual ao da rede inicial.

- * Modelo de Configuração (Configuration Model)
- * Os Modelos Aleatórios Exponenciais (Exponential Random Models) permitem obter redes com outras propriedades ou com conjuntos de propriedades (por exemplo, redes com determinado coeficiente médio de clustering e determinada densidade).

45

45

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- * Todas as redes já consideradas são redes estáticas (static networks), porque o número de nodos não sofre alterações durante o processo de geração, apenas se acrescentam ou substituem ligações.

- * Ligação Preferencial (Preferential Attachment)
- * Usualmente, as redes reais são dinâmicas (dynamic networks), no sentido em que nodos e ligações podem ser acrescentados ou removidos.
- * A Web, a Wikipedia, o Facebook são alguns exemplos de redes dinâmicas. Apesar de algumas remoções, a dimensão destas redes tem crescido.

47

47

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- * Os modelos dinâmicos tipicamente incorporam alguma forma de crescimento da rede.
- Começa-se com uma configuração inicial, frequentemente considera-se uma clique de pequena dimensão (uma clique é uma rede ou subrede completa).
- * Depois acrescentam-se os nodos um a um.

- * Ligação Preferencial (Preferential Attachment)
- Cada novo nodo é unido aos nodos já existentes de acordo com uma regra, que caracteriza o modelo.
- * As redes aleatórias e modelos já estudados caracterizam-se pela falta de hubs, porque a probabilidade de uma ligação ser escolhida não difere da probabilidade associada a qualquer outra ligação.

49

49

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- * O próximo modelo procura gerar redes com hubs.
- Para tal, os novos nodos serão ligados aos nodos existentes, privilegiando as ligações a alguns dos nodos.
- * Este mecanismo é designado por <u>ligação</u> <u>preferencial</u> (preferential attachment).

- * Ligação Preferencial (Preferential Attachment)
- * O mecanismo privilegia as ligações a nodos com maior grau.
- * Este mecanismo baseia-se no princípio: quanto mais se tem, mais se recebe.
- * O método de ligação preferencial (preferential attachment) mais conhecido para redes foi proposto por Barabási e Albert, sendo designado por modelo de Barabási-Albert ou modelo BA.

51

51

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- st Começa-se com uma rede completa com m_0 nodos. Cada iteração consiste em dois passos:
 - * 1 Adiciona-se um novo nodo i à rede com $m \le m_0$ ligações. O parâmetro m representa o grau médio da rede inicial.
 - * 2 A probabilidade de unir o novo nodo a um nodo j já existente é dada por

 $\frac{\textit{grau de } \textit{j}}{\textit{soma dos graus dos nodos}}$

- * Ligação Preferencial (Preferential Attachment)
- * O número de iterações realizadas é escolhido de forma a obter o número de nodos pretendidos.
- * A aplicação deste método começa com graus iguais.
- * A introdução de novos nodos e de novas ligações leva ao aumento dos graus de alguns nodos.
- Desde as primeiras iterações, o grau dos primeiros nodos será maior do que o dos nodos introduzidos posteriormente.

53

53

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- * Os nodos com maior grau têm maior probabilidade de serem escolhidos, logo o seu grau tende a aumentar bastante mais do que o dos restantes nodos.
- * Assim, surgem a heterogeneidade e os hubs.

- * Ligação Preferencial (Preferential Attachment)
- * No modelo Ligação Preferencial (preferential attachment), a escolha dos nodos adjacentes de cada novo nodo, com base no grau dos nodos já existentes, é relevante para a obtenção de hubs.
- * No caso de a escolha dos nodos adjacentes ser aleatória, sem ter em conta o grau, observar-seia um crescimento da rede sem heterogeneidade.

55

55

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- * O método Ligação Preferencial (preferential attachment) foi utilizado para modelar a população das cidades, a concentração de riqueza individual, a dimensão de empresas, a produção científica e outros fenómenos.
- * Ver NetLogo Preferential Attachment.

- * Ligação Preferencial (Preferential Attachment)
- O modelo Ligação Preferencial apresenta um conjunto de desvantagens:
 - o padrão da distribuição de grau não se altera qualquer que seja a escolha dos parâmetros;
 - os hubs pertencem ao conjunto dos primeiros nodos; nenhum dos nodos acrescentados a partir de determinada iteração será um hub;
 - * não forma muitos triângulos;

57

57

Redes Aleatórias

- * Ligação Preferencial (Preferential Attachment)
- O modelo Ligação Preferencial apresenta um conjunto de desvantagens:
 - só se adicionam nodos e ligações e não há remoções de nodos nem de ligações;
 - * forma uma rede conexa.

- * Outros Modelos
- Uma extensão do modelo anterior utiliza uma potência do grau, deixando a preferência de ser linear. Assim, a probabilidade anterior pode ser substituída por

$$\frac{k_j^{\alpha}}{\sum_l k_l^{\alpha}}$$

59

59

Redes Aleatórias

- * Outros Modelos
- * Se o valor de α for inferior a 1 então as probabilidades não crescem na mesma proporção que os graus e os hubs tendem a desaparecer.
- * Se, pelo contrário, o valor de α for superior a 1, então os nodos com maior grau acumulam mais ligações muito mais rapidamente. Assim, m nodos serão adjacentes da maioria dos nodos.

- * Outros Modelos
- * Pode concluir-se que o modelo Ligação Preferencial está dependente da preferência linear (o expoente dos graus é igual a 1) para gerar diversos hubs. Esta é outra desvantagem do modelo.

61

61

Redes Aleatórias

- * Outros Modelos
- * Attractiveness Model
- Outra variante do modelo Ligação Preferencial modifica a probabilidade adicionando uma constante A aos graus dos nodos. A probabilidade será dada por

$$\frac{A + k_j}{\sum_l (A + k_l)}$$

- * Outros Modelos
- * Attractiveness Model
- * O parâmetro A é positivo e é designado por parâmetro de atratividade.
- A ideia consiste em escolher nodos com base, não apenas no grau, mas também na sua atratividade (por exemplo, citações de obras).

63

63

Redes Aleatórias

- * Outros Modelos
- * Attractiveness Model
- * Ao contrário do modelo Ligação Preferencial, este modelo pode ser aplicado a configurações iniciais com nodos com grau nulo, redes orientadas e permite obter diversas distribuições de grau.
- * São vantagens face ao modelo Ligação Preferencial.

- * Outros Modelos
- * Fitness Model
- * O "Fitness Model", proposto por Bianconi e Barabási, considera uma modificação no cálculo das probabilidades.
- * Considere-se uma função que toma valores para cada um dos nodos.

65

65

Redes Aleatórias

- * Outros Modelos
- * Fitness Model
- * O grau de cada nodo é multiplicado pelo valor da função para o nodo. O valor da função traduz o apelo do nodo.
- * A probabilidade será dada por:

$$\frac{n_j k_j}{\sum_{66} (n_l k_l)}$$

- * Outros Modelos
- * Fitness Model
- * Quanto maior for o valor, maior será o apelo. A função é designada por função de fitness.
- * Este modelo permite obter diversos hubs, se os valores da função forem limitados.
- * Os valores da função podem permitir a competição entre os nodos iniciais e os novos nodos.

67

67

Redes Aleatórias

- * Outros Modelos
- * Fitness Model
- * Como exemplos de aplicação pode referir-se a Web, a Wikipedia e publicações científicas. As páginas e os artigos com mais ligações, ou mais citados, não são necessariamente os mais antigos.

- * Outros Modelos
- * Fitness Model
- * Os valores da função não sofrem alterações ao longo do tempo, o que pode constituir uma desvantagem do método.

69

69

Redes Aleatórias

- * Outros Modelos
- * Modelo Passeio Aleatório (Random Walk Model)
- * As redes geradas pelo modelo BA apresentam coeficientes de *clustering* reduzidos, porque a probabilidade de um nodo receber uma ligação é proporcional ao seu grau e não tem em conta a existência de nodos adjacentes.

- * Outros Modelos
- Modelo Passeio Aleatório (Random Walk Model)
- * Para aumentar o número de triângulos, é necessário um mecanismo que favoreça a introdução de ligações entre nodos adjacentes.

71

71

Redes Aleatórias

- * Outros Modelos
- Modelo Passeio Aleatório (Random Walk Model)
- * A formação de triângulos resultante da adição de uma ligação é designada por <u>fecho triádico</u> (triadic closure) e é um dos mecanismos mais relevante para a formação de ligações numa rede social.

- * Outros Modelos
- Modelo Passeio Aleatório (Random Walk Model)
- * Vamos considerar a implementação mais intuitiva deste mecanismo, que é designada por <u>Modelo</u> <u>Passeio Aleatório</u> (random walk model).

73

73

Redes Aleatórias

- * Outros Modelos
- * Modelo Passeio Aleatório (Random Walk Model)
- * A ideia consiste em unir um novo nodo não só a um já existente mas também a um ou mais nodos adjacentes deste último.

- * Outros Modelos
- Modelo Passeio Aleatório (Random Walk Model)
- * Considere-se uma rede qualquer de dimensão pequena. Cada iteração consiste nos passos:
 - * 1 Um novo nodo i é acrescentado à rede com m>1 ligações;

75

75

Redes Aleatórias

- Modelo Passeio Aleatório (Random Walk Model)
 - * 2 A primeira ligação será (i,j) em que j é um nodo já existente, escolhido aleatoriamente;
 - * 3 Cada uma das restantes ligações une i a um dos adjacentes de j com probabilidade p ou une i a um nodo escolhido aleatoriamente com probabilidade 1-p.

- * Modelo Passeio Aleatório (Random Walk Model)
- * O número de triângulos formados depende da probabilidade p considerada.
- * Se esta probabilidade não for demasiado pequena, este modelo também vai gerar hubs.
- * A probabilidade de um nodo receber ligações será proporcional ao seu grau, como no modelo BA.

77

Redes Aleatórias

- Modelo Passeio Aleatório (Random Walk Model)
- Contudo, os novos nodos não escolhem os seus adjacentes com base no grau. A escolha do primeiro adjacente de cada novo nodo é aleatória.
- * O fecho triádico induz a ligação preferencial.

- * Modelo Passeio Aleatório (Random Walk Model)
- * Este modelo foi proposto em 2003.
- * Contudo, em 1973, Mark S. Granovetter publicou o artigo "The strength of weak ties", em que estabeleceu uma relação estreita entre três componentes fundamentais das redes sociais: triângulos, peso das ligações e comunidades.

79

Redes Aleatórias

- Modelo Passeio Aleatório (Random Walk Model)
- * Introduziu o princípio do fecho triádico forte para explicar a formação das ligações nas redes sociais.

- Modelo Passeio Aleatório (Random Walk Model)
- Neste artigo, o sociólogo argumentou que ligações fortes estão presentes em comunidades sociais, enquanto que as ligações fracas unem comunidades sociais.
- * Estas ligações fracas permitem a circulação de "informação" na rede.

81

81

Redes Aleatórias

- * Modelo Cópia (Copy Model)
- * O modelo Cópia consiste numa variante do modelo Passeio Aleatório, em que cada nodo é ligado a um nodo escolhido aleatoriamente ou a algum (ou a alguns) dos seus adjacentes.

- * Modelo Cópia (Copy Model)
- * O modelo Cópia procura modelar cenários em que muitos triângulos podem resultar de cópias de contactos.

83

83

Redes Aleatórias

- * Modelo Cópia (Copy Model)
- * Como exemplos, podem referir-se:
 - duplicação de genes (as cópias vão interagir com as mesmas proteínas);
 - conhecimento de novas obras a partir de listas bibliográficas ou lista de obras da mesma colecção;

- * Modelo Cópia (Copy Model)
- * Como exemplos, podem referir-se:
 - * criação de conteúdos na Web e cópia das hiperligações.
- * A escolha entre um nodo e alguns dos seus adjacentes permite obter hubs mas o número de triângulos é reduzido.

85

85

Redes Aleatórias

- * Modelo Ordenação (Rank Model)
- * No modelo Ligação Preferencial, frequentemente designado por BA, a escolha das ligações dos novos nodos é baseada no grau dos restantes nodos.
- * Este modelo requer o conhecimento dos valores absolutos dos graus.

- * Modelo Ordenação (Rank Model)
- * O modelo Ordenação permite considerar outras propriedades, além do grau.
- * Baseia-se numa ordenação dos nodos considerando a propriedade escolhida.

87

87

Redes Aleatórias

- * Modelo Ordenação (Rank Model)
- * O modelo pode começar com uma qualquer rede de pequena dimensão com m_0 nodos.
- * Uma propriedade dos nodos (grau, idade, ...) é escolhida para ordenar os nodos.

- * Modelo Ordenação (Rank Model)
- * Cada iteração consiste nos passos:
 - * 1 Todos os nodos são ordenados com base na propriedade. Atribuem-se os valores $R=1, 2, 3, \dots$ aos nodos. O nodo / da lista ordenada recebe R=1.

89

89

Redes Aleatórias

- * Modelo Ordenação (Rank Model)
- * Cada iteração consiste nos passos:
 - * 2 Adiciona-se um novo nodo i à rede com $m \le m_0$ novas ligações.

- * Modelo Ordenação (Rank Model)
- * Cada iteração consiste nos passos:
 - * 3 A probabilidade de unir o novo nodo a um nodo j já existente é dada por

$$\frac{R_j^{-\alpha}}{\sum_l R_l^{-\alpha}}$$

em que $\alpha > 0$ é um parâmetro.

9

91

Redes Aleatórias

- * Modelo Ordenação (Rank Model)
- * Os nodos poderão ter que ser reordenados após cada iteração, se a propriedade escolhida depender das novas ligações adicionadas.
- * Por exemplo, a escolha do grau obriga a reordenar os nodos.

- * Modelo Ordenação (Rank Model)
- * Um nodo nas primeiras posições da lista ordenada terá maior probabilidade de receber uma nova ligação do que um dos nodos nas últimas posições da lista ordenada.
- * Se os nodos tiverem sido ordenados pelo seu grau, os nodos com maior grau terão probabilidades associadas mais elevadas do que os com menor grau.

93

93

Redes Aleatórias

- * Modelo Ordenação (Rank Model)
- * No entanto, a probabilidade depende da posição na ordenação e não será proporcional aos graus.
- * A taxa de decréscimo da probabilidade depende do expoente considerado.
- * Este modelo gera redes com distribuição de grau com caudas longas, qualquer que seja a propriedade escolhida e o expoente considerado.

- * Modelo Ordenação (Rank Model)
- * Com escolhas diferentes do expoente obtêm-se distribuições de grau com formas diferentes, o que permite reproduzir distribuições empíricas.
- * Este modelo permite criar hubs, apesar de não incorporar informação detalhada sobre o sistema.

95

95

Redes Aleatórias

- * Modelo Ordenação (Rank Model)
- * Um exemplo de aplicação deste modelo é relativo à ligação de novos artigos da Wikipedia.
- * Os autores de artigos procuram ligá-los a artigos relevantes.

- * Modelo Ordenação (Rank Model)
- * A utilização de motores de busca permite obter uma lista de artigos ordenada por relevância.
- * Usualmente escolhem-se os artigos da primeira página da lista ordenada.
- * Esta escolha leva à criação de hubs.

97

97

Redes Aleatórias

- * Algumas Aplicações de Redes Aleatórias
- * As redes aleatórias podem ser utilizadas para modelar e estudar alguns sistemas complexos.
- * No caso das redes sociais, alguns estudos permitiram concluir que determinados comportamentos humanos são adoptados mais facil e rapidamente em redes com *clusters* (ou grupos) do que em redes aleatórias.

98

- * Algumas Aplicações de Redes Aleatórias
- * No caso da propagação de doenças, é relevante identificar as subredes em que o contágio ocorrerá mais cedo para desenvolver estratégias de prevenção e tratamento.
- * A estrutura da rede em estudo poderá ter influência nos resultados, pelo que deve representar bem a população em estudo.

99

Redes Aleatórias

- * Algumas Aplicações de Redes Aleatórias
- * Outras aplicações consistem no estudo:
 - * da robustez de redes de abastecimento (eletricidade, gás, ...);
 - na propagação de virus em redes;
 - * na identificação de pontos sensíveis e fracos numa rede.

- * Algumas Aplicações de Redes Aleatórias
- * No campo da neurociência, o cérebro pode ser representado por uma rede de neurónios.
- * Há evidência de que as alterações provocadas pelo Alzheimer condicionam a actividade na rede de neurónios, estando mais próxima da actividade numa rede aleatória do que numa rede representativa de um cérebro saudável.

101

101

Redes Aleatórias

- * Algumas Aplicações de Redes Aleatórias
- * Quais são as vantagens em utilizar redes aleatórias para modelar e estudar sistemas complexos?