(12)

4)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

16.05.2001 Bulletin 2001/20

(21) Application number: 97201854.3

(22) Date of filing: 18.03.1992

(51) Int CI.7: **C08F 20/06**, C08F 122/38, C08F 126/10, C08J 9/30, A61K 49/04, A61K 49/00, G01R 33/28, A61K 51/12

(54) Contrast media for diagnostic imaging comprising gas filled microspeures

Gasgefüllte Mikrospheren enthaltende Kontrastmittel zur diagnostischen Bilderzeugung Moyen de contraste pour imagerie diagnostique contenant des microsphères gazeux -

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

(30) Priority: 05.04.1991 US 680984

(43) Date of publication of application: 05.11.1997 Bulletin 1997/45

(60) Divisional application: 00203214.2 / 1 064 953

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 92910021.2 / 0 580 726 (73) Proprietor: ImaRx Pharmaceutical Corp. Tucson, AZ 85719 (US)

(72) Inventor: Unger, Evan C.
Tucson, Arizona 84749 (US)

 (74) Representative: Hallybone, Huw George et al CARPMAELS AND RANSFORD
 43 Bloomsbury Square London WC1A 2RA (GB)

(56) References cited:

EP-A- 0 052 575

EP-A-0 327 490

P 0 804 932 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

20

[0001] Computed tomography (CT) is a widespread diagnostic imaging method which measures, in its imaging process, the radiodensity (electron density) of matter This radiodensity is depicted using CT in terms of Hounsefield Units (HU). Hounsefield Units, named after the inventor of the first CT scanner, reflect the relative absorption of CT X-rays by matter, the absorption being directly proportional to the electron density of that matter. Water, for example, has a value of 0 HU, air a value of - 1000 HU, and dense cortical bone a value of + 1000 HU. Because of the similarity in density of various tissues in the body, however, contrast agents have been sought to change the relative density of different tissues, and improve the overall diagnostic efficacy of this imaging method.

[0002] In the search for contrast agents for CT, researchers have generally sought to develop agents that will increase electron density in certain areas of a region of the body (positive contrast agents). Barium and iodine compounds, for example, have been developed for this purpose. For the gastrointestinal tract, barium sulfate is used extensively to increase the radiodensity of the bowel lumen on CT scans. Iodinated water soluble contrast media are also used to increase density within the gastro- intestinal tract, but are not used as commonly as the barium compounds, primarily because the iodine preparations are more expensive than barium and prove less effective in increasing radiodensity within this region of the body.

[0003] Despite their widespread use, however, barium and iodine compounds are suboptimally effective as gastrointestinal contrast agents for CT. For example, if the concentration is too low, there is little contrast. Conversely, if the concentration is too high, then these radiodense contrast agents cause beam hardening artifacts which are seen as streaks on the CT images. It is also difficult to visualize the bowel mucosa with either the barium or iodine contrast agents.

[0004] In an attempt to improve upon the efficacy of contrast agents for the gastrointestinal tract, lipid emulsions that are capable of decreasing electron density (negative contrast agents) have been developed. Because lipids have a lower electron density than water, lipids provide a negative density on CT (a negative HU value). While these lipid emulsions appear to be more effective than the barium and iodine agents at improving visualization of the mucosa of the bowel, these contrast agents have limitations. First, there is a limitation to the concentration of lipid which a patient can tolerably drink, which puts a limit on the change in density (or HU) which the lipid based CT contrast agent can provide. Lipid emulsions are also frequently expensive. Furthermore, these lipid formulations are generally perishable, which provides for packaging and storage problems.

[0005] New and/or better contrast agents for computed tomography imaging are needed. The present invention is directed toward this important end.

[0006] EP-A-0327490 describes ultrasonic contrast agents comprising microparticles containing gases and/or fluids with a boiling point below 60°C in free or bonded form. The particles are formed from amylose or a synthetic biodegradable polymer that dissolves or degrades in the human body. Particularly preferred biodegradable polymers are amyloses and cyclodextrins, since these polymers are soluble in water and form inclusion compounds with gaseous molecules. In use, the microparticles dissolve in the body to release the gas trapped therein as microbubbles that provide good ultrasonic contrast.

[0007] EP-A-0052575 describes microbubble precursors for use as ultrasonic contrast agents. The precursors are particulate solids consisting predominantly of particles which have a plurality of gas-filled voids communicating with the surface of the particles and a plurality of nuclei for bubble formation. As the particles dissolve in the body, they release microbubbles that function as ultrasonic contrast agents.

[0008] In a first aspect, the present invention provides a low density gas-filled microsphere having an internal void volume of at least 75% of the total volume of the microsphere, wherein said gas comprises a perfluorocarbon.

[0009] In a second aspect, the present invention provides an aqueous suspension comprising a biocompatible polymer, a perfluorocarbon gas, and a thickening or suspending agent, wherein in said suspension said biocompatible polymer associates with said perfluorocarbon gas to form one or more gas-filled microspheres.

[0010] In a third aspect, the present invention provides a substantially homogeneous aqueous suspension of the low density gas-filled microspheres according to the present invention.

[0011] The present invention also provides a kit for the preparation of an aqueous suspension according to the third aspect of the present invention, said kit comprising low density gas-filled microspheres having an internal void volume of at least 75% of the total volume of the microsphere, wherein said gas comprises a perfluorocarbon, and a thickening or suspending agent.

[0012] A wide variety of different low density microspheres may be utilized in the present invention. Preferably, the microspheres (which are small spheres having a central void or cavity), are composed of biocompatible synthetic polymers or copolymers prepared from monomers such as acrylic acid, methacrylic acid, ethyleneimine, crotonic acid, acrylamide, ethyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate (HEMA), lactic acid, glycolic acid, ecaprolactone, acrolein, cyanoacrylate, bisphenol A, epichlorhydrin, hydroxyalkylacrylates, siloxane, dimethylsiloxane, ethylene oxide, ethylene glycol, hydroxyalkylmethacrylates, N-substituted acrylamides, N-substituted methacryla-

mides, N-vinyl-2-pyrrolidone, 2,4-pentadiene-1-ol, vinyl acetate, acrylonitrile, styrene, p-amino-styrene, p-amino-benzyl-styrene, sodium styrene sulfonate, sodium 2-sulfoxyethylmethacrylate, vinyl pyridine, aminoethyl methacrylates, 2-methacryloloxytrimethylammonium chloride, and polyvinylidene, as well polyfunctional crosslinking monomers such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylates, 2,2'-(p-phenylenedioxy)-diethyl dimethacrylate, divinylbenzene, triallylamine and methylenebis-(4-phenyl-isocyanate), including combinations thereof. Preferable polymers include polyacrylic acid, polyethyleneimine, polymethacrylic acid, polymethylmethacrylate, polysiloxane, polydimethylsiloxane, polylactic acid, poly(ɛ-caprolactone), epoxy resin, poly(ethylene oxide), poly(ethylene glycol), and polyamide (nylon). Preferable copolymers include the following: polyvinylidene-polyacrylonitrile, polyvinylidene-polyacrylonitrile. A most preferred copolymer is polyvinylidene-polyacrylonitrile. The term biocompatible, as used herein in conjunction with the terms monomer or polymer, is employed in its conventional sense, that is, to denote polymers that do not substantially interact with the tissues, fluids and other components of the body in a adverse fashion in the particular application of interest, such as the aforementioned monomers and polymers. Other suitable biocompatible monomers and polymers will be readily apparent to those skilled in the art, once armed with the present disclosure.

[0013] The microspheres of the present invention are low density. By low density, it is meant that the microspheres of the invention have an internal void (cavity) volume which is at least 75 % of the total volume of the microsphere. Preferably, the microspheres have a void volume of at least 80 %, more preferably at least 85 %, even more preferably at least 90 %, of the total volume of the microspheres.

[0014] The microspheres may be of varying size, provided they are low density. Suitable size microspheres include those ranging from between 1 and 1000 microns in outside diameter, preferably between 5 and 70 microns in outside diameter. Most preferably, the microspheres are about 50 microns in outside diameter.

20

55

[0015] The microspheres used in the invention may be prepared by various processes, as will be readily apparent to those skilled in the art, once armed with the present disclosure, such as by interfacial polymerization, phase separation and coacervation, multiorifice centrifugal preparation, and solvent evaporation. Suitable procedures which may be employed or modified in accordance with the present disclosure to prepare microspheres within the scope of the invention include those procedures disclosed in Garner et al., U.S. Patent No. 4,179,546, Garner, U.S. Patent No. 3,945,956, Cohrs et al., U.S. Patent No. 4,108,806, Japan Kokai Tokkyo Koho 62 286534, British Patent No. 1,044,680, Kenaga et al., U.S. Patent No. 3,293,114, Morehouse et al., U.S. Patent No. 3,401,475, Walters, U.S. Patent No. 3,479,811, Walters et al., U.S. Patent No. 3,488,714, Morehouse et al., U.S. Patent No. 3,615,972, Baker et al., U.S. Patent No. 4,549,892, Sands et al., U.S. Patent No. 4,540,629, Sands et al., U.S. Patent No. 4,421,562, Sands, U.S. Patent No. 4,420,442, Mathiowitz et al., U.S. Patent No. 4,898,734, Lencki et al., U.S. Patent No. 4,822,534, Herbig et al., U.S. Patent No. 3,732,172, Himmel et al., U.S. Patent No. 3,594,326, Sommerville et al., U.S. Patent No. 3,015,128, Deasy, *Microencapsulation and Related Drug Processes*, Vol. 20, Chs. 9 and 10, pp. 195-240 (Marcel Dekker, Inc., N.Y., 1984), Chang et al., *Canadian J. of Physiology and Pharmacology*, Vol 44, pp. 115-129 (1966), and Chang, *Science*, Vol. 146, pp. 524-525 (1964).

[0016] In accordance with the preferable synthesis protocol, the microspheres are prepared using a heat expansion process such as is described in Garner et al., U.S. Patent No. 4,179,546, Garner, U.S. Patent No. 3,945,956, Cohrs et al., U.S. Patent No. 4,108,806, British Patent No. 1,044,680, and Japan Kokai Tokkyo Koho 62 286534. In general terms, the heat expansion process is carried out by preparing microspheres of an expandable polymer or copolymer which contain in their void (cavity) a volatile liquid. The microsphere is then heated, plasticising the microsphere and volatilizing the gas, causing the microsphere to expand to up to about several times its original'size. When the heat is removed, the thermoplastic polymer retains at least some of its expanded shape. Microspheres produced by this process tend to be of particularly low density, and are thus preferred. The foregoing described process is well known in the art, and is referred to herein as the heat expansion process for preparing low density microspheres.

[0017] Polymers useful in the heat expansion process will be readily apparent to those skilled in the art and include thermoplastic polymers or copolymers or copolymers or copolymers of many of the monomers described above. Preferable of the polymers and copolymers described above include the following copolymers: polyvinylidene-polyacrylonitrile, polyvinylidene-polyacrylonitrile, and polystyrene-polyacrylonitrile. A most preferred copolymer is polyvinylidene-polyacrylonitrile.

[0018] Volatile liquids useful in the heat expansion process will also be well known to those skilled in the art and include: aliphatic hydrocarbons such as ethane, ethylene, propane, propene, butane, isobutane, neopentane, acetylene, hexane, heptane; chlorofluorocarbons such as CCl₃F, CCl₂F₃, CClF₃, CClF₂-CCl₂F₂,

tetraalkyl silanes such as tetramethyl silane, trimethylethyl silane, trimethylisopropyl silane, and trimethyl n-propyl silane; as well as perfluorocarbons such as those having between 1 and 9 carbon atoms and between 4 and 20 fluorine atoms, especially C_4F_{10} . In general, it is important that the volatile liquid not be a solvent for the microsphere polymer or copolymer. The volatile liquid should also have a boiling point that is below the softening point of the microsphere polymer or co-polymer. Boiling points of various volatile liquids and softening points of various polymers and copolymers will be readily ascertainable to one skilled in the art, and suitable combinations of polymers or copolymers and volatile liquids will be easily apparent to the skilled artisan. By way of guidance, and as one skilled in the art would recognize, generally as the length of the carbon chain of the volatile liquid increases, the boiling point of that liquid increases. Also, by mildly preheating the microspheres in water in the presence of hydrogen peroxide prior to definitive heating and expansion may pre-soften the microsphere to allow expansion to occur more readily.

[0019] For example, to produce microspheres of the present invention, vinylidene and acrylonitrile may be copolymerized in a medium of isobutane liquid using one or more of the foregoing modified or unmodified literature procedures, such that isobutane becomes entrapped within the microspheres. When such microspheres are then heated to between 80°C and 120°C, the isobutane gas expands, which in turn expands the microspheres. After heat is removed, the expanded polyvinylidene and acrylonitrile copolymer microspheres remain substantially fixed in their expanded position. The resulting low density microspheres are extremely stable both dry and suspended in an aqueous media. Isobutane is utilized merely as an illustrative liquid, with the understanding that other liquids which undergo liquid/gas transitions at temperatures useful for the synthesis of these microspheres and formation of the very low density microspheres upon heating can be substituted for isobutane. Similarly, monomers other than vinylidene and acrylonitrile may be employed in preparing the microsphere.

15

20

[0020] Comparative low density microspheres are commercially available from Expancel, Nobel Industries, Sundsvall, Sweden, such as the EXPANCEL 551 DE™ microspheres. The EXPANCEL 551 DE™ microspheres are composed of a copolymer of vinylidene and acrylonitrile which have encapsulated therein isobutane liquid. Such microspheres are sold as a dry composition and are approximately 50 microns in size. The EXPANCEL 551 DE™ microspheres have a specific gravity of only 0.02 to 0.05, which is between one-fiftieth and one-twentieth the density of water.

[0021] The microspheres of the present invention are gas-filled. By gas-filled, it is meant that at least part of the void volume inside the microspheres is occupied by the gas. Preferably, substantially all of the void volume inside the microspheres is occupied by the gas. The gas-filled low density microspheres may be synthesized under pressure such that gases are solubilized in the liquid employed in microsphere synthesis. When the pressure is removed the gas comes out of solution to fill the microsphere void. Such microspheres can further be subjected to a heat expansion process, as described above.

[0022] For example, to produce the gas-filled microspheres of the invention, one may copolymerize vinylidene and acrylonitrile using one or more of the foregoing procedures, such as phase separation/coacervation techniques in a pressurized and/or low temperature environment (e.g., at about 300 psi, and/or at about 0°C) with a high concentration of dissolved gas in solution, to form a large microsphere containing the dissolved gas. When the pressure is removed and/or the temperature raised, the gas bubbles come out of solution, forming gas filled microspheres. Such microspheres can further be subjected to a heat expansion process, as described above.

[0023] It is preferable that the microspheres be relatively stable in the gastrointestinal tract or other body cavities during the length of time necessary for completing an imaging examination. Low density microspheres prepared from the aforementioned monomer and polymer compositions will provide such stable microspheres.

[0024] In order for these microspheres to serve as effective CT contrast agents, it is necessary for the microspheres to be mixed in solution in a substantially homogeneous suspension. This can be accomplished by using thickening and suspending agents. A wide variety of thickening and suspending agents may be used to a prepare the substantially homogeneous suspensions of the microspheres. Suitable thickening and suspending agents, for example, include any and all biocompatible agents known in the art to act as thickening and suspending agents. Particularly useful are the natural thickening and suspending agents alginates, xanthan gum, guar, pectin, tragacanth, bassorin, karaya, gum arabic, casein, gelatin, cellulose, sodium carboxymethylcellulose, methylcellulose, methylhydroxycellulose, bentonite, colloidal silicic acid, and carrageenin, and the synthetic thickening and suspending agents polyethylene glycol, polypropylene glycol, and polyvinylpyrrolidone. As those skilled in the art would recognize, once armed with the present disclosure, the suspending agents may be formulated, if desired, to be either less dense than water or of neutral density, so as to not subtract from the density lowering capabilities of the microspheres. For example, a cellulose suspension may have a somewhat lower density than water, e.g., a 2 weight % cellulose solution with 0.25 weight % xanthan gum has a density of 0.95. The thickening and suspending agents may be employed in varying amounts, as those skilled in the art would recognize, but preferably are employed in amounts of 0.25 to 10 weight % preferably 0.5 to 5 weight % of the contrast medium.

[0025] The substantially homogeneous, aqueous suspension of tow density microspheres of the invention are useful as CT contrast agents. These agents are capable of producing negative contrast in the gastrointestinal tract or in other body cavities, providing effective contrast enhancement and improved visualization in these areas of the body. Spe-

cifically, the present invention is useful in a method of providing an image of or detecting diseased tissue in the gastrointestinal region and other body cavities of a patient, the method comprising administering to the patient a contrast medium comprising a substantially homogeneous aqueous solution of low density microspheres, and scanning the patient using computed tomography imaging to obtain visible images of the gastrointestinal region or other body cavities or of diseased tissue in these areas of the body. The phrase gastrointestinal region or gastrointestinal tract, as used herein, includes the region of a patient defined by the esophagus, stomach, small and large intestines, and rectum. The phrase other body cavities, as used herein, includes any region of the patient, other than the gastrointestinal region, having an open passage, either directly or indirectly, to the external environment, such regions including the sinus tracts, the fallopian tubes, the bladder, etc. The patient can be any type of mammal, but most preferably is a human. As one skilled in the art would recognize, administration of the contrast medium to the patient may be carried out in various fashions, such as orally, rectally, or by injection. When the region to be scanned is the gastrointestinal region, administration of the contrast medium of the invention is preferably carried out orally or rectally. When other body cavities such as the fallopian tubes or sinus tracts are to be scanned, administration is preferably by injection. As would also be recognized by one skilled in the art, wide variations in the amounts of the gas filled microspheres can be employed in the methods and kits of the invention, with the precise amounts varying depending upon such factors as the mode of administration (e.g., oral, rectal, by injection), and the specific body cavity and portion thereof for which an image is sought (e.g., the stomach of the gastrointestinal tract). Typically, dosage is initiated at lower levels and increased until the desired contrast enhancement is achieved.

10

20

[0026] For CT imaging, it is generally desirable to decrease the density of the lumen of the gastrointestinal tract or other body cavities to at least about -30 HU, the maximum decrease being limited by the practical amount of the microspheres which may be suspended in the aqueous media and ingested by the patient. In general, a decrease in HU to between -30 HU and -150 HU is sufficient to mark the inside of the bowel or other body cavity. By way of general guidance, and as a rough rule of thumb, to decrease the density of the microsphere aqueous suspension to about -150 HU, the microspheres must occupy about 15 % of the total volume of the aqueous suspension. To achieve a density of about -50 HU, the microspheres must occupy about 5 % of the total volume of the solution. The volume of contrast agent administered to the patient is typically between 50 to 1000 cc. Using the EXPANCEL 551 DE™ microspheres as a model, it has been found that about 0.6 grams of the dry 50 micron spheres in 100 cc of aqueous suspension is sufficient to decrease the density of the suspension to nearly -150 HU.

[0027] It should be noted that smaller microspheres are generally more stable in suspension, but usually have higher specific gravity than larger microspheres. Therefore, for CT, the size and particular microspheres, as well as the suspending media (thickening and suspending agents) should selected to minimize specific gravity, while maximizing the stability of the suspension.

[0028] The contrast medium of the present invention may also be employed with other conventional additives suitable for use in the applications contemplated for the subject invention.

[0029] Where gastrointestinal applications are concerned, such additives include conventional biocompatible antigas agents, osmolality raising agents, gastrointestinal transit agents (the later agents serving to decrease the gastrointestinal transit time and increase the rate of gastrointestinal emptying) and, in some instances, gas-forming agents.

[0030] As used herein the term anti-gas agent is a compound that serves to minimize or decrease gas formation, dispersion and/or adsorption. A number of such agents are available, including antacids, antiflatulents, antifoaming agents, and surfactants. Such antacids and antiflatulents include, for example, activated charcoal, aluminum carbonate, aluminum hydroxide, aluminum phosphate, calcium carbonate, dihydroxyaluminum sodium carbonate, magaldrate magnesium oxide, magnesium trisilicate, simethicone, sodium carbonate, loperamide hydrochloride, diphenoxylate, hydrochloride with atropine sulfate, Kaopectate™ (kaolin) and bismuth salts. Suitable antifoaming agents useful as anti-gas agents include simethicone, protected simethicone, siloxyalkylene polymers, siloxane glycol polymers, polyoxypropylene-polyoxyethylene copolymers, polyoxyalkylene amines and imines, branched polyamines, mixed oxyalkylated alcohols, finely divided silica either alone or mixed with dimethyl polysiloxane, sucroglycamides (celynols), polyoxylalkylated natural oils, halogenated silicon-containing cyclic acetals, lauryl sulfates, 2-lactylic acid esters of unicarboxylic acids, triglyceride oils. Particles of polyvinyl chloride or silica may also function as anti-foaming agents in the subject invention. Suitable surfactants include perfluorocarbon surfactants, such as, for example, DuPont Zonyl™ perfluoroalkyl surfactants known as Zonyl™ RP or Zonyl™ NF, available from DuPont, Chemicals and Pigments Division, Jackson Laboratory, Deepwater, NJ 08023. Of course, as those skilled in the art will recognize, any anti-gas agents employed must be suitable for use within the particular biological system of the patient in which it is to be used. The concentration of such anti-gas agents may vary widely, as desired, as will be readily apparent to those skilled in the art. Typically, however, such agents are employed in concentrations of between 20 and 2000 ppm, most preferably

[0031] Suitable osmolality raising agents include polyols and sugars, for example, mannitol, sorbitol, arabitol, xylitol, glucose, sucrose, fructose, dextrose, and saccharine, with mannitol and sorbitol being most preferred. The concentration of such osmolality raising agents may vary, as desired, however, generally a range of 5 to 70 g/l, preferably 30 to

in concentrations between 50 and 1000 ppm.

50 g/l of the contrast medium. Such compounds may also serve as sweeteners for the ultimate formulation, if desired. [0032] Gastrointestinal transit agents include algin, as well as many of the compounds listed above as thickening and suspending agents, with algin being most preferred. The amount of such agents will, of course, vary as those skilled in the art will recognize, but generally will be employed in an amount of between 5 and 40 mmol/l.

[0033] In some applications, it may be helpful to incorporate gas-forming agents into the contrast medium. Gas-forming agents include sodium bicarbonate, calcium carbonate, aminomalonate, and the like, which will form gas, for example, upon introduction into the gastrointestinal tract. Such gas-forming agents will serve to distend the gastrointestinal tract and create a form of "double contrast" between the gas and the low density microspheres.

[0034] Kits useful for computed tomography imaging of the gastrointestinal region or other body cavities in accordance with the present invention comprise low density microspheres, and a thickening or suspending agent, in addition to conventional computed tomography imaging kit components. Such conventional computed tomography kit components will be readily apparent to those skilled in the art, once armed with the present disclosure.

[0035] Where imaging of the gastrointestinal region is contemplated, such computed tomography kit components may include, for example, anti-gas agents, osmolality raising agents, gastrointestinal transit agents and, in some instances, gas-forming agents.

[0036] The computed tomography imaging principles and techniques which are employed are conventional and are described, for example, in *Computed Body Tomography*, Lee, J.K.T., Sagel, S.S., and Stanley, R.J., eds., Ch. 1, pp. 1-7 (Raven Press, NY_1933). Any of the various types of computed tomography imaging devices can be used in the practice of the invention, the particular type or model of the device not being critical to the method of the invention.

[0037] The present invention is further described in the following Examples. Examples 1-7 are prophetic examples based at least in part on the teachings of Garner, U.S. Patent No. 3,945,956, and describe the preparation of microspheres by a heat expansion process. Examples 8-9 are actual examples that describe the preparation of contrast media. The following Examples are not to be construed as limiting the scope of the appended Claims.

25 Examples

15

20

35

45

55

Example 1 (Comparative)

[0038] A vessel is filled with 50 parts by weight of deionized water and 6 parts by weight of a 25 percent by weight aqueous colloidal silica dispersion. A mixture of 0.3 parts by weight of a 10 weight percent solution of diethylamineadipic acid copolymer is added to the above. A condensation reaction occurs creating a mixture having a viscosity of about 95 centipoise at a temperature of about 27° C. Potassium dichromate (0.05 parts by weight) is added to the aqueous phase as a water phase polymerization inhibitor. Sodium chloride (1 part by weight) is also present in the water phase; hydrochloric acid is used to adjust the pH of the aqueous phase to 4.0. Styrene (15 parts by weight), acrylonitrile (10 parts by weight), a mixture of diethylbenzene and divinylbenzene (0.21 parts by weight comprising a 55:45 percent mixture of each respectively), 6.25 parts by weight of isobutane and 0.07 parts by weight of secondary butyl peroxydicarbonate. The oil phase is added to the water phase with violent agitation created by a shearing blade rotating at 10,000 RPM employing a mixing blender. After the material has reacted for about 30 minutes, the mixture is poured into a citrate bottle and capped. The material is maintained at about 50°C in the citrate bath for about 24 hours and agitated throughout this time. At the end of 24 hours, the reaction bottle is cooled and the material is removed, washed and dried. A portion of the microspheres are set aside and the remainder are heated in an air oven for a period of about 30 minutes at about 150°C. A sample of the dry unexpanded and dry expanded microspheres are then studied by a Coulter Counter. The dry unexpanded microspheres have a size of about 2 to 12 microns. About half of the microspheres exposed to the heating process show expansion.

Example 2 (comparative)

[0039] The procedures of Example 1 are substantially repeated with the exception that 1 part by weight of methanol is added to the reaction mixture. The dry unexpanded and dry heat expanded microspheres are then studied by Coulter Counter. The dry unexpanded microspheres measure about 8 to 10 microns in size. Essentially all the microspheres exposed to heat expand.

Example 3 (comparative)

[0040] The procedures of Example 2 are substantially repeated except that after synthesis of the microspheres, a slurry of the microspheres is added to an aqueous solution containing 35 weight percent hydrogen peroxide. This slurry is heated to a temperature of about 50°C for about 3.5 hours and subsequently cooled and air-dried. A portion of the microspheres is then added to water and heated to a temperature of about 75°C with vigorous stirring for about 30

seconds. Study with Coulter Counter shows that pretreatment with hydrogen peroxide enables a lower temperature and briefer period of heating to be used for definitive heating and expansion.

Example 4 (comparative)

[0041] The procedures of Example 1 are substantially repeated with the exception that 5 parts by weight of ethanol are included in the reaction mixture forming the microspheres. Coulter Counter shows that the dry unexpanded particles have diameters of about 24 to 28 microns. When heated, essentially all of the microspheres expand.

10 Example 5 (comparative)

[0042] The procedures of Example 1 are substantially repeated with the exception that in place of methanol, 1 part. by weight of normal butanol is used. The diameter of the dry unexpanded microspheres is about 10 to 12 microns and on heating, essentially all of the microspheres expand.

Example 6

15

20

[$\underline{0043}$] _The procedures of Example 1-are substantially-repeated with the exception that the volatile liquid isobutane is replaced with perfluorocarbon liquid (C_4F_{10}). The remainder of the process is similar. The resulting microspheres are filled with perfluorocarbon liquid rather than isobutane.

Example 7 (comparative)

[0044] The procedures of Example 1 are substantially repeated with the exception that the reaction is conducted in a pressurized vessel enabling pressurization with gas and simultaneous agitation (agitation accomplished with either sonication or shearing blades within the device). As the microspheres are formed within the device, the vessel is pressurized to about 2.1 MPa (300 psi) with nitrogen gas. The vessel is then depressurized, allowing the gas to come out of solution. The microspheres are then subjected to heat as substantially described in Example 1.

30 Example 8 (comparative)

[0045] A suspension of 2 % of 22 micron fiber length cellulose in 0.25 % xanthan gum in water was prepared. Scans by CT showed a CT density of about -45 HU for the cellulose suspension. EXPANCEL 551 DE™ polyvinylidene-polyacrylonitrile microspheres, 50 microns in size, were then suspended in the aqueous cellulose suspension at a concentration of 0.4 grams of microspheres per 100 ml of cellulose suspension using vigorous shaking. The resulting suspension remained substantially homogeneous for about 10 minutes. The suspension was again shaken vigorously to render it substantially homogeneous and scanned immediately by CT. The resulting CT density as measured by the scanner was about -96 HU.

40 Example 9 (comparative)

[0046] A suspension of 1 % algin was prepared. EXPANCEL 551 DE™ microspheres were added to the algin suspension in an amount of about 0.2 grams of microspheres per deciliter of algin suspension, using vigorous shaking, to form a substantially homogeneous suspension. The resulting suspension was found to have much greater stability than the cellulose/microsphere suspension of Example 1. The algin/microsphere suspension was then scanned by CT, with the density as measured by the scanner being about - 40 HU.

[0047] Various modifications of the invention within the scope of the appended Claims, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description.

Claims

50

 A low density gas-filled microsphere having an internal void volume of at least 75% of the total volume of the microsphere, wherein said gas comprises a perfluorocarbon.

An aqueous suspension comprising a biocompatible polymer, a perfluorocarbon gas, and a thickening or suspending agent, wherein in said suspension said biocompatible polymer associates with said perfluorocarbon gas to form one or more gas-filled microspheres.

- A substantially homogenous aqueous suspension of low density gas-filled microspheres according to claim 1.
- A substantially homogenous aqueous suspension according to claim 3 for use as a contrast medium for diagnostic imaging.
- 5. A substantially homogeneous aqueous suspension according to claim 4 for use as a contrast medium for computed tomography imaging.
- An aqueous suspension according to claim 2 for use as a contrast medium for diagnostic imaging.

10

15

20

- 7. An aqueous suspension according to claim 2 for use as a contrast medium for computed tomography imaging of the gastrointestinal region or other body cavities.
- 8. A kit for the preparation of an aqueous suspension according to claim 3 or 4, said kit comprising low density gasfilled microspheres having an internal void volume of at least 75% of the total volume of the microsphere, wherein said gas comprises a perfluorocarbon, and a thickening or suspending agent.
- 9. An aqueous suspension, microsphere or kit according to any preceding claim, wherein said microspheres comprisesynthetic polymers or copolymers prepared from the group of monomers consisting of acrylic acid, methacrylic acid, ethyleneimine, crotonic acid, acrylamide, ethyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, lactic acid, glycolic acid, e-caprolactone, acrolein, cyanoacrylate, bisphenol A, epichlorhydrin, hydroxyalkylacrylates, siloxane, dimethylsiloxane, ethylene oxide, ethylene glycol, hydroxyalkyl-methacrylates, N-substituted acrylamides, N-substituted methacrylamides, N-vinyl-2-pyrrolidone, 2,4-pentadiene-1-ol, vinyl acetate, acrylonitrile, styrene, p-amino-styrene, p-amino-benzyl-styrene, sodium styrene sulfonate, sodium 2-sulfoxyethyl methacrylate, 25 vinyl pyridine, aminoethyl methacrylates, 2-methacryloyloxytrimethylammonium chloride, N,N'-methylenebisacrylamide, ethylene glycol dimethacrylates, 2,2'-(p-phenylenedioxy)-diethyl dimethacrylate, divinylbenzene, triallylamine, and methylenebis- (4-phenyl-isocyanate).
- 10. An aqueous suspension, microsphere or kit according to claim 9 wherein said microspheres comprise synthetic 30 polymers or copolymers prepared from the group of monomers consisting of acrylic acid, methacrylic acid, ethyleneimine, crotonic acid, acrylamide, ethyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, lactic acid, glycolic acid, e-caprolactone, acrolein, cyanoacrylate, bisphenol A, epichlorhydrin, hydroxyalkylacrylates, siloxane, dimethylsiloxane, ethylene oxide, ethylene glycol, hydroxyalkyl-methacrylates, N-substituted acrylamides, N-substituted methacrylamides, N-vinyl-2-pyrrolidone, 2, 4-pentadiene-1-ol, vinyl acetate, acrylonitrile, styrene, p-amino-35 styrene, p-amino-benzyl-styrene, sodium styrene sulfonate, sodium 2-sulfoxyethylmethacrylate, vinyl pyridine, aminoethyl methacrylates, and 2-methylacryloyloxy-trimethylammonium chloride.
 - 11. An aqueous suspension, microsphere or kit according to any of claims 1 to 10 wherein said microspheres comprise synthetic polymers or copolymers selected from the group consisting of polyacrylic acid, polyethyleneimine, polymethacrylic acid, polymethylmethacrylate, polysiloxane, polydimethylsiloxane, polylactic acid, poly (ε-caprolactone), epoxy resin, poly(ethylene oxide), poly(ethylene glycol), polyamide, polyvinylidene-polyacrylonitrile, polyvinylidenepolyacrylonitrile-polymethylmethacrylate, and polystyrenepolyacrylonitrile.
 - 12. An aqueous suspension, microsphere or kit, according to claim 11 wherein said microspheres comprise polyvinylidene-polyacrylonitrile copolymer.
 - 13. An aqueous suspension, microsphere or kit according to any of claims 1 to 8 wherein said microspheres comprise a polyoxypropylene-polyoxyethylene copolymer.
- 14. An aqueous suspension, microsphere or kit according to any preceding claim wherein said microspheres are gasfilled microspheres, and said gas comprises a perfluorocarbon selected from the group consisting of perfluorocarbons having between 1 and 9 carbon atoms and between 4 and 20 fluorine atoms.
- 15. An aqueous suspension, microsphere or kit according to claim 14 wherein said perfluorocarbon gas is selected 55 from the group consisting of perfluorocarbons having 1 to 4 carbon atoms and 4 to 10 fluorine atoms.
 - 16. An aqueous suspension, microsphere or kit according to claim 15 wherein said perfluorocarbon gas is C_4F_{10} .

- 17. An aqueous suspension or kit according to any preceding claim wherein said microspheres are prepared by a heat expansion process.
- 18. An aqueous suspension or kit, according to any preceding claim further comprising a thickening or suspending agent.
 - 19. An aqueous suspension or kit according to claim 18 wherein said thickening and suspending agent is selected from the group consisting of alginates, xanthan gum, guar, i pectin, tragacanth, bassorin, karaya, gum arabic, casein, gelatin, cellulose, sodium carboxymethylcellulose, methylcellulose, methylhydroxycellulose, bentonite, colloidal silicic acid, carrageenin, polyethylene glycol, polypropylene glycol, and polyvinylpyrrolidone.
 - 20. An aqueous suspension or kit according to claim 19 wherein said thickening or suspending agent is selected from the group consisting of cellulose, carboxymethylcellulose, methylcellulose, and methylhydroxycellulose.
- 15 21. An aqueous suspension or kit according to claim 20 wherein said thickening or suspending agent is methylcellulose.
- 20 23. An aqueous suspension or kit according to claim 22 wherein said compound is dimethylpolysiloxane.
 - 24. An aqueous suspension or kit according to claim 23 wherein said dimethylpolysiloxane is simethicone.
 - 25. A kit according to any of claims 8-24 further comprising conventional diagnostic imaging kit components.
 - **26.** A kit according to claim 25 wherein said conventional diagnostic imaging kit components are conventional computed tomography imaging kit components.
 - 27. A kit according to claim 26 wherein said kit is for imaging the gastrointestinal region, and wherein said conventional computed tomography imaging kit components are selected from the group consisting of anti-gas agents, osmolality raising agents, gastrointestinal transit agents, and gas-forming agents.

Patentansprüche

5

10

25

30

35

- 1. Gasgefüllte Mikrokügelchen mit geringer Dichte, welche ein Innenhohlraumvolumen von mindestens 75% des Gesamtvolumens der Mikrokügelchen aufweisen, wobei dieses Gas einen Perfluorkohlenwasserstoff umfaßt.
- 2: Wäßrige Suspension, umfassend ein biokompatibles Polymer, ein Perfluorkohlenwasserstoffgas und ein Verdikkungsmittel oder Suspensionsmittel, wobei sich das biokompatible Polymer in dieser Suspension mit dem Perfluorkohlenwasserstoffgas vereinigt, um ein oder mehrere gasgefüllte Mikrokügelchen zu bilden.
 - Im wesentlichen homogene, wäßrige Suspension von gasgefüllten Mikrokügelchen mit geringer Dichte nach Anspruch 1.
 - 4. Im wesentlichen homogene, wäßrige Suspension nach Anspruch 3 zur Verwendung als Kontrastmedium für eine diagnostische Abbildung.
- Im wesentlichen homogene, wäßrige Suspension nach Anspruch 4 zur Verwendung als Kontrastmedium für eine
 Computertomographieabbildung.
 - 6. Wäßrige Suspension nach Anspruch 2 zur Verwendung als Kontrastmedium für eine diagnostische Abbildung.
- 7. Wäßrige Suspension nach Anspruch 2 zur Verwendung als Kontrastmedium für eine Computertomographieabbil-55 dung des Magen-Darm-Bereichs oder anderer Körperhohlräume.
 - 8. Kit zur Herstellung einer wäßrigen Suspension nach Anspruch 3 oder 4, wobei dieser Kit gasgefüllten Mikrokügelchen mit geringer Dichte umfaßt, die ein Innenhohlraumvolumen von mindestens 75% des Gesamtvolumens der

Mikrokügelchen aufweisen, wobei dieses Gas einen Perfluorkohlenwasserstoff und ein Verdickungsmittel oder Suspensionsmittel umfaßt.

9. Wäßrige Suspension, Mikrokügelchen oder Kit nach einem der vorherigen Ansprüche, wobei die Mikrokügelchen synthetische Polymere oder Copolymere umfassen, die aus der Gruppe von Monomeren hergestellt sind, die aus Acrylsäure, Methacrylsäure, Ethylenimin, Crotonsäure, Acrylamid, Ethylacrylat, Methylmethacrylat, 2-Hydroxyethylmethacrylat, Milchsäure, Glycolsäure, ε-Caprolacton, Acrolein, Cyanoacrylat, Bisphenol A, Epichlorhydrin, Hydroxyalkylacrylaten, Siloxan, Dimethylsiloxan, Ethylenoxid, Ethylenglycol, Hydroxyalkyl-Methacrylaten, N-substituierten Acrylamiden, N-substituierten Methacrylamiden, N-Vinyl-2-pyrrolidon, 2,4-Pentadien-1-ol, Vinylacetat, Acrylnitril, Styrol, p-Aminostyrol, p-Aminobenzylstyrol, Natriumstyrolsulfonat, Natrium-2-Sulfoxyethylmethacrylat, Vinylpyridin, Aminoethylmethacrylaten, 2-Methacryloyloxytrimethylammoniumchlorid, N,N'-Methylenbisacrylamid, Ethylenglycoldimethacrylaten, 2,2'-(p-Phenylendioxy)-diethyldimethacrylat, Divinylbenzol, Triallylamin und Methylen-bis-(4-phenylisocyanat) besteht.

10

35

40

- 10. Wäßrige Suspension, Mikrokügelchen oder Kit nach Anspruch 9, wobei die Mikrokügelchen synthetische Polymere oder Copolymere umfassen, die aus der Gruppe von Monomeren hergestellt sind, die aus Acrylsäure, Methacrylsäure, Ethylenimin, Crotonsäure, Acrylamid, Ethylacrylat, Methylmethacrylat, 2-Hydroxyethylmethacrylat, Milchsäure, Glycolsäure, ε-Caprolacton,-Acrolein,-Cyanoacrylat,-Bisphenol-A,-Epichlorhydrin, Hydroxyalkylacrylaten, Siloxan, Dimethylsiloxan, Ethylenoxid, Ethylenglycol, Hydroxyalkylmethacrylaten, N-substituierten Acrylamiden, N-substituierten Methacrylamiden, N-Vinyl-2-pyrrolidon, 2,4-Pentadien-1-ol, Vinylacetat, Acrylnitril, Styrol, p-Aminostyrol, p-Aminobenzylstyrol, Natriumstyrolsulfonat, Natrium-2-Sulfoxyethylmethacrylat, Vinylpyridin, Aminoethylmethacrylaten und 2-Methylacryloyloxytrimethylammoniumchlorid besteht.
- 11. Wäßrige Suspension, Mikrokügelchen oder Kit nach einem der Ansprüche 1 bis 10, wobei die Mikrokügelchen synthetische Polymere oder Copolymere umfassen, die aus der Gruppe, bestehend aus Polyacrylsäure, Polyethylenimin, Polymethacrylsäure, Polymethylmethacrylat, Polysiloxan, Polydimethylsiloxan, Polymilchsäure, Poly (ε-Caprolacton), Epoxyharz, Poly(Ethylenoxid), Poly(Ethylenglycol), Polyamid, Polyvinyliden-Polyacrylnitril, Polyvinylidenpolyacrylnitril-Polymethylmethacrylat und Polystyrolpolyacrylnitril, ausgewählt sind.
- 30 12. Wäßrige Suspension, Mikrokügelchen oder Kit nach Anspruch 11, wobei die Mikrokügelchen ein Polyvinyliden-Polyacrylnitril-Copolymer umfassen.
 - 13. Wäßrige Suspension, Mikrokügelchen oder Kit nach einem der Ansprüche 1 bis 8, wobei die Mikrokügelchen ein Polyoxypropylen-Polyoxyethylen-Copolymer umfassen.
 - 14. Wäßrige Suspension, Mikrokügelchen oder Kit nach einem der vorherigen Ansprüche, wobei die Mikrokügelchen gasgefüllte Mikrokügelchen sind und das Gas einen Perfluorkohlenwasserstoff umfaßt, der aus der Gruppe, bestehend aus Perfluorkohlenwasserstoffen mit zwischen 1 und 9 Kohlenstoffatomen und mit zwischen 4 und 20 Fluoratomen, ausgewählt ist.
 - 15. Wäßrige Suspension, Mikrokügelchen oder Kit nach Anspruch 14, wobei das Perfluorkohlenwasserstoffgas aus der Gruppe, bestehend aus Perfluorkohlenwasserstoffen mit 1 bis 4 Kohlenstoffatomen und 4 bis 10 Fluoratomen, ausgewählt ist.
- 45 16. Wäßrige Suspension, Mikrokügelchen oder Kit nach Anspruch 15, wobei das Perfluorkohlenwasserstoffgas C₄F₁₀ ist.
 - 17. Wäßrige Suspension oder Kit nach einem der vorherigen Ansprüche, wobei die Mikrokügelchen durch ein Wärmeexpansionsverfahren hergestellt sind.
 - 18. Wäßrige Suspension oder Kit nach einem der vorherigen Ansprüche, welche(r) weiter ein Verdickungsmittel oder Suspensionsmittel umfaßt.
- 19. Wäßrige Suspension oder Kit nach Anspruch 18, wobei das Verdickungsmittel und das Suspensionsmittel aus der Gruppe, bestehend aus Alginaten, Xanthan Gum, Guar, Pectin, Tragant, Bassorin, Karaya, Gummiarabicum, Casein, Gelatine, Cellulose, Natrium-Carboxymethylcellulose, Methylcellulose, Methylhydroxycellulose, Bentonit, kolloidaler Kieselsäure, Carrageen, Polyethylenglycol, Polypropylenglycol und Polyvinylpyrrolidon, ausgewählt sind.

- 20. Wäßrige Suspension oder Kit nach Anspruch 19, wobei das Verdickungsmittel oder das Suspensionsmittel aus der Gruppe, bestehend aus Cellulose, Carboxymethylcellulose, Methylcellulose und Methylhydroxycellulose, ausgewählt ist.
- Wäßrige Suspension oder Kit nach Anspruch 20, wobei das Verdickungsmittel oder das Suspensionsmittel Methylcellulose ist.
 - 22. Wäßrige Suspension oder Kit nach einem der vorherigen Ansprüche, welche(r) eine Verbindung, die aus der Gruppe, bestehend aus Antacidum, Antiblähmittel, Antischaummitteln und grenzflächenaktiven Mitteln, ausgewählt ist, umfaßt.
 - 23. Wäßrige Suspension oder Kit nach Anspruch 22, wobei die Verbindung Dimethylpolysiloxan ist.
 - 24. Wäßrige Suspension oder Kit nach Anspruch 23, wobei das Dimethylpolysiloxan Simethicon ist.
 - 25. Kit nach einem der Ansprüche 8 bis 24, welcher weiter herkömmliche Komponenten für einen Kit für diagnostische Abbildungen umfaßt.
- **26.** Kit nach Anspruch 25, wobei die herkömmlichen Komponenten für einen Kit für diagnostische Abbildungen herkömmliche Komponenten für einen Kit für eine Computertomographieabbildung sind.
 - 27. Kit nach Anspruch 26, wobei der Kit zur Abbildung des Magen-Darm-Bereichs verwendet wird, und wobei die herkömmlichen Komponenten für einen Kit für eine Computertomographieabbildung aus der Gruppe, bestehend aus Antigasmitteln, osmolalitätssteigernden Mitteln, Magen-Darm-Durchgangsmitteln und gasbildenden Mitteln, ausgewählt sind.

Revendications

10

15

25

45

- Microsphère remplie de gaz basse densité ayant un volume vide interne égal à au moins 75 % du volume total de la microsphère, dans laquelle ledit gaz comprend un perfluorocarbone.
- 2. Suspension aqueuse comprenant un polymère biocompatible, un gaz perfluorocarboné, et un agent d'épaississement ou de mise en suspension, dans laquelle dans ladite suspension, ledit polymère biocompatible s'associe avec ledit gaz perfluorocarboné pour former une ou plusieurs microsphères remplies de gaz.
 - Suspension aqueuse sensiblement homogène de microsphères remplies de gaz basse densité selon la revendication 1.
- 40 4. Suspension aqueuse sensiblement homogène selon la revendication 3 destinée à être utilisée comme produit de contraste pour l'imagerie diagnostique.
 - Suspension aqueuse sensiblement homogène selon la revendication 4 destinée à être utilisée comme produit de contraste pour l'imagerie par tomodensitométrie.
 - Suspension aqueuse selon la revendication 2 destinée à être utilisée comme produit de contraste pour l'imagerie diagnostique.
- Suspension aqueuse selon la revendication 2 destinée à être utilisée comme produit de contraste pour l'imagerie
 par tomodensitométrie de la région gastro-intestinale ou d'autres cavités corporelles.
 - 8. Trousse pour la préparation d'une suspension aqueuse selon la revendication 3 ou 4, ladite trousse comprenant des microsphères remplies de gaz basse densité ayant un volume vide interne égal à au moins 75 % du volume total de la microsphère, ledit gaz comprenant un perfluorocarbone, et un agent de mise en suspension ou d'épaississement.
 - Suspension aqueuse, microsphère ou trousse selon l'une quelconque des revendications précédentes, dans laquelle lesdites microsphères comprennent des polymères ou copolymères synthétiques préparés à partir du grou-

pe de monomères constitué de l'acide acrylique, l'acide méthacrylique, l'éthylèneimine, l'acide crotonique, l'acrylamide, l'acrylate d'éthyle, le méthacrylate de méthyle, le méthacrylate de 2-hydroxyéthyle, l'acide lactique, l'acide glycolique, l'e-caprolactone, l'acroléine, le cyanoacrylate, le bisphénol A, l'épichlorhydrine, les acrylates d'hydroxyalkyle, le siloxane, le diméthylsiloxane, l'oxyde d'éthylène, l'éthylèneglycol, les méthacrylates d'hydroxyalkyle, les acrylamides N-substitués, les méthacrylamides N-substitués, la N-vinyl-2-pyrrolidone, le 2,4-pentadiène-1-ol, l'acétate de vinyle, l'acrylonitrile, le styrène, le p-amino-styrène, le p-amino-benzyl-styrène, le styrènesulfonate de sodium, le 2-sulfoxyéthylméthacrylate de sodium, la vinylpyridine, les méthacrylates d'aminoéthyle, le chlorure de 2-méthacryloyloxy-triméthylammonium, le N,N'-méthylènebisacrylamide, les diméthacrylates d'éthylèneglycol, le diméthacrylate de 2,2'-(p-phénylènedioxy)diéthyle, le divinylbenzène, la triallylamine, et le méthylènebis-(4-phénylisocyanate).

5

10

15

20

25

35

40

45

- 10. Suspension aqueuse, microsphère ou trousse selon la revendication 9, dans laquelle lesdites microsphères comprennent des polymères ou copolymères synthétiques préparés à partir du groupe de monomères constitué de l'acide acrylique, l'acide méthacrylique, l'éthylèneimine, l'acide crotonique, l'acrylamide, l'acrylate d'éthyle, le méthacrylate de méthyle, le méthacrylate de 2-hydroxyéthyle, l'acide lactique, l'acide glycolique, l'e-caprolactone, l'acroléine, le cyanoacrylate, le bisphénol A, l'épichlorhydrine, les acrylates d'hydroxyalkyle, le siloxane, le diméthylsiloxane, l'oxyde d'éthylène, l'éthylèneglycol, les méthacrylates d'hydroxyalkyle, les acrylamides N-substitués, les méthacrylamides N-substitués, la N-vinyl-2-pyrrolidone, le 2,4-pentadiène_1-ol, l'acétate_de_vinyle,_l'acrylonitrile, le styrène, le p-amino-styrène, le p-amino-benzyl-styrène, le styrènesulfonate de sodium, le 2-sulfoxyéthyl-méthacrylate de sodium, la vinylpyridine, les méthacrylates d'aminoéthyle, et le chlorure de 2-méthacryloyloxy-triméthylammonium.
- 11. Suspension aqueuse, microsphère ou trousse selon l'une quelconque des revendications 1 à 10, dans laquelle lesdites microsphères comprennent des polymères ou copolymères synthétiques choisis dans le groupe constitué du poly(acide acrylique), de la polyéthylèneimine, du poly(acide méthacrylique), du poly(méthacrylate de méthyle), du polysiloxane, du polydiméthylsiloxane, du poly(acide lactique), de la poly(ε-caprolactone), de la résine époxyde, du poly(oxyde d'éthylène), du poly(éthylèneglycol), du polyamide, du polyvinylidène-polyacrylonitrile, du polyvinylidène-polyacrylonitrile-poly(méthacrylate de méthyle), et du polystyrène-polyacrylonitrile.
- 30 12. Suspension aqueuse, microsphère ou trousse selon la revendication 11, dans laquelle lesdites microsphères comprennent le copolymère de polyvinylidène-polyacrylonitrile.
 - 13. Suspension aqueuse, microsphère ou trousse selon l'une quelconque des revendications 1 à 8, dans laquelle lesdites microsphères comprennent un copolymère de polyoxypropylène-polyoxyéthylène.
 - 14. Suspension aqueuse, microsphère ou trousse selon l'une quelconque des revendications précédentes, dans laquelle lesdites microsphères sont des microsphères remplies de gaz, et ledit gaz comprend un perfluorocarbone choisi dans le groupe constitué des perfluorocarbones ayant entre 1 et 9 atomes de carbone et entre 4 et 20 atomes de fluor.
 - 15. Suspension aqueuse, microsphère ou trousse selon la revendication 14, dans laquelle ledit gaz perfluorocarboné est choisi dans le groupe constitué des perfluorocarbones ayant 1 à 4 atomes de carbone et 4 à 10 atomes de fluor.
 - 16. Suspension aqueuse, microsphère ou trousse selon la revendication 15, dans laquelle ledit gaz perfluorocarboné est C₄F₁₀.
 - 17. Suspension aqueuse ou trousse selon l'une quelconque des revendications précédentes, dans laquelle lesdites microsphères sont préparées par un procédé d'expansion à chaud.
- 18. Suspension aqueuse ou trousse selon l'une quelconque des revendications précédentes, comprenant, en outre, un agent d'épaississement ou de mise en suspension.
 - 19. Suspension aqueuse ou trousse selon la revendication 18, dans laquelle ledit agent d'épaississement et de mise en suspension est choisi dans le groupe comprenant les alginates, la gomme de xanthane, la gomme de guar, la pectine, la gomme adragante, la bassorine, la gomme karaya, la gomme arabique, la caséine, la gélatine, la cellulose, la carboxyméthylcellulose sodique, la méthylcellulose, la méthylhydroxycellulose, la bentonite, l'acide silicique colloïdal, le carragheen, le polyéthylèneglycol, le polypropylèneglycol, et la polyvinylpyrrolidone.

- 20. Suspension aqueuse ou trousse selon la revendication 19, dans laquelle ledit agent d'épaississement ou de mise en suspension est choisi dans le groupe comprenant la cellulose, la carboxyméthylcellulose, la méthylcellulose, et la méthylhydroxycellulose.
- 5 21. Suspension aqueuse ou trousse selon la revendication 20, dans laquelle ledit agent d'épaississement ou de mise en suspension est la méthylcellulose.
 - 22. Suspension aqueuse ou trousse selon l'une quelconque des revendications précédentes comprenant, en outre, un composé choisi dans le groupe constitué des antiacides, des antiflatulents, des agents antimousse et des tensioactifs.

10

20

30

35

40

45

50

- 23. Suspension aqueuse ou trousse selon la revendication 22, dans laquelle ledit composé est un diméthylpolysiloxane
- 24. Suspension aqueuse ou trousse selon la revendication 23, dans laquelle ledit diméthylpolysiloxane est la siméthicone.
 - 25. Trousse selon l'une quelconque des revendications 8 à 24 comprenant, en outre, des composants classiques de trousse d'imagerie diagnostique.
 - 26. Trousse selon la revendication 25, dans laquelle lesdits composants classiques de trousse d'imagerie diagnostique sont des composants classiques de trousse d'imagerie par tomodensitométrie.
- 27. Trousse selon la revendication 26, dans laquelle ladite trousse est destinée à la formation d'images de la région gastro-intestinale, et dans laquelle lesdits composants classiques de trousse d'imagerie par tomodensitométrie sont choisis dans le groupe constitué des agents anti-gaz, des agents augmentant l'osmolalité, des agents de transit gastro-intestinal, et des agents formateurs de gaz.