STEVE SCHERRER

DEMYSTIFYING ANOVA

Linear Regression Review

$$y = mx + B$$

Multivariate Regression

Gradient Descent....

...Step-by-Step!!!

У	х
0.5	0.1
0.9	0.4
1.0	0.2
1.1	0.7
1.1	0.5
1.2	0.3
1.5	0.7
1.6	0.7
1.7	0.5
1.8	0.8

у	X
0.5	0.1
0.9	0.4
1.0	0.2
1.1	0.7
1.1	0.5
1.2	0.3
1.5	0.7
1.6	0.7
1.7	0.5
1.8	0.8

Assumptions of Linear Regression

- 1. Observations are independent
- 2. Residuals are normally distributed and centered around zero
 - Shapiro-Wilk's test
- 3. Residuals are homoskedastic (no underlying pattern)
 - Breusch- Pagan test
- 4. If using multiple features (multivariate regression), features are not correlated

Multivariate Regression

$$f(x) = \beta_1 X_1 + \beta_2 X_2 + \beta_0 + \varepsilon$$

Multivariate Regression

ANOVA is a Special Case of Multivariate Regression

у	x		у	Xa	X_b
0.5	Α		0.5	1	0
0.9	Α		0.9	1	0
1.0	Α		1.0	1	0
1.1	В		1.1	0	1
1.1	Α	One Hot Encoded	1.1	1	0
1.2	В		1.2	0	1
1.5	Α		1.5	1	0
1.6	В		1.6	0	1
1.7	В		1.7	0	1
1.8	В		1.8	0	1

У	X _a	X _b
0.5	1	0
0.9	1	0
1.0	1	0
1.1	0	1
1.1	1	0
1.2	0	1
1.5	1	0
1.6	0	1
1.7	0	1
1.8	0	1

$Y = -0.5 X_a + 1.48$

у	X _a	f(x)	3
0.5	1	0.98	-0.48
0.9	1	1.1	-0.2
1.0	1	0.98	0.02
1.1	0	1.48	-0.38
1.1	1	0.98	0.12
1.2	0	1.48	-0.28
1.5	1	0.97	0.53
1.6	0	1.48	0.12
1.7	0	1.48	0.22
1.8	0	1.48	0.32

Assumptions of Linear Regression

- 1. Observations are independent and normally distributed
- 2. Residuals are normally distributed and centered around zero
 - Shapiro-Wilk's test
- 3. Residuals are homoskedastic (no underlying pattern)
 - Breusch- Pagan test
- 4. If using multiple features (multivariate regression), features are not correlated

Assumptions of ANOVA

- 1. Observations are independent and normally distributed within groups
- 2. Residuals are normally distributed and centered around zero
 - Shapiro-Wilk's test
- 3. Variance between groups is similar ($\sim < 2x$)
 - ▶ $| \max([\sigma_a^2 \sigma_b^2) / \min([\sigma_a^2 \sigma_b^2) | < 2]$
- 4. If using multiple features (multivariate regression), features are not correlated

Observations are independent and normally distributed within group.	S


```
OLS Regression Results
Dep. Variable:
                                            R-squared:
                                                                                0.434
Model:
                                     0LS
                                            Adj. R-squared:
                                                                                0.363
                                            F-statistic:
Method:
                          Least Squares
                                                                                6.127
                                            Prob (F-statistic):
                       Sun, 04 Oct 2020
                                                                               0.0384
Date:
Time:
                                14:37:07
                                            Log-Likelihood:
                                                                             -1.6598
No. Observations:
                                      10
                                            AIC:
                                                                                7.320
                                                                                7.925
Df Residuals:
                                            BIC:
Df Model:
Covariance Type:
                               nonrobust
                                                                  [0.025
                   coef
                           std err
                                              t
                                                     P>|t|
                                                                               0.975]
Intercept
                0.9800
                             0.143
                                         6.861
                                                      0.000
                                                                   0.651
                                                                                1.309
                                                     0.038 click to scroll output; double click to his
z[T.b]
                0.5000
                              0.202
                                          2.475
Omnibus:
                                   0.887
                                            Durbin-Watson:
                                                                                1.642
Prob(Omnibus):
                                   0.642
                                            Jarque-Bera (JB):
                                                                                0.670
Skew:
                                  -0.287
                                            Prob(JB):
                                                                                0.715
Kurtosis:
                                   1.870
                                            Cond. No.
                                                                                 2.62
```

```
1 scipy.stats.ttest_ind(a = aov_data.y.loc[aov_data.z == 'a'], b = aov_data.y.loc[aov_data.z == 'b'])

executed in 6ms, finished 13:58:17 2020-10-04

Ttest_indResult(statistic=-2.475368837441685, pvalue=0.03838779259171958)
```

OLS Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		y OLS Least Squares Sun, 04 Oct 2020 14:37:07 10 8 1 nonrobust	Adj. F–st Prob			0.434 0.363 6.127 0.0384 -1.6598 7.320 7.925
	coef	std err	t	P> t	[0.025	0.975]
Intercept 0 z[T.b] 0	9800 5000	0.143 0.202	6.861 2.475	0.000 0.038 click to	0.651 scroll output	1.309; double click to hid
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.887 0.642 -0.287 1.870	Jaro Prob	======================================		1.642 0.670 0.715 2.62

For more information, look into contrast coding

Setting your intercept as your "Control" will allow you to see how your different candidates (A, B, ...) compete