20(6 桑上 AVXIV: 1606, No. Higher codinonsismed Useda theray 0185'1 on opt submits, with Unitary Hay normal bolis. 01837 Date2016.7.18 15:00-15:50 Thm (T. Veda 83) X: cpx ntd Y: non-sing cpx hyp. surt. with NYX EH'(Y, U(1)). Assure Ox(Y) @ Ox/Ix = Ox(Nex) @ Ov/Ixn for bn21 (V: a tub. n.b.h.d of Y in X, Nyx; hol. (.b./v s.t. H'(V, U(1)) ≥ H'(Y, U(1))) Nyx; hol. (.b./v s.t. H'(V, U(1)) ≥ H'(Y, U(1))) ~ Or (MX) 10 N/x (6H'(Y,U(1))); tousion or Diophantine" (3A>0 s.t. "NZI, d(14, Ny) 2 (21)A) Then 3 V: a noble of Yin X s.t. [Y] = N/K (V (*) (*) (*) (*) Wi : a def. tunc of

Vin Y in Vi

S.t. Wi = 2til Wh. S. T. I YE & (i.c. Y is a leat)

Holay = (Ny), The holonomy the monodroy of (Nyx, Yther) Goal of this talk: · Generalize That to the case when Viscodinx Y21. " Apply it to "the semi-positivity Problem". Schedule \$1. Main verylt. §2. Application §3. Outline of the prof

Date

5 Main result
,
Thm 2 (K-16)
X: Acpx mtd / V = codim x Y (21)
Y: cpt cpx submode with NYX EH'(Y, UCM)
Assume To (1)
Assuma IY/Intl @ Or (NY/x) & OV/In for n=1) (#)
"Ny torsion" or Diophantle".
Then
(i) = V: a nbhd of 7 in X
Then (i) = V: a noble of Y:n X wj=liv a non-sig hol. toliation on V of codim=r. 5.t. 1 Y = Z'
VE CITY = PNYX.
(ii) \$5: non-sing hyp.surt CV
with YCS Nose HI(Y, U(r-1))
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V (= Vs) Copen ! a Y-nbhd,
of (= fs); non-sing hol foliation of codin=
We can take s.t. { S':= S, V' ∈ §
St. W==09=5"V; g! Zi-inv file. 4LEG, 4L'EZ,
$ W_{i} = 0 = 5^{\circ} V_{i}$ $ H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$ $ g = H_{0}(g, g') : \pi_{i}(Y, *) \rightarrow U(1) \text{ linear bolong}$
Det # 17 hol.imm.
Det Nyx: torsion \(\ightarrow\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\)
(Vioph.) = N1,, Nr EM (4, U(1)),
$S t. J N_{-} / = \Lambda T \cdot \Theta \cdot \cdots \cdot \Theta \Lambda J_{-} \left(\frac{up. to.}{J} \right)$
$\forall d = (d, -dr) \in 2r$
S. T. $ V_{1} = V_{1} $
Obs In The 2 (11) / 5': 7-inv.
Obs In The 2(11), { 5': 7-inv, (2121))
0.41

0 (A) € H'(Y, NYX @ S"+1 NYX) =0 for bu21. Forej. Y: sm. ellipt. curre and NY/x: D:oph. (and r=1?) @ Anol'd '76 ... Thin 2 (1) for (\$14) Veda 183 ... - + for V=1 (Thm (). (K-15) K-, N. Ogam 16 --- V=2 -1308 Entison] 52. Application. Det L! hol (. b. /a cpx ntd.

L! Semi-positive of the with semi-positive with semi-positive curvature. Q when Semi-positively criterion (for not 1.6. /proj. atl)? a typical Contigulation; X: cpx untd. < L! a hol. (ine bd (/x. DI, ... Duy EIL YS= OD Obs of Sing Herm. metric harm on L s.t. | Ji On 20 ("Beyon type netric") | h|xir! com ① It = V! Y-nbhd c X s.t. = hr! c∞ Hem metric on Llv with semi-positive column, Then we can construct a Co Herm metric on L with sent-positive curare (regularzel min. Cor Assure Di, ..., Dr., intersect transvly aly I. Then L' semi-positive,

No. Date
Date I J ofte (h.l. tub 4) of the (1)?
Q T: V - YOFE (hold aft) of toky?
Example (V, F) : sm. de (lezzo unto o) dy = ((i.e. $F^{n-1} = K^{-1}$, $(F^n) = 1$)
$\left(\stackrel{\text{i.e.}}{=} F^{n-1} = K_{\sigma}^{-1}, (F^n) = 1 \right)$
Take pEV Cor > KBIPV: Semi-positive for "geneval" p (C.f. N=2 RI IP2 A 11/1-11 (-Rown))
Cov > KBIPV: Servin Da sixting
ton "general" P
(C.f. N=2 Blaps (P2, Anol'd-Veda-Brundla)
E3 Protline of the mt
Va Y toler M. 8
St 3 T Eller
Ve Y we can take iw_i^{i} v_i^{i}
(ia (dwgr) = (dwgr)
(i) (i) Wh = W: + O(1/4:12) V.
a Solve a "Schröder type functional og"
W= V=+ Z Fi. d (2;). Vid
to constr. I vit with Vi = Tok. Vk.
(existency of IFj. x' (= (\$)) = {12 = (12 = consety). (conv. of the func. eq. (= NT/x : torsion on Dioph).
(onv. of the func. eg. (NT/ i torsion or Dioph)
· · · · · · · · · · · · · · · · · · ·
o For (ii), Choose Swig & more carefully so that Iwi = 0 = 5 ~ V;
50 Trat 1W; = 0 4 = 5 ~ V;
the solution style also enjoys IV; -of = 5, V;
>> f:= 112= const1 (
(10)