1. Fundamental of Probability (cont'd)

1.4 Independence

Def: Two events E and F are said to be independent, if $P(E \cap F) = P(E) \cdot P(F)$; denoted as $E \perp F$. This is different rom disjoint.

Assume P(F)>0, then $E\perp F\Leftrightarrow P(E|F)=P(E)$; intuitively, knowing F does not change the probability of E.

Proof:

$$E \perp F \Leftrightarrow P(E \cap F) = P(E) \cdot P(F)$$

 $\Leftrightarrow \frac{P(E \cap F)}{P(F)} = P(E)$
 $\Leftrightarrow P(E|F)) = P(E)$

More generally, a sequence of events E_1, E_2, \ldots are called independent if for **any** finite index set I,

$$P(igcap_{i\in I}E_i)=\prod_{i\in I}P(E_i)$$

1.5 Bayes's rule and law of total probability

Theorem: Let F_1, F_2, \ldots be disjoint events, and $\bigcap_{i=1}^{\infty} F_i = \Omega$, we say $\{F_u\}_{i=1}^{\infty}$ forms a "partition" of the sample space Ω

Then
$$P(E) = \sum_{i=1}^{\infty} P(E|F_i) \cdot P(F_i)$$

Proof: Exercise

Intuition: Decompose the total probability into different cases.

$$P(E \cap F_2) = P(E|F+2) \cdot P(F_2)$$

Bayes' rule

$$P(F_i|E) = rac{P(E|F_i) \cdot P(F_i)}{\sum_{h=1}^{\infty} P(E|F_j) \cdot P(F_j)}$$

Bayes' rule tells us how to find conditional probability by switching the role of the event and the condition.

Proof:

$$P(F_i|E) = rac{P(F_i \cap E)}{P(E)}$$
 definition of condition probability
$$= rac{P(E|F_i)P(F_i)}{P(E)}$$

$$= rac{P(E|F_i)P(F_i)}{\sum_{j=1}^{\infty} P(E|F_j)P(F_j)}$$
 law of total probability

2 Random variables and distributions

2.1 Random variables

 (Ω, ξ, P) : Probability space.

Def: A random variable X (or r.v.) is a mapping from Ω to R

$$X:\Omega o R \ \omega o X(\omega)$$

A random variable transforms arbitrary "outcomes" into numbers.

X introduces a probability on R. For $A\subseteq R$, define

$$egin{aligned} P(X \in A) := P(\{X(\omega) \in A\}) \ &= P(\{\omega : X(\omega) \in A\}) \ &= P(X^{-1}(A)) \end{aligned}$$

From now on, we can often "forget" te original probability space and focus on the random variables and their distributions.

 ${f Def}:$ let X be a random variable. The ${f CDF}$ (cumulative distribution function) F of X is defined by

$$F(x) = P(X \le x) = P(X \in (-\infty, x])$$

 $X : \text{random variable}, x : \text{number}$

Properties of cdf:

- 1. F is non-decreasing. $F(x_1) \leq F(x_2), x_1 < x_2$
- 2. limits

$$\circ \lim_{x o -\infty} F(x) = 0$$

$$\circ \lim_{x o \infty} F(x) = 1$$

3. F(x) is right continuous

 $\circ \ lim_{x\downarrow a}F(x)=F(a)$: x decreases to a (approaching from the right)

$$\circ$$
 Hint: $\{x \leq a\} = \bigcap_{i=1}^\infty \{X \leq a_i\}$ for $a_i \downarrow a$

2.2 Discrete random variables and distribution

A random variable X is called **discrete** if it only takes values in an **at most countable** set $\{x_1, x_2, \ldots\}$ (finite or countable).

The distribution of a discrete random variable is fully characterized by its **probability mass function**(p.m.f)

$$p(x):=P(X=x); x=x_1,x_2,\ldots$$

Properties of pmf:

1.
$$p(x) \geq 0$$
 $\forall x$

2.
$$\sum_i p(x_i) = 1$$

Q: what does the cdf of a discrete random variable look like?

Examples of discrete distributions

1.Bemoulli distribution

$$p(1) = P(X = 1) = p$$
 $p(c) = P(X = c) = 1 - p$
 $p(x) = 0$ otherwise

Denote $X \sim Ber(p)$

2. Binomial distribution

$$p(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

- ullet $X \sim Bin(n,p)$ to choose k successes.
- ullet Binomial distribution is the distribution of number of successes in n independent trials; each having probability p of success.

3.Geometric distribution

$$p(k)=P(X=k)=(1-p)^{k-1}p$$
 $(1-p)^{k-1}:$ the first k-1 trials are all failures, $p:$ success in kth trial

• $X \sim Geo(p)$

- ullet X is the number of trials needed to get the first success in n independent trials with probability p of success each
- ullet X has the memoryless property P(X>n+m|X>m)=P(x>n) $n,m=0,1,\ldots$