Mathematisches Seminar Prof. Dr. Jan Kallsen Giso Jahncke

Sheet 06

Risk Management

Exercises for participants of the programme Quantitative Finance

T-Exercise 11

Let

$$x_1 = 2.5,$$
 $x_2 = 0,$ $x_3 = -1.5,$ $x_4 = 3,$ $x_5 = 2,$ $x_6 = 1.5,$ $x_7 = 4,$ $x_8 = 3.5,$ $x_9 = 1,$ $x_{10} = -2$

be a sample.

- (a) Draw the empirical distribution function F_{10} and the generalized inverse F_{10}^{\leftarrow} .
- (b) Calculate $VaR_{0.75}(F_{10})$ and $ES_{0.75}(F_{10})$.

C-Exercise 12

(a) Write a *scilab*-Funktion

that computes the estimates $\widehat{VaR}_{\alpha}(L_{n+1})$ and $\widehat{ES}_{\alpha}(L_{n+1})$ for the one-dimensional loss operator $l: \mathbb{R} \to \mathbb{R}$, level $\alpha \in (0,1)$ and given historical risk factor changes $x_data = (x_1, \ldots, x_n) \in \mathbb{R}^n$ using the method of historical simulation.

(b) Compute the logarithmic returns x_2, \ldots, x_{6816} of the DAX time series, that we use as risk factor changes. Compute for each trading day $m = 254, \ldots, 6816$ the estimates for *value at risk* and *expected shortfall* at level $\alpha = 0.98$. Apply the function from (a) on the last n = 252 risk factor changes $(x_m, x_{m-1}, \ldots, x_{m-n+1})$. Plot your results and compare them with the results of C-Exercise 10.

Submit until: Thursday, 07.12.2017, 08:30 (before the lecture)