Algorithmen & Datenstrukturen 1

Fabio Oesch, Claude Martin & Jan Fässler 22. September 2012

Inhaltsverzeichnis

1	Info	ormation und Daten
	1.1	Binäres Zahlensystem
	1.2	Bit und Byte
	1.3	Zahlen in Java
		1.3.1 Positive Zahlen
		1.3.2 Ganze Zahlen (2er - Komplement)
		1.3.3 Zahlendarstellung mit beliebiger Basis
	1.4	Datentypen in JAVA
	1.5	Gleitkommazahlen
	1.0	1.5.1 Beispiele (IEEE 754 32bit Float)
		1.5.2 Spezialfälle
		1.5.3 Division mit Null
		1.0.9 Division into run
2	One	erationen & Ausdrücke 3
_	2.1	Auswertungsreihenfolge
	$\frac{2.1}{2.2}$	Bitoperatoren
	2.3	1
		The state of the s
	2.4	Logische Operatoren
	2.5	Beispiele
3	V or	nyantianung yan Datantunan
3	KOI	nvertierung von Datentypen 6
		3.0.1 explizite Typkonvertierung
		3.0.2 implizite (automatische) Typkonvertierung
		3.0.3 erweiternde Typkonvertierungen
		3.0.4 einschränkende Typkonvertierungen
		3.0.5 Integer-Erweiterung
		3.0.6 Konvertierungsvorschriften
	3.1	Beispiele
	- .	
4		chen und Strings 8
	4.1	Zeichen in Java
	4.2	Standardisierte Zeichencodierungen
		4.2.1 ASCII (American Standard Code for Information Interchange)
		4.2.2 ISO 8859-1 (Latin-1)
		4.2.3 Unicode
	4.3	Universal Character Encoding Standard (Unicode)
		4.3.1 UTF-32
		4.3.2 UTF-16
		4.3.3 UTF-8
		4.3.4 Codierungsschemen
	4.4	Java
		4.4.1 Unicode in JAVA
		4.4.2 Zeichenketten (Strings)
		4.4.3 String Funktionen
		4.4.4 Umwandlungen
	4.5	ASCII-Zeichentabelle
	4.0	ASCII-Zeichentabene
5	Suc	rhen 13
J	5.1	Zahlensuche
	0.1	5.1.1 Lineare Suche
		5.1.2 Lineare Suche mit Wächter (Sentinel)
		5.1.3 Binäre Suche
	F 0	5.1.4 Analyse
	5.2	Textsuche 14

			Naive Textsuche	
6	Sort	tieren		16
•	6.1		üfen, ob das Array sortiert ist	
	6.2		en durch direktes Auswählen (selection sort)	
	6.3		en durch direktes einfügen (insertion sort)	
			9 (
	6.4		ration Sort	
	6.5	-	ort (randomisierter Algorightmus)	
			Implementierung	
			Aufwand Quicksort	
	6.6	0	ort	
	6.7	Laufzei	ten	19
7	Hal	bdynan	nische Datenstrukturen	20
	7.1	Halbdy	namische Datenstruktur	20
	7.2	Datenn	utzung über die Zeit	20
	7.3		ruktur: ArrayList	
	7.4		s Wildcards	
			Unbounded Wildcard	
			Upper Bound Wildcard extends T	
			Low Bound Wildcard super T	
			Interner Aufbau (bis Java 1.4.2)	
		7.4.5	Interner Aufbau (seit Java 5.0)	22
8			verifikation	23
	8.1		their eines Algorithmus	
	8.2		enlogik	
			Syntax	
		8.2.2	Semantik	23
		8.2.3	Modell	23
		8.2.4	Erfüllbarkeit	23
		8.2.5	Äquivalenz	24
	8.3		tenlogik	
			Syntax	
			Semantik	
			Äquivalenz	
			Beispiele	
	8.4		tion	
	0.4			
		-	Hoare-Tribble	-
	~ ~		Ablauf der Verifikation	
	8.5		t Precondition: Rechenregeln	
			Zuweisung	
			Weakest Precondition herausfinden (Beispiel)	
		8.5.3	Sequenz	27
		8.5.4	Selektion	27
			Iteration	
	8.6		nten-Anwendung	
	٥.٠		Ist INV wirklich eine korrekte Invariante?	
			Was ist die schwächste Vorbedingung WP?	
			Welches ist die Nachbedingung S?	
		0.0.0	TYOTOTOD IDU UTO TYAOHDUUHIGUHG D	43

9	Kon	nplexität	30
	9.1	Zeit- und Speicherbedarf	30
	9.2	Worst-Case vs. Average-Case	
	9.3	Gross-O und Gross-Omega	
		9.3.1 Gross-O	
		9.3.2 Gross-Omega	30
	9.4	Reihen	
		9.4.1 Wichtige Reihen	31
		9.4.2 Rechenregeln	
10	Rek	cursion	31
	10.1	Rekursionsschema	31
	10.2	Backtracking	32
		10.2.1 3 Voraussetzungen für Backtracking	
		10.2.2 8-Damen-Problem	
	10.3	Code	
11	Divi	ide-and-Conquer	34
	11.1	Code	34
	11.2	Analyse	34
		11.2.1 Schritte	
		11.2.2 Aufwandsformel	
	11.3	Berechnung	
		11.3.1 Teleskopieren	
		11.3.2 Verallgemeinerung	
	11.4		35

1 Information und Daten

1.1 Binäres Zahlensystem

low: 0 bis 0.8 V high: 2.4 bis 5 V

1.2 Bit und Byte

- \bullet eine Bitfolge der Länge nkönnen 2^n Zustände hergestellt werden
- Bits werden mit Indizes von 0 bis n-1 nummeriert.
- LSB: Bit mit kleinstem Index
- MSB: Bit mit höchstem Index

KiByte: 2¹⁰ Byte MiByte: 2²⁰ Byte GiByte: 2³⁰ Byte

1.3 Zahlen in Java

1.3.1 Positive Zahlen

 $\sum b_i * B^i$ mit $i \in [0, n-1]$ und b_i gleich der Ziffer bei i.

1.3.2 Ganze Zahlen (2er - Komplement)

 $-b_{n-1}*B^{n-1}+\sum b_i*B^i$ mit $i\in[0,n-2]$ und b_i Ziffer bei i.

1.3.3 Zahlendarstellung mit beliebiger Basis

- $\bullet\,$ binär (2): Ganzzahlen, die mit ${\bf 0b}$ beginnen
- octal (8): Ganzzahlen, die mit **0** beginnen
- dezimal (10): Ganzzahlen, die **nicht mit 0** beginnen
- hexadezimal (16): Ganzzahlen, die mit **0x** beginnen

1.4 Datentypen in JAVA

Name	Byte	Bit	kleinste Zahl	grösste Zahl
byte	1	8	-127	128
${f short}$	2	16	-32.768	32.767
char	2	16	\u0000 (0)	$\upsilon upper (65.535)$
${f int}$	4	32	-2.147.483.648	2.147.483.647
long	8	64	-9.223.372.036.854.775.808	9.223.372.036.854.775.807
float	4	32	$1,40*10^{-45}$	$3,40282346638528860*10^{38}$
double	8	64	$4,94065645841246544*10^{-324}$	$1,79769313486231570 * 10^{308}$

1.5 Gleitkommazahlen

Exponential darstellung: $(-1)^{V}*(1+M)*2^{E}$ IEEE 754 Float: $(-1)^{V}*(1+M)*2^{E-127}$ IEEE 754 Double: $(-1)^{V}*(1+M)*2^{E-1023}$

- V Vorzeichen (float 1Bit / double 1 Bit)
- **M** normalisierte Mantrisse $(0 \le M \le 1)$ (float: 23 Bits / double: 52 Bits)
- \mathbf{E} Exponent (float: Signed-8-Bit 127 / double: Signed-11-Bit 1023)

V Exponent Mantrisse

1.5.1 Beispiele (IEEE 754 32bit Float)

$$2.5 = 1.25 * 2^{1}$$

$$-0.75 = \underbrace{1}_{\ominus} \underbrace{01111110}_{126-127} \underbrace{100000...}_{1+2^{-1}} = -1.5 * 2^{-1}$$

$$\textbf{0.1} \ = \underbrace{0}_{\oplus} \underbrace{01111011}_{123-127} \underbrace{100\overline{1100}......}_{1+2^{-1}+2^{-4}+2^{-5}...} = 1.6*2^{-4} = 0.100000001490116119384765625$$

Umrechnen von -1313.3125 zu IEEE 32-bit float:

- 1. Ganzzahlteil $1313_{10} = 10100100001_2$.
- 2. Nachkommateil

 $\begin{array}{ccc} 0.3125 & \times 2 = 0.625 & \mathbf{0} \\ 0.625 & \times 2 = 1.25 & \mathbf{1} \end{array}$

 $0.25 \times 2 = 0.5 0$

 $0.5 \times 2 = 1.0$

- 3. $1313.3125_{10} = 10100100001.0101_2$
- 4. Normen $10100100001.0101_2 = 1.01001000010101_2 \times 2^{10}$
- 5. Mantisse ist 01001000010101, Exponent ist $10 + 127 = 137 = 10001001_2$, Vorzeichen ist 1.

1.5.2 Spezialfälle

 $E=00000000 M=0 \Rightarrow 0$

E=11111111 M=0 V=+ \Rightarrow + ∞

E=11111111 M=0 V=- \Rightarrow $-\infty$

 $E=111111111 M \neq 0 \Rightarrow NaN$

1.5.3 Division mit Null

- float $f = \pm 0.0 f / \pm 0.0 f = NaN$
- float $f = 7.6f/0.0f = -7.6f/-0.0f = +\infty$
- float $f = -3.9f/0.0f = 3.9f/-0.0f = -\infty$

2 Operationen & Ausdrücke

2.1 Auswertungsreihenfolge

- einstellige und mehrstellige Operatoren
 - 1. Teilausdrücke in Klammern
 - 2. Ausdrücke mit unären Operatoren (pro Operand von rechts nach links)
 - 3. Teilausdrücke mit mehrstelligen Operatoren gemäss Prioritätstabelle
- mehrstellige Operatoren gleicher Priorität bei gleicher Priorität entscheidet die Assoziativität (von links nach rechts oder von rechts nach links)
- Bewertungsreihenfolge von Operanden die Operanden eines Operators werden strikt von links nach rechts ausgewertet

Priorität	Operatoren	Bedeutung	Assoziativität
1		Array-Index	links
	()	Methodenaufruf	links
	•	Komponentenzugriff	links
	++	Postinkrement	links
		Postdekrement	links
2	++	Präinkrement	rechts
		Prädekrement	rechts
	+ -	Vorzeichen (unär)	rechts
	~	bitweises Komplement	rechts
	!	logischer Negationsoperator	rechts
3	(type)	Typ-Umwandlungt	rechts
	new	Erzeugung	rechts
4	* / %	Multiplikation, Division, Rest	links
5	+-	Addition, Subratktion	links
	+	Stringverkettung	links
6	<<	Linksshift	links
	>>	Vorzeichenbehafteter Rechtsshift	links
	>>>	Vorzeichenloser Rechtsshift	links
7	< <=	Vergleich kleiner, kleiner gleich	links
	>>=	Vergleich grösser, grösser gleich	links
	instanceof	Typenüberprüfung eines Objektes	links
8	==	Gleichheit	links
	!=	Ungleichheit	links
9	&	bitweises UND	links
10	٨	bitweises Exclusiv-ODER	links
11		bitweises ODER	links
12	&& &	logisches UND	links
13		logisches ODER	links
14	?:	Bedingungsoperator	rechts
15	=	Wertzuweisung	rechts
	*= /= %=	kombinierter Zuweisungsoperator	rechts
	+= '-= <<=		
	>>= >>>=		
	&= ^= =		

2.2 Bitoperatoren

		AND	\mathbf{OR}	Negation	XOR
a	b	a & b	$\mathbf{a} \mid \mathbf{b}$	\sim a	$\mathbf{a} \wedge \mathbf{b}$
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

2.3 Schiebeoperatoren

- Rechtsschiebe-Operatoren
 - vorzeichenbehaftet: a>>b, $\mathbf{Bsp:}-9_{10}=11110111_2>>1=11111011_2=-5_{10}$
 - vorzeichenlos: a>>>b, $\mathbf{Bsp:}-9_{10}=11110111_2>>>1=01111011_2=123_{10}$
- Linksschiebe-Operator
 - $-\,$ kann Vorzeichen verändern: a << b
 - $y=3<<2\Rightarrow y=00001100_2=12$ (Für jeden linksschiebe
operator wird $\cdot 2$ gerechnet.)

2.4 Logische Operatoren

logische Negation: !A

logisches UND: A && B / A & B

(Bei zwei & Zeichen wird erst A überprüft und B nur, falls A wahr ist.)

logisches ODER: $A \parallel B / A \parallel B$

Bedingungsoperator: A?B:C (if (A) then B else C)

2.5 Beispiele

Listing 1: OneBitCounter

```
class OneBitCounter {
   public static int count (int x) {
      int iEven, iOdd, d = 1;
      iEven = x & 0x555555555; x >>= d; iOdd = x & 0x55555555;
      x = iOdd + iEven; d <<= 1;
      iEven = x & 0x33333333; x >>= d; iOdd = x & 0x33333333;
      x = iOdd + iEven; d <<= 1;
      iEven = x & 0x0F0F0F0F; x >>= d; iOdd = x & 0x0F0F0F0F;
      x = iOdd + iEven; d <<= 1;
      iEven = x & 0x0000FFFF; x >>= d; iOdd = x & 0x0000FFFF;
      x = iOdd + iEven; d <<= 1;
    }
}</pre>
```

Listing 2: Addition

```
class Addition {
   public static int add (int a, int b) {
      int c, r, t;

      r = a ^ b;
      c = a & b;
      while (c != 0) {
            c <<= 1;
            t = r;
            r ^ c;
            c &= t;
    }
   return r;
}</pre>
```

Listing 3: Multiplication

```
class Multiplication {
   public static long mult (int a, int b) {
      long y = 0;

      while (a != 0) {
        if (a % 2 == 1) y += b;
        b <<= 1;
        a >>= 1;
      }
      return y;
   }
}
```

3 Konvertierung von Datentypen

3.0.1 explizite Typkonvertierung

- Konvertierungen sind möglich:
 - zwischen numerischen Datentypen (erweiternd und einschränkend)
 - zwischen Referenztypen
- funktionieren gleich wie implizite, allerdings bestehen mehr Möglichkeiten
- $\bullet\,$ cast-Operator: (Typname) Ausdruck

3.0.2 implizite (automatische) Typkonvertierung

- zwischen Operanden von numerischem Typ (nur erweiternd)
- zwischen Operanden von Referenztypen
- bei Verknüpfungen von String-Objekten mit Operanden anderer Typen Object o = new Object();

String s = "X" + null + o;

String s = "X" + "null" + o.toString();

String s = "Xnulljava.lang.Object@47ac1adf";

• arithmetische Operatoren: Konvertierung in höheren Typ gemäss Hierarchie

3.0.3 erweiternde Typkonvertierungen

Wert ist immer darstellbar möglicher Verlust an Genauigkeit (z.B. bei Konvertierung von int nach float)

3.0.4 einschränkende Typkonvertierungen

möglicher Informationsverlust in Grösse, Vorzeichen & Genauigkeit

3.0.5 Integer-Erweiterung

- Datentypen byte, short und char werden in Ausdrücken mit unären und binären Operatoren implizit in int konvertiert
 - Dimensionsausdruck bei der Erzeugung von Arrays
 - Indexausdruck in Arrays
 - Operand der unären Operatoren + und -
 - Operand des Invertierungsoperators für Bits \sim
 - Operanden der Schiebeoperatoren >>, >>> und <<
- byte, short und char werden somit fast ausschliesslich als Datenfelder für Klassen benutzt

3.0.6 Konvertierungsvorschriften

- erweiternde Konvertierung von vorzeichenbehafteten Integer-Typen Wert bleibt unverändert
- Konvertierung zwischen char und vorzeichenbehafteten Integer-Typen
 - char ist vorzeichenlos
 - short: Bitmuster bleibt erhalten, da gleiche Breite. Negativ wenn $b_{15} = 1$.
 - char zu int: von links mit Nullen auffüllen. Positiv.
 - char zu byte: Bits 0 bis 7 werden übernommen. Negativ wenn $b_7 = 1$.
- Konvertierung von Integer nach Gleitpunkt nächst höherer oder niedriger darstellbarer Wert
- Konvertierung von Gleitpunkt nach Integer
 - Nachkommastellen werden abgeschnitten
 - bei Werten grösser als $2^{31} 1$ ist das Resultat nicht korrekt (= $2^{31} 1$)
- Konvertierung zwischen Gleitpunkt-Typen
 - float nach double: Wert bleibt unverändert
 - double nach float: Wert im zulässigen Wertebereich von float, dann nächst höherer oder niedriger darstellbarer Wert

3.1 Beispiele

Umwandlung	Resultat
(int) Double.MAX_VALUE	Integer.MAX_VALUE
(int) (float) Integer.MAX_VALUE	Integer.MAX_VALUE
(int) (float) (Integer.MAX_VALUE - 1)	Integer.MAX_VALUE (Genauigkeit ist nicht gegeben!)
(int) Long.MAX_VALUE	-1
(int) Long.MIN_VALUE	0
(byte)(char) 254	-2
(char)(byte) -2	65534 (falsch)
(char)(byte) -2 & 0xff	254 (korrekt)

4 Zeichen und Strings

4.1 Zeichen in Java

- int: 32-Bit im Format: nur die unteren 21 Bits werden benutzt, die oberen sind alle 0; eine int-Variable kann jeden möglichen Zeichencode (code point) des Unicodes aufnehmen
- char: 16 Bit; eine char-Variable kann nur einen der ersten 2¹⁶ Zeichencodes des Unicodes aufnehmen; alle anderen Zeichencodes werden durch char-Paare codiert (surrogate character mechanism)
- Interface CharSequence: Sequenz von Zeichencodes im UTF-16 Format; bekannte Implementierung
 String, StringBuffer, StringBuilder, CharBuffer . . .

4.2 Standardisierte Zeichencodierungen

4.2.1 ASCII (American Standard Code for Information Interchange)

- nur 128 verschiedene Zeichen (Steuerzeichen, Satzzeichen, Ziffern, Buchstaben usw.)
- pro Zeichen ein eindeutiger 7-Bit-Zeichencode

4.2.2 ISO 8859-1 (Latin-1)

- 256 Zeichen für europäische Sprachen (8-Bit-Zeichencode)
- die ersten 128 Zeichen sind identisch zu ASCII
- die zweiten 128 Zeichen enthalten europäische Sonderzeichen, z.B. Umlaute

4.2.3 Unicode

- über eine Million Zeichen, verschiedene Sprachen (Arabisch, Hebräisch, Chinesisch usw.)
- 21-Bit-Zeichencode: ersten 256 Zeichen sind identisch zu ISO 8859-1

4.3 Universal Character Encoding Standard (Unicode)

Ebene 0: Basic Multilingual Plane (BMP)

- U+0 bis U+FFFF
- enthält die wichtigsten Zeichen von verschiedenen Sprachen

Ebene 1: Supplementary Multilingual Plane (SMP)

- U+1'0000 bis U+1'FFFF
- enthält weniger oft gebrauchte Zeichen (z.B. gotische Zeichen, Musiksymbole)

Ebene 2: Supplementary Ideographic Plane (SIP)

- U+2'0000 bis U+2'FFFF
- enthält sehr seltene CJK Zeichen

Ebene 3 bis 13

reserviert für spätere Ergänzungen

Ebene 14: Supplementary Special-purpose Plane (SSP)

- U+E'0000 bis U+E'FFFF
- enthält zusätzliche Formatierungszeichen

Ebenen 15 und 16: Private Use Planes

- U+F'0000 bis U+F'FFFF und U+10'0000 bis 10'FFFF
- für private, nicht standardisierte Zwecke einsetzbar

4.3.1 UTF-32

- einfachste Umsetzung: die 21 Bits werden in einem (vorzeichnlosen) 32-Bit-Integer abgespeichert; die höherwertigen 11 Bits sind immer null
- Vorteile: einfache Umsetzung; einheitliche Codierungslänge
- Nachteil: hohe Speicherverschwendung
- Bsp:

A: U+0041 \rightarrow 0000'0041 Ω : U+03A9 \rightarrow 0000'03A9

4.3.2 UTF-16

- Umsetzung: Zeichencodes der BMP werden durch eine einzelne 16-Bit Codierungseinheit gespeichert; Zeichencodes der zusätzlichen Ebenen werden durch zwei 16-Bit Codierungseinheiten gespeichert → Ersatzpaare; guter Kompromiss zwischen Speicherbedarf und einfacher Handhabung
- Ersatzpaare: beide Zeichen eines Ersatzpaares stammen aus der Surrogates Area; das erste Zeichen jeweils aus dem Bereich U+D800 bis U+DBFF; das zweite Zeichen jeweils aus dem Bereich U+DC00 und U+DFFF
- Bsp: U+1'0384 \rightarrow D800, DF84

4.3.3 UTF-8

- Bekannte Umsetzung: populäre Verwendung in XML; Zeichencodes brauchen zwischen 1 und 4 Bytes
- Vorteile: speichereffizient für häufig verwendete Zeichen; kompatibel mit ASCII
- Nachteile: speicherineffizient für seltene Zeichen, jedoch nicht schlimmer als UTF-32; komplizierte Handhabung, weil unterschiedliche Anzahl von Bytes pro Zeichen beachtet werden muss; nicht kompatibel mit ISO-Latin-1, d.h. Umlaute brauchen bereits 2 Bytes
- Bsp:

A: U+0041 \rightarrow 41; Ω : U+03A9 \rightarrow CE, A9;

Ugaritic Delta: $U+10384 \rightarrow F0$, 90, 8E, 84

Zeichencode	Byte 1	Byte 2	Byte 3	Byte 4
0xxxxxx	$\begin{array}{c} 0xxxxxxx \\ \rightarrow 1 \text{ byte} \\ \rightarrow 7 \text{ bit (ASCII)} \end{array}$			
00000yyy yyxxxxxx	$ \begin{array}{c} 110 \text{yyyyy} \\ \rightarrow 2 \text{ byte} \\ \rightarrow 11 \text{ bit} \end{array} $	10xxxxxx		
zzzzyyyy yyxxxxxx	$ \begin{array}{l} 1110zzzz\\ \rightarrow 3 \text{ byte}\\ \rightarrow 16 \text{bit (BMP)} \end{array} $	10уууууу	10xxxxxx	
000uuuzz zzzzyyyy yyxxxxxx	$\begin{array}{c} 11110 uuu \\ \rightarrow 4 \text{ byte} \\ \rightarrow 21 \text{bit (alle)} \end{array}$	10zzzzzz	10уууууу	10xxxxxx

4.3.4 Codierungsschemen

Das bestimmt Codierungsformat und Byte-Reihenfolge:

- bei Dateneinheiten bestehend aus mehreren Bytes muss festgehalten werden, welches Byte zuerst behandelt wird, das
 - most significant byte (MSB) zuerst: big-endian
 - least significant byte (LSB) zuerst: little-endian
- relevant bei UTF-16 und UTF-32
- nicht relevant bei UTF-8 (die Reihenfolge ist klar)
- durch Verwendung des Spezialzeichens Byte Order Mark (BOM) kann die Byte-Reihenfolge automatisch detektiert werden:

4.4 Java

4.4.1 Unicode in JAVA

Datentyp int

- 32-Bit im UTF-32 Format: nur die unteren 21 Bits werden benutzt, die oberen sind alle 0
- eine int-Variable kann jeden möglichen Zeichencode (code point) des Unicodes aufnehmen

Datentyp char

- 16-Bit (Codierungseinheit, code unit)
- eine char-Variable kann nur einen der ersten 2¹⁶ Zeichencodes des Unicodes (Basic Multilingual Plane, BMP) aufnehmen
- alle anderen Zeichencodes werden durch char-Paare codiert

Interface CharSequence

- Sequenz von Zeichencodes im UTF-16 Format
- bekannte Implementierungen: String, StringBuffer, StringBuilder

4.4.2 Zeichenketten (Strings)

Character-Array

veränderbare Zeichenkette mit expliziter Längenangabe (Teil des Arrays)

Klasse String (UTF-16 Format)

unveränderbare Zeichenkette mit expliziter Längenangabe

Klassen StringBuilder und StringBuffer (UTF-16 Format)

veränderbare Zeichenkette gekapselt als abstrakter Datentyp

4.4.3 String Funktionen

String equals(String vergleichenMit)

vergleicht den Inhalt von zwei Strings

String substring(int anfang, int ende)

Schneidet eine Zeichenkette zwischen Anfang und Ende 1 aus und erzeugt damit ein neues Stringobjekt. Der ursprüngliche String wird dabei nicht verändert.

String trim()

Erzeugt Kopie und entfernt alle Leerzeichen am Anfang und Ende der Kopie. Die Kopie wird zurückgegeben.

4.4.4 Umwandlungen

Listing 4: UTF 16 zu Latin1

```
static byte[] utfToLatin1(String s) {
  byte[] array = new byte[s.length()];
  int j = 0;
  for (int i = 0; i < s.length(); i++) {
    char c = s.charAt(i);
    if (c >= 256 && (c < 0xdc00 || c >= 0xdfff)) {
        array[j++] = (byte) '?';
    } else if (c < 256) {
        array[j++] = (byte) c;
    } //else: Low-Surrogate
}
  for (int i = j; i < s.length(); i++) {
        array[j] = (byte) 0;
    }
    return array;
}</pre>
```

Listing 5: UTF 32 zu UTF 16

```
static char[] codepoint2chars(int cp) {
  assert Character.isValidCodePoint(cp) : "illegal code point";
  if (cp < 0x10000) {
    if (cp >= 0xD800 && cp <= 0xDFFF)
        throw new IllegalArgumentException("illegal code point");
    return new char[] { (char) (cp & 0xFFFF) };
  } else {
    if (cp > 0x10FFFF)
        throw new IllegalArgumentException("illegal code point");
    cp -= 0x10000;
    char c1 = (char) ((cp >> 10) | 0xD800);
    char c2 = (char) ((cp & 0x3FF) | 0xDC00);
    return new char[] { c1, c2 };
  }
}
```

${\bf 4.5}\quad {\bf ASCII-Zeichentabelle}$

	Hex	Okt	Zeichen	Dez	Hex	Okt	Zeichen
0	0x00	000	NUL	32	0x20	040	SP
1	0x01	001	SOH	33	0x21	041	!
2	0x02	002	STX	34	0x22	042	"
3	0x03	003	ETX	35	0x23	043	#
4	0x04	004	EOT	36	0x24	044	\$
5	0x05	005	ENQ	37	0x25	045	%
6	0x06	006	ACK	38	0x26	046	&
7	0x07	007	BEL	39	0x27	047	,
8	0x08	010	BS	40	0x28	050	(
9	0x09	011	TAB	41	0x29	051)
10	0x0A	012	LF	42	0x2A	052	*
11	0x0B	013	VT	43	0x2B	053	+
12	0x0C	014	FF	44	0x2C	054	,
13	0x0D	015	CR	45	0x2D	055	
14	0x0E	016	SO	46	0x2E	056	_
15	0x0F	017	SI	47	0x2F	057	/
16	0x10	020	DLE	48	0x30	060	o o
17	0x11	021	DC1	49	0x31	061	1
18	0x11	022	DC2	50	0x32	062	2
19	0x12 0x13	023	DC2	51	0x32 $0x33$	063	3
20	0x13 $0x14$	$023 \\ 024$	DC3 DC4	52	0x33 $0x34$	064	4
20	0x14 $0x15$	$024 \\ 025$	NAK	53	0x34 $0x35$	065	5
$\begin{vmatrix} 21\\22 \end{vmatrix}$	0x15 0x16	026	SYN	54	0x36	066	6
23		$020 \\ 027$	ETB				7
23 24	$0x17 \\ 0x18$	030	CAN	55 56	$0x37 \\ 0x38$	067 070	8
1 1			EM	1	0x36 $0x39$		9
25	0x19	031		57		071	!
26	0x1A	032	SUB	58	0x3A	072	:
27	0x1B	033	ESC	59	0x3B	073	;
28	0x1C	034	FS	60	0x3C	074	<
29	0x1D	035	GS	61	0x3D	075	=
30	0x1E	036	RS	62	0x3E	076	> ?
31	0x1F	037	US	63	0x3F	077	-
Dez	Hex	Okt	Zeichen	Dez	Hex	Okt	Zeichen
C4	040						
64	0x40	100	@	96	0x60	140	,
65	0x41	100 101	@ A	96 97	0x60 0x61	140 141	a
65 66	$0x41\\0x42$	100 101 102	@ A B	96 97 98	0x60 0x61 0x62	140 141 142	a b
65 66 67	0x41 0x42 0x43	100 101 102 103	@ A B C	96 97 98 99	0x60 0x61 0x62 0x63	140 141 142 143	a b c
65 66 67 68	0x41 0x42 0x43 0x44	100 101 102 103 104	@ A B C D	96 97 98 99 100	0x60 0x61 0x62 0x63 0x64	140 141 142 143 144	a b c d
65 66 67 68 69	0x41 0x42 0x43 0x44 0x45	100 101 102 103 104 105	@ A B C D	96 97 98 99 100 101	0x60 0x61 0x62 0x63 0x64 0x65	140 141 142 143 144 145	a b c d e
65 66 67 68 69 70	0x41 0x42 0x43 0x44 0x45 0x46	100 101 102 103 104 105 106	@ A B C D E F	96 97 98 99 100 101 102	0x60 0x61 0x62 0x63 0x64 0x65 0x66	140 141 142 143 144 145 146	a b c d e f
65 66 67 68 69 70 71	0x41 0x42 0x43 0x44 0x45 0x46 0x47	100 101 102 103 104 105 106 107	@ A B C D E F G	96 97 98 99 100 101 102 103	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67	140 141 142 143 144 145 146 147	a b c d e f
65 66 67 68 69 70 71 72	0x41 0x42 0x43 0x44 0x45 0x46 0x47	100 101 102 103 104 105 106 107 110	@ A B C D E F G H	96 97 98 99 100 101 102 103 104	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68	140 141 142 143 144 145 146 147 150	a b c d e f g h
65 66 67 68 69 70 71 72 73	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49	100 101 102 103 104 105 106 107 110	@ A B C D E F G H I	96 97 98 99 100 101 102 103 104 105	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69	140 141 142 143 144 145 146 147 150 151	a b c d e f g h i
65 66 67 68 69 70 71 72 73 74	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49	100 101 102 103 104 105 106 107 110 111	@ A B C D E F G H I J	96 97 98 99 100 101 102 103 104 105	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A	140 141 142 143 144 145 146 147 150 151	a b c d e f g h i
65 66 67 68 69 70 71 72 73 74 75	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A	100 101 102 103 104 105 106 107 110 111 112 113	@ A B C D E F G H I J K	96 97 98 99 100 101 102 103 104 105 106	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A	140 141 142 143 144 145 146 147 150 151 152	a b c d e f g h i j k
65 66 67 68 69 70 71 72 73 74 75 76	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B	100 101 102 103 104 105 106 107 110 111 112 113 114	@ A B C D E F G H I J K L	96 97 98 99 100 101 102 103 104 105 106 107	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B	140 141 142 143 144 145 146 147 150 151 152 153 154	a b c d e f g h i j k l
65 66 67 68 69 70 71 72 73 74 75 76	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D	100 101 102 103 104 105 106 107 110 111 112 113 114	@ A B C D E F G H I J K L M	96 97 98 99 100 101 102 103 104 105 106 107 108	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C	140 141 142 143 144 145 146 147 150 151 152 153 154 155	a b c d e f g h i j k l m
65 66 67 68 69 70 71 72 73 74 75 76 77	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116	@ A B C D E F G H I J K L M N	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156	a b c d e f g h i j k l m n
65 66 67 68 69 70 71 72 73 74 75 76 77 78	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116	@ A B C D E F G H I J K L M N O	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157	a b c d e f g h i j k l m n
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117	@ A B C D E F G H I J K L M O P	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6C 0x6D 0x6E 0x6F	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160	a b c d e f g h i j k l m n o
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121	@ A B C D E F G H I J K L M N O P Q	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161	a b c d e f g h i j k l m n o
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122	@ A B C D E F G H I J K L M N O P Q R	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70 0x71 0x72	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162	a b c d e f g h i j k l m n o p q r
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52 0x53	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123	@ A B C D E F G H I J K L M N O P Q R S	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6B 0x6C 0x6F 0x70 0x71 0x72 0x73	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163	a b c d e f g h i j k l m n o p q r s
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52 0x53 0x54	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124	@ A B C D E F G H I J K L M N O P Q R S T	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6B 0x6F 0x70 0x71 0x72 0x73 0x74	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164	a b c d e f g h i j k l m n o p q r s t
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125	@ A B C D E F G H I J K L M N O P Q R S T U	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6B 0x6F 0x70 0x71 0x72 0x73 0x74 0x75	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 167 160 161 162 163 164 165	a b c d e f g h i j k l m n o p q r s t u
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126	@ A B C D E F G H I J K L M N O P Q R S T U V	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166	a b c d e f g h i j k l m n o p q r s t u
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127	@ A B C D E F G H I J K L M N O P Q R S T U V W	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166	a b c d e f g h i j k l m n o p q r s t u v
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130	@ A B C D E F G H I J K L M N O P Q R S T U V W X	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170	a b c d e f g h i j k l m n o p q r s t u v
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131	@ A B C D E F G H I J K L M N O P Q R S T U V W X Y	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170	a b c d e f g h i j k l m n o p q r s t u v w x
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131	@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A	140 141 142 143 144 145 146 147 150 151 152 153 154 155 160 161 162 163 164 165 166 167 170 171	a b c d e f g h i j k l m n o p q r s t u v w x y z
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133	@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170 171 172 173	a b c d e f g h i j k l m n o p q r s t u v w x
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133 134	@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170 171 172 173 174	a b c d e f g h i j k l m n o p q r s t u v w x y z {
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5D	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133 134 135	@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C 0x7D	140 141 142 143 144 145 146 147 150 151 152 153 154 155 160 161 162 163 164 165 166 167 170 171 172 173 174 175	a b c d e f g h i j k l m n o p q r s t u v w x y z { }
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133 134	@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6C 0x6D 0x6E 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170 171 172 173 174	a b c d e f g h i j k l m n o p q r s t u v w x y z {

5 Suchen

5.1 Zahlensuche

Generell gilt hier: Ordnung reduziert den Suchaufwand!

5.1.1 Lineare Suche

Listing 6: Lineare Suche

```
int i=0;
while(i<array.length && array[i]!=x) i++;
boolean gefunden = (i < array.length);</pre>
```

5.1.2 Lineare Suche mit Wächter (Sentinel)

Listing 7: Lineare Suche mit Waechter

```
boolean gefunden = false;
int last = (array.length-1);
if (array[last]==x) {
   gefunden=true;
} else {
   int tmp = array[last];
   array[last]=x;
   int i=0;
   while (array[i] != x) i++;
   gefunden = (i < last);
   array[last] = tmp;
}</pre>
```

5.1.3 Binäre Suche

Listing 8: Binaere Suche

```
boolean binarySearch(double[] array, double x) {
  int first=0, last=array.length-1, m;
  while(first <= last) {
    m = first + (last - first) / 2; //schneller (m=(first+last)>>>1)
    if(array[m] == x) return true;
    else if (array[m] < x) first=m+1;
    else last=m-1;
  }
}</pre>
```

5.1.4 Analyse

Тур	Laufzeit	n	256	2^{20}
Lineare Suche	lineare Laufzeit	n	256	2^{20}
Binäre Suche	logarithmisch	$ [log_2(n)] + 1$	9	21

5.2 Textsuche

5.2.1 Naive Textsuche

Auswertung: $T(n, m) = m(n - m + 1) = m * n - m^2 + m$

5.2.2 Knuth-Morris-Pratt (KMP)

Als erstes wird beim KMP das zu suchende Pattern untersucht. Das Pattern wird mit sich selber verglichen. Das Ziel ist zu wissen, bei welchem Buchstaben des Patterns man bei einem Missmatch weitermachen soll.

Es wird für jedes Teilstück des Patterns das Endstück maximaler Länge gesucht, welches einem Anfangsstück entspricht. Dann wird abgespeichert, wo mit dem Vergleichen fortgefahren werden muss, wenn an dieser Stelle ein Fehler auftritt.

0	1	2	3	4	5	6	7
h	a	u	s	h	a	l	t
-1	0	0	0	0	1	2	0

0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3
P	A	R	Т	Ι	С	Ι	Р	A	Т	Е		I	N		Р	A	R	A	С	Η	U	Т	E
-1	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	1	2	3	0	0	0	0	0

Die Tabelle Zeigt die Verschiebeinformationen für das Beispiel. Wenn beim Vergleich der Position 5 mit dem Text ein Fehler auftritt, dann muss bei Position 1 (also 1 wieder verglichen werden). Nur für den Anfangsbuchstaben ist der Wert -1. Wenn dieser genommen wird, heisst das, dass das Pattern wieder von vorne verglichen werden muss.

Diese Verschiebeinformationen werden zu Beginn der Suche im Text berechnet. Damit muss bei der Suche nie ein Teilstück zweimal durchsucht werden.

Implementierung:

Listing 9: Knuth-Morris-Pratt

```
public class KPM {
    String m_text;
    String m_pattern;
    int[] m_next;
    public KPM(String text, String pattern) {
       m_text = text;
        m_pattern = pattern;
        m_next = new int[pattern.length()];
    public void initnext() {
       int i = 0; // wird das Pattern einmal durchlaufen
        int j = -1; // wird zum Vergleich mit dem Anfagsstck verwendet
        m_next[i] = j;
        while (i < m_pattern.length() - 1) {</pre>
            if (j < 0 || m_pattern.charAt(i) == m_pattern.charAt(j)) {</pre>
                i++;
                j++;
                m_next[i] = j;
            } else {
                j = m_next[j];
        }
    }
    public void search_kmp() {
        int t = 0;
        int p = 0;
        while (t < m_text.length()) {</pre>
            // p weiss, mit was im Pattern verglichen werden muss
            // t geht durch den Text
            if ((p < 0) \mid \mid m_{text.charAt(t)} == m_{pattern.charAt(p))  {
                t++;
                p++;
            } else {
                p = m_next[p];
            if (p == m_pattern.length()) {
                {\tt System.out.println("Gefunden, Uebereinstimmung startet bei "}
                        + (t - p + 1) + ". Zeichen");
            }
        }
    }
    public static void main(String[] args) {
         KPM kpm = new KPM("baabcabac", "bac");
         kpm.initnext();
         kpm.search_kmp();
    }
}
```

6 Sortieren

```
Ein Array a ist sortiert, wenn gilt: \forall i \in [0, a.lenght - 2] : a[i] \ relop \ a[i+1] relop: Relation, Binäres Prädikat (typisch: \leq, \geq, <, >)
```

6.1 Überprüfen, ob das Array sortiert ist

Listing 10: Ist Array sortiert?

```
i=0;
while(i<a.lenght-1 && a[i] relop a[i+1]) i++;
boolean sortiert = (i==a.length-1);
```

Aufwand: linear in der Länge des Arrays

6.2 Sortieren durch direktes Auswählen (selection sort)

Das Array wird durch gegangen und nach dem grössten Element durchsucht. Einmal gefunden, wird es hinten hingesetzt. Danach wird das zweitgrösste Element gesucht und vor das grösste Element gestellt. Wenn man dies weiterführt wächst der sortierte Teil des Arrays kontinuierlich, während der unsortierte Teil kleiner wird.

Listing 11: Selection Sort

```
int k, max; //k = index of max; max = value of max
for (int last = a.length - 1; last > 0; last--) {
    k = 0;
    max = a[k];
    for (int j = 1; j <= last; j++) {
        if (a[j] > max) {
            max = a[k = j];
        }
    }
    if(k!=last) {
        a[k] = a[last];
        a[last] = max;
    }
}
```

Worst-Case Aufwand: $T(n) = 1 + 2 + 3 + \dots + (n-3) + (n-2) + (n-1) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2 - n}{2} \approx \frac{n^2 - n}{2}$

6.3 Sortierten durch direktes einfügen (insertion sort)

Das Array wird durch gegangen und jedes Element an der richtigen Stelle, der bereits durch gegangenen Elemente, eingesetzt.

Listing 12: Insertion Sort

```
for(int first=1; first<a.length;first++) {
   tmp=a[first];
   k=first-1;
   while(k>=0 && a[k]>tmp) {
      a[k+1]=a[k];
      k--;
   }
   a[k+1] = tmp;
}
```

Worst-Case Aufwand: $T(n) = 1 + 2 + 3 + \ldots + (n-3) + (n-2) + (n-1) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2 - n}{2} \approx \frac{n^2}{2}$ Durchschnitt: $T(n) = 0.5 + 1 + 1.5 + \ldots + \frac{(n-3)}{2} + \frac{(n-2)}{2} + \frac{(n-1)}{2} + \frac{n}{2} = \sum_{i=1}^{n-1} \frac{i}{2} = \frac{1}{2} * \sum_{i=1}^{n-1} i = \frac{1}{2} * (\frac{n^2 - n}{2}) \approx \frac{n^2}{4}$

6.4 Enumeration Sort

Durchlaufe das gegebene Array a und vermerke jedes Auftreten eines Wertes u in einem Hilfsarray t an der Position p, wobei p sehr einfach aus u berechnet werden kann; d.h. t[p] muss zu Beginn 0 sein und wird mit jedem Auftreten von u um eins erhöt.

Durchlaufe t und schreibe jeweils fortlaufend t[p] mal den wert u in das Array a.

Listing 13: Enumeration Sort

6.5 Quicksort (randomisierter Algorightmus)

- 0. falls A.length <= 1: Array A ist schon sortiert
- 1. wähle zufällig ein Pivotelement p aus A und teile A wie folgt auf:

```
A_1: enthält nur Elemente aus A \ p, die \leq p sind A_2: enthält nur Elementa us A \ p, die >= p sind
```

- 2. $quicksort(A_1)$ $quicksort(A_2)$
- 3. $A = [A_1, p, A_2]$

6.5.1 Implementierung

Listing 14: Quicksort

```
void quicksort (int[] a) {
 if (a.length > 1) sort(a,0,a.length-1);
void sort(int[] a, int l, int r) {
 int i=l, j=r;
  int p = Math.random(a, l, r),
    while (a[i] < p) i++;
    while (a[j] > p) j--;
    if (i <= j) {
      int tmp = a[i];
      a[i] = a[j];
      a[j] = tmp;
      i++;
      j--;
  } while (i < j);</pre>
  if (l < j) sort(a, l, j);
  if (i < r) sort(a, i, r);
```

6.5.2 Aufwand Quicksort

Worstcase: Es wird immer das Element ganz links (bzw. ganz rechts) genommen

$$\begin{split} T(1) &= 0 \\ T(n) &= c_1 + c_2 * n + T(1) + T(n-1) = c_1 + c_2 * n + 0 + T(n-1) \\ &= c_1 + c_2 * n + (c_1 + c_2 * (n-1) + T(n-2)) \\ &= 2 * c_1 + c_2 * ((n-2) + (n-1) + n) + T(n-3) \\ &= 2 * c_1 + c_2 * ((n-1) + n) + (c_1 + c_2 * (n-2) + T(n-3)) \\ &= 3 * c_1 + c_2 * ((n-2) + (n-1) + n) + T(n-3) \\ &= 3 * c_1 + c_2 * (n * \sum_{k=0}^{i-1} (n-k) + T(n-i) \\ &= i * c_1 + c_2 * \sum_{k=0}^{i-1} (n-k) + T(n-i) \\ &= i * c_1 + c_2 * (n * \sum_{k=0}^{i-1} 1 - \sum_{k=0}^{i-1} k) + T(n-1) \\ &\Rightarrow \text{ sei nun } i = n-1 \\ &= c_1 * (n-1) + c_2 * (n * (n-1) - \frac{(n-2) * (n-1)}{2}) + T(1) \\ &= c_1 * (n-1) + c_2 * (n^2 - n - \frac{n^2}{2} + \frac{3 * n}{2} - 1) \\ &= c_1 * (n-1) + c_{15} : 362 * (\frac{n^2}{2} + \frac{n}{2} - 1) \\ &T(n) \in O(n^2) \end{split}$$

Bestcase: Das Array nimmt immer das Element, dass in der Mitte des Arrays ist

$$\begin{split} T(1) &= 0 \\ T(n) &= c_1 + c_2 * n + 2 * T(\frac{n}{2}) \\ &= 2 * T(\frac{n}{2}) + c_2 * n + c_1 \\ &= 2 * (2 * T(\frac{n}{4}) + c_2 * \frac{n}{2} + c_1) + c_2 * n + c_1 \\ &= 4 * T(\frac{n}{4}) + c_4) + c_2 * n + 2 * c_1 + c_2 * n + c_1 \\ &= 4(2 * T(\frac{n}{8}) + c_2 * \frac{n}{4} + c_1) + 2 * c_2 * n + 3 * c_1 \\ &= 8 * T(\frac{n}{8}) + 3 * c_2 * n + 7 * c_1 \\ &\Rightarrow 2^i = n \text{ und } i = ld(n) \text{ werden ersetzt} \\ &= 2^i * T(\frac{n}{2^i}) + i * c_2 * n + \sum_{k=0}^{i-1} 2^k * c_1 \\ &= n * T(\frac{n}{n}) + ld(n) * c_2 * n + c_1 * \sum_{k=0}^{ld(n)-1} 2^k \\ &= c_2 * n * ld(n) + c_1 * (2^{ld(n)} - 1) \\ &= c_2 * n * ld(n) + c_1 * (n - 1) \\ &= n * (c_2 * ld(n) + c_1) - c_1 \\ T(n) &\in O(n \cdot log n) \end{split}$$

6.6 Mergesort

Listing 15: Mergesort

```
public class Mergesort {
    private int[] numbers;
    private int[] helper;
    private int number;
    public void sort(int[] values) {
        this.numbers = values:
        number = values.length;
        this.helper = new int[number];
        mergesort(0, number - 1);
    private void mergesort(int low, int high) {
        \ensuremath{//} Check if low is smaller then high, if not then the array is sorted
        if (low < high) {
            // Get the index of the element which is in the middle
            int middle = (low + high) / 2;
            // Sort the left side of the array
            mergesort(low, middle);
            // Sort the right side of the array
            mergesort(middle + 1, high);
            // Combine them both
            merge(low, middle, high);
    }
    private void merge(int low, int middle, int high) {
        // Copy both parts into the helper array
        for (int i = low; i <= high; i++) {
            helper[i] = numbers[i];
        int i = low;
        int j = middle + 1;
        int k = low;
        // Copy the smallest values from either the left or the right side back
        // to the original array
        while (i <= middle && j <= high) {
            if (helper[i] <= helper[j]) {</pre>
                numbers[k] = helper[i];
                i++;
            } else {
                numbers[k] = helper[j];
                j++;
            k++;
        // Copy the rest of the left side of the array into the target array
        while (i <= middle) {
            numbers[k] = helper[i];
            k++;
            i++;
```

6.7 Laufzeiten

Sortierverfahren	Best-Case	Average-Case	Worst-Case	Zusätzlicher Speicherplatz
Bubblesort	$O(n \cdot \log(n))$	$O(n \cdot \log(n))$	$O(n^2)$	
Insertionsort	O(n)	$O(n^2)$	$O(n^2)$	
Mergesort	$O(n \cdot \log(n))$	$O(n \cdot \log(n))$	$O(n \cdot \log(n))$	bei Array $O(n)$ bis $O(n \cdot \log(n))$
Quicksort	$O(n \cdot \log(n))$	$O(n \cdot \log(n))$	$O(n^2)$	$O(n \cdot \log(n))$ für Stack
Selectionsort	$O(n^2)$	$O(n^2)$	$O(n^2)$	

7 Halbdynamische Datenstrukturen

7.1 Halbdynamische Datenstruktur

statische Datestruktur • fixer Speicherbedarf, unabhängig von der Anzahl genutzter Elemente im Array

• direkter Zugriff auf die Elemente des Arrays

halbdynamische Datenstruktur • Speicherbedarf passt sich schrittweise der genutzten Anzahl Elemente an und bleibt zwischendrin konstant

- direkter Zugriff auf die Elemente
- Anpassung des Speicherbedarfs ist zeitaufwändig

dynamische Datenstrukturen (Liste, Stack, Baum usw.) • Speicherbedarf hängt direkt von der genutzten Anzahl Elemente ab

- üblich unterstützte Operationen: Suchen, Einfügen, Entfernen
- indirekter Zugriff auf die Elemente

7.2 Datennutzung über die Zeit

7.3 Datenstruktur: ArrayList

Implementiert das Interface list

- ArrayList verwendet intern ein Array von Objekten
- die Länge des Arrays entspricht der Kapazität
- die verwendete Anzahl Elemente ist in size gespeichert
- Eine ArrayList startet mit der Grösse 10 wenn nicht's anderes angegeben wurde
- Die Kapazität wird erhöht, wenn die ArrayList voll ist und ein neues Element hinzugefügt wird.
- Die neue Kapazität wir bei der Erhöhung wie folgt berechnet: JRE1.6: $cap_{new} = (cap_{old} * 3)/2 + 1$

```
JRE1.7: cap_{new} = cap_{old} + (cap_{old} >> 1)
```

- void add(int index, Object element)
- void clear()

- boolean contains(Object o)
- Object get(int index)
- int indexOf(Object o)
- boolean isEmpty()
- ListIterator listIterator(int index)
- Object remove(int index)
- boolean remove(Object o)
- Object set(int index, Object element)
- int size()
- . . .

7.4 Generics Wildcards

7.4.1 Unbounded Wildcard <?>

Einsatz • Deklaration einer Referenzvariable, die auf Objekte beliebiger aktuell parametrisierter Klassen eines generischen Typs zeigen kann

• Arrays von generischen Klassen

Interpretation • bei G<T> steht der formale Typ-Parameter T stellvertretend für genau einene Referenztyp

• bei G<?> steht das Fragezeichen für alle möglichen Referenztypen

Listing 16: Unbound Wildcard

```
Punkt<?>[] array = new Punkt<?>[5];

array[0] = new Punkt<Integer>(1,2);
array[1] = new Punkt<Double>(1.5, 2.5);
array[2] = new Punkt<String>("hoi", "du");

Object o = array[0].getX();

// Number n = array[0].getX();

// Integer i = array[0].getX();

// array[0].getX(5);
```

7.4.2 Upper Bound Wildcard <? extends T>

Einsatz Deklaration einer Referenzvariable, die auf Objekte eines generischen Typs zeigen kann, wobei die Objekte mit T oder einer Subklasse von T aktuell parametrisiert sein müssen

Interpretation bezeichnet die oberste Klasse in der Klassenhierarchie, welche als aktuellen Typ-Parameter für den formalen Typ-Parameter T eingesetzt werden darf

Listing 17: Upper Bound Wildcard

```
Punkt<? extends Number> ref;
ref = new Punkt<Integer>(1,2);
// ref = new Punkt<String>("hoi", "du");

Object o = ref.getX();
Number n = ref.getX();
// Integer i = ref.getX();
// ref.setX(5);
```

7.4.3 Low Bound Wildcard <? super T>

Einsatz Deklaration einer Referenzvariable, die auf Objekte eines generischen Typs zeigen kann, wobei die Objekte mti T oder einer Superklasse von T aktuell parametrisiert sein müssen

Interpretation bei G<? super C> steht das Fragezeichen für alle möglichen Superklassen von C (inkl. C selber)

Listing 18: Lower Bound Wildcard

```
Punkt<? super Integer> ref;
ref = new Punkt<Integer>(1,2);
// ref = new Punkt<Double>(1.5, 2.5);

Object o = ref.getX();
// Number n = ref.getX();
// Integer i = ref.getX();
ref.setX(5);
```

7.4.4 Interner Aufbau (bis Java 1.4.2)

- alle Klassen aus dem Java Collections Framework verwalten intern Referenzen vom Typ Object
 ⇒ maximale Flexibilität
- alle Methodenschnittstellen verwenden den Typ Object
- da alle Referenztypen zur Klasse Object zuweisungskompatibel sind, bieten die Collections keine Typsicherheit

7.4.5 Interner Aufbau (seit Java 5.0)

- alle Collections verwalten intern Referenzen vom Typ <E>, wobei E ein beliebiger Platzhalter (Typ-Parameter) für einen konkreten Referenztyp ist
- Collections werden generisch (maximale Flexibilität)
- Collections können für alle möglichen Referenztypen verwendet werden, auch für Object (= früherer interner Aufbau)

8 Programmverifikation

8.1 Korrektheit eines Algorithmus

- Ein Algorithmus heisst korrekt, wenn er seiner Spezifikation genügt
- überprüfung:
 - Verifikation: Mittels logischer Herleitung
 - Testen: Fehlerfreiheit kann nicht nachtgewiesen werden

8.2 Aussagenlogik

8.2.1 Syntax

- atomare Formeln (Atome): A, B, C, ...
- seien F und G zwei beliebige Formeln
- Konjuktion: $(F \wedge G)$ ist eine Formel
- Disjunktion: $(F \vee G)$ ist eine Formel
- Negation: negF ist eine Formel
- Implikation: $(F \to G)$ ist eine Kurzschreibweise für $(\neg F \lor G)$
- Bikonditional: $(F \leftrightarrow G)$ ist eine Kurzschreibweise für $(F \to G) \land (G \to F)$

8.2.2 Semantik

- \bullet Belegung \mathfrak{B} : eine Teilmenge der atomaren Formeln wird mit einem Wahrheitswert aus false, true bzw. 0.1 belegt
- die Bedeutungen der Konjunktion, Disjunktion und Negation sind analog zur Bool'schen Algebra definiert
- passende Belegung \mathfrak{B} auf Formel F angewendet: $\mathfrak{B}(F)$

8.2.3 Modell

- eine Belegung heisst zu einer Formel F passend, wenn alle in F vorkommenden Atome belegt sind
- eine Belegung \mathfrak{B} ist ein **Modell** für eine Formel F, wenn sie passend ist und wenn der Wahrheitswert von $\mathfrak{B}(F) = \text{true}$ ist: $\mathfrak{B} \models F$
- Belegung ist \mathfrak{B} kein Modell für Formel F, wenn sie zwar passend ist, aber wenn der Wahrheitswert von $\mathfrak{B}(F) = \text{false}$ ist: $\mathfrak{B} \nvDash F$

8.2.4 Erfüllbarkeit

- Eine Formel F heisst **erfüllbar**, wenn für sie ein Modell existiert, andernfalls **unerfüllbar**
- Eine Formel F heisst **gültig** (oder Tautologie), wenn alle passenden Belegungen Modelle sind: $\models F$

8.2.5 Äquivalenz

Zwei Formeln F und G heissen (semantisch) äquivalent, falls für alle passenden Belegungen \mathfrak{B} gilt: $\mathfrak{B}(F) = \mathfrak{B}(G)$. Dafür schreiben wir $\models (F \leftrightarrow G)$ oder kurz $F \equiv G$.

AND		OR		
$(F \wedge F)$	$\equiv F$	$(F \vee F)$	$\equiv F$	
$(F \wedge G)$	$\equiv (G \wedge F)$	$(F \vee G)$	$\equiv (G \vee F)$	
$((F \wedge G) \wedge H)$	$\equiv (F \wedge (G \wedge H))$	$((F \vee G) \vee H)$	$\equiv (F \vee (G \vee H))$	
$(F \wedge (F \vee G))$	$\equiv F$	$(F \vee (F \wedge G))$	$\equiv F$	
$(F \wedge (G \vee H))$	$\equiv ((F \land G) \lor (F \land H))$	$(F \vee (G \wedge H))$	$\equiv ((F \lor G) \land (F \lor H))$	
$\neg (F \land G)$	$\equiv (\neg F \lor \neg G)$	$\neg (F \lor G)$	$\equiv (\neg F \land \neg G)$	
$(F \wedge G)$	$\equiv G$, falls $\models F$	$(F \vee G)$	$\equiv G$, falls $\models F$	
$(F \wedge G)$	\equiv F, falls F unerfüllbar	$(F \vee G)$	\equiv F, falls F unerfüllbar	

8.3 Prädikatenlogik

8.3.1 Syntax

- Erweiterung der Aussagenlogik um Quantoren, Funktionen, Prädikate, Relationen und Variablen
 - nullstellige Prädikate entsprechen den Atomen der Aussagelogik
 - Relationen können als Prädikate aufgefasst werden
 - nullstellige Funktionen sind Konstanten
- Formeln
 - logische Verknüpfung von Prädikaten: die Argumente der Prädikate sind Terme, gebildet aus Funktionen, Variablen und Konstanten
 - sei x eine Variable und F eine Formel
 - * \forall x F ist eine Formel mit gebundenem x
 - * \exists x F ist eine Formel mit gebundenem x
 - eine Formel heisst geschlossen oder Aussage, wenn alle ihre Variablen durch Quantoren gebunden sind
- \bullet Prädikatenlogik mit Identität wenn F und G zwei Formeln sind, so ist auch F=G eine Formel

8.3.2 Semantik

• Struktur $S = (U_s, I_s)$

 ${\cal U}_s$ ist eine nicht-leere Grundmenge und ${\cal I}_s$ eine Abbildung

- der Prädikate über U_s
- der Funktionen auf U_s
- -der Variablen auf Elemente von ${\cal U}_s$
- Semantik bezüglich passender Struktur S

S(Term) jeder Term wird gemäss I_s auf ein Element aus U_s abgebildet

S(Prädikat) jedes Prädikat bestimmt einen Wahrheitswert in Abhängigkeit seiner Argumente (Terme)

S(Formel) die aussagenlogische Verknüpfung der Wahrheitswerte der Prädikate

 $S(\forall x F)$ F ist eine Formel

- * ist true, falls für alle $d \in U_s$ gilt: $S_{[x/d]}(F) = true$
- * ist false, sonst

 $S(\exists x F)$ F ist eine Formel

- * ist true, falls für alle d $\in U_s$ gilt: $S_{[x/d]}(F)=true$
- * ist false, sonst

8.3.3 Äquivalenz

Definition

Zwei prädikatenlogische Formeln F und G sind äquivalent, falls für alle passenden Strukturen S gilt: S(F) = S(G). Dafür schreiben wir $F \equiv G$.

Äquivalenzregeln (zusätzlich zur Aussagenlogik)

falls x in G nicht frei vorkommt, gilt:

$$\begin{array}{cccc} (\forall xF \wedge G) & \equiv & \forall x(F \wedge G) \\ (\forall xF \vee G) & \equiv & \forall x(F \vee G) \\ (\exists xF \wedge G) & \equiv & \exists x(F \wedge G) \\ (\exists xF \vee G) & \equiv & \exists x(F \vee G) \end{array}$$

8.3.4 Beispiele

Alle Studierenden von Professor p mögen Logik.

```
L(x): "x mag Logik"

S(x,y): "x studiert bei y"

\forall x: S(x,p) \to L(x)

\forall x: \neg S(x,p) \lor L(x)
```

Ein Professor ist glücklich, wenn alle seine Studierenden Logik mögen

```
G(x): "x ist glücklich"

\exists y : (\forall x : S(x, y) \to L(x)) \to G(y)
```

Ein Professor ist unglücklich, wenn er keine Studierende hat.

$$\exists y : (\forall x : \neg S(x, y)) \to \neg G(y))$$

8.4 Verifikation

8.4.1 Hoare-Tribble

Ein Hoare-Triple ($\{R\}P\{S\}$) ist gültig, wenn bei erfüllter Vorbedingung R und nach Ausführung von P die Spezifikation (Nachbedingung) S erfüllt ist. Das Programm P ist korrekt, wenn das Hoare-Triple gültig ist.

Variablen

```
Input: a, b, c, ..., z
Output: a', b', c', ..., z'
```

Vorbedingung (Precondition)

Damit das Programm P die Spezifikation (Postcondition) S erfüllen kann, muss die Vorbedingung R erfüllt sein. Je schwächer die Vorbedingung R, desto besser: weakest precondition (WP).

Beispiele

```
Spezifikation: S=(x'=10)
Programm: P=(x':=x+2)
mögliche Vorbedingung R=(a=0 \lor b=2 \lor x=8 \lor z=0)
einfachste Vorbedingung (weakest Precondition); WP=(x=8)
```

Nachbedingungen (Postcondition)

Die Nachbedingungen entsprechen der **Spezifikation** des Programms und sind je präziser, umso besser.

 $\text{Implikation:} \ [\underbrace{S}_{spezielleSpez.} \rightarrow \underbrace{T}_{allg.Spez.}] \equiv \forall a,b,c,...,z,a',b',c',...,z' : \neg S \vee T$

- \bullet a,b,c,...,z sind alle Variablen, die in den Spezifikationen S und T vorkommen
- wenn ein Programm P die speziellere Spezifikation S erfüllt, so auch die allgemeinere T
- es gibt ein Programm Q, welches die Spezifikation T erfüllt und mindestens so einfach ist wie das Programm P, welches die Spezifikation S erfüllt

Besipiele:

$$S = (x' = 10), T = (x' > 0)$$

 $P_1 = (x' := 6), P_2 = (x' := 10), P_3 = (x' := x + 1)$

- $\underbrace{\{true\}}_{algemeinsteVorbedingung} P_1\{S\} = false$
- $\{true\}P_1\{T\} = true$
- $\{true\}P_2\{S\} = true$
- $\{true\}P_2\{T\} = true$
- $\{true\}P_3\{S\} = false$
- $\{x = 9\}P_3\{S\} = true$

8.4.2 Ablauf der Verifikation

Gegeben

Vorbedingung R, Spezifikation S, Programm P

Ablauf

- aus S und P die schwächste Vorbedingung WP = wp(P, S) berechnen
- falls $[R \to WP]$ gilt, dann erfüllt das Programm P die Spezifikation S bei eingehaltener Vorbedingung R
- R kann somit durch WP ersetzt werden

Berechnung der WP

- ausgehend von der Spezifikation S
- Anweisung für Anweisung rückwärts rechnen
- Berechnungsregeln für Zuweisung, Sequenz, Selektion, Iteration

8.5 Weakest Precondition: Rechenregeln

8.5.1 Zuweisung

Gegeben

Zuweisung
$$P = (x' := y)$$

Nachbedingung S

Regel

$$WP = wp(P, S) = wp((x' := y), S) = S|_{alle \ x' \ durch \ y \ ersetzt}$$

Beispiele

$$S = (a' = z), P = (a' := b + c), WP = (b + c = z)$$

 $S = (n' = n), P = (n' := n - 1), WP = (n = n - 1) = false$

8.5.2 Weakest Precondition herausfinden (Beispiel)

$$S = (r' = x \cdot y), \ P = (\text{if } x = 2 \cdot k \ then \ r' := 2 \cdot k \cdot y \ \text{else } s' := 2 \cdot k \cdot y; r' := s' + y), \ B = (x = 2 \cdot k)$$

$$S1 = wp((r' := 2ky), S) = (2ky = xy) = (2k = x) = B$$

$$S2 = wp((s' := 2ky; r' := s' + y), S) = wp(s' := 2ky, s' + y = xy) = (2ky + y = xy) = (2k + 1 = x)$$

$$R = wp(P, S) = (B \rightarrow S1 \land \neg B \rightarrow S2)$$

$$= (\neg B \lor S1) \land (B \lor S2) = \neg B \land B \lor \neg B \land S2 \lor S1 \land B \lor S1 \land S2$$

$$= \neg B \land S2 \lor S1 \land B \lor S1 \land S2$$

$$= B \land S1 \lor \neg B \land S2$$

$$= (x = 2k \land x = 2k) \lor (x \neq 2k \land 2k + 1 = x)$$

$$= (x = 2k) \lor (2k + 1 \neq 2k \land 2k + 1 = x)$$

$$= (x = 2k) \lor (true \land 2k + 1 = x)$$

$$= (x = 2k) \lor (x = 2k + 1)$$

8.5.3 Sequenz

Gegeben

Sequenz $P = (Anweisung_1; Anweisung_2; ...; Anweisung_n)$ Nachbedingung S

Regel

$$WP = wp(P, S) = wp((Anweisung_1; Anweisung_2; ...; Anweisung_{n-1}), wp(Anweisung_n, S))$$

Beispiel

$$\begin{split} P &= (t' := x; x' := y; y' := t') \\ S &= (x' = b \wedge y' = a) \\ WP &= wp((t' := x; x' := y; y' := t'), (x' = b \wedge y' = a)) \\ &= wp((t' := x; x' := y), wp((y' := t'), (x' = b \wedge y' = a))) \\ &= wp((t' := x; x' := y), (x' = b \wedge t' = a)) \\ &= wp((t' := x), wp((x' := y), (x' = b \wedge t' = a))) \\ &= wp((t' := x), (y = b \wedge t' = a)) \\ &= (y = b \wedge x = a) \end{split}$$

8.5.4 Selektion

Gegeben

logischer Ausdruck b; Selektion $P = (if b then P_1 else P_2)$; Nachbedingung S

Regel

$$WP = wp(P, S) = wp((\text{ if b then } P_1 \text{ else } P_2), S)$$

= $(\neg b \lor wp(P_1, S)) \land (b \lor wp(P_2, S))$
= $b \land wp(P_1, S) \lor \neg b \land wp(P_2, S)$

Beispiel

$$\begin{split} P &= (if \ x < 0 \ then \ x' := -x \ else \ x' := x - 1) \\ S &= (x' > 0) \\ WP &= wp((if \ x < 0 \ then \ x' := -x \ else \ x' := x - 1), x' > 0) \\ &= (x \ge 0 \lor -x > 0) \land (x < 0 \lor x - 1 > 0) \\ &= (x \ge 0 \lor x < 0) \land (x < 0 \lor x > 1) \\ &= true \land (x \notin [0, 1]) \\ &= x \notin [0, 1] \\ &= (x < 0 \land -x > 0) \lor (x \ge 0 \land x - 1 > 0) \\ &= (x < 0) \lor (x \ge 0 \land x > 1) \\ &= (x < 0) \lor (x > 1) \\ &= x \notin [0, 1] \end{split}$$

8.5.5 Iteration

Iterationen

for-Schleife: Anzahl Durchläufe bekannt \to als Sequenz betrachten while-Schleife: Spezialfall der Rekursion \to Invariante bestimmen

Invariante (INV)

eine logische Bedingung ausgedrückt in den Variabeln aus P, welche vor P und nach jedem durchlauf von P_1 gültig ist

wenn $\{INV \land B\}P_1\{INV\}$ gültig ist, so ist auch $\{INV\}$ while B do $P_1\{INV \land \neg B\}$ gültig

Regel

$$WP = wp(P,S) = INV$$

8.6 Invarianten-Anwendung

Listing 19: Multiply

```
long multiply(int x, int y) {
   // 4. schwaechste Vorbedingung WP
  long a = x, b = y, r = 0;
  // 3. INV muss gelten
  while (a != 0) {
      // 2. INV & (a!=0) muss gelten
      if ((a & 1) == 1) r += b;
      b = b << 1;
      a = a >> 1;
      // 1. INV muss gelten
   } // 5. INV & (a = 0) muss gelten
  return r;
} //Nachbedingung S muss gelten
```

8.6.1 Ist INV wirklich eine korrekte Invariante?

Gegeben

Invariante INV = $(a \ge 0 \land a \cdot b + r = x \cdot y)$

Beweisverfahren

wenn an Position 1 die Invariante INV gilt, dann muss an der Position 2 auch die Invariante gelten zu zeigen: $\{(INV \land B) \rightarrow wp(P1, INV)\}$

Beispiel

```
R1 = wp(a := a >> 1, INV) = (\frac{a}{2} \ge 0 \land \frac{a}{2} \cdot b + r = x \cdot y)

R2 = wp(b := b << 1, R1) = (\frac{a}{2} \ge 0 \land \frac{a}{2} \cdot b \cdot 2 + r = x \cdot y)

R3 = wp((if (a&1) = 1 then r := r + b else NOP), R2) = \frac{a}{2} \ge 0 \land a \cdot b + r = x \cdot y
```

8.6.2 Was ist die schwächste Vorbedingung WP?

Gegeben

```
Invariante INV = (a \ge 0 \land a \cdot b + r = x \cdot y)
```

Beweisverfahren

Wenn an Position 2 die Invariante INV gilt, dann gilt sie auch an der Position 3.

Somit ist INV an der Position 3 die Nachbedingung der Instruktionen vor der while-Schleife und wir können mit dem üblichen Verfahren WP berechnen.

Beispiel

R1 = wp(r := 0, INV) =
$$(a \ge 0 \land a \cdot b = x \cdot y)$$

R2 = wp(b := y, R1) = $(a \ge 0 \land a \cdot y = x \cdot y)$
WP = wp(a := x, R3) = $(x \ge 0 \land x \cdot y = x \cdot y) = (x \ge 0)$

8.6.3 Welches ist die Nachbedingung S?

$\mathbf{Gegeben}$

Invariante INV =
$$(a \ge 0 \land a \cdot b + r = x \cdot y)$$

Schleifenbedingung B = $(a \ne 0)$

Verfahren

Wenn an Position 1 die Invariante INV gilt, dann gilt an der Position 5 die Invariante, nicht aber B, also S = $(INV \land \neg B)$

Beispiel

$$S = (INV \land \neg B) = (a \ge 0 \land a \cdot b + r = x \cdot y \land a = 0)$$

$$S = (r = x \cdot y \land a = 0)$$

Der Rückgabewert r ist also gleich dem Produkt aus x und y.

9 Komplexität

9.1 Zeit- und Speicherbedarf

Modell: Random-Access-Machine (RAM)

Eine möglichst einfache CPU mit einem unendlich grossen Speicher bestehend aus Zellen für beliebig grosse Zahlen.

Speicherbedarf eines Algorithmus

Die minimale Anzahl Speicherzellen im RAM-Modell, die vorhanden sein müssen, damit der Algorithmus korrekt ausgeführt werden kann.

Zeitbedarf eines Algorithmus

Laufzeit in Echtzeit: gemessene Ausführungszeit eines Programms mit vordefinierten Testdaten auf einem präzisee beschriebenen Computersystem.

Laufzeit in RAM-Instruktionen: die minimale Anzahl RAM-Befehle, die ausgeführt werden müssen, um den Algorithmus abzuarbeiten.

Definitionen

Laufzeit: T(n)Speicherbedarf: M(n)

9.2 Worst-Case vs. Average-Case

Best-Case (meistens uninteressant)

die Zahlen sind bereits sortiert

Worst-Case (sinnvoll und praktikabel)

die Zahlen sind in umgekehrter Reihenfolge

Average-Case (oft zu schwierig)

Um eine Aussage der Art "Im Durchschnitt dauert es" machen zu können, muss Klarheit bestehen, worüber der Durchschnitt gebildet werden darf. Fairerweise müssen alle möglichen Probleminstanzen der Länge n mit ihrer Wahrscheinlichkeitsverteilung in Betracht gezogen werden.

9.3 Gross-O und Gross-Omega

9.3.1 Gross-O

- obere Schranke einer Worst-Case Abschätzung
- sinnvoll für konkrete Algorithmen
- Beispiel:

n Zahlen können mit Heap-Sort in Zeit $T(n) \in \mathcal{O}(n \log n)$ bei einem Speicherbedarf $M(n) \in \mathcal{O}(n)$ sortiert werden

9.3.2 Gross-Omega

- untere Schranke einer Worst-Case Abschätzung
- sinnvoll für Problemklassen
- Beispiel:

um n beliebige Zahlen in beliebiger Reihenfolge auf einer RAM zu sortieren, braucht es mindestens $\Omega(n \log n)$ Rechenschritte

Formal: $\Omega(g(n)) = \{h(n) | \exists c > 0 : \exists \text{ unendlich viele } n : h(n) \ge c \cdot g(n) \}$

• Gross-Theta: Sind \mathcal{O} und Ω gleich wird geschrieben: $T(f) \in \Theta(g)$ Kann gelesen werden als: "f wächst genauso schnell wie g"

9.4 Reihen

9.4.1 Wichtige Reihen

Name	Reihe	Wert
geometrische Partialsumme	$\sum_{i=0}^{n} q^{i}$	$\frac{1-q^{n+1}}{1-q}$
arithmetische Reihe	$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
	$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
Exponentialfunktion	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	e^x

9.4.2 Rechenregeln

•
$$\sum_{k=0}^{n} k = 0 + 1 + 2 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

•
$$\sum_{i=0}^{\infty} (a_i + b_i) = \sum_{i=0}^{\infty} a_i + \sum_{i=0}^{\infty} b_i$$

•
$$\sum_{i=0}^{\infty} (a_i - b_i) = \sum_{i=0}^{\infty} a_i - \sum_{i=0}^{\infty} b_i$$

•
$$\sum_{k=1}^{n} n = \sum_{k=0}^{n-1} n = n \cdot n = n^2$$

•
$$\sum_{k=0}^{n-1} k = \frac{(n-1)(n-1+1)}{2} = \frac{n(n-1)}{2}$$

•
$$\sum_{k=0}^{n-1} n - k = \sum_{k=1}^{n} n - \sum_{k=0}^{n-1} k = n^2 - \frac{n(n-1)}{2}$$

•
$$\sum_{i=0}^{\infty} A \cdot a_i = A \cdot \sum_{i=0}^{\infty} a_i$$

•
$$\sum_{i,j=0}^{\infty} (a_i \cdot b_j) = \left(\sum_{i=0}^{\infty} a_i\right) \cdot \left(\sum_{i=0}^{\infty} b_i\right)$$

10 Rekursion

10.1 Rekursionsschema

Rekursive Methoden müssen eine Fallunterscheidung enthalten

- zuerst einfachen Fall ohne Rekursion abhandeln
- dann der aufwendigere Fall mit dem rekursiven Aufruf
- Sicherstellen, dass der aufwändigere Fall durch Rekursion irgendwann im einfachen Fall endet.

Listing 20: Rekursionsschema

```
void rek(...) {
   if (einfacher Fall) {
      sofort erledigen
   } else {
      rekursiver Aufruf
   }
}
```

Listing 21: Rekursionsschema Beispiel - Fakultät

```
int rek(int x) {
    if (x <= 1) {
        return x;
    } else {
        return x * rek(x-1);
    }
}</pre>
```

10.2 Backtracking

- eigenet sich für Probleme, bei denen alle Kandidaten einer Lösungsmenge (der ganze Suchraum) inspiziert werden müssen, um zu eintscheiden, ob ein Kandidat eine Lösung darstellt
- ullet erschöpfende Suche ist meistens mit exponentiellem Aufwand verbunden o nur verwenden, wenn nichts Besseres vorhanden
- typische Beispiele
 - Labyrinthsuche
 - Erfüllbarkeit von logischen Aussagen in konjunktiver Normalform
 - n-Damen-Problem
 - Springerweg, Springerkreis
 - ..

10.2.1 3 Voraussetzungen für Backtracking

- 1. Lösung des Problems läst sich als Vektor V (unbestimmter, aber endlicher Länge) darstellen
- 2. Alle Lösungskandidaten V_i bilden zusammen einen endlich grossen Lösungsraum
- 3. Es existiert ein effizienter Test zur Erkennung von nicht-erweiterbaren Teillösungen $\rightarrow (v_1, v_2, \dots, v_k)$ lässt sich nicht zu $(v_1, v_2, \dots, v_k, v_{k+1})$ erweitern

10.2.2 8-Damen-Problem

- Ziel: 8 Damen auf einem Schachbrett platzieren, so dass keine zwei Damen sich gegenseitig bedrohen
- Verallgmeinerung: n Damen auf einem Schachbrett der Grösse $n \times n$ platzieren, so dass ...
- Zustandsraum
 - alle Möglichkeiten, um 4 Damen auf ein leeres Schachbrett der Grösse 4×4 zu platzieren
 - Anzahl Zustände: $16 \cdot 15 \cdot 14 \cdot \dots = 43680 > 13^4 = (4^2 4 + 1)^4$
 - bei n Damen gibt es also mehr als $(n^2 n + 1)^n \in O(n^{2n})$ Zustände \to exponentiell grosser Suchraum
- Ansatz: erschöpfende Suche mittels Backtracking
 - durch Vorwissen kann der Suchraum reduziert werden
 - Einsatz von Heuristiken (vielversprechende Kandidaten zuerst) können die Laufzeit stark reduzieren

10.3 Code

Listing 22: 8-Damen-Problem

```
public class Queens {
  /************************
   \star Return true if queen placement q[n] does not conflict with
   \star other queens q[0] through q[n-1]
   *****************************
   public static boolean isConsistent(int[] q, int n) {
      for (int i = 0; i < n; i++) {
         if (q[i] == q[n])
                                 return false; // same column
         if ((q[i] - q[n]) == (n - i)) return false; // same major diagonal
         if ((q[n] - q[i]) == (n - i)) return false;
                                             // same minor diagonal
      return true;
  /************************
   * Print out N-by-N placement of queens from permutation q in ASCII.
   public static void printQueens(int[] q) {
      int N = q.length;
      for (int i = 0; i < N; i++) {
         for (int j = 0; j < N; j++) {
            if (q[i] == j) System.out.print("Q");
                        System.out.print("* ");
         System.out.println();
      System.out.println();
   }
  /****************************
   * Try all permutations using backtracking
   *****************************
   public static void enumerate(int N) {
      int[] a = new int[N];
      enumerate(a, 0);
   public static void enumerate(int[] q, int n) {
      int N = q.length;
      if (n == N) printQueens(q);
      else {
         for (int i = 0; i < N; i++) {
             q[n] = i;
             if (isConsistent(q, n)) enumerate(q, n+1);
         }
      }
   public static void main(String[] args) {
      int N = Integer.parseInt(args[0]);
      enumerate(N);
   }
}
```

11 Divide-and-Conquer

Divide 1.) Gesamtproblem in 2 oder 3 gleichgrosse Teilprobleme zerlegen

Conquer 2.) jedes Teilproblem separat lösen (gleicher Algorithmus wie fürs Gesamtproblem)

Merge 3.) aus Teillösungen die Gesamtlösung erzeugen.

11.1 Code

Listing 23: max Teilsumme

```
int maxTSumme(int[] a, int left, int right) {
 if (left > right) return 0;
 if (left == right) return (a[left] >= 0 ? A[left] : 0);
 int m = (left + right) >>> 1;
 int v1 = maxTSumme(a, left, m)
 int v2 = maxTSumme(a, m+1, right);
 int sum=0; rmax=0; lmax=0;
 for (int i=m+1; i <= right; i++) {
   sum += a[i];
   if (sum > rmax) rmax = sum;
 sum = 0;
 for (int i=m; i>=left; i--) {
   sum += a[i];
   if (sum > lmax) lmax = sum;
 int v3 = lmax + rmax;
 return max(v1, v2, v3);
```

11.2 Analyse

11.2.1 Schritte

- Zeile 2-4: 10 Schritte
- Zeile 5: $T(\frac{n}{2})$ Schritte
- Zeile 6: $T(\frac{n}{2})$ Schritte
- Zeile 8 16: $6+6\cdot n$ Schritte
- $\bullet\,$ Zeile 17 18: 5 Schritte

n: länge von a

11.2.2 Aufwandsformel

```
T(n) = 2 \cdot T(\frac{n}{2}) + 6n + 21

T(1) = 7
```

11.3 Berechnung

11.3.1 Teleskopieren

```
\begin{split} T(n) &= 2 \cdot T(\frac{n}{2}) + 6 \cdot n + 21 \\ T(n) &= 2 \cdot (2 \cdot T(\frac{n}{4}) + \frac{6 \cdot n}{2} + 21) + 6 \cdot n + 21 \\ T(n) &= 4 \cdot T(\frac{n}{4}) + 12 \cdot n + 3 \cdot 21 \\ T(n) &= 4 \cdot (2 \cdot T(\frac{n}{8}) + \frac{6 \cdot n}{4} + 21) + 12 \cdot n + 3 \cdot 21 \\ T(n) &= 8 \cdot T(\frac{n}{8}) + 18 \cdot n + 7 \cdot 21 \\ &\cdots \end{split}
```

11.3.2 Verallgemeinerung

$$T(n) = 2^i \cdot T(\frac{n}{2^i}) + 6 \cdot i \cdot n + (2^i - 1) \cdot 21$$

$$\frac{n}{2^i} = 1 \Rightarrow n = 2^i \Rightarrow i = log_2(n) = ld(n)$$

$$T(n) = 2^{ld(n)} \cdot T(1) + 6 \cdot ld(n) \cdot n + (2^{ld(n)} - 1) \cdot 21$$

$$T(n) = n \cdot 7 + 6 \cdot ld(n) \cdot n + (n-1) \cdot 21$$

$$T(n) = 6 \cdot n \cdot ld(n) + 28 \cdot n - 21 \Rightarrow O(n \cdot \log_2(n))$$

11.4 Beispiel Teleskopieren

$$\begin{split} T(n) &= 2T(\frac{n}{2}) + \sqrt{n} \\ &= 2(2T(\frac{n}{4}) + \sqrt{\frac{n}{2}}) + \sqrt{n} \\ &= 4T(\frac{n}{4} + 2\sqrt{\frac{n}{2}} + \sqrt{n} \\ &= 4(2T(\frac{n}{8}) + \sqrt{\frac{n}{4}}) + 2\sqrt{\frac{n}{2}} + \sqrt{n} \\ &= 8T(\frac{n}{8}) + 4\sqrt{\frac{n}{4}} + 2\sqrt{\frac{n}{2}} + \sqrt{n} \\ &\cdots \\ &= 2^iT(\frac{n}{2^i}) + \sum_{k=0}^{i-1} 2^k \sqrt{\frac{n}{2^k}} = 2^iT(\frac{n}{2^i}) + \sum_{k=0}^{i-1} \sqrt{2^k} \sqrt{n} \\ &= 2^iT(\frac{n}{2^i}) + \sqrt{n} \sum_{k=0}^{i-1} 2^{\frac{k}{2}} \\ &= 1 + 2^iT(\frac{n}{2^i}) + \sqrt{n} \sum_{k=0}^{i-1} 2^{\frac{k}{2}} \\ &= 1 + \sqrt{n} \sum_{k=0}^{i-1} 2^{\frac{k}{2}} = n + \sqrt{n} \sum_{k=0}^{i-1} \sqrt{2^k} \\ &= n + \sqrt{n} \frac{\sqrt{2^i} - 1}{\sqrt{2} - 1} = n + \sqrt{n} \frac{\sqrt{n} - 1}{\sqrt{2} - 1} \\ &= n + \frac{n - \sqrt{n}}{\sqrt{2} - 1} \\ &= n + \frac{n - \sqrt{n}}{\sqrt{2} - 1} \end{split}$$