#### **CPE301 – SPRING 2019**

# Design Assignment 2B

Student Name: Tyler Gardenhire

Student #: 8000450294

Student Email: gardenhi@unlv.nevada.edu

Primary Github address: gardenhi@unlv.nevada.edu

Directory: https://github.com/tylergardenhire/submission\_projects.git

#### Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

### 1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmel Studio 7 w/ AVR assembly and simulator and Atmega328p board used.



PortB2 is connected to LED3 and PortC2 is connected to SW1.

# 2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
Task 1 Assembly Code:
.org 0
                                          ;location for reset
       jmp start
.org 0x02
                                          ;location for ext_int0
       jmp ex0_isr
start:
       ldi r20, high(RAMEND)
       out sph, r20
       ldi r20, low(RAMEND)
       out spl, r20
                                   ;initialize stack
       ldi r16, 0x00
                                  ;initialize output
       ldi r20, 0x2
       sts eicra, r20
                                          ;make INTO falling edge triggered
                                          ;set portb2 as output (led)
       sbi ddrb, 2
       sbi portd, 2
                                  ;set pull up
                                   ;enable INT0
       ldi r20, 1<<int0</pre>
       out eimsk, r20
                                                  ;enable interrupt
       sei
off:
       out portb, r16
                                          ;turn led off until interrupt
       rjmp off
delayon:
                                          ;delay for 1.25 seconds
       ldi r20, 100
delayon1:
       ldi r21, 100
delayon2:
       ldi r22, 200
delayon3:
       nop
       nop
       dec r22
       brne delayon3
       dec r21
       brne delayon2
       dec r20
       brne delayon1
       ret
ex0_isr:
       in r21, portb
       ldi r22, (1<<2)
                                          ;toggles pb5
       eor r21, r22
                                  ;toggles led pb2
       out portb, r21
                                          ;turn led pb2 on
       rcall delayon
                                   ;call delay
       reti
                                          ;return here until interrupt
```

```
Task 1 C Code:
#define F CPU 800000UL
                                                 //set cpu mhz for delay
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
int main(void)
              DDRB |= (1<<2);
                                                        //set pb2 as output
                                                 //clear pb2
              PORTB &= (1<<2);
              PORTD = 1 << 2;
                                                 //enable pd2
              EICRA = 0x02;
              EIMSK = 1<<INT0;</pre>
                                                 //enable pc set 0 interrupt
                                                        //enable global interrupt
              sei();
              while (1);
}
ISR(INT0_vect)
{
       PORTB ^= (1<<2);
                                                 //toggle pb2 during interrupt
      _delay_ms(1250);
                                                 //delay for 1.25 seconds
      PORTB ^= (1<<2);
                                                 //toggle pb2 during interrupt
}
```

# 3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

N/A

#### 4. SCHEMATICS

N/A

# 5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

```
Task 1:
```

Assembly:

Full period is 1.25 s, the following screenshot was taken at the end of one loop.

 Cycle Counter
 1250346

 Frequency
 1.000 MHz

 Stop Watch
 1,250.35 ms

C:

Full period is 1.25 s, the following screenshot was taken at the end of one loop.

Cycle Counter 1250346
Frequency 1.000 MHz
Stop Watch 1,250.35 ms

# 6. SCREENSHOT OF EACH DEMO (BOARD SETUP)



# 7. VIDEO LINKS OF EACH DEMO

https://youtu.be/uixC4MPNSFE

#### 8. GITHUB LINK OF THIS DA

https://github.com/tylergardenhire/submission\_projects.git

# **Student Academic Misconduct Policy**

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

TYLER GARDENHIRE