Адекватные доказательства теорем по дифференциальным уравнениям

22. Эльсгольц

Используется принцип сжатых отображений, доказательство которого (стр. 48-49) практически очевидно, дальше вручную проверяется, что оператор A[y] (интегральной формы диф. уравнения) является сжимающим.

Принцип сжимающих отображений \to замена диф. уравнения интегральным \to введение оператора $A[y] \to$ условие Липшица \to проверка, что A[y] — сжимающий \to ручное обобщение на случай систем

23/24. Филиппов

Доказывается все для однородной системы (стр. 67-78), затем почти очевидным образом переносится на линейные уравнения (стр. 81-86).

Линейная независимость \to вронскиан \to фунд. система решений \to дифференцирование детерминанта \to формула Лиувилля \to замена переменных (переход от системы к лин. уравнению)

25. Филиппов

Аналогично предыдущему. Доказывается в одну строчку (стр. 79) для систем, затем заменой переменных (стр. 90) для линейных уравнений.

Вариация постоянных ($c=c(t)\to$ дифференцирование общего решения \to подстановка в неоднородное уравнение \to окончательная формула через обратную матрицу \to замена переменных (переход от системы к лин. уравнению)