Technická dokumentácia

Experimentálna fyzika: Načítavanie dát zo vzorkovacieho osciloskopu HP 83480a

Ján Kelemen, Patrik Hampel, Omar Al-Shafe'i, Adam Rigan

7.2.2022

1. Úvod

1.1 Účel katalógu požiadaviek

Tento dokument slúži na opísanie požiadaviek ku projektu Experimentálna fyzika: Načítavanie dát zo vzorkovacieho osciloskopu HP 83480a. Dokument obsahuje požiadavky zadávateľa a je záväzný pre zadávateľa a vývojový tím projektu. Katalóg je napísaný zrozumiteľným jazykom a je určený pre kohokoľvek kto bude so systémom pracovať alebo chce vedieť na čo slúži.

Katalóg požiadaviek je východiskový materiál pre následnú implementáciu.

1.2 Rozsah využitia systému

Hlavným cieľom je vytvorenie aplikácie, ktorá je určená na komunikáciu s osciloskopom typu HP 83480a pomocou rozhrania GPIB. Aplikácia bude obsahovať funkcie na obsluhovanie tohto prístroja a dáta, ktoré budú namerané, budú uložené do súborov.

1.3 Slovník pojmov

- GPIB je skratka pre Hewlett-Packard Interface Bus. Toto rozhranie je používané pre prepojenie meracích prístrojov s počítačom pre účely automatizácie merania
- PG programmers guide manuál

1.4 Odkazy a referencie

- Manuály pre osciloskop HP 54750a/83480a:
 https://github.com/TIS2021-FMFI/osciloskop/tree/main/docs/manualy
- Odkaz na tento celý projekt:
 https://github.com/TIS2021-FMFI/osciloskop
- Odkaz na program hpctrl: https://github.com/TIS2020-FMFI/hpctrl

1.5 Prehľad nasledujúcich kapitol

V druhej kapitole sa čitateľ dozvie o perspektíve a funkcionalite produktu/systému, nezachádza sa do veľkých podrobností. Druhá kapitola taktiež opisuje všeobecné obmedzenia systému.

Tretia kapitola sa podrobne venuje konkrétnym funkčným, používateľským a kvalitatívnym požiadavkám. Tieto požiadavky sa získali priamo od zadávateľa, aby výsledný produkt zjednodušoval prácu s osciloskopom na katedre experimentálnej fyziky.

2. Všeobecný popis

2.1 Perspektíva systému

Produkt bude desktopová aplikácia, ktorá bude komunikovať s osciloskopom typu HP 83480a. Hlavným cieľom aplikácie bude nastavenie prístroja a zaznamenávanie nameraných hodnôt do súborov.

2.2 Funkcie systému

Aplikácia bude používateľovi umožňovať pripojiť sa pomocou HP-IB rozhrania na osciloskop, nastaviť ho a spustiť meranie, ktorého výsledky potom budú uložené do súborov. Používateľ si taktiež bude vedieť vybrať, či chce uložiť len prvé meranie alebo ich chce automaticky ukladať viac za sebou.

V aplikácii bude používateľovi umožnené resetovať osciliskop na defaultné nastavenia.

Používateľ si bude môcť zapnúť/vypnúť priemerovanie a nastaviť ďalšie parametre merania. Namerané údaje sa potom budú ukladať na disk - pred dátami budú uložené parametre v štýle preamble (User Guide str. 11-16, resp. Programmers Guide 23-19, za ktorými budú nasledovať dáta - buď jeden alebo viacero riadkov. Každý riadok bude obsahovať jedno meranie (N bodov podľa aktuálnych nastavení).

2.3 Charakteristika používateľov

Systém je určený pre profesorov a študentov na Katedre Experimentálnej Fyziky, ktorí pri svojej práci používajú osciloskop. Typ

používateľa je len jeden. Používateľ bude môcť využívať všetky funkcie, ktoré aplikácia využíva. Prihlásenie nebude potrebné.

2.4 Všeobecné obmedzenia

Systém vyžaduje GPIB, ktoré slúži, ako komunikačný interface medzi aplikáciou a osciloskopom typu HP 83480a. Aplikácia bude bežať na operačnom systéme Windows 7+.

Vlastnosťou prístroja je, že po odoslaní nesprávneho dopytu sa tok komunikácie preruší a je potrebné sa znovu odpojiť a pripojiť. Používateľ to dosiahne pomocou zodpovedajúcich tlačidiel v aplikácii.

Ďalšou vlastnosťou prístroja je, že ak očakáva trigger, ktorý neprichádza, nekomunikuje a vtedy nepostačí ani odpojenie a pripojenie prístroja, je potrebné buď na vstup prístroja dodať trigger, alebo ho celkom vypnúť a zapnúť (vývojárom nie je známy iný postup).

3. Špecifické požiadavky

3.1 Funkčné požiadavky

 Všetky intervaly, ktoré sú v tejto kapitole sú uzavreté. Teda napríklad interval 1 - 10 obsahuje aj číslo 10.

vsak(A) GPIB settings

A1 Address number

- Aplikácia komunikuje s osciloskopom cez GPIB cez adresu, ktorú používateľ zadá.
- Návod ako nastaviť adresu na prístroji je v PG na strane 20.

- A2 Connect, Disconnect

- Aplikácia sa pomocou htctrl pripojí alebo odpojí od osciloskopu.
- Connect a Disconnect sa realizuje pomocou hpctrl a táto funkcionalita je dostupná tlačidlom v aplikácií.

- A3 Terminal

- Terminál umožňuje používateľovi priamu komunikáciu so zariadením. Používateľ zadá príkaz, ktorý nemusí byť inak dostupný. Tento príkaz sa odkomunikuje priamo s prístrojom a ak existuje odpoveď, tak ju zobrazí.

- A4 Ping osci

- Ping osci zobrazí dialógové okno so spravou, ci sa podarila nadviazať komunikácia s osciloskopom

(B) Oscilloscope settings

- B1 Averaging checkbox

- ak je checkbox zaškrtnutý, tak pristroj robí merania v režime average. (pri odškrtnutí sa vyšle :ACQUIRE:AVERAGE OFF)

- B2 Average No.

- Určuje koľkokrát sa meranie spriemeruje . Číslo je z rozsahu 1
 4096.
 - rmácie sú v PG na stranách 163 a 164
- Nasledujúce príkazy nastavia na prístoji average na hodnotu
 100:

OUTPUT 707;":ACQUIRE:AVERAGE ON"
OUTPUT 707;":ACQUIRE:COUNT 100"

- B3 Points

- Používateľ môže zadať počet bodov v rozsahu 16 4096 alebo zadať hodnotu AUTO. Následne sa nastaví dĺžka záznamu, ktorú bude osciloskop posielať, alebo v prípade, že používateľ zadal AUTO si počet bodov nastaví osciloskop sám.
 - Informácie sú v PG na strane 165
 - Nasledujúci príkaz nastavia na prístoji points na hodnotu 100:
 OUTPUT 707;":ACQUIRE:POINTS 100"

- B4 Channel checkboxes

- Používateľ zaškrtne kanály, na ktorých bude meranie prebiehať (CHANNEL1..CHANNEL4).

- B5 Reset oscilloscope button

- Po stlačení tlačidla sa osciloskop nastaví do defaultných nastavení, ktoré sa nachádzajú v PG na stranách 105 - 107
 - Prístroj sa resetuje príkazom:

OUTPUT 707;"*RST"

B6 Reinterpret trimmed data checkbox

- Ak sú dáta prijaté z prístroja mimo rozsah, prístroj namiesto nich automaticky zaraďuje špeciálne konštanty. Ak je tento checkbox zaškrtnutý, program tieto špeciálne konštanty nahradí maximálnou, resp. minimálnou hodnotou rozsahu.

(C) Run and save

- C1 Directory name

- Používateľ zadá názov priečinku. Následne budú jednotlivé merania do neho ukladané vo formáte "DATUM_CAS_X.TXT". Ak sa meria viac kanálov naraz, každý sa ukladá do samostatného súboru (pre X=1,2...).

- C2 Browse button

- Používateľ si vie pomocou tohto tlačidla zvoliť cestu, kam sa súbor, prípadne viac súborov s meraniami uloží.

- C3 Send preamble after each measurement checkbox

- Pokiaľ je táto možnosť zvolená, tak po každej nameranej hodnote sa vypýta preambula. Táto možnosť zároveň spomalí celý proces, ale výhodou je, že sa v preambule hodnota "Time" aktualizuje po každom meraní (čo je ale vo väčšine prípadov úplne zbytočné)

- C4 Run button

- Ak beží meranie, odštartované tlačidlom RUN, tak sa toto tlačidlo zmení na tlačidlo STOP, ktoré meranie zastaví. Meranie sa opakuje maximálnou možnou rýchlosťou, prenos údajov z prístroja prebieha v binárnom formáte typu WORD.

- Príkaz run je v PG na strane 138.

- C5 Single button

- Vykoná sa len jedno meranie a prípadne sa uloží do súboru. Po uložení do súboru sa prístroj prepne znovu do režimu "run" - t.j. merania sa aktualizujú na displeji pri prichádzajúcich trigeroch.

(D) Config and set values

D1 Konfigurovateľný panel príkazov

- Používateľ si môže v konfiguračnom textovom súbore nastaviť často používané príkazy. Ku každému z nich sa v používateľskom rozhraní v samostatnom okne vytvorí tlačidlo, na odoslanie zodpovedajúceho príkazu. V tomto okne je taktiež tlačidlo Set all, ktoré pošle všetky príkazy z otvoreného okna do prístroja. Ak má príkaz parameter, je miesto parametra v príkaze v súbore označené znakom # a vedľa tlačidla sa nachádza input field, do ktorého používateľ zadáva hodnotu, ktorá nahradí znak # v príkaze.

- D2 Select config dropdown

V hlavnom okne aplikácie sa nachádza vypadávaci select box,
 v ktorom si používateľ môže vybrať jednu z už vytvorených konfigurácií panelu príkazov.

- D2 New cfg

- V hlavnom okne aplikácie sa nachádza tlačidlo New cfg, ktoré otvorí editor konfigurovateľného panelu, s novým menom konfigurácie panelu, ktoré používateľ môže určiť. Pozri tiež D3.

- D3 Edit cfg

- V hlavnom okne aplikácie sa nachádza tlačidlo Edit cfg, ktoré otvorí editor konfigurovateľného panelu zvolenej konfigurácie. V okne do textovej oblasti zapíše reťazce znakov pre často používané príkazy. Môže nastaviť/zmeniť meno tejto konfigurácie a zatvoriť editor s uložením alebo uloženia zmien.

- D4 Load cfg

- V hlavnom okne aplikácie sa nachádza tlačidlo Load cfg, ktoré otvorí riadiaci panel so zoznamom nakonfigurovaných príkazov pre zvolenú konfiguráciu.

- D5 Info panel

 V tejto časti aplikácie sa taktiež nachádza Info panel, v ktorom sú zobrazené hodnoty, ktoré boli nastavené cez konfigurovateľný panel príkazov, alebo cez iné nastavenia, ktoré aplikácia poskytuje.

3.2 Kvalitatívne požiadavky

Práca s aplikáciou bude intuitívna a jednoduchá na pochopenie. Zadávateľ nevyžaduje komplexné vypracovanie používateľskej príručky alebo priamy návod pre inštaláciu aplikácie. Bude však dostupný textový súbor, ktorý bude obsahovať základné informácie o prístroji, kto aplikáciu vytvoril a ako sa spúšťa a používa.

3.3 Požiadavky na používateľské rozhranie

3.3.1 Ovládanie aplikácie

Aplikácia sa bude ovládať pomocou myši a klávesnice zároveň, pričom klávesnica slúži iba na zadávanie hodnôt. Ovládanie iba klávesnicou a klávesovými skratkami nebude možné.

3.3.2 Rozlíšenie obrazovky

Systém bude desktopová aplikácia.