

UNIVERSIDADE FEDERAL DE RORAIMA

Análise de Algoritmos

Prof. Dr. Herbert Oliveira Rocha herberthb12@gmail.com

O que será abordado neste curso?

Problemas Computacionais

seus Algoritmos

suas Complexidades

Descrição da Disciplina

- Disciplina: Análise de Algoritmos
- Carga horária: 60h
- Término: 21/06/2023
- Horário: 10h às 12h
- Professor: Herbert Oliveira Rocha, Dr.

e-mail: herbert.rocha@ufrr.br

github: https://github.com/hbgit

home page: https://hbgit.github.io/

Site da Disciplina: No SIGAA

Dados do professor

https://prismrr.github.io/

Plano de Ensino

Referências

Projeto Final

https://github.com

Pontos Extras

https://codesignal.com/developers/

Pontos Extras

https://app.codesignal.com/leaderboard/

E os Pontos Extras?

https://codesignal.com/developers/

Regras:

- 1. Resolver o maior número no modo Arcade Graphs
- 1. Resolver o maior número de desafios no Company Challenges
- 1. Somente os 5 primeiros com maior pontuação receberão pontos extras.
- 1. O histórico das batalhas deverá ser comprovado

E os Pontos Extras?

https://codesignal.com/

Pontuação:

E os Pontos Extras?

https://www.beecrowd.com.br/academic/ 5 pts – lab com 12 questões

UNIVERSIDADE FEDERAL DE RORAIMA

Problemas

Problemas

O problema da ida ao supermercado

Onde estacionar o carro?

Como fluir entre as prateleiras?

Problema 1

- Eu conheço algum problema similar? Se positivo, qual foi a solução dada?
 - Torre de Hanoi
 - O dilema do Imperador
 - Jogo de Xadrez
- Que estratégia posso usar para resolvê-lo?
 - Todas as possibilidades MÉTODO EXAUSTIVO

Problema 2

- Que dados nós temos para começar a resolução do problema?
- Quais são as restrições envolvidas?
- O que é uma solução para o problema?
- Eu conheço algum problema similar? Se positivo, qual foi a solução dada?
- Que estratégia posso usar para resolvê-lo?
- O que é o problema ?

Problema 2

- ✓ Que estratégia posso usar para resolvê-lo?
 - ✓ Todas as possibilidades MÉTODO EXAUSTIVO.
 - ✓ Tentar sempre a melhor alternativa MÉTODO GULOSO.
 - ✓ Começar por qualquer lugar MÉTODO HEURÍSTICO.
 - ✓ *Determinar* a melhor rota ISTO É MATEMATICAMENTE COMPROVADO, MAS COMPUTACIONALMENTE DIFÍCIL DE SER OBTIDO.

Problemas

O PROBLEMA DO CAIXEIRO VIAJANTE e o PROBLEMA

DA TORRE DE HANOI são considerados

COMPUTACIONALMENTE DIFÍCEIS de se resolver.

Problemas

Um problema de manufatura

- Em que ordem produzir?
- Como montar?
- Comprar as peças de qual fornecedor?

Um problema de distribuição de mercadorias

- Qual caminhão?
- Por onde chegar ao cliente?
- Que clientes atender primeiro?

Um problema de alocação de antenas de TV, celular

- Quantas são necessárias para um melhor recobrimento da região?
- Que locais?
- Qual distância entre elas?

O Problema do Caixeiro Viajante

Traveling Salesman Problem ou TSP

Um caixeiro viajante quer visitar todo um determinado conjunto de cidades, cada cidade exatamente uma única vez, terminando a visita na mesma cidade que começar. Ainda, o custo envolvido no percurso deve ser o menor possível.

- Problema clássico da Teoria da Complexidade Computacional (NP-difícil);
- Um dos mais estudados e utilizado para modelar problemas práticos e até outros modelos teóricos;
- □ A afirmativa "tão difícil quanto o TSP" é uma máxima;
- □ Versão simétrica: (n-1)!/2 trajetórias válidas, para n cidades;
- Exemplo prático: Problemas de Escalonamento.

Exemplo de um TSP com 4-cidades

Exemplo de um TSP com 4-cidades

As três trajetórias possíveis ((4-1)!/2) são:

A solução ótima é a trajetória B

As três trajetórias possíveis ((4-1)!/2):

Comprimento (matriz 1): 18

Comprimento (matriz 2): 21

Comprimento (matriz 1): 15

Comprimento (matriz 2): 23

Comprimento (matriz 1): 27

Comprimento (matriz 2): 22

Pareto Ótimo:

Eficiência ou óptimo de Pareto é um conceito desenvolvido pelo <u>italiano</u> <u>Vilfredo Pareto</u>, que define um estado de alocação de recursos em que é impossível realocá-los tal que a situação de qualquer participante seja melhorada sem piorar a situação individual de outro participante

Os pontos vermelhos indicam a escolha ótima em termos de eficiência dado o conjunto de opções, formando uma *fronteira de Pareto* sob o espaço de escolhas restante (abaixo e à esquerda, em cinza)

As três trajetórias possíveis ((4-1)!/2):

Comprimento (matriz 1): 18

Comprimento (matriz 2): 21

Pareto Ótimo:

Comprimento (matriz 1): 15

Comprimento (matriz 2): 23

Comprimento (matriz 1): 27

Comprimento (matriz 2): 22

- 181.440 trajetórias válidas;
- 22 soluções no Pareto Ótimo (2 matrizes de distância).

- 181.440 trajetórias válidas;
- 162 soluções no Pareto Ótimo (3 matrizes de distância).

Regiao factivel p/ o 3DTSP de 10-cidades

Pareto Otimo .

Abordagens de Resolução de Problemas

Analisar problemas e algoritmos do ponto de vista computacional, significa determinar como os mesmos se comportam para pequenas e, principalmente, grandes instâncias e para as casos mais comuns, os melhores casos e, principalmente, os casos mais difíceis de ocorrerem.

Medidas de Análise

- Tempo de Execução.
- Espaço Ocupado de Memória.

Figure 2.4 Plot (n vs. seconds) of various maximum subsequence sum algorithms

CUSTO DE <u>UTILIZAÇÃO</u> DE UM ALGORITMO

O custo de um algoritmo pode ser medido de várias formas:

 Através da execução do programa em um computador real (tempo de execução medido diretamente).

Através do uso de um modelo matemático.

(computador MIX proposto por Knuth D.E., 1968).

Na Prática:

• Ignorar o custo de algumas das operações envolvidas.

Ex.: ignorar operações aritméticas, atribuição e manipulações de índices.

• Considerar apenas as operações mais significativas.

Ex.: na ordenação considerar somente o número de comparações entre os elementos.

Medidas de Tempo Obtidas Através da Execução do Programa em um Computador Real

PROBLEMAS:

- Resultados dependentes do compilador que pode favorecer, algumas construções em, detrimento de outras;
- Resultados dependem do hardware;
- Quando grandes quantidades de memória são utilizadas, as medidas de tempo podem depender deste aspecto.

COMO MEDIR 0 CUSTO DE EXECUÇÃO DE UM ALGORITMO

Função de Custo ou Função de Complexidade onde:

f(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n,

Se f(n) é uma medida, da quantidade de tempo necessário para executar um algoritmo em um problema de tamanho n, então f é chamada função de complexidade de tempo.

Se f(n) é uma medida da quantidade de memória necessária para executar um algoritmo de tamanho n, então f é chamada função de complexidade de espaço.

COMO MEDIR O CUSTO DE EXECUÇÃO DE UM ALGORITMO

IMPORTANTE.. tempo não é tempo REAL!

É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada importante é executada.

36

ANÁLISE DE ALGORITMOS:

- 1. Análise de um algoritmo particular
- 2. Análise de uma classe de algoritmos.

1. Análise de um algoritmo particular

Qual é o custo de usar um dado algoritmo para resolver um problema específico?

- Análise do número de vezes que cada parte do algoritmo deve ser executada;
- Estudo da quantidade de memória necessária.

EXEMPLO 1: Máximo de um conjunto vet[1: n], n > 1

```
(int) função Max (var vet: Vetor);
var i, Temp: int;
INICIO

Temp = vet[1];
    PARA i := 2 TO n

SE Temp < vet[i] ENTÃO
    Temp = vet[i];
    Max = Temp;
FIM-SE</pre>
```

EXEMPLO 1: Máximo de um conjunto vet[1: n], n > 1

Seja f a função de complexidade tal que f(n) é o número de comparações entre os elementos de vet se vet tiver n elementos. Neste caso

$$f(1) = 0$$

$$f(n) = n - 1$$
, para $n > 1$

EXEMPLO 1: Máximo de um conjunto vet[1: n], n > 1

```
(int) função Max (var vet: Vetor);
var i, Temp: int;
INICIO

Temp = vet[1];
    PARA i := 2 TO n
    SE Temp < vet[i] ENTÃO
        Temp = vet[i];
        Max = Temp;
    FIM-SE</pre>
```

FIM

Problema de Encontrar o Maior Elemento de um Conjunto

MELHOR CASO = CASO MÉDIO = PIOR CASO

n-1 comparações

Complexidade - O(n)

EXEMPLO 2: Pesquisa Sequencial (ou Linear)

Problema

- Cada registro contém uma chave única que é utilizada para recuperar registros do arquivo.
- Dada uma chave qualquer o problema consiste em localizar o registro que contenha esta chave.

EXEMPLO: Pesquisa Sequencial

Solução

 O algoritmo de pesquisa mais simples que existe é o que faz uma pesquisa sequencial.

MELHOR CASO

Ocorre quando o registro procurado é o primeiro consultado.

Apenas 1 comparação (custo 1)

PIOR CASO

Ocorre quando o registro procurado é o último a ser consultado, ou então não está presente no arquivo.

n comparações ou n+1 comparações

ANÁLISE DO CASO MÉDIO

Considere que toda pesquisa recupera um registro.

Não existe pesquisa sem sucesso.

ANÁLISE DO CASO MÉDIO

Se *pi* for a probabilidade de que o *i*-ésimo registro seja procurado, e considerando que para recuperar o *i*-ésimo registro sejam necessárias *i* comparações, então:

$$f(n) = 1p1$$
, $+ 2p2 + 3p3 + ... + npn$

Para calcular f(n) basta conhecer a distribuição de probabilidades pi.

Se cada registro tiver a mesma probabilidade de ser acessado que todos os outros, então pi = 1/n, $1 \le i \le n$. Neste caso:

$$f(n) = \frac{1}{n}(1+2+3+\cdots+n) = ?$$

ANÁLISE DO CASO MÉDIO

Se *pi* for a probabilidade de que o *i*-ésimo registro seja procurado, e considerando que para recuperar o *i*-ésimo registro sejam necessárias *i* comparações, então:

$$f(n) = 1p1$$
, $+ 2p2 + 3p3 + ... + npn$

Para calcular f(n) basta conhecer a distribuição de probabilidades pi.

Se cada registro tiver a mesma probabilidade de ser acessado que todos os outros, então pi = 1/n, $1 \le i \le n$. Neste caso:

$$f(n) = \frac{1}{n} (1 + 2 + 3 + \dots + n) = \frac{1}{n} \left(\frac{n(n+1)}{2} \right) = \frac{n+1}{2}$$

MELHOR CASO, PIOR CASO, CASO MÉDIO

Melhor

Corresponde ao menor tempo de execução sobre todas as possíveis entradas de tamanho n.

Pior Caso

Corresponde ao maior tempo de execução sobre todas as entradas de tamanho n.

Se f é uma função de complexidade baseada na análise de pior caso então o custo de aplicar o algoritmo nunca é maior do que f(n).

MELHOR CASO, PIOR CASO, CASO MÉDIO

Caso Médio (ou caso esperado)

Corresponde à média dos tempos de execução de todas as entradas de tamanho n.

Na análise do caso esperado, uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n é suposta, e o custo médio é obtido com base nesta distribuição.

Por esta razão, a análise do caso médio é geralmente muito mais difícil de obter do que as análises do melhor e do pior caso.

EXEMPLO: Pesquisa sequencial

Seja f uma função de complexidade tal que f(n) é o número de vezes que a chave de consulta é comparada com a chave de cada registro.

Neste Caso:

melhor caso: f(n) = 1

pior caso: f(n) = n

caso médio : f(n) = (n+1)/2

COMPLEXIDADE: O(n)

- ALGORITMO PARA ENCONTRAR O MAIOR E O MENOR ELEMENTO DE UM CONJUNTO
- ALGORITMO PARA ORDENAR UM CONJUNTO DE ELEMENTOS

Buble Sort

Insertion Sort

Selection Sort

(Analisem o melhor caso, pior caso e o caso médio)

See you

Perguntas?