Probleme de antrenament pentru examenul Structuri Algebrice în Informatică

- 1. Există permutări de ordin 50 în grupul de permutări S_{14} ?
- 2. Se consideră permutarea $\sigma=(1,\ldots,7)(8,\ldots,14)$, un produs de 2 cicli disjuncți de lungime 7 din S_{14} . Determinați toate permutările $\tau\in S_{14}$ astfel încât $\tau^2=\sigma$.
- 3. Calculați $7^{7^{17^{17}}} \pmod{29}$.
- 4. Determinați numărul elementelor de ordin 24 din grupul produs direct $(\mathbb{Z}_{2^7}, +) \times (\mathbb{Z}_{3^7}, +)$.
- 5. Considerăm pe \mathbb{R} relația binară ρ dată astfel: $x\rho y$ dacă x=y sau x+y=14. Să se arate că ρ este relație de echivalență, să se calculeze clasele de echivalență ale lui 7 și 2022 și să se determine un sistem complet de reprezentanți pentru această relație de echivalență. Este $f: \mathbb{R}/\rho \mapsto \mathbb{R}$, $f(\widehat{x}) = 4x^2 56x + 200$ o funcție bine definită?
- 6. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$ definită astfel:

$$f(x) = \begin{cases} 7x - 7, & \text{dacă } x < -2, \\ 3x^2 + 6x - 18, & \text{dacă } x \ge -2. \end{cases}$$

Decideţi dacă funcția f este injectivă, surjectivă, respectiv bijectivă. Calculați $f^{-1}([-8,8])$ și f([-3,0]).

- 7. Determinați toate morfismele de grupuri de la $(\mathbb{Z}_8, +)$ la $(\mathbb{Z}_8, +)$. Precizați care dintre aceste morfisme sunt injective.
- 8. Determinați cel mai mic număr natural nenul n care împărțit la 5 dă restul 3, împărțit la 7 dă restul 2, și împărțit la 9 dă restul 8.