Modelos Não-Lineares

André E. Lazzaretti UTFPR/CPGEI

Linear vs. nonlinear problems

Objetivos

Problema do OU-Exclusivo:

x_1	x_2	XOR	Class
0	0	0	В
0	1	1	Α
1	0	1	Α
1	1	0	В

É possível resolver esse problema com um classificador linear?

Máquina de Vetor Suporte Linear

 O problema de otimização tem como objetivo a maximização da margem, mantendo o número de pontos com ξ>0, o menor possível:

minimize
$$J(\boldsymbol{w}, w_0, \boldsymbol{\xi}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

subject to $y_i [\boldsymbol{w}^T \boldsymbol{x}_i + w_0] \ge 1 - \xi_i, \quad i = 1, 2, \dots, N$
 $\xi_i \ge 0, \quad i = 1, 2, \dots, N$

Máquina de Vetor Suporte Linear

• Formulação:

$$\mathcal{L}(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \mu_i \xi_i$$

$$- \sum_{i=1}^{N} \lambda_i [y_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) - 1 + \xi_i]$$

$$\prod_{\boldsymbol{\lambda}} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j \right)$$
subject to $0 \le \lambda_i \le C, \quad i = 1, 2, \dots, N$

$$\sum_{i=1}^{N} \lambda_i y_i = 0$$

Máquina de Vetor Suporte Linear

• Uma vez que o hiperplano está determinado $(\mathbf{w} \in w_0)$, a classificação de um novo padrão é feita de acordo com o sinal (+ ou -) resultante de:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

$$=\sum_{i=1}^{N_{\mathcal{S}}}\lambda_{i}y_{i}\boldsymbol{x}_{i}^{T}\boldsymbol{x}+w_{0}$$

Detalhe Importante

 A solução do problema de programação quadrática com desigualdades lineares como restrições tem a propriedade interessante de que os dados entram somente na forma de <u>produto escalar</u> (x^Tx):

$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \right)$$
subject to $0 \le \lambda_{i} \le C, \quad i = 1, 2, \dots, N$

$$\sum_{i=1}^{N} \lambda_{i} y_{i} = 0$$

Kernels

- O algoritmo linear depende somente de $\mathbf{x}^T\mathbf{x}$, portanto pode-se utilizar uma transformação $\phi(.)$, tal que o algoritmo possa ser reescrito em termos de $\phi(\mathbf{x}^T)\phi(\mathbf{x})$
- Pode-se escolher uma transformação φ(.), tal que:

Define-se como kernel, uma função $K(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x})\phi(\mathbf{y})$

Kernels

 Como separar linearmente estes exemplos de duas classes?

• Elevando para uma dimensão linearmente separável: $R^1 \rightarrow R^2$

Kernels

 Elevendo a dimensionalidade → tornar o problema linearmente separável!

Teorema de Mercer

• Considerando o mapeamento para um novo espaço H, definido como um espaço de Hilbert: $\mathbf{x} \mapsto \phi(\mathbf{x}) \in H$

 Um espaço de Hilbert é definido como um espaço completamente linear, onde o produto interno é uma operação definida. Um espaço de Hilbert com dimensão finita é um espaço Euclideano.

Teorema de Mercer

 Para qualquer função contínua K(x,z) que respeite as condições do teorema de Mercer, existe um espaço no qual K(x,z) define um produto interno:

$$\langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{z}) \rangle = K(\boldsymbol{x}, \boldsymbol{z})$$

- Onde <.,.> representa o produto interno.
- Prova do teorema para um dado kernel é complexa.

Teorema de Mercer

- Uma conclusão importante desse teorema é que não é necessário conhecer o mapeamento φ(.), uma vez que somente o produto interno nesse espaço é necessário para a formulação do modelo;
- Além disso, não é possível saber a dimensionalidade desse novo espaço, que pode ser inclusive infinita em determinados casos!
 - Foge ao escopo da disciplina...
- Como checar Teorema de Mercer na prática: verificar se a matriz do kernel é positiva semidefinida.

Kernels mais Usuais

Polinomial:

$$K(\boldsymbol{x},\boldsymbol{z}) = (\boldsymbol{x}^T\boldsymbol{z} + 1)^q, \quad q > 0$$

Gaussiano (Radial Basis Function):

$$K(\boldsymbol{x}, \boldsymbol{z}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{z}\|^2}{\sigma^2}\right)$$

Tangente Hiperbólica:

$$K(x, z) = \tanh \left(\beta x^T z + \gamma\right)$$

Máquina de Vetor Suporte Não-Linear

$$\max_{\lambda} \left(\sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) \right)$$

subject to
$$0 \le \lambda_i \le C$$
, $i = 1, 2, ..., N$

$$\sum_{i} \lambda_i y_i = 0$$

assign
$$\mathbf{x}$$
 in $\omega_1(\omega_2)$ if $g(\mathbf{x}) = \sum_{i=1}^{N_s} \lambda_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0 > (<) 0$

Máquina de Vetor Suporte Não-Linear

Generalização da Ideia do Kernel

- O uso do kernel pode ser generalizado para outros algoritmos, como por exemplo kernel perceptron, kernel least squares, etc...
- Isso é possível quando pode-se escrever os produtos em termos de produtos internos.
- Exemplo: Reescrever um classificador baseado na distância Euclideana, utilizando as definições e propriedades do kernel. Ideia:

classifies it to the
$$\omega_2$$
 class if $||x - \mu_1||^2 > ||x - \mu_2||^2$
Centroide da classe para facilitar

Exercício

• Dicas:

$$||\phi(x) - \mu_1||^2 > ||\phi(x) - \mu_2||^2$$

$$\mu_1 = \frac{1}{N_1} \sum_{i: y_i = +1} \phi(x_i)$$
 and $\mu_2 = \frac{1}{N_2} \sum_{i: y_i = -1} \phi(x_i)$

Resultado:

Exemplo Matlab!

• Visão Geral:

- [peso1, altura1]
- [peso3, altura3][peso4, altura4]
- [peso2, altura2]
- [peso5, altura5]

$$\mathbf{v} = (x_1, \cdots, x_d) \in \mathbb{R}^d$$
$$\mathcal{S}_j = \mathcal{S}_j^{\mathsf{L}} \cup \mathcal{S}_j^{\mathsf{R}}$$

- Como construir a árvore (as divisões)?
 - Um bom atributo separa os exemplos em subconjuntos que, idealmente, são todos positivos e todos negativos, por exemplo:

 Para isso, pode-se utilizar o conceito de Ganho de Informação (Information Gain) ou redução de entropia;

• Treinamento:

$$I_j = H(\mathcal{S}_j) - \sum_{i \in \{L,R\}} \frac{|\mathcal{S}_j^i|}{|\mathcal{S}_j|} H(\mathcal{S}_j^i) \longrightarrow \underset{\mathsf{Gain}}{\mathsf{Information}}$$

$$H(\mathcal{S}) = -\sum_{c \in \mathcal{C}} p(c) \log p(c) \longrightarrow \text{ Entropy }$$

 $c \in \{c_k\}$ indexing the class

Ex.: S possui 10 exemplos da classe c_1 e 10 exemplos da classe c_2 : H(S) = H(10/20) + H(10/20) = H(10/20, 10/20)

- Na prática (versão mais simples):
 - Calcular a entropia do dataset como um todo
 - Para cada feature:
 - Dividir em intervalos (*grid* linear ou baseado no histograma)
 - Calcular o ganho médio de informação considerando os intervalos
 - Selecione a feature com maior ganho médio de informação
 - Repetir o processo (crescer a árvore) até critério de parada ser atingido (tamanho máximo, probabilidade máxima, etc).
- Diversas outras abordagens, cada uma delas um algoritmo diferente
- Por exemplo, outras formas de separar dados de entrada:

Na fase de teste

Assinala a classe majoritária!

Random Forests

- Algoritmo geral:
 - Para b=1 até B (cada árvore):
 - Retire um subconjunto Z* dos dados de treinamento de forma aleatória.
 - 2. Para cada subconjunto, gere uma árvore de tamanho prédeterminado, repetindo de maneira recursiva os seguintes passos (random tree):
 - Selecione aleatoriamente um subconjunto de m atributos, dos p disponíveis (apenas uma parte dos atributos são utilizados).
 - Determine a melhor divisão (split) dos dados com base no ganho de informação.
 - III. Divida o nó em dois nós-filhos.
 - O resultado será dada pela combinação das várias árvores:

Por que funciona?

Random Forests

• **Treinamento**: as árvores são treinadas separadamente e individualmente (normalmente de forma distribuída).

• Teste:
$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

Bootstrapping, Bagging e Boosting

Bootstrapping:

- Amostragem aleatória com substituição.
- Avaliar questões de overfitting, bias, variância, etc.

Bagging:

- Cada modelo possui o mesmo peso na decisão final
- Reduz variância
- Random Forest

Boosting:

 Cada modelo sequencial enfatiza instâncias que os modelos anteriores classificaram incorretamente.

Efeito do tamanho da Forest

Smoother separation ———

Efeito da profundidade da árvore

Cross-

Matlab

Combinação de Classificadores

• Ideia Geral:

Combinação de Classificadores

Regra da Maioria dos Votos: Decide-se em favor da classe que apresenta um consenso entre os classificadores ou quando pelo $l_c = \begin{cases} \frac{L}{2} + 1, & L \text{ even} \\ \frac{L+1}{2}, & L \text{ odd} \end{cases}$ concordam no rótulo atrubuído, sendo:

$$l_c = \begin{cases} \frac{L}{2} + 1, & L \text{ even} \\ \frac{L+1}{2}, & L \text{ odd} \end{cases}$$

Pattern Recognition 33 (2000) 1475-1485

www.elsevier.com/locate/patcog

Combining multiple classifiers by averaging or by multiplying?

David M.J. Tax^a,*, Martijn van Breukelen^a, Robert P.W. Duin^a, Josef Kittler^b

Referências

- Capt. 4 Livro Theodoridis (Pattern Recognition Fourth Edition e Pattern Recognition Matlab) – SVM e combinação de classificadores;
- Tutorial Regression Trees e Random Forests Criminisi (Microsoft);
- Aulas Professor Nando de Freitas (UBC/Oxford) – decision trees and random forests;