#### **Video**



#### 7.6\_Variance

#### **POLL**

Which of the following is greater (≥) for a random variable X?

#### **RESULTS**



 ${\bf Results\ gathered\ from\ 45\ respondents}.$ 

#### **FEEDBACK**

 $E[X^2]$  will be greater. Since  $V(X)=E[X^2]-E[X]^2$ , and V(X) is always non-negative.

1

0 points possible (ungraded)

Given 4 probability density functions, which one shows the greatest variance?



1

**2** 

**3** 

 $\bigcirc$  4

×

#### Answer

Incorrect: Video: Variance

#### **Explanation**

Variance measures how far a set of (random) numbers are spread out from their average value. 3 is the brodest one.

Submit

You have used 2 of 2 attempts

**1** Answers are displayed within the problem

2

0 points possible (ungraded)

A random variable X is distributed over  $\{-1,0,1\}$  according to the p.m.f.  $P(X=x)=rac{|x|+1}{5}$  .

Find its expectation E(X)

0 **✓ Answer**: 0

#### **Explanation**

The pmf is symmetric around 0, hence the mean is 0.

and variance  $V\left( X
ight)$ 

4/5  $\checkmark$  Answer: 4/5  $\frac{4}{5}$ 

## **Explanation**

By definition, 
$$\operatorname{Var}(X)=\frac{2}{5}\times(-1-0)^2+\frac{1}{5}\times(0-0)^2+\frac{2}{5}\times(1-0)^2=\frac{2}{5}+0+\frac{2}{5}=\frac{4}{5}$$
 Or,  $\operatorname{Var}(X)=\mathbb{E}\left(X^2\right)-\mathbb{E}(X)^2=4/5-0=4/5$ 

Submit

You have used 1 of 4 attempts

**1** Answers are displayed within the problem

# 3 (Graded)

4/4 points (graded)

Let random variable  $oldsymbol{X}$  be distributed according to the p.m.f

• If 
$$Y=2^X$$
, what are

E[Y]

4.2 **✓ Answer:** 4.2

#### **Explanation**

$$E(Y) = E(2^X) = 2 \times 0.3 + 4 \times 0.5 + 8 \times 0.2 = 4.2.$$

Var(Y)

### **Explanation**

For any random variable Z,  $V\left(Z
ight)=E\left(Z^2
ight)-E(Z)^2$ . Here

 $E(Y^2) = E(2^{2X}) = 4 \times 0.3 + 16 \times 0.5 + 64 \times 0.2 = 22$ . Thus  $V(Y) = 22 - 4.2^2 = 4.36$ .

• If Z=aX+b has  $E\left[ Z\right] =0$  and  $\operatorname{Var}\left( Z\right) =1$ , what are:

|a|

10/7

**✓ Answer:** 1.42857

 $\frac{10}{7}$ 

|b|

2.714

**✓ Answer:** 2.714285

2.714

#### **Explanation**

First,  $E(X) = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$ ,  $E(X^2) = 0.3 \times 1 + 0.5 \times 4 + 0.2 \times 9 = 4.1$  and

thus  $Var(X) = E(X^2) - E(X)^2 = 4.1 - 1.9^2 = 0.49$ .

Now, by linearity of expectation,  $0=E\left(Z\right)=aE\left(X\right)+b=1.9\cdot a+b$ . Further, we know

 $1 = \text{Var}(Z) = \text{Var}(aX + b) = a^2 \cdot \text{Var}(X) = a^2 \cdot 0.49$ . Solving these two equations gives |a| = 1.42857, |b| = 2.71485.

Submit

You have used 2 of 4 attempts

**1** Answers are displayed within the problem

## 4 (Graded)

5/5 points (graded)

Consider two games. One with a guaranteed payout  $P_1=90$ , and the other whose payout  $P_2$  is equally likely to be 80 or 120. Find:

•  $E(P_1)$ 

90

✓ Answer: 90

90

#### **Explanation**

The distribution of  $P_1$  is  $P\left(P_1=90
ight)=1$ . Hence,  $E\left(P_1
ight)=1 imes 90=90$ .

•  $E(P_2)$ 

(80 + 120)/2

**✓ Answer:** 100

#### **Explanation**

The distribution of  $P_2$  is  $P\left(P_2=80\right)=P\left(P_2=120\right)=rac{1}{2}.$  Hence,  $E\left(P_2\right)=rac{1}{2} imes80+rac{1}{2} imes120=100.$ 

•  $Var(P_1)$ 

0

✓ Answer: 0

0

### **Explanation**

By definition,  $Var(P_1) = 1 \times (90 - 90)^2 = 0$ .

•  $Var(P_2)$ 

400

**✓ Answer:** 400

400

## **Explanation**

By definition,  $\mathrm{Var}\left(P_2\right) = \frac{1}{2} \times \left(80 - 100\right)^2 + \frac{1}{2} \times \left(120 - 100\right)^2 = 400.$ 

• Which of games 1 and 2 maximizes the `risk-adjusted reward'  $E\left(P_i
ight) - \sqrt{\operatorname{Var}\left(P_i
ight)}$ ?

1

**2** 



## **Explanation**

By definition,  $E\left(P_{1}\right)-\sqrt{\operatorname{Var}\left(P_{1}\right)}=90$ ,  $E\left(P_{2}\right)-\sqrt{\operatorname{Var}\left(P_{2}\right)}=80$ .

Submit

You have used 1 of 4 attempts

**1** Answers are displayed within the problem

# 5 (Graded)

2/2 points (graded)

Which of the following are always true for random variables X, Y and real numbers a, b?

1

The variance of  $\boldsymbol{X}$  is always non-negative.

- $\checkmark$  The standard deviation of X is always non-negative.
- $\bigvee$  If V(X) = V(Y), then V(X+a) = V(Y+b).
- If  $V\left(aX\right)=V\left(bX\right)$  for  $a\neq 0$  and  $b\neq 0$ , then a=b.
- If E[X] = E[Y] and V(X) = V(Y), then X = Y.
- lacksquare If  $E\left[X
  ight]=E\left[Y
  ight]$  and  $V\left(X
  ight)=V\left(Y
  ight)$ , then  $E\left[X^2
  ight]=E\left[Y^2
  ight]$ .



## **Explanation**

- True.
- True. Standard deviation is defined by  $\sqrt{V(X)}$ , which is also non-negative.
- True. Adding a constant  $oldsymbol{a}$  to random varianle  $oldsymbol{X}$  will not affect its varaince.

$$V\left(X+a
ight)=E\left(\left(X+a-E\left(X+a
ight)
ight)^{2}
ight)=E\left(\left(X+a-E\left(X
ight)-a
ight)^{2}
ight)=E\left(\left(X-E\left(X
ight)
ight)^{2}
ight)=V\left(X
ight)$$

- False. When V(X) = 0, this does not hold.
- False. Consider two random variables X,Y with pmf,  $P(X=x)=\left\{egin{array}{l} rac{1}{2},x=-1, \\ rac{1}{2},x=1 \end{array}
  ight.$  and

$$P\left(Y=y\right)=\begin{cases} \frac{1}{8},y=-2\\ \frac{3}{4},y=0 \quad \text{. Now } E\left(X\right)=E\left(Y\right)=0, V\left(X\right)=V\left(Y\right)=1. \text{ However, } X\neq Y.\\ \frac{1}{8},y=2 \end{cases}$$
 - True. As  $E\left(X^2\right)=V\left(X\right)+E^2\left[X\right]$ , if  $E\left(X\right)=E\left(Y\right)$  and  $V\left(X\right)=V\left(Y\right)$ , then  $E\left(X^2\right)=E\left(Y^2\right)$ .

Submit

You have used 1 of 4 attempts

**1** Answers are displayed within the problem

6

O points possible (ungraded)

We say  $X_A$  is an indicator variable for event  $A: X_A = 1$  if A occurs,  $X_A = 0$  if A does not occur.

If P(A) = 0.35, what is:

- $E(X_A)$ ?
- $\operatorname{Var}(X_A)$ ?

