Relatório de I.A.: Redes Neurais (Trabalho 5)

Cauê Baasch de Souza João Paulo Taylor Ienczak Zanette

25 de Novembro de 2018

1 Resumo do projeto

Linguagem: Python 3.7

Bibliotecas: Foram utilizadas:

- sklearn [1] para modelagem das Redes Neurais;
- pillow [2] para conversão das entradas CSV em imagens para este relatório;
- numpy [3] para representação matricial das entradas.

2 Configuração dos experimentos

Os experimentos foram realizados tomando como base dois conjuntos de dados já disponibilizados pelo professor na plataforma Moodle, sendo um para treinamento da rede neural e outro para testes. Ambos os conjuntos são formados por tuplas no formato $(output, pixel_1, pixel_2, \ldots, pixel_n)$, em que output é um número simbolizando a categoria esperada para a análise do conjunto de pixeis denotados por $pixel_i$.

O tratamento da rede neural foi separado em duas etapas: uma de treinamento, enviando à rede todas as tuplas do conjunto de treinamento em um grande lote, e outra para testes enviando as tuplas do conjunto de testes e, para cada teste, validando se a previsão da rede foi feita corretamente ou não. Em ambas as etapas, todos os pixeis foram normalizados para o intervalo [0, 1] por uma divisão simples (Equação 1).

$$NormPixel_i = \frac{Pixel_i}{255} \tag{1}$$

A arquitetura da rede neural é formada por: uma camada de entrada com número de neurônios dependente do tamanho da entrada; um conjunto camadas intermediárias variando entre {1,2}, cada uma com número de neurônios variando entre {10,100,200}; e uma camada de saída com 10 neurônios (um para cada classificação possível). A Tabela 1 enumera as diferentes configurações de redes neurais para os experimentos.

Quanto ao número de execuções, foi feito um treinamento e teste para cada configuração possível dentre o número de camadas intermediárias e o número de neurônios, totalizando 12 testes.

Configuração	${\bf N}^{\scriptscriptstyle \Omega}$ de camadas	$\rm N^o$ de neurônios
1	1	(10)
2	2	(10, 10)
3	2	(10, 100)
4	1	(10)
5	1	(100)
6	1	(200)
7	2	(100, 10)
8	2	(100, 100)
9	2	(200, 100)
10	2	(200, 200)

Tabela 1: Enumeração das configurações de rede neural utilizadas nos experimentos.

3 Resultados obtidos

A acurácia das diferentes configurações está expressa na Figura 1. No melhor dos casos, a rede obteve uma acurácia de cerca de 88% para 2 camadas de 200 e 100 neurônios respectivamente, e no pior caso 78.2% para 1 camada de 10 neurônios.

Na Figura 2 está expressa a matriz de confusão para a configuração 9 quando avaliada para os casos de teste. Para referência, a Tabela 2 contém a enumeração das categorias. Considerando quando eram a categoria real, descatam-se Trouser e Shirt como categorias com respectivamente maior (98.4%) e menor acurácia (73.3%), e Shirt e Trouser como categorias de, respectivamente, maior (255) e menor (18) número de falsos positivos. Destaca-se também um fator interessante: em 246 dos 10000 casos de teste (totalizando 2.46%), a rede não foi capaz de indicar categoria alguma, o que compõe 21.54% das previsões erradas.

3.1 Exemplos de objetos que foram malclassificados pela rede

Sigh isso vai dar um trabalho...

Referências

[1] scikit-learn: Machine Learning in Python. https:

Figura 1: Acurácia da rede neural em diferentes configurações.

//scikit-learn.org/.

- [2] Pillow ReadTheDocs. https://pillow.readthedocs.io/en/5.3.x/.
- [3] NumPy. http://www.numpy.org/.

Figura 2: Matriz de confusão para uma rede neural de 2 camadas de 100 neurônios cada.

N^{o}	Categoria
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Tabela 2: Relação entre números das categorias e suas respectivas descrições.