Università degli Studi Roma Tre - Corso di Laurea in Matematica $Tutorato\ di\ GE220$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

> SOLUZIONI TUTORATO 4 (7 APRILE 2011) SPAZI DI HAUSDORFF E COMPATTEZZA

1. Dimostrare che l'essere T_1 (rispettivamente T_2) è una proprietà topologica per uno spazio X.

Solutione:

Ricordiamo che una proprietà si dice topologica se è invariante per omeomorfismi.

Siano dunque X e Y due spazio omeomorfi e sia $g: X \to Y$ un omeomorfismo; mostriamo che X è T_1 (risp. T_2) $\Leftrightarrow Y$ è T_1 (risp T_2).

Osserviamo, inoltre, che è sufficiente dimostrare una delle due implicazioni poiché l'inversa di un omeomorfismo è ancora un omeomorfismo.

- T_1 Sia (X, \mathcal{T}_X) uno spazio $T_1 \Rightarrow \forall x \in X, \{x\}$ è chiuso. Sia $y \in Y \Rightarrow \exists x \in X$ tale che g(x) = y. Essendo g un'applicazione chiusa segue che $\{y\}$ è chiuso in $Y \Rightarrow Y$ è T_1 .
- T_2 Sia (X, \mathcal{T}_X) uno spazio T_2 .

Siano $y_1, y_2 \in Y$, $y_1 \neq y_2$. Consideriamo $x_1 := g^{-1}(y_1)$ e $x_2 := g^{-1}(y_2)$; è chiaro che $x_1 \neq x_2$. Esistono, allora, per ipotesi, due aperti $U_X, V_X \subset X$ tali che $x_1 \in U_X, x_2 \in V_X$ e $U_X \cap V_X = \emptyset$.

Siano, ora, $U_Y := g(U_X)$ e $V_Y := g(V_X)$; si ha: $y_1 \in U_Y$, $y_2 \in V_Y$ con U_Y , V_Y aperti in Y (g è aperta in quanto omeomorfismo) e $U_Y \cap V_Y = \emptyset$. Infatti: se, per assurdo, esistesse $z \in U_Y \cap V_Y \Rightarrow g^{-1}(z) \in g^{-1}(U_Y \cap V_Y) = g^{-1}(U_Y) \cap g^{-1}(V_Y) = U_X \cap V_X = \emptyset$: contraddizione, in quanto g è suriettiva. Segue la tesi.

2. Dimostrare che uno spazio X è di Hausdorff se e solo se la diagonale $\Delta = \{(x, x) : x \in X\}$ è chiusa in $X \times X$.

Solutione:

 \Rightarrow : Supponiamo che X sia di Hausdorff.

Mostriamo che Δ^c è aperto in $X \times X$ verificando che tutti i suoi punti sono interni. Siano $x,y \in X$ tali che $(x,y) \in \Delta^c \Rightarrow x \neq y$. Per ipotesi, esistono due aperti $U,V \subset X$ tali che $x \in U, y \in V$ e $U \cap V = \varnothing$. Chiaramente $U \times V$ è un aperto di $X \times X$ che contiene il punto (x,y); sarà dunque sufficiente far vedere che $U \times V \subset \Delta^c$ o equivalentemente che $(U \times V) \cap \Delta = \varnothing$.

Se, per assurdo, esistesse $(x',y') \in (U \times V) \cap \Delta \Rightarrow x' \in U, y' \in V$ e $x' = y' \Rightarrow x' = y' \in U \cap V = \emptyset$: contraddizione.

- \Leftarrow : Supponiamo che Δ sia chiusa (ovvero Δ^c aperto). Siano $x,y \in X$ con $x \neq y \Rightarrow (x,y) \notin \Delta$ ovvero $(x,y) \in \Delta^c$. Essendo Δ^c aperto $\exists U, V$ aperti di X tali che $(x,y) \in U \times V \subset \Delta^c \Rightarrow x \in U, y \in V \text{ e } U \cap V = \varnothing$. Infatti: se, per assurdo, esistesse $z \in U \cap V \Rightarrow (z,z) \in U \times V \subset \Delta^c$: assurdo.
- 3. Sia X uno spazio topologico. Dimostrare che se X è dotato della topologia cofinita allora X è compatto.

Solutione:

Sia $\{A_i\}_{i\in I}$ un ricoprimento aperto di X. Sia $\bar{i}\in I$; consideriamo $A_{\bar{i}}\Rightarrow A_{\bar{i}}=X\setminus\{x_1,\ldots,x_n\}$. $\forall j=1,\ldots,n$ sia $i_j\in I$ tale che $x_j\in A_{i_j}\Rightarrow X=A_{\bar{i}}\cup\left(\bigcup_{j=1}^nA_{i_j}\right)$, da cui, $\{A_{\bar{i}},A_{i_1},\ldots,A_{i_n}\}$ è un sottoricoprimento finito di X.

- 4. Date due topologie $\mathcal T$ e $\mathcal W$ su X con $\mathcal W<\mathcal T$ dire quali delle seguenti affermazioni è vera, motivando la risposta:
 - (a) se (X, \mathcal{T}) è compatto $\Rightarrow (X, \mathcal{W})$ è compatto;
 - (b) se (X, \mathcal{W}) è compatto $\Rightarrow (X, \mathcal{T})$ è compatto.

Solutione:

(a) L'affermazione è vera.

Supponiamo (X, \mathcal{T}) compatto.

Sia $\mathcal U$ un ricoprimento aperto di X nella topologia $\mathcal W$; in particolare, essendo $\mathcal T$ più fine di $\mathcal W$, $\mathcal U$ è un ricoprimento aperto di X rispetto alla topologia $\mathcal T$.

Dall'ipotesi di compattezza , possiamo estrarre da \mathcal{U} un sottoricoprimento finito \mathcal{U}' . Ne segue che (X, \mathcal{W}) è compatto.

(b) L'affermazione è falsa.

Un controesempio è dato da uno spazio topologico X infinito dotato rispettivamente della topologia discreta \mathcal{T} e di quella cofinita \mathcal{W} ($\mathcal{W} < \mathcal{T}$).

Infatti, dall'esercizio 3, sappiamo che (X, \mathcal{W}) è compatto, mentre (X, \mathcal{T}) non lo è perché il ricoprimento aperto $\{\{x\}, x \in X\}$ non ammette un sottoricoprimento finito.

- 5. Dire quali tra i seguenti spazi topologici sono compatti:
 - (a) lo spazio proiettivo reale $\mathbb{P}^n(\mathbb{R})$;
 - (b) \mathbb{R} rispettivamente con le topologie i_d, j_d, i_s, j_s .

Solutione:

(a) Richiamiamo dalla teoria che il quoziente di uno spazio topologico compatto è compatto e che $\mathbb{P}^n(\mathbb{R}) \approx S^n/\sim_A$ dove \sim_A è la relazione antipodale definita nel modo seguente:

$$x \sim_A y \Leftrightarrow y = \pm x$$
.

Dalla compattezza di S^n (chiuso e limitato in \mathbb{R}^n) segue la compattezza di $\mathbb{P}^n(\mathbb{R})$;

(b) Osserviamo che j_d, j_s sono più fini della topologia euclidea ε ; poiché \mathbb{R} non è compatto in ε , utilizzando l'esercizio 4, concludiamo che \mathbb{R} non è compatto né in j_s né in j_d ;

Dimostriamo, inoltre, che \mathbb{R} non è compatto nelle topologie i_s, i_d . In particolare, basterà provare l'asserto per una qualsiasi delle due topologie essendo $(\mathbb{R}, i_s) \approx (\mathbb{R}, i_d)$. Consideriamo, quindi, (\mathbb{R}, i_d) ed il ricoprimento $\mathcal{U} := \{(-n, +\infty) : n \in \mathbb{N}\}$ di \mathbb{R} . Se, per assurdo, \mathcal{U} possedesse un sottoricoprimento finito \mathcal{U}' allora esisterebbe $n_0 \in \mathbb{N}$ tale che $\mathbb{R} = \bigcup_{A \in \mathcal{U}'} A = (-n_0, +\infty)$: contraddizione.

- 6. Sia $X = D^2 \setminus \{(0,0)\}$:
 - (a) dimostrare che X non è compatto senza usare il corollario 9.13.

(b) dimostrare che X/ρ è compatto, dove $x \rho y \Leftrightarrow \exists \lambda \neq 0$ tale che $y = \lambda x$.

$\underline{Soluzione}$:

- (a) Consideriamo il ricoprimento aperto $\mathcal{U}=\{D_{\frac{2}{n}}(0):n\in N\setminus\{0\}\}$ di X. Mostriamo che \mathcal{U} non possiede un sottoricoprimento finito. Se, per assurdo, esistesse un sottoricoprimento finito \mathcal{U}' di \mathcal{U} allora esisterebbe $n_0\in\mathbb{N}$ tale che $X\subset D_{\frac{2}{n_0}}(0)$; ma questo è impossibile perchè, ad esempio, il punto $P:=(\frac{1}{n_0},0)\in X$ non sta in $D_{\frac{2}{n_0}}(0)$.
- (b) Per la tesi è sufficiente far vedere che X/ρ è omeomorfo a S^1/\sim_A . Consideriamo il seguente diagramma:

$$X \xrightarrow{f} S^{1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

dove p e q sono le applicazioni quoziente e $f: X \to S^1$ è definita come segue:

$$f(x) = \frac{x}{\|x\|}, \, \forall \, x \in X.$$

Inoltre, essendo verificata la condizione:

$$x \rho x' \Rightarrow f(x) \sim_A f(x'), \forall x, x' \in X,$$

possiamo definire $g: X/\rho \to S^1/\sim_A$ nel modo seguente:

$$g([x]_{\rho}) = g(p(x)) = q(f(x))$$

Da ciò segue anche la commutatività del diagramma precedente.

A questo punto per dimostrare che g è un omeomorfismo basta far vedere (come già fatto in altri esercizi simili) che g è biettiva e f è un'identificazione (in modo tale che $q \circ f$ sia un'identificazione, in quanto composizione di identificazioni).

- f è un'identificazione: f è chiaramente continua e suriettiva. Sia dunque $A \subseteq S^1$ tale che $f^{-1}(A)$ sia aperto. E' facile convincersi che $A = S^1 \cap f^{-1}(A)$, osservando che $f^{-1}(A) = \{x = (r\cos\vartheta, r\sin\vartheta) : (\cos\vartheta, \sin\vartheta) \in A, 0 < r \le 1\}$. Ne segue che A è aperto in S^1 .
- g è biettiva:

$$\begin{array}{l} \underline{\text{iniettivit}} \mathbf{\hat{a}} \colon \text{Siano } [x]_{\rho} = p(x) \text{ e } [x']_{\rho} = p(x') \in X/\rho \text{ tali che } g([x]_{\rho}) = g([x']_{\rho}) \Rightarrow \\ g(p(x)) = g(p(x')) \Rightarrow q(f(x)) = q(f(x')) \Rightarrow f(x) = \pm f(x') \Rightarrow \frac{x}{\|x\|} = \pm \frac{x'}{\|x'\|} \Rightarrow x = \\ \pm \frac{\|x\|}{\|x'\|} x' \Rightarrow x = \lambda x', \ \lambda = \pm \frac{\|x\|}{\|x'\|} \neq 0 \Rightarrow p(x) = p(x') \Rightarrow [x]_{\rho} = [x']_{\rho}. \end{array}$$

7. Sia X uno spazio topologico e siano K_1, \ldots, K_n sottoinsiemi di X. Dimostrare che, se K_1, \ldots, K_n sono compatti allora $K_1 \cup \ldots \cup K_n$ è compatto.

3

$\underline{Solutione}$:

Sia $K = K_1 \cup ... K_n$ e sia \mathcal{U} un ricoprimento aperto di K; in particolare, \mathcal{U} è un ricoprimento aperto di $K_i \,\forall i = 1, \dots, n$. Dall'ipotesi di compattezza dei $K_i, \,\forall i = 1, \dots, n$ esiste un sottoricoprimento finito \mathcal{U}_i di \mathcal{U} che ricopre K_i .

Allora $\mathcal{U}_1 \cup \cdots \cup \mathcal{U}_n$ è un sottoricoprimento finito di \mathcal{U} che ricopre K.

8. Sia $X = M_2(\mathbb{R})$ lo spazio delle matrici 2×2 con la topologia indotta dall'omeomorfismo $M_2(\mathbb{R}) \approx \mathbb{R}^4$ che fa corrispondere la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ al vettore (a,b,c,d). Siano $Y \subseteq X$ l'insieme delle matrici invertibili e $Z \subseteq X$ l'insieme delle matrici ortogonali.

Provare che Y è un aperto e Z è un compatto.

Soluzione:

• $Y := \{ A \in X | \det(A) \neq 0 \}.$ Consideriamo l'applicazione continua $\det: M_2(\mathbb{R}) \to \mathbb{R}$ che associa ad ogni matrice il suo determinante. Posto $U := \mathbb{R} \setminus \{0\}$, abbiamo che $Y = \det^{-1}(U)$ e, quindi, Y è aperto in $M_2(\mathbb{R})$ in quanto preimmagine di un aperto tramite un'applicazione continua.

• Sia $\phi: (M_2(\mathbb{R}), \phi^{-1}(\varepsilon)) \to (\mathbb{R}^4, \varepsilon)$ l'omeomorfismo tale che $\phi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a, b, c, d)$. Sarà, dunque, sufficiente dimostrare che $\phi(Z)$ è un compatto in \mathbb{R}^4 , ovvero che è chiuso e limitato.

Osserviamo che:

$$Z := \{A \in X | A^t A = I\} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in X \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = I \right\} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in X \mid \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Ne segue che:

$$\phi(Z) = \{(a, b, c, d) \in \mathbb{R}^4 : a^2 + b^2 = 1, \quad ac + bd = 0 \quad e \quad c^2 + d^2 = 1\}$$

Siano $f_1 = x_1^2 + x_2^2 - 1$, $f_2 = x_1x_3 + x_2x_4$, $f_3 = x_3^2 + x_4^2 - 1$ con $f_i \in \mathbb{R}[x_1, x_2, x_3, x_4]$, $f_i : \mathbb{R}^4 \to \mathbb{R}, \ \forall i = 1, 2, 3$.

E' chiaro che

$$\phi(Z) = \{ \mathbf{x} = (a, b, c, d) \in \mathbb{R}^4 : \mathbf{x} \in f_i^{-1}(0), i = 1, 2, 3 \} = \bigcap_{i=1}^3 f_i^{-1}(0).$$

Poiché i polinomi f_i sono continui e $\{0\}$ è chiuso in \mathbb{R} si ha che $\phi(Z)$ è intersezione di chiusi e quindi è chiuso in \mathbb{R}^4 .

Resta da verificare che $\phi(Z)$ è limitato.

Sia
$$\mathbf{x} = (a, b, c, d) \in \phi(Z) \Rightarrow \|\mathbf{x}\|^2 = a^2 + b^2 + c^2 + d^2 = 1 + 1 = 2 \Rightarrow \|\mathbf{x}\| = \sqrt{2}.$$

Pertanto, $\phi(Z)$ è nella frontiera del disco $D_{\sqrt{2}}(0)$ di \mathbb{R}^4 ed è, perciò, un insieme limitato.

9. Sia $f: X \to Y$ un'applicazione d'insiemi; il grafico di f è

$$\Gamma_f = \{(x, f(x)) \in X \times Y : x \in X\} \subsetneq X \times Y.$$

Dimostrare che se X e Y sono spazi topologici, Y di Hausdorff, ed f è continua, il grafico Γ_f è chiuso in $X \times Y$.

4

Solutione:

Mostreremo che Γ^c è aperto in $X \times Y$.

Sia $(x,y) \in \Gamma^c \Rightarrow y \neq f(x) \Rightarrow$ esistono due aperti $U,V \subset Y$ tali che $y \in U, f(x) \in V$ e $U \cap V = \emptyset$.

Sia $A := f^{-1}(V)$: $x \in A$ ed, essendo f continua, A è aperto in X. Consideriamo l'aperto $A \times U$ di $X \times Y$; è chiaro che $(x,y) \in A \times U$. Per la tesi rimane da far vedere che $A \times U \subset \Gamma^c$. Infatti: se, per assurdo, esistesse $(x',y') \in (A \times U) \cap \Gamma \Rightarrow y' = f(x') \in f(A) = f(f^{-1}(V)) \subset V \Rightarrow y' \in U \cap V = \emptyset$: assurdo.

10. Sia $(\mathbb{R}, \mathcal{T})$ lo spazio topologico indotto dalla distanza $\underline{d}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ così definita:

$$\underline{d}(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|, \, \forall x, y \in \mathbb{R}.$$

- (a) Verificare che la successione $\{\frac{n}{n+1}\}_{n\in\mathbb{N}}$ converge a 1 in $(\mathbb{R},\underline{d})$.
- (b) Verificare che la successione $\{n\}_{n\in\mathbb{N}}$ non converge in $(\mathbb{R},\underline{d})$.

Solutione:

(a) Sia $x_n:=\frac{n}{n+1}$; per provare l'asserto mostriamo che fissato $\epsilon>0$ \exists $n_{\epsilon}\in\mathbb{N}$ tale che $x_n\in D_{\epsilon}(1), \forall$ $n>n_{\epsilon}$.

Osserviamo che:

$$\underline{d}(x_n, 1) = \underline{d}\left(\frac{n}{n+1}, 1\right) = \left|\frac{\frac{n}{n+1}}{1 + \left|\frac{n}{n+1}\right|} - \frac{1}{1 + |1|}\right| = \left|\frac{1}{2(2n+1)}\right| = \frac{1}{2(2n+1)}.$$

Ne segue che, scelto $n_{\epsilon} > \frac{1-2\epsilon}{4\epsilon}$, si ha che, per ogni $n > n_{\epsilon}$, $\underline{d}(x_n, 1) < \epsilon$ cioè $x_n \in D_{\epsilon}(1)$.

(b) Sia $x_n := n$. Supponiamo, per assurdo, che x_n converga ad $a \in \mathbb{R}$. In tal caso, risulterebbe che la successione $\{\underline{d}(x_n, a)\}$ è convergente a 0 in (\mathbb{R}, d) dove d è la metrica euclidea di \mathbb{R} .

Ora:

$$\underline{d}(x_n, a) = \underline{d}(n, a) = \left| \frac{n}{n+1} - \frac{a}{1+|a|} \right|;$$

Notiamo che: $\frac{a}{1+|a|}<1.$ Pertanto si ha:

$$\lim_{n \to +\infty} \underline{d}(x_n, a) = \lim_{n \to +\infty} \left| \frac{n}{n+1} - \frac{a}{1+|a|} \right| = \left| \lim_{n \to +\infty} \frac{n}{n+1} - \frac{a}{1+|a|} \right| = \left| 1 - \frac{a}{1+|a|} \right| = 1 - \frac{a}{1+|a|} > 0$$

Dunque, $\{d(x_n,a)\}_{n\in\mathbb{N}}$ non converge a 0 e si ha un assurdo.