A Simulation Circuit to Characterize Transistors

Christoph Maier Member, IEEE

Abstract—I present a simple simulation schematic to extract transistor parameters relevant for analog circuit design: transconductance g_m , transconductance per current g_m/I_d , and voltage gain g_m/g_o .

I. THE CIRCUIT

Fig. 1. Simulation schematics to characterize MOSFETs

The main design parameters for dimensioning MOSFETs are their drain current I_d , which controls transconductance, and the drain-to-source voltage V_{ds} , which controls output conductance g_o . However, the operating point of the transistor is controlled mostly by the gate-to-source voltage V_{qs} .

I solve this by regulating the gate voltage by a feedback loop that adjusts V_g to set the drain voltage V_d to a reference $V_{d,ref}$ by an ideal voltage controlled voltage source (VCVS) with voltage gain A. The schematics for the NMOS and PMOS simulation circuits are shown in Figure 1.

Kirchhoff's Current Law yields the small-signal equations

$$I_d = g_m V_g + g_o V_d$$

$$V_g = V_d + A \left(V_d - V_{d,ref} \right)$$

$$(1)$$

which lead to

$$V_{g} = \frac{I_{d} - g_{o} V_{d,ref} A / (1+A)}{q_{m} + q_{o} / (1+A)}$$
 (2)

and

$$V_d = \frac{I_d + A g_m V_{d,ref}}{(1+A) g_m + go}.$$
 (3)

In the ideal case of $A \to \infty$,

$$V_g = \frac{I_d - g_o V_{d,ref}}{g_m} \tag{4}$$

and

$$V_d = V_{d,ref} \,. \tag{5}$$

Copyright (c) 2014 under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

II. PARAMETER EXTRACTION

A. Transconductance

The transconductance g_m as function of drain current can be obtained by sweeping I_d for fixed V_d , as

$$1/\left(\frac{\partial V_g}{\partial I_d}\right) = g_m + g_o/\left(1+A\right) \stackrel{A \to \infty}{\approx} g_m. \tag{6}$$

B. g_m/I_d

The specific transconductance g_m/I_d is a useful design parameter for setting the bias point of a transistor. g_m/I_d is maximal in subthreshold operation. It is obtained by sweeping I_d for fixed V_d and calculating

$$1/\left(\frac{\partial V_g}{\partial I_d}I_d\right) = \frac{g_m + g_o/(1+A)}{I_d} \stackrel{A \to \infty}{\approx} \frac{g_m}{I_d}.$$
 (7)

C. g_m/g_o

While g_m or g_m/I_d is the most important design criterion for dimensioning a transistor, the next most important criterion is setting the output conductance g_o . With the circuits in Figure 1, the intrinsic voltage gain g_m/g_o can be extracted by sweeping $V_{d,ref}$ for constant I_d .

$$-\left(\frac{\partial V_d}{\partial V_{d,ref}}\right) / \left(\frac{\partial V_g}{\partial V_{d,ref}}\right) = \frac{\frac{A g_m}{(1+A)g_m + g_o}}{\frac{A g_o}{(1+A)g_m + g_o}} = \frac{g_m}{g_o}.$$
 (8)