Zusammenfassung NuS I

René Zurbrügg

1 Allgemeines

1.1 Einheiten

	Einheit	Bedeutung		
\vec{B}	Vs/m^2	Magnetische Flussdichte		
B_r	Vs/m^2	Remanenz		
C	As/V = F	Kapazität		
$ec{D}$	As/m^2	Elektr. Flussdichte, el. Erregung		
$ec{E}$	V/m	Elektrische Feldstärke		
G	$1/\Omega = A/V$	Elektr. Leitwert		
$ec{H}$	A/m	Magn. Feldstärke		
H_c	A/m	Koerzitivfeldstärke		
Ι	A	Gleichstrom		
I_K	A	Kurzschlussstrom		
i	A	Zeitabhängiger Strom		
$egin{array}{c} I_K \ \hline i \ \hline ec{J} \ \hline ec{J} \ \hline \end{array}$	A/m^2	(räuml. vert.) Stromdichte		
	Vs/m^2	Magn. Polarisation		
$ec{J}$	Vsm	Magn. Dipolmoment		
k		Koppelfaktor		
L	Vs/A	Induktivität		
\vec{M}	A/m	Magnetisierung		
\vec{m}	Am^2	Magnetisches Moment		
N		Windungszahl		
P	VA = W	Leistung		
p_V	W/m^3	Verlustleistungsdichte		
\vec{P}	As/m^2	Dielektr. Polarisation		
\vec{p}	Asm	Elektr. Dipolmoment		
Q	As = C	Ladung, Punktladung		
R	$V/A = \Omega$	Ohmscher Widerstand		
R_m	A/Vs	Magn. Widerstand		
U	V	Gleichspannung		
и	V	Zeitlich veränderliche Spannung		
ü		Übersetzungsverhältnis		
V_m	A	Magnetische Spannung		
W	VAs = J	Energie		
w	WAs/m^3	Energiedichte		
Φ	Vs	Magnetischer Fluss		
Λ_m	Vs/A	Magnetischer Leitwert		
Θ	A	Durchflutung		
Ψ	As	Elektr. Fluss		

	Einheit	Bedeutung
α	1/K	Temperaturkoeffizient
χ		Dielekt. & magn. Suszeptibilität
ε	As/Vm	Dielektrizitätskonstante
\mathcal{E}_r		Dielektrizitätszahl
φ		Phasenwinkel
φ_e	V	Elektrostatisches Potential
η		Wirkungsgrad
κ	A/Vm	Spezifische Leitfähigkeit
λ	As/m	Linienladungsdichte
μ	Vs/Am	Permeabilität
μ_e	m^2/Vs	Beweglichkeit der Ladungsträger
ρ	As/m^3	Raumladungsdichte
ρ_R	Vm/A	Spezifischer Widerstand
σ	As/m^2	Flächenladung
σ		Streugrad
ω	$1/s \cdot 2\pi$	Kreisfrequenz

1.2 SI-Präfixe

	Name	Wert
T	Tera	10^{12}
G	Giga	10^{9}
M	Mega	10^{6}
k	Kilo	10^{3}
h	Hekto	10^{2}
da	Deka	10^{1}
d	Dezi	10^{-1}
С	Zenti	10^{-2}
m	Mili	10^{-3}
μ	Mikro	10^{-6}
n	nano	10^{-9}
p	Piko	10^{-12}

1.3 Konstanten

Elementarladung	e	$+1.602 \cdot 10^{-19}$	As
Dielektrizitätskonst.	$\boldsymbol{\varepsilon}_0$	$8.854 \cdot 10^{-12}$	$\frac{As}{Vm}$
Magn. Permeabilität	μ_0	$4\pi \cdot 10^{-7}$	$\frac{Vs}{Am}$
Ruhemasse Elektron	$m_{0,e}$	$9.1094 \cdot 10^{-31}$	kg
Ruhemasse Proton	$m_{0,p}$	$1.6726 \cdot 10^{-27}$	kg
Lichtgeschwindigkeit	c_{Vak} .	$2.99792 \cdot 10^{8}$	$\frac{m}{s}$

Elektrostatik

2.1 Ladungsdichten

- Linienladungsdichte: $\lambda = \frac{dQ}{dl} = \left[\frac{As}{m}\right], Q = \int_{l} \lambda dl$ $\rightarrow Q = \lambda \cdot l$, falls λ konstant.
- Flächenladungsdichte: $\sigma = \frac{dQ}{dA} = \left[\frac{As}{m^2}\right], Q = \iint_A \sigma dA$ $\to Q = \sigma \cdot A$, falls σ konstant.
- Raumladungsdichte: $\rho = \frac{dQ}{dV} = \left[\frac{As}{m^3}\right], Q = \iiint_V \rho dV$ $\rightarrow Q = \rho \cdot V$, falls ρ konstant.

2.2 Grundgrössen

- E-Feld einer Punktladung: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$
- Kraft mehre. zweier Ladungen: $\vec{F} = \frac{Q_1 Q_2}{4\pi \epsilon_0 r^2} \vec{e}_r$
- E-Feld Punktldgn: $\vec{E}(\vec{r_p}) = \frac{1}{4\pi\epsilon_0} \cdot \sum_k \frac{Q_k}{|\vec{r_p} \vec{r_k}|^2} \frac{\vec{r_p} \vec{r_k}}{|\vec{r_p} \vec{r_k}|}$
- E-Feld ∞ -langer Leiter: $E = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r_{\perp}}$
- Spannung, Innen-/Aussenleiter: $\vec{E}(\rho) = \frac{Q}{2\pi F l} \frac{1}{6} \vec{e_\rho}$ $U = \int_{r_{-}}^{r_{2}} \vec{E}(\rho) d\vec{\rho} = \int_{r_{-}}^{r_{2}} \frac{Q}{2\pi \cdot \varepsilon \cdot l} \frac{1}{\rho} d\rho = \frac{Q}{2\pi \cdot \varepsilon \cdot l} \ln \left| \frac{r_{2}}{r_{1}} \right|$
- Elektr. Flussdichte $\vec{D}(\vec{r}) = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}(\vec{r}) = \varepsilon \cdot \vec{E}(\vec{r})$ $\left[\frac{As}{m^2}\right]$

2.2.1 Arbeit & Potential (1-33)

$$egin{aligned} &W_{P_1 o P_2} = - \int_{P_1}^{P_2} \vec{F} \cdot d\vec{s} & ext{weg-unabhängig} \ &W_e = -Q \int_{P_1}^{P_2} \vec{E} \cdot d\vec{s} = Q \left(\phi(P_2) - \phi(P_1)
ight) = -U_{12}Q \ & o [W] = Ws = J, [P] = rac{J}{s} = W \end{aligned}$$

Potential:

Oftmals
$$P_{ref} = \infty$$

 $\varphi(P_1) = \frac{W(P_{ref} \rightarrow P_1)}{Q_1} = -\int_{P_{ref}}^{P_1} \vec{E} \cdot d\vec{s}$ [V]
Punktladung: $\varphi_{\infty}(r) = \frac{Q}{4\pi Gr}$

2.2.2 Spannung

$$U_{12} = \varphi(P_1) - \varphi(P_2) = \int_{P_1}^{P_2} \vec{E} \cdot d\vec{s} = \frac{W_{12}}{Q}$$

Falls E Konst und Weg Parallel:
 $U_{AB} = \pm |\vec{E}| \cdot |AB|$

2.3 Das Gauss'sche Gesetz (1-45)

$$\oint_A ec{D}(ec{r}) dec{A} = \oint_A ec{e_r} D(r) ec{e_r} dA = Q
ightarrow$$

Falls D und A senkrecht:

$$|Q| = |\vec{D}(r)| \cdot A$$

E-Feldlinien von idealen Leitern, stehen senkrecht auf der Oberfläche.

2.4 Kondensator (1-61)

$$C = \frac{Q}{U} = \frac{\iint_A \vec{D} \cdot d\vec{A}}{\int_s \vec{E} \cdot d\vec{s}} = \frac{\iint_A \sigma dA}{\int_s \vec{E} \cdot d\vec{s}} \quad [F] = [\frac{As}{V}]$$

Einfache Kondensatorentladung: $U = U_0 e^{\frac{-t}{RC}}$

$$E = \frac{D}{\varepsilon} = \frac{\sigma}{\varepsilon} = \frac{Q}{\varepsilon A}, \quad U = Ed \to C = \frac{Q}{U} = \frac{\varepsilon A}{d}$$

Das Feld einer Platte ist E/2

• Kugel(schalen)kondensator: (1-62)(1-73)

$$U_{ab} = \int_{r_i}^{r_a} \vec{E} \cdot d\vec{s} = \frac{Q}{4\pi\varepsilon} \int_{r_i}^{r_a} \frac{1}{r^2} dr = \frac{Q}{4\pi\varepsilon} \frac{r_a - r_i}{r_a r_i} = \frac{Q}{C} \to C = 4\pi\varepsilon \frac{r_i r_a}{r_a - r_i}$$

• Vielschichtenkondensator aus n Platten:

$$C_{ges} = (2n - 1)C$$

$$C = \frac{Q}{\frac{R^2}{\int_{0}^{R^2} \frac{Q}{2\pi l \bar{\epsilon} r d\bar{r}}}} = \frac{2\pi \epsilon l}{\ln \frac{R_2}{R_1}}$$

Für unendlich dünne Platten: $D = \sigma/2$

• Parallelschaltung von Kondensatoren

$$C_{ges} = \sum_{i} C_{i} \underbrace{\sum_{2Kond.}} C_{1} + C_{2}$$

• Serienschaltung von Kondensatoren
$$C_{ges} = (\sum_{i} \frac{1}{C_{i}})^{-1} \underbrace{=}_{2Kond.} \underbrace{\frac{C_{1} \cdot C_{2}}{C_{1} + C_{2}}}$$

2.5 Energie im E-Feld (1-70)(1-72)

$$W_e = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QU = \frac{1}{2} CU^2 = \iiint_V \frac{1}{2} \vec{E} \cdot \vec{D} dV$$

3 Elektr., stationäres Strömungsfeld

3.1 Strom

$$I = \frac{dQ}{dt} = \iint_A \vec{J} \cdot d\vec{A}, \quad [I] = A, \quad J = \frac{dI}{dA}, \quad [J] = \frac{A}{m^2}$$

Stat. Strömungsfeld, wenn *I* konst.: $\iint_A \vec{J} \cdot d\vec{A} = 0$ (1-86)

• Spezifische Leitfähigkeit:

Driftgeschw.
$$\vec{v}_{Drift} = -\mu_e \vec{E}$$
 wobei μ_e = "Beweglichkeit" $\vec{J} = \vec{V}_{Drift} \rho = \vec{v} n q = \underbrace{-\rho \mu_e}_{\kappa} \vec{E}$, κ =spez.Leitf., $[\kappa] = \frac{A}{Vm} = \frac{1}{\Omega m}$

• Spezifischer Widerstand:
$$\rho_R = \frac{1}{\kappa}$$
, $[\rho_R] = \Omega m = \frac{Vm}{A}$

• Temperaturabhängigkeit:

$$\rho_R(T) = \rho_{R,20^{\circ}C} (1 + \alpha (T - 20^{\circ}C))$$

• Ohmsches Gesetzt:
$$U = R \cdot I$$
, $[R] = \frac{V}{A} = \Omega$
 $\vec{J} = \kappa \vec{E}$, $R = \frac{U}{I} = \frac{l}{\kappa A} = \frac{\rho_R l}{A} = \frac{\int_S \vec{E} \cdot d\vec{s}}{\kappa \iint_A \vec{E} \cdot d\vec{A}}$

• Leitwert:
$$G = \frac{1}{R}$$
 $[G] = S$ (Siemens)

3.2 Sprungstellen bei Materialübergängen (1-99)

• *Normalkomponenten.*: $J_{n1=J_{n2}}$, $\kappa_1 E_{n1} = \kappa_2 E_{n2}$ Die Normalkomponente der Stromdichte ist stetig.

• Tangentialkomp.:
$$E_{t1} = E_{t2}$$
, $\frac{J_{t1}}{J_{t2}} = \frac{\kappa_1}{\kappa_2}$

Die Tangentialkomponente des E-Feldes ist stetig.

3.3 Energie und Leistung (1-102)

$$W_e = \int_0^t P(\tau)d\tau \text{ und } P(t) = \frac{dW_e}{dt}$$

 $P = UI = I^2R = U^2/R$

Verlustleistungsdichte:
$$p_V = \frac{dP}{dV} = \vec{E} \cdot \vec{J}$$

$$P = \iiint_V p_V dV = \iiint_V \vec{E} \cdot \vec{J} dV$$