				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
0	7	1.185265e+02	5.000e-04	7.000e+02	
1	21	9.866089e+01	1.141e-03	1.758e+02	2.119e-01
2	29	9.286775e+01	3.646e-03	2.048e+02	2.739e-01
3	37	9.011502e+01	4.682e-03	2.798e+02	7.370e-01
4	44	8.965136e+01	4.636e-04	6.286e+01	3.050e-01
5	53	8.926749e+01	4.795e-04	7.935e+01	2.877e-01
6	60	8.887664e+01	5.701e-04	6.015e+01	2.366e-01
7	67	8.852180e+01	9.165e-05	2.984e+01	4.118e-01
8	74	8.830330e+01	7.748e-05	2.483e+01	6.290e-01
9	81	8.768252e+01	2.780e-04	2.531e+01	2.513e+00
10	88	8.685482e+01	3.219e-04	3.471e+01	4.089e+00
11	95	8.508928e+01	1.754e-03	4.304e+01	9.615e+00
12	103	8.380113e+01	8.768e-03	8.473e+01	1.423e+01
13	111	8.272621e+01	4.850e-03	3.577e+01	1.531e+00
14	118	8.265998e+01	3.699e-04	1.484e+01	2.598e-01
15	134	8.265197e+01	3.093e-06	1.118e+01	7.187e-03
16	142	8.265046e+01	3.082e-06	1.115e+01	1.700e-02
17	149	8.240086e+01	2.555e-04	7.731e+00	3.581e+00
18	157	8.230263e+01	3.115e-04	7.022e+00	3.322e+00
19	164	8.222822e+01	1.321e-05	3.938e+00	5.732e-01
20	171	8.212950e+01	3.546e-05	8.974e+00	1.635e+00
21	178	8.207970e+01	7.633e-06	9.030e+00	6.730e-01
22	185	8.204065e+01	4.077e-06	9.080e+00	6.621e-01
23	192	8.202658e+01	2.231e-06	9.812e+00	2.238e-01
24	199	8.198211e+01	5.524e-05	1.236e+01	5.712e-01
25	206	8.189395e+01	3.899e-04	1.845e+01	1.143e+00
26	214	8.176087e+01	5.628e-03	2.737e+01	2.906e+00
27	221	8.159766e+01	1.706e-03	3.344e+01	1.812e+00
28	228	8.131885e+01	1.020e-03	2.738e+01	2.139e+00
29	237	8.087133e+01	3.091e-03	2.749e+01	4.660e+00
30	246	8.057991e+01	2.141e-03	2.792e+01	1.439e+00
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
31	254	8.055039e+01	1.013e-03	4.273e+01	1.337e+00
32	261	8.041322e+01	2.122e-04	1.873e+01	7.493e-01
33	268	8.029941e+01	1.456e-04	2.241e+00	8.987e-01
34	275	8.022313e+01	6.421e-04	8.914e+00	1.398e+00
35	282	8.020885e+01	2.512e-05	2.233e+00	2.962e-01
36	289	8.020237e+01	1.315e-05	1.921e+00	2.685e-01
37	296	8.019958e+01	1.294e-05	1.315e+00	2.740e-01
38	303	8.019949e+01	2.142e-07	3.071e-01	6.256e-02
39	310	8.019880e+01	3.903e-06	1.582e-01	1.686e-01
40	317	8.019885e+01	7.163e-08	2.145e-02	3.060e-02
41	324	8.019881e+01	1.827e-07	1.645e-02	4.017e-02
42	331	8.019881e+01	5.386e-10	2.063e-03	7.314e-04
43	338	8.019881e+01	5.953e-12	2.593e-04	3.615e-05
44	345	8.019881e+01	1.176e-11	5.276e-05	3.182e-04
45	352	8.019881e+01	4.248e-13	1.671e-05	7.421e-05
46	364	8.019881e+01	1.915e-15	4.888e-06	4.941e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

params =

18.7909		0.2127	0.4085	5.7321	0.3635	0.	3855
					First-or	der	Norm of
Iter	F-count		f(x)	Feasibility	optimal	ity	step
0	2	9.577	436e+00	0.000e+00	1.038e	+01	
1	4	1.850	208e-01	0.000e+00	9.367e	-02	9.526e+00
2	6	1.769	522e-01	0.000e+00	9.215e	-02	8.685e-02
3	8	1.391	139e-01	0.000e+00	8.515e	-02	4.272e-01
4	10	3.451	.841e-03	0.000e+00	6.121e	-02	1.973e+00
5	15	2.917	181e-03	0.000e+00	6.234e	-02	1.031e-01
6	17	3.093	3013e-04	0.000e+00	6.169e	-02	5.203e-02
7	21	9.047	7359e-05	0.000e+00	6.191e	-02	6.469e-03
8	24	9.682	2287e-06	0.000e+00	6.174e	-02	1.620e-03
9	28	2.818	8634e-06	0.000e+00	6.189e	-02	2.022e-04
10	31	3.105	833e-07	0.000e+00	6.174e	-02	5.062e-05
11	35	8.007	7771e-08	0.000e+00	6.189e	-02	6.320e-06
12	38	1.770	955e-08	0.000e+00	6.174e	-02	1.582e-06
13	41	6.706	735e-09	0.000e+00	7.732e	-03	3.950e-07
14	43	3.989	0183e-09	0.000e+00	2.042e	-02	4.396e-08

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

 $nu_Z =$

12.9572

>>