«Разделяй и властвуй»: рекуррентные соотношения

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

Теорема

Рассмотрим алгоритм, основанный на методе «разделяй и властвуй», который для решения задачи размера n делает a рекурсивных вызовов для задач размера n/b и тратит время $O(n^d)$ на то, чтобы подготовить рекурсивные вызовы и чтобы собрать из их ответов ответ для исходной задачи:

$$T(n) = aT\left(\left\lceil \frac{n}{b}\right\rceil\right) + O(n^d)$$

где a>0, b>1, $d\ge 0$. Тогда

$$T(n) = egin{cases} O(n^d), & ext{ если } d > \log_b a \ O(n^d \log n), & ext{ если } d = \log_b a \ O(n^{\log_b a}), & ext{ если } d < \log_b a \end{cases}$$

:

:

$n = b^k$	
n/b n/b n/b	

	уров.
$n = b^k$	0
n/b n/b n/b	1
	:
<u>:</u>	i
	:
1 1 1 1	k

	¦ уров.¦разм.			
$n = b^k$	0	n		
n/b n/b n/b	1	n/b		
	:	:		
<u>:</u>	i	n/b^i		
	÷	:		
1 1 1 1	k	1		

	уров.	разм.	#	
$n = b^k$	0	n	1	
n/b n/b n/b	1	n/b	a	
	:	:	:	
:	i	n/b ⁱ	a ⁱ	
	÷	:	÷	
1 1 1 1	k	1	a ^k	

	уров.	разм.	#_	работа
$n = b^k$	0	n	1	cn ^d
n/b n/b n/b	1	n/b	a	$a \cdot c \cdot (n/b)^d$
		÷	:	
÷	i	n/b ⁱ	a ⁱ	$a^i \cdot c \cdot (n/b^i)^d$
	:	:	:	:
1 1 1 1	k	1	a ^k	$a^k \cdot c \cdot n/b^k$

	уров.	разм.	#	работа
$n = b^k$	0	n	1	cn ^d
n/b n/b n/b n/b	1	n/b	a	$a \cdot c \cdot (n/b)^d$
	÷	:	÷	: :
:	i	n/b ⁱ	a ⁱ	$a^i \cdot c \cdot (n/b^i)^d$
	:		:	: : : :
1 1 1 1	k	1	a ^k	$a^k \cdot c \cdot n/b^k$
			Σ	$\sum_{i=0}^{k} a^{i} \cdot c \cdot (n/b^{i})^{d}$

Оценка суммы

$$\sum_{i=0}^{k} a^{i} \cdot c \cdot (n/b^{i})^{d} = cn^{d} \cdot \sum_{i=0}^{\log_{b} n} \left(\frac{a}{b^{d}}\right)^{i}$$

 \blacksquare если $b^d = a$ (то есть $d = \log_b a$):

$$cn^d \cdot \log_b n = \Theta(n^d \log n)$$

Оценка суммы

$$\sum_{i=0}^{k} a^{i} \cdot c \cdot (n/b^{i})^{d} = cn^{d} \cdot \sum_{i=0}^{\log_{b} n} \left(\frac{a}{b^{d}}\right)^{i}$$

lacktriangle если $b^d=a$ (то есть $d=\log_b a$):

$$cn^d \cdot \log_b n = \Theta(n^d \log n)$$

 \blacksquare если $b^d > a$ (то есть $d > \log_b a$):

$$cn^d \cdot \Theta(1) = \Theta(n^d)$$

Оценка суммы

$$\sum_{i=0}^{k} a^{i} \cdot c \cdot (n/b^{i})^{d} = cn^{d} \cdot \sum_{i=0}^{\log_{b} n} \left(\frac{a}{b^{d}}\right)^{i}$$

lacktriangle если $b^d=a$ (то есть $d=\log_b a$):

$$cn^d \cdot \log_b n = \Theta(n^d \log n)$$

■ если $b^d > a$ (то есть $d > \log_b a$):

$$cn^d \cdot \Theta(1) = \Theta(n^d)$$

lacktriangle если $b^d < a$ (то есть $d < \log_b a$):

$$cn^d \cdot \Theta\left(\frac{a^{\log_b n}}{b^{d \log_b n}}\right) = cn^d \cdot \Theta\left(\frac{n^{\log_b a}}{n^d}\right) = \Theta(n^{\log_b a})$$

■ T(n) = 2T(n/2) + O(n): $T(n) = O(n \log n)$ (a = 2, b = 2, d = 1)

- T(n) = 2T(n/2) + O(n): $T(n) = O(n \log n)$ (a = 2, b = 2, d = 1)
- T(n) = T(n/2) + O(1): $T(n) = O(\log n)$ (a = 1, b = 2, d = 0)

- $T(n) = 2T(n/2) + O(n): T(n) = O(n \log n) (a = 2, b = 2, d = 1)$
- T(n) = T(n/2) + O(1): $T(n) = O(\log n)$ (a = 1, b = 2, d = 0)
- T(n) = 5T(n/4) + O(n): $T(n) = O(n^{\log_4 5})$

- T(n) = 2T(n/2) + O(n): $T(n) = O(n \log n)$ (a = 2, b = 2, d = 1)
- T(n) = T(n/2) + O(1): $T(n) = O(\log n)$ (a = 1, b = 2, d = 0)
- T(n) = 5T(n/4) + O(n): $T(n) = O(n^{\log_4 5})$
- $T(n) = 5T(n/4) + O(n^2)$: $T(n) = O(n^2)$

Примеры рекуррентных соотношений, не покрываемых теоремой

■
$$T(n) = T(n/3) + T(2n/3) + O(n)$$

 $T(n) = O(n \log n)$

Примеры рекуррентных соотношений, не покрываемых теоремой

■
$$T(n) = T(n/3) + T(2n/3) + O(n)$$

 $T(n) = O(n \log n)$
■ $T(n) = 2T(n-1) + O(1)$
 $T(n) = O(2^n)$

Примеры рекуррентных соотношений, не покрываемых теоремой

■
$$T(n) = T(n/3) + T(2n/3) + O(n)$$

 $T(n) = O(n \log n)$
■ $T(n) = 2T(n-1) + O(1)$
 $T(n) = O(2^n)$
■ $T(n) = T(\sqrt{n}) + O(1)$
 $T(n) = O(\log \log n)$