11 27 18 edge indicates planochesor -> BIPARTITE MATCHING: with particul, Jobs Size of bipartite graph Valid Matching: ≤ 1 job per processor ≤ 1 processor per job Goal: Find the largest set of jobs that can be no (Maximum Matching) An application of network flow ! Convert to a max-flow problem and run Ford-Fulkerson

Proof to Claim: Assign flow 1 corresponding to the matching, D elsewhere. middle edges (←) If from value is k, then k middle edges have from 1. Assign the jobs to processors according to these edges. PIs this a valid matching? · Can multiple jobs be assigned to same processor? - Will exceed capacity so NO! · Can multiple processore be assigned to same job? Thus valid matching of size k!

	Running Time:	
	9	
	FF: O(m.c) = O(m.n)	
-	># of jobs	LN.
	# of total	
	FF: O(m c) = O(m n) # of jobs # of total edges capacity out of s.	
	out of s	
	N-P COMPLETENESS	in .
F 10.2	Nº F COMITCO NOSS	
1	[chapter 8 in Textbook]	
O	Computational Intractibility	
	polynomial v.s. exponential	-0
	D(nc)	
	for some constant	
	Efficient Not efficient	
	Not tractable	
>	Context: Decision problems- yes no answer.	
	- Does this bipartite graph have a	
	-Does this bipartite graph have a matching of size > k?	
	- Given a Boolean formula, are there	value
	of the variables that make it true?	
OUEAN BILL	M (X, DR NOT X2) AND (X2 DR X3)	
ATIPROB	$X_1 = T$	
ATIPROBAT	X2 = F	
=2.00	X - = T	

Can assign 3 colors to nodes s.t. no two adjacent nodes has 1 the same color
-Is this undirected graph 3-colorable?
- (Subset Sum) : Given positive integers W1/W2/
and a target w, is there a subset of {w,,,
that adds up to exactly W?
poly-ti
 P. Deusion problem that can be effectively efficient computed
Def: Problem X is in P if there is poly time algo I such that
· if s is a "yes"-instance of X (s) = Yes
 • if s is a "yes"-instance of $X \iff A(s) = Y_0$ • if S is a "no"-instance of $X \iff A(s) = N$
All problems can be "efficiently verified".
All problems can be "efficiently verified". (the ones mentioned previously) for yes answ
Asymmetric
- is this number composite?
snot prime

