Soluções do livro "Curso de Análise" vol. 1

Ronald A. Kaiser

17 de Janeiro de 2016

Notas As soluções aqui apresentadas não contém seus respectivos enunciados. Algumas hipóteses fornecidas nos enunciados não são reproduzidas aqui, mas são utilizadas em algumas demonstrações. O leitor atento não deve ter dificuldades para acompanhar as soluções. Caso tenha alguma dúvida, recorra à obra original "Curso de análise" (vol. 1) de Elon Lages Lima.

1 Capítulo 1

1.1 Questão 1

Demonstração. Para demonstrarmos que $X=A\cup B$, provaremos que $\mathbf{1.}\ X\subset (A\cup B)$ e $\mathbf{2.}\ (A\cup B)\subset X$.

- **1.** Sabemos que $\forall A$ e $\forall B$, $A \subset (A \cup B)$ e $B \subset (A \cup B)$. Da 2^a hipótese, $A \subset (A \cup B)$ e $B \subset (A \cup B) \Rightarrow X \subset (A \cup B)$.
- **2.** A partir da 1^a hipótese e da definição de inclusão, $x \in A \Rightarrow x \in X$ e $y \in B \Rightarrow y \in X$. Assim, todo elemento de A ou de B também pertence a X. Mais formalmente: $z \in A$ ou $z \in B \Rightarrow z \in X$, e pela definição de união, $z \in (A \cup B) \Rightarrow z \in X$. Portanto, $(A \cup B) \subset X$.

De **1.** e **2.**,
$$X = (A \cup B)$$
.

1.2 Questão 2

Enunciado Dados os conjuntos A e B, seja X um conjunto com as seguintes propriedades:

$$1^{a}\ X\subset A \ {\rm e}\ X\subset B$$

$$2^{a}\ Y\subset A \ {\rm e}\ Y\subset B \Rightarrow Y\subset X$$
 Prove que $X=A\cap B$.

Demonstração. Para demonstrarmos que $X = A \cap B$, provaremos que **1.** $X \subset (A \cap B)$ e **2.** $(A \cap B) \subset X$.

- 1. A partir da 1^a hipótese e da definição de inclusão, segue que: $x \in X \Rightarrow x \in A$ e $x \in X \Rightarrow x \in B$. Assim, todo elemento de X pertence também aos conjuntos A e B. Portanto, $x \in X \Rightarrow x \in A$ e $x \in B$. Logo, pela definição de interseção, $x \in X \Rightarrow x \in (A \cap B)$. Donde concluímos que $X \subset (A \cap B)$.
- **2.** Sabemos que $\forall A$ e $\forall B$, $(A \cap B) \subset A$ e $(A \cap B) \subset B$. Da 2^a hipótese, temos que $(A \cap B) \subset A$ e $(A \cap B) \subset B \Rightarrow (A \cap B) \subset X$. Portanto, $(A \cap B) \subset X$.

De 1. e 2.,
$$X = (A \cap B)$$
.

1.3 Questão 3

Provaremos inicialmente que $A \cap B = \emptyset \Leftrightarrow A \subset B^c$.

Demonstração. Divideremos a prova em duas partes: **1.** $A \cap B = \emptyset \Rightarrow A \subset B^c$ e **2.** $A \subset B^c \Rightarrow A \cap B = \emptyset$.

- 1. \Rightarrow) Suponhamos, por absurdo, que $A \not\subset B^c$. Neste caso, $\exists x | x \in A$ e $x \notin B^c$. Mas, pela definição de complementar, $x \notin B^c \Leftrightarrow x \in B$. Assim, $\exists x | x \in A$ e $x \in B \Leftrightarrow \exists x | x \in (A \cap B)$. Mas, por hipótese, $A \cap B = \emptyset$. Não pode existir tal x. Um absurdo gerado pela nossa suposição inicial. Portanto, $A \cap B = \emptyset \Rightarrow A \subset B^c$.
- **2.** \Leftarrow) Suponhamos, por absurdo, que $A \cap B \neq \emptyset$. Neste caso, $\exists x | x \in (A \cap B)$, e pela definição de interseção, $\exists x | x \in A$ e $x \in B$. Mas, $x \in B \Leftrightarrow x \notin A$

 B^c . Portanto, $\exists x | x \in A$ e $x \notin B^c$. Logo, $A \not\subset B^c$. Uma contradição, pois temos como hipótese $A \subset B^c$. Deste modo, $A \subset B^c \Rightarrow A \cap B = \emptyset$.

De 1. e 2.,
$$A \cap B = \emptyset \Leftrightarrow A \subset B^c$$
.

Agora, vamos demonstrar que $A \cup B = E \Leftrightarrow A^c \subset B$.

Demonstração. Dividiremos a demonstração em duas partes: **1.** $A \cup B = E \Rightarrow A^c \subset B$ e **2.** $A^c \subset B \Rightarrow A \cup B = E$.

- 1. \Rightarrow) Suponhamos, por absurdo, que $A^c \not\subset B$. Neste caso, $\exists x | x \in A^c$ e $x \not\in B$. Como $x \not\in B \Leftrightarrow x \in B^c$, $\exists x | x \in A^c$ e $x \in B^c$. Assim, pela definição de interseção, $\exists x | x \in (A^c \cap B^c)$. Pela Lei de de Morgan, $\exists x | x \in (A \cup B)^c$ e portanto, $\exists x | x \not\in (A \cup B)$. Uma contradição, pois $A \cup B = E$. Não pode existir um elemento que não esteja em E. Sendo assim, $A \cup B = E \Rightarrow A^c \subset B$.
- **2.** \Leftarrow) Suponhamos, por absurdo, que $A \cup B \neq E$. Neste caso, $\exists x | x \notin (A \cup B)$. Assim, $\exists x | x \in (A \cup B)^c$. Por de Morgan, $\exists x | x \in (A^c \cap B^c)$. Pela definição de interseção, $\exists x | x \in A^c$ e $x \in B^c$. Como $x \in B^c \Leftrightarrow x \notin B$, $\exists x | x \in A^c$ e $x \notin B$. Logo, $A^c \notin B$. Uma contradição, pois $A^c \subset B$. Portanto, $A^c \subset B \Rightarrow A \cup B = E$.

De 1. e 2.,
$$A \cup B = E \Leftrightarrow A^c \subset B$$
.

1.4 Questão 4

Demonstração. Dividiremos a demonstração em duas partes: **1.** $A \subset B \Rightarrow A \cap B^c = \emptyset$ e **2.** $A \cap B^c = \emptyset \Rightarrow A \subset B$.

1. \Rightarrow) Suponhamos, por absurdo, que $A \cap B^c \neq \emptyset$. Neste caso, $\exists x | x \in (A \cap B^c)$. Pela definição de interseção, $\exists x | x \in A$ e $x \in B^c$. Como $x \in B^c \Leftrightarrow x \notin B$, então $\exists x | x \in A$ e $x \notin B$. Portanto, $A \not\subset B$. Mas $A \not\subset B$ e $A \subset B$ (hipótese) não podem ser verdadeiros ao mesmo tempo. Um absurdo gerado pela nossa suposição inicial. Logo, $A \subset B \Rightarrow A \cap B^c = \emptyset$.

2. \Leftarrow) Suponhamos, por absurdo, que $A \not\subset B$. Neste caso, $\exists x | x \in A$ e $x \notin B$. Assim, $\exists x | x \in A$ e $x \in B^c$. Pela definição de interseção, $\exists x | x \in (A \cap B^c)$. Mas não pode existir tal x, pois por hipótese, $A \cap B^c = \emptyset$. Portanto, $A \cap B^c = \emptyset \Rightarrow A \subset B$.

De 1. e 2.,
$$A \subset B \Leftrightarrow A \cap B^c = \emptyset$$
.

1.5 Questão 5

Seja $A=\{1\},\ B=\{2\}$ e $C=\{3\}$. Assim, $(A\cup B)\cap C=\emptyset$ e $A\cup (B\cap C)=\{1\}$. Logo, temos $(A\cup B)\cap C\neq A\cup (B\cap C)$.

1.6 Questão 6

Demonstração. Dividiremos a demonstração de $X = A^c$ em duas etapas: **1.** $X \subset A^c$ e **2.** $A^c \subset X$.

- 1. Suponhamos, por absurdo, que $X \not\subset A^c$. Neste caso, $\exists x | x \in X$ e $x \not\in A^c$. Sendo assim, por definição de complementar, $\exists x | x \in X$ e $x \in A$. Por definição de interseção, $\exists x | x \in (X \cap A)$. Mas, por hipótese, $A \cap X = \emptyset$, não pode existir tal x. Da contradição segue que, de fato, $X \subset A^c$.
- **2.** Suponhamos, por absurdo, que $A^c \not\subset X$. Neste caso, $\exists x | x \in A^c$ e $x \not\in X$. Por definição de complementar, $\exists x | x \in A^c$ e $x \in X^c$. Por definição de interseção, $\exists x | x \in (A^c \cap X^c)$. Por de Morgan, $\exists x | x \in (A \cup B)^c$. E, novamente, pela definição de complementar, $\exists x | x \not\in (A \cup B)$. Uma contradição, pois parte da hipótese garante que $A \cup B = E$. Não pode existir tal x que não esteja em E. Assim, como o absurdo provém da nossa suposição inicial, concluímos que $A^c \subset X$.

De **1.** e **2.**,
$$X = A^c$$
.

1.7 Questão 7

Vamos provar inicialmente que $A \subset B \Rightarrow B \cap (A \cup C) = (B \cap C) \cup A, \forall C.$

Demonstração. Por distributividade, $B \cap (A \cup C) = (B \cap A) \cup (B \cap C)$. Como, por hipótese, $A \subset B$, então $B \cap A = A$. Assim, $(B \cap A) \cup (B \cap C) = A \cup (B \cap C)$. Por comutatividade, $A \cup (B \cap C) = (B \cap C) \cup A$. Como C não possui nada em particular, temos que, $B \cap (A \cup C) = (B \cap C) \cup A$, ∀C. ■

Agora, vamos provar que $\exists C | B \cap (A \cup C) = (B \cap C) \cup A \Rightarrow A \subset B$.

 $\begin{array}{ll} Demonstração. \text{ Se } B\cap (A\cup C) = (B\cap C)\cup A, \text{ então} \\ (B\cap C)\cup A\subset B\cap (A\cup C). \text{ Agora, consideremos} \\ \text{um } x\in A. \text{ Se } x\in A, \text{ então } x\in (B\cap C)\cup A. \text{ Mas,} \\ (B\cap C)\cup A\subset B\cap (A\cup C), \text{ então, } x\in B\cap (A\cup C). \\ \text{Portanto, } x\in B. \text{ Como todo } x \text{ em A também está} \\ \text{em B, } A\subset B. \end{array}$

1.8 Questão 8

Demonstração. Dividiremos a demonstração em duas partes: **1.** $A = B \Rightarrow (A \cap B^c) \cup (A^c \cap B) = \emptyset$ e **2.** $(A \cap B^c) \cup (A^c \cap B) = \emptyset \Rightarrow A = B$.

- 1. \Rightarrow) Como A=B, então $(A\cap B^c)\cup (A^c\cap B)=(A\cap A^c)\cup (A^c\cap A)$. Mas, por comutatividade, $A\cap A^c=A^c\cap A$. Assim, $(A\cap A^c)\cup (A^c\cap A)=A\cap A^c$. Mas, nenhum elemento pode estar em um conjunto e em seu complementar ao mesmo tempo, portanto, $A\cap A^c=\emptyset$. Logo, $(A\cap B^c)\cup (A^c\cap B)=\emptyset$, quando A=B.
- **2.** \Leftarrow) Suponhamos, por absurdo, que $A \neq B$. Assim, $A \not\subset B$ ou $B \not\subset A$.

No primeiro caso, $A \not\subset B \Rightarrow \exists x | x \in A \text{ e } x \not\in B$. Pela definição de complementar, $\exists x | x \in A \text{ e } x \in B^c$, e pela definição de interseção, $\exists x | x \in (A \cap B^c)$. Assim, $A \cap B^c \supset \{x\}$ e, por conseguinte, $(A \cap B^c) \cup (A^c \cap B) \supset \{x\}$. Logo, $(A \cap B^c) \cup (A^c \cap B) \neq \emptyset$. Uma contradição, pois, por hipótese, $(A \cap B^c) \cup (A^c \cap B) = \emptyset$. Portanto, $A \subset B$.

De modo análogo, no segundo caso, $B \not\subset A \Rightarrow \exists x | x \in B \text{ e } x \not\in A$. Pela definição de complementar, $\exists x | x \in B \text{ e } x \in A^c$, e pela definição de interseção, $\exists x | x \in (B \cap A^c)$. Assim, $B \cap A^c = A^c \cap B \supset \{x\}$ e, por conseguinte, $(A \cap B^c) \cup (A^c \cap B) \supset \{x\}$. Logo, $(A \cap B^c) \cup (A^c \cap B) \neq \emptyset$. Uma contradição, pois, por hipótese, $(A \cap B^c) \cup (A^c \cap B) = \emptyset$. Portanto, $B \subset A$.

Em ambos os casos, nossa suposição gerou absurdos. Logo, $(A \cap B^c) \cup (A^c \cap B) = \emptyset \Rightarrow A = B$.

Assim, de **1.** e **2.**, $A = B \Leftrightarrow (A \cap B^c) \cup (A^c \cap B) = \emptyset$.

1.9 Questão 9

Demonstração. Dividiremos a demonstração em duas partes: **1.** $(A-B)\cup(B-A)\subset(A\cup B)-(A\cap B)$ e **2.** $(A\cup B)-(A\cap B)\subset(A-B)\cup(B-A)$.

1. Seja $x \in (A - B) \cup (B - A)$. Pela definição de união, sabemos que $x \in (A - B)$ ou $x \in (B - A)$.

No primeiro caso, se $x \in (A-B)$, então $x \in A$ e $x \notin B$. Mas, se $x \in A$, então, $x \in (A \cup B)$. Como $x \notin B$, então $x \notin (A \cap B)$. Assim, $x \in (A \cup B)$ e $x \notin (A \cap B)$. Portanto, por definição de diferença, $x \in (A \cup B) - (A \cap B)$.

No segundo caso, se $x \in (B-A)$, então $x \in B$ e $x \notin A$. Mas, se $x \in B$, então, $x \in (A \cup B)$. Como $x \notin A$, então $x \notin (A \cap B)$. Assim, $x \in (A \cup B)$ e $x \notin (A \cap B)$. Portanto, por definição de diferença, $x \in (A \cup B) - (A \cap B)$.

Em qualquer caso, $(A-B) \cup (B-A) \subset (A \cup B) - (A \cap B)$.

2. Seja $x \in (A \cup B) - (A \cap B)$. Pela definição de diferença, $x \in (A \cup B)$ e $x \notin (A \cap B)$. Se $x \in (A \cup B)$, então, pela definição de união, $x \in A$ ou $x \in B$. Vejamos cada caso. Se $x \in A$, então, $x \notin B$, pois $x \notin (A \cap B)$. Portanto, $x \in (A - B)$. Se $x \in B$, então, $x \notin A$, pois $x \notin (A \cap B)$. Portanto, $x \in (B - A)$. Em qualquer caso, $x \in (A - B) \cup (B - A)$.

Portanto, em todo caso, $(A \cup B) - (A \cap B) \subset (A - B) \cup (B - A)$.

De **1.** e **2.**, $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

1.10 Questão 10

Demonstração. Dividiremos a demonstração em duas partes: 1. $A\Delta B = A\Delta C \Rightarrow B \subset C$ e 2. $A\Delta B = A\Delta C \Rightarrow C \subset B$.

1. Seja $x \in B$. Assim, $x \in (B-A)$ ou $x \in (A \cap B)$.

No primeiro caso, se $x \in (B-A)$, então $x \in (A-B) \cup (B-A)$. Pela definição de diferença simétrica $(\Delta), \ x \in A\Delta B$. E, por hipótese, $x \in A\Delta C$. Assim, novamente pela definição de $\Delta, \ x \in (A-C) \cup (C-A)$. Mas, se $x \in (B-A)$, então, $x \notin (A-C)$. Assim, $x \in (C-A)$ e finalmente, temos que $x \in C$.

No segundo caso, se $x \in (A \cap B)$, então, $x \notin (A \cup B) - (A \cap B)$. Mas, utilizando o resultado da questão 9, $x \notin (A-B) \cup (B-A)$. Assim, pela definição de Δ , $x \notin A\Delta B$, e, por hipótese, $x \notin A\Delta C$. Novamente, pela definição de Δ , $x \notin (A-C) \cup (C-A)$. Portanto, $x \notin (A-C)$ e $x \notin (C-A)$. Se $x \notin (A-C)$, então, $x \notin A$ ou $x \in C$. Mas, $x \in A$, pois $x \in (A \cap B)$. Logo, $x \in C$.

Assim, em qualquer caso, $x \in B \Rightarrow x \in C$. Logo, $B \subset C$.

2. Análogo ao item **1.**. Basta intercambiar B com C. Assim, concluímos que $C \subset B$.

De 1. e 2.,
$$A\Delta B = A\Delta C \Rightarrow B = C$$
.

Agora, vamos examinar a validade do resultado para $\cup,\,\cap,\,e\,\times.$

- U) Vejamos um contra-exemplo para $A \cup B = A \cup C \Rightarrow B = C$. Seja $A = \{1, 2, 3\}, B = \{2\} \in C = \{3\}$. Assim, $A \cup B = A \cup C = \{1, 2, 3\}, \max B \neq C$.
- \cap) Vejamos um contra-exemplo para $A \cap B = A \cap C$ $\Rightarrow B = C$. Seja $A = \{1, 2\}, B = \{2, 3\}$ e $C = \{2, 4\}$. Assim, $A \cap B = A \cap C = \{2\}, \text{ mas } B \neq C$.
- ×) Seja $A=\emptyset,\ B=\{1\}$ e $C=\{2\}$, temos que $A\times B=A\times C=\emptyset,$ mas $B\neq C.$ Portanto, para $A=\emptyset$ não temos $A\times B=A\times C\Rightarrow B=C.$ Vejamos o caso em que $A\neq\emptyset.$

Demonstração. Vamos demonstrar que para $A \neq \emptyset$, $A \times B = A \times C \Rightarrow B = C$. Para tanto, dividiremos a demonstração em duas partes: **1.** $A \times B = A \times C \Rightarrow B \subset C$ e **2.** $A \times B = A \times C \Rightarrow C \subset B$.

- 1. Suponhamos, por absurdo, que $B \not\subset C$. Neste caso, $\exists x | x \in B$ e $x \not\in C$. Como $A \neq \emptyset$, podemos tomar um $a \in A$ e formar um par (a,x). Este par $(a,x) \in A \times B$, pois $a \in A$ e $x \in B$, mas não é verdade que $(a,x) \in A \times C$, pois $x \not\in C$. Assim, $A \times B \neq A \times C$, pois existe um elemento em $A \times B$ que não está em $A \times C$. Uma contradição com nossa hipótese. Segue, portanto, que $B \subset C$.
- **2.** Suponhamos, por absurdo, que $C \not\subset B$. Neste caso, $\exists x | x \in C$ e $x \not\in B$. Como $A \neq \emptyset$, podemos tomar um $a \in A$ e formar um par (a,x). Este par $(a,x) \in A \times C$, pois $a \in A$ e $x \in C$, mas não é verdade que $(a,x) \in A \times B$, pois $x \not\in B$. Assim, $A \times C \neq A \times B$, pois existe um elemento em $A \times C$ que não está em $A \times B$. Uma contradição com nossa hipótese. Segue, portanto, que $C \subset B$.

De **1.** e **2.**, para
$$A \neq \emptyset$$
, $A \times B = A \times C \Rightarrow B = C$.

1.11 Questão 11

a)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

 $\begin{array}{l} Demonstraç\~ao. \ \ Dividiremos \ a \ nossa \ demonstraç\~ao \\ em \ duas \ partes: \ \mathbf{1.} \ (A \cup B) \times C \subset (A \times C) \cup (B \times C) \\ e \ \mathbf{2.} \ \ (A \times C) \cup (B \times C) \subset (A \cup B) \times C. \end{array}$

- 1. Seja $(x,y) \in (A \cup B) \times C$. Por definição de produto cartesiano, $x \in A \cup B$ e $y \in C$. Assim, $x \in A$ ou $x \in B$. Se $x \in A$, então $(x,y) \in A \times C$. Se $x \in B$, então $(x,y) \in B \times C$. Assim, qualquer que seja o caso, $(x,y) \in (A \times C) \cup (B \times C)$. Portanto, $(A \cup B) \times C \subset (A \times C) \cup (B \times C)$.
- **2.** Seja $(x,y) \in (A \times C) \cup (B \times C)$. Assim, por definição de união, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$. Mas, pela definição de produto cartesiano, temos, $x \in A$ e $y \in C$ ou $x \in B$ e $y \in C$ e portanto, $x \in A$ ou $x \in B$ e $y \in C$. Assim, pela definição de união, $x \in (A \cup B)$ e $y \in C$. Logo, pela definição de produto cartesiano, $(x,y) \in (A \cup B) \times C$. Assim, $(A \times C) \cup (B \times C) \subset (A \cup B) \times C$.

De 1. e 2.,
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
.

b)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

Demonstração. Dividiremos nossa demonstração em duas partes: **1.** $(A \cap B) \times C \subset (A \times C) \cup (B \times C)$ e **2.** $(A \times C) \cup (B \times C) \subset (A \cap B) \times C$.

- 1. Seja $(x,y) \in (A \cap B) \times C$. Pela definição de produto cartesiano, $x \in (A \cap B)$ e $y \in C$. Pela definição de interseção, $x \in A$ e $x \in B$. Sendo assim, $(x,y) \in A \times C$ e $(x,y) \in B \times C$. E novamente, pela definição de interseção, $(x,y) \in (A \times C) \cap (B \times C)$. Assim, $(A \cap B) \times C \subset (A \times C) \cap (B \times C)$.
- **2.** Seja $(x,y) \in (A \times C) \cap (B \times C)$. Pela definição de interseção $(x,y) \in (A \times C)$ e $(x,y) \in (B \times C)$. Assim, pela definição de produto cartesiano, $(x \in A \text{ e } y \in C)$ e $(x \in B \text{ e } y \in C)$, que podemos reescrever como $x \in A \text{ e } x \in B \text{ e } y \in C$. E, pela definição de interseção, $x \in (A \cap B)$ e $y \in C$. Novamente, pela definição de produto cartesiano, temos: $(x,y) \in (A \cap B) \times C$. Logo, $(A \times C) \cap (B \times C) \subset (A \cap B) \times C$.

De 1. e 2.,
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.

c)
$$(A - B) \times C = (A \times C) - (B \times C)$$

Demonstração. Dividiremos nossa demonstração em duas partes: **1.** $(A-B)\times C\subset (A\times C)-(B\times C)$ e **2.** $(A\times C)-(B\times C)\subset (A-B)\times C$.

- 1. Seja $(x,y) \in (A-B) \times C$. Pela definição de produto cartesiano, $x \in (A-B)$ e $y \in C$. Pela definição de diferença, $x \in A$ e $x \notin B$. Assim, o par $(x,y) \in A \times C$ e $(x,y) \notin B \times C$. Segue, portanto, da definição de diferença, que $(x,y) \in (A \times C) (B \times C)$. Logo, $(A-B) \times C \subset (A \times C) (B \times C)$.
- **2.** Seja $(x,y) \in (A \times C) (B \times C)$. Pela definição de diferença, $(x,y) \in (A \times C)$ e $(x,y) \notin (B \times C)$. Da definição de produto cartesiano, $(x \in A \text{ e } y \in C)$ e $(x \notin B \text{ ou } y \notin C)$, que podemos reescrever como $x \in A \text{ e } x \notin B \text{ e } y \in C$. E, pela definição de diferença, temos $x \in (A-B)$ e $y \in C$. Portanto, da definição de produto cartesiano, $(x,y) \in (A-B) \times C$. Logo, $(A \times C) (B \times C) \subset (A-B) \times C$.

De **1.** e **2.**,
$$(A - B) \times C = (A \times C) - (B \times C)$$
.