Reg. No.	

4A.

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of Manipal University)

[04]

MANIPAL-576104

SIXTH SEMESTER B.E DEGREE END SEMESTER EXAM - MAY 2012 SUBJECT: ELECTIVE I – DIGITAL IMAGE ANALYSIS (CSE 310.1)

(REVISED CREDIT SYSTEM)
TIME: 3 HOURS

MAY 24th 2012

MAX. MARKS: 50

INSTRUCTIONS TO CANDIDATES

- ANSWER ANY **FIVE** FULL QUESTIONS.
- ANSWER QUESTIONS IN ORDER.

1A.	Describe three different levels in digital image processing. Suggest appropriate ray		
	electromagnetic spectrum for acquiring the following type of images:		
	(i) Magnetic resonance imaging (ii) Mountain terrain (iii) Fluorescence micros	зору	
	(iv) Computerized tomography (v) Positron emission tomography (vi) Imag	e of	
	burned flakes.	[03]	
1B.	Explain how m-adjacency of pixels is different from 8-adjacency with an example.	[02]	
1C.	Explain in detail the process of image digitization.	[05]	
2A.	Explain the histogram equalization technique for contrast enhancement? How it is us	ed in	
	histogram matching.	[05]	
2B.	How do you correct gamma value in monitor using power-law transformation?	[02]	
2C.	Derive the Laplacian for image sharpening. How it is used in high-boost filtering?	[03]	
3A.	Describe the image filtering operation in frequency domain. Give the mathematical	tical	
	formulation of Butterworth low pass and high pass filters.	[05]	
3B.	Explain the model of the image degradation/restoration process.	[03]	
3C.	Describe any four order statistic filters.	[02]	

Explain the line detection method using Hough transform.

4B.	Give the steps for automatic calculation of global threshold. What is the prob	lem in
	global thresholding? How it is corrected using basic adaptive thresholding?	[03]
4C.	Explain the region growing, region splitting and merging techniques for	image
	segmentation.	[03]
5A.	Explain the following morphological operations:	
	(i) Skeletonization (ii) Convex hull (iii) Thinning	[06]
5B.	Prove that dilation and erosion are exhibit duality property.	[02]
5C.	Give the mathematical representation for gray scale dilation and erosion. What is	he use
	of gray scale opening and closing?	[02]
6A.	How do you represent the boundary using chain code? Describe the normalization	ion of
	the chain code with respect to starting point, rotation and scaling.	[04]
6B.	Explain with an example the following boundary representations:	
	(i) Signature (ii) Minimum perimeter polygon approximation	[02]
6C.	Write short notes on the following:	
	(i) LoG filter (ii) Mask mode radiography	[02]
