H - 74 - 2015

펌프식 시료채취법과 흡착관·열탈착· 가스크로마토그래피 분석에 의한 유기화합물질 평가방법에 관한 기술지침

2015. 9

한국산업안전보건공단

안전보건기술지침의 개요

작성자: 한국산업안전보건공단 산업안전보건연구원 유기호개정자: 한국산업안전보건공단 산업안전보건연구원 박승현

o 제·개정 경과

- 1999년 8월 : 산업위생분야 기준제정위원회 심의

- 1999년 12월 : 총괄제정위원회 심의

- 2009년 6월 : 산업위생분야 기준제정위원회 심의

- 2009년 8월 : 총괄제정위원회 심의

- 2012년 5월 : 총괄제정위원회 심의(개정, 법규개정조항 반영)

- 2015년 4월 : 산업위생분야 기준제정위원회 심의(개정, 법규개정조항 반영)

ㅇ 관련규격 및 자료

- KS : 실내, 대기 및 작업장 공기-흡착튜브/열탈착/모세관 가스크로마토그래피에 의한 휘발성 유기화합물의 샘플링과 분석, KS/ISO 16017-1, 2008

- Indoor, ambient and workplace air Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/ capillary gas chromatography Part 1: Pumped sampling, ISO 16017-1, 2000
- HSE: Volatile organic compounds in air, laboratory method using pumped solid sorbent tubes, thermal desorption and gas chromatography, MDHS 72, 1992
- 관련법규·규칙·고시 등
 - 산업안전보건법 제23조(보건조치)
 - 고용노동부 고시 제2013-39호「작업환경측정 및 지정측정기관 평가 등에 관한 고시」
- ㅇ 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www. kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2015년 9월 3일

제 정 자 : 한국산업안전보건공단 이사장

H - 74 - 2015

펌프식 시료채취법과 흡착관·열탈착· 가스크로마토그래피 분석에 의한 유기화합물질 평가방법에 관한 기술지침

1. 목 적

이 지침은 고용노동부 고시 제2013-39호 「작업환경측정 및 지정측정기관 평가 등에 관한 고시」제23조에 따라 작업환경측정을 하여야 할 유기화합물질에 대한 시료채취 및 분석방법을 제시함을 목적으로 한다.

2. 적용범위

이 지침은 작업환경측정 대상 화학물질 중 시료채취 펌프를 이용한 흡착관·열탈착· 가스크로마토그래피 방법으로서 시료채취의 공기부피 2.5 ℓ에 대해 각 물질당 약 0.2~100 mg/m³ 의 휘발성 유기화합물질을 평가하는 경우에 적용한다.

3. 정의

- 3.1 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (1) "흡착관(Sorbent tube)"이란 휘발성 유기화합물질을 흡착할 수 있는 흡착제가 충진 되어 있는 관을 말한다.
 - (2) "열탈착(Thermal desorption)"이란 흡착관에 포집되어 있는 휘발성 유기화합물질을 고온에서 탈착시켜 불활성 기체를 이용하여 가스크로마토그래프로 전달하는 과정을 말한다.
 - (3) "파과부피(Breakthrough volume)"란 평가대상 유기화합물질을 흡착할 수 있는 흡착관의 최대 부피를 말한다. 다만, 흡착관에 흡착되지 않고 통과되는 부피는 전체의 5%를 초과할 수 없다.

H - 74 - 2015

- (4) "머무름부피(Retention volume)"란 평가대상 유기화합물질을 탈착하기 위해 필요 한 공기 또는 이동 가스(Carrier gas)의 부피를 말한다.
- (5) "안전시료채취 부피(Safe sampling volume)"란 평가대상 유기화합 물질을 손실 없이 안전하게 채취 할 수 있는 시료채취 부피를 말한다. 다만, 시료채취 부피는 파과부피의 70 % 미만 또는 머무름부피의 50 % 미만으로 설정되어야 한다.
- 3.2 그 밖에 이 지침에서 사용하는 용어의 뜻은 특별한 규정이 있는 경우를 제외하고 는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업보건기준에 관한 규칙」에서 정하는 바에 따른다.

4. 원리

시료채취에 적합한 흡착제가 충진되어 있는 흡착관을 통해 시료를 채취하여 열로 탈착한 후, 그 시료를 모세분리관(Capillary column) 및 불꽃이온화검출기 등의 검출기가 부착된 가스크로마토그래프(Gas chromatograph)로 분석하면 공기 중 휘발성 유기화합물질의 농도를 정량화(Quantification) 할 수 있다.

5. 시약 및 재료

5.1 시약은 분석용(Analytical reagent grade) 유기화합물질을 사용하여야 한다.

5.2. 희석용매

- (1) 희석용매는 분석 대상물질이 포함되어 있지 않고 분석 대상물질을 잘 분리할 수 있어야 한다.
- (2) 희석용매는 메틸알콜을 사용한다. 다만, 메틸알콜을 사용할 수 없는 경우에는 에 틸아세테이트, 싸이클로헥산 등의 용매를 사용할 수 있다.

H - 74 - 2015

5.3 흡착제

- (1) 흡착제의 입자 크기는 0.18 ~ 0.25 mm(60~80 mesh)를 사용한다.
- (2) 흡착제는 흡착관에 충진되기 전에 적어도 최고 권장온도 보다 25 ℃ 낮은 온도에서 24 시간 동안 불활성가스를 흘려주면서 가열하여 사전안정화(Pre-conditioning)를 시켜야 한다.
- (3) 흡착제의 오염을 방지하기 위하여 가열한 후 식히거나 저장 또는 흡착관에 충진 시 깨끗한 장소에서 이루어져야 한다.
- (4) 가능한 한 분석 시 탈착온도는 안정화(Conditioning) 온도 미만에서 이루어져야 한다.
- (5) 흡착제의 선정은 별표 1부터 별표 3까지를 참조한다.

6. 표준시료

검량선 작성용 표준시료는 기지농도의 표준공기(Standard atmospheres)에서 흡착관을 이용하여 채취하여 제조하여야 한다.

- 6.1 표준공기를 이용한 흡착관 표준시료의 제조
 - (1) 펌프를 이용하여 정확히 알려진 공기부피를 통과시켜 표준시료를 제조한다.
 - (2) 표준공기 중 시료의 농도는 10 mg/m³이 되도록 한 후 흡착관을 이용하여 100 mℓ, 200 mℓ, 400 mℓ, 1 ℓ, 2 ℓ 또는 4 ℓ를 채취한다.
 - (3) 채취한 공기의 부피는 파과부피를 초과하지 않아야 하며 채취 후 떼어낸 흡착관은 밀봉한다.
 - (4) 표준시료는 매 사용 시 마다 제조하여 사용하여야 한다.
- 6.2 액체주입에 의한 표준용액 제조

H - 74 - 2015

- 6.2.1 각 액체성분이 약 10 mg/ml인 표준용액
 - 100 ml 플라스크에 휘발성이 가장 낮은 물질부터 시작하여 약 1 g씩 각각 해당물질의 질 량을 정확히 넣고 희석용매로 100 ml를 채운 후 마개를 닫은 다음 흔들어 준다.
- 6.2.2 각 액체성분이 약 1 mg/ml인 표준용액
 - 100 ml 플라스크에 50 ml의 희석용매를 넣고 6.2.1의 용액 10 ml를 넣은 다음 희석용 매로 100 ml를 채운 후 마개를 닫고 흔들어 준다.
- 6.2.3 각 가스성분이 약 1 mg/ml인 표준용액
 - (1) 순수가스가 들어있는 가스실린더로부터 작은 플라스틱 백(Bag) 등에 가스를 채워 대기 조건하에서 가스를 얻을 수 있다.
 - (2) 1 ml 가스용 시린지(Syringe)를 이용하여 순수가스 1 ml를 채운 후 시린지 밸브를 잠근다.
 - (3) 희석용매 2 ml를 2 ml 바이얼(Vial)에 넣고 마개(Septum cap)를 닫는다.
 - (4) 바이얼 마개에 시린지 바늘을 꽂은 다음 밸브를 열고 플런져(Plunger)를 이용하여 시린지 안으로 희석용매가 들어오도록 하면 희석용매에 가스가 용해되면서 시린지는 희석용매로 채워진다.
 - (5) 시린지 안의 용액을 플라스크에 넣은 다음 시린지를 용액으로 씻는다.
 - (6) 표준상태에서 가스법칙을 사용하여 가스의 질량을 산출한다.
- 6.3 검량선 작성용 혼합용액의 안정성

표준용액은 주 1회로 제조하여야 한다. 다만, 알콜과 케톤이 응축반응(Condensation reactions)을 일으켜 표준용액이 변질되는 경우에는 주 2회 이상 제조하여야 한다.

6.4 액체주입방법을 이용한 흡착관 표준시료는 흡착관에 표준용액을 주입하여 다음과 같이 제조한다.

H - 74 - 2015

- (1) 흡착관을 이동가스가 100 ml/min로 흐르는 가스크로마토그래프의 시료 주입부에 연결한 후 제조된 표준용액(6.2.1, 6.2.2 또는 6.2.3) 1~5 μl를 시료 주입구에 주입 한다.
- (2) 5분 후에 흡착관을 떼어내어 밀봉한다.
- (3) 표준시료는 매 사용시마다 제조하여야 한다.

7. 실험기구

7.1 흡착관

- (1) 흡착관은 스테인레스 강관으로서, 외경 6.3 mm(1/4 inch), 내경 5 mm 및 길이 90 mm를 사용한다.
- (2) 흡착관의 종류별 안전시료채취부피(Safe sampling volumes)는 별표 4부터 별표 9 까지를 적용한다.
- (3) 흡착관은 테프론 밀봉재(Seals)가 부착된 금속마개로 밀봉한다.
- 7.2 시린지는 다음 중 어느 하나를 사용한다.
 - (1) 0.1 μ 까지 읽을 수 있는 10 μ 액체용 시린지
 - (2) 0.1 μ 까지 읽을 수 있는 10 μ 기체용 시린지
 - (3) 0.01 메까지 읽을 수 있는 1 메 기체용 시린지
- 7.3 시료채취용 펌프는 유량조정(5 ml/min ~ 500 ml/min)이 가능하여야 한다.

7.4 튜브의 사용방법

- (1) 펌프, 흡착관 또는 흡착관 홀더를 연결하는 약 90 cm 플라스틱 또는 고무 튜브를 사용한다.
- (2) 흡착관과 연결된 튜브를 클립 등을 사용하여 고정한다.

H - 74 - 2015

7.5 유량계는 비누거품을 이용하는 유량 보정기구 또는 이와 동등이상의 성능을 갖는 유량계를 사용하여야 한다.

7.6 가스크로마토그래프

- (1) 불꽃이온화검출기, 광이온화검출기, 질량검출기 또는 다른 검출기가 있는 가스크 로마토그래프를 사용한다.
- (2) 0.5 ng의 톨루엔을 주입할 경우에는 신호(Signal)와 노이즈(Noise)의 비가 적어도 5:1로 검출되어야 한다.

7.7 열탈착장치

- (1) 열탈착장치는 2단계로 열탈착된 후 탈착된 증기가 이동가스와 함께 가스크로마 토그래프로 전송되는 장치가 필요하다.
- (2) 열탈착장치는 흡착관에 열을 가하면서 동시에 이동가스가 흐르게 하여 분석물질이 탈착되도록 하는 기능이 필요하다.
- (3) 열탈착장치는 탈착온도, 시간 및 가스유량을 조절할 수 있는 기능이 필요하다.
- (4) 열탈착장치는 흡착관을 자동으로 장착하고 누출시험을 할 수 있어야 하고 탈착된 시료를 농축시킬 수 있는 냉각트랩이 필요하다.
- (5) 탈착된 시료는 이동 가스와 함께 전송관을 통해 가스크로마토그래프의 분리관으로 전송된다.
- 7.8 액체주입에 의한 흡착관 표준시료 제조장치는 가스크로마토그래프의 시료 주입부에 흡착관을 연결하여 액체주입에 의해 표준시료를 제조한다.

8. 시료채취 방법

8.1 흡착관은 사용하기 전에 다음과 같이 안정화시켜야 한다.

H - 74 - 2015

- (1) 이동가스가 최소한 100 ml/min로 흐르게 하고 별표 3에서 정하는 탈착온도 이상 의 온도에서 10분간 안정화시켜야 한다.
- (2) 안정화된 흡착관은 해당 분석조건에서 공시료 분석을 행하고 그 결과가 적절한 지 (간섭물질의 가스크로마토그래프 피크 면적이 방해 분석물질의 전형적인 피크면 적의 10 % 미만인지) 확인한다.
- (3) 시료채취를 하지 않거나 안정화된 흡착관은 테플론이 코팅된 금속 마개로 밀봉하여 깨끗한 용기에 보관한다.
- 8.2 흡착관과 적절한 유량 보정기구를 연결하여 펌프를 보정(Calibration)한다.

8.3 시료채취

- (1) 측정대상 화합물 또는 혼합물의 특성에 적합한 흡착관을 별표 2에 따라 선정한다.
- (2) 한 개 이상의 흡착관이 필요한 경우 흡착관 연결기구를 이용하여 연결하고, 강한 흡착제일수록 펌프에 가깝도록 연결한다.
- (3) 개인시료 채취 시에는 호흡기 위치에서 수직으로 부착시키고 지역시료 채취 시에는 작업환경을 평가할 수 있는 위치에 놓는다.
- (4) 총 시료가 각 흡착관 당 1 mg를 초과하지 않도록 하여야 한다.
- (5) 파과부피(Breakthrough volume)는 직접 측정 또는 머무름부피(Retention volume) 를 이용하여 측정한다.
 - (가) 다공성 폴리머(Porous polymers)의 파과부피는 대기 온도가 10℃ 증가할 때마다 약 2배 감소하며, 시료채취 유량이 5 ml/min 미만 또는 500 ml/min을 초과하는 경우에는 감소할 수 있다.

H - 74 - 2015

- (나) 카본분자체(Carbon molecular sieves)의 파과부피는 온도와 유량에는 영향이 적을 수 있다. 다만, 유기용제의 농도 또는 상대습도가 높을 경우에는 파과부피가 감소할 수 있다.
- (다) 안전한 시료채취는 시료채취부피를 파과부피의 70 % 미만 또는 머무름부피의 50 % 미만으로 하여야 한다.
- (6) 펌프를 켜고 시간, 온도, 유량 등의 사항을 기록한다.
- (7) 시료채취가 종료되면 펌프를 끄고 시간, 온도, 유량 등을 기록한다.
- (8) 흡착관에 측정위치 등을 표시하여야 한다. 다만, 흡착관에 표시하는 경우에는 솔 벤트가 함유된 접착제, 페인트 등을 사용할 수 없다.
- (9) 채취한 시료는 8시간 이내에 분석을 하여야 한다. 다만, 8시간이내에 분석할 수 없는 경우에는 깨끗하고 밀봉이 잘되는 금속 또는 유리용기에 보관한다.
- (10) 공시료는 현장시료와 동일하게 취급 및 분석한다.

9. 분석순서

9.1 탈착 및 분석

- (1) 흡착관은 열탈착 장치에 장착한다.
- (2) 흡착제나 가스 정지상(Gas chromatographic stationary phase)의 열적 산화로 인한 불순물(Chromatographic artefacts) 발생을 예방하기 위하여 흡착관으로부터 공기를 퍼지(Purge) 한다.
- (3) 흡착관의 말단표시(Marked end of the tube) 부분이 가스크로마토그래프의 분리관입구 쪽에 더 가깝도록 장착하고, 이동가스를 가스크로마토그래프에 흐르게 하여가열된 흡착관에서 유기화합물질을 탈착시킨다.
- (4) 흡착관을 통과하는 가스 유량은 30~50 ml/min이 되도록 한다.

H - 74 - 2015

- (5) 탈착된 시료의 가스부피는 수 ml정도의 소량이므로 가스크로마토그래프 분리관에 전송되기 이전에 사전농축을 하여야 한다.
- (6) 농축방법은 가늘고 냉각된 2차 흡착트랩(Secondary sorbent trap)을 사용하여 저 유량(5 ㎖/min 미만)으로 빠르게 탈착시켜 피크 폭이 넓어지는 것을 최소화시키는 방법을 사용한다.
- (7) 분석을 위한 탈착 조건은 다음과 같다.

① 탈착 온도 : 250 ~ 325 ℃

② 탈착 시간 : 5 ~ 15 min

③ 탈착 유량 : 30 ~ 50 ml/min

④ 냉각트랩 저온조건: 20 ~ -180 ℃(냉각트랩에 따라 다름)

⑤ 냉각트랩 고온조건 : 250 ~ 350 ℃

⑥ 냉각트랩 흡착제 : 40 ~ 100 mg(일반적으로 흡착관의 흡착제와 동일)

⑦ 이동가스 : 헬륨

⑧ 분리비 : 흡착관과 2차트랩 사이 또는 2차트랩과 분리관(분석컬럼)

사이의 분리비(Split ratio)는 예상되는 공기중 농도에 따

라 선택(장비 제조회사의 메뉴얼 참조)

- (8) 탈착온도는 별표 4부터 별표 9까지를 참조한다.
- (9) 특정 흡착제에 대한 탈착온도는 별표 2 및 별표 3을 참조한다.
- (10) 일반적으로 분리비는 100:1 ~1000:1를 사용한다.

9.2 검량선 작성

- (1) 표준공기를 이용한 흡착관 표준시료(6.1) 또는 액체주입방법을 이용한 흡착관 표준 시료(6.4)를 열탈착 가스크로마토그래피로 분석한다.
- (2) 각 표준시료에 대하여 표준물질의 질량(μg)을 횡축으로 하고 표준물질의 피크면적을 종축으로 하여 검량선을 작성한다.

H - 74 - 2015

9.3 시료의 질량 산출은 9.1에서 제시된 방법으로 시료와 공시료를 분석하여 검량선으로부터 분석물질의 질량을 산출한다.

9.4 탈착효율 산출

- (1) 탈착효율은 흡착관 표준시료의 분석결과(Chromatographic response)를 표준용액 또는 표준공기를 직접 가스크로마토그래프에 주입하여 얻어진 분석결과와 비교하여 산정하여야 한다.
- (2) 탈착효율은 흡착관 표준시료의 분석결과를 표준용액 또는 표준공기를 가스크로 마토그래프에 직접 주입한 분석결과로 나눈 값이며, 탈착효율이 95 %미만인 경우에는 탈착조건을 변경하여야 한다.
- (3) 열탈착장치에 직접 액체주입장치가 없는 경우의 탈착효율은 다음과 같이 분석 대상물질의 검량선과 노말핵산의 검량선을 비교하여야 한다.
 - (가) 노말헥산의 검량선 기울기에 대한 해당물질의 검량선 기울기의 비율은 해당물질에 대한 상대반응계수(Relative response factor)와 같아야 한다.
 - (나) 다른 물질에 대한 반응계수는 유효탄소수로부터 근사적으로 산출할 수 있다. 다만, 검량선 기울기의 비율이 상대반응계수와 10 %이내에서 일치하지 않을 경우에는 탈착 조건을 변경하여야 한다.

10. 분석대상물질의 농도 계산

시료채취 공기중 분석대상물질의 농도는 다음의 식으로 계산한다.

$$C_{\rm m} = \frac{M_{\rm f} - M_{\rm b}}{V} \times 1000$$

Cm : 시료채취 공기중 분석대상물질의 농도(mg/m³)

 M_f : 시료 중의 분석대상물질의 검출량(mg)

Mb : 공시료 중의 분석대상물질의 검출량(mg)

V : 시료채취 공기의 부피(ℓ)

H - 74 - 2015

11. 방해물질

가스크로마토그래프로 분석하는 동안 분석대상물질의 머무름시간(Retetion time)과 동일 또는 유사한 유기물질은 방해작용을 할 수 있으므로 다음과 같이 조치하여야한다.

- (1) 방해작용은 적절한 가스크로마토그래프의 분리관 및 분석조건 그리고 분석전에 흡착관 및 분석시스템의 엄격한 안정화를 통해 최소화하여야 한다.
- (2) 다공성폴리머(Porous polymers) 또는 소수성흡착제(Carbopack/Carbotrap)는 상대습도 95 %에서도 사용이 가능하나, 순수 활성탄 또는 카본분자체와 같은 흡착제는 상대습도가 65 %를 초과하는 장소에서 사용할 수 없다.
- (3) 수분이 있는 상태에서 오존과 질소산화물은 Tenax TA 흡착관에 손상을 주며, 벤즈알데히드(Benzaldehyde)와 아세토페논(Acetophenone)등이 생성될 수 있다.
- (4) 오존과 질소산화물은 측정되는 성분과 반응할 수 있으므로 많은 양이 존재하는 경우에는 시료채취의 부피 감소 또는 Carbopack 흡착관을 사용한다.

12. 흡착관의 보관

- (1) Chromosorb 106과 Carboxen 569의 흡착관의 보관은 별표 10을 참조한다.
- (2) Tenax TA의 흡착관의 보관은 별표 11을 참조한다.
- (3) 시료를 채취한 흡착관은 4 ℃의 온도로 보관하여 30일 이내에 분석하여야 한다. 다만, 대기온도가 40 ℃를 초과하는 경우에는 냉장상태로 운반한다.

13. 정도관리

(1) Chromosorb 106과 Carbograph TD-1에 대한 유기화합물질의 공시료 수준은 별표12를 참조한다. 다만, 공시료 불순물의 피이크가 분석대상물질 면적의 10 % 미

H - 74 - 2015

만인 경우에 사용할 수 있다.

- (2) 흡착관의 종류별 안전시료 채취부피는 검증하여 관리하여야 한다.
- (3) 흡착관을 주기적으로 검증한 결과 성능이 낮은 경우에는 흡착관을 교환 또는 흡 착제를 재충진하여야 한다.

[별표 1]

흡착제의 종류 및 성분

흡착관의 종류	흡착제의 성분		
Carbotrap	흑연화 탄소		
Carbopack	흑연화 탄소		
Carbograph TD-1	흑연화 탄소		
Carbosieve S-lll	탄소분자체		
Carboxen 569	탄소분자체		
Carboxen 1000	탄소분자체		
Chromosorb 102	스티렌/디비닐벤젠		
Chromosorb 106	폴리스티렌		
Porapak N	비닐피롤리딘		
Porapak Q	에틸비닐벤젠/디비닐벤젠		
Spherocarb	탄소분자체		
Tenax TA	폴리디페닐옥사이드		
Tenax GR	흑연화 폴리디페닐옥사이드		

Carbotrap, Carbopack, Carbograph TD-1, Carbosieve S-lll, Caboxen: 미국 Supelco 회사의 고유상표임

Chromosorb: 미국 Manville 회사의 고유상표임

Porapak: 미국 Waters Associates 회사의 고유상표임

Spherocarb: 미국 Analabs 회사의 고유상표임

Tenax: 미국 Enka 연구소의 고유상표임

[별표 2]

흡착제 선정 가이드

흡착제의 종류	분석물질 휘발성범위	최고온도 (℃)	비표면적 (m²/g)
Carbotrap C Carbopack C	탄소수 : C ₈ ~C ₂₀	>400	12
Tenax TA	끓는점: 100 ℃~400 ℃ 탄소수: C ₆ ~C ₂₆	350	35
Tenax GR	끓는점: 100 ℃~450 ℃ 탄소수: C ₇ ~C ₃₀	350	35
Carbotrap Carbopack B Carbograph TD-1	탄소수 : (C ₄) C ₅ ~C ₁₄	>400	100
Chromosorb 102	끓는점 : 50 ℃~200 ℃	250	350
Chromosorb 106	끓는점 : 50 ℃~200 ℃	250	750
Porapak Q	끓는점 : 50 ℃~200 ℃ 탄소수 : C ₅ ~C ₁₂	250	550
Porapak N	끓는점 : 50 ℃~150 ℃ 탄소수 : C ₅ ~C ₈	180	300
Spherocarb	끓는점: -30 ℃~150 ℃ 탄소수 : C ₃ ~C ₈	>400	1200
Carbosieve Slll Carboxen 1000	끓는점 : -60 ℃~80 ℃	400	800
Molecular Sieve	끓는점: -60 ℃~80 ℃	350	_

[별표 3]

흡착제 사용 가이드

	최고	안?	정화		탈착
흡착관의 종류	온도	0 [(%)	가스 유량	온도	가스 유량
	(C)	온도(℃)	(ml/min)	(\mathcal{C})	(ml/min)
Carbotrap C	>400	350	100	325	30
Carbopack C	/400	330	100	J <u>Z</u> J	30
Tenax TA	350	330	100	300	30
Tenax GR	350	330	100	300	30
Carbotrap					
Carbopack B	>400	350	100	325	30
Crbograph TD-1					
Chromosorb 102	250	250	100	225	30
Chromosorb 106	250	250	100	250	30
Porapak Q	250	250	100	225	30
Porapak N	180	180	100	180	30
Spherocarb	>400	400	100	390	30
Carbon Molecular Sieve					
(Carbosieve S-Ⅲ or	400	350	100	<u>325</u>	30
Carboxen 1000)					
Molecular Sieve	350	330	100	300	30
Tenax / Carbopack B	350	330	100	300	30
혼합형	330	J30	100	300	50
Carbopack B / Carbon	400	350	100	325	30
Molecular Sieve 혼합형	400	550	100	J <u>⊿</u> J	JU
Carboxen 1000 series	400	350	100	325	30
혼합형	700	330	100	040	50

[별표 4]

300mg Chromosorb 106 흡착관에 채취된 유기증기에 대한 외삽법적 머무름부피 및 안전시료 채취부피 (20℃)

유기 화합물	끓는점 (℃)	증기압 (kPa) (25°C)	머무름 부피 (<i>ℓ</i>)	안전시료 채취부피 (SSV) (ℓ)	안전시료 채취부피/ 질량 (ℓ/g)	탈착온도 (℃)
				(2)	(~/6/	
프로판 *	42	_	0.17	0.09	0.29	
펜탄	35	56	23	12	39	130
핵산	69	16	74	37	125	160
헵탄	98	4.7	330	160	530	180
옥탄	125	1.4	2100	1000	3300	2000
노난	151	-	14k	7k	2.3×10 ⁴	220
데칸	174	-	6.2×10 ⁴	3.1×10^4	1.0×10^{5}	250
벤젠	80	10.1	57	28	95	160
톨루엔	111	2.9	160	80	270	200
크실렌	138-14	0.67-0.87	1600	770	2600	250
에틸벤젠	136	0.93	730	360	1200	250
트리에틸벤젠	165-17 6	-	5600	2800	9300	250
알파피넨(a-Pinene)	53	0.51	6600	3300	1.1×10 ⁴	200
염화탄화수소류						
디클로로메탄	40	47	6.9	3.5	12	130
사염화탄소	76	12	44	22	73	160
1,2-디클로로메탄	84	8.4	34	17	67	150
트리클로로에틸렌		2.7	80	40	140	170
1,1,1-트리클로로에틸렌	74	13.3	43	22	71	140
에스테르류 및 글리콜에테르류						
초산메틸	58	22.8	14	7.0	23	125
초산에틸	71	9.7	39	20	267	150
초산프로필	102	3.3	300	150	500	170
초산이소프로필	90	6.3	150	75	7250	165
초산부틸	126	1.0	1500	730	2400	95
초산이소부틸	115	1.9	880	440	1500	90
초산삼부틸	98	-	330	160	530	185
메톡시에탄올	125	0.8	45	23	75	140
에톡시에탄올	136	0.51	150	75	200	250
메톡시에틸아세테이트	145	0.27	1700	860	2900	250
에톡시에틸아세테이트	156	0.16	8100	400	1.3×10 ⁴	250
케톤류						
아세톤	56	24.6	2.9	1.5	5	120

H - 74 - 2015

[별표 4] : 계속

유기 화합물	끓는점 (℃)	증기압 (kPa) (25°C)	머무름 부피 (<i>l</i>)	안전시료 채취부피 (SSV) (<i>ℓ</i>)	안전시료채 취부피/질량 (ℓ/g)	탈착온도 (°C)
메틸에틸케톤	80	10.3	21	11	35	145
메틸이소부틸케톤	118	0.8	490	250	830	190
알콜류						
메탄올 *	65	12.3	0.78	0.39	1.3	
에탄올	78	5.9	3.2	1.6	5.3	120
노말 프로판올	97	1.9	17	8	27	125
이소프로필 알콜	82	4.3	88	44	15	120
노말부탄올	118	0.67	140	68	230	170
이소부탄올	108	1.6	60	30	100	150
기타류						
에틸렌옥사이드	11	147	0.84	0.42	1.4	100
프로필렌옥사이드 *	34	59	2.0	1.0	3.4	120
헥사날	131	_	1680	840	2800	220

* : 안전시료채취부피가 1 ℓ 이하일 경우 Carboxen 569가 더 적합함.

[별표 5]

500mg Carboxen 569 흡착관에 채취된 유기증기에 대한 외삽법적 머무름부피 및 안전시료 채취부피 (20℃)

유기 화합물	끓는점 (°C)	증기압 (k ^p a) (25°C)	머무름 부피 (<i>ℓ</i>)	안전시료 채취부피 (SSV) (ℓ)	안전시료 채취부피/ 질량 (ℓ/g)	탈착온도 (°C)
프로판	42	_	7.2	3.6	7.2	200
메탄올	65	12.3	4	2	4	200
에틸렌옥사이드	11	147	140	70	140	250

[별표 6]

200mg Tenax TA 흡착관에 채취된 유기증기에 대한 외삽법적 머무름부피 및 안전시료 채취부피 (20℃)

		증기압		안전시료채취	안전시료	
0 기 위치묘	끓는점		머무름 부피	부피	채취부피/	탈착온도
유기 화합물	(℃)	(kpa)	(\ell)	(SSV)	질량	(℃)
		(25 ℃)		(()	(\(\ell / g \)	
탄화수소류					(, , ,	
헥산	69	16	6.4	3.2	16	110
헥탄	98	4.7	34	17	85	130
옥탄	125	1.4	160	80	390	140
노난	151	_	1400	700	3500	150
데칸	174		4200	2100	1.0×10^4	160
운데칸	196	_	2.5×10^4	$1.2c10^{4}$	6.0×10 ⁴	170
도데칸	216	_	1.26×10^5	6.3×10 ⁴	3.0×10^{5}	180
벤젠	80	10.1	13	6.2	31	120
톨루엔	111	2.9	76	38	90	140
1] -1]	138-14	0.67-0.8	200	000	1500	1.40
크실렌	4	7	600	300	1500	140
에틸벤젠	136	0.510.93	360	180	900	145
프로필벤젠	159	-	1700	850	4000	160
이소프로필벤젠	152	=	960	480	2400	160
에틸톨루엔	162	=	2000	1000	5000	160
트리메틸톨루엔	165-17	_	3600	1800	8900	170
느니메달골구엔 	6	_	5000	1000	0900	170
스티렌	145	0.88	600	300	1500	160
메틸스티렌	167	-	2400	1200	6000	170

H - 74 - 2015

[별표 6] : 계속

				안전시료채취	안전시료	
	끓는점	증기압	머무름 부피	부피	채취부피/	탈착온도
유기 화합물	(℃)	(kpa)	(ℓ)	(SSV)	질량	$\begin{bmatrix} (\mathbb{C}) \end{bmatrix}$
	(0)	(25 ℃)	(1)	(1)	(ℓ/g)	
염화탄화수소류				(1)	(x/g)	
사염화탄소	76	12	12	6.2	31	120
1,2-디클로로에탄	84	8.4	11	5.4	27	120
1,0 1 = 3 = 1 =	01	0.1	Tenax에	0.1	21	120
	7.4	0.7				
1,1,1-트리클로로에탄	74	2.7	대한			
			자료없음			
1,1,2-트리클로로에틸	114	_	68	34	170	120
렌	114		00	04	170	120
1,1,1,2						
-테트라클로로에탄	130	_	160	78	390	150
1,1,2,2						
-테트라클로로에탄	146	0.67	340	170	850	150
트리클로로에틸렌	87	2.7	11.2	5.6	28	120
테트라클로로에틸렌	121	1.87	96	48	240	150
클로로벤젠	131	1.2	52	26	130	140
에스테르류 및	101	1.2	32	20	150	140
글리콜에테르류	771	0.7	7.0	2.6	10	100
초산에틸	71	9.7	7.2	3.6	18	120
초산프로필	102	3.3	36	18	92	140
초산이소프로필	90	6.3	12	6	31	120
초산부틸	126	1.0	170	85	420	150
초산이소부틸	115	1.9	265	130	650	130
초산부틸(t-BUTYL			Tenax에			
ACETATE)	98	_	대한 자료			
ACETATE)			없음			
메틸아크릴레이트	81	-	13	6.5	32	120
에틸아크릴레이트	100	3.	48	24	120	120
메틸메스아크릴레이트						
(METHYL METH	100	3.	55	27	130	120
ACRYLATE)	100	0.			100	120
메톡시에탄올	125	0.8	6	3	15	120
에톡시에탄을	136	0.3	10	5	25	130
부톡시에탄올	170	0.1	70	35	170	140
메톡시프로판올	118	- -	27	13	65	115
메톡시에에틸아세테이					00	110
트145	0.7	16	8	40	120	
에톡시에틸아세테이트	156	0.6	30	15	75	140
부톡시에틸아세테이트	192	0.0	300	150	750	160
	104	0.4	500	100	100	100

H - 74 - 2015

[별표 6]: 계속

유기 화합물	끓는점 (℃)	증기압 (kPa) (25 ℃)	머무름 부피 (<i>ℓ</i>)	안전시료채취 부피 (SSV) (ℓ)	안전시료채취 부피/질량 (ℓ /g)	탈착온도 (°C)
알데히드류						
및 케톤류						
메틸에틸케톤	80	10.	6.	3.	16	120
메틸이소부틸케 톤	118	0.	52	26	130	140
시클로헥사논	155	0.5	340	170	850	150
3,5,5-트리메틸-						
시클로-2-헥사논	0.5	11000	5600	28000	90	
214						
퓨 퓨 럴	1.00	٥٢	C00	200	1500	200
(FURFURAL)	162	0.5	600	300	1500	200
알콜류						
노말부탄올	118	0.7	10	5	25	120
이소부탄올	108	1.	5.	2.	14	120
삼 부 탄 올			Tenax에			
(t-BUTANOL)	83	1.7	대한 자료			
(t-bull ANOL)			없음			
옥탄올	180	-	2800	1400	7000	160
페놀	182	0.03	480	240	1200	190
기타류						
무수 말레산						
(M A L E I C	202	6.E-6	180	88	440	180
ANHYDRIDE)						
피리딘	116	16	8	40	150	
아닐린	184	0.9	440	220	1100	190
니트로벤젠	211	0.2	28000	14000	70000	200

[별표 7]

500mg Porapak N 흡착관에 채취된 유기증기에 대한 외삽법적 머무름부피 및 안전시료 채취부피 (20℃)

유기 화합물	끓는점 (℃)	증기압 (kPa) (25 ℃)	머무름 부피 (<i>ℓ</i>)	안전시료채취 부피 (SSV) (ℓ)	안전시료채취 부피/질량 (ℓ/g)	탈착온도 (℃)
탄화수소류						
펜탄	35	56	8.2	12	8.2	180
헥산	69	16	32	16	32	180
헵탄	98	4.7	90	95	90	180
벤젠	80	10.	52	26	52	180
알콜류						
에탄올	78	5.9	7.5	3.7	7.5	120
노말프로판올	97	1.9	40	20	40	120
노말부탄올	118	0.67	10	5	25	120
이소프로판올	108	1.6	5.6	2.8	14	120
옥탄올	180	-	2800	1400	7000	160
페놀	182	0.03	480	240	1200	190
기타류						
초산	116	-	97	50	97	180
아세토니트릴	82	9.9	7	3.5	7	180
아크릴로니트릴	77	13.3	16	8	16	180
프로피오니트릴	97	-	23	11	23	180
피리딘	116	-	390	200	390	180
메틸에틸케톤	80	10.3	95	50	95	180

[별표 8]

300mg Spherocarb 흡착관에 채취된 유기증기에 대한 외삽법적 머무름부피 및 안전시료 채취부피 (20℃)

유기 화합물	끓는점 (℃)	증기압 (kPa) (25°C)	머무름 부피 (<i>l</i>)	안전시료채 취부피 (SSV) (ℓ)	안전시료채 취부피/질 량 (ℓ/g)	탈착온 도 (℃)
부탄	-0.5	-	1600	820	2700	270
펜탄	35	56	6.3×10 ⁴	3.0×10 ⁴	1.0×10 ⁵	335
헥산	69	16	3.9×10^6	2.0×10 ⁶	7.0×10 ⁶	390
벤젠	80	10.1	1.0×10^{6}	5.0×10 ⁵	1.7×10^6	375
이염화메탄	40	47	400	200	700	250
1,1,1-삼염화메탄	74	13.3	1.8×10 ⁴	9k×10³	2.7×10^4	290
메탄올	65	12.3	1260	130	430	340
에탄올	78	5.9	6900	3500	1.2×10^3	370

[별표 9]

300mg 활성탄관에 채취된 유기증기에 대한 외삽법적 머무름부피 및 안전시료 채취부피 (20℃)

유기 화합물	끓는점 (℃)	증기압 (kPa) (25 ℃)	머무름 부피 (<i>ℓ</i>)	안전시료채 취부피 (SSV) (ℓ)	안전시료채 취부피/질량 (ℓ /g)	탈착온도 (°C)
프로판	-4.2	_	10	5	15	220
부탄	-0.5	_	900	450	600	270
펜탄	35	56	2.7×10 ⁴	1.3×10 ⁴	4.3×10 ⁵	327
헥산	69	16	1.5×10^6	7.5×10^6	2.5×10^6	388
벤젠	80	10.1	3.4×10^6	1.7×10^5	5.6×10^6	370

[별표 10]

Chromosorb 106 과Carboxen 569 에 대한 분석정밀도 및 안정성 실험결과(주입양 : 1 μg)

유기 화합물	분석정밀.	도(CV%)	2주간 저장후 회수율(%)			
	Chromosorb	Carboxen	Chromosorb	Carboxen		
프로판		1.8		115		
펜탄	1.7		112			
헥산	2.1: 3.6		104			
벤젠	2.9		100			
디클로로메탄	1.9		114			
1,1,1-트리클로로에탄	2.4		101			
메탄올		1.7		64		
에탄올	5.9		96			
부탄올	1.3		101			
초산메틸	1.8		113			
메톡시에탄올	5.7		121			
메틸에틸케톤	2.2		103			
아세토니트릴	4.1		112			
초산부틸	3.4		104			
알파피넨(a-PINENE)	4.2: 2.5		104			
데칸	4.2		104			
프로필렌옥사이드	3.6		103			
헥사날	3.5		98			

H - 74 - 2015

[별표 11]

Tenax TA 흡착관에 대한 정밀도 및 안정성 실험결과

유기 화합물	시료 주입량 (μg)	주입직후 분석정밀도 (% CV)	5개월 평균 회 및 년 정밀도(수율(%) 분석	11개월 저장후 평균 회수율(%) 및 분석 정밀도(% CV)	
탄화수소류				<u> </u>	_ •	-
핵산	7.8	10.7	93.6	17.9	100.8	26.1
헵탄	8.4	2.4	99.6	2.1	100.0	1.3
옥탄	8.6	2.4	100.1	1.8	100.0	0.5
노난	12.0	0.8	nd	nd	101.0	0.4
데칸	9.2	2.2	100.4	1.5	100.2	0.5
운데칸	9.1	2.3	100.7	1.5	100.2	0.2
도데칸	9.9	2.8	101.8	1.5	101.5	0.4
벤젠	11.0	2.5	98.7	2.0	98.6	0.8
톨루엔	10.9	2.6	(100.0)	1.8	(100.0)	0.6
파라 크실렌	5.3	2.5	99.9	1.7	99.8	0.7
오르토 크실렌	11.0	2.4	100.0	1.7	98.8	0.7
에틸벤젠	10.0	0.5	99.6	0.4	97.9	1.3
프로필벤젠	10.5	2.3	99.7	1.5	98.5	0.7
이소프로필벤젠	10.9	2.3	98.9	1.8	97.2	1.3
메타, 파라 에틸톨루엔	10.5	2.3	98.8	1.7	96.9	1.2
오르토 에틸톨루엔	5.4	2.2	100.1	1.6	98.9	0.7
1,2,4-트리메틸벤젠	10.8	2.2	100.1	1.3	99.1	0.5
1,3,5-트리메틸벤젠	10.7	2.2	100.0	1.5	99.1	0.5
트리메틸벤젠	10.2	1.7	101.6	0.5	101.3	0.8
에스테르류 및						
글리콜에테르류						
초산에틸	10.3	0.6	97.6	1.0	100.0	2.5
초산프로필	10.9	2.4	100.5	1.7	99.1	0.8
초산이소프로필	9.4	1.0	97.0	0.4	100.0	1.4
초산부틸	10.8	2.4	100.3	1.6	99.9	0.6
초산이소부틸	1.7	2.3	100.2	1.4	99.8	0.7
메톡시에탄올	8.9	5.4	87.3	5.7	93.1	1.6
에톡시에탄올	10.4	4.2	97.6	2.5	97.2	3.3
부톡시에탄올	10.0	2.6	100.6	4.1	100.1	3.0
메톡시프로판올	10.4	2.4	95.3	3.6	99.0	1.2

H - 74 - 2015

[별표 11]: 계속

		주입직후	주입직후 5개월 저장		11개월 저장후		
유기 화합물	시료 주입량	분석정밀	평균 회수율(%)		평균 회수율(%)		
#기 와입물	(μg)	도 및 분석		분석	및 분석		
		(% CV)	정밀도(% CV)		정밀도(% CV)		
메톡시에틸아세테이트	12.5	2.1	100.6	1.4	98.9	1.4	
에톡시에틸아세테이트	11.4	0.9	99.8	2.2	98.7	2.6	
부톡시에틸아세테이트	11.5	2.3	101.3	1.3	99.9	1.1	
알데히드류 및 케톤류							
메틸에틸케톤	9.2	0.9	97.4	0.8	99.1	0.6	
메틸이소부틸케톤	9.3	0.6	100.7	0.6	100.7	0.5	
시클로헥사논	10.9	0.8	102.4	1.2	100.7	0.6	
2-메틸시클로헥사논	10.7	0.7	101.1	0.5	101.1	1.3	
3-메틸시클로헥사논	10.5	0.8	103.6	1.0	103.0	0.7	
4-메틸시클로헥사논	10.6	0.9	103.6	1.4	102.7	0.6	
3,5,5-트리메틸시클로-2-헥사	10.6	2.3	101.4	0.9	97.7	1.2	
논 10,6	10.0	2.0	101.4	0.5	31.1	1.2	
알콜류							
부탄올	9.0	1.1	94.8	3.0	96.9	1.2	
이소부탄올	8.9	1.0	93.6	3.5	96.4	1.0	

[별표 12] Chromosorb 106과 Carbograph TD-1에 대한 공시료 수준

		Chronosorb 106					Carbograph TD-1						
사례		벤전	센	톨루	-엔	크실	[렌	벤.	젠	톨루	- 엔	크실	l 렌
		$\mu \mathrm{g/m^3}$	ng	$\mu\mathrm{g/m^3}$	ng	$\mu \mathrm{g/m^3}$	ng	$\mu \mathrm{g/m^3}$	ng	$\mu\mathrm{g/m^3}$	ng	$\mu\mathrm{g/m^3}$	ng
1	평균	0.39	7.69	0.06	1.39	0.16	3.23	0.27	7.22	0.08	2.04	0.26	5.59
	표준편차	0.12	1.96	0.03	0.55	0.09	1.64	0.11	2.75	0.03	0.78	0.12	2.28
	시료수	20	20 20		20		20		20		20		
2	평균	0.58	10.38	0.15	3.26	0.08	1.46	0.28	6.88	0.15	3.34	0.12	2.35
	표준편차	0.13	2.28	0.11	2.55	0.08	1.44	0.13	2.70	0.07	1.3	0.08	1.39
	시료수	14	4 14		14		1.	14 14		4	14		
3	평균	0.25	5.63	0.09	2.09	0.04	0.96	0.12	2.61	0.2	4.39	0.07	1.63
	표준편차	0.14	3.04	0.11	2.36	0.02	0.51	0.05	1.13	0.28	6.19	0.05	1.17
	시료수	16	3	16		16		16		16		16	

사례 1 : 각각의 탄화수소류를 주입하여 총량이 약 80 ng일 경우 실험결과 사례 2, 3 : 각각의 탄화수소류를 주입하여 총량이 약 200 ng일 경우 실험결과