Linear Systems Stability

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

- There are two types of stability one can associate with a system $\dot{\mathbf{x}}\left(t\right) = \mathbf{f}\left(\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right)$ Internal stability and Input-Output stability.
- ▶ Internal stability: Deals with the stability of the zero-input response of the system states, i.e. $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$.
- An equilibrium point \mathbf{x}_e of this system is defined as a point in the state space where, $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}_e) = \mathbf{0}$, i.e. if the system starts in this state, it stays in that state for all time.
- ▶ In the case of linear systems, we have $Ax_e = 0$. The nullspace of A is the set of all equilibrium points of the linear system.

Find the equilibrium points for the following systems with $\mathbf{f}(\mathbf{x}(t))$: (a) $\begin{vmatrix} x_2 \\ \sin x_1 \end{vmatrix}$; (b)

$$\begin{bmatrix} x_1 + 2x_2 \\ 2x_1 + 3x_2 \end{bmatrix}$$
; (c)
$$\begin{bmatrix} -x_1 + x_2 \\ x_1 - x_2 \end{bmatrix}$$
; and (d)
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
.

- Definition of stability in the Lyapunov sense for linear systems:
 - The zero-input response of a linear system $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ is stable or marginally stable if every finite initial condition $\mathbf{x}(0^-)$ results in a bounded state trajectory $\mathbf{x}(t) \ \forall t \geq 0$.

$$\|\mathbf{x}(t)\| \le d, \ \forall t \ge 0$$

The zero-input response is asymtotically stable if everyf initial condition $\mathbf{x}(0^-)$ results in a bounded state trajectory $\mathbf{x}(t)$ that coverges to 0 as $t \to \infty$.

$$\left\|\mathbf{x}\left(t\right)\right\| \leq d \text{ and } \lim_{t \to \infty} \left\|\mathbf{x}\left(t\right)\right\| = 0$$

- ▶ The system $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ is marginally stable if and only if all eigenvales of \mathbf{A} have either zero or negative real parts, and the eigenvalues with zero real parts have the same algebraic and geometric multiplicity.
- The system $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ is asymptotically stable if and only if all eigenvales of \mathbf{A} have negative real parts.

► Consider the solution, $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}(0^{-}), t \geq 0$, and $\mathbf{A} = \mathbf{VJV}^{-1}$.

$$\|\mathbf{x}(t)\| = \|e^{t\mathbf{A}}\mathbf{x}(0^{-})\| \le \|e^{t\mathbf{J}}\| \|\mathbf{x}(0^{-})\|$$

- ▶ When **A** is diagonalizable (λ_i are the eigenvalues of **A**),
 - ▶ $\|\mathbf{x}(t)\| \le e^{\sigma t} \|\mathbf{x}(0^-)\|$, where $\sigma = \max_i \Re\{\lambda_i\}$. ▶ When $\sigma = 0$, $\|\mathbf{x}(t)\|$ is bounded $\forall t \ge 0$.
 - Vhen $\sigma = 0$, $\|\mathbf{x}(t)\|$ is bounded $\forall t \geq 0$
 - When $\sigma < 0$, $\lim_{t\to\infty} \|\mathbf{x}(t)\| = 0$.

- lacktriangle When ${f A}$ is not diagonalizable, then ${f J}$ is block diagonal.
 - Consider the i^{th} Jordan block, $\mathbf{J}_i = \lambda_i \mathbf{I} + \mathbf{N}$, Thus, $e^{t\mathbf{J}_i} = e^{\lambda_i t \mathbf{I}} e^{t\mathbf{N}} \implies \|\mathbf{x}(t)\| \le e^{\sigma_i t} \|e^{t\mathbf{N}}\| \|\mathbf{x}(0^-)\|$
 - When $\sigma_i = 0$, $\|e^{t\mathbf{N}}\|$ grows with time, and thus $\mathbf{x}(t)$ is not bounded.
 - Mhen $\sigma_i < 0$, the $e^{\sigma_i t}$ term does not allow $\mathbf{x}(t)$ to grow.

Comment of the stability: (a) $\begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$; (b) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$; and (d)

$$\begin{bmatrix} -1 & -1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Internal stability – Discrete-time LTI systems

When ${\bf A}$ is diagonalizable (λ_i are the eigenvalues of ${\bf A}$),

- $\|\mathbf{x}[k]\| \le |\lambda|^k \|\mathbf{x}[0]\|$, where $\lambda = \max_i |\lambda_i|$.
- ▶ When $|\lambda| = 1$, $\|\mathbf{x}[k]\|$ is bounded $\forall k > 0$.
- When $|\lambda| < 1$, $\lim_{k \to \infty} ||\mathbf{x}[k]|| = 0$.

Internal stability – Discrete-time LTI systems

When ${\bf A}$ is not diagonalizable, then ${\bf J}$ is block diagonal.

- $lackbox{ Consider the } i^{th}$ Jordan block, $\mathbf{J}_i^k = (\lambda_i \mathbf{I} + \mathbf{N})^k = \sum_{l=0}^k rac{k!}{(k-l)!l!} \lambda_i^l \mathbf{N}^{k-l}$
- ▶ When $|\lambda_i|=1$, $\left\|\mathbf{J}_i^k\right\|$ grows with time, and thus $\mathbf{x}\left[k\right]$ is not bounded.
- ▶ When $|\lambda_i| < 1$, the λ_i^l term does not allow $\mathbf{x}[k]$ to grow.

- Input-output stability or external stability deals with the forced response of a system, assuming the system is relaxed.
- Input-output stability is also known as BIBO (bounded input, bounded output) stability, i.e. a bounded input $\mathbf{u}\left(t\right)$ applied to the system produces a bounded output $\mathbf{y}\left(t\right)$.

A single input, single output (SISO) LTI system with impulse response $h\left(t\right)$ is BIBO stable, if and only if

$$\int_{0}^{\infty} |h\left(t\right)| dt < \infty$$

When $h\left(t\right)$ is not absolutely integrable, then we are not guaranteed that bounded inputs will produce bounded outputs.

A SISO system with a rational transfer function $H\left(s\right)$ is BIBO stable if and only if all its poles lie in the left half of the s-plane.

$$H\left(s\right) = \frac{B\left(s\right)}{A\left(s\right)} \xrightarrow{\mathcal{L}^{-1}} h\left(t\right) \text{ contains } e^{p_{i}t}, te^{p_{i}t}, \dots t^{m-1}e^{p_{i}t}$$

► In the case of a muti-input, multi-output (MIMO) LTI system, the impulse response and transfer function matrices are given by,

$$\mathbf{G}(t) = \mathbf{C}e^{t\mathbf{A}}\mathbf{B} + \mathbf{D}\delta(t)$$
 and $\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

▶ A MIMO system is BIBO stable, if and only if each element of the impulse response matrix $\mathbf{G}\left(t\right)$ is absolutely integrable.

$$\int_{0}^{\infty} |g_{ij}(t)| dt < \infty, \ \forall 1 \le i, j \le n$$

A MIMO LTI system is BIBIO stable, if and only if the poles of each element of the transfer function matrix $H\left(s\right)$ lie in the left half of the s-plane. Even if we have eigenvalue that have positive real parts, the system migth still be BIBO stable because of pole-zero cancellations in the individual elements of $\mathbf{G}\left(s\right)$.

Is this system externally stable? $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & -2 \end{bmatrix}$. Is this system internally stable?

Input-Output stability (discrete-time system)

A SISO discrete-time LTI system with impulse response $h\left[k\right]$ is BIBO stable, if and only if

$$\sum_{k=0}^{\infty} |h[k]| < \infty$$

A SISO system with a rational transfer function $H\left(z\right)$ is BIBO stable if and only if all its poles lie within the unit circle |z|=1.

$$H\left(z\right) = rac{B\left(z\right)}{A\left(z\right)} \xrightarrow{\mathcal{L}^{-1}} h\left[k\right] \text{ contains } p_i^k, kp_i^k, \dots k^{m-1}p_i^k$$

Input-Output stability (discrete-time system)

▶ A MIMO discret-time LTI system is BIBO stable, if and only if each element of the impulse response matrix G[k] is absolutely summable.

$$\sum_{k=0}^{\infty} |g_{ij}[k]| < \infty, \ \forall 1 \le i, j \le n$$

A MIMO discrete-time LTI system is BIBO stable, if and only if the poles of each element of the transfer function matrix H(z) lie in the unit circle.