Solid Mechanics - Zak Olech - 9/10/2019

Variables (Alphbetical By Variable)

a	Constant; distance		
A, B, C,	Forces; reactions		
A, B, C, \ldots	Points		
A , α	Area		
b	Distance; width		
c	Constant; distance; radius		
C	Centroid		
C_1 , C_2 ,	Constants of integration		
C_P	Column stability factor		
d	Distance; diameter; depth		
D	Diameter		
e	Distance; eccentricity; dilatation		
E	Modulus of elasticity		
f	Frequency; function		
\mathbf{F}	Force		
F.S.	Factor of safety		
G	Modulus of rigidity; shear modulus		
h	Distance; height		
H	Force		
H, J, K	Points		
I , I_x ,	Moment of inertia		
I_{xy} ,	Product of inertia		

J	Polar moment of inertia
k	Spring constant; shape factor; bulk
	modulus; constant
K	Stress concentration factor; torsional
	spring constant
l	Length; span
L	Length; span
L_e	Effective length
m	Mass
\mathbf{M}	Couple
M, M_x, \ldots	Bending moment
M_D	Bending moment, dead load (LRFD)
M_L	Bending moment, live load (LRFD)
M_U	Bending moment, ultimate load (LRFD)
n	Number; ratio of moduli of elasticity;
	normal direction

Force; concentrated load

Dead load (LRFD) Live load (LRFD)

p

P

Pressure

P_U	Ultimate load (LRFD)	
q	Shearing force per unit length; shear	
	flow	
Q	Force	
Q	First moment of area	
r	Radius; radius of gyration	
\mathbf{R}	Force; reaction	
R	Radius; modulus of rupture	
S	Length	
S	Elastic section modulus	
t	Thickness; distance; tangential	
	deviation	
\mathbf{T}	Torque	
T	Temperature	
u, v	Rectangular coordinates	
u	Strain-energy density	
U	Strain energy; work	
\mathbf{v}	Velocity	
\mathbf{V}	Shearing force	
V	Volume; shear	
\boldsymbol{w}	Width; distance; load per unit length	
W , W	Weight, load	

Shearing force

V	Volume; shear
w	Width; distance; load per unit length
W , W	Weight, load
<i>x</i> , <i>y</i> , <i>z</i>	Rectangular coordinates; distance;
	displacements; deflections
\overline{x} , \overline{y} , \overline{z}	Coordinates of centroid
Z	Plastic section modulus
α , β , γ	Angles
α	Coefficient of thermal expansion;
	influence coefficient
γ	Shearing strain; specific weight
γ_D	Load factor, dead load (LRFD)
γ_L	Load factor, live load (LRFD)
δ	Deformation; displacement
ϵ	Normal strain
θ	Angle; slope
λ	Direction cosine
ν	Poisson's ratio
ho	Radius of curvature; distance; density
σ	Normal stress
au	Shearing stress
$\boldsymbol{\phi}$	Angle; angle of twist; resistance factor
ω	Angular velocity

Conversion Factors

$$1hp = 550ft*lb/s = 6600 in*lb/s$$
 (1)

General

SI Prefixes

Multiplication Factor	Prefix [†]	Symbol
$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	T
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	mega	M
$1\ 000 = 10^3$	kilo	k
$100 = 10^2$	hecto‡	h
$10 = 10^{1}$	deka‡	da
$0.1 = 10^{-1}$	deci‡	d
$0.01 = 10^{-2}$	centi‡	c
$0.001 = 10^{-3}$	milli	m
$0.000\ 001 = 10^{-6}$	micro	μ
$0.000\ 000\ 001 = 10^{-9}$	nano	n
$0.000\ 000\ 000\ 001 = 10^{-12}$	pico	р
$0.000\ 000\ 000\ 000\ 001 = 10^{-15}$	femto	p f
$0.000\ 000\ 000\ 000\ 001\ =\ 10^{-18}$	atto	a

Chapter 1 - Concept of stress

Chapter 2 - Stress and Strain - Axial Loading

Chapter 3 - Torsion

General

Deformation in Circular Shafts

$$\gamma = \frac{\rho\phi}{L} \tag{2}$$

$$\gamma_{max} = \frac{c\phi}{L} \tag{3}$$

$$\gamma = \frac{\rho}{c} * \gamma_{max} \tag{4}$$

Shearing Stresses in Elastic Range

$$\tau = -\frac{\rho}{c}\tau_{max} \tag{5}$$

$$\tau_{max} = \frac{Tc}{J} \tag{6}$$

$$\tau = \frac{T\rho}{I} \tag{7}$$

Polar Moment of Inertia Solid Shaft

$$J = \frac{1}{2}\pi c^4 \tag{8}$$

c = radius

Polar Moment of Inertia of a Hollow Shaft inner radius c1, outer radius c2

$$J = \frac{1}{2}\pi(c_2^4 - c_2^4) \tag{9}$$

Angle of Twist

$$\phi = \frac{TL}{JG} \tag{10}$$

$$\phi = \Sigma \frac{TL}{IG} \tag{11}$$

Statically Indeterminante Shafts

Transmission Shafts

Power P is transmitted as:

$$P = 2\pi f T \tag{12}$$

T is the torque exerted at each end of the shaft f the frequency (hz or s^{-1})

Stress Concentrations

$$\tau_{\text{max}} = K \frac{Tc}{I} \tag{13}$$

K = Stress concentration factor stress $\frac{Tc}{T}$ is computed for the smaller-diameter shaft

Fig. 3.28 Plot of stress concentration factors for fillets in circular shafts. (Source: W. D. Pilkey and D. F. Pilkey, *Peterson's Stress Concentration Factors*, 3rd ed., John Wiley & Sons, New York, 2008.)

Plastic Deformations

$$T = \int_0^c \rho \tau(2\pi d\rho) = 2\pi \int_0^c \rho^2 \tau d\rho \tag{14}$$

Modulus of Rupture

This is a ficticious value.

$$R_t = \frac{T_u c}{j} \tag{15}$$

Solid Shaft of Elastoplastic Material

Maximum Elastic Torque; Solid Circular Shaft, Radius c

$$\tau_y = \frac{1}{2}\pi c^3 \tau Y \tag{16}$$

Torque Related to ρ_y

$$T = \frac{4}{3}T_y(1 - \frac{1}{4}\rho\rho^3 yc^3) \tag{17}$$

Plastic Torque

$$T_p = \frac{4}{3}T_y \tag{18}$$

Plastic Torque Vs. Angle of Twist

$$T = \frac{4}{3}T_y(1 - \frac{1}{4}\frac{\phi^3 y}{\phi^3}) \tag{19}$$

Torsional Loading or Shaft Cross-Section Changes Along Length

$$\phi = \sum_{i} \frac{T_i L_i}{J_i G_i} \tag{20}$$

Thin-Walled Hollow Shafts

Shear Flow

$$q = \tau t \tag{21}$$

Average Shearing Stress τ at any given point in cross section

$$\tau = \frac{T}{2tA} \tag{22}$$