THÉORIES DES LANGAGES

Mr,HEMIOUD hemourad@yahoo,fr Université de Jijel Département d'informatique

Grammaire Système générateur de langage

GRAMMAIRE

(SYSTÈME GÉNÉRATEUR DE LANGAGE)

- **Définition** . Une grammaire est un moyen permettant de décrire la construction des mots d'un langage. Elle a plusieurs avantages :
 - Elle permet de *raisonner* sur le langage ;
 - Elle permet de construire des algorithmes efficaces pour le traitement des langages ;
 - Elle facilite l'apprentissage des langages.
- NB: Les expressions régulières ne sont pas suffisantes pour représenter les langages

Exemple 1 : Grammaire?

Pour analyser une classe de phrases simples en français, nous allons supposer qu'une phrase est construite de la manière suivante :

PHRASE → ARTICLE SUJET VERBE ARTICLE COMPLEMENT
et COMPLEMENT → NOM ADJECTIF

PHRASE → ARTICLE SUJET VERBE ARTICLE COMPLEMENT;

- \circ COMPLEMENT \rightarrow NOM ADJECTIF;
- SUJET \rightarrow "garçon" ou "fille";
- VERBE → "voit" ou "mange" ou "porte";
- ARTICLE \rightarrow "un" ou "le";
- \bullet NOM → "livre" ou "plat" ou "wagon";
- ADJECTIF \rightarrow "bleu" ou "rouge" ou "vert";

En remplaçant les parties gauches par les parties droites nous arrivons à générer les deux phrases suivantes :

- Le garçon voit un livre vert
- Une fille mange le plat bleu

Génération de phrases

- PHRASE→ ARTICLE SUJET VERBE ARTICLE COMPLEMENT
 - →"le" **SUJET** VERBE ARTICLE COMPLEMENT
 - →"le" "garçon" **VERBE** ARTICLE COMPLEMENT
 - → "le" "garçon" "<u>voit</u>" **ARTICLE** COMPLEMENT
 - →"le" "garçon" "voit" "<u>le</u>" **COMPLEMENT**
 - >"le""garçon""voit""le" NOM ADJECTIF
 - > "le" "garçon" "voit" "le" "livre" ADJECTIF
 - >"le" "garçon" "voit" "le" "livre" "vert"

De même pour la phrase « *Une fille mange le plat bleu* »

« Une fille mange le livre bleu » (la syntaxe est correcte)

Exemple 2 : Analyse des expressions arithmétiques

$$\circ x + 2.5 * 4 + (y + z),$$

$$\circ$$
 12 + 4 * (5 + 10)

$$\circ$$
 10 * + 5.

Définition formelle des grammaires

Définition: On appelle grammaire le quadruplet (V,N,S,R)

- V: est un ensemble fini de symboles dits *terminaux*, (vocabulaire terminal);
- N : est un ensemble fini (disjoint de V) de symboles dits non-terminaux (concepts);
- S: un non-terminal particulier appelé *axiome* (point de départ de la dérivation);
- **R** : est un ensemble de *règles de productions* de la forme $\alpha \to \beta$ tel que $\alpha \in (V + N)^+$ et $\beta \in (V + N)^*$.

La notation $\alpha \to \beta$ est appelée une dérivation et signifie que α peut être remplacé par β .

Exemple

```
PHRASE → ARTICLE SUJET VERBE ARTICLE
                                                        COMPLEMENT:
                                                     P \rightarrow ASVAC
• COMPLEMENT \rightarrow NOM AdJECTIF; ----- C\rightarrowNAd
\bullet A \rightarrow " un " ou " le " \rightarrow un / le
• SUJET → "garçon" ou "fille"; ------ S→ garçon / fille
• VERBE → "voit" ou "mange" ou "porte"; ----- V→ voit / mange / port
\bullet NOM \rightarrow "livre" ou "plat" ou "wagon"; ------ N \rightarrow livre / plat / wagon
• AdJECTIF → "bleu" ou "rouge" ou "vert"; ---- Ad → bleu / rouge / vert
G=(V,N,X,R)
V={garçon, fille, voit, mange, porte, un, le, livre, plat, wagon, bleu, rouge,
vert}
N=\{P, A, S, V, C, N, Ad\}
S=P
R=\{P \rightarrow ASVAC; C \rightarrow NAd; S \rightarrow garçon / fille; V \rightarrow voit / mange / porte;
A \rightarrow un / le; N \rightarrow livre / plat / wagon; Ad \rightarrow bleu / rouge / vert;
```

Exemple 1: Une grammaire des expressions arithmétiques

Il existe plusieurs grammaires possibles pour reconnaître les expressions arithmétiques. Par exemple:

1.
$$E \rightarrow E + E \mid E * E \mid (E) \mid nombre$$

2.
$$E \rightarrow Id \mid Cte \mid E + E \mid E * E \mid (E)$$

3.
$$E \to T E'$$
; $E' \to +E \mid \varepsilon$; $T \to F T'$
 $T' \to *T \mid \varepsilon$; $F \to (E) \mid nombre$

Exemple 2: On considère le langage des expressions arithmétiques avec addition, soustraction, opposé, multiplication, division, et exponentiation (notée \uparrow):

o E → E + E | E − E | −E | E × E | E/E | E ↑ E | (E) | Int Int →
$$[0-9]$$
+

Remarques

- On utilisera les lettres <u>majuscules</u> pour les <u>non-terminau</u>x, et les lettres <u>minuscules</u> pour représenter les <u>terminaux</u>.
- Les règles de la forme $\varepsilon \to \alpha$ sont *interdites*.
- Soit une suite de dérivations :

 $w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow ... \rightarrow w_n$ alors on écrira : $w_1 \rightarrow w_n$.

On dit alors qu'il y a une chaîne de *dérivation* qui mène de w_1 vers w_n .

Exemple: Soit la grammaire

 $G = (\{a\}, \{S\}, S, \{S \to aS \mid \epsilon\})$. On peut construire la chaîne de dérivation suivante :

$$S \rightarrow aS \rightarrow aaS \rightarrow aaaS...$$

Les mots générés par une grammaire

Soit une grammaire G = (V, N, S, R). On dit que le mot \boldsymbol{u} appartenant à V^* est $\boldsymbol{d\acute{eriv\acute{e}}}$ (ou bien $\boldsymbol{g\acute{en\acute{er\acute{e}}}}$) à partir de G s'il existe une suite de dérivation qui, partant de l'axiome S, permet d'obtenir \boldsymbol{u} , noté ' $S \rightarrow *u$ '

Le langage engendré par une grammaire

Le langage engendré par une grammaire G est l'ensemble de tous les mots générés par la grammaire G est noté L(G).

Deux grammaires G et G' sont équivalentes si L(G) = L(G').

Exemple: Soit la grammaire $G = (\{a, b\}, \{S, T\}, S, \{S \rightarrow aS \mid aT, T \rightarrow bT \mid b\}).$

Elle génère les mots abb et aab parce que

$$S \rightarrow aT \rightarrow abT \rightarrow abb$$

$$S \rightarrow aS \rightarrow aaT \rightarrow aab$$
.

• • • • •

$$S \rightarrow aS \rightarrow aaT \rightarrow aaT \rightarrow aaaT \rightarrow \rightarrow aaa...aT$$
.

On peut facilement voir alors que le langage généré par cette grammaire est : tous les mots sur $\{a, b\}$ de la forme a^mb^n avec m, n > 0.

Les arbres de syntaxe de la grammaire

- Étant donnée une grammaire G = (V,N, S, R), les arbres de syntaxe de G sont des arbres où les nœuds internes sont étiquetés par des symboles de N, et les feuilles étiquetés par des symboles de V, tels que, si le nœud p apparaît dans l'arbre et si la règle p → a₁...a₁ (a₁ terminal ou non terminal) est utilisée dans la dérivation, alors le nœud p possède n fils correspondant aux symboles a₁.
- Si l'arbre syntaxique a comme <u>racine</u> S, alors il est dit arbre de dérivation du mot u tel que u est le mot obtenu en prenant les feuilles de l'arbre dans le sens $gauche \rightarrow droite$ et $bas \rightarrow haut$.

Exemple:

Soit la grammaire $G = (\{a, b\}, \{S, T\}, S, \{S \rightarrow aS \mid aT, T \rightarrow bT \mid b\}).$

Elle génère le mot aab selon la chaîne de dérivation

$$S \rightarrow aS \rightarrow aaT \rightarrow aab$$
.

Ce qui donne donc l'arbre syntaxique suivant :

Classification de Chomsky

- La classification de Chomsky est un moyen permettant de *maîtriser la complexité* des langages ainsi que de celle des grammaires qui les génèrent.
- En effet, certains langage sont simples et peuvent être décrits par des grammaires facilement compréhensibles. Cependant, il existe des langages d'une telle complexité que les grammaires qui les génèrent sont trop difficile à appréhender (par exemple, {aⁿ | n est premier}).
- → comment mesurer la complexité d'une grammaire ou d'un langage ?

- Noam Chomsky remarquer que la complexité d'une grammaire (et celle du langage aussi) *dépend* de la *forme des règles* de production
- o Chomsky a ainsi proposé quatre classes (hiérarchiques) de grammaires (et de langages) de sorte qu'une grammaire de type i génère un langage de type j tel que j ≥ i.

Soit G = (V,N, S, R) une grammaire, les classes de grammaires de Chomsky sont :

- Type 3 ou grammaire régulière (à droite 1) : toutes les règles de production sont de la forme $\alpha \to \beta$ où $\alpha \in N$ et $\beta = aB$ / tel que $\alpha \in V^*$ et $\beta \in N \cup \{\epsilon\}$;
- Type 2 ou grammaire hors-contexte : toutes les règles de production sont de la forme $\alpha \to \beta$ où $\alpha \in N$ et $\beta \in (V + N)^*$;
- Type 1 ou grammaire contextuelle : toutes les règles sont de la forme $\alpha \to \beta$ tel que $\alpha \in (N + V)^+$, $\beta \in (V + N)^*$ et $|\alpha| \le |\beta|$. De plus, si ε apparaît à droite alors la partie gauche doit seulement contenir S (l'axiome).

On peut aussi trouver la définition : toutes les règles sont de la forme $\alpha B\beta \rightarrow \alpha\omega\beta$ tel que $\alpha,\beta\in (V+N)^*$, $B\in N$ et $\omega\in (V+N)^+$

• Type 0: aucune restriction. Toutes les règles sont de la forme: $\alpha \to \beta$, $\alpha \in (V + N)^+$, $\beta \in (V + N)^*$

• Il existe une relation <u>d'inclusion</u> entre les types de grammaires :

type
$$3 \subset \text{type } 2 \subset \text{type } 1 \subset \text{type } 0$$

- Pour trouver la classe d'un langage on procède cependant comme suit :
 - Chercher une grammaire de <u>type 3</u> qui le génère, si elle existe, le langage est de type 3 (ou **régulier**)
 - <u>Sinon</u>, chercher une grammaire de type 2 qui le génère, si elle existe, le langage est de type 2 (ou **algébrique**)
 - <u>Sinon</u>, chercher une grammaire de type 1 qui le génère, si elle existe, le langage est de type 1 (ou **contextuel**)
 - Sinon, le langage est de type 0.

Exemple:

$$G_{1} = (\{S, A, B\}, \{0, 1\}, P_{1}, S) \mid G_{2} = (\{S, A, B\}, \{0, 1\}, P_{2}, S)$$

$$P_{1} = \begin{cases} S \to \varepsilon |0A|B1 \\ A \to 1|S1 \\ B \to 0|0S \end{cases} \qquad P_{2} = \begin{cases} S \to 1S|0A \\ A \to 1S|0B|0 \\ B \to 0|1|0B|1B \end{cases}$$

$$G_{3} = (\{S\}, \{0, 1\}, P_{3}, S) \qquad G_{4} = (\{S, A, B, C\}, \{0, 1\}, P_{4}, S)$$

$$P_{3} = \{ S \to \varepsilon |0|01S|1S \} \qquad P_{4} = \begin{cases} S \to AB \\ A \to \varepsilon |0 \\ B \to 10B|C \\ C \to \varepsilon |1 \end{cases}$$

Le tableau suivant résume les différentes classes de grammaires, les langages générés et les types d'automates qui les reconnaissent :

Grammaire	Langage	Automate
Type 0	Récursivement énumérable	Machine de Turing
Type 1 ou contextuelle	Contextuel	Machine de Turing à borne linéaire
Type 2 ou hors-contexte	Algébrique	Automate à pile
Type 3 ou régulière	Régulier ou rationnel	Automate à états fini

Exercice:

Soient les grammaires $G_i = (\{a, b, c\}, \{S, A, B, C\}, S, P_i), (i=1,...,8)$; où les P_i sont :

- $P_1: S \rightarrow aA \mid bB; A \rightarrow a \mid ab; B \rightarrow b \mid cb$
- $P_2: S \to bA; A \to aA \mid \varepsilon$
- $P_3: S \to aAb \mid \epsilon ; A \to aSb ; Ab \to \epsilon$
- $P_4: S \rightarrow AB \mid aS \mid a; A \rightarrow Ab \mid \epsilon; B \rightarrow AS$
- $P_5: S \rightarrow 0S \mid 1B; B \rightarrow 0C \mid 1S \mid \epsilon, C \rightarrow 0B \mid 1C$
- $P_6: S \rightarrow 0B; B \rightarrow S1; S \rightarrow \epsilon$
- $P_7: S \rightarrow \varepsilon |a| abS |bS|$
- $P_8: S \rightarrow AB; A \rightarrow \varepsilon \mid 0; B \rightarrow 10B \mid C; C \rightarrow \varepsilon \mid 1$

Pour chacune des grammaires G_i (i=1,..,8); donner le type de celle-ci, puis trouver le langage engendré par chacune d'elles.

Langages réguliers

Les langages *réguliers* sont les langages générés par des **grammaires de type 3** (ou encore grammaires régulières). Ils sont reconnus grâce aux automates à états finis.

Le terme régulier vient du fait que les mots de tels langages possèdent une forme particulière pouvant être décrite par des expressions dites régulières.

Passage de la grammaire vers l'automate

soit G = (V, N, S, R) une grammaire régulière à droite, si toutes les règles de production sont de la forme : $A \rightarrow aB$ ou $A \rightarrow B$ ($A, B \in N, a \in V \cup \{\epsilon\}$) alors il suffit d'appliquer l'algorithme suivant :

- 1. Associer un état à chaque non terminal de N;
- 2. L'état initial est associé à l'axiome;
- 3. Pour chaque règle de production de la forme $A \rightarrow \varepsilon$, l'état q_A est final ;
- 4. Pour chaque règle de production de la forme $A \rightarrow a$ (a \in V), alors créer un nouvel état final q_f et une transition partant de l'état q_A vers l'état q_f avec l'entrée a ;
- 5. Pour chaque règle $A \rightarrow aB$ alors créer une transition partant de q_A vers l'état q_B en utilisant l'entrée a ;
- 6. Pour chaque règle $A \rightarrow B$ alors créer une ε-transition partant de q_A vers l'état q_B ;

Langages hors-contexte (algébriques)

Certains langages ne peuvent pas être décrits par une grammaire régulière, et ne peuvent donc pas être reconnus par un automate fini (par exemple le langage $\{a^nb^n / n > 0\}$).

On étudie dans ce chapitre une classe de langages plus générale que celle des langages réguliers : la classe des *langages hors-contexte*, décrits par des grammaires hors-contexte et reconnus par des *automates à pile*.

• Grammaire hors-contexte:

G = (T, N, S, R) est une grammaire horscontexte si toutes les règles de R sont de la forme A $\rightarrow w$ avec

 $A \in N \text{ et } w \in (N \cup T)^*.$

• Langage hors-contexte : On appelle langage hors-contexte un langage généré par une grammaire hors contexte.

Simplification des grammaires hors-contextes

1. Les grammaires propres

Une grammaire hors-contexte (V, N, S, R) est dite **propre** si elle vérifie :

- $\forall A \rightarrow u \in R : u \neq \varepsilon \text{ ou } A = S ;$
- $\forall A \rightarrow u \in R : S \text{ ne figure pas dans } u ;$
- $\forall A \rightarrow u \in R : u \notin N$;
- Tous les non terminaux sont *utiles*, c'est-à-dire qu'ils vérifient :
 - \forall A ∈ N : A est <u>atteignable</u> depuis S : \exists α, β ∈ (N + V)* : S→*αA β ;
 - \bullet ∀A ∈ N: A est productif : \exists w ∈ V*: A→* w.
- Il est toujours possible de trouver une grammaire propre pour toute grammaire hors contexte. En effet, 28 on procède comme suit :

- 1. Rajouter une nouvelle règle $S' \rightarrow S$ tel que S' est le nouvel axiome ;
- 2. Éliminer les règles $A \rightarrow \varepsilon$:
 - Calculer l'ensemble $E = \{A \in N \cup \{S'\} \mid A \rightarrow^* \epsilon \}$;
 - Pour tout $A \in E$, pour toute règle $B \to \alpha A\beta$ de R
 - Rajouter la règle $B \rightarrow \alpha \beta$
 - Enlever les règles $A \rightarrow \epsilon$;
- 3. Eliminer les règles $A \rightarrow^* B$, on applique la procédure suivante sur R privée de $S' \rightarrow \epsilon$:
 - Calculer toutes les paires (A, B) tel que $A \rightarrow^* B$
 - Pour chaque paire (A, B) trouvée
 - o Pour chaque règle B → $u_1 | ... | u_n$ rajouter la règle A → $u_1 | ... | u_n$
 - Enlever toutes les règles $A \rightarrow B$
- 4. Supprimer tous les non-terminaux non-productifs
- 5. Supprimer tous les non-terminaux non-atteignables

Exemple