Transforming ML models into robust services in production using MLOps

Carlos Maestre
March 2021

- Background
 - Researcher (PhD. in Robotics and Machine learning)
 - Software engineer
- Actual position
 - Machine learning engineer

Action Generation Adapted to Low-Level and High-Level Robot-Object Interaction States

Garlos Maestre^{1*}, 🔝 Ghanim Mukhtar¹, 🔝 Christophe Gonzales² and 🌉 Stephane Doncieux

¹UMR 7222, ISIR, Sorbonne Université and CNRS, Paris, France

What is the actual status of Machine learning in the industry?

The majority of business analytics and AI projects are still failing

By Yulia Kosarenko April 30, 2020

1

Failure rates for analytics, AI, and big data projects = 85% - yikes!

July 23, 2019 by Brian T. O'Neill

If Data Scientists are so smart, why do 70% of their projects fail?

Published on June 20, 2019

Why?

Tomatoes classifier: Actual approach

SPEED:

SUCCESS RATE:

Tomatoes classifier: Fast classifier machine

Tomatoes classifier: Machine: Working in a controlled environment

Tomatoes classifier: Machine: Working under similar conditions

Tomatoes classifier: Machine: Stops working with high workload

Tomatoes classifier: Machine: Stops working with high workload

Tomatoes classifier: Machine: Misclassified unseen types of tomato

Tomatoes classifier: Machine: Where to invest more money?

Tomatoes classifier: Final approach

Tomatoes classifier : Machine : Failure analysis

Problem	Description	Solution	
UNEXPECTED PRODUCTION COST	Lost of traceability between environments	Development trace	
UNEXPECTED WORKLOAD FAILURE	Small number of tomatoes	Workload test	
UNEXPECTED INPUT TYPE	Same type of tomatoes	Add tomato diversity during development	
UNREALISTIC EXPECTATIONS	ML hype	Define realistic metrics	

Tomatoes classifier : Machine : Failure analysis

Problem	Description	Solution	
UNEXPECTED PRODUCTION COST	Lost of traceability between environments	Development trace	
UNEXPECTED WORKLOAD FAILURE	Small number of tomatoes images	Workload test	
UNEXPECTED INPUT TYPE	Same type of tomatoes image	Add tomato diversity during development	
UNREALISTIC EXPECTATIONS	ML hype	Define realistic metrics	

Human?

Tomatoes classifier : Machine : Failure analysis

Problem	Description	Solution	Best practices
UNEXPECTED PRODUCTION COST	Lost of traceability between environments	Development trace	Governance
UNEXPECTED WORKLOAD FAILURE	Small number of tomatoes images	Workload test	Quality assurance (QA)
UNEXPECTED INPUT TYPE	Same type of tomatoes image	Add tomato diversity during development	Robust services
UNREALISTIC EXPECTATIONS	ML hype	Define realistic metrics	Business-oriented metrics
			MLOps
	Human?	OR Y	

MLOps

From Wikipedia, the free encyclopedia

MLOps (a compound of "machine learning" and "operations") is a practice for collaboration and communication between data scientists and operations professionals to help manage production ML (or deep learning) lifecycle.

to build robust ML services and

- → New field: few standards
- → New mindset
- → New frameworks
- → Fast changes

ML service

Model (development environment)

Service (production environment)

What are the features of a robust ML service?

MLOps: Best practices

MLOps: QA based on indicators

How to build these features?

MLOps: ML service lifecycle

MLOps: ML service lifecycle

MLOps: Data pipeline

• Data is the new oil!

- Poor data + good model = poor results
- Good data + poor model = fine results
- Good data + good model = good results

MLOps: Modelling / Training pipeline

Creating a model comprehends 3 steps:

- 1. Design
- 2. Training
- 3. Evaluation

MLOps: Modelling / Training pipeline

Model training consist of given

- some examples as input
- and some corresponding outputs

a model generates an internal configuration that reproduces the outputs (and generalises to unseen inputs)

MLOps: Modelling / Training pipeline

<u>Model evaluation</u> (functional indicators)

Precision: fraction of cases predicted positive (human) which are actually positive (human)

Recall: fraction of positives (all humans) that have been correctly predicted positive (human)

F1-score: value in range [0, 1] computed using precision and recall

MLOps: Deployment / Monitoring pipeline

Monitoring

Logging

```
92.0.2.55 - - [19/Mar/2014:14:37:17 +0000] "PUT /features.html HTTP/1.1" 200 422671 "-" "-"
   32.0.2.33 - - [19/Mar/2014:14:37:18 +0000] "GET /index.html HTTP/1.1" 200 318902 "-" "-"
 Mar 19 14:37:18 frontend3 server[121]: Received packet from 192.0.2.55
Mar 19 14:37:19 frontend3 server[123]: Received packet from 192.0.2.55
Mar 19 14:37:19 frontend3 server[123]: Handling request 9efcf643-ac89-4125-a69d-ec3203047a19 192.0.2.33 - - [19/Mar/2014:14:37:19 +0000] "PUT /index.html HTTP/1.0" 200 871988 "-" "-" 192.0.2.55 - - [19/Mar/2014:14:37:20 +0000] "GET /index.html HTTP/1.0" 200 400613 "-" "-"
 192.0.2.55 - - [19/Mar/2014;14;37;21 +0000] "GET /obj/1235?foo≕bar HTTP/1.0" 200 841360 "-" "Apache-HttpClient/4
Mar 19 14:37:21 frontend3 worker[01456]: Handling request 9efcf643-ac89-4125-a69d-ec3203047a19
Mar 19 14:37:22 frontend3 worker[61456]: Successfully started helper
192.0.2.33 - - [19/Mar/2014:14:37:22 +0000] "PUT /index.html HTTP/1.0" 200 944322 "-" "Apache-HttpClient/4.2.3 (j
Mar 19 14:37:23 frontend3 worker[61456]: Received packet from 192.0.2.55
Mar 19 14:37:23 frontend3 server[123]: Handling request 9efcf643-ac89-4125-a69d-ec3203047a19
Mar 19 14:37:24 frontend3 server[124]: Received packet from 192.0.2.55
Mar 19 14:37:24 frontend3 worker[61456]: Handling request 70430eff-159e-4818-a0e7-f21a7d4ad892
Mar 19 14:37:25 frontend3 server[121]: Handling request 9ed6455c-0edf-4623-b3bc-5f65ce81825f
192.0.2.55 - bob@example.com [19/Mar/2014:14:37:25 +0000] "GET /images/compass.jpg HTTP/1.0" 200 4509 "-" "-"
192.0.2.55 - - [19/Mar/2014:14:37:25 +0000] "GET /obj/12357foo=bar HTTP/1.1" 200 420858 "-" "Apache-HttpClient/4
                                                                  "PUT /features.html HTTP/1,1" 500 741005 "-" "-"
Mar 19 14:37:27 frontend3 worker[61456]: Successfully started helper Mar 19 14:37:27 frontend3 server[123]: Received packet from 192.0.2.55
 Mar 19 14:37:27 frontend3 server[121]: Handling request 70430eff-159e-4818-a0e7-f21a7d4ad89
 192.0.2.55 - - [19/Mar/2014:14:37:28 +0000] "GET /index.html HTTP/1.0" 200 299909 "-" "Apache-HttpClient/4.2.3 (
 92.0.2.55 - - [19/Mar/2014:14:37:28 +0000] "GET /index.html HTTP/1.0" 200 731434 "http://lnav.org/download.htm
```

32 https://ml-ops.org

MLOps: Feedback pipeline

https://ml-ops.org

MLOps: Feedback pipeline

Feedback data :

- Model performance (precision, recall, etc)
- Service performance (timeouts, latency, etc)

Relevant for :

- model training and evaluation
- triggering alerts when model performance decays
- Generate performance analysis report

MLOps: ML service lifecycle

We have deployed a robust service. Is that all?

Governance

MLOps: Governance

The objective is to ensure that evidence is provided that demonstrates that a model and its delivery process can generate results that are :

ML in Frontiers

- A - I - R - A -

The churros machine

- Template that includes tons of best practices
 - Design patterns
 - Code version control
 - Documentation
 - Authentication
 - Monitoring
 - Logging
 - \circ QA

From POC to deploy a robust service (in dev) in 1 or 2 days!

Cookie-cutter templates

Take-home messages

- Define a set of realistic indicators aligned to business objectives
 - Make decisions based on the indicator values.
- Build a service lifecycle
 - Using best practices (logging, monitoring, etc)
 - Define a strong QA
 - Focus on having high-quality data: https://www.youtube.com/watch?v=06-AZXmwHjo&ab_channel=DeepLearningAI
- Trace all developments and changes using a governance framework

References

Best practices:

https://www.idealista.com/labs/blog/data/machine-learning-en-produccion-lecciones-aprendidas/

Chip Huyen course:

https://huyenchip.com/machine-learning-systems-design/toc.html

Overview:

https://ml-ops.org

Design patterns:

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

Transforming ML models into robust services in production using MLOps

https://www.linkedin.com/in/carlosmaestreterol/