Exploration des données à l'aide des arbres de décisions

Ecole thématique Explo-SHS

Grégoire Le Campion / Hugues Pécout

Mercredi 14 octobre 2020

Contenu de l'Atelier

I- Présentation des principes généraux d'un arbre de décision

A- Présentation théoriqueB- Avantages et limitesC- Fonctionnement des arbres

II- Exemple et décryptage d'un arbre

III-BaobARD: application shiny pour réaliser ces premières exploration

IV- Travaux pratiques

V- Un peu de code... éventuellement

Présentation des arbres de décision

Les arbres de décision c'est quoi? I

Les arbres de décisions font partis du champs très à la mode du machine learning.

Très simplement le machine learning à pour objectif de chercher des patterns et d'effectuer des prédictions à partir de données en se basant sur des statistiques.

Le machine learning regroupe un ensemble de méthodes qui se divise en 2 grandes catégories : les méthodes d'apprentissage non-supervisé et les méthodes d'apprentissage supervisé.

Les arbres de décision font partis des méthodes d'apprentissage supervisé

L'objectif des méthodes d'apprentissage supervisé est d'inférer la relation entre différentes variables à partir d'un échantillon d'apprentissage.

Ainsi par exemple, si j'ai un ensemble d'information comme l'âge, le poid, le sexe et la taille, je peux mettre en oeuvre un modéle d'apprentissage supervisé pour prédire le poid en fonction des autres variables.

Les arbres de décision c'est quoi? Il

Très concrétement l'arbre de décision c'est:

Un outil permettant de prédire ou expliquer les valeurs prisent par une variable, que vous aurez choisie, en fonction d'un ensemble d'autres variables que vous aurez sélectionnées.

Par ailleurs:

- ➤ Si la variable que vous souhaitez prédire est qualitative on parlera d'arbre de classification.
- ► En revanche, si la variable étudiée est quantitative alors on parlera d'arbre de régression.

Pourquoi les arbres de décisions ?

L'objectif d'un arbre de décision est donc de prédire les valeurs prisent par une variable. Mais il existe d'autre tests statistiques plus connu qui ont le même objectif, comme notamment les tests de régressions.

Comme pour les arbres de décision, la régression cherche à prédire une variable à l'aide d'un ensemble d'autres variables et voir parmi ces prédicteurs ceux qui ont le plus d'effet sur notre variable cible.

Pourquoi alors ne pas utiliser simplement les techniques de régressions?

Notamment car ces méthodes sont assorties de conditions qu'il faut remplir pour être considérées comme fiable :

Par exemple : distribution normale des résidus, Homogénéité des résidus, non multicolinérarité...

Tenter de remplir les différentes conditions requisent ressemble très souvent à un parcours du combattant :

Les avantages de l'arbre de décision

L'arbre de décision posséde donc l'avantage certain de ne pas avoir à se préoccuper des conditions citées précédemment.

Par ailleurs il posséde également d'autres avantages...

- 1. Il peut servir à expliquer une variable qualitative (il s'agit d'un l'arbre de classification) aussi bien que quantitative (il s'agit d'un arbre de régression).
- 2. Il peut s'inscrire dans une approche mixte, on peut mélanger dans nos prédicteurs des variables continues, ordinales et binaires.
- 3. On peut introduire un grand nombre de variables dans notre modèle sans craindre de perturbations des variables sans effet. L'algorithme de production de l'arbre va selectionner les meilleurs prédicteurs possibles pour expliquer notre variable.
- 4. Gestion efficace des données manquantes qui même en nombre relativement important ne posent pas de problèmes majeurs.
- 5. L'algorithme de production n'est pas gourmand en ressources, peu de risque de faire planter l'ordinateur.
- 6. Produit une visualisation simple d'interprétation et connue bien au delà du monde de la data science qui permet de rendre compte des éventuelles intéractions complexes entre les variables de notre base de données.

Les avantages de l'arbre de décision... et ses limites

L'arbre de décision offre donc une solution alternative plutôt intéressante et séduisante aux problèmes que peuvent poser les méthodes "classiques".

Toutefois il n'est bien sur pas parfait :

- ▶ Dans un monde idéal avec des données idéales (grands échantillons, 0 données manquantes, prédicteurs forts et non corrélés, distribution normale des résidus...) l'arbre de décision sera moins bon en prédiction que les méthodes multivariées (régression etc.)
- ► Sa production peut s'avérer assez simple mais son interprétation complexe.
- ► Vous n'aurez pas d'indicateurs ou de coefficients vous donnant l'importance ou le niveau des effets de tel ou tel prédicteur.

En bref

Ce qu'il faut retenir:

L'arbre de décision est donc une méthode "tout-terrain" lorsque l'on doit faire de la prévision avec des données de qualité moyenne qui sont globalement la norme en SHS. Et il est surtout particulièrement adapté à **l'exploration des données**.

L'arbre de décision comment ça pousse ?

Petit traité d'arboriculture l

L'idée générale est que l'algorithme de production des arbres de décision va obéir à un principe de partitionnement récursif.

Le but de l'arbre va être de créer des groupes d'individus les plus homogènes possible entre eux par rapport à la variable étudiée.

Pour ce faire l'algorithme va "poser" des questions binaires (dont la réponse est oui/non) en lien avec les variables que vous aurez définies comme prédicteurs.

Ce sont les réponses à ces questions binaires qui constitueront les différentes ramification de l'arbre.

Nous l'avons évoqué précedemment l'algorithme de l'arbre de décision va choisir les meilleurs prédicteurs possibles parmi l'ensemble des variables prédictrices que vous aurez choisies.

Le corollaire c'est qu'il est possible que certains des prédicteurs que vous avez séléctionnés ne soient pas retenus par l'algorithme de l'arbre.

Petit traité d'arboriculture II

Pour y voir plus clair prenons un exemple et segmentons le processus de "pousse" en plusieurs étapes :

Voici un arbre de décision qui cherche à prédire la survie des passagers du Titanic

Etape 1

1- L'arbre pousse à partir de sa base constituée de l'ensemble des individus qui composent votre jeu de données. On parle de la racine de l'arbre.

Etape 2

2- Une première question relative à l'une des variables prédictives sépare notre jeu de données en deux groupes.

Le choix de la question est fait de façon à ce que la réponse à la question permette d'obtenir 2 groupes les plus homgènes possibles. C'est à dire le plus homogène possible en leur sein et différent l'un de l'autre.

Etape 3

3- Chacun des deux groupes obtenus peut à son tour être séparé en deux en choisissant à nouveau la meilleure question possible à poser à l'aide du meilleur prédicteur possible. La question va varier en fonction des sous-groupes d'individus.

Etape 4 et 5

4- Le processus est répété récursivement!

5- Lorsque l'arbre a atteint sa taille optimale, c'est à dire lorsque les divisions ne permettent plus d'obtenir des groupes suffisament homogènes et différents les uns des autres, alors le processus s'arrête. Ces groupes d'individus finaux constituent les feuilles de l'arbre.

Petit traité d'arboriculture III

Il reste encore cependant à répondre à 3 questions fondamentales!

- ► Comment sont choisis les meilleures questions possible pour constituer nos branches de l'arbre ? Et donc l'utilisation de tel ou tel prédicteur.
- ► Comment est décider la taille optimale de l'arbre ?
- ► Comment interprete t-on ces groupes finaux d'individus ? Une fois nos groupes définitifs d'individus produits quel genre de modèle est crée pour chacun d'entre eux.

Est ce que ça va?

Utilisons un exemple!

Exemple 1 : un arbre de classification

Pour ce 1er exemple, reprenons notre cas sur les survivant du Titanic!

Nous cherchons à expliquer ce qui prédirait la survie de notre échantillons de Passagers. Nos prédicteurs : la classe économique de la cabine, l'âge, le genre, le nombre de parents et/ou enfants à bord, et le nombre de frères/soeurs/conjoints à bords.

1- Tout en haut c'est la racine de l'arbre qui regroupe donc toutes nos données, c'est le point de départ.

Chaque groupe et sous-groupe d'individus de notre arbre de classification se lit de la même manière. On a d'abord la modalité la plus représentée dans le groupe, suivie du nombre d'individus possédant les différentes modalités de la variable que nous cherchons à prédire.

2- Un premier découpage est fait selon la meilleure variable possible pour séparer nos données en deux groupes homogènes.

Ici c'est la variable **sex** qui est d'abord la plus discriminante, les individus satisfaisant la condition "male" iront à gauche et constitueront un sous groupe ou la modalité décés est plus importante (avec 682 hommes qui perdront la vie durant le naufrage et 161 qui en réchaperont). Les individus satisfisant la modalité "female" formeront un autre sous-groupe ou la modalité survie est la mieux représentés avec 339 femmes qui survivront et 127 ne periront durant le naufrage.

3- De chaque côté le découpage se poursuit de manière récursive jusqu'à ce que l'arbre est atteint sa taille optimale.

Dans cette modalité de représentation nous savons que l'arbre a atteint sa taille optimale quand les feuilles de l'arbre représentant nos sous-groupes d'individus prennent une forme rectangulaire. Ainsi, les individus qui satisfont successivement les critères "sex" = "male" et "age">= "9.5 appartiendront à un sous-groupe ayant d'avantage de chance de ne pas survivre au naufrage avec 660 individus qui sont morts et 136 qui ont réussi à survivre.

Exemple 2 : un arbre de régression

Nous allons maintenant tenter prédire le nombre d'équipements électriques de lodge situé au Népal.

Pour ce faire nous intégrons à notre arbre 4 prédicteurs : la zone du Népal dans laquelle se situe notre lodge, la caste du propriétaire, le genre du propriétaire et le nombre d'équipement raccordés à l'eau.

L'arbre de régression se lit exactement de la même manière qu'un arbre de classification!

En revanche l'information fournie pour chaque sous-groupe d'individu ne va pas être tout à fait identique.

Dans un arbre de régression on obtiendra pour sous groupe le nombre d'individus composant le sous-groupe (n=) et la valeur moyenne de la variable que nous cherchons à prédire pour le sous-groupe.

Dans cette exemple on note que les lodges situés dans le Solu seront ceux ayant le nombre d'équipement électrique le plus faible, 2.5 en moyenne et cela correspond à 11 individus.

Comment sont choisis les prédicteurs?

Cette question du prédicteurs renvoie au découpage en sous-groupe d'individus de notre arbre de décisison, à la meilleure question possible.

L'objectif est que chaque découpage réduise l'erreur de prédiction.

Pour trouver la variable permettant de réduire le plus cette erreur de prédiction l'algorithme va tout simplement essayer tous les découpages possibles.

Concrétement l'algorithme va systématiquement essayer de découper chaque nouveau groupe d'individus à l'aide de chaque prédicteur que vous aurez définis, et retenir uniquement celui permettant de réduire le plus cette erreur de prédiction.

C'est donc l'algorithme de l'arbre qui va choisir le prédicteur à utiliser, parmi les prédicteurs que vous aurez définis, pour découper un groupe d'individus en deux nouveaux sous-groupe

Comment sont choisis les prédicteurs ? Il

Reprenons notre arbre de regression sur les équipement électriques des lodges:

Comment sont choisis les prédicteurs? III

Pour définir le groupe d'individus ayant le nombre d'équipements électrique le plus faible (en vert) seul le prédicteur "zone" suffit.

C'est ce prédicteur qui utilisé 2 fois de suite qui permettra la meilleure réduction de l'erreur et donc de prédire les lodges ayant le score le plus faible

En revanche pour prédire le groupe des individus ayant le nombre d'équipement électrique le plus élevé (en bleu) deux prédicteurs sont nécessaire la zone et le nombre d'équiment raccordé à l'eau.

C'est la combinaison de ces 2 prédicteurs qui me permettra de définir le groupe avec le score le plus élevé.

On notera que ni le genre ni la caste ne sont utilisés comme variable discriminante pour constituer nos sous-groupe.

Quand l'arbre de décision a-t-il atteint sa taille optimale

L'objectif du découpage optimale est à la fois de réduire l'erreur de prédiction tout en évitant un surajustement où chaque feuille terminale serait composer d'un unique individu.

Pour stopper l'arbre il existe 4 critères différents.

- 1. Obliger chaque feuille terminale à contenir un nombre minimal d'individus.
- 2. Ne pas dépasser un nombre de feuilles fixé à l'avance.
- 3. Retenir le nombre de feuilles permettant de minimiser l'erreur de prédiction à l'aide de la validation croisée (sur un autre jeu de données de validation, ou en leave-one-out cross validation dans les données d'apprentissage).
- 4. Interrompre le processus lorsqu'une division supplémentaire n'aboutirait pas à une diminution "sensible" de l'erreur de prédiction.

Les deux premiers critères sont relativement proche et il n'y a pas de règles les concernant hormis le bon sens et votre connaissance des données. C'est en général le 3ème critère qui est privilègié. Quant au critère numéro 4, il est quasiment impossible à definir à l'avance avant la réalisation de l'arbre. Nous ne l'aborderons pas ici

Point sur le critère 3 : la validation croisée

La validation croisée (cross-validation en anglais) est sujet complexe que nous aborderons pas ici. Mais ce qu'il faut retenir :

La validation croisée désigne un processus qui permet de tester la qualité de prédiction d'un modèle. Il existe plusieurs méthode mais la plus populaire est la validation croisée à k blocs (k-fold cross-validation en anglais). On va diviser notre échantillons total avec d'un côté une partie qui servira pour entrainer le modèle et une autre partie sur laquelle sera testé le modèle. On fait ça x fois avec des échantillons de tests de même taille mais sélectionner aléatoirement et des échantillons d'entrainement qui devront également avoir la même taille et sélectionné aléatoirement.

Point sur le critère 3 : la validation croisée II

Notre but est donc de réduire le plus possible l'erreur de prédiction en évitant un surajustement qui rendrait notre arbre inéfficace à prédire notre variable étudié sur un échantillon d'individus dont nous connaitrions les prédicteurs mais pas la variable étudiée.

C'est ce compromis que permet la validation croisée

Classiquement, l'erreur de prédiction diminue constamment lorsque le nombre de feuilles augmente. ALors que l'erreur de prédiction obtenue en validation croisée va diminuer puis réaugmenter.

C'est à partir de ce seuil que nous définirons le nombre de découpage optimale et donc la taille optimale de l'arbre.

Point sur le critère 3 : la validation croisée Il

Ce calcul du seuil de coupure optimal peut également apparaître sous la dénomination de calcul de compléxité.

Il existe deux manières pour le visualiser :

- ► Avec un tableau
- ► Avec un graphique

Il existe des formules pour récupérer le seuil exact à partir du tableau ou du graphique

La voie littérale (avec R)

L'erreur de prédiction en validation croisée correspond au xerror

```
##
## Classification tree:
## rpart(formula = survived ~ ., data = ptitanic)
##
## Variables actually used in tree construction:
## [1] age parch pclass sex
                                sibsp
##
## Root node error: 500/1309 = 0.38197
##
## n= 1309
##
##
          CP nsplit rel error xerror
                                   xstd
## 1 0.424000
                       1.000 1.000 0.035158
                 0
## 2 0.021000
                1
                       0.576 0.576 0.029976
## 3 0.015000
                 3 0.534 0.568 0.029825
## 4 0.011333
                 5
                       0.504 0.554 0.029556
                 9
## 5 0.010000
                       0.458 0.538 0.029238
```

La voie graphique (avec R)

Quel modèle pour nos sous-groupe d'individus

Cette question du modèle créé pour chaque groupe d'individus renvoie simplement à comment interpréter ces groupes.

Quelle valeur attribuer à chaque groupe d'individus

Le coeur de cette interprétation est lié au principe même de création des arbres de décision :

A savoir l'objectif de subdiviser nos données en sous-groupe les plus homogènes possible en leur sein (concernant la variable étudiée) et différents les uns des autres

Comme les sous-groupes d'individus sont supposées suffisamment homogènes ont fait très généralement le choix d'un ajustement par une constante:

- ► La moyenne le plus souvent pour les arbres de régression.
- ► La modalité la mieux représentée (donc la probabilité d'obtenir cette modalité) pour les arbres de classification.

Ouf! Finis pour la théorie!

Maintenant la pratique!

BaobARD, une application shiny pour faire des arbres sans coder!

- https://frama.link/BaobARD_01
- https://frama.link/BaobARD_02

En suivant le lien vous arriverez sur cette première page qui donne quelques informations sommaires sur l'application et sur les arbres de décision.

BAOBARD GRÉGOIRE LE CAMPION

A propos

Import des données

Arbres de décision

Bienvenue sur l'application BaobARD une appli qui vous permet de créer votre propre Arbre de décision!

L'application BaobARD vous permet de créer votre propre arbre de régression ou de classification à partir d'un simple fichier csv!

Si vous n'avez aucune idée de ce que peuvent être des arbres de régression ou de classification ou pourquoi les utiliser un très bref rappel sera effectué juste ci dessous. Mais je vous conseille fortement de vous rendre sur le tuto et la page Arbre de décision sur le site web **OUVRIR**.

Outre cette première page, cette application contient 2 autres onglets.

Le premier vous permet de charger et visualiser les données que vous souhaitez analyser. Vous pouvez importer uniquement des fichiers au format csv.

Le deuxième onglet vous permettra de construire et visualiser un arbre de décision. Il vous reviendra de déterminer la variable que vous souhaitez prédire et les variables explicatives. Une fois satisfait vous pourrez télécharger votre visualisation aux formats png, pdf ou svg.

Pourquoi un arbre de décision ?

Parce que vous voulez enfin pouvoir faire plus qu'une corrélation! Parce que la liste des pré-requis pour faire une régression ou tout autre test statistique cherchant à étudier la causalité est plus longue que le bras! Et surtout parce que jamais vos données n'ont pu remplir une seule de ces conditions!

L'arbre de décision est un outil tout terrain parfaitement adapté aux données en SHS.

C'est un outil statistique d'exploration des données et de prédiction. Il peut servir à expliquer aussi bien une variable qualitative (on parle alors d'arbre de classification) qu'une variable quantitative (arbre de régression). Par rapport à d'autres méthodes classiques (analyse factorielle, régression, réseau de neurones...) l'arbre de décision possède de nombreux avantages :

- les données d'entrée peuvent être « mixtes », c'est-à-dire qu'un même arbre peut utiliser simultanément des variables prédictives qualitatives, ordinales et continues ;
- la gestion des données manquantes est particulièrement efficace ;
- la construction d'un arbre est rapide et peu gourmande en ressources ;
- l'arbre de décision est relativement simple à interpréter.

La page import données vous permet de charger vos données et de les visualiser.

Arbres de décision

Adelie

Adelie

Torgersen

Torgersen

BAOBARD GRÉGOIRE LE CAMPION A propos Import des données Charger un fichier CSV penguins.csv Upload complete Le poid des fichier est limité à 30Mb Charger des fichiers au format UTF-8 Ajuster les options suivantes en fonction de votre fichier importé 1ere ligne comme en-tête Séparateur de champ Comma O Semicolon O Tab Séparateur de texte O Aucun Guillemet double O Guillemet simple Visualiser Uniquement les 1eres lignes

O Ensemble des données

X	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	year
1	Adelie	Torgersen	39.10	18.70	181	3750	male	2007
2	Adelie	Torgersen	39.50	17.40	186	3800	female	2007
3	Adelie	Torgersen	40.30	18.00	195	3250	female	2007
4	Adelie	Torgersen	NA	NA	NA	NA	NA	2007

19.30

20.60

3450

3650

female

male

2007

2007

193

190

36.70

39.30

C'est donc ici que les analyses vont se faire, diverses options sont disponibles. Mais surtout le plus important c'est là qu'il faudra choisir la variable à étudier et les variables qui feront office de prédicteurs.

Le 1er onglet est "Arbre brut", il s'agit de la première visualisation brute de votre arbre, c'est à dire avec les paramètre par défault. Un export en png, pdf et svg est possible.

Le 2ème onglet "Complexité", permet de visualiser le graph de l'erreur de prédiction en validation croisée. Baobard vous fournira le niveau de coupure optimale de l'arbre issue du calcul de compléxité.

Le 3ème onglet "Arbre élagué", permet de visualiser votre arbre à sa taille optimale à l'aide du niveau de "coupe" obtenu dans l'onglet "Compléxité". Il se peut que l'arbre élagué est la même forme que l'arbre brut. Un export au format pdf, png et svg est possible.

Le 4ème onglet "Régle de construction", permet une lecture littérale de votre arbre.

Comment les régles de constructions se lisent? D'abord le numéro du noeud, puis le critère de division et le nombre total d'individus du groupe. Ensuite on aura une différence entre arbre de classification et arbre de régression.

Pour les arbres de classification viendra ensuite, le nombre des individus n'appartenant pas à la modalité prédite, la modalité prédite (c'est à dire majoritaire), et enfin entre parenthèse la proportions des individus bien et mal classés. Si la ligne se termine par une * s'est qu'il s'agit d'une feuille terminale.

Pour les arbres de régression ce sera ensuite la somme des carrés des écarts à la valeur prédite pour les valeurs de toutes les instances du noeud. Puis la moyenne du groupe. Si la ligne se termine par une * s'est qu'il s'agit d'une feuille terminale.

Le 5ème onglet "Arbre intéractif", permet de visualiser votre arbre élagué sous forme intéractive, ce qui permet éventuellement de faciliter la lecture et l'analyse de votre arbre.

Un peu de R?

Un peu de code

Pour les aventuriers qui veulent se lancer sur R, voici les lignes de codes qui traduisent au minimum ce dont nous venons de parler.

```
install.packages(c("rpart", "rpart.plot")) # pour installer les de
library(rpart) #charger la librairie dans R
library(rpart.plot)

data(ptitanic) #charger les données exemple sur le Titanic (conten
View(ptitanic) #visualiser les données

arbrel <- rpart(survived ~ sex + age + pclass + sibsp + parch, dat
plot(arbrel, compress=TRUE, margin=0.09, uniform=TRUE) #produit le
text(arbrel, pretty=1, fancy=TRUE, all=TRUE, use.n=TRUE) # rajoute</pre>
```

Un petit bonus

Survol très superficiel des forêts aléatoires

Les forêts aléatoires (ou random forest) sont une extension des arbres de décisions visant à être encore plus efficace sur de la prédiction.

Le principe sous jacent est putôt simple, une multitude de modèle faible et simple une fois combinés formeront un modèle robuste!

On est dans la famille des algorithmes qui font de l'aggrégation de modèle, l'algorithme va construire une "forêt" d'arbre de décision, c'est à dire plusieurs centaines voire milliers, construit de manière aléatoire. Finalement absolument tout est dans le nom!

Survol très superficiel des forêts aléatoires II

La partie aléatoire du random forest concerne la construction de chaque arbre de décision de notre forêt.

Pour chaque arbre conçu dans notre modèle un échantillon aléatoire d'individus est sélectionné et la construction d'un sous-groupe se fait sur un sous-ensemble de variales lui aussi selectionné aléatoirement.

Une fois le modèle élaboré, tous les arbres de décision vous tourner sur les données. Et on aura donc des prédictions différentes pour chaque individus!

L'estimation finale sera:

- ▶ La modalité la plus fréquente si le modèle est basé sur des arbres de classification.
- ► La moyenne des valeurs prédites si le modèle est basé sur des arbres de régression.