Sampling Mean, Variance, and the Law of Large Numbers (rewritten theory)

Let $X_1, ..., X_n$ be i.i.d. with population mean $\mu = E[X_i]$ and variance $\sigma^2 = Var(X_i)$ (finite). Sample statistics:

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i, \qquad S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

("corrected"/Bessel's) and the uncorrected version

$$U=rac{1}{n}\sum_{i=1}^n(X_i-ar{X})^2.$$

1) Properties of the sampling mean \bar{X}

- Unbiasedness: $\mathbb{E}[\bar{X}] = \mu$.
- Variance / standard error:, $\mathbb{V}ar(\bar{X}) = \sigma^2/n$; $SE(\bar{X}) = \sigma/\sqrt{n}$. With unknown σ , replace by S/\sqrt{n} .
- Distribution
 - o If the parent is **normal**, then $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$.
 - **CLT** (general parents):. $\sqrt{n}(\bar{X} \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$ Hence for large n the mean is approximately normal.
 - o If parent is normal and σ unknown, the **t-statistic**

$$T=rac{ar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}.$$

- Consistency (LLN): $\bar{X} \stackrel{p}{\longrightarrow} \mu$ as $n \to \infty$ (and almost surely under mild conditions).
- Independence (normal case only): For normal parents, \bar{X} and S^2 are independent—useful for inference.

2) Properties of the sampling variance

- Unbiasedness (corrected):. $\mathbb{E}[S^2] = \sigma^2$.
- **Bias** (uncorrected): $\mathbb{E}[U] = \frac{n-1}{n}\sigma^2$ (biased low).

• Sampling distribution (normal parent):

$$rac{(n-1)S^2}{\sigma^2} \, \sim \, \chi^2_{n-1}.$$

Consequently,

$$\mathbb{E}[S^2] = \sigma^2, \qquad \mathbb{V}ar(S^2) = rac{2\sigma^4}{n-1}.$$

For U,
$$\mathbb{V}ar(U) = \left(\frac{n-1}{n}\right)^2 \mathbb{V}ar(S^2)$$
.

• General-parent variability: letting $k=\mu_4/\sigma^4$ be kurtosis,

$$\mathbb{V}ar(S^2) = rac{\sigma^4}{n}igg(k-rac{n-3}{n-1}igg)$$

(reduces to $2\sigma^4/(n-1)$ when k=3, i.e., normal). Heavy tails (k>3) inflate the dispersion of S^2 .

• Consistency: $S^2 \xrightarrow{p} \sigma^2$.

3) Law of Large Numbers (LLN)

- Weak LLN:. $\bar{X} \stackrel{p}{\longrightarrow} \mu$ when $\mathbb{E}|X| < \infty$.
- Strong LLN: $\bar{X} \xrightarrow{a.s.} \mu$ under similar conditions.

Intuition: averages stabilize as nn grows; variability shrinks at rate $1/\sqrt{n}$ (via SE).

4) Illustrative applications in cybersecurity

• Traffic baselining & anomaly detection

Use rolling \bar{X} (e.g., bytes/flow, inter-arrival time, failed-login count). By LLN the baseline stabilizes; trigger alerts when

$$\bar{x}_{ ext{window}}
otin \bar{x}_{ ext{baseline}} \pm z_{lpha/2} rac{s}{\sqrt{n}}.$$

• User behavior analytics

Per-user averages of logins, session duration, API calls. Significant deviations from the learned mean/variance flag account takeovers or insider threats.

• Detector performance estimation

Estimate false-positive rate p from repeated trials; $\hat{p} \to p$ by LLN, and $SE(\hat{p}) = \sqrt{p(1-p)/n}$ guides sample size and confidence intervals.

Randomness tests for crypto/keys

For RNG or key-material checks, means/variances of bit streams should match theory (e.g., mean \approx 0.5); chi-square and variance-based tests rely on the sampling distributions above.

• Capacity planning / DDoS triage

Stable long-run means of requests/sec help distinguish genuine step changes from short spikes; heavy-tailed metrics warn that S^2 is more volatile (use robust estimators).

5) Takeaways

- is $ar{X}$ is unbiased, approximately/ exactly normal (CLT/normal parent), and concentrates at rate $1/\sqrt{n}$.
- S^2 is unbiased with Bessel's correction; under normality its scaled form is $(X_{n-1})^2$ with variance $2\sigma^4/(n-1)$; heavy tails increase its variability.
- LLN underpins practical baselining and thresholding in security analytics, while awareness of distributional assumptions (normal vs heavy-tailed) prevents overconfident decisions.