Sprawozdanie do projektu nr 2

Porównanie klasyfikatorów na przykładzie bazy Breast Cancer Winconsin

(Rak Piersi Winconsin)

Baza danych: https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
Kod projektu: github.com/Saafine/breast-cancer-data-analysis

1. Wstęp

a. Podstawowe informacje o kolumnach

Kolumna	Min	Max	Średnia	Mediana	% brakujących danych
Grubość guza (Clump	1	10	4.42	4.42	0
Thickness)					
Jednorodność wielkości	1	10	3.13	3.13	0
komórek (Uniformity of Cell					
Size)					
Jednorodność kształtu komórek (Uniformity of Cell Shape)	1	10	3.21	3.21	0
Adhezja (Marginal Adhesion)	1	10	2.81	2.81	0
Rozmiar pojedynczej komórki nabłonka (Single Epithelial Cell Size)	1	10	3.22	3.22	0
Jądro - nagie (Bare Nuclei)	1	10	3.54	3.54	2.28
Chromatyna (Bland Chromatin)	1	10	3.44	3.44	0
Jądro - normalne (Normal Nuclei)	1	10	2.87	2.87	0
Mitozy (Mitoses)	1	10	1.59	1.59	0
Klasyfikacja (Class):					
2 - rak łagodny,					
4 – nowotwór złośliwy					

b. Częstość występowania poszczególnych klasyfikacji (diagnoz)

- Rak łagodny: 458 (65.5%)

- Nowotwór złośliwy: 241 (34.5%)

c. Częstość występowania poszczególnych odpowiedzi w kolumnach:

2. Skuteczność klasyfikatorów

a. Naive Bayes - 96,19 %

b. Drzewa decyzyjne – 95.71%

c. k-Najbliższych sąsiadów

• k-NN-1 - **95.71**%

• k-NN-3 - **97.62**%

• k-NN-5 - **97.62**%

d. Sieci neuronowe – 99,27%

e. Random Forest - 98.1%

metoda zespołowa uczenia maszynowego dla klasyfikacji, regresji i innych zadań, która polega na konstruowaniu wielu drzew decyzyjnych w czasie uczenia i generowaniu klasy, która jest dominantą klas (klasyfikacja) lub przewidywaną średnią (regresja) poszczególnych drzew.

f. Kwadratowa analiza dyskryminacyjna (QDA) – 96.19%

g. AdaBoost - 94.29%

podstawowy algorytm do boostingu, metoda dzięki której z dużej liczby słabych klasyfikatorów można otrzymać jeden lepszy

3. Porównanie skuteczności klasyfikatorów

4. Wnioski

- brak możliwości określenia najlepiej działającego klasyfikatora na podanym zbiorze danych