Organic Chemistry 2 – Reaction Mechanisms schematically

Radical chain reaction

Initiierung:
$$Cl_2 \xrightarrow{hv} 2 Cl \cdot \Delta H^\circ = +58$$

Kettenreaktion: $Cl \cdot + CH_4 \longrightarrow CH_3 \cdot + HCl \Delta H^\circ = +2$
 $CH_3 \cdot + Cl_2 \longrightarrow CH_3Cl + Cl \cdot \Delta H^\circ = -26.7$
 $\Sigma : CH_4 + Cl_2 \longrightarrow CH_3Cl + HCl \Delta H^\circ = -24.7$

Kettenabbruch: durch Rekombination von 2 Radikalen (Wahrscheinlichkeit $\approx 1:10'000$)

Wohl-Ziegler reaction (NBS Bromierung)

- Erfordert keinen Einsatz von elementarem Brom (flüssig, leicht flüchtig, stark ätzend): dieses wird im Verlauf der Wohl-Ziegler-Reaktion kontinuierlich in geringer Konz. aus NBS gebildet.
- Mit der Substitution konkurrierende Addition von Br₂ an evtl. vorhandene DB (Skript, Kap. 5.1.4) wird zurückgedrängt.
- Es wird unter dem Strich kein HBr freigesetzt.
- Verwendung eines apolaren LM (Tetrachlorkohlenstoff, CCl₄) für die radikalische Reaktion → Umsetzungsprodukt Succinimid kristallisiert aus CCl₄ aus und kann einfach durch Filtration abgetrennt werden.

Kettenreaktion (Fortpflanzung, Propagierung)

netto:
$$P_1 + P_2 + P_3 + P_4$$

Kettenabbruch (Terminierung)

Rekombination von Radikalen

Konkurrenzreaktion

radikalische Addition an eine Doppelbindung

Nucleophile substitution – general scheme

 $X^n = \text{Nukleophil mit Ladung } n \le 0$; $Y^m = \text{Abgangsgruppe mit Ladung } m \ge 0$

- Abgangsgruppe wird mit Bindungs-e--Paar aus Substrat verdrängt.
- Abgangsgruppe verlässt Substrat umso leichter, je weniger basisch Ÿ^{m-1} ist.

Zur Erinnerung: Nukleophilie ist nicht identisch mit Basizität.

- Nukleophilie = kinetischer Begriff ("das bessere Nukleophil reagiert in einem standardisierten Vergleich schneller mit einem bestimmten Elektrophil" → Vergleich von k_{rel.}).
- Basizität (Brønsted-Basizität) = thermodynamischer Begriff ("Gleichgewichtslage der Reaktion mit H+").

2 Grundmechanismen:

- S_N1 unimolekulare Reaktion, Kinetik 1. Ordnung:
 → Reaktionsgeschwindigkeit (exp.): v = k·[Substrat]
 Das Nukleophil ist nicht am geschwindigkeitsbestimmenden Schritt beteiligt.
- S_N2 bimolekulare Reaktion, Kinetik 2. Ordnung:

 → Reaktionsgeschwindigkeit (exp.): v = k·[Substrat]·[Nukleophil]

 Das Nukleophil ist am geschwindigkeitsbestimmenden Schritt beteiligt.

SN1 - mechanism

S_N1 – Einfluss der Abgangsgruppe

Folgende Gruppen sind als solche keine Abgangsgruppen:

Abgangsgruppen!

 pK_a der konjugierten Säure (= H_2O): 15.7

$$R \stackrel{\bigoplus}{-OH_2} \longrightarrow R \stackrel{\bigoplus}{+} H_2O$$
 nicht zu basisch!

pK_a der konjugierten Säure (= H₃O+): −1.7

SN2 - mechanism

$$X^{\bigcirc} + R_3C-Y \longrightarrow \begin{bmatrix} R_1^1 \\ X - - - Y \\ R_2^2 R_3 \end{bmatrix}^{\ddagger} \longrightarrow X-CR_3 + Y^{\bigcirc}$$

Waldensche Umkehr

Finkelstein Reation

$$(S_N 2: Chlorid \rightarrow Iodid)$$

Gabriel-Synthesis

Gabriel-Synthese (selektive Herstellung primärer Amine)

Hyperconjugation

Def. Hyperconjugation: The interaction of the electrons in a sigma bond (usually C–H or C–C) with an adjacent empty (or partially filled) non-bonding p-orbital, antibonding σ or π orbital, or filled π orbital, to give an extended molecular orbital that increases the stability of the system.

Hyperkonjugation

Bredt's rule

In polycyclischen Systemen sind DB zum Brückenkopf nur dann möglich, wenn sich der *trans*-Anteil der DB in einem mindestens 8-gliedrigen Ring befindet.

N.b. Cycloalkine und (*E*)-Cycloalkene sind ebenfalls erst ab Ringgrösse 8 bei Raumtemperatur isolierbar!

Beta-elimination (also known as 1,2-elimination)

E1-Mechanismus (mit Carbeniumion als Zwischenstufe):

R1
$$+ \gamma \ominus$$
 langsam $+ \gamma \ominus$ langsam $+ \gamma \ominus$ $+ \gamma \ominus$ wie bei $S_N 1$!

E2-Mechanismus (Synchronreaktion):

Some characteristica of E1-elimination

Kinetik: E1 zeigt Kinetik erster Ordnung: $v = k \cdot [Substrat]$ (analog $S_N 1$). Reaktionsgeschwindigkeit unabhängig von [Base]!

Lösungsmittel: polare & protische LM ideal \rightarrow solvatisieren, d.h. stabilisieren sowohl Carbeniumion als auch Abgangsgruppe Y⁻ (analog $S_N 1$).

Brückenköpfe: keine E1 falls Abgangsgruppe sich am Brückenkopf eines kleinen Polyzyklus befindet (kein trig. planares Carbeniumion möglich, s. auch *Bredt*sche Regel).

Temperatur: $T extbf{1}$ begünstigt E1 gegenüber $S_N 1$: Teilchenzahl $extbf{1}$ bei E1, d.h. $\Delta S > 0 extbf{2}$ energetisch günstig! Schlägt besonders bei erhöhter Temperatur zu Buche ($\Delta G = \Delta H - T \Delta S$).

Regioselektivität: *Regel von Saytzew* → bei E1 entsteht bevorzugt das thermodynamisch stabilere, d.h. das höher substituierte Alken. Erklärung: produktbestimmender ÜZ (2. ÜZ) weist bereits einen gewissen Doppelbindungscharakter auf; s. dazu auch nächste Folie.

Acidically catalysed elimination of H2O in alcohols

Bei Eliminierungen häufig verwendete Basen

Regioselektivität der E2-Eliminierung

- E1 → Es gilt die Saytzew-Regel!
- E2 → kompliziertere Verhältnisse. *Hofmann*-Regel:

Weist die **Abgangsgruppe** einen sehr starken σ -Akzeptor-Effekt auf, d.h. $\mathbf{Y} = -F$, $-SO_2R$, $-\mathbf{S}^+\mathbf{Me}_2$, $-\mathbf{N}^+\mathbf{Me}_3$, dann entsteht bevorzugt das weniger hoch substituierte, thermodynamisch weniger stabile Olefin (= *Hofmann*-Prod.).

Claisen and Cope rearrangement

Ester pyrolysis

Tschugaeff-elimination (xanthogenate pyrolysis)

- Xanthos (gr.) [ξανθος] = gelb
- Intramolekulare, ± synchrone e⁻-Verschiebung (6 Zentren, 3 e⁻-Paare)
- syn-Eliminierung
- Deutlich niedrigere Aktivierungsenergie als bei Esterpyrolyse.

Cope-elimination

Electrophile addition (AE) on alkenes

Formales Pinzip:

$$=$$
 + $X-Y \longrightarrow X$

Some examples

Related electrophile additions

Allg. Schema:

Mechanismus der A_E von Br₂ an Alkene

Epoxidation

Persäuren wirken oxidierend und fungieren formal als HO+-Lieferanten.

Die Wirkung aller Substituenten an der Doppelbindung ist additiv (wie bei der Bromierung).

Diels-Alder mechanism

Allg. Reaktionsschema:

 $A = \pi$ -Akzeptor \rightarrow erhöht die Reaktivität des Dienophils bei 'normalen' *DA*-Reaktionen.

Ozonolysis

Das elektrophile O₃ ist ein starkes Oxidationsmittel und spaltet Alkene oxidativ in einer Reaktionsfolge, die mit einer 1,3-dipolaren Cycloaddition beginnt.

1,3-cycloaddition with aziden

R
$$\ominus$$
 \ominus \vdots N-N \equiv N:

[4+2]

R'

(z.B. in Ggw. von kat. Cu+)

R'

regioselektiv!

1,3-cycloaddition with diazomethane

Diazomethan = $4-\pi$ -e⁻-Komponente (s. Ausgangspunkte der Elektronenverschiebungspfeile)

Learn this by heart:

Reaction mechanisms with alkynes

Herstellung substituierter Alkine durch Alkylierung von Acetyliden:

Umsetzung des Acetylid-Ions mit einem Alkylierungsmittel = $S_N 2$ -Reaktion!

Further reactions:

Adition von Hydrogenhalogenid (HX):

Adition von Halogen (X2):

Adition von H₂O (durch Hg²⁺ katalysiert):

Electrophile substitution at aromates

Addition and substitution in aromates and taking the resonance energy into account:

π-e⁻-Überschuss-Aromaten

5-Ringe mit O, N oder S

nukleophiler (HOMO liegt höher) reaktiver bei S_EAr

π-e⁻-Mangel-Aromaten

6-Ringe mit N

weniger nukleophil (HOMO liegt tiefer) weniger reaktiv bei S_EAr

S_E AR reaction mechanism

S_EAr - Reaktionsmechanismus

Referenz

Elektrophil	Reaktionsbezeichnung	Produkt
Br+	elektrophile Bromierung	Ph-Br
Cl+	elektrophile Chlorierung	Ph-Cl
*NO ₂	Nitrierung	Ph-NO ₂
SO_3 , $^+SO_3H$	Sulfonierung	Ph-SO ₃ H
R ⁺	Friedel-Crafts-Alkylierung	Ph-R
+CH ₂ OH	Hydroxymethylierung	Ph-CH ₂ OH
	+ $HCI \hookrightarrow Chlormethylierung$	Ph-CH ₂ Cl
R-C≡O+	Friedel-Crafts-Acylierung	Ph-C(O)-R
H-C≡O+	Gattermann-Koch-Synthese	Ph-CHO
Ar-N+≡N:	Diazokupplung	Ph-N=N-Ar

Halogenierung

Reines Br₂ ist für desaktivierte Aromaten zu wenig elektrophil

→ Aktivierung mit *Lewis*-Säure, z.B. Fe³⁺.

2 Fe + 3 Br₂
$$\longrightarrow$$
 2 FeBr₃ COOH
FeBr₃ + Br₂ \longrightarrow Br $^{\oplus}$ [FeBr₄] $^{\ominus}$

Analog:

viel elektrophiler als Br₂!

- Chlorierung mit Cl₂ bzw. Cl₂/Fe.
- Fluorierungen mit F₂ sind i. d. R. nicht möglich (F₂ zu reaktiv).
- Iodierungen benötigen oft einen Promotor (Î₂ weniger elektrophil als Cl₂ oder Br₂); alternatives Reagenz zu I₂: I-Cl = I⁶⁺-Cl⁶⁻.

SSS Siedehitze, Sonne (hv), Seitenketten-Halogenier.

HBr +
$$\frac{Br_2}{KKK}$$
 $\frac{Br_2}{SSS}$ + HBr + HBr (+ ortho-Prod.)

Nitrierung

Angreifendes Elektrophil ist das Nitronium-Ion (NO₂+) [alte Bez.: Nitryl-Ion].

Friedels-Craft alkylisation

Alkylhalogenide sind für direkte S_EAr zu wenig elektrophil → Aktivierung durch Zugabe von *Lewis*-Säure [kat. Menge], z.B. AlCl₃, SnCl₄, BF₃, ZnCl₂, FeCl₃, TiCl₄.

<u>Problem</u>: **Produkt Ph−R ist nukleophiler** als Ausgangsmaterial PhH → **Weiterreaktion von Ph−R** → Produktgemische!

Hydroxymethlyation

Friedel-Craft acylation

Als Elektrophile werden statt Säurechloride häufig auch Säureanhydride eingesetzt:

Kolbe-Schmitt synthesis

Sulfonation

Benzolsulfonsäure

Azokupplung mit Aryldiazoniumionen

Aryldiazoniumionen reagieren als schwache Elektrophile mit stark aktivierten Aromaten zu Azoverbindungen (Entd.: *A. Kekulê*).

Zweitsubstitution am Aromaten

- Einführung eines 2. Substituenten in den Benzolkern: Bildung des Areniumions ist nicht nur geschw.-best., sondern auch produktbest. → bestimmt die Regioselektivität (ortho, meta, para).
- Angriff des Elektrophils erfolgt bevorzugt (= am schnellsten) so, dass das stabilste Arenium-ZP gebildet wird, weil dann nach Hammond auch der davorliegende ÜZ am energieärmsten ist.

- π-Akzeptor-Effekt ist generell desaktivierend bei Zweitsubstitution.
 Er wirkt sich aber am wenigsten ungünstig aus, falls in meta-Stellung
 angegriffen wird (→ keine GS mit 2 direkt benachbarten (+)-Ladungen)
- π und σ -Akzeptoren als Erstsubstituenten sind *meta*-dirigierend!

Gabriel-Synthese (selektive Herstellung primärer Amine)

Further syntheses:

$$\begin{array}{c} & \bigoplus_{N=N=N}^{\Theta} \bigoplus_{N=N=N}^{\Theta} Na^{\bigoplus_{N=N=N}^{\Theta}} Na^{\bigoplus_{N=N=N}^{\Theta}} \\ & - \text{Nax} \end{array} \qquad \begin{array}{c} & \text{R} & N \bigoplus_{N=N=N}^{\Theta} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & - \text{Nax} \end{array} \qquad \begin{array}{c} & \text{OH} \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} N \bigoplus_{N=N=N}^{\Theta} MH_2 \\ & \text{OH} \end{array} \qquad \begin{array}{c} & \text{OH} \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{OH} \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array}$$

$$\begin{array}{c} & \text{C} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{C} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{C} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{C} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \end{array} \qquad \begin{array}{c} & \text{N} \bigoplus_{N=N}^{\Theta} NH_2 \\ & \text{N} \bigoplus_{$$

Alcohol synthesis

• Elektrophile, sauer katalysierte Addition von Wasser an Alkene (Kap. 4.3) nach *Markownikow*. Nur brauchbar für 2° und 3° Alkohole.

Reduktion von Aldehyden/Ketonen und von Carbonsäurederivaten.

Nur zur Herstellung von 1° und 2° Alkoholen.

Mechanismus: s. weiter unten.

Ether synthesis

Säurekatalysierte elektrophile Addition von ROH an Alkene nach *Markownikow.*

Hydrid transfer - mechanism

wird durch Komplexierung mit *Lewis*-Säure Li+ elektrophiler!

Mechanismus der Ox. von Alkoholen mit Cr(VI)

Summarisch:

 $3 \text{ RCH}_2\text{OH} + 4 \text{ Cr}(\text{VI})\text{O}_3 \rightarrow 3 \text{ RCO}_2\text{H} + 2 \text{ Cr}(\text{III})_2\text{O}_3 + 3 \text{ H}_2\text{O}$

In wässriger Lösung → Oxidation des Aldehyds (über Hydrat-Form) bis zur Carbonsäure

(Da Aldehyde mit nicht umgesetztem Alkohol ein Halbacetal bilden können, erhält man statt der Carbonsäuren 22 oft die entspr. Ester)

Thioles and sulfides

Thiole (bes. in Form ihrer konjug. Basen (= **Thiolate**)) und **Sulfide** sind gute + weiche Nukleophile (3p-Orbitale → leich polarisierbare e⁻).

Thiole werden durch stärkere Ox.-Mittel (KMnO₄, HNO₃) stufenweise zu **Sulfonsäuren** oxidiert.

Sulfide lassen sich leicht [stufenweise] über **Sulfoxide** zu **Sulfonen** oxidieren.

Ox.

$$R$$
 R'
 R'

Aldehydes and ketones

Carbonylverbindungen: Reaktivitätsmuster

Polarisierung der C=O-Bindung:

⇒ Regioselektive Addition eines **Nukleophils** an das positiv polarisierte C → C–O-Bdg.

 \rightarrow Deprotonierung in α -Stellung \rightarrow Enolat-Anion, wird von **Elektrophil** abgefangen.

Hydratisierung von Carbonylverbindungen

- Nukleophile Addition von Wasser an C=O-Bindung
- Gleichgewichtsreaktion: K = f(R, R')

$$R \xrightarrow{\downarrow} H_2O \qquad R \xrightarrow{\downarrow} R'$$

$$K = \frac{[Hydratform]}{[Oxoform]}$$

Erlenmeyer-Regel

 $R^{1}/R^{2} = H$, Alkyl, Aryl, Heteroatom X = O, N, S

 $Y = OR, NR_2, SR, Hal, CN$

Säurekatalysierte Hydratisierung: Mechanismus

Basenkatalysierte Hydratisierung: Mechanismus

Cyanhydrine

$$\begin{array}{c|c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ &$$

Acetylation of aldehydes and ketones

WICHTIGER MECHANISMUS

Umsetzung von Aldehyden oder Ketonen mit Alkoholen (analog mit Thiolen, R-SH).

Analog zur reversiblen Hydratisierung von Aldehyden und Ketonen. Es werden mehrere Zwischenstufen durchlaufen.

1. Stufe

ein Halbacetal (engl. "hemiacetal")

$$\begin{array}{c} OH \\ R \\ \hline \\ R' \\ \hline \\ Halbacetal \end{array} \begin{array}{c} OH_2 \\ \hline \\ R' \\ \hline \\ R' \\ \hline \\ \end{array} \begin{array}{c} OH_2 \\ \hline \\ R' \\ \hline \\ \hline \\ R' \\ \hline \\ \end{array} \begin{array}{c} O-R'' \\ \hline \\ R' \\ \hline \\ \end{array} \begin{array}{c} O-R'' \\ \hline \\ R' \\ \hline \\ \end{array}$$

Acetale sind in neutralem sowie basischem wässrigem Medium stabil:

→ Verwendung als Schutzgruppe für Aldehyde und Ketone! (Ggf. auch für den verwendeten Alkohol).

More on acetals and hemiacetals

Formation:

Acetal: The mechanism for the formation of acetals can be explained as follows

Hemiacetal: The formation of a hemiacetal can be explained using the following mechanism.

$$\begin{array}{c}
O \\
R_1 \\
H
\end{array}
+ HO - R_2 \xrightarrow{H^+} \begin{array}{c}
OH \\
R_1 \\
H
\end{array}$$

Aldehyde Alcohol

Hemiacetal

RRC=O reactions with amines

Heterocycles

Synthese N-haltiger Heterocyclen

Paal-Knorr synthesis

Grignard-compounds

Herstellung: Umsetzung von **Mg mit einem Alkyl- oder Arylhalogenid** in einem etherischen LM (meist **Et₂O**, **THF**).

Reaktivität der Alkylhalogenide gegenüber Mg: R-I > R-Br > R-Cl >> R-F; Fluoride reagieren nur mit superaktivem *Rieke*-Magnesium.

Metallorganische Verbindungen zeigen i.a. eine **hohe Reaktivität gegenüber** O_2 , CO_2 , R-XH (Brønsted-Säuren) \rightarrow trocken und unter Schutzgas (N_2 oder Ar) arbeiten!

Examples

Umsetzung mit CO_2 \rightarrow Darstellung von Carbonsäuren unter Einführung eines zusätzlichen C-Atoms (CO_2 = C_1 -Elektrophil).

Br BuLi O=C=O
$$O \oplus Li \xrightarrow{H_3O^+} CO_2H$$

AAc2 Veresterung von Carbonsäuren

Alkoholyse von R-COCI in Ggw. von Pyridin

In Summa: RCOCl + R'OH + Py
$$\rightarrow$$
 RCOOR' + PyH+Cl-

Basenvermittelte Verseifung von Carbonsäurederivaten (B_{Ac} 2-Mechanismus)

- Verseifung von Estern, Amiden und Nitrilen nicht nur sauer, sondern auch basisch (durch OH⁻ → B_{Ac}2-Mechanismus: B = basenvermittelt).
- Hohe thermodynamische Triebkraft: $pK_a(Alkohol) pK_a(Säure) \approx 10!$
- Entstehendes Carboxylat ist ein sehr schwaches Elektrophil.
- ➡ Basenvermittelte Verseifung ist im Gegensatz zur säurekatalysierten Variante irreversibel!

$$\begin{array}{c|c}
 & HO^{\Theta} \\
\hline
 & langsam \\
\hline
 & rasch
\end{array}$$

$$\begin{array}{c|c}
 & R & O \\
\hline
 & Ware \\
 & langsam
\end{array}$$

$$\begin{array}{c|c}
 & R & O \\
\hline
 & RO^{\Theta}
\end{array}$$

$$\begin{array}{c|c}
 & R & O \\
\hline
 & RO^{\Theta}
\end{array}$$

$$\begin{array}{c|c}
 & R & O \\
\hline
 & RO^{\Theta}
\end{array}$$

$$\begin{array}{c|c}
 & R & O \\
\hline
 & RO^{\Theta}
\end{array}$$

$$\begin{array}{c|c}
 & RO^{\Theta}
\end{array}$$

C. Thilgen, OC II, 3.5.17

A_{AI}1-Spaltung von Estern 3°er Alkohole

- **Sperrige** *t***Bu-Gruppe** verhindert Angriff eines Nukleophils auf C=O-Gr. von *t*Bu-Estern → **Schutzgruppe** für Carboxy-Funktion!
- A_{Al}1 = säurekatalysierte Alkyl-O-Spaltung (1. Ordnung) = sauer kat.
 E1-Eliminierung von RCO₂H aus Alkohol-Rest von Estern 3°er Alkohole.
- Spaltung ≠ Hydrolyse; kein H₂O erforderlich!

Darstellung von Anhydriden

Anhydride sind <u>formal</u> Produkte der Kondensation von 2 Säuremolekülen unter Abspaltung von Wasser.

Anhydride sind sehr elektrophil (hohes Gruppenübertragungspotential).

· Gewöhnliche Anhydride (identische Acylreste):

· Gemischte Anhydride:

OH + H-CI
$$\xrightarrow{formal}$$
 + H₂O + H₂O \xrightarrow{O} + H₂O \xrightarrow{O} + H₂O

Es gibt auch gemischte Carbonsäureanhydride (s. nächste Folie).

Alkylierung von Enaminen

Verhinderung doppelter Alkylierung durch Einsatz von Enaminen statt Enolaten!

Malonester synthesis

Acetessigester synthesis

1) Mit Ketonspaltung

$$\begin{array}{c|c}
O \\
O \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
R \\
O \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
O \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
O \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
O \\
CH_3
\end{array}$$

"Ketonspaltung" (≠ Spaltung eines Ketons, sondern Spaltung ZUM Keton)

2) Mit Esterspaltung

"**Esterspaltung**" entspricht *retro-Claisen*-Reaktion (zur *Claisen*-R., s. späteres Kap.)

3) Mit Säurespaltung

Aldol chemistry

Das Vinylogieprinzip

Henry reaction

+ Nitroaldol-Reaktion (*Henry*-Reaktion). Die Nitroverbindung ist i.d.R. die sauerste Komponente und kann **nur als Donor** reagieren.

Mannich reaction

Akzeptor-Komponente = Iminium-Ion (besseres Elektrophil als Aldehyd); dieses wird oft aus 2° Amin + Formaldehyd in situ hergestellt, oder es wird das käufliche Eschenmoser-Salz eingesetzt.

Strecker synthesis

- Akzeptor = Iminiumsalz (aus Aldehyd + NH₃ bzw. NH₄Cl)
- Donor = CN⁻
- **Produkt** = racemische α-Aminosäure (nach Nitril-Hydrolyse)

Ph CHO
$$\frac{NH_4CI}{-H_2O}$$
 Ph $\frac{\Theta}{NH_2CI}$ $\frac{-CI}{\Theta}$ $\frac{-CI}{\Theta$

Knoevenangel condensation

EtO₂C CN + O NH₄OAc CO₂Et CN

HO₂C CO₂H + NH₃ OH CO₂H
$$\frac{-OH^{\Theta}}{-CO_2}$$
 R' CO₂H $\frac{-OH^{\Theta}}{-CO_2}$ Decarboxylierung

Claisen-Esterkondensation - Mechanismus

Retro-Claisen condensation

Dieckmann condensation

- Intramolekulare Variante der Claisen-Esterkondensation.
- Ausgangsmaterialien = **Diester**.
- Produkte = cyclische β-Ketoester;
 können durch Hydrolyse + Decarboxylierung in cyclische Ketone
 umgewandelt werden → wichtiger Zugang zu Cycloalkanonen!

Thorpe-Ziegler reaction

That's the nitrile analogue to the Dieckmann condensation

Michael-addition

- α,β-ungesättigte Carbonylverb. als Akzeptorkomponenten
 (elektrophiles β-C-Atom ↔ Vinylogie-Prinzip!) → oft kommt es zur
 β-Addition eines Nukleophils (1,4-Addition, 'conjugate addition').
- 1,4-Addition vorzugsweise mit weichen Nukleophilen, z.B. Enolaten.
- 1,4-Addition von C-Nukleophilen = Michael-Addition.
- 1,4-Addukt = thermodynamisch stabileres Produkt (Vgl. mit 1,2-Addukt); überwiegt unter Gleichgewichtsbedingungen; häufig entsteht zunächst aber 1,2-Addukt unter kinetischer Kontrolle.

Selektivität 1,2- vs. 1,4-Addition: gibt es eine Faustregel?

→ HSAB-Prinzip:

- C=C weich → weiche Nukleophile neigen zur 1,4-Addition:
 z.B. Enolate, Cuprate [Me₂CuLi], HS⁻, RNH₂, CN⁻, OH⁻ [Ausnahme, da OH⁻ eher hart ist]).
- Cupratherstellung: 2 MeLi + CuI → Me₂CuLi + LiI (Gilman).
- C=O hart → harte Nukleophile neigen zur 1,2-Addition (z.B. RLi).
- Grignard-Verbindungen RMgX (mittlere Härte) liefern oft ein Gemisch aus 1,2- und 1,4-Addition.

Tandem reaction: Michael-addition with acylation

- 1. Michael-Addition eines weichen Nukleophils an die C=C-Bindung einer α,β-ungesättigten Carbonylverbindung;
- 2. Abfangen des dabei primär gebildeten Enolats mit einem Elektrophil.
 - Häufig eigesetzte Kombination:
 - 1 Addition eines Gilman-Cuprats (R2CuLi);
 - 2 Abfangen des Enolats mit einem Alkylhalogenid/-tosylat.
 - Summarisch: vicinale Dialkylierung der C=C-Einheit eines Enons.

Robinson-Annellierung

- Kann ein Enon auf der gesättigten Seite der C=O-Gr. enolisieren, dann folgt auf die Michael-Addition oft eine intramolekulare gekreuzte Aldolreaktion bzw. -kondensation (Tandem-Michael-Aldol-Reaktion).
- Gesamtsequenz = *Robinson*-Anellierung.
- Bedeutung für den Aufbau anellierter 6-Ring-Systeme, z.B. von Terpenen und von Steroiden.

An example with enamines

Anstelle von Enolaten können bei der *Robinson*-Anellierung [wie generell bei Aldolreaktionen!] **auch Enamine** als **Donor-Komponenten** eingesetzt werden.

 β -Aminoketon = *Mannich*-Base

Ylides

Ylid = Verbindung, für die sich eine Grenzstruktur schreiben lässt, bei der 2 benachbarte Atome mit vollem Oktett entgegengesetzte Ladungen aufweisen.

Ylide sind relativ stabil, falls man das Oktett aufweiten und eine entsprechende Ylen-Form formulieren kann (also ab der 3. Periode, z.B. P- und S-Ylide, nicht aber N-Ylide!).

Wittig-reaction

- Stabilisierte Ylide → schwächere Base (OH⁻, RO⁻) reicht aus zur Deprotonierung des malonesterartigen Dialkoxyphosphorylacetats (RO)₂P(O)–CH₂–CO₂R [α-phosphorylierter Essigsäureester].
- Umsetzungsprodukt = wasserlösliches Phosphat (statt Ph₃P=O)
 → leichte Abtrennung vom Produkt (im Gegensatz zu Ph₃P=O) !

trans-Oxaphosphetan

1