4.7. Reignel. (2com Nullstelluste)

$$I = \langle y^{2}(x+2), (x-1)^{2}(x+1)^{2} \rangle \subseteq \mathbb{Q}[xy].$$

Men bet $V(I) = \{-1, 12, x \}0\}$

$$\{x : f = y - x^{2} + 1.\}$$

$$\{x : f = y - x^{2} + 1.\}$$

$$\{x : f = y - x^{2} + 1.\}$$

$$\{x : f = y - x^{2} + 1.\}$$

$$\{x : f : y = (x-1)^{2}(x+1)^{2}\} \subseteq \mathbb{Q}[x].$$

$$I(x,0) = \langle (x-1)^{2}(x+1)^{2}\} \subseteq \mathbb{Q}[x].$$

We must in I we is a close than wise $\{(x,0) \in I(x,0).\}$

Alex. $\{(x,0) = -x^{2} + 1 = (1-x)(1+x), (1+x), (1+x),$

Roymone ace: I(t,0) hibe als mirdlesters everfude Du	n ober 1 nd -1
als mindesters everfude Du	uscher.
and of show Day V(I) a	Isetoción au von,
Merchitiesen vic dass & E	VI Sier
11, 471 goodt es au	٠.
$P \in \langle y^2(x+2), (x-1)^2(x+1) \rangle$	1-2(y- x +1)/
2u testen.	
4.7.3. Afgale. Wodered bac	in des Radilal
1 <x2, x4,42=""></x2,>	Q[xy]

erzeus usselen?

$$\sqrt{\langle x^2, xy, y^2 \rangle} = \langle x, y \rangle$$

Argumentation in Fall $\sqrt{\langle x^2, xy, y^2 \rangle} \subseteq CPJ$

ildes den d'allekten extet:

 $\sqrt{\langle x^2, xy, y^2 \rangle} = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2))$
 $\langle x^2, xy, y^2 \rangle = I(V(x^2, xy, y^2)$

Hoguneara En du dell'Allerat 1(x²,xy,y²> = <xy> ° 2°: x ∈√(x°, kyy) wegen x² ∈ <x², ky, y²> y E ((x² xy y²) ma pe y² C (x² xy, y²) <xy> 5 (x²,xy,y²>. Gener Cet & erer bondenter Teon, des un fra Dell \dot{g}_{S} . \Rightarrow f(0,0) = 0, abor jedes Polynom ans V(k; ky; y²) it floch O and (90).

47. 4 Remedents: Estemps des Racilicals eines Ideals I in Saguati : I. valicall.	
-> Ring I doule -> der Milbertsche Benische -> Groeberbase and der Budberger Alpai -> Rojckhonen om Varickien Eleminatio (and nit Resultanten). -> der Milbertsche Nallstellensate	Lace
Des Hilbertsche Nortstellenskit Algebrische Strukturan (Ring laecie) Algebraische Magn Christistetn Christisten Christisten Algebraische Magn Algebraische Magn Algebraische Magn Algebraische Magn Algebraische Magn Anwendungen.	

Auheny B: Chenische Reaktions nettwerter. B.1 Autonome dynamische Système and ihre Gleich gwitzte. Autonone Systeme des Attereunesgleichungen sind Gother Der Form $\chi'(t) = F(\chi(t))$ mit des mehker Snike F: R-> (R" (stetize Enuhion) mit ener Centekeanten vekbræerhyn Kunnon X; R-> R. Odes wit underen Worten. a:a leompohenten K, C+1,..., Ku (H) von X(4) she n en bebahnter Funktishen. Autonom heist: Die Dynam K'(+) des

Systems in enducky durch den aktuallen Zuskund X (t) bestimmt. Bei nickt Adaronnen lut non air Forn X'(4)=G(x(4)+) Dir Kondlanten von K ((+) = F(X(+)) vennt man Gless jurchte. Das heefst i x C6) = c tii comet. Dan h hat man f(c) = 0. Die Cleschquetelk was aie Löcken des Gleicharysystans F(x)=0 für ein un belauentes x EIR" B. 1. 1. Beispiel. Räubs - Beuk-Sykn. $x'=c\times$

X Beskud des Berete y Beskud des Réicibes Contecx 2 × ' = (x-By)x d, B, J, 8 >0. (y' = (8x - 8)4 * Reak Des inke sexure blesa senale hier Vers we exercise alesa schere was

Let nan and 2d-15y=0 5x-7=0 5x-7=0

Unienteressantes Cleichquient: x=0, y=0. Eines do vict hyr Publéa Bri der Analyse con auto momon degranischen Søstemen: Gleichquieute analysièren (wo sie sind vie viele es sind ww.). B2. Chemische Realchious neteurche. Chemische Realitous net merke (CRN) stad spezielle dynamische Systeme, die man in Chemie (inst. in des Biochemie) zur modellies z nom (bio) chenicalen Prozesser benetzt.

Eine Rechris L in evans CRN not n & IN Species bodiesen wir alser Pace (L,B) mit d,B E Zzo. Die Ventoren & na Blacken, mie wiele Eiler un jedes den n Spezies man vor tem. nake des Realetton (d, B) het. Ein CRN Mit u Spezies it ein quentetes Digseph (CRk) dessen Konton Merz Cerna endlære Teilmay a con Ezo ist. Die Elemane vo- C nevert han Konglete. Die Bögen (d,B) ER neunt man Realestonen. Das Gewick + Kaps)>0

hount man use Rathakonstante des Rocktion (d.p.) ER. Des agranische System eines CRN (C, R, k) iso das System $\chi' = \sum_{(\alpha,\beta)} k(\alpha,\beta) \propto \alpha(\beta-\alpha)$ X(+) i et des anbekennte Beskude des Speries 1, _, a zon zestponatet t. Pas Gleschenysystem his die Gleschwich dieses dynamischen Systemicut polynomiale: $\sum_{\alpha,\beta} k(\alpha,\beta) \times (\beta-\alpha) = 0$.

la Chemie it aun on der Cöousem aut Rzo (sder aus Rzo) rieses Systems interessient. B. 2.1. Bersmel. (Reseptor-Diner-Ligued-Modell). Vorbanden den 2 gleiche Rescotoren (2 Kopion ou A) une ein Ligane (C). Die beiden Reseptoron bisinen wich Zu einen soprainte Dionar vertiden (B). De Lique Checen sier au en Rereptor A finden : es emitelet eine Speries, die wir als D bezeichner. Des Wedeser. konner son Arra O cowie Brook ne eines Speries E-verkender.

All dose Ronkhoven and unkehrber.

A,B,C,D,E = e_{1} , e_{2} , e_{3} , e_{4} , e_{8} (veltom as \mathbb{R}^{5}). Men her hier vie Komplexe: $\mathcal{L}(1) = 2A + C = \begin{pmatrix} \frac{3}{1} \\ \frac{1}{0} \end{pmatrix} \in \mathbb{Z}_{\geq 0}$

2(2) = A + D 2(3) = E2(4) = 13 + C $(2(4)^{4}(1))$ $(2(1)^{4}(1)^{4}(1))$ $(2(1)^{4}(1)^{4}(1))$ $(2(1)^{4}(1)^{4}(1))$ $(2(1)^{4}(1)^{4}(1))$ $(2(1)^{4}(1)^{4}(1))$ $(2(1)^{4}(1)^{4}(1))$

klalej elin eli ku. Wir bereichnen 4 Kompleka 8 Rechtioner 5 Speties. B22. Reguel (Gell-Death Modet) d(i) = (m-i, i) met Reaudibren: (d(i),d(j)) mit 1 = i < j = m 2(17) 212) 2(3) 2(7) Das autonome System: x'= Z kijx d'(i)(d1)-d1i) 15i<j=m

odes kompalntenueise. $x_{i} = \sum_{1 \le i < j \le m} k_{i,j} x_{i} x_{j}^{m-i} x_{2}^{i} ((i-j))$ $2 \sum_{i=1}^{n} k_{i} \cdot x_{i}^{m-i} x_{2}^{i} (j-i)$ Man well $x_1' = -x_2'$. (=) $(x_1 + x_2)' = 0$. -> 2, + x Gle-6+ borstant. 13.3 Erhalher sodeidnigen hir ein CRW.

Fiir ein explenes CRN (CRk) high L = ling 1/3-d: (d, s) & R3 der studiometrisle Un korana ca (C, R, k) B. 3.1 Roposhou Si (C, R, L) Rin CRN onit den sheliemetrisken Ræum L. Dann gils lie jæle Lönne, x: I-> R eles An long west posblems $\chi' = \sum_{(\alpha,\beta) \in R} k(\alpha,\beta) \kappa^{\alpha}(\beta-\alpha')$ $\mathcal{X}(0) = k_0$ mit $x \in \mathbb{R}^n$ (I herevellie \mathbb{R}) $x(t) - x_0 \in L$ for all $t \in T$.

Bewais: Nord lan Fundamentalsets des Differential- one Inkpolscolumn, gilt; $x(t) - x_0 = x(t) - x(0) = \int x(1s) ds$ $= \int \left(\sum_{(a,\beta)} k(a,\beta) \times r(s)^{a} (\beta - a) \right) ds$ $= \sum_{\{\alpha,\beta\}\in R} k(\alpha,\beta) \binom{t}{x(s)} ds \binom{\beta-\alpha}{s}$ $= \binom{\alpha,\beta}{\epsilon} \epsilon R \qquad \epsilon R$ $= \binom{\alpha,\beta}{\epsilon} \epsilon R \qquad \epsilon R$

Mener benne dem stodionetas den Raum L de löngsnense eines homogenen Linecson Gleichengssystems Ex=0 das stellan. Mangent die Gleidungen des Systems E(X-x0)=0 die Erhechersegleicherege $F(x-k_0)=0.$ IX- KOEL li m = din (L). Fir de lektor & EL het nen lineare Ablägg, lesiter. Man Lane as Visicolar X: ir enci Grugger ællegn: so dess Rg- (ki)ieß neck=(k.); eN

x c L (=> xB = MxN fir alle & existle ist (lir en genisses MERBXN Cogl. Linave Algebra - Garfreskhon oder linese Optsmieros). Parker gilt: $x_{B}' = \sum_{\alpha \in B} k(\alpha, \beta) \times^{\alpha} (\beta - \alpha)_{B}$ $= \sum_{\alpha,\beta} k(\alpha,\beta) \times M. (\beta-\alpha)_{\alpha}$ $= (\alpha,\beta) \in \mathbb{R}$

= M \(\lambda,\beta\) \(\lambda,\beta\) \(\lambda,\beta\) \(\lambda,\beta\) \(\lambda,\beta\) \(\lambda,\beta\) \(\lambda\) \(

De Agranik om Xg' it endeckty durch die Dynamik con no Bestimmt. Instesoadere: $\chi_{\hat{N}} = 0 \implies \chi_{\hat{S}} = 0$. Des heilt bei den amalyse des Cleiongwichte libra die Gledany x; '=0 (:61) longerasse merelon. Man ligt laber als eine kurkteblannpung X-X0 EL liner (in les Form Rices breeven Gleichneyssogstems) Das ergibt:

 $\sum_{(\alpha,\beta)\in R} k(x,\beta) \propto^{\alpha} (\beta - \lambda)_{N} = 0$ $\chi_{B} - M \times_{N} = (\chi_{o})_{B} - M (\chi_{o})_{N}$ Das Systen ens analyse der Cleich quicetl. Die Ubeleannten vied X, Die Parametes: (Restorates) K(2,p) (2,p) FR (Xo), (Xo) (Startwerte)

Uch benn hon holde Parameter fixiesa une dans in [[(x1..., Ku] abriter. Odes man kann and in $Q((k(\alpha,\beta))_{\alpha,\beta})e(x_1,\ldots,(x_6)_n,\ldots,(x_6)_n)(x_1,\ldots,x_5)$ asteika. B3.9. Beispiel (Rezembor-Dinner-Ligard, Forfsetzag).

 $\boldsymbol{\chi}_{_{\parallel}}$ K1(0)

k2(0) **/**2 **k3** X3607 47 Ker (0) E 5 K5(0) KC

Des Oestenden A in afforder es ence meng burdenes Form blibt Konstant:

$$X_1 + 2X_2 + 0 - X_3 + X_4 + 2X_4$$

= $X_1(0) + 2X_2(0) + 0 \cdot X_3(0) + X_4(0) + 2X_4$
Games o lie C:

$$\int_{X_{1}}^{X_{1}} + 2x_{2} + x_{4} + 2x_{5} = S$$

$$(x_{3} + x_{4} + x_{5} = E)$$

$$X_{1} = S - 2x_{2} - x_{4} - 2x_{5}$$

$$X_{2} = E - x_{4} - x_{5}$$