

Hi3516A DMEB DDR3 Test Report

System History

Date	Contents	Remarks
2015-01-27	The test is performed based on DDR3 1333 MHz AC150.	

Note: All test data in this report is obtained based on the samples tested by HiSilicon. It is provided for reference only, and cannot replace the related tests that should be conducted by customers.

Information

Chipset	HI3516A				
Board Name	Hi3516A DMEB VER.A				
DRAM PartNumber	Micron MT41K256H16HA				
Oscilloscope	DSA72004C DPX				
Temperature	25°C				
DRAM Operating Frequency	600MHz(DDR3)				
VDD/Vref-CA/Vref-DQ/Vcore	1.5 V/0.75 V/0.75 V/1.1 V				
DRAM_RODT	ODT OFF				
SOC_RODT	ODT OFF				
DRAM_RON	40ohm				
SOC_RON	CLK:34 ohm AC 2T:48 ohm AC 1T:48 ohm DQS:40 ohm DQ:40				

Signal Integrity Summary & Conclusion

Judgment&Summary

The margin for the CLK0 jitter (per) of the differential clock is insufficient. The jitter defined in the SPEC standard is \pm 85 ps, whereas the test result is -82.57 ps to +79.38 ps.

- 1. A sufficient margin of the setup hold time is recommended according to the tested AC signal timing.
- 2. The timing margin of the DQ Training window is sufficient.
- 3. The result of the 7 x 24-hour high- and low-temperature environment test is normal.

Comprehensive assessment: the margin for the CLK0 jitter (per) is insufficient, and the risk is controllable.

Measurement Item	Result	Remark
Sequence Check	PASS	
Power Check	PASS	
Signal Integrity Check	Fail	Insufficient margin for the CLK0 Jitter (per)

Power Up Initialization Sequence Check Result

■ SPEC

■ Stable VDD to /Reset Up

3.3.1 Power-up Initialization Sequence (Cont'd)

CH3:Reset CH4:VDD

Parameter	Time	Spec	Result	Remark
Stable VDD to /Reset Up	168ms	Min:200us	PASS	/RESET needs to be maintained for minimum 200us with stable power. (JEDEC spec.)

(

Power Up Initialization Sequence Check Result

/Reset Up To CKE Up

CH3:CKE CH4:Reset

tCKSRX

CH1:CLK CH3:CKE

Parameter	Time	Spec	Result	Remark
/Reset Up To CKE Up	1.036ms	Min:500us	PASS	After /RESET is de-asserted. Wait for another 500us until CKE becomes active.(JEDEC spec.)
tCKSRX	1.046ms	Min:Max(5 tCK,10ns)	PASS	Clocks (CK, CK#) need to be started and stabilized for at least 10 ns or 5 tCK (which is larger) before CKE goes active.(JEDEC spec.)

Power Up Initialization Sequence Check Result

VDD Rising Time

CH4:VDD

CKE Falling Edge To Reset Rising Edge

CH3:CKE CH4:Reset

Parameter	Time	Spec	Result	Remark
VDD Rising Time	400us	Max:200ms	PASS	The power voltage ramp time between 300 mv to VDDmin must be no greater than 200 ms.(JEDEC spec.)
CKE Falling Edge to Reset Rising Edge	159.4ms	Min:10ns	PASS	CKE is pulled "Low" anytime before RESET# being de-asserted (min. time 10 ns).

Reset Initialization Sequence Check Result

■ Reset Low Level Voltage

CH3: Reset

Parameter	Voltage	Spec	Result	Remark
Reset Low Level Voltage	175mV	Max:300mV	PASS	Reset Low Level Voltage must be within 300 mV.

Reset Initialization Sequence Check Result

/Reset Up To CKE Up

CH3:CKE CH4:Reset

etCKSRX

CH1:CLK CH3:CKE

Parameter	Time	Spec	Result	Remark
/Reset Up To CKE Up	1.036ms	Min:500us	PASS	After /RESET is de-asserted. Wait for another 500us until CKE becomes active.(JEDEC spec.)
tCKSRX	1.048ms	Min:Max(5 tCK,10ns)	PASS	Clocks (CK, CK#) need to be started and stabilized for at least 10 ns or 5 tCK (which is larger) before CKE goes active.(JEDEC spec.)

Reset Initialization Sequence Check Result

■ CKE Falling Edge To Reset Rising Edge

CH3:CKE CH4:Reset

Parameter	Time	Spec	Result	Remark
CKE Falling Edge To Reset Rising Edge	576.3ms	Min:10ns	PASS	CKE is pulled "Low" anytime before RESET# being de-asserted (min. time 10 ns).

Average Periodic Refresh Interval Check Result

SPEC

12.2 Refresh parameters by device density

Table 61 — Refresh parameters by device density

Parameter	Symbol		512Mb	1Gb	2Gb	4Gb	8Gb	Units	Notes
REF command to ACT or REF command time	tRFC		90	110	160	300	350	ns	
Average periodic refresh	tREFI	0 °C ≤ T _{CASE} ≤ 85 °C	7.8	7.8	7.8	7.8	7.8	μs	
interval		85 °C < T _{CASE} ≤ 95 °C	3.9	3.9	3.9	3.9	3.9	μs	1

NOTE 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

Average Periodic Refresh Interval

CH3:CAS# CH4:RAS#

Parameter	Time	Spec	Result	Remark
tREFI	7.03us	Max: 7.8us	PASS	

Power Check Result

Power Noise Check Result

Parameter	Spec (mV) Vpp	Value (mV) Vpp	Result	Position	Test Point
VDD_DDR	60*	16.8	-	Hi3516A	C11
VDDIO DDD	75*	41.6	-	Hi3516A	C42
VDDIO_DDR	DR 75*	44.8	-	Hi3516A	C51
\/mof C \	00	24.32	PASS	DDR1	C87
Vref-CA	30	13.76	PASS	DDR2	C90
Vref-DQ 30	18.24	PASS	DDR1	C88	
	30	15.36	PASS	DDR2	C89

^{*} Note: The SPEC for VDD_DDR and VDDIO_DDR in the preceding table indicates the power supply requirement for Hi3516A board design.

VDDIO Supply Voltage

Parameter	Spec	Value	Result	Position	Test Point
		1.490 V	PASS	Hi3516A	C108
VDDIO	1.425V~ 1.575V	1.488 V	PASS	DDR1	C135
		1.489 V	PASS	DDR2	C134

■ Clock0 Signal Integrity Test Result

Parameter	Spec(Min)	Spec(Max)	Measurement data(Min)	Measurement data(Max)	Unit	Result
Vix	-150	150	-67.33	90.94	mV	PASS
tCK(avg)	1.64	1.8	1.6827	1.6842	Ns	PASS
tCH(avg)	470	530	511.80	513.27	mtCK(avg)	PASS
tCL(avg)	470	530	486.73	488.20	mtCK(avg)	PASS
tJIT(per)	-85	85	-82.57	79.38	ps	Marginal value The margin of the timing windows is sufficient, and no exception occurs in the reliability test. Risks are controllable.
tJIT(cc)	cc) -170 170		-79.58	79.43	ps	PASS

■ CLK0 With Differential Measurement

■CLK0 Vix With High Voltage Trigger

■ Clock1 Signal Integrity Test Result

Parameter	Spec(Min)	Spec(Max)	Measurement data(Min)	Measurement data(Max)	Unit	Result
Vix	-150	150	-75.33	138	mV	PASS
tCK(avg)	1.64	1.8	1.6829	1.6842	ns	PASS
tCH(avg)	470	530	478.34	480.33	mtCK(avg)	PASS
tCL(avg)	470	530	519.63	521.66	mtCK(avg)	PASS
tJIT(per)	-85	85	-76.23	75.07	ps	PASS
tJIT(cc)	-170	170	-79.25	78.48	ps	PASS

■ CLK1 With Differential Measurement

■ CLK1 Vix With High Voltage Trigger

SPEC

Table 70 — ADD/CMD Setup and Hold Base-Values for 1V/ns

Symbol	Reference	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	DDR3-2133	Units
tIS(base) AC175	V _{IH/L(ac)}	200	125	65	45	-	-	ps
tIS(base) AC150	V _{IH/L(ac)}	350	275	190	170	-	-	ps
tIS(base) AC135	V _{IH/L(ac)}	-	-	-	-	65	60	ps
tIS(base) AC125	V _{IH/L(ac)}	-	-	-	-	150	135	ps
tIH(base) DC100	V _{IH/L(dc)}	275	200	140	120	100	95	ps

∆tIS, ∆tIH derating in [ps] AC/DC based Alternate AC150 Threshold -> VIH(ac)=VREF(dc)+150mV, VIL(ac)=VREF(dc)-150mV CK,CK# Differential Slew Rate 4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns ∆tIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH **ΔtIS** ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS 75 84 2.0 91 50 75 50 75 50 83 58 66 99 74 107 115 100 1.5 50 34 50 34 34 50 74 58 82 90 84 50 58 42 66 68 1.0 0 0 24 34 50 0 0 0 0 8 8 16 16 24 40 CMD/ 0.9-4 0 0 -4 0 -4 8 4 16 12 24 20 32 30 46 ADD 0.8Slew 0 -10 0 -10 0 -108 -2 16 6 24 14 32 24 40 40 rate 0.7 8 18 34 0 -16 0 -16 0 -16 -8 16 0 24 32 40 V/ns 0.6-1 -26 -1 -26 -1 -26 7 -18 15 -10 23 -2 31 8 39 24 0.5-10-40-40 -10 -2 -32 -24 14 -16 22 -6 30 10 -10 0.4-25 -60 -25 -60 -25 -60 -17 -52 -9 -44 -1 -36 7 -26 15 -10

■ 1T Command Signal Integrity Test Result

CMD /ADD	Input SetupTime (tIS)@AC150 tIS(min)	Input Hold Time (tIH)@DC100 tIH(min)	Units	Remaik
Spec	265	190	ps	
CLK0_CS0N	798.99	609.97	ps	PASS
CLK0_ODT0	871.24	635.77	ps	PASS
CLK0_CKE	761.09	693.22	ps	PASS
CLK1_CS1N	801.34	587.02	ps	PASS
CLK1_ODT1	784.91	635.06	ps	PASS
CLK1_CKE	791.11	647.22	ps	PASS

1T_CSN Wave

CLK0_CS

CLK1_CS

■ 1T_ODT Wave

CLK0_ODT

CLK1_ODT

■ 1T_CKE Wave

CLK0_CKE

CLK1_CKE

■ 2T_A7 Wave

■ 2T_CAS Wave

■ SPEC

Table 76 — Data Setup and Hold Base-Values

Symbol	Reference	DDR3- 800	DDR3- 1066	DDR3- 1333	DDR3- 1600	DDR3- 1866	DDR3- 2133	Units	Notes
tDS(base) AC175	V _{IH/L(ac)} SR=1V/ns	75	25	-	-	-	-	ps	2
tDS(base) AC150	V _{IH/L(ac)} SR=1V/ns	125	75	30	10	-	-	ps	2
tDS(base) AC135	V _{IH/L(ac)} SR=1V/ns	165	115	60	40			ps	2, 3
tDS(base) AC135	V _{IH/L(ac)} SR=2V/ns	-	-	-	-	68	53	ps	1
tDH(base) DC100	V _{IH/L(dc)} SR=1V/ns	150	100	65	45	-	-	ps	2
tDH(base)DC100	V _{IH/L(dc)} SR=2V/ns					70	55	ps	1

NOTE 1. (ac/dc referenced for 2V/ns DQ-slew rate and 4V/ns DQS slew rate)

NOTE 2. (ac/dc referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate)

NOTE 3. Optional in DDR3 SDRAM

Table 78 — Derating values for DDR3-800/1066/1333/1600 tDS/tDH - (AC150)Derating

						ΔtDS,	∆DH dei	rating i	n [ps] A	C/DC	based ¹						
							DÇ	s, DQS	s# Diffe	rential !	Slew Ra	te					
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4	V/ns	1.2	V/ns	1.0	V/ns
		ΔtDS	ΔtDH	ΔtDS	∆tDH	ΔtDS	ΔtDH	ΔtDS	ΔtDH	ΔtDS	ΔtDH	ΔtDS	ΔtDH	ΔtDS	ΔtDH	ΔtDS	ΔtDH
	2.0	75	50	75	50	75	50	-	-	-	-	-	-	-	-	-	-
	1.5	50	34	50	34	50	34	58	42	-	-	-	-	-	-	-	-
	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
DQ	0.9	-	-	0	-4	0	-4	8	4	16	12	24	20	-	-	-	-
Slew rate	0.8	-	-	-	-	0	-10	8	-2	16	6	24	14	32	24	-	-
V/ns	0.7	-	-	-	-	-	-	8	-8	16	0	24	8	32	18	40	34
	0.6	-	-	-	-	-	-	-	-	15	-10	23	-2	31	8	39	24
	0.5	-	-	-	-	-	-	-	-	-	-	14	-16	22	-6	30	10
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	7	-26	15	-10

NOTE 1. Cell contents shaded in red are defined as 'not supported'.

Data Signal Integrity Test Result

	P	'arameter	Spec	DQ3	DQ10	DQ22	DQ28	Unit	Result
Data	Write	Input Setup- Time(tDS)@AC150 [tDS(base)=30ps]	min:105	273.71	290.84	248.22	226.51	ps	PASS
		Input Hold- Time(tDH)@DC100 [tDH(base)=65ps]	min:115	279.22	291.51	319.94	321.60	ps	PASS

DQ3_write

■ DQ10_write

■ DQ22_write

■ DQ28_write

DDR Training Window

■ DDR Training-write window

)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	HEX_VALUE	DQp	hDQ	WI
	X																														Х	Χ	0x3ffffffe	11	15	29
	Χ	Χ																															Oxfffffffc	11	17	30
	Χ	Χ	Χ																													Χ	0x7ffffff8	11	17	28
	Х	Χ	Χ																													X	0x7ffffff8	11	17	28
	X	Χ	Χ																												Х	X	0x3ffffff8	11	16	27
	Х	Χ																													Х	X	0x3ffffffc	11	16	- 28
	Х																															X	0x7ffffffe	11	16	30
	Χ	Χ	Χ																													Χ	0x7ffffff8	11	17	- 28
	Χ	Χ	Χ	X	Χ	Х																											OxffffffcO	10	19	- 26
	Χ	Χ	Χ	X	Χ	Χ																											OxffffffcO	10	19	- 26
	Χ	Χ	Χ	Х	Χ	Х	Х																										Oxffffff80	10	19	2!
	Χ	Χ	Χ	Х	Χ	Х																											OxffffffcO	10	19	21
	Х	Χ	Χ	Х	Х	Х																											0xffffffc0	10	19	2
	Χ	Х	Χ	Х	Χ	Х																											0xffffffc0	10	19	2
	Χ	Χ	Χ	Х	Χ																												0xffffffe0	10	18	2
	Χ	Χ	Χ	Х	Χ																												0xffffffe0	10	18	2
	Х	Χ																															Oxfffffffc	11	17	31
	Χ	Χ	Χ	Х	Χ																												0xffffffe0	11	18	2
	Х	Χ	Χ																														0xfffffff8	11	17	2
	Χ	Х	Χ	Х																													OxfffffffO	11	18	2
	Х	Χ	Х																														0xfffffff8	11	17	2
	Х	Χ	Χ																														0xfffffff8	11	17	2
	Х	Χ	Χ																														0xfffffff8	11	17	2
	Х	Χ																															Oxfffffffc	11	17	3
	Χ	Χ	Χ																													Х	0x7ffffff8	11	17	2
	Χ	Χ																															Oxfffffffc	11	17	3
	Х																															Х	0x7ffffffe	11	16	31
	Х	Х	Х																														Oxfffffff8	11	17	2
	Х	Х																															Oxfffffffc	11	17	3
	Х	Х																														Х	0x7ffffffc	11	16	2
	X	Х																														_	Oxfffffffc	11	17	3
	X	У																															Oxfffffffc		17	3

DDR Training Window

■ DDR Training-read window

Boot	: T	rai	nin	ıg 1	res	ult	.Tì	he	re	ad	win	dow	of	pr	ebi	t-d	esk	ew																			
 DQ	0	 1	 2	 3	 4	 5		 6	 7	 8	 9	10	11	12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	26	27	28	29	30	31	HEX_VALUE	DOS	DQ	WIN
o^								_																				Х	Х	Х	Х	Х	Х	Ox3ffffff	27	13	26
1								_																						Х	Х	Х	Х	Oxfffffff	27	14	28
2																															Х	Х	Х	Ox1fffffff	27	14	29
3	Х																																Х	0x7ffffffe	27	16	30
4																														Х	Х	Х	Х	Oxfffffff	27	14	28
5																													Х	Х	Х	Х	Х	0x7ffffff	27	13	27
6																													Х	Х	Х	Х	Х	0x7ffffff	27	13	27
7																															Х	Х	Х	Ox1fffffff	27	14	29
8								_																					Х	Х	Х	Х	X	0x7ffffff	29	13	27
9																											Х	Х	Х	Х	Х	Х	Х	0x1ffffff	29	12	25
10																														Х	Х	Х	Х	Oxfffffff	29	14	28
11																											Х	Х	Х	Х	Х	Х	Х	Ox1ffffff	29	12	25
12																											Х	Х	Х	Х	Х	Х	Х	Ox1ffffff	29	12	25
13																											Х	Х	Х	Х	Х	Х	Х	Ox1ffffff	29	12	25
14																												Х	Х	Х	Х	Х	Х	Ox3ffffff	29	13	26
15																											Х	Х	Х	Х	Х	Х	Х	0x1ffffff	29	12	25
16								_																					Х	Х	Х	Х	Х	0x7ffffff	27	13	27
17																														Х	Х	Х	Х	Oxfffffff	27	14	28
18																															Х	Х	Х	Ox1fffffff	27	14	29
19																																		Oxffffffff	27	16	32
20																													Х	Х	Х	Х	Х	0x7ffffff	27	13	27
21																													Х	Х	Х	Х	Х	0x7ffffff	27	13	27
22																															Х	Х	X	Ox1fffffff	27	14	29
23								_																							Х	Х	X	Ox1fffffff	27	14	29
24								_																			Х	Х	Х	Х	X	Х	X	Ox1ffffff	28	12	25
25																													Х	X	X	Х	X	0x7ffffff	28	13	27
26																											Х	Х	Х	Х	Х	Х	X	Ox1ffffff	28	12	25
27																													Х	X	X	Х	X	0x7ffffff	28	13	27
28																															Х	Х	Х	Ox1fffffff	28	14	29
29																														Х	Х	Х	X	Oxfffffff	28	14	28
30																															Х	Х	X	Ox1fffffff	28	14	29
31								_																							Х	Х	X	Ox1fffffff	28	14	29

Thank you