

SSIAP 1

Manuel de formation - Agent de sécurité incendie

FORMATION INITIALE / NIVEAU 1

- Le feu et ses conséquences
- LA SÉCURITÉ INCENDIE
- LES INSTALLATIONS TECHNIQUES
- Le rôle et les missions des agents de sécurité incendie
- LA CONCRÉTISATION DES ACQUIS

SSIAP 1

MANUEL DE FORMATION - AGENT DE SÉCURITÉ INCENDIE

Encadré par la loi et doté de programmes conçus pour apporter aux candidats les bases indispensables à l'exercice de leurs futures responsabilités au sein d'un *service de sécurité incendie et d'assistance à personnes*, le diplôme d'agent de sécurité incendie appelle une formation exigeante.

Commun à tous les organismes de formation, l'examen final ne sera réussi qu'à la condition d'avoir été rigoureusement préparé car il porte sur un ensemble de connaissances techniques, pratiques et juridiques.

Dans ce but, le présent manuel – strictement conforme à l'arrêté de référence du 2 mai 2005 – est composé de cinq parties distinctes :

- 1. Le feu et ses conséquences
- 2. La sécurité incendie
- 3. Les installations techniques
- 4. Le rôle et les missions des agents de sécurité incendie
- 5. La concrétisation des acquis

On y trouvera, détaillées étape après étape, toutes les connaissances requises par le programme. Elles sont présentées pour être bien comprises et, pour être efficacement assimilées, elles sont accompagnées de nombreux documents complémentaires librement téléchargeables (fiches d'application, fiches de synthèse, QCM, etc.)

Ce matériel d'étude permettra aux stagiaires autant qu'à leurs formateurs de disposer de tout ce dont ils auront besoin pour préparer avec succès cet examen.

Illustré de photos et de schémas en couleurs volontairement très pédagogiques, ce manuel est conçu comme un guide de référence que pourront également utiliser les professionnels dans le cadre de leur recyclage, remise à niveau ou module complémentaire.

Sapeur-pompier professionnel exerçant au sein du SDIS du Nord, Olivier DECUYPERE est également formateur. Pour concevoir et rédiger cet ouvrage de référence, il s'est adjoint le concours de Romuald AVENEL, responsable du pôle Résistance au feu du CSTB.

Les ouvrages de la **collection « Objectif Réussite »** sont destinés à la préparation et à l'obtention des qualifications professionnelles et des diplômes des secteurs du bâtiment et de la prévention incendie. Pédagogiques et très illustrés, ils offrent aux candidats les moyens d'une préparation sans faille qui leur garantira sérénité et succès le jour des épreuves et des examens.

Manuel de formation Agent de sécurité incendie SSIAP niveau 1

Établissement public au service de l'innovation dans le bâtiment, le CSTB, Centre Scientifique et Technique du Bâtiment, exerce quatre activités clés : la recherche, l'expertise, l'évaluation, et la diffusion des connaissances, organisées pour répondre aux enjeux de la transition écologique et énergétique dans le monde de la construction. Son champ de compétences couvre les produits de construction, les bâtiments et leur intégration dans les quartiers et les villes.

Avec plus de 900 collaborateurs, ses filiales et ses réseaux de partenaires nationaux, européens et internationaux, le groupe CSTB est au service de l'ensemble des parties prenantes de la construction pour faire progresser la qualité et la sécurité des bâtiments.

Éditions Eyrolles 61, boulevard Saint-Germain 75240 Paris Cedex 05 www.editions-eyrolles.com

Le présent guide ne se substitue en aucun cas aux textes de référence, qu'ils soient réglementaires (lois, décrets, arrêtés...), normatifs (normes, DTU ou règles de calcul) ou codificatifs (Avis Techniques, « CPT »...) qui doivent être consultés.

Le CSTB décline toute responsabilité quant aux conséquences directes ou indirectes de toute nature qui pourraient résulter de toute interprétation erronée du contenu du présent guide.

Toute reproduction ou représentation intégrale ou partielle, par quelque procédé que ce soit, des pages publiées dans le présent ouvrage, faite sans l'autorisation de l'éditeur ou du Centre Français d'Exploitation du droit de copie (3, rue Hautefeuille, 75006 Paris), est illicite et constitue une contrefaçon. Seules sont autorisées, d'une part, les reproductions strictement réservées à l'usage du copiste et non destinées à une utilisation collective et, d'autre part, les analyses et courtes citations justifiées par le caractère scientifique ou d'information de l'œuvre dans laquelle elles sont incorporées (Loi du 1er juillet 1992 - art. L 122-4 et L 122-5 et Code Pénal art. 425).

 $\ensuremath{\mathbb{C}}$ CSTB octobre 2016 et Groupe Eyrolles 2017

ISBN CSTB: 978-2-86891-659-4

ISBN Eurolles: 978-2-212-11870-4

OBJECTIF RÉUSSITE

SSIAP 1

Manuel de formation - Agent de sécurité incendie

FORMATION INITIALE / NIVEAU 1

- **♦ L**E FEU ET SES CONSÉQUENCES
- **♦ L**A SÉCURITÉ INCENDIE
- **♦ Les installations techniques**
- ◆ Le rôle et les missions des agents de sécurité incendie
- **♦ L**A CONCRÉTISATION DES ACQUIS

OLIVIER DECUYPÈRE

(Decuypère Prévention Incendie)

ROMUALD AVENEL (CSTB)

Couverture: © Fotolia

Illustrations: Jean-Marc LAUBY

TÉLÉCHARGEMENT DES COMPLÉMENTS NUMÉRIQUES ACTIVATION DU SERVICE – MODE D'EMPLOI

Afin d'activer ce service, vous devez être en possession du présent guide.

- Connectez-vous à www.batipedia.com/activation-guides ;
- Identifiez-vous (si vous possédez déjà un compte sur Batipedia) ou créez votre compte ;
- Sélectionnez le guide « Objectif Réussite SSIAP 1 » ;
- Répondez, à l'aide de votre guide, aux deux questions posées.

Vous recevrez alors un mail de confirmation pour l'accès gratuit aux documents. Vous pourrez retrouver ces documents à tout moment en vous connectant sur www.batipedia.com, rubrique « Téléchargez » puis « Ressources complémentaires », puis quide « Objectif Réussite – SSIAP 1 ».

Mode d'emploi du manuel

1. Contenu

Ce manuel traite de l'ensemble du programme de la formation en vue de la qualification « agent de sécurité incendie SSIAP 1 », tel que défini dans les annexes de l'arrêté ministériel de référence du 2 mai 2005 modifié.

Son étude, séquence par séquence ou en abordant les chapitres dans l'ordre de la formation suivie, permet une bonne préparation à l'examen.

L'ouvrage comprend un certain nombre d'illustrations et comporte plusieurs sortes de fiches.

Sur Batipedia, il est possible de télécharger l'arrêté de référence qu'il est conseillé de lire attentivement.

Ce texte définit, entre autre, les missions de l'agent de sécurité incendie et présente les deux autres niveaux de formation, « chef d'équipe » (SSIAP 2) et « chef de service » (SSIAP 3).

Sur Batipedia, on retrouve une version numérisée accompagnée d'une série d'exercices et de fiches d'application en rapport avec la séquence.

De plus, pour aider le stagiaire, un module d'évaluation personnelle est proposé afin de permettre son autoévaluation. Il comprend un questionnaire à choix multiple qui couvre un certain nombre de questions en rapport avec l'examen et une ronde virtuelle avec une demande de résolution d'anomalies.

2. Articulation

Le manuel suivant intègre toutes les séquences pédagogiques dans l'ordre du programme établi.

Chacune d'elle, organisée en fiches comporte l'objectif intermédiaire, l'articulation de la séquence, un sommaire, un contenu et les points essentiels de la séquence.

De la même manière, le contenu répartit l'ensemble du savoir avec des définitions à connaître par cœur.

Enfin, le résumé, qui prend le nom de « Les points essentiels de la séquence » conclut sur la séquence et permet au formateur de se situer dans la formation.

3. Compléments numériques

Téléchargez gratuitement des QCM, une ronde virtuelle, des fiches de révision etc. et consultez les à tout moment. Votre guide vous permet d'apprendre et de vous tester en ligne. Les compléments numériques en ligne sont adaptés au formateur et au stagiaire pour une révision sur tablette ou smartphone.

Vous bénéficiez ainsi de compléments faciles d'accès et de la possibilité d'effectuer des «copier/coller» (mode d'emploi : voir encadré en p. 4).

D'autre part, après inscription gratuite sur Batipedia, le site incontournable des professionnels de la construction, pour chercher, consulter, comprendre et suivre en temps réel le référentiel technique et réglementaire de la construction, vous pourrez :

- utiliser nos outils de recherche et identifier immédiatement le ou les texte(s) susceptible(s) de répondre à vos questions;
- accéder à la notice descriptive de tous les documents et aux Avis Techniques en vigueur;
- suivre en temps réel l'actualité et vous abonner à la newsletter;
- télécharger de nombreux documents et dossiers ;
- consulter les rubriques Questions/Réponses.

Les unités de mesure

En physique, l'unité de mesure est la matérialisation d'une grandeur physique donnée dont on connaît la valeur avec exactitude.

On appelle « grandeur physique » toute propriété d'un élément naturel ou artificiel qui peut être mesurée ou calculée, et dont les différentes valeurs possibles s'expriment à l'aide d'un nombre.

Le Système international d'unités (SI) comporte 7 unités de base. Toutes les autres unités sont dérivées de ces unités de base.

1. Principe et symboles des noms d'unité

Par convention, les noms d'unités sont des noms communs qui s'écrivent en minuscules, même s'ils dérivent de noms propres des inventeurs. Ces noms d'unité prennent la marque du pluriel (exemple : un volt, trois volts).

2. Unités de base du Système international d'unités

Tableau 1: Grandeurs physiques de base du SI avec leurs dimensions, unités et symboles

Grandeur Physique	Symbole de la dimension	Nom de l'unité	Symbole de l'unité	Description
Longueur	L	mètre	m	Le mètre est la distance d'un trajet parcouru reconnu
Masse	М	kilogramme	kg	Le kilogramme est l'unité de masse
Temps	Т	seconde	S	La seconde est l'unité de la durée
Courant électrique	I	ampère	А	L'ampère est l'intensité d'un courant constant
Température thermodynamique	Ф	kelvin	К	Le kelvin est l'unité de température thermodynamique
Quantité de matière	N	mole	mol	La mole est la quantité de matière d'un système
Intensité lumineuse	J	candela	cd	La candela est l'intensité lumineuse, dans une direction donnée

3. Unités dérivées du Système international d'unités

Tableau 2 : Grandeurs physiques dérivées du SI avec leurs dimensions, unités et symboles

Grandeur physique	Nom de l'unité	Symbole de l'unité	Expression	Relation
Fréquence	hertz	Hz	S ⁻¹	Fréquence = 1 / période
Force	newton	N	kg⋅m⋅s ⁻²	Force = masse × accélération
Pression	pascal	Pa	N ⋅ m ⁻²	Pression = force / surface
Quantité de chaleur	joule	J	N⋅m	Travail = force × distance
Puissance	watt	W	J · s ⁻¹	Puissance = travail / temps
Résistance électrique	ohm	Ω	V · A-1	Résistance = tension / courant
Angle solide	stéradian	sr		
Flux lumineux	lumen	lm	cd · sr	Flux lumineux = intensité lumineuse x angle
Éclairement lumineux	lux	lx	cd⋅sr⋅m ⁻²	Éclairement lumineux = intensité lumineuse x angle / superficie
Superficie	mètre carré		m²	Superficie = longueur x longueur
Volume	mètre cube		m³	Volume = longueur x longueur x longueur
Vitesse	mètre par seconde		m ⋅ s ⁻¹	Vitesse = longueur x temps
Masse volumique	kilogramme par mètre cube		kg ⋅ m ⁻³	Masse volumique = masse / volume
Flux thermique	watt par mètre carré		W ⋅ m ⁻²	Flux thermique = puissance / superficie

ATTENTION

Ne pas confondre la quantité de matière qui s'exprime en moles et la force en newtons.

4. Multiples et sous-multiples

Afin de rendre les valeurs lisibles, il existe des multiples que l'on peut ajouter aux unités de mesures en préfixes du système international d'unités.

Tableau 3 : Multiples et sous-multiples

10 ^N	Nom préfixé	Symbole	Nombre en français	Nombre en simple unité
10 ⁹	giga	G	milliard	1 000 000 000
10 ⁶	méga	М	million	1 000 000
10 ³	kilo	k	mille	1 000
10 ²	hecto	h	cent	100
10¹	déca	da	dix	10
10°	un	ité	un	1
10-1	déci	d	dixième	O,1
10-2	centi	С	centième	0,01
10-3	milli	m	millième 0,001	
10-6	micro	μ	millionième	0,000 001
10-9	nano	n	milliardième	0,000 000 001

Quelques exemples de multiples et sous-multiples :

- Décamètre: 1 dam = 10 m (cette unité est adaptée au calcul de la superficie d'un terrain).
- **Kilonewton :** 1 kN = 1 000 N (c'est l'unité la plus fréquemment utilisée pour mesurer la force d'un engin qu'il exerce sur un espace donné. Cette dernière est appelée également le poids).
- Tonne: 1 T = 1 000 kg (c'est le multiple du kilogramme le plus fréquemment utilisé pour mesurer la masse d'un engin).
- Centimètre: 1 cm = 0,01 m (le centimètre est une des unités de base d'un système métrique).
- **Millimètre :** 1 mm = 1×10-3 m = 0,001 m (la représentation graphique manuelle la plus précise qui nécessite donc l'utilisation de papier millimétré).

Principales abréviations

Sigles	Signification
AES	Alimentation électrique de sécurité
AFFF	Agent formant film flottant
ANTARES	Adaptation nationale des transmissions aux risques et aux secours (réseau)
APS	Alimentation pneumatique de sécurité
BAAS	Bloc autonome d'alarme sonore
BAES	Bloc autonome d'éclairage de sécurité
BAPI	Bloc autonome portable d'intervention
BI	Bouche d'incendie
BPN	Bloc primaire numérique
CAA	Centre à autonomie d'acheminement
ССН	Code de la construction et de l'habitation
CMSI	Centralisateur de mise en sécurité incendie
cos	Commandant des opérations de secours
DAC	Dispositif adaptateur de commande
DAD	Détecteur autonome déclencheur
DAI	Détecteur automatique d'incendie
DAS	Dispositif actionné de sécurité
DCM	Dispositif de commande manuelle
DCMR	Dispositif de commandes manuelles regroupées
DCS	Dispositif de commande avec signalisation
DL	Diffuseur lumineux
DM	Déclencheur manuel
DMA	Déclencheur manuel d'alarme
DS	Diffuseur sonore
EA	Équipement d'alarme
EAE	Équipement d'alimentation électrique
EAES	Équipement d'alimentation en énergie de sécurité
ECS	Équipement de contrôle et de signalisation
ERP	Établissement recevant du public
FC	Fluorocarbures
GMTG	Groupes moteurs thermiques générateurs
HFC	Hydrofluorocarbures
IA	Indicateur d'action
IFEA	Installation fixe d'extinction automatique
IGH	Immeuble de grande hauteur
ITGH	Immeuble de très grande hauteur

Sigles	Signification
LSC	Luminaire sur source centralisée
PCSI	Poste central de sécurité incendie
PEMP	Plates-formes élévatrices mobiles de personnes
PI	Poteaux d'incendie
PIA	Poste d'incendie additivé
PS	Poste de sécurité
RIA	Robinet d'incendie armé
RTC	Réseau téléphonique commuté
RTCP	Réseau téléphonique commuté public
SAIP	Système d'alerte et d'information des populations
SAMU	Service d'aide médicale urgente
SDAI	Système de détection et d'alarme incendie
SDI	Système de détection incendie
SMSI	Système de mise en sécurité incendie
SSI	Système de sécurité incendie
SST	Sauveteur secouriste du travail
TGBT	Tableaux généraux basse tension
TS	Tableau d'alarme et de signalisation
UAE	Unité d'aide à l'exploitation
UCMC	Unité de commandes manuelles centralisées
UGA	Unité de gestion d'alarme
UGCIS	Unité de gestion centralisée des issues de secours
UP	Unité de passage
US	Unité de signalisation
ZA	Zone d'alarme
ZD	Zone de détection
zs	Zone de sécurité

Sommaire

Mode d'emploi du manuel		Séquence 3
Les unités de mesure		Déroulé péda
Principales abréviations		Fiche 1: la de
Fillicipales abreviations	9	Fiche 2 : la v
PARTIE 1: LE FEU ET SES CONSÉQUENCES	1E	Fiche 3 : la v
Séquence 1 : le feu		Fiche 4 : les
Déroulé pédagogique de la séquence		Fiche 5 : les
Fiche 1: l'incendie		Fiche 6 : l'isc
Fiche 2 : la combustion		le volume de
Fiche 3: le triangle du feu		Les points es
Fich 5 to a combustibles		Séquence 4
Fiche 5: le comburant		des risques.
Fiche 6: l'énergie d'activation		Déroulé péda
Fiche 7 : classes de feu		Fiche 1: la di
Fiche 8: les agents extincteurs		Fiche 2 : le c
Fiche 9 : la fumée et ses dangers		Fiche 3 : le c
Fiche 10 : la propagation du feu		Fiche 4 : le c
Fiche 11 : les procédés d'extinction		Fiche 5 : le c
Les points essentiels de la séquence		Fiche 6 : le c
Séquence 2 : comportement au feu		Fiche 7: le c
Déroulé pédagogique de la séquence	41	Fiche 8 : le c
Fiche 1: la réaction au feu des matériaux		Les points es
d'aménagement	42	Séquence 5
Fiche 2 : la résistance au feu des éléments		et des occup
de construction	44	Déroulé péda
Fiche 3 : la charge calorifique d'un feu	49	Fiche 1: les o
Fiche 4: le comportement au feu des produits,		Fiche 2 : les
éléments et matériaux de construction	50	Fiche 3 : les
Les points essentiels de la séquence	52	Fiche 4 : les
PARTIE 2 : LA SÉCURITÉ INCENDIE	E2	Fiche 5 : la c
	55	en lien avec
Séquence 1 : principe de classement des établissements	FF	Fiche 6 : la g
		Fiche 7: l'éq
Déroulé pédagogique de la séquence		Fiche 8 : les
Fiche 1: le cadre juridique	56	à l'évacuation
Fiche 2 : la réglementation relative		de handicap
à la sécurite incendie des bâtiments	5/	Les points es
Fiche 3 : la définition d'un établissement		Séquence 6
recevant du public (ERP)	59	Déroulé péda
Fiche 4 : la définition d'un immeuble		Fiche 1: le de
de grande hauteur (IGH)	62	Fiche 2 : le d
Les points essentiels de la séquence	64	Fiche 3 : le d
Séquence 2 : fondamentaux		Fiche 4 : les
et principes généraux de sécurité incendie		dans les loca
Déroulé pédagogique de la séquence	67	Fiche 5 : les
Fiche 1: les principes fondamentaux		dans les dég
de sécurité en ERP	68	Fiche 6 : les
Fiche 2: les principes fondamentaux		dans les IGH
de sécurité en IGH		Les points es
Les points essentiels de la séquence	73	_00 points 00

Séquence 3 : desserte des bâtiments	
Déroulé pédagogique de la séquence	
Fiche 1: la desserte des bâtiments	
Fiche 2: la voie « engins »	78
Fiche 3: la voie « échelles »	80
Fiche 4: les espaces libres	82
Fiche 5: les façades et baies accessibles	83
Fiche 6: l'isolement du voisinage,	
le volume de protection	84
Les points essentiels de la séquence	85
Séquence 4 : cloisonnement d'isolation	
des risques	87
Déroulé pédagogique de la séquence	
Fiche 1: la distribution intérieure des bâtiments	88
Fiche 2: le cloisonnement traditionnel	89
Fiche 3: le cloisonnement en secteurs	
Fiche 4: le compartimentage	
Fiche 5: le cas particulier des ERP de type U	
Fiche 6: le cas particulier des ERP de type J	96
Fiche 7: le cas particuliers des IGH	98
Fiche 8 : le classement des locaux	
Les points essentiels de la séquence	
Séquence 5 : évacuation du public	
et des occupants	103
Déroulé pédagogique de la séquence	103
Fiche 1: les dégagements	
Fiche 2: les portes	111
Fiche 3: les escaliers	115
Fiche 4: les espaces d'attente sécurisés (EAS)	117
Fiche 5: la conception et l'exploitation	
en lien avec les difficultés d'évacuation	120
Fiche 6 : la gestion de l'évacuation	121
Fiche 7: l'équipe d'évacuation	
Fiche 8 : les dispositions particulières destinées	
à l'évacuation des personnes en situation	
de handicap	126
Les points essentiels de la séquence	128
Séquence 6 : désenfumage	129
Déroulé pédagogique de la séquence	129
Fiche 1: le désenfumage	130
Fiche 2 : le désenfumage naturel	133
Fiche 3 : le désenfumage mécanique	135
Fiche 4 : les solutions de désenfumage	
dans les locaux	137
Fiche 5 : les solutions de désenfumage	
dans les dégagements	140
Fiche 6 : les solutions de désenfumage	
dans les IGH	
Les points essentiels de la séquence	151

Séquence 7 : éclairage de sécurité	153	Séquence 4 : colonnes sèches et humides	233
Déroulé pédagogique de la séquence	153	Déroulé pédagogique de la séquence	
Fiche 1 : l'éclairage	154	Fiche 1: les colonnes sèches	234
Fiche 2 : l'éclairage de sécurité	155	Fiche 2: les colonnes humides ou en charge	237
Fiche 3 : la signalisation de sécurité	158	Les points essentiels de la séquence	. 240
es points essentiels de la séquence	159	Séquence 5 : système de sécurité incendie	241
Séquence 8 : présentation des différents		Déroulé pédagogique de la séquence	241
moyens de secours	161	Fiche 1: le système de sécurité incendie (SSI)	. 242
Déroulé pédagogique de la séquence	161	Fiche 2 : le système de détection incendie	. 246
Fiche 1: les moyens de secours	162	Fiche 3 : le système de mise	
Fiche 2: les moyens d'extinction	163	en sécurité incendie (SMSI)	. 254
Fiche 3 : les moyens visant à faciliter l'action		Fiche 4: les niveaux d'accès aux fonctions du SSI.	
des sapeurs-pompiers	178	Fiche 5 : les zones	
Fiche 4 : le système de sécurité incendie (SSI)		Fiche 6 : les équipements d'alarme	. 268
Fiche 5 : le système d'alerte		Fiche 7 : les exigences de la réglementation	
Fiche 6 : le service de sécurité incendie		Les points essentiels de la séquence	
Les points essentiels de la séquence			
		PARTIE 4 : RÔLE ET MISSIONS DES AGENTS	070
PARTIE 3: INSTALLATIONS TECHNIQUES		DE SÉCURITÉ INCENDIE	
Séquence 1 : installations électriques		Séquence 1 : service de sécurité	
Déroulé pédagogique de la séquence		Déroulé pédagogique de la séquence	
Fiche 1: les installations électriques	194	Fiche 1: le cadre de référence	276
Fiche 2 : les différents types de sources		Fiche 2 : la qualification de l'agent	
électriques de sécurité		de service de sécurité incendie	
Fiche 3: les conducteurs électriques		Fiche 3 : l'agrément des centres de formation	. 282
Fiche 4: les dispositifs de coupure d'urgence	200	Fiche 4 : l'emploi de l'agent de service	
Fiche 5: habilitation des intervenants		de sécurité incendie et d'assistance à personnes	. 284
en électricité	202	Fiche 5 : les missions du service de sécurité	. 290
Fiche 6 : les vérifications techniques		Fiche 6 : le service de sécurité en ERP	
des installations électriques	204	Fiche 7: le service de sécurité en IGH	. 294
Les points essentiels de la séquence	205	Les points essentiels de la séquence	. 295
Séquence 2 : ascenseurs et nacelles	207	Séquence 2 : présentation des consignes	
Déroulé pédagogique de la séquence	207	de sécurité et main courante	297
Fiche 1: les ascenseurs	208	Déroulé pédagogique de la séquence	297
Fiche 2 : les escaliers mécaniques		Fiche 1: les consignes et les plans	. 298
et trottoirs roulants	214	Fiche 2 : les différents écrits en sécurité incendie	. 303
Fiche 3 : les nacelles	216	Fiche 3: le registre de main courante	. 304
Fiche 4 : les règles de sécurité pour		Fiche 4: le compte rendu succinct	. 305
oute intervention sur ascenseur et nacelle	218	Fiche 5 : le rapport	307
es points essentiels de la séquence		Les points essentiels de la séquence	
Séquence 3 : installations fixes		Séquence 3 : poste de sécurité	313
d'extinction automatique	221	Déroulé pédagogique de la séquence	
Déroulé pédagogique de la séquence	221	Fiche 1 : le poste de sécurité	
Fiche 1: les installations fixes d'extinction		Fiche 2 : conception du poste de sécurité	
automatique	222	Fiche 3: les documents consultables	
Fiche 2 : le principe de fonctionnement		au poste de sécurité	319
de l'extinction automatique à eau	223	Fiche 4 : le personnel dans le poste de sécurité	
Fiche 3 : les éléments constitutifs	220	Les points essentiels de la séquence	
de l'extinction automatique à eau	224	Séquence 4 : rondes de sécurité et	020
Fiche 4 : les différents types d'installation		surveillance des travaux	325
d'extinction automatique à eau	227	Déroulé pédagogique de la séquence	
Fiche 5 : l'entretien et la vérification		Fiche 1: les rondes	
de l'extinction automatique à eau	228	Fiche 2 : les modalités de réalisation des rondes	
Les points essentiels de la séquence		Fiche 3 : le contrôle des rondes	
Les points essentiels de la sequence	230	et les renseignements sur la main courante	320
		CLICS ICHSCIQUEINCHIS SULIA MAIN COULAINE	. UZ I

Fiche 4 : la conduite de l'agent de sécurité	
incendie durant sa ronde	. 330
Fiche 5 : les moyens de liaison du service	
de sécurité incendie	332
Fiche 6: les travaux dangereux	334
Fiche 7: le permis de feu	335
Les points essentiels de la séquence	337
Séquence 5 : mise en œuvre	
des moyens d'extinction	339
Déroulé pédagogique de la séquence	339
Fiche 1: l'extincteur	. 340
Fiche 2: le robinet d'incendie armé (ria)	349
Les points essentiels de la séquence	. 356
Séquence 6 : appel et réception des	
services publics de secours	357
Déroulé pédagogique de la séquence	
Fiche 1: l'installation téléphonique	. 358
Fiche 2: l'alerte	. 360
Fiche 3 : les systèmes d'alerte	. 362
Fiche 4 : les actions à mener durant l'arrivée	
des secours	
Les points essentiels de la séquence	
Séquence 7 : sensibilisation des occupants	. 365
Déroulé pédagogique de la séquence	. 365
Fiche 1: la sensibilisation sur les mesures	
de sécurité	. 366
Fiche 2: les grands principes de	
prévention incendie du bâtiment	. 369
Fiche 3: les grands principes de communication	371
Les points essentiels de la séquence	373
PARTIE 5 : CONCRÉTISATION DES ACQUIS	375
Séquence 1 : visites applicatives	
Déroulé pédagogique de la séquence	
Fiche 1: les visites applicatives	
Séquence 2 : mises en situation d'intervention	
Déroulé pédagogique de la séquence	
Fiche 1 · les fiches consignes et la main courante	

Le feu et ses conséquences

COMPLÉMENTS NUMÉRIQUES

DÉROULÉ PÉDAGOGIQUE DE LA SÉQUENCE

Séquence 1	Le feu	4 h 00
Thème	Éclosion et développement du feu	
Contenu	Théorie du feu (triangle, classes de feux, causes) La fumée et ses dangers Propagation du feu : conduction, convection, rayonnement, projection Conduite à tenir face à un local enfumé sans mise en danger pour l'intervenant	2 h 00
Application	Exercice de sortie d'un local enfumé par des fumées odorantes froides et non toxiques	2 h 00
Remarque	Les exercices sont à réaliser sans appareil de protection	
Matériels et documentation recommandés	Film vidéo sur l'évolution d'un feu dans une pièce Film vidéo sur un sinistre réel Ouvrages: - M. Curtat, Traité de physique du bâtiment. Physique du feu pour l'ingénieur, 2002 - Fire Protection Handbook, 2008, National Fire Protection Association - Traité pratique de sécurité incendie, CNPP Éditions, 2013	2, CSTB

Documents de référence			
	Conduite à tenir face à un local enfumé sans mise en danger pour l'intervenant		
Fiche d'application	Fiche à télécharger sur www.batipedia.com		

Fiche 1: l'incendie	18	
Fiche 2: la combustion	19	
Fiche 3: le triangle du feu	22	
Fiche 4: les combustibles	23	
Fiche 5: le comburant	26	
Fiche 6 : l'énergie d'activation	27	
Fiche 7 : classes de feu	28	
Fiche 8: les agents extincteurs	29	
Fiche 9 : la fumée et ses dangers	32	
Fiche 10 : la propagation du feu	35	
Fiche 11: les procédés d'extinction	37	
Les points essentiels de la séquence		
to portio occitions de la coquertocamentamentamentamentamentamentamentament		

FICHE 1: L'INCENDIE

DÉFINITIONS

L'incendie est un feu non maîtrisé dont la caractéristique principale est de se propager rapidement.

Le feu est un phénomène de combustion qui se caractérise par un dégagement simultané de chaleur et de lumière. On emploie également le terme « feu » pour désigner une combustion maîtrisée, par opposition à l'« incendie », combustion non maîtrisée.

5. Notions générales

L'incendie est une réaction chimique de combustion qui se développe généralement de manière désordonnée et sans que l'on puisse la contrôler.

À SAVOIR

Éviter l'incendie

Éviter l'éclosion d'un feu, c'est réduire les causes de l'incendie

- + Éviter l'alimentation en combustible, c'est réduire les réactions au feu des matériaux
- + Éviter la propagation du feu, c'est compartimenter pour réduire les effets de l'incendie
- = Éviter la destruction par le feu, c'est prendre les mesures propres à limiter ou empêcher les dommages.

L'incendie ne menace pas seulement nos vies, mais aussi l'outil de travail. Tendre vers un état permanent de sécurité, c'est se défendre contre l'incendie en le rendant improbable par les moyens de prévention prévus par les textes officiels et les règles des compagnies d'assurance.

6. Phases de l'incendie

Dans le déroulement d'un incendie sur lequel on n'entreprendrait aucune action volontaire visant à en réduire les effets, on peut distinguer **5 phases successives** caractérisées par l'élévation de la température en fonction du temps (cf. Figure 1). Il s'agit évidemment d'une représentation générale, car si l'on peut estimer l'évolution des températures en fonction de paramètres connus, il est pratiquement impossible d'évaluer le temps de déroulement de chaque phase.

Figure 1 : Courbe de développement d'un feu ou d'un incendie

FICHE 2: LA COMBUSTION

DÉFINITIONS

La combustion est la réaction chimique (exothermique) qui se produit entre deux corps dont l'un est combustible et l'autre comburant. La combustion de solides peut se caractériser par la formation de flammes ou de braises.

1. Effets de la combustion

Le feu est la manifestation de la combustion.

Sous l'effet de la combustion, les propriétés physiques des corps se modifient ou se transforment. Lors de l'incendie, seuls les gaz brûlent et non le corps enflammé. C'est l'élévation de la température de ce corps (solide, liquide ou gazeux) qui le fera passer de son état initial à celui de gazeux. Ce sont ces gaz qui s'enflamment lors de la combustion.

La combustibilité des corps est influencée par :

- le rapport entre le volume et la surface du corps (un corps divisé brûle plus vite) ;
- la teneur en oxygène (si elle est trop basse, la combustion est impossible);
- le degré hygrométrique (un matériau sec brûle plus vite);
- le pouvoir calorifique (plus un matériau dégage de calories, plus l'incendie s'étend vite aux matériaux et objets qui l'entourent).

2. Dangers de la combustion

Les principaux dangers sont :

- les brûlures par les flammes ;
- l'intoxication par les gaz de combustion ;
- une température élevée qui favorise la propagation du feu ;
- l'opacité rendant toute progression difficile pour l'évacuation et la lutte contre le feu.

3. Typologie de la combustion

La vitesse de combustion est variable et elle apparaît sous différents aspects. On trouvera quatre grands types de combustion.

3.1 Combustion lente

Elle entraîne un faible dégagement d'énergie dans l'unité de temps, avec peu d'élévation de la température, des phénomènes lumineux visibles presque nuls et l'absence totale de flammes.

3.2 Combustion vive

Elle entraîne un dégagement important d'énergie dans l'unité de temps, avec comme conséquences une forte élévation de température et l'émission de flammes.

3.3 Combustion très vive

Il se produit un dégagement de chaleur important avec des projections diverses, comme des parcelles de combustibles.

3.4 Combustion instantanée

Certaines substances peuvent entrer en combustion en se combinant avec l'oxygène de l'air, sans apport d'une source de chaleur extérieure.

Elle peut être soit d'origine chimique, soit biochimique, faisant entrer en jeu des organismes vivants (bactéries, par exemple).

4. Oxydation d'un combustible

Figure 1: Schéma d'oxydation d'un combustible

5. Régimes d'explosion

On distingue généralement deux régimes d'explosion : la déflagration et la détonation.

5.1 Déflagration

DÉFINITIONS

La déflagration regroupe l'ensemble des phénomènes consécutifs au passage rapide d'un front de réaction, le plus souvent d'un front de flamme (combustion d'un gaz ou d'une vapeur), au travers d'un mélange de combustible et de comburant, ou pré-mélange.

La vitesse de propagation des flammes est inférieure à la vitesse du son.

5.2 Détonation

DÉFINITIONS

La détonation est une oxydation violente telle une onde de combustion explosive mais plus violente car transmise mécaniquement par onde de pression se propageant dans le mélange.

La vitesse de propagation des flammes est supérieure à la vitesse du son.

À SAVOIR

En finalité, c'est la vitesse de propagation des flammes qui caractérise un régime ou l'autre.

La vitesse du son au niveau de la mer est égale à 340,29 m/s, soit 1 225,04 km/h.

FICHE 3: LE TRIANGLE DU FEU

DÉFINITIONS

Les trois éléments indispensables à l'éclosion du feu et à sa continuité sont :

le combustible;

le comburant;

la source d'énergie appelée « énergie d'activation ».

Ces trois éléments sont représentés par un schéma triangulaire, appelé « triangle du feu » (cf. Figure 1).

Figure 1 : Schéma du triangle du feu

La soustraction d'un seul des trois éléments entraîne l'extinction.

Pour éteindre un feu, il faudra donc :

• supprimer le combustible (par dispersion ou par coupure de l'alimentation) ;

supprimer l'énergie d'activation (par noyage ou par refroidissement);

ou supprimer le comburant (par étouffement, en évitant les amenées d'air frais).

FICHE 4: LES COMBUSTIBLES

DÉFINITIONS

Un combustible est un corps qui brûle avec l'oxygène apporté par un comburant. Les combustibles dégagent à une certaine température des vapeurs ou gaz de pyrolyse : ce sont ces vapeurs qui brûlent dans la combustion.

Le point éclair d'un combustible liquide est la température minimale à laquelle il émet suffisamment de vapeurs pour former avec l'air un mélange inflammable ou explosif au contact d'une étincelle ou d'une flamme.

Le point d'auto-inflammation est la température à laquelle la combustion d'un corps s'amorce d'elle-même, sans qu'il soit mis au contact d'une flamme.

Tous les corps peuvent se présenter sous différentes phases, en fonction de la température et de la pression. Ces phases, appelées « états de la matière », sont les suivantes : solide, liquide, gazeux.

1. Combustibles solides

Ils brûlent à une vitesse qui dépend de la diffusion de l'oxygène à sa surface.

Cette combustion est souvent incomplète, avec une flamme jaune qui produit de la suie et des braises.

Les solides ont une forme propre et opposent une certaine résistance à la déformation.

Sous l'influence d'un échauffement, ils produisent des gaz de distillation qui brûlent. Ce n'est donc pas le combustible qui s'enflamme, mais les vapeurs et les gaz de distillation qui s'échappent sous l'action de la chaleur.

2. Combustibles liquides

Ils doivent généralement passer à l'état gazeux afin de brûler, comme les vapeurs d'essence qui sont introduites dans le cylindre d'un moteur dans lequel la combustion est provoquée par une étincelle.

Les liquides sont des fluides. Ils n'ont pas de forme propre et présentent au repos une forme plane et horizontale.

À partir d'une certaine température propre à chacun d'entre eux, « le point éclair », ils émettent des vapeurs susceptibles de s'enflammer.

Le combustible émet suffisamment de vapeurs pour qu'elles s'enflamment au contact d'une flamme d'amorce, sans persistance de flamme au retrait de celle-ci.

Les combustibles liquides sont classés en 4 catégories :

- « particulièrement inflammable » : dont le point éclair est inférieur à 0 °C (alcool, éther) ;
- « inflammable de 1^{re} catégorie » : dont le point éclair est compris entre 0 et 55 °C (pétrole, kérosène) ;
- « inflammable de 2° catégorie » : dont le point éclair est supérieur à 55 °C et inférieur à 100 °C (gazole, graisses, fuel) ;
- « peu inflammable » : avec un point éclair supérieur à 100 °C.

Les dangers de la combustion des combustibles liquides se caractérisent par leur possibilité de s'auto-enflammer (auto-inflammation) lorsque leur température est suffisante pour démarrer une inflammation, sans le concours d'une énergie d'activation.

Tableau 4 : Exemples de point éclair et de point d'auto-inflammation de certains combustibles en degrés Celsius (°C)

Combustible	Point éclair	Point d'auto-inflammation
Butane	gaz	405 °C
Propane	gaz	450 °C
Acétylène	gaz	300 °C
Essence	- 37 °C	460 °C
Gazole	55 ℃	330 °C
Alcool éthylique	13 °C	370 °C à 420 °C

3. Combustibles gazeux

Le gaz naturel et le gaz de raffinerie sont des combustibles non seulement inflammables mais aussi très explosifs s'ils sont mélangés à un taux important d'oxygène.

Ce sont des fluides expansibles. Ils n'ont pas de surface et tendent à occuper la totalité du volume qui leur est offert. Ils sont compressibles et élastiques.

3.1 Combustion des gaz

Un gaz ne brûle pas dans n'importe quelles conditions : sa proportion de mélange avec l'air est une donnée essentielle. La concentration du mélange « air + gaz » détermine le degré d'inflammabilité ou d'explosion.

Ainsi, si la quantité de gaz est trop importante par rapport au volume d'oxygène, il ne peut y avoir combustion (cf. Figure 1):

- si le mélange est trop riche, on atteint la « limite supérieur d'inflammabilité » (LSI);
- si le mélange est trop pauvre, on parlera de « limite inférieur d'inflammabilité » (LII).

Figure 1 : Domaine d'inflammabilité comprenant les limites inférieures et supérieures d'inflammabilité

3.2 Pression de vapeur saturante

DÉFINITIONS

La pression développée par les vapeurs d'un liquide ou d'un gaz dans un récipient clos s'appelle la « **pression de vapeur saturante** ».

La pression exercée sur les parois des récipients augmente avec la température et provoque la rupture du contenant.

Figure 2 : Exemple illustrant les limites d'inflammabilité avec un récipient ouvert à l'air libre