Axiomatization of ∞ -categories

Bastiaan Cnossen

University of Regensburg

Joint work with Denis-Charles Cisinski, Kim Nguyen and Tashi Walde

April 15th, 2025

Workshop on Homotopy Type Theory / Univalent Foundations 2025, Genova, Italy.

Goal: Axiomatizing Higher Category Theory

Overview:

- This talk presents an ongoing project aimed at developing foundations for higher category theory.
- We seek a user-friendly meta theory capturing essential aspects used in practice.
- Our approach is deliberately 'substrate-agnostic' initially.
- Warning: Axioms and the underlying 'substrate' are still evolving.

Everything presented is joint work with Denis-Charles Cisinski, Kim Nguyen and Tashi Walde.

What are ∞ -categories?

Slogan: ∞ -category theory is **homotopical category theory**:

- Like category theory, but where all strict equalities are replaced by homotopical equalities.
- Like HoTT, but where types have hom types $hom_{A(x,y)}$ functioning as directed equality types.

 ∞ -categories are becoming an essential tool across mathematics: in algebraic topology, algebraic geometry, representation theory, etcetera.

Why axiomatize ∞ -categories? (1/2)

Motivation 1: Resolve mismatch foundations vs. practice

- Current standard: Set theory (quasicategories).
- Issue: Set theory's strictness clashes with the homotopical nature of ∞-categories.
- Leads to high technical overhead, often disconnected from practical usage.
- Want: Foundations that match practice.

Design criteria:

- Easy to learn/use, fitting with intuition;
- Capturing more general (e.g. 'parametrized') category theories.

Why axiomatize ∞ -categories? (2/2)

Motivation 2: Provide a theory that can "eat itself"

- The 'universe' Cat of ∞ -categories is itself an ∞ -category;
- All axioms should be satisfied internally to Cat;
- Key difference with HoTT: The universe can natively talk about maps of types;
- No problem defining infinite structures, e.g. simplicial types can be defined as functors $X \colon \Delta^{\mathrm{op}} \to \mathrm{Cat}$.

Two key questions

Key Question 1 (this talk)

What is a suitable **meta language** for higher category theory? What are its **core principles**?

Key Question 2 (future)

What is a suitable **substrate** for higher category theory?

Set Theory

- Quasicategories
- Complete Segal Spaces

Category Theory

- ∞-cosmoi
- Tribes

Type Theory

- Simplicial TT
- Directed TT (?)
- Globular Types
- Plain Agda
- ...?

Meta versus substrate

Meta language

- Categories are primitive notion
- Universal properties stated 'by hand'
- Coherences stated 'by hand'

Tribes

- ullet Categories are objects of a tribe ${\mathcal E}$
- Categorical universal properties
- Coherences deducible

Simplicial TT

- Categories are types
- Universal properties via inference rules
- Coherences deducible

The resulting theory

Within our framework, we can develop:

- Adjunctions, limits/colimits, Kan extensions;
- Localizations;
- Cofinality, Quillen's theorems A and B;
- Yoneda embedding;
- Peano arithmetics:
- (Co)cartesian fibrations, Straightening/unstraightening;
- "All of HoTT" (the theory of groupoids).

In the future, we hope to extend this to:

- Presentable categories, topoi;
- Stable homotopy theory;
- Higher algebra, operads;
- ...

The primitives

We take the following as primitive:

- Synthetic categories: C, D, E, ...
- Functors: $f: C \rightarrow D$
- Natural **isomorphisms**: α : $f \cong g$
- Higher natural isomorphisms (ad infinitum)
- Basic operations (composition, identity) satisfying coherence laws (associativity, unitality up to higher iso)

Key Point: Only *invertible* transformations are primitive. Think of α as a homotopy $f \simeq g$ in HoTT.

Category constructors

We need standard ways to construct categories:

- Initial / Terminal categories: ∅, *
- Products / Coproducts: $C \times D$, $C \sqcup D$
- Pullbacks: $C \times_E D$
- Functor categories: Fun(C, D)

Category constructors

We need standard ways to construct categories:

- Initial / Terminal categories: ∅, *
- Products / Coproducts: $C \times D$, $C \sqcup D$
- Pullbacks: $C \times_E D$
- Functor categories: Fun(C, D)

They come with their 'naive' (non-coherent) universal properties, e.g.:

- For every C we get $p_C \colon C \to *$, unique up to iso;
- Pairs $(f: E \rightarrow C, g: E \rightarrow D)$ correspond to $(f, g): E \rightarrow C \times D$;
- Functors $E \to \operatorname{Fun}(C, D)$ correspond to functors $E \times C \to D$.

Category constructors

We need standard ways to construct categories:

- Initial / Terminal categories: ∅, *
- Products / Coproducts: $C \times D$, $C \sqcup D$
- Pullbacks: $C \times_F D$
- Functor categories: Fun(C, D)

They come with their 'naive' (non-coherent) universal properties, e.g.:

- For every C we get $p_C \colon C \to *$, unique up to iso;
- Pairs $(f: E \rightarrow C, g: E \rightarrow D)$ correspond to $(f, g): E \rightarrow C \times D$;
- Functors $E \to \operatorname{Fun}(C, D)$ correspond to functors $E \times C \to D$.

This is enough: we can prove things like

$$\operatorname{Fun}(E, C \times D) \simeq \operatorname{Fun}(E, C) \times \operatorname{Fun}(E, D).$$

Morphisms and Composition

To talk about directionality (morphisms, diagrams), we need standard shapes:

- ullet The "walking morphism": [1]=(0 o 1)
 - A morphism $f: x \to y$ in C is a functor $f: [1] \to C$ with $f(0) \cong x$, $f(1) \cong y$.
 - (An *object* is a functor $x: * \rightarrow C$).
- The "walking commutative triangle": $[2] = (0 \rightarrow 1 \rightarrow 2)$

$$[2] = 0 \xrightarrow{1} 2$$

We also require standard maps d_i : $[1] \rightarrow [2]$ and s_j : $[2] \rightarrow [1]$ satisfying the simplicial identities (finite list of conditions).

Commutative square axiom: For any category C, the restriction map is an equivalence:

Meaning: Two triangles sharing a diagonal uniquely glue to a map from the square shape $[1] \times [1]$.

Commutative square axiom: For any category C, the restriction map is an equivalence:

Meaning: Two triangles sharing a diagonal uniquely glue to a map from the square shape $[1] \times [1]$.

Informally: Categories understand how squares relate to triangles.

Commutative square axiom: Categories understand how squares relate to triangles.

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: For any category *C*, the restriction map is an equivalence:

$$\operatorname{Fun}([2],C) \xrightarrow{\simeq} \operatorname{Fun}([1],C) \times_C \operatorname{Fun}([1],C)$$

Meaning: A composable pair of morphisms corresponds uniquely to a filled triangle.

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: For any category C, the restriction map is an equivalence:

$$\operatorname{Fun}([2], C) \xrightarrow{\simeq} \operatorname{Fun}([1], C) \times_C \operatorname{Fun}([1], C)$$

Meaning: A composable pair of morphisms corresponds uniquely to a filled triangle.

Informally: Categories believe any two compatible arrows have a unique composite.

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: Categories believe any two compatible arrows have a unique composite.

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: Categories believe any two compatible arrows have a unique composite.

Define the *Hom groupoid* in *C* as:

$$\mathsf{Hom}_{C}(x,y) \longrightarrow \mathsf{Fun}([1],C)$$

$$\downarrow \qquad \qquad \downarrow^{(\mathsf{ev}_{0},\mathsf{ev}_{1})}$$

$$* \xrightarrow{(x,y)} C \times C$$

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: Categories believe any two compatible arrows have a unique composite.

Define the *Hom groupoid* in *C* as:

$$\mathsf{Hom}_{C}(x,y) \longrightarrow \mathsf{Fun}([1],C)$$

$$\downarrow \qquad \qquad \downarrow^{(\mathsf{ev}_{0},\mathsf{ev}_{1})}$$

$$* \xrightarrow{(x,y)} C \times C$$

Then the zigzag

$$\operatorname{Fun}([1],C)\times_{C}\operatorname{Fun}([1],C)\stackrel{\sim}{\leftarrow}\operatorname{Fun}([2],C)\stackrel{d_{1}}{\longrightarrow}\operatorname{Fun}([1],C)$$

gives composition $-\circ -$: $\operatorname{\mathsf{Hom}}_{\mathcal{C}}(y,z) \times \operatorname{\mathsf{Hom}}_{\mathcal{C}}(x,y) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(x,z)$.

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: Categories believe any two compatible arrows have a unique composite. This gives unital/associative composition.

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: Categories believe any two compatible arrows have a unique composite. This gives unital/associative composition.

Rezk Axiom (Univalence for Categories): For any C, the functor

$$C \xrightarrow{\simeq} \operatorname{Iso}(C), \qquad x \mapsto \operatorname{id}_x$$

is an equivalence. Here $\operatorname{Iso}(C)$ is the category whose objects are isomorphisms $f: x \to y$ (with data $g: y \to x$, $fg \cong \operatorname{id}_y$, $h: y \to x$ $hf \cong \operatorname{id}_x$).

Commutative square axiom: Categories understand how squares relate to triangles.

Segal Axiom: Categories believe any two compatible arrows have a unique composite. This gives unital/associative composition.

Rezk Axiom (Univalence for Categories): For any C, the functor

$$C \xrightarrow{\simeq} \operatorname{Iso}(C), \quad x \mapsto \operatorname{id}_x$$

is an equivalence. Here $\operatorname{Iso}(\mathcal{C})$ is the category whose objects are isomorphisms $f: x \to y$ (with data $g: y \to x$, $fg \cong \operatorname{id}_y$, $h: y \to x$ $hf \cong \operatorname{id}_x$).

15 / 22

Informally: Categories treat isomorphic objects as equal.

Overview basic language

So far, we have

- 1 Primitive notions (categories, functors, natural isos, ...)
- Basic constructors ((co)products, pullbacks, functor categories)
- **1** The posets [1] and [2] (\rightsquigarrow morphisms, commutative triangles)

Overview basic language

So far, we have

- 1 Primitive notions (categories, functors, natural isos, ...)
- Basic constructors ((co)products, pullbacks, functor categories)
- The posets [1] and [2] (
 → morphisms, commutative triangles)
- Diagram axioms (composition of morphisms)

With this, one can already develop some basic theory:

- Adjunctions;
- Initial/terminal objects;
- Slice categories;
- Cartesian and cocartesian fibrations.

(Formalized in simplicial type theory by Riehl–Shulman and Buchholtz–Weinberger.)

With the basic language set up, we introduce more constructors:

4 Groupoid Core: $C^{\sim} \to C$, the universal map from a groupoid to C.

- **① Groupoid Core:** $C^{\sim} \to C$, the universal map from a groupoid to C.
 - A category is a *groupoid* if $C \to \operatorname{Fun}([1], C)$ (induced by $[1] \to *$) is an equivalence (all morphisms are iso).

- **① Groupoid Core:** $C^{\sim} \to C$, the universal map from a groupoid to C.
 - A category is a *groupoid* if $C \to \operatorname{Fun}([1], C)$ (induced by $[1] \to *$) is an equivalence (all morphisms are iso).
 - Define $Map(C, D) := Fun(C, D)^{\sim}$.

- **① Groupoid Core:** $C^{\sim} \to C$, the universal map from a groupoid to C.
 - A category is a *groupoid* if $C \to \operatorname{Fun}([1], C)$ (induced by $[1] \to *$) is an equivalence (all morphisms are iso).
 - Define $Map(C, D) := Fun(C, D)^{\sim}$.
- **2 Subcategories:** Given $M \hookrightarrow \mathsf{Map}([1], C)$ closed under composition, define $\langle M \rangle_C \to C$, universal functor whose morphisms lie in M.

- **① Groupoid Core:** $C^{\sim} \to C$, the universal map from a groupoid to C.
 - A category is a *groupoid* if $C \to \operatorname{Fun}([1], C)$ (induced by $[1] \to *$) is an equivalence (all morphisms are iso).
 - Define $Map(C, D) := Fun(C, D)^{\sim}$.
- **2 Subcategories:** Given $M \hookrightarrow \mathsf{Map}([1], C)$ closed under composition, define $\langle M \rangle_C \to C$, universal functor whose morphisms lie in M.
- **3 Localizations:** Given $W \hookrightarrow \mathsf{Map}([1], C)$, define $C \to C[W^{-1}]$, universal functor inverting morphisms in W.

Advanced Constructions (continued)

- **① Groupoid Core:** $C^{\sim} \to C$, the universal map from a groupoid to C.
- **② Subcategories:** Given $M \hookrightarrow \mathsf{Map}([1], C)$, define $\langle M \rangle_C \to C$.
- **3** Localizations: Given $W \hookrightarrow \mathsf{Map}([1], C)$, define $C \to C[W^{-1}]$.

Advanced Constructions (continued)

- **① Groupoid Core:** $C^{\simeq} \to C$, the universal map from a groupoid to C.
- **2 Subcategories:** Given $M \hookrightarrow \mathsf{Map}([1], C)$, define $\langle M \rangle_C \to C$.
- **Q** Localizations: Given $W \hookrightarrow \mathsf{Map}([1], C)$, define $C \to C[W^{-1}]$.
- **Geometric realization:** We require $C[W^{-1}]$ to be a groupoid when W is the class of *all* morphisms in C.

Advanced Constructions (continued)

- **① Groupoid Core:** $C^{\sim} \to C$, the universal map from a groupoid to C.
- **2 Subcategories:** Given $M \hookrightarrow \mathsf{Map}([1], C)$, define $\langle M \rangle_C \to C$.
- **1 Localizations:** Given $W \hookrightarrow \mathsf{Map}([1], C)$, define $C \to C[W^{-1}]$.
- **Geometric realization:** We require $C[W^{-1}]$ to be a groupoid when W is the class of *all* morphisms in C.
- **5 Joins:** $C \star D$, fitting into a pushout square:

$$\begin{array}{ccc} C \times D \sqcup C \times D & \longrightarrow & C \times [1] \times D \\ & & \downarrow & & \downarrow \\ C \sqcup D & \longrightarrow & C \star D \end{array}$$

Structural axioms (1/3)

Three more axioms related to fibrations and universes:

Structural axioms (1/3)

Three more axioms related to fibrations and universes:

• Functoriality of Universals:

- If $p: E \to C$ is a cocartesian fibration where all fibers E_c have terminal objects,
- then these terminal objects assemble into a right adjoint section $s: C \to E \ (p \circ s \cong id_C)$.

(And dually for cartesian fibrations and initial objects).

Structural axioms (1/3)

Three more axioms related to fibrations and universes:

• Functoriality of Universals:

- If $p: E \to C$ is a cocartesian fibration where all fibers E_c have terminal objects,
- then these terminal objects assemble into a right adjoint section $s \colon C \to E \ (p \circ s \cong id_C)$.

(And dually for cartesian fibrations and initial objects).

Informally: Initial/terminal objects assemble into functors.

Structural axioms (2/3)

Three more axioms related to fibrations and universes:

 Functoriality of Universals: Initial/terminal objects assemble into functors.

Structural axioms (2/3)

Three more axioms related to fibrations and universes:

- Functoriality of Universals: Initial/terminal objects assemble into functors.
- 2 Exponentiability Axiom:
 - All (co)cartesian fibrations $p: E \to C$ are exponentiable.
 - Meaning: Dependent product along p exists. The pullback functor $p^* : \operatorname{Cat}_{/C} \to \operatorname{Cat}_{/E}$ has a right adjoint p_* (satisfying Beck-Chevalley).

Important: Not all dependent products exist! (Leads to subtleties for formalization.)

Structural axioms (3/3)

Three more axioms related to fibrations and universes:

- Functoriality of Universals: Initial/terminal objects assemble into functors.
- Exponentiability Axiom: Dependent product along (co)cartesian fibrations.

Structural axioms (3/3)

Three more axioms related to fibrations and universes:

- Functoriality of Universals: Initial/terminal objects assemble into functors.
- Exponentiability Axiom: Dependent product along (co)cartesian fibrations.
- Oirected Univalence:
 - Existence of sufficiently many directed univalent universes $p \colon U_{\bullet} \to U$.
 - "Universe": *U* is closed under the category constructors.
 - "Directed Univalent": For all 'small' categories C and D, a certain functor

$$\mathsf{Hom}_U(C,D) \to \mathsf{Map}(C,D)$$

is an equivalence.

Structural axioms (3/3)

Three more axioms related to fibrations and universes:

- Functoriality of Universals: Initial/terminal objects assemble into functors.
- Exponentiability Axiom: Dependent product along (co)cartesian fibrations.
- Oirected Univalence:
 - Existence of sufficiently many directed univalent universes $p \colon U_{\bullet} \to U$.
 - "Universe": *U* is closed under the category constructors.
 - "Directed Univalent": For all 'small' categories C and D, a certain functor

$$\mathsf{Hom}_U(C,D) \to \mathsf{Map}(C,D)$$

is an equivalence.

• When restricted to the equivalences, this recovers ordinary univalence.

Recap

Goal: Develop a meta-language for higher category theory.

- Approach: Build up theory from primitives, constructors, and key axioms.
- Focus on core principles that mirror practical usage.
- Resulting theory interpretable in various foundational substrates (STT, tribes, etc.).
- Future wish: Type theory in which all types are categories.

Our book-project may be found on my homepage: https://sites.google.com/view/bastiaan-cnossen