```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge,Lasso
from sklearn.linear_model import ElasticNet
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.tree import plot_tree
```

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_200
df

_						
റ	п	+	- 1		7	٠.
v	u	ų	- 1	4	_	٠.

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990002
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000
2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440001
3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180000
4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330002
217291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750000
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389999
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	NaN
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000

217296 rows × 16 columns

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217296 entries, 0 to 217295
Data columns (total 16 columns):
```

#	Column	Non-Null Count	Dtype				
0	date	217296 non-null	object				
1	BEN	66747 non-null	float64				
2	CO	216637 non-null	float64				
3	EBE	58547 non-null	float64				
4	MXY	41255 non-null	float64				
5	NMHC	87045 non-null	float64				
6	NO_2	216439 non-null	float64				
7	NOx	216439 non-null	float64				
8	OXY	41314 non-null	float64				
9	0_3	216726 non-null	float64				
10	PM10	209113 non-null	float64				
11	PXY	41256 non-null	float64				
12	S0_2	216507 non-null	float64				
13	TCH	87115 non-null	float64				
14	TOL	66619 non-null	float64				
15	station	217296 non-null	int64				
dtyp	<pre>dtypes: float64(14), int64(1), object(1)</pre>						

memory usage: 26.5+ MB

In [4]: df=df.dropna()
df

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000
5	2002- 04-01 01:00:00	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.37	27.450001
22	2002- 04-01 01:00:00	2.02	0.80	1.57	3.66	0.15	93.860001	101.300003	1.77	6.99	33.000000
24	2002- 04-01 01:00:00	3.02	1.04	2.43	5.38	0.21	103.699997	195.399994	2.15	14.04	37.310001
26	2002- 04-01 02:00:00	2.02	0.53	2.24	5.97	0.12	91.599998	136.199997	2.55	6.76	19.980000
217269	2002- 10-31 23:00:00	1.24	0.28	1.26	2.64	0.11	60.080002	64.160004	1.23	15.64	13.910000
217271	2002- 10-31 23:00:00	3.13	1.30	2.93	7.90	0.28	84.779999	184.000000	2.23	7.94	32.529999
217273	2002- 11-01 00:00:00	2.50	0.97	3.63	9.95	0.19	61.759998	132.100006	4.46	5.45	29.500000
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000

32381 rows × 16 columns

```
In [5]: df.isnull().sum()
Out[5]: date
                      0
                      0
         BEN
                      0
         CO
         EBE
                      0
         MXY
                      0
         NMHC
                      0
                      0
         NO 2
         NOx
                      0
         OXY
                      0
         0_3
                      0
         PM10
                      0
                      0
         PXY
         SO 2
                      0
         TCH
                      0
         TOL
                      0
                      0
         station
         dtype: int64
In [6]: df.describe()
Out[6]:
                                                                  MXY
                         BEN
                                        CO
                                                    EBE
                                                                              NMHC
                                                                                            NO_2
           count 32381.000000
                               32381.000000 32381.000000 32381.000000
                                                                       32381.000000 32381.000000
                                                                                                   323
                     2.479155
                                   0.787323
                                                2.914004
                                                              7.013636
                                                                            0.155827
                                                                                        58.936796
                                                                                                     1
           mean
                     2.280959
             std
                                   0.610810
                                                2.667881
                                                              6.774365
                                                                            0.135731
                                                                                        31.472733
                                                                                                     1
                                                                                         0.890000
            min
                     0.180000
                                   0.000000
                                                0.180000
                                                              0.190000
                                                                            0.000000
            25%
                     0.970000
                                   0.420000
                                                 1.140000
                                                              2.420000
                                                                            0.080000
                                                                                        35.660000
            50%
                     1.840000
                                   0.620000
                                                2.130000
                                                              5.140000
                                                                            0.130000
                                                                                        57.160000
                     3.250000
                                   0.980000
                                                3.830000
            75%
                                                              9.420000
                                                                            0.200000
                                                                                        78.769997
                                                                                                     1
                    32.660000
                                                41.740002
                                                             99.879997
                                                                            2.700000
                                                                                       263.600006
            max
                                   8.460000
                                                                                                    13
In [7]: | df.columns
Out[7]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
         3',
```

'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],

dtype='object')

```
localhost:8888/notebooks/F2.ipynb
```

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1df74c12340>

In [9]: sns.distplot(df['PM10'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='PM10', ylabel='Density'>

In [10]: sns.heatmap(df.corr())

Out[10]: <AxesSubplot:>


```
In [15]: | df.loc[df['NMHC']<1,'NMHC']=0</pre>
         df.loc[df['NMHC']>1,'NMHC']=1
         df['NMHC']=df['NMHC'].astype(int)
         C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
         ingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           self. setitem single column(loc, value, pi)
         C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
         ingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           self. setitem single column(loc, value, pi)
         <ipython-input-15-c5145d14383f>:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df['NMHC']=df['NMHC'].astype(int)
```

LogisticRegression

LinearRegression

```
In [34]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[34]: Co-efficient **BEN** 0.003820 CO 0.035804 **EBE** 0.000946 MXY -0.001224 NO_2 -0.000463 NOx 0.000047 OXY -0.001391 O_3 0.000249 PM10 -0.000032 **PXY** 0.000219 SO_2 0.000231 **TCH** 0.018479 TOL 0.000207 station 0.000008

```
In [35]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[35]: <matplotlib.collections.PathCollection at 0x1df0e3ac850>


```
In [36]: print(lr.score(x_test,y_test))
```

0.19891860476397782

Ridge,Lasso

```
In [37]: | rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[37]: Ridge(alpha=10)
In [38]: |rr.score(x_test,y_test)
Out[38]: 0.1987356164308257
In [39]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[39]: Lasso(alpha=10)
In [40]: la.score(x_test,y_test)
Out[40]: -8.759608667974206e-06
         ElasticNet
```

```
In [41]:
        en=ElasticNet()
        en.fit(x_train,y_train)
Out[41]: ElasticNet()
In [42]: |print(en.coef_)
         [ 0.
                     0.
                                0.
                                           0.
                                                      -0.
                                                                  0.00012093
          0.
                     0.
                                0.
                                           0.
                                                       0.
                                                                  0.
                               1
          0.
                    -0.
In [43]: print(en.intercept )
         -0.012394759514420813
In [44]:
        print(en.predict(x_train))
        0.00994176]
In [45]:
        print(en.score(x_train,y_train))
        0.11059506269439834
In [46]: print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
        Mean Absolytre Error: 0.01616788249571067
In [47]: print("Mean Square Error:",metrics.mean_squared_error(y_test,prediction))
        Mean Square Error: 0.0023841495745941764
```

```
In [48]: print("Root Mean Square Error:",np.sqrt(metrics.mean_absolute_error(y_test,pre
```

RandomForest

```
rfc=RandomForestClassifier()
In [49]:
         rfc.fit(x_train,y_train)
Out[49]: RandomForestClassifier()
In [50]: parameters={'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n estimators':[10,20,30,40,50]}
In [51]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
         grid_search.fit(x_train,y_train)
Out[51]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [52]: grid search.best score
Out[52]: 0.9989411453278038
In [53]: rfc_best=grid_search.best_estimator_
```

```
plt.figure(figsize=(80,40))
In [54]:
                    plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes','No'],filled=T
Out[54]: [Text(2363.2941176470586, 1993.2, 'X[0] <= 14.285\ngini = 0.005\nsamples = 14
                    431\nvalue = [22604, 62]\nclass = Yes'),
                      Text(1312.941176470588, 1630.8000000000000, 'X[5] <= 926.75 \setminus 1 = 0.002 
                    amples = 14374\nvalue = [22557, 18]\nclass = Yes'),
                      Text(1050.3529411764705, 1268.4, 'X[2] <= 13.51 \setminus gini = 0.001 \setminus gini = 143
                    68\nvalue = [22554, 11]\nclass = Yes'),
                      Text(525.1764705882352, 906.0, 'X[11] <= 2.36\ngini = 0.001\nsamples = 14299
                    \nvalue = [22452, 8]\nclass = Yes'),
                      Text(262.5882352941176, 543.599999999999, 'gini = 0.0\nsamples = 14234\nval
                    ue = [22348, 0]\nclass = Yes'),
                      Text(787.7647058823529, 543.599999999999, 'X[12] <= 14.44\ngini = 0.133\nsa
                    mples = 65\nvalue = [104, 8]\nclass = Yes'),
                      Text(525.1764705882352, 181.19999999999982, 'gini = 0.408\nsamples = 9\nvalu
                    e = [10, 4]\nclass = Yes'),
                      Text(1050.3529411764705, 181.19999999999982, 'gini = 0.078\nsamples = 56\nva
                    lue = [94, 4]\nclass = Yes'),
                      Text(1575.5294117647059, 906.0, X[8] <= 114.8  ngini = 0.056  nsamples = 69  n
                    value = [102, 3]\nclass = Yes'),
                      Text(1312.941176470588, 543.59999999999, 'gini = 0.0\nsamples = 59\nvalue
                    = [88, 0]\nclass = Yes'),
                      amples = 10\nvalue = [14, 3]\nclass = Yes'),
                      Text(1575.5294117647059, 181.1999999999982, 'gini = 0.346\nsamples = 5\nval
                    ue = [7, 2] \setminus class = Yes'),
                      Text(2100.705882352941, 181.199999999999, 'gini = 0.219\nsamples = 5\nvalu
                    e = [7, 1] \setminus nclass = Yes'),
                      Text(1575.5294117647059, 1268.4, 'gini = 0.42\nsamples = 6\nvalue = [3, 7]\n
                    class = No'),
                      Text(3413.6470588235293, 1630.8000000000000, X[5] <= 760.4 
                    amples = 57\nvalue = [47, 44]\nclass = Yes'),
                      Text(2888.4705882352937, 1268.4, 'X[7] <= 9.275 \setminus gini = 0.18 \setminus gini = 33 \setminus gini
                    value = [45, 5]\nclass = Yes'),
                      Text(2625.882352941176, 906.0, 'X[5] \leftarrow 678.9 \cdot ngini = 0.051 \cdot nsamples = 26 \cdot nv
                    alue = [37, 1]\nclass = Yes'),
                      Text(2363.2941176470586, 543.599999999999, 'gini = 0.0\nsamples = 21\nvalue
                    = [30, 0]\nclass = Yes'),
                      Text(2888.4705882352937, 543.599999999999, 'gini = 0.219\nsamples = 5\nvalu
                    e = [7, 1] \setminus nclass = Yes'),
                      Text(3151.0588235294117, 906.0, 'gini = 0.444\nsamples = 7\nvalue = [8, 4]\n
                    class = Yes'),
                      Text(3938.8235294117644, 1268.4, 'X[0] <= 19.23\ngini = 0.093\nsamples = 24
                    \nvalue = [2, 39]\nclass = No'),
                      Text(3676.235294117647, 906.0, X[12] <= 78.235 \ngini = 0.165 \nsamples = 13
                    \nvalue = [2, 20]\nclass = No'),
                      Text(3413.6470588235293, 543.59999999999, 'gini = 0.0\nsamples = 8\nvalue
                    = [0, 15]\nclass = No'),
                      Text(3938.8235294117644, 543.59999999999, 'gini = 0.408\nsamples = 5\nvalu
                    e = [2, 5] \setminus nclass = No'),
                      Text(4201.411764705882, 906.0, 'gini = 0.0\nsamples = 11\nvalue = [0, 19]\nc
                    lass = No')]
```


Best model:RandomForest

[
Tn [] •	1 • I	
L 3 - 1	3	