

Mathematics for All

Jan-Michael Holzinger

JOHANNES KEPLER UNIVERSITY LINZ Altenbergerstraße 69 4040 Linz, Austria jku.at

Chapter 1.3: Relations and functions

Relations

Definition

A **relation** R between two sets M and N is a subset of the Cartesian product of M and N, i.e.

$$R \subset M \times N$$
.

$$\{(m_2, n_2), (m_3, n_3), (m_4, n_3), (m_4, n_4)\}$$

Important types of relations

We will discuss the following important applications of relations:

- We can use relations to indicate that certain elements in M are related/connected to certain elements in N. The prime example for such a relation are *functions*.
- If R is a relation between M and M, i.e. $R \subset M^2$ we call R a relation **on** M. This concept is useful to
 - o compare,
 - o group,
 - o order

elements of a given set M.

Definition

Let $f \subset M \times N$ be a relation between non-empty sets. We call $f: M \to N$ a *function*, if f each $x \in M$ is assigned exactly one element $f(x) \in N$. M is called the *domain* (of definition), N is called the *codomain* of f.

$$\{(m_1, n_2), (m_2, n_2), (m_3, n_3), (m_4, n_4)\}$$

Definition

Let $f: M \to N$ be a function and $S \subset M, T \subset N$ be sets. We define

• the *image* of S under f as

$$f(S) := \{f(x) : x \in S\} \subset N,$$

• the *range* of f as

$$f(M) := \{f(x) : x \in M\} \subset N,$$

• the *preimage* of T under f as

$$f^{-1}(T) := \{x : f(x) \in T\} \subset M,$$

• the graph of f as

$$G_f := \{(x, f(x)) : x \in M\} \subset M \times N.$$

7/33

Example

- Consider $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2$. This defines a function.
- Consider $g: \mathbb{R} \to \mathbb{R}$, defined by g(x) = x + 1. This defines a function.
- Consider h, defined for $x \in \mathbb{R}_0^+$ by $h(x) = \pm \sqrt{x}$. This does not define a function.

Functions

Example for a free online tool to plot graphs of functions: https://www.geogebra.org/

image and preimage

Example

Consider again $f(x) = x^2$ and g(x) = x + 1 as introduced before. Let S = [1, 3]. Then

$$f(S) = [1, 9]$$
 and $g(S) = [2, 4]$.

The range of f, $f(\mathbb{R}) = R_0^+ = [0, \infty)$, the range of g, $g(\mathbb{R}) = \mathbb{R}$. For T = [1, 4], we have

$$f^{-1}(T) = [-2, -1] \cup [1, 2]$$
, and $g^{-1}(T) = [0, 3]$.

More examples of functions

Example

- $f_1: \mathbb{R}^2 \to \mathbb{R}$, with $f(\begin{pmatrix} x \\ y \end{pmatrix}) = x + y$,
- $f_2: \mathbb{R}^2 \to \mathbb{R}^2$, with $f_2(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} \frac{\sqrt{2}}{2}(x-y) \\ \frac{\sqrt{2}}{2}(x+y) \end{pmatrix}$.

https://www.geogebra.org/calculator/ebkwt52u

Note that we often write f(x, y) instead of $f(\begin{pmatrix} x \\ y \end{pmatrix})$.

More examples of functions

Example

Given $A = \{1, 2, 3, 4\}$, we consider the functions

- $f_3: \mathcal{P}(A) \to \mathbb{N}_0$, with $f_3(X) = |X|$ for $X \subset A$, where we denote by |X| the number of elements contained in X,
- $f_4: \mathcal{P}(A) \to \mathcal{P}(A)$, with $f_4(X) = A \setminus X = X^C$.

Properties of relations

Definition

Let $R \subset M \times N$ be a relation between non-empty sets. R is called

- *injective* iff $\forall (x_1, y_1), (x_2, y_2) \in R, x_1 \neq x_2 \Rightarrow y_1 \neq y_2,$ or equivalently $\forall (x_1, y_1), (x_2, y_2) \in R, y_1 = y_2 \Rightarrow x_1 = x_2,$
- surjective iff $\forall y \in N, \exists x \in M : (x, y) \in R$,
- *bijective* iff *R* is injective and surjective,
- *functional* iff $\forall x \in M, \exists y \in N : (x, y) \in R$ and $\forall x \in M, v_1, v_2 \in N, ((x, v_1), (x, v_2) \in R) \Rightarrow v_1 = v_2.$

Properties of relations

Definition

For a function $f: M \to N$, the definitions given on the previous slide translate to

- f is *injective* iff $\forall x_1, x_2 \in M$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, or equivalently $\forall x_1, x_2 \in M$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$,
- *surjective* iff $\forall y \in N$, $\exists x \in M : f(x) = y$,
- *bijective* iff $\forall y \in N, \exists ! x \in M : f(x) = y$.

Here \exists ! is the unique existence quantifier, which indicates "there exists a unique".

Injective functions

Surjective functions

$$\{(m_1,n_2),(m_2,n_2),(m_3,n_3),(m_4,n_4),(m_5,n_1)\}$$

Bijective functions

$$\{(m_1,n_1),(m_2,n_2),(m_3,n_3),(m_4,n_4)\}$$

Bijective functions

$$\{(m_1,\,n_3),\,(m_2,\,n_2),\,(m_3,\,n_4),\,(m_4,\,n_1)\}$$

Further important examples for functions:

Example

- Let M, N be non-empty sets and $c \in N$. The function $f: M \to N$, defined by f(x) = c for all $x \in M$ is called constant function.
- For a non-empty set M, the function $Id_M: M \to M$, defined by f(x) = x for all $x \in M$ is called *identity* function (on M).

Inverse function

Definition

Let $f: M \to N$ and $g: N \to M$ be functions with the properties,

$$\forall x \in M, g(f(x)) = x$$
, and

$$\forall y \in N, f(g(y)) = y.$$

Then f is the *inverse* of g and g the *inverse* of f.

Theorem

A function $f: M \to N$ is invertible, if and only if it is bijective.

Proof.

Later.

Cardinality of sets

Definition

A finite set M containing n elements, e.g. the set $\{1, 2, ..., n\}$, has *cardinality* n. We write |M| = n.

Exercise

Show that, for two finite sets A and B, the following statements hold.

- |A| = |B| if and only if there is a bijection $f: A \to B$.
- |A| < |B| if and only if there is an injection $f: A \to B$.
- |A| > |B| if and only if there is a surjection $f: A \to B$.

Cardinality of sets

Bijections allow us (to some extent) to characterize the cardinality of infinite sets.

Definition

Let A be a set.

- If there exists $n \in \mathbb{N}$ such that |A| = n, then we call A *finite*, or a finite set.
- If A is not finite, then we call A infinite, or an infinite set.
- If there exists a bijection $f: \mathbb{N} \to A$, then we call A countably infinite.
- If A is either finite or countably infinite, then we call A countable.
- If A is not countable, then we call A uncountable.

Cardinality of sets

Exercise

- Find a bijective function $f: \mathbb{N} \to \mathbb{N}_0$.
- Find a bijective function $g: \mathbb{N}_0 \to \mathbb{Z}$.

Definition

Let X, Y, Z be non-empty sets, and let $f: X \to Y$ and $g: Y \to Z$ be functions. We define the *composition* of *q* and *f*, the function $(g \circ f): X \to Z$, by first applying f and then applying g. That is, we define $(g \circ f)(x) = g(f(x))$.

Example

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ and $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + 1. Then $(g \circ f): \mathbb{R} \to \mathbb{R}$ with $(g \circ f)(x) = x^2 + 1$.

Exercise

Show that function composition is not commutative. I.e. show that not for all functions f, g it holds that $(f \circ g) = (g \circ f)$.

25/33

Remark

If $f: M \to N$ is a function and f^{-1} is its inverse, then, for all $x \in M$ and $y \in N$, we have $f^{-1}(f(x)) = x$, and $f(f^{-1}(y)) = y$, thus $f \circ f^{-1} = Id_N$ and $f^{-1} \circ f = Id_M$.

Example

Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions, defined by

$$f(x) = 2x + 1$$
 and $g(x) = \frac{1}{2}x - \frac{1}{2}$.

Then
$$(g \circ f)(x) = g(f(x)) = g(2x+1) = \frac{1}{2}(2x+1) - \frac{1}{2} = x$$
, and $(f \circ g)(x) = f(g(x)) = f(\frac{1}{2}x - \frac{1}{2}) = 2(\frac{1}{2}x - \frac{1}{2}) + 1 = x$.

Exercise

Let $f: M \to N$ be a function. We have $\forall x \in M$, $(f \circ Id_M)(x) =$ $f(x) = (Id_N \circ f)(x).$

Exercise

Function composition is associative, that is, for any functions $f: M \to N, g: N \to O$ and $h: O \to P$, it holds that

$$\forall x \in M, (h \circ (g \circ f))(x) = ((h \circ g) \circ (f))(x).$$

Exercise

Let $f: M \to N$ be a function. If $g_1, g_2: N \to M$ are inverse of f, then $g_1 = g_2$.

Equivalence and order relations

Properties of relations

For a non-empty set M, we call $R \subset M^2$ a relation **on** M.

Definition

Let $M \neq \emptyset$ and $R \subset M^2$ be a relation. R is called

- *reflexive*, iff $\forall x \in M$, $(x, x) \in R$,
- *symmetric*, iff $(x, y) \in R \Rightarrow (y, x) \in R$,
- antisymmetric, iff $(x, y), (y, x) \in R \Rightarrow x = y$,
- *transitive*, iff $(x, y), (y, z) \in R \Rightarrow (x, z) \in R$,
- *total*, iff $\forall x, y \in M$, $(x, y) \in R$ or $(y, x) \in R$.

Equivalence and order relations

Definition

- An equivalence relation is a relation that is reflexive, symmetric and transitive.
- A partial order is a relation that is reflexive, antisymmetric and transitive.
- A linear order is a relation that is a partial order and total.

Example

Define $L \subset \mathbb{R}^2$, by $(x, y) \in L \Leftrightarrow x \leq y$.

Example

Define $L \subset \mathbb{R}^2$, as $L = \{(x, x) : x \in \mathbb{R}\} \subset \mathbb{R}^2$.

Partial order

Example

One can define a partial order on a set of sets by using the subset relation \subset . For example, for

$$M := \{\emptyset, \{1\}, \{2\}, \{1, 2\}\},\$$

we define the relation

$$L = \{(A, B) \in M \times M : A \subset B\}.$$

L is reflexive, antisymmetric and transitive. Hence, it is a partial order on *M*. However, since $\{1\} \not\subset \{2\}$ and $\{2\} \not\subset \{1\}$, it is not total.

Equivalence classes

Equivalence classes allow us to partition the elements of a set into related chunks.

Definition

Let $R \subset X \times X$ be an equivalence relation. For $x \in X$, we define the **equivalence class of** x by

$$[x]_R := \{ y \in X : (x, y) \in R \}.$$

Equivalence classes

Exercise

Prove the following relations are equivalence relations, find the corresponding equivalence classes and if possible, give a geometric interpretation.

- Define \sim on \mathbb{R} by $(x, y) \in \sim$ (or alternatively $x \sim y$), iff |x| = |y|.
- Define \equiv_2 on \mathbb{Z} by $(x, y) \in \equiv_2$ (or alternatively $x \equiv_2 y$), iff xand y have the same remainder after division by 2.
- More complicated: Let \mathcal{F} be the set of functions from \mathbb{R} to \mathbb{R} . $\mathcal{F} := \{f : \mathbb{R} \to \mathbb{R}\}.$

Define a relation R on \mathcal{F} by $(f,g) \in R$, iff

$$\exists c \in \mathbb{R} : \forall x \in \mathbb{R}, f(x) = g(x) + c.$$

JYU

JOHANNES KEPLER UNIVERSITY LINZ