Semantic similarity and machine learning with ontologies

Robert Hoehndorf and Maxat Kulmanov

Machine learning with ontologies: approaches

- graph-based
- syntactic
- model-theoretic

How to measure similarity?

From Harispe et al., Semantic Similarity From Natural Language And Ontology Analysis, 2015.

How to measure similarity?

- Shortest Path
 - applicable to arbitrary "knowledge graphs"
 - does not capture similarity well over all edge types, e.g., disjointWith, differentFrom, opposite-of, etc.
- Random Walk
 - with or without restart.
 - iterated
 - ▶ does not consider edge labels ⇒ captures only adjacency of nodes
 - scores whole graph with probability of being in a state
 - can take multiple seed nodes
 - can be used to find disease genes

• feature learning on graphs

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
- Translational knowledge graph embeddings: TransE, TransE, TransE, HolE, etc.
 - ► analogy- or translation-based
 - ► https://github.com/SmartDataAnalytics/PyKEEN

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
- Translational knowledge graph embeddings: TransE, TransE, TransE, HolE, etc.
 - analogy- or translation-based
 - ► https://github.com/SmartDataAnalytics/PyKEEN
- Graph Convolution Neural Networks (not discussed here)

Graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

Graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbf{R}^n$.

- key idea: preserve *some* structure of the graph in \mathbb{R}^n (under operations in \mathbb{R}^n)
- ullet Rⁿ enables *new* operations (such as many similarity measures)
- useful as feature vectors

- FOXP2 is characterized by adjacent and close nodes and edges
- different edges may "transmit" information differently

- precompute the deductive closure:
- for all ϕ : if $\mathcal{KG} \models \phi$, add ϕ to \mathcal{KG}

- precompute the deductive closure:
- for all ϕ : if $\mathcal{KG} \models \phi$, add ϕ to \mathcal{KG}

• Exploring the graph:

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Word2Vec and Random Walks

- random walks "flatten" a graph
 - walks capture node neighborhood
 - and generate a "corpus"
- random walks capture graph "structure"
 - ▶ in ABox and TBox
 - ▶ hub-nodes, communities, etc.
 - determine "importance" of nodes
- embeddings capture co-occurrence
 - Similar graph neighborhood ⇒ similar co-occurrence ⇒ similar vector
- embeddings generate "feature" vectors
 - functions from symbols (words, labels) into \mathbb{R}^n

What to do with embeddings?

- useful for edge prediction, similarity, clustering, as feature vectors
 - ► supervised: edge prediction (e.g., SVM, ANN)
 - ▶ e.g.: find a function $f: \mathbb{R}^n \times \mathbb{R}^n \mapsto [0,1]$ s.t. $\sqrt{\frac{\sum_{t=1}^T (\hat{y_t} y_t)^2}{T}}$ (RMSE) is minimized for a set of true labels y_k
 - unsupervised: clustering, similarity, visualization
 - cosine similarity (for L2-normalized features)
 - Word2Vec embeddings capture similarity between co-occurrence vectors

Visualizing feature vectors: dimensionality reduction

- project *n*-dimensional vectors in 2D (or 3D) space
- and color with some known labels
 - ► high-level/general classes in an ontology work great
- PCA or t-SNE
- https://lvdmaaten.github.io/tsne/

Visualizing feature vectors

Features: supervised learning

- feature vectors represent graph neighborhood of nodes
 - adjacent nodes and edges
 - ontology classes (asserted & inferred)
- useful in supervised prediction tasks
- relation prediction:
 - ▶ input: two features vectors (from embedding function)
 - output: 0 or 1 (relation or not)
 - training data: positive and negative cases
 - ightharpoonup R(x,y) and $\neg R(x,y)$
 - ightharpoonup R(x,y) and not provable R(x,y)

Features: supervised learning

Object property	Source type	Target type	Without reasoning		With reasoning	
			F-measure	AUC	F-measure	AUC
has target	Drug	Gene/Protein	0.94	0.97	0.94	0.98
has disease annotation	Gene/Protein	Disease	0.89	0.95	0.89	0.95
has side-effect*	Drug	Phenotype	0.86	0.93	0.87	0.94
has interaction	Gene/Protein	Gene/Protein	0.82	0.88	0.82	0.88
has function*	Gene/Protein	Function	0.85	0.95	0.83	0.91
has gene phenotype*	Gene/Protein	Phenotype	0.84	0.91	0.82	0.90
has indication	Drug	Disease	0.72	0.79	0.76	0.83
has disease phenotype*	Disease	Phenotype	0.72	0.78	0.70	0.77

Ontologies, graphs, and text

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

Ontologies, graphs, and text

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Ontologies, graphs, and text

The <u>:FOXP2</u> gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>:FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Tools and resources

- RDF2Vec: random walks on RDF + Word2Vec
- RDF2Vec: Weisfeiler-Lehmann kernel on RDF
- https://datalab.rwth-aachen.de/embedding/RDF2Vec/

Tools and resources

- RDF2Vec: random walks on RDF + Word2Vec
- RDF2Vec: Weisfeiler-Lehmann kernel on RDF
- https://datalab.rwth-aachen.de/embedding/RDF2Vec/
- Walking RDF+OWL: random walks on RDF + Elk + Word2Vec
 - inference
- https://github.com/bio-ontology-research-group/ walking-rdf-and-owl

Some limitations

- "word"-based (Word2Vec):
 - semantics is reduced to co-occurrence (in ABox/TBox statements)
 - "disjointWith" vs. "part-of" vs. "subClassOf"

Jupyter excercise

- Open the Jupyter notebook graph.ipynb
- Follow the examples in the first part of the notebook (random walks)
- If you don't have a powerful CPU in your laptop (with multiple cores), you may want to lower the number of iterations (n_iter) during TSNE
- some of the code will take a while to run
 - if things are too slow, you can keep it running while we continue or complete this after the tutorial
- (some notes on parameters and hyperparameters...)

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Graph as edgelist: set of (s, p, o) statements

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Graph as edgelist: set of (s, p, o) statements

Idea: $\mu(s) + \mu(p) \approx \mu(o)$

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Graph as edgelist: set of (s, p, o) statements

Idea: $\mu(s) + \mu(p) \approx \mu(o)$

Minimize: $\sum_t \|\mu(s) + \mu(p) - \mu(o)\|$ (chose your norm, usually L2)

Entity and Relation Space

FOXP2 + binds = MET

- FOXP2 + binds = MET
- MET + activates = MAPK3

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunctionG0:0044708

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunction = G0:0044708
- ...

- FOXP2 + binds MET = 0
- MAP + activates -MAPK3 = 0
- MET + binds FOXP2 = 0
- ST7 + hasFunction G0:0044708 = 0
- ...

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
 1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                      \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                      \mathbf{e} \leftarrow \operatorname{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
 4: loop
          \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
          S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b
          T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
          for (h, \ell, t) \in S_{batch} do
              (h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) // \text{ sample a corrupted triplet}
              T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
10:
11:
          end for
          Update embeddings w.r.t. \nabla \left[ \gamma + d(\mathbf{h} + \ell, \mathbf{t}) - d(\mathbf{h'} + \ell, \mathbf{t'}) \right]_{+}
12:
                                                     ((h,\ell,t),(h',\ell,t')) \in T_{batch}
```

13: end loop

Bordes et al. (2013). Translating Embeddings for Modeling Multi-relational Data.

Some properties of TransE

- graph-based
 - works well on RDF graphs
 - and ontology graphs
- 1:1 relations only
 - not suitable for hierarchies (1-N relations)
 - not suitable for N-N relations
 - no transitive, symmetric, reflexive relations

Entity and Relation Space

Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$	Constraints/Regularization
TransE [14]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\ {f h} + {f r} - {f t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
TransH [15]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^d$	$-\ (\mathbf{h} - \mathbf{w}_r^\top \mathbf{h} \mathbf{w}_r) + \mathbf{r} - (\mathbf{t} - \mathbf{w}_r^\top \mathbf{t} \mathbf{w}_r)\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1 \\ & \mathbf{w}_r^\top \mathbf{r} /\ \mathbf{r}\ _2 \leq \epsilon, \ \mathbf{w}_r\ _2 = 1 \end{aligned}$
TransR [16]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r \in \mathbb{R}^{k \times d}$	$-\ \mathbf{M}_r\mathbf{h}+\mathbf{r}-\mathbf{M}_r\mathbf{t}\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ &\ \mathbf{M}_{r}\mathbf{h}\ _{2} \leq 1, \ \mathbf{M}_{r}\mathbf{t}\ _{2} \leq 1 \end{aligned}$
TransD [50]	$\mathbf{h}, \mathbf{w}_h \in \mathbb{R}^d$ $\mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^k$	$-\ (\mathbf{w}_r\mathbf{w}_h^\top + \mathbf{I})\mathbf{h} + \mathbf{r} - (\mathbf{w}_r\mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ &\ (\mathbf{w}_{r}\mathbf{w}_{h}^{\top} + \mathbf{I})\mathbf{h}\ _{2} \leq 1 \\ &\ (\mathbf{w}_{r}\mathbf{w}_{t}^{\top} + \mathbf{I})\mathbf{t}\ _{2} \leq 1 \end{aligned}$
TranSparse [51]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\begin{aligned} \mathbf{r} &\in \mathbb{R}^k, \mathbf{M}_r(\theta_r) \in \mathbb{R}^{k \times d} \\ \mathbf{M}_r^1(\theta_r^1), \mathbf{M}_r^2(\theta_r^2) &\in \mathbb{R}^{k \times d} \end{aligned}$	$\begin{aligned} &-\ \mathbf{M}_r(\theta_r)\mathbf{h} + \mathbf{r} - \mathbf{M}_r(\theta_r)\mathbf{t}\ _{1/2}^2 \\ &-\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h} + \mathbf{r} - \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _{1/2}^2 \end{aligned}$	$\begin{split} &\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1 \\ &\ \mathbf{M}_r(\theta_r)\mathbf{h}\ _2 \leq 1, \ \mathbf{M}_r(\theta_r)\mathbf{t}\ _2 \leq 1 \\ &\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h}\ _2 \leq 1, \ \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _2 \leq 1 \end{split}$
TransM [52]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\theta_r \ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
ManifoldE [53]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-(\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _2^2 - \theta_r^2)^2$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$
TransF [54]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$(\mathbf{h} + \mathbf{r})^{\top} \mathbf{t} + (\mathbf{t} - \mathbf{r})^{\top} \mathbf{h}$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$
TransA [55]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}^{d \times d}$	$-(\mathbf{h}+\mathbf{r}-\mathbf{t})^{\top}\mathbf{M}_r(\mathbf{h}+\mathbf{r}-\mathbf{t})$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{r}\ _{2} \le 1$ $\ \mathbf{M}_{r}\ _{F} \le 1, [\mathbf{M}_{r}]_{ij} = [\mathbf{M}_{r}]_{ji} \ge 0$
KG2E [45]	$\begin{aligned} \mathbf{h} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_h, \! \boldsymbol{\Sigma}_h) \\ \mathbf{t} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_t, \! \boldsymbol{\Sigma}_t) \\ \boldsymbol{\mu}_h, \boldsymbol{\mu}_t \! \in \! \mathbb{R}^d \\ \boldsymbol{\Sigma}_h, \boldsymbol{\Sigma}_t \! \in \! \mathbb{R}^{d \times d} \end{aligned}$	$\mathbf{r} \sim \mathcal{N}(\boldsymbol{\mu}_r, \boldsymbol{\Sigma}_r) \ \boldsymbol{\mu}_r \in \mathbb{R}^d, \boldsymbol{\Sigma}_r \in \mathbb{R}^{d imes d}$	$\begin{aligned} -\mathrm{tr}(\boldsymbol{\Sigma}_r^{-1}(\boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_t)) - \boldsymbol{\mu}^\top \boldsymbol{\Sigma}_r^{-1} \boldsymbol{\mu} - \ln \frac{\det(\boldsymbol{\Sigma}_r)}{\det(\boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_t)} \\ - \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \ln(\det(\boldsymbol{\Sigma})) \\ \boldsymbol{\mu} &= \boldsymbol{\mu}_h + \boldsymbol{\mu}_r - \boldsymbol{\mu}_t \\ \boldsymbol{\Sigma} &= \boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_t \end{aligned}$	$\begin{split} & \ \boldsymbol{\mu}_h\ _2 \leq 1, \ \boldsymbol{\mu}_t\ _2 \leq 1, \ \boldsymbol{\mu}_r\ _2 \leq 1 \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_h \leq c_{max}\mathbf{I} \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_t \leq c_{max}\mathbf{I} \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_r \leq c_{max}\mathbf{I} \end{split}$
TransG [46]	$\begin{aligned} \mathbf{h} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_h, \sigma_h^2 \mathbf{I}) \\ \mathbf{t} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_t, \sigma_t^2 \mathbf{I}) \\ \boldsymbol{\mu}_h, \boldsymbol{\mu}_t \! \in \! \mathbb{R}^d \end{aligned}$	$\begin{aligned} \boldsymbol{\mu}_{r}^{i} \sim & \mathcal{N} \big(\boldsymbol{\mu}_{t} \!\!-\!\! \boldsymbol{\mu}_{h}, \! (\boldsymbol{\sigma}_{h}^{2} \!\!+\!\! \boldsymbol{\sigma}_{t}^{2}) \mathbf{I} \big) \\ \mathbf{r} &= \sum_{i} \boldsymbol{\pi}_{r}^{i} \boldsymbol{\mu}_{r}^{i} \in \mathbb{R}^{d} \end{aligned}$	$\textstyle \sum_i \pi_r^i \exp \left(-\frac{\ \mu_h + \mu_r^i - \mu_t\ _2^2}{\sigma_h^2 + \sigma_t^2} \right)$	$\ \boldsymbol{\mu}_h\ _2 \leq 1, \ \boldsymbol{\mu}_t\ _2 \leq 1, \ \boldsymbol{\mu}_r^i\ _2 \leq 1$
UM [56]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	_	$-\ {f h}-{f t}\ _2^2$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
SE [57]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{M}_r^1, \mathbf{M}_r^2 \in \mathbb{R}^{d \times d}$	$-\ \mathbf{M}_r^1\mathbf{h}-\mathbf{M}_r^2\mathbf{t}\ _1$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$

Wang et al. Knowledge Graph Embedding: A Survey of Approaches and Applications.

PyKEEN

- Python package to generate knowledge graph embeddings
- supports many different graph embedding types: TransE, TransR, TransD, RESCAL, etc.
- hyperparameter optimization ("HPO") and evaluation included
- https://github.com/SmartDataAnalytics/PyKEEN

Some limitations

- graph-based (same as random walks):
 - ontologies are not graphs!
 - converting ontologies to graphs loses information
 - no axioms, no definitions
- (this also holds for Graph Convolutional Networks, which are not covered here)

Jupyter excercise

- run the PyKEEN part of graph.ipynb
- again: this may take a while
- you can also explore https://github.com/SmartDataAnalytics/PyKEEN
- try to expand the notebook to predict "new" relations
 - using numpy directly, or PyKEEN's predictions methods
- Change the TSNE to work only on enzymes (don't include the GO classes, etc.)

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ► graph-based or based on axioms

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"

- none of the models discussed above are truly "semantic"
 - ▶ all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"
 - lacktriangle universal algebra over formal languages (with signature Σ)

Description Logic EL++

Name	Syntax	Semantics
top	T	$\Delta^{\mathcal{I}}$
bottom	Τ	Ø
nominal	{a}	$\{a^{\mathcal{I}}\}$
conjunction	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
existential	∃r.C	$ \{x \in \Delta^{\mathcal{I}} \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} $
restriction		
generalized	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$
concept		
inclusion		
role inclu-	$r_1 \circ \circ r_n \sqsubseteq r$	$r_1^{\mathcal{I}} \circ \circ r_n^{\mathcal{I}} \subseteq r^{\mathcal{I}}$
sion		

Models

- ullet Interpretations and Σ -structures
- Model $\mathfrak A$ of a formula ϕ : ϕ is true in $\mathfrak A$ ($\mathfrak A \models \phi$)
- Theory T: set of formulas
- ullet ${\mathfrak A}$ is a model of T if ${\mathfrak A}$ is a model of all formulas in T
- Ontologies are (special kinds of) theories

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function *is* an interpretation function
- ullet any consistent \mathcal{EL}^{++} theory has infinite models

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function
- ullet any consistent \mathcal{EL}^{++} theory has infinite models
- any consistent \mathcal{EL}^{++} theory has models in \mathbb{R}^n (Loewenheim-Skolem, upwards; compactness)

Key idea

- for all $r \in \Sigma(T)$ and $C \in \Sigma(T)$, define $f_e(r)$ and $f_e(C)$
- $f_e(C)$ maps to points in an open *n*-ball such that $f_e(C) = C^{\mathcal{I}}$: $C^{\mathcal{I}} = \{x \in \mathbb{R}^n | \|f_e(C) x\| < r_e(C)\}$
 - ▶ these are the *extension* of a class in \mathbb{R}^n
- $f_e(r)$ maps a binary relation r to a vector such that $r^{\mathcal{I}} = \{(x,y)|x + f_e(r) = y\}$
 - ► that's the TransE property for individuals
- use the axioms in T as constraints

Algorithm

- normalize the theory:
 - every \mathcal{EL}^{++} theory can be expressed using four normal forms (Baader et al., 2005)
- eliminate the ABox: replace each individual symbol with a singleton class: a becomes {a}
- rewrite relation assertions r(a,b) and class assertions C(a) as $\{a\} \sqsubseteq \exists r.\{b\}$ and $\{a\} \sqsubseteq C$
 - something to remember for the next class-vs-instance discussion?
- normalization rules to generate:
 - $ightharpoonup C \Box D$
 - $ightharpoonup C \sqcap D \sqsubseteq E$
 - **►** *C* \sqsubseteq $\exists R.D$
 - **▶** ∃*R*.*C* □ *D*

$$\begin{aligned} & loss_{C \sqsubseteq D}(c, d) = \\ & \max(0, \|f_{\eta}(c) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ & + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1| \end{aligned} \tag{1}$$

Let $h=\frac{r_{\eta}(c)^2-r_{\eta}(d)^2+\|f_{\eta}(c)-f_{\eta}(d)\|^2}{2\|f_{\eta}(c)-f_{\eta}(d)\|}$, then the center and radius of the smallest n-ball containing the intersection of $\eta(C)$ and $\eta(D)$ are $f_{\eta}(c)+\frac{h}{\|f_{\eta}(c)-f_{\eta}(d)\|}(f_{\eta}(d)-f_{\eta}(c))$ and $\sqrt{r_{\eta}(c)^2-h^2}$.

□ ▶

$$loss_{C \sqsubseteq \exists R.D}(c, d, r) = \max(0, ||f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)|| + r_{\eta}(c) - r_{\eta}(d) - \gamma) + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$$
 (2)

$$loss_{\exists R.C \sqsubseteq D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) - f_{\eta}(r) - f_{\eta}(d)\| - r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1|$$
(3)

$$\begin{aligned} & loss_{C \sqcap D \sqsubseteq \bot}(c, d, e) = \\ & \max(0, r_{\eta}(c) + r_{\eta}(d) - \|f_{\eta}(c) - f_{\eta}(d)\| + \gamma) \\ & + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1| \end{aligned} \tag{4}$$

Male	⊑ Person	(5)
Female	⊑ Person	(6)
Father	\sqsubseteq <i>Male</i>	(7)
Mother	\sqsubseteq Female	(8)
Father	\sqsubseteq Parent	(9)
Mother	\sqsubseteq Parent	(10)
Female \sqcap Male	⊑⊥	(11)
Female □ Parent	\sqsubseteq Mother	(12)
$Male \sqcap Parent$	\sqsubseteq Father	(13)
\exists has Child. Person	<i>□</i> Parent	(14)
Parent	⊑ Person	(15)
Parent	$\sqsubseteq \exists hasChild. \top$	(16)

- model with $\Delta = R^n$
- support quantifiers, negation, conjunction,...

IJCAI 2019

Jupyter excercise

- Run the new Docker image coolmaksat/embeddings:latest
- docker run -i -t -p 8888:8888
 coolmaksat/embeddings /bin/bash -c "jupyter
 notebook --notebook-dir=/usr/src/app/
 --ip='0.0.0.0' --port=8888 --no-browser
 --allow-root"

Summary

- ontologies contain background knowledge that is useful as background knowledge:
 - axioms
 - ► natural language (definitions, labels, synonyms)

Summary

- ontologies contain background knowledge that is useful as background knowledge:
 - axioms
 - ► natural language (definitions, labels, synonyms)
- feature learning (deep learning) on ontologies encodes this background knowledge
 - using ontology graphs, axioms, or model structures

Open research questions

Where is our semantics, in the machine learning model or the axioms?

- implicit or explicit?
- hidden or interpretable?
- example: transitive relations
- combination of both?

Open research questions

How do we evaluate our models and methods?

- random splits (standard in machine learning)
- time-based splits
- other?

Open research questions

What is the interface between knowledge representation and learning?

- How to represent knowledge affects learning outcomes
- representation patterns and learning ⇒ specific algorithms?

Acknowledgements

Lots of help from my students:

- Mona Alshahrani
- Maxat Kulmanov
- Fatima Smaili

and colleagues:

- Mehdi Ali & Hajira Jabeen (PyKEEN)
- Michel Dumontier
- Andreas Karwath
- Paul Schofield

and KAUST (Bio2Vec grant, award no. URF/1/3454-01-01).