

Lesson 6 Practice Problems

1. Select **all** solutions to the equation $x^2 = 7$.

- C. 49
- D. -49
- 2. Find the solution(s) to each equation, if there are any.

a.
$$x^2 = 9$$
 $\mathcal{X} = \pm 3$

b.
$$\sqrt{x} = 3$$
 $\mathcal{A} = 9$

c.
$$\sqrt{x} = -3$$
 No Solutions

3. a. If c is a positive number, how many solutions does $x^2 = c$ have? Explain.

b. If c is a positive number, how many solutions does $\sqrt{x}=c$ have? Explain.

- 4. Suppose that a friend missed class and never learned what $37^{\frac{1}{3}}$ means.
 - a. Use exponent rules your friend would already know to calculate $(37^{\frac{1}{3}})^3$.

$$\left(37^{\frac{1}{3}}\right)^{3} = 37^{\frac{3}{3}} = 37 = 37$$

b. Explain why this means that
$$37^{\frac{1}{3}}$$
 is the cube root of 37 .

Since $(37^{\frac{1}{3}})^3 = 37$

Take the cube Noot of each side of the equation $37^{\frac{1}{3}} = \sqrt[3]{37}$

(From Unit 3, Lesson 3.)

5. Evaluate
$$8^{\frac{5}{3}}$$
. = $(3\sqrt{8})^{3}$ = 2^{3} = 3^{2}

6. Write each expression without using exponents.

a.
$$5^{\frac{2}{3}} = \sqrt[3]{5^2} = \sqrt[3]{2}$$

b. $4^{-\frac{3}{2}} = \sqrt[4]{4}$
From Unit 3, Lesson 5.)

Lesson 7 Practice Problems

1. Noah solved the equation $5x^2 = 45$. Here are his steps:

$$5x^2 = 45$$

$$x^2 = 9$$

$$x = 3$$

Do you agree with Noah? Explain your reasoning.

Two SOLUTIONS

2. Find the solution(s) to each equation, or explain why there is no solution.

a.
$$\sqrt{x+4} + 7 = 5$$

$$\sqrt{244} = -2$$

No solutions since Vis positive (non-negative)

b.
$$\sqrt{47-x}-2=4$$
 $\sqrt{47-x}=6$
 $\sqrt{7-x}=36$

$$\sqrt{47-11}-2=4?$$
 $\sqrt{16-2}=4$
 $\sqrt{-2}=4$

$$7 = 11$$

$$c. \frac{1}{2}\sqrt{20 + x} = 5$$

$$\sqrt{20 + x} = 10$$

$$20 + x = 10$$

$$7 = 80$$

$$\frac{1}{2}\sqrt{20+80} = 5$$
?
 $\frac{1}{2}(\sqrt{10}) = 5$?
 $\frac{1}{2}(\sqrt{10}) = 5$

3. Which is a solution to the equation $\sqrt{5-x} + 13 = 4$?

- A. 86
- B. 81
- C. 9

- 4. Select all expressions that are equal to $\frac{1}{(\sqrt{2})^5}$.
 - A. $-\frac{5}{\sqrt{2}}$

 - $\overbrace{C}, \underline{\frac{1}{\sqrt{32}}}$
 - D. $-(\sqrt{2})^{\frac{1}{2}}$
 - E. $-2^{\frac{5}{2}}$
 - (F.)2-5/2

(From Unit 3, Lesson 5.)

- 5. Which are the solutions to the equation $x^2 = 36$?
 - A. 6 only
 - B. -6 only
 - 6 and -6
 - D. This equation has no solutions.

(From Unit 3, Lesson 6.)

6. Here is a graph of $y = x^2$.

a. Use the graph to estimate all solutions to the equation $x^2=3$.

TE + 1.732

- b. If you square your estimates, what number should they be close to?
- c. Square your estimates. How close did you get to this number?

2.999824 Groty Close!

(From Unit 3, Lesson 6.)

7. The polynomial function $q(x) = 3x^3 + 11x^2 - 14x - 40$ has a known factor of (3x + 5). Rewrite q(x) as the product of linear factors.

(From Unit 2, Lesson 12.)