${\bf Table~1}~~{\bf Definitions~and~Comparisons~of~Conditions}$

Perfect Foresight Versions	Uncertainty Versions
Finite Human Wealth Condition (FHWC)	
$\Phi/R < 1$	$\Phi/R < 1$
The growth factor for permanent income Φ must be smaller than the discounting factor R for human wealth to be finite.	The model's risks are mean-preserving spreads, so the PDV of future income is unchanged by their introduction.
Absolute Impatience Condition (AIC)	
D < 1	b < 1
	70 70 70 70 70 70 70 70 70 70 70 70 70 7
The unconstrained consumer is sufficiently impatient that the level of consumption will be declining over time:	If wealth is large enough, the expectation of consumption next period will be smaller than this period's consumption:
$\mathbf{c}_{t+1} < \mathbf{c}_t$	$\lim_{m_t o \infty} \mathbb{E}_t[\mathbf{c}_{t+1}] < \mathbf{c}_t$
Return Impatience Conditions	
Return Impatience Condition (RIC)	Weak RIC (WRIC)
1 /R < 1	$\wp^{1/\rho}\mathbf{P}/R < 1$
The growth factor for consumption P must be smaller than the discounting factor R, so that the PDV of current and future consumption will be finite:	If the probability of the zero-income event is $\wp = 1$ then income is always zero and the condition becomes identical to the RIC. Otherwise, weaker.
$c'(m) = 1 - \mathbf{P}/R < 1$	$c'(m) < 1 - \wp^{1/\rho} \mathbf{P} / R < 1$
Growth Impatience Conditions	
GIC	GIC-Nrm
$\mathbf{p}/\mathbf{\Phi} < 1$	$\mathbf{p}\mathbb{E}[\mathbf{\Psi}^{-1}]/\mathbf{\Phi} < 1$
For an unconstrained PF consumer, the ratio of \mathbf{c} to \mathbf{p} will fall over time. For constrained, guarantees the constraint eventually binds. Guarantees $\lim_{m_t\uparrow\infty}\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]=\mathbf{p}_{\mathbf{\Phi}}$	By Jensen's inequality stronger than GIC. Ensures consumers will not expect to accumulate m unboundedly. $\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{p}_{\underline{\Phi}}$
Finite Value of Autarky Conditions	
PF-FVAC	FVAC
$eta oldsymbol{\Phi}^{1- ho} < 1$ equivalently $oldsymbol{\Phi} < R^{1/ ho} oldsymbol{\Phi}^{1-1/ ho}$	$\beta \mathbf{\Phi}^{1-\rho} \mathbb{E}[\mathbf{\Psi}^{1-\rho}] < 1$
The discounted utility of constrained consumers who spend their permanent income each period should be finite.	By Jensen's inequality, stronger than the PF-FVAC because for $\rho > 1$ and nondegenerate Ψ , $\mathbb{E}[\Psi^{1-\rho}] > 1$.