II - Centre de $\mathcal{S}_{p_{2n}}$

On s'intéresse ici au centre \mathcal{Z} de $\mathcal{S}_{p_{2n}}$ c'est-à-dire : $\mathcal{Z} = \{M \in \mathcal{S}_{p_{2n}}, \ \forall N \in \mathcal{S}_{p_{2n}}, \ MN = NM\}.$

9. Justifier l'inclusion suivante : $\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}$.

Réciproquement, soit $M \in \mathcal{Z}$ écrite sous la forme :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n$

- 10. En utilisant $L = \begin{pmatrix} I_n & I_n \\ 0 & I_n \end{pmatrix}$ et sa transposée, obtenir $B = C = 0_n$ et D = A, A étant inversible.
- 11. Soit $U \in \mathcal{G}_n$. En utilisant $L_U = \begin{pmatrix} U & 0_n \\ 0_n & (U^{-1})^\top \end{pmatrix}$, montrer que A commute avec toute matrice $U \in \mathcal{G}_n$.
- 12. Conclure que $A \in \{-I_n, I_n\}$ et $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$. <u>Indication</u>: on montrera d'abord que les matrices $I_n + E_{i,j}$ commutent avec A, où $(E_{i,j}, 1 \le i, j \le n)$ est la base canonique de \mathcal{M}_n .