AI/ML Task

Develop a machine learning model to detect fraudulent transactions using a Kaggle dataset

Kaggle Credit Card Fraud Detection dataset with a focus on data handling, model training, evaluation, and explainability.

Task 1: Data Exploration and Preprocessing

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import StandardScaler

from imblearn.over_sampling import SMOTE

data = pd.read_csv("creditcard.csv")
data

→		Time	V1	V2	V3	V4	V5	V6	V7	V8	V 9	 V21	V22	
(0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0
1	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0
2	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0
3	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0
4	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0
284	802 1	72786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1
284	803 1	72787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0
284	804 1	72788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0
284	805 1	72788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0
284	806 1	72792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0

284807 rows × 31 columns

print("Dataset Info: ", data.info())
print("\nClass Distribution: ", data['Class'].value_counts())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

Data	COTUMNS	(total	31 COTUMNS	5):
#	Column		ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
13	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64

```
24 V24
                 284807 non-null float64
      25 V25
                 284807 non-null float64
                 284807 non-null float64
      26 V26
      27 V27
                 284807 non-null float64
                 284807 non-null float64
     28 V28
      29 Amount 284807 non-null float64
     30 Class 284807 non-null int64
     dtypes: float64(30), int64(1)
     memory usage: 67.4 MB
     Dataset Info: None
     Class Distribution: Class
         284315
            492
     Name: count, dtype: int64
# Feature Scaling for 'Amount' (normalize)
scaler = StandardScaler()
data['Amount'] = scaler.fit_transform(data['Amount'].values.reshape(-1, 1))
# Split Features and Target
X = data.drop(columns=['Class'])
y = data['Class']
# Handle Class Imbalance using SMOTE
smote = SMOTE(random state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
```

Task 2: Supervised Model Development

```
# Importing necessary libraries for modeling
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve
from xgboost import XGBClassifier
# Logistic Regression
# Spliting Data into Train-Test Sets
\textbf{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X\_resampled, y\_resampled, test\_size=0.3, random\_state=42)}
# Training Logistic Regression (Baseline Model)
lr_model = LogisticRegression()
lr_model.fit(X_train, y_train)
y_pred_lr = lr_model.predict(X_test)
# Evaluating Logistic Regression
print("Logistic Regression Performance:")
print(classification_report(y_test, y_pred_lr))
# Confusion Matrix for Logistic Regression
conf_matrix = confusion_matrix(y_test, y_pred_lr)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
plt.title("Logistic Regression - Confusion Matrix")
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations ($\max_$ iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

n_iter_i = _check_optimize_result(

Logistic Regression Performance:

8	8.	precision		f1-score	support
	0	0.97	0.98	0.97	85149
	1	0.98	0.97	0.97	85440
accur	racy			0.97	170589
macro	avg	0.97	0.97	0.97	170589
weighted	avg	0.97	0.97	0.97	170589

XGBoost Model

```
# Training XGBoost Model
xgb_model = XGBClassifier(eval_metric='logloss', use_label_encoder=False)
xgb_model.fit(X_train, y_train)
y_pred_xgb = xgb_model.predict(X_test)
# Evaluating XGBoost Model
print("XGBoost Performance:")
print(classification_report(y_test, y_pred_xgb))
# Confusion Matrix for XGBoost
conf_matrix = confusion_matrix(y_test, y_pred_xgb)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Greens')
plt.title("XGBoost - Confusion Matrix")
plt.show()
```

/ /usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [14:52:03] WARNING: /workspace/src/learner.cc:740: Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning)

	precision	recall	f1-score	support
0	1.00	1.00	1.00	85149
1	1.00	1.00	1.00	85440
accuracy			1.00	170589
macro avg	1.00	1.00	1.00	170589
weighted avg	1.00	1.00	1.00	170589

XGBoost - Confusion Matrix

ROC-AUC Curve for XGBoost

y_pred_prob = xgb_model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_pred_prob)

roc_auc = roc_auc_score(y_test, y_pred_prob)

plt.plot(fpr, tpr, label=f"XGBoost (AUC = {roc_auc:.2f})")

plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.title("ROC-AUC Curve")

plt.legend()

plt.show()

Task 3: Unsupervised Model Development

```
from sklearn.ensemble import IsolationForest
# Training Isolation Forest Model
isolation_forest = IsolationForest(contamination=0.01, random_state=42)
data['Anomaly'] = isolation_forest.fit_predict(X)
data['Anomaly'] = data['Anomaly'].apply(lambda x: 1 if x == -1 else 0)
# Evaluating Anomalies
anomalies_detected = data[data['Anomaly'] == 1]
print(f"Total Anomalies Detected: {len(anomalies_detected)}")
print("Sample Anomalies:", anomalies_detected.head())
    Total Anomalies Detected: 2849
    Sample Anomalies:
                                                            V3
                                                                               V5
                                                                                         V6 \
    164 103.0 -6.093248 -12.114213 -5.694973 3.294389 -1.413792 4.776000
    362 266.0 -2.564961 2.470985 2.649417 -1.564256 1.794297 -0.614742
    401 290.0 -5.166299 -5.449369 2.988498 2.658991 1.948152 -0.854470
    455 333.0 -2.977214 0.781748 2.881724 -1.627798 -1.368067 1.656876
    601 454.0 -3.133891
                          2.887394 2.178690 -1.576535 1.434510 -0.687313
                                  V9 ...
               V7
                        ٧8
                                                V22
                                                          V23
                                      ... -2.264037 -3.553381 1.215279
    164 4.808426 -0.228197 -0.525896
    362 4.185906 -3.855359 5.436633
                                      ... -0.463149 -0.532466
                                      ... 1.172278 3.150413 0.574081
    401 -0.326394 -1.017364 1.983901
    455 -1.185053 -5.393736 1.719407
                                      ... -1.929181 0.190843
    601 3.816056 -3.416915 5.459274
                                      ... -0.498518 -0.476668 0.302196
              V25
                        V26
                                 V27
                                           V28
                                                   Amount Class
    164 -0.406073 -0.653384 -0.711222 0.672900 14.951604
                                                                        1
    362 0.226844 -0.365416 -0.936735 -2.733887
                                                -0.311849
                                                               0
                                                                        1
    401 1.018394 0.987099 0.658283 -1.609716
                                                -0.013392
                                                               0
                                                                        1
    455 0.296773 0.890104 -0.123225 -0.543750 -0.053373
                                                                        1
    601 0.299993 -0.359155 -0.958818 -2.735623 -0.314648
                                                                        1
    [5 rows x 32 columns]
# Compare with Actual Fraudulent Transactions
fraud_data = data[data['Class'] == 1]
common_cases = fraud_data[fraud_data['Anomaly'] == 1]
print(f"Fraud Cases Detected by Isolation Forest: {len(common_cases)}")
# Visualize Anomalies
sns.scatterplot(data=data, x='Amount', y='Time', hue='Anomaly', palette='Set1')
plt.title("Fraud Detection (Isolation Forest)")
Fraud Cases Detected by Isolation Forest: 289
                              Fraud Detection (Isolation Forest)
        175000
```


Task 4: Model Evaluation

```
from sklearn.metrics import confusion_matrix, roc_curve, auc

# Confusion Matrix for XGBoost
conf_matrix = confusion_matrix(y_test, y_pred_xgb)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Greens')
plt.title("XGBoost - Confusion Matrix")
plt.show()
```



```
# ROC Curve for XGBoost
fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, label=f'XGBoost (AUC = {roc_auc:.2f})')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend()
plt.show()
```


→ Task 5: Model Explainability

```
# SHAP for XGBoost
explainer = shap.Explainer(xgb_model, X_test)
shap_values = explainer(X_test)

# Plotting SHAP Summary
shap.summary_plot(shap_values, X_test)
```


Feature Importance for XGBoost