Addressing Critical Health Conditions through Data Science

According to the Centers for Disease Control and Prevention (CDC), every year, about 805,000 Americans have a heart attack. Of these, 605,000 are a first heart attack and 200,000 happen to people who have already had a heart attack.

Reference:

Centers for Disease Control and Prevention (CDC), "Heart Disease Facts."

Available: https://www.cdc.gov/heartdisease/facts.htm

Data Sets

Heart Attack

Age Sex

Records: 8763

Blood Pressure

Cholesterol

Features: 26

Heart Rate
Diabetes
Family History

Family Histo Smoking Obesity

Alcohol Consumption Exercise Hours Per Week

Diet

Previous Heart Problems

Medication Use Stress Level

Sedentary Hours Per Day

Income BMI

Triglycerides

Physical Activity Days Per Week

Sleep Hours Per Day

Country
Continent
Hemisphere
Heart Attack Risk

Stroke

Records: 5110

Features: 11

Gender

Age

Hypertension Ever Married

Work Type

Residence Type Glucose Level

BMI

Smoking Status History of stroke Heart Disease

High cardinality

Blood Pressure	8763	Blood Pressure
Exercise Hours Per Week	8763	158/88
Sedentary Hours Per Day	8763	
Income	8615	1. Systolic blood pressure (SBP)
BMI	8763	2. Diastolic blood pressure (DBP)
Triglycerides	771	3.Pulse pressure = (SBP) - (DBP)
Cholesterol	281	
		(021)

create categories based on medical standards

Uniform distribution across the various categories

- Balanced Category Representation
- Enhanced Model Generalizability
- Uniform Contribution to Predictive Power
- Simplified Feature Engineering
- Applicability of Standard Evaluation Metrics
- Opportunities for Further Exploration

Model

Insights

Balanced Accuracy Across Models: All models, from Logistic Regression to Neural Networks, consistently show around 50% accuracy, indicating a balanced but challenging dataset.

© Precision and Recall Trade-Off: Each model demonstrates a similar precision-recall balance, suggesting equal strengths and weaknesses in identifying true positives and negatives.

Moderate F1 Scores: The F1 scores across models are moderate, reflecting the ongoing challenge of achieving a perfect balance between precision and recall.

Model Selection Tip: Choose Logistic Regression or Decision Trees for higher sensitivity, or opt for SVM or Random Forest for better precision.

							100						
	Coef.	Std.Err.	Z	P> z	[0.025	0.975]		Coef.	Std.Err.	Z	P> z	[0.025	0.975]
const	-0.0000	0.0283	-0.0004	0.9997	-0.0555	0.0555	const	-0.0000	0.0283	-0.0004	0.9997	-0.0555	0.0555
x1	0.0370	0.0342	1.0827	0.2789	-0.0300	0.1041	x15	-0.0146	0.0284	-0.5130	0.6079	-0.0702	0.0411
x2	0.0436	0.0284	1.5351	0.1248	-0.0121	0.0992	x16	-0.0173	0.0284	-0.6097	0.5421	-0.0731	0.0384
х3	0.0015	0.0284	0.0519	0.9586	-0.0541	0.0570	x17	0.0480	0.0284	1.6901	0.0910	-0.0077	0.1036
x4	-0.0494	0.0373	-1.3251	0.1851	-0.1225	0.0237	x18	0.0086	0.0283	0.3051	0.7603	-0.0469	0.0642
x 5	-0.0217	0.0284	-0.7649	0.4444	-0.0773	0.0339	x19	0.0598	0.0284	2.1065	0.0352	0.0042	0.1155
х6	0.0052	0.0284	0.1839	0.8541	-0.0504	0.0609	x20	0.0071	0.0319	0.2215	0.8247	-0.0554	0.0695
х7	-0.0076	0.0284	-0.2684	0.7884	-0.0632	0.0480	x21	-0.0216	0.0304	-0.7097	0.4779	-0.0812	0.0380
x8	0.0139	0.0284	0.4900	0.6241	-0.0417	0.0695	x22	-0.0101	0.0405	-0.2496	0.8029	-0.0895	0.0692
x9	-0.0091	0.0284	-0.3196	0.7493	-0.0647	0.0465	x23	-0.0695	0.0611	-1.1371	0.2555	-0.1894	0.0503
x10	-0.0238	0.0284	-0.8391	0.4014	-0.0794	0.0318	x24	-0.0308	0.0508	-0.6066	0.5441	-0.1303	0.0687
x11	0.0531	0.0393	1.3534	0.1759	-0.0238	0.1301	x25	0.0007	0.0453	0.0152	0.9879	-0.0881	0.0895
x12	0.0730	0.0288	2.5334	0.0113	0.0165	0.1295	x26	-0.0128	0.0428	-0.3001	0.7641	-0.0967	0.0710
x13	-0.0102	0.0288	-0.3536	0.7236	-0.0665	0.0462	x27	-0.0224	0.0328	-0.6823	0.4951	-0.0867	0.0419
V14	0.0444	0.0284	1 5612	0 1185	-0.0113	0.1001	v28	0 0094	0 0328	0 2875	0 7737	-0 0549	0.0737