Manifole Learning Homework 5

安捷 1601210097

2017年3月27日

习题 (76). 证明. 首先,由于 A 是对称矩阵,因此 A 有特征值分解

$$\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^T \tag{1}$$

其中, Λ 为 inline 首先证明题目中优化问题的解为

$$\mathbf{X} = \mathbf{U} \begin{pmatrix} \max(\Lambda_r, 0) \\ \mathbf{0} \end{pmatrix} \mathbf{U}^T$$
 (2)

由于

$$\|\mathbf{X} - \mathbf{A}\|_F^2 = \|\mathbf{X}\|_F^2 + \|\mathbf{A}\|_F^2 - 2\langle \mathbf{X}, \mathbf{A}\rangle \tag{3}$$

由 von Neumann 迹定理,有 $\langle \mathbf{X}, \mathbf{A} \rangle < \sum_{i=1}^N \alpha_i \beta_i$,其中, α_i, β_i 是 \mathbf{X}, \mathbf{A} 的奇异值的顺序和,又由于 \mathbf{X} 是半正定矩阵,因此存在特征值分解

$$\mathbf{X} = \mathbf{V}\Psi\mathbf{V}^T \tag{4}$$

其中 Ψ 是特征值顺序排列组成的对角矩阵,所以要使得原始优化问题取得最小值,必须有 $\mathbf{U} = \mathbf{V}$,否则,无法保证 \mathbf{X} 与 \mathbf{A} 有相同的奇异值顺序。上述论断其实有一个问题,即 \mathbf{A} 由于不是半正定矩阵,因此其特征值的顺序与奇异值的顺序并不相同,但实际上这一问题不会影响证明的结果,由于我们后面的证明过程中会使得对应于 \mathbf{A} 的负特征值的 \mathbf{X} 的特征值为 $\mathbf{0}$,因此这一问题不存在。下面考虑 $\mathbf{\Psi}$ 的取值,当 \mathbf{A} 有 \mathbf{r} 个非负特征值时,显然只需要使得 $\mathbf{\Psi}$ 取 \mathbf{A} 的前 \mathbf{r} 个特征值即可;若 \mathbf{A} 在前 \mathbf{r} 个特征值会出现负特征值,此时,显然 当 \mathbf{X} 的对应特征值取为 $\mathbf{0}$ 时才能保证优化问题取得最小值,上述证明过程中两步取最值得条件同时满足的情况即为 $\mathbf{2}$ 式。同时,由于对于 $\mathbf{2}$ 式而言,其等价于

$$\mathbf{X} = \mathbf{U_r} \Lambda_r \mathbf{U_r}^T \tag{5}$$