COMP3278C Introduction to Database Management Systems Assignment 3: Functional Dependencies and BCNF Decomposition

Cheng Ho Ming, Eric (3036216734) Section 2C, 2024

Thursday 24th April, 2025 19:36

Question 1

Given relation R(A,B,C,D,E) and functional dependencies, $F = \{A \to B, B \to C, CA \to D, C \to A, D \to E\}$. Let $\alpha = \{A,C\}$. Compute the closure α^+ under F.

Answer:

$$\alpha^+ = \{A, B, C, D, E\}$$

Question 2

Given a relation R(A, B, C) and the following functional dependencies:

$$F = \{A \to B, \quad C \to B\},\$$

compute F^+ , the closure of all functional dependencies in F. Your final answer should present a comprehensive list of all functional dependencies that can be derived from F.

Answer:

	{A}	{B}	{C}	${AB}$	$\{AC\}$	{BC}	{ABC}
Attribute set closure	$\{A,B\}$	<i>{B}</i>	$\{B,C\}$	$\{A,B\}$	$\{A,B,C\}$	$\{B,C\}$	$\{A,B,C\}$
FD	$\begin{array}{c} A \to A \\ A \to B \end{array}$	$B \to B$	$\begin{array}{c} C \to B \\ C \to C \end{array}$	$AB \to A$ $AB \to B$ $AB \to AB$	$AC \rightarrow A$ $AC \rightarrow B$ $AC \rightarrow C$ $AC \rightarrow AB$ $AC \rightarrow AC$ $AC \rightarrow BC$ $AC \rightarrow BC$	$\begin{array}{c} BC \to B \\ BC \to C \\ BC \to BC \end{array}$	$ABC \rightarrow A$ $ABC \rightarrow B$ $ABC \rightarrow C$ $ABC \rightarrow AB$ $ABC \rightarrow AC$ $ABC \rightarrow BC$ $ABC \rightarrow BC$ $ABC \rightarrow ABC$

Question 3

Consider the relation schema:

$$R = (A, B, C, D, E)$$

with the following functional dependencies:

$$F = \{A \rightarrow B, \quad C \rightarrow D, \quad AB \rightarrow E, \quad C \rightarrow E, \quad AB \rightarrow C\}.$$

(1) Identify all candidate keys for R.

Steps:

- 1. Is A a superkey?
 - $\{A\}^+ = \{A, B, C, D, E\} = R$
 - A is a superkey.
- 2. Is B a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is **NOT** a superkey.
- 3. Is C a superkey?
 - $\{C\}^+ = \{C, D, E\} \neq R$
 - C is **NOT** a superkey.
- 4. Is D a superkey?
 - $\{D\}^+ = \{D\} \neq R$
 - *D* is **NOT** a superkey.
- 5. Is E a superkey?
 - $\{E\}^+ = \{E\} \neq R$
 - E is **NOT** a superkey.
- 6. (Skipped AB, AC, AD, AE since A is a superkey)
- 7. Is BC a superkey?
 - $\{BC\}^+ = \{B, C, D, E\} \neq R$
 - BC is **NOT** a superkey.
- 8. Is BD a superkey?
 - $\{BD\}^+ = \{B, D\} \neq R$
 - BD is **NOT** a superkey.
- 9. Is BE a superkey?
 - $\{BE\}^+ = \{B, E\} \neq R$
 - BE is **NOT** a superkey.
- 10. Is CD a superkey?
 - $\{CD\}^+ = \{C, D, E\} \neq R$
 - CD is **NOT** a superkey.
- 11. Is CE a superkey?

- $\{CE\}^+ = \{C, D, E\} \neq R$
- *CE* is **NOT** a superkey.
- 12. Is DE a superkey?
 - $\{DE\}^+ = \{D, E\} \neq R$
 - DE is **NOT** a superkey.
- 13. (Skipped ABC, ABD, ABE, ACD, ACE, ADE since A is a superkey)
- 14. Is BCD a superkey?
 - $\{BCD\}^+ = \{B, C, D, E\} \neq R$
 - BCD is **NOT** a superkey.
- 15. Is BCE a superkey?
 - $\{BCE\}^+ = \{B, C, D, E\} \neq R$
 - BCE is **NOT** a superkey.
- 16. Is BDE a superkey?
 - $\{BDE\}^+ = \{B, D, E\} \neq R$
 - BDE is **NOT** a superkey.
- 17. Is CDE a superkey?
 - $\{CDE\}^+ = \{C, D, E\} \neq R$
 - *CDE* is **NOT** a superkey.
- 18. (Skipped ABCD, ABCE, ABDE, ACDE since A is a superkey)
- 19. Is BCDE a superkey?
 - $\{BCDE\}^+ = \{B, C, D, E\} \neq R$
 - BCDE is **NOT** a superkey.
- 20. (Skipped ABCDE since A is a superkey)

Candidate Keys: $\{A\}$

(2) Determine whether R is in Boyce-Codd Normal Form (BCNF).

R is **NOT** in BCNF.

BCNF requires that for every non-trivial FD $\alpha \to \beta$, α must be a superkey. Candidate key found: $\{A\}$

To check for violations of BCNF, we only have to check the FDs in F.

- $A \to B$: $\{A\}$ is a superkey. (OK)
- $C \to D$: $\{C\}$ is not a superkey. (Violation)
- $AB \to E$: $\{AB\}$ is a superkey since A is a superkey. (OK)
- $C \to E$: $\{C\}$ is not a superkey. (Violation)
- $AB \to C$: $\{AB\}$ is a superkey since A is a superkey. (OK)

(3) BCNF Decomposition.

Decomposition Process:

Iteration 1:

- Start with relation: R(A, B, C, D, E) with $F = \{A \rightarrow B, C \rightarrow D, AB \rightarrow E, C \rightarrow E, AB \rightarrow C\}$.
- Choose a violating FD: $C \to D$.
- Decompose R into:
 - $-R_1(C,D)$
 - $-R_2(A,B,C,E)$
- Check for BCNF:
 - F_1 : $\{C \to D, trivials\}$, since $\{C\}^+ = \{C, D\} = R_1, R_1$ is in BCNF.
 - F_2 : $\{A \to B, C \to E, AB \to C, AB \to E, trivials\}$, check each FD:
 - * $A \to B$: $\{A\}^+ = \{A, B, C, E\} = R_2$. (OK)
 - * $C \to E$: $\{C\}^+ = \{C, E\} \neq R_2$. (Violation)
 - * $AB \to C$: $\{AB\}^+ = \{A, B, C, E\} = R_2$. (OK)
 - * $AB \to E$: $\{AB\}^+ = \{A, B, C, E\} = R_2$. (OK)
 - * R_2 is **NOT** in BCNF.
- Check for dependency preserving:
 - Since $(F_1 \cup F_2)^+ = F^+$, this decomposition is dependency preserving.
- Check for loseless join:
 - $-(schema(R_1) \cap schema(R_2) \rightarrow schema(R_1)) \Leftrightarrow (C \rightarrow CD), \text{ where } C \rightarrow CD \text{ is true.}$
 - This decomposition is loseless join.

Iteration 2:

- Start with relation: $R_2(A, B, C, E)$ with $F_2 = \{A \to B, C \to E, AB \to C, AB \to E, trivials\}$.
- Choose a violating FD: $C \to E$.
- Decompose R_2 into:
 - $-R_3(C,E)$
 - $-R_4(A,B,C)$
- Check for BCNF:
 - F_3 : $\{C \to E, trivials\}$, since $\{C\}^+ = \{C, E\} = R_3, R_3$ is in BCNF.
 - F_4 : { $A \rightarrow B, AB \rightarrow C, trivials$ }, check each FD:
 - * $A \to B$: $\{A\}^+ = \{A, B, C\} = R_4$. (OK)
 - $*AB \to C: \{AB\}^+ = \{A, B, C\} = R_4. \text{ (OK)}$
 - * R_4 is in BCNF.
- Check for dependency preserving:
 - $-(F_1 \cup F_3 \cup F_4)^+ = F^+$, this decomposition is dependency preserving.
- Check for loseless join:
 - $-(schema(R_3) \cap schema(R_4) \rightarrow schema(R_3)) \Leftrightarrow (C \rightarrow CE), \text{ where } C \rightarrow CE \text{ is true.}$
 - This decomposition is loseless join.

Result of a BCNF decomposition on R:

• $R_1(C,D)$

- $R_3(C, E)$
- $R_4(A, B, C)$
- $F_1 = \{C \rightarrow D, trivials\}$
- $F_3 = \{C \rightarrow E, trivials\}$
- $F_4 = \{A \rightarrow B, AB \rightarrow C, trivials\}$