

Srinivasa. R Bangalore, India

Notation

 $\|\mathbf{w}\|$

ungwor (unw)

•	aa,bb,cc	Scalar (integer or real)
•	xx,yy,zz	Vector (bold-font, lower case)
•	AA,BB,CC	Matrix (bold-font, upper-case)
•	A, B, C	Tensor ((bold-font, upper-case)
•	XX,YY,ZZ	Random variable (normal font, upper-case)
•	$\alpha \in \mathcal{A}A$	Set membership: ais member of set AA
•	AA.	Cardinality: number of items in set AA

Norm of vector **w**

lacksquare Set of real numbers

• \mathbb{R}^{nn} Real numbers space of dimension n

• y = ff(x) or $x \mapsto ff(x)$ Function (map): assign a unique value ff(x) to each input value x

Dot product of vectors **w**and **w**

• $ff:\mathbb{R}^m \to \mathbb{R}$ Function (map): map an n-dimensional vector into a scalar

Notation

•	A⊙ B	Element-wise product of matrices A and B
•	A	Pseudo-inverse of matrix A
•	$\frac{dd^{n}ff}{ddx^{n}}$	n-th derivative of function f with respect to x
•	$\mathbf{\nabla} ff(\mathbf{x})$	Gradient of function f with respect to \mathbf{x}
•	H	Hessian matrix of function f
•	XX-PP	Random variable Whas distribution PP
•	H(XX Y)	Probability of <i>X</i> given <i>Y</i>
•	$\mathcal{N}(\mu\mu\sigma\sigma^2)$	Gaussian distribution with mean μ and variance σ^2
•	$\mathbb{E}_{X \sim PP}[ff(XX)]$	Expectation of ff(XX) with respect to PP(XX)
•	Var(ff(XX))	Variance of ff(XX)
•	Cov(ff(XX), gg(YY))	Covariance of ff(XX) and gg(YY)
•	corr(XX,YY)	Correlation coefficient for Wand W
•	$DD_{RRK}(PPQQ)$	Kullback-Leibler divergence for distributions $I\!\!P$ and $Q\!\!Q$
•	<i>(PP,Q)</i>	Cross-entropy for distributions $I\!\!P$ and $Q\!\!Q$

Vectors

- **Computer science**: *vector* is a one-dimensional array of ordered real-valued scalars
- **Mathematics**: *vector* is a quantity possessing both magnitude and direction, represented by an arrow indicating the direction, and the length of which is proportional to the magnitude
- Vectors are written in column form or in row form
 - Denoted by bold-font lower-case letters

$$\mathbf{x} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 & 7 & 0 & 1 \end{bmatrix}^{T}$$

• For a general form vector with melements, the vector lies in the mdimensional space $\mathbf{x} \in \mathbb{R}^{nn}$

$$\mathbf{x} = \begin{bmatrix} xx_1 \\ xx_2 \\ \vdots \\ xx_n \end{bmatrix}$$

Geometry of Vectors

- First interpretation of a vector: point in space
 - E.g., in 2D we can visualize the data points with respect to a coordinate origin

- Second interpretation of a vector: direction in space
 - E.g., the vector $\mathbf{w} = [3, 2]^T$ has a direction of 3 steps to the right and 2 steps up
 - The notation wis sometimes used to indicate that the vectors have a direction
 - All vectors in the figure have the same direction

- Vector addition
 - We add the coordinates, and follow the directions given by the two vectors that are added

- The geometric interpretation of vectors as points in space allow us to consider a training set of input examples in ML as a collection of points in space
 - Hence, classification can be viewed as discovering how to separate two clusters of points belonging to different classes (left picture)
 - o Rather than distinguishing images containing cars, planes, buildings, for example
 - Or, it can help to visualize zero-centering and normalization of training data (right picture)

Dot Product and Angles

- **Dot product** of vectors, $\mathbf{w} = \mathbf{w} = \mathbf{w} = \sum_{ii} u \mathbf{v}_i \mathbf{v}_i$
 - It is also referred to as inner product, or scalar product of vectors
 - The dot product **w**(**w**) is also often denoted by (**u**, **w**)
- The dot product is a symmetric operation, $\mathbf{w} = \mathbf{w} = \mathbf{w}^T \mathbf{w}$
- Geometric interpretation of a dot product: angle between two vectors
 - I.e., dot product **w** wover the norms of the vectors is $cos(\theta)$

$$\mathbf{w} = \|\mathbf{w}\| \|\mathbf{w}\| \operatorname{and}(\theta) \qquad \cos \theta = \frac{\mathbf{w} \cdot \mathbf{w}}{\|\mathbf{w}\| \|\mathbf{w}\|}$$

- If two vectors are orthogonal: $\theta = 90^\circ$, i.e., $\cos(\theta \theta) = 0$, then $\psi = 0$
- Also, in ML the term $\cos\theta\theta = \frac{\|\mathbf{w}\|}{\|\mathbf{w}\|}$ is sometimes employed as a measure of closeness of two vectors/data instances, and it is referred to as cosine similarity

Norm of a Vector —

Vectors

- A vector *norm* is a function that maps a vector to a scalar value
 - The norm is a measure of the size of the vector
- The norm *ff* should satisfy the following properties:
 - Scaling: $ff(\alpha \mathbf{x}) = |\alpha|ff(\mathbf{x})$
 - Triangle inequality: $ff(\mathbf{x} + \mathbf{y}) \le ff(\mathbf{x}) + ff(\mathbf{y})$
 - Must be non-negative: $ff(\mathbf{x}) \ge 0$
- - On next page we will review the most common norms, obtained for p=1, 2, and ∞

Vectors

- For p=2, we have ℓ_2 norm
 - Also called **Euclidean norm**
 - It is the most often used norm
 - ℓ_2 norm is often denoted just as ||x|| with the subscript 2 omitted
- For p = 1, we have ℓ_1 norm
 - Uses the absolute values of the elements
 - Discriminate between zero and non-zero elements
- For $p = \infty$, we have ℓ_{∞} norm
 - Known as infinity norm, or max norm
 - Outputs the absolute value of the largest element
- ℓ_0 norm outputs the number of non-zero elements
 - It is not an ℓ_{pp} norm, and it is not really a norm function either (it is incorrectly called a norm)

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$$

$$i = 1$$

m

 $\|\mathbf{x}\|_{\infty} = \max_{i} |\mathbf{x}_{i}|$

 $||\mathbf{x}||_1 =$

Vector Projection —

Vectors

- Orthogonal projection of a vector **w**onto vector **x**
 - The projection can take place in any space of dimensionality ≥ 2
 - The unit vector in the direction of \mathbf{x} is $\frac{\mathbf{x}}{\|\mathbf{x}\|}$
 - o A unit vector has norm equal to 1

 - The orthogonal project is the vector mmm(y)

$$\mathbf{m}(\mathbf{y}) = \frac{\mathbf{x}(\mathbf{y})|\mathbf{y}|}{||\mathbf{x}||}$$

Hyperplanes

Hyperplanes

- *Hyperplane* is a subspace whose dimension is one less than that of its ambient space
 - In a 2D space, a hyperplane is a straight line (i.e., 1D)
 - In a 3D, a hyperplane is a plane (i.e., 2D)
 - In a d-dimensional vector space, a hyperplane has dl- 1 dimensions, and divides the space into two half-spaces
- Hyperplane is a generalization of a concept of plane in high-dimensional space
- In ML, hyperplanes are decision boundaries used for linear classification
 - Data points falling on either sides of the hyperplane are attributed to different classes

Hyperplanes

- For example, for a given data point **w** = $[2, 1]^T$, we can use dot-product to find the hyperplane for which **w** = 1
 - I.e., all vectors with www> 1 can be classified as one class, and all vectors with www
 1 can be classified as another class

• Solving $\mathbf{w} \mathbf{\hat{e}} \mathbf{w} = 1$, we obtain

$$\|\mathbf{v}\|\|\mathbf{w}\|\cos(\theta) = 1 \iff \|\mathbf{v}\|\cos(\theta) = \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{5}}$$

- I.e., the solution is the set of points for which www= 1
 meaning the points lay on the line that is orthogonal to
 the vector ww
 - \circ That is the line 2xx + yy = 1
- The orthogonal projection of wonto wwis $\|\mathbf{w}\| \cos(\theta) = \frac{1}{\sqrt{5}}$

Hyperplanes

- In a 3D space, if we have a vector $\mathbf{w} = [1, 2, 3]^T$ and try to find all points that satisfy $\mathbf{w} = 1$, we can obtain a plane that is orthogonal to the vector \mathbf{w}
 - The inequalities **www**> 1 and **www**< 1 again define the two subspaces that are created by the plane

The same concept applies to high-dimensional spaces as well

Matrices

Matrices

- *Matrix* is a rectangular array of real-valued scalars arranged in *m* horizontal rows and *n* vertical columns
 - Each element αa_{ii} belongs to the i^{th} row and j^{th} column
 - The elements are denoted aa_{iii} or AA_{iiii} or AA_{iii} or AA_{iii} or AA_{iii} or AA_{iii} or

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- For the matrix $\mathbf{A} \in \mathbb{R}^{mn \times m}$, the size (dimension) is $mn \times m$ or (mnm)
 - Matrices are denoted by bold-font upper-case letters

Matrices

• Addition or subtraction $(\mathbf{A} \pm \mathbf{B})_{i,j} = \mathbf{A}_{i,j} \pm \mathbf{B}_{i,j}$

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$$

• Scalar multiplication $(c\mathbf{A})_{i,j} = c \cdot \mathbf{A}_{i,j}$

$$2 \cdot \begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 & 2 \cdot 8 & 2 \cdot -3 \\ 2 \cdot 4 & 2 \cdot -2 & 2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 2 & 16 & -6 \\ 8 & -4 & 10 \end{bmatrix}$$

- Matrix multiplication $(\mathbf{AB})_{i,j} = \mathbf{A}_{i,1}\mathbf{B}_{1,j} + \mathbf{A}_{i,2}\mathbf{B}_{2,j} + \cdots + \mathbf{A}_{i,n}\mathbf{B}_{n,j}$
 - Defined only if the number of columns of the left matrix is the same as the number of rows of the right matrix
 - Note that **ABB**≠ **BAA**

$$\begin{bmatrix} \frac{2}{1} & \frac{3}{0} & \frac{4}{0} \\ 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} 0 & \frac{1000}{100} \\ 1 & \frac{100}{100} \\ 0 & \frac{10}{1000} \end{vmatrix} = \begin{bmatrix} 3 & \frac{2340}{1000} \\ 0 & 1000 \end{bmatrix}$$

Matrices

• *Transpose* of the matrix: **A** has the rows and columns exchanged

Some properties
$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
 $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ $\mathbf{A} + \mathbf{B} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{A}$

- *Square matrix*: has the same number of rows and columns
- *Identity matrix* (I_n): has ones on the main diagonal, and zeros elsewhere

• E.g.: identity matrix of size
$$3\times3$$
: $\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

Matrices

- **Determinant** of a matrix, denoted by det(**A**) or |**A**|, is a real-valued scalar encoding certain properties of the matrix
 - E.g., for a matrix of size 2×2: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad bc$
 - For larger-size matrices the determinant of a matrix id calculated as

$$\det(\mathbf{A}) = \mathbf{Q} \quad aa_{ii} - 1)^{i+i} add dd dd \left(\mathbf{A}_{ii,i,i}\right)$$

- In the above, $\mathbf{A}_{(ii,ii)}$ is a minor of the matrix obtained by removing the row and column associated with the indices i and j
- *Trace* of a matrix is the sum of all diagonal elements

$$\operatorname{Tr}(\mathbf{A}) = \alpha$$

• A matrix for which $\mathbf{A} = \mathbf{A}^T$ is called a *syminetric matrix*

Matrices

- Elementwise multiplication of two matrices A and B is called the *Hadamard product* or *elementwise product*
 - The math notation is ⊙

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} & \dots & a_{1n}b_{1n} \\ a_{21}b_{21} & a_{22}b_{22} & \dots & a_{2n}b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & a_{m2}b_{m2} & \dots & a_{mn}b_{mn} \end{bmatrix}$$

Matrix-Vector Products

Matrices

- Consider a matrix $\mathbf{A} \in \mathbb{R}^{mn \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^{nn}$
- The matrix can be written in terms of its row vectors (e.g., \mathbf{a}_1^T is the first row)

$$\mathbf{A} = egin{bmatrix} \mathbf{a}_1^ op \ \mathbf{a}_2^ op \ dots \ \mathbf{a}_m^ op \end{bmatrix}$$

• The matrix-vector product is a column vector of length m, whose i^{th} element is the dot product $\mathbf{a}_{i}^{T}\mathbf{x}$

$$\mathbf{A}\mathbf{x} = egin{bmatrix} \mathbf{a}_1^{ op} \ \mathbf{a}_2^{ op} \ dots \ \mathbf{a}_m^{ op} \end{bmatrix} \mathbf{x} = egin{bmatrix} \mathbf{a}_1^{ op} \mathbf{x} \ \mathbf{a}_2^{ op} \mathbf{x} \ dots \ \mathbf{a}_m^{ op} \mathbf{x} \end{bmatrix}$$

• Note the size: $\mathbf{A}(mn \times n)$ $\mathbf{A}(m \times 1) = \mathbf{A}(mn \times 1)$

Matrices

• To multiply two matrices $\mathbf{A} \in \mathbb{R}^{m \times kk}$ and $\mathbf{B} \in \mathbb{R}^{kk \times mm}$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{km} \end{bmatrix}$$

We can consider the matrix-matrix product as dot-products of rows in Aland columns in BB

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{a}_1^\top \\ \mathbf{a}_2^\top \\ \vdots \\ \mathbf{a}_n^\top \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_m \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^\top \mathbf{b}_1 & \mathbf{a}_1^\top \mathbf{b}_2 & \cdots & \mathbf{a}_1^\top \mathbf{b}_m \\ \mathbf{a}_2^\top \mathbf{b}_1 & \mathbf{a}_2^\top \mathbf{b}_2 & \cdots & \mathbf{a}_2^\top \mathbf{b}_m \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_n^\top \mathbf{b}_1 & \mathbf{a}_n^\top \mathbf{b}_2 & \cdots & \mathbf{a}_n^\top \mathbf{b}_m \end{bmatrix}$$

• Size: $\mathbf{A}(m \times kk)$ **(Hi**) $kk \times m$) = $\mathbf{C}(m \times mn)$

Inverse of a Matrix

Matrices

• For a square $m \times m$ matrix **A** with rank m, **AA**⁻¹¹ is its *inverse matrix* if their product is an identity matrix **I**

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

• Properties of inverse matrices

$$\left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A}$$

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

- If det(A) = 0 (i.e., rank(A) < m), then the inverse does not exist
 - A matrix that is not invertible is called a singular matrix
- Note that finding an inverse of a large matrix is computationally expensive
 - In addition, it can lead to numerical instability
- If the inverse of a matrix is equal to its transpose, the matrix is said to be orthogonal matrix

$$\mathbf{A}^{-1} = \mathbf{A}^T$$

Pseudo-Inverse of a Matrix

Matrices

- *Pseudo-inverse* of a matrix
 - Also known as Moore-Penrose pseudo-inverse
- For matrices that are not square, the inverse does not exist
 - Therefore, a pseudo-inverse is used
- If mm > m, then the pseudo-inverse is $\mathbf{AA}^{\dagger} = (\mathbf{AA}^{T}\mathbf{AA})^{-1}\mathbf{AA}^{TT}$ and $\mathbf{AA}^{TT}\mathbf{AA}^{TT}$
- If mm < m, then the pseudo-inverse is $\mathbf{AA}^{\dagger} = \mathbf{AA}^{T} (\mathbf{AAA}^{T})^{-1}$ and $\mathbf{AAA}^{\dagger} = \mathbf{I}$
 - E.g., for a matrix with dimension $XX_{2\times3}$, a pseudo-inverse can be found of size $XX_{3\times2}^{\dagger}$, so that $XX_{2\times3}XX_{3\times2}^{\dagger} = II_{2\times2}$

Tensors

Tensors

- *Tensors* are *n*-dimensional arrays of scalars
 - Vectors are first-order tensors, $\mathbf{w} \in \mathbb{R}^{nn}$
 - Matrices are second-order tensors, $\mathbf{A} \in \mathbb{R}^{m \times n}$
 - E.g., a fourth-order tensor is $\mathbf{T} \in \mathbb{R}^{nn_1 \times nn_2 \times nn_3 \times nn_4}$
- Tensors are denoted with upper-case letters of a special font face (e.g., X, Y, Z)
- RGB images are third-order tensors, i.e., as they are 3-dimensional arrays
 - The 3 axes correspond to width, height, and channel
 - E.g., 224 × 224 × 3
 - The channel axis corresponds to the color channels (red, green, and blue)

Manifolds

Manifolds

- Earlier we learned that hyperplanes generalize the concept of planes in highdimensional spaces
 - Similarly, manifolds can be informally imagined as generalization of the concept of surfaces in high-dimensional spaces
- To begin with an intuitive explanation, the surface of the Earth is an example of a two-dimensional manifold embedded in a three-dimensional space
 - This is true because the Earth looks locally flat, so on a small scale it is like a 2-D plane
 - However, if we keep walking on the Earth in one direction, we will eventually end up back where we started
 - o This means that Earth is not really flat, it only looks locally like a Euclidean plane, but at large scales it folds up on itself, and has a different global structure than a flat plane

Manifolds

- Manifolds are studied in mathematics under topological spaces
- An *n*-dimensional *manifold* is defined as a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension *n*
 - This means that a manifold locally resembles Euclidean space near each point
 - Informally, a Euclidean space is locally smooth, it does not have holes, edges, or other sudden changes, and it does not have intersecting neighborhoods
 - Although the manifolds can have very complex structure on a large scale, resemblance
 of the Euclidean space on a small scale allows to apply standard math concepts
- Examples of 2-dimensional manifolds are shown in the figure
 - The surfaces in the figure have been conveniently cut up into little rectangles that were glued together
 - Those small rectangles locally look like flat Euclidean planes

Manifolds

- Examples of one-dimensional manifolds
 - Upper figure: a circle is a l-D manifold embedded in 2-D, where each arc of the circle locally resembles a line segment
 - Lower figures: other examples of 1-D manifolds
 - Note that a number 8 figure is not a manifold because it has an intersecting point (it is not Euclidean locally)
- It is hypothesized that in the real-world, high-dimensional data (such as images) lie on low-dimensional manifolds embedded in the high-dimensional space
 - E.g., in ML, let's assume we have a training set of images with size $224 \times 224 \times 3$ pixels
 - Learning an arbitrary function in such high-dimensional space would be intractable
 - Despite that, all images of the same class ("cats" for example) might lie on a low-dimensional manifold
 - This allows function learning and image classification

Manifolds

Manifolds

• Example:

- The data points have 3 dimensions (left figure), i.e., the input space of the data is 3dimensional
- The data points lie on a 2-dimensional manifold, shown in the right figure
- Most ML algorithms extract lower-dimensional data features that enable to distinguish between various classes of high-dimensional input data
 - o The low-dimensional representations of the input data are called **embeddings**

Eigen Decomposition

Eigen Decomposition

- *Eigen decomposition* is decomposing a matrix into a set of eigenvalues and eigenvectors
- *Eigenvalues* of a square matrix **A** are scalars M and *eigenvectors* are non-zero vectors **w**that satisfy

$$AAw = \lambda w$$

Eigenvalues are found by solving the following equation

$$\det(\mathbf{A} - \mathcal{M}) = 0$$

• If a matrix **A**has n linearly independent eigenvectors $\{\mathbf{w}^1, ..., \mathbf{w}^n\}$ with corresponding eigenvalues $\{\mathcal{M}_1, ..., \mathcal{M}_m\}$, the eigen decomposition of **A**his given by

$$A = WW^{-1}$$

- Columns of the matrix **W**are the eigenvectors, i.e., $\mathbf{W} = [\mathbf{v}^1, \dots, \mathbf{w}^m]$
- **M**is a diagonal matrix of the eigenvalues, i.e., $\mathbf{M} = [\lambda \lambda_1, ..., \lambda_m]$
- To find the inverse of the matrix A, we can use $\mathbf{A}\mathbf{A}^{-1} = \mathbf{W}\mathbf{M}^{-1}\mathbf{W}^{-1}$
 - This involves simply finding the inverse **M**⁻¹¹ of a diagonal matrix

Eigen Decomposition

- Decomposing a matrix into eigenvalues and eigenvectors allows to analyze certain properties of the matrix
 - If all eigenvalues are positive, the matrix is positive definite
 - If all eigenvalues are positive or zero-valued, the matrix is positive semidefinite
 - If all eigenvalues are negative or zero-values, the matrix is negative semidefinite
 - o Positive semidefinite matrices are interesting because they guarantee that $\forall xx, x^T A x \ge 0$
- Eigen decomposition can also simplify many linear-algebraic computations
 - The determinant of A can be calculated as

$$\det(\mathbf{A}) = \lambda \lambda_1 \mathbf{Q} \lambda_2 \cdots \lambda_m$$

- If any of the eigenvalues are zero, the matrix is singular (it does not have an inverse)
- However, not every matrix can be decomposed into eigenvalues and eigenvectors
 - Also, in some cases the decomposition may involve complex numbers
 - Still, every real symmetric matrix is guaranteed to have an eigen decomposition according to A = WW⁻¹, where Wis an orthogonal matrix

Eigen Decomposition

- Geometric interpretation of the eigenvalues and eigenvectors is that they allow to stretch the space in specific directions
 - Left figure: the two eigenvectors \mathbf{w}^1 and \mathbf{w}^2 are shown for a matrix, where the two vectors are unit vectors (i.e., they have a length of 1)
 - Right figure: the vectors \mathbf{w}^1 and \mathbf{w}^2 are multiplied with the eigenvalues \mathcal{U}_1 and \mathcal{U}_2 \circ We can see how the space is scaled in the direction of the larger eigenvalue \mathcal{U}_1
- E.g., this is used for dimensionality reduction with PCA (principal component analysis) where the eigenvectors corresponding to the largest eigenvalues are used for extracting the most important data dimensions

Differential Calculus

Differential Calculus

• For a function $ff: \mathbb{R} \to \mathbb{R}$, the *derivative* of f is defined as

$$ff'(xx) = \lim_{h \to 0} \frac{ff(xx+h) - ff(xx)}{h}$$

- If $ff'(\alpha)$ exists, f is said to be differentiable at a
- If f'(x) is differentiable for $\forall x \in [x, b]$, then f is differentiable on this interval
 - We can also interpret the derivative fff(x) as the instantaneous rate of change of ff(x) with respect to x
 - I.e., for a small change in x, what is the rate of change of ff(xx)
- Given y = ff(xx), where x is an independent variable and y is a dependent variable, the following expressions are equivalent:

$$ff'(xx) = ff' = \frac{dy}{dtx} = \frac{dtf}{dtx} = \frac{dt}{dtx} ff(xx) = DDf(xx) = DDx ff(xx)$$

• The symbols $\frac{dl}{ddx}$, D, and D_x are differentiation operators that indicate operation of differentiation

Differential Calculus

- The following rules are used for computing the derivatives of explicit functions
 - Derivative of constants. $\frac{d}{dx}c = 0$.
 - Derivative of linear functions. $\frac{d}{dx}(ax) = a$.
 - Power rule. $\frac{d}{dx}x^n = nx^{n-1}$.
 - Derivative of exponentials. $\frac{d}{dx}e^x = e^x$.
 - Derivative of the logarithm. $\frac{d}{dx}\log(x) = \frac{1}{x}$.
 - Sum rule. $\frac{d}{dx}(g(x) + h(x)) = \frac{dg}{dx}(x) + \frac{dh}{dx}(x)$.
 - Product rule. $\frac{d}{dx}\left(g(x)\cdot h(x)\right)=g(x)\frac{dh}{dx}(x)+\frac{dg}{dx}(x)h(x)$.
 - Chain rule. $\frac{d}{dx}g(h(x)) = \frac{dg}{dh}(h(x)) \cdot \frac{dh}{dx}(x)$.

Differential Calculus

The derivative of the first derivative of a function ff(xx) is the second derivative of ff(xx)

$$\frac{dd^2ff}{ddx^2} = \frac{dl}{dtx} \left(\frac{dtf}{dtx} \right)$$

- The second derivative quantifies how the rate of change of ff(x) is changing
 - E.g., in physics, if the function describes the displacement of an object, the first derivative gives the velocity of the object (i.e., the rate of change of the position)
 - The second derivative gives the acceleration of the object (i.e., the rate of change of the velocity)
- If we apply the differentiation operation any number of times, we obtain the n-th derivative of ff(x)

$$ff^{(m)}(x) = \frac{dd^n ff}{ddx^n} = \left(\frac{dl}{dtx}\right)^m ff(x)$$

Geometric Interpretation

Differential Calculus

• To provide a geometric interpretation of the derivatives, let's consider a first-order Taylor series approximation of f(x) at $x = x_0$

$$ff(xx) \approx ff(xx_0) + \frac{dff}{dx} (xx - xx_0)$$

- The expression approximates the function ff(x) by a line which passes through the point $(xx_0 ff(xx_0))$ and has slope $\frac{diff}{dtx}$ (i.e., the value of $\frac{diff}{dtx}$ at the point xx_0)
- Therefore, the first derivative of a function is also the slope of the tangent line to the curve of the function

Partial Derivatives

Differential Calculus

- So far, we looked at functions of a single variable, where $ff: \mathbb{R} \to \mathbb{R}$
- Functions that depend on many variables are called multivariate functions
- Let $y = ff(\mathbf{x}) = ff(xx_1, xx_2, ..., xx_n)$ be a multivariate function with n variables
 - The input is an *n*-dimensional vector $\mathbf{x} = [xx_1, xx_2, ..., x_m]^T$ and the output is a scalar y
 - The mapping is $ff: \mathbb{R}^m \to \mathbb{R}$
- The *partial derivative* of y with respect to its i^{th} parameter x_i is

$$\frac{\partial y}{\partial x_i} = \lim_{h \to 0} \frac{ff(xx_1, xx_2, \dots, x_i + h, \dots, x_m) - ff(xx_1, xx_2, \dots, x_i, \dots, x_m)}{h}$$

- To calculate $\frac{\partial \mathcal{W}}{\partial x_i}$ ($\partial \mathcal{W}$ pronounced "del" or we can just say "partial derivative"), we can treat $xx_1, xx_2, ..., xx_{ii-1}, xx_{ii+1}..., xx_m$ as constants and calculate the derivative of y only with respect to x_i
- For notation of partial derivatives, the following are equivalent:

$$\frac{\partial \partial y}{\partial \partial x_{ii}} = \frac{\partial \partial f}{\partial \partial x_{ii}} = \frac{\partial}{\partial \partial x_{ii}} ff(\mathbf{x}) = \mathbf{f}_{x_{ii}} = \mathbf{f}_{ii} = \mathbf{D}\mathbf{D}\mathbf{f} = \mathbf{D}\mathbf{D}\mathbf{x}\mathbf{f}$$

Gradient

Differential Calculus

- We can concatenate partial derivatives of a multivariate function with respect to all its input variables to obtain the *gradient* vector of the function
- The gradient of the multivariate function $ff(\mathbf{x}\mathbf{x})$ with respect to the n-dimensional input vector $\mathbf{x} = [xx_1, xx_2, ..., x_n]^T$, is a vector of n partial derivatives

$$\mathbf{\nabla} ff(\mathbf{x}) = \left[\frac{\partial ff(\mathbf{x})}{\partial x_1}, \frac{\partial ff(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial ff(\mathbf{x})}{\partial x_m}\right]^T$$

- When there is no ambiguity, the notations $\overline{W}ff(\mathbf{x})$ or $\overline{\mathbf{x}}ff$ are often used for the gradient instead of $\overline{\mathbf{x}}ff(\mathbf{x})$
 - The symbol for the gradient is the Greek letter W(pronounced "nabla"), although W is more often it is pronounced "gradient of f with respect to x"
- In ML, the gradient descent algorithm relies on the opposite direction of the gradient of the loss function \mathcal{L} with respect to the model parameters \mathcal{H} ($\mathcal{W}_{\theta}\mathcal{L}$) for minimizing the loss function
 - Adversarial examples can be created by adding perturbation in the direction of the gradient of the loss \mathcal{L} with respect to input examples $\boldsymbol{x}(\boldsymbol{\mathbb{Z}}\mathcal{L})$ for maximizing the loss function

Optimization

- *Optimization* is concerned with optimizing an objective function finding the value of an argument that minimizes or maximizes the function
 - Most optimization algorithms are formulated in terms of minimizing a function ff(xx)
 - Maximization is accomplished vie minimizing the negative of an objective function (e.g., minimize -ff(xx))
 - In minimization problems, the objective function is often referred to as a cost function or loss function or error function
- Optimization is very important for machine learning
 - The performance of optimization algorithms affect the model's training efficiency
- Most optimization problems in machine learning are nonconvex
 - Meaning that the loss function is not a convex function
 - Nonetheless, the design and analysis of algorithms for solving convex problems has been very instructive for advancing the field of machine learning

Contd...

- Optimization and machine learning have related, but somewhat different goals
 - Goal in optimization: minimize an objective function
 - o For a set of training examples, reduce the training error
 - Goal in ML: find a suitable model, to predict on data examples
 - o For a set of testing examples, reduce the generalization error
- For a given empirical function *g* (dashed purple curve), optimization algorithms attempt to find the point of minimum empirical risk
- The expected function f (blue curve) is obtained given a limited amount of training data examples
- ML algorithms attempt to find the point of minimum expected risk, based on minimizing the error on a set of testing examples
 - Which may be at a different location than the minimum of the training examples
 - And which may not be minimal in a formal sense

Stationary Points

- *Stationary points* (or critical points) of a differentiable function ff(xx) of one variable are the points where the derivative of the function is zero, i.e., fff(xx) = 0
- The stationary points can be:
 - *Minimum*, a point where the derivative changes from negative to positive
 - *Maximum*, a point where the derivative changes from positive to negative
 - *Saddle point*, derivative is either positive or negative on both sides of the point
- The minimum and maximum points are collectively known as extremum points
- The nature of stationary points can be determined based on the second derivative of *ff*(*xx*) at the point
 - If ff''(xx) > 0, the point is a minimum
 - If ff''(xx) < 0, the point is a maximum
 - If ff''(xx) = 0, inconclusive, the point can be a saddle point, but it may not
- The same concept also applies to gradients of multivariate functions

Local Minima

- Among the challenges in optimization of model's parameters in ML involve local minima, saddle points, vanishing gradients
- For an objective function ff(xx), if the value at a point x is the minimum of the objective function over the entire domain of x, then it is the *global minimum*
- If the value of *ff(xx)* at *x* is smaller than the values of the objective function at any other points in the vicinity of *x*, then it is the *local minimum*
 - The objective functions in ML usually have many local minima
 - When the solution of the optimization algorithm is near the local minimum, the gradient of the loss function approaches or becomes zero (vanishing gradients)
 - Therefore, the obtained solution in the final iteration can be a local minimum, rather than the global minimum

Saddle Points

- The gradient of a function *ff*(*xx*) at a saddle point is 0, but the point is not a minimum or maximum point
 - The optimization algorithms may stall at saddle points, without reaching a minima
- Note also that the point of a function at which the sign of the curvature changes is called an inflection point
 - An inflection point (ffff(x)) = 0 can also be a saddle point, but it does not have to be
- For the 2D function (right figure), the saddle point is at (0,0)
 - The point looks like a saddle, and gives the minimum with respect to x, and the maximum with respect to y

Convex Optimization

- A function of a single variable is concave if every line segment joining two points on its graph does not lie above the graph at any point
- Symmetrically, a function of a single variable is *convex* if every line segment joining two points on its graph does not lie below the graph at any point

A concave function: no line segment joining two points on the graph lies above the graph at any point

A convex function: no line segment joining two points on the graph lies below the graph at any point

Contd...

Optimization

• In mathematical terms, the function f is a *convex function* if for all points xx_1,xx_2 and for all $M \in [0,1]$

$$\lambda \lambda ff(xx_1) + (1 - \lambda \lambda)ff(xx_2) \ge ff(\lambda \lambda x_1 + (1 - \lambda \lambda)xx_2)$$

Convex Functions

- One important property of convex functions is that they do not have local minima
 - Every local minimum of a convex function is a global minimum
 - I.e., every point at which the gradient of a convex function = 0 is the global minimum
 - The figure below illustrates two convex functions, and one nonconvex function

Probability

- Intuition:
 - In a process, several outcomes are possible
 - When the process is repeated a large number of times, each outcome occurs with a relative frequency, or probability
 - If a particular outcome occurs more often, we say it is more probable
- Probability arises in two contexts
 - In actual repeated experiments
 - \circ Example: You record the color of 1,000 cars driving by. 57 of them are green. You estimate the probability of a car being green as 57/1,000 = 0.057.
 - In idealized conceptions of a repeated process
 - \circ Example: You consider the behavior of an unbiased six-sided die. The expected probability of rolling a 5 is 1/6 = 0.1667.
 - Example: You need a model for how people's heights are distributed. You choose a normal distribution to represent the expected relative probabilities.

Contd...

- Solving machine learning problems requires to deal with uncertain quantities, as well as with stochastic (non-deterministic) quantities
 - Probability theory provides a mathematical framework for representing and quantifying uncertain quantities
- There are different sources of uncertainty:
 - Inherent stochasticity in the system being modeled
 - For example, most interpretations of quantum mechanics describe the dynamics of subatomic particles as being probabilistic
 - Incomplete observability
 - Even deterministic systems can appear stochastic when we cannot observe all of the variables that drive the behavior of the system
 - Incomplete modeling
 - o When we use a model that must discard some of the information we have observed, the discarded information results in uncertainty in the model's predictions
 - o E.g., discretization of real-numbered values, dimensionality reduction, etc.

Random variables

- A *random variable X*is a variable that can take on different values
 - Example: *W*= rolling a die
 - o Possible values of *X* comprise the **sample space**, or **outcome space**, $\mathcal{S} = \{1, 2, 3, 4, 5, 6\}$
 - o We denote the event of "seeing a 5" as $\{X=5\}$ or X=5
 - The probability of the event is $P(\{X = 5\})$ or P(X = 5)
 - Also, P(5) can be used to denote the probability that Wtakes the value of 5
- A *probability distribution* is a description of how likely a random variable is to take on each of its possible states
 - A compact notation is common, where *PP(XX)* is the probability distribution over the random variable *XX*
 - Also, the notation X~PP(XX) can be used to denote that the random variable XX has probability distribution PP(XX)
- Random variables can be discrete or continuous
 - Discrete random variables have finite number of states: e.g., the sides of a die
 - Continuous random variables have infinite number of states: e.g., the height of a person

Axioms of probability

- The probability of an event **A**In the given sample space **S**, denoted as **P**(**A**I) must satisfies the following properties:
 - Non-negativity
 - o For any event $AA \in SS$, $P(AA) \ge 0$
 - All possible outcomes
 - o Probability of the entire sample space is 1, P(S) = 1
 - Additivity of disjoint events
 - o For all events \mathcal{AAAE} Sthat are mutually exclusive $(\mathcal{AA} \cap \mathcal{AA} = \emptyset)$, the probability that both events happen is equal to the sum of their individual probabilities, $P(\mathcal{AA} \cup \mathcal{AA}) = P(\mathcal{AA} \cup \mathcal{AA})$
- The probability of a random variable P(X) must obey the axioms of probability over the possible values in the sample space S

Discrete Variables

- A probability distribution over discrete variables may be described using a probability mass function (PMF)
 - E.g., sum of two dice
- A probability distribution over continuous variables may be described using a probability density function (PDF)
 - E.g., waiting time between eruptions of Old Faithful
 - A PDF gives the probability of an infinitesimal region with volume
 - To find the probability over an interval [*a*, *b*], we can integrate the PDF as follows:

$$P(X \in [aa,bb]) = \int_{aa}^{bb} P(X)dbX$$

Multivariate Random Variables

- We may need to consider several random variables at a time
 - If several random processes occur in parallel or in sequence
 - E.g., to model the relationship between several diseases and symptoms
 - E.g., to process images with millions of pixels (each pixel is one random variable)
- Next, we will study probability distributions defined over multiple random variables
 - These include joint, conditional, and marginal probability distributions
- The individual random variables can also be grouped together into a random vector, because they represent different properties of an individual statistical unit
- A multivariate random variable is a vector of multiple random variables $\mathbf{X} = (XX_1XX_2..., XX_m)^T$

Joint Probability Distribution

- Probability distribution that acts on many variables at the same time is known as
 a *joint probability distribution*
- Given any values x and y of two random variables X and Y, what is the probability that X = x and Y = y simultaneously?
 - PP(XX = xx, YY = yy) denotes the joint probability
 - We may also write *PP(xx,yy)* for brevity

Marginal Probability Distribution

Probability

- *Marginal probability distribution* is the probability distribution of a single variable
 - It is calculated based on the joint probability distribution P(XX,YY)
 - I.e., using the sum rule: $P(X = x) = \sum_{\partial \partial} P(X = xx, Y = y)$
 - For continuous random variables, the summation is replaced with integration, $P(X = x) = \int P(X = x, Y = y) dy$
 - This process is called marginalization

marginal probability: p(X = minivan) = 0.0741 + 0.1111 + 0.1481 = 0.3333

Conditional Probability Distribution

Probability

- *Conditional probability distribution* is the probability distribution of one variable provided that another variable has taken a certain value
 - Denoted PP(XX = xx|YY = yy)
- Note that: $P(XX = xx|Y = yy) = \frac{P(XX = xx, YY = \partial x)}{P(YY = \partial x)}$

conditional probability: p(Y = European | X = minivan) = 0.1481 / (0.0741 + 0.1111 + 0.1481) = 0.4433

Bayes' Theorem

Probability

 Bayes' theorem – allows to calculate conditional probabilities for one variable when conditional probabilities for another variable are known

$$H(XX|YY) = \frac{H(YY|XX)H(XX)}{H(YY)}$$

- Also known as Bayes' rule
- Multiplication rule for the joint distribution is used: P(XX,YY) = P(YY|XX)P(XX)
- By symmetry, we also have: P(YY,XX) = P(XX|YY)P(YY)
- The terms are referred to as:
 - P(XX), the prior probability, the initial degree of belief for XX
 - P(XX|YY), the posterior probability, the degree of belief after incorporating the knowledge of YY
 - P(Y) X), the likelihood of Wgiven X
 - P(Y), the evidence

Independence

- Two random variables X and Y are independent if the occurrence of Y does not reveal any information about the occurrence of X
 - E.g., two successive rolls of a die are independent
- Therefore, we can write: P(XX|YY) = P(XX)
 - The following notation is used: $X \perp Y$
 - Also note that for independent random variables: P(XX,Y) = P(XX)P(Y)
- In all other cases, the random variables are *dependent*
 - E.g., duration of successive eruptions of Old Faithful
 - Getting a king on successive draws form a deck (the drawn card is not replaced)
- Two random variables *X* and *Y* are *conditionally independent* given another random variable *Z* if and only if *P(XX,YYZ)* = *P(XXZ)P(YYZ)*
 - This is denoted as XY⊥ YYZZ

Expected Value

Probability

- The *expected value* or *expectation* of a function *ff(XX)* with respect to a probability distribution *PXX* is the average (mean) when *XX* is drawn from *PXX*)
- For a discrete random variable *X*, it is calculated as

$$\mathbb{E}_{XX \to P}[ff(XX)] = \bigoplus_{XX} ff(XX)$$

• For a continuous random variable *X*, it is calculated as

$$\mathbb{H}_{XX \to P}[ff(XX)] = \mathbf{P} XX ff XX ddXX$$

- When the identity of the distribution is clear from the context, we can write $\mathbb{E}_{X}[f(X)]$
- If it is clear which random variable is used, we can write just $\mathbb{E}[f(X)]$
- Mean is the most common measure of central tendency of a distribution
 - For a random variable: $ff(XX_i) = XX_i \Rightarrow \mu = \mathbb{E}[XX_i] = \sum_{i} P(XX_i) \diamondsuit X_i$
 - This is similar to the mean of a sample of observations: $\mu = \frac{1}{N} \sum_{ii} X_{ii}$
 - Other measures of central tendency: median, mode

Variance

Probability

• *Variance* gives the measure of how much the values of the function *ff(XX)* deviate from the expected value as we sample values of X from *P(XX)*

$$Var(ff(XX)) = \mathbb{E}[(ff(XX) - \mathbb{E}[ff(XX)])^2]$$

- When the variance is low, the values of ff(XX) cluster near the expected value
- Variance is commonly denoted with $\sigma \sigma^2$
 - The above equation is similar to a function $ff(XX_i) = XX_i \mu$
 - We have $\sigma \sigma^2 = \sum_{ii} P(XX_i) (X_i \mu)^2$
 - This is similar to the formula for calculating the variance of a sample of observations: $\sigma\sigma^2 = \frac{1}{NN-1} \sum_{i} (XX_i \mu)^2$
- The square root of the variance is the *standard deviation*
 - Denoted $\varpi = \sqrt{\text{Var}(XX)}$

Covariance

Probability

• *Covariance* gives the measure of how much two random variables are linearly related to each other

$$Cov(ff(XX), g(YY)) = \mathbb{H}[ff(XX) - \mathbb{H}[ff(XX)])(g(YY) - \mathbb{H}[g(YY)])]$$

- If $ff(XX_i) = XX_i \mu_{XX}$ and $gg(Y_i) = Y_i \mu_{YY}$
 - Then, the covariance is: $Cov(XX,YY) = \sum_{ii} P(XX_i,Y_i) \cdot \langle XX_i \mu_{XX} \rangle \cdot \langle XX_i \mu_{XX} \rangle$
 - Compare to covariance of actual samples: $Cov(XX,YY) = \frac{1}{NN-1} \sum_{i} (YY_i \mu_X)(YY_i \mu_X)$
- The covariance measures the tendency for *W*and *W* to deviate from their means in same (or opposite) directions at same time

Correlation

Probability

• *Correlation coefficient* is the covariance normalized by the standard deviations of the two variables

$$corr(XX,YY) = \frac{Cov(XX,YY)}{\sigma_{XX} \circ \sigma_{YY}}$$

- It is also called Pearson's correlation coefficient and it is denoted $\mu(XX,Y)$
- The values are in the interval [-1, 1]
- It only reflects linear dependence between variables, and it does not measure nonlinear dependencies between the variables

Linear dependence with noise

Linear dependence without noise

Various nonlinear dependencies

Probability Distributions

Probability

• Bernoulli distribution

- Binary random variable Wwith states {0, 1}
- The random variable can encodes a coin flip which comes up 1 with probability p and 0 with probability 1 pp
- Notation: *X*~ *Ballina Bills*(*p*)

Uniform distribution

- The probability of each value $\mathbb{B} \in \{1, 2, ..., m\}$ is $p_{i} = \frac{1}{m}$
- Notation: *X*/~ *U*(*m*)
- Figure: m = 5, p = 0.2

Contd...

Probability

• Binomial distribution

- Performing a sequence of n independent experiments, each of which has probability p of succeeding, where $p \in \{0, 1\}$
- The probability of getting k successes in n trials is $P(X = kk) = \binom{m}{k} p^{k} (1 p)^{m-kk}$
- Notation: X ~ BBbarn Bab (nn,pp)

Poisson distribution

- A number of events occurring independently in a fixed interval of time with a known rate M
- A discrete random variable X with states $k \in \{0, 1, 2, ...\}$ has probability $P(X = k) = \frac{\lambda \lambda}{X}$
- The rate *M* is the average number of occurrences of the event
- Notation: *XX* ~ *PraBattann(X*1)

Contd...

Probability

• Gaussian distribution

- The most well-studied distribution
 - o Referred to as normal distribution or informally bell-shaped distribution
- Defined with the mean μ and variance $\sigma \sigma^2$
- Notation: $X \sim \mathcal{N}(\mu\mu,\sigma\sigma^2)$
- For a random variable *X*/with *n* independent measurements, the density is

$$P_{X}(xx) = \frac{1}{\sqrt{2\pi\pi\sigma^2}} dt^{-\frac{(xx-\mu\mu)^2}{2\sigma\sigma^2}}$$

Cross-entropy

Information Theory

• *Cross-entropy* is closely related to the KL divergence, and it is defined as the summation of the entropy *H(PP)* and KL divergence *D_{HK}(PP|QQ)*

$$CCC(PP,QQ) = H(PP) + DD_{RRR}(PP|QQ)$$

• Alternatively, the cross-entropy can be written as

$$QQ(PP,QQ) = -\mathbb{E}[XX-PP][\log QQ(XX)]$$

- In machine learning, let's assume a classification problem based on a set of data examples $\{xx_1, xx_2, ..., x_n\}$, that need to be classified into k classes
 - For each data example xxi we have a class label yxi
 - The true labels **w**follow the true distribution *P*
 - The goal is to train a classifier (e.g., a NN) parameterized by $\theta\theta$, that outputs a predicted class label \mathbf{x}_i for each data example \mathbf{x}_i
 - \circ The predicted labels \mathfrak{P} follow the estimated distribution Q
 - The cross-entropy loss between the true distribution P and the estimated distribution Q is calculated as: $Q(X) = -\mathbb{E}_{XX-P}[\log Q(X)] = -\sum_{XX}P(X)\log Q(X) = -\sum_{ii}y_i\log \mathbf{p}_{ii}$
 - o The further away the true and estimated distributions are, the greater the cross-entropy loss is

