Final Exam Signature:

QUESTION 4 20 minutes 20 points

10150261	D	40180031	D	40180229	D	40190017	D	40190219	D
10150281	Е	40180038	Е	40180235	Е	40190018	Ε	40190230	Ε
10160263	Α	40180039	Α	40180240	Α	40190020	Α	40190232	Α
40090444	В	40180040	В	40180244	В	40190036	В	40190238	В
40150420	С	40180044	С	40180254	С	40190077	С	40190242	С
40160749	D	40180056	D	40180255	D	40190085	D	40190251	D
40170218	Е	40180063	Ε	40180260	Ε	40190098	Ε	40190254	Ε
40170411	Α	40180065	Α	40180527	Α	40190100	Α	40190431	Α
40170812	В	40180098	В	40180619	В	40190208	В	40190517	В
40180003	С	40180117	С	40180752	С	40190209	С	40190617	С
40180009	D	40180205	D	40180804	D	40190212	D	40190736	D
40180010	Е	40180206	Е	40180806	Е	40190213	Ε	40190737	Ε
40180015	Α	40180217	Α	40180808	Α	40190216	Α	40190746	Α
40180020	В	40180225	В	40180925	В	40190217	В	40190748	В
40190754	Α	40190791	С	40190912	Е				

GROUP: A GROUP: B GROUP: C GROUP: D GROUP: E

Final Exam Signature:

GROUP: A

Hours(x)	1	3	4	3	5	2
Score(y)	60	75	90	80	95	65

- a) Assuming that a simple linear regression model is appropriate, fit the regression model relating exam score (y) to the number of hours studied (x).
- b) What is the estimate of expected score when number of hours studied is 4?

$$Y=\alpha X+\beta$$
, $\alpha = \frac{Cov[X,Y]}{\sigma_X^2}$, $\beta = E[Y] - \frac{Cov[X,Y]}{\sigma_X^2}E[X]$

Final Exam Signature:

GROUP: B

Hours(x)	1	2	4	3	5	3
Score(y)	65	75	90	80	95	75

- a) Assuming that a simple linear regression model is appropriate, fit the regression model relating exam score (y) to the number of hours studied (x).
- b) What is the estimate of expected score when number of hours studied is 5?

$$Y=\alpha X+\beta$$
, $\alpha = \frac{Cov[X,Y]}{\sigma_X^2}$, $\beta = E[Y] - \frac{Cov[X,Y]}{\sigma_X^2}E[X]$

GROUP: C

Hours(x)	1	2	4	4	6	1
Score(y)	55	75	90	85	95	65

- a) Assuming that a simple linear regression model is appropriate, fit the regression model relating exam score (y) to the number of hours studied (x).
- b) What is the estimate of expected score when number of hours studied is 3?

$$Y=\alpha X+\beta$$
, $\alpha = \frac{Cov[X,Y]}{\sigma_X^2}$, $\beta = E[Y] - \frac{Cov[X,Y]}{\sigma_X^2}E[X]$

Final Exam Signature:

GROUP: D

Hours(x)	2	1	4	3	5	3
Score(y)	70	55	90	80	95	75

- a) Assuming that a simple linear regression model is appropriate, fit the regression model relating exam score (y) to the number of hours studied (x).
- b) What is the estimate of expected score when number of hours studied is 2?

$$Y=\alpha X+\beta$$
, $\alpha = \frac{Cov[X,Y]}{\sigma_X^2}$, $\beta = E[Y] - \frac{Cov[X,Y]}{\sigma_X^2}E[X]$

Final Exam Signature:

GROUP: E

Hours(x)	2	1	4	1	4	6
Score(y)	70	40	85	50	80	95

- a) Assuming that a simple linear regression model is appropriate, fit the regression model relating exam score (y) to the number of hours studied (x).
- b) What is the estimate of expected score when number of hours studied is 4?

$$Y=\alpha X+\beta$$
, $\alpha = \frac{Cov[X,Y]}{\sigma_X^2}$, $\beta = E[Y] - \frac{Cov[X,Y]}{\sigma_X^2}E[X]$