Reading Quiz #7

① This is a preview of the published version of the quiz

Started: Mar 18 at 11:18am

Quiz Instructions

To prepare for this quiz, please read sections 6.3 and 6.4 in the textbook

Note that you only have 3 attempts possible.

Best of luck! :-)

Question 1 1 pts

The dynamic programming algorithm itself for segmented least squares (i.e., not the computation of the least-squares errors) runs in $O(n^2)$ time. Which of these best describes the reason why?

- There are a linear number of subproblems to solve, each of which takes linear time to solve.
- There are a quadratic number of subproblems to solve, each of which takes constant time to solve.
- O There are a constant number of subproblems to solve, each of which takes quadratic time to solve.
- There are a linear number of subproblems, each of which takes constant time to solve, and each of which is resolved a linear number of times.

Question 2 1 pts

Consider the definition of the function \overline{OPT} in page 269 of the textbook (section 6.4). With the following assumptions, which of these inequalities are always true?

• $3 \le i \le n-1$

- $1 \le j \le n$, which means W_j is one of the n items
- $w > w_i$, w > a > 0
- \Box OPT(i, w) \geq OPT(i 3, w)
- \Box OPT $(i, w) \ge$ OPT $(i + 1, w w_j)$
- \Box OPT $(i, w) \ge$ OPT(i, w a)
- \square OPT $(i, w) \ge OPT(i 1, w w_i)$

Question 3 1 pts

You are given a completed version of the two-dimensional table of \overline{OPT} values for the problem of Subset-Sums below (just like the Figure 6.11 in the textbook), but you don't actually know the weights W_i of the items.

For this example you **can** guess the weights (using only the table). What is the sum of these weights?

(Just so we're on the same page, you can see from the table that n=3 and W=9, so there are actually three weights W_1 , W_2 , and W_3 , and you should calculate $W_1+W_2+W_3$)

	w=0	w=1	w=2	w=3	w=4	w=5	w=6	w=7	w=8	w=9
i=0	0	0	0	0	0	0	0	0	0	0
i=1	0	0	0	0	0	5	5	5	5	5
i=2	0	0	2	2	2	5	5	7	7	7
i=3	0	0	2	3	3	5	5	7	8	8