Erratum: "Accurate, short series approximation to Fermi–Dirac integrals of order -1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2" [J. Appl. Phys. 57, 5271 (1985)]

P. Van Halen, and D. L. Pulfrey

Citation: Journal of Applied Physics 59, 2264 (1986);

View online: https://doi.org/10.1063/1.337053

View Table of Contents: http://aip.scitation.org/toc/jap/59/6

Published by the American Institute of Physics

Articles you may be interested in

Accurate, short series approximations to Fermi–Dirac integrals of order -1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 Journal of Applied Physics **57**, 5271 (1998); 10.1063/1.335269

A generalized approximation of the Fermi–Dirac integrals Journal of Applied Physics **54**, 2850 (1998); 10.1063/1.332276

Intrinsic concentration, effective densities of states, and effective mass in silicon Journal of Applied Physics **67**, 2944 (1998); 10.1063/1.345414

Analytic approximations for the Fermi energy of an ideal Fermi gas Applied Physics Letters **31**, 354 (2008); 10.1063/1.89697

Empirical approximations for the Fermi energy in a semiconductor with parabolic bands Applied Physics Letters **33**, 653 (2008); 10.1063/1.90452

Analytical approximations for the Fermi energy of an ideal Fermi gas obeying a nonparabolic dispersion relation Journal of Applied Physics **70**, 5156 (1998); 10.1063/1.348996

Erratum: "Accurate, short series approximation to Fermi-Dirac integrals of order -1/2, 1/

P. Van Halen and D. L. Pulfrey Electrical Engineering Department, University of British Columbia, Vancouver, British Columbia, V6T 1W5, Canada

Table I is missing from the printed article. The table below should replace the table printed on p. 5271.

TABLE I. Coefficients used in Eq. (4).

j	- 1/2	1/2	1	3/2	2	5/2	3	7/2
a,	0.999 909	1.000 000	1.000 000	1.000 000	1.000 000	1.000 000	1.000 000	1.000 000
a_2	0.706 781	0.353 568	0.250 052	0.176 826	0.125 046	0.088 392	0.062 592	0.044 203
a_3	0.572 752	0.192 439	0.111 747	0.064 772	0.037 642	0.021 407	0.013 661	0.007 157
a_{\star}	0.466 318	0.122 973	0.064 557	0.033 677	0.018 183	0.007 917	0.009 796	0.001 976
a ₅	0.324 511	0.077 134	0.040 754	0.021 353	0.012 484	0.003 723	0.012 976	0.000 719
a_6	0.152 889	0.036 228	0.020 532	0.011 451	0.007 486	0.001 716	0.010 659	0.000 317
a_7	0.033 673	0.008 346	0.005 108	0.003 032	0.002 133	0.000 451	0.003 446	0.000 106

Also, there are errors and omissions in Tables II and III. The tables below should replace those printed on p. 5272. TABLE II. Coefficients used in Eq. (6) for x>4 (j=1/2,3/2,5/2,7/2) and for x>5 (j=-1/2).

j	- 1/2	1/2	3/2	5/2	7/2
a ₁	1.12837	0.752253	0.300901	0.085972	0.019105
a_2	0.470698	0.928195	1.85581	1.23738	0.494958
a_3	- 0.453108	0.680839	- 0.466432	1.07293	2.13722
a_4	- 228.975	25.7829	 7.71648	0.362030	- 0.503902
a ₅	8303.50	- 553.636	120.535	38.7579	- 6.99243
a_6	- 118124	3531.43	800.702	- 750.718	96.6031
a ₇	632895	- 3254.65	2189.84	4378.70	- 426.046

TABLE III. Coefficients used in Eq. (7).

x	<i>j</i> ==	- 1/2	1/2	3/2	5/2	7/2
$0-y^a$				0.867200	0.927560	0.961478
0 - y/2	a_1	0.604856	0.765147			
y/2-y		0.638086	0.777114			
0 — y				0.765101	0.866971	0.927751
0 - y/2	a_2	0.380080	0.604911			
y/2-y		0.292266	0.581307			
0 - y				0.302693	0.383690	0.432494
0 - y/2	a_3	0.059320	0.189885			
y/2-y	-	0.159486	0.206132			
0 - y				0.062718	0.098863	0.129617
0 - y/2	a ₄	- 0.014526	0.020307			
y/2		- 0.077691	0.017680			

TABLE III. Continued.

х	j =	- 1/2	1/2	3/2	5/2	7/2
0 – <i>y</i>				0.005793	0.017398	0.023308
0 - y/2	a_5	-0.004222	0.004380			
y/2-y		0.018650	~ 0.006549			
0 – y				- 0.001342	0.000418	0.004067
0 - y/2	a_6	0.001335	- 0.000366			
y/2 [*]	v	-0.002736	0.000784			
0 – y				0.000089	- 0.000067	-0.000051
0 - y/2	a_{7}	0.000291	0.000133			
y/2 — y		0.000249	- 0.000036			
0 – y						
0 - y/2	$a_{\rm s}$	-0.000159				
y/2-y	a	- 0.000013				
0 – y						
0 - y/2	$a_{\mathbf{q}}$	0.000018				
y/2-y	-9	0.000000				

 $a_{y} = 4$ for j = 1/2, 3/2, 5/2, 7/2. y = 5 for j = -1/2.