Introducción a la Lógica y la Computación - Lógica proposicional Práctico 5: Conjuntos Consistentes

- (1) Pruebe lo siguiente. Para demostrar los casos \(\neq \) enuncie claramente el o los resultados teóricos que permiten justificar la afirmación.
 - (a) $\Gamma \vdash \neg \bot$
 - (b) $\{p_0\} \not\vdash p_1$
 - (c) $\{\bot\} \vdash \varphi \land \neg \varphi$
 - (d) $\{\neg p_0, \neg (p_1 \land (\neg p_2))\} \not\vdash p_2 \rightarrow p_0$
- (2) Decida cuáles de los siguientes conjuntos son consistentes:
 - (a) $\{\neg p_1 \land p_2 \rightarrow p_0, p_1 \rightarrow (\neg p_1 \rightarrow p_2), p_0 \leftrightarrow \neg p_2\}.$
 - (b) $\{\neg p_1 \lor \neg p_2 \to \neg p_0, p_1 \land p_0, p_1 \to (\neg p_0 \lor \neg p_2), \neg p_0 \leftrightarrow \neg p_2\}.$
 - (c) $\{p_0 \to p_1, p_1 \to p_2, p_2 \to p_3, p_3 \to \neg p_0\}.$
 - (d) $\{p_0 \to p_1, p_0 \land p_2 \to p_1 \land p_3, p_0 \land p_2 \land p_4 \to p_1 \land p_3 \land p_5, \dots\}$ (pares implican impares...).
 - (e) $\{p_{2n}: n \geq 0\} \cup \{\neg p_{3n+1}: n \geq 0\}.$
 - (f) $\{p_{2n}: n \geq 0\} \cup \{\neg p_{4n+1}: n \geq 0\}.$
- (3) Probar que $\Gamma \cup \{\varphi \land \psi\}$ es consistente si y sólo si $\Gamma \cup \{\varphi, \psi\}$ es consistente.
- (4) Probar:
 - Si $\Gamma \cup \{\neg \varphi\}$ es inconsistente entonces que $\Gamma \vdash \varphi$
 - Si $\Gamma \cup \{\varphi\}$ es inconsistente entonces que $\Gamma \vdash \neg \varphi$
- (5) Demostrar que $\Gamma^+ := \{ \varphi \in PROP : \varphi \text{ no contiene los conectivos "¬" ni "⊥"} \}$ es consistente (Ayuda: construir una f tal que $\llbracket \varphi \rrbracket_f = 1$ para toda $\varphi \in \Gamma^+$).
- (6) Pruebe todo Γ consistente maximal realiza la disyunción: para toda φ, ψ , se tiene $\varphi \lor \psi \in \Gamma$ si y sólo si $[\varphi \in \Gamma \text{ ó } \psi \in \Gamma]$.
- (7) Sea Γ consistente maximal y suponga $\{p_0, \neg(p_1 \to p_2), p_3 \lor p_2\} \subseteq \Gamma$. Decida si las siguientes proposiciones están en Γ . (Ayuda: usar Completitud, o la caracterización de consistente maximal).
 - (a) $\neg p_0$
 - (b) $((\neg p_1) \lor p_2)$
 - (c) p_3
 - (d) $p_2 \rightarrow p_5$
 - (e) $p_1 \vee p_6$
- (8) Dar al menos dos conjuntos Γ diferentes que sean consistentes maximales y contengan al conjunto $\{p_0, \neg (p_1 \to p_2), p_3 \lor p_2\}$
- (9) ¿Es el siguiente conjunto consistente maximal?

$$\{\varphi \in PROP : \{p_0, p_1, p_3, ...\} \vdash \varphi\}$$

(10) ¿Es el subconjunto de *PROP* formado por las tautologías un consistente maximal?