Calculus & Lineære Algebra

Noter fra Student: Vivek Misra vimis22@student.sdu.dk

University of Southern Denmark (SDU)

Introduktion til Vektor 2D $\overrightarrow{m{v}}$

- Vektorer er en pil, der har en retning og er bestående af Matrisser.
 - (En) Vektor i 2D strækker sig mellem to punkter.
 - (En) Vektor har en længde, defineret udefra strækningen mellem de to vektorer.
 - Vektorer annoteres med en pil over bogstavet, som fx: \overrightarrow{V} .

Længden af Vektoren $|\vec{\boldsymbol{v}}| / ||\vec{\boldsymbol{v}}||^2$

- Vi ved på forhånd, at en Vektor har en Retning, og består af Matrisser.
- Vi kan se, at ved en tredimensionel vektor har vi 3 værdier.

$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \to R^3$$

• Vi kan se, at ved en todimensionel vektor har vi 2 værdier.

$$v = \begin{bmatrix} x \\ y \end{bmatrix} \epsilon R^2$$

Længden af Vektoren $|\vec{v}| / ||\vec{v}||$

• Hvis vi skal udregne længden af en vektor, skal vi bare tage kvadratroden af en vektor, derved fås længden.

Længden af Vektor 3D	Længden af Vektor 2D
$\ \vec{\boldsymbol{v}}\ = \sqrt[2]{\begin{bmatrix} x \\ y \\ z \end{bmatrix}} = \sqrt[2]{\begin{bmatrix} a \\ b \\ c \end{bmatrix}} = \sqrt[2]{\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}}$	$\ \vec{\boldsymbol{v}}\ = \sqrt[2]{\begin{bmatrix} x \\ y \end{bmatrix}} = \sqrt[2]{\begin{bmatrix} a \\ b \end{bmatrix}} = \sqrt[2]{\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}}$

Bemærk, at |v| og ||v|| er de samme ift. Notation af Længden af Vektoren, så der er ingen forskel ved brug af det ene eller det andet.

• Når vi skal udregne det i en formel, kan vi skrive følgende.

$$|v| = \sqrt[2]{x^2 + y^2 + z^2 + \dots + n^2}$$

$$||v|| = \sqrt[2]{v_1^2 + v_2^2 + v_3^2 + \dots v_i^2}$$

Norm af Vektoren $\|\vec{v}\|_n$

• Vi kan se, at vi har følgende definition af Norm af Vektoren:

Norm Type	Norm Definition	Eksempel på Norm
$\ \vec{v}\ _2 = \vec{v} $	Dette betyder, at vi tager kvadrerings- opløft ved enhver værdi.	$\ \vec{v}\ _2 = \begin{bmatrix} x^2 \\ y^2 \\ z^2 \end{bmatrix} = \sqrt[2]{\begin{bmatrix} x^2 \\ y^2 \\ z^2 \end{bmatrix}}$
$\ \overrightarrow{v} \ _0$	Det er de værdier i selve vektoren som ikke er 0 ved x,y,z.	$\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ og $ \vec{v} _0 = 2$ fordi 1 og 2 er ikke 0 ved x og z.
$\ \overrightarrow{v} \ _0$	Det betyder, at alle værdier bliver konverteret til positive og lægges sammen.	$\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \text{ og } \ \vec{v}\ _1 = 1 + 0 + 2 = 3$ Bemærk, at -2 er ændret til +2 i udregningen.

Eksempler på Længder og Normer

• Udregn følgende:

Opgave	Udregning
v = [0]	-3 4]
v	$\sqrt[2]{0^2+9+16}$
$\frac{v}{\ v\ }$	$\frac{1}{5} * [0 -3 4] = \left(0, -\frac{3}{5}, \frac{4}{5}\right)$
$\ v\ _1$	0 + 3 + 4 = 7
$\ v\ _2$	$0^2 + (-3)^2 + 4^2 = 25$
$\ v\ _0$	$v = \begin{bmatrix} 0 & -3 & 4 \end{bmatrix}$ og tal som ikke er 0 er markeret med fedt.
	$ v _0 = 2$

Addition $(\vec{v} + \vec{u})$ og Skalering $(a \cdot \vec{v})$

• Når vi lægger to Vektorer sammen er det defineret på følgende måde:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix}^{R^n} + \begin{bmatrix} b_1 \\ b_2 \\ b_n \end{bmatrix}^{R^n}$$

• Når vi skalerer en Vektor, ganger vi en skaleringsværdi på følgende:

$$a \cdot \vec{v} = \begin{bmatrix} a \cdot v_1 \\ a \cdot v_2 \\ a \cdot v_n \end{bmatrix}$$

Vektor Space

- Det er vigtigt, at have et startpunkt eller orgin.
- Hvis man tager et eller andet Vektor Space, så skal den have 3 assumptioner.
 - Det betyder, at additionen af Vektor skal ligge inden for en defineret Vektor Space.

Lineære Vektorer

 Når vi snakker om Skalering af Vektorer, plejer vi at skrive på følgende måde:

$$a_1 \cdot u_1 + a_2 \cdot u_1 + a_1 \cdot u_1$$

Det er kaldt for Lineære Kombination

- Hvad er Lineære Independence?
 - Eksempelvis hvis en Linære Kombination er 0, så skal alle Linære Kombinationer være 0.
 - Men hvis man har (en enkelt) Linære Kombination er 0, og de andre Kombination er eksempelvis 1, så er der snak om at ligningen er IKKE Lineare Independent ved Summen.

Eksempel på Lineære Vektorer

- Man siger også, at hvis Summen af de Linære Kombinationer ender på
 0, så er det ikke en Lineare Independence.
- Men hvis man har eksempelvis har en Sum som er 0 ved sammenlægning af de Lineære Kombination, så er der snak om Lineare Independence.
- EKSEMPEL MED OPGAVE: $x = [-1,2,0] \in \mathbb{R}^3, y = [3,7,0] \in \mathbb{R}^3, z = [-2,4,0] \in \mathbb{R}^3$

Answer 7.A

To solve this question, we need to combine all the values given by the X, Y, and Z into a single matrix.

$$\begin{bmatrix} -1 & 3 & -2 \\ 2 & 7 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Now we need to find the sum of the values inside the matrix, and if these values have a sum of 0, then they aren't linear independent. And if they have a sum else than 0, then they are linear independent.

$$-1 \cdot (7 \cdot 0 - 4 \cdot 0) - 3 \cdot (2 \cdot 0 - 4 \cdot 0) - 2 \cdot (2 \cdot 0 - 7 \cdot 0) = 0$$

This is not Linear Independent, but Linear Dependent.

Basis Vektor

- Basis Vektorer er der hvor et eller andet værdi i Danske Kroner kan være Linear Basis.
- Dette betyder, at 50 øre, 1 kroner, 2 kroner, 5 kroner osv. Kan vær e beskrevet som Lineære Kombinationer af Vektorer.
- EKSEMPEL:

$$B_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ og } B_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} -7 \\ 8 \end{bmatrix}$$

Lad os gange tallene på tværs:

$$-7 * B_1 + (-8) * B_2$$

B1 og B2 er Basis Set fordi de er Lineære Kombinationer

Eksempel på Basis Vektor

• Eksempel på, hvordan man kan opskrive en Basisvektor er følgende:

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = a_1 * B_1 + a_2 * B_2$$

• Andet Eksempel på Basis Vektorer er følgende:

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} og \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

$$a_1 * \begin{bmatrix} 2 \\ 3 \end{bmatrix} + a_2 * \begin{bmatrix} 1 \\ 7 \end{bmatrix} \neq 0$$

• Det betyder, at hvis vi ender med at have summen til IKKE at være 0, så er $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ og $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ betegnet som Basis Vektorer.

Eksempel på Basis Vektor

• Men hvis vi indsætter værdier inde ved a_1 og a_2 , og vores sum ender med at være 0.

- Det betyder, at hvis vi ender med at have summen til at være 0, så er $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ og $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ IKKE betegnet som Basis Vektorer.
- Der med betyder det også, at der er IKKE Lineare Independent.

Eksempel på Lineare Independence

• Vi får angivet tre vektorer som er følgende:

$$v_1 = [1 \quad 0 \quad 0], v_2 = [0 \quad 1 \quad 1], v_3 = [0 \quad 0 \quad 1]$$

Nu skal vi omdanne dem om til en fælles Matrix.

$$v_{samlet} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- Nu findes Lineare Independence gennem Determinanten. $\det(v_{samlet}) = \mathbf{1} \cdot (\mathbf{1} \cdot \mathbf{1} \mathbf{0} \cdot \mathbf{1}) \mathbf{0} \cdot (\mathbf{0} \cdot \mathbf{1} \mathbf{0} \cdot \mathbf{0}) + \mathbf{0} \cdot (\mathbf{0} \cdot \mathbf{1} \mathbf{1} \cdot \mathbf{0}) = \mathbf{1}$
- Vi kan se, at fordi vi resultatet ender på 1 fra Determinanten, så er der snak om Lineare Independence ©

Kort Eksempel med Determinant i Multiplikation

 Her viser vi lige for sikkerhedsskyld et eksempel med Udregning af Determinant i Multiplikationen.

$$2x + 3y = 5$$
$$yx + 7y = 6$$

Vi opstiller følgende udregning:

$$\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

Prikproduktet & Multiplikation i Vektor Space

- Prikproduktet fortæller, hvordan Vektorene er allierede med hinanden i forhold til lige afstand.
- Den måde vi regner Prikproduktet er følgende: $a_1 * u_1 + a_2 * u_2 + a_3 * u_3$
- Det skal gøres opmærksom på, at selve Resultatet af en Prikprodukt er kaldt for Skalar.

• KIG VENLIGST PÅ BILLEDE TIL HØJRE:

Prikproduktet & Multiplikation i Vektor Space

EKSEMPEL MED TO VEKTORER:

$$u = \begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix} \text{ og } v = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

Nu udregnes Prikproduktet:

$$u \cdot v = 3 \cdot 1 + 5 \cdot (-1) + 6 \cdot 2 = 10$$

• Som det kan ses, så er Resultat 10 kaldt for en Skalar.

Eksempler på Opgaver

• Udregn Længder på Følgende Vektorer:

1.
$$v = [1,1] \in \mathbb{R}^2$$

2.
$$v = [1,0,-2] \in \mathbb{R}^3$$

3.
$$v = [1,1,0,-1] \in \mathbb{R}^4$$

• Her er følgende Resultater:

1)
$$\sqrt[2]{1^2 + 1^2} = 1$$

2)
$$\sqrt[2]{1^3 + 0^3 + 2^3} = 8$$

3)
$$\sqrt[2]{1^4 + 1^4 + 0^4 + 1^4} = 1$$

Eksempler på Opgaver

Udregn Vinklen mellem to Vektorer:

1.
$$v = [2,1,0] og u = [1,2,2]$$

• Her er følgende Resultater:

1)
$$\cos(\theta) = \frac{1 \cdot 0 + 1 \cdot 3}{\sqrt[2]{1^2 + 1^2} \cdot \sqrt[2]{0^2 + 3^2}} = \frac{3}{\sqrt[2]{2} \cdot \sqrt[2]{3}} = \frac{1}{\sqrt[2]{2}}$$

Eksempler på Opgaver

Udregning at Determinant at Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 3 & 6 & 7 \end{bmatrix}$$

Vi otarto med Robice 3, fordi det indebolder O
og er nemmest.

$$O(det()-1) det(\frac{1}{2},\frac{3}{7}) + O(det()-0) det()$$

$$1 = 1 \cdot (6.8-7.9) - 3.(-2.8-1.7) + 4.(-2.9-1.6)$$

$$= -15 + 69 - 96 = -42$$

$$det(A) = 42$$

SLUT 3

Noter fra Student: Vivek Misra vimis22@student.sdu.dk

University of Southern Denmark (SDU)