

Data Mining for Business Analytics

Lecture 1: Introduction to Data Mining

Stern School of Business New York University Spring 2019

Data Mining is pervasive

The "Bad"

No Free Lunch

The "Bad"

- Effective Data Science requires / builds on a SET of skills:
 - Analytical thinking
 - Technical skills
 - Creativity
 - Communication
 - Domain Knowledge (!)

The "Ugly"

We will be doing some math

The "Ugly"

We will be doing some math

- We will be doing some Programming
 - Highly sought-after skill!
 - BUT REMEMBER:
 - Data Mining is not (just) about coding, especially in business settings!
 - We will also be focusing on several non-technical areas

Let's play a game...

Data Mining Approach

"If we have data, let's look at data. If all we have are opinions, let's go with mine."

-- James Love Barksdale

Former CEO of Netscape

Data Mining

 A set of principles, concepts, and techniques that structure thinking and analysis of data

 Extracts useful information and knowledge from large volumes of data by following a process with reasonably well defined steps

Changes the way you think about data and its role in business

Learning Goals

Approach business problems data-analytically

Interact competently on the topic of data mining for business intelligence

Hands-on experience mining data

Roles in Data Mining

- "Data Scientist" (Geek?)
 - can do the actual modeling
 - applied statistician × computer scientist
- Collaborator in a data-centric project
 - can translate from business to the execution
- Managing a data-mining project
 - understanding the potential
 - ability to evaluate a proposal and execution
 - ability to interface with a broad variety of people
- Strategist, Investor, ...

Business data mining is a process

science + craft + creativity + common sense

Data Mining Process

Outline

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

Reasons for failing Data Mining Projects

This is NOT a course about...

- Statistics
- Database Querying
 - SQL
- Data Warehousing
- Regression Analysis
 - Explanatory vs Predictive modeling
- Big Data

Data Mining versus...

- Data Warehousing / Storage
 - Data warehouses coalesce data from across an enterprise, often from multiple transaction-processing systems
- Querying / Reporting (SQL, Excel, QBE, other GUI-based querying)
 - Very flexible interface to ask factual questions about data
 - No modeling or sophisticated pattern finding
 - Most of the cool visualizations
- OLAP On-line Analytical Processing
 - OLAP provides easy-to-use GUI to explore large data collections
 - Exploration is <u>manual</u>; no modeling
 - Dimensions of analysis preprogrammed into OLAP system

Data Mining versus...

- Traditional statistical analysis
 - Mainly based on hypothesis testing or estimation / quantification of uncertainty
 - Should be used to follow-up on data mining's <u>hypothesis generation</u>
- Automated statistical modeling (e.g., advanced regression)
 - This is data mining, one type usually based on linear models
 - Massive databases allow non-linear alternatives

Answering business questions with these techniques...

- Who are the most profitable customers?
 - Database querying
- Is there really a difference between profitable customers and the average customer?
 - Statistical hypothesis testing
- But who really are these customers? Can I characterize them?
 - OLAP (manual search), Data mining (automated pattern finding)
- Will some particular new customer be profitable? How much revenue should I expect this customer to generate?
 - Data mining (predictive modeling)

Thanks!

Questions?