Homework Assignment 4

Due Friday, February 19

- 1. Let G be a group and H a nonempty subset of G. Let's introduce a few tricks to speed up testing if something is a subgroup.
 - (a) (Subgroup Criterion) Suppose that for all $x, y \in H$, $xy^{-1} \in H$. Show that H is a subgroup of G.
 - (b) (Finite Subgroup Criterion) Show that if H is finite and closed under multiplication, then H is a subgroup of G.
 - (c) Suppose now that H is a subgroup of G, and that K is another subgroup of G. Show that if $K \subseteq H$, then $K \leq H$.
- 2. Let G be a group. Let $H, K \leq G$ be two subgroups.
 - (a) Show that the intersection $H \cap K$ is a subgroup of G.
 - (b) Give an example to show that the union $H \cup K$ need not be a subgroup of G.
 - (c) Show that $H \cup K$ is a subgroup of G if and only if $H \subset K$ or $K \subset H$.
 - (d) Adjust your proof from part (a) to show that the intersection of an arbitrary collection of subgroups is a subgroup. That is, let \mathcal{A} be a collection of subgroups of G. Show that

$$\bigcap_{H\in\mathcal{A}}H$$

is a subgroup of G. This completes the proof that the subgroup generated by a subset is in fact a subgroup.

Hint. For part (d), the proof should be very similar to part (a), with only cosmetic modifications. You won't need to use induction. In fact, since A is could in principle be uncountable, induction won't work without modifications (think about why this is).

- 3. Let G be a group, and let A be a subset of G. Let's establish some facts about centralizers and normalizers.
 - (a) Let A be a subset of G. Prove that $N_G(A) \leq G$.
 - (b) Deduce the following chain of inclusions.

$$Z(G) \le C_G(A) \le N_G(A) \le G.$$

- (c) Show that $C_G(A) = C_G(\langle A \rangle)$.
- (d) Give an example to show the analog of part (c) for normalizers is not true. That is, give $A \subseteq G$ where $N_G(A) \neq N_G(\langle A \rangle)$.
- (e) Show that if H is a subgroup of G, then $H \leq N_G(H)$.
- (f) Show that $H \leq C_G(H)$ if and only if H is abelian.
- 4. Compute the center of the dihedral group. Explicitly, let n be an integer ≥ 3 . Compute $Z(D_{2n})$. (Note: you will need to split into the two cases, where n is even or n is odd).
- 5. In this exercise we study products of finite cyclic groups. Recall that we denote by Z_n the cyclic group of order n (written multiplicatively).

- (a) Prove that $Z_2 \times Z_2$ is not a cyclic group.
- (b) Prove that $Z_2 \times Z_3 \cong Z_6$. Conclude that $Z_2 \times Z_3$ is a cyclic group.

Those two examples really cover all the bases. Use the intuition you gained from them to prove the following classification result.

- (c) Show that $Z_n \times Z_m$ is cyclic if and only if gcd(n,m) = 1. (Hint: recall that up to isomorphism there is only one cyclic group of order N for every positive integer N).
- 6. For $n \geq 2$ let $G = S_n$ be the symmetric group equipped with it's natural action on $\Omega_n = \{1, 2, \dots, n\}$ by permutations. For $i \in \Omega_n$, let $G_i = \{\sigma \in G | \sigma(i) = i\}$ be the stabilizer of i. Describe an isomorphism between G_i and S_{n-1} .
- 7. In this problem we will introduce the following very important class of subgroups. A subgroup $H \leq G$ is called *normal* if $N_G(H) = G$. Recall that this means, for $x \in G$, the set $xHx^{-1} = H$. If H is a normal subgroup, we write $H \subseteq G$.
 - (a) Let H be a subgroup, and $x \in G$. Give a bijection between H and xHx^{-1} .
 - (b) Part (a) makes it easy to check if something is normal. In particular, suppose that for every $h \in H$, the element $xhx^{-1} \in H$ for every $x \in G$. Show that H is normal.
 - (c) Let $\varphi:G\to G'$ be a homomorphism with kernel K. Show that K is a normal subgroup of G.
 - (d) Give an example of a subgroup that is not normal. Conclude that not every subgroup can be the kernel of some homomorphism.
- 8. Let's study the converse of the previous question. We will give an intrinsic definition of quotient groups along the way. A lot of this problem is covered in class (with some details for you to fill in), but I think it is very important to work through these constructions carefully for yourself. This should feel very similar to the construction of $\mathbb{Z}/n\mathbb{Z}$.

Recall the following definition from class: Let $K \leq G$ be a subgroup. For $x, y \in G$ we say that x and y are congruent mod K, $x \equiv y \mod K$ if $y^{-1}x \in K$ (or equivalently if x = yk for some $k \in K$).

(a) Show that congruence modulo K is an equivalence relation on G. Observe that the the equivalence classes of congruence mod K are the sets

$$xK = \{xk : k \in K\}.$$

We call these the *cosets* of K.

- (b) Suppose $K \subseteq G$. If $x \equiv x_1 \mod K$ and $y \equiv y_1 \mod K$, show $xy \equiv x_1y_1 \mod K$. (You will need normality here. Be careful not to assume your group is abelian).
- (c) Define G/K to be the set of cosets of K.

$$G/K = \{xK : x \in G\}.$$

If K is normal, show that the operation (xK)(yK) = xyK is a well defined binary operation making G/K into a group. What is the identity element? (Note: You already did the work to show it's well defined.)

- (d) Suppose K is a normal subgroup. Let $\pi: G \to G/K$ be the map $x \mapsto xK$. Show that π is a group homomorphisms with kernel K. This is often called the natural projection.
- (e) Suppose that G/K is a group under the operation described in part (c). Show that K must be normal (*Hint*: Rather than trying to explicitly compute things with elements, use the then natural projection together with 7(c)).
- (f) Putting everything together, conclude the following are equivalent for a subgroup $K \leq G$.
 - (i) K is normal in G.
 - (ii) K is the kernel of a homomorphism.
 - (iii) G/K is a group.

Hint. You've already done all the work for this. Each implication should be easily accessible appealing to something proven in question 7 or 8.