

What about projection of B on a?

$$|proj_{\vec{a}}\vec{b}| = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

$$\cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$$

$$\cos \beta = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

Exi If
$$\vec{p} = (3,6,72)$$
 and $\vec{q} = (-4,5,-20)$, what are the scalar and vector projections of \vec{p} on \vec{q} ?

Solution:

Scalar proj of \vec{p} on \vec{q} : $|proj_{\vec{q}}\vec{p}|$

= $\vec{p} \cdot \vec{q}$
 $|\vec{q}|$

= $(3,6,72) \cdot (-4,5,-20)$
 $|(-4)^2 + (5)^2 + (-22)(-20)$
 $|(-4)^2 + (5)^2 + (-22)(-20)$
 $|(-4)^2 + (5)^2 + (-22)(-20)$
 $|(-4)^2 + (5)^2 + (-22)(-20)$
 $|(-4)^2 + (-22)(-20)|$

= $(3\times -4) + (6)(5) + (-22)(-20)$
 $|(-4) + (2) + (-22)(-20)|$

= $(-18 + 30 + 440)$

= (458)
 $|(-4,5,-20)|$

= (458)
 $|(-4,5,-20)|$

= (458)
 $|(-4,5,-20)|$

= (458)
 $|(-4,5,-20)|$

= (458)
 $|(-4,5,-20)|$

= (458)
 $|(-4,5,-20)|$

= (458)
 $|(-4,5,-20)|$