エントロピー

- (1). $H(A) \ge 0$ ($p(a_i) = 1$ となる a_i が存在する時、等号が成立)
- (2). $H(A) \leq \log_2 m \ (p(a_1) = p(a_2) = \dots = p(a_m) = \frac{1}{m}$ の時、等号が成立)

.....

 $A = \{a_1, a_2, \dots, a_m\}$: 事象の集合

Ω:標本空間

 $p:\Omega\to[0,1]\subset\mathbb{R}$:確率関数

- $0 \le p(a_i) \le 1$ (i = 1, 2, ..., m): 各確率は 0 から 1 の間をとる
- $\log_2 p(a_i) \leq 0$ (i = 1, 2, ..., m) : 1 でない確率の対数は負の数
- $0 \le \sum_{i=1}^{m} p(a_i) \le 1$: 全ての確率の和は1を超えない

 $H:2^{\Omega} \to \mathbb{R}: エントロピー関数$

 $H(A) = \sum_{i=1}^{m} p(a_i) \left(-\log_2 p(a_i) \right) : -\log_2 p(a_i)$ の期待値

証明

 $H(A) \ge 0$ ($p(a_i) = 1$ となる a_i が存在する時、等号が成立)

等号の場合

 $p(a_j)=1$ となる j が存在する場合、 $i\neq j$ であるとき $p(a_i)=0$ である。これをH(A) に当てはめると次の式を得る。

$$H(A) = \sum_{i=1}^{m} p(a_i) \left(-\log_2 p(a_i) \right)$$
 (1)

$$= 0(-\log_2 0) + \dots + 1(-\log_2 1) + \dots + 0(-\log_2 0) \tag{2}$$

 $\log_2 1 = 0$ より j 番目の項は 0 である。それ以外の項については次の式から 0 とする。

$$\lim_{x \to 0} x \log x = 0 \tag{3}$$

これにより H(A) = 0 である。

等号でない場合

 $0 < p(a_j) < 1$ の確率がある場合、 $\log_2 p(a_j) < 0$ であるから、 $p(a_j)(-\log_2 p(a_j)) > 0$ となる。

 $p(a_j) = 0$ または $p(a_j) = 1$ のときは $p(a_j)(-\log_2 p(a_j)) = 0$ である。

よって $H(A) = \sum_{i=1}^m p(a_i) \left(-\log_2 p(a_i) \right)$ の全ての項は 0 以上となるので H(A) > 0

$$H(A) \le \log_2 m \ (p(a_1) = p(a_2) = \dots = p(a_m) = \frac{1}{m}$$
 の時、等号が成立)
等号の場合

 $p(a_i) = 1/m \ (i = 1, ..., m)$ を H(A) に代入する

$$H(A) = \sum_{i=1}^{m} p(a_i) \left(-\log_2 p(a_i) \right)$$
 (4)

$$= \sum_{i=1}^{m} \frac{1}{m} \left(-\log_2 \frac{1}{m} \right) = \log_2 m \tag{5}$$

等号でない場合

H(A) の最大値を求め、この最大値が $\log_2 m$ であることを示す。

 λ を定数、 $\sum_{i=1}^m x_i = 1$ とし次の関数 F の最大値について考える。

$$F(x_1, x_2, \dots, x_m) = -\sum_{i=1}^{m} x_i \log_2 x_i + \lambda \left(1 - \sum_{i=1}^{m} x_i \right)$$
 (6)

 $F(x_1, x_2, \ldots, x_m)$ を各 x_i について偏微分する。

$$\frac{\partial}{\partial x_i} F(x_1, x_2, \dots, x_m) = -\log_2 x_i - \frac{1}{\log 2} - \lambda \quad (i = 1, \dots, m)$$
 (7)

最大値を考えるので偏導関数が0となる時を考える。

$$-\log_2 x_i - \frac{1}{\log 2} - \lambda = 0 \quad (i = 1, \dots, m)$$
 (8)

これを x_i について解くと次が得られる。

$$x_i = \exp(-1 - \lambda \log 2) \quad (i = 1, \dots, m)$$

$$\tag{9}$$

 λ は定数であるので右辺は i によらずある値を指す。つまり各 $i=1,\ldots,m$ において偏導関数が 0 となるときはいつも同じ値となる。

$$x_1 = \dots = x_m = \exp(-1 - \lambda \log 2) \tag{10}$$

これを $\sum_{i=1}^{m} x_i = 1$ に代入し λ について解くと次のようになる。

$$\sum_{i=1}^{m} \exp(-1 - \lambda \log 2) = 1 \tag{11}$$

$$m \cdot \exp(-1 - \lambda \log 2) = 1 \tag{12}$$

$$m = \exp(1 + \lambda \log 2) \tag{13}$$

$$\log m = 1 + \lambda \log 2 \tag{14}$$

$$\lambda = \frac{1}{\log 2} \left(\log m - 1 \right) \tag{15}$$

この式 (15) を式 (9) に代入すると $x_i = m^{-1}$ が得られる。

また、次の2式からこの極値の候補は最大値であることがわかる。

$$\frac{\partial^2}{\partial x_i \partial x_j} F(x_1, x_2, \dots, x_m) = 0 \quad (i \neq j)$$
(16)

$$\frac{\partial^2}{\partial x_i^2} F(x_1, x_2, \dots, x_m) = -\frac{1}{x_i \log 2} = -\frac{m}{\log 2} < 0$$
 (17)

よって、 $x_1 = \cdots = x_m = m^{-1}$ の時最大値を取る。

上記の 未定係数法から $p(a_1)=\cdots=p(x_m)=1/m$ である時、H(A) が最大値を取ることがわかる。

これにより H(A) は最大値 $\log_2 m$ より小さくなるため $H(A) < \log_2 m$ である。 等号の場合と等号でない場合を合わせ

$$H(A) \le \log_2 m \tag{18}$$

がわかる。