Задача А. Палиндром

Имя входного файла: palindrom.in Имя выходного файла: palindrom.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Палиндром - это строка, которая читается одинаково как справа налево, так и слева направо.

На вход программы поступает набор больших латинских букв (не обязательно различных). Разрешается переставлять буквы, а также удалять некоторые буквы. Требуется из данных букв по указанным правилам составить палиндром наибольшей длины, а если таких палиндромов несколько, то выбрать первый из них в алфавитном порядке.

Формат входных данных

В первой строке входных данных содержится число n ($1 \le n \le 100000$). Во второй строке задается последовательность из n больших латинских букв (буквы записаны без пробелов).

Формат выходных данных

В единственной строке выходных данных выведите искомой палиндром.

palindrom.in	palindrom.out
AAB	ABA
QAZQAZ	AQZZQA

Задача В. Проблема сапожника

Имя входного файла: cobbler.in Имя выходного файла: cobbler.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В некоей воинской части есть сапожник. Рабочий день сапожника длится N минут. Заведующий складом оценивает работу сапожника по количеству починенной обуви, независимо от того, насколько сложный ремонт требовался в каждом случае. Дано k сапог, нуждающихся в починке. Определите, какое максимальное количество из них сапожник сможет починить за один рабочий день.

Формат входных данных

В первой строке вводятся числа N (натуральное, не превышает 1000) и k (натуральное, не превышает 500). Затем идет k чисел — количество минут, которые требуются, чтобы починить i-й сапог (времена — натуральные числа, не превосходят 100).

Формат выходных данных

Выведите одно число — максимальное количество сапог, которые можно починить за один рабочий день.

cobbler.in	cobbler.out
10 3	2
6 2 8	
3 2	0
10 20	

Задача С. Лишнее число

Имя входного файла: excess.in
Имя выходного файла: excess.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В штаб секретной службы поступило сообщение от одного из агентов. Поступившее сообщение в зашифрованном виде представляет собой последовательность чисел, и лишь специальная программа способна расшифровать его и получить связный текст.

Обычно программа-расшифровщик быстро и бесшумно выдаёт связистам расшифрованный текст, но в этот раз вместо текста от программы поступил сигнал тревоги, свидетельствующий о том, что при пересылке сообщение было взломано или просто повреждено.

Корректное зашифрованное сообщение — это последовательность из $4 \cdot k$ целых чисел, в котором k различных чисел присутствуют по 4 раза каждое; для расшифровки даже не важны значения этих чисел, а важен лишь их порядок.

Однако, изучив зашифрованное сообщение, связисты обнаружили, что в нём $4 \cdot k + 1$ число. При этом ровно одно число является «лишним», то есть при его удалении зашифрованное сообщение становится корректным сообщением из $4 \cdot k$ чисел (возможно, четыре из них равны удалённому числу).

Связисты решили, что на будущее им нужна программа, которая находит такое «лишнее» число автоматически. Помогите им написать такую программу.

Формат входных данных

В первой строке входного файла задано число $N=4\cdot k+1$, где N и k целые, и $1\leqslant k\leqslant 10\,000$. В последующих N строках находятся числа A_1,A_2,\ldots,A_N , по одному числу в каждой—зашифрованное сообщение. Известно, что $0\leqslant A_i\leqslant 1\,000\,000$.

Формат выходных данных

В первую строку выходного файла выведите «лишнее» число из набора A_i .

excess.in	excess.out
5	1
4	
1	
4	
4	
4	

Задача D. Простая сортировка

Имя входного файла: sort.in
Имя выходного файла: sort.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания.

Формат входных данных

В первой строке входного файла содержится число N ($1 \le N \le 100\,000$) — количество элементов в массиве. Во второй строке находятся N целых чисел, по модулю не превосходящих 10^9 .

Формат выходных данных

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

Пример

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1 8 2 1 4 7 3 2 3 6	

Замечание

Запрещается использовать стандартные сортировки.

Задача Е. Тестирующая система

Имя входного файла: ejudge.in
Имя выходного файла: ejudge.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Юный программист Саша написал свою первую тестирующую систему. Он так обрадовался тому, что она скомпилировалась, что решил пригласить школьных друзей на свой собственный контест.

Но в конце тура выяснилось, что система не умеет сортировать команды в таблице результатов. Помогите Саше реализовать эту сортировку.

Команды упорядочиваются по правилам АСМ:

- по количеству решённых задач в порядке убывания;
- при равенстве количества решённых задач по штрафному времени в порядке возрастания;
- при прочих равных по номеру команды в порядке возрастания.

Формат входных данных

Первая строка содержит натуральное число n ($1 \le n \le 100\,000$) — количество команд, участвующих в контесте. В i-й из следующих n строк записано количество решенных задач S ($0 \le S \le 100$) и штрафное время T ($0 \le T \le 100\,000$) команды с номером i.

Формат выходных данных

В выходной файл выведите n чисел — номера команд в отсортированном порядке.

ejudge.in	ejudge.out
5	5 2 1 3 4
3 50	
5 720	
1 7	
0 0	
8 500	

Задача F. Пакуем чемоданы!

 Имя входного файла:
 traveling.in

 Имя выходного файла:
 traveling.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 256 мегабайт

Алёна собирает вещи в отпуск. С собой в самолёт она может взять ручную кладь и багаж. Для ручной клади у Алёны есть рюкзак, а для багажа – огромный чемодан. По правилам перевозки масса ручной клади не должна превосходить S кг, а багаж может быть любой массы (за сверхнормативный багаж Алёна готова доплатить). Разумеется, наиболее ценные вещи – ноутбук, фотоаппарат, документы и т. д. – Алёна хочет положить в ручную кладь.

Алёна знает для каждого предмета его ценность p_i и вес w_i . Она разложила предметы в порядке убывания ценности и начинает складывать наиболее ценные вещи в рюкзак. Она действует следующим образом – берёт самый ценный предмет, и если его масса не превосходит S, то кладёт его в рюкзак, иначе кладёт его в чемодан. Затем она берёт следующий по ценности предмет, если его можно положить в рюкзак, то есть если его масса вместе с массой уже положенных в рюкзак вещей не превосходит S, то кладёт его в рюкзак, иначе в чемодан, и таким же образом процесс продолжается для всех предметов в порядке убывания их ценности.

Определите вес рюкзака и чемодана после того, как Алёна сложит все вещи.

Формат входных данных

Первая строка входных данных содержит число S — максимально разрешённый вес рюкзака $(1 \leqslant S \leqslant 10^9)$. Во второй строке входных данных записано число N — количество предметов $(1 \leqslant N \leqslant 10^5)$. В следующих N строках содержатся числа p_i и w_i — ценность и вес i-го предмета соответственно $(1 \leqslant p_i, w_i \leqslant 10^9)$. Все числа p_i различны.

Формат выходных данных

Программа должна вывести два числа – вес рюкзака и вес чемодана (вес пустого рюкзака и чемодана не учитывается).

traveling.in	traveling.out
10	7 15
3	
10 10	
20 5	
30 7	

Задача G. Мекс

Имя входного файла: mex.in
Имя выходного файла: mex.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Пусть mex от последовательности неотрицательных целых чисел — наименьшее число, которое не встречается в этой последовательности. Например, mex(0,1,3)=2. Найдите mex от заданной последовательности.

Формат входных данных

В первой строке дано число n $(1 \le n \le 10^5)$ — длина последовательности. Во второй строке дано n чисел a_i $(0 \le a_i \le 10^9)$ — элементы заданной последовательности.

Формат выходных данных

В единственной строке выведите одно целое число — mex заданной последовательности.

mex.in	mex.out
3	2
0 1 3	

Задача Н. Количество инверсий

Имя входного файла: inverse.in Имя выходного файла: inverse.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i,j) таких, что i < j и $a_i > a_j$.

Формат входных данных

Первая строка входного файла содержит натуральное число n $(1 \le n \le 50\,000)$ — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A.

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

inverse.in	inverse.out
4	0
1 2 4 5	
4	6
5 4 2 1	

Задача І. Выбор заявок

Имя входного файла: request.in Имя выходного файла: request.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вы прекрасно знаете, что в ЛКШ.Зима 2013 лекции читают лучшие преподаватели мира. К сожалению, лекционных аудиторий у нас не так уж и много, поэтому каждый преподаватель составил список лекций, которые он хочет прочитать ЛКШатам. Чтобы ЛКШата, утром идя на завтрак, увидели расписание лекций, необходимо его составить прямо сейчас. И без вас нам здесь не справиться.

У нас есть список заявок от преподавателей на лекции для одной из аудиторий. Каждая заявка представлена в виде временного интервала $[s_i, f_i)$ — время начала и конца лекции. Лекция считается открытым интервалом, то есть какая-то лекция может начаться в момент окончания другой, без перерыва. Необходимо выбрать из этих заявок такое подмножество, чтобы суммарно выполнить максимальное количество заявок. Учтите, что одновременно в лекционной аудитории, конечно же, может читаться лишь одна лекция.

Формат входных данных

В первой строке вводится натуральное число N, не более 1000 — общее количество заявок на лекции. Затем вводится N строк с описаниями заявок — по два числа в каждом s_i и f_i . Гарантируется, что $s_i < f_i$. Время начала и окончания лекции — натуральные числа, не превышают 1440 (в минутах с начала суток).

Формат выходных данных

Выведите одно число — максимальное количество заявок, которые можно выполнить.

request.in	request.out
1	1
5 10	
3	2
1 5	
2 3	
3 4	