Example 3.36. Determine whether the system \mathcal{H} is linear, where

$$\mathfrak{R}(x(t) = |x(t)|. \quad \bigcirc$$

Solution. Let $x'(t) = a_1x_1(t) + a_2x_2(t)$, where x_1 and x_2 are arbitrary functions and a_1 and a_2 are arbitrary complex constants. From the definition of \mathcal{H} , we have

f
$$\mathcal{H}$$
, we have
$$a_1\mathcal{H}x_1(t) + a_2\mathcal{H}x_2(t) = a_1|x_1(t)| + a_2|x_2(t)| \quad \text{and} \quad \text{from definition of } \mathcal{H} \text{ in } \mathbb{O}$$

$$= |a_1x_1(t) + a_2x_2(t)|. \quad \text{from definition of } \mathcal{H} \text{ in } \mathbb{O}$$

At this point, we recall the triangle inequality (i.e., for $a,b \in \mathbb{C}$, $|a+b| \le |a| + |b|$). Thus, $\mathcal{H}(a_1x_1 + a_2x_2) = a_1\mathcal{H}x_1 + a_2\mathcal{H}x_2$ cannot hold for all x_1, x_2, a_1 , and a_2 due, in part, to the triangle inequality. For example, this condition fails to hold for

$$a_1 = -1, \quad x_1(t) = 1, \quad a_2 = 0, \quad \text{and} \quad x_2(t) = 0,$$

$$a_1 \mathcal{H} x_1(t) + a_2 \mathcal{H} x_2(t) = -1 \quad \text{and} \quad \mathcal{H} x'(t) = 1.$$

in which case

Therefore, the superposition property does not hold and the system is not linear.

A system \mathcal{H} is said to be linear if, for all functions X_1 and X_2 and all complex constants at and az, the following condition holds: $\mathcal{H}\left\{a_1X_1+a_2X_2\right\}=a_1\mathcal{H}X_1+a_2\mathcal{H}X_2.$