Случайные графы.

Зафиксируем $p \in (0,1)$ и назовём *вероятностью графа* (в модели, или вероятностном пространстве, Эрдёша—Реньи) с n вершинами $\{1,2,\ldots,n\}$ и e рёбрами число

$$P(G) = p^e \cdot (1-p)^{C_n^2 - e}$$
.

Вероятностью семейства (или, что то же самое, свойства) графов с данными вершинами называется сумма вероятностей входящих в него графов.

Случайной величиной называется функция, определённая на множестве всех графов с данными вершинами. Например, количество рёбер графа — случайная величина.

Mатематическим ожиданием случайной величины Y называется её «взвешенное среднее»

$$\mathbb{E}Y = \sum_{G} Y(G)P(G) = \sum_{s=1}^{k} y_{s}P(Y(G) = y_{s}),$$

где y_1, \ldots, y_k — возможные значения Y.

Дисперсией случайной величины Y называется число $\mathbb{D}Y = \mathbb{E}\left[(Y - \mathbb{E}Y)^2\right]$.

- **1.** Для данных n и p найдите мат. ожидание количества
 - (а) изолированных вершин;
 - (b) треугольников;
 - (с) путей из трёх вершин;
 - (d) вершин степени 11;
 - (e) *k*-клик;
 - (f) k-клик, являющихся компонентами связности;
 - (g) подграфов, изоморфных графу на рисунке;
 - (h) индуцированных подграфов, изоморфных графу на рисунке.

- **2.** Докажите, что для данных n и p вероятность наличия изолированного множества из k вершин меньше $e^{k \ln n pk(k-1)}$
- **3.** Для данных n и p найдите дисперсию величин, указанных в пп. 1.(a)–(d) первой задачи.

Асимптотики в случайных графах

Событие A_n происходит асимптотически почти наверное (а.п.н., также с асимптотической вероятностью 1) относительно последовательности f(n), если $P(A_n) \to 1$ при $p = f(n), n \to \infty$. Общепринятое сокращение: при p(n) = f(n) событие A_n происходит а.п.н.

Пусть даны случайная величина X и число a > 0.

Неравенство Маркова: $\mathrm{P}(|X|\geqslant a)\leqslant \frac{\mathbb{E}|X|}{a}$. Неравенство Чебышёва: $\mathrm{P}(|X-\mathbb{E}X|\geqslant a)\leqslant \frac{\mathbb{D}X}{a^2}$.

- **5.** Докажите, что при $p = \frac{1}{2}$ а.п.н. нет клики размера $100 \ln n$.
- **6.** Докажите, что хроматическое число случайного графа G(n, p) а.п.н.

 - (a) не меньше $\frac{n}{20\ln n}$ при $p=\frac{1}{3}$; (b) не больше двух при $p(n)=o\left(\frac{1}{n}\right)$; (c) равно единице при $p(n)=o\left(\frac{1}{n^2}\right)$.
- **7.** Докажите, что при $p(n) = \frac{1}{2n}$ а.п.н. в графе более $\frac{n}{2}$ изолированных вершин.
- **8.** Докажите, что при $p(n) = o\left(\frac{1}{n^{3/2}}\right)$ а.п.н. никакая пара рёбер не имеет общей вершины.

Функция $p^*(n)$ называется пороговой вероятностью для свойства A, если

- при $\frac{p(n)}{p^*(n)} \to 0$ а.п.н. граф не обладает свойством A, а при $\frac{p(n)}{p^*(n)} \to +\infty$ а.п.н. граф обладает свойством A.
- **9.** Докажите, что пороговой вероятностью для свойства «граф содержит треугольник» является функция $p^*(n) =$