Estatística

Correlação

Correlação Linear - Introdução

Exemplo: amostra de 8 países

X : Renda Per Capita (U\$ 1000)

Y: Taxa de Analfabetismo (%)

Verificação Visual:

Existe tendência dos maiores valores de X corresponderem aos menores valores de Y, ou seja:

Existe Correlação Linear Negativa entre as variáveis

Grau de Correlação Linear

1) Grau Acentuado

2) Grau Pouco Acentuado

3) Grau Nulo

Medida do Grau de Correlação Linear

Covariância: Mede a variabilidade considerando duas variáveis

$$S_{xy} = \text{cov}(x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) * (y_i - \overline{y})}{n-1}$$

$$S_x^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} = \text{Variância}$$

Coeficiente de Correlação Linear de Pearson

1. População:

$$\rho = \frac{\text{cov}(x, y)}{\sigma_x * \sigma_y}$$

2. Amostra:

$$r = \frac{S_{xy}}{\sqrt{S_x^2 * S_y^2}}$$

Coeficiente de Correlação Linear de Pearson

Sempre: $-1 \le r \le 1$

r próximo de -1 : Correlação Linear Negativa significativa

r próximo de 1 : Correlação Linear Positiva significativa

r = 0 : NÃO existe Correlação Linear

Coeficiente de Correlação Linear de Pearson

Exemplo: (p. 184, COSTA NETO)

	Xi	y i
Pessoas	altura	massa
1	174	73
2	161	66
3	170	64
4	180	94
5	182	79
6	164	72
7	156	62
8	168	64
9	176	90
10	175	81
Total	1706	745

$$S_x^2 = 70,4889$$

$$S_y^2 = 126,722$$

$$S_{xy} = 72,888$$

2. Amostra:

$$r = \frac{S_{xy}}{\sqrt{S_y^2 S_x^2}}$$

Conclusão: como r se mostrou relativamente próximo de 1, significa que os pontos indicam uma razoavelmente alta Correlação Linear Positiva

Testes do coeficiente de Correlação

$$\begin{cases} H_0: \rho = 0 \\ H_1: \rho > 0 \end{cases}$$

Verificar se podemos, ao nível de $H_0: \rho = 0$ $H_1: \rho > 0$ 5% de significância, concluir p
existência de correlação linear 5% de significância, concluir pela positiva entre altura e peso.

critério
$$\rightarrow rejettar H_0$$
 se $r > r_{crítico}$

onde
$$r_{crítico} = \sqrt{\frac{1}{1 + \frac{n-2}{(t_{n-2};\alpha)^2}}}$$

para
$$\alpha = 0.05 => r_{crítico} = 0.55$$

Logo: $r > r_{crítico}$ Portanto: REJEITA-SE H₀

Isto é, ao nível de significância de 5%, pode-se dizer que existe Correlação Linear entre altura e peso

Correlação Não - Linear

Variáveis apresentam correlação entre si, mas não explicada por uma função linear

Estatística

Regressão

Regressão - Introdução

Função que exprime a relação funcional entre 2 ou mais variáveis

Variação Residual: Variação em torno da linha de Regressão

Regressão Linear Simples: apenas duas variáveis: Reta

Regressão Polinomial: Polinômio de grau superior a 1

Regressão Linear Múltipla: mais de duas variáveis: Reta

Regressão - Introdução

Conceitos:

X : Variável Não-aleatória (sem erro devido ao acaso)

Y: Variável que tem uma parcela de variação aleatória

Exemplo:

Medir a temperatura de um forno, de 5 em 5 minutos

X:0, 5, 10, 15, ...

Y₀: Temperatura no instante inicial (forno é ligado)

Y₁: Temperatura no instante 5 min

Y₂: Temperatura no instante 10 min

e assim por diante ...

Conclusões:

Vemos que os valores de X independem de Y, pois foram arbitrados

No entanto, os valores de Y dependem dos de X (por exemplo, supor que Y aumenta com o aumento de X)

Assim:

X Variável independente

Y Variável dependente

Regressão Linear Simples

Hipótese : Variação de Y em torno da linha de regressão tem Distribuição Normal com $\mu = 0$ e $\sigma = constante$

Função da População : $y = \alpha + \beta^* x$

Função da Amostra : $\hat{y} = a + b^*x$

Parâmetros a e b obtidos experimentalmente:

a : estimativa de α

b : estimativa de β (Coeficiente de Regressão Linear)

Regressão Linear Simples- Método dos Mínimos Quadrados

$$d_i = \hat{y}_i - y_i$$
 Função da Amostra : $\hat{y} = a + b^*x$

OBJETIVO:

Procurar a reta: $\hat{y} = a + b^*x$, para a qual $\sum_{i=1}^{n} d_i^2$ é mínima !!!

determinação de d_i² mín

$$\min \sum_{i=1}^{n} d_i^2 = \min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min \sum_{i=1}^{n} (y_i - a - b * x_i)^2$$

determinação dos valores de a e b que minimizam

$$\frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - b * x_i)^2 = 0 \implies -2 \cdot \sum_{i=1}^{n} (y_i - a - b * x_i) = 0$$

$$\frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - b * x_i)^2 = 0 \implies -2 \cdot \sum_{i=1}^{n} (y_i - a - b * x_i) = 0$$

Regressão Linear Simples- Método dos Mínimos Quadrados

Resolvendo o sistema de equações, temos:

$$b = \frac{S_{xy}}{S_x^2}$$

$$a = \overline{y} - b * \overline{x}$$

Coeficiente de Correlação Linear de Pearson

Exemplo: (p. 184, COSTA NETO)

1 (1 /				
	Xi	y i		
Pessoas	altura	massa		
1	174	73		
2	161	66		
3	170	64		
4	180	94		
5	182	79		
6	164	72		
7	156	62		
8	168	64		
9	176	90		
10	175	81		
Total	1706	745		

$$S_r^2 = 70,4889$$

$$S_y^2 = 126,722$$

$$S_{xy} = 72,888$$

• Determinar a reta: y = a + b.x

$$b = \frac{S_{xy}}{S_x^2} = \frac{72,888}{70,4889} = 1,03$$

$$a = \overline{y} - b \cdot \overline{x} = 74,5 - 1,03 \cdot 170,6 = -101,22$$

$$y = -101,22 + 1,03 x$$

Reta Teórica: $y = \alpha + \beta . x$

Reta Estimativa: $\hat{y} = a + b.x$

Parâmetros a e b obtidos experimentalmente

Teste de Hipóteses:

 H_0 : $\beta = 0$ (NÃO existe Regressão) H_1 : $\beta \neq 0$ (Existe Regressão)

Seja: s_R² = Variância Residual, ou Variância em torno da reta dos Mínimos Quadrados

$$s_R^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$
 onde: $\hat{y}_i = a + b \cdot x_i$

n - 2 = graus de liberdade (para estimar \hat{y}_i , é necessário estimar os dois parâmetros: a e b)

$$S_R^2 = \left(\frac{n-1}{n-2}\right) \frac{S_x^2 S_y^2 - S_{xy} S_{xy}}{S_x^2}$$

Teste de Hipótese:

$$\begin{cases} H_0: \beta = \beta_0 \\ H_1: \beta \neq \beta_0 \end{cases}$$
 Reta T: $\mathbf{y} = \alpha + \beta . \mathbf{x}$
Reta E: $\hat{\mathbf{y}} = \mathbf{a} + \mathbf{b} . \mathbf{x}$

b Distrib. Normal
$$\{\mu(b) = \beta \}$$
 $\sigma^2(b)$ desconhecido

$$S^{2}(b) = \frac{S_{R}^{2}}{(n-1)S_{x}^{2}}$$

Critério: Rejeitar H_0 se $|b_{calculado}| > b_{crítico}$

$$b_{crítico} = t_{n-2,\alpha/2} \cdot S(b) + \beta_0$$

 $H_0: \beta = 0$ (NÃO existe Reta de Regressão) $H_1: \beta \neq 0$

Critério: Rejeitar H_0 se $|b_{calculado}| > b_{crítico}$

$$b_{crítico} = t_{n-2,\alpha/2} \cdot S(b)$$

Intervalo de Confiança para β

Distribuição.
Normal
$$\sigma^{2}(b) = \beta \qquad b$$

$$S^{2}(b) = \frac{S_{R}^{2}}{(n-1)S_{x}^{2}}$$

$$\Pr[b - t_{n-2,\alpha/2} * S(b) \le \beta \le b + t_{n-2,\alpha/2} * S(b)] = 1 - \alpha$$

Exemplo: Altura X Massa (n = 10 pessoas)

Resultados já obtidos: a = -101,22

$$a = -101,22$$

$$b = 1,03$$

$$S_x^2 = 70,4889$$
 $S_y^2 = 126,722$

$$S_{v}^{2} = 126,722$$

$$S_{xy} = 72,888$$

$$S_R^2 = \left(\frac{n-1}{n-2}\right) \frac{S_x^2 S_y^2 - S_{xy} S_{xy}}{S_x^2}$$

$$S^{2}(b) = \frac{S_{R}^{2}}{(n-1)S_{x}^{2}}$$

$$S_R^2 = \left(\frac{9}{8}\right) \frac{70,4889 \cdot 126,722 - (72,888)^2}{70,4889} = 57,8$$

$$S(b) = \sqrt{\frac{57,8}{(9) \cdot 70,4889}} = 0,302$$

Teste de Hipótese:

 $\begin{cases} H_0: \beta = 0 & (N\tilde{A}O \text{ existe Reta de Regressão}) \\ H_1: \beta \neq 0 \end{cases}$

$$H_1: \beta \neq 0$$

$$\alpha = 5\%$$

Critério: Rejeitar H_0 se $|b_{calculado}| > b_{crítico}$

$$b_{crítico} = t_{n-2,\alpha/2} \cdot S(b) + \beta_0 = 2,306 \cdot 0,302 = 0,696$$

Logo: $|b| > b_{critico}$ (1,03 > 0,696) **REJEITA-SE H₀**

Isto é, ao nível de significância de 5%, pode-se dizer que existe Reta de Regressão

Exemplo: Altura X Massa (n = 10 pessoas)

Resultados já obtidos: a = -101,22

$$a = -101,22$$

$$b = 1,03$$

$$S_{x}^{2} = 70,4889$$
 $S_{y}^{2} = 126,722$

$$S_{v}^{2} = 126,722$$

$$S_{xy} = 72,888$$

$$S_R^2 = (\frac{n-1}{n-2}) \frac{S_x^2 S_y^2 - S_{xy} S_{xy}}{S_x^2}$$

$$S^{2}(b) = \frac{S_{R}^{2}}{(n-1)S_{x}^{2}}$$

$$S_R^2 = \left(\frac{9}{8}\right) \frac{70,4889 \cdot 126,722 - (72,888)^2}{70,4889} = 57,8$$

$$S(b) = \sqrt{\frac{57,8}{(9) \cdot 70,4889}} = 0,302$$

Intervalo de Confiança para β

$$\Pr[b - t_{n-2,\alpha/2} * S(b) \le \beta \le b + t_{n-2,\alpha/2} * S(b)] = 1 - \alpha$$

$$P[1,03-2,306*0,302 \le \beta \le 1,03+2,306*0,302] = 95\%$$

$$P(0.33 \le \beta \le 1.73) = 95\%$$

Conclusão: Isto é, podemos afirmar, com uma probabilidade de 95%, que β encontra no intervalo entre 0,33 e 1,73

Teste de Hipótese:

$$\begin{cases} H_0: \alpha = \alpha_0 & \text{Reta T: } \mathbf{y} = \alpha + \beta.\mathbf{x} \\ H_1: \alpha \neq \alpha_0 & \text{Reta E: } \hat{\mathbf{y}} = \mathbf{a} + \mathbf{b}.\mathbf{x} \end{cases}$$

Estimador

Distr. Normal
$$\begin{cases} \mu (a) = \alpha & \longrightarrow & a \\ \sigma^2(a) ? & \longrightarrow & S^2(a) \end{cases}$$

$$S^{2}(a) = \frac{S_{R}^{2} \cdot \sum_{i=1}^{n} x_{i}^{2}}{n(n-1)S_{x}^{2}}$$

Critério: Rejeitar H_0 se $|a_{calculado}| > a_{crítico}$

$$a_{crítico} = t_{n-2,\alpha/2} \cdot S(a) + \alpha_0$$

Intervalo de Confiança para α

$$P[a - t_{n-2,\alpha/2} \cdot s(a) \le \alpha \le a + t_{n-2,\alpha/2} \cdot s(a)] = 1 - \alpha$$

$$a = \overline{y} - b * \overline{x}$$

$$S^{2}(a) = \frac{s_{R}^{2} \cdot \sum_{i=1}^{n} x_{i}^{2}}{n(n-1)S_{x}^{2}}$$

Coeficiente de Correlação Linear de Pearson

2. Amostra:

$$r = \frac{S_{xy}}{\sqrt{S_x^2 * S_y^2}}$$

Coeficiente de determinação

$$r^2 = \frac{S_{xy}S_{xy}}{S_x^2 * S_y^2}$$

Indica a porcentagem de variação de Y explicada pela reta de regressão.

Indica quanto a reta de regressão fica bem determinada em função da correlação entre os pontos experimentais.

Determinar um intervalo no qual, com 1- α de certeza, possamos prever que o valor experimental de Y, obtido para dado x', venha a estar contido.

$$\hat{y}' \pm t_{n-2,\alpha/2} \cdot s_R \sqrt{1 + \frac{1}{n} + \frac{(x' - \bar{x})^2}{(n-1)S_x^2}}$$

onde

$$S_R^2 = (\frac{n-1}{n-2}) \frac{S_x^2 S_y^2 - S_{xy} S_{xy}}{S_x^2}$$

Exemplo: (p. 195, COSTA NETO)

xi	yi
1	0,5
2	0,6
3	0,9
4	0,8
5	1,2
6	1,5
7	1,7
8	2
36	9,2

$$\overline{x} = \frac{36}{8} = 4.5$$
 $\overline{y} = \frac{9.2}{8} = 1.15$

$$S_{XY} = 1,3$$
 $S_x^2 = 6$ $S_y^2 = 0,294$
$$b = \frac{S_{xy}}{S_x^2} = \frac{1,3}{6} = 0,217$$

$$a = \overline{y} - b \cdot \overline{x} = 1,15 - 0,217 \cdot 4,5 = 0,174$$

y = 0.174 + 0.217x

y = 0.174 + 0.217 x

		Região de Previsão	
Χ´	ŷ'	Limite inferior	Limite superior
1	0,391	0,044	0,738
2	0,608	0,279	0,937
3	0,825	0,509	1,141
4	1,042	0,732	1,352
5	1,259	0,949	1,569
6	1,476	1,160	1,792
7	1,693	1,364	2,022
8	1,91	1,563 *	2,257 **

$$\hat{y}' = 0.174 + 0.217 \times (8) = 1.91$$

$$S_R^2 = (\frac{n-1}{n-2}) \frac{S_x^2 S_y^2 - S_{xy} S_{xy}}{S_x^2}$$
 $S_R = \sqrt{\left(\frac{7}{6}\right) \frac{6 \cdot 0,294 - (1,3)^2}{6}} = 0,119$

$$t_{n-2,\alpha/2} = t_{6,2,5\%} = 2,447$$

$$\hat{y}' \pm t_{n-2,\alpha/2} \cdot s_R \sqrt{1 + \frac{1}{n} + \frac{(x' - \bar{x})^2}{(n-1)S_x^2}}$$

* Limite inferior:
$$1,91-2,447\cdot0,119\sqrt{1+\frac{1}{8}+\frac{(8-4,5)^2}{7\cdot6}}=1,563$$

** Limite superior:
$$1.91 + 2.447 \cdot 0.119 \sqrt{1 + \frac{1}{8} + \frac{(8 - 4.5)^2}{7 \cdot 6}} = 2.257$$

