

Europäisches Patentamt

European Patent Office

Office européen des brevets

11) Publication number:

0 541 026 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92118724.1

(51) Int. Cl.5: **H04Q** 7/04, H04B 7/26

2 Date of filing: 02.11.92

Priority: 08.11.91 JP 292689/91

Date of publication of application: 12.05.93 Bulletin 93/19

Designated Contracting States:
DE FR GB

7 Applicant: HITACHI, LTD.
6, Kanda Surugadai 4-chome
Chiyoda-ku, Tokyo 100(JP)
Applicant: KOKUSAI ELECTRIC CO., LTD.
3-13, 2-Chome, Toranomon, Minato-ku
Tokyo-to(JP)

Inventor: Nakagoshi, Arata Kelmeiryo 216, 14-13, Honda 3-chome Kokubunji-shi(JP) Inventor: Suzuki, Hideya Hitachi Koyasudal Apato D205 32, Koyasumachi-2-chome,

Hachioji - shi(JP)

Inventor: Yamamoto, Yoshinobu NK Haitsu D102, 5019-3, Oba

Fujisawa-shi(JP)
Inventor: Shimbo, Isao
3441-39, Totsukacho
Totsuka-ku, Yokohama-shi(JP)
Inventor: Furuya, Tsuneo
77, Urafunecho-5-chome
Minami-ku Yokohama-shi(JP)
Inventor: Kuwahara, Hiroshi
25-23, Tsudamachi-3-chome

Kodaira-shi(JP)

Representative: Altenburg, Udo, Dipl.—Phys. et al
Patent— und Rechtsanwälte
Bardehle—Pagenberg—Dost—Altenburg
Frohwitter—Geissler & Partner Postfach 86
06 20
W—8000 München 86 (DE)

- Mobile communication system and location registration method in mobile communication system.
- 57 The present invention is intended to grasp a moving speed of a mobile station and to selfcontrol a location registration request from the mobile station that is in motion at high speed, to there by alleviate an increased burden that is imposed upon the system due to a concentration of a lot of location registration requests. A mobile station which executes a location registration processing by using the channel quality of a base station and an information concerning a base station includes a base station information memory unit (7) for storing therein information concerning a plurality of base stations and an amount in which the channel quality of the base station is changed with time and a location judging unit (8) for judging on the basis of the amount in which the base station information is changed with time and which is stored in the base station information memory unit (7) whether or not the location registration processing is executed and

a location in service area. Since whether the location registration processing is to be executed or not is determined in accordance with the moving speed of the mobile station, it is possible to limit the occurrence of a location registration request which becomes invalid with a large possibility in a short period of time because the mobile station moves to other location registration area or to the calling area in a short period of time. Therefore, a traffic of the location registration request can be lowered. In consequence, a frequency at which the location registration requests are collided can be lowered and a ratio with which a location registration request from the mobile station that is in a stationary state or in motion at low speed, can successfully become valid can be increased. Furthermore, since the frequency in the location registration request can be lowered, an amount of unnecessary electric power consumption of the mobile station can be reduced.

FIG. 3

40

45

BACKGROUND OF THE INVENTION

Field of the Invention:

The present invention relates to a mobile communication system and a method of controlling a location registration processing in the mobile communication system and, more particularly, is directed to a mobile communication system in which the service area is composed of small radio zones and directed to a mobile communication system supposed to use at low speed or in stationary conditions, such as a portable radio telephone system in which a location registration processing of a mobile telephone system is required.

Description of the Prior Art:

In conventional mobile communication systems such as a mobile telephone or the like in which a plurality of zones are combined to constitute a service area, in order to reduce unnecessary calls when a mobile station receives a call from a base station, there is adopted such a system in which a plurality of calling areas, each composed of a plurality of zones, are provided within the service area and a mobile station is accessed from a base station located within a calling area whose location is registered.

In general, when a mobile station is powered or enters the service area from the outside of the service area, a location registration processing is carried out. A book that had been edited by Masaaki Shinshi and published on September 1989 under the title of "Mobile Communication", for ex – ample, describes these location registration sys – tems.

As an example of the location registration system, there are known a system in which a base station receives a signal from a mobile station and the base station or a radio exchange station judges the mobile station's location in service area and a system in which the mobile station receives a sig – nal from the base station to judge its own location in service area. The present invention is based on the latter location registration system wherein the mobile station judges its own location in service area.

FIG. 1 of the accompanying drawings shows in functional block form an example of the conventional location registration system in which the mobile station judges its own location in service area.

As shown in FIG. 1, the conventional mobile station includes a radio unit 1 for effecting the transmission or reception between it and the base station (not shown) via a radio signal through an antenna 1A, a channel quality measuring apparatus

4 for receiving a received signal (control signal) from the base station to evaluate the channel quality, a data identifying apparatus 3 for identify ing from a received signal a calling area name (described later on) or a location registration area name (described later on) and a base station name (i.e., an ID (identification) code of the base station) or a zone name (ID code when zones are composed of a plurality of base stations), a registration information memory 5 for storing therein a location registration information that was already registered, a comparing and judging apparatus 6 for comparing an information concerning the base station having a best channel quality from the channel quality measuring apparatus 4 and the data iden tifying apparatus 3 with the content of the registered location registration information stored in the registration information memory 5 and a location registration processor 2.

In the above description, the calling represents operation such that, a plurality of zones are grouped and, a plurality of base stations in same group call a particular mobile station at the same time according to some suitable methods, such as a TDMA (time division multiple access) method or the like. Further, the calling area names represent ID code of groups of a plurality of zones (or base stations). The location registration area name is as follows. In general, since the service area is com posed of a plurality of calling areas, when calling a particular mobile station, requiring information of present location of each mobile station. The loca tion registration is the operation of registering a present location of each mobile and, the location registration area is composed of a plurality of zones (or base stations). The location registration area names represent the ID code representing these groups of a plurality of zones. Sometimes the calling areas are same as the location registration areas.

A location registration processing of the conventional system shown in FIG. 1 will hereinafter be described with reference to a flowchart forming FIG. 2.

As shown in FIG. 2 of the accompanying drawings, when the mobile station executes the location registration processing, in decision step S1, the mobile station receives a signal of a frequency band that was allocated in advance and searches a base station that the mobile station can communicate with. In decision step S1, the base station that can be communicated with the mobile station is retrieved by the channel quality measuring apparatus 4 and the data identifying apparatus 3. If the base station that can be communicated with the mobile station is not searched as represented by a NO at decision step S1 because the level of the received signal is low or the like, then

40

the processing proceeds to step S2, whereat a message representative of "out of service area" is displayed. Then, the processing returns to decision step S1, whereat the base station is searched at a preset time interval. If the base station that can be communicated with the mobile station is searched as represented by a YES at decision step S1, then the processing proceeds to step S3, whereat the data identifying apparatus 3 reads out the location registration area name or the calling area name, the base station name or the zone name from the received signal and the channel quality measuring apparatus 4 evaluates the channel quality between the base station and the mobile station on the basis of a received electric power or error rate of received data. Then, a base station whose channel quality is regarded to be best is selected from a plurality of base stations that can be communicated with the mobile station by the comparison of a received electric power, an error rate of received data or the like, and the location in service area is judged on the basis of an information concerning the base station thus selected.

Then, the processing proceeds to the next step S4, whereat the last location registration information and the location in service area are compared with each other. If the location in service area is different from the last location registration information, then a signal is transmitted to the selected base station that can be communicated with the mobile station to thereby effect the location registration processing in step S5. The base station receives necessary information such as mobile station name or the like in response to the request of the mobile station and registers the same in a memory station that administers a location information of each mobile station.

Referring back to FIG. 1, the comparing and judging apparatus 6 judges optimum base station and location in service area, and compares the location in service area with the last location reg istration information stored in the registration information memory 5 to thereby determine whether or not the location registration is to be executed. After the location registration processing at step \$5 was finished, the mobile station enters the intermitting reception state in order to reduce an amount of consumed electric power so that it may receive an information from the base station at a constant time interval to await the call from the base station. If the mobile station receives a call request from the base station as represented by a YES at decision step S6, then the mobile station executes the call processing at step S7. During the intermitting reception state, or if the call request is not received as represented by a NO at decision step S6, then the processing proceeds to decision step S8, whereat the evaluation of the channel

quality is effected by the channel quality measuring apparatus 4. If it is determined in decision step S8 that the channel quality of the base station is not satisfactory or that the reception becomes difficult such as when the reception level of the base station is lowered due to the motion of the mobile station, then the processing returns to the decision step S1, whereat the base station that can be communicated with the mobile station is again searched. If the base station name or the zone name, the location registration area name or the calling area name is changed from a received signal of a new base station supplemented, then the location registration processing is executed one more time at step S5.

The location registration area or the calling area is generally constructed by the combination of a plurality of zones. Accordingly, if the location registration area or the calling area is not changed even though the base station that can be communicated with the mobile station is changed due to the motion of the mobile station or the like, the location registration processing need not be executed one more time.

SUMMARY OF THE INVENTION

In general, a moving speed of a mobile station is changed a lot in accordance with the situation under which the user of the mobile station is placed. If the user of the mobile station is in a high speed vehicle such as a train, a bus or the like, then a moving speed of the base station is increased about ten times or more as compared with the moving speed at which the user having the mobile station is walking. In order to call the mobile station, the location registration must be updated each time the location registration area or the call ing area is changed in accordance with the motion of the mobile station. Therefore, during the mobile station is in motion at high speed, a frequency at which the location registration is updated is increased about 10 times or more as compared with a frequency at which the location registration is updated during the mobile station user is walking. That is, according to the conventional location registration system, the mobile station within the high speed vehicle must frequently effect the location registration so that a location registration control unit in a system having a number of mobile stations accommodated therein suffers from an increased burden.

Further, there is the large possibility that, even when the base station sends a call request to the mobile station located within the high speed vehicle on the basis of the location registration information, the mobile station cannot answer the call request from the base station because the mobile station is

20

25

40

45

50

55

moved to other calling area or to the outside of the service area and also the location registration in – formation is not yet registered again, which as a result increases a blocking probability. In order to reduce a blocking probability, it is proposed to set a wide calling area. Alternatively, there is proposed a method such that, when the mobile station cannot answer the call request from the base station in the calling area whose location is registered, a call request is executed by the calling area of the surroundings. If these methods are realized, then the mobile communication system unavoidably suffers from an increased burden with respect to the location registration processing and the call processing from a system control standpoint.

If the location registration processing, frequently executed by the mobile station that is in motion at high speed, is controlled from a services standpoint, then an amount in which a burden imposed upon the system is increased due to the concentration of a lot of unnecessary location registration requests can be alleviated or the system can be simplified. Further, if the occurrence of the unnecessary location registration requests is alleviated, then a frequency at which the mobile station effects the transmission for location registration processing can be reduced and the amount of the electric power consumption of the mobile station can be reduced effectively.

To restrict the location registration processing executed by the mobile station that is in motion at high speed, the moving speed of the mobile station must be understood. In on-vehicle radio trans-mitter and receivers, typically represented by the mobile telephone system, the moving speed of the mobile station can be constantly measured by uti-lizing a speedometer. However, it is difficult to measure the moving speed of the mobile station while the user of the mobile station is on the high speed vehicle such as a bus or the like.

Therefore, it is an object of the present invention to provide an improved portable radio telephone system in which the aforesaid shortcomings and disadvantages of the prior art can be eliminated.

More specifically, it is an object of the present invention to provide a portable radio telephone system in which a moving speed of a mobile station can be understood and in which a location registration from a mobile station that is in motion at high speed can be self—controlled.

Another object of the present invention is to provide a portable radio telephone system which can alleviate an increased burden imposed upon the system due to a concentration of a number of location registration requests.

A further object of the present invention is to provide a portable radio telephone system in which

a traffic of a location registration request can be lowered.

Yet a further object of the present invention is to provide a portable radio telephone system in which a frequency at which location registration requests are collided can be lowered.

Still a further object of the present invention is to provide a portable radio telephone system in which an amount of an unnecessary electric power consumption of a mobile station can be reduced.

In order to achieve the above-mentioned objects, the present invention makes effective use of a received signal from a base station as a standard of judgement for judging a moving speed of a mobile station and also a channel quality based on a received electric power or an error rate of received data. Received signals from a plurality of base stations are measured a plurality of times by utilizing a channel quality evaluating apparatus that was already installed on the conventional mobile station. At the same time, information concerning respective base stations, such as a location registration area name or the like, are identified. The portable radio telephone system of the present invention includes a base station information memory that stores therein the above measured results and identified results. Further, the portable radio telephone system of the present invention includes a location judging apparatus which judges the location in service area of the mobile station and which also judges on the basis of the condition under which measured data is fluctuated with time whether or not the location registration processing is to be executed. Thus, it is possible to alleviate the occurrence of the location registration requests from the mobile station that is in motion at high speed.

Situation of a radio wave propagation is changed momentarily in accordance with the motion of the mobile station or the fluctuation of the situation of the surroundings. If the mobile station evaluates the amount in which the channel qualities of a plurality of base stations are fluctuated with time, then the moving speed of the mobile station itself can be understood qualitatively. The present invention employs a received electric power as a first evaluation standard. Received electric powers from a plurality of base stations and which can be evaluated by the mobile station are changed in response to a physical distance between the mobile station and the base stations. Study of a received signal from a single base station reveals that the received electric power is changed with time while the mobile station is in motion. In other words, if the mobile station is in a stationary state or in motion at low speed, then an amount in which the received electric power is changed with time is reduced. If on the other hand the mobile station is

30

40

45

50

55

on a high speed vehicle, then the amount in which the received electric power is changed with time is increased. According to the present invention, a plurality of base stations that can be communicated with the mobile station are supplemented and a base station name, a location registration area name or a calling area name and a received elec tric power are read out from the received signal and then stored. If this operation is repeatedly carried out a plurality of times at a preset time interval, then it is possible to understand the situation under which the information concerning the base station is changed with time. Then, it is determined on the basis of the information thus stored whether or not the location registration processing is to be executed. Fundamentally, if the fluctuation of the received electric power is small, then the location registration processing is effected. Conversely, if the fluctuation of the received electric power is large, then the location registration processing is inhibited. The mobile station name. the registration area name, the calling area name, etc., are identified by a so-called ID (identification) code or the like.

It is frequently observed that a communication is affected by a radio interference although the level of the received electric power is high. In that case, even though a necessary information such as the base station name or the like is obtained, superiority or inferiority of the channel quality of the base station cannot be judged indiscriminately on the basis of only the magnitude of the received electric power. Therefore, the present invention employs an error rate of received data as a second standard of evaluating the channel quality. By evaluating the error rate of received data by verifying a data pattern with a preset data pattern, the channel situation upon radio interference can be grasped and the change of the error rate of received data can be used as the standard to determine whether or not the location registration processing is to be executed. Further, if the received electric power and the error rate of received data are combined to provide a new standard by which the channel quality of the base station is evaluated. then it becomes possible to obtain a more detailed information concerning the receiving situation of the mobile station and the base stations located on the surroundings, such as the existence of the radio interference or the like.

If it is determined by the above-mentioned processing that the location registration processing is executed, then the processings which follow are similar to those of the prior-art example. A base station whose channel quality is regarded as the best by the mobile station is selected from a plu-rality of base stations that can be communicated with the mobile station and the processing con-

cerning the location registration is executed. If the location registration area name or the calling area name of the same content was already registered, then the location registration processing need not be executed. In this case, similarly to the example of the prior art, the location registration processing can be omitted and the mobile station enters the intermitting receiving condition under which the base station whose channel quality is evaluated to be the best is employed as a target base station.

If it is determined on the basis of the evaluated result of the moving speed of the mobile station that the location registration processing is not effected although it is clearly identified on the basis of the evaluated result of the channel quality that the mobile station is located within the service area, this situation is different from the situation in which the mobile station is located out of service area. Therefore, a message representative of "not registered" or the like is displayed and the retrieval of base station is again executed at a preset time interval.

The foregoing and other objects, advantages, manner of operation and novel features of the present invention will be understood from the following detailed description when read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram showing an example of a location registration processing unit according to the prior art;

FIG. 2 is a flowchart to which references will be made in explaining the conventional location registration processing;

FIG. 3 is a functional block diagram showing a location registration processing unit in the present invention; and

FIG. 4 is a flowchart to which references will be made in explaining a location registration pro-cessing according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

Embodiments of the present invention will be described hereinafter with reference to the draw-ings. FIG. 3 of the accompanying drawings shows a functional block diagram of a mobile station that can be applied to a mobile communication system according to the present invention. In FIG. 3, elements and parts identical to those of FIG. 1 are marked with the same references and therefore need not be described in detail.

As shown in FIG. 3, the mobile station comprises the radio unit 1 for effecting the transmission and reception between it and a base station via a

radio signal through an antenna 1A, the channel quality measuring apparatus 4 for receiving a received signal from the base station to thereby evaluate the channel quality of the base station, the data identifying apparatus 3 for obtaining the call ing area name or the location registration area name and the base station name or the zone name from the received signal, a base station information memory 7 for storing therein a base station in formation obtained in the channel quality measur ing apparatus 4 and the data identifying apparatus 3. a location judging apparatus 8 for determining on the basis of the condition under which the base station information stored in the registration information memory 7 is changed with time whether or not the location registration is executed and for judging the location in service area, the registration information memory 5 for storing therein the reg istered location registration information, the comparing and judging apparatus 6 for comparing the base station information obtained in the location judging apparatus 8 with the content of the regis tered location registration information stored in the registration information memory 5 and the location registration processor 2.

A signal from the base station (not shown) is received by the radio unit 1 through the antenna 1A. Then, the received signal is supplied to the data identifying apparatus 3 and the channel quality measuring apparatus 4 from which there are derived an information concerning the retrieval of base stations that can be communicated with the mobile station and information concerning the respective base stations, respectively. Of the base stations that can be communicated with the mobile station, base stations of a predetermined number are listed up in the sequential order of better channel quality and then stored in the base station information memory 7 together with the information concerning each base station as a base station information list. The retrieval of the base station is executed a plurality of times (n times) at every preset time interval, whereby n base station information lists are stored in the base station information memory 7. The location judging appara tus 8 analyzes the base station information lists stored in the base station memory 7 to thereby determine whether the location registration processing is executed or not. If the mobile station is in a stationary state, then the channel quality of the base station whose channel quality is regarded to be better becomes constant from a time standpoint and only the channel quality of the base station having the channel quality of low order is changed in accordance with the situation of the surroundings from a time standpoint.

However, when the mobile station is located near the boundary between the zones, there is then the possibility that the order of the channel quality of the mobile station will be changed with time. If the mobile station is in motion, the base station names, which were stored in the base station information list in the sequential order of the channel quality, or the zone names are fluctuated with time. If the moving speed of the mobile station is low, then they are fluctuated gently. If on the other hand the moving speed of the mobile station is high, then they are fluctuated rapidly. Accordingly, by analyzing the state under which the content of the base station information list stored in the base station information memory 7 is changed with time, it is possible to understand the moving speed of the mobile station qualitatively. An object of the present invention is to restrict the location reg istration in the case such that the mobile station or the user of mobile station is in motion at high speed and passes the zone in a short period of time. Accordingly, in order to determine on the basis of the qualitative understanding of the moving speed of the mobile station whether or not the location registration processing is to be executed, considering the size of the zone or calling area and an upper limit value of the moving speed of the mobile station that is desired to execute the loca tion registration processing, it becomes necessary to set a standard of judgement by which the time interval for the base station retrieval is determined. Also, it becomes possible to determine whether or not the location registration processing is to be executed.

As a method of understanding the moving speed of the mobile station qualitatively as described above, the present invention employs a method in which signals from a plurality of base stations are received and the conditions that channel qualities of the respective base stations are changed with time are analyzed. As a standard for evaluating the channel quality of the mobile station, there is generally utilized a received electric power because the received electric power can be measured comparatively easily. Therefore, a number of mobile stations having a received elec tric power measuring unit are already commercially available on the market. The received electric power in the mobile station or in the base station is changed in accordance with a distance between the base station and the mobile station so that, if the mobile station is in a stationary state or in motion at low speed, then the fluctuation of the received electric power is reduced. If on the other hand the mobile station is on the high speed vehicle, then the fluctuation of the received electric power is increased depending upon the conditions such as the moving direction of the mobile station or the like. In the mobile communication system in which the transmission electric power is compara -

tively small and a distance in which the base station and the mobile station can communicate with each other is short, a time during which the base station and the mobile station can continu—ously communicate with each other is reduced with the increase of the moving speed of the mobile station. Strictly, the received electric power is fluctuated a lot depending upon the situation of the surroundings such as a fading or the like and the moving direction of the mobile station is changed frequently. Therefore, the received electric power must be averaged in a range sufficient so that these influences can be absorbed and that the moving speed of the base station can be under—stood without trouble.

According to the present invention, a plurality of base stations that can receive a signal from the mobile station are captured, the base station name, the location registration area name or the calling area name is read out from the received signal, the received electric power is ranked as the channel quality and then stored in the base station information memory 7. The processings which follow are the same as those described above with respect to the channel quality of the base station. By analyzing the conditions under which the base stations or zones, which were ranked in the sequential order of the level of the received electric power after the base stations were searched a plurality of times at a preset time interval, are changed with time, the moving speed of the mobile station is understood qualitatively and also it is determined whether or not the location registration processing is to be executed. If the amount in which the base station information stored in the base station information memory 7 is changed with time is small, then the location registration processing is executed. Whereas, if the amount in which the base station information is changed with time is large, the location registration processing is inhibited. Therefore, it becomes possible to reduce the occurrence of the aforementioned unnecessary location registration request. Further, since the location registration request from the mobile station that is in motion at high speed can be restricted, a traffic in the location registration request can be lowered. Consequently, a frequency at which the location registration requests are collided can be lowered and a ratio with which the location registration requests from the mobile station that is in a stationary state or in motion at low speed are successfully effected can be increased.

Another embodiment of the present invention will be described below as a standard of evaluating the channel quality of the base station. It is frequently observed that a desired receiving wave of a base station that is to be received is disturbed by an interference wave from other base station or

mobile station due to a radio interference or the like. In that case, if the electric power of the interference wave is high, then the received electric power of the desired wave cannot be understood precisely. Therefore, a mobile station whose channel condition is not always satisfactory because of the radio interference applied thereto al though the received electric power is high must be evaluated properly. It is of course out of guestion that a necessary information such as the location registration area name or the like cannot be read out although the level of the received electric power is sufficiently high. This situation ought to be detected during the channel quality of the base station is evaluated by the received electric power. In order to understand the situation of the channel upon radio interference, the base station transmits a preset data pattern and the mobile station measures an error rate of received data with respect to this data pattern. Instead of the received electric power, the change of the error rate of received data is employed as a standard of judgement by which it is determined whether or not the location registration processing is to be executed. If a combination of the received electric power and the error rate of received data is employed as a standard of judgement to determine whether or not the location registration processing is to be executed, then it becomes possible to obtain a more detailed information on the mobile station and the receiving situation from the base station of the surroundings.

FIG. 4 of the accompanying drawings shows a flowchart to which references will be made in explaining the above-mentioned procedure. The location registration procedure is fundamentally based on the conventional system that was already explained with reference to the flowchart forming FIG. 2. Therefore, like steps and processings corresponding to those of FIG. 2 need not be described in detail and steps added thereto according to the present invention will be described mainly.

Referring to FIG. 4, before the location in ser vice area is judged, at decision step S1, the base station is retrieved a plurality of times at every predetermined time interval. In the flowchart shown in FIG. 4, at decision step S1, the base station is repeatedly searched n times, for example. If the base station is searched as represented by a YES at decision step S1, then the processing proceeds to step S17, whereat the channel quality (the received electric power and/or the error rate of received data) of the base station is evaluated n times and a base station information list such as a base station name and a location registration area concerning m base stations whose channel qualit ies are evaluated to be better in each evaluation is formed. If this processing is repeated n times, then data concerning m x n base stations can be ob-

35

tained in total (m and n are both positive in-tegers). In the next decision step S18, it is deter-mined whether or not the step S17 is repeated n times. If it is determined in decision step S18 that the step S17 is repeated n times, then the processing proceeds to the next decision step S19. If not, then the processing returns to step S1.

After data were collected and the base station information lists were made, in the decision step S19, the base station information lists are compared. If it is determined by the comparison in step S19 that the base station name and the location registration area that can be received are changed in a short period of time, then it can be assumed that the mobile station is moved at very high speed. In that case, the location registration processing is not executed and the processing proceeds to step \$20, whereat a message representative of "not registered" is displayed. There after, the processing proceeds to the initial mode. After a pause of a predetermined time, the search of base station is resumed at step S1. It is impor tant for the user of mobile station to understand whether or not the location registration processing is correctly executed at the location in service area within the service area. The present invention in tends to suppress the occurrence of location reg istration request that is made by the mobile station that is in motion at high speed within the service area. Therefore, it is very significant for the user of mobile station to know a message representative of "not registered" when it is determined on the basis of the result of the list comparison in decision step S19 that the location registration processing is not executed.

If on the other hand the information concerning the base station is changed a little with time, then it can be assumed that the moving speed of the mobile station is low so that the mobile station remains within the present location registration area or the calling area during a relatively long period of time. In that case, the processing proceeds to the next step of the location registration processing. There may be considered a wide variety of meth ods by which a degree at which the base station name and the location registration area are fluctuated is determined in step S19. By way of example, the location registration processing might be continued if the same base station (or the same calling area) whose received electric power is highest in level is determined continuously n times. A standard of judgement must be examined on the basis of the system specification such as a calling system or the like.

If it is determined on the basis of the judged result of the list verification in step S19 that the location registration processing is continued, then a base station to which the location registration re-

quest is issued is selected and the processing proceeds to step S3, whereat the location in service area is judged. As a simple method of judging the location in service area, there may be consid ered a method in which a base station having a best channel quality is selected from the base station information list collected last and a location (i.e., location registration area or the calling area) to which the selected base station belongs is adopted as the location in service area of the mobile station. As a more complex method of judging the location in service area, there may be considered a method in which the future change of the base station information is predicted on the basis of the change of the base station information from a time stand point to thereby determine the location in service area and the base station that can be communicated with the mobile station. Then, the content of the present processing is compared with that of the processing in the last location registration processing. That is, the processing proceeds to the next decision step S4, whereat the location reg istration information and the location in service are compared with each other. If it is determined in decision step S4 that the location in service area is changed, then the processing proceeds to step S5, wherein the location registration processing is executed. Thereafter, the mobile station enters the intermitting receiving state and awaits the call request. If on the other hand it is determined in decision step S4 that the location in service area judged this time is the same as the location regis tered last, then the location registration processing need not be executed. Accordingly, in that case, the processing proceeds to step S21, whereat the selected base station is changed to a target base station with which the mobile station is to commu nicate during the intermitting receiving state, whereafter the mobile station enters the intermitting receiving state. The intermitting receiving system and a method of releasing the intermitting receiving state are similar to those of the prior - art example and therefore need not be described herein.

In some cases, the mobile station users have to execute the location registration processing in a short period of time so that they can become ready for the call request. To meet with such require—ments of the mobile station users, it has been proposed so far to take an automatic mode where the location registration processing shown in FIG. 1, for example, is automatically executed at the predetermined time interval together with a manual mode where the location registration processing is activated in a manual fashion. When the location registration processing is executed in a manual fashion, as shown in FIG. 4, the base station is searched once (n = 1) in step S18 and the list comparison in decision step S19 and the com—

35

40

45

50

55

parison of the location in service area in decision step S4 are omitted, whereby the location reg-istration processing can be executed reliably in a short period of time. In addition, the manual location registration can be set by modifying the number at which the base station information list is formed repeatedly in step S18 and also the time interval during which the base station is searched repeatedly, etc.

According to the present invention, since whether or not the location registration processing is executed is determined in accordance with the moving speed of the mobile station, it is possible to restrict the occurrence of the location registration request which becomes invalid in a short period of time because the mobile station is moved to other location registration area or to the calling area in a short period of time. Thus, the traffic of the location registration request can be lowered. Consequently, the frequency at which the location registration requests are colliding can be lowered. Also, the ratio at which the location registration request from the mobile station that is in a stationary state or in motion at low speed successfully becomes valid can be increased. Furthermore, since the frequency of the location registration request is lowered, the amount of the unnecessary electric power consumption of the mobile station can be reduced.

Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments and that various changes and modifications could be effected therein by one skilled in the art without departing from the spirit or scope of the invention as defined in the appended claims.

Claims

 A portable radio telephone system composed of a plurality of base stations each having a plurality of adjacent zones in a service area, and a plurality of mobile stations that is in motion in the service areas, comprising:

said plurality of base stations for transmitting at every predetermined cycle a control signal which contains at least a base station name thereof; and

said mobile station for receiving said con-trol signal at every predetermined cycle, wherein said mobile station includes a base station information memory unit (7) for storing therein a base station information concerning each base station which is generated by receiving the control signal from the plurality of base stations a predetermined number of times and a location judging unit (8) for judging

a location in service area of its own station on the basis of an information stored in said base station information memory unit (8) so that, if an amount in which said base station information is changed with time is larger than a predetermined value, then said location judging unit (8) inhibits the location registration processing from being executed on the mobile station and that, if the amount in which said base station information is changed with time is smaller than said predetermined value, the location judging unit (8) executes the location registration processing.

- The portable radio telephone system according to claim 1, wherein said base station informa tion memory unit (7) stores therein a mobile station name of a mobile station in which a received electric power of said control signal exceeds a preset received electric power and said received electric power as said base sta tion information in the form of a list.
 - 3. The portable radio telephone system according to claim 1, wherein said base station informa tion memory unit (7) stores therein a zone name of a mobile station in which a received electric power of said control signal exceeds a preset received electric power and said re ceived electric power as said base station in formation in the form of a list.
 - 4. The portable radio telephone system according to claim 2, wherein said base station information memory unit (7) further stores therein a location registration area name or a calling area name contained in said control signal, said base station name and said received electric power as said base station information in the form of a list.
 - 5. The portable radio telephone system according to claim 1, wherein each of said base stations transmits said control signal in which a predetermined data pattern is contained, said mobile station includes means (6) for verifying a data pattern stored in advance in the mobile station and the data pattern contained in said control signal to generate an error rate of received data of said control signal and said base station information memory unit (7) stores a base station name in which said error rate of received data of said control signal becomes less than a predetermined value and said error rate of received data in the form of a list.
 - The portable radio telephone system according to claim 2, wherein each of said base stations

transmits said control signal in which a predetermined data pattern is contained, said mobile station includes means (6) for verifying a data pattern stored in advance in the mobile station and the data pattern contained in said control signal to generate an error rate of received data of said control signal and said base station information memory unit (7) stores a base station name of a base station in which the received electric power of said control signal exceeds a preset reception electric power and in which said error rate of received data of said control signal becomes less than a predetermined value, said received electric power and said error rate of received data in the form of a list.

7. The portable radio telephone system according to claim 1, wherein said mobile station further includes an apparatus for displaying a mes – sage representative of "not registered" in a predetermined manner when said location judging unit (8) inhibits the location registration processing.

5

10

15

20

25

30

35

40

45

50

FIG. I PRIOR ART

FIG. 2 PRIOR ART

FIG. 3

