

Ensembl Compara Perl API

Carla Cummins & Matthieu Muffato

API workshop - EBI

Sept 2015

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Inputs
 - Species, Chromosomes, Genes
- Outputs
 - Gene analyses
 - Genome analyses

Outline of the course

- Introduction about Compara
 - Resources
 - API

- Inputs
 - Species, Chromosomes, Genes
- Outputs
 - Gene analyses
 - Genome analyses

What is Ensembl Compara?

A single database which contains precalculated comparative genomics data and which is linked to all the Ensembl Species (69 in e81) databases.

Access via perl API and mysql

A production system for generating that database (not in this presentation)

Compara data

Genome level

Whole genome alignments (pairwise and multiple)

Constrained elements (based on multiple align.)

Syntenic regions (based on pair-wise align.)

Gene level

Families (clusters of proteins + multiple align.)

Gene trees (proteins, non-coding RNAs)

Gene orthology / paralogy predictions

Nucleotide sequence analyses

Nucleotide sequence analyses in e!81

Gene analyses

Outline of the course

- Introduction about Compara
 - Resources
 - API

- Inputs
 - Species, Chromosomes, Genes
- Outputs
 - Gene analyses
 - Genome analyses

The Compara Perl API

- Written in Object-Oriented Perl
- Used to retrieve data from and store data into the Ensemble Compara database
- Generalized to extend to non-Ensembl genomic data (Uniprot)
- Follows same 'Object Adaptor' & 'Data Object' design as the Core API

Ensembl API Architecture

Compara template script

```
use strict;
use Bio::EnsEMBL::Registry;
my $reg = "Bio::EnsEMBL::Registry";
# Auto-configure the registry
$reg->load registry from db()
    -host => "ensembldb.ensembl.org",
    -user => "anonymous"
);
# Get the adaptor object for the data type you want
# e.g. GeneTree
my $xx adaptor = $reg->get adaptor("Multi", "compara", "XX");
# Fetch the data objects using the adaptor
# e.g. get all the genes in a given gene tree
my $all interesting xx = $xx adaptor->fetch all by YY();
print "All XX objects from E!Compara :\n";
foreach my $this xx (@$all interesting xx) {
  # Do some stuff with the data object
 print "\t", $this xx->stable id, "\n";
```


Help & Useful documentation

- perIdoc Viewer for offline API documentation
 - shell> perldoc Bio::EnsEMBL::Compara::GenomeDB
 - shell> perldoc Bio::EnsEMBL::Compara::DBSQL::DnaFragAdaptor
- Online documents (website)
 - http://e81.ensembl.org/info/docs/Doxygen/compara-api/index.html
 - http://e81.ensembl.org/info/docs/api/compara/index.html

- Mailing lists:
 - dev@ensembl.org
 - helpdesk@ensembl.org

Compara object model overview

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Inputs
 - Species, Chromosomes, Genes

- Outputs
 - Gene analyses
 - Genome analyses

Links between Compara and Core

- Compara only stores references to the Core objects
- The full data lies in the core databases

Links between Compara and Core

GenomeDB

Represents a species
 Links the Compara database to the Core species databases

Attributes	Methods	
Species name	\$genomedb->name()	
Assembly	<pre>mbly</pre>	
Gene build	<pre>\$genomedb->genebuild()</pre>	
Taxon	<pre>\$genomedb->taxon_id()</pre>	
Adaptor methods		
<pre>\$genomedb_adaptor->fetch_all()</pre>		
<pre>\$genomedb_adaptor->fetch_by_registry_name()</pre>		

DnaFrag

- Represents a top-level region in the Compara database.
- Equivalent to a whole-sequence Slice

Attributes	Methods	
Region name	\$dnafrag->name()	
Region type	<pre>\$dnafrag->coord_system_name()</pre>	
Adaptor methods		
<pre>\$dnafrag_adaptor->fetch_all_by_GenomeDB_region()</pre>		
<pre>\$dnafrag_adaptor->fetch_by_Slice()</pre>		
<pre>\$nafrag_adaptor->fetch_by_GenomeDB_and_name()</pre>		

Code Examples

1. GenomeDB

```
my $genome_db_adaptor = Bio::EnsEMBL::Registry->get_adaptor( "Multi", "compara", "GenomeDB");
my $list_ref_of_gdbs = $genome_db_adaptor->fetch_all();

foreach my $genome_db( @{ $list_ref_of_gdbs } ){
    print join( "\t", $genome_db->dbID(), $genome_db->name(), $genome_db->assembly() ), "\n";
}
```

2. DnaFrag

```
my $dnafrag_adaptor = $reg->get_adaptor("Multi", "compara", "DnaFrag");
my $gorilla_chr_dnafrags = $dnafrag_adaptor-
>fetch_all_by_GenomeDB_region( $gorilla_genome_db, 'chromosome' );

foreach my $dnafrag (@{ $gorilla_chr_dnafrags }){
    print "Chromsome ", $dnafrag->name(), " contains ", $dnafrag->length(), " bp.\n";
}
```


Exercises – GenomeDB & DnaFrag

 Print the name, assembly version and genebuild version for all the GenomeDBs in the compara database

Print all the chromosomes (DnaFrags) for chimpanzee

GeneMember and SeqMember

- GeneMember for genes
 - source name: ENSEMBLGENE
- SeqMember for RNAs and proteins
 - source_name: ENSEMBLPEP, ENSEMBLTRANS, Uniprot/SPTREMBL, Uniprot/SWISSPROT

Attributes	Methods	
Stable ID	<pre>\$member->stable_id()</pre>	
Coordinates	<pre>\$member->chr_name() \$member->chr_start()</pre>	
Sequence (SeqMember only)	<pre>\$member->sequence()</pre>	
Function	<pre>\$member->description()</pre>	
Adaptor methods		
<pre>\$seq_member_adaptor->fetch_by_stable_id()</pre>		
<pre>\$gene_member_adaptor->fetch_all_by_GenomeDB()</pre>		

HOWTO: get an Ensembl ID from a gene symbol

- Compara only references genes by their Ensembl stable ID
- From a gene symbol, you first have to use the core API to get the stable id(s)
- Gene symbols may not be unique (for instance: U6)

```
# Get the Human gene adaptor
my $hg_adaptor = $reg->get_adaptor("human", "core", "Gene");
# Get all the genes
my $all_genes = $hg_adaptor->fetch_all_by_external_name(XX);
# For each gene
foreach my $gene (@{$all_genes}) {
    do some stuff with $gene->stable_id();
}
```


Code Example - Member

```
my $seq member adaptor = $reg->get adaptor("Multi", "compara", "SegMember");
my $human_seq_members =
                 $seq_member_adaptor->fetch_all_by_GenomeDB($gorilla_genome db);
# print 10 peptide members and 10 transcript members
my ($pep count, $trans count) = (0, 0);
foreach my $seq mem ( @{ $human seq members } ) {
  my $type = $seq_mem->source_name();
 if ( type = \ m/PEP/ \&\& pep_count < 10 )
    print $seq_mem->stable_id(), ":", $seq_mem->source_name(), "\n";
    $pep_count++;
 elsif ( type =  m/TRANS/ & trans count < 10 )
    print $seq_mem->stable_id(), ":", $seq_mem->source_name(), "\n";
    $trans count++;
  elsif ( $pep_count >= 10 && $trans_count >= 10 ) {
    last:
```


Exercises - Member

 Print the sequence of the Member corresponding to SwissProt protein O93279

 Find and print the sequence of all the peptide Members corresponding to the human protein-coding gene(s) FRAS1

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Inputs
 - Species, Chromosomes, Genes
- Outputs
 - Gene analyses
 - Genome analyses

AlignedMemberSet object

- Base object that represents a set of members aligned together, e.g. a multiple alignment of peptides / ncRNAs
- "Applied" in gene trees, families, and homologies
- No specific adaptor

Attributes	Methods
List of members	<pre>\$aln->get_all_Members() \$aln->get_all_GeneMembers()</pre>
Alignment (BioPerl object)	<pre>\$aln->get_SimpleAlign()</pre>
Description (if available)	\$aln->description()
Stable ID (if available)	<pre>\$aln->stable_id()</pre>

HOWTO: print a BioPerl alignment

Compara objects return alignments as BioPerl instances

```
$aln->get SimpleAlign()
```

 BioPerl provides an AlignIO object to format the actual output in various formats (fasta, clustalw, phylip ...)

```
use Bio::AlignIO;

# Get the alignIO object from BioPerl
my $alignIO = Bio::AlignIO->newFh(-format => "fasta");

# Print the alignment
print $alignIO $aln;
```


Families

Families are clusters of similar peptides

Example on the web: ENSFM00750001632338 in Human

HUMAN genes in this family

Ensembl genes containing proteins in family ENSFM00750001632338

Gene ID and Location	Gene Name	Description (if known)
ENSG00000170365 Chromosome 4: 146.40m	SMAD1	SMAD family member 1 [Source:HGNC Symbol;Acc:6767]
ENSG00000113658 Chromosome 5: 135.47m	SMAD5	SMAD family member 5 [Source:HGNC Symbol;Acc:6771]
ENSG00000120693 Chromosome 13: 37.42m	SMAD9	SMAD family member 9 [Source:HGNC Symbol;Acc:6774]

Family object

- (almost) the same methods as in AlignedMemberSet
- Alternative transcripts can belong to different families!

Attributes	Methods	
Alignment	<pre>\$family->get_SimpleAlign()</pre>	
Biological function	<pre>\$family->description()</pre>	
Gene content	<pre>\$family->get_all_Members()</pre>	
Adaptor methods		
<pre>\$family_adaptor->fetch_all_by_GeneMember() \$family_adaptor->fetch_by_SeqMember()</pre>		
<pre>\$family_adaptor->fetch_by_stable_id()</pre>		

Code Example - Family

```
my $family_adaptor = $reg->get_adaptor("Multi", "compara", "Family");
my $ddx_families = $family_adaptor-
>fetch_by_description_with_wildcards('dead box', 1);

# print first 10 family descriptions
my $c = 0;
foreach my $fam ( @{ $ddx_families } ) {
    print $fam->description(), "\n";
    $c++;
    last if $c >= 10;
}
```


Exercises - Families

 Get the multiple alignment corresponding to the family with the stable id ENSFM00250000006121

• Get the families predicted for the human gene ENSG00000139618. What do you notice?

GeneTree example on the website

Protein-Tree pipeline overview

All *e!* genes – canonical prot.

BLAST

hcluster_sg

MCoffee: MSA

TreeBeST: (+ reconciliation)

Ortholog/Paralog inference

Vilella et al., Genome Res. 2009

ncRNA-Tree pipeline overview

All e! ncRNA genes

Grouped in Family Models - RFAM

Infernal alignment + RaxML trees

PRANK alignment + NJ/ML trees

TreeBeST (tree reconciliation)

Ortholog/Paralog inference

Pignatelli et al., in preparation

Gene Tree object

fetch_all* methods may require some more arguments:

```
-clusterset_id => 'default'
-tree_type => 'tree'
-member_type => 'protein' or 'ncrna'
```


Attributes	Methods
Alignment	<pre>\$family->get_SimpleAlign()</pre>
Tree export	<pre>\$tree->newick_format('simple') \$tree->nhx_format('full') \$tree->print_tree()</pre>
Stable ID	<pre>\$tree->stable_id()</pre>
Adaptor methods	
<pre>\$genetree_adaptor->fetch_by_stable_id()</pre>	
<pre>\$genetree_adaptor->fetch_default_for_Member()</pre>	

Exercises – Protein and ncRNA trees

 Print the protein tree with the stable id ENSGT00390000003602

 Print all the members of the tree containing the human ncRNA gene ENSG00000238344, and their alignment

Gene TreeNode object

The actual tree structure is a hierarchy of *GeneTreeNode* objects

GeneTree

Gene TreeNode object

The actual tree structure is a hierarchy of *GeneTreeNode* objects

Extra information

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Inputs
 - Species, Chromosomes, Genes
- Outputs
 - Gene analyses
 - Genome analyses

MethodLinkSpeciesSet object

- The Compara database contains lots of cross-species comparisons
- There are multiple comparisons of the same type (pairwise alignments, homologies, etc)
- We need a way of defining which analysis is performed on which genomes
- Many adaptor methods require a MethodLinkSpeciesSet

MethodLinkSpeciesSet object

MethodLinkSpeciesSet

• Links a method (an analysis) to a set of species

Attributes	Methods	
Name	\$mlss->name()	
Type of analysis	<pre>\$mlss->method()->type()</pre>	
List of GenomeDBs	<pre>\$mlss->species_set()</pre>	
Adaptor methods		
<pre>\$mlss_adaptor->fetch_by_method_link_type_registry_aliases()</pre>		
<pre>\$mlss_adaptor->fetch_by_method_link_type_species_set_name()</pre>		

Example Code – MethodLinkSpeciesSet

```
my $gdb_a = $reg->get_adaptor( "Multi", "compara", "GenomeDB" );
my $gorilla_genome_db = $gdb_a->fetch_by_dbID(123);

my $mlss_adaptor = $reg->get_adaptor("Multi", "compara", "MethodLinkSpeciesSet");
my $gorilla_mlss_list = $mlss_adaptor->fetch_all_by_GenomeDB( $gorilla_genome_db );

my $c = 0;
foreach my $mlss ( @{ $gorilla_mlss_list } ) {
    print join( "\t", $mlss->dbID(), $mlss->method->type() ), "\n";
    $c++;
    last if $c >= 10;
}
```


Exercises – MethodLinkSpeciesSet

- Print the total number of MethodLinkSpeciesSet entries stored in the database
 - Print a unique list of method_link_types and a count of their number in the database.
 - Print the list of the species for the 17 eutherian mammals EPO alignments

Consists in tagging the pairs of genes of all the trees with a relation type, depending on the tree topology.

Homology object

- An Homology object links two genes together
- One-to-many relationships are split:

- "H ortholog to M1" and "H ortholog to M2" are different objects

Attributes	Methods	
Alignment	<pre>\$homology->get_SimpleAlign()</pre>	
Natural selection	<pre>\$homology->dn() / \$homology->ds()</pre>	
Gene content	<pre>\$homology->get_all_GeneMembers()</pre>	
Homology characteristics	<pre>\$homology->description() \$homology->taxonomy_level()</pre>	
Adaptor methods		
<pre>\$homology_adaptor->fetch_all_by_Member()</pre>		
<pre>\$homology_adaptor->fetch_all_by_MethodLinkSpeciesSet()</pre>		
<pre>\$homology_adaptor->fetch_all_by_Member_paired_species()</pre>		

Code Example - Homology

Exercises — Homologies (and MethodLinkSpeciesSet)

 Get all the homologues for the human gene ENSG00000229314

 Count the number of "one2one" homologues between human and mouse

 Find the human orthologues of ENSMUSG00000004843 and ENSMUSG00000025746. For each homology, display the alignment and the dn value. Comment on the divergence

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Inputs
 - Species, Chromosomes, Genes
- Outputs
 - Gene analyses
 - Genome analyses

Whole-genome alignments

Alignments at the DNA level

Example: Human vs pig

How are alignments stored?

A small example:

```
gorilla_gorilla/MT/935-953
macaca_mulatta/MT/1469-1488
pan_troglodytes/MT/934-953
pongo_pygmaeus/MT/940-958
homo_sapiens/MT/1516-1534
```


Adding low-coverage genomes

- Low coverage genomes cannot be fully assembled
- Resulting assembly is too scattered to be used with Enredo
- Run EPO on high-coverage genomes only
- Map 2X genomes using pairwise alignments on a reference species

ACGG-TT-C...C-TAAT
ACGG-TTACTGCCG-TTAT
ACCGGTTACTGCCCGTTAT
ACGGGTAACTG--GGTTAT
ACGGTTTACTGCCGGTTTT

Objects on the genomic side

- A GenomicAlignBlock represents an alignment between two or more regions of genomic DNA. Within these blocks every region of genomic DNA is represented by a GenomicAlign object.
- A ConstrainedElement represent regions in the multiple alignment which appear to be under functional constraint.
- Synteny blocks are derived from Lastz-net alignments
 - group syntenic alignments closer than 200Kb
 - link syntenic groups closer than 3Mb
 - minimum length of the syntenic block: 100 kb

GERP Constrained Elements

Stretches of the alignment with a high conservation

Cooper et al. Genome Research, 2005

- Constrained elements and coding exons
 - 74% of coding exons are associated with constr. elem.
 - 22% of constr. elem. are associated with coding exons

GenomicAlignBlock

- An alignment-block (across 2 or more sequences)
- The adaptor returns the blocks that overlap the query region
 - → Call restrict_between_reference_positions()

Attributes	Methods	
BioPerl alignment object	\$gab->get_SimpleAlign()	
Aligned sequences	\$gab->get_all_GenomicAligns()	
(Restrict the block)	<pre>\$gab->restrict_between_reference_positions()</pre>	
Adaptor methods		
<pre>\$gab_adaptor->fetch_all_by_MethodLinkSpeciesSet_Slice()</pre>		

GenomicAlign has a similar interface to Members, e.g.
 \$ga→dnafrag, \$ga→dnafrag_start, etc

Code Example - GenomicAlignBlock

Exercises – Genomic Alignments

• Print the LASTZ-NET alignments for pig chromosome 15 with cow (using pig coordinates 105734307 and 105739335).

 Change the above example so that it prints the 17-way eutherian mammal (EPO) multiple alignments.

 Print the constrained element alignments from the above pig locus (use the constrained elements generated from the EPO_LOW_COVERAGE mammals alignments)

Exercises – Synteny

 Print the pig-cow synteny map using pig chromosome 15 as a reference

web reference:

http://www.ensembl.org/Sus_scrofa/Location/Synteny?r=15&otherspecies=Bos taurus

Acknowledgements

Leo

Mateus Matthieu Carla

D48-D55 Nucleic Acids Research, 2013, Vol. 41, Database issue doi:10.1093/nar/gks1236

Published online 30 November 2012

Ensembl 2013

Paul Flicek^{1,2,*}, Ikhlak Ahmed¹, M. Ridwan Amode², Daniel Barrell², Kathryn Beal¹, Simon Brent², Denise Carvalho-Silva¹, Peter Clapham², Guy Coates², Susan Fairley², Stephen Fitzgerald¹, Laurent Gil¹, Carlos García-Girón², Leo Gordon¹, Thibaut Hourlier², Sarah Hunt¹, Thomas Juettemann¹, Andreas K. Kähäri², Stephen Keenan¹, Monika Komorowska¹, Eugene Kulesha¹, Ian Longden¹, Thomas Maurel¹, William M. McLaren¹, Matthieu Muffato¹, Rishi Nag², Bert Overduin¹, Miguel Pignatelli¹, Bethan Pritchard², Emily Pritchard¹, Harpreet Singh Riat², Graham R. S. Ritchie¹, Magali Ruffier¹, Michael Schuster¹, Daniel Sheppard², Daniel Sobral¹, Kieron Taylor¹, Ania Thormann¹, Stephen Trevanion², Simon White², Steven P. Wilder¹, Bronwen L. Aken², Ewan Birney¹, Fiona Cunningham¹, Ian Dunham¹, Jennifer Harrow², Javier Herrero¹, Tim J. P. Hubbard², Nathan Johnson¹, Rhoda Kinsella¹, Anne Parker², Giulietta Spudich¹, Andy Yates¹, Amonida Zadissa² and Stephen M. J. Searle²

¹European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD, UK and ²Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

Funding

Co-funded by the **European Union**

