El problema $Vertex\ Cover(\mathcal{VC})$

- Entrada: Un grafo no dirigido G = (V, E) y una constante $C \leq |V|$.
- \bullet Salida: 1 si existe un subconjunto V' de V tal que

El problema Set Cover (SC)

- Entrada: Un conjunto universal U, un conjunto de subconjuntos de $U, S = \{S_1, S_2, \dots, S_m\}$ (cada $S_i \subseteq$ U) y una constante $K \leq m$.
- Salida: 1 si existe $\mathcal{T} \subseteq \mathcal{S}$ tal que $|T| \leq K$ y

$$\bigcup_{T \in \mathcal{T}} T = U.$$

1. ¿Entendimos VC? [10 pts.] Considere el siguiente grafo G_1 :

a) [5 pts.] ¿Cual es la salida de VC para la entrada $G_1, C_1 = 2$? Justifique cortamente su respuesta.

Si selecciono a y b obtengo un cover de aristas

b) [5 pts.] ¿Cual es la salida de \mathcal{VC} para la entrada $G_1, C_1 = 1$? Justifique cortamente su respuesta.

No puedo obtener el obtener el cover de aristas únicamente seleccionando un vértices

2. Entendamos SC [20 pts.] Una manera práctica de visualizar la entrada a SC consiste en pintar los elementos de U como puntos y los elementos de S

como áreas que encierran cada uno de los elementos de U que ellos contienen.

Por ejemplo, si una entrada a SC es:

•
$$U_1 = \{a, b, c, d, e\}$$

•
$$S_1 = \{S_1, S_2, S_3, S_4, S_5\}$$
 donde

•
$$S_1 = \{a, b\}$$

$$S_2 = \{a, d, e\}$$

$$S_3 = \{b, d, e\}$$

$$S_3 = \{b, d, e\}$$

 $S_4 = \{c, e\}$

•
$$S_5 = \{b, e\}$$

Gráficamente se puede ver:

a) [3 pts.] ¿Cual es la salida de SC para la entrada $U_1, S_1, K_1 = 2$? Justifique cortamente su

b) [3 pts.] ¿Cual es la salida de SC para la entrada $U_1, S_1, K_1 = 4$? Justifique cortamente su respuesta.

c) [3 pts.] ¿Cual es la salida de SC para la entrada U_2 , S_2 , $K_2 = 2$? Justifique cortamente su respuesta.

d) [3 pts.] ¿Cual es la salida de SC para la entrada $U_2, S_2, K_2 = 3$? Justifique cortamente su respuesta.

Y la entrada:

•
$$U_2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

•
$$S_2 = \{S_1, S_2, S_3, S_4, S_5, S_6, S_7\}$$
 donde

$$\Rightarrow \bullet \ S_1 = \{1, 2, 3, 5, 9, 10, 11\}$$

•
$$S_2 = \{1, 2\}$$

$$S_3 = \{5, 6\}$$

•
$$S_4 = \{9, 10\}$$

•
$$S_5 = \{2, 8\}$$

5133

$$S_6 = \{3.4, 7.8, 11, 12\}$$

$$S_{4} = \{9, 10\}$$

$$S_{5} = \{2, 8\}$$

$$S_{6} = \{3, 4, 7, 8, 11, 12\}$$

$$S_{7} = \{6, 7, 10, 11\}$$

S? Gráficamente se puede ver:

 \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet Describa una instancia U_3 , \mathcal{S}_3 , K_3 , no trivial (todo elemento debe pertenecer al menos a algún subconjunto en S_3), de SC, con $|U_3| = 7$ y $|S_3| \ge 3$ para la que la respuesta sea positiva.

f) [4 pts.] Para el mismo U3 y S₃ del ejercicio anterior, defina un K_3 tal que la respuesta para esa entrada sea negativa. Justifique cortamente su respuesta.

- [10 pts.] Escoja entre las cuatro reducciones siguientes la que utilizará para su demostración.
- RedA $\mathcal{VC} \preceq \mathcal{SC}$. Dado G = (V, E) y C, sea n = |V| y m = |E|. Defina $U = \{1, 2, \dots, n\}$ y $\mathcal{S} = \{S_1, S_2, \dots, S_m\}$ donde $S_j = \{i_1, i_2\}$ si $e_j = (v_{i_1}, v_{i_2})$ para $j \in [1..m]$. También defina K = C.
- RedB $\mathcal{VC} \leq \mathcal{SC}$. Dado G = (V, E) y C, sea n = |V| y m = |E|. Defina $U = \{1, 2, \ldots, m\}$ y $\mathcal{S} = \{S_1, S_2, \ldots, S_n\}$ donde $S_i = \{j : e_j \text{ es adyacente a } v_i\}$ para $i \in [1..n]$. También defina K = C.
- RedC $\mathcal{VC} \leq \mathcal{SC}$. Dado G = (V, E) y C, sea n = |V| y m = |E|. Defina $U = \{1, 2, ..., n\}$ y $\mathcal{S} = \{S_1, S_2, ..., S_m\}$ donde $S_j = \{i_1, i_2\}$ si $e_j = (v_{i_1}, v_{i_2})$ para $j \in [1..m]$. También defina K = n C.
- RedD $VC \leq SC$. Dado G = (V, E) y C, sea n = |V| y m = |E|. Defina $U = \{1, 2, ..., m\}$ y $S = \{S_1, S_2, ..., S_n\}$ donde $S_i = \{j : e_j \text{ es adyacente a } v_i\}$ para $i \in [1..n]$. También defina K = n C.

Escojo ____

Red
B $\operatorname{\mathcal{VC}} \preceq \operatorname{\mathcal{SC}}.$ DadoG = (V,E)y C
, sean =|V|y m=|E|. Defina $U=\{1,2,\ldots,m\}$ y $S = \{S_1, S_2, ..., S_n\}$ donde $S_i = \{j : \}$ e_j es adyacente a v_i } para $i \in [1..n]$. También defina K = C.