A2-Draft_CSaben

Clark Saben

September 30, 2023

Problem 1. Let G and H be groups and consider their direct product $G \times H$. Suppose that e is the identity in G. Prove that the subset $S = \{(e, h) : h \in H\}$ of $G \times H$ is a subgroup of $G \times H$.

Proof. Let G and H be groups and consider their direct product $G \times H$. Suppose that e is the identity in G.

- 1. $S \neq \emptyset$ since $e \in G$ and $e \in H$.
- 2. Let $(e, h_1), (e, h_2) \in S$ for some $h_1, h_2 \in H$. Then $(e, h_1) \cdot (e, h_2) = (e, h_1 h_2) \in S$ since $h_1 h_2 \in H$.
- 3. Let $(e,h) \in S$. Then $(e,h)^{-1} = (e,h^{-1}) \in S$ since $h^{-1} \in H$.

Therefore, S is a subgroup of $G \times H$.

Problem 2. Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined in Exercise B4 on page 63. Prove that f is an element of the symmetric group $S_{\mathbb{Z}}$.

Hints: To prove that f is injective, suppose that $f(n_1) = f(n_2)$, where $n_1, n_2 \in \mathbb{Z}$. Then, to show that $n_1 = n_2$, you will have to consider cases about possible parities (even or odd) of n_1 and n_2 . You will also have to consider cases to prove that f is surjective.

Proof. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as f(n) = n + 1 if n is even and f(n) = n - 1 if n is odd. We will show that f is injective and surjective.

- 1. Let $n_1, n_2 \in \mathbb{Z}$ such that $f(n_1) = f(n_2)$. Then we have three cases:
 - (a) If n_1 and n_2 are both even, then $n_1 + 1 = n_2 + 1 \implies n_1 = n_2$.
 - (b) If n_1 and n_2 are both odd, then $n_1 1 = n_2 1 \implies n_1 = n_2$.
 - (c) If n_1 is even and n_2 is odd, then $n_1 + 1 = n_2 1 \implies n_1 \neq n_2$.

For all these cases $f(n_1) = f(n_2) \implies n_1 = n_2$. Therefore, f is injective.

- 2. Let $n \in \mathbb{Z}$. Then we have two cases:
 - (a) Let m = n 1. Then, if n is even, f(m) = f(n 1) = n 1 + 1 = n.

(b) Let m = n + 1. Then, if n is odd, f(m) = f(n + 1) = n + 1 - 1 = n.

Therefore, f is surjective since for all $n \in \mathbb{Z}$, there exists $m \in \mathbb{Z}$ such that f(m) = n.

Thus, f is a bijection and therefore an element of $S_{\mathbb{Z}}$.

Problem 3. Let D_4 be the group of symmetries of the square. Construct a Cayley table for D_4 . In the table, use the symbols from Class Notes for Chapter 7. In the left column and top row, order the symbols as follows: R_0 , R_{90} , R_{180} , R_{270} , ρ_A , ρ_B , ρ_H , ρ_V . The table must be created in 2 T_EX. In this problem, I only need to see the table.

	0	R_0	R_{90}	R_{180}	R_{270}	ρ_A	ρ_B	ρ_H	$ ho_V$
	R_0	R_0	R_{90}	R_{180}	R_{270}	ρ_A	ρ_B	ρ_H	$ ho_V$
	R_{90}	R_{90}	R_{180}	R_{270}	R_0	$ ho_V$	ρ_H	$ ho_A$	$ ho_B$
	R_{180}	R_{180}	R_{270}	R_0	R_{90}	$ ho_B$	$ ho_A$	$ ho_V$	$ ho_H$
f.	R_{270}	R_{270}	R_0	R_{90}	R_{180}	$ ho_H$	$ ho_V$	$ ho_B$	$ ho_A$
	$ ho_A$	$ ho_A$	$ ho_H$	$ ho_B$	$ ho_V$	R_0	R_{180}	R_{270}	R_{90}
	$ ho_B$	$ ho_B$	$ ho_V$	$ ho_A$	$ ho_H$	R_{180}	R_0	R_{270}	R_{90}
	$ ho_H$	$ ho_H$	$ ho_B$	$ ho_V$	$ ho_A$	R_{270}	R_{90}	R_0	R_{180}
	$ ho_V$	$ ho_V$	ρ_A	ρ_H	ρ_B	R_{90}	R_{270}	R_{180}	R_0

Proof.