Course Learning Syllabus (// includes Learning Outcomes & Learning Plan & Assessment Plan)

18MAB102T Course		D 1 0 1		1	P	0
Code Name ADVANCED CALCULUS AND COMPLEX ANALYSIS Category	Course B Basic Sciences	3	1	0	4	

Pre-requisite Courses	18MA	B101T	Co-requisite Courses	Nil		Progressiv e Courses	Nil
Course Offeri	Course Offering Department		Mathematics	Data Book /	Codes/Standards		Nil

12

. | , | , | Life Long Learning

Course L	earning Rationale (CLR): The purpose of learning this course is to:	Learning				F	rogra	am Oı	utcome	s (PC	2)			
CLR-1:	Determine the Double and triple Integrals and its applications in Science and Engineering.		1	2	3	4	5	6	7	8	9	10	11	Γ.
CLR-2:	Gain Knowledge in interpretation of Vector differentiation and Vector integration which relates Line Integral, Green's, Stoke's and Gauss Divergence theorem.													
CLR-3:	Identify the techniques of Laplace Transforms and Inverse Laplace transforms and extend them in the problems of Science and Engineering.	(Bloom)												
CLR-4:	Construct analytic functions, discuss Conformal mapping and Bilinear Transformation in Engineering problems) king (F	ge		Ħ	Research			Sustainability		Work		a)	
CLR-5:	Evaluate Complex integrals and Power series using various theorems	of Thinking	nowled	Sis	Development	gn, Re	sage	ıre			eam Wo	_	Finance	
CLR-6:	Analyze the transform techniques and Integral techniques in Science and Engineering.	Level	Engineering Knowledge	Problem Analysis	య	is, Design, I	n Tool Usage	y & Culture	Environment &		- ×	Communication	Mgt. &	
Course C	utcomes (CO): At the end of this course, learners will be able to:	-	Engine	Proble	Design	Analysis,	Modern	Society	Enviro	Ethics	Individual	Somm	Project I	
CO-1:	Apply multiple integrals in solving problems in Science and Engineering.	4	3	3	-	-	-	-	-	-	-	-	-	T.
CO-2:	Analyze vector differentiation and vector integration and related Theorems	4	3	3	-	-	-		-	-	-	-	-	T
CO-3:	Apply Laplace Transforms techniques in solving Engineering problems	4	3	3	-		-	-	-	-	-	-	-	t
CO-4:	Extend their knowledge in Fundamentals of analytic functions	4	3	3	-	-	-	-	-	-	-	-	-	r
CO-5:	Utilize Complex integrals and Power series in solving Engineering problems	4	3	3	-	-		-			-		-	H
CO-6:	Apply the transform techniques and Integral techniques in Science and Engineering problems	1	3	3		-								⊢

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1 Evaluation of double integration Cartesian and plane polar coordinates		egration Cartesian and Review of vectors in 2,3 functions		Definition of Analytic Function – Cauchy Riemann equations	Cauchy's integral formulae - Problems
0-1	SLO-2	Evaluation of double integration of plane polar coordinates	Gradient, divergence,	Transformsproperties	Cauchy Riemannequations	Cauchy's integral formulae- Problems
S-2	SLO-1	Evaluation of double integration of plane polar coordinates	curl – Solenoidal	Transforms of Derivatives and Integrals	Properties of analytic function functions	Cauchy's integral formulae- Problems
3-2	SLO-2	Evaluation of double integration of plane polar coordinates	Irrotational fields	Transform of derivatives and integrals	Determination of analytic function using — Milne- Thomson's method	Taylor's expansionswith simple problems
	SLO-1	Evaluation of double integral by changing of order of integration	Vector identities (without proof) —Directional derivatives	Initial value theorems (without proof) and verification for some problems	Determination of analytic function using – Milne- Thomson's method	Taylor's expansionswith simple problems
S-3	SLO-2	Evaluation of double integral by changing of order of integration	Line integrals	Final value theorems (without proof) and verification for some problems	Determination of analytic function using — Milne- Thomson's method	Laurent's expansions with simple problems
S-4	SLO-1	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutrial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5	SLO-1	Evaluation of double integral by changing of order of integration	Line integrals	Inverse Laplace transforms using partial fractions	Conformal mappings: magnification	Laurent's expansions with simple problems
	SLO-2 Area as a double integral (Cartesian)		Surface integrals	Inverse Laplace transforms using Partial fractions	Conformal mappings rotation	Singularities
S-6	SLO-1	Area as a double integral (Cartesian)	Surface integrals	Inverse Laplace transforms section shfting theorem	Conformal mappings:inversion	Types of Poles andResidues
J-0	SLO-2	Area as a doubleintegral (polar)	Volume Integrals	LT using Convolution theorem -problems only	Conformal mappings:inversion	Types of Poles andResidues
S•7		Area as a double integral (polar)	Green's theorem (without proof)	LT using Convolution theorem -problems only	Conformal mappings: reflection	Cauchy's residue theorem (without proof)
٠,	SLO-2	Triple integration in Cartesian coordinates	Green's theorem (without proof)	LT using Convolution theorem -problems only	Conformal mappings: reflection	Contour integration: Unit circle

	SLO-1	Problem solving	Problem solving	Problem solving	Problem solving	Problem solving
S-8	SLU-1	using tutorial sheet 2	using tutorial sheet 5	using tutorial sheet 8	using tutorial sheet 11	using tutorial sheet 14
3-0	SLO-2	Problem solving	Problem solving	Problem solving	Problem solving	Problem solving
	JLU-2	using tutorial sheet 2	using tutorial sheet 5	using tutorial sheet 8	using tutorial sheet 11	using tutorial sheet 14
	27.0.7	Conversion from	Gauss divergence	LT of periodic	bilinear transformation	Contour integration: Unit circle
S-9	SLO-1	Cartesian to polar in double integrals	theorem (without proof), verification	functions - problems only		
0-3	SLO-2	Conversion from Cartesian to polar in double integrals	Gauss divergence theorem (without proof applications to parallelepiped	LT of periodic functions - problems only	bilinear transformation	Contour integration: Unit circle
S-10	SLO-1 Triple integration in Cartesian coordinates		Gauss divergence theorem (without proof applications to parallelepiped	Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficient only	bilinear transformation	Contour integration: semicircular contour
0-10	SLO-2	Triple integration in Cartesian coordinates	Stoke's theorems (without proof) – Verification	Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficient only	bilinear transformation	Contour integration: semicircular contour
S-11	SLO-1	Triple integration in Cartesian coordinates	Stoke's theorems (without proof) – Applications to cubes	Solution of Integral equation involving convolution type	Cauchy's integral theorem (without proof)	Contour integration: semicircular contour
J-11	SLO-2 Area of triple Integral		Stoke's theorems (without proof) – Applications to parallelepiped only	Solution of Integral equation involving convolution type	Cauchy's integral theorem applications	Contour integration: semicircular contour
	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12	SLO-2	Application of Multiple integral in engineering	Application of Line and Volume Integrals in engineering	Application of Laplace Transform in engineering	Application of Bilinear Transformation and Cauchy Integral in engineering	Application Contour integration in engineering

	REFERENCE BOOKS/OTHER READING MATERIAL						
	Text Book						
1	Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.						
2	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.						
3	Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008						
4	Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11 th Reprint, 2010						
5	G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002						
6	N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008						

	Learning Ass	sessment											
	Bloom's												
	Level of	CLA - 1 (1	10%)	CLA - 2 (15%)	CLA - 3 (15%)	CLA - 4 (10%)#	weightage)	mination (50%)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%		20%		20%		20%		20%			
Level 2	Understand	20%		20%		20%		20%		20%			
Level 3	Apply	30%		30%		30%		30%		30%			
Level 4	Analyze	30%		30%		30%		30%		30%			
Level 5	Evaluate	-		-		-		-		1-			
Level 6	Create	•		-		-		1.		† <u>-</u>			
	Total	100 %		100 %		100 %		100 %	-	100 %			

[#] CA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO – Session Learning Outcome

1	Mr.V.Maheshvaran	TCS, Chennai	maheshvaranv@yahoo.com				
(b)	Expert from Higher Technic	al Institutions	L				
1	Dr.K.C.Sivakumar	IIT, Madras	keskumar@iitm.ac.in				
(c)	Internal Experts	L				1	
1	Dr.A.Govindarajan	SRMIST, KTR	Hod.maths.ktr@srmist.edu.in	2	Dr.N.Parvathi	SRMIST, KTR	parvathn@smist.edu.in

N-R $\frac{1}{2}$ Signature of course coordinator $\frac{1}{2}$

Signature of HOD $\frac{1}{2}$