CS 747, Autumn 2020: Week 2, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

Multi-armed Bandits

- 1. Achieving sub-linear regret
- 2. A lower bound on regret
- 3. UCB, KL-UCB algorithms
- 4. Thompson Sampling algorithm
- 5. Summary and outlook

Multi-armed Bandits

- 1. Achieving sub-linear regret
- 2. A lower bound on regret
- 3. UCB, KL-UCB algorithms
- 4. Thompson Sampling algorithm
- 5. Summary and outlook

• ϵ -first: Explore (uniform sampling) for ϵT pulls; thereafter exploit.

• ϵ -first: Explore (uniform sampling) for ϵT pulls; thereafter exploit.

• ϵ -first: Explore (uniform sampling) for ϵT pulls; thereafter exploit.

What would happen if we ran for a horizon of 2T instead of T?

• ϵ -first: Explore (uniform sampling) for ϵT pulls; thereafter exploit.

What would happen if we ran for a horizon of 2T instead of T?
 The exploratory phase would last 2∈T steps!

• ϵ -first: Explore (uniform sampling) for ϵT pulls; thereafter exploit.

- What would happen if we ran for a horizon of 2T instead of T?
 The exploratory phase would last 2εT steps!
- Mathematically:

$$\begin{aligned} R_T &= T p^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = T p^* - \sum_{t=0}^{\epsilon T-1} \mathbb{E}[r^t] - \sum_{t=\epsilon T}^{T-1} \mathbb{E}[r^t] \\ &= T p^* - \epsilon T p_{\text{avg}} - \sum_{t=\epsilon T}^{T-1} \mathbb{E}[r^t] \ge T p^* - \epsilon T p_{\text{avg}} - (T - \epsilon T) p^* \\ &= \epsilon (p^* - p_{\text{avg}}) T = \Omega(T). \end{aligned}$$

Review of ϵ G3

• ϵ -greedy: On each step explore (uniform sampling) w.p. ϵ , exploit w.p. $1 - \epsilon$.

Review of ϵ G3

• ϵ -greedy: On each step explore (uniform sampling) w.p. ϵ , exploit w.p. $1 - \epsilon$.

Review of ϵ G3

• ϵ -greedy: On each step explore (uniform sampling) w.p. ϵ , exploit w.p. $1 - \epsilon$.

• $\mathbb{E}[r^t]$ can never exceed $p^* - \epsilon p_{\text{avg}}!$

Review of *ϵ*G3

• ϵ -greedy: On each step explore (uniform sampling) w.p. ϵ , exploit w.p. $1 - \epsilon$.

- $\mathbb{E}[r^t]$ can never exceed $p^* \epsilon p_{\text{avg}}!$
- Mathematically:

$$egin{aligned} R_{\mathcal{T}} &= \mathcal{T} p^{\star} - \sum_{t=0}^{\mathcal{T}-1} \mathbb{E}[r^{t}] \ &\geq \mathcal{T} p^{\star} - \sum_{t=0}^{\mathcal{T}-1} ((\epsilon) p_{\mathsf{avg}} + (1 - \epsilon) p^{\star}) \ &= \epsilon (p^{\star} - p_{\mathsf{avg}}) \mathcal{T} = \Omega(\mathcal{T}). \end{aligned}$$

• Two conditions must be met.

Two conditions must be met.

C1. Infinite exploration. In the limit $(T \to \infty)$, each arm must be pulled an infinite number of times.

- Two conditions must be met.
- C1. Infinite exploration. In the limit ($T \to \infty$), each arm must be pulled an infinite number of times.
 - On the contrary, suppose we start exploiting after pulling each arm a finite *U* times.
 - With probability $(1 p^*)^U > 0$, an optimal arm will have empirical mean 0.
 - A non-optimal arm may thereafter be "exploited" for ever, giving linear regret.

- Two conditions must be met.
- C1. Infinite exploration. In the limit $(T \to \infty)$, each arm must be pulled an infinite number of times.
 - On the contrary, suppose we start exploiting after pulling each arm a finite $\ensuremath{\textit{U}}$ times.
 - With probability $(1 p^*)^U > 0$, an optimal arm will have empirical mean 0.
 - A non-optimal arm may thereafter be "exploited" for ever, giving linear regret.
- C2. **Greed in the Limit**. Let exploit(T) denote the number of pulls that are greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we need

$$\lim_{T \to \infty} \frac{\mathbb{E}[exploit(T)]}{T} = 1.$$

- Two conditions must be met.
- C1. Infinite exploration. In the limit $(T \to \infty)$, each arm must be pulled an infinite number of times.
 - On the contrary, suppose we start exploiting after pulling each arm a finite $\ensuremath{\textit{U}}$ times.
 - With probability $(1 p^*)^U > 0$, an optimal arm will have empirical mean 0.
 - A non-optimal arm may thereafter be "exploited" for ever, giving linear regret.
- C2. **Greed in the Limit**. Let exploit(T) denote the number of pulls that are greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we need

$$\lim_{T\to\infty}\frac{\mathbb{E}[\textit{exploit}(T)]}{T}=1.$$

- Let $\bar{\mathcal{I}}$ be the set of all bandit instances with reward means strictly less than 1.
- **Result.** An algorithm L achieves sub-linear regret on all instances $I \in \bar{\mathcal{I}}$ if and only if it satisfies C1 and C2 on all $I \in \bar{\mathcal{I}}$.

- Two conditions must be met.
- C1. Infinite exploration. In the limit $(T \to \infty)$, each arm must be pulled an infinite number of times.
 - On the contrary, suppose we start exploiting after pulling each arm a finite $\ensuremath{\textit{U}}$ times.
 - With probability $(1 p^*)^U > 0$, an optimal arm will have empirical mean 0.
 - A non-optimal arm may thereafter be "exploited" for ever, giving linear regret.
- C2. **Greed in the Limit**. Let exploit(T) denote the number of pulls that are greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we need

$$\lim_{T \to \infty} \frac{\mathbb{E}[exploit(T)]}{T} = 1.$$

- Let $\bar{\mathcal{I}}$ be the set of all bandit instances with reward means strictly less than 1.
- **Result.** An algorithm L achieves sub-linear regret on all instances $I \in \bar{\mathcal{I}}$ if and only if it satisfies C1 and C2 on all $I \in \bar{\mathcal{I}}$. In short: "GLIE" \iff sub-linear regret.

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{n}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \sqrt{T}}{T}$.

- ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.
 - Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{a}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \sqrt{T}}{T}$.

• ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$.

On the *t*-th step, explore w.p. ϵ_t , exploit w.p. $1 - \epsilon_t$.

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{a}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \ge \frac{T - \sqrt{T}}{T}$.

• ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$.

On the *t*-th step, explore w.p. ϵ_t , exploit w.p. $1 - \epsilon_t$.

C1 satisfied: each arm assured $\sum_{t=0}^{T-1} \frac{1}{n(t+1)} = \theta(\frac{\log T}{n})$ pulls with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \theta(\log T)}{T}$.

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{n}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \ge \frac{T - \sqrt{T}}{T}$.

• ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$. On the *t*-th step, explore w.p. ϵ_t , exploit w.p. $1 - \epsilon_t$.

C1 satisfied: each arm assured $\sum_{t=0}^{T-1} \frac{1}{n(t+1)} = \theta(\frac{\log T}{n})$ pulls with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \theta(\log T)}{T}$.

What happened when we took $\epsilon_t = \epsilon$?

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{a}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \ge \frac{T - \sqrt{T}}{T}$.

• ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$. On the *t*-th step, explore w.p. ϵ_t , exploit w.p. $1 - \epsilon_t$.

C1 satisfied: each arm assured $\sum_{t=0}^{T-1} \frac{1}{n(t+1)} = \theta(\frac{\log T}{n})$ pulls with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \theta(\log T)}{T}$.

What happened when we took $\epsilon_t = \epsilon$? What will happen by taking $\epsilon_t = \frac{1}{(t+1)^2}$?

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{n}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \ge \frac{T - \sqrt{T}}{T}$.

• ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$. On the *t*-th step, explore w.p. ϵ_t , exploit w.p. $1 - \epsilon_t$.

C1 satisfied: each arm assured $\sum_{t=0}^{T-1} \frac{1}{n(t+1)} = \theta(\frac{\log T}{n})$ pulls with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \theta(\log T)}{T}$.

What happened when we took $\epsilon_t = \epsilon$? What will happen by taking $\epsilon_t = \frac{1}{(t+1)^2}$?

• Summary: ϵ_T -first and ϵ_t -greedy can both give sub-linear regret.

• ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$.

Explore for $\epsilon_T \cdot T = \sqrt{T}$ pulls.

Thereafter exploit.

C1 satisfied since each arm pulled at least $\frac{1}{n}\sqrt{T}$ times with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \ge \frac{T - \sqrt{T}}{T}$.

• ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$. On the *t*-th step, explore w.p. ϵ_t , exploit w.p. $1 - \epsilon_t$.

C1 satisfied: each arm assured $\sum_{t=0}^{T-1} \frac{1}{n(t+1)} = \theta(\frac{\log T}{n})$ pulls with high probability.

C2 satisfied since $\mathbb{E}[exploit(T)] \geq \frac{T - \theta(\log T)}{T}$.

What happened when we took $\epsilon_t = \epsilon$? What will happen by taking $\epsilon_t = \frac{1}{(t+1)^2}$?

Summary: ε_T-first and ε_t-greedy can both give sub-linear regret.
 Question: Can we do even better than these algorithms?

Multi-armed Bandits

- 1. Achieving sub-linear regret
- 2. A lower bound on regret
- 3. UCB, KL-UCB algorithms
- 4. Thompson Sampling algorithm
- 5. Summary and outlook

• What's the least regret you can get?

What's the least regret you can get?
 An algorithm that always pulls arm 3 will get zero regret on some instances...

What's the least regret you can get?
 An algorithm that always pulls arm 3 will get zero regret on some instances...
 but linear regret on other instances!

- What's the least regret you can get?
 An algorithm that always pulls arm 3 will get zero regret on some instances...
 but linear regret on other instances!
- We desire low regret on all instances. What's the best we can do?

- What's the least regret you can get?
 An algorithm that always pulls arm 3 will get zero regret on some instances...
 but linear regret on other instances!
- We desire low regret on all instances. What's the best we can do?
- Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance $I \in \overline{\mathcal{I}}$ and for every $\alpha > 0$, as $T \to \infty$:

$$R_T(L, I) = o(T^{\alpha}).$$

- What's the least regret you can get?
 An algorithm that always pulls arm 3 will get zero regret on some instances...
 but linear regret on other instances!
- We desire low regret on all instances. What's the best we can do?
- Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance $I \in \overline{\mathcal{I}}$ and for every $\alpha > 0$, as $T \to \infty$:

$$R_T(L, I) = o(T^{\alpha}).$$

Then, for every bandit instance $I \in \overline{\mathcal{I}}$, as $T \to \infty$:

$$\frac{R_T(L,I)}{\ln(T)} \ge \sum_{a:p_a(I) \ne p^*(I)} \frac{p^*(I) - p_a(I)}{KL(p_a(I),p^*(I))},$$

where for $x, y \in [0, 1)$, $KL(x, y) \stackrel{\text{def}}{=} x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y}$, with $0 \ln 0 \stackrel{\text{def}}{=} 0$.

Multi-armed Bandits

- 1. Achieving sub-linear regret
- 2. A lower bound on regret
- 3. UCB, KL-UCB algorithms
- 4. Thompson Sampling algorithm
- 5. Summary and outlook

Upper Confidence Bounds

- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

 - \hat{p}_a^t is the empirical mean of rewards from arm a. u_a^t the number of times a has been sampled at time t.

Upper Confidence Bounds

- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

 - \hat{p}_a^t is the empirical mean of rewards from arm a. u_a^t the number of times a has been sampled at time t.

Sample an arm a for which ucb_a^t is maximal.

Upper Confidence Bounds

- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

 - \hat{p}_a^t is the empirical mean of rewards from arm a. u_a^t the number of times a has been sampled at time t.

Sample an arm a for which ucb_a^t is maximal.

Upper Confidence Bounds

- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

 - \hat{p}_{q}^{t} is the empirical mean of rewards from arm a. u_{q}^{t} the number of times a has been sampled at time t.

- Sample an arm a for which ucb_a^t is maximal.
- Achieves regret of $O(\log(T))$: optimal dependence on T.

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

ucb-kl_a^t = max{ $q \in [\hat{p}_a^t, 1]$ such that $u_a^t KL(\hat{p}_a^t, q) \leq \ln(t) + c \ln(\ln(t))$ }, where $c \geq 3$. KL-UCB algorithm: at step t, pull $\operatorname{argmax}_a \operatorname{ucb-kl}_a^t$.

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] such that u_a^t KL(\hat{p}_a^t, q) \leq \ln(t) + c \ln(\ln(t))}, where c \geq 3. KL-UCB algorithm: at step t, pull \operatorname{argmax}_a \operatorname{ucb-kl}_a^t.
```

- Observe that $KL(\hat{p}_a^t, q)$ monotonically increases with q, and
 - \blacktriangleright $KL(\hat{p}_a^t, \hat{p}_a^t) = 0;$
 - \triangleright $KL(\hat{p}_a^t, 1) = \infty.$

Easy to compute ucb- kl_a^t numerically (for example through binary search).

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] such that u_a^t KL(\hat{p}_a^t, q) \le \ln(t) + c \ln(\ln(t))}, where c \ge 3. KL-UCB algorithm: at step t, pull argmax<sub>a</sub> ucb-kl<sub>a</sub><sup>t</sup>.
```

- Observe that $KL(\hat{p}_a^t, q)$ monotonically increases with q, and
 - \blacktriangleright $KL(\hat{p}_a^t, \hat{p}_a^t) = 0;$
 - \triangleright $KL(\hat{p}_a^t, 1) = \infty.$

Easy to compute ucb- kl_a^t numerically (for example through binary search).

ucb-kl_a^t is a tighter confidence bound than ucb_a^t.

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] such that u_a^t KL(\hat{p}_a^t, q) \le \ln(t) + c \ln(\ln(t))}, where c \ge 3. KL-UCB algorithm: at step t, pull \operatorname{argmax}_a \operatorname{ucb-kl}_a^t.
```

- Observe that $KL(\hat{p}_a^t, q)$ monotonically increases with q, and
 - \blacktriangleright $KL(\hat{p}_a^t, \hat{p}_a^t) = 0;$
 - $\blacktriangleright KL(\hat{p}_a^t, 1) = \infty.$

Easy to compute ucb- kl_a^t numerically (for example through binary search).

ucb-kl^t_a is a tighter confidence bound than ucb^t_a.
 Regret of KL-UCB asymptotically matches Lai and Robbins' lower bound!

Multi-armed Bandits

- 1. Achieving sub-linear regret
- 2. A lower bound on regret
- 3. UCB, KL-UCB algorithms
- 4. Thompson Sampling algorithm
- 5. Summary and outlook

Before Moving on ... The Beta Distribution

• Beta(α , β) defined on [0, 1].

Two parameters: α and β .

Mean =
$$\frac{\alpha}{\alpha + \beta}$$
; Variance = $\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

Plots obtained by adapting gnuplot script http://gnuplot.sourceforge.net/demo/prob.5.gnu.

Before Moving on ... The Beta Distribution

• Beta(α , β) defined on [0, 1].

Two parameters: α and β .

Mean
$$=\frac{\alpha}{\alpha+\beta}$$
; Variance $=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.

Plots obtained by adapting gnuplot script http://gnuplot.sourceforge.net/demo/prob.5.gnu.

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
 - Mean = $\frac{s_a^t + 1}{s_a^t + f_a^t + 2}$; variance = $\frac{(s_a^t + 1)(f_a^t + 1)}{(s_a^t + f_a^t + 2)^2(s_a^t + f_a^t + 3)}$.

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and t_a^t failures (zeroes/tails).
 - Beta($s_a^t + 1$, $f_a^t + 1$) represents a "belief" about the true mean of arm a.

- Mean =
$$\frac{s_a^t+1}{s_a^t+f_a^t+2}$$
; variance = $\frac{(s_a^t+1)(f_a^t+1)}{(s_a^t+f_a^t+2)^2(s_a^t+f_a^t+3)}$.

- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).
 - Beta($s_a^t + 1$, $f_a^t + 1$) represents a "belief" about the true mean of arm a.

- Mean =
$$\frac{s_a^t + 1}{s_a^t + f_a^t + 2}$$
; variance = $\frac{\left(s_a^t + 1\right)\left(f_a^t + 1\right)}{\left(s_a^t + f_a^t + 2\right)^2\left(s_a^t + f_a^t + 3\right)}$.

- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.

- Mean =
$$\frac{s_a^t+1}{s_a^t+f_a^t+2}$$
; variance = $\frac{(s_a^t+1)(f_a^t+1)}{(s_a^t+f_a^t+2)^2(s_a^t+f_a^t+3)}$.

- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.
- Achieves optimal regret (Kaufmann et al., 2012); is excellent in practice (Chapelle and Li, 2011).

Multi-armed Bandits

- 1. Achieving sub-linear regret
- 2. A lower bound on regret
- 3. UCB, KL-UCB algorithms
- 4. Thompson Sampling algorithm
- 5. Summary and outlook

Summary

- We desire low, sub-linear regret on all bandit instances.
- Possible if and only if algorithm satisfies GLIE conditions.
- If an algorithm gives sub-polynomial regret on all instances, it must give super-logarithmic regret on all instances (Lai and Robbins, 1985).
- UCB algorithm achieves logarithmic dependence on T.
- KL-UCB algorithm additionally improves the accompanying constant, thereby matching the lower bound (asymptotically).
- Thompson Sampling, a qualitatively different randomised algorithm, also matches regret lower bound.
- UCB, KL-UCB, Thompson Sampling all examples of optimism in the face of uncertainty principle.
- Next week: concentration inequalities, analysis of UCB, KL-UCB, Thompson Sampling, other bandit problem formulations.