Mathematics

(Chapter – 13) (Exponents and Powers) (Class – VII)

Exercise 13.1

Question 1:

Find the value of:

(i) 2^6

- (ii) 9^3
- (iii) 11²
- (iv) 5⁴

Answer 1:

- (i) $2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$
- (ii) $9^3 = 9 \times 9 \times 9 = 729$
- (iii) $11^2 = 11 \times 11 = 121$
- (iv) $5^4 = 5 \times 5 \times 5 \times 5 = 625$

Question 2:

Express the following in exponential form:

(i) $6 \times 6 \times 6 \times 6$

(ii) $t \times t$

(iii) $b \times b \times b \times b$

(iv) $5 \times 5 \times 7 \times 7 \times 7$

(v) $2 \times 2 \times a \times a$

(vi) $a \times a \times a \times c \times c \times c \times c \times d$

Answer 2:

- (i) $6 \times 6 \times 6 \times 6 = 6^4$
- (ii) $t \times t = t^2$
- (iii) $b \times b \times b \times b = b^4$
- (iv) $5 \times 5 \times 7 \times 7 \times 7 = 5^2 \times 7^3$
- (v) $2 \times 2 \times a \times a = 2^2 \times a^2$
- (vi) $a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d$

Question 3:

Express each of the following numbers using exponential notation:

- (i) 512
- (ii) 343
- (iii) 729
- (iv) 3125

E_{twati} Answer 3:

- (i)
- 512

$512 = 2 \times $	512 =	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 =	29
---	-------	-----	-----	-----	-----	-----	-----	-----	-----	-----	----

(ii)	343
	$343 - 7 \times 7 \times 7 - 73$

(iii) 729

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$$

(iv)
$$3125$$

 $3125 = 5 \times 5 \times 5 \times 5 \times 5$

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

7	343
7	49
7	7
	1

3	729
3	243
3	81
3	27
3	9
3	3
	1

5	3125
5	625
5	125
5	25
5	5
	1

Question 4:

Identify the greater number, wherever possible, in each of the following:

(i) 4^3 and 3^4

(ii) 5^3 or 3^5

(iii) $2^8 \text{ or } 8^2$

(iv) 100^2 or 2^{100}

(v) 2^{10} or 10^2

Answer 4:

(i)
$$4^3 = 4 \times 4 \times 4 = 64$$

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$

Since 64 < 81

Thus, 3^4 is greater than 4^3 .

(ii)
$$5^3 = 5 \times 5 \times 5 = 125$$

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$$

Since, 125 < 243

Thus, 3^4 is greater than 5^3 .

(iii)
$$2^8 = 2 \times 2 = 256$$

$$8^2 = 8 \times 8 = 64$$

Since, 256 > 64

Thus, 2^8 is greater than 8^2 .

(iv)
$$100^2 = 100 \times 100 = 10,000$$

$$2^{100} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times \dots 14$$
 times x $\times 2 = 16,384 \times \dots \times 2$

Since, 10,000 < 16,384 x x 2

Thus, 2^{100} is greater than 100^2 .

$$10^2 = 10 \times 10 = 100$$

Since, 1,024 > 100

Thus, $2^{10} > 10^2$

Question 5:

Express each of the following as product of powers of their prime factors:

- (i) 648
- (ii) 405
- (iii) 540
- (iv) 3,600

Answer 5:

(i)
$$648 = 2^3 \times 3^4$$

 2 648 2 324 2 162 3 81 3 27 3 9 3 3 1 		
 2 162 3 81 3 27 3 9 3 3 	2	648
3 81 3 27 3 9 3 3	2	324
3 27 3 9 3 3	2	162
3 9 3 3	3	81
3 3	3	27
	3	9
1	3	3
		1

(ii)
$$405 = 5 \times 3^4$$

5	405
3	81
3	27
3	9
3	3
	1

(iii)
$$540 = 2^2 \times 3^3 \times 5$$

2	540
2	270
3	135
3	45
3	15
5	5
	1

(iv)
$$3,600 = 2^4 \times 3^2 \times 5^2$$

2	3600
2	1800
2	900
2	450
3	225
3	75
5	25
5	5
	1

Question 6:

Simplify:

(i)	2×10^{3}	(ii)	$7^2 \times 2^2$
(iii)	$2^3 \times 5$	(iv)	3×4^{4}
(v)	0×10^{2}	(vi)	$5^2 \times 3^3$
(vii)	$2^4 \times 3^2$	(viii)	$3^2 \times 10^4$

Answer 6:

	•		
(i)	2×10^{3}	= 2 x 10 x 10 x 10	= 2,000
(ii)	$7^2 \times 2^2$	$= 7 \times 7 \times 2 \times 2$	= 196
(iii)	$2^3 \times 5$	$= 2 \times 2 \times 2 \times 5$	= 40
(iv)	3×4^4	$= 3 \times 4 \times 4 \times 4 \times 4$	= 768
(v)	0×10^{2}	$= 0 \times 10 \times 10$	= 0
(vi)	$5^3 \times 3^3$	$= 5 \times 5 \times 3 \times 3 \times 3$	= 675
(vii)	$2^4 \times 3^2$	$= 2 \times 2 \times 2 \times 2 \times 3 \times 3$	= 144
(viii)	$3^2 \times 10^4$	$= 3 \times 3 \times 10 \times 10 \times 10 \times 10$	= 90.000

Question 7:

Simplify:

(i)
$$(-4)^3$$
 (ii) $(-3) \times (-2)^3$

(iii)
$$(-3)^2 \times (-5)^2$$
 (iv) $(-2)^3 \times (-10)^3$

Answer 7:

(i)
$$(-4)^3 = (-4) \times (-4) \times (-4) = -64$$

(ii)
$$(-3)\times(-2)^3 = (-3)\times(-2)\times(-2)\times(-2) = 24$$

(iii)
$$(-3)^2 \times (-5)^2 = (-3) \times (-3) \times (-5) \times (-5) = 225$$

(iv)
$$(-2)^3 \times (-10)^3 = (-2) \times (-2) \times (-2) \times (-10) \times (-10) \times (-10)$$

Question 8:

Compare the following numbers: (i) 2.7×10^{12} ; 1.5×10^8

- (ii) 4×10^{14} ; 3×10^{17}

Answer 8:

- 2.7×10^{12} and 1.5×10^{8} (i) On comparing the exponents of base 10, $2.7 \times 10^{12} > 1.5 \times 10^{8}$
- $4 \ x \ 10^{14}$ and $3 \ x \ 10^{17}$ (ii) On comparing the exponents of base 10, $4 \times 10^{14} < 3 \times 10^{17}$

Exercise 13.2

Question 1:

Using laws of exponents, simplify and write the answer in exponential form:

(i)
$$3^2 \times 3^4 \times 3^8$$

(ii)
$$6^{15} \div 6^{10}$$

(iii)
$$a^3 \times a^2$$

(iv)
$$7^x \times 7^2$$

(v)
$$(5^2)^2 \div 5^3$$

(vi)
$$2^5 \times 5^5$$

(vii)
$$a^4 \times b^4$$

(viii)
$$(3^4)^3$$

(ix)
$$(2^{20} \div 2^{15}) \times 2^3$$

$$(x) 8^t \div 8^2$$

Answer 1:

(i)
$$3^2 \times 3^4 \times 3^8 = 3^{(2+4+8)} = 3^{14}$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

(ii)
$$6^{15} \div 6^{10} = 6^{15-10} = 6^5$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

(iii)
$$a^3 \times a^2 = a^{3+2} = a^5$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

(iv)
$$7^x \times 7^2 = 7^{x+2}$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

(v)
$$(5^2)^3 \div 5^3 = 5^{2\times 3} \div 5^3 = 5^6 \div 5^3$$

$$\left[: \left(a^m \right)^n = a^{m \times n} \right]$$

$$= 5^{6-3} = 5^3$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

(vi)
$$2^5 \times 5^5 = (2 \times 5)^5 = 10^5$$

$$\left[\because a^m \times b^m = \left(a \times b \right)^m \right]$$

(vii)
$$a^4 \times b^4 = (a \times b)^4$$

$$\left[: a^m \times b^m = \left(a \times b \right)^m \right]$$

(viii)
$$(3^4)^3 = 3^{4\times 3} = 3^{12}$$

$$\left[\because \left(a^m \right)^n = a^{m \times n} \right]$$

(ix)
$$(2^{20} \div 2^{15}) \times 2^3 = (2^{20-15}) \times 2^3$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

$$= 2^5 \times 2^3 = 2^{5+3} = 2^8$$

$$\left[:: a^m \times a^n = a^{m+n} \right]$$

(x)
$$8^t \div 8^2 = 8^{t-2}$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

Question 2:

Simplify and express each of the following in exponential form:

$$(i) \qquad \frac{2^3 \times 3^4 \times 4}{3 \times 32}$$

(ii)
$$\left[\left(5^2 \right)^3 \times 5^4 \right] \div 5^7$$

(iii)
$$25^4 \div 5^3$$

(iv)
$$\frac{3 \times 7^2 \times 11^8}{21 \times 11}$$

(v)
$$\frac{3^7}{3^4 \times 3^3}$$

(vi)
$$2^0 + 3^0 + 4^0$$

(vii)
$$2^0 \times 3^0 \times 4^0$$

(viii)
$$(3^0 + 2^0) \times 5^0$$

(ix)
$$\frac{2^8 \times a^5}{4^3 \times a^3}$$

(x)
$$\left(\frac{a^5}{a^3}\right) \times a^8$$

(xi)
$$\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2}$$

(xii)
$$\left(2^3 \times 2\right)^2$$

Answer 2:

(i)
$$\frac{2^3 \times 3^4 \times 4}{3 \times 32} = \frac{2^3 \times 3^4 \times 2^2}{3 \times 2^5} = \frac{2^{3+2} \times 3^4}{3 \times 2^5}$$
$$= \frac{2^5 \times 3^4}{3 \times 2^5} = 2^{5-5} \times 3^{4-3}$$
$$= 2^0 \times 3^3 = 1 \times 3^3 = 3^3$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

(ii)
$$\left[\left(5^2 \right)^3 \times 5^4 \right] \div 5^7 = \left[5^6 \times 5^4 \right] \div 5^7$$

$$= \left[5^{6+4} \right] \div 5^7 = 5^{10} \div 5^7$$

$$= 5^{10-7} = 5^3$$

$$\left[\because \left(a^{m}\right)^{n}=a^{m\times n}\right]$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

(iii)
$$25^4 \div 5^3 = (5^2)^4 \div 5^3 = 5^8 \div 5^3$$

= $5^{8-3} = 5^5$

$$\left[: \left(a^m \right)^n = a^{m \times n} \right]$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

(iv)
$$\frac{3 \times 7^2 \times 11^8}{21 \times 11^3} = \frac{3 \times 7^2 \times 11^8}{3 \times 7 \times 11^3} = 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$
$$= 3^0 \times 7^1 \times 11^5 = 7 \times 11^5$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

(v)
$$\frac{3^7}{3^4 \times 3^3} = \frac{3^7}{3^{4+3}} = \frac{3^7}{3^7}$$
$$= 3^{7-7} = 3^0 = 1$$

$$\begin{bmatrix} :: a^m \times a^n = a^{m+n} \end{bmatrix}$$
$$\begin{bmatrix} :: a^m \div a^n = a^{m-n} \end{bmatrix}$$

(vi)
$$2^0 + 3^0 + 4^0 = 1 + 1 + 1 = 3$$

$$\left[\because a^0 = 1\right]$$

(vii)
$$2^0 \times 3^0 \times 4^0 = 1 \times 1 \times 1 = 1$$

$$\left[\because a^0 = 1\right]$$

(viii)
$$(3^0 + 2^0) \times 5^0 = (1+1) \times 1 = 2 \times 1 = 2$$

$$\left[\because a^0 = 1\right]$$

(ix)
$$\frac{2^8 \times a^5}{4^3 \times a^3} = \frac{2^8 \times a^5}{\left(2^2\right)^3 \times a^3} = \frac{2^8 \times a^5}{2^6 \times a^3}$$
$$= 2^{8-6} \times a^{5-2} = 2^2 \times a^2$$
$$= \left(2a\right)^2$$

$$\left[\because \left(a^m\right)^n = a^{m \times n}\right]$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

$$\left[: a^m \times b^m = \left(a \times b \right)^m \right]$$

(x)
$$\left(\frac{a^5}{a^3}\right) \times a^8 = \left(a^{5-3}\right) \times a^8 = a^2 \times a^8$$

= $a^{2+8} = a^{10}$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

(xi)
$$\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2} = 4^{5-5} \times a^{8-5} \times b^{3-2} = 4^0 \times a^3 \times b$$
$$= 1 \times a^3 \times b = a^3 b$$

$$\left[\because a^m \div a^n = a^{m-n} \right]$$

$$\left[\because a^0 = 1\right]$$

(xii)
$$(2^3 \times 2)^2 = (2^{3+1})^2 = (2^4)^2$$

= $2^{4\times 2} = 2^8$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

Question 3:

Say true or false and justify your answer:

(i) $10 \times 10^{11} = 100^{11}$

(ii) $2^3 > 5^2$

(iii) $2^3 \times 3^2 = 6^5$

(iv) $3^0 = (1000)^0$

Answer 3:

(i) $10 \times 10^{11} = 100^{11}$

L.H.S. $10^{1+11} = 10^{12}$

and R.H.S. $(10^2)^{11} = 10^{22}$

Since, L.H.S. \neq R.H.S. Therefore, it is false.

(ii) $2^3 > 5^2$

L.H.S. $2^3 = 8$

and R.H.S. $5^2 = 25$

Since, L.H.S. is not greater than R.H.S.

Therefore, it is false.

(iii) $2^3 \times 3^2 = 6^5$

L.H.S. $2^3 \times 3^2 = 8 \times 9 = 72$

and R.H.S. $6^5 = 7,776$

Since, L.H.S. \neq R.H.S.

Therefore, it is false.

(iv) $3^0 = (1000)^0$

L.H.S. $3^0 = 1$

and R.H.S. $(1000)^0 = 1$

Since, L.H.S. = R.H.S.

Therefore, it is true.

Question 4:

Express each of the following as a product of prime factors only in exponential form:

(i) 108 x 192

(ii) 270

(iii) 729 x 64

(iv) 768

Answer 4:

(i) 108 x 192

108 x 192 =
$$(2^2 \times 3^3) \times (2^6 \times 3)$$

= $2^{2+6} \times 3^{3+1}$
= $2^8 \times 3^4$

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

2	108
2	54
3	27
3	9
3	3
	1

(ii) 270
$$= 2 \times 3^5 \times 5$$

2	270
3	135
3	45
3	15
5	5
	1

(iii)
$$729 \times 64$$

 $729 \times 64 = 3^6 \times 2^6$

2	64
2	32
2	16
2	8

2	4
2	2
	1

3	729
3	243
3	81
3	27
3	9
3	3
	1
2	768

2	768
2	384
2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

(iv)
$$768 = 2^8 \times 3$$

Question 5:

Simplify:

(i)
$$\frac{(2^5)^2 \times 7^3}{8^3 \times 7}$$

(ii)
$$\frac{25\times5^2\times t^8}{10^3\times t^4}$$

(iii)
$$\frac{3^5 \times 10^5 \times 25}{5^7 \times 6^5}$$

Answer 5:

(i)
$$\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7} = \frac{2^{5 \times 2} \times 7^{3}}{\left(2^{3}\right)^{3} \times 7}$$
$$= \frac{2^{10} \times 7^{3}}{2^{9} \times 7}$$
$$= 2^{10-9} \times 7^{3-1} = 2 \times 7^{2}$$
$$= 2 \times 49$$
$$= 98$$

(ii)
$$\frac{25 \times 5^2 \times t^8}{10^3 \times t^4} = \frac{5^2 \times 5^2 \times t^8}{(5 \times 2)^3 \times t^4}$$
$$= \frac{5^{2+2} \times t^{8-4}}{2^3 \times 3^3}$$
$$= \frac{5^4 \times t^4}{2^3 \times 5^3}$$
$$= \frac{5^{4-3} \times t^4}{2^3}$$
$$= \frac{5t^4}{8}$$

(iii)
$$\frac{3^5 \times 10^5 \times 25}{5^7 \times 6^5} = \frac{3^5 \times (2 \times 5)^5 \times 5^2}{5^7 \times (2 \times 3)^5}$$
$$= \frac{3^5 \times 2^5 \times 5^5 \times 5^2}{5^7 \times 2^5 \times 3^5}$$
$$= \frac{3^5 \times 2^5 \times 5^{5+2}}{5^7 \times 2^5 \times 3^5}$$
$$= \frac{3^5 \times 2^5 \times 5^7}{5^7 \times 2^5 \times 3^5}$$
$$= 2^{5-5} \times 3^{5-5} \times 5^{5-5}$$
$$= 2^0 \times 3^0 \times 5^0$$
$$= 1 \times 1 \times 1$$
$$= 1$$

Exercise 13.3

Question 1:

Write the following numbers in the expanded form:

279404, 3006194, 2806196, 120719, 20068

Answer 1:

(i)
$$2,79,404$$
 = $2,00,000 + 70,000 + 9,000 + 400 + 00 + 4$
= $2 \times 100000 + 7 \times 10000 + 9 \times 1000 + 4 \times 100 + 0 \times 10 + 4 \times 1$
= $2 \times 10^5 + 7 \times 10^4 + 9 \times 10^3 + 4 \times 10^2 + 0 \times 10^1 + 4 \times 10^0$
(ii) $30,06,194$ = $30,00,000 + 0 + 0 + 6,000 + 100 + 90 + 4$
= $3 \times 1000000 + 0 \times 100000 + 0 \times 10000 + 6 \times 1000 + 1 \times 100 + 9 \times 10 + 4 \times 1$
= $3 \times 10^6 + 0 \times 10^5 + 0 \times 10^4 + 6 \times 10^3 + 1 \times 10^2 + 9 \times 10 + 4 \times 10^0$
(iii) $28,06,196$ = $20,00,000 + 8,00,000 + 0 + 6,000 + 100 + 90 + 6$
= $2 \times 1000000 + 8 \times 100000 + 0 \times 10000 + 6 \times 1000 + 1 \times 100 + 9 \times 10 + 6 \times 1$
= $2 \times 10^6 + 8 \times 10^5 + 0 \times 10^4 + 6 \times 10^3 + 1 \times 10^2 + 9 \times 10 + 6 \times 10^0$
(iv) $1,20,719$ = $1,00,000 + 20,000 + 0 + 700 + 10 + 9$
= $1 \times 100000 + 2 \times 10000 + 0 \times 1000 + 7 \times 100 + 1 \times 10 + 9 \times 1$
= $1 \times 10^5 + 2 \times 10^4 + 0 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 9 \times 10^0$
(v) $20,068$ = $20,000 + 00 + 00 + 60 + 8$
= $2 \times 10000 + 0 \times 1000 + 0 \times 100 + 6 \times 10 + 8 \times 1$
= $2 \times 10^4 + 0 \times 10^3 + 0 \times 10^2 + 6 \times 10^1 + 8 \times 10^0$

Question 2:

Find the number from each of the following expanded forms:

- (a) $8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$
- (b) $4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$
- (c) $3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0$
- (d) $9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1$

Answer 2:

(a)
$$8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

= $8 \times 10000 + 6 \times 1000 + 0 \times 100 + 4 \times 10 + 5 \times 1$
= $80000 + 6000 + 0 + 40 + 5$
= $86,045$

(b)
$$4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$$

= $4 \times 100000 + 0 \times 10000 + 5 \times 1000 + 3 \times 100 + 0 \times 10 + 2 \times 1$
= $400000 + 0 + 5000 + 3000 + 0 + 2$
= $4,05,302$

```
(c) 3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0

= 3 \times 10000 + 0 \times 1000 + 7 \times 100 + 0 \times 10 + 5 \times 1

= 30000 + 0 + 700 + 0 + 5

= 30,705

(d) 9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1

= 9 \times 100000 + 0 \times 10000 + 0 \times 1000 + 2 \times 100 + 3 \times 10 + 0 \times 1

= 900000 + 0 + 0 + 200 + 30 + 0
```

Question 3:

Express the following numbers in standard form:

= 9,00,230

(i)	5,00,00,000	(ii)	70,00,000
(iii)	3,18,65,00,000	(iv)	3,90,878
(v)	39087.8	(vi)	3908.78

Answer 3:

(i)	5,00,00,000	$= 5 \times 1,00,00,000 = 5 \times 10^7$
(ii)	70,00,000	$= 7 \times 10,00,000 = 7 \times 10^6$
(iii)	3,18,65,00,000	= 31865 x 100000
		= $3.1865 \times 10000 \times 100000 = 3.1865 \times 10^{9}$
(iv)	3,90,878	= $3.90878 \times 100000 = 3.90878 \times 10^{5}$
(v)	39087.8	$= 3.90878 \times 10000 = 3.90878 \times 10^{4}$
(vi)	3908.78	$= 3.90878 \times 1000 = 3.90878 \times 10^{3}$

Question 4:

Express the number appearing in the following statements in standard form:

- (a) The distance between Earth and Moon is 384,000,000 m.
- (b) Speed of light in vacuum is 300,000,000 m/s.
- (c) Diameter of Earth id 1,27,56,000 m.
- (d) Diameter of the Sun is 1,400,000,000 m.
- (e) In a galaxy there are on an average 100,000,000,0000 stars.
- (f) The universe is estimated to be about 12,000,000,000 years old.
- (g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000,000,000 m.
- (h) 60,230,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.
- (i) The Earth has 1,353,000,000 cubic km of sea water.
- (j) The population of India was about 1,027,000,000 in march, 2001.

Answer 4:

(a) The distance between Earth and Moon = 384,000,000 m

= 384 x 1000000 m

 $= 3.84 \times 100 \times 1000000$

 $= 3.84 \times 10^8 \text{ m}$

(b) Speed of light in vacuum = 300,000,000 m/s

 $= 3 \times 100000000 \text{ m/s}$

 $= 3 \times 10^8 \text{ m/s}$

(c) Diameter of the Earth = 1,27,56,000 m

= 12756 x 1000 m

= 1.2756 x 10000 x 1000 m

 $= 1.2756 \times 10^7 \text{ m}$

(d) Diameter of the Sun = 1,400,000,000 m

= 14 x 100,000,000 m

 $= 1.4 \times 10 \times 100,000,000 \text{ m}$

 $= 1.4 \times 10^9 \text{ m}$

(e) Average of Stars = 100,000,000,000

 $= 1 \times 100,000,000,000$

 $= 1 \times 10^{11}$

(f) Years of Universe = 12,000,000,000 years

 $= 12 \times 1000,000,000 \text{ years}$

 $= 1.2 \times 10 \times 1000,000,000$ years

 $= 1.2 \times 10^{10} \text{ years}$

(g) Distance of the Sun from the centre of the Milky Way Galaxy

= 300,000,000,000,000,000,000 m

= 3 x 100,000,000,000,000,000,000 m

 $= 3 \times 10^{20} \text{ m}$

(h) Number of molecules in a drop of water weighing 1.8 gm

= 60,230,000,000,000,000,000,000

 $=6023 \times 10,000,000,000,000,000,000$

 $= 6.023 \times 1000 \times 10,000,000,000,000,000,000$

 $= 6.023 \times 10^{22}$

(i) The Earth has Sea water = $1,353,000,000 \text{ km}^3$

 $= 1,353 \times 1000000 \text{ km}^3$

= $1.353 \times 1000 \times 1000,000 \text{ km}^3$

 $= 1.353 \times 10^9 \text{ km}^3$

(j) The population of India = 1,027,000,000

= 1027 x 1000000

= 1.027 x 1000 x 1000000

 $= 1.027 \times 10^9$