باسمه تعالى

جبرخطی کاربردی - تکلیف سری چهارم

مهلت تحویل: چهارشنبه ۱۲ دی ۱۴۰۳

- تمرینهای زیر (به جز مسئله آخر) از کتاب
- Linear Algebra and Its Applications, D.C. Lay, S.R. Lay, J.J. McDonald, 6th edition, 2022
 - توجه بفرمایید که در این کتاب، توضیح یک مسئله ممکن است قبل از خود مسئله بین شده باشد.
 - برای مسائل عددی، سعی کنید جواب خود را با نرمافزار صحت سنجی کنید.
 - ۱- قسمت CHAPTER 3 SUPPLEMENTARY EXERCISES، صفحه ۲۲۱
 - مسائل ۱۹ و ۲۹
 - ۲- قسمت **5.1** EXERCISES، صفحه ۳۰۴
 - مسائل ۳۳ و ۳۷
 - ۳- قسمت **5.2** EXERCISES، صفحه ۳۱۲
 - مسئله ۳۱
 - ۴- قسمت **5.3** EXERCISES، صفحه ۳۱۹
 - مسائل ۳۷ و ۳۸
 - ۵- قسمت **5.6** EXERCISES ، صفحه ۳۴۳
 - مسئله ۱۷ (برای قسمت C از نرمافزار استفاده کنید.)
 - ۶- قسمت CHAPTER 5 SUPPLEMENTARY EXERCISES، صفحه ۳۶۹
 - مسائل ۲۴ و ۴۰
 - ۷- قسمت **7.4** EXERCISES، صفحه ۴۷۲
 - مسائل ۱۷ و ۱۸
 - ۸- قسمت CHAPTER 7 SUPPLEMENTARY EXERCISES، صفحه ۸۱
 - مسائل ۱۸ و ۲۳
- 9- مسئله ۹,۱ (صفحه ۷۶) از کتاب **Boyd** در ادامه نقطه تعادل سیستم را محاسبه کرده و پاسخ حالت دائمی سیستم را با استفاده از نرمافزار تحلیل کنید.

تمرینهای اختیاری (نیازی به تحویل نیست)

- ۱- نشان دهید:
- .a اگر λ مقدار ویژه ماتریس A باشد، λ مقدار ویژه A^{T} نیز هست.
- b. اگر λ یک مقدار ویژه ماتریس وارونپذیر λ باشد، λ^{-1} مقدار ویژه λ^{-1} است.
- c. اگر جمع عناصر هر سطر ماتریس A برابر S باشد، S یک مقدار ویژه A است.
- d. اگر جمع عناصر هر ستون ماتریس A برابر S باشد، S یک مقدار ویژه A است.
 - e. اگر Q وارون پذیر باشد، دو ماتریس AQ و QA همانند هستند.
 - أ. اگر ماتریس وارونپذیر A قطریپذیر باشد، آنگاه A^{-1} نیز قطریپذیر است.
- $\lambda_1, \ldots, \lambda_n$ یک پایه یکه متعامد و $\lambda_1, \ldots, \lambda_n$ اعداد حقیقی هستند. نشان دهید $\lambda_1, \ldots, \lambda_n$ مقادیر ویژه ماتریس $\lambda_1, \ldots, \lambda_n$ علام متعامد و $\lambda_1, \ldots, \lambda_n$ هستند.
 - ۲- قسمت **3.1** EXERCISES، صفحه ۲۰۱
 - مسائل ۲۵ تا ۳۰، ۳۸ تا ۴۲ (درست-غلط)
 - ۳- قسمت **3.2** EXERCISES، صفحه ۲۰۹
 - مسائل ۱۵ تا ۲۰، ۳۷ تا ۳۴ (درست-غلط)، ۴۶،
 - ۴- قسمت **3.3** EXERCISES، صفحه ۲۱۹
 - مسائل ۵ و ۶
 - ۵- مسائل قسمت CHAPTER 3 SUPPLEMENTARY EXERCISES، صفحه ۲۲۱
 - مسائل ۱ تا ۱۵ (درست-غلط)، ۱۷، ۱۸، ۲۸، ۲۹
 - ۶- مسائل قسمت **5.1** EXERCISES صفحه ۳۰۴
 - مسائل ۱۹، ۲۰، ۲۱ تا ۳۰ (درست–غلط)، ۳۷، ۳۸
 - ٧- مسائل قسمت **5.2** EXERCISES، صفحه ٣١٢
 - مسائل ۲۱ تا ۳۰ (درست-غلط)، ۳۲،
 - ۸- مسائل قسمت **5.3** EXERCISES. صفحه ۳۱۹
 - مسائل ۲۱ تا ۲۸ (درست-غلط)، ۳۵
 - 9- مسائل قسمت **5.4** EXERCISES، صفحه ۳۲۶
 - مسائل ۱۷ تا ۱۸ (درست-غلط)، ۲۱ تا ۲۸
 - ۱۰- مسائل قسمت **5.6** EXERCISES ، صفحه ۳۴۳
 - مسائل ۱ و ۲
 - ۱۱- مسائل قسمت CHAPTER 5 SUPPLEMENTARY EXERCISES، صفحه ۳۶۹
 - مسائل ۱ تا ۲۳ (درست-غلط)، ۲۹، ۳۴، ۳۶
 - ۱۲- مسائل قسمت EXERCISES، صفحه ۴۴۷
 - مسائل ۲۵ تا ۳۲ (درست-غلط)، ۳۳، ۳۴، ۴۱

١٣- مسائل قسمت Z.2 EXERCISES، صفحه ٢٥٠

- مسائل ۲۱ تا ۳۰ (درست-غلط)، ۳۲، ۳۳، ۳۳
 - ۱۴- مسائل قسمت 7.4 EXERCISES، صفحه ۴۷۲
 - مسائل ۱۵، ۱۶، ۱۹، ۲۰، ۲۲، ۲۳

۱۵- مسائل قسمت CHAPTER 7 SUPPLEMENTARY EXERCISES، صفحه ۴۸۱

- مسائل ۱ تا ۱۷ (درست-غلط)، ۲۴، ۲۷
- ۱۶- نشان دهید I-A وارون پذیر است اگر اندازه تمام مقادیر ویژه A کمتر از یک باشد (اندازه یک عدد حقیقی قدر مطلق آن و اندازه یک عدد مختلط، همان اندازه آن است).
- ۱۷- در این تمرین، یک تصویر را با روش SVD فشرده میکنید. برای شروع یک تصویر غیررنگی (gray scale) با ابعاد کمتر از ۸۰۰×۱۰۰۰ انتخاب کرده سپس مراحل زیر را انجام دهید:
 - تصویر را در نرمافزار فراخوانی کرده و ماتریس داده آن را به دست آورید.
 - مقادیر منفرد تصویر را به دست آورده و آنها را به ترتیب نزولی روی یک نمودار رسم کنید.
 - تجزیه SVD تصویر را محاسبه کنید.
- با استفاده از روش بیان شده در کلاس، تصویر فشرده را با نگهداری ۱۰، ۵۰، ۱۰۰، ۱۵۰ و ۲۰۰ مقدار منفرد محاسبه
 کرده و نمایش دهید.
- با بررسی تصویر و مقادیر منفرد، فکر می کنید با نگهداری چند مقدار ویژه، می توان با حفظ کیفیت تصویر، حجم آن را تا حد ممکن کاهش داد.