Отчёт по лабораторной работе №14

Модели обработки заказов

Козлов Всеволод Павлович НФИбд-02-22

Содержание

1	Цел	ь работы	5
2	Зад	ание	6
3	Вы	толнение лабораторной работы	7
	3.1	Модель оформления заказов клиентов одним оператором	7
	3.2	Построение гистограммы распределения заявок в очереди	11
	3.3	Модель обслуживания двух типов заказов от клиентов в интернет-	
		магазине	14
	3.4	Модель оформления заказов несколькими операторами	18
4	Вы	воды	22

Список иллюстраций

3.1	модель оформления заказов клиентов одним оператором	8
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором с изме-	
	ненными интервалами заказов и времени оформления клиентов .	10
3.4	Отчёт по модели оформления заказов в интернет-магазине с изме-	
	ненными интервалами заказов и времени оформления клиентов .	10
3.5	Построение гистограммы распределения заявок в очереди	12
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	12
3.7	Гистограмма распределения заявок в очереди	14
3.8	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	15
3.9	Отчёт по модели оформления заказов двух типов	15
3.10	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	17
3.11	Отчёт по модели оформления заказов двух типов заказов	17
3.12	Модель оформления заказов несколькими операторами	18
3.13	Отчет по модели оформления заказов несколькими операторами	19
3.14	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	20
3.15	Отчет по модели оформления заказов несколькими операторами с	
	vчетом отказов клиентов	20

Список таблиц

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Построим модель оформления заказов клиентов одним оператором(рис. 3.1).

```
; operator
GENERATE 15,4
QUEUE operator
DEPART operator
DEPART operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT

– количество транзактов, вошедших в блок с начала процедуры моделирования. Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости

Упражнение

оператора составило 9, 589 мин.

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

```
;operator
GENERATE 3.14,1.7
QUEUE operator
DEPART operator
DEPART operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

	START TIME 0.000		E						STORA	GES	
	NAME				VAL	JE					
	OPERATOR_Q				10001.	000					
LABEL	1						T CURRE	NT C	DUNT R	ETRY	
		L G	ENERATE			152		0		0	
		2 Q	ENERATE UEUE			152		82		0	
		3 S	EIZE			70		0		0	
		4 D	EPART			70				0	
		5 A	DVANCE			70		1		0	
		5 R	ELEASE			69		0		0	
		7 I	ERMINATE	Ε		69		0		0	
	1	8 G	ENERATE			1		0		0	
	!	9 T	ERMINAT!	Ξ		1		0		0	
FACILITY	ENTI	RIES	UTIL.	AVE.	TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELF
OPERATOR		70	0.991		6.796	1	71	0	0	0	8
QUEUE	Q M	AX CON	T. ENTR	ENT	RY(0)	AVE.CO	ONT. AVE	.TIM	E AV	E. (-0)	RETE
OPERATOR	_0	82 8	2 153	2	1	39.09	96 12	3.46	1 1:	24.279	0
FEC XN I							PARAM	ETER	VA	LUE	
71	0 4	180.40	5 7	L	5	6					
154			0 154			1					

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение
 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;

• количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

 количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки:
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого

частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим (рис. 3.5).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,X$Custnum
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Получим отчет симуляции и проанализируем его (рис. 3.6).

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение
 0: END TIME=353.895;

- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

 количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(O)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут. В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. 3.7).

Рис. 3.7: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй — заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора.

Код и отчет результатов моделирования следующие (рис. 3.8, 3.9).

```
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator_q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE O
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.8: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

STAR	T TIME 0.000	END TI 480.0	IME BLOCKS		STORAGES 0	
	AME TOR		VALUE 10001.000			
	TOR_Q		10000.000			
LABEL		BLOCK TYPE		IT CURRENT C	OUNT RETRY	
		GENERATE	32		0	
			32		0	
		SEIZE	28	0	0	
		DEPART	28	0	ō	
		ADVANCE	28	1	. 0	
		RELEASE	27	0		
		TERMINATE	27	0		
		GENERATE	15		0	
		QUEUE	15	3	0	
		SEIZE	12			
	11	DEPART ADVANCE	12	0		
		ADVANCE	12		0	
			12		0	
		RELEASE TERMINATE	12			
		GENERATE	12	0		
		TERMINATE	1	0		
	17	TERMINATE	1	U	U	
FACILITY	ENTRIES	UTIL. AVE.	TIME AVAIL	OWNER PEND	INTER RETRY	DELAY
OPERATOR	40	0.947	11.365 1	42 0	0 0	7
OUEUE	MAX CO	NT. ENTRY ENT	TRY(0) AVE.CO	ONT. AVE.TIM	E AVE. (-0)	RETRY
QUEUE OPERATOR_Q	8	7 47	2 3.35	34.26	1 35.784	0
FEC XN PRI		ASSEM 0	CURRENT NEXT	PARAMETER	VALUE	

Рис. 3.9: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение
 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;

• количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. 3.10).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator_DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.10: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 3.11).

STA	ART TIME	EN				STORAGES		
	0.000	4	80.000	11	1	0		
	NAME			VALUE				
PVTS	RA.			7 000				
				8.00b				
OPE	RATOR RATOR O		100	01.000				
OPE	RATOR Q		7.000 8.00p 10001.000 10000.000					
0121								
LABEL	LOC	BLOCK TYP	E E	NTRY COUN	T CURRENT	COUNT RETRY		
	1	GENERATE		33		0 0		
	2	GENERATE QUEUE SEIZE DEPART ADVANCE		33	T CURRENT	0 0		
	3	SEIZE		33		0 0		
	4	DEPART		33		0 0		
EXTRA NOEXTRA	5	ADVANCE		33		0 0		
	6	TRANSFER		33		0 0		
EXTRA	7	ADVANCE		8		1 0		
NOEXTRA	8	RELEASE		8		0 0		
	9	TERMINATE		32		0 0		
	10	GENERATE		1		0 0		
	11	TERMINATE		1		0 0		
FACILITY	ENTRIES	UTIL.	AVE. TI	ME AVAIL.	OWNER PEN	D INTER RETE	Y DELAY	
OPERATOR						0 0 0		
QUEUE OPERATOR Q	MAX C	ONT. ENTRY	ENTRY (0) AVE.CO	NI. AVE.II	ME AVE.(-0) RETRY	
OPERATOR O	1	0 33	25	0.05	4 0.7	81 3.22	0 0	
FEC XN PRI	BDT	ASSE	M CURR	ENT NEXT	PARAMETE	R VALUE		
	482.							
35 0	487.	726 35		1				
36 0	960.	000 36		10				

Рис. 3.11: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение
 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;

• количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator,1, сегмент моделирования времени остается без изменений (рис. 3.12).

Рис. 3.12: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.13).

	IME 000			ACILITIES ST	
NAME OPERATOR OPERATOR	_0	100			
LABEL	1 GENER	T CE NATE ATE	9.3	CURRENT COUN 0 0 0 0 2 0 0	0 0 0 0
QUEUE OPERATOR_Q	MAX CONT. EN	NTRY ENTRY (93 93	0) AVE.CON 0.000	T. AVE.TIME	AVE.(-0) RETRY 0.000 0
STORAGE OPERATOR				. AVE.C. UTI 1.926 0.4	
	BDT 1 480.457 482.805	95 0	1	PARAMETER	VALUE

Рис. 3.13: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение
 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q,2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не

было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 3.14).

Рис. 3.14: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.15).

Рис. 3.15: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение
 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;

- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.