MATH 424 HW2

Dilys Wu

February 1, 2024

1 Q1

Let (E, d) be a metric space. Prove that:

- i) Arbitrary intersections of closed sets are closed
- ii) Finite unions of closed sets are closed.
- iii) Closed balls are closed.

Proof:

- i) Note by De Morgan's Law that the complement of intersections of closed sets is a union of open sets, and thus is open by a theory in class. Since its complement is open, the arbitrary intersections of closed sets are closed by definition.
- ii) Again, note that by De Morgan's Law the complement of the union of a finite number of closed sets is the intersection of the complements of this finite number of closed sets, i.e., the intersection of a finite number of open sets, which is open.
- iii) Let S be the closed ball of center $x \in E$ and radius r > 0. Let $z \in S^C$, the complement of S. Then d(x,z) > r and d(x,z) r > 0. Consider the open ball centered at z and radius d(x,z) r. Then for any point y in such a ball, we have d(y,z) < d(x,z) r. Hence $d(x,y) = d(x,y) + d(y,z) d(y,z) \ge d(x,z) d(y,z) > r$. Therefore, the open ball of center z and radius d(x,z) r is entirely contained in S^C , so S^C is open, and S is closed.

2 Q2

Let (E, d) be a metric space. Prove that:

- i) For any $x \in E$ the singleton $\{x\}$ is closed.
- ii) Any finite subset of E is closed.

Proof:

- i) Consider $S := E \setminus \{x\}$. Clearly, for any $y \in S$, $y \neq x$. Consequently, r := d(x,y) > 0. We claim that $B_r(y) \subset S$ and we only need to check that $x \notin B_r(y)$. Suppose by contradiction that $x \in B_r(y)$, then d(y,x) < r = d(x,y), a contradiction. Thus $B_r(y) \subset S$, and since $y \in S$ is arbitrary, we have shown that S is open. Thus $\{x\}$ is closed.
- ii) From i) we know that for any $x \in E$ the singleton $\{x\}$ is closed, and we can see a finite subset of E as a finite union of singletons, which is closed by Q1.ii)

3 Q3

Consider a nonempty set E with the "discrete" metric d. That is, d(x, y) = 1 for all $x \neq y$. Prove that *all* subsets of E are open and closed.

Hint: Prove that for any $x \in E$ the singleton $\{x\}$ is open.

Proof:

We show that for any $x \in E$ the singleton $\{x\}$ is open. Note that for any $y \in E$ either d(x,y) = 0 or d(x,y) = 1. Hence we can always pick r = 2 s.t. $B_r(x) = B_2(x) \subseteq E$, so $\{x\}$ is open. Therefore, for any subset U of E, we can consider U to be a union of any collection of singletons $\{x\}$, where $x \in E$. Hence, U is open.

4 Q4

Consider the discrete metric space (E,d) of problem 3. Prove that a sequence $\{s_n\}$ in E converges to $L \in E$ if and only if there is $N \in \mathbb{N}$ so that for n > N, $s_n = L$. That is, the only convergent sequences are the sequences that are eventually constant.

Proof:

Recall that a sequence $\{S_n\}$ converges to L if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. for all n > N, $d(s_n, L) < \varepsilon$. We first show that a sequence that is eventually constant is convergent after $S_N, N \in \mathbb{N}$. Suppose $s_n = L$ for some n > N, then $d(s_n, L) = 0$ by the definition of the metric, and it is clearly contained in a ball with radius $\varepsilon > 0$. Now we show that any sequence that is not eventually constant cannot be convergent. Note that for all s_n , if $L \in E$ is the limit, either $d(s_n, L) = 0$ or $d(s_n, L) = 1$. Since the sequence is not eventually constant, we have $s_n \neq L$ for some $n \in \mathbb{N}$. But then we have $d(s_n, L) = 1$. If we take $\varepsilon = 0.5$, clearly $d(s_n, L) > \varepsilon$ and thus $s_n \notin B_\varepsilon(L)$, contradicting that the sequence is convergent. Therefore, the only convergent sequences are the sequences that are eventually constant.

5 Q5

Let (E,d) be a metric space. Define a function $\bar{d}: E \times E \to [0,\infty)$ by $d(x,y) = min\{1,d(x,y)\}.$

Hints: The hard part is the triangle inequality. Observe that for all $x,y,z\in E$ Prove that \bar{d} is a metric. $\bar{d}d(x,z)=min1, d(x,z)\leq d(x,z)\leq d(x,y)+d(y,z)$. If $d(x,y),d(y,z)\leq 1,d(x,y)=\bar{d}(x,y)$ and $d(y,z)=\bar{d}(y,z)$ so you are done. Otherwise ...

Proof:

- (1) If $\bar{d}(x,y)=\min\{1,d(x,y)\}=0$, then $\bar{d}(x,y)=d(x,y)=0$. But this happens iff x=y.
- (2) $\bar{d}(x,y) = min\{1, d(x,y)\} = min\{1, d(y,x)\} = \bar{d}(y,x)$ since d is a metric.
- (3) Note that we always have $d(x,y) = min\{1, d(x,y)\} \le d(x,y)$ and $d(x,y) = min\{1, d(x,y)\} \le 1$. Hence for $x, y, z \in E$, $d(x,z) = min\{1, d(x,z)\} \le d(x,z) \le d(x,z)$

d(x,y) + d(y,z).

a) If $d(x,y), d(y,z) \le 1, \bar{d}(x,y) = d(x,y)$ and $\bar{d}(y,z) = d(y,z)$, so we are done.

b) If d(x,y) > 1, d(y,z) > 1, then $\bar{d}(x,y) = \bar{d}(y,z) = 1$. We have $\bar{d}(x,z) \le 1 < 1 + 1 = \bar{d}(x,y) + \bar{d}(y,z)$.

c) If $d(x,y) \le 1$, d(y,z) > 1, then $\bar{d}(x,y) = d(x,y)$, $\bar{d}(y,z) = 1$. $\bar{d}(x,z) \le 1 \le 1 + d(x,y) = \bar{d}(y,z) + \bar{d}(x,y)$.

The case when $d(x,y) > 1, d(y,z) \le 1$ is similar to (c) so we are done for Triangle inequality.

6 Q6

Let (E,d) be a metric space and \bar{d} the associated new metric constructed in problem 5 (so that $\bar{d}(x,y) = min\{1,d(x,y)\}$ for all $x,y \in E$.

(a) Prove that any subset of (E, d) is bounded.

(b) Prove that d and \bar{d} give rise to exactly the same open set.

Hint: Let $B_r^d(x)$ and $B_r^{\bar{d}}(x)$ denote the open balls with respect to d and \bar{d} . Then if r < 1

$$B_r^d(x) = B_r^{\bar{d}}(x)$$

Proof:

- (a) We have $\bar{d}(x,y) \leq 1$ for all $x,y \in E$. With this in mind, let $\varnothing \neq S \subseteq E$ be a subset of E. We choose r=2. then every $x \in S$ is in the open ball $B_2(x)$ since $\bar{d}(x,y) \leq 1$ for all $x,y \in E$, hence S is bounded. Since S is arbitrary, any subset of (E,d) is bounded.
- (b) We first follow the hint. Let $B^d_r(x)$ and $B^{\bar{d}}_r(x)$ denote the open balls with respect to d and \bar{d} . Then if r<1, $B^d_r(x)=B^{\bar{d}}_r(x)$. Now consider the case when $r\geq 1$, note that we need not show d and \bar{d} give rise to the same open ball but the same open set. Hence when $r\geq 1$, we only need to choose 0< r'<1 and construct $B^{\bar{d}}_{r_0}(x)$ and $B^d_{r_0}(x)$, so they give rise to the same open set.

7 Q7

Let E be a metric space and $\varnothing \neq S \subset E$ a nonempty subset. Recall that we defined the boundary δS of S by $\delta S = \overline{S} \setminus S^{\circ}$, i.e., closure minus the interior. Prove that $x \in \delta S$ if and only if every ball centered at x contains some point(s) of S and some point(s) in the complement of S.

Proof:

If $x \in \delta S$, then $x \in \overline{S}$ and $x \notin S^{\circ}$. Then we must have $B_r(x) \nsubseteq S$ and $B_r(x) \nsubseteq S^{\circ}$ for all r > 0. But this happens iff $B_r(x) \cap S \neq \emptyset$ and $B_r(x) \cap \neq S^{\circ} \neq \emptyset$. To see this, suppose by contradiction that $\exists r_0 > 0$ s.t. $B_{r_0}(x) \cap (E \setminus S) = \emptyset$. But this suggests that $B_{r_0}(x) \subseteq S^{\circ}$, contradicting that $x \in \delta S$. So $B_{r_0}(x) \cap (E \setminus S) \neq \emptyset$. Similarly, we can show that $B_r(x) \cap S \neq \emptyset$. Then any ball centered at δS must contain some points in the interior and the complement of S.