Filtros Digitais Infinite Impulse Response - IIR

FILTROS DIGITAIS

- Vamos estudar projetos de filtros seletivos em frequência.
- · Filtros IIR: Resposta ao impulso infinita.
 - > h(n) ≠ 0, n = 0, 1, 2, ...
 - > Projeto baseado nos Filtros Contínuos.
 - > Três tipos de projeto: Aproximação das derivadas, Invariância ao impulso e Transformação bilinear.
- · Filtros FIR: Resposta ao impulso finita.
 - $> h(n) \neq 0, n = 0, 1, 2, ..., M-1.$
 - > Filtros com fase linear.
 - > Projeto por janelas e por amostragem em frequência.
- * Exemplos de projeto.

Introdução

Filtros:

- > São uma classe muito importante de sistemas lineares lineares
- > São aplicados onde há necessidade de tratamento do sinal.

❖ Função:

> Deixar passar algumas componentes de frequência de um sinal e rejeitar outras.

❖ Definição:

> Um sistema que modifica as componentes de frequência de um sinal aplicado em sua entrada.

- > Frequência analógica: Ω (rad/s) e F (Hz).
 - · limites positivos: [0 ∞]
- > Frequência digital: w ou f.
 - limites positivos: $[0 \pi]$ ou [0 0.5]
- * Relação entre frequência analógica e digital:
 - ► Em que: Fa é a frequência de amostragem

$$w = \frac{\Omega}{F_a} ou \ f = \frac{F}{F_a}$$

Característica em frequência dos filtros seletivos ideais H_a(jΩ) **Parâmetros** passa-baixas > Frequência de corte: Ω Banda de passagem: Banda de transição: passa-altas Banda de atenuação: Atenuação máxima na banda de passagem: passa-banda Atenuação mínima na banda de $\Omega_{\rm c}$ atenuação: Frequência de ressonância. rejeita-banda

* equação de diferenças geral e função do sistema

$$y(n) = b_0 x(n) + b_1 x(n-1) + \dots + b_M x(n-M)$$

- $a_1 y(n-1) - a_2 y(n-2) - \dots - a_n y(n-N)$

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

filtros IIR marcelo hi

Representação de um filtro analógico contínuo no tempo

1. Função do sistema:
$$H_a(s) = \frac{\displaystyle\sum_{k=0}^{M} \beta_k s^k}{\displaystyle\sum_{k=0}^{N} \alpha_k s^k}$$

2. Resposta ao impulso: $h_a(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} H_a(s) e^{st} ds$

3. Equação linear diferencial: $\sum_{k=0}^{N} \alpha_k \, \frac{d^k}{dt^k} \, y(t) = \sum_{k=0}^{M} \beta_k \, \frac{d^k}{dt^k} \, x(t)$

Em que: α_k e β_k são coeficientes constantes.

Estas <u>três representações</u>, acima, conduzem a <u>três métodos de</u> <u>projeto diferentes</u>

- Aproximação das derivadas (a partir da representação por equações diferenciais).
- Invariância ao impulso (a partir da representação pela resposta ao impulso).
- Transformação bilinear (a partir da resposta em frequência do sistema).
- Para projetar filtros IIR o importante é conhecer o projeto clássico dos filtros seletivos de frequência contínuos no tempo.

tron IIP marrole hi

Projeto de filtros IIR

Função de Transferência de um filtro IIR

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Considerações:

- O objetivo é encontrar os coeficientes a_k e b_k que satisfazem determinadas especificações de projeto.
- O projeto de um filtro IIR é feito, em geral, a partir de um protótipo analógico.
- O filtro digital é obtido a partir de uma função de transformação do domínio "s" para o "z".

filtros IIR marcelo bi

Projeto de filtros IIR por aproximação das derivadas

 Objetivo: aproximar a equação diferencial do filtro por uma equação de diferenças.

primeira derivada: $\frac{d}{dt} y(t)|_{t=nT} = \frac{1}{T} [y(n) - y(n-1)] \Leftrightarrow s = \frac{1}{T} [1 - z^{-1}]$

segunda derivada

$$\frac{d^2}{dt^2} y(t) \Big|_{t=nT} = \frac{1}{T^2} [y(n) - 2y(n-1) + y(n-2)]$$

 $s^2 = \left(\frac{1-z^{-1}}{T}\right)^2$

<u>k-ésima derivada:</u> $s^k = \left(\frac{1-z^{-1}}{T}\right)^k$ T é o intervalo de amostragem

filtros JIR marcelo bi

❖ Transformação de H_a(s) em H(z)

Faz-se a substituição: $s = \frac{1-z^{-1}}{T}$ $H(z) = H_a(s)|_{s=\frac{1}{T}(1-z^{-1})}$

Mapeamento do plano s no plano z:

Polos: dentro do círculo unitário => filtro estável e causal utilização: em frequências baixas.

 Aplicação: filtros passa-baixas e passa-banda com frequências de corte e de ressonância baixas.

Exemplo: Projeto de um filtro passa-baixas pelo método de aproximação

das derivadas
$$H_a(s) = \frac{1}{(s+0.1)^2 + 3} \longrightarrow H(z) = \frac{1}{\left(\frac{1-z^{-1}}{T} + 0.1\right)^2 + 3}$$

$$H(z) = \frac{T^2 / K}{1 - \frac{2(1 + 0.1T)}{K} z^{-1} + \frac{1}{K} z^{-2}} onde : K = 1 + 0.2T + 3.01T^2$$

Projeto de filtros IIR por invariância ao impulso

- h(n) é uma cópia amostrada de h_a(t): \rightarrow $h(n) = h_a(nT)$ n = 0,1,2...
- No domínio da frequência: \longrightarrow $H(F) = F_s \sum_{a}^{\infty} H_a(F kF_s)$

F_s = 1/T é a frequência de amostragem

Fs deve ser grande para evitar aliasing. Por causa do aliasing, este projeto é inadequado para os

filtros nassa-altas

Expandindo o filtro analógico em frações parciais tem-se que:

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k} \iff h_a(t) = \sum_{k=1}^{N} c_k e^{p_k t}, t \ge 0$$

Em que: pk são os polos de Ha(s)

- * Amostrando h_a(t) tem-se: $h(n) = h_a(nT) = \sum_{k=0}^{N} c_k e^{p_k T n}$
- * Calculando a transformada z de h(n) tem-se: $H(z) = \sum_{k=0}^{\infty} \frac{c_k}{1-e^{p_k T} z^{-1}}$
- Para o projeto: os polos de H(z) serão dados por:

$$d_k = e^{p_k T}$$
 : $k = 1, 2, ..., N$

- Observações:
 - O mapeamento guia a um filtro estável pois:

$$\mathbf{p_k} = \mathbf{\sigma_k} + \mathbf{j} \mathbf{\Omega_k} \, \mathbf{e} \, \mathbf{\sigma_k} < \mathbf{0} \implies \left| d_k \right| = e^{\sigma_k T} < 1 \implies \text{filtro estável}$$

Não é necessário determinar ha(t)

Roteiro de projeto

- Determina-se o protótipo analógico H_a(s) de ordem N.
- Calcula-se os polos p_k e os coeficientes c_k da expansão em frações narciais do filtro.
- 3. Calcula-se os polos d_k do filtro digital, tal que:

$$d_k = e^{p_k T}$$
 : $k = 1, 2, ..., N$

Determina-se o filtro digital tal que:

$$H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}$$

Exemplo: Projeto de um filtro passa-banda pelo método de invariância ao

$$H_a(s) = \frac{s+0.1}{(s+0.1)^2+9} \implies H_a(s) = \frac{1/2}{s+0.1-j3} + \frac{1/2}{s+0.1+j3}$$

❖ Os polos do filtro digital serão dados por: e^{-0.1T}e^{±j3T}

$$H(z) = \frac{1 - \left(e^{-0.1T}\cos 3T\right)z^{-1}}{1 - \left(2e^{-0.1T}\cos 3T\right)z^{-1} + e^{-0.2T}z^{-2}}$$

Projeto de filtros IIR por transformação bilinear

- Vantagem: elimina o problema de aliasing.
- Utilização: todos os três tipos de filtros.
- Método: é baseado na Regra de Integração do Trapézio.
- Problema: apresenta distorção no eixo das frequências.
- Desenvolvimento
 - > Seja um sistema de primeira ordem com função de transferência

$$H_a(s) = \frac{Y(s)}{X(s)} = \frac{b}{s+a} \qquad \frac{d}{dt} y(t) + ay(t) = bx(t)$$

- A integral da derivada de y(t) é dada por: $y(t) = \int_{t}^{t} y'(t)dt + y(t_0)$
- Admitindo t = nT e t₀ = (n-1)T. Então, pela regra do trapézio tem-se:

$$y(n) = \frac{T}{2} [y'(n) + y'(n-1)] + y(n-1)$$

Substituindo a equação das derivadas para t = nT na equação anterior

$$\left(1 + \frac{aT}{2}\right)y(n) - \left(1 - \frac{aT}{2}\right)y(n-1) = \frac{bT}{2}[x(n) + x(n-1)]$$

- $\text{ * Calculando a transformada z: } H(z) = \frac{Y(z)}{X(z)} = \frac{b}{\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right) + a}$
- Equivalência dos filtros:

ralência dos filtros:
$$H(z) = \frac{b}{z+a}$$

$$H(z) = \frac{b}{T\left(\frac{1-z^{-1}}{1+z^{-1}}\right)+a}$$

• O mapeamento de s no plano z será feito por: $s = \frac{2}{T} \left(\frac{1 - z^2}{1 + z^2} \right)$

Sejam: z = rejw e s = σ + jΩ. Substituindo na equação anterior tem-se:

$$s = \frac{2}{T} \left(\underbrace{\frac{r^2 - 1}{1 + r^2 + 2r\cos w}}_{\sigma} + j \underbrace{\frac{2r \sin w}{1 + r^2 + 2r\cos w}}_{\Omega} \right) \quad \text{se } r < 1 \Rightarrow \sigma < 0$$
Polos dentro do círculo unitário

Seja r = 1 então: $\Omega = \frac{2}{T} t g\left(\frac{w}{2}\right)$

Mapeamento dentro do círculo unitário Distorção na frequência: "warping'

Exemplo: Projeto de um filtro passa-banda utilizando o método da transformação bilinear.

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 16} \Rightarrow para \ T = 0.5 \Rightarrow 4\frac{1 - z^{-1}}{1 + z^{-1}}$$

• Portanto o filtro digital será: $H(z) = \frac{0.128 + 0.006 z^{-1} - 0.122 z^{-2}}{1 + 0.0006 z^{-1} + 0.975 z^{-2}}$

Famílias de filtros analógicos

- Técnica de proieto de filtros IIR consiste:
 - > Obtenção de um filtro analógico que obedece a determinadas condições de Projeto.
 - > Conversão de H(s) em H(z).
- · Família de filtros analógicos típicos:
 - > Filtro de Butterworth.
 - > Filtro de Chebyshev: Tipo I e Tipo II,
 - > Filtro Elíptico (ou de Cauer),
 - > Filtro de Bessel (Fase Linear).
 - · Não utilizado => Para fase linear utiliza-se filtros FIR.
- Revisão no projeto clássico de filtros

Filtro de Butterworth

Apresenta uma resposta de amplitude maximamente plana na faixa de passagem. Isto é.

Os pólos de H(jΩ) são dados por:

* Estes polos estão localizados no semi-plano esquerdo do plano s e em pontos regularmente espaçados de um círculo de raio Ω _c.

- Na banda de transição: a taxa de atenuação é igual a 20N dB/década.
- Determinando N e Ω c o filtro está definido.
- A ordem do filtro pode ser determinada por:

$$1 + \left(\frac{\Omega_s}{\Omega_c}\right)^{2N} = \delta^2$$

- δ: atenuação mínima na banda de atenuação. Ω_s : frequência de início da banda de

Exemplo: Sendo dados: $\Omega_c = 1000\pi$, $\Omega_s = 2000\pi$ e $\delta_{dB} = 40$ dB. Determine a ordem do filtro de Butterworth e os seus polos.

sabe-se que:
$$1+\left(\frac{\Omega_s}{\Omega_c}\right)^{2N}=\delta^2$$
 e que: $\delta=10^{\frac{40}{20}}=100$

$$1 + \left(\frac{2000\pi}{1000\pi}\right)^{2N} = 100^2 \Rightarrow N = \frac{\log(10^4 - 1)}{2\log(2)} = 6.64 \Rightarrow N = 7$$

Cálculo dos polos:

$$\begin{cases} p_k = \Omega_c e^{j\frac{\pi}{2}} e^{j(2k+1)\pi/2N} = 1000\pi . e^{j(\frac{\pi}{2} + \frac{2k+1}{14}\pi)} \\ k = 0, 1, \cdots, 6 \end{cases}$$

Filtro de Chebyshev

- Apresenta major taxa de atenuação na banda de transição do que as outras famílias de filtros.
- Tem-se dois tipos: Le II.
 - > TIPO I: Apresenta comportamento oscilatório na banda de passagem (equiripple) e monotônico na banda de atenuação.
 - > TIPO II: Comportamento monotônico na banda de passagem e oscilatório na banda de atenuação.
- Resposta de amplitudes: Tipo I

$$\left|H\left(j\Omega\right)\right|^2 = \frac{1}{1+\epsilon^2 C_N^2 \binom{\Omega'}{\Omega_p}} \qquad \begin{array}{c} \epsilon: \text{ parâmetro relacionado com a} \\ \text{ondulação } \textit{(ripple)}. \\ \text{C}_{\text{N}}(\textbf{x}): \text{ polinômio de Chebyshev.} \end{array}$$

O polinômio de Chebyshev de ordem N
$$\longrightarrow C_N(x) = \begin{cases} cos(N\cos^{-1}(x)), & |x| \leq 1 \\ cosh(N\cos^{-1}(x)), & |x| > 1 \end{cases}$$

Fórmula de recursão para o cálculo de C_N(x)

$$\begin{bmatrix} C_{N+1}(x) = 2xC_N(x) - C_{N-1}(x) & \mathbf{C_n(x)} : \text{Varia entre } \pm 1 \text{ para } |\mathbf{x}| \leq 1 \\ em \ que : C_0(x) = 1 \ e \ C_1(x) = x & \text{para } |\mathbf{x}| > 1. \end{bmatrix}$$

Resposta de amplitudes para o filtro de Chebyshev: tipo I

Localização dos polos

> Os polos do filtro de Chebyshev (tipo I) estão localizados em uma elipse cujos eixos maior (r₁) e menor (r₂) são dados por:

$$r_1 = \frac{\Omega_p}{2} \left(\beta + \frac{1}{\beta} \right) \quad e \quad r_2 = \frac{\Omega_p}{2} \left(\beta - \frac{1}{\beta} \right)$$

> O parâmetro β depende de ε, e é dado por:

$$\beta = \left\lceil \sqrt{1 + \varepsilon^{-2}} + \frac{1}{\varepsilon} \right\rceil^{1/N}$$

Cálculo dos polos:

$$p_k = r_2 \cos \phi_k + j r_1 sen \phi_k$$

$$\pi = 2k + 1$$

em que: $\phi_k = \frac{\pi}{2} + \frac{2k+1}{2N}\pi$, k = 0, 1, ..., N-1

Para o projeto dos filtros de Chebyshev são requeridos 4 parâmetros:

- Frequências da banda de passagem e de atenuação: Ω_n e Ω_s;
- Ondulação (Ripple) (δ₁)
- Atenuação mínima na banda de atenuação.
- O parâmetro ε é calculado através da ondulação (ripple):

$$\varepsilon^2 + 1 = \delta_1^2$$

A ordem do filtro é determinada através de:

$$N = \frac{\log \left[\left[\sqrt{\delta_2^2 - 1} + \sqrt{\delta_2^2 + \varepsilon^2 + 1} \right] / 2\varepsilon \right]}{\log \left[\frac{\Omega_* / \Omega_p}{\Omega_p} + \sqrt{\left(\frac{\Omega_* / \Omega_p}{\Omega_p} \right)^2 - 1} \right]}$$

Com os valores de N e ε, os polos são determinados pelas equações

anteriores.

Exemplo: Sendo dados: $\Omega_p = 1000\pi$, $\Omega_s = 2000 \pi$, $\delta_1 = 1$ dB e $\delta_2 = 40$ dB. Determine a ordem do filtro de Chebyshev e os seus polos.

Cálculo de ε:

$$\varepsilon^2 + 1 = \left(10^{\frac{1}{20}}\right)^2 \Longrightarrow \varepsilon = 0.5080$$

Cálculo da ordem do filtro:

$$20\log(\delta_2) = 40 \Rightarrow \delta_2 = 100$$
 $N = \frac{\log 196,54}{\log(2+\sqrt{3})} = 4$

Cálculo dos polos:

$$\begin{split} \beta &= 1.429 \\ r_1 &= 1.06\Omega_p \\ r_2 &= 0.365\,\Omega_p \end{split} \Rightarrow \begin{cases} p_{0,2} &= -0.1397\,\Omega_p \pm j0.979\,\Omega_p \\ p_{1,3} &= -0.337\,\Omega_p \pm j0.4056\,\Omega_p \end{cases} \end{split}$$

Filtro Elíptico

- Apresenta comportamento oscilatório (equiripple) tanto na banda de passagem quanto na banda de atenuação.
- A resposta em amplitudes é caracterizada pela equação:

exemplo de projeto de filtros digitais

- Projeto de um filtro digital passa-baixas com as seguintes especificações:
 - > Família de Butterworth,
 - > Banda de passagem: 0 1 kHz e atenuação máxima 1 dB.
 - Banda de atenuação: A partir de 3 kHz e atenuação mínima de 10 dB.
 - > Frequência de amostragem: 10 kHz
- · Projeto por equação de diferenças.
- Projeto por transformação bilinear com pre-warping.

$$\begin{cases} \Omega_p = 2\pi 1000 & e \quad R_p = 1dB \\ \Omega_s = 2\pi 3000 & e \quad R_s = 10dB \\ f_a = 10kHz \end{cases}$$

os IIR marcelo bi

