PLSC 503 – Spring 2024 Variances, Collinearity, etc.

February 12, 2024

Variances: Why We Care

2016 ANES pilot study "feeling thermometer" toward gays and lesbians (N = 1200):

> summary(ANES\$ftgay)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0 40.5 54.0 57.4 88.5 100.0 1 
> summary(ANES$presjob) Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 2.00 4.00 4.19 7.00 7.00
```

Suppose we wanted to create aggregate measures, by state (N = 51). We would get:

> summary(StateFT)

State	Nresp	meantherm	meanpresapp
Length:50	Min. : 1.0	Min. :17.6	Min. :2.00
Class :character	1st Qu.: 8.0	1st Qu.:51.3	1st Qu.:3.75
Mode :character	Median: 18.0	Median:57.1	Median:4.24
	Mean : 24.0	Mean :58.3	Mean :4.15
	3rd Qu.: 30.8	3rd Qu.:62.5	3rd Qu.:4.61
	Max. :116.0	Max. :89.0	Max. :5.80

Variances: Why We Care

Variances: A Generalization

Start with:

$$Y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

with:

$$Var(u_i) = \sigma^2/w_i$$

with w_i known.

Weighted Least Squares

WLS now minimizes:

$$\mathsf{RSS} = \sum_{i=1}^N w_i (Y_i - \mathbf{X}_i \boldsymbol{\beta}).$$

which gives:

$$\hat{\boldsymbol{\beta}}_{WLS} = [\mathbf{X}'(\sigma^2\Omega)^{-1}\mathbf{X}]^{-1}\mathbf{X}'(\sigma^2\Omega)^{-1}\mathbf{Y}$$

$$= [\mathbf{X}'\mathbf{W}^{-1}\mathbf{X}]^{-1}\mathbf{X}'\mathbf{W}^{-1}\mathbf{Y}$$

where:

$$\mathbf{W} = \begin{bmatrix} \frac{\sigma^2}{w_1} & 0 & \cdots & 0 \\ 0 & \frac{\sigma^2}{w_2} & \cdots & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & \frac{\sigma^2}{w_N} \end{bmatrix}$$

Getting to Know WLS

The variance-covariance matrix is:

$$\begin{aligned} \mathsf{Var}(\hat{\boldsymbol{\beta}}_{\mathit{WLS}}) &= & \sigma^2 (\mathbf{X}' \boldsymbol{\Omega}^{-1} \mathbf{X})^{-1} \\ &\equiv & (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1} \end{aligned}$$

A common case is:

$$Var(u_i) = \sigma^2 \frac{1}{N_i}$$

where N_i is the number of observations upon which (aggregate) observation i is based.

Feeling Thermometer Example

Regressions

	Mean Gay/Lesbian FTs				
	OLS	WLS [1/In(N)]	WLS [1/N]		
Mean Pres. Disapproval	-10.200***	-8.480***	-5.760**		
• •	(1.980)	(2.200)	(2.190)		
Constant	101.000***	93.200***	81.600***		
	(8.340)	(9.380)	(9.240)		
Observations	50	50	50		
R^2	0.358	0.237	0.126		
Adjusted R ²	0.344	0.221	0.108		
Residual Std. Error ($df = 48$)	11.100	17.100	37.900		
F Statistic (df = 1; 48)	26.700***	14.900***	6.930**		
Note:		*p<0.1; **p<0.0	05; ***p<0.01		

Regressions, Plotted

"Robust" Variance Estimators

Recall that, if $\sigma_i^2 \neq \sigma_i^2 \ \forall \ i \neq j$,

$$Var(\beta_{Het.}) = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{Q}(\mathbf{X}'\mathbf{X})^{-1}$$

where $\mathbf{Q} = (\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$ and $\mathbf{W} = \sigma^2 \mathbf{\Omega}$.

We can rewrite \mathbf{Q} as

$$\mathbf{Q} = \sigma^2(\mathbf{X}'\mathbf{\Omega}^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Huber's Insight

Estimate $\hat{\mathbf{Q}}$ as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}
= (\mathbf{X}'\mathbf{X})^{-1} \left[\mathbf{X}' \left(\sum_{i=1}^{N} \widehat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

Practical Things

"Robust" standard error estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when $Var(u) = \sigma^2 I$.
- Come in various "versions"
 - · Called "HC0," "HC1," "HC2," "HC3," etc.
 - · See the Long and Ervin (2000) paper for details...

"Clustering"

Huber / White

????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

"Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2.$$

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

Robust / Clustered SEs: A Simulation

```
> set.seed(7222009)
> X <- rnorm(10)
> Y < -1 + X + rnorm(10)
> df10 <- data.frame(ID=seg(1:10),X=X,Y=Y)</pre>
> fit10 <- lm(Y~X,data=df10)
> summary(fit10)
Residuals:
    Min
              10 Median
                                        Max
-1.12328 -0.65321 -0.05073 0.43937 1.81661
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8438
                        0.3020 2.794 0.0234 *
Х
             0.3834 0.3938 0.974 0.3588
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.9313 on 8 degrees of freedom
Multiple R-squared: 0.1059, Adjusted R-squared: -0.005832
F-statistic: 0.9478 on 1 and 8 DF, p-value: 0.3588
> rob10 <- vcovHC(fit10,type="HC1")
> sqrt(diag(rob10))
(Intercept)
 0 2932735 0 2859552
```

Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times:
> df1K <- df10[rep(seq_len(nrow(df10)), each=100),]
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- lm(Y~X.data=df1K)
> summary(fit1K)
Residuals:
    Min
            1Q Median
                                   Max
-1.1233 -0.6755 -0.0507 0.4840 1.8166
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             0.8438
                        0.0270
                                  31.2 <2e-16 ***
Y
              0.3834
                        0.0353
                                  10.9 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.834 on 998 degrees of freedom
Multiple R-squared: 0.106, Adjusted R-squared: 0.105
F-statistic: 118 on 1 and 998 DF, p-value: <2e-16
> # With clustered SEs (HC1):
> clustSE<-sqrt(diag(vcovCL(fit1K,cluster=df1K$ID)))
> clustOLS<-coeftest(fit1K.vcov.=vcovCL.cluster=~df1K$ID)
> clustOLS
t test of coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         0.277
(Intercept)
              0.844
                                  3.05
                                         0.0023 **
                         0.270
              0.383
                                  1.42
                                         0.1555
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Regressions, Again

	Mean Gay/Lesbian FTs			
	OLS	OLS (robust)	WLS [1/In(N)]	WLS [1/N]
Mean Pres. Disapproval	-10.200*** (1.980)	-10.200*** (2.340)	-8.480*** (2.200)	-5.760** (2.190)
Constant	101.000*** (8.340)	101.000*** (9.720)	93.200*** (9.380)	81.600*** (9.240)
Observations	50		50	50
R^2	0.358		0.237	0.126
Adjusted R ²	0.344		0.221	0.108
Residual Std. Error ($df = 48$)	11.100		17.100	37.900
F Statistic (df = 1; 48)	26.700***		14.900***	6.930**

Note: *p<0.1; **p<0.05; ***p<0.01

Expanded State-Level ANES Example

> psych::describe(StateData)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
State*	1	50	25.50	14.58	25.50	25.50	18.53	1.00	50.00	49.00	0.00	-1.27	2.06
NResp	2	50	24.00	23.74	18.00	19.48	16.31	1.00	116.00	115.00	1.79	3.34	3.36
LGBTTherm	3	50	58.33	13.74	57.11	58.11	8.51	17.62	89.00	71.38	-0.22	1.40	1.94
MeanCons	4	50	3.97	0.77	4.00	3.98	0.55	1.50	5.60	4.10	-0.47	1.28	0.11
MeanAge	5	50	4.74	0.64	4.78	4.74	0.43	3.10	6.50	3.40	0.11	1.10	0.09
MeanEducation	6	50	3.25	0.52	3.22	3.22	0.41	2.33	5.00	2.67	0.84	1.44	0.07
BornAgainProp	7	50	0.28	0.18	0.25	0.28	0.19	0.00	0.72	0.72	0.11	-0.62	0.02

Basic regression:

- > OLS<-lm(LGBTTherm~MeanCons+MeanAge+MeanEducation+BornAgainProp,data=StateData)
 > summary(OLS)
- Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.6 on 45 degrees of freedom Multiple R-squared: 0.459,Adjusted R-squared: 0.411 F-statistic: 9.54 on 4 and 45 DF, p-value: 0.0000113

"Robust" SEs

> hccm(OLS.tvpe="hc3") # "HC3" var-cov matrix

	(Intercept)	${\tt MeanCons}$	MeanAge	${\tt MeanEducation}$	BornAgainProp
(Intercept)	605.4	-43.05	-37.251	-89.915	122.75
MeanCons	-43.0	11.71	-1.234	4.969	-38.74
MeanAge	-37.3	-1.23	9.170	-0.645	-3.44
MeanEducation	-89.9	4.97	-0.645	23.148	-4.41
BornAgainProp	122.7	-38.74	-3.439	-4.406	182.30

- > sqrt(diag(hccm(OLS,type="hc3"))) # "HC3" robust SEs (Intercept) MeanCons MeanAge MeanEducation BornAgainProp 24.60 3.42 3.03 4.81 13.50
- > coeftest(OLS,vcov.=vcovHC)
- t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      24 604
             71.646
                               2.91 0.0056 **
MeanCons
             -7.926
                       3.422 -2.32 0.0251 *
MeanAge
             -2.669
                       3.028 -0.88 0.3828
             9.477 4.811 1.97
MeanEducation
                                    0.0550 .
BornAgainProp
             -0.227 13.502 -0.02 0.9866
---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\hat{eta} s and 95% CIs: Various Types of Robust SEs

Cases, Variables, and Collinearity

Under the Hood of **X**

OLS (and regression methods more generally) requires:

- X is full column rank.
- N > K.
- "Sufficient" variability in X.

"Perfect" Multicollinearity

Formally: There cannot be any set of λs such that:

$$\lambda_0 \mathbf{1} + \lambda_1 \mathbf{X}_1 + \dots + \lambda_K \mathbf{X}_K = \mathbf{0}$$

If there was, it would imply

$$\mathbf{X}_{j} = \frac{-\lambda_{0}}{\lambda_{j}}\mathbf{1} + \frac{-\lambda_{1}}{\lambda_{j}}\mathbf{X}_{1} + ... + \frac{-\lambda_{K}}{\lambda_{j}}\mathbf{X}_{K}$$

which means

$$\begin{aligned} \mathbf{Y} &= & \beta_0 \mathbf{1} + \beta_1 \mathbf{X}_1 + \dots + \beta_j \mathbf{X}_j + \dots + \beta_K \mathbf{X}_K + \mathbf{u} \\ &= & \beta_0 \mathbf{1} + \beta_1 \mathbf{X}_1 + \dots + \beta_j \left(\frac{-\lambda_0}{\lambda_j} \mathbf{1} + \frac{-\lambda_1}{\lambda_j} \mathbf{X}_1 + \dots + \frac{-\lambda_K}{\lambda_j} \mathbf{X}_K \right) + \dots + \beta_K \mathbf{X}_K + \mathbf{u} \\ &= & \left[\beta_0 + \beta_j \left(\frac{-\lambda_0}{\lambda_j} \right) \right] \mathbf{1} + \left[\beta_1 + \beta_j \left(\frac{-\lambda_1}{\lambda_j} \right) \right] \mathbf{X}_1 + \dots + \left[\beta_K + \beta_j \left(\frac{-\lambda_K}{\lambda_j} \right) \right] \mathbf{X}_K + \mathbf{u} \\ &= & \left(\beta_0 + \frac{\gamma_0}{\lambda_j} \right) \mathbf{1} + \left(\beta_1 + \frac{\gamma_1}{\lambda_j} \right) \mathbf{X}_1 + \dots + \left(\beta_K + \frac{\gamma_K}{\lambda_j} \right) \mathbf{X}_K + \mathbf{u} \end{aligned}$$

In Practice

```
> Africa$newgdp<-(Africa$gdppppd-mean(Africa$gdppppd))*1000
> fit<-with(Africa, lm(adrate~gdppppd+newgdp+healthexp+subsaharan+
                       muslperc+literacy))
> summary(fit)
Call:
lm(formula = adrate ~ gdppppd + newgdp + healthexp + subsaharan +
   muslperc + literacv)
Residuals:
                           30
   Min
            10 Median
                                 Max
-15.291 -4.329 -1.412 2.723 20.682
Coefficients: (1 not defined because of singularities)
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -7.78020 10.33872 -0.753 0.4565
gdppppd
                    0.36142
                              0.58214 0.621 0.5385
newgdp
                          NΑ
                                    NΑ
                                            NΑ
                                                    NΑ
                    1.87001
                               0.75667 2.471
healthexp
                                                0.0182 *
subsaharanSub-Saharan 3.64354 4.54163 0.802
                                                0.4275
muslperc
                    -0.07908 0.05967 -1.325
                                                0.1932
literacy
                    0.12445
                               0.09867 1.261
                                                0.2151
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 7.665 on 37 degrees of freedom
Multiple R-squared: 0.4782, Adjusted R-squared: 0.4077
F-statistic: 6.782 on 5 and 37 DF, p-value: 0.0001407
```

So...

• Perfect multicollinearity is terrible, but

• Perfect multicollinearity not a problem at all.

Statistically,

- we lack sufficient degrees of freedom to identify $\hat{\beta}$.
- $\hat{\beta}$ is "overdetermined."

Conceptually:

- Variables > Cases means
- ...no unique conclusion about explanatory / causal factors.

N = K in Practice

NaN

```
> smallAfrica<-subset(Africa,subsaharan=="Not Sub-Saharan")</pre>
> fit2<-with(smallAfrica,lm(adrate~gdppppd+healthexp+muslperc+
                              literacy+war))
> summary(fit2)
Call:
lm(formula = adrate ~ gdppppd + healthexp + muslperc + literacy +
   war)
Residuals:
ALL 6 residuals are 0: no residual degrees of freedom!
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.12430
                            NΑ
                                     NΑ
                                              NΤΔ
gdppppd -0.97906
                                              NΑ
                            NΑ
                                     NΑ
healthexp -0.45166
                            NA
                                     NA
                                              NΑ
muslperc 0.01413
                            NΑ
                                     NΑ
                                              NΑ
literacy 0.09512
                            NA
                                     NΔ
                                              NΔ
war
            -0.96429
                             NΑ
                                     NA
                                              NΑ
Residual standard error: NaN on O degrees of freedom
```

Multiple R-squared: 1, Adjusted R-squared:

F-statistic: NaN on 5 and 0 DF. p-value: NA

27 / 47

High (Non-Perfect) Multicollinearity

Recall that

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$$

We can write the kth diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ as:

$$\frac{1}{(\mathsf{X}_k'\mathsf{X}_k)(1-\hat{R}_k^2)}$$

where \hat{R}_k^2 is the R^2 from the regression of \mathbf{X}_k on all the other variables in \mathbf{X} .

The Obligatory Venn Diagram

High (Non-Perfect) Multicollinearity

Things to understand:

- 1. Multicollinearity is a sample problem.
- 2. Multicollinearity is a matter of degree.

Near-Perfect Collinearity: An Example

Consider:

$$HIV_i = \beta_0 + \beta_1(Civil War_i) + \beta_2(Intensity_i) + u_i$$

```
> with(Africa, table(internalwar,intensity))
```

```
internalwar 0 1 2 3
0 30 0 0 0
1 0 6 2 5
```

Table: Three Models

	Dependent variable:				
		adrate			
	(1)	(2)	(3)		
internalwar	-4.459		-2.849		
	(3.274)		(6.682)		
intensity		-1.955	-0.837		
•		(1.481)	(3.018)		
Constant	10.713***	10.502***	10.713***		
	(1.800)	(1.734)	(1.821)		
Observations	43	43	43		
R^2	0.043	0.041	0.045		
Adjusted R ²	0.020	0.017	-0.003		
Residual Std. Error	9.860 (df = 41)	9.873 (df = 41)	9.973 (df = 40)		
F Statistic	1.855 (df = 1; 41)	1.743 ($df = 1; 41$)	0.945 (df = 2; 40)		

Note: *p

*p<0.1; **p<0.05; ***p<0.01

(Near-Perfect) Multicollinearity: Detection

Symptoms:

- 1. High R^2 , but nonsignificant coefficients.
- 2. High pairwise correlations among independent variables.
- 3. High partial correlations among the Xs.
- 4. VIF and Tolerance.

If $\hat{R}_k^2 = 0$, then

$$\widehat{\mathsf{Var}(\hat{eta}_k)} = \frac{\hat{\sigma}^2}{\mathbf{X}_k' \mathbf{X}_k};$$

So:

$$\mathsf{VIF}_k = \frac{1}{1 - \hat{R}_k^2}$$

Tolerance =
$$\frac{1}{VIF_k}$$

Rule of Thumb: VIF > 10 is a problem...

What To Do?

Don't:

- Blindly drop covariates!!!
- Restrict βs...

Do:

- Add data.
- Transform the covariates
 - · Data reduction
 - · First differences
 - · Orthogonalize
- Shrinkage / Regularization Methods

What To Do? Shrinkage Methods

OLS is:

MSE =
$$E\{[\mathbf{Y} - E(\mathbf{Y})]^2\}$$

= $E[(Y_i - \mathbf{X}_i\hat{\boldsymbol{\beta}})^2]$
= $[Y_i - E(\mathbf{X}_i\hat{\boldsymbol{\beta}})]^2 + \{E[(\mathbf{X}_i\hat{\boldsymbol{\beta}}) - E(\mathbf{X}_i\hat{\boldsymbol{\beta}})]\}^2$
= $(Bias)^2 + Variance$

"Ridge regression":

$$\hat{\boldsymbol{\beta}}^R = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{Y}$$

- Biases $\hat{\beta}$, but
- Increases the (perceived) independent variability in X
- Yields:

$$\widehat{\mathsf{Var}(\hat{eta}_{\ell}^R)} = rac{\hat{\sigma}^2}{(\mathbf{X}_{\ell}'\mathbf{X}_{\ell} + \lambda)(1 - R_{\ell}^2)}$$

What To Do? Lasso...

"LASSO" = "Least Absolute Shrinkage and Selection Operator."

• Formally:

$$\min_{oldsymbol{eta}} \left\{ rac{1}{N} \sum_{i=1}^{N} (Y_i - \mathbf{X}_i oldsymbol{eta})^2
ight\} ext{ subject to } \sum_{j=1}^{p} |eta_j| \leq t.$$

- Combines variable selection and shrinkage...
- Like ridge regression, but with some $\hat{\beta}$ s set to zero
- Reduces overfitting + makes the model more interpretable

OLS, Ridge Regression, Lasso, & Elastic Net

Objective / Loss Functions:

$$\begin{aligned} \mathsf{OLS} &=& \sum_{i=1}^N \left(Y_i - \sum_{k=1}^k \mathbf{X}_{ik} \beta_k \right)^2 \\ \mathsf{LASSO} &=& \sum_{i=1}^N \left(Y_i - \sum_{k=1}^k \mathbf{X}_{ij} \beta_k \right)^2 + \lambda \sum_{k=1}^k |\beta_k| \\ \mathsf{Ridge} \ \mathsf{Regression} &=& \sum_{i=1}^N \left(Y_i - \sum_{k=1}^k \mathbf{X}_{ik} \beta_k \right)^2 + \lambda \sum_{k=1}^k \beta_k^2 \\ \mathsf{Elastic} \ \mathsf{Net} &=& \sum_{i=1}^N \left(Y_i - \sum_{k=1}^k \mathbf{X}_{ik} \beta_k \right)^2 + \lambda \left[(1-\alpha) \sum_{k=1}^k \beta_k^2 + \alpha \sum_{k=1}^k |\beta_k| \right] \end{aligned}$$

Shrinkage Methods Using glmnet

The glmnet package fits (generalized) linear models with regularization.

- Model controlled by α :
 - $\cdot \ \alpha = 0 \rightarrow \text{ridge regression}$
 - $\alpha = 1 \rightarrow \mathsf{lasso}$
 - \cdot 0 < α < 1 \rightarrow elastic net
- Fits multiple models over a range of values of λ , and
- Allows for selection of λ via k-fold cross-validation
- Plots, diagnostics, etc.

Example: Impeachment

3rd Qu.:1.000

:1.000

Max.

```
> summary(impeachment)
    name
                     state
                                       district
                                                   votesum
Length:433
                  Length: 433
                                    Min. : 1 Min.
                                                       :0.00
Class :character
                  Class : character
                                    1st Qu.: 3 1st Qu.:0.00
                Mode :character
                                    Median: 6 Median: 2.00
Mode :character
                                    Mean
                                           :10 Mean
                                                       :1.85
                                    3rd Qu.:13
                                                3rd Qu.:4.00
                                    Max.
                                           :52
                                                Max. :4.00
   pctb196
                 unionpct
                                 clint96
                                              GOPmember
                                                               ADA98
Min. : 0.0
              Min.
                     :0.0257
                              Min. :26.0
                                            Min.
                                                   :0.000
                                                           Min.
                                                                     0.0
1st Qu.: 2.0
               1st Qu.:0.0930
                               1st Qu.:42.0
                                             1st Qu.:0.000
                                                            1st Qu.:
                                                                     5.0
Median: 5.4
              Median :0.1690
                              Median:48.0
                                            Median :1.000
                                                           Median: 30.0
Mean :11.9
                              Mean :50.3
                                                   :0.527
              Mean
                     :0.1636
                                            Mean
                                                           Mean
                                                                  : 46.3
```

3rd Qu.:57.0

:94.0

Max.

3rd Qu.:14.0

Max.

:74.0

3rd Qu.:0.2150

:0.3733

Max.

3rd Qu.: 90.0

:100.0

Max.

Regression!

```
> # Standardize all the variables:
>
> ImpStd<-data.frame(scale(impeachment[,4:9]))
> cor(ImpStd)
         votesum pctbl96 unionpct clint96 GOPmember
                                                     ADA98
votesum 1.0000 -0.28765 -0.26199 -0.6408
                                            0.9198 -0.9280
pctbl96 -0.2876 1.00000 -0.09394 0.6165 -0.3091 0.3029
unionpct -0.2620 -0.09394 1.00000 0.3331
                                           -0.1941 0.2756
clint96 -0.6408 0.61651 0.33305 1.0000
                                           -0.6120 0.6703
GOPmember 0.9198 -0.30911 -0.19406 -0.6120
                                          1.0000 -0.9392
ADA98
        -0.9280 0.30288 0.27563 0.6703
                                          -0.9392 1.0000
> # OLS w/o intercept:
> fit<-with(ImpStd,lm(votesum~pctbl96+unionpct+clint96+GOPmember+ADA98-1))
> summarv(fit)
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
pctb196
           0.0301
                     0.0233
                               1.29
                                       0.199
unionpct -0.0212
                     0.0193 -1.09 0.274
clint96
        -0.0650
                     0.0301 -2.16 0.031 *
GOPmember 0.4367
                     0.0492 8.88 <2e-16 ***
ADA98
          -0.4775
                     0.0530 -9.01
                                    <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.343 on 428 degrees of freedom
Multiple R-squared: 0.883, Adjusted R-squared: 0.882
F-statistic: 648 on 5 and 428 DF, p-value: <2e-16
> vif(fit)
 pctb196 unionpct
                    clint96 GOPmember
                                         ADA98
   1 998
             1 371
                      3 313
                                8 878
                                        10 292
```

Ridge Regression

 $Log(\lambda)$

```
> X<-ImpStd[,2:6] # Predictors
> Y<-ImpStd[,1]
                          # Response
> ridge.fit<-glmnet(X,Y,alpha=0)</pre>
                                                        5
                                                                5
                                                                                                              Percent Black
                                                                                                              Union Percent
                                                                                                              Clinton Percent
                                                                                                              GOP
ADA Score
                                                                      Estimates of B
            Coefficients
                 0.0
                                                                            0.0
                                                                            -0.2
                     0.0
                              0.2
                                               0.6
                                                       0.8
```

L1 Norm

> # Ridge regression:

Lasso Regression

- > # Lasso regression:
- > lasso.fit<-glmnet(X,Y,alpha=1)

Getting λ Via Cross-Validation: Ridge Regression

```
> # Ridge regression:
>
> ridge.cv<-cv.glmnet(as.matrix(X),as.matrix(Y),alpha=0,intercept=FALSE)
> ridge.cv
Call: cv.glmnet(x = as.matrix(X), y = as.matrix(Y), alpha = 0, intercept = FALSE)
Measure: Mean-Squared Error
   Lambda Index Measure
                           SE Nonzero
min 0.0927 100 0.122 0.0161
1se 0.3107 87 0.136 0.0150
> coef(ridge.cv.s="lambda.min")
6 x 1 sparse Matrix of class "dgCMatrix"
                 s1
(Intercept)
pctb196
          0.02561
unionpct -0.02598
clint96 -0.09265
GOPmember 0.42533
ADA98
      -0.42733
> coef(ridge.cv.s="lambda.1se")
6 x 1 sparse Matrix of class "dgCMatrix"
                  s1
(Intercept)
pctb196
            0.008112
unionpct -0.035391
clint96 -0.117373
GOPmember 0.376793
ADA98
         -0.372307
```

Getting λ Via Cross-Validation: Lasso

```
> # Lasso:
> lasso.cv<-cv.glmnet(as.matrix(X),as.matrix(Y),alpha=1,intercept=FALSE)
> lasso.cv
Call: cv.glmnet(x = as.matrix(X), y = as.matrix(Y), alpha = 1, intercept = FALSE)
Measure: Mean-Squared Error
   Lambda Index Measure
                             SE Nonzero
min 0.0026
             64 0.119 0.00906
1se 0.0825 27 0.127 0.00812
> coef(lasso.cv.s="lambda.min")
6 x 1 sparse Matrix of class "dgCMatrix"
                 s1
(Intercept)
pctb196
          0.02255
unionpct -0.02141
clint96 -0.05732
GOPmember 0.43174
ADA98
      -0.48234
> coef(lasso.cv.s="lambda.1se")
6 x 1 sparse Matrix of class "dgCMatrix"
                s1
(Intercept)
pctb196
unionpct
clint96
GOPmember
            0.3686
ADA98
           -0.4992
```

Cross-Validation Plots

Other Things To Know

On regularization / shrinkage methods...

- Other useful R packages:
 - · caret (will do all this, and more)
 - · grplasso, elasticnet, etc.
 - · More generally, see the CRAN Task View on machine learning
- Ridge regression / lasso / etc. are widely used for model selection in machine learning / prediction contexts, because
- ...they are automated ways of reducing model complexity and/or overfitting

On multicollinearity in general:

- Can often be ignored without issue
- Consider combining predictors when you can, or
- …analyzing subsets of the data (→ interactions)