机器学习

第6章 Emsemble Methods

Bagging and Boosting

Ensemble learning

- In statistics and machine learning
 - ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.
- The term ensemble is usually reserved for methods that generate multiple hypotheses using the same base learner.
- The broader term of multiple classifier systems also covers hybridization of hypotheses that are not induced by the same base learner.

Ensemble theory

- An ensemble is itself a supervised learning algorithm
 - The trained ensemble represents a single hypothesis.
 - It is not necessarily contained within the hypothesis space of the models from which it is built.
 - Empirically, ensembles tend to yield better results when there is a significant diversity among the models.
 - Many ensemble methods, therefore, seek to promote diversity among the models they combine.
 - Although perhaps non-intuitive, more random algorithms (like random decision trees) can be used to produce a stronger ensemble than very deliberate algorithms (like entropy-reducing decision trees)

Multiple classifier systems

- Multiple classifier systems:
 - approaches to combine several machine learning techniques into one predictive model in order to
 - → decrease the variance (bagging)
 - → decrease the bias (boosting) or
 - → improving the predictive force (stacking)
- Why multiple classifier systems?
 - The main causes of error in learning are due to noise, bias and variance. meta-algorithms helps to minimize these factors. improve the stability and the accuracy of Machine Learning algorithms.

Bias/Variance Decomposition

Squared loss of model on test case i:

$$\left[\operatorname{Learner}(x_i, \mathcal{D}) - \operatorname{Truth}(x_i)\right]^2$$

Expected prediction error:

$$E\left\{\left[\operatorname{Learner}(x_{i}, \mathcal{D}) - \operatorname{Truth}(x_{i})\right]^{2}\right\}$$

$$= \left(\operatorname{Noise}^{2}\right) + \left(\operatorname{Bias}^{2}\right) + \left(\operatorname{Variance}\right)^{2}$$

- $Noise^2$ = lower bound on performance
- $Bias^2 = (expected error due to model mismatch)^2$
- Variance = variation due to train sample and randomization

Sources of "variance" in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
 - Eg. neural net weight initialization
- randomized subsetting of train set
 - Eg. cross validation, train and early stopping set

Bias/Variance Tradeoff

- $Bias^2 + Variance$ is what counts for prediction
- Tradeoff: $Bias^2 vs$. Variance

Blending and Bagging

Aggregation Models

- aggregation: combine hypotheses for better performance
- 例如: 若我们有H个学习器可用于股票价格涨跌的预测
 - 策略1: 选择性能表现最好的学习器
 - 策略2: 让H个学习器进行无差别投票
 - 策略3: 投票时给不同的学习器不同的权重
 - 策略4: 有条件地combine各学习器的预测结果
 - o 若 H_i 满足某些特定条件,则赋予其较多的投票权
- 这几种实际工作中常用的策略有何关联? 对其进行形式化

Aggregation with Math Notations

- **T**个学习器: $g_1(x), \dots, g_T(x)$
 - 策略1: 选择性能表现最好的学习器

$$G(\mathbf{x}) = g_{t^*}(\mathbf{x}) \text{ with } t^* = \underset{t \in \{1, 2, \dots, T\}}{\operatorname{argmin}} E_{val}(g_t(\mathbf{x}'))$$

- 策略2: 让T个学习器进行无差别投票

$$G(\mathbf{x}) = sign\left(\sum_{t=1}^{T} 1 \cdot g_t(\mathbf{x})\right)$$

- 策略3: 投票时给不同的学习器不同的权重

$$G(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

- 策略4: 有条件地combine各学习器的预测结果

$$G(\mathbf{x}) = sign\left(\sum_{t=1}^{N} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \ge 0$$

Why Might Aggregation Work?

aggregation: can we do better with many (possibly weaker) hypotheses?

- mix different weak hypotheses uniformly
 - G(x) will be stronger
 - feature transform?

- mix different random-PLA hypo. Uniformly
 - G(x) will be moderate
 - Regularization?

Quize

Consider three decision stump hypotheses from \mathbb{R} to $\{-1,+1\}$: $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1$. When mixing the three hypotheses uniformly, what is the resulting G(x)?

- 1 2 $[|x| \le 1] 1$
- 2 $2[|x| \ge 1] 1$
- 3 $2[x \le -1] 1$
- 4 $2[x \ge +1] 1$

Reference Answer: 1

The region that gets two positive votes from g1 and g2 is |x| <= 1, and thus G(x) is positive within the region only. We see that the three decision stumps gt can be aggregated to form a more sophisticated hypothesis G.

(1) Uniform Blending

Uniform Blending for Classification/Regression

• Uniform Blending: known $g_t(x)$, each with 1 ballot

$$G(\mathbf{x}) = sign\left(\sum_{t=1}^{T} 1 \cdot g_t(\mathbf{x})\right)$$

Uniform Blending for Regression

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

- Diverse hypotheses:
 - Empirically, ensembles tend to yield better results when there is a significant diversity among the models
 - Uniform blending can be better than any single hypothesis

Theoretical Analysis of Uniform Blending

• Uniform Blending for Regression $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

$$\operatorname{avg}\{(g_t(\mathbf{x}) - f(\mathbf{x}))^2\} = \operatorname{avg}(g_t^2 - 2g_t f + f^2)$$

$$= \operatorname{avg}(g_t^2) - 2Gf + f^2$$

$$= \operatorname{avg}(g_t^2) - G^2 + (G - f)^2$$

$$= \operatorname{avg}(g_t^2) - 2G^2 + G^2 + (G - f)^2$$

$$= \operatorname{avg}(g_t^2 - 2g_t G + G^2) + (G - f)^2$$

$$= \operatorname{avg}\{(g_t - G)^2\} + (G - f)^2$$

$$avg{E_{out}(g_t)} = avg{E(g_t - G)^2} + E_{out}(G) \ge E_{out}(G)$$

Some Special g_t

- consider a virtual iterative process that for $t=1,2,\ldots,T$
 - 1. request size-N data \mathcal{D}_t from P^N (i.i.d.)
 - 2. obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathbf{E} \{ \mathcal{A}(\mathcal{D}) \}$$

$$\operatorname{avg}\{E_{out}(g_t)\} = \operatorname{avg}\{\mathbf{E}(g_t - \bar{g})^2\} + E_{out}(\bar{g})$$

- expected performance of A =
 - expected deviation to consensus (variance) +
 - performance of consensus (bias)

uniform blending: reduces variance for more stable performance

Quize

Consider applying uniform blending : $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

on linear regression hypotheses : $g_t(\mathbf{x}) = \mathbf{w}_t \cdot \mathbf{x}$. Which of

the following property best describes the resulting G(x)?

- 1. a constant function of x
- 2. a linear function of x
- 3. a quadratic function of x
- 4. none of the other choices

$$G(\mathbf{x}) = \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_t\right) \cdot \mathbf{x}$$

Reference Answer: 2

(2) Linear Blending

Linear Blending

• Linear Blending: known $g_t(x)$, each to be given α_t ballot

$$G(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

- Computing good α_t : $\min_{\alpha_t > 0} E_{in}(\alpha)$
- Linear blending for regression

$$\min_{\alpha_t \ge 0} \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_i) \right)^2$$

Linear Regression + transformation

$$\min_{\mathbf{w}_i} \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{k} \mathbf{w}_j \Phi_j(\mathbf{x}_i) \right)^2$$

Linear blending = LinModel + hypotheses as transform + constraints

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints

$$\min_{\alpha_t \ge 0} \frac{1}{N} \sum_{i=1}^{N} err\left(y_i, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_i)\right)$$

Linear blending for binary classification

if
$$\alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t|(-g_t(\mathbf{x}))$$

- negative α_t for $g_t \equiv \mathsf{positive} \, |\alpha_t|$ for $-g_t$
- in practice, often the constraints are ignorable
 - Linear blending = LinModel + hypotheses as transform

Linear blending in action

blending practically done with

$$E_{val}$$
 (instead of E_{in}) + g_t from minimum E_{train}

- Given: g_1, g_2, \ldots, g_T from \mathcal{D}_{train}
 - o transform (x_i, y_i) in D_{val} to ($\mathbf{z}_i = \Phi(\mathbf{x}_i), y_i$)
 - o where: $\Phi(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_T(\mathbf{x}))$
- Any Blending (Stacking): g could be any model
 - powerful, achieves conditional blending
 - but danger of overfitting, as always :-(

Quize

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$: $g_1(x) = \text{sign}(1 - x), g_2(x) = \text{sign}(1 + x), g_3(x) = -1$. When x = 0, what is the resulting $\Phi(x) = (g_1(x), g_2(x), g_3(x))$ used in the returned hypothesis of linear/any blending?

- (+1,+1,+1)
- (+1,+1,-1)
- (+1,-1,-1)
- (-1,-1,-1)

Reference Answer: 2

(3) Bagging

Brief Summary

- blending: aggregate after getting g_t
- learning g_t for uniform aggregation: diversity important
 - diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
 - diversity by different parameters: gradient descent with

$$\eta = 0.001, 0.01, \dots, 10$$

- diversity by algorithmic randomness:
 - Eg. random PLA with different random seeds
- diversity by data randomness:
 - within-cross-validation hypotheses g_v

Revisit of Bias-Variance

$$avg\{E_{out}(g_t)\} = avg\{\mathbf{E}(g_t - \bar{g})^2\} + E_{out}(\bar{g})$$

- expected performance of A = variance + bias
 - variance: expected deviation to consensus
 - bias: performance of consensus
- consensus more stable than direct A(D)
 - but comes from many more D_t than the D on hand
- want: approximate g by
 - finite (large) T
 - approximate $g_t = \mathcal{A}(\mathcal{D}_t)$ from $\mathcal{D}_t \sim P^N$ using only D
- bootstrapping: re-samples from D to simulate \mathcal{D}_t

Bootstrap Aggregation

- bootstrap sample \mathcal{D}_t
 - re-sample N examples from D uniformly with replacement
 - can also use arbitrary N' instead of original N
- Bootstrap aggregating (Bagging)
 - consider a iterative process that for $t = 1, 2, \dots, T$
 - ① request size-N' data \mathcal{D}_t from bootstrapping
 - ② obtain g_t by $\mathcal{A}(\mathcal{D}_t)$: $G = Uniform(\{g_t\})$
- Bagging: a simple meta algorithm on top of base algorithm A

Bagging Pocket in Action

$$T_{Pocket} = 1000$$

$$T_{Bagging} = 25$$

- very diverse g_t from bagging
- proper non-linear boundary after aggregating binary classifiers
- bagging works reasonably well
 - if base algorithm sensitive to data randomness

Pocket Algorithm

initialize pocket weights ŵ

For $t = 0, 1, \cdots$

- 1 find a (random) mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$
- (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

- 3 if w_{t+1} makes fewer mistakes than \hat{w} , replace \hat{w} by w_{t+1}
- ...until enough iterations return $\hat{\mathbf{w}}$ (called \mathbf{w}_{POCKET}) as g
- · PLA算法最大的缺点是假设数据线性可分
 - 若数据线性可分,则算法可证收敛
 - 若数据不是线性可分,则算法无法收敛

$$\mathbf{w}_g \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} ind \left\{ y_i \neq sign(\mathbf{w}^T \mathbf{x}_i) \right\}$$
 NP-hard

Quize

When using bootstrapping to re-sample N examples $\tilde{\mathcal{D}}_t$ from a data set \mathcal{D} with N examples, what is the probability of getting $\tilde{\mathcal{D}}_t$ exactly the same as \mathcal{D} ?

- 1 0 $/N^N = 0$
- $2 1 / N^N$
- **4** $N^N/N^N = 1$

Reference Answer: 3

- Consider re-sampling in an ordered manner for N steps
 - Then there are (N^N) possible outcomes Dt
 - each with equal probability
 - (N!) of the outcomes are permutations of the original D

Roadmap

Bias/Variance Tradeoff

- $Bias^2 + Variance$ is what counts for prediction
- Tradeoff: $Bias^2 vs$. Variance

Reduce Variance Without Increasing Bias

Averaging reduces variance:

$$Var(\bar{\mathbf{x}}) = \frac{Var(\mathbf{x})}{N}$$

- Average models to reduce model variance
 - One problem: only one train set
 - where do multiple models come from?
- Bagging: Bootstrap Aggregation
 - Leo Breiman (1994) (1928 2005)
 - Bootstrap Sample:
 - draw sample of size |D| with replacement from D

Bagging: Bootstrap Aggregation

Best case:

$$Var(Bagging(L(\mathbf{x}, \mathcal{D}))) = \frac{Var(L(\mathbf{x}, \mathcal{D}))}{N}$$

- In practice:
 - models are correlated, so reduction is smaller than 1/N
 - variance of models trained on fewer training cases usually somewhat larger
 - stable learning methods have low variance to begin with,
 so bagging may not help much

Can Bagging Hurt?

- Each base classifier is trained on less data
 - Only about 63.2% of the data points are in any bootstrap sample
 - Javed A. Aslam, et al. On Estimating the Size and Confidence of a Statistical Audit. Proceedings of the Electronic Voting Technology Workshop. Boston, MA, August 6, 2007.
- However the final model has seen all the data
 - On average a point will be in >50% of the bootstrap samples

Reduce Bias² and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?

Yes: Boosting

Boosting

- Freund & Schapire
- Weak Learner: performance on any train set is slightly better than chance prediction
 - PAC: theory for weak learners in late 80's (Valiant)
- intended to answer a theoretical question
 - not as a practical way to improve learning
- tested in mid 90's using not-so-weak learners
- works anyway!

Boosting

- Weight all training samples equally
- Train model on train set
- Compute error of model on train set
- Increase weights on train cases model gets wrong
- Train new model on re-weighted train set
- Re-compute errors on weighted train set
- Increase weights again on cases model gets wrong
- Repeat until tired (100+ iterations)
- Final model: weighted prediction of each model

Boosting vs. Bagging

- Bagging doesn't work so well with stable models.
 - Boosting might still help.
- Boosting might hurt performance on noisy datasets.
 - Bagging doesn't have this problem
- In practice bagging almost always helps.
- On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance.
 - The weights grow exponentially.
- Bagging is easier to parallelize.

Bagging and Boosting

- Probably Approximately Correct (PAC, Kearns & Valiant)
- Ensemble: learners are trained using same learning techniques.
 - Bagging: bootstrap aggregating (random forest)
 - * bootstrap: pull up by your own bootstraps
 - Boosting (adaboost)
 - * Can a set of weak learners create a single strong learner?
- Hybrid: learners are trained using different learning techniques.
 - Stacking : combining multiple models (meta learners)

