AIを活用して "システムの目"を作ってみよう

北九州高専 情報システムコース 吉元 裕真

北九州高専とは?

JR小倉駅

北九州 モノレール (約20分)

モノレールの終点より もう少し歩いたところにある学校

どんな学校なの?

高校より早く専門の勉強が出来る**高等教育機関**:大学と同じ分類 海外には高専が無いため大学と見なされる

自己紹介

高専の先生は、大学と同じように研究室がある専門分野がある

北九州高専・情報システムコース

吉元 裕真

専門分野 **組み込み×AI×ロボット**

> ロボット用AIを開発して 実際に組み込む!

大学の先生の役職

教授

准教授

講師

助教

論文数(2024年度)

国際学会8報

国内学会6報(内1報・奨励賞)

高専には、このレベルの 先生が普通にいます

吉元研究室ホームページ:https://yoshimoto.apps.kct.ac.jp/

マジで"最先端"のロボットを開発してます

RoboCupJapanOpen @ホームリーグ (家庭用サービスロボットの大会)

TidyUp(お片付け) (2024年度大会)

· · · · · · · · · · · · ·			
順位	所属		
1位	九州工業大学		
2位 (同率)	北九州高専		
	東京大学		
4位	大阪工業大学 立命館大学・連合		
5位	玉川大学		
残り11チームは点数取れず			

GPSR(命令理解) (2024年度大会)

順位	所属		
1位	東京大学		
2位	北九州高専		
3位	九州工業大学		
4位	玉川大学		
5位	大阪工業大学 立命館大学・連合		
残り11チームは点数取れず			

Clean The Table (テーブル掃除) (2025年度大会)

(2020 127 127			
順位	スコア	所属	
1位	315	北九州高専	
2位	165	九州工業大学	
3位	15	玉川大学	
4位	15	東京大学	
5位	15	東京デザイン 工科大学	

ロボットにはどのようなAIが載っている?

お片付けロボットの事例

Tidy Up お部屋のお片付け

今回は「物体検出AI」を開発!

物体認識AIの開発ステップ

①データセット準備

②AIモデル学習

③AIモデル活用

データセットとは

シーン画像データ(問題)

(28,21) ぬいぐるみ (0番) (16,33) (60,51) ぶえ (1番) (55,46) 消防車 (2番) アノテーションデータ

(正解)

- ✓ 認識対象の名前
- ✓ 認識対象の場所

ステップ① データセットの準備

①データセット準備

②AIモデル学習

③AIモデル活用

ステップ① データセットの準備1

データセット準備

AIモデル 学習 AIモデル 活用

1:シーン画像の用意

2:アノテーションの用意

ステップ① データセットの準備 2

データセット準備

AIモデル 学習

AIモデル 活用

データセットの一例

ステップ(1) データセットの準備3

データセット準備

AIモデル 学習

AIモデル 活用

データセットの拡張

アノテーションには手間がかかる

→ 少ないデータからバリエーションを増やす

手順①シーン画像の撮影

① タスクバー(画面の1番下)にある 🚺 「カメラ」をダブルクリックで起動する

② 机の上に置かれている 確かめる

「Webカメラ」からの映像が映っているか

→もし別のカメラの映像が映っている時は, ウィンドウ右上の「カメラの変更」ボタン を押して、切り替える

③ 机の上の 🛑 「キューブ」を 色んな角度や方向から20枚撮影する 写真のバリエーションが豊富になるように!

手順② アノテーションデータの作成1

- ① さっき撮影した20枚の写真が、デスクトップの「カメラロール」フォルダに 保存されているので、「demae_jugyo」フォルダの「picture」フォルダに 全て移動する
- ② 「demae_jugyo」フォルダにある「1_annotation.bat」ファイルを ダブルクリックで起動する → アノテーション用ソフトウェアが起動する
- ③ 次のページの説明を参考に、全ての画像にアノテーションを付ける

手順② アノテーションデータの作成2

手順② アノテーションデータの作成3

①から③を繰り返してアノテーションデータを作成する

15

アノテーションデータを見てみよう

手順③ データセットの拡張

① 「demae_jugyo」フォルダにある「2_augmentation.bat」ファイルを ダブルクリックで起動する → データセットの拡張が始まる

拡張されたファイルが「picture_output」に入ってます. 中身を確認してみよう!

ステップ②・③ AIモデルの学習・活用

①データセット準備

②AIモデル学習

③AIモデル活用

データセット準備

AIモデル 学習

AIモデル 活用

問題と答えを同時に渡す

データセット準備

AIモデル 学習 AIモデル 活用

① 問題を渡す すると何かしら答えが返ってくる

データセット準備

AIモデル 学習 AIモデル 活用

② 正解との誤差を調べる

データセット準備

AIモデル 学習

AIモデル 活用

③ 誤差が小さくなるように,重み w_n を調整する

データセット準備

AIモデル 学習

AIモデル 活用

問題だけを与えてみると、正しい答えが出てくる!

これを推論 Estimationと呼ぶ

手順① 物体認識AIの学習

「demae_jugyo」フォルダにある 「3_training.bat」ファイルを ダブルクリックで起動する → 物体認識AIの学習

5分くらいかかります. 気長に待とう…

手順②物体認識AIのテスト

拡張前のデータセットで学習した物体認識AIが 「4_yolo_inference_1.bat」で起動します → どのくらい見えるか(見えないか)、確かめてみよう

拡張後のデータセットで学習した物体認識AIが「4_yolo_inference_2.bat」で起動します

→ どのくらい性能が変わったか、確かめてみよう

手順③ 物体認識AIの応用

5_car_1/2.pyを起動すると、データセットで学習したAIで、 検出したキューブの方向を向くように、車が動く

→ 車の動きをロボットに応用すると,

初めの動画のようなシステムを開発できる!

認識出来ないシチュエーション

そのシチュエーションをカバーできるような データセットが含まれていないから!

似たような写真を撮って データセットを作り直せば, 認識出来るシチュエーションが増える!

まとめ

最先端のロボットに搭載されているような

物体認識AIを実際に開発した!

高専では、AIをはじめコンピュータの 様々な事柄を基礎から学べる!

高専で勉強してみませんか?