

MAT1503

May/June 2013

LINEAR ALGEBRA

Duration

2 Hours

100 Marks

EXAMINERS FIRST EXTERNAL

DR L GODLOZA PROF I NAIDOO DR ZE MPONO

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages

QUESTION 1

(1.1) Describe the elementary row operations on a matrix

(3)

(4)

(12) Verify that

$$x = 19t - 35$$

$$y = 25 - 13t$$

$$z = t$$

is a solution of

(1.3) (a) Compute

$$\begin{bmatrix}
3 & 2 & 1 \\
5 & 1 & 0
\end{bmatrix} - 5 \begin{bmatrix}
3 & 0 & -2 \\
1 & -1 & 2
\end{bmatrix}$$
(2)

(b) Find A in terms of B if 2A - B = 5(A + 2B)

(3)

(5)

(1.4) (a) Given

(b) Given

$$A = \left[\begin{array}{cc} 3 & -1 \\ 0 & -2 \end{array} \right], \quad I_2 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

compute $A^2 - A - 6I_2$

(4)

$$B = \left[\begin{array}{cc} 6 & 9 \\ -4 & -6 \end{array} \right]$$

Compute B^2 and say what you observe about B^2 in relation to B

(15) Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$

and show that A and B are inverses of each other

[25]

QUESTION 2

 $(2\ 1)$ Find det(A) if

(a)
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 (3)

(b)
$$A = \begin{bmatrix} a+1 & a \\ a & a-1 \end{bmatrix}$$
 (3)

(2 2) Using the cofactor expansion, find det(B), where

$$B = \left[\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 6 & 0 & -1 \\ -6 & 3 & 1 & 0 \end{array} \right]$$

(2 3) Let
$$C = \left[\begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array}\right]$$
 and show that $\det(C^{-1}) = \frac{1}{\det(C)}$

(2.4) Let
$$D = \left[\begin{array}{cc} 3 & 2 \\ 1 & -1 \end{array} \right] \end{tabular}$$

find det(2D) and compare it to det(D)

(2 5) Solve the following system by Cramer's rule
$$\begin{cases} 2x + y = 1 \\ 3x + 7y = -2 \end{cases}$$
 (5)

[25]

QUESTION 3

Consider the vectors

$$\underline{u} = (1, 0, \sqrt{3})$$
 and $= (1, \sqrt{3}, 0)$ in standard position

(3 1) Determine the orthogonal projection proj $\underline{\underline{u}}\underline{v}$ (5)

[TURN OVER]

TOTAL MARKS: [100]

(3 2) Calculate the area of the parallelogram determined by \underline{u} and \underline{v} (5)
(3.3) Find an equation of the plane containing \underline{u} and \underline{v} (5)
(3 4) Determine the parametric equations of the plane in (3 3) [25]

QUESTION 4

(4.1) Use De Moivre's theorem to express $\cos 2\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$ (8)
(4.2) Determine the cube roots of -1 in the form a + ib where $a, b \in \mathbb{R}$ (10)
(4 3) Use De Moivre's theorem to determine $(-1 + i)^{1.34}$ in the form x + iy (7)
[25]

© UNISA 2013