# Modelling in Computational Science, BERN01, 7.5hp

Practical and theoretical knowledge of numerical methods used for solving ODE modells for real Life Science problems.

1st study period, autumn semester

## Ordinary Differential Equations – Initial Value Problems

A system of first order Ordinary Differential Equations (ODES)

$$\begin{cases} \frac{dy_1}{dt} = f_1(t, y_1, y_2, \dots, y_N) \\ \vdots \\ \frac{dy_N}{dt} = f_N(t, y_1, y_2, \dots, y_N) \end{cases}$$
In vector form
$$\frac{dY}{dt} = f(t, Y), \quad Y(t_0) = Y_0$$

### Ordinary Differential Equations – Initial Value Problems

Looking only at first-order ODEs is not a strong limitation, because any Nth order ODE can be written as a system of first order ODE

$$\frac{d^{N}y}{dt^{N}} = f(t, y, \frac{dy}{dt}, \dots, \frac{d^{N-1}y}{dt^{N-1}})$$
We make notation
$$y_{1} = y$$

$$y_{2} = \frac{dy}{dt}$$
thus
$$y_{N} = \frac{d^{N-1}y}{dt^{N-1}}$$

$$y_{N} = \frac{d^{N-1}y}{dt^{N-1}}$$

$$y_{N} = \frac{d^{N-1}y}{dt^{N-1}}$$

Example 
$$y_1 = y$$

$$\frac{d^3y}{dt^3} = t^2$$

$$y_2 = \frac{dy}{dt}$$

$$y_3 = \frac{d^2y}{dt^2}$$
thus
$$\begin{cases} \frac{dy_1}{dt} = y_2 \\ \frac{dy_2}{dt} = y_3 \\ \frac{dy_3}{dt} = t^2 \end{cases}$$

# Ordinary Differential Equations - ODE

#### An example – Kicking a footbal in the air

A ball of mass m is kicked at an angle  $\theta$  with an initial velocity  $v_0 = (v_{x,0}, v_{y,0})$  in a gravitational field with gravitational constant g

Newton equations of motions

$$m\frac{d^{2}x}{dt^{2}} = F_{(drag,x)}$$

$$m\frac{d^{2}y}{dt^{2}} = -mg + F_{(drag,y)}$$



 $F_{drag}$  is present because of the air

# $F_{drag}$ the complicated part of the model

#### Kicking a footbal in the air

$$F_{\text{drag}} = -(B_1 v + B_2 v^2)V$$

where

 $v = v_x^2 + v_y^2$  with  $v_{x,y}$  being the x,y- component of the velocity,  $V = (v_x X + v_y Y)/v$  is a unit vector in the direction of the velocity.

$$B_1=6\pi\eta R$$

Stoke's drag - for a sphere R is ball radius and  $\eta$  the air viscosity

$$B_2 = \frac{1}{2} C \rho A$$

A is the frontal area of the object C a shape-dependent constant  $\rho$  the air density



#### Initial Value Problem – still second order

$$m\frac{d^2x}{dt^2} = F_{(drag,x)}$$

$$m\frac{d^2y}{dt^2} = -mg + F_{(drag,y)}$$

$$F_{drag} = -(B_1v + B_2v^2)V$$

$$\frac{d^2x}{dt} = -\frac{B_1v_x}{m} - \frac{B_2v_x^2V}{m}$$

$$\frac{d^2y}{dt} = -g - \frac{B_1v_y}{m} - \frac{B_2Vv_y^2}{m}$$

### Initial Value Problem – set of first order equation

The equations are second order; write them as a set of first order ODE:

$$\frac{dx}{dt} = v_x$$

$$\frac{dv_x}{dt} = -\frac{B_1 v_x}{m} - \frac{B_2 V v_x^2}{m}$$
Thus in vector form
$$Y = \begin{pmatrix} x \\ v_x \\ y \\ v_y \end{pmatrix}$$

$$\frac{dy}{dt} = v_y$$

$$\frac{dv_y}{dt} = -g - \frac{B_1 v_y}{m} - \frac{B_2 V v_y^2}{m}$$

$$f(Y) = \begin{pmatrix} -\frac{B_1 v_x}{m} - \frac{B_2 V v_x}{m} \\ v_y \\ -g - \frac{B_1 v_y}{m} - \frac{B_2 V v_y}{m} \end{pmatrix}$$

#### **Euler Method**

Simplest way to solve a set of ODE

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0$$

1 - discretize time using a step h

$$t_n = t_0 + nh, n=0, 1, ...$$
  
 $y_n = y(t_n)$ 

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$
$$f(x+h) = f(x) + hf'(x)$$

2 - Approximate the derivative with a simple forward difference

$$y' = D_{+}(h) = \frac{y_{n+1} - y_n}{h} = f(t, y)$$
  
 $y_{n+1} = y_n + hf(t_n, y_n)$ 

3 - Calculate all y starting from  $y_0$ 

$$y_1 = y_0 + hf(t_0, y_0)$$
  
 $y_2 = y_1 + hf(t_1, y_1) \dots$ 

### Euler solution to kicking the ball

$$m\frac{d^2x}{dt^2} = F_{(drag,x)}$$

$$m\frac{d^2y}{dt^2} = -mg + F_{(drag,y)}$$

$$F_{drag} = -(B_1v + B_2v^2)V$$

The initial position (x, y) and initial velocity  $(v_x, v_y)$  are known at time t=0

Solve the set of first order equations:

$$\frac{dx}{dt} = v_x$$

$$\frac{dv_x}{dt} = -\frac{B_1 v_x}{m} - \frac{B_2 V v_x}{m}$$

$$\frac{dy}{dt} = v_y$$

$$\frac{dv_y}{dt} = -g - \frac{B_1 v_y}{m} - \frac{B_2 V v_y}{m}$$





- Data input Error
- Round-off Error
- Truncation Error

#### Round-off Errors

The source - Numerical calculations are done in integer or floating-point arithmetic. Floating-point arithmetic has round-off errors – it looks like:

Example:  $(5.625)_{10} = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (101.101)_2$  no Error

32 bits floating point – 1 bit for sign, 8 bits for p and 23 bits for mantissa

$$p = x^7 \cdot 2^7 + x^6 \cdot 2^6 + ... + x^0 \cdot 2^0 - 2^7$$
  $x_i \in \{0, 1\}$ 

$$M = 1 + y_1 \cdot 2^{-1} + y_2 \cdot 2^{-2} + \dots + y_{23} \cdot 2^{-23} \qquad y_i \in \{0, 1\}$$

Roundoff errors arise because the number of y<sub>i</sub>'s is finite.



#### Round-off Errors

 $x_r$  is the computer representation of x

Relative Error is 
$$\frac{|x_r - x|}{|x|} = \mu = 2^{-t}$$

For 32 bits 
$$\mu = 2^{-23} \approx 10^{-7}$$
  
For 64 bits  $\mu = 2^{-52} \approx 10^{-16}$ 

Round-off errors make problems when subtracting numbers with small relative difference

Try and find tricks around it!

#### Round-off Errors

Trick Example

$$ax^{2}+bx+c=0$$
  $x = -\frac{b-\sqrt{b^{2}-4ac}}{2a}$ 

If b>> $\sqrt{4ac}$  the numerator will be affected by round-off errors

The trick: multiply by  $b + \sqrt{b^2 - 4ac}$  both nominator and denominator

$$x = -\frac{2c}{b + \sqrt{b^2 - 4ac}}$$
 Not affected by round-off errors



#### **Truncation Errors**

Compute numerically the derivative f'(x)

$$f'(x) \approx D_{+}(h) = \frac{f(x+h) - f(x)}{h}$$
 $f'(x) \approx D_{-}(h) = \frac{f(x) - f(x-h)}{h}$ 
 $f'(x) \approx D_{0}(h) = \frac{f(x+h) - f(x-h)}{2h}$ 

Taylor expansion

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(x) + \dots$$
 move f(x) to the left divide by h

$$\frac{f(x+h)-f(x)}{h} = f'(x) + \frac{h}{2}f''(x) + \frac{h^2}{3!}f'''(x) + \dots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(x) + \dots$$

Thus the truncation error for  $D_+(h)$  is :  $\varepsilon_t = \frac{h}{2}f''(x) + \frac{h^2}{3}f'''(x) + \dots$ 

$$\epsilon_t \approx h|f''(x)|$$



Approximated Function Truncation Error
$$e^{x} = 1 + x + \frac{x}{2!} + \dots + \frac{x^{n}}{n!} + \frac{x^{n+1}}{(n+1)!} + \dots$$
Actual Mathematical Formulation

#### Total relative Errors

For D<sub>+</sub>(h) Truncation Error  $\epsilon_t \approx h|f''(x)|$ 

Relative Error is 
$$\frac{|x_r - x|}{|x|} = \mu = 2^{-t}$$

Round-off error for f(x+h) and f(x) is  $\varepsilon_r \gtrsim \mu |f(x)|$  where  $\mu$  is the floating point precision

For D<sub>+</sub>(h) the round-off error 
$$\varepsilon_r \gtrsim \frac{\mu |f(x)|}{h}$$

$$D_{+}(h) = \frac{f(x+h) - f(x)}{h}$$

If h is large  $\epsilon_t$  is large, if h is small  $\epsilon_r$  is large

### Richardson Extrapolation

#### **Reduces Truncation Error**

$$\frac{f(x+h)-f(x)}{h} = f'(x) + \frac{h}{2}f''(x) + \frac{h^2}{3}f'''(x) + \dots$$

**Example:** Assume we want to calculate  $a_0 = \lim_{h \to 0} a(h)$ 

- 1. Functional form  $a(h)=a_0+a_1h^2+a_2h^4+...$
- 2. The values of a(h) are known at  $h_0$   $2h_0$ ,  $2^2h_0$

Improved estimator of  $a^0$  is  $\hat{a}(h)$ 

$$\begin{array}{c} a(h) = a_0 + a_1 h^2 + a_2 h^4 + O(h^6) \\ a(2h) = a_0 + 4a_1 h^2 + 16a_2 h^4 + O(h^6) \end{array} \right\} = > 4a(h) - a(2h) = 3a_0 - 12a_2 h^4 + O(h^6)$$

$$\hat{a}(h) = \frac{4a(h) - a(2h)}{3} = a_0 - 4a_2h^4 + O(h^6)$$

 $\hat{a}(h)$  is an improved estimator of  $a_0$  because the truncation error is  $O(h^4)$  instead of  $O(h^2)$ .

Further improved estimator

$$\hat{a}(h) = \frac{16\hat{a}(h) - \hat{a}(2h)}{15} = a_0 + O(h^6)$$

### Richardson Extrapolation

To calculate  $\hat{a}(h)$  for  $h = h_0$  one needs the values of a(h) at  $h_0$ ,  $2h_0$  and  $4h_0$ 

$$\hat{a}(h) = \frac{16\hat{a}(h) - \hat{a}(2h)}{15}$$
  $\hat{a}(h) = \frac{4a(h) - a(2h)}{3}$ 

Therefore the Richardson Extrapolation scheme is as follows

$$a(4h_0)$$

$$a(2h_0) \longrightarrow \hat{a}(2h_0)$$

$$a(h_0) \longrightarrow \hat{a}(h_0) \longrightarrow \hat{a}(h_0)$$

#### Global vs. Local error

assume that the local error scales as  $h^m$  with step size, i.e., in step i we have a local error  $C_i h^m$ , where  $C_i$  is a constant.

$$E_{L} = C_{i}h^{m} \qquad \frac{f(x+h)-f(x)}{h} = f'(x) + \frac{h}{2}f''(x) + \frac{h^{2}}{3}f'''(x) + \dots$$

The global error is then the sum of the local errors

$$E_G = \sum_{i=1}^N C_i h^m$$

The upper bound for the global error is

$$E_G < \max(C_i) \sum_{i=1}^N h^m = \max(C_i)(Nh) h^{m-1}$$

Since t=Nh is kept constant the global error scales as  $h^{m-1}$  with step size h.

For Euler : the local truncation error i.e. the error at one step is  $\sim\!h^2$  , the global truncation is  $\sim\!h$ 

## The Runge-Kutta Method

**Euler Method** - we calculate  $y_{n+1}$  using values of f at the beginning of the interval -  $t_n$  and  $y_n$ 

**Runge-Kutta Methods** - construct  $y_{n+1}$  using values of f at carefully chosen point between  $t_n$  and  $t_{n+1}$ 

Second Order Runge-Kutta Method (local error  $\sim h^3$ )

Consider

$$k_1 = hf(t_n, y_n)$$

$$k_2 = hf(t_n + mh, y_n + mk_1)$$

$$y_{n+1} = y_n + ak_1 + bk_2$$



Second order RK – combines two values of f  $(k_1 \text{ and } k_2)$  and has 3 parameters: a, b and m

Optimal parameters a+b=1 and bm=1/2

a=b=1/2 and m=1 Heuns' Method

### The Runge-Kutta Method

#### Comparison Euler vs. RK second order - kicking the ball example

$$\frac{dx}{dt} = v_x$$

$$\frac{dv_x}{dt} = -\frac{B_1 v_x}{m} - \frac{B_2 V v_x}{m}$$

$$\frac{dy}{dt} = v_y$$

$$\frac{dv_y}{dt} = -g - \frac{B_1 v_y}{m} - \frac{B_2 V v_y}{m}$$



Parameter values: h = 1/16 s,  $B2/m = 0.01m^{-1}$ , g = 9.82 m/s<sup>2</sup>,  $v_x(t = 0) = 20$  m/s and  $v_y(t = 0) = 10$  m/s. The "exact" result is obtained using the Euler method with a very small step size.

### The Runge-Kutta Method RK 4-5

#### Fourth Order Runge Kutta Method

adding more points gives improved accuracy at the cost of increased complexity.

$$k_{1} = hf(t_{n}, y_{n})$$

$$k_{2} = hf\left(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf(t_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6} + O(h^{5})$$

### **Numerically Calculate Errors**

Consider an O(hm) algorithm

When run with step 2h it produced output  $y_n^{2h}$  and global Error  $E_n^{2h}$ 

$$Y_n^{\text{exact}} = y_n^{2h} + E_n^{2h} + \text{Higher Order Terms}$$

$$Y_n^{\text{exact}} = y_n^{2h} + C(2h)^m + \text{Higher Order Term}$$

We run the same algorithm with smaller step h

$$Y_n^{\text{exact}} = y_n^h + E_n^h + \text{Higher Order Terms}$$

$$Y_n^{\text{exact}} = y_n^h + C(h)^m + \text{Higher Order Term}$$

Substracting the terms above gives us the error:

$$E_n^h = \frac{y_n^h - y_n^{2h}}{2^m - 1}$$

$$0 = y_n^h + C(h)^m - y_n^{2h} - C(2h)^m$$

$$C(2h)^m - C(h)^m = y_n^h - y_n^{2h}$$

$$C(h)^m (2^m - 1) = y_n^h - y_n^{2h}$$

$$C(h)^m = \frac{y_n^h - y_n^{2h}}{2^m - 1}$$

It depends on m!

# Instability



Assume  $x_0=0$ , Newton's equation of motion and Hooke's law

$$M\frac{d^2x}{dt^2} = -kx$$

 $\frac{d^2x}{dt^2} = -(k/M)x$ 

second order – has to be written in first order:  $\frac{dy}{dt} = f(y)$ 

$$y = {x \choose v_x}, f(y) = {-\frac{v_x}{M}x}$$

Thus the system of equation is:

$$\begin{cases} \frac{dx}{dt} = v_x \\ \frac{dv_x}{dt} = -\frac{k}{M}x \end{cases}$$



Analitical solution:

If 
$$v_o=0$$
 and  $A=x(0)$ 

$$x(t) = A \cos\left(\sqrt{\frac{k}{M}t}\right)$$

Harmonic Oscillator

### Instability

Numeric Euler

$$t_n = t_0 + nh, n=0, 1, ...$$
  
 $y_n = y(t_n)$   
 $y_{n+1} = y_n + hf(t_n, y_n)$ 



$$\begin{cases} \frac{dx}{dt} = v_x \\ \frac{dv_x}{dt} = -\frac{k}{M}x \end{cases}$$

Numerical

$${\binom{x_{n+1}}{v_{n+1}}} = {\binom{x_n}{v_n}} + h {\binom{v_n}{-\frac{k}{M}}} x_n$$

Analitical

$$x(t) = A\cos\left(\sqrt{\frac{k}{M}t}\right)$$

Numerical solution is unstable amplitude increases

## Instability

#### Numeric Runge-Kutta

$$t_{n} = t_{0} + nh, n=0, 1, ...$$

$$y_{n} = y(t_{n})$$

$$k_{1} = hf(t_{n}, y_{n})$$

$$k_{2} = hf(t_{n} + mh, y_{n} + mk_{1})$$

$$y_{n+1} = y_{n} + ak_{1} + bk_{2}$$

$$b = 0.02m$$



$$\begin{cases} \frac{dx}{dt} = v_x \\ \frac{dv_x}{dt} = -\frac{k}{M}x \end{cases}$$

Numerical

$$k_{1} = {x_{temp1} \choose v_{temp1}} = h {v_{n} \choose -\frac{k}{M} x_{n}}$$

$$k_{2} = {x_{temp2} \choose v_{temp2}} = h \begin{pmatrix} v_{n} + mv_{temp1} \\ -\frac{k}{M}(x_{n} + mx_{temp1}) \end{pmatrix}$$

$$\binom{x_{n+1}}{v_{n+1}} = \binom{x_n}{v_n} + a \binom{x_{temp1}}{v_{temp1}} + b \binom{x_{temp2}}{v_{temp2}}$$

Analitical

$$x(t) = A\cos\left(\sqrt{\frac{k}{M}t}\right)$$

Numerical RK solution is also unstable

# Instability - Explained

Numerical solutions are unstable – explained by the energy difference between steps

$$E = w_p + E_{kin} = \frac{kx^2}{2} + \frac{Mv^2}{2}$$

$${\binom{x_{n+1}}{v_{n+1}}} = {\binom{x_n}{v_n}} + h {\binom{v_n}{-\frac{k}{M}x_n}}$$
Euler

$$E_{n+1} = \frac{kx_{n+1}^2}{2} + \frac{Mv_{n+1}^2}{2} = \frac{k^2(x_n + hv_n)}{2} + \frac{M}{2} \left( v_n - h \frac{k}{M} x_n \right)^2$$

$$= \frac{kx_n^2}{2} + \frac{Mv_n^2}{2} + \frac{k}{2} \left( x_n hv_n - v_n hx_n \right) + \left( \frac{k}{2} v_n^2 + \frac{k^2}{2M} x_n^2 \right) h^2 \Rightarrow$$

$$= E_n + 0 + Ch^2$$

$$E_{n+1} = E_n + Ch^2$$

Energy increases for each time step!!

#### The Euler-Cromer Method

Cromer suggested a simple solution to the stability problem. The idea to use Euler's method, but when updating the position at step n + 1 one uses  $v_{n+1}$  instead of  $v_n$ .

#### Euler

$$\binom{x_{n+1}}{v_{n+1}} = \binom{x_n}{v_n} + h \left(-\frac{k}{M}x_n\right)$$

#### **Euler Cromer**

$${\binom{x_{n+1}}{v_{n+1}}} = {\binom{x_n}{v_n}} + h {\binom{v_{n+1}}{-\frac{k}{M}x_n}}$$



No Instability

# **Projects**

#### **Disease spreading**

#### **Cell Reprogramming**











