9. Bistabil (1)

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila

- sekvencijski sklopovi (engl. sequential circuits):
 - digitalni sklopovi koji imaju sposobnost pamćenja;
 - izlaz je funkcija:
 - trenutnog stanja ulaza
 trenutno narinute pobude
 - trenutnog unutarnjeg stanja sklopa
 postoji memorija
- struktura sekvencijskih sklopova:
 - kombinacijski dio (KS)
 - memorija (M)
 - ~ obično memorijski elementi koji pamte *binarne* vrijednosti: moraju imati *dva stabilna* stanja

- memorijski element = bistabil (engl. flip-flop)
 karakteristični digitalni sklop:
 - ostaje u jednom od dva moguća stanja i bez djelovanja vanjske pobude
 - stanja su *stabilna*posebna struktura sklopa:
 - unakrsno povezivanje invertora (sklopki)
 multivibrator
 - logički i električki (naponski!) stabilno

- promjena stanja bistabila
 okidanje impulsom ("okidni" impuls)
 - samo iniciranje promjene stanja
 T koji vodi (zasićenje!) dovesti u aktivno područje
 - dalje "regenerativna" povratna veza

- simbol bistabila:
 - izlazi su komplementarni:
 - ulazi:

S (engl. set): postavljanje Q = 1

R (engl. reset): postavljanje Q = 0

~ "brisanje"!

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
 - bistabil izveden univerzalnim sklopovima
 - analiza promjene stanja
- sinkroni bistabil
- tipovi bistabila

- "logička" izvedba bistabila
 - ~ *izdvojeni* ulazi za okidanje:
 - interpretacija sklopki (invertora) univerzalnim funkcijama
 sklopovi NI i NILI

- bistabil izveden sklopovima NI/NILI
 - osnovni bistabil (engl. latch):
 primjena u svim ostalim složenijim vrstama bistabila te u sekvencijskim sklopovima

bistabil ostvaren logičkim sklopovima NI:

bistabil ostvaren logičkim sklopovima NILI:

okidanje bistabila (radi promjene stanja)
 druge kombinacije 1 i 0 na ulazima

•
$$Q^{n+1} = f(X,Y;Q^n)$$
: tablica (promjene) stanja

identifikacija ulaza:

$$X = \overline{S}$$

$$Y = \overline{R}$$

_	\overline{S}	Q	
_	\overline{R}	\overline{Q}	

X	Υ	Q ⁿ	$Q^n Q^{n+1}$	
1	1	0	0	O^n
1	1	1	1	Q.
0	1	0	1	_
0	1	1	1	1
1	0	0	0	
1	0	1	0	0
0	0	0	1	
0	0	1	1	X

 terminologija
 osnovni bistabil = "zasun" (engl. latch): podatak ostaje pohranjen u sklopu

- komentar~ pobuda XY = 00 je zabranjena!!!
 - Q= Q = 1 za X=Y=0
 ~ proturječi definiciji izlaza bistabila

nesimetrija sklopa/pobude
 nije jasno u kojem će stanju ostati bistabil
 po "otpuštanju" ulaza

X	Υ	Q ⁿ	Q	n+1
1	1	0	0	○ n
1	1	1	1	Q
0	1	0	1	4
0	1	1	1	1
1	0	0	0	~
1	0	1	0	0
0	0	0	1	
0	0	1	1	X

VHDL model SR bistabila izvedenog sklopovima NI

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
ENTITY SRbistabil IS PORT (
  S, R: IN std logic;
  Q, Qn: OUT std logic);
END SRbistabil:
ARCHITECTURE Structural OF SRbistabil IS
  SIGNAL Qint, Qnint: std logic;
BEGIN
  -- Izračun internih izlaza
  Oint <= NOT S NAND Onint AFTER 5 ns;
  Onint <= NOT R NAND Oint AFTER 5 ns;
  -- Preslikavanje na izlaze bistabila
  0 <= Oint;</pre>
  Qn <= Qnint;
END Structural:
```

- osnovni bistabil ostvaren NILI sklopovima:
 - skraćena tablica stanja:

S	Q ⁿ⁺¹
0	Q ⁿ
1	1
0	0
1	Х
	0 1 0 1

• simbol:

$$egin{array}{cccc} -S & Q - \ -R & \overline{Q} - \end{array}$$

- analiza promjene stanja osnovnog bistabila:
 - bistabil ostvaren sklopovima NI :

uzeti u obzir stvarne sklopove: ∃ t_d

 analiza promjene stanja osnovnog bistabila:

 sklop je osjetljiv na trajanje pobude (okidnog impulsa): t > 2·t_d

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
 - sinkronizacija impuslima takta
 - asinkroni ulazi
- tipovi bistabila

- svojstva osnovnog bistabila:
 - mijenja stanje u skladu s pobudom
 "transparentan" za ulaze
 - trenutno (≤ 2·td) reagira na pobudu
 reagira na pobudu
 promjena stanja nezavisno od sustavskog nadzora (tj. zajedničkih sinkronizacijskih impulsa)
 - hazard može prouzrokovati neželjenu promjenu stanja ~ nezgodno!

Primjer: neželjena promjena stanja zbog hazarda

protufazna pobuda ulaza S

proteinazina pobada diaza s
početno:
$$A = 1$$
, $B = 0 \rightarrow S = 0$ $R = 0$

 $O^{n+1} = O^n = 0$

promjena A kasni za promjenom B

$$\rightarrow$$
 hazard: nakratko S = A·B = 1 \Rightarrow Qⁿ⁺¹ = 1

- rješenje problema moguće pojave hazarda zbog transparentnosti ulaza osnovnog bistabila:
 - dozvoliti upis u bistabil samo u određenim trenucima vremena
 izbjegavanje efekata prijelazne pojave
 - upravljanje radom bistabila
 ~ sinkronizacija

- sinkronizacija okidanja bistabila
 - ~ sinkronizacijski impulsi (impulsi takta) CP (engl. Clock Pulses) na poseban ulaz bistabila: sinkroni bistabil
 - promjena stanja bistabila u sinkronizaciji s CP: jedino za CP = 1
 - usputno invertiranje ulaza: SR→SR

- konceptualizacija sinkronizacije okidanja bistabila
 ~ diskretizacija vremena
 - (bitno!) olakšava razmatranje sekvencijskih sklopova
 ~ sekvencijski problem sveden na kombinacijski
 - obično se razmatra prijelaz n-to → (n+1)-vo stanje
 ~ prije, odnosno poslije, nailaska impulsa CP
- simbol(i) sinkronog bistabila:

dodavanje asinkronih ulaza:

~ na osnovni bistabil, zaobiđena mreža za upravljanje: direktni ulazi (\$\overline{S}_d\$, \$\overline{C}_d\$)

- aktivni s 0
- dominiraju nad sinkronim ulazima (S, R)
- mogući problem
 - ~ za vrijeme CP aktivna pobuda preko sinkronih i asinkronih ulaza: hazard?

Primjer: hazard zbog istovremene pobude na sinkronom i asinkronom ulazu

• $\overline{C}_d = 0$, $\overline{S}_d = 1 \rightarrow Q = 0$, $\overline{Q} = 1$ uz dodatno S = 1, R = 0

- dodati I sklopove na izlaze
- zamijeniti značenje asinkronih ulaza

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
 - SR bistabil
 - JK bistabil
 - T bistabil
 - D bistabil

- *tipovi* bistabila:
 - SR bistabil
 - ~ osnovna funkcionalnost
 - JK bistabil
 - proširena funkcionalnost:"univerzalni" bistabil
 - T bistabil
 - ~ (samo) promjena stanja
 - D bistabil
 - ~ (samo) pamćenje 1 bita informacije

- formalizmi definicije bistabila:
 - tablica (promjene) stanja
 - jednadžba (promjene) stanja, karakteristična jednadžba

$$Q^{n+1} = f(ulazi, Q^n)$$

- uzbudna tablica:ulazi = f(promjena_stanja)
- dijagram stanja
 ~ grafički prikaz tablice stanja
 - čvor ≡ stanje
 - strelica = prijelaz

• SR bistabil (rekapitulacija):

S	R	Q ⁿ⁺¹
0	0	Q ⁿ
0	1	0
1	0	1
1	1	X

- JK bistabil:
 - posebna povratna veza na SR bistabil: propuštanje "vanjskih" ulaza tako da *nema* zabranjene kombinacije ulaza:
 - JK = 11
 bistabil *mijenja stanje* (engl. toggle)
 - JK bistabil
 ~ neka vrsta "univerzalnog" bistabila

• JK bistabil:

 \sim JK = 11 \rightarrow bistabil *mijenja stanje*

J	K	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	\overline{Q}^{n}

$$Q^{n+1} = J \cdot \overline{Q}^n + \overline{K} \cdot Q^n$$

Q^n	Q n+1	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

- T bistabil
 - ~ samo mijenja stanje (engl. toggle)
 - tipična primjena ~ brojanje impulsa (→ *brojila*)
 - jednostavno se dobiva iz JK bistabila

Q ⁿ	Q n+1	Τ
0	0	0
0	1	1
1	0	1
1	1	0

0

- VHDL model T bistabila
 - izlazni signali se koriste kao ulazni
 povratna veza: dvosmjerni signali (tip INOUT)

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY Tbistabil IS PORT (
   T, CP: IN std_logic;
   Q, Qn: INOUT std_logic);
END Tbistabil;
```



```
ARCHITECTURE Structural OF Tbistabil IS

COMPONENT NI3

PORT (i1, i2, i3: IN std_logic; y: OUT std_logic);
END COMPONENT;
SIGNAL JCPQn, KCPQ: std_logic; --izlazi prvog reda NI sklopova
SIGNAL J, K: std_logic;

BEGIN

J <= T; K <= T;
c1: NI3 PORT MAP(J, CP, Qn, JCPQn);
c2: NI3 PORT MAP(K, CP, Q, KCPQ);
c3: NI3 PORT MAP(JCPQn, JCPQn, Qn, Q);
c4: NI3 PORT MAP(KCPQ, KCPQ, Q, Qn);

END Structural;
```

- izlazni signali su tipa ○UT
 - ~ povratna veza ostvarena unutarnjim signalima

```
Qint, Qnint: std_logic
```

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY Tbistabil IS PORT (
   T, CP: IN std_logic;
   Q, Qn: OUT std_logic);
END Tbistabil;
```


BEGIN

END Structural:

```
CP -
ARCHITECTURE Structural OF Thistabil IS
  COMPONENT NT3
       PORT (i1, i2, i3: IN std logic; y: OUT std logic);
  END COMPONENT:
  SIGNAL JCPQn, KCPQ: std logic; -- izlazi prvog reda NI sklopova
  SIGNAL J, K: std logic;
  SIGNAL Qint, Qnint: std logic; -- interni izlazi bistabila
  -- modeliranje samog bistabila
       J \ll T; K \ll T;
  c1: NI3 PORT MAP(J, CP, Onint, JCPOn);
  c2: NI3 PORT MAP(K, CP, Oint, KCPO);
  c3: NI3 PORT MAP (JCPOn, JCPOn, Onint, Oint);
  c4: NI3 PORT MAP (KCPQ, KCPQ, Qint, Qnint);
  -- preslikavanje internih izlaza na izlaze sklopa
  0 <= Oint;</pre>
  On <= Onint;
```

modeliranje jednadžbama promjene stanja
 (izlazi tipa INOUT ostvaruju povratnu vezu ~ stanje!)

```
library IEEE;
                                                      T - Q
Q_{n+1} = \overline{T} \cdot Q_n + T \cdot \overline{Q}_n
\overline{Q}_{n+1} = \overline{T} \cdot \overline{Q}_n + T \cdot Q_n
Uvjet: promjena na CP=1
\overline{Q}
use IEEE.STD LOGIC 1164.ALL;
ENTITY Thistabil IS PORT (
  T, CP: IN std logic;
  Q, Qn: INOUT std logic);
END Thistabil:
ARCHITECTURE Behavioral OF Thistabil IS
BEGIN
  PROCESS (T, CP)
  BEGIN
     IF CP='1' THEN
        Q \leftarrow (NOT T AND Q) OR (T AND NOT Q) AFTER 15 ns;
        Qn \leftarrow (NOT T AND NOT Q) OR (T AND Q) AFTER 15 ns;
     END IF;
  END PROCESS;
END Behavioral;
```

modeliranje stanja korištenjem varijable

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
ENTITY Thistabil IS PORT (
  T, CP: IN std logic;
  Q, Qn: OUT std logic);
END Thistabil:
ARCHITECTURE Behavioral OF Thistabil IS
BEGIN
  PROCESS (T,CP)
 VARIABLE stanje: std logic
  BEGIN
    IF CP='1' THEN
      stanje := (NOT T AND stanje) OR (T AND NOT stanje);
    END IF;
    0 <= stanje AFTER 15 ns;</pre>
    On <= NOT stanje AFTER 15 ns;
  END PROCESS;
END Behavioral:
```

- D bistabil
 - ~ kasni (engl. delay) za 1 x CP
 - "pamti" podatak narinut na ulazu
 - primjena: *pohranjivanje* podataka (→ *registri*)

	J	K	Q^{n+1}	D	Q^{n+1}
•	0	0	Q^n	0	0
(>	0	_1_	_0_)	1
1	1	0	_ 1 _		. 1
	1	1	$\overline{Q^{n}}$	Q^{n}	$^{+1}=D^n$

Q ⁿ	Q n+1	D
0	0	0
0	1	1
1	0	0
1	1	1

Primjer: JK bistabil ostvaren D bistabilom

- "logika" u dodatni kombinacijski sklop na ulazu D
- povratna veza s Q i Q
- D bistabil: $Q^{n+1} = D^n \implies D^n = Q^{n+1}$

$$Q^{n+1} = J \cdot \overline{Q}^{n} + \overline{K} \cdot Q^{n} = D^{n}$$

Primjer: izvedba bistabila multipleksorom

- "zabravljivanje" podatka u multipleksoru
 ~ povratna veza s izlaza *na jedan* od ulaza
- drugi ulaz za vanjski podatak
- adresni ulaz za impuls takta
 upravljanje razinom CP
 CP = 1 upis podatka

$$A_0 = CP$$
 $Z = Q^{n+1}$
 0 $I_0 = Q^n$
 1 $I_1 = D$

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 5: Bistabil.
- pojam bistabila: str. 165-169
- osnovni bistabil: str. 169-176
- sinkroni bistabil: str. 176-179
- tipovi bistabila: str. 179-189

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 7: Standardni kombinacijski moduli.
- tipovi bistabila: 5.1-5.4, 5.7

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 6: Standardni programirljivi moduli.
- tipovi bistabila:
 - riješeni zadaci: 7.1-7.6
 - zadaci za vježbu: 1-3