

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Sven Enerbäck et al.
Serial No. : 09/963,285
Filed : September 26, 2001
Title : PROMOTER SEQUENCES

Art Unit : 1645
Examiner :

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT UNDER 35 USC §119

In accordance with the provisions of 35 U.S.C. §119, applicants hereby claim priority of Swedish Patent application No. 0004102-0, filed November 9, 2000. A certified copy of the application is submitted herewith. As the priority application is in the English language, all of the requirements of §119 have been met.

Please apply any charges or credits to Deposit Account No. 06-1050, referencing Attorney Docket No. 13425-042001.

Respectfully submitted,

Date: January 22, 2002

Jack Brennan

Jack Brennan
Reg. No. 47,443

Fish & Richardson P.C.
225 Franklin Street
Boston, Massachusetts 02110-2804
Telephone: (617) 542-5070
Facsimile: (617) 542-8906

20376379.doc

CERTIFICATE OF MAILING BY FIRST CLASS MAIL

I hereby certify under 37 CFR §1.8(a) that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

January 22, 2002

Date of Deposit

Darlene J. Morin

Signature

Darlene J. Morin

Typed or Printed Name of Person Signing Certificate

PRV

PATENT- OCH REGISTRERINGSVERKET
Patentavdelningen

5

Intyg
Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) Sökande Biovitrum AB, Stockholm SE
Applicant (s)

(21) Patentansökningsnummer 0004102-0
Patent application number

(86) Ingivningsdatum 2000-11-09
Date of filing

Stockholm, 2001-11-16

För Patent- och registreringsverket
For the Patent- and Registration Office

Christina Vängborg

Avgift
Fee 170:-

PATENT- OCH
REGISTRERINGSVERKET
SWEDEN

Postadress/Adress Telefon/Phone Telex Telefax
Box 5055 +46 8 782 25 00 17978 +46 8 666 02 86
S-102 42 STOCKHOLM Vx 08-782 25 00 PATOREG S 08-666 02 86

PROMOTER SEQUENCES II

TECHNICAL FIELD

The present invention relates an isolated promoter region of the mammalian transcription factor *FOXC2*. The invention also relates to screening methods for agents modulating the expression of *FOXC2* and thereby being potentially useful for the treatment of medical conditions related to obesity. The invention further relates to a previously unknown variant of the human *FOXC2* gene, derived via the use of an alternative promoter, which produces an additional exon that generates a distinct open reading frame via splicing. The alternative gene encodes a variant of the *FOXC2* transcription factor, which is lacking a part of the DNA-binding domain and consequently has a potential regulatory function.

BACKGROUND ART

More than half of the men and women in the United States, 30 years of age and older, are now considered overweight, and nearly one-quarter are clinically obese. This high prevalence has led to increases in the medical conditions that often accompany obesity, especially non-insulin dependent diabetes mellitus (NIDDM), hypertension, cardiovascular disorders, and certain cancers. Obesity results from a chronic imbalance between energy intake (feeding) and energy expenditure. To better understand the mechanisms that lead to obesity and to develop strategies in certain patient populations to control obesity, there is a need to develop a better underlying knowledge of the molecular events that regulate the differentiation of preadipocytes and stem cells to adipocytes, the major component of adipose tissue.

The helix-loop-helix (HLH) family of transcriptional regulatory proteins are key players in a wide array of developmental processes (for a review, see Massari & Murre (2000) Mol. Cell. Biol. 20: 429-440). Over 240 HLH proteins have been identified to date in organisms ranging from the yeast *Saccharomyces cerevisiae* to humans. Studies in *Xenopus laevis*, *Drosophila melanogaster*, and mice have convincingly demonstrated that HLH proteins are intimately involved in developmental events such as cellular differentiation, lineage

- 2 -

commitment, and sex determination. In multicellular organisms, HLH factors are required for a multitude of important developmental processes, including neurogenesis, myogenesis, hematopoiesis, and pancreatic development.

- 5 The winged helix / forkhead class of transcription factors is characterized by a 100-amino acid, monomeric DNA-binding domain. X-ray crystallography of the forkhead domain from HNF-3 γ has revealed a three-dimensional structure, the "winged helix", in which two loops (wings) are connected on the C-terminal side of the helix-loop-helix (for reviews, see Brennan, R.G. (1993) Cell 74: 773-776; and Lai, E. et al. (1993) Proc. Natl. Acad. Sci.
- 10 U.S.A. 90: 10421-10423).

- The isolation of the mouse mesenchyme forkhead-1 (MFH-1) and the corresponding human (*FKHL14*) chromosomal genes is disclosed by Miura, N. et al. (1993) FEBS letters 326: 171-176; and (1997) Genomics 41: 489-492. The nucleotide sequences of the mouse
- 15 MFH-1 gene and the human *FKHL14* gene have been deposited with the EMBL/GenBank Data Libraries under accession Nos. Y08222 (SEQ ID NO: 5) and Y08223 (SEQ ID NO: 8), respectively. A corresponding gene has been identified in *Gallus gallus* (GenBank accession numbers U37273 and U95823).

- 20 The International Patent Application WO 98/54216 discloses a gene encoding a Forkhead-Related Activator (FREAC)-11 (also known as S12), which is identical with the polypeptide encoded by the human *FKHL14* gene disclosed by Miura, *supra*. This transcription factor is expressed in adipose tissue and involved in lipid metabolism and adipocyte differentiation (cf. Swedish patent application No. 0000531-4, filed February 18,
- 25 2000).

- The nomenclature for the winged helix / forkhead transcription factors has been standardized and Fox (Forkhead Box) has been adopted as the unified symbol (Kaestner et al. (2000) Genes & Development 14: 142-146; see also <http://www.biology.pomona.edu/>
- 30 *fox*). It has been agreed that the genes previously designated MFH-1 and *FKHL14* (as well as FREAC-11 and S12) should be designated *FOXC2*.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the general structure of the human *FOXC2* gene.

- 5 Figure 2 illustrates the results from phylogenetic footprinting experiments. Shown is the fraction conserved (1.0 = 100%) between mouse FoxC2 and human *FOXC2* sequences in the alignment generated with Clustal. Solid (bold) line indicates the fraction of the human sequence which is identical to the mouse within a 200 bp “window” over the human sequence in the alignment. The weak (dotted) line is set to -0.05 when the sliding window
10 contains human exon sequence and to -0.1 when the window is entirely composed of exon sequence. Regions containing local maxima or exceeding a conservation fraction of 0.7 are likely to be functional and are classified as “predicted regulatory regions”.

- 15 Figure 3 illustrates the predicted “enhancer” region in the human *FOXC2* gene. Underlined sequences indicate likely transcription factor binding sites. Boxed sequence indicates exon sequence.

Splice = sequence predicted as splice site in the alternatively spliced gene;

- 20 *E-box-like* = sequence resembling the “E-box” motif CANNTG known as a target for DNA binding proteins containing a helix-loop-helix domain (often associated with the activation of cell-type specific gene transcription during tissue differentiation; see Massari & Murre (2000) Mol. Cell. Biol. 20: 429-440)

Forkhead-like = sequence resembling binding site for the winged helix / forkhead class of transcription factors;

- 25 *Ets-like* = sequence resembling consensus binding site for ETS-domain transcription factor family (see Sharrocks et al. (1997) Int. J. Biochem. Cell Biol. 29, 1371-1387).

Figure 4 illustrates the predicted “promoter” region in the human *FOXC2* gene. Underlined sequence indicates exon sequences. Boxed sequences indicate conserved block (potential transcription factor binding sites).

DESCRIPTION OF THE INVENTION

According to the present invention, the partially known sequence (SEQ ID NO: 8) of human *FOXC2* gene has been extended. In the previously unknown region of the gene, differentially conserved regions, consistent with regulatory function, have been identified. Further, an alternative transcript has been identified, which includes the use of at least two exons. The putative regulatory enhancer is immediately adjacent to the newly discovered alternative exon, suggesting that it may play a role in the alternative selection of transcript classes.

10

Modulation of the *FOXC2* regulation is expected to have therapeutic value in type II diabetes; obesity, hypercholesterolemia, and other cardiovascular diseases or dyslipidemias.

15

Consequently, in a first aspect this invention provides a human *FOXC2* promoter region comprising a sequence selected from:

(a) the nucleotide sequence set forth as positions 1250 to 2235, such as positions 1250 to 1749 or positions 1692 to 1703, in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* promoter activity;

20 (b) the complementary strand of (a); and

(c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).

Another aspect of the invention is a recombinant construct comprising the human *FOXC2* promoter region as defined above. In the said recombinant construct, the human *FOXC2* promoter region can be operably linked to a gene encoding a detectable product, such as the human *FOXC2* gene, or a reporter gene. The term "operably linked" as used herein means functionally fusing a promoter with a structural gene in the proper frame to express the structural gene under control of the promoter. As used herein, the term "reporter gene" means a gene encoding a gene product that can be identified using simple, inexpensive methods or reagents and that can be operably linked to the human *FOXC2* promoter region or an active fragment thereof. Reporter genes such as, for example, a luciferase, β -galactosidase, alkaline phosphatase, or green fluorescent protein reporter gene, can be used

to determine transcriptional activity in screening assays according to the invention (see, for example, Goeddel (ed.), *Methods Enzymol.*, Vol. 185, San Diego: Academic Press, Inc. (1990); see also Sambrook, *supra*).

- 5 The invention also provides a vector comprising the recombinant construct as defined above, as well as a host cell stably transformed with such a vector, or generally with the recombinant construct according to the invention. The term "vector" refers to any carrier of exogenous DNA that is useful for transferring the DNA to a host cell for replication and/or appropriate expression of the exogenous DNA by the host cell.

10

- In another aspect, the invention provides a method for identification of an agent regulating *FOXC2* promoter activity, said method comprising the steps: (i) contacting a candidate agent with a human *FOXC2* promoter region as defined above; and (ii) determining whether said candidate agent modulates expression of the *FOXC2* gene, such modulation being indicative for an agent capable of regulating *FOXC2* promoter activity. As used herein, the term "agent" means a biological or chemical compound such as a simple or complex organic molecule, a peptide, a protein or an oligonucleotide.

- A transfection assay can be a particularly useful screening assay for identifying an effective agent modulating and/or regulating *FOXC2* promoter activity. In a transfection assay, a nucleic acid containing a gene, e.g. a reporter gene, operably linked to a human *FOXC2* promoter or an active fragment thereof, is transfected into the desired cell type. A test level of reporter gene expression is assayed in the presence of a candidate agent and compared to a control level of expression. An effective agent is identified as an agent that results in a test level of expression that is different than a control level of reporter gene expression, which is the level of expression determined in the absence of the agent. Methods for transfecting cells and a variety of convenient reporter genes are well known in the art (see, for example, Goeddel (ed.), *Methods Enzymol.*, Vol. 185, San Diego: Academic Press, Inc. (1990); see also Sambrook, *supra*). Consequently, the said method could e.g. comprising assaying reporter gene expression in a host cell, stably transformed with a recombinant construct comprising the human *FOXC2* promoter, in the presence and absence of a candidate agent, wherein an effect on the test level of expression as compared

to control level of expression is indicative of an agent capable of regulating *FOXC2* promoter activity.

Methods for identification of polypeptides regulating *FOXC2* promoter activity could 5 include various techniques known in the art, such as the yeast one-hybrid system (see: Li & Herskowitz (1993) *Science* 262, 1870-1874) to identify proteins binding specific sequences from the *FOXC2* regulatory region, biochemical purification of proteins which bind to the regulatory region, the use of a "southwestern" cloning strategy (see e.g. Hai et al. (1989) *Genes & Development* 3: 2083-2090) in which a pool of bacteria infected with a 10 "phage library" are induced to express the encoded protein and probed with radioactive DNA sequences from the *FOXC2* regulatory regions to identify binding proteins.

In a further aspect, the invention provides a human *FOXC2* enhancer region comprising a sequence selected from:

15 (a) the nucleotide sequence set forth as positions 216 to 475, such as positions 223 to 231, positions 359 to 375, positions 378 to 402, or positions 403 to 423, in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* enhancer activity;
(b) the complementary strand of (a); and
(c) nucleotide sequences capable of hybridizing, under stringent hybridization 20 conditions, to a nucleotide sequence as defined in (a) or (b).

As described above for the human *FOXC2* promoter region, the invention further provides a recombinant construct comprising a human *FOXC2* enhancer region, a vector comprising the said recombinant construct, as well as a host cell stably transformed with said vector or 25 with said recombinant construct.

Further, the invention provides a method for identification of an agent regulating *FOXC2* enhancer activity, said method comprising the steps: (i) contacting a candidate agent with the human *FOXC2* enhancer region as defined above; and (ii) determining whether said 30 candidate agent modulates expression of the *FOXC2* gene, such modulation being indicative for an agent capable of regulating *FOXC2* enhancer activity. It will be understood by the skilled person that known steps are available for performing such a method. For instance, a "panel" of constructs which include a variety of mutations and

deletions can be used in order to associate a response with a specific alteration of a single base or subsegment of the regulatory apparatus. A simple panel might include: enhancer plus promoter, promoter only, enhancer plus a "minimal" promoter from a distinct gene. As mentioned above, a transfection assay, using a host cell stably transformed with a 5 suitable recombinant construct, can be a particularly useful screening assay for identifying an effective agent.

In yet a further aspect, the invention provides a method for identification of an agent capable of regulating a mammalian *FOXC2* promoter activity, said method comprising the 10 steps (i) contacting a candidate agent with a murine *FoxC2* promoter nucleotide sequence shown as positions 216 to 2235, such as positions 216 to 475 or positions 1250 to 2235, in SEQ ID NO: 5; and (ii) determining whether said candidate agent modulates expression of a mammalian *FOXC2* gene, such modulation being indicative for an agent capable of regulating mammalian *FOXC2* promoter activity.

15 In another important aspect, the invention provides an isolated nucleic acid molecule selected from:
(a) nucleic acid molecules comprising a nucleotide sequence as shown in SEQ ID NO: 3;
(b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under 20 stringent hybridization conditions, to a nucleotide sequence complementary the polypeptide coding region of a nucleic acid molecule as defined in (a) and which codes for a variant form of the *FOXC2* transcription factor; and
(c) nucleic acid molecules comprising a nucleic acid sequence which is degenerate as a 25 result of the genetic code to a nucleotide sequence as defined in (a) or (b) and which codes for a variant form of the *FOXC2* transcription factor.

In a preferred form of the invention, the said nucleic acid molecule has a nucleotide sequence identical with SEQ ID NO: 3 of the Sequence Listing. However, the nucleic acid molecule according to the invention is not to be limited strictly to the sequence shown as 30 SEQ ID NO: 3. Rather the invention encompasses nucleic acid molecules carrying modifications like substitutions, small deletions, insertions or inversions, which nevertheless encode proteins having substantially the biochemical activity of the *FOXC2* polypeptide according to the invention. Included in the invention are consequently nucleic

acid molecules, the nucleotide sequence of which is at least 90% homologous, preferably at least 95% homologous, with the nucleotide sequence shown as SEQ ID NO: 3 in the Sequence Listing.

- 5 Included in the invention is also a nucleic acid molecule which nucleotide sequence is degenerate, because of the genetic code, to the nucleotide sequence shown as SEQ ID NO: 3. A sequential grouping of three nucleotides, a "codon", codes for one amino acid. Since there are 64 possible codons, but only 20 natural amino acids, most amino acids are coded for by more than one codon. This natural "degeneracy", or "redundancy", of the genetic
10 code is well known in the art. It will thus be appreciated that the nucleotide sequence shown in the Sequence Listing is only an example within a large but definite group of sequences which will encode the variant FOXC2 polypeptide.

The invention includes an isolated polypeptide encoded by the nucleic acid as defined
15 above. In a preferred form, the said polypeptide has an amino acid sequence according to SEQ ID NO: 4 of the Sequence Listing. However, the polypeptide according to the invention is not to be limited strictly to a polypeptide with an amino acid sequence identical with SEQ ID NO: 4 in the Sequence Listing. Rather the invention encompasses polypeptides carrying modifications like substitutions, small deletions, insertions or
20 inversions, which polypeptides nevertheless have substantially the biological activities of the variant FOXC2 polypeptide.

A further aspect of the invention is a vector harboring the nucleic acid molecule according to the invention. The said vector can e.g. be a replicable expression vector, which carries
25 and is capable of mediating the expression of a DNA molecule according to the invention. In the present context the term "replicable" means that the vector is able to replicate in a given type of host cell into which it has been introduced. Examples of vectors are viruses such as bacteriophages, cosmids, plasmids and other recombination vectors. Nucleic acid molecules are inserted into vector genomes by methods well known in the art.

30 Included in the invention is also a cultured host cell harboring a vector according to the invention. Such a host cell can be a prokaryotic cell, a unicellular eukaryotic cell or a cell derived from a multicellular organism. The host cell can thus e.g. be a bacterial cell such as

an *E. coli* cell; a cell from yeast such as *Saccharomyces cerevisiae* or *Pichia pastoris*, or a mammalian cell. The methods employed to effect introduction of the vector into the host cell are standard methods well known to a person familiar with recombinant DNA methods.

5

In yet another aspect, the invention includes a method for identifying an agent capable of regulating expression of the nucleic acid molecule as defined above, said method comprising the steps (i) contacting a candidate agent with the said nucleic acid molecule; and (ii) determining whether said candidate agent modulates expression of the said nucleic acid molecule.

10

In another aspect the invention provides an antisense oligonucleotide having a sequence capable of specifically hybridizing to RNA transcribed by the alternatively spliced nucleic acid molecule shown as SEQ ID NO: 3, so as to prevent translation of the said RNA.

15

Antisense nucleic acids (preferably 10 to 20 base-pair oligonucleotides) capable of specifically binding to control sequences for the alternatively spliced *FOXC2* gene are introduced into cells, e.g. by a viral vector or colloidal dispersion system such as a liposome. The antisense nucleic acid binds to the target nucleotide sequence in the cell and prevents transcription and/or translation of the target sequence. Phosphorothioate and methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. Suppression of expression of the alternatively spliced *FOXC2* gene, at either the transcriptional or translational level, is useful to generate cellular or animal models for diseases/conditions related to lipid metabolism.

20

25

methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. Suppression of expression of the alternatively spliced *FOXC2* gene, at either the transcriptional or translational level, is useful to generate cellular or animal models for diseases/conditions related to lipid metabolism.

25

In yet another aspect, the invention provides a method for the identification of polypeptides which bind to nucleotide sequences involved in the biological pathway regulating lipid metabolism and/or adipocyte differentiation, comprising the steps of:

30

(a) transfecting a host cell line with a human *FOXC2* nucleotide sequence linked to a reporter gene, such as a gene encoding Green Fluorescent Protein (GFP) (for a review, see e.g. Galbraith et al. (1999) *Methods in Cell Biology* 58: 315-341);
(b) transfecting the said host cell line with a variety of human cDNA sequences, e.g. sequences included in a cDNA library;

- (c) identifying and isolating cells, e.g. by FACS cells sorting, having an altered level of expression of the said reporter gene, which is indicative that the polypeptide encoded by the added cDNA up- or downregulates at least one gene involved in the biological pathway regulating lipid metabolism and/or adipocyte differentiation;
- 5 (d) recovering cDNA from the cells isolated in step (c), by standard procedures, e.g. PCR or a CRE-LOX mediated procedure (see e.g. Sauer (1998) Methods 14: 381-392); and
(e) identifying the polypeptide expressed by the cDNA recovered in step (d), e.g. by sequencing the cDNA and comparing the obtained sequence against sequence databases.
- 10 Throughout this description the terms "standard protocols" and "standard procedures", when used in the context of molecular biology techniques, are to be understood as protocols and procedures found in an ordinary laboratory manual such as: Current Protocols in Molecular Biology, editors F. Ausubel et al., John Wiley and Sons, Inc. 1994, or Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning: A laboratory manual, 15 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989.

EXAMPLES

- 20 Additional features of the invention will be apparent from the following Examples. Examples 1 to 4 are actual, while the remaining Examples are prophetic.

EXAMPLE 1: Computational identification of *FOXC2* genomic sequences

- 25 The sequences present in the GenBank database (<http://www.ncbi.nlm.nih.gov>) were screened for sequence similarity to the human *FOXC2* cDNA sequence (GenBank accession number NM_00521 (SEQ ID NO: 9)). The BLAST algorithm (Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402) was used for determining sequence identity. Software for performing BLAST analyses is publicly available through the National Center 30 for Biotechnology Information (<http://www.ncbi.nlm.nih.gov>). A working draft genomic sequence in 25 unordered pieces, from the *Homo sapiens* chromosome 16 clone RP11-463O9 (GenBank accession number AC009108; Version 6; GI:7689930; released 4 May 2000), was selected for further studies.

Regions in sequence AC009108 matching portions of the *FOXC2* cDNA sequence NM_005251 were combined using the PHRAP software, developed at the University of Washington (<http://www.genome.washington.edu/UWGC/analysis/tools/phrap.htm>). Two contigs of 9780 bp (positions 116445 to 126224 in GenBank AC009108.6) and 3784 bp (positions 42927 to 46710 in GenBank AC0091108.6), respectively, were assembled to generate a human *FOXC2* genomic fragment of 13451 bp.

The ClustalW multiple sequence alignment program, version 1.8 (Thompson et al. (1994) Nucleic Acids Research 22: 4673-4680), was then used to identify the human *FOXC2* extended genomic DNA sequence of 6458 bp (SEQ ID NO: 1) by comparison with the mouse cDNA sequence X74040 (SEQ ID NO: 6). First, a 6459 bp sequence, corresponding to positions 1500–7958 in the 13451 bp sequence, was selected. Positions 1–2285 in this 6459 bp sequence corresponded to 44426–46710 in AC009108.6, while positions 2151–6459 corresponded to positions 126224–121916 (reverse complement taken) in AC009108.6. The overlap of positions 2151–2285 allowed for the contigs to be joined by the assembly program. The G residue in position 2655 was considered to be a sequencing error and was removed, which resulted in the 6458 bp sequence set forth as SEQ ID NO: 1. The open reading frame in SEQ ID NO: 1 encodes a polypeptide (SEQ ID NO: 2) identical with the known human *FOXC2* polypeptide shown as SEQ ID NO: 10.

EXAMPLE 2: Identification of potential regulatory sequences in the human and mouse *FOXC2* genomic sequences

In phylogenetic footprinting (for a review, see Duret & Bucher (1997) Current Opinion in Structural Biology 7(3): 399-406) sequences are aligned and a regional sequence identity is determined for each window of a fixed, arbitrary length. This allows the identification of potential regulatory regions in genomic sequences. Non-exon sequences that are conserved over the course of evolution are likely to perform regulatory roles. Phylogenetic footprinting was performed as described in Wasserman & Fickett (1998) J. Mol. Biol. 278, 167-181, based on an alignment generated with the ClustalW multiple sequence alignment program, version 1.8 (Thompson et al. (1994) Nucleic Acids Research 22: 4673-4680),

with default parameters adjusted to a gap opening penalty of 20 and a gap extension penalty of 0.2. The human (SEQ ID NO: 1) and mouse (SEQ ID NO: 5) genomic sequences were aligned. Percentage identity was plotted for each contiguous 200 bp segment of the human gene to identify segments differentially conserved (in comparison to adjoining sequences) (Fig. 2).

In addition to segments of the published exon sequence, two differentially conserved regions or "footprints" were identified in the human gene. Both of these regions are local maxima and contain segments which exceed 70% nucleotide identity between the human and mouse genomic sequences. One region, shown as positions 1250 to 2235, in particular positions 1250 to 1749, in SEQ ID NO: 1, immediately adjacent to the published exon region, is likely to contain the transcription start site and proximal promoter regulatory sequences (Fig. 4). Another region, shown as positions 216 to 475 in SEQ ID NO: 1, approximately 1700 bp distal from the transcription start site, is likely to function as some form of regulatory region (either enhancer or repressor) (Fig. 3). (A schematic overview of the extended *FOXC2* gene is shown in Fig. 1.)

Further analysis of these regulatory regions identified short segments of higher conservation between the mouse and human genes, suggesting that these specific segments function as transcription factor binding sites. The *TRANSFAC* transcription factor database (<http://transfac.gbf.de>) (see Wingender et al. (2000) Nucleic Acids Research 28(1): 316-319) was screened for matches to known transcription factors. Consensus sites (identifiers R05066; R05067; R05068; and R05069) were found to match sequences conserved between the human *FOXC2* and mouse *FoxC2* genes. This suggests the presence of multiple forkhead-like binding sites in the distal regulatory enhancer, and potential auto-regulation of *FOXC2* by its protein product.

The same analysis was performed with reference to 200 bp contiguous segments of the mouse *FoxC2* genomic sequence (SEQ ID NO: 5). The following conserved regions were identified: 190 to 420; 1070 to 1645; and 5580 to 5875. They correlate to the regions indicated above for the human sequence and should be considered orthologous regions.

EXAMPLE 3: Identification of an alternative human *FOXC2* cDNA sequence

BLASTN screening of the dbEST database from GenBank, using the human *FOXC2* cDNA (SEQ ID NO: 9) as a query sequence, revealed several ESTs overlapping containing portions of the available cDNA. A specialized tool, est_genome (<http://www.sanger.ac.uk>), for the prediction of exon boundaries using ESTs was applied to compare the EST sequences to the genomic sequences (See Mott, R. (1997) Computer Applications in the Biosciences 13(4): 477-478). Two classes of ESTs were observed: sequences extending into the 3'-untranslated region and sequences revealing an alternative first exon spliced to a junction internal to the previously described first exon.

Specifically, it was found that the nucleotides in positions 33 to 182 in the EST with accession no. AW271272 (SEQ ID NO: 11) were identical to positions 66 to 215 in the extended *FOXC2* genomic sequence (SEQ ID NO: 1), and that positions 183 to 327 in SEQ ID NO: 11 were identical to positions 2516 to 2660 in SEQ ID NO: 1. Similarly, positions 5 to 55 in the EST with accession no. AW793237 (SEQ ID NO: 12) were identical to positions 165 to 215 in the extended *FOXC2* genomic sequence (SEQ ID NO: 1), and positions 56 to 157 in SEQ ID NO: 12 were identical to positions 2516 to 2607 in SEQ ID NO: 1. These results revealed an alternative splicing pattern in the human *FOXC2* gene. According to this splicing pattern, an alternative gene sequence (SEQ ID NO: 3) is derived by joining the regions shown as positions 1-215 and 2516-6458 in SEQ ID NO: 1. Alternative splicing patterns are known to regulate the synthesis of a variety of peptides and proteins. It may result in proteins with an entirely different function or in dysfunctional or inhibitory splice products (for a review, see McKeown (1992) Annu. Rev. Cell. Biol. 8: 133-155).

The amino acids corresponding to positions 1 to 94 in the published *FOXC2* transcription factor (SEQ ID NO: 10) are missing in protein encoded by the spliced variant generated from the alternative promoter (SEQ ID NO: 4). Consequently, the entire region N-terminal of the DNA binding domain and a portion of the DNA-binding domain (corresponding to positions 72-94 in SEQ ID NO: 2) are not present in the splice variant. It is postulated that this truncation leads to a protein which has a deficient "forkhead" DNA-binding region, and thus has a potential inhibitory function on the biological activities of the *FOXC2*.

protein. This truncated FOXC2 protein may have a role in regulation of FOXC2, and an involvement in adipocyte differentiation and adipogenesis.

5 EXAMPLE 4: Cloning and sequencing of the FOXC2 promoter

The DNA region corresponding to nucleotide 176 to nucleotide 2233 (SEQ ID NO. 1 version 2) has been cloned using nested PCR on human genomic DNA. The PCR was performed according the Herculase™ protocol (Stratagene catalog #600260;

10 <http://www.stratagene.com/pcr/herculase.htm>) and with the inclusion of 8-10% DMSO.

In the initial reaction, the 5'-primer KRKX131 (CCATTGCCTTCTAGTCGCCTCC) was used together with the 3'-primer KRKX133 (CGTTGGGGTCGGACACGGAGTA) using 250 ng Clontech Genomic DNA # 6550-1 as template. The nested reaction was performed
15 on 1/100 of the initial PCR reaction using the 5'-primer KRKX132 (GGTACCTACGCAGCCGATGAACAGCCA) and the 3'-primer KRKX134 (GCTAGCGCTGCTTCCGAGACGGCTCG). After the second PCR, the product was analyzed by electrophoresis in a 1.2% agarose gel, and a PCR product of the expected size was obtained and extracted for ligation into a TOPO PCR2.1 vector (Invitrogen, Carlsbad,
20 CA) by standard cloning procedures and thereafter sequenced. The PCR reaction and cloning procedure was repeated in two parallel separate experiments, and sequence data from the two separate reactions were compared with the bioinformatically assembled sequence.

25 A DNA region containing the promoter (Fig. 4) corresponding to nt1179 to 2233 (SEQ ID NO: 1, version 2) was has been cloned using nested PCR in the same manner as described above. In the initial reaction, the 5'-primer KRKX136 (GGTACCCCCCGAGCCTGGAAACTCCCT) was used together with the 3'-primer KRKX134 (GCTAGCGCTGCTTCCGAGACGGCTCG) using 250 ng genomic DNA as a
30 template. The PCR reaction and cloning procedure was repeated in four parallel separate experiments, and sequence data from the four separate reactions were compared with the bioinformatically assembled sequence.

EXAMPLE 5: Tissue expression profiling of the alternative transcript

Tissue expression profiling of the alternative transcript (SEQ ID NO: 3) is performed using
5 standard Northern blotting procedures. RNA samples from an array of human tissues, including adipose tissue, are analyzed using an RNA or DNA probe specific for the alternative transcript. The expression profile in adipose tissue could be indicative a putative regulatory function for the alternative gene product (SEQ ID NO: 4) on adipogenesis and adipocyte differentiation.

10

In addition, reverse transcriptase PCR (RT-PCR) according to standard procedures is used to detect very low level expression of the alternative transcript in adipose tissue. RNA is prepared from human adipose tissue, and RT-PCR is performed using PCR primers specific for the alternative transcript.

15

EXAMPLE 6: Mapping of the 5'-edge of the alternative exon by RACE-PCR

RNA is prepared from human adipose tissue using standard protocols. RACE (Rapid
20 Amplification of cDNA Ends) PCR is performed using the SMART™ RACE cDNA Amplification Kit (Clontech catalogue No. K1811-1; <http://www.clontech.com/product/catalog/PCR/smartrace.html>). With this procedure, the first strand synthesis produces cDNA with an extension containing a known sequence. Due to the mechanism of the extension procedure, the extension is typically added only to complete first strand cDNAs.

25 The 5'-RACE PCR is then performed using the 5'-primer provided with the kit, together with a 3'-primer corresponding to positions 210-237 in SEQ ID NO: 3 (GAACCTGGTAGATGCCGTTCAAGGTTCC) specific for the alternative transcript. The PCR product is cloned into a cloning vector and sequenced using standard protocols.

30

EXAMPLE 7: Functional analysis

The identified regulatory regions are analyzed to determine their impact on the transcription of the *FOXC2* gene or a reporter gene substituted for *FOXC2*. A PCR reaction is performed to isolate the promoter region adjacent to the published exon sequence, possibly including the sequences extending to the beginning of the ATG encoding the first methionine. This PCR product is cloned into a reporter plasmid adjacent to a reporter gene (e.g. luciferase). The upstream regulatory region, i.e. regions containing both upstream and promoter proximal sequences, or these sequences bearing artificially induced differences, are cloned in a similar manner. These constructs are transfected into a cell culture model system and the level/activity of the protein encoded by the reporter gene is determined. This would provide information on the function of the identified regions, and used to assess the impact of the different regions on transcriptional regulation. Similarly, the upstream regulatory region, a region containing both upstream and promoter proximal sequences, or these sequences bearing artificially induced differences can be cloned and used to assess the impact of these regions on the transcription of the reporter gene.

20 EXAMPLE 8: Reporter gene assay to identify modulating compounds

Reporter gene assays are well known as tools to signal transcriptional activity in cells. (For a review of chemiluminescent and bioluminescent reporter gene assays, see Bronstein et al. (1994) *Analytical Biochemistry* 219, 169-181.) For instance, the photoprotein luciferase provides a useful tool for assaying for modulators of promoter activity. Cells are transiently transfected with a reporter construct which includes a gene for the luciferase protein downstream from the *FOXC2* promoter and enhancer region, or fragments thereof regulating the *FOXC2* activity. Luciferase activity may be quantitatively measured using e.g. luciferase assay reagents that are commercially available from Promega (Madison, WI). Differences in luminescence in the presence versus the absence of a candidate modulator compound are indicative of modulatory activity.

- 17 -

TABLE I
Summary of *FOXC2* sequences

SEQ ID NO:	GenBank accession no.	Description
1		Human <i>FOXC2</i> extended genomic DNA sequence
2		Human <i>FOXC2</i> polypeptide sequence (Identical with SEQ ID NO: 10)
3		Human <i>FOXC2</i> DNA sequence Alternative splicing
4		Human polypeptide sequence Alternative open reading frame
5	Y08222	Mouse MHF-1 (<i>FoxC2</i>) genomic DNA sequence (CDS 2070 – 3554)
6	X74040	Mouse MHF-1 (<i>FoxC2</i>) cDNA sequence
7		Mouse MHF-1 (<i>FoxC2</i>) polypeptide sequence
8	Y08223	Human <i>FKHL14</i> (<i>FOXC2</i>) genomic DNA sequence (CDS 1197 – 2702)
9	NM_005251	Human <i>FKHL14</i> (<i>FOXC2</i>) cDNA sequence
10		Human <i>FKHL14</i> (<i>FOXC2</i>) polypeptide sequence
11	AW 271272	Human EST
12	AW 793237	Human EST

DRAFT

TABLE II

Summary of features in human *FOXC2* sequences shown as SEQ ID NOs: 1 and 3

Feature	Positions
SEQ ID NO: 1	
First exon according to the alternative transcript	1 – 215
– Untranslated region	1 – 186
– Region coding for 5'-part of alternative protein	187 – 215
Alternative first exon splice site	215 – 216
Predicted enhancer region	216 – 475
– E-box-like region	223 – 231
– Forkhead-like region	359 – 375
– Forkhead-like region	378 – 402
– Ets-like region	403 – 423
Predicted promoter region	1250 – 1749
– Forkhead-like region	1692 – 1703
First exon according to the published form of the transcript	1746 – 4629
– Untranslated region	1746 – 2234
– Polypeptide coding region	2235 – 3740
– Region coding for DNA-binding domain	2448 – 2735
Second exon according to the alternative transcript	2516 – 4629
– Portion of polypeptide used in alternative transcript	2516 – 3740
– Untranslated region	3741 – 4629
SEQ ID NO: 3	
Polypeptide coding region (5' of splice site)	187 – 215
Polypeptide coding region (3' of splice site)	216 – 1437
– Region coding for truncated portion of protein	216 – 435

0
 1
 2
 3
 4
 5
 6
 7
 8
 9

CLAIMS

1. A human *FOXC2* promoter region comprising a sequence selected from:
 - (a) the nucleotide sequence set forth as positions 1692 to 1703 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* promoter activity;
 - (b) the complementary strand of (a); and
 - (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
- 10 2. The human *FOXC2* promoter region according to claim 1, comprising a sequence selected from:
 - (a) the nucleotide sequence set forth as positions 1250 to 1749 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* promoter activity;
 - (b) the complementary strand of (a); and
 - (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
- 15 3. The human *FOXC2* promoter region according to claim 2, comprising a sequence selected from:
 - (a) the nucleotide sequence set forth as positions 1250 to 2235 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* promoter activity;
 - (b) the complementary strand of (a); and
 - (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
- 20 4. A recombinant construct comprising the human *FOXC2* promoter region according to any one of claims 1 to 3.
- 25 5. The recombinant construct according to claim 4 wherein the human *FOXC2* promoter region is operably linked to a gene encoding a detectable product.
- 30 6. The recombinant construct according to claim 5 wherein said gene encoding a detectable product is a human *FOXC2* gene.

7. The recombinant construct according to claim 4 further comprising a reporter gene.
8. A vector comprising the recombinant construct according to any one of claims 4 to 7.
- 5
9. A host cell stably transformed with the recombinant construct according to any one of claims 4 to 7.
10. A method for identification of an agent regulating *FOXC2* promoter activity, said method comprising the steps
 - (i) contacting a candidate agent with a human *FOXC2* promoter region as defined in any one of claims 1 to 3; and
 - (ii) determining whether said candidate agent modulates expression of the *FOXC2* gene, such modulation being indicative for an agent capable of regulating *FOXC2* promoter activity.
11. A method for identification of an agent regulating *FOXC2* promoter activity, said method comprising assaying reporter gene expression in a cell according to claim 9 in the presence and absence of a candidate agent, wherein an effect on the test level of expression as compared to control level of expression is indicative of an agent capable of regulating *FOXC2* promoter activity.
- 20
12. A human *FOXC2* enhancer region comprising a sequence selected from:
 - (a) the nucleotide sequence set forth as positions 223 to 231 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* enhancer activity;
 - 25
(b) the complementary strand of (a); and
 - (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
- 30
13. A human *FOXC2* enhancer region comprising a sequence selected from:
 - (a) the nucleotide sequence set forth as positions 359 to 375 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* enhancer activity;
 - (b) the complementary strand of (a); and

- (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
14. A human *FOXC2* enhancer region comprising a sequence selected from:
5 (a) the nucleotide sequence set forth as positions 378 to 402 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* enhancer activity;
 (b) the complementary strand of (a); and
 (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
- 10 15. A human *FOXC2* enhancer region comprising a sequence selected from:
 (a) the nucleotide sequence set forth as positions 403 to 423 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* enhancer activity;
 (b) the complementary strand of (a); and
15 (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
16. The human *FOXC2* enhancer region according to any one of claims 12 to 15 comprising a sequence selected from:
20 (a) the nucleotide sequence set forth as positions 216 to 475 in SEQ ID NO: 1, or a fragment thereof exhibiting *FOXC2* enhancer activity;
 (b) the complementary strand of (a); and
 (c) nucleotide sequences capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence as defined in (a) or (b).
- 25 17. A recombinant construct comprising a human *FOXC2* enhancer region according to any one of claims 12 to 15.
18. A vector comprising the recombinant construct according to claim 17.
- 30 19. A host cell stably transformed with the recombinant construct according to claim 18.

20. A method for identification of an agent regulating *FOXC2* enhancer activity, said method comprising the steps
(i) contacting a candidate agent with the human *FOXC2* enhancer region as defined in any one of claims 12 to 16; and
(ii) determining whether said candidate agent modulates expression of the *FOXC2* gene, such modulation being indicative for an agent capable of regulating *FOXC2* enhancer activity.
- 10 21. A method for identification of an agent capable of regulating *FOXC2* enhancer activity, said method comprising assaying reporter gene expression in a cell as defined in claim 19 in the presence and absence of a candidate agent, wherein an effect on the test level of expression as compared to control level of expression is indicative of an agent capable of regulating *FOXC2* enhancer activity.
- 15 22. A method for identification of an agent capable of regulating a mammalian *FOXC2* promoter activity, said method comprising the steps
(i) contacting a candidate agent with a murine *FoxC2* promoter nucleotide sequence shown as positions 1250 to 2235 in SEQ ID NO: 5; and
(ii) determining whether said candidate agent modulates expression of a mammalian *FOXC2* gene, such modulation being indicative for an agent capable of regulating mammalian *FOXC2* promoter activity.
- 20 23. A method for identification of an agent capable of regulating a mammalian *FOXC2* enhancer activity, said method comprising the steps
(i) contacting a candidate agent with a murine *FoxC2* enhancer nucleotide sequence shown as positions 216 to 475 in SEQ ID NO: 5; and
(ii) determining whether said candidate agent modulates expression of a mammalian *FOXC2* gene, such modulation being indicative for an agent capable of regulating mammalian *FOXC2* enhancer activity.
- 25 30 24. A method for identification of an agent capable of regulating a mammalian *FOXC2* enhancer activity, said method comprising the steps

- (i) contacting a candidate agent with a murine *FoxC2* enhancer nucleotide sequence shown as positions 216 to 2235 in SEQ ID NO: 5; and
(ii) determining whether said candidate agent modulates expression of a mammalian *FOXC2* gene, such modulation being indicative for an agent capable of regulating mammalian *FOXC2* enhancer activity.
- 5
25. An isolated nucleic acid molecule selected from:
(a) nucleic acid molecules comprising a nucleotide sequence as shown in SEQ ID NO: 3;
10 (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary the polypeptide coding region of a nucleic acid molecule as defined in (a) and which codes for a variant form of the *FOXC2* transcription factor; and
(c) nucleic acid molecules comprising a nucleic acid sequence which is degenerate as
15 a result of the genetic code to a nucleotide sequence as defined in (a) or (b) and which codes for a variant form of the *FOXC2* transcription factor.
26. An isolated polypeptide encoded by the nucleic acid according to claim 25.
- 20 27. The isolated polypeptide according to claim 26 having an amino acid sequence shown as SEQ ID NO: 4 in the Sequence Listing
28. A vector harboring the nucleic acid molecule according to claim 25.
- 25 29. A replicable expression vector, which carries and is capable of mediating the expression of a nucleotide sequence according to claim 25.
30. A cultured host cell harboring a vector according to claim 28 or 29.
- 30 31. A process for production of a variant form of the *FOXC2* transcription factor polypeptide, comprising culturing a host cell according to claim 30 under conditions whereby said polypeptide is produced, and recovering said polypeptide.

32. A method for identifying an agent capable of regulating expression of the nucleic acid molecule according to claim 25, said method comprising the steps
(i) contacting a candidate agent with the said nucleic acid molecule; and
(ii) determining whether said candidate agent modulates expression of the said nucleic acid molecule.

33. An antisense oligonucleotide having a sequence capable of specifically hybridizing to RNA transcribed by the nucleic acid molecule according to claim 25, so as to prevent translation of the said RNA.

34. A method for the identification of polypeptides which bind to nucleotide sequences involved in the biological pathway regulating lipid metabolism and/or adipocyte differentiation, comprising
(a) transfecting a host cell line with a human FOXC2 nucleotide sequence linked to a reporter gene;
(b) transfecting the said host cell line with a variety of human cDNA sequences;
(c) identifying and isolating cells having an altered level of expression of the said reporter gene;
(d) recovering cDNA from the cells isolated in step (c); and
(e) identifying the polypeptide expressed by the cDNA recovered in step (d).

ABSTRACT

The present invention relates an isolated promoter region of the mammalian transcription factor *FOXC2*. The invention also relates to screening methods for agents modulating the expression of *FOXC2* and thereby being potentially useful for the treatment of medical conditions related to obesity. The invention further relates to a previously unknown variant of the human *FOXC2* gene, derived via the use of an alternative promoter, which produces an additional exon that generates a distinct open reading frame via splicing. The alternative gene encodes a variant of the *FOXC2* transcription factor, which is lacking a part of the DNA-binding domain and consequently has a potential regulatory function.

O
N
E
A
T
S
S

- 1 -

SEQUENCE LISTING

<110> Pharmacia & Upjohn AB
<120> Promoter Sequences
<130> 00298
<140>
<141>
<160> 12
<170> PatentIn Ver. 2.1
<210> 1
<211> 6458
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (2235)..(3740)
<400> 1
cctttggctt tgaattgatc aggagacaaa gataatgcac ctacattttc gtcttctgtt 60
cttttattgg aaataagtgg cacgccccat tgccttctag tcgcctccccc gaagcgaaga 120
ggccgaagcg aagaggcctg gtgggttgtc tcaacatcct tttgctgaga atcgaatacg 180
cagccgatga acagccagga agggtgcaag gaaacctgaa atacaaatgt tctccctgaa 240
gccctcttcc ctgcccacc accagccaa cttccaaaat tctgcccgtg ttttagcctt 300
ttaaagggt gtctcactcc ttcaaggaaa gtggaaaag gggatctgat tattgaggtg 360
tggaaaggaat aaataatcag tccacaaaata aacaaactgt ccgggatttcc tagagggaaag 420
gagaaatcct tgaaggagat ccaagtcgct ccaggtctgc ctgccaata atatcatccc 480
gaaggatct tgaaccgttt gcaatcaacc gctcacccag tcttcccacg gagcgcgc 540
cctaactcac cctacccacc caacaaaaca aaaaaaaaggc tgaaatatacg aaaagcaact 600
tggaggctcc cagggggacg ttgccaggag caggaggcag ggacagcgcc ctagggtcgg 660
tgttagcggc cggcgccggc ctgggccacg ggaaacgtcc acgcttggtg cccgcggc 720
gcggcgctca ttgcgcgcgc cttcgagcca agcccccgcg gaaaacaggc tcgggtttct 780
cctcgcaggc cccaggaact cggctctgcc tggccgggt gggtcgtgc attgtcccgg 840
tcttctggaa gtgcggggtc agcttggtag aggaaatttc tacctggaa aaggagacg 900
agtttcaag ctgaagtgg taggctgcga gtgtccacgc gggagacgaa agggggaaat 960
agcagagtca cttcaccctt ttcccaaac cccacaaaac tgctcgacg gacgcggatg 1020

- 2 -

atctaccgaa ttccccgcga attcgagga ttaagttgtc agtcagcacg ttgctacctt 1080
cccccttatg cactccgctg cctggctcct cggcggggag cgaggaaac tcagttgtta 1140
gggtttacct ctaaaacctc gataggttat ccttgacgac cccgagccctg gaaactccct 1200
gtttagtattt aattatttga ttaaataagt ataacatcca ggagaggccc tgccattcca 1260
atccagcgcg tttgtttt aatccattac acctggccc ccataattag gaaatcta 1320
tattcgcttc atcactcatt aataagaaaa atgtcccagg atcattgcta cttacaaggt 1380
ctttggaga gatattttac tctattaatc cattctattt tatatttcaa attgattttt 1440
tttaacagag gaaagtggct atcttttgt tttgggcattg tgggcccatt caccaaaatg 1500
tgatcataaaa ataaatttta ataagataata actttttaaa aagttttcaa gtgaagacgg 1560
agtcgcgcg gaggccgggg cggcggggtc ttagagccga cgattccctg cgctccctgc 1620
cccgattggc gccggactcc tctcagctgc cgggtgattt gctcaaagtt cgggagggg 1680
gcgtggcccg agggaaagtaa aaactcgctt tcagcaagaa gactttgaa actttccca 1740
atccctaaaa gggacttggc ctcttttctt gggctcagcg gggcagccgc tcggaccccg 1800
gcgcgctgac cctcgggctt gccgattcgc tggggctt gagagccctcc tgcccccctc 1860
ctcgcgccgg ccgagggtcc accttggtcc ccaggccgcg gcgtctccgc tgggtccgc 1920
gccgcccgcg tgcccgctt gccgcccgg ggtcctggag ccagcgagga gcggggccgg 1980
cgctcgctt gcccgggcg cgccctccag gatgccgatc cgcccggtcc gctgaaagcg 2040
cgcccccctg ctggcccgaa gcgacgacga ccgcgcaccc tcgccccggaa ggctgccagg 2100
agaccggggc cgccccctcc gctccccctcc tctccccctc tggctctctc ggcctctctc 2160
gctctcaggg cccccctcgc tcccccgcc gcagtccgtg cgcgaggcgcc cggcgagcc 2220
gtctcgaaag cagc atg cag gcg cgc tac tcc gtg tcc gac ccc aac gcc 2270
Met Gln Ala Arg Tyr Ser Val Ser Asp Pro Asn Ala
1 5 10
ctg gga gtg gtg ccc tac ctg agc gag cag aat tac tac cgg gct gcg 2318
Leu Gly Val Val Pro Tyr Leu Ser Glu Gln Asn Tyr Tyr Arg Ala Ala
15 20 25
ggc agc tac ggc ggc atg gcc agc ccc atg ggc gtc tat tcc ggc cac 2366
Gly Ser Tyr Gly Gly Met Ala Ser Pro Met Gly Val Tyr Ser Gly His
30 35 40
ccg gag cag tac agc gcg ggg atg ggc cgc tcc tac gcg ccc tac cac 2414
Pro Glu Gln Tyr Ser Ala Gly Met Gly Arg Ser Tyr Ala Pro Tyr His
45 50 55 60
cac cac cag ccc gcg gcg cct aag gac ctg gtg aag ccg ccc tac agc 2462
His His Gln Pro Ala Ala Pro Lys Asp Leu Val Lys Pro Pro Tyr Ser
65 70 75

- 3 -

tac atc gcg ctc atc acc atg gcc atc cag aac gcg ccc gag aag aag Tyr Ile Ala Leu Ile Thr Met Ala Ile Gln Asn Ala Pro Glu Lys Lys 80 85 90	2510
atc acc ttg aac ggc atc tac cag ttc atc atg gac cgc ttc ccc ttc Ile Thr Leu Asn Gly Ile Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe 95 100 105	2558
tac cgg gag aac aag cag ggc tgg cag aac agc atc cgc cac aac ctc Tyr Arg Glu Asn Lys Gln Gly Trp Gln Asn Ser Ile Arg His Asn Leu 110 115 120	2606
tcg ctc aac gag tgc ttc gtc aag gtg ccc cgc gac gac aag aag ccc Ser Leu Asn Glu Cys Phe Val Lys Val Pro Arg Asp Asp Lys Lys Pro 125 130 135 140	2654
ggc aag ggc agt tac tgg acc ctg gac ccg gac tcc tac aac atg ttc Gly Lys Gly Ser Tyr Trp Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe 145 150 155	2702
gag aac ggc agc ttc ctg cgg cgc cgg cgc ttc aaa aag aag gac Glu Asn Gly Ser Phe Leu Arg Arg Arg Arg Phe Lys Lys Lys Asp 160 165 170	2750
gtg tcc aag gag aag gag gag cgg gcc cac ctc aag gag ccg ccc ccc Val Ser Lys Glu Lys Glu Arg Ala His Leu Lys Glu Pro Pro Pro 175 180 185	2798
gcg gcg tcc aag ggc gcc ccg gcc acc ccc cac cta gcg gac gcc ccc Ala Ala Ser Lys Gly Ala Pro Ala Thr Pro His Leu Ala Asp Ala Pro 190 195 200	2846
aag gag gcc gag aag aag gtg gtg atc aag agc gag gcg gcg tcc ccc Lys Glu Ala Glu Lys Lys Val Val Ile Lys Ser Glu Ala Ala Ser Pro 205 210 215 220	2894
gcg ctg ccg gtc atc acc aag gtg gag acg ctg agc ccc gag agc gcg Ala Leu Pro Val Ile Thr Lys Val Glu Thr Leu Ser Pro Glu Ser Ala 225 230 235	2942
ctg cag ggc agc ccg cgc agc gcg gcc tcc acg ccc gag ccg ggc tcc Leu Gln Gly Ser Pro Arg Ser Ala Ala Ser Thr Pro Ala Gly Ser Pro 240 245 250	2990
gac ggt tcg ctg ccg gag cac cac gcc gcg gcg ccc aac ggg ctg ccc Asp Gly Ser Leu Pro Glu His His Ala Ala Pro Asn Gly Leu Pro 255 260 265	3038
ggc ttc agc gtg gag aac atc atg acc ctg cga acg tcg ccg ccg ggc Gly Phe Ser Val Glu Asn Ile Met Thr Leu Arg Thr Ser Pro Pro Gly 270 275 280	3086
gga gag ctg agc ccg ggg gcc gga cgc gcg ggc ctg gtg gtg ccg ccg Gly Glu Leu Ser Pro Gly Ala Gly Arg Ala Gly Leu Val Val Pro Pro 285 290 295 300	3134

ctg gct ctc cca tac gcc gcc ggc ccc gcc tac ggc cag ccg Leu Ala Leu Pro Tyr Ala Ala Ala Pro Pro Ala Ala Tyr Gly Gln Pro 305	310	315	3182
tgc gct cag ggc ctg gag gcc ggg gcc gcc ggg ggc tac cag tgc agc Cys Ala Gln Gly Leu Glu Ala Gly Ala Gly Gly Tyr Gln Cys Ser 320	325	330	3230
atg cga gcg atg agc ctg tac acc ggg gcc gag cgg ccg ggc cac atg Met Arg Ala Met Ser Leu Tyr Thr Gly Ala Glu Arg Pro Ala His Met 335	340	345	3278
tgc gtc ccc ccc gcc ctg gac gag gcc ctc tcg gac cac ccg agc ggc Cys Val Pro Pro Ala Leu Asp Glu Ala Leu Ser Asp His Pro Ser Gly 350	355	360	3326
ccc acg tcg ccc ctg agc gct ctc aac ctc gcc gcc ggc cag gag ggc Pro Thr Ser Pro Leu Ser Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly 365	370	375	3374
gcg ctc gcc gcc acg ggc cac cac cac cag cac cac ggc cac cac cac Ala Leu Ala Ala Thr Gly His His His Gln His His Gly His His His 385	390	395	3422
ccg cag gcg ccg ccc ccg ccg gct ccc cag ccc cag ccg acg ccg Pro Gln Ala Pro Pro Pro Pro Ala Pro Gln Pro Gln Pro Thr Pro 400	405	410	3470
cag ccc ggg gcc gcc gcg cag gcg gcc tcc tgg tat ctc aac cac Gln Pro Gly Ala Ala Ala Gln Ala Ala Ser Trp Tyr Leu Asn His 415	420	425	3518
agc ggg gac ctg aac cac ctc ccc ggc cac acg ttc gcg gcc cag cag Ser Gly Asp Leu Asn His Leu Pro Gly His Thr Phe Ala Ala Gln Gln 430	435	440	3566
caa act ttc ccc aac gtg cgg gag atg ttc aac tcc cac cgg ctg ggg Gln Thr Phe Pro Asn Val Arg Glu Met Phe Asn Ser His Arg Leu Gly 445	450	455	3614
att gag aac tcg acc ctc ggg gag tcc cag gtg agt ggc aat gcc agc Ile Glu Asn Ser Thr Leu Gly Glu Ser Gln Val Ser Gly Asn Ala Ser 465	470	475	3662
tgc cag ctg ccc tac aga tcc acg ccg cct ctc tat cgc cac gca gcc Cys Gln Leu Pro Tyr Arg Ser Thr Pro Pro Leu Tyr Arg His Ala Ala 480	485	490	3710
ccc tac tcc tac gac tgc acg aaa tac tga cgtgtccccgg gaccccccct Pro Tyr Ser Tyr Asp Cys Thr Lys Tyr 495	500		3760
ccccggccccg ctccggcttc gcttccccagc cccgacccaa ccagacaatt aaggggctgc 3820			
agagacgcaa aaaagaaaaca aaacatgtcc accaaccttt tctcagaccc gggagcagag 3880			
agcggggcacg ctagccccca gccgtctgtg aagagcgcag gtaactttaa ttccggccccc 3940			
cgtttctggg atcccaaggaa accccctccaa agggacgcag cccaacaaaa tgagtattgg 4000			

- 5 -

tcttaaaatc cccctcccc accaggacgg ctgtgctgtg ctcgacctga gctttcaaaa 4060
gttaagttat ggacccaaat cccatagcga gcccctagtg actttctgtt ggggtcccc 4120
taggtgtatg ggggtctcta tagataatat atgtgctgtg tgtaattttt aatttctcca 4180
accgtgctgt acaaatgtgt ggatttgtaa tcaggctatt ttgttgtgt ttttgtgtt 4240
cagagccatt aatataatat taaaagttaa gttcaactgga taagttttc atcttgcaca 4300
accatttcta actgc当地 aatgcaag aaaccgatgt gggttttgtt tcctgtacaa 4360
ttatgagata taattcttt tcccattgtt ggtctttac aaaacaagaa aataatttat 4420
tttttgttggtggataaaag aagtcaagta tctgataactt ttttattaca aagtgtgatg 4480
gtttgtata gtaggttcca ccctgagttat tcctaaaaga aaaaaaaaaaaa aaaagcttaa 4540
aaactctaacttcatctgtt tttgtcttac gtggctttaa tcgttgtact taccttaaaa 4600
taaaccatg ttgtttttc tgcccaaagt ttggacagtg tgtttgtt gttgcatttt 4660
ttacaaacga ggtgtgttttcaaaaccacc tgctttgatt atttttgtt cacaggtggg 4720
tatatgttta gacacataaa aacgaccaga gaataggagc acacacctgc tttttttttt 4780
agtgacagaa aaaggctttt gattaattttt aaaaatcccac tctaggattt ttttttttgc 4840
agaaaccgccc cagttggagg gggctgcctg aaggaccgga ccatgagttt gccgtgatgc 4900
attttttttaa atgcacaaaaa acatgctaat tgtcaaaaca aacagtgc当地 ctccatctca 4960
gtgtccagcc gtccccagtt taggaggtga aggaaggggaa gaataaacat ttcccgtttt 5020
ctaaactgcaa cccaggggtga gtcctgctt ccccccatttataaaattt gaggctttt 5080
gcctgcttta atagttttcc agagaatttg aactggccca atgaaggctt gaaggggacg 5140
gattttcttag cgtttgatccatccccct tagcggccag atcagagggg aatttcagac 5200
tttattactt ctcaatgtca tgtctaaatc tacaccctca tcgcagtgaa aatttttaaa 5260
acctcatttttccctcaaaaaa taatttatgtt tatttttaga gttctaaattt caagtttttcc 5320
aatatgttta ataatacgatgtt ttttcaatgtt taatatctcg tcttttacat 5380
tttttaatgtt aacatagttt ttgtgaaatgt tagctgacga aatggcttta ttatcttattt 5440
caatggctga agtccaccac tccccctgtg gcctctatgt gtgaatttgg ggaccaaagc 5500
ttcatcaatttcccaaccaggcaggtgagct gtaccttgc aatgctgaag ttctttgtga 5560
gcttaacgtt tcaagaccag atgattttgc taaaggtgtt tttgcttgat gcagtggcgc 5620
tgaacgttaac ccgggtgttt ttgtcgtgtt gtttcaaca tggcacctta tctccacgct 5680
atgttgaat agaatttaggg gaagcttaaa gcataataat ttttttttttcaaca ttttttttttcaaca 5740

- 6 -

agactcttc aatctgtggc cccagaggtg gcacacagt aagacttggc ggctgtctca 5800
 ttctttca taatgtgcgg gttcccggt gtccgggtgc tagacttca gcaggccccca 5860
 ggccagacgg gcttgggtg agtgaacagg aggaggaagt taaggaggtta ggggtgggga 5920
 gagaccctct ccaagctgca gaagaaggtg gcccaagctc cttgcctgcg tctgccgtga 5980
 tggtttcatt ttacttctgc tcgcattcatg ctatttgc caggagaaga ggagagtatt 6040
 ccagacggta agcgagctgg cttttccct tccctagacg tttaaagaa atcttctga 6100
 aagcttgccc tcacgttaag ctttggaaacc gttgggttcc tgtaggtggc gagggttgc 6160
 agacacgcgg agaaataaaag gagagcgacg gtgtggctga gagccccca gctctgtgtt 6220
 gaaactaagc tgggcttttgc cacctttagg aagcctttt aaagaagtcc tgctgtgtgg 6280
 gggccggaaag cccaaagttagtgg tggcccttgtt ggaggttatc gggaggggtc tttaccactc 6340
 cttggggaaac gtgggcaacg gggggattgtt atctgaagct ttattcaggt cttcggcggc 6400
 agcagagtgg agaaccaggc ccttagtggc tagcggcctg gggattttgg gactcatc 6458

<210> 2
 <211> 501
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Gln Ala Arg Tyr Ser Val Ser Asp Pro Asn Ala Leu Gly Val Val
 1 5 10 15
 Pro Tyr Leu Ser Glu Gln Asn Tyr Tyr Arg Ala Ala Gly Ser Tyr Gly
 20 25 30
 Gly Met Ala Ser Pro Met Gly Val Tyr Ser Gly His Pro Glu Gln Tyr
 35 40 45
 Ser Ala Gly Met Gly Arg Ser Tyr Ala Pro Tyr His His His Gln Pro
 50 55 60
 Ala Ala Pro Lys Asp Leu Val Lys Pro Pro Tyr Ser Tyr Ile Ala Leu
 65 70 75 80
 Ile Thr Met Ala Ile Gln Asn Ala Pro Glu Lys Lys Ile Thr Leu Asn
 85 90 95
 Gly Ile Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn
 100 105 110
 Lys Gln Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu
 115 120 125
 Cys Phe Val Lys Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser
 130 135 140
 Tyr Trp Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser
 145 150 155 160
 Phe Leu Arg Arg Arg Arg Phe Lys Lys Lys Asp Val Ser Lys Glu
 165 170 175
 Lys Glu Glu Arg Ala His Leu Lys Glu Pro Pro Pro Ala Ala Ser Lys
 180 185 190
 Gly Ala Pro Ala Thr Pro His Leu Ala Asp Ala Pro Lys Glu Ala Glu
 195 200 205
 Lys Lys Val Val Ile Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val
 210 215 220

- 7 -

Ile Thr Lys Val Glu Thr Leu Ser Pro Glu Ser Ala Leu Gln Gly Ser
 225 230 235 240
 Pro Arg Ser Ala Ala Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu
 245 250 255
 Pro Glu His His Ala Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val
 260 265 270
 Glu Asn Ile Met Thr Leu Arg Thr Ser Pro Pro Gly Gly Glu Leu Ser
 275 280 285
 Pro Gly Ala Gly Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro
 290 295 300
 Tyr Ala Ala Ala Pro Pro Ala Ala Tyr Gly Gln Pro Cys Ala Gln Gly
 305 310 315 320
 Leu Glu Ala Gly Ala Ala Gly Gly Tyr Gln Cys Ser Met Arg Ala Met
 325 330 335
 Ser Leu Tyr Thr Gly Ala Glu Arg Pro Ala His Met Cys Val Pro Pro
 340 345 350
 Ala Leu Asp Glu Ala Leu Ser Asp His Pro Ser Gly Pro Thr Ser Pro
 355 360 365
 Leu Ser Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Ala Ala
 370 375 380
 Thr Gly His Pro Gln Ala Pro
 385 390 395 400
 Pro Pro Pro Pro Ala Pro Gln Pro Gln Pro Thr Pro Gln Pro Gly Ala
 405 410 415
 Ala Ala Ala Gln Ala Ala Ser Trp Tyr Leu Asn His Ser Gly Asp Leu
 420 425 430
 Asn His Leu Pro Gly His Thr Phe Ala Ala Gln Gln Gln Thr Phe Pro
 435 440 445
 Asn Val Arg Glu Met Phe Asn Ser His Arg Leu Gly Ile Glu Asn Ser
 450 455 460
 Thr Leu Gly Glu Ser Gln Val Ser Gly Asn Ala Ser Cys Gln Leu Pro
 465 470 475 480
 Tyr Arg Ser Thr Pro Pro Leu Tyr Arg His Ala Ala Pro Tyr Ser Tyr
 485 490 495
 Asp Cys Thr Lys Tyr
 500

<210> 3
<211> 4158
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (187)...(1437)

<400> 3
cctttggctt tgaattgatc aggagacaaa gataatgcat ctacatttc gtcttctgtt 60
cttttattgg aaataagtgg cacgccccat tgccttctag tcgcctcccc gaagcgaaga 120
ggccgaagcg aagaggcctg gtgggttgat ctaacatcct tttgctgaga atcgaatacg 180
cagccg atg aac agc cag gaa ggg tgc aag gaa acc ttg aac ggc atc 228
Met Asn Ser Gln Glu Gly Cys Lys Glu Thr Leu Asn Gly Ile
1 5 10

- 8 -

tac cag ttc atc atg gac cgc ttc ccc tac cg ^g gag aac aag cag Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn Lys Gln 15 20 25 30	276
ggc tgg cag aac agc atc cgc cac aac ctc tcg ctc aac gag tgc ttc Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu Cys Phe 35 40 45	324
gtc aag gtg ccc cgc gac gac aag aag ccc ggc aag ggc agt tac tgg Val Lys Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser Tyr Trp 50 55 60	372
acc ctg gac ccg gac tcc tac aac atg ttc gag aac ggc agc ttc ctg Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser Phe Leu 65 70 75	420
cgg cgc cgg cgg cgc ttc aaa aag aag gac gtg tcc aag gag aag gag Arg Arg Arg Arg Phe Lys Lys Lys Asp Val Ser Lys Glu Lys Glu 80 85 90	468
gag cgg gcc cac ctc aag gag ccg ccc ccg gcg tcc aag ggc gcc Glu Arg Ala His Leu Lys Glu Pro Pro Ala Ala Ser Lys Gly Ala 95 100 105 110	516
ccg gcc acc ccc cac cta gcg gac gcc ccc aag gag gcc gag aag aag Pro Ala Thr Pro His Leu Ala Asp Ala Pro Lys Glu Ala Glu Lys Lys 115 120 125	564
gtg gtg atc aag agc gag gcg gcg tcc ccg gcg ctg ccg gtc atc acc Val Val Ile Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val Ile Thr 130 135 140	612
aag gtg gag acg ctg agc ccc gag agc gcg ctg cag ggc agc ccg cgc Lys Val Glu Thr Leu Ser Pro Glu Ser Ala Leu Gln Gly Ser Pro Arg 145 150 155	660
agc gcg gcc tcc acg ccc gcc ggc tcc ccc gac ggt tcg ctg ccg gag Ser Ala Ala Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu Pro Glu 160 165 170	708
cac cac gcc gcg ccc aac ggg ctg cct ggc ttc agc gtg gag aac His His Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val Glu Asn 175 180 185 190	756
atc atg acc ctg cga acg tcg ccg ccg ggc gga gag ctg agc ccg ggg Ile Met Thr Leu Arg Thr Ser Pro Pro Gly Gly Glu Leu Ser Pro Gly 195 200 205	804
gcc gga cgc gcg ggc ctg gtg ccg ccg ctg gcg ctg cca tac gcc Ala Gly Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro Tyr Ala 210 215 220	852
gcc gcg ccg ccc gcc gcc tac ggc cag ccg tgc gct cag ggc ctg gag Ala Ala Pro Pro Ala Ala Tyr Gly Gln Pro Cys Ala Gln Gly Leu Glu 225 230 235	900
gcc ggg gcc gcc ggg ggc tac cag tgc agc atg cga gcg atg agc ctg Ala Gly Ala Ala Gly Gly Tyr Gln Cys Ser Met Arg Ala Met Ser Leu 240 245 250	948

- 9 -

tac acc ggg gcc gag cg ^g ccg gc ^g cac atg tgc gtc cc ^g ccc gcc ctg	996
Tyr Thr Gly Ala Glu Arg Pro Ala His Met Cys Val Pro Pro Ala Leu	
255 260 265 270	
gac gag gcc ctc tcg gac cac cc ^g agc ggc ccc ac ^g tcg ccc ctg agc	1044
Asp Glu Ala Leu Ser Asp His Pro Ser Gly Pro Thr Ser Pro Leu Ser	
275 280 285	
gct ctc aac ctc gcc gcc ggc cag gag ggc gc ^g ctc gcc gcc ac ^g ggc	1092
Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Ala Ala Thr Gly	
290 295 300	
cac cac cac cag cac cc ^g cac cac cc ^g cag gc ^g cc ^g ccc	1140
His His His His His Gly His His His Pro Gln Ala Pro Pro Pro	
305 310 315	
ccg cc ^g gct ccc cag ccc cag cc ^g ac ^g cc ^g cag ccc ggg gcc gcc gc ^g	1188
Pro Pro Ala Pro Gln Pro Gln Pro Thr Pro Gln Pro Gly Ala Ala Ala	
320 325 330	
gc ^g cag gc ^g gcc tcc tgg tat ctc aac cac ac ^g ggg gac ctg aac cac	1236
Ala Gln Ala Ala Ser Trp Tyr Leu Asn His Ser Gly Asp Leu Asn His	
335 340 345 350	
ctc ccc ggc cac ac ^g ttc gc ^g gcc cag cag caa act ttc ccc aac gtg	1284
Leu Pro Gly His Thr Phe Ala Ala Gln Gln Thr Phe Pro Asn Val	
355 360 365	
cg ^g gag atg ttc aac tcc cac cc ^g ctg ggg att gag aac tcg acc ctc	1332
Arg Glu Met Phe Asn Ser His Arg Leu Gly Ile Glu Asn Ser Thr Leu	
370 375 380	
ggg gag tcc cag gtg agt ggc aat gcc agc tgc cag ctg ccc tac aga	1380
Gly Glu Ser Gln Val Ser Gly Asn Ala Ser Cys Gln Leu Pro Tyr Arg	
385 390 395	
tcc ac ^g cc ^g cct ctc tat cg ^c cac gca gcc ccc tac tcc tac gac tgc	1428
Ser Thr Pro Pro Leu Tyr Arg His Ala Ala Pro Tyr Ser Tyr Asp Cys	
400 405 410	
ac ^g aaa tac tgacgtgtcc cgggacctcc cctccccggc ccgcgtccggc	1477
Thr Lys Tyr	
415	
ttcgcttccc agccccgacc caaccagaca attaaggggc tgcaagagacg caaaaaaagaa	1537
acaaaaacatg tccaccaacc ttttctcaga cccgggagca gagagcgggc acgctagccc	1597
ccagccgtct gtgaagagcg caggttaactt taattcgccg ccccgttct gggatcccag	1657
gaaaccctc caaaggggacg cagcccaaca aaatgagtat tggcttaaa atccccctcc	1717
cctaccagga cggctgtgct gtgctcgacc tgagcttca aaagttaagt tatggaccca	1777
aatcccatag cgagcccta gtgacttct gttaggggtcc ccataggtgt atgggggtct	1837
ctatacgataa tatatgtgct gtgtgtaatt taaaatttct ccaaccgtgc tgtacaaatg	1897

- 10 -

tgtggatttg taatcaggct attttggtgt tggtgttgtt gttcagagcc attaatataa 1957
tatttaaagt ttagttcaact ggataagttt ttcatcttgc ccaaccattt ctaactgcc 2017
aattgaattc aagaaaccga tgtggggtttt gtttcctgtca caattatgag atataattct 2077
tttcccatt gtaggtcttt tacaaaacaa gaaaataatt tattttttt 2137
aagaagtcaa gtatctgata ctttttatTTT acaaagtgtg atggTTTgt atagtaggtt 2197
ccaccctgag tattcctaaa agaaaaaaaaaaaaaagct taaaaactct aacttcatot 2257
gtgttgtct tacgtggct taatcgTTT acttaccta aaataaacc 2317
ttctgccccaa agtttggaca gtgtgttgtt gttgttgcatttttacaaa cgaggtgtgt 2377
ttgcaaaaccc acctgctttg attatTTTt acacacagg 2437
aaaaacgacc agagaatagg agcacacacc tgctgtctt 2497
tttgattaaat tttaaaatcc cactcttagga tttttcttt tcgagaaaacc gcccagttgg 2557
agggggctgc ctgaaggacc ggaccatgag tttgccgtga tgcattttct taaatgcaca 2617
aaaacatgct aattgtcaaa acaaacagtg ccactccatc tcagtgtcca gccgtcccc 2677
gtttaggagg tgaaggaagg gaagaataaa catttcccgt ttgctaactg caacccaggg 2737
tgagtccctgc ttccccccga ttttataaaa tttaggcctc ttgcctgtct ttaatagttt 2797
tccagagaat ttgaactggg ccaatgaagg tctgaagggg acggattttc tagcgtttga 2857
tatccatccc ccttagccgc cagatcagag gggatttca gactttatta cttctcaatg 2917
tcatgtctaa atctacaccc tcatcgagt gaaaaatttt aaaacctcat tacccttcaa 2977
aaataatttta tgatattttt agagttctaa attcaagttt ttcaatatgt taaataatag 3037
agattatttt ttgttttcaa tgtaatatac tcgttttta catttttaat agtaacatag 3097
tttttgtgaa atgtagctga cgaaatggct ttattatcta ttcaatggc tgaagtccac 3157
cactccctg ctggccctcta tggtaattt tggggaccaa agcttcatca attcccaccc 3217
cagcaggtga gctgtacctt gctaattgtg aagttctt 3277
cagatgattt tgctaaaggt gattttgcattt gatgcagtgg cgctgaacgt aacccgggtg 3337
tttttgtcgt ttgttttca acatggcaact ttatctccac gctatgtga aatagaatta 3397
ggggaaagctt aaagcataat aattgtcccc acatgtgcaaa cacagactct ttcaatctgt 3457
ggccccagag gtggcacaca gttaaagactt ggcggctgtc tcatttttt tcataatgtg 3517
cggttcccg ggtgtccggg tgctagactt tcagcaggcc ccaggccaga cgggctttgg 3577
ttgagtgaac aggaggagga agttaaggag gttaggggtgg ggagagaccc tctccaagct 3637
gcagaagaag gtggcccaag ctccttgcct gcgtctgccc tgatggtttc attttacttc 3697

tgctcgcttc atgtatgg ccccaaggaga agaggagagt attccagacg gtaagcgagc 3757
tggcttttc ccttccctag acgtttaaa gaaatcttc taaaagcttg ccctcatcgt 3817
aagcttgaa accgttggtg tcctgttagt ggcgagggtc gagagacacg cggagaaata 3877
aaggagagcg acggtgtggc tgagagcccc caggtctgct gttgaaacta agctggcctt 3937
ttgcaccttt aggaagcctt tttaaagaag tcctgctgtg tgggggcccgg aagcccaagt 3997
gagtgggcct tgtggaggtt atcgggagggt gtcttacca ctcttgggg aacgtggca 4057
acggggggat tgtatctgaa gctttattca ggtttcggc ggcagcagag tggagaacca 4117
qcccttaqt qtqaqcqqc ctqqqqatTT tqqqactcat c 4158

<210> 4
<211> 417
<212> PRT
<213> *Homo sapiens*

<400> 4

Met Asn Ser Gln Glu Gly Cys Lys Glu Thr Leu Asn Gly Ile Tyr Gln
 1 5 10 15

Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn Lys Gln Gly Trp
20 25 30

Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu Cys Phe Val Lys
35 40 45

Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser Tyr Trp Thr Leu
50 55 60

Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser Phe Leu Arg Arg
65 70 75 80

Arg Arg Arg Phe Lys Lys Lys Asp Val Ser Lys Glu Lys Glu Glu Arg
85 90 95

Ala His Leu Lys Glu Pro Pro Pro Ala Ala Ser Lys Gly Ala Pro Ala
100 105 110

Thr Pro His Leu Ala Asp Ala Pro Lys Glu Ala Glu Lys Lys Val Val
115 120 125

Ile Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val Ile Thr Lys Val
130 135 140

Glu Thr Leu Ser Pro Glu Ser Ala Leu Gln Gly Ser Pro Arg Ser Ala
145 150 155 160

Ala Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu Pro Glu His His
165 170 175

Ala Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val Glu Asn Ile Met
180 185 190

- 12 -

Thr Leu Arg Thr Ser Pro Pro Gly Gly Glu Leu Ser Pro Gly Ala Gly
 195 200 205
 Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro Tyr Ala Ala Ala
 210 215 220
 Pro Pro Ala Ala Tyr Gly Gln Pro Cys Ala Gln Gly Leu Glu Ala Gly
 225 230 235 240
 Ala Ala Gly Gly Tyr Gln Cys Ser Met Arg Ala Met Ser Leu Tyr Thr
 245 250 255
 Gly Ala Glu Arg Pro Ala His Met Cys Val Pro Pro Ala Leu Asp Glu
 260 265 270
 Ala Leu Ser Asp His Pro Ser Gly Pro Thr Ser Pro Leu Ser Ala Leu
 275 280 285
 Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Ala Ala Thr Gly His His
 290 295 300
 His Gln His His Gly His His His Pro Gln Ala Pro Pro Pro Pro Pro
 305 310 315 320
 Ala Pro Gln Pro Gln Pro Thr Pro Gln Pro Gly Ala Ala Ala Gln
 325 330 335
 Ala Ala Ser Trp Tyr Leu Asn His Ser Gly Asp Leu Asn His Leu Pro
 340 345 350
 Gly His Thr Phe Ala Ala Gln Gln Gln Thr Phe Pro Asn Val Arg Glu
 355 360 365
 Met Phe Asn Ser His Arg Leu Gly Ile Glu Asn Ser Thr Leu Gly Glu
 370 375 380
 Ser Gln Val Ser Gly Asn Ala Ser Cys Gln Leu Pro Tyr Arg Ser Thr
 385 390 395 400
 Pro Pro Leu Tyr Arg His Ala Ala Pro Tyr Ser Tyr Asp Cys Thr Lys
 405 410 415

Tyr

```

<210> 5
<211> 6021
<212> DNA
<213> Mus musculus

<220>
<221> exon
<222> (1649)..(4348)

<300>
<308> GenBank/Y08222

```

<309> 1997-05-14

<300>
<301> Miura, N
<303> Genomics
<304> 41
<306> 489-492
<307> 1997

<400> 5
ctcgagtc aa aggtagcaca cataaaaacct attttgc ttcggta ctagcaatgc 60
caactaaagg tt tcctcacccg ccaaagctga aacagt gact tctaattctt caaacccctt 120
tgccgaaaat ct aaagggggg tggggggcta tgggtggc gtgggggggg ggtcgagaa 180
gaagaaagac tgagacaaat gtttatctg tcgcctt ccctacc cccgaccac 240
aacttccaga agttctcg aggcatagag ccattccgta gggacatctc ggtgcttctg 300
aggaagcgg a cccgagg atcccgatgact gactggagat gttgaaggaa taaataccag 360
tccacaaata aacaaactgt cccccggatt cctagaggga agggacacgc ttgaaggctg 420
gggaaactcg agtcgtgt cgtaaagg tgcataaaaat aaaaaaaaaaaa 480
cagtattccag ggccctctaa gagccctgg tcctcagtc accttataaa aactcagtaa 540
aacaaacagc ctgaaaataca tgcatttac aggtccca agatgctgac cgcgagatgg 600
gaccacgccc gggcccccggc aacagctagg gaagcgggtc cgaggctaca cagtgcgcg 660
ctcccttgcg tttccagtg cgaaggccgc gatggagtgc aggcttggag ctccccacgc 720
cgaacgggca caccagctcc cgggggctgg ctgccttgc ctaacctca gacagcgctt 780
tcataagg tgg gagaaggga gaggccggg tggatggcag gaaaagctag ccctcgctca 840
tgccggagag gagaccagg aagcaacagt tgggttcacg cgcttccctg aaccccacga 900
aattgttgg aggactcaga tggatcacct aagttagcagc gaagacgaag gaccaatgg 960
tccttaggtg ttaccttccc agtttggcat tcccaactaag cttccctcc cagcccgacc 1020
ccgtcgtaa ggggagagga caacctgaa gcgtccctgt aattatccat cactgcattt aacaggccct 1080
tccgttgcg ctgaaacccat tacaacttgg ccccgataat taagaaatct aattattcgc 1140
ctcttcatcc attaataata aaaaaaaaaaa aatccagg ctcttccctt cttacaagg 1200
cttggggca aatctctgca caacttcattt aattcgatgt tatatttcaa actaaacttc 1260
tttttatttt ccaaaggaaac agggtttta attttgc tggacacgtg gtctcgtaa 1320
acaaaatgtg ataataaaaat aaaattttat aagatgtAAC tcattttaa aagtctcaa 1380
gttaacttgc gctggggggg ggggagatct ggctaaagac atctggctt tagagccgac 1440
ggatttcaggc gctccctcg tgcgggcttcc accttcattt aatccggatc 1500
tgcaaacttcc tggagggggg acttttggaa cttttccca tcccttaaaag ggactttgc tcttttccg 1560
cgccggcttcc cggacccttca cgagagccgc tctagacttcc ggaagggtcg gtgtcgccc acggcgccgc 1620
cgccggcttcc tggcgctcg tcagggtcg caccggccaa gcccggatcg cgcggccgc 1680
ggccggcttcc cccggcttcc ctccggatg ccgcattcc cggtcggctt aacccggatcg 1740
cgccggcttcc tggcgccgc gtcgctgtac gctggggct gcagttctcc tggcgccgc 1800
cgccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 1860
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 1920
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 1980
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2040
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2100
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2160
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2220
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2280
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2340
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2400
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2460
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2520
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2580
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2640
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2700
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2760
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2820
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2880
ggccggcttcc tggcgccgc tggccggatcg tgcaggccgc ttactcggtt tcggacccca 2940

<210> 6
<211> 2712
<212> DNA
<213> *Mus musculus*

- 15 -

<220>
 <221> CDS
 <222> (422)..(1906)

 <300>
 <308> GenBank/Y08222
 <309> 1997-05-14

 <300>
 <301> Miura, N
 <303> Genomics
 <304> 41
 <306> 489-492
 <307> 1997

 <400> 6
 aggactttg cttcttttc cgggctcggc cgcgacgcct ctccggaccc tagctcgctg 60
 acgctgcggg ctgcagttct cctggggggg cccgagagcc gctgtctcct tttctagcac 120
 tcggaagggc tggtgtcgct ccacggtcgc gcgtggcgct tggccggcca gtcagggct 180
 gccacccgcc aagccgagag tgcgcggcca gcggggccgc ctgcgtgca cccttcagga 240
 tgccgatccg cccggtcggc tgaacccgag cgccggcgct ttccgcgcgt ggaccgcgag 300
 gctgccccga gtcggggctg cctgcacgc tccgtccctt cctgctctcc tgctccggc 360
 ctcgctcgcc gcgggcccga gtcggtgccgc gcaggcggcg accgggcgtc tgggacgcag 420
 c atg cag gcg cgt tac tcg gta tcg gac ccc aac gcc ctg gga gtg gta 469
 Met Gln Ala Arg Tyr Ser Val Ser Asp Pro Asn Ala Leu Gly Val Val
 1 5 10 15

 ccc tat ttg agt gag caa aac tac tac cgg gcg gcc ggc agc tac ggc 517
 Pro Tyr Leu Ser Glu Gln Asn Tyr Tyr Arg Ala Ala Gly Ser Tyr Gly
 20 25 30

 ggc atg gcc agc ccc atg ggc gtc tac tcc ggc cac ccg gag cag tac 565
 Gly Met Ala Ser Pro Met Gly Val Tyr Ser Gly His Pro Glu Gln Tyr
 35 40 45

 ggc gcc ggc atg ggc cgc tcc tac gcg ccc tac cac cac cag ccc gcg 613
 Gly Ala Gly Met Gly Arg Ser Tyr Ala Pro Tyr His His Gln Pro Ala
 50 55 60

 gcg ccc aag gac ctg gtg aag ccg ccc tac agc tat ata gcg ctc atc 661
 Ala Pro Lys Asp Leu Val Lys Pro Pro Tyr Ser Tyr Ile Ala Leu Ile
 65 70 75 80

 acc atg gcg atc cag aac gcg cca gag aag atc act ctg aac ggc 709
 Thr Met Ala Ile Gln Asn Ala Pro Glu Lys Lys Ile Thr Leu Asn Gly
 85 90 95

 atc tac cag ttc atc atg gac cgt ttc ccc ttc tac cgc gag aac aag 757
 Ile Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn Lys
 100 105 110

- 16 -

cag ggc tgg cag aac agc atc cgc cac aac ctg tca ctc aat gag tgc Gln Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu Cys 115 120 125	805
ttc gtg aaa gtg ccg cgc gac gac aag aag ccg ggc aag ggc agc tac Phe Val Lys Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser Tyr 130 135 140	853
tgg acg ctc gac ccg gac tcc tac aac atg ttc gag aat ggc agc ttc Trp Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser Phe 145 150 155 160	901
ctg cgg cgg cgg cgg cgc ttc aag aag aag gat gtg ccc aag gac aag Leu Arg Arg Arg Arg Phe Lys Lys Lys Asp Val Pro Lys Asp Lys 165 170 175	949
gag gag cgg gcc cac ctc aag gag ccg ccc tcg acc acg gcc aag ggc Glu Glu Arg Ala His Leu Lys Glu Pro Pro Ser Thr Thr Ala Lys Gly 180 185 190	997
gct ccg aca ggg acc ccg gta gct gac ggg ccc aag gag gcc gag aag Ala Pro Thr Gly Thr Pro Val Ala Asp Gly Pro Lys Glu Ala Glu Lys 195 200 205	1045
aaa gtc gtg gtt aag agc gag gcg gcg tcc ccc gcg ctg ccg gtc atc Lys Val Val Val Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val Ile 210 215 220	1093
acc aag gtg gag acg ctg agc ccc gag gga gcg ctg cag gcc agt ccg Thr Lys Val Glu Thr Leu Ser Pro Glu Gly Ala Leu Gln Ala Ser Pro 225 230 235 240	1141
cgc agc gca tcc tcc acg ccc gca ggt tcc cca gac ggc tcg ctg ccg Arg Ser Ala Ser Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu Pro 245 250 255	1189
gag cac cac gcc gcg cct aac ggg ctg ccc ggc ttc agc gtg gag Glu His His Ala Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val Glu 260 265 270	1237
acc atc atg acg ctg cgc acg tcg cct ccg ggc ggc gat ctg agc cca Thr Ile Met Thr Leu Arg Thr Ser Pro Pro Gly Gly Asp Leu Ser Pro 275 280 285	1285
gcg gcc gcg cgc gcc ggc ctg gtg cca ccg ctg gca ctg cca tac Ala Ala Ala Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro Tyr 290 295 300	1333
gcc gca gcg cca ccc gcc gct tac acg cag ccg tgc gcg cag ggc ctg Ala Ala Ala Pro Pro Ala Ala Tyr Thr Gln Pro Cys Ala Gln Gly Leu 305 310 315 320	1381
gag gct gcg ggc tcc gcg ggc tac cag tgc agt atg cgg gct atg agt Glu Ala Ala Gly Ser Ala Gly Tyr Gln Cys Ser Met Arg Ala Met Ser 325 330 335	1429
ctg tac acc ggg gcc gag cgg ccc gcg cac gtg tgc gtt ccg ccc gcg Leu Tyr Thr Gly Ala Glu Arg Pro Ala His Val Cys Val Pro Pro Ala 340 345 350	1477

- 17 -

ctg gac gag gct ctg tcg gac cac ccg agc ggc ccc ggc tcc ccg ctc Leu Asp Glu Ala Leu Ser Asp His Pro Ser Gly Pro Gly Ser Pro Leu 355 360 365	1525
ggc gcc ctc aac ctc gca gcg ggt cag gag ggc gcg ttg ggg gcc tcg Gly Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Gly Ala Ser 370 375 380	1573
ggt cac cac cac cag cat cac ggc cac ctc cac ccg cag gcg cca ccg Gly His His His Gln His His Gly His Leu His Pro Gln Ala Pro Pro 385 390 395 400	1621
ccc gcc ccg cag ccc cct ccc gcg ccg cag ccc gcc acc cag gcc acc Pro Ala Pro Gln Pro Pro Ala Pro Gln Pro Ala Thr Gln Ala Thr 405 410 415	1669
tcc tgg tat ctg aac cac ggc ggg gac ctg agc cac ctc ccc ggc cac Ser Trp Tyr Leu Asn His Gly Gly Asp Leu Ser His Leu Pro Gly His 420 425 430	1717
acg ttt gca acc caa cag caa act ttc ccc aac gtc cg ^g gag atg ttc Thr Phe Ala Thr Gln Gln Thr Phe Pro Asn Val Arg Glu Met Phe 435 440 445	1765
aac tcg cac ccg cta gga ctg gac aac tcg tcc ctc ggg gag tcc cag Asn Ser His Arg Leu Gly Leu Asp Asn Ser Ser Leu Gly Glu Ser Gln 450 455 460	1813
gtg agc aat gcg agc tgt cag ctg ccc tat cga gct acg ccg tcc ctc Val Ser Asn Ala Ser Cys Gln Leu Pro Tyr Arg Ala Thr Pro Ser Leu 465 470 475 480	1861
tac cgc cac gca gcc ccc tac tct tac gac tgc acc aaa tac tga Tyr Arg His Ala Ala Pro Tyr Ser Tyr Asp Cys Thr Lys Tyr 485 490 495	1906
ggctgtccag tccgctccag ccccaggacc gcaccggctt cgcctcctcc atggAACCT 1966	
tcttcgacgg agccgcagaa agcgacggaa agcgccccctc tctcagaacc aggagcagag 2026	
agctccgtgc aactcgcagg taacttatcc gcagctcagt ttgagatctc agcgagtccc 2086	
tctaaggggg atgcagccca gcaaaacgaa atacagattt ttttttaat tcctccct 2146	
acccagatgc tgccgcctgct cccttggggc ttcatagatt agcttatgga ccaaaccat 2206	
agggaccctt aatgacttct gtggagattc tccacggcg caagaggctt ctccggataa 2266	
ggtgccctct gtaaacgagt gcggtttgt aaccaggcta ttttgttctt gcccagagcc 2326	
tttaatataa tatttaaagt tgcgtccact ggataaggtt tcgtcttgcc caactgttac 2386	
tgccaaattt aattcaagaa acgtgtgtgg gtctttctc cccacgtcac catgataaaa 2446	
taggtccctc cccaaactgt aggtcttttta caaaacaaga aaataattta tttttttgtt 2506	
gttgttggat aacgaaatta agtacggat acttttaatt taggaagtgc atggctttgt 2566	

acagtagatg ccatctgggg tattccaaaa acacacccaaa agactttaaa atttcaatct 2626
 cacctgtgtt tgtcttatgt gatctcagtg ttgtatccat cttaaaataa acccggttgt 2686
 ttttctgcc caaaaaaaaaaaaaa 2712

<210> 7
 <211> 494
 <212> PRT
 <213> Mus musculus

<400> 7
 Met Gln Ala Arg Tyr Ser Val Ser Asp Pro Asn Ala Leu Gly Val Val
 1 5 10 15
 Pro Tyr Leu Ser Glu Gln Asn Tyr Tyr Arg Ala Ala Gly Ser Tyr Gly
 20 25 30
 Gly Met Ala Ser Pro Met Gly Val Tyr Ser Gly His Pro Glu Gln Tyr
 35 40 45
 Gly Ala Gly Met Gly Arg Ser Tyr Ala Pro Tyr His His Gln Pro Ala
 50 55 60
 Ala Pro Lys Asp Leu Val Lys Pro Pro Tyr Ser Tyr Ile Ala Leu Ile
 65 70 75 80
 Thr Met Ala Ile Gln Asn Ala Pro Glu Lys Lys Ile Thr Leu Asn Gly
 85 90 95
 Ile Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn Lys
 100 105 110
 Gln Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu Cys
 115 120 125
 Phe Val Lys Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser Tyr
 130 135 140
 Trp Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser Phe
 145 150 155 160
 Leu Arg Arg Arg Arg Phe Lys Lys Lys Asp Val Pro Lys Asp Lys
 165 170 175
 Glu Glu Arg Ala His Leu Lys Glu Pro Pro Ser Thr Thr Ala Lys Gly
 180 185 190
 Ala Pro Thr Gly Thr Pro Val Ala Asp Gly Pro Lys Glu Ala Glu Lys
 195 200 205
 Lys Val Val Val Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val Ile
 210 215 220
 Thr Lys Val Glu Thr Leu Ser Pro Glu Gly Ala Leu Gln Ala Ser Pro
 225 230 235 240
 Arg Ser Ala Ser Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu Pro
 245 250 255
 Glu His His Ala Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val Glu
 260 265 270
 Thr Ile Met Thr Leu Arg Thr Ser Pro Pro Gly Gly Asp Leu Ser Pro
 275 280 285
 Ala Ala Ala Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro Tyr
 290 295 300
 Ala Ala Ala Pro Pro Ala Ala Tyr Thr Gln Pro Cys Ala Gln Gly Leu
 305 310 315 320
 Glu Ala Ala Gly Ser Ala Gly Tyr Gln Cys Ser Met Arg Ala Met Ser
 325 330 335
 Leu Tyr Thr Gly Ala Glu Arg Pro Ala His Val Cys Val Pro Pro Ala
 340 345 350
 Leu Asp Glu Ala Leu Ser Asp His Pro Ser Gly Pro Gly Ser Pro Leu
 355 360 365

- 19 -

Gly Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Gly Ala Ser
 370 375 380
 Gly His His His Gln His His Gly His Leu His Pro Gln Ala Pro Pro
 385 390 395 400
 Pro Ala Pro Gln Pro Pro Pro Ala Pro Gln Pro Ala Thr Gln Ala Thr
 405 410 415
 Ser Trp Tyr Leu Asn His Gly Gly Asp Leu Ser His Leu Pro Gly His
 420 425 430
 Thr Phe Ala Thr Gln Gln Thr Phe Pro Asn Val Arg Glu Met Phe
 435 440 445
 Asn Ser His Arg Leu Gly Leu Asp Asn Ser Ser Leu Gly Glu Ser Gln
 450 455 460
 Val Ser Asn Ala Ser Cys Gln Leu Pro Tyr Arg Ala Thr Pro Ser Leu
 465 470 475 480
 Tyr Arg His Ala Ala Pro Tyr Ser Tyr Asp Cys Thr Lys Tyr
 485 490

<210> 8
<211> 3289
<212> DNA
<213> Homo sapiens

<300>
<301> Miura, N
<303> Genomics
<304> 41
<306> 489-492
<307> 1997

<300>
<308> GenBank/Y08223
<309> 1997-05-14

<400> 8
gaattcggag gattaaggta tcagtcagca cgttgttacc ttccctctta tgcactccgc 60
tgcctggctc ctcggcgaaa agcgaggaa actcagttt tagggtttac ctctaaaacc 120
tcgatagggtt atcccttgacg accccgagcc tggaaactcc ctgttgatga ttaattattt 180
gattaataaa gtataacatc cagagagggc cctgccatc caatccagcg cgtttgctt 240
tgaatccatt acacctgggc cccataatt agggaaatcta attattcgct tcatactca 300
ttaataagaa aaatgtccca ggatcattgc tacttacaag gtctttggga gagatatttt 360
actctattaa tccattttt tttatattt aaattgattt ttttttacag aggaaagtgg 420
ctatctttttt gttttggca tggggccca ttcacaaaaa tggatcata aaataaaattt 480
taataagata taacttttta aaaagtttt aagtgaagac ggatcgccg cggaggccgg 540
ggccggcgaaa tcttagagcc gacggattcc tgcgtctc gccccgattt gcgcggact 600
ccttcagat gcccgggtgat tggtcaaaag tttccgggagg gggcgtggcc cgaggaaagt 660
aaaaactcgc tttcagcaag aagactttt aaacttttcc caatccctaa aagggaactt 720
gcctttttt ctgggctca gggggcagcc gctcggaccc cggcgcgtg accctcgaaa 780
ctggcgattc gctgggggct tggagagcc cctggtcccc tcctcgccg gggcgagggt 840
ccaccttggt ccccaaggccg cggcgtctc gctgggtccg cggccggcccg cctgcccgc 900
ctggccgcgc cgggtccgg agccagcgag gagcggggcc ggcgtgcgc ttggccgggg 960
cgcccccctcc agatgcgca tccggccggt cggctgaaag cgcgcgcggcc tgcgtggccc 1020
gagcgacgac gaccgcgcac cctcgccccg gaggctgcca ggagaccggg gcccggccctc 1080
ccgtccccct cctctcccc tctggctctc tcgcgtctc tcgcgtctcag gggccccctc 1140
gctccccccgg ccgcagtcg tgcgtgggg cggccggcag ccgtctcgga agcagcatgc 1200
aggcgcgcta ctccgtgtcc gaccccaacg ccctgggagt ggtgcctac ctgagcgagc 1260
agaattacta cggggctcg ggcagctacg gccgcgtatgc cagccccatg ggcgtctatt 1320
ccggccaccc ggagcgtac agcgcgggaa tggggccgtc ctacgcgc taccaccacc 1380

accagccccgc	ggccgcctaag	gacctggtga	agccgccta	cagctacatc	gcgctcatca	1440
ccatggccat	ccagaacgcg	cccgagaaga	agatcacett	gaacggcatc	taccagttca	1500
tcatggaccg	cttccccttc	taccgggaga	acaaggcagg	ctggcagaac	agcatccgccc	1560
acaaccttc	gctcaacgag	tgcttcgtca	aggtgccccg	cgacgacaag	aagccggca	1620
agggcagtt	ctggaccctg	gaccggact	cctacaacat	gttcgagaac	ggcagcttcc	1680
tgccggcgccg	gcggcgcttc	aaaaagaagg	acgtgtccaa	ggagaaggag	gagcggggccc	1740
acctcaagga	gccgccccccg	gcggcggtca	agggcgcccc	ggccacccccc	cacctagcgg	1800
acgcccccaa	ggaggccgag	aagaaggtgtt	tgtcaagag	cgaggcgccg	tccccggcgc	1860
tgccgggtcat	caccaagggt	gagacgtga	gcccggagag	cgcgctgcag	ggcagccgc	1920
gcagcgcggc	ctccacggcc	gcccggctcc	ccgacgggttc	gtcggggag	caccacgcgc	1980
cggcgcccaa	cggctgct	ggcttcagcg	tggagaacat	catgaccctg	cgaacgtcgc	2040
cggcgccgg	agagctgagc	ccggggggcg	gacgcgcggg	cctgggtgtt	ccgcccgtgg	2100
cgctgcata	cgccgcgcg	ccgcccggcg	catacgggca	gccgtgcgt	cagggtctgg	2160
aggccggggc	cgccgggggc	taccagtgc	gcatgcgagc	gatgagctg	tacaccgggg	2220
ccgagcgccc	ggcgacatg	tgcgccccgc	ccggccctgg	cgaggccctc	tcggaccacc	2280
cgagcgcccc	cacgtcgccc	ctgagcgctc	tcaacctcgc	ccggggccag	gagggcgcgc	2340
tcgcccgcac	ggggcaccac	caccagcacc	acggccacca	ccaccggcag	gcccggccgc	2400
ccccggccgc	tccccagccc	cagccgacgc	cgccagccgg	ggccggccgc	gcccaggcgg	2460
cctcttggta	tctcaaccac	agcggggacc	tgaaccacct	ccccggccac	acgttcgcgg	2520
cccagcagca	aactttcccc	aacgtgcggg	agatgttcaa	ctcccacccgg	ctggggattt	2580
agaactcgac	cctcggggag	tcccaggtga	gtggcaatgc	cagctgcacag	ctgccttaca	2640
gatccacgcc	gcctctctat	cgccacgcag	ccccctactc	ctacgactgc	acgaaataact	2700
gacgtgtccc	gggacctccc	ctccccggcc	cgctccggct	tcgcttccca	gccccgaccc	2760
aaccagacaa	ttaaggggct	gcagagacgc	aaaaaaaagaaa	caaaacatgt	ccaccaaccc	2820
tttctcgac	ccggggagcg	agagcgggca	cgctagcccc	cagccgtctg	tgaagagcgc	2880
aggttaaccc	aatttcggc	ccccgtttcg	ggatcccagg	aaacccttcc	aaagggacgc	2940
agcccaacaa	aatgagtatt	ggtcttaaaa	tccccctccc	ctaccaggac	ggctgtctg	3000
tgctcgaccc	gagctttcaa	aagtttaagtt	atggacccaa	atccctatac	gagccccctag	3060
tgactttctg	taggggtccc	cataggtgt	tgggggtctc	tatagataat	atatgtctg	3120
tgtgtatatt	taaatttctc	caaccgtgt	gtacaaatgt	gtggattttt	aatcaggcta	3180
ttttgttgtt	gttgttgtt	ttcagagcca	ttaatataat	atttaaagtt	gagttcaactg	3240
gataagtttt	tcatcttgc	caaccatttc	taactgccaa	attgaattt		3289

```
<210> 9
<211> 1506
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(1506)

<300>
<308> GenBank/NM_005251
<309> 1999-12-23
```

```

<400> 9
atg cag gcg cgc tac tcc gtg tcc gac ccc aac gcc ctg gga gtg gtg 48
Met Gln Ala Arg Tyr Ser Val Ser Asp Pro Asn Ala Leu Gly Val Val
    1           5           10          15

ccc tac ctg agc gag cag aat tac tac cggt gct gcg ggc agc tac ggc 96
Pro Tyr Leu Ser Glu Gln Asn Tyr Tyr Arg Ala Ala Gly Ser Tyr Gly
    20          25          30

ggc atg gcc agc ccc atg ggc gtc tat tcc ggc cac ccg gag cag tac 144
Gly Met Ala Ser Pro Met Gly Val Tyr Ser Gly His Pro Glu Gln Tyr
    35          40          45

```

- 21 -

agc gcg ggg atg ggc cgc tcc tac gcg ccc tac cac cac cac cag ccc Ser Ala Gly Met Gly Arg Ser Tyr Ala Pro Tyr His His His Gln Pro	192
50 55 60	
gcu gcg cct aag gac ctg gtg aag ccg ccc tac agc tac atc gcu ctc Ala Ala Pro Lys Asp Leu Val Lys Pro Pro Tyr Ser Tyr Ile Ala Leu	240
65 70 75 80	
atc acc atg gcc atc cag aac gcu ccc gag aag aag atc acc ttg aac Ile Thr Met Ala Ile Gln Asn Ala Pro Glu Lys Lys Ile Thr Leu Asn	288
85 90 95	
ggc atc tac cag ttc atc atg gac cgc ttc ccc ttc tac cgg gag aac Gly Ile Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn	336
100 105 110	
aag cag ggc tgg cag aac agc atc cgc cac aac ctc tcg ctc aac gag Lys Gln Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu	384
115 120 125	
tgc ttc gtc aag gtg ccc cgc gac gac aag aag ccc ggc aag ggc agt Cys Phe Val Lys Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser	432
130 135 140	
tac tgg acc ctg gac ccc gac tcc tac aac atg ttc gag aac ggc agc Tyr Trp Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser	480
145 150 155 160	
ttc ctg cgg cgc cgg cgg cgc ttc aaa aag aag gac qtg tcc aag gag Phe Leu Arg Arg Arg Arg Phe Lys Lys Lys Asp Val Ser Lys Glu	528
165 170 175	
aag gag gag cgg gcc cac ctc aag gag ccc ccc gcg gcg tcc aag Lys Glu Glu Arg Ala His Leu Lys Glu Pro Pro Ala Ala Ser Lys	576
180 185 190	
ggc gcc ccg gcc acc ccc cac cta gcu gac gcc ccc aag gag gcc gag Gly Ala Pro Ala Thr Pro His Leu Ala Asp Ala Pro Lys Glu Ala Glu	624
195 200 205	
aag aag gtg gtg atc aag agc gag gcu gcu tcc ccg gcu ctg ccg gtc Lys Lys Val Val Ile Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val	672
210 215 220	
atc acc aag gtg gag acg ctg agc ccc gag agc gcu ctg cag gcu agc Ile Thr Lys Val Glu Thr Leu Ser Pro Glu Ser Ala Leu Gln Gly Ser	720
225 230 235 240	
ccg cgc agc gcu gcc tcc acg ccc gcc ggc tcc ccc gac ggt tcg ctg Pro Arg Ser Ala Ala Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu	768
245 250 255	
ccg gag cac cac gcc gcu gcu ccc aac ggg ctg cct gcu tcc agc gtg Pro Glu His His Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val	816
260 265 270	

- 22 -

gag aac atc atg acc ctg cga acg tcg ccg ggc gga gag ctg agc Glu Asn Ile Met Thr Leu Arg Thr Ser Pro Pro Gly Gly Glu Leu Ser 275 280 285	864
ccg ggg gcc gga cgc gcg ggc ctg gtg ccg ccg ctg gcg ctg cca Pro Gly Ala Gly Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro 290 295 300	912
tac gcc gcc gcg ccc gcc tac ggc cag ccg tgc gct cag ggc Tyr Ala Ala Ala Pro Pro Ala Ala Tyr Gly Gln Pro Cys Ala Gln Gly 305 310 315 320	960
ctg gag gcc ggg gcc ggg ggc tac cag tgc agc atg cga gcg atg Leu Glu Ala Gly Ala Ala Gly Tyr Gln Cys Ser Met Arg Ala Met 325 330 335	1008
agc ctg tac acc ggg gcc gag cgg ccg gcg cac atg tgc gtc ccg ccc Ser Leu Tyr Thr Gly Ala Glu Arg Pro Ala His Met Cys Val Pro Pro 340 345 350	1056
gcc ctg gac gag gcc ctc tcg gac cac ccg agc ggc ccc acg tcg ccc Ala Leu Asp Glu Ala Leu Ser Asp His Pro Ser Gly Pro Thr Ser Pro 355 360 365	1104
ctg agc gct ctc aac ctc gcc ggc cag gag ggc gcg ctc gcc gcc Leu Ser Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Ala Ala 370 375 380	1152
acg ggc cac cac cac cag cac ggc cac cac ccg cag gcg ccg Thr Gly His His His Gln His His His His Pro Gln Ala Pro 385 390 395 400	1200
ccg ccc ccg ccg gct ccc cag ccc cag ccg acg ccg cag ccc ggg gcc Pro Pro Pro Pro Ala Pro Gln Pro Gln Pro Thr Pro Gln Pro Gly Ala 405 410 415	1248
gcc gcg cag gcg gcc tcc tgg tat ctc aac cac agc ggg gac ctg Ala Ala Ala Gln Ala Ala Ser Trp Tyr Leu Asn His Ser Gly Asp Leu 420 425 430	1296
aac cac ctc ccc ggc cac acg ttc gcg gcc cag cag caa act ttc ccc Asn His Leu Pro Gly His Thr Phe Ala Ala Gln Gln Thr Phe Pro 435 440 445	1344
aac gtg cgg gag atg ttc aac tcc cac ccg ctg ggg att gag aac tcg Asn Val Arg Glu Met Phe Asn Ser His Arg Leu Gly Ile Glu Asn Ser 450 455 460	1392
acc ctc ggg gag tcc cag gtg agt ggc aat gcc agc tgc cag ctg ccc Thr Leu Gly Glu Ser Gln Val Ser Gly Asn Ala Ser Cys Gln Leu Pro 465 470 475 480	1440
tac aga tcc acg ccg cct ctc tat cgc cac gca gcc ccc tac tcc tac Tyr Arg Ser Thr Pro Pro Leu Tyr Arg His Ala Ala Pro Tyr Ser Tyr 485 490 495	1488
gac tgc acg aaa tac tga Asp Cys Thr Lys Tyr 500	1506

<210> 10
<211> 501
<212> PRT
<213> Homo sapiens

<400> 10
Met Gln Ala Arg Tyr Ser Val Ser Asp Pro Asn Ala Leu Gly Val Val
1 5 10 15
Pro Tyr Leu Ser Glu Gln Asn Tyr Tyr Arg Ala Ala Gly Ser Tyr Gly
20 25 30
Gly Met Ala Ser Pro Met Gly Val Tyr Ser Gly His Pro Glu Gln Tyr
35 40 45
Ser Ala Gly Met Gly Arg Ser Tyr Ala Pro Tyr His His His Gln Pro
50 55 60
Ala Ala Pro Lys Asp Leu Val Lys Pro Pro Tyr Ser Tyr Ile Ala Leu
65 70 75 80
Ile Thr Met Ala Ile Gln Asn Ala Pro Glu Lys Lys Ile Thr Leu Asn
85 90 95
Gly Ile Tyr Gln Phe Ile Met Asp Arg Phe Pro Phe Tyr Arg Glu Asn
100 105 110
Lys Gln Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu
115 120 125
Cys Phe Val Lys Val Pro Arg Asp Asp Lys Lys Pro Gly Lys Gly Ser
130 135 140
Tyr Trp Thr Leu Asp Pro Asp Ser Tyr Asn Met Phe Glu Asn Gly Ser
145 150 155 160
Phe Leu Arg Arg Arg Arg Phe Lys Lys Lys Asp Val Ser Lys Glu
165 170 175
Lys Glu Glu Arg Ala His Leu Lys Glu Pro Pro Pro Ala Ala Ser Lys
180 185 190
Gly Ala Pro Ala Thr Pro His Leu Ala Asp Ala Pro Lys Glu Ala Glu
195 200 205
Lys Lys Val Val Ile Lys Ser Glu Ala Ala Ser Pro Ala Leu Pro Val
210 215 220
Ile Thr Lys Val Glu Thr Leu Ser Pro Glu Ser Ala Leu Gln Gly Ser
225 230 235 240
Pro Arg Ser Ala Ala Ser Thr Pro Ala Gly Ser Pro Asp Gly Ser Leu
245 250 255
Pro Glu His His Ala Ala Ala Pro Asn Gly Leu Pro Gly Phe Ser Val
260 265 270
Glu Asn Ile Met Thr Leu Arg Thr Ser Pro Pro Gly Gly Glu Leu Ser
275 280 285
Pro Gly Ala Gly Arg Ala Gly Leu Val Val Pro Pro Leu Ala Leu Pro
290 295 300
Tyr Ala Ala Ala Pro Pro Ala Ala Tyr Gly Gln Pro Cys Ala Gln Gly
305 310 315 320
Leu Glu Ala Gly Ala Ala Gly Gly Tyr Gln Cys Ser Met Arg Ala Met
325 330 335
Ser Leu Tyr Thr Gly Ala Glu Arg Pro Ala His Met Cys Val Pro Pro
340 345 350
Ala Leu Asp Glu Ala Leu Ser Asp His Pro Ser Gly Pro Thr Ser Pro
355 360 365
Leu Ser Ala Leu Asn Leu Ala Ala Gly Gln Glu Gly Ala Leu Ala Ala
370 375 380
Thr Gly His His His Gln His His Gly His His His Pro Gln Ala Pro
385 390 395 400

- 24 -

Pro	Pro	Pro	Pro	Ala	Pro	Gln	Pro	Gln	Pro	Thr	Pro	Gln	Pro	Gly	Ala
				405				410							415
Ala	Ala	Ala	Gln	Ala	Ala	Ser	Trp	Tyr	Leu	Asn	His	Ser	Gly	Asp	Leu
				420				425							430
Asn	His	Leu	Pro	Gly	His	Thr	Phe	Ala	Ala	Gln	Gln	Gln	Thr	Phe	Pro
				435			440								445
Asn	Val	Arg	Glu	Met	Phe	Asn	Ser	His	Arg	Leu	Gly	Ile	Glu	Asn	Ser
				450			455				460				
Thr	Leu	Gly	Glu	Ser	Gln	Val	Ser	Gly	Asn	Ala	Ser	Cys	Gln	Leu	Pro
				465			470				475				480
Tyr	Arg	Ser	Thr	Pro	Pro	Leu	Tyr	Arg	His	Ala	Ala	Pro	Tyr	Ser	Tyr
				485				490							495
Asp	Cys	Thr	Lys	Tyr											
				500											

<210> 11
<211> 327
<212> DNA
<213> Homo sapiens

<300>
<308> GenBank/AW271272
<309> 2000-01-03

<300>
<301> Strausberg, Robert
<303> Trends Genet.
<304> 16
<305> 3
<306> 103-106
<307> 2000

<400> 11
ttttttttac attttcgtct tctgttcttg tgattggaaa taagtggcac gccccattgc 60
cttcttagtcg cctcccccga gcgaaaggc cgaagcgaag aggcttgtg ggttgtctca 120
acatcccttt gctgagaatc gaatacgcag ccgatgaaca gccaggaagg gtgcaaggaa 180
accttgaacg gcatctacca gttcatcatg gaccgcattcc ctttcttaccg ggagaacaag 240
cagggctggc agaacacgat ccgcacacaac ctctcgctca acgagtgcctt cgtcaagggtg 300
ccccgcgacg acaagaagcc cgccaag 327

<210> 12
<211> 147
<212> DNA
<213> Homo sapiens

<300>
<308> GenBank/AW793237
<309> 2000-05-16

<300>
<301> Dias Neto, E
<303> Proc. Natl. Acad. Sci. U.S.A.
<304> 97
<306> 3491-3496
<307> 2000

- 25 -

<400> 12
ccgtctgaga atcgaataacg cagccgatga acagccagga agggtgcaag gaaaccttga 60
acggcatcta ccagttcatc atggaccgct tccccttcta ccgggagaac aagcaggct 120
ggcagaacag catccgccac aacctct 147

Q
S
S
S
S
S
S

Fig. 1

Fig. 2

Fig. 3

		Splice E-box-like		
	200	AAGGGTGC AAGGAAAC CGGAGAAGAAAGACTGAG--ACAATGTT	TCTCCCTGAAGCC CTTGCCCTACCCAAAC	
HUMAN				
MOUSE				
HUMAN		CAGACCAGCAACTTCC CGGACCAACAACTTCC	AAATTCTGCCGTG---TTTAGCCTTGTAAAGGGGTCTCA GAAGGTCTGGAGGCATA	Forkhead-like
MOUSE			GACATCTCGTAGGGACATCTCG	
HUMAN		CTCCTTCAGGAAAGTGGGAAAG--GGGATCTGATT	----TGAGGGTGTGGAAGGAAT	
MOUSE		GTGCTTCTGAGGAAGGGACCGGAGCAGGGATCCGATGACGACTGGAGATGTTGAAGGAAT		
HUMAN		AAATAATCAGTCC AAATA-CCAGTCC	AAACAAACTGTCC AAACAAACTGTCCC	Ets-like
MOUSE			--GGGATTCTAGAGGGAAAGGAATC GGGATTCTAGAGGGAAAGGACGACGC	
HUMAN		CTTGAAG--	----GAGATCCAAGTCGCTCCAGGTCTGCCCTGCC TTGAAGGGTGGGGAAACTCCGAGTCGCTGTGCGTCAAGGT	475
MOUSE			-TGGCATAAATT	

Fig. 4

(1250)

HUMAN	TGCCATTCCAATC-CAGCGCGTTGCTTTGAATCCATTACACCTGGCCCCATAAATTA
MOUSE	GCCC--TACACGCTCAGTCGGTTGCIC-TGAACCCATTACAACTAGGCCGATAAATTA
HUMAN	GGAAATCTAATTATTGCTTCACTCATAATAAA-----GAAAATGTCCAGGAT
MOUSE	AGAAATCTAATTATTGCTTCACTCATAATAATAAAAAAATCTCCAGGCT
HUMAN	CATTGCTACTTACAAGGTCTTGGAGAGATATTACTCTATAATTACCCATTCTATTTA
MOUSE	CTTCCCTACTTACAAGGTCTGGGGCAAATCTGCCAACACTCATCAATTGATGTTA
HUMAN	TATTCAATTGA-----TTTTTTAACAGAGGAAGTGGCTATC---TTTTGTTTTG
MOUSE	TATTCAAAACTAAACTCTTTTATTTCAAAGGAACAGGGTTTAAATTGCTCTG
HUMAN	GGCATGGGCCATTACCAAAATGTATCATAAAATAAAATTAAAGATAACT-
MOUSE	GACACGTGGTCTCGTTAAACAAATGTGATAATAAAATTATAAGATGTAACCTC
HUMAN	-TTTTAAAAAGTTCAAGTGAAGACGGAGTCGGCGAGG-----CCGGGGCG
MOUSE	ATTTTAAAGTCTCAAGTAACTTGAGCTGGGGGGGAGATCTGGCTAAGAGCAT
HUMAN	CGGGGTCTTAGAGCCGACGGATTCTGGCTCCTCGGGCTCCTCGTTTGATGGGCCATCCTCTCG
MOUSE	
HUMAN	CAGCTGCCGGGTATTGGCTCAAAGTCCGGAGGGGGGTGGCCGAGGAAGTAAAAA
MOUSE	CAGCTGCCAGATGATTGGTCAACTTCTGGAGGGGGCTGAAGTAAGTAAAAA
HUMAN	CTCGCTTCAAGCAAGAAGACTTTGAAACTTTCCCAATCCCTAAAGGGACTTGGCCTC-
MOUSE	CTCGCTTGAAGCAAGACTTTGAAACTTTCCCAATCCCTAAAGGGACTTGGCTC

(1763)