Teste de revisão

Matheus Henrique 470894

Painel ► SBL0059 ► 10 setembro - 16 setembro ► Teste de revisão

Iniciado em segunda, 14 Set 2020, 21:46

Estado Finalizada

Concluída em segunda, 14 Set 2020, 21:51 Tempo empregado 4 minutos 20 segundos

Avaliar 10,00 de um máximo de 10,00(100%)

Questão 1 Correto

O campo $\vec{\mathbf{F}} = y\mathbf{i} + (x+z)\mathbf{j} - y\mathbf{k}$ é conservativo.

Atingiu 2,00 de Escolha uma opção: 2,00

Verdadeiro

■ Falso

✓

Solução:

 $ec{\mathbf{F}}$ é conservativo se, e somente se,

$$\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z} \, , \, \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x} \in \frac{\partial N}{\partial z} = \frac{\partial M}{\partial y}.$$

Encontrando M , N e P:

$$M=rac{\partial f}{\partial x}=y$$
 , $N=rac{\partial f}{\partial y}=x+z$ e $P=rac{\partial f}{\partial z}=-y$;

Calculando as derivadas parciais de P em relação a y, M em relação a z e N em relação a z:

$$rac{\partial P}{\partial y}=-1$$
 , $rac{\partial M}{\partial z}=1$ e $rac{\partial N}{\partial z}=0$;

Como $\frac{\partial P}{\partial y}
eq \frac{\partial N}{\partial z}$, $\frac{\partial M}{\partial z}
eq \frac{\partial P}{\partial x}$ e $\frac{\partial N}{\partial z}
eq \frac{\partial M}{\partial y}$, então o campo é não conservativo.

A resposta correta é 'Falso'.

1 of 6

Questão **2**

Correto Atingiu 2,00 de

O campo $\vec{\mathbf{F}} = (z+y)\vec{\mathbf{i}} + z\vec{\mathbf{j}} + (y+x)\vec{\mathbf{k}}$ é conservativo.

Escolha uma opção:

- Verdadeiro
- Falso

 ✓

Solução:

O teste das componentes para campos conservativos define que um campo

$$ec{\mathbf{F}} = M(x,y,z) ec{\mathbf{i}} + N(x,y,z) ec{\mathbf{j}} + P(x,y,z) ec{\mathbf{k}}$$

qualquer é conservativo se, e somente se,

$$\frac{\partial(P)}{\partial(y)} = \frac{\partial(N)}{\partial(z)}, \quad \frac{\partial(M)}{\partial(z)} = \frac{\partial(P)}{\partial(x)} \ \ \text{e} \quad \frac{\partial(N)}{\partial(x)} = \frac{\partial(M)}{\partial(y)}$$

Assim, temos que para este caso:

$$M(x,y,z) = z + y$$

$$N(x,y,z)=z$$

$$P(x, y, z) = y + x$$

E fazendo então os testes temos (lembrando que caso uma igualdade do teste seja quebrada já temos que o campo não é conservativo):

$$\tfrac{\partial(P)}{\partial(y)} = \tfrac{\partial(y+x)}{\partial(y)} = x \; \mathsf{e} \; \tfrac{\partial(N)}{\partial(z)} = \tfrac{\partial(z)}{\partial(z)} = 1.$$

Como a igualdade esperada não foi obtida, já podemos afirmar que \vec{F} não é conservativo.

A resposta correta é 'Falso'.

Teste de revisão

Questão **3** Correto

Atingiu 2,00 de 2,00

Utilize o teorema de Green para encontrar a circulação em sentido anti-horário para o campo ${f F}=(y^2-x^2){f i}+(x^2+y^2){f j}$ e a curva C (o triângulo limitado por y=0, x=3, y=x).

Resposta: 9

Resposta:

Primeiramente devemos definir nosso M e N:

$$M=y^2-x^2$$
 e $N=x^2+y^2$

Circulação:

Neste caso podemos usar o Teorema de Green. Aplicaremos os valores na equação $\iint\limits_R rac{\partial N}{\partial x} - rac{\partial M}{\partial y} dA$.

Primeiro, nós calculamos:

$$rac{\partial N}{\partial x}=2x$$

$$\frac{\partial M}{\partial y} = 2y$$

Agora, podemos calcular a integral:

$$\int_0^3 \int_0^x 2x - 2y \, dy dx$$
$$= \int_0^3 \left[2xy - \frac{2y^2}{2} \right]_0^x dx$$

$$=\int_0^3 2x^2 - x^2 \, dx$$

$$= \left[\frac{2x^3}{3} - \frac{x^3}{3}\right]_0^3$$

$$=\frac{2(3)^3}{3}-\frac{(3)^3}{3}=\frac{2(27)}{3}-\frac{(27)}{3}$$

$$= 18 - 9 = 9$$

A resposta correta é: 9.

Teste de revisão

Questão **4**Correto

Correto
Atingiu 2,00 de 2,00

Encontre o trabalho realizado por $\vec{\mathbf{F}}=2xy^3\mathbf{i}+4x2y^2\mathbf{j}$ para mover uma partícula uma vez em sentido anti-horário ao redor da fronteira da região "triangular" no primeiro quadrante delimitada superiormente pelo eixo x, a reta x=1 e a curva $y=x^3$.

Escolha uma:

- \odot a. $\frac{2}{33}$
 - **√**
- o b. $\frac{2}{39}$
- \circ c. $\frac{2}{35}$
- o d. $\frac{2}{37}$
- \circ e. $\frac{2}{31}$

Sua resposta está correta.

Resposta:

Sendo $\vec{\mathbf{F}}$ um campo conservativo do tipo $\vec{\mathbf{F}} = M\mathbf{i} + N\mathbf{j}$ de derivadas parciais de primeira ordem contínuas.

$$\oint_C ec{\mathbf{F}} \cdot ec{\mathbf{T}} \; ds = \oint_C M dx + N dy = \iint_R \left(rac{\partial N}{\partial x} - rac{\partial M}{\partial y}
ight) \; dx \; dy$$

Aplicando o Teorema de Green com a fórmula Circulação Rotacional Tangencial, onde Onde M corresponde os componentes em ${\bf i}$ e N os componentes em ${\bf j}$. Assim:

$$M = 2xy^3$$

$$N = 4x^2y^2$$

Para as derivadas parciais teremos:

$$rac{\partial N}{\partial x}=8xy^2$$

$$\frac{\partial M}{\partial y} = 6xy^2$$

Da curva C obtemos as variações de x e y onde:

$$0 < y < x^3$$

Substituindo os dados na fórmula de Circulação Rotacional e resolvendo a integral obtemos:

$$\oint_{C} \vec{\mathbf{F}} \cdot \vec{\mathbf{T}} \, ds = \int_{0}^{1} \int_{0}^{x^{3}} 8xy^{2} - 6xy^{2} \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{x^{3}} 2xy^{2} \, dy \, dx$$

$$= \int_{0}^{1} \frac{2xy^{3}}{3} \Big|_{0}^{x^{3}} \, dx$$

$$= \int_{0}^{1} \frac{2x^{(x^{3})^{3}}}{3} \, dx$$

$$= \int_{0}^{1} \frac{2x^{10}}{3} \, dx$$

$$= \frac{2x^{11}}{33} \Big|_{0}^{1}$$

$$= \frac{2}{33}$$

A resposta correta é: $\frac{2}{33}$

Questão **5** Correto

Atingiu 2,00 de 2,00 Utilize a fórmula da área do teorema de Green $rac{1}{2}\oint\limits_{C}xdy-ydx$ para encontrar a área do astroide

 $ec{\mathbf{r}}(t) = \left(\cos^3 t
ight)\mathbf{i} + \left(\sin^3 t
ight)\mathbf{j}$, $0 \leq t \leq 2\pi$.

Escolha uma:

- o a. $\frac{5\pi}{8}$
- o b. $\frac{5\pi}{2}$
- o c. $\frac{3\pi}{2}$
- \odot d. $\frac{3\pi}{8}$

o e. $\frac{7\pi}{2}$

Sua resposta está correta.

Solução:

i) Derivando x e y temos:

$$M=x=\cos^3 t o dx=-3\cos^2 t \, \sin t$$

$$N=y=\sin^3t o dy=3\sin^2t\cos t$$

ii) De acordo com o Teorema de Green faz-se necessário respeitar o seguinte formato:

$$Mdy - Ndx$$

Realizando a substituição, obtemos:

$$\cos^3 t (3\sin^2 t \cos t) - \sin^3 t (-3\sin^2 t \sin t).$$

iii) Simplificando:

$$3\sin^2 t \cos^4 t + 3\cos^2 t \sin^4 t = 3\sin^2 t \cos^2 t (\cos^2 t + \sin^2 t) = 3\sin^2 t \cos^2 t$$

iv) Dado que a área da região R é $\frac{1}{2}\oint\limits_C xdy-ydx$, temos que após as devidas substituições a integral é:

$$\left[rac{1}{2} \int \limits_{0}^{2\pi} 3 \sin^2 t \cos^2 t dt = rac{1}{2} \left[3 \int \limits_{0}^{2\pi} rac{1 - \cos(4t)}{8} dt
ight] = rac{1}{2} \left[rac{3}{8} \left(\int \limits_{0}^{2\pi} dt - \int \limits_{0}^{2\pi} \cos(4t) dt
ight)
ight] = rac{1}{2} \left[rac{3}{8} (t + \sin(4t))
ight]_{0}^{2\pi} = rac{3\pi}{8}.$$

Resposta =
$$\frac{3\pi}{8}$$

A resposta correta é: $\frac{3\pi}{8}$

•

62.010-560 – Sobral, Ceará

■ Telefone: (88) 3613-2603

Rua Coronel Estanislau Frota, s/n – CEP

Contato

O universal pelo regional.

Mais informações

UFC - Sobral

EE- Engenharia Elétrica

EC - Engenharia da

Computação

PPGEEC- Programa de Pósgraduação em Engenharia

Elétrica e Computação

∠ E-mail:

Social

6 of 6 24/09/2020 10:17