

第四章 组合逻辑电路设计(二)

秦磊华 计算机学院

1.多路选择器的基本功能

从一组输入数据中,选择出某一个数据,完成这种功能的逻辑电路称 作数据选择器(或称为多路选择开关)

2. 4路数据选择器的设计 (MUX)

A ₁	A_0	Υ
0	0	D_0
0	1	D ₁
1	0	D ₂
1	1	D_3

\overline{ST}_1	A_1	A ₀	Y ₁
1	X	X	0
0	0	0	D_0
0	0	1	D ₁
0	1	0	D ₂
0	1	1	D_3

$$Y = \overline{\overline{ST_1}} (\overline{A_1} \overline{A_0} D_0 + \overline{A_1} A_0 D_1 + A_1 \overline{A_0} D_2 + A_1 A_0 D_3)$$

\overline{ST}_1	A_1	A_0	Y ₁
1	X	X	0
0	0	0	D_0
0	0	1	D ₁
0	1	0	D ₂
0	1	1	D_3

3.带使能和可扩展功能的8路数据选择器设计

\overline{ST}	A_2	A_{1}	A_0	Y	\overline{W}
1	X	X	X	0	1
0	0	0	0	D_0	$\overline{\mathrm{D}}_{\mathrm{0}}$
0	0	0	1	D_1	$\overline{\mathrm{D}}_{1}$
0	0	1	0	D_2	$\overline{\mathrm{D}}_{\!2}$
0	0	1	1	D_3	$\overline{\mathrm{D}_{3}}$
0	1	0	0	D_4	$\overline{\mathrm{D}_{4}}$
0	1	1	1	D_5	$\overline{\mathrm{D}}_{5}$
0	1	0	0	D_6	$\overline{\mathrm{D}_{6}}$
0	1	1	1	D_7	$\overline{\mathrm{D}_7}$

ST: 选通端, 低有效。

Y,W: 互补输出端。

可参照4路选择器写出Y逻辑 表达式

$$Y = \overline{A}_2 \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_2 \overline{A}_1 A_0 D_1 + \overline{A}_2 A_1 \overline{A}_0 D_2 + \overline{A}_2 A_1 A_0 D_3 + A_2 \overline{A}_1 \overline{A}_0 D_4 + A_2 \overline{A}_1 A_0 D_5 + A_2 A_1 \overline{A}_0 D_6 + A_2 A_1 A_0 D_7$$

4.数据选择器的应用

同一目标有多个数据来源时,在其入口处需使用多路选择器

4.8 多路分配器(解复用器 Demultiplexer)

1.多路分配器的基本功能

将1个输入数据,根据需要传送到m个输出端的任何一个输出端的电路,称为数据分配器、多路分配器或解复用器,其逻辑功能正好与多路选择器相反。

4.8 多路分配器(解复用器 Demultiplexer)

2.多路分配器的设计

A ₁	A_0	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	D
0	1	0	0	D	0
1	0	0	D	0	0
1	1	D	0	0	0

$$Y_0 = \overline{A_1} \overline{A_0} D \qquad Y$$

$$Y_0 = \overline{A_1} \overline{A_0} D \qquad Y_1 = \overline{A_1} A_0 D$$
$$Y_2 = A_1 \overline{A_0} D \qquad Y_3 = A_1 A_0 D$$

$$Y_2 = A_1 \overline{A_0} D$$

$$Y_3 = A_1 A_0 D$$

A ₁	A_0	Υ
0	0	D_0
0	1	D ₁
1	0	D_2
1	1	D_3

计算机组成原理

4.9 多路选择器、多路分配器、译码器比较

1.利用变量译码器实现组合逻辑函数

A ₁	A_0	Y3	Y2	Y1	Y0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$Y_3 = A_1 A_0$$
 $Y_2 = A_1 \overline{A}_0$
 $Y_1 = \overline{A}_1 A_0$ $Y_0 = \overline{A}_1 \overline{A}_0$

一个n变量输入的变量译码器, 其输出包含了n个输入变量的全部最小项。用n变量译码器加输出门就能实现任何形式的输入变量不大于n 的组合逻辑函数。

例1用译码器实现一组多输出函数

$$F_{1} = A\overline{B} + \overline{B}C + AC$$

$$F_{2} = \overline{A}\overline{B} + B\overline{C} + ABC$$

$$F_{3} = \overline{A}C + BC + A\overline{C}$$

解:三输入变量的多输出函数,用3-8译码器实现

将多输出函数写成最小项之和形式,再配合适当的逻辑门即可。

$$F_1 = A\overline{B} + \overline{B}C + AC = \sum m(1,4,5,7)$$

$$F_2 = \overline{A}\overline{B} + B\overline{C} + ABC = \sum m(0,1,2,6,7)$$

$$F_3 = \overline{A}C + BC + A\overline{C} = \sum m(1,3,4,6,7)$$

$\|$

4.10 基于基本组合逻辑功能部件的组合逻辑设计

若译码器是以反变量形式输出,即输出的是mi,则:

$$F_{1} = A\overline{B} + \overline{B}C + AC = m_{1} + m_{4} + m_{5} + m_{7}$$

$$= \overline{m_{1} + m_{4} + m_{5} + m_{7}} = \overline{m_{1} \cdot m_{4} \cdot m_{5} \cdot m_{7}}$$

$$= \overline{\overline{Y_{1}} \cdot \overline{Y_{4}} \cdot \overline{Y_{5}} \cdot \overline{Y_{7}}}$$

$$F_{2} = \overline{AB} + B\overline{C} + ABC = \sum m(0,1,2,6,7) = \overline{m_{0}} \cdot \overline{m_{1}} \cdot \overline{m_{2}} \cdot \overline{m_{6}} \cdot \overline{m_{7}}$$

$$= \overline{\overline{Y_{0}} \cdot \overline{Y_{1}} \cdot \overline{Y_{2}} \cdot \overline{Y_{6}} \cdot \overline{Y_{7}}}$$

$$F_{3} = \overline{AC} + BC + A\overline{C} = \sum m(1,3,4,6,7) = \overline{\overline{Y_{1}} \cdot \overline{Y_{3}} \cdot \overline{Y_{4}} \cdot \overline{Y_{6}} \cdot \overline{Y_{7}}}$$

II 4

4.10 基于基本组合逻辑功能部件的组合逻辑设计

例2:用2-4译码器和适当的逻辑门实现逻辑函数

$$F_{1} = A\overline{B} + \overline{B}C + AC$$

$$F_{2} = \overline{A}\overline{B} + B\overline{C} + ABC$$

$$F_{3} = \overline{A}C + BC + A\overline{C}$$

$$F_{1} = A\overline{B} + \overline{B}C + AC = \overline{m_{1}} \cdot \overline{m_{4}} \cdot \overline{m_{5}} \cdot \overline{m_{7}} = \overline{Y_{1}} \cdot \overline{Y_{4}} \cdot \overline{Y_{5}} \cdot \overline{Y_{7}}$$

$$F_{2} = \overline{A}\overline{B} + B\overline{C} + ABC = \overline{m_{0}} \cdot \overline{m_{1}} \cdot \overline{m_{2}} \cdot \overline{m_{6}} \cdot \overline{m_{7}} = \overline{Y_{0}} \cdot \overline{Y_{1}} \cdot \overline{Y_{2}} \cdot \overline{Y_{6}} \cdot \overline{Y_{7}}$$

$$F_{3} = \overline{A}C + BC + A\overline{C} = \overline{m_{1}} \cdot \overline{m_{3}} \cdot \overline{m_{4}} \cdot \overline{m_{6}} \cdot \overline{m_{7}} = \overline{Y_{1}} \cdot \overline{Y_{3}} \cdot \overline{Y_{4}} \cdot \overline{Y_{6}} \cdot \overline{Y_{7}}$$

4.11 一位全加器FA设计

加数Xi	加数Yi	低位进位C _i	和数Si	进位C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

$$C_{i+1} = X_i Y_i + (X_i + Y_i) C_i$$

4.11 一位全加器FA设计

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

4.11 一位全减器的设计

加数Xi	加数Yi	低位进位C _i	和数Si	进位C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

被减数Xi	减数Yi	低位借位Ci	差Si	借位C _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

计算机组成原理

4.11 一位全减器的设计

被减数X	_i 减数Yi	低位借位Ci	差S _i	借位C _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$S_{i} = \overline{XYC} + \overline{XYC} + X\overline{YC} + XYC$$
$$= \overline{XYC} + \overline{XYC} + \overline{XY}$$

$$C_{i+1} = \overline{XYC} + \overline{XYC} + \overline{XYC} + \overline{XYC}$$
$$= \overline{XY} + YC + \overline{X}C$$

本节内容完成

计算机组成原理