easy! buck to coordinate

G3. A circle ω of radius 1 is given. A collection T of triangles is called good, if the following conditions hold:

- (i) each triangle from T is inscribed in ω ;
- (ii) no two triangles from T have a common interior point.

Determine all positive real numbers t such that, for each positive integer n, there exists a good collection of n triangles, each of perimeter greater than t.

Answer: $t \in (0, 4]$.

Solution. First, we show how to construct a good collection of n triangles, each of perimeter greater than 4. This will show that all $t \leq 4$ satisfy the required conditions.

Construct inductively an (n+2)-gon $BA_1A_2...A_nC$ inscribed in ω such that BC is a diameter, and BA_1A_2 , BA_2A_3 , ..., $BA_{n-1}A_n$, BA_nC is a good collection of n triangles. For n=1, take any triangle BA_1C inscribed in ω such that BC is a diameter; its perimeter is greater than 2BC=4. To perform the inductive step, assume that the (n+2)-gon $BA_1A_2...A_nC$ is already constructed. Since $A_nB+A_nC+BC>4$, one can choose a point A_{n+1} on the small arc $\widehat{CA_n}$, close enough to C, so that $A_nB+A_nA_{n+1}+BA_{n+1}$ is still greater than 4. Thus each of these new triangles BA_nA_{n+1} and $BA_{n+1}C$ has perimeter greater than 4, which completes the induction step.

We proceed by showing that no t > 4 satisfies the conditions of the problem. To this end, we assume that there exists a good collection T of n triangles, each of perimeter greater than t, and then bound n from above.

Take $\varepsilon > 0$ such that $t = 4 + 2\varepsilon$.

Claim. There exists a positive constant $\sigma = \sigma(\varepsilon)$ such that any triangle Δ with perimeter $2s \ge 4 + 2\varepsilon$, inscribed in ω , has area $S(\Delta)$ at least σ .

Proof. Let a, b, c be the side lengths of Δ . Since Δ is inscribed in ω , each side has length at most 2. Therefore, $s-a \geq (2+\varepsilon)-2=\varepsilon$. Similarly, $s-b \geq \varepsilon$ and $s-c \geq \varepsilon$. By Heron's formula, $S(\Delta) = \sqrt{s(s-a)(s-b)(s-c)} \geq \sqrt{(2+\varepsilon)\varepsilon^3}$. Thus we can set $\sigma(\varepsilon) = \sqrt{(2+\varepsilon)\varepsilon^3}$.

Now we see that the total area S of all triangles from T is at least $n\sigma(\varepsilon)$. On the other hand, S does not exceed the area of the disk bounded by ω . Thus $n\sigma(\varepsilon) \leq \pi$, which means that n is bounded from above.

Comment 1. One may prove the Claim using the formula $S = \frac{abc}{4R}$ instead of Heron's formula.

Comment 2. In the statement of the problem condition (i) could be replaced by a weaker one: each triangle from T lies within ω . This does not affect the solution above, but reduces the number of ways to prove the Claim.