Multiobjective Machine Learning

Michael Emmerich LIACS, April 23 2014, NiCaiA Colloquium: Winterbourne House, Birmingham

Leiden University
The Netherlands

Multiobjective Machine Learning

Brief Summary

Basic Principles

Binary Classifier Optimization

Three Way Classification

Parsimony as a Third Objective

Three Class Classifier Optimization

Towards Multi-Class Classification

Summary and outlook

Multiobjective Machine Learning Basic Principles

Design Approach: Set-oriented

Optimization

How good is a set?

GEOMETRICAL INDICATOR

How to find the best set?

INDICATOR-BASED ALGORITHM

Binary Classifier Optimization

Wang, P., Emmerich, M., Li, R., Tang, K., Baeck, T., and X. Yao (2014). Convex Hull-Based Multi-objective Genetic Programming for Maximizing Receiver Operating Characteristic Performance. IEEE TEVC

Binary Classifier Optimization

Wang, P., Emmerich, M., Li, R., Tang, K., Baeck, T., and X. Yao (2014). Convex Hull-Based Multi-objective Genetic Programming for Maximizing Receiver Operating Characteristic Performance. IEEE TEVC

Multiobjective Machine Learning Binary Classifier Optimization

Binary Classifier Optimization

Wang, P., Emmerich, M., Li, R., Tang, K., Baeck, T., and X. Yao (2014). Convex Hull-Based Multi-objective Genetic Programming for Maximizing Receiver Operating Characteristic Performance. IEEE TEVC

Three-Way Classifier Optimization

'It is better to not classify than to make a wrong classification' but, number of unclassified instances (further exam) \rightarrow min.

Zhao, J., Basto V., Yevseyeva I., Emmerich, M.: Quadcriteria Optimization of Binary Classifiers: Error Rates, Coverage, and Complexity: Accepted for EVOLVE 2015, Springer AISC.

Parsimony as a Third Objective

Basto-Fernandes, V., Yevseyeva, I., Frantz, R. Z., Grilo, C., Díaz, N. P., and Emmerich, M. (2014). An automatic generation of textual pattern rules for digital content filters. Procedia Technology, 16, 806-812.

Parsimony as a third objective

Multiobjective Sparse Ensemble Learning by Means of Evolutionary Algorithms (MOSE)

Jiaqi Zhao, Licheng Jiao, Fang Liu, Lin Li, Vitor Basto Fernandes, Iryna Yevseyeva, and Michael Emmerich (2015): Submitted for IEEE PAMI

Three-Class Classifier Optimization

Zhao, J., Fernandes, V. B., Jiao, L., Yevseyeva, I., Maulana, A., Li, R., and Emmerich, M. (2014). Multiobjective Optimization of Classifiers by Means of 3-D Convex Hull Based Evolutionary Algorithm. arXiv preprint arXiv:1412.5710. (submitted for: IEEE TEVC)

Multiobjective Machine Learning Towards Multi-Class Classification

Multi-Class Classifier Optimization

Each class is objective \Rightarrow Many objectives

Asep Maulana, Zhongzhou Lian, Jing Liu, Michael Emmerich: Reducing Complexity in Many Objective Optimization Using Community Detection, Accepted for IEEE CEC)

What we achieved in NICaiA

- Problem Formulations: ROC/Binary, VUS/Ternary Classifiers, Three Way, Sparse, Many-Class (work in progress)
- New Algorithms: CH-EMOA, 3D-CHEMOA, MOSE, CoDeMO
- New Performance Indicators: AUCH, VUS, Gini Pareto
- Applications: Sparse Classifiers, UCI, SPAM-Classifiers

List of all coauthors: Pu Wang, Jing Liu, Ke Tang, Jiaqi Zhao, Xin Yao, Asep Maulana, Vitor Basto, Iryna Yevseyeva, Rui Li, Thomas Bäck, Zhongzhou Lian, Fang Liu, Lin Li, M.E. Thanks: NICaiA Project People, EU 7th Framework for facilitating/inspiring this research.

Multiobjective Machine Learning Summary and outlook

Key References

- HUPKENS, Iris; EMMERICH, Michael. Logarithmic-time Updates in SMS-EMOA and Hypervolume-based Archiving. In: EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Springer International Publishing, 2013. p. 155-169.
- EMMERICH, Michael; DEUTZ, André; BEUME, Nicola. Gradient-based/evolutionary relay hybrid for computing pareto front approximations maximizing the S-metric. Springer Berlin Heidelberg, 2007.
- EMMERICH, Michael TM; DEUTZ, André H.; KRUISSELBRINK, Johannes W. On quality indicators for black-box level set approximation. In: EVOLVE-A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Springer Berlin Heidelberg, 2013. p. 157-185.

Multiobjective Machine Learning Summary and outlook

Key References

- Wang, P.; Emmerich, M.; Li, R.; Tang, K.; Bäck, T.; Yao, X., "Convex Hull-Based Multi-objective Genetic Programming for Maximizing Receiver Operating Characteristic Performance," Evolutionary Computation, IEEE Transactions on , NiCaIa Project
- Hernandez VAS, Schütze O and Emmerich M (2014),
 "Hypervolume Maximization via Set Based Newton's Method", In EVOLVE - A Bridge. Beijing, China, July 2014, 2014. Springer.
- Kruisselbrink JW, Emmerich M, Deutz AH and Bäck T (2010), "Exploiting Overlap When Searching for Robust Optima", In Parallel Problem Solving from Nature (PPSN XI)., pp. 63-72. Springer-Verlag.
- Zhao, J., Emmerich, M., Li R., Deutz A., and Bäck Th: 3-D Convex Hull Approximation using Steady State Evolution, (LIACS Technical Report, 2014) NiCaiA Project