Voronoi-based Geometry Estimator for 3D Digital Surfaces

Louis Cuel, Jacques-Olivier Lachaud, Boris Thibert

Université de Grenoble Laboratoire Jean Kuntzman

Université de Savoie LAMA

Differential quantities estimation

Normal

Curvature

Curvature Direction

Sharp Feature

Differential quantities estimation

Normal

Curvature Direction

Curvature

Sharp Feature

We want our method to be :

- -Accurate
- -Stable under noise
- -Efficient
- -Generic

Inference for different datas

Unorganized Point Clouds

Digital sets

Contributions

Our Approach:

- -A method from computational geometry (VCM) :
- Voronoi
 - Covariance

$$\int_{\Omega} (x-p)(x-p)^{\mathbf{t}} \, \mathrm{d} x.$$

—Feed it with digital points

—Show multigrid convergence for geometric quantities

Contributions

Our Approach:

- —A method from computational geometry (VCM) : ●
- Voronoi
 - Covariance

$$\int_{\Omega} (x-p)(x-p)^{\mathbf{t}} dx.$$

Feed it with digital points

—Show multigrid convergence for geometric quantities

Difficulties:

- -Digitization of the VCM \Rightarrow Digitization error
- Achieve local (even ponctual) stability ⇒ Localization error
- -Fixing parameters to achieve convergence

Plan

- 1) Previous Voronoi-based Methods
- 2) Voronoi Covariance Measure on Point cloud
- 3) Multigrid Convergence of the vcm estimators
- 4) Experiments

Voronoi-Based Methods

Voronoi-based algorithms:

- -Amenta et Bern, 1999, Surface reconstruction by Voronoi filtering
- -Cohen-Steiner et al., 2007, Voronoi-based Variational Reconstruction
- -G. M. O., 2009, Robust Voronoi-based Curvature and Feature Estimation

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Definition:

Voronoi cell: $Vor^P(q) = \{ \text{ points} \}$ whose closest point in P is $q\}$

1

Poles method

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Definition:

Voronoi cell: $Vor^P(q) = \{ \text{ points} \}$ whose closest point in P is $q\}$

 $\operatorname{pole}_P(p) := \mathsf{farthest} \ \mathsf{point} \ \mathsf{of} \ p \ \mathsf{in} \ \operatorname{Vor}_P(p)$

Amenta, Bern, Discrete and Computational Geometry 22 (1999)

Poles method

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Definition:

Voronoi cell: $\operatorname{Vor}^P(q) = \{ \text{ points} \}$ whose closest point in P is $q\}$

 $\operatorname{pole}_P(p) := \operatorname{farthest} \operatorname{point} \operatorname{of} p \operatorname{in} \operatorname{Vor}_P(p)$

Amenta, Bern, Discrete and Computational Geometry 22 (1999)

Poles method

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Definition:

Voronoi cell: $Vor^P(q) = \{ \text{ points} \}$ whose closest point in P is $q\}$

 $\operatorname{pole}_P(p) := \operatorname{farthest} \operatorname{point} \operatorname{of} p \operatorname{in} \operatorname{Vor}_P(p)$

Amenta, Bern, Discrete and Computational Geometry 22 (1999)

Idea: integrate to obtain stability.

2nd previous method : Voronoi Covariance

Alliez, Cohen-Steiner, Tong, Desbruns, Proc. Symposium Geometry Processing 2007

Covariance Matrix:
$$cov_p(\Omega) := \int_{\Omega} (x-p)(x-p)^{\mathbf{t}} dx$$
.

Eigenvectors of $cov_p(\Omega)$ are the **principal axes** of Ω (viewed from p).

2nd previous method : Voronoi Covariance

Alliez, Cohen-Steiner, Tong, Desbruns, Proc. Symposium Geometry Processing 2007

Covariance Matrix:
$$cov_p(\Omega) := \int_{\Omega} (x-p)(x-p)^{\mathbf{t}} dx$$
.

Eigenvectors of $cov_p(\Omega)$ are the **principal axes** of Ω (viewed from p).

Algorithm:

- They take : $\Omega = \operatorname{Vor}_P(p_i) \cap E$
- The normal is estimated by the eigenvector corresponding to the largest eigenvalue (in red).
- Stability to noise : Sum matrices over a neighborhod.

Plan

- 1) Previous Voronoi-based Methods
- 2) Voronoi Covariance Measure
- 3) Multigrid Convergence of the vcm estimators
- 4) Experiments

Definition: Offset of P of radius R: $P^R = \bigcup_{p \in P} B(p, R)$.

Definition: Offset of P of radius R: $P^R = \bigcup_{p \in P} B(p, R)$.

$$A(p) := \operatorname{cov}_p(\operatorname{Vor}_P(p_i) \cap P^R)$$

Definition: The *Voronoi covariance* measure of P of offset radius R is :

$$\mathcal{V}(P,R) := \sum_{i=1}^{N} A(p)\delta_p$$

Definition: Offset of P of radius R: $P^R = \bigcup_{p \in P} B(p, R)$.

$$A(p) := \operatorname{cov}_p(\operatorname{Vor}_P(p_i) \cap P^R)$$

Definition: The *Voronoi covariance* measure of P of offset radius R is :

$$\mathcal{V}(P,R) := \sum_{i=1}^{N} A(p)\delta_p$$

$$\mathcal{V}(P,R) * \chi_r(p) := \sum_{p_i \in B(p,r)} A(p_i)$$

The VCM is defined for all compacts.

Definition: Offset of P of radius R: $P^R = \bigcup_{p \in P} B(p, R)$.

$$A(p) := \operatorname{cov}_p(\operatorname{Vor}_P(p_i) \cap P^R)$$

Definition: The *Voronoi covariance* measure of P of offset radius R is :

$$\mathcal{V}(P,R) := \sum_{i=1}^{N} A(p)\delta_p$$

$$\mathcal{V}(P,R) * \chi_r(p) := \sum_{p_i \in B(p,r)} A(p_i)$$

The VCM is defined for all compacts.

Definition: Offset of P of radius R: $P^R = \bigcup_{p \in P} B(p, R)$.

$$A(p) := \operatorname{cov}_p(\operatorname{Vor}_P(p_i) \cap P^R)$$

Definition: The *Voronoi covariance* measure of P of offset radius R is :

$$\mathcal{V}(P,R) := \sum_{i=1}^{N} A(p)\delta_p$$

$$\mathcal{V}(P,R) * \chi_r(p) := \sum_{p_i \in B(p,r)} A(p_i)$$

The VCM is defined for all compacts.

Theorem: Let P, K be two compacts and $p \in \mathbb{R}^d$.

$$\|\mathcal{V}(P,R) * \chi_r(p) - \mathcal{V}(K,R) * \chi_r(p)\| = O(d_H(K,P)^{\frac{1}{2}})$$

Digital Voronoi covariance measure

- ullet X: an object
- $Dig_h(X)$: his Gauss digitization
- $Z_h = \partial_h X \cap h(\mathbb{Z} + \frac{1}{2})^3$

Digital Voronoi covariance measure

- \bullet X: an object
- ullet $Dig_h(X)$: his Gauss digitization
- $Z_h = \partial_h X \cap h(\mathbb{Z} + \frac{1}{2})^3$

We approach the VCM of the point cloud Z_h :

$$\Omega_h^R = \{x \in Z_h^R \cap h(\mathbb{Z} + \frac{1}{2})^3, vox(x) \subset Z_h^R \}$$

Definition: The VCM digital estimator

$$\widehat{\mathcal{V}}_{Z_h,R}(\chi) := \sum_{x \in \Omega_h^R} h^3(x - p_{Z_h}(x))(x - p_{Z_h}(x))^t \chi(p_{Z_h}(x)),$$

Plan

- 1) Previous Voronoi-based Methods
- 2) Voronoi Covariance Measure
- 3) Multigrid Convergence
- 4) Experiments

Multigrid Convergence

Multigrid Convergence : $\|\hat{E}(h) - E\| \to 0$ when $h \to 0$

VCM and Normal Multigrid Convergence

Theorem: If ∂X is C^2 , $R < \frac{\rho}{2}$, $diam(supp(\chi)) < r$, $h \le \min\left(R, \frac{r^2}{32\rho}\right)$

$$||\mathcal{V}_{\partial X,R}(\chi) - \widehat{\mathcal{V}}_{Z_h,R}(\chi)||_{op} = O\left(\operatorname{Lip}(\chi) \times \left[(r^3 R^{\frac{5}{2}} + r^2 R^3 + r R^{\frac{9}{2}}) h^{\frac{1}{2}} \right] + ||\chi||_{\infty} \times \left[(r^3 R^{\frac{3}{2}} + r^2 R^2 + r R^{\frac{7}{2}}) h^{\frac{1}{2}} + r^2 R h \right]$$

Quantitative and localized bound

Parameters choice

VCM and Normal Multigrid Convergence

Theorem: If ∂X is C^2 , $R < \frac{\rho}{2}$, $diam(supp(\chi)) < r$, $h \le \min\left(R, \frac{r^2}{32\rho}\right)$

$$||\mathcal{V}_{\partial X,R}(\chi) - \widehat{\mathcal{V}}_{Z_h,R}(\chi)||_{op} = O\left(\operatorname{Lip}(\chi) \times \left[(r^3 R^{\frac{5}{2}} + r^2 R^3 + r R^{\frac{9}{2}}) h^{\frac{1}{2}} \right] + ||\chi||_{\infty} \times \left[(r^3 R^{\frac{3}{2}} + r^2 R^2 + r R^{\frac{7}{2}}) h^{\frac{1}{2}} + r^2 R h \right]$$

 p_0 a point of ∂X χ the hat function centered in p_0 with radius r

 $\widehat{n}_{r,R}(\widehat{p_0}) = first \ eigenvecor \ of \ \widehat{\mathcal{V}}_{Z_h,R}(\chi)$

Corollary: normal estimator

If
$$r = R = ah^{\frac{1}{3}}$$
. Then

$$\langle \widehat{n}_{r,R}(\widehat{p_0}), n(p_0) \rangle = O(h^{\frac{1}{6}}).$$

Theorem, sketch of proof

$$||\mathcal{V}_{\partial X,R}(\chi) - \widehat{\mathcal{V}}_{Z_h,R}(\chi)||_{op} \leq ||\mathcal{V}_{\partial X,R}(\chi) - \mathcal{V}_{Z_h,R}(\chi)||_{op} + ||\mathcal{V}_{Z_h,R}(\chi) - \widehat{\mathcal{V}}_{Z_h,R}(\chi)||_{op}.$$

Localization error

Digitization error

Theorem, sketch of proof

$$||\mathcal{V}_{\partial X,R}(\chi) - \widehat{\mathcal{V}}_{Z_h,R}(\chi)||_{op} \le ||\mathcal{V}_{\partial X,R}(\chi) - \mathcal{V}_{Z_h,R}(\chi)||_{op} + ||\mathcal{V}_{Z_h,R}(\chi) - \widehat{\mathcal{V}}_{Z_h,R}(\chi)||_{op}.$$

Localization error

Digitization error

Theorem, sketch of proof

Plan

- 1) Previous Voronoi-based Methods
- 2) Voronoi Covariance Measure
- 3) Multigrid Convergence
- 4) Experiments

Experiments, Convergence Validation

Implementated on DGtal library:

Experiments, Normal Visualization

Experiments, Sharp Feature Estimation

$$r = R = 3h^{0.5}$$

Experiments, Sharp Feature Estimation

Conclusion

Summary:

We have several geometric estimators

- For normals, curvatures and sharp features :
- Theorically stable
- Efficient
- Convergent and accurate in practice

Conclusion

Summary:

We have several geometric estimators

- For normals, curvatures and sharp features :
- Theorically stable
- Efficient
- Convergent and accurate in practice

Perspectives:

• Distance to a measure + Voronoi Covariance

= δ -VCM robust to outliers

Even with outliers

