Minimum Cost Spanning Trees: Kruskal's Algorithm

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 5

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

Example

■ Start with smallest edge, (1,3)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2,4)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2, 4)
- Add next smallest edge, (0,1)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2,4)
- Add next smallest edge, (0,1)
- \blacksquare Can't add (0,3), forms a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2, 4)
- Add next smallest edge, (0,1)
- Can't add (0,3), forms a cycle
- Add next smallest edge, (1, 2)

 $G = (V, E), W : E \rightarrow \mathbb{R}$

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let *TE* ⊆ *E* be the set of tree edges already added to MCST

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$

- \blacksquare $G = (V, E), W : E \to \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - Otherwise, add e_i to TE

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$

Set
$$TE = \emptyset$$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

$$\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$$

Set
$$TE = \{(5,6)\}$$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(1,2)$$

Set $TE = \{(5,6), (1,2)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(0,1)$$

Set $TE = \{(5,6), (1,2), (0,1)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(4,5)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Skip
$$(4,6)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Skip
$$(0,2)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$

Add
$$(1,4)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5), (1,4)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$

Add
$$(2,3)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5), (1,4), (2,3)\}$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include *e*

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
 - Initially each vertex is a separate component

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
 - Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w
 - If u and w are in the same component, e forms a cycle and is discarded

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
 - Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w
 - If u and w are in the same component, e forms a cycle and is discarded
- Let U be component of u, W be $V \setminus U$
 - U, W form a partition of V with $u \in U$ and $w \in W$
 - Since we are scanning edges in ascending order of cost, e is minimum cost edge connecting U and W, so it must be part of any MCST

- Collect edges in a list as (d,u,v)
 - Weight as first component for easy sorting

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
   for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

- Collect edges in a list as (d,u,v)
 - Weight as first component for easy sorting
- Main challenge is to keep track of connected components
 - Dictionary to record component of each vertex
 - Initially each vertex is an isolated component
 - When we add an edge (u,v), merge the components of u and v

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
    return(TE)
```

Analysis

- Sorting the edges is $O(m \log m)$
 - Since m is at most n^2 , equivalently $O(m \log n)$

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

Analysis

- Sorting the edges is $O(m \log m)$
 - Since m is at most n^2 , equivalently $O(m \log n)$
- Outer loop runs m times
 - Each time we add a tree edge, we have to merge components
 O(n) scan
 - n-1 tree edges, so this is done O(n) times

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

Analysis

- Sorting the edges is $O(m \log m)$
 - Since m is at most n^2 , equivalently $O(m \log n)$
- Outer loop runs m times
 - Each time we add a tree edge, we have to merge components
 O(n) scan
 - n-1 tree edges, so this is done O(n) times
- Overall, $O(n^2)$

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

- Complexity is $O(n^2)$
- Bottleneck is naive strategy to label and merge components

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

- Complexity is $O(n^2)$
- Bottleneck is naive strategy to label and merge components
- Components partition vertices
 - Collection of disjoint sets

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

- Complexity is $O(n^2)$
- Bottleneck is naive strategy to label and merge components
- Components partition vertices
 - Collection of disjoint sets
- Data structure to maintain collection of disjoint sets
 - find(v) return set containing v
 - union(u,v) merge sets of u, v

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

- Complexity is $O(n^2)$
- Bottleneck is naive strategy to label and merge components
- Components partition vertices
 - Collection of disjoint sets
- Data structure to maintain collection of disjoint sets
 - find(v) return set containing v
 - union(u,v) merge sets of
 u, v
- Efficient union-find brings complexity down to O(m log n)

```
def kruskal(WList):
    (edges, component, TE) = ([], {}, [])
    for u in WList.keys():
        # Weight as first component to sort easily
        edges.extend([(d,u,v) for (v,d) in WList[u]])
        component[u] = u
    edges.sort()
   for (d,u,v) in edges:
        if component[u] != component[v]:
            TE.append((u,v))
            c = component[u]
            for w in WList.keys():
                if component[w] == c:
                    component[w] = component[v]
   return(TE)
```

- Kruskal's algorithm builds an MCST bottom up
 - \blacksquare Start with n components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- Complexity is $O(n^2)$ due to naive handling of components
 - Will see how to improve to $O(m \log n)$

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- Complexity is $O(n^2)$ due to naive handling of components
 - Will see how to improve to $O(m \log n)$
- If edge weights repeat, MCST is not unique

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- Complexity is $O(n^2)$ due to naive handling of components
 - Will see how to improve to $O(m \log n)$
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - Consider a triangle on 3 vertices with all edges equal

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- Complexity is $O(n^2)$ due to naive handling of components
 - Will see how to improve to $O(m \log n)$
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - Consider a triangle on 3 vertices with all edges equal
- Different choices lead to different spanning trees

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- Complexity is $O(n^2)$ due to naive handling of components
 - Will see how to improve to $O(m \log n)$
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - Consider a triangle on 3 vertices with all edges equal
- Different choices lead to different spanning trees
- In general, there may be a very large number of minimum cost spanning trees