MAC0239 - EP2

Gabriel Haruo Hanai Takeuchi - 13671636

12/2022

Questão 1

Apresentar uma fórmula da LPO que, quando verdadeira em algum modelo $\mathcal{M} = (\mathcal{A}, \cdot^{\mathcal{M}})$, força o domínio \mathcal{A} a ser infinito; esta fórmula não é verdadeira em modelos com domínio finito.

Resposta:

A intuição é assumir que todo elemento do domínio tem pelo menos um elemento maior que ele. Funciona para os inteiros com a função de potenciação e a ordem parcial <.

$$\begin{split} \varphi : \forall x \exists y (x^2 < y^2) \\ \Sigma &= \left(\mathcal{C} = \{\}, \mathcal{F} = \{(\cdot^2)^1\}, \mathcal{P} = \{<^2\}\right) \\ \mathcal{M} : \\ \mathcal{A} : \mathbb{Z} \\ (.^2)^{\mathcal{M}} : \text{elevado ao quadrado} \\ &<^{\mathcal{M}} : \text{menor} \end{split}$$

Questão 2

Apresentar duas fórmula que satisfaçam as seguintes restrições:

(a) Uma fórmula que seja verdadeira se e somente se o modelo tiver pelo menos 2 elementos.

Resposta

A intuição é diferenciar pelo menos 2 elementos do domínio.

$$\varphi: \forall x \exists y (x \neq y)$$

(b) Uma fórmula que seja verdadeira sse o modelo tiver pelo menos 4 elementos.

Resposta:

Agora, a intuição é diferenciar pelo menos 4 elementos do domínio.

$$\varphi: \forall x \exists y \exists z \exists w (x \neq y \land x \neq z \land x \neq w \land y \neq z \land y \neq w \land z \neq w)$$

Questão 3

Apresentar uma fórmula que seja verdadeira sse, dado $n \in \mathbb{N}^+$, o modelo possui pelo menos 2n elementos.

Dica: usar os conectivos generalizados

$$\bigwedge_{i=1}^{n} \phi_i = \phi_1 \wedge \ldots \wedge \phi_n \qquad \bigvee_{i=1}^{n} \phi_i = \phi_1 \vee \ldots \vee \phi_n$$

Resposta:

A intuição é garantir a existência de **pelo menos** n elementos distintos e afirmar que, para cada elemento x desses n, existe um que é o dobro de x. Como o domínio requisitado é \mathbb{N} , então não é necessário mencionar que se $x \neq y$, então $2x \neq 2y$.

$$\forall x \exists y_1, \dots, y \exists z_1, \dots, z_n \left[\left(\bigwedge_{i=1}^n x \neq y_i \right) \land \left(\bigwedge_{j=1}^n 2x = z_j \right) \right]$$

Questão 4

Mostrar que se um conjunto de fórmulas garante que o modelo possua pelo menos 2i elementos para $i \in [1, n]$, então sempre há um modelo com tamanho par.

Resposta:

Para essa demonstração, será usada a definição de um número "par". Segue a definição:

Um número $x \in \mathbb{Z}$ é **par** se existe $y \in \mathbb{Z}$ tal que 2y = x.

Portanto, se for possível mostrar que

$$\forall i \Big(i \in [1, n] \implies \exists x (2x = 2i) \Big)$$

é verdade, então está demonstrado.

De fato, sempre existe x que satisfaça a sentença acima. Basta adotar x como i.

Facilmente conseguimos um modelo que satisfaça o que foi pedido.

Adote um modelo \mathcal{M} com uma assinatura genérica $\Sigma = (\mathcal{C} = \{c\}, \mathcal{F} = \{f^1\}, \mathcal{P} = \{P\})$ e domínio \mathcal{A} com cardinalidade 2i. Como 2i é sempre par (como provado acima), então \mathcal{M} com certeza é par.

Questão 5

Mostrar que não existe na Logica de Primeira Ordem uma fórmula que seja verdadeira em todos os modelos com domínio finito e par, e apenas nestes.

Resposta (baseada cruelmente no slide de compacidade do Finger):

Por contradição, suponha que $\exists \phi$ tal que ϕ é verdadeiro \iff o modelo é finito e par, e apenas nestes.

Agora, suponha que $\exists \psi_i$ tal que ψ_i é verdadeiro \iff o domínio $\mathcal A$ possui 2i elementos. Foi provado na Questão 3 que ψ existe.

Considere o conjunto de fórmulas $\alpha = \{\phi\} \cup \{\psi_i | i \in \mathbb{N}\}$. Observe que todo subconjunto finito de α tem modelo. Entretanto, α propriamente dito não tem modelo, já que ϕ condiciona que o modelo seja **finito**, mas ψ_i tende ao **infinito** pois $i \in \mathbb{N}$ e \mathbb{N} é infinito. Isso fere a compacidade da LPO.

Chegamos em uma contradição, logo a hipótese inicial é falsa.