Seien Jerner P. U->V, Y:V-> W linease Abbildungen. $D_{A,c}(\psi \circ \varphi) = D_{B,c}(\psi) \cdot D_{A,B}(\varphi)$ Komposition von Cinearn Abbildungen = Matrixprodukt genau so de simert Beweis: Notation $A = \{u_1, \dots, u_n\}$, $B = \{v_1, \dots, v_m\}$, $C = \{\omega_1, \dots, \omega_n\}$ $u_n \in A = \{u_1, \dots, u_n\}$, $B = \{v_1, \dots, v_m\}$, $C = \{\omega_1, \dots, \omega_n\}$ $u_n \in A = \{u_1, \dots, u_n\}$, $U_n \in A = \{u_1, \dots, u_n\}$, $U_n \in A = \{u_1, \dots, u_n\}$, $U_n \in A = \{u_1, \dots, u_n\}$

 $(\gamma \circ \gamma)(u) = \gamma \left(\sum_{k=1}^{m} b_{k}, v\right) = \sum_{k=1}^{m} b_{k}, \gamma \left(v_{k}\right) = \sum_{k=1}^{m} b_{k}, \gamma \left$ Koessizient von w. ist genau der ij te Eintrag von AB

Belauptung

AE K

mxn

und zugelorige Abbildungen f. K-> K f. K-> K

Dann

f. o f. = f. st AE K

invertierbar, so solgt f. o f. = f. id = id k

Also ist f. = f. die Umkelsabbildung von f.

Den of st f. = f. die Umkelsabbildung von f.

Den of st f. = f. die Umkelsabbildung von f. =) A ist die Daotellungsmatrix von la beruglid der Standardbasis =) Eindeutigheit der invenen Matrix

Para A = id kn = Para A = A A = In

Die im	vertierb.	zren Mo	Hrizen e	Fullen	(nacl ob	iges Ben	nerkund	y und	den e	xplizit	
besprod	Lenen C	peration	nen du	Modri	zen) als	Menge	alle	Eigens	cLastei	n einer	
		m Matr									
Desin	tion	64	(K) =	SAEK	nxn/A in	westierb.	es }				
		ist	die 1	allgeme	ine Cinea	se Grup	oe.				
				0		//					
	rechsel	-	A								
) ie Basi	en von	Velton	almen	Konn	en sich i	untercl	eiden	und	mancl	e Basen	
sind (as die	Dante	lung v	ron Daj	ten (Me	ingl von	Veleto	ren) g	eeignes	er als	
andere.	Was 1	09SSier7	mit	des Pa	stelling	Smadrex	eines C	iheasen	Abbi	Edung	
		nen Bo									
	B = 80	/ , V _n	3	B' =	\$v'k'	2	Basen	von			
		1 / /	.) /		(I) I'h) "					

B Basis =) Elemente von B' kann man über B aus drücken:

y = Ea; V; mit a; EK

=) Matrix S=SBB' = (a;) EK

Diese kann man benutzen, um den Übergang von B zu B' zu

heschriber Spalten von S = Koordinaterveltorer des (neuen) zweiten Basis B'
geschrieben in der epten Basis B ungelielt: Basis => Elemente von B kann man über B' ausdrichen

v = Ebij v' mit bij EK T=(bij) { K sei die zugel orige Basiswechselmatrix

$$V_{j} = 1, ..., n \quad g(t) \text{ jetet} \quad V_{j} = \sum_{i=1}^{n} b_{ij} \left(\sum_{k=1}^{n} a_{ki} V_{k}\right) = \sum_{i=1}^{n} b_{ij} \left(\sum_{k=1}^{n} a_{ki} V_{k}\right) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ki} b_{ij}\right) V_{ik}$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} a_{ki} V_{ij}\right) V_{ik}$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} a_{ki} b_{ij}\right) V_{ik}$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} a_{ki} V_{ik}\right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a_{ki} V_{ik}\right)$$

Basis wedselmatrix von B'nach B: Kontrolle S.T=(0) Darstellung von Vektoren durch B bzw. B' an Vehtor $\begin{pmatrix} 3\\2 \end{pmatrix}$ in Basis B bedeutet $\begin{pmatrix} 3\\2 \end{pmatrix} = 3 \begin{pmatrix} 1\\0 \end{pmatrix} + 2 \begin{pmatrix} 0\\1 \end{pmatrix}$ selber Veletor in $B': \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 1 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ =) des Vehtor Latte also in B die Darstellung (3) Wie sielt man den Zusammen (ang dieser Schreibweisen (3) in B und (3) in B Jus den selben Vehtor? Antwort spater hier: S. (3) = (3) aber Vorsicht! Das sieht mus so einfachaus, da B ché Standardbasis

Seien P: V-> V eine Cineare Abbildung und Dz (P) = dij E K $\varphi(v_i') = \varphi(\underbrace{\sum_{i=1}^n \alpha_i, v_i}_{i=1}) = \underbrace{\sum_{i=1}^n \alpha_i, \varphi(v_i)}_{i=1} = \underbrace{\sum_{i=1}^n \alpha_i, \varphi(v_$ $= \sum_{i=1}^{n} d_{k_i} a_{i} \cdot \left(\sum_{i=1}^{n} b_{ik_i} v_{i}^{i}\right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} b_{ik_i} d_{k_i} a_{i}^{i}\right) v_{i}^{i}$ Eintrag (C,j) in Produkt T. DB(P). S und durch Keeffizientenvergleich sieht man, dass das des (L,j)-te Eintrag
von DB'(P) sein muss, => Satz Seien B, B' Basen eines endlicht- dimensionalen Veletorraum U und S=SBB, ché Basis wechselmatrix. Dann gilt für eine Lineare Abbildung P: V > V : DB, (P) = S · DB(P) · S

analog sis allgemeine lineare Abbildungen: (also nicht nur sür Basiswedsel) Satz Seien B, B' Basen eines endlich-dimensionaler Veletorraums V und C,C' Basen eines endlich-dinensionalen Velderraums W.

Dann gilt füs eine (inewe Abbildung f. V-) W

B,c' (P) = Sc,c' B,c(P) SB,B' Definition Zwei quadratische Matrizen ABEK heißen ährlich, Salls
es SEGLn(K) gibt mit B= S-A-S.

Zwei Madrizen ABEK heißen äquivalent, falls es

SEGLn(K) und TEGLn(K) gibt mit B=TAS.