FEM Integration with Quadrature and Preconditioners on GPUs

Karl Rupp

https://karlrupp.net/

now:

Freelance Scientist

formerly:

Institute for Microelectronics, TU Wien

in collaboration with:

M. Knepley (Rice U.), A. Terrel (Fashion Metric), J. Weinbub, F. Rudolf, A. Morhammer, T. Grasser, A. Jüngel (TU Wien)

Platform for Research in Simulation Methods Workshop on Embracing Accelerators Imperial College, London April 18th. 2016

Recent Many-Core Architectures

High FLOP/Watt ratio High memory bandwidth Attached via PCI-Express

AMD FirePro W9100 320 GB/sec

INTEL Xeon Phi 320 (220?) GB/sec

NVIDIA Tesla K20 250 (208) GB/sec

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Theoretical Peak Performance

Theoretical Peak Performance per Watt

Peak Floating Point Operations per Watt, Double Precision

Theoretical Peak Performance (FLOPs) per Byte of Memory Bandwidth

Part 1: Finite Element Method

Part 1: FEM Integration with Quadrature

FEM Introduction

Finite Element Method

Several basis functions per element

Evaluation of integrals on each element

General Weak Form

Residual formulation for test function ϕ

$$\int_{\Omega} \phi \cdot f_0(u, \nabla u) + \nabla \phi : \mathbf{f}_1(u, \nabla u) = 0.$$

Examples

Laplace: $f_0 \equiv 0$, $\mathbf{f}_1 \equiv \nabla u$

Poisson: $f_0 \equiv g$, $\mathbf{f}_1 \equiv \nabla u$

_32_M_/_

$$\int_{\Omega} \phi \cdot f_0(u, \nabla u) + \nabla \phi : \mathbf{f}_1(u, \nabla u) = 0.$$

Element-Wise General Weak Form

Evaluation using quadrature

$$\sum_{e} \mathcal{E}_{e}^{T} \left[B^{T} W f_{0}(u^{q}, \nabla u^{q}) + \sum_{k} D_{k}^{T} W \mathbf{f}_{1}^{k}(u^{q}, \nabla u^{q}) \right] = 0$$

 \mathcal{E} ... global vector

W ... quadrature weights

 $B, D_k \ldots$ reduction operations for global basis coefficients

Parallelization Options

Across elements

Quadrature points

Basis functions

Parallelization Across Elements

Large memory per thread Synchronizations with neighbor elements [Cecka et al. 2011; Taylor et al. 2008; Williams 2012]

Parallelization per Quadrature Point

No memory overhead
Too many synchronizations

Parallelization via Basis Functions

Very little local memory Repeated loads of coefficients from global memory [Dabrowski et al. 2008]

_32 M-1/

New Algorithm

Thread Block Works on Multiple Elements

Number of quadrature points $N_{\rm q}$ Number of basis functions $N_{\rm b}$ Minimum number of elements ${\rm LCM}(N_{\rm q},N_{\rm b})$

New Algorithm

High Level Decomposition

Chunks - Cells processed by each thread workgroup

Batches - Cells processed with one thread transposition

Blocks - Smallest unit of execution

OpenCL-enabled Hardware

NVIDIA GTX 470

NVIDIA GTX 580

NVIDIA Tesla K20m

AMD FirePro W9100

(AMD A10-5800K)

Comparisons

Single vs. double precision

2D vs. 3D

Invariants

Variable coefficients

First-order FEM

Poisson equation

Choice of Block and Batch Numbers

NVIDIA GTX 470

Performance in GFLOPs/sec

Actual choice not very sensitive

	Batches					
Blocks	16	20	24	28	32	36
4	113	120	118	122	137	119
8	109	116	113	120	108	117
12	102	112	110	109	115	113
16	108	100	99	111	130	106

(2D triangular mesh, variable coefficients, single precision, NVIDIA GTX 470)

PETSc SNES ex12:

- ./ex12 -petscspace_order 1 -run_type perf -variable_coefficient field
- -refinement_limit 0.00001 -show_solution false -petscfe_type opencl

⁻petscfe_num_blocks 4 -petscfe_num_batches 16

Performance Modeling

Limiting Factor?

GTX 470: 134 GB/sec memory bandwidth (theoretical)

GTX 470: 1088 GFLOPs/sec peak (theoretical)

Arithmetic Intensity

Count FLOPs and bytes loaded/stored

$$\beta = \frac{\left[(2 + (2 + 2d)d)N_{\rm bt}N_{\rm q} + 2dN_{\rm comp}N_{\rm q} + (2 + 2d)dN_{\rm q}N_{\rm bt} \right]N_{\rm bs}N_{\rm bl}}{4N_{\rm t}\left((d^2 + 1) + N_{\rm bt} + (d + 1)N_{\rm q} \right)}$$

2D Mesh, First-Order FEM, Single Precision

 $\beta = 41/22 \approx 2$ FLOPs/Byte

GTX 470: $134 \times 41/22 = 250$ GFLOPs possible

GTX 470: 200 GFLOPs achieved (80 percent, cf. STREAM benchmark)

ALAW Deficilitate)

Summary - FEM Quadrature

FEM Quadrature on GPUs

"Matrix-Free"
Higher arithmetic intensity

Performance Results

Good performance on NVIDIA GPUs and AMD APUs 5x improvements for discrete AMD GPUs desired

Performance Modeling

Performance limited by memory bandwidth Excellent prediction accuracy

Reproducibility

PETSc, SNES tutorial, ex12

Part 2: Solvers and Preconditioners

Part 2: Solvers and Preconditioners

Overview - Solvers and Preconditioners

Pipelined CG

Merge global reductions

Kernel fusion

Parallel Incomplete LU Factorizations

Level scheduling

Nonlinear relaxation

Algebraic Multigrid

Parallel aggregation

Sparse matrix-matrix products

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV \leftarrow No caching of Ap_i
- 2. DOT ← Global sync!
- 3. -
- 4. AXPY
- 5. AXPY \leftarrow No caching of r_{i+1}
- 6. DOT ← Global sync!
- 7. -
- 8. AXPY

EndFor

Performance Modelling

6 Kernel Launches (plus two for reductions)

Two device to host data reads from dot products

Model SpMV as seven vector accesses (5-point stencil)

$$T(N) = 8 \times 10^{-6} + 2 \times 2 \times 10^{-6} + (7 + 2 + 3 + 3 + 2 + 3) \times 8 \times N$$
/Bandwidth

Performance Modeling: Conjugate Gradient Optimizations

Optimization: Rearrange the algorithm

Remove unnecessary reads

Remove unnecessary synchronizations

Use custom kernels instead of standard BLAS

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For $i = 0$ until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_i$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

EndFor

Benefits of Pipelining also for Large Matrices

Content

Parallel Incomplete LU Factorizations

Level scheduling Nonlinear relaxation

Memory Bandwidth vs. Parallelism

ILU - Basic Idea

Factor sparse matrix $A \approx \tilde{L}\tilde{U}$ \tilde{L} and \tilde{U} sparse, triangular ILU0: Pattern of \tilde{L} , \tilde{U} equal to A

ILUT: Keep k elements per row

Solver Cycle Phase

Residual correction $\tilde{L}\tilde{U}x = z$ Forward solve $\tilde{L}y = z$ Backward solve $\tilde{U}x = y$ Little parallelism in general

ILU Level Scheduling

Build dependency graph

Substitute as many entries as possible simultaneously

Trade-off: Each step vs. multiple steps in a single kernel

$$\begin{pmatrix}
5 & \times & \times & \times & \times & \times & \times \\
\times & 3 & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times$$

ILU Interpretation on Structured Grids

2d finite-difference discretization Substitution whenever all neighbors with smaller index computed Works particularly well in 3d

ILU Interpretation on Structured Grids

2d finite-difference discretization Substitution whenever all neighbors with smaller index computed Works particularly well in 3d

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

Sequential

for i=2..n
for k=1..i-1, (i,k)in A

$$a_{ik} = a_{ik}/a_{kk}$$

for j=k+1..n, (i,j)in A
 $a_{ij} = a_{ij} - a_{ik}a_{kj}$

Parallel

for (sweep = 1, 2, ...)

parallel for (i,j) in A

if (i > j)

$$l_{ij} = (a_{ij} - \sum_{k=1}^{j=1} l_{ik} u_{kj}) / u_{jj}$$

else

 $u_{ij} = a_{ij} - \sum_{k=1}^{j=1} l_{ik} u_{kj}$

Fine-Grained Parallel ILU Setup

Proposed by Chow and Patel (SISC, vol. 37(2)) for CPUs and MICs Massively parallel (one thread per row)

Preconditioner Application

Truncated Neumann series:

$$\mathbf{L}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{L})^k, \quad \mathbf{U}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{U})^k$$

Exact triangular solves not necessary

Content

Algebraic Multigrid

Parallel aggregation

Sparse matrix-matrix products

Multigrid

Ingredients of Algebraic Multigrid

Smoother (Relaxation schemes, etc.)

Coarsening

Interpolation (Inter-grid transfer)

Classical coarsening

Aggregation coarsening

Multigrid Parallelization

Setup Phase

Determination of coarse points in parallel by graph splitting

Compute coarse operators $A^{k+1} = R^k A^k P^k$ (where $A^0 = A$)

Datastructures: analyze and allocate

Limited fine-grained parallelism

Cycle Phase

Parallel Jacobi Smoother

Restriction $R^k x^k$, prolongation $P^k x^{k+1}$

Direct solution on coarsest level

Static datastructures

Enough fine-grained parallelism

AMG Sparse Matrix-Matrix Multiplication

Coarse Grid Operator

$$A^{\text{coarse}} = RA^{\text{fine}}P$$

Common choice: $R = P^{T}$

Computation

Explicitly set up $R = P^{T}$ (hard in parallel)

$$C = A^{\text{fine}}P$$

$$A^{\text{coarse}} = RC$$

AMG Sparse Matrix-Matrix Multiplication

AMG Benchmark

Summary

FEM Integration with Quadrature

Thread transposition over cell patches Performance model with high accuracy Peak performance on NVIDIA GPUs

Fast Solvers

Shift to parallel algorithms, sequentially inefficient

ILU: Multiple sweeps for setup and solve

AMG: Coarse grid computation on CPU?

How to Use and Reproduce?

```
ViennaCL: http://viennacl.sourceforge.net/
```

PETSc: http://mcs.anl.gov/petsc/