Importing the Dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
```

Data Collection

```
fixed volatile citric residual free total acidity acidity acid sugar chlorides sulfur sulfur density pH sulphates alcohol dioxide dioxide
```

```
# checking for missing values
wine dataset.isnull().sum()
     fixed acidity
                             0
     volatile acidity
     citric acid
     residual sugar
     chlorides
     free sulfur dioxide
     total sulfur dioxide
     density
     рН
     sulphates
     alcohol
     quality
     dtype: int64
```

Data Analysis and Visulaization

```
# statistical measures of the dataset
wine_dataset.describe()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	dens
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996

number of values for each quality
sns.catplot(x='quality', data = wine_dataset, kind = 'count')

<seaborn.axisgrid.FacetGrid at 0x7ff9f38ac590>


```
# volatile acidity vs Quality
plot = plt.figure(figsize=(5,5))
sns.barplot(x='quality', y = 'volatile acidity', data = wine_dataset)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff9efac2990>

Correlation

- 1. Positive Correlation
- 2. Negative Correlation

```
correlation = wine_dataset.corr()

# constructing a heatmap to understand the correlation between the columns
plt.figure(figsize=(10,10))
```

sns.heatmap(correlation, cbar=True, square=True, fmt = '.1f', annot = True, annot_kws={'size':8}, cmap = 'Blues')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff9ee2dd550>

separate the data and Label

X = wine_dataset.drop('quality',axis=1)

ta e

print(X)

fixed acidity volatile acidity citric acid ... pH sulphates alcohol 0 7.4 0.700 0.00 ... 3.51 0.56 9.4

[1599 rows x 11 columns]

Label Binarizaton

```
Y = wine_dataset['quality'].apply(lambda y_value: 1 if y_value>=7 else 0)

print(Y)

0      0
1      0
2      0
3      0
4      0
...
1594      0
1595      0
1596      0
1597      0
1598      0
Name: quality, Length: 1599, dtype: int64
```

Train & Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=3)
print(Y.shape, Y_train.shape, Y_test.shape)
  (1599,) (1279,) (320,)
```

Model Training:

Random Forest Classifier

Model Evaluation

Accuracy Score

```
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
```

```
print('Accuracy : ', test_data_accuracy)
     Accuracy: 0.921875
Building a Predictive System
input data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)
# changing the input data to a numpy array
input data as numpy array = np.asarray(input data)
# reshape the data as we are predicting the label for only one instance
input data reshaped = input data as numpy array.reshape(1,-1)
prediction = model.predict(input data reshaped)
print(prediction)
if (prediction[0]==1):
 print('Good Quality Wine')
else:
 print('Bad Quality Wine')
     [0]
```

Bad Ouality Wine

✓ 0s completed at 11:29