Chapter 1 Linear Regression

	Introduction
□ ERM	\square Ridge Regression (L_2 regularization)
Gradient Descent	\square Lasso Regression (L_1 regularization)

1.1 Basic Knowledge

Example 1.1 Linear Regression

Settings.

- Dataset: $D = \{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. Here, y_i denotes the regression target, while x_i represents the input features used to predict y_i .
- Linear Model: $f(x) = w^{T}x + b$, with weight $w \in \mathbb{R}^{d}$ and bias $b \in \mathbb{R}$.

Note This definition is equivalent to an inner product: $\hat{y} = w^T x + b$.

Definition 1.1 (Learnable / Trainable Parameters)

Learnable parameters are those that can be updated during the training process.

Quiz. How to determine whether a parameter is learnable? Quiz: How to determine w and b?

Ans: ERM (Empirical Risk Minimization)

• Loss function. Squared Loss (SE) is commonly used during optimization. The training objective can be written as:

$$\underset{w,b}{\operatorname{argmin}} \frac{1}{n} \sum_{i \in [n]} (y_i - (w^{\top} x_i + b))^2$$
 (1.1)

The blue factor 1/n can be omitted in theoretical analysis, but is often kept in practice to stabilize the loss function during implementation.

Quiz: How to optimize the parameters?

Ans: Gradient Descent (as a traditional ML method). In the case of linear regression:

$$\frac{\partial \mathcal{L}}{\partial b} = -2 \sum_{i \in [n]} (y_i - w^{\mathsf{T}} x_i - b) \tag{1.2}$$

$$\frac{\partial \mathcal{L}}{\partial w} = -2\sum_{i \in [n]} (y_i - w^{\mathsf{T}} x_i - b) x_i \tag{1.3}$$

Note In the field of machine learning, the gradient of a scalar with respect to a vector is itself a vector (**not a covector**). This means:

$$\frac{\partial \mathcal{L}}{\partial w} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial w_1} \\ \frac{\partial \mathcal{L}}{\partial w_2} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial w_d} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \cdots, \frac{\partial \mathcal{L}}{\partial w_d} \end{pmatrix}^{\mathsf{T}} \tag{1.4}$$

See the definition of matix derivatives (assuming no special structure in the matrix) in Matrix Cookbook Chapter 2.

Note *Here are some commonly used derivative formulas:*

$$\frac{\partial x^{\mathsf{T}} x}{\partial x} = 2x \tag{1.5}$$

$$\frac{\partial a^{\mathsf{T}} x}{\partial x} = a, \quad \frac{\partial A x}{\partial x} = A^{\mathsf{T}} \tag{1.6}$$

$$\frac{\partial x^{\mathsf{T}} A x}{\partial x} = (A + A^{\mathsf{T}}) x \tag{1.7}$$

Remark Both sides of an equation must have the same dimension. This principle can be used as a consistency check.

We optimize the parameters by subtracting a scalar multiple of the gradient from the parameters, considering the physical meaning of the gradient: the direction of the steepest **increase**.

Definition 1.2 (Hyperparameter)

A parameter that is fixed during optimization and specified before the training process.

That is:

$$w' = w - \alpha \frac{\partial \mathcal{L}}{\partial w}, \quad b' = b - \alpha \frac{\partial \mathcal{L}}{\partial b}$$
 (1.8)

Optimization will stop when the norm of the parameter update becomes smaller than a given hyperparameter.

1.2 Closed-Form of Linear Regression

Proposition 1.1

Linear Regression has Closed-Form solution.

Settings.

- Matrix $X_0 := (x_1, \dots, x_n)^{\top}$;
- Matrix $X := (X_0, \mathbb{1}) \in \mathbb{R}^{n \times (d+1)}$;
- $y = (y_1, \dots, y_n)^{\mathsf{T}} \in \mathbb{R}^n$;
- $\hat{w} = (w^{\top}, b)^{\top} \in \mathbb{R}^{d+1}$.

Then the loss function of \hat{w} can be written as:

$$\mathcal{L}(\hat{w}) = (y - X\hat{w})^{\top} (y - X\hat{w}) = \|y - X\hat{w}\|_{2}^{2}$$
(1.9)

Here, $\|\cdot\|_p$ denotes the *p-norm* of a vector.

Note Vectors can sometimes be treated as scalars, since linearity ensures that the validity of a proposition can be extended to any finite dimension.

Notice that the optimization stops when $\partial \mathcal{L}(\hat{w})/\partial \hat{w} = 0$. Under this condition, the parameters can be solved from the above constraint by following steps:

$$\frac{\partial \mathcal{L}(\hat{w})}{\partial \hat{w}} = -2X^{\top}(y - X\hat{w}) \tag{1.10}$$

Note Both dimensional analysis and calculation using Leibniz's rule lead to the same result as the formula above:

$$\mathcal{L}(\hat{w}) = y^{\mathsf{T}} y - 2y^{\mathsf{T}} X \hat{w} + \hat{w}^{\mathsf{T}} X^{\mathsf{T}} X \hat{w}$$
$$\partial_{\hat{w}} \mathcal{L}(\hat{w}) = -2X^{\mathsf{T}} y + 2X^{\mathsf{T}} X \hat{w}$$
$$= -2X^{\mathsf{T}} (y - X \hat{w})$$

Remark More matix formulas are available in Matrix Cookbook.

Thus, the target of the optimization satisfied:

$$X^{\mathsf{T}}y = X^{\mathsf{T}}X\hat{w} \tag{1.11}$$

That is:

$$\hat{w} = (X^{\top} X)^{-1} X^{\top} y \tag{1.12}$$

when $X^{\top}X$ invertible (non-singular / full-rank).

Example 1.2 When does X^TX not invertible?

Solution $X \in \mathbb{R}^{n \times (d+1)}$:

- d + 1 > n. Brief Proof: rank $(X^T X) = \text{rank } (X) \le \min(n, d + 1) = n < d + 1$.
- X has repeated columns. Proof is trivial.

When $X^{\top}X$ isn't invertible:

- 1. If rank $(X^TX, X^Ty) > \text{rank } (X^TX)$, \hat{w} has no solution;
- 2. \hat{w} has infinity solution o.w.

Situation 1 is **impossible** because both $X^{T}X$ and $X^{T}y$ can be represented in the column space of X^{T} . Therefore, the optimization problem must have a solution, which may be either unique or infinite.

As an infinite set of solutions makes it difficult to determine which estimate of \hat{w} to choose, we apply L_2 regularization to linear regression, which is commonly referred to as Ridge Regression. That is:

$$\mathcal{L}_{L_2} := \mathcal{L}(\hat{w}) + \boxed{\lambda ||\hat{w}||_2^2},\tag{1.13}$$

 $\mathcal{L}_{L_2} := \mathcal{L}(\hat{w}) + \boxed{\lambda \|\hat{w}\|_2^2}, \tag{1.13}$ where $\lambda > 0$ is a hyperparameter. Notice that $\|\hat{w}\|_2^2 = \sum_{i=1}^{d+1} \hat{w}_i^2$, L_2 regularization prevents any single dimension from being assigned an excessively large weight, and encourages the model to make use of more dimensions during training.

Figure 1.1: Illustration of L_2 regularization. The contours represent level sets of the regularized loss $\mathcal{L}(\hat{w}) + \lambda ||\hat{w}||_2^2$, which take the form of concentric ellipses (circle in the plot).

During ridge regression, we minimize the \mathcal{L}_{L_2} :

$$\underset{\hat{n}}{\operatorname{argmin}} (y - X\hat{w})^{\top} (y - X\hat{w}) + \lambda \hat{w}^{\top} \hat{w}$$
(1.14)

The optimization stops when:

$$\frac{\partial \mathcal{L}_{L_2}}{\partial \hat{w}} = -2X^{\mathsf{T}} y + 2X^{\mathsf{T}} X \hat{w} + 2\lambda I \hat{w} = 0 \tag{1.15}$$

$$\Rightarrow (X^{\top}X + \lambda I)\hat{w} = X^{\top}y \tag{1.16}$$

Proposition 1.2

 $X^{T}X + \lambda I$ always invertible.

Proof Since $X^{\top}X$ is a real symmetric matrix, we have the eigen-decomposition $X^{\top}X = U\Lambda U^{\top}$, where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_{d+1})$. Moreover, as $X^TX \succeq 0$ (positive semi-definite), it follows that $\forall i \in [d+1], \ \lambda_i \geq 0$. Note that:

$$\lambda I = \lambda U U^{\top} \tag{1.17}$$

since U is an orthogonal matrix. Hence:

$$X^{\mathsf{T}}X + \lambda I = U(\Lambda + \lambda I)U^{\mathsf{T}} \tag{1.18}$$

For all $i \in [d + 1]$, we have:

$$\lambda_i + \lambda > \lambda_i \ge 0 \tag{1.19}$$

Thus, $X^{T}X + \lambda I$ is a full-rank matrix.

Remark Numerical issues may still occur even if X^TX is full rank (e.g., when eigenvalues λ_k are close to zero). The L_2 regularization factor λ mitigates this issue by shifting the eigenvalues upward, thereby improving numerical stability during training.

Another regularization method often used is L_1 regularization, where the loss function is defined as:

$$\mathcal{L}_{L_1} := \mathcal{L}(\hat{w}) + \boxed{\lambda ||\hat{w}||_1} \tag{1.20}$$

 L_1 regularization can induce sparsity in \hat{w} , which works in contrast to L_2 regularization. Specifically, L_1 regularization encourages the model to rely on only a small subset of input features, effectively performing **feature selection**.

Linear regression with L_1 regularization is called **Lasso Regression** (Least Absolute Shrinkage and Selection Operator).

Figure 1.2: Illustration of L_1 regularization. The contours represent level sets of the regularized loss $\mathcal{L}(\hat{w}) + \lambda ||\hat{w}||_1$, which take the form of nested diamonds (squares rotated by 45° in the plot).

1.3 Geomeric View of LR

Ideally, we would like to solve $X\hat{w} = y$. If y lies on the hypersurface

$$\mathcal{M}(X) := \operatorname{Span}(X) = \{Xw : w \in \mathbb{R}^{d+1}\} \subset \mathbb{R}^n$$
(1.21)

then the equation admits an exact solution. In most cases, however, $y \notin \mathcal{M}(X)$, so no exact solution exists. Nevertheless, we can always find an estimator \hat{w} such that $\mathcal{P}_{\mathcal{M}(X)}y = X\hat{w}$, where $\mathcal{P}_{\mathcal{M}(X)}$ denotes the orthogonal projection onto the hypersurface $\mathcal{M}(X)$.

Proposition 1.3
$$\hat{y} = X\hat{w} \implies \hat{w} \text{ is solution to } LR. \tag{1.22}$$

Proof

$$\begin{aligned} y - \hat{y} \perp \mathcal{M}(X) & \Rightarrow & y - X\hat{w} \perp \mathcal{M}(X) \\ & \Rightarrow & X^{\top}(y - X\hat{w}) = 0 & \Rightarrow & \hat{w} = (X^{\top}X)^{-1}X^{\top}y \end{aligned}$$

Figure 1.3: Orthogonal projection interpretation of linear regression. The predicted vector $X\hat{w}$ is obtained as the projection of y onto the hypersurface $\mathcal{M}(X) = \{Xw : w \in \mathbb{R}^{d+1}\}$, which is a linear subspace in the classical case.