Part 1

Exercise 28.3. Let X be limit point compact.

(a) If $f: X \to Y$ is continuous, does it follow that f(X) is limit point compact?

Solution. No. As seen in Example 28.1, the space $X = \mathbb{Z}_+ \times \{0,1\}$ with $\{0,1\}$ indiscrete is limit point compact. However the projection $\pi_1 : X \to \mathbb{Z}_+$ is continuous, while the image $f(X) = \mathbb{Z}_+$ is not limit point compact because it is discrete.

(b) If A is a closed subset of X, does it follow that A is limit point compact?

Solution. Yes. Suppose $B \subset A$ is infinite. Then B has a limit point $x \in X$. Since A is closed, $x \in \overline{B} \subset \overline{A} = A$, so B has a limit point in A. Therefore A is limit point compact. \square

(c) If X is a subspace of the Hausdorff space Z, does it follow that X is closed in Z?

Solution. No. As seen in Example 28.2, S_{Ω} is limit point compact, and it is a subspace of the Hausdorff space \overline{S}_{Ω} , but of course S_{Ω} is not closed in \overline{S}_{Ω} , particularly because it does not contain the limit point Ω .

Exercise 28.4. A space X is said to be *countably compact* if every countable open covering of X has a finite subcollection that covers X. Show that for a T_1 space X, countable compactness is equivalent to limit point compactness.

Proof. Suppose X is T1.

 (\Longrightarrow) Suppose X is not limit point compact and let A be an infinite subset of X with no limit points. Let B be a countably infinite subset of A; notice B still has no limit points, otherwise they would be limit points of A. Thus B is closed and X - B is open. Since B has no limit points, for each $x_i \in B$ we can find a neighborhood U_i of x_i that does not intersect $B - \{x_i\}$. Then

$$\mathcal{A} = (X - B) \cup \{U_i\}_{x_i \in B}$$

is a countable open covering of X with no finite subcover. This is because a finite subcollection of \mathcal{A} would only have finitely many U_i 's and $B \cap U_i = \{x_i\}$, hence the subcollection would only contain finitely many elements from B. Therefore X is not countably compact.

(\Leftarrow) Suppose X is not countably compact, so that there exists a countable open covering $\mathcal{C} = \{U_n\}_{n \in \mathbb{Z}_+}$ with no finite subcover. Then for any $n, \cup_{i=1}^n U_i \neq X$. Furthermore, if the difference were finite, so that $X - \cup_{i=1}^n U_i = \{x_1, \dots, x_m\}$, then we could find $U_{x_i} \in \mathcal{C}$

so $x_i \in U_{x_i}$ and $X = (\bigcup_{i=1}^n U_i) \cup (\bigcup_{i=1}^m U_{x_i})$, which contradicts \mathcal{C} lacking a finite subcover. Hence $X - \bigcup_{i=1}^n U_i$ is infinite for any $n \in \mathbb{Z}_+$, so we can construct a sequence

$$a_1 \in X - U_1$$

 $a_2 \in X - (U_1 \cup U_2) - \{a_1\}$
 \vdots
 $a_n \in X - (U_1 \cup \dots \cup U_n) - \{a_1, \dots, a_{n-1}\}$

of distinct terms. Then the set $A = \{a_n\}_{n \in \mathbb{Z}_+}$ is infinite. Let $x \in X$. Let n be the least integer such that $x \in U_n$. By construction, $a_m \notin U_n$ for any $m \ge n$, so A intersects U_n in at most a finite number of places. By Theorem 17.9, x is not a limit point of A. Since x was arbitrary, we conclude A has no limit points. Therefore X is not limit point compact. \square

Exercise 29.3. Let X be a locally compact space. If $f: X \to Y$ is continuous, does it follow that f(X) is locally compact? What if f is both continuous and open?

Solution. No, continuity alone is not enough to preserve local compactness. First note that every infinite discrete space X is locally compact but not compact; it is locally compact because for any $x \in X$, $x \in \{x\}$ where $\{x\}$ is both open and compact (finite spaces are always compact), but it is not compact because $\{\{x\}: x \in X\}$ is a covering with no finite subcover. To construct a counter example we look for a space X is that is locally compact, but not compact, and a function f which is continuous but not open. Let's choose $f: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ as the identity function which maps from the discrete topology to the product topology. Since f is the identity, we have $f(\mathbb{R}^{\omega}) = \mathbb{R}^{\omega}$, and since the domain is discrete, we have f is continuous, and by the argument above, the domain is locally compact. However, as seen in Example 29.2, the image \mathbb{R}^{ω} is not locally compact in the product topology.

If f is both continuous and open, then f(X) is locally compact. For any $f(x) \in f(X)$, there exists U open and C compact in X so that $x \in U \subset C$, so $f(x) \in f(U) \subset f(C)$. Since f is open, f(U) is open, and since f is continuous, f(C) is compact. Hence f(X) is locally compact.

Exercise 29.4. Show that $[0,1]^{\omega}$ is not locally compact in the uniform topology.

Proof. Notice $\mathbf{0} \in [0,1]^{\omega}$ but for any neighborhood U of $\mathbf{0}$, there is a basis element $\mathbf{0} \in B(\mathbf{0}, \epsilon) \subset U$ and

$$\overline{B} = \overline{B(\mathbf{0}, \epsilon)} = \overline{\Pi[0, \epsilon)} = \Pi[\overline{0}, \epsilon) = \Pi[0, \epsilon].$$

But if there were a compact set C containing U, then \overline{B} would have to be compact. To see why it is not, consider the covering $\{B(\mathbf{x}, \frac{\epsilon}{2}) : \mathbf{x} \in \overline{B}\}$. Notice \overline{B} contains an infinite number of sequences consisting of 0's and ϵ 's, each of which is a distance of ϵ from the others. Thus the covering above which consists of balls of radius $\frac{\epsilon}{2}$ must contain different balls for each of the sequences, and thus cannot have a finite subcover.

Exercise 30.5(b). Show that every metrizable Lindelöf space has a countable basis.

Proof. Let $\mathcal{A}_n = \{B(x, \frac{1}{n}) : x \in X\}$. For every n the collection \mathcal{A}_n covers X and thus has a countable subcover \mathcal{A}'_n . Now let $\mathcal{B} = \cup \mathcal{A}'_n$, which is also countable. To show \mathcal{B} is a basis for X, first note that it consists of open sets, and let U be open with $x \in U$. Pick n big enough that $B(x, \frac{1}{n}) \subset U$. Since \mathcal{A}'_{2n} covers X, there exists $B(y, \frac{1}{2n}) \in \mathcal{B}$ containing x. Also for any $z \in B(y, \frac{1}{2n})$,

$$d(z,x) \le d(z,y) + d(y,x) < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n},$$

hence $x \in B(y, \frac{1}{2n}) \subset B(x, \frac{1}{n}) \subset U$. Therefore \mathcal{B} is a basis.

Exercise 30.8. Which of the four countability axioms does \mathbb{R}^{ω} in the uniform topology satisfy?

Solution. Since the uniform topology is metrizable, we know immediately that it is first-countable. Also the other three axioms are equivalent in a metrizable space, so we can just consider one of them; we will show that the uniform topology is not second-countable.

Let \mathcal{B} be a basis for \mathbb{R}^{ω} , and let $A \subset \mathbb{R}^{\omega}$ be the set of all sequences of zeroes and ones. Then A is uncountable and every element in A is a distance of 1 from every other element in A. Thus for each $a \in A$ and open set $B(a, \frac{1}{2})$, there must be a basis element $B_a \in \mathcal{B}$ such that $x \in B_a \subset B(a, \frac{1}{2})$. Given the distance constraints, notice that when $a \neq b$, $B_a \neq B_b$. Thus \mathcal{B} must contain an an uncountable number of basis elements, and we conclude the uniform topology is not second-countable.

Exercise 30.9. Let A be a closed subset of X. Show that if X is Lindelöf, then A is Lindelöf. Show by example that if X has a countable dense subset, A need not have a countable dense subset.

Proof. Let \mathcal{A} be an open covering of A. Then X-A is open, so $\mathcal{A} \cup \{X-A\}$ is an open covering of X. Since X is Lindelöf there exists a countable subcover $\mathcal{A}' \subset \mathcal{A} \cup \{X-A\}$. Then of course $\mathcal{A} \cap \mathcal{A}'$ is a countable subcover of A. Therefore A is Lindelöf.

The set $I^2 = [0,1] \times [0,1]$ in dictionary order has a countable dense subset $\mathbb{Q}^2 \cap I^2$, but the subspace $I \times \{\frac{1}{2}\}$ is discrete and uncountable, so it cannot have a countable dense subset.

Part 2

We say that a function $f: X \to Y$ is sequentially continuous if for every convergent sequence (x_n) in X, $\lim f(x_n) = f(\lim x_n)$. Every continuous function is automatically sequentially continuous and, if X is first-countable, all sequentially continuous functions are continuous.

(a) S_{Ω} has a smallest element; call it 0. Define a function $f : \overline{S}_{\Omega} \to S_{\Omega}$ by f(x) = x for $x \in S_{\Omega}$ and $f(\Omega) = 0$. Show that f is sequentially continuous, but not continuous.

Proof. Suppose (x_n) is convergent in \overline{S}_{Ω} . As explained in Example 28.3, $\lim x_n \neq \Omega$ because $\{x_n\}$ is countable and must have an upper bound in S_{Ω} . Thus we can choose a subsequence (y_n) of (x_n) that simply removes any elements equal to Ω . Then $(f(y_n))$ is a subsequence of $(f(x_n))$ and

$$\lim f(x_n) = \lim f(y_n) = \lim y_n = \lim x_n = f(\lim x_n).$$

Of course f is not continuous because $\{0\}$ is open in S_{Ω} but $f^{-1}(\{0\}) = \{\Omega\}$ is not open in \overline{S}_{Ω} .

(b) Show that if X is sequentially compact and $f: X \to Y$ is sequentially continuous, then f(X) is sequentially compact.

Proof. Let (y_n) be a sequence in f(X). For each y_n pick $x_n \in X$ so that $f(x_n) = y_n$. Now (x_n) has a convergent subsequence (x_{n_i}) and $\lim f(x_{n_i}) = f(\lim x_{n_i})$, so $(f(x_{n_i}))$ is convergent as well, where $(f(x_{n_i}))$ is a subsequence of (y_n) . Therefore f(X) is sequentially compact.

(c) If X is compact and $f: X \to Y$ is sequentially continuous, then is f(X) necessarily compact?

Proof. Evidently not; as seen in part (a), \overline{S}_{Ω} is compact, $f: \overline{S}_{\Omega} \to S_{\Omega}$ is sequentially continuous, but $f(X) = S_{\Omega}$ is not compact.