Soluções prova 2

Questão 1 (Formulação, 2pt)

Dado um grafo não-direcionado G = (V, A) com n vértices e m arestas

$$x_{ac} = \begin{cases} 1 & \text{caso a aresta } a \text{ possui a cor } c \\ 0 & \text{caso contrário} \end{cases}$$

para $a \in A$ e $c \in [m]$, e u_c uma variável que indica se a cor $c \in [m]$ foi usado.

$$\mathbf{minimiza} \qquad \sum_{c \in [m]} u_c \tag{1}$$

sujeito a
$$x_{ac} \le u_c$$
 $\forall a \in A, c \in [m]$ (2)

$$x_{ac} \le u_c$$
 $\forall a \in A, c \in [m]$ (2)

$$\sum_{c \in [m]} x_{ac} = 1 \qquad \forall a \in A$$
 (3)

$$\sum_{a \in N(v)} x_{ac} \le 1 \qquad \forall v \in V, \forall c \in [m]$$
 (4)

$$x_{ac} \in \mathbb{B}$$
 $\forall a \in A, c \in [m]$ (5)

$$u_c \in \mathbb{B}$$
 $\forall c \in C.$ (6)

Questão 2 (Formulação, 2pt)

Seja I = [n] o conjunto de itens, cada um com valor p_i e peso w_i . Ainda seja $x_{ij} = 1$ caso o item $i \notin$ selecionado e armazenado na mochila j.

maximiza
$$\sum_{i \in I, j \in [m]} p_i x_{ij}$$
 sujeito a
$$\sum_{j \in [m]} x_{ij} \leq 1 \qquad \forall i \in I$$

$$\sum_{i \in I} x_{ij} \leq c_j \qquad \forall j \in [m]$$

$$x_{ij} \in B \qquad \forall i \in I, j \in [m].$$

Questão 3 (Dualidade, 2pt)

Sejam $\pi_j \geq 0$ e $\rho \geq 0$ as variáveis duais.

$$\begin{array}{ll} \mathbf{minimiza} & \rho \\ \mathbf{sujeito~a} & \displaystyle\sum_{j\in[n]} \pi_j = 1 \\ & \displaystyle\rho - \displaystyle\sum_{j\in[n]} a_{ij} \pi_j \geq 0 & \forall i \in [m] \\ & \displaystyle\pi_j \geq 0 & \forall j \in [n] \\ & \rho \geq 0. & \end{array}$$

Questão 4 (Dualidade, 2pt)

Pela teorema de dualidade fraca para uma par de soluções x e u devemos ter $-4x_1-2x_3+x_5 \le$ $u_1 + u_2 + u_3 + u_4 + u_5$. Logo podemos demonstrar que o sistemas não são duais expondo um par que não satisfaz essa desigualdade. Podemos observar que o primeiro sistema possui a solução x=0, logo é suficiente encontrar uma solução negativa do segundo sistema. No segundo sistema podemos observar que a terceira e quinta restrição são linearmente dependentes, e a segunda restrição sempre dá para satisfazer setando u_4 e u_5 para um valor adequado. Logo uma solução do segundo sistema pode ser obtido resolvendo o sistema de equações lineares

$$2u_1 + u_2 - u_3 = -4$$
$$6u_1 - 4u_2 = -2$$
$$-u_1 - u_2 - 2u_3 = 0$$

Esse sistema possui a solução $u_1=-1,\,u_2=-1,\,u_3=1.$ Logo com $u_4=u_5=0$ obtemos uma solução do segundo sistema com valor -1, em contradição com o teorema de dualidade fraca.

O verdadeiro dual do primeiro sistema, é o segundo sistema junto com as restrições triviais $u_1, u_2, u_3, u_4, u_5 \ge 0$.

Questão 5 (Analise de sensibilidade, 2pt)

Temos $\mathcal{B} = \{r, f\}$ e $\Delta c_B = (0 \ 1)^t$. Com

$$(B^{-1}N)^t = 1/3 \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$

obtemos $\Delta y_N = 1/3(1\ 1)^t$ e a condição (já simplificada)

$$\binom{7}{1} + \binom{2}{2} t \ge 0$$

que limita t para $[-1/2, \infty]$. Com isso o lucro deve ser no intervalo $[1, \infty]$ e o custo de um caneco Duff Forte no intervalo $[-\infty, 2]$. O lucro em função de t é $z = 3500 + (0\ 1)(2000\ 1000)^t = 3500 + 1000t$ e em função do custo c temos z(c) = 5000 - 1000c.