PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07K 5/062, 5/065, 5/068, 5/072, 5/078, C07D 409/12, A61K 38/55, A61P 7/02, C07K 5/06

A2

(11) Internationale Veröffentlichungsnummer:

WO 00/61608

(43) Internationales

Veröffentlichungsdatum:

19. Oktober 2000 (19.10.00)

(21) Internationales Aktenzeichen:

PCT/EP00/02710

(22) Internationales Anmeldedatum:

28. März 2000 (28.03.00)

(30) Prioritätsdaten:

1

199 15 930.0

9. April 1999 (09.04.99)

DE

(71) Anmelder: BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder: HILLEN, Heinz; Max-Planck-Strasse 17, D-67454
Hassloch (DE). SCHMIDT, Martin; Mittelstrasse 49b,
D-64625 Bensheim (DE). MACK, Helmut; Neustadter
Ring 80, D-67067 Ludwigshafen (DE). SEITZ, Werner,
Bismarckstrasse 22b, D-68723 Plankstadt (DE). HAUPT,
Andreas; Schälzigweg 52, D-68723 Schwetzingen (DE).
ZECHEL, Johann-Christian; Schreiberweg 7, D-69226
Nussloch (DE). KLING, Andreas; Riegeler Weg 14,
D-68239 Mannheim (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE). (81) Bestimmungsstaaten: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: LOW-MOLECULAR INHIBITORS OF COMPLEMENT PROTEASES

(54) Bezeichnung: NIEDERMOLEKULARE INHIBITOREN VON KOMPLEMENTPROTEASEN

(57) Abstract

The invention relates to peptidic substances, to the production of said substances and to their use as complement inhibitors. In particular, the invention relates to substances with a guanidine or amidine radical as the terminal group, especially inhibitors of the complement proteases C1s and C1r.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft peptidische Substanzen, deren Herstellung und deren Verwendung als Komplementinhibitoren. Speziell handelt es sich um Substanzen mit einem Guanidin- oder Amidinrest als endständige Gruppe. Insbesondere betrifft die Erfindung Inhibitoren der Komplementproteasen C1s und C1r.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

			B '	LS	Lesotho	SI	Slowenien
AL	Albanien	ES	Spanien	LT	Litauen	SK	Slowakei
AM	Armenien	FI	Finnland	LU	Luxemburg	SN	Senegal
ΑT	Österreich	FR	Frankreich	LV	Lettland	SZ	Swasiland
ΑU	Australien	GA	Gabun	MC	Monaco	TD	Tschad
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MD	Republik Moldau	TG	Togo
BA	Bosnien-Herzegowina	GE	Georgien		•	TJ	Tadschikistan
вв	Barbados	CH	Ghana	MG	Madagaskar Die ehemalige jugoslawische	TM	Turkmenistan
BE	Belgien	GN	Guinea	MK	<u> </u>	TR	Türkei
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TT	Trinidad und Tobago
ВG	Bulgarien	HU	Ungarn	ML	Mali	UA	Ukraine
BJ	Benin	IE	[rland	MN	Mongolei	UG	Uganda
BR	Brasilien	IL	Israel	MR	Mauretanien	US	Vereinigte Staaten von
BY	Belarus	IS	Island	MW	Malawi	US	Amerika
CA	Kanada	ΙT	Italien	MX	Mexiko		Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
1	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CI		••-	Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland		Sri Lanka	SE	Schweden		
DK	Dänemark	LK	Liberia	SG	Singapur		
EE	Estland	LR	Liocita	20	- 01		
1							

WO 00/61608 PCT/EP00/02710

Niedermolekulare Inhibitoren von Komplementproteasen

Beschreibung

5

Die vorliegende Erfindung betrifft peptidische Substanzen, deren Herstellung und deren Verwendung als Komplementinhibitoren. Speziell handelt es sich um Substanzen mit einem Guanidin- oder Amidinrest als endständige Gruppe. Insbesondere betrifft die Erfindung Inhibitoren der Komplementproteasen C1s und C1r.

Die Aktivierung des Komplementsystems führt über eine Kaskade von ca. 30 Proteinen letztlich u.a. zur Lyse von Zellen. Gleichzeitig werden Moleküle freigesetzt, die wie z.B. C5a zu 15 einer Entzündungsreaktion führen können. Unter physiologischen Bedingungen dient das Komplementsystem der Abwehr von Fremdkörpern, wie z.B. Viren, Pilzen, Bakterien, Krebszellen. Die Aktivierung auf den verschiedenen Wegen verläuft dabei zunächst über Proteasen. Durch Aktivierung werden diese Proteasen in 20 die Lage versetzt, andere Moleküle des Komplementsystems, die wiederum inaktive Proteasen sein können, zu aktivieren. Unter physiologischen Bedingungen ist dieses System – ähnlich wie die Blutgerinnung – unter der Kontrolle von Regulatorproteinen, die einer überschießenden Aktivierung des Komplementsystems entgegen- 25 wirken. In diesen Fällen ist ein Eingriff, um das Komplementsystem zu inhibieren, nicht vorteilhaft.

In einigen Fällen überreagiert das Komplementsystem jedoch und trägt damit zur Pathophysiologie von Krankheiten bei. In diesen 30 Fällen ist ein therapeutischer Eingriff in das Komplementsystem durch Inhibition bzw. Modulation der überschießenden Reaktion wünschenswert. Inhibition des Komplementsystems ist auf verschiedenen Ebenen im Komplementsystem und durch Inhibition verschiedener Effektoren möglich. In der Literatur finden sich Bei-35 spiele für Inhibition der Serinproteasen auf Cl-Ebene mit Hilfe des C1-Esterase-Inhibitors ebenso wie Inhibition auf der Ebene der C3- bzw. C5-Konvertasen mit Hilfe von löslichem Komplementrezeptor CR1 (sCR1), Inhibition auf der Ebene von C5 mit Hilfe von Antikörpern, Inhibition auf der Ebene von C5a mit Hilfe 40 von Antikörpern oder Antagonisten. Die verwendeten Werkzeuge zur Erreichung der Inhibition sind in den oben angegebenen Beispielen Proteine. In der vorliegenden Erfindung werden niedermolekulare Substanzen beschrieben, die zur Inhibition des Komplementsystems verwendet werden.

Generell ist bei jeder entzündlichen Erkrankung, die mit Einwanderung von neutrophilen Blutzellen einhergeht, mit einer Aktivierung des Komplementsystems zu rechnen. Es wird daher erwartet, daß bei allen diesen Erkrankungen durch Inhibition 5 von Teilen des Komplementsystems eine Verbesserung des pathophysiologischen Status erreicht wird.

Die Aktivierung von Komplement ist mit den folgenden Krankheiten bzw. pathophysiologischen Zuständen assoziiert (Liszewski; M.K.,

- 10 Atkinson, J.P.: Exp. Opin. Invest. Drugs (1998) 7(3): 324-332; Morgan, B.P.: Biochemical Society Transactions 24; 224-9; 1996; Morgan, B.P.: Critical Review in Clinical Laboratory Sciences 32 (3); 265-298 (1995); Hagmann, W.K.; Sindelar, R.D.: Annual reports in medicinal chemistry 27; 199 ff (1992); Lucchesi, B.R.;
- 15 Kilgore, K.S.: Immunopharmacology 38; 27-42 (1997); Makrides, S.C.: Pharmacological Reviews 50(1) 59-85 (1998))
- Reperfusionsschäden nach Ischämien; Ischämische Zustände treten ein während z.B. Operationen unter Zuhilfenahme von Herz-Lungenmaschinen; Operationen, in denen Blutgefäße generell zur Vermeidung großer Blutungen abgeklemmt werden; Myokardin-20 farkt; thromboembolischer Hirnschlag; Lungenthrombosen etc.;
 - Hyperakute Organabstoßung; speziell bei Xenotrans-
- Organversagen wie z.B. multiples Organversagen oder ARDS plantationen; (adult respiratory distress syndrome); **25** •
 - Krankheiten, die auf Trauma (Schädeltrauma) oder Polytrauma beruhen, wie z.B. Thermotrauma (Verbrennungen) und "thermal injury";
- Anaphylaktischer Schock; 30 •
 - Sepsis; "vascular leak syndrom"": bei Sepsis und nach Behandlung mit biologischen Agenzien, wie Interleukin 2 bzw. nach Transplantation;
- Alzheimer Krankheit sowie andere entzündliche neurologische Krankheiten wie Myastenia graevis, multiple Sklerose, zerebraler Lupus, Guillain-Barre Syndrome; Meningitiden; 35
 - Encaphilitiden;
 - Systemischer Lupus erythematosus (SLE); Rheumatoide Arthritis und andere entzündliche Krankheiten
- des rheumatoiden Krankheitskreises, wie z.B. Behcet's Syndrom; Juvenile rheumatoide Arthritis; 40
 - Nierenentzündungen unterschiedlicher Genese, wie z.B. Glomerulonephritis, Lupus nephriti; •
 - Pankreatitis;
- Asthma; chronische Bronchitis; 45 •
 - Komplikationen während Dialyse bei Nierenversagen;
 - Vasculitis; Thyroiditis;

- Ulcerative Colitis sowie andere entzündliche Erkrankungen des Magen-Darmtraktes;
- Autoimmunerkrankungen.
- Es besteht die Möglichkeit, daß Komplement bei Spontanen
 Fehlgeburten, beruhend auf immunologischen Abstoßungsreaktionen, beteiligt ist. (Giacomucci E. Bulletti C. Polli V. Prefetto RA. Flamigni C. Immunologically mediated abortion (IMA). Journal of Steroid Biochemistry & Molecular Biology, 49(2-3):107-21, 1994). Hier ist es möglich, daß durch die Inhibition des Komplementsystems eine Modulation der immunologischen Abstoßungsreaktion erreicht wird und damit die Rate der Fehlgeburten entsprechend reduziert wird.
- Komplementaktivierung spielt eine Rolle bei Nebenwirkungen von Arzneimitteln. Als Beispiel seien hier liposomenbasierte 15 Therapien aufgeführt, die z.B. in der Krebstherapie Anwendung finden. Hypersensitive Reaktionen sind bei Patienten beobachtet worden, die mit Arzneimittelformulierungen auf der Basis von Liposomen behandelt wurden (Transfusion 37; 150; 1997). Auch für andere Hilfsmittel, die in der Arzneimittelformulie-20 rung eingesetzt werden, wie z.B. Cremophor EL ist eine Aktivierung des Komplementsystems nachgewiesen worden (Szebeni, J. et al. Journal of the National cancer Institute; 90 (4); 1998). Die Komplementaktivierung kann daher für die in manchen Fällen beobachteten anaphylaktoiden Reaktionen verant-25 wortlich sein. Hemmung des Komplementsystems z.B. mit den hier aufgeführten C1s-Inhibitoren sollte daher die Nebenwirkungen von Medikamenten, die auf Aktivierung des Komplementsystems beruhen, lindern und resultierende Hypersensitivitätsreaktionen herabsetzen.

Bei den vorgenannten Krankheiten ist eine Aktivierung des Komplementsystems gezeigt worden.

Die Synthese von Komplementproteinen in speziellen erkrankten

35 Geweben bzw. Organen deuten auf eine Beteiligung des Komplementsystems in der Pathophysiologie dieser Erkrankungen hin. So
konnte bei Myokardinfarkt eine starke Neusynthese vieler Komplementproteine im Myokard nachgewiesen werden (Yasojima, K.;
Schwab, C.; McGeer, E.G.; McGeer, P.L.; Circulation Research

40 (1998) 83, 860-869). Ebenso konnte dies bei entzündlichen Erkrankungen des Hirns, wie z.B. Multipler Sclerose, bakteriellen Menigitiden und bei Colitis, nachgewiesen werden.

Der Nachweis einer stattgefundenen Komplementaktivierung kann 45 über den Nachweis des Zellolysekomplexes im Gewebe erfolgen und durch den Nachweis von löslichem SC5b-9 oder anderer Aktivierungsprodukte von Komplement, wie z.B. Faktor Bb, C3a; C4a,

C5a; C3b, C3d; etc. im Plasma. Durch dementsprechende Nachweise konnte u.a. eine Beteiligung des Komplementsystems an der Atherosklerose ebenso gezeigt werden wie ein Zusammenhang mit Myokardinfarkt, instabiler Angina pectoris; Organtrans-5 plantationen, um nur einige Beispiele zu nennen.

Erhöhte Blutspiegel von Komplementproteinen wie C3 bzw. C4 sind mit verschiedenen cardiovaskulären Erkrankungen, wie z.B. Herzversagen, aber auch Diabetes korreliert worden. In ähnlichem

- 10 Zusammenhang ist eine Erhöhung von TNF bei Herzversagen festgestellt worden. Erste Studien zur Behandlung von Herzversagen mit TNF-Inhibitoren (löslicher TNF-Rezeptor, Antikörpern) wurden positiv beurteilt. TNF wird z.B. nach Stimulation durch Komplementfaktor C5a ausgeschüttet. Es konnte gezeigt werden, daß
- 15 Inhibition der C5a-Wirkung eine Freisetzung von TNF verhindert (XVII International Complement Workshop, P. Ward, Abstract 324 in Molecular Immunology 35 (411 6-7), 1998). Dementsprechend ist eine Behandlung von Erkrankungen, bei denen erhöhte Spiegel von Komplementproteinen vorliegen, mit den in dieser Schrift
- 20 beschriebenen Inhibitoren ebenso möglich wie die Behandlung von Erkrankungen, bei denen erhöhte Spiegel von TNF vorliegen.

Ferner ist bei Atherosklerose die Beteiligung von Komplement nachgewiesen worden (Atherosclerosis 132; 131-138 (1997).

- 25 Besondere Komplikationen durch schnelle atherosklerotische Prozesse finden sich z.B. in Organen nach Transplantationen. Diese Prozesse stellen einen der häufigsten Gründe für das chronische Versagen der transplantierten Organe in der Klinik dar. Zukünftig ist neben Transplantationen humaner Organe
- 30 (Allotransplantationen) auch an Anwendungen von Transplantaten anderer Spezies (Xenotransplantaten) im Menschen gedacht.

Dementsprechend ist eine Behandlung der oben erwähnten Krankheiten bzw. pathophysiologischen Zustände mit Komplement-35 inhibitoren wünschenswert, insbesondere die Behandlung mit

niedermolekularen Inhibitoren.

FUT und FUT-Derivate sind Amidinophenolester bzw. Amidinonaphtholester und beschrieben als Komplementinhibitoren (z.B.

40 Immunology (1983), 49(4), 685-91).

Serin-Proteasen finden sich im Komplement-System in den drei verschiedenen Wegen der Aktivierung: dem klassischen, alternativen und dem MBL-Weg (Arlaud, G.J.; et al. Advances in Immunology 69;

45 249 ff; 1998). Sie spielen in ihren jeweiligen Wegen eine entscheidende Rolle am Beginn der Kaskade.

Inhibitoren der entsprechenden Serin-Proteasen können hier sowohl vollkommen inhibierend als auch modulierend (partiell inhibierend) eingreifen, wenn Komplement pathophysiologisch aktiviert ist.

5

a di +

Für die Inhibition des Komplementsystems sind einige Proteasen der verschiedenen Aktivierungswege besonders geeignet. Aus der Klasse der Thrombin-ähnlichen Serinproteasen sind dies die Komplement-Proteasen Clr und Cls im klassischen Weg, Faktor D und 10 Faktor B im alternativen Weg sowie MASP I und MASP II im MBL-Weg. Die Inhibition dieser Proteasen führt dann zu einer Wiederherstellung der physiologischen Kontrolle des Komplementsystems in den oben angegebenen Krankheiten bzw. pathophysiologischen Zuständen führen.

15

Der klassische Weg des Komplementsystems wird üblicherweise über Antikörper, die an ein Antigen gebunden haben, aktiviert. Unter physiologischen Zuständen hilft dieser Weg des Komplementsystems bei der Abwehr von Fremdkörpern, die über Antikörper erkannt 20 werden. Eine Überreaktion führt jedoch zu Schäden im Gewebe, Organismus. Diese Schäden können durch Inhibition des klassischen Weges verhindert werden. Nach dem Stand des Wissens findet eine Aktivierung des Komplementsystems über Antikörper statt bei der hyperakuten Organabstoßung, speziell bei Xenotransplantationen; 25 bei Reperfusionsschäden nach Ischämien (möglicherweise über IgM-Antikörper und ein Neoepitop; Literatur: Journal of Exp. Med. 183, 2343-8, 1996; Carroll, XVII International Complement Workshop; Rhodos 1998), wie z.B. bei Myokardinfarkt, anderen thrombotischen Erkrankungen oder längerfristigen Verschlüssen

- 30 von Gefäßen, wie sie z.B. während operativer Eingriffe üblich sind; bei anaphylaktischem Schock; bei Sepsis; bei SLE; bei Erkrankungen des Umfeldes von rheumatoider Arthritis, Nierenentzündungen unterschiedlicher Genese; Vasculitis, allen Autoimmunerkrankungen sowie Allergien. Generell ist bei jeder
- 35 Erkrankung, in denen zirkulierende Immunkomplexe vorliegen, mit Schäden in verschiedenen Organen durch Aktivierung des Komplementsystems zu rechnen. Es ist Teil der Erfindung, diese Schäden durch die beschriebenen C1-Inhibitoren zu vermindern.
- 40 Eine Aktivierung des Komplementsystems über den klassischen Weg findet unter pathophysiologischen Umständen teilweise unter Umgehung von Antikörpern statt. Beispiele hierfür sind Morbus Alzheimer, sowie die unspezifische Aktivierung dieses Weges durch andere Proteasen, wie sie z.B. bei der Lysetherapie nach Myokard-
- 45 infarkt auftritt. Auch in diesen Fällen kann mit den beschriebenen C1-Inhibitoren eine Begrenzung des Schadens erreicht werden.

Die Aktivierung des klassischen Weges ist z.B. nachgewiesen worden durch den Nachweis der aktivierten Proteine, wie z.B. Clq im betroffenen Gewebe (z.B. Circulation Research 83; 860; 1998). Deutlicher wird die pathophysiologische Beteiligung des

- 5 Komplementsystems jedoch durch die Verwendung von Inhibitoren, die im Komplementsystem lediglich den klassischen Weg hemmen. Ein physiologischer Inhibitor hierfür ist der C1-Esterase-Inhibitor (Protein ist beschrieben in The Complement System, Rother, Till, Hänsch eds.; Springer; 1998; Seiten 353 ff). Mit Hilfe dieses
- 10 Inhibitors ist in Versuchen eine Beteiligung des klassischen Weges sowie die Möglichkeit eines therapeutischen Eingriffes gezeigt worden. Einige Literaturstellen sind im Folgenden näher aufgeführt:
- Bauernschmitt R. Bohrer H. Hagl S. Rescue therapy with C1-esterase inhibitor concentrate after 15 1. emergency coronary surgery for failed FTCA. Intensive Care Medicine. 24(6):635-8, 1998.
 - Khorram-Sefat R. Goldmann C. Radke A. Lennartz A. 2.
- Mottaghy K. Afify M. Kupper W. Klosterhalfen B. The therapeutic effect of C1-inhibitor on gut-derived 20 bacterial translocation after thermal injury. Shock. 9(2):101-8, 1998.
- Niederau C. Brinsa R. Niederau M. Luthen R. Strohmeyer G. 3. Ferrell LD. Effects of C1-esterase inhibitor in three models of acute 25

pancreatitis. International Journal of Pancreatology. 17(2):189-96, 1995.

Hack CE. Ogilvie AC. Eisele B. Jansen PM. Wagstaff J. 4. 30

Thijs LG. Initial studies on the administration of C1-esterase inhibitor to patients with septic shock or with a vascular leak syndrome induced by interleukin-2 therapy.

- Progress in Clinical & Biological Research. 388:335-57, 1994. 35
 - Dalmasso AP. Platt JL. Prevention of complement-mediated activation of xenogeneic 5. endothelial cells in an in vitro model of xenograft hyperacute rejection by C1 inhibitor.
- Transplantation. 56(5):1171-6, 1993. 40

45

- Nurnberger W. Michelmann I. Petrik K. Holthausen S. Willers R. Lauermann G. Eisele B. Delvos U. Burdach S. 6.
 - Activity of Cl esterase inhibitor in patients with vascular leak syndrome after bone marrow transplantation. Annals of Hematology. 67(1):17-21, 1993.

a 🛂

- 7. Buerke M. Prufer D. Dahm M. Oelert H. Meyer J. Darius H. Blocking of classical complement pathway inhibits endothelial adhesion molecule expression and preserves ischemic myocardium from reperfusion injury.
- Journal of Pharmacology & Experimental Therapeutics. 286(1):429-38, 1998.
 - 8. Nissen MH. Bregenholt S. Nording JA. Claesson MH. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro.
- 10 International Immunology. 10(2):167-73, 1998.
 - 9. Nissen MH. Bregenholt S. Nording JA. Claesson MH. Cl-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro. International Immunology. 10(2):167-73, 1998.
- 15 10. Salvatierra A. Velasco F. Rodriguez M. Alvarez A.
 Lopez-Pedrera R. Ramirez R. Carracedo J. Lopez-Rubio F.
 Lopez-Pujol A. Guerrero R.
 C1-esterase inhibitor prevents early pulmonary dysfunction
 after lung transplantation in the dog.
- American Journal of Respiratory & Critical Care Medicine. 155(3):1147-54, 1997.
 - 11. Horstick G. Heimann A. Gotze O. Hafner G. Berg O. Boehmer P. Becker P. Darius H. Rupprecht HJ. Loos M. Bhakdi S. Meyer J. Kempski O.
- Intracoronary application of C1 esterase inhibitor improves cardiac function and reduces myocardial necrosis in an experimental model of ischemia and reperfusion.

 Circulation. 95(3):701-8, 1997.
 - 12. Heckl-Ostreicher B. Wosnik A. Kirschfink M.
- Protection of porcine endothelial cells from complement-mediated cytotoxicity by the human complement regulators CD59, C1 inhibitor, and soluble complement receptor type 1. Analysis in a pig-to-human in vitro model relevant to hyperacute xenograft rejection.
- 35 Transplantation. 62(11):1693-6, 1996.
 - 13. Niederau C. Brinsa R. Niederau M. Luthen R. Strohmeyer G. Ferrell LD. Effects of C1-esterase inhibitor in three models of acute pancreatitis.
- International Journal of Pancreatology. 17(2):189-96, 1995.
 - 14. Buerke M. Murohara T. Lefer AM.

 Cardioprotective effects of a C1 esterase inhibitor in myocardial ischemia and reperfusion Circulation.

 91(2):393-402, 1995.
- 45 15. Hack CE. Ogilvie AC. Eisele B. Jansen PM. Wagstaff J. Thijs LG.
 Initial studies on the administration of C1-esterase

inhibitor to patients with septic shock or with a vascular leak syndrome induced by interleukin-2 therapy. Progress in Clinical & Biological Research. 388:335-57, 1994.

- 16. Dalmasso AP. Platt JL.
- Prevention of complement-mediated activation of xenogeneic 5 endothelial cells in an in vitro model of xenograft hyperacute rejection by C1 inhibitor. Transplantation. 56(5):1171-6, 1993.
 - 17. Guerrero R. Velasco F. Rodriguez M. Lopez A.
- Rojas R. Alvarez MA. Villalba R. Rubio V. Torres A. 10 del Castillo D. Endotoxin-induced pulmonary dysfunction is prevented by

C1-esterase inhibitor. Journal of Clinical Investigation. 91(6):2754-60, 1993 Jun.

15

Wünschenswert sind Inhibitoren, die Cls und/oder Clr hemmen, aber nicht Faktor D inhibieren. Bevorzugt soll nicht gehemmt werden MASP-I, Lyseenzyme Wie z.B. t-PA, Plasmin.

- 20 Eine Erbkrankheit erbliches Angioödem, das auf einer Defizienz von C1-Esterase-Inhibitor beruht, wird üblicherweise durch Gabe von C1-Esterase-Inhibitor behandelt. Behandlung mit den hier beschriebenen C1-Inhibitoren, unter Umständen als zusätzliche Medikation, ist ebenfalls eine Anwendung dieser Erfindung.
- 25 Besonders bevorzugt sind Substanze, die $C_{1\text{s}}$ und $C_{1\text{r}}$ effektiv hemmen.

Pharmakolgische Beispiele

30

Beispiel A

Farbsubstrattest für die Clr-Inhibition

Clr aus Humanplasma, aktiviert, Zweikettenform 35 Reagentien: (Reinheit: ca. 95 % nach SDS-Gel). Keine Fremd-

proteasenaktivität nachweisbar.

Substrat: Cbz-Gly-Arg-S-Bzl Produktnr.: WBASO12, (Fa. PolyPeptide, D-38304 Wolfenbüttel, Deutsch-

Farbeagenz: DTNB (5,5'dinitrobis 2-nitrobenzoic

acid)

(No. 43760, Fluka, CH-9470 Buchs, Schweiz)

Puffer: 150 mM Tris/HCl pH = 7,50

45

Farbsubstrattest für die Clr-Inhibition

Testdurchführung: Der Farbsubstrattest zur Bestimmung der Cls-Aktivität wird in 96-Well-Mikrotiterplatten durchgeführt.

10 μ l der Inhibitorlösung in 20%igem DMSO (DMSO verdünnt mit 15 mmolar Tris/HCl pH = 7,50) gelangen zu 140 μ l Testpuffer, welcher Cls mit einer Endkonzentration von 0,013 U/ml enthält und DTNB mit mit einer Endkonzentration von 0,27 mM/l. Inkubiert wird 10 Minuten bei 20 bis 25°C.

Gestartet wird der Test durch Zugabe von 50 μ l einer 1,5 mmolaren Substratlösung in 30% igem DMSO (Endkonzentration 0,375 mmol/1).

Nach 30 Minuten Inkubationszeit bei 20 bis 25°C wird die Extinktion jedes Wells bei 405 nm in einem Zwei-Strahl-Mikrotiterplattenphotometer gegen einen Leerwert (ohne Enzym) gemessen.

Meßkriterium:

IC₅₀: Benötigte Inhibitorkonzentration, um die amidolytische Clr-Aktivität auf 50 % herabzusetzen.

Statistische Auswertung:

Die Abhängigkeit der Extinktion von der Inhibitorkonzentration dient als Berechnungsgrundlage.

25

10

15

20

30

35

40

Beispiel B

Material und Methoden: Farbsubstrattest für die Cls-Inhibition

5 Reagentien:

Cls aus Humanplasma, aktiviert, Zweikettenform (Reinheit: ca. 95 % nach SDS-Gel). Keine Fremd-

proteasenaktivität nachweisbar.

Substrat: Cbz-Gly-Arg-S-Bzl Produktnr.: WBASO12, (Fa. PolyPeptide, D-38304 Wolfenbüttel, Deutsch-

Farbeagenz: DTNB (5,5'dinitrobis 2-nitrobenzoic 10

acid)

(No. 43760, Fluka, CH-9470 Buchs, Schweiz)

Puffer: 150 mM Tris/HCl pH = 7,50

Test-15 durchführung:

Der Farbsubstrattest zur Bestimmung der Cls-Aktivität wird in 96-Well-Mikrotiterplatten

durchgeführt.

10 µl der Inhibitorlösung in 20%igem DMSO (DMSO verdunnt mit 15 mmolar Tris/HCl pH = 7,50)

gelangen zu 140 µl Testpuffer, welcher Cls mit einer Endkonzentration von 0,013 U/ml enthält und DTNB mit einer Endkonzentration von 0,27 mM/l. Inkubiert wird 10 Minuten bei 20

bis 25°C. Gestartet wird der Test durch Zugabe von 50 μ l einer 1,5 mmolaren Substratlösung in 30%igem DMSO (Endkonzentration 0,375 mmol/1). Nach 30 Minuten Inkubationszeit bei 20 bis 25°C wird die Extinktion jedes Wells bei 405 nm in

einem Zwei-Strahl-Mikrotiterplattenphotometer gegen einen Leerwert (ohne Enzym) gemessen.

IC₅₀: Benötigte Inhibitorkonzentration, um die Meßkriterium:

amidolytische Cls-Aktivität auf 50 % herab-

zusetzen.

Die Abhängigkeit der Extinktion von der Statistische

Inhibitorkonzentration dient als Berechnungs-Auswertung:

grundlage.

35

20

25

30

Beispiel C

Nachweis der Inhibition von Komplement auf dem klassischen Weg durch hämolytischen Test

40 Für das Messen von potentiellen Komplement-Inhibitoren wird in Anlehnung an diagnostische Tests ein Test zur Messung des klassischen Weges benutzt (Literatur: Complement, A practical Approach; Oxford University Press; 1997; S. 20 ff). Hierzu wird als Quelle für Komplement Humanserum verwendet. Ein gleichartig

45 aufgebauter Test wird jedoch auch mit verschiedenen Seren anderer Spezies in analoger Weise durchgeführt. Als Indikatorsystem werden Erythrozyten von Schafen verwendet. Die antikörperabhängige Lyse dieser Zellen und das dadurch ausgetretene Hämoglobin sind ein Maß für die Komplementaktivität.

Reagenzien, Biochemikalien: #2760500 Fa. Merck Veronal 5 #500538 Fa. Merck Na-Veronal #1.06404 Fa. Merck NaCl #0162 Fa. Baker $MgCl_2x6H_2O$ Fa. Riedel de Haen #31307 CaCl₂x6H₂O #1.04078.0500 Fa. Merck Gelatine 10 #8043.2 Fa. Roth EDTA #15190-044 Fa. Gibco Alsevers Lsg #P1507 10Mega Fa. Grünenthal Penicillin #ORLC Fa. Behring Ambozeptor

15

Stammlösungen:

VBS-Stammlösung: 2,875 g/l Veronal; 1,875 g/l Na-Veronal;

42,5 g/l NaCl

Ca/Mg-Stammlösung:0,15 M Ca++, 1 M Mg++

20 EDTA-Stammlösung: 0,1 M pH 7,5

Puffer:

GVBS-Puffer:

VBS-Stammlösung 1:5 mit Fin Aqua verdünnen;

1 g/L Gelatine mit etwas Puffer heiß

Auflösen

25 GVBS++ Puffer:

Ca/Mg-Stammlösung 1:1000 in GVBS-puffer

verdünnen

GVBS/EDTA-Puffer: EDTA-Stammlösung 1:10 in GVBS-Puffer

verdünnen

30 Biogene Komponenten:

Schafserythrozyten(SRBC): Hammelblut wurde 1+1 (v/v)
mit Alsevers-Lösung gemischt, durch Glaswolle filtriert und
mit 1/10 Volumen EDTA-Stammlösung +1 Spatelspitze Penicillin
versetzt. Humanserum: Nach Abzentrifugieren der geronnenen

Anteile bei 4°C wurde der Überstand in Aliquots bei -70°C gelagert. Alle Messungen wurden mit einer Charge durchgeführt. Es ergaben sich keine wesentlichen Abweichungen gegenüber Serum anderer Probanden.

40 Vorgehen:

- 1. Sensibilisierung der Erythrozyten
 - SRBC wurden dreimal mit GVBS-Puffer gewaschen.
 Anschließend wurde die Zellzahl auf 5,00E+08 Zellen/ml in GVBS/EDTA-Puffer eingestellt. Ambozeptor wurde in
- in GVBS/EDTA-Puffer eingestellt. Ambozeptor wurde in einer Verdünnung von 1:600 zugegeben und durch Inkubation über 30 Min bei 37°C unter Bewegung die SRBC mit Anti-

körper sensibilisiert. Anschließend wurden die Zellen dreimal mit GVBS-Puffer bei 4°C gewaschen, anschließend in GVBS++ Puffer aufgenommen und auf eine Zellzahl von 5×10^8 eingestellt.

5

- Inhibitoren wurden in verschiedenen Konzentrationen mit Lyseansatz: 2. Humanserum oder Serum anderer Spezies in passender Verdünnung (z.B. 1:80 für Humanserum; passend ist eine Verdünnung, bei der ca. 80 % der maximalen Lyse, die durch Serum erzielt werden kann, erreicht ist.) in GVBS++ für 10 10 Min bei 37°C in einem Volumen von 100 μ l vorinkubiert. Anschließend wurden 50 μl sensibilisierte SRBC in GVBS++ zugegeben. Nach Inkubation von 1 Stunde bei 37°C unter Bewegung wurden die SRBC abzentrifugiert (5 Minuten; 2500 Upm 4°C). 130 μ l des zellfreien Überstandes wurden 15 in eine 96-well-Platte überführt. Die Auswertung orfolgte durch Messung bei 540 nm gegen GVBS++-Puffer.
 - 20 Zur Auswertung werden die Absorptionswerte bei 540 nm benutzt.
 - Background; Zellen ohne Serum (1): 100 % Lyse; Zellen mit Serum (3):
 - gemessene Werte mit Testsubstanzen (x):

25

(X) - (1) x 100 % Berechnung: % Lyse = -(3)-(1)

30 Beispiel D

Test von Inhibitoren auf Inhibition der Protease Faktor D

Faktor D übt im alternativen Weg des Komplementsystems eine zentrale Funktion aus. Aufgrund der geringen Plasmakonzentration 35 von Faktor D stellt der enzymatische Schritt der Spaltung von Faktor B durch Faktor D den geschwindigkeitsbestimmenden Schritt

in dem alternativen Weg der Komplementaktivierung dar. Auf Grund der limitierenden Rolle, die dieses Enzym im alternativen Weg spielt, ist Faktor D ein Target für die Inhibition des

40 Komplementsystems.

Das käufliche Substrat Z-Lys-SBzl*HCl wird von dem Enzym Faktor D umgesetzt (Literatur: Kam, C.M. et al., J. Biol. Chem. 262, 3444-3451, 1987). Die Detektion des gespaltenen Substrates

45 erfolgt durch Umsatz mit Ellmann's Reagenz. Das entstandene Produkt wird spektrophotometrisch detektiert. Die Reaktion kann online verfolgt werden. Hierdurch sind enzymkinetische Messungen möglich.

Material:

5

......

Chemikalien:

Faktor D Calbiochem 341273
Ellmann's Reagent SIGMA D 8130
Z-Lys-SBzl*HCl (=Substrat) Bachem M 1300
50 mg/ml

10

(MeOH)

NaCl Triton-X-100 Riedel-De-Häen 13423 Aldrich 23,472-9

Tris (hydroxymethyl)-aminomethan MERCK

15 Dimethylformamid (DMF)

Puffer:

50 mM Tris 150 mM NaCl

20 0,01 % Triton - X - 100

pH 7,6

Stocklösungen:

Substrat 20 mM (8,46 mg/ml = 16,92 μ l

25 $(50 \text{ mg/ml}) + 83,1 \text{ } \mu \text{l} \text{ } \text{H}_2\text{O})$

Ellmann's Reagent 10 mM (3,963 mg/ml) in DMF

Faktor D 0,1 mg/ml

Proben (Inhibitoren) 10-2 M in DMSO

30 Durchführung:

Ansätze:

Leerwert: 140 µl Puffer + 4,5 µl Substrat

 $(0,6 \text{ mM}) + 4.5 \mu l \text{ Ellmann's } (0.3 \text{ mM})$

Positiv-Kontrolle: 140 μ l Puffer + 4,5 μ l Substrat

 $(0.6 \text{ mM}) + 4.5 \mu l \text{ Ellmann's } (0.3 \text{ mM})$

+ 5 μl Faktor D

Proben-Messung: 140 µl Puffer + 4,5 µl Substrat (0,6 mM)

+ $4.5 \mu l$ Ellmann's (0.3 mM)

+ 1,5 μ l Proben (10⁻⁴ M) + 5 μ l Faktor D

40

35

Die Ansätze werden in Mikrotiterplatten zusammenpipettiert. Nach dem Mischen von Puffer, Substrat und Ellmann's (evtl. Inhibitor) wird die Enzymreaktion durch Zugabe von jeweils 5 μ l Faktor D gestartet. Inkubation findet bei Raumtemperatur

45 für 60 min. statt.

Messung:

Messen bei 405 nm für 1 Stunde in 3 Minuten Abstand

- Das Ergebnis wird graphisch aufgetragen. Die Änderung der Absorption pro Minute (Delta OD pro Minute; Steigung) ist 5 für den Vergleich von Inhibitoren relevant, da sich hieraus Ki-Werte von Inhibitoren ermitteln lassen.
- Als wirksamer Inhibitor wurde in diesem Test der Serinprotease-Inhibitor FUT-175; Futhan; Fa. Torii; Japan mit-10 geführt.

Nachweis der Inhibition von Komplement auf dem alternativen Weg

15 durch hämolytischen Test (Literatur: Complement, A practical Approach; Oxford University Press; 1997, S. 20 ff.) Der Test wird in Anlehnung an klinische Tests durchgeführt. Durch zusätzliche Aktivierung mittels z.B. Zymosan oder Cobra Venom Faktor kann der Test modifiziert werden.

20

EGTA (Ethylenebis(oxyethylenenitrilo)-tetracetic acid Material:

	onehis (oxyethylene)	IILLIIO/ COL	. 1002053
	EGTA (Ethylenebis (oxyethylenen	Boehringer Mannhe	21m 1033033
		MERCK	5833.0250
	$MgCl_2 * 6 H_2O$	MERCK	1.06404.1000
25	NaCl	Cerestar	. = <0.500
	D - Glucose	MERCK	2760500
	Veronal	MERCK	500538
	Na-Veronal	Gelatine Veronal	Puffer
	VBS - Stammlösung (5x)	PD Dr. Kirschfin	k: Universität
		PD Dr. KIISCHIII	. F. Immunologie;
30	•	Heidelberg, Inst	1.04078.0500
		MERCK	
	Gelatine	an MERCK	1.08382.0100
	Tris(hydroxymethyl)aminometha	MERCK	Art. 2382
	CaCl ₂	MERCA	eferanten (z.B.
_	- Warner wirde entweder be	i verschiedenen ba	and won Probanden

35 Humanserum wurde entweder bei verschiedenen Lieferanten (z.B. Sigma) gekauft oder in der Ambulanz der BASF Süd von Probanden

Meerschweinchenblut wurde gewonnen und 2:8 in Citratlösung verdünnt. Es wurden mehrere Chargen ohne offensichtliche Unter-

40 schiede verwendet.

Stammlösungen:

2,875 g/l Veronal VBS-Stammlösung: 1,875 g/l Na-Veronal 42,5 g/l NaCl

GVBS:

VBS Stammlösung 1:5 mit Wasser (Finn Aqua)

verdünnen

+ 0,1 % Gelatine

erhitzen bis Gelatine gelöst und abkühlen

5

100 mM EGTA:

38,04 mg EGTA in 500 ml Finn Aqua und mit 10 M NaOH langsam auf pH 7,5 bis gelöst,

dann auf 1 l auffüllen

10 Mg - EGTA :

5 ml 100 mM EGTA 3,5 ml 100 mM MgCl₂

10,4 ml GVBS

31,1 ml 5 % Glucoselösung

15 Saline:

0,9 % NaCl in Wasser (Finn Aqua)

GTB:

0,15 mM CaCl₂ 141 mM NaCl

0,5 mM MgCl2* 6 H2O

20

10 mM Tris 0,1 % Gelatine

pH 7,2 - 7,3

Vorgehen:

25 1. Zellpräparation:

Die Erythrozyten aus dem Meerschweinchenblut wurden mehrfach durch Zentrifugieren (5 Minuten; 1000 Upm) mit GTB gewaschen, bis der Überstand klar war. Die Zellzahl wurde auf 2 * 10 9 Zellen/ml eingestellt.

30 2. Durchführung: Die einzelnen Ansätze wurden 30 Minuten bei 37°C unter Bewegung inkubiert. Anschließend wurde mit je 480 µl eiskalter Saline (physikalischer Kochsalzlösung) abgestoppt und die Zellen 5 Minuten mit 5000 Upm abzentrifugiert. 200 µl des Überstandes wurden bei 405 nm gemessen durch Überführen in eine Mikrotiterplatte und Auswertung in einem Mikrotiterplattenphotometer.

Pipettierschema (Mengenangaben in µ1)

40		Back- ground (- Serum)	100 % Lyse	100 % Lyse + Faktor D	Background + Faktor D (- Serum)	Max. Lyse (Wasser)
	Zellen	20	20	20	20	20
45	Serum 1:4		20	20		
	Mg - EGTA	480	480	480	480	
	Faktor D			0,5 μg	0,5 μg	_
	Saline (zum Abstoppen)	480	480	480	480	
	H ₂ O					980

Zur Auswertung werden die OD - Werte benutzt. Auswertung:

Background; Zellen ohne Serum (1):

100 % Lyse + Faktor D; Zellen mit Serum (3):

gemessene Werte mit Testsubstanzen (x): 5

Berechnung:
$$% \text{ Lyse} = \frac{(X) - (1) * 100}{(3) - (1)}$$

10

Die vorliegende Erfindung betrifft peptidische und peptidomimetische Substanzen, deren Herstellung und deren Verwendung als Komplementinhibitoren. Insbesondere handelt es sich um Substanzen mit einem Amidin- oder Guanidinrest als endständige Gruppe.

15

Außerdem betrifft die Erfindung die Verwendung von bekannten amidinhaltigen Substanzen zur Herstellung von Komplentinhibitoren, spezifisch von Inhibitoren von Cls und Clr.

- 20 Die Erfindung betrifft die Verwendung von bekannten und neuen Substanzen mit einer Amidin- oder Guanidin-Endgruppe zur Herstellung von Komplementinhibitoren, spezifisch von Inhibitoren von Cls und Clr.
- 25 Insbesondere betrifft die Erfindung die Verwendung von chemisch stabilen Substanzen der allgemeinen Formel I, deren Tautomeren, pharmakologisch verträglichen Salzen und Prodrugs zur Herstellung von Arzneimitteln zur Behandlung und Prophylaxe von Krankheiten, die durch teilweise oder vollständige Inhibition, insbesondere
 - 30 selektive Inhibition, von Cls und/oder Clr gelindert oder geheilt werden. Formel I hat die allgemeine Struktur

$$A-B-D-E-G-K-L$$
 (I).

35 A

H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{1-3} -alkyl- C_{3-8} -cycloalkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H-, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl;

- $R^{A2}-R^{A3}$ können zusammen auch einen Ring mit 3 bis 7 Kohlenstoffatomen bilden), R^{A4} OCO₂(R^{A4} gleich C_{1-6} -Alkyl, 40 C_{1-3} -Alkylaryl), $R^{A4}OCONR^{A2}$, NO_2 , $R^{A4}CONR^{A2}$, $R^{A1}O$, $R^{A2}R^{A3}N$, $R^{A1}S$, HO-SO_2 , $\text{R}^{\text{A2}}\text{R}^{\text{A3}}\text{N}\text{-SO}_2$, C1, Phenoxy, Br, F, Tetrazolyl, $\text{H}_2\text{O}_3\text{P}$, $R^{A1}-N(OH)-CO$, $R^{A1}R^{A2}NCONR^{A3}$, wobei Aryl jeweils mit bis zu 2
- gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, OCH₃, CF₃, CH₃, NO₂ substituiert sein kann; 45

B steht für

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$5 1^B = 0, 1, 2, 3;$$

 $m^B = 0, 1, 2, 3, 4, 5;$

L^B gleich

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschie-40 denen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC-(R⁸ gleich H, C₁₋₃-alkyl) substituiert sein kann;

mit

$$n^{B} = 0, 1, 2;$$

$$p^{B} = 0, 1, 2;$$

$$q^{B} = 1, 2, 3;$$

 $R^{\rm B1}$ gleich H, $C_{1-6}\text{-Alkyl},\ C_{0-3}\text{-Alkylaryl},\ C_{0-3}\text{-Alkylheteroaryl},\ C_{0-3}\text{-Alkyl-}C_{3-8}\text{-cycloalkyl},\ OH,\ OCH_3;$

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

5

 $\rm R^{B3}$ gleich H, $\rm C_{1-6}$ -Alkyl, $\rm C_{0-3}$ -Alkylaryl, $\rm C_{0-3}$ -Alkylheteroaryl, $\rm R^{B5}OCO$ ($\rm R^{B5}$ gleich H, $\rm C_{1-6}$ -Alkyl, $\rm C_{1-3}$ -Alkylaryl), $\rm R^{B6}$ -O ($\rm R^{B6}$ gleich H, $\rm C_{1-6}$ -Alkyl), F, Cl, Br, NO₂, CF₃;

10 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF₃;

 $R^{\rm B1}$ und $R^{\rm B2}$ können auch miteinander verbunden sein;

 T^B gleich CH_2 , O, S, NH, N- C_{1-6} -Alkyl;

15

XB gleich O, S, NH, N-C₁₋₆-Alkyl;

YB gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-Cl;

ZB gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-Cl;

UB gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-O-C₁₋₃-Alkyl;

VB gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-O-C₁₋₃-Alkyl.

25

B steht weiterhin für
-(CH₂)₁B-LB-MB-LB-(CH₂)_mB, wobei

1^B und m^B oben angegebene Bedeutung besitzen und die beiden

Gruppen L^B unabhängig voneinander für die gleichen oder verschiedene genannten Reste stehen;

MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO_2 , CH=CH, C=C;

35

B kann weiterhin stehen für
-adamantyl(1)-, adamantyl(2)-, -adamantyl(1)-CH₂-,
-adamantyl(2)-CH₂-,

40

45 A-B kann weiterhin stehen für

- D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkyl-aryl), SO₂, NR^{D1}SO₂;
 - E steht für eine Einfach-Bindung oder für

15
$$\begin{array}{c|c}
 & RE2 \\
 & (CH_2)_{mE} \\
\hline
 & N \longrightarrow (CH_2)_{1E} \longrightarrow (CH_2)_{pE} \longrightarrow (CH_2)_{nE} \\
 & (CH_2)_{kE} & (CH_2)_{nE} \\
 & RE1 & RE3
\end{array}$$

mit

25

5

 $k^{E} = 0, 1, 2;$ $l^{E} = 0, 1, 2;$ $m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$

30 $p^E = 0, 1, 2;$

- RE1 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl (insbesondere besondere Phenyl oder Naphthyl), Heteroaryl (insbesondere Pyridyl, Thienyl, Imidazolyl, Indolyl), C₃₋₈-Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, OH, O-C₁₋₆-Alkyl, F, Cl, Br tragen können;
- 40 R^{E1} bedeutet weiterhin $R^{E4}OCO-CH_2-$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$);
- RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl (insbesondere Phenyl oder Naphthyl), Heteroaryl (insbesondere
 Pyridyl, Furyl, Thienyl, Imidazolyl, Indolyl), Tetrahydropyranyl, Tetrahydrothiopyranyl, C₃₋₈-Cycloalkyl mit
 ankondensiertem Phenylring, wobei die vorgenannten Reste

bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, OH, O- C_{1-6} -Alkyl, F, Cl, Br, tragen können, $CH(CH_3)OH$, $CH(CF_3)_2$;

 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Aryl (insbesondere Phenyl oder Naphthyl), Heteroaryl (insbesondere 5 Pyridyl, Thienyl, Imidazolyl, Indolyl), C3-8-Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, OH, O- C_{1-6} -Alkyl, F, Cl, Br tragen 10 können;

> ${\rm R}^{\rm E2}$ und ${\rm R}^{\rm B1}$ können zusammen auch eine Brücke mit (CH $_2$) $_{\rm 0-4}$, CH=CH, CH2-CH=CH, CH=CH-CH2-Gruppen bilden;

die unter R^{El} und R^{E2} genannten Gruppen können über eine 15 Bindung miteinander verknüpft sein; auch die unter RE2 und $R^{\rm E3}$ genannten Gruppen können über eine Bindung miteinander verbunden sein;

 R^{E2} steht weiterhin für COR^{E5} (R^{E5} gleich OH, $O-C_{1-6}-Alkyl$, 20 OC_{1-3} -Alkylaryl), $CONR^{E6}R^{E7}$ (mit R^{E6} bzw. R^{E7} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl);

kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, 25 E D-Dab, D-Dap, D-Arg;

bedeutet G

mit $1^G = 2$, 3, 4 und 5, wobei eine CH2-Gruppe des Rings durch O, 30 S, NH, NC_{1-3} -Alkyl, CHOH, CHOC₁₋₃-Alkyl, $C(C_{1-3}-Alkyl)_2$, $CH(C_{1-3}-Alkyl)$, CHF, CHCl, CF₂ ersetzt sein kann;

35 (CH₂)_pG RG2 CH - CH (CH2) nG (CH₂)_nG 40 (CH₂)_mG (CH₂)_mG0

= 0, 1, 2;mG

mit

$$n^{G} = 0, 1, 2;$$

 $p^{G} = 1, 2, 3, 4;$

RG1 H, C1-C6-Alkyl, Aryl;

5

RG2 H, C₁-C₆-Alkyl, Aryl;

RG1 und RG2 können zusammen auch eine -CH=CH-CH=CH-Kette bil-den;

10

weiterhin steht G für

20 mit

25 RG3 H, C₁-C₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl;

 R^{G4} H, $C_1-C_6-Alkyl$, $C_{3-8}-Cycloalkyl$, Aryl (insbesondere Phenyl, Naphthyl);

30 K bedeutet

$$n^{K} = 0, 1, 2, 3;$$

35

Q^K gleich C_{2-6} -Alkyl, wobei die Kette geradkettig oder verzweigt sein kann und wobei bis zu zwei CH_2 -Gruppen durch O oder S ersetzt sein können;

40

QK gleich

5
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array}$$

15
$$\bigvee_{Y^K}^{X^K} \bigvee_{I}^{Z^K} \bigvee_{(CH_2)_{n^K}}^{X^K} \bigvee_{M^K} - \bigvee_{(CH_2)_{n^K}}^{X^K} \bigvee_{(CH_2)_{n^K}}^{X^K} \bigvee_{M^K} - \bigvee_{(CH_2)_{n^K}}^{X^K} \bigvee_{M^K}^{X^K} \bigvee_{M^K}^{X^K}$$

20 mit ${\bf R^{K1}} \ \ {\rm gleich} \ {\bf H, \ C_{1-3}-Alkyl, \ OH, \ O-C_{1-3}-Alkyl, \ F, \ Cl, \ Br;$

 R^{K2} gleich H, C_{1-3} -Alkyl, $O-C_{1-3}$ -Alkyl, F, Cl, Br;

25 X^{K} gleich O, S, NH, N-C₁₋₆-Alkyl;

 Y^{K} gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-Cl;

30 ZK gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-Cl;

UK gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-O-C₁₋₃-Alkyl;

VK gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-O-C₁₋₃-Alkyl;

35 V^K gleich =CH-, =C-C₁₋₆-Alkyl, -K, -

 W^{K} gleich CH oder N, wobei im letzteren Fall L keine Guanidingruppe sein darf;

 $n^{K} = 0, 1, 2;$ $p^{K} = 0, 1, 2;$ $q^{K} = 1, 2;$

5

mit

RL1 gleich H, OH, O- C_{1-6} -Alkyl, O- $(CH_2)_{0-3}$ -Phenyl, CO- C_{1-6} -Alkyl, CO₂- C_{1-6} -Alkyl, CO₂- C_{1-3} -Alkylaryl.

10

Der Begriff C_{1-X} -Alkyl umfaßt alle geradkettigen und verzweigten Alkylketten mit einem bis $_X$ -Kohlenstoffatomen.

Der Begriff C_{3-8} -Cycloalkyl steht für carbocyclische gesättigte **15** Reste mit 3- bis 8 Kohlenstoffatomen.

Der Begriff Aryl steht für carbocyclische Aromaten mit 6 bis 14 C-Atomen, insbesondere für Phenyl, 1-Naphthyl, 2-Naphthyl.

20 Der Begriff Heteroaryl steht für Fünf- und Sechsring-Aromaten mit mindestens einem Heteroatom N, O oder S, insbesondere für Pyridyl, Thienyl, Furyl, Thiazolyl, Imidazolyl; dabei können auch zwei aromatische Ringe kondensiert sein, wie z.B. Indol, N-C₁₋₃-Alkylindol, Benzothiophen, Benzothiazol, Benzimidazol,

25 Chinolin, Isochinolin.

Der Begriff C_{x-y} -Alkylaryl steht für carbocyclische Aromaten, die über eine Alkylgruppe mit X, x+1, ...y-1 oder y C-Atomen mit dem Gerüst verknüpft sind.

30

Gegenstand der Erfindung sind weiter Verbindungen, die das Strukturelement

35

enthalten, worin G, K und L die oben angegebene Bedeutung besitzen. Bevorzugt nimmt G-K-L die Bedeutung der unten genannten neuen Verbindungen an. Das Strukturfragment ist als Bestandteil von Komplement-Inhibitoren und insbesondere von C_{1s} - oder/und

40 C_{1r}-Inhibitoren wertvoll.

Gegenstand der Erfindung sind weiter die Zwischenprodukte der folgenden Formeln

$$A - B - D - E - G - K - CN$$
 $A - B - D - E - G - K - C$
 NH_2
 NH_2

25

40

10 worin A, B, D, E, G und K die Bedeutung der folgenden neuen Verbindungen der allgemeinen Formel I besitzen.

Die neuen Zwischenprodukte dienen zur Herstellung der Verbindungen I und sind wertvolle Bausteine für die Synthese 15 von Serinprotease-Inhibitoren.

Die Verbindungen der Formel I können als solche oder in Form ihrer Salze mit physiologisch verträglichen Säuren vorliegen. Beispiele für solche Säuren sind: Salzsäure, Zitronensäure, Wein-20 säure, Milchsäure, Phosphorsäure, Methansulfonsäure, Essigsäure, Ameisensäure, Maleinsäure, Fumarsäure, Bernsteinsäure, Hydroxybernsteinsäure, Schwefelsäure, Glutarsäure, Asparaginsäure, Brenztraubensäure, Benzoesäure, Glucuronsäure, Oxalsäure, Ascorbinsäure und Acetylglycin.

Die neuen Verbindungen der Formel I sind kompetitive Inhibitoren des Komplementsystems, besonders von $C_{1\text{s}}$, sowie weiter von $C_{1\text{r}}$.

Die erfindungsgemäßen Verbindungen können in üblicher Weise 30 oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal, rektal) verabfolgt werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten 35 sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis pro Person zwischen etwa 10 und 2000 mg bei oraler Gabe und zwischen etwa 1 und 200 mg bei parenteraler Gabe. Diese Dosis kann in 2 bis 4 Einzeldosen oder einmalig am Tag als Depotform gegeben werden.

Die Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z.B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden 45 in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978).

5 Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 99 Gew.-%.

Unter Prodrugs werden Verbindungen verstanden, die in vivo (z.B. first pass Metabdisums) in die pharmakologisch aktiven 10 Verbindungen der allgemeinen Formel I umgesetzt werden.

Die Erfindung betrifft außerdem folgende neue Verbindungen A-B-D-E-G-K-L und Arzneimittel, die diese Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute

15 Komplementinhibitoren.

Hierbei gilt:

- A steht für

 H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H,

 C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₃-alkyl,

 C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H-, C₁₋₆-Alkyl,

 C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl,

 C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkyl-aryl), R^{A4}CONR^{A2}, R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂,

 Cl, Br, F, Tetrazolyl, H₂O₃P-, NO₂, R^{A1}-N(OH)-CO-, R^{A1}R^{A2}NCONR-A³, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF₃, CH₃, OCH₃, NO₂ substituiert sein kann;
- 30 B steht für

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$1^{B} = 0, 1, 2, 3;$$

$$m^{B} = 0, 1, 2;$$

40

L^B gleich

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH_3 , CF_3 , Br, Cl, F substituiert sein kann, oder mit R^8OOC- (R^8 gleich H, C_{1-3} -alkyl) substituiert sein 35 kann;

mit

30

45

$$n^{B} = 0, 1, 2;$$

$$p^{B} = 0, 1, 2;$$

$$q^{B} = 1, 2, 3;$$

 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl-C₃₋₈-cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

 R^{B3} gleich H, $C_{1-6-Alkyl}$, $C_{0-3}-Alkylaryl$, $C_{0-3}-Alkylheteroaryl$; $R^{B5}OCO$ (R^{B5} gleich H, $C_{1-6}-Alkyl$, $C_{1-3}-Alkylaryl$), $R^{B6}-O$ (R^{B6} gleich H, $C_{1-6}-Alkyl$), F, Cl, Br, NO_2 , CF_3 ;

5 RB4 gleich H, C₁₋₆-Alkyl, RB6-O, Cl, Br, F, CF₃;

 R^{B5} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

 T^{B} gleich CH_{2} , O, S, NH, N- C_{1-6} -Alkyl;

10

 $R^{B1'}$ gleich H, $C_{1-6}\text{-alkyl},\ C_{0-3}\text{-alkylaryl},\ C_{0-3}\text{-alkylheteroaryl},\ C_{0-3}\text{-alkyl-}C_{3-8}\text{-cycloalkyl};$

RB1 und RB2 können auch miteinander verbunden sein;

15

XB gleich O, S, NH, N-C₁₋₆-Alkyl;

YB gleich =CH-, =N-, =C-C1;

20

ZB gleich =CH-, =N-, =C-Cl;

UB gleich =CH-, =N-;

25 VB gleich =CH-, =N-;

B steht weiterhin für $-(CH_2)_{1B}-L^B-M^B-L^B-(CH_2)_{m^B}, \text{ wobei}$ $l^B \text{ und } m^B \text{ oben angegebene Bedeutung besitzen und die beiden}$ Gruppen L^B unabhängig voneinander für die unter L^B genannten Reste stehen;

MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2-CH_2 , CH_2-O , $O-CH_2$, CH_2-S , $S-CH_2$, CO, SO_2 , CH=CH, $C\equiv C$;

35

30

B steht weiterhin für -adamantyl(1)- CH_2 -, -adamantyl(2)- CH_2 -, -adamantyl(1)-, -adamantyl(2)-,

40

45 B kann weiterhin stehen für

 $(R^{B7} \text{ gleich } C_{1-6}-alkyl, C_{3-8}-cycloalkyl)$

B kann weiterhin stehen für

10

5

mit X^{B1} gleich einer Bindung, O, S, oder

20

15

mit r^B gleich 0, 1, 2, 3;

25

mit RB9 gleich H, C1-3-alkyl;

A-B kann stehen für

30

35

- D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C₁₋₄-Alkyl, C₀₋₃-Alkylaryl), SO₂, NR^{D1}SO₂;
- 40 E steht für eine Einfach-Bindung oder für

$$\begin{array}{c|c}
R^{E2} \\
(CH_2)_{mE} \\
(CH_2)_{1E} \longrightarrow (CH_2)_{pE} \longrightarrow (CH_2)_{pE}
\end{array}$$

$$\begin{array}{c|c}
(CH_2)_{kE} & (CH_2)_{nE} \\
(CH_2)_{kE} & (CH_2)_{nE}
\end{array}$$

10

5

mit

 $k^{E} = 0, 1, 2;$ $1^{E} = 0, 1, 2;$ $15 m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$ $p^{E} = 0, 1, 2;$

Phenyl oder Naphthyl), Pyridyl, Thienyl, C₃₋₈-Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, O-C₁₋₆-Alkyl, F, Cl, Br tragen können;

25 R^{E1} bedeuted weiterhin $R^{E4}OCO-CH_2$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$);

RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl,
 Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche
oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl,
 O-C₁₋₆-Alkyl, F, Cl, Br tragen können, CH(CH₃)OH, CH(CF₃)₂;

RE3 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, O-C₁₋₆-Alkyl, F, Cl, Br tragen können;

 R^{E2} und R^{B1} können zusammen auch eine Brücke mit (CH₂)₀₋₄, CH=CH, CH₂-CH=CH, CH=CH₂-Gruppen bilden;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

 $\rm R^{E2}$ steht weiterhin für $\rm COR^{E5}$ (R^{E5} gleich OH, O-C_{1-6}-Alkyl, O-C_{1-3}-Alkylaryl);

der Baustein E liegt, wenn er asymmetrisch substituiert ist, 5 vorzugsweise in der R-Konfiguration vor;

E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;

10 G bedeutet

15 (CH₂)₁G

mit $1^G=2$, 3, 4 und 5, wobei eine CH_2 -Gruppe des Rings durch O, S, NH, CF_2 , CHF, CH(C_{1-3} -Alkyl)ersetzt sein kann;

20

25

mit

 $m^{G} = 0, 1, 2;$ $n^{G} = 0, 1, 2;$ 30 $p^{G} = 1 \text{ oder } 3;$

 R^{G1} , $R^{G2} = H$;

RG1 und RG2 können zusammen auch eine CH=CH-CH=CH-Kette bilden;

weiterhin steht G für

RG4
RG3
(CH₂)_rG
(CH₂)_rG
N
0

45 mit

qG 0, 1, 2;

rG 0, 1, 2;

 R^{G3} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl;

5 R^{G4} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

K bedeutet

10

 $n^{K} = 1, 2;$

Q^K gleich $Z^K - X^K$ X^K $Y^K - Y^K$

 X^{K} gleich O, S, NH, N-C₁₋₆-Alkyl;

25 L:
$$NH$$
 bzw. $-NH$ NH NHR^{L1}

mit

30 R^{L1} gleich H, OH, O-C₁₋₆-Alkyl, O-(CH₂)₀₋₃-Phenyl, CO-C₁₋₆-Alkyl, $CO_2-C_{1-6}-Alkyl$, $CO_2-C_{1-3}-Alkyl$ aryl.

Die Erfindung betrifft außerdem folgende neue Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der

- 35 Formel A-B-D-E-G-K-L und Arzneimittel, die diese Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren.
 Hierbei gilt:
- 40 A steht für
 H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H,
 C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₁₋₃-alkyl-C₃₋₈-cycloalkyl,
 C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H, C₁₋₆-Alkyl,
 C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl,
 C₀₋₃-Alkylaryl), R^{A4}OCONR^{A2}, R^{A4}CONR^{A2}, (R^{A4} gleich C₁₋₆-alkyl,
 C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N, HO-SO₂, R^{A2}R^{A3}N-SO₂,
 Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂, R^{A1}-N(OH)-CO, R^{A1}R^{A2}NCONR^{A3},

wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, OCH3, CH3, CF3, NO2 substituiert sein kann;

steht für 5 В

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$1^{B} = 0, 1, 2, 3;$$

 $10 m^{B} = 0, 1, 2, 3;$

L^B gleich

25

30

40

20 CH2)nB

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH3, CF3, Br, Cl, F substituiert sein kann, oder mit R^8OOC - (R^8 gleich H, C_{1-3} alkyl) substituiert sein kann;

mit

nB = 0, 1, 2;= 0, 1, 2; $\mathbf{g}_{\mathbf{Q}}$ 35 = 1, 2, 3; α^{B}

> R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Al $kyl-C_{3-8}$ -cycloalkyl, OH, OCH₃;

gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl.

 R^{B1} und R^{B2} können auch miteinander verbunden sein;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, 45 C_{0-3} -Alkyl- C_{3-8} -cycloalkyl;

B steht weiterhin für -adamantyl(1)-, -adamantyl(1)- CH_2 -, -adamantyl(2)-, -adamantyl(2)- CH_2 -,

5 0 0 0

B steht weiterhin für $-(CH_2)_{1B}-L^{B1}-M^B-L^{B2}-(CH_2)_{mB}-$, wobei 1^B und m^B obenangegebene Bedeutung besitzen und die beiden Gruppen L^{B1} und L^{B2} unabhängig voneinander für folgende Reste stehen:

15 $\begin{array}{c|c}
 & R^{B1} \\
 & C \\
 & C \\
 & R^{B2}
\end{array}$ (CH₂)_{pB}
(CH₂)_{nB}
(CH₂)_{nB}
(CH₂)_{nB}
(CH₂)_{nB}

 $-C \equiv C - R^{B3}$ $R^{B4} R^{B4}$ $R^{B3} R^{B4}$ $R^{B3} R^{B4}$

 $Z_{B} - X_{B}$ X_{B} X_{B} X_{B} X_{B} X_{B} X_{B}

40 F F (CH₂)_{nB}

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring
45 ankondensiert sein kann;
mit

 $n^B = 0, 1, 2;$

20

```
p^B = 0, 1, 2;
q^B = 1, 2, 3;
```

gleich H (nur für L^{B2}), C₁₋₆-Alkyl (nur für L^{B2}),
C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl, C₀₋₃-AlkylC₃₋₈-cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

10 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -Cycloalkyl;

 R^{B3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

 T^B gleich CH_2 , O, S, NH, N- C_{1-6} -Alkyl;

20

15

XB gleich O, S, NH, N-C₁₋₆-Alkyl;

YB gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-Cl;

ZB gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-Cl;

 U^B gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-O-C₁₋₃-Alkyl;

 V^{B} gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-O-C₁₋₃-Alkyl.

 $R^{\rm Bl}$ und $R^{\rm B2}$ können auch miteinander verbunden sein;

bedeutet Einfach-Bindung, O, S, CH_2 , CH_2-CH_2 , CH_2-O , O- CH_2 , CH_2-S , S- CH_2 , CO, SO_2 , CH=CH, $C\equiv C$;

B kann weiterhin stehen für

40

$$X^{B1}$$
 — $(CH_2)_rB$ — C — R^{B9} O R^{B9} O R^{B9} O R^{B9} O R^{B9} O R^{B9} Mit R^{B1} gleich eine Bindung, O, S oder — R^{B9} Mit R^{B1} gleich 0, 1, 2, 3;

15 A-B kann stehen für

mit R^{B9} gleich H, C_{1-3} -alkyl;

- D steht für eine Einfach-Bindung bzw.
- für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkylaryl), SO₂, NR^{D1}SO₂;

B-D kann stehen für

35 E steht für eine Einfach-Bindung oder für

40
$$\begin{array}{c|c} & R^{E2} \\ & | \\ & (CH_2)_{mE} \\ & (CH_2)_{1E} & (CH_2)_{pE} \\ & | \\ & (CH_2)_{kE} & (CH_2)_{nE} \\ & | \\ & R^{E1} & R^{E3} \end{array}$$

45 $k^{E} = 0, 1, 2;$ $1^{E} = 0, 1, 2;$

 $m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$ $p^{E} = 0, 1, 2;$

5 R^{E1} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Naphthyl, Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, C_{1-6} -Alkyl,

- pedeutet H. C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl, Thienyl, Furyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, OH, O-C₁₋₆-Alkyl, F, Cl, Br tragen können, CH(CH₃)OH, CH(CF₃)₂,;
- 20 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, $O-C_{1-6}$ -Alkyl, F, Cl, Br tragen können;
- 25 R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, $CH_2-CH=CH$, $CH=CH-CH_2-Gruppen$ bilden;

die unter RE1 und RE2 genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter RE2 und RE3 genannten Gruppen können über eine Bindung miteinander verbunden sein;

- R^{E2} steht weiterhin für COR^{E5} (R^{E5} gleich OH, O-C₁₋₆-Alkyl, O-C₁₋₃-Alkylaryl);
- der Bautein E liegt, wenn er asymmetrisch substituiert ist, vorzugsweise in der R-Konfiguration vor;
- E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-40 Dab, D-Dap, D-Arg;
 - G bedeutet

mit $1^G = 2$, 3, 4 und 5, wobei eine CH_2 -Gruppe des Rings durch O, S, NH, CHF, CF_2 , $CH(C_{1-3}$ -Alkyl) ersetzt sein kann

RG2 10 15

(CH₂)_{pG} $(CH_2)_{nG}$

mit

$$m^G = 0, 1, 2;$$

$$n^G = 0, 1, 2;$$

RG1 H; 20 RG2 H;

RG1 und RG2 können zusammen auch eine CH=CH-CH=CH-Kette bilden;

25 weiterhin steht G für

mit

35

40

K bedeutet

45
$$NH-(CH2)n\kappa-QK mit$$

$$n^{K} = 1, 2;$$

Q^K gleich X^K $Y^K - Z^K$

 X^{K} gleich O, S, NH, N-C₁₋₆-Alkyl;

15 L:
$$NH$$
 bzw. $-NH$ NHR^{L1}

mit

20 R^{L1} gleich H, OH, O-C₁₋₆-Alkyl, O-(CH₂)₀₋₃-Phenyl, CO-C₁₋₆-Alkyl, CO_2 -C₁₋₆-Alkyl, CO_2 -C₁₋₅-Alkylaryl.

Die Erfindung betrifft außerdem folgende neue Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die diese Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren. Hierbei gilt:

30 A steht für
H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{Al}OCO (R^{Al} gleich H,
C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₁₋₃-alkyl-C₃₋₈-cycloalkyl,
C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H, C₁₋₆-Alkyl,
C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl,
C₀₋₃-Alkylaryl), R^{A4}OCONR^{A2}, R^{A4}CONR^{A2}, (R^{A4} ist gleich
C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N, HO-SO₂,
R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂, R^{A1}-N(OH)-CO-;
R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder
verschiedenen Substituenten aus der Gruppe F, Cl, Br, CH₃,

B steht für

$$-(CH_2)_{1B}-L^B-(CH_2)_{mB}-$$
 mit

 $1^{B} = 0, 1, 2, 3;$

 $m^B = 0, 1, 2, 3, 4, 5;$

L^B gleich

5 RB3

RB3 RB4

RB3 RB4

RB3 RB4

10

 X^{B} X^{B} X^{B} X^{B} X^{B} X^{B}

20 (CH₂)_{nB}

25

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, F, Cl, Br substituiert sein kann, oder mit R⁸OOC- (R⁸ gleich H, C₁₋₃-alkyl) substituiert sein kann;

RB3 gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, RB5OCO (RB5 gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), RB6-O (RB6 gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

35

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

TB gleich CH2, O, S, NH, N-C1-6-Alkyl;

40 X^B gleich O, S, NH, N-C₁₋₆-Alkyl;

YB gleich =CH-, =N-, =C-Cl;

45 ZB gleich =CH-, =N-, =C-Cl;

UB gleich =CH-, =N-;

 V^B gleich =CH-, =N-;

5 B kann weiterhin stehen für

 $(R^{B7}$ gleich C_{1-6} -alkyl, C_{3-8} -cycloalkyl)

A-B kann stehen für

15

10

20

B kann weiterhin stehen für -adamantyl(1)-, adamantyl(2)-, -adamantyl(1)- CH_2 -, adamantyl(2)- CH_2 ,

25

Q TO

30

B kann weiterhin stehen für

40

mit X^{B1} gleich einer Bindung, O, S, oder

mit r^B gleich 0, 1, 2, 3; mit R^{B9} gleich H, C_{1-3} -alkyl;

- D steht für eine Einfach-Bindung bzw.
- 5 für $-NR^{D1}$ -CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkylaryl), $-NR^{D1}SO_2$;
 - E steht für eine Einfach-Bindung oder für

10 R^{E2} $(CH_2)_{mE}$ $-N-(CH_2)_{1E}$ $(CH_2)_{pE}$ $(CH_2)_{kE}$ $(CH_2)_{nE}$ R^{E2} $(CH_2)_{mE}$ $(CH_2)_{nE}$ $(CH_2)_{nE}$ $(CH_2)_{nE}$ $(CH_2)_{nE}$

mit 20 $k^{E} = 0, 1, 2;$ $1^{E} = 0, 1, 2;$ $m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$ $p^{E} = 0, 1, 2;$

25

30

- RE1 bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Aryl (insbesondere Phenyl oder Naphthyl), Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, $O-C_{1-6}$ -Alkyl, F, Cl, Br tragen können;
- R^{E1} bedeutet weiterhin $R^{E4}OCO-CH_2$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$);
- 35 R^{E2} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Pyridyl, Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, $O-C_{1-6}$ -Alky, F, Cl, Br tragen können, CH(CH₃)OH, CH(CF₃)₂;

- R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, $O-C_{1-6}$ -Alkyl, F, Cl, Br tragen können;
- 45 R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, $CH_2-CH=CH$, $CH=CH-CH_2-Gruppen$ bilden;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

5

 R^{E2} steht weiterhin für COR^{E5} (R^{E5} gleich OH, $O-C_{1-6}-Alkyl$, $OC_{1-3}-Alkylaryl$);

der Bautein E liegt, wenn er asymmetrisch substituiert ist, 10 vorzugsweise in der R-Konfiguration vor;

E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;

15 G bedeutet

(CH₂)₁G

mit $1^G = 2$, 3, 4 und 5, wobei eine CH_2 -Gruppe des Rings durch O, S, NH, CHF, CF_2 , $CH(C_{1-3}$ -Alkyl) ersetzt sein kann;

20

RG1 C (CH₂) nG (CH₂) nG N O

(CH₂)_pG

CH - CH

(CH₂)_nG

(CH₂)_nG

30

mit

 $m^G = 0, 1, 2;$

35 $n^G = 0, 1, 2;$ $p^G = 1 \text{ oder } 3;$

RG1 H;

40 RG2 H;

RG1 und RG2 können zusammen auch eine CH=CH-CH=CH-Kette bilden;

weiterhin steht G für

mit

10

15

K bedeutet

NH- $(CH_2)_n \kappa - Q^K$ mit

$$n^{K} = 1, 2;$$

30

35

$$Y^{K}$$
 gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-Cl;
Z^K gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-Cl;

mit

Die Erfindung betrifft außerdem folgende neue bevorzugte Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die diese Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren.

Hierbei gilt:

A steht für

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{Al}OCO (R^{Al} gleich H,

C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₃-alkyl,

C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H-, C₁₋₆-Alkyl,

C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl,

C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkyl-C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkyl-C₀₋₃-Alkylaryl), R^{A4}CONR^{A2}, R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂,

aryl), R^{A4}CONR^{A2}, R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂,

Cl, Br, F, Tetrazolyl, H₂O₃P-, NO₂, R^{A1}-N(OH)-CO-, R^{A1}R^{A2}NCONR-A3, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF₃, CH₃, OCH₃. NO₂ substituiert sein kann;

20 B steht für

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

 $\begin{array}{rcl}
1^{B} & = 0, 1, 2, 3; \\
m^{B} & = 0, 1, 2;
\end{array}$

LB gleich

30
$$R^{B1}$$
 $CCH_2)_{pB}$ $CCH_2)_{nB}$ $CCH_2)_{nB}$ R^{B2} $CCH_2)_{nB}$ R^{B2}

35

40

45

$$X^{B}$$
 Y^{B}
 Y^{B

BNS pag

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC- (R⁸ gleich H, C₁₋₃-alkyl) substituiert sein kann;

mit

$$n^{B} = 0, 1, 2;$$
 $p^{B} = 0, 1, 2;$

 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

15 RB2 gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

 R^{B3} gleich H, $C_{1-6-Alkyl}$, $C_{0-3}-Alkylaryl$, $C_{0-3}-Alkylheteroaryl$; $R^{B5}OCO$ (R^{B5} gleich H, $C_{1-6}-Alkyl$, $C_{1-3}-Alkylaryl$), $R^{B6}-O$ (R^{B6} gleich H, $C_{1-6}-Alkyl$), F, Cl, Br, NO_2 , CF_3 ;

20

RB4 gleich H, C₁₋₆-Alkyl, RB6-O, Cl, Br, F, CF₃;

 $R^{B1'}$ gleich H, C_{1-6} -alkyl, C_{0-3} -alkylaryl, C_{0-3} -alkylheteroaryl, C_{0-3} -alkyl- C_{3-8} -cycloalkyl;

25

RB1 und RB2 können auch miteinander verbunden sein;

XB gleich O, S, NH, N-C₁₋₆-Alkyl;

30

YB gleich =CH-, =N-,

ZB gleich =CH-, =N-;

35 U^B gleich =CH-, =N-;

VB gleich =CH-, =N-;

B steht weiterhin für

- -(CH₂)_{1B}-L^B-M^B-L^B-(CH₂)_{mB}, wobei l^B und m^B oben angegebene Bedeutung besitzen und die beiden Gruppen L^B unabhängig voneinander für die unter L^B genannten Reste stehen;
- **45** MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO₂, CH=CH, C \equiv C;

B steht weiterhin für
-adamantyl(1)-CH₂-, -adamantyl(2)-CH₂-, -adamantyl(1)-,
-adamantyl(2)-,

5

Q10

10 B kann weiterhin stehen für

 h^B gleich 1, 2, 3, 4

15

 $(R^{B7}$ gleich C_{1-6} -alkyl, C_{3-8} -cycloalkyl)

B kann weiterhin stehen für

20

25

mit X^{B1} gleich einer Bindung, O, S, oder

30

mit r^B gleich 0, 1, 2, 3;

35

mit R^{B9} gleich H, C_{1-3} -alkyl;

A-B kann stehen für

40

45

D steht für eine Einfach-Bindung bzw.

für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkylaryl), SO₂, NR^{D1}SO₂;

E für

5

10

25

15 mit

 $k^{E} = 0, 1;$

 $1^{\mathtt{E}} = 0, 1;$

 $m^E = 0, 1;$

20 $n^E = 0, 1;$

 $p^E = 0, 1;$

RE1 bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Aryl (insbesondere Phenyl oder Naphthyl), Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring;

 R^{E1} bedeuted weiterhin $R^{E4}OCO-CH_2$ (R^{E4} gleich H, $C_{1-12}-A1ky1$, $C_{1-3}-A1ky1ary1$);

30 R^{E2} bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl, Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, O-C₁₋₆-Alkyl, F, Cl, Br tragen können, CH(CH₃)OH, CH(CF₃)₂;

 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

R^{E2} und R^{B1} können zusammen auch eine Brücke mit (CH₂)₀₋₄, CH=CH, CH₂-CH=CH, CH=CH-CH₂-Gruppen bilden;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

45

40

der Baustein E liegt, wenn er asymmetrisch substituiert ist, vorzugsweise in der R-Konfiguration vor;

- E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;
 - G bedeutet

10 (CH₂)₁G

mit $1^G = 2$, 3, 4, wobei eine CH_2 -Gruppe des Rings durch O, S, CF_2 , CHF, $CH(C_{1-3}$ -Alkyl) ersetzt sein kann;

15

20

mit

25

$$m^G = 0, 1, 2;$$

 $n^G = 0, 1, 2;$

$$R^{G1}$$
, $R^{G2} = H$;

30

weiterhin steht G für

35

mit rG gleich 0, 1;

40

 R^{G3} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl;

 R^{G4} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

K bedeutet

$$NH-(CH_2)_n\kappa-Q^K$$
 mit

5 $n^K = 1, 2;$

 Q^{K} gleich $Z^{K} - X^{K}$ $Y^{K} - X^{K}$

10

15

XK gleich O, S;

$$Y^{K}$$
 gleich =CH-, =C-C₁₋₃-Alkyl, =N-;
 Z^{K} gleich =CH-, =C-C₁₋₃-Alkyl, =N-;

20
$$NH - RL1$$
 bzw. $-NH - NH$ $NHRL1$

mit

R^{L1} gleich H, OH, O-C₁₋₆-Alkyl, O-(CH₂)₀₋₃-Phenyl, CO-C₁₋₆-Alkyl, CO₂-C₁₋₆-Alkyl, CO₂-C₁₋₃-Alkylaryl.

Die Erfindung betrifft außerdem folgende besonders bevorzugten neue Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die 30 diese Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren. Hierbei gilt:

A steht für

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H, C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₃-alkyl, C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H-, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2}; R^{A3} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A4}CONR^{A2}, R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P-, NO₂, R^{A1}-N(OH)-CO-, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF₃, CH₃, OCH₃, NO₂ substituiert sein kann;

45

B steht für

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$1^{B} = 0, 1, 2;$$

 $m^{B} = 0, 1, 2;$

5

LB gleich

10
$$\frac{R^{B1}}{C}$$
, $\frac{(CH_2)_{p^B}}{(CH_2)_{n^B}}$, $-C \equiv C$, $\frac{R^{B3}}{R^{B4}}$

15

20

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH_3 , CF_3 , Br, Cl, F substituiert sein kann, oder mit R^8OOC - (R^8 gleich H, C_{1-3} -alkyl) substituiert sein kann;

25 substituie

mit

$$n^{B} = 0, 1;$$
 $p^{B} = 0, 1;$

gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

35 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

gleich H, C_1 -6-Alkyl; RB5OCO (RB5 gleich H, C_{1-6} -Alkyl), RB6-O (RB6 gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

40

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

R^{B1} und R^{B2} können auch miteinander verbunden sein;

45 B steht weiterhin für

 $-(CH_2)_{1B}-L^B-M^B-L^B-(CH_2)_{mB}$, wobei

 l^{B} und m^{B} oben angegebene Bedeutung besitzen und die beiden Gruppen L^B unabhängig voneinander für die unter L^B genannten Reste stehen;

5

- bedeutet Einfach-Bindung, O, S, CH2, CH2-CH2, CH2-O, MΒ $O-CH_2$, CH_2-S , $S-CH_2$, CH=CH, $C\equiv C$;
- steht weiterhin für
- 10 -adamanty1(1)- CH_2 -, -adamanty1(2)- CH_2 -,

15

В kann weiterhin stehen für

h^B gleich 1, 2, 3, 4 20 RB7

 $(R^{B7} \text{ gleich } C_{1-6}\text{-alkyl}, C_{3-8}\text{-cycloalkyl})$

25

kann weiterhin stehen für

30

35

mit XB1 gleich einer Bindung, O, S, oder

40

mit r^B gleich 0, 1, 2, 3;

mit RB9 gleich H, C₁₋₃-alkyl;

45 A-B kann stehen für

steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1} -CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkylaryl), SO_2 , $NR^{D1}SO_2$;

E steht für

15

5

10

20

mit

 $m^E = 0, 1;$

25

30

RE1 bedeutet H, C1-6-Alkyl;

 R^{E2} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, wobei die vorgenannten Reste bis zu drei Substituenten der Gruppe C_{1-6} -Alkyl, F tragen können, $CH(CH_3)OH$, $CH(CF_3)_2$;

RE3 bedeutet H;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein;

der Baustein E liegt, wenn er asymmetrisch substituiert ist, vorzugsweise in der R-Konfiguration vor;

- 40 E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;
 - G bedeutet

mit $1^G = 2$, 3, wobei eine CH_2 -Gruppe des Rings durch S, CHCH3 ersetzt sein kann;

10

5

15

mit

$$m^{G} = 1;$$

$$n^{G} = 0;$$

20

$$R^{G1}$$
, $R^{G2} = H$;

bedeutet K

25

$$NH-(CH_2)_{n}\kappa-Q^K$$
 mit

$$n^K = 1$$

QK gleich

30

$$Z_K - X_K$$

35

$$Y^{K}$$
 gleich =CH-, =N-;

$$Z^{K}$$
 gleich =CH-, =N-;

mit

RL1 gleich H, OH, CO- C_{1-6} -Alkyl, CO₂- C_{1-6} -Alkyl, CO₂- C_{1-3} -Alkylaryl.

Die Erfindung betrifft außerdem folgende ganz besonders bevorzug-5 ten neue Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die diese Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren. Hierbei gilt:

10

A steht für

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{Al}OCO (R^{Al} gleich H, C₁₋₁₂-Alkyl,

C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₃-alkyl, C₁₋₃-Alkylaryl),

R^{A2}R^{A3}NCO (R^{A2} gleich H-, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Al
kylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl);

R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A4}CONR^{A2},

R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂, Cl. Br. F. Tetra
zolyl, H₂O₃P-, NO₂, R^{A1}-N(OH)-CO-, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl

jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus

der Gruppe F, Cl, Br, CF₃, CH₃, OCH₃, NO₂ substituiert sein

kann;

B steht für

 $-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$ mit

 $1^{B} = 0, 1;$ $m^{B} = 0, 1, 2;$

30 L^B gleich

35
$$C = C$$
 $C = C$
 C

wobei in den vorgenannten Ringsystem jeweils ein Phenylring 45 ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R800C- (R8 gleich H, C_{1-3} -alkyl) substituiert sein kann;

mit

5

 $n^{B} = 0, 1;$ $p^{B} = 0, 1;$

RB1 gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl-C₃₋₈-cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

RB3 gleich H, C_{1-6} -Alkyl; RB5OCO (RB5 gleich H, C_{1-6} -Alkyl), RB6-O (RB6 gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

20 RB1 und RB2 können auch miteinander verbunden sein;

XB gleich O, S;

25 Y^B gleich =CH-, =N-;

ZB gleich =CH-, =N-;

B steht weiterhin für

-(CH₂)₁B-L^B-M^B-L^B-(CH₂)_mB, wobei

1^B und m^B oben angegebene Bedeutung besitzen und die beiden Gruppen L^B unabhängig voneinander für die unter
L^B genannten Reste -C≡C-,

 \mathbb{R}^{B3} , \mathbb{R}^{B1} , $\mathbb{C}^{\mathbb{R}^{B2}}$ stehen;

40 M^B bedeutet Einfach-Bindung, O, CH_2 -S, S- CH_2 , CO, SO_2 , CH_2 -O;

45

B kann weiterhin stehen für

$$h^B$$
 gleich 1, 2, 3, 4 (CH₂) h^B

 $(R^{87} \text{ gleich } C_{1-6}-alkyl, C_{3-8}-cycloalkyl)$

B kann weiterhin stehen für Fluorenyl(1)-, Adamantyl(1)-, Adamantyl(1)-CH₂-

A-B kann stehen für Pyridyl(2)- CH_2 -, Benzthienyl(2)-, Benzthienyl(3)-,

15

5

20

D steht für eine Einfach-Bindung bzw. für CO, SO₂;

25

E steht für

30

mit

35 RE1 bedeutet H, CH₃;

RE2 bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Thienyl, $CH(CH_3)OH$, $CH(CF_3)_2$;

40 RE3 bedeutet H;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

der Baustein E liegt, wenn er asymmetrisch substituiert ist, vorzugsweise in der R-Konfiguration vor;

E kann auch stehen für D-Lys, D-Orn, D-Dab, D-Dap, D-Arg;

5

G bedeutet

10 (CH₂)₁G

mit $1^G = 2$, 3, wobei eine CH_2 -Gruppe des Rings durch $CHCH_3$ ersetzt sein kann;

15

20

mit

$$m^{G} = 1;$$
 $n^{G} = 0;$
 $R^{G1}, R^{G2} = H;$

K bedeutet

30

$$n^K = 1;$$

35 Q^K gleich

$$Z^{K} - X^{K}$$

$$Y^{K}$$
 ; N

XK gleich S;

40

$$Z^{K}$$
 gleich =CH-, =N-;

5 mit

RL1 gleich H, OH.

Die Erfindung betrifft außerdem folgende bevorzugten neue Verbin10 dungen, deren Tautomere, physiologisch verträglichen Salze und
Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die diese
Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren.
Hierbei gilt:

15

A steht für H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{1-3} -alkyl- C_{3-8} -cycloalkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H, C_{1-6} -Alkyl,

20 C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl,
 C₀₋₃-Alkylaryl), R^{A4}OCONR^{A2}, R^{A4}CONR^{A2} (R^{A4} gleich C₁₋₆-alkyl,
 C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N, HO-SO₂, R^{A2}R^{A3}N-SO₂,
 Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂, R^{A1}-N(OH)-CO, R^{A1}R^{A2}NCONR^{A3},
 wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen
 Resten aus der Gruppe F, Cl, Br, OCH₃, CH₃, CF₃, NO₂ substituiert sein kann;

B steht für

30 $-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$ mit

 $1^{B} = 0, 1, 2;$ $m^{B} = 0, 1, 2;$

35 LB gleich

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R^800C- (R^8 gleich H, C_{1-3} alkyl) substituiert sein kann;

mit

5

 $n^B = 0, 1, 2;$

 $p^{B} = 0, 1, 2;$

RB1 gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Al-kyl- C_{3-8} -cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl.

15 RB1 und RB2 können auch miteinander verbunden sein;

B steht weiterhin für -adamantyl(1)-CH₂-, -adamantyl(2)-CH₂-,

20

steht weiterhin für $-(CH_2)_{1B}-L^{B1}-M^B-L^{B2}-(CH_2)_{mB}-$, wobei 1^B und m^B obenangegebene Bedeutung besitzen und die beiden Gruppen L^{B1} und L^{B2} unabhängig voneinander für folgende Reste stehen:

30 C $CH_{2})_{pB}$ $CH_{2})_{nB}$ $CH_{2})_{nB}$ $CH_{2})_{nB}$ $CH_{2})_{nB}$ $CH_{2})_{nB}$ $CH_{2})_{nB}$

40 wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann; mit

> $n^{B} = 0, 1, 2;$ $p^{B} = 0, 1, 2;$

45

BNSDOCID: <WO_____0061608A2_I_>

10

gleich H (nur für L^{B2}), C_{1-6} -Alkyl (nur für L^{B2}), C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

5 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

gleich H, C_{1-6} -Alkyl, Aryl, Heteroaryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

XB gleich O, S;

15 YB gleich =CH-, =N-;

 Z^B gleich =CH-, =N-;

20 RB1 und RB2 können auch miteinander verbunden sein;

MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO_2 , CH=CH, C \equiv C;

25 B kann weiterhin stehen für

$$X^{B1} - (CH_2)_r B - C - R^{B9}$$

mit X^{B1} gleich eine Bindung, O, S oder — C —

mit r^B gleich 0, 1, 2, 3; mit R^{B9} gleich H, C_{1-3} -alkyl;

A-B kann stehen für

45

D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkyl-aryl), SO₂, NR^{D1}SO₂;

B-D kann stehen für

15

E steht für

20

25

$$\begin{array}{c|c}
R^{E2} \\
(CH_2)_{mE} \\
(CH_2)_{pE}
\end{array}$$

$$\begin{array}{c|c}
(CH_2)_{nE} \\
(CH_2)_{nE}
\end{array}$$

$$\begin{array}{c|c}
(CH_2)_{nE}
\end{array}$$

$$\begin{array}{c|c}
R^{E3}
\end{array}$$

30 $k^{E} = 0, 1;$ $m^{E} = 0, 1;$

 $n^{E} = 0, 1;$

 $p^E = 0, 1;$

RE1 bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Naphthyl, Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring;

RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl,
Thienyl, Furyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, CH(CH₃)OH, CH(CF₃)₂,;

 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

5

der Bautein E liegt, wenn er asymmetrisch substituiert ist, vorzugsweise in der R-Konfiguration vor;

- E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-10 Dab, D-Dap, D-Arg;
 - G bedeutet

15 (CH₂) 1G

mit $1^G=2$, 3, 4, wobei eine CH_2 -Gruppe des Rings durch $CHCH_3$ ersetzt sein kann

20

25

mit $m^{G} = 1;$ $n^{G} = 0, 1;$ $R^{G1} H;$ $R^{G2} H;$

weiterhin steht G für

35

40

mit

45 q^G 0, 1; r^G 0, 1; RG3 H, C1-C6-Alkyl, C3-8-Cycloalkyl;

 R^{G4} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

5 K bedeutet

$$n^K = 1$$
:

10

 Q^{K} gleich X^{K} Y^{K} Z^{K}

15 X^K gleich O, S;

YK gleich =CH-, =N-;

 Z^{K} gleich =CH-, =N-;

L: NH bzw. —NH —NH NHRLI

25

30

mit

 R^{L1} gleich H, OH, $CO-C_{1-6}-Alkyl$, $CO_2-C_{1-6}-Alkyl$, $CO_2-C_{1-5}-Alkyl$ aryl.

Die Erfindung betrifft außerdem folgende besonders bevorzugte neue Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die diese Verbindungen enthalten. Des weiteren eignen sich diese Ver-35 bindungen als besonders gute Komplementinhibitoren. Hierbei gilt:

A steht für

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, RA1OCO (RA1 gleich H,

C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₁₋₃-alkyl-C₃₋₈-cycloalkyl, C₁₋₃-Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl), $R^{A4}OCONR^{A2}$, $R^{A4}CONR^{A2}$ (R^{A4} gleich C₁₋₆-alkyl,

C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N, HO-SO₂, R^{A2}R^{A3}N-SO₂,

C1, Br, F, Tetrazolyl, H₂O₃P, NO₂, R^{A1}-N(OH)-CO, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen

Resten aus der Gruppe F, Cl, Br, OCH $_3$, CH $_3$, CF $_3$, NO $_2$ substituiert sein kann;

B steht für

5

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$1^{B} = 0, 1;$$
 $m^{B} = 0, 1, 2;$

10

L^B gleich

15
$$\begin{pmatrix} (CH_2)_{pB} \\ (CH_2)_{nB} \end{pmatrix}$$
 F F

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC- (R⁸ gleich H, C₁₋₃alkyl) substituiert sein kann;

25 mit

$$n^{B} = 0, 1;$$

 $p^{B} = 0, 1;$

30 B steht weiterhin für -adamantyl(1)-CH₂-, -adamantyl(2)-CH₂-,

35

B steht weiterhin für $-(CH_2)_{1B}-L^{B1}-M^B-L^{B2}-(CH_2)_{mB}-$, wobei 1^B und m^B obenangegebene Bedeutung besitzen und die beiden Gruppen L^{B1} und L^{B2} unabhängig voneinander für folgende Reste stehen:

DNIC ACAR CT

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann; mit

 $n^{B} = 1;$ $p^{B} = 0, 1;$

15

25

35

40

 R^{B1} gleich H (nur für L^{B2}), C_{1-6} -Alkyl (nur für L^{B2}), C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

 R^{B3} gleich H, C_{1-6} -Alkyl, R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

RB4 gleich H, C₁₋₆-Alkyl, RB6-O, Cl, Br, F, CF₃;

RB1 und RB2 können auch miteinander verbunden sein;

 $\mbox{M}^{\mbox{\footnotesize{B}}}$ bedeutet Einfach-Bindung, O, S, CH2, CH2-CH2, CH2-O, O-CH2, CH2-S, S-CH2, CO, SO2;

A-B kann stehen für Pyridyl(2)-CH₂-, Benzthienyl(2)-,

BNSDOCID: <WO_____0061608A2_I_>

D steht für eine Einfach-Bindung bzw. für CO, SO $_2$;

B-D kann stehen für

5

10 E steht für

$$\begin{array}{c|c}
 & R^{E2} \\
\hline
 & R^{E1}
\end{array}$$

15

RE1 bedeutet H;

20

pedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Pyridyl, Thienyl, Furyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, CH(CH₃)OH, CH(CF₃)₂,;

25 RE3 bedeutet H;

die unter $R^{\rm E1}$ und $R^{\rm E2}$ genannten Gruppen können über eine Bindung miteinander verknüpft sein;

- 30 E kann auch stehen für D-Lys, D-Orn, D-Dab, D-Dap, D-Arg;
 - G bedeutet

35 (CH₂)₁G

mit $1^G=2$, 3, wobei eine CH_2 -Gruppe des Rings durch $CHCH_3$ ersetzt sein kann

40

mit $m^{G} = 1;$ $n^{G} = 0;$ $R^{G1} H;$ $R^{G2} H;$

K bedeutet

 $NH-(CH_2)_n\kappa-Q^K$ mit

10

5

$$n^K = 1;$$

15 Q^K gleich X^K $Y^K - Z^K$

XK gleich S;

Y^K gleich =CH-, =N-; Z^K gleich =CH-, =N-;

25 L: NH bzw. -NH NH NHR^{L1}

mit

30 RL1 gleich H, OH.

Die Erfindung betrifft außerdem folgende bevorzugten neue Verbindungen, deren Tautomere, physiologisch verträglichen Salze und Prodrugs der Formel A-B-D-E-G-K-L und Arzneimittel, die diese

35 Verbindungen enthalten. Des weiteren eignen sich diese Verbindungen als besonders gute Komplementinhibitoren.

Hierbei gilt:

A steht für

40 H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{1-3} -alkyl- C_{3-8} -cycloalkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}$ NCO (R^{A2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl), R^{A4} OCONR A2 , R^{A4} CONR A2 , (R^{A4} ist gleich C_{1-6} -alkyl, C_{1-3} -alkylaryl), R^{A1} O, Phenoxy, $R^{A2}R^{A3}$ N, HO-SO₂, $R^{A2}R^{A3}$ N-SO₂, Cl, Br, F, Tetrazolyl, H_2O_3P , NO₂, R^{A1} -N(OH)-CO-; $R^{A1}R^{A2}$ NCON R^{A3} , wobei Aryl jeweils mit bis zu 2 gleichen oder

verschiedenen Substituenten aus der Gruppe F, Cl, Br, CH₃, CF₃, OCH₃, NO₂ substituiert sein kann;

B steht für

5

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$1^{B} = 0, 1;$$
 $m^{B} = 0, 1, 2;$

10

L^B gleich

15
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array}$$

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann;

gleich H, C_{1-6} -Alkyl, Aryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

25

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

XB gleich O, S;

30

$$Z^B$$
 gleich =CH-, =N-;

35 U^B gleich =CH-, =N-;

B kann weiterhin stehen für

40

q^B gleich 0, 1, 2

45 (RB7 gleich C_{1-6} -alkyl, C_{3-8} -cycloalkyl)

A-B kann stehen für

5

D steht für eine Einfach-Bindung

10

E steht für

$$-N - R^{E2}$$

$$R^{E1} R^{E3}$$

mit

20

RE1 bedeutet H;

RE3 bedeutet H;

30

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein;

der Bautein E liegt, wenn er asymmetrisch substituiert ist, vorzugsweise in der R-Konfiguration vor;

E kann auch stehen für D-Lys, D-Orn, D-Dab, D-Dap, D-Arg;

G bedeutet

40

45

mit $1^G = 2$, 3, wobei eine CH_2 -Gruppe des Rings durch $CHCH_3$ ersetzt sein kann;

BNSDOCID: <WO_____0061608A2_1_>

70

RG1 C (CH₂) nG (CH₂) mG N O

5

10

mit

$$m^{G} = 1;$$

$$n^{G} = 0;$$

15

RG1 H;

20 K bedeutet

$$NH-(CH_2)_{nK}-Q^K$$
 mit

$$n^K = 1;$$

25

 Q^{K} gleich X^{K}

30

XK gleich O, S;

$$Y^{K}$$
 gleich =CH-, =N-;

35 Z^K gleich =CH-, =N-;

40 L:
$$NH \longrightarrow NH \longrightarrow NH \longrightarrow NHR^{L1}$$

mit

45 RL1 gleich -H, -OH.

Ist bei den Verbindungen der Formel I R^{L1} ungleich Wasserstoff, so handelt es sich bei diesen Substanzen um Prodrugs, aus denen unter in vivo Bedingungen die freien Amidin-/Guanidinverbindungen entstehen. Sind in den Verbindungen der Formel I Esterfunktionen enthalten, so können diese Verbindungen in vivo als Prodrugs wirken, aus welchen die entsprechenden Carbonsäuren entstehen.

Außer den in den Beispielen genannten Substanzen sind folgende Verbindungen ganz besonders bevorzugt und können gemäß der genannten Herstellungsvorschriften hergestellt werden:

5 $C_6H_5-C\equiv C-CO-(D)Cpg-Pyr-NH-CH_2-5-(3-am)-thioph$ 1. $C_6H_5-C\equiv C-CO-(D)$ Ile-Pyr-NH- $CH_2-5-(3-am)$ -thioph 2. $C_6H_5-C\equiv C-CO-(D)$ allo-Ile-Pyr-NH- $CH_2-5-(3-am)$ -thioph 3. $C_6H_5-C\equiv C-CO-(D)$ Pro-Pyr-NH- $CH_2-5-(3-am)$ -thioph 4. 10 $C_6H_5-C \equiv C-CO-(D)(2-(2-thienyl))gly-Pyr-NH-CH_2-5-$ 5. (3-am)-thioph $C_6H_5-C\equiv C-CO-(D)(2-(3-thienyl))gly-Pyr-NH-CH_2-5-$ 6. (3-am)-thioph $C_6H_5-C\equiv C-CO-(D)$ Phg-Pyr-NH-CH₂-5-(3-am)-thioph 7. 15 $C_6H_5-C\equiv C-CO-(D)(2-Me)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$ 8. $C_6H_5-C=C-CO-Aib-Pyr-NH-CH_2-5-(3-am)-thioph$ 9. $C_6H_5-C\equiv C-CO-Acpc-Pyr-NH-CH_2-5-(3-am)-thioph$ 10. C₆H₅-C=C-CO-Achc-Pyr-NH-CH₂-5-(3-am)-thioph 11. $C_6H_5-C\equiv C-CO-(D)(2-(2-furanyl))gly-Pyr-NH-CH_2-5-$ 20 12. (3-am)-thioph $C_6H_5-C\equiv C-CO-(D)$ (N-Me) Val-Pyr-NH-CH₂-5-(3-am)-thioph 13. $C_6H_5-C\equiv C-CO-(D)$ Nva-Pyr-NH-CH₂-5-(3-am)-thioph 14. C₆H₅-C=C-CO-(D) Thr-Pyr-NH-CH₂-5-(3-am)-thioph 15. 25 $C_6H_5-C\equiv C-CO-(D)$ (tetrahydro-4-thiopyranyl)gly-Pyr-NH- $CH_2-5-C=C-CO-(D)$ 16. (3-am)-thioph $4-HOOC-C_6H_4-CH_2-(D)Cpg-Pyr-NH-CH_2-5-(3-am)-thioph$ 17. $4-HOOC-C_6H_4-CH_2-(D)2-(2-thienyl)gly-Pyr-NH-CH_2-5-$ 18. (3-am)-thioph 30 $4-HOOC-C_6H_4-CH_2-(D)2-(3-thienyl)gly-Pyr-NH-CH_2-5-$ 19. (3-am)-thioph $4-HOOC-C_6H_4-CH_2-(D)$ Phg-Pyr-NH-CH₂-5-(3-am)-thioph 20. $4-HOOC-C_6H_4-CH_2-(D)(2-Me)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$ 21. $4-HOOC-C_6H_4-CH_2-Aib-Pyr-NH-CH_2-5-(3-am)-thioph$ 35 22. $4-HOOC-C_6H_4-CH_2-Achc-Pyr-NH-CH_2-5-(3-am)-thioph$ 23. $4-HOOC-C_6H_4-CH_2-(D)(2-(2-furanyl))gly-Pyr-NH-CH_2-5-$ 24. (3-am)-thioph $4-HOOC-C_6H_4-CH_2-(D)$ Thr-Pyr-NH-CH₂-5-(3-am)-thioph 25. $4-HOOC-C_6H_4-CH_2-(D)$ (tetrahydro-4-thiopyranyl)gly-Pyr-NH-40 26. $CH_2-5-(3-am)-thioph$ $C_6H_5-C\equiv C-CO-(D)Cpg-Pro-NH-CH_2-5-(3-am)-thioph$ 27. $C_6H_5-C\equiv C-CO-(D)$ Ile-Pro-NH- $CH_2-5-(3-am)$ -thioph 28. $C_6H_5-C\equiv C-CO-(D)$ allo-Ile-Pro-NH- $CH_2-5-(3-am)$ -thioph 45 29. $C_6H_5-C\equiv C-CO-(D)$ Pro-Pro-NH- $CH_2-5-(3-am)$ -thioph 30.

31.			, 3
53.		31.	$C_6H_5-C\equiv C-CO-(D)(2-(2-thienyl))gly-Pro-NH-CH_2-5-(3-am)-thioph$
34. C ₆ H ₅ -CEC-CO-(D) (2-Me) Chg-Pro-NH-CH ₂ -5- (3-am)-thioph 35. C ₆ H ₅ -CEC-CO-Aib-Pro-NH-CH ₂ -5- (3-am)-thioph 36. C ₆ H ₅ -CEC-CO-Acpc-Pro-NH-CH ₂ -5- (3-am)-thioph 37. C ₆ H ₅ -CEC-CO-Achc-Pro-NH-CH ₂ -5- (3-am)-thioph 38. C ₆ H ₅ -CEC-CO-CO-(D) (2-(2-furanyl))gly-Pro-NH-CH ₂ -5- (3-am)-thioph 39. C ₆ H ₅ -CEC-CO-(D) (N-Me) Val-Pro-NH-CH ₂ -5- (3-am)-thioph 40. C ₆ H ₅ -CEC-CO-(D) Abu-Pro-NH-CH ₂ -5- (3-am)-thioph 41. C ₆ H ₅ -CEC-CO-(D) Nva-Pro-NH-CH ₂ -5- (3-am)-thioph 42. C ₆ H ₅ -CEC-CO-(D) Nva-Pro-NH-CH ₂ -5- (3-am)-thioph 43. C ₆ H ₅ -CEC-CO-(D) Thr-Pro-NH-CH ₂ -5- (3-am)-thioph 44. C ₆ H ₅ -CEC-CO-(D) (tetrahydro-4-thiopyranyl)gly-Pro-NH-CH ₂ -5- (3-am)-thioph 45. C ₆ H ₅ -CEC-CO-(D) 2-(2-thienyl)gly-((3S)-3-Me) Pro-NH-CH ₂ -5- (3-am)-thioph 46. C ₆ H ₅ -CEC-CO-(D) 2-(3-thienyl)gly-((3S)-3-Me) Pro-NH-CH ₂ -5- (3-am)-thioph 47. C ₆ H ₅ -CEC-CO-(D) Chg-((3S)-3-Me) Pro-NH-CH ₂ -5- (3-am)-thioph 49. C ₆ H ₅ -CEC-CO-(D) (tetrahydro-4-thiopyranyl)gly-((3S)-3-Me)-Pro-NH-CH ₂ -5- (3-am)-thioph 50. C ₆ H ₅ -CEC-CO-(D) Chg-((3S)-3-Me) Pro-NH-CH ₂ -5- (3-am)-thioph 51. C ₆ H ₅ -CEC-CO-(D) Chg-((13S)-3-Me)-Pro-NH-CH ₂ -5- (3-am)-thioph 52. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 53. C ₆ H ₅ -CEC-CO-(D) Val-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 54. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 55. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 56. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 57. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 58. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 59. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 50. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 50. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 50. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 50. C ₆ H ₅ -CEC-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5- (3-am)-thioph 51. C ₆ H ₅ -CEC-C		32.	
35. C ₆ H ₅ -CEC-CO-Aib-Pro-NH-CH ₂ -5-(3-am)-thioph 36. C ₆ H ₅ -CEC-CO-Acpc-Pro-NH-CH ₂ -5-(3-am)-thioph 37. C ₆ H ₅ -CEC-CO-Acpc-Pro-NH-CH ₂ -5-(3-am)-thioph 38. C ₆ H ₅ -CEC-CO-Achc-Pro-NH-CH ₂ -5-(3-am)-thioph 39. C ₆ H ₅ -CEC-CO-(D) (2-(2-furanyl))gly-Pro-NH-CH ₂ -5-(3-am)-thioph 40. C ₆ H ₅ -CEC-CO-(D) Nbu-Pro-NH-CH ₂ -5-(3-am)-thioph 41. C ₆ H ₅ -CEC-CO-(D) Nbu-Pro-NH-CH ₂ -5-(3-am)-thioph 42. C ₆ H ₅ -CEC-CO-(D) Nva-Pro-NH-CH ₂ -5-(3-am)-thioph 43. C ₆ H ₅ -CEC-CO-(D) Nva-Pro-NH-CH ₂ -5-(3-am)-thioph 44. C ₆ H ₅ -CEC-CO-(D) (tetrahydro-4-thiopyranyl)gly-Pro-NH-CH ₂ -5-(3-am)-thioph 45. C ₆ H ₅ -CEC-CO-(D) Cpg-(3S)-3-MePro-NH-CH ₂ -5-(3-am)-thioph 46. C ₆ H ₅ -CEC-CO-(D) 2-(2-thienyl)gly-((3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 47. C ₆ H ₅ -CEC-CO-(D) 2-(2-thienyl)gly-((3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 49. C ₆ H ₅ -CEC-CO-(D) (1etrahydro-4-thiopyranyl)gly-((3S)-3-Me)-Pro-NH-CH ₂ -5-(3-am)-thioph 50. C ₆ H ₅ -CEC-CO-(D) (1etrahydro-4-thiopyranyl)gly-((3S)-3-Me)-Pro-NH-CH ₂ -5-(3-am)-thioph 51. C ₆ H ₅ -CEC-CO-(D) Cpg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 52. C ₆ H ₅ -CEC-CO-(D) Val-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 53. C ₆ H ₅ -CEC-CO-(D) Val-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 53. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 54. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 55. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -CEC-CO-(D) Cpg-(is-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -CEC-CO-(D) Cpg-(5	33.	$C_6H_5-C\equiv C-CO-(D)$ Phg-Pro-NH-CH ₂ -5-(3-am)-thioph
36.		34.	C ₆ H ₅ -C≡C-CO-(D)(2-Me)Chg-Pro-NH-CH ₂ -5-(3-am)-thioph
10 37.		35.	C ₆ H ₅ -C≡C-CO-Aib-Pro-NH-CH ₂ -5-(3-am)-thioph
38.		36.	C ₆ H ₅ -C≡C-CO-Acpc-Pro-NH-CH ₂ -5-(3-am)-thioph
Solutioph 39. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (N-Me) Val-Pro-NH-CH ₂ -5-(3-am) - thioph 40. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) Abu-Pro-NH-CH ₂ -5-(3-am) - thioph 41. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) Nva-Pro-NH-CH ₂ -5-(3-am) - thioph 42. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) Thr-Pro-NH-CH ₂ -5-(3-am) - thioph 43. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Thr-Pro-NH-CH ₂ -5-(3-am) - thioph (3-am) - thioph 44. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(3S) - 3-MePro-NH-CH ₂ -5-(3-am) - thioph 45. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) D1e-L-(3S) - 3-MePro-NH-CH ₂ -5-(3-am) - thioph 46. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) 2-(2-thienyl) gly-((3S) - 3-Me) Pro-NH-CH ₂ -5-(3-am) - thioph 47. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) 2-(3-thienyl) gly-((3S) - 3-Me) Pro-NH-CH ₂ -5-(3-am) - thioph 49. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-((3S) - 3-Me) Pro-NH-CH ₂ -5-(3-am) - thioph 50. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 51. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 52. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) 2-(2-thienyl) gly-(trans-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 53. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 54. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 55. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 56. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 57. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 58. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 59. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 59. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 59. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 59. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) - thioph 60. C ₆ H ₅ -C\(\text{C}\)-CCO-(D) (Dpg-(cis-4-	10	37.	C ₆ H ₅ -C≡C-CO-Achc-Pro-NH-CH ₂ -5-(3-am)-thioph
40. C ₆ H ₅ -C≡C-CO-(D) Abu-Pro-NH-CH ₂ -5-(3-am)-thioph 41. C ₆ H ₅ -C≡C-CO-(D) Nva-Pro-NH-CH ₂ -5-(3-am)-thioph 42. C ₆ H ₅ -C≡C-CO-(D) Thr-Pro-NH-CH ₂ -5-(3-am)-thioph 43. C ₆ H ₅ -C≡C-CO-(D) (tetrahydro-4-thiopyranyl)gly-Pro-NH-CH ₂ -5-(3-am)-thioph 44. C ₆ H ₅ -C≡C-CO-(D) Cpg-(3S)-3-MePro-NH-CH ₂ -5-(3-am)-thioph 45. C ₆ H ₅ -C≡C-CO-(D) Ile-L-(3S)-3-MePro-NH-CH ₂ -5-(3-am)-thioph 46. C ₆ H ₅ -C≡C-CO-(D) 2-(2-thienyl)gly-(3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 47. C ₆ H ₅ -C≡C-CO-(D) 2-(3-thienyl)gly-(3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 48. C ₆ H ₅ -C≡C-CO-(D) Chg-((3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 49. C ₆ H ₅ -C≡C-CO-(D) (tetrahydro-4-thiopyranyl)gly-((3S)-3-Me)-Pro-NH-CH ₂ -5-(3-am)-thioph 50. C ₆ H ₅ -C≡C-CO-(D) Cpg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 51. C ₆ H ₅ -C≡C-CO-(D) Val-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 52. C ₆ H ₅ -C≡C-CO-(D) 2-(2-thienyl)gly-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 53. C ₆ H ₅ -C≡C-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 54. C ₆ H ₅ -C≡C-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 55. C ₆ H ₅ -C≡C-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -C≡C-CO-(D) (2-(2-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph		38.	
15 41. C ₆ H ₅ -C\(\tilde{\top}\)C ₆ C(-CO-(D) Nva-Pro-NH-CH ₂ -5-(3-am)-thioph 42. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) Thr-Pro-NH-CH ₂ -5-(3-am)-thioph 43. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) (tetrahydro-4-thiopyranyl) gly-Pro-NH-CH ₂ -5-(3-am)-thioph 44. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) Cpg-(3S)-3-MePro-NH-CH ₂ -5-(3-am)-thioph 45. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) Cpg-(3S)-3-MePro-NH-CH ₂ -5-(3-am)-thioph 46. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) Dl-(2-thienyl) gly-((3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 47. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) Dl-(3-thienyl) gly-((3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 48. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) Chg-((3S)-3-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 49. C ₆ H ₅ -C\(\tilde{\top}\)C(-CO-(D) (tetrahydro-4-thiopyranyl) gly-((3S)-3-Me)-Pro-NH-CH ₂ -5-(3-am)-thioph 50. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 51. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Dgg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 52. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Dg-(2-thienyl) gly-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 53. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(3-thienyl) gly-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 54. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 55. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) (Dg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) (Dg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) (Dg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 61. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 62. C ₆ H ₅ -C\(\tilde{\to}\)C(-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph		39.	C ₆ H ₅ -C≡C-CO-(D)(N-Me)Val-Pro-NH-CH ₂ -5-(3-am)-thioph
42. C ₆ H ₅ -C\(\text{\text{C}}\) (\text{\text{\text{C}}\) (\text{\text{\text{\text{C}}}\) (\text{\text{\text{\text{C}}}\) (\text{\text{\text{\text{C}}}\) (\text{		40.	C ₆ H ₅ -C≡C-CO-(D)Abu-Pro-NH-CH ₂ -5-(3-am)-thioph
43. C ₆ H ₅ -C\(\text{\t	15	41.	$C_6H_5-C\equiv C-CO-(D)$ Nva-Pro-NH- $CH_2-5-(3-am)$ -thioph
20 44. C ₆ H ₅ -C\(\text{\text		42.	$C_6H_5-C\equiv C-CO-(D)$ Thr-Pro-NH- $CH_2-5-(3-am)$ -thioph
45.		43.	$C_6H_5-C\equiv C-CO-(D)$ (tetrahydro-4-thiopyranyl)gly-Pro-NH- $CH_2-5-(3-am)$ -thioph
45.	20	44.	$C_6H_5-C\equiv C-CO-(D)Cpg-(3S)-3-MePro-NH-CH_2-5-(3-am)-thioph$
13		45.	$C_6H_5-C\equiv C-CO-(D)$ Ile-L-(3S)-3-MePro-NH-CH ₂ -5-(3-am)-thioph
25 (3-am)-thioph 48. $C_{6}H_{5}-C \equiv C-CO-(D) Chg-((3S)-3-Me) Pro-NH-CH_{2}-5-(3-am)-thioph$ 49. $C_{6}H_{5}-C \equiv C-CO-(D) (tetrahydro-4-thiopyranyl) gly-((3S)-3-Me)-Pro-NH-CH_{2}-5-(3-am)-thioph$ 50. $C_{6}H_{5}-C \equiv C-CO-(D) Cpg-(trans-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 51. $C_{6}H_{5}-C \equiv C-CO-(D) Val-(trans-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 52. $C_{6}H_{5}-C \equiv C-CO-(D) 2-(2-thienyl) gly-(trans-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 53. $C_{6}H_{5}-C \equiv C-CO-(D) 2-(3-thienyl) gly-(trans-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 54. $C_{6}H_{5}-C \equiv C-CO-(D) Chg-(trans-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 55. $C_{6}H_{5}-C \equiv C-CO-(D) Cpg-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 56. $C_{6}H_{5}-C \equiv C-CO-(D) Val-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 57. $C_{6}H_{5}-C \equiv C-CO-(D) (2-(2-thienyl)) gly-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 58. $C_{6}H_{5}-C \equiv C-CO-(D) (2-(3-thienyl)) gly-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 59. $C_{6}H_{5}-C \equiv C-CO-(D) Chg-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 60. $C_{6}H_{5}-C \equiv C-CO-(D) Chg-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 61. $C_{6}H_{5}-C \equiv C-CO-(D) Chg-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 62. $C_{6}H_{5}-C \equiv C-CO-(D) Chg-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$		46.	
49.	25	47.	$C_6H_5-C\equiv C-CO-(D)2-(3-thienyl)gly-((3S)-3-Me)Pro-NH-CH_2-5-(3-am)-thioph$
Pro-NH-CH ₂ -5-(3-am)-thioph 50. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) Cpg-(trans-4-F)\(Pro-NH-CH ₂ -5-(3-am)-thioph 51. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) Val-(trans-4-F)\(Pro-NH-CH ₂ -5-(3-am)-thioph 52. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) 2-(2-thienyl)\(gly-(trans-4-F)\) Pro-NH-CH ₂ -5-(3-am)-thioph 53. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) 2-(3-thienyl)\(gly-(trans-4-F)\) Pro-NH-CH ₂ -5-(3-am)-thioph 54. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) Chg-(trans-4-F)\(Pro-NH-CH ₂ -5-(3-am)-thioph 55. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) Cpg-(cis-4-F)\(Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(cis-4-F)\) Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(cis-4-F)\) Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(3-thienyl))\(gly-(cis-4-F)\) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) Cpg-(5-Me)\(Pro-NH-CH ₂ -5-(3-am)-thioph 61. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) Val-(5-Me)\(Pro-NH-CH ₂ -5-(3-am)-thioph 62. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 63. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 64. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 65. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 64. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 64. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 64. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl))\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-am)-thioph 64. C ₆ H ₅ -C\(\extstyle=C-CO-(D)\) (2-(2-thienyl)\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-c-C-CO-(D)\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-C-CO-(D)\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-C-CO-(D)\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-C-CO-(D)\(gly-(5-Me)\) Pro-NH-CH ₂ -5-(3-C-CO-(D)\(gly-(5-Me)\) Pro-NH-CH ₂ -		48.	$C_6H_5-C\equiv C-CO-(D)Chg-((3S)-3-Me)Pro-NH-CH_2-5-(3-am)-thioph$
30 51. C ₆ H ₅ -C≡C-CO-(D) Val-(trans-4-F) Pro-NH-CH ₂ -5-(3-am) -thioph 52. C ₆ H ₅ -C≡C-CO-(D) 2-(2-thienyl) gly-(trans-4-F) Pro-NH-CH ₂ -5- (3-am) -thioph 53. C ₆ H ₅ -C≡C-CO-(D) 2-(3-thienyl) gly-(trans-4-F) Pro-NH-CH ₂ -5- (3-am) -thioph 54. C ₆ H ₅ -C≡C-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am) -thioph 55. C ₆ H ₅ -C≡C-CO-(D) Cpg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) -thioph 56. C ₆ H ₅ -C≡C-CO-(D) Val-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) -thioph 57. C ₆ H ₅ -C≡C-CO-(D) (2-(2-thienyl)) gly-(cis-4-F) Pro-NH-CH ₂ -5- (3-am) -thioph 58. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl)) gly-(cis-4-F) Pro-NH-CH ₂ -5- (3-am) -thioph 59. C ₆ H ₅ -C≡C-CO-(D) Chg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) -thioph 60. C ₆ H ₅ -C≡C-CO-(D) Chg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am) -thioph 61. C ₆ H ₅ -C≡C-CO-(D) Val-(5-Me) Pro-NH-CH ₂ -5-(3-am) -thioph 62. C ₆ H ₅ -C≡C-CO-(D) (2-(2-thienyl)) gly-(5-Me) Pro-NH-CH ₂ -5-(49.	$C_6H_5-C\equiv C-CO-(D)$ (tetrahydro-4-thiopyranyl)gly-((3S)-3-Me)-Pro-NH- $CH_2-5-(3-am)$ -thioph
52. $C_{6H_5-C\equiv C-CO-(D)} = (2-thienyl)gly-(trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 53. $C_{6H_5-C\equiv C-CO-(D)} = (3-thienyl)gly-(trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 54. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 55. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 56. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 57. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 58. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 59. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 60. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 61. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 62. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$ 62. $C_{6H_5-C\equiv C-CO-(D)} = (trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$		50.	$C_6H_5-C\equiv C-CO-(D)Cpg-(trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$
32. (3-am)-thioph 53. C ₆ H ₅ -C≡C-CO-(D)2-(3-thienyl)gly-(trans-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 54. C ₆ H ₅ -C≡C-CO-(D)Chg-(trans-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 55. C ₆ H ₅ -C≡C-CO-(D)Cpg-(cis-4-F)-Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -C≡C-CO-(D)Val-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -C≡C-CO-(D)(2-(2-thienyl))gly-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -C≡C-CO-(D)(2-(3-thienyl))gly-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -C≡C-CO-(D)Chg-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C≡C-CO-(D)Chg-(5-Me)Pro-NH-CH ₂ -5-(3-am)-thioph 61. C ₆ H ₅ -C≡C-CO-(D)(2-(2-thienyl))gly-(5-Me)Pro-NH-CH ₂ -5-(3-am)-thioph	30	51.	$C_6H_5-C\equiv C-CO-(D) Val-(trans-4-F) Pro-NH-CH_2-5-(3-am)-thioph$
35 (3-am)-thioph 54. C ₆ H ₅ -C≡C-CO-(D) Chg-(trans-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 55. C ₆ H ₅ -C≡C-CO-(D) Cpg-(cis-4-F)-Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -C≡C-CO-(D) Val-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -C≡C-CO-(D) (2-(2-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -C≡C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -C≡C-CO-(D) Chg-(cis-4-F) Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C≡C-CO-(D) Cpg-(5-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 61. C ₆ H ₅ -C≡C-CO-(D) Val-(5-Me) Pro-NH-CH ₂ -5-(3-am)-thioph 62. C ₆ H ₅ -C≡C-CO-(D) (2-(2-thienyl))gly-(5-Me) Pro-NH-CH ₂ -5-(52.	
55. C ₆ H ₅ -C≡C-CO-(D)Cpg-(cis-4-F)-Pro-NH-CH ₂ -5-(3-am)-thioph 56. C ₆ H ₅ -C≡C-CO-(D)Val-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 57. C ₆ H ₅ -C≡C-CO-(D)(2-(2-thienyl))gly-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 58. C ₆ H ₅ -C≡C-CO-(D)(2-(3-thienyl))gly-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 59. C ₆ H ₅ -C≡C-CO-(D)Chg-(cis-4-F)Pro-NH-CH ₂ -5-(3-am)-thioph 60. C ₆ H ₅ -C≡C-CO-(D)Cpg-(5-Me)Pro-NH-CH ₂ -5-(3-am)-thioph 61. C ₆ H ₅ -C≡C-CO-(D)Val-(5-Me)Pro-NH-CH ₂ -5-(3-am)-thioph 62. C ₆ H ₅ -C≡C-CO-(D)(2-(2-thienyl))gly-(5-Me)Pro-NH-CH ₂ -5-(53.	$C_6H_5-C\equiv C-CO-(D)2-(3-thienyl)gly-(trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	54.	$C_6H_5-C=C-CO-(D)Chg-(trans-4-F)Pro-NH-CH_2-5-(3-am)-thioph$
57. $C_{6}H_{5}-C\equiv C-CO-(D) (2-(2-thienyl))gly-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 58. $C_{6}H_{5}-C\equiv C-CO-(D) (2-(3-thienyl))gly-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 59. $C_{6}H_{5}-C\equiv C-CO-(D) Chg-(cis-4-F) Pro-NH-CH_{2}-5-(3-am)-thioph$ 60. $C_{6}H_{5}-C\equiv C-CO-(D) Cpg-(5-Me) Pro-NH-CH_{2}-5-(3-am)-thioph$ 61. $C_{6}H_{5}-C\equiv C-CO-(D) Val-(5-Me) Pro-NH-CH_{2}-5-(3-am)-thioph$ 62. $C_{6}H_{5}-C\equiv C-CO-(D) (2-(2-thienyl))gly-(5-Me) Pro-NH-CH_{2}-5-(3-am)-thioph$		55.	$C_6H_5-C=C-CO-(D)Cpg-(cis-4-F)-Pro-NH-CH_2-5-(3-am)-thioph$
$ \begin{array}{c} \textbf{40} \\ \hline \textbf{58.} & \textbf{C}_{6}\textbf{H}_{5}-\textbf{C}\equiv\textbf{C}-\textbf{CO}-(\textbf{D})~(2-(3-\text{thieny1}))~\text{gly-}~(\text{cis-}4-\textbf{F})~\text{Pro-NH-CH}_{2}-5-\\ (3-\text{am})-\text{thioph} \\ \hline \textbf{59.} & \textbf{C}_{6}\textbf{H}_{5}-\textbf{C}\equiv\textbf{C}-\textbf{CO}-(\textbf{D})~\text{Chg-}~(\text{cis-}4-\textbf{F})~\text{Pro-NH-CH}_{2}-5-(3-\text{am})-\text{thioph} \\ \hline \textbf{60.} & \textbf{C}_{6}\textbf{H}_{5}-\textbf{C}\equiv\textbf{C}-\textbf{CO}-(\textbf{D})~\text{Cpg-}~(5-\text{Me})~\text{Pro-NH-CH}_{2}-5-(3-\text{am})-\text{thioph} \\ \hline \textbf{61.} & \textbf{C}_{6}\textbf{H}_{5}-\textbf{C}\equiv\textbf{C}-\textbf{CO}-(\textbf{D})~\text{Val-}~(5-\text{Me})~\text{Pro-NH-CH}_{2}-5-(3-\text{am})-\text{thioph} \\ \hline \textbf{62.} & \textbf{C}_{6}\textbf{H}_{5}-\textbf{C}\equiv\textbf{C}-\textbf{CO}-(\textbf{D})~(2-(2-\text{thieny1}))~\text{gly-}~(5-\text{Me})~\text{Pro-NH-CH}_{2}-5-(3-\text{Me})-\text{CH}_{2}-$		56.	$C_6H_5-C\equiv C-CO-(D) Val-(cis-4-F) Pro-NH-CH_2-5-(3-am)-thioph$
58. $C_{6H_5-C} = C_{-CO-(D)} (2-(3-thieny1)) gly-(cis-4-F) Pro-NH-CH_2-5-(3-am)-thioph$ 59. $C_{6H_5-C} = C_{-CO-(D)} Chg-(cis-4-F) Pro-NH-CH_2-5-(3-am)-thioph$ 60. $C_{6H_5-C} = C_{-CO-(D)} Cpg-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$ 61. $C_{6H_5-C} = C_{-CO-(D)} Val-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$ 62. $C_{6H_5-C} = C_{-CO-(D)} (2-(2-thieny1)) gly-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$	40	57.	$C_6H_5-C\equiv C-CO-(D)(2-(2-thienyl))gly-(cis-4-F)Pro-NH-CH_2-5-(3-am)-thioph$
60. $C_6H_5-C\equiv C-CO-(D) Cpg-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$ 61. $C_6H_5-C\equiv C-CO-(D) Val-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$ 62. $C_6H_5-C\equiv C-CO-(D) (2-(2-thienyl))gly-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$	40	58.	
45 61. $C_6H_5-C\equiv C-CO-(D) Val-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$ 62 $C_6H_5-C\equiv C-CO-(D) (2-(2-thienyl))gly-(5-Me) Pro-NH-CH_2-5-(3-am)-thioph$		59.	$C_6H_5-C\equiv C-CO-(D)Chg-(cis-4-F)Pro-NH-CH_2-5-(3-am)-thioph$
62 C ₆ H ₅ -C≡C-CO-(D)(2-(2-thienyl))gly-(5-Me)Pro-NH-CH ₂ -5-(60.	$C_6H_5-C\equiv C-CO-(D)Cpg-(5-Me)Pro-NH-CH_2-5-(3-am)-thioph$
	45	61.	$C_6H_5-C=C-CO-(D)Val-(5-Me)Pro-NH-CH_2-5-(3-am)-thioph$
		62.	

V	O 00/616	74
ſ	63.	$C_{6}H_{5}-C\equiv C-CO-(D)(2-(3-thienyl))gly-(5-Me)Pro-NH-CH2-5-(3-am)-thioph$
ŀ	50	$C_{\text{-H}}=C=C=C_{\text{-CO}}=(D) \text{ Chg}=(5-\text{Me}) \text{ Pro-NH-CH}_2-5-(3-\text{am})-\text{thioph}$
ŀ		C-HC=C-CO-(D) Cpg-Ohii-1-CO-NH-CH ₂ -5-(3-am)-thioph
5		$C_{\text{H}} = C_{\text{C}} = C_{\text{C}} = C_{\text{D}} $
	67.	$C_6H_5-C\equiv C-CO-(D)(2-(2-thienyl))gly-Ohii-1-CO-NH-CH2-5-$
	68.	$C_6H_5-C \equiv C-CO-(D)(2-(3-thienyl))gly-Ohii-1-CO-NH-CH_2-5-$
10	69.	$C_{-H_{-}}C=C_{-}CO_{-}(D) Chg-Ohii-1-CO-NH-CH2-5-(3-am)-thioph$
	70.	$C_4H_2-C=C_2-CO_2-(D)Cpg-Ohi-2-CO-NH-CH_2-5-(3-am)-thioph$
	71.	$C_{\text{c-H}}$ -C=C-CO-(D) Val-Ohi-2-CO-NH-CH ₂ -5-(3-am)-thioph
	72.	$C_6H_5-C\equiv C-CO-(D)(2-(2-thienyl))gly-Ohi-2-CO-NH-CH_2-5-$
15	73.	$C_6H_5-C\equiv C-CO-(D)(2-(3-thienyl))gly-Ohi-2-CO-NH-CH_2-5-$
	74.	$C_2H_2=C=C_2=C_0=(D)$ Chg-Ohi-2-CO-NH-CH ₂ -5-(3-am)-thioph
	75.	$C_{c}H_{c}=C\equiv C-CO-(D)Cpg-Ind-2-CO-NH-CH_{2}-5-(3-am)-Enlopin$
20	76.	$C_{cH_{2}}$ = C_{c} =
	77.	$C_{6}H_{5}-C\equiv C-CO-(D)(2-(2-thienyl))gly-Ind-2-CO-NH-CH_{2}-5-$
	78.	$C_6H_5-C=C-CO-(D)(2-(3-thienyl))gly-Ind-2-CO-NH-CH_2-5-$
25	79.	$C_6H_5-C \equiv C-CO-(D) Chg-Ind-2-CO-NH-CH_2-5-(3-am)-thioph$
	80.	$C_{\text{CH}} = C = C = C = C = C = C = C = C = C =$
	81.	$C_{\text{cH}} = C = C - CO - (D) \text{ Val-Dhi-1-CO-NH-CH}_2 - 5 - (3-am) - \text{thioph}$
	82.	$C_6H_5-C\equiv C-CO-(D)(2-(2-thienyl))gly-Dhi-1-CO-NH-CH_2-5-$
3(83.	$C_6H_5-C\equiv C-CO-(D)(2-(3-thienyl))gly-Dhi-1-CO-NH-CH_2-5-$
	84.	$C_{\text{-H}} = C = C = CO = (D) \text{ Chg-Dhi} = 1 - CO = NH - CH_2 - 5 - (3 - am) - thioph$
	85.	$C_{cH_2-C=C-CO-(D)}$ Cpg-Ohii-1-CO-NH-CH ₂ -5-(3-am)-thioph
3		$C_2H_2=C=C_2C_2=(D) Val-Ohii-1-CO-NH-CH_2-5-(3-am)-thioph$
, 3	87.	$C_6H_5-C\equiv C-CO-(D)(2-(2-thienyl))gly-Ohii-1-CO-NH-CH_2-5-$
4	88.	$C_6H_5-C\equiv C-CO-(D) (2-(3-thienyl))gly-Ohii-1-CO-NH-CH_2-5-(3-am)-thioph$
	0 89.	$C_6H_5-C\equiv C-CO-(D)$ Chg-Ohii-1-CO-NH-CH ₂ -5-(3-am)-thioph
	90.	(D) $HOOC-CH(CH_2-C_6H_5)-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	91.	WOOC-CH(CHa-CeHs)-Gly-Pyr-NH-CH2-5-(3-am)-thioph
-	92.	$(D) \text{ MOOC-CH}(CH_2-C_6H_5) - (D) \text{ Val-Pyr-NH-CH}_2-5-(3-am)-thioph$
4	100	HOOC-CH(CH2-C6H5)-(D)Val-Pyr-NH-CH2-5-(3-am)-thioph
	93.	(D) HOOC-CH(CH ₂ -C ₆ H ₁₀)-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	95	- $ -$
	130	1

		/5
	96.	(D) $HOOC-CH(CH_2-C_6H_{10})-(D) Val-Pyr-NH-CH_2-5-(3-am)-thioph$
	97.	HOOC-CH(CH2-C6H10)-(D)Val-Pyr-NH-CH2-5-(3-am)-thioph
	98.	(D) $HOOC-CH(CH_2-C_6H_5)-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
5	99.	$HOOC-CH(CH_2-C_6H_5)-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
	100.	(D) $HOOC-CH(CH_2-C_6H_5)-(D) Val-Pro-NH-CH_2-5-(3-am)-thioph$
	101.	HOOC-CH(CH2-C6H5)-(D)Val-Pro-NH-CH2-5-(3-am)-thioph
	102.	(D) $HOOC-CH(CH_2-C_6H_{10})-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
10	103.	$HOOC-CH(CH_2-C_6H_{10})-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
10	104.	(D) $HOOC-CH(CH_2-C_6H_{10})-(D) Val-Pro-NH-CH_2-5-(3-am)-thioph$
	105.	$HOOC-CH(CH_2-C_6H_{10})-(D)Val-Pro-NH-CH_2-5-(3-am)-thioph$
	106.	(D) $HOOC-CH(C_6H_5)-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	107.	$HOOC-CH(C_6H_5)-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
15	108.	(D) $HOOC-CH(C_6H_{10})-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	109.	$HOOC-CH(C_6H_{10})-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	110.	(D) $HOOC-CH(C_6H_{10})-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
	111.	$HOOC-CH(C_6H_{10})-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
20	112.	HOOC-(CH2)5-(N-CH2-C6H5)Gly-Pyr-NH-CH2-5-(3-am)-thioph
2	113.	$HOOC-(CH_2)_5-(N-CH_2-C_6H_{10})Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	114.	HOOC-(CH2)4-(N-CH2-C6H5)Gly-Pyr-NH-CH2-5-(3-am)-thioph
	115.	$HOOC-(CH_2)_4-(N-CH_2-C_6H_{10})Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
25	116.	HOOC-(CH2)5-(N-C6H5)Gly-Pyr-NH-CH2-5-(3-am)-thioph
	117.	$HOOC-(CH_2)_{5}-(N-C_6H_{10})Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	118.	HOOC-(CH2)4-(N-C6H5)Gly-Pyr-NH-CH2-5-(3-am)-thioph
	119.	HOOC-(CH2)4-(N-C6H10)Gly-Pyr-NH-CH2-5-(3-am)-thioph
20	120.	HOOC-(CH2)4-SO2-(N-CH2-C6H5)Gly-Pyr-NH-CH2-5-(3-am)-thioph
30	121.	$HOOC-(CH_2)_4-SO_2-(N-CH_2-C_6H_{10})Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	122.	$HOOC-(CH_2)_3-SO_2-(N-CH_2-C_6H_5)Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	123.	$HOOC-(CH_2)_3-SO_2-(N-CH_2-C_6H_{10})Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	124.	$4-HOOC-C_6H_4-SO_2-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
35	125.	$3-HOOC-C_6H_4-SO_2-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	126.	$4-HOOC-C_6H_4-SO_2-D-Val-Pyr-NH-CH_2-5-(3-am)-thioph$
	127.	$3-HOOC-C_6H_4-SO_2-D-Val-Pyr-NH-CH_2-5-(3-am)-thioph$
	128.	$4-HOOC-C_6H_4-SO_2-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
40	129.	$3-HOOC-C_6H_4-SO_2-Gly-Pro-NH-CH_2-5-(3-am)-thioph$
	130.	$4-HOOC-C_6H_4-SO_2-D-Val-Pro-NH-CH_2-5-(3-am)-thioph$
	131.	$3-HOOC-C_6H_4-SO_2-D-Val-Pro-NH-CH_2-5-(3-am)-thioph$
	132.	$MeHNOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$
45	133.	$H_2NO_2S-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$
	134.	$BzHNO_2S-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$
	135.	5-Tetrazolyl-p-C ₆ H ₄ CH ₂ -(D)Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph

,	76		
٢	136.	$HO-CH_2-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$	
- }	127	$HOOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(4-Me-3-am)-thioph$	
}	138.	$HOOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-Me-2-am)-thioph$	
}	139.	HOOC-p-C6H4CH2-(D)Chg-Pyr-NH-3-(6-am)-pico	
5	140.	$HOOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(2-am)-thioph$	
	141.	$HOOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(2-am)-fur$	
	142.	HOOC-D-CcHACH2-(D)Chg-Pyr-NH-CH2-2-(4-am)-thiaz	
	143.	HOOC-p-CcH4CH2-(D)Chg-Pyr-NH-CH2-5-(3-am-4-C1)-thioph	
10	144.	HOOC-p-C ₆ H ₄ CH ₂ -(D)Chg-Pyr-NH-CH ₂ -5-(2-am-3-C1)-thioph	
	145.	HOOC-p-C6H4CH2-(D)Chg-Pyr-NH-CH2-5-(3-am)-fur	
	146.	HOOC-m-CcHaCH2-(D)Chg-Pyr-NH-CH2-5-(2-am)-thioph	
	147.	$HOOC-m-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$	
15	148.	HOOC-m-C6H4CH2-(D)Chg-Pyr-NH-3-(6-am)-pico	
	149.	MOOOC-m-CcHaCH2-(D)Chg-Pyr-NH-CH2-2-(4-am)-th1az	
	150.	$H_2NCO-m-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$	
	151.	$HO_2S_{-m}=C_cH_4CH_2=(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$	
20	1.7.0	$H_2NO_2S-m-C_6H_4CH_2-(D)Cha-Pyr-NH-CH_2-5-(2-am)-thioph$	
20	153.	HO.S-m-C-HaCHa-(D)Cha-Pyr-NH-CH ₂ -5-(2-am)-thioph	
	154.	(5 motragolyl) -m-CeH4CH2-(D) Chg-Pyr-NH-CH2-5-(3-am) -thioph	
	155.	trans- $(4-HOOC-C_6H_{10}CH_2)$ - (D) Val-Pyr-NH- CH_2 -5- $(3-am)$ -thioph	
25	156.	HOOC-o-C ₆ H ₄ CH ₂ -Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph	
25	157.	4-Benzyloxyphenyl-NH-C(0)-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph	
	158	4-Phenoxyphenyl-NH-C(0)-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
_	159		
3	160	$M_{OC}(O) = (CH_2)_{S} = NHC(O) = (D) = Ala = Pyr = S = (3-am) = thioph$	
	161	4-Renzyloxyphenyl-NH-C(0)-Gly-Pyr-NH-CH2-5-(3-am)-thioph	
	162	. 4-Phenoxyphenyl-NH-C(O)-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph	
35	5 163		
	164	MOOC(O) = (CH2)5 = NHC(O) = Gly - Pyr - 5 = (3-am) - thioph	
	165	. 4-Carboxybenzolsulfonyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	166	3-Carboxybenzolsulfonyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
4	10 167		
	16	3-Methyloxycarbonylbenzolsulfonyl-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph	
	16	4-Acetamidobenzolsulfonyl-(D)-Ala-Pyr-NH-CH ₂ -5-	
	45	(3-am)-thioph	
	-		

	170.	3-Acetamidobenzolsulfonyl-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph
Ī		4-Phenylbenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
_ [4-Carboxybenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
5	173.	3-Carboxybenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	174.	4-Methyloxycarbonylbenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5- (3-am)-thioph
	175.	3-Methyloxycarbonylbenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
10	176.	4-Acetamidobenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5- (3-am)-thioph
	177.	3-Acetamidobenzolsulfonyl-(D)-Ala-Pro-NH-CH ₂ -5- (3-am)-thioph
15	178.	4-Carboxybenzolsulfonyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
13	179.	3-Carboxybenzolsulfonyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	180.	4-Methyloxycarbonylbenzolsulfonyl-Gly-Pyr-NH-CH2-5-(3-am)-thioph
20	181.	3-Methyloxycarbonylbenzolsulfonyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	182.	4-Acetamidobenzolsulfonyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	183.	3-Acetamidobenzolsulfonyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	184.	4-Phenylbenzolsulfonyl-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	185.	4-Carboxybenzolsulfonyl-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
25	186.	3-Carboxybenzolsulfonyl-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	187.	4-Methyloxycarbonylbenzolsulfonyl-Gly-Pro-NH-CH2-5-(3-am)-thioph
	188.	3-Methyloxycarbonylbenzolsulfonyl-Gly-Pro-NH-CH2-5- (3-am)-thioph
30	189.	4-Acetamidobenzolsulfonyl-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	190.	3-Acetamidobenzolsulfonyl-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	191.	3-Benzoylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	192.	4-Phenylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
35	193.	4-Phenylphenylacetyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	194.	2-(Benzylthio)-benzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	195.	3-Phenylpropionyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
40	196.	4-Phenylbutyryl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	197.	5-Phenylvaleryl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	198.	(3-phenyl)-acryloyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	199.	3-Benzyloxycarbonylpropionyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
45	200.	3-(4-methoxycarbonyl(-phenyl)-acryloyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	201.	4-Methoxycarbonylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph

	202.	6-(Acetylamino)-pyridyl-3-carbonyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
ı	203.	3-(3'-Pyridyl)-acryloyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	204.	$HOOC-p-C_6H_4-C\equiv C-CO-(D)-Ala-Pyr-NH-CH_2-5-(3-am)-thioph$
5	205.	$HOOC-m-C_6H_4-C\equiv C-CO-(D)-Ala-Pyr-NH-CH_2-5-(3-am)-thioph$
	206.	4-(4'-Aminophenoxy)-benzoyl-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph
	207.	3-(4'-Aminophenoxy)-benzoyl-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph
10	208.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	209.	5-Phenylethinyl-nicotinoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
15	210.	4-Phenylethinyl-benzoyl-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph
	211.	3-Phenylethinyl-benzoyl-(D)-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph
	212.	3-Benzoylbenzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	213.	4-Benzoylbenzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	214.	4-Phenylbenzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	215.	4-Phenylphenylacetyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	216.	2-(Benzylthio)-benzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	217.	3-Phenylpropionyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
25	218.	4-Phenylbutyryl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	219.	5-Phenylvaleryl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	220.	Cinnamoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	221.	C ₆ H ₅ -C≡C-CO-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
30	222.	3-Benzyloxycarbonylpropionyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	223.	4-Methoxycarbonylcinnamoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	224.	4-Methoxycarbonylbenzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
25	225.	6-(Acetylamino)-pyridyl-3-carbonyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
35	226.	3-(3'-Pyridyl)-acryloyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	227.	HOOC-p-C ₆ H ₄ -C≡C-CO-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	228.	HOOC-m-C ₆ H ₄ -C=C-CO-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
40	229.	4-(4'-Aminophenoxy)-benzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	230.	3-(4'-Aminophenoxy)-benzoyl-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	231.	(3-am)-thioph
•	232.	
45	233	
	234	
	235	3-Benzoylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(2-am)-thioph

ſ	236.	4-Phenylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -5-(2-am)-thioph
	237.	4-Phenylphenylacetyl-(D)-Ala-Pyr-NH-CH ₂ -5-(2-am)-thioph
Ţ	238.	4-Phenylphenylacetyl-(D)-Ala-Pro-NH-CH ₂ -5-(2-am)-thioph
5	239.	3-Benzoylbenzoyl-(D)-Ala-Pro-NH-CH ₂ -5-(2-am)-thioph
	240.	4-Benzoylbenzoyl-(D)-Ala-Pro-NH-CH ₂ -5-(2-am)-thioph
Ì	241.	4-Phenylbenzoyl-(D)-Ala-Pro-NH-CH ₂ -5-(2-am)-thioph
Ì	242.	3-Benzoylbenzoyl-(D)-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
	243.	4-Phenylbenzoyl-(D)-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
10	244.	4-Phenylphenylacetyl-(D)-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
	245.	3-(3'-Pyridyl)-acryloyl-(D)-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
	246.	4-(4'-Aminophenoxy)-benzoyl-(D)-Asp-Pyr-NH-CH ₂ -5- (3-am)-thioph
15	247.	3-(4'-Aminophenoxy)-benzoyl-(D)-Asp-Pyr-NH-CH2-5- (3-am)-thioph
	248.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-(D)-Asp-Pyr-NH-CH2-5-(3-am)-thioph
	249.	3-Benzoylbenzoyl-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	250.	4-Benzoylbenzoyl-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
	251.	4-Phenylbenzoyl-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
	252.	4-Phenylphenylacetyl-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
	253.	C ₆ H ₅ -C≡C-CO-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
25	254.	3-Benzoylbenzoyl-(D)-Ala-Pyr-NH-3-(6-am)-pico
23	255.	4-Benzoylbenzoyl-(D)-Ala-Pyr-NH-3-(6-am)-pico
	256.	4-Phenylbenzoyl-(D)-Ala-Pyr-NH-3-(6-am)-pico
	257.	4-Phenylphenylacetyl-(D)-Ala-Pyr-NH-3-(6-am)-pico
	258.	C ₆ H ₅ -C≡C-CO-(D)-Ala-Pyr-NH-3-(6-am)-pico
30	259.	3-Benzoylbenzoyl-(D)-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	260.	4-Phenylphenylacetyl-(D)-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	261.	3-Benzoylbenzoyl-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	262.	4-Benzoylbenzoyl-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
35	263.	4-Phenylbenzoyl-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	264.	4-Phenylphenylacetyl-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	265.	C ₆ H ₅ -C≡C-CO-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	266.	3-Benzoylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
40	267.	4-Phenylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
45	268.	4-Phenylphenylacetyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	269.	
	270.	
	271.	
4.5	272.	
	273.	Cinnamoy1-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph

		80
ſ	2/4.	3-Benzyloxycarbonylpropionyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	2/3.	4-Methoxycarbonylcinnamoyl-(D)-Val-Pyr-NH-CH ₂ -5- (3-am)-thioph
5	276.	4-Methoxycarbonylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
Ī	277.	6-(Acetylamino)-pyridyl-3-carbonyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
1	278.	3-(3'-Pyridyl)-acryloyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	279.	$HOOC-p-C_6H_4-C\equiv C-CO-(D)-Val-Pyr-NH-CH_2-5-(3-am)-thioph$
10	280.	$HOOC-m-C_6H_4-C\equiv C-CO-(D)-Val-Pyr-NH-CH_2-5-(3-am)-thioph$
	281.	4-(4'-Aminophenoxy)-benzoyl-(D)-Val-Pyr-NH-CH ₂ -5-
	282.	3-(4'-Aminophenoxy)-benzoyl-(D)-Val-Pyr-NH-CH ₂ -5- (3-am)-thioph
15	283.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	284.	5-Phenylethinyl-nicotinoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	285.	4-Phenylethinyl-benzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	286.	3-Phenylethinyl-benzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	287.	3-Benzoylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(2-am)-thioph
	288.	4-Phenylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -5-(2-am)-thioph
	289.	4-Phenylphenylacetyl-(D)-Val-Pyr-NH-CH ₂ -5-(2-am)-thioph
25	290.	4-Phenylphenylacetyl-(D)-Val-Pro-NH-CH ₂ -5-(2-am)-thioph
	291.	3-Benzoylbenzoyl-(D)-Val-Pro-NH-CH ₂ -5-(2-am)-thioph
	292.	4-Benzoylbenzoyl-(D)-Val-Pro-NH-CH ₂ -5-(2-am)-thioph
	293.	4-Phenylbenzoyl-(D)-Val-Pro-NH-CH ₂ -5-(2-am)-thioph
30	294.	C ₆ H ₅ -C=C-CO-(D)-Lys-Pyr-NH-CH ₂ -5-(2-am)-thioph
	295.	3-Benzoylbenzoyl-(D)-Lys-Pyr-NH-CH ₂ -5-(3-am)-thioph
	296.	4-Phenylbenzoyl-(D)-Lys-Pyr-NH-CH ₂ -5-(3-am)-thioph
	297.	4-Phenylphenylacetyl-(D)-Lys-Pyr-NH-CH ₂ -5-(3-am)-thioph
3!	298.	3-(3'-Pyridyl)-acryloyl-(D)-Lys-Pyr-NH-CH ₂ -5-(3-am)-thioph
٠.	299.	1 F D 1 ODD
	300	1 F D 1 O D D
4	0 301	(3-am)-throph
	302	. 3-Benzoylbenzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	303	. 4-Phenylbenzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	304	. 4-Phenylphenylacetyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
4	305	2-(Benzylthio)-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	306	3-Phenylpropionyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	L	

PCT/EP00/02710

DNIC ---- 00

	307.	4-Phenylbutyryl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	308.	5-Phenylvaleryl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	309.	(3-phenyl)-acryloyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
5	310.	3-Benzyloxycarbonylpropionyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	311.	3-(4-methoxycarbonyl-phenyl)-acryloyl-Gly-Pyr-NH- CH ₂ -5-(3-am)-thioph
	312.	4-Methoxycarbonylbenzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
10	313.	6-(Acetylamino)-pyridyl-3-carbonyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	314.	3-(3'-Pyridyl)-acryloyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	315.	$HOOC-p-C_6H_4-C = C-CO-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
	316.	$HOOC-m-C_6H_4-C\equiv C-CO-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$
15	317.	4-(4'-Aminophenoxy)-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	318.	3-(4'-Aminophenoxy)-benzoyl-Gly-Pyr-NH-CH2-5-(3-am)-thioph
	319.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	320.	5-Phenylethinyl-nicotinoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	321.	4-Phenylethinyl-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	322.	3-Phenylethinyl-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	323.	HOOC-p-C ₆ H ₄ -C≡C-CO-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	324.	HOOC-m-C ₆ H ₄ -C≡C-CO-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
25	325.	5-Phenylethinyl-nicotinoyl-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	326.	4-Phenylethinyl-benzoyl-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	327.	3-Phenylethinyl-benzoyl-Gly-Pro-NH-CH ₂ -5-(3-am)-thioph
	328.	3-Benzoylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -2-(4-am)-thiaz
20	329.	4-Benzoylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -2-(4-am)-thiaz
30	330.	4-Phenylbenzoyl-(D)-Val-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	331.	4-Phenylphenylacetyl-(D)-Val-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	332.	3-Benzoylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	333.	4-Benzoylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -2-(4-am)-thiaz
35	334.	4-Phenylbenzoyl-(D)-Ala-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	335.	4-Phenylphenylacetyl-(D)-Ala-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	336.	3-Benzoylbenzoyl-Gly-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	337.	4-Benzoylbenzoyl-Gly-Pyr-NH-CH ₂ -2-(4-am)-thiaz
40	338.	4-Phenylbenzoyl-Gly-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	339.	4-Phenylphenylacetyl-Gly-Pyr-NH-CH ₂ -2-(4-am)-thiaz
	340.	3-Benzoylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	341.	4-Benzoylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
45	342.	4-Phenylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
43	343.	4-Phenylphenylacetyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	344.	2-(Benzylthio)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph

345. 3-Phenylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 346. 4-Phenylbutyryl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 347. 5-Phenylvaleryl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 348. (3-phenyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 349. C ₆ H ₅ -CSC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 350. 3-Benzyloxycarbonylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 351. 3-(4-methoxycarbonyl-phenyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 353. (6-(Acetylamino)-pyridin-3-carbonyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 354. 3-(3'-Pyridyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 355. NGOC-p-CgH ₄ -CSC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 356. HOOC-m-CgH ₄ -CSC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzoyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylphe	•	WO 00/61	82
346. 4-Phenylbutyryl-val-Pyr-NH-CH ₂ -5-(3-am)-thioph 347. 5-Phenylvaleryl-val-Pyr-NH-CH ₂ -5-(3-am)-thioph 348. (3-phenyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 349. C ₆ H ₅ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 350. 3-Benzyloxycarbonylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 351. 3-(4-methoxycarbonyl-phenyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 353. 6-(Acetylamino)-pyridin-3-carbonyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 355. HOOC-p-C ₆ H ₄ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 356. HOOC-m-C ₆ H ₄ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 359. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-henzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-henzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-henzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	Г	245	3-Phenylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
347. 5-Phenylvaleryl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 348. (3-phenyl) -acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 349. C ₆ H ₃ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 350. 3-Benzyloxycarbonylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 351. 3-(4-methoxycarbonyl-phenyl) -acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 353. 6-(Acetylamino)-pyridin-3-carbonyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 354. 3-(3)-Pyridyl) -acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 355. HOOC-p-C ₆ H ₄ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 356. HOOC-m-C ₆ H ₄ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 357. 4-(4)-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 359. 3-(4)-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylbenyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylethinyl-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 4-Phenylbenyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3)-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4)-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4)-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2)-Chlor-4)-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylbenzoyl-Sar-Pr	L	346	4-Phenylbutyryl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
348. (3-phenyl)-acryloyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 349. C6H5-C8C-C0-Val-Pyr-NH-CH2-5-(3-am)-thioph 350. 3-Benzyloxycarbonylpropionyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 351. 3-(4-methoxycarbonyl-phenyl)-acryloyl-Val-Pyr-NH-CH2-5- (3-am)-thioph 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH2-5- (3-am)-thioph 353. 6-(Acetylamino)-pyridin-3-carbonyl-Val-Pyr-NH-CH2-5- (3-am)-thioph 354. 3-(3'-Pyridyl)-acryloyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 355. HOOC-P-C6H4-C8C-CO-Val-Pyr-NH-CH2-5-(3-am)-thioph 356. HOOC-M-C6H4-C8C-C0-Val-Pyr-NH-CH2-5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 360. 5-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 365. 4-Phenylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 367. 4-Phenylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 368. 3-Phenylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylphenylacetyl-Sar-Pro-NH-CH2-5-(3-am)-thioph	+	247	5 Phonylyaleryl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
349. C6H ₅ -C=C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 350. 3-Benzyloxycarbonylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 351. 3-(4-methoxycarbonyl-phenyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 353. (3-am)-thioph 354. 3-(3-eyridyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 355. HOOC-p-C6H ₄ -C=C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 356. HOOC-m-C6H ₄ -C=C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 3-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 3-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro	ŀ		(3-phenyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
350. 3-Benzyloxycarbonylpropionyl-Val-Pyr-NH-CH2-5-(3-am)-thioph	5		$\frac{1}{2}$ CO Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
351.	1		3 - Bonzyloxycarbonylpropionyl-Val-Pyr-NH-CH ₂ -5-(3-am)-chioph
10 352. 4-Methoxycarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 353. 6-(Acetylamino)-pyridin-3-carbonyl-Val-Pyr-NH-CH ₂ -5- 354. 3-(3'-Pyridyl)-acryloyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 355. HOOC-p-C ₆ H ₄ -C≡C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 356. HOOC-m-C ₆ H ₄ -C≡C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzoyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph			3-(4-methoxycarbonyl-phenyl)-acryloyl-Val-Pyr-Nn-
353. 6-(Acetylamino)-pyridin-3-carbonyl-Val-Pyr-NH-Ch ₂ -5 354. 3-(3'-Pyridyl)-acryloyl-Val-Pyr-NH-Ch ₂ -5-(3-am)-thioph 355. HOOC-p-C ₆ H ₄ -C≅C-CO-Val-Pyr-NH-Ch ₂ -5-(3-am)-thioph 356. HOOC-m-C ₆ H ₄ -C≅C-CO-Val-Pyr-NH-Ch ₂ -5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-Ch ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-Ch ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 366. 3-Phenylphonyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-Ch ₂ -5-(3-am)-thioph 374. 4-2n-1-hioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-Ch ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-Ch ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-Ch ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-Ch ₂ -5-(3-am)-thioph 379. 3-Phenylphenylacetyl-Sar-Pro-NH-Ch ₂ -5-(3-am)-thioph 379. 3-Phenylphenylacetyl-Sar-Pro-NH-Ch ₂ -5-(3-am)-thioph			A Wathowszarbonylbenzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-LIIIOpii
354. 3-(3'-Pyridy1)-acryloy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 355. HOOC-p-C ₆ H ₄ -C=C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 356. HOOC-m-C ₆ H ₄ -C=C-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethiny1-nicotinoy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethiny1-benzoy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethiny1-benzoy1-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoy1benzoy1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoy1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropiony1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbury1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvalery1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropiony1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridy1-3-carbony1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridy1)-acryloy1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoy1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(3'-Pyridy1)-acryloy1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoy1-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoy1benzoy1-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoy1benzoy1-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoy1-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylbenzoy1-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropiony1-Sar-Pro-NH-CH ₂ -5-(3-am)-thi	10		6-(Acetylamino)-pyridin-3-carbonyl-Val-pyr-NA-Ch2-3
15 355. HOOC-p-C6H4-C≡C-CO-Val-Pyr-NH-CH2-5-(3-am)-thioph 356. HOOC-m-C6H4-C≡C-CO-Val-Pyr-NH-CH2-5-(3-am)-thioph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH2-5- (3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 370. (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 378. 4-Phenylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH2-5-(3-am)-thioph			(3-am)-thioph
356. HOOC-m-C ₆ H ₄ -CEC-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-th1oph 357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5- (3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylpenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 37			3-(3'-Pyridy1)-acryloy1 tun 22
357. 4-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	15		\sim C=C CO=V=1=Pvr=NH=CH ₂ =5-(3-am)-thioph
358. 3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-throph 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5- 359. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5- 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-throph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-throph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-throph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph 379. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-throph			$HOOC-m-C_6H_4-C=C-CO-Val-191$ And $HOOC-m-C_6H_4-C=C-C-CO-Val-191$ And $HOOC-m-C_6H_4-C=C-C-CO-Val-191$ And $HOOC-m-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-$
359. 4-(2`-Chlor-4`-Aminophenoxy)-benzoyl-Val-Pyr-Nh-Ch2-5 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 370. (3-am)-thioph 371. 3-(3`-Pyridyl)-acryloyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 372. 4-(4`-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 373. 3-(4`-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 374. 4-(2`-Chlor-4`-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH2-5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH2-5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH2-5-(3-am)-thioph		357.	4-(4'-Aminophenoxy)-Benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
20 359. (3-am)-thioph 360. 5-Phenylethinyl-nicotinoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pr		358.	3-(4'-Aminophenoxy)-benzoyl-Val-Pyr-NH-CH ₂ -5-
361. 4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	20	359.	
362. 3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		360.	5-Phenylethinyl-nicotinoyl-Val-Pyr-Nn-Ch ₂ -3 (3-am)-thioph
363. 3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		361.	4-Phenylethinyl-benzoyl-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
364. 4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		362.	3-Phenylethinyl-benzoyl-Val-Pyr-NH-CH2-3-(5 dail) entered
365. 4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		363.	3-Benzoylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-Efficient
366. 3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	23		4-Phenylbenzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph
367. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		365	4-Phenylphenylacetyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph
368. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		366	3-Phenylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-CH1OpH
369. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. (2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		367	. 4-Phenylbutyryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph
370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-Ch ₂ -5 (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	3	0 368	. 5-Phenylvaleryl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph
370. 6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NH-Ch ₂ -5 (3-am)-thioph 371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		369	. 3-Benzyloxycarbonylpropionyl-Sar-Pyr-NH-CH2-5-(3-dat/ CH2-5-
371. 3-(3'-Pyridyl)-acryloyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		370	6-(Acetylamino)-pyridyl-3-carbonyl-Sar-Pyr-NA-Ch2-3
372. 4-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph 374. 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	_	371	
373. 3-(4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-throph 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5- (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph	3		-henzovl-Sar-Pyr-NH-CH2-5-(3-all) -throph
4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-CH ₂ -5 (3-am)-thioph 375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph			2 (4) - Aminophenoxy) -benzoyl-Sar-Pyr-NH-CH ₂ -5-(5-all) - CH ₂ -5-
375. 3-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		-	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pyr-NH-Ch2-3
376. 4-Benzoylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		40 37	Renzovlbenzovl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
377. 4-Phenylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph			4-Renzovlbenzovl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
378. 4-Phenylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		<u> </u>	A Phonylbenzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
379. 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph 380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		<u> </u>	0 A-Phonylphenylacetyl-Sar-Pro-NH-CH ₂ -5-(3-am)-th10pH
380. 4-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph		137	0 3-Phenylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
$\frac{1}{2}$ $\frac{1}$		45	10 A-Phenylbutyryl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
381. 3-Fileliy I valonin			$\frac{1}{2}$ $\frac{1}$
		138	31. J-FHeny IVOLOGY

		83
	382.	$C_6H_5-C\equiv C-CO-Sar-Pro-NH-CH_2-5-(3-am)-thioph$
5	383.	3-Benzyloxycarbonylpropionyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
	384.	6-(Acetylamino)-pyridin-3-carbonyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
	385.	3-(3'-Pyridyl)-acryloyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
	386.	4-(4'-Aminophenoxy)-benzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
	387.	3-(4'-Aminophenoxy)-benzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
10	388.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Sar-Pro-NH-CH ₂ -5-(3-am)-thioph
	389.	3-Benzoylbenzoyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	390.	4-Benzoylbenzoyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	391.	4-Phenylbenzoyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
15	392.	4-Phenylphenylacetyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	393.	3-Phenylpropionyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	394.	4-Phenylbutyryl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	395.	5-Phenylvaleryl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	396.	$C_6H_5-C\equiv C-CO-(D)-(N-Me)$ Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	397.	3-Benzyloxycarbonylpropionyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	398.	6-(Acetylamino)-pyridyl-3-carbonyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
25	399.	3-(3'-Pyridyl)-acryloyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
į	400.	4-(4'-Aminophenoxy)-benzoyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
30	401.	3-(4'-Aminophenoxy)-benzoyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	402.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-(D)-(N-Me)Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	403.	3-Benzoylbenzoyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	404.	4-Benzoylbenzoyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
35	405.	4-Phenylbenzoyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	406.	4-Phenylphenylacetyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	407.	3-Phenylpropionyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
40	408.	4-Phenylbutyryl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	409.	5-Phenylvalery1-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	410.	$C_6H_5-C\equiv C-CO-(D)-(N-Me)$ Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
	411.	3-Benzyloxycarbonylpropionyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
45	412.	6-(Acetylamino)-pyridyl-3-carbonyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-(3-am)-thioph
•		

WO 00/61608			
Г	1	3-(3'-Pyridyl)-acryloyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-	
	413. 1		
-		(3-am)-thioph 1-(4'-Aminophenoxy)-benzoyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-	
ĺ			
5	415	(3-am)-th1oph 3-(4'-Aminophenoxy)-benzoyl-(D)-(N-Me)Ala-Pro-NH-CH ₂ -5-	
	411.	(3-am)-thioph 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-(D)-(N-Me)Ala-Pro-NH-	
	416.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyi (b)	
İ		CH ₂ -5-(3-am)-thioph 3-Benzoylbenzoyl-G-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	417.	3-Benzoyibenzoyi-s-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
10	418.	Cinnamoy1-S-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph C ₆ H ₅ -C≡C-CO-ß-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	419.	C ₆ H ₅ -C=C-CO-B-Ala-Pro-NH-CH ₂ -5-	
	420.	3-Benzyloxycarbonylpropionyl-ß-Ala-Pro-NH-CH ₂ -5-	
		(3-am)-thioph 4-Methoxycarbonylcinnamoyl-ß-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
15	421.	4-Methoxycarbonyltermans, 4-Methoxycarbonylbenzoyl-ß-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	422.	4-Methoxycarbonylbenzoyr 5 1 1 6-(Acetylamino)-pyridyl-3-carbonyl-6-Ala-Pro-NH-CH ₂ -5-	
	423.		
	424.	2 (2) Project -acryloyl-B-Ala-Pro-NH-CH ₂ -5-(3-am)-CH10pH	
		WOOG P-C-H-CCC-CO-S-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
20	425.	HOOC-m-C ₆ H ₄ -C=C-CO-ß-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	426.	4-(4'-Aminophenoxy)-benzoyl-G-Ala-Pro-NH-CH ₂ -5-	
	427.	(2.am)-thioph	
		3-(4'-Aminophenoxy)-benzoyl-G-Ala-Pro-NH-CH ₂ -5-	
25	428.	lea . \ whianh	
	429.	(3-am)-thioph 4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-ß-Ala-Pro-NH-CH ₂ -5-	
•	429.	(3-am)-thioph 5-Phenylethinyl-nicotinoyl-ß-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	430.	5-Phenylethinyl-nicotinoyl-B-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph 4-Phenylethinyl-benzoyl-B-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	431.	4-Phenylethinyl-benzoyl-B-Ala-Pro-NH-CHa-5-(3-am)-thioph	
3 (432.	3-Phenylethinyl-benzoyl-ß-Ala-Pro-NH-CH ₂ -5-(3-am)-thioph	
	433.	3-Phenylethinyl behavior 3-Benzoylbenzoyl-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	434	4-Phenylbenzoyl-G-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	435	4-Phenylphenylacetyl-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
3	5 436	2 (Bongylthio) -benzoyl-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-chroph	
	437	. 3-Phenylpropionyl-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	438	4-Phenylbutyryl-G-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	439	5-Phenylyaleryl-B-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	-	3-Benzyloxycarbonylpropionyl-g-Ala-Pyr-NH-CH2-5-	
4	10 440		
	441	(3-am)-thioph 4-Methoxycarbonylcinnamoyl-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	442	A Wathourgarbonylbenzoyl-ß-Ala-Pyr-NH-CH2-5-(3-all)-CHToph	
	-	6-(Acetylamino)-pyridyl-3-carbonyl-8-Ala-Pyr-NH-Ch2-3-	
4	45 44	5	
	44	4. 3-(3'-Pyridyl)-acryloyl-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	44		
	ا		

DNC ---- 07

	446.	6. HOOC-m-C ₆ H ₄ -C≡C-CO-ß-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
5	447.	4-(4'-Aminophenoxy)-benzoyl-S-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph			
	448.	3-(4'-Aminophenoxy)-benzoyl-G-Ala-Pyr-NH-CH ₂ -5- (3-am)-thioph			
	449.	4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-B-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	450.	5-Phenylethinyl-nicotinoyl-G-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
10	451.	4-Phenylethinyl-benzoyl-G-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	452.	3-Phenylethinyl-benzoyl-G-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	453.	$4-HOOC-C_6H_4-CH_2-(D)Cpg-Dhi-1-CO-NH-CH_2-5-(3-am)-thioph$			
	454.	$4-HOOC-C_6H_4-CH_2-(D)Cpg-Ohii-1-CO-NH-CH_2-5-(3-am)-thioph$			
	455.	$4-HOOC-C_6H_4-CH_2-(D)Cpg-(5-Me)Pro-NH-CH_2-5-(3-am)-thioph$			
15	456.	$4-HOOC-C_6H_4-CH_2-(D)Cpg-cis-(4-F)Pro-NH-CH_2-5-(3-am)-thioph$			
	457.	$4-HOOC-C_6H_4-CH_2-(D)Cpg-trans-(4-F)Pro-NH-CH_2-5-(3-am)-thioph$			
	458.	4-HOOC-C ₆ H ₄ -CH ₂ -(D)Cpg-(3S)(3-Me)Pro-NH-CH ₂ -5-(3-am)-thioph			
20	459.	$4-HOOC-C_6H_4-CH_2-(D)Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$			
	460.	$4-HOOC-C_6H_4-CH(CH_3)-(D)Cpg-Pyr-NH-CH_2-5-(3-am)-thioph$			
	461.	$4-HOOC-C_6H_4-CO-(D)Cpg-Pyr-NH-CH_2-5-(3-am)-thioph$			
	462.	$4-HOOC-C_6H_4-CH(CH_3)-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$			
25	463.	$4-HOOC-C_6H_4-CH_2-(N-Me)$ (D) Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph			
25	464.	$4-HOOC-C_6H_4-C(CH_3)_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$			
	465.	$4-HOOC-3-Me-C_6H_4-CH_2-(D)$ Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	466.	$4-HOOC-2-Me-C_6H_4-CH_2-(D)$ Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	467.	$4-HOOC-CH_2-C_6H_4-CH_2-(D) Chg-Pyr-NH-CH_2-5-(3-am)-thioph$			
30	468.	3-HOOC-CH2-C6H4-CH2-(D) Chg-Pyr-NH-CH2-5-(3-am)-thioph			
	469.	$4-HOOC-C_6H_4-CH(CH_3)-(D)Cpg-Pyr-NH-CH_2-5-(3-am)-thioph$			
	470.	$4-HOOC-C_6H_4-CH_2-(N-Me)$ (D) Cpg-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	471.	$4-HOOC-C_6H_4-C(CH_3)_2-(D)Cpg-Pyr-NH-CH_2-5-(3-am)-thioph$			
35	472.	$4-HOOC-3-Me-C_6H_4-CH_2-(D)$ Cpg-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	473.	$4-HOOC-2-Me-C_6H_4-CH_2-(D)$ Cpg-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	474.	4-HOOC-CH2-C6H4-CH2-(D)Cpg-Pyr-NH-CH2-5-(3-am)-thioph			
	475.	3-HOOC-CH2-C6H4-CH2-(D)Cpg-Pyr-NH-CH2-5-(3-am)-thioph			
40	476.	$4-HOOC-C_6H_4-CH(CH_3)-(D)Chg-Pyr-NH-CH_2-5-(2-am)-thioph$			
	477.	$4-HOOC-C_6H_4-CH_2-(N-Me)$ (D) Chg-Pyr-NH-CH ₂ -5-(2-am)-thioph			
	478.	$4-HOOC-C_6H_4-C(CH_3)_2-(D)Chg-Pyr-NH-CH_2-5-(2-am)-thioph$			
	479.	$4-HOOC-3-Me-C_6H_4-CH_2-(D)$ Chg-Pyr-NH-CH ₂ -5-(2-am)-thioph			
	480.	$4-HOOC-2-Me-C_6H_4-CH_2-(D)$ Chg-Pyr-NH-CH ₂ -5-(2-am)-thioph			
45	481.	4-HOOC-CH2-C6H4-CH2-(D) Chg-Pyr-NH-CH2-5-(2-am)-thioph			
	482.	3-HOOC-CH2-C6H4-CH2-(D) Chg-Pyr-NH-CH2-5-(2-am)-thioph			

	WO 00/6	80	
-		$-HOOC-C_6H_4-CH(CH_3)-(D)Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$	
l	483.	$-HOOC-C_6H_4-CH_2-(N-Me) (D) Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$ $-HOOC-C_6H_4-CH_2-(N-Me) (D) Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$	
	484.	$-HOOC-C_6H_4-CH_2-(N-Me)(D)Cpg$ $-HOOC-C_6H_4-CH_2-(N-Me)(D)Cpg$ $-HOOC-C_6H_4-CH_2-(N-Me)(D)Cpg$ $-HOOC-C_6H_4-CH_2-(N-Me)(D)Cpg$	
Ī	485.	$-HOOC-C_6H_4-C_1(CH_3)_2-(D)Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$ $-HOOC-C_6H_4-C_1(CH_3)_2-(D)Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$	
5	486.	$-HOOC-C_6H_4-C(CH_3/2)(D)Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$ $-HOOC-3-Me-C_6H_4-CH_2-(D)Cpg-Pyr-NH-CH_2-5-(2-am)-thioph$	
٦	487.	CHI-CH2-5 (Z. day)	
	488.	CHO-CHO-(D) CDG-PVY-NH-CH2-5-(Z-Mil)	
	489.	CHa-Cha-(D) Cpg-Pyr-NH-CH ₂ -5-(Z-alit) Chi Topi	
	490.	CH (CH ₂) -D-Val-Pyr-NH-CH ₂ -5-(3-am) - cm opin	
10		CH-) -D-Val-Pyr-NH-CH ₂ -5-(3-am) -CHIOph	
	491.	D-Val-Pyr-NH-CH2-3-(3-dill) Clifopi	
	492.	hetrafluorbenzvl-D-Val-Pyr-NH-Ch2-J-(5 am, 500-1	
	493.	o-carboxy-tetralidorsendy- o-carboxy-2'-F-benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	494.	p-carboxy-2'-methoxy-benzyl-D-Val-Pyr-NH-	
15	495.	ch2-5-(3-am)-thioph	
		p-carboxy-3'-methoxy-benzyl-D-Val-Pyr-NH-	
	496.	c /2	
	497.	W.O. B-D-C-Ha-CHa-D-Val-Pyr-NH-CH ₂ -5-(3-am)-CHIOPH	
20		5 COON_indanyl(1)-D-Val-Pyr-NH-5-(3-am)-thioph	
	330.	6-COOH-indanyl(1)-D-Val-Pyr-NH-5-(3-am)-thioph	
	499.	HOOC-p-C ₆ H ₄ -CH ₂ -D-Val-Pyr-NH-4-amb	
	500.		L,
	501	The CVI - D-Val-Pyr-NH-CH2-4-(2-dil) Cliff	-
2	5 502 503		-{
	504		\dashv
	505	$HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-5-(2-am-4-C1)-thioph$ $HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-5-(2-am-3-C1)-thioph$ $HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-5-(2-am-3-C1)-thioph$	
	506		
9	507		
3	508 509	1	\dashv
	510	$HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-4-(2-am)-thiaz$ $HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-5-(3-am-4-Me)-thioph$	\dashv
	511		
	512	$HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-5-(2-am-4-Me)-thioph$ $HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-2-(4-guan)-thiaz$ $HOOC-p-C_6H_4-CH_2-D-Val-Pyr-NH-CH_2-2-(5-guan)-thiaz$	
3	35 51.		
	514		
	51		
	51	-Lands and HCha-D-Val-PVI-NH-(4-guain) Deli-1	
	51	Lyong - C-H,-CH2-D-Val-Pyr-NA-(CH2/4 C.)	
	40 51	CV D-Val-Pvr-NH-(CH2/3"dil	
	52	Track - C. WChe-D-Val-Pyr-NH-(Ch2/4 gdd)	
	52 52	CHa-D-Val-PVI-NH-(Ch2/5 guar	
	52	Typog a C-H CH2-D-Val-Pyr-NA- (Ch2/3 guar	
	45 52	. $HOOC-p-C_6H_4-CH_2-p-Val-pyr-NH-3-and$	
	5	-100	
	5	. HOOC-p-C6H4-CH2-D-Val-Fyl Mi Ch2	

DNG ---- 00

	527.	HOOC-p-C ₆ H ₄ -CH ₂ -D-Val-Pic-NH-CH ₂ -5-(3-am)-thioph			
	528.	HOOC-p-C ₆ H ₄ -CH ₂ -D-Val-Aze-NH-CH ₂ -5-(3-am)-thioph			
	529.	$HOOC-p-C_6H_4-CH_2-D-Val-N-Me-Ala-NH-CH_2-5-(3-am)-thioph$			
	530.	HOOC-p-C ₆ H ₄ -CH ₂ -D-Val-4, 4-difluor-Pro-NH-CH ₂ -5-(3-am)-thioph			
5	531.	$HOOC-p-C_6H_4-CH_2-D-Val-Thz-4-CO-NH-CH_2-5-(3-am)-thioph$			
,	532.	$HOOC-p-C_6H_4-CH_2-D-(2-CF_3)Gly-Pyr-NH-CH_2-5-(3-am)-thioph$			
i	533.	$HOOC-p-C_6H_4-CH_2-D-(3-CF_3)$ Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	534.	$HOOC-p-C_6H_4-CH_2-D-3$, $3-(CF_3)_2-Ala-Pyr-NH-CH_2-5-(3-am)-thioph$			
	535.	$HOOC-p-C_6H_4-CH_2-D-2-Methyl-Val-Pyr-NH-CH_2-5-(3-am)-thioph$			
	536.	(p-CH ₃)-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
10	537.	(p-ethyl)-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	538.	(p-propyl)-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	539.	(p-butyl)-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	540.	(p-isopropyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	541.	(p-tBu)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	542.	(p-pentyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
15	543.	(p-hexyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	544.	(p-trifluormethyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	545.	(o-methyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	546.	(o-trifluormethyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
20	547.	(o-methoxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
20	548.	(o-dimethyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	549.	(o-dimethoxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	550.	(p-methoxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	551.	(p-ethoxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	552.	(p-propyloxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
25	553.	(p-isopropyloxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	554.	(p-butyloxy) benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	555.	(p-tert.butoxy)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	556.	(p-aminomethyl)benzoyl- D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	557.	2,6-dichlorophenyl-CH ₂ CO-D-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph			
20	558.	2,6-dichlorophenyl-CH ₂ CO-D-Ile-Pyr-NH-CH ₂ -5-(3-am)-thioph			
30	559.	2,6-dichlorophenyl-CH ₂ CO-D-allo-Ile-Pyr-NH-			
	560.	CH ₂ -5-(3-am)-thioph			
		2,6-dichlorophenyl-CH ₂ CO-D-tLeu-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	561.	2,6-dichlorophenyl-CH ₂ CO-D-hexafluor-Val-Pyr-NH- CH ₂ -5-(3-am)-thioph			
	562.	2,6-dichlorophenyl-CH ₂ CO-D-Thr-Pyr-NH-CH ₂ -5-(3-am)-thioph			
35	563.	2,6-dichlorophenyl-Ch ₂ CO-D-Cpg-Pyr-NH-Ch ₂ -5-(3-am)-thioph			
	564.	2,6-dichlorophenyl-Ch ₂ CO-D-2-methyl-Val-Pyr-NH-			
	J04.	$CH_2-5-(3-am)-thioph$			
	565.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-4-amb			
	566.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(2-am)-thioph			
	567.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-3-(6-am)pico			
40	568.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(2-am)-fur			
	569.	2,6-dichlorophenyl-Ch ₂ CO-D-Val-Pyr-NH-			
	309.	$CH_2-5-(3-am-4-C1)-thioph$			
	570.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-			
	• • • •	CH ₂ -5-(2-am-3-Cl)-thioph			
45	571.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -2-(4-am)-thiaz			
	572.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -2-(5-am)-thiaz			
	573.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(2-am)-thiaz			
		the state of the same of the s			

WO 00/61608			
			The second secon
Γ	574.	2,6	-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -2-(4-guan)-thiaz -dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -2-(5-guan)-thiaz
_ L	575.	2,6	-dichlorophenyl-CH ₂ CO-D-Val-Pyl-NH-CH ₂ 2 (5-mian)-thiaz
L	576.	2,6	i-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -2-(5-guan)-thiaz i-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -2-(3-guan)-thioph
L	577.	2,6	5-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(3-guan)-thioph 5-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(2-guan)-thioph
- 1	578.	2.6	6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(2-guan)-thioph 6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -4-(2-am)-thioph
5	579.		
}	580.		The state of the country of the coun
	581.	_	
	582.		
	583.		
10	584.		
10			
	585.	_	
	586.	+-	C 31 -h l arophony] -CH2CO-D-Val-Pyl-Mi 5 CM
	587.	12,	6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-
	588.		- 12 0 12 TOW - 1 - NO H2 1 - T R LUDIA
15	F00	101	6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-
	589.		
	590.	_	
	591.		
	592.		
	= 5 3	_	1/10\ D 3 10- 10-PVI-NH-UD7-J (5 a)
20			
	594.		
	595.		
	596.		THE CONTRACTOR OF THE CHIEF OF COUNTRY CHILDREN
	597		
25	598		
	1333		1/17) CO-D-FI-011-DVY-NH-CH2-J-(J-0011/ 0011-01-1
	600		3 (1 a) D Cac-Dyr-NH-('H2-D-('J-am') chizophi
	601	_	7 (10) D 7 1 = Dyr-NH-(H2-3-(3-dill) thirde
	602		
	603		1/10) D-3110-T18-PVY-NH-UR2-3-(3-444) 441-441
3	0 604		
	605		
	606	_	
	607	_	
	608		
2	609		
3	5 610	<u> </u>	Indanyl(1S)-CO-D-allo-lie-ly-lim- Indanyl(1S)-CO-D-tLeu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	61:	1.	Indanyl(1S)-CO-D-tLeu-Pyr-NH-CH ₂ -3-(3 am, thioph (5,6-dimethyl)indanyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	613	2.	
	61		
	61		
4	40 61	5.	
	61	6.	
	61	7.	(p-carboxy)-benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph (p-carboxy-methyl)-benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	61	8.	(p-carboxy-metny1)-benzy1-co-b val 11-benzy1-co-b val 11-benzy1-co-b val 11-benzy1-co-b
	61	9.	(p-carboxy-methy1)-benzy1 co Indany1(2)-CO-D-Val-Pyr-NH-CH2-5-(3-am)-thioph (2,4,6-trimethoxy)-benzy1-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		20.	(2, 4, 6-trimethoxy)-penzy1-co-p-val-1/1 Mi (3-am)-thioph
		21.	(2,4,6-trimethoxy)-benzy1-CO-D-Val-Fyr NH-CH ₂ -5-(3-am)-thioph Tetrahydronaphthyl(1S)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	<u> </u>	22.	
		23.	Tetrahydronaphthyl(lR)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph 2,6-dibromphenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	<u> </u>		

	624. 2,6-ditrifluormethyl-phenyl-CH ₂ CO-D-Val-Pyr-NH- CH ₂ -5-(3-am)-thioph				
	625.	Indolyl(3)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	626.	N-methyl-indolyl(3)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	627.	Benzthieny1(3) CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
5	628.	(5-carboxy)indanyl(1R)-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	629.	(6-carboxy)indanyl(1R)-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	630.	(4-carboxy/Indany1(1k)-D-val-Py1-NH-CH ₂ -5-(3-am)-Enloph (4-carboxy-2,6-dichlor)benzyl-CO-D-Val-Pyr-NH-			
	630.	CH ₂ -5-(3-am)-thioph			
	631.	(5-carboxy)indanyl(1S)-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
10	632.	(6-carboxy)indanyl(1S)-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	633.	(5-carboxy)indanyl(1R)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	634.	(6-carboxy)indanyl(1R)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	635.	(5-carboxy)indanyl(1S)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	636.	(6-carboxy)indanyl(1S)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	637.	$(p-CH_3)-benzyl-CO-D-Val-Pyr-NH-CH_2-5-(3-am)-thioph$			
15	638.	(p-ethyl)-benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	639.	(p-propyl)-benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	640.	(p-butyl)-benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	641.	(p-isopropyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	642.	(p-tBu)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
20	643.	(p-pentyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
20	644.	(p-hexyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	645.	(p-trifluormethyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	646.	(o-methyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	647.	(o-trifluormethyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	648.	(o-methoxy)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
25	649.	(o-dimethyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	650.	(o-dimethoxy)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	651.	(p-methoxy)benzy1-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	652.	(p-ethoxy)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	653.	(p-propyloxy)benzyl-CO-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
30	654.	(p-isopropyloxy)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	655.	(p-butyloxy)benzylCO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	656.	(p-tert.butoxy)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	657.	(p-CN)-benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	658.	(p-dimethylamino)-benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	659.	(p-methoxy)-benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
35	660.	(p-ethoxy)-benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	661.	(p-propyloxy)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	662.	(p-isopropyloxy)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	663.	(p-butyloxy)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	664.	(p-tertbutyloxy)benzyl-D-Val-Pyr-NH-CH2-5-(3-am)-thioph			
40	665.	(p-pentyloxy)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	666.	(p-trifluormethyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	667.	(p-ethyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	668.	(p-propyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	669.	(p-butyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
. –	670.	(p-tert.butyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
45	671.	(p-pentyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	672.	(p-hexyl)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			
	673.	(p-MeSO ₂))benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph			

90				
-		(p-Nitro)benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph		
(_				
L	675.			
	676.			
	677.			
5 [678.			
- 1	679.			
	680.	(p-carboxy)benzyl-D-lle-Pyr-NH-CH ₂ -5-(3-ham)-thioph (p-carboxy)benzyl-D-allo-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
1	681.	(p-carboxy)benzyl-D-allo-lie-Fyl-Nn ch2		
	682.	(p-carboxy)benzy1-D-a110-11e-Fy1 Nn Gr2 (p-carboxy)benzoy1-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
	683.	(p-carboxy)benzoy1-D-Va1-ry1 Mi U-2 (p-carboxy)benzy1-D-Cpg-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
10	684.	(p-carboxy)benzyl-D-Cpg-Pyr-NH-CH ₂ 5 (3-ham)-thioph 2,6-dichlorbenzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
	685.			
	686.			
	687.			
	688.			
	689.	2,6-dichlorbenzyl-CO-D-thed-Fyr-NH-CH ₂ -5-(3-ham)-thioph 2,6-dichlorbenzyl-CO-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
15	690.			
	691.			
	692.	2,6-dichlorbenzy1-CO-D-Cpg-172 Mary - (3-ham)-thioph p-benzoy1-benzoy1-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
	693.	p-benzoyl-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph (p-Phenyl-NH-CO-NH)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
	694.			
20				
	696.	11 1 CO-D-Val-PVI -Nn-Cny J (3 seem)		
	697.			
	698.			
	699	1 2 12-1 Dirx-NH-('H)-0-1 ()-HOM'(' C111-0-1		
	700			
25	701			
	701			
	703			
	704			
	705	- 1 D 7 3 - DVY - NH - (H2 -) - () 110111/ 011 - 1		
3				
3				
	707	(p-COOiPr)benzy1-D-Ala-Pyr NH-CH ₂ -5-(3-ham)-thioph (p-COOtBu)benzy1-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
	708	(p-COOtBu)benzyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph (p-COOCyclohexyl)benzyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph		
	709			
	710	3 T3 X 30.5 1 10.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
3	5 711			
	712			
	71.			
	71			
	71			
	71			
•	40 71			
	71	T10-Dur-NH-CH2-3-(3-110m) 533-55		
	L	1 D T1 0-Dirrentific (10-10-10-10-10-10-10-10-10-10-10-10-10-1		
	1			
	45 -			
	72	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	l			
	7:	25. (p-COOMe)benzoy1-D-Va1-Py1-Nii Ch2 5 (c		

	71						
	726.	(p-COOEt)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	727.						
	728.	(p-COOiPr)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	729.	(p-COOtBu)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
5	730.	(p-COOCyclohexyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	731.	(p-COOCyclopentyl)benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	732.	(p-COOMe)benzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	733.	(p-COOEt)benzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	734.	(p-COOPr)benzoy1-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	735.	(p-COOiPr)benzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
10	736.	(p-COOtBu)benzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
:	737.	(p-COOCyclohexyl)benzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	738.	(p-COOCyclopentyl)benzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
į	739.	(p-COOMe)benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	740.	(p-COOEt)benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
15	741.	(p-COOPr)benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	742.	(p-COOiPr)benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	743.	(p-COOtBu) benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	744.	(p-COOCyclohexyl)benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	745.	(p-COOCyclopentyl)benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	746.	(p-COOMe)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
20	747.	(p-COOEt)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	748.	(p-COOPr)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	749.	(p-COOiPr)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	750.	(p-COOtBu)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	751.	(p-COOCyclohexyl)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
25	752.	(p-COOCyclopentyl)benzoyl-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	753.	(p-COOMe)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	754.	(p-COOEt)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	755.	(p-COOPr)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	756.	(p-COOiPr)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	757.	(p-COOtBu)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
30	758.	(p-COOCyclohexyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	759.	(p-COOCyclopentyl)benzyl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	760.	(p-COOMe)benzyl-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	761.	(p-COOEt)benzyl-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	762.	(p-COOPr)benzy1-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
35	763.	(p-COOiPr)benzyl-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	764.	(p-COOtBu)benzyl-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	765.	(p-COOCyclohexyl)benzyl-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	766.	(p-COOCyclopentylbenzyl-CO-D-Ala-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	767.	(p-COOMe)benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	768.	(p-COOEt)benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
40	769.	(p-COOPr)benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	770.	(p-COOiPr)benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	771.	(p-COOtBu) benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	772.	(p-COOCyclohexyl)benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
45	773.	(p-COOCyclopentyl)benzyl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	774.	(p-COOMe)benzyl-CO-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					
	775.	(p-COOEt)benzyl-CO-D-Ile-Pyr-NH-CH ₂ -5-(3-ham)-thioph					

1	WO 00/6	1608	92	
			Ja Day NH-C	Ya-5-(3-ham)-thioph
L.	776.	(p-COOPr)benzyl-	-CO-D-116-PYI-NH-C	$H_2-5-(3-ham)-thioph$
	777.	(p-COOiPr)benzy	1-CO-D-IIe-Pyr-NH-	$CH_2-5-(3-ham)-thioph$
h	778.			
	779.			
F	780.			
_ ⊃ 1_				
	781.		11D CO-D-V3 -PVT-	NH-CH2-J. (J. 1101K)
	782.		/45\ 5\ 15\LDXXX=NH=	(42-2-1-11000)
	783.			
Ī	784.			
Ī	785.	5-EtOOC-indanyl	(IS)-CO-D-VAL TYT	$NH-CH_2-5-(3-ham)-thioph$
10	786.	6-EtOOC-indany	(1S)-CO-D-Val-Pyl-	CY5-(3-ham)-thioph
	787.	5-EtOOC-indany	(1S)-D-Val-Pyr-NH-	$-CH_2-5-(3-ham)-thioph$
	788.	C mi ood indani	/191-D-Val-PVT-NH	-CH2-3-(3-11dill)
	789.	4-(Benzylamino-	-methyl)-benzoyı-D-	-Val-Pyr-Nn-
	1,05.			
	790.	4-(Cyclohexylme	ethylamino-methyl).	-benzoyl-D-Val-Pyr-NH-
15	1,30.			
	791.	4-(Isobutylami	no-methyl)-benzoyl	-D-Val-Pyr-NH-
	1			
	792.	A-(Isopropylam	ino-methyl)-benzoy	1-D-Val-Pyr-NH-
	192.		n i on h	
	793.	4-(Benzylamino	-methyl)-benzoyl-D	-Ala-Pyr-NH-
20	1,33.			
	794.	A=(Cyclohexylm	ethylamino-methyl)	-benzoyl-D-Ala-Pyr-NH-
	/94.	\ _	Lionh	
	795.	4-/Tsobutylami	no-methyl)-benzoyl	-D-Ala-Pyr-NH-
	195.			
	706	4-/Jeopropylan	nioph nino-methyl)-benzo	1-D-Ala-Pyr-NH-
25	796.	$CH_2-5-(3-am)-t$	hioph	
	797	4=(Cyclohexylr	nethylamino-methyl)	-benzoyl-D-Abu-Pyr-NH-
	191			
	798	4-(Benzylamin	o-methyl)-benzoyl-	D-Abu-Pyr-NH-
	1/90	1 ()	- h 1 00 D	
	700	3-/Benzylamin	o-methyl)-benzoyl-	D-Val-Pyr-NH-
30	799			
	1000	2 (Cyclobeyyl	methylamino-methyl)-benzoyl-D-Val-Pyr-NH-
	800			
	1-02	2 (Toobutylam	ino-methyl)-benzoy	1-D-Val-Pyr-NH-
	801	\	- h - on h	
		CH2-3-(3 cm)	mino-methyl)-benzo	yl-D-Val-Pyr-NH-
3.	5 802	\	-Li-sh	
	003	CH2-5-(3-dil)	no-methyl)-benzoyl-	D-Ala-Pyr-NH-
	803			
	-	CH2-5-(5-all)	methylamino-methyl	.)-benzoyl-D-Ala-Pyr-NH-
	804		Lhionh	
		CH2-3-(3-am)	mino-methyl)-benzo	/l-D-Ala-Pyr-NH-
4	80			
		CH2-5-(3-aill)	-thioph amino-methyl)-benzo	oyl-D-Ala-Pyr-NH-
	80			
		CH ₂ -5-(3-am)	no-methyl)-nhenyla	cetyl-D-Val-Pyr-NH-
	80			
		CH ₂ -5-(2-am)	-Enioph	l)-phenylacetyl-D-Val-Pyr-NH-
	45 80	8. 4-(Cyclohexy	Tweetham Tho-meeny	7 Programme = 14
		CH ₂ -5-(2-am)	-tniopn	lacetyl-D-Val-Pyr-NH-
	80	9. 4-(Isobutyla	mino-methyl)-pheny	lacetyl-D-Val-Pyr-NH-
		$CH_2-5-(2-am)$	-thioph	
				

	810.	4-(Isopropylamino-methyl)-phenylacetyl-D-Val-Pyr-NH- CH ₂ -5-(2-am)-thioph
	811.	4-(Benzylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
		CH ₂ -5-(2-am)-thioph
_	812.	4-(Cyclohexylmethylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
5		$CH_2-5-(2-am)-thioph$
	813.	4-(Isobutylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
		$CH_2-5-(2-am)-thioph$
	814.	4-(Isopropylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
	0	CH ₂ -5-(2-am)-thioph
	815.	4-(Benzylamino-methyl)-phenylacetyl-D-Abu-Pyr-NH-
10	013.	CH ₂ -5-(2-am)-thioph
	016	
	816.	4-(Cyclohexylmethylamino-methyl)-phenylacetyl-D-Abu-Pyr-NH-
	015	CH ₂ -5-(2-am)-thioph
	817.	4-(Benzylamino-methyl)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
15	818.	4-(Cyclohexylmethylamino-methyl)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
	819.	4-(Isobutylamino-methyl)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
	820.	4-(Isopropylamino-methyl)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
20	821.	4-(Benzylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
20		$CH_2-5-(3-am)-thioph$
	822.	4-(Cyclohexylmethylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
	823.	4-(Isobutylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
25	824.	4-(Isopropylamino-methyl)-phenylacetyl-D-Ala-Pyr-NH-
25		$CH_2-5-(3-am)-thioph$
	825.	4-(Benzylamino-methyl)-phenylacetyl-D-Abu-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
	826.	
		CH ₂ -5-(3-am)-thioph
30	827.	
30		CH ₂ -5-(3-am)-thioph
	828.	3-[4-(Cyclohexylmethylamino-methyl)-phenyl]-propionyl-D-Val-
1		Pyr-NH-CH ₂ -5-(3-am)-thioph
	829.	3-[4-(Isobutylamino-methyl)-phenyl]-propionyl-D-Val-Pyr-NH-
	5	CH ₂ -5-(3-am)-thioph
2-	830.	
35	050.	CH ₂ -5-(3-am)-thioph
	831.	3-[4-(Benzylamino-methyl)-phenyl]-propionyl-D-Ala-Pyr-NH-
	031.	CH ₂ -5-(3-am)-thioph
	832.	3-[4-(Cyclohexylmethylamino-methyl)-phenyl]-propionyl-D-Ala-
	052.	
	033	Pyr-NH-CH ₂ -5-(3-am)-thioph
40	833.	3-[4-(Isobutylamino-methyl)-phenyl]-propionyl-D-Ala-Pyr-NH-
	03.4	CH ₂ -5-(3-am)-thioph
	834.	3-[4-(Isopropylamino-methyl)-phenyl]-propionyl-D-Ala-Pyr-NH-
45	000	$CH_2-5-(3-am)-thioph$
	835.	3-[4-(Benzylamino-methyl)-phenyl]-propionyl-D-Abu-Pyr-NH-
	00.5	$CH_2-5-(3-am)-thioph$
	836.	3-[4-(Isopropylylamino-methyl)-phenyl)-propionyl-D-Abu-Pyr-
		$NH-CH_2-5-(3-am)-thioph$
	837.	3-[4-(Cyclohexylmethylamino-methyl)-phenyl]-propionyl-D-Abu-
		Pyr-NH-CH ₂ -5-(3-am)-thioph

		74
5	838.	3-[4-(Benzylamino-methyl)-phenyl]-propionyl-D-Abu-Pyr-NH- CH ₂ -5-(2-am)-thioph
	839.	3-[4-(Isopropylylamino-methyl)-phenyl)
	840.	NH-CH ₂ -5-(2-am)-thioph 3-[4-(Cyclohexylmethylamino-methyl)-phenyl]-propionyl-D-Abu- Pyr-NH-CH ₂ -5-(2-am)-thioph 3-[4-(Benzylamino-methyl)-phenyl]-propionyl-D-Ala-Pyr-NH-
	841.	3-[4-(Benzylamino-methyl)-phenyl] propionyl-D-Val-Pyr-NH- CH ₂ -5-(2-am)-thioph 3-[4-(Isopropylamino-methyl)-phenyl]-propionyl-D-Val-Pyr-NH-
	842.	3-[4-(Isopropylamino-methyl) phonyl group CH ₂ -5-(2-am)-thioph

Abkürzungsliste:

Abu:

2-Aminobuttersäure

AIBN:

Azobisisobutyronitril

Ac:

Acetyl

15

1-Aminocyclopentan-1-carbonsäure Acpc:

Achc:

1-Aminocyclohexan-1-carbonsäure

Aib:

2-Aminoisobuttersäure

Ala:

Alanin

20 β-Ala: β -Alanin (3-Aminopropionsäure)

am:

Amidino

amb:

amidinobenzyl

4-amb:

4-amidinobenzyl (p-amidinobenzyl)

Arg:

Arginin

:qaA

Asparaginsäure

Aze:

Azetidin-2-carbonsäure

Bn:

Benzyl

30

tert.Butyloxycarbonyl Boc:

Bu:

Butyl

Cbz:

Benzyloxycarbonyl

Cha:

Cyclohexylalanin

35 Chea:

Cycloheptylalanin

Cheg:

Cycloheptylglycin

Chg: Cpa: Cyclohexylglycin

40

Cyclopentylalanin Cyclopentylglycin

Cpg: d:

Dublett

Dab:

2,4-diaminobuttersäure

Dap: 45

2,3-diaminopropionsäure

DC:

Dünnschichtchromatographie

DCC:

Dicyclohexylcarbodiimid

Dcha: Dicyclohexylamin

DCM: Dichlormethan

Dhi-1-COOH: 2,3-Dihydro-1H-isoindol-1-carbonsäure

5 DMF: Dimethylformamid

DIPEA: Diisopropylethylamin

EDC: N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid

Et: Ethyl

10 Eq: Äquivalente

Gly: Glycin

Glu: Glutaminsäure

fur: Furan

15 guan: Guanidino

ham: Hydroxyamidino

HCha Homocyclohexylalanin, 2-Amino-4-cyclohexylbuttersäure

His: Histidin

20 HOBT: Hydroxybenzotriazol

HOSucc: Hydroxysuccinimid

HPLC: Hochleistungsflüssigkeitschromatographie

Hyp: Hydroxyprolin

25 Ind-2-COOH: Indolin-2-carbonsäure

iPr: iso-Propyl

Leu: Leucin Lsg: Lösung

30 Lys: Lysin

m: Multiplett

Me: Methyl

MPLC: Mitteldruckflüssigkeitschromatographie

35 MTBE: Methyl-tert.-butyl-ether

NBS: N-Bromsuccinimid

Nva: Norvalin

Ohi-2-COOH: Octahydroindol-2-carbonsäure

40 Ohii-1-COOH: Octahydroisoindol-1-carbonsäure

Orn: Ornithin

Oxaz: Oxazol

p-amb: p-amidinobenzyl

45 Ph: Phenyl

Phe: Phenylalanin
Phg: Phenylglycin

Pic:

Pipecolinsäure

pico:

picolyl

PPA:

Propylphosphonsäureanhydrid

5 Pro:

Prolin

Py:

Pyridin

Pyr:

3,4-Dehydroprolin

q:

Quartett

10 RT:

Raumtemperatur

RP-18

Reversed Phase C-18

s:

Singulett

Sar:

Sarkosin (N-Methylglycin)

15 sb:

Singulett breit

t:

Triplett

t:

tertiär

tBu:

tertiär-Butyl

20 tert:

tertiär

TBAB:

Tetrabutylammoniumbromid

TEA:

Trietylamin

TFA:

Trifluoressigsäure Trifluoressigsäureanhydrid

25 TFFA:

Thiazol

Thz-2-COOH:

1,3-Thiazolidin-2-carbonsäure

Thz-4-COOH: 1,3-Thiazolidin-4-carbonsäure

30 thioph:

Thiophen

1-Tic:

thiaz:

1-Tetrahydroisochinolincarbonsäure

3-Tic:

3-Tetrahydroisochinolincarbonsäure

TOTU:

O-(Cyan-ethoxycarbonylmethylen)-amino-]-

35

N, N, N', N'-tetramethyluroniumtetrafluoroborat

Z:

Benzyloxycarbonyl

Experimenteller Teil

40 Die Verbindungen der Formel I lassen sich entsprechend Schemata I-III darstellen.

Die Bausteine A-B-D, E, G und K werden vorzugsweise separat aufgebaut und in geeignet geschützter Form eingesetzt (siehe

45 Schemata I-III, Verwendung jeweils orthogonaler, mit der angewandten Synthesemethode kompatibler Schutzgruppen (P oder P*).

Schema I

(P = Schutzgruppe, (P) = Schutzgruppe oder H)

Schema I beschreibt den linearen Aufbau des Moleküls I durch Schutzgruppenabspaltung von P-K-L* (L* gleich CONH2, CSNH2, CN, 25 C(=NH)NH-COOR*; R* gleich Schutzgruppe oder polymerer Träger mit Spacer (Festphasensynthese)), Kupplung des Amins H-K-L* mit der N-geschützten Aminosäure P-G-OH zu P-G-K-L*, Abspaltung der N-terminalen Schutzgruppe zu H-G-K-L*, Kupplung mit der Ngeschützten Aminosäure P-E-OH zu P-E-G-K-L*, Abspaltung der 30 Schutzgruppe P zu H-E-G-K-L*, anschließende Kupplung oder Alkylierung mit dem gegebenenfalls geschützten (P)-A-B-D-U Baustein (U = Abgangsgruppe) oder reduktive Alkylierung mit (P)-A-B-D'-U (U = Aldehyd, Keton) oder Michael-Addition mit einem geeignetem (P)-A-B-D"-C=C-Derivat zu (P)-A-B-D-E-G-K-L*. Ist L* 35 eine Amidfunktion, so kann diese auf den jeweils geschützten Stufen durch Dehydratisierung mit Trifluoressigsäureanhydrid in die entsprechende Nitrilfunktion überführt werden. Amidinsynthesen für die Benzamidin-, Picolylamidin-, Thienylamidin-, Furylamidin- und Thiazolylamidin-Verbindungen des Strukturtyps I 40 ausgehend von den entsprechenden Carbonsäureamiden, Nitrilen, Carbonsäurethioamiden und Hydroxyamidinen sind in einer Reihe von Patentanmeldungen beschrieben (s. z.B. WO 95/35309, WO 96/178860, WO 96/24609, WO 96/25426, WO 98/06741, WO 98/09950). Anschließend werden eventuell noch vorhandene Schutzgruppen abgespalten. Ist 45 L* gleich C(=NH)NH-Spacer-polymerer Träger, so werden diese Verbindungen im letzten Schritt vom polymeren Träger abgespalten und somit die Wirksubstanz freigesetzt.

Schema II

Schema II beschreibt den linearen Aufbau des Moleküls I durch 20 Kupplung, Alkylierung, reduktive Aminierung oder Michael-Addition von H-E-P an entsprechend geeignete gegebenenfalls geschützte $(P^*)-A-B-D$ Bausteine $[(P^*)-A-B-D-U$ (U = Abgangsgruppe) bzw. $(P^*)-A-B-D'-U$ (U = Aldehyd, Keton) bzw. $(P^*)-A-B-D''-C=C-Derivat$] zu (P*)-A-B-D-E-P. Nach Abspaltung der C-terminalen Schutzgruppe zu $(P^*)-A-B-D-E-OH$, Kupplung mit H-G-P zu $(P^*)-A-B-D-E-G-P$, erneute Abspaltung der C-terminalen Schutzgruppe zu $(P^*)-A-B-D-E-G-OH$ und Kupplung mit $H-K-L^{**}$ (L** gleich CONH2, CSNH2, CN, NH-C(=NH)NH₂, C(=NH)NH-R**; R** gleich Wasserstoffatom oder Schutzgruppe) zu (P*)-A-B-D-E-G-K-L**. Die Umsetzung dieses Zwischenprodukts zum Endprodukt erfolgt analog Schema I. Die Synthesesequenz nach Schema II eignet sich ebenfalls für eine Festphasensynthese, wenn der A-B-D Baustein eine entsprechende Ankerfunktion wie z.B. eine Carbonsäure- oder Aminofunktion aufweist.

40

Schema III

Schema III beschreibt einen sehr effizienten Weg zur Darstellung der Verbindungen I durch eine konvergente Synthese. Die entsprechend geschützten Bausteine (P*)-A-B-D-E-OH und H-G-K-L* bzw. H-G-K-L** werden miteinander gekuppelt und die entstandenen Zwischenprodukte (P*)-A-B-D-E-G-K-L* bzw. (P*)-A-B-D-E-G-K-L**
Schema I zum Endprodukt umgesetzt.

Als N-terminale Schutzgruppen werden Boc, Cbz oder Fmoc eingesetzt, C-terminale Schutzgruppen sind Methyl, tert.-Butyl und Benzylester. Amidinschutzgruppen sind vorzugsweise BOC, Cbz und davon abgeleitete Gruppen für die Festphasensynthese. Enthalten die Zwischenprodukte olefinische Doppelbindungen so sind Schutzgruppen, die hydrogenolytisch abgespalten werden, ungeeignet. Die erforderlichen Kupplungsreaktionen sowie die üblichen Reaktionen der Schutzgruppeneinführung und -abspaltung werden nach Standardbedingungen der Peptidchemie durchgeführt (siehe M. Bodanszky, A. Bodanszky "The Practice of Peptide Synthesis", 2. Auflage, Springer Verlag Heidelberg, 1994).

Boc-Schutzgruppen werden mittels Dioxan/HCl oder TFA/DCM, Cbz
Schutzgruppen hydrogenolytisch oder mit HF, Fmoc- Schutzgruppen
mit Piperidin abgespalten. Die Verseifung von Esterfunktionen
erfolgt mit LiOH in einem alkoholischen Lösungsmittel oder in
Dioxan/Wasser. t-Butylester werden mit TFA oder Dioxan/HCl
gespalten.

40

Die Reaktionen wurden mittels DC kontrolliert, wobei üblicherweise folgende Laufmittel benutzt wurden:

	Α.	DCM/MeOH		95:5
5	в.	DCM/MeOH		9:1
_	c.	DCM/MeOH		8:2
	D.	DCM/MeOH/50%ig	HOAC	40:10:5
	E.	DCM/MeOH/50%ig	HOAC	35:15:5

10 Sofern säulenchromatographische Trennungen erwähnt werden, waren dies Trennungen über Kieselgel, für die die oben genannten Laufmittel verwendet wurden.

Reversed phase HPLC Trennungen wurden mit Acetonitril/Wasser und 15 HOAc Puffer durchgeführt.

Die Ausgangsverbindungen lassen sich nach folgenden Methoden herstellen:

20 A-B-D Bausteine:

Die als A-B-D Bausteine eingesetzten Verbindungen sind größtenteils kommerziell erhältlich wie z.B. α -Bromessigsäure-tert.-butylester, Methylsulfonsäurechlorid, Benzylsulfonsäurechlorid,

- 25 4-Chlorsulfonyl-benzoesäure, Zimtsäure, Hydrozimtsäure, 5-Bromvaleriansäure, Phenylpropiolsäure, 4-Phenylbuttersäure, 5-Phenylvaleriansäure, 4-Phenylbenzoesäure, 4-Biphenylessigsäute, etc. Soweit diese Verbindungen mehrere funktionelle Gruppen aufweisen werden an den notwendigen Stellen Schutzgruppen eingeführt.
- 30 Gegebenenfalls werden funktionelle Gruppen in Reaktiv- oder Abgangsgruppen umgewandelt (z.B. Aktivester, gemischte Anhydride, Sulfonsäurechloride, etc.), um eine entsprechende chemische Verknüpfung mit den anderen Bausteinen zu ermöglichen.
- 35 Die Synthese der E-Bausteine wurde wie folgt durchgeführt:

Die als E-Bausteine eingesetzten Verbindungen Glycin, (D) bzw (L)-Alanin, (D) bzw (L)-Valin, (D)-Phenylalanin, (D)-Cyclohexylalanin, (D)-Cycloheptylglycin, etc. sind entweder als freie Ami-

40 nosäuren, als Boc-geschützte Verbindungen oder als entsprechende Methylester käuflich zu erwerben.

Die Darstellung von Cycloheptylglycin und Cyclopentylglycin erfolgte durch Umsetzung von Cycloheptanon bzw. Cyclopentanon mit

45 Isonitrilessigsäureethylester entsprechend bekannter Vorschriften (H.-J. Prätorius, J. Flossdorf, M.Kula, Chem. Ber. 1985, 108,

3079 oder U. Schöllkopf und R. Meyer, Liebigs Ann. Chem. 1977, 1174).

Die genannten Aminosäuren wurden nach allgemein bekannten Ver-5 fahren je nach Bedarf entweder N oder C-terminal mit einer Schutzgruppe versehen.

Die Synthese der G-Bausteine wurde wie folgt durchgeführt:

10 Die als G-Bausteine eingesetzten Verbindungen (L)-Prolin, (L)-4,4-Difluorprolin, (L)-3-Methylprolin, (L)-5-Methylprolin, (L)-3,4-Dehydroprolin, (L)-Octahydroindol-2-carbonsäure, (L)-Thiazolidin-4-carbonsäure und (L)-Azetidincarbonsäure sind entweder als freie Aminosäuren, als Boc-geschützte Verbindungen

15 oder als entsprechende Methylester käuflich zu erwerben
 (-)-Thiazolidin-2-carbonsäuremethylester wurde nach R.L. Johnson,
 E.E. Smissman, J. Med. Chem. 21, 165 (1978) dargestellt.

Die Synthese der K-Bausteine wurde wie folgt durchgeführt:

20

p-Cyanobenzylamin

Die Darstellung dieses Bausteins wurde wie in WO 95/35309 beschrieben, durchgeführt.

25 3-(6-Cyano)-picolylamin

Die Darstellung dieses Bausteins wurde wie in WO 96/25426 bzw. WO 96/24609 beschrieben, durchgeführt.

5-Aminomethyl-2-cyanothiophen

30 Die Darstellung dieses Bausteins wurde wie in WO 95/23609 beschrieben, durchgeführt.

5-Aminomethyl-3-cyanothiophen

Die Darstellung dieses Bausteins wurde wie in WO 96/17860

35 beschrieben, durchgeführt.

2-Aminomethyl-thiazol-4-thiocarboxamid

Die Darstellung erfolgte entsprechend G. Videnov, D. Kaier,

- C. Kempter und G. Jung Angew. Chemie (1996) 108, 1604, wobei die
- **40** dort beschriebene N-Boc-geschützte Verbindung mit etherischer Salzsäure in Methylenchlorid entschützt wurde.

5-Aminomethyl-2-cyanofuran

Die Darstellung dieses Bausteins wurde wie in WO 96/17860

45 beschrieben, durchgeführt.

5-Aminomethyl-3-cyanofuran Die Darstellung dieses Bausteins wurde wie in WO 96/17860 beschrieben, durchgeführt

- 5 5-Aminomethyl-3-methylthiophen-2-carbonitril
 - 5-Formyl-3-methylthiophen-2-carbonitril: a)
- Zu einer auf -78°C gekühlten Lösung von 25,1 ml (179 mmol) Diisopropylamin in 400 ml Tetrahydrofuran gab man innerhalb 10 von 20 min 112 ml (179 mmol) einer 1,6 molaren Lösung von n-Butyllithium in n-Hexan. Die Lösung ließ man auf -35°C kommen, kühlte erneut auf -78°C und tropfte bei dieser Temperatur langsam eine Lösung von 20,0 g (162 mmol) 2-Cyano-3-methylthiophen in 80 ml Tetrahydrofuran hinzu. Die Lösung färbte sich dabei dunkelrot. Man ließ 45 min nach-15 rühren, tropfte langsam 63 ml (811 mmol) Dimethylformamid hinzu und ließ erneut 30 min rühren. Zur Aufarbeitung versetzte man bei -70°C mit einer Lösung von 27 g Zitronensäure in 160 ml Wasser. Man engte am Rotationsverdampfer ein, versetzte mit 540 ml gesättigter Natriumchloridlösung und extra-20 hierte dreimal mit je 250 ml Diethylether. Die vereinigten organischen Extrakte wurden über Magnesiumsulfat getrocknet. Nach dem Abfiltrieren des Trockenmittels wurde das Lösungsmittel im Wasserstrahlvakuum abdestilliert und der Rückstand säulenchromatographisch gereinigt (Laufmittel Hexan/Essig-25 ester 4/1). Man erhielt 23 g (94 %) der Titelverbindung. 1_{H-NMR} (270 MHz, DMSO-d₆): $\delta = 2.4$ (s, 3H), 8,0 (s, 1H), 9,8 (s, 1H).

30 5-Hydroxymethyl-3-methylthiophen-2-carbonitril: b)

35

Zu einer Lösung von 23 g (152 mmol) 5-Formyl-3-methylthiophen-2-carbonitril in 300 ml absolutem Ethanol wurden bei Raumtemperatur portionsweise 5,75 g (152 mmol) Natriumborhydrid gegeben. Man rührte 5 Minuten, engte das Reaktionsgemisch im Wasserstrahlvakuum ein, nahm in Essigester auf, extrahierte mit 5%iger Zitronensäurelösung und mit gesättigter Natriumchloridlösung, trocknete die organische Phase über Magnesiumsulfat, filtrierte das Trockenmittel ab und destillierte das Lösungsmittel im Wasserstrahlvakuum bei 40 Raumtemperatur ab. Man erhielt auf diese Weise 24 g der Titelverbindung als dunkelrotes Öl, das noch Lösungsmittel enthielt und ohne weitere Reinigung in die folgenden Umsetzungen eingesetzt wurde $^{1}\text{H-NMR}$ (270 MHz, DMSO- $^{1}\text{d}_{6}$): 45 $\delta = 2.4$ (s, 3H), 4.7 (m, 2H), 5.9 (m, 1H), 7.0 (s, 1H).

c) 5-Brommethyl-3-methylthiophen-2-carbonitril:

Zu einer Lösung von 24 g (152 mmol) 5-Hydroxymethyl-3-methylthiophen-2-carbonitril in 180 ml Tetrahydrofuran wurden 44 g (167 mmol) Triphenylphosphin gegeben. Man gab dann eine Lösung von 55 g (167 mmol) Tetrabrommethan in 100 ml Tetrahydrofuran hinzu. Man ließ 90 min lang bei Raumtemperatur rühren. Die Reaktionsmischung wurde am Rotationsverdampfer im Wasserstrahlvakuum eingeengt und der Rückstand säulenchromatographisch gereinigt (Laufmittel Hexan: Essigester 8:2). Man erhielt 34 g der Titelverbindung, die noch ein wenig Lösungsmittel enthielt. ¹H-NMR (270 MHz, DMSO-d₆): δ = 2,4 (s, 3H), 5,0 (s, 2H), 7,3 (s, 1H).

15 d) 5-N, N-Bis(tert.-butoxycarbonyl)aminomethyl-3-methylthiophen-2-carbonitril:

Eine auf 0°C gekühlte Lösung von 33,8 g (152 mmol) 5-Bromomethyl-3-methylthiophen-2-carbonitril in 255 ml Tetrahydrofuran wurde portionsweise mit 5,0 g (167 mmol) Natriumhydrid 20 (80% Suspension in Mineralöl) versetzt. Anschließend wurde eine Lösung von 36,4 g (167 mmol) Di-tert.-butyl-iminodicarboxylat in 255 ml Tetrahydrofuran hinzugetropft, wobei die Temperatur 5°C nicht überstieg. Man ließ auf Raumtemperatur 25 kommen und über Nacht rühren. Man erwärmte zur Vervollständigung des Umsatzes noch drei Stunden lang auf 35°C, ließ danach auf Raumtemperatur abkühlen und versetzte langsam mit 510 ml einer gesättigten Ammoniumchloridlösung. Das Lösungsmittel wurde im Wasserstrahlvakuum abdestilliert, der Rück-30 stand mehrere Male mit Essigsäureethylester extrahiert, die vereinigten organischen Phasen mit gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und am Rotationsverdampfer eingeengt. Man erhielt 57,6 g eines öligen Rückstandes, der noch Di-tert.-butyl-iminodicarboxylat 35 enthielt und als Rohprodukt in die folgende Umsetzung eingesetzt wurde. ${}^{1}\text{H-NMR}$ (270 MHz, DMSO-d₆): δ = 1,45 (s, 18H), 2,35 (s, 3H), 4,85 (s, 2H), 7,05 (s, 1H).

e) 5-Aminomethyl-3-methylthiophen-2-carbonitril Hydrochlorid:

52,6 g 5-N,N-Bis(tert.-butoxycarbonyl)aminomethyl-3-methylthiophen-2-carbonitril (Rohprodukt aus d), maximal 139 mmol)
wurden in 950 ml Essigsäureethylester gelöst und auf 0°C
gekühlt. Man sättigte mit Chlorwasserstoffgas, wobei nach
10 min ein weißer Niederschlag ausfiel. Man rührte zwei
Stunden lang bei Raumtemperatur, eine Stunde lang bei 30°C,
engte die entstandene Suspension anschließend am Rotations-

verdampfer ein, rührte den Rückstand mit Diethylether aus, filtrierte vom Lösungsmittel ab und trocknete den festen Rückstand bei Raumtemperatur im Vakuum. Man erhielt 24,7 g (94 %) der Titelverbindung als weißes Pulver. 1 H-NMR (270 MHz, DMSO-d₆): δ = 2,4 (s, 3H), 4,25 (s, 2H), 7,3 (s, 1H), 8,8-9,0 (bs, 3H). 13 C-NMR (DMSO-d₆): 15,0 (CH₃), 36,4 (CH₂), 104,8 (C-2), 113,8 (CN), 131,5 (C-4), 142,8 (C-5), 149,6 (C-3).

10 5-Aminomethyl-3-chlorthiophen-2-carbonitril-Hydrochlorid

Die Darstellung dieser Verbindung erfolgte analog 5-Aminomethyl-3-methylthiophen-2-carbonitril, wobei das eingesetzte 3-Chlor-2-cyanothiophen durch Dehydratisierung von 3-Chlorthiophen-2-carboxamid (Substanz ist käuflich zu erwerben) mit Trifluoressigsäureanhydrid hergestellt wurde.

5-Aminomethyl-4-methylthiophen-3-thiocarboxamid

20 a) 2-Amino-3-cyan-4-methylthiophen-5-carbonsäureethylester

2-Amino-3-cyan-4-methylthiophen-5-carbonsäureethylester wurde nach "Organikum", 19. Aufl., Dt. Verlag der Wissenschaften, Leipzig, Heidelberg, Berlin, 1993, Kap. 6, S. 374-375, ausgehend von 130 g (1,0 mol) Acetessigsäureethylester, 66 g (1,0 mol) Malonsäuredinitril, 32 g (1,0 mol) Schwefel und 80 g (0,92 mol) Morpholin synthetisiert. 1 H-NMR (270 MHz, DMSO-d₆): δ = 1,25 (t, 3H), 2,3 (s, 3H), 4,2 (q, 2H), 7,9 (bs, 2H).

30

35

40

25

5

b) 4-Cyan-3-methylthiophen-2-carbonsäureethylester

Eine Lösung von 20,5 g (97,5 mmol) 2-Amino-3-cyan-4-methyl-thiophen-5-carbonsäureethylester in 600 ml einer 1:1-Mischung aus Acetonitril und Dimethylformamid wurde auf 5°C gekühlt und tropfenweise mit 15,7 g (146 mmol) tert.-Butylnitrit versetzt, wobei sich das Reaktionsgemisch erwärmte und eine heftige Gasentwicklung einsetzte. Man rührte sieben Stunden lang bei Raumtemperatur, engte am Rotationsverdampfer und im Hochvakuum ein, reinigte den Rückstand säulenchromatographisch (Laufmittel Dichlormethan) und erhielt 9,1 g (48 %) der gewünschten Verbindung als gelbes Öl. 1 H-NMR (270 MHz, DMSO- 1 G): 1 G = 1,3 (t, 3H), 2,55 (s, 3H), 4,3 (q, 2H), 8,8 (s, 1H).

c) 5-Hydroxymethyl-4-methylthiophen-3-carbonitril:

Zu einer Lösung von 25,1 g (129 mmol) 3-Cyan-4-methylthiophen-5-carbonsäureethylester in 400 ml Tetrahydrofuran wurden bei 0°C portionsweise 2,44 g (64 mmol) Lithium-5 aluminiumhydrid gegeben. Man rührte fünf Stunden lang bei Raumtemperatur, vernichtete überschüssiges Reduktionsmittel durch Zugabe von 0,5 n Salzsäure, engte das Reaktionsgemisch im Wasserstrahlvakuum ein, verdünnte mit Wasser und extrahierte dreimal mit Essigester. Die vereinigten organischen 10 Phasen wurden dann je einmal mit 0,5 n Salzsäure und gesättigter Natriumchloridlösung gewaschen. Man trocknete die organische Phase über Magnesiumsulfat, filtrierte das Trockenmittel ab und destillierte das Lösungsmittel im Wasserstrahlvakuum bei Raumtemperatur ab. Man reinigte den 15 Rückstand säulenchromatographisch (Laufmittel Dichlormethan/ Methanol 95:5) und erhielt 16.1 g (83 %) der gewünschten Verbindung als leicht gelbes Öl. $^{1}H-NMR$ (270 MHz, DMSO-d₆): $\delta = 2.2$ (s, 3H), 4.6 (d, 2H), 5.7 (m, 1H), 8.35 (s, 1H).

d) 5-Brommethyl-4-methylthiophen-3-carbonitril:

Zu einer Lösung von 16 g (104 mmol) 5-Hydroxymethyl-4-methylthiophen-3-carbonitril in 300 ml Tetrahydrofuran wurden bei 5°C 30 g (115 mmol) Triphenylphosphin gegeben. Man gab dann eine Lösung von 38g (115 mmol) Tetrabrommethan in 100 ml Tetrahydrofuran hinzu. Man ließ über Nacht bei Raumtemperatur rühren. Die Reaktionsmischung wurde am Rotationsverdampfer im Wasserstrahlvakuum eingeengt und der Rückstand säulenchromatographisch gereinigt (Laufmittel Petrolether: Dichlormethan 1:1). Man erhielt 17 g (76 %) der Titelverbindung als gelbes Öl. ¹H-NMR (270 MHz, DMSO-d6): δ = 2,25 (s, 3H), 5,0 (s, 2H), 8,5 (s, 1H).

35 e) 5-N, N-Bis(tert.-butoxycarbonyl)aminomethyl-4-methylthiophen-3-carbonitril:

Eine auf 0°C gekühlte Lösung von 17,2 g (79,5 mmol) 5-Bromomethyl-4-methylthiophen-3-carbonitril in 250 ml Tetrahydrofuran wurde portionsweise mit 3.5 g (103 mmol) Natriumhydrid (ölfrei) versetzt. Anschließend wurde eine Lösung von 22,5 g (103 mmol) Di-tert.-butyl-iminodicarboxylat in 100 ml Tetrahydrofuran hinzugetropft, wobei die Temperatur 5°C nicht überstieg. Man ließ auf Raumtemperatur erwärmen und zwei Stunden lang rühren. Man versetzte langsam mit 400 ml einer gesättigten Ammoniumchloridlösung. Das Lösungsmittel wurde im Wasserstrahlvakuum abdestilliert, der Rückstand mit wenig

Wasser verdünnt und dreimal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Ammoniumchloridlösung und mit gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und am Rotationsverdampfer eingeengt. Man erhielt 28 g eines Öls, das noch Di-tert.-butyl-iminodicarboxylat enthielt und als Rohprodukt in die folgende Umsetzung eingesetzt wurde. $^{1}_{H-NMR} (270 \text{ MHz}, \text{ DMSO-d}_6): \delta = 1,4 \text{ (s, 9H)}, 1,45 \text{ (s, 9H)}, 2,3 \text{ (s, 3H)}, 4,8 \text{ (s, 2H)}, 8,4 \text{ (s, 1H)}.$

10

5

- f) 5-N, N-Bis(tert.-butoxycarbonyl)aminomethyl-4-methylthiophen-3-thiocarboxamid
- Das aus e) erhaltene Rohprodukt (max. 79 mmol) wurde in 280 ml Pyridin und 140 ml Triethylamin gelöst und bei Raum-15 temperatur mit Schwefelwasserstoff gesättigt. Die zuvor gelbe Lösung färbte sich grün. Man rührte über Nacht bei Raumtemperatur. Zur Vervollständigung des Umsatzes wurde nochmals 15 min Schwefelwasserstoff eingeleitet und zwei Stunden bei Raumtemperatur nachgerührt. Man trieb überschüssigen Schwe-20 felwasserstoff mit Hilfe eines Stickstoffstromes über einen Waschturm aus. Danach wurde das Reaktionsgemisch am Rotationsverdampfer eingeengt, in Essigester aufgenommen, mehrmals mit 20% iger Natriumhydrogensulfatlösung gewaschen, über Magnesiumsulfat getrocknet und am Rotationsverdampfer 25 eingeengt. Dabei wurden 27 g eines hellgelben festen Schaumes erhalten, der ohne weitere Reinigung in die folgende Umsetzung eingesetzt wurde. $^{1}\text{H-NMR}$ (270 MHz, DMSO-d₆): $\delta = 1,4$ (s, 18H), 2,15 (s, 3H), 4,8 (s, 2H), 7,5 (s, 1H), 9,3 (bs, 1H), 9,75 (bs, 1H). 30
 - g) 5-Aminomethyl-4-methylthiophen-3-thiocarboxamid Hydrochlorid
 - 27 g 5-N,N-Bis(tert.-butoxycarbonyl)aminomethyl-4-methylthiophen-3-thiocarboxamid (Rohprodukt aus f), maximal 70 mmol)
 wurden in 400 ml Essigsäureethylester gelöst und auf 0°C
 gekühlt. Man sättigte mit Chlorwasserstoffgas, wobei nach
 10 min ein weißer Niederschlag ausfiel. Man rührte zwei
 Stunden lang bei Raumtemperatur, filtrierte den Niederschlag
 ab, wusch ihn mit Essigsäureethylester und trocknete den
 festen Rückstand bei Raumtemperatur im Vakuum. Man erhielt
 13,6 g (87 %) der Titelverbindung als weißes Pulver.
 EI-MS: M+ = 186.

45

0061608A2 1 >

5-Aminomethyl-4-chlorthiophen-3-thiocarboxamid

a) 5-Formyl-4-chlorthiophen-3-carbonitril:

Eine Lösung von 53,0 g (250 mmol) 2-Amino-4-chlor-5-formyl-5 thiophen-3-carbonitril (die Darstellung dieser Verbindung ist im Patent DB 3738910 beschrieben) in 600 ml einer 1:1-Mischung aus Acetonitril und Dimethylformamid wurde bei Raumtemperatur tropfenweise mit 35 g (325 mmol) tert.-Butyl-10 nitrit versetzt, wobei sich das Reaktionsgemisch von 20°C auf 37°C erwärmte und eine kräftige Gasentwicklung einsetzte. Man kühlte auf 25°C, rührte sieben Stunden bei Raumtemperatur, engte die schwarze Lösung am Rotationsverdampfer und im Hochvakuum ein, reinigte den Rückstand säulenchromatographisch 15 (Laufmittel Dichlormethan) und erhielt 29 g (68 %) der gewünschten Verbindung als gelbes Öl. 1H-NMR (270 MHz, DMSO-d₆): $\delta = 9,1$ (s, 1H), 10,0 (s, 1H).

b) 5-Hydroxymethyl-4-chlorthiophen-3-carbonitril:

20

Zu einer Lösung von 28,5 g (166 mmol) 5-Formyl-4-chlorthiophen-3-carbonitril in 400 ml absolutem Methanol wurden bei 5°C portionsweise 6,3 g (166 mmol) Natriumborhydrid gegeben. Das Reaktionsgemisch erwärmte sich leicht und färbte sich 25 dunkelrot. Man beobachtete eine starke Gasentwicklung. Nach zehn Minuten engte man das Reaktionsgemisch im Wasserstrahlvakuum ein, nahm in 200 ml Essigester auf, extrahierte mit 200 ml 1 m Salzsäure, wusch zweimal mit je 250 ml Wasser und mit gesättigter Natriumchloridlösung, trocknete die 30 organische Phase über Magnesiumsulfat, filtrierte das Trockenmittel ab und destillierte das Lösungsmittel im Wasserstrahlvakuum bei Raumtemperatur ab. Man erhielt 22 g (76 %) der Titelverbindung als dunkelrotes Öl, das ohne weitere Reinigung in die folgenden Umsetzungen eingesetzt 35 wurde. ${}^{1}H$ -NMR (270 MHz, DMSO- ${}^{1}d_{6}$): $\delta = 4,65$ (bs, 1H), 5,95 (t, 2H), 8,6 (s, 1H).

c) 5-Brommethyl-4-chlorthiophen-3-carbonitril:

Zu einer Lösung von 21,7 g (125 mmol) 5-Hydroxymethyl-4chlorthiophen-3-carbonitril in 250 ml Tetrahydrofuran wurden bei 5°C 36,1 g (137 mmol) Triphenylphosphin gegeben. Man gab dann eine Lösung von 45,6 g (137 mmol) Tetrabrommethan in 100 ml Tetrahydrofuran hinzu. Man ließ über Nacht bei Raumtemperatur rühren. Man filtrierte vom Niederschlag ab, engte das Filtrat am Rotationsverdampfer im Wasserstrahlvakuum ein und reinigte den Rückstand säulenchromatographisch (Laufmittel Petrolether: Dichlormethan 1:1). Man erhielt 26,0 g (88 %) der Titelverbindung als Öl. $^{1}\text{H-NMR}$ (270 MHz, DMSO-d₆): δ = 4,95 (s, 2H), 8,8 (s, 1H).

5 d) 5-N,N-Bis(tert.-butoxycarbonyl)aminomethyl-4-chlorthiophen-3-carbonitril:

Eine auf 0°C gekühlte Lösung von 25,0 g (106 mmol) 5-Bromomethyl-4-chlorthiophen-3-carbonitril in 300 ml Tetrahydrofuran wurde portionsweise mit 6,9 g (159 mmol) Natriumhydrid 10 (ölfrei) versetzt. Anschließend wurde eine Lösung von 34,4 g (159 mmol) Di-tert.-butyl-iminodicarboxylat in 100 ml Tetrahydrofuran hinzugetropft, wobei die Temperatur 5°C nicht überstieg. Man ließ auf Raumtemperatur erwärmen und zwei Stunden lang rühren. Man versetzte langsam mit 300 ml einer 15 gesättigten Ammoniumchloridlösung. Das Lösungsmittel wurde im Wasserstrahlvakuum abdestilliert, der Rückstand mit wenig Wasser verdünnt und dreimal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Ammoniumchloridlösung und mit gesättigter Natrium-20 chloridlösung gewaschen, über Magnesiumsulfat getrocknet und am Rotationsverdampfer eingeengt. Man erhielt 51,3 g eines Öls, das noch Di-tert.-butyl-iminodicarboxylat und Lösungsmittelreste enthielt und als Rohprodukt in die folgende Umsetzung eingesetzt wurde. $^{1}\text{H-NMR}$ (270 MHz, DMSO- d_{6}): 25 $\delta = 1.4 \text{ (s, 9H), } 1.45 \text{ (s, 9H), } 4.8 \text{ (s, 2H), } 8.65 \text{ (s, 1H).}$

e) 5-N, N-Bis(tert.-butoxycarbonyl)aminomethyl-4-methylthiophen-3-thiocarboxamid

30 Ein Teil des aus d) erhaltenen Rohprodukts (39,4 g, max. 106 mmol) wurde in 400 ml Pyridin und 40 ml Triethylamin gelöst und bei Raumtemperatur mit Schwefelwasserstoff gesättigt. Die zuvor gelbe Lösung färbte sich grün. Man rührte über Nacht bei Raumtemperatur. Man trieb überschüssigen 35 Schwefelwasserstoff mit Hilfe eines Stickstoffstromes über einen Waschturm aus. Danach wurde das Reaktionsgemisch in eisgekühlte, 20% ige Natriumhydrogensulfatlösung gegossen und dreimal mit Essigsäureethylester extrahiert. Die organische Phase wurde anschließend mehrmals mit 20%iger Natrium-40 hydrogensulfatlösung gewaschen, über Magnesiumsulfat getrocknet und am Rotationsverdampfer eingeengt. Dabei wurden 49,0 g eines lösungsmittelhaltigen Rückstandes erhalten, der ohne weitere Reinigung in die folgende Umsetzung eingesetzt wurde. $^{1}\text{H-NMR}$ (270 MHz, DMSO- d_6): δ = 1,4, 1,45 (s, 18H), 45 4,8 (s, 2H), 7,75 (s, 1H), 9,4 (bs, 1H), 10,0 (bs, 1H).

f) 5-Aminomethyl-4-chlorthiophen-3-thiocarboxamid Hydrochlorid

38,0 g des Rohprodukts aus e), maximal 93 mmol, wurden in 400 ml Essigsäureethylester gelöst und auf 0°C gekühlt. Man sättigte mit Chlorwasserstoffgas, wobei nach 10 min ein weißer Niederschlag ausfiel. Da der Umsatz noch nicht vollständig war, gab man 200 ml Essigsäureethylester hinzu, sättigte erneut mit Chlorwasserstoffgas und rührte über Nacht bei Raumtemperatur. Der Niederschlag wurde abfiltriert, mit Petrolether nachgewaschen und bei Raumtemperatur im Vakuum getrocknet. Man erhielt 21,1 g der Titelverbindung als weißes Pulver, das Ammoniumchlorid als Verunreinigung enthielt. EI-MS: M+= 206.

15 5-Aminomethyl-2-guanidino-thiazol-Bishydrochlorid

a) N-Phthaloyl-5-aminomethyl-2-guanidino-thiazol

Eine Lösung von 31 g (130 mmol) N-Phthaloyl-3-amino-2-chlorpropionaldehyd (S. Marchais et al., Tetrahedron Letters 39 20 (1998), 8085-8088) und 15,4 g (130 mmol) Amidinothioharnstoff in 200 ml Butanol wurde unter Stickstoffatmosphäre 75 min auf 110°C erhitzt, danach das Reaktionsgemisch im Vakuum (1 mbar, Badtemperatur bis 50°C) eingeengt und der Rückstand mit 25 Methylenchlorid und konz. Ammoniak versetzt. Dabei fiel ein Teil des Produktes aus Wasser aus. Dieses wurde zusammen mit dem aus der Methylenchloridphase nach dem Trocknen und Einengen gewonnen Teil säulenchromatographisch gereinigt (Kieselgel; Fließmittel: Methylenchlorid mit von 0 bis 5 % 30 ansteigendem Methanolgehalt). Anschließend wurden die überwiegend sauberen Fraktionen aus Aceton kristallisiert, wobei 12,3 g der Titelverbindung erhalten wurden.

b) 5-Aminomethyl-2-guanidino-thiazol-Bishydrochlorid

Eine Lösung von 5 g (16,6 mmol)N-Phthaloyl-5-Aminomethyl-2guanidino-thiazol und 4,15 g (83 mmol) Hydrazinhydrat in
100 ml Methanol wurden unter Stickstoffatmosphäre eine Stunde
bei Raumtemperatur gerührt, danach das Reaktionsgemisch im
Vakuum (1 mbar, Badtemperatur bis 50°C) eingeengt, der Rückstand mit 70 ml Wasser und 20%iger Salzsäure bis pH 1 versetzt, wobei Phthalylhydrazid ausfiel, welches abfiltriert
wurde. Das Filtrat wurde im Vakuum eingeengt, dreimal mit
Methanol kodestilliert, bei 50°C im Vakuum getrocknet und
anschließend aus Ethanol umkristallisiert. Dabei wurden 3,7 g
der Titelverbindung erhalten.

5-Amino-3-amidino-thiophen-Bishydrochlorid

Die Synthese dieser Verbindung erfolgte ausgehend von 5-Aminomethyl-3-cyanothiophen (WO 96/17860) durch Umsetzung mit (Boc)₂O zu 5-t-Butyloxycarbonyl-aminomethyl-3-cyanothiophen, Umwandlung der Nitrilfunktion in das entsprechende Thioamid durch Addition von Schwefelwasserstoff, Methylierung der Thioamidfunktion mit Methyliodid, Umsetzung mit Ammoniumacetat zum entsprechenden Amidin und anschließende Schutzgruppenabspaltung mit Salzsäure in Isopropanol zum 5-Aminomethyl-3-amidino-thiophen-Bishydrochlorid.

3-Amidino-5-[N-1-(4,4-Dimethyl-2,6-dioxocyclohexyliden) ethyl]-aminomethylthiophen-hydrochlorid

3-Amidino-5-aminomethylthiophenbishydrochlorid (1,3 g, 5,7 mmol) wurde in DMF (15 ml) vorgelegt und mit N,N- Diisopropylethylamin (0,884 g, 6,84 mmol) versetzt. Nach 5 min Rühren bei Raumtemperatur wurden 2-Acetyldimedon (1,25 g, 6,84 mmol) und Orthotemperatur wurden 2-Acetyldimedon (1,25 g, 6,84 mmol) zugegeben Nach

- 20 ameisensäuretrimethylester (3,02 g, 28,49 mmol) zugegeben. Nach 2,5 h Rühren bei Raumtemperatur wurde das DMF im Hochvakuum entfernt und der Rückstand mit DCM (5 ml) und Petrolether (20 ml) ausgerührt. Das Lösungsmittel wurde vom leicht gelblichen Produkt abdekantiert und der Feststoff im Vakuum bei 40°C getrocknet. Aus-
- 25 beute: 1,84 g (5,2 mmol, 91 %).
 1H-NMR (400 MHz, [D₆]DMSO, 25°C, TMS): δ = 0,97 (s, 6H); 2,30 (s, 4H); 2,60 (s, 4H); 4,96 (d, J = 7 Hz, 2H); 7,63 (s, 1H); 8,60 (s, 1H); 9,07 (sbr, 2H); 9,37 (sbr, 1H).
- 30 Bausteinsynthesen:

A-B-D-E-OH (in entsprechend geschützter Form):
Die E-Bausteine wurden teilweise in die entsprechenden Benzylester (bzw. Methylester) überführt und mit den entsprechend

- 35 geschützten A-B-D-U Bausteinen (U = Abgangsgruppe) verknüpft.
 Bei Verbindungen mit noch freier N-H-Funktion wurde diese anschließend mit einer Boc-Gruppe geschützt, die Benzylestergruppe
 abhydriert (bzw. die entsprechende Methylestergruppe hydrolisiert) und der Baustein A-B-D-E-OH durch Kristallisation,
- 40 Salzfällung bzw. Säulenchromatographie gereinigt. Dieser Weg ist exemplarisch für tBuOOC-CH₂-(Boc)(D)Cha-OH in WO 98/06741 beschrieben.

A-B-D-E-G-OH (in entsprechend geschützter Form):
Die Darstellung des A-B-D-E-G-OH Bausteins in entsprechend
geschützter Form ist exemplarisch für N-Boc-N-(tert. butyloxycarbonylmethylen)-(D)-cyclohexylalanyl-3,4-dehydroprolin in
5 WO 98/06741 beschrieben.

H-G-K-CN:

Die Darstellung des H-G-K-CN Bausteins ist exemplarisch für Prolyl-4-cyanobenzylamid in WO 95/35309, für 3,4-Dehydro-

10 prolyl-4-cyanobenzylamid in WO 98/06740 und für 3,4-Dehydroprolyl-5-(2-cyano)-thienylmethylamid in WO 98/06741 beschrieben.

In den folgenden Beispielen werden Komplementinhibitoren aufgeführt:

15

Beispiel 1 $CF_3-CH_2-SO_2-(D)$ Phe-Pro-NH-p-amb·CH₃COOH (WO 96/17860 Bsp. 13)

Beispiel 2

20 n-Octyl-SO₂-(D) Phe-Pro-NH-p-amb·CH₃COOH (WO 96/17860 Bsp. 14)

Beispiel 3 $3-Py-SO_2-(D)$ Phe-Pro-NH-p-amb·CH₃COOH (WO 96/17860 Bsp. 4)

25 Beispiel 4

 $CH_3-SO_2-(D)$ Cha-Pyr-NH-p-amb·CH₃COOH (Darstellung analog WO 96/17860 Bsp. 1) FAB-MS: (M+H+) = 476

Beispiel 5

30 H-(D)Val-Pro-NH-p-amb·2HCl (WO 95/35309 Bsp. 151)

Beispiel 6

Boc-(D)Asp(OBn)-Pro-NH-p-amb·CH₃COOH (WO 95/35309 Vorstufe von Bsp. 179) FAB-MS: $(M+H^+) = 552$

35

Beispiel 7

 $2-C_6H_{10}-CH_2-Gly-Pro-NH-p-amb\cdot 2HCl$ (Darstellung analog WO 95/35309 Bsp. 166) FAB-MS: (M+H+) = 444

40 Beispiel 8

 $C_6H_5-CH_2-CH_2-CO-Gly-Pro-NH-p-amb\cdot HI$ (Darstellung analog WO 95/35309 Bsp. 6) FAB-MS: (M+H+) = 436

Beispiel 9

45 $C_6H_5-(CH_2)_3-CO-Gly-Pro-NH-p-amb\cdot HI$ (Darstellung analog WO 95/35309 Bsp. 6) FAB-MS: (M+H+) = 450

Beispiel 10

(D)(4-Me)Pic-Pro-NH-p-amb·2CH₃COOH (Darstellung analog WO 95/35309 Bsp. 112) FAB-MS: (M+H+) = 372

5 Beispiel 11 H-(D)3-Tic-Pro-NH-p-amb-2CH₃COOH (WO 95/35309 Bsp. 112)

Beispiel 12

 $HO_3S-(CH_2)_3-(D)$ Phe-Pro-NH-p-amb·HC1

10 (Die Darstellung dieser Verbindung erfolgte durch Alkylierung von H-(D)Phe-Pro-NH-CH2-pC6H4-CN mit

$$SO_2 - CH_2 - CH_2 - CH_2 - O$$

15

Die Nitrilfunktion wurde durch Hydrierung der Hydroxyamidinzwischenstufe in die Amidingruppe überführt.) FAB-MS: (M+H+) = 516

Beispiel 13

20 CH₃-SO₂-(D)Cha-Pyr-NH-3-(6-am)-pico·CH₃COOH (WO 96/24609 Bsp. 8)

Beispiel 14

 $CH_3-SO_2-(D)Chg-Pro-NH-3-(6-am)-pico\cdot CH_3COOH$

25 (WO 96/24609 Bsp. 6)

Beispiel 15

 $C_6H_5-CH_2-SO_2-(D)$ Cha-Pyr-NH-3-(6-am)-pico·CH₃COOH (Darstellung analog WO 96/24609 Bsp. 8) FAB-MS: (M+H+) = 553

30

Beispiel 16

 $HOOC-CH_2-SO_2-(D)Chg-Pro-NH-3-(6-am)-pico-CH_3COOH$ (WO 96/24609 Bsp. 10)

35 Beispiel 17

 $CH_3OOC-CH_2-SO_2-(D)Chg-Pro-NH-3-(6-am)-pico-CH_3COOH$ (WO 96/24609 Zwischenprodukt bei der Darstellung von Bsp. 10) $FAB-MS: (M+H^+) = 523$

40 Beispiel 18

 $HOOC-CH_2-(D)Chg-Pyr-NH-3-(6-am)-pico-CH_3COOH$ (Darstellung analog WO 96/25426 Bsp. 93; als Nebenprodukt in der Synthese von Bsp. 95 (WO 96/25426) beschrieben) $FAB-MS: (M+H^+) = 443$

Beispiel 19 $HOOC-CH_2-HCha-Pyr-NH-3-(6-am)-pico$ (Darstellung analog WO 96/25426 Bsp. 93) FAB-MS: (M+H+) = 471

- 5 Beispiel 20
 Boc-NH-p-C₆H₄CH₂-SO₂-(D)Cha-Pyr-NH-3-(6-am)-pico-CH₃COOH
 - a) N-(4-Nitrobenzylsulfonyl)-(D)-cyclohexylalanin-methylester
- Zu einer Lösung von 5,53 g (25 mmol) (D)-Cyclohexylalanin-methylester-hydrochlorid in 150 ml Methylenchlorid und 10 ml Acetonitril wurden bei 0°C unter Rühren 2,6 g (25 mmol) Triethylamin, 2,6 g (25 mmol) N-Methylmorpholin und eine Lösung von 5,9 g (25 mmol) p-Nitrobenzylsulfonylchlorid (J.E. Macor u.a., THL 1992, 33, 8011) in 50 ml Methylen-chlorid getropft. Nach 30minütigem Nachrühren wurde die gelbe Reaktionslösung mit Wasser, 5%iger Zitronensäurelösung, 5%iger NaHCO₃-Lösung und nochmals mit Wasser gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum abdestilliert. Es verblieben 10 g eines leicht gelblichen Öls.
 - b) N-(4-Aminobenzylsulfonyl)-(D)-cylohexylalanin-methylester
- Das vorstehende Öl wurde in 250 ml Methanol gelöst, mit 1,5 g
 10%iger Pd/C versetzt und bei Raumtemperatur mit Wasserstoff
 hydriert. Nach Absaugen des Katalysators wurde das Methanol
 im Vakuum abdestilliert, wobei gegen Ende Kristallisation
 einsetzte. Der methanolfeuchte Rückstand wurde durch Lösen
 in Methylenchlorid und erneutes Einengen weitgehend von
 Methanol befreit und nach Digerieren mit Toluol-n-Hexan
 (1:4) abgesaugt. Man isolierte 8 g der Titelverbindung (90 %
 d.Th.), bezogen auf D-Cyclohexylalanin-methylester-hydrochlorid) als schwach gelbliche Kristalle, Fp. 134-136°C,
 DC: CH₂Cl₂/Aceton (9:1).
 - c) N-(4-t-Butoxycarbonylamino-benzylsulfonyl)-(D)-cyclohexyl-alanin-methylester
- Eine Lösung von 7,95 g (22,45 mmol) der vorstehenden Verbindung und 5,4 g (24,7 mmol) Boc₂O in 80 ml THF wurde 10 Stunden unter Stickstoff am Rückfluß gekocht. Der nach Abziehen des Lösungsmittels verbleibende dunkelbraune Rückstand wurde über eine Kieselgelsäule gereinigt (Eluent:
- CH₂Cl₂/Aceton, 50:2,5). Aus den einheitlichen Fraktionen wurden nach Behandeln mit n-Hexan 8,85 g der Titelverbindung

(86,7 % d.Th.) als weiße Kristalle (Fp. 143-144°C, DC: $CH_2Cl_2/Aceton$, 47:3) isoliert.

N-(4-t-Butoxycarbonylamino-benzylsulfonyl)-(D)-cyclohexyld) alanin 5

Zu einer Lösung von 8,85 g (19,5 mmol) des vorstehenden Esters in 70 ml Dioxan tropfte man bei 5°C unter Rühren 40 ml 1 n LiOH und ließ 20 Stunden bei Raumtemperatur nachrühren. Gemäß DC ($CH_2Cl_2/Aceton$, 9:1) waren noch Spuren von Ester nachweisbar. Durch Zutropfen von 1 n HCl wurde ein pH-Wert von 8 eingestellt, das Dioxan weitgehend abdestilliert und der Rückstand mit 1 Liter Wasser verdünnt. Durch Zugabe von KHSO4-Lösung wurde die Wasserphase auf pH 2 eingestellt, mit 500 ml Essigester überschichtet und 2 Stunden gerührt. Die organische Phase wurde abgetrennt, mit Wasser gewaschen und 15 mit Na₂SO₄ getrocknet. Der nach Abdestillieren des Lösungsmittels erhaltene Rückstand wurde zur Entfernung von Esterspuren in der Wärme mit 1,2-Dichlorethan digeriert. Nach Absaugen und Nachwaschen mit n-Hexan isolierte man 7,1 g der Titelverbindung als weiße Kristalle (Fp. 186-187°C (Zers.), 20 DC: CH₂Cl₂/Aceton/Eisessig, 20:5:1).

 ${\tt BocNH-p-C_6H_4CH_2-SO_2-(D)Cha-Pyr-NH-3-(6-CN)-pico}$ e)

Zu einer Suspension von 4,4 g (10 mmol) N-(4-t-Butoxy-25 carbonylamino-benzylsulfonyl)-(D)-cyclphexylalanin und 2,7 g (10 mmol) 3,4-Dehydroprolyl-(3-(6-cyano)picolyl)-amid (hergestellt aus Boc-3,4-Dehydroprolyl(3-(6-carboxyamido)picolylamid (WO 96/25426) durch Dehydratisierung mittels Trifluoressigsäureanhydrid und anschließende Abspaltung der Boc-30 Gruppe) in 70 ml Methylenchlorid tropfte man bei 0°C 5,8 g Diisopropylamin gefolgt von 11 ml (15 mmol) einer 50% igen Lösung von Propanphosphorsäureanhydrid in Essigester und ließ

3 Stunden bei 0°C nachrühren. Die organische Phase wurde mit Wasser 5%iger NaHCO3- und 5%iger Zitronensäurelösung gewaschen, über Na₂SO₄ getrocknet und zur Trockene eingeengt. Der verbliebene ölige Rückstand wurde säulenchromatographisch gereinigt (Eluent:

 $CH_2Cl_2/Aceton/Methanol, 45:5:4)$. Der nach Abziehen des Eluenten verbliebene Rückstand konnte durch Behandeln mit 40 Ether in 5 g weißes Pulver, Fp. 175-180°C (Zers.), überführt werden.

35

f) Boc-NH-p-C₆H₄CH₂-SO₂-(D)Cha-Pyr-NH-3-(6-am)-pico·CH₃COOH

Eine Lösung von 3,12 g (4,8 mmol) Boc-NH-p-C₆H₄-CH₂-SO₂- (D)Cha-Pyr-NH-3-(6-CN)-pico und 0,94 g (5,8 mmol) L-Acetylcy-stein in 6 ml Methanol wurde unter Einleitung von Ammoniak 4 Stunden auf 50°C erwärmt.

Zur Entfernung des Ammoniaks wurde das Methanol abdestilliert, der Rückstand erneut in 50 ml Methanol aufgenommen und mittels eines Ionenaustauschers (Acetat auf polymeren Träger, Fluka 00402) ins Acetat überführt. Nach Abziehen des Methanols wurde der Rückstand säulenchromatographisch (Eluent: CH₂Cl₂/MeOH/50%ige Essigsäure, 43:7:1,5) gereinigt. Durch Behandeln des reinen Acetats mit Essigester wurden 2,25 g der Titelverbindung als schwach gelbliches Pulver erhalten, FAB-MS: 668 (M+H+).

Beispiel 21 $H_2N-p-C_6H_4CH_2-SO_2-(D)Cha-Pyr-NH-3-(6-am)-pico-HC1$

1,7 g (2,3 mmol) der Verbindung von Bsp. 20 wurden in 10 ml Isopropanol und 4,5 ml 4 n Salzsäure in Dioxan gelöst und 3 Stunden auf 50°C erwärmt. Nach Abziehen des Lösungsmittels wurde der Rückstand mit Ether behandelt und das abgeschiedene amorphe Hydro-

- 25 chlorid abgesaugt. Dieses wurde in 200 ml Isopropanol unter Zusatz von etwas Wasser in der Wärme gelöst, die Lösung nach Zusatz von Aktivkohle filtriert und auf ein Volumen von ca. 40 ml eingeengt. Das ausgefallene Hydrochlorid der Titelverbindung wurde abgesaugt, 1,65 g schwach gelbliche Kristalle; DC:
- 30 $CH_2Cl_2/MeOH/50\%ige$ Essigsäure, 43:7:2; FAB-MS: $(M+H^+)$ = 568.

Beispiel 22

Boc-NH-p-C₆H₄-CH₂-SO₂-(D)Chg-Pyr-NH-3-(6-am)-pico·CH₃COOH (Die Darstellung erfolgte analog Bsp. 20) FAB-MS (M+H+) = 654

35

5

20

Beispiel 23

 $H_2N-p-C_6H_4-CH_2-SO_2-(D)$ Chg-Pyr-NH-CH₂-3-(6-am)-pico·HCl (Die Darstellung erfolgt ausgehend von Bsp. 22 analog Bsp. 21) FAB-MS: (M+H+) = 554

40

Beispiel 24 $HOOC-(CH_2)_5-(D)Chg-Pro-NH-3-(6-am)-pico\cdot CH_3COOH$ (Darstellung analog WO 95/35309 Bsp. 221) FAB-MS: (M+H+) = 501

```
Beispiel 25
  C_2H_5OOC-(CH_2)_5-(D)Chg-Pro-NH-3-(6-am)-pico-CH_3COOH
   (Darstellung analog WO 95/35309 Bsp. 221) FAB-MS: (M+H^+) = 529
5 Beispiel 26
  HOOC-(CH_2)_4-(D)Chg-Pro-NH-3-(6-am)-pico-CH_3COOH
   (Darstellung analog WO 95/35309 Bsp. 221) FAB-MS: (M#H+) = 487
   Beispiel 27
10 t-BuOOC-(CH<sub>2</sub>)<sub>3</sub>-(D)Chg-Pro-NH-3-(6-am)-pico·CH<sub>3</sub>COOH
   (Darstellung analog WO 95/35309 Bsp. 221 Stufe c)
   FAB-MS: (M+H^+) = 529
   Beispiel 28
15 (C_6H_5-CH_2)_2-Gly-Pyr-NH-3-(6-am)-pico.CH_3COOH
   (Darstellung analog WO 96/25426 Bsp. 33 aus (C_6H_5-CH_2)_2-Gly-OH
   und H-Pyr-NH-CH<sub>2</sub>-3-(6-CN-pico) FAB-MS: (M+H+) = 483
   Beispiel 29
20 HOOC-CH_2-(D)Chg-Pyr-NH-CH_2-5-(2-am)-thiph-CH_3COOH
    (WO 98/06741 Bsp. 3)
    Beispiel 30
    HOOC-CH_2-CH_2-(D)Cha-Pro-NH-CH_2-5-(2-am)-tioph·CH_3COOH
 25 (Darstellung analog WO 98/06741 Bsp. 1) FAB-MS: (M+H^+) = 479
    Beispiel 31
    HOOC-CH_2-(D)Chg-Aze-NH-CH_2-5-(2-am)-thioph
    (Darstellung analog WO 98/06741 Bsp. 3) FAB-MS: (M+H+) = 436
 30
    Beispiel 32
    HOOC-CH_2-(D)Cha-Pyr-NH-CH_2-5-(2-am)-thioph-CH_3COOH
     (WO 98/06741 Bsp. 1)
 35 Beispiel 33
     HOOC-CH_2-(D)Cha-Thz-4-CO-NH-CH_2-5-(2-am)-thioph-2HCl
     (Darstellung analog WO 98/06741 Bsp. 1) FAB-MS: (M+H+) = 482
     Beispiel 34
  40 HOOC-CH<sub>2</sub>-(D)Cha-Pro-NH-CH<sub>2</sub>-5-(3-am)-fur-CH<sub>3</sub>COOH
     (Darstellung analog WO 98/06741 Bsp. 10) FAB-MS: (M+H^+) = 448
     Beispiel 35
     HOOC-CH_2-(D)Chg-Pyr-NH-CH_2-2-(4-am)-thiaz-2HCl
  45 (WO 98/06741 Bsp. 22)
```

```
Beispiel 36
   HOOC-CH_2-(D)Chg-Pyr-NH-CH_2-5-(2-am-3-C1)-thioph·2HC1
   (Darstellung analog WO 98/06741 Bsp. 3) FAB-MS: (M+H+) = 482
 5 Beispiel 37
   HOOC-CH_2-(D)Cha-Pyr-NH-CH_2-5-(2-am-3-C1)-thioph·2HC1
   (Darstellung analog WO 98/06741 Bsp. 1) FAB-MS: (M+H+) = 496
   Beispiel 38
10 HOOC-CH_2-(D)Cha-Pyr-NH-CH_2-5-(3-am)-thioph\cdot CH_3COOH
   (WO 98/06741 Bsp. 5)
   Beispiel 39
   HOOC-CH_2-(D)Chg-Aze-NH-CH_2-5-(3-am)-thioph
15 (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H^+) = 436
   Beispiel 40
   HOOC-CH<sub>2</sub>(D)Chg-Pyr-NH-CH<sub>2</sub>-5-(3-am)-thioph·CH<sub>3</sub>COOH
   (WO 98/06741 Bsp. 8)
20
   Beispiel 41
   HOOC-CH<sub>2</sub>-Cheg-Pyr-NH-CH<sub>2</sub>-5-(3-am)-thioph·CH<sub>3</sub>COOH
   (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H+) = 462
25 Beispiel 42
   HOOC-CH<sub>2</sub>-Cpg-Pyr-NH-CH<sub>2</sub>-5-(3-am)-thioph·CH<sub>3</sub>COOH
   (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H+) = 434
   Beispiel 43
30 HOOC-CH_2-(D) Chg-Pro-NH-CH_2-5-(3-am). thioph·2HCl
   (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H+) = 450
   Beispiel 44
   HOOC-CH_2-(D)Cha-Pyr-NH-CH_2-5-(3-am)-fur\cdot CH_3COOH
35 (WO 98/0671 Bsp. 13)
   Beispiel 45
   HOOC-CH_2-(D)Chg-Thz-2-CO-NH-CH_2-5-(3-am)-thioph
   (Darstellung analog WO 98/06741 Bsp. 5) FAB-MS: (M+H+) = 468
40
   Beispiel 46
   HOOC-CH_2-(D)Cha-Thz-2-CO-NH-CH_2-5-(3-am)-thioph·2HCl
   (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H+) = 482
```

```
Beispiel 47
  HOOC-CH_2-(D)Cha-(L)Ohi-2-CO-NH-CH_2-5-(3-am)-thioph-HCl
  (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H+) = 518
5 Beispiel 48
  HOOC-CH_2-(D)Chg-(L)Ohi-2-CO-NH-CH_2-5-(3-am)-thioph-HCl
   (Darstellung analog WO 98/06741 Bsp. 5) FAB-MS: (M+H+) = 504
   Beispiel 49
10 HOOC-CH<sub>2</sub>-(D)Chg-Pyr-NH-CH<sub>2</sub>-5-(4-Cl-3-am)-thioph·CH<sub>3</sub>COOH
   (Darstellung analog WO 98/06741 Bsp. 5) FAB-MS: (M+H+) = 482
   Beispiel 50
   HOOC-CH_2(D) Cha-Pyr-NH-CH<sub>2</sub>-5-(4-Cl-3-am)-thioph·CH<sub>3</sub>COOH
15 (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H^+) = 496
   Beispiel 51
   HOOC-CH_2-(D)Chg-Pyr-NH-CH_2-5-(4-Me-3-am)-thioph-CH_3COOH
    (Darstellung analog WO 98/06741 Bsp. 5) FAB-MS: (M+H+) = 462
20
    Beispiel 52
    HOOC-CH_2-(D,L)Cpg-Pyr-NH-CH_2-5-(3-Me-3-am)-thioph-CH_3COOH
    (Darstellung analog WO 98/06741 Bsp. 5) FAB-MS: (M+H+) = 448
 25 Beispiel 53
    HOOC-CH_2-(D)Cha-Pyr-NH-CH_2-5-(3-Me-2-am)-thioph-CH_3COOH
    (Darstellung analog WO 98/06741 Bsp. 8) FAB-MS: (M+H+) = 462
    Beispiel 54
 30 N-(Hydroxycarbonyl-methylen)-(D)-cyclohexylalanyl-3,4-dehydropro-
    lyl-[5-(2-guanidino)-thiazolylmethyl]amid Bishydrochlorid:
         N-(tert.Butoxycarbonyl-methylen)-(N-Boc)-(D)-cyclohexylala-
         nyl-3,4-dehydroprolyl-[5-(2-guanidino)-thiazolylmethyl]amid
     a)
  35
         7,28 g (15,15 mmol) N-(t-BuO_2C-CH_2)-(N-Boc)-(D)-Cha-Pyr-OH,
          3,7 g (15,15 mmol) 5-Aminomethyl-2-guanidino-thiazol-Bishy-
          drochlorid und 7,8 g (10,3 ml 60,6 mmol) Diisopropylethylamin
          wurden in 90 ml Dichlormethan und 6 ml DMF vorgelegt und por-
          tionsweise mit 6,46 g (19,7 mmol) TOTU versetzt, wobei die
  40
          Temperatur bei 20°C gehalten wurde. Nach 90 min, die DC Kon-
          trolle zeigte einen vollständigen Umsatz, wurde die Reakti-
          onsmischung im Vakuum schonend eingeengt, der Rückstand in
          Essigester aufgenommen, nacheinander mit Wasser, verd. Salz-
          säure (pH 1,5), ges. Kochsalzlösung (dreimal) extrahiert, die
   45
          organische Phase über Magnesiumsulfat getrocknet und im Va-
```

kuum eingeengt. Das Rohprodukt (9,3 g) wurde säulenchromato-

graphisch gereinigt (Kieselgel; Fließmittel: Methylenchlorid mit von 0 bis 5 % ansteigendem Methanolgehalt). Die fast sauberen Fraktionen (3,2 g) wurden durch Kristallisation aus einem Hexan/Ethergemisch weiter aufgereinigt, wobei 2,7 g der Titelverbindung erhalten wurden.

b) N-(Hydroxycarbonyl-methylen)-(D)-cyclohexylalanyl-3,4dehydroprolyl-[5-(2-guanidino)-thiazolylmethyl]amid Bishydrochlorid

10

15

5

2,7 g (4,03 mmol) N-(tert.Butoxycarbonyl-methylen)-(N-Boc)-(D)-cyclohexylalanyl-3,4-dehydroprolyl-[5-(2-guanidino)-thia-zolylmethyl]amid wurden in 190 ml Dichlormethan und 50 ml 5 M Salzsäurelösung in Ether 17 h bei Raumtemperatur gerührt, wobei ein Niederschlag ausfiel. Das Reaktionsgemisch wurde im Vakuum eingeengt, mehrfach mit Dichlormethan kodestilliert und am Schluß aus Ether/Dichlormethan 1:1 ausgerührt, wobei 2,2 g der Titelverbindung erhalten wurden. FAB-MS (M+H+): 478.

20

Beispiel 55 HOOC-p-C₆H₄CH₂-(D)Cha-Pyr-NH-CH₂-5-(3-am)-thioph

Ausgehend von D-Cyclohexylalanin-methylester-hydrochlorid wurde 25 die Verbindung analog Beispiel 56 hergestellt.

Weißes, amorphes Pulver, FAB-MS $(M-H^+)$ = 538. Die Zwischenstufe N-(t-Butoxycarbonyl)-N-(4-t-butoxycarbonylben-zyl)-D-cyclohexylamin konnte in kristalliner Form, Fp. 119°C, erhalten werden.

30

Beispiel 56 $HOOC-p-C_6H_4-CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$

a) N-(4-t-Butoxycarbonylbenzyl)-D-cyclohexylglycin-methylester

Eine Lösung von 10 g (48,2 mmol) D-Cyclohexylglycin-methyle-ster-hydrochlorid, 13,1 g (38,3 mmol) 4-Brommethyl-benzoesäure-t-butylester (A. Rosowsky u.a. J. Med. Chem. 1989, 32, 709) und 15,6 g (121 mmol) Diisopropylethylamin in 50 ml Dimethylformamid wurde 16 h bei Raumtemperatur gerührt.

Nach Zugabe von 300 ml Wasser wurde mit Methyl-t-butylether (MTBE) extrahiert, die organische Phase mit 5%iger Zitronensäurelösung und Wasser gewaschen, über MgSO4 getrocknet und zur Trockene eingeengt. Der ölige Rückstand wurde säulen-

chromatographisch gereinigt (Eluent: CH₂Cl₂/MTBE, 50:1) und

ergab 11,5 g (66 % d.Th.) der Titelverbindung als farbloses Öl.

b) N-(t-Butoxycarbonyl)-N-(4-t-butoxycarbonylbenzyl)-D-cyclohe xylglycin-methylester

Eine Lösung von 11,5 g (31,8 mmol) der vorstehenden Verbindung, 10,4 g (47,7 mmol) Di-t-butyldicarbonat und 1,5 ml
Diisopropylethylamin wurden unter Stickstoff 40 h bei Raumtemperatur gerührt. Das Acetonitril wurde abdestilliert, der
Rückstand in MTBE aufgenommen, mit 5%iger Zitronensäurelösung
und Wasser gewaschen, über MgSO4 getrocknet und zur Trockene
eingeengt. Der Rückstand ergab nach säulenchromatographischer
Reinigung (Eluent: CH₂Cl₂/Aceton, 99:2) 14 g (95 % d.Th.) der
Titelverbindung als farbloses Öl.

- c) N-(t-Butoxycarbonyl)-N-(4-t-butoxycarbonylbenzyl)-D-cyclohe-xylglycin
- Zu einer Lösung von 14 g (30,3 mmol) der vorstehenden Verbindung in 100 ml Dioxan tropfte man bei 10°C 60 ml 1 n Natronlauge und ließ 20 h bei 40°C nachrühren. Durch Zugabe von Zitronensäure wurde der pH-Wert der Reaktionslösung auf ca. 8 eingestellt, das Dioxan abdestilliert, die wäßrige Phase mit MTBE extrahiert, durch weitere Zugabe von Zitronensäure sauergestellt und mehrmals mit MTBE extrahiert. Die vereinigten MTBE-Extrakte wurden über MgSO4 getrocknet, das Lösungsmittel abdestilliert und der Rückstand durch Behandeln mit wassergesättigtem n-Hexan kristallisiert. Ausbeute: 7,2 g der Titelverbindung (53 % d.Th.), Fp. 154°C, Rf 0,39 (CH2Cl2/Methanol, 95:5).
 - d) N-(t-Butoxycarbonyl)-N-(4-t-butoxycarbonylbenzyl)-D-cyclohexylglycyl-3,4-dehydroprolin

Zu einer Suspension von 4,1 g (9 mmol) der vorstehenden Verbindung und 1,5 g (9 mmol) 3,4-Dehydroprolin-methylester-hydrochlorid in 40 ml CH₂Cl₂ tropfte man bei 0°C 5,3 g (40,5 mmol) Diisopropylethylamin gefolgt von 10 ml einer 50%igen Lösung von Propanphosphonsäureanhydrid in Essigester und ließ 2 h bei 0°C und 12 h bei Raumtemperatur nachrühren. Die Aufarbeitung erfolgte analog Bsp. 20 Stufe e). Nach säulenchromatographischer Reinigung (Eluent: CH₂Cl₂/Ether, 50:3) wurden 2,1 g (41,2 % d.Th.) eines schwach gelblichen, amorphen Pulvers isoliert. Die Verseifung zur Säure wurde analog Stufe c) durchgeführt, wobei eine Reaktionszeit von 3 h und eine Reaktionstemperatur von 10°C ausreichte. Es wur-

den 1,8 g der Titelverbindung als weißes amorphes Pulver isoliert, DC: Ether/Eisessig, 50:1.

e) N-Boc-N-(t-BuOOC-p-C₆H₄CH₂)-(D)Chg-Pyr-NH-CH₂-5-(3-am)-thiophacetat

Eine Suspension von 1,8 g (3,3 mmol) der vorstehenden Säure und 0,75 g (3,3 mmol) 5-Aminomethyl-3-amidino-thiophendihydrochlorid in 12 ml DMF wurde unter Stickstoff bei 0°C 10 mit 0,68 g (6,6 mmol) N-Methylmorpholin versetzt. Nach portionsweiser Zugabe von 1,9 g (5,8 mmol) O-[Cyano(ethoxycarbonyl)methylenamino]-N, N, N', N'-tetramethyl-uroniumtetrafluoroborat (TOTU) trat eine klare Lösung auf, die 3 h nachgerührt wurde. Die gelbe Reaktionslösung wurde im Vakuum bei 15 35 bis 40°C eingeengt, der Rückstand dreimal mit Diisopropylether digeriert und nach Auflösen in Methanol mittels eines Ionenaustauschers (Acetat auf polymeren Träger, Fluka 00402) ins Acetat überführt. Nach Einengen des Eluenten wurde das Rohacetat säulenchromatographisch (Eluent: CH2Cl2/MeOH/50%ige 20 Essigsäure, 40:10:0,5) gereinigt. Es wurden 1,8 g der Titelverbindung als weißes amorphes Pulver isoliert, FAB-MS (M-H+) = 580.

f) $HOOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph$

25

1,8 g der vorstehenden Amidinverbindung wurden in 12 ml Eisessig gelöst, mit 12 ml 4 n HCl in Dioxan und 0,5 ml Wasser versetzt und 2,5 h bei Raumtemperatur stehen gelassen.

Nach Abziehen des Lösungsmittels wurde der Rückstand mit Acetonitril behandelt, wobei sich das Dihydrochlorid abschied. Dieses wurde zur Überführung in ein Monohydrochlorid in Wasser gelöst und mit einem schwach basischen Ionenaustauscher (3-X4 Resin, BioRad) auf pH 4,5 eingestellt.

Die wäßrige Lösung wurde nach Behandeln mit Aktivkohle lyophilisiert. Man erhielt 1,0 g der Titelverbindung als Lyophilisat, das durch Behandeln mit Isopropanol in einen kristallinen Zustand überführt wurde, Fp. 230-233°C (Zers.), FAB-MS (M+H+) = 524.

40

Beispiel 57
MeOOC-p-C₆H₄CH₂-(D) Chg-Pyr-NH-CH₂-5-(3-am)-thioph·HCl

In eine Lösung von 1,1 g (2 mmol) der in Bsp. 56 beschriebenen 45 Verbindung in 70 ml Methanol wurden 0,75 g (20 mmol) Salzsäure eingeleitet und anschließend 8 h unter Rückfluß gekocht.

Die erkaltete Lösung wurde mit einem schwach basischen Ionenaustauscher (3-X4 Resin, BioRad) auf pH 6 eingestellt, das Methanol abdestilliert und der zähe, ölige Rückstand durch Behandeln mit Acetonitril in ein absaugbares, leicht gelbliches Monohydro-5 chlorid umgewandelt. Durch Lösen in Methanol, Behandeln mit Aktivkohle, Abdestillieren des Methanols zum Schluß unter Zusatz von Acetonitril wurden 1,9 g der Titelverbindung als weiße Kristalle isoliert, Fp. 215-220°C (Zers.), FAB-MS (M+H+) = 538; DC: CH₂Cl₂/MeOH/50%ige Essigsäure, 20:5:1.

10

Beispiel 58 $H_2N-CO-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph-HCl$

0,6 g der vorstehenden Verbindung (Bsp. 57) wurden in 40 ml Me-15 thanol gelöst und 4 Tage unter Einleiten von Ammoniak auf ca. 45°C erwärmt. Nach Abziehen des Lösungsmittels wurde säulenchromatographisch (Eluent: $CH_2Cl_2/MeOH/50\%$ ige Essigsäure, 35:15:2.5) gereinigt. Der Rückstand wurde in Wasser gelöst, mit 1 n Salzsäure auf pH 2 eingestellt, zur Trockene eingeengt, der Rückstand er-20 neut in Wasser aufgenommen, mit einem schwach basischen Ionenaustauscher auf pH 6 eingestellt und nach Behandeln mit Aktivkohle lyophilisiert. Man erhielt 0,28 g der Titelverbindung als weißes, amorphes Pulver, FAB-MS $(M-H^+) = 523$.

25 Beispiel 59 $HOOC-m-C_6H_4CH_2-D(Chg)-Pyr-NH-CH_2-5-(3-am)-thioph$

Analog Bsp. 56 wurde ausgehend von 3-Brommethyl-benzoesäuret-butylester (N. Shirai u.a., J. Org. Chem. 1990, 55, 2767) 30 die Titelverbindung erhalten. Weißes, amorphes Pulver,

 $FAB-MS (M+H^+) = 524.$

Beispiel 60 $HOOC-p-C_6H_4CH_2-(D)Cha-Pyr-NH-3-(6-am)-pico-HCl$

35

Die Herstellung erfolgte durch Umsetzung von N-(t-Butoxycarbonyl)-N-(4-t-butoxycarbonylbenzyl)-D-cyclohexylalanin (Bsp. 55) mit 3,4-Dehydroprolyl-(3-(6-cyano)picolyl)-amid (Bsp. 20, Stufe e), nachfolgender Amidinbildung (Bsp. 20 Stufe f) und Ab-40 spaltung der Schutzgruppen (Bsp. 56, Stufe f). Farbloses, amorphes Pulver, FAB-MS (M+H+) = 533.

Beispiel 61 $HOOC-p-C_6H_4CH_2-(D)Chg-Pyr-NH-3-(6-am)-pico\cdot HCl$

Die Herstellung erfolgte analog Bsp. 60. Das Startmaterial N-(t-5 Butoxycarbonyl)-N-(t-butoxycarbonylbenzyl)-D-cyclohexylglycin ist in Bsp. 56 Stufe a) bis c) beschrieben. Farbloses, amorphes Pulver, FAB-MS (M+H+) = 519.

Beispiel 62

10

N-(4-Hydroxycarbonyl-phenylsulfonyl)-(D)-cyclohexylglycyl-3,4-dehydroprolyl-[5-(3-amidino)-thienylmethyl]amid:

Die Darstellung dieser Verbindung erfolgte durch Kupplung (PPA, 15 Dichlormethan) von H-Pyr-NH-CH₂-5-(3-CN)-thioph mit BOC(D)Chg-OH zu BOC(D)Chg-Pyr-NH-CH₂-5-(3-CN)-thioph, Schutzgruppenabspaltung (HCl in Isopropanol)und anschließender Umsetzung (Dichlormethan, DIPEA)mit 4-HOOC-C₆H₄-SO₂Cl zu 4-HOOC-C₆H₄-SO₂-(D)Chg-Pyr-NH-CH₂-5-(3-CN)-thioph. Nach Umsetzung der Nitril- zur Amidinfunktion und Reinigung über MPL-Chromatographie wurde die Titelverbindung als weißes amorphes Pulver erhalten.

Beispiel 63

 $FAB-MS (M+H^+): 574.$

25

N-(3-Hydroxycarbonyl-phenylsulfonyl)-(D)-cyclohexylglycyl-3,4-dehydroprolyl-[5-(3-amidino)-thienylmethyl]amid:

Die Darstellung dieser Verbindung erfolgte durch Kupplung (PPA, 30 Dichlormethan) von H-Pyr-NH-CH₂-5-(3-CN)-thioph mit BOC(D)Chg-OH zu BOC(D)Chg-Pyr-NH-CH₂-5-(3-CN)-thioph, Schutzgruppenabspaltung (HCl in Isopropanol)und anschließender Umsetzung (Dichlormethan, DIPEA)mit 3-HOOC-C₆H₄-SO₂Cl zu 3-HOOC-C₆H₄-SO₂-(D)Chg-Pyr-NH-CH₂-5-(3-CN)-thioph. Nach Umsetzung der Nitril- zur Amidinfunktion und Reinigung über MPL-Chromatographie wurde die Titelverbindung als weißes amorphes Pulver erhalten.

FAB-MS (M+H+): 574

Beispiel 64

40

t-BuOOC-p-C₆H₄CH₂-(D) Chg-Pyr-NH-CH₂-5-(3-am)-thiop-acetat

- a) N-(4-t-Butocycarbonylbenzyl)-D-cyclohexylglycin
- Zu einer Lösung von 29 g (80 mmol) N-(4-t-Butoxycarbonylben-zyl)-D-cyclohexylglycin-methylester (Beispiel 56, Stufe a) tropfte man bei 10°C 96,3 ml (96,3 mmol) 1 n Natronlauge und

- ließ 48 Stunden bei Raumtemperatur nachrühren. Nach Zugabe von weiteren 0,3 Äquivalenten 1 n NAOH wurden weitere 10 Stunden bei 50° nachgerührt. Durch Zugabe von 5 %iger Zitronensäurelösung wurde der pH-Wert der Lösung auf ca.8 eingestellt, das Dioxan abdestilliert, die wässrige Phase mit MTBE extrahiert und durch weitere von Zitronensäure sauer gestellt. Die ausgefallene Säure wurde in Essigester aufgenommen, die Wasserphase mehrmals mit Essigester nachextrahiert, die vereinigten Essigesterextrakte mit MgSO4 getrocknet und anschließend das Lösungsmittel abdestilliert wobei gegen Ende die Säure auskristallisierte. Ausbeute: 17,5 g weiße Kristalle (63 % d.Th.), Fp > 225°C (Z.).
- b) N-(t-Butoxycarbonyl)-3,4-dehydroprolyl-[2-(4-hydroxyami-dino)-thienylmethyl]amid

5

10

Eine Suspension von 15,6 g (224,5 mmol) Hydroxylaminhydrochlorid in 300 ml Ethanol wurde mit 8 g konz. Ammoniak
versetzt, 30 Minuten nachgerührt, das ausgefallene NH₄Cl
abgesaugt, anschließend 30 g (90 mmol) N-(t-Butoxycarbonyl)-3,4-dehydroprolyl-[2-(4-cyano)-thienylmethyl]amid
(WO 98/06741, Beispiel 1 und 5) zugegeben und über Nacht bei
Raumtemperatur nachgerührt. Danach war kein Ausgangsmaterial
mehr nachweisbar (DC, Fließmittel: CH₂CL₂/MeOH,9/1 bzw.

- CH₂Cl₂/MeOH/konz. Ammoniak, 4,5/5/0,3).
 Nach Abdestillieren des Lösungsmittels wurde der Rückstand in 300 ml Methylenchlorid aufgenommen, mit Wasser und wässriger NaHCO₃-Lösung gewaschen und über Na₂SO₄ getrocknet. Nach Einengen verblieben 31,5 g (95,5 % d.Th.) amorpher Rückstand,
 RF 0,32 (CH₂Cl₂/MeOH,)/1, FAB-MS: 366 (M+).
 - c) N-(t-Butoxycarbonyl)-3,4-dehydroprolyl-[2-(4-hydroxyamidino)-thienylmethyl]amid
- 31,5 g (86 mmol) der vorstehenden Hydroxyamidin-verbindung wurden unter Stickstoff in 300 ml Eisessig gelöst, bei 40 bis 50°C portionsweise mit 17 g Zinkstaub (<10µ) versetzt und 6 Stunden bei 40°C nachgerührt. Danach war kein Ausgangsmaterial mehr nachweisbar (DC, Fließmittel: CH₂Cl₂/Methanol, 9/1).

Nach Absaugen der Feststoffe und Nachwaschen mit Eisessig wurde die Essigsäure-gegen Ende unter Zusatz von Toluol-weitgehend abdestilliert. Der Rückstand wurde in 350 ml Wasser aufgenommen, mit in Natronlauge auf pH 7 eingestellt und einmal mit 180 ml MTBE extrahiert. Die Wasserphase wurde nach Zugabe von 200 ml CH₂Cl₂ auf pH 12 eingestellt, nach Abtrennen der CH₂Cl₂-Phase nochmals nachextrahiert und die vereinigten

 CH_2Cl_2 -Phasen über Na_2SO_4 getrocknet. Nach Abdestillieren verblieben 28,4 g (94 % d.Th.) amorpher Rückstand, RF 0,35 ($CH_2Cl_2/MeOH/50$ %ige Essigsäure, 12/3/1, FAB-MS: 350 (M+).

5 c) 3,4-Dehydroprolyl-[2-(4-amidino)-thienylmethyl]amid-dihydrochlorid

28,4 g (81 mmol) des vorstehenden Amidins wurden in 450 ml Isopropanol suspendiert und unter Rühren mit 1215 ml 4n HCL in Dioxan versetzt, wobei kurzfristig eine klare Lösung auftrat aus der das Dihydrochlorid langsam ausfiel. Das Reaktionsgemisch wurde 3 Stunden bei Raumtemperatur nachgerührt, das Kristallisat abgesaugt und mit kaltem Isopropanol zuletzt MTBE gut nachgewaschen. Nach Trocknen verblieben 19,5 g (74,4 % d.Th.) hygroskopischer Dihydrochlorid, RF 0,53 (CH₂Cl₂/MeOH/H₂O CF₃COOH, 24/9/1/0,5, FAB-MS: 250 (M+), Fp 220-223°C (Z).

d) t-BuOOC-p-C₆H₄CH₂-(D)Chg-Pyr-NH-CH₂-5-(3-am)-thioph-acetat

20
N-(4-t-Butoxycarbonylbenzyl)-D-cyclohexylglycin (Stufe a) und
3,4-Dehydroprolyl-[2-(4-amidino)-thienylmethyl]amid-dihydrochlorid wurden analog Beispiel 56 Stufe e zum Endprodukt
gekuppelt. Weißer amorpher Pulver, FAB-MS: 579 (M+).

25
Beispiel 65

 $HOOC-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$

N-(4-t-Butoxycarbonylbenzyl)-D-valinmethylester

Hergestellt durch Umsetzung von D-Valinmethylesterhydrochlorid und 4-Brommethyl-benzolsäure-t-butylester analog Beispiel 56 Stufe a. Die Verbindung wurde nach chromatographischer Reinigung in 74 %iger Ausbeute erhalten,

b) N-(4-t-Butoxycarbonylbenzyl)-D-valin

FAB-MS: 321 (M+).

- Die Verseifung erfolgte analog Beispiel 64 Stufe a. Weiße Kristalle, Fp 224-226°C (Z), FAB-MS: 307 (M*).
 - c) $t-BuOOC-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-acetat$
- N-(4-t-Butoxycarbonylbenzyl)-D-valin und 3,4-Dehydroprolyl-[2-(4-amidino)-thienylmethyl]amid-dihydrochlorid (Beispiel 64 Stufe c) wurden analog Beispiel 56 Stufe e gekup-

pelt. Nach säulenchromatsgrapischer Reinigung (Eluent: CH₂Cl₂/MeOH/50 %ige CH₃COOH, 20/5/1) wurden 3,1 g weißes amorphes Pulver isoliert, FAB-MS: 539 (M+).

 $HOOC-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$ 5 d)

> Die Verseifung des t-Butylesters erfolgt analog Beispiel 56 Stufe f. Nach Gefriertrocknung wurden 1,6 g Lyophilisat isoliert, FAB-MS: 483 (M+).

10

Analog Beispiel 56 und 64 wurden die folgenden Verbindungen erhalten:

Beispiel 66

15

 $HOOC-m-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$ Weißes amorphes Pulver, FAB-MS: 483 (M+).

Beispiel 67

20

 $HOOC-p-C_6H_4CH_2-(D)tBu-Ala-Pyr-NH-CH_2-5-(3-am)-thioph-Acetat$ Weißes amorphes Pulver, FAB-MS: 511 (M+).

Beispiel 68

25

 $HOOC-p-C_6H_4CH_2-(D)tBu-Gly-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$ Weißes amorphes Pulver, FAB-MS: 497 (M+).

Beispiel 69

30

 ${\tt HOOC-p-C_6H_4CH_2-Pyr-NH-CH_2-5-(3-am)-thioph-HCL}$ Weißes amorphes Pulver, FAB-MS: 441 (M+).

Beispiel 70

35

 $HOOC-m-C_6H_4CH_2-Gly-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$ Weißes amorphes Pulver, FAB-MS: 441 (M+).

Beispiel 71

40

 $H_2N-p-C_6H_4CH_2-SO_2-(D)CHa-Pyr-NH-CH_2-(3-am)-thioph-HCL$

N-(4-t-Butoxycarbonylamino-benzylsulfonyl)-D-cyclohexylcelanin (Herstellung Beispiel 20, Stufe d) und 3,4-Dehydropro-

45 lyl-[2-(4-amidino)-thienylmethyl]amid-dihydrochlorid (Beispiel 64, Stufe c) wurden analog. Beispiel 56 Stufe c gekuppelt und anschließend die t-Butoxycarbonyl-schutzgruppe analog Beispiel 21 abgespalten. Weißes, amorphes Pulver, FAB-MS: $572 (M^+)$.

Beispiel 72

5

 $H_2N-p-C_6H_4CH_2-SO_2-(D)CHg-Pyr-NH-CH_2-(3-am)-thioph-HCL$ Herstellung analog Beispiel 20 und 21. Die Vorstufen N-(4-Nitrobenzylsulfonyl)-bzw. N-(4-Aminobenzylsulfonyl)-(D)-cyclohexylglycin-methylester konnten als schwach gelbliche Kristalle,

10 Fp 137°C bzw. 181°C, erhalten werden.
Weißes, amorphes Pulver, FAB-MS: 558 (M*).

Beispiel 73

15 H₂N-p-C₆H₄CH₂-(D)Val-Pyr-NH-CH₂-5-(3-am)-thioph-2HCL Die Herstellung erfolgte analog Beispiel 20 und 21. Vorstufen:

N-(4-Nitrobenzylsulfonyl)-(D)-valin-methylester, schwach gelbliche Kristalle, Fp 98-100°C, FAB-MS: 330 (M+);

20 N-(4-Aminobenzylsulfonyl)-(D)-valin-methylester schwach gelbliche
Kristalle, Fp 96-98°C, FAB-MS: 300 (M+);
N-(4-t-Butoxycarbonylamino-benzylsulfonyl)-D-valinmethylester.
Weiße Kristalle, Fp 150-152°C, (i-Propanol);

N-(4-t-Butoxycarbonylamino-benzylsulfonyl)-D-valin, farblose Kri-25 stalle, Fp 177-180°C (Z.), FAB-MS: 386 (M⁺).

Das Endprodukt wurde als Lyophilisat isoliert, FAB-MS: 558 (M+).

Beispiel 74

- 30 $H_2N-SO_2-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$
 - a) N-(4-Sulfonamidobenzyl)-D-cyclohexylglycin-mehtylester.
- Zu einer Lösung von 5,2 g (25 mmol) D-Cyclohexylglycinmethylester-hydrochlorid und 5,5 g (22 mmol) 4-Brommethylbenzolsulfonsäure-amid (F. Amer. Chem. Soc. 79, 1957, 4232) in
 30 ml DMF tropfte man bei Raumtemperatur 7,3 g Diisopropylethylamin, wobei die Temperatur auf 26°C anstieg. Die farblose Lösung blieb über Nacht bei Raumtemperatur stehen. Da-

nach war kein Ausgangsmaterial mehr nachweisbar (DC, CH₂Cl₂/ether, 5/2).

Nach Verdünnen mit 100 ml Eiswasser wurde der ausgefallene weiße Niederschlag abgesaugt, mit Wasser nachgewaschen und in Essigester gelöst. Die Essigesterphase wurde mehrmals mit

Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde aus 50 ml i-

Propanol umkristallisiert. Man erhielt 4,8 g (64 % d.Th.) weiße Kristalle, Fp 113-114°C, FAB-MS: 340 (M+).

b) N-(4-Sulfonamidobenzyl)-D-cyclohexylglycin

4,0 g (11,8 mmol) des vorstehenden Esters wurden in 50 ml
Wasser suspendiert, durch Zugabe von 35 ml 1n NaOH in Lösung
gebracht und über Nacht bei Raumtemperatur stehen gelassen.
Durch Zutropfen von 10 %iger Salzsäure wurde ein pH-Wert von
5 eingestellt, wobei sich ein feiner Niederschlag abschied.
Durch kurzfristiges Erwärmen auf 80°, langsames Abkühlen auf
Raumtemperatur und 30 minütigem Rühren unter Eisbadkühlung
wurde eine gut absaugbare Struktur erhalten. Der Niederschlag
wurde nach absaugen mit kaltem Wasser chloridfrei gewaschen,
anschließend mit 50 ml Aceton digeriert, nach erneutem absau-

anschließend mit 50 ml Aceton digeriert, nach erneutem absaugen mehrmals mit einem Aceton-Ether-Gemisch nachgewaschen und getrocknet. Es verblieben 3,6 g (93,5 % d.Th.) weißes pulvriges Material, das äußerst schwerlöslich ist.

20 c) $H_2N-SO_2-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$

Die Kupplung zum Endprodukt wurde analog Beispiel 56 Stufe e durchgeführt. Es wurde 1 g Lyophilisat erhalten, FAB MS: $558 \, (M^+)$.

25

40

Beispiel 75

HO₃S-p-C₆H₄CH₂-(D)Chg-Pyr-NH-CH₂-5-(3-am)-thioph
Analog Beispiel 74 wurde 4-Brommethyl-benzol-sulfonsäure (F.

30 Med.Chem.33, 1990, 2437) mit D-Cyclohexylglycin-methylester-hydrochlorid umgesetzt, das Reaktionsprodukt verseift und anschließend mit 3,4-Dehydroprolyl-[2-(4-amidino)-thienylmethyl]amid-dihydrochlorid gekuppelt.

35 Weißes, amorphes Pulver, FAB-MS: 559 (M+).

Beispiel 76

 $HO-p-C_6H_4CH_2-(D)Chg-Pyr-NH-CH_2-5-(3-am)-thioph-2HCL$

a) N-(4-t-Butoxybenzyl)-D-cyclohexylglycin-methylester

5,2 g (25 mMol) D-Cyclohexylglycin-methylester-hydrochlorid wurden in 200 ml Toluol unter leichtem Erwärmen gelöst, mit 2,6 g (25,7 mmol) Triethylamin versetzt und 1 Stunde nachgerührt. Nach Absaugen des Triethylaminhydrochlorids. Auswaschen mit Toluol wurde das Filtrat auf 70 ml eingeengt, mit

4.5 g (25 mmol) p-t-Butoxybenzaldehyd und 0.1 ml Eisessig versetzt und 2.5 Stunden am Wasserabscheider zum Rückfluß erhitzt. Das Toluol wurde im Vakuum abdestilliert, der Rückstand in 50 ml Methanol gelöst, mit 1.5 g (25 mmol) Eisessig versetzt und bei 5°C portionsweise 0.9 g Natriumcyanoborhydrid eingetragen (DC-Kontrolle: CH₂Cl₂/E₂O, 25/1). Das Methanol wurde abdestilliert, der Rückstand mit überschüssiger 5 %iger NaHCO₃-Lösung versetzt und mit Ether extrahiert. Nach Waschen der Etherphase mit Kochsalzlösung, Trocknen über Na₂SO₄ und Abdestillieren des Ethers wurde der ölige Rückstand säulenchromatographisch gereinigt (Eluent: CH₂Cl₂/E₂O, 25/1). Ausbeute: 4,3 g (51 % d.Th.) farbloses Oel; FAB-MS: 333 (M+).

Analog: Beispiel 74 wurde der vorstehende Ester verseift, mit 3,4-Dehydroprolyl-[2-(4-amidino)-thienylmethyl]amiddihydrochlorid gekuppelt und die t-Butylgruppe durch Salzsäure abgespalten. Amorphes, weißes Pulver, FAB-MS: 495 (M+).

Beispiel 77

20

5

10

 $HO-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-2HCL$

Die Darstellung erfolgte analog Beispiel 76. Weißes, amorphes Pulver, FAB-MS: 455 (M+).

25

Beispiel 78

 $HOCH_2-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$

30 Die Darstellung erfolgte ausgehend von 4-(Hydroxymethyl)-benzyl-chlorid (J. Org.Chem. 61, 1996, 449) analog Beispiel 76.
Weißes, amorphes Pulver, FAB-MS: 469 (M*).

Beispiel 79

35

 $O_2N-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$

Die Darstellung erfolgte analog Beispiel 76. Schwach gelbliches, amorphes Pulver, FAB-MS: 484 (M+).

40

Beispiel 80

 $HOOC-p-C_6H_4CH_2-(D)Val-Pyr-NH-CH_2-5-(3-am)-thioph-HCL$

45 4-(t-Butoxycarbonyl)benzylsulfonylchlorid

Eine Suspension von 15 g (55 mol) 4-Brommethyl-benzoesäure-t-butylester und 6,95 g (55 mol) Natriumsulfit in 28,5 ml Wasser und 13,5 ml DMF wurde nach Zusatz von 0,4 g Adogen® unter Rühren 4 Stdn. auf 80-90° erhitzt. Nach Abkühlung auf RT wurden 100 ml

- 5 Wasser zugesetzt, zweimal mit je 100 ml MTBE extrahiert, die Wasserphase mit 250 ml MeOH versetzt, ausgefallene Salze abgesaugt und das Filtrat gegen Ende unter Oelpumpenvakuum eingengt. Der Rückstand wurde mit 200 ml MeOH digeriert, unlösliche Festbestandteile abgesaugt und das Methanol gegen Ende nach
- 10 mehrmaligem Zusatz von Ethanol/Toluol abdestilliert. Der Rückstand (16,1 g) wurde in 200 ml CH₂Cl₂ suspendiert, 0,8 g Tetraethyl-benzylammonium-chlorid zugesetzt, bei 0°C 15 g Oxalsäuredichlorid zugetropft und 30 Minuten am Rückfluß gekocht. Ungelöste Anteile wurden abgesaugt, die CH₂Cl₂-Phase mit 5%iger NaHCO₃-
- 15 Lösung gewaschen, über Na_2SO_4 getrocknet und abdestilliert. Durch Behandeln mit n-Hexan wurden 6,6 g fast weiße Kristalle isoliert, Fp 82-83°C (Z.).

Analog Beispiel 76 wurde mit D-Valinmethylesterhydrochlorid umge20 setzt, zur Säure verseift, mit 3,4-Dehydroprolyl-[2-(4-amidino)-thienylmethyl]amid-dihydrochlorid gekuppelt
und die t-Butylestergruppe gespalten.

Weiße, amorphe Pulver, FAB-MS: 547 (M+).

25

Beispiel 81

 $HOOC-p-C_6H_4CH_2-SO_2-(D)CHg-Pyr-NH-CH_2-5-(3-am)-thioph-HCl$

30 Die Herstellung erfolgte analog Beispiel 80 bzw. 76. Weiße, amorphe Pulver, FAB-MS: 587 (M+).

Beispiel 82

- 35 trans-HOOC-4-Cyclohexylmethyl-Gly-Pyr-NH-CH₂-5-(3-am)-tioph-2HCL
 - a) trans-4-[N-(o-Nitrophenylsulfonyl)]aminomethyl-cyclohexancarbonsäure
- Zu einer Lösung von 14,13 g (0,09 Mol) trans-4-(Aminomethyl)-cyclohexancarbonsäure in einem Zweiphasen-System aus 90 ml 1nNaOH und 90 ml Dioxan tropfte man bei 4°C (Eisbad) simultan eine Lösung von 29,9 g (0,135 Mol) o-Nitrobenzolsulfonsäurechlorid in 150 ml Dioxan und 150 ml 1nNaoH. Nach Abklingen der leicht exothermen Reaktion wurde 30 Minuten bei Raumtemperatur nachgerührt, der ausgefallene Niederschlag abgesaugt, mit wenig Eiswasser nachgewaschen und das Filtrat

im Vakuum eingeengt, wobei es zu einer weiteren Salzabscheidung kam. Die vereinigten Salzmengen wurden mit Ether digeriert, in Wasser suspendiert, mit lmKHSO4-Lösung angesäuert und mit Essigester extrahiert. Die Essigesterphase wurde mit Kochsalzlösung gewaschen, über Na2SO4 getrocknet und im Vakuum eingeengt. Der Rückstand wurde aus Acetonitril umkristallisiert. Ausbeute: 27,4 g (89 % d. Th.), Fp 179°C.

- b) trans-4-[N-(o-Nitrophenylsulfonyl)]aminomethyl-cyclohexan carbonsäure-t-butylester.
- Zu einer Lösung von 20,4 g (60 mmol) der vorstehenden Verbindung und 0,1 ml DMF in 350 ml CH₂Cl₂ tropfte man bei 0° 11,3 g (90 mMol) Oxalsäuredichlorid und erwärmte anschliessend bis zur Beendigung der Gasentwicklung. Nach Abdestil-15 lieren des Methylenchlorids - gegen Ende unter Zusatz von Toluol- wurde der Rückstand in 20 ml Methylenchlorid gelöst und unter Eiskühlung zu einer Lösung von 6,1 g (83 mmol) t-Butanol und 9,4 g (119 mmol) Pyriden in 60 ml Ch₂Cl₂ getropft. Das Reaktionsgemisch blieb 24 Std. bei Raumtemperatur stehen, 20 wurde anschliessend mit 1n KHSO4-Lösung, Wasser und NaHCO3-Lösung gewaschen, über Na₂SO₄ getrocknet und abdestilliert. Der Rückstand wurde aus Cyclohexan/Essigester (95/5) umkristallisiert und ergab 9,3 g leicht gelbliche Kristalle, 25 Fp 114°C.
 - c) trans-4-[N-(o-Nitrophenylsulfonyl)-N-(methoxycarbonyl-methyl)]aminomethyl-cyclohexancarbonsäure-t-butylester
- Eine Lösung von 2,68 g (6,7 mmol) der vorstehenden Verbindung und 1.23 g (7,6 mmol) Bromessigsäuremethylester in 50 ml DMF wurde unter Zusatz von 1,85 g (13,4 mmol) K₂CO₃-Pulver über Nacht bei Raumtemperatur gerührt (DC: Essigester/n-Hesan, 1/1). Das Reaktionsgemisch wurde mit 100 ml Wasser versetzt, mehrmals mit Essigester extrahiert, die vereinigten Essigesterextrakte mit Kochsalzlösung gewaschen, über Na₂SO₄ getrocknet und abdestilliert. Nach säulenchromatographischer Reinigung (Eluent: Essigester/n-Hexan, 1/1) und Kristallisation aus Ether/n-Hexan wurden 2,6 g (82,3 % d. Th) gelbliche Kristalle, Fp 123-124°C erhalten.
 - d) trans-4-[N-(o-Nitrophenylsulfonyl)-N-(hydroxycarbonylmethyl)]aminomethyl-cyclohexancarbonsäure-t-butylester

Analog Beispiel 20 Stufe d wurde die Methylestergruppe der vorstehenden Verbindung verseift. Zäher gelbes Oel, FAB-MS: 456 (M+), DC: Essigester7n-Hexan/Eisessig, 34/15/1,5.

 ${\tt trans-t-Bu00C-4-cyclohexylmethyl-(o-NO_2-C_6H_4SO_2)Gly-Pyr-NH-trans-t-Bu00C-4-cyclohexy$ **5** e) $CH_2-5-(3-CN)$ -thioph

Analog Beispiel 20 Stufe e wurde die vorstehende Säure mit 3,4-Dehydroprolyl-[2-(4-cyano)thienylmethyl]amidhydrochlorid gekuppelt. Amorpher, gelblicher Rückstand, FAB-MS: 671 (M+), 10 DC: CH₂Cl₂/Aceton/Methanol, 45/5/1.

- trans-t-Bu00C-4-cyclohexylmethyl-Gly-Pyr-NHf) $CH_2-5-(3-N)-thioph$
- 15 Eine Lösung von 3,5 g (5,5 mmol) der vorstehenden Verbindung und 0,7 g (6,35 mmol) Thiophenol in 10 ml DMF wurden unter Zusatz von 2,5 g (18.1 mmol) K_2CO_3 -Pulver über Nacht bei Raumtemperatur gerührt. Das gelbe Reaktionsgemisch wurde mit 100 ml Eiswasser versetzt, 4 x mit je 35 ml Essigester extra-20 hiert, die Essigesterextrakte mit Kochsalzlösung gewaschen, über Na₂SO₂ getrocknet und das nach Abdestillieren des Lösungsmittels erhaltene zähe gelbe Oel säulenchromatographisch gereinigt (Eluent: CH₂Cl₂/Methanol, 50/4). 2,3 g gelblich amorpher Rückstand, FAB-MS: 486 (M+).
 - trans-HOOC-4-Cyclohexylmethyl-Gly-Pyr-NH-5-(3-am)-thioph-2 g) HCl
 - Die Amidinbildung erfolgte analog Beispiel 64 Stufe b und c. 30 Die Verseifung des t-Butylesters wurde mit 4n Salzsäure in Dioxan durchgeführt. 1.1 g Lyophilisat, FAB-MS: 447 (M+), DC: $CH_2Cl_2/MeOH/50$ % iger Eisessig, 35/15/6.
 - Beispiel 83 35 trans-HOOC-4-Cyclohexylmethyl-(D)Chg-Pyr-NH- $CH_2-5-(3-am)-thioph-2HCL$

25

Zu einer Lösung von 1,72 g (10 mmol) S-Hexahydromandelsäuremethylester tropfte man bei -8°C unter Rühren 1,9 ml (11 40 mmol) Trifluormethansulfonsäureanhydrid und anschliessend 1,2 g (11 mmol) 2,6-Lutidin. Nach 20 minütigem Nachrühren bei 0°C (DC: Et_2O/n -Hexan, 3/2) wurde eine Lösung von 5,3 g (24,9 mmol) trans-4-(Aminomethyl)-cyclohexancarbonsäure-t-butylester und 2,6 g (20 mmol) Diisopropylethylamin in 20 ml CH_2Cl_2 45 zugetropft, weiter 2 Std. bei 0° und über Nacht bei RT nachgerührt (DC: $CH_2Cl_2/Ether$, 25/3).

Die Reaktionslösung wurde mit Wasser, 2x mit je 10 ml 1n Salzsäure, 5%iger NaHCHO3-Lösung gewaschen, über Na₂SO₄ getrocknet, abdestilliert und der Rückstand säulenchromatographisch gereinigt (Eluent: CH₂Cl₂/Ether, 10/1). Es wurden 2,7 g eines leicht gelblichen Oels isoliert, das analog Beispiel 56 Stufe c zur Säure verseift und anschliessend analog Stufe e mit 3.4-Dehydroprolyl[2-[4-amidino)thienylmethyl]-amid-dihydrochlorid gekuppelt wurde. Nach Hydrolyse der t-Butylestergruppe mit 4n Salzsäure in Dioxan wurde der Rückstand gefriergetrocknet, leicht gelbliches amorphes Pulver, FAB-MS: 529 (M+), DC: CH₂Cl₂/MeOH/50%ige Essigsäure, 35/15/3.

Beispiel 84 4-Benzoylbenzoyl-Ala-Pro-5-(3-am)-thioph

15

10

- 3 g (1,62 mmol) p-Nitrophenylcarbonat-Wang-Harz (Novabiochem, a) Substitution 0,54 mmol/g) wurden in 20 mL DMF suspendiert und mit 1,15 g (3,24 mmol) 4-Amidino-2-[N-1-(4,4-Dimethyl-2,6dioxocyclohexyliden)ethyl]-aminomethylthiophen-hydrochlorid 20 und 4,48 ml (32,4 mmol) Triethylamin 4 Tage bei Raumtemperatur geschüttelt. Es wurde abgesaugt und mit DMF, CH2Cl2, Methanol und CH₂Cl₂ gewaschen. Anschließend wurde das Harz mit 0,5M NH4OAc-Lösung in Methanol behandelt (3*10 min), mit Methanol, DMF und CH2Cl2 gewaschen und im Vakuum bei Raumtem-25 peratur getrocknet. Zur Abspaltung der Dde-Schutzgruppe wurde das Harz mit 20 ml einer 2%igen Lösung von Hydrazinhydrat in DMF bei Raumtemperatur 5 Minuten behandelt. Es wurde abgesaugt und mit DMF gewaschen. Die Abspaltung wurde zweimal wiederholt. Anschließend wurde das Harz mit DMF, CH₂Cl₂, Me-30 thanol und CH₂Cl₂ gewaschen und im Vakuum bei Raumtemperatur getrocknet. (Auswaage: 2,84 g).
- b) 0,044 mmol Harz aus a), 0,088 mmol Fmoc-Pro-OH und 0,088 mmol N,N,-Diisopropylethylamin in 1,5 ml Dimethylformamid wurden bei Raumtemperatur mit einer Lösung von 0,088 mmol 2(1H-Benzotriazol-1-yl-)1,1,3,3-tetramethyluronium-tetrafluoroborat in 0,5 ml Dimethylformamid versetzt und 2 h bei Raumtemperatur gerührt. Dann wurde abgesaugt und mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen. Die Abspaltung der Fmoc-Schutzgruppe erfolgte mit 2 mL einer Lösung von 10 % (1,8-Diazabicyclo-5.4.0.-undec-7-en), 2 % Piperidin und 88 % Dimethylformamid (3 min). Anschließend wurde das Harz abgesaugt und mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen.

- C) Das Harz aus b) wurde in einer Lösung von 0,088 mmol
 Fmoc-Ala-OH und 0,088 mmol N,N,-Diisopropylethylamin in
 1,5 ml Dimethylformamid suspendiert, mit einer Lösung
 von 0,088 mmol 2(1H-Benzotriazol-1-yl-)1,1,3,3-tetramethyluronium-tetrafluoroborat in 0,5 ml Dimethylformamid versetzt
 und 2 h bei Raumtemperatur gerührt. Dann wurde abgesaugt und
 mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen.
 Die Abspaltung der Fmoc-Schutzgruppe erfolgte mit 2 ml einer
 Lösung von 10 % (1,8-Diazabicyclo-5.4.0.-undec-7-en), 2 %
 Piperidin und 88 % Dimethylformamid (3 min). Anschließend
 wurde das Harz abgesaugt und mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen.
- d) Das Harz aus c) wurde in einer Lösung von 0.088 mmol 4-Ben-zoylbenzoesäuresäure in 1 ml CH₂Cl₂ suspendiert und mit 0.088 mmol Diisopropylcarbodiimid in 0.5 ml CH₂Cl₂ versetzt. Nach 2 h Rühren bei Raumtemperatur wurde abgesaugt und mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen. Die Abspaltung des Produktes vom Träger erfolgte durch Behandlung mit Trifluoressigsäure-Wasser 95:5 (1 h/Raumtemperatur). Ausbeute: 13 mg. HPLC-MS: M+H+ 532 (berechnet: 532).

Analog Bsp. 84 wurden die folgenden Beispiele hergestellt, wobei z.B. auch anstelle der letzten Kupplung reduktive Aminierungen am 25 Harz durchgeführt werden können mit z.B. 4-carboxy-Benzaldehyd oder anderen Aldehyden unter Standardbedingungen mit Natrium-cyanoborhydrid in 1 % AcOH/DMF.

Beispiel 85
30 3-Benzoylbenzoyl-Gly-Pro-NH-CH₂-5-(3-am)-thioph ESI-MS [M+H]+ 518

Beispiel 86 4-Benzoylbenzoyl-Gly-Pro-NH-CH₂-5-(3-am)-thioph 35 ESI-MS [M+H]+ 518

Beispiel 87 4-Phenylbenzoyl-Gly-Pro-NH-CH₂-5-(3-am)-thioph ESI-MS [M+H]+ 490

40

Beispiel 88 4-Phenylphenylacetyl-Gly-Pro-NH-CH₂-5-(3-am)-thioph ESI-MS [M+H]+ 504

45 Beispiel 89 2-(Benzylthio)-benzoyl-Gly-Pro-NH-CH₂-5-(3-am)-thioph

```
ESI-MS [M+H] + 536
   Beispiel 90
   3-Phenylpropionyl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
 5 ESI-MS [M+H] + 442
   Beispiel 91
   4-Phenylbutyryl-Gly-Pro-NH-CH2-5-(3-am)-thioph
   ESI-MS [M+H] + 456
10
   Beispiel 92
   5-Phenylvaleryl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 470
15 Beispiel 93
   Cinnamoyl-Gly-Pro-NH-CH_2-5-(3-am)-thioph
   ESI-MS [M+H] + 440
   Beispiel 94
20 C_6H_5-C\equiv C-CO-Gly-Pro-NH-CH_2-5-(3-am)-thioph
   ESI-MS [M+H] + 438
   Beispiel 95
   9-Fluorenon-4-carbonyl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
25 ESI-MS [M+H] + 516
   Beispiel 96
   {\tt 3-Benzyloxycarbonylpropionyl-Gly-Pro-NH-CH_2-5-(3-am)-thioph}\\
   ESI-MS [M+H] + 500
30
   Beispiel 97
   4-Methoxycarbonylcinnamoyl-Gly-Pro-NH-CH2-5-(3-am)-thioph
   ESI-MS [M+H] + 498
35 Beispiel 98
   {\tt 4-Methoxycarbonylbenzoyl-Gly-Pro-NH-CH_2-5-(3-am)-thioph}
   ESI-MS [M+H] + 472
   Beispiel 99
40 2-(4'-Chlor-3'-Nitrobenzoyl)-benzoyl-Gly-Pro-NH-CH2-5-(3-am)-
    thioph
    ESI-MS [M+H] + 597
    Beispiel 100
45 6-(Acetylamino)-pyridyl-3-carbonyl-Gly-Pro-NH-CH2-5-(3-am)-thioph
    ESI-MS [M+H] + 472
```

```
WO 00/61608
```

```
Beispiel 101
  3-(3'-Pyridyl)-acryloyl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
  ESI-MS [M+H] + 441
5 Beispiel 102
   4-Acetylaminobenzoyl-Gly-Pro-NH-CH2-5-(3-am)-thioph
   ESI-MS [M+H] + 471
   Beispiel 103
10 4-(4'-Aminophenoxy)-benzoyl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 521
   Beispiel 104
   4-(2'-Chlor-4'-Aminophenoxy)-benzoyl-Gly-Pro-
15 NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 555
   Beispiel 105
    4-Aminobenzoyl-Gly-Pro-NH-CH_2-5-(3-am)-thioph
20 ESI-MS [M+H]+ 486
    Beispiel 106
    (4-Aminophenyl)acetyl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
    ESI-MS [M+H] + 443
 25
    Beispiel 107
    (4-Aminophenylthio)-acetyl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
    ESI-MS [M+H] + 475
 30 Beispiel 108
    2-(Pyrid-3-y1)-acety1-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
    ESI-MS [M+H] + 429
     Beispiel 109
 35 3-(4'-Aminobenzoyl)-butyryl-Gly-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
     ESI-MS [M+H] + 499
     Beispiel 110
     4-Benzoylbenzoyl-(D)-Val-Pro-NH-CH_2-5-(3-am)-thioph
  40 ESI-MS [M+H]+ 560
     Beispiel 111
     4-Phenylphenylacetyl-(D)-Val-Pro-NH-CH_2-5-(3-am)-thioph
     ESI-MS [M+H]+ 546
  45
```

```
Beispiel 112
   4-Phenylphenylacetyl-(D)-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 518
5 Beispiel 113
   4-Benzoylbenzoyl-\beta-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H]+ 532
   Beispiel 114
10 4-Benzoylbenzoyl-(D)-Ala-Pro-NH-CH2-5-(3-am)-thioph
   ESI-MS [M+H] + 532
   Beispiel 115
   2-(Benzylthio)-benzoyl-(D)-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
15 ESI-MS [M+H] + 550
   Beispiel 116
   5-Phenylvaleryl-(D)-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 512
20
   Beispiel 117
   5-Phenylvaleryl-(D)-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 484
25 Beispiel 118
   5-Phenylvaleryl-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 484
   Beispiel 119
30 3-Phenylpropionyl-(D)-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 484
   Beispiel 120
   4-Phenylbutyry1-(D)-Val-Pro-NH-CH_2-5-(3-am)-thioph
35 ESI-MS [M+H] + 498
   Beispiel 121
   4-Phenylbutyryl-(D)-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H]+ 470
40
   Beispiel 122
   4-Phenylbenzoyl-(D)-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 532
```

Beispiel 123 4-Phenylbenzoyl-Ala-Pro-NH-CH $_2$ -5-(3-am)-thioph ESI-MS [M+H] + 504 5 Beispiel 124 4-Phenylbenzoyl-Val-Pro-NH-CH2-5-(3-am)-thioph ESI-MS [M+H]+ 532 Beispiel 125 10 3-Phenylpropionyl-(D)-Ala-Pro-NH-CH₂-5-(3-am)-thioph ESI-MS [M+H] + 456 Beispiel 126 2-(Benzylthio)-benzoyl-(D)-Val-Pro-NH- CH_2 -5-(3-am)-thioph 15 ESI-MS [M+H] + 578 Beispiel 127 5-Phenylvaleryl-Val-Pro-NH-CH $_2$ -5-(3-am)-thioph ESI-MS [M+H] + 512 20 Beispiel 128 ${\small 4-\texttt{Phenylphenylacetyl-}\beta-\texttt{Ala-Pro-NH-CH}_2-5-(3-\texttt{am})-\texttt{thioph}}$ ESI-MS [M+H] + 518 25 Beispiel 129 4-Phenylbenzoyl-(D)-Ala-Pro-NH- CH_2 -5-(3-am)-thioph ESI-MS [M+H] + 504

Beispiel 130

30 4-Phenylphenylacetyl-Val-Pro-NH-CH $_2$ -5-(3-am)-thioph ESI-MS [M+H] + 546

Beispiel 131

4-Phenylphenylacetyl-Ala-Pro-NH- CH_2 -5-(3-am)-thioph

35 ESI-MS [M+H] + 518

Beispiel 132

 $3-Phenylpropionyl-Ala-Pro-NH-CH_2-5-(3-am)-thioph$ ESI-MS [M+H] + 456

40

Beispiel 133

 $3-Phenylpropionyl-\beta-Ala-Pro-NH-CH_2-5-(3-am)-thioph$ ESI-MS [M+H] + 456

```
Beispiel 134
   4-Phenylbutyryl-\beta-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 470
 5 Beispiel 135
   5-Phenylvaleryl-\beta-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H]+ 484
   Beispiel 136
10 4-Benzoylbenzoyl-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 560
   Beispiel 137
   4-Phenylbenzoyl-\beta-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
15 ESI-MS [M+H] + 504
   Beispiel 138
   3-Phenylpropionyl-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 484
20
   Beispiel 139
   4-Phenylbutyryl-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 498
25 Beispiel 140
   2-(Benzylthio)-benzoyl-Val-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 578
   Beispiel 141
30 2-(Benzylthio)-benzoyl-Ala-Pro-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 550
   Beispiel 142
   4-Benzoylbenzoyl-(D)-Ala-Pyr-NH-CH<sub>2</sub>-5-(3-am)-thioph
35 ESI-MS [M+H] + 530
   Beispiel 143
   4-Benzoylbenzoyl-(D)-Val-Pyr-NH-CH_2-5-(3-am)-thioph
   ESI-MS [M+H] + 558
40
   Beispiel 144
   4-Benzoylbenzoyl-Sar-Pyr-NH-CH<sub>2</sub>-5-(3-am)-thioph
   ESI-MS [M+H] + 530
```

Beispiel 145 $C_6H_5-C\equiv C-CO-Gly-Pyr-NH-CH_2-5-(3-am)-thioph$ ESI-MS [M+H] + 436

5 Beispiel 146 $C_6H_5-C\equiv C-CO-Sar-Pyr-NH-CH_2-5-(3-am)-thioph$ ESI-MS [M+H]+ 450

Beispiel 147

10 $C_6H_5-C\equiv C-CO-(D)-Val-Pyr-NH-CH_2-5-(3-am)-thioph$ ESI-MS [M+H]+ 478

Beispiel 148 $C_6H_5-C \equiv C-CO-(D)-Ala-Pyr-NH-CH_2-5-(3-am)-thioph$ 15 ESI-MS [M+H]+ 450

Beispiel 149 4-Phenylbutyryl-Ala-Pro-NH-CH₂-5-(3-am)-thioph ESI-MS [M+H]+ 470

Beispiel 150 $\label{eq:meocondensity} \text{MeOC(O)-(CH}_2)_5-\text{NHC(O)-Gly-Pro-NH-CH}_2-5-(3-\text{am})-\text{thioph}$

- 0,044 mmol Harz aus Beispiel 84/Abschnitt b), wurden in einer Lösung von 0,088 mmol Fmoc-Gly-OH und 0,088 mMol N,N,-Diisoa) propylethylamin in 1,5 ml Dimethylformamid suspendiert, mit 25 einer Lösung von 0,088 mmol 2(1H-Benzotriazol-1-yl-)1,1,3,3tetramethyluronium-tetrafluoroborat in 0,5 ml Dimethylformamid versetzt und 2 h bei Raumtemperatur gerührt. Dann wurde das Harz abgesaugt und mit Dimethylformamid, CH2Cl2, Methanol und $\mathrm{CH_2Cl_2}$ gewaschen. Die Abspaltung der Fmoc-Schutzgruppe er-30 folgte mit 2 ml einer Lösung von 10 % (1,8-Diazabicyclo-5.4.0.-undec-7-en), 2 % Piperidin und 88 % Dimethylformamid (3 min). Anschließend wurde das Harz abgesaugt und Dimethylformamid, CH2Cl2, Methanol und CH2Cl2 gewaschen. 35
 - b) Das Harz wurde in 1 ml CH₂Cl₂ suspendiert und mit 0,088 mmol 6-Isocyanatocapronsäuremethylester in 0,5 ml CH₂Cl₂ versetzt. Nach 2 Stunden Rühren bei Raumtemperatur wurde abgesaugt und mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen. Die Abspaltung des Produktes vom Träger erfolgt durch Behandlung mit Trifluoressigsäure-Wasser 95:5 (1 h/Raumtemperatur). Ausbeute: 18 mg. HPLC-MS: M+H+ 481 (berechnet: 481).

Beispiel 151 Phenylsulfonyl-Gly-Pro-NH-CH₂-5-(3-am)-thioph

0,01 mmol Harz aus Beispiel 150/Abschnitt a) wurden in 0,2 ml
5 CH₂Cl₂/DMF (1:1) suspendiert, mit 10,4 μl (0,06 mmol) N,N,-Diisopropylethylamin und anschließend mit einer Lösung von 2,5 μl
(0,02 mmol) Benzolsulfonsäurechlorid in 200 μl CH₂Cl₂/DMF (1:1)
versetzt. Nach 2 h Rühren bei Raumtemperatur wurde abgesaugt und
mit Dimethylformamid, CH₂Cl₂, Methanol und CH₂Cl₂ gewaschen. Die
10 Abspaltung des Produktes vom Träger erfolgt durch Behandlung mit
Trifluoressigsäure-Wasser 95:5 (1 h/Raumtemperatur).

Ausbeute: 4,6 mg. HPLC-MS: M+H+ 450 (berechnet: 450).

Beispiel 152

- 15 3-[4-(2,5-Dichlor-benzyloxy)-phenyl]propionyl(-D-Val-Pyr-NH-CH₂-5-(3-am)-thioph
- a) 0,2 mMol 3-(4-Hydroxyphenyl)-propionsäure-2-Chlortritylharz wurden in einer Lösung von 262 mg (1 mMol) Triphenylphosphin in 2 ml THF suspendiert. Nach Zugabe einer Lösung von 2 mMol 2,5-Dichlor-Benzylalkohol in 2 ml THF wurde unter Rühren eine Lösung von 408 μl (2 mMol) Diisopropylazodicarboxylat in 200 μl THF portionsweise innerhalb 30 Minuten zugegeben. Nach 20 Stunden Inkubation wurde das Harz abgesaugt und mit THF gewaschen. Anschließend wurde Schritt a) wiederholt.
- b) Zur Aufarbeitung wurde das Harz abgesaugt, mit THF und anschließend mit Methanol und Dichlormethan gewaschen. Die Spaltung des Produktes vom Träger erfolgte mit Trifluorethanol, Essigsäure, Dichlormethan (1:1:3) in 45 Minuten. Nach Eindampfen im Vakuum wurde der Rückstand mit Essigsäure gelöst und gefriergetrocknet. Ausbeute 31 mg.

Literatur:

- 35 Krchnak, V., Flegelova, Z., Weichsel, A.S., and Lebl, M. (1995). Tetrahedron Lett., 36, 6193.
- Die Säurekomponente wurde entsprechend wie für Beispiel 84 beschrieben mit TBTU an polymergebundenes H-D-Val-Pyr-NH CH₂-5-(3-am)-thioph gekuppelt. Nach Abspaltung mit TFA-Wasser (95:5) (1 h bei Raumtemperatur) wurde das Produkt erhalten (ESI-MS [M+H]+656.

Analog wie die vorgehenden Beispiele wurden folgende Verbindungen 45 hergestellt:

142		
Г	53.	4-(2,5-Dichlor-benzyloxy)-benzoyl-D-Val-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 628 4-(2-Chlor-benzyloxy)-benzoyl-D-Val-Pyr-NH-
3	154.	4-(2-Chlor-benzyloxy) benzoy =
5		CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 594 3-[4-(2-Chlor-benzyloxy)-phenyl]-propionyl-D-Val-Pyr-NH-
	155.	3-[4-(2-Chlor-benzyloxy)-phenyl]-propromit
ł		$CH_2-5-(3-am)-thioph$
- 1		ESI-MS [M+H]+ 622
10	156.	ESI-MS [M+H] 622 3-[4-(4-Nitro-benzyloxy)-phenyl]-propionyl-D-Val-Pyr-NH-
10		CH ₂ -5-(3-am)-thioph
1		ESI-MS [M+H] + 633
t	157.	3-[4-(4-Methoxycarbonyl-benzyloxy)-phenyl]-propionyl-D-Val-
1		Pyr-NH-CH ₂ -5-(3-am)-thioph
		RGT_MG [M+H]+ 646
15	158.	12 (4-14-Eluor-3-Trifluormethyl-benzy-
ļ		loxy)-phenyl]-propionyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
İ		
	159.	ESI-MS [M+H]+ 6/4 3-[4-(2-Chlor-3-Isopropyl-benzyloxy)-phenyl]-propionyl-
	199.	D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
20		255 (35, 33) + 664
	160.	
	100.	CH ₂ -5-(3-am)-thioph
	l	
	161.	
		CH ₂ -5-(3-am)-thioph
25		
	162.	
	102.	CH ₂ -5-(3-am)-thioph
	1.63	- I have stated and accept the production of the
30	163.	CH ₂ -5-(3-am)-thioph
	1	120 2214 (22)
	1.60	-1 - DODENVIACELYI-D-VAI
	164.	Pyr-NH-CH ₂ -5-(3-am)-thioph
35	<u> </u>	ESI-MS [M+H] + 660 4-(2-Chlor-3-Isopropyl-benzyloxy)-phenylacetyl-D-Val-Pyr-
	165	14-(2-Chior-3-18-prop) - thioph
		NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 650 . 4-(4-Chlor-benzyloxy)-phenylacetyl-D-Val-Pyr-NH-
	166	. 4-(4-Chior-benzyloxy)-phenyladdoy-
		CH ₂ -5-(3-am)-thioph
4		ESI-MS [M+H]+ 608 . 5-[4-(2,5-Dichlor-benzyloxy)-phenyl]-5-oxo-pentanoyl-D-Val-
	167	5-[4-(2,5-Dichior-benzyloxy) phenyl 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	1	Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 698
	168	ESI-MS [M+H] 698 5-[4-(4-Chlor-3-Nitro-benzyloxy)-phenyl]-5-oxo-pentanoyl-
4	5	D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
•		ESI-MS [M+H]+ 709

	169.	5-[4-(4-Nitro-benzyloxy)-phenyl]-5-oxo-pentanoyl-D-Val-Pyr-
		NH-CH ₂ -5-(3-am)-thioph
•		ESI-MS [M+H] + 675
	170.	5-[4-(4-Methoxycarbonyl-benzyloxy)-phenyl]-5-oxo-pentanoyl-
5		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
4		ESI-MS [M+H] + 688
	171.	5-[4-(4-Fluor-3-Trifluormethyl-benzyloxy)-phenyl]-5-oxo-
		pentanoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 715
10	172.	5-[4-(2-Chlor-3-Isopropyl-benzyloxy)-phenyl]-5-oxo-
ĺ		pentanoy1-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
Ì		ESI-MS [M+H] + 706
- 1	173.	5-(4-Benzyloxy-phenyl)-5-oxo-pentanoyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
15		ESI-MS [M+H] + 630
	174.	5-[4-(4-Chlor-benzyloxy)-phenyl]-5-oxo-pentanoyl-D-Val-Pyr-
		$NH-CH_2-5-(3-am)-thioph$
		ESI-MS [M+H]+ 664
	175.	2-[4-(2,5-Dichlor-benzyloxy)-phenoxy]-propionyl-D-Val-Pyr-
20		$NH-CH_2-5-(3-am)-thioph$
20	455	ESI-MS [M+H]+ 672
- {	176.	2-[4-(4-Chlor-3-Nitro-benzyloxy)-phenoxy]-propionyl-D-Val-
- (:	Pyr-NH-CH ₂ -5-(3-am)-thioph
	1.55	ESI-MS [M+H] + 683
- }	177.	2-[4-(2-Chlor-benzyloxy)-phenoxy]-propionyl-D-Val-Pyr-NH-
25		$CH_2-5-(3-am)-thioph$
}	178.	ESI-MS [M+H]+ 638
	1/8.	2-[4-(4-Nitro-benzyloxy)-phenoxy]-propionyl-D-Val-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
- 1	179.	ESI-MS [M+H]+ 649 2-[4-(4-Methoxycarbonyl-benzyloxy)-phenoxy]-propionyl-
30	1/3.	
		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
1	180.	ESI-MS [M+H]+ 662 2-[4-(4-Fluor-3-Trifluormethyl-benzyloxy)-phen-
	100.	oxy]-propionyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS (M+H) + 690
35	181.	2-[4-(2-Chlor-3-Isopropyl-benzyloxy)-phenoxy]-propionyl-
		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 680
	182.	2-(4-Benzyloxy-phenoxy)-propionyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
40		ESI-MS (M+H) + 604
	183.	2-[4-(4-Chlor-benzyloxy)-phenoxy]-propionyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] + 638
	184.	2-[4-(2,5-Dichlor-benzyloxy)-phenyl]-3-methyl-butyryl-Pyr-
45	-	NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 585

****)n/010n9	144
_	105	2-[4-(2,5-Dichlor-benzyloxy)-phenyl]-3-methyl-butyryl-
	185.	D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	1	
L		ESI-MS [M+H]+ 684 2-[4-(4-Chlor-3-Nitro-benzyloxy)-phenyl]-3-methyl-butyryl-
	186.	2-[4-(4-Chior-3-Nitro-Benzyrok) problem
5		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	ļ	ESI-MS [M+H] + 695
ţ	187.	ESI-MS [M+H] + 695 2-[4-(4-Nitro-benzyloxy)-phenyl]-3-methyl-butyryl-D-Val-
		Pyr-NH-CH ₂ -5-(3-am)-thioph
Ì		
	188.	2-[4-(4-Methoxycarbonyl-benzyloxy)-phenyl]-3-Methyl
10	100.	butyryl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		1
	189.	ESI-MS [M+H] + 674 2-[4-(4-Fluor-3-Trifluormethyl-benzyloxy)-phenyl]-3-methyl-
	105.	butyry1-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	į	1
15	190.	ESI-MS [M+H] * 702 2-(4-benzyloxy-phenyl)-3-methyl-butyryl-D-Val-Pyr-NH-
	190.	CII ₂ =5-(3-am)-thioph
	1201	ESI-MS [M+H] + 616 2-[4-(4-Chlor-benzyloxy)-phenyl]-3-methyl-butyryl-D-Val-
	191.	Pyr-NH-CH ₂ -5-(3-am)-thioph
		(40, 41) + (50)
20		ESI-MS [M+H] + 650 2-[4-(2,5-Dichlor-benzyloxy)-phenoxy]-propionyl-Pyr-NH-
	192.	$CH_2-5-(3-am)-thioph$
	1	
		ESI-MS [M+H]+ 573 2-[4-(4-Nitro-benzyloxy)-phenoxy]-propionyl-Pyr-NH-
	193.	2-[4-(4-NICLO-DelizyToxy) process 1
2:	5	CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 550 2-[4-(4-Methoxycarbonyl-benzyloxy)-phenoxy]-propionyl-Pyr-
	194.	2-[4-(4-Methoxycarbony - ben-y-ben-y
		$NH-CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] + 563 2-[4-(2-Chlor-3-Isopropyl-benzyloxy)-phenoxy]-propionyl-
3	o 195.	2-[4-(2-Chior-3-1sopiopy: benzy 1011), part 1011
_	_	Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 581
	196	
	-	$CH_2-5-(3-am)-thioph$
_		ESI-MS [M+H] + 505 . 2-[4-(4-Chlor-benzyloxy)-phenoxy]-propionyl-Pyr-NH-
3	5 197	. 2-[4-(4-Chior-benzyloxy)-phenoxy) prop-on-
		CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 539 . 2-[4-(4-Chlor-3-Nitro-benzyloxy)-phenoxy]-propionyl-Pyr-NH-
	198	
		$CH_2-5-(3-am)-thioph$
4	10	ESI-MS [M+H]+ 596
	199	
		CH ₂ -5-(3-am)-thioph
	١	ESI-MS [M+H] + 628
	200	
	45	$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H]+ 639

ſ	201	2 /2 Northbrill methods 1 homes 2 D Vol Den MV
	201.	3-(2-Naphthylmethoxy)-benzoyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
į		ESI-MS [M+H] + 610
1	202.	3-(4-Methyl-3-Nitro-benzyloxy)-benzoyl-D-Val-Pyr-NH-
5		$CH_2-5-(3-am)-thioph$
1		ESI-MS [M+H] + 619
	203.	3-(4-Nitro-benzyloxy)-benzoyl-D-Val-Pyr-NH-
ļ		$CH_2-5-(3-am)-thioph$
- 1		ESI-MS [M+H]+ 605
10	204.	3-(4-Fluor-3-Trifluormethyl)-benzyloxy)-benzoyl-D-Val-Pyr-
10		$NH-CH_2-5-(3-am)-thioph$
l		ESI-MS [M+H] + 646
}	205.	3-(2-Chlor-3-Isopropyl-benzyloxy)-benzoyl-D-Val-Pyr-NH-
	203.	$CH_2-5-(3-am)-thioph$
		-
15	206.	ESI-MS [M+H]+ 636 3-Benzyloxybenzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	206.	
	207	ESI-MS [M+H] + 560
	207.	3-(4-Chlorbenzyloxy)-benzoyl-D-Val-Pyr-NH-
1		$CH_2-5-(3-am)-thioph$
20	000	ESI-MS [M+H]+ 594
20	208.	3-(2,5-Dichlor-benzyloxy)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] + 642
	209.	3-(4-Chlor-3-Nitro-benzyloxy)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
25		ESI-MS [M+H] + 653
Ì	210.	3-(4-Methyl-3-Nitro-benzyloxy)-phenylacetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] + 633
	211.	3-(4-Nitro-benzyloxy)-phenylacetyl-D-Val-Pyr-NH-
30		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] + 619
	212.	3-(4-Fluor-3-Trifluormethyl-benzyloxy)-phenylacetyl-D-Val-
		Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 660
	213.	3-(2-Chlor-3-Isopropyl-benzyloxy)-phenylacetyl-D-Val-Pyr-
35		NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 650
	214.	3-Benzyloxy-phenylacetyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 574
	215.	3-(4-Chlor-benzyloxy)-phenylacetyl-D-Val-Pyr-NH-
40		CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 608
	216.	3-[3-(2,5-Dichlor-benzyloxy)-phenyl]-acryloyl-D-Val-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 654
• -	217.	3-[3-(4-Chlor-3-Nitro-benzyloxy)-phenyl]-acryloyl-D-Val-
45	211.	
		Pyr-NH-CH ₂ -5-(3-am)-thioph
	L	ESI-MS [M+H]+ 665

		- lovell-D-Val-
٦	218.	3-[3-(4-Methyl-3-Nitro-benzyloxy)-phenyl]-acryloyl-D-Val-
- 1		Pyr-NH-CH ₂ -5-(3-am)-thioph
- 1		ESI-MS [M+H] + 645
t	219.	ESI-MS [M+H] + 645 3-[3-(4-Nitro-benzyloxy)-phenyl]-acryloyl-D-Val-Pyr-NH-
- 1	223.	CH ₂ -5-(3-am)-thioph
5	i	(21
}		ESI-MS [M+H] 631 3-[3-(4-Fluor-3-Trifluormethyl-benzyloxy)-phenyl]-acryloyl-
1	220.	3-[3-(4-r1001-)-11111402101-)-thioph
- 1		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 672
10	221.	3-[3-(2-Chlor-3-Isopropyl-benzyloxy)-phenyl]-acryloyl-
		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] + 662
	222.	3-(3-Benzyloxy-phenyl)-acryloyl-D-Val-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
15	223.	ESI-MS [M+H] 586 4-Phenylbenzolsulfonyl-β-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	1	(10.11) + 520
	224.	4-Phenylbenzolsulfonyl-D-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
	224.	POT NG (NATITI+ 529
	225.	4-Phenylbenzolsulfonyl-Sar-Pyr-NH-CH ₂ -5-(3-am)-thioph
	i	POT A 60 (DA / 113 + 529)
20	1	4-Phenylbenzolsulfonyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	226.	
		ESI-MS [M+H] ⁺ 524 $C_6H_5-C\equiv C-CO-\beta-Ala-Pyr-NH-CH_2-5-(3-am)-thioph$
	227.	
		ESI-MS [M+H] ⁺ 450 $C_6H_5-C\equiv C-CO-D-Asp-Pyr-NH-CH_2-5-(3-am)-thioph$
25	228.	C6H5-C=C-CO-D-ASP-PYI-NA-Ch2 5 (5 call) color
		ESI-MS [M+H] ⁺ 494 C_{6H_5} -C=C-CO-D-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	229.	
		ESI-MS [M+H]+ 535
	230.	
2.	.	ESI-MS [M+H]+ 530
3(231.	4-Benzoylbenzoyl-D-Asp-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 574
	232.	4-Benzoylbenzoyl-D-Arg-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] ⁺ 615
	233.	C ₆ H ₅ -C=C-CO-Gly-Pyr-NH-CH ₂ -5-(2-am)-thioph
3	5	ESI-MS [M+H] ⁺ 436
	234.	$C_6H_5-C\equiv C-CO-\beta-Ala-Pyr-NH-CH_2-5-(2-am)-thioph$
		ESI MS (M+H)+ 450
	235.	C ₆ H ₅ -C\(\begin{array}{c} \ext{C}\(\begin{array}{c} \text{C}\(\begin{array}{c} \text{C}\(\beta\)-\(\begin{array}{c} \text{C}\(\beta\)-\(\beta\)-\(\begin{array}{c} \text{C}\(\beta\)-\(
		FSLMS [M+H]+ 450
	n 236	Thioph
4	0 236	ESI_MS (M+H)+ 478
	237	$\frac{1}{2}$ $\frac{1}$
	231	ECL MC (M+H)+ 516
	238	- 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	1238	ECI MC [M+H] + 530
4	15 330	
	239	
		ESI-MS [M+H] ⁺ 530

	240.	4-Benzoylbenzoyl-D-Val-Pyr-NH-CH ₂ -5-(2-am)-thioph
		ESI–MS [M+H] ⁺ 558
	241.	4-Benzoylbenzoyl-D-Lys-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI_MS [M+H] ⁺ 587
5	242.	4-Benzoylbenzoyl-D-Orn-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] ⁺ 573
	243.	4-Benzoylbenzoyl-D-His-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 596
	244.	4-Benzoylbenzoyl-D-Dab-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 559
10	245.	4-Benzoylbenzoyl-D-Dap-Pyr-NH-CH ₂ -5-(3-am)-thioph
1		ESI-MS [M+H]+ 545
	246.	4-Benzoylbenzoyl-D-Arg-Pyr-NH-CH ₂ -5-(2-am)-thioph
	'	ESI-MS [M+H]+615
	247.	4-Benzoylbenzoyl-D-Lys-Pyr-NH-CH ₂ -5-(2-am)-thioph
15		ESI-MS [M+H]+ 587
	248.	4-Benzoylbenzoyl-D-Orn-Pyr-NH-CH ₂ -5-(2-am)-thioph
		ESI-MS [M+H]+ 573
Ì	249.	4-Benzoylbenzoyl-D-His-Pyr-NH-CH ₂ -5-(2-am)-thioph
1		ESI-MS [M+H]+ 596
20	250.	4-Benzoylbenzoyl-D-Dab-Pyr-NH-CH ₂ -5-(2-am)-thioph
		ESI-MS (M+H)+ 559
Ì	251.	4-Benzoylbenzoyl-D-Dap-Pyr-NH-CH ₂ -5-(2-am)-thioph
		ESI-MS [M+H] ⁺ 545
	252.	9,10,10-Trioxo-9,10-dihydro-1016-Thioxanthen-3-carbonyl-
25		D-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI–MS [M+H] ⁺ 592
	253.	9,10,10-Trioxo-9,10-dihydro-1016-Thioxanthen-3-carbonyl-
j		Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
Į		ESI-MS [M+H] ⁺ 578
	254.	9,10,10-Trioxo-9,10-dihydro-1016-Thioxanthen-3-carbonyl-
30		D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] ⁺ 620
1	255.	9,10-Dioxo-9,10-dihydro-anthracen-2-carbonyl-D-Ala-Pyr-NH-
İ		$CH_2-5-(3-am)-thioph$
		ESI–MS [M+H] ⁺ 556
35	256.	9,10-Dioxo-9,10-dihydro-anthracen-2-carbonyl-Gly-Pyr-NH-
ł		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] ⁺ 542
[257.	9,10-Dioxo-9,10-dihydro-anthracen-2-carbonyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
40		ESI-MS [M+H]+ 584
	258.	4-Benzoylbenzoyl-D-Ser-Pyr-NH-CH ₂ -5-(3-am)-thioph
Į		ESI–MS [M+H] ⁺ 546
	259.	4-Aminobenzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
İ		ESI–MS [M+H] ⁺ 441
45	260.	4-Methylaminobenzoyl-D-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
-3		ESI-MS [M+H] ⁺ 455
ſ	261.	4-Aminobenzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] ⁺ 469
-		

VO 00/61608		148
		4-Methylaminobenzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
2	1	
		ESI-MS[M+H]+483 3-Aminobenzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
2		
L		ESI-MS[M+H]+469 4-(4-HOOC-Benzoy1)-benzoy1-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
5 2	64.	4-(4-HOOC-Benzoy1)-Benzoy1
		ESI-MS [M+H]+602 4-(3-Phenyl-ureido)-benzoyl-D-Ala-Pyr-NH-
12	265.	4-(3-Phenyl-ureido)-benzoyi-b Ald 17
		$CH_2-5-(3-am)-thioph$
1		ESI-MS [M+H]+ 560
	266.	ESI-MS [M+H] 560 3-(3-Benzyl-ureido)-benzoyl-D-Ala-Pyr-NH-
10		CH ₂ -5-(3-am)-thioph
 	267.	3-(3-Phenyl-ureido)-benzoyl-D-Ald-Pyl-Ni
}		CH ₂ -5-(3-am)-thioph
1		ESI-MS [M+H]+ 560
15	268.	ESI-MS [M+H]+560 4-(3-Phenyl-ureido)-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
	269.	ESI-MS [M+H]+546 3-(3-Benzyl-ureido)-benzoyl-Gly-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H]+ 560
	270.	Tarrella (Valviana)
20		ESI-MS [M+H]+ 546
	271.	
	272.	
		$CH_2-5-(3-am)-thioph$
	, I	
25	273.	
		CH ₂ -5-(3-am)-thioph
	ł	
	274	
	12/1	$CH_2-5-(3-am)-thioph$
30	o	
	275	
	12,3	
	276	
	12,0	$CH_2-5-(3-am)-thioph$
3	5	
•	277	
	12''	$CH_2-5-(3-am)-thioph$
	278	
	1	CH ₂ -5-(3-am)-thioph
4	10	
	1==	
	27	max 240 (24) 111 + 518
	<u> </u>	
	28	U. 4-(4-CIIIUI-Delia, 2001, 7
	45	$CH_2-5-(3-am)$ -thioph
		ESI-MS [M+H] ⁺ 552

		149
	281.	3-(4-Benzyloxy-phenyl)-propionyl-Gly-Pyr-NH-
	l	CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] ⁺ 546
	282.	3-[4-(4-Chlor-Benzyloxy)-phenyl]-propionyl-Gly-Pyr-NH-
_	202.	
5	1	$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] ⁺ 580
	283.	4-Benzyloxy-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		ESI-MS [M+H] ⁺ 560
	284.	4-(4-Chlor-Benzyloxy)-benzoyl-D-Val-Pyr-NH-
4.0		$CH_2-5-(3-am)-thioph$
10	i	ESI-MS [M+H] ⁺ 594
	285.	3-(4-Benzyloxy-phenyl)-propionyl-D-Val-Pyr-NH-
	205.	
İ		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H] ⁺ 588
15	286.	3-[4-(4-Chlor-Benzyloxy)-phenyl]-propionyl-D-Val-Pyr-NH-
7.3		$CH_2-5-(3-am)-thioph$
		ESI-MS [M+H]+ 622
	287.	phenyl-C=C-CO-D-Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 518
	288.	phenyl-C=C-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
20		MS [M+H] + 466
	289.	4-benzoylbenzoyl-D-Abu-Pro-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 546
	290.	4-benzoylbenzoyl-D-Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph
	250.	1 · · · · · · · · · · · · · · · · · · ·
	201	MS [M+H] + 598
25	291.	HOOC-p-C ₆ H ₄ -CH ₂ -D-Pro-Pyr-NH-CH ₂ -5-(3-am)-thioph
	200	MS [M+H] + 482
	292.	HOOC-p-C ₆ H ₄ -CH ₂ -D, L-thienyl(3)glycin-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
		MS [M+H] + 524
30	293.	p-COOH-benzyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
30		MS [M+H] + 470
	294.	4-benzoyl-benzoyl-Acpc-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 570
	295.	4-benzoyl-benzoyl-N-Me-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 572
35	296.	p-carboxy-benzyl-D-Ile-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 498
	297.	$HOOC-p-C_6H_4-CH_2-D-Nva-Pyr-NH-CH_2-5-(3-am)-thioph$
	2.57.	
	200	MS [M+H] + 484
	298.	$HOOC-p-C_6H_4-CH_2-D-Leu-Pyr-NH-CH_2-5-(3-am)-thioph$
40		MS [M+H] + 498
	299.	4-benzoylbenzoyl-D-Nva-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS (M+H) + 558
	300.	p-carboxy-benzyl-D-Ala-Pyr-NH-CH ₂ -5-(3-am)-thioph
ļ		MS [M+H] + 456
45	301.	p-carboxy-benzyl-Acpc-Pyr-NH-CH ₂ -5-(3-am)-thioph
40		MS [M+H] + 496
	302.	$HOOC-p-C_6H_4-CH_2-N-Me-D-Val-Pyr-NH-CH_2-5-(3-am)-thioph$
		MS [M+H] + 498
		[22.12] #20

WO 00/61608 150		
	p-benzoyl-benzyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph	
303.		
	MS [M+H] + 530 2-carboxy-benzyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph	
304.	·	
	MS [M+H]+ 470 (4-COOH-CH=CH)-benzyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph	
5 305.		
	MS [M+H] + 496 4-carboxy-benzyl-D-Abu-3-Me-Pro-NH-CH ₂ -5-(3-am)-thioph	
306.		
	MS $[M+H]^+$ 486	
307.		
	MS [M+H] + 486	
10 308.	MS [M+H] 400 2-(carboxymethyloxy)-benzyl-D-Abu-Pyr-NH-	
	$CH_2-5-(3-am)-thioph$	
	500	
309.	-1 -1 -1 -1 -1 -1 -1 -1	
15 310.		
	CH ₂ -5-(3-am)-thioph	
[
311		
20 312	$MS [M+H] + 490$ $HOOC-p-C_6H_4-CH_2-D-Abu-Pyr-NH-CH_2-5-(2-am)-thioph$	
313		
314	MS $[M+H]$ + 556 . $HOOC-p-C_6H_4-CH_2-D-Pro-Pyr-NH-CH_2-5-(2-am)-thioph$	
25 315	MS $[M+H]^+$ 482 . $HOOC-p-C_6H_4-CH_2-D-Pip-Pyr-NH-CH_2-5-(3-am)-thioph$	
316	MS $[M+H]^+$ 473 $HOOC-p-C_6H_4-CH_2-D-Abu-Pro-NH-CH_2-5-(3-am)-thioph$	
317	MS [M+H] + 472 . 4-carboxy-benzyl-D-allo-Ile-Pyr-NH-CH ₂ -5-(3-am)-thioph	
30	MS $[M+H]^+$ 498	
311	MS $[M+H]$ + 498 3. $[2-HOOC-thienyl(5)-CH_2-D-Abu-Pyr-NH-CH_2-5-(3-am)-thioph$	
	MS $[M+H]^+$ 476	
31	MS [M+H] + 476 9. 2-COOH-furanyl(5)-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	MS [M+H] + 460	
35 32	MS $[M+H]$ + 460 0. $[HOOC-p-C_6H_4-CH_2-D-Nle-Pyr-NH-CH_2-5-(3-am)-thioph$	
	MS [M+H] + 498	
32	MS [M+H] + 498 1. benzoyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	MS $[M+H]$ + 440	
32	MS $[M+H]^+$ 440 2. $[4-MeSO_2-C_6H_4-CH_2-D-Abu-Pyr-NH-CH_2-5-(3-am)-thioph$	
40	MS $[M+H]^+$ 504	
32	MS $[M+H]^+$ 504 3. phenylsulfonyl-D-Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph	
1	MS [M+H] + 530	
3:	MS [M+H] + 530 24. phenylacetyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph	
	25. phenylsulfonyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-throph	
45		
3	MS $[M+H]$ + 476 26. $[naphthyl(1)-CH_2CO-D-Abu-Pyr-NH-CH_2-5-(3-am)-thioph]$	
٦	MS [M+H]+ 504	
L		

		131
	327.	naphthyl-(2)-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 504
	328.	indanyl(1)-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 480
5	329.	benzhydryl-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
_		MS [M+H] + 530
Ì	330.	2-Cl-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 488
	331.	2,6-dichlorophenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 524
10	332.	2-methyl-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	334.	MS [M+H] + 468
- 1	333.	biphenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	555.	MS [M+H] + 530
}	334.	p-methyl-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
15	334.	MS [M+H] + 468
-	335.	3-methyl-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
1	333.	
Į	226	MS [M+H] + 468
	336.	2-nitro-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	338	MS [M+H] + 499
20	337.	fluorenyl(1)-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
ļ	330	MS [M+H] + 542
	338.	2-Br-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
ļ		MS [M+H] + 534
	339.	2-fluoro-phenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
25	2.40	MS [M+H] + 472
	340.	2-phenyl-isobutyryl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
ļ	343	MS [M+H] + 482
l	341.	p-benzyloxy-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	340	MS [M+H] + 560
30	342.	2,6-dichlorophenyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(2-am)-thioph
7	242	MS [M+H] + 524
[343.	2,6-dichlorophenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
1		MS [M+H] + 538
1	344.	2,6-dichloro-phenyl-CH ₂ CO-D-Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph
1		MS [M+H] + 578
35	345.	naphthyl(1)-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
Ļ		MS [M+H] + 490
	346.	cyclopentyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
Ĺ		MS [M+H] + 446
ł	347.	adamanty1(1)-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
40		MS [M+H] + 498
	348.	cyclohexyl-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 460
Ī	349.	thieny1(2)-CH ₂ CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 460
ا _ ا	350.	naphthyl(2)-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
45		MS [M+H] + 490
Ì	351.	naphthyl(1)-CH ₂ -D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
l		MS [M+H] + 476

WU	152	
_	250	naphthyl(2)-CH ₂ -D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
1	352.	
Į		MS [M+H] + 476 Benzyloxycarbonyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
Ì	353.	
ļ		MS [M+H] + 470 4-MeOOC-benzyl-D-Val-Pyr-NH-CH ₂ -5-(3-ham)-thioph
5	354.	
1		MS [M+H]+ 514 2-phenyl-2-hydroxy-acetyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	355.	
		MS [M+H] + 470 2-phenyl-2-methoxy-acetyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	356.	
10		MS [M+H] + 484
10	357.	MS [M+H] 404 2-(p-isobutyl-phenyl)propionyl-D-Abu-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
	Ì	MS $[M+H]$ + 524
	358.	MS [M+H] + 524 (S)-2-phenyl-propionyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		1
15	359.	MS [M+H] + 468 (R)-2-phenyl-propionyl-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
	1	
	360.	
	361.	
20	ì	
21	362.	The City of Darkhy-Dur-NH-(Ha-b-(3-dill)-City opin
		wg (w.w)+ 512
	363	OTT CO. D. ANDE DUTENHE
		CH ₂ -5-(3-am)-thioph
2	364	
	1304	
	365	
	1303	(ac. 27) + 67A
	366	
3	10	4
	367	
	30,	
	368	
	1300	120 121 + 406
	35 369	
•	33 30.	· •
	370	
	1311	
	37	
	40 37	14 CO D Aby-Dyr-MH-("Ho-D-("D-CIII") - CIII OPII
	31	
		The property of the property o
	137	
		MS [M+H]+ 480 4. 2,4,6-trimethylphenyl-CH ₂ CO-D-Val-Pyr-NH-
	45 37	4. 2,4,6-trimethylpnenyl-Ch2CO-b-val lyl m
		$CH_2-5-(3-am)$ -thioph
	L_	MS [M+H] + 510

		153
	375.	indanyl(1)-CO-D-Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H]+ 534
	376.	indanyl(1)-CO-D-Leu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H]+ 508
5	377.	indanyl(1)-CO-D-Phe-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H]+ 542
	378.	anthracenyl(1)-CO-D-Abu-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H]+ 540
	379.	benzylsulfonyl-D-Cha-Pyr-NH-CH ₂ -5-(3-am)-thioph
10		MS [M+H]+ 558
_ `	380.	p-hexyloxy-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
ļ		MS [M+H]+ 554
Į	381.	2-(p-(phenyloxy)phenyl)-acetyl-D-Val-Pyr-NH-
		$CH_2-5-(3-am)-thioph$
1.		MS [M+H]+ 560
15	382.	(R)-indanyl (1) -CO-D-Abu-Pyr-NH-CH ₂ -5- $(3$ -am $)$ -thioph
		MS [M+H]+ 480
	383.	indanyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(2-am)-thioph
ļ		MS [M+H] + 494
	384.	(S)-indanyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
20	3.0-	MS [M+H]+ 494
	385.	butylsulfonyl-D-Phe-Pyr-NH-CH ₂ -5-(3-am)-thioph
	306	MS [M+H] + 518
ļ	386.	(3,5-bistrifluormethyl)phenyl(1)-CH ₂ CO-D-Val-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
25	207	MS [M+H] + 604
	387.	(3-trifluormethy1)pheny1(1)-CH ₂ CO-D-Val-Pyr-NH-
		CH ₂ -5-(3-am)-thioph
	388.	MS [M+H] + 536 1-phenyl-cyclopropyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
ł	388.	
30	389.	MS $[M+H]$ + 494 (S)-indanyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	309.	MS [M+H] + 494
ŀ	390.	p-isopropyl-phenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	300.	p=1 so $p=1$ so p
1	391.	p-butoxyphenyl-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
35	JJ1.	MS [M+H] + 540
	392.	phenyl-CH(iPr)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	332.	MS [M+H] + 510
ŀ	393.	1-(4-Cl-phenyl)-cyclobutyl(1)CO-D-Val-Pyr-NH-
Į	<i>J J J J</i> .	CH ₂ -5-(3-am)-thioph
		MS [M+H] + 542
40	394.	2-carboxy-thienyl(5)-CH ₂ -D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 490
	395.	1-phenyl-cyclopentyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 522
	396.	adamanty1(1)-CH ₂ CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
45		MS [M+H] + 526
	397.	fluorenyl(1)-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
	55	MS [M+H] + 542
1		mo [w.n] 249

		134
Г	398.	benzhydryl-CO-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 544
Ì	399.	$\frac{MS \left(M+H\right)^{1/3} 44}{(R)-indanyl(1)-CO-D-Val-Pyr-NH-CH_2-5-(2-am)-thioph}$
Ì		MS $[M+H]^+$ 494
5	400.	MS [M+H] = 434 $(S)-indanyl(1)-CO-D-Val-Pyr-NH-CH2-5-(2-am)-thioph$
1		MS [M+H] + 494
	401.	p-COOH-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS $[M+H]^+$ 498
	402.	MS [M+H] 498 2-carboxy-furyl(5)-CH ₂ -D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
10		MS $[M+H]^+$ 474
TO	403.	p-COOMe-benzoyl-D-Val-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 512
	404.	m-COOH-phenyl-SO ₂ -D-Chg-Pyr-NH-CH ₂ -5-(3-am)-thioph
		MS [M+H] + 574
	405.	1 "
15		MS [M+H] + 574

In der folgenden Tabelle werden die C_{1S} und C_{1R} -Inhibitionswerte für einige erfindungsgemäße Verbindungen aufgeführt.

20 Tabelle

	Beispiel Nr.	C _{1S} IC ₅₀ [μmol/1] gemäß Beispiel B	C _{1R} IC ₅₀ [μmol/1] gemäß Beispiel A
	29	0,6	0,9
25 —	22	0,6	0,9
-	23	0,8	0,5
-	24	0,8	>100
-	42	1	0,7
· -	49	1	1
` ` -	21	1	4
-	20	2	0,6
-	35	2	2
-	41	2	2
35 _	15	2	3
-	26	2	>100
-	50	3	20
<u> </u>	4	3	30
40		3	40
	44	3	40
L	51	4	10
· L	52	4	40
	17	4	>100
45	7	5	10
	38	3	

	Beispiel Nr.	C _{1S} IC ₅₀ [μmol/l] gemäß Beispiel B	C _{1R} IC ₅₀ [μmol/l] gemäß Beispiel A
ì	30	5	>100
5	6	6	
	25	6	50
	1	6	>100
10	8	6	>100
	18	7	10
	54	8	
	5	10	
15	39	10	2
	31	10	3
	43	10	6
	13	10	30
	45	20	6
	53	20	8
20	27	20	10
	46	20	40
25	2	20	50
	34	20	70
	9	20	>100
	28	20	>100
	16	20	>100
	10	20	>100
30	14	20	>100
	32	30	10
	19	30	30
35	48	30	50
	3	30	>100
	11	30	>100
	12	30	>100
	35	40	20
	33	40	40
40	47	50	10
44 U			

DNIC ---- 10-

45

BNSDOCID: <WO_____0061608A2_I_>

Patentansprüche

Verwendung von Verbindungen der allgemeinen Formel I,
deren Tautomeren, pharmakologisch verträglichen Salzen und
Prodrugs, zur Herstellung von Arzneimitteln zur Behandlung
oder Prophylaxe von Krankheiten, die durch teilweise oder
vollständige Inhibition von C_{1s} oder C_{1r} gelindert oder
geheilt werden, wobei Formel I die folgende allgemeine
Struktur bedeutet:

A-B-D-E-G-K-L (I).

steht für H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, Α C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{1-3} -alkyl- C_{3-8} -cycloalkyl, 15 C_{1-3} -Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H-, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl; R^{A2} - R^{A3} können zusammen auch einen Ring mit 3 bis 7 Kohlenstoffatomen bilden), RA4 $OCO_2(R^{A4} \text{ gleich } C_{1-6}-Alkyl, C_{1-3}-Alkylaryl), R^{A4}OCONR^{A2},$ 20 NO_2 , $R^{A4}CONR^{A2}$, $R^{A1}O$, $R^{A2}R^{A3}N$, $R^{A1}S$, $HO-SO_2$, $R^{A2}R^{A3}N-SO_2$, C1, Phenoxy, Br, F, Tetrazolyl, H₂O₃P, R^{A1}-N(OH)-CO, RA1RA2NCONRA3, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, OCH3, 25 CF₃, CH₃, NO₂ substituiert sein kann;

B steht für

30 $-(CH_2)_{1B}-L^B-(CH_2)_{mB}-$ mit

 $1^{B} = 0, 1, 2, 3;$ $m^{B} = 0, 1, 2, 3, 4, 5;$

35

40

L^B gleich

5
$$-\frac{R^{B1}}{C}$$
 $(CH_2)_{p^B}$ $(CH_2)_{p^B}$ $(CH_2)_{n^B}$ $($

$$-C \equiv C - \cdot + R^{B3}$$

$$-R^{B4} - R^{B3} + R^{B4}$$

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH_3 , CF_3 , Br, Cl, F substituiert sein kann, oder mit $R^8OOC-(R^8$ gleich H, C_{1-3} -alkyl) substituiert sein kann;

mit $n^{B} = 0, 1, 2;$ $p^{B} = 0, 1, 2;$

 $q^{B} = 1, 2, 3;$

40 $R^{B1} \mbox{ gleich H, C_{1-6}-Alkyl, C_{0-3}-Alkylaryl, C_{0-3}-Alkylheteroaryl, C_{0-3}-Alkyl-C_{3-8}-cycloalkyl, OH, OCH_3;} \label{eq:RB1}$

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

BNSDOCID: <WO_____0061608A2_I_>

30

35

DNC ---- 15

 R^{B3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, $R^{B5}OCO$ (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), $R^{B6}-O$ (R^{B6} gleich H, $C_{1-6}-Alkyl$), F, Cl, Br, NO2, CF3;

5

gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

 R^{B1} und R^{B2} können auch miteinander verbunden sein;

10

gleich CH_2 , O, S, NH, N- C_{1-6} -Alkyl; T^{B}

gleich O, S, NH, N-C₁₋₆-Alkyl; X^{B}

15

gleich =CH-, =C-C₁₋₆-Alkyl, =N-, =C-Cl;

 Z^B

 $\label{eq:UB} \begin{array}{lll} & & & | & & | \\ U^B & \text{gleich} & = \text{CH-}, & = \text{C-}\text{C}_{1-6}-\text{Alkyl}, & = \text{N-}, & = \text{C-}\text{O-}\text{C}_{1-3}-\text{Alkyl}; \end{array}$

20

 $\label{eq:VB} V^{\text{B}} \quad \text{gleich =CH-, =C-C$_{1-6}$-Alkyl, =N-, =C-O-C$_{1-3}$-Alkyl.}$

steht weiterhin für В

 $-(CH_2)_{1^B}-L^B-M^B-L^B-(CH_2)_{m^B}$, wobei

 1^{B} und m^{B} oben angegebene Bedeutung besitzen und die beiden 25 Gruppen L^{B} unabhängig voneinander für die gleichen oder verschiedene genannten Reste stehen;

bedeutet Einfach-Bindung, O, S, CH2, CH2-CH2, CH2-O, MB O-CH₂, CH₂-S, S-CH₂, CO, SO₂, CH=CH, C \equiv C; 30

В

kann weiterhin stehen für -adamantyl(1)-, adamantyl(2)-, -adamantyl(1)- CH_2 -, -adamantyl(2)- CH_2 -,

35

40

A-B kann weiterhin stehen für

D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C₁₋₄-Alkyl, C₀₋₃-Alkyl-aryl), SO₂, NR^{D1}SO₂;

E steht für eine Einfach-Bindung oder für

15
$$\begin{array}{c|c}
 & R^{E2} \\
 & (CH_2)_{mE} \\
\hline
 & N \longrightarrow (CH_2)_{1E} \longrightarrow (CH_2)_{pE} \longrightarrow (CH_2)_{nE} \\
 & (CH_2)_{kE} & (CH_2)_{nE} \\
\hline
 & R^{E2} \\
 & R^{E3}
\end{array}$$

mit

25

30

40

 $k^{E} = 0, 1, 2;$ $1^{E} = 0, 1, 2;$ $m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$ $p^{E} = 0, 1, 2;$

RE1 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl, Heteroaryl, C₃₋₈-Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, OH, O-C₁₋₆-Alkyl, F, Cl, Br tragen können;

 R^{E1} bedeutet weiterhin $R^{E4}OCO-CH_2-$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$);

RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl, Heteroaryl, Tetrahydropyranyl, Tetrahydrothiopyranyl, C₃₋₈-Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, OH, O-C₁₋₆-Alkyl, F, Cl, Br, CH(CH₃)OH, CH(CF₃)₂ tragen können;

BNSDOCID: <WO_____0061608A2_I_>

bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Aryl, Heteroaryl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, OH, O- C_{1-6} -Alkyl, F, Cl, Br tragen können;

 R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, CH=CH-CH=CH- CH_2 -Gruppen bilden;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

15 R^{E2} steht weiterhin für COR^{E5} (R^{E5} gleich OH, $O-C_{1-6}$ -Alkyl, OC_{1-3} -Alkylaryl), $CONR^{E6}R^{E7}$ (mit R^{E6} bzw. R^{E7} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl);

E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;

G bedeutet

25 (CH₂)₁G

mit $1^G = 2$, 3, 4 und 5, wobei eine CH_2 -Gruppe des Rings durch 0, S, NH, NC_{1-3} -Alkyl, CHOH, $CHOC_{1-3}$ -Alkyl, $C(C_{1-3}$ -Alkyl)₂, $CH(C_{1-3}$ -Alkyl), CHF, CHCl, CF_2 ersetzt sein kann;

RG1 C (CH₂) nG (CH₂) nG N O

mit

 $\begin{array}{rcl}
 \mathbf{m}^{\mathbf{G}} & = 0, 1, 2; \\
 \mathbf{n}^{\mathbf{G}} & = 0, 1, 2;
 \end{array}$

 $p^{G} = 1, 2, 3, 4;$

45 RG1 H, C₁-C₆-Alkyl, Aryl;

RG1 und RG2 können zusammen auch eine -CH=CH-CH=CH-Kette bil-den;

5

weiterhin steht G für

RG3 | (CH₂)_rG (CH₂)_rG

15 mit

q^G 0, 1, 2; r^G 0, 1, 2;

20 RG3 H, C₁-C₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl;

 R^{G4} H, $C_1-C_6-Alkyl$, $C_{3-8}-Cycloalkyl$, Aryl (insbesondere Phenyl, Naphthyl);

25 K bedeutet

$$n^{K} = 0, 1, 2, 3;$$

30

 Q^{K} gleich C_{2-6} -Alkyl, wobei die Kette geradkettig oder verzweigt sein kann und wobei bis zu zwei CH_{2} -Gruppen durch O oder S ersetzt sein können;

35

40

QK gleich

15
$$X^{K}$$
 Y^{K}
 $(CH_{2})_{n^{K}}$
 W^{K}
 $(CH_{2})_{n^{K}}$
 W^{K}
 $(CH_{2})_{n^{K}}$

20 mit $\label{eq:RK1} R^{\text{K1}} \ \ \text{gleich H, C$_{1-3}$-Alkyl, OH, O-C$_{1-3}$-Alkyl, F, Cl, Br;}$

 R^{K2} gleich H, C_{1-3} -Alkyl, $O-C_{1-3}$ -Alkyl, F, Cl, Br;

gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-Cl;

ZK gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-Cl;

UK gleich = CH-, = C-C₁₋₆-Alkyl, = N-, = C-O-C₁₋₃-Alkyl;

 $V^{K} gleich = CH-, = C-C_{1-6}-Alkyl, = N-, = C-O-C_{1-3}-Alkyl;$

WK gleich CH — oder N — , wobei im letzteren

Fall L keine Guanidingruppe sein darf;

 $n^{K} = 0, 1, 2;$ $p^{K} = 0, 1, 2;$ $q^{K} = 1, 2;$

mit

RL1 gleich H, OH, O- C_{1-6} -Alkyl, O- $(CH_2)_{0-3}$ -Phenyl, $CO-C_{1-6}$ -Alkyl, CO_2-C_{1-6} -Alkyl, CO_2-C_{1-3} -Alkylaryl.

10

- Verwendung von Verbindungen der allgemeinen Formel I nach Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung oder Prophylaxe von
- Reperfusionsschäden nach Ischämien; Ischämische Zustände treten ein während z.B. Operationen unter Zuhilfenahme von Herz-Lungenmaschinen; Operationen, in denen Blutgefäße generell zur Vermeidung großer Blutungen abgeklemmt werden; Myokardinfarkt; thromboembolischer Hirnschlag; Lungenthrombosen etc.;
 - Hyperakute Organabstoßung; speziell bei Xenotransplantationen;
 - Organversagen wie z.B. multiples Organversagen oder ARDS (adult respiratory distress syndrome);
- Krankheiten, die auf Trauma (Schädeltrauma) oder Polytrauma beruhen, wie z.B. Thermotrauma (Verbrennungen) und "thermal injury";
 - Anaphylaktischer Schock;
- Sepsis; "vascular leak syndrom"": bei Sepsis und nach Be handlung mit biologischen Agenzien, wie Interleukin 2
 bzw. nach Transplantation;
 - Alzheimer Krankheit sowie andere entzündliche neurologische Krankheiten wie Myastenia graevis, multiple Sklerose, zerebraler Lupus, Guillain-Barre Syndrome; Meningitiden; Encaphilitiden;
 - Systemischer Lupus erythematosus (SLE);
 - Rheumatoide Arthritis und andere entzündliche Krankheiten des rheumatoiden Krankheitskreises, wie z.B. Behcet's Syndrom; Juvenile rheumatoide Arthritis;
- Nierenentzündungen unterschiedlicher Genese, wie z.B.
 Glomerulonephritis, Lupus nephriti;
 - Pankreatitis;
 - Asthma; chronische Bronchitis;
 - Komplikationen während Dialyse bei Nierenversagen;
- Vasculitis; Thyroiditis;

- Ulcerative Colitis sowie andere entzündliche Erkrankungen des Magen-Darmtraktes;
- Autoimmunerkrankungen;
- spontanen Fehlgeburten.

5

- Verbindungen der allgemeinen Formel I, deren Tautomere, phar-3. makologisch verträglichen Salze und Prodrugs, wobei gilt:
 - steht für Α
- H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, 10 C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkyl- C_{1-3} -alkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H-, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl); $R^{A4}OCONR^{A2}$ (R^{A4} gleich
- C_{1-6} -alkyl, C_{1-3} -alkylaryl), $R^{A4}CONR^{A2}$, $R^{A1}O$, $R^{A2}R^{A3}N$, 15 HO-SO₂-, Phenoxy, RA2RA3N-SO₂, Cl, Br, F, Tetrazolyl, $\rm H_2O_3P$ -, $\rm NO_2$, $\rm R^{A1}$ -N(OH)-CO-, $\rm R^{A1}R^{A2}NCONR^{A3}$, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF3, CH3, OCH3, NO2 substituiert
- sein kann; 20
 - steht für В

 $-(CH_2)_{1B}-L^B-(CH_2)_{mB}-$ mit

25

= 0, 1, 2, 3;1B = 0, 1, 2; $m^{\mathbf{B}}$

30

35

40

L^B gleich

5
$$\begin{pmatrix} C \\ C \\ RB2 \end{pmatrix}$$
 $\begin{pmatrix} CH_2 \\ DB \\ CH_2 \end{pmatrix}$ $\begin{pmatrix} CH_2 \\ DB \\ RB2 \end{pmatrix}$ $\begin{pmatrix} CH_2 \\ DB \\ RB2 \end{pmatrix}$ $\begin{pmatrix} CH_2 \\ DB \\ RB2 \end{pmatrix}$ $\begin{pmatrix} CH_2 \\ DB \\ RB2 \end{pmatrix}$ $\begin{pmatrix} RB5 \\ RB2 \end{pmatrix}$ $\begin{pmatrix} RB5 \\ RB2 \end{pmatrix}$ $\begin{pmatrix} RB5 \\ RB2 \end{pmatrix}$

$$-C = C - R^{B3}$$

$$-R^{B4} - R^{B3} + R^{B4} - R^{B3}$$

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH_3 , CF_3 , Br, Cl, F substituiert sein kann, oder mit R^8OOC - (R^8 gleich H, C_{1-3} -alkyl) substituiert sein kann;

mit

$$n^{B} = 0, 1, 2;$$

$$p^{B} = 0, 1, 2;$$

$$q^{B} = 1, 2, 3;$$

 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

BNSDOCID: <WO_____0061608A2_I_>

30

35

45 -

 R^{B3} gleich H, $C_{1-6-Alkyl}$, $c_{0-3}-Alkylaryl$, $C_{0-3}-Alkylheteroaryl$; $R^{B5}OCO$ (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), R^{B6} -O (RB6 gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ; 5

gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

gleich CH_2 , O, S, NH, $N-C_{1-6}-Alkyl$; ΤB

10

 R^{B1} gleich H, C_{1-6} -alkyl, C_{0-3} -alkylaryl, C_{0-3} -alkylheteroaryl, C_{0-3} -alkyl- C_{3-8} -cycloalkyl;

RB1 und RB2 können auch miteinander verbunden sein;

15

gleich O, S, NH, N-C1-6-Alkyl; χB

gleich =CH-, =N-, =C-Cl; yΒ

20

gleich =CH-, =N-, =C-Cl; Z^{B}

gleich =CH-, =N-; UΒ

gleich =CH-, =N-; V_B 25

> steht weiterhin für В

 $-(CH_2)_{1B}-L^B-M^B-L^B-(CH_2)_{m^B}$, wobei 1^{B} und m^{B} oben angegebene Bedeutung besitzen und die beiden Gruppen L^B unabhängig voneinander für die unter

L^B genannten Reste stehen;

bedeutet Einfach-Bindung, O, S, CH₂, CH₂-CH₂, CH₂-O, MΒ O-CH₂, CH₂-S, S-CH₂, CO, SO₂, CH=CH, C \equiv C;

35

30

steht weiterhin für В -adamantyl(1)- CH_2 -, -adamantyl(2)- CH_2 -, -adamantyl(1)-, -adamanty1(2)-,

B kann weiterhin stehen für

$$h^B$$
 gleich 1, 2, 3, 4
$$(CH_2)_{h^B}$$

 $(R^{B7}$ gleich C_{1-6} -alkyl, C_{3-8} -cycloalkyl)

10 B kann weiterhin stehen für

mit X^{B1} gleich einer Bindung, O, S, oder

mit r^B gleich 0, 1, 2, 3; mit R^{B9} gleich H, C_{1-3} -alkyl;

A-B kann stehen für

35

D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkyl-aryl), SO₂, NR^{D1}SO₂;

E steht für eine Einfach-Bindung oder für

45

40

BNSDOCID: <WO_____0061608A2_!_>

...

5
$$\begin{array}{c|c} & R^{E2} \\ & (CH_2)_{mE} \\ \hline & (CH_2)_{1E} & (CH_2)_{pE} \\ \hline & (CH_2)_{kE} & (CH_2)_{nE} \\ & | & | \\ R^{E1} & R^{E3} \\ \end{array}$$

mit

 $k^{E} = 0, 1, 2;$ $1^{E} = 0, 1, 2;$ $m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$ $p^{E} = 0, 1, 2;$

- pedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Aryl, Pyridyl, Thienyl, C₃₋₈-Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, O-C₁₋₆-Alkyl, F, Cl, Br tragen können;
- 25 R^{E1} bedeuted weiterhin $R^{E4}OCO-CH_2$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$);
- bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl, Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, O-C₁₋₆-Alkyl, F, Cl, Br tragen können, CH(CH₃)OH, CH(CF₃)₂;
- 35 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, O- C_{1-6} -Alkyl, F, Cl, Br tragen können;
- 40 R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, $CH_2-CH=CH$, $CH=CH-CH_2-Gruppen$ bilden;
- die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

 R^{E2} steht weiterhin für COR^{E5} (R^{E5} gleich OH, $O-C_{1-6}$ -Alkyl, $O-C_{1-3}$ -Alkylaryl);

- E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;
 - G bedeutet

10 (CH₂)₁G

mit 1^G = 2, 3, 4 und 5, wobei eine CH_2 -Gruppe des Rings durch O, S, NH, CF_2 , CHF, CH(C_{1-3} -Alkyl)ersetzt sein kann;

15

20

(CH₂)_pG CH - CH (CH₂)_nG (CH₂)_nG

mit

25 $m^G = 0, 1, 2;$ $n^G = 0, 1, 2;$ $p^G = 1 \text{ oder } 3;$

 R^{G1} , $R^{G2} = H$;

30

 ${\bf R}^{\rm G1}$ und ${\bf R}^{\rm G2}$ können zusammen auch eine CH=CH-CH=CH-Kette bilden;

weiterhin steht G für

35

40

mit

45 q^G 0, 1, 2; r^G 0, 1, 2;

RG3 H, C1-C6-Alkyl, C3-8-Cycloalkyl;

RG4 H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

bedeutet 5 K

 $n^{K} = 1, 2;$

10

Q^K gleich

 X^{K} gleich O, S, NH, N-C₁₋₆-Alkyl; 15

20

mit

 R^{L1} gleich H, OH, O-C₁₋₆-Alkyl, O-(CH₂)₀₋₃-Phenyl, $CO-C_{1-6}-Alkyl$, $CO_2-C_{1-6}-Alkyl$, $CO_2-C_{1-3}-Alkylaryl$.

30

25

- Verbindungen der allgemeinen Formel I, deren Tautomere, phar-4. makologisch verträglichen Salze und Prodrugs, wobei gilt:
- steht für Α H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, 35 C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{1-3} -alkyl- C_{3-8} -cycloalkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl), $R^{A4}OCONR^{A2}$, $R^{A4}CONR^{A2}$, $(R^{A4}$ gleich C_{1-6} -alkyl, C_{1-3} -alkylaryl), $R^{A1}O$, Phenoxy, $R^{A2}R^{A3}N$, 40 $HO-SO_2$, $R^{A2}R^{A3}N-SO_2$, Cl, Br, F, Tetrazolyl, H_2O_3P , NO_2 , RA1-N(OH)-CO, RA1RA2NCONRA3, wobei Acyl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, OCH₃, CH₃, CF₃, NO₂ substituiert sein kann;

45

steht für В

$$-(CH2)1B-LB-(CH2)mB- mit$$

$$1^{B} = 0, 1, 2, 3;$$

 $m^{B} = 0, 1, 2, 3;$

L^B gleich

10
$$-C$$
 $(CH_2)_{pB}$ $(CH_2)_{pB}$ $(CH_2)_{nB}$ $(CH_2)_{nB}$ $(CH_2)_{nB}$ $(CH_2)_{nB}$ $(CH_2)_{nB}$

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC-(R⁸ gleich H, C₁₋₃alkyl) substituiert sein kann;

25

mit

 $n^{B} = 0, 1, 2;$ $p^{B} = 0, 1, 2;$

30 $q^B = 1, 2, 3;$

 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

35 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl.

RB1 und RB2 können auch miteinander verbunden sein;

40 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl;

B steht weiterhin für -adamantyl(1)-, -adamantyl(1)- CH_2 -, -adamantyl(2)-, -adamantyl(2)- CH_2 -,

45

BNSDOCID: <WO_____0061608A2_I_>

10

B steht weiterhin für $-(CH_2)_{1B}-L^{B1}-M^B-L^{B2}-(CH_2)_{mB}-$, wobei 1^B und m^B obenangegebene Bedeutung besitzen und die beiden Gruppen L^{B1} und L^{B2} unabhängig voneinander für folgende Reste stehen:

15 $\begin{pmatrix} R^{B1} \\ C \\ R^{B2} \end{pmatrix}$ (CH₂)_{pB} (CH₂)_{nB} (CH₂)_{nB} (CH₂)_{nB}

 $Z^{B} - X^{B} \qquad X^{B$

35 F F (CH₂)_{nB}

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann;

45 mit $n^{B} = 0, 1, 2;$ $p^{B} = 0, 1, 2;$

 $q^B = 1, 2, 3;$

 R^{B1} gleich H (nur für L^{B2}), C_{1-6} -Alkyl (nur für L^{B2}), C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

10 RB2' gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylhete-roaryl, C₀₋₃-Alkyl-C₃₋₈-Cycloalkyl;

gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

20 TB gleich CH₂, O, S, NH, N-C₁₋₆-Alkyl;

XB gleich O, S, NH, N-C₁₋₆-Alkyl;

30 V^B gleich =CH-, =C-C₁₋₆-Alky1, =N-, =C-O-C₁₋₃-Alky1.

RB1 und RB2 können auch miteinander verbunden sein;

35 M^B bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO_2 , CH=CH, C \equiv C;

B kann weiterhin stehen für

40

0

mit X^{B1} gleich eine Bindung, O, S oder — C —

mit r^B gleich 0, 1, 2, 3; mit R^{B9} gleich H, C_{1-3} -alkyl;

15 A-B kann stehen für

D steht für eine Einfach-Bindung bzw.

für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C₁₋₄-Alkyl, C₀₋₃-Alkyl-aryl), SO₂, NR^{D1}SO₂;

B-D kann stehen für

35 E steht für eine Einfach-Bindung oder für

45 $k^{E} = 0, 1, 2;$ $1^{E} = 0, 1, 2;$

25

 $m^{E} = 0, 1, 2, 3;$ $n^{E} = 0, 1, 2;$ $p^{E} = 0, 1, 2;$

- 5 R^{E1} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Naphthyl, Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, $O-C_{1-6}$ -Alkyl, F, Cl, Br tragen können;
- R^{E1} bedeuted weiterhin $R^{E4}OCO-CH_2$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$;
- RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl,
 Thienyl, Furyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu
 drei gleiche oder verschiedene Substituenten der Gruppe
 C₁₋₆-Alkyl, OH, O-C₁₋₆-Alkyl, F, Cl, Br tragen können,
 CH(CH₃)OH, CH(CF₃)₂,;
- 20 $R^{E3} \ \ \text{bedeutet H, C$_{1-6}$-Alkyl, C$_{3-8}$-Cycloalkyl, Phenyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C$_{1-6}$-Alkyl, O-C$_{1-6}$-Alkyl, F, Cl, Br tragen können;$
- R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, $CH_2-CH=CH$, $CH=CH-CH_2-Gruppen$ bilden;
- die unter R^{E1} und R^{E2} genannten Gruppen können über eine 30 Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;
- RE2 steht weiterhin für COR^{E5} (RE5 gleich OH, O-C₁₋₆-Alkyl, O-C₁₋₃-Alkylaryl);
 - E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;
- 40 G bedeutet

BNSDOCID: <WO_____0061608A2_I_>

mit
mG = 0, 1, 2;
nG = 0, 1, 2;
pG = 1 oder 3;
RG1 H;
RG2 H;

 ${
m R}^{
m G1}$ und ${
m R}^{
m G2}$ können zusammen auch eine CH=CH-CH=CH-Kette bilden;

20 weiterhin steht G für

mit

30

q^G 0, 1, 2; r^G 0, 1, 2;

RG3 H, $C_1-C_6-Alkyl$, $C_{3-8}-Cycloalkyl$;

35

 R^{G4} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

K bedeutet

 $NH - (CH₂)_n \kappa - Q^K mit$ n^K = 1, 2;

$$Q^{K}$$
 gleich X^{K} Z^{K}

5 X^K gleich O, S, NH, N-C₁₋₆-Alkyl;

10

L:
$$\underset{NH \longrightarrow R^{L1}}{\bigvee^{NH}}$$
 bzw. $\underset{NHR^{L1}}{\longrightarrow^{NH}}$

15 mit

RL1 gleich H, OH, O- C_{1-6} -Alkyl, O- $(CH_2)_{0-3}$ -Phenyl, CO- C_{1-6} -Alkyl, CO₂- C_{1-6} -Alkyl, CO₂- C_{1-5} -Alkylaryl.

20

- 5. Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:
- A steht für H, C₁₋₆-Al

25 H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{1-3} -alkyl- C_{3-8} -cycloalkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}$ NCO (R^{A2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl), R^{A4} OCON R^{A2} , R^{A4} CON R^{A2} , (R^{A4} ist gleich C_{1-6} -alkyl, C_{1-3} -alkylaryl), R^{A1} O, Phenoxy, $R^{A2}R^{A3}$ N, R^{A2} OCON R^{A2} , R^{A4} OCON R^{A2} , $R^{$

HO-SO₂, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂, R^{A1}-N(OH)-CO-; R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Substituenten aus der Gruppe F, Cl, Br, CH₃, CF₃, OCH₃, NO₂ substituiert sein kann;

~

B steht für

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

40

$$1^{B} = 0, 1, 2, 3;$$

 $m^{B} = 0, 1, 2, 3, 4, 5;$

 L^{B} gleich

5
$$R^{B3}$$
 R^{B4}
 R^{B3}
 R^{B4}
 R^{B3}
 R^{B4}
 35

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, F, Cl, Br substituiert sein kann, oder mit R⁸OOC- (R⁸ gleich H, C₁₋₃-alkyl) substituiert sein kann;

30 R^{B3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

TB gleich CH2, O, S, NH, N-C1-6-Alkyl;

XB gleich O, S, NH, N-C₁₋₆-Alkyl;

YB gleich = CH-, = N-, = C-C1; ZB gleich = CH-, = N-, = C-C1;

45 U^B gleich =CH-, =N-;

DNIC made

 V^{B} gleich =CH-, =N-;

B kann weiterhin stehen für

5
$$(CH_2)_{h^B}$$
 hB gleich 1, 2, 3, 4

(R^{B7} gleich C_{1-6} -alkyl, C_{3-8} -cycloalkyl)

10

30

A-B kann stehen für

20 B kann weiterhin stehen für
-adamantyl(1)-, adamantyl(2)-, -adamantyl(1)-CH₂-,
adamantyl(2)-CH₂,

B kann weiterhin stehen für

XB1_(CH₂)_rB_C_ | | RB9

mit XB1 gleich einer Bindung O, S, oder

mit r^B gleich 0, 1, 2, 3; mit R^{B9} gleich H, C_{1-3} -alkyl;

D steht für eine Einfach-Bindung bzw.

BNSDOCID: <WO_____0061608A2_I_>

für $-NR^{D1}$ -CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkylaryl), $-NR^{D1}SO_2$;

E steht für eine Einfach-Bindung oder für

5

10

15 mit

 $k^{E} = 0, 1, 2;$

 $1^{E} = 0, 1, 2;$

 $m^E = 0, 1, 2, 3;$

 $n^E = 0, 1, 2;$

20 $p^E = 0, 1, 2;$

bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Aryl, Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, C_{1-6} -Alkyl, F, Cl, Br tragen können;

RE1 bedeutet weiterhin RE40CO-CH2 (RE4 gleich H, C_{1-12} -Alkyl, C_{1-3} -Alkylaryl);

30

35

40

25

pedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Pyridyl, Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, O- C_{1-6} -Alky, F, Cl, Br tragen können, $CH(CH_3)OH$, $CH(CF_3)_2$;

 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C_{1-6} -Alkyl, $O-C_{1-6}$ -Alkyl, F, Cl, Br tragen können;

 R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, $CH_2-CH=CH$, $CH=CH-CH_2-Gruppen$ bilden;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

5

 R^{E2} steht weiterhin für COR^{E5} (R^{E5} gleich OH, O-C₁₋₆-Alkyl, OC_{1-3} -Alkylaryl);

- E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-10 Dab, D-Dap, D-Arg;
 - G bedeutet

15 (CH₂)₁G

mit 1^G = 2, 3, 4 und 5, wobei eine CH_2 -Gruppe des Rings durch O, S, NH, CHF, CF_2 , $CH(C_{1-3}$ -Alkyl) ersetzt sein kann;

20

RG1 C (CH₂) nG (CH₂) nG

(CH₂)_pG CH - CH (CH₂)_nG (CH₂)_nG

mit

30

25

 $m^{G} = 0, 1, 2;$ $n^{G} = 0, 1, 2;$ $p^{G} = 1 \text{ oder } 3;$

35 RG1 H;

RG2 H;

RG1 und RG2 können zusammen auch eine CH=CH-CH=CH-Kette bilden;

weiterhin steht G für

mit

10

RG3 H, $C_1-C_6-Alkyl$, $C_{3-8}-Cycloalkyl$;

15

K bedeutet

20 NH-(CH₂) $_{n}$ κ -Q^K mit

 $n^{K} = 1, 2;$

25
$$Q^K$$
 gleich X^K $Y^K Z^K$

XK gleich O, S, NH, N-C₁₋₆-Alkyl;

30

35

L:
$$NH$$
 bzw. $-NH$ $NHRL1$

mit

RL1 gleich -H, -OH, -O-
$$C_{1-6}$$
-Alkyl, -O- $(CH_2)_{0-3}$ -Phenyl, -CO- C_{1-6} -Alkyl, -CO₂- C_{1-6} -Alkyl, CO₂- C_{1-3} -Alkylaryl.

- 6. Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:
- A steht für
 H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{Al}OCO (R^{Al} gleich H, C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₃-alkyl, C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H-, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A4}CONR^{A2}, R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P-, NO₂, R^{A1}-N(OH)-CO-, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF₃, CH₃, OCH₃, NO₂ substituiert sein kann;
 - B steht für

 $-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$ mit $1^B=0, 1, 2, 3;$ $m^B=0, 1, 2;$

LB gleich

20

35
$$V_{AB} = Z_{B}$$
, $V_{AB} = Z_{B}$, V_{AB}

40
$$X^B$$
 Z^B $CH_2)_{n^B}$

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substi-

tuiert sein kann, oder mit R^8OOC- (R^8 gleich H, C_{1-3} -alkyl) substituiert sein kann;

mit

5

 $n^{B} = 0, 1, 2;$ $p^{B} = 0, 1, 2;$

 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl-C₃₋₈-cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

gleich H, $C_{1-6-Alkyl}$, $C_{0-3}-Alkylaryl$, $C_{0-3}-Alkylheteroaryl$; RB5OCO (RB5 gleich H, $C_{1-6}-Alkyl$, $C_{1-3}-Alkylaryl$), RB6-O (RB6 gleich H, $C_{1-6}-Alkyl$), F, Cl, Br, NO₂, CF₃;

RB4 gleich H, C₁₋₆-Alkyl, RB6-O, Cl, Br, F, CF₃;

20 $R^{B1'}$ gleich H, C_{1-6} -alkyl, C_{0-3} -alkylaryl, C_{0-3} -alkylheteroaryl, C_{0-3} -alkyl- C_{3-8} -cycloalkyl;

RB1 und RB2 können auch miteinander verbunden sein;

25 X^B gleich O, S, NH, N-C₁₋₆-Alkyl;

YB gleich =CH-, =N-,

30 Z^B gleich =CH-, =N-;

 U^B gleich =CH-, =N-;

VB gleich =CH-, =N-;

35

40

B steht weiterhin für $-(CH_2)_{1^B}-L^B-M^B-L^B-(CH_2)_{m^B}$, wobei 1^B und m^B oben angegebene Bedeutung besitzen und die beiden Gruppen L^B unabhängig voneinander für die unter L^B genannten Reste stehen;

MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO₂, CH=CH, C \equiv C;

B steht weiterhin für
-adamantyl(1)-CH₂-, -adamantyl(2)-CH₂-, -adamantyl(1)-,
-adamantyl(2)-,

B kann weiterhin stehen für

 $(R^{B7} gleich C_{1-6}-alkyl, C_{3-8}-cycloalkyl)$

15

B kann weiterhin stehen für

25

mit XB1 gleich einer Bindung, O, S, oder

30

mit r^B gleich 0, 1, 2, 3;

mit RB9 gleich H, C1-3-alkyl;

35

A-B kann stehen für

40

45

D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkyl-aryl), SO₂, NR^{D1}SO₂;

E für

5 $\begin{array}{c|c}
R^{E2} \\
(CH_2)_{m^E} \\
(CH_2)_{1^E} & (CH_2)_{p^E}
\end{array}$ $\begin{array}{c|c}
(CH_2)_{k^E} & (CH_2)_{n^E} \\
(CH_2)_{k^E} & (CH_2)_{n^E}
\end{array}$ $\begin{array}{c|c}
R^{E2} \\
(CH_2)_{m^E} \\
R^{E3}
\end{array}$

mit

 $k^{E} = 0, 1;$

15 $1^E = 0, 1;$

 $m^{E} = 0, 1;$ $n^{E} = 0, 1;$

 $p^{E} = 0, 1;$

20 R^{E1} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Aryl, Pyridyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring;

RE1 bedeuted weiterhin $R^{E4}OCO-CH_2$ (R^{E4} gleich H, $C_{1-12}-Alkyl$, $C_{1-3}-Alkylaryl$);

25
RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl, Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe C₁₋₆-Alkyl, O-C₁₋₆-Alkyl, F, Cl, Br tragen können, CH(CH₃)OH, CH(CF₃)₂;

RE3 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl;

35 R^{E2} und R^{B1} können zusammen auch eine Brücke mit $(CH_2)_{o-4}$, CH=CH, $CH_2-CH=CH$, $CH=CH-CH_2-Gruppen$ bilden;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;

45

G bedeutet

mit $1^G = 2$, 3, 4, wobei eine CH_2 -Gruppe des Rings durch O, S, CF_2 , CHF, $CH(C_{1-3}$ -Alkyl) ersetzt sein kann;

RG1 C (CH₂)_nG (CH₂)_nG N O

15

10

mit

$$m^G = 0, 1, 2;$$

 $n^G = 0, 1, 2;$

20

$$R^{G1}$$
, $R^{G2} = H$;

weiterhin steht G für

25

30

mit rG gleich 0, 1;

35

$$R^{G4}$$
 H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

K bedeutet

40

$$NH-(CH_2)_n\kappa-Q^K$$
 mit

$$n^{K} = 1, 2;$$

45

$$Z^{K} - X^{K}$$

$$X_K$$

BNSDOCID: <WO_____0061608A2_I_>

xk gleich O, S;

$$Y^{K}$$
 gleich =CH-, =C-C₁₋₃-Alkyl, =N-;

5 Z^{K} gleich =CH-, =C-C₁₋₃-Alkyl, =N-;

10
$$NH \longrightarrow RL1$$
 bzw. $-NH \longrightarrow NHRL1$

mit

RL1 gleich H, OH, $O-C_{1-6}$ -Alkyl, $O-(CH_2)_{0-3}$ -Phenyl, $CO-C_{1-6}$ -Alkyl, CO_2-C_{1-6} -Alkyl, CO_2-C_{1-3} -Alkylaryl.

- Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:
- steht für Α 20 H, C_{1-6} -Alkyl, C_{1-6} -Alkyl-SO₂, R^{A1} OCO (R^{A1} gleich H, C_{1-12} -Alkyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkyl- C_{1-3} -alkyl, C_{1-3} -Alkylaryl), $R^{A2}R^{A3}NCO$ (R^{A2} gleich H-, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl; R^{A3} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl); $R^{A4}OCONR^{A2}$ (R^{A4} gleich C_{1-6} -alkyl, C_{1-3} -alkylaryl), $R^{A4}CONR^{A2}$, $R^{A1}O$, $R^{A2}R^{A3}N$, 25 $HO-SO_2-$, Phenoxy, $R^{A2}R^{A3}N-SO_2$, Cl, Br, F, Tetrazolyl, $\rm H_2O_3P$ -, $\rm NO_2$, $\rm R^{A1}$ -N(OH)-CO-, $\rm R^{A1}R^{A2}NCONR^{A3}$, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF3, CH3, OCH3, NO2 substituiert 30 sein kann;
 - B steht für

 $-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}- mit$

 $1^{B} = 0, 1, 2;$ $m^{B} = 0, 1, 2;$

40

L^B gleich

5
$$-\frac{R^{B1}}{C}$$
 $(CH_2)_{pB}$ $C=C$ $(CH_2)_{nB}$

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC- (R⁸ gleich H, C₁₋₃-alkyl) substituiert sein kann;

mit

$$n^{B} = 0, 1;$$
 $p^{B} = 0, 1;$

 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

30 RB2 gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl;

 R^{B3} gleich H, C_1 -6-Alkyl; $R^{B5}OCO$ (R^{B5} gleich H, C_{1-6} -Alkyl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

RB4 gleich H, C₁₋₆-Alkyl, RB6-O, Cl, Br, F, CF₃;

RB1 und RB2 können auch miteinander verbunden sein;

40 B steht weiterhin für $-(CH_2)_{1^B}-L^B-M^B-L^B-(CH_2)_{m^B}, \text{ wobei}$ $l^B \text{ und } m^B \text{ oben angegebene Bedeutung besitzen und die beiden Gruppen } L^B \text{ unabhängig voneinander für die unter}$ $L^B \text{ genannten Reste stehen;}$

45

MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CH=CH, C \equiv C;

B steht weiterhin für $-adamantyl(1)-CH_2-$, $-adamantyl(2)-CH_2-$,

10

5

B kann weiterhin stehen für

15
$$CH_{-}$$
 CH_{2}) h^{B} gleich 1, 2, 3, 4

 $(R^{B7} \text{ gleich } C_{1-6}\text{-alkyl}, C_{3-8}\text{-cycloalkyl})$

20

B kann weiterhin stehen für

mit XB1 gleich einer Bindung, O, S, oder

35

45

mit r^B gleich 0, 1, 2, 3;

mit R^{B9} gleich H, C_{1-3} -alkyl;

40 A-B kann stehen für

BNS pagi

- Steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1} -CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkyl-aryl), SO_2 , $NR^{D1}SO_2$;
- 5 E steht für

 $\begin{array}{c|c}
 & RE2 \\
 & (CH_2)_{mE} \\
\hline
 & RE1 & RE3
\end{array}$

15 mit

 $m^E = 0, 1, 2, 3;$

RE1 bedeutet H, C₁₋₆-Alkyl;

RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, wobei die vorgenannten Reste bis zu drei Substituenten der Gruppe C₁₋₆-Alkyl, F tragen können, CH(CH₃)OH, CH(CF₃)₂;

25 RE3 bedeutet H;

die unter R^{El} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein;

- 30 E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;
 - G bedeutet

mit $1^G = 2$, 3, wobei eine CH_2 -Gruppe des Rings durch S, $CHCH_3$ ersetzt sein kann;

45

5 (CH₂)_mG (CH₂)_nG

10 mit

$$m^G = 1;$$
 $n^G = 0;$

15
$$R^{G1}$$
, $R^{G2} = H$;

K bedeutet

$$NH-(CH_2)_n\kappa-Q^K$$
 mit

20

$$n^K = 1$$
;

Q^K gleich

$$Z_{K} - X_{K}$$

$$X_K$$

25

XK gleich S;

 y^{K} gleich =CH-, =N-; z^{K} gleich =CH-, =N-;

35 L:
$$NH \longrightarrow NH \longrightarrow NH \longrightarrow NHR^{L1}$$

mit

- 40 R^{L1} gleich H, OH, CO-C₁₋₆-Alkyl, CO₂-C₁₋₆-Alkyl, CO_2 -C₁₋₃-Alkylaryl.
 - 8. Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:

45

A steht für

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H, C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₃-alkyl, C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H-, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl); R^{A4}OCONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A4}CONR^{A2}, R^{A1}O, R^{A2}R^{A3}N, HO-SO₂-, Phenoxy, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P-, NO₂, R^{A1}-N(OH)-CO-, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, CF₃, CH₃, OCH₃, NO₂ substituiert sein kann;

B steht für

15
$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

$$1^{B} = 0, 1;$$

 $m^{B} = 0, 1, 2;$

20 L^B gleich

wobei in den vorgenannten Ringsystem jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC- (R⁸ gleich H, C₁₋₃-alkyl) substituiert sein kann;

CH₂)_{nB}

40 mit

$$n^{B} = 0, 1;$$

 $p^{B} = 0, 1;$

45 R^{B1} gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

25

35

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

RB3 gleich H, C_{1-6} -Alkyl; RB5OCO (RB5 gleich H, C_{1-6} -Alkyl), RB6-O (RB6 gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF₃;

 R^{B1} und R^{B2} können auch miteinander verbunden sein;

10 X^B gleich O, S;

YB gleich =CH-, =N-;

 Z^B gleich =CH-, =N-;

B steht weiterhin für
-(CH₂)₁B-LB-MB-LB-(CH₂)_mB, wobei
-(CH₂)₁B-LB-MB-LB-(CH₂)_mB, wobei

1^B und m^B oben angegebene Bedeutung besitzen und die beiden Gruppen LB unabhängig voneinander für die unter
LB genannten Reste -C≡C-,

$$R^{B3}$$
 C
 R^{B1}
 C
 R^{B2}
stehen;

 M^B bedeutet Einfach-Bindung, O, CH_2 -S, S- CH_2 , CO, SO_2 , CH_2 -O;

B kann weiterhin stehen für

 $(R^{B7}$ gleich C_{1-6} -alkyl, C_{3-8} -cycloalkyl)

40 B kann weiterhin stehen für Fluorenyl(1)-, Adamantyl(1)-, Adamantyl(1)-CH₂-

A-B kann stehen für Pyridyl(2)-CH₂-, Benzthienyl(2)-, Benzthienyl(3)-,

D steht für eine Einfach-Bindung bzw. für CO, SO₂;

10 E steht für

$$\begin{array}{c|c}
 & R^{E2} \\
 & R^{E1} & R^{E3}
\end{array}$$

mit

RE1 bedeutet H, CH₃;

 R^{E2} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Thienyl, $CH(CH_3)OH$, $CH(CF_3)_2$;

RE3 bedeutet H;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

E kann auch stehen für D-Lys, D-Orn, D-Dab, D-Dap, D-Arg;

35 G bedeutet

$$(CH_2)_{1G} = 2, 3, \text{ wobei eine } CH_2\text{-Gruppe des }$$
 Rings durch CHCH3 ersetzt sein kann;

45

40

10 mit

$$m^G = 1;$$
 $n^G = 0;$

15
$$R^{G1}$$
, $R^{G2} = H$;

bedeutet K

$$NH-(CH_2)_{n}k-Q^{K}$$
 mit

20

25

$$n^K = 1;$$

O^K gleich

$$X_K \longrightarrow X_K$$

XK gleich S;

L:

mit

- RL1 gleich H, OH. 40
 - Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:
- steht für Α 45

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H, C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₁₋₃-alkyl-C₃₋₈-cycloalkyl, C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H, C₁₋₆-Alkyl, C₀₋₃-Alkylaryl), R^{A4}OCONR^{A2}, R^{A4}CONR^{A2} (R^{A4} gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N, HO-SO₂, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂, R^{A1}-N(OH)-CO, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe F, Cl, Br, OCH₃, CH₃, CF₃, NO₂ substituiert sein kann;

B steht für

$$-(CH_2)_{1B}-L^{B}-(CH_2)_{mB}-$$
 mit

15

$$1^{B} = 0, 1, 2;$$

 $m^{B} = 0, 1, 2;$

L^B gleich

20
$$\begin{array}{c|c}
 & R^{B1} \\
 & C \\
 & C \\
 & C^{CH_2}_{n^B}
\end{array}$$

$$\begin{array}{c}
 & F \\
 & F \\
 & C^{CH_2}_{n^B}
\end{array}$$

$$\begin{array}{c}
 & F \\
 & C^{CH_2}_{n^B}
\end{array}$$

$$\begin{array}{c}
 & F \\
 & F \\
 & F
\end{array}$$

$$\begin{array}{c}
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\
 & C \\$$

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH₃, CF₃, Br, Cl, F substituiert sein kann, oder mit R⁸OOC-(R⁸ gleich H, C₁₋₃alkyl) substituiert sein kann;

mit

35

$$n^{B} = 0, 1, 2;$$

 $p^{B} = 0, 1, 2;$

RB1 gleich C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Al-kyl- C_{3-8} -cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl.

45 RB1 und RB2 können auch miteinander verbunden sein;

B steht weiterhin für -adamantyl(1)- CH_2 -, -adamantyl(2)- CH_2 -,

Q TO

steht weiterhin für $-(CH_2)_{1B}-L^{B1}-M^B-L^{B2}-(CH_2)_{mB}-$, wobei 1^B und m^B obenangegebene Bedeutung besitzen und die beiden Gruppen L^{B1} und L^{B2} unabhängig voneinander für folgende Reste stehen:

15
$$C = C + C$$

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann;

 $n^{B} = 0, 1, 2;$ $p^{B} = 0, 1, 2;$

gleich H (nur für L^{B2}), C_{1-6} -Alkyl (nur für L^{B2}), C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

gleich H, C_{1-6} -Alkyl, Aryl, Heteroaryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF₃;

45 XB gleich O, S;

25

YB gleich =CH-, =N-;

 Z^B gleich =CH-, =N-;

5

RB1 und RB2 können auch miteinander verbunden sein;

MB bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO₂, CH=CH, C \equiv C;

10

B kann weiterhin stehen für

15

$$X^{B1} - (CH_2)_r B - C - R^{B9}$$

20

mit XB1 gleich eine Bindung O, S oder — C—

mit r^B gleich 0, 1, 2, 3;

mit RB9 gleich H, C1-3-alkyl;

25

A-B kann stehen für

30

35 D steht für eine Einfach-Bindung bzw. für CO, OCO, NR^{D1}-CO (R^{D1} gleich H, C_{1-4} -Alkyl, C_{0-3} -Alkyl-aryl), SO₂, NR^{D1}SO₂;

B-D kann stehen für

40

45

E steht für

$$\begin{array}{c|c}
R^{E2} \\
(CH_2)_{mE} \\
(CH_2)_{pE}
\end{array}$$

$$\begin{array}{c|c}
(CH_2)_{nE} \\
(CH_2)_{nE}
\end{array}$$

$$\begin{array}{c|c}
(CH_2)_{nE} \\
R^{E3}
\end{array}$$

· 5

 $k^E = 0, 1;$

 $m^E = 0, 1;$

 $n^{E} = 0, 1;$

 $D^E = 0, 1;$

15

periodyl, Thienyl, C_{3-8} -Cycloalkyl, Phenyl, Naphthyl, Pyriodyl, Thienyl, C_{3-8} -Cycloalkyl mit ankondensiertem Phenylring;

20 R^{E2} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Pyridyl, Thienyl, Furyl, Imidazolyl, Tetrahydropyranyl, Tetrahydropyranyl, CH(CH₃)OH, CH(CF₃)₂,;

 R^{E3} bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

25

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein; auch die unter R^{E2} und R^{E3} genannten Gruppen können über eine Bindung miteinander verbunden sein;

30

E kann auch stehen für D-Asp, D-Glu, D-Lys, D-Orn, D-His, D-Dab, D-Dap, D-Arg;

G bedeutet

35

40

45

ANE1ENBA? 1 -

10 mit
$$m^{G} = 1;$$

$$n^{G} = 0, 1;$$

$$R^{G1} H;$$

$$R^{G2} H;$$

weiterhin steht G für

qG 0, 1; rG 0, 1;

30 R^{G3} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl; R^{G4} H, C_1 - C_6 -Alkyl, C_{3-8} -Cycloalkyl, Phenyl;

K bedeutet

35

15

$$NH-(CH_2)_{n}k-Q^K$$
 mit

$$n^K = 1;$$

QK gleich
$$X^{K}$$

$$\begin{array}{cccc}
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{K} & & & & \\
X^{$$

$$Y^K$$
 gleich =CH-, =N-;

 Z^{K} gleich =CH-, =N-;

5

L:
$$\underset{NH \longrightarrow R^{L1}}{ \bigvee}^{NH}$$
 bzw. $\underset{NHR^{L3}}{ \longrightarrow}$

10 -

mit

RL1 gleich H, OH, CO- C_{1-6} -Alkyl, CO₂- C_{1-6} -Alkyl, CO₂- C_{1-5} -Alkylaryl.

15

- 10 Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:
- A steht für

 H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H,

 C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₁₋₃-alkyl-C₃₋₈-cycloalkyl,

 C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H, C₁₋₆-Alkyl,

 C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H,

 C₁₋₆-Alkyl, C₀₋₃-Alkylaryl), R^{A4}OCONR^{A2}, R^{A4}CONR^{A2} (R^{A4}

 gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N,

 HO-SO₂, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂,

 R^{A1}-N(OH)-CO, R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu

 2 gleichen oder verschiedenen Resten aus der Gruppe F,

 Cl, Br, OCH₃, CH₃, CF₃, NO₂ substituiert sein kann;

30

B steht für

$$-(CH_2)_{1B}-L^B-(CH_2)_{mB}-$$
 mit

35

40

$$1^{B} = 0, 1;$$
 $m^{B} = 0, 1, 2;$

L^B gleich

$$(CH_2)_{pB}$$
, $(CH_2)_{nB}$

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann, der mit bis zu 2 gleichen oder verschiedenen Resten aus der Gruppe CH_3 , CF_3 , Br, Cl, F substituiert sein kann, oder mit $R^8OOC-(R^8$ gleich H, C_{1-3} alkyl) substituiert sein kann;

mit

 $n^B = 0, 1;$

10 $p^B = 0, 1;$

B steht weiterhin für -adamantyl(1)-CH₂-,
-adamantyl(2)-CH₂-,

15

20 B steht weiterhin für $-(CH_2)_{1^B-L^{B1}-M^B-L^{B2}-(CH_2)_{m^B}-}$, wobei 1^B und m^B obenangegebene Bedeutung besitzen und die beiden Gruppen L^{B1} und L^{B2} unabhängig voneinander für folgende Reste stehen:

25

30

35 F F (CH₂)_nB

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann;

mit

 $n^{B} = 1;$

 $p^{B} = 0, 1;$

gleich H (nur für L^{B2}), C_{1-6} -Alkyl (nur für L^{B2}), C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl, C_{0-3} -Alkyl- C_{3-8} -cycloalkyl, OH, OCH₃;

5 R^{B2} gleich H, C_{1-6} -Alkyl, C_{0-3} -Alkylaryl, C_{0-3} -Alkylheteroaryl;

 R^{B3} gleich H, C_{1-6} -Alkyl, R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO₂, CF₃;

10 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF₃;

 $R^{\rm Bl}$ und $R^{\rm B2}$ können auch miteinander verbunden sein;

15 M^B bedeutet Einfach-Bindung, O, S, CH_2 , CH_2 - CH_2 , CH_2 -O, O- CH_2 , CH_2 -S, S- CH_2 , CO, SO_2 ;

A-B kann stehen für Pyridyl(2)- CH_2 -, Benzthienyl(2)-,

20

25

D steht für eine Einfach-Bindung bzw. für CO, SO2;

B-D kann stehen für

30

35

E steht für

40

$$-N \xrightarrow[RE1]{RE2} O$$

45

RE1 bedeutet H;

RE2 bedeutet H, C_{1-6} -Alkyl, C_{3-8} -Cycloalkyl, Phenyl, Pyridyl, Thienyl, Furyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, $CH(CH_3)OH$, $CH(CF_3)_2$,;

5 RE3 bedeutet H;

die unter R^{E1} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein;

- 10 E kann auch stehen für D-Lys, D-Orn, D-Dab, D-Dap, D-Arg;
 - G bedeutet

mit $1^G = 2$, 3, wobei eine CH_2 -Gruppe des Rings durch $CHCH_3$ ersetzt sein kann

20

RG1

C

(CH₂)_{nG}

(CH₂)_{nG}

N

O

mit $m^{G} = 1;$ 30 $n^{G} = 0;$ $R^{G1} H;$ $R^{G2} H;$

K bedeutet

 $NH-(CH_2)_n\kappa-Q^K\quad \text{mit}$

 $n^{K} = 1;$

40 Q^{K} gleich X^{K} X^{K} gleich S;

ZK gleich =CH-, =N-;

5

L:
$$\longrightarrow_{NH}^{NH}$$
 bzw. $\longrightarrow_{NH}^{NH}$

10

mit

RL1 gleich H, OH.

15 11. Verbindungen der allgemeinen Formel I, deren Tautomere, pharmakologisch verträglichen Salze und Prodrugs, wobei gilt:

A steht für

H, C₁₋₆-Alkyl, C₁₋₆-Alkyl-SO₂, R^{A1}OCO (R^{A1} gleich H,

C₁₋₁₂-Alkyl, C₃₋₈-cycloalkyl, C₁₋₃-alkyl-C₃₋₈-cycloalkyl,

C₁₋₃-Alkylaryl), R^{A2}R^{A3}NCO (R^{A2} gleich H, C₁₋₆-Alkyl,

C₀₋₃-Alkylaryl, C₀₋₃-Alkylheteroaryl; R^{A3} gleich H,

C₁₋₆-Alkyl, C₀₋₃-Alkylaryl), R^{A4}OCONR^{A2}, R^{A4}CONR^{A2}, (R^{A4} ist gleich C₁₋₆-alkyl, C₁₋₃-alkylaryl), R^{A1}O, Phenoxy, R^{A2}R^{A3}N,

HO-SO₂, R^{A2}R^{A3}N-SO₂, Cl, Br, F, Tetrazolyl, H₂O₃P, NO₂,

R^{A1}-N(OH)-CO-; R^{A1}R^{A2}NCONR^{A3}, wobei Aryl jeweils mit bis zu 2 gleichen oder verschiedenen Substituenten aus der Gruppe F, Cl, Br, CH₃, CF₃, OCH₃, NO₂ substituiert sein kann;

30

B steht für

$$-(CH_2)_{1B}-L^B-(CH_2)_{mB}-$$
 mit

35
$$1^B = 0, 1;$$

 $m^B = 0, 1, 2;$

L^B gleich

40
$$P_{B3}$$
 P_{B4}

wobei in den vorgenannten Ringsystemen jeweils ein Phenylring ankondensiert sein kann;

 R^{B3} gleich H, C_{1-6} -Alkyl, Aryl, R^{B5} OCO (R^{B5} gleich H, C_{1-6} -Alkyl, C_{1-3} -Alkylaryl), R^{B6} -O (R^{B6} gleich H, C_{1-6} -Alkyl), F, Cl, Br, NO_2 , CF_3 ;

 R^{B4} gleich H, C_{1-6} -Alkyl, R^{B6} -O, Cl, Br, F, CF_3 ;

10 X^B gleich 0, S;

YB gleich =CH-, =N-;

15 Z^B gleich =CH-, =N-;

UB gleich =CH-, =N-;

VB gleich =CH-, =N-;

20

25

B kann weiterhin stehen für

$$q^B$$
 gleich 0, 1, 2
$$(CH_2)_{q^B}$$

 $(R^{B7} \text{ gleich } C_{1-6}\text{-alkyl}, C_{3-8}\text{-cycloalkyl})$

30 A-B kann stehen für

D steht für eine Einfach-Bindung

40 E steht für

$$-N \xrightarrow{RE1} RE3$$

mit

RE1 bedeutet H;

5 RE2 bedeutet H, C₁₋₆-Alkyl, C₃₋₈-Cycloalkyl, Phenyl, Pyridyl, Furyl, Thienyl, Imidazolyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, wobei die vorgenannten Reste bis zu drei gleiche oder verschiedene Substituenten der Gruppe O-C₁₋₆-Alkyl, F tragen können, CH(CH₃)OH, CH(CF₃)₂;

RE3 bedeutet H;

die unter R^{El} und R^{E2} genannten Gruppen können über eine Bindung miteinander verknüpft sein;

15
E kann auch stehen für D-Lys, D-Orn, D-Dab, D-Dap, D-Arg;

G bedeutet

20 (CH₂)₁G

mit $1^G = 2$, 3, wobei eine CH_2 -Gruppe des Rings durch $CHCH_3$ ersetzt sein kann;

25

RG1 C (CH₂) nG (CH₂) mG N O

30

35 mit

 $m^G = 1;$

 $n^G = 0;$

40 RG1 H;

RG2 H;

K bedeutet

 $5 n^K = 1;$

10

 Q^{K} gleich X^{K} Z^{K}

XK gleich O, S;

YK gleich = CH-, = N-;
ZK gleich = CH-, = N-;

20 L: NH bzw. -NH NHRL1

mit

R^{L1} gleich -H, -OH.

- 12. Arzneimittel enthaltend neben üblichen Trägern und Hilfsstoffen Verbindungen der allgemeinen Formel I nach einem30 der Ansprüche 3 bis 11.
- 13. Verwendung von Verbindungen der allgemeinen Formel I nach einem der Ansprüche 3 bis 11 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, die durch teilweise oder vollständige Inhibition von C_{1s} oder C_{1r} gelindert oder geheilt wird.
- 14. Verwendung von Verbindungen der allgemeinen Formel I nach einem der Ansprüche 3 bis 11 zur Herstellung von Arzneimitteln zur Behandlung oder Prophylaxe von
- Reperfusionsschäden nach Ischämien; Ischämische Zustände treten ein während z.B. Operationen unter Zuhilfenahme von Herz-Lungenmaschinen; Operationen, in denen Blutgefäße generell zur Vermeidung großer Blutungen abgeklemmt werden; Myokardinfarkt; thromboembolischer Hirnschlag; Lungenthrombosen etc.;

- Hyperakute Organabstoßung; speziell bei Xenotransplantationen;
- Organversagen wie z.B. multiples Organversagen oder ARDS (adult respiratory distress syndrome);
- Krankheiten, die auf Trauma (Schädeltrauma) oder Polytrauma beruhen, wie z.B. Thermotrauma (Verbrennungen) und "thermal injury";
 - Anaphylaktischer Schock;
- Sepsis; "vascular leak syndrom"": bei Sepsis und nach Behandlung mit biologischen Agenzien, wie Interleukin 2
 bzw. nach Transplantation;
 - Alzheimer Krankheit sowie andere entzündliche neurologische Krankheiten wie Myastenia graevis, multiple Sklerose, zerebraler Lupus, Guillain-Barre Syndrome; Meningitiden; Encaphilitiden;
 - Systemischer Lupus erythematosus (SLE);
 - Rheumatoide Arthritis und andere entzündliche Krankheiten des rheumatoiden Krankheitskreises, wie z.B. Behcet's Syndrom; Juvenile rheumatoide Arthritis;
- Nierenentzündungen unterschiedlicher Genese, wie z.B. Glomerulonephritis, Lupus nephriti;
 - Pankreatitis;
 - Asthma; chronische Bronchitis;
 - Komplikationen während Dialyse bei Nierenversagen;
- Vasculitis; Thyroiditis;
 - Ulcerative Colitis sowie andere entzündliche Erkrankungen des Magen-Darmtraktes;
 - Autoimmunerkrankungen;
 - spontanen Frühgeburten.

30

15

15. Verbindungen der allgemeinen Formel I nach einem der Ansprüche 3 bis 11, wobei L -CN,

entspricht.

16. Verwendung von Verbindungen, die das Strukturelement -G-K-L

Mit den Bedeutungen von G, K und L, wie in einem der Ansprüche 3 bis 11 angegeben, aufweisen, zur Herstellung von Arzneimittel, die C_{1s} oder C_{1r} teilweise oder vollständig inhibieren.