1 Maßtheorie

Algebra und Maß

- ullet Eine Algebra ${\mathcal A}$ auf A ist ein Mengensystem, das A enthält und abgeschlossen/stabil ist bzgl. paarweiser Vereinigung und Komplementbildung.
- Ein $Pr\ddot{a}ma\beta$ auf \mathscr{A} ist eine Funktion $\mu_A: \mathscr{A} \to \mathbb{R}_+$, für die $\mu(\emptyset) = 0$ und σ -Additivität gilt.
- Eine σ -Algebra \mathcal{B} auf B ist ein Mengensystem, das B entäkt und abgeschlossen/stabil ist bzgl. abzählbar unendlicher Vereinigung und Komplementbildung.
- Ein $Ma\beta$ auf \mathscr{B} ist eine Funktion $\mu_B: \mathscr{B} \to \overline{\mathbb{R}}_+$, für die $\mu(\emptyset) = 0$ und σ -Additivität gilt.

Eigenschaften

Sei \mathscr{F} σ -Algebra auf Ω , $A \in \mathscr{F}$, (A_n) Folge von Teilmengen von Ω (d.h. $A_n \in \mathscr{F}$) und μ Maß.

```
Messbarer Raum (\Omega, \mathcal{F})

\sigma-Additivität \mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)

\sigma-Stetigkeit \mu(A) = \lim_{n \to \infty} \mu(A_n), wobei A_n \nearrow A, d.h. A_n \subseteq A_{n+1} und \bigcup_n A_n = A

Endliches Maß \mu(\Omega) < \infty

\sigma-endliches Maß \Omega = \bigcup_{n=1}^{\infty} A_n und \mu(A_n) < \infty

W-Maß \mu(\Omega) = 1 und \sigma-Additivität für paarweise disjunkte A_n \in \mathcal{F} (Kolmogorov Axiome)
```

Messbare Abbildungen

```
Seien (\Omega, \mathcal{F}) und (S, \mathcal{S}) messbare Räume und f: \Omega \to \mathcal{F} eine Abbildung. 
 (\mathcal{F}, \mathcal{S})-messbare Abbildung f^{-1}(B) \in \mathcal{F} für alle B \in \mathcal{S} Borel-messbare Abbildung (S, \mathcal{S}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))
```

Alle stetigen Funktionen sind Borel-messbar.

2 Wahrscheinlichkeitsräume

2.1 Grundlagen

```
Ω
                Ergebnismenge, wobei \omega_i \in \Omega Ergebnis (Grundmenge)
{\mathscr F}
                Ereignissystem, wobei A \in \mathcal{F} Ereignis (\sigma-Algebra über der Grundmenge \Omega, d.h. \mathcal{F} = \sigma(\Omega))
(\Omega, \mathcal{F})
                Ereignisraum (Messraum, messbarer Raum)
                Wahrscheinlichkeitsmaß (Maß)
(\Omega, \mathcal{F}, \mathbb{P})
                Wahrscheinlichkeitsraum (Maßraum)
X
                (S, \mathcal{S})-wertige Zufallsvariable, wobei X: \Omega \to S (Abbidung)
                Messraum mit Grundmenge S und \sigma-Algebra \mathcal{S} = \sigma(S)
(S,\mathcal{S})
                Wahrscheinlichkeitsverteilung (von \mathbb{P} induziertes Maß)
(S, \mathcal{S}, \mathbb{P}^X)
                Maßraum, wobei das enthaltene Maß der Wahrscheinlichkeitsverteilung entspricht
```

Für eine Zufallsvariable X und die σ -Algebren ${\mathcal F}$ und ${\mathcal S}$ gilt:

Für
$$A \in \mathcal{F}$$
 gilt $X(A) \in \mathcal{S}$
Für $B \in \mathcal{S}$ gilt $X^{-1}(B) \in \mathcal{F}$, wobei $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$

Für das Wahrscheinlichkitsmaß \mathbb{P} und die Wahrscheinlichkeitsverteilung \mathbb{P}^X gilt:

$$\begin{split} & \text{F\"{u}r} \quad A \in \mathscr{F} \quad \text{gilt} \quad \mathbb{P}(A) = \mathbb{P}^X \circ X(A) = \mathbb{P}^X(X(A)) \\ & \text{F\"{u}r} \quad B \in \mathscr{S} \quad \text{gilt} \quad \mathbb{P}^\mathbb{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) = \mathbb{P}(\{X \in B\}) \overset{kurz}{=} \mathbb{P}(X \in B) \end{split}$$

Zusammengefasst gilt:

$$[0,1] \xleftarrow{\mathbb{P}} (\Omega, \mathcal{F}, \mathbb{P}) \xleftarrow{X^{-1}} (S, \mathcal{S}, \mathbb{P}^X) \xrightarrow{\mathbb{P}^X} [0,1]$$

2.2 Wahrscheinlichkeitsverteilung, -dichte und Verteilungsfunktion

Diskreter Wahrscheinlichkeitsraum

Diskreter Wahrscheinlichkeitsraum, falls Ω endlich oder abzählbar unendlich.

Sei $\omega \in \Omega$ und $s \in S$, sowie $A \in \mathcal{F}$ und $B \in \mathcal{S}$ dann gilt mit einer Wahrscheinlickeitsdichtefunktion, auch kurz Wahrscheinlichkeitsdichte p bzw. p^X (entspricht Zähldichte im diskreten Fall):

$$\begin{split} \mathbb{P}(\{\omega\}) &= p(\omega) & \text{Zähldichte } p(\omega) \text{ bestimmt } \mathbb{P} \text{ eindeutig bzgl. diskretem Wahrscheinlichkeitsraum} \\ \mathbb{P}(A) &= \sum_{\omega \in \Omega} p(\omega) \mathbb{1}_A(\omega) & \text{Wahrscheinlichkeitsmaß } \mathbb{P} \text{ mit Zähldichte } p(\omega) \text{ und Zählmaß } \mathbb{1}_A(\omega) \\ \mathbb{P}^X(\{s\}) &= p^X(s) & \text{Zähldichte } p^X(s) \text{ bestimmt } \mathbb{P}^X \text{ eindeutig bzgl. diskret verteilter } (S, \mathcal{S})\text{-wertiger ZV} \\ \mathbb{P}^X(B) &= \sum_{s \in S} p^X(s) \mathbb{1}_A(s) & \text{Wahrscheinlichkeitsverteilung } \mathbb{P}^X \text{ mit Zähldichte } p^X(s) \text{ und Zählmaß } \mathbb{1}_A(s) \end{split}$$

dabei gilt
$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1$$
 und $\mathbb{P}^X(S) = \sum_{s \in S} p(s) = 1$

Für eine Zufallsvariable X gilt für die Verteilungsfunktion <math>F:

$$F(x) = \mathbb{P}(\{X \le x\}) = \sum_{k=1}^{\lfloor x \rfloor} \mathbb{P}(\{X = k\})$$

Stetiger Wahrscheinlichkeitsraum

Stetiger Wahrscheinlichkeitsraum, falls Ω überabzählbar.

 $A \in \mathcal{F}$ und $B \in \mathcal{S}$ dann gilt mit einer Wahrscheinlickeitsdichtefunktion p bzw. p^X :

$$\mathbb{P}(A) = \int_A p(\omega) \, \lambda(d\omega) \qquad \text{Wahrscheinlichkeitsmaß } \mathbb{P} \text{ mit W-Dichtefkt. } p(\omega) \text{ und Lebesque-Maß } \lambda$$

$$\mathbb{P}^X(B) = \int_B p^X(s) \, \lambda(ds) \qquad \text{Wahrscheinlichkeitsverteilung } \mathbb{P}^X \text{ mit W-Dichtefkt. } p^X(s) \text{ und Lebesque-Maß } \lambda$$
 dabei gilt $\mathbb{P}(\Omega) = \int_\Omega p(\omega) \lambda(d\omega) = 1 \text{ und } \mathbb{P}^X(S) = \int_S p(s) \lambda(ds) = 1$

Stetiger reeller Wahrscheinlichkeitsraum

Spezialfall $(\Omega, \mathcal{F}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$:

 $(a_1, a_2] \in \mathcal{F}$ und $(b_1, b_2] \in \mathcal{S}$ dann gilt mit einer Wahrscheinlickeitsdichtefunktion f bzw. f^X :

$$\mathbb{P}((a_1,a_2]) = \int_{a_1}^{a_2} f(x) \, dx \qquad \text{Wahrscheinlichkeitsmaß } \mathbb{P} \text{ mit W-Dichtefkt. } f(x)$$

$$\mathbb{P}^X((b_1,b_2]) = \int_{b_1}^{b_2} f^X(x) \, dx \qquad \text{Wahrscheinlichkeitsverteilung } \mathbb{P}^X \text{ mit W-Dichtefkt. } f^X(x)$$

Für eine Zufallsvariable $X \in \mathbb{R}$ gilt für die Verteilungsfunktion F:

$$F(x) = \mathbb{P}(\{X \leq x\}) = \mathbb{P}^X((-\infty, x]) = \int_{(-\infty, x]} d\mathbb{P}^X = \int_{(-\infty, x]} d(\mathbb{P} \circ X^{-1}) = \int_{(-\infty, x]} f^X(x) \, \lambda(dx) = \int_{-\infty}^x f^X(x) \, dx$$

2.3 Häufige W-Dichten, W-Verteilungen und Verteilungsfunktionen

Diskrete Gleichverteilung

 $\mathbb{P}(A) = \frac{|A|}{|S|}$ Wahrscheinlichkeitsmaß

Wahrscheinlichkeitsdichte $p_{U(S)}(k) = \mathbb{P}(\{X = k\}) = \frac{1}{|S|}$ Verteilungsfunktion $F_{U(S)}(x) = \mathbb{P}(\{X \le x\}) = \frac{|\{i: k_i \le x\}|}{|S|}$

Bernoulli-Schema

Wahrscheinlichkeitsdichte $p_{B(p)}(k) = \mathbb{P}(\{X = k\}) = p^k (1-p)^{n-k}$

Binomialverteilung

 $p_{B(n,p)}(k) = \mathbb{P}(\{X = k\}) = \binom{n}{k} p^k (1-p)^{n-k}$ Wahrscheinlichkeitsdichte

 $F_{B(n,p)}(x) = \mathbb{P}(\{X \le x\}) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k (1-p)^{n-k}$ Verteilungsfunktion

Geometrische Verteilung

Wahrscheinlichkeitsdichte $p_{G(n,p)}(k) = \mathbb{P}(\{X = k\}) = p(1-p)^{n-1}$

 $F_{G(n,p)}(x) = \mathbb{P}(\{X \le x\}) = p \sum_{k=0}^{\lfloor x \rfloor} (1-p)^{n-1} \stackrel{x \text{ diskret}}{=} 1 - (1-p)^n$ Verteilungsfunktion

Poissonverteilung

Wahrscheinlichkeitsdichte

 $p_{P(\lambda)}(k) = \mathbb{P}(\{X = k\}) = \frac{\lambda^k}{k!} e^{-\lambda}$ $F_{P(\lambda)}(x) = \mathbb{P}(\{X \le x\}) = e^{-\lambda} \sum_{k=0}^{\lfloor x \rfloor} \frac{\lambda^k}{k!}$ Verteilungsfunktion

Stetige Gleichverteilung

 $f_{U(A)}(x) = \mathbb{P}(\{X \in A\}) = \frac{1}{\lambda(A)} \mathbb{1}_A(x), A \in \mathcal{B}(\mathbb{R})$ Wahrscheinlichkeitsdichte

 $f_{U([a,b])}(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x), \ a < b \in \mathbb{R}$ W-Dichte für Intervalle

 $F_{U([a,b])}(x) = \mathbb{P}(\{X \le x\}) = \frac{x-a}{b-a} \mathbb{1}_{[a,b]}(x) + \mathbb{1}_{(b,\infty)}(x)$ Verteilungsfunktion

Expoentialverteilung

 $f_{E(\lambda)}(x) = \lambda e^{-\lambda x} \mathbb{1}_{[0,\infty)}(x)$ Wahrscheinlichkeitsdichte

 $F_{E(\lambda)}(x) = \mathbb{P}(\{X \le x\}) = \int_0^\infty \lambda \, e^{-\lambda x} \, dx = (1 - e^{-\lambda x}) \, \mathbb{1}_{[0,\infty)}(x)$ Verteilungsfunktion

Normalverteilung

$$\begin{split} f_{N(\mu,\sigma)}(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ F_{N(\mu,\sigma)}(x) &= \mathbb{P}(\{X \leq x\}) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \Phi(\frac{x-\mu}{\sigma}) \end{split}$$
Wahrscheinlichkeitsdichte

Verteilungsfunktion

3 Unabhängigkeit

Seien $(\Omega_1, \mathcal{F}_1)$ und $(\Omega_2, \mathcal{F}_2)$ Ereignisräume, sowie (S_1, \mathcal{S}_1) und (S_2, \mathcal{S}_2) messbare Räume, $X_1 : \Omega_1 \longrightarrow S_1$ und $X_2:\Omega_2\longrightarrow S_2$ Zufallsvariablen.

 A_1 und A_2 unabhängig, wenn $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$ für $A_1, A_2 \in \mathcal{F}_1$ Ereignisse \mathcal{F}_1 und \mathcal{F}_2 unabhängig, wenn $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B) \text{ für alle } A\in\mathcal{F}_1,\,B\in\mathcal{F}_2$ σ -Algebren X_1 und X_2 unabhängig, wenn σ -Algebren $X_1^{-1}(\mathcal{S}_1)$ und $X_2^{-1}(\mathcal{S}_2)$ unabhängig Zufallsvariablen

4 Konvergenzen

 $X_n \xrightarrow{f.s.} X \quad \mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$ Fast sichere Konvergenz

 $X_n \xrightarrow{L_p} X \quad \lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0$ Konvergenz im p-ten Mittel

 $X_n \xrightarrow{L_2} X \quad \lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0 \text{ (Spezialfall)}$ Konvergenz im quadr. Mittel $X_n \xrightarrow{\mathbb{P}} X \quad \forall \epsilon > 0 : \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \epsilon\}) = 0$ Stochastische Konvergenz

 $X_n \xrightarrow{d} X \quad \lim_{n \to \infty} F_{X_n}(x) = F_X(x) \text{ bzw. } \lim_{n \to \infty} \mathbb{E}[\varphi(X_n)] = \mathbb{E}[\varphi(X)]$ $\mathbb{P}^{X^n} \xrightarrow{w} \mathbb{P} \quad \lim_{n \to \infty} \int_{\mathbb{R}^d} \varphi(x) \, \mathbb{P}_n(dx) = \int_{\mathbb{R}^d} \varphi(x) \, \mathbb{P}(dx)$ Konvergenz in Verteilung

Schwache Konvergenz

Stochastische Konvergenz wird auch als Konvergenz in Wahrscheinlichkeit bezeichnet.

Beziehungen

Konvergenz in Verteilung \Leftrightarrow Schwache Konvergenz

Fast sicher \Rightarrow Stochastisch \Rightarrow In Verteilung

Im $p\text{-ten Mittel} \Rightarrow \text{Stochastisch} \Rightarrow \text{In Verteilung}$

Fast sicher $\not\Leftrightarrow$ Im p-ten Mittel

5 Formeln

Vandermondesche Identität

$$\sum_{k=0}^{n} \binom{M}{k} \binom{N}{n-k} = \binom{M+N}{n}$$

Binomischer Lehrsatz

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}$$

Gauß-Integral

$$\int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) \, dx = \sqrt{2\pi}$$

4

Imaginäres Exponential-Integral

$$\int_{-a}^{a} e^{iux} \, dx = \frac{2 \, \sin(au)}{u}$$

Reihen

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \qquad \text{(Exponential reihe)}$$

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, |x| < 1 \qquad \text{(Geometrische Reihe)}$$

Gamma-Funktion

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Es gilt:
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
, $\Gamma(x+1) = x!$, $\Gamma(x+1) = x \Gamma(x)$, $\Gamma(1) = 1$

Dreiecksungleichung

$$|a+b| \le |a| + |b|,$$
 $\left| \sum_{i=1}^{n} x_i \right| \le \sum_{i=1}^{n} |x_i|,$ $\left| \int_I f(x) \, dx \right| \le \int_I |f(x)|$