Agenda

RANDOMIZED ALGORITHMS - INTRODUCTION

- MODEL
- LAS VEGAS AND MONTE CARLO

Randomized Algorithms

- A randomized algorithm is an algorithm that
 - is allowed access to a source of independent unbiased random bits, and
 - is allowed to use these random bits to influence its computation.
- The performance of a randomized algorithm can be proved by relying solely on the random choices
 - i.e. without any assumptions about inputs
- Contrast this with probabilistic analysis where
 - one assumes a distribution on the inputs

Randomized Algorithms

- Cost of randomization:
 - Cost model:
 - Sampling of a random element from a set S is done by
 - choosing O(log|S|) random bits and then
 - using these bits to index an element in S
 - Thus cost of choosing a random number in a set of N numbers is O(logN)
 - assuming a single random bit can be obtained in unit time from an unbiased source or random bits (e.g. a single coin flip)

Randomized Algorithms

- Advantages over deterministic algorithms:
 - They provide <u>better expected</u> performance
 - Worst case performance may not be better!
 - Their performance is not dependent on the input
 - They are often easier to design and implement
 - assuming library support for random number generation

Las Vegas and Monte Carlo

- A randomized algorithm that always gives the correct solution is said to be a *Las Vegas* algorithm
 - E.g. Randomized Quicksort
 - where the only variation from one run to another is the time complexity
- A randomized algorithm that may produce an incorrect solution is said to be a *Monte Carlo* algorithm.
 - O: Have you seen an example?
 - Bloom Filter vs. Hash Table

Hash Tables vs. Bloom Filters

- What is the difference between bucket / bin sorting and hashing?
 - Key Ranges?
 - Locations?
- Hashtables provide a Las Vegas algorithm for storing / retrieving a record in a dictionary data structure.
 - What about Bloom Filters?
 - When a Bloom Filter returns:
 - a yes answer to a find query it may be erring with a small probability
 - a no answer to a find query it is always correct

Monte Carlo algorithms

- Such techniques are referred to as <u>1-way error Monte</u>
 <u>Carlo algorithms</u> and
 - usually the error probability is bounded by a small fraction.
- REVIEW EXERCISE:
 - Calculate the false positive rate for a Bloom Filter given:
 - M the size of the table,
 - b the number of bits per record (which is 1 by default),
 - d the number of hash functions used, and
 - N the number of entries.