PROCESAMIENTO DE IMÁGENES DIGITALES

DPTO. MATEMÁTICA APLICADA I

TRANSFORMACIONES GEOMÉTRICAS

• Transformación geométrica: función T que modifica la relación espacial entre los píxeles de una imagen:

$$T(x,y) = (x',y')$$

donde (x, y) son las coordenadas de la imagen original y (x', y') las coordenadas de la imagen transformada.

Transformaciones afines:

Transformación geométrica en la que las coordenadas de la imagen transformada son expresadas como combinación lineal de las coordenadas de la imagen inicial más un término independiente.

$$\begin{cases} x' = ax + by + m \\ y' = cx + dy + n \end{cases} \rightarrow \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} m \\ n \end{pmatrix} \rightarrow$$

Coordenadas homogéneas
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & m \\ c & d & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \rightarrow 6$$
 grados de libertad

Al expresarse en forma matricial, si dicha matriz es no singular, se puede definir fácilmente la **inversa de la transformación.**

Transformaciones afines:

Ejemplo: Sea T la transformación dada por:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} x' = x + y \\ y' = y \end{cases}$$

Transformaciones afines:

Ejemplo: Sea T la transformación dada por:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} x' = x + y \\ y' = y \end{cases}$$

El efecto de los coeficientes de la matriz de la transformación consiste en un empuje en dirección horizontal.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transformaciones afines:

Ejemplo: Sea T la transformación dada por:

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} m \\ n \end{pmatrix} \rightarrow \begin{cases} x' = x + y + m \\ y' = y + n \end{cases}$$

El efecto de los coeficientes de la matriz de la transformación consiste en un empuje en dirección horizontal.

- <u>Clasificación</u>: En función de las propiedades que preserva, una transformación geométrica se puede clasificar en:
 - Rígida: preserva distancias
 - Semejanza: preserva ángulos
 - Afinidad: preserva paralelismos
 - Proyectiva: preserva colinearidad

Figure 3.44 Basic set of 2D geometric image transformations.

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix}\mathbf{I} & \mathbf{t}\end{bmatrix}_{2\times 3}$	2	orientation	
rigid (Euclidean)	$\begin{bmatrix}\mathbf{R} & \mathbf{t}\end{bmatrix}_{2\times 3}$	3	lengths	\Diamond
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{2\times 3}$	4	angles	\Diamond
affine	$\left[\mathbf{A}\right]_{2\times3}$	6	parallelism	
projective	$\left[ilde{\mathbf{H}} ight]_{3 imes 3}$	8	straight lines	

Table 3.3 Hierarchy of 2D coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2 \times 3 matrices are extended with a third $[0^T \ 1]$ row to form a full 3 \times 3 matrix for homogeneous coordinate transformations.

■ Simetría/reflexión
$$\rightarrow M = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(Rígida)

■ Rotación
$$\rightarrow M = \begin{pmatrix} \cos(\theta) & -sen(\theta) & 0 \\ sen(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Sesgo
$$\rightarrow M = \begin{pmatrix} 1 & s_v & 0 \\ s_h & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (Afín)

(Rígida)

sesgo vertical
$$s_v = 1, s_h = 0$$

sesgo horizontal
$$s_v = 0, s_h = 1$$

Las matrices anteriores se refieren a transformaciones que dejan invariante el origen (pixel (0,0) en el caso de imágenes).

$$\begin{pmatrix}
\cos(\theta) & -sen(\theta) & 0 \\
sen(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Rotación respecto al origen.

Rotación respecto al centro geométrico de la imagen (x_c, y_c) .

■ Transformación proyectiva →
$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{pmatrix}$$

SUD	OKU	12	6		4	7	the pass	Ti a ti
17		6	10		4	-		9
ľ					5		8	and the same
	7			2	Ĭ		9	3
8						ī		5
4	3			1			7	p 5, with
	5		2			Ī		Of the
13						2		8
		2	3		1			

7		6	6		4	7		9
					5		8	
	7			2			9	3
8								5
4	3			1			7	
	5		2					
3						2		8
4		2	3		1			

Practica:

Visita la página del tutorial de OpenCV:

https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html

- Averigua qué funciones tiene implementadas OpenCV para realizar las transformaciones vistas.
- Averigua qué funciones ofrece OpenCV para obtener la matriz de la transformación deseada.

Tema 6: Transformaciones geométricas

Transformación swirl: Produce una rotación en torno a un punto (x_c, y_c) que decrece conforma el radio aumenta.

$$\hat{x} = \begin{cases} x_c + r \cdot \cos \beta & r \le r_{\text{máx}} \\ x & r > r_{\text{máx}} \end{cases}$$

$$\hat{y} = \begin{cases} y_c + r \cdot \sin \beta & r \le r_{\text{máx}} \\ y & r > r_{\text{máx}} \end{cases}$$

$$\begin{array}{lcl} r & = & \sqrt{d_x^2 + d_y^2} \\ \\ \beta & = & \mathrm{atan} \left(\frac{d_y}{d_x} \right) + \alpha \left(\frac{r_{\mathrm{máx}} - r}{r_{\mathrm{máx}}} \right) \\ \\ \mathrm{donde} \ d_x = x - x_c \ \mathrm{y} \ d_y = y - y_c. \end{array}$$

• Transformación ripper: Produce una distorsión local en forma de onda sinusoidal en la dirección x ó y.

$$\hat{x} = x + a_x \cdot \sin\left(\frac{2\pi y}{\tau_x}\right) \quad \tau_x \text{ y } \tau_y \quad \to \text{periodos de la longitud de ondas}$$

$$\hat{y} = y + a_y \cdot \sin\left(\frac{2\pi x}{\tau_y}\right) \quad a_x \text{ y } a_y \quad \to \text{amplitudes de los desplazamientos}$$

• Transformación distorsión esférica: Simula el efecto de una lente esférica cuyos parámetros son su centro (x_c, y_c) , radio de distorsión r_{max} e índice de la lente ρ .

Dos tipos de distorsiones

- ¿Qué ocurre si el resultado de aplicar una transformación a un pixel (x, y) es un número no entero?
- Por ejemplo, supongamos que queremos aumentar la dimensión de una imagen al doble. La matriz de la transformación sería:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 indices no definidos en la matriz!
$$R \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4$$

 Problema: las imágenes son señales discretas, pero la transformación geométrica las trata como si fueran continuas (definidas en todo el plano).

 Problema: las imágenes son señales discretas, pero la transformación geométrica las trata como si fueran continuas (definidas en todo el plano).

Interpolación vecino más próximo:

Cualquier punto del espacio toma el valor del píxel más cercano.

Interpolación vecino más próximo:

Ejemplo: Zoom 10 veces mayor usando el vecino más próximo.

Imagen ampliada 250×260

- Ventajas: Es muy sencillo y rápido de calcular.
- Inconvenientes: El efecto de cuadriculado es evidente, y da lugar imágenes de poca calidad.

Interpolación bilineal:

En una dimensión, una interpolación lineal significa trazar una línea recta entre cada par de puntos consecutivos.

$$A'(p) = (1 - a)A(a) + aA(b)$$

Interpolación bilineal:

En dos dimensiones, la interpolación bilineal consiste en aplicar dos interpolaciones lineales: una horizontal y una vertical.

$$A'(p_x, s) = (1 - a)A(i, s) + a A(d, s) A'(p_x, r) = (1 - a)A(i, r) + a A(d, r)$$

$$A'(p_x, p_y) = (1 - b)A'(p_x, s) + bA'(p_x, r)$$

Interpolación bilineal:

Ejemplo: Zoom 10 veces mayor usando interpolación bilineal.

Observación: un zoom entero de K con interpolación bilineal es parecido (= a veces) a un zoom de K con vecino más próximo, seguido de un filtro de media de $K \times K$.

Interpolación bicúbica:

En una dimensión, la interpolación cúbica consiste en trazar una cúbica entre los 4 puntos más próximos (2 a la izquierda y 2 a la derecha).

p punto a interpolar

Obtener las 4 ecuaciones:

$$A'(i-1) = A(i-1), A'(i) = A(i), A'(i+1) = A(i+1), A'(i+2) = A(i+2)$$

4 ecuaciones, 4 incógnitas: se obtienen los coeficientes c_1 , c_2 , c_3 , c_4

Interpolación bicúbica:

En dos dimensiones, la interpolación bicúbica consiste en aplicar dos interpolaciones bilineales: una horizontal y una vertical.

Ejemplo: Zoom 10 veces mayor usando interpolación bicúbica.

Interpolación

Practica:

- Usa la función de OpenCV resize() para aumentar el tamaño de una imagen.
- Averigua qué opciones ofrece de interpolación, como argumentos de la función.

Bibliografía y recursos:

- Szeliski, Richard. Computer vision: algorithms and applications.
 Springer Nature, 2022.
- OpenCV tutorial: Geometric transformations of images. <u>https://docs.opencv.org/4.x/da/d6e/tutorial_py_geometric_transformations.html</u> (visitado el 4/10/2024)