Universidad de los Andes-Dpto. de Física Mecánica Cuántica I - 2014/II

Tarea 2

- 1. Sea un sistema con un espacio de Hilbert de dimensión 4. Una base ortonormal en este espacio viene dada por $\{ |0\rangle, |1\rangle, |2\rangle, |3\rangle \}$ (a y b constantes complejas).
 - (a) Cuáles de los siguientes operadores son Hermíticos?
 - (i) $\mid 0 \rangle \langle 1 \mid +i \mid 1 \rangle \langle 0 \mid$.
 - (ii) $|0\rangle\langle 0| + |1\rangle\langle 1| + |2\rangle\langle 3| + |3\rangle\langle 2|$.
 - (iii) $(a \mid 0\rangle + \mid 1\rangle$)[†] $(a \mid 0\rangle + \mid 1\rangle$).
 - (iv) $(a \mid 0) + b^* \mid 1\rangle$)[†] $(b \mid 0) a^* \mid 1\rangle$) | 2 \rangle $\langle 1 \mid + | 3\rangle \langle 3 \mid$.
 - (v) $\mid 0 \rangle \langle 0 \mid +i \mid 1 \rangle \langle 0 \mid -i \mid 0 \rangle \langle 1 \mid + \mid 1 \rangle \langle 1 \mid$.
 - (b) Encuentre la descomposición espectral del siguiente operador:

$$\mathbf{M} = \mid 0 \rangle \langle 0 \mid +2 \mid 1 \rangle \langle 2 \mid +2 \mid 2 \rangle \langle 1 \mid -\mid 3 \rangle \langle 3 \mid . \tag{1}$$

Descomposición espectral de un operador significa expresar ese operador como una suma de operadores de proyección sobre cada uno de sus vectores propios.

(c) Sea $|\Psi\rangle$ un vector de estado normalizado y 1 el operador identidad. Es el operador:

$$\mathbf{Q} = \frac{1}{\sqrt{2}} (\mathbf{1} + \mid \Psi \rangle \langle \Psi \mid) \tag{2}$$

un operador proyección?.

- (d) Encuentre la descomposición espectral del operador Q.
- 2. Considere un sistema físico descrito en un espacio de Hilbert de 2 dimensiones con una base ortonormal dada por los vectores $\{|1\rangle, |2\rangle\}$. En esta base el Hamiltoniano \hat{H} está dado por

$$\hat{H} = \frac{\hbar\omega_0}{3} \begin{pmatrix} 5 & i\sqrt{2} \\ -i\sqrt{2} & 4 \end{pmatrix} \tag{3}$$

donde ω_0 es constante real positiva. El sistema se encuentra descrito al instante t=0 por

$$|\Psi(0)\rangle = \sqrt{\frac{2}{5}}|1\rangle + \sqrt{\frac{3}{5}}|2\rangle. \tag{4}$$

- (a) A t = 0 se mide la energía. Cuáles valores se pueden encontrar?. Con cuáles probabilidades cada uno de ellos?. Cuál es el valor medio de la energía en ese momento?.
- (b) Determine $|\Psi(t)\rangle$, el estado del sistema a cualquier instante t>0, y el valor medio de la energía del sistema como función del tiempo.

3. Se tiene un sistema cuántico cuyo espacio de Hilbert es de dimensión 2. Sea $\mathcal{B} = \{|+\rangle, |-\rangle\}$ una base ortonormal en ese espacio de estados. Suponga que este sistema evoluciona de acuerdo al Hamiltoniano $\hat{H} = \hbar \epsilon_x \hat{A}_x + \hbar \epsilon_z \hat{A}_z$, donde \hat{A}_x y \hat{A}_z son operadores hermíticos, mientras que ϵ_x y ϵ_z son constantes reales. En la base \mathcal{B} se tiene la siguiente representación matricial para los operadores \hat{A}_x y \hat{A}_z :

$$\hat{A}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad , \quad \hat{A}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{5}$$

- (a) Calcule los valores y vectores propios (normalizados) de \hat{H} .
- Si a t=0 el sistema se encuentra preparado en el estado $|\psi(0)\rangle = |+\rangle$, determine para cualquier instante posterior t>0:
- (b) La representación del estado del sistema $|\psi(t)\rangle$ en la base \mathcal{B} .
- (c) Las probabilidades de encontrar al sistema en cada uno de los estados de la base \mathcal{B} .
- (d) El producto de las incertidumbres al medir cada uno de los observables descritos por \hat{A}_x y \hat{A}_z .
- 4. Cohen-Tannoudji et al., HII-8.
- 5. Cohen-Tannoudji et al., HII-9.