Оптимизация транспортного потока при заданных пунктах отправления и назначения всех участников движения

Пехтерев С.И. 610 группа Научный руководитель: д.ф.-м.н. Васенин В.А.

15 мая 2022

Основные определения

Дорожной сетью назовем тройку G = (V, E, l), где (V, E) ориентированный граф с длинами ребер $l: E \to \mathbb{R}_{>0}$. Предположим, что имеется n участников с заданными точками отправления $A_i \in V$ и прибытия $B_i \in V$. Пусть множество P_i есть множество всех простых путей из A_i в B_i . Элемент декартового произведения $P = \prod P_i$ назовем комбинацией путей. Пусть известно, что при комбинации путей участников $\mathbf{p} = (p_1, \dots, p_n) \in P$ *i*-ый участник затрачивает $T_i(\mathbf{p}) \in \mathbb{R}_{>0}$ времени на свой путь. Функции T_i назовем функциями временных затрат участника i.

Некооперативное прокладывание пути

Некооперативным прокладыванием пути в дорожной сети G назовем пятерку $F = (n, G, \{A_i\}_{i=1}^n, \{B_i\}_{i=1}^n, \{T_i\}_{i=1}^n)$. Некооперативное прокладывание пути предполагает, что каждый участник стремится сократить собственные временные затраты выбором пути p_i , несмотря на временные затраты других участников.

Задача прокладывания набора путей

Введем некоторую функцию $\Phi(\mathbf{p}) = \phi(T_1(\mathbf{p}), \dots, T_n(\mathbf{p})),$ определенную на множестве всех возможных комбинаций путей P и отображающую его во множество действительных чисел. С помощью нее участники могут отслеживать, как влияет изменение их пути на общую картину движения. Такую функцию назовем ϕ ункцией ϕ

Для заданных некооперативного прокладывания пути F и функции стоимости Φ необходимо найти комбинацию путей \mathbf{p}^* такую, что функция стоимости на ней минимальна, то есть

$$\Phi(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \Phi(\mathbf{p}). \tag{1}$$

Модель движения $v_i(\mathbf{p},t)$ - положительная функция, отделенная от нуля ограниченная функция, для которой верно

Спасибо за внимание!