Best Available Copy

AD-775 638

SEISMIC DISTANCE-AMPLITUDE RELATIONS FOR SHORT PERIOD P, PDIFF', PP AND COMPRESSIONAL CORE PHASES FOR DELTA LESS THAN 90 DEGREES

E. I. Sweetser, et al

Teledyne Geotech

Prepared for:

Defense Advanced Research Projects Agency

5 November 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

I. SWEETSER, N. A. BLANDFORD

Brismie Bata Analysis Contac

Teledyne Controls, 314 Montgymery Street, Alexandria, Virgibie 22314

APPROVED FOR PUBLIC DELEGISTICAL TALEBUTION, UNLIMITED.

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE

V = Defense Advinced (lesusied Prividette Agency

Ruces Magitaring Bargaich Dilles

190 Miliaul Certavnis, Artington, Virginia 22200

Anya one di 1920 -

VEST A PROSECULAR STATE

etymosy Street, Augunier

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
SDAC-TR-73-9	3. RECIPIENT'S CATALOG NUMBER		
4. TITLE (and Subtitle) SEISMIC DISTANCE-AMPLITUDE RELATIONS FOR SHOPT DEPLOD R. R. D. AND GOMENICATIONS	5. TYPE OF REPORT & PERIOD COVERED Technical		
SHORT PERIOD P, P_{diff} , PP AND COMPRESSIONAL CORE PHASES FOR $\Delta > 90^{\circ}$	6. PERFORMING ORG. REPORT NUMBER		
Sweetser, E. I., Blandford, R. R.	B. CONTRACT OR GRANT NUMBER(s) F08606-74-C-0006		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Teledyne Geotech 314 Montgomery Street Alexandria, Virginia 22314	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Defense Advanced Research Projects Agency Nuclear Monitoring Research Office 1400 Wilson Blvd. Arlington, Va. 22209	12 REPORT DATE 5 NOV 1973 13. NUI BER OF PAGES 4.9		
VELA Seismological Center 312 Montgomery Street	15. SECURITY CLASS. (of this report)		
Alexandria, Virginia 22314	15a. DECLASSIFICATION DOWNGRADING SCHEDULE		

APPROYED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22151

19 KEY WORDS (Continue on reverse side if necessary and identity by block number)

Seismology Amplitude-Distance

PP

Amplitude-Distance PKP Distance-Amplitude

Core Phases

20 ARSTRACT (Continue on reverse side if necessary and identify by block number)

Measurements of logra(A/T) reported by the International Seismic Centre, the Vela Observatories, and the Long-Range Seismic Measurements Program are used to define an amplitude-distance curve for the maximum amplitude in the first few seconds of motion for the distance range $\Delta > 90^\circ$. In general terms, the corresponding phases are P, Pdiff, and PKIKP. Some information is also obtained, however, for the phases PP and PKP2.

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Delta Lesothan 90 degrees. Paul dift Discharge, Define the Define Advanced Renauch Projects Agency me the Ab Form District Applications Court will be requisible to injure on continuous discharge which the free regular by other problems or continuous call the discountry of the property of the property of the property of the property of the affect of the affect of the property of the property of the affect of the affect of the property of the affect of the affect of the affect of the affect of the Ab Force Continuous Application of the Ob Research. HTM. while factor 200 E \$218-F 105-14 INSTRUCTION. PISTABLITON, AVAILABILET COM

SEISMIC DISTANCE-AMPLITUDE RELATIONS FOR SHORT PERIOD P, Pdiff, PP AND COMPRESSIONAL CORE PHASES FOR $\Delta{>}90^\circ$

Seismic Data Analysis Center Report No.: SDAC-TR-73-9

AFTAC Project No.:

VELA VT/4709

Project Title:

Seismic Data Analysis Center

ARPA Order No.:

1620

ARPA Program Code No.:

3F10

Name of Contractor:

TELEDYNE GEOTECH

Contract No.:

F08606-74-C-0006

Date of Contract:

01 July 1973

Amount of Contract:

\$2,152,172

Contract Expiration Date: 30 June 1974

Project Manager:

Robert G. Van Nostrand

(703) 836-3882

P. O. Box 334, Alexandria, Virginia 22314

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

(1/7)

ABSTRACT

Measurements of $\log_{10}(A/T)$ reported by the International Seismic Centre, the Vela Observatories, and the Long-Range Seismic Measurements Program are used to define an amplitude-distance curve for the maximum amplitude in the first few seconds of motion for the distance range $\Delta > 90^{\circ}$. In general terms, the corresponding phases are P, P_{diff} , and PKIKP. Some information is also obtained, however, for the phases PP and PKP₂.

TABLE OF CONTENTS

	Page	No.
ABSTRACT		
INTRODUCTION	1	
DATA SELECTION	10	
RESULTS	12	
CONCLUSIONS AND GUAGRATION	12	
CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH	29	
REFERENCES	30	
APPENDICES	50	
APPENDIX I	ΛТ	
ISC Events (0-70 km) 01 Jan 70 thru 30 Jun 70	AI-:	
APPENDIX II	АТТ	
Observatory, LRSM and NOAA Events (0-70 km)	AII-	-1

LIST OF FIGURES

Figure		Figure Title	Page	No.
la,b	, C	Travel-time figures for compressional phases	4,6	5
2a		Travel-time curves for different core models. From Ergin (1967).	7	
2b		Qamar's (1973) PKP travel-time-velocity model KOR5. Branch names are ordered approximately by frequency of use. Note conflict for PKP ₁ .	8	
3		Average amplitude versus distance curves from ISC event data (90°-180°).	13	
4		Individual amplitude versus distance values from ISC reports (90°-180°), 01 January - 30 June 1970.	e 16	
5		Period as a function of distance for PKIKP (P") from Subiza and Bath (1964).	19	
6		Average amplitude versus distance curves (90°-140°) for P, Pdiff, and PKIKP; showing the bias between the quieter Observatory Stations and the other NOAA reporting stations.	21	
7	,	Average amplitude versus distance curves from Observatory and LRSM event data for P, Pdiff; PKIKP, and PP (90°-138°).	22	
8] N I	Individual amplitude versus distance values for PP from Observatory and RSM readings (90°-180°) 18 July .963-31 October 1968.	23	

LIST OF FIGURES (Cont'd.)

Figure	No.	Figure Title	Page	No.
9		WWSSN station amplitudes reduced to a magnification of 25,000 at 1 cps. Amplitudes are not adjusted for period. Small dcts are P1, open circles P2, triangles P1 (or GH branch). From Qamar, 1973.	25	
10		Average amplitude versus distance curves from ISC event data (90°-180°) 01 January-30 June 1970 compared to the single station (LASA) individual values from IBM (1971).	26	
11		Average amplitude versus distance curves from ISC event data (110°-180°) 01 January-30 June 1970 compared to normalized PKIKP data from Shurbet (1967).	27	

LIST OF TABLES

Table No.	Table Title	Page No.
I	Table of Distance Factors (B) for Shallow Events for Phases P, Pdiff, PKIKP or PKHKP, and PKP2, (from Figures 3 and 4).	14
II	Table of Distance Factors (B) for Shallow Events for the Phase PP (from PP Average Figure 3).	15

INTRODUCTION

Gutenberg and Richter (1956) compiled distance-amplitude relations for short-period earthquake P and S phases in the distance interval $0^{\circ}<\Delta<110^{\circ}$ and for PP in the distance interval $0^{\circ}<\Delta<180^{\circ}$ (see also Richter, 1958), for these data). While many workers subsequently published modifications to Gutenberg's curves for regional distances, Veith and Clawson (1972), using explosion data, were the first to propose a new curve for P over the entire teleseismic range, $0^{\circ}<\Delta<100^{\circ}$.

Denson (1952) produced some PKP amplitudes, but the data were rather sparse, restricted to a few stations, and from early instrumentation with poorly defined characteristics. (See Figures 1 and 2 and the accompanying discussion in the text for definitions of the various phases.) After the introduction of the WWSSN instrumentation several more studies were forthcoming. Subiza and Bath (1964) concentrated on the distance range 120°-140° in examining the precursors to PKIKP. They reported about 100 PKIKP amplitudes, but the events used were pre-1962, for which reported $\mathbf{m}_{\mathbf{b}}$ values tend to be unreliable. Thus we could not feel justified in using their data to determine an absolute distance-amplitude scale without a careful restudy of the \mathbf{m}_{b} values for their events. Subiza and Bath did not, of course, intend that their amplitude data be used for such a purpose.

Ergin (1967) reported amplitudes for a few large earthquakes, but not enough to make a significant contribution to a distance-amplitude study.

Shurbet (1967) performed a comprehensive study, personally reading original records, of PKP amplitude versus distance for the range 110°-180°. For each event, he used the amplitude of the event at a station near 125° to normalize all the observations for that event. He found that it was difficult in the caustic zone to distinguish the different phases, and so generally speaking for this distance range he simply plotted the largest amplitude seen. This is the approach which we are forced to take in our use of data from the Bulletin of the International Seismological Centre (ISC); thus his plots form a valuable check on our results. Outside the caustic zone Shurbet determined an average B factor independent of distance. We shall see that this is a considerable oversimplification, especially near the shadow zone.

Engdahl (1968) reported approximately 70 PKP amplitudes together with a comparable number of PKKP and related amplitudes from two earthquakes.

Shahidi (1968) measured maximum values of the PKP group from 25 shallow 1963 earthquakes in the S. W. Pacific as recorded at 6 stations in Sweden. He obtained a total of about 150 A/T values for the distance range $133^{\circ} \leq \Delta < 153^{\circ}$. Variable instrumentation and poor NOAA mb values make this data difficult to use for our purposes.

Ruprechtova (1972) presented observed amplitude ratios between PKIKP, PKHKP, and PKP $_2$ from 144° to 154° using approximately 100 observations for each phase. As an overall average the ratios were PKHKP/PKIKP $\stackrel{\sim}{\sim} 5$ for 145° < Δ <151°; and PKP $_2$ /PKIKP $_2$ $\stackrel{\sim}{\sim} 4$ for 145° < Δ <154°. These results are of substantial use in interpreting the ISC data, although it must be kept in mind that perhaps 10% of the values for these ratios were less than 1.0.

Workers at IBM (1971) have produced some distance-amplitude data for PKP, but from only one station, LASA.

Qamar (1973) has investigated the structure of PKP phases near 140° and has reported amplitudes for five events. These are not enough to give a good average distance-amplitude curve, but the careful readings by Qamar and others of the many near-simultaneously arriving phases has enabled us to better interpret the ISC data we have used to determine our distance-amplitude curve. This curve may be used to determine magnitudes. It may also be used to scale codas in order to determine the opportunities for hiding explosions in world-wide earthquakes.

Figure 1a is a portion of the Jeffreys-Bullen travel-time distance curves, using their nomenclature and showing that the first arrival, P, changes to diffracted P at approximately 105°. The amplitude is

Travel-time figures for compressional phases. Figure la.

A (deg)

then greatly reduced, the period lengthens to approximately two seconds, and between 105° and 110° we have the classical shadow zone. In this zone, the largest amplitude wave is PP, a compressional wave singly reflected at the surface. On short period instruments its period is characteristically greater than two seconds; and thus it can not obscure the P signal of another earthquake as easily as might be expected from its amplitude.

At 110° the phase PKIKP (sometimes called PKP, P', P'', or P'DF) begins and the situation rapidly becomes complicated and controversial. Figures 1b and 1c form the basis for the following clear description of the basic core phases by Adams and Randall (1964):

"The ray which leaves the focus at the shallowest angle necessary to enter the core corresponds to A, and successively steeper rays trace the travel-time curve ABCDEF, and have paths through the Earth as shown in Figure 1b, in which the points of emergence of rays that correspond to the points labelled in Figure 1c are shown by dashed letters. Rays corresponding to the branches AB and BC penetrate only the outer core, the branch CD represents rays which undergo total internal reflection at the boundary of the inner core, and rays that represent the branch DF penetrate the inner core; the point F thus corresponds to a ray travelling diametrically through the Earth. The cusp at B is a caustic, and is therefore associated with large amplitudes."

Figures 2a from Ergin (1967) and Figure 2b (drawn from data in Qamar, 1973) give a more detailed picture and some indication of the existing uncertainty and confusion in nomenclature. Our detailed discus-

Figure 1b. Travel-time figures for compressional phases.

Figure 1c. Travel-time figures for compressional phases.

Figure 2a. Travel-time curves for different core models. From Ergin (1967).

Figure 2b. Qamar's (1973) PKP travel-time-velocity model KORS. Branch names are ordered approximately by frequency of use. Note conflict for PKP₁.

sions of this distance range will generally be in terms of Qamar's travel time data. While PMIKP is a wave which has traveled through the inner core and is fairly strong, PKiKP (a reflection from the inner core) replaces it at smaller distances and is very weak. PKHKP (also called P $_{\mbox{\scriptsize I}}$ or P' $_{\mbox{\scriptsize GH}})$ begins around 125° and is, at first, very weak; so that for the range 110°-140° one may generally be confident that PKIKP is the first arrival phase being read by the average observer at the average site, although for a large event Pdiff and PKHKP will be observed. PKP2 (also called P'2) begins at 143°-144° and both it and PKHKP arrive within a few seconds of PKIKP. So from 140° to 150° it is difficult to know what phase the average observer has measured if he picks the maximum amplitude in the first few seconds of the signal. At distances greater than 150° it is generally possible to decide if the measured phase is PKP, by the reported arrival time, although PKIKP may still be confused with PKHKP out to perhaps 157°, where the latter's amplitude sharply decreases.

DATA SELECTION

Our principal data base consists of the International Seismological Centre (ISC) bulletins January-June 1970. Every shallow (h<70 km) event was used for which there were two or more $\log_{10}(A/T)$ values reported for Δ >110°. In this time period the ISC reported $\log_{10}(A/T)$ values only for the first arrivals; and by their definitions these would be P to 105°, P_{diff} between 105° and 110°, and PKIKP to 180°. On occasion we would decide on the basis of time residuals whether a phase was PKIKP or if the first motion had been missed and the analyst had actually picked PKP₂ as first motion. In this way it was possible to obtain PKP₂ amplitude data from the ISC bulletin when PKIKP would be the true first motion.

Average B factors were computed by subtracting the $\log_{10}(A/T)$ value from the ISC m_b value, averaging the resulting values over 2.5° increments of distance, and then plotting this average at the mid-point of the 2.5° increments. The same averaging procedure was used for the Geotech data sources used in this report.

In the region between perhaps $100^{\circ}-120^{\circ}$, PP has a larger short-period amplitude than the first arrival. To obtain these PP amplitudes it was necessary to use other data sources than the ISC since, as mentioned above, they report $\log_{10}(A/T)$ only for the first arrivals. We chose to use the data of Geotech (1963-1968) consisting of phase readings at BMO, CPO, TFO, UBO and WMO between July 18, 1963 and December

31, 1968. Another Geotech data source consisted of the station bulletins of the Long-Range Seismic Measurements Program (1962-1967). For those events from August 18, 1963 through December 1967 which had two or more phase readings for distances greater than 110° we reviewed the NOAA Earthquake Data Reports to find if the reported $\mathbf{m}_{\mathbf{b}}$ values were reliable. We required that there be three or more amplitudes reported and used in the magnitude determination in the distance interval 20°< Δ <105°. If amplitudes for Δ <20° had been used in the magnitude determination, we removed them and recomputed the magnitudes. Also we generally used, in the recomputed magnitudes, the reported amplitude values which the NOAA had discarded as outlying values. Discarding the amplitudes for $\Delta < 20^{\circ}$ is generally a wise procedure since Gutenberg's B factors, used by NOAA, are not accurate for these distances; see for example Veith and Clawson (1972). Using outlying magnitudes is justified because, if looked at in terms of a log-normal distribution, one can not usually reject the hypothesis that the outliers are members of the overall population. In any event only 9 event magnitudes were changed and by an average amount of -.25 m_h . These, then, were the magnitudes from which the $\log_{10}(A/T)$ values were subtracted to determine the PP distance-amplitude relation.

Appendix I presents the 135 earthquakes used with the ISC data and Appendix II is the same for the 45 earthquakes used with the Geotech data used to determine the PP amplitudes.

RESULTS

Figure 3 gives the principal results of the present work as curves drawn by hand through the ISC data of amplitude versus distance for P, Pdiff, and several compressional core phases. Table I and II give the corresponding "B" factors. A straight line approximation to the Geotech PP data is also shown.

Between 90° and 100° the curve is in good agreement with Veith and Clawson's (1972) distance-amplitude curve for a depth of 40 km (corrected for reference to zero-to-peak amplitudes) suggesting that the ISC data used have no substantial bias. In the distance interval $90^{\circ}<\Delta<105^{\circ}$ the only ISC data used was 01 April through 08 April 1970, and the full months of May and June since more than enough data was available during the smaller time period for our purposes.

In the upper portion of Figure 3 we give the number of observations for each phase in each 2.5° interval. The averages over these intervals are given as points in Figures 3 and 4. The smooth curve in Figure 4 is the same as in Figure 3. It is apparent that the erratic average values are for intervals where there are few data points. We note that the first motion does not recover to its amplitude at 90°-95° until about 143°.

In Figure 4 we see that the scatter in amplitudes is quite large. A typical standard deviation, assuming a log-normal distribution, is about 0.35

-13-

TABLE I Table of Distance Factors (B) for Shallow Events for Phases P, P_{diff} , PKIKP or PKHKP, and PKP₂ (from Figures 3 and 4)

Phase	Distance (deg)	В	Phase	Distance (deg)	. В	Phase	Distanc (deg)	e B
P	92	4.065	PKIKP	126	4.280			
	93	4.120		127	4.250		160	4.175
	94	4.175		128	4.225		161	4.185
	95	4.230		129	4.215		162 163	4.185
	96	4.300		130	4.225			4.185
	97	4.360		131	4.250	1	164 165	4.175
	98	4.425		132	4.290			4.175
	99	4.480		133	4.350		166	4.175
	100	4.535		134	4.390		167	4.175
	101	4.590		135	4.410		168	4.170
	102	4.640		136	4.410		169	4.160
	103	4.705		137	4.400		170	4.160
	104	4.780		138	4.390		171	4.160
	105	4.860		139	4.375		172	*
Pdiff.	106	4.980		140	4.365		173	*
	107	5.125	PKIKP	141	4.350		174	*
	108	5.225	or	142	4.250	1 11	175	*
	109	5.200	РКНКР	143	4.015		176	*
	110	5.025	PKIKP	144	3.650		177	*
KIKP	111	4.820	or	145	3.510		178	*
	112	4.750	PKHKP	146	3.490	log ₁₀ (A	(zero to	peak)
	113	4.715	or	147	3.475	10	Т) =
	114	4.675	PKP ₂	148	3.480	* 7 -1-		
	115	4.650	or	149	3.500	" 3 ODS	ervations	or less
	116	4.630]	PKP ₁	150	3,525			
	117	4.600	1	151	3.550			
	118	4.570	PKIKP	152	3.980	PKP ₂	1.52	
	119	4.530	or	153	4.010	2	152	3.575
	120	4.490	PKHKP	154	4.035		153	3,630
	121	4.460		155	4.060		154	3,685
	122	4.425		156	4.075		155	3.725
	123	4.385		157	4.100			*3,800
	124		PKIKP	158	4.140			*3.860
	125	4.315		159	4.170		158	3.925
				100	7.1/0		159	4.000
							160	4.065
					1		161	4.150

TABLE II

Table of Distance Factors (B) for Shallow Events
for the Phase PP (from PP Average Figure 3)

$\Delta(\deg)$	В	$\Delta(\deg)$	В
99	4.220	113	4.150
100	4.215	114	4.145
101	4.210	115	4.140
102	4.205	116	4.130
103	4.200	117	4.125
104	4.195	118	4.120
105	4.190	119	4.115
106	4.185	120	4.115
107	4.180	121	4.110
108	4.175	122	4.105
109	4.170	123	4.100
110	4.165	124	4.090
111	4.160	125	4.085
112	4.155		

Figure 4. Individual amplitude versus distance values from ISC reports (90°-180°), 01 January - 30 June 1970.

magnitude units. We must remember, however, that this variance includes the variance of the event P wave \mathbf{m}_b values with respect to the average "PKP" \mathbf{m}_b . (Of course each event's P wave \mathbf{m}_b value may also have a small standard deviation of the mean.) This variance may be non-zero because for any particular event the "PKP" \mathbf{m}_b , sampling as it does a different portion of the focal sphere, may have a mean substantially different from the P wave \mathbf{m}_b . However, over an ensemble of earthquakes with different focal mechanisms, a suitably defined PKP \mathbf{m}_b should approach the P wave \mathbf{m}_b .

We might speculate that had our m_b values been determined from PKP readings, the observed variance would have been less than 0.35. However, we may note that when Veith and Clawson (1972) computed the standard deviation of their P-wave data (normalized by P-wave magnitudes from their own P-wave distance-amplitude curve) they obtained $\sigma=0.356$ over the distance interval 25°-90°. This is not significantly different from the value of 0.35 we find between 90° and 180°. This indicates either that PKP has a smaller variance about its mean amplitude than does P, or that the network PKP m_b can be expected to be very close to the network P-wave m_b for individual events.

On Figure 3 we have plotted "short-period" PKIKP and PKP $_2$ points from Denson (1952). The disagreement

is substantial; but since his entire curve comes from a total of only 92 points, since his instrumentation was so different, and since his station set was restricted to Pasadena, one station in Mexico, and two in South America, we believe our curves are more reliable as a world-wide average. Something of Denson's instrumentation problems are suggested by the fact that for $\Delta > 130^{\circ}$ he found 1.5 < T < 2.5 seconds whereas our ISC data are invariably in the period range 0.8 < T < 1.5 seconds. Figure 5 from Subiza and Båth (1964) reinforces this point by showing that the PKIKP mean period is 0.88 seconds for $120^{\circ} < \Delta < 150^{\circ}$.

Also in Figure 3 we see that for our straight line interpretation of the PP data in the interval 100°-125°, PP is between 0.2 and 0.9 magnitude units larger in A/T than the first motion; P, P_{diff}, or PKP. for PP, T is typically two seconds, A itself is perhaps 0.3 magnitude units even larger. For weak events it should, therefore, be a useful phase for magnitude determination. The PP curve was determined with the Geotech amplitude data, as mentioned in the prior section on data, but there are some problems in its use. Evernden and Clark (1970) have pointed out that the quiet stations in the United States generally record smaller P-wave amplitudes than the noisy ones. Since the Observatory and LRSM stations, from which the Geotech data are gathered, were preferentially located in quiet sites, their PP amplitudes are also likely to be too small on the average.

Figure 5. Period as a function of distance for PKIKP (P") from Subiza and Bath (1964).

As an illustration, Figure 6 shows that as a function of distance there is a difference of 0.1 - 0.8 magnitude units between the average first arrival amplitudes reported by the Observatories and by NOAA reporting stations found in the Earthquake Data Reports.

Thus, when most of one's data set comes from unusually quiet stations it is necessary to allow for station effects.

In Figure 7 we have plotted the average P, P_{diff}, PKP curve; and the PP curve from the Appendix II events for LRSM and Observatory data. To transfer the data to Figure 3 we assume that station-network effects account for the difference between the P, P_{diff}, PKP curves in Figures 3 and 7; and therefore place the PP curve of Figure 7 above the P, P_{diff}, PKP curve in Figure 3 by an amount equal to its distance above the Figure 7 P, P_{diff}, PKP curve. Also in Figure 3 we have plotted a few points from Gutenberg and Richter (1956) for PP. While we find A/T values as much as 0.35 units larger than did Gutenberg and Richter, the overall agreement is probably fairly good considering the differing instrumentation.

Figure 8 presents the scatter in the PP amplitudes. The standard deviation is about 0.45 magnitude units, significantly larger than for P, PKP, et al. This can probably be traced to the vagaries of the free reflection surface; or to the fact the PP is

Figure 6. Average amplitude versus distance curves (90°-140°) for P, P_{diff}, and PKIKP; showing the bias between the quieter observatory Stations and the other NOAA reporting stations.

-22-

Figure 8. Individual amplitude versus distance values for PP from Observatory and LRSM readings (90°-180°) 18 July 1963 - 31 October 1968.

an emergent phase and that analysts are not so practiced in detecting it, which may lead to erroneous or inconsistant measurements. A final possibility is that the NOAA magnitudes for these events are not as reliable as the ISC magnitudes for the events in Appendix I.

Figure 9 gives Qamar's (1973) careful phase-amplitude measurements for a single event. We see that in the range 142°-155° the dominant amplitudes are from the GH branch (see Figre 2b) i.e. PKHKP, $(P'_{GH} \text{ or } P_I)$.

Figure 10 compares the average curves from Figure 3 with IBM data (1971). We see that the agreement is satisfactory considering the fact that the IBM data is all from a single station and therefore will have biases due to station effects and due to the fact that in any specific distance interval a large proportion of the events are from only a few epicentral regions. In addition, the IBM data includes deep events, whereas we restricted ourselves to those shallower than 70 km.

Figure 11 is Shurbet's (1967) plot of his data, normalized to 1.0 at 125°. We see that the agreement with our curve, also normalized at 125° is excellent except that our amplitudes are perhaps 0.2 magnitude units high between 148° and 158°. Shurbet attempted to distinguish PKIKP, PKHKP and PKP₂ in this distance interval. Thus this discrepancy could be explained

Figure 9. WWSSN station amplitudes reduced to a magnification of 25,000 at 1 cps. Amplitudes are not adjusted for period. Small dots are P1, open circles P2, triangles P1 (or GH branch). From Qamar, 1973.

Figure 10. Average amplitude versus distance curves from ISC event data (90°-180°) 01 January - 30 June 1970 compared to the single station (LASA) individual values from IBM (1971).

Figure 11. Average amplitude versus distance curves from ISC event data (110°-180°) 01 January - 30 June 1970 compared to normalized PKIKP data from Shurbet (1967).

if in the distance range 148°< Δ <158° he sometimes successfully rejected PKHKP and PKP $_2$, while for 150°< Δ <158° he sometimes successfully rejected PKHKP.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The distance-amplitude curves obtained in this report for $\Delta > 90^{\circ}$ are thought to be more accurate and complete than any heretofore published. They should be of substantial use for determining more accurate $\mathbf{m}_{\mathbf{b}}$ values and for determining the number of opportunities for masking explosions in earthquakes more distant than 90° from a candidate detecting station. A substantial reduction in the scatter of the data about these curves, e.g. in the $P_{\mbox{diff}}$ region and for Δ >170°, could be obtained by using more of the available ISC data. This might be efficiently accomplished using the sorting and selection procedures we have developed in this paper to write a computer program which would operate on magnetic tape data available from the ISC. Using only the larger events from the complete data set will enable us to evaluate the effect on the distance-amplitude relations caused by the fact that, for weak events, the stations at which a phase arrives with unusual strength are more apt to report. It will also be useful to compute station corrections and use them to reduce the scatter in the data, although the work of von Seggern (1973) suggests that there will be little net effect.

REFERENCES

- Adams, R. D., and Randall, M. J., 1964, The fine structure of the Earth's core: Bull. Seism. Soc. Am., v. 54, p. 1299-1313.
- Cohen, T. J., Sweetser, E. I., and Dutterer, T. J., 1972, P and PKP coda decay characteristics for earthquakes: Seismic Data Laboratory Report No. 301, Teledyne Geotech, Alexandria, Virginia.
- Denson, M. E., Jr., 1952, Longitudinal waves through the earth's core: Bull. Seism. Soc. Am., v. 42, no. 2, p. 119-134.
- Engdahl, E. R., 1968, Core phases and the Earth's core, Ph.D. Thesis, Department of Geophysics, St. Louis University, St. Louis, Missouri.
- Ergin, K., 1967, Seismic evidence for a new layered structure of the Earth's core: J. Geophys. Res., v. 72, p. 3669-3688.
- Evernden, J. F., and Clark, D. M., 1970, Study of teleseismic P: Physics of the Earth and Planetary Interiors, v. 4, no. 1, p. 1-31.
- Geotech, 1962-1967, Seismological bulletin longrange seismic measurements program: Teledyne Geotech, Garland, Texas.
- Geotech, 1963-1968, The registration of earthquakes at Blue Mountains Seismological Observatory, Cumberland Plateau Seismological Observatory, Tonto

REFERENCES (Continued)

- Forest Seismological Observatory, Uinta Basin Seismological Observatory, and Wichita Mountains Seismological Observatory: Teledyne Geotech, Garland, Texas.
- Gutenberg, B., 1951, PKKP, P'P' and the earth's core: Trans. Am. Geoph. Un., v. 32, p. 373-390.
- Gutenberg, B., and Richter, C. F., 1956, Magnitude and energy of earthquakes: Annali de Geoficica, v. 9, p. 1-15.
- IBM, 1971, Integrated seismic research signal processing system: Tenth quarterly technical report, Contract F19628-68-C-0400, ESD-TR-72-123, p. 68-119.
- Qamar, A., 1973, Revised velocities in the earth's core: Bull. Seism. Soc. Am., v. 63, no. 3, p. 1073-1106.
- Richter, C. F., 1958, Elementary seismology, Freeman, W. H., San Francisco.
- Ruprechtova, L., 1972, Recent interpretation of the core discontinuities: Zeitschrift für Geophysik, v. 38, p. 441-446.
- Shahidi, M., 1968, Variation of amplitude of PKP across the caustic: Phys. Earth Planet. Interiors, v. 1, p. 97-102.

REFERENCES (Continued)

- Shurbet, D. H., 1967, The earthquake P phases which penetrate the earth's core: Bull. Seism. Soc. Am., v. 57, p. 875-890.
- Subiza, G. P., and Bath, M., 1964, Core phases and the inner core boundary: Geophy. J., v. 8, p. 496-513.
- Sweetser, E. I., and Cohen, T. J., 1973, Average P and PKP coda characteristics for earthquakes: Seismic Data Laboratory Report No. 305, Teledyne Geotech, Alexandria, Virginia.
- Veith, K. F., and Clawson, G. E., 1972, Magnitude from short-period P-wave data: Bull. Seism. Soc. Am., v. 62, no. 2, p. 435-452.

APPENDIX I

ISC Events (0-70 km) 01 Jan 70 thru 30 Jun 70

ISC Events (0-70 km) 01 Jan 70 Thru 30 Jun 70

				01.0	7 0/ 1	or san to infu so Jun 10				
Date	Origin Time	Latitude	Longitude	Depth (km)	ISC mb	Geographical Region	Number of Phase Readings obtained from each event P PD PKP PKP, PKP	of Pha d from PKP	se Read	dings event PKP2
01 Jan 70	17:11:00.3	29.65	177.3W	43	7.	Kormadar Irlanda				7
05 Jan 70	00:20:13.7	19.2N	121.2E	41	5.4	Philinnings		,	ın (4
06 Jan 70	05:35:52.0	9.68	151.5E	, œ	5.7	Fact of New Chinese	,	7	7	7
09 Jan 70	04:42:58.0	33.65	179.2W	31	5.1	South of Kermader Telanda	-	16	ı	Ŋ
09 Jan 70	23:16:20.6	9 35	117.3E	82	. r.	Sumbaya Island		۰ و	7	23
10 Jan 70	12:07:08.6	0.8N	126.8E	89	5.9	Mindanao Dhiliminos		۰	2	1
11 Jan 70	03:14:24.0	6.25	71, 3E	33	4.9	Chance Archinologo		7	м	7
11 Jan 76	05:19:38.1	22.65	171.4E	20	7	I over 1 to 1 and 2		2	Н	7
18 Jan 70	00:18:24.4	21.4N	146.7E		7 . 7	Mariana Telanda		9		6
18 Jan 70	04:10:46.0	15.65	179.9W		, L	Firi Telande		10		П
20 Jan 70	00:38:25.0	53.8N	163.6W		2.1	Inimak Alemtian Telende		2		3
21 Jan 70	17:51:37.4	7.0N	104.2W	23	6.1	Off Coast of Central America	•	7 (•	4
23 Jan 70	03:31:29.3	53.7N	163.6W	36	5.2	Unimak Alemtian Telando	⊣	× (7	7
24 Jan 70	21:55:39.3	19.18	168.8E	89	4.7	New Hebrides		7		4
26 Jan 70	10:01:20.0	12.65	166.4E	42	9	Santa Cris Tolanda		4		4
27 Jan 70	09:02:52.9	10.98	165.9E		2 2	Santa Cruz Islanda		6		
04 Feb 70	05:08:48.0	15.6N	99.5W	18	5.9	Coast of Guerrero Movies		o (l
04 Feb 70	22:45:58.3	22.75	171.4E	54	5.2	Lovalty Islands		20 •	,	ı,
05 Feb 70	12:46:39.2	47.0N	154.1E	39	5.4	Kurile Islande		4 ,	۲,	7
05 Feb 70	22:05:58.5	12.6N	122.1E	00	5.9	Luzon, Philippines	•	ا ہ		ı
06 Feb 70	00:11:40.5	54.6N	163.6E	43	5.6	1 0	1	2	را	3
06 Feb 70	02:17:33.5	12.7N	121.9E	34 5		Mindoro, Philippines		٠ ,		
07 Feb 70	10:01:06.0	47.3N	154.0E	32 5		Kurile Islands		7 9		- → +
						1.		0		-

	ı		1					1					ı							ı							
adings event PKP,	1	ŋ	-	M	Ŋ	Ŋ	9	-	4 1	- 1	۱ ر <i>د</i>	n (٠	4	(o n (י ת	٦,	o	او	ب درم	00	4	10	، ای	20	72
ase Re m each PKP ₁	۱ .	-	2	7	1	Ŋ	2		۰ ,	-	,	-		,	7 ,	-			4							_	~ 1
Number of Phase Readings obtained from each event PD PKP PKP ₁ PKP ₂		n (2	4	7	7	ი ,	15	n	-	1 6	ი ი	6	1 4 r	ი ი :	T?	0 0	0 =	4 4	4	n d	7 -	,	4	۱ م	3	2 21
Z O A																											
Geographical Region	Tonga Islands		South Candwick Intend	Town tw Tolondo	South Indian Occas	Vormado: Intrala	Solomon Islands	Fiii Islands	Samoa Islands	Coast of Central Chile	Islands			Molucca Dassage	New Hebrides	New Hebrides	Kurile Islands	Luzon, Philippines	Western Australia	Kodiak Alemtian Islands		New Hebrides		Tongs Islands	West of Maronaria Island		Western Australia
ISC m _b	5,1	∞	2			7 6	, ru	5.4	5,3	5.0	4,8	0°9	5.1	5.5	0.9	5.4	6.2	5.6	5.5		4.8	8 . 4	. α		4.8		6.1
Depth (km)	33	36	33	46	22	43	09	11	34	32	15	21	33	56	39	27	44	26	63	16	17	œ	• •	3.3	56	•	5
Longitude	174.0W	75°6W	27°3W	170.4E	53.1E		155.6E	173.6E	172.0W	71.0W	174.3W	143.8E	174.2W	126.7E	168.5E	168.4E	149.0E	122.2E	116.7E	154.0W	168.4E	168.2W	173.8E	173.9W	140.6E	12 7E	170°,/E
Latitude	21.05	9.85	56.05	22.45	36.25	30.45	7.15	16.55	16.15	28.55	22.55	12.2N	22.55	1.8N	19,15	19.15	44.7N	12.6N	31.05	57.4N	19.18	19.25	51,3N	21.25	53.08	27 15	OT - 77
Origin Time	01:59:53.6	11:17:16.4	04:10:20.4	19:14:22.6	01:44:18.0	10:47:38.3	15:08:37.4	23:25:00.0	04:58:11.2	10:04:02.0	01:50:55.0	03:30:34.0	17:11:51.4	11:51:22.3	16:01:11.0	18:30:55.0	04:58:26.7	06:11:56.0	17:15:16.6	22:38:32.4	18:10:30.1	16:25:23.2	23:33:28.7	22:32:23.3	23:01:35.0	10:35:16.9	
Date	11 Feb 70	14 Feb 70	17 Feb 70	17 Feb 70	17 Feb 70	19 Feb 70	24 Feb 70	26 Feb 70	28 Feb 70	01 Mar 70	02 Mar 70	04 Mar 70	07 Mar 70	08 Mar 70	09 Mar 70	09 Mar 70	10 Mar 70	10 Mar 70	10 Mar 70	11 Mar 70	13 Mar 70	16 Mar 70	19 Mar 70	21 Mar 70	22 Mar 70	24 Mar 70	

ngs ent PKP,	7		4	2	S			, .	o 1																		1			
adings event PKP			,		٠,			, ,	, ,	"	7 1	7	7		·	7			7	2	2		1	4	2	1 6	۱ ا	α (1 1	-
se Res		2	m			8	4	٠,	n				S	1	,	، اړ	7 (7		3		4				u	7		4	
Number of Phase Readings obtained from each event PD PKP PKP, PKP		٥		15	1		Ľ		٠ ١	,	1 1	_ ,	7	1	_	- -	4	,	12	-	2	-	9		9	-	1 1	o -	۲ ر	7
Number o obtained PD													3				⊣			7						,	1			
No do							-	,	1	,	, ,	٠ i	1.7	7	11	1 ~	n •	† •	4											
Geographical Region	Northern Celeber	South Indian Ocean	Solomon Island	Character 15 I and 5	chagus Archipetago	Atlantic-Indian Ocean Ridge	Tonga Islands	Tonga Islands	Andreanof Islands	Timor, Sunda Islands	New Hebrides	Luzon Dhilinninos	sautddiiii thann		Luzon, Philippines				Inton Ohilianing		Atlantic-Indian Occan piace	Gulf of Alacka	Tong Island	ionga istanus	Andreanof Islands	Luzon, Philippines	Sunda Strait	Tonga Islands		
ISC mb	0.9	4.9	. α	2 4	, ,	4./	5.6	5.5	5.0	5.2	4.9	2	, ,	3	5,5	5.5	5.2	5.4			•! (, r	, ,	5.2	5.8	5.0	5,4	5.4	
Depth (km)	11	7	. 65	2	3 6	0.7	33	39	57	58	27	40		/ +	22	33	33	70	7	26	28	7	33) (25	25	57	64	33	
Longitude	119,4E	54.1E				•	173,8W	174.1W	175.3W	126.6E	167.9E	121,7E			121,9E	121.9E	121.8E	166.8E	121.8E	92.3W	43.3E	142.5W			•	122.0E	105.5E	174.4W	19.5E	
Latitude	0.3N	35.25	6.35	3.85	20 25	0.00	70.45	20.55	51.9N	8.35	17.85	15.8N	15. 5N		15. /N	15.5N	15.5N	13.95	15.4N	13.3N	40.85	S9.7N	19.25	71.5M	NC TC	15.1N	5.85	21.15	33,25	
Origin Time	18:36:47.0	05:16:15.0	07:45:59.5	18:18:28.0	11:17:43.3	11.11.42 2	7.24.11.11	06:52:34.1	13:59:02.5	21:35:52.0	11:10:31.0	05:34:06.2	05:53:48.6	06-11-52 8	00:11:35.0	06:34:19.2	17:59:57.3	14:41:09.2	21:23:54.0	16:24:30.0	21:41:51.8	04:05:42.9	06:21:17.0	02:10:36.7	7.00.01.20	04:01:44.6	08:27:53.6	13:46:34.0	19:08:21.8	
Date	27 Mar 70	28 Mar 70	28 Mar 70	31 Mar 70	01 Apr 70			Apr	03 Apr 70		05 Apr 70	07 Apr 70	07 Apr 70				07 Apr 70	08 Apr 70	08 Apr 70	09 Apr 70	09 Apr 70	11 Apr 70	11 Apr 70	12 Apr 70		APr	Apr	14 Apr 70	14 Apr 70	

dings event PKP,	7	2	1	ъ	1	1	2	4	ניו			2	3	2	_	, ,	۰ ۵	23	œ	7	4	2	2		, ,	-	_	H	S
e Rea each PKP ₁		8					1	2				1		7	2		,	0		2			4						9
Number of Phas obtained from PD PKP		-	S	2	5	9	3	7	9	14	14	7	3	3					7		2	6	18	4		- (٥	4	10
		-				н								Н									1						
Д							s								œ	5	,	•	4	S	4	9	8	1.0	4		4	٠ ،	4
Geographic Region	Luzon Philiming	Gulf of Alent	Control Alaska	Fox Islands, Aleutians			South of Sumba, Sunda Islands	Magos Archipelago	Solomon Islands, Aleutians	Solomon islands	Solumon islands	Coast Chiapas, Mexico	Kat Islands, Aleutians		Luzon, Philippines	New Hebrides	Mid-Indian Ocean Rise	New Hebridge	Inton Dhilinia	Nicobor Tolons	Now Buite: Talla	New Dritain Island	South Sandwich Islands	Andreanof Islands	Solomon Islands	Solomon Islands	New Britain Tolons		011111101 001111101
ISC	5.6	י ע	, ,	, n	ם נ	ט. טיי	٠ . م	7 · C	ט נ		, ר ני	v .	יי. די נ)° (5,3	5.1	5,4	5,0		, ה ה	5 4	r ,	1.0	5.6	5.2	5.0	4.8	5.4	
Depth (km)	20	7	,	67	2 6	2 40	28	- 22	ļ	2.4	1 2	200	26	00	33	14	33	35	41	32	67	, 4	۰ ,	47	29	57	68	65	
Longitude	122.7E	142.4W			• 1			171.5E	156.4E	156.4E	W8 C9	177 OW	12.4 214	10.421		173.5E	79.9E	170.2E	121.8E	92.9E		28 1W	MT 02 F		154.7E	154.5E	152.0E	_177.7W	
Latitude	15.1N	89.8N	53.6N	59.6N	9.95	11.45	6.35	52.9N	8.15	8.15	14.6N	51.78	55.55	15 6N	NO.CT	57.07	41.75	20.15	15.7N	N8.6	5.15	55.93	00.00 NA 12	N'th TC	6.35	6.35	5.25	29.65	
Origin Time	13:14:26.7	05:33:18.2	19:22:59.0	01:15:47.0	21:43:01.0	11:38:01.9	03:43:31.0	14:20:27.0	00:29:21.0	01:12:17.4	11:22:35.8	12:00:39.6	18:01:29,7	03:22:14.2	07.40.52 5	10.10.32.3	18:53:21.0	20:06:08.7	02:35:17.5	15:21:55.0	14:48:35.2	20:03:35.0	20:30:54 7	10.27.41	10:37:41.0	01:03:50.1	13:34:56.0	16:47:36.0	
Ĺ	15 Apr 70	16 Apr 70	18 Apr 70	19 Apr 70	20 Apr 70	22 Apr 70	25 Apr 70	26 Apr 70	28 Apr 70	28 Apr 70	29 Apr 70	29 Apr 70	29 Apr 70	01 May 70	04 May 70			05 May 70	06 May 70	06 May 70	19 May 70	20 May 70	20 May 70	May	ria y	мау	24 May 70	25 May 70	

Date	Origin Time	Latítude	Longitude	Depth (km)	ISC ^{III} b	Geographic Region	Number obtain P PD	of ed f	ea PK	Readings Ch event P ₁ PKP ₂
29 May 70	05:14:42.0	15.08	173,52	70	5.4	Tonga Islands	ıc	Æ		ca
29 May 70	10:33:58.7	24.0N	94°1E	49	5.1) 1	0		
30 May 70	23:19:38.5	55.6N	164,2W	₹ †	5.0	Unimak Island, Aleutians		, ,		t*
31 May 70	20:23:28.4	9.28	78.8W	48	6.4	1 0	1.8	1 6	-	0
01 Jun 70	01:36:10.1	9.35	9.1W	45	6.5	of Northern		1 0	4	
01 Jun 70	02:45:18.8	10.28	78.7W	4 (3)	ν. ∞			1 6		-
01 Jun 70	17:44:16.6	N6.3	82.6W	18	5.4	Central America	4	। च		۰ ۱
02 Jun 70	23:33:32.3	45.6N	151.0E	36	5.3	Kurile Islands		্ব	_	1
04 Jun 70	04:09:25.4	86.6	78.7W	48	5.8	Coast of Northern Peru	10 1		,	
05 Jun 70	04:53:07.4	42.5N	78.7E	24	5,9	ta, Kazakh,		2	1	,
05 Jun 70	07:00:42.5	38.55	78.6E	33	4,9	Ocean R		1	ır	1
05 Jun 70	13:54:44.5	52.1N	170.6W	46	4,8	Fox Islands, Aleutians		_	,	10
05 Jun 70	22:40:24.0	52.2N	159.5E	39	5,5	Coast of Kamchatka		9		, –
06 Jun 70	06:14:13.3	62.85	93.5W	33	4 , 8	South Pacific Ocean	-	, –		۱ ٦
07 Jun 70	04:12:08.0	40.3N	126.1W	13	4.7	Coast of Northern California	•	1		. 4
08 Jun 70	09:18:30.9	29.25	61.1E	29	4.7					-
10 Jun 70	16:17:48.1	44.7N	149.5E	53	5.9	Kurile Islands	r-I	00	ı	۰,-
11 Jun 70	16:46:43.7	58.95	157.6E	64	0.9	Macquarie Islands	9) r	7	1 10
12 Jun 70	08:06:17.0	2.98	139.1E	32	5,9	Western New Guinea	7 5	- 10		, –
13 Jun 70	05:27:54.7	51.6N	178.3W	5.5	5.5	Andreanof Islands	-	14		1 10
14 Jun 70	8.00:00:00	51,95	74.1W	10	5.9	Coast of Southern Chile	∞	12		
14 Jun 70	00:12:24.0	52.15	74.3W	2.3	5.4	Coast of Southern Chile			ı	
15 Jun 70	11:14:54,4	54,38	64.2W	38	5.7	Falkland Islands	7	- ∞	1	
17 Jun 70	00:48:11.7	9.05	146。8E	49	4.8	Eastern New Guinea	Н	M	I	,-
19 Jun 70	10:56:13.5	22.35	70.6W	44	6.1	Coast of Northern Peru	12	Ŋ	71	

r of Pha	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Geographical Region	Sumbawa, Sunda Islands South of Alaska Kurile Islands South Sandwich Islands Macquarie Islands Solomon Islands Timor, Sunda Islands Coast of Kamchatka Tonga Islands
ISC	5.2 5.3 5.3 5.3 5.3 5.3 5.3
Depth ISC (km) mh	22 25 42 40 30 70 50 44 34
Longitude	118.0E 156.4W 147.4E 25.1W 159.4E 158.7E 124.0E 160.5E
Latitude	9.55 55.3N 43.3N 60.8S 59.5S 7.9S 8.8S 53.4N 21.2S
Origin Time	16:11:49.0 14:59:50.5 21:55:53.5 03:58:54.4 04:07:43.1 05:13:59.0 01:50:13.8 11:01:56.2 22:58:36.9
Date	21 Jun 70 16:11:49.0 22 Jun 70 14:59:50.3 22 Jun 70 21:55:53.5 23 Jun 70 04:07:43.1 25 Jun 70 04:07:43.1 25 Jun 70 05:13:59.0 22 Jun 70 01:50:13.8 28 Jun 70 11:01:56.2 28 Jun 70 22:58:36.9

APPENDIX II

Observatory, LRSM and NOAA Events (0-70 km)

Observatory, LRSM and NOAA Events (0-70 km)

Date	Orieta Time			Depth		Recom-		Observator. Of						
18 Jul 63	20.00.0	Tari tinge	Longitude	(km)	ď	ď	Geographical Region	P PP PD PKP PKP, PKP,	PKP, PKP	α,	LRSM Observations PP PD pkp pkp	070	~	
	13.51.53.0	61.05	22.3%	33	0.9		South Sandwich Islands				1 1 1 1	rarz	r ru PKP PKP	PKP2
20 May 64	06.01.14 8	55.95	Z7.5W	33	6.2		South Sandwich Islands	1 4 1 4						
25 May 64	19.44.07	5.73	139.3E	61	5.8		Western New Guinea	7 .		7	Ŋ			
11 Jun 64	10:55:06 2	9.15	36.88	33	5.5		Indian Ocean	7 1 2	•	1	7			
13 Jun 64	08:23:45.6	10 00	27.38	33	5.8		South Sandwich Islands	, ,	4		7			
30 Jun 64	13:46:21.6	80.01	93.0E	33	6.1		Andaman Islands					-	2	
08 Jan 65	18:49:46.0	58. 63	122.3E	92 1	6.3	0.9	Northern Celebes	5			1		1 1	
09 Jan 65	13:32:46.4	N6 11	124.0%	39	5.9		South Sandwich Islands	2 2		7 1	m i		3 4 1	
12 Jan 65	13:32:24.0	27.6N	120.2E	· ·	6.1		Philippines	1 3 2 2			7 .	1	2	
24 Jan 65	00:11:12.1	2.45	176 05	57	6.1		Nepal	1 4 3		7 -	1 ,		2	
28 Jan 65	02:34:03.0	2,55	102.5E	0 2	9.0	0.9	Ceram Sea	S		7 -			1	
11 Apr 65	00:11:08.8	42,75	173 9F	, ,	9.0		Sumatra	4 3	-	, . , .	۰ ،		2	
15 May 65	23:58:34.4	4.15	135.15	- 12	7.0		South Island, New Zealand	4 1 2	•	, ,	• •		2	
16 May 65	11:35:46.0	5. 3N	175 7E	C 7	, o	5.4	Western New Guinea	3 1 4			7 1		1	
17 May 65	17:19:25.9	22.5N	121. TE	3 =	7.0		Mindanao, Philippines	1 5 4		. –	n r			
24 May 65	23:21:10.6	13.0N	124.5F	17	7.0		Taiwan	3 5 2			2		1 2	
29 May 65	01:28:59.0	45.35	95.9E	Ç 4	y .		Samar, Philippines	1 4 1 2			.		2 2	
31 May 65	11:38:28.0	7.55	178 7F	2 6	3.5	1	South Indian Ocean Rise	4			,		1 1 2	
03 Feb 66	11:58:35.3	16.6N	120.0E	è 09	0.0	5.7		3 5	,	1	7	'n		
05 Feb 66	15:12:29.1	26.1N	103 16	3 =	0		Luzon, Philippines	1 1 1		1	,	•	1 1	
06 Feb 66	09:52:30.2	56.85	Z5.4W	<u> </u>	1.0	5.9	Yunan, China	4 I 3		3 2				
07 Feb 66	04:26:13.9	29.8N	17 PA	: :	, ,		South Sandwich Islands	2 3			•		-	
07 Feb 66	05:21:44.6	30.0N	36.69	3 5			West Pakistan	3 I 3			, ,	,		
07 Feb 66	23:06:34.5	30.2N	69.8E	2 5	4.0	5.3		1 2		•	۰,	-	-• .	
09 Feb 66	07:18:47.8	9.95	116.3E	=	0,0		West Pakistan	4 2 3		2			-	
13 Feb 66	06:35:55.7	6.65	132.6E	; 2	, ,		Sumbawa Island	1 3 1			- 9			1
13 Feb 66	10:44:41.0	26.1N	103,2E	: 2	y . r	×.0	Tanimbar Island	2 1 4		ı	-	,		
17 Feb 66	11:48:00.8	32.25	78.9E	33	, ,		Yunan, China	2 2		7		1		
17 Feb 66	12:43:01.1	32.25	79.0E	33			Mid-Indian Ocean Rise	3 5	S	יט				
21 Feb 66	00:22:29.5	55.75	26.9W	12	2 0 2		Mid-Indian Ocean Rise	5 5	Ŋ	, ,			2 2	
22 Feb 66	05:02:37.2	5.45	151.5E	28	, ,		South Sandwich Islands 1	4 1 3		-	9		- -	1
	23:18:41.6	60.25	27.2W	22		0	New Britain Island	3 1 1		-	M		T T	
15 Sep 66	11:51:55.7	60,35	Z6.7W	33			Sandwich	3 1 4		1 4		-		
18 Sep 66	20:43:53.3	27.8N	54.3E	9 4			South Sandwich Islands	1 3			,	-		
28 Sep 66	14:00:22.9	27.4N	100.1E	2 2	2.0		Southern Iran	1 2 1		1	2		4	
19 Mar 67	01:10:45.8	6.75	129.9E	3 9	7 .		Yunan, China	4 1 2		-				1
22 Aug 67	13:02:06.8	60.85	24.6W	3 2	y			3 5		2 7 2	7	•	•	
22 Aug 67	13:17:02.5	86.09	Z3.2W	3 2			South Sandwich Islands	4			· α	η.		
12 Oct 67	18:31:37.1	7.15	129,8E			/ • n		2 3			, ,	-	2 2 2	
10 Aug 68	02:07:04.3	1.4N	126.2E				Banda Sea	2 4		7	•	٢	S 7	
10 Aug 68	05:51:47.9	1.5N	126.2E			-	Mulucca Passage	2 1 3					6	ı
10 Aug 68	08:10:16.3	1.6N	126.2E		4 4	•	Molucca Passage	3 I 3				L		
Aug 68	20:00:43.4	1.6N	126.1E		9 0	e :	Molucca Passage	2 1 3				ח ר	1 4	
31 Oct 68	09:06:36.4	1.2N	126.3E			e :	MOIUCCA Passage	3 1 3				۰,	7 7	
							Volucca Passage	1 1 3				4 1	7 7	