Definição de continuidade e limites de uma função vetorial em \LaTeX

Eduardo Soares de Lima Filho 103146

7 de dezembro de 2021

Sumário

1 Funções vetoriais [1]

3

1 Funções vetoriais [1]

Definição 1.1. Uma função cujo domínio é o conjunto de números reais e cuja imagem é um conjunto de vetores é chamada função vetorial. Uma função vetorial definida em um intervalo $I \subset \mathbb{R}$, com valores em \mathbb{R}^3 , é denotada por

$$\sigma(t) = (x(t), y(t), z(t)), t \in I \tag{1}$$

O vetor $\sigma(t)$ é representado geometricamente pelo vetor \overrightarrow{OP} , onde P = (x(t), y(t), z(t)); ver figura 1.1

Figura 1.1

Definição 1.2. O limite de $\sigma(t)$ quando t se aproxima de t_0 é definido por

$$\lim_{t \rightarrow t_0} \sigma(t) = (\lim_{t \rightarrow t_0} x(t), \lim_{t \rightarrow t_0} y(t), \lim_{t \rightarrow t_0} z(t)),$$

se $\lim_{t \to t_0} x(t), \, \lim_{t \to t_0} y(t)$ e $\lim_{t \to t_0} z(t)$ existem.

Definição 1.3. A função $\sigma(t)$ é contínua em $t_0 \in I$ se, e somente se,

$$\lim_{t \to t_0} \sigma(t) = \sigma(t_0).$$

Segue das definições 1.2 e 1.3 que $\sigma(t)$ é contínua em t_0 se, e somente se, $\mathbf{x}(t)$, $\mathbf{y}(t)$ e $\mathbf{z}(t)$ são contínuas em t_0 .

Dizemos que a função $\sigma(t)$ é contínua em I se $\sigma(t)$ é contínua $\forall t \in I$.

Quando $\sigma(t)$ é contínua em I, o ponto final do vetor $\sigma(t) = (x(t), y(t), z(t))$ descreve uma **curva** \mathbb{C} no \mathbb{R}^3 , ou seja, para cada $t \in I$, obtemos um ponto $\mathbb{P} = (x, y, z) \in \mathbb{C}$, onde

$$x = x(t), y = y(t) e z = z(t).$$
 (2)

A equação 1 é dita uma **parametrização** da curva C, as equações 2 são chamadas **equações paramétricas** da curva C e a variável t é o **parâmetro**. Se eleminarmos o parâmetro t nas equações 2 obteremos uma expressão cartesiana da curva C.

Definição 1.4. A derivada da função vetorial $\sigma(t)$ com $t \in I = D_f \subset \mathbb{R}$, é definida por

$$\sigma'(t) = \lim_{\Delta t \to 0} \frac{\sigma(t + \Delta t) - \sigma(t)}{\Delta t},$$

se o limite existir nos pontos $t \in I$.

Assim, segue das definções 1.2e 1.4e da definição de derivada de uma função real que

$$\sigma'(t) = (x'(t), y'(t), z'(t))$$

se x'(t), y'(t) e z'(t) existirem. Dizemos que a função vetorial $\sigma(t)$ é **diferenciável** em I se $\sigma'(t)$ existir $\forall t \in I$.

Referências

[1] D. Pinto and M. C. F. Morgado, "Cálculo diferencial e integral de funções de várias variáveis," 2000.