Assignment # 3 (Due Mar 19, 3:00 pm)

CSC 463H1 Winter 2021

Worth: 15%

1. [10 marks]

Recall that an undirected graph G = (V, E) is **3-colorable** iff there is a map $f : V \rightarrow \{red, green, blue\}$ such that no edge is assigned the same color to both its end points. Define

3-Col =
$$\{\langle G \rangle \mid G \text{ is a 3-colorable graph}\}$$
.

Give an explicit reduction showing that 3-Col \leq_P 3-Sat. Justify your answer.

2. [15 marks]

Given an undirected graph G = (V, E), we say that a subset $S \subseteq V$ is **triangle-free** if for every size three subset $\{u, v, w\} \subseteq S$, at least one of the edges uv, vw, uw is not in E. Define

TriangleFree = { $\langle G, k \rangle | G$ has a triangle-free subset of size at least k}.

Show that TriangleFree is \mathcal{NP} -complete by reducing from IndependentSet.

3. [25 marks]

A Boolean formula φ is a **tautology** if φ evaluates to true on every possible truth assignment. Define

Tautology =
$$\{\langle \varphi \rangle \mid \varphi \text{ is a tautology}\}$$

Prove the following:

- (a) [15 marks] Tautology is $co\mathcal{NP}$ -complete.
- (b) [10 marks] If Tautology $\in \mathcal{NP}$, then $\mathcal{NP} = co\mathcal{NP}$.

4. [30 marks]

Let Factor be the following search problem: given $\langle x \rangle$, where x is an integer ≥ 2 , output $\langle p_1, p_2, ..., p_m \rangle$, where each p_i is a prime number and x is the product $p_1 p_2 \cdots p_m$.

Let

Div =
$$\{\langle x, y \rangle \mid x, y \in \mathbb{N} \text{ and } x \text{ has a divisor } d \text{ with } 1 < d \le y\}$$
.

Prove the following:

- (a) [15 marks] Factor $\stackrel{p}{\longrightarrow}$ Div.
- (b) [15 marks] Div $\in \mathcal{NP} \cap co\mathcal{NP}$.

Note: All integers are represented in binary notation.