

ISTS

Automatic Long-Term Deception Detection in Group Interaction Videos

Chongyang Bai, Dartmouth College Maksim Bolonkin, Dartmouth College Judee Burgon, University of Arizona Chao Chen, Dartmouth College Norah Dunbar, UC Santa Babara Bharat Singh, University of Maryland Zhe Wu, University of Maryland V.S. Subrahmanian, Dartmouth College

IEEE International Conference on Multimedia and Expo (ICME) 2019

Introduction

- A fully automated system (LiarOrNot) for predicting long-term deception in videos
- A class of histogram-based features
- A novel "meta-feature" called LiarRank that builds on the basic features
- An ensemble based prediction model
- Achieves an AUC of 0.705 in predicting the role of a player in the game
- AUC for human prediction is 0.583

Step 1: uniformly sample 10-second clips in every 30 seconds.

To resolve the challenge of long videos

Step 2: Extract visual and audio features for frame and clips

- 1. VGG Face
- 2. Facial Action Units
- 3. Emotions (from Amazon Rekognition)
- 4. Eye/Head Movements
- 5. Mel-Frequency Cepstral Coefficients (MFCC)

Step 3: Feature aggregation

- 1. Fisher Vector
- 2. Histogram

Different games have different number of clips and frames, so their feature vectors may be of different lengths.

We use these 2 aggregation methods to normalize these to a single length feature for each player.

Step 4: LiarRank meta features

Capture the game-level information for a player comparing to all games in the training set

Step 5: Ensemble prediction

Optimize weights of 5 predictors (each from a kind of features) Final prediction is the weighted sum of the 5 predictors.

LiarRank meta-feature

- In the training data, we know who are spies
- n games in training set denoted by TG
- Given a player p_{n+1} in a clip, pretend he was in all training games and compare each of his features with those of the villagers and spies.
- LiarRank of p_{n+1} is the rank of a base feature f's value in a game
- Resulting to |F| * |G| features for each player
 - |F| is the dimension of basic features
 - |G| is the number of games in training set

LiarRank meta-feature

- Build upon any base feature
- Example on the right:
 - 3 games TG_1 , TG_2 , TG_3 in training set
 - 3 base features f_1 , f_2 , f_3
 - For f_1 of a given player, its rank is 4, 5, 2 in the three games in training set.
 - Also generate ranks for f_2 (green) and f_3 (gray)

Result: Single feature models (Fisher vectors)

Features	RF	L-SVM	NB	LR	KNN	
Average VGG Face (baseline)	0.516	0.533	0.549	0.546	0.50	
VGG Face clip-level voting	0.503	0.520	0.550	0.527	0.479	
FV of VGG Face	0.468	0.573	0.502	0.584	0.502	
FV of VGG Face + FS	0.506	0.470	0.491	0.467	0.522	
LiarRank of FV of VGG Face + FS	0.639	0.647	0.663	0.652	0.603	
FV of MFCC frame-level	0.606	0.395	0.56	0.608	0.579	
FV of MFCC clip-level	0.586	0.441	0.533	0.579	0.595	

LiarRank meta feature boosts the performance of VGG Face + Fisher Vector LiarRank is robust across all classifiers

Result: Single feature models (Histogram vectors)

Amazon Rekognition								
Frame hist. Clip hist.		Combined						
Disgusted, Surprised	0.630	Smile, Angry, Disgusted 0.634		Smile, Angry, Disgusted 0.6				
Surprised	0.622	Smile, Angry	0.623	Smile, Disgusted	0.647			
Calm	0.622	Smile, Disgusted, Calm	0.618	Angry	0.638			
All features	0.557	All features 0.544		All features	0.563			
Facial Action Units								
Frame hist.		Clip hist.		Combined				
AU07+AU10+AU12	0.621	AU06+AU14	0.609	AU07+AU09+AU10	0.621			
AU12+AU23+AU25	0.614	AU07+AU09+AU10	0.606	AU07+AU10+AU23	0.617			
AU09+AU10+AU12	0.612	AU07+AU14+AU45	0.603	AU12+AU25	0.611			
All features	0.592	All features	0.577	All features	0.608			
Eye/Head movement								
Frame hist. Clip hist.		Combined						
3+8	0.632	1+6+8	0.671	1+3+4+5+6+8	0.643			
3	0.624	1+6	0.642	1+3+5+8	0.627			
3+7	0.615	1+3+6+8	0.636	1+3+5+6+8	0.625			
All features	0.591	All features	0.560	All features	0.618			

For expression features, the combination of Smile, Angry and Disgusted gave the highest AUC: 0.676

For Facial Action Units, the combination of AU07(Lid tightener), AU09(Nose wrinkler) and AU10(Upper lip raiser) gave the highest AUC: 0.621

For Eye/Head movements, the combination of horizontal eye movements, and x, z head movements gave the highest AUC: 0.671

Result: Ensemble model

• Ensemble: 0.705 AUC

Ablation test

Removed feature	AUC
MFCC	0.703
E/H Movement	0.703
FAUs	0.702
Amazon Rek.	0.688
LiarRank	0.688

Emotion features and LiarRank are the most important features in this task

Demo

Demo available at https://cs.dartmouth.edu/dsail/demos/liar-or-not

Demo

Human annotators answers:

Worker 1: SPY

Worker 2: SPY

Worker 3: SPY

LiarOrNot answer:

VILLAGER

Ground truth:

VILLAGER

Probability of being spy

Demo available at

https://cs.dartmouth.edu/dsail/demos/liar-or-not