Data Mining - Motivation

"Computers have promised us a fountain of wisdom but delivered a flood of data."

"It has been estimated that the amount of information in the world doubles every 20 months."

(Frawley, Piatetsky-Shapiro, Matheus, 1992)

Knowledge Discovery in Databases (KDD)

Mining for nuggets of knowledge in mountains of Data.

Daten und Information

- Daten und Information
 - Daten → Information → Wissen
- In Unternehmen sind große Datenmengen vorhanden
 - Daten sind ein wichtiger Aktivposten eines Unternehmens
- Diese Daten enthalten implizit (nicht unmittelbar einsehbar) wertvolle Informationen
 - Beispiel: Jeder Supermarkt speichert Kauftransaktionen ab. Diese Daten enthalten implizit Information
 - welche Produkte gerne gekauft werden
 - welche Produkte gerne zusammen gekauft werden, etc.
- Problem:
 - Wie kann man diese Information explizit machen?

Definition

- Data Mining is a non-trivial process of identifying
 - valid
 - novel
 - potentially useful
 - ultimately understandable patterns in data.

(Fayyad et al. 1996)

It employs techniques from

- machine learning
- statistics
- databases

Or maybe:

Data Mining is torturing your database until it confesses.

(Mannila (?))

World-Wide Data Growth

- Science
 - satellite monitoring
 - human genome
- Business
 - OLTP (on-line transaction processing)
 - data warehouses
 - e-commerce
- Industry
 - process data
- World-Wide Web

OLTP vs. OLAP

- On-line Transaction Processing (OLTP)
 - Goal: support order processing and billing
 - typically multiple, isolated relational databases
 - even simple queries like "How many items of product X do we sell?" may be hard to answer

Data Warehouse

- uniform view to multiple separate data sources
- fast access across a multitude of dimensions (data cube)
- no need for update in real time
- On-line Analytical Processing (OLAP)
 - Goal: support decision makers
 - allow complex, multi-dimensional queries

Data Cube

Taken from Han & Kamber, 2001

Data Cube

- Aggregation mehrerer interessanter Dimension in eine effiziente Datenstruktur
 - z.B. Produkte x Zeit x Region
 - kann man sich als eine multi-dimensionale Erweiterung von Spread-sheets vorstellen
- Aggregierte Summen werden oft vorberechnet
 - z.B. für hierarchische Attributwerte

Typische Operationen auf einem Data Cube

Slice:

 Herausschneiden einer Scheibe aus dem Datacube (Selektion nach einem Wert)

Dice:

 Herausschneiden eines Teilwürfels (Selektion nach mehreren Werten und Dimensionen)

Roll-Up:

- Aufwärtsbewegung in den hierarchischen Attributen
- Aggregation der Daten entlang des Pfades
 - e.g., Monat → Quartal → Jahr

Drill-Down:

- Abwärtsbewegung in den hierarchischen Attributen
- Pivotierung / Rotation:
 - Drehen des Würfels, sodaß eine andere Dimension sichtbar wird

OLAP vs. Data Mining

Verification Model

- the user needs to verify a hypothesis on the data
- formulates the query and poses it to the OLAP system
- Example:
 - Break up sales according to products in the U.S.
 - Break up sales according to products in Canada
 - Any significant difference?

Discovery Model

- the system can autonomously propose interesting and novel hypotheses (and verify them on the data)
- the user formulates the problem
- Example:
 - Can you find any patterns involving regions, date, products for which the sales differ significantly from the average?

Inductive Databases

(Mannila & Iemielinski, CACM-96)

- make patterns queryable in the database
 - SQL is a query language that generates data sets
 - inductive database should have a language that (also) generates pattern sets
- Examples:
 - "show me all association rules with support > 1% and a minimum confidence > 95% that have salary in the head"
 - "show me decision trees with estimated accuracy > 90% that are built on at most 5 of the following 7 attributes"
- often an SQL-like Syntax is used for this purpose

Knowledge Discovery in Databases: Key Steps

Key steps in the Knowledge Discovery cycle:

- 1. Data Cleaning: remove noise and incosistent data
- 2. Data Integration: combine multiple data sources
- 3. Data Selection: select the part of the data that are relevant for the problem
- 4. Data Transformation: transform the data into a suitable format (e.g., a single table, by summary or aggregation operations)
- Data Mining: apply machine learning and machine discovery techniques
- 6. Pattern Evaluation: evaluate whether the found patterns meet the requirements (e.g., interestingness)
- 7. Knowledge Presentation: present the mined knowledge to the user (e.g., visualization)

Data Mining is a Process!

The steps are not followed linearly, but in an iterative process.

Source: http://alg.ncsa.uiuc.edu/tools/docs/d2k/manual/dataMining.html, after Fayyad, Piatetsky-Shapiro, Smyth, 1996

Another Process Model

Source: http://www.crisp-dm.org/

Research Issues

- Techniques for mining different types of knowledge
 - Predictions, Associations, Clusters, Outliers, ...
- Interactive Data Mining Techniques
 - A Human/Computer Team may be more efficient
- Incorporation of Background Knowledge
 - Knowledge about the task helps.
- Data Mining Query Languages
 - Querying patterns instead of querying database entries
- Presentation and Visualization of Results
 - How to explain the results to the CEO?
- Handling Noisy or Incomplete Data
 - Data are typically not neat and tidy, but noisy and messy.
- Pattern Evaluation
 - How can we define interestingness?

(A few) Data Mining Applications

- Business
 - predict credit rating
 - identify customer groups
 - direct marketing
 - market basket analysis
 - recommender systems
 - fraud detection
- Web Mining
 - categorize Web pages (web catalogues)
 - classify E-mail (spam filters)
 - identify Web usage patterns

- Quality control
 - learn to assess quality of products
- Biological/Chemical
 - discover toxicological properties of chemicals
- Game Playing
 - identify common (winning) patterns in game databases

Literatur

Artikel

 Tomasz Imielinski, Heikki Mannila: A database perspective on knowledge discovery, Communications of the ACM, 39(11):58-64, 1996.
(On Inductive Databases)

Bücher

 Jiawei Han and Micheline Kamber: Data Mining – Concepts and Techniques, Academic Press, 2001. (datenbankorientierte Einführung)