## Etapa 1

## Leonardo de Andrade Santos

Para o desenvolvimento desse projeto foi escolhido o Transistor MP42141, cujo o datasheet esta disponivel no link do noome.

Observou-se que, quando ele era polarizado com uma corrente de  $I_c=5mA$  e uma tensão  $V_{\rm CE}=10V$  o parametro  $h_{\rm FE}$  e portanto esses foram os valores selecionados para utilizar como referência para a tabela de parametro de espelhamento.

A partir dela foi gerado o arquivo .s2p o qual esta ilustrado pela Figure 1 a seguir?

| ! MP42141 S PARAMETERS |       |             |        |       |      |      |      |        |
|------------------------|-------|-------------|--------|-------|------|------|------|--------|
| 1                      | Vds=1 | IOV Id=5mA  |        |       |      |      |      |        |
| 1                      | LAST  | UPDATED 30- | -05-23 |       |      |      |      |        |
| 1                      |       |             |        |       |      |      |      |        |
| # MHZ S                | MA R  | 50          |        |       |      |      |      |        |
| ! FREQ                 |       | S11         | S21    |       | S12  |      | S22  |        |
| !MHZ                   | MAG   | ANG         | MAG    | ANG   | MAG  | ANG  | MAG  | ANG    |
|                        |       |             |        |       |      |      |      |        |
|                        |       |             |        |       |      |      |      |        |
| 400                    | .626  | -112.9      | 7.563  | 110.3 | .044 | 43.0 | .726 | -34.3  |
| 500                    | .618  | -125.0      | 6.425  | 102.1 | .046 | 38.9 | .660 | -32.9  |
| 800                    | .577  | -150.8      | 4.363  | 84.7  | .054 | 34.3 | .616 | -38.6  |
| 1200                   | .566  | -170.1      | 3.073  | 67.7  | .062 | 32.9 | .577 | -43.1  |
| 1600                   | .661  | -175.9      | 2.344  | 54.1  | .069 | 32.6 | .578 | -50.4  |
| 2000                   | .561  | 166.2       | 1.894  | 43.2  | .078 | 32.6 | .571 | -63.6  |
| 2400                   | .597  | 156.6       | 1.608  | 30.6  | .084 | 30.3 | .572 | -70.8  |
| 2800                   | .506  | 147.8       | 1.408  | 17.9  | .093 | 27.0 | .565 | -81.4  |
| 3200                   | .630  | 141.1       | 1.200  | 6.8   | .099 | 24.6 | .583 | -90.7  |
| 3600                   | .651  | 133.7       | 1.072  | -4.6  | .106 | 21.7 | .597 | -102.6 |
| 4000                   | .643  | 132.9       | .933   | -6.5  | .109 | 24.7 | .599 | -109.2 |
| 4400                   | .643  | 127.7       | .796   | -18.4 | .112 | 21.4 | .637 | -121.6 |
| 4800                   | .656  | 122.7       | .702   | -28.8 | .123 | 17.0 | .686 | -135.2 |
| 5000                   | .652  | 120.1       | .657   | -34.1 | .123 | 14   | .693 | -142.1 |
|                        |       |             |        |       |      |      |      |        |

Figure 1: Tabla .s2p

Em seguida foi importado esse arquivo para dentro da carta de smith, que deram os resultados ilustrados pela Figure 2 a seguir:



Figure 2: Graficos da Carta de Smith

A partir da tabela de ganho ilustrada pela Figure 3, foi possivel selecionar a frequência de operação do transistor. Foi optado em utilizar a frequência de 2.4GHz pois tem uma boa aplicabilidade e o casamento de impedancia apresenta uma faixa aceitavel (K < 1).



Figure 3: Tabela de Ganho