Matematica - Esame orale Passerella 2023-24

Matteo Frongillo, Paolo Bettelini

September 2, 2024

Contents

4	Fractions	3
	3.3 Property 3	2
	3.2 Property 2	
	3.1 Property 1	
	Powers	2
2	Prime numbers	2
1	Algebric definitions	2

1 Algebric definitions

- $\mathbb{N} := \text{Natural numbers}$
- $\mathbb{Z} := \text{Integral numbers}$
- $\mathbb{Q} := \text{Rational numbers}$
- $\mathbb{R} := \text{Real numbers}$

We have that:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

2 Prime numbers

A prime number is a natural number which can be devided only by itself or 1

$$n \in \mathbb{N}, \ n \neq 0, 1$$

3 Powers

Let $a \in \mathbb{R}, n\mathbb{R}, n \neq 0$ and $a \subset \mathbb{R}$

$$3 := 3$$

$$3 := 3 \cdot 3$$

$$3^{23} := 3 \cdot 3 \cdot \dots \cdot 3, 23 \text{ times}$$

3.1 Property 1

Let $a, b \in \mathbb{R}, n, m \in \mathbb{N}$, then

$$a^n \cdot a^m = a^{n+m}$$

3.2 Property 2

Let $a, b \in \mathbb{R}, n \in \mathbb{N}$, then

$$\boxed{(a \cdot b)^n = a^n \cdot b^n}$$

Notaton: The power a^n , a is the base nad n is the exponent.

3.3 Property 3

Let $a \in \mathbb{R}, m, n \in \mathbb{N}^*$, then

$$(a^n)^m = a^{n \cdot m}$$
, which is $\neq a^{(n^m)}$

4 Fractions