NABIL SOFT

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2021

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

 F_2 و F_1 و امرأتان F_3 و F_3 و F_3 و امرأتان F_4 و F_3 و امرأتان F_4 و F_4 و امرأتان F_4 و F_4 و امرأتان F_4 و امرأ

" عضوا اللجنة من جنسين مختلفين B

عضو في اللجنة ". H_1 " C

الترتيب. A احتمال A و B على الترتيب. p(B) ، p(A) الترتيب.

 $rac{2}{5}$ بيّن أنّ p(C) احتمال الحدث p(C) بين

لمتغير العشوائي X يرفق بكل إمكانية اختيار لعضوين عدد الرّجال في اللّجنة. X

 $\{0\,;1\,;2\}$ هي X ان مجموعة قيم X

E(X) عين قانون احتمال المتغير العشوائي X و احسب أمله الرياضياتي

التمرين الثاني: (04 نقاط)

أجب بصح أو خطأ مع التبرير في كل حالة من الحالات التالية:

 $f(x) = x + \frac{2}{e^x + 1}$ بالدّالة العددية f معرّفة على (1

f(x) + f(-x) = 2 الدينا: x عدد حقيقي x لدينا

 $S_n = u_0 + u_1 + \dots + u_n$ نضع: ، نضع: $\frac{1}{3}$ متتالیة هندسیة معرّفة علی \mathbb{N} بحدّها الأول 2 وأساسها (u_n)

 $3-\frac{1}{3^{n+1}}$ عبارة S_n عبارة n عدد طبيعي من أجل كل عدد طبيعي

 $g(x) = x + \ln(e^x + 1)$ بالدّالة العددية g المعرّفة على $g(x) = x + \ln(e^x + 1)$ بالدّالة العددية والمعرّفة على $g(x) = x + \ln(e^x + 1)$

معادلة له. y=2x كما مقاربا مائلا y=2x معادلة له. تمثيلها البياني y=2x معادلة له.

y'-3y=1 الدّالة العددية h المعرّفة على \mathbb{R} بـ: \mathbb{R} بـ: h الدّالة العددية المعادلة التفاضلية h

NABIL SOFT

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

التمرين الثالث: (05 نقاط)

$$u_n = -4n+3$$
 :ب المتتالية العددية (u_n) معرّفة على

$$u_0$$
 بيّن أنّ المتتالية u_n حسابية يُطلب تعيين أساسها u_n وحدّها الأول (1

$$S_n = u_0 + u_1 + \dots + u_n$$
 نضع: n نضع عدد طبیعي n عدد طبیعي (2

$$S_n = -2n^2 + n + 3$$
 : n عدد طبیعی أنّه من أجل كلّ عدد طبیعي أ.

$$S_n = -30132$$
 :حيث عين قيمة العدد الطبيعي n حيث

$$u_n = \ln(v_n) : n$$
 عدد طبيعي المتتالية العددية (v_n) عدودها موجبة تماما و من أجل كلّ عدد طبيعي

$$\cdot n$$
 بدلالة v_n بدلالة أ. اكتب عبارة الحد العام

$$\cdot e^{-4}$$
 المتتالية $\left(v_{n}
ight)$ هندسية أساسها بيّن أنّ المتتالية

$$S'_n = \ln[v_0(1-\frac{1}{2})] + \ln[v_1(1-\frac{1}{3})] + \dots + \ln[v_n(1-\frac{1}{n+2})]$$
 نضع: n نضع: n نضع: n نضع: n نضع: n نصب n بدلالة n نصب n بدلالة n نصب n نصب n نصب n نصب n بدلالة n نصب n نصب

التمرين الرابع: (07 نقاط)

$$g(x) = 2x^3 - 2x^2 + 3x - 2$$
 بـ: \mathbb{R} معرّفة على g معرّفة على (I

$$\mathbb{R}$$
 بيّن أنّ الدّالة g متزايدة تماما على \mathbb{R} .

$$0,7 < \alpha < 0,8$$
 : يَتْنَ أَنَّ المعادلة $g(x) = 0$ تقبل حلا وحيدا α يُحقِّق (2)

$$oldsymbol{g}(x)$$
 ب. استنتج حسب قيم العدد الحقيقي x إشارة

$$f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$$
 بن الدّالة العددية f معرّفة على $f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$ بن الدّالة العددية $f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$

$$\cdot \left(O\ ; \ \overrightarrow{i}\ , \overrightarrow{j}\
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C\
ight)$

أ. بيّن أنّ:
$$\infty + = \lim_{x \to 0} f(x) = +\infty$$
 ثم فسّر النتيجة هندسيا.

$$\lim_{x\to +\infty} f(x)$$
 و $\lim_{x\to -\infty} f(x)$ ب. احسب

$$f'(x) = \frac{g(x)}{x(x^2 - x + 1)}$$
 : x عدد حقیقی غیر معدوم : x عدد حقیقی غیر معدوم : (2

$$[\alpha;+\infty[$$
و $]-\infty;0[$ على كلّ من على كلّ من $]-\infty;0[$ و متناقصة تماما على $[\alpha;+\infty[$

f شكّل جدول تغيّرات الدّالة f

$$(\Delta)$$
 بيّن أنّ المستقيم (C) ذا المعادلة $y=2x-1$ مقارب مائل لـ (C) ثمّ ادرس وضعية (Δ) بالنسبة إلى (Δ)

له. القاصلة
$$2$$
 ثمّ اكتب معادلة له. (C) بيّن أنّ (C) يقبل مماسا (T) موازيا له (D) في النّقطة (D) ذات الفاصلة (D)

$$-0.5 < eta < -0.4$$
 يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها eta تُحقِّق: (C) بيّن أنّ (C)

. (
$$f(\alpha) \approx 0.87$$
 : نأخذ:) (C) و المنحنى (C) و المنحنى (Δ

انتهى الموضوع الأول

NABIL SOFT

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

الموضوع الثانى

التمرين الأول: (04 نقاط)

صندوق به 9 بطاقات متماثلة لا نفرّق بينها باللمس، مكتوب على كلّ منها سؤال واحد، منها ثلاثة أسئلة في الهندسة مرقمة بـ: 1، 2، 3 و 4 وسؤالين في التحليل مرقمين بـ: 1 و 2 نسحب عشوائيا بطاقة واحدة من الصندوق ونعتبر الحوادث التالية:

"سحب سؤال في الهندسة "، B "سحب سؤال في التحليل " و C "سحب سؤال في الجبر يحمل رقما زوجيا".

- احسب (A) و (C) و (B) احتمال الحوادث (B) العرتيب. (B)
 - 2) احسب احتمال سحب سؤال رقمه مختلف عن 1.
 - 3) المتغيّر العشوائي X يرفق بكلّ بطاقة مسحوبة رقم السؤال المسجل عليها.

 $\{1;2;3;4\}$ هي $\{X;2;3;4\}$.

 $oldsymbol{\psi}$. عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب E(X) أمله الرّياضياتي.

E(2021X + 1442) جـ. استنتج قيمة

التمرين الثاني: (04 نقاط)

لكلّ سؤال جواب واحد فقط صحيح من بين الأجوبة الثلاثة المقترحة، عيّنه مع التعليل.

2 التكن (u_n) متتالية حسابية معرّفة على الأول u_n بحدّها الأول u_n

:ن عبارة $P_n=e^{u_0} imes e^{u_1} imes \cdots imes e^{u_n}:n$ عبارة $e^{-n(n+1)}$ (ب جارة $e^{(n+1)^2}$ (ب جارة $e^{n(n+1)}$ (ب جارت میں الجام بیان کی الجام بیان کی جارت ہوں گیا ہوں گی جارت ہوں گیا ہوں گی جارت ہ

الدّالة العددية f معرّفة على \mathbb{R} بـ: \mathbb{R} الدّالة العددية f معرّفة على \mathbb{R} الدينا:

$$f(-x) = f(x)$$
 ($f(2-x) = f(x)$ ($f(-2-x) = f(x)$

:ساوي $\lim_{x \to +\infty} \left[\ln(x+1) - \ln(x+2) \right]$ (3

 $v_n = \ln w_n$ متتالیة هندسیة معرفة علی \mathbb{N} حدودها موجبة تماما وأساسها عدد حقیقی $v_n = \ln w_n$ معرفة علی $v_n = \ln w_n$

: هي متتاليه (v_n)

التمرين الثالث: (05 نقاط)

 $u_{n+1} = \frac{3}{8}(u_n + 5): n$ عدد طبيعي عدد طبيعي عدد الأوّل عدد $u_0 = 0$ حيث: $u_0 = 0$ عدد المتتالية العددية $u_n = 0$

 $u_n < 3$: n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (1

بيّن أنّ (u_n) متزايدة تماما ثمّ استنتج أنّها متقاربة.

NABIL SOFT

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

$$v_n=3(3-u_n)$$
 :ب $\mathbb N$ معرّفة على معرّفة (v_n) المتتالية العددية (3

$$rac{3}{8}$$
 أ. احسب v_0 ثمّ بيّن أنّ المتتالية $\left(v_n
ight)$ هندسية أساسها

$$\cdot u_n = 3 - 3 \left(\frac{3}{8} \right)^n$$
 : n عبارة الحد العام v_n ثمّ استنتج أنّه من أجل كلّ عدد طبيعي v_n عبارة الحد العام v_n

$$\lim_{n\to+\infty}u_n \quad -\infty \quad .$$

$$P_n = (3-u_0) \times (3-u_1) \times \cdots \times (3-u_n)$$
 : n عدد طبیعي (4 من أجل كلّ عدد طبیعي P_n بدلالة P_n

التمرين الرابع: (07 نقاط)

الدّالة العددية
$$g$$
 معرّفة على \mathbb{R} بـ: \mathbb{R} معرّفة على (\mathbf{I}

الشكل المقابل) $(O; \vec{i}, \vec{j})$ المعلم المتعامد المتعا

$$g(-1)$$
 احسب (1

.
$$g(x)$$
 بقراءة بيانية، حدّد حسب قيم x إشارة (2

$$f\left(x
ight) = x - (x+1)e^{-x-1}$$
 بـ: $\mathbb R$ معرّفة على f معرّفة العددية f معرّفة على (II

$$\left(O; \overrightarrow{i} \,, \overrightarrow{j} \,
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(\,C_{f} \,
ight)$

$$f(x) = x[1 - (1 + \frac{1}{x})e^{-x-1}]$$
 غير معدوم: (1 عدد حقيقي عدد عقيقي عدد عقيقي (1

.
$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ ثمّ احسب

$$f'(x) = g(x) : x$$
 عدد حقیقی عدد من أجل كل عدد (2

$$-$$
ب. استنتج أنّ الدالة f متزايدة تماما على $-$ ا $+\infty$ ومتناقصة تماما على $-$ ا $+\infty$ ثمّ شكّل جدول تغيّراتها.

اً. احسب
$$\lim_{x\to +\infty} (f(x)-x)$$
 ثمّ فسّر النّتيجة هندسيا. (3

$$y=x$$
 المعادلة $\left(\Delta
ight)$ بالنسبة إلى المستقيم المعادلة بالمعادلة بالمع

ج. بيّن أنّ
$$\left(C_{f}
ight)$$
 يقبل مماسا $\left(T
ight)$ موازيا للمستقيم $\left(C_{f}
ight)$ يُطلب كتابة معادلة له.

$$eta$$
 و $lpha$ أ. بيّن أنّ $\left(C_f\right)$ يقطع حامل محور الفواصل في نقطتين فاصلتاهما $lpha$ و $lpha$

$$-1,9 < \beta < -1,8$$
 و $0,3 < \alpha < 0,4$

$$-2;+\infty$$
 ارسم المستقيمين Δ و Δ و Δ ارسم المنحنى و المخال على المجال على المجال Δ

$$h(x) = -|x| + (|x|-1)e^{|x|-1}$$
 :ب $[-2;2]$ بند على المجال المعروفة على المجال (5)

. تمثيلها البياني في المعلم السابق (
$$C_{\scriptscriptstyle h}$$

أ. بيّن أنّ الدّالة
$$h$$
 زوجية.

$$h(x)=f(x)$$
 : $\left[-2;0\right]$ من المجال عدد حقیقی عدد عدد عنو من أبّه من أجل كلّ عدد عنو من المجال

ج. اشرح کیف یمکن رسم
$$\left(\left. C_{h} \right) \right.$$
 انطلاقا من $\left(\left. C_{f} \right) \right.$ ثمّ ارسمه.