NLP技术在推荐系统中的应用

张相於 2018/10/16

自我介绍

- 阿里高级算法专家
- 关注领域
 - 推荐系统
 - 用户画像
 - 金融风控
 - 机器学习

提纲

推荐系统中的关键问题

推荐系统中的文本数据

推荐系统中的行为数据

推荐系统中的关键问题

相关性计算

物品标签

人群标签

排序模型

行为序列分析

推荐系统中的文本数据

文本数据的特点

优点

结构信息少 信息不确定 文本歧义多

词袋模型

- 词袋模型的核心假设
 - 文档由词组成
 - 词之间互相独立、无序
 - 只保留词的次数,丢弃其他信息
- 应用场景
 - 相关性计算: 用关键词连接用户和物品
 - 排序特征: 直接用作高维度特 征
 - 物品标签: TF-IDF

- TF => TF-IDF
 - 将全局信息加入重要性度量
 - 度量更合理
- TF-IDF的变种
 - TF的log缩放
 - TF的归一化
- N-gram:
 - 2-gram([我, 特别, 爱吃, 鸡 翅])=[我特别, 特别爱吃, 爱吃 鸡翅]
 - 提高特征区分度,也会带来稀 疏性。

向量空间模型

- 问题:
 - 给定两个物品的描述,如何度量它们之间的关系?
- 核心思想
 - 把一组对物体的描述向量化
 - 在此基础上定义相关操作
- 向量点乘:推荐系统中的万能公式
 - 点乘结果大小反应相关性强烈程度
 - 适用于任何数据:文本、行为、 等等
- 余弦相似度: 归一化的向量点乘

$$- cos(d_1, d_2) = \frac{V(d_1) \cdot V(d_2)}{|V(d_1)| \times |V(d_2)|}$$

- 数据普适
 - 内容、行为、等等
 - **0-1**值,连续值,离散值
- 可调

$$-\cos(d_1, d_2) = \frac{V(d_1) \cdot V(d_2)}{|V(d_1)| \times |V(d_2)|}$$

- 可解释
 - 总体相关性等于分量相关性的 叠加
 - 叠加方式可调节控制
- 算法模块化
 - 原始描述与相似度度量相隔离

问题: 同义词、多义词、维数高、不稳定......

隐语义模型: LSA

- 词袋模型的缺点
 - 维度高、稀疏、信息量小
 - 无法处理近义词、一词多 义
 - 缺乏高层次含义(语义)
- 语义模型
 - 引入更高维度的概念: 语 义(主题)
 - 凝聚更多信息
- 隐语义模型
 - 文章->主题->词
 - 通过观察到的结果(词), 推测生成过程。

- 识别"多词同义"、"一词多义"
- 低维表示包含更高抽象层次信息
- · 用转换后的维度数据做存储索引(LSI),可提高检索的召回率
- 可看做一个软聚类,是 mixture model的基础。

Latent Semantic Analysis

	cat	dog	computer	internet	rabbit
D1	1	1	0	0	2
D2	3	2	0	0	1
D3	0	0	3	4	0
D4	5	0	2	5	0
D5	2	1	0	0	1

$$C \approx C_k = U \Sigma_k V^T$$

$$C_K = argmin_{\{Z, rank(Z) = k\}} ||C - Z||_F \quad ||M||_F = \sum_{i,j} m_{ij}^2$$

如何理解LSA

- 目标: 找到原始数据背后的深层次因素
- user -> item => user -> latent variable -> item
- $C \approx C_k = U \Sigma_k V^T$
 - U: user -> latent variable
 - V: latent variable -> item
 - $-\Sigma_k$: n-> k, k << n

LSA的问题

- SVD计算复杂度高
- 检索复杂度高
- 无概率含义
 - U和V的取值不满足概率原则
 - 可能出现负数

概率隐语义模型: LDA

- 从 $Dir(\alpha)$ 抽取一条样本 θ_i ,对应着一个文本的主题分布概率。
- $MDir(\beta)$ 抽取一组样本 φ ,对应着不同主题下的词分布。
- 对于1到N的词 w_n :
 - 从分布 $Multinomial(\theta_i)$ 中抽样一个主题 c_{ij} 。
 - 从分布 $Multinomial\left(arphi_{c_{ij}}
 ight)$ 中抽样一个词 w_{ij} 。
- 变分推断计算效率高
- 矩阵分解结果有概率含义
- 对应着最小化KL距离的矩阵分解

LDA应用实例:排序特征

- Topic Id作为排序特征
- 两种分布情况
 - 少数主题占据较大概率
 - 大量主题均分概率
- 聚类区分

LDA应用实例:用户&物品标签

- $P(w|u) = \sum_{t,d} P(w|t) \times P(t|d) \times P(d|u)$
- 启发式规则
 - 选取用户行为较多的topic
 - 选取该topic下概率较高的词
- 应用:
 - 推荐理由
 - 个性化推送
- 同理适用于物品标签

LDA应用实例: 主题重要性

- 主题重要性各不相同
 - -主题1:【教育,学校,读书.....】
 - 主题2: 【第一册,第二册,第三册....】
 - -主题3: 【人民教育出版社,高等教育出版社.....】
- 如何度量重要性?
 - 计算每个主题在不同文档下的概率分布
 - 计算信息熵
 - -信息熵小->主题质量好

LDA的问题

- 核心假设:
 - 词之间可交换顺序(exchangeability)
 - -给定 θ 和 φ ,每个词的生成是相互独立的。
- 忽视了词的上下文环境
 - 我要吃鸡腿
 - 鸡腿吃我要

神经概率语言模型

- 隐变量 -> 嵌入层 (embedding)
- 上下文和当前词相互 预测,上下文可自由 定义。
- 引入了可控制的上下文,更广的适用空间。

"过气"网红: word2vec

研表究明, 汉字的序顺并不定一能影阅响读, 比如当你看完这句话后, 才发这现里的字全是都乱的。 weibo.com/141235

Word2vec的应用

- 词聚类、扩展
- 相关性预测
 - 我爱吃?炒鸡蛋=>西红柿、韭菜、香椿
 - 三体,基地,? =>流浪地球、球状闪电
- 维度抽象层次太低导致泛化性能差
 - -新商品来了怎么办?
- 更高维度上训练
 - 搜索词、topic、类别等等
- 时序性
 - 搜索行为的循序渐进

Word2vec应用实例

历史搜索词	预测搜索词
书桌, 儿童书桌	学生书桌
笔,中性笔	签字笔
二手电动车, 电动车	电动车小龟王
爆米花机, 冰激凌机	烤肠机
手表,精工手表	西铁城手表

如何从词向量得到更长的文本向量?

- 深度学习方法
 - Paragraph2vec
 - Doc2vec
- SIF embedding
 - W2v + average
 - Weight= $a/(a+p_w)$
 - 去除语义无关方向向量
 - 时态、单复数等

- DisC embedding
 - SIF+词序保留
 - Compositional n-gram embedding v_n
 - concat(v1, v2, ...)

【一分钟整明白】不用深度学习的文本向量表示

小结

推荐系统中的行为数据

重新认识文本数据

文档存在聚类

序列影响含义

点击刻画物品

人群存在聚类

序列影响含义

点击刻画物品

- 电商网站最常用模式:
 - 搜索->浏览->点击(->购买)
- 文档->词 vs 搜索词 -> 商品
- 用TF-IDF计算搜索词下商品的重要性
- 应用
 - -根据用户搜索召回商品
 - 热搜排行榜

搜索数据文档化

文本场景下

- c1: 该文档总词数
- c2: 该词在该文档出现次

数

- c3: 总文档数
- c4: 该词出现的文档数

搜索场景下

- c1: 搜索该query后的总点 击数
- c2: 搜索该query后对该商品的点击数
- c3: 总query数
- c4: 该商品出现的query数

tf-idf = c2/c1 * log(c3/(c4+1))

结果:每个query下最重要的商品

人群聚类

- 用户行为模式拆解
 - -表现:用户点击了《明朝那些事》
 - -本质:用户属于历史爱好者,历史爱好者喜欢看《明朝那些事》
- $P(item|user) = \sum_{topic} P(topic|user) \times P(item|topic)$
- 用矩阵分解拆解用户中的人群聚类
 - SVD LDA

行为数据文档化

行为数据

用户
点击物品
兴趣主题
兴趣先验
物品先验文档
文本主题
主题先验
词先验

文本数据

用户行为主题聚类

全局兴趣分布

用户兴趣标签

物品兴趣标签

行为序列文档化

行为数据

行为组成session session组成用户用户组成用户集

词组成句 句组成文档 文档组成语料库

文本数据

行为序列预测

- 给定用户历史行为,预测未来行为
- BOW word2vec
 - 根据上下文预测当前词
 - 上下文->前序词
 - 当前词->下个词
- node2vec deepwalk
 - 更好地利用网络结构
- LSTM
 - 更好的长依赖处理
 - 更专注与序列预测

例子:用LSTM做新闻推荐

→ It can construct better inner product space.

KDD17, Embedding-based News Recommendation for Millions of Users

例子:用LSTM做新闻推荐

KDD17, Embedding-based News Recommendation for Millions of Users

总结

DuckType思想

用好头部算法

充分认识数据数据

