CLAIMS

We claim:

1. A compound having formula (1a)

T75%

O
$$\parallel$$
 A-OCH₂P(Z)₂ (1a)

5

10

15

wherein Z is independently $-OC(R^2)_2OC(O)X(R)_a$, an ester, an amidate or -H, but at least one Z is $-OC(R^2)_2OC(O)X(R)_a$;

A is the residue of an antiviral phosphonomethoxy nucleotide analog; X is N or O;

 R^2 independently is -H, C₁-C₁₂ alkyl, C₅-C₁₂ aryl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₇-C₁₂ alkenylaryl, C₇-C₁₂ alkynylaryl, or C₆-C₁₂ alkaryl, any one of which is unsubstituted or is substituted with 1 or 2 halo, cyano, azido, nitro or -OR³ in which R³ is C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl or C₅-C₁₂ aryl;

R is independently -H, C₁-C₁₂ alkyl, C₅-C₁₂ aryl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₇-C₁₂ alkynylaryl, or C₆-C₁₂ alkaryl, any one of which is unsubstituted or is substituted with 1 or 2 halo, cyano, azido, nitro, -N(R^4)₂ or -OR³, where R^4 independently is -H or C₁-C₈ alkyl, provided that at least one R is not H; and

a is 1 when X is O, or 1 or 2 when X is N;

with the proviso that when a is 2 and X is N, (a) two N-linked R groups can be taken together to form a carbocycle or oxygen-containing heterocycle, (b) one N-linked R additionally can be $-OR^3$ or (c) both N-linked R groups can be -H; and the salts, hydrates, tautomers and solvates thereof.

25

20

2. The compound of claim 1 having formula (1)

$$\begin{array}{c|c}
B & O & R^2 & O \\
O & P & O & OR \\
O & OR^8 & OR
\end{array}$$
(1)

30

wherein B is guanin-9-yl, adenin-9-yl, 2,6-diaminopurin-9-yl, 2-aminopurin-9-yl or their 1-deaza, 3-deaza, or 8-aza analogs, or B is cytosin-1-yl;

5

15

20

R is independently -H, C1-C12 alkyl, C5-C12 aryl, C2-C12 alkenyl, C2-C12 alkynyl, C7-C12 alkenylaryl, C7-C12 alkynylaryl, or C6-C12 alkaryl, any one of which is unsubstituted or is substituted with 1 or 2 halo, cyano, azido, nitro or -OR 3 in which R 3 is C1-C12 alkyl, C2-C12 alkenyl, C2-C12 alkynyl or C5-C12 aryl;

 R^1 is hydrogen, -CH₃, -CH₂OH, -CH₂F, -CH=CH₂, or -CH₂N₃, or R^1 and R^8 are joined to form -CH₂-;

R² independently is hydrogen or C₁-C₆ alkyl; and

 R^8 is hydrogen or -CHR²-O-C(O)-OR, or R^8 is joined with R^1 to form -CH₂-;

and the salts, hydrates, tautomers and solvates thereof.

- 3. The compound of claim 2 wherein R^2 is -H.
- 4. The compound of claim 3 wherein R^1 is -CH₃.
- 5. The compound of claim 1 wherein R^2 is -H.
- 6. The compound of claim 1 wherein one R² is -CH₃ and the other R² is H.
 - 7. The compound of claim 1 wherein R^3 is C_1 - C_6 alkyl or phenyl.
 - 8. The compound of claim 1 wherein R^3 is -CH₃ or -C₂H₅.
- 25 9. The compound of claim 1 wherein X is O.
 - 10. The compound of claim 1 wherein X is N and one R^3 is H.
- 11. The compound of claim 4 wherein the compound is enriched or resolved at the carbon atom chiral center linked to R^1 .
 - 12. The compound of claim 4 wherein at least about 90% of the compound is in the (R) configuration at the R^1 site.
- 35 13. The compound of claim 12 wherein B is adenin-9-yl.
 - 14. The compound of claim 13 wherein each R is ethyl.

10

15

20

25

 α

a.

- 16. The compound of claim 13 wherein each R is 3-pentyl or neopentyl.
- 5 17. The compound of claim 13 wherein each R is *t*-butyl or isobutyl.
 - 18. The compound of claim 4 wherein B is 2,6-diaminopurin-9-yl.
 - 19. The compound of claim 3 wherein R^1 is H.

20. The compound of claim 19 wherein B is adenin-9-yl.

- 21. The compound of claim 4 wherein R is C_1 - C_{12} alkyl.
- 22. The compound of claim 3 wherein R^1 is -CH₂OH.
- 23. The compound of claim 22 wherein B is cytosin-1-yl.
- 24. The compound of claim 1 named in Table B and compound groups

The compound of claim 22 wherein at least about 90% of the compound is in the (S) configuration at the \mathbb{R}^1 site.

A method comprising orally administering to a patient infected with virus or at risk to viral infection a therapeutically effective amount of a compound of claim 1.

A method for preparing a compound of formula (1a) comprising reacting the diacid of a phosphonomethoxy nucleotide analog with L- $CH(R^2)OC(O)X(R)_n$ wherein L is a leaving group.

A method for preparing a compound of formula (1) comprising reacting a compound of formula (6)

30

5

10

15

 α

20

a

25

with L-CHR²-O-C(O)-OR and recovering a compound of formula (1), wherein B is guanin-9-yl, adenin-9-yl, 2,6-diaminopurin-9-yl, 2-aminopurin-9-yl or their 1-deaza, 3-deaza, or 8-aza analogs, or B is cytosin-1-yl;

 R^1 is hydrogen, -CH₃, -CH₂OH, -CH₂F, -CH=CH₂, -CH₂N₃ or R^1 and R^8 are joined to form -CH₂-; and

 R^8 is hydrogen, -CHR²-O-C(O)-OR or R^8 is joined with R^1 to form -CH₂-; and

R² is H, C₁-C₁₂ alkyl, aryl, alkenyl, alkynyl, alkynylaryl, alkaryl, arylalkynyl, arylalkenyl or arylalkyl which is unsubstituted or is substituted with halo, azido, nitro or OR³ in which R³ is C₁-C₁₂ alkyl;

R is independently H, C₁-C₁₂ alkyl, aryl, alkenyl, alkynyl, alkynylaryl, alkynylaryl, arylalkynyl, arylalkenyl or arylalkyl which is unsubstituted or is substituted with halo, azido, nitro or OR³, provided that at least one R is not H; and

L is a leaving group.

The method of claim 30 comprising conducting the reaction using at least about 1.0 equivalent of L-CHR²-O-C(O)-OR.

The method of claim 31 comprising conducting the reaction in the presence of an organic base in an organic solvent at a reaction temperature of about 4-100°C for about 4-72 hours.

The method of claim 28 wherein the compound of formula (1) is recovered by forming a salt, precipitating the salt and recovering the precipitated salt.

The method of claim 31 wherein the salt is formed from sulfuric acid, phosphoric acid, lactic acid, or citric acid.

