Math 623: Problem set 5

1. Consider a function $f \in L^1([a,b])$ and let us extend the function f to be 0 outside of [a,b]. For h > 0 define

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$$

- (a) Show that f is a continuous function.
- (b) Show that $||f_h||_{L^1([a,b]} \le ||f||_{L^1([a,b]}$ for any h > 0
- (c) Show that $\lim_{h\to 0} ||f_h f||_{L^1([a,b])} = 0$.

Hint: Fubini.

- 2. Problem 7, page 147
- 3. Show that if a function is of absolutely continuous on [a, b] then it is of bounded variation on [a, b].
- 4. Problem 10, page 147
- 5. Problem 13, p. 147
- 6. Prob 16, page 147.

Hint: For (a) use corollary 3.7. For (b) write F' = g + h where g is a step function and $\int |g| dx \le \epsilon$. Consider then F = G + H where $G = \int_a^x g(t) dt$ and $H = \int_a^t h(t) dt$.

- 7. (a) Show that the function f given by f(0) = 0 and $f(x) = x^a \sin(x^{-b})$ for $x \in (0, 1]$ with a, b > 0 is absolutely continuous iff a > b.
 - (b) Consider the function f given by f(0) = 0 and $f(x) = x^2 |\sin(1/x)|$ for $x \in (0, 1]$ and $g(x) = \sqrt{x}$. Show that f and g and $f \circ g$ are absolutely continuous but that $g \circ f$ is not absolutely continuous.
- 8. Compute the positive and negative variation of $f(x) = x^3 |x|, -1 \le x \le 1$ and $f(x) = \cos(x)$ for $0 \le x \le 2\pi$.

1

- 9. Problem 24, page 150
- 10. Problem 19, page 148