版本信息	拟制	日期	备注
V1.0	陈春莉	2012-12-23	初次发布
VI.I	陈春莉	2012-3-22	增加检查探头标志位 去掉与老协议兼容部分

1、目的

按照《设备通信协议规范》重新编写血氧模块通信协议,使数据传输更加可靠,效率更高并且软件开销更小;

该协议适用于以下血氧产品:

SMD Sp02 module

Oxisensor

2、通信约定

2.1 数据传输基本要求:

串行异步(UART)双向数据传输,无硬件流控。信号电平为 TTL (高电平可适应 3.0V~5.0V)。

2.2 数据传输协议:

8位数据位,无校验,1位停止位,波特率为38400bps。

2.3 数据传输模型:

2.4 通讯机制

- 1. Master 与 Slave 之间以两种方式进行通信。一种是"命令/应答"的方式,实现 Slave 配置、启动/ 停止 Slave 主动收发数据、查询 Slave 版本及命令其进入休眠状态等功能。另一种是 Master 接收 Slave 主动发来的波形数据报文或参数数据报文。后一种模式可以通过前一种模式被使能和禁止。
- 2. 血氧模块(Slave)上电复位后,以"8位数据位,无校验,1位停止位,波特率为38400bps"配置串口,并且先主动发送3个产品信息(PID)报文,然后等待 Master 和其握手(Master 将发送查询命令)。如 Slave 未能收到来自 Master 的任何合法报文,则它会每隔2秒钟发送1个工作状态信息(STATUS)报文。当 Slave 收到任何一个有效命令后,它将不再主动发送 STATUS报文,而是应答 Master 发来的查

询或控制命令。Master 和 Slave 的握手是通过其发送查询命令(如 PID 或 VER 报文)并得到正确的应答后建立的。握手成功后,Master 可以根据需要发送命令来允许 Slave 主动发送数据报文。Slave 在上电复位后默认不主动发送数据报文,但在热复位后是否主动发送数据报文取决于复位前的状态,亦即 Slave 在热复位后保持通讯模式不变。

3. Master 上电完成串口初始化后,应先检查是否有 Slave 发来的有效的产品信息 (PID) 报文,如有则发送版本查询命令来和 Slave 进行握手,否则发送查询 PID 信息进行握手。若在 200ms 内未收到 Slave 的应答包,则重复上述过程。上述重复过程最多进行 3 次,如还无正确回应则通讯故障(硬件有问题)。4. 若 Slave 已经与 Master 握手成功且手指未插入时,则进入低功耗状态,每隔两秒钟发送一个工作状态信息 (STATUS) 报文,但不接收、不回应任何报文;重新插入手指后,将按照探头脱落前的状态继续发送报文。若 Slave 未与 Master 握手成功且手指未插入时,不进入低功耗直到握手成功。

3. 通信数据格式

3.1 协议包格式

		T			
包头(Head)	令牌(Token)	长度(Length)	类型(Type)	内容(Conten)	校验和(CRC8)

说明:

- I. 包头: 固定两个字节(0xAA,0x55)
- 2. 令牌: 固定一个字节, 只能是 0xFF,0x50, 0x51,0x52, 0x53 (详见下文)。
- 3. 长度: 固定一个字节,表示该字节后的字节数(包括类型、内容、校验和)。
- 4. 类型: 固定一个字节,表示命令或数据的类别(详见下文)。
- 5. 内容: 长度为 n, 0<=n<=64, 详见下文。

6. 校验和: 固定一个字节,除校验和本身外,从包头至内容结束的 CRC 校验和。CRC 校验表见附表。3.2 查询命令及应答

3.2.1 master 查询产品 ID

包头(2)	令牌(1)	长度 (1)	类型 (1)	校验和(1)
0xAA 0x55	0xFF	0x02	0x01	计算

slave 应答产品 ID 信息

包头 (2)	令牌(1)	长度(1)	类型(1)	数据 (n)	校验和(1)
0xAA 0x55	0xFF	n+2	0x01	见说明	计算

说明:

数据为长度(n)不超过30的字符串(ASCII码),对于新版本的血氧模块来说,约定如下:

常规监护仪用的光频血氧模块: SpO2_LFC_PM_Module

保健类产品用的光频 SMD 血氧模块: SpO2_LFC_HC_Module

智能血氧指夹 (OxiSensor): SpO2_LFC_FC_Module

带蓝牙数据传输的光频血氧模块: SpO2_LFC_BT_Module

3.2.2 master 查询版本

包头 (2)	令牌(1)	长度 (1)	类型 (1)	校验和(1)
0xAA 0x55	0x51	0x02	0x01	计算

slave 应答版本信息

包头 (2)	令牌 (1)	长度(1)	类型(1)	数据 0 (1)	数据1(1)	校验和(1)
0xAA 0x55	0x51	0x04	0x01	见i		计算

说明:

数据 0 - 软件版本 (Ver x.y x -- bit7-bit4 y -bit3-bit0)

数据 1 - 硬件版本 (Ver x.y x -- bit7-bit4 y -bit3-bit0)

3.2.3 master 查询工作状态

包头 (2)	令牌(1)	长度(1)	类型(1)	校验和(1)
0xAA 0x55	0x51	0x02	0x02	计算

slave 应答工作状态信息

包头 (2)	令牌(1)	长度(1)	类型(1)	数据(1)	校验和(1)	
0xAA 0x55	0x51	0x03	0x02	见说明	计算	

说明:数据字节:

D7D6: 00 成人模式, 01 新生儿模式, 10 动物模式, 11 预留。

D5: 1 上行主动发送允许状态, 0 上行主动发送禁止状态

D4: 1 探头未连接, 0 探头已连接

D3: 1 Probe off 探头脱落 (手指未插入)

D2: I Check probe 检查探头 (探头故障或使用不当)

D1-D0: 预留(默认置零)

3.3 控制命令及应答

3.3.1 master 设置 slave 工作模式

包头 (2)	令牌 (1)	长度 (1)	类型(1)	数据(1)	校验和(1)
0xAA 0x55	0x50	0x03	0x01	见说明	计算

slave 应答其工作模式

包头 (2)	令牌(1)	长度 (1)	类型 (1)	数据 (1)	校验和(1)
0xAA 0x55	0x50	0x03	0x01	见说明	计算

说明:

数据 — 0x00 为成人模式, 0x01 为新生儿模式, 0x02 为动物模式。

上电默认为成人模式。(目前 V1.0 版本只有成人模式)

3.3.2 master 使能/禁止 slave 主动发送数据

包头 (2)	令牌(1)	长度 (1)	类型 (1)	数据(1)	校验和(1)
0xAA 0x55	0x50	0x03	0x02	见说明	计算

slave 应答 master 命令

包头 (2)	令牌 (1)	长度(1)	类型 (1)	数据(1)	校验和(1)
0xAA 0x55	0x50	0x03	0x02	见说明	计算

说明:

数据 0x00 禁止 slave 主动发送数据, 0x01,0x02 允许 slave 按照指定的类型主动发送数据。数据类型只影响波形数据包格式,参见 3.5。

上电默认为不主动发送数据(此控制字会保存,热复位后不会改变其值)。

3.3.3 master 命令 slave 进入休眠模式

]	T		
包头(2)	令牌(1)	长度(1)	类型 (1)	校验和(1)
	1	1)\ <u></u> \1,	12,352,411 (1)

0xAA 0x55	0x50	0x02	0x03	计算

slave 应答 master 命令

包头 (2)	令牌 (1)	长度 (1)	类型 (1)	校验和 (1)
0xAA 0x55	0x50	0x02	0x03	计算

说明:

slave 收到 master 命令后先应答,然后再进入休眠状态(低功耗模式)。

slave 进入休眠后, master 可通过对 slave 连续发送至少 10 个 0x00 来唤醒 slave, 之后两者可以进行再次通讯 (应先握手)。

3.4 slave 主动上传参数数据包

包头 (2)	令牌(I)	长度 (1)	类型(1)	数据 0 (1)	000	数据4(1)	校验和(1)
0xAA 0x55	0x53	0x07	10x0	9,414.24	见说明		计算

说明: 发送频率: 1Hz

数据 0 – SpO2 data 范围 (0~100),单位%, 0 代表无效值。

数据 1~数据 2~PR data 范围(0~511) 低字节在前,高字节在后,单位 bpm。0 代表无效值。

数据 3 - PI data

范围(0~255),单位千分之一,0代表无效值。

数据 4 - State/状态信息(D7-D0)

D0 - Probe disconnected (reserved)

D1-Probe off (探头脱落、手指未插入)

D2 - Pulse searching

D3-Check probe (探头故障或使用不当)

D4 – Motion detected

(reserved)

D5 – Low perfusion

(reserved)

D7D6-00 成人模式, 01 新生儿模式, 10 动物模式 (reserved)

3.5 slave 主动上传波形数据包

	T .	***	1		····	T	
包头 (2)	令牌(1)	长度(1)	类型(1)	数据1(1)	000	数据 n (1)	校验和(1)
0xAA 0x55	0x52	n+2	见说明				计算

说明:

类型 0x00 禁止主动发送数据

类型 0x01

发送频率:由信源决定,即按采样率的速度发送波形数据(归一化的单路数据)。

长度: 山于后面的数据为变长数据,需要根据后面的数据来计算长度。

数据 1~ 数据 n- 脉搏搏动标志 + 波形数据 (bit7 + bit6~bit0).

Bit7 - 脉搏搏动标志 0 无搏动 1 有搏动 Bit6~bit0 波形数据, 范围 (0~127)。

n < 信源频率 并且不能大于 64。

类型 0x02

发送频率: 山信源决定, 即按采样率的速度发送未归一化的原始波形数据(双路)。

长度:由于后面的数据为变长数据,需要根据后面的数据来计算长度。

数据 I ~ 数据 n – IR0,IR1,IR2,IR3,RD0,RD1,RD2,RD3.

(IR0-3, 32 位红外信号, RD0-3, 32 位红光信号, 低字节在前)

n < 信源频率/8, 并且不能大于 64。

注: 数据类型 0x02 用于调试及现场采集临床数据目的。

3.9 血氧模块命令/应答一览表:

命令/应答	方向	令牌	长度	类型	dat0~datN	说明
 査询产品 ID	下行	0xFF	0x02	0x01	无	要求有回应, 见 3.2.1
11.737 нн 10	上行	0xFF	n+2	0x01	string	(n 为字符串长度)
查询版本信息	下行	0x51	0x02	0x01	无	要求有回应,见 3.2.2
12 14 16 16 16 16 16 16 16 16 16 16 16 16 16	上行	0x51	0x04	0x01	x.y, p.q	(压缩 BCD 码)
查询工作状态	下行	0x51	0x02	0x02	无	要求有回应,见 3.2.3
	上行	0x51	0x03	0x02	status	(单字节)
设置工作模式	下行	0x50	0x03	0x01	mode	要求有回应,见 3.3.1
	上行	0x50	0x03	0x01	mode	(単字节)
 控制主动发送	下行	0x50	0x03	0x02	command	要求有回应,见 3.3.2
1年明11490人区	上行	0x50	0x03	0x02	command	(单字节)
命令进入休眠	下行	0x50	0x02	0x03	无	要求有回应,见 3.3.3
	上行	0x50	0x02	0x03	无	(只能复位唤醒)

1					1	
主动上传波形	上行	0x52	n+2	0x01/0x02	wave_data	见 3.5
主动上传参数	上行	0x53	0x07	0x01	para_data	见 3.4

附录

查表式计算 8 位 CRC 校验值的方法

按照 CCITT 的标准, 8 位 CRC 的多项式表达为: G=X^8+X^5+X^4+1

对应的十六进制查找表如下:

unsigned char crc_table[]={

0x00, 0x5e, 0xbc, 0xe2, 0x61, 0x3f, 0xdd, 0x83, 0xc2, 0x9c, 0x7e, 0x20, 0xa3, 0xfd, 0x1f, 0x41, 0x410x9d,0xc3,0x21,0x7f,0xfc,0xa2,0x40,0x1e,0x5f,0x01,0xe3,0xbd,0x3e,0x60,0x82,0xdc, 0x23,0x7d,0x9f,0xc1,0x42,0x1c,0xfe,0xa0,0xe1,0xbf,0x5d,0x03,0x80,0xde,0x3c,0x62, 0xbe, 0xe0, 0x02, 0x5c, 0xdf, 0x81, 0x63, 0x3d, 0x7c, 0x22, 0xc0, 0x9e, 0x1d, 0x43, 0xa1, 0xff, 0x62, 0x620x46, 0x18, 0xfa, 0xa4, 0x27, 0x79, 0x9b, 0xc5, 0x84, 0xda, 0x38, 0x66, 0xe5, 0xbb, 0x59, 0x07, 0x66, 0x66 $0x \\ db, 0x \\ 85, 0x \\ 67, 0x \\ 39, 0x \\ ba, 0x \\ e4, 0x \\ 06, 0x \\ 58, 0x \\ 19, 0x \\ 47, 0x \\ a5, 0x \\ fb, 0x \\ 78, 0x \\ 26, 0x \\ c4, 0x \\ 9a, 0x \\ 60, 0$ 0x65, 0x3b, 0xd9, 0x87, 0x04, 0x5a, 0xb8, 0xe6, 0xa7, 0xf9, 0x1b, 0x45, 0xc6, 0x98, 0x7a, 0x24, 0x65, 0x66, 0x660xf8, 0xa6, 0x44, 0x1a, 0x99, 0xc7, 0x25, 0x7b, 0x3a, 0x64, 0x86, 0xd8, 0x5b, 0x05, 0xe7, 0xb9, 0x64, 0x640x8c, 0xd2, 0x30, 0x6e, 0xed, 0xb3, 0x51, 0x0f, 0x4e, 0x10, 0xf2, 0xac, 0x2f, 0x71, 0x93, 0xcd, 0x6f, 0x6f0x11,0x4f,0xad,0xf3,0x70,0x2e,0xcc,0x92,0xd3,0x8d,0x6f,0x31,0xb2,0xec,0x0e,0x50,0xaf,0xf1,0x13,0x4d,0xce,0x90,0x72,0x2c,0x6d,0x33,0xd1,0x8f,0x0c,0x52,0xb0,0xee, 0x32, 0x6c, 0x8e, 0xd0, 0x53, 0x0d, 0xef, 0xb1, 0xf0, 0xae, 0x4c, 0x12, 0x91, 0xcf, 0x2d, 0x73, 0x6c, 0x8e, 0x4c, 0x12, 0x6c, 0x8e, 0x8e0xca,0x94,0x76,0x28,0xab,0xf5,0x17,0x49,0x08,0x56,0xb4,0xea,0x69,0x37,0xd5,0x8b, $0 \\ xe9, 0 \\ xb7, 0 \\ x55, 0 \\ x0b, 0 \\ x88, 0 \\ xd6, 0 \\ x34, 0 \\ x6a, 0 \\ x2b, 0 \\ x75, 0 \\ x97, 0 \\ xc9, 0 \\ x4a, 0 \\ x14, 0 \\ xf6, 0 \\ xa8, 0 \\ x2b, 0 \\ x75, 0 \\ x97, 0 \\ xc9, 0 \\ x4a, 0 \\ x14, 0 \\ xf6, 0 \\ xa8, 0 \\ x2b, 0 \\ x4a, 0$ 0x74, 0x2a, 0xc8, 0x96, 0x15, 0x4b, 0xa9, 0xf7, 0xb6, 0xe8, 0x0a, 0x54, 0xd7, 0x89, 0x6b, 0x35, 0x6b, 0x6b**}**;

计算单字节 in_byte 的 CRC-8 值如下:

crc_old=0;

crc_new=crc_table[crc_old xor in_byte];

如计算多个字节组成的字符串的 CRC-8 值,令 crc_old=crc_new,重复上述操作。