

목 A table of contents

- 현안 문제
- 2 모델 설계 및 구축
- 3
 모델 결과
- **4** 추가 모델

Part 1 현안문제

현안 문제

급증하는 카페, 이대로 괜찮은가?

Part 2 모델설계및구축

모델 설계 및 구축

모델 설계 및 구축

받은 데이터 중 당월 매출액(2,249,972,021) / 점포 수(49) = 사이트 속 점포 당 월별 매출액(1,531만원) * 분기 당 개월 수(3)

스 모델 설계 및 구축

[1. 상관계수 분석]

- 1. 점포 수
- 2. 영역 면적
- 3. 유동인구, 상존인구
 - 1. 전체 인구 수
 - 2. 인구 수 성별
 - 3. 인구 수 연령대
 - 4. 인구 수 시간대
 - 5. 인구 수 요일

- 4. 매출 비율
 - 1. 매출 비율 주중/주말
 - 2. 매출 비율 요일
 - 3. 매출 비율 시간대
 - 4. 매출 비율 성별
 - 5. 매출 비율 연령대
- 5. 프랜차이즈 점포 수
- 6. 개업/폐업률
- 7. 개업/폐업 점포 수

- 8. 상주인구, 직장 인구
 - 1. 전체 인구 수
 - 2. 인구 수 성별
 - 3. 인구 수 연령대
- 9. 상권 주변 시설 개수
- 10. 연차별 생존율
- 11. 연차별 생존 수

매출 금액은 제외!

- 1. 상관계수 높은 순
- 2. 대표성을 나타냄
- 3. 유의미한 다양성

상권 당 분기별 매출액과의 상관계수

모델 설계 및 구축

- 1. 상관계수 높은 순
- 2. 대표성을 나타냄
- 3. 유의미한 다양성

19년도 20년도 발달상권에서 상권 인근 유동인구는 외식업종 매출액에 영향을 줌.

분류	index	select		상관계수	절댓값
매출	563	FRI_SELNG_AMT	금요일_매출_금액	0.993452	0.993452
	557	MDWK_SELNG_AMT	주중_매출_금액	0.990914	0.990914
	561	WED_SELNG_AMT	수요일_매출_금액	0.987734	0.987734
	572	ML_SELNG_AMT	남성_매출_금액	0.987638	0.987638
	576	AGRDE_30_SELNG_AMT	연령대_30_매출_금액	0.9821	0.9821
	569	TMZON_14_17_SELNG_AMT	시간대_14_17_매출_금액	0.977955	0.977955
	552	AGRDE_20_SELNG_RATE	연령대_20_매출_비율	0.245684	0.245684
	534	MDWK_SELNG_RATE	주중_매출_비율	0.195651	0.195651
	550	FML_SELNG_RATE	여성_매출_비율	0.186984	0.186984
	544	TMZON_06_11_SELNG_RATE	시간대_06_11_매출 비율	0.183231	0.183231
	540	FRI_SELNG_RATE	금요일_매출_비율	0.179432	0.179432
	533	THSMON_SELNG_CO	당월_판매_건수	0.965551	0.965551
	603	STOR_CO_x	점포_수	0.856524	0.856524
유동인구	16	TMZON_4_FLPOP_CO_x	시간대_4_유동인구_수	0.541474	0.541474
	8	AGRDE_20_FLPOP_CO_x	연령대_20_유동인구_수	0.477429	0.477429
	23	FRI_FLPOP_CO_x	금요일_유동인구_수	0.38966	0.38966
	5	ML_FLPOP_CO_x	남성_유동인구_수	0.376432	0.376432
	4	TOT_FLPOP_CO_x	총_유동인구_수	0.353343	0.353343
상존인구	624	TMZON_4_FLPOP_CO_y	시간대_4_상존인구_수	0.661925	0.661925
	616	AGRDE_20_FLPOP_CO_y	연령대_20_상존인구_수	0.623099	0.623099
	631	FRI_FLPOP_CO_y	금요일_상존인구_수	0.583916	0.583916
	613	ML_FLPOP_CO_y	남성_상존인구_수	0.575586	0.575586
	612	TOT_FLPOP_CO_y	총_상존인구_수	0.556088	0.556088

모델 설계 및 구축

- 1. 상관계수 높은 순
- 2. 대표성을 나타냄
- 3. 유의미한 다양성

상주인구는 20년 골목상권 에서 유의미함.

			T	ı	
상주인구		AGRDE_30_REPOP_CO	연령대_30_상주인구_수	0.165837	0.165837
	1159	FML_REPOP_CO	여성_상주인구_수	0.087702	0.087702
	1157	TOT_REPOP_CO	총_상주인구_수	0.082845	0.082845
직장 인구 수	1205	TOT_WRC_POPLTN_CO	총_직장_인구_수	0.740832	0.740832
	1210	AGRDE_30_WRC_POPLTN_CO	연령대_30_직장_인구_수	0.739927	0.739927
	1206	ML_WRC_POPLTN_CO	남성_직장_인구_수	0.733593	0.733593
시설	1231	BANK_CO	은행_수	0.780643	0.780643
	1229	VIATR_FCLTY_CO	집객시설_수	0.715297	0.715297
연차별 생존	1145	YEAR_2_OPBIZ_STOR_CO_x	2년_개업_점포_수	0.817426	0.817426
	1141	YEAR_1_BEING_CO_x	1년_생존_수	0.805663	0.805663
	1140	YEAR_1_BEING_RT_x	1년_생존_율	0.197306	0.197306
신생기업 생존	1204	YEAR_5_OPBIZ_STOR_CO_y	5년_개업_점포_수	0.826491	0.826491
	1197	YEAR_3_BEING_CO_y	3년_생존_수	0.769061	0.769061
	1190	YEAR_1_BEING_RT_y	1년_생존_율	0.194096	0.194096
영업개월	1184	TOT_BSN_MT	총_영업개월(10년전기준)	0.890791	0.890791
	1188	TOT_STOR_CO_90	총_점포_수(1990년기준)	0.885853	0.885853
	1186	SALE_MT_AVG_90	평균영업개월(1990년기준)	0.10027	0.10027
개폐업	606	SIMILR_INDUTY_STOR_CO	총_점포_수	0.883539	0.883539
	611	FRC_STOR_CO	프렌차이즈_점포_수	0.860648	0.860648
	605	STOR_CO_y	일반_점포_수	0.826598	0.826598
	608	OPBIZ_STOR_CO	개업_점포_수	0.64276	0.64276
	610	CLSBIZ_STOR_CO	폐업_점포_수	0.634718	0.634718
	607	OPBIZ_RT	개업_율	-0.01245	0.012449
	609	CLSBIZ_RT	폐업_율	0.000572	0.000572

1) 데이터 전처리

테스트 데이터는 2022년 3분기 데이터 이용

Data Preprocessing

```
train_df = pd.read_csv('train_df.csv')
test_df = pd.read_csv('test_df.csv')

# Data Shuff/e
train_df = train_df.sample(frac=1, random_state=0).reset_index(drop=True)
test_df
```

```
# 필요한 데이터만 collect
L = [530, 603, 1255, 1256, 550, 551, 555, 552, 556, 524,
    4, 8, 12, 16, 13, 25, 1177, 1157, 1211, 1212,
    1210, 1209, 1213, 1208, 1205, 534, 544, 540, 23, 5,
    1159, 1162, 1206, 1229, 1204, 1197, 606, 611, 608, 610,
    1240, 1234, 1248, 1247, 1230, 1233, 1243, 1239, 1232] # 49개의 변수
L.append(532)

train = train_data[:, L]
test = test_data[:, L]
```

```
# Data Cleaning
train = np.array(train, dtype=float)
is_row_nan = np.isnan(train).any(axis=1)
train = train[np.logical_not(is_row_nan), :]

test = np.array(test, dtype=float)
is_row_nan = np.isnan(test).any(axis=1)
test = test[np.logical_not(is_row_nan), :]

print(train.shape, test.shape)
```

```
# Nan 데이터를 제거한 유효 데이터 비율
valid_train = train.shape[0] / 17294
valid_test = test.shape[0] / 1216
print(valid_train, valid_test)

# 90% train, 10% valid
split_point = int(train.shape[0]*0.9)
print('split point:', split_point)
```

```
# Data Scaling (가우스 랭크)
scaler = QuantileTransformer(output_distribution='normal')
train_scaled = scaler.fit_transform(train)
test_scaled = scaler.transform(test)
"""

# Data Scaling
scaler = StandardScaler()
scaler.fit(train)
train_scaled = scaler.transform(train)
test_scaled = scaler.transform(test)
```

```
# Split data into training and test sets
train_data = train_scaled[:split_point, :]
val_data = train_scaled[split_point:, :]
test_data = test_scaled

X_train, y_train = train_data[:, :-1], train_data[:, -1]
X_val, y_val = val_data[:, :-1], val_data[:, -1]
X_test, y_test = test_data[:, :-1], test_data[:, -1]
X_train
```

2) 랜덤 포레스트 (Stacking)

3) MLP 모델

```
model = models.Sequential()
model.add(layers.Dense(64, activation = 'relu'))
model.add(layers.Dense(32, activation = 'relu'))
model.add(layers.Dense(16, activation = 'relu'))
model.add(layers.Dense(8, activation = 'relu'))
model.add(layers.Dense(4, activation = 'relu'))
model.add(layers.Dense(1))

# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
```

3) MLP 모델

```
# Get the Random Forest predictions on the val set
rf_val_preds = rf.predict(X_val)

# Add the Random Forest predictions as a new feature in the val data
X_val_stacked = np.column_stack((X_val, rf_val_preds))

# Get the Random Forest predictions on the test set
rf_test_preds = rf.predict(X_test)

# Add the Random Forest predictions as a new feature in the test data
X_test_stacked = np.column_stack((X_test, rf_test_preds))
```

3) MLP 모델

4) 모델 성능 지표 출력

```
# 모델 성능 지표
import matplotlib.pyplot as plt

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(['Train', 'Val'], loc = 'upper left')
plt.show()
```

4) 모델 성능 지표 출력

```
import matplotlib.pyplot as plt

predictions = model.predict(X_test_stacked)
plt.plot(predictions, y_test, 'o', label='Ground truth vs Predictions')
plt.plot((0, 15), (0, 15))

plt.xlabel('Predictions')
plt.ylabel('Ground truth')
plt.legend()
plt.show()
```

4) 모델 성능 지표 출력

중소벤처기업부

2019년 보도 자료

2017년 월 평균 영업이익:

2,690,000

&

2017년 영업이익률: 15.8%

2017년 월 평균 영업이익: 2,690,000

2017년 대비 2022년 물가상승률: 10.33%

--> 2,690,000 X 1.1033 = **2,967,877**

매출액(기준) = 영업이익 X 100% / 영업이익률(%)

= **2,967,877** × 100% / **15.8%**

= 18,784,031

```
점포 당 월 매출 적정 매출 점포 수
```

```
def Result(num):
# num을 선택할 때에는 nan 데이터가 포함되어 있지 않은 데이터인지 확인해야 한다.
Xy = test_df.loc[num][L]
N = 1000
Xy = np.tile(Xy, (N, 1))
Xy[:, 1] = np.arange(1, N+1)

Xy = scaler.transform(Xy)

X = Xy[:, :-1]
y = Xy[:, -1]
```

```
# Get the Random Forest predictions on the set

rf_preds = rf.predict(X)

# Add the Random Forest predictions as a new feature in the data

X_stacked = np.column_stack((X, rf_preds))

pred = model.predict(X_stacked)

pred = np.tile(pred, (1, len(L)))

pred = scaler.inverse_transform(pred)

# 문기별 매출에서 3달 나눔

result = pred[:, -1].reshape(N)/(3*np.arange(1, N+1))

return result
```

```
x = np.arange(N)
plt.plot(x, result[:N])

# Find the difference between the two y values
y_diff = result - standard
y_abs_diff = abs(y_diff)

intersection_x = np.argmin(y_abs_diff)
print(intersection_x)
```

```
# Plot the two functions and the intersection point
x = int(intersection_x)
y = int(result[int(intersection_x)])

t = test_df.loc[num][603]
t = int(t)
```

2) 과당 경쟁 및 집적 효과 맵 출력

Part 3 모델결과

주요 변수만

3 모델 결과

상관 계수 고려 X

최종 결과

3 모델 결과

중소벤처기업부

2019년 보도 자료

2017년 월 평균 영업이익:

2,690,000

&

2017년 영업이익률: 15.8%

2017년 월 평균 영업이익: 2,690,000

2017년 대비 2022년 물가상승률: 10.33%

--> 2,690,000 X 1.1033 = **2,967,877**

매출액(기준) = 영업이익 X 100% / 영업이익률(%)

= **2,967,877** × 100% / **15.8%**

= 18,784,031

IMG(130) # 성수동카페거리; 2110131; 골목상권

IMG(1275) # 가로수길; 2120186; 발달상권

IMG(1102, 0) # 송파나루역 1번(송리단길); 2111013; 골목상권

IMG(1, 0, 50) # 2110002;

경청해주셔서 감사합니다 ②

Whiskey**조**

화학공학과 22 송지윤 환경공학부 20 양현주 인공지능학과 21 이상민 수학과 19 황태연