

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Homework 8 and Lab 7: Tuesday 3/21 @ 11:59 pm
 - Homework 9: this Friday @ 11:59 pm
 - Assignment 3: Friday 3/31 @ 11:59 pm
 - Support video and slides will be on Canvas
 - Debugging tips

Previous lecture

- Burrows-Wheeler Compression Algorithm
- ADT Graph
 - definitions
 - representation using array of linked lists

This Lecture

- ADT Graph
 - definitions
 - representations
 - two-arrays
 - adjacency matrix
 - adjacency lists
 - traversals
 - BFS
 - shortest paths based on number of edges
 - connected components
 - DFS
 - finding articulation points of a graph

Why?

• Can be used to model many different scenarios

Some definitions

- Undirected graph
 - \bigcirc Edges are unordered pairs: (A, B) == (B, A)
- Directed graph
 - O Edges are ordered pairs: (A, B) != (B, A)
- Adjacent vertices, or neighbors
 - O Vertices connected by an edge

Graph sizes

- Let v = |V|, and e = |E|
- Given v, what are the minimum/maximum sizes of e?
 - O Minimum value of e?
 - Definition doesn't necessitate that there are any edges...
 - **So, 0**
 - O Maximum of e?
 - Depends...
 - Are self edges allowed?
 - Directed graph or undirected graph?
 - In this class, we'll assume directed graphs have self edges while undirected graphs do not

Maximum value of e (MAX)

- Undirected graph
 - O no self edges
 - \circ v*(v-1)?
 - O But, A->B is the same edge as B-> A
 - O Are we counting each twice?
 - \circ v*(v-1)/2
- Directed graph
 - O self edges allowed
 - O v*v?
 - A -> B is a different edge thanB -> A
 - Ov^2

More definitions

• A graph is considered *sparse* if:

$$\bigcirc$$
 e <= v lg v

• A graph is considered *dense* as it approaches $\mathcal{A}\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{C}$ the maximum number of edges

$$\bigcirc$$
 I.e., $e == MAX - \epsilon$

- A complete graph has the maximum number of edges
- Have we seen "sparse" and dense before?

Sparse graphs

Question:

• Is

Representing graphs

- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges
- Performance?
 - O Assume we're going to be analyzing static graphs
 - I.e., no insert and remove
 - O So what operations should we consider?

Graph operations

- Static graphs
 - O check if two vertices are neighbors
 - O find the list of neighbors of a given vertex
 - for directed graphs, in-neighbors and out-neighbors
- Dynamic graphs
 - O add/remove edges
 - Not our focus in this class

Representing graphs

- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges
- Performance?
 - O Check if two vertices are neighbors
 - **■** O(e)
 - O Find the list of neighbors of a given vertex
 - O(e)
- Space?
 - \bigcirc $\Theta(v + e)$ memory

Using an adjacency matrix

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j) \in E

$$\bigcirc$$
 M[i][j] = 0 if (i, j) \notin E

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	~	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Using an adjacency matrix

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j) \in E

$$\bigcirc$$
 M[i][j] = 0 if (i, j) \notin E

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency matrix analysis

- Runtime?
 - O Check if two vertices are neighbors
 - **■** Θ(1)
 - O Find the list of neighbors of a vertex
 - **■** O(v)
 - \bigcirc O(v²) time to initialize
- Space?
 - $O(v^2)$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency lists

Array of neighbor lists

O A[i] contains a list of the neighbors of vertex i

Adjacency list analysis

- Check if two vertices are neighbors
- O Find the list of neighbors of a vertex
 - **■** Θ(d)
 - d is the degree of a vertex (# of neighbors)
 - **■** O(v)

• Space?

- \bigcirc $\Theta(v + e)$ memory
- O overhead of node use
- \bigcirc Could be much less than v^2

Comparison

 Where would we want to use adjacency lists vs adjacency matrices?

- Dense graphs?
- Sparse graphs?
- What about the list of vertices/list of edges approach?

Even more definitions

- Path
 - A sequence of adjacent vertices
- Simple Path
 - A path in which no vertices are repeated
- Simple Cycle
 - A simple path with the same first and last vertex
- Connected Graph
 - A graph in which a path exists between all vertex pairs
- Connected Component
 - Connected subgraph of a graph
- Acyclic Graph
 - A graph with no cycles
- Tree
 - 0 ?
 - A connected, acyclic graph
 - Has exactly v-1 edges

Complete Graph vs. Connected Graph

- Difference between Connected graph and Complete graph?
 - Connected means there is a path from A to B for each pair of vertices
 A and B
 - Complete means there is an **edge** between A and B for each pair of vertices A and B

Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
 - Breadth-first search (BFS)
 - Search all directions evenly
 - i.e., from i, visit all of i's neighbors, then all of their neighbors, etc.
 - Would help us compute the distance between two vertices
 - Remember our Problem of the Day?
 - Depth-first search (DFS)
 - "Dive" as deep as possible into the graph first
 - Branch when necessary

BFS

- Can be easily implemented using a queue
 - O For each vertex visited, add all of its neighbors to the Q (if not previously added)
 - Vertices that have been seen (i.e., added to the Q) but not yet visited are said to be the *fringe*
 - O Pop head of the queue to be the next visited vertex
- See example

BFS example

BFS Pseudo-code

```
Q = new Queue
BFS(vertex v){
    add v to Q
    while(Q is not empty){
        w = remove head of Q
         visited[w] = true //mark w as visited
         for each unseen neighbor x
             seen[x] = true //mark x as seen
              parent[x] = w
             add x to Q
```

Shortest paths

 BFS traversals can further be used to determine the shortest path between two vertices

BFS Pseudo-code to compute shortest paths

```
Q = new Queue
BFS(vertex v){
    add v to Q
    while(Q is not empty){
        w = remove head of Q
        visited[w] = true //mark w as visited
        for each unseen neighbor x
             seen[x] = true //mark x as seen
              parent[x] = w
             distance[x] = distance[w] + 1
             add x to Q
```

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called *articulation points*

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called *articulation points*

Finding connected components

- A connected component is a connected subgraph G'
 - (V', E')
 - $\bigvee'\subseteq\bigvee$
 - \blacksquare E' = {(u, v) \in E and both u and v \in V'}
- To find all connected components:
 - wrapper function around BFS
 - A loop in the wrapper function will have to continually call bfs() while
 there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph

BFS Pseudo-code to compute connected components

```
int components = 0
for each vertex v in V

if visited[v] = false

components++

Q = new Queue

BFS(v)
```

```
BFS(vertex v){
    add v to Q
    component
    while(Q is not empty){
        w = remove head of Q
        visited[w] = true
        component[w] = components
        for each unseen neighbor x
             seen[x] = true
             add x to O
```

Problem of previous lecture

- Input: A file containing LinkedIn (LI) accounts and their connections
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - e.g., 1st connection?, 2nd connection?, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - For each connected component, are there certain accounts that if removed, the remaining accounts become partitioned?

DFS – Depth First Search

- Already seen and used this throughout the term
 - For Huffman encoding...
 - as we build the codebook out of the Huffman Trie
- Can be easily implemented recursively
 - O For each vertex, visit *first* unseen neighbor
 - Backtrack at deadends (i.e., vertices with no unseen neighbors)
 - Try *next* unseen neighbor after backtracking
 - An arbitrary order of neighbors is assumed

DFS Pseudo-code

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

DFS example

When to visit a vertex

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 visit v //pre-order DFS
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
   parent[w] = v
   DFS(w)
visit v //post-order DFS
```

When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
   parent[w] = v
    DFS(w)
    (re)visit v //in-order DFS
```

Runtime Analysis of BFS

- Each vertex is added to the queue exactly once and removed exactly once
 - O *v* add/remove operations
 - O(v) time for vertex processing
- Edges are checked when adding the list of neighbors to the queue
- Each edge is checked at most twice, one per edge endpoint
 - O *O(e)* time for edge processing
- Total time: vertex processing time + edge processing time
 - \bigcirc O(v + e)

Runtime Analysis for DFS

- For Adjacency Matrix representation, BFS checks each possible edge!
 - $O(v^2)$ time for edge processing with Adjacency Matrix
- Total time: $O(v^2 + v) = O(v^2)$

Runtime Analysis of DFS

- Each vertex is seen then visited exactly once
 - \bigcirc O(v) time for vertex processing
 - except when (re)visiting a vertex after each child
 - vertex processing happens inside edge processing in that case
- Edges are checked when finding the list of neighbors
- Each edge is checked at most twice, one per edge endpoint
 - O *O(e)* time for edge processing
- Total time: vertex processing time + edge processing time
 - \bigcirc O(v + e)

Runtime Analysis of BFS and DFS

- At a high level, DFS and BFS have the same runtime
 - Each vertex must be seen and then visited, but the order will differ between these two approaches
- The representation of the graph affect the runtimes of of these traversal algorithms?
 - \bigcirc O(v + e) with Adjacency Lists
 - \bigcirc $O(v^2)$ with Adjacency Matrix
 - O Note that for a dense graph, $v + e = O(v^2)$

Biconnected graphs

- A biconnected graph has at least 2 distinct paths between all vertex pairs
 - a distinct path shares no common edges or vertices with another path
 except for the start and end vertices
- A graph is biconnected graph iff it has zero articulation points
 - O Vertices, that, if removed, will separate the graph

Biconnected Graph

Finding articulation points of a graph

- A DFS traversal builds a spanning tree
 - O red edges in the picture
- Edges not included in the spanning tree are called
 back edges
 - O e.g., (4, 9) and (2, 6)

num(v)

- A pre-order DFS
 traversal visits the
 vertices in some order
 - let's number the vertices with their traversal order
 - \bigcirc num(v)

Finding articulation points of a graph

For each non-root vertex v,
 find the lowest numbered
 vertex reachable from v

- not through v's parent
- using 0 or more treeedges then at most oneback edge
- move down the tree looking for a back edge that goes backwards the furtheset

low(v)

- How do we find low(v)?
- low(v) = Min of:
 - num(v)
 - num(w) for all back edges (v, w)
 - low(w) of all children of v

low(v)

- low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - O Min of:
 - num(v) (the vertex is reachable from itself)
 - Lowest num(w) of all back edges (v, w)
 - Lowest low(w) of all children of v (the lowest-numbered vertex reachable through a child)

Why are we computing low(v)?

- What does it mean if a vertex has a child such that
 - low(child) >= num(parent)?
- e.g., 4 and 7
- child has no other way except through parent to reach vertices with lower num values than parent
- e.g., 7 cannot reach 0, 1, and 3
 except through 4
- So, the parent is an articulation point!
 - e.g., if 4 is removed, the graph becomes disconnected

Why are we computing low(v)?

- if 4 is removed, the graph becomes disconnected
- Each non-root vertex v that
 has a child w such that
 low(w) >= num(v) is an
 articulation point

What about the root vertex?

- The root has the smallest num value
 - root's children can't go "further" than root
- Possible that low(child) == num(root) but root is not an articulation point
- need a different condition for root

What about the root of the spanning tree?

- What if we start DFS at an articulation point?
 - The starting vertex becomes the root of the spanning tree
 - O If the root of the spanning tree has more than one child, the root is

Finding articulation points of a graph: The Algorithm

- As DFS visits each vertex v
 - O Label v with with the two numbers:
 - num(v)
 - low(v): initial value is num(v)
 - O For each neighbor w
 - \blacksquare if already seen \rightarrow we have a back edge
 - update low(v) to num(w) if num(w) is less
 - if not seen → we have a child
 - call DFS on the child
 - after the call returns,
 - O update low(v) to low(w) if low(w) is less

when to compute num(v) and low(v)

- num(v) is computed as we move down the tree
 - O pre-order DFS
- low(v) is updated as we move down and up the tree
- Recursive DFS is convenient to compute both
 - O why?

Using DFS to find the articulation points of a connected undirected graph

```
int num = 0
DFS(vertex v) {
    num[v] = num++
    low[v] = num[v] //initially
    seen[v] = true //mark v as seen
    for each neighbor w
       if(w unseen){
          parent[w] = v
          DFS(w) //after the call returns low[w] is computed, why?
          low[v] = min(low[v], low[w])
          if(low[w] >= num[v]) v is an articulation point
       } else { //seen neighbor
         if(w!= parent[v]) //and not the parent, so back edge
           low[v] = min(low[v], num[w])
```

Finding articulation points example

