

PROGRESS SUMMARY
FEROZE MOHIDEEN

Index

- Peak Detection Algorithm
- AxonDeepSeg

Peak Detection Algorithm

- Rewriting previous code
- Laying foundation for large-scale data analysis
- Method 1: Aggregate Mean Analysis
- Method 2: Median of Medians Approach
- Results and Conclusions
- Deployment Protocol

Rewriting previous code

- Changed around Kam's code, with same core concepts:
 - Identification of first peak following SA
 - Work backwards to isolate entire peak

Large-Scale Data Analysis

- Workflow
 - Convert folder of LabChart files to .txt files
 - Run analysis on entire folder instead of each file
 - Output aggregate results

Method 1: Aggregate Mean Analysis

Method 2: Median of Medians Approach

Resulting Histogram

Group	Amplitude	Latency	
ctrl 1.1.1.txt	8.15	250.5	
ctrl 1.1.2.txt	5.15	111	
ctrl 1.1.3.txt	3.55	247.5	
ctrl 1.1.4.txt	14.4	126	
ctrl 1.2.1.txt	3.6	237	
ctrl 1.2.2.txt	4.4	138	
ctrl 1.2.3.txt	8.1	166	
ctrl 1.2.4.txt	8.5	61	
ctrl 2.1.1.txt	6.6	184	
ctrl 2.1.2.txt	4.3	181.5	
ctrl 2.1.3.txt	6.8	169.5	
ctrl 2.1.4.txt	6.8	97	
ctrl 2.2.1.txt	3.8	191	

Results

Results (continued)

Results (continued)

Conclusions

- Present new and efficient way of performing large-scale NCV analysis
- Program is objective and robust
 - Running the tests on the same files will always yield the same results, regardless of user

Folder Layout

- Convert LabChart
 Files to .txt files
 (separate procedure)
- 2. Place folder inside 'Files' folder
- ALSO include lengths file, can be named anything

ctrl 1.1.1.txt	3.931111
ctrl 1.1.2.txt	1.673333
ctrl 1.1.3.txt	3.106667
ctrl 1.1.4.txt	1.102222
ctrl 1.2.1.txt	3.622222
ctrl 1.2.3.txt	4.235556
ctrl 1.2.2.txt	1.16
ctrl 1.2.4.txt	1.655556
ctrl 2.1.1.txt	3.52
ctrl 2.1.2.txt	1.344444
ctrl 2.1.3.txt	3.42
ctrl 2.1.4.txt	1.277778
ctrl 2.2.1.txt	4.195556
ctrl 2.2.2.txt	1.382222
ctrl 2.2.3.txt	3.88
ctrl 2.2.4.txt	1.275556
ctrl 3.1.1.txt	3.068889
ctrl 3.1.2.txt	1.306667
ctrl 3.1.3.txt	3.577778
ctrl 3.1.4.txt	1.28
ctrl 3.2.1.txt	3.746667
ctrl 3.2.2.txt	1.244444
ctrl 3.2.3.txt	4.071111
ctrl 3.2.4.txt	1.526667
ctrl 4.1.1.txt	3.062222

- After, run betterCode.m
- All trace data will be saved in the OUTPUTS folder
 - a. Excel file with all NCV data
 - b. Scatter plot of categorical results in IMAGES folder

```
>> betterCode
Analyzing file 'ctrl 1.1.1.txt' (1/85)
Analyzing file 'ctrl 1.1.2.txt' (2/85)
Analyzing file 'ctrl 1.1.3.txt' (3/85)
Analyzing file 'ctrl 1.1.4.txt' (4/85)
Analyzing file 'ctrl 1.2.1.txt' (5/85)
```



```
>> betterCode
Analyzing file 'ctrl 1.1.1.txt' (1/85)
Analyzing file 'ctrl 1.1.2.txt' (2/85)
Analyzing file 'ctrl 1.1.3.txt' (3/85)
Couldn't find the length of ctrl 1.1.3.txt in the lengths file!
To continue without this file, press y. Otherwise, press n to exit. Enter:
```

Example error in lengths input

Group	Amplitude	Latency	Length (mm)	NCV (m/s)
ctrl 1.1.1.txt	8.15	250.5	3.9311	0.31386
ctrl 1.1.2.txt	5.15	111	1.6733	0.3015
ctrl 1.1.3.txt	3.55	247.5	3.1067	0.25104
ctrl 1.1.4.txt	14.4	126	1.1022	0.17496
ctrl 1.2.1.txt	3.6	237	3.6222	0.30567
ctrl 1.2.2.txt	4.4	138	1.16	0.16812
ctrl 1.2.3.txt	8.1	166	4.2356	0.51031
ctrl 1.2.4.txt	8.5	61	1.6556	0.54281
ctrl 2.1.1.txt	6.6	184	3.52	0.38261
ctrl 2.1.2.txt	4.3	181.5	1.3444	0.14815
ctrl 2.1.3.txt	6.8	169.5	3.42	0.40354
ctrl 2.1.4.txt	6.8	97	1.2778	0.26346
ctrl 2.2.1.txt	3.8	191	4.1956	0.43933
ctrl 2.2.2.txt	5.6	89	1.3822	0.31061
ctrl 2.2.3.txt	8.6	226	3.88	0.34336
ctrl 2.2.4.txt	6.1	91	1.2756	0.28034
ctrl 3.1.1.txt	16.45	178	3.0689	0.34482

Output excel file

Output scatter plot

AxonDeepSeg

Promising approach for automated segmentation of

TEM and SEM images

Thanks to all of you guys for this opportunity!

FUNDING SOURCES:

