The Impact of College Education on Fertility

Jude Bashto †

March 30, 2022

Women's educational attainment vs. fertility

Shown on the x-axis is the average number of years of schooling of women in the reproductive age (15 to 49 years).

Source: United Nations - Population Division (2019 Revision), Our World In Data (2017)

OurWorldInData.org/fertility-rate • CC BY

What is the Impact of College Education on Fertility?

• Fertilityi: Number of children a woman gives birth to

Fertility_i =
$$\theta_1$$
College_i + $m_0(\mathbf{x}_i) + \epsilon_i$ (1)

Figure 1: Assumed Causal Mechanism

 "Education, HIV, and Early Fertility: Experimental Evidence from Kenya" (Duflo et. al. 2015)

- "Education, HIV, and Early Fertility: Experimental Evidence from Kenya" (Duflo et. al. 2015)
- "Does female schooling reduce fertility? Evidence from Nigeria" (Osili and Long 2007)

- "Education, HIV, and Early Fertility: Experimental Evidence from Kenya" (Duflo et. al. 2015)
- "Does female schooling reduce fertility? Evidence from Nigeria" (Osili and Long 2007)
- "The effect of education on fertility: Evidence from a compulsory schooling reform" (Rehm and Maeder 2012)

- "Education, HIV, and Early Fertility: Experimental Evidence from Kenya" (Duflo et. al. 2015)
- "Does female schooling reduce fertility? Evidence from Nigeria" (Osili and Long 2007)
- "The effect of education on fertility: Evidence from a compulsory schooling reform" (Rehm and Maeder 2012)
- " The Impact of College Education on Fertility: Evidence for Heterogeneous Effects" (Brand and Davis 2011)

- "Education, HIV, and Early Fertility: Experimental Evidence from Kenya" (Duflo et. al. 2015)
- "Does female schooling reduce fertility? Evidence from Nigeria" (Osili and Long 2007)
- "The effect of education on fertility: Evidence from a compulsory schooling reform" (Rehm and Maeder 2012)
- "The Impact of College Education on Fertility: Evidence for Heterogeneous Effects" (Brand and Davis 2011)

See section 2.2 of the paper for an argument against policy instruments.

Overview of the Data

- Source: National Longitudinal Survey of Youth
- 8,984 males and females born in 1980-1984
- Information from 1997 and 2015 is taken (respondents were 12-16, 36-40 respectively)
- Key variables:
 - Outcome: Fertility
 - Treatment: College boolean
 - Instrument: Bullying
 - w : Determinants of bullying (9)
 - x : Confounders for Fertility-College relationship (7)
- Issues:
 - Small sample size (4,492 women)
 - A lot of missing observations

The Average Respondent

- Exclusion: men
- Average respondent is a...
 - 32 year old . . .
 - White · · ·
 - Christian · · · ·
 - Mom of 1.4 children · · · ·
 - Who was not bullied in school · · ·
 - Who went to college · · ·
 - Whose parents both finished highschool · · ·
 - · · · and whose family makes \$75,000 a year.
- After missing data exclusions, sample size is 848

Figure 2: Percentage of Women With X Children

Figure 3:
Percentage of Women With X Children
And

Percentage of Women With A College Education, Conditional on Having X Children

^{*}Red shows an estimate of $\mathbb{E}[College|Fertility]$, which is not what we want to estimate!

Figure 4:
Average Number of Children Per Woman
Conditional On
College Attendance Status

[†]This shows an estimate of $\mathbb{E}[Fertility|College]$, which is what we want to estimate!

Methodology: Back to DAGs

Figure 5: Simultaneity Bias

Figure 6: Desired Causality

2SLS: Assuming Simultaneity

$$College_i = Bullied_i \alpha_1 + \mathbf{x}_i^{\top} \boldsymbol{\beta} + \mathbf{w}_i^{\top} \boldsymbol{\pi} + \eta_i$$
 (2)

$$Fertility_i = \widehat{College}_i \theta_1 + \mathbf{x}_i^{\top} \gamma + \mathbf{w}_i^{\top} \kappa + \epsilon_i$$
 (3)

Assumptions:

- Assuming a linear conditional expectation function in both stages.
- $\blacksquare \mathbb{E}[\epsilon_i|\mathbf{x}_i,\mathbf{w}_i] = 0$
- $\blacksquare \mathbb{E}[\epsilon_i \times \text{Bullied}_i | \mathbf{x}_i, \mathbf{w}_i] = 0$
- $\alpha_1 \neq 0$

2SLS Results

	$\hat{ heta}$	SE	t-stat	p-value
2SLS	-1.09	0.99	-1.09	0.28

Hausman Test Results:

 H_0 : 2SLS and OLS are consistent

 H_A : OLS is not consistent

P-value > 0.4

Hausman Test Inconclusive.

[‡]Table 5.01 in paper

Comparing 2SLS to OLS

	$\hat{ heta}$	SE	t-stat	p-value
2SLS	-1.09	0.99	-1.09	0.28
OLS	-0.30	0.09	-3.32	0.00

Why was the Hausman test inconclusive?

- OLS and 2SLS close in magnitude with 2SLS being more imprecise.
- The instrument is endogenous.

Is it better not to use an instrument? Yes.

[§]Table 5.01 in paper

Method 2: Partially Linear Model

Fertility_i =
$$\theta_1$$
College_i + $g_0(\mathbf{x_i}, \mathbf{w_i}) + \eta_i$ (4)

$$College_i = m_0(\mathbf{x}_i, \mathbf{w}_i) + \epsilon_i \tag{5}$$

Assuming:

- $\blacksquare \mathbb{E}[\eta_i | \mathsf{College}_i, \mathbf{x}_i, \mathbf{w}_i] = 0$
- $\mathbb{E}[\epsilon_i|\mathbf{x}_i,\mathbf{w}_i]=0$

Results

	$\hat{ heta}$	SE	t-stat	p-value
OLS	-0.30	0.09	-3.32	0.00
DDML:	-1.75	0.86	-2.03	0.04
Lasso				
DDML:RF	-0.72	1.28	-0.56	0.57
DDML:	6.00	2.76	2.17	0.03
XgBoost				
Sample	848			
Size				

[¶]Table 5.01 in paper

Altering The Specification

```
Fertility<sub>i</sub> = \theta_1College<sub>i</sub> + g_0(\mathbf{x_i}, \mathbf{w_i}) + \eta_i
College_i = m_0(\mathbf{x_i}, \mathbf{w_i}) + \epsilon_i
```

Such that:

```
age
race
Age mother was born
Family Networth
Percent of peers in a gang & Percent of peers who do drugs
Has R been through hard times?
Index of family Routines & Index of family risk
```

Results: Altered Specification

	$\hat{ heta}$	SE	t-stat	p-value
OLS	-0.43	0.09	-4.80	0.00
DDML:	-0.49	0.09	-5.45	0.00
Lasso				
DDML:RF	-0.35	0.09	-3.79	0.00
DDML:	-0.61	0.10	-6.23	0.00
XgBoost				
Sample	848			
Size				

Robustness Check: Excluding Outliers

Exclude Outliers **(37 values), and re-estimate model.

	$\hat{ heta}$	SE	t-stat	p-value	
OLS	-0.42	0.09	-4.66	0.00	
DDML:	-0.51	0.09	-5.52	0.00	
Lasso					
DDML:RF	-0.34	0.09	-3.63	0.00	††
DDML:	-0.65	0.10	-6.39	0.00	
XgBoost					
Sample	811				
Size					

^{**} Defined by Mahalanobis Distance

^{††}Table 5.11 in paper

Limitations: Inappropriate Instrument

Figure 8: Violation of Exclusion Restriction

- Unobservable Mediator
- 2 Unobservable Confounder

Limitations: Wrong Assumed Causal Mechanism

Figure 9: Alternative Causal Mechanism via Mediators

■ ATE may be retrievable via Front door criterion. Otherwise, estimated causal effect may not make sense.

Limitations: misc.

- Small sample size
- Heterogenous Treatment Effect

The End