Ch2, qn1, -許傑 - 313707025

a. completes the entries in the table. Put the sums in the last row. What are the sample means \bar{x} and \bar{y} ?

Х	у	$X-\overline{X}$	$(x-\bar{x})^2$	y - \overline{y}	$(x-\bar{x})(y-\bar{y})$
3	4	2	4	2	4
2	2	1	1	0	0
1	3	0	0	1	0
-1	1	-2	4	-1	2
0	0	-1	1	-2	2
$\sum x_i = 5$	$\sum y_i = 10$	$\sum x_i - \bar{x} = 0$	$\sum (x_i - \bar{x})^2 = 10$	$\sum y_i - \bar{y} = 0$	$\sum (x - \bar{x})(y - \bar{y}) = 8$

$$\bar{x}$$
 = 5/5 = 1, \bar{y} = 10/5 = 2

b. Calculate b1 and b2 using (2.7) and (2.8) and state their interpretation.

b2 =
$$\frac{\sum (x-\bar{x})(y-\bar{y})}{\sum (x_i-\bar{x})^2} = \frac{8}{10} = 0.8$$
; This implies that for increase in x, y will increase too by 0.8

b1=
$$\bar{y} - b_2 \bar{x} = 2 - 0.8 \times 1 = 1.2$$
; this implies that when x = 0, 1.2 is the expected value of y.

c. compute... using these numerical values, show that ...

$$\sum x_i^2 = 3^2 + 2^2 + 1^2 + (-1)^2 + 0^2 = 0 + 4 + 1 + 1 + 0 = 15$$

$$\sum x_i y_i = 3 \times 4 + 2 \times 2 + 1 \times 3 + (-1) \times 1 + 0 \times 0 = 18$$

$$\sum (x - \bar{x})^2 = \sum x_i^2 - N\bar{x}^2$$
; $10 = 15 - 5 \times 1^2 = 15 - 5 = 10$; Verified

$$\sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i^2 - N\overline{x}\overline{y}$$
; $8 = 18 - 5 \times 1 \times 2 = 18 - 10 = 8$; Verified

d. Use the least squares estimates from part (b) to compute the fitted values of y and complete the remainder of the table below. Put the sums in the last row. ...

x_i	y_i	$\hat{\mathcal{Y}}_i$	\hat{e}_i	$\hat{e}_i^{\ 2}$	$x_i \hat{e}_i$
3	4	3.6	0.4	6	1.2
2	2	2.8	-0.8	4	-1.6
1	3	2	1	0	1
-1	1	0.4	0.6	6	-0.6
0	0	1.2	-1.2	4	0
$\sum x_i = 5$	$\sum y_i = 10$	$\sum \hat{y}_i = 10$	$\sum \hat{e}_i = 0$	$\sum \hat{e}_i^2 = 3.6$	$\sum x_i \hat{e}_i = 0$

sample variance of x, and y is:
$$s_y^2 = \frac{\sum (y_i - y)^2}{N - 1} = \frac{10}{4} = 2.5$$
, $s_x^2 = \frac{\sum (x_i - x)^2}{N - 1} = \frac{10}{4} = 2.5$

sample covariance between x and y is:
$$s_{xy} = \frac{\sum (x_i - x)(y_i - y)}{N - 1} = \frac{8}{4} = 2$$
,

sample correlation between x and y is:
$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{2}{\sqrt{2.5} \times \sqrt{2.5}} = \frac{2}{2.5} = 0.8$$

The coefficient of variation is $CV_x=100\times\frac{s_x}{\bar{x}}=100\times\frac{2.5}{1}\approx158.11$, and the median for x is from [-1,0,1,2,3], which is 1.

e. plot

f. the point of mean is (\bar{x}, \bar{y}) = (1, 2), which the plot passes through.

g.
$$\bar{y}=2$$
 and $b_1+b_2\bar{x}=1.2+0.8\times 1=2=\bar{x}$, verified

h.
$$\overline{\hat{y}} = \frac{\sum \hat{y}_i}{N} = \frac{10}{5} = 2 = \overline{y}$$
, thus $\overline{\hat{y}} = \overline{y}$, verified

i.
$$\hat{\sigma}^2 = \frac{\sum \hat{e_i}^2}{N-2} = \frac{3.6}{3} = 1.2$$

j.
$$\widehat{var}(b_2|x) = \frac{\widehat{\sigma}^2}{x_i - \bar{x}} = \frac{1.2}{10} = 0.12$$
, and $se(b_2) = \sqrt{0.12} \approx 0.3464$