fastLink: Probabilistic Record Linkage in R

Ted Enamorado Washington University in St. Louis

Duke University February 24, 2021

Social Scientists Rely on Combining Data

- » Where does this gap come from?
 - Over-reporting vs Sample of likely-voters
- » At the center of this debate: Turnout Validation
 - --- merging datasets without a unique identifier. But How?

,

How We Merge Data Sets Matters

- » Deterministic methods e.g., exact matches
 - ★ controls false positives
 - \leadsto not robust to typographical errors and missing values

Georgia's "Exact Match" voter identification law (House Bill 268) →
In 2018, more than **53,000** records failed to match exactly and were put on hold
→ **80%** of which are racial minorities

» Probabilistic Record Linkage

- ★ robust to typographical errors
- ★ designed to control error rates
- → existing open-source implementations of Fellegi-Sunter do not scale **Solution:** fastLink (Enamorado, Fifield, and Imai, 2018)

1. The Method: The Fellegi-Sunter Model via fastLink

2. Guided example: Deduplication of RLdata10000

The Workflow for PRL à la Fellegi-Sunter

The Workflow for PRL à la Fellegi-Sunter

Agreement Patterns

- » Two data sets: \mathcal{A} and \mathcal{B}
- » K variables in common
- » $N_A \times N_B$ pairs to be compared for each common variable k
- » Agreement value in field k for a pair (i, j)

$$\gamma_k(i,j) \, = \, \left\{ egin{array}{l} ext{agree} \ & ext{similar} \ & ext{disagree} \end{array}
ight.$$

▶ Agreement value

Agreement pattern $\gamma(i,j) = \{\gamma_1(i,j), \gamma_2(i,j), \dots, \gamma_K(i,j)\}$

	Na	me						
	First	Last	Age	Street				
Data set ${\cal A}$								
1	James	Smith	35	Devereux St.				
2	John	Martin	56	Devereux St.				
Data set	Data set ${\cal B}$							
1	Michael	Martinez	28	16th St.				
2	James	Smitj	34	Dvereuux St.				
Agreement patterns $\gamma(i,j)$								
γ (1, 1)	disagree	disagree	disagree	disagree				
γ (1, 2)	agree	agree	agree	similar				
γ (2, 1)	disagree	similar	disagree	disagree				
γ (2,2)	disagree	disagree	disagree	similar				

The computational bottleneck: make all these comparisons!

Step 1: Calculate a Measure of Dissimilarity

	Na	ame		
	First	Last	Age	Street
$1 \in \mathcal{A}$	James	Smith	35	Devereux St.
$2\in \mathcal{B}$	James	Smitj	34	Dvereuux St.
dissimilarity	0.00	0.04		0.10

» For fields such as first name, last name, street name we use:

Step 1: Calculate a Measure of Dissimilarity

	Name			
	First	Last	Age	Street
$1 \in \mathcal{A}$	James	Smith	35	Devereux St.
${\tt 2} \in \mathcal{B}$	James	Smitj	34	Dvereuux St.
dissimilarity			1.00	

» For fields such as age:

Step 2: Make Comparisons Discrete

	Na	Name		
	First	Last	Age	Street
$1\in\mathcal{A}$	James	Smith	35	Devereux St.
$\mathtt{2} \in \mathcal{B}$	James	Smitj	34	Dvereuux St.
dissimilarity	0.00	0.04		0.10
γ (1, 2)	agree	agree		similar

» Set thresholds for each dissimilarity measure:

Step 2: Make Comparisons Discrete

	Name			
	First	Last	Age	Street
$1 \in \mathcal{A}$	James	Smith	35	Devereux St.
$\mathtt{2} \in \mathcal{B}$	James	Smitj	34	Dvereuux St.
dissimilarity	0.00	0.04	1.00	0.10
γ (1, 2)	agree	agree	agree	similar

» Set thresholds for each dissimilarity measure:

Absolute value of the difference

	Na	me						
	First	Last	Age	Street				
Data set ${\cal A}$								
1	James	Smith	35	Devereux St.				
2	John	Martin	56	Devereux St.				
Data set	\mathcal{B}							
1	Michael	Martinez	28	16th St.				
2	James	Smitj	34	Dvereuux St.				
Agreeme	Agreement patterns $\gamma(i,j)$							
γ (1, 1)	disagree	disagree	disagree	disagree				
γ (1,2)	agree	agree	agree	similar				
γ (2, 1)	disagree	similar	disagree	disagree				
$\gamma(2,2)$	disagree	disagree	disagree	similar				

The computational bottleneck: make all these comparisons!

Runtime Comparison

- » Data sets of equal size
- » Variables in common: first and last name; house number, street name and zip code; age

Computational Improvements:

» Sufficient statistic:

Count the number of pairs per agreement pattern

- » Bottleneck: making the comparisons!
- » Solutions:
 - 1. Agreement values (and consequently agreement patterns) are mutually exclusive
 - 2. Sparse matrices are used to store agreement values and patterns (hash tables)
 - 3. Each hash table can be connected to all the others via a new hashing key function
 - 4. The entire process can be run in parallel

Hashing

» H_k maps each pair of records (keys) in linkage field k to a corresponding agreement pattern (hash value):

$$\mathbf{H} = \sum_{k=1}^{K} \mathbf{H}_{k} \quad \text{where} \quad \mathbf{H}_{k} = \begin{bmatrix} h_{k}^{(1,1)} & h_{k}^{(1,2)} & \dots & h_{k}^{(1,N_{2})} \\ \vdots & \vdots & \ddots & \vdots \\ h_{k}^{(N_{1},1)} & h_{k}^{(N_{1},2)} & \dots & h_{k}^{(N_{1},N_{2})} \end{bmatrix}$$

and
$$h_k^{(i,j)} = \mathbf{1} \left\{ \gamma_k(i,j) > 0 \right\} 2^{\gamma_k(i,j) + \mathbf{1} \{k > 1\} \times \sum_{e=1}^{k-1} (L_e - 1)}$$

- \mathbf{H}_b is a sparse matrix, and so is \mathbf{H}
- » With sparse matrix, lookup time is O(T) where T is the number of unique patterns observed $T \ll \prod_{k=1}^K L_k$

The Workflow for PRL à la Fellegi-Sunter

The Fellegi-Sunter Model of PRL

- **» We observe:** the agreement patterns $\gamma(i,j)$
- » We do not observe: the matching status

$$M(i,j) = \begin{cases} & \text{non-match} \\ & \text{match} \end{cases}$$

Mixture Model

$$\begin{array}{ccc} & \textit{M}(i,j) & \stackrel{\text{i.i.d.}}{\sim} & \mathsf{Bernoulli}(\lambda) \\ \gamma(i,j) \mid \textit{M}(i,j) = \mathsf{non\text{-}match} & \stackrel{\text{i.i.d.}}{\sim} & \mathcal{F}(\pi_{\mathsf{NM}}) \\ \gamma(i,j) \mid \textit{M}(i,j) = & \mathsf{match} & \stackrel{\text{i.i.d.}}{\sim} & \mathcal{F}(\pi_{\mathsf{M}}) \end{array}$$

The Likelihood of PRL

Independence assumptions:

- 1. Independence across pairs
- **2.** Independence across linkage fields: $\gamma_k(i,j) \perp \!\!\! \perp \gamma_{k'}(i,j) \mid M(i,j)$

Observed-data log-likehood:

$$\log L(\lambda, \pi \mid \gamma(i, j)) \propto$$

$$\prod_{i=1}^{N_1} \prod_{j=1}^{N_2} \left\{ \lambda \prod_{k=1}^{K} \prod_{l=1}^{L_k-1} \pi_{Mkl}^{\mathbf{1}\{\gamma_k(i,j)=l\}} + (1-\lambda) \prod_{k=1}^{K} \prod_{l=1}^{L_k-1} \pi_{NMkl}^{\mathbf{1}\{\gamma_k(i,j)=l\}} \right\}$$

From the E-step we obtain:

$$\begin{split} \zeta_{ij} & = & \Pr(\mathbf{M}(i,j) = \underset{k=1}{\operatorname{match}} \mid \lambda, \pi_{kml}, \gamma(i,j)) \\ & = & \frac{\lambda \prod_{k=1}^{K} \left(\prod_{l=0}^{L_k-1} \pi_{k1l}^{\mathbf{1}_{\{\gamma_k(i,j)=l\}}} \right)}{\sum_{m=0}^{\mathbf{1}} \lambda^m (\mathbf{1} - \lambda)^{\mathbf{1}-m} \prod_{k=1}^{K} \left(\prod_{l=0}^{L_k-1} \pi_{kml}^{\mathbf{1}_{\{\gamma_k(i,j)=l\}}} \right)} \end{split}$$

From the M-step:

$$\lambda = \frac{\sum_{i=1}^{N_{A}} \sum_{j=1}^{N_{B}} \zeta_{ij}}{N_{A} N_{B}}$$

$$\pi_{kml} = \frac{\sum_{i=1}^{N_{A}} \sum_{j=1}^{N_{B}} \mathbf{1} \{ \gamma_{k}(i,j) = l \} \} (\zeta_{ij})^{m} (1 - \zeta_{ij})^{1-m}}{\sum_{i=1}^{N_{A}} \sum_{j=1}^{N_{B}} (\zeta_{ij})^{m} (1 - \zeta_{ij})^{1-m}}$$

The Probability of Being a Match

Using parameters of the model + the agreement patterns we can get an estimate of:

$$\zeta(i,j) = \Pr\left(M(i,j) = \text{match } \middle| \gamma(i,j), \lambda, \pi_{\text{M}}, \pi_{\text{NM}}\right)$$

Non-match ← Probability of being a Match — Match

The Probability of Being a Match

Using parameters of the model + the agreement patterns we can get an estimate of:

Outline

1. The Method: The Fellegi-Sunter Model via fastLink

2. Guided example: Deduplication of RLdata10000

Guided Exercise

- » We will use the following dataset: RLdata10000 from the RecordLinkage R-package
- » Widely used to test PRL methods
- » 7 possible linkage fields. We will use 5 of them: { first name, last name, birth year, month of birth, day of birth }
- » It contains 10,000 records + unique identifier is available for validation
 - 8,000 records have no duplicates
 - 1,000 have a duplicate
- » Duplicated records have been perturbed in one field (at random)
- » Can we find the duplicates?

Fields:

- » fname_c1: first name
- » fname_c2: middle name (if available)
- >> lname_c1: first last name
- >> lname_c2: second last name
- » by: birth year
- » bm: birth month
- » bd: birth day
- >> rec_id: row number
- » ent_id: unique identifier

```
## Read data
records <- read.csv("RLdata10000.csv")</pre>
```

```
## Let's take a look at the first 4 records in RLdata10000
head(records, 4)
##
   fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
## 1 FRANK <NA> MUELLER <NA> 1967 9 27
## 2 MARTIN <NA> SCHWARZ <NA> 1967 2 17
## 3 HERBERT <NA> ZIMMERMANN <NA> 1961 11 6
## 4 HANS <NA> SCHMITT <NA> 1945 8 14
## rec_id ent_id
## 1
       1 3606
## 2 2 2560
## 3 3 3892
       4 329
## 4
```

```
## Count the number of unique ids
length(unique(records$ent_id))
## [1] 9000
```

```
## Number of self-matches
sum(exact.match$rec_id.x == exact.match$rec_id.y)
## [1] 10000
```

```
## Number of non-self matches
sum(exact.match$rec_id.x != exact.match$rec_id.y)
## [1] 16
```

Loading fastLink

```
## Load fastLink
  ## Recommended installation: GitHub
  ## https://github.com/kosukeimai/fastLink
 library(fastLink)
## MAC users if you run into GitHub installation
## problems, just send me an email for detailed
## instructions
packageVersion("fastLink")
## [1] '0.6.0'
```

Set Linkage Fields

```
## Fields that we will compare based on
## a string similarity measure
stringDistFields <- c("fname_c1", "lname_c1")</pre>
```

```
## Fields for which we have 3
## possible agreement values
## Agree, Partially Agree, Disagree
partialMatchFields <- c("fname_c1", "lname_c1")</pre>
```

Deduplication via fastLink

Changing Dissimilarity Measure

fastLink Objects

» The fastLink output contains the following objects:

```
names(out)
## [1] "matches" "EM" "patterns" "posterior"
## [5] "nobs.a" "nobs.b"
```

Who is matched?

» The indices of each matched pair can be found in out\$matches

```
head(cbind(out$matches$inds.a, out$matches$inds.b), 6)

## [,1] [,2]

## [1,] 1 1

## [2,] 2 2

## [3,] 3 3

## [4,] 4 4

## [5,] 5 5

## [6,] 6 6
```

Counting Patterns

- » Counts and FS weights for each patterns can be found in out\$EM\$patterns.w
- » Legend: 2 = Agree; 1 = Partially Agree; 0 = Disagree

```
round(tail(out$EM$patterns.w[, 1:7]), 3)
##
      gamma.1 gamma.2 gamma.3 gamma.4 gamma.5 counts
## [63,]
                                       286
## [64,] 0
                                     16
## [65,] 2
                                   2 264
## [66.] 0 2 2
                             2 2 274
                      2 2 2 414
## [67,] 1
## [68,] 2
                                   2 10016
##
      weights
## [63.] 12.573
## [64,] 7.044
## [65,] 18.081
## [66,] 9.337
## [67.] 14.910
## [68,] 20,374
```

Matching Threshold

» By default it is 0.85, but it can be easily changed

Deduplication via fastLink

```
## Deduplicated Dataset:
  ## If a record is duplicated according to
  ## the results from fastLink, then the duplicated
  ## record(s) will have the same id
  ## The new unique id is called dedupe.ids
  recordsfL <- getMatches(dfA = records, dfB = records,</pre>
                          fl.out = out)
## Let's count how unique records
## fastLink finds:
length(unique(recordsfL$dedupe.ids))
## [1] 8983
```

Deduplicated data

```
## The deduplicated data looks like this:
 head(recordsfL, 4)
##
    fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
      FRANK
               <NA> MUELLER
                                <NA> 1967 9 27
## 1
## 2 MARTIN <NA> SCHWARZ <NA> 1967 2 17
## 3 HERBERT <NA> ZIMMERMANN <NA> 1961 11 6
       HANS
                      SCHMITT <NA> 1945 8 14
## 4
               <NA>
##
    rec_id ent_id dedupe.ids
## 1
        1
           3606
                       1
## 2
        2 2560
                   1051
## 3
        3 3892
                  2047
## 4
        4 329
                     3033
```

Inspecting Duplicates

```
## Some examples of known duplicates
 recordsfL[recordsfL$ent_id == 20, ]
## fname c1 fname c2 lname c1 lname c2 by bm bd
## 2461 PAUL <NA> SCHAEFER <NA> 1942 7 2
## 3612 PAUL <NA> SCHAECFER <NA> 1942 7 2
##
     rec_id ent_id dedupe.ids
## 2461 2461 20
                      1505
## 3612 3612 20
                      1505
recordsfL[recordsfL$ent_id == 77, ]
##
      fname c1 fname c2 lname c1 lname c2 by bm bd
## 1056
         JENS <NA> WAGNER <NA> 1976 8 14
## 2763 JENS <NA> WAGNER <NA> 1986 8 14
##
    rec_id ent_id dedupe.ids
## 1056 1056 77
                        66
## 2763 2763 77 66
```

Confusion Table

```
recordsfL$dupfL <- ifelse(duplicated(recordsfL$dedupe.ids),</pre>
                              "Duplicated", "Not duplicated")
recordsfL$dupTrue <- ifelse(duplicated(recordsfL$ent_id),</pre>
                              "Duplicated", "Not duplicated")
confusion <- table("fastLink" = recordsfL$dupfL,</pre>
                    "True" = recordsfL$dupTrue)
confusion
##
                    True
## fastLink
                     Duplicated Not duplicated
##
     Duplicated
                            982
                                              35
##
     Not duplicated
                             18
                                           8965
```

False Discovery and False Negative Rates

```
# True Positives, False Positives, and False Negatives:
 TP <- confusion[1, 1]
FP <- confusion[1, 2]
FN <- confusion[2, 1]
# False Discovery Rate:
FDR <- round(FP/(FP + TP), 3)
FDR.
## [1] 0.034
# False Negative Rate:
FNR <- round(FN/1000, 3)
FNR.
## [1] 0.018
```

False Precision and Recall

```
## Precision:
PRE <- 1 - FDR
PRE

## [1] 0.966

## Recall
REC <- 1 - FNR
REC

## [1] 0.982
```

Comparisons for Numeric Variables

```
## We can add numeric comparisons using dissimilarity
numericMatchFields <- c("by")

## Make sure these are of class numeric
records$by <- as.numeric(records$by)</pre>
```

Adding numeric.match as an Option

```
out2 <- fastLink(dfA = records, dfB = records,
                  varnames = linkageFields,
                  stringdist.match = stringDistFields,
                  cut.a = 0.94, cut.p = 0.84,
                  numeric.match = numericMatchFields,
                  cut.a.num = 1.5.
                  partial.match = partialMatchFields,
                  threshold.match = 0.90,
                  dedupe = FALSE)
##
   ===============
  fastLink(): Fast Probabilistic Record Linkage
  _____
##
```

How Well Did We Do?

Blocking

>>	In fastLink	hlocking	is seen	as a	preprocessing	sten
•	III TOSCLITIV	DIOCKIIIS	13 30011	us u	preprocessing	JUL

» The latter means that blocking happens outside the wrapper function

» The idea then is to subset, and then use the wrapper function in each block

» But how?

Traditional Blocking

```
## For illustration purposes:
  ## Pool together those cases with values outside
  ## a "normal" range:
 records$by2 <- records$by
records$by2[records$by < 1924] <- 1923
records$by2[records$by > 2008] <- 2009
## Traditional Blocking:
blockby <- blockData(records, records, varnames = "by2")</pre>
##
## =========
## blockData(): Blocking Methods for Record Linkage
## ========
##
linkageFields2 <- c("fname_c1", "lname_c1", "bm", "bd")</pre>
```

Looping Across Blocks

```
results <- list()
for(j in 1:length(blockby)) {
 records.temp <- records[blockby[[j]]$dfA.inds, ]</pre>
  out.temp <- fastLink(dfA = records.temp, dfB = records.temp,
                       varnames = linkageFields2,
                       stringdist.match = stringDistFields,
                       partial.match = partialMatchFields,
                       cut.a = 0.92, cut.p = 0.84,
                       threshold.match = 0.90.
                       dedupe = FALSE)
 records.temp <- getMatches(dfA = records.temp,
                             dfB = records.temp,
                             fl.out = out.temp)
 records.temp$dedupe.ids <- paste0("B", j, "_",
                                     records.temp$dedupe.ids)
 results[[j]] <- records.temp
##
```

How Many Unique Entities?

```
recordsfL.blockE <- do.call('rbind', results)
length(unique(recordsfL.blockE$dedupe.ids))
## [1] 9145</pre>
```

Concluding Remarks

- » Merging data sets is at the core of social science research
- » fastLink has proven to be successful in many empirical projects of large scale
 - Matching voter files and public opinion surveys
 - Deduplicating campaign contribution data
 - Liking arrest data across years
 - etc.
- » New functionality is coming soon:
 - New blocking functions and dissimilarity measures
 - Human annotations to improve precision (Active Learning)
- >> Please use it! fastLink users are our greatest asset!
- » Comments and suggestions are always welcome! ted.enamorado@gmail.edu

Appendix

Additional Results:

Formal Definition of an Agreement Value

Sections:

Section 1

Section 2

Agreement Value:

Formally:

$$\gamma_{k}(i,j) = \begin{cases} & \text{O} & \text{if } S_{k}(i,j) < \tau_{0} \\ & \text{1} & \text{if } S_{k}(i,j) \in (\tau_{0},\tau_{1}] \\ & \text{2} & \text{if } S_{k}(i,j) \in (\tau_{1},\tau_{2}] \\ & \vdots \\ & L_{k-1} & \text{if } S_{k}(i,j) > \tau_{L_{k}-1} \end{cases}$$

Where L_k is the number of categories and $S_k(i,j)$ is a similarity measure. \bigcirc Go back

Jaro-Winkler:

$$D(s_1, s_2) = \{J(s_1, s_2) + \ell \cdot w \cdot (1 - J(s_1, s_2))\}$$

where

$$J(s_1,s_2) \quad = \quad \left\{ \begin{array}{cc} & \text{O} & \text{if } m=\text{O} \\ \frac{1}{3} \left(\frac{m}{|s_1|} + \frac{m}{|s_2|} + \frac{m-t/2}{m} \right) & \text{otherwise} \end{array} \right.$$

where:

- » |s| represents that length of string s
- » m is the number of characters in common
- » t is the number of transpositions between the common characters
- » $\ell \in [0,4]$ # of consecutive characters in common at the beginning
- » $w \in [0, 0.25]$ is the weight given to ℓ

▶ Go back